Chapter 3 Organization of the IBM Personal Computers

Learning Outcome

- Takes a closer look at the IBM personal computers.
 - Intel 8086 family.
- Introduces the registers and mention some of their special functions.
- Ideas of segmented memory is discussed.
- Overall structure of the IBM PC is explored.
 - Memory organization, I/O parts, and the DOS and BIOS routines.

The Intel 8086 Family of Microprocessors

- Family consists of the IBM PC, PC XT, PC AT, PS/l, and PS/2 models.
 - Based on the Intel 8086 family
- Includes the 8086, 8088, 80186, 80188, 80286, 80386, 80386SX, 80486, and 80486SX.

Family	Use for IBM PCs
8088	PC and PC XT
80286	PC AT and PS/1
80186	PC-compatible laptop models
8086, 80286, 80386, or 80486	PS/2 models

8086 and 8088 Microprocessors

8086

- Intel introduced in 1978
- It has a 16-bit data bus
- It has a faster clock rate,
 It was less expensive to and thus has better performance.

8088

- Intel introduced in 1979
- It has a 8-bit data bus
- build a computer

80186 and 80188 Microprocessors

- 80186 and 80188 are enhanced versions of the 8086 and 8088, respectively.
- Incorporate all the functions of the 8o86 and 8o88 microprocessors
- Execute some new instructions called the extended instruction set.
- These processors offered no significant advantage over the 8086 and 8088 and hence develop the 80286.

80286 Microprocessor

- Introduced in 1981 and is also 16 bit microprocessor.
- Offers the following important advances over its predecessors
 - Two modes of operations
 - Real address mode and protected virtual address mode
 - More addressable memory.
 - In protected mode can address 16 megabytes of physical memory (as opposed to 1 megabyte for the 8086 and 8088)
 - Virtual memory in protected mode.
 - Treat external storage (that is, a disk) as if it were physical memory, and therefore execute programs that are too large to be contained in physical memory.

80386 and 80386SX Microprocessors

- First 32-bit microprocessor,
- The 80386 (or 386) introduced in 1985.
- Much faster than the 80286
- Address 4 gigabytes of physical memory, and 64 terabyte (246 bytes) of virtual memory.
- 386SX has essentially the same internal structure as the 386, but it has only a 16-bit data bus.

80486 and 80486SX Microprocessors

- Another 32-bit microprocessor.
- Introduced in 1989.
- Fastest and most powerful processor in the family.
- Performs floating-point number operations, and an 8-KB cache memory that serves as a fast memory area to buffer data coming from the slower memory unit.
- 486SX is similar to the 486 but without the floating-point processor.

Organization of the 8086/8088 Microprocessors

- Registers
 - Information inside the microprocessor is stored in registers.
 - Classify according to the functions they perform.
 - Data registers hold data for an operation.
 - Address resisters hold the address of an instruction or data.
 - A status registers keeps the current status of the processor.
 - There are fourteen 16-bit registers.

Data Registers: AX, BX, CX, DX

- Available to the programmer for general data manipulation.
- Instruction is faster (requires fewer clock cycles) if the data are stored in registers.
 - Modern processors
- High and low bytes of the data registers can be accessed separately.
- These four registers are to being general-purpose registers.

Data Registers: AX, BX, CX,DX (2)

- AX (Accumulator Register)
 - Prefers to use in arithmetic, logic, and transfer instructions
 - In multiplication and division operations, one of the numbers involved must be in AX or AL.
 - Input and output operations also require the use of AL and AX.

Data Registers: AX, BX, CX,DX (3)

- BX (Base Register)
 - Serves as an address register; an example is a table lookup. Instruction called XLAT (translate).
 - Locates a byte entry in a table in memory, using the contents of the AL register as a table index,
 - Copies the contents of the table entry back into the AL register.

Data Registers: AX, BX, CX, DX (4)

- CX (Count Register)
 - Program loop constructions are facilitated.
 - Serves as a loop counter.
 - Controls a special class of instructions called string operations.
 - Shift and rotate bits.
- DX (Data Register)
 - DX is used in multiplication and division. It is also used in I/O operations.

Segment Registers: CS, DS, SS, ES

- Address registers store addresses of instructions and data in memory.
- Memory is a collection of bytes. Each memory byte has an address, starting with o.
- 8086 processor assigns a 20-bit physical address to its memory locations.
 - It is possible to address $2^{20} = 1,048,576$ bytes (one megabyte) of memory.
- Introduce the idea of memory segments.
 - A direct consequence of using a 20-bit address in a 16-bit processor.

Segment Registers: CS, DS, SS, ES (2)

- Memory Segment
 - A block of 2¹⁶ (or 64 K) consecutive memory bytes.
 - A segment number is 16 bits, so the highest segment number is FFFFh.
 - A memory location is specified by giving an offset.
 - The number of bytes from the beginning of the segment.
 - The first byte in a segment has offset o and the last offset in a segment is FFFFh

Segment Registers: CS, DS, SS, ES (3)

- Segment: Offset Address
 - A memory location may be specified by providing a segment number and an offset
 - the form of segment:offset that is known as a logical address.
 - For example, A4FB:4872h means offset 4872h within segment A4FBh.
 - To obtain a 20-bit physical address.
 - The 8086 microprocessor first shifts the segment address 4 bits to the left (this is equivalent to multiplying by 10h), and then adds the offset.

Segment Registers: CS, DS, SS, ES (4)

• Thus the physical address for A₄FB:₄8₇2 is

```
A4FB0h
+ 4872h
A9822h (20-bit physical address)
```

- Find the 20 bit physical address for B5EC:3654
- THE ANSWER IS: B9514

Segment Registers: CS, DS, SS, ES (4)

- Location -of Segments
 - the layout of the segments in memory.
 - segment o start at address oooo:oooo = oooooh and ends at oooo: FFFF = oFFFFh
 - Segment 1 starts at address 0001:0000 = 00010h and ends at 0001 : FFFF = 1000Fh

Location of Memory Segments

The segments
start every 10h=
16 bytes and
the starting
address of a
segment always
ends with a hex
digit o

Segment Registers: CS, DS, SS, ES (5)

• Example: For the memory location whose physical address is specified by 1256Ah, give the address in segment:offset form for segments 1256h and 1240h.

```
Solution: Let X be the offset in segment 1256h and Y the offset in segment 1240h. We have 1256 \text{Ah} = 12560 \text{h} + X \text{ and } 1256 \text{Ah} = 12400 \text{h} + Y and so X = 1256 \text{Ah} - 12560 \text{h} = \text{Ah} \text{ and } Y = 1256 \text{Ah} - 12400 \text{h} = 16 \text{Ah} thus-1256 \text{Ah} = 1256:000 \text{A} = 1240:016 \text{A}
```

Segment Registers: CS, DS, SS, ES (6)

• Example: A memory location has physical address 8oFD2h. In what segment does it have offset BFD2h?

```
physical address = segment × 10h + offset

Thus

segment × 10h = physical address - offset

in this example

physical address = 80FD2h

- offset = BFD2h

segment × 10h = ,75000h

So the segment must be 7500h.
```

Pointer and Index Registers: SP, BP SI, DI

- SP, BP, SI, and DI normally point to (contain the offset addresses of) memory locations.
- Use in arithmetic and other operation.
- SP (Stack Pointer)
 - The SP (stack pointer) register is used in conjunction with SS for accessing the stack segment.
- *BP* (*Base Pointer*)
 - The BP (base pointer) register is used primarily to access data on the stack.
 - Unlike SP

Pointer and Index Registers: SP, BP SI, DI (2)

- SI (Source Index)
 - The SI (source index) register is used to point to memory locations in the data segment addressed by DS.
- DI (Destination Index)
 - The DI (destination index) register performs the same functions as SI.
- Instruction Pointer: IP
 - To access the instructions, the 8o86 uses the registers CS and IP
 - CS register contains the segment number of the next instruction, and the IP contains the offset.

Pointer and Index Registers: SP, BP SI, DI (3)

- FLAGS Register
 - To indicate the status of the microprocessor.
 - There are two kinds of flags:
 - Status flags
 - Control flags
 - Reflects the result of an instruction executed by the processor, for instance, Zero Flag
 - Enable or disable certain operations of the processor, for instance, interrupt flag

Organization of the PC

- The Operating System
 - The most important piece of software for a computer is the operating system.
 - To coordinate the operations of all the devices that make up the computer system.
 - Some of the operating system functions are:
 - Reading and executing the commands typed by the user
 - Performing I/o operations.
 - Generating error messages ·
 - Managing memory and other resources.
 - DOS

Organization of the PC (2)

- There are several versions of DOS, with each new version having more capabilities.
- DOS is not just one program; it consists of a number of service routines.
- supports a Graphical User Interface (GUI), allowing the use of a mouse.
- There are two types of user commands, internal and external
 - Routines loaded into memory
 - Routines that not loaded into memory

BIOS

- System routines stored in ROM that are not destroyed when the power is off.
 - BIOS (Basic Input/Output System) routines
- Performs I/O operations for the PC
- Routines are machine specific.
 - Different hardware configuration has it own BIOS routines