Running Time dan Notasi Asimtotik

Wijayanti Nurul Khotimah, M.Sc.

Tujuan Perkuliahan

- ✓ Mahasiswa mampu menghitung running time dari suatu algoritma
- ✓ Mahasiswa mampu menampilkan running time dalam notasi asimtotik
- ✓ Mahasiswa mampu membandingkan keefektifan dua buah algoritma

Agenda Perkuliahan

- ✓ Perhitungan Running Time
- ✓ Notasi Asimtotic

Latar Belakang

- ✓ Running Time: jumlah waktu yang digunakan untuk mengeksekusi seluruh operasi di dalam suatu algoritma.
- ✓ Running Time biasanya dinyatakan dengan *T(n)*, dimana *n* adalah ukuran input

Contoh Menghitung Running Time

INSERTION-SORT (A)		cost	times
1	for $j = 2$ to A. length	c_1	n
2	key = A[j]	c_2	n-1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1j-1]$.	0	n-1
4	i = j - 1	c_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	c_8	n-1

Cara Menghitung Running Time (2)

✓ Selanjutnya running time diperoleh dengan menjumlahkan seluruh waktu yang dibutuhkan untuk eksekusi algoritma

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

- ✓ Dari contoh di atas tampak bahwa t_j adalah suatu variabel yang nilainya tergantung pada isi dari input.
- ✓ Jika input sudah terurut, maka t_j pada baris ke-5 akan bernilai 1 untuk j=2,3,...,n.

Cara Menghitung Running Time (3)

✓ Kondisi inilah yang disebut <u>best case</u> dengan running time:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$.

✓ Running time tersebut dapat diekspresikan dengan *an+b* (**fungsi linear**)

Cara Menghitung Running Time (4)

- ✓ Jika isi input dalam kondisi urutan yang terbalik, maka pada baris no 5 kita harus membandingkan seluruh isi dari subarray A[1,...,j-1] sehingga t_i=j untuk j=2,3,4,...,n
- ✓ Sehingga running timenya adalah:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- (c_2 + c_4 + c_5 + c_8).$$

Cara Menghitung Running Time (5)

✓ Kondisi ini disebut kondisi *worst case* dan running timenya dapat diekspresikan dengan *an*²+*bn*+*c* (*quadratic function*)

Worst case VS Best Case

- Umumnya perhitungan running time difokuskan pada kondisi worst case karena beberapa alasan berikut:
- 1. Kondisi *worst case* merupakan batas atas dari running time, artinya algoritma tidak akan berjalan lebih lambat dari ini.
- 2. Untuk beberapa kasus, kondisi *worst case* sering terjadi. Contoh: pencarian informasi dalam suatu database, kondisi informasi tidak ada lebih sering terjadi dari pada kondisi informasi yang dicari berada pada data pertama.

Pertumbuhan Fungsi

- ✓ Pada perhitungan sebelumnya, cost dari masing-masing operasi (c_i) diabaikan sehingga selanjutnya running time dinyatakan dengan an²+bn+c (dimana a,b, dan c adalah abstract cost).
- ✓ Selanjutnya running time dinyatakan dengan abstraksi yang lebih sederhana yang disebut dengan *rate of growth* atau *order of growth* atau *pertumbuhan fungsi*.
- ✓ Dalam kasus di atas, *order of growth*-nya adalah an^2 (diambil dari pangkat terbesar) dan selanjutnya bisa dinyatakan dengan notasi asimtotik Θ (n^2)

Latar Belakang

- ✓ Waktu yang dibutuhkan sebuah algoritma meningkat seiring dengan meningkatnya ukuran input.
 - Ukuran input → tanpa batas
 - Waktu → terbatas
- ✓ Waktu tersebutlah yang menjadi karakteristik dari efisiensi suatu algoritma dan yang selanjutnya digunakan untuk membandingkan performa relatif suatu algoritma.
- ✓ Selanjutnya, efisiensi algoritma dinyatakan dengan fungsi *n* yang disebut dengan **notasi asimtotik**

Notasi Asimtotik dan Kelas Efisiensi

- ✓ Merupakan suatu cara untuk membandingkan fungsi-fungsi dengan mengabaikan faktor konstanta dan ukuran input.
- ✓ Ada 3 macam notasi asimtotik untuk kelas efisiensi yaitu:
- 1. $O(g(n)) \rightarrow$ read: big oh: class of functions f(n) that grow no faster than g(n)
- 2. $\Omega(g(n)) \rightarrow$ read: big omega: class of functions f(n) that grow at least as f(n) as g(n)
- 3. $\Theta(g(n)) \rightarrow$ read: big theta : class of functions f(n) that grow at same rate as g(n)

O-notation

✓ Definisi: f(n) berada dalam O(g(n)), dilambangkan dengan $f(n) \in O(g(n))$, jika order of growth dari $f(n) \le$ order of growth dari g(n), dimana terkadang f(n) dibatasi dengan konstanta c dan non-negative integer n_0 sehingga

$$f(n) \le c g(n)$$
 untuk semua $n \ge n_0$

- ✓ Contoh
- 100n+5 berada dalam $O(n^2)$
- ✓ Bukti:

$$100n + 5 \le 100n + n \text{ (for all } n \ge 5) = 101n \le 101n^2.$$

Jadi didapatkan nilai c=101, dan n₀=5

Grafik notasi big-oh

Figure 2.1 Big-oh notation: $t(n) \in O(g(n))$

Ω -notation

- Definisi
 - Sebuah fungsi t(n) berada dalam $\Omega(g(n))$, dilambangkan dengan $t(n) \in \Omega(g(n))$, jika order of growth dari $t(n) \ge$ order of growth dari g(n) dimana t(n) dibatasi oleh beberapa konstanta dari g(n) seperti c dan n_0 sehingga

$$t(n) \ge cg(n)$$
 for all $n \ge n_0$

- Contoh:
 - $n^3 \in \Omega(n^2)$

$$n^3 \ge n^2$$
 for all $n \ge 0$,

Di dapat c=1, dan n_0 =0

Grafik notasi big-omega

Fig. 2.2 Big-omega notation: $t(n) \in \Omega(g(n))$

⊕-notation

Definisi

• Sebuah fungsi t(n) berada dalam $\Theta(g(n))$, dilambangkan dengan $t(n) \in \Theta(g(n))$, jika order of growth t(n) berada diantara order of growth dari g(n) dengan beberapa batasan c_1 , c_2 dan n_0 sehingga

$$c_2 g(n) \le t(n) \le c_1 g(n)$$
 untuk semua $n \ge n_0$

Contoh

• $(1/2)n(n-1) \in \Theta(n^2)$

Batas atas: $\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \le \frac{1}{2}n^2$ for all $n \ge 0$.

Batas bawah $\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \ge \frac{1}{2}n^2 - \frac{1}{2}n\frac{1}{2}n$ (for all $n \ge 2$) = $\frac{1}{4}n^2$.

Sehingga: C2=1/4, C1=1/2, n₀=0

Grafik notasi big-THETA

Figure 2.3 Big-theta notation: $t(n) \in \Theta(g(n))$

Teorema

- Jika $t_1(n)$ ∈ O($g_1(n)$) dan $t_2(n)$ ∈ O($g_2(n)$), maka $t_1(n)$ + $t_2(n)$ ∈ O($max\{g_1(n), g_2(n)\}$).
 - Hal ini juga berlaku untuk big OMEGA dan big THETA
- Bukti: Buku Levitin hal 56
- Contoh:
- $(\frac{1}{2})$ n(n-1) \in O(n²)
- n-1 € O(n)
- Maka : $(\frac{1}{2})$ n(n-1) + n-1 \in O (max{n²,n}) =O(n²)

- $f(n) \in O(f(n))$
- $f(n) \in O(g(n)) \text{ iff } g(n) \in \Omega(f(n))$
- If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$ Note similarity with $a \le b$

• If
$$f_1(n) \in O(g_1(n))$$
 and $f_2(n) \in O(g_2(n))$, then
$$f_1(n) + f_2(n) \in O(\max\{g_1(n), g_2(n)\})$$

Also,
$$\Sigma_{1 \leq i \leq n} \Theta(f(i)) = \Theta(\Sigma_{1 \leq i \leq n} f(i))$$

Menentukan Order of Growth Menggunakan Limit

```
\lim_{n\to\infty} T(n)/g(n) = \begin{cases} 0 & \text{order of growth of } T(n) < \text{order of growth of } g(n) \\ c > 0 & \text{order of growth of } T(n) = \text{order of growth of } g(n) \\ \infty & \text{order of growth of } T(n) > \text{order of growth of } g(n) \end{cases}
```

Contoh

• 10*n* vs. n^2

• n(n+1)/2 vs. n^2

L'Hôpital's rule dan Stirling's formula

L'Hôpital's rule: If $\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = \infty$ and the derivatives f', g' exist, then

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}$$

Latihan: log n vs. n

$$\lim_{n \to \infty} \frac{\log_2 n}{\sqrt{n}} = \lim_{n \to \infty} \frac{(\log_2 n)'}{(\sqrt{n})'} = \lim_{n \to \infty} \frac{(\log_2 e) \frac{1}{n}}{\frac{1}{2\sqrt{n}}} = 2 \log_2 e \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0.$$

Stirling's formula: $n! \approx (2\pi n)^{1/2} (n/e)^n$

$$\lim_{n\to\infty}\frac{n\,!}{2^n}=\lim_{n\to\infty}\frac{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n}{2^n}=\lim_{n\to\infty}\sqrt{2\pi n}\frac{n^n}{2^ne^n}=\lim_{n\to\infty}\sqrt{2\pi n}\left(\frac{n}{2e}\right)^n=\infty.$$

Bagaimana hubungan notasi asimtotiknya?

Orders of growth dari beberapa fungsi penting

- Semua fungsi algoritmic $\log_a n$ berasal dari class yang sama $\Theta(\log n)$
- Semua polinomial dengan derajat yang sama k, berasal dari class yang sama

$$a_k n^k + a_{k-1} n^{k-1} + \dots + a_0 \in \Theta(n^k)$$

- Fungsi Exponential *a*ⁿ mempunyai orders of growth yang berbeda untuk nilai *a* yang berbeda
- order log n < order n^{α} (α >0) < order a^{n} < order n! < order n^{n}

Monotonicity

- ✓ Suatu fungsi f(n) dikatakan monotonically increasing jika m≤n menunjukkan f(m)≤f(n).
- ✓ Suatu fungsi f(n) dikatakan monotonically decreasing jika $m \le n$ menunjukkan $f(m) \ge f(n)$.
- ✓ Suatu fungsi f(n) dikatakan strictly increasing jika m<n menunjukkan f(m) < f(n).</p>
- ✓ Suatu fungsi f(n) dikatakan strictly decreasing jika m<n menunjukkan f(m) > f(n).

Floors and ceilings

- ✓ Untuk semua bilang real x, kita menyatakan bilangan integer terbesar yang kurang dari atau sama dengan x dengan LxJ (dibaca: the floor of x).
- ✓ Bilangan integer terkecil yang lebih dari atau sama dengan x dinyatakan dengan Γ x1 (the ceiling of x)

Logarithms


```
\lg n = \log_2 n (binary logarithm),

\ln n = \log_e n (natural logarithm),

\lg^k n = (\lg n)^k (exponentiation),

\lg \lg n = \lg(\lg n) (composition).
```

Fungsi Umum Lainnya

1	constant	
log n	logarithmic	
n	linear	
$n \log n$	n-log-n	
n^2	quadratic	
n^3	cubic	
2^n	exponential	
n!	factorial	

LATIHAN

2. Use the informal definitions of O. Θ , and Ω to determine whether the following assertions are true or false.

a.
$$n(n+1)/2 \in O(n^3)$$
 b. $n(n+1)/2 \in O(n^2)$

b.
$$n(n+1)/2 \in O(n^2)$$

c.
$$n(n+1)/2 \in \Theta(n^3)$$
 d. $n(n+1)/2 \in \Omega(n)$

d.
$$n(n+1)/2 \in \Omega(n)$$

5. List the following functions according to their order of growth from the lowest to the highest:

$$(n-2)!$$
, $5\lg(n+100)^{10}$, 2^{2n} , $0.001n^4 + 3n^3 + 1$, $\ln^2 n$, $\sqrt[3]{n}$, 3^n .