

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

AK. ETOΣ 2023-2024

ΟΜΑΔΑ 12 ΕΛΕΥΘΕΡΙΑ ΑΡΚΑΔΟΠΟΥΛΟΥ 03119442 ΔΕΣΠΟΙΝΑ ΒΙΔΑΛΗ 03119111

Προχωρημένα Θέματα Βάσεων Δεδομένων Αναφορά Εξαμηνιαίας Εργασίας 2023-2024

Repository Link:

https://github.com/despoinavdl/AdvancedDatabasesNTUA23/tree/main

Ζητούμενο 1

Εγκαθιστούμε και διαμορφώνουμε κατάλληλα την πλατφόρμα Apache Spark ώστε να εκτελείται πάνω από τον διαχειριστή πόρων του Apache Hadoop YARN και μορφοποιούμε κατάλληλα το Apache Hadoop Distributed File System, σύμφωνα με τις οδηγίες. Το κατανεμημένο περιβάλλον εργασίας περιλαμβάνει 2 κόμβους (master-worker).

Στον master node εκκινούμε τις web εφαρμογές HDFS, Yarn και τον Spark History Server με χρήση των εντολών:

start-dfs.sh start-yarn.sh \$SPARK_HOME/sbin/start-history-server.sh

Για το HDFS, επιβεβαιώνουμε ότι η διαδικασία έχει πετύχει προσπελαύνοντας με έναν browser την http://83.212.81.189:9870 και επιβεβαιώνοντας ότι έχουμε 2

διαθέσιμους live nodes. Για το YARN, ελέγχουμε προσπελαύνοντας την http://83.212.81.189:8088/cluster ότι έχουμε 2 διαθέσιμους live nodes. Τα σχετικά στιγμιότυπα:

Configured Capacity:	58.78 GB
Configured Remote Capacity:	0 B
DFS Used:	2.04 GB (3.48%)
Non DFS Used:	12.82 GB
DFS Remaining:	40.88 GB (69.56%)
Block Pool Used:	2.04 GB (3.48%)
DataNodes usages% (Min/Median/Max/stdDev):	2.17% / 4.78% / 4.78% / 1.31%
Live Nodes 2 (Decommissioned: 0, In Maintenance: 0)	
Dead Nodes	0 (Decommissioned: 0, In Maintenance: 0)
Decommissioning Nodes	0
Entering Maintenance Nodes	0
Total Datanode Volume Failures	0 (0 B)

Cluster Metrics

Capacity Scheduler	Capacity Scheduler		memory-mb (unit=Mi), vcores]		<memory:128, vcores:1=""></memory:128,>	
Scheduler Ty	/pe	S	cheduling Resource Type		Minimu	m Allocation
Scheduler Metrics						
<u>2</u>	<u>0</u>			<u>0</u>		
Active Nodes		Decom	missioning Nodes		Decommiss	sioned Nodes
Cluster Nodes Metrics						
0	0	0	0	0		<memory:0 b,="" td="" vcc<=""></memory:0>
Apps Submitted	Apps Pen	ding Apps Rui	nning Apps Co	mpleted	Containers Running	Used

Δημιουργούμε ένα directory /data στο hdfs, και κατεβάζουμε τα datasets της εκφώνησης στον master με χρήση της εντολής *wget*.

Ανεβάζουμε τα datasets στο hdfs με χρήση της εντολής: hdfs dfs -put /path/to/local/directory hdfs://okeanos-master:54310/data

Ο κώδικας για τη δημιουργία του dataframe βρίσκεται στο αρχείο df.py.

Τα αποτελέσματα:

Number of rows: 2973193

Column T	ype
Date Rptd date Date	tring ate ate tring tr

Για την εκτέλεση με 4 Spark executors, χρησιμοποιούμε το flag –num-executors 4. Η υλοποίηση του Query 1 με SQL API βρίσκεται στο αρχείο <u>query 1 sql.py</u>. Η υλοποίηση του Query 1 με DataFrame API βρίσκεται στο αρχείο <u>query 1 df.py</u>.

Τα αποτελέσματα:

Total time for SQL: 38.8721 Total time for DF: 39.3836

DataFrame	SQL
	

+	+	+	+	+ +++	-+	-+
year	month	crime_total	#	year month crime_tota	L #	- [
2010	+ 7	+ 15632	+ 1		-+ 1	-+
2010		15460	2		2	i
2010	:	15335	3	2010 6 15335	3	i
2011		17956	1	2011 8 17956	1	i
2011	:	17693	2	2011 7 17693	2	i
2011		17508	3	2011 10 17508	3	i
2012	:	122966	11		1	H
2012	:	22442	2	2012 1223442	2	l
2012	:	122338	3		3	H
2012		9495	11	2012 5 22330	1	H
2013	:	19307	2		2	H
2013		9160	3	2013 7 9160	3	H
2013	:	111998	11			H
2014	:	11621	2	2014/7 11556	2	H
2014	:	11621	3		12	-
2014		13864	11	2015 8 13864		H
2015	:	13314	2	2015 10 13314	2	H
:	:	13289	2 3	: : : :	3	-
2015		!	3 1		3 1	-
2016	:	14886	1 2	2016 8 14886		-
2016		14350		2016 7 14350	2 3	-
2016	:	14152		2016 10 14152		-
2017	:	33938	1	2017 8 33938	1	-
2017	:	33885	2	2017 10 33885	2	- !
2017		33174	3	2017 9 33174	3	- !
2018	:	15497	1	2018 10 15497	1	- [
2018	:	15350	2	2018 11 15350	2	- !
2018	:	14897	3	2018 8 14897	3	Ţ
2019	:	19334	1	2019 7 19334	1	Ţ
2019	:	19085	2	2019 8 19085	2	ļ
2019	:	18951	3	2019 3 18951	3	Ţ
2020		7978	1		1	ļ
2020	:	6656	2	2020 2 6656	2	Ţ
2020		5819	3	2020 3 5819	3	Ţ
2021		34929	1	2021 7 34929	1	Ţ
2021	8	33769	2	2021 8 33769	2	ļ
2021	10	33601	3	2021 10 33601	3	ļ
2022		17305	1	2022 8 17305	1	
2022		16849	2	2022 7 16849	2	
2022	5	16328	3	2022 5 16328	3	
2023	8	38140	1	2023 8 38140	1	
2023	10		2	2023 10 37974	2	
2023	7	37814	3	2023 7 37814	3	
+	+	+	+	++	-+	-+

Εκτελώντας και τις δύο υλοποιήσεις παρατηρούμε ότι οι χρόνοι εκτέλεσης έχουν πολύ μικρή απόκλιση μεταξύ τους. Αυτό ενδέχεται να οφείλεται στο γεγονός ότι το Spark χρησιμοποιεί το Catalyst Optimizer ώστε να βελτιστοποιήσει το logical plan των προγραμμάτων και έτσι οι δύο υλοποιήσεις καταλήγουν να έχουν πολύ παρόμοιο physical plan.

Ζητούμενο 4

Η υλοποίηση του Query 2 με SQL API βρίσκεται στο αρχείο query 2 sql.py.

Η υλοποίηση του Query 2 με RDD API βρίσκεται στο αρχείο query 2 rdd.py.

Τα αποτελέσματα:

Total time for RDD: 55.1153

Total time for SQL: 37.4206

RDD	SQL	
++ period count # +	++	
night 240393 1 evening 188522 2 afternoon 149713 3 morning 125500 4	night 240393 evening 188522 afternoon 149713 morning 125500	1 2 3 4

Συγκρίνοντας τα αποτελέσματα για τους χρόνους εκτέλεσης, παρατηρούμε ότι η υλοποίηση με RDD είναι σημαντικά πιο αργή από την SQL. Αυτό συμβαίνει επειδή το RDD διαθέτει low-level abstraction και δεν βελτιστοποιείται από το Spark, σε αντίθεση με την υλοποίηση μέσω SQL, που είναι υψηλότερου επιπέδου.

Για την υλοποίηση του Query 3, ως παραδοχή, παίρνουμε τα δεδομένα για το median household income από το αρχείο LA_income_2015.csv, αφού ζητείται η καταγωγή των θυμάτων για το έτος 2015.

Η υλοποίηση του Query 3 με DataFrame API βρίσκεται στο αρχείο guery 3 df.pv.

Τα αποτελέσματα της εκτέλεσης για 2, 3, 4 Spark executors αντίστοιχα (παρατίθενται τα αποτελέσματα σε πίνακα μία φορά, αφού είναι ίδια για διαφορετικό αριθμό Spark executors, και στη συνέχεια παρατίθενται μόνο οι χρόνοι εκτέλεσης):

Υψηλότερο Εισ	σόδημα
---------------	--------

		L L
	Vict Descent	#
White Other Black Hispani	c/Latin/Me	8 3 2 2

Χαμηλότερο Εισόδημα

+	+
Vict Descent	#
Hispanic/Latin/Me Black White Other Other Asian NULL Japanese American Indian/A Chinese Filipino	1025 986 621 314 86 7 3 3 2

Total time for 2 Spark executors: 86.6731 Total time for 3 Spark executors: 79.9424 Total time for 4 Spark executors: 56.6077

Παρατηρούμε ότι, όσο αυξάνεται ο αριθμός Spark executors που χρησιμοποιούμε, μειώνεται ο χρόνος εκτέλεσης. Οι executors επιτρέπουν την παράλληλη επεξεργασία δεδομένων σε ένα Spark cluster. Από όσο βλέπουμε, περισσότεροι executors εκτελούν πιο γρήγορα διαδικασίες όπως filtering, aggregating, joining και transforming πάνω στα δεδομένα.

Η υλοποίηση του Query 4.1 με DataFrame API βρίσκεται στο αρχείο query 4.1 df.py.

Η υλοποίηση του Query 4.2 με DataFrame API βρίσκεται στο αρχείο query 4 2 df.py.

Τα αποτελέσματα της εκτέλεσης:

Query 4.1

(a)		(b)
++	+	-+
year average_distance #	DIVISION	average_distance #
++	+	-++
2010 2.743966826763732 6762	77TH STREET	2.6371111285758633 17383
2011 2.7181861910254472 7797	SOUTHEAST	2.1049342137476397 13691
2012 2.90838317905297 8600	NEWTON	2.0273503785367826 9884
2013 2.68513467421713 2981	SOUTHWEST	2.697177074490011 8625
2014 2.730827096395304 3411	HOLLENBECK	2.650709744978364 6100
2015 2.6251270594574954 4557	HARBOR	4.065393973480676 5798
2016 2.6797074676042545 5389	RAMPART	1.5773847552918816 4990
2017 2.7177048271584496 13592	NORTHEAST	3.8627692721174705 4320
2018 2.675418337304041 5776	OLYMPIC	1.8218143052858153 4251
2019 2.738825331613662 7129	HOLLYWOOD	1.4412522937053858 4158
2020 2.411219772922354 2492	MISSION	4.715367423109495 4003
2021 2.6620316456405053 18240	FOOTHILL	3.772710087851956 3536
2022 2.471510160332706 7660	WILSHIRE	2.3971524583774366 3519
2023 2.6666512273361125 17572	NORTH HOLLYWOOD	2.6769083300722123 3507
++	CENTRAL	1.1354176934445663 3469
	WEST VALLEY	3.438406078300398 3194
	PACIFIC	3.749110149209904 2677
	VAN NUYS	2.2204182322386727 2670
	DEVONSHIRE	3.979222156574428 2557
	TOPANGA	3.4448701509474904 2072
	WEST LOS ANGELE	S 4.195647332866541 1554
	+	-++

(a) (b)

++	+	++
year average_distance #	DIVISION	average_distance #
++	+	++
2010 2.3850816628208786 6762	77TH STREET	1.7013668577005783 14449
2011 2.4172515869079376 7797	SOUTHEAST	2.1964630483847487 12543
2012 2.5433010739197646 8600	SOUTHWEST	2.296840137442361 11176
2013 2.4382969832639074 2981	NEWTON	1.574683193297174 7255
2014 2.4290693589518733 3411	WILSHIRE	2.4626724975877416 6263
2015 2.4107651169604467 4557	HOLLENBECK	2.6447647300930015 6169
2016 2.461490737788886 5389	HOLLYWOOD	1.9694193430036948 6114
2017 2.359936539680825 13592	HARBOR	3.876940896631801 5666
2018 2.390266123862842 5776	OLYMPIC	1.6586570751497223 5332
2019 2.4291624775464227 7129	RAMPART	1.4220718575522295 4752
2020 2.2026511955244548 2492	VAN NUYS	2.9561059243596177 4579
2021 2.343222240539347 18240	FOOTHILL	3.555559924969752 4219
2022 2.1680429944575397 7660	CENTRAL	1.026796653556548 3707
2023 2.371109196835763 17572	NORTH HOLLYWOOD	2.7087276241861207 3526
++	NORTHEAST	3.6918118436208154 3438
	WEST VALLEY	2.7755357919291526 3098
	MISSION	3.79131313053364 2556
	PACIFIC	3.719391310781052 2547
	TOPANGA	2.9994294543420814 2176
	DEVONSHIRE	3.0508628410640033 1350
	WEST LOS ANGELES	2.6690709558302768 1043
	+	++

Εκτελούμε τα Query 3, Query 4, με τις μεθόδους hint&explain για τους 4 διαφορετικούς τρόπους εκτέλεσης join, και παίρνουμε το πλάνο μέσω κειμένου και στη συνέχεια γραφικά μέσω του Spark History UI.

Από το Spark History UI μπορούμε για κάθε διαφορετικό execution του κάθε query να αντιστοιχίσουμε τα Job IDs στα διαφορετικά κομμάτια του κώδικα που εκτελούνται. Από τα descriptions για τα operations, κάθε διαφορετικό operation showString αντιστοιχεί και σε ένα διαφορετικό dataframe που σχηματίζεται από join και τυπώνεται (διαφορετικό κομμάτι-ροή του DAG diagram). Από τη γραφική αναπαράσταση απομονώνουμε τους χρόνους εκτέλεσης των showString για κάθε διαφορετικό τρόπο εκτέλεσης και παραθέτουμε τα αποτελέσματα στον πίνακα. Στα ερωτήματα όπου τυπώνουμε πάνω από ένα dataframe, επιλέξαμε αυτό με τον μεγαλύτερο χρόνο εκτέλεσης.

	broadcast	merge	shuffle_hash	shuffle_replicate_nl
Query 3	15 sec	14 sec	11 sec	7.2 min
Query 4.1	7 sec	8 sec	7 sec	8 sec
Query 4.2	10 sec	10 sec	10 sec	10 sec

Παρατηρούμε ότι, στην περίπτωση του Query 3 (inner left join με "=" condition), οι μέθοδοι broadcast, merge, shuffle hash παίρνουν περίπου την ίδια ώρα, με την shuffle hash να είναι η γρηγορότερη. Η shuffle replicate nested loop παίρνει αισθητά περισσότερη ώρα να εκτελεστεί.

Το αποτέλεσμα αυτό είναι αναμενόμενο, καθώς η μέθοδος shuffle replicate nested loop κάνει replicate σε κάθε node το μικρότερο σε διαστάσεις dataframe του join και χρησιμοποιεί nested loop. Στην περίπτωση του Query 3, το μικρότερο σε διαστάσεις dataframe είναι το revgecoding, το οποίο είναι αρκετά μεγάλο, και έτσι η διαδικασία καθιστάται χρονοβόρα. Το ότι η shuffle hash είναι η πιο αποδοτική μέθοδος πιθανό να αποδίδεται στο ότι το join βασίζεται σε "=" condition: τα δεδομένα με ίδιο join key να καταλήξουν στα ίδια nodes, γεγονός που καθιστά πιο εύκολη την επεξεργασία τους.

Στην περίπτωση των Query 4.1 (inner left join με "=" condition), όλες οι μέθοδοι παίρνουν περίπου τον ίδιο χρόνο. Στην περίπτωση αυτή, η μέθοδος shuffle replicate nested loop δεν φαίνεται να παίρνει περισσότερη ώρα για να εκτελεστεί, γεγονός που πιθανώς αποδίδεται στο ότι το μικρότερο σε μέγεθος dataframe είναι το police_stations (21 γραμμές), που το replication του παίρνει σαφώς λιγότερο χρόνο από το revgecoding.

Στην περίπτωση των Query 4.2 (cross join), όλες οι μέθοδοι παίρνουν περίπου τον ίδιο χρόνο για να εκτελεστούν.

Από τους χρόνους εκτέλεσης και λαμβάνοντας υπ' όψιν τα μεγέθη των datasets που χρησιμοποιούμε, καταλήγουμε ότι από τις διαθέσιμες στρατηγικές για την υλοποίηση των join στα Query 3, Query 4, καταλληλότερες είναι οι shuffle hash και broadcast αντίστοιχα.

Python scripts

df.py

```
from pyspark.sql import SparkSession
from pyspark.sql.functions import to date
from pyspark.sql.types import IntegerType, DoubleType
spark = SparkSession.builder.appName("DF").getOrCreate()
crime df = spark.read.csv("hdfs://okeanos-master:54310/data/crime data 2010 2019" \
                              , header=True)
crime2_df = spark.read.csv("hdfs://okeanos-master:54310/data/crime_data_2020_present" \
                ,header=True)
df = crime df.union(crime2 df)
#specified columns
df = df.withColumn("Date Rptd", to date(df["Date Rptd"], "MM/dd/yyyy hh:mm:ss a")) \
    .withColumn("DATE OCC", to_date(df["DATE OCC"], "MM/dd/yyyy hh:mm:ss a")) \
    .withColumn("Vict Age", df["Vict Age"].cast(IntegerType())) \
    .withColumn("LAT", df["LAT"].cast(DoubleType())) \
    .withColumn("LON", df["LON"].cast(DoubleType()))
row count = df.count()
print("Number of rows:", row count)
column types = df.dtypes
print("Column Types:")
for col name, col type in column types:
 print(f"{col name}: {col type}")
#create new csv: total_crime.csv and save it
path = "hdfs://okeanos-master:54310/data/total crime.csv"
df.write.csv(path, header=True, mode="overwrite")
```

query_1_sql.py

```
from pyspark.sql import SparkSession
from pyspark.sql.types import StructField, StructType, TimestampType, DoubleType,
StringType, IntegerType
```

```
from pyspark.sql.functions import year, month, count, dense rank, col, to date
from pyspark.sql.window import Window
import time, datetime
start time = time.time()
spark = SparkSession \
   .builder \
    .appName("SQL query 1") \
    .getOrCreate()
df = spark.read.csv("hdfs://okeanos-master:54310/data/total crime.csv" \
                ,header=True)
df.createOrReplaceTempView("crime records")
query string = "SELECT * FROM(\
  SELECT \
   YEAR(`Date Rptd`) AS year, \
   MONTH(`Date Rptd`) AS month, \
   COUNT(*) AS crime_total, \
   RANK() OVER (PARTITION BY YEAR(`Date Rptd`) ORDER BY COUNT(*) DESC) AS rank \
FROM \
   crime_records \
GROUP BY \
   YEAR(`Date Rptd`), \
   MONTH(`Date Rptd`) \
) AS ranked data \
WHERE \
   rank <= 3 \
ORDER BY \
   year, \
   rank;"
final query = spark.sql(query string)
final query.show(100, truncate=False)
print('Total time for SQL: ',time.time() - start time , 'sec')
```

query_1_df.py

query_2_sql.py

```
from pyspark.sql import SparkSession
from pyspark.sql.types import StructField, StructType, TimestampType, DoubleType,
StringType, IntegerType
from pyspark.sql.functions import year, month, count, dense rank, col, to date
from pyspark.sql.window import Window
import time, datetime
start time = time.time()
spark = SparkSession \
   .builder \
    .appName("SQL query 2") \
    .getOrCreate()
df = spark.read.csv("hdfs://okeanos-master:54310/data/total crime.csv" \
                , header=True)
df.createOrReplaceTempView("crime records")
query_string = """
SELECT
   part of day,
   COUNT(*) AS crime_count,
   DENSE RANK() OVER (ORDER BY COUNT(*) DESC) AS rank
FROM (
   SELECT
       CASE
           WHEN CAST('TIME OCC' AS INT) >= 500 AND CAST('TIME OCC' AS INT) < 1200 THEN
'morning'
           WHEN CAST('TIME OCC' AS INT) >= 1200 AND CAST('TIME OCC' AS INT) < 1700 THEN
'afternoon'
           WHEN CAST('TIME OCC' AS INT) >= 1700 AND CAST('TIME OCC' AS INT) < 2100 THEN
'evening'
           ELSE 'night'
       END AS part of day
    FROM
```

query_2_rdd.py

```
from pyspark.sql import SparkSession
from operator import add
import csv
import time
from io import StringIO
start time = time.time()
sc = SparkSession \
.builder \
.appName("RDD query ") \
.getOrCreate() \
.sparkContext
# CSV parser (for rows with multiple ',')
def parse_csv(line):
   reader = csv.reader(StringIO(line))
   return next(reader)
crime_records = sc.textFile("hdfs://okeanos-master:54310/data/total crime.csv") \
       .map(parse_csv)
def get_part_of_day(time_occ):
   time_occ = int(time_occ)
   if 500 <= time occ < 1200:</pre>
       return 'morning'
   elif 1200 <= time occ < 1700:</pre>
       return 'afternoon'
    elif 1700 <= time occ < 2100:</pre>
       return 'evening'
   else:
       return 'night'
part_of_day_rdd = crime_records.filter(lambda x: x[15] == 'STREET') \
    .map(lambda x: get_part_of_day(x[3]))
#count occurrences of each part of the day
part_of_day_counts = part_of_day_rdd.map(lambda x: (x, 1)).reduceByKey(add)
#sort by count in descending order
sorted_part_of_day = part_of_day_counts.map(lambda x: (x[1], x[0])) \
    .sortByKey(ascending=False)
```

```
#add rank
ranked_part_of_day = sorted_part_of_day.zipWithIndex() \
    .map(lambda x: (x[0][1], x[0][0], x[1] + 1))

for result in ranked_part_of_day.collect():
    print(result)

print('Total time for RDD: ',time.time() - start_time , 'sec')
sc.stop()
```

query_3_df.py

```
from pyspark.sql import SparkSession, functions as F
from pyspark.sql.window import Window
from pyspark.sql.functions import count, desc, year, row number, col, regexp replace
import time
start time = time.time()
spark = SparkSession \
   .builder \
   .appName("DF query 3") \
   .getOrCreate()
income = spark.read.csv("hdfs://okeanos-master:54310/data/income/LA_income_2015.csv",
header=True)
df = spark.read.csv("hdfs://okeanos-master:54310/data/total crime.csv" \
               ,header=True)
revgecoding = spark.read.csv("hdfs://okeanos-master:54310/data/revgecoding.csv",
header=True)
#filter data to include only 2015, and remove victimless crimes
df = df.filter(year(df["Date Rptd"]) == 2015)
df = df.filter(df["Vict Descent"] != "X")
#join based on longitude and latitude
joined df = df.join(revgecoding.hint("broadcast"), (df.LON == revgecoding.LON) & (df.LAT
== revgecoding.LAT), "left")
joined df.explain(extended=True)
#join with revgeocoding
joined df = joined df.select(df["*"], revgecoding["ZIPcode"].alias("Joined ZIP Code"))
#join with income
joined income df = joined df.join(income, joined df["Joined ZIP Code"] == income["Zip
Code"], "inner")
#remove dolar signs
joined income df = joined income df.withColumn(
    "Estimated Median Income",
   regexp replace(col("Estimated Median Income"), "[^\d.]", "")
joined income df = joined income df.withColumn(
   "Estimated Median Income",
   col("Estimated Median Income").cast("float")
final df = joined income df.select(joined df["Vict Descent"],
joined df["Joined ZIP Code"], \
```

```
joined income df["Estimated Median Income"])
grouped final df = final df.groupBy('Vict Descent', 'Joined ZIP Code', 'Estimated Median
Income')
 .agg(F.count('*').alias('#'))
sorted grouped final df = grouped final df.orderBy(desc("Estimated Median Income"))
unique_income_df = sorted_grouped_final_df.dropDuplicates(["Joined_ZIP_Code", "Estimated
Median Income"])
sorted_unique_income_df_desc = unique_income_df.orderBy(desc("Estimated Median Income"))
top_3_zip_codes = sorted_unique_income_df_desc.select("Joined_ZIP_Code")
top_3_zip_codes = top_3_zip_codes.limit(3)
sorted unique income df asc = unique income df.orderBy("Estimated Median Income")
bot 3 zip codes = sorted unique income df asc.select("Joined ZIP Code")
bot 3 zip codes = bot 3 zip codes.limit(3)
#filter for rows corresponding to the top 3 zip codes
filtered_top_3_df = grouped_final_df.join(
   top 3 zip codes,
    grouped final df["Joined ZIP Code"] == top 3 zip codes["Joined ZIP Code"],
    'inner'
)
#filter for rows corresponding to the bottom 3 zip codes
filtered_bot_3_df = grouped_final_df.join(
   bot_3_zip_codes,
   grouped final df["Joined ZIP Code"] == bot 3 zip codes["Joined ZIP Code"],
top result = filtered top 3 df.groupBy('Vict
Descent').agg(F.sum('#').alias('#')).orderBy(desc('#'))
bot result = filtered bot 3 df.groupBy('Vict
Descent').agg(F.sum('#').alias('#')).orderBy(desc('#'))
#reform
map descent = {
 "W": "White",
 "O": "Other",
 "B": "Black",
 "H": "Hispanic/Latin/Mexican",
 "A": "Other Asian",
 "C": "Chinese",
 "D": "Cambodian",
 "F": "Filipino",
 "G": "Guamanian",
 "I": "American Indian/Alaskan Native",
 "J": "Japanese",
 "L": "Laotian",
 "P": "Pacific Islander",
 "S": "Samoan",
 "U": "Hawaiian",
 "V": "Vietnamese",
 "Z": "Asian Indian"
map function = F.udf(lambda x: map descent.get(x))
```

```
top_result = top_result.withColumn("Vict Descent", map_function(df["Vict Descent"]))
bot_result = bot_result.withColumn("Vict Descent", map_function(df["Vict Descent"]))
top_result.show()
bot_result.show()
print('Total time: ',time.time() - start_time , 'sec')
```

query_4_1_df.py

```
from pyspark.sql import SparkSession
from pyspark.sql.types import IntegerType
from pyspark.sql.functions import year, count, col, mean, cos, asin, sqrt
import time
start time = time.time()
spark = SparkSession \
   .builder \
   .appName("DF query 4") \
   .getOrCreate()
#spark.sparkContext.addPyFile("/home/user/geopy-2.4.1/geopy")
#import distance
df = spark.read.csv("hdfs://okeanos-master:54310/data/total_crime.csv" \
                ,header=True)
df = df.withColumn("AREA", col("AREA").cast(IntegerType()))
police stations = spark.read.csv("hdfs://okeanos-master:54310/data/la police stations" \
, header=True)
police stations = police stations.withColumn("PREC", col("PREC").cast(IntegerType()))
# calculate the distance between two points [lat1, long1], [lat2, long2] in km
def get distance(lat1, lon1, lat2, lon2):
   r = 6371 \# km
   p = 3.14 / 180.0
   a = 0.5 - \cos((lat2-lat1)*p)/2 + \cos(lat1*p) * \cos(lat2*p) *
(1-\cos((lon2-lon1)*p))/2
   return 2 * r * asin(sqrt(a))
df = df.select(df["LAT"], df["LON"], df["DATE OCC"], df["AREA"], df["Weapon Used Cd"])
firearm crimes = df.filter(df["Weapon Used Cd"].like("1 "))
joined df = firearm crimes.join(
    #police stations.hint("shuffle replicate nl"),
   police stations,
   firearm crimes["AREA"] == police stations["PREC"],
#joined df.explain(extended=True)
#filter out NULL
filtered df = joined df.filter(((col("LAT") != 0.0) & (col("LON") != 0.0)) &
                                 (col("X").isNotNull()) &
```

```
(col("Y").isNotNull())
#distance udf = udf(get distance, FloatType())
distance_df = filtered_df.withColumn("distance", get_distance(col("LAT"), col("LON"),
col("Y"), col("X")))
distance df = distance df.withColumn("year", year("DATE OCC"))
final = distance_df.groupBy("year").agg(
   count("*").alias("#"),
   mean("distance").alias("average distance")
).orderBy("year")
final = final.select("year", "average_distance", "#")
final.show()
#4 1 b
distance df b = filtered df.withColumn("distance", get distance(col("LAT"), col("LON"),
col("Y"), col("X")))
final b = distance df b.groupBy("DIVISION").agg(
   count("*").alias("#"),
   mean("distance").alias("average distance")
).orderBy(col("#").cast("int").desc())
final b = final b.select("DIVISION", "average distance", "#")
final b.show(21, truncate=False)
```

query 4 2 df.py

```
from pyspark.sql import SparkSession
from pyspark.sql.types import IntegerType
from pyspark.sql import functions as F
from pyspark.sql.functions import year, count, col, mean, cos, asin, sqrt,
monotonically increasing id
from pyspark.sql.window import Window
import time
start time = time.time()
spark = SparkSession \
    .builder \
    .appName("DF query 4b") \
    .getOrCreate()
df = spark.read.csv("hdfs://okeanos-master:54310/data/total crime.csv" \
                , header=True)
df = df.withColumn("AREA", col("AREA").cast(IntegerType()))
police_stations = spark.read.csv("hdfs://okeanos-master:54310/data/la police stations" \
, header=True)
police stations = police stations.withColumn("PREC",
                                             col("PREC").cast(IntegerType()))
# calculate the distance between two points [lat1, long1], [lat2, long2] in km
def get distance(lat1, lon1, lat2, lon2):
 r = 6371 \# km
```

```
p = 3.14 / 180.0
    a = 0.5 - \cos((lat2 - lat1) * p) / 2 + \cos(lat1 * p) * \cos(lat2 * p) * (1 - \cos((lon2 - lat1) * p) / (lon2 - lat1) * p) 
- lon1) * p)) / 2
   return 2 * r * asin(sqrt(a))
df = df.select(df["LAT"], df["LON"], df["DATE OCC"], df["AREA"],
                                  df["Weapon Used Cd"])
firearm crimes = df.filter(df["Weapon Used Cd"].like("1 "))
firearm crimes = firearm crimes.withColumn("id", monotonically increasing id()) #to use
with window function
#cartesian product
#joined df = firearm crimes.crossJoin(police stations.hint("shuffle replicate nl"))
joined df = firearm crimes.crossJoin(police stations)
#joined df.explain(extended=True)
#filter out NULL
filtered df a = joined df.filter(((col("LAT") != 0.0) & (col("LON") != 0.0)) &
                                                                            (col("X").isNotNull()) &
                                                                            (col("Y").isNotNull())
)
distance df = filtered df a.withColumn(
         "distance", get_distance(col("LAT"), col("LON"), col("Y"), col("X")))
window = Window.partitionBy("id").orderBy("distance")
closest df = distance df.withColumn("year", year("DATE OCC"))
closest df = closest df.withColumn(
         "rank",
         F.row number().over(window))
closest df = closest df.filter(col("rank") == 1)
final = closest df.groupBy("year").agg(
        count("*").alias("#"),
        mean("distance").alias("average distance")).orderBy("year")
final = final.select("year", "average distance", "#")
final.show()
#4 2 b
final b = closest df.groupBy("DIVISION").agg(
        count("*").alias("#"),
        mean("distance").alias("average_distance")).orderBy(
                 col("#").cast("int").desc())
final b = final b.select("DIVISION", "average distance", "#")
final b.show(21, truncate=False)
```