Hung Le

University of Victoria

January 30, 2019

Binary Classification

You are given a set of n data points $\mathcal{D} = \{(\mathbf{x}_1, y_1), \mathbf{x}_2, y_y), \dots, (\mathbf{x}_n, y_n)\}$ where each $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$. Find a classifier $f(.) : \mathbb{R}^d \to \{-1, 1\}$ such that:

$$f(\mathbf{x}_i) = \begin{cases} 1 & \text{if } y_i = 1 \\ -1 & \text{if } y_i = -1 \end{cases}$$

Figure: Sprial data¹

Applications

- Spam email classification:
 - ▶ Each data point is (\mathbf{x}_i, y_i) where \mathbf{x}_i is a vector representation of *i*-th email, and $y_i = 1/-1$ indicates the email is spam/non-spam.
- Testing disease: determine a person as a certain disease or not.
- Weather forecasting: tomorrow is rainy or not.

You are given a set of n data points $\mathcal{D} = \{(\mathbf{x}_1, y_1), \mathbf{x}_2, y_y), \dots, (\mathbf{x}_n, y_n)\}$ where each $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$. Find a separating hyperplane $w^T \mathbf{x} + b = 0$ such that:

- $w^T x_i + b > 0$ if $y_i = 1$
- $w^T \mathbf{x}_i + b < 0$ if $y_i = -1$

You are given a set of n data points $\mathcal{D} = \{(\mathbf{x}_1, y_1), \mathbf{x}_2, y_y), \dots, (\mathbf{x}_n, y_n)\}$ where each $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$. Find a separating hyperplane $w^T \mathbf{x} + b = 0$ such that:

- $w^T x_i + b > 0$ if $y_i = 1$
- $w^T \mathbf{x}_i + b < 0$ if $y_i = -1$

We assume that our data is linearly separable, i.e, there exists such a separating hyperplane.

Support Vector Machine - An Example

Support Vector Machine - A Toy Example

Given four points $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, -1), $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$, -1), $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$, 1), $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$, 1). Find a separating line $w_1 \cdot x_1 + w_2 \cdot x_2 + b = 0$ for these points.

Support Vector Machine - A Toy Example

There are several possible lines:

$$(L_1): x_1 + x_2 - 4 = 0$$
 $(L_2): x_1 + x_2 - 5 = 0$
 $(L_3): x_1 + x_2 - 6 = 0$ $(L_4): x_1 + 2x_2 - 6 = 0$ (1)

Which line should we choose? In theory, any line is acceptable.

SVM separating principle

Choose a line that that maximizes the margin of the point set to the separating line.

SVM separating principle

Choose a line that that maximizes the margin of the point set to the separating line.

Margin of a separating line (L) w.r.t the point set \mathcal{D} is the minimum distance of the point set to the line:

$$\gamma(L) = \min_{(\mathbf{x}_i, y_i) \in \mathcal{D}} d(\mathbf{x}_i, L)$$
 (2)

SVM separating principle

Choose a line that that maximizes the margin of the point set to the separating line.

Margin of a separating line (L) w.r.t the point set \mathcal{D} is the minimum distance of the point set to the line:

$$\gamma(L) = \min_{(\mathbf{x}_i, y_i) \in \mathcal{D}} d(\mathbf{x}_i, L)$$
 (2)

Recall, distance from a point $\mathbf{x}_0 \in \mathbb{R}^d$ to the line $(L): \mathbf{w}^T \mathbf{x} + b = 0$ is:

$$d(\mathbf{x}_0, L) = \frac{|\mathbf{w}^T \mathbf{x}_0 + b|}{||\mathbf{w}||_2}$$
(3)

where
$$||\mathbf{w}||_2 = \sqrt{\sum_{i=1}^d w[i]^2}$$

Back to our Toy Example

$$(L_1): x_1 + x_2 - 4 = 0$$
 $(L_2): x_1 + x_2 - 5 = 0$
 $(L_3): x_1 + x_2 - 6 = 0$ $(L_4): x_1 + 2x_2 - 6 = 0$ (4)

SVM will choose (L2) with $\gamma(L_2) = \sqrt{2}$ (see the board calculation)

◄□▶
□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

You are given a set of n data points $\mathcal{D} = \{(\mathbf{x}_1, y_1), \mathbf{x}_2, y_y), \dots, (\mathbf{x}_n, y_n)\}$ where each $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$. Find a separating hyperplane $(L): w^T \mathbf{x} + b = 0$ such that:

- $w^T x_i + b > 0$ if $y_i = 1$
- $w^T \mathbf{x}_i + b < 0$ if $y_i = -1$

and the margin $\gamma(L)$ is maximum among all possible separating hyperplanes.

Points \mathbf{x}_j that have $d(L, \mathbf{x}_i) = \gamma(L)$ are called support vectors.

The problem is equivalent to:

Find w, b that:

$$\operatorname{maximize}(\min_{i} \frac{|\mathbf{w}^{T} \mathbf{x}_{i} + b|}{||w||_{2}})$$
 (5)

The problem is equivalent to:

Find \mathbf{w} , b that:

$$\underset{i}{\text{maximize}}(\min_{i} \frac{|\mathbf{w}^{T}\mathbf{x}_{i} + b|}{||\mathbf{w}||_{2}})$$
 (5)

Observation

If (\mathbf{w}, b) defines a valid SVM hyperplane, then $(c \cdot \mathbf{w}, c \cdot b)$ also defines a valid SVM hyperplane.

The problem is equivalent to:

Find w, b that:

$$\operatorname{maximize}(\min_{i} \frac{|\mathbf{w}^{T}\mathbf{x}_{i} + b|}{||\mathbf{w}||_{2}})$$
 (5)

Observation

If (\mathbf{w}, b) defines a valid SVM hyperplane, then $(c \cdot \mathbf{w}, c \cdot b)$ also defines a valid SVM hyperplane.

Thus, we can assume that:

- $\mathbf{w}^T \mathbf{x}_j + b = 1$ for all support vectors \mathbf{x}_j of 1-class.
- $\mathbf{w}^T \mathbf{x}_j + b = -1$ for all support vectors \mathbf{x}_j of (-1)-class.

The problem becomes (see the board calculation):

Find \mathbf{w} , b that :

minimize
$$\frac{1}{2}||\mathbf{w}||_2^2$$
 subject to $y_i(\mathbf{w}^T\mathbf{x}_i+b) \ge 1 \quad \forall i$

Regularization Variant of SVM

Transform the constrained optimization problem from SVM to:

Find w, b that:

maximize
$$f(\mathbf{w}, b) = \frac{1}{2} ||\mathbf{w}||_2^2 + C(\sum_{i=1}^n \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)))$$
 (7)

where C is a chosen positive number.

Regularization Variant of SVM

Transform the constrained optimization problem from SVM to:

Find w, b that:

maximize
$$f(\mathbf{w}, b) = \frac{1}{2} ||\mathbf{w}||_2^2 + C(\sum_{i=1}^n \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)))$$
 (7)

where C is a chosen positive number.

• When C is sufficiently big, we force the optimization algorithm returning (\mathbf{w}, b) such that $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$ for all i. This is only possible when the data is linearly separable.

Regularization Variant of SVM

Transform the constrained optimization problem from SVM to:

Find w, b that :

maximize
$$f(\mathbf{w}, b) = \frac{1}{2} ||\mathbf{w}||_2^2 + C(\sum_{i=1}^n \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b)))$$
 (7)

where C is a chosen positive number.

- When C is sufficiently big, we force the optimization algorithm returning (\mathbf{w}, b) such that $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$ for all i. This is only possible when the data is linearly separable.
- When C is chosen appropriately, the optimization problem 7 has a regularizing effect.
 - We accept mis-classified points, but most other points are far away from the hyperplane.
 - ▶ The problem is well-defined even if the data is NOT linearly separable.

C is called the regularization parameter.

Let

$$L_i(\mathbf{w}, b) = \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b))$$
 (8)

Let

$$L_i(\mathbf{w}, b) = \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b))$$
 (8)

 $L_i(\mathbf{w}, b)$ is called a *hinge function* and its value is called a hinge loss.

Let

$$L_i(\mathbf{w}, b) = \max(0, 1 - y_i(\mathbf{w}^T \mathbf{x}_i + b))$$
 (8)

 $L_i(\mathbf{w}, b)$ is called a *hinge function* and its value is called a hinge loss.

We have:

$$\frac{\partial L_i(\mathbf{w}, b)}{\partial w[j]} = \begin{cases} -y_i x_i[j] & \text{if } y_i(\mathbf{w}^T x + b) \ge 1\\ 0 & \text{otherwise} \end{cases}$$
(9)

and

$$\frac{\partial L_i(\mathbf{w}, b)}{\partial b} = \begin{cases} -y_i & \text{if } y_i(\mathbf{w}^T x + b) \ge 1\\ 0 & \text{otherwise} \end{cases}$$
 (10)

Since:

$$f(\mathbf{w}, b) = \frac{1}{2} ||\mathbf{w}||_2^2 + C \sum_{i=1}^n L_i(\mathbf{w})$$
 (11)

we have:

$$\frac{\partial f(\mathbf{w}, b)}{\partial w[j]} = w[j] + C \sum_{i=1}^{n} \frac{\partial L_i(\mathbf{w}, b)}{\partial w[j]}$$
(12)

and

$$\frac{\partial f(\mathbf{w}, b)}{\partial b} = C \sum_{i=1}^{n} \frac{\partial L_i(\mathbf{w}, b)}{\partial b}$$
 (13)