8.4. Две линейки, собственная длина каждой из которых равна l_0 , движутся навстречу друг другу параллельно общей оси с релятивистскими скоростями. Наблюдатель, связанный с одной из них, зафиксировал, что между совпадениями левых и правых концов линеек прошло время τ . Какова относительная скорость линеек?

T.к. движущаяся линейка короче, сначала совпадают правые концы, при этом расстояние между левыми концами= $\triangle x$ и

 $\triangle x = v \cdot \tau,$ где v-относительная скорость; Тогда остальное арифметика:

$$\begin{split} l_0 - \triangle x &= l_0 - v \cdot \tau = l_0 \frac{1}{\gamma} \Rightarrow l_0 \sqrt{1 - \frac{v^2}{c^2}}; \\ l_0^2 (1 - \frac{v^2}{c^2}) &= l_0^2 - 2 l_0 v \tau + v^2 \tau^2 \Rightarrow - l_0^2 \frac{v^2}{c^2} = v^2 \tau^2 - 2 l_0 v \tau; \\ v^2 (\tau^2 + \frac{l_0^2}{c^2}) - v (2 l_0 \tau) &= 0 \Rightarrow v = \frac{2 l_0 \tau}{\tau^2 + \frac{l_0^2}{c^2}}; \\ v_{\text{отh}} &= \frac{2 l_0 c^2 \tau}{c^2 \tau^2 + l_0^2} \end{split}$$

8.79. Тонкий стержень пролетает с большой скоростью мимо метки, помещенной в лабораторной системе отсчета K. Известно, что промежуток времени прохождения концов стержня мимо метки составил $\Delta t=3$ нс в системе K и $\Delta t'=5$ нс в системе отсчета K', связанной со стержнем. Определить собственную длину стержня, т. е. длину в системе K'.

В К системе длина стержня l' короче чем в K' (l_0). Соотношение между ними: $l_0 = \gamma l'$;

Естественно время пролета в K системе ($\triangle t$) меньше чем в $K'(\triangle t')$, поэтому: $\triangle t' = \gamma \triangle t$;

Скорость движения $v=rac{l'}{\triangle t}=rac{l_0}{\gamma \triangle t}=rac{l_0}{\triangle t'};$ Откуда

$$\gamma = \frac{\triangle t'}{\triangle t} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{1}{\sqrt{1 - \left(\frac{l_0}{c\triangle t'}\right)^2}};$$
$$\left(\frac{\triangle t}{\triangle t'}\right)^2 = 1 - \left(\frac{l_0}{c\triangle t'}\right)^2;$$

$$l_0^2 = (\triangle t'^2 - \triangle t^2)c^2 = 16 \cdot 9 \cdot 10^2;$$

$$l_0 = 120$$
 cm;

8.30. Вслед космическому кораблю, удаляющемуся от Земли со скоростью $v=0.8\,c$, каждую секунду посылают сигналы точного времени. Какое время между поступлением двух сигналов будет проходить по корабельным часам?

Для определения промежутка времени на корабле ($\triangle t'$) надо рассчитать время прихода двух импульсов, учитывая увеличение расстояния до корабля.

1)

- ullet t_0 время излучения 1-го импульса;
- t_1 время приема 1-го импульса;
- ullet $l_1=c(t_1-t_0)$ место приема 1-го импульса;

2)

- ullet $t_0 + \triangle t$ время излучения 2-го импульса;
- t_2 время приема 2-го импульса;
- ullet $l_2 = l_1 + v \triangle t = c(t_2 t_0 \triangle t)$ место приема 2-го импульса;

Увеличение расстояния между двумя импульсами = $v \cdot \triangle t$ $l_2 - l_1 = c[(t_2 - t_0 - \triangle t) - (t_1 - t_0)] = v \cdot \triangle t \Rightarrow$

$$\triangle t' = t_2 - t_1 = (1 + \frac{v}{c}) \triangle t$$

Перейдем в систему ракеты. При этом интервал прихода импульсов на корабль по часам Земли $\triangle t'$ преобразуется в интервал по часам корабля:

$$\triangle t'\Rightarrow \triangle t'\sqrt{1-rac{v^2}{c^2}}=(1+rac{v}{c})\triangle t;$$
 Тогда

$$\triangle t' = \triangle t \frac{1 + \frac{v}{c}}{\sqrt{1 - \frac{v^2}{c^2}}} = \triangle t \sqrt{\frac{1 + \frac{v}{c}}{1 - \frac{v}{c}}};$$

Окончательно

8.77. Близнецы Петр и Павел расстались в тот день, когда им исполнилось по 21 году. Петр отправился в направлении оси x на 7 лет своего времени со скоростью 24/25 скорости света, после чего сменил скорость на обратную и за 7 лет вернулся назад, тогда как Павел оставался на Земле. Определить возраст близнецов в момент их встречи.

$$au = 2 \cdot 7 = 14$$
 лет - время полета Π_1 ;

 $t=\gamma au$ - время прошедшее у Π_2 ;

$$t = \frac{ au}{\sqrt{1 - rac{v^2}{c^2}}} = rac{14}{\sqrt{1 - \left(rac{24}{25}
ight)^2}} = 50$$
 лет;

$$\tau_1 = 21 + 14 = 35$$
 лет;

$$\tau_2 = 21 + 50 = 71$$
 год;