In the above example both subsets σ_1 , σ_2 of $\sigma(A)$ are unbounded. But as soon as one of these sets is bounded a corresponding spectral decomposition can always be found.

Theorem 3.3. Let \mathcal{T} be a strongly continuous semigroup on a Banach space E and assume that the spectrum $\sigma(A)$ of the generator A can be decomposed into the disjoint union of two non-empty closed subsets σ_1 , σ_2 . If σ_1 is compact then there exists a unique corresponding spectral decomposition $E = E_1 \oplus E_2$ such that the restricted semigroup \mathcal{T}_1 has a bounded generator.

<u>Proof.</u> We assume the reader to be familiar with the spectral decomposition theorem for bounded operators (see e.g. [Dunford-Schwartz (1958), p.572]) and apply the "spectral mapping theorem" for the resolvent (A-III,Thm.2.5) in order to decompose R(λ ,A) instead of A: For $\lambda_0 > \omega(T)$ it follows from A-III,Thm.2.5 that $\sigma(R(\lambda_0,A)) \setminus \{0\}$ = $(\lambda_0 - \sigma(A))^{-1}$. From $\sigma(A) = \sigma_1 \cup \sigma_2$ we obtain a decomposition of $\sigma(R(\lambda_0,A)) \setminus \{0\}$ into

$$\tau_1 := (\lambda_0 - \sigma_1)^{-1}$$
 , $\tau_2 := (\lambda_0 - \sigma_2)^{-1}$.

Since σ_1 is compact the set τ_1 is compact and does not contain 0 . Only in the case that σ_2 is unbounded the point 0 will be an accumulation point of τ_2 . Therefore $\sigma(R(\lambda_0,A))$ U $\{0\}$ is the disjoint union of the closed sets τ_1 and τ_2 U $\{0\}$.

Take now P to be the spectral projection of $R(\lambda_0,A)$ corresponding to this decomposition. Then P commutes with $R(\lambda_0,A)$ (by definition), with $R(\lambda,A)$ for every $\lambda > \omega(T)$ (use the series representation of the resolvent), with T(t) for each $t \ge 0$ (use A-II, Prop.1.10) and therefore with the generator A (in the sense explained above). In particular, we obtain

$$R(\lambda_0,A)P = R(\lambda_0,A_1) , R(\lambda_0,A) (Id-P) = R(\lambda_0,A_2)$$

for the generator A_1 of $T_1 = (T(t)P)_{t \ge 0}$ and A_2 of $T_2 = (T(t)(Id-P))_{t \ge 0}$. Applying the Spectral Mapping Theorem 2.5 we conclude

$$\sigma(A_1) = \sigma_1$$
 and $\sigma(A_2) = \sigma_2$,

i.e., P is a spectral projection corresponding to σ_1 , σ_2 . Finally, the above spectral decomposition of $R(\lambda_0,A)$ is unique and satisfies $0 \notin \sigma(R(\lambda_0,A_1))$. Therefore $R(\lambda_0,A_1)^{-1} = (\lambda_0-A_1)$ is bounded.