Sistemas com múltiplos qubits

Adenilton José da Silva

3 de setembro de 2020

► Existe uma enorme diferença entre a dimensão de sistemas clássicos e sistemas quânticos.

- ► Existe uma enorme diferença entre a dimensão de sistemas clássicos e sistemas quânticos.
- Utilizamos o produto tensorial para combinar espaços vetorais em espaços vetoriais maiores.

- ► Existe uma enorme diferença entre a dimensão de sistemas clássicos e sistemas quânticos.
- Utilizamos o produto tensorial para combinar espaços vetorais em espaços vetoriais maiores.
- O estado de alguns sistemas quânticos não podem ser descritos pela descrição do estado de cada um de seus componentes de forma separada.

- ► Existe uma enorme diferença entre a dimensão de sistemas clássicos e sistemas quânticos.
- Utilizamos o produto tensorial para combinar espaços vetorais em espaços vetoriais maiores.
- O estado de alguns sistemas quânticos não podem ser descritos pela descrição do estado de cada um de seus componentes de forma separada.
- O emaranhamento é uma característica única de sistemas quânticos.

Seção 1

Produto tensorial

Produto tensorial

Definição

▶ O produto tensorial $V \otimes W$ de dois espaços vetoriais V e W com bases $A = \{|\alpha_1\rangle, \cdots, |\alpha_n\rangle\}$ e $B = \{|\beta_1\rangle, \cdots, |\beta_m\rangle\}$ é um espaço vetorial cuja base possui nm elementos com a forma $|\alpha_i\rangle \otimes |\beta_i\rangle$, onde \otimes satisfaz:

i.
$$(|v_1\rangle + |v_2\rangle) \otimes |w\rangle = |v_1\rangle \otimes |w\rangle + |v_2\rangle \otimes |w\rangle$$

ii.
$$|v\rangle\otimes(|w_1\rangle+|w_2\rangle)=|v\rangle\otimes|w_1\rangle+|v\rangle\otimes|w_2\rangle$$

iii.
$$(a|v\rangle)\otimes|w\rangle=|v\rangle\otimes(a|w\rangle)=a(|v\rangle\otimes|w\rangle)$$

Produto tensorial

Exemplo

- ▶ Considere a base $\{|0\rangle, |1\rangle\}$ de $\mathbb{V} = \mathbb{C}^2$.
- $\blacktriangleright\ \mathbb{V}\otimes\mathbb{V}$ é o espaço vetorial sobre o corpo dos complexos gerado pela base

$$\left\{ \left|0\right\rangle \otimes \left|0\right\rangle ,\left|0\right\rangle \otimes \left|1\right\rangle ,\left|1\right\rangle \otimes \left|0\right\rangle ,\left|1\right\rangle \otimes \left|1\right\rangle \right\}$$

▶ Elementos do espaço vetorial $\mathbb{C}^2 \otimes \mathbb{C}^2$ podem ser escritos como

$$a_{00}\ket{0}\otimes\ket{0}+a_{01}\ket{0}\otimes\ket{1}+a_{10}\ket{1}\otimes\ket{0}+a_{11}\ket{1}\otimes\ket{1}$$

Produto tensorial

Exemplo

- ▶ Considere o espaço vetorial $\mathbb{V} = \mathbb{C}^2$ e a base $\{|0\rangle, |1\rangle\}$.
- Se $|v\rangle = a_0 |0\rangle + a_1 |1\rangle$ e $|w\rangle = b_0 |0\rangle + b_1 |1\rangle$.
- $\blacktriangleright |v\rangle \otimes |w\rangle = (a_0 |0\rangle + a_1 |1\rangle) \otimes (b_0 |0\rangle + b_1 |1\rangle) =$

$$a_0b_0(|0\rangle\otimes|0\rangle)+a_0b_1(|0\rangle\otimes|1\rangle)+a_1b_0(|1\rangle\otimes|0\rangle)+a_1b_1(|1\rangle\otimes|1\rangle)$$

Produto interno

▶ Se \mathbb{V} e \mathbb{W} possuem produto interno, então o produto interno dos vetores $|v_1\rangle \otimes |w_1\rangle$ e $|v_2\rangle \otimes |w_2\rangle$ em $\mathbb{V} \otimes \mathbb{W}$ é dado por

$$(\langle v_2|\otimes \langle w_2|)\cdot (|v_1\rangle\otimes |w_1\rangle)=\langle v_2|v_1\rangle\cdot \langle w_2|w_1\rangle$$

Produto interno

▶ Se \mathbb{V} e \mathbb{W} possuem produto interno, então o produto interno dos vetores $|v_1\rangle \otimes |w_1\rangle$ e $|v_2\rangle \otimes |w_2\rangle$ em $\mathbb{V} \otimes \mathbb{W}$ é dado por

$$(\langle v_2|\otimes \langle w_2|)\cdot (|v_1\rangle\otimes |w_1\rangle)=\langle v_2|v_1\rangle\cdot \langle w_2|w_1\rangle$$

 O produto tensorial de dois vetores unitários resulta em um vetor unitário

Produto interno

▶ Se \mathbb{V} e \mathbb{W} possuem produto interno, então o produto interno dos vetores $|v_1\rangle \otimes |w_1\rangle$ e $|v_2\rangle \otimes |w_2\rangle$ em $\mathbb{V} \otimes \mathbb{W}$ é dado por

$$(\langle v_2| \otimes \langle w_2|) \cdot (|v_1\rangle \otimes |w_1\rangle) = \langle v_2|v_1\rangle \cdot \langle w_2|w_1\rangle$$

- O produto tensorial de dois vetores unitários resulta em um vetor unitário
- ▶ Sejam $\{|\alpha_i\rangle\}$ uma base ortonormal de \mathbb{V} e $\{|\beta_i\rangle\}$ uma base ortonormal de \mathbb{W} , então $\{|\alpha_i\rangle\otimes|\beta_j\rangle\}$ é uma base ortonormal de $\mathbb{V}\otimes\mathbb{W}$.

- Existem elementos em $\mathbb{V} \otimes \mathbb{W}$ que não podem ser escritos com $|v\rangle \otimes |w\rangle$.
 - Dizemos que estes estados estão emaranhados.

Exemplo

lacktriangle Verifique que o estado $\frac{1}{\sqrt{2}}(|00
angle+|11
angle)$ está emaranhado.

Seção 2

Sistemas com múltiplos qubits

- ▶ Seja V_i um espaço vetorial com base $\{|0\rangle_i, |1\rangle_i\}$, $i = 0, \dots, n-1$.
- ▶ Um sistema quântico com n-qubits é descrito por um vetor unitário no espaço vetorial $\mathbb{V}_{n-1} \otimes \cdots \otimes \mathbb{V}_0$ que possui a base

$$\left\{ \begin{array}{l} |0\rangle_{i-1} \otimes \cdots \otimes |0\rangle_{1} \otimes |0\rangle_{0} \,, \\ |0\rangle_{i-1} \otimes \cdots \otimes |0\rangle_{1} \otimes |1\rangle_{0} \,, \\ |0\rangle_{i-1} \otimes \cdots \otimes |1\rangle_{1} \otimes |0\rangle_{0} \,, \\ \vdots \\ |1\rangle_{i-1} \otimes \cdots \otimes |1\rangle_{1} \otimes |1\rangle_{0} \end{array} \right\}$$

- ▶ Seja V_i um espaço vetorial com base $\{|0\rangle_i, |1\rangle_i\}$, $i = 0, \dots, n-1$.
- ▶ Um sistema quântico com n-qubits é descrito por um vetor unitário no espaço vetorial $\mathbb{V}^{\otimes n} = \mathbb{V} \otimes \cdots \otimes \mathbb{V}$ que possui a base

$$\left\{ \begin{array}{l} |0\rangle \otimes \cdots \otimes |0\rangle \otimes |0\rangle \ , \\ |0\rangle \otimes \cdots \otimes |0\rangle \otimes |1\rangle \ , \\ |0\rangle \otimes \cdots \otimes |1\rangle \otimes |0\rangle \ , \\ \vdots \\ |1\rangle \otimes \cdots \otimes |1\rangle \otimes |1\rangle \end{array} \right\}$$

- ▶ Seja V_i um espaço vetorial com base $\{|0\rangle_i, |1\rangle_i\}$, $i = 0, \dots, n-1$.
- ▶ Um sistema quântico com n-qubits é descrito por um vetor unitário no espaço vetorial $\mathbb{V}^{\otimes n} = \mathbb{V} \otimes \cdots \otimes \mathbb{V}$ que possui a base

$$\left\{\begin{array}{l} |0\rangle\cdots|0\rangle\,|0\rangle\,,\\ |0\rangle\cdots|0\rangle\,|1\rangle\,,\\ |0\rangle\cdots|1\rangle\,|0\rangle\,,\\ \vdots\\ |1\rangle\cdots|1\rangle\,|1\rangle \end{array}\right\}$$

- ▶ Seja V_i um espaço vetorial com base $\{|0\rangle_i, |1\rangle_i\}$, $i = 0, \dots, n-1$.
- ▶ Um sistema quântico com n-qubits é descrito por um vetor unitário no espaço vetorial $\mathbb{V}^{\otimes n} = \mathbb{V} \otimes \cdots \otimes \mathbb{V}$ que possui a base

$$\left\{ \begin{array}{l} |0\cdots00\rangle\,,\\ |0\cdots01\rangle\,,\\ |0\cdots10\rangle\,,\\ \vdots\\ |1\cdots11\rangle \end{array} \right\}$$

- Seja V_i um espaço vetorial com base $\{|0\rangle_i, |1\rangle_i\}$, $i = 0, \dots, n-1$.
- ▶ Um sistema quântico com n-qubits é descrito por um vetor unitário no espaço vetorial $\mathbb{V}^{\otimes n} = \mathbb{V} \otimes \cdots \otimes \mathbb{V}$ que possui a base

$$\left\{ \begin{array}{c} |0\rangle\,, \\ |1\rangle\,, \\ |2\rangle\,, \\ \vdots \\ |2^n - 1\rangle \end{array} \right\}$$

Exemplos

$$ightharpoonup rac{1}{\sqrt{2}} \left|000
ight
angle + rac{1}{\sqrt{2}} \left|111
ight
angle$$

Exemplos

- ▶ Utilizando a base $\{|000\rangle, |001\rangle, \cdots, |111\rangle\}$ este estado tem representação matricial

$$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

O espaço dos múltiplos qubits

- ▶ O espaço de um sistema com múltiplos qubits é diferente do espaço vetorial em que ele é representado.
- Diferentes vetores podem representar o mesmo qubit.

Fase global

Vetores diferem apenas por uma fase global representam o mesmo estado quântico.

$$rac{1}{\sqrt{2}}(\ket{0}+\ket{1})\simrac{e^{i heta}}{\sqrt{2}}(\ket{0}+\ket{1})$$

 $ightharpoonup |00\rangle \sim e^{i\theta} |00\rangle$

$$rac{\ket{00}+\ket{11}}{\sqrt{2}}
ot\simrac{e^{i heta}\ket{00}+\ket{11}}{\sqrt{2}} \ rac{e^{i heta}\ket{00}+e^{i heta}\ket{11}}{\sqrt{2}} \ rac{\ket{00}+\ket{11}}{\sqrt{2}} \sim rac{e^{i heta}\ket{00}+e^{i heta}\ket{11}}{\sqrt{2}}$$

Representação única

- ▶ Seja $|v\rangle = a_0 |0\rangle + \cdots + a_{2^n-1} |2^n 1\rangle$ um estado quântico com n qubits.
- Se escrevermos todos os estados quânticos com fazendo o primeiro a_i não nulo um número real positivo, então a representação dos qubits será única.

▶ Um array com qubits $[|v_0\rangle, |v_1\rangle, \dots, |v_n\rangle]$ tem um crescimento linear em relação ao número de qubits.

- ▶ Um array com qubits $[|v_0\rangle, |v_1\rangle, \dots, |v_n\rangle]$ tem um crescimento linear em relação ao número de qubits.
- ▶ O produto tensorial $|v_0\rangle \otimes |v_1\rangle \otimes \cdots \otimes |v_n\rangle$ tem um crescimento exponencial em relação ao número de qubits.

- ▶ Um array com qubits $[|v_0\rangle, |v_1\rangle, \dots, |v_n\rangle]$ tem um crescimento linear em relação ao número de qubits.
- ▶ O produto tensorial $|v_0\rangle \otimes |v_1\rangle \otimes \cdots \otimes |v_n\rangle$ tem um crescimento exponencial em relação ao número de qubits.
- ▶ A maior parte dos estados com *n* qubits não pode ser descrita pelo estado de *n* qubits de forma separada.

Exemplos

$$ightharpoonup \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$ightharpoonup \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$$

$$\blacktriangleright \ \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$$

$$\blacktriangleright \ \ \frac{1}{\sqrt{2}} \big(|01\rangle - |10\rangle \big)$$

Seção 3

Medição

Medição

- Medição do primeiro qubit utilizando a base $\{\ket{0},\ket{1}\}\$ $a_0\ket{00}+a_1\ket{01}+a_2\ket{10}+a_3\ket{11}$
- $ightharpoonup |0\rangle$ com probabilidade $|a_0|^2 + |a_1|^2$, estado após medição

$$|0\rangle \left(\frac{a_0 |0\rangle + a_1 |1\rangle}{\sqrt{|a_0|^2 + |a_1|^2}}\right) = \left(\frac{a_0 |00\rangle + a_1 |01\rangle}{\sqrt{|a_0|^2 + |a_1|^2}}\right)$$

Medição

- Medição do primeiro qubit utilizando a base $\{\ket{0},\ket{1}\}\$ $a_0\ket{00}+a_1\ket{01}+a_2\ket{10}+a_3\ket{11}$
- ightharpoonup |0
 angle com probabilidade $|a_0|^2+|a_1|^2$, estado após medição

$$|0\rangle \left(\frac{a_0 |0\rangle + a_1 |1\rangle}{\sqrt{|a_0|^2 + |a_1|^2}}\right) = \left(\frac{a_0 |00\rangle + a_1 |01\rangle}{\sqrt{|a_0|^2 + |a_1|^2}}\right)$$

ightharpoonup |1
angle com probabilidade $|a_2|^2+|a_3|^2$, estado após medição

$$|1\rangle \left(\frac{a_2\,|0\rangle + a_3\,|1\rangle}{\sqrt{|a_2|^2 + |a_3|^2}}\right) = \left(\frac{a_2\,|10\rangle + a_3\,|11\rangle}{\sqrt{|a_2|^2 + |a_3|^2}}\right)$$

Medição

- Medição do primeiro qubit utilizando a base $\{|+\rangle, |-\rangle\}$ $a_0 |00\rangle + a_1 |01\rangle + a_2 |10\rangle + a_3 |11\rangle$
- ▶ Reescreva o estado utilizando a base $\{|+\rangle\,, |-\rangle\}$ para determinar o resultado da medição.

Medição do primeiro qubit do estado $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ utilizando a base $\{|0\rangle, |1\rangle\}$.

- Medição do primeiro qubit do estado $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ utilizando a base $\{|0\rangle, |1\rangle\}$.
 - $ightharpoonup |0\rangle$ com probabilidade 50%, estado resultante $|00\rangle$.
 - $ightharpoonup |1\rangle$ com probabilidade 50%, estado resultante $|11\rangle$.

- Medição do primeiro qubit do estado $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ utilizando a base $\{|0\rangle, |1\rangle\}$.
 - $ightharpoonup |0\rangle$ com probabilidade 50%, estado resultante $|00\rangle$.
 - $ightharpoonup |1\rangle$ com probabilidade 50%, estado resultante $|11\rangle$.
- Qual o resultado da medição do segundo qubit?

▶ Medição do primeiro qubit do estado $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ utilizando a base $\{|+\rangle, |-\rangle\}$.

- Medição do primeiro qubit do estado $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ utilizando a base $\{|+\rangle, |-\rangle\}$.
 - ightharpoonup $|+\rangle$ com probabilidade 50%, estado resultante $|+\rangle\,|+\rangle$.
 - $|-\rangle$ com probabilidade 50%, estado resultante $|-\rangle$ $|-\rangle$.

- Medição do primeiro qubit do estado $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ utilizando a base $\{|+\rangle, |-\rangle\}$.
 - $|+\rangle$ com probabilidade 50%, estado resultante $|+\rangle$ $|+\rangle$.
 - $|-\rangle$ com probabilidade 50%, estado resultante $|-\rangle$ $|-\rangle$.
- Qual o resultado da medição do segundo qubit?

Seção 4

Distribuição de chaves utilizando estados emaranhados

Distribuição de chaves utilizando estados emaranhados

- ightharpoonup Compartilhar um estado $|00\rangle + |11\rangle$
- ▶ Alice faz a medição do primeiro qubit escolhendo aleatoriamente uma das bases $\{|0\rangle, |1\rangle\}$ ou $\{|+\rangle, |-\rangle\}$
- ▶ Bob faz a medição do segundo qubit escolhendo aleatoriamente uma das bases $\{|0\rangle, |1\rangle\}$ ou $\{|+\rangle, |-\rangle\}$
- ▶ Se as bases não coincidirem o bit resultante é descartado. Se as bases coincidirem o bit resultante irá compor a chave.