HKDSE Section A(1) analysis

Mok Owen

April 11, 2024

Contents

1	Index Law	7
2	Subject arrangement	9
3	Expansion & Factorization	11
4	Identity	13
5	Percentage	15
6	Polar Coordinates	17
7	Congruent and similar triangle	19
8	Properties of circle	21
9	Measure of Dispersion	23
10	Challenging revision	25

Introduction

Index Law

The problems of index laws requires the following knowledge: Given a, b be real numbers and m, n be positive integers. Then

$$1. \ a^m \cdot a^n = a^{m+n}.$$

$$2. \ \frac{a^m}{a^n} = a^{m-n}.$$

3.
$$(a^m)^n = a^{mn}$$
.

4.
$$a^0 = 1$$
.

5.
$$a^{-n} = \frac{1}{a^n}$$
.

$$6. (ab)^n = a^n b^n.$$

$$7. \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}.$$

Example (2012-PAPER-1 Q1). Simplify $\frac{m^{-12}n^8}{n^3}$ and express your answer with positive indices. Solution.

Following the law of index, we deduce

$$\frac{m^{-12}n^8}{n^3} = m^{-12}n^{8-3}$$

$$= m^{-12}n^5$$

$$= \frac{n^5}{m^{12}}$$

$$(by 2)$$

$$(by 5)$$

As the problem requires positive indices, we have to apply the fifth law to remove all negative powers.

... end of solution.

Subject arrangement

Subject arrangement is one of the pure algebraic action. Its concept of arrangement is similar to solving equations with one variable.

Let's consider Solving 4x + 2 = 6x - 3. We have

$$4x + 2 = 6x - 3$$

$$4x + 2 - 2 = 6x - 3 - 2$$

$$4x = 6x - 5$$

$$4x - 6x = 6x - 5 - 6x$$

$$-2x = -5$$

$$x = \frac{-5}{-2}$$

$$= \frac{5}{2}$$

Of the same course, we could solve $4x + k = 6x + \ell$ by the same procedure:

$$4x + k = 6x + \ell$$
$$-2x = \ell - k$$
$$x = \frac{k - \ell}{2}$$

Therefore, we could solve for even more variables:

$$ax + k = bx + \ell$$
$$(a - b)x = \ell - k$$
$$x = \frac{\ell - k}{a - b}$$

This is called making x to be the subject of an equation, where making subject is equivalent to solving equation by seeing the required variable as the only unknown.

Example (2012-PAPER-1 Q1). Make a the subject of the formula $\frac{3a+b}{8} = b-1$. Solution.

To make a the subject of the formula, we see a as the only variable of the equation.

$$\frac{3a+b}{8} = b-1$$

$$3a+b=8b-8 \qquad (multiply both sides by 8)$$

$$3a=7b-8 \qquad (isolate a)$$

$$a=\frac{7b-8}{3} \qquad (divide sides by 3)$$

 \dots end of solution.

Expansion & Factorization

Identity

Percentage

Polar Coordinates

Congruent and similar triangle

Properties of circle

Measure of Dispersion

Challenging revision