Feng Chia University

Electrical Engineering Fundamentals I Lab

Laboratory 4

Voltage vs. time measurements

Instructor: Prof. Shyan-Lung Lin

Student Name: 周嘉禾

Student ID: D1166506

Experiment Date: 19/10/2023

I. Introduction

- Generate a specified signal using waveform generator and display that signal on the oscilloscope.
- Display the waveform of an unknown signal on the oscilloscope and measure its amplitude, frequency, period, and average value as well as give a functional representation of the signal.

II. Materials

- a. Waveform Generator
- b. Oscilloscope

III. Circuit diagram

Connect Waveform Generator and Oscilloscope

IV. Methods

Use oscilloscope to observe and record the waves generated by function generator.

V. Experiments data

a. Experiment 4.a Typical Oscilloscope Waveforms:

1.

Vertical Scale = 0.1 V/Div

Peak to Peak = 0.6 V

Average Value = 0 V

Horizontal Scale = 1 ms/Div

Period = 0.01 sFrequency = 100 Hz

Functional Representation: $V(t) = 0.3 \text{ tri } (200\pi t) \text{ (V)}$

2.

Vertical Scale = 0.5 V/Div

Peak to Peak = 2 V Average Value = 1 V

Horizontal Scale = 1.0 s/Div

Period = 5 sFrequency = 0.2 Hz

Functional Representation: $V(t) = \sin(0.4\pi t) + 1 (V)$

3.

Vertical Scale = 1 V/Div

Peak to Peak = 2 V

Average Value = -1.5 V

Horizontal Scale = 1 ms/Div

Period = 0.002 s

Frequency = 500 Hz

Functional Representation: $V(t) = sqr (1000\pi t) - 1.5 (V)$

4.

Vertical Scale = 2 V/Div

Peak to Peak = 8 V

Average Value = 0 V

Horizontal Scale = 10 ms/Div

Period = 0.1 sFrequency = 10 Hz

Functional Representation: $V(t) = 4 \sin(20\pi t)$ (V)

- b. Experiment 4.b Generate Signals with Waveform Generator
 - 1. $V1(t) = A \sin(2\pi ft)$ (V), where A=1 V, f=5 kHz

Table 1: Results of the V1(t) Measurements

Sine Wave		
Vertical Scale	0.5 V/Div	
Peak to Peak	2 V	
Horizontal Scale	50 μs/Div	
Period	0.0002 s	

2. $V2(t) = B \sin(2\pi ft) (V) + C$, where B=1 V, f=0.2 Hz, C=1 V

Table 2: Results of the V2(t) Measurements

Sine Wave		
Vertical Scale	0.5 V/Div	
Peak to Peak	2 V	
Horizontal Scale	1 s/Div	
Period	5 s	

3. $V3(t) = D \text{ tri } (2\pi ft) (V) + E, \text{ where } D=4 \text{ V}, f=2 \text{ kHz}, E=2 \text{ V}$

Table 3: Results of the V3(t) Measurements

Triangle Wave		
Vertical Scale	2 V/Div	
Peak to Peak	8 V	
Horizontal Scale	100 μs/Div	
Period	0.0005 s	

4. $V4(t) = F \text{ tri } (2\pi ft) (V) + G$, where F=1 V, f=5 kHz, G=3 V

Table 4: Results of the V4(t) Measurements

Triangle Wave		
Vertical Scale	0.5 V/Div	
Peak to Peak	2 V	
Horizontal Scale	50 μs/Div	
Period	0.0002 s	

VI. Results

▲ Figure 1. $V(t) = 0.3 \text{ tri } (200\pi t) \text{ (V)}, 0.1 \text{ V/Div}, 1 \text{ ms/Div}$

▲ Figure 2. $V(t) = \sin(0.4\pi t) + 1$ (V), 0.5 V/Div, 1 s/Div

 \blacktriangle Figure 3. V(t) = sqr (1000πt) − 1.5 (V), 1 V/Div, 1 ms/Div

▲ Figure 4. $V(t) = 4 \sin(20\pi t)$ (V), 2 V/Div, 10 ms/Div

Arr Figure 5. V1(t) = sin (2πft) (V), f=5 kHz, 0.5 V/Div, 50 μs/Div

 \blacktriangle Figure 6. V2(t) = sin (2πft) (V)+ 1, f =0.2 Hz, 0.5 V/Div, 1 s/Div

 \blacktriangle Figure 7. V3(t) = 4 tri (2πft) (V)+ 2, f=2 kHz, 2 V/Div, 100 μs/Div

 \blacktriangle Figure 8. V4(t) = tri (2πft) (V)+ 3, f = 5 kHz, 0.5 V/Div, 50 μs/Div

▲ Figure 9. V1(t) pattern with roll mode could make pattern show clearly

▲ Figure 10. V2(t) pattern without autoscale mode will make pattern a line

▲ Figure 11. V2(t) pattern with autoscale mode will make pattern clearly show VII. Discussion

In this experiment, especially the slow frequency, I recognized that autoscale mode, although it's useful, can't be used in general in certain scenarios.

VIII. Conclusion

With Oscilloscope, we can easily observe the wave generated by waveform generator.