전자 부품

서울시립대학교 컴퓨터과학부

양정훈

전자부품의 분류

구분	분류	전자부품		
능동부품	에너지의 흐름을 제어하는 기 능을 가진 부품	전자관, 다이오드, 트랜 지스터, 집적 회로 등		
수동부품	에너지를 소비 또는 축적하는 기능을 가진 부품	저항기, 콘덴서, 코일 등		
기구부품	에너지의 형태를 변화시키는 기능을 가진 부품	스피커, 마이크로폰, 안 테나, 스위치, 계전기 등		

수동소자 (1)

수동소자 종류

- 저항(Resistor)
- 인덕터(Inductor:유도기)
- 커패시터(Capacitor)

수동소자의 특성

- **저항(抵抗)**: 전기에너지 소비(열,빛),전압이 전류에 비례, V=IR[V]
 - 전기회로 부품중 가장 기본적인 부품
 - 주된 역할은 흐르는 전류를 제한 하는 것

$$v(t) = Ri(t)$$

수동소자 (2)

[그림 2-1]

수동소자 (3)

• 탄소피막 (carbon film) 저항: 소용량(1/8~1W), 저가, 일반 디지털 회로

•금속피막 (metal film) 저항: 비교적 고정밀, 저잡음

수동소자 (3)

- 권선(wire wound) 저항: 니크롬선 등, 대전력(2~100W)
- 시멘트(cement) 저항: 시멘트관, 중간용량(2~10W)
- 칩저항: SMD. ex) 1608, 1005 etc.
- 어레이저항, 가변저항, 반고정저항

수동소자 (4)

> 저항값 및 컬러코드

황색-자색-적색-금색 => 47x10^2 옴 5% 오차

		▼	*		▼	★		
색갈 및 색명		제1색대	제2색대		제3색대 (승수)	제4색대 (오차)		
	흑색	0	0	0	10• 0			
	갈색	1	1	1	10 · 1	• <u>+</u> 1%		
	적색	2	2	2	10 •2	• <u>+</u> 2%		
	등색	3	3	3	10• 3			
	황색	4	4	4	10•4			
	녹색	5	5	5	10•5	• <u>+</u> 0.5%		
	청색	6	6	6	10•6	• <u>+</u> 0.25%		
	자색	7	7	7	10• 7	• <u>+</u> 0.1%		
	회색	8	8	8	10•8			
	백색	9	9	9	10•9			
	금색				10-1	• <u>+</u> 5%		
	은색				10 -2	• <u>+</u> 10%		
	무색					• <u>+</u> 20%		
색갈 및 색명		제1색대	제2색대	제3색대 (승수)	제4색대 (승수)	제5색대 (오차)		

수동소자 (5)

커패시턴스: 전기에너지를 전계 에너지로 축적

- 단자전압이 단자전류의 시간적 변화율, 시간적 적분치에 비례하는 소자
- 부도체(유전체)에 의해 분리된 2개 도체(전극판)로 이루어진 2단자 소자, 직류는 통하지 않고 주파수가 높은 교류는 잘 통하는 성질이 있음.
- 이 콘덴서에 전압을 가하면 양극의 금속판에는 (+)전하 축적, 음극의 금속판에는 (-)전하가 축적됨, 충전상태에서 전압을 제거해도 충전상태 유지함 (커패시턴스)

전극판: 알루미늄,주석

유전체: 공기,기름,운모,세라믹,전해질

1F: 1V의 전위차에 의해 1C의 전하가

축적될 때의 capacitance

C = Q / V

수동소자 (6)

 교류를 →다이오드와 정류회 로를 구성하여 →직류로 만듦

 펄스를 →콘덴서의 충전 시 간을 이용해서 →시간 지연을 만듦

- 여러신호 중에서 →저항과 함께 구성하여 →저주파 신호 만을 꺼냄
- 여러 신호중에서 →저항과 함께 구성하여 →고주파 신호 만을 꺼냄

수동소자 (7)

콘덴서의 종류: 전해, 탄탈, 탄탈(칩), 세라믹, 세라믹(칩), 배릭터

수동소자 (8)

▶ 콘덴서 용량 표시 예 │ 10x10^3 pF, 10% 오차, 50V 정격전압

오차의 표시는 다음과 같이 합니다

J : 5% OLH K : 10% OLH M : 20% OLH

수동소자 (9)

- **인덕턴스: 전기에너지를 자계 에너지로 축적,** 전기모터, 변압기권선
 - 단자전압이 단자전류의 시간적 변화율, 시간적 미분치에 비례하는 소자
 - 전류의 변화를 안정시키려는 성질이 있음 (자기 유도 작용)
 - 도선을 감아서 만든 2단자 소자, 소자에 흐르는 전류는 자속을 만듬

L: 전류의 변화를 방해하는 도체의 작용 1H: 1A의 전류에 의하여 생기는 자속쇄 교수가 1Wb-T 일 때의 인덕턴스

용도: 전원회로, 필터회로, 동조회로, 변압기 등

수동소자 (10)

바 안테나 (라디오)

전원필터용/동조용

변압기

수동소자 (10)

Axial 타입

비드 인덕터

Radial lead 타입

SMD 타입

반도체

종 류	성	질	刊	고
도 체	물체의 내부에 자유전자 전류의 흐름에 저항이 적 잘 통하는 물체		금속, 소금, 산, 일 수용액, 인체, 대 ²	
부도체	물체의 내부에 자유전자 없어서 전류의 흐름에 저 전기가 거의 통하기 어려	항이 심해	건조한 공기, 유리 이트, 파라핀, 운모 고무, 프라스틱 등	모, 수정,
반도체	평상시에는 자유전자가 외부에서 에너지가 공급 핵에 구속되었던 전자가 궤도에서 탈출되어 자유 많아져 전류가 흐르기 수 되는 물체.	되면 원자의 자기의 전자가	이산화 동, 세리원 (Ge), 실리콘(Si), 홍 동광 등	

P형 반도체(도핑, 불순물 반도체)

진성 반도체에 원자가 전자가 3인 알루미늄(AI), 인듐(In), 갈륨(Ga) 등을 조금 넣어 주면, 공유 결합할 전자가 1개 부족하여 빈 자리가 생긴다. 이 빈 자리를 정공이라 하고, 전기를 옮겨 주는 반송자가 된다.

N형 반도체

진성 반도체에 원자가 전자가 5인 인(P), 비소(As), 안티몬(Sb) 등을 조금 넣어 주면 공유 결합을 하고 1개의 전자가 남는다. 이 전자를 과잉 전자라 하는데, 쉽게 이동할 수 있어 전기를 옮겨주는 반송자가 된다.

다이오드(1)

(+)전기를 띤 p형 반도체 와 (-)전기를 띤 n형 반도체 를

접합시켜 전극을 달아 놓은

전자제품으로 능동부품이다.

전류를 한쪽 방향으로만 잘 흐르게 하는 특성이 있어 정류작용을 한다.

- 정류용 다이오드 : 정류 작용을 하는 일반 다이오드
- 발광용 다이오드 : 순방향 전류가 흘렀을 때 발광

다이오드(2)

순방향 전압

역방향 전압

[그림 2-14]

다이오드(3)

트랜지스터 (1) - BJT

구조

트랜지스터는 p형 반도체와 n형 반도체를 교대로

접합시킨 다음, 각 반도체로부터 전극 을 끌어낸 것이다.

작용

작은 신호로 큰 신호를 제어하는 증폭작용을 한다.

트랜지스터 (2) - BJT

트랜지스터 (3) - BJT

집적회로(IC)(1)

 작은 기판에 수많은 트랜지스터와 콘덴서, 저항기등의 부품을 넣고, 배선까지 하여 하나의 계열기능을 갖도록 만든 것으로, 회로 자체가 하나의 부품이 된다.

집적회로(IC)(2)

□ 패키지별 분류

집적회로(IC)(3)

❖ 연산 중쪽기(OP Amp : Operational Amplifier)

- 기본 기능은 선형 증폭이며, 아날로그 입력 전압을 일정한 비로 중폭하고 출력하는 기능을 갖고 있다.
- 증폭율이 상당히 높기 (10⁵ 이상) 때문에 회로 설계상 무한대의 증폭 비율을 갖는 이상적인 증폭기로서 취급 할 수 있다.
- 이 무한대의 증폭율을 전제로 하면 피드백 회로를 구성할 때 증폭율을 저항의 비율 만으로 결정 할 수 있어서 연산 증폭기라 할 수 있다.

기타참고사항

그대로 납땜한다.

접는방양

4. OFOLM [IC]

