Authenticated Dictionaries with Cross-Incremental Proof (Dis)aggregation

Alin Tomescu¹
@alinush407

Yu Xia² @SuperAluex Zachary Newman² zin@mit.edu

¹VMware Research, ²MIT CSAIL

October 28th, 2020

Motivation: Stateless Validation and Beyond

We want authenticated dictionaries (ADs) for:

- **1.** Validation state, which takes **hundreds of GBs** in cryptocurrencies, impeding scalability and decentralization.
 - Previous ADs are not sufficiently updatable, aggregatable or efficient.
 - Vector Commitments (VCs) suffice to authenticate validation state, but limit smart contract memory.
- 2. Transparency logs without extra trust assumptions.
 - Previous work [TBP+19, Tom20] uses RSA and bilinear accumulators [BdM94, Ngu05], but has high overheads.
- 3. Their own sake: non-Merkle ADs are interesting and more powerful.

Our contributions

- 1. A new notion of cross-incremental proof (dis)aggregation for authenticated data structures,
- 2. An updatable authenticated dictionary (UAD) construction that supports this notion (and can be used for stateless validation),
- 3. An append-only authenticated dictionary (AAD) construction that is more efficient and more versatile than previous work (and can be used for transparency logs).

In the process, we also give:

- 1. New techniques to compute **all** non-membership witnesses across, different (but related) RSA accumulators,
 - Plus, new techniques for aggregating such witnesses.
- 2. A faster algorithm for witness extraction in Boneh et al's PoKCR protocol [BBF18].

Our ADs and Previous Work

Our ADs and Previous Work

AD scheme	Aggrega- table π 's?	Binding	Updata- ₁ bility?	Update hint-free?	Non-memb. π 's?	Append- only π 's?	Prove all fast?
Merkle tree [Mer88]	×	Strong	DI	×	✓	×	✓
SADS [PSTY13]	×	Strong	DI	✓	✓	×	✓
AHTs [PTT16]	×	Weak	×	n/a	✓	×	✓
KVC₁ [BBF18]	One-hop	Strong	DI	×	✓	×	✓
KVC ₂ [BBF18]	One-hop	Weak	DI	×	✓	×	✓
AAD [Tom20]	×	Strong	×	n/a	✓	✓	✓
Aardvark [LGG+20]	One-hop	Weak	DI	×	✓	×	×
KVaC [AR20]	One-hop	Weak	DI	✓	×	×	×
Our UAD	Cross-incr.	Weak	ADIX	×	✓²	✓	√
Our AAD	One-hop	Strong	a³DI	×	✓	✓	✓

 $^{^{1}}$ Of individual proofs (I), of aggregated proofs (A), of cross-aggregated proofs (X) and of digests (D).

²Our UAD supports non-membership proofs, but they can only be "one-hop" aggregated.

³Can only update when existing keys change.

Background

Catalano-Fiore (CF) Vector Commitments [CF13, LM19, CFG⁺20]

Let $\mathbf{v} = [v_1, ..., v_n]$. Its digest dig(\mathbf{v}) is:

$$S = g^{\prod_{j \in [n]} e_j}, \text{ where } e_i = H(j)$$
 (1)

$$\Lambda = \prod_{j \in [n]} (S^{1/e_j})^{v_j} \tag{2}$$

Update dig (v) after change δ_j at j (given update key S^{1/e_j}):

$$\Lambda' = \Lambda \cdot \left(S^{1/e_j} \right)^{\delta_j} \tag{3}$$

Observations:

- $v_i \in \{0, 1\}^{\ell}$ and $e_i \in Primes_{\ell+1}$
- Can compute all $(S^{1/e_1}, S^{1/e_2}, ..., S^{1/e_n}) \leftarrow RootFactor(g, [e_1, ..., e_n])$ [STSY01, BBF18].
- $S = RSA.Accumulate(\{1, 2, ..., n\})$ and S^{1/e_j} is an RSA membership witness [BdM94, LLX07].

Subvector Proofs for CF VCs [LM19, CFG⁺20]

Proof π_I for subvector $\mathbf{v}_I = (\mathbf{v}_i)_{i \in I}$, where $I \subseteq [n]$ is dig $(\mathbf{v} \setminus \mathbf{v}_I)$:

$$S_{i} = g^{\prod_{j \in [n] \setminus i} e_{j}} = S^{1/e_{i}}, \text{ where } e_{i} = \prod_{i \in I} e_{i}$$
 (4)

$$\Lambda_{I} = \prod_{j \in [n] \setminus I} \left(S_{I}^{1/e_{j}} \right)^{V_{j}} \tag{5}$$

Proof ≈ digest & digest is updatable ⇒ proof is updatable too!

$$\Lambda_{l}' = \Lambda_{l} \cdot \left(\frac{1/e_{j}}{S_{l}} \right)^{\delta_{j}} \tag{6}$$

Observation: Given S^{1/e_j} , can compute $S_l^{1/e_j} = S^{\frac{1}{e_l e_j}} = ShamirTrick(S_l, S^{1/e_j}, e_l, e_j)$ [Sha81]

Extending the Vector With New Positions [CFG⁺20]

Add a new position n + 1 with value v_{n+1} to dig (v):

$$S' = S^{e_{n+1}} \tag{7}$$

$$\Lambda' = S^{V_{n+1}} \Lambda^{e_{n+1}} \tag{8}$$

$$= S^{\mathsf{v}_{n+1}} \left(\prod_{j \in [n]} (S^{1/e_j})^{\mathsf{v}_j} \right)^{e_{n+1}} = (S^{\prime 1/e_{n+1}})^{\mathsf{v}_{n+1}} \prod_{j \in [n]} (S^{\prime 1/e_j})^{\mathsf{v}_j} = \prod_{j \in [n+1]} (S^{\prime 1/e_j})^{\mathsf{v}_j}$$
(9)

Important: I can do this sequentially for m new positions in $O(\ell m)$ time.

(This will be useful in the next slide and in our UAD construction.)

Incrementally Disaggregating Proofs in CF VCs [CFG⁺20]

Disaggregate
$$\pi_I = (S_I, \Lambda_I)$$
 for \mathbf{v}_I into $\pi_K = (S_K, \Lambda_K)$ for \mathbf{v}_K , where $K \subset I$ and $\Delta = I \setminus K$?
$$\operatorname{dig}(\mathbf{v} \setminus \mathbf{v}_I)$$

Note that
$$(\mathbf{v} \setminus \mathbf{v}_I) + \mathbf{v}_{\Delta} = (\mathbf{v} \setminus \mathbf{v}_I) + (\mathbf{v}_I \setminus \mathbf{v}_K) = \mathbf{v} \setminus \mathbf{v}_K$$
.

So, for each $i \in \Delta$, sequentially add each e_i to S_i and Λ_i . Takes $O(\ell|\Delta|)$ \mathbb{G}_2 ops, as shown in previous slide.

Implication: Can compute all proofs in $O(\ln \log n)$ \mathbb{G}_2 ops via disaggregation!

(Campanelli et al. [CFG $^+$ 20] claim O($\ln \log^2 n$), but this way appears faster.)

Incrementally Aggregating Proofs in CF VCs [CFG⁺20]

Aggregate
$$\pi_{l}$$
 and π_{j} into $\pi_{l\cup j}$? (Assume $l \cap J = \emptyset$ or disaggregate.)
$$\operatorname{dig}(\mathbf{v} \setminus \mathbf{v}_{l}) \, \& \, \operatorname{dig}(\mathbf{v} \setminus \mathbf{v}_{j}) \qquad \operatorname{dig}((\mathbf{v} \setminus \mathbf{v}_{l}) \setminus \mathbf{v}_{j})$$

$$S_{l\cup J} = S^{\frac{1}{e_{l}e_{J}}} = ShamirTrick(S_{l}, S_{J}, e_{l}, e_{j}) = ShamirTrick(S^{1/e_{l}}, S^{1/e_{J}}, e_{l}, e_{j})$$

 $\Lambda_{I\cup J} = \prod_{k \in [n] \setminus (I\cup J)} (S_{I\cup J}^{1/e_k})^{v_k} = \left(\prod_{k \in [n] \setminus (I\cup J)} (S^{1/e_k})^{v_k}\right)^{\frac{1}{e_j e_j}} \text{ is a bit more complicated. (Two RootFactor's and a ShamirTrick away.)}$

Observation: $O(\ell|I| \log |I|) \mathbb{G}_{?}$ ops to aggregate, assuming |I| > |J|.

Our Authenticated Dictionary

From CF VC to Authenticated Dictionary

Let *D* be a dictionary.

Treat D as a "sparse" vector whose indices are its keys. $dig(D) = (S, \Lambda)$:

$$S = g^{\prod_{k \in D} e_k}, \text{ where } e_k = H(k)$$
 (10)

$$\Lambda = \prod_{k \in D} (S^{1/e_k})^{V_k} \tag{11}$$

Similar to CF VCs:

- Digest remains updatable (except must handle removing keys).
- Proof π_K for many keys K remains $\operatorname{dig}(D \setminus D(K))$.
- Proof remains updatable (except must handle removing keys).
- Proofs remain incrementally (dis)aggregatable

Concurrent idea with [AR20], which elegantly removes update keys.

We go in a different direction: (1) cross-incremental aggregation, (2) non-membership proofs, (3) strong-binding, and (4) append-only proofs.

Dynamic Authenticated Dictionary: Updating Digest

As previously shown, can easily add $(\hat{k}, v_{\hat{k}})$ to $dig(D) = (S, \Lambda)$ and get $dig(D') = (S', \Lambda')$.

Remove $(\hat{k}, v_{\hat{k}})$ from D? Updated digest $dig(D \setminus D(\hat{k})) = lookup proof <math>\pi_{\hat{k}}$ w.r.t dig(D).

Multiple removals \hat{K} ? Updated digest $\operatorname{dig}(D \setminus D(\hat{K})) = \operatorname{aggregated}$ lookup proof $\pi_{\hat{K}}$ w.r.t $\operatorname{dig}(D)$.

Updatable Authenticated Dictionary: Updating Proofs

Proof $\pi_K = \text{dig}(D \setminus D(K)) \Rightarrow \text{After adding } (\hat{k}, v_{\hat{k}}), \text{ update to } \pi_K' \text{ in the same fashion.}$

Update to π'_{K} after removing $(\hat{k}, v_{\hat{k}})$ from D? π'_{K} must verify w.r.t. $\operatorname{dig}(D')$, where $D' = D \setminus D(\hat{k})$. Note that:

$$\pi'_{K} = \operatorname{dig}(D' \setminus D'(K)) = \operatorname{dig}\left((D \setminus D(\hat{k})) \setminus D'(K)\right) = \operatorname{dig}\left((D \setminus D(\hat{k})) \setminus D(K)\right)$$

But this is exactly $\pi_{K \cup \hat{k}}$ w.r.t. D, which we can aggregate from π_K and $\pi_{\hat{k}}$.

Cross-incremental Proof (Dis)aggregation

m different dictionaries with digest $dig(D_i) = (A_i, c_i)$:

$$A_i = g^{\prod_{k \in D_i} e_k} \text{ and } c_i = \prod_{k \in D_i} (A_i^{1/e_k})^{v_k}$$
 (12)

Proofs for K_i w.r.t. dig (D_i) consists of:

$$W_i = A_i^{1/e_{K_i}} \tag{13}$$

$$\Lambda_{i} = \left(\prod_{k \in D - D(K_{i})} (A_{i}^{1/e_{k}})^{V_{k}} \right)^{1/e_{K_{i}}} = \left(\frac{\prod_{k \in D(K_{i})} (A_{i}^{1/e_{k}})^{V_{k}}}{\prod_{k \in D(K_{i})} (A_{i}^{1/e_{k}})^{V_{k}}} \right)^{1/e_{K_{i}}}$$
(14)

$$= \left(c_i / \prod_{k \in K_i} (A_i^{1/e_k})^{V_k}\right)^{1/e_{K_i}} = \alpha_i^{1/e_{K_i}}$$
 (15)

Can aggregate co-prime roots as $W = \prod_{i \in [m]} W_i$ and $\Lambda = \prod_{i \in [m]} \Lambda_i$ via PoKCR [BBF18], but...

Cross-incremental Proof (Dis)aggregation via PoKCR [BBF18]

...but PoKCR requires $\gcd(e_{K_i}, e_{K_j}) = 1, \forall i \neq j$. Not true if $k \in K_i \cap K_j$, because $e_k | e_{K_i}$ and $e_k | e_{K_i}$.

Fix: Require different $H_i(\cdot)$ for each D_i , so $e_{K_i} = \prod_{k \in K_i} H_i(k)$. This way, $H_i(k) \neq H_j(k)$ and $\gcd(e_{K_i}, e_{K_j}) = 1, \forall i \neq j$.

Limitation: Each D_i must use different public parameters. Not ideal; future work?

Verifying cross-aggregated proofs

Let $e^* = \prod_{i \in [m]} e_{K_i}$. Verify each W_i aggregated within W (via PoKCR [BBF18]):

$$W^{e^*} \stackrel{?}{=} \prod_{i \in [m]} A_i^{e^*/e_{K_i}} = MultiRootExp((A_i)_{i \in [m]}, (e_{K_i})_{i \in [m]}) \text{ from [BBF18]}$$

If the above holds, then can **extract** all W_i 's from W such that $W_i^{e_{\kappa_i}} = A_i$.

• We give faster algorithm for this that saves a factor of $O(m/\log m)$ work!

Using the extracted W_i 's and a few RootFactor's, we reconstruct the α_i 's:

$$\alpha_i = c_i / \prod_{k \in K_i} (A_i^{1/e_k})^{V_k}$$

Then, verify the Λ_i 's aggregated within Λ :

$$\Lambda^{e^*} \stackrel{?}{=} \prod_{i \in [m]} \alpha_i^{e^*/e_{K_i}} = MultiRootExp((\alpha_i)_{i \in [m]}, (e_{K_i})_{i \in [m]})$$

If $b = \max_i |K_i|$, verification takes $O(\ell bm(\log^2 m + \log b))$ \mathbb{G}_2 ops.

Disaggregating and Updating cross-aggregated proofs

The W_i 's and Λ_i 's can be extracted from $(W, \Lambda) \Rightarrow$ Can recover original proofs!

Consequences:

- · Can disaggregate cross-aggregated proofs
- · Can update cross-aggregated proofs

...and that concludes our UAD presentation!

Other goodies for applications beyond stateless validation?

- Strong binding: RSA non-membership witness for k w.r.t. S_k from $\pi_k = (S_k, \Lambda_k)$
 - Downgrade to one-hop aggregation (via Poke [BBF18])
- Non-membership proofs: RSA non-membership witness w.r.t. S from $dig(D) = (S, \Lambda)$
- Append-only proofs for transparency logs: observe $S' = S^u$ and $\Lambda' = \Lambda^u S^z$ for $u, z \in \mathbb{Z}$

Conclusion

Catalano-Fiore VCs [CF13] and their extensions [LM19, CFG+20] keep on giving!

- Cross-incremental aggregation (for dictionaries w/ different params)
- ADs with strong-key binding for applications beyond stateless validation
- Append-only proofs
- Non-membership proofs

Be sure to also read [AR20] for how to remove update keys!

What else can we do with CF VCs?

Appendix

Verifying cross-aggregated proofs

Let $e^* = \prod_{i \in [m]} e_{K_i}$ and $b = \max_i |K_i|$. To verify the aggregated W via PoKCR [BBF18]:

$$W^{e^*} \stackrel{?}{=} \prod_{i \in [m]} A_i^{e^*/e_{K_i}} = MultiRootExp((A_i)_{i \in [m]}, (e_{K_i})_{i \in [m]})$$

 $(MultiRootExp \text{ takes in } O(\ell bm \log m) \mathbb{G}_2 \text{ ops})$

Extract all W_i 's from W such that $W_i^{e_{K_i}} = A_i$. (We give faster $O(\ell bm \log^2 m)$ algorithm!)

$$\forall i \in [m]$$
, compute $(A_i^{1/e_k})_{k \in K_i} = RootFactor(W_i, (e_k)_{k \in K_i})$

(Each RootFactor takes $O(\ell b \log b)$ $\mathbb{G}_{?}$ ops \Rightarrow all take $O(\ell b m \log b)$)

 $\forall i \in [m]$, compute $\alpha_i = c_i / \prod_{k \in K_i} (A_i^{1/e_k})^{v_k}$.

$$\Lambda^{e^*} \stackrel{?}{=} \prod_{i \in [m]} \alpha_i^{e^*/e_{K_i}} = MultiRootExp((\alpha_i)_{i \in [m]}, (e_{K_i})_{i \in [m]})$$

Overall, can verify in $O(\ell bm(\log^2 m + \log b))$ \mathbb{G}_2 ops.

Incrementally Aggregating Proofs in CF VCs [CFG⁺20]

Aggregate
$$\pi_{I}$$
 and π_{J} into $\pi_{I \cup J}$? (Assume $I \cap J = \emptyset$ or disaggregate.)
$$\operatorname{dig}(\mathbf{v} \setminus \mathbf{v}_{I}) \, \& \, \operatorname{dig}(\mathbf{v} \setminus \mathbf{v}_{J}) \qquad \operatorname{dig}(\mathbf{v} \setminus \mathbf{v}_{I} \setminus \mathbf{v}_{J})$$

$$S_{I \cup J} = S^{\frac{1}{e_{I}e_{J}}} = ShamirTrick(S_{I}, S_{J}, e_{I}, e_{J}) = ShamirTrick(S^{1/e_{I}}, S^{1/e_{J}}, e_{I}, e_{J})$$

$$\Lambda_{l\cup J} = \prod_{k \in [n] \setminus (l\cup J)} (S_{l\cup J}^{1/e_k})^{v_k} = \left(\prod_{k \in [n] \setminus (l\cup J)} (S^{1/e_k})^{v_k}\right)^{\frac{1}{e_l e_J}} \text{ is a bit more complicated.}$$

- Recall $\Lambda_i = \prod_{k \in [n] \setminus i} (S_i^{1/e_k})^{v_k}$.
- Tweak as $\Lambda_{l}^{*} = \prod_{k \in [n] \setminus \{l \cup l\}} (S_{l}^{1/e_{k}})^{V_{k}} = (\prod_{k \in [n] \setminus \{l \cup l\}} (S^{1/e_{k}})^{V_{k}})^{\frac{1}{e_{l}}}$.
 - How? Divide out all $(S_l^{1/e_k})^{v_k}$, $k \in J$ from Λ_l
 - How? Compute all S_l^{1/e_k} , $k \in J$ via $RootFactor(S_{l \cup j}, (e_j)_{j \in J})$
- Similarly, $\Lambda_{j}^{*} = \prod_{k \in [n] \setminus \{I \cup J\}} (S_{j}^{1/e_{k}})^{V_{k}} = (\prod_{k \in [n] \setminus \{I \cup J\}} (S^{1/e_{k}})^{V_{k}})^{\frac{1}{e_{j}}}$.
- Finally, note $\Lambda_{I\cup I} = ShamirTrick(\Lambda_I^*, \Lambda_I^*, e_I, e_I)$

Observation: $O(\ell|I| \log |I|) \mathbb{G}_{?}$ ops to aggregate, assuming |I| > |J|.

Less-efficient Incremental Disaggregation of Proofs in CF VCs [CFG⁺20]

Disaggregate $\pi_I = (S_I, \Lambda_I)$ for \mathbf{v}_I into $\pi_K = (S_K, \Lambda_K)$ for \mathbf{v}_K , where $K \subset I$ and $\Delta = I \setminus K$? $\operatorname{dig}(\mathbf{v} \setminus \mathbf{v}_I)$

Note that $(\mathbf{v} \setminus \mathbf{v}_I) + \mathbf{v}_{\Delta} = (\mathbf{v} \setminus \mathbf{v}_I) + (\mathbf{v}_I \setminus \mathbf{v}_K) = \mathbf{v} \setminus \mathbf{v}_K$.

$$S_K = S_I^{\prod_{j \in \Delta} e_j} = S_I^{\underline{e_\Delta}} \tag{16}$$

$$\Lambda_K = \prod_{j \in \Delta} \left(S_K^{1/e_j} \right)^{v_j} \Lambda_I^{e_\Delta} \text{ (How to get all } S_K^{1/e_j}?)$$
 (17)

$$= \prod_{j \in \Delta} \left(S_K^{1/e_j} \right)^{v_j} \left(\prod_{j \in [n]-l} \left(S_l^{1/e_j} \right)^{v_j} \right)^{e_\Delta}$$
(18)

$$= \prod_{j \in I-K} \left(S_K^{1/e_j} \right)^{v_j} \prod_{j \in [n]-I} \left(S_K^{1/e_j} \right)^{v_j} = \prod_{j \in [n]-K} \left(S_K^{1/e_j} \right)^{v_j}$$
(19)

Observations: Can compute (1) all S_K^{1/e_j} , $j \in \Delta$ via $RootFactor(S_I, (e_j)_{j \in \Delta})$ in $O(\ell |I| \log |I|)$ \mathbb{G}_2 ops and (2) all proofs in $O(\ell n \log^2 n)$ \mathbb{G}_2 ops via disaggregation!

References i

Shashank Agrawal and Srinivasan Raghuraman.

KVaC: Key-Value Commitments for Blockchains and Beyond.

Cryptology ePrint Archive, Report 2020/1161, 2020.

https://eprint.iacr.org/2020/1161.

Dan Boneh, Benedikt Bünz, and Ben Fisch.

Batching Techniques for Accumulators with Applications to IOPs and Stateless Blockchains.

Cryptology ePrint Archive, Report 2018/1188, 2018.

https://eprint.iacr.org/2018/1188.

Iosh Benaloh and Michael de Mare.

One-Way Accumulators: A Decentralized Alternative to Digital Signatures.

In Tor Helleseth, editor, *EUROCRYPT '93*, pages 274–285, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

References ii

Matteo Campanelli, Dario Fiore, Nicola Greco, Dimitris Kolonelos, and Luca Nizzardo.

Vector Commitment Techniques and Applications to Verifiable Decentralized

Storage, 2020.

https://eprint.iacr.org/2020/149.

Derek Leung, Yossi Gilad, Sergey Gorbunov, Leonid Reyzin, and Nickolai Zeldovich. **Aardvark: A Concurrent Authenticated Dictionary with Short Proofs.**Cryptology ePrint Archive, Report 2020/975, 2020.

https://eprint.iacr.org/2020/975.

References iii

Universal Accumulators with Efficient Nonmembership Proofs.

In Jonathan Katz and Moti Yung, editors, Applied Cryptography and Network Security, pages 253-269, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

Russell W. F. Lai and Giulio Malavolta.

Subvector Commitments with Application to Succinct Arguments. In CRYPTO'19, 2019.

Ralph C. Merkle.

A Digital Signature Based on a Conventional Encryption Function.

In Carl Pomerance, editor, CRYPTO '87, pages 369-378, Berlin, Heidelberg, 1988. Springer Berlin Heidelberg.

References iv

Accumulators from Bilinear Pairings and Applications.

In Alfred Menezes, editor, *CT-RSA '05*, pages 275–292, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

Charalampos Papamanthou, Elaine Shi, Roberto Tamassia, and Ke Yi. Streaming Authenticated Data Structures.

In Thomas Johansson and Phong Q. Nguyen, editors, *Advances in Cryptology – EUROCRYPT 2013*, pages 353–370, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. **Authenticated Hash Tables Based on Cryptographic Accumulators.** *Algorithmica*, 74(2):664–712, 2016.

References v

Adi Shamir.

On the generation of cryptographically strong pseudo-random sequences.

In Shimon Even and Oded Kariv, editors, *Automata, Languages and Programming*, pages 544–550, Berlin, Heidelberg, 1981. Springer Berlin Heidelberg.

Tomas Sander, Amnon Ta-Shma, and Moti Yung.

Blind, Auditable Membership Proofs.

In Yair Frankel, editor, *Financial Cryptography*, pages 53–71, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopoulos, Charalampos Papamanthou, Nikos Triandopoulos, and Srinivas Devadas.

Transparency Logs via Append-Only Authenticated Dictionaries.

In ACM CCS'19, CCS '19, page 1299–1316, New York, NY, USA, 2019. Association for Computing Machinery.

References vi

Alin Tomescu.

How to Keep a Secret and Share a Public Key (Using Polynomial Commitments).

PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2020.