LAPORAN PRAKTIKUM APLIKASI SIG UNTUK SUMBER DAYA AIR (SVIG223545)

ACARA V PERHITUNGAN HUJAN WILAYAH

Dibuat oleh:

Nama : Farmana Ditya Alya Safitri

NIM : 22/20758/SV/493937

Hari/Jam : Senin/11.00-13.00

Kelompok : APSIG-SDA

Asisten : 1. Fisti Fadila Lorentin Aranina

2. Miho Marta Siwi

3. Isnaini Nurul Azizah

4. Zahratun Nurul Istiqamah

PROGRAM STUDI SARJANA TERAPAN SISTEM INFORMASI GEOGRAFIS DEPARTEMEN TEKNOLOGI KEBUMIAN SEKOLAH VOKASI UNIVERSITAS GADJAH MADA YOGYAKARTA

2024

LEMBAR KERJA PRAKTIKUM

I. TUJUAN

1. Mampu menghitung hujan wilayah menggunakan metode poligon thiessen dan isohyets

I. ALAT DAN BAHAN

No	Nama Alat	Keterangan							
1	Laptop Thinkpad i5	Perangkat untuk melaksanakan kegiatan							
	RAM 8GB SSD 256GB	praktikum							
2	ArcMap 10.8	Perangkat lunak untuk melakukan							
		visualisasi hujan wilayah							
3	Microsoft Excel	Perangkat lunak untuk melakukan							
		perhitungan hujan wilayah							

No	Nama Bahan	Keterangan					
1	Data vektor DAS	Bahan untuk perhitungan hujan wilayah					
	Bogowonto						
2	Data vektor titik stasiun	Bahan untuk perhitungan hujan wilayah					
	hujan						
3	Data CHRS	Bahan untuk visualisasi hujan wilayah					
	PERSIANN CDR dan	metode CDR dan CCS					
	CCS Tahun 2008 DAS						
	Bogowonto						

II. LANGKAH KERJA

III. HASIL PRAKTIKUM (TERLAMPIR)

- 1. Peta Polygon Thiessen DAS Bogowonto.
- 2. Perhitungan Hujan Wilayah dengan Metode Polygon Thiessen.
- 3. Peta Hujan wilayah Metode Isohyet DAS Bogowonto.
 - a. Peta Hujan Wilayah Metode IDW.
 - b. Peta Hujan Wilayah Metode Kriging
- 4. Perhitungan Hujan Wilayah dengan 2 Metode Isohyet Pilihan.
 - a. Perhitungan Hujan Wilayah Metode IDW.
 - b. Perhitungan Hujan Wilayah Metode Kriging.
- 5. Perhitungan Luasan Area Polygon Thiessen dan Isohyet.
- 6. Peta Hujan CHRS 2 Metode Pilihan.
 - a. Peta Hujan CHRS Metode CCS.
 - b. Peta Hujan CHRS Metode CDR.
- 7. Perhitungan Hujan 2 Metode Pilihan Data CHRS.
 - a. Perhitungan Hujan Wilayah Metode CCS.
 - b. Perhitungan Hujan Wilayah Metode CDR.

IV. PEMBAHASAN

Hujan wilayah merupakan metode untuk menghitung rata-rata curah hujan pada suatu area, seperti DAS (Daerah Aliran Sungai), dengan mempertimbangkan presipitasi yang dipengaruhi oleh distribusi spasial dari stasiun hujan (Usowicz et al., 2021). Presipitasi mengacu pada segala bentuk air yang jatuh dari atmosfer ke permukaan bumi, berperan penting dalam proses hidrologis dan dipengaruhi oleh variabilitas spasial dan temporal dalam iklim (Lee et al., 2023). Data vektor DAS Bogowonto dan titik stasiun hujan digunakan untuk analisis distribusi curah hujan. Hujan wilayah dihitung dengan rumus (P2 x L), di mana P2 adalah nilai rata-rata dari curah hujan antara dua titik pengukuran, yaitu P2 = (P1 + P2) / 2, dan L adalah luas wilayah dalam kilometer persegi (Km²), sedangkan P adalah nilai curah hujan di wilayah tersebut. Rumus ini digunakan untuk

menentukan rata-rata curah hujan di area yang lebih luas berdasarkan data dari beberapa stasiun hujan.

Metode yang dilakukan untuk visualisasi hujan wilayah antara lain, polygon thiessen, isohyet, dan kriging dengan menggunakan data titik stasiun hujan untuk menghasilkan visualisasi intensitas hujan wilayah. Selain itu, data CHRS PERSIANN CDR dan CCS tahun 2008 pada DAS Bogowonto digunakan untuk visualisasi hujan wilayah menggunakan metode CDR dan CCS, digunakan untuk visualisasi dan prediksi curah hujan di wilayah DAS Bogowonto yang terletak di wilayah Jawa Tehngan dan sebagian Kulonprogo DIY.

Metode polygon thiessen digunakan untuk membagi area DAS (Bogowonto berdasarkan jarak terdekat dari setiap stasiun hujan, sehingga masing-masing poligon mewakili wilayah pengaruh stasiun hujan tersebut (Lashari et al., 2017). Poligon yang terbentuk memberikan area di mana curah hujan diasumsikan sama, bergantung pada data dari stasiun hujan yang berada di dalam atau terdekat dengan poligon tersebut.

Gambar 1. Metode Polygon Thiessen

Pada Gambar 1, merupakan hasil perhitungan hujan wilayah yang sudah divisualisasikan menunjukkan intensitas hujan yang berbeda-beda,

di mana area dengan intensitas hujan sangat rendah hingga sangat tinggi diidentifikasi oleh warna dari biru muda hingga biru tua. Stasiun-stasiun hujan seperti Kepil, Guntur, Banyuasin, dan lainnya dikelilingi oleh poligon yang menunjukkan pengaruhnya terhadap perhitungan curah hujan di wilayah DAS Bogowonto. Luas tiap poligon mempengaruhi bobot curah hujan yang dihitung untuk masing-masing area, memberikan representasi distribusi hujan wilayah yang lebih akurat.

Metode IDW (*Inverse Distance Weighting*) isohyet menggunakan garis kontur untuk menggambarkan distribusi curah hujan dengan area yang menunjukkan curah hujan seragam. Pada metode ini, garis-garis kontur mengelompokkan wilayah berdasarkan jumlah curah hujan, membentuk zona intensitas hujan yang berbeda-beda. Setiap zona merepresentasikan tingkat curah hujan yang dihitung dari data stasiun hujan dan interpolasi antar titik stasiun.

Gambar 2. Metode IDW Isohyet

Pada visualisasi metode IDW dalam Gambar 2, curah hujan dihitung berdasarkan bobot jarak dari setiap stasiun hujan. Semakin dekat suatu lokasi ke stasiun hujan, semakin besar bobot curah hujan yang diberikan. Peta IDW menampilkan curah hujan yang lebih tinggi di sekitar stasiun-stasiun hujan, dengan gradasi warna biru tua menunjukkan intensitas hujan

tinggi, sedangkan daerah yang lebih jauh dari stasiun, seperti bagian selatan Bogowonto, ditampilkan dengan warna lebih terang yang menunjukkan intensitas hujan lebih rendah.

Perhitungan hujan wilayah dengan metode Kriging menghasilkan perhitungan curah hujan yang lebih halus karena metode ini mempertimbangkan variasi spasial secara statistik. Kriging menggunakan teknik interpolasi yang memperkirakan nilai curah hujan di lokasi yang tidak memiliki data berdasarkan pola spasial yang ada di titik-titik pengamatan curah hujan, menghasilkan peta dengan akurasi tinggi.

Gambar 3. Metode IDW Kriging

Pada visualisasi metode IDW Isohyet di DAS Bogowonto, terdiri dari 5 kelas intensitas hujan wilayah yang bervariasi dari sangat rendah (1150-1400 mm) hingga sangat tinggi (2200-2500 mm). Area di sekitar stasiun Kepil menunjukkan intensitas hujan tertinggi dengan warna biru tua, sedangkan daerah di selatan, seperti Jogoboyo, memiliki intensitas hujan lebih rendah dengan gradasi warna yang lebih terang.

Metode Polygon Thiessen dapat digunakan ketika distribusi stasiun hujan di wilayah yang dianalisis tidak merata, dengan setiap stasiun hujan dianggap mewakili area terdekat di sekitarnya (Handayani & Ningsih, 2012). Sebaliknya, metode Isohyet menghubungkan titik-titik dengan curah hujan yang sama melalui garis imajiner, dan lebih tepat digunakan ketika stasiun hujan tersebar merata di wilayah tersebut. Perbedaan utama antara kedua metode ini terletak pada asumsi distribusi stasiun hujan, di mana Thiessen lebih cocok untuk distribusi yang tidak merata, sedangkan Isohyet lebih optimal untuk wilayah dengan distribusi stasiun yang seragam.

CHRS PERSIANN-CCS (Climate Data Record of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks - Climate Change Scenario) adalah sistem yang dirancang untuk memodelkan curah hujan di seluruh dunia dengan memanfaatkan data dari citra satelit. Sistem ini menggunakan jaringan saraf buatan untuk menganalisis data infra merah dari satelit, yang sangat berguna untuk menilai dan memodelkan dampak perubahan iklim pada pola curah hujan. PERSIANN-CCS sering digunakan dalam studi hidrologi, termasuk untuk keperluan adaptasi dan mitigasi perubahan iklim.

Gambar 4. Metode CCS

Visualisasi data CHRS PERSIANN-CCS untuk wilayah DAS Bogowonto terdiri dari 7 kelas intensitas hujan, menunjukkan variasi spasial curah hujan di wilayah DAS Bogowonto tahun 2008. Tingkat intensitas hujan berkisar dari sangat rendah hingga sangat tinggi, yang digambarkan dalam perbedaan warna dari biru muda ke biru tua. Penggunaan model ini biasanya digunakan untuk penilaian lebih terperinci terhadap potensi risiko banjir atau kekeringan yang dapat berdampak pada wilayah tersebut berdasarkan skenario perubahan iklim yang berbeda.

PERSIANN-CDR (Climate Data Record) adalah sistem estimasi curah hujan berbasis citra satelit yang dirancang untuk menghasilkan data historis jangka panjang tentang curah hujan global. PERSIANN-CDR menggabungkan algoritma berbasis jaringan saraf buatan untuk mengolah citra satelit infra merah dan memberikan estimasi curah hujan harian sejak tahun 1983. Data ini digunakan dalam analisis perubahan iklim, studi hidrologi, dan pemodelan sumber daya air.

Pada visualisasi hasil *reclassify* dan *resample* data CDR untuk wilayah DAS Bogowonto, intensitas hujan wilayah dibagi menjadi 4 kelas yaitu rendah, sedang, tinggi, dan sangat tinggi. Warna biru tua menunjukkan wilayah dengan intensitas curah hujan tertinggi (441707.161 - 448844.56 mm), sementara warna biru muda hingga ungu menggambarkan wilayah dengan curah hujan lebih rendah (314416.34 - 361133.83 mm).

PERSIANN-CDR (*Climate Data Record*) dan PERSIANN-CCS (*Cloud Classification System*) adalah dataset curah hujan berbasis satelit yang digunakan untuk mengestimasi presipitasi. PERSIANN-CDR menyediakan data historis curah hujan sejak tahun 1983, yang berguna untuk analisis tren iklim jangka panjang dan studi hidrologi. Sementara itu, PERSIANN-CCS digunakan untuk estimasi curah hujan secara *real-time* dengan resolusi tinggi, menggunakan data inframerah dari satelit untuk memprediksi curah hujan dalam waktu singkat, dapat digunakan untuk keperluan seperti peringatan dini banjir atau manajemen sumber daya air jangka pendek (Nguyen et al., 2019).

V. KESIMPULAN

1. Hujan wilayah dapat dihitung dan divisualisasikan menggunkan 2 metode utama, yaitu metode poligon Thiessen dan isohyet. Metode poligon Thiessen digunakan pada data dengan distribusi stasiun hujan di wilayah tidak merata. Setiap stasiun dalam metode Thiessen berfungsi sebagai representasi dari wilayah terdekat di sekitarnya, kemudian poligon-poligon dibuat berdasarkan titik-titik stasiun hujan dan curah hujan eata-rata dihitung dengan memperhitungkan luas tiap poligon. Metode isohyet menggunakan garis imajiner yang menghubungkan titik-titik dengan curah hujan yang sama, lebih tepat digunakan ketika stasiun hujan tersebar merata di wilayah.

VI. SARAN

Praktikum berjalan dengan baik, asisten membantu dalam kegiatan praktikum, diharapkan pada acara selanjutnya dapat berjalan lebih baik lagi.

VII. DAFTAR PUSTAKA

- Handayani, D., & Ningsih, U. (2012). Metode Thiessen Polygon untuk Ramalan Sebaran Curah Hujan Periode Tertentu Pada Wilayah yang Tidak Memiliki Data Curah Hujan. *Jurnal Teknologi Informasi DINAMIK*, *17*(2), 154–163. https://doi.org/https://doi.org/10.35315/dinamik.v17i2.1664
- Lashari, Kusumawardani, R., & Prakasa Ferdian. (2017). Analisa Distribusi Curah Hujan di Area Merapi Menggunakan Metode Aritmatika dan Poligon. *Jurnal Teknik Sipil & Perencanaan UNNES*, 19(1), 39–48.
- Lee, M., An, H., Lee, J., Um, M. J., Jung, Y., Kim, K., Jung, K., Kim, S., & Park, D. (2023). Spatiotemporal Variability of Regional Rainfall Frequencies in South Korea for Different Periods. *Sustainability (Switzerland)*, 15(24). https://doi.org/10.3390/su152416646
- Nguyen, P., Shearer, E. J., Tran, H., Ombadi, M., Hayatbini, N., Palacios, T., Huynh, P., Braithwaite, D., Updegraff, G., Hsu, K., Kuligowski, B., Logan, W. S., & Sorooshian, S. (2019). The CHRS data portal, an easily accessible public repository for PERSIANN global satellite precipitation data. *Scientific Data*, 6. https://doi.org/10.1038/sdata.2018.296
- Usowicz, B., Lipiec, J., Łukowski, M., & Słomiński, J. (2021). Improvement of Spatial Interpolation of Precipitation Distribution Using Cokriging Incorporating Rain-Gauge and Satellite (SMOS) Soil Moisture Data. *Remote Sensing*, 13(5). https://doi.org/10.3390/rs13051039

LAMPIRAN

A. Langkah Kerja Deskriptif

1. Menjalankan ArcMap 10.8

Menambahkan data batas DAS Bogowonto dan stasiun hujan dengan klik Add
 Data → memilih data → Add

Melakukan display xy data pada stasiun hujan dengan klik kanan pada data →
Display XY, kemudian memilih field X dan Y → OK

4. Melakukan ekspor hasil *display* xy dengan nama titik hujan

5. Melakukan ekspor data *shapefile* DAS sebanyak 4 kali sesuai dengan hasil praktikum

6. Membuat poligon Thiessen dengan tool Create Thiessen Polygon, dengan *Input Features*: titik hujan, kemudian atur Environments → Extent → Same as layer DAS_Bogowonto → OK, dan atur output penyimpanan → OK

Create Thiessen Polygons (Analysis) (Tool)
Creates Thiessen polygons from point featu...
toolboxes\system toolboxes\analysis tools.tbx...

7. Melakukan *clip* pada hasil poligon *Thiessen* dengan *input feature* hasil *polygon Thiessen*, *clip features*: DAS Bogowonto, dan atur penyimpanan → OK

8. Membuat *field* dengan *Add field* untuk luas dengan tipe data *double* dan nama dengan tipe data text

9. Mengisikan nama stasiun hujan pada poligon thiessen sesuai label yang tertampil

10. Menghitung luas dengan klik kanan \rightarrow Calculate Geometry, pilih area dengan units square kilometers \rightarrow OK

11. Melakukan perhitungan hujan rerata tahunan

	Q
	Hujan Rerata Tahunan
	1126
	1333
	1677
Ξ	1211
	1189
	1373
	1270
	1715
	1429
	1553
	1370
	1803
	1428
	1811
	2539
	2086

12. Mengisi field luas wilayah pada excel dari luas poligon thiessen

13. Melakukan perhitungan hujan wilayah dengan luas wilayah x hujan rerata tahunan

Hujan Wilayah (P)
58165
42223
49902
34684
50923
64367
19321
113218
0
54124
0
34779
0
97427
124604
266046

14. Membuat field untuk hujan wilayah dengan tipe double

15. Menyalin nilai hujan wilayah dari Excel ke field ArcMap

rain wil	
	58165
	42223
	49902
	64367
	50923
	54124
	124604
	266046
	19321
	34684
	97427
	113218
	34779

16. Menambahkan field luas dan hujan wilayah dengan tipe data double pada shapefile titik hujan

17. Menyalin field luas dan wilayah

	Nama	Luas	Hujan wil
0	Gunungbutak	51.635018	58165
0	Purwodadi	31.685373	42223
0	Katerban	29.761224	49902
0	Cengkawak	28.64994	34684
0	Jogoboyo	42.845376	50923
0	Kaligesing	46.894851	64367
0	Purworejo	15.213781	19321
0	Banyuasin	66.016349	113218
0	Samigaluh	0	0
0	Kedungputri	34.857318	54124
0	Borobudur	0	0
0	Salaman	19.292988	34779
0	Samigaluh	0	0
0	Guntur	53.789542	97427
0	Kepil	49.076171	124604
0	Ngasinan	127.538802	266046

18. Melakukan simbolisasi pada data hasil clip Thiessen dengan graduated colors menggunakan value hujan wilayah dan diatur menjadi 5 kelas

19. Menghitung jumlah hujan pada tabel atribut titik hujan dengan field calculator

20. Melakukan pemrosesan menggunakan *tool* IDW, dengan input point features: titik hujan, Z value field: jumlah hujan, kemudian mengatur penyimpanan output

21. Membuat kontur menggunakan tool Contour dengan input raster: hasil IDW, Contour interval: 50, kemudian mengatur penyimpanan output → OK

22. Memotong kontur agar sesuai dengan DAS Bogowonto dengan start editing pada shapefile kontur, select kontur → Split polygon (toolbar advanced editing)

23. Menambahkan field curah hujan, kemudian mengisi field dengan nilai kontur

24. Melakukan ekspor pada tabel atribut dengan format .dbf

 Menambahkan field luas kemudian melakukan calculate geometry dengan satuan sq km

26. Melakukan perhitungan nilai P2 dan hujan wilayah

27. Mengisikan nilai hasil perhitungan ke tabel atribut

28. Melakukan simbolisasi dengan graduated color

29. Melakukan visualisasi curah hujan metode *kriging* menggunakan *tool Kriging* dengan *input point features*: titik hujan, Z *value field*: hujan rerata, kemudian mengatur *processing extent* pada *environments same as layer* DAS Bogowonto

30. Membuat kontur dari hasil kriging dengan tool Contour

31. Melakukan perhitungan hujan wilayah

32. Melakukan split polygon kontur dan DAS Bogowonto dan melakukan visualisasi dengan langkah yang sama pada metode isohyet

33. Mengunduh data CDR dan CCS pada https://chrsdata.eng.uci.edu/

34. Mendefinisikan sistem proyeksi dengan tool Define Projection, kemudian menggunakan tool project raster agar data raster dapat tertampal dengan shp

35. Melakukan sampling ulang dengan tool Resample pada data CDR dan CCS

36. Melakukan reclassify pada hasil resample CDR dan CCS

37. Mengkonnversi data raster menjadi polygon dengan tool raster to polygon

38. Melakukan dissolve pada hasil raster to polygon

39. Melakukan clip hasil dissolve agar sesuai dengan DAS Bogowonto

40. Menambahkan field luas, curah hujan, dan hujan wilayah dengan tipe double

41. Mengisikan field luas dengan calculate geometry (are sq/km), dan field curah hujan diisi berdasarkan break values pada proses *reclassify*

42. Melakukan perhitungan hujan wilayah dan mengisikan field hujan wilayah pada tabel atribut

43. Melakukan simbolisasi berdasarkan nilai hujan wilayah menggunakan graduated colors dengan value hujan wilayah

B. Hasil Praktikum

- 1. Peta Polygon Thiessen DAS Bogowonto.
- 2. Perhitungan Hujan Wilayah dengan Metode Polygon Thiessen.

	THIESSEN														
Nama	Januari	Februari	Maret	April	Mei	Juni	Juli	Agustus			November	Desember	Hujan Rerata Tahunan	Luas Wilayah (Km^2)	Hujan Wilayah (P)
Gunungbutak	176.8	170.8	173.6	181.9	87.6	8.8	9.5	9.3	18.3	45.4	106.0	138.4	1126	51.635018	58165
Purwodadi	248.9	215.7	200.8	96.0	40.2	10.9	11.8	7.2	8.0	29.1	200.2	263.6	1333	31.685373	42223
Katerban	269.0	245.4	287.2	113.0	44.3	20.3	16.8	10.9	14.0	79.5	253.5	322.9	1677	29.761224	49902
Cengkawak	155.8	232.1	204.4	80.8	24.0	14.6	8.8	15.8	14.5	38.8	163.6	257.3	1211	28.64994	34684
Jogoboyo	240.6	204.6	173.7	118.7	55.0	28.0	8.5	4.2	3.1	53.0	130.2	169.0	1189	42.845376	50923
Kaligesing	256.1	250.5	202.8	96.6	38.6	22.3	28.3	18.5	24.6	74.1	150.6	209.4	1373	46.894851	64367
Purworejo	232.9	255.6	193.2	112.1	16.4	6.1	5.0	3.7	4.6	34.8	164.2	241.4	1270	15.213781	19321
Banyuasin	251.0	260.0	250.0	169.0	61.0	37.0	36.0	19.0	6.0	160.0	200.0	266.0	1715	66.016349	113218
Samigaluh	280.0	297.0	295.0	137.8	40.0	22.0	7.0	8.0	10.0	16.0	132.0	184.0	1429		0
Kedungputri	308.3	302.9	254.4	131.6	34.7	8.8	5.9	7.0	3.6	30.2	169.4	295.9	1553	34.857318	54124
Borobudur	276.6	287.0	180.2	119.1	60.8	18.4	4.4	7.5	4.7	75.6	157.2	178.7	1370		0
Salaman	358.6	357.6	226.4	153.9	68.2	22.9	15.9	7.9	9.2	30.2	251.7	300.1	1803	19.292988	34779
Samigaluh	280.4	297.1	295.4	137.8	39.9	21.8	6.8	8.4	9.6	15.8	131.6	183.7	1428		0
Guntur	357.2	331.4	228.9	195.4	75.2	23.9	15.5	14.1	10.8	21.2	244.5	293.0	1811	53.789542	97427
Kepil	437.0	397.0	389.0	246.0	150.0	51.0	9.0	16.0	7.0	67.0	314.0	456.0	2539	49.076171	124604
Ngasinan	387.0	386.0	292.0	235.0	105.0	13.0	41.0	8.0	12.0	23.0	259.0	325.0	2086	127.538802	266046

- 3. Peta Hujan wilayah Metode Isohyet DAS Bogowonto.
 - a. Peta Hujan Wilayah Metode IDW.
 - b. Peta Hujan Wilayah Metode Kriging
- 4. Perhitungan Hujan Wilayah dengan 2 Metode Isohyet Pilihan.
 - a. Perhitungan Hujan Wilayah Metode IDW.

	IDW ISOHYET									
		urah Hujan	P2 (P1+P2/2)	Luas Wilayah (Km^2)	Hujan Wilayah (P2 x L)					
0	Polygon	1200	1175	5.67786	6671					
1	Polygon	1150	1400	2.614757	3661					
2	Polygon	1650	1475	2.847463	4200					
3	Polygon	1300	1425	1.542861	2199					
4	Polygon	1550	1350	0.00015	0					
5	Polygon	1150	1200	8.459059	10151					
6	Polygon	1250	1250	39.779209	49724					
7	Polygon	1250	1275	59.080666	75328					
8	Polygon	1300	1475	22.550043	33261					
9	Polygon	1650	1600	4.822098	7715					
10	Polygon	1550	1450	6.176897	8957					
11	Polygon	1350	1375	22.80693	31360					
12	Polygon	1400	1425	25.608063	36491					
13	Polygon	1450	1475	19.309979	28482					
14	Polygon	1500	1525	16.078876	24520					
15	Polygon	1550	1625	31.276968	50825					
16	Polygon	1700	1650	3.101382	5117					
17	Polygon	1600	1625	24.017579	39029					
18	Polygon	1650	1675	18.2657	30595					
19	Polygon	1700	1725	36.130052	62324					
20	Polygon	1750	1775	19.423529	34477					
21	Polygon	1800	1825	22.268255	40640					
22	Polygon	1850	1875	18.944806	35522					
23	Polygon	1900	1925	8.744096	16832					
24	Polygon	1950	2225	7.382682	16426					
25	Polygon	2500	2475	1.826143	4520					
26	Polygon	2450	2225	2.246871	4999					
27	Polygon	2000	2200	8.081369	17779					
28	Polygon	2400	2375	2.349583	5580					
29	Polygon	2350	2325	2.59862	6042					
30	Polygon	2300	2275	3.078832	7004					
31	Polygon	2250	2225	4.197126	9339					
32	Polygon	2200	2175	6.518185	14177					
33	Polygon	2150	2125	11.031541	23442					
34	Polygon	2100	2075	19.628753	40730					
35	Polygon	2050	2025	35.299617	71482					
36	Polygon	2000	1975	34.005602	67161					
37	Polygon	1950	1925	20.626615	39706					
38	Polygon	1900	1875	14.247122	26713					
39	Polygon	1850	925	4.610794	4265					

b. Perhitungan Hujan Wilayah Metode Kriging.

FID Shape *	Curah Hujan	P2 (P1+P2/2)	GING Luas Wilayah (Km^2)	Hujan Wilayah (P2 x L)
0 Polygon	1350	1325	0.930748	1233.24
1 Polygon	1300	1225	3.267324	4002.47
2 Polygon	1150	1250	1.653067	2066.33
3 Polygon	1350	1325	0.03639	48.22
4 Polygon	1300	1225	12.233734	14986.32
5 Polygon	1150	1200	29.52601	35431.21
6 Polygon	1250	1225	20.574813	25204.15
7 Polygon	1200	1250	72.434075	90542.59
8 Polygon	1300	1325	26.20953	34727.63
9 Polygon	1350	1375	18.62583	25610.52
10 Polygon	1400	1425	13.872214	19767.90
11 Polygon	1450	1475	12.547148	18507.04
12 Polygon	1500	1525	13.206828	20140.41
13 Polygon	1550	1575	14.905802	23476.64
14 Polygon	1600	1625	17.285177	28088.41
15 Polygon	1650	1675	21.567002	36124.73
16 Polygon	1700	1725	27.956858	48225.58
17 Polygon	1750	1775	31.436779	55800.28
18 Polygon	1800	1825	27.203514	49646.41
19 Polygon	1850	1875	16.818256	31534.23
20 Polygon	1900	1925	14.974545	28826.00
21 Polygon	1950	2225	12.500941	27814.59
22 Polygon	2500	2250	0.923308	2077.44
23 Polygon	2000	2225	14.329627	31883.42
24 Polygon	2450	2425	2.669123	6472.62
25 Polygon		1		
26 Polygon	2400 2350	2375 2175	5.495658 10.961496	13052.19 23841.25
27 Polygon	2000	2150	16.427536	35319.20
	2300	2175		
28 Polygon	2300	2173	12.613401	27434.15
29 Polygon	2050	2150	19.418816	41750.45
30 Polygon	2250	2225	16.105094	35833.83
31 Polygon	2200	2175	19.945237	43380.89
32 Polygon	2150	2125	24.325095	51690.83
33 Polygon	2100	2075	29.76051	61753.06
34 Polygon	2050	2025	10.352937	20964.70
35 Polygon	2000	1000	4.162312	4162.31

5. Perhitungan Luasan Area Polygon Thiessen dan Isohyet.

	Luasan Area Polygon Thiessen								
No	Nama	Curah Hujan Tahunan	Luas Polygon (km2)	Hujan Wilayah (mm)					
1	Gunungbutak	8021	51.635018	414170					
2	Purwodadi	4164	31.685373	131925					
3	Katerban	6357	29.761224	189197					
4	Cengkawak	3315	28.64994	94982					
5	Jogoboyo	1560	42.845376	66849					
6	Kaligesing	10898	46.894851	511078					
7	Purworejo	51028	15.213781	776326					
8	Banyuasin	75176	66.016349	4962839					
9	Samigaluh	30656		0					
10	Kedungputri	9631	34.857318	335721					
11	Borobudur	11152		0					
12	Salaman	32186	19.292988	620967					
13	Samigaluh	37303		0					
14	Guntur	29497	53.789542	1586618					
15	Kepil	25664	49.076171	1259510					
16	Ngasinan	50093	127.538802	6388747					
	Luas '	Total	597.256733	17338929					

		Luasan Area P	Olygon Isohyet	
No	Nama	Curah Hujan Tahunan		Hujan Wilayah (mm)
1	Isohyet 1	1200	5.67786	6813
2	Isohyet 2	1150	2.614757	3007
3	Isohyet 3	1650	2.847463	4698
	Isohyet 4	1300	1.542861	2006
	Isohyet 5	1550	0.00015	0
6	Isohyet 6	1150	8.459059	9728
7	Isohyet 7	1250	39.779209	49724
8	Isohyet 8	1250	59.080666	73851
9	Isohyet 9	1300	22.550043	29315
10	Isohyet 10	1650	4.822098	7956
11	Isohyet 11	1550	6.176897	9574
12	Isohyet 12	1350	22.80693	30789
13	Isohyet 13	1400	25.608063	35851
14	Isohyet 14	1450	19.309979	27999
15	Isohyet 15	1500	16.078876	24118
16	Isohyet 16	1550	31.276968	48479
17	Isohyet 17	1700	3.101382	5272
18	Isohyet 18	1600	24.017579	38428
19	Isohyet 19	1650	18.2657	30138
20	Isohyet 20	1700	36.130052	61421
21	Isohyet 21	1750	19.423529	33991
22	Isohyet 22	1800	22.268255	40083
23	Isohyet 23	1850	18.944806	35048
24	Isohyet 24	1900	8.744096	16614
25	Isohyet 25	1950	7.382682	14396
26	Isohyet 26	2500	1.826143	4565
27	Isohyet 27	2450	2.246871	5505
28	Isohyet 28	2000	8.081369	16163
29	Isohyet 29	2400	2.349583	5639
30	Isohyet 30	2350	2.59862	6107
31	Isohyet 31	2300	3.078832	7081
32	Isohyet 32	2250	4.197126	9444
	Isohyet 33	2200	6.518185	14340
34	Isohyet 34	2150	11.031541	23718
35	Isohyet 35	2100	19.628753	41220
36	Isohyet 36	2050	35.299617	72364
37	Isohyet 37	2000	34.005602	68011
38	Isohyet 38	1950	20.626615	40222
39	Isohyet 39	1900	14.247122	27070
40	Isohyet 40	1850	4.610794	8530
	Luas	Total	597.256733	989281

- 6. Peta Hujan CHRS 2 Metode Pilihan.
 - a. Peta Hujan CHRS Metode CCS.
 - b. Peta Hujan CHRS Metode CDR.
- 7. Perhitungan Hujan 2 Metode Pilihan Data CHRS.
 - a. Perhitungan Hujan Wilayah Metode CCS.

CDR 2008								
Nama	Hujan (mm)	P2 (P1+P2/2)	Luas Wilayah (Km^2)	Hujan Wilayah (P2 x L)				
CDR 1	2413.468294	2471.565002	127.213463	314416.34				
CDR 2	2529.661709	2580.262067	139.960136	361133.83				
CDR 3	2630.862425	2675.840521	167.739654	448844.56				
CDR 4	2720.818617	2720.818617	162.34348	441707.16				
CDR 5	2720.818617	2825.767508	0	0.00				
CDR 6	2930.716398	2986.939018	0	0.00				
CDR 7	3043.161638	3103.132433	0	0.00				
CDR 8	3163.103228	3217.451761	0	0.00				
CDR 9	3271.800293	1635.900147	0	0.00				

b. Perhitungan Hujan Wilayah Metode CDR.

CCS (2008)				
Nama	Hujan (mm)	P2 (P1+P2/2)	Luas Wilayah (Km^2)	Hujan Wilayah (P2 x L)
CCS 1	3104	3186.5	0.018357	58.4945805
CCS 2	3269	3347	45.409149	151984.4217
CCS 3	3425	3504.5	183.36529	642603.6588
CCS 4	3584	3674	136.250271	500583.4957
CCS 5	3764	3849	118.054082	454390.1616
CCS 6	3934	4001	100.444404	401878.0604
CCS 7	4068	4162	13.715179	57082.575
CCS 8	4256	4385.5	0	0
CCS 9	4515	2257.5	0	0