

OUC FILE COPY

AFGL-TR-80-0050

LEVEE

STUDY OF SOURCES IN AFGL ROCKET INFRARED STUDY

Edward P. Ney and Kenneth M. Merrill

Department of Astronomy University of Minnesota 116 Church Street S.E. Minneapolis, Minnesota 55455

Final Report 1 July 1976 - 30 September 1979

7 February 1980

Approved for public release; distribution unlimited

AIR FORCE GEOPHYSICS LABORATORY AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE HANSCOM AFB, MASSACHUSETTS 01731

80 5 12 011

Qualified requestors may obtain additional copies from the Defense Documentation Center. All others should apply to the National Technical Information Service.

AFCILITIE (mod substitute) AFCILITIE (mod substitute) STUDY OF SOURCES IN AFGL ROCKET TITLE (mod substitute) STUDY OF SOURCES IN AFGL ROCKET TITLE (mod substitute) STUDY OF SOURCES IN AFGL ROCKET TITLE (mod substitute) STUDY OF SOURCES IN AFGL ROCKET TITLE (mod substitute) STUDY OF SOURCES IN AFGL ROCKET TITLE (mod substitute) Final /	CLASSIFICATION OF THIS PAGE (When Pole F		READ INSTR	JCTIONS
AFCIL (TR-86-0059) Final //	9 REPORT DOCUMENTATION F		BEFORE COMPLI	ETING FORM
STUDY OF SOURCES IN AFGL ROCKET INFRARED STUDY, Edward P. Ney February Edward P. Ney February Final F	17 7 1	16 1 1 5 1 - 5	- RECIPIENT S CATALO	e Homork
STUDY OF SOURCES IN AFGL ROCKET INFRARED STUDY, Edward P. Ney Fige 28-76-C-9287 Fige	(and Subtitle)	19		ERIOD COVERED
INFRARED STUDY, Edward P. Ney In 19628-76-C-9287	DY OF SOURCES IN AFGL RO	OCKET /	Final Company	0.70 /
P. PERFORMING ORGANIX: 100 NAME AND ADDRESS Department of Astronomy University of Minnesota Minneapolis, Minnesota 55455 11. CONTROLLING OFFICE MAME AND ADDRESS AIT FORCE Geophysics Laboratory Hanscom AFB, Massachusetts 01731 12. MONITORINO OFFICE MAME AND ADDRESS MONITORINO OFFICE MAME AND ADDRESS IT MINISTER TOTCE OFFICE of Naval Research 536 South Clark Street Chicago, Illinois 60605 16. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identity by black number) The observation program reported here had the following goal 10. To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sout to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude interespons.			6 PERFORMING ORG, RE	PORT NUMBER
P. PERFORMING ORGANIX: 100 NAME AND ADDRESS Department of Astronomy University of Minnesota Minneapolis, Minnesota 55455 11. CONTROLLING OFFICE MAME AND ADDRESS AIT FORCE Geophysics Laboratory Hanscom AFB, Massachusetts 01731 12. MONITORINO OFFICE MAME AND ADDRESS MONITORINO OFFICE MAME AND ADDRESS IT MINISTER TOTCE OFFICE of Naval Research 536 South Clark Street Chicago, Illinois 60605 16. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identity by black number) The observation program reported here had the following goal 10. To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sout to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude interespons.	***		Z Jul 16-	30 50,
P. PERFORMING ORGANIX: 100 NAME AND ADDRESS Department of Astronomy University of Minnesota Minneapolis, Minnesota 55455 11. CONTROLLING OFFICE MAME AND ADDRESS AIT FORCE Geophysics Laboratory Hanscom AFB, Massachusetts 01731 12. MONITORINO OFFICE MAME AND ADDRESS MONITORINO OFFICE MAME AND ADDRESS IT MINISTER TOTCE OFFICE of Naval Research 536 South Clark Street Chicago, Illinois 60605 16. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identity by black number) The observation program reported here had the following goal 10. To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sout to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude interespons.	m(ii)	1 /1	CONTRACT ON CHANT	
Department of Astronomy University of Minnesota Minneapolis, Minnesota 55455 11. Controlling office Name And Address Afr Force Geophysics Laboratory Hanscom AFB, Massachusetts 0173 Monitor/Opi/Stephan D, Price 15. Monitor/Opi/Stephan D, Price 536 South Clark Street Chicago, Illinois 60605 16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il different from Report) Approved for public release; distribution unlimited. 18. SUPPLEMENTARY NOTES 19. KEY NORDS (Continue on reverse side if necessary and identity by block number) 70. ABSTRACT (Continue on reverse side if necessary and identity by block number) 19. KEY NORDS (Continue on reverse side if necessary and identity by block number) 19. To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sout to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude interespending on the parison.	And the second s	1. /6x (er-1/)	^{//} F19628-76-C-	0287/mile
University of Minnesota Minneapolis, Minnesota 55455 11. CONTROLLING OFFICE NAME AND ADDRESS AIT Force Geophysics Laboratory Hanscom AFB, Massachusetts 0173 Monitor/OPI/Stephan D. Price Monitor/OPI/Stephan D. Price Office of Naval Research 536 South Clark Street Chicago, Illinois 60605 16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Approved for public release; distribution unlimited. 18. Supplementary notes 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) 19. To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sout to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude intereparison.	rming organize on NAME AND ADDRESS	73	/10. PROGRAM ELEMENT. AREA & WORK UNIT N	PROJECT, TASK
Hanscom AFB, Massachusetts 01731 Monitor/OPI/Stephan D. Price Monitor/OPI/Stephan D. Price Monitor/OPI/Stephan D. Price Monitor/OPI/Stephan D. Price Monitoric Active to March account of the controlling Office) Monitoric Active to March account of the controlling Office) Monitoric Active to March account of the controlling Office) Monitoric Active to March account of the controlling Office) Monitoric Active to March account of the controlling Office) Monitoric Active to March account of the controlling Office) Monitoric Active to March account of the controlling Office) Monitoric Active to March account of the controlling Office) Monitoric Active to March account of the controlling Office) Monitoric Active to March account of the controlling Office) Monitoric Account of the controlling Office of the Catalogue as a list of infrared sources. Monitoric Active to March account of the controlling Office of the Catalogue magnitudes. Monitoric Active to March account of the Catalogue magnitude intercepation. Monitoric Active to March account of the Catalogue magnitude intercepation.	-		61101F	(2)
Hansom AFB, Massachusetts 0173 Monitor/OPI/Stephan D, Price Office of Naval Research 536 South Clark Street Chicago, Illinois 60605 To Distribution statement (of the abstract entered in Block 20, il different from Report) Approved for public release; distribution unlimited. To Abstract (Continue on reverse side il necessary and identity by block number) The observation program reported here had the following goal 1) To identify AFGL sources to test the reliability of the Catalogue as a list of infrared energy distribution of these sout to test the reliability of the Catalogue magnitudes. To assess the effects of variability on magnitude interestion.		.55 (16	767006AF	1001
Hanscom AFB, Massachusetts 0173 Monitor/OPI/Stephan D, Price Monitor/North Nake & Acont Strict different from Controlling Office) Office of Naval Research 536 South Clark Street Chicago, Illinois 60605 16. DISTRIBUTION STATEMENT (of this Report) The Distribution STATEMENT (of this Report) 17. DISTRIBUTION STATEMENT (of this Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) The observation program reported here had the following goal of the catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sources to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude interespansion.	rolling office name and address Force Geophysics Labora	tory / /// M	Foly MARKET	1900 r
Monitor/OPT/Stephan D. Price Monitoring oscint's name a address different from Controlling Office) Office of Naval Research 536 South Clark Street Chicago, Illinois 60605 To Distribution statement (of the abstract entered in Block 20, if different from Report) The Distribution statement (of the abstract entered in Block 20, if different from Report) Approved for public release; distribution unlimited. To Supplementary notes The Supplementary notes The observation program reported here had the following goal 1) To identify AFGL sources to test the reliability of the Catalogue as a list of infrared energy distribution of these sources to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude interespansion.				<u> </u>
Office of Naval Research 536 South Clark Street Chicago, Illinois 60605 16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Approved for public release; distribution unlimited. 18. Supplementary notes 19. Key words (Continue on reverse side if necessary and identify by block number) The observation program reported here had the following goal 1) To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sou to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude intereparison.		ę	09	this sense;
536 South Clark Street Chicago, Illinois 60605 16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) Approved for public release; distribution unlimited. 18. Supplementary notes 19. Key words (Continue on reverse side if necessary and identify by block number) The observation program reported here had the following goal 1) To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sou to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude intereparison.		from Controlling Office)		
Chicago, Illinois 60605 16. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) Approved for public release; distribution unlimited. 18. Supplementary notes 19. Key words (Continue on reverse side if necessary and identify by block number) The observation program reported here had the following goal 1) To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sources the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude interespansion.		12 431		-
17. DISTRIBUTION STATEMENT (of the abstract entered in Bluck 20. if different from Report) Approved for public release; distribution unlimited. 18. Supplementary notes 19. Key words (Continue on reverse side if necessary and identify by block number) The observation program reported here had the following goal) To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sou to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude interespansion.		1	15. DECLASSIFICATION	DOWNGRADING
Approved for public release; distribution unlimited. 18. Supplementary notes 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) The observation program reported here had the following goal 1) To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sourcest the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude interesparison.		W. C. Marie	L	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) 10. ABSTRACT (Continue on reverse side if necessary and identify by block number) The observation program reported here had the following goal) To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sources to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude interceparison.				
19. KEY WORDS (Continue on reverse side if necessary and identity by block number) 20. ABSTRACT (Continue on reverse side if necessary and identity by block number) The observation program reported here had the following goal 1) To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sou to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude interceparison.	roved for public release	e, distribut.	ton unlimited.	
20. ABSTRACT (Continue on reverse side II necessary and Identity by block number) The observation program reported here had the following goal 1) To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sou to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude interceparison.	LEMENTARY NOTES			
20. ABSTRACT (Continue on reverse side II necessary and Identity by block number) The observation program reported here had the following goal 1) To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sou to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude interceparison.				
20. ABSTRACT (Continue on reverse side II necessary and Identity by block number) The observation program reported here had the following goal 1) To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sou to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude interceparison.				
20. ABSTRACT (Continue on reverse side II necessary and Identity by block number) The observation program reported here had the following goal 1) To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sou to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude interceparison.	MORDS (Continue on several side if necessary and	f Identify by black number		
The observation program reported here had the following goal) To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sou to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude intercaparison.	COURT COURTING ON TOTAL STREETS HELESSELF STREET		•	
 The observation program reported here had the following goal) To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sou to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude intercaparison. 				
The observation program reported here had the following goal) To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sou to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude intercaparison.				
The observation program reported here had the following goal) To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sou to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude intercaparison.		· · · · · · · · · · · · · · · · · · ·		
 To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources. To measure the infrared energy distribution of these sou to test the reliability of the Catalogue magnitudes. To assess the effects of variability on magnitude intercaparison. 	RACT (Continue on reverse side II necessary and DSETVATION PROGRAM REPO	rted here had	the following	g goals:
Catalogue as a list of infrared sources. 2) To measure the infrared energy distribution of these sou to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude intercontains.				
to test the reliability of the Catalogue magnitudes. 3) To assess the effects of variability on magnitude intercontains.	•		-	
 To assess the effects of variability on magnitude interconstruction. 				
parison.				
		variability o	on magnitude i	ntercom-
DD FORM 1473 POITION OF LNOV 55 IS ORSOLETE				
1 JAN 73 1473	173 1473 EQITION OF THOV 55 IS OBSOL	ETE		

MIL-STD-847A 31 January 1973

Unclassified

4)	To cou	cla ld	ssi be	fy use	the das	sou an	rces unb	so t iased	hat I san	the nple	con of	tent infr	of ared	the sou	Cat <i>a</i> rces	logue
																')
				•												

TABLE OF CONTENTS

	Page
List of Illustrations	4
List of Tables	6
Introduction	7
Scanning Techniques	7
Classification of AFGL Sources	8
A. Late Type Stars	9
B. Molecular Cloud Sources	9
C. Sources with "as yet" Unidentified IR Emission Bands	10
D. Systems Exhibiting Disc Geometry	10
E. Summary Tables of AFGL Sources	10
F. Comparison of AFGL and U of M Magnitudes	17
G. Some Statistical Characteristics of our Sample	17
H. The Observing List	18
References	71

List of Illustrations

		Page
Figure 1.	Comparison of $\lambda\lambda 2-4\mu m$ spectrophotometry of cool stars.	57
	Differences in molecular opacity of the stellar photo-	
	sphere as a function of temperature, luminosity, and	
	C/O relative abundance are apparent. Determination of	
	IR band structure permits the recognition and coarse	
	classification of cool stars which may be difficult to	
	establish optically.	
Figure 2.	Representative IR spectrophotometry of M stars (0/C >	58
	l; ~Solar) illustrating the observed range in optical	
	depth due to circumstellar dust. Note the strong trend	
	towards increasing $\tau_{9.7\mu m}$ with apparent $\lambda\lambda 2$ -4 μm color	
	temperature. GL2290, GL 2885 and GL2205 are optically	
	invisible.	
Figure 3.	Representative IR spectrophotometry of C stars (C/O >	59
	1) illustrating the observed range in optical depth	
	due to circumstellar dust. CL809, GL865 and GL3099	
	are optically invisible.	
Figure 4.	Representative IR spectrophotometry of sources embedded	60
	in molecular clouds. Note the lack of correlation	
	between apparent $\tau_{3.1\text{um}}$ due to "ice" and $\tau_{9.7\text{um}}$ due to	
	silicates. GL490, GL2136 and GL2591 are new objects	
	located by the AFGL Survey.	
Figure 5.	Representative IR spectrophotometry of objects with	61
	strong band emission at $3.3/3.4/6.2/7.7/8.6/11.2\mu m$.	
	The objects themselves have apparently little in	
	common : GL2713 is a planetary nebula, GL915 is an	
	A type star with a circumstellar disc, and GL3053 is	
	apparently a compact HII region.	

			Page
Figure	6.	AFGL and U of M comparison at 4 microns, sources 000	62
		to 2096.	
Figure	7.	AFGL and U of M comparison at 4 microns, sources 2096	63
		to 4305.	
Figure	8.	AFGL and U of M comparison at 4 microns, supplementary	64
		catalogue 5000 to 55784.	
Figure	9.	AFGL and U of M comparison at 11 microns, sources 000	65
		to 2096.	
Figure	10.	AFGL and U of M comparison at 11 microns, sources 2096	66
		to 4305.	
Figure	11.	AFGL and U of M comparison at 11 microns, supplemental	67
		catalogue.	
Figure	12.	AFGL and U of M comparison at 20 microns, sources 000	68
		to 4305 and supplementary catalogue.	

List of Tables

		Page
Table I	Additional Data Sources	7
Table II	Non-IRC M Stars	12
Table III	Non-IRC Carbon Stars	12
Table IV	Molecular Cloud Sources	13
Table V	Circumstellar Disc Sources (Eggs)	14
Table VI	Band Emitters	15
Table VII	System Descriptions	17
Table VIII	Observatory Code	19
Table IX	AFGL Observation Summary	21

FINAL REPORT

F19628-76-C-0287

The observation program reported here had the following goals:

- 1) To identify AFGL sources to test the reliability of the Catalogue as a list of infrared sources.
- 2) To measure the infrared energy distribution of these sources to test the reliability of the Catalogue magnitudes.
 - 3) To assess the effects of variability on magnitude intercomparison.
- 4) To classify the sources so that the content of the Catalogue could be used as an unbiased sample of infrared sources.

In the interest of completeness we have included data taken prior to the contract period with similar photometric systems. These sources of data are listed in Table I.

TABLE I

Additional Data Sources

- 1) Gillett, F.C., Merrill, K.M., Stein, W.A., 1971, Ap. J. <u>164</u>, 83. (Identified in Table IX by Date: 70/00/00 Obs: 4 Sys: 14.)
- Strecker, D.W. and Ney, E.P., 1974a, A. J. <u>79</u>, 797 (IRC Anonymous; 1974b
 A. J. 79, 1410 (CIT's).
- 3) Data from Chile runs (Southern IRC Anonymous).
- 4) Unpublished data of E.P. Ney.
- 5) Unpublished data of K.M. Merrill.

Scanning Techniques

After considerable experimentation, we decided that the most reliable method for searching for AFGL sources that was consistent with the available facilities employed manual, rather than automated, scan techniques. Manual rastering of AFGL position error boxes was carried out using digital position readouts or by actually (offset) guiding on the field viewed through an image intensifier. Sources fainter than those found by automated scan techniques were found, since any indication of a source could be immediately

checked. Noise spikes and apparently non-interesting stellar sources could be further tested immediately as potential AFGL source identifications.

Most scans are done at wavelengths less than 4 μm , since the available photometric systems are most sensitive at such wavelengths, especially when the larger apertures necessary for efficient scanning are employed. Since sources with very cold color temperatures (e.g. AFGL 20 μm detections) are difficult to detect at shorter wavelengths, a comparatively low success rate was anticipated. Scans at 20 μm will ultimately be necessary to reliably search for the AFGL 20 μm sources.

Generally speaking, error boxes with dimensions of at least 2 standard deviations from the mean were searched. North-south chopping of tangent beams at 5 or 10 Hz and short (~100ms) time constant on the lock-in amplifier were found to be generally effective for finding sources of size comparable to or less than the beam.

In general, the ground-based observations reach flux levels significantly below those of the AFGL Survey (at least at 4 microns). Since relatively large areas of the sky are searched, often in the galactic plane, some degree of source confusion is to be expected. The sources most suspect are the faint (~5 mag) sources with energy distributions of Rayleigh Jeans' shape. On the other hand, sources not found (NF) by scanning may be quite real. From our own experience we have found some sources to be extended (e.g. GL416, GL3053) and hence difficult to detect by scan techniques using tangent beam spatial chopping. Further, the source may have colors which make detection impossible at wavelengths below 20 microns. For example, a hotter component of GL2636 was found by scanning at 3.5 microns, but the associated bright 20 micron source was established unambiguously only by the 20 micron measurement.

Classification of AFGL Sources

A fair ranking in order of decreasing confidence of methods used to classify an infrared source would be:

- 1) Optical spectrum of well-established visual counterpart,
- 2) Infrared spectrophotometry,
- 3) Infrared photometry.

Since few non IRC sources in the AFGL appear to have optical counterparts, infrared methods and associated radio phenomena must often be employed in source classification. Several types of sources are both readily identifiable and inherently interesting as will be discussed below.

A. Late Type Stars

For late type stars the relatively strong dependence of molecular abundances and opacity on temperature surface gravity and relative C/O abundance permits at least a coarse separation of K, M, S and C spectral types and in some instances may suggest that the source is a supergiant. The marked differences in photospheric absorption bands for various types of late type stars is shown in Figure 1. The actual criteria for classification are documented in Merrill and Stein (1976a), Merrill (1977), and Merrill and Ridgway (1979). Molecular features at wavelengths of 2-4 microns and particulate features at wavelengths of 8-14 microns are useful in identifying late type stars. In a number of instances spectra in both wavelength intervals are necessary for proper identification. Spectrophotometry of representative "oxygen rich" $(0/C > 1; \sim solar abundance)$ M stars is shown in Figure 3. The observed range in optical depths for circumstellar dust envelopes is spanned in these figures. Note in particular that molecular absorption features are still recognizable even when the star is imbedded in a dense circumstellar envelope. In these figures the systems with envelopes of largest apparent optical depth are AFGL Survey sources.

B. Molecular Cloud Sources

Molecular clouds as sites of recent star formation are often found to contain compact cool infrared sources which include protostars, pre-main sequence stars and compact HII regions. Often, radio observations have subsequently led to the discovery of infrared source complexes requiring detailed mapping. Such sources appear to have one distinguishing characteristic in common - the presence of varying degrees of $\lambda 3.07 \mu m$ "ice" band Merrill, K.M., Stein, W.A., 1976a, Pub. A.S.P. 88, 285.

Merrill, K.M., 1977, in Proceedings of IAU Colloquium 1142, "The Interaction of Variable Stars with Their Environment," Veroff.Bamberg 11, (12), 446, (R. Kippenhahn, J. Rahe and W. Strohmeier !eds.1).

Merrill, K. M., Ridgway, S. T., 1979, Ann. Res. Astron. Astrophys. 17, 9.

absorption. To date, this band has only been seen in the spectra of sources intimately associated with molecular clouds. The infrared spectrophotometry of selected molecular cloud sources seen in Figure 4 illustrates the lack of correlation between $\tau_{3.1\mu\text{m}}$ due to ice and $\tau_{9.7\mu\text{m}}$ due to silicates investigated by Merrill, Russell, and Soifer (1976). GL 490, GL 2591, and GL 2136 are AFGL Survey discoveries.

C. Sources with "as yet" Unidentified IR Emission Bands

Although the planetary nebula NGC 7027 was the first object reported with band emission at 3.3, 8.6 and 11.2µm (Gillett, Forrest, Merrill, 1973; Merrill, Soifer, Russell, 1975), a wide variety of sources have been found to emit at 3.3/3.4, 6.2, 7.7, 8.6, 11.2µm (Russell, Soifer, Merrill, 1977). A number of interesting AFGL sources are known to emit in these bands, whose origin is not yet determined. Figure 5 illustrates how strong this band emission can be. Since most sources with IR band emission of this type are known to be spatially extended, they would be difficult to find without the guidance of the AFGL Survey. Further, deeper surveys might reasonably be expected to detect a more complete sample of such sources.

D. Systems Exhibiting Disc Geometry

The discovery of the "Egg Nebula," GL 2688 (Ney et al. 1975) and subsequent objects of a similar nature has led to a wealth of information on circumstellar dust envelopes with a flattened disc-like shape. The evolutionary status of these objects has yet to be well determined. The unbiased detection of such sources by the AFGL Survey has led to the discovery of an entirely new type of stellar system.

E. Summary Tables of AFGL Sources

Although a majority of the AFGL detections are apparently cool stars, a significant number are molecular cloud sources, circumstellar disc sources

Gillett, F. C., Forrest, W. J., Merrill, K. M., 1973, Ap. J. 183, 87.

Merrill, K. M., Soifer, B. T., Russell, R. W., 1975, Ap.J. (Letters) 200, L37.

Merrill, K. M., Russell, R. W., Soifer, B. T., 1976, Ap. J. 207, 763.

Ney, E. P., Merrill, K. M., Becklin, E. E., Neugebauer, G., Wynn-Williams, C.G., 1975, Ap. J. (Letters) 198, L129.

Russell, R. W., Soifer, B. T., Merrill, K. M., 1977, Ap. J. 213, 66.

and sources of unidentified band emission. The AFGL Catalogue has substantially increased the number of sources in all three categories. The following tables are a listing of objects identified in the AFGL Catalogue wh. h are not present in the IRC Catalogue of Neugebauer and Leighton. Table II lists non-IRC M stars. Table III lists non-IRC carbon stars, Table V circumstellar disc sources (eggs), and Table VI sources of unidentified band emission. The entries which are marked with asterisks are those in our assigned part of the sky, i.e. $\mathrm{HH}:00:00 \leq \alpha \leq \mathrm{HH}:20:00$. A question mark following an entry indicates that the classification is uncertain. Entries enclosed in parentheses are as yet unconfirmed sources which for a variety of reasons are expected to be real. Such objects are treated as unknowns in the statistical discussions and summaries.

The classifications implied by Tables II through VI are provisional and are intended to provide working lists for further study. They are based on all the information available to the authors including as yet unpublished results and private communications from other observers. Hence classifications as they are ultimately published should be referenced, rather than these tables, as the source data for a given object.

A breakdown of these tables shows that for non-IRC objects there are

Carbon stars	40 + 6 suspect
M stars	44 + 3 suspect
Molecular cloud sources	38
Eggs	7 + 9 suspect
Rand emitters	14

Table II Non-IRC M Stars

0230	OH127.9+0.0	2188A	ОН22.8-0.3
0360	RR Cep	2192	
0538?		2199	
*0570	SX Cam	2205	он26.5+0.6
*1101		2222	
1110	VZ Cam	2252	
1113		2259	
1162		2266	LO Her
1192	SS Pup	2290	0н39.7+1.5
1274	ОН235.3+18.1	*2350	
1283		*2361	
*1686	ОН 334.7+50.0	*2362	
*1822	ОН 345.0+15.7	*2370	
*1954	V1848 Oph	*2374	
1992	он 358.2+0.5	2425	OH22.7-17.9
2009		2445	
2015		*2498	V718 Cyg
2019	OH2.6-0.4	*2690	X Cep
*2085	он5.0-3.8	*2885	OH104.9+2.4
*2096?		2991	5h2-149
2143?		2999	A5501
2161		*3022	
2171	SVS4271	*3067	AN Cep
2174	ОН22.0+0.0		

Table III Non-IRC Carbon Stars

*0055	FR Cas	*2316?	
0067		*2318	
*0190?		*2392	
0341		2403?	
*0482		2428	
0799		2477?	
*0865		2482	KL Cyg
*0918		2494	
0935		*2513	
0954		2604	
0971		2613	
*1062		2679	
*1085		2686	
*1235		*2699	
*1922		*2881	
2023		2901	
2047		2949	
*2085		3011	
*2113?		*3068	
*2118		3099	
2150		Early type	carbon-rich stars
2154		1135	U Mon
2155		4219	R CrB
2178		*2104	WC8) Wolf-Rayet stars
2256?		2179	WC9)
2259			

Table IV Molecular Cloud Sources

(0326/28)	W3	(2177)	OH17.6+0.2
0331	W3-OH	2245	G29.9-0.0
(0333)	W4	2251	W43/G30.8-0.0
4029	IC1848	* 2234	W490H
0416	Sh201	* 2341	G45.13+0.14
* 0437		* 2345	он45.5-0.0
0490		(2378/79	/80) W51
0779.0	OMC-1 BN/KL	2381	W51-IRS2
.1	Trapezium	2455	Sh88B/G61.5+0.1
0806	NGC2023	2495	K3-50
0807	NGC2024	* 2554	G78.4+2.8
0818	NGC2071	* 2557	BD+40 ⁰ 4.564
* 0877	NGC2170/Mon R2	(2578)	G78.1+0.6
* 0896	Sh255/OHØ61Ø+18	(2586)	G79.3+1.3
*(0902)	Sh269	2591	AFCRL 809-2992
0961	M.Cohen's Rosette Source	(2593)	DR9/W69
0989	D.A.Allen's source in	(4267)	G78.2-0.4
	NGC2264	(2602)	DR15/G79.2+0.4
4222	Elias 29 in Oph	(2612)	G80.4+0.4
4224	Elias 21 in Oph	2621	W75(N)
2046	not IRC-20411	2624	W75(S)/DR21/G81.7+0.5
* 2052	M8 including Hourglass and Her 36	2625	DR22/G80.9-0.2
* 2059	"M8E"	2636	G82.6+0.4
* 2078	W31	*(2699)	G81.4+1.2
* 2090	W33A	* 2884	Sh140
*(2117)	M16A/B	* 3048	NGC7538
* 2136	OH17.6+0.2	* 3053	Sh159
		*(3057)	Sh157

Table V Circumstellar Disc Sources (Eggs)

0618	"Perseus Egg"
*0915	HD44179/"Red Rectangle"
0961?	M. Cohen's "Rosette Source"
0989?	D.A. Allen source in NGC2264
*1059?	Z CMa
2028?	89 Her
*2059?	"M8E"
*2088?	
*2132	MWC922
2165	MWC297
2454?	Sh87
2584	Sh106/G76.9-0.6
2603	MWC349
*2688	"Egg Nebula"
2789?	V645 Cyg
3181?	M2-56

Table VI IR Band Emitters⁺

4029	"IC 1848"
*0437	
0779	OMC-1
0807	NGC2024
*0915	HD44179
1388	M82 galaxy
*2052	M8 Hourglass
*2132	MWC922
2245	G29.4-0.0
4251	BD+30°3639
2454	Sh 87
*2713	NGC7027
*3048	NGC7538
*3053	Sh 159

 $^{^{+}\}text{Not concluding compact HII regions where the 3.28 <math display="inline">\mu\text{m}$ band is present, but only weakly seen.

F. Comparison of AFGL and U of M Magnitudes

We have presented the comparison of AFGL and U of M measurements in a series of figures. It is clear that in this comparison variability plays a large role. There do not seem to be discrepancies between the systems which exceed the uncertainty of a given observation imposed by the fact that so many of the sources are highly variable. In comparing with the AFGL 4 micron observations, we have averaged our filters at 3.5 and 4.9 microns. Figures 6, 7 and 8 show the 4 micron data, Figures 9, 10 and 11 show the 11 micron comparison, and Figure 12 shows the 20 micron plot.

G. Some Statistical Characteristics of our Sample

Data for AFGL Survey sources are reported here regardless of their location on the sky. However, one of our primary tasks was to provide information on those sources with right ascension HH:00:00 $\leq \alpha_{1950}^{} <$ H:20:00 and declination $\delta_{1950}^{} \geq -29^{\circ}$. For statistical purposes then, the sample discussed below contains only the subset of sources located within this portion of the sky.

There are 704 sources total in our sample of which 529 (75%) also appear in the IRC Catalogue and 175 (25%) do not. We report data in Table VIII on 168(32%) of the IRC sources and 97(55%) of the non-IRC sources. Of the non-IRC sources, 65 were measured and 32 were not found.

Although the study of our sample is not yet complete, several trends in the data are worthy of note. Many of the stars in the AFGL Catalogue are variable, as is expected for luminous cool stars. At least 98% of the IRC portion of our sample are stars of known spectral type: 69% are M or K'stars and 5% are C stars. The ratio, R, of the number of cool stars with C/O > 1 (carbon C stars) to the number with C/O < 1 (M and K stars) is about .07 in agreement with that found for the full IRC Catalogue. However, of the non-IRC sources in our sample, 10% are C stars, 11% are M stars, and 58% are as yet unclassified. Hence R > .14 for the non-IRC subset.

While there are a number of possible explanations for the difference in R for the sources in our sample with 2.2µm fluxes above and below the limit of the IRC Catalogue, the tendency for R to be larger (more C stars) for the stars which are faint in the visual and the near infrared is perhaps to be expected. The reasoning is as follows. The lower limits of the IRC Catalogue

at $2.2\mu m$, near the peak flux of a typical cool stellar photosphere, and the AFGL Catalogue at 4.11 and 20µm, where photospheric emission absorbed by circumstellar dust is re-radiated, correspond to roughly comparable energies. In the absence of thermal re-emission by dust, stars whose unattenuated flux is near the lower limit of the IRC are below the limit of the AFGL Catalogue. However, these same stars could be AFGL sources if they had sufficient circumstellar dust to redistribute their energy to longer wavelengths. Whether or not such a cool star with a circumstellar dust shell bright enough to be in the AFGL Catalogue would also be in the IRC depends on the 2.2µm flux emergent from the dust shell. Photospheric radiation at 2µm is attenuated by dust and not replaced by thermal re-emission. Hence, statistically one would expect most of the AFGL stars with dense dust shells to be found near or below the limit of the IRC. The carbon-bearing condensates associated with carbon-rich (C) stars have substantially higher 2µm opacity than the silicate materials associated with oxygen-rich (M,K) stars. For stars of comparable luminosity with circumstellar dust shells one should anticipate that C stars would appear to be fainter at 2µm than M stars. Hence at least the direction, if not the magnitude, of the observed trend in R seems understandable.

H. The Observing List

The observing list contains 1720 observation attempts on a total of 594 objects of which 72 were not found. Since about 8 observations are usually made, the table contains about 13,000 individual magnitudes. Since these data have been obtained over a significant period of time, the list should be valuable for determining the magnitude and nature of the variations in a respectable number of AFGL sources. The data were obtained on a number of telescopes with varying observing conditions. Because of pointing problems with all telescopes except the Wyoming 90", it was usually time consuming to conduct a satisfactory search for an AFGL source. We have identified the pointing problems with the O'Brien 30" telescope and with some moderate modifications we believe we could point the telescope accurately enough to put the AFGL position within the photometer beam. This would make the acquisition of known sources a routine operation and would give us more confidence in the "no find" nature of the sources we cannot at this time identify.

Table VII

SYSTEM DESCRIPTIONS

SYSTEM #01 UM Uplooker #2 Ge:Ga bolometer 1 mm beam size

BANDCENTER: BANDPASS:	00 glass	01 1.25 0.14	02 1.65 0.30	03 2.25 0.50	04 3.58 1.23	05 4.9 1.0	06 8.6 0.85	07 10.7 1.1	08 12.2 1.1	09 18 4.7	10 I	11 R
SYSTEM #03 UCSD Downlooker 01 BANDCENTER: 1.25 BANDPASS: 0.14	JCSD Downlo		InSb photovol 02 1.65 0.30	ltaic 2/1/ 03 2.28 0.47	hotovoltaic 2/1/.5mm beam size 2 03 04 05 05 05 05 05 05 05 05 05 05 05 05 05		CVF:λλ2.1-4.1μm 06 4.8 0.33	m 07 3.3 0.05	08 3.2 0.5	09 3.08 0.12	10	11
SYSTEM #04 UGSD Downlooker 00 01 BANDCENTER:	JCSD Downloo		Ge:Hg photoconductor 2/1/.5mm beam size 02 03 04 05 05 2.28 3.5 4.9 0.47 1.0 1.0	onductor 2 03 2.28 0.47	/1/.5am be 04 3.5 1.0	eam size 05 4.9 1.0	CVF:λλ7.5-13.6μm 06 07 8.4 11.: 1.0 2.6	3.6µm 07 11.2 2.0	08 12.5 1.7	60	10	11
SYSTEM #05 UM Uplooker 00 BANDCENTER: BANDPASS:	UM Uplooker 00	r InSb 01 1.25 0.14	InSb photovoltaic 2/1/.5mm beam 02 03 04 1.65 2.28 3.58 0.30 0.47 1.23	aic 2/1/.5 03 2.28 0.47	mm beam si 04 3.58 1.23	size 05 4.9 1.0	06 4.8 0.33	07 3.3 0.05	80	60	10	11
SYSTEM #06 UM Uplooker 00 BANDCENTER: BANDPASS:	M Uplooker 00 (Ge:G 01 1.25 0.14	Ge:Ga bolometer 02 1.65	r 1mm beam 03 2.25 0.50	1 stze 04 3.58 1.23	05 4.9 0.35	06 8.6 0.7	07 11.3 2.2	08 12.8 1.2	09 18 4.7	10 10.3 1.0	11 10.6 4.9
SYSTEM # 07 UM Uplooker 00 01 BANDCENTER: glass 2. BANDPASS: 0	UM Uplooker 00 glass	72.4	S1:As photoconductor 2/1/,5mm beam 02 03 04 3 3.58 4.74 4.9 5 1.23 0.48 1.0	ductor 2/1 03 4.74 0.48	/,5mm bean 04 4.9 1.0	8fze 05 7.9 0.4	CVF: λλ7.5-13.6μm 06 07 8.5 16	6µm 07 10.55 0.90	08 11.09 2.0	09 11.94 1.04	10 12.52 1.2	11 BaF1
SYSTEM #08 UM Uplooker 00 c BANDCENTER: 1	JM Uplooker 00	= = :::	InSb photovoltaic 2/1/.5mm 02 03 1.65 2.28 14 .30 .45	1c 2/1/.5m 03 2.28 .45	m beam size 04 3.08	0	CVF:λλ2.8-5.5μm 06 3.27 .14	07 3.53 1.06	08 3.58 1.23	09 3.80 .59	10 4.74 .48	11 4.9 1.0
SYSTEM #10 UCSD Downlooker FILTER: SYSTEM #11 UCSD Downlooker FILTER:	JCSD Downlor JCSD Downlor		photoconductor 2/1.5mm beam size CVF:λλ2.8-5.5μm #3 #3 #3 photoconductor 2/1/.5mm beam size CVF:λλ12.3-23μm	tor 2/1.5m #3 tor 2/1/.5	m beam siz #3 mm beam si	ze CVF:λλ #3 ze CVF:λλ	CVF: λλ2.8-5.5μm 3 CVF: λλ12.3-23μm 4	77	7	9		

SYSTEM #12 UM 12λ#2 Downlooker Ge:Ga bolometer 1mm beam size FILTER: #6	9#	9#	9#	9#	9#	9
SYSTEM #13 UM Downlooker Ge:Ga bolometer 1mm beam size FILTER: #1	#1	#1	#1	#1	fi.	9#
SYSTEM #14 UCSD 4\ Downlooker Ge:Ga bolometer 1mm beam size FILTER:	7.4	7#	7*			
SYSTEM #15 UCSD Downlooker Ge:Ga bolometer 1mm beam size FILTER:						9

Table VIII

Observatory Code

- 1. O'Brien 30" scale 26 seconds arc/mm
- 2. Mt. Lemmon 60" scale 8.5 seconds arc/mm
- 3. Jelm Mountain 90" scale 4.0 seconds arc/mm
- 4. KPNO 50" scale 11 seconds arc/mm
- 5. Cerro Tololo 36" or 60"
- 6. Las Campanas 40"

Explanatory Note to AFGL Observation Summary:

- Col. 1. AFCL Catalog Number. Decimal portion refers to possible multiple "AFGL#" sources.
- Co1. 2. Date of observation year/month/day.
 "DATE"
- Col. 3. Observatory code (Table VIII) "OBS"
- Col. 4. System code (see Table VII) for identifying system used, available "SYS" beam sizes and filter band centers and bandpasses corresponding to columns headed 00 to 11.
- Col. 5. Aperture used: 1 is largest aperture, 2 is next largest, etc. "A" $\,$
- Col. 6. (see Table VII). Aperture size and telescope scale (Table VIII).
 "S" Together these give beam size. Spectrophotometry 1 designates that a CVF spectrum was taken.
- Col. 7 to Col. 18. Columns designated 00 to 11 are the observed magnitudes appropriate to the system used (see Table VII). Upper limits are for 3 standard deviations from the mean.

NF = not found

FF = object found and either not measured or presumably not the AFGL source.

Table IX

AFGL GRSEPVATION SUMMARY

11		٠ 0	
10	3.2	ب. برا	(D L)
60	1.2.6 1.3.5 1.3.5 1.3.5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
08	11. 1	04000	4mmw www ww c 4mm 4 5mmcs
07	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000	LLULL LLU LAGGE THE T SHOLE
90	2.1111 2 2.110 2.0111 2 2.110 2.0110 4 7.11.00	000000	1111 111 11 1 1 1 1 1 1 1 1 1 1 1 1 1
0.5	1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	100HH0 0	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
04	60004004111114441 4600040464	4040WD 0	111 000044400 0044444 044 44444444444444
03	10000000 1000000 100004000 004000		144 44444 4444444444444444444444444444
0.2	044 050 044 449		44 N N N N N N N N N N N N N N N N N N
01	044 40 HWV		ου ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο
00		3.0 3.1 3.1	क सक व त न ल त
က	000000000000000000000000000000000000000	066600000	
æ	епппененененен	нененене	поперенения принципальн ения
SYS	00000000000000000000000000000000000000	00000000000000000000000000000000000000	0000m0000000000000000m000mm
ORS			
PATE	73/02/15 73/03/05 73/03/05 73/03/12/19 75/11/02 75/11/29 75/11/29 73/03/20 73/10/20 74/12/30	72/03/12 73/03/15 73/03/04 77/11/04 74/10/29 74/10/29	73/09/29 73/09/05 73/09/05 73/09/05 73/09/24 73/13/09/24 73/12/20 73/09/29 73/10/25 73/10/26 73/10/26 73/10/26 73/09/29 73/09/29 73/09/29 73/09/29
FGI #	00000000000000000	000000000	55 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

	1													,	•					4.1				8					٥.							0.0			8.0								
	10							0.	•					y .	•					6.1		5.4		5.2					-1.1							c.			6.3			8.2	•				
	о С	-2.7					-2.5	7				r	0 ° C	•		ŭ.				9.8				ċ	-5.1					'n			-3.6			3.5			-1.6		-3.8		-3.4				
	ر د	-1.4	jç	 :!			-1.6	., .	O,	٠	•	c	٥٠ ۲۰	;					-	'n	-1,5	0		ó	8.5-	٠,			-5.7	٠	•		-2.9	4	9.7-	,		ď	-1:1		3.	5	-2.6	_;;	2.	6.0-	
	0.7	5.1.5	ے ز	· ·			-1.5	~:	٠	•	•	· •	•	7										ö	-3.8	₹.			'n.		12.5	,	-2.9		-2.1	,	c			-	ë.	2	•	۲,		-0.1	
	90	-0.5	•				9.0-	ᅼ,	•	ς,	•		•	ا د د	•				ے :	. ~					13.3	۳,				4.0	0 ~		-1.6		-1.2	-1		•	-0-1	-	2.	ä	•	÷		0.7	
λd\	0.5	1.2	•	• •	•		1.0	٠	٠	٠	٠			ا ت 4 د	•				•		•			•	-3.3	•			•	ή.	-0-	•	-0.3		70.	•			7.7		٠		•	•		1.1	
SUMMA	ÇĄ	7.1	•			•	•	•	•	٠	٠	•		٠	•			4	•		; , ,		1.9		•	۲,	•	۲.	÷,	ή.	, c		•	•	٠	٠		•	1.3			•	•	•		1.0	٠
PVAT 10K	ڌر		٠				•	•		•	•	•		۲۰۰	٠						•		2.6			2.	-2.3	2	ო (•	•	1.2	•	٠	•		•		•	٠	2.8				1.2	
OBSF	0.2	3.7	r	•		•	4.0	٠	٠	•	٠	٠		m c	٠					7	•	, ,	•	7,5	•		• • 1	-;	-2.9		•	•	6.7	•		2.5			2.4	•	•	4.0	4.3			1.4	•
AFGL	5	g. 4	Ċ	•			٠	•	•	٠	3.1	٠		4. (•					ر د	٠	0	•	3.7	•				2	٠	•		2.3			2.4			٠. ٥٠٠	•	•	•	را 00			2.3	
	00						•	4.6	•		3.1	٠			ر . د و						α	•														2.4	L Z		4	•			4.7		:	Ž	
	S	c (د د	э c	0	· ~	0	0	C	0	O	0	٠ -	0	⇒ c) c	> c	> C	.	o c) C	> c	c C	· c	ہ د	-	Н	-4	က	c) (- c	- ر	0	٦		ပ	ပ	<u>م</u> د	ے د) C	0	· C	c	C	c. c	ے د	>
	در	⊷.		F	-	۱ ۲	-		-1	~1	-4	<u>-</u>	٠,	⊶,	p		٠,	٠,	٦.	٦,	4	٠,	-	4	٠-	H	-	 1	-	-1	-	٠,	ı4	e-1	1	٠, ٢	٦,	٠, -		- ۱	·	-		-	rd e	c	4
	ن. د د د	01	T (4 •: J €	်ပ	03	0.1	01	01	0.7	0.	6	- I	- ·	٦. د د	4 i-	+ - 5 C	چ ب م ر	† r	3 6	d () C	1 e-	5 0	12	<u>ٽ</u>	<u>ო</u>	03	0.1	01	-1 ×		(C)	O	50	50	10	٠	ے ہے۔ ت ت	4 - 7	01	50	15	170	بر د د	010	•
	340	-10	- نه	٠, ,	ą C	. (4	۲,	~	1	mi	r- 1	-		.	٠ .	-4 <i>-</i> -	٦,	٠, ,	r e	٧,-	٦,	- I	4 ~~	~ ۱	٠,	(4	7	c 4	-1	7	٦ ,	٠,٠	1 (1	2	7	<u>,</u> ب	-1 -	-ı -	۲.	۱ حز	. –	٠-	1 - 4	1	<u>ر</u>		4
	Contra	3/04/2	Z/65/8	0/01/5	0/44/3		0/30/1	0/150/5	6/20/6	3/23/8	3/21/2	1/01/0	8/1/1	7/10/5		シンドンマン	7.37/4	4/00/0	5 / 0 0 / 0	7/6//0	0/00/0	· / · · · / ·	2/::/6	2/2/2	1/01/6	3/12/1	1/22/0	4/12/1	7/02/1	7/11/2	0/01/7		0/17/	4,722/5	6/11/3	6/01/1	0/01/9	イン・ウンド	7/0://	7/10/0	3/03/2	0/01/6	8/51/1	8/02/1	6/11/2	78/01/22	7 / 7 / 1
	11 0 6 6	٠ د د		or	u Ç	(r (2)	160	15 A.	500	:77:	: : : :	98	190		∵ ∵ `	r	• ∩ 10 ⊃ •	4 C	000	4 C				333	100	(r)	(E)	318.	318.	33.5	320			523	(C)	323	126.	,,,,	. 2 ٪ د مرد ج	• 30.5	0.7	0	. c.	333	36.	0.550	•

	11				e. œ											0			ر د د د	•																			
	10				•	5.6													4.2	•											8.5								
	60					-0.2			NF						r	7.7-									ç	-2.5		-3,3	•		-3.1 >				-3.3				-3°€
	08	N				0.1								-1.8	7		•	•	1.6	•				•	,,		2.	٠, س	~; ~	, ~	· ~	ň	6.2.	•	-3.3		; ;	-1.2	-+
	0.7	-0.8			0.0			3.8			•	8.0	2	•	7		•	•	1.6	•						•	2	m ı	, ,	, ~	, m	ω,	13.0	•	-3.2		: 6	-0.7	6
	90	0.2			 	•					, '}	9.0	•	ċ,	÷		•	•	2.0	•			0.9		-, -	ċ	Ξ.	2	, ·	; ,	5	?	-2.3	,	-2.7			0.0	•
ARY	05	0.4			 	•						8.0	•	•	•		•	•	1.9	٠	•		1.5		•	90	•	<u>.</u>	•	•	<u>-</u>	ä	4.5	-	-1.6		• •	1.8	•
N SUMMARY	04	2.4		•	 	•					•	0	•	•	•			•	•	•	0.0		•		•	3.1	•	ö	•	•	0	•	0.0		•	6,			•
OBSERVATION	03			•	 		G			6.6		1.0		, o	•	•		•	•	•	2.5	•	•		•	9	•	•	•	•	•	•	1.9		•	•		• •	•
	0.2			8.0-	•	2.5	ũ	Li Li		11.4		1.3			2.2			٠	٠	•	, r		•		0,0		•	3.2	٠		3,9				5.9	•			7.8
AFGL	0.1				•	2.9						1.7		4.0	•	,	'n			•	4 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °			•	α•1			8	•		5.6				4.5				
	00		N.		•	3.3													3.5					N.															
	တ	000	0~			0	0	0	0	0	> c	- C	0	0	0	> C	0	0	0	c	> c	0	0	0	> c	. 0	0	Ç,	D -	٠	4 C	0	۰.		0	 (> ~	· ~-	0
	æ			.		۱ –		- - -	Н	~ ,	٦,		-1	-	۲,	-1 -	٠,	-	٦.	٦,	-4 <i>-</i> -	·	Н	٦,	-ı -	-11	٦	p-4 (-1 -	٦ ,	4	~	٦,		-	-		-	-4
	SYS	446	03	03	5 5	010	400	2 0	0.1	e 6	5 F	0.1	14	01	0.1) (C	0.10	01	Ü	0,1	3 5	37	0.1	55	ਰ 5 ਹ	10	0.1	7	7 0	5 8	07	04	90	9 0	0.0	03	<u> </u>	0.0	0
	Sgo	440	- ~	7	~	(*)	7	7 7	7	٦ ر	٧ <	٠-	4	-	٦,	7 C	. ~	н	1	-1 •	٠.	ıı	~	-		- - -	~	~	- - (4 C	۱	7	~ (v ~	N	7	, ,	ו נא	7
	DATE	70/00/00 70/00/00 70/00/00/00	8/01/1 4/12/0	4/12/1	3/10/1	5/10/2	6/11/2	7/10//	7/11/2	2/07/6	7/11//	7/08/7	0/00/0	2/61/2	7/08/3	0/01/9	7/08/3	7/10/2	7/02/0	0/31/1	,/10/0 7/10/0	2/01/1	7/10/0	0/01/2	4/11/3	6/11/2	7/10/3	3/03/1	3/03/2	3/50/5	3/11/6	3/10/2	3/12/2	4 / 1 D / 2	4/11/6	4/12/0	3/11/2	3/11/2	4/11/6
	AFGL#	0378.0	3.07	407.	 	4	416.	116.	416.	٠ د د د د د د	٠ د د د د	425	428	434.	£0.4	437	440.	453.	457.	-5 I	466.	467.	471.	472.	4 C C C C	482.	482.	480	6 0 0 0 N 5	 	0	489.	439.	0 00 0 00 10 00 10 00	489.	489	4 4 2 0 2 0	90	490.

						œ																																					
	10					6.5																v	٠								5.3						•	0.0					
	60			c			-2.	2	ŧ	·								0.1	ri u	ń		,	•					5.9			ا ا ا	,		G.									
	08		-1.3		; -	•	•	٠,	ζ,	•	•	-1.2	•		~	_;	,			r. •	1 1 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	. 4	•	4	-4.4	٠.	-5.2			7.4-	۲ ×					•	7.0					
	0.7		-0.7		10.4		•	•	•	•	•				-1.2	•	,	٠,	٠		200		. 4	•	4	-4.4	•	-5.2	•		14.7	•				•	•	•	1.0				
	نو		0.0		1 00 1	1.4	C	-	- •		4 C	-1	\sim		6°0-	ů.	,	٠.	٠,	٠,	, c	· <	٠,	•	'n	3.5	m	76.5	,		-4.0	٠						•	1.3				
APY	0.5			,	2.1	σ.	0.1	0.0			٠ د د ا		0.0			•		•	•			٠			-2.2				~		-2.4						•	•	9.1	•			
N STWWA	04	3.1		•	3.5		•	•		•	•				•	٠	•	•	· ·	٠,		•		• •		-	٠	, ,			-1.7	•	G.				L.,	٠. د د	7.6	3.1	2.6		
ORSPRVATION	č	5.1		5.2		2.2	•	•	•	•					2.8	2.7	-10	~;	ċ.	٠.,			: 0	· c	6	6	ċ.		· c	ċ	-0.7		ţr.			6.	2.5	٦ ٥		3.4			
	0.2	7.7		°.		2.7				4.0		5.0					•	9.		5.0-		•	•								0.2							•		•			
AFGL	01			10.5		3.5				φ.		> 7.5						5.1	,	9.0		,	T • 4					0	•		1.5	•						•	2,5	•			
	00				7.1	0.4																									1.3	•			NF			-	r. • H		ŭ	. E.	NF
	v,	~		0) C	0	c	С	0	c (5 r	40	C		1	 -4 •	-4 (<u>د</u> ، د	c (· C	p	-ı c) C	·-	-	۲.		- C	-	-	c	ے د	0	0	0	0	0	> c	0	0	c c	c	0
	<	,	-	~ r	- -		Н	~	~	~I •	~ ~		-1	-	-1	,,	~ .	н ,	٠,	·	-1 -	٦,		-	-	~	- 4 -	- ·		-	~ .	- -	٦,	-	~	H	,	- -	- - -	~	-i -	· -	7
	SYS	e 6	5 47 CO	50	ם ב	. C	13	m	13	0.1	2 5	5 5	č	C ∋	č,	٠. ز د	0	-1 i	r-1 (50	; c	# f	ન () > (.	r C	04	0.4	2 0) <u>-</u>	(m	()	07	•	. 6	90	01	~ 7	7	٦ ر	010	01	10	36	01
	CBS		4 64																																								
	STAC		74/11/29																				-		•	•			-	•		•		•	•	•	• •			•		•	
	AFCE	0.06:0	0.00.0	0400.0	0.00 0.00 0.00 0.00 0.00	0.52.5	0.527.0	6527.0	0.527.0	0.527.0		2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.527	0.1210	0.527.0	C) (0.527.0	0527.0	0529.0	0.529.0	0.6260	0.0000	10 C	0.0000	0.6250	0.02.0	0.5250	0.00.0	0.529.0	0.6220	0.529.0	0.552.0 0.552.0	0.6550	0.0880	0.0350	0552.0	0.556.0	0.600	0.567.0	0.0720	0.0270	0.44.0	0574.0

	11																			4.1																									. w
	10																			4.5																									2.5
	60			5										-3.1			-2.8	<u>ښ</u>		-1.3						•	•	6.	•							-4.6		-4.2						c	0.2-
	80	2	0,0	- α		2.	5	Ċį.	2			,,	•	-2.7			-2.5	3		-0.2			ψ,	m.	, r	1.6	•		•	-1:1	,	- 4 - 1 - 4 - 1 - 4 - 1	•	-4.3		-3.7	,	-3.6	(7.7	•		-2.6	,	9.7-
	0 7	0	•	,	2	2.	2.	6.	2			,	•	-2.2			2	2	9.0-	。	6	•	٠,	٠,	, ,	9.7-	; ,	. 0	•	٠ -		7.4.	•	-4.4		-3.8		m,	-2.5	7.	,		-2.8	c	9.7-
	90	~	.,			2.	2.					,	•	-1.9	٠		Ξ.	•	•	•	•	٠.	<u>.</u> .	i.	٠,	٠	•	•	0	•			•	-3,3		-2.9		m,	œ (2,	,		-2.1		0.1
ARY	0.5	0				0		0	0-0	·		0	•	-0.7			•	•	1.1	•	•	•	•		2.4		•		6.0	•		-2.3	•	-2.3		-1.7			0.1	<u>.</u> ,	-	•	-1.2	c	0.5
N SUMMA	04	9.0	•	•	• •	•		•	C (٠	•		•					•	•	•	•	•	•		5.2		•		1.4	٠		7.1.	;	٦.	-1.2			_;	9.0	٠.	:	9.0-		ن د	. e.
PPVATION	03	•	•	•		•		•	2.0	•		n c	•	•			•	•	•	•		0	٠			ć	•	•	1.5	•		0.0	•	•	ပ	•		5.5		0.2	•	•	•	•	0.E
SBO	02				5.7			0.9					u.	•	5.7	,	•	ω		1.7									1.6	•					•	9.0	•	•						٠	0.7
AFGL	01				> 7.4			> 7.6										8.1		5.6		2.5							2.3	٠						1.7		0.2							1.4
	00																•	5.0		3.4								5	•		Ç.					1.7									۲.3
	co.	p-4	0	ے د	0	C	-	င	c.	٦,	н,	-ı c	> ~	- C	·	-	0	c	c	ပ	0	0	0	~	⊶,	٦ ،	= c	c C	0	0	0	~ 0	0	-	~	0	~1	0	Ç (0	o ~		~	<u>-</u> (0
	~	~ !	٦.	٦,	-: ~	-	~4	-1	٦,	٠,	٠,				-	-	-	۲-1	-	7	-	-	~	~	~ ,	·		٦,		~			4	r-(~	-1		-	 -1 :	٠,	٦.	- <i>-</i> -	~	~ -	٦,
	SYS	70	13			04	10	0	0.5	10	10	0.3	2 C	3 5	, C	0.0	01	01	£.4	, T	14	C	04	04	20	70		- c	4 E	d	ũ	0) r-	0.4	۳ ت	ö	03	0.1	V	40	es C O F	3 4	7.	03	70
	CPS	2	~ ;			. ~	7	-	7	7 (7	~ ~	7 C	۱ ۷	1 ~	٠,	-	m	•=	'n	4	н	7	7	~	7	۷,	າ ຕ	٠.	-	-	۲ ر	, c	7	U	7	7	7	4	7	7 c	4 C	7	(1 -	-
	SATE	1/10/3	3/01/1	7,07,7	0/40/6 0/40/6	2/00/8	3/2/5	3/10/6	3/10/2	3/10/2	3/10/2	4/01/0	7/13/6	77/4	10/01/8	5/10/5	8/01/2	101/8	3/01/1	8/10/1	0/00/0	Z/Lù/L	3/11/2	3/11/2	3/12/1	2/10/5	7777	7/01/6	7/01/2	7/01/2	8/01/1	2/60/2	3/11/8 2/01/4	6/65/6	2/01/9	4/11/0	4/:2/1	J/01)/9	0/00/0	3/00/5	3/10/2	3/10/2	3/12/2	4/12/0	77/rs/25
	AFGLA	585.	5.55		• • • • • • • •		. U	5.5	585	ا ا ا		ທີ່ ເ ເກີດ ເກີດ ເກີດ	 		•) () () (. v.	יני מו	000	0.5%	601	617.	618.	518.	518	618	× 6	. בינט	632.	633	45.6	554.	0.04 7.44	654	700	564.	654.	664.	667.	667.	667.	. / 9 y	667.	567	0574.0

00	90 S V	0 V.	0 v.
	_	- H	61
	00	0 0	ငစ
E.	c c	C C	C C
7			
~	o с	о с н с	о с н с
•	, o) O O) O O
		٠,	٠,
		н	н
		-1 -	-1 -
		-1 -	-1 -
		-	-
		н	н
		m	m
		-1	-1
		٦,	٦,
		٦-	٦-
		· ~	· ~
Ą.	0 4.	1 0 4.	1 0 4.
4	0 4.	1 0 4.	1 0 4.
~	5 6	900	900
•		. 0	. 0
		Н	Н
		- -1	- -1
		·	·
		7	7
		~ ,	~ ,
		٦,	٦,
		r	r
		-	-
		-	-
		1 ~1	1 ~1
		-	-
	0	0 H	0 H
	0	7	7
足口	O 0	0 7	0 7
		0 c	0 c
		~ -	~ -
			٠,

:	3	m m			5.1	ان در ه	
,	-0.2				٠ ١	e 4 6 %	6.1
ç		2.6		-1.9	-3.9 -3.9 -2.2 -2.8	9 0 1	-2.0 -1.8 -1.7
Ĉ	-2.4		2.	22	0.011440000	0.0 0 HO NA 0.0 4 HB WA	
7	-0.3	1.7	2.	-2.1 -2.3 -1.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	011 1 1 11 1 0 0 0 0 0 0 0 0 0 0 0 0 0	
4	2.0	3.0	•		000000000000000000000000000000000000000	00 00444	, ,,,,,,,,
ğ	3.7	ιΩ &		00 00 00 00 00 00 00 00 00 00 00 00 00	010011 00	• • • • • • • •	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2	2.9			0000000		11.02.0 01.44 64.66.0 7.030	44588900
ć				444444H		20.888 HH 4	4 222224 2 2772220
ç	4.04		7.2	6.9	5. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	8000 HH	3.7
5	5.3				2.6	7.0	5.0
S	3	R		e •	2.3	2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
U		0000	04440		00000000	00-10-10-00-1-	4440000000
<			ннннн		~~~~~~	~~~~~~	*****
2	03	12 12 15	03 03 04 04	44 C C C C C C C C C C C C C C C C C C	00001100000 11000000000000000000000000	00000000000000000000000000000000000000) HOHEHHOCCO 1 H M 4 M M M H 4 H 4 H
9	9 444					44444444444444444444444444444444444444	
i i	79/10/11 79/10/15 73/10/14	73/10/04 78/01/09 72/63/16 72/63/17	74/05/24 74/11/26 74/05/24 74/12/12	74/03/14 74/04/13 74/11/15 74/12/07 74/12/14 75/01/22	73/03/17 75/01/09 73/01/09 73/01/09 73/03/19 73/09/29 73/10/26	74/01/29 74/02/28 74/11/03 74/11/03 75/01/03 75/01/03 75/01/03 75/01/03 75/01/03	73/11/05 73/11/05 73/11/09 73/01/09 73/01/09 73/03/119 73/03/06 72/05/06
•	0.00	0.40	07.7.0 07.2 09.0			000000000000	

AFGL OBSERVATION SUMMARY

SUMMARY
NOI
/AT
SEP
OBS
FGL

		7																																			
10																																		7.4			
60		9.0-					-3.5		c		2								ŭ. 23								7.7-			-2.4	٠			9.0-	9.0-		
90	-1.5	•	-2.5	•	C1	-2.2	5		r							7							·	1 C	-2.9		٥.			•	•	יי רי יירי		0.2	-1.2		
07	.i .	300	;;	•	_;	-2.0	2.			•		-1.2	•	0	~;	-i c	•						c		2:		-0.1	c	101	•	•	-1.7	,	-0.2	-1.2		
90	•	00,		,	•	-4	•		r			9.0-	•	•	-0.2	•	•						c	•	-2.1		٠. د.	· ·	7.0		ن	7 0 - 1 10 - 1	•	0.0	0.0-		
0.5	•		•	0.1	•	1.5	•		•	•		6.0	•	•	4.0	•	•	2.5					•	7.0	0.0		×.			•	•	ω r.	•	1.7	0.1	1.0	;
04	28.5		•	•	ო ო თ. თ			•				•	•	•	9.0	•	•	5.3				•	2.0	•	•	ri (•				•		• •	•	00	•	•
ξũ	2.8		•	•	V 7 . S	•		•	•	•		1.7	•	2.1		,	•	9.3			v		ω r	•	•	3.2	•				•			•	2.2	•	•
62	3.6	3.2					۲.	10.4	0			2.2						12.4			>13.1					0.9	•	n. (•	4.4		•	2.7	•	3. 6.5	
. 5		4.3										3.0						14.0									9.2		x x	•	5.0				5.4		
00													N.	:			ri d	!	1	8																	
C.		c 0 c	o - -	~ i	00	0	0	٦.	٦,	ت د	0	0	0	0	0	0 0	> c	-	6	o -	-	~	ပ	<u>-</u> د	٦.	~	ت	100	<u>-</u>	· C	Ç	c -	٠.	C (c		-1
<			-:	~1		4 ~	-1	~ ·	r	-4 e-	4				-1	-1 -	٠, ۴	-	- 4		4 -4	~	- ,			-:	-1 -	• •		-	← l	-	4 ~~	~	- -:	r~1 r-	4
SYS	03	13	8 8	04	٠ و د و	0.4	10	03	503	J 5	ر د د	55	J 6	3 -	7	4 6	ۍ ر د	03	10	C 5) M	03	E 6	\$ 6	. S	03	בי מ	500	7 5	, E1	Ę,	2 2	03	01	03	0 0	ה כ
cas	77																																				
SER CO	74/02/27	72/09/12	73/11/25	74/01/29	74/03/15	74/34/12	74/11/08	74/11/15	75/01/05	77/03/23	71/03/12	02/80/11	78/31/09	73/01/11	00/00/02	70/00/00	60/10/64	79,03/07	77/11/22	78/01/17	74/11/25	72/11/26	76/09/25	73/11/65	73/11/25	74/20/20	74/23/07	77/19/23	76/11/14	72/01/11	13/64/21	72/02/27	74/11/11	78/10/29	74/16/20 74/11/08	74/11/11	4/25/4/
AFGI.	0.950.0	000	0	0	٠. c		ç.	0	د د	ے د د	3 0	0	. 0	· c	0	0	<u>ا</u>	C	0	c , c	. c	0.	c. e	ت د •		0	c c	0.0	o c	. c	c.	د د	ب د	0	c 0	c c	•

11																				7,7			7.8											5.5		
10																				4	•		6.3											4.4		
60		>-2.6																					-1.0				٠; د	÷ (-2.4		-3.1		ó	-1.1	Ϊ.	
ç	-1.9	7.5	;	0 -		~ i					-2.0	,		-1.8		×-1-				7 6	•	0.4	•		-	ċ	•	٠.	-1.4		-1.7			ö	ن	-0.4
07	-1.1	70.7	∹;	٠, د		2	-2.2				6, 6	•		-1.3		7				•	0	•	٠	-	4	ċ	<u>,</u>	٠,	7.7.		-1.2		• •	ė	ç.	-0.7
90	0.9	0-0-8	. .	60		ċ	-1.6			ö	11.4	-		-1.0		5. 0				•	• •	•	1.1	•	•	0	င်		0.0	ö	•	•		•	•	-1.0
65	0.2	1.1		•		•	-1.0			•		•	0.3		٠.٥	•		8.0		•	1.0	•	•		•	•	•	•	7.7		1.0				•	1.6
0.4	1.0	æ. o. e		•		•	٠.:	•	.	•	٠,٠	•	٠.		•	•			•			•	•			•	•	•			•	•				2.2
03	2.5	W.W.		•		•	•	ċ	9.0	· •	•				•	•	٠,	•	1.4	•	•	•	2.4	•	•	•	•	•		•					•	3.4
0.2	6° E	5.1	5.3				0.0	-0.2		-0.0			6.9				7.5	•	•	5	•		w .	•			•	•	, v.	•	•			1.6	•	3.0
01		4.6	7.1							6.0										2.2	•		4.0				•	•	, ru		5.8				5.1	5.1
6	:	±. Z																		2.4	•					٠	•	٠	9.0					•	N.	4.7
U 2	000	000	- o	00			40	-		-	د ه	> ~	·	~	- (o -	٠,	-	, ,	s c	0	~	۰ م		c	0	0	> c	0	-1	0	٥ د	0	0	Ü	00
~					٦,		٦ –	~		 1	٦,	⊣ ←	· ~	М.			+ -	Н	,-ı •	٦,	٠	-	~ -	- - -	-	~	-	<i>-</i> -			μ,	-1 -	٠,		-	
SYS	01	1000	01	0 C	3.5	0 0) (1	03	03	03	8 8	4 K	03.0	04	ن. ا	2 C	0 0	03	03	, C	4 4	04	2 2	0 0	4	0.1	r-1 r ○ 0	-	7 7	63	IO	۲۹ E	7 6	0.10	0 1	22
OES	44,		~ ~	77	v 71	7	7 4	7	~ ~	7	0	70	2	~	0	7 0	1 C1	7	~ 0	V m	₹.	7	٦,	, ~	01	~	,,	-4 -	-	7	m i	W ~	1	· ~	-4	7 7
DATE	0/00/0	75/10/29	6/11/3 7/10/0	3/04/0	3/12/1	4/01/2	0/00/0	4/11/1	4/12/0	0/60/6	4/02/2	4/04/1	5/01/0	3/09/2	3/10/2	0/20/5	4/12/1	5/01/0	4/10/2	4/00/5	0/00/0	7/04/2	3/65/6	2/01/1	\$ 102/2	1/00/1	7/12/2	7/71//	3/10/3 3/01/2	8/02/1	3/09/2	2/05/0	7/03/2	3/01/1	F/11/1	4 / 03 / 1 3 / 01 / 1
AFGL4	933.	0.95	954.	955.	950		400. 966.	966.	966. 966.	986	971.	7.7.0	11.6	. 636	989.	מים מים	989	636	007.	227	0.50	050.	050	0.50	0.59.	وجو.	و. ان ان ان ان	, n (. o. o.	059	650	050	062.	0.20	672.	074.

AFGL OBSEPVATION SUMMAPY

SUMMAPY
CRSFPVATION
AFGI.

11		6.5						7	•															4.		3.6					
Č.		4.1											7.9											2.8	•	1.0					
δĊ		-0.5	-7.2	•	-6.1					2				•								(-0.2								
0.8	-1.6	0.0	•	9.9				-1.4				-1.			7.1.							,	0.0	9.0-		-2.5			-0.5	,	-0-5
70	-1.6		4.6.3 4.6.3	· •		•		-1.3		•		•					,		•	-1.3		,	0.1	9.0-	-2.6	-2.4	NF		-0.5	•	-0-1
90	-1.0 -0.8	2.5		· 60 (်င်		; ₀	<i>。</i> 。	د	ci e		· ~	-1.		•		•	-1.3		-0-3	0.1	0.2	-1.9				4.0		1.7
65	4.00	0 m 0		· m ·	m			 				1.1	•	0.2		0.2	•			-1.3		1.8	H.5	0.4	-1.5	•		•	2.0		7.0
0.4	44 C									-		1.7		6.0			1.9	•	•	-1.2	•	•	ا ا ا	• •	•	4.0	•	2.5	3.0	3.4	2.2
03	W.4. Q.W							3.4			•	2.7	-	2.0	•		3.1	•	1.9	,	1.1-	•	3.4 A.4			-1.0	•		ω. ω.υ.		3.1
0.2		3.7			0.0	•					r.,		0.4	•			4.2			,	-1.0		4.8	8.0		-0.7	•			•	3.9
0.1		2.2		,	1.8						4· 0·		٦,	•									6.5	1.6		0.0				•	4. 0. E.
00		2.4																1	i Z		i Z				t., 2		r E	اد 2			5.4
u,	00-	000	ေဝင	~	c -	1 C	00	ч	5 ~	0	0	~	H C	0	٦.	C	· ~	0	၁င	0	o c	0	0 0	C	ပဝ	0 -	- 0	00	000	, ,	CH
۲.				-	- -			r-1 -	4 ~	н.					٦,		· ~	н.	~ -	· ~ ·				-		p1 p		-	-	4 ~4	~ ~
SYe	400	100	13 43 6	10	-1 °	3 6	1 0 4 0	25.	040	e e	12	0	2 5	0.0	95	0 C	03	13	70	7 7	0.0	. .	10.	01	01	0 7	01	T Z	60.0	03	03
C:S		4																													
DATE	74/02/24 74/04/12	75/05/07/21	74,62/2/ 71/03/13	73/10/26	77/11/24	72/08/12	70/00/00	73/12/28	73/01/11	73/01/19	73/04/07	73/04/18	73/04/19	73/11/28	74/01/28	74/02/02	74/11/15	72/02/02	73/61/09	20/00/02	75/04/30	73/01/09	72/11/09	77/02/06	77/03/23	77/03/23	76/02/08	78/03/19	76/02/24	78/04/27	78/11/14
FGL		0	000	0	c: c		00	es c	0.0	0	. 0	00			0	-, -	0	c. (~ ~	0	~ ~					~ ~				. ~	

ω ≪
04 2 0
00 7 m
1 0 0 I
00
0
- -
-
M
o c
1 0
1 0
0 0
М
٦
٦,
٦,
٠,
~
c
· ·
4 ~
, ~
ત
٦
7
~ -1
Н
٦
-
- ۱
ı
ا م
ч
н

SUMMARY	
OBSERVATION	
AFGL	

11										
10										7.6
6 0				-7.9	-5.4			-5.2	•	-2.8 NF
0.8	-7.4	-7.4	.8	-6.8	ა.	1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4	444		11111111 1440000000	
0.7	-7.2	-7.2	-7.7	-6.6 -7.2 NF	4. v. v.	1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4	444	m + mm c	422222	55
90	-6.5 -6.4	-6.5	-7.2	-6.0 -6.6	4444	1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4	. m m 4	m + 777		22
0.5	-4.1	-4.1	-5.0	-3.4	m m m	0.0.0.0.0.0 0.0.0.0.0.0	000	111.	000 -	-3.0 -0.7 -1.0
0.4	-1.9	-2.0		, 2		446666		1001	00000	2000
03	2.0	1.9	0000 64400					64466	· · · · · ·	1.1 1.0 2.6 1.6
0.2			~~~~~~ ~~~~~~		3.6		44 W		•	W W 4 4 W 0 L 4 L W
01					6.1			6 n	•	6.0 6.0 5.1
00				6 K K K	7.			5.0		٠. د.
C)	0~			1000	00110	oco	0000	0000	0000000	44400-0
æ						ed ed ed ed e			deledededededededededededededededededed	
SYS	0 0 0 4 4 4	0000 4444	20000 410000	35555	3525	222222 222222	0 0 0 0 0 0 4 4 4 4 5 5	001000	000000000 14444444444	000000000000000000000000000000000000000
CBS	1100	10110	N - 1 0 1 0 1 1	v	4 171 121 141	11 11 11 11 11 11	100000	144244	. (10,0,0,0,0,0	1000111
3743	4/04/2	0/0/0/4 0/0/0/4 0/0/0/4 0/0/0/4	4/03/0 4/03/2 4/12/1 5/01/0 5/03/2	9/89/0 7/00/1 9/05/2 8/04/2	1 / 0 1 / 0	4/01/2 4/01/2 4/02/2 4/02/2	4 / 04 / 2 4 / 04 / 2 4 / 05 / 0 4 / 13 / 3 7 / 13 / 3	7/09/1 2/02/0 2/02/0 3/05/0	73/12/13 73/12/13 74/02/02 74/03/11 74/03/11	4/12/1 4/12/1 4/12/1 3/02/2 3/02/2
#10ak	382	- 1 d d d				4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			(H H H H H H H H H H H H H H H H H H H	4006. 4006. 4006. 4106.

	11	7.0						r.)			۲, پ		6.1		4.7								3.4											5.6	•	
	10	4.7					,	4 .3			£.3		4 . i		2.6								2.7											8.8	•	
	60									-1.4			-1.1										-2.7								-3.3					
	<u>ئ</u>	4.0			9.0	4		7.0		<i>-</i> ;.	•	-1.	•		٠	9.0-			-2.1	•			2.	20	-2.3				2	-2.7		-2.7				
	07	00,	c	٠.	m,	•	8.0-	•		i.	-i -		9.0-	•	•	-0.1	0,	•	-2.1		-2.4		•	~;	-2.3					-2.6					7.7	-3.1
	90	0.5	c	٠.	÷،	ν,	6.0	•		•	•		0.3	•	4.0-	0.4	9-0-	•	<u>.</u>	•	-2.0	•	-	٠	-1.7		c	-1.0	-	÷	_	-1.8			۳. ۲.	
APY	0.5	6.00			•		•			•	•		8.0	•	•	0.1	5,0	•	-0-2	•	-1.3		0-0-	۲.	٠, 9		0 0	: :		•		-1.4			щ. С.	
N SUMMAPY	04			· ·	<u>.</u>		ċ	•		•	•		8,0	•	•	0.5			e 6	•	-1.6	•	-1.2	•	-0.2		9.0		H.	•		-1.4		•	1.2	٠.
OESEPVATION	£3	1.5	2.1		•	0.0		2.2		•	•		•		0.2	0.4		•	0 0			٠٥٠	-1.0	•	1.0		1.4			-1.0		-1.0	•	•	H.C	•
	0.5	2.0	2.3					2.4		۲.,	- ·		1.4		0.4			1.6	•			4.0.					7.5						e. 0-	•	1.3	•
AFGL	01	2.7	2.9					m m			2.0	•	2.4		•	ô.0			2.7				6.0										0.1	•	200	•
	00							ن بر	. <u>G.</u> . 2.	2.1				۵ 2			<u>և</u> 2																G			
	V.	000	; c c	0	~ ,	- c	0	د د	0	c (D C) C)	ပ (> c	ء د	Ö	00	-	- 1 С	, C	٠,	۵ ۲	0	<u>ن</u> .			-1 C	· c	ت	~ 0	> ~	0	r4 C	0	ن د	0
	×	~~	4 r	-	~ ,	-	٦,		٠.	,		٠,	~ -	٦ ~		-		٠,		1 ~	~ -		-	~4 ,	٦,	-1 -	٦-	• •	-1	~ ,		· ~-				
	SYS	606	400	14	0 6	0 10	14	5 5	10	10	T :	† † • 0	10	-1 C	CJ	CI	0.7	, m	0 9	13	4.0	0 0	0.1	23	2 O 4 A	4 6	ب م م	1 4	Ç.	Ç .	7 7	04	0 5	35	ZS	4 5
	OBS		* ~ 4	r 🕶	7	7 H	٧,		٠,	~ .	٦.	7 7	۳,	4 ~	٠,	~	~ ₹	~	2 2	ī	4 (7 ~	-	~	7 7	(4 (7 4	' '	7	~	~ ~	7	~ -			1 4
	FATE (78/03/23	2/40/6/07/07/07/07/07/07/07/07/07/07/07/07/07/	0/00/0	1110/8	4 / 0 6 / 1 7 / 0 8 / 2	0/00/0	7/02/1	7.40/6	8/02/2	6/64/3 6/0/0/0	2/20/2 2/03/3	6/04/3	0/00/0	P/04/1	7/08/1	7/62/1	6/05/1	0/03/0	0/20/2	0/00/0	4/12/1	6/05/0	6/04/2	700/5	4/05/0	0/30/0	0/00/	0/20/8	0/70/8	0/40/6	1/03/1	0/03/0	9/04/1	0/04/1	0/00/
	AFGL#	1423.0		יי ייי יייי	439.	4 to to	454		500	674.	2 / 4	• • • • • • • • • • •	52.7	0 C	535.	536.	5 5 6 6 7	0.7	6 5 U	565.	576.	5,6	576.	570.	07.0		• • • • • •	. ec.	504	40.0 0.0	0, 0 0, 0	400	504	502	* 5 0 %	5.66

The state of the s

	Ξ	3.6					9 99	4	2	N 4
	10	2.0					4. 10.4 4. 6.4	•	1.0	3.8
	80	3.6		,				æ. •	٠ <u>.</u>	
	იგ	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	-1.2		10.00	6.0-	9.01	w 11	200	
	7.7	220	45.4	•	1111	-1.0	00.00			
	90	4.2.	10.4		40C0 40K	0.4	00.5		0 0 0 0 U U O	• • •
2 F Y	6.5	-2.0 -2.0 -2.2	0 0 0 0 0	•	8.5.6	1.9	80,41.		4.00 6.00 7.00 7.00	, , , ,
Y STWMAFY	5	-2.1 -2.1	0000		22.07		0.00 7.00 1.00 1.00 1.00 1.00 1.00 1.00		000000	00
EPVATION	Ĉ	7.1.	1.5		40.00 0004		2.6		0.00	
CES	.25	-1.1	1.8	•	2.2	3.7			7-0-7	
AFGL	č	5.0	2,3		3.0	ο. 4	42 81 90 50		0.1	
	00		ն. 2.	r S				i., ii., 2. Z		ሁ ው ድ ድ
	a,	HCC	0000		00404	10000	000000	00000	000000	000000
	ς.									
	. 7.	40	0 0 0 0 0	C C H H H	4 4 4 4 4 4 4	1 4 8 A 4 8	000000000000000000000000000000000000000	2004C0000 44448884	4 4 4 4 H L L	200000
	CBS	M 70 m	H 4 6 F	0 m 4 m m	000000	40000	מהחגבי		~ ~ ~ ~ ~ ~ ~ ~	чечечег
	DATE	27.0	フラクフ	70000	22222	722722	2777	78/64/19 79/65/18 76/65/68 77/18/19 77/18/11 77/18/11 77/18/11	20000000	$\frac{1}{2}$
	# IDE	10.10.1	whi.	10 V 10 M U	C 10 10 1 11 11			44444 44444 44444 44444 44444 44444 4444	004440	10000HA

						m 7	٩		
	10		α 4		5.4	۳. د		6.2	7.9
	60	12.0	-1.3		-2.6	- T		^	
	90	11111		8.0	22.0	5.1-		450000	
	73	14.6.4.1.1	000000	0.0	-1.8 -2.1 -2.1	0 1111 0	0000000	77777	
	90	£ 5000000000000000000000000000000000000		0.2	1.1.1	4. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		000000	
APY	0.5	411285.6	0000000	0.6 1.4	4.0.0 -0.5 -0.8	3.0	• • •		1.4
N SUMMAPY	2		1010201121 107001000	0 4 7 4 8		8041-040m			, o.
OESEFVATION	03	00000000 00000000000000000000000000000		0 H C H C		00 000mm 00 0044			, w , w
	0.2	₩ 4 Ø Æ	88 E E		1.1	ດ. ທະ. ຄ.		3.4	4.2
AFGL	01	ດ ເບ 4 ໝໍ	3.0		2.0	6.000		4.7	5.5
	00		5.1	Z X L L	2.7				5.6
	w	000000	0000000	C C C C C C C	00000	00000000	0004400	0000	001
	a.								· 1 ~ 1 ~ 1
	SYS	000000	200440000 446444444444444444444444444444		00000		4040000 74 04 44	000000 HH4444	2 C O
	520	444444	4404H400H	нанынан		Neest ended of the	,,,,,,,,,,	10000	%
	STAG	73/03/17 73/09/05 74/01/28 74/02/25 74/04/11 74/04/29	74/03/09/09/09/09/09/09/09/09/09/09/09/09/09/	79/65/25 77/05/28 72/08/12 72/08/05 73/07/15	73/33/17	78/03/03 78/03/03 72/03/03 72/05/04 72/05/04 72/09/14 73/03/13	73/04/01 73/04/05 73/04/07 73/04/17 73/06/13 80/05/02	73/05/13 73/09/05 74/01/28 74/03/14	74/07/26
	\$15.	0000000		0000000	60000		0000000	000000	320

				7 7		- 5
	10				9. 8 4.	
	o O		-3.4	-4.2		ر. د.
	03	- 2. - 2. 6	11111111 1	on in in	um 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00~0
	۲ ی	255	60011111111111111111111111111111111111	00 m m m	111111 0 1 120000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	040011 111111 1 104011 041111 1 104011 041111 0
	ن ن	12.2	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2	3.2 .03.2.2.1	040066
y a K	50	-2.3	1000 01 8400 000 8400 2400	0000	04000000	HHCHCC 00 COC 1
Kaals k	64	4.6.5	2000 HOUS		011000000000000000000000000000000000000	
PVATION	č.	00000			000 C U C U C W U C C C C C C C C C C C C C	HOWOCA AN MMMAH MOLVUR AN HARLO
CPSEPVA	20		4.4 E. 0.10 0.17	7.	3 2 3	H04 0 mm m
PEGI	7.7		юю цен и о о о о	3.6	3.53	000 & 0 000 0 0 000 0 0
	ن		ն 2			
	v,	44004000	0000-0000	00000A0	00000000	2H220H00000000H0
	σ.	песипань	anderenderenderenderenderenderenderender		мымымыны	-
	SÁS	\$ # # # # # # # # # # # # # # # # # # #	10000000000000000000000000000000000000	. H H C H C H :	**************************************	440000000000000000000000000000000000000
	m O	00400000	(· (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	00000000000000000000000000000000000000	, , , , , , , , , , , , , , , , , , ,
	25.42	-666604666	- 0 0 0 0 0 0 0 0 c c c c c c	0.51510.6-6	စုမှင် မြေမြေမေျာမှုမှ	7.00
	* € 13 15 64			666666		00000000000000000000000000000000000000

SUMNAPY	
OBSERVATION	
AFGL	

11		7.5																7.6								-2.0									
10		5.0										•	9.9					5.6													•				
60	-3-1		-3.0																							-2.5									
d o	-2.2	2.5	-2.4	•				-1.3			1.0	6	-2.7	;		-1.4		-2.1	0-0-	,						•									
0.7	-2.2	12.4	200	-				9.0				3	 	•		-1.1	> 1.3	-2.2	6° 0'-		-2.0			0	ن د ا د ا	•			0.0-	•					
90	10.7		• • •		4.6	•	۳. ر د د				•		2.5	·		α. Ο		R. 0-	9.0-		-1.3				٥٠ ١٠	:			0 7	• •					
05	0.00		• • •				J. 53	1.6		•	٠	•	0.0	•		1.2	e,	1.2	1.1		0.5	•		2.4	> -	•		0.2							
04	000 4.00	0.0	0.7	7.0	5.4	3.5	ر ب ب	3.2	ω % • α	2.3	1.0	0.1		2.4	2.7	2.5	3.5	•	1.8	2.0	7.0	۶.4 ۲.4	1.8	5.1	7.7	•		2.3	S I					L. 2.	
03	444 600					•	•	•	7.0		•	•				•	. a.	•		2.8		ć•7		5.0	•	•		4.3	,	•					
0,5	1.5	0.4 4.4	• • •			•	נ טנ		9.				•	4.0			4.2		•	4.2															
01	2.4	•	4 4			-	713 0	•	>11.8			,	3.6					2.7	4.7																
00		3.5		2.4																														N	
U,	C 0 0	C C C	00	c (o 0	c	c -	10	0	0	c	0	c (၁င	, ,	c c	0	، ت	ے د	-	0	-	0	c)	c c	o C	-	- (> c	-	0	- C	-	0 0	
4					7 -	7			2 -		-	-	-1-		ı 1	- : -		-	-, - -	Н	Α,	-1 -	·	Η.	~ -		~	~ (~	•	٦,				
SYS	0.10	01	13	37	ა 0	0.5	0 1 1 1	000	in s	; c	ž	0.4	<u></u>	J 6	030	C 7	35	e 1	0.0	C.	7.7	-: ۱۵ ت د	0.5	. 7	-1 -	. C	04	03	ე <u>;</u>	77	r-((ب جن بر	03	55	
OPS	4-2		· SO	. ~ .	~ ~	7	٠٦ <i>٢</i>	ı —ı	(4 (, ~	~	(N)	٠, ٠	٠, ٢	114	~ ^	۰,	r-+ 1	, –	~	4	-1 V	1 (2	, ,	· ·	, 2	7	~ 0	N 10	1 (1	21	, v	~		
DATE	73/03/17 73/09/05 74/05/01	74/07/26	72/05/23	78/01/11	79,07/03	78/07,03	78/08/11	42/51/34	78/07/04	20/30/94	13/04/04	74/04/13	76/06/03	76/05/09	76/05/12	77/04/06	77/04/06	20/93/92	03/33/21	76/05/13	36/60/32	75/06/07	73/60/77	10/90/91	77/04/69	73/09/28	74/06/01	76 /05 /09	75/05/03	72/05/12	72/05/15	71/40/1/2	31/51/51	78/64/09	
FGL#		000		· • · ·			eu e	. 0		_		· .					u 0			. . .					r ~ .		-	-	- 、 -						

	Ξ																																						
	10												e. (1)																										
	00	4.6-	-3.3						-2.5					8.4.	Ľ,																			-2.6	٠,				
	c R	12.7	, m			-1.6	•	-1.7	•			-]. 8. r	_	8.4-	•		14.	•				-0.3			5 • 0 • .				-1.7	-1.5		स		8.0	8.2.	, a	•		
	67	m m 1		μ, <u>«</u>		ייי ביין ביין	•	7.7	•		-1.2	12.0	· • • •	-5.1	4.4		C - 4	•				-0.3			ان ه	•			•	-1.2	•	면		<u>.</u> .	ζ.	C.T.	•		
	90	-1.3	· 67			ه د ا د ا	•	2.0	•		-0.4	-:-	4 . C	m	N	7.0-	د و. د ور	•				9.0			0.3	•			-0.4			ਜ			•	1.1.	•		
VOV	S.	-0.4	-0.5) H	•	•		•	•	0 0	•	2	=	'n,	2.7.	•				0.0			0.5	•	0	! ,	1.4	1.5		3.4		•	•		•	L 6	٠
advaals a	04	2.0	0.0	۵. ۲.		2. V		۳,	~ ~ ~ ~	7	1.5	7.		-1.5	-1.0	-2.2	. [77	7. F.	5.		0.7	נדי א ניי	7.1	1.2	7.4	2.7	3.2	5.5	ω c		. 4	5.1	1.2	4.0	9.7	7.7	7.7	•
MOTENVATION	60	1.5	۲.0			 	•		7.4) (.) (£	1.4	m c	1.2	1.0-	0.2	9.0	ر د د د	0.0-		ທີ		1.0				•	4 N			-		 	5.6	2.4	1.2	4 4	4.1	6.7	•
C	2	2.7	1.5		6.7			1.7	w w	, oc	1.0		ม - บ ห.	•				6.0						٠.		•) · o	•	•	3.0	•		•	10.5	•
AFGI	63	3.0	3.1					2.9	•	•	2.9		υ. c												4.4	•					1,	•		0.4					
	C C																			,	ալ նւ 2																		
	٥.	ပပ	-, c. (00	0	۔ د		Ç (0 0) C	c	c (> C	0	0	,		1 -1	0	င (ے د	C	0) C	c	0	c c	-	С	~1 C	> c	ی د	. c :	C	0	0 0	> ~	c c	>
	ri.			- -			i -~1	٦,		· ~	~	٦,			M	~ ,	-1 <i>-</i> -	1 -1	~	, ,	<i>-</i> -	-	- 4 -		~	~			•-	٦,	٠,		<u>_</u>	~	~ ~ ·	~ •	4 -4	, p., p.	7
	υ. Σ.	01	हु (स ट्रेट)	2 C	Ç. (700	2	01	c c	2 C	0.1	S. 6	J C	33	13	70	5 C	03.0	0.5	2.5	-, r	7	ic c	C C	e,	21	~, - ث ر	(C)	ζ.) (- i i	ی ک	2.	C	C)	\$ ¢	ت د د د	03	7
	٠ د د	97																																					
	SLVC	73/05/21 73/06/18	73/11/19	78/01/05	78/08/21	50/90/24	77/06/10	70/03/25	73/05/24	11/09/09	76/06/05	74/04/31	77 / C 7 / C 7	71/03/13	72/52/27	72/05/29	73/00/20	76/05/11	20/67/03	60/80/04	11/03/66	73/04/04	77/06/27	77/16/27	72/05/21	20/50/96	22/20/31	75.06/24	38/60/96	08/93/44	11/00/13	77/00/74	78/03/20	73/65/24	73/05/24	74/04/11	76/05/09	76/10/09	10/11/11
	*1534	2054.0	0	C 0	ر ،			•	C C	٠.		Ç (ے ب	ت :	٠.	c; e	ب ر	ت د	c.	•	ပ္ <i>င</i>	ري	٠ (t	A (C	۲.	() •	د. د	. C	<u>.</u>	٠,٠	ې د	<u>ء</u> ۾	0	<u>.</u>	٠.	0,5	. 0		

	Ξ																												7.0-														8.1	•		
	10																									-2.1																	7.1			6.0-
	60															-2.5				-4.4			-3.3			-1.8																				-1.0
	80										•	1.0			-1.2	•		-1.1			-2.7		-1.4	•		ċ	-3.1		,							7	0.11	-1.4	•	-0.7			-1.4	•	•	-0-1
	0.7										-	1.0		F.	-1.2	-1.6	0.5	6.0-	9	-2.0	-2.3		0.5	6.0-		ċ	m,	9.7	•	•						•	0.11	-1.2		8.0-	-1.0	N.F	-1.4	-1.3	,	10.1
	90										•	•				-0.4				-			-0.3	•		•	•	۳. c	•	•						•	•	8,01	•	1.7	-0-		-0.2	•		3 C
Ϋ́ΑΥ	05									•	• •	†			•	1.2	•	•		•			9.0	•		•	-0.4	•		2	•					•	•	8.0	•	2.0	2.1		1.1	1.2	,	4 4
I SUMMAPY	04	ë ,	7.0	7.3	42	7	•	היים	n c		- - -	T 12			•	•	•	•	٠						•	•	•		•	•	·Ŀ		1.8		7.5				• •	• •				•		2, 6
OBSEPVATION	03	e o		4		5.3		٠	ν. υ. ο	•	•				•	5.6	٠	٠				5.4	•		6.5		•	 	•	•			5.0		7.9		7						3.0	2.8	4.1	4. J.
	0.2		. a.			6.7		٠		•					4.9	•						7.4			7.6		,	1.7					8.1	,	د •	,	۲•۱	8. 8	4	•	4.3		•		٠	2.0
AFGL	01		0			6.6			ء د د د	•					7.0	•									>11.6			2.4								c	•	6.7	•		0.9	•		5.0	•	
	00						<u>د</u> ک						S.												^							N.F			9	<u>.</u>										
	(i)	00	, o	0	0	0	c,	D (> 0	- (>	o c	c	0	0	c	c	0	-	0	-	င	0	- (~	co	0	0 0	<u>ی</u> د	> c	ے د	. 0		~ .	⊣ c	> c	> c	ے د	, –	4 C	0	0	0	0	o c	ဗင
	~	~ -	-	-	-	~	~,	٠,	٦,	٦,	۹ ۴	٦.		~		~	-	- -1	-	~	-	~	7	-	~		٦,	r-1 -	٦,	-1	٠,	 1	-	Η,	٦,	٦.	٦,	٠,	٠.			-	-	-	, -	
	SYS	35	5.5	50	0.5	Ç.	٦; د	T 0	უ (- c	7 •) C	ر د د	0	01	ວ	01	0 4	61	12	04	03	01	90	(1) (2)	01	0.4	01;	۲, ₋ -	J -	5 C	0.1	03	<u>د</u> د	ည င	, _c	35	1 E	, C	35	17	0	C	01	0 0	-1 C
	CBS	77	, ¢1	7	~	7	٦,	(~ (V (۷ (, ,	4	· C	-1	9	ri	7	7	7	7	7	-1	7	~	7	(4		٠,	-، ۱-	4 C	·	7	2 '	N -	4 -		- ۱	٠,	۰,	-	-	H	-	٠ 7	н 2
	SATE	2/90/11	77/00//1	77/06/2	11/06/2	0/20/82	1/63/34	3/63/9/	2/07/9/	0/01/9/	74/04/1	74/04/1	79/02/07	74/07/6	17/01/61	73/05/2	75/06/0	74/05/0	16/06/0	73/09/2	73/09/2	75/05/0	77/04/0	77/04/2	78/04/2	78/03/2	74,/05/0	76/05/0	0/40/7/	77/04/0	77/08/7	1/13/61	76/05/1	76,06/2	76/05/2	1/00/01	76/06/07	1/20/6/	1/5/5/1	76,06/0	76/06/0	78/04/1	0/90/94	2/63/62	77/06/2	77/07/12
	FGL	0.70	100	0.80	0.50	0.60	0.0		ا ا ا	7.5	0.61	14°C	0.71	18.0	18.0	22.0	23.0	27.0	27.0	32.0	32.0	32.0	36.0	36.0	36.0	36.0	39.0	0.0	0.7	יי יינר	7 1 1	52.0	54.0	55.1	20.0) () () ()		. ני	90	58.0	0.55	7:0	71.0	74.1	174.2

	1																			ř				ſ	1					7.												ç				
	10																										-	1		5.0																
	60																						-3.8	,	٦. ٠						-3.0						-1.4							-3.5		
	8) O		12.0	•			-1.3	•	,	1.5.				3.4				-3.6	•			-2.9		r	••	• •	· ~	-2.7		-3.5	5			;,	-1.4		-	_	~	2	 •	- C	> 15	m	-2.8	~
	0.7	64. 24.	1	•			۳. ت	•		-2.1								7	(ب	•	5	-3	•	r	•, •		· ~	-2.8	•	-3.6	-2.8	ċ	'n,	••	· ·	-1	Ξ.	۲.	Ä	ď	i,	∹ -	, ~	· ~	-2.9	3
	90		~	•			-0-3	•		-7.1								ς.	۳.	2		0.1	7	r	;,	,,	• •			2	3	٠,	ં ત	•						•	•		, ,	: ~	-2.3	?
APY	0.5		رد د	•	2.7		1:1	٠			7.0							0	•		•	0-	ċ		٠,) r		•	•	•	•	٠	•	•			•	•	•	•	•	•	•	8.0	•	
N SUMMAPY	64		4. r.		3.8	8.	1.9	•			7.0	•		•	•	1.1	•	•	•	٠	•	•	•		•	•	•			•	•	•	٠	•			•	•	•	•	•	•	•		•	
PVATION	C			•		•	w 5.	•			ر د د	•					•	•	•	•	•	1.2	٠		•	•	•) -	•		•		•	•	2.2			•	•	•		•	•			
CPSF	03		e.9									7.71/			>14.6								9.1				c			1.3	•		•	1.0	2.7		5.9			5.6	•			6.4		
AFGL	01		7.4								•	•		13.3									2.5				,	•		2.3	•		•		80		4.4			7.2	•			7.2		
	00			<u>4</u> 2																										3.0																
	U)	0	0 0	0	c	0	0	~	Η,	٦.	٦,	٦ ,	c	0	0		~		-	0	0	0	0	0 (> c	> c	> c	o C	, ,	0	0	0	0 0	> c	0	0	0	0	c	0	c	ပ	.	0	0	-
	44,	-	- -	-	-	-1	٦.	~	 1 •	٠,	-1 -	- ۱	٠.	•	-	-	-	~	-1		~	-		-	٠,	٦,	- ا	- ·	ı ~		-	~	٦,	- ۲	٠,	 1	-	~	-	~	~4 :		٦.			m
	€. ≱† €3	0.4	ο c ο τ	50	01	C1	04	C.	0	ن د د	מ כ	2 0	3 5	, m	03	C3	03	64	04	13	13	13	01	12	77	† t) r) C	04	i C	CJ	14	5.0	3 6	0.10	l m	0.1	04	0.4	ij	0	ئ د د	2 ~	35	0.4	04
	880	7	n r	٠,	-	~	7	۲۷	0	~ 0	پ ر	۷ ر	4 C	1 (/	~	7	7	7	7	1	7	- 1	~	7	7 (7 (۷ ~	۱۰	۰ ۸		~	4	٦,	٦,	۰,		•	7	7	~	r-i :	7 +	٦,	٠.	7	7
	PATE	74/05/26	77/06/26	78/04/15	78/00/11	79/08/20	74/65/61	74/05/03	74/05/29	10/60/61	15.7(5)/24	07/63/01	31/00/01	76 / 6 / 27	75 /(5/13	76,06/20	76/06/24	76/06/25	77/04/21	12/02/08	72/03/14	73/01/26	73/03/26	73/04/01	13/14/07	73/05/04	13/00/00	74 /04 /30	74/05/06	74/07/25	70/64/15	20/00/07	74/04/29	10/01/07	10/00/94	72/05/29	73/03/17	73/04/15	73/06/17	13/07/06	13/60/61	74/05/02	73/01/25	73/03/26	73/04/05	73/04/06
	FCL\$	7.0	177.0	. 0	14	en en	2.0	ς. υ	0	0	ت د م	ے د د	2 (2		0	0.0	ر. د	C)	0	0	ပ (၁	0.5	0	د د	5 0		ن د د) C	0	0	C.	ů.	0	ء د) C	<u>ن</u>	0.	0	0.0	0.0	0	ه ت) C	0	0	0

10	•						AFGL		OPSEPVATION	N SUMMARY	AFY						
2.	0	C)		۹	cc	00	01	05	03	40	0.5	رو	67	98		10	
2.6 0.4 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.7	7	12	-	0							,	e.	m	÷		-2.
6.0 4.0 2.8 6.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	04	~	04	~	0				•	٠	•	5	m	m,			
10	80	۲3	20	-	0			•	•	٠	•	٠,	m,	٠,			
1	១១	- - (010	- 4 •	ပ		0.9		•	•	•	٠,	'n.	ri, r			
4.4	ء د	√ (4 •	→ •	ى د				•	•	•	• •		., .			
2	٠,	·	3 6	-1 ,	> 0				•		•	;,	• •				
2	o r	-, c	7 6	i	> -	•	٠	٠	•	•	•	;,	•	•			
2	י פ	, (n r	٦ ،	٦,		•	٠	•	•		٠,	•				
2	n g	7 /	5	7 .	٠, ٥			٠	•		٠	٠,	, ·			•	
2.6	V •	~ (# *	-i •	۰ د				•	٠	٠	;,	٠,	;,			
10	3 (4 (5 6	٠,,	۰ ،							٠,	٠,	;,			
1.4	5 1 C	~ (6.0	۰ ،	-				•	•	•	;,	ກ່ເ				
1) (4 1	÷ (۰,	٠,							;,	÷.	•			
2.7 1.8 0.5 0.5 1.1 1.3 2.2 2.8 1.3 1.3 2.8 2.8 2.8 1.3 2.8 2.8 2.8 1.3 2.8 2.8 2.8 1.3 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	œ	,	13	٦,	ပ .				•	•	٠	•	v.	2			
2.7 1.8 0.8 0.5 -1.3 -2.3 1.9 2.0 1.1 1.0 0.6 -0.8 -2.0 1.9 0.5 -1.3 -2.3 1.9 0.6 -0.8 -2.0 1.9 0.6 -0.8 -2.0 1.9 0.6 -0.8 -2.0 1.9 0.6 -0.8 -2.0 1.9 0.6 -0.8 -2.0 1.9 0.6 -0.8 -2.0 1.9 0.6 -0.8 -2.0 1.9 0.7 -0.7 -1.9 1.0 0.2 0.9 1.0 0.7 -0.7 -1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.7 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	ب	_	۲-1	- (٥				•	٠	٠	-	7				
1.8	ر-)	۲	7	- 1	c			2.7	•	٠		-	ď	,			
2.1 1.3 0.6 -0.7 -1.7 -1.6 -0.7 -1.7 -1.6 -0.8 -2.0 -1.1 -1.7 -1.6 -0.8 -2.0 -1.1 -1.7 -1.6 -0.8 -2.0 -1.1 -1.7 -1.6 -0.8 -2.0 -1.1 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7	Z)	7	7	-	~				•	•	•	٥.	ď	-			
221 1.3 0.6 -0.7 -1.7 -1.6	σ.	۲.	4	•	7												
2.2 1.3 0.6 0.8 -2.0 1.1 0.6 0.8 -2.0 1.1 0.6 0.8 -2.0 1.1 0.6 0.8 -2.0 1.1 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	S	^	Š	_					•	•		•	_				
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ر ا	ı c	, c		ا د				•				΄.	•			
2.6	. 0	, c	2 0	4 -	, c				•	•	•	•	•	•			
2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	و ن	, (* 5	٠,	ه د				•	•	٠	•	•				
1		٧ (٠,	-1 -	٥ د				•	•	•	> (٠,	•			
1	9 1	7.		٠,	> 0				•	•	•	> •	·.	•			
2.0 0.4 1 1 3.7 2.7 1.8 0.2 -0.3 -1.0 -2.6 -2.4 1 1 1 2 1 0.2 -0.3 1 1 1 2.7 2.7 1.8 0.2 -0.3 -1.5 -2.6 -2.4 1 1 1 3 1 0.3 1 1 1 2.1 2.7 2.7 1.8 0.2 -0.3 1 1 1 1 2 1 0.2 -0.3 1 1 1 2 1 0.3 1 0.3 1 1 1 0 0.3 1 1 1 0 0.3 1 1 1 0 0.3 1 1 1 0 0.3 1 1 1 0 0.3 1	ٽ <u>:</u>	٠,	70	٠,	۰ د		•	•	•	•	•	ч.		•		•	
1	، و	(4)	70	-1	0				•	٠	•	٠,		•			
2.	-1	7	er (۰,	- 4 :				٠	•	•	٠,	;	٠			
13 10 10 10 10 10 10 10	4	7	<u>ي</u>	-	-		•	•	٠	•		0.1					
13 1	r,	2	ر. ۱۰	2	Н			ċ	٠		٠	-1.4	2			-2.4	
7.1 5.1 3.7 2.8 1.0 1.1 0.1 1.2 0.9 1.1 1.2 0.0 1.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ς,	7	03		-1		12.	ċ	٠	٠	•						
13 1 0 1 1 C	ن	_	03		ပ				•								
113 1 0	ပ	_	0.1	-	ပ				٠		•		•				
13 1 0 5.5 3.5 2.8 1.0 1.6 0.5 -1.5 1.0 0.1 1.0 0.5 -1.5 1.0 1.0 0.5 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	6	-	13	-	0				•				ď				
2 0 0 1 1 0 0 5 5 9 3 5 5 7 8 1 8 1 1 0 0 1 1 1 1 2 0 0 1 1 1 1 1 1 1 1 1	C	-	~	_	c				•	•	•		-				
2 0 0 1 1 0 0 2 0 0 1 1 1 1 1 1 1 1 1 1	(~	-		-	0			•			•		C	•	1		
2 2 0 0 1 1 0 0 2 0 0 1 1 1 1 1 1 1 1 1	v	p	E		c				•		•	•	0	c			
3.2 1.9 1.2 0.9 -0.2 0.0 1.2 0.9 -0.2 0.0 1.2 0.0 0.3 1.1 0.0 0.3 1.1 0.2 0.2 0.0 0.3 1.1 0.2 0.0 0.3 1.1 0.2 0.0 0.3 1.1 0.2 0.0 0.3 1.1 0.2 0.0 0.3 1.1 0.2 0.0 0.3 1.1 0.2 0.0 0.3 1.1 0.2 0.3 1.2 0.0 0.3 1.1 0.2 0.3 1.2 0.3 1.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0	2	. ~	0.4	-	c								4	_			
2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ď	~	ć	-	_												
2 0 1 1 0		. ~	0,1	٦,	C								•	•		7.0-	
13 1 3 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	ڀ	٠,	4	-	· C					•	•					•	
13 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	c	. •		-	· C								c	•			
2 04 1 1 1 0 0 4 5 2 2 1 6 1 2 1 0 1 1 1 0 2 1 1 1 1 0 2 1 1 1 1 1	·ç	,-	, ,	1	, c					•	•		, -	_			
2 04 1 1 2 0 2 9 1.8 1.3 -0.2 -1.6 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7 -1.7	, r	-ر ا-	٠ - -		; c		,			•	•	•	•	•			
2 04 1 0 7.8 4.4 2.7 1.5 1.1 -0.5 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8	, _	۰,	7 E	٦,	,		•	•	•	٠	•			•			
2.8 1.6 1.1 0.5 -1.8 -1. 1.0 1 1 0 7.8 4.4 2.8 1.5 1.1 -0.5 -1.8 -1. 2.6 1 0 7.8 4.4 2.5 1.5 1.2 -0.6 -1.8 -1. 2.6 1 0 -0.4 -1.8 -1.	. 5	1 (٠.	٠,				•	•	•		•	•			
2 C4 1 0 7.8 4.4 2.8 1.5 1.1 -0.5 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8	rc	۱,	Sè	٦.	٠ c								•	•			
1 0 1 0 7.8 4.4 2.8 1.5 1.2 -0.6 -1.8 -1. [2 65 1 0	5 C	ر د	2 3	٦,	ى د				•	•	•	•		٠, .			
2 66 1 0) L	v -	÷ د	٠,	> 0		1		•	•	•		-	•			
2 CS 1 O N N 1 1 1 0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ı, e	(-4 - -	> c			•	•	•	•	•	٠.	٠,			
2 C3 T 0 C	⊣ ₹	, c	3° U	-1 -	٥ د				. 1	•	•	•	J	•			
	٠, ر	v «	٦. د ۱	٦,	>												

	11										E.																								7.1	
	10																																		5.2	
	o;	-4.C																		6		-3.1														
	8.3	13.1	6.2-	5	c.	۳,	13.2	•			٠ ١	-1.4	-	17:5						-2 4	•	-2.3				•	: .:					0.0		14.0	4.	5:
	73	69	-2.3	۲.		8		•		۷. r	•	-1.0	-							•	-0.2	5			9.0-	0	-2.0					•	6	2 n	٠,	· ~ ·
	٥٤	-2.2	-1.7	2,		2	12.0	,		-1.2	-	4.0-	,	٠. ١٠							0.0	•			ς c	•	5.0-	,				1.0	,	1 1 3 6 3 6	e.,	• •
77.	r,	٠ ١	0.1	•	•	•	4.0	•		-0-	•	6.7		: a,							9.0	•				٠ •	2.8	•				3.1		-1.,	-2.1	
Kamib ii	2	0.1		•	٠.	•	٠,	٠	-0.3	ر. د د	•	•	•	7.1	£1.,	E 6	i., Ż.			0 0 0		•				5.5	•	4.6			m		•	•		1.1
PPVATION	ć. C	0.5.		•		•	•	•	1.7		:	•	•	. 4						7.0		•							7.6		,	•	8.	•	•	3.0
ريون	Č.	1.8		ຜິດເ	٠.	•			3.4		د ت	6.5	٠	7.4						κ, c	٠.	•	u	•				•	0 4 N L		c	C • r.			1.6	
PFGI	5	C ";			, r.	•					L • -		T.							V 0		•	c u	•				11.0		9.3					2.8	
	٥٥											2.0					2	4 E	ΝF				G.	e. Z												
	U.	00,	-1	c c	<i>د</i>	ب	~ C	> ~ 1	- :	0	. c	ں.	င	. O	c	0	∵ c	ے د	c	00	် င	0	0	.	~ ~	· ·	 -	C	<u>ب</u> د	. c	c (0	0		c (5 rd
	۹.	rd m r	;	~-	4	-1		٠,	-	,(<i>•</i>	-1	- 4.	- -; -	-14	- -1	~ 4 (> -	- -	 1		-(-	М.	4 -4				· ~		•	~ ~					
	313	555	ر. د د	C 0) e.	ć.,	83	2 5	Ĉ	43 p p (ب ا	Z	ư, • Ċ) (: .	0]	က (င) (ກ່ຽ	30	C 3	55	0.7	C	6 6	35	04	04	4 C	in C	۳ c	0.5	2 2	0.4	01	0 4 7	5	04
	S.J.O	~1 10 (40	, τ	N C	- 1	c4 c	, r	7	<, ⋅	4 C	7	(7 (4 e-1	-	~ 0	~ -	rs	?			Q.	٦ ،	4 •	(1 C	2	<i>ر</i> ،	7	(4 r	7	۲ د	v ~	~	<i>ر</i> د	, C	7 7
	32.43	13/55/65	アンドランダ	1/00/9	0/30/8	3,07/2	2/65/8	3/33/# 3/33/#	2/11/1	9/09/0	じってい	0.00	0/11/0	2/42/6	3/23/6	2/53/6	0/00/0	3/06/2	8/10/0	1/6/0/0	7/10/10/10/10/10/10/10/10/10/10/10/10/10/	3/02/2	5/08/2 5/08/2	701/	3/65/1	3/55/6	3/55/C	2/03/2	2/35/7	2/10/2	5/12/0) 	1/01/2	3/00/2	0/90/9	1/69/1
	FCTA	288.0	ت ر	ر را در در	. (1	٠	e c e c	, c	, , , ,	.,	er u	ζ.	ie i	ું દ	20	20.		, c	2		2.4	30	6) 6	9.69	44.44			·	٠. د د		iù r	, iv	٠,	5.0	0, 0	. 0

																														•												
•	60																				-5.1				,	4.0-						~	•									
	08	-3.7				•	•	-2.8	,	-3.2				0,0		7.7					-3.0				ζ.	7.9-		:			2	5	Ġ	;	12.5	;,	, 2	m	5			-0.3
	70	٠	0.1			•	0	12.8	ຳ	-3.0				6,0-	•	-1.1					-1.6		5	6	÷.	6.4		•			· ~	5	5	۲.	12.5	i,	; ¿	'n	5	-	ŭ	-0.3
	90	-2.8	0.7					-2.1	;	-2.5				-0.1	•	-1-1	•				6.0-		5	ċ	m d	•	; c	. .	•	င္ (, ,	7	ä	;	-2.0	;,	; ;	د	2	ċ.	•	0.1
እዮን	05	•	7.7.			•	•	0.1	-	-1.0				1.2	•	1.1					1.7		•	•	٠,	ب د د د				•			0	ċ	4.0	•	d		-1.0	•		1.3
Ademmos N	CA	•	1.3	1. L 2. L		1.1	•	•	•		L Z			•		•	•	K 2	L,			•	•	٠	•	٠ د د	•		٠		•		•	•	9.0	•				0.5	•	2.0
EPVPTION	03	•	1.0	Ü		2.2	•	٠	•						8.8	•	•								٠	9.0	•		٠	•			•	•	2.6	٠		80			2.4	4.1
CPS	20	ى ب			٠.	2.9			٠	α. • m					7.7	•	•				•	10.2			•	w .	•	٠.	•	•			4.7				0.4	•	۰ 0		3.0	5.8
AFGL	01	6.4	5.9		- 1				٠	9				-	10.6		10.5			11.7	•				•	4. n	•		•				6.3				9	•	5.8		ω.	
	00												L 1												4.8														4.6			6.5
	£,	c	. c	0 0	, c	0	c	0	- c	4 C	c	c ·	ပ (> c	. 0	c	-	0 (ے د	· c	0	r-I	0	c	0	0 0	.	. 0	-	- (၁င	0	0	0	~ 0	٠ د	⊣ c	. 0	0	، ن	~ c	ے د
	•	~ -	- -		٠,	-	_	٦.	٦,	٠,	~	~		- -	-	~	~	٦,	٧,-	٠,		e-4	-	7	٦,	-	٠.	{ 4		٦,	٦.	٠,	-	-	⊶,	٦.			-	-		٠.
	SYS	10	0.1	0 C	. C	0.7	CJ	0.4	٦ c	010	5	C .	ا د د	- C	0.5	C)	03	20	ر د د	ָ פּ פּ	CO	03	14	4	5	5	3 5	03	03	٥,	4 M	. C)	01	04	Č	2 6	5 C	0.4	61	4	0 9	50
	OES	н,	-11	0 c	٠,	, , ,	Н	7.	٦ ,	• ~	2	~	۸.	-	٠ م	-	~	٦ ر	7 (1 C	·~	7	4	₹	٦,	٦,	r	1 (1	(1)	~ •	4 ~	· ~	-	7	~	٧ (٧ -	1 (1	-	4	70	٠ <u>-</u>
	TEG	6,	707/23	ر د د		, 4	6/3	2/2	ر د / د	7.	6/2	1/5	7	T C	5/2	7/1	5	5	<u>ر</u> ز	, ,	2/2	0/2	٥٧٥	9/0	7/2	<u>ور</u> و		77	7.7	75	2 ·	2/0	17	3/0	23	7;	7 0	2	1/2	0	7,5	, ,

	60			c	10.	•							,	•										-2.0		^															>-2.9	7	
	83			-1 -	10	•	-	-1.0			-1.8					-3.5		,	•	14.0	2	~		<u>.</u>	-	-1.3	-	·		r	; ,	(1)				8.0	5				1.	1.4	-
	0.7		6	٠,	• ~	; ;	2	-1.2	; .	•	-1.9			. 60		٠	•	· ·	9.1	2.0	. 2	5	-1	<u>.</u> .				Ċ		·	;,		l		•	~ ·	•	4. C	•		Ţ.	[-	÷
	90	1.5	•	•	•		7	0.0	•		•	6.5	•	•		2	m.	•	÷.) (.) (.	;	; ;	•	•	•		0.7	•		_	; ,	5	•			•	•	٥.	٠	•	•	-0-2	ċ
YPY	90		•	•	•		•	7.	•	•	1.1			3.1		C)	m.		·; (,	6	,	•	7.4	•	•	. 2	•		0.0	٠	•			•	•	•	ج د م	•		•	1.1	•
SUMMAPY	5 0	3.6	•	•	•	٠.	•	•	•	•		•	ú.			0	m,	•	~• .	7	4.7	•	•	•	•	. 0	٠.			•	•	• •		•	•	•	•	•	•	1.2	٠	٠	•
FPVATION	03	ν, α 4 κ	•		•		•	8.1	•	٠	• •	٠		. m . w		0.7		(4.7-	•	7.0	•	•	3.0	•		, C			٠.2 د	•	•			•	•	٠		•	2.2	•	•	•
OBS	20	7.3	•		~	•	2.8		۳ • د	r,	•			6.2		1.4								3.7		٠. بر	•	4.4					•	7.7		3.6	٠).)			3.4	
PFGL	61	4.0	,		o u	•	4.1		7.	ر د	•			2.6		2.3								8.		4	•	5.4								•	•	4.6	•	٠		4.7	
	00								4.4																			6.1															
	۲,	~ 1 €	0	0	> c) C	, c	c	0	၁ (ــ ر	0	0	5 C	0	ပ	0	ပ (.	~ <i>~</i>	40	> ~1	ر	c	0	> C) C	0	0	н (م د	٠,	4	-	0	ပ	0	c (5 0	ے د	0	0	c
	~		. ~	-1.		- ·		-	~ ,	-4	- ب	• •	-1 -		·	~	~	-	-4	- -	٦-		~	- -1	P-1 P	٦,	-; -	ı	1	-	٦,	٦.	1	-	~	-	-	 •	-1 -	-1	-	~	-
	63 54 67	60.0	. ⊏I	23	۳ ,- ۱۰ (۲	4 4	. rd	70	T 6	E U	2 0	. E	in i	3 5	ا بن ان	50	₹4 F1	0.4	*) (5)	7 S	25	† *	(n)	0.1	400	2 5	. C	. rd	90	٥,	2 6	; e	- r.	03	13	S	Ü	7	٠, ن ن	۳ د ۱۳ د	13	0,1	0.4
	520	77	4 42	rt r	-4 ,-	٦,	۰ ٦	7	-	· 4 C	1 C	17	17 (٧ ~	2	~1	٧	7	C1	د، د	4 C	۷ ر	-	-	7	7 -	40	•••1	7	۷ ،	v (٠,	, (\	2	~	-	~	,	٦,	٦.	۱	~	(7
	11 64.	79/10/13	0/00.0	0/86/2	1/20/8	5/04/h	0/00/8	2/50/2	4/07/2	2/09/1	2/11/0	0/10/1	7000	1/2/3/3	2/37/9	3/53/5	0/60/0	3/03/1	3/65/2	2/63/6	7/55/0	5/11/6	2/63/2	1/00/0	3/32/6	3/06/3	0 / 0 c / 0	4/07/2	6/11/2	3/10/2	7/01/5	2/17/5	4/11/2	4/12/0	2/30/2	7/04/6	0/90/9	2/10/1	2/80/3	7/10//	3/62/0	3/74/	3/02/0

8.2

5.8

₩F 5.2

Ξ

07

7
SUMMAPY
OPSFPVATION
OPSE
FGL

11																						6.2			6.7														
10	7.2																			٠ و.		4.0		ر ا															
60																r L		•	::	ن. ن		-3.8		0 . y .		Ĺ.	:	. u.								, A_	4		
90	-1.6	. 6	•	-2.8									1.2							1.1		-2.5		0.71						-2.5		mi (4 . L.	•			-3.3		
07	1.8	-2		-2.7	-4.2	1,1		0.5	2	L. Ži	G.		0.7					e, Zi v	0		-1.6	•		0.4			4.0-		•	-2.6		ς.	4 · C ·	•					
90	10.7	7	•	-2.1	-3.7		•	0.7					2.0					•	٠.	•	-1.0	٠		77.						6.0-		2	-2.1	•					
0.5	6.11	•	•	-0.5	•		3.0	•					2.7								-0-3	•		10.0			1.3		•	0.0		-0-2			-0.5		-0.4		
90	78.8	•	• •	•	•	÷ <		•		ŭ	. L		2.2		F		e Z	ر کار	•		0.0	•					1.7		•		0.1	•	•	1.4	1.4			1.8	2.0
03	2.7	W W	0.	2.6	o, v		3.1						2.4					ſ		2.8		0.7	,	2 0	0.4		2.5			0.5	r. 0	5.0	5.2		5.1			5. N	
0.2	3.7			•	•	ν e.							2.8					•	17.1	4.0		1.2		0							0.0							9.1	
01	4.04				6.5		4.2						3.7					,	13.4			2.2		n c															
00							, m		N E			e N	:	L &					Ē	i i		2.8			. 6														
S	000	c	·~	C ·	۰ م	٦ ,	. 0	0	c c	> c) C	c	0	0	c	o	0	ပ	5 6	0	0	Ö	0	5 C	0	င္	0	9 0	0	~ 1	~	~ ·		-	- -1 (40	H	p(
4			٠,	~	٦,	, ·		П	~ ,	٦.		_	- 1 -	-		~	H	~ ·	٧,	- - -	-	н.	٦,	٦,-	· ~	-	- ⊣ -		-	-	-	rid (F4 (٠,	-	
SYS	1 10	07	S S	0.1	5	n =	0.1	14	0.1	ي د د	0.1	170	อี	10	04	C	0.1	01	٦ C	0 0	14	01	င္ င	70	10	S	13	5 6	14	£3	<u>د</u> ري د ۲	70	40	50	1.0	10	18	<u>د</u> ع	e C
sao																																							
DATE	73/07/05	73/36/25	74/32/03	63/75/11	76/06/03	00/30/6/	7/10/17	20/00/02	76/09/07	10/77/07	77/08/19	75/08/20	61/69/12	70/60/9/	76/11/29	76/12/11	17/04/09	77/08/19	17/00/6/	78/36/58	70/00/00	75/11/125	75/12/15	13/10/14 17/01/14	75/12/26	76,72/21	72/11/19	76/25/11	00/00/02	73/05/19	74/11/12	73/10/01	73/16/02	73/10/23	73/10/24	73/10/25	74/00/14	74/11/16	74/12/07
FGLF	2513.0	0.0	3.0	0.5	ر ر	ت رد ن رو) ()) ()	0.	0.0	ب د د	ء د ه		o c	5 0 4 12 10 10 10	0.	0.54 0.00	554.0	0.4.0 0.0	0.400	40	556.0	559.0	ر در د	ے د د	ت (د) ره	0.0	0.0	5 0	٠	ت د	0	0.1	0 0		0.1	0.0		0.1	0

•
~
Ž
<
≥.
-
2
Ē
-
S
Ž.
Ξ.
C
_
۲
-
~
Ś
ũ
14
ı
OPS
~
\mathbf{c}
_
5
C
Ē
•

11				
10	-2.5		-1.1	
60	 	v. v		4 4 6
90	0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		i	1000000 0 100000 0
0.7	8000000 m 720		4 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1111111 1 102221
90	0.00000 00mc		40.00 BL6 W	1111111
25	2.1.1.0.1.1.0.2.2.2.2.2.2.2.2.2.2.2.2.2.	8.8. O.8.		11111 00000 00000
5				440000000 44
63		αούσεσο α α μ 4 μ 4 ε υ α α α		
02	N N N N N N N N N N N N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 8 8 4 7 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
11	7.5 & 8 7.5 7 E	ம் ச	3.7	6 6
00	• •	ອ. ອ. & &	0	
w	нчоссосонны	000000000000000	000000mm000	20000000HCHH
۲,				nededddaddadd
SYS	00000000000000000000000000000000000000			4 H C C C C C C C C C C C C C C C C C C
SHO	аанныныаааа	- 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	- M	000000000000
DATE	404m/4m06004	74 / 10 / 10 / 10 / 10 / 10 / 10 / 10 / 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70000000000000000000000000000000000000
AFGI#		2000 2000 2000 2000 2000 2000 2000 200	νως ς νινις ς οι οι ο 4.	at the state of th

	11																																											3.6		4.0-					7.5		
	10										8,7	•				0.0		6.5																		•	٠							7.7	٠				6.7		9.0		
	60													,	•										- 20	•				c	7.7.	•			,	, «	•										-2.1				4.0-		
	80		-2.p											c	٠.	7.7	•	·,			-2.6		-1.3		_	•				-	C. [•	(7.0-			0 0	,	c	1 C	;,	7		0.6	ċ		-1:3		٠	;	0.5	•	•
	7.0		•	•	ċ	-3.2		> 0.7	•				•	r α		-;	٠,		5		۲,	•	-0.5	•	_	• : ~	1 -	·			\ 0 	•	; ,			•	•	,		· -		: (•	٠,	9.0-		-		-	•	တ ်	•	•
	90		-1.2		•	-2.7					-	•	ď) C	•	٠	;		Ľ,		ς.	c.	ر ا ا	•	_	·	· •	•			r. •	•	•	٠,	,,	, r	•	,		: :	•	• -1 C		•			ċ	ن	٠	0	1.3	•	
r PY	0.5					-2.1			2.8	•		•	•	; r	٠	٠,	٠,	٠	_;		_	•	r.	•		4 C	•				۲.			. ,	; ,	٠,		•		÷ c	•	· .		٠	، ئ	•	•	•	٠	•	2.0	•	
danis a	Š		•		•	-2.2		•	2	•	•	•	•	7.7	٠	٠, ۱	· .	•	0		•				•		•				•	•	•	∹ ,	٠,	;,	i.	•	٠,		٠	·	· .	٠	ċ	٠	•	٠	•	•	2.1	•	
FFVATION	č			ر. ن				•	<u>د</u>	,		•	•	, ,	•	٠	•	•	٠		1.1			•	•		•			•	4 ·	•		7.1			;,	•	٠,	` · ·	•	٠		٠	ċ	•	•	•	•	•	2.5	•	
340	0.5								3.4	•					٠	٥٠,	٠	٠							•					•) ·	•		3.0			\ ·	-	•	7.0	•	•		٠ د د	٠					•	2.8	•	
AFGL	5								4.4	•	2.0	•			•	ه د د	٠	•						6	•						x.			4 · I						, , c	•	٠		٥ و ا	٠			•		•	3.7	•	
	00						Ŀ. 2.			23																						0																					
	u.	~		L	Ç	0	c	ن	· C	C.	. c	٠ ح	, c	> c	> (<u>د</u> د	:=	c	•1	~ 1	c	C;	c	, c	. c	> -	٠.	٦.	- (-	٠, د	ာ (> <	.	> (، ت	5 6	:: •	- ·	۰,	٠.	٠,	ى ر	-	ပ (c ·	c	c	c	c	c	0	c	•
	٨.		۳,	~		-	- -,	-	-	-		1 ~	٠.	٦-	٠,	-+ ,	٦	-,	~	~1	~	-		1	٠,	٠,	۔ ب	F	-1 -	·	-1 -	٦,	٠,	r	-1,	٦,	-, -	٦,	٦,	٦.	٦,	٦,	٠,	- ; •	-	-	~-1	~	-4	~	-4	-	•
	Sis	S	C.	Ç.	۲. ۲.	4	č	13	Ö	C	: 5	; c	, ,	7 6	- i	<u>.</u> .	٦ د	C	7	2	ر. 4	*1	Č.	, ic	, c		: T	۳ د	3 6	<u></u>	ું એ દ	7.	d) r	-, • -, •	¥ ,	7 .	• •	ۍ د ک	5 6	J () c	4 T	7 1	5	01	13	د.)	ζ.	2	01	0.1	0.1	5
	S 40	~	r.	<i>ر</i> ،	r-1	v	~-1		۰	•	۰ -	٠.	4 -	-1 -	٠,	(/	7		C1	~	^	4	-	1 ~	1 ~	4 C	۷ ر	4 (٠ ،	v (7	*) •	4 ,	٠,	4 ,	۰,	٦ ،	4 (٧,	- -	٠,	٠, •		٠,	-	-	-	-		~	-	٦	-
	41.	2/50/5	2/27/6			5/50/0	0/00/9	2709	9/34/3	0/01/3	1/01/6	(/ O U / U		7/37/4	7/+ //0			J/55/E	3/60/3	2/50/2	5/15/2	0/00/0	1/00/3	0/01/3		6/	717	5/11/		3/:1//	7/ //		5/0:/5	7/00//		2/20/0		4/00/	7/11/6);		2/= /	3/31/3	7.77	2/07/	2/01/3	3/03/0	3/64/2	0/60/7	0/50/2	77/02/15	3/70/2	0/ 10/ 1
	# 100V	713.0	713.0	΄,		721.0	0	121		728.0				34.45	4 .		•	C.	c.	۲.	٠. م	0.20	0.00	י מיער				1. C			J. 6	(ت م م د	() () () ()		2 6		3 6 6 6	0.70	0.400	• •		7 - 7	7.5	27.0	25.0	0.83	125.0	125.0	0	157.0	0.399	,

ž
SUVMA
2
20
ř.
FVATI
ii. Ii.
いいい
FGL
Ğ,

11		20 W X	9
10		0 44 A	• •
60	4444 4 44 56 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	% % . W W W	7. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.
08	22.22 1 1111 2 2 2 2 2 2 2 2 2 2 2 2 2 2	• •	11111 111
07	1111 0 11110 111 11110 0 11110 111 11110 0 11110 111		20111 111 11 11 11 11 11 11 11 11 11 11 1
90	2.2.3.4.6.0.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9		00000 000 11 00 F
90	000 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000144	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
04		0000001142 Z C	410 820012212 417 E
03			100 0000004mmm 40 E
0.5	10.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0		্য সাম্ভাৰ্কৰ্ক্ৰ কথ আৰু ক্ৰম্ভাৰ্কৰ্ক্ৰ কথ
01			14 W 440 00 W
00	4.7.		6. t. c.
v.	##00000HHH00H000000	000000000000000	000000000000000000000000000000000000000
4	малеланананананан	иннинниннинни	ананынаныныны
SYS			40000000000000000000000000000000000000
ORS			34004004400440044400
31.40	79710/11 76710/11 76710/11 76710/11 767111/14 767111/10 767111/10 767111/10 77/10/10 757110/10	72 / 12 / 12 / 12 / 12 / 12 / 12 / 12 /	737,737,737,737,737,737,737,737,737,737
FCLA			00000000000000000000000000000000000000

	Ë																																									13.2	•		
	٥ : ٢																																5	•						,	, . , _				
	63			. i.					-4.6					У. Ф.														4.0				- 9-				íL Ž			-2.3			~	, .	2	•
	0.8	.0	7.0-	0.3		٥.		-2.0	-2.3			, O-	•		0.0	-0.1				•	-(.T	•	. T.	2			ပ	٠, ٥	-4.3	٠3.	r.	· (-	,	-1.6			-2.6	-1.8	-2.2				, r	c 9	•
	7	0.2			- 41 - 4 C		•	8.0-	•						•	С	•	٠			و.		2.1.				ċ	6.3	م. د:	۴,	,	100	, c.	-1.7	0.4		-2.4	-1.6	-2.1	·	· .		, ₍ ,	3 6	•
	90	1.4	1.0	1.1	0. C	0	2.2	-0.4	-1.5			6	•		•	₹.	•				٦ (1.5	3	-3.2	2	, ,		-2.2	0.[-			-1.4	-0.1	-1.5	c .		7.5	ے و ا	7.61	1
PY	0.5	3.1	7.4	2.8	ر د د د	7.0	2.3	1.6	1.3			7.1	•		ψ, Ψ,						4. C	٠.				1.7	2.2	S. S	0.7		-	7.	- 2 . 3	-0.5				1.6		•	·	£ 6	7. 0) (-) C	•
Y SUMMAPY	64	6.6		3.5	٠ د د		2.2	3.9	3.6	,	· · /		5.1		•	6.4	٠		•	•	o c	•	•						m ·	•	-	; [!	\$.U-			•	3.3	•	•	•	ا ت.	` o	2 C	
OBSEPVATION	6.3	•	2 α, α π			•	2.2	•			•	•	. C			7.7		,	4.	a (≈ c	7.0	7·0				3.1		7.8				-0.2	0.0			و. ه	7.2	٠.	ம். • ம். ர	0.0		יי ר יי ר	` ~	
	0.2	5.0	4 4	5.1			2.4					77.9	•					,	/ · ·	0	•	3.2					3.8		^		70.7		•	9							2.1			4	•
AFGE	to	4.6	a n	5.8		•	3.2					,	•					,	10.7	۰ س	•	4.					4.7			;	7.4.7			1.4					c œ	٠				,	•
	00																						m o	Ä	. L.						`			2.2					7.5					,	•
	٥,	0	ت -	c	ေင	, c	0	0	c	-	-→,	c) C	c	0	- }	e-1 :		ں ،	c) i	, , ₍	0	0	> c) C	C	0	Ç	0	0,	٦,	٦ -	·-	, 0	0	C	c	c	င	٦,	-	د ه	٠,	5 C	: 0
	~	٦,		i et	-1 -	4	·	~	-	-	-1 -	-4 F	44	-	-	-	- 4 :	~ .	_	-(•	·	٠,	·	٦ ,	4	 	~	~ 1	-		٦ ,	٠, <i>-</i>			-	-(~	7	~	٦,	7	~ •			
	SYS	01	3 C	150	*** *:	10	5	C4	ď	رم در	ტ (n -	1 C	ľů	Ć.	• <u>;</u>	Ç.	0.4	ر د د	C) (0,0	10	50	\$ c	50	18	0	ű	d G	C)	η . Ο ο	, -	0.7	, r	10	0.1	~! C	Ç.	<u></u>	ري دي (70	23	۲.	J C	3 6
	84 60																																												
	4 in 8	77/10/03	サロンジェントト	78/11/16	00/00/00	201011111111111111111111111111111111111	70.11/16	73/06/17	76/12/11	76/36/24	76/86/25	6//01/10	36/60/34	76.12/11	76/11/29	19/11/01	76/12/03	76/12/64	77/06/26	77/06/27	77/20/20	78/01/29	77/09/16	77/11/29	77/11/22	72/07/30	76/09/13	15/32/67	77/02/28	01/60/10	1//10/23	75/03/20	21/31/32	01/60/10	76/00/10	75/12/11	76/00/39	77/08/32	16/101/11	70/10/13	79/10/17	72/08/04	72/12/10	73/62/68	10/00/01
	#1704	2.0	3 C	C22.	٠ ، ا	, ,	ن	ς; Ω	ر. د	cr.	mi f	` C	; C	C	6	~	٠٠. د	۳. ا		m :	- i ((4 e	က ပြ	, r) C	ر.	0	c;	0.0	0	; c) C	, c	C.	0.0	0.	0	0.0	0.	٠. د. د	C I	د د ده د	د د د	o c	

2	> 7.3						•	e . E .		e. 2		. 2 . 3.	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	-3.	-3.5 -3.5 -3.5	-3.5 -3.5 4.3 6.	-3.5 -3.5 4.3 6.	-3.5 -3.5 4.3 6.	.2 -3.5 -3.5 -3.5	3.9 4.2 -3.5 4.2 4.3 6. NF	2 2 2 E 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3.9 4.2 4.2 4.2 4.2 4.3 5.6 5.6	3.9 4.2 -3.5 4.2 4.3 6. NF 2.3 2.8 5.6	3.9 4.2 -3.5 4.2 4.3 6. NF 2.3 2.8 5.6	3.9 4.2 -3.5 4.2 4.3 6. NF 2.3 2.8 5.6	3.9 4.2 4.2 4.3 6. NF 2.3 2.8 5.6	3.9 4.2 -3.5 4.2 4.3 6. NF 2.3 2.8 5.6	3.9 4.2 4.2 4.3 6. 7.5 2.3 2.3 5.6 5.6	3.9 4.2 4.2 4.3 6. 7.5 2.3 2.8 5.6 5.2 1.6	3.9 4.2 4.2 4.3 6.4 2.3 2.8 5.6 5.2 1.6	3.9 4.2 -3.5 4.2 4.3 6. 2.3 2.3 5.6 5.2 1.6	3.9 4.2 4.2 4.3 6. 2.3 2.3 5.6 5.2 1.6	3.9 4.2 4.2 4.3 6. 2.3 2.3 5.6 5.2 1.6	3.9 4.2 4.2 4.3 6. 2.3 2.8 5.6 5.2 1.6	3.9 4.2 -3.5 4.2 4.3 6. 2.3 2.3 5.6 5.2 1.6	3.9 4.2 4.2 4.2 5.3 5.6 5.6 5.7 6.0 7.1 7.1	3.9 4.2 4.2 2.3 2.3 2.3 5.6 5.6 6.3 6.3 6.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7	3.9 4.2 4.2 2.3 2.3 2.8 5.2 1.6 6.9 1.4	3.9 4.2 4.2 4.2 2.3 2.3 2.3 2.6 5.2 1.6 1.4	3.9 4.2 4.2 4.2 5.3 5.6 5.6 6.9 1.4 1.4	3.9 4.2 4.2 4.2 4.2 4.3 5.3 2.3 2.3 5.6 5.6 1.4 6.9	3.9 4.2 4.2 4.2 2.3 2.3 2.3 2.3 5.2 1.6 6.9 1.4	3.9 4.2 4.2 4.2 5.3 5.6 5.6 6.9 1.1 1.4	3.9 4.2 4.2 2.3 2.3 2.3 5.2 1.6 6.9 1.4	3.9 4.2 4.2 4.2 2.3 2.3 2.3 2.3 5.2 1.6 1.4	3.9 4.2 4.2 2.3 2.3 2.3 2.8 5.2 1.1 0.9
,	0 m c	•	-4.3		-4.2	-3,3	•		-3.5	•	~ ,			e e e e	e e e e	6 6 6HH	w w week c		E E 2HH 0 6		w w when o who	w w x44 o x4xx	w w wat o way	w w week o weeke	w w white o whare	w w whi o whywo 4	w w white o whisto 4	w w wam o wmwoo 4 w	W W WHH O WHUNO 4 W	W W WHH O WHUNO 4 W	w w wath o whoso 4 w	w w wath o whoso 4 w	w w vaa o vavoo 4 v	w w vaa o vavoo 4 v	W W WHH O WHWWO # W -	M M MHH O NHNNO 4 M HE		w w vuu o vuvvo 4 v uuu		M M NHH O NHNNO 4 M HHH	w w uuu o uuuno 4 v uuu	w w uuu o uuuuo 4 v Huu	m m dad o daddo 4 m add	M M MHH O MHMMO 4 M HHH		M M MHH O MHMMO 4 M HHH H
•	4 C C	• •	-4.1		4.1	-3.0	•	-3.3			~	-3.3	~ m ~	33.	33.	33		255	3 6	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ww vuude vuvwo	ww deede dedwood	ww viade velomoca	ww 84444 84880044	ww duuuu dudwoc444		WM 04444 040800444800	WM 04444 040800444800	WM 04444 04000044400	- МВ ОПППП ОСАФИЯ Б	мш иншны инимосааамо т	мш иппшн ипишосааайо	# # #	# HAV		мы ишшш ишишосааайо т шиии	WM NUUHU NUNWOC444NO F HNNN	мм ипичн ипимосаало т ниии	мы ишшшы ишимосааамо г шиии а	WW 0444 050000044400 F 4000 4	WW 04444 00 F 4000 4	WM 0444 040M0C444NO F 4000 4 6	ww duduu dudwoca4400 F 4000 4 0	WW UUUUU UUUWOC444WO F HUUU 4 U
	13.2	n	-3.5		-3.6	-2.5	•	-3.0		,		2.8		· · · · ·			1001		70 1001 7						NO HOOH HOHHO M	HOHHO MM	WA HOOH HOHHO WM	HOHHO WW 4	HOHHO MM 40	ww 40	ww 40	ww 40	40	NN HCOH HOHHO WW 40	NN HCOH HOHHO WW 40 .	NN HCOH HOHHO WW 40	NN HCOH HOHHO WW 40	NO HEOM HOMMO WW 40 NAV	NO HEOM MONHO WE 40 NAV	NO HEOR HORHO WW 40	NO HOOM HOMMO TO NAM M	70 HCOH HOHHO WW 40	70 HCOH HOHHO WW 40	70 HCOH HOHHO WW 40	NO HOOM HOMMO WM 40 NAV W N	NO HOOM HOMMO WM 40 NAV W N
3	7.00	•	-2.0	1	-2.1	-0.7	•	-1.0		9.7	_	•																w			0000 HHMM MO	0000 HANM MO	wo	wo		· · · · · · · · · · · · · · · · · · ·			A DOOD COCOMHNM WO WWW			· · · · · · · · · · · · · · · · · · ·		OCOO COCOMANA MO WAM	A COCO COCOMANA MO MAM	A COCO COCOMANA MO NOMA NO
3	c 6.0	•	9.0-		7.0			•	•		~:							0000 0000 0000 0000							00060 0400444	00060 04004040	00060 04604444		000000 000000000		00000 0400400000	000000000000000000000000000000000000000	0000000000000	00000 0400488889	0006N 04C04VVVVV0 44	00000 0HC0HVVVVV0 44m	00000 0HC0HVNVVV0 44mm	00000 0HC0HVVVVV0 44mv	00000 0HC0HUUUUU0 44m0	0006N 04C0444440 44mv	00000 0HC0HUUUUU0 44m0 N	0006m 04c0444440 44mm N	00000 0400400000 44mm N	00000 04004040400 44mm N L	00000 0HC0HUNUNNO 44m0 N V	00000 0HC0HUNUNNO 44mn N V
	, e.	•	1.6		1.6			•	•	•	٠			•		11.0			• • • •	• • • • • •		· · · · · · · · · · · ·		· · · · · · · · · · · · ·	• • • • • • • • •		· · · · · · · · · · · · · · · · · · ·		HHH 6 HHHH 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1		HHH 2 HHHH 2 HHH	HHH 2 HNHNN 2 7	HHH 0 HNNHN 0 N	HHH 0 HNHHN 0 1 1	HHH 0 HANHAN 0 7 7 6 4	44 6 44444 5 4 6 4 6 4 6 4 6 4 6 6 6 6 6	HHH & HAHHAH & 7 1.	HHH & HANHAN & A C C C C C C C C C C C C C C C C C C	ופיריט פי ה האואה מ האוא	ייייי פ האוא א א א א א א א א א א א א א א א א א	444 0 404400 0 0 000000 0 000000	משישים ש מאחמות מ שיייים	משליליט ש מאחומים א אייייייייייייייייייייייייייייייייי	HHH & HANHON 5 7 7 6 677676888	שאר מ המאראמ מ מ מיריקרים מי	מה משמשמע מ מי היה מי היה היה מי היה היה מי
• ;	3.0					3.0		•	•	•				•		2.3													. 224 6 22:	H 200 6 000	6 22. t	400 6 200 H	400 6 800 H	400 ° 600 ° 6	400 6 WM9 4 6' 0	אמט פ מטט ד ס' ס'	אמט ש מטט א פי פי	H 00 0 H	400 0 mon d d d	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	אממ ש מממ ש מי מי מי	400 0 m00 4 0 0 00	HNN 6 WNN H 6 6 6 6 6	1122 6 23 6 25 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1122 6 822 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1122 6 822 1 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(6.2					7.7			C					•		33.2														• • • • • • • •		• • • • • • • •	• • • • • • • •	• • • • • • • •			• • • • • • • •		• • • • • • • • • • • • • • • • • • • •							
))								5.0			•																			<u>د</u> 2	ሴ ሴ 2 2	& & % &	6. 6. 2. 2.	ն և 2.2	ል ቤ 2 2	8. B.	E E Z Z	<u>ሬ</u>	ል ል 2 2	& & 2 Z	۵. ک ۲. ک	ል ል 2 2	& & % &	& & 2 Z	ሬ ቤ 2 2	ል ል 2 2
,	~c,	·	-ii	~	o -	4 0	, ,	o	-	ч,		-	~ 0	400	4000	4000	40000	400000	4000000	46600000	40000000	400000000	46600000000	46600000000	4000000000	4000000000	4000000000AH	4000000000440	40000000004400	HCC000C00C0HH000	1000000000110000	1000000000011000000	1000000000011000001	nccooccoccnnoccon		100000000001100000010cc	10000000000000000000000000000000000000	10000000000000000000000000000000000000	nccooccoccnnocccocc	40000000000000000000000000000000000000	100000000000001100000010c00000		40000000000000000000000000000000000000	10000000000000000000000000000000000000	466000C00C000C44000000H0CC0000H40.	
•	~ ~ ~			-			-		ri (?	-	_	~ ~	~ ~ ~	444-			-		-	начаначана	нанапапапап	начачачача	намапамапапа	наманаманана	начанначаначан	напапапапапапа 	напапапапапапа	памаламаламана	палапананананана		па	палапананананананананананананананананана	намапананананананана	памапамаланананана. -	памапамапананананана. -	миниминием и метерия и метерия На применятия и метерия и мете	малапения при	маламинанананананананананананананананананан	малаппинананананананана	малапанананананананананананананананананан	малапанананананананана Онн	малаппанананананананана	малаппинаннаннаннаннана Онинг	малапения при	малаприянияния принципация при
	502	2 -1 -	2 2	1	Ç (3 5	3	01	က ပ	0	0	č	0.0	255	2555	00000	700000	4000000	4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	410000000000000000000000000000000000000	4 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					4 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0		00000000000000000000000000000000000000	20000000000000000000000000000000000000	210021000011000011000000000000000000000		4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	44444444444444444444444444444444444444	20004000000000000000000000000000000000	444444444444444444444444444444444444444	2 C C C 2 C C C C C C C C C C C C C C C	44444444444444444444444444444444444444	44444444444444444444444444444444444444	2 d d d 4 d d d d d d d d d d d d d d d	4	444444444444444444444444444444444444444	2000490044000440400505050000000000000000	2 C C C C C C C C C C C C C C C C C C C	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	0	V (V (7 C	7	r\ r	۰ ۲	0	-	~ '	7	2	c	۲-	0	0 m m n	~~~~	0 m m m v r	0 m m m m m m	0 m m m m m m m m	0 m m m m m m m m m	0 m m m m m m m m m m	0 -	N	N	N = = = 4 = = = = = = = = = = = = = = =	N = = = 4 = 4 = 4 = 4 = 4 = 4 = 4 = 4 =	0 m m m m m m m m m m m m m m m m m m m	N	0 m m m m m m m m m m m m m m m m m m m	0 m m m m m m m m m m m m m m m m m m m	0	0	импининини и и и и и и и и и и и и и и и и	0 mmm 4 mm	инпипппппппии и ппии и п	0	0	импининини 4 и и и и и и и и и и и и и и и и и и и	0 mm m m m m m m m m m m m m m m m m m	инпанининия и ии и и и и и и и и и и и и и и и и и	0 m m m m m m m m m m m m m m m m m m m	инпинпинини 4 и и н н и и и и и и и и и и и и и и и 		инначинныннаима нниииииииииииии	0	инпинпинпини компини и и и и и и и и и и и и и и и и и и
,	0/00/E	3/10/2	3/11/2	3/11/0	7278	4/11/6	4/12/0	8/01/2	170176	1/21/6	3/60/8	0/00/2	3/00/5	3/00/8 5/01/8	2/00/8 5/01/8 6/01/8	3/01/5 3/01/5 3/01/3 3/04/3	3/00/2 3/01/2 3/01/3 3/09/0 1/0/0 0/00/0	3 / 0 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0	3	2	3 / 0 2 / 0 9 / 0	2	20	20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2		00000000000000000000000000000000000000																		73 / 20 / 20 / 20 / 20 / 20 / 20 / 20 / 2
1	116.0	110.0	116.0	116.0	116.0	116.0	116.0	116.0	116.0	116.0	136.0	C 411	99.00		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	00000000000000000000000000000000000000		00000000000000000000000000000000000000	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	01144440000000000000000000000000000000			00000000000000000000000000000000000000		0.000000000000000000000000000000000000	$^{\circ}$														

AFGL ORSEPVATION SUMMARY

	11		'n	•		6.1			9.7																				٠. د			٠									•								
	0		۰ ٦			~			ı																				2		- 1									. .									
	Ξ		v u	•		50																							'n	,		ċ								, u	•								
	60		c	•			۳,	5.5	o,						7	4				4.0-											•	×-0-4							_		•								
	83		æ -	•		•	2	٠. د.	œ̈					,	1 7	~									ن	ċ	ė,	ċ	•	ċ		0.01	•	(* r	•		6	0	•	•								
	0.7	•	0,0	•	•	1.7	7	٠	ω.			E. (9.0		1.3	,						·	c:		•	ن	ċ	ċ	٠,	:	-0-2	٠		•	7 (;	ó		-0.2	•	•		4.2	•					-0.7
	90	۴,	e -	•	• •	•	ċ	•	ė				8.0		-1.2	<u>.</u>					ċ		ċ		ċ	ċ	ċ		•	ċ		•		c		•		0			•								9.0 <
A PY	0.5	٠	6.7	•	•	5.9	•	•	ë.				1.1		9.0	٠						٠	٠	•	•	•	٠	٠	•	٠	9 .	٠			4.	•			•		•								1.5
N SUMMAPY	04	•	 6. (•			•	•	Ξ.				1.5		7.	٠							•			•	•	•	•	•	5.0	•	• •		2.6										0.9				1.9
SEFVATION	03	•	2.2	•			•	•	•	e.					9.1	•					4.5			•	•	•	٠	•	•	•	4.7	٠	٠		,		•				•	S.	•		7.7			4.5	•
OF	0.2		, 20 20 20 20 20 20 20 20 20 20 20 20 20 2	•	•	3.1										1													•	•	س س	٠	٠		9	•	7.3	,	•		•			10.4	•			5.5	
AFGL	0.1		٠.	•	•	4.0										2.4													•	•	6.3	•		,	•				•	9	•		>14.5					7.6	
	00		4.2								ند 2			Z			Ĺ. Z													2.5					7.3	•			5.8	•	Ä					e Z	£		
	v.	C	c (> C		C	0	0	0	c	.	c	0	0	0	c ·	0	0	0	0	0	0	0	c	0	0	0	0	0	0	c .	0	- - (: c	0	0	0	0	0	· c	. 0	0	0	~	-	c	0	0	0
	4	-	٦.	→ ~	٠.	· ~	~	~	~	-	-	-	-	٦,	-	~	-	٦٠		-	-		~	~	~	-		-	7	-	,	۰.	٦.	٦,	-	-	-	-	-	ا	-	-	-	-	-4	٦	~	7	7
	SYS	13	0 5		10	0.1	13	13	13	0.5	0.1	C C	14	[]	13	01	0	01	0	15	04	0	0.4	0	04	04	04	04	01	01	01	E (0 0	7 6	3 6	0	010	0.1	010	10	0.1	0.5	0.5	03	03	01	01	0.5	13
	OBS	7	m r	ግ	٠,	_	Ŋ	2	ĸ.	7	~	-	₹.	~	'n	φ.	-	-		~	~	:4	7	~	~	7	7	~	-	r 4	~ ·	- (7-	٦.	٠,	· ~	·	-	-	-	-	7	7	7	7	~	~	~	7
	CATE	3/10/6	78/10/19	0/01/2	3/01/0	7/11/0	1/00/0	1/03/0	2/07/0	0/04/0	9/04/1	8/04/	0/00/0	7/02/0	2/05/2	3/62/0	9/02/5	9/05/1	9/02/5	2/04/1	2/02/0	2/05/1	2/06/1	3/65/1	4/63/6	4/02/2	4/05/0	4/06/0	4/01/5	5/01/0	5/01/0	6 /0 1 /0	6/05/1	0/00/0	7/00/2	0/10/1	7/08/1	7/08/2	8/01/2	8/01/3	8/04/1	8/07/0	9/04/0	9/02/0	9/02/0	9/05/1	8/08/2	8/01/0	2/09/1
	AFGI #	044.	4044.0		085.	088	105.	114.	114.	145.	145.	153.	157.	156.	177.	177.	192.	217.	217.	219.	219.	219.	219.	219.	219.	219.	219.	219.	219.	219.	219.	210	577		219.	219.	219.	219.	219.	219.	221.	221.	222.	222.	224	229.	234.	235.	241.

	10															7.0			
	60															-2.7			
	80													-0-3		-2.0			
	0.2					ŭ			-0.2	NF	N.		ž	-0.7	5. 0-	-2.0	. 0 . 5		
	90	1.2												7.0	-0-1	-1.0	^		
\ RY	0.5	2.1							1.9						1.8	9.0	2.0		
APCL OBSERVATION SUMMARY	0.4	1.7	5.8	NF	Z.	e. Z			1.6		Z			2.7	2.0	1.2	2.3	4.3	3.8
VATION	03	1.8	7.7						1.7					3.1	3.2	2.3	2.7	8.9	4.5
, OBSE	0.5	1.9							4, 1							3.1			5.5
AFGI	01	2.7							3,3					4.6		4.0			7.6
	00						Z F	Ä				Z.				4.2			
	ຜ	0	~	0	0	c	0	0	0	0	0	0	0	0	0	0	0	0	0
	K	-	~	~	-	~	~	-	-	-	~	-	~	~	-4	~	-	~	-
	SYS	0.1	03	01	0.5	01	0.7	01	01	04	01	07	04	01	13	01	13	01	0 2
	OBS	~	L1	~	7	-	7	~	-	7	-4	C1	7	~	-	m	-	٦	7
	34.	78/08/20	76/06/22	77/04/09	77/06/27	77/08/19	78/10/08	79/01/10	77/08/08	76/11/29	77/08/19	78/10/08	76/11/29	77/07/25	72/08/05	78/10/19	72/08/12	77/10/19	78/07/04
	A.C.Y	42.8.0	4251.0	4259.0	4259.0	4259.0	4259.0	4259.0	4261.0	4263.0	4263.0	4263.0	4264.0	4286.0	4295.0	4295.0	4300.0	4305.0	4335.0

	11		8.2									6.0-										0.5																							
	10		6.1																																										
	60		(7) (1)	•					-1.6			-1.7																																	
	83		0.4						-0.3																												-0.1	•							
	0.1		۷. د				4.0-		-1.2					۰. ۲ . 4		-1.9	,		9.0		•		0	•	٠ ن		· c	• •	-0.3		9	•			,	0	-0.3		<u>.</u>	٠			> 0.1		0.1
o,	90		2.1				1.2		-0.4							-1.1								> 1.4							9°0 <	•	-	-1.4	•	•	1.0	•	•						9.0
CRSERVATION	0.5		2.6				2.3		0.7					7.2							> 2.2		•	٠	•	•	•	•	1.7	•	•	•		7.7	•	•	2.1	•	•	•			1.5		1.0
	64		2.4	•				۳. ا		•	٠		را و و	•		۲,	•				•						•	•					•	7.0		•	•	•	•	•	•		•	2.2	•
PLEMENT	03	7 E	2.7	٠				4.5			•		٠,	•		7	•					•	•	•	e 6	•	•	5	•			2.6	٠	•	•	3,3	•	•		•	•	•	2.2		
31. 17. 18.	12	त	3.1					•	2.6								•																		1.7										
10 47	01		4.1						4.0																																				
	0.0		4.7	;	14 14 2: 22	:								;	6, 6 2, 2	i.	ŭ	į.																											
	S	<u>د</u> ر	٥	ن د	၁င	ے د	. د	-	0	0	0	0	-	0	ى د	ى د	C) C	ی د	c	0	c	င	ပ	c (c (> c	ာ င	: O	c	0	0	-	= c	٠,	0	ပ	0	0	0	6	<i>ن</i> د	0	င	c
	æ	~ ~	. ~1	-+ 1	٦.	4 ~~	-1	- ،		· ~	7	~	-1	p-4 (-1 -	-1 - -	- ۲	- ۱	{ •··	٠,	ı –ı	~	~	m	-	·- ·		٦,	-	- i	-	Н.	-+ •		-	-4	-	-		~ 4 .	- 1	-1 -	ا	i ~ -1	~
	€1 21 61	6 C																																											
	S E	~ ~	t1	~ .	, , ,	4 1/) -	1 (1	φ	-		7	C1	, +	-1 -	٦ ,	- ·	٠, -	1	. ,-	1	~~	-4	-	- 1 -	~ ,	⊣ •	† •	4 47		-	~	S ·	-1 4	۰ م	-	7	7	4	-4	in i	ırı	o	(un	4
	(1) (1) (2)	77/10/25			7/2/2	-/4-51	7/11/2	V	2/40.0	0/00/	6/56/9	3/20/2	0.775.1	٢. ن		こくないな	7/20/9	0/50/0	0/00/0		2/38/2	2/01/3	V 5.7.3	2/24/2	1/31/2	2,120/2	3/25/6	0/00/0	0/00/0	1/20/3	2/03/2	3/10/6	2/02/0	3/01/1	0/10/4	3/01/1	3/04/0	4/03/1	0/03/0	3/01/0	2/01/2	2/05/0) (C	2/05/2	0/00/0
	37.7.	6.4	1			40	. ~	10	0		ις. (*)	. 73	,	2	e 1	٠ ١,٠			; ; ;		7 7	.955	37.	. 86	50	2/0	2.5	7 7 7		0 0	- - 	294.	52.5	0 0 0 0	4.	195	900	.955	557.	517.	737.	781.	7 9 7	. 6	150.

	7						-							•	•																							-2									
	10																																								•	7.7					
	60																																							>-2.8		•	4.2		-2.8		
	0.8		6.0	•																																			٦.	^ _	∹.	7	,	√.	-1.4		
	07		0.1		-				9-0-6	· ·	•	c	•	۲ ۲		. · · · · · · · · · · · · · · · · · · ·	·	•	9	0		,	•	•	ċ	•	ċ	•	٠,		• ç		o o	c	•	•	ċ	?	۲,	∹.	٠,	· .	٠,	ζ,		: 0	1:1
S	90	•	0.0	•											7	+			0.7	•																		~	~	C (◌,	4.	٠,	₹.	7.0-		1.5
ORSEPVATIONS	0.5	•	9.	•					2.6	•	•	7	٠	•		7.6		• •	; ;	•		'n				•	•	•	2.3	•	•	, ,			•	•	•										1.7
	04																																														1.9
Supplement	03		2.7	•			•	•	•	•	•	•	•	•	•	•	•	•		•								•	•										•		•			•	ب س د	•	•
-	02		m m		3.3																																			2.5		χ.			7.7		
AFGL	0.1		4.4		4.4																																			6.5		4.0			6.3		
	00																																														
	r,	0	0	- C	0	0	0	0	0	۰ د	0	0 (0 (> c	•	c	· c	· c	0	0	0	0	0	c	0	0	0	0 (0	> c	-	.	0	C	0	c	0	0	0	0	> (0	= 0	>	> c	,	0
	•	~				~	-	-	⊣.	٦,	- •	٦.	۰,	٦,	- ۱	- ۱	· ~	٠-	-	-	-	ı ~ -	-	-	-	٦,		٦.	~ -	٦.	٦,	٠,	-	~	-	~	~	-	~	- 4 (ب	⊣,	٠,	٦,	٦,	- ۱	
	SYS	14	6 5	5 0	0	13	13	13	13	13	13	13	10	~ <u>-</u>	1 -	7 -	-	7 -	13	13	13	13	13	13	13	13	13	13	۳ <u>.</u>	7 -	- - - -	1 1	13	13	13	13	13	13	£	0	*		77	2 6	٦ ۲	7 -	14
	OBS	4	د د	7 0	0 ،	-	-	-	.	⊣.	-	۰,	٦.	- -	4 5	- ،	٠.	۱	-	-	-	-	-	~	~	-	- 4 :	-4 ·	٦.	٦.	٦,	٠.	· ~	, ~		-	~	-	-	-	7 .	٠, ١	7 (7	7-	٦.	4 4
	DATE	0/00/0	3/05/2	7 4 0 7 4	4/05/2	2/02/0	2/05/0	2/02/0	2/06/2	2/08/1	2/08/1	2/09/0	3/07/3	2/08/1		7/08/7	7,00/0	0/60/6	2/09/0	2/09/1	2/08/1	2/04/0	2/06/2	2/08/2	2/06/2	2/09/1	2/08/2	2/08/0	2/00/1	0/60/0	7/50/2	2/10/2	2/08/0	2/08/1	2/08/1	2/08/2	2/10/1	2/05/0	2/00/1	3/04/1	3/09/0	0/00/8	7/50/5	3/10/2	4/11/0	0/60/0	00/00/02
	AFGI.#	06u	(၁)		080	120.	135.	241.	272.	284.	285	294.	310	311.	700	. o . c		747	352	357.	370	372.	377.	386.	107.	116.	7	200	υ. 100 1		000	000	33	543	549.	563.	909	5.	15.		. 15	5.5	5	5.	5.15		55691.0

OBSERVATIONS
INLING Idea's
ATGE

60	
8 0	
0.7	> 0.6
90	^
	6) 6 6) 6
0.4	3.0 2.9
	ر د د
62	
7.0	
eo s v eks	
v.	00
<	~ -
6. X 6.	E .
380	r-1 r-
£.: 25	SS703.0 72/08/11 1 13 1 0
VEGES	55703.0

6.5

Figure S

References:

- Gillett, F.C., Forrest, W.J., Merrill, K.M., 1973, Ap. J. 183, 87.
- Merrill, K.M., 1977, in Proceedings of IAU Colloquium 1142, "The Interaction of Variable Stars with Their Environment," Veroff Bamberg 11, (12), 446.
- Merrill, K.M., Ridgway, S.T., 1979, Ann. Rev. Astron. Astrophys. 17, 9, (R. Kippenhahn, J. Rahe and W. Strohmar [eds.]).
- Merrill, K.M., Russell, R.W., Soifer, B.T., 1976, Ap. J. 207, 763.
- Merrill, K.M., Soifer, B.T., Russell, R.W., 1975, Ap. J. (Letters) 200, L37.
- Merrill, K.M., Stein, W.A., 1976a, Pub. A.S.P. 88, 285.
- Ney, E.P., Merrill, K.M., Becklin, E.E., Neugebauer, G., Wynn-Williams, C.G., 1975, Ap. J. (Letters) 198, L129.
- Russell, R.W., Soifer, B.T., Merrill, K.M., 1977, Ap. J. 213, 66.