Apellidos:		
Nombre:		
Convocatoria:		
DNI:		

Examen PED junio 2010 Modalidad 0

- Normas: La entrega del test no corre convocatoria.
 - Tiempo para efectuar el test: 20 minutos.
 - Una pregunta mal contestada elimina una correcta.
 - Las soluciones al examen se dejarán en el campus virtual.
 - Una vez empezado el examen no se puede salir del aula hasta finalizarlo.
 - En la **hoja de contestaciones** el verdadero se corresponderá con la **A**, y el falso con la **B**.

	\mathbf{V}	\mathbf{F}		
En C++, la expresión return *c; devuelve la dirección de memoria de la variable c.			1	F
En un multigrafo pueden existir infinitas aristas para un número "n" de vértices.			2	V
La semántica de la operación obtener del tipo lista vista en clase es la siguiente:			3	F
VAR L1: lista; x: item; p: posicion;				
obtener(crear(), p) = error_item()				
si $p == primera(inscabeza(L1, x))$ entonces				
obtener(inscabeza($L1, x), p) = x$				
si no obtener(inscabeza($L1, x), p$) = inscabeza(obtener($L1, p$), x)				
			4	Г
El nivel de un nodo en un árbol coincide con la longitud del camino desde la raíz a dicho nodo			4	F
A los árboles generales también se les llama árboles multicamino de búsqueda			5	F
Un árbol binario de búsqueda equilibrado respecto a la altura tiene una complejidad temporal en su peor caso en la búsqueda de $O(log_2(n))$, con n el número de elementos del árbol.			6	V
En un árbol 2-3 la altura siempre disminuye si al borrar un elemento se produce una combinación con los elementos de la raíz del árbol			7	F
En la operación de borrado de un elemento en un árbol 2-3-4, si hay que realizar			8	F
reestructuraciones, éstas se realizan desde las hojas hacia la raíz.				
Las rotaciones en un árbol Rojo - Negro requieren un cambio de color en los nodos			9	F
implicados.				
Todo árbol binario de búsqueda es un árbol B con m=3.			10	F
En la dispersión cerrada puede haber colisiones entre claves sinónimas y no sinónimas.			11	V
Un Heap Mínimo es un árbol binario que además es árbol mínimo			12	F
En un árbol leftist se cumple que:			13	V
CMÍN(x) = 1 + CMÍN(HijoDer(x)) para todo x no vacío y x con dos hijos				

Examen PED junio 2010

Normas:

- Tiempo para efectuar el ejercicio: 2 horas
- En la cabecera de cada hoja Y EN ESTE ORDEN hay que poner: APELLIDOS, NOMBRE.
- Cada pregunta se escribirá en hojas diferentes.
- Se dispone de 20 minutos para abandonar el examen sin que corra convocatoria.
- Las soluciones al examen se dejarán en el campus virtual.
- Se puede escribir el examen con lápiz, siempre que sea legible
- Todas las preguntas tienen el mismo valor. Este examen vale el 60% de la nota de teoría.
- Publicación notas: se publicará un anuncio en el campus virtual.
- Los alumnos que estén en 5ª o 6ª convocatoria deben indicarlo en la cabecera de todas las hojas
- **1.** Dada la especificación algebraica del TAD *lista* estudiado en clase, escribe la sintaxis y semántica de la operación *ordenar()* que realiza la ordenación ascendente de un lista de números enteros.

Nota: se puede emplear y devolver una lista auxiliar para realizar la ordenación.

- 2. Sea el siguiente árbol rojo-negro:
 - a) Insertar los ítems 2, 3, 4, 8, 11, 12, 16, 17, 19, 14.
 - b) Transforma el árbol resultante del apartado a) en un árbol 234.
 - c) A partir del árbol 234 del apartado b), borra los ítems 31, 21.

3. Dado el siguiente árbol izquierdista, realizar la siguiente secuencia de operaciones: borrar(), borrar(), insertar(8).

- **4.** Sea el conjunto $S = \{1, 2, 3\}$, y sea P(S) el conjunto de todos los subconjuntos de S. Sea la relación \subset un orden parcial en P(S). Dibuja el Grafo Acíclico Dirigido (GAD) que representa el orden parcial \subset sobre P(S). Sobre el GAD obtenido realiza:
 - a) DFS({1}), árbol extendido en profundidad y clasificación de arcos.
 - b) BFS({1})

Nota: Recorrer la lista de adyacencia de menor a mayor (considerando los subconjuntos ordenados, y la relación de orden fruto de la concatenación de los elementos en un string) en todos los casos del ejercicio, teniendo en cuenta que $\{\emptyset\}$ es el elemento más pequeño y $\{1,2,3\}$ es el más grande.

Examen PED junio 2010. Soluciones

1.

```
Sintaxis:

ordenar(lista) → lista

ordenarAux(lista, lista) → lista

Semántica:

VAR 11, 12: lista; x, y: entero;
```

```
ordenar(crear()) = crear()
ordenar(l1) = ordenarAux(l1, crear())

ordenarAux(crear(), l2) = l2
ordenarAux(IC(l1, x), crear()) = ordenarAux(l1, IC(crear(), x))
ordenarAux(IC(l1, x), IC(l2, y)) =
si x <= y entonces
ordenarAux(l1, IC(IC(l2, y), x))
sino
ordenarAux(l1, IC(ordenarAux(IC(crear(), x), l2), y))
```

2. **3. Borrar**()

Borrar()

Insertar(8)

4.

a) DFS({1}) = {1}, {1,2},{1,2,3},{1,3} continúo por DFS({\varnothing}) = { \varnothing },{2},{2,3},{3}

Los arcos marcados son de Árbol; el resto son de Cruce

b) BFS($\{1\}$) = $\{1\}$, $\{1,2\}$, $\{1,3\}$, $\{1,2,3\}$