

FCC TEST REPORT

REPORT NO.: RF140624C24

MODEL NO.: TEW-722BRM

FCC ID: XU8TEW722BRM

RECEIVED: Jun. 20, 2014

TESTED: Jun. 20 ~ Jul. 17, 2014

ISSUED: Jul. 18, 2014

APPLICANT: TRENDNET, Inc.

ADDRESS: 20675 Manhattan Place, Torrance, CA 90501,

USA

ISSUED BY: Bureau Veritas Consumer Products Services

(H.K.) Ltd., Taoyuan Branch

LAB ADDRESS: No. 47, 14th Ling, Chia Pau Vil., Lin Kou Dist.,

New Taipei City, Taiwan, R.O.C.

TEST LOCATION: No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei

Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Report No.: RF140624C24 1 of 58 Report Format Version 5.2.1

TABLE OF CONTENTS

ASE CONTROL RECORD	4
CERTIFICATION	5
SUMMARY OF TEST RESULTS	6
MEASUREMENT UNCERTAINTY	6
GENERAL INFORMATION	7
GENERAL DESCRIPTION OF EUT	7
DESCRIPTION OF TEST MODES	8
TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	9
DUTY CYCLE OF TEST SIGNAL	11
DESCRIPTION OF SUPPORT UNITS	12
CONFIGURATION OF SYSTEM UNDER TEST	12
GENERAL DESCRIPTION OF APPLIED STANDARDS	13
RADIATED EMISSION AND BANDEDGE MEASUREMENT	14
LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	14
TEST INSTRUMENTS	15
TEST PROCEDURES	16
DEVIATION FROM TEST STANDARD	16
TEST SETUP	17
CONDUCTED EMISSION MEASUREMENT	32
TEST INSTRUMENTS	32
TEST SETUP	33
6dB BANDWIDTH MEASUREMENT	36
TEST INSTRUMENTS	36
TEST PROCEDURE	36
DEVIATION FROM TEST STANDARD	36
TEST PROCEDURES	39
	SECONTROL RECORD. CERTIFICATION. CERTIFICATION. SUMMARY OF TEST RESULTS MEASUREMENT UNCERTAINTY GENERAL INFORMATION. GENERAL DESCRIPTION OF EUT. DESCRIPTION OF TEST MODES. TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL. DUTY CYCLE OF TEST SIGNAL. DESCRIPTION OF SUPPORT UNITS. CONFIGURATION OF SYSTEM UNDER TEST. GENERAL DESCRIPTION OF APPLIED STANDARDS. TEST TYPES AND RESULTS RADIATED EMISSION AND BANDEDGE MEASUREMENT LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT TEST INSTRUMENTS. TEST PROCEDURES. DEVIATION FROM TEST STANDARD TEST SETUP. EUT OPERATING CONDITIONS. TEST RESULTS CONDUCTED EMISSION MEASUREMENT LIMITS OF CONDUCTED EMISSION MEASUREMENT TEST INSTRUMENTS. TEST PROCEDURES. DEVIATION FROM TEST STANDARD TEST SETUP. EUT OPERATING CONDITIONS TEST RESULTS GONDUCTED EMISSION MEASUREMENT LIMITS OF CONDUCTED EMISSION MEASUREMENT TEST INSTRUMENTS. TEST PROCEDURES. DEVIATION FROM TEST STANDARD TEST SETUP. TEST INSTRUMENTS. TEST PROCEDURES DEVIATION FROM TEST STANDARD TEST SETUP. TEST SETUP. TEST SETUP. TEST SETUP. TEST SETUP. TEST RESULTS CONDUCTED OUTPUT POWER MEASUREMENT TEST RESULTS CONDUCTED OUTPUT POWER MEASUREMENT TEST SETUP. TEST SETUP. TEST RESULTS CONDUCTED OUTPUT POWER MEASUREMENT TEST SETUP. TEST SESULTS CONDUCTED OUTPUT POWER MEASUREMENT TEST SETUP. TEST SE

4.4.5	DEVIATION FROM TEST STANDARD	40
4.4.6	EUT OPERATING CONDITIONS	40
4.4.7	TEST RESULTS	41
4.5	POWER SPECTRAL DENSITY MEASUREMENT	43
4.5.1	LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	43
4.5.2	TEST SETUP	43
4.5.3	TEST INSTRUMENTS	43
4.5.4	TEST PROCEDURE	43
4.5.5	DEVIATION FROM TEST STANDARD	43
4.5.6	EUT OPERATING CONDITION	43
4.5.7	TEST RESULTS	44
4.6	CONDUCTED OUT OF BAND EMISSION MEASUREMENT	46
4.6.1	LIMITS OF CONDUCTED OUT OF BAND EMISSION MEASUREMENT	46
4.6.2	TEST SETUP	. 46
4.6.3	TEST INSTRUMENTS	46
4.6.4	TEST PROCEDURE	47
4.6.5	DEVIATION FROM TEST STANDARD	47
4.6.6	EUT OPERATING CONDITION	47
4.6.7	TEST RESULTS	47
5.	PHOTOGRAPHS OF THE TEST CONFIGURATION	56
6.	INFORMATION ON THE TESTING LABORATORIES	57
7.	APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE	
	EUT BY THE LAB	. 58

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF140624C24	Original release.	Jul. 18, 2014

Report No.: RF140624C24 4 of 58 Report Format Version 5.2.1

1. CERTIFICATION

PRODUCT: N300 Wireless ADSL 2+ Modem Router

MODEL NO.: TEW-722BRM

BRAND: TRENDnet

APPLICANT: TRENDNET, Inc.

TESTED: Jun. 20 ~ Jul. 17, 2014

TEST SAMPLE: ENGINEERING SAMPLE

STANDARDS: FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10-2009

The above equipment (model: TEW-722BRM) has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Suntee Liu / Specialist , DATE : Jul. 18, 2014 PREPARED BY:

, DATE : ____ Jul. 18, 2014

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

AF	APPLIED STANDARD: FCC PART 15, SUBPART C (SECTION 15.247)						
STANDARD SECTION TEST TYPE		RESULT	REMARK				
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -8.72dB at 0.15000MHz.				
15.205 & 209	Radiated Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -1.0dB at 2390.00MHz.				
15.247(d)	Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -1.1dB at 2483.50MHz.				
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.				
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.				
15.247(b)	Conducted power	PASS	Meet the requirement of limit.				
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.				
15.203 Antenna Requirement		PASS	No antenna connector is used.				

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	150kHz~30MHz	2.44 dB
	30MHz ~ 200MHz	2.93 dB
Dadiated emissions	200MHz ~1000MHz	2.95 dB
Radiated emissions	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	N300 Wireless ADSL 2+ Modem Router		
MODEL NO.	TEW-722BRM		
POWER SUPPLY	12Vdc (adapter)		
MODULATION TYPE	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM		
MODULATION TECHNOLOGY	DSSS, OFDM		
TRANSFER RATE	802.11b:11/5.5/2/1Mbps 802.11g: 54/48/36/24/18/12/9/6Mbps 802.11n: up to 300Mbps		
OPERATING FREQUENCY	2412 ~ 2462MHz		
NUMBER OF CHANNEL	11 for 802.11b, 802.11g, 802.11n (20MHz) 7 for 802.11n (40MHz)		
OUTPUT POWER	468.811mW		
ANTENNA TYPE	Printed antenna with 4dBi gain		
ANTENNA CONNECTOR	NA		
DATA CABLE	1.4m non-shielded RJ45 cable without core 1m non-shielded RJ11 cable without core		
I/O PORTS	Refer to user's manual		
ACCESSORY DEVICES	Adapter		

NOTE:

1. The EUT incorporates a MIMO function. Physically, the EUT provides 2 completed transmitters and 2 receivers.

MODULATION MODE	TX FUNCTION
802.11b	2TX
802.11g	2TX
802.11n (20MHz)	2TX
802.11n (40MHz)	2TX

2. The EUT uses following adapter.

Brand	AOEM		
Model	ADS012K-W 120100A		
Input Power	100-240Vac, 50-60Hz, 0.5A		
Output Power	12Vdc, 1.0A		
Power Line	1.5m cable without core attached on adapter		

3. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 DESCRIPTION OF TEST MODES

11 channels are provided for 802.11b, 802.11g and 802.11n (20MHz):

CHANNEL	CHANNEL FREQUENCY		FREQUENCY
1	2412MHz	7	2442MHz
2	2417MHz	8	2447MHz
3	2422MHz	9	2452MHz
4	2427MHz	10	2457MHz
5	2432MHz	11	2462MHz
6	2437MHz		

7 channels are provided for 802.11n (40MHz):

CHANNEL FREQUENCY		CHANNEL	FREQUENCY
3	3 2422MHz		2442MHz
4 2427MHz		8	2447MHz
5	2432MHz	9	2452MHz
6	2437MHz		

3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

	EUT		APPLICA	ABLE TO		DESCRIPTION	
	CONFIGURE MODE		RE≥1G	RE<1G	PLC	APCM	DESCRIPTION
	-	V	V	V	\checkmark	-	

Where

RE≥1G: Radiated Emission above 1GHz

RE<1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

RADIATED EMISSION TEST (ABOVE 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
-	802.11b	1 to 11	1, 6, 11	DSSS	DBPSK	1.0
-	802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6.0
-	802.11n (20MHz)	1 to 11	1, 6, 11	OFDM	BPSK	7.2
-	802.11n (40MHz)	3 to 9	3, 6, 9	OFDM	BPSK	15.0

RADIATED EMISSION TEST (BELOW 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

	EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
ĺ	-	802.11g	1 to 11	1	OFDM	BPSK	6.0

POWER LINE CONDUCTED EMISSION TEST:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
-	802.11g	1 to 11	1	OFDM	BPSK	6.0

Report No.: RF140624C24 9 of 58 Report Format Version 5.2.1

BANDEDGE MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
-	802.11b	1 to 11	1, 11	DSSS	DBPSK	1.0
-	802.11g	1 to 11	1, 11	OFDM	BPSK	6.0
-	802.11n (20MHz)	1 to 11	1, 11	OFDM	BPSK	7.2
-	802.11n (40MHz)	3 to 9	3, 9	OFDM	BPSK	15.0

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	CONFIGURE MODE		TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
-	802.11b	1 to 11	1, 6, 11	DSSS	DBPSK	1.0
-	802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6.0
-	802.11n (20MHz)	1 to 11	1, 6, 11	OFDM	BPSK	7.2
-	802.11n (40MHz)	3 to 9	3, 6, 9	OFDM	BPSK	15.0

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE≥1G	25deg. C, 61%RH	120Vac, 60Hz	Ted Chang
RE<1G	25deg. C, 61%RH	120Vac, 60Hz	Ted Chang
PLC	24deg. C, 66%RH	120Vac, 60Hz	Kevin Kuo
APCM	25deg. C, 60%RH	120Vac, 60Hz	Alan Wu

Report No.: RF140624C24 10 of 58 Report Format Version 5.2.1

3.3 DUTY CYCLE OF TEST SIGNAL

Duty cycle of test signal is > 98 %

802.11b: Duty cycle = 12.337/12.562 = 0.982

Duty cycle of test signal is < 98%

802.11g: Duty cycle = 2.062/2.207 = 0.934, Duty factor = 10 * log(1/0.934) = 0.3

802.11n (20MHz): Duty cycle = 1.916/2.108 = 0.909, Duty factor = 10 * log(1/0.909) = 0.41 **802.11n (40MHz):** Duty cycle = 0.941/1.136 = 0.828, Duty factor = 10 * log(1/0.828) = 0.82

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Notebook	DELL	E5420	BPQ8MQ1	FCC DoC Approved

No.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	3m RJ45 cable

NOTE:

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Item 1 acted as a communication partner to transfer data.

3.4.1 CONFIGURATION OF SYSTEM UNDER TEST

Report No.: RF140624C24 12 of 58 Report Format Version 5.2.1

3.5 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) 558074 D01 DTS Meas Guidance v03r02 662911 D01 Multiple Transmitter Output v02r01 ANSI C63.10-2009

All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

Report No.: RF140624C24 13 of 58 Report Format Version 5.2.1

4. TEST TYPES AND RESULTS

4.1 RADIATED EMISSION AND BANDEDGE MEASUREMENT

4.1.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Report No.: RF140624C24 14 of 58 Report Format Version 5.2.1

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESCS30	100289	Nov. 29, 2013	Nov. 28, 2014
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100269	Feb. 11, 2014	Feb. 10, 2015
BILOG Antenna SCHWARZBECK	VULB9168	9168-156	Feb. 25, 2014	Feb. 24, 2015
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-209	Sep. 12, 2013	Sep. 11, 2014
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Feb. 17, 2014	Feb. 16, 2015
Preamplifier Agilent	8449B	3008A01911	Aug. 22, 2013	Aug. 21, 2014
Preamplifier Agilent	8447D	2944A10638	Oct. 18, 2013	Oct. 17, 2014
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	248780/4 309222/4 274092/4	Aug. 26, 2013	Aug. 25, 2014
RF signal cable Worken	5D-FB	Cable-HYCH9-01	Aug. 11, 2013	Aug. 10, 2014
Software BV ADT	ADT_Radiated_ V7.6.15.9.4	NA	NA	NA
Antenna Tower EMCO	2070/2080	512.835.4684	NA	NA
Turn Table EMCO	2087-2.03	NA	NA	NA
Antenna Tower &Turn Table Controller EMCO	2090	NA	NA	NA
High Speed Peak Power Meter	ML2495A	0824011	Jul. 29, 2013	Jul. 28, 2014
Power Sensor	MA2411B	0738171	Jul. 29, 2013	Jul. 28, 2014

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 9.
- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 215374.
- 5. The IC Site Registration No. is IC 7450F-9.

4.1.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Height of receiving antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz(Duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation.

4.1.5 TEST SETUP

Frequency range 30MHz~1GHz

Frequency range above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT OPERATING CONDITIONS

- a. Placed the EUT on the testing table.
- b. Prepared a notebook to act as a communication partner and placed it outside of testing area.
- c. The communication partner connected with EUT via a RJ45 cable and ran a test program (provided by manufacturer) to enable EUT under transmission condition continuously at specific channel frequency.
- d. The communication partner sent data to EUT by command "PING".

Report No.: RF140624C24 18 of 58 Report Format Version 5.2.1

4.1.7 TEST RESULTS

ABOVE 1GHz DATA:

802.11b

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 1	FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 61%RH	TESTED BY	Ted Chang	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	59.1 PK	74.0	-14.9	1.00 H	20	26.80	32.30	
2	2390.00	47.3 AV	54.0	-6.7	1.00 H	20	15.00	32.30	
3	*2412.00	102.6 PK			1.39 H	28	70.10	32.50	
4	*2412.00	98.6 AV			1.39 H	28	66.10	32.50	
5	4824.00	55.5 PK	74.0	-18.5	1.00 H	150	53.50	2.00	
6	4824.00	52.3 AV	54.0	-1.7	1.00 H	150	50.30	2.00	
7	#7236.00	56.1 PK	82.6	-26.5	1.50 H	331	48.50	7.60	
8	#7236.00	46.8 AV	78.6	-31.8	1.50 H	331	39.20	7.60	
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	59.6 PK	74.0	-14.4	1.00 V	0	27.30	32.30	
2	2390.00	47.3 AV	54.0	-6.7	1.00 V	0	15.00	32.30	
3	*2412.00	96.3 PK			1.00 V	302	63.80	32.50	
4	*2412.00	92.7 AV			1.00 V	302	60.20	32.50	
5	4824.00	58.3 PK	74.0	-15.7	1.00 V	235	56.30	2.00	
6	4824.00	52.7 AV	54.0	-1.3	1.00 V	235	50.70	2.00	
7	#7236.00	60.1 PK	76.3	-16.2	1.77 V	107	52.50	7.60	
8	#7236.00	52.9 AV	72.7	-19.8	1.77 V	107	45.30	7.60	

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

Report No.: RF140624C24 19 of 58 Report Format Version 5.2.1

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 6	FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 61%RH	TESTED BY	Ted Chang	

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2437.00	104.8 PK			1.05 H	346	72.30	32.50
2	*2437.00	101.1 AV			1.05 H	346	68.60	32.50
3	4874.00	55.8 PK	74.0	-18.2	1.00 H	154	53.80	2.00
4	4874.00	52.6 AV	54.0	-1.4	1.00 H	154	50.60	2.00
5	7311.00	55.9 PK	74.0	-18.1	1.00 H	328	47.90	8.00
6	7311.00	44.4 AV	54.0	-9.6	1.00 H	328	36.40	8.00
		ANTENNA	POLARITY	/ & TEST D	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2437.00	99.5 PK			1.02 V	102	67.00	32.50
2	*2437.00	95.8 AV			1.02 V	102	63.30	32.50
3	4874.00	56.0 PK	74.0	-18.0	1.27 V	247	54.00	2.00
4	4874.00	52.5 AV	54.0	-1.5	1.27 V	247	50.50	2.00
5	7311.00	60.4 PK	74.0	-13.6	1.74 V	146	52.40	8.00
6	7311.00	52.9 AV	54.0	-1.1	1.74 V	146	44.90	8.00

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 11		FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120\/ac 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 61%RH	TESTED BY	Ted Chang	

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2462.00	102.7 PK			1.03 H	36	70.10	32.60
2	*2462.00	98.7 AV			1.03 H	36	66.10	32.60
3	2483.50	59.9 PK	74.0	-14.1	1.03 H	36	27.10	32.80
4	2483.50	47.8 AV	54.0	-6.2	1.03 H	36	15.00	32.80
5	4924.00	55.8 PK	74.0	-18.2	1.00 H	160	53.70	2.10
6	4924.00	52.8 AV	54.0	-1.2	1.00 H	160	50.70	2.10
7	7386.00	56.1 PK	74.0	-17.9	1.60 H	20	48.00	8.10
8	7386.00	43.1 AV	54.0	-10.9	1.60 H	20	35.00	8.10
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2462.00	97.5 PK			1.00 V	93	64.90	32.60
2	*2462.00	93.7 AV			1.00 V	93	61.10	32.60
3	2483.50	59.5 PK	74.0	-14.5	1.00 V	172	26.70	32.80
4	2483.50	47.8 AV	54.0	-6.2	1.00 V	172	15.00	32.80
5	4924.00	56.4 PK	74.0	-17.6	1.00 V	199	54.30	2.10
6	4924.00	52.9 AV	54.0	-1.1	1.00 V	199	50.80	2.10
7	7386.00	55.9 PK	74.0	-18.1	1.80 V	239	47.80	8.10
8	7386.00	45.9 AV	54.0	-8.1	1.88 V	239	37.80	8.10

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

802.11g

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 1	FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 61%RH	TESTED BY	Ted Chang	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	66.3 PK	74.0	-7.7	1.33 H	314	34.00	32.30	
2	2390.00	53.0 AV	54.0	-1.0	1.33 H	314	20.70	32.30	
3	*2412.00	105.1 PK			1.07 H	34	72.60	32.50	
4	*2412.00	95.6 AV			1.07 H	34	63.10	32.50	
5	4824.00	51.0 PK	74.0	-23.0	1.00 H	163	49.00	2.00	
6	4824.00	38.0 AV	54.0	-16.0	1.00 H	163	36.00	2.00	
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M		
NO.	NO. FREQ. EMISSION LIMIT MARGIN HEIGHT ANGLE RAW CORRECTION CORRE								
	(MHz)	LEVEL (dBuV/m)			HEIGHT (m)	ANGLE (Degree)	VALUE (dBuV)	FACTOR (dB/m)	
1	(MHz) 2390.00					7			
1 2	` ,	(dBuV/m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)	
	2390.00	(dBuV/m) 59.6 PK	(dBuV/m)	(dB)	(m) 1.00 V	(Degree) 267	(dBuV) 27.30	(dB/m) 32.30	
2	2390.00 2390.00	(dBuV/m) 59.6 PK 48.6 AV	(dBuV/m)	(dB)	(m) 1.00 V 1.00 V	(Degree) 267 267	(dBuV) 27.30 16.30	(dB/m) 32.30 32.30	
3	2390.00 2390.00 *2412.00	(dBuV/m) 59.6 PK 48.6 AV 101.6 PK	(dBuV/m)	(dB)	(m) 1.00 V 1.00 V 1.00 V	(Degree) 267 267 111	(dBuV) 27.30 16.30 69.10	(dB/m) 32.30 32.30 32.50	

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 6		FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 61%RH	TESTED BY	Ted Chang	

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2437.00	107.5 PK			1.27 H	70	75.00	32.50
2	*2437.00	97.8 AV			1.27 H	70	65.30	32.50
3	4874.00	54.1 PK	74.0	-19.9	1.00 H	165	52.10	2.00
4	4874.00	40.4 AV	54.0	-13.6	1.00 H	165	38.40	2.00
5	5000.00	46.8 PK	74.0	-27.2	1.00 H	12	44.50	2.30
6	5000.00	36.5 AV	54.0	-17.5	1.00 H	12	34.20	2.30
7	7311.00	64.1 PK	74.0	-9.9	1.00 H	2	56.10	8.00
8	7311.00	51.4 AV	54.0	-2.6	1.00 H	2	43.40	8.00
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2437.00	102.0 PK			1.00 V	83	69.50	32.50
2	*2437.00	92.8 AV			1.00 V	83	60.30	32.50
3	4874.00	60.7 PK	74.0	-13.3	1.26 V	251	58.70	2.00
4	4874.00	47.7 AV	54.0	-6.3	1.26 V	251	45.70	2.00
5	5000.00	45.9 PK	74.0	-28.1	1.00 V	353	43.60	2.30
6	5000.00	33.1 AV	54.0	-20.9	1.00 V	353	30.80	2.30
7	7311.00	67.9 PK	74.0	-6.1	1.76 V	281	59.90	8.00
8	7311.00	52.9 AV	54.0	-1.1	1.76 V	281	44.90	8.00

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 11		FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 61%RH	TESTED BY	Ted Chang	

		ANTENNA	POLARITY	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	*2462.00	105.0 PK			1.01 H	36	72.40	32.60				
2	*2462.00	95.4 AV			1.01 H	36	62.80	32.60				
3	2483.50	67.5 PK	74.0	-6.5	1.27 H	63	34.70	32.80				
4	2483.50	52.9 AV	54.0	-1.1	1.27 H	63	20.10	32.80				
5	4924.00	49.1 PK	74.0	-24.9	1.00 H	33	47.00	2.10				
6	4924.00	36.8 AV	54.0	-17.2	1.00 H	33	34.70	2.10				
7	7386.00	59.2 PK	74.0	-14.8	1.15 H	0	51.10	8.10				
8	7386.00	47.1 AV	54.0	-6.9	1.15 H	0	39.00	8.10				
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M					
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	*2462.00	101.2 PK			1.00 V	107	68.60	32.60				
2	*2462.00	91.2 AV			1.00 V	107	58.60	32.60				
3	2483.50	60.4 PK	74.0	-13.6	1.00 V	87	27.60	32.80				
4	2483.50	48.8 AV	54.0	-5.2	1.00 V	87	16.00	32.80				
5	4924.00	56.4 PK	74.0	-17.6	1.00 V	244	54.30	2.10				
						044	44.00	0.40				
6	4924.00	43.1 AV	54.0	-10.9	1.00 V	244	41.00	2.10				
6 7	4924.00 7386.00	43.1 AV 64.1 PK	54.0 74.0	-10.9 -9.9	1.00 V 1.80 V	283	56.00	8.10				

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

802.11n (20MHz)

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 1		FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac, 60 Hz		Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 61%RH	TESTED BY	Ted Chang	

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	66.3 PK	74.0	-7.7	1.07 H	347	34.00	32.30
2	2390.00	52.5 AV	54.0	-1.5	1.07 H	347	20.20	32.30
3	*2412.00	101.9 PK			1.32 H	32	69.40	32.50
4	*2412.00	91.7 AV			1.32 H	32	59.20	32.50
5	4824.00	49.7 PK	74.0	-24.3	1.00 H	162	47.70	2.00
6	4824.00	37.0 AV	54.0	-17.0	1.00 H	162	35.00	2.00
7	#5600.00	51.7 PK	81.9	-30.2	1.04 H	204	48.50	3.20
8	#5600.00	39.3 AV	71.7	-32.4	1.04 H	204	36.10	3.20
9	#7236.00	59.3 PK	81.9	-22.6	1.46 H	30	51.70	7.60
10	#7236.00	44.1 AV	71.7	-27.6	1.46 H	30	36.50	7.60
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	58.9 PK	74.0	-15.1	1.21 V	0	26.60	32.30
2	2390.00	47.6 AV	54.0	-6.4	1.21 V	0	15.30	32.30
3	*2412.00	99.4 PK			1.00 V	107	66.90	32.50
4	*2412.00	89.4 AV			1.00 V	107	56.90	32.50
5	4824.00	55.4 PK	74.0	-18.6	1.00 V	264	53.40	2.00
6	4824.00	40.4 AV	54.0	-13.6	1.00 V	264	38.40	2.00
7	#5600.00	50.4 PK	79.4	-29.0	1.00 V	212	47.20	3.20
8	#5600.00	38.7 AV	69.4	-30.7	1.00 V	212	35.50	3.20
9	#7236.00	63.5 PK	79.4	-15.9	1.65 V	96	55.90	7.60
10	#7236.00	48.0 AV	69.4	-21.4	1.65 V	96	40.40	7.60

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

Report No.: RF140624C24 25 of 58 Report Format Version 5.2.1

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 6		FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 61%RH	TESTED BY	Ted Chang	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2437.00	108.3 PK			1.03 H	44	75.80	32.50	
2	*2437.00	97.5 AV			1.03 H	44	65.00	32.50	
3	2483.50	64.7 PK	74.0	-9.3	1.00 H	33	31.90	32.80	
4	2483.50	50.0 AV	54.0	-4.0	1.00 H	33	17.20	32.80	
5	4874.00	53.9 PK	74.0	-20.1	1.00 H	29	51.90	2.00	
6	4874.00	40.4 AV	54.0	-13.6	1.00 H	29	38.40	2.00	
7	#5250.00	52.0 PK	88.3	-36.3	1.61 H	41	49.20	2.80	
8	#5250.00	40.6 AV	77.5	-36.9	1.61 H	41	37.80	2.80	
9	7311.00	64.5 PK	74.0	-9.5	1.17 H	356	56.50	8.00	
10	7311.00	47.1 AV	54.0	-6.9	1.17 H	356	39.10	8.00	
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	/ & TEST DI MARGIN (dB)	STANCE: V ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	T 3 M RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
NO .		EMISSION LEVEL	LIMIT	MARGIN	ANTENNA HEIGHT	TABLE ANGLE	RAW VALUE	FACTOR	
	(MHz)	EMISSION LEVEL (dBuV/m)	LIMIT	MARGIN	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	FACTOR (dB/m)	
1	(MHz) *2437.00	EMISSION LEVEL (dBuV/m) 100.9 PK	LIMIT	MARGIN	ANTENNA HEIGHT (m) 1.00 V	TABLE ANGLE (Degree)	RAW VALUE (dBuV) 68.40	FACTOR (dB/m) 32.50	
1 2	(MHz) *2437.00 *2437.00	EMISSION LEVEL (dBuV/m) 100.9 PK 91.5 AV	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m) 1.00 V 1.00 V	TABLE ANGLE (Degree) 82 82	RAW VALUE (dBuV) 68.40 59.00	FACTOR (dB/m) 32.50 32.50	
1 2 3	*2437.00 *2437.00 2483.50	EMISSION LEVEL (dBuV/m) 100.9 PK 91.5 AV 60.4 PK	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m) 1.00 V 1.00 V 1.00 V	TABLE ANGLE (Degree) 82 82 82 23	RAW VALUE (dBuV) 68.40 59.00 27.60	FACTOR (dB/m) 32.50 32.50 32.80	
1 2 3 4	*2437.00 *2437.00 2483.50 2483.50	EMISSION LEVEL (dBuV/m) 100.9 PK 91.5 AV 60.4 PK 48.0 AV	LIMIT (dBuV/m) 74.0 54.0	MARGIN (dB) -13.6 -6.0	ANTENNA HEIGHT (m) 1.00 V 1.00 V 1.00 V	TABLE ANGLE (Degree) 82 82 82 23 23	RAW VALUE (dBuV) 68.40 59.00 27.60 15.20	FACTOR (dB/m) 32.50 32.50 32.80 32.80	
1 2 3 4 5	*2437.00 *2437.00 2483.50 2483.50 4874.00	EMISSION LEVEL (dBuV/m) 100.9 PK 91.5 AV 60.4 PK 48.0 AV 57.2 PK	LIMIT (dBuV/m) 74.0 54.0 74.0	-13.6 -6.0 -16.8	ANTENNA HEIGHT (m) 1.00 V 1.00 V 1.00 V 1.00 V	TABLE ANGLE (Degree) 82 82 23 23 248	RAW VALUE (dBuV) 68.40 59.00 27.60 15.20 55.20	FACTOR (dB/m) 32.50 32.50 32.80 32.80 2.00	
1 2 3 4 5 6	*2437.00 *2437.00 2483.50 2483.50 4874.00	EMISSION LEVEL (dBuV/m) 100.9 PK 91.5 AV 60.4 PK 48.0 AV 57.2 PK 43.7 AV	LIMIT (dBuV/m) 74.0 54.0 74.0 54.0 54.0	-13.6 -6.0 -16.8 -10.3	ANTENNA HEIGHT (m) 1.00 V 1.00 V 1.00 V 1.24 V 1.24 V	TABLE ANGLE (Degree) 82 82 23 23 248 248	RAW VALUE (dBuV) 68.40 59.00 27.60 15.20 55.20 41.70	FACTOR (dB/m) 32.50 32.50 32.80 32.80 2.00 2.00	
1 2 3 4 5 6	*2437.00 *2437.00 2483.50 2483.50 4874.00 4874.00 #5250.00	EMISSION LEVEL (dBuV/m) 100.9 PK 91.5 AV 60.4 PK 48.0 AV 57.2 PK 43.7 AV 54.1 PK	T4.0 54.0 74.0 54.0 74.0 80.9	-13.6 -6.0 -16.8 -10.3 -26.8	ANTENNA HEIGHT (m) 1.00 V 1.00 V 1.00 V 1.00 V 1.24 V 1.24 V	TABLE ANGLE (Degree) 82 82 23 23 248 248 248	RAW VALUE (dBuV) 68.40 59.00 27.60 15.20 55.20 41.70 51.30	FACTOR (dB/m) 32.50 32.50 32.80 32.80 2.00 2.00 2.80	

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 11		FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 61%RH	TESTED BY	Ted Chang	

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2462.00	104.8 PK			1.30 H	35	72.20	32.60
2	*2462.00	94.5 AV			1.30 H	35	61.90	32.60
3	2483.50	68.4 PK	74.0	-5.6	1.30 H	342	35.60	32.80
4	2483.50	52.8 AV	54.0	-1.2	1.30 H	342	20.00	32.80
5	4924.00	48.3 PK	74.0	-25.7	1.00 H	167	46.20	2.10
6	4924.00	35.3 AV	54.0	-18.7	1.00 H	167	33.20	2.10
7	7386.00	59.2 PK	74.0	-14.8	1.82 H	3	51.10	8.10
8	7386.00	44.2 AV	54.0	-9.8	1.82 H	3	36.10	8.10
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2462.00	97.7 PK			1.00 V	85	65.10	32.60
2	*2462.00	88.3 AV			1.00 V	85	55.70	32.60
3	2483.50	60.5 PK	74.0	-13.5	1.00 V	89	27.70	32.80
4	2483.50	48.3 AV	54.0	-5.7	1.00 V	89	15.50	32.80
5	4924.00	55.3 PK	74.0	-18.7	1.00 V	246	53.20	2.10
6	4924.00	41.5 AV	54.0	-12.5	1.00 V	246	39.40	2.10
7	7386.00	60.8 PK	74.0	-13.2	1.83 V	280	52.70	8.10
8	7386.00	46.0 AV	54.0	-8.0	1.83 V	280	37.90	8.10

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

802.11n (40MHz)

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 3		FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 61%RH	TESTED BY	Brad Tung	

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	66.7 PK	74.0	-7.3	1.03 H	346	34.40	32.30
2	2390.00	53.0 AV	54.0	-1.0	1.03 H	346	20.70	32.30
3	*2422.00	100.0 PK			1.03 H	345	67.50	32.50
4	*2422.00	89.2 AV			1.03 H	345	56.70	32.50
5	4844.00	46.9 PK	74.0	-27.1	1.00 H	136	44.90	2.00
6	4844.00	33.7 AV	54.0	-20.3	1.00 H	136	31.70	2.00
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	60.9 PK	74.0	-13.1	1.00 V	80	28.60	32.30
2	2390.00	48.0 AV	54.0	-6.0	1.00 V	80	15.70	32.30
3	*2422.00	92.9 PK			1.00 V	261	60.40	32.50
4	*2422.00	83.5 AV			1.00 V	261	51.00	32.50
-								
5	4844.00	49.2 PK	74.0	-24.8	1.00 V	237	47.20	2.00

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 6		FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 61%RH	TESTED BY	Brad Tung	

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	68.8 PK	74.0	-5.2	1.04 H	347	36.50	32.30
2	2390.00	53.0 AV	54.0	-1.0	1.04 H	347	20.70	32.30
3	*2437.00	104.3 PK			1.01 H	344	71.80	32.50
4	*2437.00	94.0 AV			1.01 H	344	61.50	32.50
5	2483.50	68.5 PK	74.0	-5.5	1.25 H	68	35.70	32.80
6	2483.50	52.7 AV	54.0	-1.3	1.25 H	68	19.90	32.80
7	4874.00	49.1 PK	74.0	-24.9	1.00 H	165	47.10	2.00
8	4874.00	36.2 AV	54.0	-17.8	1.00 H	165	34.20	2.00
9	7311.00	58.5 PK	74.0	-15.5	1.58 H	2	50.50	8.00
10	7311.00	45.2 AV	54.0	-8.8	1.58 H	2	37.20	8.00
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	62.1 PK	74.0	-11.9	1.00 V	86	29.80	32.30
2	2390.00	48.5 AV	54.0	-5.5	1.00 V	86	16.20	32.30
3	*2437.00	98.4 PK			1.00 V	83	65.90	32.50
4	*2437.00	88.5 AV			1.00 V	83	56.00	32.50
5	2483.50	61.3 PK	74.0	-12.7	1.00 V	274	28.50	32.80
6	2483.50	49.4 AV	54.0	-4.6	1.00 V	274	16.60	32.80
7	4874.00	54.1 PK	74.0	-19.9	1.00 V	254	52.10	2.00
8	4874.00	41.3 AV	54.0	-12.7	1.00 V	254	39.30	2.00
9	7311.00	64.0 PK	74.0	-10.0	1.72 V	281	56.00	8.00
10	7311.00	51.3 AV	54.0	-2.7	1.72 V	281	43.30	8.00

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

Report No.: RF140624C24 29 of 58 Report Format Version 5.2.1

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 9		FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	25deg. C, 61%RH	TESTED BY	Brad Tung	

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2452.00	99.6 PK			1.32 H	36	67.00	32.60
2	*2452.00	89.1 AV			1.32 H	36	56.50	32.60
3	2483.50	65.1 PK	74.0	-8.9	1.24 H	310	32.30	32.80
4	2483.50	52.9 AV	54.0	-1.1	1.24 H	310	20.10	32.80
5	4904.00	46.4 PK	74.0	-27.6	1.00 H	183	44.30	2.10
6	4904.00	33.0 AV	54.0	-21.0	1.00 H	183	30.90	2.10
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2452.00	93.3 PK			1.00 V	81	60.70	32.60
2	*2452.00	85.2 AV			1.00 V	81	52.60	32.60
3	2483.50	61.1 PK	74.0	-12.9	1.00 V	39	28.30	32.80
4	2483.50	50.1 AV	54.0	-3.9	1.00 V	39	17.30	32.80
5	4904.00	49.4 PK	74.0	-24.6	1.00 V	267	47.30	2.10
6	4904.00	36.4 AV	54.0	-17.6	1.00 V	267	34.30	2.10

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

BELOW 1GHz WORST-CASE DATA: 802.11g

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 1		FREQUENCY RANGE	Below 1000MHz	
INPUT POWER (SYSTEM)	1120Vac 60 Hz	DETECTOR FUNCTION	Quasi-Peak	
ENVIRONMENTAL CONDITIONS	25deg. C, 61%RH	TESTED BY	Ted Chang	

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	75.08	32.2 QP	40.0	-7.8	2.00 H	190	49.40	-17.20
2	176.12	34.7 QP	43.5	-8.8	1.50 H	130	49.40	-14.70
3	224.31	35.3 QP	46.0	-10.7	1.01 H	128	51.70	-16.40
4	675.11	34.9 QP	46.0	-11.1	1.01 H	10	40.10	-5.20
5	788.59	33.8 QP	46.0	-12.2	1.01 H	10	36.70	-2.90
6	937.82	33.0 QP	46.0	-13.0	1.50 H	294	33.30	-0.30
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	31.55	30.2 QP	40.0	-9.8	1.00 V	221	46.00	-15.80
2	53.32	29.5 QP	40.0	-10.5	1.00 V	6	43.50	-14.00
3	75.08	32.6 QP	40.0	-7.4	1.99 V	255	49.80	-17.20
4	157.47	28.2 QP	43.5	-15.3	1.00 V	231	41.90	-13.70
5	224.31	28.5 QP	46.0	-17.5	1.00 V	152	44.90	-16.40
6	675.11	31.1 QP	46.0	-14.9	1.49 V	168	36.30	-5.20

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.

4.2 CONDUCTED EMISSION MEASUREMENT

4.2.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED	LIMIT (dBµV)
	Quasi-peak	Average
0.15 ~ 0.5	66 to 56	56 to 46
0.5 ~ 5	56	46
5 ~ 30	60	50

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION	
Test Receiver ROHDE & SCHWARZ	ESCS30	100289	Nov. 29, 2013	Nov. 28, 2014	
RF signal cable Woken	5D-FB	Cable-HYC01-01	Dec. 27, 2013	Dec. 26, 2014	
LISN ROHDE & SCHWARZ (EUT)	ESH3-Z5	835239/001	Feb. 13, 2014	Feb. 12, 2015	
LISN ROHDE & SCHWARZ	ESH3-Z5	100311	Jul. 17, 2013	Jul. 16, 2014	
(Peripheral)	E3H3-Z5	100311	Jul. 16, 2014	Jul. 15, 2015	
Software ADT	vare BV ADT_Cond_ V7.3.7.3		NA	NA	

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 1.
- 3. The VCCI Site Registration No. is C-2040.

4.2.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation.

4.2.5 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT OPERATING CONDITIONS

Same as 4.1.6.

4.2.7 TEST RESULTS

CONDUCTED WORST-CASE DATA: 802.11g

PHASE Line 1	6dB BANDWIDTH	9kHz
--------------	---------------	------

No	Freq.	Corr.	Reading Value		Emission Level		Limit		Margin	
		Factor	[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	0.08	56.32	42.48	56.40	42.56	66.00	56.00	-9.60	-13.44
2	0.18508	0.07	46.87	27.47	46.94	27.54	64.25	54.25	-17.31	-26.71
3	0.32614	0.08	36.79	27.53	36.87	27.61	59.55	49.55	-22.68	-21.94
4	1.63577	0.14	28.70	21.18	28.84	21.32	56.00	46.00	-27.16	-24.68
5	10.43330	0.53	26.95	22.46	27.48	22.99	60.00	50.00	-32.52	-27.01
6	27.98529	1.28	25.38	20.82	26.66	22.10	60.00	50.00	-33.34	-27.90

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

PHASE	Line 2	6dB BANDWIDTH	9kHz
-------	--------	---------------	------

No	Freq.	Corr. Factor	Reading Value		Emission Level		Limit		Margin	
			[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	0.05	57.23	43.39	57.28	43.44	66.00	56.00	-8.72	-12.56
2	0.17737	0.05	53.41	41.20	53.46	41.25	64.61	54.61	-11.15	-13.36
3	0.26346	0.06	38.90	24.02	38.96	24.08	61.32	51.32	-22.37	-27.25
4	1.13923	0.10	25.61	17.68	25.71	17.78	56.00	46.00	-30.29	-28.22
5	10.78129	0.48	27.76	23.30	28.24	23.78	60.00	50.00	-31.76	-26.22
6	27.59820	1.08	23.45	18.65	24.53	19.73	60.00	50.00	-35.47	-30.27

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.3 6dB BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF 6dB BANDWIDTH MEASUREMENT

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 TEST SETUP

4.3.3 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

4.3.4 TEST PROCEDURE

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.3.5 DEVIATION FROM TEST STANDARD

No deviation.

4.3.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

Report No.: RF140624C24 36 of 58 Report Format Version 5.2.1

4.3.7 TEST RESULTS

802.11b

CHANNEL	FREQUENCY	6dB BANDWIDTH (MHz)		MINIMUM	DACC / FAII
CHANNEL	(MHz)	CHAIN 0	CHAIN 1	LIMIT (MHz)	PASS / FAIL
1	2412	9.59	9.59	0.5	PASS
6	2437	9.58	10.03	0.5	PASS
11	2462	10.00	9.60	0.5	PASS

802.11g

CHANNEL	FREQUENCY	6dB BANDWIDTH (MHz)		MINIMUM	DACC / FAII
CHANNEL	(MHz)	CHAIN 0	CHAIN 1	LIMIT (MHz)	PASS / FAIL
1	2412	16.42	16.42	0.5	PASS
6	2437	16.39	16.40	0.5	PASS
11	2462	16.40	16.42	0.5	PASS

802.11n (20MHz)

CHANNEL	FREQUENCY	6dB BANDWIDTH (MHz)		MINIMUM	PASS / FAIL
CHANNEL	(MHz)	CHAIN 0	CHAIN 1	LIMIT (MHz)	PASS / FAIL
1	2412	17.64	17.62	0.5	PASS
6	2437	17.63	17.61	0.5	PASS
11	2462	17.62	17.62	0.5	PASS

CHANNEL	FREQUENCY	6dB BANDV	VIDTH (MHz)	MINIMUM	DACC / FAII
CHANNEL	(MHz)	CHAIN 0	CHAIN 1	LIMIT (MHz)	PASS / FAIL
3	2422	35.56	35.58	0.5	PASS
6	2437	35.43	35.42	0.5	PASS
9	2452	35.74	35.43	0.5	PASS

4.4 CONDUCTED OUTPUT POWER

4.4.1 LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

Per KDB 662911 D01 Multiple Transmitter Output v02r01 Method of conducted output power measurement on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for NANT ≤ 4;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any NANT;

Array Gain = 5 log(NANT/NSS) dB or 3 dB, whichever is less for 20-MHz channel widths with NANT ≥ 5.

For power measurements on all other devices: Array Gain = 10 log(NANT/NSS) dB.

4.4.2 TEST SETUP

4.4.3 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

4.4.4 TEST PROCEDURES

A peak / average power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak / average power sensor. Record the power level.

Report No.: RF140624C24 39 of 58 Report Format Version 5.2.1

	7828 A D T
4.4.5 DEVIATION FROM TEST STANDARD	
No deviation.	
4.4.6 EUT OPERATING CONDITIONS	
Same as Item 4.3.6.	

Report No.: RF140624C24 40 of 58 Report Format Version 5.2.1

4.4.7 TEST RESULTS

FOR PEAK POWER

802.11b

CHAN.	FREQ.	PEAK POV	VER (dBm)	TOTAL	TOTAL	LIMIT	PASS /	
CHAN.	(MHz)	CHAIN 0	CHAIN 1	POWER POWER (dBm)		(dBm)	FAIL	
1	2412	16.65	16.53	91.216	19.60	30	PASS	
6	2437	17.53	17.60	114.168	20.58	30	PASS	
11	2462	14.15	14.16	52.064	17.17	30	PASS	

802.11g

CHAN.	FREQ.	PEAK POV	VER (dBm)	TOTAL	TOTAL	LIMIT	PASS/	
CHAN.	(MHz)	CHAIN 0	CHAIN 1	POWER (mW)	POWER (dBm)	(dBm)	FAIL	
1	2412	23.40	23.98	468.811	26.71	30	PASS	
6	2437	21.74	21.86	302.741	24.81	30	PASS	
11	2462	23.29	24.01	465.072	26.68	30	PASS	

802.11n (20MHz)

CHAN.	FREQ.	PEAK POV	VER (dBm)	TOTAL POWER	TOTAL POWER	LIMIT	PASS /
CHAN.	(MHz)	CHAIN 0	CHAIN 1	(mW)	(dBm)	(dBm)	FAIL PASS
1	2412	22.22	22.46	342.923	25.35	30	PASS
6	2437	22.57	23.12	385.833	25.86	30	PASS
11	2462	22.97	21.99	356.278	25.52	30	PASS

CHAN.	FREQ.	PEAK POV	VER (dBm)	TOTAL POWER	TOTAL POWER	LIMIT	PASS /	
CHAN.	(MHz)	CHAIN 0	CHAIN 1	(mW)	(dBm)	(dBm)	FAIL	
3	2422	21.46	20.40	249.607	23.97	30	PASS	
6	2437	23.22	23.71	444.857	26.48	30	PASS	
9	2452	21.13	20.70	247.208	23.93	30	PASS	

FOR AVERAGE POWER

802.11b

CHAN.	FREQUENCY	AVG. POWER (dBm)		TOTAL POWER	TOTAL POWER
CHAN.	(MHz)	CHAIN 0	CHAIN 1	(mW)	(dBm)
1	2412	14.48	14.61	56.961	17.56
6	2437	15.47	15.40	69.911	18.45
11	2462	12.85	12.21	35.909	15.55

802.11g

FREQUENC		AVG. POW	/ER (dBm)	TOTAL POWER	TOTAL	
CHAN.	(MHz)	CHAIN 0	CHAIN 1	(mW)	POWER (dBm)	
1	2412	15.80	15.35	72.296	18.59	
6	2437	15.84	15.25	71.868	18.57	
11	2462	15.73	15.26	70.985	18.51	

802.11n (20MHz)

CHAN	FREQUENCY	AVG. POW	/ER (dBm)	TOTAL POWER	TOTAL POWER	
CHAN.	(MHz)	CHAIN 0	CHAIN 1	(mW)	(dBm)	
1	2412	13.02	13.86	44.367	16.47	
6	2437	14.75	15.66	66.667	18.24	
11	2462	14.63	14.30	55.955	17.48	

CHAN	FREQUENCY	AVG. POW	/ER (dBm)	TOTAL	TOTAL POWER (dBm)	
CHAN.	(MHz)	CHAIN 0	CHAIN 1	POWER (mW)		
3	2422	12.36	11.74	32.147	15.07	
6	2437	15.70	15.42	71.988	18.57	
9	2452	12.67	12.60	36.690	15.65	

4.5 POWER SPECTRAL DENSITY MEASUREMENT

4.5.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

The Maximum of Power Spectral Density Measurement is 8dBm.

4.5.2 TEST SETUP

4.5.3 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

4.5.4 TEST PROCEDURE

- a. Set the RBW = 3 kHz, VBW =10 kHz, Detector = peak.
- b. Sweep time = auto couple, Trace mode = max hold, allow trace to fully stabilize.
- c. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

4.5.5 DEVIATION FROM TEST STANDARD

No deviation.

4.5.6 EUT OPERATING CONDITION

Same as Item 4.3.6

4.5.7 TEST RESULTS

802.11b

TX chain	Channel	Freq. (MHz)	PSD (dBm/3kHz)	10 log (N=2) dB	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	PASS /FAIL
	1	2412	-8.97	3.01	-5.96	6.99	PASS
0	6	2437	-9.32	3.01	-6.31	6.99	PASS
	11	2462	-12.45	3.01	-9.44	6.99	PASS
	1	2412	-10.65	3.01	-7.64	6.99	PASS
1	6	2437	-9.45	3.01	-6.44	6.99	PASS
	11	2462	-12.00	3.01	-8.99	6.99	PASS

NOTE: Directional gain = 4dBi + 10log(2) = 7.01dBi > 6dBi , so the power density limit shall be reduced to 8-(7.01-6) = 6.99dBm.

802.11g

TX chain	Channel	Freq. (MHz)	PSD (dBm/3kHz)	10 log (N=2) dB	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	PASS /FAIL
	1	2412	-12.66	3.01	-9.65	6.99	PASS
0	6	2437	-10.88	3.01	-7.87	6.99	PASS
	11	2462	-10.53	3.01	-7.52	6.99	PASS
	1	2412	-13.04	3.01	-10.03	6.99	PASS
1	6	2437	-12.02	3.01	-9.01	6.99	PASS
	11	2462	-12.95	3.01	-9.94	6.99	PASS

NOTE: Directional gain = 4dBi + 10log(2) = 7.01dBi > 6dBi , so the power density limit shall be reduced to 8-(7.01-6) = 6.99dBm.

802.11n (20MHz)

TX chain	Channel	Freq. (MHz)	PSD (dBm/3kHz)	10 log (N=2) dB	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	PASS /FAIL
	1	2412	-13.22	3.01	-10.21	6.99	PASS
0	6	2437	-11.16	3.01	-8.15	6.99	PASS
	11	2462	-12.07	3.01	-9.06	6.99	PASS
	1	2412	-15.23	3.01	-12.22	6.99	PASS
1	6	2437	-12.42	3.01	-9.41	6.99	PASS
	11	2462	-12.56	3.01	-9.55	6.99	PASS

NOTE: Directional gain = 4dBi + 10log(2) = 7.01dBi > 6dBi , so the power density limit shall be reduced to 8-(7.01-6) = 6.99dBm.

802.11n (40MHz)

TX chain	Channel	Freq. (MHz)	PSD (dBm/3kHz)	10 log (N=2) dB	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	PASS /FAIL
	3	2422	-19.45	3.01	-16.44	6.99	PASS
0	6	2437	-12.51	3.01	-9.50	6.99	PASS
	9	2452	-17.95	3.01	-14.94	6.99	PASS
	3	2422	-20.01	3.01	-17.00	6.99	PASS
1	6	2437	-15.77	3.01	-12.76	6.99	PASS
	9	2452	-18.64	3.01	-15.63	6.99	PASS

NOTE: Directional gain = 4dBi + 10log(2) = 7.01dBi > 6dBi , so the power density limit shall be reduced to 8-(7.01-6) = 6.99dBm.

4.6 CONDUCTED OUT OF BAND EMISSION MEASUREMENT

4.6.1 LIMITS OF CONDUCTED OUT OF BAND EMISSION MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 TEST SETUP

4.6.3 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

Report No.: RF140624C24 46 of 58 Report Format Version 5.2.1

4.6.4 TEST PROCEDURE

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.6.5 DEVIATION FROM TEST STANDARD

No deviation.

4.6.6 EUT OPERATING CONDITION

Same as Item 4.3.6

4.6.7 TEST RESULTS

The conducted emission test is performed on each TX port of operating mode without summing or adding 10log (N) since the limit is relative emission limit.

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

802.11b

802.11g

5. PHOTOGRAPHS OF THE TEST CONFIGURATION
Please refer to the attached file (Test Setup Photo).

Report No.: RF140624C24 56 of 58 Report Format Version 5.2.1

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:Hsin Chu EMC/RF Lab:Tel: 886-2-26052180Tel: 886-3-5935343Fax: 886-2-26051924Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

Report No.: RF140624C24 57 of 58 Report Format Version 5.2.1

7. APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END---