

Machine learning

Parametric Models
Part I: Maximum Likelihood and
Bayesian Density Estimation

Mohammad-Reza A. Dehaqani

dehaqani@ut.ac.ir

Introduction

- Bayesian Decision Theory shows us how to design an **optimal classifier** if we know the **prior probabilities** $P(\omega_i)$ and the **class-conditional densities** $p(x|\omega_i)$.
- Unfortunately, we rarely have complete knowledge of the probabilistic structure.
- However, we can often find design samples or training data that include <u>particular</u>
 <u>representatives of the patterns</u> we want to classify.

Introduction

- To **simplify** the problem, we can assume some **parametric form** for the conditional densities and **estimate** these parameters using training data.
- Then, we can **use** the resulting **estimates** as if they were the true values and **perform classification** using the Bayesian decision rule.
- We will consider only the supervised learning case where the true class label for each sample is known.

Maximum likelihood vs. Bayesian

- We will study two estimation procedures:
 - Maximum likelihood estimation
 - Views the parameters as quantities whose values are fixed but unknown.
 - Estimates these values by maximizing the probability of obtaining the samples observed.
 - Bayesian estimation
 - Views the parameters as random variables having some known prior distribution.
 - Observing new samples converts the prior to a posterior density.

Maximum Likelihood Function

- Suppose we have a set $D = \{x_1, \ldots, x_n\}$ of independent and identically distributed (i.i.d.) samples drawn from the density $p(x|\theta)$.
- We would like to use training samples in D to estimate the unknown parameter vector θ .
- Define $L(\theta|\mathbf{D})$ as the **likelihood function** of θ with respect to \mathbf{D} as

$$L(\boldsymbol{\theta}|\mathcal{D}) = p(\mathcal{D}|\boldsymbol{\theta}) = p(\mathbf{x_1}, \dots, \mathbf{x_n}|\boldsymbol{\theta}) = \prod_{i=1}^n p(\mathbf{x_i}|\boldsymbol{\theta}).$$

Maximum Likelihood Estimation

The maximum likelihood estimate (MLE) of θ is, by definition, the value $\hat{\theta}$ that maximizes $L(\theta|D)$ and can be computed as

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} L(\boldsymbol{\theta}|\mathcal{D}).$$

 It is often easier to work with the logarithm of the likelihood function (log-likelihood function) that gives

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \log L(\boldsymbol{\theta}|\mathcal{D}) = \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log p(\mathbf{x}_i|\boldsymbol{\theta}).$$

Example

Some of candidate source distributions

Several training points assumed to be drawn from a Gaussian

Maximum Likelihood Estimation

If the number of parameters is p, i.e.,

 $\theta = (\theta_1, \ \theta_2, \ \dots, \ \theta_p)^T$, define the **gradient operator**

$$abla_{m{ heta}} \equiv egin{bmatrix} rac{\partial}{\partial m{ heta}_1} \ dots \ rac{\partial}{\partial m{ heta}_p} \end{bmatrix}.$$

• Then, the MLE of θ should satisfy the necessary conditions

$$\nabla_{\boldsymbol{\theta}} \log L(\boldsymbol{\theta}|\mathcal{D}) = \sum_{i=1}^{n} \nabla_{\boldsymbol{\theta}} \log p(\mathbf{x}_{i}|\boldsymbol{\theta}) = 0.$$

Properties of MLEs

- The MLE is the parameter point for which the observed sample is the most likely.
- The procedure with partial derivatives may result in several local extrema. We should check each solution individually to identify the global optimum.
- Boundary conditions must also be checked separately for extrema.
- Invariance property: if $\hat{\theta}$ is the MLE of θ , then for any function $f(\theta)$, the MLE of $f(\theta)$ is $f(\hat{\theta})$.

The Gaussian Case

- Suppose that $p(x|\theta) = N(\mu, \Sigma)$.
 - When Σ is **known** but μ is **unknown**

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$$

• When **both** μ and Σ are **unknown**

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$
 and $\hat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \hat{\boldsymbol{\mu}}) (\mathbf{x}_i - \hat{\boldsymbol{\mu}})^T$

$$\ln p(x_k|\boldsymbol{\theta}) = -\frac{1}{2} \ln 2\pi\theta_2 - \frac{1}{2\theta_2} (x_k - \theta_1)^2$$

$$\theta_1 = \mu \text{ and } \theta_2 = \sigma^2$$

$$\nabla_{\boldsymbol{\theta}} l = \nabla_{\boldsymbol{\theta}} \ln p(x_k | \boldsymbol{\theta}) = \begin{bmatrix} \frac{1}{\theta_2} (x_k - \theta_1) \\ -\frac{1}{2\theta_2} + \frac{(x_k - \theta_1)^2}{2\theta_2^2} \end{bmatrix}.$$

$$\sum_{k=1}^{n} \frac{1}{\hat{\theta}_2} (x_k - \hat{\theta}_1) = 0$$
$$-\sum_{k=1}^{n} \frac{1}{\hat{\theta}_2} + \sum_{k=1}^{n} \frac{(x_k - \hat{\theta}_1)^2}{\hat{\theta}_2^2} = 0,$$

$$\hat{\mu} = \frac{1}{n} \sum_{k=1}^{n} x_k \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{k=1}^{n} (x_k - \hat{\mu})^2.$$

Analysis of the multivariate case

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{l=1}^{n} \mathbf{x}_{l}$$

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_k \quad \hat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{k=1}^{n} (\mathbf{x}_k - \hat{\boldsymbol{\mu}}) (\mathbf{x}_k - \hat{\boldsymbol{\mu}})^t.$$

The Bernoulli Case

$$L(p) = \prod_{i=1}^n p^{x_i} (1-p)^{(1-x_i)} \ \ell(p) = \log p \sum_{i=1}^n x_i + \log (1-p) \sum_{i=1}^n (1-x_i) \ rac{\partial \ell(p)}{\partial p} = rac{\sum_{i=1}^n x_i}{p} - rac{\sum_{i=1}^n (1-x_i)}{1-p} \stackrel{ ext{set}}{=} 0 \ \sum_{i=1}^n x_i - p \sum_{i=1}^n x_i = p \sum_{i=1}^n (1-x_i) \ p = rac{1}{n} \sum_{i=1}^n x_i$$

Bias of Estimators

- Bias of an estimator $\hat{\theta}$ is the **difference between the** expected value of $\hat{\theta}$ and θ .
- The MLE of μ is an **unbiased** estimator for μ because $E[\hat{\mu}] = \mu$
- The MLE of Σ is **not an unbiased** estimator for because $\mathsf{E}[\widehat{\Sigma}] = \frac{n-1}{n}\Sigma \neq \Sigma$.
- The sample covariance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_{i} - \hat{\boldsymbol{\mu}}) (\mathbf{x}_{i} - \hat{\boldsymbol{\mu}})^{T}$$

is an unbiased estimator for Σ

Goodness-of-fit

- To measure how well a fitted distribution resembles the sample data (goodness-of-fit), we can use the Kolmogorov-Smirnov test statistic.
 - It is defined as the **maximum value** of the absolute difference between the **cumulative distribution function** estimated from the sample and the one calculated from the fitted distribution.
- After estimating the parameters for different distributions, we can compute the Kolmogorov-Smirnov statistic for each distribution and choose the one with the **smallest value** as the **best fit to** our sample.

Estimated pdf

True pdf is Gamma(4, 4). Estimated pdfs are N(15.8, 62.1) and Gamma(4.0, 3.9).

Cumulative distribution functions for the example

Bayesian Estimation

- Bayesian estimation or Bayesian learning approach to pattern classification problems.
- The method is nearly identical to maximum likelihood, there is a conceptual difference:
 - In ML θ , to be fixed, in Bayesian learning we consider θ to be a random variable,
 - Training data allows us to convert a distribution on this variable into a
 posterior probability density.
- Suppose the set $D = \{x_1, \ldots, x_n\}$ contains the samples drawn independently from the density $p(x|\theta)$ whose form is assumed to be known but θ is not known exactly.
- Assume that θ is a **quantity** whose **variation** can be described by the **prior probability distribution** $p(\theta)$.

The Class-Conditional Densities

- We compute $P(\omega_i|\mathbf{x})$ using **all of the information** at our disposal
- Given the sample D, Bayes' formula then becomes

$$P(\omega_i|\mathbf{x}, \mathcal{D}) = \frac{p(\mathbf{x}|\omega_i, \mathcal{D})P(\omega_i|\mathcal{D})}{\sum_{j=1}^{c} p(\mathbf{x}|\omega_j, \mathcal{D})P(\omega_j|\mathcal{D})}$$

- We can **separate** the training samples by class into c subsets $D_1, ..., D_c$, samples in D_i belonging to ω_i
- Samples in D_i have **no influence** on $p(\mathbf{x}|\omega_j, D)$ if $i \neq j$.

$$P(\omega_i) = P(\omega_i | \mathcal{D}).$$

$$P(\omega_i|\mathbf{x}, \mathcal{D}) = \frac{p(\mathbf{x}|\omega_i, \mathcal{D}_i)P(\omega_i)}{\sum_{j=1}^{c} p(\mathbf{x}|\omega_j, \mathcal{D}_j)P(\omega_j)}.$$

The Parameter Distribution

 Given D, the prior distribution can be updated to form the posterior distribution using the Bayes rule

Where

$$p(\boldsymbol{\theta}|\mathcal{D}) = \frac{p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathcal{D})}$$

$$p(\mathcal{D}) = \int p(\mathcal{D}|\boldsymbol{\theta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

$$p(\mathcal{D}|\boldsymbol{\theta}) = \prod_{i=1}^{n} p(\mathbf{x}_{i}|\boldsymbol{\theta}).$$

• Although that p(x) is unknown, parametric mean that $p(x|\theta)$ is completely known

Bayesian Estimation

The **posterior distribution** $p(\theta|\mathbf{D})$ can be used to find **estimates for** θ (e.g., the **expected value or mazximum of** of $p(\theta|\mathbf{D})$ can be used as an estimate for θ).

$$\widehat{\theta}_{MAP} = \arg\max_{\theta} P(\theta \mid D)$$

$$= \arg\max_{\theta} P(D \mid \theta)P(\theta)$$

• Then, the **conditional density** p(x|D) can be computed as

$$p(\mathbf{x}|\mathcal{D}) = \int p(\mathbf{x}|\boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathcal{D}) d\boldsymbol{\theta}$$

and can be used in the Bayesian classifier.

MLEs vs. Bayes Estimates

- Maximum likelihood estimation finds an estimate of θ based on the samples in *D* but a different sample set would give rise to a different estimate.
- Bayes estimate <u>takes into account the sampling</u>
 <u>variability</u>.
- We assume that we do not know the true value of θ and instead of taking a **single estimate**, we take a **weighted sum** of the densities $p(x|\theta)$ weighted by the distribution $p(\theta|D)$.

The Gaussian Case

Consider the univariate case

$$p(x|\mu) = N(\mu, \sigma^2)$$

where μ is the only unknown parameter with a prior distribution

$$p(\mu)=N(\mu_0,\sigma_0^2)$$
 (σ^2 , μ_0 and σ_0^2 are all known).

• This corresponds to **drawing a value for** μ from the population with **density** $p(\mu)$, treating it as the true value in the density $p(x|\mu)$, and drawing samples for x from this density.

$$p(\mu|\mathcal{D}) = \frac{p(\mathcal{D}|\mu)p(\mu)}{\int p(\mathcal{D}|\mu)p(\mu) d\mu}$$
$$= \alpha \prod_{k=1}^{n} p(x_k|\mu)p(\mu),$$

where α is a **normalization factor** that depends on D but is independent of μ .

This equation shows how the observation of a set of training samples affects our ideas about the true value of μ ;

$$p(\mu|\mathcal{D}) = \alpha \prod_{k=1}^{n} \underbrace{\frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x_k - \mu}{\sigma}\right)^2\right] \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left[-\frac{1}{2}\left(\frac{\mu - \mu_0}{\sigma_0}\right)^2\right]}_{p(\mu) \sim N(\mu_0, \sigma_0^2)}$$

$$= \alpha' \exp\left[-\frac{1}{2}\left(\sum_{k=1}^{n}\left(\frac{\mu - x_k}{\sigma}\right)^2 + \left(\frac{\mu - \mu_0}{\sigma_0}\right)^2\right)\right]$$

$$= \alpha'' \exp\left[-\frac{1}{2}\left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}\right)\mu^2 - 2\left(\frac{1}{\sigma^2}\sum_{k=1}^{n}x_k + \frac{\mu_0}{\sigma_0^2}\right)\mu\right],$$

factors that do not depend on μ have been absorbed into the constants α , α , and α .

Given $\mathcal{D} = \{x_1, \dots, x_n\}$, we obtain

$$\begin{split} p(\mu|\mathcal{D}) &\propto \prod_{i=1}^n p(x_i|\mu) p(\mu) \\ &\propto \exp\left[-\frac{1}{2}\bigg(\bigg(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}\bigg)\mu^2 - 2\bigg(\frac{1}{\sigma^2}\sum_{i=1}^n x_i + \frac{\mu_0}{\sigma_0^2}\bigg)\mu\bigg)\right] \\ &= N(\mu_n, \sigma_n^2) \qquad \textit{p}(\mu) \text{ is said to be a } \textit{conjugate prior} \end{split}$$

Where

$$\mu_n = \left(\frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2}\right)\bar{x}_n + \frac{\sigma^2}{n\sigma_0^2 + \sigma^2}\mu_0$$

$$\sigma_n^2 = \frac{\sigma_0^2 \sigma^2}{n\sigma_0^2 + \sigma^2}.$$

σ_n^2 uncertainty about nth guess

$$\sigma_n^2 = \frac{\sigma_0^2 \sigma^2}{n\sigma_0^2 + \sigma^2}.$$

- Since σ_n^2 decreases monotonically with *n* approaching σ^2/n as *n* approaches infinity
- Each additional observation decreases our uncertainty about the true value of μ .

• As n increases, $\mathbf{p}(\mathbf{\mu}|\mathbf{D})$ becomes more and more sharply peaked, approaching a Dirac

delta function

The Gaussian Case

- μ_0 is our **best prior guess** and σ_0^2 is the **uncertainty about** this guess.
- μ_n is our best guess **after observing n sample** in **D** and σ_n^2 is the uncertainty about this guess.
- μ_n always lies between \bar{x}_n and μ_0 with coefficients that are non-negative **and sum to one**. $\mu_n = \left(\frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2}\right) \bar{x}_n + \frac{\sigma^2}{n\sigma_0^2 + \sigma^2} \mu_0$
 - If $\sigma_0 = 0$, then $\mu_n = \mu_0$ (no observation can change our prior opinion).
 - If $\sigma_0 >> \sigma$, then $\mu_n = \bar{x}_n$ (we are **very uncertain** about our prior guess).
 - Otherwise, μ_n approaches \bar{x}_n as n approaches infinity

Class-conditional density

Given the posterior density $p(\mu|\mathbf{D})$, the conditional density $p(x|\mathbf{D})$ can be computed as

$$p(x|\mathcal{D}) = \int p(x|\mu)p(\mu|\mathcal{D}) d\mu$$

$$= \int \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right] \frac{1}{\sqrt{2\pi}\sigma_{n}} \exp\left[-\frac{1}{2}\left(\frac{\mu-\mu_{n}}{\sigma_{n}}\right)^{2}\right] d\mu$$

$$= \frac{1}{2\pi\sigma\sigma_{n}} \exp\left[-\frac{1}{2}\frac{(x-\mu_{n})^{2}}{\sigma^{2}+\sigma_{n}^{2}}\right] f(\sigma,\sigma_{n}),$$

$$f(\sigma,\sigma_{n}) = \int \exp\left[-\frac{1}{2}\frac{\sigma^{2}+\sigma_{n}^{2}}{\sigma^{2}\sigma_{n}^{2}}\left(\mu-\frac{\sigma_{n}^{2}x+\sigma^{2}\mu_{n}}{\sigma^{2}+\sigma_{n}^{2}}\right)^{2}\right] d\mu.$$

$$p(x|\mathcal{D}) = N(\mu_{n},\sigma^{2}+\sigma_{n}^{2})$$

- Where
 - the **conditional mean** μ_n is treated as if it were the true mean,
 - the known variance is increased to account for our lack of exact knowledge of the mean μ .

The multivariate case

$$p(\mathbf{x}|\boldsymbol{\mu}) = N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

where μ is the only unknown parameter with a prior distribution

$$p(\mu) = N(\mu_0, \Sigma_0)$$
 (Σ , μ_0 and Σ_0 are all known).

Given D = $\{x_1, \ldots, x_n\}$, we obtain

$$p(\boldsymbol{\mu}|\mathcal{D}) \propto \exp\left[-\frac{1}{2}\left(\boldsymbol{\mu}^{T}\left(n\boldsymbol{\Sigma}^{-1} + \boldsymbol{\Sigma}_{\mathbf{0}}^{-1}\right)\boldsymbol{\mu}\right.\right.$$
$$\left. -2\boldsymbol{\mu}^{T}\left(\boldsymbol{\Sigma}^{-1}\sum_{i=1}^{n}\mathbf{x}_{i} + \boldsymbol{\Sigma}_{\mathbf{0}}^{-1}\boldsymbol{\mu}_{\mathbf{0}}\right)\right)\right].$$

27

The Multivariate Gaussian Case

It follows that

$$p(\boldsymbol{\mu}|\mathcal{D}) = N(\boldsymbol{\mu_n}, \boldsymbol{\Sigma_n})$$

where

$$\mu_{n} = \Sigma_{0} \left(\Sigma_{0} + \frac{1}{n} \Sigma \right)^{-1} \hat{\mu}_{n} + \frac{1}{n} \Sigma \left(\Sigma_{0} + \frac{1}{n} \Sigma \right)^{-1} \mu_{0},$$

$$\Sigma_{n} = \frac{1}{n} \Sigma_{0} \left(\Sigma_{0} + \frac{1}{n} \Sigma \right)^{-1} \Sigma.$$

$$\mu_n = \left(\frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2}\right) \bar{x}_n + \frac{\sigma^2}{n\sigma_0^2 + \sigma^2} \mu_0$$

$$\sigma_n^2 = \frac{\sigma_0^2 \sigma^2}{n\sigma_0^2 + \sigma^2}.$$

Class-conditional density

• Given the posterior density $p(\mu|\mathbf{D})$, the conditional density $p(x|\mathbf{D})$ can be computed as

$$p(\mathbf{x}|\mathcal{D}) = N(\boldsymbol{\mu_n}, \boldsymbol{\Sigma} + \boldsymbol{\Sigma_n})$$

Which can be viewed as the sum of a random vector
 µ with

$$p(\boldsymbol{\mu}|\mathcal{D}) = N(\boldsymbol{\mu_n}, \boldsymbol{\Sigma_n})$$

and an independent random vector y with

$$p(\mathbf{y}) = N(0, \mathbf{\Sigma}).$$

The Bernoulli Case

• Consider $P(x|\theta) = Bernoulli(\theta)$ where θ is the unknown parameter with a prior distribution $p(\theta) = Beta(\alpha,\beta) \ (\alpha \text{ and } \beta \text{ are both known}).$

$$f(x;lpha,eta) = rac{1}{\mathrm{B}(lpha,eta)} x^{lpha-1} (1-x)^{eta-1}$$

• Given $D = \{x_1, \ldots, x_n\}$, we obtain

$$p(\theta|\mathcal{D}) = \mathsf{Beta}\left(\alpha + \sum_{i=1}^n x_i, \beta + n - \sum_{i=1}^n x_i\right).$$

$$rac{x^{lpha-1}(1-x)^{eta-1}}{\mathrm{B}(lpha,eta)}$$

 α > 0 shape (real)

 β > 0 shape (real)

 $x \in [0,1]$ or $x \in (0,1)$

$$\mathrm{B}(lpha,eta) = rac{\Gamma(lpha)\Gamma(eta)}{\Gamma(lpha+eta)}$$

$$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} \ dx,$$

$$^{_1}\,\mathrm{E}[X]=rac{lpha}{lpha+eta}$$

Mode

$$\frac{\alpha-1}{\alpha+\beta-2}$$
 for α , $\beta > 1$

$$ext{var}[X] = rac{lphaeta}{(lpha+eta)^2(lpha+eta+1)}$$

A. Denagani, U i

The Bernoulli Case

• The Bayes estimate of θ can be computed as the expected value of $p(\theta|D)$, i.e.,

$$\hat{\theta} = \frac{\alpha + \sum_{i=1}^{n} x_i}{\alpha + \beta + n}$$

$$= \left(\frac{n}{\alpha + \beta + n}\right) \frac{1}{n} \sum_{i=1}^{n} x_i + \left(\frac{\alpha + \beta}{\alpha + \beta + n}\right) \frac{\alpha}{\alpha + \beta}.$$

Conjugate Priors

- A conjugate prior is one which, when multiplied with the probability of the observation, gives a posterior probability having the same functional form as the prior.
- This relationship allows the posterior to be used as a prior in further computations.

pdf generating the sample	corresponding conjugate prior
Gaussian	Gaussian
Exponential	Gamma
Poisson	Gamma
Binomial	Beta
Multinomial	Dirichlet

- What about the **convergence** of p(x|D) to p(x)?
- Given $\mathcal{D}^n = \{\mathbf{x_1}, \dots, \mathbf{x_n}\}$, for n > 1

$$p(\mathcal{D}^n|\boldsymbol{\theta}) = p(\mathbf{x}_n|\boldsymbol{\theta})p(\mathcal{D}^{n-1}|\boldsymbol{\theta})$$

and

$$p(\boldsymbol{\theta}|\mathcal{D}) = \frac{p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{\int p(\mathcal{D}|\boldsymbol{\theta})p(\boldsymbol{\theta}) d\boldsymbol{\theta}}, \quad p(\boldsymbol{\theta}|\mathcal{D}^n) = \frac{p(\mathbf{x}_n|\boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathcal{D}^{n-1})}{\int p(\mathbf{x}_n|\boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathcal{D}^{n-1}) d\boldsymbol{\theta}}$$

where

$$p(\boldsymbol{\theta}|\mathcal{D}^0) = p(\boldsymbol{\theta})$$

 Quite useful if the distributions can be represented using only a few parameters (sufficient statistics).

Consider the Bernoulli case $P(x|\theta) = Bernoulli(\theta)$ where $p(\theta) = Beta(\alpha, \beta)$, the Bayes estimate of θ is

$$\hat{\theta} = \frac{\alpha}{\alpha + \beta}.$$

• Given the training set $D = \{x_1, \ldots, x_n\}$, we obtain

$$p(\theta|\mathcal{D}) = \mathsf{Beta}(\alpha + m, \beta + n - m)$$

where

$$m = \sum_{i=1}^{n} x_i = \#\{x_i | x_i = 1, x_i \in \mathcal{D}\}.$$

• The Bayes estimate of θ becomes

$$\hat{\theta} = \frac{\alpha + m}{\alpha + \beta + n}.$$

Then, given a new training set

$$\mathcal{D}' = \{x_1, \dots, x_{n'}\}$$

We obtain

$$p(\theta|\mathcal{D},\mathcal{D}') = \mathsf{Beta}(\alpha + m + m', \beta + n - m + n' - m')$$

Where

$$m' = \sum_{i=1}^{n'} x_i = \#\{x_i | x_i = 1, x_i \in \mathcal{D}'\}.$$

• The Bayes estimate of θ becomes

$$\hat{\theta} = \frac{\alpha + m + m'}{\alpha + \beta + n + n'}.$$

 Thus, recursive Bayes learning involves only keeping the counts m (related to sufficient statistics of Beta) and the number of training samples n.

Comparison of MLEs and Bayes estimates

	MLE	Bayes
computational	differential calculus,	multidimensional integration
complexity	gradient search	
interpretability	point estimate	weighted average of models
prior information	assume the parametric	assume the models $p(\theta)$ and
	model $p(\mathbf{x} \boldsymbol{\theta})$	$p(\mathbf{x} oldsymbol{ heta})$ but the resulting distri-
		bution $p(\mathbf{x} \mathcal{D})$ may not have
		the same form as $p(\mathbf{x} \boldsymbol{\theta})$

If there is **much data** (strongly peaked $p(\theta|D)$) and the prior $p(\theta)$ is uniform, then the Bayes estimate and MLE are equivalent.

Classification Error

- To apply these results to **multiple classes**, separate the training samples to c subsets D_1, \ldots, D_c , with the samples in D_i belonging to class ω_i , and then **estimate** each density $p(x|\omega_i,D_i)$ separately.
- Different sources of error:
 - Bayes error: due to overlapping class-conditional densities (related to the features used; inherent property of the problem and can never be eliminated).
 - Model error: due to incorrect model.
 - **Estimation error**: due to estimation from a finite sample (can be reduced by increasing the amount of training data).