DL for CV - Assignment 3

Itai Antebi 204817498

May 25, 2021

Given x, \tilde{k}_2 we will prove that $\left(x*\tilde{k_4}\right)\downarrow_4=\left(x*\tilde{k_2}\downarrow_2\right)*\tilde{k_2}\downarrow_2$ for $\tilde{k_4}=\left(\tilde{k_2}*\tilde{k_2}_{dilated}\right)$.

Disclaimer: My project with Michal is related to kernelGAN.

While reading the paper, I came across the proof in the project's website: $http://www.wisdom.weizmann.ac.il/^vision/kernelgan/resources/k_4_proof.pdf I did my best to explain every step of the proof in order to show that I fully understand it.$

Proof

I will prove the equivalence in the inifinite case - assuming \tilde{k}_2 is infinite. For any finite kernel \tilde{k}_2 , we can simply observe it as an infinite kernel padded with infinite 0-s at each size.

The resulting $\tilde{k_4}$ will also be infinite.

Since both $\tilde{k_2}$ and $\tilde{k_2}_{_dilated}$ are padded with infinite 0-s at each size, the resulting $\tilde{k_4}$ will also be padded with infinite 0-s at each size (stems from the convolution definition).

Therefore, we could later observe only the relevant part of the resulting $\tilde{k_4}$ for the finite case (the non-zero part with the relevant padding).

Let us define $y = x * \tilde{k_2}$.

$$\begin{pmatrix} \left(\left(\left(x*\tilde{k_2}\right)\downarrow_2\right)*\tilde{k_2}\right)[n] & \text{convolution is commutative} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

*1 - We use Kronecker comb function in the change of variables:

Assume we had some f(l) and wanted to change variables so that m = 2l, i.e. $f\left(\frac{m}{2}\right) = f(l)$.

The problem is that $f\left(\frac{m}{2}\right)$ is not defined for odd m (since $f\left(l\right)$ is only defined for $l \in \mathbb{Z}$).

To overcome this fact, we multiply $f\left(\frac{m}{2}\right)$ with the Kronecker comb and by that we basically set $f\left(\frac{m}{2}\right) = 0$ for odd m.

Explanation:

Notice that for each even m the function $\delta[2l-m] f(l) = \delta[2l-m] f(\frac{m}{2}) =$

$$\begin{cases} f\left(\frac{m}{2}\right) & m=2l\\ 0 & otherwise \end{cases}$$
. Thus, $\sum_{m_{even}=-\infty}^{\infty} \delta\left[2l-m\right] f\left(l\right) = f\left(\frac{m}{2}\right)$ for all even

Notice that for each odd m the function $\delta[2l-m]f(l)=0$ (since $2l\neq m$). Thus, $\sum_{m_{even}=-\infty}^{\infty} \delta \left[2l - m \right] f \left(l \right) = 0$ for all odd m. This is exactly what we wanted.

** -
$$\sum_{l=-\infty}^{\infty} \delta[2l-m]$$
 is a function of m for which $\sum_{l=-\infty}^{\infty} \delta[2l-m] = \begin{cases} 1 & m \text{ even} \\ 0 & otherwise \end{cases}$ (chain of deltas).

Shifting this function by any even number 2n will result in the same function.

$$*^3$$
 - Observe $\sum_{l=-\infty}^{\infty} \delta\left[2l+t\right]$ as a function of t .

Notice that for each even t the function $\delta [2l+t] = \begin{cases} 1 & t=-2l \\ 0 & otherwise \end{cases}$. Thus,

$$\sum_{l=-\infty}^{\infty} \delta\left[2l+t\right] = 1$$
 for all even t .

 $\sum_{l=-\infty}^{\infty} \delta\left[2l+t\right] = 1 \text{ for all even } t.$ Notice that for each odd t the function $\delta\left[2l+t\right] = 0$ (since $t \neq 2l$). Thus, $\sum_{l=-\infty}^{\infty} \delta \left[2l + t \right] = 0 \text{ for all odd } t.$

So, to sum up (pun intended),
$$\sum_{l=-\infty}^{\infty} \delta\left[2l+t\right] = \begin{cases} 1 & t \text{ even} \\ 0 & otherwise \end{cases}$$
.

Thus,
$$\sum_{l=-\infty}^{\infty} \delta \left[2l+t\right] \tilde{k_2} \left[\frac{\cdot}{2}\right] = \tilde{k}_{2_dilated}$$
.