Lecture Notes

Advanced Discrete Structures
COT 4115.001 S15
2015-01-14

Recap

- Extended Euclidean Algorithm
- Solving ax + by = d
- Arithmetic Modulo n
- Finding $a^{-1} \pmod{n}$

Chapter 2

CLASSICAL CRYPTOSYSTEMS

Conventions

- plaintext will be written in lowercase
- CIPHERTEXT will be written in uppercase
- Letters of the alphabet are assigned numbers:

a	b	C	d	е	f	g	h	i	j
0	1	2	3	4	5	6	7	8	9
k	1	m	n	0	p	q	r	s	t
10	11	12	13	14	15	16	17	18	19
u	v	w	x	У	Z				
20	21	22	23	24	25				

What to do about spaces?

- Spaces are frequent
 - They reveal information about word structure
 - If spaces encrypted, easy to identify by frequency giving the ability to crack key.

Classical Cryptosystems - Section 2.1

SHIFT CIPHERS

Shift ``Caesar" Cipher (~45BC)

Example: Shift each letter to the right by three.

Original:

gaul is divided into three parts

By Convention: gaulisdividedintothreeparts

Shifted by 3: JDXOLVGLYLGHGLQWRWKUHHSDUWV

Mathematically:

$$x \mapsto x + \kappa \pmod{26}$$

Encryption

$$x \mapsto x - \kappa \pmod{26}$$
Decryption

Attacks on Shift Cipher

1. Ciphertext Only:

– Brute force it!

```
0:
   gaulisdividedintothreeparts
1:
   hbvmjtejwjefejoupuisffqbsut
2:
    icwnkufkxkfqfkpvqvjtqqrctvu
    jdxolvglylghglqwrwkuhhsduwv
3:
   keypmwhmzmhihmrxsxlviitevxw
4:
   lfzqnxinanijinsytymwjjufwyx
5:
   mgaroyjobojkjotzuznxkkvgxzy
6:
7:
   nhbspzkpcpklkpuavaoyllwhyaz
8:
    oictqalqdqlmlqvbwbpzmmxizba
   pjdurbmrermnmrwcxcqannyjacb
9:
10: qkevscnsfsnonsxdydrboozkbdc
11: rlfwtdotgtopotyezescppalced
12: smgxuepuhupqpuzfaftdqqbmdfe
```

Frequency analysis

```
13: tnhyvfqvivqrqvagbguerrcnegf
14: uoizwgrwjwrsrwbhchvfssdofhg
15: vpjaxhsxkxstsxcidiwgttepgih
16: wqkbyitylytutydjejxhuufqhji
17: xrlczjuzmzuvuzekfkyivvgrikj
18: ysmdakvanavwvaflglzjwwhsjlk
19: ztneblwbobwxwbgmhmakxxitkml
20: auofcmxcpcxyxchninblyyjulnm
21: bvpgdnydqdyzydiojocmzzkvmon
22: cwqheozerezazejpkpdnaalwnpo
23: dxrifpafsfabafkqlqeobbmxoqp
24: eysjgqbgtgbcbglrmrfpccnyprq
25: fztkhrchuhcdchmsnsgqddozqsr
```

English Language (Frequency Analysis)

Benford's Law

 Benford's Law, also called the First-Digit Law, refers to the frequency distribution in many (but not all) reallife sources of data.

Leading Digit	Occurring Frequency
1	30.1%
2	17.6%
3	12.5%
4	9.7%
5	7.9%
6	6.7%
7	5.8%
8	5.1%
9	4.6%

Attacks on Shift Cipher

2. Known plaintext:

If you know one letter, you can decipher the rest

Example:

$$d (= 23) \mapsto N (= 13), \qquad \kappa \equiv 13 - 23 \equiv -10 \equiv 16 \pmod{26}$$

3. Chosen plaintext:

Encrypt the letter a and compute the difference.

4. Chosen ciphertext:

Decrypt the letter A and compute the difference.

Classical Cryptosystems - Section 2.2

AFFINE CIPHERS

Shift Cipher:

$$x \mapsto x + \kappa \pmod{26}$$

for some $\kappa \in \mathbb{Z}$.

Affine Cipher:

$$x \mapsto \alpha x + \beta \pmod{26}$$

for some $\alpha, \beta \in \mathbb{Z}$ with $gcd(\alpha, 26) = 1$.

$$\alpha = 3$$
, $\beta = 5$

Example: $\alpha = 3$, $\beta = 5$ (Check: $gcd(3,26) = 1 \checkmark$)

	m	a	t	h	i	s	f	u	n	
	12	0	19	7	8	18	5	20	13	
x 3	10	0	5	21	24	2	15	8	13	(mod 26)
+5	15	5	10	0	3	7	20	13	18	
	P	F	K	A	D	Н	U	N	S	

$$3x + 5 \equiv X \pmod{26}$$

 $x \equiv 3^{-1}(X - 5) \pmod{26}$ $3^{-1} \equiv 9 \pmod{26}$
 $x \equiv 9X + 7 \pmod{26}$

Example:

$$x \equiv 9X + 7 \pmod{26}$$

	m	a	t	h	i	s	f	u	n	
	12	0	19	7	8	18	5	20	13	
x 3	10	0	5	21	24	2	15	8	13	(mod 26)
+5	15	5	10	0	3	7	20	13	18	
	P	F	K	A	D	Н	U	N	S	
	15	5	10	0	3	7	20	13	18	
x 9	5	19	12	0	1	11	24	13	6	(mod 26)
+7	12	0	19	7	8	18	5	20	13	
	m	a	t	h	i	s	f	u	n	

Encryption Key: $(\alpha, \beta) = (3,5)$ Decryption Key: $(\alpha', \beta') = (9,7)$

What can happen if $gcd(\alpha, 26) > 1$?

Example:

$$x \mapsto 13x + 4$$

$$gcd(13,26) = 13$$

$$input \mapsto ERRER$$

$$alter \mapsto ERRER$$

How many possible pairs (α, β) with $gcd(\alpha, 26) = 1$?

- $2 \mid \gcd(2k, 26)$ leaves 13 odd numbers
- 13 | gcd(13k, 26) | leaves 12 possibilities for α
- $12 \times 26 = 312$ choices for the key (α, β)

Attacks on Affine Ciphers

1. Ciphertext only:

- Brute force all 312 keys!
- Frequency Analysis

2. Known plaintext:

Knowing two letters allows you to find the key:

$$X \equiv \alpha \ x + \beta \pmod{26}$$
 and $Y \equiv \alpha \ y + \beta \pmod{26}$
$$\alpha \ (x - y) \equiv X - Y \pmod{26}$$

If gcd(x-y,26)=d>1, then $d\mid X-Y$ first divide both x-y and X-Y by d. Then:

$$\alpha \equiv (X - Y)(x - y)^{-1} \pmod{26}$$
$$\beta \equiv X - \alpha x \pmod{26}$$

Attacks on Affine Ciphers

Example: $c\mapsto Z$ and $e\mapsto M$ $2\mapsto 25$ $15\mapsto 12$ $25\equiv 2\alpha+\beta\pmod{26}$ and $12\equiv 15\alpha+\beta\pmod{26}$ $13\equiv -13\alpha\pmod{26}$

- No multiplicative inverse, $(-13)^{-1}$, modulo n.
- Note that: gcd(-13, 26) = 13.
- Divide both sides by 13 and solve:

$$1 \equiv -1 \cdot \alpha \pmod{26}$$
 and $(-1)^{-1} \equiv -1 \pmod{26}$
$$\alpha \equiv -1 \cdot -1 \equiv 1 \pmod{26}$$

$$\beta \equiv 25 - 2 \cdot 1 \equiv 23 \pmod{26}$$

• Check:

$$25 \equiv 2 \cdot 1 + 23 \pmod{26}$$
 and $12 \equiv 15 \cdot 1 + 23 \pmod{26}$

Attacks on Affine Ciphers

Chosen plaintext:

• Choose ab (=01) as the plaintext. This gives:

$$X \equiv \alpha \cdot 0 + \beta = \beta \pmod{26} \implies \beta \equiv X \pmod{26}$$

 $Y \equiv \alpha \cdot 1 + \beta \pmod{26} \implies \alpha \equiv Y - \beta \equiv Y - X \pmod{26}$

Encryption: (Y - X, X) Decryption: $((Y - X)^{-1}, -(Y - X)^{-1}X)$

Chosen ciphertext:

• Choose AB (=01) as the ciphertext. This gives:

$$0 \equiv \alpha \cdot x + \beta \pmod{26}$$

$$1 \equiv \alpha \cdot y + \beta \equiv \alpha (y - x) \pmod{26} \implies \alpha \equiv (y - x)^{-1} \pmod{26}$$

$$\beta \equiv -\alpha \cdot x \equiv -(y - x)^{-1} x \pmod{26}$$

Encryption:
$$((y-x)^{-1}, -(y-x)^{-1}x)$$
 Decryption: $(y-x, x)$

Classical Cryptosystems - Section 2.3

THE VIGENÈRE CIPHER

Vigenère Cipher Encryption

1. Choose a random key:

key: bacon

2. Match message to key repeats:

plaintext: whatdoesthefoxsay

key: baconbaconbaconba

3. Add message and key to get ciphertext

Vigenère Cipher En(De)cryption

```
t
                                 h
                                          f
                       е
                           S
                                       е
W
                                                  X
22
           19 3
                   14
                       4
                          18
                              19
                                   7
                                       4
                                          5
                                              14 23
                                                      18
                                                             24
+
b
                   b
                                       b
               n
                       а
                           С
                                           а
                               0
                                   n
                                                              а
                                  13 1
                       0
                           2
                              14
                                          0
                                               2
                                                  14
           14
              13
                   1
                                                      13
23
            7
               16
                  15
                       4
                          20
                               7
                                  20
                                       5
                                           5
                                              16
                                                  11
                                                      5
                                                             24
X
                                   U
                                           F
    H
           H
               Q
                   P
                       \mathbf{E}
                           U
                               Η
                                       F
                                              Q
                                                  L
                                                      F
                                                          В
                                                              Y
```

To decrypt, subtract key in the say fashion.

Attacks on the Vigenère Cipher

Plaintext attack

If enough characters are known, the key is obtained.

Chosen plaintext

- Choose the plaintext: aaaa.... Ciphertext is the key

Chosen ciphertext

 Choose the ciphertext AAAA... . Plaintext is negative of the key

Attacks on the Vigenère Cipher

Ciphertext only

- Does frequency analysis work?
 - In the example, e can become either F, E, G, S, or R
 - Letter frequencies become "averaged"
- Can we guess the length of the key?
 - Try displacing the message and counting the coincidences, when a letter matches the displaced letter
- If we can guess the key length, perhaps we can recover the letter frequency and recover the key

Classical Cryptosystems - Section 2.3.1

FINDING KEY LENGTH

Attacks on the Vigenère Cipher

Example:

```
plain: whatdoesthefoxsay
cipher: XHCHQPEUHUFFQLFBY
```

d=1	XHCHQPEUHU F FQLFBY	1
d=2	X H CHQPE U HUFFQLFBY	2
d=3	XHCHQPEUHUF F QLFBY	1
d=4	XHCHQPEUHU F FQLFBY	1
d=5	XHC H QPEUHUFFQLFBY	1

Message is too short!

English Language (Frequency Analysis)

