

Student Number:

u				

Mathematical Sciences Institute

EXAMINATION: Mid-semester examination — March 2017

MATH 3345/6215

Exam Duration: 180 minutes. **Reading Time:** 0 minutes.

Materials Permitted In The Exam Venue:

- None.
- Unmarked English-to-foreign-language dictionary (no approval from MSI required).

Materials To Be Supplied To Students:

• Scribble Paper.

Instructions To Students:

• You must justify all your answers, except where stated otherwise.

Q1	Q2	Q3	Q4	Q5
30	24	12	12	12

Total / 90	

Question 1	30 pts
~	

(5 marks, each part) Prove or disprove the following statements.

(a) Every finite extension of fields is algebraic.

(b) For every positive integer n the polynomial x^n-7 is irreducible over $\mathbb Q$.

(c) $\pi + \sqrt{5}$ is transcendental over \mathbb{Q} .

(d) $\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}(\sqrt{3})$.

(e)	$cos(\alpha)$ is constructible if and only if $sin(\alpha)$ is constructible.
(f)	A regular 9-gon is constructible.

Question 2 24 pts

(8 marks, each part) For every $n \in \mathbb{N}$, let $\zeta_n = e^{2\pi i/n}$.

(a) Find the minimal polynomial of ζ_p over $\mathbb Q$ for p prime,

- (b) Find the minimal polynomial of ζ_9 over \mathbb{Q} ,
- (c) Prove that $\mathbb{Q}(\zeta_3) = \mathbb{Q}(\sqrt{-3})$.

Question 3 12 pts Prove that a finite integral domain is a field.

Question 4 12 pts

Find an element $\alpha \in \mathbb{Q}[\sqrt{3}, \sqrt{7}]$ such that $\mathbb{Q}[\sqrt{3}, \sqrt{7}] = \mathbb{Q}(\alpha)$ and find its minimal polynomial.

Let *E* denote the splitting field of $x^4 - 3$ in \mathbb{C} . Find $[E : \mathbb{Q}]$.

Question 5

12 pts