Rappels et exercices sur le groupe linéaire II - Correction

1 Groupes topologiques

Exercice 1. Comme la topologie de \mathbb{C} (et de \mathbb{C}^* par restriction) est métrique, on peut utiliser la caractérisation séquentielle de la continuité.

Soient $a, b \in \mathbb{C}^*$, et $(a_n, b_n)_{n \in \mathbb{N}}$ une suite de $(\mathbb{C}^*)^2$ qui converge vers (a, b). On sait que les suites $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ convergent vers a et b, respectivement. On doit montrer que la suite $(a_n b_n)_{n \in \mathbb{N}}$ converge vers ab. On a

$$|a_n b_n - ab| = |a_n b_n - a_n b + a_n b - ab| \le |a_n| |b_n - b| + |a_n - a|b|$$

Par hypothèse, la suite $(|a_n|)_{n\in\mathbb{N}}$ est convergente donc bornée. Comme $(b_n)_{n\in\mathbb{N}}$ converge vers b, le terme $|a_n||b_n-b|$ converge vers 0. De même, $|a_n-a||b|$ converge vers 0, d'où le résultat.

Soit ensuite $a \in \mathbb{C}^*$ et $(a_n)_{n \in \mathbb{N}}$ convergeant vers a, on a

$$\left| \frac{1}{a_n} - \frac{1}{a} \right| = \left| \frac{a - a_n}{a a_n} \right| = \frac{|a - a_n|}{|a a_n|}$$

Comme $(|aa_n|)_{n\in\mathbb{N}}$ est une suite de \mathbb{C}^* qui converge, elle est donc minorée par une constante $\lambda>0$, d'où

$$\left| \frac{1}{a_n} - \frac{1}{a} \right| \leqslant \frac{|a_n - a|}{\lambda} \to 0$$

et le résultat.

Ensuite, \mathbb{S}^1 est un sous-groupe de \mathbb{C}^* , et forcément un groupe topologique pour la topologie induite (le produit et le passage à l'inverse sont continus par restriction).

Exercice 2. On fixe $g \in G$. On commence par vérifier que l'application

$$\iota_g: G \longrightarrow G \times G$$
 $h \longmapsto (g,h)$

est continue. Soit $U \subset G \times G$ un ouvert, on montre que $\iota_g^{-1}(U) = \{h \in G \mid (g,h) \in U\}$ est ouvert dans G. Soit $h \in \iota_g^{-1}(U)$, on a $(g,h) \in G \times G$. Par définition de la topologie produit, on peut choisir un voisinage U_g (resp. U_h) de g dans G (resp. de h dans G), tel que $U_g \times U_h \subset U$. On a en particulier $\{g\} \times U_h \subset U$, et donc $U_h \subset \iota_q^{-1}(U)$. L'ensemble $\iota_q^{-1}(U)$ est alors ouvert car il contient un voisinage de chacun de ses points.

Comme ι_g est continue, on conclut facilement que $L_g = \mu \circ \iota_g$ est continue. Il s'agit également d'une bijection, de réciproque $L_{g^{-1}}$, qui est continue : c'est un homéomorphisme. On applique un raisonnement similaire pour R_g en regardant l'application $h \mapsto (h, g)$.

Exercice 3. On pose $\mathcal{F}_H := \{ F \in \mathcal{P}(G) \mid F \text{ est ferm\'e et } H \subset F \}$ l'ensemble des ferm\'es de G qui contiennent H. On a par définition

$$\overline{H} = \bigcap_{F \in \mathcal{F}_H} F.$$

1. Comme H est un sous-groupe de G, on a $\iota(H)=H$. Soit $F\in\mathcal{F}_H$. Comme ι est un homéomorphisme de G, $\iota(F)$ est aussi un fermé, qui contient $\iota(H)=H$, on a donc $\iota(F)\in\mathcal{F}_H$. Comme $\iota^2=Id$, on voit que ι induit une bijection de \mathcal{F}_H dans lui-même, ainsi

$$\iota(\overline{H}) = \iota\left(\bigcap_{F \in \mathcal{F}_H} F\right) = \bigcap_{F \in \mathcal{F}_H} \iota(F) = \bigcap_{F' \in \mathcal{F}_H} F' = \overline{H}.$$

- 2. Soient $x, y \in \overline{H}$, et U un voisinage ouvert de xy. On cherche à montrer que $U \cap H \neq \emptyset$. Comme le produit est continu, $\mu^{-1}(U)$ est un voisinage de (x, y) dans $G \times G$. Par définition de la topologie produit (engendrée par les produits d'ouverts), il existe alors U_x, U_y des voisinages ouverts respectifs de x et y tels que $U_x \times U_y \subset \mu^{-1}(U)$. Comme $x, y \in \overline{H}$, les ouverts U_x et U_y contiennent chacun un point de H, disons h et h'. On a $(h, h') \in U_x \times U_y \subset \mu^{-1}(U)$ et $hh' \in U \cap H$, d'où le résultat.
- 3. Nous avons montré à la question 1) que $\iota(\overline{H}) = \overline{H}$, autrement dit que \overline{H} est stable par inverse. Ensuite, nous avons montré à la question 2) que \overline{H} est stable par produit. Comme \overline{H} est non vide (il contient H), nous avons bien que \overline{H} est un sous-groupe de G.

Exercice 4.

1. Comme dans le cas des groupes topologiques, on commence par vérifier que l'application $\iota_x: g \mapsto (g, x)$ de G vers $G \times X$ est continue. Soit $U \subset G \times X$ un ouvert, on montre que $\iota_x^{-1}(U) = \{g \in G \mid (g, x) \in U\}$ est ouvert dans G. Soit $g \in \iota_x^{-1}(U)$, on a $(g, x) \in G \times X$. Par définition de la topologie produit, on peut choisir un voisinage U_g de g dans G, et un voisinage U_x de x dans X, tel que $U_g \times U_x \subset U$. On a en particulier $U_g \times \{x\} \subset U$, et donc $U_g \subset \iota_x^{-1}(U)$. L'ensemble $\iota_x^{-1}(U)$ est alors ouvert car il contient un voisinage de chacun de ses points.

Comme ι_x est continue, on conclut facilement que $\alpha_x = \alpha \circ \iota_x$ est continue.

2. Soit $g \in G$. Par définition du stabilisateur dans une action de groupe, on a

$$g \in \operatorname{Stab}_{G}(x) \Leftrightarrow g.x = \alpha_{x}(g) = x$$

 $\Leftrightarrow g \in \alpha_{x}^{-1}(\{x\})$

Ainsi, $\operatorname{Stab}_G(x) = \alpha_x^{-1}(\{x\})$. Comme X est séparé, $\{x\}$ est fermé, de même que son image réciproque par l'application continue α_x .

3. On utilise que la translation par $g \in G$ est un homéomorphisme. Soient $y \in \overline{\mathcal{O}}$, $g \in G$, et U un voisinage de g.y. L'ensemble $g^{-1}(U)$ est un voisinage de y. Comme y est adhérent à \mathcal{O} , ce voisinage contient un point $h \in \mathcal{O}$. En translatant par g, on obtient que U contient $g.h \in \mathcal{O}$. Comme tout voisinage de g.y intersecte \mathcal{O} non trivialement, on obtient bien que $g.y \in \overline{\mathcal{O}}$.

Exercice 5.

- 1. Par restriction, $f: H \to \{0,1\}$ est une application continue. Comme H est connexe, $f_{|H}$ est constante. Considérons la translation L_g par g, il s'agit d'un homéomorphisme de G. Donc $f \circ L_g$ est également une fonction continue de G vers $\{0,1\}$. En particulier, pour $h,h' \in H$, on a $f \circ L_g(h) = f(gh) = f(gh') = f \circ L_g(h')$. Donc f est constante sur les classes à gauche modulo H.
- 2. Comme f est constante sur gH, on peut définir $\overline{f}(gH) := f(x)$ pour $x \in gH$ (le choix de x ne change pas la valeur de f(x) justement car f est constante sur gH). L'application \overline{f} est continue car, pour un ouvert U de $\{0,1\}$, on a

$$\overline{f}^{-1}(U) = \{gH \mid f(g) \in U\} = \pi(\{g \mid f(g) \in U\}) = \pi(f^{-1}(U))$$

qui est un ouvert de G/H.

3. Par la question précédente, $\overline{f}:G/H\to\{0,1\}$ est continue, donc constante car G/H est connexe. On a donc que \overline{f} prend la même valeur sur toute les classes à gauche modulo H, comme ces classes à gauche forment une partition de G, on obtient que \overline{f} est constante sur G. Nous avons montré que toute application continue $G\to\{0,1\}$ est constante, ce qui est une caractérisation de la connexité de G.

2 Groupes de matrices

Exercice 6.

- 1. Par définition, le déterminant est une fonction polynomiale en les coordonnées de la matrice considérée. Il s'agit en particulier d'une application continue.
- 2. Les coordonnées d'une matrice produit sont des fonctions polynomiales en les coordonnées des deux facteurs, donc le produit de matrices est continu. Pour l'inverse, la fonction associant à une matrice la transposée de sa comatrice est continue (les coordonnées de la comatrice sont des déterminants), et comme le déterminant est continu et non nul sur $GL_n(\mathbb{K})$, il en va de même de $\frac{1}{\det}$, d'où le résultat.
- 3. Soit (ε_m) une suite de \mathbb{K}^* convergeant vers 0. On considère la suite $A_m = A \varepsilon_m I_n$, qui converge clairement vers A. On a

$$\det(A_m) = \det(A - \varepsilon_m I_n) = \chi_A(\varepsilon_m)$$

Comme χ_A est un polynôme non nul, il existe un certain r>0 tel que toute racine non nulle de χ_A ait un module supérieur à r. Or, à partir d'un certain rang, $|\varepsilon_m|< r$, donc $\det(A_m)\neq 0$ à partir de ce rang. On obtient donc une suite $(A_m)_{m\in\mathbb{N}}$ de $\mathrm{GL}_n(\mathbb{K})$ qui converge vers A.

Exercice 7.

- 1. Comme le déterminant est polynomial en les coordonnées et l'application $z \mapsto zA + (1-z)B$ est polynomiale en z, P est une application polynômiale de $\mathbb C$ vers lui même, autrement dit un polynôme. De plus, P est non nul car $P(0) = \det(B) \neq 0$.
- 2. Comme P est un polynôme complexe non nul, il admet un nombre fini de racines. On pose C l'ensemble $\mathbb C$ privé des racines de P. Il s'agit d'un plan privé d'un nombre fini de points, donc connexe par arcs, et il contient 0,1 car A et B sont inversibles. Il existe un chemin γ dans C allant de 0 à 1, donc

$$\forall t \in [0,1], \ P(\gamma(t)) = \det(\gamma(t)A + (1 - \gamma(t))B) \neq 0$$

- 3. Avec les notations de la question précédente, le chemin $t \mapsto \gamma(t)A + (1 \gamma(t))B$ est un chemin continu dans $\mathrm{GL}_n(\mathbb{K})$ allant de B vers A.
- 4. L'application det est continue et surjective de $GL_n(\mathbb{R})$ vers \mathbb{R}^* , comme ce dernier espace n'est pas connexe, $GL_n(\mathbb{R})$ n'est pas connexe.

Exercice 8.

L'ensemble considéré contient $(i, \sqrt{2})$, et plus généralement, la suite $(ni, \sqrt{n+1})$, qui n'est pas bornée. Ensuite, pour (a, b) dans l'ensemble considéré, on a

$$M(a,b) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in SO_2(\mathbb{C})$$

donc $SO_2(\mathbb{C})$ n'est pas borné : pour la norme $\|\|_{\infty}$, l'ensemble des matrices M(a,b) n'est pas borné. Donc $SO_2(\mathbb{C})$ n'est pas compact, de même que $O_2(\mathbb{C})$ qui le contient.

- 2. Le groupe $O_n(\mathbb{R})$ est donné par les endomorphismes linéaires de \mathbb{R}^n qui préservent le produit scalaire usuel, donc qui agissent par isométrie. En utilisant la norme sur $\mathcal{M}_n(\mathbb{R})$ subordonnée à la norme euclidienne, on a que tous les éléments de $O_n(\mathbb{R})$ sont de norme 1. En particulier $O_n(\mathbb{R})$ et $SO_n(\mathbb{R})$ sont bornés. Comme ils sont également fermés dans $\mathcal{M}_n(\mathbb{R})$, qui est de dimension finie, ils sont compacts.
- 3. On sait que toute matrice de $O_n(\mathbb{R})$ est conjuguée, dans $O_n(\mathbb{R})$, à une matrice de la forme

$$\begin{pmatrix} R(\theta_1) & & & \\ & \ddots & & \\ & & R(\theta_r) & & \\ & & -I_k & \\ & & & I_{k'} \end{pmatrix} \text{ avec } R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \text{ et } 2r + k + k' = n$$

Le déterminant d'une telle matrice est $(-1)^k$. Une matrice écrite sous cette forme se trouve donc dans $SO_n(\mathbb{R})$ si et seulement si k est pair. Ensuite, on note que $-I_2 = R(\pi)$. On peut alors remplacer $-I_k$ par une matrice diagonale par bloc

$$\begin{pmatrix} R(\pi) & & & \\ & \ddots & & \\ & & R(\pi) & \\ & & -1 \end{pmatrix} \text{ ou } \begin{pmatrix} R(\pi) & & \\ & \ddots & \\ & & R(\pi) \end{pmatrix}$$

selon si k est impair ou pair. Ainsi, une matrice de $SO_n(\mathbb{R})$ est conjuguée (dans $O_n(\mathbb{R})$) à une matrice de la forme

$$M(\theta_1, \cdots, \theta_r, k') := \begin{pmatrix} R(\theta_1) & & & \\ & \ddots & & \\ & & R(\theta_r) & \\ & & I_{k'} \end{pmatrix}$$

Soit $A \in SO_n(\mathbb{R})$, et soit $P \in O_n(\mathbb{R})$ telle que $PAP^{-1} = M(\theta_i, k')$ comme ci-dessus. Pour $\theta \in [0, 2\pi[$, on considère le chemin

$$\gamma_{\theta}: t \mapsto R(t\theta)$$

qui est un chemin continu de I_2 vers $R(\theta)$ dans $SO_2(\mathbb{R})$. On considère le chemin continu

$$\Gamma: t \mapsto M(t\theta_j, k') = \begin{pmatrix} \gamma_{\theta_1}(t) & & & \\ & \ddots & & \\ & & \gamma_{\theta_r}(t) & \\ & & & I_{k'} \end{pmatrix}$$

Qui est clairement dans $SO_n(\mathbb{R})$ et va de I_n vers $M(\theta_j, k')$. Comme le produit matriciel (et l'inverse des matrices) est continu, le chemin $t \mapsto P^{-1}\Gamma(t)P$ est un chemin continu de $P^{-1}I_nP = I_n$ vers A, donc $SO_n(\mathbb{R})$ est connexe par arc.

Exercice 9.

1. Comme A est inversible, on peut noter $A^{-1}(AB)A = BA$, et donc AB et BA sont conjuguées par A. Soit $\lambda \in \mathbb{K}$, on a

$$\chi_{AB}(\lambda) = \det(AB - \lambda I_n) = \det(A^{-1}) \det(AB - \lambda I_n) \det(A) = \det(BA - \lambda I_n) = \chi_{BA}(\lambda)$$

Comme ceci est vrai pour tout $\lambda \in \mathbb{K}$, et que \mathbb{K} est infini, on obtient que $\chi_{AB} = \chi_{BA}$.

2. Soit $A=(a_{i,j})_{i,j\in \llbracket 1,n\rrbracket}$ une matrice carrée. On rappelle que le déterminant de A est donné par

$$\det(A) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{\sigma(i),i}.$$

Ainsi, le déterminant de $A - \lambda I_n$ est donné par

$$\det(A - \lambda I_n) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{\sigma(i) \neq i} a_{\sigma(i),i} \prod_{\sigma(i) = i} (a_{i,i} - \lambda)$$

Pour $\sigma \in \mathfrak{S}_n$ fixé, le polynôme $\prod_{\sigma(i)\neq i} a_{\sigma(i),i} \prod_{\sigma(i)=i} (a_{i,i}-\lambda) \in \mathbb{K}[\lambda]$ a pour degré le nombre de points fixes de σ , et ses coefficients sont des polynômes en les coefficients de A. Ainsi, $\det(A-\lambda I_n)$ est un polynôme dont les coefficients sont des polynômes en les coefficients de A.

En identifiant $\mathbb{K}_n[\lambda]$ et \mathbb{K}^{n+1} en tant qu'espace vectoriel normé. On obtient que $A \mapsto \chi_A$ est une application $\mathcal{M}_n(\mathbb{K}) \to \mathbb{K}^{n+1}$, dont les coordonnées sont polynomiales, il s'agit en particulier d'une application continue.

3. Soit $A \in \mathcal{M}_n(\mathbb{K})$, et soit $(A_n)_{n \in \mathbb{N}}$ une suite de $\mathrm{GL}_n(\mathbb{K})$ qui converge vers A dans $\mathcal{M}_n(\mathbb{K})$. Comme le produit des matrices est continu, les suites $(A_nB)_{n \in \mathbb{N}}$ et $(BA_n)_{n \in \mathbb{N}}$ convergent respectivement vers AB et BA. Par continuité

du polynôme caractéristique, les suites de polynômes $(\chi_{A_nB})_{n\in\mathbb{N}}$ et $(\chi_{BA_n})_{n\in\mathbb{N}}$ convergent respectivement vers χ_{AB} et χ_{BA} . Enfin, par la question 1, les suites χ_{A_nB} et χ_{BA_n} sont en fait égales, il en va donc de même de leur limite : $\chi_{AB} = \chi_{BA}$ comme annoncé.

4. Soit $A \in \mathcal{M}_n(\mathbb{K})$, on sait que le terme de degré n-1 du polynôme caractéristique de A est donné par $-\operatorname{tr}(A)$. Le résultat est alors une conséquence directe des questions précédentes.

Exercice 10. (Densité des matrices diagonalisables dans les matrices trigonalisables)

1. On construit les coefficients diagonaux ε_i^k de D_k récursivement : On commence par poser $\varepsilon_1^k := 2^{-k}$. En supposant que $\varepsilon_1^k, \ldots, \varepsilon_i^k$ ont été construits, on choisit ε_{i+1}^k tel que

$$\lambda_{i+1} + \varepsilon_{i+1}^k \notin \{\lambda_1 + \varepsilon_1^k, \dots, \lambda_i + \varepsilon_i^k\}$$

Un tel $\varepsilon_{i+1}^k \leqslant 2^{-k}$ existe toujours étant donné qu'on cherche à éviter un ensemble fini de valeurs. Par définition, la norme infinie de D_k est inférieure à $\frac{n}{2^k}$, donc la suite $(D_k)_{k \in \mathbb{N}}$ converge vers 0, et $(T+D_k)$ converge vers T, tout en étant une matrice triangulaire dont les coefficients diagonaux sont tous distincts. Comme $T+D_k$ est triangulaire, ses coefficients diagonaux sont ses valeurs propres, d'où $T+D_k \in \mathcal{M}_n^{\mathrm{reg}}(\mathbb{K})$.

- 2. Soit A une matrice trigonalisable : il existe $P \in GL_n(\mathbb{K})$ telle que $PAP^{-1} = T$ soit triangulaire supérieure. Par la question précédente il existe (T_n) une suite de $\mathcal{M}_n^{\text{reg}}(\mathbb{K})$ qui converge vers T. Par continuité de la conjugaison des matrices, la suite $(P^{-1}T_nP)$ converge vers A et se trouve dans $\mathcal{M}_n^{\text{reg}}(\mathbb{K})$ (car ce dernier est stable par conjugaison).
- 3. On vient de montrer que $\mathcal{M}_n^{\text{reg}}(\mathbb{K})$ est dense dans l'ensemble des matrices trigonalisables, comme $\mathcal{M}_n^{\text{reg}}(\mathbb{K}) \subset \mathcal{D}_n(\mathbb{K})$, on obtient que ce dernier ensemble est également dense dans l'ensemble des matrices trigonalisables. Dans le cas $\mathbb{K} = \mathbb{C}$, toute matrice est trigonalisable, d'où le résultat.

Exercice 11. (Cayley-Hamilton)

1. Soit $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ une matrice diagonale à valeurs propres distinctes. On sait que

$$\chi_D(\lambda) = \prod_{i=1}^n (\lambda_i - \lambda)$$

Or, la matrice $(\lambda_i I_n - D)$ est donnée par $\operatorname{diag}(\lambda_i - \lambda_1, \dots, 0, \dots, \lambda_i - \lambda_n)$: son *i*-ème coefficient diagonaux est nul. Le produit des matrices $(\lambda_i I_n - D)$ est donc un produit de n matrices diagonales, et pour tout $i \in [1, n]$, le *i*-ème coefficient du *i*-ème terme de ce produit est nul : le produit $\chi_D(D)$ est nul.

2. Soit $A \in \mathcal{M}_n^{\text{reg}}(\mathbb{C})$, il existe $P \in \text{GL}_n(\mathbb{C})$ telle que PAP^{-1} soit diagonale à valeurs propres distinctes. Or, on sait que

$$0 = \chi_{PAP^{-1}}(PAP^{-1}) = P\chi_{PAP^{-1}}(A)P^{-1} = P\chi_A(A)P^{-1}$$

d'où $\chi_A(A) = 0$ par conjugaison.

- 3. Comme le produit des matrices est continu, de même que les sommes, la continuité de $P\mapsto P(A)$ est immédiate. Comme $A\mapsto \chi_A$ est continue d'après l'exercice précédent, on conclut par composition que $A\mapsto \chi_A(A)$ est continue.
- 4. Comme l'application $A \mapsto \chi_A(A)$ est continue et s'annule sur une partie dense de $\mathcal{M}_n(\mathbb{C})$ (la partie $\mathcal{M}_n^{\text{reg}}(\mathbb{C})$), on conclut que cette application est constante égale à 0, d'où le résultat.

Exercice 12. (Connexité de $SL_n(\mathbb{K})$)

1. On considère le chemin continu suivant :

$$\gamma: t \mapsto \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

qui va de I_2 vers T. On a $\det(\gamma(t)) = 1$ car $\gamma(t)$ est triangulaire supérieure avec des 1 sur sa diagonale. On a le résultat en considérant le chemin

$$t \mapsto \begin{pmatrix} I_{n-2} & 0 \\ 0 & \gamma(t) \end{pmatrix}$$

- 2. Soit s une transvection dans $\mathrm{SL}_n(\mathbb{K})$. On sait que s est conjuguée à la matrice de la question 1 via une matrice P. En conjuguant le chemin de la question précédente par P^{-1} (opération continue), on obtient un chemin continu de I_n vers s.
- 3. On sait que les transvections engendrent $\mathrm{SL}_n(\mathbb{K})$. Il suffit donc de montrer que les produits de transvections sont dans la composante connexe par arcs de I_n . On procède par récurrence sur le nombre de termes apparaissant dans un produit de transvections. Les transvections (i.e les produits de 1 transvections) sont dans la composante connexe par arcs de I_n d'après la première question. Soit maintenant un produit de la forme $s_1 \dots s_{k+1}$. On sait que $s_1 \dots s_k$ est dans la composante connexe par arcs de I_n par hypothèse de récurrence.

On peut considérer un chemin continu de I_n vers s_{k+1} d'après la question 1, la translation par $s_1 ldots s_k$ étant une opération continue, on obtient un chemin continu de $s_1 ldots s_k$ vers $s_1 ldots s_{k+1}$. Par concaténation de ce chemin avec un chemin de I_n vers $s_1 ldots s_{k+1}$, on obtient le résultat voulu.

4. On sait à présent que $\mathrm{SL}_n(\mathbb{C})$ et \mathbb{C}^* sont connexes (par arcs). Or on a vu précédemment que l'on a une suite exacte courte topologique

$$1 \to \mathrm{SL}_n(\mathbb{C}) \to \mathrm{GL}_n(\mathbb{C}) \to \mathbb{C}^* \to 1$$

qui donne alors que $\mathrm{GL}_n(\mathbb{C})$ est connexe d'après l'exercice 5

5. Il est clair par restriction que l'on a un morphisme de groupes surjectif $GL_n^+(\mathbb{R}) \to \mathbb{R}_+^*$. Le noyau de ce morphisme est bien $SL_n(\mathbb{R})$ par définition. On obtient donc la suite exacte courte voulue, ainsi que la connexité de $GL_n^+(\mathbb{R})$ d'après l'exercice 5. Soit M une matrice de déterminant -1. La multiplication par M induit un homéomorphisme de $GL_n(\mathbb{R})$, envoyant par définition $GL_n^+(\mathbb{R})$ sur $GL_n^-(\mathbb{R})$ et inversement. Comme image d'un connexe par un homéomorphisme, $GL_n^-(\mathbb{R})$ est connexe. Les composantes connexes de $GL_n(\mathbb{R})$ sont donc $GL_n^+(\mathbb{R})$ et $GL_n^-(\mathbb{R})$: ce sont deux connexes, et il n'y a pas de plus grand ensemble connexe dans $GL_n(\mathbb{R})$ (sans quoi ce dernier serait connexe, ce qu'on sait être faux).

Exercice 13. (Sous-groupes à un paramètre de $\mathrm{GL}_n(\mathbb{C})$)

1. Soient $t, s \in \mathbb{R}$, on doit avoir f(t+s) = f(t)f(s). En utilisant la formule du produit de matrices, on a

$$f_{i,j}(t+s) = \sum_{k=1}^{n} f_{i,k}(t) f_{k,j}(s)$$

2. Soient $i, j \in [1, n]$, on a

$$\int_{t}^{t+\alpha} f_{i,j}(s)ds = \int_{0}^{\alpha} f_{i,j}(s+t)ds$$

$$= \int_{0}^{\alpha} \sum_{k=1}^{n} f_{i,k}(s) f_{k,j}(t)dt$$

$$= \sum_{k=1}^{n} \int_{0}^{a} f_{i,k}(s) f_{k,j}(t)ds$$

$$= \sum_{k=1}^{n} \left(\int_{0}^{a} f_{i,k}(s) ds \right) f_{k,j}(t)$$

Ce dernier terme est la coordonnée (i,j) du produit $(\int_0^\alpha f(s)ds) f(t)$, comme annoncé.

3. On sait que $F: \alpha \mapsto \int_0^\alpha f(s)ds$ est une primitive de f, nulle en 0. On a

$$\frac{1}{\alpha} \int_0^{\alpha} f(s)ds = \frac{F(\alpha) - F(0)}{\alpha}$$

qui converge, quand α tends vers 0, vers $F'(0) = f(0) \in GL_n(\mathbb{R})$. Comme $GL_n(\mathbb{R})$ est un ouvert, pour α assez petit, $\frac{1}{\alpha} \int_0^{\alpha} f(s) ds$ se trouve dans $GL_n(\mathbb{R})$.

4. On note g_{α} la fonction considérée. On a

$$g_{\alpha}(t) = \frac{F(t+\alpha) - F(\alpha)}{\alpha}$$

Et donc

$$\frac{g_{\alpha}(t) - g_{\alpha}(0)}{t} = \frac{F(t+\alpha) - F(t)}{\alpha t} - \frac{F(\alpha) - F(0)}{\alpha t}$$
$$= \frac{1}{\alpha} \left(\frac{F(t+\alpha) - F(\alpha)}{t} - \frac{F(t) - F(0)}{t} \right)$$
$$\to \frac{1}{\alpha} (F'(\alpha) - F'(0)) = \frac{f(\alpha) - f(0)}{\alpha}$$

Soit α assez petit pour que $M_{\alpha} := \int_0^{\alpha} f(s)ds$ soit inversible (un tel α existe par la question 3. On a

$$f(t) = M_{\alpha}^{-1} g_{\alpha}(t)$$

d'après la question 1. Donc f est dérivable en 0 car g_{α} est dérivable en 0. Ensuite, pour $s \in \mathbb{R}$, on a

$$\frac{f(s+t) - f(s)}{t} = \frac{f(t)f(s) - f(s)}{t} = \frac{f(t) - f(0)}{t}f(s) \to f'(0)f(s)$$

d'où le résultat : f est dérivable en s et f'(s) = f'(0)f(s).

5. L'équation f' = f'(0)f donne, pour toute colonne f_i de f, une équation différentielle linéaire à coefficients constants : $f'_i = f'(0)f_i$. Sachant de plus que $f_i(0) = e_i$ est la i-ème colonne de la matrice identité, on a

$$f_i(t) = e^{tf'(0)}e_i$$

est la i-ème colonne de la matrice $e^{tf'(0)}$. Ceci étant vrai pour toute colonne de f, on obtient $f(t) = e^{tf'(0)}$.

6. C'est évident : comme tM et sM commutent, on a bien $f(t+s) = \exp(sM + tM) = \exp(sM) \exp(tM)$

3 Topologie de quelques actions classiques

Exercice 14. On identifie \mathbb{K}^n avec l'espace $\mathcal{M}_{n,1}(\mathbb{K})$ des matrices colonnes. Sous cette identification, l'action de $\mathrm{GL}_n(\mathbb{K})$ sur \mathbb{K}^n est simplement donnée par le produit des matrices, que l'on sait être une opération continue. On sait que pour cette action, l'orbite de 0 est réduite à $\{0\}$. On montre ensuite que l'orbite du premier vecteur e_1 de la base canonique de \mathbb{K}^n est égale à $\mathbb{K}^n \setminus 0$. Soit $v_1 \in \mathbb{K}^n \setminus 0$. On peut compléter v_1 en une base $V = v_1, \ldots, v_n$ de \mathbb{K}^n . La matrice P de changement de base de la base canonique vers la base V est un élément de $\mathrm{GL}_n(\mathbb{K})$, qui par définition est tel que $P.e_1 = Pe_1 = v_1$. Ainsi, $v_1 \in \mathcal{O}_{\mathrm{GL}_n(\mathbb{K})}(e_1)$, et donc $\mathbb{K}^n \setminus 0 \subset \mathcal{O}_{\mathrm{GL}_n(\mathbb{K})}(e_1)$, et $\mathbb{K}^n \setminus 0 = \mathcal{O}_{\mathrm{GL}_n(\mathbb{K})}(e_1)$.

Ensuite, on calcule les stabilisateurs de 0 et de e_1 . On a évidemment $\operatorname{Stab}_{\operatorname{GL}_n(\mathbb{K})}(0) = \operatorname{GL}_n(\mathbb{K})$, qui est bien fermé. Pour $P \in \operatorname{GL}_n(\mathbb{K})$, on a $P.e_1 = e_1$ si et seulement si la première colonne de P est égale à e_1 . On a alors

$$\operatorname{Stab}_{\operatorname{GL}_n(\mathbb{K})}(e_1) = \left\{ \begin{pmatrix} 1 & u \\ 0 & M \end{pmatrix} \mid u \in \mathbb{K}^{n-1} \text{ et } M \in \mathcal{M}_{n-1}(\mathbb{K}) \right\} \cap \operatorname{GL}_n(\mathbb{K})$$

Comme on considère uniquement des matrices triangulaires par blocs. Une matrice de l'ensemble considéré est dans $GL_n(\mathbb{K})$ si et seulement si le bloc M est dans $GL_{n-1}(\mathbb{K})$. On a donc

$$\operatorname{Stab}_{\operatorname{GL}_n(\mathbb{K})}(e_1) = \left\{ \begin{pmatrix} 1 & u \\ 0 & M \end{pmatrix} \mid u \in \mathbb{K}^{n-1} \text{ et } M \in \operatorname{GL}_{n-1}(\mathbb{K}) \right\}$$

qui est fermé dans $GL_n(\mathbb{K})$. Enfin, en posant $\mathcal{O}_0 := \mathcal{O}_{GL_n(\mathbb{K})}(0)$ et $\mathcal{O}_1 := \mathcal{O}_{GL_n(\mathbb{K})}(e_1)$, on a $\overline{\mathcal{O}_0} = \mathcal{O}_0$ et $\overline{\mathcal{O}_1} = \mathbb{K}^n = \mathcal{O}_0 \sqcup \mathcal{O}_1$.

Exercice 15.

1. Le groupe B n'est pas distingué dans G. Par exemple, on a

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

Cette dernière matrice ne se trouvant pas dans B. De fait, on peut montrer que $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} B \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ est le sous-groupe de G formé des matrices triangulaires inférieures.

2. Par définition, on a

$$\forall (a \ b_c \ d) \in G, (a \ b_c \ d) .[1:0] = [a:c].$$

Par construction de $\mathbb{P}^1(\mathbb{K})$, on a [a:c]=[1:0] si et seulement si $\binom{c}{a}$ et $\binom{0}{1}$ sont colinéaires, c'est à dire si c=0. On a donc bien

$$(a \ b_c \ d) \in \operatorname{Stab}_G([1:0]) \Leftrightarrow c = 0 \Leftrightarrow (a \ b_c \ d) \in B.$$

Comme $G = GL_2(\mathbb{K})$ est un ouvert de l'espace localement connexe $\mathcal{M}_2(\mathbb{K})$, il s'agit d'un espace localement connexe. L'espace $\mathbb{P}^1(\mathbb{K})$ est localement connexe car il s'agit d'une variété. On peut alors appliquer le théorème d'homéomorphisme pour les actions continues pour obtenir l'homéomorphisme souhaité.

3. L'action de B sur $\mathbb{P}^1(\mathbb{K})$ est donnée par

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} . [x:y] = [ax + by: dy] = \left[\frac{ax + by}{d} : y \right]$$

On peut diviser car $d \neq 0$ (det $(B) = ad \neq 0$). Il s'agit d'une action continue par restriction de l'action de G. Pour déterminer les orbites pour cette action, on calcule

$$\forall \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in B, \ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} . [1:0] = [a:0] = [1:0]$$

On a donc $\mathcal{O}_B([1:0]) = \{[1:0]\}$. Ensuite, on a

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} . [0:1] = [b:d] = \begin{bmatrix} \frac{b}{d} : 1 \end{bmatrix}$$

Soit $[\lambda : \mu] \in \mathbb{P}^1(\mathbb{K})$. Si $\mu = 0$, alors $[\lambda : \mu] = [1 : 0]$. Si $\mu \neq 0$, alors

$$[\lambda:\mu] = \begin{pmatrix} 1 & \lambda \\ 0 & \mu \end{pmatrix} [0:1] \in \mathcal{O}_B([0:1])$$

On a donc deux orbites pour l'action de B sur $\mathbb{P}^1(\mathbb{K})$: $\mathcal{O}_0 = \mathcal{O}_B([1:0])$ et $\mathcal{O}_1 := \mathbb{P}^1(\mathbb{K}) \setminus [1:0] = \mathcal{O}_B([0:1])$. La première orbite est un singleton, la seconde orbite est homéomorphe à \mathbb{K} par projection stéréographique, elle est en particulier localement compacte. On a $\overline{\mathcal{O}_0} = \mathcal{O}_0$ et $\overline{\mathcal{O}_1} = \mathcal{O}_1 \sqcup \mathcal{O}_0$.

4. Le sous-groupe $B^- \subset G$ des matrices triangulaires inférieures est le stabilisateur de [0:1] pour l'action de G sur $\mathbb{P}^1(\mathbb{K})$. On obtient la décomposition de $\mathbb{P}^1(\mathbb{K})$ déduite de la précédente par antipode, c'est à dire $\mathbb{P}^1(\mathbb{K}) = \{[0:1]\} \sqcup (\mathbb{P}^1(\mathbb{K}) \setminus [0:1]) = \mathcal{O}_{B^-}([0:1]) \sqcup \mathcal{O}_{B^-}([1:0])$.

Exercice 16.

- 1. On sait déjà que l'application donnée est une action de groupes. De plus, il s'agit d'une application continue car le produit et l'inverse des matrices sont des opérations continues.
- 2. On rappelle que $\operatorname{rg}(M) = \dim \operatorname{Im} M$. Soient $M \in X, g \in G_1, h \in G_2$, on poset $N = gMh^{-1}$ un élément de l'orbite de M. Pour $x \in \mathbb{K}^n$, on a

$$x \in \operatorname{Ker} N \Leftrightarrow Nx = 0$$

 $\Leftrightarrow gMh^{-1}x = 0$
 $\Leftrightarrow Mh^{-1}x = 0$
 $\Leftrightarrow h^{-1}x \in \operatorname{Ker} M$
 $\Leftrightarrow x \in h \operatorname{Ker} M$

Comme $h \in GL_n(\mathbb{K})$, les dimensions de Ker M et de Ker N = h Ker M sont égales. Par le théorème du rang, on en déduit que dim Im $M = n - \dim \operatorname{Ker} M = n - \dim \operatorname{Ker} N = \dim \operatorname{Im} N$.

3. L'image de M_k est clairement engendrée par les k premiers vecteurs de la base canonique de \mathbb{K}^m , on a donc rg $M_k = k$. En particulier, M_k et $M_{k'}$ ne sont pas équivalente. Il suffit donc de montrer que toute matrice $M \in X$ est équivalente à une matrice de la forme M_k (elle sera nécessairement unique).

On pose $k := \operatorname{rg} M$. Par le théorème du rang, on a dim $\operatorname{Ker} M = n - k$. Soit $F \leq \mathbb{K}^n$ un supplémentaire de $\operatorname{Ker} M$. Soit v_1, \ldots, v_k une base de F et v_{k+1}, \ldots, v_n une base de $\operatorname{Ker} M$. La famille $u_1 := Mv_1, \ldots, u_k := Mv_k$ est une base de $\operatorname{Im} M$. En effet, comme $v_1 \cdots v_n$ est une famille génératrice de \mathbb{K}^n , les images par M des v_i sont générateurs de $\operatorname{Im} M$. Or par définition, on a $Mv_i = 0$ pour i > k, donc les u_i engendrent $\operatorname{Im} M$. Comme dim $\operatorname{Im} M = k$, on déduit que les u_i forment une base de $\operatorname{Im} M$.

On complète les u_i en une base u_1, \ldots, u_m de \mathbb{K}^m . En posant h (resp. g) la matrice de passage de la base canonique à la base u (resp. de la base canonique à la base u), on obtient bien $gMh^{-1} = M_k$, soit le résultat voulu.

4. On fixe $k \leq k' \leq m, n$. On considère la suite de matrices

$$A_n := \begin{pmatrix} I_k & 0 & 0 \\ 0 & \frac{1}{n} I_{k'-k} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Par construction, $(A_n)_{n\in\mathbb{N}}$ est bien une suite de matrices de rank k'-k qui converge vers M_k .

- 5. D'après la question précédente, on a $M_k \in \overline{\mathcal{O}_{k_0}}$ si $k \leqslant k_0$. Comme $\overline{\mathcal{O}_{k_0}}$ est une réunion d'orbites, $M_k \subset \overline{\mathcal{O}_{k_0}}$ entraine $\mathcal{O}_k \subset \overline{\mathcal{O}_{k_0}}$ pour $k \leqslant k_0$. Ainsi, l'ensemble des matrices de rang $\leqslant k_0$ forme un sous-ensemble de $\overline{\mathcal{O}_{k_0}}$. Réciproquement, les matrices de rang $\leqslant k_0$ sont exactement les matrices dont les mineurs d'ordre r+1 sont tous nuls. Comme les mineurs sont des applications polynomiales, leur annulation est une condition fermée. L'ensemble des matrices de rang $\leqslant k_0$ sont donc un fermé qui contient \mathcal{O}_{k_0} , d'où l'inclusion réciproque et le résultat.
- 6. On pose $r = \min(m, n)$. L'adhérence de \mathcal{O}_k est formée des matrices de rang au plus k. Donc \mathcal{O}_0 est la seule orbite fermée. Une orbite est ouverte si et seulement si son complémentaire est fermé. Pour k < r, le complémentaire de \mathcal{O}_k contient les matrice de rang r, dont l'adhérence est X. Pour k = r, le complémentaire de \mathcal{O}_r est formé des matrices de rang $\leq r 1$, c'est à dire de l'adhérence de \mathcal{O}_{r-1} , il s'agit en particulier d'un fermé. Si m = n, $\mathcal{O}_0 = \{0\}$ et $\mathcal{O}_n = \operatorname{GL}_n(\mathbb{R})$.

Exercice 17.

1. Par définition, on a

$$E = \left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

Cet espace est de dimension 3, et admet la base suivante

$$h := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ e := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ f := \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Avec

$$\begin{pmatrix} a & b \\ c & -a \end{pmatrix} = ah + be + cf$$

Le déterminant est donné par $\det(ah + be + cf) = a^2 - bc$. En identifiant E et \mathbb{R}^3 (avec la base h, e, f), on a

$$a - bc = (a \ b \ c) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1/2 \\ 0 & -1/2 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

Donc det est bien une forme quadratique sur E, sa forme polaire est donnée par

$$\varphi((a,b,c),(a',b',c')) = aa' - \frac{1}{2}bc' - \frac{1}{2}b'c.$$

2. On a $e_1 = h$, $e = \frac{1}{2}(e_2 - e_3)$ et $f = \frac{1}{2}(e_2 + e_3)$. La famille e_1, e_2, e_3 est donc génératrice, et c'est une base de E car ce dernier est de dimension 3. Ensuite, on a

$$2\varphi(e_1, e_2) = \varphi(h, e + f) = \varphi(h, e) + \varphi(h, f) = 0 + 0 = 0$$

$$2\varphi(e_1, e_3) = \varphi(h, f - e) = \varphi(h, f) - \varphi(h, e) = 0 - 0 = 0$$

$$4\varphi(e_2, e_3) = \varphi(e + f, f - e) = \varphi(e, f) + \varphi(f, f) - \varphi(e, e) - \varphi(f, e) = \det(f) - \det(e) = 0$$

Donc e_1, e_2, e_3 est une base orthogonale pour φ . Enfin, on a

$$\det(e_1) = -1, \det(e_2) = -1, \det(e_2) = 1$$

donc la signature de det est (1,2).

3. Soient $g, g' \in G$ et $M \in E$, on a

$$(gg').M = gg'Mg'^{-1}g^{-1} = g.(g'Mg'^{-1}) = g.(g'.M)$$

Comme 1.M = M est évident, on a bien une action de groupe de G sur E.

 $\forall g \in G, g \in \operatorname{Ker} \varphi \Leftrightarrow (\forall M \in E, g.M = M)$

4. Par construction du morphisme $G \to \mathfrak{S}(E)$ associé à l'action précédente, on a

$$\Leftrightarrow \forall M \in E, gMg^{-1} = M \qquad \Leftrightarrow ghg^{-1} = h, \ geg^{-1} = e, \ gfg^{-1} = f$$
Soit $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{R})$, on a $g^{-1} = \frac{1}{\det g} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. On a alors
$$ghg^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} a & -b \\ c & -d \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} ad + bc & -2ba \\ 2cd & -bc - ad \end{pmatrix}$$

$$geg^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} 0 & a & 0 & c \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} -ac & a^2 \\ -c^2 & ac \end{pmatrix}$$

$$gfg^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} b & 0 \\ d & 0 \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} bd & -b^2 \\ d^2 & -bd \end{pmatrix}$$

Si $g \in \text{Ker } \varphi$, on a $b^2 = c^2 = 0$ et $a^2 = d^2 = 1$ par les deux dernières équations. La première équation donne alors que a et d ont le même signe. Les seules possibilités sont alors I_2 et $-I_2$. On vérifie facilement que ces deux matrices sont dans $\text{Ker } \varphi$.

5. Premièrement, on montre que $\varphi(G) \subset \operatorname{GL}(E)$, c'est à dire que l'action de G sur E est linéaire. Soient $M, N \in E$ et $\lambda, \mu \in \mathbb{R}$. On a

$$\forall g \in G, \ \varphi(g)(\lambda M + \mu N) = g(\lambda M + \mu N)g^{-1}$$
$$= \lambda g M g^{-1} + \mu g M g^{-1}$$
$$\lambda \varphi(g)(M) + \mu \varphi(g)(N)$$

Donc $\varphi(g) \in GL(E)$ pour tout $g \in G$. Ensuite, on montre que $\varphi(g)$ préserve toujours la forme quadratique det, autrement dit que $\varphi(G) \subset O(\det)$. Cela découle directement des propriétés de la conjugaison des matrices : pour $g \in SL_2(\mathbb{R})$ et $M \in E$, on a

$$\det(\varphi(g)(M)) = \det(gMg^{-1}) = \det(g)\det(M)\det(g)^{-1} = \det(M)$$

Comme φ est continu, et comme $\mathrm{SL}_2(\mathbb{R})$ est connexe, $\varphi(G)$ est connexe et contient Id_E , d'où $\varphi(G) \subset \mathrm{O}_0(\det)$.

- 6. Par le théorème d'inversion locale, il existe $U \subset \operatorname{SL}_2(\mathbb{R})$ un voisinage de I_2 tel que $\varphi : U \to \varphi(U)$ soit un \mathcal{C}^1 -difféomorphisme, en particulier un homéomorphisme. Comme U est un voisinage de I_2 , il contient un ouvert contenant I_2 . Cet ouvert est envoyé sur un ouvert par l'homéomorphisme $\varphi_{|U}$. On obtient bien un ouvert de $\varphi(U) \subset \varphi(G)$ qui contient Id_E .
- 7. Soit $\varphi(g) \in \varphi(G)$. Comme $O_0(\det)$ est un groupe topologique, la multiplication par $\varphi(g)$ est un homéomorphisme. Soit V un ouvert de $\varphi(\operatorname{SL}_2(\mathbb{R}))$ contenant Id_E . L'ensemble $\varphi(g)V$ est un ouvert qui contient $\varphi(g)$. Ainsi, $\varphi(G)$ contient un voisinage de chacun de ses points : il s'agit d'un ouvert de $O_0(\det)$. Ensuite, le complémentaire de $\varphi(G)$ dans $O_0(\det)$ est la réunion des classes à gauche non triviales de $O_0(\det)$ modulo $\varphi(G)$. Comme ces classes à gauche sont toutes homéomorphes à $\varphi(G)$, on obtient que le complémentaire de $\varphi(G)$ est une réunion d'ouverts, donc un ouvert. Ainsi, $\varphi(G)$ est fermé dans $O_0(\det)$. Comme $O_0(\det)$ est connexe, le fait que $\varphi(G) \subset O_0(\det)$ soit ouvert et fermé entraine que $\varphi(G) = O_0(\det)$.
- 8. D'après les question précédentes, ceci est une conséquence du théorème d'isomorphisme.

4 Groupes de Lie

Exercice 18. $(GL_n(\mathbb{R}) \text{ et } GL_n(\mathbb{C}) \text{ comme groupes de Lie})$

- 1. On sait que $\mathcal{M}_n(\mathbb{C})$ est un \mathbb{C} -espace vectoriel de dimension n^2 . Il s'agit donc d'un \mathbb{R} -espace vectoriel de dimension $2n^2$ (il faut doubler la dimension car \mathbb{C} est une extension de \mathbb{R} de degré 2).
- 2. On sait que $GL_n(\mathbb{R})$ est un ouvert de $\mathcal{M}_n(\mathbb{R})$, il s'agit donc d'une variété réelle de dimension n^2 . De même, $GL_n(\mathbb{C})$ est un ouvert de $\mathcal{M}_n(\mathbb{C})$, en particulier vu comme \mathbb{R} -espace vectoriel de dimension $2n^2$. Donc $GL_n(\mathbb{C})$ est une variété réelle de dimension $2n^2$.
- 3. Si E est un \mathbb{R} -espace vectoriel de dimension finie, et U un ouvert de E. L'espace tangent à U en tout point est E (c'est un sous-espace de E, de même dimension que U, qui a par définition la même dimension que E). Donc les espaces tangents en I_n à $\mathrm{GL}_n(\mathbb{R})$ et $\mathrm{GL}_n(\mathbb{C})$ sont respectivement $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{M}_n(\mathbb{C})$.
- 4. Ce sont toujours des applications polynomiales (où des inverses d'applications polynomiales là où elles sont non nulles). Ces applications sont toujours de classe \mathcal{C}^{∞} .

Exercice 19. ($SL_n(\mathbb{R})$ comme groupe de Lie)

- 1. Comme \mathbb{R} est de dimension 1, il suffit de montrer que la différentielle du déterminant en tout point de $GL_n(\mathbb{R})$ est non nulle. Soit $A \in GL_n(\mathbb{R})$, la différentielle du déterminant en A, appliquée à A, donne $tr({}^tcom(A)A) = n \det(A) \neq 0$ d'où le résultat.
- L'ensemble $\mathrm{SL}_n(\mathbb{R})$ étant défini comme l'ensemble des matrices de déterminant 1, et comme le déterminant est une submersion à valeur dans un espace de dimension 1, $\mathrm{SL}_n(\mathbb{R})$ est une variété de dimension $n^2 - 1$. L'espace $\mathfrak{sl}_n(\mathbb{R})$ est le noyau de la différentielle du déterminant en I_n : la différentielle du déterminant en I_n étant tout simplement la trace, $\mathfrak{sl}_n(\mathbb{R})$ est simplement l'espace des matrices de trace nulle.
- 2. Soit $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ une matrice diagonale (quitte à avoir ses valeurs diagonales complexes), on sait que $\exp(D) = \operatorname{diag}(e^{\lambda_1}, \ldots, e^{\lambda_n})$, donc dans ce cas $\operatorname{det}(\exp(D)) = e^{\operatorname{tr}(D)}$ comme annoncé. À présent si A est une matrice diagonalisable, alors il existe une matrice inversible P telle que $PAP^{-1} = D$ est diagonale, on a alors

$$\det(\exp(A)) = \det(\exp(P^{-1}DP)) = \det(P^{-1}\exp(D)P) = \det(\exp(D)) = e^{\operatorname{tr}(D)} = e^{\operatorname{tr}(A)} = e^{\operatorname{tr}(A$$

Enfin, on conclut par densité des matrices diagonalisables de $\mathcal{M}_n(\mathbb{C})$ dans $\mathcal{M}_n(\mathbb{C})$ (donc dans $\mathcal{M}_n(\mathbb{R})$), on a le résultat voulu.

3. D'après la question précédente, on a

$$\forall t \in \mathbb{R}, \ \det(\exp(tM)) = e^{\operatorname{tr}(tM)} = e^{t\operatorname{r}(M)}$$

D'où le résultat voulu.

Exercice 20. $(O_n(\mathbb{R}) \text{ et } SO_n(\mathbb{R}) \text{ comme groupes de Lie})$

1. Soit $M \in \mathcal{M}_n(\mathbb{R})$, on a

$$^{t}f(M) = ^{t}(^{t}MM) = ^{t}M^{t}(^{t}M) = ^{t}MM = f(M)$$

donc f(M) est symétrique.

2. Soient X_0 et M deux matrices, on a

$$f(X_0 + M) = {}^{t}(X_0 + M)(X_0 + M)$$

$$= ({}^{t}X_0 + {}^{t}M)(X_0 + M)$$

$$= {}^{t}X_0X_0 + {}^{t}MX_0 + {}^{t}X_0M + {}^{t}MM$$

$$= f(X_0) + {}^{t}MX_0 + {}^{t}X_0M + o(M)$$

D'où le résultat.

Soient maintenant $X_0 \in \mathcal{O}_n(\mathbb{R})$ et S une matrice symétrique, en posant $M = \frac{1}{2}X_0S$, on a

$$df_{X_0}(M) = \frac{1}{2}({}^tS^tX_0X_0 + {}^tX_0X_0S) = \frac{1}{2}({}^tS + S) = S$$

Donc $df_{X_0}: \mathcal{M}_n(\mathbb{R}) \to S_n(\mathbb{R})$ est surjective.

- 3. L'espace $O_n(\mathbb{R})$ est une sous-variété comme préimage de $\{I_n\}$ par la submersion f. Comme f est une submersion à valeurs dans $S_n(\mathbb{R})$, un espace de dimension $\frac{n(n+1)}{2}$, on conclut que $O_n(\mathbb{R})$ est une sous-variété de dimension $n^2 \frac{n(n+1)}{2} = \frac{n(n-1)}{2}$ de $\mathcal{M}_n(\mathbb{R})$.
- 4. On sait que $SO_n(\mathbb{R})$ est un ouvert de $O_n(\mathbb{R})$ (défini par $\det \neq -1$), il s'agit donc également d'une sous-variété de même dimension que $SO_n(\mathbb{R})$. Comme les dimensions sont égales, et $I_n \in SO_n(\mathbb{R}) \subset O_n(\mathbb{R})$, on obtient bien que les espaces tangents sont les mêmes.
- 5. L'espace tangent $TO_n(R)_{I_n}$ est donné par le noyau ker df_{I_n} . D'où

$$\mathfrak{so}_n(\mathbb{R}) = \{ M \in \mathcal{M}_n(\mathbb{R}) \mid {}^t M + M = 0 \}$$

soit l'espace des matrices antisymétriques

6. Soit $f: t \mapsto \exp(tM)$ un sous-groupe à un paramètre. Comme f décrit en particulier un chemin continu passant par $I_n \in SO_n(\mathbb{R})$, on a que f est à valeurs dans $O_n(\mathbb{R})$ si et seulement si il est à valeurs dans $SO_n(\mathbb{R})$ la composante connexe par arcs de I_n dans $O_n(\mathbb{R})$. On a

$$f(s) \in \mathcal{O}_n(\mathbb{R}) \Leftrightarrow {}^t \exp(sM) \exp(sM) = \exp(s^t M) \exp(sM) = I_n$$

On sait que pour A une matrice réelle, l'inverse de $\exp(A)$ est $\exp(-A)$, donc l'équation ci-dessus devient $\exp(s^t M) = \exp(-sM)$. Ainsi, si M est antisymétrique, le sous-groupe à un paramètre associé est bien à valeurs dans $O_n(\mathbb{R})$