

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2019-1

[Cod: CM334 Curso: Análisis Numérico I]

[Prof: L. Paredes.]

Solucionario del Examen Final

1a Sea $f:\mathbb{Z} \to \mathbb{R}$ una función de números de diagonales definida por:

$$f(n) = an^2 + bn + c, \ a \neq 0.$$

Sabemos que:

Nro diagonales
$$= rac{n(n+1)}{3}, \ n \geq 3.$$

Evaluando:

n = 3: 0 = 9a + 3b + c

n = 4: 2 = 16a + 4b + 6

n = 5: 5 = 25a + 5b + c

El sistema es:

$$\left[\begin{array}{ccc} 9 & 3 & 1 \\ 16 & 4 & 1 \\ 25 & 5 & 1 \end{array}\right] \left[\begin{array}{c} a \\ b \\ c \end{array}\right] = \left[\begin{array}{c} 0 \\ 2 \\ 5 \end{array}\right]$$

1b Por el método de Househoder, se tiene: s = 31.016125 y $w = \left[\begin{array}{c} 0.8031723 \\ 0.3211395 \\ 0.5017804 \end{array} \right]$

$$R1 = \begin{bmatrix} -31.016125 & -6.9641195 & -1.6120647 \\ 0 & 0.0159582 & -0.0444049 \\ 0 & -1.2250652 & -0.6318826 \end{bmatrix} y b1 = -0.0239324$$

$$1.8375979$$

y la matriz $\boldsymbol{Q1}$ es:

Luego
$$s = 1.2251692$$
 y $w = \begin{bmatrix} 0 \\ 0.711697 \\ -0.7024865 \end{bmatrix}$

$$R2 = \left[\begin{array}{cccc} -31.016125 & -6.9641195 & -1.6120647 \\ 0 & -1.2251691 & -0.6312506 \\ 0 & 0 & -0.0526316 \end{array} \right] \text{y } b1 = \begin{array}{c} -5.0618832 \\ 1.8377537 \\ 0 \end{array}$$

y la matriz
 $\boldsymbol{Q2}$ es:

$$\left[\begin{array}{cccc} 1 & 0 & 0 \\ 0 & -0.0130253 & 0.9999151 \\ 0 & 0.9999151 & 0.0130253 \end{array}\right]$$

Finalmente

$$x = \left[\begin{array}{c} 0.5 \\ -1.5 \\ 0 \end{array} \right] \Box$$

1c Por el método de Gauss-Sidel, se tiene:

$$G = \left[\begin{array}{ccc} 0 & -0.3333333 & -0.11111111 \\ 0 & 1.3333333 & 0.1944444 \\ 0 & 1.6666667 & 1.8055556 \end{array} \right] \text{ y c} = \left[\begin{array}{c} 0 \\ 0.5 \\ 2.5 \end{array} \right.$$

El método no converge porque ho(G)=2.1857419>1, la tabla es

k	x_k	y_k	z_k	
0	0	0	0	
1	0	0.5	2.5	
2	-0.444444	1.6527778	7.8472222	
3	-1.4228395	4.2295525	19.423225	
4	-3.567987	9.9161415	44.618966	
5	-8.2630435	22.397432	99.588925	
	:			

2
a Sean $\boldsymbol{x},\,\boldsymbol{y}$: los lados del rectángulo. Donde:

2b Sea

$$J(x,y) = \left[egin{array}{cc} y & x \ 2x & 2y \end{array}
ight]$$

Luego

$$\begin{bmatrix} \frac{1}{y} & 0 \\ -\frac{2x}{y} & 1 \end{bmatrix} \begin{bmatrix} y & x \\ 2x & 2y \end{bmatrix} = \begin{bmatrix} 1 & \frac{x}{y} \\ 0 & \frac{2y^2 - 2x^2}{y} \end{bmatrix}$$

$$\left[\begin{array}{ccc} 1 & -\frac{x}{2y^2 - 2x^2} \\ 0 & \frac{y}{2y^2 - 2x^2} \end{array}\right] \left[\begin{array}{ccc} 1 & -\frac{x}{y} \\ & & \\ 0 & \frac{2y^2 - 2x^2}{y} \end{array}\right] = \left[\begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

Donde:

$$J(x,y)^{-1} = \begin{bmatrix} 1 & -\frac{x}{2y^2 - 2x^2} \\ 0 & \frac{y}{2y^2 - 2x^2} \end{bmatrix} \begin{bmatrix} \frac{1}{y} & 0 \\ -\frac{2x}{y} & 1 \end{bmatrix} = \frac{1}{y^2 - x^2} \begin{bmatrix} y & -\frac{x}{2} \\ -x & \frac{y}{2} \end{bmatrix} \square$$

2c Por el método de SOR:

$$x_{k+1} = x_k - \left(\frac{1-w}{w}D_k + L_k\right)^{-1}f(x_k)$$

Simplificando se tiene:

$$\left[\begin{array}{c} x_k - \frac{w}{(1-w)} \frac{x_k y_k - 12}{y_k} \\ y_{k+1} \end{array}\right] = \left[\begin{array}{c} x_k - \frac{w}{(1-w)} \frac{x_k y_k - 12}{y_k} \\ \\ y_k - \frac{w^2}{(1-w)^2} \frac{x_k}{y_k^2} (x_k y_k - 12) + \frac{w}{2(1-w)} \frac{x_k^2 + y_k^2 - 25}{y_k} \end{array}\right]$$

La tabla con w = 0.14 es:

k	x_k	y_k
0	1	1
1	2.7906976744186	-0.5805840995133
2	-1.028296870147	4.77352132269431
3	-0.45166546493	4.73358694506283
4	0.03454817049719	4.68495242357119
5	0.44589485229589	4.6324557185267
	•	
31	2.89804628661445	4.07432604696125

La solución es $x = [2.89804628661445 \ 4.07432604696125]^T$. \Box

3a Sean

r Trabajadores técnico superior

y Trabajadores obreros especializados

z Trabajadores obreros no especializados

Donde:

$$x^{k+1} = \left[\begin{array}{cccc} 0.50 & 0.30 & 0.50 \\ 0.25 & 0.40 & 0.25 \\ 0.25 & 0.30 & 0.25 \end{array} \right] x^k$$

Con

$$x^{(0)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

3b Por el método de potencia se tiene, la tabla es:

k	$y1_k$	$y2_k$	$y3_k$	$\lambda_1(k)$	$x1_k$	$x2_k$	$x3_k$	Error
0					1	1	1	
1	1.3	0.9	0.8	1.3	1	0.6923077	0.6153846	
2	1.0153846	0.6807692	0.6115385	1.0153846	1	0.6704545	0.6022727	
3	1.0022727	0.6687500	0.6017045	1.0022727	1	0.6672336	0.6003401	
4	1.0003401	0.6669785	0.6002551	1.0003401	1	0.6667517	0.6000051	
5	1.0000510	0.6667134	0.6000383	1.0000510	1	0.6666794	0.6000077	
	:							
9	1.0000000	0.6666667	0.6000000	1.0000000	1	0.6666667	0.6000000	

La solución del valor y vector propios son $\lambda_1 = 1$ y $x_1 = \begin{bmatrix} 1 & 0.66666667 & 0.6 \end{bmatrix}^T$.

Por el método de potencia inversa desplazado con $\overline{\lambda}=-0.1$, se tiene la tabla siguiente:

k	$y1_k$	$y2_k$	$y3_k$	$\lambda_3(k)$	$x1_k$	$x2_k$	$x3_k$	Error
0	3-K	3-k	3 - K	1.3(1.)	1	1	1	
1	-1.0909091	1.2727273	2.5454545	2.5454545	-0.4285714	0.5000000	1.0000000	1.4285714
2	-7.1038961	1.0259740	7.0519481	-7.1038961	1.0000000	-0.1444241	-0.9926874	1.9926874
3	9.7171348	-0.4530497	-9.3887319	9.7171348	1.0000000	-0.0466238	-0.9662037	0.0978003
4	9.7086394	-0.1748338	-9.5454670	9.7086394	1.0000000	-0.0180081	-0.9831931	0.0286157
5	9.8635791	-0.0709403	-9.7937307	9.8635791	1.0000000	-0.0071921	-0.9929186	0.0108159
- 3	9.8033791	-0.0709403	-9.7937307	9.8033791	1.0000000	-0.0071921	-0.9929180	0.0108139
	:							
10		0.0000454	0.00005550	0.0000050	1 0000000	0.000004#	0.0000050	0.0000071
13	:	-0.0000474	-9.9998579	9.9999053	1.0000000	-0.0000047		-0.9999953

Donde el valor y vector propios son $\lambda_3 = 0.0000009$ y $x_3 = [1 \ -0.0000047 \ -0.9999953]^T$.

Por el método de potencia inversa desplazado con $\overline{\lambda}=0.25,$ se tiene la tabla siguiente:

k	$y1_k$	$y2_k$	$y3_k$	$\lambda_3(k)$	$x1_k$	$x2_k$	$x3_k$	Error
0					1	1	1	
1	4.0000000	0.00000000	0.0000000	4.0000000	1.00000000	0.0000000	0.0000000	1.0000000
2	-4.0000000	3.3333333	-0.5000000	-4.0000000	1.0000000	-0.8333333	-0.5000000	0.8333333
3	-10.6666670	7.222222	3.0000000	-10.6666670	1.0000000	-0.6770833	-0.2812500	0.2187500
4	-9.4166667	6.9097222	2.5625000	-9.4166667	1.0000000	-0.7337758	-0.2721239	0.0566925
5	-9.8702065	7.3180924	2.5442478	-9.8702065	1.0000000	-0.7494793	-0.2505226	0.0143534
	:							
13	-9.9998931	7.4998663	2.5000267	-9.9998931	1.0000000	-0.7499947	-0.2500053	0.0000080

 $\text{Donde el valor y vector propios son } \lambda_2 = \frac{1}{-9.9998931} + 0.25 = 0.149998931 \text{ y } \mathbf{z}_2 = [1 \ -0.7499947 \ -0.2500053]^T.$

Siendo la proporción de la población sanos y enfermos de 1 a 2.

4a Sea un modelo de la forma $\varphi(x) = a + bx$, con a y b constantes a determinar. El objetivo es minimizar la función siguiente:

$$f(a,b) = \sum_{i=1}^{N} (y_i - a - bx_i)^2.$$

Donde

$$M = \begin{bmatrix} 1 & 176 \\ 1 & 168 \\ 1 & 202 \\ 1 & 138 \\ 1 & 213 \\ 1 & 159 \\ 1 & 193 \\ 1 & 122 \\ 1 & 185 \\ 1 & 153 \end{bmatrix}$$

con

$$M^{T}M\begin{bmatrix} a \\ b \end{bmatrix} = M^{T}\begin{bmatrix} 448 \\ 556 \\ 844 \\ 427 \end{bmatrix}$$

$$M^{T}M\begin{bmatrix} a \\ b \end{bmatrix} = M^{T}\begin{bmatrix} 811 \\ 398 \\ 447 \\ 154 \\ 534 \\ 212 \end{bmatrix}$$

El sistema es:

$$10a + 1709b = 4932$$

 $1709a + 299465b = 889433$

4b Usando el método LU.

Donda

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} L = \begin{bmatrix} 1 & 0 \\ 0.0058514 & 1 \end{bmatrix} U = \begin{bmatrix} 1709 & 299465 \\ 0 & -43.282036 \end{bmatrix}$$
$$y = \begin{bmatrix} 889433 \\ -272.40609 \end{bmatrix} x = \begin{bmatrix} -582.40097 \\ 6.2937447 \end{bmatrix} \Box$$

4c La gráfica es:

08 de Julio del 2019