数学笔记

BeBop

February 20, 2025

Contents

Ι	知识整理		5
II	杂题集萃		7
II	易错知识		9
1	Lie 群 1.1 Lie 群的连通性和单连通性在重要定理中的作用 1.2 非紧 Lie 群的非完全可约表示 1.3 非紧连通 Lie 群不一定存在非平凡环面子群	1	
IV	亟待整理	1	5

4 CONTENTS

Part I 知识整理

Part II 杂题集萃

Part III 易错知识

Chapter 1

Lie 群

1.1 Lie 群的连通性和单连通性在重要定理中的作用

开始前我们先叙述 Lie 群中的一个重要定理:

定理 1.1.1 (Lie 代数同态提升为 Lie 群同态). 设 G, H 是 Lie 群, G 既 连通又单连通, $\mathfrak{g},\mathfrak{h}$ 分别是 G, H 的 Lie 代数. 若 $\rho:\mathfrak{g}\to\mathfrak{h}$ 是一个 Lie 代数 同态, 则存在唯一的 Lie 群同态 $\Phi:G\to H$ 满足 $d\Phi=\rho$.

需要注意定理中G的单连通和连通的条件缺一不可.

例 1.1.2. 若 G 不是单连通的,则这样的 Φ 不一定存在.

Lie 群 (S^1,\cdot) 和 $(\mathbb{R},+)$ 的 Lie 代数均为 \mathbb{R} , 但不存在 S^1 到 \mathbb{R} 的非平凡 Lie 群同态. 设 $\varphi:S^1\to\mathbb{R}$ 为 Lie 群同态, 取 S^1 的一个稠密子群 $\mathrm{e}^{i\pi\mathbb{Q}}:=\left\{\mathrm{e}^{i\pi\theta}\,\middle|\,\theta\in\mathbb{Q}\right\}$, 则因为 $\mathrm{e}^{i\pi\mathbb{Q}}$ 中的元素都是有限阶的, $\varphi(\mathrm{e}^{i\pi\mathbb{Q}})=\left\{0\right\}$. 由 φ 的连续性可得 $\varphi(S^1)=\left\{0\right\}$. 因此 φ 只能是平凡群同态.

例 1.1.3. 若 G 不是连通的,则就算每个连通分支都是单连通的也不一定存在这样的 Φ .

考虑 $\mathbb{R} \times \mathbb{Z}_2$, \mathbb{Z}_2 在 \mathbb{R} 上的作用由 $0 \to \mathrm{id}$, $1 \to -\mathrm{id}$ 给出. $\mathbb{R} \times \mathbb{Z}_2$ 和 \mathbb{R} 的 Lie 代数均为 \mathbb{R} , 但 \mathbb{R} 到自身的恒同映射无法提升为 $\mathbb{R} \times \mathbb{Z}_2$ 到 \mathbb{R} 的同态.

假设这样的同态 φ 存在, 取 $\mathbb{R} \times \mathbb{Z}_2$ 包含 (0,0) 的分支, 它是连通且单连通的 Lie 群, 因此由定理1.1.1的唯一性知

$$\varphi : \mathbb{R} \times \{0\} \to \mathbb{R}$$

 $(t,0) \mapsto t, \quad \forall t \in \mathbb{R}$

又因为 (0,1) 是 $\mathbb{R} \times \mathbb{Z}_2$ 的 2 阶元, 因此

$$\varphi:(0,1)\mapsto 0$$

但是

$$\varphi\Big((0,1)\cdot(t,0)\Big) = \varphi(-t,0) = -t \neq 0 + t = \varphi(0,1) + \varphi(t,0), \quad t \neq 0.$$

因此这样的群同态 φ 不可能存在.

1.2 非紧 Lie 群的非完全可约表示

例 1.2.1. 我们知道紧李群的有限维表示是完全可约的, 但是如果李群非紧, 则很容易找到反例.

比如考虑 $G = \mathbb{R}$ 的二维实表示 $V = \operatorname{span}_{\mathbb{R}} \{v_1, v_2\}$:

$$\rho: \mathbb{R} \to \mathrm{GL}(V)$$
$$x \mapsto \begin{pmatrix} 1 & x \\ & 1 \end{pmatrix}$$

它有一个不可约表示 $V_1=\mathrm{span}_{\mathbb{R}}\{v_1\}$,但是找不到 V_1 的补表示. 假设存在 V_1 的 G-不变补空间 V_2 ,取 V_2 的基向量 $u=av_1+bv_2$ ($b\neq 0$),则 $\rho(1)(u)=(a+b)v_1+bv_2\in V_2$,而 $u,\rho(1)(u)$ 线性无关,这表明 V_2 只能为整个 V,矛盾!

1.3 非紧连通 Lie 群不一定存在非平凡环面子群

例 1.3.1. 对于紧连通李群 G 而言, 任取其中的某个元素 g, 考虑 g 生成的子群 H 的闭包 clH 的单位连通分支 $(clH)_0$, 它是紧连通 Abel 群, 故为 G 的环面子群.

若 G 不紧,则 G 不一定存在非平凡环面子群,比如 $G = \mathbb{R}$. 一个不太平凡的例子是 Heisenberg 群 $H_3(\mathbb{R})$,

$$H_3(\mathbb{R}) = \left\{ \begin{pmatrix} 1 & a & c \\ & 1 & b \\ & & 1 \end{pmatrix} \middle| a, b, c \in \mathbb{R} \right\}$$

它的李代数为

$$\mathfrak{h} = \left\{ \begin{pmatrix} 0 & a & c \\ & 0 & b \\ & & 0 \end{pmatrix} \middle| a, b, c \in \mathbb{R} \right\}$$

f 有一组基

$$X = \begin{pmatrix} 0 & 1 & 0 \\ & 0 & 0 \\ & & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 0 & 0 \\ & 0 & 1 \\ & & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 0 & 0 & 1 \\ & 0 & 0 \\ & & 0 \end{pmatrix}$$

它们之间满足

$$[X, Y] = Z, \quad [X, Z] = 0, \quad [Y, Z] = 0$$

且指数映射

$$\exp : \mathfrak{h} \to H_3(\mathbb{R})
\begin{pmatrix} 0 & a & c \\ & 0 & b \\ & & 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 & a & c + \frac{ab}{2} \\ & 1 & b \\ & & 1 \end{pmatrix}$$

是 1-1 映射. 由此可知 \mathfrak{h} 的任何一个一维子空间经指数映射后都不可能对应一个环面子群.

Part IV 亟待整理