安徽大学 20_18_-20_19_学年第_1_学期

《 概率论与数理统计 A 》考试试卷 (A 卷) (闭卷 时间 120 分钟)

考场登记表序号_____

题 号	_	=	Ξ	四四	五	总分
得 分						
阅卷人						

 填空题	(每小题	2分,	共10	分)
-24 TV	1 -3 1 45	- /3 ,	/ 1 - 0	13 1

得分

- 1. 三个人独立地破译一个密码, 他们单独破译出的概率分别为 $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, 则"此密码被破译出"的概率为______.
- 2. 设随机变量 X 的概率密度函数为 $f(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & \text{其他,} \end{cases}$ 以 Y 表示对 X 的三次独立重复

观察中随机事件 $\left\{X \leq \frac{1}{2}\right\}$ 出现的次数,则P(Y=2) =______.

- 3. 设随机变量 ξ 服从参数为 λ 的泊松分布, 且满足 $P(\xi=1)=P(\xi=2)$, 则 $P(\xi^2<3)=$ _____.
- 4. 己知总体 X 的期望 EX=0,方差 $DX=\sigma^2$,从总体 X 中抽取容量为 n 的简单随机样本,样本均值、样本方差分别记为 \overline{X} , S^2 ,则 $E\left(\frac{n}{2}\overline{X}^2+\frac{1}{2}S^2\right)=$ ______.
- 5. 设某农作物的平均亩产量 X (单位: kg) 服从 $N(\mu, 100^2)$. 现随机抽取 100 亩进行试验, 观察其亩产量,得到样本均值 $\bar{x}=500$ kg,则总体均值 μ 的置信水平为 0.95 的置信区间为______. ($\Phi(1.645)=0.95, \Phi(1.96)=0.975$)

二、选择题 (每小题 2 分, 共 10 分)

得分

- 6. 设 0 < P(A) < 1, 0 < P(B) < 1, 且 $P(A|B) + P(\overline{A}|\overline{B}) = 1$, 则 ().
 - (A) 事件 A 与事件 B 互不相容
- (B) 事件 A 与事件 B 对立
- (C) 事件 A 与事件 B 不独立
- (D) 事件 A 与事件 B 独立

小小

符名

H

挨

业 题 勿 超

- 573

所/水

7. 设两个相互独立的随机变量 X 与 Y 分别服从正态分布 N(0,1) 和 N(1,1) ,则下列结论中 正确的是()...

(A)
$$P(X - Y \le 0) = \frac{1}{2}$$
 (B) $P(X - Y \le 1) = \frac{1}{2}$

(B)
$$P(X - Y \le 1) = \frac{1}{2}$$

(C)
$$P(X + Y \le 1) = \frac{1}{2}$$
 (D) $P(X + Y \le 0) = \frac{1}{2}$

(D)
$$P(X + Y \le 0) = \frac{1}{2}$$

8. 如果随机变量X与Y满足D(X+Y)=D(X-Y),则必有().

- (A) D(X)D(Y) = 0 (B) D(X) = 0 (C) X 与 Y相互独立 (D) X 与 Y不
 - (D) X与Y不相关

9. 设 $X_1, X_2, \dots, X_n, \dots$ 为一列独立同分布随机变量序列, 其共同期望为0, 方差为1. 记 $\Phi(x)$ 为标准正态分布的分布函数,则以下正确的是().

(A)
$$\lim_{n \to \infty} P\left(n^{-\frac{1}{2}} \sum_{i=1}^{n} X_i \le x\right) = \Phi(x)$$

(B)
$$\lim_{n \to \infty} P\left(n^{\frac{1}{2}} \sum_{i=1}^{n} X_i \le x\right) = \Phi(x)$$

(C)
$$\lim_{n \to \infty} P\left(n^{-1} \sum_{i=1}^{n} X_i \le x\right) = \Phi(x)$$
 (D)
$$\lim_{n \to \infty} P\left(n \sum_{i=1}^{n} X_i \le x\right) = \Phi(x)$$

(D)
$$\lim_{n \to \infty} P\left(n \sum_{i=1}^{n} X_i \le x\right) = \Phi(x)$$

10. 下列叙述正确的是().

(A) 设
$$X \sim N(0,1)$$
, $Y \sim \chi^2(n)$, 则 $\frac{X}{\sqrt{Y/n}} \sim t(n)$

- (B) 设 $X \sim \chi^2(n)$, $Y \sim \chi^2(m)$, 且X 与 Y独立,则 $X + Y \sim \chi^2(n+m)$
- (C) 设 θ_1 和 θ_2 都是参数 θ 的无偏估计,如果 $D\theta_1 \leq D\theta_2$,则 θ_2 比 θ_1 有效
- (D) 设 X_1, X_2, \dots, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的样本, μ 为未知参数,则 $\sum_{i=1}^{n} (X_i \mu)^2$ 是一个统计量

三、分析计算题 (每小题 13 分, 共 65 分)

得分

- 11. 试卷中有一道选择题, 共有n(n≥2)个答案可供选择, 其中只有一个答案是正确的. 任一考生如果会解这道题,则一定能选出正确答案;如果他不会解这道题,则他不妨任 选其中一个答案. 设任一考生会解这道题的概率是 p(0 ,
 - (1) 求任一考生选出正确答案的概率:
 - (2) 已知某考生所选答案是正确的,求他/她确实会解这道题的概率.

12. 设连续型随机变量 X 的概率密度为

$$f(x) = \begin{cases} k(1-x)^3, & 0 < x < 1, \\ 0, & \text{ 其他,} \end{cases}$$

- (1) 求 k 的值;
- (2) 求关于t的一元二次方程 $t^2 + \sqrt{2}t + X = 0$ 有实根的概率;
- (3) 求随机变量 $Y = X^2$ 的概率密度函数.

13. 设二维随机变量(X,Y)的联合概率密度为

$$f(x, y) = \begin{cases} \frac{6}{7} \left(x^2 + \frac{xy}{2} \right), & 0 < x < 1, \ 0 < y < 2, \\ 0, & \sharp \&, \end{cases}$$

- (1) 求 X 的边际密度函数;
- (2) 求概率 P(X>Y);
- (3) 求在 $\left\{X = \frac{1}{2}\right\}$ 的条件下 Y 的条件概率密度 $f_{Y|X}\left(y\left|\frac{1}{2}\right)$ 以及概率 $P\left(Y < \frac{1}{2}\right|X = \frac{1}{2}\right)$.

- - (1) 求(X,X,)的联合分布;
 - (2) 判断 X₁, X₂, 是否独立;
 - (3) 判断 X_1, X_2 是否相关;如果相关,求 X_1, X_2 的相关系数.

#

12. 设连续型随机变量 X 的概率密度为

$$f(x) = \begin{cases} k(1-x)^3, & 0 < x < 1, \\ 0, & \text{ 其他,} \end{cases}$$

- (1) 求k的值;
- (2) 求关于t的一元二次方程 $t^2 + \sqrt{2}t + X = 0$ 有实根的概率;
- (3) 求随机变量 $Y = X^2$ 的概率密度函数.

得分

四、应用题(每小题8分,共8分)

16. 假定某厂生产一种钢索,它的断裂强度 X (kg/cm^2) 服从正态分布 $N(\mu, 20^2)$. 从中选取一个容量为 9 的样本,得 $\overline{x} = 680kg/cm^2$. 若取 $\alpha = 0.05$,则能否据此样本认为这批钢索的断裂强度为 $700kg/cm^2$? ($\Phi(1.645) = 0.95$, $\Phi(1.96) = 0.975$)

五、证明题(每小题7分,共7分)

得分

17. 设随机变量 X 与 Y 相互独立,且分别服从参数为 λ 与 μ 的泊松分布,试证: X+Y 服从参数为 $\lambda+\mu$ 的泊松分布.