STAT 6390: Analysis of Survival Data

Textbook coverage: Chapter 2

Steven Chiou

Department of Mathematical Sciences, University of Texas at Dallas

- Suppose the actual (uncensored, untruncated) survival time of an individual is t and can be regarded as the observed value of a variable, T.
- We assume the support of T is non-negative or $(0, \infty)$.
- We call T the random variable associated with the survival time, and we define T has a cumulative distribution function given by $F(t) = P(T \le t)$.
- The survival function of T is then defined as

$$S(t) = 1 - P(T \le t) = 1 - F(t).$$

Why are we more interested in S(t)?

- The *hazard function* is widely used to survival analysis.
- The hazard function h(t) is defined below

$$h(t) = \lim_{\delta \to 0} \frac{P(t \le T < t + \delta | T \ge t)}{\delta}.$$
 (1)

- $P(t \le T < t + \delta | T \ge t)$ is a conditional probability.
- The conditional probability is then expressed as a probability per nit time by dividing by the time interval, δ , to give a *rate*.
- The function h(t) is also referred to as the hazard rate, the instantaneous death rate, the intensity rate, or the force of mortality.
- Event rate at time t, conditional on the event not having occurred before t.

- In terms of probability, if t is measured in days, h(t) is the approximate probability that an individual, who is at risk of the event occurring at the start of day t, experiences the event during that day.
 - In this case $\delta = 1$.
 - $\lim_{\delta \to 0}$ can be thought of as changing the unit from days to hours, minutes, seconds, milliseconds...
- If the event of interest is not death, h(t) can also be regarded as the expected number of events experienced by an individual in unit time, given that the event has not occurred before then.
 - Think of $E\{I(\cdot)\} = P(\cdot)$.
 - The part "given that the event..." might be ignored if events follow the Poisson process.

 The definition in (1) leads to some useful relationships between survivor and hazard functions:

$$(1) = \lim_{\delta \to 0} \frac{P(t \le T < t + \delta)}{\delta \cdot P(T < t)} = \lim_{\delta \to 0} \frac{F(t + \delta) - F(t)}{\delta} \cdot \frac{1}{P(T < t)} = \frac{dF(t)}{dt} \cdot \frac{1}{S(t)}.$$

- h(t) is approximately the probability that an individual experiences an event at this instant (t) given that he/she is risk free up to t.
- If T is a continuous random variable, then we have

$$h(t) = \frac{f(t)}{S(t)}. (2)$$

• This shows that from any one of the three functions, f(t), S(t), and h(t), the other two can be determined.

• Equation (2) also implies

$$h(t) = -\frac{d}{dt} \{ \log S(t) \} \text{ and } S(t) = e^{-H(t)},$$

where $H(t) = \int_0^t h(u) du$ is the cumulative hazard function.

Similarly, the cumulative hazard function can also be obtained from

$$H(t) = -\log S(t).$$

- The cumulative hazard function is the cumulative risk of an event occurring by time t.
- If the event is death, then H(t) summarizes the risk of death up to time t, given that death has not occurred by t.
- If the event is not death, H(t) can be interpreted as the expected number of events that occur in the interval (0, t).

- It is possible for H(t) > 1, h(t) > 1, or f(t) > 1.
- Like *F*(*t*), *S*(*t*) is bounded in [0, 1].
- F(t) and H(t) is non-decreasing; S(t) is non-increasing.
- h(t) can go up and down.
- For example, suppose $T \sim \exp(\lambda)$, where λ is the rate. Then
 - $S(t) = e^{\lambda t}$.
 - $h(t) = \lambda$.
 - $H(t) = \lambda t$.

- The S(t) can be estimated non-parametrically with the *product limit* estimator, which is also known as the *Kaplan-Meier* estimator.
- We first assume there is a single sample of survival times, and none of these are censored.
- In this case, the survivor probability at t, S(t), is defined as

$$\hat{S}_e(t) = \frac{\text{# individuals with survival times } \ge t}{\text{# individuals in the data set}}.$$
 (3)

- Equation (3) is called *empirical survivor function*.
- Similar $\hat{F}_e(t) = 1 \hat{S}_e(t)$ is called the *empirical cumulative distribution function*.

- We illustrate with the first 10 uncensored subjects in the whas 100 data.
- Make sure tidyverse package and whas 100 are properly loaded*.

```
> whas10 <- whas100 %>% filter(fstat > 0) %>% filter(row number() <= 10)</pre>
> whas10
# A tibble: 10 x 9
      id admitdate
                                                        age gender
                     foldate
                                   los lenfol fstat
                                                                      bmi
   <int> <fct>
                     <fct>
                                 <int>
                                         <int> <int> <int>
                                                             <int>
                                                                    <db1>
         3/13/1995
                     3/19/1995
                                      4
                                                         65
                                                                     31.4
       2 1/14/1995
                     1/23/1996
                                           374
                     10/4/2001
       3 2/17/1995
                                          2421
                                                                     27.9
       4 4/7/1995
                     7/14/1995
                                                         81
                                                                     21.5
                     5/29/1998
                                                                     30.7
       5 2/9/1995
                                                         78
6
       6 1/16/1995
                     9/11/2000
                                          2065
                                                         82
                                                                     26.5
       7 1/17/1995
                     10/15/1997
                                                         66
       8 11/15/1994 11/24/2000
                                     56
                                                         81
                                                                     28.3
                     2/23/1996
       9 8/18/1995
                                           189
                                                         76
      12 5/26/1995
                     9/29/1996
                                                                     24.7
                                           492
                                                         8.3
```

* see note 1 for details.

The empirical estimates can be easily computed with ecdf.

```
whas10 <- whas10 %>% mutate(surv = 1 - ecdf(lenfol)(lenfol))
whas10
A tibble: 10 \times 10
     id admitdate
                    foldate
                                  los lenfol fstat
                                                      age gender
                                                                    bmi
                                                                          surv
  <int> <fct>
                    <fct>
                                       <int> <int> <int>
                                                            <int> <dbl> <dbl>
      1 3/13/1995
                    3/19/1995
                                                        65
                                                                   31.4 0.9
                                    4
      2 1/14/1995
                    1/23/1996
                                         374
                                                        88
                                                                   22.7 0.6
                    10/4/2001
      3 2/17/1995
                                        2.42.1
                                                                   27.9 0
      4 4/7/1995
                   7/14/1995
                                           98
                                                        81
                                                                   21.5 0.8
      5 2/9/1995
                    5/29/1998
                                                        78
                                                                   30.7 0.3
6
      6 1/16/1995
                    9/11/2000
                                                        82
                                                                   26.5 0.200
      7 1/17/1995
                    10/15/1997
                                                        66
                                                                   35.7 0.4
      8 11/15/1994 11/24/2000
                                                        81
                                                                   28.3 0.100
9
       8/18/1995
                    2/23/1996
                                         189
                                                       76
                                                                   27.1 0.7
     12 5/26/1995
                    9/29/1996
                                         492
                                                        83
                                                                   24.7 0.5
```

The empirical survivor function is a non-increasing step function.

```
> whas20 %>% ggplot(aes(lenfol, surv)) + geom_step(size = 1.2)
```


- The $\hat{S}_e(t)$ is 1 at t=0 and 0 at the final death time.
- The $\hat{S}_e(t)$ is assumed to be constant between adjacent death times.

 Putting everything together, we could plot the empirical survival curve for all the uncensored subjects in whas 100:

```
> whas100 %>% filter(fstat > 0) %>% mutate(surv = 1 - ecdf(lenfol)(lenfol)) %>%
+ ggplot(aes(lenfol, surv)) + geom_step() + geom_smooth()
```


The pipeline between ggplot is "+" instead of "%>%".

- With censoring, the same idea can be applied with proper adjustment.
- Kaplan-Meier estimator is the default estimator used by many packages.
- The basic idea is to decompose P(T > t) by conditioning on prior times.
- Suppose a sample size of n, P(T > t) can be decomposed as

$$\hat{S}_{KM}(t) \equiv P(T > t) = P(T > t_{(0)}) \cdot P(T > t_{(1)}|T > t_{(0)}) \cdot P(T > t_{(2)}|T > t_{(1)}) \cdot \dots \cdot P(T > t|T > t_{(i)}),$$

for a series of time intervals $0 \equiv t_{(0)} < t_{(1)} < \ldots < t_{(i)} < t$ for some $i \leq n$.

• In general, the series $\{t_{(1)}, \dots, t_{(m)}\}$ denotes the *m* ordered death times.

Suppose we want P(T > 800) among the first 20 patients in whas 1000.

- There are 6 events before t = 800.

$$\begin{split} \hat{S}_{KM}(800) &= P(T > 800) = \\ &= P(T > 0) \times P(T > 6 | T > 0) \times P(T > 98 | T > 6) \times \dots \times P(T > 492 | T > 374) \\ &= 1 \times \frac{19}{20} \times \frac{18}{19} \times \frac{17}{18} \times \frac{16}{17} \times \frac{15}{16} \times \frac{14}{15} = \frac{14}{20} = 70\% \end{split}$$

Why does $\hat{S}_{KM}(800) = \hat{S}_{e}(800)$ here?

The Kaplan-Meier estimator can be obtained with the survfit function.

```
> librarv(survival)
> km <- survfit(Surv(lenfol, fstat) ~ 1, data = whas100, subset = id <= 20)
> summary (km)
Call: survfit(formula = Surv(lenfol, fstat) ~ 1, data = whas100, subset = id <=
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
    6
                         0.95
                               0.0487
                                              0.859
                                                           1.000
   98
          19
                         0.90
                              0.0671
                                              0.778
                                                           1.000
  189
         1.8
                         0.85
                               0.0798
                                              0.707
                         0.80 0.0894
                                              0.643
                                                            0.996
  374
          16
                         0.75 0.0968
                                              0.582
                                                           0.966
  492
                         0.70 0.1025
                                              0.525
                                                           0.933
          14
                         0.65
                               0.1067
                                              0.471
                                                           0.897
          13
                         0.60
                               0.1095
                                              0.420
                                                           0.858
1669
                         0.55 0.1112
                                              0.370
                                                           0.818
 2065
          11
                         0.50 0.1118
                                              0.323
                                                           0.775
                         0.45
                               0.1112
                                              0.277
 2421
           9
                         0.40
                                0.1095
                                              0.234
                                                           0.684
 2624
                         0.30
                               0.1194
                                              0.138
                                                            0.654
```

The Kaplan-Meier curve can be plotted with plot or ggsurvplot.

• Since survminer depends on the newest version of survMisc, you might need to update the latter to be able to use ggsurvplot.

Suppose we want P(T > 800) based on the following modified data:

- There are 3 events before t = 800.
- The events occured at $\frac{t_{(0)}}{0}$ $\frac{t_{(1)}}{6}$ $\frac{t_{(2)}}{374}$ $\frac{t_{(3)}}{492}$
- In this modified data, t = 98, 189, 302 are considered as censored.

$$\begin{split} \hat{S}_{KM}(800) &= P(T > 800) = \\ &= P(T > 0) \times P(T > 6 | T > 0) \times P(T > 374 | T > 6) \times P(T > 492 | T > 374) \\ &= 1 \times \frac{19}{20} \times \frac{15}{16} \times \frac{14}{15} \approx 83.1\% \end{split}$$

The Kaplan-Meier estimator for the whole data is

```
> library(survival)
> km <- survfit(Surv(lenfol, fstat) ~ 1, data = whas100)</pre>
> plot (km)
> ggsurvplot (km)
                                                                             Strata - All
                                                       0.75
                                                     probability
05.0
   9.0
                                                       0.25
            500
                          1500
                                 2000
                                         2500
                                                                                      2000
                                                                                                    3000
                                                                               Time
```

 If the last observed time corresponds to a censored observation, then the estimate of the survival function does not go to zero.

- Suppose we have a sample of n independent observations $(t_i, c_i), i = 1, 2, \dots, n$.
- There are m deaths and $m \le n$.
- The series $\{t_{(1)}, \ldots, t_{(m)}\}$ are the m ordered death times.
- The Kaplan-Meier estimator has the form

$$\hat{S}_{KM}(t) = \sum_{t_{(i)} \leq t} \frac{n_i - d_i}{n_i} = \sum_{t_{(i)} \leq t} 1 - \frac{d_i}{n_i},$$

where n_i is the number of individual who are alive at $t_{(i)}$ (at risk), and d_i is the number of individual who died at $t_{(i)}$.

• A potential problem with the Kaplan-Meier estimator is when n_i is small and $n_i = d_i$ occurs at early time.

Nelson-Aalon estimator

• An alternative estimate of $\hat{S}_{KM}(t)$ is the Nelson-Aalon estimator.

$$\hat{S}_{NA}(t) = \prod_{t_{(i)} \leq t} \exp\left(-rac{d_i}{n_i}
ight).$$

- The main idea is to see d_i/n_i as the event rate, i.e., $h(t_{(i)}) = d_i/n_i$.
- Recall the relationship h(t) = f(t)/S(t) and think of d_i/n and n_i/n are raw rough estimates of f(t) and S(t).
- By the similar argument, we have

$$H(t) = \sum_{t_{ij} \le t} d_i/n_i$$
, and $S(t) = e^{-H(t)} = \hat{S}_{NA}(t)$.

- $\hat{S}_{NA}(t)$ and $\hat{S}_{KM}(t)$ are derived differently, but both based on d_i and n_i .
- In general $\hat{S}_{NA}(t)
 eq \hat{S}_{KM}(t)$ but $\hat{S}_{NA}(t) pprox \hat{S}_{KM}(t)$.
- $\hat{S}_{NA}(t)$ has slightly nicer properties and is more stable.

Nelson-Aalon estimator

