Invited talk: Metaheuristics in Acoustic Topology Optimisation

Dr Vivek T. Ramamoorthy

Learning outcomes

- ✓ Introduce a new problem / case study: Topology optimisation
- ✓ Learn how to formulate the problem
- ✓ Refresh genetic algorithms
- ✓ Introduce CMA-ES and Differential Evolution
- ✓ Introduce multi-objective optimisation
- ✓ Discuss some results

Funding acknowledgement: No2Noise project

University of Nottingham

Matelys-Research Lab

NO2NOISE is funded by European Union's Horizon 2020 Marie Sklodowska Curie Actions grant: 765472

Acoustic materials in aircraft

! Carefully removing material can improve absorption!

Topology optimisation

Topology optimised parts resulted in 1000 kg reduction in weight per aircraft in Airbus A380. L Krog, A Tucker, M Kemp, R Boyd (2004)

TO flow (source: 3DPrint.com)

What is Topology?

Same Topology

One hole Three holes

Topology – Essentially, the number of holes.

Topology vs. Shape optimisation

Shape optimisation

- X No of holes (Topology) not changed
- ✓ Only the boundary of the shape is optimised

Topology optimisation

- ✓ Topology optimised &
- Shape optimised

Canonical acoustics problem

Acoustic porous material

Canonical acoustics problem

UH Anechoic chamber

What is the shape with the highest sound absorption for a given amount of acoustic material?

Problem formulation

Design domain

Shape as an array

$$\chi = [0,0,0,1,1,...]$$

1 – Porous material

0 - Air

Sound source

Reflected

Genetic algorithm

Interactive GA on MAXSUM problem

$$\max_{x_i} \sum x_i \qquad x_i \in \{0,1\}$$

$$x_i \in \{0,1\}$$

https://vivektramamoorthy.github.io/GeneticAlgorithmTutorial/

Problem of local optimality

Gradient algorithms have the tendency to get stuck at local optimal solutions.

Starting here and using a gradient update will lead to a local optimal solution

Covariance Matrix Adaptation – Evolution Strategy (CMA-ES)

$$\min_{\mathbf{x}} f(\mathbf{x})$$

$$x \in \mathbb{R}^n, f \in \mathbb{R}$$

- Population based
- Uses a multivariate gaussian to approximate the fitness landscape

CMA-ES in action

https://vivektramamoorthy.github.io/CMAEStutorial/

Wiki-user: Sentewolf

Reference:

- Hansen, Nikolaus, Sibylle D. Müller, and Petros Koumoutsakos. "Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)." Evolutionary computation 11.1 (2003): 1-18.
- Hansen, Nikolaus. "The CMA evolution strategy: A tutorial." arXiv preprint arXiv:1604.00772 (2016).

Continuous relaxation

Ramamoorthy, V. T., Özcan, E., Parkes, A. J., Sreekumar, A., Jaouen, L., & Bécot, F. X. (2020). Acoustic topology optimisation using CMA-ES. *Proceedings of ISMA2020 and USD*, 511-522.

Differential evolution

Population-based continuous optimisation metaheuristic

References:

- Storn, Rainer, and Kenneth Price. "Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces." *Journal of global optimization* 11.4 (1997): 341-359.
- Price, Kenneth, Rainer M. Storn, and Jouni A. Lampinen. Differential evolution: a practical approach to global optimization. Springer Science & Business Media, 2006.

```
\chi^j \leftarrow Generate Initial Population;
Evaluate their Fitnesses \overline{\alpha}_i \leftarrow \overline{\alpha}(\boldsymbol{\chi}^j);
while fevals < budget do
     for j = 0, j = length[pop], j + + do
          Randomly select a, b, c from pop;
          y \leftarrow a + F \times (b - c);
          for i=0, i=length[\boldsymbol{\chi}^j], i++ do
               if rand < CrossoverRate then
                    y_i \leftarrow \chi_i^j;
               end
          end
          Evaluate \overline{\alpha}(y);
          if \overline{\alpha}(y) is better than \overline{\alpha}(\chi) then
                Replace \chi^j \leftarrow y
          end
          Keep track of the best solution \chi^*;
     end
end
return \chi^*;
```

Comparison of algorithms

TABU - Tabu search

DEd - Discrete Differential evolution

Not the full picture!

CMAd – Discrete CMAES

DEd - Discrete Differential evolution

TABU - Tabu search

Results for other problem instances reveal more:

Vivek T. Ramamoorthy, Ender Özcan, Andrew J. Parkes, Abhilash Sreekumar, Luc Jaouen and François-Xavier Bécot, Comparison of heuristics and metaheuristics for topology optimisation in acoustic porous materials, The Journal of Acoustical Society of America, Vol. 150, Issue 4, pp. 3164-3176, (October 2021).

Multi objective optimisation

More than one objective function For ex: Simultaneously,

- 1. Maximise sound absorption $\bar{\alpha}$
- 2. Minimise weight V_f

Pareto front:

- The set of non-dominated solutions
- Non-dominated solutions: No other solution is better in terms of all objectives.
- Each non-dominated solution is considered as equally good

Solid Isotropic Material with Penalisation (SIMP) 18

Comparison of algorithms

A comparison with the state of the art

Ramamoorthy, V.T., Özcan, E., Parkes, A.J., Jaouen, L. and Bécot, F.X., 2023. Multi-objective topology optimisation for acoustic porous materials using gradient-based, gradient-free, and hybrid strategies. The Journal of the Acoustical Society of America, 153(5), pp.2945-2945.

Other topology optimisation applications: Optimised ribs in an aircraft wingbox

Aage, Niels, et al. "Giga-voxel computational morphogenesis for structural design." Nature 550.7674 (2017): 84-86.

Other topology optimisation applications: Solar metallization

Optimal layout of metallization in leaf shaped solar panels turn out to be very similar to the veins in a leaf.

Nature has optimised it before we did. ©

Reference:

Gupta, D. K., et al. "Topology optimization of front metallization patterns for solar cells." Structural and Multidisciplinary Optimization 51.4 (2015): 941-955.

Some of my students' TO designs

Connecting Rod Amal Benadict, MSc Automotive

Summary

Intro to topology optimisation

Formulated the optimisation problem

Problem of local optimality

Refreshed Genetic algorithms

Continuous algorithms (CMA-ES and Differential evolution)

Introduction to Multi-objective optimisation

Reviewed some results

Thank you

