

# Introduction to Gaussian process metamodel - Kriging

May 2020

Copyright EDF 2020 - Chu Mai (EDF R&D/MMC)



### **Outline**

Random process

Gaussian process metamodel

Conclusions

### **Outline**

#### Random process

Gaussian process metamodel

Conclusions

#### Random variable and random vector

**Random variable**: variable whose values depend on outcome of a random phenomenon

A random variable X is a function from a set of possible outcomes  $\Omega$  to a measurable space E:

$$X:\Omega\to E$$

 $\Omega$  being a sample space of the probability triple  $(\Omega, \mathcal{F}, \mathcal{P})$  in which:

- $\blacktriangleright$   $\mathcal{F}$ : set of events, each event contains zero or more outcomes
- $ightharpoonup \mathcal{P}$ : probability measure, assigment of probability to events

Example: rolling a fair dice, outcome  $\omega$ , set of possible outcomes: six faces  $\Omega = \{1, \ldots, 6\}$ . Random variable X: X = 1 if  $\omega \in \{1, 2\}, X = 2$  if  $\omega \in \{3, 4\}, X = 3$  if  $\omega \in \{5, 6\}$ . Probabilities assigned to its values  $\mathbb{P}[X = 1] = \frac{1}{3}$ 

Random vector: a vector of random variables

$$\mathbf{X} = (X_1, \ldots, X_n)$$



### Random process

**Random process** Y: set of random variables indexed by x and defined in the probability space  $(\Omega, \mathcal{F}, \mathcal{P})$ 

$$Y: \Omega \times \mathcal{D} \to E$$

 $\mathcal{D} \subset \mathbb{R}^d$ : space of indices (e.g. spatial, temporal domains)

- ▶ At a given point  $x_0 \in \mathcal{D}$ ,  $Y(\omega, x_0)$  is a random variable.
- ▶ With a given random event  $\omega_0 \in \Omega$  and index  $x \in \mathcal{D}$ , one obtains a function (a.k.a realisation, trajectory):

$$y(\omega_0, x) : x \in \mathcal{D} \to \mathbb{R}$$



### Random process

Mean:

$$\mu_{\mathsf{x}} = \mathbb{E}\left[\mathsf{Y}(\mathsf{x})\right]$$

Covariance:

$$C(x,x') := C(Y(x),Y(x')) = \mathbb{E}\left[(Y(x)-m_x)(Y(x')-m_{x'})\right]$$

**Stationary random process**: the covariance function C(x, x') depends only on  $\tau = x - x'$ , not on the position in the space

$$C(x,x')=C(x-x')=C(\tau)$$

**Gaussian process**: the random process  $Y: \Omega \times \mathcal{D} \to E$  is called a gaussian process if every finite collection of random variables is a Gaussian random vector (i.e. has a multi-variate normal distribution)

$$\forall k, \forall \{x_1, \ldots, x_k\} \in \mathcal{D}^k, \{Y(x_1), \ldots, Y(x_k)\} \sim \mathcal{N}(\mu, \mathbf{C}); \; \mathbf{C}_{ij} = C(x_i, x_j)$$

# Covariance function of a stationary random process

Global form of a unidimensional covariance function (Schlather 2009):

$$C(x,x') = C_0 + \upsilon \rho \left(\frac{|x-x'|}{I}\right)$$

- ► C<sub>0</sub>: nugget effect
- ▶ *v*: constant variance of the random process
- ► I: correlation length

Examples of covariance functions:

| Kernel                  | Function                                                                                                                                           |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Matérn                  | $C_{\nu}(	au) = \sigma^2 rac{2^{1- u}}{\Gamma( u)} \left(rac{\sqrt{2 u} 	au }{	heta} ight)^{ u} K_{ u} \left(rac{\sqrt{2 u} 	au }{	heta} ight)$ |
| Generalized exponential | $C(	au) = \sigma^2 \exp\left(-rac{ 	au ^{\gamma}}{	heta^{\gamma}} ight)$                                                                          |
| Squared exponential     | $C(\tau) = \sigma^2 \exp\left(-\frac{1}{2} \frac{ \tau ^2}{\theta^2}\right)$                                                                       |

The regularity of the process is determined by the differentiability of  $C(\tau)$  at  $\tau=0$ .

For stationary processes, the trajectories y(x) are p-times differentiable if  $C(\tau)$  is 2p times differentiable at  $\tau = 0$ .

| ν           | Matérn covariance function                                                                                                                                                                                                                          |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| v = 1/2     | $C_{1/2}(	au) = \sigma^2 exp(-rac{ 	au }{ ho})$                                                                                                                                                                                                    |
| $\nu = 3/2$ | $C_{3/2}(\tau) = \sigma^2 \left( 1 + \frac{\sqrt{3} \tau }{\rho} \right) exp(-\frac{\sqrt{3} \tau }{\rho})$ $C_{5/2}(\tau) = \sigma^2 \left( 1 + \frac{\sqrt{5} \tau }{\rho} + \frac{5 \tau ^2}{3\rho^2} \right) exp(-\frac{\sqrt{5} \tau }{\rho})$ |
| $\nu = 5/2$ | $C_{5/2}(\tau) = \sigma^2 \left(1 + \frac{\sqrt{5} \tau }{\rho} + \frac{5 \tau ^2}{3\rho^2}\right) \exp(-\frac{\sqrt{5} \tau }{\rho})$                                                                                                              |
|             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                               |





$$\nu=1/2$$







#### Matern model, nu = 1/2, scale = 1



 $\rho = 1$ 



Matern model, nu = 1/2, scale = 5





### **Outline**

Random process

Gaussian process metamodel

Conclusions

# Prediction at a new point



# Prediction at a new point



**Assumption:** The response is a realization of a Gaussian random variable whose moments depend on the design points

# Gaussian process assumption

The model output is a realization of a Gaussian random process of the form :

$$Y(x,\omega) = r(x) \cdot \beta + Z(x,\omega)$$

Trend (deterministic)
Linear regression
on a fixed basis

Random fluctuations

Gaussian process with zero mean and stationary

$$\mathbb{C}\text{ov}_Z(\boldsymbol{x}, \boldsymbol{x'}) = \sigma^2 \rho(\|\boldsymbol{x} - \boldsymbol{x'}\|)$$

Kriging

### Conditional mean and variance

Notations: 
$$\mathbf{k}(\mathbf{x}) \equiv \left\{ \rho\left(\mathbf{x}, \mathbf{x}^{(1)}\right), \dots, \rho\left(\mathbf{x}, \mathbf{x}^{(N)}\right) \right\}^{\mathsf{T}}$$

$$\boldsymbol{R} \equiv \left(r_{j}(\boldsymbol{x}^{(i)})\right)_{1 \leq i,j \leq N}$$
 ,  $\boldsymbol{K} \equiv \left(\rho(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)})\right)_{1 \leq i,j \leq N}$ 

Conditional mean: 
$$\mu(\mathbf{x}) = \mathbf{r}^{\mathsf{T}}(\mathbf{x})\boldsymbol{\beta} + \mathbf{k}^{\mathsf{T}}(\mathbf{x})\mathbf{K}^{-1}(\boldsymbol{\mathcal{Y}} - \mathbf{R}\boldsymbol{\beta})$$

Conditional variance: 
$$\sigma^2(\mathbf{x}) = \sigma^2 - \mathbf{k}^{\mathsf{T}}(\mathbf{x}) \mathbf{K}^{-1} \mathbf{k}^{\mathsf{T}}(\mathbf{x})$$

### Conditional mean and variance

Consider an instructive model:  $y = f(x) = x \sin(x)$ Gaussian process metamodel:

$$H(x,\omega) = \mathbf{r}(x) \cdot \boldsymbol{\beta} + Z(x,\omega) \quad , \quad \mathbb{C}ov_Z(x,x') = \sigma^2 e^{-\theta(x-x')^2}$$
Size = 5,  $\sigma^2$  = 6.81% Conditional variance

- ► The conditional mean is used as a metamodel (interpolator)
- ► The conditional variance is used as an error indicator

# Parameter fitting

To apply the previous formulas, the parameters  $(\beta, \sigma, \theta)$  have to be estimated from the design points

- ▶ Optimal correlation parameter  $\hat{\theta}$  estimated by the maximum likelihood estimate (Marrel et al. 2008) or cross validation (Bachoc 2013)
- Parameters  $(\hat{\beta}, \hat{\sigma})$  estimated by empirical best linear unbiased estimator (BLUE) (Santner et al. 2003)



























### **Outline**

Random process

Gaussian process metamodel

Conclusions

# Gaussian process metamodel

- ► The regularity of the trajectories depends on the choice of covariance function
- Kriging allows to associate a measure of certainty to a prediction of the function
- Kriging allows the effective sequential enrichment of the experimental design

# Thank you



