

COMPUTER GRAPHICS

第七章光照

陈中贵 厦门大学信息学院 http://graphics.xmu.edu.cn

为什么需要明暗处理

□假设用多边形网格建立了球面的模型,其颜色采用纯色定义,那么得到的结果为

□而我们希望为

光照模型

- □ Phong光照模型 (ADS模型)
 - □模型
 - □向量计算

光照模型

- □全局光照模型
 - □ 考虑到环境中所有表面和光源 相互作用
 - ■效果非常好
 - □速度慢、离线渲染
 - □例:光线跟踪算法

- 局部光照模型
 - 一只考虑光源到模型表面的照射效果
 - 效果可接受
 - 速度快、实时交互
 - 例: Phong光照模型

真实照片or虚拟场景?

光线跟踪算法, 渲染时间近一个小时

Phong光照模型

- □经验模型,尽量模拟真实光照效果
- □思考:如何呈现物体表面明暗不同?

Phong光照模型

- 可以快速计算的局部光照模型
- 有三类分量
 - □环境光 (Ambient): 场景中的其他间接光照
 - □漫反射 (Diffuse): 散射部分 (大但不光亮)
 - □高光反射 (Specular): 镜面反射部分 (小而亮)

7

三维场景

• 对象、光源、相机

Phong光照模型

- 使用四个向量
 - 入射光方向 1
 - 视点方向 V
 - 法向 n
 - 理想反射方向 r

9

Phong光照模型 - 环境光

□环境光由场景中光源与对象间的多次相互作用而导致

□环境光模型:

$$I_{ambient} = k_a \cdot L_a$$

其中: k_a 反射系数,

 L_a 环境光强度

Phong光照模型 - 环境光

□环境光由场景中光源与对象间的多次相互作用而导致

□环境光模型:

$$I_{ambient} = k_a \cdot L_a$$

其中: k_a 反射系数,

 L_a 环境光强度

Phong光照模型

- □漫反射光
 - □模拟粗糙的物体表面
 - □光向各个方向均匀地散射

Phong光照模型 - 漫反射光强

- □正比于入射光与物体表面竖直的分量
 - □即反射光强 ~ $\cos \theta$
- □漫反射光强:

$$I_{diffuse} = k_d \cdot \cos\theta \cdot L_d$$

其中: k_d 漫反射系数, L_d 入射光强度

Phong光照模型 - 漫反射光强

- □正比于入射光与物体表面竖直的分量
 - ■即反射光强 ~ $\cos \theta$
- □漫反射光强:

$$I_{diffuse} = k_d \cdot \cos\theta \cdot L_d$$

其中: k_d 漫反射系数, L_d 入射光强度

□理想的镜面反射

- □大多数曲面既不是理想的漫反射型曲面,也不是真正的镜面
- □光滑表面显出镜面高光,因为入射光反射后,绝大多数集中 在理想反射方向周围

□ 镜面光强度:

$$I_{specular} = k_s \cdot L_s \cdot \cos^{\alpha} \varphi$$

其中: k_s 镜面反射系数, L_s 入射光强度 α 高光系数

- □高光系数
 - ■金属材料, α 值介于100到200之间
 - □塑料材料, α值介于5到10之间
 - □镜子, α 趋向无穷大

□镜面反射参数的影响

Phong光照模型

□ 反射光强 = 漫反射光+镜面光+环境光

$$\begin{split} I_{total} &= I_{diffuse} + I_{specular} + I_{ambient} \\ &= k_d \cdot \cos\theta \cdot L_d + k_s \cdot L_s \cdot \cos^{\alpha} \varphi + k_a \cdot L_a \end{split}$$

Phong光照模型

□ 反射光强 = 漫反射光+镜面光+环境光

$$\begin{split} I_{total} &= I_{diffuse} + I_{specular} + I_{ambient} \\ &= k_d \cdot \cos\theta \cdot L_d + k_s \cdot L_s \cdot \cos^{\alpha} \varphi + k_a \cdot L_a \end{split}$$

光源模型

- □ Phong模型假设点光源的三原色都有各自的环境光、漫反射光和镜面反射光
 - 用局部光照模型去模拟本质上全局的光照效果
 - 需要9个系数来描述光源在表面上点p处的光照属性,即入射光属性:
 - \blacksquare L_{ar}, L_{ag}, L_{ab}, L_{dr}, L_{dg}, L_{db}, L_{sr}, L_{sg}, L_{sb}
 - 这里没考虑距离衰减因素

反射系数

- · 光照模型的前提是已知某点的入射光,通过某种方法 求得在该点的反射光
- · 假设光源的漫反射项中红光分量为 L_{dr} , 点p的反射率为 k_{dr} , 则光源在该点光强的贡献值为 k_{dr} L_{dr}
 - · k_{dr}与材料属性、光源与观察者距离有关
 - 9个反射系数

把各种分量叠加在一起

· 对于每个光源和每种颜色成分,Phong光照模型可以表示为(没有距离项)

$$I = k_d L_d \max(\mathbf{l} \cdot \mathbf{n}, 0) + k_s L_s \max((\mathbf{v} \cdot \mathbf{r})^{\alpha}, 0) + k_a L_a$$

• 对每个颜色分量,把所有光源贡献的值加在一起

距离项

- 从点光源到达对象表面的光强反比于两者之间距离的平方
- 向漫反射项和镜面项中添加形式为

$$1/(a + b d + c d^2)$$

的二次距离衰减因子, 其中d表示距离

• 常数与线性项起到柔和点光源的效果

材料属性

- 材料属性与光源属性相匹配
 - 九个反射系数
 - \blacksquare k_{dr} , k_{dg} , k_{db} , k_{sr} , k_{sg} , k_{sb} , k_{ar} , k_{ag} , k_{ab}
 - 高光系数α

改进的Phong模型

□ 在Phong模型中,镜面光项有一个问题,因为它需要为每 个顶点计算一个新的反射向量和视点向量

$$I = k_d L_d \max(\mathbf{l} \cdot \mathbf{n}, 0) + k_s L_s \max((\mathbf{v} \cdot \mathbf{r})^{\alpha}, 0) + k_a L_a$$

□观察向量和反射向量之间的夹角大于90度时,被截断

改进的Phong模型

□ 在Phong模型中,镜面光项有一个问题,因为它需要为每 个顶点计算一个新的反射向量和视点向量

$$I = k_d L_d \max(\mathbf{l} \cdot \mathbf{n}, 0) + k_s L_s \max((\mathbf{v} \cdot \mathbf{r})^{\alpha}, 0) + k_a L_a$$

Blinn-Phong模型

□ 在Phong模型中,镜面光项有一个问题,因为它需要为每 个顶点计算一个新的反射向量和视点向量

$$I = k_d L_d \max(\mathbf{l} \cdot \mathbf{n}, 0) + k_s L_s \max((\mathbf{v} \cdot \mathbf{r})^{\alpha}, 0) + k_a L_a$$

□ Blinn利用中值(halfway)向量给出了一个近似,从而使得效率更高

中值向量

·中值向量h是l和v的中值单位向量,即

$$\square \mathbf{h} = (\mathbf{l} + \mathbf{v}) / |\mathbf{l} + \mathbf{v}|$$

- · n和h的夹角ψ称为中值角(haflway angle)
 - \square 当v位于l、n和r所在平面时,可以证明2 ψ = ϕ

改进的Phong模型

- 镜面项用 $(\mathbf{n} \cdot \mathbf{h})^{\beta}$ 代替 $(\mathbf{v} \cdot \mathbf{r})^{\alpha}$
 - 参数 β 恰当选取,以匹配光洁度 α
- 当l, n, v 共面时,中值角 ψ 就是r 和 v 的夹角 ϕ 的一半
- · 由此得到的模型称为改进的Phong模型或者Blinn光照模型
 - 在OpenGL标准中实现

向量的计算

- · l和v由应用程序指定
- 可以从l和n计算r(r=2(l·n)n-l)
- · 问题就剩下如何确定n
- · 对于简单曲面, n可以被确定, 但确定的方式要根据曲面的表示有所不同

平面法向

· 平面方程: ax+by+cz+d=0, 法向

$$\mathbf{n} = [\mathbf{a}, \mathbf{b}, \mathbf{c}]^{\mathrm{T}}$$

- · 平面可由三个不共线点 p_0 , p_1 , p_2 或法向n与一个点 p_0 来确定
- 法向可由下式得到:

$$\mathbf{n} = (\mathbf{p}_2 - \mathbf{p}_0) \times (\mathbf{p}_1 - \mathbf{p}_0)$$

-注意顶点在叉积中出现的 顺序

球面法向

- 隐函数曲面 f(**p**)=f(x,y.z)=0
- · 局部法向可由梯度向量 Vf 给出
- 球面隐方程表示 f(p)=p·p 1=x²+y²+z²-1=0
- 法向 $\mathbf{n} = [\partial f/\partial x, \partial f/\partial y, \partial f/\partial z]^T = 2\mathbf{p}$

参数形式

单位球面的参数表示
x=x(u,v)=cos u sin v
y=y(u,v)=cos u cos v
z=z(u,v)=sin u

- 切平面由两个切方向确定 $\partial \mathbf{p}/\partial \mathbf{u} = [\partial \mathbf{x}/\partial \mathbf{u}, \partial \mathbf{y}/\partial \mathbf{u}, \partial \mathbf{z}/\partial \mathbf{u}]^{\mathrm{T}}$ $\partial \mathbf{p}/\partial \mathbf{v} = [\partial \mathbf{x}/\partial \mathbf{v}, \partial \mathbf{y}/\partial \mathbf{v}, \partial \mathbf{z}/\partial \mathbf{v}]^{\mathrm{T}}$
- ・ 法向由叉积给出 $\mathbf{n} = \partial \mathbf{p}/\partial \mathbf{u} \times \partial \mathbf{p}/\partial \mathbf{v} = (\cos \mathbf{u}) \mathbf{p}$

一般情形

- 我们能计算其他简单参数曲面的法向,例如
 - 二次曲面
 - 参数多边形曲面
 - Bezier曲面片
- 绝大多数模型是用多边形网格构成的,那么法向的计算可以大大简化