Dictionary

Prajwal Neupane

1 Dictionary

1. Automorphism:

- Maps structure to itself
- preserves operations of structure
- is a bijection
- think of the concept of all permutations being all bijections from a set to itself.
- Def: A field automorphism $\sigma: K \to K$ satisfies:
 - $-\sigma(a+b) = \sigma(a) + \sigma(b)$
 - $-\sigma(ab) = \sigma(a)\sigma(b)$
 - $\sigma(1) = 1$
- set of all automorphisms of a field K is denoted Aut(K).
- we can fix a sub-field, $F \subseteq K$, look at Aut(K/F): automorphisms of K that fix every element of F.
- Example:
 - $Aut(\mathbb{Q}) = \{id\}$
 - $Aut(\mathbb{R}) = \{id\}$
 - $Aut(\mathbb{C}/\mathbb{R}) = \{id, conjugate\}$

2. Group:

- A set G with a binary operation $*: G \times G \to G$ satisfying:
 - Closure: $\forall a, b \in G, \ a * b \in G$
 - Associativity: (a * b) * c = a * (b * c)
 - Identity: $\exists e \in G$ such that a * e = e * a = a
 - Inverse: $\forall a \in G, \ \exists a^{-1} \in G \text{ such that } a*a^{-1} = a^{-1}*a = e$
- Notation: (G, *) or just G
- If $a * b = b * a \forall a, b \in G$, then G is called **abelian**.
- Examples:
 - $-(\mathbb{Z},+)$: additive group of integers
 - S_n : symmetric group on n elements (non-abelian for $n \ge 3$ why? → can always find elements that don't commute.)

 $-GL_n(\mathbb{R})$: invertible $n \times n$ real matrices under multiplication (abelian? no because generally for $n \geq 2$ matrix multiplication is not commutative.)

3. Field:

- set with two operations, add and multiply, such that:
 - -(F,+) is an abelian group with identity 0
 - nonzero elements form an abelian group (zero does not have multiplicative inverse, $(F \setminus \{0\}, \cdot)$ is an abelian group with identity 1
 - distributive law holds $a \cdot (b+c) = a \cdot b + a \cdot c$ for all $a, b, c \in F$
 - Examples: $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_p$

4. Splitting field:

- let $f(x) \in F[x]$ be a polynomial over a field F (say $F = \mathbb{Q}$)
- The splitting field of f over F is the smallest extension $K \supseteq F$ such that:
 - f(x) factors into linear factors in K[x].
 - K is generated by roots of f.
 - K is the smallest field where this happens
- \bullet "The smallest field that contains all roots of f(x) and "nothing extra.""
- Ex: $f(x) = x^2 2 \in \mathbb{Q}[x]$
 - doesn't factor in \mathbb{Q} , roots are $\pm\sqrt{2}$
 - splitting field is $\mathbb{Q}(\sqrt{2})$