

Machine learning: lecture 12

Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu

Topics

- Complexity and model selection
 - structural risk minimization
- · Complexity, compression, and model selection
 - description length
 - minimum description length principle

Tommi Jaakkola, MIT CSAIL

VC-dimension: review

Shattering: A set of classifiers F (e.g., linear classifiers) is said to shatter n points $\mathbf{x}_1,\dots,\mathbf{x}_n$ if for any possible configuration of labels y_1,\dots,y_n we can find $h\in F$ that reproduces those labels.

 ${f VC\text{-}dimension:}\ {\sf The\ VC\text{-}dimension}\ {\sf of\ a\ set\ of\ classifiers}\ F$ is the largest number of points that F can shatter (maximized over the choice of the n points).

Learning: We don't expect to learn anything until we have more than d_{VC} training examples and labels (this statement will be refined later on).

The number of labelings

$$\begin{split} n &\leq d_{VC}: &\quad \# \text{ of labelings } = 2^n \\ n &> d_{VC}: &\quad \# \text{ of labelings } \leq \left(\frac{en}{d_{VC}}\right)^{d_{VC}} \end{split}$$

Tommi Jaakkola, MIT CSAIL

Tommi Jaakkola, MIT CSAIL

Learning and VC-dimension

ullet By essentially replacing $\log M$ in the finite case with the \log of the number of possible labelings by the set of classifiers over n (really 2n) points, we get an analogous result:

Theorem: With probability at least $1 - \delta$ over the choice of the training set, for all $h \in F$

$$\mathcal{E}(h) \le \hat{\mathcal{E}}_n(h) + \epsilon(n, d_{VC}, \delta)$$

where

$$\epsilon(n, d_{VC}, \delta) = \sqrt{\frac{d_{VC}(\log(2n/d_{VC}) + 1) + \log(1/(4\delta))}{n}}$$

Model selection

- We try to find the model with the best balance of complexity and fit to the training data
- Ideally, we would select a model from a nested sequence of models of increasing complexity (VC-dimension)

Model 1, F_1 VC-dim = d_1

Model 2, F_2 VC-dim $= d_2$

Model 3, F_3 VC-dim $= d_3$

where $F_1 \subseteq F_2 \subseteq F_3 \subseteq \dots$

• Model selection criterion: find the model (set of classifiers) that achieves the lowest upper bound on the expected loss (generalization error):

Expected error ≤ Training error + Complexity penalty

Tommi Jaakkola, MIT CSAIL

Tommi Jaakkola, MIT CSAIL

Structural risk minimization

ullet We choose the model class F_i that minimizes the upper bound on the expected error:

$$\mathcal{E}(\hat{h}_i) \le \hat{\mathcal{E}}_n(\hat{h}_i) + \sqrt{\frac{d_i(\log(2n/d_i) + 1) + \log(1/(4\delta))}{n}}$$

where \hat{h}_i is the classifier from F_i that minimizes the training error.

Tommi Jaakkola, MIT CSAIL

Example

Models of increasing complexity

$$\begin{array}{ll} \text{Model 1} & K(\mathbf{x}_1,\mathbf{x}_2) = (1+(\mathbf{x}_1^T\mathbf{x}_2)) \\ \text{Model 2} & K(\mathbf{x}_1,\mathbf{x}_2) = (1+(\mathbf{x}_1^T\mathbf{x}_2))^2 \\ \text{Model 3} & K(\mathbf{x}_1,\mathbf{x}_2) = (1+(\mathbf{x}_1^T\mathbf{x}_2))^3 \end{array}$$

These are nested, i.e.,

$$F_1 \subseteq F_2 \subseteq F_3 \subseteq \dots$$

where F_k refers to the set of possible decision boundaries that the model k can represent.

Tommi Jaakkola, MIT CSAIL

Structural risk minimization: example

Tommi Jaakkola, MIT CSAIL

Structural risk minimization: example cont'd

• Number of training examples n = 50, confidence parameter $\delta = 0.05$.

Model	d_{VC}	Empirical fit	$\epsilon(n, d_{VC}, \delta)$
1^{st} order	3	0.06	0.5501
2^{nd} order	6	0.06	0.6999
4^{th} order	15	0.04	0.9494
8^{th} order	45	0.02	1.2849

• Structural risk minimization would select the simplest (linear) model in this case.

Tommi Jaakkola, MIT CSAIL 10

Complexity and margin

• The number of possible labelings of points with large margin can be dramatically less than the (basic) VC-dimension would imply

ullet The set of separating hyperplaces which attain margin γ or better for examples within a sphere of radius R has VC-dimension bounded by $d_{VC}(\gamma) \leq R^2/\gamma^2$

Topics

- Complexity and model selection
- structural risk minimization
- Complexity, compression, and model selection
 - description length
 - minimum description length principle

Tommi Jaakkola, MIT CSAIL

Tommi Jaakkola, MIT CSAIL

11

12

Data compression and model selection

- We can alternatively view model selection as a problem of finding the best way of communicating the available data
- Compression and learning:

Data compression and model selection

- We can alternatively view model selection as a problem of finding the best way of communicating the available data
- Compression and learning:

Tommi Jaakkola, MIT CSAIL

13

Tommi Jaakkola, MIT CSAIL

. . .

Data compression and model selection

- We can alternatively view model selection as a problem of finding the best way of communicating the available data
- Compression and learning:

Tommi Jaakkola, MIT CSAIL

15

17

Data compression and model selection

- We can alternatively view model selection as a problem of finding the best way of communicating the available data
- Compression and learning:

Tommi Jaakkola, MIT CSAIL

Data compression and model selection

- We can alternatively view model selection as a problem of finding the best way of communicating the available data
- Compression and learning:

Data compression and model selection

- We can alternatively view model selection as a problem of finding the best way of communicating the available data
- Compression and learning:

The receiver already knows

- input examples, models we consider

Need to communicate

- model class, parameter estimates, prediction errors

Tommi Jaakkola, MIT CSAIL

Tommi Jaakkola, MIT CSAIL

18

Compression and sequential estimation

• We don't have to communicate any real valued parameters if we setup the learning problem sequentially

$$y_1 \quad y_2 \quad \dots \quad y_n$$
 ? ? \dots ? $x_1 \quad x_2 \quad \dots \quad x_n$

Compression and sequential estimation

• We don't have to communicate any real valued parameters if we setup the learning problem sequentially

 θ_0 : default parameter values

Tommi Jaakkola, MIT CSAIL

Tommi Jaakkola, MIT CSAIL

. . .

24

Compression and sequential estimation

• We don't have to communicate any real valued parameters if we setup the learning problem sequentially

 θ_0 : default parameter values $\hat{\theta}_1$: based on θ_0 and (x_1, y_1)

Compression and sequential estimation

• We don't have to communicate any real valued parameters if we setup the learning problem sequentially

 $heta_0$: default parameter values $\hat{ heta}_1$: based on $heta_0$ and (x_1,y_1)

Tommi Jaakkola, MIT CSAIL 22

Tommi Jaakkola, MIT CSAIL

Compression and sequential estimation

• We don't have to communicate any real valued parameters if we setup the learning problem sequentially

 $heta_0$: default parameter values $\hat{ heta}_1$: based on $heta_0$ and (x_1,y_1)

 $\hat{ heta}_{n-1}$: based on $heta_0$ and $(x_1,y_1),\ldots,(x_{n-1},y_{n-1})$

Compression and sequential estimation

• We don't have to communicate any real valued parameters if we setup the learning problem sequentially

$$y_1$$
 y_2 \dots y_n ? ? \dots ?
$$h(x; \hat{\theta}_{n-1})$$
 x_1 x_2 \dots x_n

 $heta_0$: default parameter values $\hat{ heta}_1$: based on $heta_0$ and (x_1,y_1)

Tommi Jaakkola, MIT CSAIL

 $\hat{ heta}_{n-1}$: based on $heta_0$ and $(x_1,y_1),\ldots,(x_{n-1},y_{n-1})$

- we only need to communicate the model class (index) and prediction errors
- but the answer depends on the sequential order

but the diletter depends on the sequential order

Tommi Jaakkola, MIT CSAIL

23

21

Probabilistic sequential prediction

 To communicate the labels effectively we need to cast the problem in probabilistic terms

Probabilistic sequential prediction

- To communicate the labels effectively we need to cast the problem in probabilistic terms
- Suppose we define a model $P(y|x,\theta), \theta \in \Theta$ and prior $P(\theta)$, both known to the receiver

Tommi Jaakkola, MIT CSAIL

25

27

Tommi Jaakkola, MIT CSAIL

. . .

Probabilistic sequential prediction

- To communicate the labels effectively we need to cast the problem in probabilistic terms
- Suppose we define a model $P(y|x,\theta), \theta \in \Theta$ and prior $P(\theta)$, both known to the receiver

We predict the first label according to

$$y_1|x_1 : P(y_1|x_1) = \int P(y_1|x_1, \theta) P(\theta) d\theta$$

and update the prior (posterior)

$$P(\theta|D_1) = \frac{P(\theta)P(y_1|x_1,\theta)}{P(y_1|x_1)}$$

where $D_1 = \{(x_1, y_1)\}.$

Tommi Jaakkola, MIT CSAIL

Probabilistic sequential prediction

- To communicate the labels effectively we need to cast the problem in probabilistic terms
- Suppose we define a model $P(y|x,\theta), \theta \in \Theta$ and prior $P(\theta)$, both known to the receiver

We predict the second label according to

$$y_2|x_2$$
: $P(y_2|x_2, D_1) = \int P(y_2|x_2, \theta) P(\theta|D_1) d\theta$

and again update the posterior

$$P(\theta|D_2) = \frac{P(\theta|D_1)P(y_2|x_2, \theta)}{P(y_2|x_2, D_1)}$$

where $D_2 = \{(x_1, y_1), (x_2, y_2)\}.$

Tommi Jaakkola, MIT CSAIL 28

Probabilistic sequential prediction

- To communicate the labels effectively we need to cast the problem in probabilistic terms
- Suppose we define a model $P(y|x,\theta), \theta \in \Theta$ and prior $P(\theta)$, both known to the receiver

Finally, we predict the last n^{th} label according to

$$y_n|x_n \ : \ P(y_n|x_n,D_{n-1}) = \int P(y_n|x_n,\theta) \frac{P(\theta|D_{n-1})}{\theta} d\theta$$
 where $D_{n-1} = \{(x_1,y_1),\dots,(x_{n-1},y_{n-1})\}.$

Probabilistic sequential prediction

- To communicate the labels effectively we need to cast the problem in probabilistic terms
- Suppose we define a model $P(y|x,\theta), \theta \in \Theta$ and prior $P(\theta)$, both known to the receiver

Our sequential prediction method defines a probability distribution over all the labels given the examples:

$$P(y_1|x_1)P(y_2|x_2,D_1)\cdots P(y_n|x_n,D_{n-1})$$

This *does not* depend on the order in which we processed the examples.

Probabilistic sequential prediction

- To communicate the labels effectively we need to cast the problem in probabilistic terms
- Suppose we define a model $P(y|x,\theta), \theta \in \Theta$ and prior $P(\theta)$, both known to the receiver

Our sequential prediction method defines a probability distribution over all the labels given the examples:

$$P(y_1|x_1)P(y_2|x_2,D_1)\cdots P(y_n|x_n,D_{n-1})$$

This *does not* depend on the order in which we processed the examples.

$$= \int P(y_1|x_1,\theta) \cdots P(y_n|x_n,\theta) P(\theta) d\theta$$

(Bayesian marginal likelihood)

Tommi Jaakkola, MIT CSAIL

31

Description length and probabilities

• It takes $-\log_2 P(y_1, \dots, y_n)$ bits to communicate y_1, \dots, y_n according to distribution P.

Example: suppose $y=1,\dots,8$ and each value is equally likely according to P

We need $-\log_2 P(y) = -\log_2(1/8) = 3$ bits to describe each y.

Tommi Jaakkola, MIT CSAIL 32