ECM2001	DATA COMMUNICATION	NETWO	RKS	L T P J C
				2 0 2 4 4
Prerequisite:	ECM1002 - Analysis of Data Structure an	d Algoritl	nm	
Objectives:				
_	knowledge in protocol stack of Computer N	Networks		
	n networking standards yze the performance			
• 10 aliai	yze the performance			
Expected Outo	come:			
	and analysis of Routing and MAC protocols	S		
Student Learn	ing Outcomes (SLO): 1,2,11			
		r	1	
	troduction	2	Hours	SLO: 1
	computer communication networks; ISO/C			
protocol refere	ance metrics of computer communication	i networi	cs, data i	ate mints. b-13DN
protocor referen	ice model.			
Module 2 Pl	ysical Layer	2	Hours	SLO: 1
Multiplexing, s	witching techniques, network topologies, ne	etworking	devices.	
N. 1.1.0 X			TT	GT O 1
	ogical Link Layer ontrol – Error detection and correction tec	4	Hours	SLO: 1
_	o point protocol. Broadcast and multicast pr	-	- AKQ pi	otocois – Iranning –
	edium Access Control Layer	6	Hours	SLO: 2
	s protocols, Aloha, slotted Aloha, CSMA I, Ethernet, frame relay, virtual LANs.	A, CSMA	/CD, CSN	MA/CA, token ring,
token ous, I-DL	of, Ethernet, frame letay, virtual LAINS.			
Module 5 No	etwork Layer	4	Hours	SLO: 2
	g – IP addressing – subnetting – Ipv4 and I	Pv6 – rou	ting – dist	ance vector and link
state routing –	routing protocols			
Module 6 Tr	ransport Layer	4	Hours	SLO: 2
	ervice, elements of transport protocols, co			
-	t transport protocols: UDP, TCP, performar	_		
Module 7 A	oplication Layer	6	Hours	SLO: 11
	name system, world wide web, real-time			
	SMTP and HTTP protocol, network sec	curity -	cryptograp	ohy, symmetric-key
algorithms, pub	lic-key algorithms, RIP, SNMP.			
Modula 9 C	ontonno no my Iccy oc		Цанта	
Module 8 Co	ontemporary Issues	2	Hours	

	Total Lectu	ires:	30	Hours			
Tex	xt Books:						
1.	W. Stallings, "Data and Computer Communications", Prentice Hall, 2013						
2.	Andrew S. Tanenbaum & David J. Wetherall, "Computer Networks", Prentice Hall, 2011						
Ref	ference Books:						
1.	Alberto Leon-Garcia, "Communication Networks",	2013	3, 2 nd	Edition,	Tata McGraw-Hill		
	USA.						
2.	Behrouz a. Forouzan, "Data Communications and	Netv	worki	ng", TM	IH, 2013.		

Create a simple network model with multiple scenarios, collect statistics on network performance through the use of Simulation tools, analyze statistics and draw conclusions on network performance.

30

Hours | SLO: 11

Analyze the spanning tree algorithm by varying the priority among the switches:

Analyze the error detection mechanism using CRC.

Analyze the throughput performance of stop and wait, go-back n and selective repeative ARQ protocols

Analyze the performance of simple hub based CSMA / CD network

Performance analysis of virtual LAN.

For a given network:

Challenging Experiments

- Identify Connectivity Problems- Use the ping command to test network connectivity.
- Troubleshoot Network Connections
- Begin troubleshooting at the host connected to the router.
- Examine the router to find possible configuration errors.
- Use the necessary commands to correct the router configuration.
- Verify the logical configuration.

Apply the Bellman-Ford algorithm and find the set of shortest paths for a given network.

Apply Dijkstra's algorithm and find the set of shortest paths from node (a) to other nodes.

Configure, Apply real time routing protocols (RIP/OSPF) in a simple network topology and analyze the routing tables and check the network connectivity

Simulation Tools:

- Riverbed Modeler / Qualnet / NetSim / NS2 / NS3
- Packet tracer
- MATLAB

Typical Projects: SLO: 11

- 1. Simulation of Congestion control techniques used in TCP.
- 2. Performance analysis for various protocols supporting QoS.
- 3. To simulate the IP forwarding within a LAN and across a router.
- 4. To analyse the working of "Connection Establishment" in TCP.
- 5. To study how the Bit Error Rate (loss) and data of a Wireless LAN network varies as the distance between the Access Point and the wireless nodes is varied
- 6. Study the throughput characteristics of a slotted aloha network
- 7. To determine the optimum persistence of a p-persistent CSMA / CD network for a heavily loaded bus capacity
- 8. Study the performance of FIFO, round robin and priority queuing techniques.
- 9. AES Encryption using C language in Linux
- 10. Demonstrate DES and AES using an Applet.