Properties of Context-Free languages

Union

Context-free languages are closed under: Union

$$L_1$$
 is context free
$$L_1 \cup L_2$$

$$L_2$$
 is context free is context-free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \mathcal{E}$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2 a \mid bS_2 b \mid \mathcal{E}$$

Union

$$L = \{a^n b^n\} \cup \{ww^R\}$$

$$S \rightarrow S_1 \mid S_2$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the union $L_1 \cup L_2$ has new start variable S and additional production $S \to S_1 \mid S_2$

Concatenation

Context-free languages are closed under: Concatenation

 L_1 is context free L_1L_2 is context free is context-free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \mathcal{E}$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2 a \mid bS_2 b \mid \mathcal{E}$$

Concatenation

$$L = \{a^n b^n\} \{ww^R\}$$

$$S \rightarrow S_1 S_2$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the concatenation L_1L_2 has new start variable S and additional production $S \to S_1S_2$

Star Operation

Context-free languages are closed under: Star-operation

L is context free $\stackrel{*}{\bigsqcup}$ is context-free

Example

Language

Grammar

$$L = \{a^n b^n\}$$

$$S \rightarrow aSb \mid \mathcal{E}$$

Star Operation

$$L = \{a^n b^n\}^*$$

$$S_1 \rightarrow SS_1 \mid \mathcal{E}$$

In general:

For context-free language L with context-free grammar G and start variable S

The grammar of the star operation L^* has new start variable S_1 and additional production $S_1 \to SS_1 \mid \mathcal{E}$

Negative Properties of Context-Free Languages

Intersection

Context-free languages are <u>not</u> closed under:

intersection

 L_1 is context free $L_1 \cap L_2$ L_2 is context free $\frac{\text{not necessarily context-free}}{}$

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \mathcal{E}$$

$$A \rightarrow aA \mid \mathcal{E}$$

$$C \to cC \mid \mathcal{E}$$

$$B \to bBc \mid \mathcal{E}$$

Intersection

$$L_1 \cap L_2 = \{a^n b^n c^n\}$$
 NOT context-free

Complement

Context-free languages are <u>not</u> closed under:

complement

L is context free \overline{L}

not necessarily
context-free

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \mathcal{E}$$

$$A \rightarrow aA \mid \mathcal{E}$$

$$C \rightarrow cC \mid \mathcal{E}$$

$$B \to bBc \mid \mathcal{E}$$

Complement

$$\overline{L_1 \cup L_2} = L_1 \cap L_2 = \{a^n b^n c^n\}$$

NOT context-free

Intersection
of
Context-free languages
and
Regular Languages

$$L_1$$
 context free
$$L_1 \cap L_2$$

$$L_2$$
 regular context-free

Machine M_1

PDA for L_1 context-free

Machine M_2

DFA for L_2 regular

Construct a new PDA machine $\,M\,$ that accepts $\,L_1\cap L_2\,$

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

transition

PDA M_1

DFA M_2

PDA M

$$\underbrace{q_1, p_1}_{\text{transition}} \underbrace{\mathcal{E}, b \to c}_{\text{q}_2, p_1}$$

Example:

context-free

$$L_1 = \{w_1 w_2 : |w_1| = |w_2|, w_1 \in \{a,b\}^*, w_2 \in \{c,d\}^*\}$$

PDA
$$M_1$$

$$a, \mathcal{E} \to 1 \qquad c, 1 \to \mathcal{E}$$

$$b, \mathcal{E} \to 1 \qquad d, 1 \to \mathcal{E}$$

$$q_0 \mathcal{E}, \mathcal{E} \to \mathcal{E} \qquad q_1 \mathcal{E}, \mathcal{E} \to \mathcal{E} \qquad q_2 \mathcal{E}, \mathcal{E} \to \mathcal{E} \qquad q_3$$

regular
$$L_2 = \{a, c\}^*$$

DFA M_2

context-free

Automaton for:
$$L_1 \cap L_2 = \{a^n c^n : n \ge 0\}$$

PDA M

In General:

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

M accepts string w if and only if

 M_1 accepts string w and M_2 accepts string w

$$L(M) = L(M_1) \cap L(M_2)$$

Therefore:

M is PDA

 $L(M_1) \cap L(M_2)$ is context-free

 $L_1 \cap L_2$ is context-free

Applications of Regular Closure

The intersection of

a context-free language and
a regular language
is a context-free language

An Application of Regular Closure

Prove that:
$$L = \{a^n b^n : n \neq 100, n \geq 0\}$$

is context-free

We know:

$$\{a^nb^n:n\geq 0\}$$
 is context-free

We also know:

$$L_1 = \{a^{100}b^{100}\}$$
 is regular

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$
 is regular

$$\{a^nb^n\}$$

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$

context-free

regular

(regular closure) $\{a^nb^n\} \cap L_1$ context-free

$$\{a^nb^n\}\cap \overline{L_1}$$

$$\{a^n b^n\} \cap \overline{L_1} = \{a^n b^n : n \neq 100, n \geq 0\} = L$$

is context-free

Another Application of Regular Closure

Prove that:
$$L = \{w: n_a = n_b = n_c\}$$

is not context-free

If
$$L = \{w: n_a = n_b = n_c\}$$
 is context-free

(regular closure)

Then
$$L \cap \{a*b*c*\} = \{a^nb^nc^n\}$$
 context-free regular context-free **Impossible!!!**

Therefore, L is **not** context free