

MS-C1350 Partial differential equations Ch 2.4 Best square approximation

Riikka Korte

Department of Mathematics and Systems Analysis
Aalto University
riikka.korte@aalto.fi

September 10, 2024

Lecture 2 – topics

- Fourier series
 - Definition
 - Best square approximation
 - Fourier series on different intervals
 - ► Real form Fourier series (i.e. with sin cos)
 - Differentiation of Fourier series
 - Dirichlet kernel
- Convolution
- Function spaces $C^k(I)$ and $L^2(I)$, where I is open or closed interval.

The best square approximation

It is good to consider the Fourier series in terms of projections. S_nf is the projection of $f \in L^2([-\pi,\pi])$ to a subspace spanned by $\{e_j\}_{j=-n}^n$:

$$S_n f(t) = \sum_{j=-n}^n \langle f, e_j \rangle e_j(t) = \sum_{j=-n}^n \widehat{f}(j) e^{ijt}, \quad n = 0, 1, 2, \dots,$$

where

$$\widehat{f}(j) = \langle f, e_j \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-ijt} dt.$$

This works for all orthonormal bases of vector spaces.

 $f - S_n f$ is orthogonal to the subspace spanned by $\{e_j\}_{j=-n}^n$ i.e.

$$\langle f - S_n f, e_j \rangle = 0$$
 for every $j = -n, \dots, n$.

(1)
$$||f||_{L^{2}([-\pi,\pi])}^{2} = ||f - S_{n}f + S_{n}f||_{L^{2}([-\pi,\pi])}^{2}$$

$$= \langle (f - S_{n}f) + S_{n}f, (f - S_{n}f) + S_{n}f \rangle$$

$$= \langle f - S_{n}f, f - S_{n}f \rangle + \underbrace{\langle f - S_{n}f, S_{n}f \rangle}_{=0}$$

$$+ \underbrace{\langle S_{n}f, f - S_{n}f \rangle}_{=0} + \langle S_{n}f, S_{n}f \rangle$$

$$= ||f - S_{n}f||_{L^{2}([-\pi,\pi])}^{2} + ||S_{n}f||_{L^{2}([-\pi,\pi])}^{2}.$$

(1)
$$||f||_{L^{2}([-\pi,\pi])}^{2} = ||f - S_{n}f + S_{n}f||_{L^{2}([-\pi,\pi])}^{2}$$

$$= \langle (f - S_{n}f) + S_{n}f, (f - S_{n}f) + S_{n}f \rangle$$

$$= \langle f - S_{n}f, f - S_{n}f \rangle + \underbrace{\langle f - S_{n}f, S_{n}f \rangle}_{=0}$$

$$+ \underbrace{\langle S_{n}f, f - S_{n}f \rangle}_{=0} + \langle S_{n}f, S_{n}f \rangle$$

$$= ||f - S_{n}f||_{L^{2}([-\pi,\pi])}^{2} + ||S_{n}f||_{L^{2}([-\pi,\pi])}^{2}.$$

(1)
$$||f||_{L^{2}([-\pi,\pi])}^{2} = ||f - S_{n}f + S_{n}f||_{L^{2}([-\pi,\pi])}^{2}$$

$$= \langle (f - S_{n}f) + S_{n}f, (f - S_{n}f) + S_{n}f \rangle$$

$$= \langle f - S_{n}f, f - S_{n}f \rangle + \underbrace{\langle f - S_{n}f, S_{n}f \rangle}_{=0}$$

$$+ \underbrace{\langle S_{n}f, f - S_{n}f \rangle}_{=0} + \langle S_{n}f, S_{n}f \rangle$$

$$= ||f - S_{n}f||_{L^{2}([-\pi,\pi])}^{2} + ||S_{n}f||_{L^{2}([-\pi,\pi])}^{2}.$$

(1)
$$||f||_{L^{2}([-\pi,\pi])}^{2} = ||f - S_{n}f + S_{n}f||_{L^{2}([-\pi,\pi])}^{2}$$

$$= \langle (f - S_{n}f) + S_{n}f, (f - S_{n}f) + S_{n}f \rangle$$

$$= \langle f - S_{n}f, f - S_{n}f \rangle + \underbrace{\langle f - S_{n}f, S_{n}f \rangle}_{=0}$$

$$+ \underbrace{\langle S_{n}f, f - S_{n}f \rangle}_{=0} + \langle S_{n}f, S_{n}f \rangle$$

$$= ||f - S_{n}f||_{L^{2}([-\pi,\pi])}^{2} + ||S_{n}f||_{L^{2}([-\pi,\pi])}^{2}.$$

By orthogonality of $S_n f$ and $f - S_n f$, we have

(1)
$$||f||_{L^{2}([-\pi,\pi])}^{2} = ||f - S_{n}f + S_{n}f||_{L^{2}([-\pi,\pi])}^{2}$$

$$= \langle (f - S_{n}f) + S_{n}f, (f - S_{n}f) + S_{n}f \rangle$$

$$= \langle f - S_{n}f, f - S_{n}f \rangle + \underbrace{\langle f - S_{n}f, S_{n}f \rangle}_{=0}$$

$$+ \underbrace{\langle S_{n}f, f - S_{n}f \rangle}_{=0} + \langle S_{n}f, S_{n}f \rangle$$

$$= ||f - S_{n}f||_{L^{2}([-\pi,\pi])}^{2} + ||S_{n}f||_{L^{2}([-\pi,\pi])}^{2}.$$

This is Pythagorean theorem in $L^2([-\pi,\pi])$.

By orthogonality of $S_n f$ and $f - S_n f$, we have

$$||f||_{L^{2}([-\pi,\pi])}^{2} = ||f - S_{n}f + S_{n}f||_{L^{2}([-\pi,\pi])}^{2}$$

$$= \langle (f - S_{n}f) + S_{n}f, (f - S_{n}f) + S_{n}f \rangle$$

$$= \langle f - S_{n}f, f - S_{n}f \rangle + \underbrace{\langle f - S_{n}f, S_{n}f \rangle}_{=0}$$

$$+ \underbrace{\langle S_{n}f, f - S_{n}f \rangle}_{=0} + \langle S_{n}f, S_{n}f \rangle$$

$$= ||f - S_{n}f||_{L^{2}([-\pi,\pi])}^{2} + ||S_{n}f||_{L^{2}([-\pi,\pi])}^{2}.$$

This is Pythagorean theorem in $L^2([-\pi,\pi])$. Moreover, by orthogonality of $\{e_j\}_{j=-n}^n$

(2)
$$||f||_{L^{2}([-\pi,\pi])}^{2} = ||f - S_{n}f||_{L^{2}([-\pi,\pi])}^{2} + ||S_{n}f||_{L^{2}([-\pi,\pi])}^{2}$$
$$= ||f - S_{n}f||_{L^{2}([-\pi,\pi])}^{2} + \sum_{n=1}^{\infty} ||\widehat{f}(j)||^{2}.$$

Parseval's identity

$$||f||_{L^{2}([-\pi,\pi])}^{2} = ||f - S_{n}f||_{L^{2}([-\pi,\pi])}^{2} + \sum_{j=-n}^{n} |\widehat{f}(j)|^{2}.$$

implies

$$||f||_{L^2([-\pi,\pi])}^2 \ge \sum_{j=-n}^n |\widehat{f}(j)|^2.$$

Parseval's identity

$$||f||_{L^2([-\pi,\pi])}^2 = \sum_{j=-n}^n |\widehat{f}(j)|^2.$$

Equality holds if and only if

$$\lim_{n \to \infty} ||f - S_n f||_{L^2([-\pi, \pi])}^2 = 0.$$

This is Parseval's identity and it holds for all $f \in L^2([-\pi,\pi])$.

Parseval's identity

$$||f||_{L^2([-\pi,\pi])}^2 = \sum_{j=-n}^n |\widehat{f}(j)|^2.$$

Equality holds if and only if

$$\lim_{n \to \infty} \|f - S_n f\|_{L^2([-\pi, \pi])}^2 = 0.$$

This is Parseval's identity and it holds for all $f \in L^2([-\pi, \pi])$.

▶ This implies that if $f \in L^2([-\pi, \pi])$, then

$$\hat{f}(j) \to 0, \quad |j| \to \infty.$$

The same holds for all $f \in L^1([-\pi, \pi])$ (Riemann-Lebesgue lemma).

Theorem

If $f \in L^2([-\pi,\pi])$, then

$$||f - S_n f||_{L^2([-\pi,\pi])} \le ||f - \sum_{j=-n}^n a_j e_j||_{L^2([-\pi,\pi])}$$

for every $a_j \in \mathbb{C}$, $j = -n, \ldots, n$.

Theorem

If $f \in L^2([-\pi,\pi])$, then

$$||f - S_n f||_{L^2([-\pi,\pi])} \le ||f - \sum_{j=-n}^n a_j e_j||_{L^2([-\pi,\pi])}$$

for every $a_j \in \mathbb{C}$, $j = -n, \dots, n$.

Theorem

Let $f \in L^2([-\pi,\pi])$. Then

$$\lim_{n \to \infty} ||f - S_n f||_{L^2([-\pi, \pi])} = 0.$$

Theorem

If $f \in L^2([-\pi,\pi])$, then

$$||f - S_n f||_{L^2([-\pi,\pi])} \le ||f - \sum_{j=-n}^n a_j e_j||_{L^2([-\pi,\pi])}$$

for every $a_j \in \mathbb{C}$, $j = -n, \dots, n$.

Theorem

Let $f \in L^2([-\pi,\pi])$. Then

$$\lim_{n \to \infty} ||f - S_n f||_{L^2([-\pi, \pi])} = 0.$$

Warning! This does not imply pointwise convergence in each point!

▶ This implies that $\{e_j\}_{n\in\mathbb{Z}}$ is an orthonormal bases for $L^2([-\pi,\pi])$ in the sense that for every function $f\in L^2([-\pi,\pi])$

$$\lim_{n \to \infty} \left\| \sum_{j=-n}^{n} \hat{f}(j)e_{j} - f \right\|_{L^{2}([-\pi,\pi])} = 0$$

for every $f \in L^2([-\pi,\pi])$. This means that

$$f = \lim_{n \to \infty} \sum_{j=-n}^{n} \widehat{f}(j)e_j = \sum_{j=-\infty}^{\infty} \widehat{f}(j)e_j$$

in $L^2([-\pi,\pi])$.