Relational Database Design

- One single, large table
- □ Simple ?
- □ Good ? or Bad? Or just Ugly?

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

36

Normal Forms

- □ We discussed how to fix 'bad' schemas
- □ but what is a 'good' schema?
- □ Informally: "we want tables where the attributes depend on the primary key, on the whole key, and nothing but the key"
- □ Formally: 'good', if it obeys a 'normal form'
- □ Typically: Boyce-Codd Normal form or the 3NF
- □ Normal forms are defined in terms of FDs

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

07

Functional dependency

- □ Definition: Let $R = (A_1, A_2, ..., A_n)$ and $X \subseteq R$ and $Y \subseteq R$ $X \to Y$ if the value of X uniquely determines a value of Y
- A functional dependency is a property of the meaning or semantic of the attributes in a relation schema.
- We use our understanding of the semantics of the attributes of R – that is, how they relate to one another – to specify the FD that should hold an all relational instances.
- □ Functional dependence is a semantic notion.
 - Recognizing the FDs is part of the process of understanding what data means.

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

38

Good Database Schema □ Relations should have simple meaning **EMPLOYEE** ENAME SSN ADDRESS DNUMBER DEPARTMENT DNAME DNUMBER DMGRSSN DLOCATIONS DEPT_LOCATIONS DNUMBER DLOCATION PROJECT PLOCATION DNUM CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Bad Database Schema □ Relations should not have multiple meanings

CS1555/2055, Panos K, Chrysanthis - University of Pittsburgh

Types of Functional Dependencies

- \Box Trivial dependency: $X \rightarrow Y$ is *trivial* if it is true for any X and Y of any relation, regardless of X and Y semantics.
 - Ex1: A -> A
 - Ex2: If $\{A,B\}$ a Key, then $\{A,B\} \rightarrow A$ $(Y\subseteq X, X\rightarrow Y \text{ is trivial})$
- \square Partial dependency: X \rightarrow Y is *partial* if there is an attribute A in X that can be removed from X and the dependency can still hold: $X-\{A\} \rightarrow Y$
 - E.g., SUPPLY (SID, PID, DID, SCity, DCity, Qty) $\{SID, PID, DID\} \rightarrow Scity$ $SID \rightarrow SCity$ $\{SID, PID, DID\} \rightarrow Dcity$ DID → Dcitv
- □ Full dependency: ??

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Types of Functional Dependencies...

- □ Transitive dependency: X→Y is transitive in R if there is a set of attributes Z that is not a subset of any key of R and both $X \rightarrow Z$ and $Z \rightarrow Y$ hold
 - E.g., EMP (SSN, EName, DeptID, MGRSSN)

(fd.1)

 $SSN \rightarrow DeptId$

(fd.2)

DeptId → MGRSSN

(from fd.1 & fd.2) SSN \rightarrow MGRSSN

- Multivalued dependency : X→Y is multivalued dependency in R if X is a key, Z in R and $Z\rightarrow Y$
 - E.g., DJP (<u>DeptID</u>, <u>ProjectID</u>, part)

(fd.1) DeptId \rightarrow part

(fd.2) ProjectID \rightarrow part

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

Non-Relational Table

Unnormalized table/ NoSQL

MemID	Full Names	Address	Movies Rented	Awards
1	Janet Jones	First Street Plot No 4	(Pirates of the Caribbean, Clash of the Titans)	(15, 10)
2	Robert Phil	3rd Street 34	(Forgetting Sarah Marsal, Daddy's Little Girls)	(16, 2)
3	Robert Phil	5th Avenue	Clash of the titans	10

Order Lists/ Arrays

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

First Normal Form

<u>1NF: First Normal Form</u>
 Every attribute has a single atomic value.

□ Example in 1NF

MemID	Full Names	Address	Movies Rented	Awards
1	Janet Jones	First Street Plot No 4	Pirates of the Caribbean	15
1	Janet Jones	First Street Plot No 4	Clash of the Titans	10
2	Robert Phil	3rd Street 34	Forgetting Sarah Marsal	16
2	Robert Phil	3rd Street 34	Daddy's Little Girls	2
3	Robert Phil	5th Avenue	Clash of the titans	10

- □ PK: MemID, Movies Rented
- □ FD1: MemID → (Full Names, Address)
- □ FD2: Movies Rented → Awards

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

45

Second Normal Forms

2NF: Second Normal Form

It is in 1NF and does not have partial dependencies.

- Counter Example: 1NF but not 2NF SUPPLY (SID, PID, DID, SCity, DCity, Qty)
- □ Example in 2NF

FD1:

1	Janet Jones	First Street Plot No 4
2	Robert Phil	3rd Street 34
3	Robert Phil	5th Avenue

MemID → (Full Names, Address)

1	Pirates of the Caribbean	15
1	Clash of the Titans	10
2	Forgetting Sarah Marsal	16
2	Daddy's Little Girls	2
3	Clash of the titans	10

MemID Movies Rented

CS1555/2055, Panos K. Chrysanthis – University of Pittsburgh

Third Normal Forms

3NF: Third Normal Form

It is in 2NF and does not have transitive dependencies to attributes that are not part of a key.

- If X→A is an FD then (a) it is trivial, or (b) X is a superKey, or (c) A is a subset of a candidate Key.
- Counter Example: 2NF but not 3NF EMP (SSN, EName, Bdate, Salary, DID, DName, MGRSSN)
- □ Example 3NF

CS1555/2055, Panos K. Chrysanthis – University of Pittsburgh

50

Normal Forms - BCNF

□ Theorem:

given a schema R and a set of FD 'F', we can always decompose it to schemas R1, ... Rn, so that $\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2}$

- R1, ..., Rn are in BCNF and
- the decompositions is lossless
- □ But, some decompositions might lose dependencies ⇒ use 3NF
 - 3NF always loseless
 - 3NF always preserves dependencies

CS1555/2055. Panos K. Chrysanthis - University of Pittsburgh

59

BCNF & Dependency Preservation

- BCNF is not always dependency preserving
- Example: 3NF but not BCNF

PATIENT-VISIT (PATIENT, HOSPITAL, DOCTOR)

fd.1 (Patient, Hospital) → Doctor

fd.2 Doctor → Hospital

- □ Possible Decomposition 1:
 - Doctor-Hospital (Doctor, Hospital) {Doctor-> Hospital}
 - Patient-Doctor (Patient, Doctor) {Patient → Doctor}
- Possible Decomposition 2:
 - Doctor-Hospital (Doctor, Hospital) {Doctor-> Hospital}
 - Patient-Doctor (Patient, Hospital) {Patient → Hospital}
- □ BUT these decompositions lose fd.1

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

60

Normal Forms - 4NF

- Fourth Normal Form: A relation is in BCNF and has no Multivalue Dependencies
- □ Example: (FACULTY, Dept, Committee)
 - 1. A faculty member can belong to more than one dept.
 - A faculty can be on several college-wide committees.
 - 3. There is no relation between dept. and committee.

FacultyID	Dept	Committee
F101	CS	Budget
F101	CoE	Budget
F101	CS	Curriculum
F101	CoE	Curriculum
F221	Bio	Library
F330	Math	Budget
F330	Math	Admissions

Anomalies? Change F101 from Budget to Admissions

CS1555/2055, Panos K. Chrysanthis - University of Pittsburgh

1

More Normal Form • No Join Dependencies Universe of relations (normalized and unnormalized) In Frelations SNF relations BCNF relations FJ/NF (5NF) relations PJ/NF (5NF) relations