IN THE CLAIMS:

1	1. (Origi	1. (Original) A method of fabricating a membrane electrode assembly for use in a			
2	fuel cell, including the steps of:				
3		(A)	providing a mold that includes a first and second mold plate		
4			adapted to impart a desired shape;		
5		(B)	providing a lead frame, including at least a first lead frame compo-		
6			nent that is adapted to be received into said mold;		
7		(C)	assembling a protonically conductive membrane with catalyst coat		
8			ings on each of its major surfaces onto said first lead frame com-		
9			ponent;		
10		(D)	placing said lead frame containing said membrane into the mold;		
11		(E)	compressing said second mold plate onto said first mold plate;		
12		(F)	introducing a moldable material in communication with said mold		
13			plates;; and		
14		(G)	allowing the moldable material to cure in said mold to solidify and		
15			form a frame around said membrane to produce a membrane elec-		
16			trode assembly for use in a fuel cell.		
1	2. (Original) The method as defined in claim 1 including the further step of integrate				
2	ing a current collector into said first lead frame component onto which said mem-				
3	brane	is place	ed.		
1	3. (Original)	The n	nethod as defined in claim 2 including the further steps of:		
2	(A)	provid	ding a second lead frame component that includes a second current		
3		collec	tor; and		
4	(B)	sandv	viching said catalyzed membrane between the first and second cur-		
5		rent c	ollectors;		
,	(C)	introd	ucing the lead frame components into said mold:		

8	(E)	introd	lucing a moldable material into said mold;	
9	(F)	allow	ring the moldable material to cure to form the shape of the mold	
10		plates	s thereby forming a sealed fuel cell.	
1	4. (Original)	The n	nethod as defined in claim 1 wherein the step of introducing the	
2	moldable mat	erial in	cludes injection molding a moldable material into said mold.	
1	5. (Original)	The n	nethod as defined in claim 1 wherein the step of introducing the	
2	moldable mat	erial in	cludes placing said moldable material onto said mold plates and cast-	
3	ing a frame around the membrane electrode assembly.			
1	6. (Original)	A me	thod of fabricating a fuel cell array, including the steps of:	
2		(A)	providing a mold that includes a first and second mold plate of a	
3	desired shape;			
4		(B)	providing a sheet of protonically conductive membrane material	
5	that has been coated on each of its major surfaces with a catalyst material to form			
6	a shee	t of cat	alyzed membrane;	
7		(C)	providing a lead frame structure that includes a plurality of indi-	
8			vidual lead frame components that define separate fuel cells;	
9		(D)	assembling said sheet of catalyzed membrane into said lead frame	
10			structure;	
11		(E)	placing said lead frame structure containing said membrane sheet	
12	into the mold;			
13		(F)	compressing said second mold plate onto said first mold plate;	
14		(G)	introducing a moldable material in communication with said mold	
15	plates;	, ,		
16		(H)	allowing the plastic to cure in said mold to solidify and form a	
17			frame around said individual fuel cells to produce a fuel cell array.	

compressing the first and second mold plates together;

(D)

7

1	7. (Original) A method of establishing a seal around a fuel cell, comprising the steps of:				
2	(A)providing a lead frame assembly including:				
3	(i) providing first and second current collectors adapted to serve as				
4	lead frame components in an associated mold device;				
5	(ii) assembling fuel cell components including:				
6	(a) a catalyzed protonically conductive, electronically				
7	non-conductive membrane; and				
8	(b) first and second diffusion layers disposed on oppo-				
9	site sides of said membrane;				
10	(iii) arranging said fuel cell components between said first and				
11	second current collectors;				
12	(B) inserting the resulting lead frame assembly into a molding device;				
13	(C) introducing a moldable material into said molding device; and				
14	(D) allowing said moldable material to cure to seal the edges of the				
15	lead frame assembly against leaks to thereby seal the fuel cell.				
1	8. (Original) The method as defined in claim 7 comprising the further step of spot weld-				
2	ing the first and second current collectors that serve as lead frame components together to				
3	maintain the components in place.				
I	9. (Original) The method as defined in claim 7 including the further step of trimming				
2	excess lead frame component portions away from said fuel cell to result in a finished fuel				
3	cell.				
1	10. (Original) The method as defined in claim 7 including the further step of providing				
2	said mold device with a mold cavity which, when said moldable material is introduced				
3	into said mold cavity and cured, creates a frame around said fuel cell.				
1	11. (Original) A method of establishing a sealed diffusion layer for use in a fuel cell in-				
2	cluding the steps of:				

- 3 (A) providing a first current collector integrated into a lead frame component;
- 4 (B) applying a diffusion layer material to said first current collector on said 5 lead frame component;
- 6 (C) providing a second current collector integrated into a lead frame compo-7 nent;
- 8 (D) applying a second diffusion layer material to said second current collector 9 on said lead frame component;
- 10 (E) placing a catalyzed protonically conductive, electronically non-conductive 11 membrane between said first lead frame component and said second lead frame compo-12 nent to form an assembly;
- (F) placing said assembly into a molding device;

18

19

- 14 (G) closing mold plates associated with said molding device and hot pressing 15 the assembly for a predetermined time period;
- 16 (H) introducing a moldable material into said mold cavity of said mold device; 17 and
 - (I) allowing said moldable material to cure to seal said lead frame components integrating said first and second current collectors together to form a fuel cell.
- 1 12. (Original) The method as defined in claim 11 wherein step (H) includes an insert molding technique.
- 1 13. (Original) The method as defined in claim 11 including the further step of spot weld-
- 2 ing said first and second lead frame components together to maintain said components in
- position prior to placing the assembly into the molding device.
- 1 14. (Original) A method of introducing compression into a fuel cell, comprising the steps of:
- 3 (A) providing a catalyst coated membrane;
- 4 (B) providing a first current collector integrated into a first lead frame compo-5 nent suitable for being received into a molding device;

6	(C)	providing a second current conector integrated into a second lead traine					
7	component s	component suitable for being received into a molding device;					
8	(D)	assembling said first and second current collectors on either side of said					
9	membrane to	membrane to result in an assembly;					
10	(E)	placing said assembly into said mold device that has been provided with					
11	mold plates;						
12	(F)	closing said mold plates and maintaining said mold plates in a closed posi-					
13	tion to induc	ce compression; and					
14	(G)	introducing a moldable material into the resulting mold cavity thereby cre-					
15	ating a frame	ating a frame around the fuel cell that maintains compression within said fuel cell withou					
16	the need for mechanical fasteners.						
1	15. (Withdra	awn) A fuel cell manufactured by the steps of:					
2	(A)	providing a lead frame assembly including:					
3		(i) providing first and second current collectors adapted to serve as lead					
4		frame components in an associated mold device;					
5		(ii) assembling fuel cell components including:					
6		(a) a catalyzed protonically conductive, electronically non-					
7		conductive membrane; and					
8		(b) first and second diffusion layers disposed on opposite sides					
9		of said membrane;					
10		(iii) arranging said fuel cell components between said first and second cur-					
11	rent collector	s;					
12	(B)	inserting said lead frame assembly into an insert molding device;					
13	(C)	introducing a moldable material into said insert molding device; and					
14	(D)	allowing said moldable material to cure to seal the edges of the lead frame					
15	assembly aga	inst leaks to thereby form a sealed fuel cell.					
1	16. (Withdra	wn) A component for use in a direct oxidation fuel cell comprising:					
2	(A)	a conductive material suitable for use as a current collector;					

a second material applied to said conductive material, which second mate-(B) 3 rial acts as a diffusion layer in a fuel cell; and 4 a lead frame structure disposed around said current collector material for (C) 5 handling said component during a molding process. 6 The component as defined in claim 16 wherein a plurality of aper-17. (Withdrawn) 1 tures are disposed within said current collector for plastic flow through during an insert 2 molding process. 3 A direct oxidation fuel cell comprising: 18. (Withdrawn) 1 a catalyzed membrane electrolyte; (A) 2 an anode current collector disposed generally parallel to an anode aspect (B) 3 of said catalyzed membrane electrolyte, said anode current collector including an anode 4 diffusion layer material that has been hot pressed to seal said diffusion layer material onto 5 said current collector; and 6 a cathode current collector disposed generally parallel to a cathode aspect (C) 7 of said membrane electrolyte, a cathode diffusion layer material having 8 been hot pressed onto said cathode current collector to seal it against leak-9 ages; and 10 (D) disposing said catalyzed membrane between said anode current collector 11 and said cathode current collector, a load connected across said anode cur-12

1 19. (Withdrawn) The direct oxidation fuel cell as defined in claim 18 wherein said 2 anode current collector includes pores sized in such a manner that the anode current col-3 lector functions as a diffusion layer.

troduced.

13

14

15

rent collector and said cathode current collector to utilize the electricity

produced in reactions generated when a fuel substance and oxygen are in-

- 1 20. (Withdrawn) The direct oxidation fuel cell as defined in claim 18 wherein said
- 2 cathode current collector includes pores sized in such a manner that the cathode current
- 3 collector functions as a diffusion layer.
- 1 21. (Withdrawn) The fuel cell as defined in claim 18 wherein said anode current col-
- lector includes channels therein such that said anode current collector also functions as a
- 3 flow field plate.
- 1 22. (Withdrawn) The fuel cell as defined in claim 18 wherein said cathode current
- 2 collector includes channels such that said cathode current collector functions as a flow
- 3 field plate.