

Spartan-6 FPGA Data Sheet: DC and Switching Characteristics

DS162 (v1.9) August 23, 2010

Advance Product Specification

Spartan-6 FPGA Electrical Characteristics

Spartan®-6 LX FPGAs are available in -3, -2, and -1L speed grades, with -3 having the highest performance. Spartan-6 LXT FPGAs are available in -4, -3, and -2 speed grades, with -4 having the highest performance. Spartan-6 FPGA DC and AC characteristics are specified for both commercial and industrial grades. Except the operating temperature range or unless otherwise noted, all the DC and AC electrical parameters are the same for a particular speed grade (that is, the timing characteristics of a -2 speed grade industrial device are the same as for a -2 speed grade commercial device). However, only selected speed grades and/or devices might be available in the industrial range. The -3N speed grade, designated for Spartan-6 devices that do not support memory controller block (MCB) functionality, has identical timing characteristics to the -3 speed grade.

All supply voltage and junction temperature specifications are representative of worst-case conditions. The parameters included are common to popular designs and typical applications.

This Spartan-6 FPGA data sheet, part of an overall set of documentation on the Spartan-6 family of FPGAs, is available on the Xilinx website.

All specifications are subject to change without notice.

Spartan-6 FPGA DC Characteristics

Table 1: Absolute Maximum Ratings (1)

Symbol	Descrip	tion					
V _{CCINT}	Internal supply voltage rela	tive to GND			-0.5 to 1.32	V	
V _{CCAUX}	Auxiliary supply voltage rela	ative to GND			-0.5 to 3.75	V	
V _{CCO}	Output drivers supply voltage	Output drivers supply voltage relative to GND					
V_{BATT}	Key memory battery backu XC6SLX150, and XC6SLX	C6SLX100, XC6SLX100T,	-0.5 to 4.05	V			
V _{FS}	External voltage supply for XC6SLX100T, XC6SLX150	C6SLX75T, XC6SLX100,	-0.5 to 3.75	V			
V _{REF}	Input reference voltage	-0.5 to 3.75	V				
		All user and dedicated I/Os		DC	-0.60 to 4.10	V	
			Commercial	20% overshoot duration	-0.75 to 4.25	V	
				8% overshoot duration ⁽⁵⁾	-0.75 to 4.40	V	
			Industrial	DC	-0.60 to 3.95	V	
				20% overshoot duration	-0.75 to 4.15	V	
V and V (3)	I/O input voltage or voltage			4% overshoot duration ⁽⁵⁾	-0.75 to 4.40	V	
V _{IN} and V _{TS} ⁽³⁾	applied to 3-state output, relative to GND ⁽⁴⁾			20% overshoot duration	-0.75 to 4.35	V	
			Commercial	15% overshoot duration ⁽⁵⁾	-0.75 to 4.40	V	
		Restricted to		10% overshoot duration	-0.75 to 4.45	V	
		maximum of 100 user I/Os		20% overshoot duration	-0.75 to 4.25	V	
			Industrial	10% overshoot duration	-0.75 to 4.35	V	
				8% overshoot duration ⁽⁵⁾	-0.75 to 4.40	V	

© 2009–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Table 1: Absolute Maximum Ratings (1) (Cont'd)

Symbol	Description		Units
T _{STG}	Storage temperature (ambient)	-65 to 150	°C
	Maximum soldering temperature ⁽⁶⁾ (TQG144, CPG196, CSG225, CSG324, CSG484, and FTG256)	+260	°C
T _{SOL}	Maximum soldering temperature ⁽⁶⁾ (Pb-free packages: FGG484, FGG676, and FGG96	00) +250	°C
	Maximum soldering temperature ⁽⁶⁾ (Pb packages: FT256, FG484, FG676, and FG900) +220	°C
T _j	Maximum junction temperature ⁽⁶⁾	+125	°C

- Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to
- Absolute Maximum Ratings conditions for extended periods of time might affect device reliability. When programming eFUSE, $V_{FS} \le V_{CCAUX}$. Requires up to 40 mA current. For read mode, V_{FS} can be between GND and 3.45 V. I/O absolute maximum limit applied to DC and AC signals. Overshoot duration is the percentage of a data period that the I/O is stressed beyond 3.45V.
- For I/O operation, refer to the Spartan-6 FPGA SelectIO Resources User Guide.
- Maximum percent overshoot duration to meet 4.40V maximum.
- For soldering guidelines and thermal considerations, see Spartan-6 FPGA Packaging and Pinout Specification.

Table 2: Recommended Operating Conditions(1)

Symbol	Description	Temperature Range	Speed Grade	Memory Controller Block ⁽²⁾ Performance	Min	Тур	Max	Units
	Internal supply voltage relative to GND,	Commercial	-4, -3, -2	standard	1.14	1.2	1.26	V
	$T_j = 0$ °C to +85°C			extended	1.2	1.23	1.26	V
V			-1L	standard	0.95	1.0	1.05	V
V _{CCINT}	Internal supply voltage relative to GND,	Industrial	-3, -2	standard	1.14	1.2	1.26	V
	$T_j = -40^{\circ}\text{C to } +100^{\circ}\text{C}$			extended	1.2	1.23	1.26	V
			-1L	standard	0.95	1.0	1.05	V
(2)	Auxiliary supply voltage relative to GND when $V_{CCAUX} = 2.5V$, $T_j = 0^{\circ}C$ to +85°C	Commercial	-4, -3, -2, -1L	N/A				
	Auxiliary supply voltage relative to GND when $V_{CCAUX} = 2.5V$, $T_j = -40^{\circ}C$ to $+100^{\circ}C$	Industrial	-3, -2, -1L	N/A	2.375	2.5	2.625	V
V _{CCAUX} ⁽³⁾	Auxiliary supply voltage relative to GND when $V_{CCAUX} = 3.3V$, $T_j = 0^{\circ}C$ to $+85^{\circ}C$	Commercial	-4, -3, -2, -1L	N/A				
	Auxiliary supply voltage relative to GND when $V_{CCAUX} = 3.3V$, $T_j = -40^{\circ}C$ to $+100^{\circ}C$	Industrial	-3, -2, -1L	N/A	3.15	3.3	3.45	V
V _{CCO} ⁽⁴⁾⁽⁵⁾⁽⁶⁾	Output supply voltage relative to GND, $T_j = 0^{\circ}C$ to $+85^{\circ}C$	Commercial	-4, -3, -2, -1L	N/A	1.1		3.45	V
VCCO(1)(0)(0)	Output supply voltage relative to GND, $T_j = -40^{\circ}\text{C}$ to $+100^{\circ}\text{C}$	Industrial	-3, -2, -1L	N/A	1.1	_	3.45	V
	Input voltage relative to GND, $T_j = 0$ °C to +85°C	Commercial	-4, -3, -2, -1L	N/A	-0.5	-	4.0	٧
V	Input voltage relative to GND, $T_j = -40^{\circ}C$ to $+100^{\circ}C$	Industrial	-3, -2, -1L	N/A	-0.5	-	3.95	٧
V _{IN}	Input voltage relative to GND, PCI I/O standard, $T_j = 0$ °C to +85°C	Commercial	-4, -3, -2, -1L ⁽⁷⁾	N/A	-0.5	-	V _{CCO} + 0.5	٧
	Input voltage relative to GND, PCI I/O standard, T _j = -40°C to +100°C	Industrial	-3, -2, -1L ⁽⁷⁾	N/A	-0.5	-	V _{CCO} + 0.5	٧

Table 2: Recommended Operating Conditions(1) (Cont'd)

Symbol	Description	Temperature Range	Speed Grade	Memory Controller Block ⁽²⁾ Performance	Min	Тур	Max	Units
ı (8)	Maximum current through pin using PCI I/O standard when forward biasing the	Commercial	-4, -3, -2, -1L ⁽⁷⁾	N/A	_	_	10	mA
I _{IN} ⁽⁸⁾	clamp diode.	Industrial	-3, -2, -1L ⁽⁷⁾	N/A	-	_	10	mA
V (9)	Battery voltage relative to GND, $T_j = 0$ °C to +85°C (XC6SLX75, XC6SLX75T, XC6SLX100, XC6SLX100T, XC6SLX150, and XC6SLX150T only)	Commercial	-4, -3, -2, -1L	N/A	1.0		3.6	V
V _{BATT} ⁽⁹⁾	Battery voltage relative to GND, $T_j = -40^{\circ}\text{C}$ to $+100^{\circ}\text{C}$ (XC6SLX75, XC6SLX75T, XC6SLX100, XC6SLX100T, XC6SLX150, and XC6SLX150T only)	Industrial	-3, -2, -1L	N/A	1.0	_		V

Notes:

- All voltages are relative to ground.
- See Interface Performances for Memory Interfaces in Table 25. The standard V_{CCINT} voltage range applies to designs not using an MCB, or to devices that do not support MCB functionality including the LX4 device, the TQG144 and CPG196 packages, and the -3N speed grade.
- Recommended maximum voltage droop for $V_{\mbox{\scriptsize CCAUX}}$ is 10 mV/ms.
- Configuration data is retained even if V_{CCO} drops to 0V. Includes V_{CCO} of 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V.
- For PCI systems, the transmitter and receiver should have common supplies for V_{CCO}.
- Devices with a -1L speed grade do not support Xilinx PCI IP.
- Do not exceed a total of 100 mA per bank.
- V_{BATT} is required to maintain the battery backed RAM (BBR) AES key when V_{CCAUX} is not applied. Once V_{CCAUX} is applied, V_{BATT} can be unconnected. When BBR is not used, Xilinx recommends connecting to V_{CCAUX} or GND. However, V_{BATT} can be unconnected.

Table 3: eFUSE Programming Conditions(1)

Symbol	Description	Min	Тур	Max	Units
V _{FS} ⁽²⁾	External voltage supply	3.2	3.3	3.4	V
I _{FS}	V _{FS} supply current	_	-	40	mA
V _{CCAUX}	Auxiliary supply voltage relative to GND	3.2	3.3	3.45	V
R _{FUSE} (3)	External resistor from R _{FUSE} pin to GND	1129	1140	1151	Ω
V _{CCINT}	Internal supply voltage relative to GND	1.14	1.2	1.26	V
t _j	Temperature range	15	_	85	°C

- These specifications apply during programming of the eFUSE AES key. Programming is only supported through JTAG. The AES key is only supported in the following devices: XC6SLX75, XC6SLX75T, XC6SLX100, XC6SLX100T, XC6SLX150, and XC6SLX150T.

 When programming eFUSE, V_{FS} must be less than or equal to V_{CCAUX}. When not programming or when eFUSE is not used, Xilinx recommends connecting V_{FS} to GND. However, V_{FS} can be between GND and 3.45 V.
- An R_{FUSE} resistor is required when programming the eFUSE AES key. When not programming or when eFUSE is not used, Xilinx recommends connecting the R_{FUSE} pin to V_{CCAUX} or GND. However, R_{FUSE} can be unconnected.

Table 4: DC Characteristics Over Recommended Operating Conditions

Symbol	D	escription	Min	Тур	Max	Units
V _{DRINT}	Data retention V _{CCINT} voltage (below which configuration data might be lost)			_	_	V
V _{DRAUX}	Data retention V _{CCAUX} voltage (below which configuration data might be lost)			_	_	V
I _{REF}	V _{REF} leakage current per pin		-10	-	10	μΑ
ال	Input or output leakage current per pin	(sample-tested)	-10	_	10	μΑ
	Leakage current on pins during hot	All pins except PROGRAM_B, DONE, and JTAG pins when HSWAPEN = 1	-20	_	20	μΑ
I _{HS}	socketing with FPGA unpowered	PROGRAM_B, DONE, and JTAG pins, or other pins when HSWAPEN = 0	I _{HS} + I _{RPU}		J	μΑ
C _{IN}	Die input capacitance at the pad				10	pF
	Pad pull-up (when selected) @ V _{IN} = 0V, V _{CCO} = 3.3V or V _{CCAUX} = 3.3V				500	μΑ
	Pad pull-up (when selected) @ V _{IN} = 0V, V _{CCO} = 2.5V or V _{CCAUX} = 2.5V			_	350	μΑ
I _{RPU}	Pad pull-up (when selected) @ V _{IN} = 0	60	_	200	μΑ	
	Pad pull-up (when selected) @ V _{IN} = 0	40	_	150	μΑ	
	Pad pull-up (when selected) @ V _{IN} = 0	V, V _{CCO} = 1.2V	12	_	100	μΑ
	Pad pull-down (when selected) @ V _{IN} =	= V _{CCO} , V _{CCAUX} = 3.3V	200	_	550	μΑ
I _{RPD}	Pad pull-down (when selected) @ V _{IN} =	= V _{CCO} , V _{CCAUX} = 2.5V	140	_	400	μΑ
I _{BATT} ⁽¹⁾	Battery supply current		_	_	150	nA
R _{DT} ⁽²⁾	Resistance of optional input differential	termination circuit, V _{CCAUX} = 3.3V	_	100	_	Ω
	Thevenin equivalent resistance of programmable input termination (UNTUNED_SPLIT_25)			25	55	Ω
R _{IN_TERM} ⁽⁴⁾	Thevenin equivalent resistance of programmable input termination (UNTUNED_SPLIT_50)			50	72	Ω
	Thevenin equivalent resistance of prog (UNTUNED_SPLIT_75)	rammable input termination	56	75	109	Ω

Maximum value specified for worst case process at 25°C. XC6SLX75, XC6SLX75T, XC6SLX100, XC6SLX100T, XC6SLX150, and XC6SLX150T

Refer to IBIS models for R_{DT} variation and for values at $V_{CCAUX} = 2.5V$. V_{CCO2} is not required for data retention. The minimum V_{CCO2} for power-on reset and configuration is 1.65V. 3.

Termination resistance to a V_{CCO}/2 level.

Quiescent Current

Typical values for quiescent supply current are specified at nominal voltage, 25°C junction temperatures (T_j) . Quiescent supply current is specified by speed grade for Spartan-6 devices. Xilinx recommends analyzing static power consumption using the XPOWERTM Estimator (XPE) tool (download at http://www.xilinx.com/power) for conditions other than those specified in Table 5.

Table 5: Typical Quiescent Supply Current

Symbol	Description	Device		Speed	Grade		Units
Syllibol	Description	Device	-4	-3	-2	-1L	Units
I _{CCINTQ}	Quiescent V _{CCINT} supply current	XC6SLX4	N/A	4.0	4.0	2.4	mA
		XC6SLX9	N/A	4.0	4.0	2.4	mA
		XC6SLX16	N/A	6.0	6.0	4.0	mA
		XC6SLX25	N/A	11.0	11.0	6.6	mA
		XC6SLX25T	11.0	11.0	11.0	N/A	mA
		XC6SLX45	N/A	15.0	15.0	9.0	mA
		XC6SLX45T	15.0	15.0	15.0	N/A	mA
		XC6SLX75	N/A	29.0	29.0	17.4	mA
		XC6SLX75T	29.0	29.0	29.0	N/A	mA
		XC6SLX100	N/A	36.0	36.0	21.6	mA
		XC6SLX100T	36.0	36.0	36.0	N/A	mA
		XC6SLX150	N/A	51.0	51.0	31.0	mA
		XC6SLX150T	51.0	51.0	51.0	N/A	mA
Iccoq	Quiescent V _{CCO} supply current	XC6SLX4	N/A	1.0	1.0	1.0	mA
		XC6SLX9	N/A	1.0	1.0	1.0	mA
		XC6SLX16	N/A	2.0	2.0	2.0	mA
		XC6SLX25	N/A	2.0	2.0	2.0	mA
		XC6SLX25T	2.0	2.0	2.0	N/A	mA
		XC6SLX45	N/A	3.0	3.0	3.0	mA
		XC6SLX45T	3.0	3.0	3.0	N/A	mA
		XC6SLX75	N/A	4.0	4.0	4.0	mA
		XC6SLX75T	4.0	4.0	4.0	N/A	mA
		XC6SLX100	N/A	5.0	5.0	5.0	mA
		XC6SLX100T	5.0	5.0	5.0	N/A	mA
		XC6SLX150	N/A	7.0	7.0	7.0	mA
		XC6SLX150T	7.0	7.0	7.0	N/A	mA

Table 5: Typical Quiescent Supply Current (Cont'd)

Cumbal	Description	Device		Speed	Grade		Units
Symbol	Description	Device	-4	-3	-2	-1L	Units
I _{CCAUXQ}	Quiescent V _{CCAUX} supply current	XC6SLX4	N/A	2.5	2.5	2.5	mA
		XC6SLX9	N/A	2.5	2.5	2.5	mA
		XC6SLX16	N/A	3.0	3.0	3.0	mA
		XC6SLX25	N/A	4.0	4.0	4.0	mA
		XC6SLX25T	4.0	4.0	4.0	N/A	mA
		XC6SLX45	N/A	5.0	5.0	5.0	mA
		XC6SLX45T	5.0	5.0	5.0	N/A	mA
		XC6SLX75	N/A	7.0	7.0	7.0	mA
		XC6SLX75T	7.0	7.0	7.0	N/A	mA
		XC6SLX100	N/A	9.0	9.0	9.0	mA
		XC6SLX100T	9.0	9.0	9.0	N/A	mA
		XC6SLX150	N/A	12.0	12.0	12.0	mA
		XC6SLX150T	12.0	12.0	12.0	N/A	mA

- Typical values are specified at nominal voltage, 25° C junction temperatures (T_i). Industrial (I) grade devices have the same typical values as commercial (C) grade devices at 25° C, but higher values at 100° C. Use the XPE tool to calculate 100° C values.
- Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating.
- If differential signaling is used, more accurate quiescent current estimates can be obtained by using the XPOWER Estimator (XPE) or XPOWER Analyzer (XPA) tools.

Table 6: Power Supply Ramp Time

Symbol	Description	Speed Grade	Ramp Time	Units
V _{CCINTR}	Internal supply voltage ramp time	-4, -3, -2	0.20 to 50.0	ms
		-1L	0.20 to 40.0	ms
V _{CCO2} ⁽¹⁾	Output drivers bank 2 supply voltage ramp time	All	0.20 to 50.0	ms
V _{CCAUXR}	Auxiliary supply voltage ramp time	All	0.20 to 50.0	ms

- The minimum V_{CCO2} for power-on reset and configuration is 1.65V

 Spartan-6 FPGAs require a certain amount of supply current during power-on to insure proper device initialization. The actual current consumed depends on the power-on ramp rate of the power supply. Use the XPOWER Estimator (XPE) or XPOWER Analyzer (XPA) tools to estimate current drain on these supplies. Spartan-6 devices do not have a required power-on sequence.

SelectIO™ Interface DC Input and Output Levels

Table 7: Recommended Operating Conditions for User I/Os Using Single-Ended Standards

I/O Standard	V	V _{CCO} for Drivers ⁽¹⁾			V _{REF} for Inputs	
i/O Standard	V, Min	V, Nom	V, Max	V, Min	V, Nom	V, Max
LVTTL	3.0	3.3	3.45			
LVCMOS33	3.0	3.3	3.45			
LVCMOS25	2.3	2.5	2.7			
LVCMOS18	1.65	1.8	1.95			
LVCMOS18_JEDEC	1.65	1.8	1.95	-		
LVCMOS15	1.4	1.5	1.6			
LVCMOS15_JEDEC	1.4	1.5	1.6	-		
LVCMOS12	1.1	1.2	1.3	V _{REF} is not	used for these I/C	standards
LVCMOS12_JEDEC	1.1	1.2	1.3			
PCI33_3 ⁽²⁾	3.0	3.3	3.45	-		
PCI66_3 ⁽²⁾	3.0	3.3	3.45			
12C	2.7	3.0	3.45			
SMBUS	2.7	3.0	3.45			
SDIO	3.0	3.3	3.45			
MOBILE_DDR	1.7	1.8	1.9			
HSTL_I	1.4	1.5	1.6	0.68	0.75	0.9
HSTL_II	1.4	1.5	1.6	0.68	0.75	0.9
HSTL_III	1.4	1.5	1.6	_	0.9	-
HSTL_I_18	1.7	1.8	1.9	0.8	0.9	1.1
HSTL_II_18	1.7	1.8	1.9	_	0.9	_
HSTL_III_18	1.7	1.8	1.9	_	1.1	-
SSTL3_I	3.0	3.3	3.45	1.3	1.5	1.7
SSTL3_II	3.0	3.3	3.45	1.3	1.5	1.7
SSTL2_I	2.3	2.5	2.7	1.13	1.25	1.38
SSTL2_II	2.3	2.5	2.7	1.13	1.25	1.38
SSTL18_I	1.7	1.8	1.9	0.833	0.9	0.969
SSTL18_II	1.7	1.8	1.9	0.833	0.9	0.969
SSTL15_II	1.425	1.5	1.575	0.69	0.75	0.81

V_{CCO} range required when using I/O standard for an output. Also required for PCI33_3, LVCMOS18_JEDEC, LVCMOS15_JEDEC, and LVCMOS12_JEDEC inputs, and for LVCMOS25 inputs when V_{CCAUX} = 3.3V.

For PCI systems, the transmitter and receiver should have common supplies for V_{CCO}.

Table 8: Recommended Operating Conditions for User I/Os Using Differential Signal Standards

I/O Standard		V _{CCO} for Drivers	;
I/O Standard	V, Min	V, Nom	V, Max
LVDS_33	3.0	3.3	3.45
LVDS_25	2.25	2.5	2.75
BLVDS_25	2.25	2.5	2.75
MINI_LVDS_33	3.0	3.3	3.45
MINI_LVDS_25	2.25	2.5	2.75
LVPECL_33 ⁽¹⁾		N/A-Inputs Only	
LVPECL_25		N/A-Inputs Only	
RSDS_33	3.0	3.3	3.45
RSDS_25	2.25	2.5	2.75
TMDS_33 ⁽¹⁾	3.14	3.3	3.45
PPDS_33	3.0	3.3	3.45
PPDS_25	2.25	2.5	2.75
DISPLAY_PORT	2.3	2.5	2.7
DIFF_MOBILE_DDR	1.7	1.8	1.9
DIFF_HSTL_I	1.4	1.5	1.6
DIFF_HSTL_II	1.4	1.5	1.6
DIFF_HSTL_III	1.4	1.5	1.6
DIFF_HSTL_I_18	1.7	1.8	1.9
DIFF_HSTL_II_18	1.7	1.8	1.9
DIFF_HSTL_III_18	1.7	1.8	1.9
DIFF_SSTL3_I	3.0	3.3	3.45
DIFF_SSTL3_II	3.0	3.3	3.45
DIFF_SSTL2_I	2.3	2.5	2.7
DIFF_SSTL2_II	2.3	2.5	2.7
DIFF_SSTL18_I	1.7	1.8	1.9
DIFF_SSTL18_II	1.7	1.8	1.9
DIFF_SSTL15_II	1.425	1.5	1.575

1. LVPECL_33 and TMDS_33 inputs require $V_{CCAUX} = 3.3V$ nominal.

In Table 9 and Table 10, values for V_{IL} and V_{IH} are recommended input voltages. Values for I_{OL} and I_{OH} are guaranteed over the recommended operating conditions at the V_{OL} and V_{OH} test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at a minimum V_{CCO} with the respective V_{OL} and V_{OH} voltage levels shown. Other standards are sample tested.

Table 9: Single-Ended I/O Standard DC Input and Output Levels

I/O Standard		V_{IL}	VIH	l	V _{OL}	V _{OH}	I _{OL}	l _{OH}
I/O Standard	V, Min	V, Max	V, Min	V, Max	V, Max	V, Min	mA	mA
LVTTL	-0.5	0.8	2.0	4.1	0.4	2.4	Note(2)	Note(2)
LVCMOS33	-0.5	0.8	2.0	4.1	0.4	V _{CCO} - 0.4	Note(2)	Note(2)
LVCMOS25	-0.5	0.7	1.7	4.1	0.4	V _{CCO} - 0.4	Note(2)	Note(2)
LVCMOS18	-0.5	0.38	0.8	4.1	0.45	V _{CCO} - 0.45	Note(2)	Note(2)
LVCMOS18 (-1L)	-0.5	0.33	0.71	4.1	0.45	V _{CCO} - 0.45	Note(2)	Note(2)
LVCMOS18_JEDEC	-0.5	35% V _{CCO}	65% V _{CCO}	4.1	0.45	V _{CCO} - 0.45	Note(2)	Note(2)
LVCMOS15	-0.5	0.38	0.8	4.1	25% V _{CCO}	75% V _{CCO}	Note(3)	Note(3)
LVCMOS15 (-1L)	-0.5	0.33	0.71	4.1	25% V _{CCO}	75% V _{CCO}	Note(3)	Note(3)
LVCMOS15_JEDEC	-0.5	35% V _{CCO}	65% V _{CCO}	4.1	25% V _{CCO}	75% V _{CCO}	Note(3)	Note(3)
LVCMOS12	-0.5	0.38	0.8	4.1	0.4	V _{CCO} - 0.4	Note(4)	Note(4)
LVCMOS12 (-1L)	-0.5	0.33	0.71	4.1	0.4	V _{CCO} - 0.4	Note(4)	Note(4)
LVCMOS12_JEDEC	-0.5	35% V _{CCO}	65% V _{CCO}	4.1	0.4	V _{CCO} - 0.4	Note(4)	Note(4)
PCl33_3	-0.5	30% V _{CCO}	50% V _{CCO}	V _{CCO} + 0.5	10% V _{CCO}	90% V _{CCO}	1.5	-0.5
PCI66_3	-0.5	30% V _{CCO}	50% V _{CCO}	V _{CCO} + 0.5	10% V _{CCO}	90% V _{CCO}	1.5	-0.5
I2C	-0.5	25% V _{CCO}	70% V _{CCO}	4.1	20% V _{CCO}	_	3	_
SMBUS	-0.5	0.8	2.1	4.1	0.4	_	4	_
SDIO	-0.5	12.5% V _{CCO}	75% V _{CCO}	4.1	12.5% V _{CCO}	75% V _{CCO}	0.1	-0.1
MOBILE_DDR	-0.5	20% V _{CCO}	80% V _{CCO}	4.1	10% V _{CCO}	90% V _{CCO}	0.1	-0.1
HSTL_I	-0.5	V _{REF} - 0.1	V _{REF} + 0.1	4.1	0.4	V _{CCO} - 0.4	8	-8
HSTL_II	-0.5	V _{REF} - 0.1	V _{REF} + 0.1	4.1	0.4	V _{CCO} - 0.4	16	-16
HSTL_III	-0.5	V _{REF} - 0.1	V _{REF} + 0.1	4.1	0.4	V _{CCO} - 0.4	24	-8
HSTL_I_18	-0.5	V _{REF} - 0.1	V _{REF} + 0.1	4.1	0.4	V _{CCO} - 0.4	11	-11
HSTL_II_18	-0.5	V _{REF} - 0.1	V _{REF} + 0.1	4.1	0.4	V _{CCO} - 0.4	22	-22
HSTL_III_18	-0.5	V _{REF} - 0.1	V _{REF} + 0.1	4.1	0.4	V _{CCO} - 0.4	30	-11
SSTL3_I	-0.5	V _{REF} - 0.2	V _{REF} + 0.2	4.1	V _{TT} – 0.6	V _{TT} + 0.6	8	-8
SSTL3_II	-0.5	V _{REF} - 0.2	V _{REF} + 0.2	4.1	V _{TT} – 0.8	V _{TT} + 0.8	16	-16
SSTL2_I	-0.5	V _{REF} – 0.15	V _{REF} + 0.15	4.1	V _{TT} – 0.61	V _{TT} + 0.61	8.1	-8.1
SSTL2_II	-0.5	V _{REF} – 0.15	V _{REF} + 0.15	4.1	V _{TT} – 0.81	V _{TT} + 0.81	16.2	-16.2
SSTL18_I	-0.5	V _{REF} – 0.125	V _{REF} + 0.125	4.1	V _{TT} – 0.47	V _{TT} + 0.47	6.7	-6.7
SSTL18_II	-0.5	V _{REF} – 0.125	V _{REF} + 0.125	4.1	V _{TT} – 0.60	V _{TT} + 0.60	13.4	-13.4
SSTL15_II	-0.5	V _{REF} - 0.1	V _{REF} + 0.1	4.1	V _{TT} - 0.4	V _{TT} + 0.4	13.4	-13.4

- Tested according to relevant specifications.
- Using drive strengths of 2, 4, 6, 8, 12, 16, or 24 mA. Using drive strengths of 2, 4, 6, 8, 12, or 16 mA.
- Using drive strengths of 2, 4, 6, 8, or 12 mA.
- For more information, refer to the Spartan-6 FPGA SelectIO Resources User Guide.

Table 10: Differential I/O Standard DC Input and Output Levels

	٧	ID	VI	СМ	Vo)D	Vo	СМ	V _{OH}	V _{OL}
I/O Standard	mV, Min	mV, Max	V, Min	V, Max	mV, Min	mV, Max	V, Min	V, Max	V, Min	V, Max
LVDS_33	100	600	0.3	2.35	247	454	1.125	1.375	-	_
LVDS_25	100	600	0.3	2.35	247	454	1.125	1.375	-	_
BLVDS_25	100	_	0.3	2.35	240	460	Typical 5	0% V _{CCO}	-	_
MINI_LVDS_33	200	600	0.3	1.95	300	600	1.0	1.4	_	_
MINI_LVDS_25	200	600	0.3	1.95	300	600	1.0	1.4	-	_
LVPECL_33	100	1000	0.3	2.8(1)			Inp	uts only	!	
LVPECL_25	100	1000	0.3	1.95			Inp	uts only		
RSDS_33	100	_	0.3	1.5	100	400	1.0	1.4	_	_
RSDS_25	100	_	0.3	1.5	100	400	1.0	1.4	_	_
TMDS_33	150	1200	2.7	3.23 ⁽¹⁾	400	800	V _{CCO} - 0.405	V _{CCO} - 0.190	_	_
PPDS_33	100	400	0.2	2.3	100	400	0.5	1.4	_	_
PPDS_25	100	400	0.2	2.3	100	400	0.5	1.4	_	_
DISPLAY_PORT	190	1260	0.3	2.35	_	_	Typical 5	0% V _{CCO}	_	_
DIFF_MOBILE_DDR	100	_	0.78	1.02	_	-	_	_	90% V _{CCO}	10% V _{CCO}
DIFF_HSTL_I	100	_	0.68	0.9	_	_	_	_	V _{CCO} - 0.4	0.4
DIFF_HSTL_II	100	-	0.68	0.9	_	-	-	_	V _{CCO} - 0.4	0.4
DIFF_HSTL_III	100	_	0.68	0.9	_	-	_	_	V _{CCO} - 0.4	0.4
DIFF_HSTL_I_18	100	_	0.8	1.1	_	-	_	_	V _{CCO} - 0.4	0.4
DIFF_HSTL_II_18	100	_	0.8	1.1	_	_	_	_	V _{CCO} - 0.4	0.4
DIFF_HSTL_III_18	100	_	0.8	1.1	_	-	_	_	V _{CCO} - 0.4	0.4
DIFF_SSTL3_I	100	_	1.0	1.9	_	_	_	_	V _{TT} + 0.6	V _{TT} – 0.6
DIFF_SSTL3_II	100	_	1.0	1.9	_	_	-	_	V _{TT} + 0.8	V _{TT} – 0.8
DIFF_SSTL2_I	100	_	1.0	1.5	_	-	_	_	V _{TT} + 0.61	V _{TT} – 0.61
DIFF_SSTL2_II	100	_	1.0	1.5	_	-	_	_	V _{TT} + 0.81	V _{TT} – 0.81
DIFF_SSTL18_I	100	_	0.7	1.1	_	_	_	_	V _{TT} + 0.47	V _{TT} – 0.47
DIFF_SSTL18_II	100	_	0.7	1.1	_	_	_	_	V _{TT} + 0.6	V _{TT} – 0.6
DIFF_SSTL15_II	100	-	0.55	0.95	_	-	_	_	V _{TT} + 0.4	V _{TT} – 0.4

eFUSE Read Endurance

Table 11 lists the minimum guaranteed number of read cycle operations for Device DNA and for the AES eFUSE key. For more information, see the *Spartan-6 FPGA Configuration User Guide*.

Table 11: eFUSE Read Endurance

Symbol	Description	Speed Grade				Units (Min)
Symbol	Description	-4 -3 -2 -1L				
DNA_CYCLES	Number of DNA_PORT READ operations or JTAG ISC_DNA read command operations. Unaffected by SHIFT operations.	30,000,000			Read Cycles	
AES_CYCLES	Number of JTAG FUSE_KEY or FUSE_CNTL read command operations. Unaffected by SHIFT operations.	30,000,000			Read Cycles	

^{1.} LVPECL_33 and TMDS_33 maximum V_{ICM} is the lower of V (maximum) or $V_{CCAUX} - (V_{ID}/2)$

GTP Transceiver Specifications

GTP transceivers are available in the Spartan-6 LXT family of devices. See <u>DS160</u>: Spartan-6 Family Overview for more information.

GTP Transceiver DC Characteristics

Table 12: Absolute Maximum Ratings for GTP Transceivers (1)

Symbol	Description	MIn	Max	Units
MGTAVCC	Analog supply voltage for the GTP transmitter and receiver circuits relative to GND	-0.5	1.32	V
MGTAVTTTX	Analog supply voltage for the GTP transmitter termination circuit relative to GND	-0.5	1.32	V
MGTAVTTRX	Analog supply voltage for the GTP receiver termination circuit relative to GND	-0.5	1.32	V
MGTAVCCPLL	Analog supply voltage for the GTP transmitter and receiver PLL circuits relative to GND	-0.5	1.32	V
MGTAVTTRCAL	Analog supply voltage for the resistor calibration circuit of the GTP transceiver bank (top or bottom)	-0.5	1.32	V
V _{IN}	Receiver (RXP/RXN) and Transmitter (TXP/TXN) absolute input voltage	-0.5	1.32	V
V _{MGTREFCLK}	Reference clock absolute input voltage	-0.5	1.32	V

Notes:

Table 13: Recommended Operating Conditions for GTP Transceivers(1)(2)(3)

Symbol	Description	Min	Тур	Max	Units
MGTAVCC	Analog supply voltage for the GTP transmitter and receiver circuits relative to GND	1.14	1.20	1.26	V
MGTAVTTTX	Analog supply voltage for the GTP transmitter termination circuit relative to GND	1.14	1.20	1.26	V
MGTAVTTRX	Analog supply voltage for the GTP receiver termination circuit relative to GND	1.14	1.20	1.26	V
MGTAVCCPLL	Analog supply voltage for the GTP transmitter and receiver PLL circuits relative to GND	1.14	1.20	1.26	V
MGTAVTTRCAL	Analog supply voltage for the resistor calibration circuit of the GTP transceiver bank (top or bottom)	1.14	1.20	1.26	V

Notes

- I. Each voltage listed requires the filter circuit described in Spartan-6 FPGA GTP Transceivers User Guide.
- 2. Voltages are specified for the temperature range of $T_i = -40$ °C to +100°C.
- The voltage level of MGTAVCCPLL must not exceed the voltage level of MGTAVCC +10mV. The voltage level of MGTAVCC must not exceed the voltage level of MGTAVCCPLL.

Table 14: GTP Transceiver Current Supply (per Lane)

Symbol	Description	1	Typ ⁽¹⁾	Max	Units
I _{MGTAVCC}	GTP transceiver internal analog supply current		40.4		mA
I _{MGTAVTTTX}	GTP transmitter termination supply current		27.4	Note 2	mA
I _{MGTAVTTRX}	GTP receiver termination supply current		13.6	Note 2	mA
I _{MGTAVCCPLL}	GTP transmitter and receiver PLL supply current		28.7		mA
R _{MGTRREF}	Precision reference resistor for internal calibration termination		50.0 = tolera		Ω

- 1. Typical values are specified at nominal voltage, 25°C, with a 2.5 Gb/s line rate, with a shared PLL use mode.
- Values for currents of other transceiver configurations and conditions can be obtained by using the XPOWER Estimator (XPE) or XPOWER Analyzer (XPA) tools.

Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to
Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.

Table 15: GTP Transceiver Quiescent Supply Current (per Lane)(1)(2)(3)(4)

Symbol	Description	Typ ⁽⁵⁾	Max	Units
I _{MGTAVCCQ}	Quiescent MGTAVCC supply current	1.7		mA
I _{MGTAVTTTXQ}	Quiescent MGTAVTTTX supply current	0.1	Note 2	mA
I _{MGTAVTTRXQ}	Quiescent MGTAVTTRX supply current	1.2	Note 2	mA
I _{MGTAVCCPLLQ}	Quiescent MGTAVCCPLL supply current	1.0		mA

- Device powered and unconfigured.
- Currents for conditions other than values specified in this table can be obtained by using the XPOWER Estimator (XPE) or XPOWER Analyzer (XPA) tools.
- GTP transceiver quiescent supply current for an entire device can be calculated by multiplying the values in this table by the number of available GTP transceivers.
- Does not include power-up MGTAVTTRCAL supply current during device configuration.
- 5. Typical values are specified at nominal voltage, 25°C.

GTP Transceiver DC Input and Output Levels

Table 16 summarizes the DC output specifications of the GTP transceivers in Spartan-6 FPGAs. Figure 1 shows the single-ended output voltage swing. Figure 2 shows the peak-to-peak differential output voltage.

Consult UG386: Spartan-6 FPGA GTP Transceivers User Guide for further details.

Table 16: GTP Transceiver DC Specifications

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
DV _{PPIN}	Differential peak-to-peak input voltage	External AC coupled	140	_	2000	mV
V _{IN}	Absolute input voltage	DC coupled MGTAVTTRX = 1.2V	-400	_	MGTAVTTRX	mV
V _{CMIN}	Common mode input voltage	DC coupled MGTAVTTRX = 1.2V	_	3/4 MGTAVTTRX	_	mV
DV _{PPOUT}	Differential peak-to-peak output voltage ⁽¹⁾	Transmitter output swing is set to maximum setting	_	_	1000	mV
V_{SEOUT}	Single-ended output voltage swin	ng ⁽¹⁾	_	_	500	mV
V _{CMOUTDC}	Common mode output voltage	Equation based	I	MGTAVTTTX – V _S	EOUT/2	mV
R _{IN}	Differential input resistance		80	100	130	Ω
R _{OUT}	Differential output resistance	Differential output resistance		100	130	Ω
T _{OSKEW}	Transmitter output skew		_	_	15	ps
C _{EXT}	Recommended external AC cou	pling capacitor ⁽²⁾	75	100	200	nF

- 1. The output swing and preemphasis levels are programmable using the attributes discussed in the Spartan-6 FPGA GTP Transceivers User Guide and can result in values lower than reported in this table.
- 2. Other values can be used as appropriate to conform to specific protocols and standards.

Figure 1: Single-Ended Peak-to-Peak Voltage

Figure 2: Differential Peak-to-Peak Voltage

Table 17 summarizes the DC specifications of the clock input of the GTP transceiver. Consult the *Spartan-6 FPGA GTP Transceivers User Guide* for further details.

Table 17: GTP Transceiver Clock DC Input Level Specification

Symbol	DC Parameter	Min	Тур	Max	Units
V _{IDIFF}	Differential peak-to-peak input voltage	200	800	2000	mV
R _{IN}	Differential input resistance	80	100	120	Ω
C _{EXT}	Required external AC coupling capacitor	_	100	_	nF

GTP Transceiver Switching Characteristics

Consult the Spartan-6 FPGA GTP Transceivers User Guide for further information.

Table 18: GTP Transceiver Performance

Cumbal	Description		Speed Grade					
Symbol	Description	-4	-3	-2	-1L N/A N/A N/A	Units		
F _{GTPMAX}	Maximum GTP transceiver data rate	3.2	3.2	2.7	N/A	Gb/s		
F _{GTPRANGE1}	GTP transceiver data rate range when PLL_TXDIVSEL_OUT = 1	1.88 to 3.2	1.88 to 3.2	1.88 to 2.7	N/A	Gb/s		
F _{GTPRANGE2}	GTP transceiver data rate range when PLL_TXDIVSEL_OUT = 2	0.94 to 1.62	0.94 to 1.62	0.94 to 1.62	N/A	Gb/s		
F _{GTPRANGE3}	GTP transceiver data rate range when PLL_TXDIVSEL_OUT = 4	0.6 to 0.81	0.6 to 0.81	0.6 to 0.81	N/A	Gb/s		
F _{GPLLMAX}	Maximum PLL frequency	1.62	1.62	1.62	N/A	GHz		
F _{GPLLMIN}	Minimum PLL frequency	0.94	0.94	0.94	N/A	GHz		

Table 19: GTP Transceiver Dynamic Reconfiguration Port (DRP) Switching Characteristics

Symbol	Description		Speed Grade				
Syllibol	Description	-4	-3	-2	-1L	Units	
F _{GTPDRPCLK}	GTP transceiver DCLK (DRP clock) maximum frequency	160	125	100	N/A	MHz	

Tabla	$20 \cdot 1$	CTD	Trancacivar	Doforonoo		Cwitching	Characteristics
Iaule	ZU. 1	GIF.	Hallsceivel	neierence	CIUCK	SWILCHING	CHALACIEHSHICS

Cumbal	Description	Conditions	All L	- Units		
Symbol	Description	Conditions	Min	Тур	Max	Ullits
F _{GCLK}	Reference clock frequency range		60	_	160	MHz
T _{RCLK}	Reference clock rise time	20% – 80%	_	200	_	ps
T _{FCLK}	Reference clock fall time	80% – 20%	_	200	_	ps
T _{DCREF}	Reference clock duty cycle	Transceiver PLL only	45	50	55	%
T _{LOCK}	Clock recovery frequency acquisition time	Initial PLL lock	_	_	1	ms
T _{PHASE}	Clock recovery phase acquisition time	Lock to data after PLL has locked to the reference clock	_	_	200	μs

Figure 3: Reference Clock Timing Parameters

Table 21: GTP Transceiver User Clock Switching Characteristics(1)

Cumbal	Description	Conditions		Speed	Grade		Units
Symbol	Description	Conditions	-4	-3	-2	-1L	Units
F _{TXOUT}	TXOUTCLK maximum frequency		320	320	270	N/A	MHz
F _{RXREC}	RXRECCLK maximum frequency		320	320	270	N/A	MHz
T _{RX}	RXUSRCLK maximum frequency		320	320	270	N/A	MHz
T _{RX2}	RXUSRCLK2 maximum frequency	1 byte interface	156.25	156.25	125	N/A	MHz
		2 byte interface	160	160	125	N/A	MHz
		4 byte interface	80	80	67.5	N/A	MHz
T _{TX}	TXUSRCLK maximum frequency		320	320	270	N/A	MHz
T _{TX2}	TXUSRCLK2 maximum frequency	1 byte interface	156.25	156.25	125	N/A	MHz
		2 byte interface	160	160	125	N/A	MHz
		4 byte interface	80	80	67.5	N/A	MHz

1. Clocking must be implemented as described in the Spartan-6 FPGA GTP Transceivers User Guide.

Table 22: GTP Transceiver Transmitter Switching Characteristics

Symbol	Description	Condition	Min	Тур	Max	Units
T _{RTX}	TX Rise time	20%–80%	_	140	-	ps
T _{FTX}	TX Fall time	80%–20%	_	120	_	ps
T _{LLSKEW}	TX lane-to-lane skew ⁽¹⁾		_	_	400	ps
V _{TXOOBVDPP}	Electrical idle amplitude		_	_	20	mV
T _{TXOOBTRANSITION}	Electrical idle transition time		_	_	50	ns
T _{J3.125}	Total Jitter ⁽²⁾	3.125 Gb/s	_	_	0.35	UI
D _{J3.125}	Deterministic Jitter ⁽²⁾		_	_	0.15	UI
T _{J2.5}	Total Jitter ⁽²⁾	2.5 Gb/s	_	_	0.33	UI
D _{J2.5}	Deterministic Jitter ⁽²⁾		_	_	0.15	UI
T _{J1.62}	Total Jitter ⁽²⁾	1.62 Gb/s	_	_	0.20	UI
D _{J1.62}	Deterministic Jitter ⁽²⁾		_	_	0.10	UI
T _{J1.25}	Total Jitter ⁽²⁾	1.25 Gb/s	_	_	0.20	UI
D _{J1.25}	Deterministic Jitter ⁽²⁾		_	_	0.10	UI
T _{J614}	Total Jitter ⁽²⁾	614 Mb/s	_	_	0.10	UI
D _{J614}	Deterministic Jitter ⁽²⁾		_	_	0.05	UI

- 1. Using same REFCLK input with TXENPMAPHASEALIGN enabled for up to four consecutive GTP transceiver sites.
- 2. Using PLL_DIVSEL_FB = 2, INTDATAWIDTH = 1. These values are NOT intended for protocol specific compliance determinations.

Table 23: GTP Transceiver Receiver Switching Characteristics

Symbol		Description								
T _{RXELECIDLE}	Time for RXELECIDLE to re	spond to loss or	restoration of data	-	75	_	ns			
R _{XOOBVDPP}	OOB detect threshold peak-	to-peak		60	-	150	mV			
R _{XSST}	Receiver spread-spectrum t	racking ⁽¹⁾	Modulated @ 33 KHz	-5000	_	0	ppm			
R _{XRL}	Run length (CID)	Internal AC cap	_	_	150	UI				
		CDR 2 nd -order	loop disabled	-200	-	200	ppm			
В	Data/REFCLK PPM offset		PLL_RXDIVSEL_OUT = 1	-2000	-	2000	ppm			
R _{XPPMTOL}	tolerance	CDR 2 nd -order loop enabled	PLL_RXDIVSEL_OUT = 2	-2000	-	2000	ppm			
		loop chabled	PLL_RXDIVSEL_OUT = 4	-1000	_	1000	ppm			
SJ Jitter Tolerance ⁽²⁾	ı			1		I				
JT_SJ _{3.125}	Sinusoidal Jitter ⁽³⁾		3.125 Gb/s	0.4	-	_	UI			
JT_SJ _{2.5}	Sinusoidal Jitter ⁽³⁾		2.5 Gb/s	0.4	-	_	UI			
JT_SJ _{1.62}	Sinusoidal Jitter ⁽³⁾		1.62 Gb/s	0.5	-	_	UI			
JT_SJ _{1.25}	Sinusoidal Jitter ⁽³⁾		1.25 Gb/s	0.5	-	_	UI			
JT_SJ ₆₁₄	Sinusoidal Jitter ⁽³⁾		614 Mb/s	0.5	-	_	UI			
SJ Jitter Tolerance with	Stressed Eye ⁽²⁾⁽⁵⁾			1		I				
JT_TJSE _{3.125}	Total Jitter with stressed eye) (4)	3.125 Gb/s	0.65	-	_	UI			
JT_SJSE _{3.125}	Sinusoidal Jitter with stresse	ed eye	3.125 Gb/s	0.1	_	_	UI			
JT_TJSE _{2.7}	Total Jitter with stressed eye	<u>9</u> (4)	2.7 Gb/s	0.65	_	_	UI			
JT_SJSE _{2.7}	Sinusoidal Jitter with stresse	ed eye	2.7 Gb/s	0.1	_	_	UI			

- 1. Using PLL_RXDIVSEL_OUT = 1, 2, and 4.
- 2. All jitter values are based on a Bit Error Ratio of $1e^{-12}$.
- 3. Using 80 MHz sinusoidal jitter only in the absence of deterministic and random jitter.
- 4. Composed of 0.37 UI DJ in the form of ISI and 0.18 UI RJ.
- 5. Measured using PRBS7 data pattern.

Endpoint Block for PCI Express Designs Switching Characteristics

The Endpoint block for PCI Express is available in the Spartan-6 LXT family. Consult the <u>Spartan-6 FPGA Integrated</u> Endpoint Block for PCI Express for further information.

Table 24: Maximum Performance for PCI Express Designs

Symbol	Description		Units			
	Description	-4	-3	-2	-1L	Office
F _{PCIEUSER}	User clock maximum frequency	62.5	62.5	62.5	N/A	MHz

Performance Characteristics

This section provides the performance characteristics of some common functions and designs implemented in Spartan-6 devices. The numbers reported here are worst-case values; they have all been fully characterized. These values are subject to the same guidelines as the Switching Characteristics, page 17.

Table 25: Interface Performances

Description			l le:te		
Description	-4	-3	-2	-1L	Units
Networking Applications ⁽¹⁾					
SDR LVDS transmitter or receiver (using IOB SDR register)	400	400	375		Mb/s
DDR LVDS transmitter or receiver (using IOB ODDR2/IDDR2 register)	800	800	750		Mb/s
SDR LVDS transmitter (using OSERDES2; DATA WIDTH = 2 to 8)	1080	1050	950		Mb/s
DDR LVDS transmitter (using OSERDES2; DATA WIDTH = 2 to 8)	1080	1050	950		Mb/s
SDR LVDS receiver (using ISERDES2; DATA WIDTH = 2 to 8)	1080	1050	950		Mb/s
DDR LVDS receiver (using ISERDES2; DATA WIDTH = 2 to 8)	1080	1050	950		Mb/s
Memory Interfaces (Implemented using the Spartan-6 FPGA Memory	Controller	Block) ⁽²⁾			
Standard Performance (standard V _{CCINT})					
DDR	400	400(4)	400		Mb/s
DDR2	667	667 ⁽⁴⁾	625		Mb/s
DDR3	667	667 ⁽⁴⁾	625	_	Mb/s
LPDDR (Mobile_DDR)	400	400(4)	400		Mb/s
Extended Performance (Requires Extended Memory Controller Bloc	k V _{CCINT})(3)				
DDR2	800	800(4)	667	_	Mb/s
DDR3	800	800 ⁽⁴⁾	667	_	Mb/s

- 1. Refer to XAPP1064, Source-Synchronous Serialization and Deserialization (up to 1050 Mb/s).
- 2. Refer to the Spartan-6 FPGA Memory Controller User Guide
- Extended Memory Controller block performance for DDR2 and DDR3 can be achieved using the extended MCB performance V_{CCINT} range from Table 2.
- 4. The -3N speed grade does not support a Memory Controller block.

Switching Characteristics

All values represented in this data sheet are based on these speed specifications: v1.11 for -4, -3, and -2; and v1.04 for -1L. Switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows:

Advance

These specifications are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some underreporting might still occur.

Preliminary

These specifications are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data.

Production

These specifications are released once enough production silicon of a particular device family member has been characterized to provide full correlation between specifications and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

All specifications are always representative of worst-case supply voltage and junction temperature conditions.

Since individual family members are produced at different times, the migration from one category to another depends completely on the status of the fabrication process for each device. The -1L speed grade refers to the lower-power Spartan-6 devices. The -3N speed grade refers to the Spartan-6 devices that do not support MCB functionality. The -3N speed grade and -3 speed grade switching characteristics are identical.

Table 26 correlates the current status of each Spartan-6 device on a per speed grade basis.

Table 26: Spartan-6 Device Speed Grade Designations

Device	Speed	Grade Design	ations
Device	Advance	Preliminary	Production
XC6SLX4	-3, -2, -1L		
XC6SLX9	-3, -3N,-2, -1L		
XC6SLX16	-1L		-3, -3N, -2
XC6SLX25	-1L		-3, -3N, -2
XC6SLX25T			-4, -3, -3N, -2
XC6SLX45	-1L		-3, -3N, -2
XC6SLX45T			-4, -3, -3N, -2
XC6SLX75	-1L		-3, -3N, -2
XC6SLX75T			-4, -3, -3N, -2
XC6SLX100	-1L		-3, -3N, -2
XC6SLX100T			-4, -3, -3N, -2
XC6SLX150	-1L		-3, -3N, -2
XC6SLX150T			-4, -3, -3N, -2

Notes:

 Until ISE software supports the -3N speed grade option, use the -3 speed grade option and do not use the Memory Controller block.

Testing of Switching Characteristics

All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values.

For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all Spartan-6 devices.

Production Silicon and ISE Software Status

In some cases, a particular family member (and speed grade) is released to production before a speed specification is released with the correct label (Advance, Preliminary, Production). Any labeling discrepancies are corrected in subsequent speed specification releases. Table 27 lists the production released Spartan-6 family member, speed grade, and the minimum corresponding supported speed specification version and ISE® software revisions. The ISE software and speed specifications listed are the minimum releases required for production. All subsequent releases of software and speed specifications are valid.

Table 27: Spartan-6 Device Production Software and Speed Specification Release(1)

Davisa		Spee	d Grade Designati	ons ⁽²⁾					
Device	-4	-3	-3N	-2	-1L				
XC6SLX4	N/A		N/A						
XC6SLX9	N/A								
XC6SLX16	N/A	ISE 12.1 v1.08	ISE 12.2 v1.11 ⁽³⁾	ISE 11.5 v1.06					
XC6SLX25	N/A		ISE 12.2 v1.11(3)						
XC6SLX25T		ISE 12.2	2 v1.11 ⁽³⁾		N/A				
XC6SLX45	N/A	ISE 12.1 v1.08	ISE 12.2 v1.11(3)	ISE 11.5 v1.07					
XC6SLX45T	ISE 12.2 v1.11(3)	ISE 12.1 v1.08	ISE 12.2 v1.11(3)	ISE 12.1 v1.08	N/A				
XC6SLX75	N/A		ISE 12.2 v1.11(3)						
XC6SLX75T		ISE 12.2	2 v1.11 ⁽³⁾		N/A				
XC6SLX100	N/A		ISE 12.2 v1.11(3)						
XC6SLX100T		ISE 12.2 v1.11 ⁽³⁾							
XC6SLX150	N/A	N/A ISE 12.2 v1.11 ⁽³⁾							
XC6SLX150T		ISE 12.2	2 v1.11 ⁽³⁾		N/A				

Notes:

- Blank entries indicate a device and/or speed grade in advance or preliminary status.
- 2. As marked with an N/A, LX devices are not available with a -4 speed grade; LXT devices are not available with a -1L speed grade; LX4 devices are not available with a -3N speed grade.
- 3. ISE 12.2 software with v1.11 speed specification is available using ISE 12.2 software and the 12.2 Speed Files Patch available on the Xilinx Download Center.

IOB Pad Input/Output/3-State Switching Characteristics

Table 28 summarizes the values of standard-specific data input delay adjustments, output delays terminating at pads (based on standard) and 3-state delays.

 T_{IOPI} is described as the delay from IOB pad through the input buffer to the I-pin of an IOB pad. The delay varies depending on the capability of the SelectIO input buffer.

 T_{IOOP} is described as the delay from the O pin to the IOB pad through the output buffer of an IOB pad. The delay varies depending on the capability of the SelectIO output buffer.

 $T_{\rm IOTP}$ is described as the delay from the T pin to the IOB pad through the output buffer of an IOB pad, when 3-state is disabled. The delay varies depending on the SelectIO capability of the output buffer.

Table 29 summarizes the value of T_{IOTPHZ} . T_{IOTPHZ} is described as the delay from the T pin to the IOB pad through the output buffer of an IOB pad, when 3-state is enabled (i.e., a high impedance state).

Table 28: IOB Switching Characteristics

		T	OPI			T _{IC}	ОР			T _{IC}	OTP		
I/O Standard		Speed	Grade	•		Speed	Grade	•		Speed	Grade	•	Units
	-4	-3	-2	-1L	-4	-3	-2	-1L	-4	-3	-2	-1L	
LVDS_33	1.17	1.29	1.42	1.50	1.55	1.69	1.89	2.42	1.55	1.69	1.89	2.42	ns
LVDS_25	1.01	1.13	1.26	1.39	1.65	1.79	1.99	2.47	1.65	1.79	1.99	2.47	ns
BLVDS_25	1.02	1.14	1.27	1.39	1.72	1.86	2.06	2.68	1.72	1.86	2.06	2.68	ns
MINI_LVDS_33	1.17	1.29	1.42	1.50	1.57	1.71	1.91	2.41	1.57	1.71	1.91	2.41	ns
MINI_LVDS_25	1.01	1.13	1.26	1.39	1.65	1.79	1.99	2.47	1.65	1.79	1.99	2.47	ns
LVPECL_33	1.18	1.30	1.43	1.50	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ns
LVPECL_25	1.02	1.14	1.27	1.39	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ns
RSDS_33 (point to point)	1.17	1.29	1.42	1.50	1.57	1.71	1.91	2.42	1.57	1.71	1.91	2.42	ns
RSDS_25 (point to point)	1.01	1.13	1.26	1.38	1.65	1.79	1.99	2.47	1.65	1.79	1.99	2.47	ns
TMDS_33	1.21	1.33	1.46	1.53	1.54	1.68	1.88	2.50	1.54	1.68	1.88	2.50	ns
PPDS_33	1.17	1.29	1.42	1.50	1.57	1.71	1.91	2.43	1.57	1.71	1.91	2.43	ns
PPDS_25	1.01	1.13	1.26	1.38	1.68	1.82	2.02	2.47	1.68	1.82	2.02	2.47	ns
PCl33_3	1.07	1.19	1.32	1.39(1)	3.51	3.65	3.85	4.38(1)	3.51	3.65	3.85	4.38(1)	ns
PCI66_3	1.07	1.19	1.32	1.39(1)	3.53	3.67	3.87	4.39(1)	3.53	3.67	3.87	4.39(1)	ns
DISPLAY_PORT	1.02	1.14	1.27	1.38	3.15	3.29	3.49	4.08	3.15	3.29	3.49	4.08	ns
I2C	1.33	1.45	1.58	1.64	11.56	11.70	11.90	12.52	11.56	11.70	11.90	12.52	ns
SMBUS	1.33	1.45	1.58	1.64	11.56	11.70	11.90	12.52	11.56	11.70	11.90	12.52	ns
SDIO	1.36	1.48	1.61	1.66	2.64	2.78	2.98	3.60	2.64	2.78	2.98	3.60	ns
MOBILE_DDR	0.94	1.06	1.19	1.25	2.35	2.49	2.69	3.31	2.35	2.49	2.69	3.31	ns
HSTL_I	0.90	1.02	1.15	1.21	1.66	1.80	2.00	2.62	1.66	1.80	2.00	2.62	ns
HSTL_II	0.91	1.03	1.16	1.22	1.72	1.86	2.06	2.68	1.72	1.86	2.06	2.68	ns
HSTL_III	0.95	1.07	1.20	1.26	1.67	1.81	2.01	2.61	1.67	1.81	2.01	2.61	ns
HSTL_I _18	0.94	1.06	1.19	1.25	1.77	1.91	2.11	2.73	1.77	1.91	2.11	2.73	ns
HSTL_II _18	0.94	1.06	1.19	1.25	1.85	1.99	2.19	2.81	1.85	1.99	2.19	2.81	ns
HSTL_III _18	0.99	1.11	1.24	1.29	1.79	1.93	2.13	2.72	1.79	1.93	2.13	2.72	ns
SSTL3_I	1.58	1.70	1.83	1.98	1.83	1.97	2.17	2.72	1.83	1.97	2.17	2.72	ns
SSTL3_II	1.58	1.70	1.83	1.98	2.01	2.15	2.35	2.94	2.01	2.15	2.35	2.94	ns
SSTL2_I	1.30	1.42	1.55	1.69	1.77	1.91	2.11	2.69	1.77	1.91	2.11	2.69	ns
SSTL2_II	1.30	1.42	1.55	1.70	1.86	2.00	2.20	2.82	1.86	2.00	2.20	2.82	ns
SSTL18_I	0.92	1.04	1.17	1.23	1.63	1.77	1.97	2.59	1.63	1.77	1.97	2.59	ns
SSTL18_II	0.92	1.04	1.17	1.23	1.66	1.80	2.00	2.62	1.66	1.80	2.00	2.62	ns
SSTL15_II	0.92	1.04	1.17	1.23	1.67	1.81	2.01	2.63	1.67	1.81	2.01	2.63	ns
DIFF_HSTL_I	0.94	1.06	1.19	1.28	1.77	1.91	2.11	2.62	1.77	1.91	2.11	2.62	ns
DIFF_HSTL_II	0.93	1.05	1.18	1.27	1.72	1.86	2.06	2.54	1.72	1.86	2.06	2.54	ns
DIFF_HSTL_III	0.93	1.05	1.18	1.28	1.69	1.83	2.03	2.53	1.69	1.83	2.03	2.53	ns
DIFF_HSTL_I_18	0.97	1.09	1.22	1.32	1.79	1.93	2.13	2.63	1.79	1.93	2.13	2.63	ns
DIFF_HSTL_II_18	0.97	1.09	1.22	1.31	1.69	1.83	2.03	2.51	1.69	1.83	2.03	2.51	ns
DIFF_HSTL_III_18	0.97	1.09	1.22	1.32	1.69	1.83	2.03	2.53	1.69	1.83	2.03	2.53	ns

Table 28: IOB Switching Characteristics (Cont'd)

		T	ОРІ			T _{IC}	ООР						
I/O Standard		Speed	Grade)		Speed	Grade	!		Speed	Grade)	Units
	-4	-3	-2	-1L	-4	-3	-2	-1L	-4	-3	-2	-1L	
DIFF_SSTL3_I	1.18	1.30	1.43	1.50	1.81	1.95	2.15	2.64	1.81	1.95	2.15	2.64	ns
DIFF_SSTL3_II	1.19	1.31	1.44	1.50	1.80	1.94	2.14	2.63	1.80	1.94	2.14	2.63	ns
DIFF_SSTL2_I	1.02	1.14	1.27	1.39	1.80	1.94	2.14	2.62	1.80	1.94	2.14	2.62	ns
DIFF_SSTL2_II	1.02	1.14	1.27	1.39	1.76	1.90	2.10	2.57	1.76	1.90	2.10	2.57	ns
DIFF_SSTL18_I	0.97	1.09	1.22	1.33	1.72	1.86	2.06	2.56	1.72	1.86	2.06	2.56	ns
DIFF_SSTL18_II	0.98	1.10	1.23	1.32	1.68	1.82	2.02	2.52	1.68	1.82	2.02	2.52	ns
DIFF_SSTL15_II	0.94	1.06	1.19	1.28	1.67	1.81	2.01	2.50	1.67	1.81	2.01	2.50	ns
DIFF_MOBILE_DDR	0.97	1.09	1.22	1.33	1.75	1.89	2.09	2.57	1.75	1.89	2.09	2.57	ns
LVTTL, QUIETIO, 2 mA	1.35	1.47	1.60	1.64	5.39	5.53	5.73	6.37	5.39	5.53	5.73	6.37	ns
LVTTL, QUIETIO, 4 mA	1.35	1.47	1.60	1.64	4.29	4.43	4.63	5.22	4.29	4.43	4.63	5.22	ns
LVTTL, QUIETIO, 6 mA	1.35	1.47	1.60	1.64	3.75	3.89	4.09	4.69	3.75	3.89	4.09	4.69	ns
LVTTL, QUIETIO, 8 mA	1.35	1.47	1.60	1.64	3.23	3.37	3.57	4.20	3.23	3.37	3.57	4.20	ns
LVTTL, QUIETIO, 12 mA	1.35	1.47	1.60	1.64	3.28	3.42	3.62	4.22	3.28	3.42	3.62	4.22	ns
LVTTL, QUIETIO, 16 mA	1.35	1.47	1.60	1.64	2.94	3.08	3.28	3.92	2.94	3.08	3.28	3.92	ns
LVTTL, QUIETIO, 24 mA	1.35	1.47	1.60	1.64	2.69	2.83	3.03	3.67	2.69	2.83	3.03	3.67	ns
LVTTL, Slow, 2 mA	1.35	1.47	1.60	1.64	4.36	4.50	4.70	5.30	4.36	4.50	4.70	5.30	ns
LVTTL, Slow, 4 mA	1.35	1.47	1.60	1.64	3.17	3.31	3.51	4.16	3.17	3.31	3.51	4.16	ns
LVTTL, Slow, 6 mA	1.35	1.47	1.60	1.64	2.76	2.90	3.10	3.75	2.76	2.90	3.10	3.75	ns
LVTTL, Slow, 8 mA	1.35	1.47	1.60	1.64	2.59	2.73	2.93	3.55	2.59	2.73	2.93	3.55	ns
LVTTL, Slow, 12 mA	1.35	1.47	1.60	1.64	2.58	2.72	2.92	3.54	2.58	2.72	2.92	3.54	ns
LVTTL, Slow, 16 mA	1.35	1.47	1.60	1.64	2.39	2.53	2.73	3.40	2.39	2.53	2.73	3.40	ns
LVTTL, Slow, 24 mA	1.35	1.47	1.60	1.64	2.28	2.42	2.62	3.24	2.28	2.42	2.62	3.24	ns
LVTTL, Fast, 2 mA	1.35	1.47	1.60	1.64	3.78	3.92	4.12	4.74	3.78	3.92	4.12	4.74	ns
LVTTL, Fast, 4 mA	1.35	1.47	1.60	1.64	2.49	2.63	2.83	3.45	2.49	2.63	2.83	3.45	ns
LVTTL, Fast, 6 mA	1.35	1.47	1.60	1.64	2.44	2.58	2.78	3.40	2.44	2.58	2.78	3.40	ns
LVTTL, Fast, 8 mA	1.35	1.47	1.60	1.64	2.32	2.46	2.66	3.28	2.32	2.46	2.66	3.28	ns
LVTTL, Fast, 12 mA	1.35	1.47	1.60	1.64	1.83	1.97	2.17	2.79	1.83	1.97	2.17	2.79	ns
LVTTL, Fast, 16 mA	1.35	1.47	1.60	1.64	1.83	1.97	2.17	2.79	1.83	1.97	2.17	2.79	ns
LVTTL, Fast, 24 mA	1.35	1.47	1.60	1.64	1.83	1.97	2.17	2.79	1.83	1.97	2.17	2.79	ns
LVCMOS33, QUIETIO, 2 mA	1.34	1.46	1.59	1.64	5.40	5.54	5.74	6.37	5.40	5.54	5.74	6.37	ns
LVCMOS33, QUIETIO, 4 mA	1.34	1.46	1.59	1.64	4.03	4.17	4.37	5.01	4.03	4.17	4.37	5.01	ns
LVCMOS33, QUIETIO, 6 mA	1.34	1.46	1.59	1.64	3.51	3.65	3.85	4.47	3.51	3.65	3.85	4.47	ns
LVCMOS33, QUIETIO, 8 mA	1.34	1.46	1.59	1.64	3.37	3.51	3.71	4.33	3.37	3.51	3.71	4.33	ns
LVCMOS33, QUIETIO, 12 mA	1.34	1.46	1.59	1.64	2.94	3.08	3.28	3.93	2.94	3.08	3.28	3.93	ns
LVCMOS33, QUIETIO, 16 mA	1.34	1.46	1.59	1.64	2.77	2.91	3.11	3.78	2.77	2.91	3.11	3.78	ns
LVCMOS33, QUIETIO, 24 mA	1.34	1.46	1.59	1.64	2.59	2.73	2.93	3.58	2.59	2.73	2.93	3.58	ns
LVCMOS33, Slow, 2 mA	1.34	1.46	1.59	1.64	4.37	4.51	4.71	5.28	4.37	4.51	4.71	5.28	ns
LVCMOS33, Slow, 4 mA	1.34	1.46	1.59	1.64	2.98	3.12	3.32	3.94	2.98	3.12	3.32	3.94	ns

Table 28: IOB Switching Characteristics (Cont'd)

		T	ОРІ			T _{IC}	ООР						
I/O Standard		Speed	I Grade)		Speed	Grade	!		Speed	Grade	!	Units
	-4	-3	-2	-1L	-4	-3	-2	-1L	-4	-3	-2	-1L	
LVCMOS33, Slow, 6 mA	1.34	1.46	1.59	1.64	2.58	2.72	2.92	3.61	2.58	2.72	2.92	3.61	ns
LVCMOS33, Slow, 8 mA	1.34	1.46	1.59	1.64	2.65	2.79	2.99	3.61	2.65	2.79	2.99	3.61	ns
LVCMOS33, Slow, 12 mA	1.34	1.46	1.59	1.64	2.39	2.53	2.73	3.31	2.39	2.53	2.73	3.31	ns
LVCMOS33, Slow, 16 mA	1.34	1.46	1.59	1.64	2.31	2.45	2.65	3.27	2.31	2.45	2.65	3.27	ns
LVCMOS33, Slow, 24 mA	1.34	1.46	1.59	1.64	2.28	2.42	2.62	3.24	2.28	2.42	2.62	3.24	ns
LVCMOS33, Fast, 2 mA	1.34	1.46	1.59	1.64	3.76	3.90	4.10	4.70	3.76	3.90	4.10	4.70	ns
LVCMOS33, Fast, 4 mA	1.34	1.46	1.59	1.64	2.48	2.62	2.82	3.44	2.48	2.62	2.82	3.44	ns
LVCMOS33, Fast, 6 mA	1.34	1.46	1.59	1.64	2.32	2.46	2.66	3.28	2.32	2.46	2.66	3.28	ns
LVCMOS33, Fast, 8 mA	1.34	1.46	1.59	1.64	2.07	2.21	2.41	3.03	2.07	2.21	2.41	3.03	ns
LVCMOS33, Fast, 12 mA	1.34	1.46	1.59	1.64	1.65	1.79	1.99	2.62	1.65	1.79	1.99	2.62	ns
LVCMOS33, Fast, 16 mA	1.34	1.46	1.59	1.64	1.65	1.79	1.99	2.62	1.65	1.79	1.99	2.62	ns
LVCMOS33, Fast, 24 mA	1.34	1.46	1.59	1.64	1.65	1.79	1.99	2.62	1.65	1.79	1.99	2.62	ns
LVCMOS25, QUIETIO, 2 mA	0.82	0.94	1.07	1.13	4.81	4.95	5.15	5.79	4.81	4.95	5.15	5.79	ns
LVCMOS25, QUIETIO, 4 mA	0.82	0.94	1.07	1.13	3.70	3.84	4.04	4.66	3.70	3.84	4.04	4.66	ns
LVCMOS25, QUIETIO, 6 mA	0.82	0.94	1.07	1.13	3.46	3.60	3.80	4.38	3.46	3.60	3.80	4.38	ns
LVCMOS25, QUIETIO, 8 mA	0.82	0.94	1.07	1.13	3.20	3.34	3.54	4.12	3.20	3.34	3.54	4.12	ns
LVCMOS25, QUIETIO, 12 mA	0.82	0.94	1.07	1.13	2.83	2.97	3.17	3.75	2.83	2.97	3.17	3.75	ns
LVCMOS25, QUIETIO, 16 mA	0.82	0.94	1.07	1.13	2.64	2.78	2.98	3.64	2.64	2.78	2.98	3.64	ns
LVCMOS25, QUIETIO, 24 mA	0.82	0.94	1.07	1.13	2.45	2.59	2.79	3.42	2.45	2.59	2.79	3.42	ns
LVCMOS25, Slow, 2 mA	0.82	0.94	1.07	1.13	3.78	3.92	4.12	4.76	3.78	3.92	4.12	4.76	ns
LVCMOS25, Slow, 4 mA	0.82	0.94	1.07	1.13	2.79	2.93	3.13	3.73	2.79	2.93	3.13	3.73	ns
LVCMOS25, Slow, 6 mA	0.82	0.94	1.07	1.13	2.73	2.87	3.07	3.66	2.73	2.87	3.07	3.66	ns
LVCMOS25, Slow, 8 mA	0.82	0.94	1.07	1.13	2.48	2.62	2.82	3.42	2.48	2.62	2.82	3.42	ns
LVCMOS25, Slow, 12 mA	0.82	0.94	1.07	1.13	2.01	2.15	2.35	2.95	2.01	2.15	2.35	2.95	ns
LVCMOS25, Slow, 16 mA	0.82	0.94	1.07	1.13	2.01	2.15	2.35	2.95	2.01	2.15	2.35	2.95	ns
LVCMOS25, Slow, 24 mA	0.82	0.94	1.07	1.13	2.01	2.15	2.35	2.94	2.01	2.15	2.35	2.94	ns
LVCMOS25, Fast, 2 mA	0.82	0.94	1.07	1.13	3.35	3.49	3.69	4.31	3.35	3.49	3.69	4.31	ns
LVCMOS25, Fast, 4 mA	0.82	0.94	1.07	1.13	2.25	2.39	2.59	3.22	2.25	2.39	2.59	3.22	ns
LVCMOS25, Fast, 6 mA	0.82	0.94	1.07	1.13	2.09	2.23	2.43	3.05	2.09	2.23	2.43	3.05	ns
LVCMOS25, Fast, 8 mA	0.82	0.94	1.07	1.13	2.02	2.16	2.36	2.98	2.02	2.16	2.36	2.98	ns
LVCMOS25, Fast, 12 mA	0.82	0.94	1.07	1.13	1.56	1.70	1.90	2.52	1.56	1.70	1.90	2.52	ns
LVCMOS25, Fast, 16 mA	0.82	0.94	1.07	1.13	1.56	1.70	1.90	2.52	1.56	1.70	1.90	2.52	ns
LVCMOS25, Fast, 24 mA	0.82	0.94	1.07	1.13	1.56	1.70	1.90	2.52	1.56	1.70	1.90	2.52	ns
LVCMOS18, QUIETIO, 2 mA	1.18	1.30	1.43	1.86	5.92	6.06	6.26	6.80	5.92	6.06	6.26	6.80	ns
LVCMOS18, QUIETIO, 4 mA	1.18	1.30	1.43	1.86	4.74	4.88	5.08	5.63	4.74	4.88	5.08	5.63	ns
LVCMOS18, QUIETIO, 6 mA	1.18	1.30	1.43	1.86	4.05	4.19	4.39	4.96	4.05	4.19	4.39	4.96	ns
LVCMOS18, QUIETIO, 8 mA	1.18	1.30	1.43	1.86	3.71	3.85	4.05	4.63	3.71	3.85	4.05	4.63	ns
LVCMOS18, QUIETIO, 12 mA	1.18	1.30	1.43	1.86	3.35	3.49	3.69	4.27	3.35	3.49	3.69	4.27	ns

Table 28: IOB Switching Characteristics (Cont'd)

		T	ОРІ			T _{IC}	ОР						
I/O Standard		Speed	Grade	•		Speed	Grade			Speed	Grade	,	Units
	-4	-3	-2	-1L	-4	-3	-2	-1L	-4	-3	-2	-1L	
LVCMOS18, QUIETIO, 16 mA	1.18	1.30	1.43	1.86	3.20	3.34	3.54	4.14	3.20	3.34	3.54	4.14	ns
LVCMOS18, QUIETIO, 24 mA	1.18	1.30	1.43	1.86	2.96	3.10	3.30	3.98	2.96	3.10	3.30	3.98	ns
LVCMOS18, Slow, 2 mA	1.18	1.30	1.43	1.86	4.62	4.76	4.96	5.54	4.62	4.76	4.96	5.54	ns
LVCMOS18, Slow, 4 mA	1.18	1.30	1.43	1.86	3.69	3.83	4.03	4.60	3.69	3.83	4.03	4.60	ns
LVCMOS18, Slow, 6 mA	1.18	1.30	1.43	1.86	3.00	3.14	3.34	3.94	3.00	3.14	3.34	3.94	ns
LVCMOS18, Slow, 8 mA	1.18	1.30	1.43	1.86	2.19	2.33	2.53	3.17	2.19	2.33	2.53	3.17	ns
LVCMOS18, Slow, 12 mA	1.18	1.30	1.43	1.86	1.99	2.13	2.33	2.95	1.99	2.13	2.33	2.95	ns
LVCMOS18, Slow, 16 mA	1.18	1.30	1.43	1.86	1.99	2.13	2.33	2.95	1.99	2.13	2.33	2.95	ns
LVCMOS18, Slow, 24 mA	1.18	1.30	1.43	1.86	1.99	2.13	2.33	2.95	1.99	2.13	2.33	2.95	ns
LVCMOS18, Fast, 2 mA	1.18	1.30	1.43	1.86	3.59	3.73	3.93	4.53	3.59	3.73	3.93	4.53	ns
LVCMOS18, Fast, 4 mA	1.18	1.30	1.43	1.86	2.39	2.53	2.73	3.35	2.39	2.53	2.73	3.35	ns
LVCMOS18, Fast, 6 mA	1.18	1.30	1.43	1.86	1.88	2.02	2.22	2.84	1.88	2.02	2.22	2.84	ns
LVCMOS18, Fast, 8 mA	1.18	1.30	1.43	1.86	1.81	1.95	2.15	2.77	1.81	1.95	2.15	2.77	ns
LVCMOS18, Fast, 12 mA	1.18	1.30	1.43	1.86	1.71	1.85	2.05	2.67	1.71	1.85	2.05	2.67	ns
LVCMOS18, Fast, 16 mA	1.18	1.30	1.43	1.86	1.71	1.85	2.05	2.67	1.71	1.85	2.05	2.67	ns
LVCMOS18, Fast, 24 mA	1.18	1.30	1.43	1.86	1.71	1.85	2.05	2.67	1.71	1.85	2.05	2.67	ns
LVCMOS18_JEDEC, QUIETIO, 2 mA	0.94	1.06	1.19	1.23	5.91	6.05	6.25	6.79	5.91	6.05	6.25	6.79	ns
LVCMOS18_JEDEC, QUIETIO, 4 mA	0.94	1.06	1.19	1.23	4.75	4.89	5.09	5.64	4.75	4.89	5.09	5.64	ns
LVCMOS18_JEDEC, QUIETIO, 6 mA	0.94	1.06	1.19	1.23	4.04	4.18	4.38	4.96	4.04	4.18	4.38	4.96	ns
LVCMOS18_JEDEC, QUIETIO, 8 mA	0.94	1.06	1.19	1.23	3.71	3.85	4.05	4.62	3.71	3.85	4.05	4.62	ns
LVCMOS18_JEDEC, QUIETIO, 12 mA	0.94	1.06	1.19	1.23	3.35	3.49	3.69	4.28	3.35	3.49	3.69	4.28	ns
LVCMOS18_JEDEC, QUIETIO, 16 mA	0.94	1.06	1.19	1.23	3.20	3.34	3.54	4.13	3.20	3.34	3.54	4.13	ns
LVCMOS18_JEDEC, QUIETIO, 24 mA	0.94	1.06	1.19	1.23	2.96	3.10	3.30	3.98	2.96	3.10	3.30	3.98	ns
LVCMOS18_JEDEC, Slow, 2 mA	0.94	1.06	1.19	1.23	4.59	4.73	4.93	5.54	4.59	4.73	4.93	5.54	ns
LVCMOS18_JEDEC, Slow, 4 mA	0.94	1.06	1.19	1.23	3.69	3.83	4.03	4.60	3.69	3.83	4.03	4.60	ns
LVCMOS18_JEDEC, Slow, 6 mA	0.94	1.06	1.19	1.23	3.00	3.14	3.34	3.94	3.00	3.14	3.34	3.94	ns
LVCMOS18_JEDEC, Slow, 8 mA	0.94	1.06	1.19	1.23	2.19	2.33	2.53	3.18	2.19	2.33	2.53	3.18	ns
LVCMOS18_JEDEC, Slow, 12 mA	0.94	1.06	1.19	1.23	1.99	2.13	2.33	2.95	1.99	2.13	2.33	2.95	ns
LVCMOS18_JEDEC, Slow, 16 mA	0.94	1.06	1.19	1.23	1.99	2.13	2.33	2.95	1.99	2.13	2.33	2.95	ns
LVCMOS18_JEDEC, Slow, 24 mA	0.94	1.06	1.19	1.23	1.99	2.13	2.33	2.95	1.99	2.13	2.33	2.95	ns
LVCMOS18_JEDEC, Fast, 2 mA	0.94	1.06	1.19	1.23	3.57	3.71	3.91	4.52	3.57	3.71	3.91	4.52	ns
LVCMOS18_JEDEC, Fast, 4 mA	0.94	1.06	1.19	1.23	2.39	2.53	2.73	3.35	2.39	2.53	2.73	3.35	ns
LVCMOS18_JEDEC, Fast, 6 mA	0.94	1.06	1.19	1.23	1.88	2.02	2.22	2.84	1.88	2.02	2.22	2.84	ns
LVCMOS18_JEDEC, Fast, 8 mA	0.94	1.06	1.19	1.23	1.80	1.94	2.14	2.76	1.80	1.94	2.14	2.76	ns
LVCMOS18_JEDEC, Fast, 12 mA	0.94	1.06	1.19	1.23	1.72	1.86	2.06	2.68	1.72	1.86	2.06	2.68	ns
LVCMOS18_JEDEC, Fast, 16 mA	0.94	1.06	1.19	1.23	1.72	1.86	2.06	2.68	1.72	1.86	2.06	2.68	ns
LVCMOS18_JEDEC, Fast, 24 mA	0.94	1.06	1.19	1.23	1.72	1.86	2.06	2.68	1.72	1.86	2.06	2.68	ns
LVCMOS15, QUIETIO, 2 mA	0.98	1.10	1.23	1.61	5.47	5.61	5.81	6.38	5.47	5.61	5.81	6.38	ns

Table 28: IOB Switching Characteristics (Cont'd)

		T	ОРІ			T _{IC}	ОР			T _I	ОТР		
I/O Standard		Speed	Grade)		Speed	Grade	!		Speed	Grade	1	Units
	-4	-3	-2	-1L	-4	-3	-2	-1L	-4	-3	-2	-1L	
LVCMOS15, QUIETIO, 4 mA	0.98	1.10	1.23	1.61	4.61	4.75	4.95	5.51	4.61	4.75	4.95	5.51	ns
LVCMOS15, QUIETIO, 6 mA	0.98	1.10	1.23	1.61	4.07	4.21	4.41	4.97	4.07	4.21	4.41	4.97	ns
LVCMOS15, QUIETIO, 8 mA	0.98	1.10	1.23	1.61	3.91	4.05	4.25	4.81	3.91	4.05	4.25	4.81	ns
LVCMOS15, QUIETIO, 12 mA	0.98	1.10	1.23	1.61	3.53	3.67	3.87	4.51	3.53	3.67	3.87	4.51	ns
LVCMOS15, QUIETIO, 16 mA	0.98	1.10	1.23	1.61	3.32	3.46	3.66	4.31	3.32	3.46	3.66	4.31	ns
LVCMOS15, Slow, 2 mA	0.98	1.10	1.23	1.61	4.18	4.32	4.52	5.11	4.18	4.32	4.52	5.11	ns
LVCMOS15, Slow, 4 mA	0.98	1.10	1.23	1.61	3.42	3.56	3.76	4.34	3.42	3.56	3.76	4.34	ns
LVCMOS15, Slow, 6 mA	0.98	1.10	1.23	1.61	2.29	2.43	2.63	3.24	2.29	2.43	2.63	3.24	ns
LVCMOS15, Slow, 8 mA	0.98	1.10	1.23	1.61	2.30	2.44	2.64	3.25	2.30	2.44	2.64	3.25	ns
LVCMOS15, Slow, 12 mA	0.98	1.10	1.23	1.61	2.03	2.17	2.37	2.99	2.03	2.17	2.37	2.99	ns
LVCMOS15, Slow, 16 mA	0.98	1.10	1.23	1.61	2.01	2.15	2.35	2.97	2.01	2.15	2.35	2.97	ns
LVCMOS15, Fast, 2 mA	0.98	1.10	1.23	1.61	3.29	3.43	3.63	4.24	3.29	3.43	3.63	4.24	ns
LVCMOS15, Fast, 4 mA	0.98	1.10	1.23	1.61	2.27	2.41	2.61	3.22	2.27	2.41	2.61	3.22	ns
LVCMOS15, Fast, 6 mA	0.98	1.10	1.23	1.61	1.78	1.92	2.12	2.74	1.78	1.92	2.12	2.74	ns
LVCMOS15, Fast, 8 mA	0.98	1.10	1.23	1.61	1.73	1.87	2.07	2.69	1.73	1.87	2.07	2.69	ns
LVCMOS15, Fast, 12 mA	0.98	1.10	1.23	1.61	1.73	1.87	2.07	2.64	1.73	1.87	2.07	2.64	ns
LVCMOS15, Fast, 16 mA	0.98	1.10	1.23	1.61	1.73	1.87	2.07	2.64	1.73	1.87	2.07	2.64	ns
LVCMOS15_JEDEC, QUIETIO, 2 mA	1.03	1.15	1.28	1.31	5.49	5.63	5.83	6.37	5.49	5.63	5.83	6.37	ns
LVCMOS15_JEDEC, QUIETIO, 4 mA	1.03	1.15	1.28	1.31	4.61	4.75	4.95	5.51	4.61	4.75	4.95	5.51	ns
LVCMOS15_JEDEC, QUIETIO, 6 mA	1.03	1.15	1.28	1.31	4.07	4.21	4.41	4.97	4.07	4.21	4.41	4.97	ns
LVCMOS15_JEDEC, QUIETIO, 8 mA	1.03	1.15	1.28	1.31	3.92	4.06	4.26	4.81	3.92	4.06	4.26	4.81	ns
LVCMOS15_JEDEC, QUIETIO, 12 mA	1.03	1.15	1.28	1.31	3.54	3.68	3.88	4.51	3.54	3.68	3.88	4.51	ns
LVCMOS15_JEDEC, QUIETIO, 16 mA	1.03	1.15	1.28	1.31	3.33	3.47	3.67	4.31	3.33	3.47	3.67	4.31	ns
LVCMOS15_JEDEC, Slow, 2 mA	1.03	1.15	1.28	1.31	4.18	4.32	4.52	5.13	4.18	4.32	4.52	5.13	ns
LVCMOS15_JEDEC, Slow, 4 mA	1.03	1.15	1.28	1.31	3.42	3.56	3.76	4.35	3.42	3.56	3.76	4.35	ns
LVCMOS15_JEDEC, Slow, 6 mA	1.03	1.15	1.28	1.31	2.29	2.43	2.63	3.25	2.29	2.43	2.63	3.25	ns
LVCMOS15_JEDEC, Slow, 8 mA	1.03	1.15	1.28	1.31	2.30	2.44	2.64	3.26	2.30	2.44	2.64	3.26	ns
LVCMOS15_JEDEC, Slow, 12 mA	1.03	1.15	1.28	1.31	2.01	2.15	2.35	2.97	2.01	2.15	2.35	2.97	ns
LVCMOS15_JEDEC, Slow, 16 mA	1.03	1.15	1.28	1.31	2.01	2.15	2.35	2.97	2.01	2.15	2.35	2.97	ns
LVCMOS15_JEDEC, Fast, 2 mA	1.03	1.15	1.28	1.31	3.28	3.42	3.62	4.22	3.28	3.42	3.62	4.22	ns
LVCMOS15_JEDEC, Fast, 4 mA	1.03	1.15	1.28	1.31	2.27	2.41	2.61	3.23	2.27	2.41	2.61	3.23	ns
LVCMOS15_JEDEC, Fast, 6 mA	1.03	1.15	1.28	1.31	1.78	1.92	2.12	2.74	1.78	1.92	2.12	2.74	ns
LVCMOS15_JEDEC, Fast, 8 mA	1.03	1.15	1.28	1.31	1.73	1.87	2.07	2.69	1.73	1.87	2.07	2.69	ns
LVCMOS15_JEDEC, Fast, 12 mA	1.03	1.15	1.28	1.31	1.73	1.87	2.07	2.63	1.73	1.87	2.07	2.63	ns
LVCMOS15_JEDEC, Fast, 16 mA	1.03	1.15	1.28	1.31	1.73	1.87	2.07	2.63	1.73	1.87	2.07	2.63	ns
LVCMOS12, QUIETIO, 2 mA	0.91	1.03	1.16	1.33	6.40	6.54	6.74	7.30	6.40	6.54	6.74	7.30	ns
LVCMOS12, QUIETIO, 4 mA	0.91	1.03	1.16	1.33	4.98	5.12	5.32	5.90	4.98	5.12	5.32	5.90	ns
LVCMOS12, QUIETIO, 6 mA	0.91	1.03	1.16	1.33	4.65	4.79	4.99	5.55	4.65	4.79	4.99	5.55	ns

Table 28: IOB Switching Characteristics (Cont'd)

		T _I	OPI		T _{IOOP}			T _{IOTP}					
I/O Standard		Speed	Grade	•		Speed	Grade			Speed	Grade	•	Units
	-4	-3	-2	-1L	-4	-3	-2	-1L	-4	-3	-2	-1L	
LVCMOS12, QUIETIO, 8 mA	0.91	1.03	1.16	1.33	4.23	4.37	4.57	5.21	4.23	4.37	4.57	5.21	ns
LVCMOS12, QUIETIO, 12 mA	0.91	1.03	1.16	1.33	3.98	4.12	4.32	4.94	3.98	4.12	4.32	4.94	ns
LVCMOS12, Slow, 2 mA	0.91	1.03	1.16	1.33	4.98	5.12	5.32	5.91	4.98	5.12	5.32	5.91	ns
LVCMOS12, Slow, 4 mA	0.91	1.03	1.16	1.33	2.84	2.98	3.18	3.81	2.84	2.98	3.18	3.81	ns
LVCMOS12, Slow, 6 mA	0.91	1.03	1.16	1.33	2.77	2.91	3.11	3.72	2.77	2.91	3.11	3.72	ns
LVCMOS12, Slow, 8 mA	0.91	1.03	1.16	1.33	2.34	2.48	2.68	3.31	2.34	2.48	2.68	3.31	ns
LVCMOS12, Slow, 12 mA	0.91	1.03	1.16	1.33	2.08	2.22	2.42	3.06	2.08	2.22	2.42	3.06	ns
LVCMOS12, Fast, 2 mA	0.91	1.03	1.16	1.33	3.46	3.60	3.80	4.44	3.46	3.60	3.80	4.44	ns
LVCMOS12, Fast, 4 mA	0.91	1.03	1.16	1.33	2.35	2.49	2.69	3.30	2.35	2.49	2.69	3.30	ns
LVCMOS12, Fast, 6 mA	0.91	1.03	1.16	1.33	1.79	1.93	2.13	2.75	1.79	1.93	2.13	2.75	ns
LVCMOS12, Fast, 8 mA	0.91	1.03	1.16	1.33	1.68	1.82	2.02	2.64	1.68	1.82	2.02	2.64	ns
LVCMOS12, Fast, 12 mA	0.91	1.03	1.16	1.33	1.66	1.80	2.00	2.62	1.66	1.80	2.00	2.62	ns
LVCMOS12_JEDEC, QUIETIO, 2 mA	1.50	1.62	1.75	1.70	6.39	6.53	6.73	7.31	6.39	6.53	6.73	7.31	ns
LVCMOS12_JEDEC, QUIETIO, 4 mA	1.50	1.62	1.75	1.70	4.98	5.12	5.32	5.88	4.98	5.12	5.32	5.88	ns
LVCMOS12_JEDEC, QUIETIO, 6 mA	1.50	1.62	1.75	1.70	4.67	4.81	5.01	5.54	4.67	4.81	5.01	5.54	ns
LVCMOS12_JEDEC, QUIETIO, 8 mA	1.50	1.62	1.75	1.70	4.23	4.37	4.57	5.22	4.23	4.37	4.57	5.22	ns
LVCMOS12_JEDEC, QUIETIO, 12 mA	1.50	1.62	1.75	1.70	3.99	4.13	4.33	4.94	3.99	4.13	4.33	4.94	ns
LVCMOS12_JEDEC, Slow, 2 mA	1.50	1.62	1.75	1.70	5.00	5.14	5.34	5.90	5.00	5.14	5.34	5.90	ns
LVCMOS12_JEDEC, Slow, 4 mA	1.50	1.62	1.75	1.70	2.85	2.99	3.19	3.80	2.85	2.99	3.19	3.80	ns
LVCMOS12_JEDEC, Slow, 6 mA	1.50	1.62	1.75	1.70	2.76	2.90	3.10	3.72	2.76	2.90	3.10	3.72	ns
LVCMOS12_JEDEC, Slow, 8 mA	1.50	1.62	1.75	1.70	2.35	2.49	2.69	3.30	2.35	2.49	2.69	3.30	ns
LVCMOS12_JEDEC, Slow, 12 mA	1.50	1.62	1.75	1.70	2.09	2.23	2.43	3.05	2.09	2.23	2.43	3.05	ns
LVCMOS12_JEDEC, Fast, 2 mA	1.50	1.62	1.75	1.70	3.46	3.60	3.80	4.42	3.46	3.60	3.80	4.42	ns
LVCMOS12_JEDEC, Fast, 4 mA	1.50	1.62	1.75	1.70	2.35	2.49	2.69	3.31	2.35	2.49	2.69	3.31	ns
LVCMOS12_JEDEC, Fast, 6 mA	1.50	1.62	1.75	1.70	1.79	1.93	2.13	2.76	1.79	1.93	2.13	2.76	ns
LVCMOS12_JEDEC, Fast, 8 mA	1.50	1.62	1.75	1.70	1.69	1.83	2.03	2.65	1.69	1.83	2.03	2.65	ns
LVCMOS12_JEDEC, Fast, 12 mA	1.50	1.62	1.75	1.70	1.66	1.80	2.00	2.62	1.66	1.80	2.00	2.62	ns

Table 29: IOB 3-state ON Output Switching Characteristics (T_{IOTPHZ})

Symbol	Description	Speed Grade						
Symbol	Description	-4	-3	-2	-1L	Units		
T _{IOTPHZ}	T input to Pad high-impedance		1.59	1.59	1.91	ns		

^{1.} Devices with a -1L speed grade do not support Xilinx PCI IP.

I/O Standard Adjustment Measurement Methodology

Input Delay Measurements

Table 30 shows the test setup parameters used for measuring input delay.

Table 30: Input Delay Measurement Methodology

Description	I/O Standard Attribute	V _L ⁽¹⁾	V _H ⁽¹⁾	V _{MEAS} (3)(4)	V _{REF} ⁽²⁾⁽⁴⁾
LVTTL (Low-Voltage Transistor-Transistor Logic)	LVTTL	0	3.0	1.4	_
LVCMOS (Low-Voltage CMOS), 3.3V	LVCMOS33	0	3.3	1.65	_
LVCMOS, 2.5V	LVCMOS25	0	2.5	1.25	_
LVCMOS, 1.8V	LVCMOS18	0	1.8	0.9	_
LVCMOS, 1.5V	LVCMOS15	0	1.5	0.75	_
LVCMOS, 1.2V	LVCMOS12	0	1.2	0.6	_
PCI (Peripheral Component Interface), 33 MHz and 66 MHz, 3.3V	PCI33_3, PCI66_3	Per	PCI Specification	on	_
HSTL (High-Speed Transceiver Logic), Class I & II	HSTL_I, HSTL_II	V _{REF} – 0.5	V _{REF} + 0.5	V _{REF}	0.75
HSTL, Class III	HSTL_III	V _{REF} – 0.5	V _{REF} + 0.5	V_{REF}	0.90
HSTL, Class I & II, 1.8V	HSTL_I_18, HSTL_II_18	V _{REF} - 0.5	V _{REF} + 0.5	V_{REF}	0.90
HSTL, Class III 1.8V	HSTL_III_18	$V_{REF} - 0.5$	V _{REF} + 0.5	V_{REF}	1.1
SSTL (Stub Terminated Transceiver Logic), Class I & II, 3.3V	SSTL3_I, SSTL3_II	V _{REF} – 0.75	V _{REF} + 0.75	V _{REF}	1.5
SSTL, Class I & II, 2.5V	SSTL2_I, SSTL2_II	$V_{REF} - 0.75$	V _{REF} + 0.75	V_{REF}	1.25
SSTL, Class I & II, 1.8V	SSTL18_I, SSTL18_II	$V_{REF} - 0.5$	V _{REF} + 0.5	V_{REF}	0.90
SSTL, Class II, 1.5V	SSTL15_II	V _{REF} – 0.2	V _{REF} + 0.2	V_{REF}	0.75
LVDS (Low-Voltage Differential Signaling), 2.5V & 3.3V	LVDS_25, LVDS_33	1.25 – 0.125	1.25 + 0.125	0(5)	_
LVPECL (Low-Voltage Positive Emitter-Coupled Logic), 2.5V & 3.3V	LVPECL_25, LVPECL_33	1.2 – 0.3	1.2 – 0.3	0(5)	_
BLVDS (Bus LVDS), 2.5V	BLVDS_25	1.3 – 0.125	1.3 + 0.125	0 ⁽⁵⁾	_
Mini-LVDS, 2.5V & 3.3V	MINI_LVDS_25, MINI_LVDS_33	1.2 – 0.125	1.2 + 0.125	0(5)	_
RSDS (Reduced Swing Differential Signaling), 2.5V & 3.3V	RSDS_25, RSDS_33	1.2 – 0.1	1.2 + 0.1	0 ⁽⁵⁾	_
TMDS (Transition Minimized Differential Signaling), 3.3V	TMDS_33	3.0 – 0.1	3.0 + 0.1	0(5)	_
PPDS (Point-to-Point Differential Signaling, 2.5V & 3.3V	PPDS_25, PPDS_33	1.25 – 0.1	1.25 + 0.1	0(5)	_

- Input waveform switches between V_L and V_H . Measurements are made at typical, minimum, and maximum V_{REF} values. Reported delays reflect worst case of these measurements. V_{REF} values 2.
- Input voltage level from which measurement starts.
- This is an input voltage reference that bears no relation to the V_{REF} / V_{MEAS} parameters found in IBIS models and/or noted in Figure 4.
- The value given is the differential input voltage.

Output Delay Measurements

Output delays are measured using a Tektronix P6245 TDS500/600 probe (< 1 pF) across approximately 4" of FR4 microstrip trace. Standard termination was used for all testing. The propagation delay of the 4" trace is characterized separately and subtracted from the final measurement, and is therefore not included in the generalized test setups shown in Figure 4 and Figure 5.

Figure 4: Single-Ended Test Setup

Figure 5: Differential Test Setup

Measurements and test conditions are reflected in the IBIS models except where the IBIS format precludes it. Parameters V_{REF} , R_{REF} , C_{REF} , and V_{MEAS} fully describe the test conditions for each I/O standard. The most accurate prediction of propagation delay in any given application can be obtained through IBIS simulation, using the following method:

- 1. Simulate the output driver of choice into the generalized test setup, using values from Table 31.
- Record the time to V_{MFAS}.
- 3. Simulate the output driver of choice into the actual PCB trace and load, using the appropriate IBIS model or capacitance value to represent the load.
- Record the time to V_{MEAS}.
- Compare the results of steps 2 and 4. The increase or decrease in delay yields the actual propagation delay of the PCB trace.

Table 31: Output Delay Measurement Methodology

Description	I/O Standard Attribute	R _{REF} (Ω)	C _{REF} ⁽¹⁾ (pF)	V _{MEAS} (V)	V _{REF} (V)
LVTTL (Low-Voltage Transistor-Transistor Logic)	LVTTL (all)	1M	0	1.4	0
LVCMOS (Low-Voltage CMOS), 3.3V	LVCMOS33	1M	0	1.65	0
LVCMOS, 2.5V	LVCMOS25	1M	0	1.25	0
LVCMOS, 1.8V	LVCMOS18	1M	0	0.9	0
LVCMOS, 1.5V	LVCMOS15	1M	0	0.75	0
LVCMOS, 1.2V	LVCMOS12	1M	0	0.75	0
PCI (Peripheral Component Interface)	PCI33_3, PCI66_3 (rising edge)	25	10 ⁽²⁾	0.94	0
33 MHz and 66 MHz, 3.3V	PCI33_3, PCI66_3 (falling edge)	25	10 ⁽²⁾	2.03	3.3
HSTL (High-Speed Transceiver Logic), Class I	HSTL_I	50	0	V_{REF}	0.75
HSTL, Class II	HSTL_II	25	0	V _{REF}	0.75
HSTL, Class III	HSTL_III	50	0	0.9	1.5
HSTL, Class I, 1.8V	HSTL_I_18	50	0	V_{REF}	0.9
HSTL, Class II, 1.8V	HSTL_II_18	25	0	V _{REF}	0.9
HSTL, Class III, 1.8V	HSTL_III_18	50	0	1.1	1.8
SSTL (Stub Series Terminated Logic), Class I, 1.8V	SSTL18_I	50	0	V_{REF}	0.9
SSTL, Class II, 1.8V	SSTL18_II	25	0	V_{REF}	0.9
SSTL, Class I, 2.5V	SSTL2_I	50	0	V_{REF}	1.25

Table 31: Output Delay Measurement Methodology (Cont'd)

Description	I/O Standard Attribute	R _{REF} (Ω)	C _{REF} ⁽¹⁾ (pF)	V _{MEAS} (V)	V _{REF} (V)
SSTL, Class II, 2.5V	SSTL2_II	25	0	V_{REF}	1.25
SSTL, Class II, 1.5V	SSTL15_II	25	0	V _{REF}	0.75
LVDS (Low-Voltage Differential Signaling), 2.5V & 3.3V	LVDS_25, LVDS_33	100	0	0(3)	1.2
BLVDS (Bus LVDS), 2.5V	BLVDS_25	100	0	0(3)	0
Mini-LVDS, 2.5V & 3.3V	MINI_LVDS_25, MINI_LVDS_33	100	0	0(3)	1.2
RSDS (Reduced Swing Differential Signaling), 2.5V & 3.3V	RSDS_25, RSDS_33	100	0	0(3)	1.2
TMDS (Transition Minimized Differential Signaling), 3.3V	TMDS_33	100	0	0(3)	
PPDS (Point-to-Point Differential Signaling, 2.5V & 3.3V	PPDS_25, PPDS_33	100	0	0(3)	_

- 1. C_{REF} is the capacitance of the probe, nominally 0 pF.
- Per PCI specifications.
- 3. The value given is the differential output voltage.

Simultaneously Switching Outputs

Due to lead inductance, a given package supports a limited number of simultaneous switching outputs (SSOs) when using fast, high-drive outputs. Table 32 and Table 33 provide guidelines for the recommended maximum allowable number of SSOs. These guidelines describe the maximum number of user I/O pins of an output signal standard that should simultaneously switch in the same direction, while maintaining a safe level of switching noise for that particular signal standard. Meeting these guidelines for the stated test conditions ensures that the FPGA operates free from the adverse effects of GND and power bounce.

For each device/package combination, Table 32 provides the number of equivalent $V_{\rm CCO}$ /GND pairs per bank. For each output signal standard and drive strength, Table 33 recommends the maximum number of SSOs, switching in the same direction, allowed per $V_{\rm CCO}$ /GND pair within an I/O bank. The guidelines are categorized by package style, slew rate, and output drive current. The number of SSOs are also specified by I/O bank. Multiply the appropriate numbers from each table to calculate the maximum number of SSOs allowed within an I/O bank. The guidelines assume that all pins within a bank use the same I/O standard. Exceeding these SSO guidelines can result in increased power or GND bounce, degraded signal integrity, or increased system jitter. For a given I/O standard, if the SSO limit per pair in Table 33 is greater than the maximum I/O per pair in Table 32, then there is no SSO limit for the exclusive use of that I/O standard.

The recommended maximum SSO values assume that the FPGA is soldered on a printed circuit board and that the board uses sound design practices. Due to the additional lead inductance introduced by the socket, the SSO values do not apply for FPGAs mounted in sockets. The SSO values assume that the V_{CCAUX} is powered at 3.3V. Setting V_{CCAUX} to 2.5V provides better SSO characteristics. For more detail, see the *Spartan-6 FPGA SelectIO Resources User Guide*.

Table 32: Spartan-6 FPGA V_{CCO}/GND Pairs per Bank

Package	Devices	Description	Bank 0	Bank 1	Bank 2	Bank 3	Bank 4	Bank 5
T00144	LV	V _{CCO} /GND Pairs	3	3	2	3	N/A	N/A
TQG144	LX	Maximum I/O per Pair	8	8	13	8	N/A	N/A
CDC106	LX	VCCO/GND Pairs	4	6	4	6	N/A	N/A
CPG196	LX	Maximum I/O per Pair	6	4	7	4	N/A	N/A
CSG225	LX	V _{CCO} /GND Pairs	4	4	4	4	N/A	N/A
USG225	LX	Maximum I/O per Pair	10	10	9	10	N/A	N/A
FT(C)050	LV	V _{CCO} /GND Pairs	5	6	4	5	N/A	N/A
FT(G)256	LX	Maximum I/O per Pair	8	9	9	10	N/A	N/A
	LX	V _{CCO} /GND Pairs	6	6	6	6	N/A	N/A
000004	LX	Maximum I/O per Pair	10	9	10	9	N/A	N/A
CSG324	LXT	V _{CCO} /GND Pairs	4	6	6	6	N/A	N/A
	LXI	Maximum I/O per Pair	4	9	10	9	N/A	N/A
	LX	V _{CCO} /GND Pairs	8	13	8	13	N/A	N/A
CSG484	LX	Maximum I/O per Pair	7	8	7	8	N/A	N/A
C5G464	LVT	V _{CCO} /GND Pairs	7	12	8	13	N/A	N/A
	LXT	Maximum I/O per Pair	5	8	6	8	N/A	N/A
	LX	V _{CCO} /GND Pairs	10	10	11	11	N/A	N/A
FC(C)494	LX	Maximum I/O per Pair	6	8	9	8	N/A	N/A
FG(G)484	LXT	V _{CCO} /GND Pairs	6	10	11	10	N/A	N/A
	LXI	Maximum I/O per Pair	7	8	7	8	N/A	N/A
	LX45	V _{CCO} /GND Pairs	12	15	10	16	N/A	N/A
	LA45	Maximum I/O per Pair	3	7	8	7	N/A	N/A
FG(G)676	LX75, LX100, LX150	V _{CCO} /GND Pairs	12	9	10	10	6	6
FG(G)070	LA75, LA100, LA150	Maximum I/O per Pair	9	10	9	9	8	9
	LVT	V _{CCO} /GND Pairs	10	8	10	8	7	7
	LXT	Maximum I/O per Pair	8	7	8	8	7	7
	LX	V _{CCO} /GND Pairs	17	14	17	14	7	8
EC(C)000	LA	Maximum I/O per Pair	7	6	7	8	7	6
FG(G)900	LVT	V _{CCO} /GND Pairs	15	14	13	14	7	8
	LXT	Maximum I/O per Pair	7	6	8	8	7	6
								-

Table 33: SSO Limit per V_{CCO}/GND Pair

		Drive			SSO Limit per	V _{CCO} /GND Pa	ir
v _{cco}	I/O Standard		Slew	CSG225, F1	4, CPG196, 「(G)256, and in CSG324	FG(G)676, F	4, FG(G)484, FG(G)900, and es in CSG324
				Bank 0/2	Bank 1/3	Bank 0/2	Bank 1/3/4/5
			Fast	30 ⁽¹⁾	35	30	35
		2	Slow	51	55	51	52
			QuietIO	71	58	71	70
			Fast	17	17	17	19
		4	Slow	23	25	23	22
			QuietIO	35	32	35	32
			Fast	13	15	13	14
1.2V	LVCMOS12, LVCMOS12_JEDEC	6	Slow	19	20	19	17
			QuietIO	26	24	26	24
			Fast	N/A	12	N/A	12
		8	Slow	N/A	15	N/A	13
			QuietIO	N/A	20	N/A	19
			Fast	N/A	5	N/A	4
		12	Slow	N/A	8	N/A	5
			QuietIO	N/A	11	N/A	10

Table 33: SSO Limit per V_{CCO} /GND Pair (Cont'd)

					SSO Limit per	V _{CCO} /GND Pa	ir
v _{cco}	I/O Standard	Drive	Slew	CSG225, F7	4, CPG196, Γ(G)256, and s in CSG324	All CSG484, FG(G)484 FG(G)676, FG(G)900, ar LXT devices in CSG324	
				Bank 0/2	Bank 1/3	Bank 0/2	Bank 1/3/4/5
			Fast	33	40	33	41
		2	Slow	57	62	57	56
			QuietIO	70	67	70	66
		4	Fast	19	21	19	21
			Slow	30	30	30	24
			QuietIO	38	33	38	30
			Fast	14	16	14	16
	LVCMOS15, LVCMOS15_JEDEC	6	Slow	18	19	18	17
			QuietIO	27	24	27	21
	LVCIMOS 15, LVCIMOS 15_JEDEC	8	Fast	11	13	11	12
			Slow	16	16	16	14
			QuietIO	23	20	23	17
1.5V			Fast	N/A	5	N/A	4
1.50		12	Slow	N/A	8	N/A	5
			QuietIO	N/A	10	N/A	9
			Fast	N/A	5	N/A	4
		16	Slow	N/A	8	N/A	8
			QuietIO	N/A	10	N/A	9
	HSTL_I			9	10	9	10
	HSTL_II			N/A	5	N/A	6
	HSTL_III			7	9	7	9
	DIFF_HSTL_I			27	30	27	30
	DIFF_HSTL_II			N/A	15	N/A	18
	DIFF_HSTL_III			21	27	21	27
	SSTL_15_II (3)			N/A	5	N/A	4
	DIFF_SSTL_15_II (3)			N/A	15	N/A	12

Table 33: SSO Limit per V_{CCO}/GND Pair (Cont'd)

					SSO Limit per	V _{CCO} /GND Pa	ir
v _{cco}	I/O Standard	Drive	Slew	CSG225, F1	4, CPG196, 「(G)256, and in CSG324	FG(G)676, F	4, FG(G)484, G(G)900, and s in CSG324
				Bank 0/2	Bank 1/3	Bank 0/2	Bank 1/3/4/5
			Fast	39	46	39	47
		2	Slow	65	75	65	74
			QuietIO	80	80	80	85
			Fast	22	25	22	25
		4	Slow	38	36	38	29
			QuietIO	45	40	45	35
		6	Fast	16	18	16	17
			Slow	27	25	27	19
			QuietIO	30	28	30	23
			Fast	13	15	13	14
	LVCMOS18, LVCMOS18_JEDEC	8	Slow	16	18	16	16
			QuietIO	25	22	25	18
		12	Fast	5	7	5	5
			Slow	7	8	7	6
			QuietIO	11	10	11	8
			Fast	4	5	4	4
1.8V			Slow	7	8	7	5
			QuietIO	11	10	11	8
			Fast	N/A	5	N/A	3
		24	Slow	N/A	8	N/A	8
			QuietIO	N/A	10	N/A	8
	HSTL_I_18			9	10	9	9
	HSTL_II_18			N/A	5	N/A	6
	HSTL_III_18			9	10	9	11
	DIFF_HSTL_I_18			27	30	27	27
	DIFF_HSTL_II_18			N/A	15	N/A	18
	DIFF_HSTL_III_18			27	30	27	33
	MOBILE_DDR (3)			12	14	12	14
	DIFF_MOBILE_DDR (3)			36	42	36	42
	SSTL_18_I (3)			9	10	9	10
	SSTL_18_II (3)			N/A	5	N/A	4
	DIFF_SSTL_18_I (3)			27	30	27	30
	DIFF_SSTL_18_II (3)			N/A	15	N/A	12

Table 33: SSO Limit per V_{CCO}/GND Pair (Cont'd)

					SSO Limit per	V _{CCO} /GND Pa	ir
v _{cco}	I/O Standard	Drive	Slew	CSG225, F1	4, CPG196, Γ(G)256, and s in CSG324	FG(G)676, F	4, FG(G)484, G(G)900, and s in CSG324
				Bank 0/2	Bank 1/3	Bank 0/2	Bank 1/3/4/5
			Fast	38	43	38	43
		2	Slow	46	52	46	48
			QuietIO	57	64	57	59
			Fast	21	24	21	23
		4	Slow	26	31	26	27
			QuietIO	33	32	33	30
			Fast	15	17	15	16
		6	Slow	19	22	19	19
			QuietIO	25	23	25	19
			Fast	12	15	12	14
	LVCMOS25	8	Slow	15	18	15	16
			QuietIO	21	19	21	16
2.5V			Fast	1	3	1	1
		12	Slow	2	7	2	4
			QuietIO	3	8	3	8
			Fast	1	3	1	1
		16	Slow	3	7	3	3
			QuietIO	4	9	4	8
			Fast	N/A	3	N/A	1
		24	Slow	N/A	5	N/A	2
			QuietIO	N/A	8	N/A	6
	SSTL_2_I (3)	I		10	11	10	11
	SSTL_2_II (3)			N/A	7	N/A	7
	DIFF_SSTL_2_I (3)			30	33	30	33
	DIFF_SSTL_2_II (3)			N/A	21	N/A	24

Table 33: SSO Limit per V_{CCO} /GND Pair (Cont'd)

					SSO Limit per	V _{CCO} /GND Pai	r
v _{cco}	I/O Standard	Drive	Slew	CSG225, F1	4, CPG196, (G)256, and in CSG324	FG(G)676, F	l, FG(G)484, G(G)900, and s in CSG324
				Bank 0/2	Bank 1/3	Bank 0/2	Bank 1/3/4/5
			Fast	42	46	42	44
		2	Slow	50	55	50	49
			QuietIO	60	68	60	60
			Fast	21	27	21	25
		4	Slow	32	37	32	32
			QuietIO	39	42	39	37
			Fast	14	19	14	17
		6	Slow	19	25	19	22
			QuietIO	29	30	29	25
			Fast	11	15	11	14
3.3V	LVCMOS33	8	Slow	15	20	15	18
			QuietIO	25	24	25	20
			Fast	1	3	1	1
		12	Slow	2	5	2	2
			QuietIO	4	9	4	7
			Fast	1	2	1	1
		16	Slow	1	5	1	1
			QuietIO	3	10	3	8
			Fast	1	2	1	1
		24	Slow	2	5	2	1
			QuietIO	7	9	7	7

Table 33: SSO Limit per V_{CCO}/GND Pair (Cont'd)

					SSO Limit per	V _{CCO} /GND Pa	ir
v _{cco}	I/O Standard	Drive	Slew	CSG225, F7	4, CPG196, Γ(G)256, and s in CSG324	FG(G)676, F	4, FG(G)484, G(G)900, and s in CSG324
				Bank 0/2	Bank 1/3	Bank 0/2	Bank 1/3/4/5
			Fast	53	65	53	62
		2	Slow	70	80	70	73
			QuietIO	79	89	79	91
			Fast	23	30	23	27
		4	Slow	34	41	34	37
			QuietIO	44	49	44	46
			Fast	16	21	16	20
		6	Slow	21	28	21	25
		QuietIO	34	39	34	34	
		Fast	12	16	12	15	
	LVTTL	8	Slow	16	22	16	19
			QuietIO	27	28	27	24
			Fast	1	3	1	1
3.3V		12	Slow	2	5	2	4
3.31			QuietIO	2	10	2	8
			Fast	1	3	1	1
		16	Slow	1	7	1	2
			QuietIO	3	11	3	8
			Fast	1	2	1	1
		24	Slow	2	5	2	2
			QuietIO	8	9	8	8
	PCl33_3		,	18	19	18	19
	PCI66_3			18	19	18	19
	SSTL_3_I			5	8	5	8
	SSTL_3_II			3	5	3	3
	DIFF_SSTL_3_I			15	24	15	24
	DIFF_SSTL_3_II			9	15	9	9
	SDIO			17	18	17	15

Table 33: SSO Limit per V_{CCO}/GND Pair (Cont'd)

V _{cco}	I/O Standard	Drive	Slew	SSO Limit per V _{CCO} /GND Pair				
				All TQG144, CPG196, CSG225, FT(G)256, and LX devices in CSG324		All CSG484, FG(G)484, FG(G)676, FG(G)900, and LXT devices in CSG324		
				Bank 0/2	Bank 1/3	Bank 0/2	Bank 1/3/4/5	
Various	LVDS_33			16	N/A	16	N/A	
	LVDS_25			20	N/A	20	N/A	
	BLVDS_25			20	48	20	20	
	MINI_LVDS_33			13	N/A	13	N/A	
	MINI_LVDS_25			18	N/A	18	N/A	
	RSDS_33			12	N/A	12	N/A	
	RSDS_25			15	N/A	15	N/A	
	TMDS_33			83	N/A	83	N/A	
	PPDS_33			12	N/A	12	N/A	
	PPDS_25			16	N/A	16	N/A	
	DISPLAY_PORT			42	40	42	30	
	I2C			47	55	47	42	
	SMBUS			44	52	44	40	

- 1. SSO limits greater than the number of I/O per V_{CCO} /GND pair (Table 32) indicate No Limit for the given I/O standard. They are provided in this table to calculate limits when using multiple I/O standards in a bank.
- 2. Not available (N/A) indicates that the I/O standard is not available in the given bank.
- 3. When used with the MCB, these signals are exempt from SSO analysis due to the known activity of the MCB switching patterns. SSO performance is validated for all MCB instances. MCB outputs can, in some cases, exceed the SSO limits.

Input/Output Logic Switching Characteristics

Table 34: ILOGIC2 Switching Characteristics

Compleal	Decembries		l luite			
Symbol	Description		-3	-2	-1L	Units
Setup/Hold						
T _{ICE0CK} /T _{ICKCE0}	CE0 pin Setup/Hold with respect to CLK		0.56 -0.25	0.79 -0.22	1.24 -0.55	ns
T _{ISRCK} /T _{ICKSR}	SR pin Setup/Hold with respect to CLK	0.74 -0.23	0.74 -0.22	0.98 -0.20	1.35 -0.49	ns
T _{IDOCK} /T _{IOCKD}	D pin Setup/Hold with respect to CLK without Delay	1.19 -0.83	1.36 -0.83	1.73 -0.83	1.97 -1.09	ns
T _{IDOCKD} /T _{IOCKDD}	DDLY pin Setup/Hold with respect to CLK (using IODELAY2)	0.31 0.00	0.47 0.00	0.54 0.00	0.64 -0.16	ns
Combinatorial						
T _{IDI}	D pin to O pin propagation delay, no Delay	0.95	1.28	1.53	1.97	ns
T _{IDID}	DDLY pin to O pin propagation delay (using IODELAY2)	0.23	0.39	0.44	0.64	ns
Sequential Delays						
T _{IDLO}	D pin to Q pin using flip-flop as a latch without Delay	1.56	1.86	2.39	3.22	ns
T _{IDLOD}	DDLY pin to Q1 pin using flip-flop as a latch (using IODELAY2)	0.68	0.97	1.20	1.89	ns
T _{ICKQ}	CLK to Q outputs	1.03	1.24	1.43	1.66	ns
T _{RQ_ILOGIC2}	SR pin to Q outputs	1.81	1.81	2.50	3.05	ns

Table 35: OLOGIC2 Switching Characteristics

0	B		Speed Grade				
Symbol	Description		-3	-2	-1L	Units	
Setup/Hold		·					
T _{ODCK} /T _{OCKD}	D1/D2 pins Setup/Hold with respect to CLK	0.60 -0.05	0.86 -0.05	1.18 0.00	1.15 -0.26	ns	
T _{OOCECK} /T _{OCKOCE}	OCE pin Setup/Hold with respect to CLK	0.75 -0.10	0.75 -0.10	1.01 -0.05	0.56 -0.22	ns	
T _{OSRCK} /T _{OCKSR}	SR pin Setup/Hold with respect to CLK	0.68 -0.28	0.79 -0.28	1.03 -0.23	1.09 -0.46	ns	
T _{OTCK} /T _{OCKT}	T1/T2 pins Setup/Hold with respect to CLK	0.24 -0.08	0.56 -0.06	0.83 -0.01	0.86 -0.18	ns	
T _{OTCECK} /T _{OCKTCE}	TCE pin Setup/Hold with respect to CLK	0.58 -0.06	0.72 -0.06	1.18 -0.01	0.47 -0.12	ns	
Sequential Delays							
T _{OCKQ}	CLK to OQ/TQ out	0.55	0.51	0.74	0.97	ns	
T _{RQ_OLOGIC2}	SR pin to OQ/TQ out	1.81	1.81	2.50	3.05	ns	

Input Serializer/Deserializer Switching Characteristics

Table 36: ISERDES2 Switching Characteristics

Cumbal	Description		Units				
Symbol	Description	-4	-3	-2	-1L	Units	
Setup/Hold for Control Lines							
T _{ISCCK_BITSLIP} / T _{ISCKC_BITSLIP}	BITSLIP pin Setup/Hold with respect to CLKDIV	0.16 -0.09	0.20 -0.09	0.31 -0.09	0.34 -0.14	ns	
T _{ISCCK_CE} / T _{ISCKC_CE}	CE pin Setup/Hold with respect to CLK	0.71 -0.47	0.71 -0.42	0.97 -0.42	1.39 -0.71	ns	
Setup/Hold for Data Lines		- 11				•	
T _{ISDCK_D} /T _{ISCKD_D}	D pin Setup/Hold with respect to CLK	0.24 -0.15	0.25 -0.05	0.29 -0.05	0.12 -0.06	ns	
TISDCK_DDLY /TISCKD_DDLY	DDLY pin Setup/Hold with respect to CLK (using IODELAY2)	-0.25 0.30	-0.25 0.42	-0.25 0.56	-0.54 0.67	ns	
T _{ISDCK_D_DDR} /T _{ISCKD_D_DDR}	D pin Setup/Hold with respect to CLK at DDR mode	-0.03 0.04	-0.03 0.16	-0.03 0.18	-0.05 0.12	ns	
TISDCK_DDLY_DDR/ TISCKD_DDLY_DDR	D pin Setup/Hold with respect to CLK at DDR mode (using IODELAY2)	-0.40 0.48	-0.40 0.53	-0.40 0.71	-0.71 0.86	ns	
Sequential Delays						•	
T _{ISCKO_Q}	CLKDIV to out at Q pin	1.30	1.44	2.02	2.22	ns	

Output Serializer/Deserializer Switching Characteristics

Table 37: OSERDES2 Switching Characteristics

Symbol	December 1		Speed Grade					
Symbol	Description	-4	-3	-2	-1L	Units		
Setup/Hold								
T _{OSDCK_D} /T _{OSCKD_D}	D input Setup/Hold with respect to CLKDIV	-0.03 1.02	-0.03 1.17	-0.03 1.27	-0.02 0.23	ns		
T _{OSDCK_T} /T _{OSCKD_T} ⁽¹⁾	T input Setup/Hold with respect to CLK	-0.05 1.03	-0.05 1.13	-0.05 1.23	-0.05 0.24	ns		
T _{OSCCK_OCE} /T _{OSCKC_OCE}	OCE input Setup/Hold with respect to CLK	0.12 -0.03	0.15 -0.03	0.24 -0.03	0.28 -0.17	ns		
T _{OSCCK_TCE} /T _{OSCKC_TCE}	TCE input Setup/Hold with respect to CLK	0.14 -0.08	0.17 -0.08	0.27 -0.08	0.31 -0.16	ns		
Sequential Delays		'						
T _{OSCKO_OQ}	Clock to out from CLK to OQ	0.94	1.11	1.51	1.89	ns		
T _{OSCKO_TQ}	Clock to out from CLK to TQ	0.94	1.11	1.51	1.91	ns		

 $^{1. \}quad T_{OSDCK_T2}/T_{OSCKD_T2} \ (T \ input \ setup/hold \ with \ respect \ to \ CLKDIV) \ are \ reported \ as \ T_{OSDCK_T}/T_{OSCKD_T} \ in \ TRACE \ report.$

Input/Output Delay Switching Characteristics

Table 38: IODELAY2 Switching Characteristics

Cymbal	December		Speed	Grade		Units
Symbol	Description	-4	-3	-2	-1L	Units
TIODCCK_CAL / TIODCKC_CAL	CAL pin Setup/Hold with respect to CK	0.28 -0.13	0.33 -0.13	0.48 -0.13	0.57 -0.24	ns
T _{IODCCK_CE} / T _{IODCKC_CE}	CE pin Setup/Hold with respect to CK	0.14 -0.03	0.17 -0.03	0.25 -0.02	0.33 0.01	ns
TIODCCK_INC/ TIODCKC_INC	INC pin Setup/Hold with respect to CK	0.10 0.02	0.12 0.03	0.18 0.06	0.23 0.11	ns
T _{IODCCK_RST} / T _{IODCKC_RST}	RST pin Setup/Hold with respect to CK	0.12 -0.02	0.15 -0.02	0.22 -0.01	0.28 0.02	ns
T _{TAP1} ⁽²⁾	Maximum tap 1 delay	8	14	16		ps
T _{TAP2}	Maximum tap 2 delay	40	66	77		ps
T _{TAP3}	Maximum tap 3 delay	95	120	140		ps
T _{TAP4}	Maximum tap 4 delay	108	141	166		ps
T _{TAP5}	Maximum tap 5 delay	171	194	231		ps
T _{TAP6}	Maximum tap 6 delay	207	249	292		ps
T _{TAP7}	Maximum tap 7 delay	212	276	343		ps
T _{TAP8}	Maximum tap 8 delay	292	341	424		ps
F _{MINCAL}	Minimum allowed bit rate for calibration in variable mode: VARIABLE_FROM_ZERO, VARIABLE_FROM_HALF_MAX, and DIFF_PHASE_DETECTOR.	188	188	188		Mb/s
T _{IODDO_IDATAIN}	Propagation delay through IODELAY2	Note 1	Note 1	Note 1	Note 1	
T _{IODDO_ODATAIN}	Propagation delay through IODELAY2	Note 1	Note 1	Note 1	Note 1	

^{1.} Delay depends on IODELAY2 tap setting. See TRACE report for actual values.

Maximum delay = integer (number of taps/8) × T_{TAP8} + T_{TAP9} (where n equals the remainder). For minimum delay consult the TRACE setup and hold report. Minimum delay is greater than 30% of the maximum delay.

CLB Switching Characteristics (SLICEM Only)

Table 39: CLB Switching Characteristics (SLICEM Only)

Symbol	Description		Speed	Grade		Units
Зупівої	Description	-4	-3	-2	-1L	Units
Combinatorial Dela	ays					
T _{ILO}	An – Dn LUT inputs to A to D outputs	0.21	0.26	0.38	0.49	ns, Max
	An – Dn LUT inputs through F7AMUX/F7BMUX to AMUX/CMUX output	0.37	0.43	0.61	0.80	ns, Max
T _{OPAB}	An – Dn LUT inputs through F7AMUX or F7BMUX and F8MUX to BMUX output	0.37	0.46	0.65	0.86	ns, Max
T _{ITO}	An – Dn LUT inputs through latch to AQ – DQ outputs	0.82	0.95	1.28	1.70	ns, Max
T _{TITO_LOGIC}	An – Dn LUT inputs to AQ – DQ outputs (latch as logic)	0.82	0.95	1.28	1.70	ns, Max
T _{OPCYA}	An LUT inputs to COUT output	0.38	0.48	0.72	0.95	ns, Max
T _{OPCYB}	Bn LUT inputs to COUT output	0.38	0.49	0.71	0.92	ns, Max
T _{OPCYC}	Cn LUT inputs to COUT output	0.28	0.33	0.49	0.67	ns, Max
T _{OPCYD}	Dn LUT inputs to COUT output	0.28	0.35	0.48	0.63	ns, Max
T _{AXCY}	AX input to COUT output	0.21	0.26	0.40	0.51	ns, Max
T _{BXCY}	BX input to COUT output	0.13	0.16	0.24	0.35	ns, Max
T _{CXCY}	CX input to COUT output	0.10	0.12	0.18	0.18	ns, Max
T _{DXCY}	DX input to COUT output	0.09	0.11	0.14	0.18	ns, Max
T _{BYP}	CIN input to COUT output	0.08	0.10	0.13	0.11	ns, Max
T _{CINA}	CIN input to AMUX output	0.21	0.22	0.29	0.47	ns, Max
T _{CINB}	CIN input to BMUX output	0.30	0.31	0.46	0.58	ns, Max
T _{CINC}	CIN input to CMUX output	0.29	0.31	0.41	0.59	ns, Max
T _{CIND}	CIN input to DMUX output	0.31	0.32	0.44	0.67	ns, Max
Sequential Delays						
T _{CKO}	Clock to AQ – DQ outputs	0.45	0.53	0.64	0.82	ns, Max
Setup and Hold Tir	mes of CLB Flip-Flops Before/After Clock CLK			I		
T _{DICK} /T _{CKDI}	AX – DX input to CLK on A – D flip-flops	0.42 0.28	0.47 0.39	0.74 0.54	0.99 0.58	ns, Min
T _{CECK} /T _{CKCE}	CE input to CLK on A – D flip-flops	0.31 -0.07	0.37 -0.07	0.59 -0.07	0.59 -0.27	ns, Min
T _{SRCK} /T _{CKSR}	SR input to CLK on A – D flip-flops	0.34 0.02	0.42 0.02	0.49 0.02	0.63 -0.33	ns, Min
T _{CINCK} /T _{CKCIN}	CIN input to CLK on A – D flip-flops	0.31 -0.17	0.31 -0.13	0.49 -0.12	0.79 -0.46	ns, Min
Set/Reset			1			
T _{RPW}	SR input minimum pulse width	0.41	0.48	0.65	1.58	ns, Min
T _{RQ}	Delay from SR input to AQ - DQ flip-flops	1.81	1.81	2.50	3.05	ns, Max
T _{CEO}	Delay from CE input to AQ - DQ flip-flops	0.53	0.65	0.92	1.36	ns, Max
F _{TOG}	Toggle frequency (for export control)	862	806	667		MHz
				1	1	

CLB Distributed RAM Switching Characteristics (SLICEM Only)

Table 40: CLB Distributed RAM Switching Characteristics (SLICEM Only)

Complete	Decariation		Speed	Grade		Heite
Symbol	Description	-4	-3	-2	-1L	Units
Sequential Delays						
T _{SHCKO}	Clock to A – D outputs	1.26	1.55	2.12	2.56	ns, Max
	Clock to A – D outputs (direct output path)	0.96	1.20	1.60		ns, Max
Setup and Hold Time	s Before/After Clock CLK	,				
T _{DS} /T _{DH}	AX – DX or AI – DI inputs to CLK	0.59 0.17	0.73 0.22	1.04 0.37	1.17 0.33	ns, Min
T _{AS} /T _{AH}	Address An inputs to clock	0.28 0.35	0.32 0.42	0.40 0.67	0.26 0.71	ns, Min
T _{WS} /T _{WH}	WE input to clock	0.31 -0.08	0.37 -0.08	0.59 -0.08	0.59 -0.27	ns, Min
T _{CECK} /T _{CKCE}	CE input to CLK	0.31 -0.08	0.37 -0.08	0.59 -0.08	0.59 -0.27	ns, Min

CLB Shift Register Switching Characteristics (SLICEM Only)

Table 41: CLB Shift Register Switching Characteristics

Symbol	Description		Speed Grade					
Symbol	Description	-4	-3	-2	-1L	Units		
Sequential Delays								
T _{REG}	Clock to A – D outputs	1.35	1.78	2.14	2.89	ns, Max		
	Clock to A – D outputs (direct output path)	1.24	1.65	1.95		ns, Max		
Setup and Hold Time	es Before/After Clock CLK	+		1		•		
T _{WS} /T _{WH}	WE input to CLK	0.20 -0.07	0.24 -0.07	0.36 -0.07	0.59 -0.17	ns, Min		
T _{CECK} /T _{CKCE}	CE input to CLK	0.27 0.36	0.29 0.38	0.52 0.40	0.59 -0.17	ns, Min		
T_{DS}/T_{DH}	AX – DX or AI – DI inputs to CLK	0.07 0.11	0.09 0.14	0.18 0.28	1.16 0.28	ns, Min		

Block RAM Switching Characteristics

Table 42: Block RAM Switching Characteristics

0	D		11			
Symbol	Description	-4	-3	-2	-1L	Units
Block RAM Clock to Out Dela	ys					
T _{RCKO_DO}	Clock CLK to DOUT output (without output register) ⁽¹⁾	1.85	2.10	2.90	3.50	ns, Max
T _{RCKO_DO_REG}	Clock CLK to DOUT output (with output register)(2)	1.60	1.75	1.90	2.30	ns, Max
Setup and Hold Times Before	/After Clock CLK		1	1	I.	<u>'</u>
T _{RCCK_ADDR} /T _{RCKC_ADDR}	ADDR inputs ⁽³⁾	0.35 0.10	0.40 0.12	0.40 0.15	0.50 0.15	ns, Min
T _{RDCK_DI} /T _{RCKD_DI}	DIN inputs ⁽⁴⁾	0.30 0.10	0.30 0.10	0.30 0.12	0.40 0.15	ns, Min
T _{RCCK_EN} /T _{RCKC_EN}	Block RAM Enable (EN) input	0.21 0.05	0.22 0.06	0.28 0.10	0.26 0.10	ns, Min
T _{RCCK_REGCE} /T _{RCKC_REGCE}	CE input of output register	0.20 0.10	0.20 0.10	0.25 0.12	0.28 0.15	ns, Min
T _{RCCK_WE} /T _{RCKC_WE}	Write Enable (WE) input	0.25 0.10	0.33 0.10	0.46 0.12	0.28 0.15	ns, Min
Maximum Frequency			1	1	ı	-t-
F _{MAX}	Block RAM in all modes	320	280	260	150	MHz

- 1.
- T_{RCKO_DO} includes T_{RCKO_DOA} and T_{RCKO_DOPA} as well as the B port equivalent timing parameters.

 T_{RCKO_DO_REG} includes T_{RCKO_DOA_REG} and T_{RCKO_DOPA_REG} as well as the B port equivalent timing parameters.

 The ADDR setup and hold must be met when EN is asserted (even when WE is deasserted). Otherwise, block RAM data corruption is possible.

 T_{RDCK_DI} includes both A and B inputs as well as the parity inputs of A and B.

DSP48A1 Switching Characteristics

Table 43: DSP48A1 Switching Characteristics

Oh - l	Dana dinki an	Pre-	MULLITIMILAR	Post-		Speed	Grade		11
Symbol	Description	adder	Multiplier	adder	-4	-3	-2	-1L	Units
Setup and Hold Times of Data	/Control Pins to the Input R	legister (Clock						
T _{DSPDCK_A_A1REG} / T _{DSPCKD_A_A1REG}	A input to A1 register CLK	N/A	N/A	N/A	0.15 0.09	0.17 0.09	0.23 0.09	0.32 0.09	ns
T _{DSPDCK_D_B1REG} / T _{DSPCKD_D_B1REG}	D input to B1 register CLK	Yes	N/A	N/A	1.90 -0.07	1.95 -0.07	1.99 -0.07	2.82 -0.07	ns
T _{DSPDCK_C_CREG} / T _{DSPCKD_C_CREG}	C input to C register CLK	N/A	N/A	N/A	0.11 0.15	0.13 0.15	0.17 0.15	0.24 0.09	ns
T _{DSPDCK_D_DREG} / T _{DSPCKD_D_DREG}	D input to D register CLK	N/A	N/A	N/A	0.09 0.15	0.10 0.15	0.14 0.15	0.19 0.12	ns
T _{DSPDCK_OPMODE_B1REG} / T _{DSPCKD_OPMODE_B1REG}	OPMODE input to B1 register CLK	Yes	N/A	N/A	1.97 0.01	2.00 0.01	2.01 0.01	2.85 0.01	ns
T _{DSPDCK_OPMODE_OPMODEREG} /T _{DSPCKD_OPMODE_OPMODEREG}	OPMODE input to OPMODE register CLK	N/A	N/A	N/A	0.18 0.12	0.21 0.12	0.28 0.26	0.40 0.12	ns
Setup and Hold Times of Data	Pins to the Pipeline Regist	er Clock					•	1	
T _{DSPDCK_A_MREG} / T _{DSPCKD_A_MREG}	A input to M register CLK	N/A	Yes	N/A	3.06 -0.40	3.51 -0.40	3.71 -0.40	3.97 -0.40	ns
T _{DSPDCK_B_MREG} / T _{DSPCKD_B_MREG}	B input to M register CLK	Yes	Yes	N/A	3.96 -0.68	4.58 -0.68	5.28 -0.68	7.00 -0.68	ns
T _{DSPDCK_D_MREG} / T _{DSPCKD_D_MREG}	D input to M register CLK	Yes	Yes	N/A	4.23 -0.56	4.80 -0.56	4.82 -0.56	6.84 -0.56	ns
TDSPDCK_OPMODE_MREG/ TDSPCKD_OPMODE_MREG	OPMODE to M register CLK	Yes	Yes	N/A	4.18 -0.48	4.80 -0.48	4.85 -0.48	6.88 -0.48	ns
		No	Yes	N/A	2.37 -0.48	2.70 -0.48	3.02 -0.48	4.28 -0.48	ns
Setup and Hold Times of Data	/Control Pins to the Output	Registe	r Clock						*
T _{DSPDCK_A_PREG} / T _{DSPCKD_A_PREG}	A input to P register CLK	N/A	Yes	Yes	4.32 -0.76	5.06 -0.76	5.38 -0.76	7.52 -0.76	ns
T _{DSPDCK_B_PREG} / T _{DSPCKD_B_PREG}	B input to P register CLK	Yes	Yes	Yes	5.87 -0.59	6.87 -0.59	7.87 -0.59	10.55 -0.59	ns
		No	Yes	Yes	4.14 -0.93	4.68 -0.93	6.16 -0.93	8.12 -0.93	ns
T _{DSPDCK_C_PREG} / T _{DSPCKD_C_PREG}	C input to P register CLK	N/A	N/A	Yes	2.20 -0.23	2.25 -0.23	2.30 -0.23	3.27 -0.23	ns
T _{DSPDCK_D_PREG} / T _{DSPCKD_D_PREG}	D input to P register CLK	Yes	Yes	Yes	5.90 -0.92	6.91 -0.92	7.32 -0.92	10.39 -0.92	ns
T _{DSPDCK_OPMODE_PREG} / T _{DSPCKD_OPMODE_PREG}	OPMODE input to P register CLK	Yes	Yes	Yes	6.21 -0.84	7.27 -0.84	7.35 -0.84	10.43 -0.84	ns
		No	Yes	Yes	1.69 -0.87	1.98 -0.87	2.55 -0.87	3.62 -0.87	ns
		No	No	Yes	2.09 -0.22	2.30 -0.22	2.67 -0.22	3.79 -0.22	ns

Table 43: DSP48A1 Switching Characteristics (Cont'd)

Symbol	Description	Pre-	Multiplier	Post-		Speed	Grade		Units
Symbol	Description	adder	wuitiplier	adder	-4	-3	-2	-1L	Units
Clock to Out from Output Reg	ister Clock to Output Pin								
T _{DSPCKO_P_PREG}	CLK (PREG) to P output	N/A	N/A	N/A	1.20	1.34	1.34	1.90	ns
Clock to Out from Pipeline Re	gister Clock to Output Pins	1			1			•	
T _{DSPCKO_P_MREG}	CLK (MREG) to P output	N/A	N/A	Yes	3.38	3.95	4.19	5.83	ns
Clock to Out from Input Regis	ter Clock to Output Pins				•			•	
T _{DSPCKO_P_A1REG}	CLK (A1REG) to P output	N/A	Yes	Yes	5.02	5.87	6.80	9.65	ns
T _{DSPCKO_P_B1REG}	CLK (B1REG) to P output	N/A	Yes	Yes	5.02	5.87	6.79	9.63	ns
T _{DSPCKO_P_CREG}	CLK (CREG) to P output	N/A	N/A	Yes	3.12	3.64	3.70	5.24	ns
T _{DSPCKO_P_DREG}	CLK (DREG) to P output	Yes	Yes	Yes	6.77	7.92	9.06	12.53	ns
Combinatorial Delays from In	put Pins to Output Pins								
T _{DSPDO_A_P}	A input to P output	N/A	No	Yes	2.85	3.33	3.41	4.73	ns
		N/A	Yes	No	3.35	3.93	4.83	6.74	ns
		N/A	Yes	Yes	4.56	5.22	6.38	8.94	ns
T _{DSPDO_B_P}	B input to P output	Yes	No	No	3.22	3.76	3.91	5.55	ns
		Yes	Yes	No	6.01	6.54	6.88	9.76	ns
		Yes	Yes	Yes	6.27	7.34	8.43	11.96	ns
T _{DSPDO_C_P}	C input to P output	N/A	N/A	Yes	2.69	3.15	3.30	4.68	ns
T _{DSPDO_D_P}	D input to P output	Yes	Yes	Yes	6.31	7.38	8.32	11.81	ns
T _{DSPDO_OPMODE_P}	OPMODE input to P output	Yes	Yes	Yes	6.43	7.52	8.35	11.84	ns
		No	Yes	Yes	4.84	5.66	6.52	9.25	ns
		No	No	Yes	3.11	3.49	3.55	5.03	ns
Maximum Frequency								•	
F _{MAX}	All registers used	Yes	Yes	Yes	390	333	302	213	MHz

A Yes signifies that the component is in the path. A No signifies that the component is being bypassed. N/A signifies not applicable because no path
exists.

Table 44: Device DNA Interface Port Switching Characteristics

Combal	December -		Speed	I Grade		Units
Symbol	Description	-4	-3	-2	-1L	Units
T _{DNASSU}	Setup time on SHIFT before the rising edge of CLK		ns, Min			
T _{DNASH}	Hold time on SHIFT after the rising edge of CLK		1			ns, Min
T _{DNADSU}	Setup time on DIN before the rising edge of CLK		7			
T _{DNADH}	Hold time on DIN after the rising edge of CLK		1			ns, Min
T Cotus time on DEAD before the vising adms of CLV			ns, Min			
T _{DNARSU}	Setup time on READ before the rising edge of CLK		ns, Max			
T _{DNARH}	Hold time on READ after the rising edge of CLK			1		ns, Min
_	Cleak to output delay on DOLIT offer vising edge of CLIV		0.5			
T _{DNADCKO}	Clock-to-output delay on DOUT after rising edge of CLK		ns, Max			
T _{DNACLKF} ⁽²⁾	CLK frequency		2			MHz, Max
T _{DNACLKL}	CLK Low time	LK Low time 50		ns, Min		
T _{DNACLKH}	CLK High time		50		ns, Min	

- 1. The minimum READ pulse width is 8 ns, the maximum READ pulse width is 1 μ s.
- 2. Also applies to TCK when reading DNA through the boundary-scan port.

Table 45: Suspend Mode Switching Characteristics

Symbol	Description	Min	Max	Units
Entering Suspend Mode			"	
T _{SUSPENDHIGH_AWAKE}	Rising edge of SUSPEND pin to falling edge of AWAKE pin without glitch filter	2.5	14	ns
T _{SUSPENDFILTER}	Adjustment to SUSPEND pin rising edge parameters when glitch filter enabled	31	430	ns
T _{SUSPEND_GWE}	Rising edge of SUSPEND pin until FPGA output pins drive their defined SUSPEND constraint behavior (without glitch filter)	-	15	ns
T _{SUSPEND_GTS}	Rising edge of SUSPEND pin to write-protect lock on all writable clocked elements (without glitch filter)	-	15	ns
T _{SUSPEND_DISABLE}	Rising edge of the SUSPEND pin to FPGA input pins and interconnect disabled (without glitch filter)	-	1500	ns
Exiting Suspend Mode			-11	-1
T _{SUSPENDLOW_AWAKE}	Falling edge of the SUSPEND pin to rising edge of the AWAKE pin. Does not include DCM or PLL lock time.	7	75	μs
T _{SUSPEND_ENABLE}	Falling edge of the SUSPEND pin to FPGA input pins and interconnect re- enabled	7	41	μs
T _{AWAKE_GWE1}	Rising edge of the AWAKE pin until write-protect lock released on all writable clocked elements, using sw_clk:InternalClock and sw_gwe_cycle:1 .	-	80	ns
T _{AWAKE_GWE512}	Rising edge of the AWAKE pin until write-protect lock released on all writable clocked elements, using sw_clk:InternalClock and sw_gwe_cycle:512 .	_	20.5	μs
T _{AWAKE_GTS1}	Rising edge of the AWAKE pin until outputs return to the behavior described in the FPGA application, using sw_clk:InternalClock and sw_gts_cycle:1 .	-	80	ns
T _{AWAKE_GTS512} Rising edge of the AWAKE pin until outputs return to the behavior described in the FPGA application, using sw_clk:InternalClock and sw_gts_cycle:512 .			20.5	μs
T _{SCP_AWAKE}	Rising edge of SCP pins to rising edge of AWAKE pin	7	75	μs

Configuration Switching Characteristics

Table 46: Configuration Switching Characteristics(1)

Symbol	Description		Speed	Grade		Units
Symbol	Description	-4	-3	-2	-1L	Units
Power-up Timing Characteris	tics					
T _{PL} ⁽²⁾	PROGRAM_B Latency	4	4	4	5	ms, Max
T _{POR} ⁽²⁾	Power-on-Reset	5/40	5/40	5/40	5/40	ms, Min/Max
T _{PROGRAM}	PROGRAM_B Pulse Width	500	500	500	500	ns, Min
Slave Serial Mode Programm	ing Switching	11	1	1	1	1
T _{DCCK} /T _{CCKD}	DIN Setup/Hold, slave mode	6.0/1.0	6.0/1.0	6.0/1.0	8.0/2.0	ns, Min
T _{CCO}	CCLK to DOUT	12	12	12	17	ns, Max
F _{SCCK}	Slave mode external CCLK	80	80	80	50	MHz, Max
Slave SelectMAP Mode Progr	amming Switching	1	l	l	1	
T _{SMDCCK} /T _{SMCCKD}	SelectMAP Data Setup/Hold	6.0/1.0	6.0/1.0	6.0/1.0	8.0/2.0	ns, Min
T _{SMCSCCK} /T _{SMCCKCS}	CSI_B Setup/Hold	7.0/0.0	7.0/0.0	7.0/0.0	9.0/2.0	ns, Min
T _{SMCCKW} /T _{SMWCCK}	RDWR_B Setup/Hold	17.0/1.0	17.0/1.0	17.0/1.0	27.0/2.0	ns, Min
T _{SMCKCSO}	CSO_B clock to out	16	16	16	26	ns, Min
T _{SMCO}	CCLK to DATA out in readback	13	13	13	25	ns, Max
T _{SMCKBY}	CCLK to BUSY out in readback	12	12	12	17	ns, Max
Fsmcck	Maximum CCLK frequency (XC6SLX4, XC6SLX9, XC6SLX16, XC6SLX25, XC6SLX25T, XC6SLX45, XC6SLX45T, XC6SLX75T only)	50	50	50	25	MHz, Max
SWOOK	Maximum CCLK frequency (XC6SLX100, XC6SLX100T, XC6SLX150, and XC6SLX150T only)	40	40	40	20	MHz, Max
F _{RBCCK}	Maximum Readback CCLK frequency (XC6SLX4, XC6SLX9, XC6SLX16, XC6SLX25, XC6SLX25T, XC6SLX45, XC6SLX45T, XC6SLX75, and XC6SLX75T only)	20	20	20	4	MHz, Max
	Maximum Readback CCLK frequency (XC6SLX100, XC6SLX100T, XC6SLX150T only)	12	12	12	4	MHz, Max
Boundary-Scan Port Timing S	Specifications					
T _{TAPTCK}	TMS and TDI Setup time before TCK	10	10	10	17	ns, Min
T _{TCKTAP}	TMS and TDI Hold time after TCK	5.5	5.5	5.5	5.5	ns, Min
T _{TCKTDO}	TCK falling edge to TDO output valid	6.5	6.5	6.5	8	ns, Max
T _{TCKH}	TCK clock minimum High time	12	12	12	21	ns, Min
T _{TCKL}	TCK clock minimum Low time	12	12	12	21	ns, Min
F _{TCK}	Maximum configuration TCK clock frequency	33	33	33	18	MHz, Max
F _{TCKB}	Maximum boundary-scan TCK clock frequency	33	33	33	18	MHz, Max
F _{TCKAES}	Maximum AES key TCK clock frequency	2	2	2	2	MHz, Max

Table 46: Configuration Switching Characteristics(1) (Cont'd)

Occurs to a L	Donosistics.		Speed	Grade		11
Symbol	Description	-4	-3	-2	-1L	Units
BPI Master Flash Mode Programn	ning Switching ⁽³⁾					
T _{BPICCO} ⁽⁴⁾	A[25:0], FCS_B, FOE_B, FWE_B, LDC outputs valid after CCLK falling edge	15	15	15	20	ns, Min
T _{BPIICCK}	Master BPI CCLK (output) delay	10/100	10/100	10/100	10/130	μs, Min/Max
T _{BPIDCC} /T _{BPICCD}	Setup/Hold on D[15:0] data input pins	5.0/1.0	5.0/1.0	5.0/1.0	6.0/2.0	ns, Min
SPI Master Flash Mode Programn	ning Switching					
T _{SPIDCC} /T _{SPIDCCD}	DIN, MISO0, MISO1, MISO2, MISO3, Setup/Hold before/after the rising CCLK edge	5.0/1.0	5.0/1.0	5.0/1.0	7.0/1.0	ns, Min
T _{SPIICCK}	Master SPI CCLK (output) delay	0.4/7.0	0.4/7.0	0.4/7.0	0.4/10.0	μs, Min/Max
T _{SPICCM}	MOSI clock to out	13	13	13	19	ns, Max
T _{SPICCFC}	CSO_B clock to out	16	16	16	26	ns, Max
CCLK Output (Master Modes)						
T _{MCCKL}	Master CCLK clock duty cycle Low		40	/60		%, Min/Max
T _{MCCKH}	Master CCLK clock duty cycle High		40	/60		%, Min/Max
F _{MCCK}	Maximum Frequency, master mode	40	40	40	30	MHz, Max
F _{MCCKTOL}	Frequency Tolerance, master mode	±50	±50	±50	±50	%
CCLK Input (Slave Modes)		1	11	1	1	
T _{SCCKL}	Slave CCLK clock minimum Low time	5	5	5	8	ns, Min
Т _{SCCКН}	Slave CCLK clock minimum High time	5	5	5	8	ns, Min
USERCCLK Input		l	1	l .	1	
T _{USERCCLKL}	USERCCLK clock minimum Low time	12	12	12	21	ns, Min
T _{USERCCLKH}	USERCCLK clock minimum High time	12	12	12	21	ns, Min
F _{USERCCLK} Maximum USERCCLK frequency		40	40	40	30	MHz, Max

- 1. Maximum frequency and setup/hold timing parameters are for 3.3V and 2.5V configuration voltages.
- 2. To support longer delays in configuration, use the design solutions described in the Spartan-6 FPGA Configuration User Guide.
- 3. BPI mode is not supported in:
 - LX4, LX25, or LX25T devices
 - LX9 devices in the TQG144 package
 - LX9 or LX16 devices in the CPG196 package.
- 4. Only during configuration, the last edge is determined by a weak pull-up/pull-down resistor in the I/O.

Clock Buffers and Networks

Table 47: Global Clock Switching Characteristics

Symbol	Description	Devices		Units			
Syllibol	Description	Devices	-4	-3	-2	-1L	UIIIIS
T _{GSI}	S pin Setup to I0/I1 inputs	LX Family	N/A	0.31	0.48	0.60	ns
		LXT Family	0.25	0.31	0.48	N/A	ns
т	BUFGMUX delay from	LX Family	N/A	0.21	0.21		ns
T _{GIO}	I0/I1 to O	LXT Family	0.21	0.21	0.21	N/A	ns
Maximum Frequency							
Е	Global clock troo (BLIEG)	LX Family	N/A	400	375		MHz
F _{MAX}	Global clock tree (BUFG)	LXT Family	400	400	375	N/A	MHz

Table 48: Input/Output Clock Switching Characteristics (BUFIO2)

Symbol	Description	Devices		Heite			
Symbol	Description Devices		-4	-3	-2	-1L	Units
T _{BUFCKO_O}	Clock to out delay from I to O	LX Family	N/A	0.82	1.09	1.80	ns
		LXT Family	0.67	0.82	1.09	N/A	ns
Maximum Frequency							
F _{MAX}	I/O clock tree (BUFIO2)	LX Family	N/A	525	500		MHz
		LXT Family	540	525	500	N/A	MHz

Table 49: Input/Output Clock Switching Characteristics (BUFPLL)

Cumbal	Docarintian	Devices		Units			
Symbol	Description	ption Devices		-3	-2	-1L	Ullits
Maximum Frequency							
F _{MAX}	BUFPLL clock tree (BUFPLL)	LX Family	N/A	1050	950		MHz
		LXT Family	1080	1050	950	N/A	MHz

PLL Switching Characteristics

Table 50: PLL Specification

Symbol	Description	Device ⁽¹⁾		Speed	Grade		Units
Symbol	Description	Device	-4	-3	-2	-1L	Units
F _{INMAX}	Maximum Input Clock Frequency	LX Family	N/A	525	450		MHz
	from I/O Clock	LXT Family	540	525	450	N/A	MHz
	Maximum Input Clock Frequency	LX Family	N/A	400	375		MHz
	from Global Clock	LXT Family	400	400	375	N/A	MHz
F _{INMIN}	Minimum Input Clock Frequency	LX Family	N/A	19	19		MHz
		LXT Family	19	19	19	N/A	MHz
F _{INJITTER}	Maximum Input Clock Period Jitter	All	<20%	of clock	input peri	od or 1 ns	Max
F _{INDUTY}	Allowable Input Duty Cycle: 19—199 MHz	All		25	/75		%
	Allowable Input Duty Cycle: 200—299 MHz	All		35	/65		%
	Allowable Input Duty Cycle: > 300 MHz	All		45	/55		%
F _{VCOMIN}	Minimum PLL VCO Frequency	LX Family	N/A	400	400	400	MHz
		LXT Family	400	400	400	N/A	MHz
F _{VCOMAX}	Maximum PLL VCO Frequency	LX Family	N/A	1050	1000	1000	MHz
		LXT Family	1080	1050	1000	N/A	MHz
F _{BANDWIDTH}	Low PLL Bandwidth at Typical ⁽³⁾	All	1	1	1	1	MHz
	High PLL Bandwidth at Typical ⁽³⁾	All	4	4	4	4	MHz
T _{STAPHAOFFSET}	Static Phase Offset of the PLL Outputs	All	0.12	0.12	0.12		ns
T _{OUTJITTER}	PLL Output Jitter ⁽³⁾	All				II.	
T _{OUTDUTY}	PLL Output Clock Duty Cycle Precision ⁽⁴⁾	All	0.15	0.15	0.20		ns
T _{LOCKMAX}	PLL Maximum Lock Time	All	100	100	100	100	μs
_	PLL Maximum Output Frequency for	LX Family	N/A	400	375		MHz
F _{OUTMAX}	BUFGMUX	LXT Family	400	400	375	N/A	MHz
_	PLL Maximum Output Frequency for	LX Family	N/A	1050	950		MHz
F _{OUTMAX}	BUFPLL	LXT Family	1080	1050	950	N/A	MHz
F _{OUTMIN}	PLL Minimum Output Frequency ⁽⁵⁾	All	3.125	3.125	3.125	3.125	MHz
T _{EXTFDVAR}	External Clock Feedback Variation	All	< 20%	of clock	input peri	iod or 1 n	s Max
RST _{MINPULSE}	Minimum Reset Pulse Width	All	5	5	5	5	ns
F _{PFDMAX} ⁽⁵⁾	Maximum Frequency at the Phase	LX Family	N/A	500	400		MHz
	Frequency Detector	LXT Family	500	500	400	N/A	MHz
F _{PFDMIN}	Minimum Frequency at the Phase	LX Family	N/A	19	19		MHz
	Frequency Detector	LXT Family	19	19	19	N/A	MHz
T _{FBDELAY}	Maximum Delay in the Feedback Path	All		3 ns Max	or one CL	KIN cycle)

- LX devices are not available with a -4 speed grade; LXT devices are not available with a -1L speed grade.
- Values for this parameter are available in the Clocking Wizard.
- The PLL does not filter typical spread spectrum input clocks because they are usually far below the bandwidth filter frequencies. 3.
- Includes global clock buffer.
- 5.
- Calculated as F_{VCO} /128 assuming output duty cycle is 50%. When using CLK_FEEDBACK = CLKOUT0 with BUFIO2 feedback, the feedback frequency will be higher than the phase frequency detector frequency. $F_{PFDMAX} = F_{CLKFB} / CLKFBOUT_MULT$

DCM Switching Characteristics

Table 51: Operating Frequency Ranges and Conditions for the Delay-Locked Loop (DLL)(1)

					Speed	Grade				
Symbol	Description		-4		-3		·2		1L	Units
		Min	Max	Min	Max	Min	Max	Min	Max	
Input Frequency Ranges										
CLKIN_FREQ_DLL	Frequency of the CLKIN clock input. Also described as F _{CLKIN} .	5(2)	280 ⁽³⁾	5(2)	280 ⁽³⁾	5 ⁽²⁾	250 ⁽³⁾	5(2)	175 ⁽³⁾	MHz
Input Pulse Requirements										
CLKIN_PULSE	CLKIN pulse width as a percentage of the CLKIN period for CLKIN_FREQ_DLL < 150 MHz	40	60	40	60	40	60	40	60	%
	CLKIN pulse width as a percentage of the CLKIN period for CLKIN_FREQ_DLL > 150 MHz	45	55	45	55	45	55	45	55	%
Input Clock Jitter Tolerance	and Delay Path Variation ⁽⁴⁾									
CLKIN_CYC_JITT_DLL_LF	Cycle-to-cycle jitter at the CLKIN input for CLKIN_FREQ_DLL < 150 MHz	_	±300	_	±300	-	±300	_	±300	ps
CLKIN_CYC_JITT_DLL_HF	Cycle-to-cycle jitter at the CLKIN input for CLKIN_FREQ_DLL > 150 MHz.	_	±150	_	±150	ı	±150	_	±150	ps
CLKIN_PER_JITT_DLL	Period jitter at the CLKIN input.	_	±1	_	±1	-	±1	_	±1	ns
CLKFB_DELAY_VAR_EXT	Allowable variation of the off-chip feedback delay from the DCM output to the CLKFB input.	_	±1	_	±1	-	±1	_	±1	ns

- 1. DLL specifications apply when using any of the DLL outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV.
- 2. When operating independently of the DLL, the DFS supports lower CLKIN_FREQ_DLL frequencies. See Table 53.
- The CLKIN_DIVIDE_BY_2 attribute can be used to increase the effective input frequency range up to the F_{MAX} for the global clock BUFG, see Table 47. When set to TRUE, the CLKIN_DIVIDE_BY_2 attribute divides the incoming clock frequency by two as it enters the DCM.
- 4. CLKIN_FREQ_DLL input jitter beyond these limits can cause the DCM to lose LOCK, indicated by the LOCKED output deasserting. The user must then reset the DCM.
- 5. When using both DCMs in a CMT, both DCMs must be LOCKED.

Table 52: Switching Characteristics for the Delay-Locked Loop (DLL)(1)

		Speed Grade								
Symbol	Description	-	4	-	3	-	2		·1L	Units
		Min	Max	Min	Max	Min	Max	Min	Max	
Output Frequency Ranges									!	
CLKOUT_FREQ_CLK0	Frequency for the CLK0 and CLK180 outputs.	5	280	5	280	5	250			MHz
CLKOUT_FREQ_CLK90	Frequency for the CLK90 and CLK270 outputs.	5	200	5	200	5	200			MHz
CLKOUT_FREQ_2X	Frequency for the CLK2X and CLK2X180 outputs.	10	375	10	375	10	334			MHz
CLKOUT_FREQ_DV	Frequency for the CLKDV output.	0.3125	186	0.3125	186	0.3125	166			MHz
Output Clock Jitter(2)(3)(4)										•
CLKOUT_PER_JITT_0	Period jitter at the CLK0 output.	_	±100	_	±100	_	±100	_		ps
CLKOUT_PER_JITT_90	Period jitter at the CLK90 output.	-	±150	-	±150	-	±150	_		ps
CLKOUT_PER_JITT_180	Period jitter at the CLK180 output.	-	±150	_	±150	_	±150	_		ps
CLKOUT_PER_JITT_270	Period jitter at the CLK270 output.	-	±150	-	±150	_	±150	_		ps
CLKOUT_PER_JITT_2X	Period jitter at the CLK2X and CLK2X180 outputs.		Maxim	um = ±[0.5% o	f CLKIN	period	+ 100]	ps
CLKOUT_PER_JITT_DV1	Period jitter at the CLKDV output when performing integer division.	-	±150	-	±150	_	±150			ps
CLKOUT_PER_JITT_DV2	Period jitter at the CLKDV output when performing non-integer division.		Maxim	ium = ± period	0.5% o l + 100]					ps
Duty Cycle ⁽⁴⁾		-								
CLKOUT_DUTY_CYCLE_DLL	Duty cycle variation for the CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV outputs, including the BUFGMUX and clock tree duty-cycle distortion.		Typid	cal = ±[1% of C	LKIN po	eriod +	350]		ps
Phase Alignment ⁽⁴⁾										
CLKIN_CLKFB_PHASE	Phase offset between the CLKIN and CLKFB inputs (CLK_FEEDBACK = 1X).	_	±150	_	±150	-	±150	_	±250	ps
	Phase offset between the CLKIN and CLKFB inputs (CLK_FEEDBACK = 2X).	_	±250	_	±250	-	±250			Max
CLKOUT_PHASE_DLL	Phase offset between DLL outputs for CLK0 to CLK2X (not CLK2X180).	Maxir	mum = :	±[1% of	CLKIN	period	+ 100]			ps
	Phase offset between DLL outputs for all others.	Maximum = ±[1% of CLKIN period + 150]						ps		

Table 52: Switching Characteristics for the Delay-Locked Loop (DLL)(1) (Cont'd)

					Speed	Grade				
Symbol	Description	•	4	-	3	-	2	-	1L	Units
		Min	Max	Min	Max	Min	Max	Min	Max	
LOCK_DLL ⁽³⁾	When using the DLL alone: The time from deassertion at the DCM's reset input to the rising transition at its LOCKED output. When the DCM is locked, the CLKIN and CLKFB signals are in phase. 5 MHz < CLKIN_FREQ_DLL < 50 MHz.	-	5	-	5	-	5	-	5	ms
	When using the DLL alone: The time from deassertion at the DCM's reset input to the rising transition at its LOCKED output. When the DCM is locked, the CLKIN and CLKFB signals are in phase. CLKIN_FREQ_DLL > 50 MHz	Ι	0.60	_	0.60	_	0.60	_	0.60	ms
Delay Lines								•		
DCM_DELAY_STEP ⁽⁵⁾	Finest delay resolution, averaged over all steps.	10	40	10	40	10	40	10	40	ps

- 1. The values in this table are based on the operating conditions described in Table 2 and Table 51.
- 2. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.
- 3. For optimal jitter tolerance and faster LOCK time, use the CLKIN_PERIOD attribute.
- 4. Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. For example, this data sheet specifies a maximum jitter of ±(1% of CLKIN period + 150 ps). Assuming that the CLKIN frequency is 100 MHz, the equivalent CLKIN period is 10 ns. Since 1% of 10 ns is 0.1 ns or 100 ps, the maximum jitter is ±(100 ps + 150 ps) = ±250 ps.
- 5. A typical delay step size is 23 ps.

Table 53: Recommended Operating Conditions for the Digital Frequency Synthesizer (DFS)(1)

		Speed Grade								
Symbol	Description	-4		-3		-2		-1L		Units
		Min	Max	Min	Max	Min	Max	Min	Max	
Input Frequency Ranges	2)									
CLKIN_FREQ_FX	Frequency for the CLKIN input. Also described as F _{CLKIN} .	0.5	375	0.5	375	0.5	333			MHz
Input Clock Jitter Toleran	ce ⁽³⁾					!			!	
CLKIN_CYC_JITT_FX_LF	Cycle-to-cycle jitter at the CLKIN input, based on CLKFX output frequency: FCLKFX < 150 MHz.	-	±300	-	±300	-	±300	-	±300	ps
CLKIN_CYC_JITT_FX_HF	Cycle-to-cycle jitter at the CLKIN input, based on CLKFX output frequency: FCLKFX > 150 MHz.	_	±150	_	±150	_	±150	_	±150	ps
CLKIN_PER_JITT_FX	Period jitter at the CLKIN input.	_	±1	_	±1	_	±1	1	±1	ns

- 1. DFS specifications apply when using either of the DFS outputs (CLKFX or CLKFX180).
- 2. When using both DFS and DLL outputs on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 51.
- 3. CLKIN input jitter beyond these limits can cause the DCM to lose LOCK.

Table 54: Switching Characteristics for the Digital Frequency Synthesizer (DFS) for DCM_SP(1)

					Speed	Grade)			
Symbol	Description	-	-4		-3		2	-1	IL	Units
		Min	Max	Min	Max	Min	Max	Min	Max	
Output Frequency Ranges			"							
CLKOUT_FREQ_FX	Frequency for the CLKFX and CLKFX180 outputs	5	375	5	375	5	333			MHz
Output Clock Jitter(2)(3)		1		1	-	1	Į.	1	1	1
CLEOUT DED HTT EV	Period jitter at the CLKFX and CLKFX180 outputs. When CLKIN < 20 MHz	Use the Clocking Wizard								ps
CLKOUT_PER_JITT_FX	Period jitter at the CLKFX and CLKFX180 outputs. When CLKIN > 20 MHz	Typical = ±(1% of CLKFX period + 100)							ps	
Duty Cycle ⁽⁴⁾⁽⁵⁾										
CLKOUT_DUTY_CYCLE_FX	Duty cycle precision for the CLKFX and CLKFX180 outputs including the BUFGMUX and clock tree duty-cycle distortion							ps		
Phase Alignment ⁽⁵⁾		ı								
CLKOUT_PHASE_FX	Phase offset between the DFS CLKFX output and the DLL CLK0 output when both the DFS and DLL are used	_	±200	_	±200	_	±200	_	±250	ps
CLKOUT_PHASE_FX180	Phase offset between the DFS CLKFX180 output and the DLL CLK0 output when both the DFS and DLL are used		Maxim	num = ±	±(1% of	CLKFX	(period	+ 200)	I	ps
LOCKED Time										
LOCK_FX ⁽²⁾	When 5 MHz < FCLKIN < 50 MHz, the time from deassertion at the DCM's reset input to the rising transition at its LOCKED output. The DFS asserts LOCKED when the CLKFX and CLKFX180 signals are valid. When using both the DLL and the DFS, use the longer locking time.	_	5	_	5	_	5	_	5	ms
LOOK_FX*/	When FCLKIN > 50 MHz, the time from deassertion at the DCM's reset input to the rising transition at its LOCKED output. The DFS asserts LOCKED when the CLKFX and CLKFX180 signals are valid. When using both the DLL and the DFS, use the longer locking time.	_	0.45	_	0.45	_	0.45	_	0.60	ms

- 1. The values in this table are based on the operating conditions described in Table 2 and Table 53.
- 2. For optimal jitter tolerance and a faster LOCK time, use the CLKIN_PERIOD attribute.
- 3. Output jitter is characterized with no input jitter. Output jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB utilization, CLB switching activities, switching frequency, power supply, and PCB design. The actual maximum output jitter depends on the system application.
- 4. The CLKFX, CLKFXDV, and CLKFX180 outputs have a duty cycle of approximately 50%.
- 5. Some duty cycle and alignment specifications include a percentage of the CLKFX output period. For example, this data sheet specifies a maximum CLKFX jitter of ±(1% of CLKFX period + 200 ps). Assuming that the CLKFX output frequency is 100 MHz, the equivalent CLKFX period is 10 ns, and 1% of 10 ns is 0.1 ns or 100 ps. Accordingly, the maximum jitter is ±(100 ps + 200 ps) = ±300 ps.

Table 55: Switching Characteristics for the Digital Frequency Synthesizer DFS (DCM_CLKGEN)(1)

		Speed Grade								
Symbol	Description		4		3	-:	2	-1	L	Units
		Min	Max	Min	Max	Min	Max	Min	Max	
Output Frequency Ranges	(DCM_CLKGEN)			·				·		
CLKOUT_FREQ_FX	Frequency for the CLKFX and CLKFX180 outputs	5	375	5	375	5	333	5	200	MHz
CLKOUT_FREQ_FXDV	Frequency for the CLKFXDV output	0.15625	187.5	0.15625	187.5	0.15625	166.5	0.15625	100	MHz
Output Clock Jitter(2)(3)		1	Į.	1	Į.				Į.	
CLKOUT_PER_JITT_FX	Period jitter at the CLKFX and CLKFX180 outputs.	Typical = ±[0.2% of CLKFX period + 100]								ps
CLKOUT_PER_JITT_FXDV	Period jitter at the CLKFXDV output.	Typical = \pm [0.2% of CLKFX period + 100]								
CLKFX_FREEZE_VAR	CLKFX period change in free running oscillator mode at the same temperature. FCLKFX > 50 MHz	Maximum = ±3% of CLKFX period								
CLRFA_FREEZE_VAN	CLKFX period change in free running oscillator mode at the same temperature. FCLKFX < 50 MHz	Maximum = ±5% of CLKFX period								ps
CLKFX_FREEZE_TEMP _SLOPE	CLKFX period will change in free_oscillator mode over temperature. Add to CLKFX_FREEZE_VAR to determine total CLKFX period change. Percentage change for CLKFX period over 1°C.				Maximu	um = 0.1				%/°C
Duty Cycle ⁽⁴⁾⁽⁵⁾										
CLKOUT_DUTY_CYCLE_ FX	Duty cycle precision for the CLKFX and CLKFX180 outputs, including the BUFGMUX and clock tree duty-cycle distortion		Max	imum = =	±[1% of	CLKFX	period +	- 350]		ps
CLKOUT_DUTY_CYCLE_ FXDV	Duty cycle precision for the CLKFXDV outputs, including the BUFGMUX and clock tree duty-cycle distortion		Max	imum = =	±[1% of	CLKFX i	period +	- 350]		ps
Lock Time										
LOCK_FX ⁽²⁾	The time from deassertion at the DCM's Reset input to the rising transition at its LOCKED output. The DFS asserts LOCKED when the CLKFX, CLKFX180, and CLKFXDV signals are valid. Lock time requires CLKFX_DIVIDE < F _{IN} /(0.50 MHz) when: 5 MHz < F _{CLKIN} < 50 MHz	_	50	_	50	_	50	_	50	ms
	when: F _{CLKIN} > 50 MHz	_	5	_	5	_	5	_	5	ms

Table 55: Switching Characteristics for the Digital Frequency Synthesizer DFS (DCM_CLKGEN)(1) (Cont'd)

		Speed Grade									
Symbol	Description	-4		-	-3		2		1L	Units	
		Min	Max	Min	Max	Min	Max	Min	Max		
Spread Spectrum											
F _{CLKIN_FIXED_SPREAD_} SPECTRUM	Frequency of the CLKIN input for fixed spread spectrum (SPREAD_SPECTRUM = CENTER_LOW_SPREAD/CENTER_HIGH_SPREAD)	30	200	30	200	30	200	30	200	MHz	
T _{CENTER_LOW_SPREAD} ⁽⁶⁾	Spread at the CLKFX output for fixed spread spectrum (SPREAD_SPECTRUM = CENTER_LOW_SPREAD)	$Typical = \frac{100}{CLKFX_DIVIDE}$ $Maximum = 250$								ps	
T _{CENTER_HIGH_SPREAD} (6)	Spread at the CLKFX output for fixed spread spectrum (SPREAD_SPECTRUM= CENTER_HIGH_SPREAD)	Typical = $\frac{240}{\text{CLKFX_DIVIDE}}$ Maximum = 400								ps	
F _{MOD_FIXED_SPREAD_} SPECTRUM ⁽⁶⁾	Average modulation frequency when using fixed spread spectrum (SPREAD_SPECTRUM = CENTER_LOW_SPREAD / CENTER_HIGH_SPREAD)	Typical = F _{IN} /1024							MHz		

- 1. The values in this table are based on the operating conditions described in Table 2 and Table 53.
- 2. For optimal jitter tolerance and a faster LOCK time, use the CLKIN_PERIOD attribute.
- Output jitter is characterized with no input jitter. Output jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB utilization, CLB switching activities, switching frequency, power supply, and PCB design. The actual maximum output jitter depends on the system application.
- 4. The CLKFX, CLKFXDV, and CLKFX180 outputs have a duty cycle of approximately 50%.
- 5. Some duty-cycle and alignment specifications include a percentage of the CLKFX output period. For example, this data sheet specifies a maximum CLKFX jitter of ±(1% of CLKFX period + 200 ps). Assuming that the CLKFX output frequency is 100 MHz, the equivalent CLKFX period is 10 ns, and 1% of 10 ns is 0.1 ns or 100 ps. Accordingly, the maximum jitter is ±(100 ps + 200 ps) = ±300 ps.
- 6. When using CENTER_LOW_SPREAD, CENTER_HIGH_SPREAD, the valid values for CLKFX_MULTIPLY are limited to 2 through 32, and the valid values for CLKFX_DIVIDE are limited to 1 through 4.

Table 56: Recommended Operating Conditions for the Phase-Shift Clock in Variable Phase Mode

		Speed Grade								
Symbol	Description	-	4	-:	3	-	2	-1	L	Units
		Min	Max	Min	Max	Min	Max	Min	Max	
Operating Frequency Ranges										
PSCLK_FREQ	Frequency for the PSCLK input.	1	167	1	167	1	167	1	100	MHz
Input Pulse Requirement	s									
PSCLK_PULSE	PSCLK pulse width as a percentage of the PSCLK period.	40	60	40	60	40	60	40	60	%

Table 57: Switching Characteristics for the Phase-Shift Clock in Variable Phase Mode(1)

Symbol	Description	Amount of Phase Shift	Units
Phase Shifting Range			
MAY CTEDC(2)	When CLKIN < 60 MHz, the maximum allowed number of DCM_DELAY_STEP steps for a given CLKIN clock period, where T = CLKIN clock period in ns. When using CLKIN_DIVIDE_BY_2 = TRUE, double the clock-effective clock period.	±(INTEGER(10 x (TCLKIN – 3 ns)))	steps
MAX_STEPS ⁽²⁾	When CLKIN ≥ 60 MHz, the maximum allowed number of DCM_DELAY_STEP steps for a given CLKIN clock period, where T = CLKIN clock period in ns. When using CLKIN_DIVIDE_BY_2 = TRUE, double the clock-effective clock period.	±(INTEGER(15 x (TCLKIN – 3 ns)))	steps
FINE_SHIFT_RANGE_MIN	Minimum guaranteed delay for variable phase shifting.	±(MAX_STEPS x DCM_DELAY_STEP_MIN)	ns
FINE_SHIFT_RANGE_MAX	Maximum guaranteed delay for variable phase shifting	±(MAX_STEPS x DCM_DELAY_STEP_MAX)	ns

- 1. The values in this table are based on the operating conditions described in Table 51 and Table 56.
- The maximum variable phase shift range, MAX_STEPS, is only valid when the DCM has no initial fixed-phase shifting, that is, the PHASE_SHIFT attribute is set to 0.
- 3. The DCM_DELAY_STEP values are provided at the end of Table 52.

Table 58: Miscellaneous DCM Timing Parameters (1)

Symbol	Description	Min	Max	Units
DCM_RST_PW_MIN	Minimum duration of a RST pulse width	3	_	CLKIN cycles

Notes:

Table 59: Frequency Synthesis

Attribute	Min	Max
CLKFX_MULTIPLY (DCM_SP)	2	32
CLKFX_DIVIDE (DCM_SP)	1	32
CLKDV_DIVIDE (DCM_SP)	1.5	16
CLKFX_MULTIPLY (DCM_CLKGEN)	2	256
CLKFX_DIVIDE (DCM_CLKGEN)	1	256
CLKFXDV_DIVIDE (DCM_CLKGEN)	2	32

Table 60: DCM Switching Characteristics

Symbol	Description		Speed Grade				
Symbol	Description	-4	-4 -3 -2			Units	
T _{DMCCK_PSEN} / T _{DMCKC_PSEN}	PSEN Setup/Hold	1.50 0.00	1.50 0.00	1.50 0.00	1.50 0.00	ns	
T _{DMCCK_PSINCDEC} / T _{DMCKC_PSINCDEC}	PSINCDEC Setup/Hold	1.50 0.00	1.50 0.00	1.50 0.00	1.50 0.00	ns	
T _{DMCKO_PSDONE}	Clock to out of PSDONE	1.50	1.50	1.50	1.50	ns	

This limit only applies to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV). The DCM DFS outputs (CLKFX, CLKFXDV, CLKFX180) are unaffected.

Spartan-6 Device Pin-to-Pin Output Parameter Guidelines

All devices are 100% functionally tested. The representative values for typical pin locations and normal clock loading are listed in Table 61 through Table 67. Values are expressed in nanoseconds unless otherwise noted.

Table 61: Global Clock Input to Output Delay Without DCM or PLL

Complete	Description	Davisa		Linita			
Symbol	Description	Device	-4	-3	-2	-1L	Units
LVCMOS25 Global	Clock Input to Output Delay using Output Flip	-Flop, 12mA, Fas	t Slew Rate	, without D	CM or PLL		
T _{ICKOF}	Global Clock and OUTFF without DCM or	XC6SLX4	N/A	6.48	7.44		ns
	PLL	XC6SLX9	N/A	6.34	7.33		ns
		XC6SLX16	N/A	6.42	7.48		ns
		XC6SLX25	N/A	6.69	7.84		ns
		XC6SLX25T	6.20	6.69	7.84	N/A	ns
		XC6SLX45	N/A	6.88	8.10		ns
		XC6SLX45T	6.42	6.88	8.10	N/A	ns
		XC6SLX75	N/A	7.22	8.42		ns
		XC6SLX75T	6.60	7.22	8.42	N/A	ns
		XC6SLX100	N/A	7.18	8.41		ns
		XC6SLX100T	6.72	7.18	8.41	N/A	ns
		XC6SLX150	N/A	7.68	8.80		ns
		XC6SLX150T	7.11	7.68	8.80	N/A	ns

Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

Table 62: Global Clock Input to Output Delay With DCM in System-Synchronous Mode

Comple al	Description	Davies		Unite			
Symbol	Description	Device	-4	-3	-2	-1L	Units
LVCMOS25 Globa	al Clock Input to Output Delay using Output F	lip-Flop, 12mA, Fast	Slew Rate,	with DCM i	n System-S	ynchronou	ıs Mode.
T _{ICKOFDCM}	Global Clock and OUTFF with DCM	XC6SLX4	N/A	4.50	5.32		ns
		XC6SLX9	N/A	4.50	5.31		ns
		XC6SLX16	N/A	4.57	5.34		ns
		XC6SLX25	N/A	4.18	4.59		ns
		XC6SLX25T	3.95	4.18	4.59	N/A	ns
		XC6SLX45	N/A	4.70	5.50		ns
		XC6SLX45T	4.37	4.70	5.50	N/A	ns
		XC6SLX75	N/A	4.23	4.77		ns
		XC6SLX75T	3.90	4.23	4.77	N/A	ns
		XC6SLX100	N/A	4.16	4.66		ns
		XC6SLX100T	3.90	4.16	4.66	N/A	ns
		XC6SLX150	N/A	4.33	4.83		ns
		XC6SLX150T	4.03	4.33	4.83	N/A	ns

^{1.} Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

^{2.} DCM output jitter is already included in the timing calculation.

Table 63: Global Clock Input to Output Delay With DCM in Source-Synchronous Mode

Complete al	Description	Davies		Heite			
Symbol	Description	Device	-4	-3	-2	-1L	Units
LVCMOS25 Globa	al Clock Input to Output Delay using Output F	Flip-Flop, 12mA, Fast	Slew Rate,	with DCM i	n Source-S	ynchronou	s Mode.
T _{ICKOFDCM_0}	Global Clock and OUTFF with DCM	XC6SLX4	N/A	5.44	6.42		ns
		XC6SLX9	N/A	5.43	6.42		ns
		XC6SLX16	N/A	5.51	6.44		ns
		XC6SLX25	N/A	5.13	5.69		ns
		XC6SLX25T	4.81	5.13	5.69	N/A	ns
		XC6SLX45	N/A	5.69	6.63		ns
		XC6SLX45T	5.26	5.69	6.63	N/A	ns
		XC6SLX75	N/A	5.18	5.88		ns
		XC6SLX75T	4.77	5.18	5.88	N/A	ns
		XC6SLX100	N/A	5.11	5.76		ns
		XC6SLX100T	4.76	5.11	5.76	N/A	ns
		XC6SLX150	N/A	5.30	5.93		ns
		XC6SLX150T	4.90	5.30	5.93	N/A	ns

Table 64: Global Clock Input to Output Delay With PLL in System-Synchronous Mode

O b l	Do conjusti o u	Davis		Speed	Grade		11
Symbol	Description	Device	-4	-3	-2	-1L	Units
LVCMOS25 Globa	al Clock Input to Output Delay using Output	Flip-Flop, 12mA, Fas	t Slew Rate	, <i>with</i> PLL i	n System-S	ynchronou	s Mode.
T _{ICKOFPLL}	Global Clock and OUTFF with PLL	XC6SLX4	N/A	4.69	5.48		ns
		XC6SLX9	N/A	4.68	5.47		ns
		XC6SLX16	N/A	4.64	5.39		ns
		XC6SLX25	N/A	4.32	4.91		ns
		XC6SLX25T	4.03	4.32	4.91	N/A	ns
		XC6SLX45	N/A	4.96	5.75		ns
		XC6SLX45T	4.63	4.96	5.75	N/A	ns
		XC6SLX75	N/A	4.30	4.88		ns
		XC6SLX75T	4.01	4.30	4.88	N/A	ns
		XC6SLX100	N/A	4.33	4.90		ns
		XC6SLX100T	4.06	4.33	4.90	N/A	ns
		XC6SLX150	N/A	3.98	4.58		ns
		XC6SLX150T	3.65	3.98	4.58	N/A	ns

Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

^{2.} DCM output jitter is already included in the timing calculation.

Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

^{2.} PLL output jitter is included in the timing calculation.

Table 65: Global Clock Input to Output Delay With PLL in Source-Synchronous Mode

Complete	Description	Davisa		Heito			
Symbol	Description	Device	-4	-3	-2	-1L	Units
LVCMOS25 Globa	al Clock Input to Output Delay using Output	Flip-Flop, 12mA, Fas	t Slew Rate	, <i>with</i> PLL i	n Source-S	ynchronou	s Mode.
T _{ICKOFPLL_0}	Global Clock and OUTFF with PLL	XC6SLX4	N/A	5.81	6.87		ns
		XC6SLX9	N/A	5.80	6.86		ns
		XC6SLX16	N/A	5.77	6.79		ns
		XC6SLX25	N/A	5.35	6.10		ns
		XC6SLX25T	5.00	5.35	6.10	N/A	ns
		XC6SLX45	N/A	6.03	7.02		ns
		XC6SLX45T	5.59	6.03	7.02	N/A	ns
		XC6SLX75	N/A	5.41	6.22		ns
		XC6SLX75T	4.96	5.41	6.22	N/A	ns
		XC6SLX100	N/A	5.42	6.21		ns
		XC6SLX100T	5.01	5.42	6.21	N/A	ns
		XC6SLX150	N/A	5.06	5.86		ns
		XC6SLX150T	4.59	5.06	5.86	N/A	ns

Table 66: Global Clock Input to Output Delay With DCM and PLL in System-Synchronous Mode

Oranah al	Paradistics.	Davis		Speed	Grade		11
Symbol	Description	Device	-4	-3	-2	-1L	Units
LVCMOS25 Global and PLL in DCM2P	Clock Input to Output Delay using Output Flip LL Mode.	-Flop, 12mA, Fast	Slew Rate,	with DCM is	n System-S	ynchronou	s Mode
T _{ICKOFDCM_PLL}	Global Clock and OUTFF with DCM and	XC6SLX4	N/A	5.01	5.90		ns
	PLL	XC6SLX9	N/A	5.01	5.89		ns
		XC6SLX16	N/A	5.12	5.94		ns
	XC6SLX25	N/A	5.09	5.92		ns	
		XC6SLX25T	4.70	5.09	5.92	N/A	ns
		XC6SLX45	N/A	4.98	5.83		ns
		XC6SLX45T	4.63	4.98	5.83	N/A	ns
		XC6SLX75	N/A	5.04	5.88		ns
		XC6SLX75T	4.68	5.04	5.88	N/A	ns
		XC6SLX100	N/A	5.07	5.92		ns
		XC6SLX100T	4.76	5.07	5.92	N/A	ns
		XC6SLX150	N/A	4.73	5.31		ns
		XC6SLX150T	4.44	4.73	5.31	N/A	ns

Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

^{2.} PLL output jitter is included in the timing calculation.

Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

^{2.} DCM and PLL output jitter are already included in the timing calculation.

Table 67: Global Clock Input to Output Delay With DCM and PLL in Source-Synchronous Mode

Comple el	Description	Davisa	Speed Grade					
Symbol		Device	-4	-3	-2	-1L	Units	
LVCMOS25 Global and PLL in DCM2F	Clock Input to Output Delay using Output Flip PLL Mode.	-Flop, 12mA, Fast	Slew Rate,	with DCM i	n Source-S	ynchronou	s Mode	
T _{ICKOFDCM0_PLL}	Global Clock and OUTFF with DCM and	XC6SLX4	N/A	5.95	7.00		ns	
	PLL	XC6SLX9	N/A	5.94	7.00		ns	
		XC6SLX16	N/A	6.06	7.05		ns	
		XC6SLX25	N/A	6.04	7.02		ns	
		XC6SLX25T	5.57	6.04	7.02	N/A	ns	
		XC6SLX45	N/A	5.97	6.96		ns	
		XC6SLX45T	5.53	5.97	6.96	N/A	ns	
		XC6SLX75	N/A	6.00	6.99		ns	
		XC6SLX75T	5.55	6.00	6.99	N/A	ns	
		XC6SLX100	N/A	6.03	7.02		ns	
		XC6SLX100T	5.62	6.03	7.02	N/A	ns	
		XC6SLX150	N/A	5.70	6.41		ns	
		XC6SLX150T	5.32	5.70	6.41	N/A	ns	

Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

DCM and PLL output jitter are already included in the timing calculation.

Spartan-6 Device Pin-to-Pin Input Parameter Guidelines

All devices are 100% functionally tested. The representative values for typical pin locations and normal clock loading are listed in Table 68 through Table 74. Values are expressed in nanoseconds unless otherwise noted.

Table 68: Global Clock Setup and Hold Without DCM or PLL

Compleal	Decembring	Davisa		Speed	Grade		Units
Symbol	Description	Device	-4	-3	-2	-1L	Units
Input Setup and H	lold Time Relative to Global Clock Input Siલ્	gnal for LVCMOS	25 Standa	rd. ⁽¹⁾			
T _{PSFD} / T _{PHFD}	Full Delay (Legacy Delay or Default Delay) Global Clock and IFF ⁽²⁾ without DCM or	XC6SLX4	N/A	0.34/ 1.54	0.34/ 1.59		ns
PLL	XC6SLX9	N/A	0.31/ 1.40	0.31/ 1.49		ns	
		XC6SLX16	N/A	0.12/ 1.48	0.12/ 1.64		ns
	XC6SLX25	N/A	0.18/ 1.75	0.18/ 1.99		ns	
	XC6SLX25T	0.18/ 1.64	0.18/ 1.75	0.18/ 1.99	N/A	ns	
		XC6SLX45	N/A	-0.08/ 1.95	-0.08/ 2.27		ns
		XC6SLX45T	-0.08/ 1.88	-0.08/ 1.95	-0.08/ 2.27	N/A	ns
		XC6SLX75	N/A	0.13/ 2.29	0.13/ 2.57		ns
		XC6SLX75T	0.13/ 2.08	0.13/ 2.29	0.13/ 2.57	N/A	ns
		XC6SLX100	N/A	-0.14/ 2.24	-0.14/ 2.56	0	ns
		XC6SLX100T	-0.14/ 2.15	-0.14/ 2.24	-0.14/ 2.56	N/A	ns
		XC6SLX150	N/A	-0.24/ 2.74	-0.24/ 2.95		ns
		XC6SLX150T	-0.24/ 2.55	-0.24/ 2.74	-0.24/ 2.95	N/A	ns

Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage.

^{2.} IFF = Input Flip-Flop or Latch.

Table 69: Global Clock Setup and Hold With DCM in System-Synchronous Mode

Symbol	Description	Device		Speed	Grade		Units
Symbol	Description	Device	-4	-3	-2	-1L	Units
Input Setup and Ho	old Time Relative to Global Clock Input Sig	gnal for LVCMOS	325 Standa	rd. ⁽¹⁾			
T _{PSDCM} / T _{PHDCM}	No Delay Global Clock and IFF ⁽²⁾ with DCM in System-Synchronous Mode	XC6SLX4	N/A	1.97/ 0.18	2.20/ 0.18		ns
	XC6SLX9	N/A	1.96/ 0.19	2.19/ 0.19		ns	
	XC6SLX16	N/A	1.87/ -0.17	2.13/ -0.17		ns	
	XC6SLX25	N/A	1.78/ 0.17	2.00/ 0.17		ns	
	XC6SLX25T	1.79/ 0.16	1.79/ 0.17	2.00/ 0.17	N/A	ns	
		XC6SLX45	N/A	1.84/ 0.08	2.02/ 0.08		ns
		XC6SLX45T	1.76/ 0.07	1.84/ 0.08	2.02/ 0.08	N/A	ns
		XC6SLX75	N/A	1.98/ 0.12	2.20/ 0.12		ns
		XC6SLX75T	1.89/ 0.11	1.98/ 0.12	2.20/ 0.12	N/A	ns
		XC6SLX100	N/A	1.72/ 0.17	1.97/ 0.17		ns
		XC6SLX100T	1.69/ 0.16	1.72/ 0.17	1.97/ 0.17	N/A	ns
		XC6SLX150	N/A	1.62/ 0.40	1.82/ 0.40		ns
		XC6SLX150T	1.51/ 0.39	1.62/ 0.40	1.82/ 0.40	N/A	ns

Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage. These measurements include DCM CLK0 jitter.

^{2.} IFF = Input Flip-Flop or Latch

^{3.} Use IBIS to determine any duty-cycle distortion incurred using various standards.

Table 70: Global Clock Setup and Hold With DCM in Source-Synchronous Mode

Symbol	Description	Device		Speed	Grade		Units
Symbol	Description	Device	-4	-3	-2	-1L	Ullits
Input Setup and Ho	old Time Relative to Global Clock Input Sig	gnal for LVCMOS	25 Standa	rd. ⁽¹⁾			
T _{PSDCM0} / T _{PHDCM0}	No Delay Global Clock and IFF ⁽²⁾ with DCM in Source-Synchronous Mode	XC6SLX4	N/A	1.02/ 0.69	1.11/ 0.69		ns
		XC6SLX9	N/A	1.01/ 0.70	1.10/ 0.70		ns
		XC6SLX16	N/A	0.92/ 0.57	1.04/ 0.60		ns
		XC6SLX25	N/A	0.90/ 0.77	1.01/ 0.77		ns
		XC6SLX25T	0.94/ 0.76	0.94/ 0.77	1.01/ 0.77	N/A	ns
		XC6SLX45	N/A	0.90/ 0.76	0.98/ 0.79		ns
		XC6SLX45T	0.87/ 0.73	0.90/ 0.76	0.98/ 0.79	N/A	ns
		XC6SLX75	N/A	1.06/ 0.72	1.15/ 0.72		ns
		XC6SLX75T	1.03/ 0.71	1.06/ 0.72	1.15/ 0.72	N/A	ns
		XC6SLX100	N/A	0.81/ 0.76	0.94/ 0.76		ns
		XC6SLX100T	0.86/ 0.75	0.86/ 0.76	0.94/ 0.76	N/A	ns
		XC6SLX150	N/A	0.69/ 0.99	0.79/ 0.99		ns
		XC6SLX150T	0.66/ 0.98	0.69/ 0.99	0.79/ 0.99	N/A	ns

Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage. These measurements include DCM CLK0 jitter.

^{2.} IFF = Input Flip-Flop or Latch

^{3.} Use IBIS to determine any duty-cycle distortion incurred using various standards.

Table 71: Global Clock Setup and Hold With PLL in System-Synchronous Mode

Symbol	Description	Description Device			Grade		Units
Symbol	Description	Device	-4	-3	-2	-1L	Units
Input Setup and He	old Time Relative to Global Clock Input Sig	gnal for LVCMOS	325 Standa	rd. ⁽¹⁾			
T _{PSPLL} / T _{PHPLL}	No Delay Global Clock and IFF ⁽²⁾ with PLL in System-Synchronous Mode	XC6SLX4	N/A	2.07/ 0.19	2.07/ 0.19		ns
	XC6SLX9	N/A	2.06/ 0.20	2.06/ 0.20		ns	
	XC6SLX16	N/A	1.53/ 0.07	1.60/ 0.07		ns	
	XC6SLX25	N/A	1.71/ 0.28	1.91/ 0.28		ns	
	XC6SLX25T	1.70/ 0.28	1.71/ 0.28	1.91/ 0.28	N/A	ns	
		XC6SLX45	N/A	1.64/ 0.18	1.75/ 0.18		ns
		XC6SLX45T	1.57/ 0.18	1.64/ 0.18	1.75/ 0.18	N/A	ns
		XC6SLX75	N/A	1.89/ 0.21	2.13/ 0.21		ns
		XC6SLX75T	1.80/ 0.21	1.89/ 0.21	2.13/ 0.21	N/A	ns
		XC6SLX100	N/A	1.52/ 0.32	1.70/ 0.32		ns
		XC6SLX100T	1.51/ 0.32	1.52/ 0.32	1.70/ 0.32	N/A	ns
		XC6SLX150	N/A	1.48/ 0.49	1.67/ 0.49		ns
		XC6SLX150T	1.41/ 0.49	1.48/ 0.49	1.67/ 0.49	N/A	ns

Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage. These measurements include PLL CLKOUT0 jitter.

^{2.} IFF = Input Flip-Flop or Latch

^{3.} Use IBIS to determine any duty-cycle distortion incurred using various standards.

Table 72: Global Clock Setup and Hold With PLL in Source-Synchronous Mode

Symbol	Description	Device		Speed	Grade		Units
Symbol	Description	Device	-4	-3	-2	-1L	Units
Input Setup and Ho	old Time Relative to Global Clock Input Sig	gnal for LVCMOS	25 Standa	rd. ⁽¹⁾			
T _{PSPLL0} / T _{PHPLL0}	No Delay Global Clock and IFF ⁽²⁾ with PLL in Source-Synchronous Mode	XC6SLX4	N/A	0.88/ 0.92	0.91/ 1.03		ns
	XC6SLX9	N/A	0.87/ 0.93	0.89/ 1.02		ns	
	XC6SLX16	N/A	0.37/ 0.82	0.51/ 0.94		ns	
	XC6SLX25	N/A	0.76/ 1.06	0.79/ 1.06		ns	
	XC6SLX25T	0.83/ 1.06	0.83/ 1.06	0.83/ 1.06	N/A	ns	
		XC6SLX45	N/A	0.65/ 1.10	0.65/ 1.18		ns
		XC6SLX45T	0.59/ 1.06	0.65/ 1.10	0.65/ 1.18	N/A	ns
		XC6SLX75	N/A	0.87/ 1.04	0.90/ 1.04		ns
		XC6SLX75T	0.88/ 1.04	0.88/ 1.04	0.90/ 1.04	N/A	ns
		XC6SLX100	N/A	0.54/ 1.13	0.55/ 1.13		ns
		XC6SLX100T	0.61/ 1.13	0.61/ 1.13	0.61/ 1.13	N/A	ns
		XC6SLX150	N/A	0.51/ 1.31	0.52/ 1.31		ns
		XC6SLX150T	0.52/ 1.31	0.52/ 1.31	0.52/ 1.31	N/A	ns

Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage. These measurements include PLL CLKOUT0 jitter.

^{2.} IFF = Input Flip-Flop or Latch

^{3.} Use IBIS to determine any duty-cycle distortion incurred using various standards.

Table 73: Global Clock Setup and Hold With DCM and PLL in System-Synchronous Mode

Symbol	Description	Device		Speed	Grade		Units
Symbol	Description	Device	-4	-3	-2	-1L	Units
Input Setup and	Hold Time Relative to Global Clock Input S	ignal for LVCMOS	325 Standa	rd. ⁽¹⁾			
T _{PSDCMPLL} / T _{PHDCMPLL}	No Delay Global Clock and IFF ⁽²⁾ with DCM in System-Synchronous Mode and	XC6SLX4	N/A	2.06/ 0.87	2.30/ 0.87		ns
	PLL in DCM2PLL Mode.	XC6SLX9	N/A	2.05/ 0.88	2.29/ 0.88		ns
		XC6SLX16	N/A	1.49/ 0.18	1.62/ 0.18		ns
	XC6SLX25	N/A	1.65/ 0.42	1.83/ 0.42		ns	
	XC6SLX25T	1.69/ 0.42	1.69/ 0.42	1.83/ 0.42	N/A	ns	
		XC6SLX45	N/A	1.59/ 0.39	1.75/ 0.39		ns
		XC6SLX45T	1.57/ 0.39	1.59/ 0.39	1.75/ 0.39	N/A	ns
		XC6SLX75	N/A	1.80/ 0.41	1.99/ 0.41		ns
		XC6SLX75T	1.74/ 0.41	1.80/ 0.41	1.99/ 0.41	N/A	ns
		XC6SLX100	N/A	1.46/ 0.51	1.64/ 0.51		ns
		XC6SLX100T	1.46/ 0.51	1.46/ 0.51	1.64/ 0.51	N/A	ns
		XC6SLX150	N/A	1.40/ 0.69	1.55/ 0.69		ns
		XC6SLX150T	1.35/ 0.69	1.40/ 0.69	1.55/ 0.69	N/A	ns

Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage. These measurements include CMT jitter; DCM CLK0 driving PLL, PLL CLKOUT0 driving BUFG.

^{2.} IFF = Input Flip-Flop or Latch

^{3.} Use IBIS to determine any duty-cycle distortion incurred using various standards.

Table 74: Global Clock Setup and Hold With DCM and PLL in Source-Synchronous Mode

Symbol	Description	Device		Speed	Grade		Units
Symbol	Description	Device	-4	-3	-2	-1L	Ullits
situations where clo	Set-Up and Hold Times Relative to a Forward ck and data inputs conform to different standaring Characteristics, page 19.						
TPSDCMPLL_0/ TPHDCMPLL_0 No Delay Global Clock and IFF ⁽²⁾ with DCM in Source-Synchronous Mode and PLL in DCM2PLL Mode.	in Source-Synchronous Mode and PLL in	XC6SLX4	N/A	1.11/ 1.38	1.21/ 1.38		ns
	DCM2PLL Mode.	XC6SLX9	N/A	1.10/ 1.38	1.20/ 1.39		ns
	XC6SLX16	N/A	0.83/ 1.12	0.83/ 1.21		ns	
	XC6SLX25	N/A	0.76/ 1.11	0.84/ 1.18		ns	
	XC6SLX25T	0.84/ 1.02	0.84/ 1.11	0.84/ 1.18	N/A	ns	
		XC6SLX45	N/A	0.65/ 1.04	0.71/ 1.12		ns
		XC6SLX45T	0.68/ 1.00	0.68/ 1.04	0.71/ 1.12	N/A	ns
		XC6SLX75	N/A	0.88/ 1.06	0.94/ 1.14		ns
		XC6SLX75T	0.89/ 1.03	0.89/ 1.06	0.94/ 1.14	N/A	ns
		XC6SLX100	N/A	0.56/ 1.10	0.61/ 1.17		ns
	XC6SLX100T	0.63/ 1.10	0.63/ 1.10	0.63/ 1.17	N/A	ns	
		XC6SLX150	N/A	0.47/ 1.28	0.53/ 1.28		ns
		XC6SLX150T	0.50/ 1.28	0.50/ 1.28	0.52/ 1.28	N/A	ns

^{1.} Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage. The timing values were measured using the fine-phase adjustment feature of the DCM. These measurements include CMT jitter; DCM CLK0 driving PLL, PLL CLKOUT0 driving BUFG. Package skew is not included in these measurements.

^{2.} IFF = Input Flip-Flop

Source-Synchronous Switching Characteristics

The parameters in this section provide the necessary values for calculating timing budgets for Spartan-6 FPGA source-synchronous transmitter and receiver data-valid windows.

Table 75: Duty Cycle Distortion and Clock-Tree Skew

0	D	Davis (1)		Speed	Grade		Units
Symbol	Description	Device ⁽¹⁾	-4	-3	-2	-1L	Units
T _{DCD_CLK}	Global Clock Tree Duty Cycle Distortion ⁽²⁾	LX Family	N/A	0.20	0.20		ns
		LXT Family	0.20	0.20	0.20	N/A	
T _{CKSKEW} Global Clock Tree Skew ⁽³⁾	Global Clock Tree Skew ⁽³⁾	XC6SLX4	N/A	0.16	0.16		ns
		XC6SLX9	N/A	0.16	0.16		ns
		XC6SLX16	N/A	0.15	0.15		ns
		XC6SLX25	N/A	0.26	0.26		ns
		XC6SLX25T	0.26	0.26	0.26	N/A	ns
		XC6SLX45	N/A	0.20	0.20		ns
		XC6SLX45T	0.20	0.20	0.20	N/A	ns
		XC6SLX75	N/A	0.56	0.56		ns
		XC6SLX75T	0.56	0.56	0.56	N/A	ns
		XC6SLX100	N/A	0.22	0.22		ns
		XC6SLX100T	0.22	0.22	0.22	N/A	ns
		XC6SLX150	N/A	0.48	0.48		ns
		XC6SLX150T	0.39	0.48	0.48	N/A	ns
T _{DCD_BUFIO2}	I/O clock tree duty cycle distortion	LX Family	N/A	0.25	0.25		ns
		LXT Family	0.25	0.25	0.25	N/A	
T _{BUFIOSKEW}	I/O clock tree skew across one clock	LX Family	N/A	0.06	0.06		ns
	region	LXT Family	0.06	0.06	0.06	N/A	ns

^{1.} LX devices are not available with a -4 speed grade; LXT devices are not available with a -1L speed grade.

^{2.} These parameters represent the worst-case duty cycle distortion observable at the pins of the device using LVDS output buffers. For cases where other I/O standards are used, IBIS can be used to calculate any additional duty cycle distortion that might be caused by asymmetrical rise/fall times.

^{3.} The T_{CKSKEW} value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA Editor and Timing Analyzer tools to evaluate clock skew specific to your application.

Table 76: Package Skew

Symbol	Description	Device	Package ⁽³⁾	Value	Units
PKGSKEW	Package Skew ⁽¹⁾⁽²⁾		TQG144		ps
		XC6SLX4	CPG196	23	ps
			CSG225	58	ps
			TQG144		ps
			CPG196	23	ps
		XC6SLX9	CSG225	58	ps
			FT(G)256	88	ps
			CSG324	64	ps
			CPG196	19	ps
		VC001 V10	CSG225	70	ps
		XC6SLX16	FT(G)256	71	ps
			CSG324	54	ps
			FT(G)256	90	ps
		XC6SLX25	CSG324	61	ps
			FG(G)484	84	ps
		VCCCI VCET	CSG324	48	ps
		XC6SLX25T	FG(G)484	112	ps
			CSG324	70	ps
		VCCCI VAE	CSG484	99	ps
		XC6SLX45	FG(G)484	109	ps
			FG(G)676	138	ps
			CSG324	75	ps
		XC6SLX45T	CSG484	100	ps
			FG(G)484	95	ps
			CSG484	101	ps
		XC6SLX75	FG(G)484	107	ps
			FG(G)676	161	ps
			CSG484	107	ps
		XC6SLX75T	FG(G)484	110	ps
			FG(G)676	134	ps
			CSG484	95	ps
		XC6SLX100	FG(G)484	155	ps
			FG(G)676	144	ps
			CSG484	88	ps
		V0001 V155=	FG(G)484	111	ps
		XC6SLX100T	FG(G)676	147	ps
			FG(G)900	134	ps

Table 76: Package Skew (Cont'd)

Symbol	Description	Device	Package ⁽³⁾	Value	Units
T _{PKGSKEW}	Package Skew ⁽¹⁾		CSG484	84	ps
		XC6SLX150	FG(G)484	103	ps
		AC63LA130	FG(G)676	115	ps
			FG(G)900	121	ps
			CSG484	83	ps
		XC6SLX150T	FG(G)484	88	ps
		AC03LA1501	FG(G)676	141	ps
			FG(G)900	120	ps

- These values represent the worst-case skew between any two SelectIO resources in the package: shortest delay to longest delay from Pad to Ball.
- Package delay information is available for these device/package combinations. This information can be used to deskew the package.
- Some of these devices are available in both Pb and Pb-free (additional G) packages as standard ordering options. 3.

Table 77: Sample Window

Symbol	Description	Device ⁽¹⁾	Speed Grade				
	Description		-4	-3	-2	-1L	Units
T _{SAMP}	Sampling Error at Receiver Pins ⁽²⁾	All	510	510	560		ps
T _{SAMP_BUFIO2}	Sampling Error at Receiver Pins using BUFIO2 ⁽³⁾	All	430	430	480		ps

- LX devices are not available with a -4 speed grade; LXT devices are not available with a -1L speed grade.
- This parameter indicates the total sampling error of Spartan-6 FPGA DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the DCM to capture the DDR input registers' edges of operation. These measurements include:
 - CLK0 DCM jitter
 - DCM accuracy (phase offset)DCM phase shift resolution

 - These measurements do not include package or clock tree skew.
- This parameter indicates the total sampling error of Spartan-6 FPGA DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the BUFIO2 clock network and IODELAY to capture the DDR input registers' edges of operation. These measurements do not include package or clock tree skew.

Table 78: Source-Synchronous Pin-to-Pin Setup/Hold and Clock-to-Out Using BUFIO2

Symbol	Description	Device		Speed	Grade		Units
Syllibol	Description	Device	-4	-3	-2	-1L	Ullits
Data Input Setup	and Hold Times Relative to a Forwarded	Clock Input Pin Us	ing BUFIO	2			
T _{PSCS} /T _{PHCS}	IFF setup/hold using BUFIO2 clock	XC6SLX4	N/A	0.86/ 0.23	1.01/ 0.35		ns
		XC6SLX9	N/A	0.73/ 0.44	0.83/ 0.57		ns
		XC6SLX16	N/A	0.55/ 0.75	0.69/ 0.83		ns
		XC6SLX25	N/A	0.28/ 1.12	0.28/ 1.24		ns
		XC6SLX25T	0.28/ 1.08	0.28/ 1.12	0.28/ 1.24		ns
		XC6SLX45	N/A	0.44/ 1.29	0.50/ 1.40		ns
		XC6SLX45T	0.42/ 1.23	0.44/ 1.29	0.50/ 1.40	N/A	ns
		XC6SLX75	N/A	0.38/ 1.63	0.38/ 1.84		ns
		XC6SLX75T	0.38/ 1.53	0.38/ 1.63	0.38/ 1.84	N/A	ns
		XC6SLX100	N/A	0.06/ 1.63	0.06/ 1.87		ns
		XC6SLX100T	0.06/ 1.54	0.06/ 1.63	0.06/ 1.87	N/A	ns
		XC6SLX150	N/A	0.04/ 1.75	0.04/ 1.98		ns
		XC6SLX150T	0.04/ 1.73	0.04/ 1.75	0.04/ 1.98	N/A	ns
Pin-to-Pin Clock-	to-Out Using BUFIO2			!	!	<u> </u>	-
T _{ICKOFCS}	OFF clock-to-out using BUFIO2 clock	XC6SLX4	N/A	5.16	6.15		ns
		XC6SLX9	N/A	5.38	6.41		ns
		XC6SLX16	N/A	5.70	6.67		ns
		XC6SLX25	N/A	6.00	7.02		ns
		XC6SLX25T	5.53	6.00	7.02		ns
		XC6SLX45	N/A	6.18	7.22		ns
		XC6SLX45T	5.76	6.18	7.22	N/A	ns
		XC6SLX75	N/A	6.46	7.57		ns
		XC6SLX75T	5.94	6.46	7.57	N/A	ns
		XC6SLX100	N/A	6.53	7.60		ns
		XC6SLX100T	6.09	6.53	7.60	N/A	ns
		XC6SLX150	N/A	6.69	7.81		ns
		XC6SLX150T	6.29	6.69	7.81	N/A	ns

Revision History

The following table shows the revision history for this document.

Date	Version	Description of Revisions
06/24/09	1.0	Initial Xilinx release.
08/26/09	1.1	Added V_{FS} to Table 1 and Table 2. Added R_{FUSE} to Table 2. Added XC6SLX75 and XC6SLX75T to V_{BATT} and I_{BATT} in Table 1, Table 2, and Table 4. Corrected the quiescent supply current for the XC6SLX4 in Table 5. Updated Table 11. Removed DV_{PPIN} from Figure 2. Removed $F_{PCIECORE}$ from Table 24 and added values to $F_{PCIEUSER}$. Added more networking applications to Table 25. Updated values for $T_{SUSPENDLOW_AWAKE}$, $T_{SUSPEND_ENABLE}$, and T_{SCP_AWAKE} in Table 45. Numerous changes to Table 46, page 45 including the addition of new values to various specifications, revising the $T_{SMCKCSO}$ description, and changing the units of T_{POR} . Also, removed DV_{POR} and DV_{POR} for DCM and DV_{POR} and DV_{POR} from Table 46 and updated all the notes. In Table 50, added to F_{INMAX} , revised F_{OUTMAX} , and removed DV_{POR} Maximum Output Frequency for BUFIO2. Revised values for DCM_DELAY_STEP in Table 52. Updated DV_{POR} values in Table 53.
01/04/10	1.2	Added -4 speed grade to entire document. Updated speed specification of -4, -3, -2 speed grades to version 1.03. Added -1L speed grade numbers per speed specification 1.00. Updated T _{SOL} in Table 1. Added -1L rows for LVCMOS12, LVCMOS15, and LVCMOS18 in Table 9. Revised much of the detail in GTP Transceiver Specifications in Table 12 through Table 23. Added -2 data to Table 25. Updated F _{MAX} in Table 43. Updated descriptions for T _{DNACLKL} and T _{DNACLKH} in Table 44 and revised values for all parameters. Removed T _{INITADDR} from Table 46 and added new data. Updated values in Table 47 through Table 60. Added Table 49 (BUFPLL) and Table 55 (DCM_CLKGEN). Removed T _{LOCKMAX} note from Table 50. Updated note 3 in Table 51. In Table 76: removed XC6SLX75CSG324 and XC6SLX75TCSG324; added XC6SLX75FG(G)484 and XC6SLX75FG(G)484.
02/22/10	1.3	Production release of XC6SLX16 -2 speed grade devices. The changes to Table 26 and Table 27 includes updating this data sheet to the data in ISE v11.5 software with speed specification v1.06. Updated maximum of V_{IN} and V_{TS} and note 2 in Table 1. In Table 2, changed V_{IN} , added I_{IN} and note 5, revised notes 1, 6, and 7, and added note 8 to R_{FUSE} . In Table 4, removed previous note 1 and added data to I_{RPU} , I_{RPD} , and I_{BATT} , changed C_{IN} , added R_{DT} and R_{IN_TERM} , and added note 2 and 3. Updated V_{CCO2} in Table 6. Added Table 7 and Table 8. Removed PCI66_3 from Table 9. Updated PCI33_3 and I2C in Table 9. Updated the description of Table 11. Completely updated Table 25. Updated Table 28 including adding values for PCI33_3. Updated V_{REF} value for HSTL_III_18 in Table 30. Updates missing V_{REF} values in Table 31. Added Simultaneously Switching Outputs, page 27. Removed T_{GSRQ} and T_{RPW} from Table 34 and Table 35. Also removed T_{DOQ} from Table 35. Removed T_{ISDO_DO} and note 1 from Table 36. Removed T_{OSCCK_S} and combinatorial section from Table 37. In Table 38, removed T_{IODDO_T} and added new tap parameters and note 2. In Table 39, Table 40, and Table 41, made typographical edits and removed notes. Removed clock CLK section in Table 40. Removed clock CLK section and T_{REG_MUX} and T_{REG_M31} in Table 41. Added block RAM F_{MAX} values to Table 42. Updated values and added note 2 to Table 44. Added values to Table 45 and removed note 1. Numerous changes to Table 46. Completely updated Table 55. Revised data in Table 60. Removed note 3 from Table 68. Added values to Table 76. Added data to Table 77 and Table 78.
03/10/10	1.4	Production release of XC6SLX45 -2 speed grade devices, which includes changes to Table 26 and Table 27 updating this data sheet to the data in ISE v11.5 software with speed specification v1.07. Fixed R _{IN_TERM} description in Table 4. Added PCI66_3 to Table 7 and replaced note 1. Corrected note 1 and the V, Max for TMDS_33 in Table 8. In Table 10, added note 1 to LVPECL_33 and TMDS_33. Also updated specifications for TMDS_33. Updated the GTP Transceiver Specifications section including adding values to Table 16, Table 17, and Table 20 through Table 23. Added PCI66_3 back into Table 9, Table 28, Table 30, Table 31, and Table 33. Updated note 3 on Table 31. In Table 33, corrected some typographical errors and fixed SSO limits for bank1/3 in FG(G)484 package. Corrected Tosckc_oce in Table 37. In Table 55, updated CLKFX_FREEZE_VAR and CLKFX_FREEZE_TEMP_SLOPE and added typical values to Tcenter Low_spread and Tcenter_High_spread. Updated and added values to Table 61 through Table 75, and Table 78. In Table 76, revised the XC6SLX16-CSG324 and the XC6SLX45-CSG484 and FG(G)484 values.

Date	Version	Description of Revisions
06/14/10	1.5	In Table 2, added note 5 and added temperature range to V _{FS} and R _{FUSE} . Removed speed grade delineation, revised I _{RPD} description, and updated note 2 in Table 4. Added note 2 to Table 7. Added DIFF_MOBILE_DDR to Table 8 and Table 10. Added note 4 to Table 15. Changed minimum DV _{PPIN} in Table 16. Updated F _{GTPDRPCLK} in Table 19. Increased maximum T _{LLSKEW} in Table 22. Updated descriptions and added data to Table 23. Removed note 1 and added new data to the Networking Applications section in Table 25. Updated Table 26 and Table 27 to the data in ISE v12.1 software with speed specification v1.08. In Table 28, added DIFF_MOBILE_DDR and updated -4 speed grade data. Updated the maximum I/O pairs per bank in Table 32. Updated note 2 on Table 38. Revised the F _{MAX} in Table 43. In Table 46, updated description for T _{SMCKCSO} , revised values for T _{POR} and added Min value, added T _{BPIICCK} and T _{SPIICCK} . Also in Table 46, added device dependencies to F _{SMCCK} and F _{RBCCK} . Updated and added data to Table 61 through Table 75, and Table 78. In Table 76, added data on the XC6SLX45-FG(G)676 and revised the XC6SLX45T and XC6SLX150T values. The following changes to this specification are addressed in the product change notice XCN10024, MCB Performance and JTAG Revision Code for Spartan-6 LX16 and LX45 FPGAs. In Table 2, revised the V _{CCINT} to add the memory controller block extended performance specifications. In Table 25, changed the standard specifications and added extended performance
		specifications for the memory controller block and note 2. Added Note 4 and updated values in Table 33.
06/24/10	1.6	Production release of XC6SLX45T (-2 and -3 speed grades), XC6SLX16 and XC6SLX45 (-3 speed grade) devices which includes changes to Table 26 and Table 27 (ISE v12.1 software with speed specification v1.08). Added the -3N speed grade, which designates Spartan-6 devices that do not support MCB functionality (specifications are identical to the -3 speed grade). This includes changes to Table 2 (note 2), Table 25 (note 4), and Switching Characteristics (Table 26).
		Updated Simultaneously Switching Outputs discussion. Added -3 speed grade values for T_{TAP} and F_{MINCAL} values in Table 38. In Table 39, updated T_{RPW} (-2 and -3 speed grade) values and F_{TOG} (-3 speed grade) values. In Table 47, updated T_{GIO} (-2 and -3 speed grade) values. Updated -3 values in spread spectrum section of Table 55.
07/16/10	1.7	Production release of specific devices listed in Table 26 and Table 27 using ISE v12.2 software with speed specification v1.11. Added Note 3 advising designers of the patch which contains v1.11. Also updated the -1L speed specification to v1.04. Updated numerous -4 and -1L values. Added -4 T_{TAP} values and F_{MINCAL} to Table 38. Revised T_{CINCK}/T_{CKCIN} in Table 39. In Table 40, revised T_{SHCKO} . In Table 41, revised T_{REG} . Added new -1L values to Table 46. Added and updated values in Table 76.
07/26/10	1.8	Production release of XC6SLX25, XC6SLX25T, XC6SLX100 and XC6SLX100T in the specific speed grades listed in Table 26 and Table 27 using ISE v12.2 software with speed specification v1.11. Added note 7 to Table 2 and moved $\rm V_{FS}$ and $\rm R_{FUSE}$ to a new Table 3. Added $\rm I_{HS}$ and Note 4 to Table 4. Added note 1 to Table 28. Added and updated SSO limits per $\rm V_{CCO}/GND$ pairs in Table 33. Added note 3 to Table 46. In Table 52, removed -1L specifications for CLKOUT_PER_JITT_DV1/2 and revised CLKIN_CLKFB_PHASE and CLKOUT_PHASE_DLL values. Updated note 3 in both Table 54 and Table 55.
08/23/10	1.9	Updated values for F _{GTPRANGE1} , F _{GTPRANGE2} , and F _{GPLLMIN} in Table 18. Revised -3 and -4 values in Table 21. Removed the -1L speed grade readback support restriction and Note 3 in Table 46.

Notice of Disclaimer

THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN ("PRODUCTS") ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS.