Week 10

Analysis of Variance
(ANOVA)

Recap on week 9

- Paired T-Test
- 2 samples proportion
- Chi-Square test

Analysis of Variance (ANOVA)

- Levene's Test (Test for equal variance)
- ANOVA
 - One-way ANOVA
 - Two-way ANOVA
- Post-Hoc test

One-Way ANOVA

- It is commonly uses to evaluate differences between 3 or more samples.
- The hypothesis will be stated by the difference between the population.
- The null and alternative hypothesis of ANOVA test is stated as the following statement

 H_0 : There are no differences between the population

 H_a : At least one population is difference

One-Way ANOVA

- There are 3 assumptions of ANOVA
 - o Data are normally distributed
 - o Data are independently
 - Data have equal variance (Levene's Test)

Levene's Test

- It's the statistical technique to check that variances are equal for all samples.
- Normally, the null and alternative hypothesis can be stated as the following

 H_0 : All population variances are equally

 H_a : At least one population variance is difference

One-Way ANOVA example

Food Delivery: In order to compare the average time delivery of three different periods of time (Morning, Lunch and Dinner). The researcher randomly select 10 delivery services of each periods of time and the data are provided as the following:

Breakfast	15	12	13	14	18	17	17	15	19	25
Lunch	30	32	35	33	34	30	40	28	39	35
Dinner	42	44	43	39	38	45	39	47	43	35

Levene's Test in Python

```
import scipy.stats as stats
group1 = [15, 12, ..., 19, 25]
group2 = [30, 32, ..., 39, 35]
group3 = [42, 44, ..., 43, 35]

levene, pvalue = stats.levene(group1, group2, group3, center = 'median'
print("The levene value is ", levene)
print("The p-value is ", pvalue)
```

One-way ANOVA table

Analysis of Variance(ANOVA)

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares (MS)	F
Within	$SS_w = \sum_{j=1}^k \sum_{j=1}^l (X - \overline{X}_j)^2$	$df_w = k-1$	$MS_w = \frac{SS_w}{df_w}$	$F = \frac{MS_b}{MS_w}$
Between	$SS_b = \sum_{j=1}^k (\overline{X}_j - \overline{X})^2$	$df_b = \mathbf{n} - \mathbf{k}$	$MS_b = \frac{SS_b}{df_b}$	
Total	$SS_t = \sum_{j=1}^n (\overline{X}_j - \overline{X})^2$	$df_t = n - 1$		

One-Way ANOVA example

Food Delivery: In order to compare the average time delivery of three different periods of time (Morning, Lunch and Dinner). The researcher randomly select 10 delivery services of each periods of time and the data are provided as the following:

Breakfast	15	12	13	14	18	17	17	15	19	25
Lunch	30	32	35	33	34	30	40	28	39	35
Dinner	42	44	43	39	38	45	39	47	43	35

One-way ANOVA in Python

```
import scipy.stats import f_oneway
group1 = [15, 12, ..., 19, 25]
group2 = [30, 32, ..., 39, 35]
group3 = [42, 44, ..., 43, 35]

anova, pvalue = f_oneway(group1, group2, group3)

print("The ANOVA value is ", anova)
print("The p-value is ", pvalue)
```

Post-Hoc test

- It is normally use post-hoc test when reject null hypothesis at ANOVA test
- It is the test to find difference on each population
- The most popular post-hoc test is Tukey's test

Post-Hoc test in Python

```
import pandas as pd
import numpy as np
from scipy.stats import f_oneway
from statsnmodels.stats.multicomp import pairwise_tukeyhsd
df = pd.DataFrame({'score': [15, 12, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 19, 25, ..., 
                                                                                                                                                                                             30, 32, ..., 39, 35,
                                                                                                                                                                                             42, 44, ..., 43, 35],
                                                                                                                                'group': np.repeat(['group1', 'group2', 'group3'], repeats=10)})
tukey = pairwise_tukeyhsd(endog = df['score'], groups = df['group'], alpha = 0.05
 print(tukey)
```

Post-Hoc Test

One-Way ANOVA practice

Social media: The researcher would like to find the difference of average spending time (minutes) on each social network platform (Facebook, YouTube, and Tiktok). They randomly selected 10 people and collect their spending time. The data is illustrated as the following table:

Facebook	34	24	31	29	30	28	32	26	37	36
YouTube	84	91	78	79	82	88	85	81	90	85
Tiktok	52	54	43	49	48	55	49	57	53	55

- a) Test the equality of variance at 5%
- b) Test the difference of average spending times on each social network at 5%
- c) Test 5% significance level at Tukey HSD and draw box-plot

Two-Way ANOVA

- It's mostly similar to one-way ANOVA but it used to estimate the mean of a quantitative variable changes according to the levels of two categorical variables.
- However, it's require to test the null and alternative hypothesis in both categorical variables and interactive variable. Hence, they can state as the following:

 H_0 : There are no differences between the first / second categorical variable H_a : At least one population is difference at first / second categorical variable H_0 : There is no interaction between first and second categorical variable H_a : There is interaction between first and second categorical variable

Two-Way ANOVA example

Football game: The researcher would like to test the difference goal in football match. They decide to collect the data from the first 3 week of the league (first, second and third) from each team (home and away). The data is provided as the following table:

Week	Home	Away
First	23, 24, 22, 28, 30	14, 15, 18, 13, 20
Second	31, 33, 28, 30, 25	21, 22, 25, 21, 19
Third	35, 34, 32, 30, 28	26, 24, 21, 25, 20

Test 5% significance level at both factors and interaction

Two-Way ANOVA in Python

You can type "~" by Alt+126

```
from statsmodels.formula.api import ols
model = ols('score ~ C(week) + C(match) + C(week):C(match)', data = df).fit()
print(sm.stats.anova_lm(model, typ = 2)
```

Two-Way ANOVA practice

Computer case: Programmer would like to compare the execution speed (in seconds) for a standard software packages by using three different compilers. Programmer tests each compiler using three different computer models, and the data is shown on the provided table:

Computer	Compiler						
	1	2	3				
Model 1	9.9	8.0	7.1				
Model 2	12.5	10.6	9.1				
Model 3	10.8	9.0	7.8				

Test at 5% significance level to find the difference on each computer and compiler