VNU-HUS MAT3500: Toán rời rạc

Thuật toán II

Độ phức tạp tính toán, thuật toán tham lam, thuật toán đệ quy

Hoàng Anh Đức

Bộ môn Tin học, Khoa Toán-Cơ-Tin học Đại học KHTN, ĐHQG Hà Nội hoanganhduc@hus.edu.vn

Nội dung

Thuât toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiêu

Ví dụ

Thuật toán tham lam

Giới thiêu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiêu

Ví du

Độ phức tạp tính toán Giới thiệu Ví du

Thuật toán tham lam

Giới thiệu Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu Đa thức đặc trưng Hàm sinh Định lý thợ

Thuật toán đệ quy

Giới thiệu Ví du

BAI HOC TU NHIÊN

- Một thuật toán cần luôn xuất ra kết quả đúng và tốt nhất là có hiệu suất cao
- Chúng ta đã tìm hiểu một số ví dụ về các thuật toán tìm kiếm và sắp xếp trong bài giảng trước và phương pháp chứng minh tính đúng đắn của chúng dựa trên bất biến vòng lặp (loop invariant).
- Độ phức tạp (complexity) của một tính toán là một cách đo độ "khó" của việc thực hiện tính toán đó
 - Độ phức tạp theo thời gian (time complexity): Số các toán tử hoặc số bước cần thiết
 - Độ phức tạp theo bộ nhớ (space complexity): Số các bit trong bộ nhớ cần thiết
- Phần lớn các thuật toán có độ phức tạp khác nhau đổi với các đầu vào có kích thước khác nhau
 - Tìm kiếm trong một dãy dài thường tốn nhiều thời gian hơn tìm kiếm trong một dãy ngắn
- Do đó, độ phức tạp tính toán thường được biểu diễn dưới dạng một hàm (function) của kích thước đầu vào (input size)

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiệu

Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

- DAI HOC TO NHIÊN
- Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán Giới thiệu

Ví du

Thuật toán tham lam Giới thiệu

Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu Đa thức đặc trưng Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

- Khi xét độ phức tạp của một thuật toán, ta không quan tâm đến số lượng chính xác các toán tử/bit cần thiết mà chỉ cần một đánh giá tiệm cận (asymptotic estimate)
- Một công cụ hữu ích cho việc đánh giá độ phức tạp tính toán là các ký hiệu O-lớn, Ω -lớn, và Θ -lớn
- Chúng ta sẽ tập trung vào độ phức tạp tính toán theo thời gian (time complexity) (chủ yếu là trong trường hợp xấu nhất)
 - Độ phức tạp trong trường hợp xấu nhất (worst-case complexity): xấp xỉ thời gian nhiều nhất cần để giải quyết các trường hợp đầu vào với mỗi kích thước đầu vào
 - Độ phức tạp trong trường hợp trung gian (average-case complexity): xấp xỉ thời gian trung bình cần để giải quyết các trường hợp đầu vào với mỗi kích thước đầu vào
 - Độ phức tạp trong trường hợp tốt nhất (best-case complexity): xấp xỉ thời gian ít nhất cần để giải quyết các trường hợp đầu vào với mỗi kích thước đầu vào

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiêu

Ví dụ

Thuật toán tham lam

Giới thiệu

Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Ví du

Với các hàm f và g từ $\mathbb R$ đến $\mathbb R$

 $\blacksquare f \text{ là } O(g)$

$$\exists C, k \ \forall x > k \quad |f(x)| \le C|g(x)|$$

lacksquare f là $\Omega(g)$

$$\exists C > 0, k \ \forall x > k \quad |f(x)| \ge C|g(x)|$$

 $\blacksquare f \stackrel{.}{\mathbf{a}} \Theta(g)$

$$\exists C_1, C_2, k \ \forall x > k \quad C_1|g(x)| \le |f(x)| \le C_2|g(x)|$$

- Ký hiệu f(n) = O(g(n)) thường được sử dụng để chỉ f(n) là O(g(n)).
 - Ký hiệu này không hoàn toàn chặt chẽ về mặt toán học, do f(n) là một hàm còn O(g(n)) là một tập hợp các hàm
 - f(n) = O(g(n)) trên thực tế nghĩa là $f(n) \in O(g(n))$, do đó có thể viết $n = O(n^2)$ nhưng *không nên viết* $O(n^2) = n$
- Bạn có thể gặp biểu thức dạng "f(n) + O(g(n)) = O(h(n))"
 - Dấu "=" ở đây nghĩa là "⊆". Cụ thể, biểu thức trên cần được hiểu là tập hợp S gồm các hàm $f(n)+g_1(n)$ với $g_1(n)\in O(g(n))$ là tập con của tập O(h(n))
- Bạn có thể gặp biểu thức dạng " $f(n) \le g(n) + O(h(n))$ với mọi $n \ge 0$ " hoặc tương tự
 - Nghĩa là tồn tại e(n) sao cho (a) $f(n) \le g(n) + e(n)$ với mọi $n \ge 0$ và (b) $e(n) \in O(h(n))$
- Một số tác giả định nghĩa O-lớn bằng cách thay điều kiện $|f(x)| \le C|g(x)|$ bằng $0 \le f(x) \le C(g(x))$. (Làm việc với giá trị tuyệt đối và khả năng các hàm f(x) và g(x) có thể nhận giá trị âm thường khó hơn là chỉ làm việc với các hàm nhân giá trị dương.) Định nghĩa theo cách này không hoàn toàn chặt chẽ. Ví dụ như hàm $\log n$ có thể nhận giá trị âm với n nhỏ

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví du

Thuật toán tham lam

Giới thiêu

Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Thuât toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiệu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiêu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiêu

Ví du

■ Để đơn giản, ta thường mô tả thời gian chạy của thuật toán theo O-lớn. Chú ý rằng với nhiều thuật toán, ta có thể thu được đánh giá tốt hơn với xấp xỉ theo Θ-lớn. Tuy nhiên không phải lúc nào ta cũng làm được điều này

■ Nhiều tác giả viết "f(x) là O(g(x))" trong khi điều họ thực sự muốn thể hiện là "f(x) là $\Theta(g(x))$ "

Một số quy tắc tính độ phức tạp thuật toán theo thời gian

- Thời gian thực hiện các lệnh gán (:=), trả lại (**return**) là O(1), và giả sử thời gian thực hiện các phép toán cơ bản (cộng, trừ, nhân, chia, so sánh, v.v...) cũng là O(1)
 - Chú ý rằng với phần cứng hữu hạn (64-bit CPU chỉ biểu diễn được tối đa các số nguyên có giá trị nhỏ hơn 2^{64} dưới dạng số nhị phân), việc cộng hai số nguyên độ dài n bit biểu diễn dưới dạng số nhị phân có độ phức tạp O(n)
- Độ phức tạp của một chuỗi tuần tự các bước là tổng của độ phức tạp của từng bước
- Thời gian thực hiện cấu trúc if...then...else là thời gian lớn nhất thực hiện các lệnh sau then hoặc sau else và thời gian kiểm tra điều kiện
- Thời gian thực hiện vòng lặp là tổng thời gian thực hiện các lần lặp và thời gian kiểm tra điều kiện lặp. Nếu thời gian thực hiện mỗi lần lặp là giống nhau, thì tổng thời gian thực hiện các lần lặp là tích của số lần lặp và thời gian thực hiện mỗi lần lặp

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán Giới thiêu

Ví dụ

Thuật toán tham lam

Giới thiệu

Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Bảng: Một số thuật ngữ thường dùng

Độ phức tạp	Thuật ngữ
O(1)	Độ phức tạp hằng số
	(constant complexity)
$O(\log n)$	Độ phức tạp lôgarit
	(logarithmic complexity)
O(n)	Độ phức tạp tuyến tính
	(linear complexity)
$O(n \log n)$	Độ phức tạp $n \log n$
	(linearithmic complexity)
$O(n^b)$	Độ phức tạp đa thức
	(polynomial complexity)
$O(b^n)$, với $b>1$	Độ phức tạp hàm mũ
	(exponential complexity)
O(n!)	Độ phức tạp giai thừa
	(factorial complexity)

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví du

Thuật toán tham lam

Giới thiêu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Ví dụ

Thuật toán tìm giá trị lớn nhất

 $T(n) = t_1 + t_2 + t_3$

Thuât toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiệu

Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Ví du

 $t_1,t_3,t_5 \text{ là } O(1)$ (xấu nhất) (tốt nhất) $t_2 = \sum_{i=2}^n \left[t_4^i + (\text{thời gian kiểm tra } i \leq n) \right] = \sum_{i=2}^n \left[t_4^i + O(1) \right]$

T(n) là O(n)

 $t_4^i=t_5+({\sf th\grave{o}i}$ gian kiểm tra $a_i>v)=O(1)$

Thuật toán 2: Tìm kiếm tuyến tính (Linear Search)

Tìm kiếm tuyến tính

 $t_1, t_4, t_5^i, t_6, t_7 \text{ là } O(1)$

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

) Ví dụ

Thuật toán tham lam

Giới thiệu

Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Ví du

```
Input: a_1, \ldots, a_n: dãy số nguyên, x: số nguyên
 Output: Chỉ số i thỏa mãn x=a_i hoặc 0 nếu x
          không có trong dãy
i := 1 -
                                                       t_1
2 while i < n và x \neq a_i do
                                                       t_2
i := i + 1
4 if i \leq n then
   location := i
6 else
    location := 0 ————
8 return location -
  T(n) = t_1 + t_2 + t_3 + t_4
                              T(n) là O(n)
                                                T(n) là O(1)
```

 $t_3 = \max\{t_6, t_7\} + (\text{thời gian kiểm tra } i \leq n)$

 $t_2 = \sum \left| t_5^i + (\text{t.g. kiểm tra } i \leq n \text{ và } x \neq a_i) \right|$

52

(tốt nhất)

(xấu nhất)

Thuật toán 3: Tìm kiếm nhị phân (Binary Search)

Tìm kiếm nhị phân

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiệu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Ví dụ

```
nguyên
  Output: Chỉ số i thỏa mãn x=a_i hoặc 0 nếu x
           không có trong dãy
i = 1
                                                          t_1
\mathbf{2} \ j := n
3 while i < j do
    m := \lfloor (i+j)/2 \rfloor _____
    if x > a_m then
    i := m + 1_____
    else
      j := m _____
9 if x = a_i then
   location := i ———
11 else
    location := 0 - t_{10}
13 return location -
```

Input: a_1, \ldots, a_n : dãy số nguyên thực sự tăng, x: số

Tìm kiếm nhị phân

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiêu

Ví du

Thuật toán tham lam

Giới thiêu

Ví du

Giải và ước lương hê thức truy hồi

Giới thiêu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán để quy

Giới thiêu

Ví du

$$T(n)=t_1+t_2+t_3+t_4$$

$$t_1,t_4,t_5^{i,j},t_7,\dots,t_{10} \text{ là } O(1)$$

$$t_2=\sum_{\text{cặp }i,j\text{ mỗi lần lặp while}}\left[(t_5^{i,j}+t_6^{i,j})+\right.$$

+ (thời gian kiểm tra i < j)

 $t_6^{i,j} = \max\{t_7, t_8\}$

+ (thời gian kiểm tra $x > a_m$)

 $t_3 = \max\{t_9, t_{10}\}$

+ (thời gian kiểm tra $x=a_i$)

cặp i, j mỗi lần lặp **while** là $O(\log n)$ (ví dụ $n = 2^k$)

T(n) là $O(\log n)$ T(n) là $O(\log n)$

(xấu nhất)

(tốt nhất)

Tìm kiếm nhị phân

cặp i, j mỗi lần lặp **while** là $O(\log n)$

- Đánh số các lần lặp **while** lần lượt bằng $0, 1, 2, \dots, h$
- Mỗi hàng 0, 1, 2, ..., h liệt kê các khoảng i ... j có khả năng xuất hiện ở lần lặp đánh số tương ứng.
- Vòng lặp **while** dừng ở lần lặp h khi mọi khoảng $i \dots j$ chỉ có một phần tử i=j
- Ở mỗi hàng $k \in \{1, \ldots, h\}$, tổng số phần tử của tất cả các khoảng là $\leq n$, và có $\leq 2^k$ khoảng (Hình dưới mô tả trường hợp $n=2^h$)

n-1 n $\leq 2^h$

Thuât toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

13 **)** Ví dụ

Thuật toán tham lam

Giới thiệu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Đinh lý thơ

Thuật toán đệ quy

Giới thiệu

Sắp xếp nổi bọt

Thuật toán 4: Sắp xếp nổi bọt (Bubble Sort)

Input: a_1, a_2, \ldots, a_n : dãy số thực $(n \ge 2)$

Output: Dãy đã cho được sắp xếp theo thứ tự tăng

dần

1 for
$$i:=1$$
 to $n-1$ do

2 for $j:=1$ to $n-i$ do

3 if $a_j>a_{j+1}$ then

4 Hoán đổi giá trị của a_j và $a_{j+1}-t_4$ t_3^j t_2^j

$$T(n) = \overline{t_1} = \sum_{i=1}^{n-1} \left[t_2^i + (\text{t.g. kiểm tra } i \le n-1) \right] = \sum_{i=1}^{n-1} \left[t_2^i + O(1) \right]$$

$$t_2^i = \sum_{j=1}^{n-i} \left[t_3^j + (\text{t.g. kiểm tra } j \leq n-i) \right] = \sum_{j=1}^{n-i} \left[t_3^j + O(1) \right]$$

 t_4 là O(1) $(v := a_j, a_j := a_{j+1}, a_{j+1} := v)$

 $t_3^j = t_4 + (\mathsf{th}\grave{\sigma}\mathsf{i} \; \mathsf{gian} \; \mathsf{ki\acute{e}m} \; \mathsf{tra} \; a_j > a_{j+1})$

(xấu nhất)

T(n) là $O(n^2)$

(tốt nhất)

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

14 Ví du

Thuật toán tham lam

Giới thiệu

Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Ví dụ

Thuật toán 5: Sắp xếp chèn (Insertion Sort)

Input: a_1, a_2, \ldots, a_n : dãy số thực $(n \ge 2)$

Sắp xếp chèn

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

15 🕽 Ví dụ

Thuật toán tham lam

Giới thiệu

Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Ví du

Output: Dãy đã cho được sắp xếp theo thứ tự tăng dần

1 for
$$i=2$$
 to n do

2 $\begin{array}{c|c} m:=a_i & t_2^i \\ j:=i-1 & t_3^i \\ \hline & \text{while } j\geq 1 \text{ và } m < a_j \text{ do} \\ \hline & j:=j-1 & t_4^i \\ \hline & j:=j-1 & t_5^i \\ \hline & a_{j+1}:=m & t_5^i \\ \hline \end{array}$

 $T(n) = t_1 = \sum_{i=2}^{n} \left[(t_2^i + t_3^i + t_4^i + t_5^i) + (\text{t.g. kiểm tra } i \leq n) \right]$

$$t_2^i, t_3^i, t_5^i, t_6^{i,j}$$
 là $O(1)$

$$t_4^i = \sum_{1 \, \leq \, i \, - \, 1 \, \operatorname{v\`{a}} \, m \, < \, a_j} \left[t_6^{i,j} + \right.$$

+ (t.g. kiểm tra $j \geq 1$ và $m < a_j)$

T(n) là $O(n^2)$

(xấu nhất)

T(n) là O(n)

(tốt nhất)

52

Thuật toán tham lam Giới thiểu

NAMEN OF TV NHEN

- Các bài toán tối ưu (optimization problems) yêu cầu cực đại hóa hoặc cực tiểu hóa một số tham số xét trên tập tất cả các đầu vào có thể
 - Tìm đường đi giữa hai thành phố với khoảng cách *nhỏ nhất*
 - Tìm cách mã hóa các thông điệp sử dụng số lượng bit nhỏ nhất có thể
- Một thuật toán tham lam (greedy algorithm) thường được sử dụng để giải bài toán tối ưu: luôn chọn biện pháp "tốt nhất" ở mỗi bước địa phương (theo một số tiêu chuẩn cục bộ nào đó) với hi vọng sẽ thu được một lời giải tối ưu trên toàn cuc.
 - Giải thuật này không nhất thiết xuất ra một lời giải tối ưu cho toàn bộ bài toán, nhưng trong nhiều trường hợp cụ thể nó có thể xuất ra lời giải tối ưu
 - Sau khi mô tả cụ thể "lựa chọn tốt nhất ở từng bước", ta cố gắng chứng minh rằng giải thuật này luôn cho ta một lời giải tối ưu hoặc tìm một phản ví dụ để chỉ ra điều ngược lại.

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán Giới thiêu

Ví du

Thuật toán tham lam

Giới thiệu

Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiệu

17 Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Ví du

■ Bài toán:

Input:

- Một nhóm các bài giảng với thời gian bắt đầu và kết thúc
- Chỉ có một giảng đường duy nhất
- Khi một bài giảng bắt đầu, nó tiếp diễn cho đến khi kết thúc
- Không có hai bài giảng nào được tiến hành ở cùng thời điểm.
- Ngay sau khi một bài giảng kết thúc, một bài giảng khác có thể bắt đầu
- Output: Một danh sách các bài giảng dài nhất có thể
- Ở đây, nếu ta muốn áp dụng giải thuật tham lam, làm thế nào để "lựa chọn tốt nhất" ở mỗi bước của thuật toán? Nói cách khác, ta sẽ chọn bài giảng như thế nào?
 - Chọn bài giảng bắt đầu sớm nhất trong số các bài giảng bắt đầu sau các bài giảng ta vừa chọn trước đó?
 - Chọn bài giảng ngắn nhất trong số các bài giảng bắt đầu sau các bài giảng ta vừa chọn trước đó?
 - Chọn bài giảng kết thúc sớm nhất trong số các bài giảng bắt đầu sau các bài giảng ta vừa chọn trước đó?

DAI HOC TV NHEN

Chọn bài giảng bắt đầu sớm nhất? Không xuất ra lời giải tối ưu trong mọi trường hợp

Chọn bài giảng ngắn nhất? Không xuất ra lời giải tối ưu trong mọi trường hợp

Thuât toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiệu

8) Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiêu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Lập lịch

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiệu

19 **)** Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Đinh lý thơ

Thuật toán đệ quy

Giới thiệu

Ví du

Thuật toán 6: Lập lịch tham lam (Greedy Scheduling)

Input: $(s_1,e_1),(s_2,e_2),\ldots,(s_n,e_n)$: thời gian bắt đầu và kết thúc bài giảng b_1,b_2,\ldots,b_n

Output: Danh sách bài giảng S có số bài giảng lớn nhất trong đó không có hai bài giảng nào xung đột nhau

1 Sắp xếp các bài giảng theo thứ tự tăng dần theo thời gian kết thúc và gán lại nhãn bài giảng sao cho

$$e_1 \le e_2 \le \dots \le e_n$$

2 $S := \emptyset$

 \mathbf{s} for j:=1 to n do

if $B\dot{a}i$ giảng j không xung dột với các phần tử của S then

f a return S

5

Lập lịch

BAI HOCKE

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiệu

0) Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Ví du

Định lý 1

Thuật toán 6 xuất ra một danh sách các bài giảng tối ưu

Chứng minh.

- Giả sử S^* là một danh sách bài giảng tối ưu trong đó các bài giảng x_1, x_2, \ldots, x_k được sắp xếp theo thứ tự tăng dần theo thời gian kết thúc
- Giả sử S là một danh sách bài giảng xuất ra từ Thuật toán 6 trong đó các bài giảng $y_1, y_2, \ldots, y_{k'}$ được sắp xếp theo thứ tự tăng dần theo thời gian kết thúc
- Do S^* là tối ưu, $k \geq k'$
- Nếu $S = S^*$ thì ta có điều phải chứng minh. Ngược lại, nếu $S \neq S'$, gọi i là chỉ số đầu tiên trong $\{1, \ldots, k'\}$ thỏa mãn $x_i \neq y_i$, nghĩa là

$$S^* = \langle x_1 = y_1, x_2 = y_2, \dots, x_{i-1} = y_{i-1}, \mathbf{x_i}, \dots, \mathbf{x_{k'}}, \dots, \mathbf{x_k} \rangle$$

$$S = \langle x_1 = y_1, x_2 = y_2, \dots, \mathbf{x_{i-1}} = y_{i-1}, \mathbf{y_i}, \dots, \mathbf{y_{k'}} \rangle$$

Lập lịch

Chứng minh (tiếp).

- Nếu i không tồn tại thì $S^* = \langle y_1, y_2, \dots, y_{k'}, x_{k'+1}, \dots, x_k \rangle$
- Ngược lại, do y_i được chọn bởi Thuật toán 6, y_i kết thúc trước khi x_i kết thúc, nghĩa là nó không xung đột với bất kỳ bài giảng nào sau x_i trong S^* .
- Do đó, dãy $S^* \setminus \{x_i\} \cup \{y_i\}$ cũng là một dãy tối ưu. Ta gán $S^{\star} := S^{\star} \setminus \{x_i\} \cup \{y_i\}$ và lặp lại lý luận trên cho S^{\star} và S.
- Bằng cách liên tục sử dụng lý luận trên, ta thu được dãy S^{\star} tối ưu có dang

$$S^{\star} = \langle y_1, y_2, \dots, y_{k'}, x_{k'+1}, \dots, x_k \rangle$$

Do $y_{k'}$ là bài giảng cuối cùng được chọn bởi Thuật toán 6, các bài giảng còn lại đều xung đột với $y_{k'}$ và có thời gian kết thúc sau khi $y_{k'}$ kết thúc. Nói cách khác, các phần tử $x_{k'+1},\ldots,x_k$ trong S^{\star} đều phải bằng $y_{k'}$, nghĩa là $S = \langle y_1, y_2, \dots, y_{k'} \rangle$ là một dãy tối ưu

Thuật toán II

Hoàng Anh Đức

Đô phức tạp tính toán

Giới thiêu

Ví du

Thuật toán tham lam

Giới thiêu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiêu

Đa thức đặc trưng

Hàm sinh

Đinh lý thơ

Thuật toán để quy

Giới thiêu

Giải và ước lượng hệ thức truy hồi

Thuât toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiệu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiêu

Đa thức đặc trưng Hàm sinh Đinh lý thơ

Thuật toán đệ quy

Giới thiệu

- Một ứng dụng của việc Giải hệ thức truy hồi mà chúng ta sẽ đề cập ở phần sau là trong việc phân tích độ phức tạp của các thuật toán đệ quy
- Một số phương pháp giải hệ thức truy hồi
 - (1) Đoán nghiệm và chứng minh bằng phương pháp quy nạp
 - (2) Sử dụng đa thức đặc trưng
 - (3) Sử dụng hàm sinh
- Một số phương pháp ước lượng hệ thức truy hồi
 - (1) Sử dụng định lý thợ (Master Theorem)

Đa thức đặc trưng

■ Hệ thức truy hồi tuyến tính thuần nhất bậc k với hệ số hằng (Linear homogeneous recurrence relation of degree k with constant coefficients) là hệ thức có dạng

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k},$$

trong đó c_1, c_2, \ldots, c_k là các số thực, $c_k \neq 0$, và $n \geq k$

- Một dãy $\{a_n\}$ $(n \ge 0)$ thỏa mãn hệ thức truy hồi trên được xác định một cách duy nhất bởi hệ thức này và k điều kiện ban đầu $a_0 = C_0, a_1 = C_1, \ldots, a_{k-1} = C_{k-1}$
 - Hệ thức truy hồi $f_n = f_{n-1} + f_{n-2}$ là một hệ thức truy hồi tuyến tính thuần nhất bậc hai với hệ số hằng. Dãy Fibonacci $\{f_n\}$ được xác định bởi hệ thức trên và điều kiện ban đầu $f_0 = 0, f_1 = 1$
 - Các hệ thức $g_n = ng_{n-1}$, $g_n = g_{n-1} + g_{n-2}^2$ không là hệ thức truy hồi tuyến tính thuần nhất với hệ số hằng

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiêu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiêu

Đa thức đặc trưng

Hàm sinh Định lý thợ

Thuật toán đệ quy

Giới thiệu

Đa thức đặc trưng

Nghiệm của hệ thức có dạng $a_n = r^n \ với \ r \neq 0$ là một hằng số nào đó. Từ đó, $r^n = c_1 r^{n-1} + \cdots + c_k r^{n-k}$. Chia hai vế cho r^{n-k} và chuyển vế, ta có

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \dots - c_{k-1}r - c_{k} = 0.$$

Đa thức cuối cùng gọi là đa thức đặc trưng (characteristic equation) của hệ thức, và nghiệm của nó gọi là nghiệm đặc trưng (characteristic root) của hệ thức

Nếu s_n và t_n thỏa mãn hệ thức truy hồi, thì *mọi tổ hợp tuyến* tính của s_n và t_n , nghĩa là mọi biểu thức có dạng $b_1s_n + b_2t_n$ với b_1, b_2 là các số thực nào đó, cũng thỏa mãn hệ thức truy hồi

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiêu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiêu

Da thức đặc trưng

Hàm sinh Đinh lý thơ

Thuật toán đệ quy

Giới thiệu

Đa thức đặc trưng

Cho các số thực c_1, c_2 . Giả sử $r^2 - c_1 r - c_2$ có hai nghiệm phân biệt r_1 và r_2 . Dãy $\{a_n\}$ là nghiệm của hệ thức truy hồi $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ ($n \geq 2$) với điều kiện ban đầu $a_0 = C_0$ và $a_1=C_1$ khi và chỉ khi $a_n=lpha_1r_1^n+lpha_2r_2^n$ với mọi $n\geq 0$, trong đó α_1, α_2 là các hằng số nào đó

Chứng minh sơ lược.

Ta cần chứng minh hai điều

- (1) Nếu r_1, r_2 là các nghiệm của đa thức đặc trưng, thì $a_n=\alpha_1r_1^n+\alpha_2r_2^n$ với mọi $n\geq 0$, trong đó α_1,α_2 là các hằng số nào đó, thỏa mãn hệ thức truy hồi
- (2) Nếu $\{a_n\}$ là nghiệm của hệ thức truy hồi với các điều kiên ban đầu $a_0=C_0$ và $a_1=C_1$, thì tồn tại các hằng số α_1,α_2 sao cho $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiêu

Ví du

Thuật toán tham lam

Giới thiêu

Ví du

Giải và ước lương hê thức truy hồi

Giới thiêu

Đa thức đặc trưng

Hàm sinh Đinh lý thơ

Thuật toán để quy

Giới thiêu

Giải hệ thức truy hồi Đa thức đặc trưng

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiệu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiêu

Đa thức đặc trưng

Hàm sinh Đinh lý thơ

Thuật toán đệ quy

Giới thiệu

Ví du

Tương tự, ta có

Định lý 3

Cho các số thực c_1, c_2, \ldots, c_k . Giả sử $r^k - c_1 r^{k-1} - \cdots - c_{k-1} r - c_k$ có k nghiệm phân biệt r_1, r_2, \ldots, r_k . Dãy $\{a_n\}$ là nghiệm của hệ thức truy hồi $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$ $(n \geq k)$ với điều kiện ban đầu $a_0 = C_0, a_1 = C_1, \ldots, a_{k-1} = C_{k-1}$ khi và chỉ khi $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \cdots + \alpha_k r_k^n$ với mọi $n \geq 0$, trong đó $\alpha_1, \alpha_2, \ldots, \alpha_k$ là các hằng số nào đó

Đa thức đặc trưng

Định lý 4

Cho các số thực c_1, c_2, \ldots, c_k . Giả sử $r^k - c_1 r^{k-1} - \cdots - c_{k-1} r - c_k$ có t nghiệm phân biệt r_1, r_2, \ldots, r_t với các bội tương ứng m_1, m_2, \ldots, m_t thỏa mãn $m_i \geq 1$ với $1 \leq i \leq t$ và $m_1 + \cdots + m_t = k$ (nghĩa là, có m_i nghiệm có giá trị r_i). Dãy $\{a_n\}$ là nghiệm của hệ thức truy hồi $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$ ($n \geq k$) với điều kiện ban đầu $a_0 = C_0, a_1 = C_1, \ldots, a_{k-1} = C_{k-1}$ khi và chỉ khi

$$a_{n} = (\alpha_{1,0} + \alpha_{1,1}n + \dots + \alpha_{1,m_{1}-1}n^{m_{1}-1})r_{1}^{n}$$

$$+ (\alpha_{2,0} + \alpha_{2,1}n + \dots + \alpha_{2,m_{2}-1}n^{m_{2}-1})r_{2}^{n}$$

$$+ \dots + (\alpha_{t,0} + \alpha_{t,1}n + \dots + \alpha_{t,m_{t}-1}n^{m_{t}-1})r_{t}^{n}$$

 $\emph{v\'oi} \ n \geq 0$, trong đó $\alpha_{i,j}$ là các hằng số $\emph{v\'oi} \ 1 \leq i \leq t$ và $0 \leq j \leq m_i - 1$

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiêu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiêu

27 Da thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Đa thức đặc trưng

Ví dụ 1

Giải hệ thức truy hồi $f_n=f_{n-1}+f_{n-2}$ $(n\geq 2)$ với điều kiện ban đầu $f_0=0$ và $f_1=1$

- \blacksquare Đa thức đặc trưng của hệ thức truy hồi là r^2-r-1
- Đa thức đặc trưng có hai nghiệm phân biệt $r_1 = \frac{1+\sqrt{5}}{2}$ và $r_2 = \frac{1-\sqrt{5}}{2}$
- Do đó, nếu dãy $\{f_n\}$ là nghiệm của hệ thức truy hồi thì $f_n=\alpha_1r_1^n+\alpha_2r_2^n$ với các hằng số α_1,α_2 nào đó
- $\{f_n\}$ cần thỏa mãn điều kiện ban đầu $f_0 = 0$ và $f_1 = 1$. Thay vào dạng tổng quát của f_n , ta có hệ phương trình

$$f_0 = \alpha_1 + \alpha_2 = 0$$

$$f_1 = \alpha_1 \left(\frac{1 + \sqrt{5}}{2}\right) + \alpha_2 \left(\frac{1 - \sqrt{5}}{2}\right)$$

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán Giới thiêu

Ví du

Thuật toán tham lam

Giới thiêu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Da thức đặc trưng

Hàm sinh Đinh lý thơ

Thuật toán đệ quy

Giới thiệu

Đa thức đặc trưng

Giải hệ thức truy hồi $a_n=6a_{n-1}-9a_{n-2}$ với các điều kiện ban đầu $a_0=1$ và $a_1=6$

- Đa thức đặc trưng của hệ thức truy hồi là $r^2 6r + 9$
- Đa thức đặc trưng có một nghiệm $r_1 = 3$ với bội 2
- Do đó, nếu dãy $\{a_n\}$ là nghiệm của hệ thức truy hồi thì $a_n=\alpha_{1,0}r_1^n+\alpha_{1,1}nr_1^n=\alpha_{1,0}3^n+\alpha_{1,1}n3^n$ với các hằng số $\alpha_{1,0},\alpha_{1,1}$ nào đó
- Dãy $\{a_n\}$ cũng cần thỏa mãn điều kiện ban đầu $a_0=1$ và $a_1=6$. Thay vào dạng tổng quát của a_n , ta có hệ phương trình

$$a_0 = \alpha_{1,0} = 1$$

$$a_1 = \alpha_{1,0} \cdot 3 + \alpha_{1,1} \cdot 3 = 6$$

Do đó, ta có $\alpha_{1,0}=1$ và $\alpha_{1,1}=1$

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán Giới thiêu

Ví du

Thuật toán tham lam

Giới thiệu

Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh Đinh lý thơ

Thuật toán đệ quy

Giới thiệu

Đa thức đặc trưng

Giải hệ thức truy hồi $a_n=-3a_{n-1}-3a_{n-2}-a_{n-3}$ với các điều kiện ban đầu $a_0=1,\,a_1=-2,\,$ và $a_2=-1$

- Đa thức đặc trưng của hệ thức là $r^3 + 3r^2 + 3r + 1$
- Đa thức đặc trưng có một nghiệm $r_1 = -1$ với bội 3
- Do đó, nếu $\{a_n\}$ là nghiệm của hệ thức truy hồi thì $a_n = \alpha_{1,0}r_1^n + \alpha_{1,1}nr_1^n + \alpha_{1,2}n^2r^n$
- Dãy $\{a_n\}$ cũng cần thỏa mãn điều kiện ban đầu $a_0=1$, $a_1=-2$, và $a_2=-1$. Thay vào dạng tổng quát của a_n , ta có hệ phương trình

$$a_0 = \alpha_{1,0} = 1$$

$$a_1 = -\alpha_{1,0} - \alpha_{1,1} - \alpha_{1,2} = -2$$

$$a_2 = \alpha_{1,0} + 2\alpha_{1,1} + 4\alpha_{1,2} = -1$$

Do đó ta có $\alpha_{1,0} = 1$, $\alpha_{1,1} = 3$, và $\alpha_{1,2} = -2$

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán Giới thiêu

Ví du

Thuật toán tham lam

Giới thiệu

Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Bo Da thức đặc trưng

Hàm sinh Đinh lý thơ

Thuật toán đệ quy

Giới thiệu

Đa thức đặc trưng

Bài tập 1

Giải các hệ thức truy hồi với điều kiện ban đầu sau

(1)
$$a_n = 2a_{n-1} \text{ v\'oi } n \ge 1, a_0 = 3$$

(2)
$$a_n = 5a_{n-1} - 6a_{n-2}$$
 với $n \ge 2$, $a_0 = 1$, $a_1 = 0$

(3)
$$a_n = 4a_{n-1} - 4a_{n-2} \text{ v\'oi } n \ge 2, a_0 = 6, a_1 = 8$$

(4)
$$a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$$
 với $n \ge 3$, $a_0 = 5$, $a_1 = -9$, $a_2 = 15$

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví du

Thuật toán tham lam

Giới thiệu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiêu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Đa thức đặc trưng

■ Hệ thức truy hồi tuyến tính không thuần nhất bậc k với hệ số hằng (Linear nonhomogeneous recurrence relation of degree k with constant coefficients) là hệ thức có dạng

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + F(n),$$

trong đó c_1, c_2, \ldots, c_k là các số thực, $c_k \neq 0$, F(n) là một hàm chỉ phụ thuộc vào n và không phải luôn bằng 0, và n > k

■ Hệ thức $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$ được gọi là hệ thức truy hồi thuần nhất tương ứng (associated homogeneous recurrence relation) của hệ thức trên

Định lý 5

Nếu $\{a_n^{(p)}\}$ là một nghiệm riêng nào đó của hệ thức $a_n=c_1a_{n-1}+c_2a_{n-2}+\cdots+c_ka_{n-k}+F(n)$ thì mọi nghiệm của hệ thức đó có dạng $\{a_n^{(p)}+a_n^{(h)}\}$, trong đó $a_n^{(h)}$ là nghiệm của hệ thức thuần nhất tương ứng $a_n=c_1a_{n-1}+c_2a_{n-2}+\cdots+c_ka_{n-k}$

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiệu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiêu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Đa thức đặc trưng

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiệu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh Đinh lý thơ

Thuật toán để quy

Giới thiệu

Ví du

Với một số dạng F(n), nghiệm riêng có dạng đặc biệt

Định lý 6

Giả sử $\{a_n\}$ thỏa mãn hệ thức

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + F(n),$$

trong đó c_1, \ldots, c_k là các số thực, và

$$F(n) = (b_t n^t + b_{t-1} n^{t-1} + \dots + b_1 n + b_0) s^n,$$

trong đó b_0, \ldots, b_t và s là các số thực. Khi s không phải là nghiệm của đa thức đặc trưng của hệ thức thuần nhất tương ứng, tồn tại một nghiệm riêng có dạng $(p_t n^t + p_{t-1} n^{t-1} + \cdots + p_1 n + p_0)s^n$. Khi s là một nghiệm với bội m của đa thức đặc trưng của hệ thức thuần nhất tương ứng, tồn tại một nghiệm riêng có dạng $n^m(p_t n^t + p_{t-1} n^{t-1} + \cdots + p_1 n + p_0)s^n$.

Đa thức đặc trưng

Ví dụ 4

Giải hệ thức truy hồi $a_n=a_{n-1}+n$ $(n\geq 2)$ với điều kiện ban đầu $a_1=1$

- Hệ thức thuần nhất tương ứng là $a_n=a_{n-1}$ $(n\geq 2)$. Hệ thức này có nghiệm đặc trưng r=1 và dãy $\{a_n^{(h)}\}$ với $a_n^{(h)}=c\cdot (1)^n$ là một dãy thỏa mãn hệ thức, trong đó c là hằng số nào đó
- Ta có $F(n) = n = (1 \cdot n + 0) \cdot 1^n$. Vì s = 1 là nghiệm đặc trưng của hệ thức thuần nhất tương ứng với bội 1, một nghiệm riêng của hệ thức không thuần nhất đã cho có dạng $a_n^{(p)} = n(p_1 n + p_0)1^n = p_1 n^2 + p_0 n$
- Thay dạng của nghiệm riêng vào hệ thức đã cho, ta có $n(2p_1-1)+(p_0-p_1)=0$, nghĩa là $2p_1-1=0$ và $p_0-p_1=0$, do đó $p_0=p_1=1/2$
- Cuối cùng, hệ thức ban đầu có nghiệm dạng $a_n=a_n^{(p)}+a_n^{(h)}=n(n+1)/2+c$. Thay vào điều kiện ban đầu $a_1=1$ ta được c=0

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán Giới thiêu

Ví du

Thuật toán tham lam

Giới thiệu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiêu

Đa thức đặc trưng

Hàm sinh Định lý thợ

Thuật toán đệ quy

Giới thiệu

Đa thức đặc trưng

Bài tập 2

Giải các hệ thức truy hồi với điều kiện ban đầu sau

(1)
$$a_n = 3a_{n-1} + 2^n \text{ v\'oi } n \ge 1, a_0 = 1$$

(2)
$$a_n = 2a_{n-1} + 2n^2 \text{ v\'oi } n \ge 2, a_1 = 5$$

(3)
$$a_n = 5a_{n-1} - 6a_{n-2} + 2^n + 3n$$
 (**Gợi ý:** Tìm nghiệm riêng có dạng $qn2^n + p_1n + p_2$, trong đó q, p_1, p_2 là các hằng số)

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiệu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiêu

Ba thức đặc trưng

Hàm sinh Đinh lý thơ

Thuật toán đệ quy

Giới thiệu

Hàm sinh

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiêu

Ví du

Thuật toán tham lam

Giới thiêu

Ví du

Giải và ước lương hê thức truy hồi

Giới thiêu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán để quy

Giới thiêu

Ví du

Hàm sinh

Hàm sinh (generating function) $G_a(x)$ của một dãy vô hạn $\{a_n\}$ $(n \ge 0)$ được định nghĩa như sau

$$G_a(x) := \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k + \dots$$

Nói cách khác, a_n là hệ số của x^n trong $G_a(x)$

$$G_a(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$a_n = f(a_{n-1}, a_{n-2}, \dots)$$

$$a_0 = C_0, a_1 = C_1, \dots$$

$$a_n = f(a_{n-1}, a_{n-2}, \ldots)$$

$$a_0 = C_0, a_1 = C_1, \dots$$

Công thức tường minh

$$G_a(x) = h(x)$$

Khai triển h(x)

$$h(x) = \sum_{n=0}^{\infty} x^n$$

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiệu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiêu

Đa thức đặc trưng

7) Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Ví du

Định lý 7

Cho $f(x)=\sum_{n=0}^{\infty}a_nx^n$ và $g(x)=\sum_{n=0}^{\infty}b_nx^n$. Ta có

$$f(x) + g(x) = \sum_{n=0}^{\infty} (a_n + b_n)x^n$$

$$f(x)g(x) = \sum_{n=0}^{\infty} (\sum_{k=0}^{n} a_k b_{n-k}) x^n$$

Chú ý: Định lý trên chỉ đúng cho các chuỗi lũy thừa hội tụ trong một khoảng nào đó, và tất cả các chuỗi chúng ta sẽ xét trong bài giảng này đều thỏa mãn điều kiện đó. Tuy nhiên, ngay cả khi các chuỗi không hội tụ, định lý trên có thể được sử dụng như là định nghĩa cho các phép cộng và nhân các hàm sinh

Hàm sinh

Ví dụ 5

Giải hệ thức truy hồi $a_n=3a_{n-1}$ ($n\geq 1$) với điều kiện ban đầu $a_0=2$

$$G_a(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + \sum_{n=1}^{\infty} (3a_{n-1}) x^n$$

$$= 2 + 3x \sum_{n=1}^{\infty} a_{n-1} x^{n-1} = 2 + 3x \sum_{m=0}^{\infty} a_m x^m$$

$$= 2 + 3x G_a(x)$$

$$G_a(x) = \frac{2}{1 - 3x}$$

Nhắc lại rằng $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ với -1 < x < 1. Suy ra

$$\sum_{n=0}^{\infty}c^nx^n=\frac{1}{1-cx} \text{ với } -1 < cx < 1 \text{ trong đó } c\neq 0 \text{ là hằng số nào đó }$$

Sử dụng đẳng thức trên, ta có thể viết

$$G_a(x) = \frac{2}{1 - 3x} = 2\sum_{n=0}^{\infty} 3^n x^n = \sum_{n=0}^{\infty} (2 \cdot 3^n) x^n$$

Suy ra $a_n = 2 \cdot 3^n$

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiêu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiêu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Hàm sinh

Một phương pháp khác để tìm công thức tường minh cho $G_a(x)$ trong Ví dụ 5. Chú ý rằng $a_n = 3a_{n-1}$ $(n \ge 1)$ và $a_0 = 2$

$$G_a(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$-3xG_a(x) = -\sum_{n=0}^{\infty} [3a_n]x^{n+1}$$

=2

$$G_a(x) - 3xG_a(x) = \sum_{n=0}^{\infty} a_n x^n - \sum_{n=0}^{\infty} [3a_n] x^{n+1}$$

$$= a_0 x^0 + \sum_{n=1}^{\infty} a_n x^n - \sum_{n=0}^{\infty} [3a_n] x^{n+1}$$

$$= 2 + \sum_{n=1}^{\infty} a_n x^n - \sum_{n=1}^{\infty} [3a_{n-1}] x^n$$

$$= 2 + \sum_{n=1}^{\infty} [a_n - 3a_{n-1}] x^n$$

Định nghĩa hàm sinh

Nhân hai vế với -3x

Cộng hai đẳng thức

Đổi chỉ số

 $a_n = 3a_{n-1}$

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví du

Thuật toán tham lam

Giới thiêu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiêu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

DAI HOC TV NHEN

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiệu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiêu

Ví du

Một số đẳng thức hữu ích

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

$$\frac{1}{1-ax} = \sum_{n=0}^{\infty} a^n x^n$$

$$\frac{1}{1-x^k} = \sum_{n=0}^{\infty} x^{kn}$$

$$\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)x^n$$

Hàm sinh

BAI HOC TV WHIEN

Ví du 6

 $G_f(x) = \frac{x}{1 - x - x^2}$

Dãy Fibonacci $\{f_n\}$ cho bởi hệ thức $f_n=f_{n-1}+f_{n-2}$ $(n\geq 2)$ và điều kiện ban đầu $f_0=0$ và $f_1=1$

$$G_f(x) = \sum_{n=0}^{\infty} f_n x^n = f_0 + f_1 x + \sum_{n=2}^{\infty} (f_{n-1} + f_{n-2}) x^n$$

$$= x + x \sum_{n=2}^{\infty} f_{n-1} x^{n-1} + x^2 \sum_{n=2}^{\infty} f_{n-2} x^{n-2}$$

$$= x + x \sum_{m=1}^{\infty} f_m x^m + x^2 \sum_{m=0}^{\infty} f_m x^m$$

$$= x + x [\sum_{m=0}^{\infty} f_m x^m - f_0 x^0] + x^2 \sum_{m=0}^{\infty} f_m x^m$$

$$= x + x G_f(x) + x^2 G_f(x)$$
dổi biến
$$= x + x G_f(x) + x^2 G_f(x)$$

Thuât toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiêu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Hàm sinh

Bài tập 3

- Viết $G_f(x) = \frac{x}{1-x-x^2} = \frac{a}{1-Ax} + \frac{b}{1-Bx}$ với các hằng số a,b,A,B nào đó
- lacksquare Áp dụng công thức trên để đưa $G_f(x)$ về dạng

$$a\sum_{n=0}^{\infty}A^{n}x^{n}+b\sum_{n=0}^{\infty}B^{n}x^{n}$$
 với $-1 < Ax < 1$ và $-1 < Bx < 1$

 $(\equiv Khai triển G_f(x) thành chuỗi lũy thừa)$

■ Từ định nghĩa hàm sinh, suy ra công thức cho dãy $\{f_n\}$

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiệu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiêu

Đa thức đặc trưng

42 Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

DAI HOC TV NHEN

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Ví du

Thuật toán tham lam

Giới thiệu

Giới thiêu

Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Ví du

Chú ý rằng từ $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ với -1 < x < 1, bằng cách lấy

đạo hàm hai vế và đổi chỉ số lấy tổng, ta có

$$\sum_{n=1}^{\infty} nx^{n-1} = \sum_{m=0}^{\infty} (m+1)x^m = \frac{1}{(1-x)^2}$$

Bài tập 4

Giải hệ thức truy hồi $a_n=2a_{n-1}-a_{n-2}$ với $n\geq 2$ và các điều kiện ban đầu $a_0=1$, $a_1=1$ bằng cách sử dụng hàm sinh

Bài tập 5 (⋆)

Giải hệ thức truy hồi $a_n=3a_{n-1}+n$ với $n\geq 1$ và điều kiện ban đầu $a_0=1$ bằng cách sử dụng hàm sinh

Ước lượng hệ thức truy hồi

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiệu

Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

4 Dinh lý thơ

Thuật toán đệ quy

Giới thiệu

Ví du

Định lý 8: Định lý thợ (Master Theorem)

Gọi f là một hàm tăng thỏa mãn hệ thức truy hồi

$$f(n) = af(n/b) + cn^d$$

trong đó $n=b^k$ với k là số nguyên dương nào đó, $a\geq 1$, b là số nguyên dương lớn hơn 1, và c,d là các số thực với c dương và d không âm. Ta có

$$f(n) \text{ là } \begin{cases} O(n^d) & \textit{n\'eu} \ a < b^d \\ O(n^d \log n) & \textit{n\'eu} \ a = b^d \\ O(n^{\log_b a}) & \textit{n\'eu} \ a > b^d \end{cases}$$

Ví dụ 7

- Với T(n) = 2T(n/2) + n, ta có $T(n) = O(n \log n)$
- Với T(n) = T(n/2) + n, ta có T(n) = O(n)
- Với T(n) = 3T(n/2) + n, ta có $T(n) = O(n^{\log 3})$

Thuật toán đệ quy Giới thiệu

Thuât toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiêu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiêu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiêu

- Định nghĩa theo đệ quy không những có thể áp dụng cho các hàm và tập hợp mà còn cho cả các thuật toán
- Một thủ tục đệ quy (recursive procedure) là một thủ tục gọi chính nó
- Một thuật toán đệ quy (recursive algorithm) là một thuật toán giải một bài toán bằng cách chuyển về việc giải chính bài toán đó nhưng với đầu vào có kích thước nhỏ hơn
 - Kỹ thuật chia để trị (divide-and-conquer technique): giải một bài toán ban đầu thông qua việc chia nó thành các bài toán nhỏ hơn cùng loại và giải chúng

Thuật toán đệ quy Giới thiệu

DAI HOC TV NHEN

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiệu

Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiêu

Đa thức đặc trưng

Hàm sinh

Đinh lý thơ

Thuật toán đệ quy

Giới thiêu

Ví du

Một thuật toán đệ quy thường có dạng như sau

Trường hợp cơ sở Với một số đầu vào kích thước nhỏ hoặc một số trường hợp đặc biệt, thuật toán sẽ cho ra kết quả một cách trực tiếp

Định nghĩa bài toán con Trong trường hợp đầu vào khác với những đầu vào định nghĩa trong trường hợp cơ sở, thuật toán định nghĩa một hoặc nhiều "bài toán con" với các đầu vào nhỏ hơn được tính từ đầu vào ban đầu

Giải bài toán con Thuật toán gọi chính nó để giải các bài toán con và lưu trữ các kết quả tính toán

Xuất ra lời giải Sau khi giải quyết toàn bộ các bài toán con, thuật toán xuất ra lời giải dựa trên đầu vào ban đầu và các lời giải của các bài toán con

Thuật toán đệ quy Giới thiệu

Chứng minh tính đúng đắn của thuật toán đệ quy bằng quy nạp mạnh

- Phát biểu điều cần chứng minh: Một điểm quan trọng là cần chỉ rõ "thuật toán đúng" nghĩa là gì
- Bước cơ sở: Các trường hợp khi thuật toán cho ra kết quả một cách trực tiếp mà không cần thông qua gọi đệ quy chính nó là các trường hợp cần xét trong bước cơ sở
 - Sử dụng mô tả của thuật toán để chỉ ra thuật toán sẽ trả lại gì trong trường hợp cơ sở
 - Chỉ ra rằng giá trị trả lại của thuật toán là đúng
- **Bước quy nạp:** Giả thiết rằng thuật toán đúng cho *mọi đầu vào kích thước nhỏ hơn*. Chỉ ra rằng thuật toán cũng đúng cho đầu vào hiện tại
 - Phát biểu giả thiết quy nạp: Giả sử thuật toán đúng với mọi đầu vào giữa trường hợp cơ sở và các đầu vào có kích thước nhỏ hơn một đơn vị so với đầu vào hiện tại
 - Mô tả cụ thể thuật toán trả lại gì với đầu vào hiện tại dựa trên các lần gọi đệ quy
 - Sử dụng giả thiết quy nạp để thay mỗi lần gọi đệ quy bằng đáp án chính xác. Chỉ ra rằng những điều này dẫn tới đáp án đúng cho trường hợp hiện tại
 - Nếu bạn xét nhiều trường hợp trong thuật toán thì cần thực hiện hai điều trên với từng trường hợp một

Thuât toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiêu

Ví du

Giải và ước lượng hệ thức truy hồi

Giới thiêu

Đa thức đặc trưng

Hàm sinh

Đinh lý thơ

Thuật toán đệ quy

Giới thiệu

Tính giai thừa

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiêu

Ví du

Thuật toán tham lam

Giới thiệu

Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Ví du

Với mọi số nguyên không âm n

```
0! = 1
n! = n \times (n-1)! \quad \forall n \ge 1
```

Thuật toán 7: Tính n!

Input: n: số nguyên không âm

Output: n!

procedure factorial(n):

```
if n=0 then
return 1
else
return n 	imes 	ext{factorial}(n-1)
```

Tính giai thừa

Ta chứng minh tính đúng đắn của Thuật toán 7 bằng quy nạp mạnh. Gọi factorial (n) là giá trị trả lại bởi Thuật toán 7

- Ta chứng minh factorial (n) = n! với mọi $n \ge 0$
- **Bước cơ sở:** Khi n = 0, factorial (n) = 1 = n!
- **Bước quy nạp:** Giả sử factorial (j) = j! với mọi j thỏa mãn $0 \le j \le k$ với số nguyên $k \ge 0$ nào đó. Ta chứng minh factorial (k+1) = (k+1)!. Thật vậy, Thuật toán 7 trả lại factorial $(k+1) = (k+1) \times \text{factorial}(k)$. Theo giả thiết quy nạp, factorial (k) = k!. Do đó, factorial $(k+1) = (k+1) \times k! = (k+1)!$

Ví dụ 9 (Thời gian chạy của thuật toán đệ quy tính giai thừa)

$$T(n) = \max\{O(1), T(n-1) + O(1)\} + O(1) = T(n-1) + O(1)$$

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiệu

Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

49 Ví dụ

Thuật toán đệ quy Tính lũy thừa

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiêu

Ví du

Thuật toán tham lam

Giới thiệu

Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Ví du

Với mọi số thực $a \neq 0$ và số nguyên không âm n,

$$a^0 = 1$$

$$a^n = a \times a^{n-1} \quad \forall n > 1$$

Thuật toán 8: Tính a^n

Input: a: số thực khác 0, n: số nguyên không âm

Output: a^n

1 **procedure** power (a, n):

```
if n=0 then
```

return 1

else

return $a \times power(a, n-1)$

5

3

Sắp xếp trộn

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiệu

Ví dụ

Thuật toán tham lam

Giới thiệu

Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Định lý thợ

Thuật toán đệ quy

Giới thiệu

Ví du

Thuật toán 9: Sắp xếp trộn (Merge Sort)

Input: $L = a_1, a_2, \dots, a_n$: dãy số nguyên

Output: Dãy số nguyên sắp thứ tự tăng dần

1 procedure MergeSort(L):

```
| if n>1 then
```

3

5

6

$$m := \lfloor n/2 \rfloor$$

$$L_1 := a_1, \ldots, a_m$$

$$L_2 := a_{m+1}, \dots, a_n$$

 $L := \texttt{Merge}(\texttt{MergeSort}(L_1), \texttt{MergeSort}(L_2))$

Sắp xếp trộn

Thuật toán II

Hoàng Anh Đức

Độ phức tạp tính toán

Giới thiêu

Ví dụ

Thuật toán tham lam

Giới thiệu

Ví dụ

Giải và ước lượng hệ thức truy hồi

Giới thiệu

Đa thức đặc trưng

Hàm sinh

Đinh lý thơ

Thuật toán đệ quy

Giới thiệu

```
Thuật toán 10: Trộn hai dãy sắp thứ tự (Merge)
  Input: A = (a_1, \dots, a_{|A|}), B = (b_1, \dots, b_{|B|}): dãy số nguyên
          sắp thứ tư
  Output: Dãy các số nguyên trong cả A và B sắp thứ tự
             tăng dân
  procedure Merge(A, B):
        if A = \emptyset then
              return B
3
        if B = \emptyset then
4
              return A
5
        if a_1 < b_1 then
6
              return (a_1, \text{Merge}(a_2, \dots, a_{|A|}, B))
        else
8
              return (b_1, \text{Merge}(A, b_2, \dots, b_{|B|}))
9
```