11/1/23, 11:10 AM OneNote

11-01

Tuesday, October 31, 2023 19:37

1. Let $T\in\mathscr{L}\left(\mathbb{R}^{n}
ight)$ is an orthogonal transformation.

a. Show that T preserves orthogonality.

b. Show further that $[T]_{\mathscr{E} \to \mathscr{E}}$ is an orthogonal matrix, i.e., its cols form an orthonormal

c. Show that if $A\in M_{n}\left(\mathbb{R}
ight)$ is an orthgonal matrix, then the map

$$T_A:\mathbb{R}^n o\mathbb{R}^n$$

$$x\mapsto Ax$$

Is an orthogonal transformation.

2. Let $A,B\in M$ $_$ $n\left(\mathbb{R}
ight)$ that are orthogonal

a. Show AB is also orthogonal

b. Does A^{-1} exist? Is it orhtogonal?

3.

a. Let $A\in Mn\left(\mathbb{R}\right)$. Show that A is orthogonal iff $A^TA=I_n$ iff $A^{-1}=A^T$. b. Show that the transformation in 1.c in this case also preserves dot product (angle-

4. Determine the forms of all orthogonal matrices in $M_{2}\left(\mathbb{R}
ight)$.

5. True or False

a. Let $A \in M_{m imes n}\left(\mathbb{R}
ight)$. If $A^TA = I_m$, then $A^TA = I_n$.

b. Let $A\in M_n$ (\mathbb{R}) . If $A^TA=I_n$, then $A^TA=I_n$. c. A reflection transformation is an orthogonal transformation.

In class I defined that $T\in\mathscr{L}\left(\mathbb{R}^{n}
ight)$ is an rthogonal transformation

We defined an orthogonal matrix is a square matrix whose cols for

$$egin{pmatrix} cos heta & -sin heta \ sin heta & cos heta \end{pmatrix}, egin{pmatrix} cos heta & sin heta \ sin heta & -cos heta \end{pmatrix}$$

No. Consider (e_1,e_2) in \mathbb{R}^3 Yes. Yes.