

CAPSTONE 4

AIRLINE PASSENGER SATISFACTION

CONTENT:

- 1. Introduction
- 2. Methodology
- 3. Data Preparation
- 4. EDA & Data Analysis
- 5. ML Model Training
- 6. Evaluation
- 7. Conclusion

INTRODUCTION

- Target Stakeholder:
 - The CEO of the airlines from the USA
 - The management of the <u>customer services</u> department
 - Ground Services
 - Flight/On-Board Services
 - Online/Internet/IT
 - Airlines Stock/Shareholders

INTRODUCTION

Problem statement:

- It is well-known for the Airlines in USA to provide MEMORABLE services
- Hence we would like to analyst the factors that brings satisfactory or unsatisfactory ratings
- Therefore hopefully creating a better airline branding that inspire confidence to all its stakeholders

METHODOLOGY

- Source: Kaggle
 - https://www.kaggle.com/teejmah al20/airline-passengersatisfaction

METHODOLOGY

Model: Decision tree, Random Forest

Metric: F1-Score

Tools: Pandas, Matplotlib, scikit-learn, etc

DATA PREPARATION

Dataset overview

Data	columns (total 25 columns):			
#	Column	Non-Nu	ll Count	Dtype
0	Unnamed: 0	129880	non-null	int64
1	id	129880	non-null	int64
2	Gender	129880	non-null	object
3	Customer Type	129880	non-null	object
4	Age	129880	non-null	int64
5	Type of Travel	129880	non-null	object
6	Class	129880	non-null	object
7	Flight Distance	129880	non-null	int64
8	Inflight wifi service	129880	non-null	int64
9	Departure/Arrival time convenient	129880	non-null	int64
10	Ease of Online booking	129880	non-null	int64
11	Gate location	129880	non-null	int64
12	Food and drink	129880	non-null	int64
13	Online boarding	129880	non-null	int64
14	Seat comfort	129880	non-null	int64
15	Inflight entertainment	129880	non-null	int64
16	On-board service	129880	non-null	int64
17	Leg room service	129880	non-null	int64
18	Baggage handling	129880	non-null	int64
19	Checkin service	129880	non-null	int64
20	Inflight service	129880	non-null	int64
21	Cleanliness	129880	non-null	int64
22	Departure Delay in Minutes	129880	non-null	int64
23	Arrival Delay in Minutes	129487	non-null	float64
24	satisfaction	129880	non-null	obiect

DATA PREPARATION

Data Cleaning

- Remove unnecessary data
- Fill in and remove missing data
- Convert Categorical / Object / String
 Variables to Numeric Data

```
In [19]: # Drop unnecessary columns
Air_df = Air_df.drop(['id', 'Unnamed: 0'], axis=1)
```

```
In [18]: # this will show only features that have nonzero missing values
Air_df_na[Air_df_na!=0]
Out[18]: Arrival Delay in Minutes 393
dtype: int64
```

```
In [21]: # Imputing missing value with mean (Alternative is just to drop the column)
# Arrival_Delay_in_Minutes has missing value
# fill the missing values with the average flight delay time. Because don't want model to be affected by this parameter.
Air_df['Arrival_Delay_in_Minutes'] = Air_df['Arrival_Delay_in_Minutes'].fillna(Air_df['Arrival_Delay_in_Minutes'].mean())
```

```
In [23]: # Air_df = pd.get_dummies(Air_df['Gender'], dtype=float)
Air_df = pd.get_dummies(data=Air_df, columns=['Gender', 'Customer_Type', 'Type_of_Travel', 'Class'])
```

EDA & DATA ANALYSIS

- Visualize how well balanced is the target (dependent variable)
- Target (dependent variable) is<u>Satisfaction</u>

EDA & DATA ANALYSIS

Heat Map

- Main Training Model
 - 1. Decision Tree
 - 2. Random Forest
- Alternative ("Trying Out")Model
 - 1. SVM
 - 2. Logistic Regression

Text(0.5, 1.0, 'Cross Validation Scores')

Decision Tree Visualisation

Testing the ML Model

```
In [64]: # Kept aside some data to test - X test
         y_pred = classifier.predict(X_test)
          compare_df = pd.DataFrame({"Desired Output (Actuals)": y_test,
                                       "Predicted Output": y pred})
In [65]:
         compare_df[:10]
Out[65]:
                 Desired Output (Actuals) Predicted Output
           22682
                                    0
           12418
                                    0
           24993
            2429
                                    0
           43539
           42104
                                    0
           29518
           92724
                                    0
```

EVALUATE THE MODEL

```
Classification report:
              precision
                          recall f1-score
                                             support
                  0.95
                            0.98
                                      0.97
                                               14690
                  0.97
                            0.94
                                      0.96
                                               11286
                                      0.96
                                               25976
    accuracy
                                               25976
                  0.96
                            0.96
                                      0.96
   macro avg
weighted avg
                                               25976
                  0.96
                            0.96
                                      0.96
Confusion Matrix:
array([[14385, 305],
       [ 679, 10607]], dtype=int64)
```


EVALUATION

- Insights
 - Feature Importance

EVALUATION

- Limitations of the Airline Dataset:
 - The Dataset is created in 2019, it does not reflect the changes in the industry due to Covid-19
 - Hence, the result of this dataset is very limited for the current year as of 2021
- Limitations for using Random Forest:
 - It requires a lot of computational power as it builds numerous trees to combine their outputs
 - Large number of trees can make the algorithm too slow and ineffective for real-time predictions

CONCLUSION

Random Forest is the best ML Model for this Dataset

In-Flight Wifi and Online Boarding are very important satisfaction factors

Passenger on personal travel have higher satisfaction compared to business travel

Business class passengers have higher satisfaction compared to both economy classes