Direct solution for flux		
	K	num cells
zone 1	1	12
zone 2	1	0
zone 3	1	0
Keq	1	
q	- 1	

The Challenge:

Create a 1D, vertical steady state model with constant head top and bottom boundaries.

Show, based on the flux with depth, that the model is steady state. Repeat this for a homogeneous and for a heterogeneous column.

Show that the steady state flux agrees with the direct calculation based on the harmonic mean average l

Show the steady state head profile for a column with approximately equal-thickness layers with different K values. Use this profile to explain why the equivalent hydraulic conductivity, Keq, is closer to the lower of the K values.