Sample Quiz

${ m CS170A-Mathematical\ Models\ and\ Methods\ for\ Computer\ Science}$ Spring 2013 OPEN BOOK

Wednesday, April 17, 2013, 5:00pm-5:50pm

1. Matrices

For each of the following matrices, determine (yes/no) whether the matrix is: unitary, hermitian, invertible, positive definite. (Recall A is positive definite if it is hermitian and all of its eigenvalues are positive real values.) Assume that $i = \sqrt{-1}$.

matrix	invertible?		hermitian?		skew-hermitian?		unitary?	
$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	True _	$\mathbf{False} \; \bigsqcup \;$	True _	$\mathbf{False} \; \bigsqcup \;$	True _	$\mathbf{False} \; \bigsqcup \;$	True _	False
$ \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 1 & 0 \\ 0 & -1 \end{pmatrix} $	True _	$\mathbf{False} \; \bigsqcup \;$	True _	$\mathbf{False} \; \bigsqcup \;$	True _	$\mathbf{False} \; \bigsqcup \;$	True _	False
$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	True _	False \Box	True _	False \Box	True _	False \Box	True \Box	False
$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$	True _	False _	True _	False _	True _	False _	True _	False
For each of the following equations, mark whether the equation is True (valid for all specified matrices A) or False. Assume that A' denotes the transpose of A , A' denotes the hermitian transpose of A , and $i = \sqrt{-1}$.								
For full credit, if you mark it True, you must show how you derived this. If you mark it False, you must give a <i>counterexample</i> (values for these sets for which the equation does not hold).								
(a) True \square False \square Every product of two 2×2 rotation matrices is orthogonal, if we assume that the rotation matrices have the form $\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ where θ is real.								
Explanation:								
(b) True False								
If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ then the eigenvalues of A are $\lambda = \left((a+d) \pm \sqrt{(a+d)^2 - 4(ad-bc)} \right)/2$								
Explanation:								
(c) True \Box False \Box If $A = U \ D \ U'$, where D is a diagonal matrix of positive real values and U is a real unitary matrix, then A is symmetric and U is orthogonal.								
(d) True CS170A is		ırse at UCI	LA.					
(e) True I If the eigen		square mat	rix A are a	ll real and j	positive, the	en A is inve	ertible.	
(f) True _ l	False _							

If a matrix is hermitian and also unitary, then it is the identity matrix.

2. MATLAB

Suppose you are given the following program:

Please answer the following:

- show how to turn the for-loops portion of this program into a MATLAB function that takes the number of iterations (fixed at 10 above) and a square initial matrix u as input (defined by u(i,j) = sin(i+j) above), and then after finding the value of n as the size of u returns the movie M resulting the iteration. In other words the function should take two arguments as input, and yield M as output.
- consider the function

```
function B = shift(A, k)
  m = size(A,1);
  n = size(A,2);
  B = zeros(m,n);
  for i=1:m
    for j=max(1,1-k):min(n,n-k) % 1:(n-k) if k>0, (1-k):n if k<0
        B(i,j) = A(i,j+k);
    end
end</pre>
```

First, what does this function do? For k = -1 and m = n = 3, give an example matrix A and the matrix B it produces.

- By using Matlab vector sequences (like '1:n'), replace both of the loops with a single statement of the form B(...) = A(...);
- Similarly, convert the inner two for-loops and assignment u(i,j) = ... in the middle of the movie program above into a single matrix assignment U =