POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych	Nazwa Przedmiotu	
Studia Kierunek	Ćwiczenie nr 4.1 (tytuł)	
Grupa dziekańska Zespół Nazwisko i Imię	Użytkowanie oscylos	kopów cyfrowych
1	Data	Ocena

1. Oscyloskop cyfrowy

przeprowadź badania wg pkt.5.1 instrukcji (notuj w punktach co robisz!); scharakteryzuj podstawowe właściwości oscyloskopu; wykonaj pomiary parametrów amplitudowych i czasowych sygnałów (odczyt z ekranu, kursory, pomiary automatyczne); wykorzystaj generator funkcyjny i impulsowy; dołącz wydruki ekranu oscyloskopu

2. Badania układów elektrycznych

przerysuj obraz z ekranu oscyloskopu lub dołącz wydruki zaobserwuj kształt i zmierz parametry prądu magnesującego

R=.....

I_m =.....

zaobserwuj kształt i zmierz parametry napięcia na diodzie Zenera

U_z =.....

U_p =.....

zbadaj charakterystyki diod półprzewodnikowych (praca XY oscyloskopu)

zmierz przesunięcie fazowe między napięciami w układzie RLC, zaobserwuj krzywe Lissajous

zmierz czas przelotu przekaźnika

- 1) $t_p = \dots, t_z = \dots, t_p / t_z = \dots$
- 2) t_p =, t_z =, t_p/ t_z =
- 3) $t_p = \dots, t_z = \dots, t_p / t_z = \dots$

zbadaj przebiegi jednokrotne

