МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Операционные системы»

Тема: Исследование организации управления основной памятью

Студент гр. 7381	 Павлов А.П.
Преподаватель	Ефремов М.А

Санкт-Петербург 2019

Цель работы.

Для исследования организации управления памятью необходимо ориентироваться на тип основной памяти, реализованный в компьютере и способ организации, принятый в ОС. В лабораторной работе рассматривается не страничная память и способ управления динамическими разделами. Для реализации управления памятью в этом случае строится список занятых и свободных участков памяти. Функции ядра, обеспечивающие управление основной памятью, просматривают и преобразуют этот список.

В лабораторной работе исследуются структуры данных и работа функций управления памятью ядра операционной системы.

Основные теоретические положения.

Учет занятой и свободной памяти ведется при помощи списка блоков управления памятью MCB (Memory Control Block). MCB занимает 16 байт (параграф) и располагается всегда с адреса кратного 16 (адрес сегмента ОП) и находится в адресном пространстве непосредственно перед тем участком памяти, которым он управляет.

МСВ имеет следующую структуру:

Смещение	Длина поля (байт)	Содержимое поля		
00h	1	тип МСВ:		
		5Ah, если последний в списке,		
		4Dh, если не последний		
01h	2	Сегментный адрес PSP владельца участка		
		памяти, либо		
		0000h - свободный участок,		
		0006h - участок принадлежит драйверу		
		OS XMS UMB		
		0007h - участок является исключенной		
		верхней памятью драйверов		

		0008h - участок принадлежит MS DOS			
		FFFAh - участок занят управляющим			
		блоком 386MAX UMB			
		FFFDh - участок заблокирован 386MAX			
		FFFEh - участок принадлежит 386MAX			
		UMB			
03h	2	Размер участка в параграфах			
05h	3	Зарезервирован			
08h	8	"SC" - если участок принадлежит MS DOS,			
		то в нем системный код			
		"SD" - если участок принадлежит MS			
		DOS, то в нем системные данные			

По сегментному адресу и размеру участка памяти, контролируемого этим МСВ можно определить местоположение следующего МСВ в списке.

Адрес первого МСВ хранится во внутренней структуре MS DOS, называемой "List of Lists" (список списков). Доступ к указателю на эту структуру можно получить, используя функцию f52h "Get List of Lists" int 21h. В результате выполнения этой функции ES:ВХ будет указывать на список списков. Слово по адресу ES:[ВХ-2] и есть адрес самого первого МСВ.

Размер расширенной памяти находится в ячейках 30h, 31h CMOS. CMOS это энергонезависимая память, в которой хранится информация о конфигурации ПЭВМ. Объем памяти составляет 64 байта. Размер расширенной памяти в Кбайтах можно определить обращаясь к ячейкам CMOS следующим образом:

```
mov AL,30h; запись адреса ячейки CMOS out 70h,AL
```

in AL,71h ; чтение младшего байта

mov BL,AL ; размера расширенной памяти

mov AL,31h ; запись адреса ячейки CMOS

out 70h,AL

in AL,71h ; чтение старшего байта ; размера расширенной памяти

Описание функций и структур данных.

Таблица 1 – функции управляющей программы.

Название функции	Назначение	
BYTE_TO_HEX	Переводит число AL в коды символов	
	16 c/c, записывая получившиеся в AL	
	и АН.	
TETR_TO_HEX	Вспомогательная функция для работы	
	BYTE_TO_HEX	
WRD_TO_HEX	Переводит число АХ в строку в 16 с/с,	
	записывая получившиеся в di, начиная	
	с младшего разряда.	
PRINT	Печатает строку на экран	

Таблица 2 – структуры данных управляющей программы.

Название	Тип	Назначение		
MemAvl	db	Вывод строки 'Available memory:		
		B'		
ExtMem	db	Вывод строки 'Extended memory:		
		KB'		
TableHead	db	Вывод строки 'MCB Address MCB		
		Type Owner Size Name '		

Описание работы утилиты.

Программа выводит на экран количество доступной и расширенной памяти, а также цепочку блоков управления памятью МСВ. Результат работы программы представлен на рисунке 1.

```
C:\>LAB3_1.COM
Available memory: 648928 B
Extended memory: 15360 KB
MCB Address | MCB Type
                                                         Name
                            Owner I
                                           Size
                 4D
                           8000
                                             16
                 4D
                           0000
                                             64
                                                        DPMILOAD
                4D
                           0040
                                            256
                 4D
                           0192
                                            144
                                                        LAB3_1
                5A
                           0192
                                         648912
```

Рисунок 1 – результат работы программы lab3_1.com.

Написанная на первом шаге прорамма была изменена так, чтобы программа освобождала незанимаемую ею память. В итоге был создан новый блок, отмеченный как пустой. Результат работы программы предствлен на рисунке 2.

C:\>LAB3_2.(Available me Extended mem	mory: 648928				
MCB Address	_	I Owner I	Size	- 1	Name
016F	4D	8000	16		
0171	4D	0000	64		DPMILOAD
0176	4D	0040	256		
0187	4D	0192	144		
0191	4D	0192	12448		LAB3_2
049C	5A	0000	636448		
C:\>_					

Рисунок 2 – результат работы программы lab3_2.com.

Программа была переписана таким образом, чтобы после освобождения памяти, программа запрашива 64 Кб. В итоге был создан еще один блок размером 64 Кб. Результат работы представлен на рисунке 3.

```
C:\>LAB3_3.COM
Available memory: 648928 B
Extended memory: 15360 KB
MCB Address | MCB Type
                            Owner I
                                                        Name
                                           Size
    016F
                4D
                           8000
                                             16
                4D
                           0000
    0171
                                             64
                                                       DPMILOAD
                4D
    0176
                           0040
                                            256
    0187
                4D
                           0192
                                            144
                4D
                           0192
                                                       LAB3_3
                4D
                           0192
                                          65536
                                                       LAB3_3
                5A
                           0000
                                         570784
                                                       14A4
```

Рисунок 3 – Результат работы программы lab3_3.com.

Программа была переписана таким образом, чтобы программа запрашива 64 КБ, до освобождения памяти. В итоге возникает ошибка, так как уже вся память была выделена программе. Результат работы представлен на рисунке 4.

```
C:\>LAB3_4.COM
Available memory: 648928 B
Error: Allocating more memory is not possible
Extended memory: 15360 KB
MCB Address | MCB Type
                            Owner I
                                           Size
                                                         Name
    016F
                 4D
                           0008
                                             16
                 4D
                           0000
                                                        DPMILOAD
    0171
                                             64
                 4D
                           0040
    0176
                                            256
                 4D
                           0192
                                                        LAB3_4
                 4D
                           0192
                                          13504
                           0000
    04DE
                 5A
                                         635392
```

Рисунок 4 – Результат работы программы lab3_4.com.

Выводы.

В ходе выполнения лабораторной работы были исследованы структуры данных и функции управления памятью ядра операционной системы.

Ответы на контрольные вопросы.

1. Что означает "доступной объем памяти"?

Ответ: это максимальный объем памяти, который может использовать программа.

2. Где МСВ блок Вашей программы в списке?

Ответ: во всех случаях программа имеет два блока управления память. По адресу 0187h находится МСВ для переменных среды, по адресу 0192h - МСВ программного блока памяти. В третьем случаем появляется еще один МСВ по адресу 04A3h для управления выделенной памятью размером 64 КБ.

3. Какой размер памяти занимает программа в каждом случае?

Ответ:

Lab3_1.com – 648928 байт.

Lab3_2.com – 12448 байт.

Lab3_3.com – 12560 байт.

Lab3_4.com – 13504 байт.