Mathématiques 2

Chapitre 4: Espaces vectoriels

Mohamed Essaied Hamrita

IHEC, Université de Sousse

Avril 2022

Table des matières

- Définition
- Ensemble engendré par une famille de vecteurs et indépendance
 - Ensemble engendré par une famille de vecteurs
 - Dépendance linéaire
- Base et dimension d'un espace vectoriel
 - Base d'un e.v
- 4 Somme, Somme directe, supplémentaires
 - Somme de deux s.e.v
 - Somme directe
- Espaces vectoriels de dimension finie

Un **espace vectoriel** E est un ensemble sur lequel sont définies **une addition interne** et **une multiplication externe** vérifiants les propriétés suivantes :

- $\bullet \ \forall u,v \in E$, u+v=v+u
- $\forall u, v, w \in E$, u + (v + w) = (u + v) + w
- $\forall \alpha \in \mathbb{R}, \ \forall u, v \in E, \ \alpha(u+v) = \alpha u + \alpha v$
- $\forall u \in E, \ 0 + u = 0 \text{ et } 0u = 0$
- \bullet 1u=u
- $\forall \alpha, \beta \in \mathbb{R}, \forall u \in E, (\alpha + \beta)u = \alpha u + \beta u$

Un **espace vectoriel** E est un ensemble sur lequel sont définies **une addition interne** et **une multiplication externe** vérifiants les propriétés suivantes :

- $\bullet \ \forall u, v \in E, u + v = v + u$
- $\forall u, v, w \in E$, u + (v + w) = (u + v) + w
- $\forall \alpha \in \mathbb{R}, \ \forall u, v \in E, \ \alpha(u+v) = \alpha u + \alpha v$
- $\forall u \in E, \ 0 + u = 0 \ \text{et} \ 0u = 0$
- \bullet 1u=u
- $\forall \alpha, \beta \in \mathbb{R}, \forall u \in E, (\alpha + \beta)u = \alpha u + \beta u$

Exemple 1

 \mathbb{R}^2 est espace vectoriel.

L'ensemble \mathbb{N} n'est pas un espace vectoriel.

Définition 2 (Sous espace vectoriel)

Soit E un espace vectoriel. Soit $V \subset E$ muni par les deux lois (interne et externe) vérifiant les propriétés d'un espace vectoriel. V est appelé sous-espace vectoriel de E.

Définition 2 (Sous espace vectoriel)

Soit E un espace vectoriel. Soit $V \subset E$ muni par les deux lois (interne et externe) vérifiant les propriétés d'un espace vectoriel. V est appelé sous-espace vectoriel de E.

 ${\bf RQ}$: Pour vérifier qu'un ensemble V est un s.e.v de E, il suffit de vérifier les deux propriétés suivantes :

- $0 \in V$, (V est non vide).
- $\bullet \ \forall \alpha,\beta \in \mathbb{R}, \forall X,Y \in V \text{, } \alpha X + \beta Y \in V.$

Définition 2 (Sous espace vectoriel)

Soit E un espace vectoriel. Soit $V \subset E$ muni par les deux lois (interne et externe) vérifiant les propriétés d'un espace vectoriel. V est appelé sous-espace vectoriel de E.

 ${\bf RQ}$: Pour vérifier qu'un ensemble V est un s.e.v de E, il suffit de vérifier les deux propriétés suivantes :

- $0 \in V$, (V est non vide).
- $\forall \alpha, \beta \in \mathbb{R}, \forall X, Y \in V$, $\alpha X + \beta Y \in V$.

Exercice 1

- 1) Soit $E = \{(x, y, z) \in \mathbb{R}^3 : x 2y + z = 0\}$. Vérifier que E est un s.e.v de \mathbb{R}^3 .
- 2) Vérifier que $F=\{(x+z,x-y+z,z): x,y,z\in\mathbb{R}^3\}$ est un s.e.v de $\mathbb{R}^3.$

Soit F et G deux s.e.v de E. Alors $F \cap G$ est un s.e.v de E. D'une manière plus générale, si $F_1, F_2 \dots, F_n$ des s.e.v de E, alors $F_1 \cap F_2 \cap \dots \cap F_n$ est un s.e.v de E.

Soit F et G deux s.e.v de E. Alors $F \cap G$ est un s.e.v de E. D'une manière plus générale, si $F_1, F_2 \dots, F_n$ des s.e.v de E, alors $F_1 \cap F_2 \cap \dots \cap F_n$ est un s.e.v de E.

Théorème 2

Soit F et G des sous-espaces vectoriels de E. Alors $F \cup G$ est un sous-espace vectoriel de E si et seulement si $F \subset G$ ou $G \subset F$.

Soit F et G deux s.e.v de E. Alors $F \cap G$ est un s.e.v de E. D'une manière plus générale, si $F_1, F_2 \dots, F_n$ des s.e.v de E, alors $F_1 \cap F_2 \cap \dots \cap F_n$ est un s.e.v de E.

Théorème 2

Soit F et G des sous-espaces vectoriels de E. Alors $F \cup G$ est un sous-espace vectoriel de E si et seulement si $F \subset G$ ou $G \subset F$.

Définition 3 (Combinaison linéaire)

On appelle **combinaison linéaire** de u_1, \ldots, u_n un vecteur de E de la forme $\lambda_1 u_1 + \ldots + \lambda_n u_n$, où $\lambda_1, \ldots, \lambda_n$ sont des scalaires.

Soit F et G deux s.e.v de E. Alors $F \cap G$ est un s.e.v de E. D'une manière plus générale, si $F_1, F_2 \dots, F_n$ des s.e.v de E, alors $F_1 \cap F_2 \cap \dots \cap F_n$ est un s.e.v de E.

Théorème 2

Soit F et G des sous-espaces vectoriels de E. Alors $F \cup G$ est un sous-espace vectoriel de E si et seulement si $F \subset G$ ou $G \subset F$.

Définition 3 (Combinaison linéaire)

On appelle **combinaison linéaire** de u_1, \ldots, u_n un vecteur de E de la forme $\lambda_1 u_1 + \ldots + \lambda_n u_n$, où $\lambda_1, \ldots, \lambda_n$ sont des scalaires.

Théorème 3

Soit F un sous-espace vectoriel de E. Alors toute combinaison linéaire d'éléments de F est un élément de F.

Soit E une partie de \mathbb{R}^n et soit u_1, u_2, \ldots, u_n une famille de n vecteurs de l'espace \mathbb{R}^n . On dit que E est **engendré** par u_1, u_2, \ldots, u_n ssi $\forall X \in E$, X est combinaison linéaire de u_1, u_2, \ldots, u_n . On note $E = \langle u_1, u_2, \ldots, u_n \rangle = Vect(u_1, \ldots, u_n)$.

Soit E une partie de \mathbb{R}^n et soit u_1, u_2, \ldots, u_n une famille de n vecteurs de l'espace \mathbb{R}^n . On dit que E est **engendré** par u_1, u_2, \ldots, u_n ssi $\forall X \in E$, X est combinaison linéaire de u_1, u_2, \ldots, u_n . On note $E = \langle u_1, u_2, \ldots, u_n \rangle = Vect(u_1, \ldots, u_n)$.

Exercice 2

- 1) Soit $E = \{X = (x, y, z) \in \mathbb{R}^3 : x + y 2z = 0\}$. Montrer que
- $E = \langle u_1, u_2 \rangle$ où $u_1 = (1, -1, 0)$ et $u_2 = (0, 2, 1)$.
- 2) Soit $F = \{X = (x, y, z) \in \mathbb{R}^3 : x + 2y z = 0 \text{ et } y + 3z = 0\}$. Montrer que F est engendré par une famille de vecteurs à préciser.

Soit u_1, u_2, \ldots, u_n une famille de n vecteurs de l'espace \mathbb{R}^n . On dit que (u_1, u_2, \ldots, u_n) est une famille libre de \mathbb{R}^n (ou u_1, u_2, \ldots, u_n sont linéairement indépendants) ssi :

$$\lambda_1 u_1 + \lambda_2 u_2 + \ldots + \lambda_n u_n = 0 \implies \lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$$

Exercice 3

- 1) Soient $u_1=(-2,-2,0),\ u_2=(1,1,-1)$ et $u_3=(0,1,-3).$ Montrer que (u_1,u_2,u_3) est une famille libre de $\mathbb{R}^3.$
- 2) La famille $\mathcal{F} = ((1, -1, 2), (0, 1, -3), (2, 1, -5))$ est-elle libre?

Un ensemble de vecteurs $S = (v_1, v_2, \dots, v_n)$ dans un espace vectoriel E est une base pour E si S engendre E et est libre.

 $(S = \langle v_1, v_2, \dots, v_n \rangle \text{ et } S \text{ et libre}).$

Un ensemble de vecteurs $S = (v_1, v_2, \dots, v_n)$ dans un espace vectoriel E est **une base** pour E si S **engendre** E et **est libre**. $(S = \langle v_1, v_2, \dots, v_n \rangle$ et S et libre).

Exercice 4

Soient U=(2,3) et V=(1,0) deux vecteurs de \mathbb{R}^2 . Vérifier que (U,V) est une base de \mathbb{R}^2 .

Un ensemble de vecteurs $S = (v_1, v_2, ..., v_n)$ dans un espace vectoriel E est **une base** pour E si S **engendre** E et **est libre**. $(S = \langle v_1, v_2, ..., v_n \rangle$ et S et libre).

Exercice 4

Soient U=(2,3) et V=(1,0) deux vecteurs de \mathbb{R}^2 . Vérifier que (U,V) est une base de \mathbb{R}^2 .

Théorème 4

Si $S = \{v_1, v_2, \dots, v_n\}$ est une base d'un espace vectoriel E, alors chaque ensemble contenant plus de n vecteurs dans E est linéairement **dépendant**.

Somme de deux s.e.v

Proposition 1

Soit F et G deux sous-espaces vectoriels d'un espace vectoriel E. L'ensemble $H = \{x + y : x \in F, y \in G\}$ est un sous-espace vectoriel de E.

Définition 7

Le sous-espace vectoriel H de la proposition précédente est noté F+G et appelé somme de F et G.

Exemple 2

Soit
$$F = \{X = (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 = 0 \}$$
 et $G = \{X \in \mathbb{R}^3 : x_3 = 0 \}$. Alors $F + G = \mathbb{R}^3$.

En effet, si
$$X=(x_1,x_2,x_3)\in\mathbb{R}^3$$
, on a :

$$(x_1, x_2, x_3) = (0, x_2, x_3) + (x_1, 0, 0)$$
; et donc $X \in F + G$.

$$\overbrace{\in F} = \underbrace{(x_1, 0, 0)}_{\in G}, \text{ et done } 11 \in G$$

Somme directe

Définition 8

Soit F et G deux sous-espaces vectoriels d'un espace vectoriel E. On dit que la somme de F et G est **directe** quand tout élément de F+G s'écrit de manière unique X+U avec $X\in F$ et $U\in G$. En d'autres termes :

$$\Big(X+U=Y+V;\; (X,Y)\in F^2 \; \text{et}\; (U,V)\in G^2\Big)\Longrightarrow X=Y \; \text{et}\; U=V$$

On note alors $F \oplus G$ la somme de F et G.

Somme directe

Définition 8

Soit F et G deux sous-espaces vectoriels d'un espace vectoriel E. On dit que la somme de F et G est **directe** quand tout élément de F+G s'écrit de manière unique X+U avec $X\in F$ et $U\in G$. En d'autres termes :

$$\Big(X+U=Y+V;\; (X,Y)\in F^2 \; \text{et}\; (U,V)\in G^2\Big)\Longrightarrow X=Y \; \text{et}\; U=V$$

On note alors $F \oplus G$ la somme de F et G.

Proposition 2

La somme F+G est directe si et seulement si $F\cap G=\{0\}$.

Somme directe

Définition 8

Soit F et G deux sous-espaces vectoriels d'un espace vectoriel E. On dit que la somme de F et G est **directe** quand tout élément de F+G s'écrit de manière unique X+U avec $X\in F$ et $U\in G$. En d'autres termes :

$$\Big(X+U=Y+V;\; (X,Y)\in F^2 \; \text{et}\; (U,V)\in G^2\Big)\Longrightarrow X=Y \; \text{et}\; U=V$$

On note alors $F \oplus G$ la somme de F et G.

Proposition 2

La somme F + G est directe si et seulement si $F \cap G = \{0\}$.

Définition 9

On dit que les sous-espaces vectoriels F et G sont **supplémentaires** dans E lorsque $E = F \oplus G$.

Exercice 5

- 1) Soient $F = \{(x, 0, 0) : x \in \mathbb{R}\}$; $G = \{(0, y, 0) : y \in \mathbb{R}\}$ et
- $H = \{(x, y, 0) : x, y \in \mathbb{R}\}$. Montrer que $H = F \oplus G$.
- 2) Montrer que les droites $Vect\{(1,0)\}$ et $Vect\{(0,1)\}$ sont supplémentaires dans \mathbb{R}^2 .

Définition 10

On dit que E est de **dimension finie** quand il admet une famille génératrice et libre **finie** formée de n vecteurs.

Ce nombre n est appelé dimension de E et on note dim(E) = n.

Exemple 3

 \mathbb{R}^n est un espace vectoriel réel de dimension n.

Exercice 6

Soit $E = \{(x, y, z) \in \mathbb{R}^3 : x + y - z = 0\}$. Montrer que E est un s.e.v de \mathbb{R}^3 . Donner une base de E et déterminer sa dimension.

Théorème 5

Si E est un espace vectoriel réel de dimension n, alors :

• Toutes les bases de E ont le même ordre égal à n.

Théorème 5

- Toutes les bases de E ont le même ordre égal à n.
- ② L'ordre de tout système générateur de E est supérieur à n.

Théorème 5

- Toutes les bases de E ont le même ordre égal à n.
- 2 L'ordre de tout système générateur de E est supérieur à n.
- **3** L'ordre de tout système libre de E est inférieur à n.

Théorème 5

- Toutes les bases de E ont le même ordre égal à n.
- 2 L'ordre de tout système générateur de E est supérieur à n.
- L'ordre de tout système libre de E est inférieur à n.
- ullet Si l'ordre d'un système libre ou générateur de E est égal à n, alors ce système est une base de E.

Théorème 5

- Toutes les bases de E ont le même ordre égal à n.
- 2 L'ordre de tout système générateur de E est supérieur à n.
- 1 L'ordre de tout système libre de E est inférieur à n.
- ullet Si l'ordre d'un système libre ou générateur de E est égal à n, alors ce système est une base de E.
- **3** Si F est un sous espace vectoriel de E, alors F est un espace vectoriel réel de dimension fini m, avec $m \le n$. Si de plus m = n, alors F = E.

Théorème 5

- Toutes les bases de E ont le même ordre égal à n.
- 2 L'ordre de tout système générateur de E est supérieur à n.
- 3 L'ordre de tout système libre de E est inférieur à n.
- ullet Si l'ordre d'un système libre ou générateur de E est égal à n, alors ce système est une base de E.
- **3** Si F est un sous espace vectoriel de E, alors F est un espace vectoriel réel de dimension fini m, avec $m \le n$. Si de plus m = n, alors F = E.
- **o** Si E_1 et E_2 sont deux sous espaces vectoriels de E, alors :

Théorème 5

- ① Toutes les bases de E ont le même ordre égal à n.
- 2 L'ordre de tout système générateur de E est supérieur à n.
- 3 L'ordre de tout système libre de E est inférieur à n.
- ullet Si l'ordre d'un système libre ou générateur de E est égal à n, alors ce système est une base de E.
- **3** Si F est un sous espace vectoriel de E, alors F est un espace vectoriel réel de dimension fini m, avec $m \le n$. Si de plus m = n, alors F = E.
- **o** Si E_1 et E_2 sont deux sous espaces vectoriels de E, alors :
 - $dim(E_1 + E_2) = dim(E_1) + dim(E_2) dim(E_1 \cap E_2)$.

Théorème 5

- ① Toutes les bases de E ont le même ordre égal à n.
- 2 L'ordre de tout système générateur de E est supérieur à n.
- 3 L'ordre de tout système libre de E est inférieur à n.
- ullet Si l'ordre d'un système libre ou générateur de E est égal à n, alors ce système est une base de E.
- **3** Si F est un sous espace vectoriel de E, alors F est un espace vectoriel réel de dimension fini m, avec $m \le n$. Si de plus m = n, alors F = E.
- **o** Si E_1 et E_2 sont deux sous espaces vectoriels de E, alors :
 - $dim(E_1 + E_2) = dim(E_1) + dim(E_2) dim(E_1 \cap E_2).$
 - $dim(E_1 \oplus E_2) = dim(E_1) + dim(E_2)$.

Théorème 6

Soit E un espace vectoriel de dimension finie. Soit F une famille de vecteurs de E. Les conditions suivantes sont équivalentes :

- F est une base de E.
- F est une famille libre, et dim(F) = dim(E).
- F est une famille génératrice, et dim(F) = dim(E).

Théorème 6

Soit E un espace vectoriel de dimension finie. Soit F une famille de vecteurs de E. Les conditions suivantes sont équivalentes :

- F est une base de E.
- F est une famille libre, et dim(F) = dim(E).
- F est une famille génératrice, et dim(F) = dim(E).

Théorème 7

Soit E un espace vectoriel réel de dimension fini. Soient F et G deux sous espaces vectoriels de E, de bases respectives $\mathcal{B}_{\mathbf{F}} = \{\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_p}\}$ et $\mathcal{B}_{\mathbf{G}} = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_q}\}$. Si $\mathcal{B} = \{\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_p}, \mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_q}\}$ est une base de E alors $E = F \oplus G$.

Exercice 7

Dans $E=\mathbb{R}^4$, on considère les sous-espaces vectoriels $F=\{(x,y,z,t)\in\mathbb{R}^4: x+y+z+t=0\}$ et $G=\{(2a,a,0,a), \text{ avec } a\in\mathbb{R}\}$. Montrer que F et G sont supplémentaires dans E.