- · Vectorized Ciradients:
 - · Jacobian Matrix:

suppose a function
$$f: \mathbb{R}^n \to \mathbb{R}^m$$

$$f(x) = [f_1(x_1, ..., x_n), f_2(x_1, ..., x_n), ..., f_m(x_1, ..., x_n)]$$

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_i}{\partial x_i} & \frac{\partial f_i}{\partial x_n} \\ \frac{\partial f_m}{\partial x_i} & \frac{\partial f_m}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

That is,
$$(\frac{\alpha f}{\alpha \pi})_{ij} = \frac{\alpha f_i}{\alpha \chi_j}$$

· e.g. with chain rule:

$$f(x) = [f_1(x), f_2(x)], g(y) = [g_1(y_1, y_2), g_2(y_1, y_2)]$$

And
$$g(x) = [g, (f, (x), f_2(x)), g_2(f, (x), f_2(x))]$$

$$\Rightarrow \frac{\partial g}{\partial x} = \frac{\partial g}{\partial f} \frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial g}{\partial f_1} & \frac{\partial g_1}{\partial f_2} \\ \frac{\partial g_2}{\partial f_1} & \frac{\partial g}{\partial f_2} \end{bmatrix} \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f_2}{\partial x} \end{bmatrix}$$

· Useful Identities

(1)
$$W \in \mathbb{R}^{n \times m}$$
, $\chi \in \mathbb{R}^m$, consider $z = W \cdot \chi \in \mathbb{R}^n$

So an entry
$$(\frac{\partial \vec{z}}{\partial x})_{ij} = \frac{\partial \vec{z}_{i}}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \sum_{k=1}^{m} W_{ik} x_{k} = \sum_{k=1}^{m} W_{ik} \frac{\partial}{\partial x_{j}} x_{k}$$

$$\Rightarrow \frac{\partial z}{\partial x} = W$$

(2)
$$W \in \mathbb{R}^{n \times m}$$
, $\chi \in \mathbb{R}^{l \times n}$, consider $Z = \pi W \in \mathbb{R}^{l \times m}$
Basically, this maps from \mathbb{R}^n to \mathbb{R}^m .
So we expect Jacobian to be $\mathbb{R}^{m \times n}$

$$Z_{i} = \sum_{k=1}^{n} \chi_{k} W_{ki}$$

$$S_{0} \left(\frac{\partial Z}{\partial \chi}\right)_{ij} = \frac{\partial Z_{0}}{\partial \chi_{j}} = \frac{\partial}{\partial \chi_{j}} \sum_{k=1}^{n} \chi_{k} W_{ki} = W_{ji}$$

$$\Rightarrow \frac{\partial Z}{\partial \chi} = W^{T}$$

(3) consider
$$z = x \in \mathbb{R}^n$$

$$\frac{\partial z}{\partial x} = 1$$

(4)
$$f$$
 is an elementwise function applied on $x \in \mathbb{R}^n$
consider $z = f(x)$

$$\left(\frac{\partial z}{\partial x}\right)_{ij} = \frac{\partial z_i}{\partial x_j} = \frac{\partial}{\partial x_j} f(x_i) = \int_0^1 f(x_i) f(x_i) = \int_0^1 f(x_i) f(x_i) f(x_i)$$

$$\Rightarrow \frac{\partial z}{\partial x} = diag(f(x))$$

(5) Matrix times column vector with vespect to the matrix
$$(z = W_X, S = \frac{\partial J}{\partial z}, what's \frac{\partial J}{\partial W} = \frac{\partial J}{\partial z} \frac{\partial z}{\partial W} = S \frac{\partial z}{\partial W} ?)$$

$$J \in \mathbb{R}, \chi \in \mathbb{R}^n, W \in \mathbb{R}^{m \times n}, z \in \mathbb{R}^m$$

$$\frac{\partial J}{\partial W} = \delta^T \chi^T$$

(6)
$$Z = xW$$
, $\delta = \frac{\partial J}{\partial z}$, what's $\frac{\partial J}{\partial W} = S \frac{\partial Z}{\partial W}$?

 $J \in \mathbb{R}$, $\chi \in \mathbb{R}^{1 \times n}$, $W \in \mathbb{R}^{n \times m}$, $Z \in \mathbb{R}^{1 \times m}$
 $\frac{\partial J}{\partial W} = \chi^T \delta$

(7)
$$\hat{y} = softmax(\vartheta), J = CE(y, \hat{y}), what's \frac{\partial J}{\partial \vartheta}?)$$

$$y, \hat{y} \in \mathbb{R}^{n}$$

$$\frac{\partial J}{\partial \vartheta} = (\hat{y} - y)^{T}$$

(8)
$$\frac{2 || x ||^2}{2 |x|}$$
, $x \in \mathbb{R}^n$
 $function of \mathbb{R}^n \mapsto \mathbb{R}$ so Jacobian: $\mathbb{R}^{1 \times n}$
 $(\frac{2 || x ||^2}{2 |x|})_{ij} = \frac{2 \sum_{k=1}^{n} \chi_k^2}{2 |x_i|} = 2 \chi_j$

$$\Rightarrow \frac{2/|x/|^2}{2x} = 2x^T$$

· Return to linear regression:

$$\hat{Y} = X \theta$$
 where $\hat{Y} \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times (p+1)}$, $\theta \in \mathbb{R}^{p+1}$

Loss:
$$R(\theta) = \frac{1}{n} || Y - \hat{Y} ||_{2}^{2} = \frac{1}{n} || Y - X\theta ||_{2}^{2}$$

By identity (8)

$$\frac{\partial R}{\partial A} = \frac{\partial R}{\partial (Y - XA)} = \frac{\partial (Y - XA)}{\partial A}$$

$$= 2(Y-X\Psi)^{T} \cdot \frac{\omega - X\Psi}{2\Psi} \qquad \text{by identity (1)}$$

$$= 2(Y-X\Psi)^{T} \cdot (-X)$$

$$\text{Let } \frac{2R}{2\Psi} = 0 \text{ , we get}$$

$$(Y^{T}-\Psi^{T}X^{T})X = Y^{T}X - \Psi^{T}X^{T}X = 0$$

$$\text{Transpose each side , we get}$$

$$X^{T}Y - X^{T}X\Psi = 0$$

$$\Rightarrow \Psi = (X^{T}X)^{-1}X^{T}Y \qquad \text{assuming } X^{T}X \text{ is invertible}$$