Applications In Epidemiology -Paired binary data

Example 4: Matched case control study

213 subjects with a history of acute myocardial infarction (AMI) were matched by age and sex with one of their siblings who did not have a history of AMI. The prevalence of a particular polymorphism was compared between

Q: Is there an association between the polymorphism and AMI?

Q: If there is an association then what is the magnitude of the effect?

Summer Institutes

Module 1, Session 7

1

Applications In Epidemiology -Paired binary data

For paired binary data we display the results as follows:

	AMI		
	carrier noncarrier Tot		
carrier No AMI	73	14	87
noncarrier	23	103	126
Total	96	117	213

This analysis explicitly recognizes the heterogeneity of subjects. The concordant pairs (73 and 103) provide no information about the association between AMI and the polymorphism. The information regarding the association is in the discordant pairs, 14 and 23.

Summer Institutes

Module 1, Session 7

Applications In Epidemiology -Paired binary data

One way to display these data is the following:

	Carrier	Noncarrier	Total
AMI	96	117	213
No AMI	87	126	213
Total	183	243	426

Q: Can't we simply use Pearson's X² Test to assess whether this is evidence for an increase in knowledge?

A: NO!!! Pearson's X² test assumes that the rows are **independent** samples. In this design the 213 with AMI are genetically related to the 213 w/o AMI. This is an example of paired binary data.

Summer Institutes

Module 1, Session 7

2

Applications In Epidemiology -Paired binary data

For paired binary data we display the results as follows:

	AMI	
	1	0
No AMI 1	n ₁₁	n ₁₀
0	n ₀₁	n ₀₀

 $p_1 = P(carrier \mid AMI)$

 $p_0 = P(carrier \mid No AMI)$

 $H_0: p_1 = p_0$

 $H_A: p_1 \neq p_0$

The information for testing this hypothesis is contained in the discordant pairs (0,1) and (1,0)

Summer Institutes

Module 1, Session 7

3

Applications In Epidemiology -Paired binary data

Under the null hypothesis we expect equal numbers of 01's and 10's. The McNemar's chi-squared statistic is

$$X^{2} = \left(\frac{n_{10} - M_{\frac{1}{2}}^{\frac{1}{2}}}{\sqrt{M_{\frac{1}{2}}^{\frac{1}{2}}(1 - \frac{1}{2})}}\right)^{2}$$

where $M = n_{01} + n_{10}$. $X^2 \sim \chi^2(1)$ and forms the basis for **McNemar's Test for** Paired Binary Responses.

The odds ratio comparing the odds of carrier in those with AMI to odds of carrier in those w/o AMI is estimated by: $\hat{O}R = \frac{n_{01}}{n_{10}}$

$$\widehat{O}R = \frac{n_{01}}{n_{10}}$$

Confidence intervals can be obtained as described in Breslow and Day (1981), section 5.2, or in Armitage and Berry (1987), chapter 16.

Summer Institutes

Module 1, Session 7

6

Summer Institutes

Module 1, Session 7

Exercise 1: Compute χ^2 and the estimated OR for the AMI paired

AMI carrier

73

96

noncarrier

14

103

Total 87

126

213

5

Stratified Tables - Effect Modification

· Often, a third measure influences the relationship between the two primary measures (i.e. disease and exposure).

Example: Effect of seat belt use on accident fatality

	Seat Belt		
Driver	Worn	Not worn	
dead	10	20	
alive	40	30	
Total	50	50	
Fatality Rate	10/50 (20%)	20/50 (40%)	

Summer Institutes

Module 1, Session 7

Stratified Tables - Effect Modification

But, suppose...

binary data dataset

carrie

noncarrie

Total

No AMI

		Impact Speed			
	< 40 mph		> 40 mph		
Driver	seat belt		seat	belt	
	worn not		worn	not	
dead	3	2	7	18	
alive	27	18	13	12	
Total	30	20	20	30	
Fatality	10%	10%	35%	60%	
Rate					

How does this affect your inference?

➤ This is an example of "effect modification" or "interaction".

Summer Institutes

Module 1, Session 7

7

Effect Modification (aka Interaction)

· Effect modification depends on the effect measure used!

Table x. Rate of fractures over 5 years by age and calcium level in drinking water				
Age 20 - Age 55 - Overall				
35 80 (pooled)				
High calcium	1.1%	11.0%	7.8%	
Low calcium 3.3% 13.2% 10.0%				
RR .33 .83 .78				
RD	-2.2%	-2.2%	-2.2%	

Summer Institutes

Module 1, Session 7

10

Stratified Tables - Confounding

Example: Suppose we are interested in the relationship between lung-cancer incidence and heavy drinking (defined as ≥ 2 drinks per day). We conduct a prospective study where drinking status is determined at baseline and the cohort is followed for 10 years to determine cancer endpoints. We also measure smoking status at baseline.

Summer Institutes

Module 1, Session 7

10

9

Stratified Contingency Tables - Example

1) Pooled data, not controlling for smoking

	Heavy Drinker		
	Yes	No	
Case	33	27	60
Control	1667	2273	3940
	1700	2300	4000

OR = 1.67

Summer Institutes

Module 1, Session 7

Stratified Contingency Tables - Example

2) Stratified by smoking at baseline

Smokers

	Heavy Drinking		
	Yes	No	
Case	24	6	30
Control	776	194	970
	800	200	1000

Nonsmokers

	Heavy Drinking		
	Yes	No	
Case	9	21	30
Control	891	2079	2970
	900	2100	3000

OR = 1

OR = 1

- A higher proportion of heavy drinkers are smokers (800/1700 vs 200/2300)
- A higher proportion of cases are smokers (30/60 vs 970/3940)
- The comparison of heavy drinkers to not-heavy drinkers is really a comparison of smokers to nonsmokers

Summer Institutes

Module 1, Session 7

12

11

Confounding

A confounder is associated with both the disease and exposure and is not in the causal path between disease and exposure

- The implicit assumption is that we want to know if E "causes" D
- A simple, common example from genetics is the linked gene: we discover a gene which appears to be associated with disease ... does it cause the disease or is it merely linked to the true causal gene?
- · Pictorially ...

An apparent association between E and D is completely explained by C. C is a confounder.

Summer Institutes

13

Module 1, Session 7

Exercise 2: In each case, decide whether this is an example of confounding or effect modification

a) Two hospitals are compared with respect to the rate death following a particular type of surgery. Here are the data ... is risk group a confounder or effect modifier?

		Death rate	
High risk			
Hospital	A	57/1500	(3.8%)
	В	8/200	(4%)
			,
Low risk			
Hospital	A	6/600	(1%)
	В	8/600	(1.3%)

b) A randomized clinical trial is conducted to determine if a new drug can increase levels of HDL cholesterol among men and women. Using the mean difference as a measure of effect, is sex a confounder or effect modifier?

	Mean HDL		
	Women	Men	All
New Drug	38.9	45.2	40.2
Placebo	39.2	39.1	39.2

Module 1, Session 7 Summer Institutes

Exercise 2: In each case, decide whether this is an example of confounding or effect modification

c) Researchers at the International Agency for Research on Cancer in France found that women infected with both HPV and HSV-2 were nearly three times more likely to get cervical cancer compared to women with only HPV infection.

Does HSV-2 confound or modify the effect of HPV on cervical cancer?

d) If the mother took antidepressant medication during the first trimester, without accounting for other possible influences, children had roughly twice the risk of having autism. The researchers then compared siblings in families where the mother used antidepressants in one pregnancy but not the other. This helped account for all of the factors that make siblings similar — their shared genetics and environment. In the sibling matchup, the children had essentially the same risk for autism, ADHD and poor fetal growth whether they were exposed to antidepressants in the womb or not.

Do genetic factors confound or modify the effect of antidepressants on autism?

14

Adjusting the OR via Stratification

Basic idea

- Compute separate OR for each stratum
- Assess homogeneity of OR's across strata (Is there EM?)
- Pool OR's: used weighted average (Adjust for confounding)
- Global test of pooled OR = 1 (Is there association, after adjustment)
- · Different methods of pooling, testing have been proposed. We will focus on Mantel-Haenszel methods
- · Same idea for RR and RD

Module 1, Session 7

Summer Institutes

Summer Institutes Module 1, Session 7

Stratified Contingency Tables - Example

EXAMPLE: (Rosner sec 13.5)

A 1985 study identified a group of 518 cancer cases and 518 controls by mail questionnaire. The main purpose of the study was to look at the effect of passive smoking on cancer risk. In the study passive smoking was defined as exposure to the cigarette smoke of a spouse who smoked at least one cigarette/day for at least 6 months. One potential confounding variable was smoking by the test subjects themselves since personal smoking is related to both cancer risk and having a spouse that smokes. Therefore, it was important to control for personal smoking before looking at the relationship between passive smoking and cancer risk.

Summer Institutes

Module 1, Session 7

17

18

Stratified Contingency Tables - Example

1) Pooled data, not controlling for personal smoking

	Passive smoking		
	Yes	No	
Case	281	228	509
Control	210	279	489
	491	507	998

. cci 281 228 210		Exposed	Unexp	osed	!	T	otal	Proport: Expose	
Cases	1	281		228	ï		509	0.552	21
Controls	1	210		279	1		489	0.429	94
Total	1	491		507	Ĭ		998	0.492	20
		Point	estima	te		[95%	Conf.	Interval	1]
Odds ratio	i .	1.6	37406		1	1.26	5013	2.11959	99
Attr. frac. ex. Attr. frac. pop			192779 49059		ŀ	.209	4943	.528212	26
	+		hi2(1)	-	15.	00	Pr>chi2	= 0.000	01

Summer Institutes Module 1, Session 7

17

Stratified Contingency Tables - Example

2) Stratified by personal smoking

Nonsmokers

	Passive	smoking	
	Yes	No	
Case	120	111	231
Control	80	155	235
	200	266	466

cci	120	111	80	155

	d	Exposed	Unexp	osed	!	70	otal	Expo	2590
Cases Controls		120 80		111 155	-		231 235	0.	5195 3404
Total	i	200		266	1		466	0.4	4292
	i	Point	estimat	te	į	95%	Conf.	Inter	zal]
Odds ratio	i	2.0	094595		1	1.43	1754	3.09	7165
Attr. frac. ex. Attr. frac. pop	į	.52	225806 714705		-	294	5527	.677	1241
	Ī		thi2(1)	-	15.2	4 1	Pr>chi2	= 0.1	000

Smokers

	Passive		
	Yes	No	
Case	161	117	278
Control	130	124	254
	291	241	532

oci 161 117 130 124

Cases Controls		161 130	117 124		278 254	0.5791 0.5118
Total	1	291	241		532	0.5470
	1	Point es	timate	[95	% Conf.	Interval]
Odds ratio Attr. frac. ex. Attr. frac. pop	i	1.312 .2381 .137	286		84614 87774	1.875813 .4668978
		chi	2(1) =	2.43	Pr>chi:	2 = 0.1192

Summer Institutes

Module 1, Session 7

9

Stratified Contingency Tables

- **Q:** How can we combine the information from both tables to obtain an overall test of significance that takes account of the stratification?
- A: Mantel-Haenszel Methods assesses association between disease and exposure after controlling for one or more confounding variables.

Notation:

	Е	Ē	
D	ai	bi	$(a_i + b_i)$
D	Ci	di	(ci + di)
	(ai + ci)	(bi + di)	Ni

where i = 1,2,...,K is the number of strata.

Summer Institutes

Module 1, Session 7

20

19

Mantel-Haenszel Methods

(1) Test of effect modification (heterogeneity, interaction)

Ho:
$$OR_1 = OR_2 = ... = OR_K$$

Ha: not all stratum-specific OR's are equal

(2) Estimate the common odds ratio

The Mantel-Haenszel estimate of the odds ratio assumes there is a common odds ratio:

$$\mathrm{OR}_{\mathrm{pool}} = \mathrm{OR}_1 = \mathrm{OR}_2 = \ldots = \mathrm{OR}_K$$

To estimate the common odds ratio we take a weighted average of the stratum-specific odds ratios:

MH estimate:
$$\hat{O}R_{pool} = \sum_{i=1}^{n} w_i \cdot \hat{O}R_i$$

(3) Test of common odds ratio

H_o: common odds ratio is 1.0 H_a: common odds ratio ≠ 1.0

Summer Institutes

21

Module 1, Session 7

22

Exercise 3

Based on the abundance of specific bacterial genera, the human gut microbiota can be divided into two relatively stable groups (enterotypes) that might play a role in personalized nutrition. We studied these simplified enterotypes as prognostic markers for successful body fat loss on two different diets. A total of 62 participants with increased waist circumference were randomly assigned to receive a New Nordic Diet (NND) high in fiber/wholegrain or an Average Danish Diet (ADD) for 26 weeks. At enrollment, participants were grouped into two discrete enterotypes by their relative abundance of Prevotella spp. divided by Bacteroides spp. (P/B ratio) obtained by quantitative PCR analysis. Among individuals with high P/B the NND resulted in a 3.15 kg larger body fat loss compared to ADD whereas virtually no difference (0.88 kg) was observed among individuals with low P/B. Consequently, a 2.27 kg difference in responsiveness to the diets were found between the high and low P/B groups. In summary, subjects with high P/B-ratio appeared more susceptible to lose body fat on diets high in fiber and wholegrain than subjects with a low P/B-ratio.

a) Which of the following best describes the design of this study?

Cross-sectional survey

Case-control study

Prospective cohort

b) Identify the role of diet, weight loss, and P/B ratio using one of the following terms - Outcome, Exposure, Effect modifier, Confounder

Summer Institutes

Module 1, Session 7

Mantel-Haenszel Methods - Example

	+			+
	case	passive	number	smoke
1.	1	1	120	0
2.	1	0	111	0
3.	0	1	80	0
4.	1 0	0	155	0
5.	1	1	161	1
6.	1	0	117	1
7.	1 0	1	130	1
8.	0	0	124	1
	+			

. cc case passive [freq=number], by(smoke) bd

Personal	Smoking	1	OR	[95% Conf.	Interval]	M-H Weight	
		+					
	0	1	2.094595	1.41754	3.097165	19.05579	(exact)
	1		1.312558	.9184614	1.875813	28.59023	(exact)
		+					
	Crude	1	1.637406	1.265013	2.119599		(exact)
M-H	combined		1.625329	1.263955	2.090024		

Test of homogeneity (M-H) Test of homogeneity (B-D)

Test that combined OR = 1: Mantel-Haenszel chi2(1) = Pr>chi2 = 0.0001

Summer Institutes Module 1, Session 7 22

Review

- R x C contingency table
 - o Test for homogeneity (Pearson chi-squared)
- Single 2 x 2 table
 - o Different sampling schemes
 - 1.Cohort (row totals fixed)
 - 2.Case-control (column totals fixed)
 - 3. Cross-sectional (grand total fixed)
 - o Different measures of association

RD (Designs 1 & 3)

RR (Designs 1 & 3)

OR (Designs 1, 2 & 3)

o Test of association

Pearson chi-squared

McNemar's

Summer Institutes Module 1, Session 7

23 24

Review

- Series of 2 x 2 tables
 - o Effect Modification
 - o Confounding
 - o Stratified analysis
 - Breslow-Day "Score" Test for Homogeneity (Interaction, Effect Modification)
 - Mantel-Haenszel (combined) OR estimate
 - Mantel-Haenszel test for association (H_0 : OR = 1)

Summer Institutes

Module 1, Session 7

25