L6: Syntax III - Dependencies

Simon Dobnik
Department of Philosophy, Linguistics and Theory of Science

September 24, 2015

Outline

Local dependencies: NPs

Identifying NPs

Alternations of argument structure

Passive

Un-accusatives

Arguments in non-finite clauses

Raising

Control

Long distance dependencies

Topicalisation

Relative clauses

Wh-questions

Local dependencies: NPs

From verbal arguments to NPs

Previously, ...

- verbs are predicate relations that take various arguments of entities or events;
- they restrict their arguments by a thematic role: Agent, Experiencer, Goal, Source, Location, Theme.

From verbal arguments to NPs

Previously, ...

- verbs are predicate relations that take various arguments of entities or events;
- ▶ they restrict their arguments by a thematic role: Agent, Experiencer, Goal, Source, Location, Theme.

How can we tell in a sentence what NP fulfils what role?

From verbal arguments to NPs

Previously, ...

- verbs are predicate relations that take various arguments of entities or events;
- ▶ they restrict their arguments by a thematic role: Agent, Experiencer, Goal, Source, Location, Theme.

How can we tell in a sentence what NP fulfils what role?

- Structural relations
- Morphological marking (case)

Identifying NPs: structural relations

Identifying NPs: structural relations

Identifying NPs: structural relations

- ▶ The number of slots that an NP can occupy is limited
- They are structurally defined
- ► The slots are said to define grammatical relations of an NP: subject, direct and indirect object, infinitival complement, sentential complement,...

Identifying NPs: morphological marking with Case

Subject-object case marking in English

- (1) a. She saw him.
 - b. He saw her.
 - c. It broke it.

Identifying NPs: morphological marking with Case

```
Japanese (Carnie, 2007), p.296: Subject: -ga, Direct object: -o, Indirect-object|Adjuncts: -ni
```

(2) a.

Asako-ga ronbun-o kai-ta. Asako-subj article-d-obj wrote-past "Asako wrote the article."

b.

Etsuko-ga heya-ni haittee-kita. Etsuko-subj room-i-obj in-came. "Etsuko came into the room."

Identifying NPs: complex case systems (Finish)

t
ect)
е

Identifying NPs: complex case systems (Finish)

Case	Example	English equivalent
nominatiivi	talo	house
genetiivi	talon	of (a) house
essiivi	talona	as a house
partitiivi	taloa	house (as an object)
translatiivi	taloksi	to a house
inessiivi	talossa	in (a) house
elatiivi	talosta	from (a) house
illatiivi	taloon	into (a) house
adessiivi	talolla	at (a) house
ablatiivi	talolta	from (a) house
allatiivi	talolle	to (a) house
abessiivi	talotta	without (a) house
komitatiivi	taloineni	with my house(s)
instruktiivi	(talon)	with (a) house

Also includes other semantic properties. Examples from here.

Case as a head feature on nouns

- ightharpoonup N[head=[agr=[num=sg,pers=3,case=acc,gen=fem]]]
 ightarrow her
- $\qquad \qquad \mathsf{N}[\mathsf{head} = [\mathsf{agr} = [\mathsf{num} = \mathsf{sg}, \mathsf{pers} = 3, \mathsf{case} = \mathsf{nom}, \mathsf{gen} = \mathsf{masc}]]] \to \mathsf{he}$

Case as a head feature on nouns

- $\color{red} \blacktriangleright \ \mathsf{N}[\mathsf{head} = [\mathsf{agr} = [\mathsf{num} = \mathsf{sg}, \mathsf{pers} = 3, \mathsf{case} = \mathsf{acc}, \mathsf{gen} = \mathsf{fem}]]] \ \rightarrow \ \mathsf{her}$
- $\qquad \qquad \mathsf{N}[\mathsf{head} = [\mathsf{agr} = [\mathsf{num} = \mathsf{sg}, \mathsf{pers} = 3, \mathsf{case} = \mathsf{nom}, \mathsf{gen} = \mathsf{masc}]]] \to \mathsf{he}$
- $\blacktriangleright \ \mathsf{NP}[\mathsf{head}{=}\mathsf{A}] \to \mathsf{N}[\mathsf{head}{=}\mathsf{A}]$

Case as a head feature on nouns

- $\color{red} \blacktriangleright \ \mathsf{N}[\mathsf{head} = [\mathsf{agr} = [\mathsf{num} = \mathsf{sg}, \mathsf{pers} = 3, \mathsf{case} = \mathsf{acc}, \mathsf{gen} = \mathsf{fem}]]] \ \rightarrow \ \mathsf{her}$
- $\qquad \qquad \mathsf{N}[\mathsf{head} = [\mathsf{agr} = [\mathsf{num} = \mathsf{sg}, \mathsf{pers} = 3, \mathsf{case} = \mathsf{nom}, \mathsf{gen} = \mathsf{masc}]]] \to \mathsf{he}$
- ▶ $NP[head=A] \rightarrow N[head=A]$

From arguments of lexical predicates to structural positions

 $\qquad \qquad \textbf{V[head=[agr=[num=sg,pers=3]],subcat=[obj,subj]]} \rightarrow \textbf{saw}$

Case as a head feature on nouns

- $\qquad \qquad \mathsf{N}[\mathsf{head} = [\mathsf{agr} = [\mathsf{num} = \mathsf{sg}, \mathsf{pers} = 3, \mathsf{case} = \mathsf{acc}, \mathsf{gen} = \mathsf{fem}]]] \ \rightarrow \ \mathsf{her}$
- ightharpoonup N[head=[agr=[num=sg,pers=3,case=nom,gen=masc]]] ightarrow he
- ▶ $NP[head=A] \rightarrow N[head=A]$

From arguments of lexical predicates to structural positions

- $\qquad \qquad \mathsf{VP}[\mathsf{head} = \mathsf{A}, \mathsf{subcat} = \mathsf{Rest}] \to \mathsf{V}[\mathsf{head} = \mathsf{A}, \mathsf{subcat} = [\mathsf{obj} | \mathsf{Rest}]] \\ \mathsf{NP}[\mathsf{head} = [\mathsf{agr} = [\mathsf{case} = \mathsf{acc}]]]$

Case as a head feature on nouns

- $\qquad \qquad \mathsf{N}[\mathsf{head} = [\mathsf{agr} = [\mathsf{num} = \mathsf{sg}, \mathsf{pers} = 3, \mathsf{case} = \mathsf{acc}, \mathsf{gen} = \mathsf{fem}]]] \ \rightarrow \ \mathsf{her}$
- ightharpoonup N[head=[agr=[num=sg,pers=3,case=nom,gen=masc]]] ightarrow he
- ▶ $NP[head=A] \rightarrow N[head=A]$

From arguments of lexical predicates to structural positions

- $\qquad \qquad \mathsf{VP}[\mathsf{head} = \mathsf{A}, \mathsf{subcat} = \mathsf{Rest}] \to \mathsf{V}[\mathsf{head} = \mathsf{A}, \mathsf{subcat} = [\mathsf{obj} | \mathsf{Rest}]] \\ \mathsf{NP}[\mathsf{head} = [\mathsf{agr} = [\mathsf{case} = \mathsf{acc}]]]$
- ► TP[subcat=[]] \rightarrow NP[head=[agr=[num=N,pers=P,case=nom]]] VP[head=[agr=[num=N,pers=P,subcat=[Last]]]]

```
    N[head=[agr=[num=sg,pers=3,case=acc,gen=fem]]]
        -> 'her'
    N[head=[agr=[num=sg,pers=3,case=nom,gen=masc]]]
        -> 'he'
```

```
► NP[head=A] -> N[head=A]
```

```
    N[head=[agr=[num=sg,pers=3,case=acc,gen=fem]]]
        -> 'her'
    N[head=[agr=[num=sg,pers=3,case=nom,gen=masc]]]
        -> 'he'
    NP[head=A] -> N[head=A]
    V[head=[agr=[num=sg,pers=3]],subcat=trans] -> 'saw'
    VP[head=A] ->
```

V[head=A, subcat=trans] NP[head=[agr=[case=acc]]]

▶ VP[head=A] ->

```
N[head=[agr=[num=sg,pers=3,case=acc,gen=fem]]]
     -> 'her'
N[head=[agr=[num=sg,pers=3,case=nom,gen=masc]]]
     -> 'he'
▶ NP[head=A] -> N[head=A]
V[head=[agr=[num=sg,pers=3]],subcat=trans] -> 'saw'
```

- ► TP -> NP[head=[agr=[num=?num,pers=?pers,
- case=nom]]] VP[head=[agr=[num=?num,pers=?pers]]]

V[head=A,subcat=trans] NP[head=[agr=[case=acc]]]

Alternations of argument structure: Passive

A mismatch between thematic structure and structural relations:

- (3) a. George kissed Lydia. (Active)
 - b. Lydia was kissed by George. (Passive)
 - c. Lydia was kissed.

Alternations of argument structure: Passive

A mismatch between thematic structure and structural relations:

- (3) a. George kissed Lydia. (Active)
 - b. Lydia was kissed by George. (Passive)
 - c. Lydia was kissed.

Changes the argument structure of the verb.

- kiss: \(Agent, Theme \)
- ▶ kissed: ⟨Theme⟩

The Theme argument is realised as a subject!

Not all intransitive verbs are the same.

- (4) a. George danced at the barn.
 - b. George arrived at the barn.

Not all intransitive verbs are the same.

- (4) a. George danced at the barn.
 - b. George arrived at the barn.
- (5) a. dance: (Agent)
 - b. arrive: (Theme)

Not all intransitive verbs are the same.

- (4) a. George danced at the barn.
 - b. George arrived at the barn.
- (5) a. dance: (Agent)
 - b. arrive: (Theme)

We cannot "force" arrive to take another Theme argument.

- (6) a. George danced a jig.
 - b. *George arrived a barn.

Have/Be auxiliary alternation in German, Italian...

- (7) a. Georg hat getanzt. George has danced
 - b. Georg ist angekommen. George is arrived

Have/Be auxiliary alternation in German, Italian...

- (7) a. Georg hat getanzt.

 George has danced
 - Georg ist angekommen.
 George is arrived

An alternating example:

- (8) a. George sank the boat.
 - b. The boat sank.
 - c. The boat was sunk by George.

The Theme argument is realised as a subject!

Arguments in non-finite clauses: Raising

Arguments are realised locally to the predicate that assigns it.

- (9) a. $*[TPI want George [CP that ___ danced]]$.
 - b. $*[TPLydia thinks [CP that ___ danced]].$

Arguments in non-finite clauses: Raising

Arguments are realised locally to the predicate that assigns it.

- (9) a. $*[TPI want George [CP that ___ danced]]$.
 - b. *[TPLydia thinks [CP that ___ danced]].

However, with some non-finite complements...

- (10) a. [TPGeorge] is likely $[TP_{TP}]$ to dance]].
 - b. [TPlt] is likely [CP] that George will dance].
 - c. [TP[CPThat George will dance] is likely].

Arguments in non-finite clauses: Raising

Arguments are realised locally to the predicate that assigns it.

- (9) a. $*[TPI want George [CP that ___ danced]]$.
 - b. *[TPLydia thinks [CP that ___ danced]].

However, with some non-finite complements...

- (10) a. [TPGeorge] is likely $[TP_{}$ to dance]].
 - b. [TPlt] is likely [CP] that George will dance].
 - c. [TP[CPThat George will dance] is likely].
- (11) a. is-likely: $\langle Event \rangle$
 - b. dance: (Agent)

Observations about raising

- ▶ If the embedded verb is not tensed:
 - ▶ its argument (Agent) becomes the subject of the main verb.

Observations about raising

- ▶ If the embedded verb is not tensed:
 - ▶ its argument (Agent) becomes the subject of the main verb.
- ▶ If the embedded verb is tensed:
 - ▶ The subject must be filled with a non-thematic "it"
 - ► The subject must be filled with the Event argument.

Conclusions on raising

All NP arguments must be licensed as grammatical relations.

(12) *It was kissed Lydia.

Conclusions on raising

All NP arguments must be licensed as grammatical relations.

(12) *It was kissed Lydia.

Non-finite clauses cannot license subjects.

Conclusions on raising

All NP arguments must be licensed as grammatical relations.

(12) *It was kissed Lydia.

Non-finite clauses cannot license subjects.

Finite clauses must license subjects.

```
(13) a. George is likely [TP__ to dance]. is-likely: \langle \text{Event} \rangle dance: \langle \text{Agent} \rangle
```

- (13) a. George is likely [TP__ to dance]. is-likely: $\langle Event \rangle$ dance: $\langle Agent \rangle$
 - b. George is reluctant [$_{TP}$ PRO to dance]. reluctant: $\langle Agent, Event \rangle$

- (13) a. George is likely [TP__ to dance]. is-likely: $\langle Event \rangle$ dance: $\langle Agent \rangle$
 - b. George is reluctant [$_{TP}$ PRO to dance]. reluctant: $\langle Agent, Event \rangle$
 - c. George wants $\underline{\mathsf{Lydia}}\ [\mathsf{TP}__$ to dance]. want: $\langle \mathsf{Agent},\ \mathsf{Event} \rangle \mid \langle \mathsf{Agent},\ \mathsf{Theme} \rangle$

- (13) a. George is likely [TP__ to dance]. is-likely: $\langle Event \rangle$ dance: $\langle Agent \rangle$
 - b. George is reluctant [TP PRO to dance]. reluctant: (Agent, Event)
 - c. George wants $\underline{\text{Lydia}}$ [TP____ to dance]. want: $\langle \text{Agent, Event} \rangle \mid \langle \text{Agent, Theme} \rangle$
 - d. George persuaded Lydia [$_{TP}$ PRO to dance]. persuade: $\langle Agent, Theme, Event \rangle$

There are really ARE two subjects

The subject of the main verb cannot be replaced by "it" or a "that" clause if "George" gets licensed in the complement clause.

- (14) a. *[TPIt is reluctant [CPthat George will dance].
 - b. *[TP[CP That George will dance] is reluctant].

PRO (aka 'the big pro')

```
PRO (aka 'the big pro')
```

```
(15) a. George was reluctant [TPPRO to meet at the barn]. 
PRO = {George, Lydia, Simon, ...}
```

```
PRO (aka 'the big pro')
```

- (15) a. George was reluctant [$_{TP}PRO$ to meet at the barn]. PRO = {George, Lydia, Simon, ...}
 - b. PRO to buy flowers, go to a florist.

```
\mathsf{PRO} = \{\ ?\ \}
```

```
PRO (aka 'the big pro')
```

- (15) a. George was reluctant [$_{TP}PRO$ to meet at the barn]. PRO = {George, Lydia, Simon, ...}
 - b. PRO to buy flowers, go to a florist. $PRO = \{?\}$
 - c. George knows that it is essential PRO to be well behaved. PRO = { George, ? }

How is PRO's reference assigned?

A property of lexical entries?

- (16) a. Lydia; instructed George; $PRO_{*i/i}$ to behave.
 - b. $George_j$ promised Lydia, $PRO_{*i/j}$ to behave.

How is PRO's reference assigned?

A property of lexical entries?

- (16) a. Lydia_i instructed George_i $PRO_{*i/j}$ to behave.
 - b. $George_j$ promised Lydia, $PRO_{*i/j}$ to behave.

But...

- (17) a. George_j begged Lydia_i $PRO_{i/*j}$ to buy an iPad.
 - b. George_j begged Lydia_i $PRO_{i*/j}$ to be allowed to use it.

Further reading

Advanced: presupposes familiarity with a particular syntactic theory

(Carnie, 2007) Chapters 10 (DP movement) and 13 (Raising, Control and Empty Categories).

(Dalrymple, 2001) Chapters 8 (Argument structure and mapping theory) and 12 (Functional and anaphoric control).

Practical implementation:

(Bird, Klein, and Loper, 2009): Chapter 9 Building Feature Based Grammars.

So far we discussed that...

▶ Verbs select for arguments or θ -roles (lexical dependencies).

- ▶ Verbs select for arguments or θ -roles (lexical dependencies).
- ► Lexical dependencies are represented in syntax: syntactic dependencies or GRs.

- ▶ Verbs select for arguments or θ -roles (lexical dependencies).
- Lexical dependencies are represented in syntax: syntactic dependencies or GRs.
- ▶ A certain θ -role is not always represented as the same GR.

- ▶ Verbs select for arguments or θ -roles (lexical dependencies).
- Lexical dependencies are represented in syntax: syntactic dependencies or GRs.
- ▶ A certain θ -role is not always represented as the same GR.
- ▶ The dependencies must be local to the verb within a TP.

So far we discussed that...

- ▶ Verbs select for arguments or θ -roles (lexical dependencies).
- Lexical dependencies are represented in syntax: syntactic dependencies or GRs.
- ▶ A certain θ -role is not always represented as the same GR.
- ▶ The dependencies must be local to the verb within a TP.

But there are some dependencies that are non-local.

Long distance dependencies

Certain constituents can be fronted or extracted.

(18) a. NP: George, I hate ____.

Certain constituents can be fronted or extracted.

(18) a. NP: George, I hate ___.b. AP: Grateful, George will never be ___.

- (18) a. NP: George, I hate ____.
 - b. AP: <u>Grateful</u>, George will never be ____.
 - c. PP: To Lydia, George gave a present ____.

- (18) a. NP: George, I hate ____.
 - b. AP: <u>Grateful</u>, George will never be ____.
 - c. PP: To Lydia, George gave a present ____.
 - d. CP: That George would become famous, Lydia did not expect ___.

- (18) a. NP: George, I hate ____.
 - b. AP: <u>Grateful</u>, George will never be ____.
 - c. PP: To Lydia, George gave a present ____.
 - d. CP: That George would become famous, Lydia did not expect ___.
 - e. VP: ?To catch a mouse, we convinced George ___.

Certain constituents can be fronted or extracted.

- (18) a. NP: George, I hate ____.
 - b. AP: <u>Grateful</u>, George will never be ____.
 - c. PP: To Lydia, George gave a present ____.
 - d. CP: That George would become famous, Lydia did not expect ___.
 - e. VP: ?To catch a mouse, we convinced George ___.

Fronted constituents are already marked for GRs: Object (18a), Indirect Object (18c).

Syntax of topicalised phrases

The topicalised phrase must be "higher" than the subject.

Syntax of topicalised phrases

The topicalised phrase must be "higher" than the subject.

The topicalised phrase may be extracted from complement clauses.

(20) a. [CP[NPGeorge], [TP I think [CP that [TP Lydia saw ___]]]].

- (20) a. [CP[NPGeorge], [TP I think [CP that [TP Lydia saw ___]]]].
 - b. [CP[APGrateful], [TP I think [CP that [TP George will never be ___]]]].

- (20) a. $[CP[NPGeorge], [TP I think [CP that [TP Lydia saw <math>_]]]]$.
 - b. [CP[APGrateful], [TP I think [CP that [TP George will never be ___]]]].
 - c. [CP[PPTo Lydia], [TP I think [CP that [TP George gave a present ___]]]].

- (20) a. [$_{CP}[_{NP}George]$, [$_{TP}$ I think [$_{CP}$ that [$_{TP}$ Lydia saw ___]]]].
 - b. [CP[APGrateful], [TP I think [CP that [TP George will never be ___]]]].
 - c. [CP[PPTo Lydia], [TP I think [CP that [TP George gave a present ___]]]].
 - d. [$_{CP}[_{CP}That\ George\ will\ become\ famous]$, [$_{TP}\ I\ think\ [_{CP}\ that\ [_{TP}\ Lydia\ never\ expected\ ___]]]].$

- (20) a. [CP[NPGeorge], [TP I think [CP that [TP Lydia saw <math>]]]]].
 - b. [CP[APGrateful], [TP I think [CP that [TP George will never be ___]]]].
 - c. [CP[PPTo Lydia], [TP I think [CP that [TP George gave a present ___]]]].
 - d. [CP[CPThat George will become famous], [TP I think [CP that [TP Lydia never expected ___]]]].
 - e. ?[CP[VPTo catch a mouse], [TPI think [CP that [TP we convinced George ___]]]].

Some restrictions

Not possible with every matrix verb

- (21) a. [CP[NPGeorge], [TP I think [CP that [TP Lydia saw]]]].
 - b. *[CP[NPGeorge], [TP | Whispered [CP | that [TP | Lydia saw]]]].

Some restrictions

Not possible with every matrix verb

- (21) a. [CP[NPGeorge], [TP I think [CP that [TP Lydia saw]]]]. b. *[CP[NPGeorge], [TP I whispered [CP that [TP Lydia saw]]]].
- Not possible to extract from CPs that are subjects
- (22) $*[CP [NP George], [TP[CP that Lydia saw ___] surprised me]].$

Some restrictions

Extracting from adjuncts only possible if they are not tensed

- (23) a. [CP[NPThis garden], [TP George enjoys sleeping [PPin ___]]].
 - b. *[CP[NPLydia] Simon thinks [CP that George slept [CPwhen he called ___]]].

Relative clauses

An XP modified by a tensed adjunct CP.

The wh-constituent (the relative pronoun) is fronted within the adjunct.

- (24) a. NP: a person who(m) I saw __a person whose picture George found __
 - b. PP: a person to whom George gave a present ____
 - c. AP: a person envious of whom I get easily ____
 - d. AdvP: the place where we met ____the hour when we argued ____

If a relative pronoun appears in a constituent, the entire constituent is fronted.

(25) a. the person whose garden George visited ___. *the person whose George visited garden ___.

If a relative pronoun appears in a constituent, the entire constituent is fronted.

- (25) a. the person whose garden George visited ___.

 *the person whose George visited garden .
 - b. the person the cat of whom I saw ___in the garden.

 *the person of whom I saw the cat in the garden.

If a relative pronoun appears in a constituent, the entire constituent is fronted.

- (25) a. the person whose garden George visited ___.

 *the person whose George visited garden ___.
 - b. the person the cat of whom I saw ___in the garden.

 *the person of whom I saw the cat ___in the garden.
 - c. the cat the colour of the fur of which Lydia likes ___. *the cat of which Lydia likes the colour of the fur ___.

Pied Piper of Hamelin

From Wikipedia, also article

Relative clauses without a relative pronoun

- (26) a. I have seen the spacecraft which George owns.
 - b. I have seen the spacecraft that George owns.
 - c. I have seen the spacecraft George owns.

Relative clauses without a relative pronoun

- (26) a. I have seen the spacecraft which George owns.
 - b. I have seen the spacecraft that George owns.
 - c. I have seen the spacecraft George owns.
 - d. *I have seen the spacecraft which that George owns.

(26d): Doubly Filled Comp Filter *[CP wh-XP that]

Syntax of relative clauses

- (28) a. George, I think that Lydia saw ___.
 a person who you think that Lydia saw ___.
 - b. *George, I whispered that Lydia saw ____.
 - *a person who you whispered that Lydia saw ___

- (28) a. George, I think that Lydia saw ___.
 a person who you think that Lydia saw ___.
 - b. *George, I whispered that Lydia saw ___.
 *a person who you whispered that Lydia saw ___.
 - c. *George, [CPthat Lydia saw ___] surprised me.
 *a person who [CP that Lydia saw ___] surprised me

(28) a. George, I think that Lydia saw ____.
a person who you think that Lydia saw ____.
b. *George, I whispered that Lydia saw ____.
*a person who you whispered that Lydia saw ____.
c. *George, [CPthat Lydia saw ___] surprised me.
*a person who [CP that Lydia saw ___] surprised me.
d. This garden, George enjoys sleeping [PPin ___].
this garden which George enjoys sleeping [PPin ___].

(28)	а.	George, I think that Lydia saw a person who you think that Lydia saw
	b.	*George, I whispered that Lydia saw *a person who you whispered that Lydia saw
	C.	*George, [CPthat Lydia saw] surprised me. *a person who [CP that Lydia saw] surprised me
	d.	This garden, George enjoys sleeping [PPin]. this garden which George enjoys sleeping [PPin]
	e.	*Lydia Simon thinks that George slept [CP when he called].
		*a person who Simon thinks that George slept [CP when he
		called]

Wh-questions

A constituent containing a wh-pronoun is fronted.

The auxiliary precedes the subject as with (yes/no) questions.

- (29) a. NP: Who does George like ___?
 - b. PP: <u>To whom</u> did George give a present ___?
 - c. AdvP: When did George leave the stage ___? Where did George go ___?
 - d. AP: How lazy is George?

Embedded wh-pronouns front the entire phrase:

```
(30) a. Whose garden did you visit ___?

*Whose did you visit ___garden?
```

Embedded wh-pronouns front the entire phrase:

- (30) a. Whose garden did you visit ___?
 *Whose did you visit ___ garden?
 - b. Whose brother's garden did you visit ___?
 - *Whose did you visit ___brother's garden?

Embedded wh-pronouns front the entire phrase:

- (30) a. Whose garden did you visit ___?
 *Whose did you visit ___?
 - b. Whose brother's garden did you visit ___?
 *Whose did you visit brother's garden?
 - c. In which garden did George sleep ___?
 *In which did George sleep garden?

Embedded wh-pronouns front the entire phrase:
(30) a. Whose garden did you visit ?

- *Whose garden did you visit ___?

 *Whose did you visit ___garden?
 - b. Whose brother's garden did you visit ___?
 *Whose did you visit ___ brother's garden?
 - c. In which garden did George sleep ___?

 *In which did George sleep ___garden?
 - d. *The colour of the fur of which cat does
 Lydia like ___?
 *Of which cat does Lydia like the colour of the fur of which cat does
 - *Of which cat does Lydia like the colour of the fur ___? Which cat does Lydia like the colour of ?

How many wh-phrases can be fronted?

```
(31) a. English:

*Who what __said __?

b. French:

*Qui quoi ___ fait __? - who what does
```

How many wh-phrases can be fronted?

(31) a. English:

*Who what __said __?

b. French:

*Qui quoi __ fait __? - who what does

c. Polish:

Kto co __ robi __? - who what does

How many wh-phrases can be fronted?

```
(31) a. English:

*Who what __said __?

b. French:

*Qui quoi ___ fait ___? - who what does

c. Polish:

Kto co ___ robi ___? - who what does

d. Hungarian:

Ki mit ___ latott ___? - who what saw
```

From (Haegeman, 1994), p.504.

39 / 54

Is wh-fronting required?

(32) a. *George saw what?
b. George so WHAT?

Is wh-fronting required?

- (32) a. *George saw what?
 b. George so WHAT?
- (33) a. John-ga dare-o butta ka siranai. John who hit Q know not 'I don't know who John hit.' (Japanese)

b.

Wo xiang-zhidao Lisi mai-le sheme I wonder Lisi bought-aspect what 'I wonder what Lisi bought.' (Chinese)

From (Haegeman, 1994), p.497-498.

The auxiliary in wh-questions

The auxiliary appears in T.

(34) [TP[NPGeorge] [Tdoes] [VPlike playing in the garden]].

The auxiliary in wh-questions

The auxiliary appears in T.

(34) [TP[NPGeorge] [Tdoes] [VPlike playing in the garden]].

In questions the auxiliary precedes the subject 'George'.

(35) a. Does [$_{TP}[_{NP}George]$ [$_{VP}$ like playing in the garden]]?

b. What does [TP[NPGeorge] [VPenjoy doing]]?

The auxiliary in wh-questions

The auxiliary appears in T.

(34) [TP[NPGeorge] [Tdoes] [VPlike playing in the garden]].

In questions the auxiliary precedes the subject 'George'.

- (35) a. Does [TP[NPGeorge]] [VP like playing in the garden]]?
 - b. What does [TP[NPGeorge] [VPenjoy doing]]?

But not in the embedded questions.

- (36) a. I wonder what George has done now.
 - b. *I wonder what has George done now.

Syntax of wh-questions

Wh-pronouns can be extracted from embedded clauses

```
(38) a. [CPWho(m)] did you think [CPthat Lydia kissed ___]?
b. [CPWho(m)] did you think [CPLydia kissed ___]?
```

- 1. Extraction is not possible when the wh-pronoun is a subject preceded by a complementiser 'that' (that-trace effect):
- (39) a. $*[CPWho do you think [CPthat __kissed Lydia]]?$
 - b. $[CP Who do you think [CP __kissed Lydia]]$?

1. Extraction is not possible when the wh-pronoun is a subject preceded by a complementiser 'that' (that-trace effect):

```
(39) a. *[CPWho do you think [CPthat __kissed Lydia]]?
b. [CPWho do you think [CP __kissed Lydia]]?
```

But in Italian it is okay.

```
(40)

<u>Chi</u> credi che ___ venga?

who think-you that comes

"Who do you think is coming?"
```

- 2. Extraction from complement CPs is okay, but not if the CP is within an NP.
- (41) a. What did George claim [CP that he caught ___ in the garden]?
 - b. *What did George make [NP the claim [CP that he caught in the garden]?

- 3. Extracting from subject CPs is not possible (as seen earlier).
- (42) *Who did [CP that Lydia saw ___] surprised George?

More constraints on wh-extraction

- 4. Extracting multiple wh-constituents is not possible.
- (43) a. *Who did you think [CP what ___ saw ___]?
 - b. Who did you think $[CP __$ saw what]?

More constraints on wh-extraction

- 4. Extracting multiple wh-constituents is not possible.
- (43) a. *Who did you think [CP what ___ saw ___]?
 b. Who did you think [CP saw what]?

This explains the difference between non-tensed and tensed adjuncts noted before.

- (44) a. Where does George enjoy sleeping [PPin ___]?
 - b. *Who does Simon think that George slept [CP when he called ___]?

More constraints on wh-extraction

5. Lexical constraints of verbs (as seen earlier)(45)*Who did you whisper that Lydia saw ___?

► Structural relations between the extracted element and the site of extraction matter. (e.g. subject CPs).

- ► Structural relations between the extracted element and the site of extraction matter. (e.g. subject CPs).
- ▶ The extracted element and the site of extraction are linked.

- Structural relations between the extracted element and the site of extraction matter. (e.g. subject CPs).
- ▶ The extracted element and the site of extraction are linked.
- In long distance dependencies, the extraction may cross a CP, but only one:

```
[CP \underline{Who} do you think [CP \underline{\hspace{0.1cm}} that George claimed [CP \underline{\hspace{0.1cm}} that Lydia saw \underline{\hspace{0.1cm}}]]]?
```

- Structural relations between the extracted element and the site of extraction matter. (e.g. subject CPs).
- ▶ The extracted element and the site of extraction are linked.
- In long distance dependencies, the extraction may cross a CP, but only one:

```
[<sub>CP</sub><u>Who</u> do you think [<sub>CP</sub> ___ that George claimed [<sub>CP</sub> ___ that Lydia saw ___]]]?
```

▶ NPs do not allow such paths (no extraction from [NP[CPhere]].

 $\qquad \qquad \textbf{V[head=[agr=[num=inf,pers=inf],subcat=[obj,subj]]} \rightarrow \textbf{like} \\$

- $\qquad \qquad \textbf{V[head=[agr=[num=inf,pers=inf],subcat=[obj,subj]]} \rightarrow \textbf{like} \\$
- $\label{eq:percentage} \begin{array}{l} & \text{VP[head=[agr=[num=inf,pers=inf],subcat=Rest,gap=G]} \rightarrow \\ & \text{V[[head=[agr=[num=inf,pers=inf],subcat=[G|Rest]]} \end{array}$

- $\label{eq:percentage} \begin{array}{l} & \text{VP[head=[agr=[num=inf,pers=inf],subcat=Rest,gap=G]} \rightarrow \\ & \text{V[[head=[agr=[num=inf,pers=inf],subcat=[G|Rest]]} \end{array}$
- ▶ TP[head=[agr=[num=N,pers=P]],subcat=[],gap=G] \rightarrow NP[head=[agr=[num=N,pers=P,case=nom]]] VP[head=[agr=[num=inf,pers=inf],subcat=[Last]],gap=G]
- ▶ $NP[head=A] \rightarrow N[head=A]$

- $$\begin{split} & VP[head=[agr=[num=inf,pers=inf],subcat=Rest,gap=G] \rightarrow \\ & V[[head=[agr=[num=inf,pers=inf],subcat=[G|Rest]] \end{split}$$
- $$\label{eq:total_problem} \begin{split} & \mathsf{TP}[\mathsf{head} = [\mathsf{agr} = [\mathsf{num} = \mathsf{N}, \mathsf{pers} = \mathsf{P}]], \mathsf{subcat} = [], \mathsf{gap} = \mathsf{G}] \to \\ & \mathsf{NP}[\mathsf{head} = [\mathsf{agr} = [\mathsf{num} = \mathsf{N}, \mathsf{pers} = \mathsf{P}, \mathsf{case} = \mathsf{nom}]]] \\ & \mathsf{VP}[\mathsf{head} = [\mathsf{agr} = [\mathsf{num} = \mathsf{inf}, \mathsf{pers} = \mathsf{inf}], \mathsf{subcat} = [\mathsf{Last}]], \mathsf{gap} = \mathsf{G}] \end{split}$$
- ▶ $NP[head=A] \rightarrow N[head=A]$
- ► $CP[focus=G] \rightarrow Wh[gr=G,member(G,[subj,obj,indo,adj])]$ C[head=A] TP[head=A,gap=G]
- ▶ $Wh[gr=obj] \rightarrow who \mid whom$
- ightharpoonup C[head=[agr=[num=3,pers=sg]
 ightarrow does]

 ${\sf feat 01.fcfg}$

Syntax of wh-questions

Further reading

Advanced: presupposes familiarity with a particular syntactic theory

(Dalrymple, 2001): Chapter 14 (Long-distance dependencies).

(Carnie, 2007): Chapter 10 (Wh-movement).

Practical implementation:

(Bird, Klein, and Loper, 2009): Chapter 9 Building Feature Based Grammars.

References I

Bird, Steven, Ewan Klein, and Edward Loper. 2009. *Natural language processing with Python*. O'Reilly, Beijing, Cambridge, Farnham, Köln, Sebastopol and Tokyo, 1st ed edition.

Carnie, Andrew. 2007. *Syntax: a generative introduction*, volume 4. Blackwell Pub., Malden, MA, 2nd ed edition.

Dalrymple, Mary. 2001. *Lexical functional grammar*, volume 34. Academic Press, San Diego.

Haegeman, Liliane M. V. 1994. *Introduction to government and binding theory*, volume 1. B. Blackwell, Oxford, UK, 2 edition.

54 / 54