

#### Mappings or function

Types of

omposition of appings

Useful

### Potency of

Equipotent Set

relation

Sets

Few usefu

# Functions and Potency of Sets (infinity and beyond . . .)

### Apurba Sarkar

Indian Institute of Engineering Science and Technology, Shibpur

September 29, 2015



### Introduction

#### Mappings or functions

Types of functions Composition mappings Useful theorems

Sets
Equipotent Set
An equivalence relation

relation Enumerable Sets Few useful

- If f is a relation between A and B then an element x of A may be related to one element or no element or many elements of B by f.
- A relation with the property that **each** element x of A is related to exactly one element y of B is said to be  $mapping\ from\ A$  to B.
- A relation f is a subset of  $A \times B$ . f is a mapping if each element x of A appears exactly once as the first element of the ordered pairs of f.



#### Mappings or functions

Types of functions Composition of mappings Useful theorems

Potency of Sets

Equipotent Se

Enumerable Sets

### Definition 1

Let A and B be two non-empty sets. A mapping f from A to B is a rule that assigns to each element x of A a definite element y in B.

A is said to be the domain of f and B is said to be the co-domain of f and the mapping from A to B is denoted by  $f: A \to B$ .



#### Mappings or functions

Types of functions Composition of mappings Useful theorems

Potency o Sets

Equipotent Set
An equivalence
relation
Enumerable
Sets

### Definition 1

Let A and B be two non-empty sets. A mapping f from A to B is a rule that assigns to each element x of A a definite element y in B.

A is said to be the domain of f and B is said to be the co-domain of f and the mapping from A to B is denoted by  $f: A \to B$ .

### Definition 2

Let  $f: A \to B$  be mapping, Then the unique element y of B that corresponds to x is called the f-image of x.

The set of all f-images, i.e., the set  $\{f(x) \mid x \in A\}$  is denoted by f(A) and is said to be the image set or the range set of f.



#### Mappings or functions

functions
Composition
mappings

Potency

Sets

An equivalence

Enumerable Sets

Few usefu theorems



#### Mappings or functions

#### Types of functions

Compositio mappings Useful

### Potency

Equipotent Se

relation

Few usefu theorems

$$1  $f_1 = \{(1, a), (1, b), (2, c), (3, c), (4, d)\}$$$



#### Mappings or functions

Types of functions Composition mappings

mappings Useful theorems

### Sets

An equivalence

Enumerable

Few usefu theorems

3 
$$f_3 = \{(1, b), (2, b), (3, c), (4, d)\}$$



#### Mappings or functions

Types of functions Composition of mappings

Useful theoren

### Sets

An equivalence

Enumerable Sets

Few usefu theorems

3 
$$f_3 = \{(1, b), (2, b), (3, c), (4, d)\}$$



#### Mappings or functions

**1** Let  $S = \{1, 2, 3, 4\}$ ,  $T\{a, b, c, d\}$ . Which all of the following are function?

$$f_1 = \{(1, a), (1, b), (2, c), (3, c), (4, d)\}$$

**2** 
$$f_2 = \{(1, a), (2, b), (3, c)\}$$

$$f_3 = \{(1, b), (2, b), (3, c), (4, d)\}$$

**2** Let f is a relation between  $\mathbb{R}$  and  $\mathbb{R}$  such that x is related to y iff  $y = \frac{1}{x}, x, y \in \mathbb{R}$ .



#### Mappings or functions

Types of functions Composition of mappings Useful theorems

### Potency o

Equipotent Se An equivalenc relation Enumerable Sets Let  $S = \{1, 2, 3, 4\}$ ,  $T\{a, b, c, d\}$ . Which all of the following are function?

$$f_1 = \{(1, a), (1, b), (2, c), (3, c), (4, d)\}$$

**2** 
$$f_2 = \{(1, a), (2, b), (3, c)\}$$

3 
$$f_3 = \{(1, b), (2, b), (3, c), (4, d)\}$$

**2** Let f is a relation between  $\mathbb{R}$  and  $\mathbb{R}$  such that x is related to y iff  $y = \frac{1}{x}$ ,  $x, y \in \mathbb{R}$ . Every element x, other than 0 is related to a unique element y of  $\mathbb{R}$ .



#### Mappings or functions

Types of functions Composition of mappings Useful theorems

### Potency of

Equipotent Se An equivalence relation Enumerable Sets Let  $S = \{1, 2, 3, 4\}$ ,  $T\{a, b, c, d\}$ . Which all of the following are function?

**2** 
$$f_2 = \{(1, a), (2, b), (3, c)\}$$

$$f_3 = \{(1, b), (2, b), (3, c), (4, d)\}$$

**2** Let f is a relation between  $\mathbb{R}$  and  $\mathbb{R}$  such that x is related to y iff  $y = \frac{1}{x}$ ,  $x, y \in \mathbb{R}$ . Every element x, other than 0 is related to a unique element y of  $\mathbb{R}$ .

 $\therefore f$  is not a function.

#### Mappings or functions

Types of functions Composition of mappings Useful theorems

#### Potency of Sets

Equipotent Son equivalent relation
Enumerable Sets

Let  $S = \{1, 2, 3, 4\}$ ,  $T\{a, b, c, d\}$ . Which all of the following are function?

**2** 
$$f_2 = \{(1, a), (2, b), (3, c)\}$$

3 
$$f_3 = \{(1, b), (2, b), (3, c), (4, d)\}$$

**2** Let f is a relation between  $\mathbb{R}$  and  $\mathbb{R}$  such that x is related to y iff  $y = \frac{1}{x}$ ,  $x, y \in \mathbb{R}$ .

Every element x, other than 0 is related to a unique element y of  $\mathbb{R}$ .

 $\therefore f$  is not a function.

What about  $\mathbb{R} - \{0\}$ ?



### **Relation vs function**

#### Mappings or functions

Types of functions Composition mappings Useful theorems

### Potency of

Sets
Equipotent S
An equivalen
relation
Enumerable
Sets

- Let A and B be two sets, then
  - **1** A relation  $\rho$  between A and B is a subset of cartesian product of A and B, i.e.  $\rho \subseteq A \times B$ .
  - **2** A function f between A and B is also a subset of cartesian product of A and B. i.e.  $f: A \to B \subseteq A \times B$ .



### Relation vs function

#### Mappings or functions

Types of functions Composition mappings Useful theorems

### Potency

An equivalent relation Enumerable

Few usefu theorems

- Let A and B be two sets, then
  - **1** A relation  $\rho$  between A and B is a subset of cartesian product of A and B, i.e.  $\rho \subseteq A \times B$ .
  - **2** A function f between A and B is also a subset of cartesian product of A and B. i.e.  $f: A \to B \subseteq A \times B$ .

Whats the big deal then?



### Relation vs function

#### Mappings or functions

Types of functions Composition mappings Useful theorems

#### Sets Equipotent S

An equivalent relation Enumerable Sets ■ Let A and B be two sets, then

- **1** A relation  $\rho$  between A and B is a subset of cartesian product of A and B, i.e.  $\rho \subseteq A \times B$ .
- **2** A function f between A and B is also a subset of cartesian product of A and B. i.e.  $f: A \to B \subseteq A \times B$ .

Whats the big deal then?

All functions are relation but not all relations are function.



#### Mappings or functions

Types o

Composition mappings Useful theorems

### Sets

Equipotent Se

Enumerable

Few usefu

### Definition 3

A mapping  $f: A \to B$  is said to be an into mapping if f(A) is a proper subset of B. In this case we say A maps into B



#### Mappings or functions

Types of functions

Composition o mappings Useful theorems

#### Potency o Sets

An equivaler relation

Sets Few useful

### Definition 3

A mapping  $f: A \to B$  is said to be an into mapping if f(A) is a proper subset of B. In this case we say A maps into B

### Definition 4

A mapping  $f:A\to B$  is said to be an onto mapping if f(A)=B. In this case we say A maps onto B



#### Mappings or functions

1 Let  $f: \mathbb{Z} \to \mathbb{Z}$  be defined by  $f(x) = 2x, x \in \mathbb{Z}$ . Then  $f(\mathbb{Z})$  (the set of all even integers) is a proper subset of



#### Mappings or functions

Types of functions Composition mappings Useful

#### Potency of Sets

Equipotent Ser An equivalence relation

Enumerable Sets Let  $f: \mathbb{Z} \to \mathbb{Z}$  be defined by  $f(x) = 2x, x \in \mathbb{Z}$ . Then  $f(\mathbb{Z})$  (the set of all even integers) is a proper subset of  $\mathbb{Z}$ .

**2** Let  $f: \mathbb{Z} \to \mathbb{Z}$  be defined by  $f(x) = |x|, x \in \mathbb{Z}$  Then  $f(\mathbb{Z})$  (the set of all non-negative integers) is a proper subset of  $\mathbb{Z}$ .



#### Mappings or functions

Types of functions Composition mappings Useful theorems

## Sets Equipotent Se

An equivalent relation Enumerable Sets Let  $f: \mathbb{Z} \to \mathbb{Z}$  be defined by  $f(x) = 2x, x \in \mathbb{Z}$ . Then  $f(\mathbb{Z})$  (the set of all even integers) is a proper subset of  $\mathbb{Z}$ .

- **2** Let  $f: \mathbb{Z} \to \mathbb{Z}$  be defined by  $f(x) = |x|, x \in \mathbb{Z}$  Then  $f(\mathbb{Z})$  (the set of all non-negative integers) is a proper subset of  $\mathbb{Z}$ .
- Let  $f: \mathbb{Z} \to \mathbb{Z}$  be defined by f(x) = x + 1,  $x \in \mathbb{Z}$ . Then every element y in the co-domain set  $\mathbb{Z}$  has a pre-image y 1 in the domain set  $\mathbb{Z}$ .



#### Mappings or functions

Types of functions Composition mappings Useful

### Potency o

ets
Equipotent Set
An equivalence
celation

Few usefu theorems ■ Let  $f: A \to B$  be a mapping. It may happen that an element  $y \in B$  has *one* pre-image, *no* pre-image or *many* pre-images in A



#### Mappings or functions

Types of functions Composition of mappings Useful theorems

Potency of Sets

> Equipotent S An equivalen relation Enumerable

Few usefu

- Let  $f: A \to B$  be a mapping. It may happen that an element  $y \in B$  has *one* pre-image, *no* pre-image or *many* pre-images in A
- 2 In Example 2, 0 in the co-domain set  $\mathbb{Z}$  has only one pre-image in the domain set; 1 in the co-domain set  $\mathbb{Z}$  has two pre-images in the domain set. -2 in the co-domain set has no pre-image in the domain set.



#### Mappings or functions

- Let  $f: A \to B$  be a mapping. It may happen that an element  $y \in B$  has one pre-image, no pre-image or many pre-images in A
- **2** In Example 2, 0 in the co-domain set  $\mathbb{Z}$  has only one pre-image in the domain set; 1 in the co-domain set  $\mathbb{Z}$ has two pre-images in the domain set. -2 in the co-domain set has no pre-image in the domain set.
- Thus the pre-images of an element y in B form a subset of B, which may be the null set, or a singleton set, or a set containing more than one elements.



### Mappings

## or function Types of

Composition mappings Useful

Potency of

Sets

relation

Few usefu

### Definition 5

A mapping  $f: A \to B$  is said to be injective (or one-to-one) if for each pair of distinct elements of A, their f-images are distinct.



#### Mappings or functions

### Types of

Composition of mappings Useful theorems

### Potency o

Equipotent Se An equivalenc relation

Enumerable Sets Definition 5

A mapping  $f: A \to B$  is said to be injective (or one-to-one) if for each pair of distinct elements of A, their f-images are distinct.

### Definition 6

A mapping  $f: A \to B$  is said to be surjective (or onto)if f(A) = B.



#### Mappings or function

or function Types of

#### functions Composit

Composition of mappings Useful theorems

#### Potency of Sets

Equipotent Se An equivalence relation

Enumerable Sets

### Definition 5

A mapping  $f: A \to B$  is said to be injective (or one-to-one) if for each pair of distinct elements of A, their f-images are distinct.

### Definition 6

A mapping  $f : A \to B$  is said to be surjective (or onto)if f(A) = B.

### Definition 7

A mapping  $f: A \to B$  is said to be bijective if f is both injective and surjective.



#### Mappings or function

#### Types of functions

Composition mappings Useful theorems

### Potency

Equipotent Set

An equivalence

Enumerable Sets

Few usefu theorems ■ The mapping  $f: A \to B$  is injective if  $x_1 \neq x_2$  in A implies  $f(x_1) \neq f(x_2)$  in B. So, if f is injective, each element of B has at most one pre-image. It also means that  $|A| \leq |B|$ .



#### Mappings or function

### Types of

Composition mappings Useful theorems

#### Potency of Sets

An equivalentelation
Enumerable

Few usefu theorems

- The mapping  $f: A \to B$  is injective if  $x_1 \neq x_2$  in A implies  $f(x_1) \neq f(x_2)$  in B. So, if f is injective, each element of B has at most one pre-image. It also means that  $|A| \leq |B|$ .
- **2** If  $f: A \to B$  is *surjective* each element of B has *at least* one pre-image. So, it implies  $|A| \ge |B|$ .



#### Types of functions

- **1** The mapping  $f: A \to B$  is injective if  $x_1 \neq x_2$  in A implies  $f(x_1) \neq f(x_2)$  in B. So, if f is injective, each element of B has at most one pre-image. It also means that  $|A| \leq |B|$ .
- **2** If  $f: A \to B$  is surjective each element of B has at least one pre-image. So, it implies  $|A| \ge |B|$ .
- If  $f: A \to B$  is bijective each element of B has exactly one pre-image. So, it implies |A| = |B|.



#### Mappings or function

#### Types of functions

Composition nappings Useful

### theorems

Equipotent Se

relation Enumerable

Few usefu theorems  $\blacksquare \text{ Let } f: \mathbb{Z} \to \mathbb{Z} \text{ be defined by } f(x) = 2x, \, x \in \mathbb{Z}.$ 



#### Mappings or function

#### Types of functions

mappings Useful theorems

### Potency

Equipotent Set An equivalence relation

Few useful

**1** Let  $f: \mathbb{Z} \to \mathbb{Z}$  be defined by  $f(x) = 2x, x \in \mathbb{Z}$ .

**2** Let  $f: \mathbb{Z} \to \mathbb{Z}$  be defined by  $f(x) = |x|, x \in \mathbb{Z}$ .



#### Mappings or function

#### Types of functions

Composition mappings Useful theorems

### Potency

An equivalent relation Enumerable

Few useful theorems **1** Let  $f: \mathbb{Z} \to \mathbb{Z}$  be defined by  $f(x) = 2x, x \in \mathbb{Z}$ .

**2** Let  $f: \mathbb{Z} \to \mathbb{Z}$  be defined by  $f(x) = |x|, x \in \mathbb{Z}$ .

**3** Let  $f: \mathbb{Z} \to \mathbb{Z}$  be defined by  $f(x) = x + 1, x \in \mathbb{Z}$ .



## **Special mappings**

Mappings or function

#### Types of functions

Composition mappings Useful theorems

### Potency

An equivalerelation

Enumerable Sets ■ A mapping  $f: A \to B$  is said to be a constant mapping if f maps each element of A to one and the same element of B i.e., f(A) is a singleton set. For example,  $f: \mathbb{R} \to \mathbb{R}$  defined by  $f(x) = 2, x \in \mathbb{R}$ .



## **Special mappings**

#### Mappings or function

#### Types of functions Composition

Composition mappings Useful theorems

## Sets Equipotent Se

An equivalen relation Enumerable Sets

Sets Few useful theorems

- A mapping  $f: A \to B$  is said to be a constant mapping if f maps each element of A to one and the same element of B i.e., f(A) is a singleton set. For example,  $f: \mathbb{R} \to \mathbb{R}$  defined by  $f(x) = 2, x \in \mathbb{R}$ .
- **2** A mapping  $f: A \to A$  is said to be the *identity mapping* on A if f(x) = x,  $x \in A$ . The identity mapping on A is denoted by  $i_A$ . The mapping  $i_A$  is obviously a bijective mapping from A to B.



## **Equality of mappings**

#### Mappings or function

#### Types of functions

Composition of mappings Useful theorems

#### Potency of Sets

Equipotent Set An equivalence relation

Few usefu

Two mappings  $f: A \to B$  and  $g: A \to C$  are said to be equal if f(x) = g(x) for all  $x \in A$ . For the equality of two mappings f and g the following conditions must hold.

**1** f and g must have the same domain D.



## **Equality of mappings**

Mappings or functions

#### Types of functions

Composition mappings Useful theorems

#### Potency of Sets

An equivalentelation Enumerable

Few usefu

Two mappings  $f: A \to B$  and  $g: A \to C$  are said to be equal if f(x) = g(x) for all  $x \in A$ . For the equality of two mappings f and g the following conditions must hold.

- $\mathbf{1}$  f and g must have the same domain D.
- 2 for all  $x \in D$ , f(x) = g(x).



## Restriction of mappings

#### Mappings or function

#### Types of

Composition mappings Useful theorems

# Sets Equipotent Se An equivalence

relation
Enumerable
Sets

Few useful theorems

- Let  $f: A \to B$  be mapping and let D be a non-empty subset of A. Then the mapping  $g: D \to B$  defined by  $g(x) = f(x), x \in D$  is said to be the restriction of f to D.
- f is said to be an extension of g to A. An extension  $f: A \to B$  of the mapping  $f: D \to B$  is not unique. Since the f-images of the elements of A-D may be arbitrarily chosen.
- $\blacksquare$  it is possible for a non-bijective mapping f to have bijective restriction of f.



## Composition of mappings

Mappings or functions

Types

Composition of mappings Useful theorems

Sets
Equipotent Se

relation Enumerable Sets

Few usefu theorems

- Let  $f: A \to B$  and  $g: C \to D$  be two mappings such that f(A) is a subset of C. Let  $x \in A$ . Then f maps x to an element  $y \in f(A) \subset B$  and since  $y \in f(A) \subset C$ , g maps y to an element z in D.
- A mapping  $h: A \to D$  can be defined by h(x) = g(f(x)),  $x \in A$ . The mapping  $h: A \to D$  is said to be *composite* (or the *product*) of f and g and is denoted by  $g \circ f$ .
- The composite  $g \circ f : A \to D$  is defined only if f(A) is a subset of the domain of g.



## **Composition of mappings**

#### Mappings or function

#### Types

Composition of mappings Useful theorems

### Sets

Equipotent Set An equivalence relation

Few useful

- For the mapping  $f : A \to B$  and  $g : B \to C$  the composite  $g \circ f : A \to C$  is defined.
- For the mapping  $f: A \to B$  and  $g: B \to A$  both the composites  $g \circ f: A \to C$  and  $f \circ g: B \to B$  are defined.

## **Examples**

#### Mappings or function

Types of

Composition of mappings Useful theorems

### Potency

Equipotent Se An equivalence relation Enumerable Sets Let  $f: \mathbb{R} \to \mathbb{R}$  and  $g: \mathbb{R} \to \mathbb{R}$  be defined by  $f(x) = x + 1, x \in \mathbb{R}$  and  $g(x) = 3x, x \in \mathbb{R}$ . What about  $g \circ f$  and  $f \circ g$ ?

**2** Let  $f: \mathbb{R} \to \mathbb{R}$  be defined by f(x) = x + 1,  $x \in \mathbb{R}$  and  $g: \mathbb{R} \to \mathbb{R}$  be defined by g(x) = x + 5,  $x \in \mathbb{R}$ . What about  $g \circ f$  and  $f \circ g$ ?



### **Observation**

#### Mappings or functions

Types o

Composition of mappings Useful theorems

# Sets Equipotent Set

An equivalen relation Enumerable Sets

Sets Few useful theorems

- The composition of mappings is not commutative. That is for two mappings f and g their composites  $g \circ f$  and  $f \circ g$  are, in general, not equal.
- 2 One of them may be defined the other may bot be defined at all.
- The composition of mappings is associative. That is for three mappings f, g and  $h, h \circ (g \circ f) = (h \circ g) \circ f$ , when both sides are defined mappings.



### Theorem 1

Let  $f: A \to B$ ,  $g: B \to C$  and  $h: C \to D$  be three mappings. Then  $h \circ (g \circ f) = (h \circ g) \circ f$ .



#### Mappings or function

Types of functions Composition of mappings Useful

#### Potency of Sets

An equivalence relation Enumerable

Few use theorem

### Theorem 1

Let  $f: A \to B$ ,  $g: B \to C$  and  $h: C \to D$  be three mappings. Then  $h \circ (g \circ f) = (h \circ g) \circ f$ .

### Proof.

Here the composite mappings  $g \circ f$ ,  $h \circ g$  are defined.(why?...)

The composite mappings  $h \circ (g \circ f)$  and  $(h \circ g) \circ f$  are also defined (why? ...)



#### Theorem 2

If  $f: A \to B$  and  $g: B \to C$  are both injective mappings then the composite mapping  $g \circ f: A \to C$  is injective.

or functions

Types of functions

Composition of mappings

Useful

Sets

Equipotent Se

relation Enumerable

Few usefu



theorems

## Few theorems on compositions

#### Theorem 2

If  $f: A \to B$  and  $g: B \to C$  are both injective mappings then the composite mapping  $g \circ f: A \to C$  is injective.

### Proof.

Let  $x_1$  and  $x_2$  be two distinct elements of A

Let  $f(x_1) = y_1$ ,  $f(x_2) = y_2$ . Since f is injective,  $y_1$  and  $y_2$  are distinct elements of B.

Let  $g(y_1) = z_1$ ,  $g(y_2) = z_2$ . Since g is injective,  $z_1$  and  $z_2$  are distinct elements of C.

Now  $g \circ f(x_1) = z_1$ ,  $g \circ f(x_2) = z_2$  and  $x_1 \neq x_2 \Rightarrow z_1 \neq z_2$ .  $\therefore g \circ f$  is injective.

What about the converse of the theorem?

### What about the



#### Mappings or function

Types of

Composition o

Useful theorems

Potency of Sets

Equipotent Se

relation Enumerable

Few usefu

### Theorem 3

If  $f: A \to B$  and  $g: B \to C$  be two mappings such that  $g \circ f: A \to C$  is injective then f is injective.



Mappings or function

Types of functions

Composition of mappings
Useful

Sets

An equivalenc relation Enumerable Sets

Few use theorem

### Theorem 3

If  $f: A \to B$  and  $g: B \to C$  be two mappings such that  $g \circ f: A \to C$  is injective then f is injective.

#### Proof.

If possible, let f be not injective.

Then there exist two distinct elements  $x_1, x_2$  in A such that  $f(x_1) = f(x_2)$ .  $g \circ f(x_1) = g \circ f(x_2)$  and this contradicts that  $g \circ f$  is injective.

 $\therefore f$  is injective.



#### Mappings or function

Types of functions Composition o mappings Useful

Sets

Equipotent Set
An equivalence
relation

Enumerable Sets

Few useful theorems

### Example 1

Let  $f: \mathbb{R} \to \mathbb{R}$  be defined by  $f(x) = e^x$ ,  $x \in \mathbb{R}$  and  $g: \mathbb{R} \to \mathbb{R}$  be defined by  $g(x) = x^2$ ,  $x \in \mathbb{R}$ .

Clearly g is not injective as g(2) = g(-2) = 4.

Here  $g \circ f : \mathbb{D} \setminus \mathbb{D}$  is defined by  $g \circ f(x) = e^{2x}$ 

Here  $g \circ f : \mathbb{R} \to \mathbb{R}$  is defined by  $g \circ f(x) = e^{2x}$ ,  $x \in \mathbb{R}$   $g \circ f$  is injective but g is not injective.



#### Theorem 4

If  $f: A \to B$  and  $g: B \to C$  be both surjective then the composite mappings  $g \circ f: A \to C$  is surjective.

### Proof.

Let z be an element of C. Since g is surjective, there is at least one pre-image of z in B. Let one such pre-image be y. Then  $y \in B$  and g(y) = z.

Since f is surjective and  $y \in B$ , there is at least one pre-image of y in A. Let one such be x. Then  $x \in A$  and f(x) = y.

$$g \circ f(x) = g(y) = z$$

This implies that z has a pre-image in A under the mapping  $g \circ f$ . Since z is arbitrary,  $g \circ f$  is surjective.

What about the converse of the theorem?



### Theorem 5

If  $f: A \to B$  and  $g: B \to C$  be two mappings such that  $g \circ f: A \to C$  is surjective then g is surjective.

Mappings or functions

functions Composition o

Useful

Useful theorems

Sets

Equipotent Set An equivalence

Enumerable Sets

Few usefu theorems



#### Theorem 5

If  $f: A \to B$  and  $g: B \to C$  be two mappings such that  $g \circ f : A \to C$  is surjective then g is surjective.

### Proof.

Let z be an element of C. Since  $g \circ f$  is surjective, there is an element element x in A such that  $g \circ f(x) = z$ .

$$\therefore gf(x) = z.$$

This shows that z has a pre-image f(x) in B under the mapping q.

Since z is arbitrary, q is surjective.

**Note:** In order that  $g \circ f$  may be surjective it is not necessary that f is surjective.



#### Mappings or function

Types of functions Composition

mappings
Useful
theorems

Sets

An equivalend relation Enumerable

Few usefu

### Example 2

Let  $f: \mathbb{Z} \to \mathbb{Z}$  be defined by f(x) = 2x,  $x \in \mathbb{Z}$  and  $g: \mathbb{Z} \to \mathbb{Z}$  be defined by  $g(x) = \lfloor \frac{x}{2} \rfloor$ ,  $x \in \mathbb{Z}$ .  $\lfloor \frac{x}{2} \rfloor$  denotes the greatest

 $integer \le x$ 

Then  $g \circ f : \mathbb{Z} \to \mathbb{Z}$  is defined by  $g \circ f(x) = x$ ,  $x \in \mathbb{Z}$   $g \circ f$  is the identity mapping on  $\mathbb{Z}$  and is, therefore, surjective: but f is not surjective.



theorems

## Few theorems on compositions

#### Theorem 6

If  $f: A \to B$  and  $g: B \to C$  be be both bijective then the composite mapping  $g \circ f: A \to C$  is bijective.

### Proof.

Since both f and g are bijective, they both are injective as well as surjective.

Now, as f and g are each injective by theorem 2, the composite mapping  $g \circ f$  is injective. similarly, as f and g are each surjective by theorem 4, the composite mapping  $g \circ f$  is also surjective.

Since the composite mapping  $g \circ f$  is injective as well as surjective, it is bijective.

What about the converse of the theorem?



theorems

## Few theorems on compositions

## Theorem 7

If  $f: A \to B$  and  $g: B \to C$  be two mappings such that  $g \circ f: A \to C$  is bijective then f is injective and g is surjective.

#### Proof.

Since  $g \circ f$  is bijective, it is injective as well as injective. Now, for  $g \circ f$  to be injective, f has to be injective (by theorem 3) and for  $g \circ f$  to be surjective, g has to be surjective (by theorem 5).

Hence the theorem.

**Note:** In order that  $g \circ f$  may be bijective it is neither necessary that f is surjective nor necessary that g is injective.



### **Definitions**

#### Mappings or function

Types of functions

Composition of mappings

Useful theorems

Potency

Sets Equipotent Se

An equivalent relation Enumerable

Few usefu

#### Definition 8

Let  $f: A \to B$  be a mapping. If there exists a mapping  $g: B \to A$  such that  $g \circ f = i_A$  then g is said to be a left inverse of f. If there exists a mapping  $h: B \to A$  such that  $f \circ h = i_B$  such then h is said to be a right inverse of f



### **Definitions**

#### Mappings or function

Types of functions Composition mappings Useful

Potency Sets

An equivalence relation
Enumerable Sets

#### Definition 8

Let  $f: A \to B$  be a mapping. If there exists a mapping  $g: B \to A$  such that  $g \circ f = i_A$  then g is said to be a left inverse of f. If there exists a mapping  $h: B \to A$  such that  $f \circ h = i_B$  such then h is said to be a right inverse of f

### Definition 9

Let  $f: A \to B$  be a mapping. f is said to be invertible if there exist a mapping  $g: B \to A$  such that  $g \circ f = i_A$  and  $f \circ g = i_B$  and g is said to be an inverse of f.



#### Theorem 8

If  $f: A \to B$  be an invertible mapping then its inverse is unique.

#### Proof.

Since  $f: A \to B$  is invertible, there exist a mapping  $g: B \to A$  such that  $g \circ f = i_A$  and  $f \circ g = i_B$ . If possible, let there exist another mapping  $h: B \to A$  such that  $h \circ f = i_A$  and  $f \circ h = i_B$ . Since composition of mapping is associative,  $h \circ (f \circ g) = (h \circ f) \circ g$ .  $\therefore h \circ i_B = i_A \circ g$ . or h = g and hence the theorem.

Enumerable Sets Few useful theorems

theorems



theorems

## Few theorems on compositions

#### Theorem 9

If  $f: A \to B$  is an invertible mapping if and only if f is a bijection.

### Proof.

 $\Longrightarrow$ 

Let  $f: A \to B$  be invertible, then there exist a mapping  $g: B \to A$  such that  $q \circ f = i_A$  and  $f \circ q = i_B$ .

Since  $i_A$  is is injective and  $g \circ f = i_A$ , f is injective.

Since  $i_B$  is surjective and  $f \circ g = i_B$ , f is surjective. f is bijective.

 $\leftarrow$ 

Let  $y \in B$ . Since f is a bijection, y has one and only one pre-image x in A. Define a mapping  $g: B \to A$  by g(y) = x (the pre-image of y under f),  $y \in B$ . Then  $g \circ f(x) = g(y) = x, x \in A$ 

and  $f \circ g(y) = f(x) = g(y) = x, x \in A$ 

 $g \circ f = i_A$  and  $g \circ g = i_B$ .

 $\therefore f$  is invertible.



## **Equipotent Set**

Mappings or function

Types of functions Composition of mappings Useful

Potency of Sets

Equipotent Set
An equivalence
relation
Enumerable
Sets

Sets Few useful theorems

#### Definition 10

A set A is said to be equipotent with a set B if there exist a bijective mapping f from A to B and we write  $A \sim B$ . If A is equipotent with B, then B is equipotent with A, since the existence of a bijective mapping  $f : A \to B$  implies the existence of the inverse mapping  $f^{-1} : B \to A$  which is also bijective. Thus the two sets A and B are equipotent with each other.



## An equivalence relation involving potency

Mappings

Types of functions Composition o mappings Useful theorems

Potency of
Sets
Equipotent Set
An equivalence
relation
Enumerable

relation Enumerable Sets Few useful theorems Consider the set S of all subsets of a universal set U.

- Let  $A \in S$ . A  $\sim A$  because the identity mapping  $i : A \to A$  is a bijective mapping. reflexive
- **2** Let  $A, B \in S$  and  $A \sim B$ . Then there exist a bijective mapping  $f : A \to B$ . The inverse mapping  $f^{-1} : B \to A$  is also a bijective mapping.  $A \cap B \Rightarrow B \cap A$ . symmetric
- B Let A, BC  $\in$  S and A  $\sim$  B, B  $\sim$  C. Then there exist a bijective mapping  $f: A \to B$  and another bijective mapping  $g: B \to C$ . The composite mapping  $g \circ f: A \to C$  is also a bijective mapping.  $\therefore$  A  $\sim$  B and B  $\sim$  C  $\Rightarrow$  A  $\sim$  C. transitive

 $\therefore$  equipotence of subsets is an *equivalence* relation on S and so S is partitioned into classes of *equipotent* sets.



### **Few Observations**

- Manaina
  - Types of functions Composition of mappings Useful theorems
- Potency of Sets

An equivalence relation Enumerable

Enumerable Sets Few useful

- 1 Two equipotent sets belonging to the same class are said to have the same potency or *cardinal number*.
- 2 The cardinal number of a set A is denoted by card(A)
  ∴ card(A) = card(B) if and only if A and B belong to the same class.
- **3** Two non-empty finite sets A and B belong to the same class if and only if they have same number of elements.
- **4** The cardinal number assigned assigned to the equipotence class of finite sets each with n elements is n.
- **5** The cardinal number assigned to the null set  $\phi$  is 0.
- $\begin{tabular}{ll} \textbf{6} & \textbf{The cardinal number of and infinite set is said to be a} \\ & \textit{transfinite cardinal number} \\ \end{tabular}$
- **7** The cardinal number of set  $\mathbb{N}$  is denoted by  $\aleph_0$  (read aleph null)



## **Examples**

#### Mappings or function

#### Types of functions Composition mappings Useful

Potency

Equipotent Set
An equivalence
relation

relation Enumerable Sets

Sets Few useful theorems

- The set  $S = \{1, \frac{1}{2}, \frac{1}{3}, \ldots\}$  is equipotent with the set  $\mathbb{N}$ , because the mapping  $f : \mathbb{N} \to S$  defined by  $f(n) = \frac{1}{n}, n \in \mathbb{N}$  is a bijection.
- **2** The set  $2\mathbb{Z}$  of all even integers is equipotent with the set  $\mathbb{Z}$ , because of the mapping  $f: \mathbb{Z} \to 2\mathbb{Z}$  defined by  $f(x) = 2x, x \in \mathbb{Z}$  is a bijection.
- B The set  $A = \{x \in \mathbb{R}/0 \le x \le 1\}$  is equipotent with the set  $B = \{x \in \mathbb{R}/0 \le x \le 3\}$  because the mapping  $f : A \to 2B$  defined by  $f(x) = 3x, x \in A$  is a bijection.



### **Definitions**

#### Mappings or function

Types o

Composition of mappings Useful theorems

Potency of

Equipotent Set
An equivalence

Enumerable Sets

Sets Few usefu

#### Definition 11

A set A is said to be enumerable (or denumerable) if A is equipotent with the set  $\mathbb{N}$ .

A set which is either finite or enumerable is said to be countable. Sometimes enumerable sets are called countably infinite sets.

A set which is not countable is said to be uncountable.



### Observations

**1** When a set is finite and contains n elements, its elements can described as  $a_1, a_2, \ldots a_n$ , the elements being indexed by the finite set  $\{1, 2, \dots n\}$ .

2 When a set A is enumerable, there is a bijective mapping  $f: \mathbb{N} \to A$  and f assigns to each  $n \in \mathbb{N}$  an element f(n) in A. Thus the elements of A can be described as  $f(1), f(2), f(3), \ldots f(n), \ldots$  or as  $a_1, a_2, a_3, \ldots a_n, \ldots$  showing that the elements are indexed by the set  $\mathbb{N}$ .



## **Examples**

### Mappings

#### Types of functions

Composition mappings Useful theorems

# Sets Equipotent Se

An equivalence relation Enumerable

Sets Few useful theorems

- If The set  $\mathbb{N}$  is enumerable, because the mapping  $f: \mathbb{N} \to \mathbb{N}$  defined by  $f(n) = n, n \in \mathbb{N}$  is a bijection.
- **2** The set  $S = \{2, 4, 6, 8, 10, ...\}$  is enumerable because the mapping  $f : \mathbb{N} \to S$  defined by  $f(n) = 2n, n \in \mathbb{N}$  is a bijection.
- **3** The set The set  $S = \{1^2, 2^2, 3^2, ...\}$  is enumerable because the mapping  $f : \mathbb{N} \to S$  defined by  $f(n) = n^2, n \in \mathbb{N}$  is a bijection.
- **4** The set  $\mathbb{Z}$  is enumerable, because the mapping  $f: \mathbb{N} \to \mathbb{Z}$  defined by

$$f(n) = \begin{cases} \frac{1}{2}n & \text{if n is even} \\ \frac{1}{2}(1-n) & \text{if n is odd} \end{cases}$$

is a bijection.



Few useful

## Few theorems on Equipotent Sets

#### Theorem 10

Every infinite set contains an enumerable subset.

#### Proof.

Let A be an infinite set. Let us define a mapping  $h: \mathbb{N} \to A$  by

h(1) =one element of A, say  $a_1$ .

h(2) =one element of A  $- \{a_1\}$ , say  $a_2$ .

 $h(2) = \text{ one element of A} - [\{a_1\} \cup \{a_2\}], \text{ say } a_3.$ 

... ...

h(n) = one element of  $A - [\{a_1\} \cup \{a_2\} \cup \dots \{a_{n-1}\}],$  say  $a_n$ 

Since A is infinite,  $A - [\{a_1\} \cup \{a_2\} \cup \dots \{a_{n-1}\}]$  is infinite for all n > 1.

So h(n) is well defined for all  $n \in \mathbb{N}$ .

Also for  $p, q \in \mathbb{N}, p \neq q \Rightarrow h(p) \neq h(q)$ 

 $\therefore h$  is an injective mapping from  $\mathbb{N}$  into A.

Let B be the subset  $\{h(1), h(2), \dots, h(n), \dots\}$  then  $setB \subset A$  and

 $h:\mathbb{N}\to \mathcal{B}$  is a bijection. Therefore,  $\mathcal{B}$  is enumerable and hence the theorem.



### Few theorems on Equipotent Sets

#### Theorem 11

An infinite subset of an enumerable set is enumerable.

#### Proof.

Let A be an enumerable set and B be an infinite subset of A. Since A is enumerable its elements can be described as  $a_1, a_2, \ldots, a_n, \ldots$  B contains infinite number of a's and the suffixes of the elements of B form an infinite subset P of the set of all natural numbers.

P, being a subset of  $\mathbb N$  contains a least element, say  $\mu_1$ . Let  $B_1 = B - \{a_{\mu_1}\}$ . Then  $B_1$  is an infinite set and the suffixes of the elements of  $B_1$  form an infinite subset  $P_1$  of  $\mathbb N$ . Therefore  $P_1$  contains a least element, say  $\mu_2$ . Let  $B_2 = B - \{a_{\mu_1}, a_{\mu_2}\}$ . Following the same argument with  $B_2$ ,  $B_3$ ,..., we get the elements  $a_{\mu_3}, \ldots a_{\mu_n}, \ldots$ 

Let us define a mapping  $f: \mathbb{N} \to B$  by

$$f(1) = a_{\mu_1}, f(2) = a_{\mu_2}, \dots, f(n) = a_{\mu_n}, \dots$$
  
Let  $p, q \in \mathbb{N}$  and let  $p < q$ . Then  $f(p) \in \{a_{\mu_1}, a_{\mu_2} \dots a_{\mu_{q-1}}\}$  and  $f(q) \in B_{q-1} = B - \{a_{\mu_1}, a_{\mu_2} \dots a_{\mu_{q-1}}\}$ .  
 $\therefore f(q) \neq f(p)$ . So  $f$  is injective.

Let us take an element  $a_r \in \mathbb{B}$ . Since r is a positive integer, there are at most r-1 elements in B whose suffixes are less than r. So,  $a_r$  is one of  $f(1), f(2), \ldots f(r-1), f(r)$ . So f is surjective.

Mappings or functions

functions
Composition o
mappings
Useful
theorems

Potency of Sets

An equivalenc relation Enumerable

Few useful theorems



## Corollary

#### Mappings or function

Types of functions

Composition o mappings Useful

Potency of Sets

Equipotent Set

Enumerable Sets Few useful theorems

### Corollary 12

A non-empty subset of an enumerable set is either finite or enumerable.

### Corollary 13

A non-empty subset of a countable set is countable.



Few useful

### Few theorems on Equipotent Sets

#### Theorem 14

The union of a finite set and and an enumerable set is enumerable.

#### Proof.

Let A be an enumerable set and B be a finite set of containing ma elements  $b_1, b_2, \ldots, b_m$ . The elements of A can be described as  $a_1, a_2, a_3, \ldots$ .

- Case1 A ∩ B =  $\phi$ Let us define a mapping  $f: \mathbb{N} \to A \cup B$  by  $f(i) = b_i, i = 1, 2, \dots, m$  $f(m+i) = a_i, i = 1, 2, 3, \dots$
- Case2  $A \cap B \neq \phi$ Let  $A_1 = A - B$  Then  $A_1 \cup B = A \cup B$  and  $A_1 \cap B = \phi$ Now  $A_1$  is infinite subset of A and therefore  $A_1$  is enumerable. ∴ by case 1,  $A_1 \cup B$  is enumerable and therefore  $A \cup B$  is enumerable.

### 4□ > 4問 > 4분 > 5 → 90 (0)



Few useful

### Few theorems on Equipotent Sets

#### Theorem 15

The union of two enumerable sets is enumerable.

#### Proof.

Let  $A = \{a_1, a_2, ..., a_n, ...\}$ ,  $B = \{b_1, b_2, ..., a_n, ...\}$  be two enumerable sets.

■ Case1  $A \cap B = \phi$ Let us define a mapping  $f: \mathbb{N} \to A \cup B$  by  $f(n) = a_{(n+1)/2}, \text{ if } n \text{ is odd}$  $= b_{n/2} \text{ if } n \text{ is even}.$ 

Then f is a bijection and so  $A \cup B$  is enumerable.

■ Case2  $A \cap B \neq \phi$ Let  $A_1 = A$ ,  $B_1 = B - A$  Then  $A_1 \cup B_1 = A \cup B$  and  $A_1 \cap B_1 = \phi$ Now  $B_1$  is non-empty subset of B and so it is either finite or enumerable. if  $B_1$  is enumerable,  $A_1 \cup B_1$  is enumerable, by case 1. If  $B_1$  is finite,  $A_1 \cup B_1$  is enumerable by theorem 14. ∴  $A \cup B$  is enumerable.



## Few theorems on Equipotent Sets

### Theorem 16

The union of an enumerable number of enumerable sets is enumerable.

#### Proof.

Let  $A_1, A_2, \ldots, A_n, \ldots$  be an enumerable family of enumerable sets.

Let 
$$A_1 = \{a_{11}, a_{12}, \dots, a_{1n}, \dots\}$$
  
 $A_2 = \{a_{21}, a_{22}, \dots, a_{2n}, \dots\}$   
 $\dots$   
 $A_n = \{a_{n1}, a_{n2}, \dots, a_{nn}, \dots\}$ 

**Case1**. Let  $A_i \cap A_j = \phi$  for all i, j. Let

$$B = \bigcup_{k=1}^{\infty} A_k.$$

Each element of B is of type  $a_{mn}$  where  $m, n \in \mathbb{N}$ .



functions
Composition of
mappings
Useful

Potency of Sets

> Equipotent Se An equivalenc relation Enumerable

Few useful theorems



Few useful theorems

## Few theorems on Equipotent Sets

#### Theorem 17

The union of an enumerable number of enumerable sets is enumerable.

#### continued.

Let us define a mapping  $f: B \to \mathbb{N}$  by  $f(m, n) = 2^m 3^n$ . f is injective.

Because for any two elements  $a_{mn}, a_{pq} \in B$ ,

 $a_{mn} \neq a_{pq} \Rightarrow (m,n) \neq (p,q) \Rightarrow 2^m 3^n \neq 2^p 3^q$ , f(B) is a proper subset of  $\mathbb{N}$ , because there are elements in  $\mathbb{N}$  (e.g.  $5,7,13,\ldots$ ) which have no pre-image in B. Let  $f(B) = \mathbb{N}_1$ .

Then  $f: B \to N_1$  is a bijection. Sine  $N_1$  is infinite subset of  $\mathbb{N}$ , it is enumerable. Thus B is equipotent with an enumerable set  $\mathbb{N}$  and so B. is enumerable.

**Case2**. Let the sets  $\{A_i\}$  be not pairwise disjoint.

Let us define sets  $\{B_i\}$  such that

$$B_1 = A_1, B_2 = A_2 - A_1, B_3 = A_3 - (A_1 \cup A_2), \dots$$

$$B_k = A_k - (A_1 \cup A_2 \cup \ldots \cup A_{k-1}), \ldots$$



Few useful

### Few theorems on Equipotent Sets

### Theorem 18

The union of an enumerable number of enumerable sets is enumerable.

#### continued.

Then  $B_k \subset A_k$  for all k,

$$\bigcup_{i=1}^{\infty} \mathbf{B}_i = \bigcup_{i=1}^{\infty} \mathbf{A}_i$$

and  $B_i \cap B_j = \phi$  for all i, j.

Since  $B_k \subset A_k$ ,  $B_k$  is either empty or finite or enumerable.

$$\bigcup_{i=1}^{\infty} A_i$$

is enumerable.



## **Examples**

#### Mappings or function

#### functions Composition

Compositio mappings Useful theorems

### Potency

An equivaler relation Enumerable

Few useful theorems ■ The set of all positive rational number is enumerable. Prove it

2 The set of all rational number is enumerable. Prove it



### Few theorems on Equipotent Sets

#### Mappings or function

functions
Composition o
mappings

Useful theorems

### Sets

Equipotent Set An equivalence

Enumerable Sets

Few useful theorems

#### Theorem 19

The open interval  $(0,1) = \{x \in \mathbb{R}/0 < x < 1\}$  is not enumerable.

### continued.

