

Explainable Machine Learning - Deep Learning Life Cycle

Jonas Amling Baptiste Patrice Francis Bony Benedikt Markus Marsiske January 19, 2023

University of Bamberg

Table of contents

Research Question

Basic Model Evaluation

Evaluating On Distorted Images

Future Considerations

Research Question

Research Question and Introduction

Goals for evaluating a trained model:

- How well does the model perform?
- Is there a difference between the classes?
- How robust is our model?

Research Question and Introduction

Goals for evaluating a trained model:

- How well does the model perform?
- Is there a difference between the classes?
- How robust is our model?

Specific Research Question: How does the model perform on distorted data? Does the usage of distorted test data lead to a worse model performance compared to the same test data without distortion?

Basic Model Evaluation

Model Performance - Training Data

How well did our model perform on our training data during the training?

```
Epoch 10 loss: 0.4450182304324874
Accuracy of the network on the test set: 83.34380892520427%
Accuracy of rock: 84.93408662900188%
Accuracy of paper: 82.02676864244742%
Accuracy of scissors: 83.05400372439479%
```

Figure 1: accuracy during training

Model Performance - Test Data

How well did our model perform on our test data?

same kind of data as our training data

Model Performance - Test Data

How well did our model perform on our test data?

- same kind of data as our training data
- model performance:

```
print('testing against the test dataset:')
test_accuracy(testloader)

✓ 2.2s

testing against the test dataset:
Accuracy of the network on the test set: 86.09077598828696%
Accuracy of rock: 87.71929824561404%
Accuracy of paper: 85.26785714285714%
Accuracy of scissors: 85.28138528138528%
```

Figure 2: accuracy on test dataset

Confusion Matrix - Testset

Figure 3: Numeric CM of testset

Figure 4: CM of testset (in %)

Model Performance - Unseen Dataset

How well did our model perform on the provided testset?

- different kind of images:
 - only custom made data
 - no images of big datasets (big part of training data)

Model Performance - Unseen Dataset

How well did our model perform on the provided testset?

- different kind of images:
 - only custom made data
 - no images of big datasets (big part of training data)
- model performance:

```
testing against the unknown dataset:
Accuracy of the network on the test set: 67.79661016949153%
Accuracy of rock : 94.73684210526316%
Accuracy of paper : 60.0%
Accuracy of scissors : 50.0%
```

Figure 5: accuracy on unseen test dataset

Confusion Matrix - Unseen Testset

Figure 6: Numeric CM of unseen testset

Figure 7: CM of unseen testset (in %)

Evaluating On Distorted Images

Image Distortion - Random Distortion

Each pixel has a chance to be removed (25%):

Figure 8: random distortion with a pixel elimination probability of 0.25

Image Distortion - Gaussian Distortion

Gaussian Filter:

- follows normal distribution
- parameter: standard deviation (25 in our case)

Image Distortion - Gaussian Distortion

Gaussian Filter:

- follows normal distribution
- parameter: standard deviation (25 in our case)

Figure 9: distortion using a Gaussian filter with SD=25

Model Performance on distorted data

Random Distortion:

```
testing against the randomly distorted dataset:
Accuracy of the network on the test set: 42.3728813559322%
Accuracy of rock : 5.2631578947368425%
Accuracy of paper : 60.0%
Accuracy of scissors : 60.0%
```

Figure 10: accuracy on randomly distorted testset

Gaussian Distortion:

```
testing against the dataset with gaussian distortion:
Accuracy of the network on the test set: 55.932203389830505%
Accuracy of rock : 31.57894736842105%
Accuracy of paper : 65.0%
Accuracy of scissors : 70.0%
```

Figure 11: accuracy on testset distorted with a Gaussian filter

Gaussian Distortion - Confusion Matrix

Figure 12: Numeric CM of distorted testset

Figure 13: CM of distorted testset (in %)

Future Considerations

Future Considerations

Things we will have to consider to finalize our project:

- improve model performance:
 - train more epochs
 - use deeper net (VGG-16 inspired)
 - adjust position of dropout layers
 - train with noisy data to increase robustness
 - fine tuning

