Assignment #6

No late assignments accepted!

ECE449, Intelligent Systems Engineering
Department of Electrical and Computer Engineering, University of Alberta

Fall 2019

Dr. Petr Musilek

Points: 10

Due: Thursday, October 24, 2019, 3:30 PM, in the assignment box in Donadeo ICE **Note:** Show your work! Marks are allocated for technique and not just the answer.

Student Name:

ID Number:

1. [5 points] Consider the following training set

$$\left\{x(1) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, t(1) = 0\right\}, \left\{x(2) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, t(2) = 1\right\}, \left\{x(3) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, t(3) = 1\right\}, \left\{x(4) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, t(4) = 1\right\}$$

a) Plot the training samples in the feature space.

b) Apply the perceptron learning rule to the training samples one-at-a-time to obtain weights w_1 , w_2 , and bias w_0 that separate the training samples. Use $\mathbf{w} = [w_0, w_1, w_2] = [0, 0, 0]$ as initial values (consider bias input $x_0 = 1$, and learning rate $\eta = 1$). Write the expression for the resulting decision boundary and draw it in the graph. [**Hint:** You can use Excel / OO Calc to implement the learning rule for perceptron, such as the spreadsheet of InClass_09 posted on eClass].

Epoch	Inputs		Desired output <i>t</i>	Initial weights			Actual output y	Error	Updated weights		
	x_1	x_2		w_0	w_1	<i>W</i> 2			w_0	w_1	w_2
1	0	0	0	0	0	0					
	0	1	1								
	1	0	1								
	1	1	1								
2	0	0	0								
	0	1	1								
	1	0	1								
	1	1	1								
3	0	0	0								
	0	1	1								
	1	0	1								
	1	1	1								

2. [5 points] Consider the following training set

$$\left\{x(1) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, t(1) = 0\right\}, \left\{x(2) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, t(2) = 1\right\}, \left\{x(3) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, t(3) = 1\right\}, \left\{x(4) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, t(4) = 0\right\}$$

which describes the exclusive OR (XOR) problem.

a) Establish mathematical (not graphical) proof that this problem is not linearly separable. [**Hint:** Start with assumption that these patterns are linearly separable, write down equations/inequalities corresponding to this assumption and examine them for conflict; first such inequality is provided below as an example.]

Suppose that the problem is linearly separable. The decision boundary can be represented as:

$$\sum_{i=0}^{2} x_i w_i = 0$$
 or (expanded) $x_0 w_0 + x_1 w_1 + x_2 w_2 = 0$

This assumption means that either

a)
$$x_0w_0 + x_1w_1 + x_2w_2 < 0$$
 for $(x_1, x_2) = (0,1) \land (x_1, x_2) = (1,0)$
 $x_0w_0 + x_1w_1 + x_2w_2 \ge 0$ for $(x_1, x_2) = (0,0) \land (x_1, x_2) = (1,1)$

Of

b)
$$x_0w_0 + x_1w_1 + x_2w_2 > 0$$
 for $(x_1, x_2) = (0,1) \land (x_1, x_2) = (1,0)$
 $x_0w_0 + x_1w_1 + x_2w_2 \le 0$ for $(x_1, x_2) = (0,0) \land (x_1, x_2) = (1,1)$.

must be satisfied. Following one of the cases and putting the values (x_1, x_2) under variables, one obtains

- $(1) x_0 w_0 + w_2 < 0$
- (2)
- (3)
- (4)

. . .

b) Apply the perceptron learning rule following the same procedure as in Problem 1. Describe your observation.

Epoch	Inputs		Desired output <i>t</i>	S		ghts	Actual output y	Error	Updated weights			
	x_1	x_2		w_0	w_1	w_2			w_0	w_1	w_2	
1	0	0	0	0	0	0						
	0	1	1									
	1	0	1									
	1	1	0									
2	0	0	0									
	0	1	1									
	1	0	1									
	1	1	0									
3	0	0	0									
	0	1	1									
	1	0	1									
	1	1	0									