UPPMAX Basics

What even is UPPMAX?

What about SNIC?

How do I submit jobs to the queue?

UPPMAX Basics

- Organisation
 - What is what
 - What does UPPMAX do
- How a cluster works
- How to use UPPMAX clusters

Organisational orienteering

- VR/SRC and a consortium of universities funds SNIC
 Swedish National Infrastructure for Computing
- SNIC and Uppsala University funds UPPMAX UU's supercomputing centre
- NBIS, a part of SciLifeLab, has a facility called
 Compute and Storage, which is hosted by UPPMAX

UPPMAX

- Mission for SNIC: to provide a quality high-performance computing environment nationally
 - General purpose
 - Data intensive
 - Sensitive data (human sequences)
- Mission for UU: to provide relevant services to the university
- Mission for NBIS/SciLifeLab: to provide the best possible resources for data-driven life science, especially bioinformatics

UPPMAX (more concretely)

- Computer infrastructure
 - Clusters
 - Storage
 - Cloud
- Support staff
 - System administrators
 - Application experts

High Performance Computing

High Performance Computing

UPPMAX Clusters

	Rackham	Snowy	Bianca
Purpose	General-purpose	General-purpose	Sensitive
# Nodes	486	228-ish	200
Memory/node	128 GB	128 GB	128 GB
Fat nodes	512 GB - 1 TB	512 GB – 4 TB	256 GB
Local disk (scratch)	2 TB	4 TB	4 TB
Login nodes	Yes	No	Yes
Storage	Crex, Lutra	Crex, Lutra	Castor, Cygnus

Storage systems

- Domus Home directories for Rackham/Snowy
- Crex Project storage for Rackham/Snowy
- Castor Project storage for Bianca
- Cygnus "New" project storage for Bianca
- Lutra Paid-for storage on Rackham/Snowy

Exercise

- Open a web browser to http://uppmax.uu.se.
- Find articles about how to best use the storage systems and good data practices.
- Look at Support -> User Guides and Support -> FAQ
- Find and discuss articles in Breakout Rooms

Solution

- Disk Storage Guide
- How to use a node's own disk
- How does automatic backup of project areas work at UPPMAX?
- File compression guide
- How can I compress my files as quickly and efficiently as possible?
- How should I compress FastQ-format files?
- Which compression format should I use for NGS-related files (FastQ, Fasta, VCF, GFF, etc.)?

Storage Basics

- All nodes can access:
 - your home directory on Domus or Castor
 - a project directory on Crex or Castor
 - Its own local disk (2-3 TB)
- If you're reading/writing a file once, use a directory on Crex or Castor
- If you're reading/writing a file many times...
- copy to the file to "scratch", the node local disk
- "cp myFile \$SNIC_TMP"

Other systems

- Dis part of the SNIC Science Cloud
- Grus NGI data delivery
- Da Vinci GPU resource

Bianca

- Login:
 - First 2FA login to Bianca portal
 - Second regular login to private cluster
- Data import/export:
 - SFTP from "outside"
 - Data in non-backed up "wharf" directory
 - NGI delivery via SUPR

Bianca Has No Internet

- We have "solutions"
 - Data transfers:
 - NGI Deliver through SUPR
 - Transit server (transit.uppmax.uu.se)
 - Software
 - Almost the same software library as Rackham
 - Local Conda repository
 - Local Perl modules
 - Local R packages

ThinLinc

- Both Rackham and Bianca offer graphical login
- On web: https://rackham-gui.uppmax.uu.se
- Or use the client (only for Rackham)
- Try it now!

Slurm, sbatch, the job queue

Problem: 1000 users, 500 nodes, 10k cores

Need a queue: Time ↑

Slurm, sbatch, the job queue

• Easiest to schedule single-threaded, short jobs

Jobs

- Job = what happens during booked time
- Described in a Bash script file
 - Slurm parameters
 - Load software modules
 - Move around file system
 - Run programs
 - Collect output
- ...and more

Slurm parameters

- 1 mandatory setting for jobs:
 - Which compute project? (-A)
- 3 settings you really should set:
 - Less than one node? (¬p)
 - How many cores? (-n)
 - How long at most? (-t)
- If in doubt:
 - •-p core
 - •-n 1
 - -t 10-00:00:00

Slurm parameters

- Where should it run? (-p node or -p core)
 - Use a whole node or just part of it?
 - 1 node = 20 cores (16 on Bianca & Snowy)
 - 1 hour walltime = 20 core hours = expensive
 - Waste of resources unless you have a parallel program or need all the memory

Default value: core

How long is the job

- How long is it? (-t)
 - Always overestimate with ~50%
 - Jobs killed when timelimit reached
 - Only charged for time used
- -t = time (hh:mm:ss)
 - 78:00:00 or 3-6:00:00
- Default value: 7-00:00:00

Efficient jobs

- Use your booked cores or memory
 - (at least 50%)
- Runtime longer than 1 hour
 - Combine shorter jobs
- Ask UPPMAX support for help!

Interactive jobs

- Most work is most effective as submitted jobs, but e.g. development needs responsivity
- Interactive jobs are high-priority but limited in -n and -t
- Quickly give you a job and logs you in to the compute node
- Require same Slurm parameters as other jobs
- Try it:
 - \$ interactive -A g2020018 -p core -n 1 -t 10:00
 - Which node are you on?
 - Logout with Ctrl-D or logout

A simple job script template

```
#! /bin/bash -l
#SBATCH -A g2020018
#SBATCH -p core
#SBATCH -n 1
#SBATCH -t 00:10:00
#SBATCH -J Template script # Name of the job
# go to some directory
cd /proj/g2020018/marcusl
# load software modules
module load bioinfo-tools
# do something
echo Hello world!
```

```
# Tells Bash to run this like a Bash script
# Project name
# Asking for cores (as opposed to multiple nodes)
# Number of cores
# Ten minutes
# Name of the job
```

Exercise (1)

- Copy the template from the previous slide
- Put it into a file named "jobtemplate.sh"
- Make the file executable (chmod)

Exercise (2)

- Submit the job:
 - \$ sbatch jobtemplate.sh
- Note the job id!
- Check the queue:
 - \$ jobinfo -u yourusername
- When it's done, look for the output:
 - \$ ls
- Check the output file to see if it ran correctly

Other Slurm tools

- Squeue quick info about jobs in queue
- Jobinfo detailed info about jobs
- Finishedjobinfo summary of finished jobs
- Jobstats efficiency of booked resources

Software at UPPMAX

- 800+ programs and packages installed
- Managed by a 'module system'
 - Everything already installed, but hidden
 - Manually loaded before use
 - Bioinformatics tools require loading the "bioinfo-tools" module first
- module spider <name> search for modules
- module load <module name> Loads the module
- module unload <module name> Unloads the module
- module list Lists loaded modules

Software exercise

- Use module spider to find a software you like to use.
- Try to run the software, e.g. "\$ samtools"
- Load the latest version of the module
 - load bioinfo-tools first if necessary
 - You can write "module load samtools" and then TAB-complete to see the available modules
- Now try to run the software again

Wrap-up

- In breakout rooms, ask for help:
 - Finding software
 - Writing job scripts
 - Basic Linux