Problem Set 1

QTM 200: Applied Regression Analysis

Due: January 29, 2020

Instructions

- Please show your work! You may lose points by simply writing in the answer. If the problem requires you to execute commands in R, please include the code you used to get your answers. Please also include the .R file that contains your code. If you are not sure if work needs to be shown for a particular problem, please ask.
- Your homework should be submitted electronically on the course GitHub page in .pdf form.
- This problem set is due at the beginning of class on Wednesday, January 22, 2020. No late assignments will be accepted.
- Total available points for this homework is 100.

Question 1 (25 points)

A private school counselor was curious about the average of IQ of the students in her school and took a random sample of 25 students' IQ scores. The following is the data set:

```
1 y <- c(105, 69, 86, 100, 82, 111, 104, 110, 87, 108, 87, 90, 94, 113, 112, 98, 80, 97, 95, 111, 114, 89, 95, 126, 98)
2 #Find the sum
3 sum(y)
4 #Find the mean
5 sum(y)/length(y)
6 sample_mean=mean(y)
7 #Find the sum of errors
8 demeanedSumSimple = y - mean(y)
9 demeanedSumSimple
10 sum(demeanedSumSimple)
11 #Find the squared error
12 squaredError= demeanedSumSimple^2</pre>
```

```
#Find the varience
varience=sum(squaredError)/length(y)-1
varience
#Find the standard deviation
Sd= sqrt(varience)
sample_sd=Sd
#Given confidence coefficient = 0.9
z90=qt((1-0.9)/2,df=length(y)-1, lower.tail = FALSE)
n= length(y)
lower_90 = sample_mean-(z90*(sample_sd/sqrt(n)))
upper_90 = sample_mean+(z90*(sample_sd/sqrt(n)))
confint90 = c(lower_90, upper_90)
confint90
```

Find a 90% confidence interval for the student IQ in the school assuming the population of IQ from which our random sample has been selected is normally distributed.

Question 2 (25 points)

A private school counselor was curious whether the average of IQ of the students in her school is higher than the average IQ score 100 among all the schools in the country. She took a random sample of 25 students' IQ scores. The following is the data set:

Conduct a test with 0.05 significance level assuming the population of IQ from which our random sample has been selected is normally distributed.

Question 3 (50 points)

Researchers are curious about what affects the education expenditure on public education. The following is available variables in a data set about the education expenditure.

```
State | 50 states in US | y | per capita expenditure on public education | X1 | per capita personal income | X2 | Number of residents per thousand under 18 years of age | X3 | Number of people per thousand residing in urban areas | Region | 1=Northeast, 2= North Central, 3= South, 4=West
```

Explore the expenditure data set and import data into R.

```
1 expenditure <- read.table("expenditure.txt", header=T)</pre>
```

- Please plot the relationships among Y, X1, X2, and X3? What are the correlations among them (you just need to describe the graph and the relationships among them)?
- Please plot the relationship between Y and Region? On average, which region has the highest per capita expenditure on public education?
- Please plot the relationship between Y and X1? Describe this graph and the relationship. Reproduce the above graph including one more variable Region and display different regions with different types of symbols and colors.