In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
```

In [56]:

 $\label{logn-proval-pr$

In [3]:

```
train.head()
```

Out[3]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coa
0	LP001002	Male	No	0	Graduate	No	5849	
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	

In [4]:

train.shape

Out[4]:

(614, 13)

In [6]:

train.columns

Out[6]:

```
In [5]:
train["Gender"].value_counts()
Out[5]:
Male
          489
Female
          112
Name: Gender, dtype: int64
In [6]:
train["Married"].value_counts()
Out[6]:
Yes
       398
No
       213
Name: Married, dtype: int64
In [6]:
train["Education"].value_counts()
Out[6]:
Graduate
                 480
Not Graduate
                134
Name: Education, dtype: int64
In [9]:
train["Loan_Status"].value_counts()
Out[9]:
Υ
     422
     192
Name: Loan_Status, dtype: int64
In [11]:
train["Dependents"].value_counts()
Out[11]:
0
      345
1
      102
2
      101
       51
Name: Dependents, dtype: int64
```

In [21]:

sns.catplot(x="Gender",data=train,kind="count",palette="spring",height=4,aspect=0.7)

Out[21]:

<seaborn.axisgrid.FacetGrid at 0x13b5b8bdd68>

In [9]:

sns.countplot(x="Property_Area",data=train,palette="spring",order=['Semiurban','Urban',
'Rural'])

Out[9]:

<matplotlib.axes._subplots.AxesSubplot at 0x2116b4325c0>

In [8]:

```
train["Property_Area"].value_counts()
```

Out[8]:

Semiurban 233 Urban 202 Rural 179

Name: Property_Area, dtype: int64

In [16]:

```
#to check that is there any limit of income after which we can say that loan_status is
aproved but here we cant do that
sns.set_style={"ticks"};
sns.FacetGrid(train,hue="Loan_Status",height=5)\
    .map(sns.distplot,"ApplicantIncome")\
    .add_legend();
plt.show()
```


In [15]:

In [17]:

```
#to check that loan_status is dependant on applicant_income and credit history
sns.FacetGrid(train,hue="Loan_Status",height=4)\
    .map(sns.scatterplot,"ApplicantIncome","Credit_History")\
    .add_legend()
plt.show()
```


DATA CLEANING

In [78]:

```
train.isnull().sum()
```

Out[78]:

Gender	13
Married	3
Dependents	15
Education	0
Self_Employed	32
ApplicantIncome	0
CoapplicantIncome	0
LoanAmount	22
Loan_Amount_Term	0
Credit_History	50
Property_Area	0
Loan_Status	0
dtype: int64	

In [79]:

```
#every tthing which is missing is categorical data except for LoanAmount and Loan amoun
t terms and so replacing missing
#most occuring element ie.mode of that column
train['Gender'].fillna(train['Gender'].mode()[0],inplace=True)
train['Married'].fillna(train['Married'].mode()[0],inplace=True)
train['Dependents'].fillna(train['Dependents'].mode()[0],inplace=True)
train['Self_Employed'].fillna(train['Self_Employed'].mode()[0],inplace=True)
train['Credit_History'].fillna(train['Credit_History'].mode()[0],inplace=True)
```

In [80]:

```
#for continuous data-we are using median
train['LoanAmount'].median()
```

Out[80]:

128.0

In [81]:

```
train['LoanAmount'].fillna(128,inplace=True)
```

In [82]:

```
train['Loan_Amount_Term'].value_counts()
```

Out[82]:

```
526
360.0
180.0
           44
480.0
           15
           13
300.0
84.0
            4
240.0
            4
120.0
            3
            2
36.0
60.0
            2
12.0
Name: Loan_Amount_Term, dtype: int64
```

In [94]:

```
train['Loan_Amount_Term'].fillna(360,inplace=True)
```

In [84]:

```
train.isnull().sum()
```

Out[84]:

Gender 0 Married 0 Dependents 0 Education Self_Employed 0 ApplicantIncome CoapplicantIncome LoanAmount 0 Loan_Amount_Term 0 Credit_History 0 Property_Area 0 Loan_Status 0 dtype: int64

In [30]:

train.apply(lambda x:len(x.unique())) #to check that loadid is unique for everyone

Out[30]:

Loan_ID	614
Gender	2
Married	2
Dependents	4
Education	2
Self_Employed	2
ApplicantIncome	505
CoapplicantIncome	287
LoanAmount	203
Loan_Amount_Term	10
Credit_History	2
Property_Area	3
Loan_Status	2
dtype: int64	

In [31]:

train.shape #since no.of row is same then loanid is unique

Out[31]:

(614, 13)

DEALING CATEGORIAL DATA

In [38]:

test.head()

Out[38]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coi
0	LP001015	Male	Yes	0	Graduate	No	5720	
1	LP001022	Male	Yes	1	Graduate	No	3076	
2	LP001031	Male	Yes	2	Graduate	No	5000	
3	LP001035	Male	Yes	2	Graduate	No	2340	
4	LP001051	Male	No	0	Not Graduate	No	3276	

In [39]:

test.isnull().sum()

Out[39]:

Loan_ID	0
Gender	11
Married	0
Dependents	10
Education	0
Self_Employed	23
ApplicantIncome	0
CoapplicantIncome	0
LoanAmount	5
Loan_Amount_Term	6
Credit_History	29
Property_Area	0
dtype: int64	

In [85]:

test.dropna(inplace=True)

```
In [86]:
test.isnull().sum()
Out[86]:
Gender
                     0
Married
                     0
Dependents
                     0
Education
Self_Employed
                     0
ApplicantIncome
                     0
CoapplicantIncome
                     0
LoanAmount
                     0
Loan_Amount_Term
                     0
Credit_History
                     0
Property_Area
dtype: int64
In [43]:
test.shape
Out[43]:
(289, 12)
In [91]:
train.columns
Out[91]:
Index(['Gender', 'Married', 'Dependents', 'Education', 'Self_Employed',
       'ApplicantIncome', 'CoapplicantIncome', 'LoanAmount',
       'Loan_Amount_Term', 'Credit_History', 'Property_Area', 'Loan_Statu
s'],
      dtype='object')
In [ ]:
In [90]:
test.columns
Out[90]:
Index(['Gender', 'Married', 'Dependents', 'Education', 'Self_Employed',
       'ApplicantIncome', 'CoapplicantIncome', 'LoanAmount',
       'Loan_Amount_Term', 'Credit_History', 'Property_Area'],
      dtype='object')
```

In [95]:

```
train.head()
```

Out[95]:

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantInc
0	Male	No	0	Graduate	No	5849	
1	Male	Yes	1	Graduate	No	4583	15
2	Male	Yes	0	Graduate	Yes	3000	
3	Male	Yes	0	Not Graduate	No	2583	23
4	Male	No	0	Graduate	No	6000	

In [63]:

```
sex=pd.get_dummies(train['Gender'],drop_first=True)
```

In [64]:

```
sex.head()
```

Out[64]:

	Male
0	1
1	1
2	1
3	1
4	1

In [73]:

```
marry=pd.get_dummies(train['Married'],drop_first=True)
marry.columns=['Married_yes']
marry.head()
```

Out[73]:

	Married_yes
0	0
1	1
2	1
3	1
4	0

In [93]:

```
X=pd.get_dummies(train)
X.head()
```

Out[93]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Ge
0	5849	0.0	128.0	360.0	1.0	
1	4583	1508.0	128.0	360.0	1.0	
2	3000	0.0	66.0	360.0	1.0	
3	2583	2358.0	120.0	360.0	1.0	
4	6000	0.0	141.0	360.0	1.0	

5 rows × 22 columns

In [99]:

```
X.columns #train data
```

Out[99]:

In [92]:

```
train.isnull().sum()
```

Out[92]:

Gender 0 Married 0 Dependents 0 0 Education Self Employed 0 ApplicantIncome CoapplicantIncome 0 LoanAmount 0 Loan_Amount_Term 0 Credit_History 0 Property_Area 0 Loan Status 0 dtype: int64

In [101]:

```
X.columns
```

Out[101]:

In [102]:

test.head()

Out[102]:

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantInc
0	Male	Yes	0	Graduate	No	5720	
1	Male	Yes	1	Graduate	No	3076	
2	Male	Yes	2	Graduate	No	5000	
4	Male	No	0	Not Graduate	No	3276	
5	Male	Yes	0	Not Graduate	Yes	2165	:

In [103]:

```
test=pd.get_dummies(test)
test.head() #test data
```

Out[103]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Ge
0	5720	0	110.0	360.0	1.0	
1	3076	1500	126.0	360.0	1.0	
2	5000	1800	208.0	360.0	1.0	
4	3276	0	78.0	360.0	1.0	
5	2165	3422	152.0	360.0	1.0	

In [105]:

```
test.drop(['Gender_Female','Married_No','Dependents_0','Education_Graduate','Self_Emplo
yed_Yes','Property_Area_Rural'],axis=1,inplace=True)
test.head()
```

Out[105]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Ge
0	5720	0	110.0	360.0	1.0	
1	3076	1500	126.0	360.0	1.0	
2	5000	1800	208.0	360.0	1.0	
4	3276	0	78.0	360.0	1.0	
5	2165	3422	152.0	360.0	1.0	

In [107]:

```
X.columns
```

Out[107]:

In [108]:

```
X1=X.drop('Loan_Status_N',axis=1)
y=X.Loan_Status_N
```

In [109]:

```
from sklearn.linear_model import LogisticRegression
```

In [110]:

```
from sklearn.model_selection import train_test_split
```

In [117]:

```
X1_train, X1_test, y_train, y_test = train_test_split(X1, y, test_size=0.2, random_stat
e=1)
```

In [112]:

```
logmodel=LogisticRegression()
```

```
In [118]:
```

```
logmodel.fit(X1_train,y_train)
C:\Users\nitya\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.p
y:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. S
pecify a solver to silence this warning.
  FutureWarning)
Out[118]:
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=Tru
e,
                   intercept_scaling=1, l1_ratio=None, max_iter=100,
                   multi_class='warn', n_jobs=None, penalty='12',
                   random_state=None, solver='warn', tol=0.0001, verbose=
0,
                   warm_start=False)
In [119]:
prediction=logmodel.predict(X1_test)
In [115]:
from sklearn.metrics import accuracy_score
In [120]:
accuracy_score(y_test,prediction)
Out[120]:
0.8048780487804879
In [ ]:
```