

Chapter 10

Digital Modulation

(Part 1 of 2)

10.1 Introduction

Most communication channels have very poor response in the neighbourhood of zero frequency.

passband channels

- Baseband signal transmission is not suitable.
- To transmit digital signal over passband channels, passband digital signal transmission is required.
- Passband digital signal transmission shifts a baseband digital signal from low frequency to a high frequency band.
 - Impressing a baseband signal upon a high-frequency carrier via digital modulation.
- There are three basic digital modulation techniques:

Amplitude-shift keying (ASK) Frequency-shift keying (FSK) Phase-shift keying (PSK)

For binary information

BASK BFSK BPSK

Introduction

BASK

The carrier is switched between two values, also called on and off.

Binary " 1 " $V\cos\omega_c t$

Binary " 0 " 0

BASK

The carrier is switched between two values, also called on and off

Binary " 1" $V\cos\omega_c t$

Binary " 0 " 0

BFSK

The frequency of a sinusoidal carrier is switched between two values.

Binary "1" Vcosω₂t

Binary " 0 " Vcosω₁t

Introduction

BASK

The carrier is switched between two values, also called on and off

Binary "1" $V\cos\omega_c t$

Binary " 0 " 0

BFSK

The frequency of a carrier is shifted between two values.

Binary "1" Vcosω₂t

Binary " 0 " Vcosω₁t

BPSK

The initial phase-angle of a carrier is shifted between two values.

Binary "1" Vcosω_ct

Binary " 0 " -Vcosω_ct

10.1 Spectra of BASK, BFSK and BPSK signals

Square wave

 $T = 2T_b$

Spectrum of BASK signal

Digital signal, $x(t) \Rightarrow101010....$

x(t)

Unipolar NRZ input data

Bit duration t

Pulse width = T_b

Bit rate

$$r_b = 1/T_b$$

Frequency

$$f_0 = 1/T = 1/(2T_b) = r_b/2$$

|X(f)| Amplitude spectrum $-3f_0 - 2f_0 - f_0 = 0$ $-3r_b/2 - r_b - r_b/2 = 0$

10.1 Spectra of BASK, BFSK and BPSK signals

Spectrum of BASK signal

Recall

Fourier transform

$$x(t) \leftrightarrow X(f)$$

$$x(t) \times \cos 2\pi f_c t \qquad \qquad \frac{1}{2} [X(f + f_c) + X(f - f_c)]$$

The double-sided spectrum of $x(t)\cos 2\pi f_c t$, consists of two frequency shifted version of X(f).

Shift X(f) left by f_c

Shift X(f) right by fc

$$x(t) \times \cos 2\pi f_c t \longrightarrow X(f - f_c)$$

The single-sided spectrum of $x(t)\cos 2\pi f_c t$, is X(f) shifted right by f_c .

Shift X(f) right by fc

SP Singapore Polytechnic

10.1 Spectra of BASK, BFSK and BPSK signals

Spectrum of BASK signal

10.1 Spectra of BASK, BFSK and BPSK signals Spectrum of BFSK signal

Digital signal, $x(t) \Rightarrow101010....$

Spectrum of BFSK signal

Spectrum of BFSK signal

- f₁ and f₂ are two transmitting frequencies (two frequencies of the carrier)
- r_b is bit rate

10.1 Spectra of BASK, BFSK and BPSK signals

Spectrum of BPSK signal

10.1 Spectra of BASK, BFSK and BPSK signals

Spectrum of BPSK signal

x_{ac}(t) has no dc component.

10.1 Spectra of ASK, FSK and PSK signals

Spectrum of BPSK signal

- **BPSK** waveform, $s(t) = x_{ac}(t) cos2 π f_c t$
- The single-sided Amplitude spectrum, $S(f) = X_{ac}(f-f_c)$, frequency shifted by f_c

Spectra of ASK and PSK are almost the same except PSK has no component at f_c.

10.1 Spectra of BASK, BFSK and BPSK signals

BFSK

$$\mathbf{f_c} - \frac{3\mathbf{r_b}}{2} \mathbf{f_c} - \mathbf{r_b} \mathbf{f_c} - \frac{\mathbf{r_b}}{2} \mathbf{f_c} \mathbf{f_c} + \frac{\mathbf{r_b}}{2} \mathbf{f_c} + \mathbf{r_b} \mathbf{f_c} + \frac{3\mathbf{r_b}}{2} \mathbf{f_c}$$

- Input data is101010....
- r_b is the data bit rate.
- f_c the carrier frequency, where f_c >> r_b.
- For FSK, $f_1 = f_c f_d$; $f_2 = f_c + f_d$ where $f_d =$ frequency deviation.

Passband binary data transmission system

10.3 Optimum Receiver for Binary Digital Modulation Systems

- Optimum receiver minimises the probability of error.
- For digital modulation systems, optimum receiver = matched filter receiver.

Receiver using a matched filter to minimize the probability of error.

- Assumptions
 - AWGN
 - '1' and '0' are equiprobable and independent.
 - ISI-free channel.
 - Zero propagation delay

10.3 Optimum Receiver for Binary Digital Modulation Systems

$$s(t) = \begin{cases} s_2(t); & 0 < t < T_b; & \text{binary 1}; \\ s_1(t); & 0 < t < T_b; & \text{binary 0}; \end{cases}$$

binary 1 and binary 0 is are equal-probable and statistically independent.

additive noise

Matched filter H(f) has impulse response:

$$h(t) = s_2(T_b - t) - s_1(T_b - t)$$

Implemented by integrate-and-dump correlation receiver.

A coherent BPSK system

Transmitter

Integrate and dump correlation receiver

$$V_i(t) = s_i(t) + n_i(t)$$
 $s_i(t) = s(t) - output of transmitter$ $n_i(t) = AWGN from the channel.$

$$V_o(T_b) = K \int_0^{T_b} V_i(t)[s_2(t) - s_1(t)]dt$$
 where $s_2(t) - s_1(t) = 2V\cos \omega_c t$ k is a circuit constant.

k is a circuit constant.

■2V cos ω_ct

Consider only the signal component for simplicity i.e. no channel noise

Binary '1'

for noise - free channel

$$V_i(t) = S_2(t) = V \cos \omega_c t$$

using
$$\cos 2\theta = 2\cos^2 \theta - 1$$

$$\Rightarrow \cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$

$$V_{o}(T_{b}) = k \int_{0}^{T_{b}} V \cos \omega_{c} t (2V \cos \omega_{c} t) dt = k \int_{0}^{T_{b}} 2V^{2} \cos^{2} \omega_{c} t dt$$

$$= 2k V^{2} \int_{0}^{T_{b}} \frac{(1 + \cos 2\omega_{c} t)}{2} dt = 2k V^{2} \int_{0}^{T_{b}} \frac{1}{2} dt + 2k V^{2} \int_{0}^{T_{b}} \frac{\cos 2\omega_{c} t}{2} dt$$

$$=kV^{2}\int_{0}^{T_{b}}dt = kV^{2}[t]_{0}^{T_{b}} = kV^{2}T_{b}$$

Assume ideal case: whole cycles within 1 bit.

Consider only the signal component for simplicity i.e. no channel noise

Binary '0'

for noise - free channel

$$V_i(t) = s_1(t) = -V\cos \omega_c t$$

$$V_o(T_b) = k \int_0^{T_b} V \cos \omega_c t (2V \cos \omega_c t) dt = k \int_0^{T_b} 2V^2 \cos^2 \omega_c t dt$$

$$=-2kV^{2}\int_{0}^{T_{b}}\frac{\left(1+\cos 2\omega_{c}t\right)}{2}dt=-2kV^{2}\int_{0}^{T_{b}}\frac{1}{2}dt-2kV^{2}\int_{0}^{T_{b}}\frac{\cos 2\omega_{c}t}{2}dt$$

$$= -kV^2 \int_0^{T_b} dt = -kV^2 T_b$$

Assume ideal case: whole cycles within 1 bit.

using $\cos 2\theta = 2\cos^2 \theta - 1$

 $\Rightarrow \cos^2 \theta = \frac{1 + \cos 2\theta}{2}$

Probability of bit error for BPSK signals

The probability of matched filter receiver:

$$P_e = \frac{1}{2} erfc \left(\frac{\gamma}{2\sqrt{2}} \right)$$

where
$$\gamma^2 = \frac{2}{\eta} \int_0^{T_b} [s_2(t) - s_1(t)]^2 dt$$

 η is the single-sided power spectral density of the white noise, $n_i(t)$.

Probability of bit error for BPSK

For BPSK system

$$s_2(t)-s_1(t) = 2V \cos \omega_c t$$

$$\gamma^{2} = \frac{2}{\eta} \int_{0}^{T_{b}} (2V \cos \omega_{c} t)^{2} dt = \frac{2}{\eta} \int_{0}^{T_{b}} 4V^{2} \cos^{2} \omega_{c} t dt = \frac{8V^{2}}{\eta} \int_{0}^{T_{b}} \frac{(1 + \cos 2\omega_{c} t)}{2} dt$$

$$\gamma^{2} = \frac{8V^{2}}{\eta} \int_{0}^{T_{b}} \frac{1}{2} dt + \frac{8V^{2}}{\eta} \int_{0}^{T_{b}} \frac{\cos 2\omega_{c}t}{2} dt$$

$$= \frac{4V^2}{\eta} [t]_0^{T_b} = \frac{4V^2T_b}{\eta}$$
 Assume ideal case: whole cycles within 1 bit.

or
$$\gamma = \sqrt{\frac{4V^2T_b}{\eta}}$$

Probability of bit error for BPSK

Therefore

$$P_{e} = \frac{1}{2} \operatorname{erfc} \left[\frac{\gamma}{2\sqrt{2}} \right] = \frac{1}{2} \operatorname{erfc} \left[\frac{\sqrt{\frac{4V^{2}T_{b}}{\eta}}}{2\sqrt{2}} \right] = \frac{1}{2} \operatorname{erfc} \left[\sqrt{\frac{V^{2}T_{b}}{2\eta}} \right]$$

End

CHAPTER 10

(Part 1 of 2)

