

Introduction toStochastic Processes

Gunvor Elisabeth Kirkelund Lars Mandrup

Agenda for Today

- Repetition from last time
 - Random Variables
 - The Central Limit Theorem
- Stochastic Processes
 - Stationarity (WSS, SSS)
 - Ergodic Processes

Stochastic Random Variables

- A random variable tells something important about a stochastic experiment.
- Can be discrete or continous

Probability density function (pdf):

$$Pr(a \le X \le b) = \int_a^b f_X(x) \, dx \qquad f_X(x) \ge 0 \qquad \int_{-\infty}^\infty f_X(x) dx = 1$$

$$f_X(x) \ge 0$$

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

Cumulative distribution function (cdf):

$$F_X(x) = \int_{-\infty}^x f_X(u) \ du = Pr(X \le x)$$

$$0 \le F_X(x) \le 1$$

$$\lim_{x \to -\infty} F_X(x) = 0 \qquad \lim_{x \to \infty} F_X(x) = 1$$

Two Random Variables X, Y

Joint (Simultaneous) pdf:
$$f_{X,Y}(x,y) \ge 0$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1$$

$$Pr((a \le X \le b) \cap (c \le Y \le d)) = \int_{c}^{d} \int_{a}^{b} f_{X,Y}(x,y) dx dy$$

Marginals:
$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \ dy$$
 $f_{Y}(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \ dx$

f(x,y)

Cumulative Distribution Function cdf:

$$cdf \quad F_{X,Y}(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{X,Y}(x,y) dxdy = Pr(X \le x \land Y \le y)$$

$$pdf \quad f_{X,Y}(x,y) = \frac{\partial^{2} F_{X,Y}(x,y)}{\partial x \partial y}$$

 $f_X(x)$

Expectations

- Mean value: $E[X] = \overline{X} = \mu_X = \int_{-\infty}^{\infty} x \cdot f_X(x) dx$ $(\sum_{i=1}^n x_i f_X(x_i))$
- Variance: $Var(X) = \sigma_X^2 = \int_{-\infty}^{\infty} (x \bar{x})^2 \cdot f_X(x) dx = E[X^2] E[X]^2$

• Standard deviation: $\sigma_X = \sqrt{Var(X)}$

- A function: $E[g(X)] = \overline{g(X)} = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) dx$ $(\sum_{i=1}^{n} g(x_i) f_X(x_i))$ $Var(g(X)) = \int_{-\infty}^{\infty} (g(x) - \overline{g(x)})^2 \cdot f_X(x) dx = E[g(X)^2] - E[g(X)]^2$
- Linear function: $E[aX + b] = a \cdot E[X] + b$ $Var[aX + b] = a^2(E[X^2] - E[X]^2) = a^2 \cdot Var(X)$

Correlation, Covariance and summation

Two random variables: X and Y

- Correlation: corr(X, Y) = E[XY]
- Covariance: cov(X,Y) = E[XY] E[X]E[Y]
- Correlation coefficient: $\rho = \frac{E[XY] E[X]E[Y]}{\sigma_X \cdot \sigma_Y}$ $-1 \le \rho \le 1$

Sampling From Any Distribution

For test or simulation you need testdata ("measurements") randomly sampled from a given distribution:

- Find the cdf of the distribution: $F_X(x)$
- Find the inverse of the cdf: $y = F_X(x) \Rightarrow x = F_X^{-1}(y)$
- Draw a ramdom sample: $y \sim \mathcal{U}[0; 1]$
- Insert into the inverse cdf: $x = F_X^{-1}(y)$
- The samples X = x is distributed according to: $F_X(x)$

Transformation of Variable X to Y

- Given:
 - Pdf: $f_X(x)$
 - Function/Transformation: Y = g(X)
 - Limits: $a \le X \le b$
- Find new pdf: $f_Y(y)$:
 - 1. Inverse: $x = g^{-1}(y)$
 - 2. Differentiate: $\frac{dg^{-1}(y)}{dy} = \frac{dx(y)}{dy} = \frac{1}{\frac{dg(x)}{dx}}$
 - 3. Limits: Find $g(a) = a_Y \le Y \le b_Y = g(b)$ based on $a \le X \le b$
 - 4. New pdf: $f_Y(y) = \sum \left| \frac{dx(y)}{dy} \right| f_X(g^{-1}(y)) = \sum \frac{f_X(x)}{\left| \frac{dy}{dx} \right|}$

Distribution of the Sum of Two Random Variables

- Two random variables X and Y have density functions $f_X(x)$ and $f_Y(y)$.
- If we define a new random variable Z=X+Y, and Z have density function $f_Z(z)$.

 Convolution of Two functions
- Then $f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \ dx$
- Expectation: E[Z] = E[X] + E[Y]
- Variance: var(Z) = var(X) + var(Y) + 2cov(X, Y)

Very important!

i.i.d.: Independent and Identically distributed

 We define that for series of random variables that is taken from the <u>same distribution</u> (identically distributed), and are sampled <u>independent</u> of each other, that they are i.i.d.

i.i.d. = Independent and Identically distributed

 i.i.d. is a very important characteristic in stochastic variable processing and statistics

Central Limit Theorem

- Let $X_1, X_2, ..., X_n$ be i.i.d. random variables with mean μ and variance σ^2
- Let \overline{X} be the random variable (average):

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

• Then in the limit: $n \to \infty$ we have that: $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

i.e. in the limit \bar{X} will be normally distributed with

mean =
$$\mu$$
 and variance = $\frac{\sigma^2}{n}$.

Sum of Random Variables

 The random variables are i.i.d and taken from the same distribution.

Arbitrary distribution

Stochastic Processes

Stochastic Variables

stochastic experiment

Sample space for stochastic experiment

Sample space for stochastic experiment

stochastic variable

Time dependent

Stochastic Processes (signals)

- Sample space for stochastic experiment
- Random events that develops in time

Sample space for S

Sample space for stochastic proces

Stochastic Processes – Example

Stochastic Processes – Signals

Additive Noisemodel

 $observed\ signal = signal\ +\ noise$

Three Realizations of the Stochastic Process

Stochastic Processes

Definitions:

A stochastic process is a <u>time dependent</u> stochastic variable:

A discrete stochastic process is given by:

$$X[n] = X(nT)$$

where n is an integer.

Notice:

 When we sample a signal from a stochastic process, we observe only one <u>realization</u> of the process

Sample Functions

Definition:

• A sample function x(t) is a realization of a stochastic process X

Example:

- A coin is thrown every minute: H = head, T = tail
- One realization of the stochastic signal is:

HTHT

Example – Random Binary (digital) Signal

- Bernoulli process.
- A sequence of 1 and 0s.
- Is a sequence of i.i.d of Bernoulli trials.

Ensemble

Definition:

• The Ensemble of the Stochastic Process is the collection of all possible realizations x(t) of the Stochastic Process X

Example:

- A coin is thrown every minute: H = head, T = tail
- The Ensemble of the stochastic signals is: HTHT, HHTT, TTHH, THTH, THHT, TTHT, HHHH...

Time Dependent Probability Functions

Probability density function (pdf):

$$f_{X(t)}(x(t))$$

Cumulative distribution function (cdf):

$$F_{X(t)}(x(t)) = \int_{-\infty}^{x(t)} f_{X(t)}(x(t)) dx(t)$$

Time Dependent Stochastic Process

Deterministic Functions

We find a sample function from a stochastic process.

The two samples have the same pmf.

Ensemble mean

The mean value function:

$$\mu_{X(t)}(t) = E[X(t)] = \int_{-\infty}^{\infty} x(t) f_{X(t)}(x(t)) dx(t)$$

• The mean of all possible realizations to time t

Temporal Mean

- The time average for <u>one realization</u> of the stochastic process
- The temporal mean can differ from the ensemble mean

$$\hat{\mu}_{X_i} = \langle X_i \rangle_T = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x_i(t) \ dt$$

Ensemble Variance

The variance function:

$$var(X(t)) = \sigma_{X(t)}^2(t) = E[\left(X(t) - \mu_{X(t)}(t)\right)^2]$$

The variance of <u>all possible realizations</u> to time t

Temporal Variance

- The variance over time for <u>one realization</u> of the stochastic process
- The temporal variance can differ from the ensemble variance

$$\hat{\sigma}_{X_i}^2 = \langle X_i^2 \rangle_T - \langle X_i \rangle_T^2 = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{I}{2}} (x_i(t)^2 - \hat{\mu}_{X_i}^2) dt = Var(X_i)$$

Stochastic Processes – Example

$$X(0) = \{-2, 0, 2\}$$

 $X(2) = \{-2.7, -2, 2, 2.7\}$
 $X(4) = \{-4, -2.3, -2, 2, 2.3, 4\}$
 $Pr(X(0) = 0) = 2/3$
 $Pr(X(2) = 2) = 1/3$
 $Pr(X(4) = -4) = 1/6$

Ensemble:
$$\mu_{X(t)}(t) = E[X(t)] = 0$$

$$var(X(t)) = \sigma_{X(t)}^{2}(t) = \frac{1}{3}(t^{2} + 9\sin(t) + 4)$$

Temporale:
$$\hat{\mu}_{X_2} = 0$$
 $\hat{\mu}_{X_3} = -2$

$$\hat{\mu}_{X_3} = -2$$

$$\hat{\sigma}_{X_2}^2 = 4.5$$
 $\hat{\sigma}_{X_3}^2 = 0$

$$\hat{\sigma}_{X_3}^2 = 0$$

Comparing realizations

Correlations

- Autocorrelation Correlation of a realization with itself
- Cross-correlations Correlation of two different realizations
- We compare the processes at two different times

Autocorrelations

Tells about the connection at two different times

Autocorrelation function: Complex conjugated,

$$R_{XX}(t_1, t_2) = E[X(t_1)X(t_2)^*]$$

$$= \iint_{-\infty}^{\infty} x(t_1) x(t_2)^* f_{X(t_1), X(t_2)} (x(t_1), x(t_2)) dx(t_1) dx(t_2)$$

Autocovariances

Tells about how much we can predict the future

Autocovariance function:

$$C_{XX}(t_1, t_2) = E[(X(t_1) - \mu_X(t_1))(X(t_2) - \mu_X(t_2))^*]$$

= $R_{XX}(t_1, t_2) - \mu_X(t_1)\mu_X(t_2)$

Autocorrelation coefficient:

$$r_{XX}(t_1, t_2) = \frac{c_{XX}(t_1, t_2)}{\sqrt{c_{XX}(t_1, t_1)c_{XX}(t_2, t_2)}}; \qquad 0 \le r_{XX}(t_1, t_2) \le 1$$

Autocovariances

For i.i.d. Gaussian (stationary) noise

Autocorrelation and autocovariance

Random Walk – Example

Brownish motions

We consider a random walk.

Random Walk – Example

Sample of the autocovariance function:

Stationarity in the Strict Sense (SSS)

Difficult to test in reality

- The density function $f_{X(t)}(x(t))$ do not change with time
 - For all choices of t_1 and Δt_1 , the marginal pdf:

$$f_{X(t_1)}(x(t_1)) = f_{X(t_1 + \Delta t_1)}(x(t_1 + \Delta t_1))$$

– For all choices of t_1 , t_2 and Δt , the simultaneous pdf:

$$f_{X(t_1),X(t_2)}(x(t_1),x(t_2)) = f_{X(t_1+\Delta t),X(t_2+\Delta t)}(x(t_1+\Delta t),x(t_2+\Delta t))$$

Stationarity in the Wide Sense (WSS)

Can be tested

Ensemble mean is a constant

$$\mu_X(t) = E[X(t)] = \mu_X$$
 - independent of time

- Autocorrelation depends only on the time difference $\tau = t_2 t_1$ $R_{XX}(t, t + \tau) = E[X(t)X(t + \tau)] = R_{XX}(\tau)$ - independent of time
- → Ensemble variance is a constant

$$\sigma_X^2(t) = E[X(t)^2] - E[X(t)]^2 = \sigma_X^2$$
 - independent of time

Ergodicity

 We can say something about the properties of the stochastic process in general <u>based on one sample</u> <u>function</u>, as long as we have observed it for long enough.

Example:

An i.i.d Gaussian noise stream

Ergodicity

If ensemble averaging is equivalent to temporal averaging:

$$\mu_X(t) = \bar{X}(t) = \int_{-\infty}^{\infty} x f_X(x) \ dx = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x_i(t) \ dt = \langle X_i \rangle_T = \hat{\mu}_{X_i}$$

• For any moment: In practice: n=2 (Variance)

$$\overline{X^n} = \int_{-\infty}^{\infty} x^n f_X(x) \ dx = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x_i^n \ (t) \ dt$$

One (any) realization Ensemple (WSS)
$$\langle X_i \rangle_T = \mu_X \\ \hat{\sigma}_{X_i}^2 = \sigma_X^2 \\ \end{pmatrix} \rightarrow Ergodic$$

All information is achieved with one measurement (realization)

WSS and Ergodicity – Examples

- % SSS
- ✓ WSS
- % Ergodic

$$X_n(t) = 2 + w_n(t)$$

 $w_n(t) \sim \mathcal{U}[-0.5; 0.5]$

- ✓ WSS
- ✓ Ergodic

WSS and Ergodicity— Example

- > SSS ???
- > WSS ???
- > Ergodic ???

Words and Concepts to Know

Stochastic Processes

Non-deterministic

Ensemple variance

SSS

Temporal variance

Stationarity

Deterministic

Ergodicity

Autocovariance

WSS

Ensemple mean

Strict Sense Stationary

Autocorrelation

Realization

Temporal mean

Wide Sense Stationary