IITM-CS6100: Topics in Design and analysis of Algorithms

Problem Set #2 Due on: May 15, 23:55 Evaluation Due on: May 20

• Turn in your solutions electronically at the moodle page. The submission should be a pdf file typeset either using LaTeX or any other software that generates pdf. No handwritten solutions are accepted.

Given on: Mar 23

- Collaboration is encouraged, but all write-ups must be done individually and independently. For each question, you are required to mention the set of collaborators, if any.
- Submissions will be checked for **plagiarism**. Each case of plagiarism will be reported to the institute disciplinary committee (DISCO).
- 1. (8 points) Let $P = \{p_1, \ldots, p_n\}$ be a set of n points from the unit square $[0,1]^2$. A triangulation τ of P is a maximal planar graph with P as the vertex set (i.e., the locations of points in P should be an embedding of the graph). A minimum weight triangulation (denoted by mwt) is a triangulation with minimum total edge weight. Let MWT denote the corresponding Euclidean functional. The convex hull (denoted by CH) of P is the smallest convex set (i.e. polygon) containing P. Let |CH(P)| denote the number of vertices in the convex hull of P. Suppose Q_1, Q_2, Q_3 and Q_4 be a partition of $[0,1]^2$ of equal sized squares. Show that

$$MWT(P, [0, 1]^2) \le \sum_{i=1}^4 MWT(P \cap Q_i, Q_i) + \sum_{i=1}^4 O(|CH(P \cap Q_i)|).$$

- 2. (16 points) In the vehicle routing problem, we are given a set of depots $D = \{d_1, \ldots, d_k\}$ from $[0,1]^d$ and a set of n points $P = \{p_1, \ldots, p_n\}$ (called customers) which are again points from $[0,1]^d$. The job is to compute minimum cost k vertex disjoint cycles such that every cycle has exactly one depot and every depot is in exactly one cycle. Let MDP denote the corresponding Euclidean functional.
 - (a) (7 points) Formally define the functional MDP. Prove that MDP is subadditive but not superadditive.
 - (b) (9 points) Define a canonical boundary functional MDP_B for MDP and show that it is superadditive. Show that the boundary functional is also a smooth Euclidean functional.
- 3. (6 points) Refer to phase 3 of the algorithm for computing Hamiltonian cycle given in Page 6 of Frieze's survey. Show that for any tractable graph, the phase 3 of the algorithm always succeeds in computing a Hamiltonian cycle, if exists.