

TI. (CAUCHY) f: [a, b) -> IR borally	
f(x)dx (CONV) => HE>0 FB <b< th=""><th></th></b<>	
$\int_{a}^{a} \int_{a}^{b} \int_{a$	
- Hte(be, b) be	
TI. (CAUCHY) $f: [a, b] \rightarrow \mathbb{R}$ locally integrable $\begin{cases} f(x)dx \mid CONV \end{cases} \Leftarrow 7 \forall \varepsilon > 0 \exists b < b \end{cases}$ Such that $\left \int f(x)dx \right < \varepsilon$. Meaning: $(CONV) \Leftarrow 7 \text{can be made}$ By arbitr. small.	
§ 10. 2. Testing the convergence of improper integrals	
improper intégrals	
TT2. (companison I) $f, g: [a, b] \rightarrow \mathbb{R}$ locally integrable	
and $0 \le f(x) \le g(x) \forall x \in [a, b]$	
Then (i) $\int_a^b g(conv) = \int_a^b f(conv)$	
$ (ii) \begin{cases} a & b \\ Div \end{cases} = \int_{\alpha}^{a} g(Div) $	
II3, (companion II) g(x) > 0 on [a, b)	
and $\lim_{x \to 6} \frac{f(x)}{g(x)} = L \in \mathbb{R} (< \infty)$	
$\frac{x \rightarrow 6}{1 + 0} = \begin{cases} f & g & g \\ g & $	
Then (i) if $L \neq 0$ If & $\int g$ are both (ow)	1
(ii) if L = 0 Ig CONV => SIFI (CONV)	
absolute (CONV)	

1HB3-5

Rk. Usually, you compare with x $\int_{1}^{\infty} x^{\alpha} dx = \int_{1}^{\infty} (conv) for \alpha < -1$ $(Div) for \alpha > -1$ $\begin{cases} 1 & p \\ x & p \\ x$ $E \times 4$, $\int_{1}^{\infty} \frac{\sin x}{x^2} dx$ (conv) be cause $\left|\frac{\sin x}{x^2}\right| \leq x^{-2} \text{ and } \left(x^{-2}(\cos v)\right).$ Ex5. $\int e^{-x} (\sin x)^3 dx$ (conv) because | e^ x (sin x)3 | < e^-x and $\int e^{-x} dx = 1$ (Conv). Rk. [should be placed after I Cauchy) $\int_{a}^{\infty} |f(x)| dx \quad (Conv) \Rightarrow \int_{a}^{\infty} f(x) dx \quad (Conv)$ [absolute CONV => CONV]. Rk. (a, b], (a, b) work the for same wary HIW: \[e^{-1x1} dx \]

			_
			/
193	>	1	

Int. by parts I change of var both work if the improper integral is (CONV). Rk.

§ 10.3, Improper integrals with parameter $f: [a, b] \times [c, d] \longrightarrow \mathbb{R}$ F: [c,d] -> R improper -> with parameter $F(y) = \int f(x, y) dx$

So: "Improper I with parameter,"
are functions (of y)

Det The improper integral w. param. If f(x,y)dx converges uniformly to Fa f(x,y)dx converges uniformly to Fif f(x,y)dx converges uniformly to Fin f(x,y)dx converges unifor

 $\left|\int_{R}^{t} f(x,y) dx - F(y)\right| \leq \varepsilon \text{ and } b_{\varepsilon} \neq b(y)$ Notation: (m CONV) indep of y

 $E_{X,6} \left(\text{Euler Gamma function} \right) \underset{\Gamma(n+1)=n!}{\text{New}} E_{X,6} \left(\text{Euler Gamma function} \right) \underset{\Gamma(n+1)=n!}{\text{New}} e^{-x} dx, \quad \underset{\Gamma(n+1)=\sqrt{n}}{\text{New}} e^{-x} dx$

TT4. (Continuity) f: [a, 6) x [c, d] -> R

If f cont (as function of two var) then Fly) = \int f(x, y) dx cont (in y) IT 5. (Diff-ability) f cont, $\frac{\partial f}{\partial y}$ cont and $\int_{a}^{b} f(x,y) dx$ (u CONV), $\int_{a}^{a} \frac{\partial f}{\partial y}(x,y) dx$ (u CONV)

Then $F(y) = \int_{a}^{b} f(x,y) dx$ is diff-able and $F'(y) = \int_{a}^{b} \frac{\partial f}{\partial y}(x,y) dx$ 16. [Integrability] font, $\int_{a}^{b} f(x,y) dx \left(u CoNV\right)$ then $F(y) = \int_{a}^{b} f(x,y) dx$ is y-integrableand $\int_{a}^{d} F(y) dy = \int_{a}^{d} \left[\int_{a}^{b} f(x,y) dx \right] dy$ $= \int_{-\infty}^{\infty} \left\{ \int_{-\infty}^{\infty} f(x,y) \, dy \right\} dx$

HB3-5

 $E_{X}, F. \qquad f(X) = \begin{cases} \frac{e^{X}-1}{x} & x \neq 0 \\ 1 & x = 0 \end{cases}$ f diffable? f(n) =? trick f(x) = \int e^xy dy $f'(x) = \int_{-\infty}^{1} \frac{\partial}{\partial x} (e^{xy}) dy$ $= \int_{-\infty}^{\infty} y e^{xy} dy = \dots$ $f'(x) = \int_{-\infty}^{\pi} y^2 e^{xy} dy = ...$ $f(0) = \int y e^{y} dy = \frac{1}{2}$ $f''(0) = \int_{0}^{1} y^{2} e^{0y} dy = \frac{1}{3}$ $\frac{2^{(n)}}{|o|} = \int y^n e^{-y} dy = \frac{1}{n+1}$