1. (60%)

Show how to generate a random variable whose distribution function is

$$F(x) = \frac{1}{2}(x + x^2), \quad 0 \le x \le 1$$

using

- (a) the inverse transform method;
- (b) the rejection method;
- (c) the composition method.

Which method do you think is best for this example? Briefly explain your answer.

(a) Let
$$u = F(x) = \frac{1}{2}(x + x^2)$$
, $u \sim U(0,1)$

$$\Rightarrow x + x^2 = 2u$$

$$\Rightarrow x + x^2 + \frac{1}{4} = 2u + \frac{1}{4}$$

$$\Rightarrow \left(x + \frac{1}{2}\right)^2 = 2u + \frac{1}{4}$$

$$\Rightarrow x + \frac{1}{2} = \pm \sqrt{2u + \frac{1}{4}} \left(\text{ ATA} \right)$$

$$\Rightarrow x = \sqrt{2u + \frac{1}{4}} - \frac{1}{2}$$

Algorithm:

 $Step 1: U \sim U(0,1)$

Step2:
$$X = \sqrt{2U + \frac{1}{4} - \frac{1}{2}}$$

(b)
$$f_X(x) = \frac{1}{2}(1+2x), 0 \le x \le 1$$

Choose $f_Y(y) = 1, 0 \le y \le 1$.

So
$$c = \max_{x} \frac{f_X(x)}{f_Y(x)} = \max_{x} \frac{1}{2} (1 + 2x) \Longrightarrow x = 1, c = \frac{3}{2}.$$

Then
$$g(y) = \frac{1}{3}(1+2y), 0 \le y \le 1$$
.

Algorithm:

 $Step 1: U_1 \sim U(0,1), Y = U_1$

Step2: $U \sim U(0,1)$

Step3: If $U \le \frac{1}{3}(1+2Y)$, set X = Y; otherwise return step1

(c) Since
$$F(x) = \frac{1}{2}(x+x^2)$$
, $f(x) = \frac{1}{2}(1+2x)$, $0 \le x \le 1$.

Let $g_1(x) = c_1 * 1$, $g_2(x) = c_2 * 2x$, be density of two components.

So
$$c_1 = c_2 = 1$$
, $f(x) = \frac{1}{2}(1 + 2x) = \frac{1}{2}g_1(x) + \frac{1}{2}g_2(x)$.

Thus
$$G_1^{-1}(x) = x$$
, $G_2^{-1}(x) = \sqrt{x}$

Algorithm:

Step1: Generate U_1 , $U_2 \sim U(0,1)$

Step2: If
$$U_1 \leq \frac{1}{2}$$
, set $X = U_2$; otherwise $X = \sqrt{U_2}$

如果 F(x)很容易就能算出 inverse function 如此例題,則直接選擇 inverse method 會比較方便。

2. (20%)

Give two algorithms for generating a random variable having distribution function

$$F(x) = 1 - e^{-x} - e^{-2x} + e^{-3x}, \quad x > 0$$

(1) AR - method

$$f_X(x) = e^{-x} + 2e^{-2x} - 3e^{-3x}, x > 0.$$

Choose $f_Y(y) = e^{-y}, y > 0$.

So
$$c = \max_{x} \frac{f_X(x)}{f_Y(x)} = 1 + 2e^{-x} - 3e^{-2x} \implies x = \ln 3, c = \frac{4}{3}$$

Then
$$g(y) = \frac{3}{4}(1 + 2e^{-y} - 3e^{-2y}), y > 0.$$

Algorithm:

$$Step 1: U_1 \sim U(0,1), Y = -ln U_1$$

Step2:
$$U \sim U(0,1)$$

Step3: If
$$U \le \frac{3}{4}(1 + 2e^{-Y} - 3e^{-2Y})$$
, set $X = Y$; otherwise return step1

(2)
$$F(x) = 1 - e^{-x} - e^{-2x} + 3e^{-3x} = (1 - e^{-x})(1 - e^{-2x}), x > 0.$$
 Let $Y \sim Exp(1)$, $Z \sim Exp(2)$, and Y 和 Z 獨立 So $F(x) = F(y)F(z) = P(max(Y, Z) \le x)$

Algorithm:

Step1:
$$U_1, U_2 \sim U(0,1), Y = -lnU_1, Z = -\frac{1}{2}lnU_2$$

Step2: $X = max(Y, Z)$

3. (20%)

Give two algorithms for generating a random variable having density function

$$f(x) = \frac{1}{4} + 2x^3 + \frac{5}{4}x^4, \quad 0 < x < 1$$

(1) AR - method

$$f_X(x) = \frac{1}{4} + 2x^3 + \frac{5}{4}x^4, 0 < x < 1$$

Choose $f_Y(y) = 1, 0 \le y \le 1$

So
$$c = \max_{x} \frac{f_X(x)}{f_Y(x)} = \frac{1}{4} + 2x^3 + \frac{5}{4}x^4 \implies x = 1, c = 3.5$$

Then
$$g(y) = \frac{\frac{1}{4} + 2y^3 + \frac{5}{4}y^4}{3.5}, 0 \le y \le 1$$

Algorithm:

Step 1:
$$U_1 \sim U(0,1), Y = U_1$$

 $Step 2: U \sim U(0,1)$

Step3: If
$$U \le \frac{\frac{1}{4} + 2y^3 + \frac{5}{4}y^4}{3.5}$$
, set $X = Y$; otherwise return step1

(2) Composition method

$$f_X(x) = \frac{1}{4} + 2x^3 + \frac{5}{4}x^4 = \frac{1}{4}(1 + 8x^3 + 5x^4), 0 < x < 1.$$

Let
$$g_1(x) = c_1 * 1$$
, $g_2(x) = c_2 * 8x^3$, $g_3(x) = c_3 * 5x^4$

be density of three components.

So
$$c_1 = 1$$
, $c_2 = \frac{1}{2}$, $c_3 = 1 \Longrightarrow f_X(x) = \frac{1}{4}(g_1(x) + 2 * g_2(x) + g_3(x))$

Thus
$$G_1^{-1}(x) = x$$
, $G_2^{-1}(x) = \sqrt[4]{x}$, $G_3^{-1}(x) = \sqrt[5]{x}$

Algorithm:

$$Step 1: Generate \ U_1, U_2 \sim U(0,1)$$

Step2: If
$$U_1 \leq \frac{1}{2}$$
, set $X = \sqrt[4]{U_2}$;

else if
$$\frac{1}{2} < U_1 \le \frac{3}{4}$$
, set $X = \sqrt[5]{U_2}$;

$$else\ set\ X=U_2$$