2011-PH

EE24BTECH11027 - satwikagv

1) Consider a cylinder of height h and radius a, closed at both ends, centered at the origin. Let $\bar{r} = \hat{i}x + \hat{j}y + \hat{k}z$ be the position vector and \hat{n} a vector normal to the surface. The surface integral $\int \bar{r} \cdot \hat{n}$ ds over the closed surface of the cylinder is

- a) $2\pi a^2 (a + h)$
- b) $3\pi a^2 h$

- c) $2\pi a^2 h$
- d) zero
- 2) The solutions to the differential equation

$$\frac{dy}{dx} = -\frac{x}{y+1}$$

are a family of

- a) circles with different radii
- b) circles with different centres
- c) straight lines with different slopes
- d) straight lines with different intercepts on the y-axis
- 3) A particle is moving under the action of a generalized potential

$$V(q, \dot{q}) = \frac{1 + \dot{q}}{q^2}$$

The magnitude of the generalized force is

- a) $\frac{2(1+\dot{q})}{a^3}$
- b) $\frac{2(1-\dot{q})}{a^3}$ c) $\frac{2}{a^3}$

d) $\frac{\dot{q}}{a^3}$

1

4) Two bodies mass m and 2m are connected by a spring of spring constant k. The frequency of the normal mode is

	134
a)	4 1 3K
~,	$\sqrt{2m}$

b)
$$\sqrt{\frac{k}{m}}$$

c)
$$\sqrt{\frac{2k}{3m}}$$

d)
$$\sqrt{\frac{k}{2m}}$$

5) Let (p,q) and (P,Q) be two pairs of canonical variables. The transformation

$$Q = q^{\alpha} \cos \beta p$$
$$P = q^{\alpha} \sin \beta p$$

is canonical for

a)
$$\alpha = 2, \beta = \frac{1}{2}$$

b)
$$\alpha = 2, \beta = 2$$

c)
$$\alpha = 1, \beta = 1$$

a)
$$\alpha = 2, \beta = \frac{1}{2}$$
 b) $\alpha = 2, \beta = 2$ c) $\alpha = 1, \beta = 1$ d) $\alpha = \frac{1}{2}, \beta = 2$

6) Two particles, each of rest mass m collide head-on and stick together. Before collision, the speed of each, mass was 0.6 times the speed of light in free space. The mass of the final entity is

a)
$$\frac{5m}{4}$$

b) 2m

c)
$$\frac{5m}{2}$$

d) $\frac{25m}{9}$

7) The normalized eigenstate of a particle in a one-dimensional potential well

$$V(x) = \begin{cases} 0 & \text{if } 0 \le x \le a \\ \infty & \text{otherwise} \end{cases}$$

are given by

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right)$$
, where $n = 1, 2, 3...$

The particle is subjected to a perturbation

$$V'(x) = \begin{cases} V_0 \cos \frac{\pi x}{a} & \text{for } 0 \le x \le \frac{a}{2} \\ 0 & \text{otherwise} \end{cases}$$

The shift in the ground state energy due to the perturbation, in the first order perturbation theory, is

a)
$$\frac{2V_0}{3\pi}$$

b)
$$\frac{V_0}{3\pi}$$

c)
$$-\frac{V_0}{3\pi}$$

c)
$$-\frac{V_0}{3\pi}$$
 d) $-\frac{2V_0}{3\pi}$

8) If the isothermal compressibility of a solid is $\kappa_T = 10^{-10} \, (\text{Pa})^{-1}$, the pressure required to increase its density by 1% is approximately

b) 10^6 Pa

c)
$$10^8$$
 Pa

9) A system of N non-interacting and distinguishable particles of spin 1 is in thermodynamic equilibrium. The entropy of the system is

- a) $2k_B \ln N$
- b) $3k_B \ln N$ c) $Nk_B \ln 2$
- d) $Nk_B \ln 3$
- 10) A system has two energy levels with energies ϵ and 2ϵ . The lower level is 4fold-degenerate while the upper level is doubly degenerate. If there are N noninteracting classical particles in the system, which is in thermodynamic equilibrium at a temperature T, the fraction of particles in the upper level is
 - a) $\frac{1}{1+e^{-\frac{\epsilon}{k_BT}}}$ b) $\frac{1}{-\frac{\epsilon}{k_BT}}$

- c) $\frac{1}{2e^{\frac{\epsilon}{k_BT}} + e^{\frac{2\epsilon}{k_BT}}}$ d) $\frac{1}{2e^{\frac{\epsilon}{k_BT}} + e^{\frac{2\epsilon}{k_BT}}}$
- 11) A spherical conductor of radius a is placed in a uniform electric field $\mathbf{E} = E_0 \hat{k}$. The potential at a point $P(r, \theta)$ for r > a, is given by

$$\pi(r,\theta) = constant - E_0 r \cos \theta + \frac{E_0 a^3}{r^2} \cos \theta$$

where r is the distance of **P** from the centre **O** of the sphere and θ is the angle OP

with the z-axis.

The charge density of the sphere at $\theta = 30^{\circ}$ is

- a) $\frac{3\sqrt{3}\epsilon_0 E_0}{2}$
- b) $\frac{3\epsilon_0 E_0}{2}$
- c) $\frac{\sqrt{3}\epsilon_0 E_0}{2}$
- d) $\frac{\epsilon_0 E_0}{2}$
- 12) According to the single particle nuclear shell model, the spin-parity of the ground state of ${}^{17}_{8}O$ is
 - a) $\frac{1}{2}^{-}$

- b) $\frac{3}{2}^{-}$ c) $\frac{3}{2}^{+}$
- d) $\frac{5}{2}^{+}$
- 13) In the β -decay of neutron $n \to p + e^- + \bar{V}_e$, the anti-neutrino \bar{V}_e escapes detection. Its existence is inferred from the measurement of
 - a) energy distribution of electrons
 - b) angular distribution of electrons
 - c) helicity distribution of electrons
 - d) forward-backward asymmetry of electrons