Test Catalog

Richard Brooks

Mean with Known Variance

Statistical model:

- X_1, X_2, \ldots, X_n are i.i.d. samples of a random variable X with mean μ and variance σ^2 .
- Parameter Estimate:

$$\hat{\mu} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}\left(\mu, \sigma^2/\mathcal{n}\right)$$

- Where the observation is $\bar{x} =$ 'the average of n samples drawn from X 's distribution'.
- NOTE: The statistical model is only true if n is sufficiently large $(n \ge 30)$ or if the samples are drawn from a normal population with mean μ and variance σ^2 .

Hypothesis test (two-tailed):

- $H_0: \mu = \mu_0$ $(\mu \le \mu_0 \text{ if right-tailed test, and } \mu \ge \mu_0 \text{ if left-tailed})$
- $H_1: \mu \neq \mu_0$ $(\mu > \mu_0 \text{ if right-tailed test, and } \mu < \mu_0 \text{ if left-tailed})$
- Test statistic: $Z_0 = |\frac{\bar{x} \mu_0}{\sigma/\sqrt{n}}| \sim N(0, 1)$
- Critical value: $Z_{\text{crit}} = Z_{1-\frac{\alpha}{2}}$

Python code: stats.norm.ppf $(1-\frac{\alpha}{2})$

• p-value: $2(1 - \Phi(Z_0))$

Python code: $2*(1-stats.norm.cdf(Z_0))$

- Rejection Criteria
 - a. Using Critical value and Test Statistic:

Reject if $Z_{\rm crit} < Z_0$

b. Using p-value and significance level:

Reject if p-value $< \alpha$

• If you need to make a one-tailed test, replace $\alpha/2$ above and find p-value as $1 - \Phi(Z_0)$

(1- α)-% confidence interval (two-sided): $\bar{x} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$

$(1-\alpha)$ -% confidence interval (one-sided):

- Upper: $\mu \leq \bar{x} + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$
- Lower: $\bar{x} z_{1-\alpha} \frac{\sigma}{\sqrt{n}} \le \mu$

Mean with Unknown Variance

Statistical model:

- X_1, X_2, \ldots, X_n are i.i.d. samples of a random variable X with mean μ and variance σ^2 .
- Parameter Estimate:

$$\hat{\mu} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\mu, \sigma^2/n)$$
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

- Where the observation is $\bar{x} =$ 'the average of n samples drawn from X 's distribution'.
- NOTE: The statistical model is only true if n is sufficiently large $(n \ge 30)$ or if the samples are drawn from a normal population with mean μ and variance σ^2 .

Hypothesis test (two-tailed):

- $H_0: \mu = \mu_0$ ($\mu \le \mu_0$ if right-tailed test, and $\mu \ge \mu_0$ if left-tailed)
- $H_1: \mu \neq \mu_0$ $(\mu > \mu_0 \text{ if right-tailed test, and } \mu < \mu_0 \text{ if left-tailed})$
- Test statistic: $T_0 = |\frac{\bar{x} \mu_0}{\sigma / \sqrt{n}}| \sim t(n-1)$
- Critical value: $T_{\text{crit}} = T_{1-\frac{\alpha}{2}}$

Python code: stats.t.ppf $(1 - \frac{\alpha}{2}, n - 1)$

• p-value: $2(1 - t_{cdf}(T_0))$

Python code: $2*(1-stats.t.cdf(T_0, n-1))$

- Rejection Criteria
 - a. Using Critical value and Test Statistic:

Reject if $T_{\rm crit} < T_0$

b. Using p-value and significance level:

Reject if p-value $< \alpha$

• If you need to make a one-tailed test, replace $\alpha/2$ above and find p-value as $1 - t_{cdf}(T_0)$

(1- α)-% confidence interval (two-sided): $\bar{x} - t_{1-\alpha/2,n-1} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{1-\alpha/2,n-1} \frac{s}{\sqrt{n}}$

 $(1-\alpha)$ -% confidence interval (one-sided):

- Upper: $\mu \leq \bar{x} + t_{1-\alpha,n-1} \frac{s}{\sqrt{n}}$
- Lower: $\bar{x} t_{1-\alpha,n-1}, \frac{s}{\sqrt{n}} \le \mu$

Proportion

Statistical model:

- $X \sim \text{binomial } (n, p)$
- Parameter estimate: $\hat{p} = x/n$
- Where the observation is x = 'number of successes out of n trials'
- Where the observation is $\bar{x} =$ 'the average of n samples drawn from X 's distribution'.
- NOTE: The statistical model is only true if $np \ge 5$ and $n(1-p) \ge 5$.

Hypothesis test (two-tailed):

- $H_0: p = \hat{p}$ $(p \le \hat{p} \text{ if right-tailed test, and } \ge \hat{p} \text{ if left-tailed})$
- $H_1: p \neq \hat{p}$ $(p > \hat{p} \text{ if right-tailed test, and } p < \hat{p} \text{ if left-tailed})$
- Test statistic: $Z_0 = |Z = \frac{X np}{\sqrt{np(1-p)}}| = |\frac{\hat{p} p}{\sqrt{\frac{p(1-p)}{n}}}| \sim N(0, 1)$
- Critical value: $Z_{\text{crit}} = Z_{1-\frac{\alpha}{2}}$

Python code: stats.norm.ppf(1 - $\frac{\alpha}{2}$)

• p-value: $2(1 - \Phi(Z_0))$

Python code: $2*(1-stats.norm.cdf(Z_0))$

- Rejection Criteria
 - a. Using Critical value and Test Statistic:

Reject if $Z_{\text{crit}} < Z_0$

b. Using p-value and significance level:

Reject if p-value $< \alpha$

• If you need to make a one-tailed test, replace $\alpha/2$ above and find p-value as $1 - \Phi(Z_0)$

(1-
$$\alpha$$
)-% confidence interval (two-sided): $\hat{p} - z_{1-\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \leq p \leq \hat{p} + z_{1-\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

 $(1-\alpha)$ -% confidence interval (one-sided):

- Lower: $\hat{p} z_{1-\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p$
- Upper: $p \le \hat{p} + z_{1-\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

Comparing Means with Known Variance

Statistical model:

- $X_1 \sim N\left(\mu_1, \sigma_1^2\right)$ and $X_2 \sim N\left(\mu_2, \sigma_2^2\right)$
- Parameter Estimate:

$$\hat{\delta} = \bar{x}_1 - \bar{x}_2 \sim N\left(\mu_1 - \mu_2, \sigma_1^2 / n_1 + \sigma_2^2 / n_2\right)$$

• Where the observation is $\bar{x}_1 - \bar{x}_2 =$ 'the difference between two sample means'

Hypothesis test (two-tailed):

- $H_0: \mu_1 = \mu_2$ $(\mu_1 \le \mu_2 \text{ if right-tailed test, and } \mu_1 \ge \mu_2 \text{ if left-tailed})$
- $H_1: \mu_1 \neq \mu_2$ $(\mu_1 > \mu_2 \text{ if right-tailed test, and } \mu_< \mu_2 \text{ if left-tailed})$
- Test statistic: $Z_0 = | = \frac{\bar{X}_1 \bar{X}_2 (\mu_1 \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} | \sim N(0, 1)$
- Critical value: $Z_{\text{crit}} = Z_{1-\frac{\alpha}{2}}$

Python code: stats.norm.ppf $(1 - \frac{\alpha}{2})$

• p-value: $2(1 - \Phi(Z_0))$

Python code: $2*(1-stats.norm.cdf(Z_0))$

- Rejection Criteria
 - a. Using Critical value and Test Statistic:

Reject if $Z_{\rm crit} < Z_0$

b. Using p-value and significance level:

Reject if p-value < α

• If you need to make a one-tailed test, replace $\alpha/2$ above and find p-value as $1 - \Phi(Z_0)$

Also, note this infobox from the book:

Tests on the Difference in Means, Variances Known

Null hypothesis: $H_0: \mu_1 - \mu_2 = \Delta_0$

Test statistic: $Z_0 = \frac{\overline{X}_1 - \overline{X}_2 - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ (10.2)

Alternative
HypothesesP-ValueRejection Criterion for
Fixed-Level Tests $H_1: \mu_1 - \mu_2 \neq \Delta_0$ Probability above $|z_0|$ and probability
below $-|z_0|$, $P = 2[1 - \Phi(|z_0|)]$ $z_0 > z_{\alpha/2}$ or $z_0 < -z_{\alpha/2}$ $H_1: \mu_1 - \mu_2 > \Delta_0$ Probability above z_0 , $P = 1 - \Phi(z_0)$ $z_0 > z_\alpha$ $H_1: \mu_1 - \mu_2 < \Delta_0$ Probability below z_0 , $P = \Phi(z_0)$ $z_0 < -z_\alpha$

Confidence Interval on the Difference in Means, Variances Known

If \overline{x}_1 and \overline{x}_2 are the means of independent random samples of sizes n_1 and n_2 from two independent normal populations with known variances σ_1^2 and σ_2^2 , respectively, a $100(1-\alpha)\%$ confidence interval for $\mu_1 - \mu_2$ is

$$\overline{x}_1 - \overline{x}_2 - z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \le \mu_1 - \mu_2 \le \overline{x}_1 - \overline{x}_2 + z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$
 (10.7)

where $z_{\alpha/2}$ is the upper $\alpha/2$ percentage point of the standard normal distribution.

Comparing Means with Unknown Variance

Pooled Estimator of Variance

The **pooled estimator** of σ^2 , denoted by S_p^2 , is defined by

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$
 (10.12)

Given the assumptions of this section, the quantity

$$T = \frac{\overline{X}_1 - \overline{X}_2 - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
(10.13)

has a t distribution with $n_1 + n_2 - 2$ degrees of freedom.

Tests on the Difference in Means of Two Normal Distributions, Variances Unknown and Equal*

Null hypothesis:
$$H_0$$
: $\mu_1 - \mu_2 = \Delta_0$

Test statistic:
$$T_0 = \frac{\overline{X}_1 - \overline{X}_2 - \Delta_0}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
 (10.14)

Alternative		Rejection Criterion for
Hypotheses	P-Value	Fixed-Level Tests
$H_1: \mu_1 - \mu_2 \neq \Delta_0$	Probability above $ t_0 $ and probability below $- t_0 $	$t_0 > t_{\alpha/2, n_1 + n_2 - 2}$ or $t_0 < -t_{\alpha/2, n_1 + n_2 - 2}$
$H_1: \mu_1 - \mu_2 > \Delta_0$	Probability above t ₀	$t_0 > t_{\alpha,n_1+n_2-2}$
$H_1: \mu_1 - \mu_2 < \Delta_0$	Probability below t ₀	$t_0 < -t_{\alpha,n_1+n_2-2}$

Paired Test

Statistical model:

- Let $(X_{11}, X_{21}), (X_{12}, X_{22}), \ldots, (X_{1n}, X_{2n})$ be a set of n paired observations for which we assume that the mean and variance of the population represented by X_1 are μ_1 and σ_1^2 , and the mean and variance of the population represented by X_2 are μ_2 and σ_2^2 .
- Define the difference for each pair of observations as $D_j = X_{1j} X_{2j}, j = 1, 2, ..., n$. The D_j 's are assumed to be normally distributed with mean

$$\mu_D = E(X_1 - X_2) = E(X_1) - E(X_2) = \mu_1 - \mu_2$$

and variance σ_D^2 , so testing hypotheses about the difference for μ_1 and μ_2 can be accomplished by performing a one-sample t-test on μ_D . Specifically, testing $H_0: \mu_1 - \mu_2 = \Delta_0$ against $H_1: \mu_1 - \mu_2 \neq \Delta_0$ is equivalent to testing

$$H_0: \mu_D = \Delta_0$$

$$H_1: \mu_D \neq \Delta_0$$

Paired t-Test

Null hypothesis: $H_0: \mu_D = \Delta_0$

Test statistic: $T_0 = \frac{\overline{D} - \Delta_0}{S_D / \sqrt{n}}$ (10.24)

Alternative	Rejection Criterion for	
Hypotheses	P-Value	Fixed-Level Tests
1127 0	Probability above ltol and	$t_0 > t_{\alpha/2,n-1}$ or
	probability below -lt0	$t_0 < -t_{\alpha/2, n-1}$
H_1 : $\mu_D > \Delta_0$	Probability above t ₀	$t_0 > t_{\alpha, n-1}$
$H_1: \mu_D < \Delta_0$	Probability below to	$t_0 < -t_{\alpha,n-1}$

Test for Independence

Statistical model:

- Let p_{ij} be the probability that a randomly selected element falls in the ijth cell given that the two classifications are independent.
- Then $p_{ij} = u_i v_j$, where u_i is the probability that a randomly selected element falls in row class i and v_j is the probability that a randomly selected element falls in column class j. Now by assuming independence, the estimators of u_i and v_j are

$$\hat{u}_i = \frac{1}{n} \sum_{j=1}^{c} O_{ij}$$
 $\hat{v}_j = \frac{1}{n} \sum_{i=1}^{r} O_{ij}$

• Therefore, the expected frequency of each cell is

$$E_{ij} = n\hat{u}_i\hat{v}_j = \frac{1}{n}\sum_{j=1}^{c} O_{ij}\sum_{i=1}^{r} O_{ij}$$

Hypothesis test:

 \bullet H_0 : The two categorical variables under examination are independent.

• H_1 : The two categorical variables under examination are not independent.

• Test statistic: $\chi_0^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$

• Critical value: $\chi^2_{\rm crit} = \chi^2_{1-\alpha,df}$, where df = (r-1)(c-1) degree of freedom Python code: stats.chi2.ppf(1- α,df)

• p-value: $1 - \chi_{\text{cdf}}^2(\chi_0^2, df)$

Python code: 1-stats.chi2.cdf(χ_0^2, df)

• Rejection Criteria

a. Using Critical value and Test Statistic:

Reject if $\chi^2_{\rm crit} < \chi^2_0$

b. Using p-value and significance level:

Reject if p-value $< \alpha$