

Order	nação		
Ob	jectivo:		
	Ordenação de registos chave	de ficheiros com	
	Chaves (pequena parte usadas para controlar a	dos registos) ordenação	
	Re-arranjar os registos los por uma ordem (nu alfabética)	de modo a deixá- mérica ou	
AA-Ano led	tivo 2011/2012 Aula 1	1 - Ordenação	3

Ordenação Tipos de ordenação: • Se ficheiro cabe em memória (array) Ordenação interna – qualquer registo pode ser acedido • Se ficheiro em disco Ordenação externa – registos têm que ser acedidos sequencialmente ou em grandes blocos > Tempo de execução **Algoritmos elementares** ordem N² ordem N log N Algoritmos elaborados Usando algumas propriedades digitais das chaves ordem N AA-Ano lectivo 2011/2012 Aula 11 - Ordenação

no lugar, sem usar memória adicional ma pequena tabela) com recurso a listas; utilizam N
com recurso a listas; utilizam N
extra
le duplicar a informação a ser ordenad
estável se preserva a ordem relativa da ais do ficheiro
orçada juntando um número de ordem
m inteiros ou caracteres

	ação – Se	lecção	
Proc	edimento:		
		nenor dos elementos o o elemento na primeir	
		egundo menor e trocá- segunda posição	lo com o
		enúltimo menor e troca e está na penúltima po	
AA-Ano lectivo 2	2011/2012	Aula 11 - Ordenação	7

>	Fy	emplo) -					N	I=9	
<u></u> -	1	2	3	4	5	6	7	8	9	
	7	9	4	3	-(1)	10	5	6	2	
	1	9	4	3	7	10	_5_	6	2	
~~~~	1	2	4	3	7	10	5	6	9	
<b>V[]</b>	1	2	3	4	7	10	5	6	9	
	1	2	3	4	7	10	5	6	9	
	1	2	3	4	5	10	7	6	9	
	1	2	3	4	5	6	7	10	9	





D	ocedimento:							
Pro	ceaimento:							
•	Considera-se um eler	nento de cada vez que	é					
	colocado no seu luga	r entre os que já estão	)					
	ordenados							
	Seleccionar um elem	ento do array como se	o seu					
		to – procura-se o seu						
		eita os elementos mai						
	(um a um)							
•	Se a pesquisa do lugar entre os já ordenados for							
	feita da direita para a esquerda e, se o elemento a							
	colocar for o menor, podemos ultrapassar o limite							
	inferior do array	inferior do array						
	SOLUÇÃO: Usar uma	sentinela em A[0] – ev	vita a					
	inclusão de um teste							
AA-Ano	lectivo 2011/2012	Aula 11 - Ordenação	11					







## Ordenação - ShellSort



- ✓ Se o elemento menor do array está na última posição, são necessários N passos para o colocar no sítio
- O ShellSort é uma extensão simples ao método de Inserção, permitindo trocas entre elementos distantes

AA-Ano lectivo 2011/2012

Aula 11 - Ordenação

15

## Ordenação - ShellSort

### Procedimento:

- Compara-se o 1º elemento com o de ordem N e arranja-se-os, depois o 2º com o de ordem N+1 e arranja-se-os, e assim sucessivamente, começando por todos os elementos
- Resulta num ficheiro re-arranjado de tal modo que, considerados cada N-ésimo elemento a começar de qualquer ponto, os elementos estão ordenados.
- O ficheiro obtido deste modo é considerado de ordem h

AA-Ano lectivo 2011/2012

Aula 11 - Ordenação

16

## Ordenação - ShellSort

- Um ficheiro de ordem h é um grupo de ficheiros independentes e ordenados, coexistindo entremeados
  - Ao fazer-se esta ordenação à distância h, movemos elementos de mais longe o que facilita a ordenação para h menores
  - Usando este procedimento para qualquer sequência de h's que termine em 1, obtemos um ficheiro ordenado
  - Sequência de h's que empiricamente se provou funcionar bem:

... 1093, 364, 121, 40, 13, 4, 1

AA-Ano lectivo 2011/2012

Aula 11 - Ordenação

17



crement	OS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		Α	S	0	R		+	N	G	Ε	Χ	Α	М	Р		E
	1-14	Α		-	-	-	-	-					-			-
h=13	2-15		E	-											***	S
		A	É-	0	R	- <b>T</b> -	<b></b> -	N	G	E	-X	- <b>A</b>	M	P		S
	1-5-9-13					-	<del>-</del>	-								-
	A-T-E-P	Α				E	-}			Р				T		
	2-6-10-14						ļ									
h=4	E-I-X-L		E.				ļ.				L				X	
	3-7-11-15			1												
	O-N-A-S			Α				N				0				S
	4-8-12															
	R-G-M			LĮ.	G				M				R			
		A	E	A	G	E	L.	N	M	P	L	0	R	L	X	S
h <b>=1</b>	1-2-3-415	Α	Α	E	E	G	Ш.	L	M	N	0	Р	R	S	T.	X



loceui	ment	0:						
<ul><li>Per</li></ul>	corre-	se tod	o o fic	heiro	e troc	am-se	e elem	ento
adj	acente	s, se r	necess	ário.				
) (	ndo n	ão ho	uver n	nais tr	ocas,	o fich	eiro e	stá
7	enado <b>5</b>	4	3	6	8	9	1	2
7	5	4	3	6	8	1	9	2
7	5	4	3	6	1	8	9	2
1	7	5	4	3	6	8	9	2
1	7	5	4	3	6	8	2	9
	2	7	5	4	3	6	8	9



denação – Qu Técnica – "DIVID	
	ro em dois e ordena-os
separadamen	
	tição depende do ficheiro
1 N	Início
ORDENAR (ESQ, DIE PONTOPARTIÇÃO ORDENAR (ESO,	O = PARTIÇÃOENTRE (ESQ, DIR) PONTOPARTIÇÃO-1);
ORDENAR (PONT	ΓΟΡΑΚΤΙÇΑΟ+1, DIR);
ORDENAR (PONT	ropartição+1, DIR); e DIR delimitam o subficheiro a
ORDENAR (PONT	e DIR delimitam o subficheiro a
ORDENAR (PONT OS parâmetros ESQ	e DIR delimitam o subficheiro a icheiro original



### Ordenação - QuickSort **Implementação** Escolhe-se A[DIR] arbitrário, que irá para a sua posição final Varre-se a partir da esquerda até se encontrar elemento >= A[DIR] Varre-se a partir da direita até se encontrar elemento <= A[DIR] • Estes dois elementos que provocaram a paragem estão fora do seu lugar e devem ser trocados Continua-se até os apontadores de varrimento se Troca-se A[DIR] com elemento à esquerda do subficheiro da direita AA-Ano lectivo 2011/2012 Aula 11 - Ordenação 25



## Ordenação - QuickSort

- Implementação (cont.)
  - O algoritmo continua ordenando os dois subficheiros à esquerda e direita recursivamente
  - O ciclo interno só incrementa os ponteiros e compara os elementos do ficheiro com uma constante -> rapidez do algoritmo
  - Cada elemento é colocado no seu lugar ao ser usado como elemento de partição
  - Quando há chaves iguais param-se os apontadores

AA-Ano lectivo 2011/2012

Aula 11 - Ordenação

27

## Ordenação - QuickSort



**Procedimento QuickSort (L, R)** 

IF R > LTHEN I  $\leftarrow$  PARTICAO (L, R) **CALL QuickSort (L, I-1)** 

CALL QuickSort (I+1, L)

- **Notas** 
  - Para um vector com N elementos, o procedimento é chamado inicialmente assim: CALL QuickSort (1,N)
  - PARTICAO (L, R) é uma função que determina exactamente qual a posição final (definitiva!) para o elemento que inicialmente está em R (elemento A[R])

AA-Ano lectivo 2011/2012

Aula 11 - Ordenação

# Filas de prioridade Operações Inserção de um novo elemento Remoção do elemento de maior valor Difere de uma fila normal, onde o elemento a remover é o mais antigo (o que está há mais tempo na fila) Aplicações Sistema de gestão de tarefas – tarefa a ser executada é a de mais alta prioridade Cálculos numéricos – números de maior valor têm de ser processados primeiro AA-Ano lectivo 2011/2012 Aula 11 - Ordenação 29



Неар		
> Condições do <i>h</i>	пеар	
	cada nó tem de ser sup s chaves dos seus filhos	
• ⇒ chave ma	ior se situe na raiz	
(excepto a fusão	ões sobre filas de priori o) podem ser executada co usando <i>heaps</i>	
AA-Ano lectivo 2011/2012	Aula 11 - Ordenação	31



# → Operação de eliminação Decrementar o tamanho N do heap de uma unidade, deixando de haver lugar para o elemento que estava na última posição do array Maior elemento (A[1]) é retirado através de troca com o elemento que estava em A[N] Restaurar o heap, se necessário (se houver violação da condição de heap)

# Ordenação — HeapSort Ideia: Construir um heap com os elementos a ordenar e removê-los por ordem Não usa memória adicional Tempo de execução: M log M para qualquer entrada (M é o nº elementos a ordenar) Ciclo interno mais longo que QuickSort (demora em média o dobro) AA-Ano lectivo 2011/2012 Aula 11 - Ordenação 34









								rt							
	HEAPS	5 ir	ıdi	rec	to	S									
	Em vez array H									em	Α[	], (	cria	-se	um
	A[HEAP									K	do	HEA	P		
•	É conve posição														
	A[K]	Α	S	0	R	Т	ı	N	G	Ε	X	Α	М	Р	L
Н	EAP[K]	10	5	13	4	2	3	7	8	9	1	11	12	6	14
A[ŀ	ÆAP[K]]	X	T	Р	R	S	0	N	G	Ε	Α	Α	M	I	Ĺ
	INV[K]		5	6	4	2	13	7	8	9	1	11	12	3	14
	INV[IN]	10	S			Т		N	G	E	X	À	М	Р	



# Operação de Selecção: Métodos fundamentais Poucos elementos — Ordenação por Selecção Mais elementos — Filas de prioridade Inserem-se K elementos Trocam-se os N-K maiores usando os restantes, deixando os K menores na fila No QuickSort a partição modifica A[ ], devolvendo I tal que A[1]... A[I-1] são <= A[I] e A[I+1] ... A[N] são > A[I]







	10-5	uç	choi	roa	me	viole	ão order	2-66	roc	urciv	/2m/	nto	cad:	
	16-26		Criei	10 at	JIIIE	:10, 0	ee	ia-st	: IEC	uisi	/aiiit	ante	Cauc	
1 1	2	part 3	es e	5	<b>5e</b> a	Sua 7	fusã 8	9	10	11	12	13	14	1
Α	S	0	R	Т	I	N	G	E	Х	Α	М	Р	L	E
	0	S												
A	0	S												
			R	T										
					I	N								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		4	I	N	R	T				ļļ	4			
A	-I-	N	0	R	S	т.				ļļ	4			
	-	-				-	E	G		-	4			
		-							Α	Х				
						-	Α	E	G	Х				
				000000				000000			М	Р	000000	
													Е	L
											Е	L	М	F
							Α	E	E	G	L	М	P	)
Δ	Δ	E	Е	G	I	L	М	N	0	Р	R	S	Т	)



# Ordenação por Fusão Conclusões São necessários log N passos para ordenar N elementos, uma vez que cada passo duplica o tamanho dos subficheiros ordenados Tempo de execução: N log N A principal vantagem do MERGESORT é a estabilidade A principal desvantagem é o espaço necessário

