ฟังก์ชันไซน์(sine)

 $(\theta,y)_{\in}$ sine จะได้ว่า y เป็นค่าฟังก์ชันไซน์ที่ θ เขียนเป็นสมการความสัมพันธ์ได้ว่า $y=\sin\theta$ แต่นิยมเขียนเป็น $y=\sin\theta$ จะเห็นว่า y จากสมการเป็นค่า y ของ P(x,y) และ θ ที่เป็น ความยาวส่วนโค้งหรือมุมที่จุดศูนย์กลางของวงกลมหนึ่งหน่วย

สมการฟังก์ชันใชน์ (sine)

สมการฟังก์ชันไซน์ คือ $y = \sin x$ โดยที่ x เป็นความยาวส่วนโค้งบนวงกลมหนึ่งหน่วยหรือมุม ตารางแสดงค่าความสัมพันธ์ $y = \sin x$ เมื่อ x แทนความยาวส่วนโค้งที่จุดศูนย์กลางของวงกลมหนึ่ง หน่วย หรือมุม

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	<u>5π</u> 6	π	<u>7 π</u> 6	$\frac{5\pi}{4}$	$\frac{2\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	<u>11 π</u> 6	2 π
	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
y	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2	0	<u>-</u> 1 2	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	<u>-1</u> 2	0

เขียบกราฟได้ดังนี้

กราฟนี้เป็นกราฟหนึ่งรอบของฟังก์ชันไซน์

ส่วนกราฟแสดงคลื่นไซน์ (sine wave) ที่ซ้ำไปเรื่อย ๆ ทั้งทางบวกและลบของสมการ $y = \sin x$ ได้แก่

สิ่งที่เราสนใจศึกษาจากกราฟฟังก์ชันตรีโกณมิติ ได้แก่

โดเมน (domain) ของฟังก์ชัน ใชน์ คือ R (เซตของจำนวนจริง)
 เรนจ์ (range) ของฟังก์ชัน คือ [-1, 1]

ค่าต่ำสุด (The minimum value) ของฟังก์ชัน คือ y=-1

ค่าสูงสุด (The maximum value) ของฟังก์ชัน คือ y=1

แอมพลิจูด (amplitude) ของฟังก์ชัน คือ $\mid k \mid$

คาบ (periodic) ของฟังก์ชัน คือ 2π

พิจารณาฟังก์ชันเพิ่ม/ฟังก์ชันลด จากกราฟของฟังก์ชันไซน์ในหนึ่งรอบ

ช่วง	รูปแบบฟังก์ชัน
$0 < x < \frac{\pi}{2}$	ฟังก์ชันเพิ่ม
	(increasing function)
$\frac{\pi}{2} < x < \pi$	ฟังก์ชันลค
	(decreasing function)
$\pi < x < \frac{3\pi}{2}$	ฟังก์ชันเพิ่ม
	(increasing function)
$\frac{3\pi}{2} < x < 2\pi$	ฟังก์ชันลด
	(decreasing function)

ฟังก์ชันไซน์เป็นฟังก์ชันกี่ (odd function) จึงได้ว่า

$$\sin(-x) = -\sin x$$

กราฟของสมการ y = sin x สมมาตรจุดกำเนิด จึงได้ว่า

$$\sin(-x) = -\sin x$$

ลักษณะของกราฟฟังก์ชันใชน์

จากสมการมาตรฐานของฟังก์ชันไซน์ $y = a \sin(bx + c) + d$

การย<mark>ืดหดของกราฟตามแนวตั้ง</mark> ของสมการ y = a sin x

พิจารณา กราฟของสมการทั้งสามต่อไปนี้

จะพบว่า เมื่อ a แตกต่างกัน แอมพลิจูคของฟั่งก์ชันไซน์ จะแตกต่างกัน คังนี้

 $y = \sin x$ เนื่องจาก a = 1 ทำให้ แอมพลิจูด เท่ากับ |1| = 1 $y = 2 \sin x$ เนื่องจาก a = 2 ทำให้ แอมพลิจูด เท่ากับ |2| = 2 $y = \frac{1}{2} \sin x$ เนื่องจาก $a = \frac{1}{2}$ ทำให้ แอมพลิจูด เท่ากับ $|\frac{1}{2}| = \frac{1}{2}$

สำหรับกรณีที่ a<0 จะพบว่า กราฟของสมการ $y=a\sin x$ เกิดจากการสะท้อนแกน x ของกราฟของสมการ $y=a\sin x$ เมื่อ a>0 คังรูป

จะพบว่า เมื่อ a < 0 แอมพลิจูดของฟังก์ชันใชน์ จะได้ ดังนี้

$$y = -2 \sin x$$
 เนื่องจาก $a = 2$ ทำให้ แอมพลิจูด เท่ากับ $|-2| = 2$ $y = -\frac{1}{2} \sin x$ เนื่องจาก $a = \frac{1}{2}$ ทำให้ แอมพลิจูด เท่ากับ $|-\frac{1}{2}| = \frac{1}{2}$

การ<mark>ยืดหคของกราฟตามแนวนอน</mark> ของสมการ y = sin bx พิจารณา กราฟของสมการทั้งสาม ต่อไปนี้

$$y = \sin x$$
, $y = 2 \sin x$ line $y = \sin \frac{1}{2} x$

จะพบว่า เมื่อ b แตกต่างกัน คาบของฟังก์ชันใชน์ จะแตกต่างกันดั้งนี้

 $y = \sin x$ เนื่องจาก b = 1 ทำให้ คาบของฟังก์ชัน เท่ากับ 2π $y = \sin 2x$ เนื่องจาก b = 2 ทำให้ คาบของฟังก์ชัน เท่ากับ π $y = \sin \frac{1}{2}x$ เนื่องจาก b = 1 ทำให้ คาบของฟังก์ชัน เท่ากับ 4π

นั่นแสดงว่า กราฟของสมการ $y = \sin bx$ มีคาบของฟังก์ชัน เท่ากบ $\left| \frac{2\pi}{b} \right|$

พิจารณา กราฟของสมการทั้งสามต่อไปนี้

จะพบว่า เมื่อ \mathbf{c} แตกต่างกัน กราฟจะเลื่อนไปทางซ้ายเมื่อ $\mathbf{c}>0$ และ เมื่อ $\mathbf{c}<0$ กราฟจะ เลื่อนไปทางขวา | c | หน่วย

 $rac{1}{2}$ การเลื่อนกราฟขนานตามแกน \mathbf{y} ของสมการ $\mathbf{y} = \sin \mathbf{x} + \mathbf{d}$

พิจารณา กราฟของสมการทั้งสามต่อไปนี้

$$y = \sin x$$
,

$$y = \sin x + 1$$

้จะพบว่า เมื่อ ${f d}$ แตกต่างกัน กราฟของสมการ $y=\sin x+{f d}$ จะเลื่อนตามแกน ${f Y}$ ไปทางด้าน บนเมื่อ a>0 และเมื่อ a<0 กราฟจะเลื่อนตามแกน ${
m Y}$ ไปทางด้านล่าง เป็นระยะทาง $|{
m c}|$ หน่วย