CH-231-A Algorithms and Data Structures ADS

Lecture 34

Dr. Kinga Lipskoch

Spring 2022

Breadth-First Search (BFS)

Problem:

- ▶ Given (directed or undirected) graph G = (V, E) and a starting vertex $s \in V$.
- ▶ Systematically explore all vertices reachable from *s*.

BFS strategy:

First find all vertices of distance 1 from s, then of distance 2, then of distance 3, etc.

BFS Approach

- ▶ Use adjacency-list representation.
- ▶ Use a color attribute for each $vertex \in \{white, gray, black\}$.
 - white: not detected yet
 - gray: just detected, waiting for us to explore their adjacency lists
 - black: done, all neighbors have been visited
- Store all gray vertices in a queue (FIFO principle).
- ▶ In addition, store for each vertex an attribute with the (topological) distance to starting vertex s.
- Finally, also store a pointer to the predecessor.

ADS Spring 2022 3/16

BFS Algorithm

```
BFS(G, s)
    for each vertex u \in G.V - \{s\}
         u.color = WHITE
       u.d = \infty
         u.\pi = NIL
    s.color = GRAY
    s.d = 0
    s.\pi = NIL
    O = \emptyset
    ENQUEUE(Q, s)
10
    while Q \neq \emptyset
11
         u = \text{DEQUEUE}(Q)
12
         for each v \in G.Adj[u]
13
             if v.color == WHITE
14
                  v.color = GRAY
15
                  v.d = u.d + 1
16
                  v.\pi = u
17
                  ENQUEUE(Q, v)
18
         u.color = BLACK
```


BFS Example (1)

BFS Example (2)


```
BFS(G, s)
    for each vertex u \in G.V - \{s\}
         u.color = WHITE
         u.d = \infty
         u.\pi = NII.
    s.color = GRAY
    s.d = 0
    s.\pi = NIL
    O = \emptyset
    ENQUEUE(Q, s)
10
    while O \neq \emptyset
         u = \text{DEQUEUE}(Q)
         for each v \in G.Adj[u]
12
13
             if v.color == WHITE
                  v.color = GRAY
14
15
                  v.d = u.d + 1
16
                  \nu.\pi = u
17
                  ENQUEUE(Q, \nu)
18
         u.color = BLACK
```

ADS Spring 2022 6 / 16

ADS

BFS Example (3)


```
BFS(G, s)
    for each vertex u \in G.V - \{s\}
         u.color = WHITE
        u.d = \infty
         u.\pi = NII.
    s.color = GRAY
    s.d = 0
    s.\pi = NIL
    O = \emptyset
     ENQUEUE(Q, s)
    while Q \neq \emptyset
         u = \text{DEQUEUE}(Q)
         for each v \in G.Adj[u]
12
13
             if v.color == WHITE
                  v.color = GRAY
14
                  v.d = u.d + 1
15
16
                  \nu.\pi = u
                  ENQUEUE(Q, \nu)
18
         u.color = BLACK
```

7/16

Spring 2022

BFS Analysis

- ► Each vertex is enqueued and dequeued once.
- ► Each queue operation is O(1).
- ▶ Total time for queue operations is O(|V|).
- ▶ Loop over adjacency list of all vertices is in total $\Theta(|E|)$.
- ▶ Together, we get a time complexity of O(|V| + |E|).

Breadth-First Tree

When storing the predecessors, we can construct the predecessor subgraph $G_{\pi}=(V_{\pi},E_{\pi})$ of G with

$$V_{\pi} = \{ v \in V \mid v.\pi \neq NIL \} \cup \{ s \}$$

$$E_{\pi} = \{ (v.\pi, v) \mid v \in V_{\pi} - \{ s \} \}$$

- This subgraph represents a tree structure.
- It is called the breadth-first tree.
- lt contains a unique path from s to every vertex in V_{π} .
- All these paths are shortest paths in G.

ADS Spring 2022 9/16

Depth-First Search (DFS)

DFS Strategy:

First follow one path all the way to its end, before we step back to follow the next path (u.d and u.f are start/finish time for vertex processing)

```
DFS(G)
   for each vertex u \in G.V
       u.color = WHITE
       u.\pi = NII.
   time = 0
   for each vertex u \in G.V
6
       if u.color == WHITE
            DFS-VISIT(G, u)
```

```
DFS-VISIT(G, u)
    time = time + 1
    u.d = time
    u.color = GRAY
    for each v \in G.Adi[u]
        if v.color == WHITE
            \nu.\pi = u
             DFS-VISIT(G, \nu)
    u.color = BLACK
    time = time + 1
```

10 / 16

u.f = time

Spring 2022

DFS Example

990

Another DFS Example (1)

Another DFS Example (2)

Another DFS Example (3)

DFS Analysis

```
DFS-VISIT(G, u)
DFS(G)
                                            time = time + 1
   for each vertex u \in G.V
                                            u.d = time
       u.color = WHITE
                                         3 u.color = GRAY
3
                                            for each v \in G.Adj[u]
       u.\pi = NII.
   time = 0
                                         5
                                                if v color == WHITE
   for each vertex u \in G.V
                                                    \nu.\pi = u
                                                     DFS-VISIT(G, \nu)
6
       if u.color == WHITE
                                           u.color = BLACK
            DFS-VISIT(G, u)
                                            time = time + 1
                                            u.f = time
```

Each vertex and each edge is processed once. Hence, time complexity is $\Theta(|V| + |E|)$.

Edge Types

- ▶ Different edge types for (u, v):
 - ► Tree edges (solid): *v* is white.
 - Backward edges (purple): v is gray.
 - Forward edges (orange): v is black and u.d < v.d
 - ightharpoonup Cross edges (red): v is black and u.d > v.d
- ▶ The tree edges form a forest.
- ► This is called the depth-first forest.
- In an undirected graph, we have no forward and cross edges.

