Projeto 1 - EQ502

Abril de 2023

Para a apresentação da resolução deste projeto insira os seguintes arquivos no Moodle com a seguinte nomenclatura RA1_RA2_Projeto_1.exensao, em que extensao pode variar de acordo com o documento gerado:

- as resoluções feitas em Excel deverão estar contidas em apenas uma planilha com uma aba referente a cada questão. Os comentários podem ser feitos na planilha também;
- as resoluções feitas em Python deverão estar contidas em um único arquivo .ipynb (notebook de Python gerado via Colab ou Jupyter). Separe cada questão usando apropriadamente o recurso de texto por marcação. Os comentário podem ser inseridos no mesmo arquivo usando tal recurso;
- se necessitar, os comentários ou resumo de suas resoluções podem ser reunidos em um único documento PDF.

1 CSTRs em série com reciclo

Esse problema é adaptado de Chapra e Canale (2005), ao estudar um sistema de quatro CSTRs isolados termicamente nos quais uma reação irreversível de primeira ordem A \longrightarrow B acontece. Uma solução com reagente A a uma concentração de 1 mol/L alimenta o primeiro reator a uma vazão volumétrica de 10 L/h. Estão presentes reciclos do reator 3 para o reator 2 e do reator 4 para o reator 3, cujas vazões volumétricas são 5 L/h e 3 L/h, respectivamente.

Figura 1: CSTRs em série com reciclo.

Os reatores possuem diferentes volumes e operam em temperaturas distintas. A Tabela 1 mostra o volume e a constante de reação para cada reator.

Reator	V (L)	k (1/h)
1	25	0.075
2	75	0.15
3	100	0.4
4	25	0.1

 ${\bf Tabela\ 1:\ Volume\ e\ constante\ de\ reação\ de\ cada\ CSTR.}$

Encontre a concentração do reagente A em cada reator no estado estacionário:

- a. resolvendo o sistema de equações algébricas lineares usando inversão de matrizes no Excel;
- b. usando a ferramenta Solver do Excel;
- c. resolvendo o sistema de equações algébricas lineares usando inversão de matrizes em Python;
- d. usando a função fsolve da biblioteca do python scipy.

Sugestão: Rotina em Python para a resolução de um Sistema de EANL

Os próximos exercícios exigirão que sistemas de equações algébricas não lineares de tamanhos diversos (números de equações) sejam resolvidas pelo método de Newton-Raphson, utilizando matriz jacobiana determinada ou analiticamente, ou numericamente. Assim, sugere-se criar uma função em Python para isso que seja independente do número de equações conforme os seguintes passos:

- 1. Desenvolva uma função em Python denominada newton_raphson usada para resolver um sistema de n equações algébricas não lineares que satisfaça os seguintes requisitos:
 - a. receba como argumentos:
 - uma função que retorne um vetor com o valor de cada uma das n equações, assim como aquela que é necessária para o método fsolve;
 - \bullet uma função que retorne a matriz $n \times n$ jacobiana determinada analítica ou numericamente;
 - um vetor com o chute inicial de cada variável;
 - um critério de parada a ser avaliado ou com a tolerância aplicada a f(x) ou com o erro relativo estimado;
 - b. retorne a solução do sistema de equações resolvida usando o método de Newton-Raphson e o número de iterações necessário de acordo com o critério de parada definido.
- 2. Para a determinação da matriz jacobiana $n \times n$ determinada numericamente, crie uma função denominada derivada_numerica que satisfaça os seguintes requisitos:
 - a. receba como argumentos:
 - uma função que retorne um vetor com o valor de cada uma das n equações, assim como aquela que é necessária para o método fsolve;
 - \bullet um vetor com o valor das n variáveis em que a derivada numérica será avaliada;
 - ulleto valor do passo husado no cálculo da derivada numérica por diferença progressiva;
 - b. retorne uma matriz jacobiana $n \times n$ determinada por diferença progressiva a ser usada na resolução da função newton_raphson.

2 Reação isotérmica em um CSTR

Considere que uma reação irreversível A + B \xrightarrow{k} C + D acontece em CSTR isotérmico que opera em estado estacionário. A constante de taxa k é igual a 0.855 L/mol·s. Uma solução com os reagentes A e B foi adicionada ao reator a uma vazão volumétrica F de 5 L/min e a concentrações de A e B iguais a 0.7 e 0.4 mol/L, respectivamente ($C_{C_1} = 0.7$ mol/L e $C_{B_1} = 0.4$ mol/L). Não há produtos C e D sendo alimentados no reator ($C_{C_1} = C_{D_1} = 0$). A vazão volumétrica na saída também é 5 L/min e o volume do líquido dentro do reator permanece igual a 40 L durante toda a reação. O modelo que representa este sistema é descrito abaixo:

$$F(C_{A_1} - C_A) - 0.855C_A C_B V = 0 (1)$$

$$F(C_{B_1} - C_B) - 0.855C_A C_B V = 0 (2)$$

$$F(C_{C_1} - C_C) + 0.855C_A C_B V = 0 (3)$$

$$F(C_{D_1} - C_D) + 0.855C_A C_B V = 0 (4)$$

Resolva o sistema de equações que representa esse CSTR e encontre as concentrações de A, B, C e D no estado estacionário:

- a. usando a função fsolve da biblioteca do python scipy;
- b. usando uma função desenvolvida por você em Python que empregue o método Newton-Raphson com a matriz Jacobiana:
 - i. determinada analiticamente;
 - ii. determinada numericamente.
- c. usando a ferramenta Solver do Excel.

3 CSTR com jaqueta de resfriamento

Considere o CSTR com uma jaqueta de resfriamento da Figura 2 operando em estado estacionário no qual uma reação exotérmica $A+B \xrightarrow{k} C$ acontece. Os balanços de massa e de energia que representam esse reator estão reescritas como a seguir:

Balanço de massa para A (mol/min):

$$Q\left(C_{A_{in}} - C_A\right) - kC_A C_B V = 0 \tag{5}$$

Balanço de massa para B (mol/min):

$$Q\left(C_{B_{\rm in}} - C_B\right) - kC_A C_B V = 0 \tag{6}$$

Balanço de massa para C (mol/min):

$$Q\left(C_{C_{\text{in}}} - C_{C}\right) + kC_{A}C_{B}V = 0 \tag{7}$$

Balanço de energia para o reator (J/min):

$$Q\rho c_p \left(T_{\rm in} - T\right) + UA \left(T_j - T\right) + kC_A C_B V \left(-\Delta H\right)_R = 0 \tag{8}$$

Balanço de energia para o fluido refrigerante (J/min):

$$Q_{j}\rho_{j}c_{p_{j}}(T_{j_{\text{in}}}-T_{j})+UA(T-T_{j})=0$$
(9)

Figura 2: CSTR com jaqueta de resfriamento.

Tabela 2: Parâmetros de reação necessários para simular o CSTR.

ρ	C_p	A	V	k_0	E_A	R	ΔH_R	U
kg/m^3	J/kg·K	m^2	m^3	$m^3/mol \cdot min$	J/mol	J/mol·K	J/mol	J/min·m ² ·K
880	1750	5	40	8.2×10^{5}	48500	8.314	-72800	680

Tabela 3: Parâmetros da jaqueta de resfriamento e condições de alimentação.

$c_{j_{ m j}}$	$ ho_j$	Q	Q_j	$C_{A_{\mathrm{in}}}$	$C_{B_{\mathrm{in}}}$	$C_{C_{\mathrm{in}}}$	$T_{ m in}$	$T_{j_{\mathrm{in}}}$
$J/kg\cdot K$	${ m kg/m^3}$	$\mathrm{m}^3/\mathrm{min}$	$\mathrm{m}^3/\mathrm{min}$	$\mathrm{mol/m^3}$	$\mathrm{mol/m^3}$	$\mathrm{mol/m^3}$	K	K
4180	1000	3	0.01	200	200	0	300	280

Usando os valores numéricos das Tabelas 2 e 3, resolva os sistemas de equações algébricas não lineares a fim de obter as concentrações A, B e C e as temperaturas do reator e da jaqueta de resfriamento no estado estacionário:

- a. usando a função fsolve da biblioteca do python scipy;
- b. usando uma função desenvolvida por você em Python que empregue o método Newton-Raphson com a matriz Jacobiana determinada numericamente:
- c. usando a ferramenta Solver do Excel e observe que esta abordagem não é robusta devido à alta característica não linear do sistema.

4 Destilação flash

Os vasos flashs são equipamentos essenciais na indústria química, sendo amplamente utilizados em processos de separação, como destilação, extração, recuperação de solventes, purificação de produtos químicos e separação de misturas azeotrópicas. O funcionamento básico de um vaso flash consiste em alimentar uma mistura líquida aquecida em alta pressão para o vaso e, em seguida, permitir que essa mistura seja rapidamente liberada em uma região de pressão inferior, chamada de zona de flash. A rápida redução de pressão leva à evaporação instantânea dos componentes mais voláteis da mistura, formando um vapor, o qual é separado do líquido remanescente. Um esquema representativo do funcionamento dessa operação unitária é mostrado na Figura 3.

Figura 3: Esquema de operação de uma vaso flash.

Caso o vaso flash possa ser aproximado por um estágio de equilíbrio total, a composição de saída da fase vapor e da fase líquida podem ser relacionada através do equilíbrio líquido-vapor. Considerando que tanto a fase líquida, quanto a fase vapor, se comportam idealmente, a composição de vapor y_i se relaciona com a composição do líquido x_i através da lei de Raoult:

$$y_i = K_i x_i, (10)$$

onde K_i representa a constante de partição, que é dada pela razão entre a pressão de saturação P_i^S do componente i na dada condição e a pressão de operação do flash P.

Considere que uma alimentação de 100 kmol/h consistindo de 10, 20, 30, e 40 % (base molar) de propano, n-butano, n-pentano, e n-hexano, respectivamente, entra em um vaso flash que opera em P=689.5 kPa e T=366.5 K. Assuma equilíbrio, que as fases vapor e líquida são ideais e que a pressão de vapor de cada componente é dada pela equação de Antoine:

$$\log_{10} P_i^S = A - \frac{B}{T + C} \tag{11}$$

em que os parâmetros A, B e C são dados na Tabela 4.

Tabela 4: Parâmetros de Antoine para a pressão de saturação dos hidrocarbonetos abordados. Para usar esse conjunto de constantes, T deve ser usado em ${}^{\mathbf{Q}}$ C e P_i^S é dado em mmHg.

Componente	A	В	С
Propano	6,82970	813,2008	247,99
n-Butano	6,80897	$935,\!86$	238,73
n-Pentano	6,85221	1064,63	232
n-Hexano	6,8776	$1171,\!53$	$234,\!366$

- a. Determine as 10 variáveis desconhecidas e as 10 equações necessárias para modelar esse problema? Esse sistema de equações é linear ou não linear? (**Dica:** são necessários um balanço de massa e uma equação de equilíbrio para cada componente, mais uma restrição $\sum z_i = 1$ para cada fase desconhecida)
- b. Usando uma função desenvolvida por você em Python que empregue o método Newton-Raphson, determine a fração da alimentação que é vaporizada nesse flash e a composição de cada uma das fases. (*Dica: é mais prático implementar as derivadas numericamente do que analiticamente, por ser um sistema de equações grande.*)
- c. Problemas de vasos flash isotérmicos com N componentes também podem ser resolvidos através de uma única equação não linear com o método de Rachford-Rice:

$$\sum_{i=1}^{N} \frac{z_i (1 - K_i)}{1 + \Psi (K_i - 1)} = 0, \tag{12}$$

onde Ψ é a fração vaporizada (V/F) e é a única variável desconhecida. A partir de Ψ , a composição da fase líquida e vapor é dada por:

$$x_i = \frac{z_i}{1 + \Psi(K_i - 1)} = 0, (13)$$

$$y_i = \frac{K_i z_i}{1 + \Psi(K_i - 1)} = 0. {14}$$

Implemente a resolução do problema proposto em python utilizando o método de Rachford-Rice e o método de Newton-Raphson.

d. Como seria a separação dessa mesma mistura nesse mesmo flash caso a temperatura de operação fosse igual a 375 K? E o que aconteceria se a pressão de operação reduzisse para 550 kPa (mantendo a temperatura inicial)?