Redes Neuronales

RECURRENTES

MINERÍA DE DATOS

4º Curso. Grado en Ingeniería Informática 5º Curso. Doble Grado Informática/Estadística (INDAT)

Departamento de Informática (ATC, CCIA y LSI)

UNIVERSIDAD DE VALLADOLID

Definición de recurrencia (RNA)

Conexiones de una neurona consigo misma directa o indirectamente.

- Más conexiones ⇒ capacidad de representación
- Recurrencia ⇒ uso de la variable tiempo

Aplicaciones RNN

Predicción temporal:

$$\{x(t)\}_{t=0}^T \rightarrow x(T+n)$$

Ejemplo: predicción de consumos, logística, bolsa, etc.

• Clasificación de secuencias (longitud variable):

Ejemplo: escenas de vídeo
 (Aprendizaje Profundo)

Predicción temporal

Aprendizaje por épocas:

- Sólo al final de una serie, aparece la salida deseada.
- Es entonces cuando se produce la modificación de los pesos

Aprendizaje en tiempo real:

- Se dispone de la salida deseada para cada entrada de la secuencia
- Modificación de pesos no espera al final de la secuencia: es en cada entrada

Ejemplos de redes

- Inspiradas en teorías de la **Física**:
 - Red de Hopfield (Cuántica)
 - Máquina de **Boltzmann** (Termodinámica: enfriamiento del vidrio)
- Retropropagación en el tiempo:
 - Consta de una sola capa
 - Se desenrollan en un diagrama temporal (mismas neuronas en diferentes instantes)
 - Da lugar a una capa replicada en el tiempo
 - Minimización de una función de coste
 - Da la imagen de un MLP (misma capa)
- Redes parcialmente recurrentes: Elman y Jordan

Totalmente Recurrentes: Retropropagación en el tiempo

Red de Elman

$$y_i^1(t+1) = F\left(\sum_{j=0}^{N[0]} w_{ij}^1 y_j^0(t+1)\right)$$

$$y_{j}^{0}(t+1) = F\left(\sum_{k=0}^{N_{0}} w_{jk}^{0} x_{k}(t+1) + \sum_{i=1}^{N_{0}} w_{j,N_{0}+i}^{0} y_{i}^{0}(t)\right)$$

https://pytorch.org/docs/stable/generated/torch.nn.RNN.html

Red de Jordan

$$y_i^1(t+1) = F\left(\sum_{j=0}^{N[0]} w_{ij}^1 y_j^0(t+1)\right)$$

$$y_{j}^{0}(t+1) = F\left(\sum_{k=0}^{N_{0}} w_{jk}^{0} x_{k}(t+1) + \sum_{i=1}^{N_{0}} w_{j,N_{0}+i}^{0} y_{i}^{1}(t)\right)$$

Aprendizaje Elman y Jordan

Por secuencias:

- Se aplica el algoritmo del gradiente al error cuadrático medio acumulado en toda la secuencia
- Para hacerlo más independiente de la longitud de la serie, este error se suele dividir por su número de entradas
- Compatible con el procesamiento por lotes (batch)
- En tiempo real precisa salida deseada para cada muestra
 - El gradiente se aplica muestra a muestra
- Término momento para evitar caer en mínimos locales

Ejercicio:

- Predicción temporal de valores bursátiles:
 - Red de Elman
 - Cada secuencia será del último mes: 20 valores
 - La salida deseada será el siguiente valor en la serie global
 - Fichero de datos: cotización Iberdrola en los años (2010-24)
 - Descarga del campus virtual
 - Hay que normalizar [0,15]. Usad la tanh como función de activación
 - Tasa de aciertos en función del error relativo entre predicción y la salida (margen = $2\% \sim 5\%$).

Deep Learning

Keras vs Pytorch

High vs Low Level


```
0
```

```
| Description |
```


Predicción de una serie temporal

Dataset: Ventas de Amazon

]	
	Date	Open	High	Low	Close	Adj Close	Volume
0	1997-05-15	0.121875	0.125000	0.096354	0.097917	0.097917	1443120000
1	1997-05-16	0.098438	0.098958	0.085417	0.086458	0.086458	294000000
2	1997-05-19	0.088021	0.088542	0.081250	0.085417	0.085417	122136000
3	1997-05-20	0.086458	0.087500	0.081771	0.081771	0.081771	109344000
4	1997-05-21	0.081771	0.082292	0.068750	0.071354	0.071354	377064000
6511	2023-03-30	101.550003	103.040001	101.010002	102.000000	102.000000	53633400
6512	2023-03-31	102.160004	103.489998	101.949997	103.290001	103.290001	56704300
6513	2023-04-03	102.300003	103.290001	101.430000	102.410004	102.410004	41135700
6514	2023-04-04	102.750000	104.199997	102.110001	103.949997	103.949997	48662500
6515	2023-04-05	103.910004	103.910004	100.750000	101.099998	101.099998	45103000
6516 rows × 7 columns							

(una semana)

HIPÓTESIS: cada valor de venta al cierre dependerá de los siete anteriores

Creación Dataset Serie Temporal

Escalado y HoldOut

- La matriz de entradas se organiza como: X[batch, secuencia-i,input]
- La de salida: y[batch, ouput]
- A los DataLoaders se le pasa batch=1 (aconsejan que sea 2ⁿ)
- Como la función de activación es tanh (-, +), las entradas se suelen escalar a sus valores asintóticos: [-1,1]
- El método de reserva no se estratifica, pero hay que procurar que lleven asociada la **misma** casuística ambos (train y test).
- Pero se elegirán las N primeras para aprendizaje y el resto para test. El motivo es poder representar gráficamente una métrica

DataSets y DataLoaders

```
from torch.utils.data import Dataset

class TimeSeriesDataset(Dataset):
    def __init__(self, X, y):
        self.X = X
        self.y = y

    def __len__(self):
        return len(self.X)

    def __getitem__(self, i):
        return self.X[i], self.y[i]
```

```
train_dataset = TimeSeriesDataset(X_train, y_train)
test_dataset = TimeSeriesDataset(X_test, y_test)
```

```
from torch.utils.data import DataLoader

batch_size = 16

train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
```

Celda RNN - Elman (PyTorch)

https://pytorch.org/docs/stable/generated/torch.nn.RNN.html#torch.nn.RNN

Desenrolle en el tiempo (pytorch)

Red de Elman (PyTorch)

```
class Elman(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super().__init__()
        self.hidden_size = hidden_size
        self.hidden_layer = nn.RNN(input_size, self.hidden_size, batch_first=True)
        self.output_layer = nn.Linear(self.hidden_size, 1)

def forward(self, x):
        batch_size = x.size(0)
        h0 = torch.zeros(1, batch_size, self.hidden_size)
        out, h = self.hidden_layer(x, h0)
        output = self.output_layer(out[:, -1, :])
        return output
```

```
learning_rate = 0.001
num_epochs = 200
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
```

Entrenamiento

```
def train_one_epoch():
    model.train(True)
    print(f'Epoch: {epoch + 1}')
    running_loss = 0.0
    for x_batch, y_batch in tqdm(train_loader):
        output = model(x_batch)
        loss = loss_function(output, y_batch)
        running_loss += loss.item()
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    return running_loss/len(train_loader)
```

Test

```
def validate_one_epoch():
    model.train(False)
    running_loss = 0.0

    for x_batch, y_batch in test_loader:

        with torch.no_grad():
            output = model(x_batch)
            loss = loss_function(output, y_batch)
            running_loss += loss.item()
```

Predicción vs Salida Real

Función de Coste / Pérdida

Motivación LSTM

- Cuando las secuencias son relativamente grandes, tanto Elman o Jordan, no da buenos resultados.
- Problema de la Evanescencia del Gradiente.
- Aparece también en las RN, en general, al aumentar el número de capas:
 - La magnitud del gradiente se va reduciendo de una capa a otra, a medida que se aleja de la salida
 - Llega a ser imperceptible en capas muy profundas

Réplica en el tiempo nn.RNN y nn.LSTM

nn.RNN:

- Sólo recuerda la última salida
- El resto, a través del estado
- Poca influencia muy atrás en tiempo

nn.LSTM:

- Añade una "cinta transportadora"
- Recordar entradas anteriores
- Incluso alejadas en el tiempo

Modelo LSTM (Long-Short Time Memory)

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f c_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i c_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o c_{t-1} + b_o) \ c_t &= f_t \circ c_{t-1} + i_t \circ \sigma_c(W_c x_t + b_c) \ h_t &= \sigma_h(o_t \circ c_t) \end{aligned}$$

- σ_g: sigmoid function.
- σ_c: hyperbolic tangent function.
- σ_h: hyperbolic tangent function
- $ullet x_t \in \mathbb{R}^d$: input vector to the LSTM unit
- ullet $f_t \in \mathbb{R}^h$: forget gate's activation vector
- $i_t \in \mathbb{R}^h$: input/update gate's activation vector
- $o_t \in \mathbb{R}^h$: output gate's activation vector
- $h_t \in \mathbb{R}^h$: hidden state vector also known as output vector of the LSTM unit
- ullet $c_t \in \mathbb{R}^h$: cell state vector
- $m{\cdot}\; W \in \mathbb{R}^{h imes d}$, $U \in \mathbb{R}^{h imes h}$ and $b \in \mathbb{R}^h$: weight matrices and bias vector parameters

Fuente: wikipedia

GRU (Gated Recurrent Unit)

$$egin{aligned} z_t &= \sigma_g(W_z x_t + U_z h_{t-1} + b_z) \ r_t &= \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \ h_t &= (1 - z_t) \odot h_{t-1} + z_t \odot \phi_h(W_h x_t + U_h(r_t \odot h_{t-1}) + b_h) \end{aligned}$$

- x_t: input vector
- h_t: output vector
- z_t: update gate vector
- r_t: reset gate vector
- W, U and b: parameter matrices and vector
- σ_a: The original is a sigmoid function.
- φ_h: The original is a hyperbolic tangent.

Fuente: wikipedia

Práctica: predicción de secuencias temporales - Acciones Iberdrola 2012-24

- En un sólo notebook de jupyter (pytorch) entrega un sólo programa que entrene:
 - Una red de Elman con dos capas ocultas de 5 neuronas
 - La hipótesis es que el valor al cierre va a depender sólo de los 20 anteriores (mes).
 - Entrenarlo con 100 200 épocas con una valor del lote de 1
 - Se tomarán como función de pérdida el Error Cuadrático Medio (MSE)
 - El optimizador será Adam con un coeficiente de aprendizaje de 0,001
 - Se representará la evolución del MSE para aprendizaje y test a lo largo de las épocas
 - Finalmente, se contruirá una gráfica con una precisión que cuente las secuencias cuyo valor predicho y el deseado difieran menos de un 5%
 - Repetir todo esto para una LSTM y una GRU, cada una con 2 capas ocultas de 5 neuronas
 - El histórico de datos de normalizará tomando como valor mínimo el de una acción (0,00€) y un máximo, en este caso de 15€, asumiendo que estas redes no pueden predecir más allá de este valor.
 - En todas las redes de esta práctica, se tomará la tanh como activación de la capa oculta y la de salida igual a la lineal.
 - Tasa de aciertos en función del error relativo entre predicción y salida (margen = $2\% \sim 5\%$).

Gráficas de Resultados

