







# BUYER BEWARE: UNDERSTANDING THE TRADE-OFF BETWEEN UTILITY AND RISK IN CART BASED MODELS USING SIMULATION DATA

UNECE Expert Meeting on Statistical Data Collection and Sources, Barcelona, 15-17 October 2025

Jonathan Latner, PhD Dr. Marcel Neunhoeffer Prof. Dr. Jörg Drechsler





## **BACKGROUND AND MOTIVATION**

- Background:
  - Synthetic data are increasingly used to share data while preserving privacy.
  - Numerous synthetic data generators (SDGs) using variety of methods
  - CART-based SDGs: high statistical utility with high privacy protection (Little et al., 2025)
- Motivation:
  - There is a general perception that generating synthetic data are easy.
  - It is not always clear if the resulting synthetic data are in fact providing privacy protection.

#### **OVERVIEW**

- Research question:
  - Do common privacy measures capture disclosure risk in synthetic data generated by CART models?
- Evaluate 3 types of privacy measures:
  - 1. Identity disclosure risk
  - 2. Attribute disclosure risk
  - 3. Bayesian estimation of disclosure risk
- 2 types of data:
  - 1. Simulated dataset (Reiter et al., 2014 design: 1.000 obs., 4 binary vars., unique case).
  - 2. Public survey data: Social Diagnosis 2011 (SD2011).
- Contributions:
  - Commonly used disclosure risk measures may not capture disclosure risk.
  - We propose some solutions for measuring disclosure risk (Bayesian).
  - More generally, users interested in empirical measures of privacy risk should be aware of the challenges we describe here.



#### ORIGINAL DATA SET: SIMULATED DATA

- Borrowing from Reiter et al. (2014), we create a data set with n = 1000 and 4 dichotomous, categorical variables (i.e. dummy variables).
- The first 999 observations are a random sample from all combinations of var1(0, 1), var2(0, 1), var3(0, 1), var4(0, 1) except the last one
- The last  $(1000^{th})$  observation is (var1 = 1, var2 = 1, var3 = 1, var4 = 1).
- This is a vulnerable record in the original data that we would want to protect using synthetic data
- The value of the simulation is that we know there is a unique record because we created it.

## SYNTHETIC DATA SET

- Generate 1 synthetic data set from a CART-based SDG using the Synthpop package in R
  - We use the default settings and hyperparameter values and set a seed=1237.
- As a sensitivity test, we create 10 synthetic data sets from the original simulated data.

# COMPARE ORIGINAL AND 1 SYNTHETIC DATA COPY (SEED = 1237)



Figure 2: Histogram

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110

original

# COMPARE HISTOGRAM X 10 SYNTHETIC DATASETS

Figure 3: Multiple synthetic data sets does not reduce privacy risk



- The problem: Synthetic data from CART models are disclosive in this simulation
- Next section: Can an attacker identify the disclosure?



#### DESCRIBING THE ATTACK

- We assume a 'strong' attacker similar to the attack model in differential privacy (DP).
- An attacker has the following knowledge
  - Knows the SDG model type (i.e. sequential CART).
  - Knowledge of the first 999 observations in the original data except the last one (1000<sup>th</sup>).
  - The 16 possible combinations that the last one could be.
- The attacker sees the synthetic data
- The attacker runs CART on the original data for all of the 16 different possibilities about the last record.
- Compares synthetic data from the attack to the released synthetic data
- Then they update their beliefs about what the last record could be

## HISTOGRAM OF 16 WORLDS X 10 SYNTHETIC DATASETS





- In our attack with our assumptions, the attacker can easily identify the last record
- Next section: Can we measure this disclosure risk?



## THREE DISCLOSURE RISK MEASURES

- 2x Common disclosure risk measures reflect the current state of the art (Raab et al., 2025)
  - Identity risk (repU): the ability to identify individuals in the data from a set of known characteristics or 'keys' (q).
    - -a = var1(0, 1), var2(0, 1), var3(0, 1)
  - Attribute risk (DiSCO): the ability to find out from the keys (q) something, not previously known or 'target' (t)
    - t = var4(0, 1)
- 1x Alternative disclosure risk measure
  - Bayesian approach (Reiter et al., 2014)
    - For example, the attacker has a prior (e.g., uniform distribution)
    - If posterior probability is close to the prior, little or no new information is revealed.
    - If posterior probability is substantially larger, the intruder has learned something about the last or unique record.

# RESULTS DISCLOSURE RISK MEASURES

Table 1: x 1 synthetic data set (seed = 1237)

| Data      | Unique | Identity Risk<br>( <i>repU</i> ) | Attribute Risk<br>( <i>DiSCO</i> ) | Bayesian Estimate of Risk |
|-----------|--------|----------------------------------|------------------------------------|---------------------------|
| Original  | 1      | 0.00                             | 0.00                               | 1.00                      |
| Synthetic | 1      | 0.00                             | 0.00                               | 1.00                      |

Table 2: x 10 synthetic data sets

| Data         | Unique | Identity Risk (repU) | Attribute Risk (DiSCO) | Bayesian Estimate of Risk |
|--------------|--------|----------------------|------------------------|---------------------------|
| Original     | 1      | 0.00                 | 0.00                   | 1.00                      |
| Synthetic 1  | 1      | 0.00                 | 0.00                   | 1.00                      |
| Synthetic 2  | 0      | 0.00                 | 6.60                   | 0.02                      |
| Synthetic 3  | 1      | 0.00                 | 0.00                   | 1.00                      |
| Synthetic 4  | 3      | 0.00                 | 0.00                   | 1.00                      |
| Synthetic 5  | 2      | 0.00                 | 0.00                   | 1.00                      |
| Synthetic 6  | 1      | 0.00                 | 0.00                   | 1.00                      |
| Synthetic 7  | 3      | 0.00                 | 0.00                   | 1.00                      |
| Synthetic 8  | 0      | 0.00                 | 6.60                   | 0.03                      |
| Synthetic 9  | 1      | 0.00                 | 0.00                   | 1.00                      |
| Synthetic 10 | 1      | 0.00                 | 0.00                   | 1.00                      |
| Average      |        | 0.00                 | 1.32                   |                           |

- Common privacy measures do not capture the disclosure risk in our data
- However (and this is the point): We know there is a problem (because we created it)
- Only Bayesian approach captures disclosure risk



# REAL WORLD DATA (SD2011)

- Replicate the approach the authors of Synthpop (Raab, 2024; Raab et al., 2024)
- Data are from Social Diagnosis 2011 (SD2011).
- Measure disclosure risk
  - 4 kevs (a): sex age region placesize.
  - 1 target (t): depress
- Generate 5 synthetic copies with a 'bad' synthesizer
  - Generate 5 synthetic copies using CART with default parameters in Synthpop
  - Modify synthetic copies by setting t=0, or constant for all observations in all 5 synthetic data sets.
  - Therefore, we know risk declined (because we reduced it).
- Do common disclosure risk measures (repU, DiSCO) capture this decline?
  - Why not Bayesian approach? High-dimensional, real data is too computationally complex. Only good for low-dimensional data

Table 3: Risk measures for depress from keys: sex, age, region, placesize (SD2011)

|               | Identity risk ( <i>repU</i> | )        | Attribute risk ( <i>DiSCO</i> ) |          |
|---------------|-----------------------------|----------|---------------------------------|----------|
| Data          | Raab et al., 2024           | Modified | Raab et al., 2024               | Modified |
| Original data | 48.38                       | 48.38    | 53.30                           | 53.30    |
| Synthetic 1   | 14.82                       | 14.82    | 8.96                            | 14.74    |
| Synthetic 2   | 14.20                       | 14.20    | 9.90                            | 14.82    |
| Synthetic 3   | 15.16                       | 15.16    | 10.46                           | 14.94    |
| Synthetic 4   | 14.12                       | 14.12    | 9.68                            | 14.50    |
| Synthetic 5   | 14.30                       | 14.30    | 8.88                            | 14.66    |
| Average       | 14.52                       | 14.52    | 9.58                            | 14.73    |

Note: Modified indicates that values of depress=0 for all records in the synthetic data

- When we modify synthetic data to reduce attribute disclosure risk, DiSCO measure increases
- The package authors are aware of the problem that the DiSCO measure of attribute disclosure risk can indicate a high level of risk for a target variable where a high proportion of records have one level (Raab et al., 2025).
- This is good, but our example illustrates a more general concern: DiSCO may mismeasure risk by indicating it is rising, when it declined

# SECTION 6: CONCLUSION

- Key contribution: Common disclosure risk metrics may fail to detect or even misstate risk.
  - Suggests no risk, when we know there is a risk (simulation data)
  - Suggests risk is rising, when we know it declined (real data)
  - Bayesian approach can be a good solution, but only in low-dimensional data
- Key point: users must understand how disclosure risk measures operate.
  - Empirical disclosure risk measures always have problems
  - There is no one-size-fits-all solution

# **THANK YOU**

Jonathan Latner: jonathan.latner@iab.de

Reproducible code: https://github.com/jonlatner/KEM\_GAN/tree/main/latner/projects/simulation