1 Introduction

- Migration and MMR capture in disks
- Observations of Kepler-88, K2-19 show apsidal alignment
- What conditions are necessary for alignment?
- Goal: Constrain disk aspect ratio with observations of aligned systems

2 Restricted problem

- Background formalism, Wisdom's Hamiltonian
- \bullet Summarize shifted resonance and resonant variables $(\overline{\gamma},\,\overline{e},\,\overline{\theta})$

2.1 Disk forces

- Dissipative forces from protoplanetary disk conditions
- \bullet Connect parameters T_m and T_e to disk aspect ratio and density
- Equilibrium eccentricity e_d for $e_p = 0$

2.2 External MMR

- Heuristic explanation with equation of state
- Plot of gamma components

2.3 Internal MMR

• Similar to external

• Migration model fails for $e_p < e_d$

3 Two massive planets

• Work in progress

4 Observations

• K2-19 b,c have $\delta \varpi \approx 0,\, e_b, e_c \approx 0.2,$ but θ_b and θ_c both circulate

5 Conclusion