StandardLists=true

FONCTIONS du SECOND et TROISIÈME DEGRÉ

Contents

Ι	\mathbf{Trin}	nôme du second degré	1					
	Fonction polynôme du second degré	1						
2 Représentation graphique d'une fonction du second degré								
	3	Variations	2					
	4	Fonction de la forme $x \mapsto ax^2 + c$ avec $a \neq 0$ et $c \in \mathbb{R}$	3					
	5	Fonctions du second degré admettant deux racines distinctes ou confondues	4					
		a Racine d'un polynôme	4					
		b Fonction $x \mapsto a(x-x_1)(x-x_2)$	5					
		c Signe de $x \mapsto a(x-x_1)(x-x_2)$	6					
ΙΙ	Fon	ction polynôme de degré 3	6					
	1	Définitions	6					
	2	Fonctions de la forme $x \mapsto ax^3 + d$ avec $a \neq 0$ et d réel	7					
	3	Racine cubique	8					
	4	Forme factorisée	8					
	5	Définitions	8					

I Trinôme du second degré

1 Fonction polynôme du second degré

Définition

Une fonction du second degré est une fonction dont l'expression peut s'écrire sous la forme d'un trinôme du second degré: $f(x) = ax^2 + bx + c$ avec $a \neq 0$. $(ax^2 + bx + c$ est la **forme développée** de f et a, b et c s'appellent les **coefficients du trinôme**)

Methode 1

Dans chacun des cas préciser si la fonction est une fonction trinôme du second degré et si c'est le cas les valeurs des coefficients a, b et c.

Fonctions	Trinôme?	a =	b =	c =
$R(x) = -x^2 + \frac{\sqrt{5}}{2}x$		$a = \dots$	$b = \dots$	$c = \dots$
$S(x) = 3x^{2} - (1 - \sqrt{2}) x - \pi$		$a = \dots$	$b = \dots$	$c = \dots$
$T(x) = \frac{6x^2}{5} - 3$		$a = \dots$	$b = \dots$	$c = \dots$
$U(x) = (2x - 3)^2 - 4(x + 3)^2$		$a = \dots$	$b = \dots$	$c = \dots$
V(x) = -3(x-4)(x+2)		$a = \dots$	$b = \dots$	$c = \dots$

3 Variations

Variations

Pour toute fonction f du second degré définie par sa forme développé $f(x) = ax^2 + bx + c$ On envisage deux cas pour les variations de f qui dépendent du signe de a:

x	$-\infty \qquad \qquad \alpha = -\frac{b}{2a} \qquad \qquad +\infty$
f(x)	$\beta = f(-\frac{b}{2a})$

- La fonction admet **un maximum** pour: $x = \alpha = -\frac{b}{2a}$ qui vaut $\beta = f(-\frac{b}{2a})$
- La fonction admet un **minimum** pour: $x = \alpha = -\frac{b}{2a}$ qui vaut $\beta = f(-\frac{b}{2a})$

Methode 2

Parmi les fonctions k, i et j, lesquelles admettent un minimum ,un maximum? Préciser quand cela est possible pour quelle valeur il est atteint et ce qu'il vaut.

$$k(x) = -6(x-3) + 5$$
, $i(x) = -x^2 - 8x + 15$ et $j(x) = x^2 + 7$

4 Fonction de la forme $x \mapsto ax^2 + c$ avec $a \neq 0$ et $c \in \mathbb{R}$

Fonction paire

Les fonctions de la forme $x \mapsto ax^2 + c$ avec $a \neq 0$ et $c \in \mathbb{R}$ sont des fonctions paires.

Preuve 1

Courbe représentative

Les paraboles d'équation $y = ax^2 + c$ ont pour axe de symétrie l'axe des ordonnées et pour sommet le point de coordonnées (0; c).

Proposition

Soient a un réel non nul et c un réel.

On définit sur \mathbb{R} les fonctions $f: x \mapsto ax^2, g: x \mapsto -ax^2$ et $h: x \mapsto ax^2 + c$.

- La courbe représentative de g s'obtient en effectuant une symétrique par rapport à l'axe des abscisses à partir de celle de f.
- La courbe représentative de h s'obtient en effectuant une translation de vecteur $c\overrightarrow{j}$ à partir de celle de f.

$$3$$

$$2$$

$$h(x) = ax^{2} + c$$

$$f(x) = ax^{2} \quad g(x) = -ax^{2}$$

$$-3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3$$

$$-1 \quad -2$$

$$-3 \quad -4$$

Remarque 1

Plus a est grand et plus la courbe se contracte, plus a est proche de 0 et plus la courbe s'étale.

$$x \mapsto 3x^2$$
$$x \mapsto 0.25x^2$$

Methode 3

1. Déterminer les expressions des fonctions f et g représentées sur le graphique ci-dessous.

- 2. Sur le graphique ci-dessus tracer les courbes représentatives des fonctions h et k définies sur $\mathbb R$ par h: $x\mapsto 2x^2$ et $k:x\mapsto -2x^2+2$ en expliquant votre démarche.
- 5 Fonctions du second degré admettant deux racines distinctes ou confondues
- a Racine d'un polynôme

Racine d'un polynôme

On dit que le réel x_1 est une racine de la fonction polynôme f si et seulement si $f(x_1) = 0$

Methode 4

Soit la fonction K définie sur \mathbb{R} par $K(x) = -4x^2 + 1$ montrer que $x = -\frac{1}{2}$ est une racine de K.

Methode 5

On a représenté ci dessous une fonction H du second degré . Déterminer les racines de H.

b Fonction $x \mapsto a(x-x_1)(x-x_2)$

Fonction second degré sous forme factorisée

Soient a, x_1, x_2 des réels avec $a \neq 0$. On définit sur \mathbb{R} une fonction $f: x \mapsto a(x-x_1)(x-x_2)$.

- x_1 et x_2 sont les racines du polynôme f. Si $x_1 = x_2$, on dit qu'il y a une **racine double**.
- Les points d'intersection A et B de la courbe représentative de f avec l'axe des abscisses sont les points de coordonnées $(x_1; 0)$ et $(x_2; 0)$. Si $x_1 = x_2$, il n'y a qu'un seul point d'intersection.
- L'axe de symétrie de la courbe représentative de f a pour équation $x = \frac{x_1 + x_2}{2}$. Il passe par le milieu I du segment [AB].

A B

I

Methode 6

On considère la parabole ci-dessous rapportée à un repère orthonormé. Déterminer la forme factorisée de f puis sa forme développée.

Methode 7

Montrer que x = 2 est une racine de l'expression $B(x) = 3x^2 - 2x - 8$ et en déduire une factorisation de B(x)

c Signe de $x \mapsto a(x-x_1)(x-x_2)$

Signe fonction second degré sous forme factorisée

Soit f la fonction définie sur \mathbb{R} par $: f(x) = a(x - x_1)(x - x_2)$. Le signe de f(x) dépend du signe de a. f est du signe de a à l'extérieur des racines. On suppose que $x_1 \leq x_2$

n suppose que x

• Si a > 0

x	$-\infty$		x_1		x_2		$+\infty$
f(x)		+	0	_	0	+	

• Si a < 0

x	$-\infty$		x_1		x_2		$+\infty$
f(x)		_	0	+	0	_	

Remarque 2

Cette proposition reste valable si $x_1 = x_2$ on a alors $f(x) = a(x - x_1)^2$ et les tableau de signes suivants:

• Si a > 0

x	$-\infty$		x_1		$+\infty$
f(x)		+	0	+	

• Si a < 0

$\frac{\sin a < \sigma}{x}$	$-\infty$	x_1	$+\infty$
f(x)		- o -	

Methode 8 (Résolution inéquation)

Soit f la fonction définie par $f(x) = 3x^2 - 9x - 30$

- 1. Montrer que -2 et 5 sont les racines de f
- 2. En déduire la forme factoriser de f(x)
- 3. Déterminer le signe de f sur \mathbb{R} puis résoudre $f(x) \ge 0$

II Fonction polynôme de degré 3

1 Définitions

Définition

On appelle fonction polynôme de degré 3, ou du troisième degré, toute fonction f dont l'expression peut s'écrire sous la forme $f(x) = ax^3 + bx^2 + cx + d$, où a, b, c et d sont des nombres réels, et $a \neq 0$.

Exemple 1

- 1. La fonction cubique $f(x) = x^3$ est une fonction polynôme de degré 3 avec $a = \dots$, $b = \dots$, $c = \dots$ et $d = \dots$
- 2. La fonction g définie par $g(x)=\frac{1}{3}x^3-2x$ est une fonction polynôme de degré 3 avec $a=\ldots$, $b=\ldots$, $c=\ldots$ et $d=\ldots$
- 3. La fonction h définie par $h(x)=-3(x-2)(x+2)^2$ est une fonction polynôme de degré 3 avec $a=\ldots$, $b=\ldots$, $c=\ldots$ et $d=\ldots$

2 Fonctions de la forme $x \mapsto ax^3 + d$ avec $a \neq 0$ et d réel

\mathbf{P}_{1}

Proposition

On considère la fonction f définie sur \mathbb{R} par $f: x \mapsto ax^3 + d$ où a est un réel non nul et d un réel. On note \mathcal{C}_f sa courbe représentative. Cette fonction est une fonction polynôme de degré 3.

La courbe représentative C_f de f s'obtient à partir de celle de la fonction $x \mapsto ax^3$ par translation de vecteur $d\overrightarrow{j}$.

- Si a > 0, la fonction f est croissante sur \mathbb{R} .
- Si a < 0, la fonction f est décroissante sur \mathbb{R} .

$$\begin{array}{cc}
x \mapsto x^3 & x \mapsto -2x^3 + 2 \\
x \mapsto -2x^3 & & & \\
\end{array}$$

Exemple 2

Remarque : d est l'ordonnée du point d'intersection entre \mathcal{C}_f et l'axe des ordonnées.

3 Racine cubique

Racine cubique

L'équation $x^3 = a$ admet une unique solution qui s'écrit

$$x = \sqrt[3]{a} = a^{\frac{1}{3}}$$

. Cette unique solution s'appelle \mathbf{racine} cubique de a.

xx # 3/0

Methode 9 (Résolution équations)

Résoudre les équations, et donner une valeur approchée de la solution:

• $E_1: x^3 = 27$

• $E_3: x^3 = 0, 8$

• $E_5: -2x^3 + 8 = -120$

• $E_2: x^3 = -729$

• $E_4:3x^3=24$

4 Forme factorisée

5 Définitions

Propriété

Soit f une fonction de degré définie par sa forme développée $f(x) = ax^3 + bx^2 + cx + d$.

ullet Si f admet trois racines $x_1,\,x_2$ et $x_3,\,$ alors f peut s'écrire sous la forme factorisée:

$$f(x) = a(x - x_1)(x - x_2)(x - x_3)$$

• Réciproquement si f peut s'écrire sous forme factorisée $f(x) = a(x - x_1)(x - x_2)(x - x_3)$ alors x_1 , x_2 et x_3 sont des racines de f.

Remarque 3

Les racines x_1 , x_2 et x_3 ne sont pas forcement distinctes.

- Si x₁ = x₂ = x₃:
 on a alors:
 f(x) = a(x x₁)³.
 La courbe de f coupe l'axe des abscisses une fois au point de coordonnée (x₁; 0)
- Si x₂ = x₃ avec x₁ ≠ x₂:
 on a alors:
 f(x) = a(x x₁)(x x₂)².
 La courbe de f coupe l'axe des abscisses 2 fois aux points de coordonnées (x₁; 0) et (x₂; 0)
- x_1 , x_2 et x_3 sont distincts: on a alors: $f(x) = a(x-x_1)(x-x_2)(x-x_3)$. La courbe de f coupe l'axe des abscisses 3 fois aux points de coordonnées $(x_1;0)$, $(x_2;0)$ et $(x_3;0)$

5	0	7
4	-3 - 2 = 10 1 2 3	6
3	-2	5
2	-3	4
1	-4	3
0	-5	2
-3 - 2 = 10 1 2 3	-6	1
-2	-7	0
-3	-8	-3 - 2 = 10 1 2 3
-4	- 9	-2

Methode 10 (Détermination graphique d'une fonction polynôme du 3^{me} degré) Déterminer les expressions des 3 fonctions représentées ci-dessus

Methode 11 (Déterminer les racines d'une fonction polynôme de degré 3) Soit la fonction f définie sur \mathbb{R} par $f(x) = 2x^3 - 6x^2 - 2x + 6$

- 1. Vérifier que pour tout $x \in \mathbb{R}$: f(x) = 2(x-1)(x+1)(x-3)
- 2. En déduire les racines de f
- 3. Étudier le signe de f(x) sur \mathbb{R}