

HEX 32-BIT AND 40-BIT 2518

2518 2519

SILICON GATE MOS 2500 SERIES

DESCRIPTION

These Signetics 2500 Series hex 32-bit and hex 40-bit recirculating static shift registers consist of enhancement mode P-channel silicon gate MOS devices integrated on a single monolithic chip. Internal recirculation logic plus TTL/DTL level clock signals are provided for maximum interfacing ease.

FEATURES

- TYPICAL CLOCK AND DATA RATE = 3MHz
- SINGLE TTL/DTL COMPATIBLE CLOCK
- LOW CLOCK CAPACITANCE
- RECIRCULATION PATH ON CHIP
- TWO BIT LENGTHS AVAILABLE
- SINGLE-ENDED (BARE DRAIN) BUFFERS
- TTL, DTL COMPATIBLE SIGNALS
- STANDARD PACKAGE 16 PIN DIP
- P-MOS SILICON GATE TECHNOLOGY

BLOCK DIAGRAM

PIN CONFIGURATIONS (Top View)

APPLICATIONS

LOW COST SEQUENTIAL ACCESS MEMORIES LOW COST STATIC BUFFER MEMORIES CRT REFRESH MEMORIES – LINE STORAGE LINE PRINTERS CARD EQUIPMENT BUFFERS

TRUTH TABLE

RECIRCULATE	INPUT	FUNCTION	
1	o	Recirculate	
1	1	Recirculate ''0" is Written	
0	0		
0	1	"1" is Written	

PART IDENTIFICATION TABLE

PART NUMBER	BIT LENGTH	PACKAGE		
2518B	HEX 32	16-Pin Silicone DIP		
25181	HEX 32	16-Pin Ceramic DIP		
2519B	HEX 40	16-Pin Silicone DIP		
25191	HEX 40	16-Pin Ceramic DIP		

MAXIMUM GUARANTEED RATINGS (1)

Operating Temperature (2) 0°C to +70°C

Storage Temperature -65°C to +150°C

Package Power Dissipation

at $T_A = 70^{\circ} C$ 640 mW

Data and Clock Input Voltages and Supply Voltages with Respect to V_{CC}

+0.3V to -20V

NOTES

- Stresses above those listed under "Maximum Guaranteed Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
- For operating at elevated temperatures the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 125°C C/W, junction to ambient.
- 3. All inputs are protected against static charge.
- Parameters are valid over operating temperature range unless specified.
- All voltage measurements are referenced to ground.
- Manufacturer reserves the right to make design and process changes and improvements.
 Typical values are at +25°C and nominal supply voltages.
- Guaranteed input levels are stated for worst case conditions including a ±5% variation in V_{CC} and a temperature variation of 0°C to +70°C. Actual input requirements with respect to V_{CC} are V_{IH} = V_{CC} - 1.85V and V_{IL} = V_{CC} - 4.15V.
- 9. VOL is dependent on RL and input characteristics of driven gate.

DC CHARACTERISTICS

 $T_{\Delta} = 0^{\circ} \text{C to } +70^{\circ} \text{C}; \ V_{CC} = +5 \text{V } +5 \text{V } \pm 5\%; \ V_{GG} = -12 \text{V } \pm 5\% \text{ unless otherwise noted.}$ (Notes: 3,4,5,6,7)

SYMBOL	TEST	MIN	TYP	MAX	UNIT	CONDITIONS
I _{LI}	INPUT LOAD CURRENT		10	500	nA	V _{in} =-5.5V, T _A = 25°C
ILO	OUTPUT LEAKAGE CURRENT		10	1000	nA	T _A = 25°C
1 _{LC}	CLOCK LEAKAGE CURRENT		10	500	nA	VILC = GND, TA = 25°C
^I GG	POWER SUPPLY CURRENT		16	25	mA	CONTINUOUS OPERATION T _A = 25°C F = 1.5 MHz
VIL	INPUT "LOW" VOLTAGE			+0.6	V	Note 8
VIH	INPUT "HIGH"VOLTAGE	+3.4		5.3	٧	Note 8
VILC	CLOCK INPUT "LOW" VOLTAGE			+0.6	٧	Note 8
VIHC	CLOCK INPUT "HIGH" VOLTAGE	+3.4	†	5.3	٧	Note 8

TIMING DIAGRAM

TIMING DIAGRAM

AC CHARACTERISTICS $T_A = 0^{\circ}C$ to +70°C, $V_{CC} = +5V +5V \pm 5\%$; $V_{GG} = -12V \pm 5\%$, $V_{ILC} = 0.4V$ to 4.0V

SYMBOL	TEST	MIN	TYP	MAX	UNIT	CONDITIONS
FREQUENCY	CLOCK REP RATE	DC	3	2	MHz	See Max Frequency Curve
^t Ø₽W	CLOCK PULSE WIDTH	,300		100	μsec	See Note B
t∳PW	CLOCK PULSE WIDTH	.200	İ	DC	μsec	
t _R , t _F	CLOCK PULSE TRANSITION			5	μsec	
^t DS	DATA WRITE (SET-UP) TIME	100		· · · · ·	nsec	
t _{DH}	DATA TO CLOCK HOLD TIME	50			nsec	
^t A	CLOCK TO DATA OUT DELAY		300	350	nsec	
^t RS	RECIRCULATE SET-UP TIME	150			ns	
^t RH	RECIRCULATE HOLD TIME	50			ns	
C _{in}	INPUT CAPACITANCE		5	7	pF	@ 1MHz; V _{in} = V _{CC} ; V _{AC} = 25mV p-p
СФ	CLOCK CAPACITANCE		6	7	pF	@ 1MHz; $V_{\phi} = V_{CC}$; $V_{AC} = 25 \text{mV p-p}$
VOL	OUTPUT "LOW" VOLTAGE		+0.5		٧	IOL = 1.6mA
V _{ОН}	OUTPUT "HIGH" VOLTAGE	+3.8			٧	ΙΟΗ = 100μΑ

APPLICATIONS DATA

SIGNETICS HEX 32-BIT AND HEX 40-BIT STATIC SHIFT REGISTERS = 2518, 2519

APPLICATIONS (Cont'd)

CIRCUIT SCHEMATIC

TYPICAL CHARACTERISTIC CURVES

