Introduction to High-Performance Computing

July 28, 2021 Darcy Quesnel

Calcul Quebec Partners and Sponsors

Research Domains

- Genomics
- Molecular Dynamics
- Finite Element Analysis
- Computational Fluid Dynamics
- Astronomy and Astrophysics
- Geospatial Data Analysis
- Visualization and Image Analysis
- Artificial Intelligence / Deep Learning
- Humanities and Social Sciences

Advanced Research Computing

- High-Performance Computing (HPC), sometimes referred to as
 Advanced Research Computing (ARC)
- Large parallel- and cluster-computing resources
- Research data management
- Cloud computing
- Project web portals

Comparison

Your Laptop or Desktop

- 2 to 4 cores per processor
- 4 to 32 GB RAM per machine
- 128 GB to 4 TB storage per machine
- Local storage / External USB storage
- Wifi and/or Ethernet for networking
- Gaming GPU
- Direct access
- General usage
- Easy to develop and test applications and pipelines on

HPC Compute Node

- 16 to 64 cores per processor
- 32 to 3072 GB per node
- 150 TB to 16 PB storage per cluster
- Networked cluster storage
- Ethernet and fast network interfaces
- Accelerators (GPU, ...)
- Access by a submission queue
- Multi-node unattended tasks
- Possible to run applications and pipelines with a large amount of data and long runtimes

Zoom in to an HPC Compute Node

Zoom out on the HPC Cluster

Software Environment on an HPC Cluster

- The operating system is usually Linux-based
 - CentOS, Scientific Linux, Ubuntu, ...
- To connect to a cluster, we use a secure remote shell
 - o ssh, MobaXterm, ...
- To transfer data securely, we use secure remote copy
 - o scp, Cyberduck, ...
 - Other tools for large amounts of data, such as Globus
- To develop code, we can use command-line tools
 - Command-line development tools
 - Shell-based text editors
 - Scientific software and libraries
 - Version control software
- Web portals may provide access to domain-specific web tools

Transferring Data

- Use command-line tools to transfer data to or from a cluster
 - o scp, rsync, ...
- Use GUI programs to transfer data if it's more comfortable
 - o Cyberduck, WinSCP, ...
- Use Globus for large, long-running, unattended data transfers
 - Web interface
 - Third-party transfers
 - Parallel streams
 - Long-running transfer jobs managed by the service

Scientific Software Modules

- Use a module system to add command-line software packages and libraries to your environment
 - Compilers
 - GCC, LLVM, ...
 - Interpreters
 - Python, R, ...
 - Libraries
 - OpenMPI, Boost, OpenBLAS, ...
 - Other tools
 - FreeSurfer, FSL, ...
 - These are all tuned for the node architectures
 - It's possible to ask for other software packages to be installed and made available

Job Scheduling System

- Sometimes called *batch* systems
- Large, long-running jobs should not run on a login node, but on the compute nodes
- Submit your job script to the scheduler and specify the resources you need
 - Number of processors
 - Amount of memory
 - Presence of specific accelerators
 - Job duration
 - Account name
 - Script to run on compute nodes
 - Where you want your results
- The scheduler uses a fair-share policy

Cloud Systems

- Infrastructure as a service
 - Allocate virtual machines, networks, and storage resources on the fly
 - VMs are blank slates to be configured and managed by the user
 - VMs have the software and libraries that the user installs.
 - For example, a user can configure a web server for a project-oriented portal

Compute Canada

Compute Canada and Calcul Québec

- Compute Canada is a consortium of regional partners
 - ACENET, Calcul Québec, Compute Ontario, and WestGrid
 - About 200 analysts and administrators across many Canadian universities

Calcul Quebec

- Calcul Quebec
 - About 50 people
 - HPC/ARC analysts
 - User support, workshops, ...
 - System administrators
 - Scientific and operational directors
 - Spread across Laval, Sherbrooke, McGill, Udell and ÉTS
 - HPC Resources
 - Béluga HPC is housed at *ÉTS*

Compute Canada National Resources

Name / Institution	Total Cores	Total GPUs	Nodes
Niagara / UofT	61 920	-	40 cores/node, 188 GB/node
Cedar / SFU	58 416	584	32 cores/node, 125 GB/node
Graham / UWaterloo	36 160	320	32 cores/node, 125 GB/node
Béluga / McGill	34 880	688	40 cores/node, 186 GB/node

Accessing Compute Canada Resources

- All user registration and management is done through CCDB
 - A professor can register for an account
 - Create an account with CCDB
 - Request a role of principal investigator
 - A student, postdoc, or research staff can register for an account
 - Create an account with CCDB
 - Request a sponsored role with the registered principal investigator
 - Once the account is active, connect to any Compute Canada national system

Online Resources

- computecanada.ca
- calculquebec.ca
- docs.computecanada.ca
- calculquebec.eventbrite.com
- support@computecanada.ca