Graph Algorithms: Depth-First Searching

Pontus Ekberg

Uppsala University

(Based on previous material by Mohamed Faouzi Atig and Parosh Aziz Abdulla)

Depth-First Search Algorithm

2 Topological Sorting

Strongly Connected Components

Depth-First Search

- Input: A graph G = (V, E) and a node $s \in V$
- Output:
 - The set of nodes reachable from s
 - Produce a depth-first tree with root s that contains all reachable nodes from s
- The algorithm works on both directed and undirected graphs

- Initially the source node is the only discovered node
- Explore edges out of the most recently discovered node v. Only edges to unexplored nodes are explored.
- Once all of v'edges have been explored, the search backtracks to explore edges leaving the node from which v was discovered
- The process continues until we have discovered all the nodes that are reachable from the original source node.

- Initially the source node is the only discovered node
- Explore edges out of the most recently discovered node v. Only edges to unexplored nodes are explored.
- Once all of v'edges have been explored, the search backtracks to explore edges leaving the node from which v was discovered.
- The process continues until we have discovered all the nodes that are reachable from the original source node.

- Initially the source node is the only discovered node
- Explore edges out of the most recently discovered node v. Only edges to unexplored nodes are explored.
- Once all of v'edges have been explored, the search backtracks to explore edges leaving the node from which v was discovered
- The process continues until we have discovered all the nodes that are reachable from the original source node.

- Initially the source node is the only discovered node
- Explore edges out of the most recently discovered node v. Only edges to unexplored nodes are explored.
- Once all of v'edges have been explored, the search backtracks to explore edges leaving the node from which v was discovered.
- The process continues until we have discovered all the nodes that are reachable from the original source node.

- Initially the source node is the only discovered node
- Explore edges out of the most recently discovered node v. Only edges to unexplored nodes are explored.
- Once all of v'edges have been explored, the search backtracks to explore edges leaving the node from which v was discovered
- The process continues until we have discovered all the nodes that are reachable from the original source node.

- Initially the source node is the only discovered node
- Explore edges out of the most recently discovered node v. Only edges to unexplored nodes are explored.
- Once all of v'edges have been explored, the search backtracks to explore edges leaving the node from which v was discovered
- The process continues until we have discovered all the nodes that are reachable from the original source node.

- Initially the source node is the only discovered node
- Explore edges out of the most recently discovered node v. Only edges to unexplored nodes are explored.
- Once all of v'edges have been explored, the search backtracks to explore edges leaving the node from which v was discovered
- The process continues until we have discovered all the nodes that are reachable from the original source node.

- Initially the source node is the only discovered node
- Explore edges out of the most recently discovered node v. Only edges to unexplored nodes are explored.
- Once all of v'edges have been explored, the search backtracks to explore edges leaving the node from which v was discovered.
- The process continues until we have discovered all the nodes that are reachable from the original source node.

- Initially the source node is the only discovered node
- Explore edges out of the most recently discovered node v. Only edges to unexplored nodes are explored.
- Once all of v'edges have been explored, the search backtracks to explore edges leaving the node from which v was discovered
- The process continues until we have discovered all the nodes that are reachable from the original source node.

- Initially the source node is the only discovered node
- Explore edges out of the most recently discovered node v. Only edges to unexplored nodes are explored.
- Once all of v'edges have been explored, the search backtracks to explore edges leaving the node from which v was discovered.
- The process continues until we have discovered all the nodes that are reachable from the original source node.

- Initially the source node is the only discovered node
- Explore edges out of the most recently discovered node v. Only edges to unexplored nodes are explored.
- Once all of v'edges have been explored, the search backtracks to explore edges leaving the node from which v was discovered.
- The process continues until we have discovered all the nodes that are reachable from the original source node.

- Initially the source node is the only discovered node
- Explore edges out of the most recently discovered node v. Only edges to unexplored nodes are explored.
- Once all of v'edges have been explored, the search backtracks to explore edges leaving the node from which v was discovered.
- The process continues until we have discovered all the nodes that are reachable from the original source node.

- Initially the source node is the only discovered node
- Explore edges out of the most recently discovered node v. Only edges to unexplored nodes are explored.
- Once all of v'edges have been explored, the search backtracks to explore edges leaving the node from which v was discovered.
- The process continues until we have discovered all the nodes that are reachable from the original source node.

- Initially the source node is the only discovered node
- Explore edges out of the most recently discovered node v. Only edges to unexplored nodes are explored.
- Once all of v'edges have been explored, the search backtracks to explore edges leaving the node from which v was discovered.
- The process continues until we have discovered all the nodes that are reachable from the original source node.

- Initially the source node is the only discovered node
- Explore edges out of the most recently discovered node v. Only edges to unexplored nodes are explored.
- Once all of v'edges have been explored, the search backtracks to explore edges leaving the node from which v was discovered.
- The process continues until we have discovered all the nodes that are reachable from the original source node.


```
DFS(G,s)
    for each vertex u \in G.V
           do u color \leftarrow WHITE
               \mu.\pi \leftarrow NIL
               u.d \leftarrow 0
               \mu f \leftarrow 0
   time \leftarrow 0
    DFS-VISIT(s)
DFS-VISIT(u)
      u. color \leftarrow RED
      time \leftarrow time + 1
      u.d \leftarrow time
      for each v \in G. Adj[u]
             do if v, color = WHITE
                    then v.\pi \leftarrow u
                           DFS-VISIT(v)
      u color \leftarrow BLUF
       time \leftarrow time + 1
       u.f \leftarrow time
```

Each node u has the following attributes:

- u. color: the color of each node visited
 - WHITE: not discovered
 - RED: discovered but not analyzed
 - *BLUE*: finished, i.e., discovered and analyzed
- $u.\pi$: predecessor of u in the analysis
- u.d: discovery time, a counter indicating when the node u is discovered
- u.f: finishing time, a counter indicating when the processing of u (and all its descendant) is finished.

```
DFS(G,s)
    for each vertex u \in G.V
          do u. color \leftarrow WHITE
              \mu.\pi \leftarrow NIL
              u.d \leftarrow 0
              u.f \leftarrow 0
    time \leftarrow 0
    DFS-VISIT(s)
DFS-VISIT(u)
    u. color \leftarrow RED
    time \leftarrow time +1
     u.d ← time
     for each v \in G. Adj[u]
            do if v. color = WHITE
                   then v.\pi \leftarrow u
                          DFS-VISIT(\nu)
      u. color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G,s)
    for each vertex u \in G.V
           do u. color \leftarrow WHITE
               \mu.\pi \leftarrow NIL
              u.d \leftarrow 0
              u.f \leftarrow 0
    time \leftarrow 0
    DFS-VISIT(s)
DFS-VISIT(u)
    u. color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
             do if v. color = WHITE
                    then v.\pi \leftarrow u
                           DFS-VISIT(\nu)
      u. color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G,s)
    for each vertex u \in G.V
           do u. color \leftarrow WHITE
              \mu.\pi \leftarrow NIL
              u.d \leftarrow 0
              u.f \leftarrow 0
    time \leftarrow 0
    DFS-VISIT(s)
DFS-VISIT(u)
    u. color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
             do if v, color = WHITE
                    then v.\pi \leftarrow u
                           DFS-VISIT(\nu)
      u. color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G,s)
    for each vertex u \in G.V
           do u. color \leftarrow WHITE
              \mu.\pi \leftarrow NIL
              u.d \leftarrow 0
              u.f \leftarrow 0
    time \leftarrow 0
    DFS-VISIT(s)
DFS-VISIT(u)
    u. color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
             do if v, color = WHITE
                    then v.\pi \leftarrow u
                           DFS-VISIT(\nu)
      u. color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G,s)
    for each vertex u \in G.V
           do u. color \leftarrow WHITE
              \mu.\pi \leftarrow NIL
              u.d \leftarrow 0
              u.f \leftarrow 0
    time \leftarrow 0
    DFS-VISIT(s)
DFS-VISIT(u)
    u. color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
             do if v, color = WHITE
                    then v.\pi \leftarrow u
                          DFS-VISIT(\nu)
      u. color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G,s)
    for each vertex u \in G.V
           do u. color \leftarrow WHITE
               \mu.\pi \leftarrow NIL
              u.d \leftarrow 0
              u.f \leftarrow 0
    time \leftarrow 0
    DFS-VISIT(s)
DFS-VISIT(u)
    u. color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
             do if v, color = WHITE
                    then v.\pi \leftarrow u
                           DFS-VISIT(\nu)
      u. color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G,s)
    for each vertex u \in G.V
           do u. color \leftarrow WHITE
              \mu.\pi \leftarrow NIL
              u.d \leftarrow 0
              u.f \leftarrow 0
    time \leftarrow 0
    DFS-VISIT(s)
DFS-VISIT(u)
    u. color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
             do if v, color = WHITE
                    then v.\pi \leftarrow u
                           DFS-VISIT(\nu)
      u. color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G,s)
    for each vertex u \in G.V
           do u. color \leftarrow WHITE
               \mu.\pi \leftarrow NIL
              u.d \leftarrow 0
              u.f \leftarrow 0
    time \leftarrow 0
    DFS-VISIT(s)
DFS-VISIT(u)
    u. color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
             do if v, color = WHITE
                    then v.\pi \leftarrow u
                           DFS-VISIT(\nu)
      u. color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G,s)
    for each vertex u \in G.V
           do u. color \leftarrow WHITE
               \mu.\pi \leftarrow NIL
              u.d \leftarrow 0
              u.f \leftarrow 0
    time \leftarrow 0
    DFS-VISIT(s)
DFS-VISIT(u)
    u. color \leftarrow RED
     time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
             do if v, color = WHITE
                    then v.\pi \leftarrow u
                           DFS-VISIT(\nu)
      u. color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G,s)
    for each vertex u \in G.V
           do u. color \leftarrow WHITE
               \mu.\pi \leftarrow NIL
              u.d \leftarrow 0
              u.f \leftarrow 0
    time \leftarrow 0
    DFS-VISIT(s)
DFS-VISIT(u)
    u. color \leftarrow RED
     time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
             do if v, color = WHITE
                    then v.\pi \leftarrow u
                           DFS-VISIT(\nu)
      \mu color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```


Parenthesis Theorem and the Depth-First Tree

DEPTH-FIRST SEARCH: PARENTHESIS THEOREM

Time-stamp structure

For any two discovered nodes u and v, one of the following properties holds:

- u is a descendant of v if and only if [u.d, u.f] is subinterval of [v.d, v.f]
- u is an ancestor of v if and only if [u.d, u.f] contains [v.d, v.f]
- u is unrelated to v if and only if [u.d, u.f] and [v.d, v.f] are disjoint.

Depth-First Search: Complexity

```
DFS(G,s)
    for each vertex u \in G.V
          do u. color \leftarrow WHITE
              \mu.\pi \leftarrow NIL
              u.d \leftarrow 0
              u.f \leftarrow 0
    time \leftarrow 0
    DFS-VISIT(s)
DFS-VISIT(u)
    u. color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
            do if v, color = WHITE
                   then v.\pi \leftarrow u
                          DFS-VISIT(v)
     u color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```

Depth-First Search: Complexity

```
DFS(G,s)
    for each vertex u \in G.V
          do u. color \leftarrow WHITE
             u.\pi \leftarrow NIL
              u.d \leftarrow 0
              u.f \leftarrow 0
    time \leftarrow 0
    DFS-VISIT(s)
DFS-VISIT(u)
  1 \mu, color \leftarrow RED
    time \leftarrow time + 1
     u.d \leftarrow time
    for each v \in G. Adj[u]
             do if v, color = WHITE
                   then v.\pi \leftarrow u
                          DFS-VISIT(\nu)
     u color \leftarrow BLUF
      time \leftarrow time + 1
      u.f \leftarrow time
```

- Initialization costs O(|V|)
- The procedure DFS-VISIT is called at most |V| times
- Each edge is considered at most one time along the for loop, in all the interations of the while loop taken together
- Total time = O(|V| + |E|)

Graph Traversal Algorithms

- Breadth-First Search and Depth-First Search explore only the nodes that are reachable from the original source node s
- To traverse all the nodes of the graph:
 - Select a source node v
 - Explore all the nodes that are reachable from v (in depth or breadth)
 - If any undiscovered nodes remain, then one of them is selected as new source node, and the search is repeated from that source node.

DEPTH-FIRST SEARCH: EXPLORING ALL NODES

```
DFS(G)
    for each vertex u \in G : V
          do u. color \leftarrow WHITE
             \mu.\pi \leftarrow NIL
    time \leftarrow 0
    for each vertex u \in G.V
          do if u, color = WHITE
                 then DFS-VISIT(u)
DFS-VISIT(u)
    u.\ color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
            do if v, color = WHITE
                   then v.\pi \leftarrow u
                         DFS-VISIT(\nu)
      \mu color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```


DEPTH-FIRST SEARCH: EXPLORING ALL NODES

```
DFS(G)
    for each vertex u \in G : V
          do u. color \leftarrow WHITE
             \mu.\pi \leftarrow NIL
    time \leftarrow 0
    for each vertex u \in G.V
          do if u, color = WHITE
                 then DFS-VISIT(u)
DFS-VISIT(u)
    u.\ color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
            do if v, color = WHITE
                  then v.\pi \leftarrow u
                         DFS-VISIT(v)
      \mu color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G)
    for each vertex u \in G : V
          do u. color \leftarrow WHITE
             \mu.\pi \leftarrow NIL
    time \leftarrow 0
    for each vertex u \in G.V
          do if u, color = WHITE
                 then DFS-VISIT(u)
DFS-VISIT(u)
    u.\ color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
            do if v, color = WHITE
                  then v.\pi \leftarrow u
                         DFS-VISIT(v)
      u. color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G)
    for each vertex u \in G : V
          do u. color \leftarrow WHITE
             \mu.\pi \leftarrow NIL
    time \leftarrow 0
    for each vertex u \in G.V
          do if u, color = WHITE
                 then DFS-VISIT(u)
DFS-VISIT(u)
    u.\ color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
            do if v, color = WHITE
                  then v.\pi \leftarrow u
                         DFS-VISIT(v)
      u. color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G)
    for each vertex u \in G : V
          do u. color \leftarrow WHITE
             \mu.\pi \leftarrow NIL
    time \leftarrow 0
    for each vertex u \in G.V
          do if u, color = WHITE
                 then DFS-VISIT(u)
DFS-VISIT(u)
    u. color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
            do if v, color = WHITE
                  then v.\pi \leftarrow u
                         DFS-VISIT(v)
      u. color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G)
    for each vertex u \in G : V
          do u. color \leftarrow WHITE
             \mu.\pi \leftarrow NIL
    time \leftarrow 0
    for each vertex u \in G.V
          do if u, color = WHITE
                 then DFS-VISIT(u)
DFS-VISIT(u)
    u. color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
            do if v, color = WHITE
                  then v.\pi \leftarrow u
                         DFS-VISIT(v)
      u. color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G)
    for each vertex u \in G : V
          do u. color \leftarrow WHITE
             \mu.\pi \leftarrow NIL
    time \leftarrow 0
    for each vertex u \in G.V
          do if u, color = WHITE
                 then DFS-VISIT(u)
DFS-VISIT(u)
    u. color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
            do if v, color = WHITE
                  then v.\pi \leftarrow u
                         DFS-VISIT(v)
      u. color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G)
    for each vertex u \in G : V
          do u. color \leftarrow WHITE
             \mu.\pi \leftarrow NIL
    time \leftarrow 0
    for each vertex u \in G.V
          do if u, color = WHITE
                 then DFS-VISIT(u)
DFS-VISIT(u)
    u. color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
            do if v, color = WHITE
                  then v.\pi \leftarrow u
                         DFS-VISIT(v)
      u. color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G)
    for each vertex u \in G : V
          do u. color \leftarrow WHITE
             \mu.\pi \leftarrow NIL
    time \leftarrow 0
    for each vertex u \in G.V
          do if u, color = WHITE
                 then DFS-VISIT(u)
DFS-VISIT(u)
    u. color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
            do if v, color = WHITE
                  then v.\pi \leftarrow u
                         DFS-VISIT(v)
      u. color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G)
    for each vertex u \in G : V
          do u. color \leftarrow WHITE
             \mu.\pi \leftarrow NIL
    time \leftarrow 0
    for each vertex u \in G.V
          do if u, color = WHITE
                 then DFS-VISIT(u)
DFS-VISIT(u)
    u. color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
            do if v, color = WHITE
                  then v.\pi \leftarrow u
                         DFS-VISIT(v)
      u. color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G)
    for each vertex u \in G : V
          do u. color \leftarrow WHITE
             \mu.\pi \leftarrow NIL
    time \leftarrow 0
    for each vertex u \in G.V
          do if u, color = WHITE
                 then DFS-VISIT(u)
DFS-VISIT(u)
    u. color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
            do if v, color = WHITE
                  then v.\pi \leftarrow u
                         DFS-VISIT(v)
      u. color \leftarrow BLUE
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G)
    for each vertex u \in G : V
          do u. color \leftarrow WHITE
             \mu.\pi \leftarrow NIL
    time \leftarrow 0
    for each vertex u \in G.V
          do if u, color = WHITE
                 then DFS-VISIT(u)
DFS-VISIT(u)
    u. color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
            do if v, color = WHITE
                  then v.\pi \leftarrow u
                         DFS-VISIT(v)
      u. color \leftarrow BLUE
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G)
    for each vertex u \in G : V
          do u. color \leftarrow WHITE
             \mu.\pi \leftarrow NIL
    time \leftarrow 0
    for each vertex u \in G.V
          do if u, color = WHITE
                 then DFS-VISIT(u)
DFS-VISIT(u)
  1 \mu, color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
            do if v color = WHITE
                  then v.\pi \leftarrow u
                         DFS-VISIT(v)
      u. color \leftarrow BLUE
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G)
    for each vertex u \in G : V
          do u. color \leftarrow WHITE
             \mu.\pi \leftarrow NIL
    time \leftarrow 0
    for each vertex u \in G.V
          do if u, color = WHITE
                 then DFS-VISIT(u)
DFS-VISIT(u)
  1 \mu, color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
            do if v color = WHITE
                  then v.\pi \leftarrow u
                         DFS-VISIT(v)
      u. color \leftarrow BLUE
      time \leftarrow time +1
      u.f \leftarrow time
```



```
DFS(G)
    for each vertex u \in G : V
          do u. color \leftarrow WHITE
             \mu.\pi \leftarrow NIL
    time \leftarrow 0
    for each vertex u \in G.V
          do if u, color = WHITE
                 then DFS-VISIT(u)
DFS-VISIT(u)
    u. color \leftarrow RED
    time \leftarrow time +1
     u.d \leftarrow time
     for each v \in G. Adj[u]
            do if v color = WHITE
                  then v.\pi \leftarrow u
                         DFS-VISIT(\nu)
      u. color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```


DEPTH-FIRST SEARCH: PARENTHESIS THEOREM

Time-stamp structure

For any two nodes u and v, one of the following properties holds:

- u is a descendant of v if and only if
 [u.d, u.f] is subinterval of [v.d, v.f]
- v is an ancestor of v if and only if
 [u.d, u.f] contains [v.d, v.f]
- u is unrelated to v if and only if
 [u.d, u.f] and [v.d, v.f] are disjoint.

Depth-First Search: Complexity

```
DFS(G)
    for each vertex u \in G : V
          do u. color \leftarrow WHITE
            \mu.\pi \leftarrow NIL
    time \leftarrow 0
   for each vertex u \in G.V
          do if u, color = WHITE
                 then DFS-VISIT(u)
DFS-VISIT(u)
    u. color \leftarrow RED
    time \leftarrow time +1
    u.d \leftarrow time
    for each v \in G. Adj[u]
           do if v color = WHITE
                  then v.\pi \leftarrow u
                         DFS-VISIT(\nu)
    u color \leftarrow BLUF
      time \leftarrow time +1
      u.f \leftarrow time
```

Depth-First Search: Complexity

```
DFS(G)
    for each vertex u \in G : V
          do u. color \leftarrow WHITE
           \mu.\pi \leftarrow NIL
   time \leftarrow 0
   for each vertex u \in G.V
          do if u, color = WHITE
                 then DFS-VISIT(u)
DFS-VISIT(u)
 1 \mu, color \leftarrow RED
    time \leftarrow time + 1
 3 u.d \leftarrow time
    for each v \in G. Adj[u]
           do if v color = WHITE
                  then v.\pi \leftarrow u
                         DFS-VISIT(\nu)
    u color \leftarrow BLUF
      time \leftarrow time + 1
      u.f \leftarrow time
```

- Initialization costs O(|V|)
- The procedure DFS-VISIT is called exactly once for each node *v*.
- During an execution of DFS-VISIT(v), the for loop executes |G. Adj[v]| times.
- Total time = O(|V| + |E|)

Application: Topological Sort

Directed Acyclic Graph (DAG):

• A topological sort of the graph:

watch

Topological Sort

- Topological sort:
 - Input: Directed Acyclic Graph (DAG) G = (V, E)
 - Output: Order the nodes such that if (u, v) is an edge of G then u precedes v
- Examples of Applications:
 - Find an order to follow a set course that takes into account the prerequisites of each course
 - To follow Algorithms and Data Structures I, the student must have completed a programming course.
 - Solve the dependencies for installing software
 - Find an order such that each software is installed after all the others softwares on which it depends.

- 1 call DFS(G)
- 2 output nodes in order of decreasing finish times

- 1 call DFS(G)
- 2 output nodes in order of decreasing finish times

- 1 call DFS(G)
- 2 output nodes in order of decreasing finish times

- 1 call DFS(G)
- 2 output nodes in order of decreasing finish times

- 1 call DFS(G)
- 2 output nodes in order of decreasing finish times

- 1 call DFS(G)
- 2 output nodes in order of decreasing finish times

- 1 call DFS(G)
- 2 output nodes in order of decreasing finish times

TOPOLOGICAL-SEARCH(G)

- 1 call DFS(G)
- 2 output nodes in order of decreasing finish times

g

TOPOLOGICAL-SEARCH(G)

- 1 call DFS(G)
- 2 output nodes in order of decreasing finish times

e g

TOPOLOGICAL-SEARCH(G)

- 1 call DFS(G)
- 2 output nodes in order of decreasing finish times

TOPOLOGICAL-SEARCH(G)

- 1 call DFS(G)
- 2 output nodes in order of decreasing finish times

TOPOLOGICAL-SEARCH(G)

- 1 call DFS(G)
- 2 output nodes in order of decreasing finish times

TOPOLOGICAL-SEARCH(G)

- 1 call DFS(G)
- 2 output nodes in order of decreasing finish times

TOPOLOGICAL-SEARCH(G)

- 1 call DFS(G)
- 2 output nodes in order of decreasing finish times

h c e g

TOPOLOGICAL-SEARCH(G)

- 1 call DFS(G)
- 2 output nodes in order of decreasing finish times

f h c e g

TOPOLOGICAL-SEARCH(G)

- 1 call DFS(G)
- 2 output nodes in order of decreasing finish times

d f h c e g

TOPOLOGICAL-SEARCH(G)

- 1 call DFS(G)
- 2 output nodes in order of decreasing finish times

b d f h c e g

TOPOLOGICAL-SEARCH(G)

- 1 call DFS(G)
- 2 output nodes in order of decreasing finish times

a b d f h c e g

Topological Sort: Complexity

```
TOP-SORT(G)
   for each vertex u \in G : V
         do u color \leftarrow WHITE
           \mu.\pi \leftarrow NIL
   time \leftarrow 0
   for each vertex u \in G.V
         do if u, color = WHITE
                then TOP-SORT-VISIT(u)
TOP-SORT-VISIT(u)
     u. color \leftarrow RED
   time \leftarrow time +1
 3 u.d \leftarrow time
    for each v \in G. Adj[u]
           do if v, color = WHITE
                 then v.\pi \leftarrow u
                        DFS-VISIT(v)
    u color \leftarrow BLUF
    time \leftarrow time +1
10
     u.f \leftarrow time
     print u
```

- Initialization costs O(|V|)
- The procedure TOP-SORT-VISIT is called exactly once for each node v.
- During an execution of TOP-SORT-VISIT(v), the for loop executes |G. Adj[v]| times.
- Total time = O(|V| + |E|)

TRANSPOSITION OF GRAPHS

Transposition of Graphs

The transposition of a graph G = (V, E) is a graph $G^T = (V, E^T)$ where $E^T = \{(u, v) | (v, u) \in E\}$ (i.e., all the edges are reversed)

Transposition of Graphs G^{τ}

Strongly connected components

A Strongly Connected Component (SCC) of a graph G = (V, E) is a maximal set of nodes $C \subseteq V$ such that every two nodes $u, v \in C$ are reachable from each other

Observation

 G^T and G have the same set of SCC's

Component Graph

- V^{SCC} has one node for each SCC in G
- ESCC has an edge if there is an edge between the two corresponding SCC's in G

Strongly connected components

A Strongly Connected Component (SCC) of a graph G = (V, E) is a maximal set of nodes $C \subseteq V$ such that every two nodes $u, v \in C$ are reachable from each other

Observation

 G^T and G have the same set of SCC's

Component Graph

- V^{SCC} has one node for each SCC in G
- E^{SCC} has an edge if there is an edge between the two corresponding SCC's in G

Strongly connected components

A Strongly Connected Component (SCC) of a graph G = (V, E) is a maximal set of nodes $C \subseteq V$ such that every two nodes $u, v \in C$ are reachable from each other

Observation

G^T and **G** have the same set of SCC's

Component Graph

- V^{SCC} has one node for each SCC in G
- ESCC has an edge if there is an edge between the two corresponding SCC's in G

Strongly connected components

A Strongly Connected Component (SCC) of a graph G = (V, E) is a maximal set of nodes $C \subseteq V$ such that every two nodes $u, v \in C$ are reachable from each other

Observation

 G^T and G have the same set of SCC's

Component Graph

- VSCC has one node for each SCC in G
- E^{SCC} has an edge if there is an edge between the two corresponding SCC's in G

Strongly connected components

A Strongly Connected Component (SCC) of a graph G = (V, E) is a maximal set of nodes $C \subseteq V$ such that every two nodes $u, v \in C$ are reachable from each other

Observation

G^T and **G** have the same set of SCC's

Component Graph

- VSCC has one node for each SCC in G
- E^{SCC} has an edge if there is an edge between the two corresponding SCC's in G

SCC(G)

- 1 call DFS(G) to compute finishing times
- 2 Call $DFS(\hat{G}^T)$ (call nodes in order of decreasing finishing times)
- 3 each tree in depth-first forest = SCC

SCC(G)

call DFS(G) to compute finishing times \dots

SCC(G)

call DFS(G) to compute finishing times \dots

SCC(G)

1 call DFS(G) to compute finishing times 2

SCC(G)

1 call DFS(G) to compute finishing times

SCC(G)

1 call DFS(G) to compute finishing times

3

SCC(G)

call DFS(G) to compute finishing times

SCC(G)

1 call DFS(G) to compute finishing times

3

time = 5

e f

SCC(G)

call DFS(G) to compute finishing times

3

time = 6

e f

SCC(G)

1 call DFS(G) to compute finishing times

3

time = 7

e f

SCC(G)

1 call DFS(G) to compute finishing times

time = 8

i e f

SCC(G)

1 call DFS(G) to compute finishing times

3

time = 9

jief

SCC(G)

1 call DFS(G) to compute finishing times 2

time = 10

jief

SCC(G)

call DFS(G) to compute finishing times

3

time = 11

SCC(G)

1 call DFS(G) to compute finishing times 2

time = 12

SCC(G)

call DFS(G) to compute finishing times

3

time = 13

SCC(G)

call DFS(G) to compute finishing times

3

time = 14

SCC(G)

1 call DFS(G) to compute finishing times

3

time = 15

SCC(G)

call DFS(G) to compute finishing times

time = 16

d h g j i e f

SCC(G)

1 call DFS(G) to compute finishing times 2

3

time = 17

dhgjief

SCC(G)

1 call DFS(G) to compute finishing times 2

time = 18

adhgjief

SCC(G)

1 call DFS(G) to compute finishing times 2

3

time = 19

SCC(G)

call DFS(G) to compute finishing times

time = 20

SCC(G)

Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

SCC(G)

Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

SCC(G)

Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

time = 0

SCC(G)

.....
 Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

time = 1

SCC(G)

Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

time = 2

⊗b **x** d h g j i e f

SCC(G)

Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

time = 3

XX d h g j i e f

SCC(G)

.....
 Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

time = 4

XX d h g j i e f

SCC(G)

.....
 Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

time = 5

XX d h g j i e f

SCC(G)

Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

time = 6

XXXXhgjief

SCC(G)

.....
 Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

time = 7

XXXXhgjief

SCC(G)

.....
 Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

time = 8

XXXXhgjief

SCC(G)

.....
 Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

time = 9

& b x d k g j i e f

SCC(G)

.....
 Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

SCC(G)

.....
 Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

SCC(G)

.....
 Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

time = 12

XXXXXXgji**XX**

SCC(G)

.....
 Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

time = 13

XXXXXgji**XX**

SCC(G)

.....
 Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

time = 14

& b x d k g j i & K

SCC(G)

.....
 Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

SCC(G)

.....
 Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

SCC(G)

.....
 Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

SCC(G)

.....
 Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

SCC(G)

Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

SCC(G)

Call DFS(G^T)

(call nodes in order of decreasing finishing times)

3

- 1
- 2
- 3 each tree in depth-first forest = SCC

- 1
- 2
- 3 each tree in depth-first forest = SCC

- 1
- 3 each tree in depth-first forest = SCC

- 1
- 3 each tree in depth-first forest = SCC

- 1
- 2
- 3 each tree in depth-first forest = SCC

SCC(G)

1

3 each tree in depth-first forest = SCC

- $\begin{array}{ll} 1 & \dots \\ 2 & \dots \\ 3 & \text{each tree in depth-first forest} = SCC \end{array}$

SCC(G)

1

3 each tree in depth-first forest = SCC

SCC(G)

2 3 each tree in depth-first forest = SCC

