Statistical Machine Translation LING-462/COSC-482 Week 13:

Integrating MT in other NLP applications
Speech-to-speech translation

Achim Ruopp

achim.ruopp@georgetown.edu

Agenda

- Language in ten minutes: Greek Meng Han
- Integrating MT in other NLP applications
- Break -
- Speech-to-speech translation

MT Use Case: Dissemination

- High-quality, locale appropriate translations
 - Not possible without humans in the loop
 - Covered in last lecture: process, post-editing, interactive translation prediction
- Less important, time-sensitive, cheaper "good enough" translations for
 - User-generated content
 - Reviews
 - Product listings on market places
 - ...
 - Support documentation
 - Live subtitling

— ...

Figure 2: Search Result Page for the search term "платье", showing a Russian user's results with automatic translation into Russian. Original text can be seen, when hovering with the mouse over the translation. Also, the user is able to provide feedback to the MT system, allowing to incorporate this feedback to improve machine translation quality.

- Search query translation
 - Short phrases that need to be optimized for search engine
 - Russian query "сумки из натуральной кожи" can be translated to
 - "bags of genuine leather" 160 search results
 - "genuine leather bags" 47,000 search results
 - Brand names do not translate
 - "GAP" ambiguity in English
 - "REI" means "king" in Portuguese

- Topic titles
 - Example: "new men's white jekyll & hyde jeans winston designer regular fit shirt size s-xxl"
 - Topic adaptation
- Topic descriptions
 - Also require domain-adapted engine, but different from topic translation engine

MT Use Case: Assimilation

- Closely related to dissemination in some cases
 - E.g. Facebook shifted from on-demand translation of foreign-language posts ("Translate" link), i.e. assimilation to automatically translating posts to the native language of the user, i.e. dissemination
 - Pull (Assimilation) vs. Push (Dissemination)
 - Makes a big difference on needed machine resources

MT Use Case: Cross-lingual Information Retrieval (CLIR)

- Cross-language or cross-lingual IR
- "retrieving information written in a language different from the language of the user's query" – Wikipedia
- Machine translation
 - Translate the material to be searched
 - Translate the search query
 - Need to translate discovered data for gisting/other use afterwards

MT Use Case: Cross-lingual Information Retrieval (CLIR)

- MT not the only way
 - Parallel corpora-based methods
 - Dictionary-based methods
- CLEF Campaigns
 - Cross-Language Education and Function, now Conference and Labs of the Evaluation Forum
 - http://www.clef-initiative.eu/
 - Earlier: http://www.clef-campaign.org/
 - Until 1999 a track of the TREC conference (text retrieval and evaluation conference)
- Again different metrics! Precision/recall

MT Use Case: Cross-lingual Information Retrieval (CLIR)

CLIR classification by use

- Information retrieval
- (Media) monitoring
- Information filtering and routing
- Sentiment analysis
- Information extraction
- Question answering

CLIR classification by material

- Ecommerce listings (see above)
- eDiscovery
 - Discovery of relevant documents for lawsuits or other legal cases
 - Iconic Translation Machines
- Intelligence
 - Web/News/secret stuff
 - Multiple ongoing DARPA programs: DEFT, LORELEI,
 BOIT

MT Use Case: Internet is becoming more multilingual

Top Ten Languages Used in the Web - December 31, 2017

(Number of Internet Users by Language)

, , , , , , , , , , , , , , , , , , , ,					
TOP TEN LANGUAGES IN THE INTERNET	World Population for this Language (2018 Estimate)	Internet Users by Language	Internet Penetration (% Population)	Internet Users Growth (2000 - 2018)	Internet Users % of World Total (Participation)
English	1,462,008,909	1,052,764,386	72.0 %	647.9 %	25.3 %
<u>Chinese</u>	1,452,593,223	804,634,814	55.4 %	2,390.9 %	19.4 %
<u>Spanish</u>	515,759,912	337,892,295	65.5 %	1,758.5 %	8.1 %
<u>Arabic</u>	435,636,462	219,041,264	50.3 %	8,616.0 %	5.3 %
<u>Portuguese</u>	286,455,543	169,157,589	59.1 %	2,132.8 %	4.1 %
Indonesian / Malaysian	299,271,514	168,755,091	56.4 %	2,845.1 %	4.1 %
<u>French</u>	127,185,332	118,626,672	93.3 %	152.0 %	2.9 %
<u>Japanese</u>	143,964,709	109,552,842	76.1 %	3,434.0 %	2.7 %
Russian	405,644,599	108,014,564	26.6 %	800.2 %	2.8 %
<u>German</u>	94,943,848	84,700,419	89.2 %	207.8 %	2.2 %
TOP 10 LANGUAGES	5,135,270,101	3,206,613,856	62.4 %	1,091 %	77.1 %
Rest of the Languages	2,499,488,327	950,318,284	38.0 %	935 %	22.9 %
WORLD TOTAL	7,634,758,428	4,156,932,140	54.4 %	1,051 %	100.0 %

Neural Conversational Model

- Machine: hi , this is <NAME> from helpdesk connect , what can i help you with today ?
- Human: hi , i forgot my password
- Machine: ok great
- **Human:** can you tell me how i can recover it?
- **Machine:** *i'll need to verify who it is at that*
- machine
- Machine: can we do a hangout
- ...

Context-Aware Query Suggestion with Encoder-Decoder Model

MT Use Case: Conversational MT

- Can be extended to include MT
- Unbabel is providing this commercially for support conversations

References

- Jyoti Guha, Carmen Heger; Machine
 Translation for Global eCommerce on eBay;
 2014, Proceedings of the Conference of the
 Association for Machine Translation in the
 Americas (AMTA), Vancouver
- Prashant Mathur, Marcello Federico, Selçuk Köprü, Shahram Khadivi and Hassan Sawaf;
 Topic adaptation for machine translation of ecommerce content; 2015, MT Summit XV, pp. 270-282

References

- Oriol Vinals and Quoc V. Le; A Neural Conversational Model; 2015, arXiv
- Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob G. Simonsen, Jian-Yun Nie; A Hierarchical Recurrent Encoder-Decoder For Generative Context-Aware Query Suggestion; 2015, arXiv

Spoken Language Translation

Alexandra Birch

School of Informatics University of Edinburgh

Universal translator

Science fiction

Industry adoption

2007 IBM's speech-speech translator for Iraq

@ 2011 IBM Corporation

limited domains

Industry adoption

open domain - more language pairs

Industry adoption

massive reach - uncertain quality

Research History

Project	Timespan	Description	
C-STAR	1992-2004	One/Two-way Limited domain spontaneous speech	
VERBMOBIL	1993-2000	One-way Limited domain conversational speech	
DARPA BABYLON	2001-2003	Two-way Limited domain spontaneous speech; Laptop/Handheld	
DARPA TRANSTAC	2005-2010	Two-way small domain spontaneous dialog; Mobile/Smartphone;	
TC-STAR	2004-2007	One-way; Broadcast speech, political speech; Server-based	
DARPA GALE	2006-2011	One-way Broadcast speech, conversational speech; Server-based	
DARPA BOLT	2011-	One/two-way Conversational speech; Server-based	

from Zhou and He ICASSP 2013

Research History

Example Based Interlingua

Statistical Methods

Limited domain ------ Broad domain

tourism, security

large vocabulary

Formal ——— Conversational

Where is the train station please?

Catch you later!

Desktop — Mobile/Cloud

NIVER OF A CONTROL OF A CONTROL

Current Success

- Statistical models
- Large amounts of training data
- Discriminative training
- Better models (DNN for ASR)

NIVERONAL CONTRACTOR OF THE PROPERTY OF THE PR

Overview

- Spoken Language Translation
 - ◆ Background
 - Challenges and opportunities
 - Demos
- Experiments in SLT

THE HEAVIEST TRAIN IS GOING TO FALL IN A MY MANCHESTER AND THE SURROUNDING AREA

Challenges: accents, articulation, pronunciation, speed, recording quality, background noise

$$\mathbf{f}_{\mathsf{best}} = \mathsf{argmax}_{\mathsf{f}} p(\mathbf{x}|\mathbf{f}) p(\mathbf{f})$$

ASR process

Word Sequence

Phoneme Sequence

Tri-phone Sequence

HMM-based Tri-phone Model

Spectrum Observation Sequence

Speech Signal

CAN WE MEET

K AE N W IY M IY T

+ pronunciation dictionary

+ LM

Word Error Rate

$$WER = \frac{S + D + I}{N}$$

- S is the number of substitutions,
- D is the number of deletions,
- I is the number of insertions and
- N is the number of words in the reference

Much easier to evaluate ASR than MT!

Spoken Language Translation

- Input: a source speech signal sequence
- * ASR: recognises set of source words
- + SMT: translates into target words

$$egin{aligned} \mathbf{x_I^T} &= \mathbf{x_I}, \dots, \mathbf{x_T} \\ \mathbf{f_I^J} &= \mathbf{f_I}, \dots, \mathbf{f_J} \\ \mathbf{e_I^I} &= \mathbf{e_I}, \dots, \mathbf{e_I} \end{aligned}$$

ASR vs SMT

• Similar: sequential pattern recognition

$$\mathsf{ASR} \colon \ \mathbf{x}_{\mathsf{I}}^{\mathsf{T}} \longrightarrow \mathbf{f}_{\mathsf{I}}^{\mathsf{J}}$$

$$\mathsf{MT:} \quad \mathbf{f}_\mathsf{I}^\mathbf{J} \longrightarrow \mathbf{e}_\mathsf{I}^\mathbf{I}$$

- Original IBM SMT models 1990 based on ASR
- Different: ASR is monotonic but SMT is not
 - Implications for modelling and decoding

SLT Challenges

ASR introduces errors

Verbatim Speech:

... RAIN IS GOING TO FALL IN ER MANCHESTER ...

ASR output:

... TRAIN IS GOING TO FALL IN A MY MANCHESTER ...

SLT Challenges

Lack of case leads to ambiguities

ASR output:

GEORGE BUSH IS VISITING NEW ORLEANS

Normal text:

George Bush is visiting New Orleans

SLT Challenges

Lack of punctuation

ASR:

HE SAID YOU ARE NOT WELCOME

Normal text:

He said "You are not welcome?"

Disfluencies and Restarts and repairs

Verbatim Speech:

I beg your pardon, but at the beginning of these uh human rights debates

I uh should have pointed out to im- uh important human rights uh defenders from Misses uh Estemirowa

from Chechnya and another from Russia are here

they came along to visit uh group eh uh, uh they weren't here at the time at the beginning uh uh when we began the debate,

but

they've uh come they've just come in now .

Official transcript:

I beg your pardon, but at the beginning of these human rights debates, I should have pointed out that two important human rights defenders are here, Mrs Estemirowa, from Chechnya, and Mr Lokshina, from Russia.

They were not here at the beginning when we began the debate, but they have just come in now.

Disfluencies and Restarts and repairs

Verbatim Speech:

I beg your pardon, but at the beginning of these uh human rights debates I uh should have pointed out to im- uh important human rights uh defenders from Misses uh Estemirowa from Chechnya and another from Russia are here they came along to visit uh group eh uh, uh they weren't here at the time at the beginning uh uh when we began the debate, but they've uh come they've just come in now .

Official transcript:

I beg your pardon, but at the beginning of these human rights debates, I should have pointed out that two important human rights defenders are here, Mrs Estemirowa, from Chechnya, and Mr Lokshina, from Russia.

They were not here at the beginning when we began the debate, but they have just come in now.

Disfluencies and Restarts and repairs

Verbatim Speech:

I beg your pardon, but at the beginning of these uh human rights debates I uh should have pointed out to im- uh important human rights uh defenders from Misses uh Estemirowa from Chechnya and another from Russia are here they came along to visit uh group eh uh, uh they weren't here at the time at the beginning uh uh when we began the debate, but they've uh come they've just come in now .

Official transcript:

I beg your pardon, but at the beginning of these human rights debates, I should have pointed out that two important human rights defenders are here, Mrs Estemirowa, from Chechnya, and Mr Lokshina, from Russia.

They were not here at the beginning when we began the debate, but they have just come in now.

Disfluencies and Restarts and repairs

Verbatim Speech:

I beg your pardon, but at the beginning of these uh human rights debates

I uh should have pointed out to im- uh important human rights uh defenders from Misses uh Estemirowa

from Chechnya and another from Russia are here

they came along to visit uh group eh uh, uh they weren't here at the time at the beginning

uh uh when we began the debate, but

they've uh come they've just come in now .

Official transcript:

I beg your pardon, but at the beginning of these human rights debates, I should have pointed out that two important human rights defenders are here, Mrs Estemirowa, from Chechnya, and Mr Lokshina, from Russia.

They were not here at the beginning when we began the debate, but they have just come in now

WIVERS CONTRACTOR OF STREET OF STREE

Challenges

Segmentation

Human segmentation

- Je vais vous parler aujourd'hui de l'énergie et le climat.
- Et ça peut sembler un peu surprenant parce que mon travail à temps plein à la Fondation est principalement sur les vaccins et les graines sur les choses que nous avons besoin d'inventer et d'aider les plus pauvres, deux milliards de vivre une vie meilleure.
- Mais l'énergie et le climat sont extrêmement importantes pour ces gens, en fait, plus important que n'importe qui d'autre sur la planète.

Automatic segmentation

- Je vais vous parler aujourd'hui.
- L'énergie et le climat.
- Ça peut sembler un peu surprenant, parce
- Travail à temps plein à la Fondation.
- Est principalement sur les vaccins et les graines sur les choses que nous avons besoin d'inventer et livrer.
- Aider les plus pauvres deux milliards de dollars.
- Vivre une vie meilleure.
- Mais l'énergie et le climat sont extrêmement importantes pour ces gens, en fait.
- Plus important.
- À quelqu'un d'autre sur la planète.

23.87 BLEU

18.30 BLEU

Lack of data

• Large quantities of parallel written text:

Europarl: 48M words

Commoncrawl: 53M

For German-English

Small quantities of transcribed, parallel speech:

TED: 3M

OPUS subtitles: 31M - noisy

Variety of spoken language

Europarl:

I declare resumed the session of the European Parliament, adjourned on Friday 17 December 1999, and I would like once again to wish you a happy new year in the hope that you enjoyed a pleasant festive period.

TED:

It can be a very complicated thing, the ocean. And it can be a very complicated thing, what human health is.

OPUS subtitles:

```
Mewling quim!
It's no sea serpent.
Salamander?
Yes?
It's Fiks.
What's up?
I must return to Oslo.
```


Opportunities

- smaller vocabulary
- simpler, shorter sentences
- structured dialog

NIVERONAL DINBUTE

IWSLT

- Annual workshop on spoken language translation
- Running since 2003
- TED talks
- ASR, SLT, MT