Proofs for Chapter 8 Series

Constantin Filip

Definition 1 A series is an infinite sum of real numbers

$$\sum_{i=1}^{\infty}$$

Definition 2 The partial sum $(S_n)_{n\geq 1}$ is defined as

$$S_n = \sum_{i=1}^n a_i$$

Definition 3 Let $\sum_{i=1}^{\infty} a_i$ be a series. Then the series has a limit l in \mathbb{R} iff its sequences of partial sums $(S_n)_{n\geq 1}$ has limit l. The series is said to diverge if it does not converge to some l in \mathbb{R} .

Theorem 1 Suppose that the series of real numbers $\sum_{i=1}^{\infty} a_i$ converges. Then the sequence of summands has limit 0: $\lim_{n\to\infty} a_n = 0$

Let $\epsilon > 0$ be given. By definition of series convergence, the sequence of partial sums $(S_n)_{n\geq 1}$ converges to a limit in \mathbb{R} , so it is a Cauchy sequence.

Then there exists $N \in \mathbb{N}$ such that for $n, m \geq N$, we have $|S_m - S_n| < \epsilon$. Set m = n+1 so that $|S_{n+1} - S_n| < \epsilon$ for n > N. But $S_{n+1} - S_n = a_{n+1}$, so $|a_{n+1}| < \epsilon$ for n > N, so $|a_n| < \epsilon$ for n > N+1. Then by the definition of sequence convergence, $\lim_{n \to \infty} a_n = 0$ as required. \square

Definition 4 The geometric series is defined as

$$G(x) = \sum_{n=1}^{\infty} x^n$$

Theorem 2 $\sum_{i=1}^{\infty} x^i$ converges iff |x| < 1

$$G_n(x) = x + \sum_{i=2}^n x^i$$

$$= x + x \cdot \sum_{i=1}^{n-1} x^i$$

$$= x + x \cdot (G_n(x) - x^n)$$

Making $G_n(x)$, the subject, we obtain

$$G_n(x) = \frac{x}{1-x} - \frac{1}{1-x} \cdot x^{n+1}$$

Hence $(G_n)_{n\geq 1}$ converges iff x^{n+1} converges iff |x|<1. \square

Definition 5 The harmonic series is defined as

$$S = \sum_{n=1}^{\infty} \frac{1}{n}$$

Theorem 3 The harmonic series diverges

$$S = 1 + \frac{1}{2} + \underbrace{\left(\frac{1}{3} + \frac{1}{4}\right)}_{> \frac{1}{4} + \frac{1}{4}} + \underbrace{\left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right)}_{> \frac{1}{9} + \frac{1}{9} + \frac{1}{9} + \frac{1}{9}} + \dots > 1 + \frac{1}{2} + \frac{1}{2} + \dots$$

Hence

$$S_{2^n} = \sum_{i=1}^{2^n} \frac{1}{i} > 1 + \frac{n}{2}$$

Then $(S_n)_{n\geq 1}$ is not bounded above, so $(S_n)_{n\geq 1}$ has no limit. Therefore, the harmonic series diverges by definition of series divergence. \square

Theorem 4 The series of inverse squares converges

Let $T_n = \sum_{i=1}^n \frac{1}{i(i+1)}$. Then using partial fractions,

$$T_n = \sum_{i=1}^n \frac{1}{i(i+1)}$$

$$= \sum_{i=1}^n \left(\frac{1}{i} - \frac{1}{i+1}\right)$$

$$= 1 - \frac{1}{n+1}$$

Now for $i \geq 2$

$$\frac{1}{i(i+1)} < \frac{1}{i^2} < \frac{1}{i(i-1)}$$

Therefore

$$T_n - \frac{1}{2} < \sum_{i=2}^{\infty} \frac{1}{i^2} < T_{n-1}$$
$$\frac{1}{2} - \frac{1}{n+1} < S_n - 1 < 1 - \frac{1}{n}$$

$$\frac{3}{2} - \frac{1}{n+1} < S_n < 2 - \frac{1}{n}$$

Hence $(S_n)_{n\geq 1}$ is increasing and bounded above, so $(S_n)_{n\geq 1}$ has a limit, so the series of inverse squares converges by definition. \square

Theorem 5 Comparison test For a series $\sum_{i=1}^{\infty} a_i$ with positive terms, let $\lambda > 0$ and $N \in \mathbb{N}$. Further, let $\sum_{i=1}^{\infty} c_i$ be a converging series and $\sum_{i=1}^{\infty} d_i$ a diverging series

- 1. If $a_i \leq \lambda c_i$ for all i > N, then $\sum_{i=1}^{\infty} a_i$ converges
- 2. If $a_i \geq \lambda d_i$ for all i > N, then $\sum_{i=1}^{\infty} a_i$ diverges

If $\sum_{i=1}^{\infty} c_i$ is convergent, then its sequence $(U_m)_{m\geq 1}$ of partial sums converges and is bounded above by some M. Since $a_i \leq \lambda c_i$, the sequence of partial sums $(S_n)_{n\geq 1}$ is bounded above by λM and therefore also converges, so $\sum_{i=1}^{\infty} a_i$ converges by definition.

If $\sum_{i=1}^{\infty} d_i$ diverges, then its sequence of partial sums $(L_m)_{m\geq 1}$ diverges, so for all real k, there exists $N\in\mathbb{N}$ such that $L_m>\frac{k}{\delta}$ for all m>N. Since $a_i\geq \lambda c_i$, the sequence of partial sums $(S_m)_{m\geq 1}$ of $\sum_{i=1}^{\infty} a_i$ has $S_m\geq \lambda L_m>k$ for all m>N so $(S_m)_{m\geq 1}$ diverges and $\sum_{i=1}^{\infty}$ diverges by definition. \square

Theorem 6 Limit comparison text Let $\sum_{i=1}^{\infty} c_i$ be a convergent series and let $\sum_{i=1}^{\infty} d_i$ be a divergent series.

- 1. If $\lim_{i\to\infty} \frac{a_i}{c_i} \in \mathbb{R}$ exists, then $\sum_{i=1}^{\infty} a_i$ converges
- 2. If $\lim_{i\to\infty} \frac{d_i}{a_i} \in \mathbb{R}$ exists, then $\sum_{i=1}^{\infty} a_i$ diverges

Let $\epsilon > 0$ be given. Then there exists N such that for all i > N

$$\left| \frac{a_i}{c_i} - l \right| < \epsilon$$

Then

$$\left|\frac{a_i}{c_i}\right| \le \left|\frac{a_i}{c_i} - l\right| + |l| < \epsilon + |l| = \lambda$$

where λ is constant. Hence $a_i \leq \lambda c_i$ (a_i and c_i are both positive) for all i > N so by the comparison test $\sum_{i=1}^{\infty} a_i$ converges. The same reasoning can be used to show (2).

Theorem 7 D'Alembert's Ratio Test

- 1. If $\frac{a_{i+1}}{a_i} \geq 1$ for all $i \geq N$, where $N \in \mathbb{N}$, then $\sum_{i=1}^{\infty}$ diverges
- 2. If there exists some k < 1 in \mathbb{R} such that $\frac{a_{i+1}}{a_i} \leq k$ for all $i \geq N$ where $N \in \mathbb{N}$, then $\sum_{i=1}^{\infty} a_i$ converges

If $\frac{a_{i+1}}{a_i} \ge 1$ for all $i \ge N$, then $a_N \le a_{N+1} \le a_{N+2} \le \dots$. Since $a_N > 0$ then $a_n \ge a_N$ for n > N so a_n does not tend to zero. Hence by the contrapositive of Theorem 1, the series is not convergent.

If $\frac{a_{i+1}}{a_i} \leq k < 1$ for all $i \geq N$, then $a_{N+m} \leq k^m a_N$. Setting $\lambda = \frac{a_N}{k^N}$, which is a constant, and n = N + m, we have $a_n \leq \lambda k^n$. Since |k| < 1, the geometric series $\sum_{i=1}^{\infty} k^i$ converges, so by the comparison test $\sum_{n=1}^{\infty} a_n$ converges.

Theorem 8 *D'Alembert's Limit Ratio Test* For a series $\sum_{i=1}^{\infty} a_i$, suppose $\lim_{i\to\infty} \frac{a_{i+1}}{a_i}$ exists. Then

- 1. If $\lim_{i\to\infty} \frac{a_{i+1}}{a_i} > 1$ then $\sum_{i=1}^{\infty} a_i$ diverges
- 2. If $\lim_{i\to\infty} \frac{a_{i+1}}{a_i} = 1$, then the test is inconclusive
- 3. If $\lim_{i\to\infty} \frac{a_{i+1}}{a_i} < 1$ then $\sum_{i=1}^{\infty} a_i$ converges

We first consider when $\lim_{i\to\infty}\frac{a_{i+1}}{a_i}=l>1$. For $\epsilon=l-1$ (ϵ is positive as l>1), there exists $N\in\mathbb{N}$ such that for all i>N

$$\left| \frac{a_{i+1}}{a_i} - l \right| < \epsilon$$

$$l - \epsilon < \frac{a_{i+1}}{a_i} < l + \epsilon$$

$$1 < \frac{a_{i+1}}{a_i} < 2l - 1$$

Since $\frac{a_{i+1}}{a_i} > 1$, by d'Alembert's ratio test, $\sum_{i=1}^{\infty} a_i$ diverges.

For $\lim_{i\to\infty}\frac{a_{i+1}}{a_i}=l<1$, set $\epsilon=\frac{1-l}{2}$ which is positive as l<1. Then there exists $N\in\mathbb{N}$ such that for all i>N,

$$\left| \frac{a_{i+1}}{a_i} - l \right| < \epsilon$$

$$l - \epsilon < \frac{a_{i+1}}{a_i} < l + \epsilon = \frac{1+l}{2}$$

Hence setting $k = \frac{1+l}{2}$

$$\frac{a_{i+1}}{a_i} < k < 1$$

so by d'Alembert's ratio test $\sum_{i=1}^{\infty} a_i$ converges.

Theorem 9 Integral test Let $f : \mathbb{R} \to \mathbb{R}^+$ be a function that is continuous and decreasing and positive on the interval $[1, \infty)$. Let $a_n = f(n)$ for all n in \mathbb{N} . Then we have

1. If $\int_{1}^{\infty} f(x) dx$ converges, then the series $\sum_{i=1}^{\infty} a_i$ converges

2. If $\int_1^\infty f(x) dx$ diverges, then $\sum_{i=1}^\infty a_i$ diverges

If $\int_1^\infty f(x) dx$ converges, then $\lim_{r\to\infty} \int_1^r f(x) dx = L \in \mathbb{R}$ by definition. Hence the sequence $(a_n)_{n\geq 1} = \int_1^n f(x) dx$ converges to L. Let the partition $P = \{i \mid 1 \leq i \leq n\}$ for some $n \in \mathbb{N}$. Then

$$L(f,P) = \sum_{i=2}^{n} f(i) = \sum_{i=1}^{n} a_i - a_1$$

Hence

$$\sum_{i=1}^{n} a_i < \int_1^n f(x) \mathrm{d}x + a_1$$

Since $\int_1^n f(x) dx + a_1 \to L + a_1$ as $n \to \infty$, the sequence of partial sums of $\sum_{i=1}^\infty a_i$ converges so $\sum_{i=1}^\infty a_i$ converges by definition. If $\int_1^\infty f(x) dx$ diverges, then the sequence $(b_n)_{n \ge 1}$ where $b_n = \int_1^n f(x) dx$ also ...

Using the same partition as before

$$U(f, P) = \sum_{i=1}^{n-1} f(i) = \sum_{i=1}^{n} a_i - a_n$$

Hence

$$\sum_{i=1}^{n} a_i > \int_{1}^{n} f(x) \mathrm{d}x + a_n$$

Since $\int_1^n f(x) dx$ diverges, $\int_1^n f(x) dx + a_n$ also diverges so $\sum_{i=1}^n a_i$ diverges, so the series $\sum_{i=1}^{\infty}$ diverges by definition.

Definition 6 A permutation π over the natural numbers is a bijective func $tion \ \pi: \mathbb{N} \to \mathbb{N}$

Definition 7 A series $\sum_{i=1}^{\infty} a_i$ is unconditionally convergent iff it converges and the permuted series

$$\sum_{i=1}^{\infty} a_{\pi(i)}$$

converges to the same limit for all permutations $\pi: \mathbb{N} \to \mathbb{N}$

Definition 8 A series $\sum_{i=1}^{\infty} a_i$ is absolutely convergent iff the corresponding series of absolute values of summands

$$\sum_{i=1}^{\infty} |a_i|$$

converges

Theorem 10 Absolute value comparison test Suppose b_i is a non-negative sequence such that $\sum_{i=1}^{\infty} b_i$ converges and suppose a_i is a sequence such that $|a_i| \leq b_j$ for all $i \geq 1$. Then $\sum_{i=1}^{\infty} a_i$ converges.

Denote the partial sums of $\sum_{i=1}^{\infty} a_i$ by S_n and that of $\sum_{i=1}^{\infty} b_i$ by S'_n . Let $\epsilon > 0$. Since S'_n converges in the real numbers, it is a Cauchy sequence, so there exists N such that for all $m \ge n > N$, we have $S'_m - S'_n < \epsilon$. Then for $m \ge n > N$ and using the general triangle inequality, we have

$$|S_m - S_n| = \left| \sum_{i=n+1}^m a_i \right| \le \sum_{i=n+1}^m |a_i| \le \sum_{i=n+1}^m b_i = S'_m - S'_n < \epsilon$$

Hence S_n is a Cauchy sequence so it converges.

Theorem 11 If $\sum_{i=1}^{\infty} a_i$ is absolutely convergent then it is convergent.

Set $b_n = |a_n|$ in the absolute value comparison test.

Theorem 12 If a series is absolutely convergent, then it is unconditionally convergent

Suppose that $\sum_{i=1}^{\infty} a_i$ is absolutely convergent. Then from Theorem 10, $\sum_{i=1}^{\infty} a_i$ is convergent to A. Hence for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all n > N,

$$\left| \sum_{i=1}^{n} a_i - A \right| = \left| A - \sum_{i=1}^{n} a_i \right| = \left| \sum_{i=n+1}^{\infty} a_i \right| < \frac{\epsilon}{2}$$

Let $\sum_{i=1}^{\infty} b_i$ be some permutation of $\sum_{i=1}^{\infty} a_i$, that is, there exists some bijection $\sigma: \mathbb{N} \to \mathbb{N}$ such that $b_i = a_{\sigma(i)}$. Let $S = \{k \mid \sigma(k) \leq i\}$. It follows that |S| = n since σ is bijective. Then let $J = \max S$. For $m \geq J$, we have

$$\sum_{i=1}^{m} b_{i} = b_{1} + \dots + b_{m} = a_{\sigma(1)} + \dots + a_{\sigma(m)}$$

Every term a_1, \ldots, a_n must be include in the sum as J is the maximum of S. Then for $m \geq J$, $\sum_{i=1}^m b_i - \sum_{j=1}^n a_j = \sum_{k=n+1}^\infty a_k$, so by the general triangle inequality

$$\left| \sum_{i=1}^{m} b_i - \sum_{j=1}^{n} a_j \right| = \left| \sum_{k=n+1}^{\infty} a_k \right| \le \sum_{k=n+1}^{\infty} |a_k| < \frac{\epsilon}{2}$$

Therefore

$$\left| A - \sum_{i=1}^{m} b_i \right| \le \left| A - \sum_{i=1}^{n} a_i \right| + \left| \sum_{i=1}^{m} b_i - \sum_{j=1}^{n} a_j \right|$$
$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$
$$= \epsilon$$

so $\sum_{i=1}^{\infty} b_i$ converges to the same limit and therefore $\sum_{i=1}^{\infty} a_i$ is unconditionally convergent.

Theorem 13 Limit absolute value ratio test Consider the series $\sum_{i=0}^{\infty} a_i$ with $a_i \neq 0$ for $i \geq 1$.

- 1. If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$ then $\sum_{n=1}^{\infty} a_n$ converges absolutely
- 2. If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$ then $\sum_{n=1}^{\infty} a_n$ diverges
- 3. If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$ then $\sum_{n=1}^{\infty} a_n$ may converge or diverge

This is immediate from D'Alembert's limit ratio test.

Definition 9 Let $(a_n)_{n\geq 1}$ be a sequence, and let the sequence $(b_n)_{n\geq 1}$ be the sequence such that

$$b_n = \sup\{a_m | m \ge n\}$$

The limit superior of $(a_n)_{n\geq 1}$ is defined as $\lim_{n\to\infty} b_n$, denoted $\limsup_{n\to\infty} a_n$

Definition 10 Let $(a_n)_{n\geq 1}$ be a sequence, and let the sequence $(c_n)_{n\geq 1}$ be the sequence such that

$$c_n = \inf\{a_m | m \ge n\}$$

The limit inferior of $(a_n)_{n\geq 1}$ is defined as $\lim_{n\to\infty} c_n$, denoted $\liminf_{n\to\infty} a_n$

Lemma 1 Given a sequence $(a_n)_{n\geq 1}$, show that there exist subsequences $(a_{m_i})_{i\geq 1}$ and $(a_{p_i})_{i\geq 1}$ such that $\limsup_{n\to\infty} a_n = \lim_{i\to\infty} a_{m_i}$ and $\liminf_{n\to\infty} a_n = \lim_{i\to\infty} a_{p_i}$.

Let $\limsup_{n\to\infty} a_n = l$. Then by definition of the limit superior, given $\frac{\epsilon}{2} > 0$, there exists N_1 such that for all $n > N_1$

$$|\sup_{m>n} \{a_m\} - l| < \frac{\epsilon}{2}$$

We construct a subsequence $(a_{m_i})_{i\geq 1}$ of (a_n) where for all $i\geq 1,\, a_{m_i}$ satisfies

$$|a_{m_i} - \sup_{m \ge i} \{a_m\}| < \frac{1}{i}$$

Let N_2 be the smallest integer such that

$$|a_{m_N} - \sup_{m>N} \{a_m\}| < \frac{1}{N_2} < \frac{\epsilon}{2}$$

Let $N = \max\{N_1, N_2\}$. Then for all n > N

$$|a_{m_n} - l| \le |a_{m_n} - \sup_{m \ge n} \{a_m\}| + |\sup_{m \ge n} \{a_m\} - l|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

so $(a_{m_i})_{i\geq 1} \to \limsup_{n\to\infty} a_n$ as required. The same can be shown similarly for $\liminf_{n\to\infty} a_n$.

Lemma 2 If $(a_{q_i})_{i\geq 1}$ is any convergent subsequence of $(a_n)_{n\geq 1}$, then we have

$$\liminf_{n \to \infty} a_n \le \lim_{i \to \infty} a_{q_i} \le \limsup_{n \to \infty} a_n$$

By definition,

$$a_{q_i} \ge \inf_{m \ge q_i} \{a_m\} \ge \inf_{m \ge n} \{a_m\}$$

for all $i \geq 1$, where i = n. Since a_{q_n} is greater than $\inf_{m \geq n} \{a_m\}$ for all $n \geq 1$, $\lim_{i \to \infty} a_{q_i} \geq \lim_{n \to \infty} (\inf_{m \geq n} \{a_m\}) = \lim_{n \to \infty} a_n$.

The same reasoning can be used to show that $\lim_{i\to\infty} a_{q_i} \leq \lim\sup_{n\to\infty} a_n$.

Lemma 3 If a sequence $(a_n)_{n\to\infty}$ converges, then

$$\liminf_{n \to \infty} a_n = \limsup_{n \to \infty} a_n = \lim_{n \to \infty} a_n$$

We can construct a subsequence $(a_{m_i})_{i\geq 1}$ that converges to $\liminf_{n\to\infty} a_n$ and a second subsequence $(a_{p_i})_{i\geq 1}$ that converges to $\limsup_{n\to\infty} a_n$. But since any convergent subsequence converges to the limit of the sequence, $\liminf_{n\to\infty} a_n$ and $\limsup_{n\to\infty} a_n$ must both be equal to the limit of $(a_n)_{n\geq 1}$.

Theorem 14 nth root test For the series $\sum_{n=1}^{\infty} a_n$, let $l = \limsup_{n \to \infty} |a_n|^{1/n}$

- 1. If l < 1, then the series converges absolutely
- 2. If l > 1, then the series diverges
- 3. If l=1, then the series absolutely converges, converges or diverges

For (1), let $l = \limsup_{n \to \infty} |a_n|^{1/n} < 1$. Then l < (l+1)/2 < 1. By the definition of the limit superior, there exists N such that for all n > N, $|a_n|^{1/n} < (l+1)/2$, that is, $|a_n| < c^n$ for n > N where c = (l+1)/2 < 1, so the series converges absolutely by the comparison test with the geometric series $\sum_{n=1}^{\infty} c_n$.

Now suppose l>1 for (2). Then c=(l+1)/2>1. Since l is the limit superior of $|a_n|^{1/n}$, there exists a subsequence $(|a_{n_i}|^{1/n_i})_{i\geq 1}$ such that $\lim_{i\to\infty}|a_{n_i}|^{1/n_i}=l$. Then there exists N such that for i>N, we have $|a_{n_i}|^{1/n_i}>c>1$ or $|a_{n_i}|>c^{n_i}>1$, so $|a_n|$ does not converge to 0 so the series diverges.

For (3), consider the series (i) $\sum_{n=1}^{\infty} 1/n^2$, (ii) $\sum_{n=1}^{\infty} (-1)^{n+1}/2$ and (iii) $\sum_{n=1}^{\infty} 1/n$. All three have limit superior equal to 1, but (i) converges (absolutely), (ii) converges conditionally and (iii) diverges.