

Style Transfer using Deep Neural Networks

Content

- Problem Description
- Methodology
 - System Overview
 - ► Block Diagram of VGG16
 - Mathematical Background of Style Transformation
- Results
- Discussion on results
- Conclusion

Problem Description

- Our aim is to re-interpret an image in the style of a given style image without losing too much content information of the input image.
- Thus, the problem address the trade-off between the loss of content information and gained style during training.

Methodology

- ► The applied method relies on pre-trained network VGG16 for feature extraction where the features are used to implement a perceptual loss.
- Implemented loss is used for the training of deep style transformer network that trained with a specific style via back-propagation.
- Several models have been trained, i.e. for each style, on Flickr8K dataset.

System Overview

Feed-forward transformation networks with perceptual loss functions for style transformation.

Block diagram of pre-trained model VGG16

Mathematical background for style transformation

• vectorized version of extracted features ϕ_j and c_j is channel number to computation of gram-matrices

$$\phi_j \to F_j := [c_j, h_j, w_j] \to [c_j, h_j * w_j]$$

$$G_j := \langle F_j^T, F_j \rangle$$

Content Loss Function

$$L_{content}^{\phi_j}(y_c) = \frac{1}{C_j H_j W_j} ||\phi_j(\hat{y}) - \phi_j(y_c)||^2$$

Computation of gram matricies

matricies
$$G_{c,c'}^{\phi_j}(x) = \frac{1}{C_j H_j W_j} \sum_{h=1}^{H_j} \sum_{w=1}^{W_j} \phi_j(x)_{h,w,c} \ \phi_j(x)_{h,w,c'}$$

Mathematical background for style transformation

• An element from computed gram matrix

$$G^{\phi_j}(x) = \langle F_j(x)^T, F_j(x) \rangle$$

• Style loss $L_{style}^{G_j} = ||G_j(\hat{y}) - G_j(y_s)||^2$

Total loss which is weighted sum of content and style losses

$$L_{total} = \alpha L_{content}^{\phi_2} + \beta (L_{style}^{G_1} + L_{style}^{G_2} + L_{style}^{G_3} + L_{style}^{G_4})$$
$$= \alpha L_{content}^{\phi_2} + \beta L_{style}^{G_{1,2,3,4}}$$

Applying style of Composition 7, by Vasiliy Kandinskiy, to realistic

Applying style of Starry Night, by Van Gogh, to Izmir Clock Tower

Model Performance for Van Gogh Style Transformation

Perceptual loss curves for starry night style transfer. The scales of hyper-parameters α and β are vivid on loss curves

Style transformation for Mosaic style on Big Ben

Model Performance for Mosaic Style Transformation

Picasso's Crying Women applied on Jon Snow from Game of Thrones

Model Performance for Picasso Style Transformation

Style Transformation for Pillar of Creations

Model Performance for Pillar of Creations Style Transformation

Discussion on results

 Content image more adapts the style transformation through increasing the percentage of training.

Conclusion

The results showed that, trained models could successfully apply the specific style to any input image.