

Designnotat	
Tittel:	
Forfattere: Peter Pham	
Versjon: 1.0	Dato:

Innhold

1	Problembeskrivelse	2
2	prinsipiell løsning 2.1 Spesifikasjon	3
3	Undersøkelser	4
4	Konklusjon	5
5	Referanser	6

1 Problembeskrivelse

Signalbehandling i elektroniske system foregår som regel digitalt. Inngangssignalene til systemet er oftest analoge, og en digitalisering av disse før signalbehandlingen er derfor nødvendig. For å unngå alvorlige aliasing-feil, er det nødvendig å begrense båndbredden til signalene som skal digitaliseres. Dersom punktprøvingsfrekvensen er f_s , må, ifølge punktprøvingsteoremet, signalet være båndbegrenset til $B = \frac{f_s}{2}$. I praksis er en fullstendig båndbegrensing (der alle frekenskomponenter over $\frac{f_s}{2}$ er satt til null) ikke mulig. Det er heller ikke nødvendig. Det er tilstrekkelig at frekvenskomponenter over $\frac{f_s}{2}$ blir dempet med en viss faktor avhengig av applikasjonen. Slik demping kan oppnåes ved å sette et anti-alias-filter umiddelbart foran A/D-omformeren som vist i figur 1. Videre er det ønskelig at anti-alias-filteret påvirker frekvenskomponentene under $\frac{f_s}{2}$ minstmulig. Det kan sikres ved å kreve at knekkfrekvensen til filteret ligger over en viss verdi.

Figur 1: 01Anti-alias-filter.

Dermed skal designes et anti-alias-filter til bruk ved en gitt punktprøvingsfrekvens f_s . Filteret skal ha en demping på minst 10 dB ved frekvensen $\frac{f_s}{2}$, og knekkfrekvensen f_c til filteret skal oppfylle $f_c \geq 0.75 \frac{f_s}{2}$. Knekkfrekvensen definerer vi som frekvensen hvor amplituderesponsen har sunket med 3 dB fra sitt høyeste nivå.

2 prinsipiell løsning

Ved filterdesign kan det være lurt å ha en fornuftig arbeidsgang:

- 1. Start med spesifikasjon
- 2. Velg type filter
- 3. Finn nødvendig orden N
- 4. Finn systemfunksjonen H(s)
- 5. Realisert H(s) med tilgjenteliug teknologi

2.1 Spesifikasjon

Fra problembeskrivelsen i seksjon 1 blir det opplyst at derson punktprøvingsfrekvensen er f_s , må båndbegrensingen være $B=\frac{f_s}{2}$ og knekkfrekvensen være $f_c\geq \frac{3}{8}f_s$.

Figur 2: Ønsket amplituderespons på system.

3 Undersøkelser

4 Konklusjon

5 Referanser