Data Mining Application for CH-47D Aft Swashplate Bearing Fault Detection

Team Members:

Surya Selvaraj - 679003533

Akash Niruban Narayanan - 662268909

INTRODUCTION:

In October 2002, a swashplate bearing failed in the aft rotor head of a CH-47D during a ground run. The post-accident investigation determined that failure of the cage of the duplex ball bearing between the rotating and non-rotating swashplates caused the accident. For the incident, it is suspected that one end of the cage was displaced out from its position between the races and un-caged the balls, eventually resulting in a bearing failure. In the analysis, four faulted bearings were tested on a special test rig where vibration measurements were acquired at several simulated flight conditions and at a steady flight condition over a 24-hour run. The four chosen faulted bearings were: (a) corroded, (b) spalled, (c) popped (raised) cage, and (d) overlapped cage. The main goal of the project is to apply data mining approach to detect the bearing faults (separate one type of bearing from others) using the minimum number of features (inputs).

ALGORITHM OUTPUT:

K-NN Algorithm – CONSIDERING THE FULL DATA SET

Data Points (6 specimens) – 120

Of Features - 255

Data set partitioning (%) – 70 : 30 (Training : validation)

K = 10

MODEL ACCURACY = 100 %

We achieved a 100 % accuracy when the full data set were considered **using K-NN, Naïve Bayes** and **Logistic Regression.** We proceeded with the K-NN algorithm for our further analysis.

MODEL FITTING OUTPUT ON THE TEST DATA: RESULTS

We used K-NN algorithm with K=10 on the test data (**full Data set**) to get the following predictions.

UNKNOWN SPECIMENS	PREDICTED SPECIMENS
T1	S6
T2	S6
T3	S6
T4	S6
T5	S6
T6	S6
T7	S6
T8	S6
Т9	S6
T10	S6
T11	S5
T12	S5
T13	S5
T14	S5
T15	S5
T16	S5
T17	S5
T18	S5
T19	S5
T20	S5
T21	S4
T22	S4
T23	S4
T24	S4
T25	S4
T26	S4
T27	S4
T28	S4
T29	S4
T30	S4
T31	S3
T32	S3
T33	S3
T34	S3
T35	S3
T36	S3
T37	S3
T38	S3

S3
აა
\$3
S2
S1

SCREEN SHOT OF THE OUTPUT PAGE:

FEATURE SELECTION:

Main goal of feature selection is to select the main features out of initial 255 features and try to predict the unknown test specimens with the given 6 specimens with minimum # of features

Method used for feature selection – ExtraTreesClassifier (uses F-Test to show the features importance on the data set)

OF FEATURES SIGNIFICANT FROM THE ANALYSIS - 53

RANKING	SELECTED FEATURE	IMPORTANCE SCORE
1	49	0.04
2	111	0.04
3	135	0.04
4	147	0.04
5	61	0.031077
6	30	0.0238
7	153	0.0218
8	180	0.02135
9	60	0.02
10	55	0.02
11	1	0.02
12	254	0.02
13	52	0.02
14	208	0.02
15	178	0.02
16	65	0.02
17	53	0.02
18	71	0.02
19	73	0.02
20	22	0.02
21	203	0.02
22	90	0.02
23	117	0.02
24	121	0.02
25	235	0.02
26	122	0.02
27	218	0.02
28	106	0.02
29	172	0.02
30	168	0.02
31	138	0.02
32	86	0.02
33	174	0.02
34	129	0.02
35	249	0.019559

98	0.0195
87	0.018969
222	0.01853
14	0.0185
159	0.0185
130	0.0177
110	0.0162
242	0.0159
216	0.0102
228	0.0098
84	0.0097
185	0.0077
80	0.0052
85	0.0051
20	0.00357
81	0.00342
173	0.0019
184	0.00152
	87 222 14 159 130 110 242 216 228 84 185 80 85 20 81 173

Therefore, total number of features that are significant from the ExtraTreesClassifier (F-Test) is **53.**

ALGORITHM OUTPUT – (Only for the selected features)

K-NN Algorithm – CONSIDERING THE 53 SIGNIFICANT FEATURES

Data Points (6 specimens) – 120

Of Features – 53

Data set partitioning (%) – 70 : 30 (Training : validation)

K = 10

MODEL ACCURACY = 100 %

MODEL FITTING OUTPUT ON THE TEST DATA: RESULTS

We used K-NN algorithm with K=10 on the test data (**for selected features**) to get the following predictions.

UNKNOWN SPECIMENS	PREDICTED SPECIMENS (53 FEATURES CONSIDERED)
T1	S6
T2	S6
Т3	S4
T4	S4
T5	S6
T6	S4
T7	S6
Т8	S6
Т9	S4
T10	S6
T11	S5
T12	S5
T13	S5
T14	S5
T15	S5
T16	S5
T17	S5
T18	S5
T19	S3
T20	\$3
T21	S4
T22	S4
T23	S4
T24	S4
T25	S4
T26	S4
T27	S4
T28	S4
T29	S4
T30	S4
T31	S3
T32	\$3
T33	S3
T34	\$3
T35	S3
T36	S3
T37	S3

63
S3
S3
\$3
S2
S4
S1

SCREEN SHOT OF THE OUTPUT PAGE:

CONCLUSION:

- The raw data was fitted using three models KNN, Logistic Regression and Naive Bayes.
 The accuracy was 100%
- Since the accuracy of any predictive model cannot be 100% (Accuracy Paradox An accuracy of 100% is considered harmful), we resorted to Feature Selection by Feature Importance using ExtraTreesClassifier and RandomForestClassifier. It was observed to be difficult to identify an optimal number of estimators for the RandomForestClassifier (no change in accuracy); hence the choice of ExtraTreesClassifier over RandomForestClassifier
- After multiple runs, the feature importance was narrowed down to a range of 51-55. On an average, 53 features were found to be the most significant ones
- The data with only the most significant 53 features was fitted in the same three models It was found that **the results of KNN and Logistic Regression was quite similar** when compared to Naive Bayes. But the accuracy was still 100%
- However, the outputs of KNN and Logistic Regression can be considered as the most closest prediction since both the models gave similar output
- But an accuracy of 100% implies that the model was an overfit due to a smaller dataset
- Implementing neural networks for such a small dataset would not guarantee proper results. Neural networks work best on large data, so that we can identify the number of optimal layers for prediction. Since these models gave 100% accuracy, it clearly proves that the dataset is not really sufficient to make guaranteed predictions