29	9. a. Explain the DFA Minimization algorithm with an example.	12	3	2
	b. Solve the following grammar S>aAa bBb BB			
	A> C B> S A			
	C>S \varepsilon for the string "abaaba", find (i) Left most derivation [4 Marks] (ii) Right most derivation [4 Marks] (iii) Derivation Tree [4 Marks]			
30	 a. Give pushdown automata that recognize the following languages. Give both a drawing and 6-tuple specification for each PDA. A = { w ∈ {0, 1} * w contains at least three 1s} 	12	5	3
	b. Convert the given CFG to CNF $S \rightarrow ASB$ $A \rightarrow aAS a \epsilon$ $B \rightarrow SbS A bb$ (OR)			
31	. a. Construct a TM for the language $\{w \ w^R \mid w \in \{0, 1\}^*\}$. Note : w^R is a reverse of w.	12	3	4
	b. (i) Explain Multi tape and Multi head Turing machine with suitable example [6]			
	(ii) Compare the difference between recursive and recursively enumerable languages [6 Marks]			
32.	a. (i) Plan and explain on decidable and un-decidable problems with an example [6 Marks]	12	2	5
a	(ii) Design and prove that for two recursive languages L1 and L2 their union and intersection is recursive. [6 Marks]			
	b. (i) Describe post correspondence problem.[6 Marks] (ii) Compare and write about tractable and untractactable problems with an example. [6 Marks]			

Reg. No

B.Tech. DEGREE EXAMINATION, JUNE 2023 Third Semester

18CSC261T - FORMAL LANGUAGE AND AUTOMATA THEORY

(For the candidates admitted during the academic year 2018-2019 to 2021-2022)

Note:

i.	. Part - A should be answered in OMR sheet within a	(may 40)
	hall invigilator at the end of 40 minutes.	rst 40 minutes and OMR sheet should be handed over to
1	Part - Rand Part C 1 111	

T	Part - B and Part - C should be answered in the ime: 3 Hours	•	Max.	Marks	s: 10
	Part - A (20 × 1 Mar Answer All (rks = 20 Marks) Questions		rks BL	C
]	 A Language for which no DFA exist is a (A) Regular Language (C) May be Regular 		1	1	1
2	 When are 2 finite states equivalent? (A) Same number of transitions (C) Same number of states as well as transitions 	(B) Same number of states (D) Both are final states	1	1	1
3	The minimum state automation equiva number of states?	lent to the below FSA has the following	1	2	1
	(A) 1 (C) 3	(B) 2 (D) 4			
4.	While applying Pumping lemma over a la to L and fragment it into parts. (A) 2 (C) 3	nguage, we consider a string w that belong	1 .	2	trust
5.	Which among the following cannot be acc (A) L is a set of numbers divisible by 2 (C) L is a set of string with odd number of 0		1	2	2
6.	Which among the following is the root of to (A) Production P (C) Variable V	he parse tree? (B) Starting Variable S (D) Terminal T	1	1	2
7.	Production Rule: aAb->agb belongs to which (A) Regular Language (C) Context Sensitive Language	ch of the following category? (B) Context free Language (D) Recursively Enumerable Language	1	1	2

8.	Which of the following does the given parse t	ree correspond to?	l	2	2
	P				
	(o) (P) (o)				
		-			
	E				
	(A) P->1100	(B) P->0110 (D) P->0101			
0	(C) P->1100ε abb*c denotes which of the following?	(2)1 - 0101	1	3	3
9.	(A) {ab^nc n=0}	(B) $\{ab^nc n=1\}$			
	(C) $\{a^nbc n=0\}$	(D) $\{abc^n n>0\}$	1	2	3
10.	Given Grammar: S->A,				
	A->aA, A->E,				
	D > 1. A	Useless productions?			
	Which among the following productions are (A) S->A	(B) A->aA			
	(C) A->E	(D) B->bA	1	1	3
11.	Let G=(V, T, P, S) be a CFG such that equivalent grammar G' having no E produ	t Then there exists an ections.	1	9	,
	$(A) e \in L(G)$	(B) $w \notin L(G)$ (D) $w \in L(G)$			
	(C) $e \notin L(G)$	(D) w ∈ L(G)	1	1	3
12	Which of the following statement is false? (A) Context free language is the subset	(B) Regular language is the subset of context sensitive language		,,	
	of context sensitive language (C) Recursively enumerable language is	(D) Context sensitive language is a			
	the super set of regular language	subset of context free language	1	2	4
13	3. A language L is said to be Turing decidable	e if: (B) TM recognizes L			
	(A) It is recursive (C) TM accepts L	(D) It is recursive & TM recognizes L			4
14	4. The value of n if turing machine is defined	d using n-tuples:	1	1	4
	(A) 6 (C) 8	(B) 7 (D) 9			
1	5. In a n-track turing machine,	head/heads read and write on all tracks	1	2	4
	simultaneously. (A) 1	(B) 2			
	(C) n	(D) infinite			

			1	1	4
6.	Which among the following are undecidable theories? (A) The first order theory of boolean (B) The first order theory		1	1	•
	algebra geomentry (C) The first order theory of hyperbolic geometry geometry (D) The first order theory number with addition, multiplication, and eq				
			1	2	5
	7. Post Correspondence problem is (A) decidable decision problem (C) not a decision problem (B) undecidable decision (D) Recursive				
18.	3. Consider three decision problem A, B, C. A is decidable and B is not following is a correct option?		1	2	5
	(A) C is undecidable if C is reducible to (B) C is undecidable if B	is reducible to			
	B (C) C is decidable if A is reducible to C (D) C is decidable if C is B's complement.	reducible to			
19	9. The complexity class P consist of all the decision problems that car using polynomial amount of computation time.	n be solved by	1	1	5
	(A) Push Down automata (B) DFA	machine			
	(C) NDIII	macinic	1	2	5
20	20. Traveling sales man problem belongs to which of the class? (A) P problem (B) NP problem		•		
	(A) I problem				
	(C) Ellical protein		Mark	ks BL	CO
	Part - B (5 × 4 Marks = 20 Marks) Answer any 5 Questions				
21	21. Construct DFA for the language accepting strings starting with '101'.		4	3	1,
	22. Construct a DFA for the regular expression aa*bb*.		4	3	2
	23. Examine the string aaabbabbba for the Grammar G with		4	4	3
	S>aB bA A>a aS bAA B>b bS aBB				
2	 Give a CFG for the language of palindrome string over {a,b}. Write language ,L=(aⁿbⁿ ≥n). 	the CFG for the	4	3	3
2	25. Explain the special features of TM? Define universal TM. Defin	ne Instantaneous	4	2	4
7	description of TM. 26. Compare and contrast recursive and recursively enumerable language	es.	4	2	4
	27. State when a problem is said to be decidable and give an example of	f an undecidable	4	1	5
	problem.		Ma	rks BL	CO
	Part - C ($5 \times 12 \text{ Marks} = 60 \text{ Marks}$) Answer All Questions	S			
,	28. a. Given $\sum = \{a,b\}$ Analyze and construct a DFA which recognize	the language L=	12	3	I
-	$\{b^{m} \ a \ b^{n} : m,n > 0\}$ (OR)				
	b. Construct the following ε-NFA to DFA.				
	states ε a b c				
	(n) (n) (n)				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

09JA3-18CSC261T

Page 3 of 4