Aug. 2, 2016

Name: ATE

Student number

1. [9] Consider the following table of events and their probabilities

event	A	B	C	D
probability	1	1	1	1
	4	~	~	
	4	2	- X	- 4

- (a) [3] Suppose A and B are mutually exclusive. Find $\Pr[A \biguplus B]$.
- (b) [3] Suppose A and B are independent. Find $\Pr[A+B]$
- (c) [3] Is it possible that the events A,B,C and D are mutually exclusive? Justify your answer.
- 2. [6] A communication network consisting of three nodes and four links is shown below.

Symbol	Event
F	No path from X to Y ex-
	ists
A_i	Link i fails

- (a) [3] Write an expression for F in terms of A_1,A_2,A_3 and A_4
- (b) [3] Let $\Pr[A_i] = p_i$ and write an expression for $\Pr[F]$ in terms of p_i 's. Assume that links fail independent of each other.

Pr CAUB) = Pr (A) + Pr(B) - Breats) (mutually ex. (i) (a) = /4 + 1/2 = 3/4 -

$$=\frac{3}{4}-\frac{1}{8}=\frac{5}{8}$$

REPRESE No, there cannot because Pr[A] + Pr[B] + Pr[C] + Pr[D] > 1(C)

and hence there should be some non-zero quantity andong Po [ADD)

F= A, A, A2 + A3 A4 V

Pr (Anonc) or ří[bncno] or Pr [An cho]

(P)