Fusion Moves for Correlation Clustering

Thorsten Beier, Fred A. Hamprecht and Jörg H. Kappes Heidelberg Collaboratory for Image Processing, University of Heidelberg, Germany

Introduction

Correlation clustering [4], or multicut partitioning [5], is widely used partitioning an undirected graph with positive and negative edge weights [2, 3, 8, 1]. Since it is NP-hard, exact solvers do not scale and approximative solvers often give bad results. Inspired by [6] Here we define fusion moves for the correlation clustering problem. Our algorithm iteratively fuses the current and a proposed partitioning which monotonously improves the partitioning. It scales well gives near optimal solutions, and has a good anytime performance.

Correlation Clustering / Multicut Objective:

Given a weighted graph G = (V, E, w) we consider the problem of segmenting G such that the costs of the edges between distinct segments is minimized. This can be formulated in the node domain by assigning each node i a label $l_i \in \mathbb{N}$

$$I^* = \underset{I \in \mathbb{N}^{|V|}}{\operatorname{arg \, min}} \sum_{(i,j) \in E} w_{ij} \cdot [I_i \neq I_j], \tag{1}$$

or in the edge domain, by labeling each edge e as cut $y_e=1$ or uncut $y_e=0$

Correlation Clustering Fusion Moves

Given two proposal solutions y' and y'', $E_0^{\bar{y}}$ is the set of edges which are uncut in y' and y''.

$$\mathbf{\tilde{y}_{ij}} = \max\{\mathbf{y}_{ii}', \mathbf{y}_{ii}''\} \qquad \forall ij \in \mathbf{E}$$
 (3)

$$\mathsf{E}_0^{\breve{\mathsf{y}}} = \{ \mathsf{i}\mathsf{j} \in \mathsf{E} \mid \breve{\mathsf{y}}_{\mathsf{i}\mathsf{j}} = 0 \} \tag{4}$$

The fusion move for correlation clustering is solving Eq. 2 with additional must-link constraints for all edges in $\mathbf{E}_0^{\tilde{y}}$.

$$y^* = \underset{y \in P(G)}{\text{arg min}} \sum_{(i,j) \in E} w_{ij} \cdot y_{ij}.$$

$$\text{s.t.} \quad y_{ij} = 0 \qquad \forall (i,j) \in E_0^{\breve{y}}$$

We can reformulate 5 into a correlation clustering problem on a coarsened graph, where all nodes which are connected via must-link constraints are merged into single nodes. We call this graph a *contracted graph*. Any clustering $\bar{\mathbf{y}}$ of the contracted graph $\mathbf{G}_{\mathbf{y}} = (\mathbf{V}_{\mathbf{y}}, \mathbf{E}_{\mathbf{y}})$ can be *back projected* to a clustering $\tilde{\mathbf{y}}$ of the original graph $\mathbf{G} = (\mathbf{V}, \mathbf{E})$

Proposal Generators

As discussed in [6], proposals should have two properties: *high quality* and *large diversity*. For correlation clustering fusion we add a third property: *size*. We use the following two proposal generators (see paper for details):

- ▶ Randomized Hierarchical Clustering (RHC): we add normally distributed noise $\mathcal{N}(0, \sigma_{\text{ehc}})$ to each edge weight. In each step the edge with the highest weight is contracted.
- ► Randomized Watersheds (RWS): The edge weighted watershed algorithm [7] with random seeds can be used to find cheap proposals.

Results

Evaluation by Segmentation Metrics

Evaluation by Variation of Information (VOI) and Rand Index (RI) for datasets with available ground truth:

VOI	image-seg	knott-3d-150	knott-3d-300	knott-3d-450	3d-seg
PIVOT-BOEM HC HC-CGC CGC KL FUSION MC-R MC-I CC-Fusion-HC-MC CC-Fusion-HC-CGC CC-Fusion-WS-MC CC-Fusion-WS-CCC	4.9633 2.5967 2.5164 2.5247 2.6432 2.1406 2.5471 2.5367 2.5319 2.4961 2.5340 2.5192	2.9936 1.5477 0.9052 0.9267 2.0648 2.8787 0.9178 0.9063 0.9629 0.9679 0.9629 1.0585	4.4986 2.3513 1.7636 1.8822 4.1318 4.0744 1.6369 1.6352 1.6516 1.7673 1.6742 2.1344	- 2.9155 2.2256 2.3104 4.9270 4.6616 2.8710 2.0037 2.0801 2.3809 2.7487	- 2.8395 1.7603 6.8908 7.1057 6.5366 6.5058 4.3319 1.3347 2.1347 1.3334 3.3514
DI					
RI	image-seg	knott-3d-150	knott-3d-300	knott-3d-450	3d-seg

References

A. Alush and J. Goldberger.

Break and conquer: Efficient correlation clustering for image segmentation.

In 2nd International Workshop on Similarity-Based Pattern Analysis and Recognition, 2013.

B. Andres, J. H. Kappes, T. Beier, U. Köthe, and F. A. Hamprecht.

Probabilistic image segmentation with closedness constraints.

In *ICCV*, pages 2611–2618. IEEE, 2011.

B. Andres, T. Kroeger, K. L. Briggman, W. Denk, N. Korogod, G. Knott, U. Koethe, and F. A. Hamprecht. Globally optimal closed-surface segmentation for connectomics. In *ECCV*, pages 778−791. Springer, 2012.

N. Bansal, A. Blum, and S. Chawla.

Correlation clustering.

In MACHINE LEARNING, pages 238–247, 2002.

S. Chopra and M. Rao.

The partition problem.

In ECCV. Springer, 2012.

Mathematical Programming, 59(1-3):87–115, 1993.

V. Lempitsky, C. Rother, S. Roth, and A. Blake.

Fusion moves for Markov random field optimization.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8):1392–1405, aug 2010.

F. Meyer.

Watersheds on edge or node weighted graphs "par l'exemple". *CoRR*, abs/1303.1829, 2013.

J. Yarkony, A. Ihler, and C. C. Fowlkes.

Fast planar correlation clustering for image segmentation.