

Neural Network & Seq2Seq Modeling

Zhiyuan Liu liuzy@tsinghua.edu.cn THUNLP

- Neural Network
- Introduction to Seq2Seq
- Machine Translation

Review

Simple neuron

$$h_{w,b}(x) = f(w^T x + b)$$

Single layer neural network

$$h_{w,b}(x) = f(Wx + b)$$

- Multilayer neural network
 - Stack multiple layers of neural networks
- Non-linearity activation function
 - Enable neural nets to represent more complicated features

How to Train a Neural Network

THUNLP

Training Objective

- First set up a training objective for the model:
 - Given N training examples $\{(x_i, y_i)\}_{i=1}^N$ where x_i and y_i are the attributes and price of a computer. We want to train a neural network $F_{\theta}(\cdot)$ which takes the attributes x as input and predicts its price y. A reasonable training objective is

price
$$y$$
. A reasonable training objective is
$$\min_{\theta} J(\theta) = \min_{\theta} \frac{1}{N} \sum_{i=1}^{N} (y_i - F_{\theta}(x_i))^2,$$

where θ is the parameters in neural network $F_{\theta}(\cdot)$.

Stochastic Gradient Descent

Update rule:

$$\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta)$$

$$\alpha \text{ is step size or learning rate}$$

- Just like climbing a mountain
 - find the steepest direction
 - take a step

Gradients

Given a function with 1 output and n inputs:

$$F(x) = F(x_1, x_2...x_n)$$

Its gradient is a vector of partial derivatives:

$$\frac{\partial F}{\partial x} = \left[\frac{\partial F}{\partial x_1}, \frac{\partial F}{\partial x_2} ... \frac{\partial F}{\partial x_n} \right]$$

Jacobian Matrix: Generalization of the Gradient

• Given a function with m outputs and n inputs:

$$\mathbf{F}(x) = [F_1(x_1, x_2...x_n), F_2(x_1, x_2...x_n)...F_m(x_1, x_2...x_n)]$$

• Its Jacobian matrix is an $m \times n$ matrix of partial derivatives:

$$\frac{\partial F}{\partial x} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \dots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1} & \dots & \frac{\partial F_m}{\partial x_n} \end{bmatrix}$$

$$\left(\frac{\partial F}{\partial x}\right)_{ij} = \frac{\partial F_i}{\partial x_j}$$

Chain Rule for Jacobians

• For one-variable functions: multiply derivatives z = 3y

$$y = x^2$$

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx} = 3 \times 2x = 6x$$

• For multiple variables: multiply Jacobians h = f(z)

$$z = Wx +$$

b

$$\frac{\partial h}{\partial x} = \frac{\partial h}{\partial z} \frac{\partial z}{\partial x} =$$

Back to Neural Network

• Given $s=u^Th, h=f(z), z=Wx+b$, what is $\frac{\partial s}{\partial b}$?

Back to Neural Network

• Given $s = u^T h, h = f(z), z = Wx + b$, what is $\frac{\partial s}{\partial b}$?

Apply the chain rule:

Backpropagation

- Compute gradients algorithmically
- Used by deep learning frameworks (TensorFlow, PyTorch, etc.)

Computational Graphs

- Representing our neural net equations as a graph $s = u^T h$
 - Source node: inputs
 - Interior nodes: operations
 - Edges pass along result of the operation

$$h = f(z)$$

$$z = Wx + b$$
x input

"Forward Propagation"

Backpropagation

- Go backwards along edges
 - Pass along gradients

$$s = u^{T}h$$

$$h = f(z)$$

$$z = Wx + b$$

$$x: input$$

- Node receives an "upstream gradient"
- Goal is to pass on the correct "downstream gradient"

- Each node has a local gradient
 - The gradient of its output with respect to its input

- Each node has a local gradient
 - The gradient of its output with respect to its input
- [downstream gradient] = [upstream gradient]
 x [local gradient]

What about nodes with multiple inputs?

$$z = Wx$$

Summary

- Backpropagation: recursively apply the chain rule along computational graph
 - [downstream gradient] = [upstream gradient] x [local gradient]
- Forward pass: compute results of operation and save intermediate values
- Backward: apply chain rule to compute gradient

RNN & CNN Sentence Modeling

THUNLP

Recurrent Neural Networks (RNNs)

THUNLP

Sequential Memory

- Key concept for RNNs: Sequential memory during processing sequence data
- Sequential memory of human:
 - Say the alphabet in your head

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Pretty easy

Sequential Memory

- Key concept for RNNs: Sequential memory during processing sequence data
- Sequential memory of human:
 - Say the alphabet backward

ZYXWVUTSRQPONMLKJIHGFEDCBA

Much harder

Sequential Memory

- Definition: a mechanism that makes it easier for your brain to recognize sequence patterns
- RNNs update the sequential memory recursively for modeling sequence data

Recurrent Neural Networks

Recurrent Neural Networks

RNN Cell

$$h_i = \tanh (W_x x_i + W_h h_{i-1} + b)$$
$$y_i = F(h_i)$$

Recurrent Neural Networks

Advantages:

- Can process any length input
- Model size does not increase for longer input
- Weights are shared across timesteps
- Computation for step i can (in theory) use information from many steps back

Disadvantages:

- Recurrent computation is slow
- In practice, it's difficult to access information from many steps back

output g_{4}^{l} stribution $ax(Uh_{4}+b_{2})\in\mathbb{R}^{|V|}$

word embeddings

$$x_i = E w_i$$

one-hot

Training RNN Language Model

- Get a big corpus which is a sequence of words w_1, w_2, \cdots, w_n
- Using RNN, compute output distribution y_i for every step i
 - Predict probability distribution of every word, given words so far
- Loss function on step i is usual cross-entropy between our predicted probability distribution and the true next word
 - $J_i(\theta) = CE(w_{i+1}, y_i) = -\sum_{j=1}^{|V|} w_{i+1,j} \log y_{i,j}$

Gradient Problem with Vanilla RNN $J_i(\theta)$

- Question
 - What is the derivative of $J_i(\theta)$ w.r.t. the repeated weight matrix W_h ?

Answer

The gradient w.r.t. a repeated weight is the sum of the gradient

$$\frac{\partial J_i}{\partial W_h} = \sum_{k=1}^{i} \frac{\partial y_i}{\partial y_i} \frac{\partial y_i}{\partial h_i} \frac{\partial h_i}{\partial h_k} \frac{\partial h_i}{\partial W_h}$$

Gradient Problem with Vanilla RNN

• The derivative of $J_i(\theta)$

$$\frac{\partial J_i}{\partial W_h} = \frac{\partial J_i}{\partial y_i} \frac{\partial y_i}{\partial h_i} \sum_{k=1}^{i} \frac{\partial h_i}{\partial h_k} \frac{\partial h_k}{\partial W_h}$$

Recurrent states:

$$h_i = \tanh (W_x x_i + W_h h_{i-1} + b_1)$$

Another parametrization:

$$h_i = W_x x_i + W_h \tanh(h_{i-1}) + b_1$$

 For convenience, we use the second equation to analyze the gradient problem

Gradient Problem with Vanilla RNN

More chain rule:

$$\begin{split} h_i &= W_x \mathbf{x_i} + \mathbf{W_h} \mathrm{tanh}(\mathbf{h_{i-1}}) + \mathbf{b_1} \\ \frac{\partial h_i}{\partial h_k} &= \Pi^i_{j=k+1} \frac{\partial h_j}{\partial h_{j-1}} \\ \|\frac{\partial h_j}{\partial h_{j-1}}\| \leq \|W_h\| * \|diag[\mathrm{tanh}'(h_{i-1})]\| \\ \|\frac{\partial h_i}{\partial h_k}\| &= \|\Pi^i_{j=k+1} \frac{\partial h_j}{\partial h_{j-1}}\| \leq (\beta_W \beta_h)^{i-k} \end{split}$$

• where we defined β_W , β_h as the upper bounds of W_h , $diag[\tanh'(h_{i-1})]$ norms

Gradient Problem with Vanilla RNN

- In the same way a product of k real numbers can shrink to zero or explode to infinity, so can a product of matrices
- When $\beta_x \beta_h < 1$, it will lead to the vanishing gradients problem
- When $\beta_x \beta_h > 1$, it will lead to the exploding gradients problem
- Gradients can be seen as a measure of influence of the past on the future

Gradient Problem with Vanilla RNN

- The vanishing gradient problem can cause problems for RNN Language Models
- When predicting the next word, information from many time steps in the past is not taken into consideration.

$$\frac{\partial h_i}{\partial h_k} = \prod_{j=k+1}^i \frac{\partial h_j}{\partial h_{j-1}} \approx 0$$

RNN Variants

THUNLP

Solution for Better RNNs

- Better Units!
- The main solution to the Vanishing Gradient Problem is to use a more complex hidden unit computation in recurrence
 - GRU
 - LSTM
- Main ideas:
 - Keep around memories to capture long distance dependencies

THUNLP

 Vanilla RNN computes hidden layer at next time step directly:

$$h_i = \tanh \left(W_{\chi} x_i + W_h h_{i-1} + b \right)$$

- Introduce gating mechanism into RNN
- Update gate

$$z_i = \sigma \left(W_x^{(z)} x_i + W_h^{(z)} h_{i-1} + b^{(z)} \right)$$

Reset gate

$$r_i = \sigma \left(W_x^{(r)} x_i + W_h^{(r)} h_{i-1} + b^{(r)} \right)$$

 Gates are used to balance the influence of the past and the input

Update gate

$$z_i = \sigma \left(W_x^{(z)} x_i + W_h^{(z)} h_{i-1} + b^{(z)} \right)$$

Reset gate

$$r_i = \sigma \left(W_x^{(r)} x_i + W_h^{(r)} h_{i-1} + b^{(r)} \right)$$

• New activation \widetilde{h}_i

$$\tilde{h}_i = \tanh \left(W_{\chi} x_i + r_i * W_h h_{i-1} + b \right)$$

• Final hidden state h_i

$$h_i = z_i * h_{i-1} + (1 - z_i) * \tilde{h}_i$$

Where * refers to element-wise product

Update

-0.1

0.4

 h_i

• If reset r_i is close to 0 $\tilde{h}_i \approx \tanh (W_x x_i + 0 * W_h h_{i-1} + b)$

$$\tilde{h}_i \approx \tanh(W_{\chi} x_i + b)$$

 Ignore previous hidden state, which indicates the current activation is irrelevant to the past.

 E.g., at the beginning of a new article, the past information is useless for the current activation.

- Update gate z_i controls how much of past state should matter compared to the current activation.
- If z_i close to 1, then we can copy information in that unit through many time steps! (Recall "Constant Error Flow")

$$h_i = 1 * h_{i-1} + (1-1) * \tilde{h}_i = h_{i-1}$$

• If z_i close to 0, then we drop information in that unit and fully take the current activation.

- Units with short-term dependencies often have reset gates r_i very active
- ullet Units with long term dependencies have active update gates z_i
- The graphical illustration:

GRU for Vanishing Gradient Problem

- Recall the vanishing gradient problem with the transition function of vanilla RNNs $h_i = \tanh(W_x x_i + W_h h_{i-1} + b)$
- It implies that the error must backpropagate through all the intermediate nodes:

Create shortcut connection for better backpropagation!

GRU for Vanishing Gradient Problem

• Use update gate z_t to prune unnecessary connections adaptively.

$$h_j = 1 * h_{j-1} + (1-1) * \tilde{h}_j = h_{j-1}$$

 We have adaptive shortcut connections with gates, which prevents the gradient from vanishing during backpropagation.

GRU Comparison to Vanilla RNN

- We treat the hidden state h as the information register for sentence modeling
- Vanilla RNN

GRU Comparison to Vanilla RNN

• GRU

Register h

2. Read the subset

3. Select a writable subset

4. Update the subset

$$h_i = z_i \circ h_{i-1} + (1 - z_i) \circ \tilde{h}_i$$

GRU are much more adaptive in updating the hidden

Long Short-Term Memory Network (LSTM)

THUNLP

- Long Short-Term Memory network (LSTM)
- LSTM are a special kind of RNN, capable of learning long-term dependencies like GRU

ullet The key to LSTMs is the cell state C_t

- Extra vector for capturing long-term dependency
- Runs straight through the entire chain, with only some minor linear interactions
- Easy to remove or add information to the cell state

- The first step is to decide what information to throw away from the cell state
- Forget gate f_t

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

- Where $[h_{t-1}, x_t]$ is the concatenation of vectors
- Forget past if $f_t = 0$

- The next step is to decide what information to store in the cell state
- Input gate i_t and new candidate cell state $\widetilde{\boldsymbol{C}}_t$

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

• Recall z_t and \widetilde{h}_t in GRUs

• Update the old cell state C_{t-1}

Combine the results from the previous two

steps

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

- The final step is to decide what information to output
- Adjust the sentence information for a specific word representation

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

 Powerful especially when stacked and made even deeper (each hidden layer is already computed by a deep internal network)

Very useful if you have plenty of data

Bidirectional RNNs

THUNLP

Bidirectional RNNs

• In traditional RNNs, the state at time t only captures information from the past

$$h_t = f(x_{t-1}, ..., x_2, x_1)$$

- Problem: in many applications, we want to have an output y_t depending on the whole input sequence
- For example
 - Handwriting recognition
 - Speech recognition

Bidirectional RNNs

Deep Bidirectional RNNs

Has multiple layers per time step

Tree LSTM

THUNLP

Sentence Structure

- Sentence is not a simple linear sequence
- Constituency-based parse tree
 - The plane is taking off

Sentence Structure

- Dependency-based parse tree
 - The plane is taking off

Sentence Structure

- Multi-step backpropagation -> Vanishing gradient problem
- The structure of sentence: directly present the long term dependencies -> Solve the vanishing gradient problem!
- Improve encoding of sentences:
 - Better backpropagation
 - Encoding extra structured information
- Two variants
 - Child-sum tree LSTM
 - N-ary tree LSTM

Child-sum Tree LSTM

- Sum over all the children of a node: can be used for any number of children
 - Hidden state: $\tilde{h}_j = \sum_{k \in C(i)} h_k$
 - Input gate: $i_j = \sigma \left(W^{(i)} x_j + U^{(i)} \tilde{h}_j + b^{(i)} \right)$
 - Forget gate: $f_{jk} = \sigma \left(W^{(f)} x_j + U^{(f)} h_k + b^{(f)} \right)$
 - Output gate: $o_j = \sigma \left(W^{(o)} x_j + U^{(o)} \tilde{h}_j + b^{(o)} \right)$
 - New memory cel $u_j = \tanh(W^{(u)}x_j + U^{(u)}\tilde{h}_j + b^{(u)})$
 - Final memory cel $c_j = i_j \odot u_j + \sum_{k \in C(j)} f_{jk} \odot c_k$
 - Final hidden state $h_j = o_j \odot \tanh(c_j)$

Child-sum Tree LSTM

- The order of sequence is lost
- Suitable for trees with high branching factor
 - Branching factor: the outdegree, the number of children at each node
- Work with variable number of children
- Share gates' weight (including forget gate) among children
- Application
 - Dependency Tree-LSTM

N-ary Tree LSTM

- Use different parameters for each node
 - Input gate:

$$i_{j} = \sigma \left(W^{(i)} x_{j} + \sum_{\ell=1}^{N} U_{\ell}^{(i)} h_{j\ell} + b^{(i)} \right)$$

• Forget gate:

$$f_{jk} = \sigma \left(W^{(f)} x_j + \sum_{\ell=1}^{N} U_{k\ell}^{(f)} h_{j\ell} + b^{(f)} \right)$$

Output gate:

$$o_j = \sigma \left(W^{(o)} x_j + \sum_{\ell=1}^{N} U_{\ell}^{(o)} h_{j\ell} + b^{(o)} \right)$$

• New memory cell:

$$u_{j} = \tanh \left(W^{(u)} x_{j} + \sum_{\ell=1}^{N} U_{\ell}^{(u)} h_{j\ell} + b^{(u)} \right)$$

• Final memory cel

$$c_j = i_j \odot u_j + \sum_{\ell=1}^N f_{j\ell} \odot c_{j\ell}$$

• Final hidden state

$$h_j = o_j \odot \tanh(c_j)$$

N-ary Tree LSTM

- Each node must have at most N children
- Forget gate can be parameterized so that the siblings affect each other
- Application
 - Constituency Tree-LSTM

- Recurrent Neural Network
 - Sequential Memory
 - Vanishing gradient problem
- RNN Variants
 - Gated Recurrent Unit (GRU)
 - Long Short-Term Memory Network (LSTM)
 - Bidirectional Recurrent Neural Network
 - Tree LSTM

Convolutional Neural Networks (CNNs)

THUNLP

CNN for Sentence Representation

- Convolutional Neural Networks (CNNs)
 - Generally used in Computer Vision (CV)
 - Achieve promising results in a variety of NLP tasks:
 - Sentiment classification
 - Relation classification
 - ...
- CNNs are good at extracting local and position-invariant patterns
 - In CV, colors, edges, textures, etc.
 - In NLP, phrases and other local grammar structures

CNN for Sentence Representations

- CNNs extract patterns by:
 - Computing representations for all possible n-gram phrases in a sentence.
 - Without relying on external linguistic tools (e.g., dependency parser)

possible n-gram phrases

The plane is taking off

Bigram: The plane, plane is, is taking, taking off

Trigram: The plane is, plane is taking, is taking or

n-gram: ...

Architecture

- Input Layer
- Convolutional Layer
- Max-pooling Layer

Input Layer

- Transform words into input representations x via word embeddings
- $\mathbf{x} \in \mathbb{R}^{m \times d}$: input representation
 - *m* is the length of sentence
 - d is the dimension of word embeddings

The		
students		
opened		
their		
books		
and		

- Extract feature representation from input representation via a sliding convolving filter
 - $\mathbf{x} \in \mathbb{R}^{m \times d}$: input representation
 - $\mathbf{x}_{i:i+j} \in \mathbf{R}^{(j+1)d}$: (j+1)-gram representation, concatenation of $\mathbf{x}_i, \mathbf{x}_{i+1}, ..., \mathbf{x}_{i+j}$
 - w ∈ R^{h×d}: convolving filter, b is a bias term (h is window size)
 f ∈ R^{n X_{h:+-lh}}: convolved feature
 - **f** ∈ **K**ⁿ **X**h:+-1h:-2 convolved feature n + 1 representation

is dot product

 Extract feature representation from input representation via a sliding convolving filter

$$\mathbf{f}_i = \mathbf{w} \cdot \mathbf{x}_{i:i+h-1} + \mathbf{b}, \quad i = 1, 2, ..., n-h+1$$

 Extract feature representation from input representation via a sliding convolving filter

$$\mathbf{f}_i = \mathbf{w} \cdot \mathbf{x}_{i:i+h-1} + \mathbf{b}, \quad i = 1, 2, ..., n-h+1$$

Input window $\mathbf{x}_{i:i+h-1}$

 Extract feature representation from input representation via a sliding convolving filter

$$\mathbf{f}_i = \mathbf{w} \cdot \mathbf{x}_{i:i+h-1} + \mathbf{b}, \quad i = 1, 2, ..., n-h+1$$

Input window $\mathbf{x}_{i:i+h-1}$

Convolution Layer (with padding)

 Padding is an operation that extends the border of the sentence before convolution, to keep the shape of convoluted feature same as input

• For filter $\mathbf{w} \in \mathbf{R}^{hd}$, padding extends the

border with zeros

padding

The

students

opened

their

books

and

padding

Convolution Layer (with padding)

 Padding is an operation that extends the border of the sentence before convolution, to keep the shape of convoluted feature same as input

• For filter $\mathbf{w} \in \mathbf{R}^{hd}$, padding extends the

Convolution Layer (with padding)

 Padding is an operation that extends the border of the sentence before convolution, to keep the shape of convoluted feature same as input

• For filter $\mathbf{w} \in \mathbf{R}^{hd}$, padding extends the

Max-Pooling Layer

- Max-pooling:
 - Extract important features

$$q = max(f)$$

Non-Linear Layer

Non-Linear Activation Function:

c = tanh (q) =
$$\frac{e^{q} - e^{-q}}{e^{q} + e^{-q}}$$

Convolution with multiple filters

 Extract feature representation via multiple filters to capture different n-gram patterns

Compare CNN with RNN

CNN vs. RNN

	CNNs	RNNs
Advantages	Extracting local and position-invariant features	Modeling long-range context dependency
Parameters	Less parameters	More parameters
Parallelizatio n	Better parallelization within sentences	Cannot be parallelized within sentences

- Convolutional Neural Network
 - Architecture
 - Input layer
 - Convolution layer
 - Max-pooling layer
 - Non-linear layer
 - Extract local features
 - Capture different n-gram patterns

Section Summary

- Word Representation
 - Synonym, One-hot, Count-based, Distributed
- Neural Network
 - Backpropagation
- RNN & CNN
 - Sentence modeling

Reading Material

a. Word Representation

- · Linguistic Regularities in Continuous Space Word Representations. Tomas Mikolov, Wen-tau Yih and Geoffrey Zweig. NAACL 2013. [link]
- · Glove: Global Vectors for Word Representation. Jeffrey Pennington, Richard Socher and Christopher D. Manning. EMNLP 2014. [link]
- · Deep Contextualized Word Representations. Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee and Luke Zettlemoyer. NAACL 2018. [link]

b. RNN & CNN

- · ImageNet Classification with Deep Convolutional Neural Networks. NIPS 2012 [link]
- · Convolutional Neural Networks for Sentence Classification. EMNLP 2014 [link]
- · Long short-term memory. MIT Press 1997 [link]
 For reading material recommendation of this course, please refer to our

- Introduction to Seq2Seq
- Machine Translation
 - Introduction
 - Statistical Machine Translation
 - Neural Machine Translation

 Sequence-to-sequence (Seq2Seq): a family of machine learning methods used for language processing

Architecture:

- An encoder that produces representations of the source sentence
- A decoder which is a language model that generates target sentence conditioned on encoding
- The encoder/decoder can be realized by RNN/GRU/LSTM/Transformer

- Typical Applications:
 - Conversational Models
 - Incoming Email -> Reply

- Typical Applications:
 - Text Summarization
 - Long text -> Short summary

- Typical Applications:
 - Machine Translation
 - Language A -> Language B

- Typical Applications:
 - Conversational Models
 - Incoming Email -> Reply
 - Text Summarization
 - Long text -> Short summary
 - Machine Translation
 - Language A -> Language B
 - We use machine translation as the example in this lecture.

- Introduction to Seq2Seq
- Machine Translation
 - Introduction
 - Statistical Machine Translation
 - Neural Machine Translation

- Introduction to Seq2Seq
- Machine Translation
 - Introduction
 - Statistical Machine Translation
 - Neural Machine Translation

Machine Translation

 Machine Translation(MT): the task of translating text from source language to target language

Chinese: 布什与沙龙举行了会谈

English: Bush held a talk with Sharon

Machine Translation

History (<u>link</u>)

A BRIEF HISTORY OF MACHINE TRANSLATION

- Rule-based machine translation (RBMT)
- Machine Translation research began in the early 1950s
- Mostly Russian → English (motivated by the Cold War!)
- Systems were mostly rule-based, using a bilingual dictionary to map Russian words to their English counterparts
- Extremely complicated

- Example-based machine translation (1984)
- Translation of fragmental phrases by analogy
- Extract matching templates from bilingual corpus:

English Chinese How much is that **red umbrella**? 那个**红雨伞**多少钱? How much is that **small camera**? 那个_____多少钱?

 Feed the machine with existing translations and don't need to spend years forming rules and exceptions

- Introduction to Seq2Seq
- Machine Translation
 - Introduction
 - Statistical Machine Translation
 - Neural Machine Translation

Core idea: Learn a probabilistic model from data

- Suppose we are translating Chinese → English.
- We want to find best English sentence v, given Chinese sentence x $\operatorname{argmax}_{\mathbf{V}} P(y|x)$
- Use Bayes rule to break this down into two components to be learnt separately: = $\operatorname{argmax}_{y} \frac{P(x|y)P(y)}{P(x)}$

=
$$\operatorname{argmax}_{y} \frac{P(x|y)P(y)}{P(x)}$$

= $\operatorname{argmax}_{y} P(x|y)P(y)$

• where P(x) is a constant

Translation function:

 $\operatorname{argmax}_{\mathbf{V}} P(\mathbf{x}|\mathbf{y}) P(\mathbf{y})$

- Meaning of two components:
 - P(x|y)
 - Translation model
 - How words and phrases should be translated (Learned from parallel data)
 - P(y)
 - Language model
 - How to write good English (Learned from monolingual data)

- Translation function $\underset{\text{argmax}_{y}P(x|y)P(y)}{\operatorname{argmax}_{y}P(x|y)P(y)}$
- How to compute the argmax?
- Enumerate every possible y and calculate the probability
 - Too expensive!
- Answer: Use a heuristic search algorithm to gradually build up the translation y

Heuristic Search Algorithm

Example of translation from Chinese to English
 与 沙龙 举行 了 会谈

• Steps:

Example of translation from Chinese to English
 与 沙龙 举行 了 会

布什

与 沙龙

学行 了 会谈 举行 了 会谈

Bus h

with Sharon

held a talk

- Steps:
 - Pick phrases in input and translate. Phrases may have multiple words.

• Example of translation from Chinese to English

Steps:

- Pick phrases in input and translate. Phrases may have multiple words.
- Allowed to pick phrases regardless of the original order.
- Sentences with low probabilities are discarded.

布什

Bush

with

and

沙龙

Sharo

举行

hold

held

have

会谈

talk

a talk

布什

Bush

与

with and 沙龙

Sharo n 举行

hold

held

7

have

a talk

talk

会谈

布什

Bush

与

with and 沙龙

Sharo n 举行

hold

held

7

have

4

talk

会谈

a talk

Statistical Machine Translation

- The best systems are extremely complex
 - Hundreds of important details we have not mentioned here
 - Systems have many separately-designed subcomponents
 - Lots of feature engineering
 - Need to design features to capture particular language phenomena
 - Lots of human efforts to maintain

- Introduction to Seq2Seq
- Machine Translation
 - Introduction
 - Statistical Machine Translation
 - Neural Machine Translation

Neural Machine Translation

- Neural Machine Translation (NMT): a way to conduct Machine Translation with a single neural network
- No separated language model and translation model (recall SMT)
- Neural network architecture: Seq2Seq architecture which involves two RNNs
- Recall RNN language model first!

RNNs for language modeling

output $\text{distribution}(Uh_4 + b_2) \in \mathbb{R}^{|V|}$

one-hot væ;c**t**ors

 $= E w_i$

RNNs for language modeling

- How does the RNN cell work?
- RNN cell takes the current RNN state and a word vector and produces a subsequent RNN state that encodes the sentence so far

$$h_i = \tanh (W_x x_i + W_h h_{i-1} + b_1)$$

• Learned weights represent how to combine past information h_{i-1} and current information χ_i

RNNs for language modeling

How does the output function work?

$$y_4 = \operatorname{softmax}(Uh_4 + b_2) \in \mathbb{R}^{|V|}$$

- y_4 is a probability distribution over the vocab constructed from the RNN memory and the transformation (U,b_2)
- Softmax function turns scores into a probability distribution

RNNs for Encoding

- Predict things other than next word:
 - POS Tagging
 - Named Entity Recognition
 - Sentiment Classification
 - Relation Classification
- RNNs are good at modeling sequential information
- General idea: Use RNN as an encoder for building the semantic representation of the sentence

- Recall the sequence-to-sequence model
- Two RNNs
 - Encoder RNN
 - Decoder RNN
- Encoder RNN: produces a representation of the source sentence
- Decoder RNN: a language model that generates target sentence conditioned on encoding

• h_4 is the representation of the source sentence and is provided as the initial hidden state for Decoder RNN

- Seq2seq model is an example of a conditional language model
 - Language model: the decoder is predicting the next word of the target sentence y
 - Conditional: its predictions are also conditioned on the source sentence x
- P(y|x) in NMT $P(y|x) = P(y_1|x)P(y_2|y_1, x)...P(y_T|y_1, ..., y_{T-1}, x)$
- Different from SMT: P(x|y)P(y)
- More direct!

- Introduction to Seq2Seq
- Machine Translation
 - Introduction
 - Statistical Machine Translation
 - Neural Machine Translation
 - Training Seq2Seq
 - Decoding Strategy
 - Evaluation of MT
 - Summary

- Force the decoder to generate gold sequence
- Sum of losses for each token as the objective function

• Cross-entropy loss $-\sum_{x} p(x)\log q(x)$

 q(x): the distribution produced by the network

• p(x): the true distribution (1 on the actual next token)

- Sum losses of each token for sentence loss J J = sum(-3 * log(0.7) 2 * log(0.5) log(0.3))
- Minimize the loss J for the given sentence pair

- Notice!
- Seq2seq is optimized as a unified system
- Backpropagation operates end-to-end
- Update two RNNs simultaneously
- Model parameters include word embeddings!

- Introduction to Seq2Seq
- Machine Translation
 - Introduction
 - Statistical Machine Translation
 - Neural Machine Translation
 - Training Seq2Seq
 - Decoding Strategy
 - Evaluation of MT
 - Summary

Vanilla Decoder Strategy

- Recall the decoding process $\arg\max_{y_i} P(y_i|y_1,...,y_{i-1},x)$
- Generate the target sentence by taking argmax on each step of the decoder
- Greedy decoding
- Recall the original translation model $\underset{\text{argmax}_{y}P(y|x)}{\operatorname{argmax}_{y}P(y|x)}$
- Can the greedy decoding always generate the best y?

Vanilla Decoder Strategy

- In this problem, a greedy strategy does not usually produce a globally optimal solution
- Problem: Greedy decoding has no way to undo decisions!

布什与沙龙举行了会谈 (Bush held a talk with Sharon)

- →Bush
- →Bush and
- →Bush and Sharon

- Ideally, we want to find y that maximizes $P(y|x) = P(y_1|x)P(y_2|y_1,x)...P(y_T|y_1,...,y_{T-1},x)$
- We could try enumerating all y
 - Complexity $O(V^T)$ where V is vocab size and T is target sequence length \rightarrow too expensive!
- Beam Search: On each step, keep track of the k most probable partial translations

- Beam Search: On each step, keep track of the k most probable partial translations
- k is the beam size (in practice around 5 to 10)
- Also not guarantee to produce a globally optimal solution
- But results are much more applicable!
- Example:

只用神经网→ Only use neural nets

• Example (beam size = 2)

• Example (beam size = 2)

• Example (beam size = 2)

Beam Search Decoding

Beam Search Decoding

- Introduction to Seq2Seq
- Machine Translation
 - Introduction
 - Statistical Machine Translation
 - Neural Machine Translation
 - Training Seq2Seq
 - Decoding Strategy
 - Evaluation of MT
 - Summary

- BLEU (Bilingual Evaluation Understudy)
- BLEU compares the machine-written translation to one or several human-written translation(s), and computes a similarity score based on:
 - N-gram precision
 - Penalty for too-short system translations

$$BLEU = BP * \exp\left(\sum_{i=1}^{N} w_i log P_i\right)$$

Evaluation

BLEU (Bilingual Evaluation Understudy)

$$BLEU = BP * \exp\left(\sum_{i=1}^{N} w_i log P_i\right)$$

- P_i: The i-gram precision
- BP: Brevity penalty

$$BP = \begin{cases} 1, & l_c > l_r \\ l_c = l_c \end{cases}$$
 • l_c : length of the candidate, l_r : length of the reference.

- Usually we set N=4, $w_i=\frac{1}{4}$

Evaluation

- BLEU example
- Candidate: Airport security Israeli officials are responsible.
- Reference: Israeli officials are responsible for airport security.
 - 1-gram precision: $P_1 = \frac{6}{6}$
 - 2-gram precision: $P_2 = \frac{4}{5}$
 - 3-gram precision: $P_3 = \frac{2}{4}$
 - 4-gram precision: $P_4 = \frac{1}{3}$

Evaluation

BLEU example

$$P_1 = \frac{6}{6}$$
, $P_2 = \frac{4}{5}$, $P_3 = \frac{2}{4}$, $P_4 = \frac{1}{3}$

The calculation

$$\exp\left(\frac{1}{4}\left(\log(1) + \log\left(\frac{4}{5}\right) + \log\left(\frac{2}{4}\right) + \log\left(\frac{1}{3}\right)\right)\right) = 0.386$$

Considering the brevity penalty

$$BLEU = e^{1-7/6} * 0.386 = 0.327$$

- BLEU (Bilingual Evaluation Understudy)
- BLEU is useful but imperfect
 - There are many valid ways to translate a sentence
 - Sometime a good translation can get a poor BLEU score because it has low ngram overlap with human translation

Reference: I ate the apple.

Candidates:

- 1. I consumed the apple.
- 2. I ate an apple.
- 3. I ate the potato.

- Introduction to Seq2Seq
- Machine Translation
 - Introduction
 - Statistical Machine Translation
 - Neural Machine Translation
 - Training Seq2Seq
 - Decoding Strategy
 - Evaluation of MT
 - Summary

Advantages of NMT

- Compared to SMT, NMT has many advantages:
 - Better performance
 - More fluent
 - Better use of context
 - Better use of phrase similarities
 - A single neural network to be optimized end-toend
 - No subcomponents to be individually optimized
 - Requires much less human engineering effort
 - No feature engineering
 - Same method for all language pairs

Disadvantages of NMT

- Compared to SMT:
- NMT is less interpretable
 - Hard to debug
- NMT is difficult to control
 - For example, cannot easily specify rules or guidelines for translation
 - Safety concerns!

- Seq2Seq can use RNN/GRU/LSTM/Transformer to perform encoder-decoder based tasks
 - Training method, decoding strategy, evaluation
 - Various applications
- Machine translation
 - RBMT, EBMT, SMT, NMT
- Attention is critical for improving seq2seq models
- Transformer is powerful in sequence modeling

Reading Material

a. Machine Translation

- Must-read Papers
- · The Mathematics of Statistical Machine Translation: Parameter Estimation. Peter EBrown, Stephen ADella Pietra, Vincent JDella Pietra, and Robert LMercer. Computational Linguistics 1993 [link]
- · (Seq2seq) Sequence to Sequence Learning with Neural Networks. Ilya Sutskever, Oriol Vinyals, and Quoc VLe. NIPS 2014 [link]
- · (BLEU) BLEU: a Method for Automatic Evaluation of Machine Translation. Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. ACL 2002 [link]

Reading Material

a. Machine Translation

- Further Reading
- · Statistical Phrase-Based Translation. Philipp Koehn, Franz JOch, and Daniel Marcu. NAACL 2003 [link]
- · Hierarchical Phrase-Based Translation. David Chiang. Computational Linguistics 2007 [link]
- · (Beam Search) Beam Search Strategies for Neural Machine Translation. Markus Freitag and Yaser Al-Onaizan. 2017 [link]
- · MT paper list. [link]
- THUMT toolkit. [link]

Q&A

THUNLP