Latent Factor Recommender System

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

Recommendations via Optimization

- Goal: Make good recommendations
 - Quantify goodness using RMSE:
 Lower RMSE ⇒ better recommendations

- Want to make good recommendations on items that user has not yet seen. Can't really do this!
- Let's set build a system such that it works well on known (user, item) ratings
 And hope the system will also predict well the unknown ratings

The Netflix Utility Matrix R

We want our system to predict well the hidden (known) ratings

SVD: $A = U \Sigma V^T$

1.4

1.2

.3

■ "SVD" on Netflix data: $\mathbf{R} \approx \mathbf{Q} \cdot \mathbf{P}^T$

- For now let's assume we can approximate the rating matrix R as a product of "thin" $Q \cdot P^T$
 - R has missing entries but let's ignore that for now!
 - Basically, we will want the reconstruction error to be small on known ratings and we don't care about the values on the missing ones

Latent Factor Models (e.g., SVD)

Ratings as Products of Factors

■ How to estimate the missing rating of user x for item i?

\hat{r}_{xi}		q_i	. 1	o_{x}^{T}	
		q _{ik}	•	p_{xl}	\
	č				
	•	ow i			
r	$\mathbf{p}_{\mathbf{x}} = 0$	colun	n <i>x</i>	of P^{T}	

items	.1	4	.2
	5	.6	.5
	2	.3	.5
	1.1	2.1	.3
	7	2.1	-2
	-1	.7	.3

k factors

	40010											
Ors	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
σ	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
K	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

USERS

PT

Ratings as Products of Factors

■ How to estimate the missing rating of user x for item i?

\hat{r}_x	_i =	q_i	. 1	\mathbf{p}_{χ}^{T}
=	\sum_{i}	q _{ij}	r •	p_{xf}
	<i>f</i> q _i =	row <i>i</i>	of Q	
	$p_x =$	colun	nn <i>x</i>	of P ^T

items	.1	4	.2
	5	.6	.5
	2	.3	.5
	1.1	2.1	.3
	7	2.1	-2
	-1	.7	.3

users -.2 .3 .5 -.5 .3 -2 -.4 .7 .5 2.9 1.4 -1 1.4 -.7 -.3 1.7 2.4 PT

f factors

2.4

-.1

-.6

-.9

1.3

1.4

1.2

Ratings as Products of Factors

■ How to estimate the missing rating of user x for item i?

$\hat{r}_{xi} =$	q_i	p_x^T
$=\sum$	q_{if}	$\cdot p_{xf}$
	row <i>i</i> o columi	f Q ∩ x of P [⊤]

.1	4	.2
5	.6	.5
2	.3	.5
1.1	2.1	.3
7	2.1	-2
-1	.7	.3
	5 2 1.1 7	5 .6 2 .3 1.1 2.1 7 2.1

ors				I			l				2.4	
acto		.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1
f	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	

users

PT

f factors

6

Recap: SVD

Remember SVD:

- A: Input data matrix
- U: Left singular vecs
- V: Right singular vecs
- Σ: Singular values

So in our case:

"SVD" on Netflix data: $R \approx Q \cdot P^T$

$$A = R$$
, $Q = U$, $P^{T} = \sum V^{T}$

$$\hat{\boldsymbol{r}}_{xi} = \boldsymbol{q}_i \cdot \boldsymbol{p}_x^T$$

SVD: More good stuff

 We already know that SVD gives minimum reconstruction error (Sum of Squared Errors):

$$\min_{U,V,\Sigma} \sum_{ij\in A} \left(A_{ij} - [U\Sigma V^{\mathrm{T}}]_{ij} \right)^{2}$$

- Note two things:
 - SSE and RMSE are monotonically related:
 - $RMSE = \frac{1}{c}\sqrt{SSE}$ Great news: SVD is minimizing RMSE
 - Complication: The sum in SVD error term is over all entries (no-rating in interpreted as zero-rating). But our *R* has missing entries!

- SVD isn't defined when entries are missing!
- Use specialized methods to find P, Q:

$$\min_{P,Q} \sum_{(i,x)\in R} (r_{xi} - q_i \cdot p_x^T)^2$$

Note:

- We don't require cols of P, Q to be orthogonal/unit length
- P, Q map users/movies to a latent space
- The most popular model among Netflix contestants

 J. Leskovec, A. Rajaraman, J. Ullman (Stanford University) Mining of Massive Datasets