Digital Integrated Circuits

Lab 3

Review

Dr. Yanan Sun

Email: sunyanan@sjtu.edu.cn

Office: Rm 414, Building of Microelectronics

Device Models for Inverter Simulation

■ Use the Predictive Technology Model (PTM) to evaluate 10nm multi-gate (MG) FinFETs

- PTM link: http://ptm.asu.edu/
- Use the highperformance (HP) models
- For both n-channel and p-channel devices

Simulation Settings

- \Box L_g = 14 nm for FinFETs
- ☐ Supply voltage is 0.65V for FinFETs
- □ Simulation temperature
 - $T = 25^{\circ}C$

Minimum sized INV for FinFET

minimum-sized un-skewed CMOS inverter

Minimum Sized Inv	PMOS	NMOS	
Fin number	1	1	
L	14n	14n	
Design the fin number to ensure balanced driving current in pull-up and pull-down network			

Task1: Use Logical Effort to Size Gates

□ Size each transistor in the circuit below properly to optimize the speed for FinFET, and construct the circuit with HSPICE

Vpulse	Value
V1	0V
V2	0.65v
Delay Time	1ns
Raise Time	50ps
Fall Time	50ps
Pulse Width	1ns
Period	2ns

Size the logic gate to minimize the propogation delay (a to e)

理论计算FinFET逻辑链路最优延迟

					
stage	1	2	3	4	
g	g ₁ =1	$g_2 = \frac{3}{2}$	$g_3 = 3/2$	$g_4=1$ \longrightarrow	G=1.5*1.5
b	b ₁ =1	b ₂ =1	b ₃ =1	$b_4=1$ \longrightarrow	B=1
f	$f_1=x/1$	$f_2=y/x$	$f_3=z/y$	$f_4=10/z$	F=10

$$h_i = g_i f_i b_i$$

 $h_{opt} = H^{1/4} = (GBF)^{1/4}$
 $-(1.0*1.5*1.5)^{1/4} = 2.1$

 $= (10*1.5*1.5)^{1/4} = 2.18$

 $f_1 = 2.18$; $f_2 = 1.45$; $f_3 = 1.45$; $f_4 = 2.18$

	Gate	Size	
x=2.18	NAND2	1.45X	$\longrightarrow 2.18^{*\frac{2}{3}}$
y= <mark>3.16 </mark>	NOR2	2.11X	
z=4.58	INV	4.58X	\rightarrow 4.58* $\frac{2}{3}$

这里求出来的size为逻辑门相对于最小逻辑门的相对尺寸

考虑 FinFet中Fin number 取整

由于fin_number只能为整数, 所以逻辑门尺寸取整

Gate	Size
NAND2	1.45X
NOR2	2.11X
INV	4.58X

NAND2相 对于最小 与门尺寸	NOR2相 对于最小 或门尺寸	INV相对于 最小反相器 尺寸
1	2	4
1	2	5
1	3	4
1	3	5
2	2	4
2	2	5
2	3	4
2	3	5

h1	h2	h3	h4	$\sum_{i=1}^4 h_i$
1.5	3	2	2.5	9
1.5	3	2.5	2	9
1.5	4.5	1.33	2.5	9.8
1.5	4.5	1.67	2	9.67
3	1.5	2	2.5	9
3	1.5	2.5	2	9
3	2.25	1.33	2.5	9.18
3	2.25	1.67	2	8.92

得到逻辑门尺寸后,进一步搭建和仿真电路

Digital IC

FinFET逻辑链路搭建与仿真


```
XINV_S1 A B INV SIZE="1"

XNAND_S2 B VDD C NAND SIZE="F2"

XNOR_S3 C GND D NOR SIZE="F3"

XINV_S4 D E INV SIZE="F4"

XINV_LOAD E OUT INV SIZE=10
```

测量语句:

```
.measure TRAN TAH_HL trig v(A)="supply*0.5" RISE=1 targ V(E)= "supply*0.5" RISE=1
.measure TRAN TAH_LH trig v(A)="supply*0.5" fall=1 targ V(E)= "supply*0.5" FALL=1
.MEASURE TRAN TAH PARAM="(TAH_HL+TAH_LH)/2"
```

路径优化参考答案

与非门尺寸	或非门尺寸	反相器尺寸	测量延迟 (s)
1	<mark>2</mark>	<mark>4</mark>	1.568e-11
1	2	5	1.576e-11
1	2	4	1.624e-11
1	3	5	1.622e-11
2	2	4	1.741e-11
2	2	5	1.748e-11
2	3	4	1.749e-11
2	3	5	1.746e-11

Task2: Use Logical Effort to Optimize 4x16 Decoder

- □ For a 4x16 decoder, optimize the critical path to minimize the propagation delay of decoder
 - Use the logical effort method
 - Assume that the input inverter/buffer is minimum sized
 - Assume that each output of decoder has a load of 256X minimum sized Finfet inverter
 - You can insert buffer at the output if necessary

Digital IC

2021/12/27 p 10

关键路径分析

最优反相器级数推导

$$D = NH^{\frac{1}{N}} + \sum_{i=1}^{n_1} p_i + (N - n_1) p_{inv}$$

$$\frac{\partial D}{\partial N} = -H^{\frac{1}{N}} \ln H^{\frac{1}{N}} + H^{\frac{1}{N}} + p_{inv} = 0$$

$$h = H^{\frac{1}{N}}$$

$$h(1-\ln h) + p_{inv} = 0$$

一般的, pinv = 1,可以解得 h= 3.59 ,取h=4,所以 N= log_4H

实验中 H=4608, $N = log_4 4608 = 6.08$, N = N = IOI = 1000, I = IOI = 100, I = IOI = I

逻辑链路优化

- □ 当计算得到最优级数和h后,继续计算每一级逻辑门相对于对应最小逻辑门的尺寸
- □ 当h=4时, NAND门尺寸为1.33x,NOR门尺寸为0.88x
- □ 紧接着NOR门之后的缓冲器,第一级反相器尺寸应该为3.55x, 之后的反相器尺寸以4x放大

逻辑链路搭建与测量 N=7(缓冲器含4级反相器)

测量结果:插入缓冲器含4级反相器

S 2	S 4	S 5	S6	S7	延迟 (s)
1	3	14	56	227	3.1220E-11
1	3	14	56	228	3.1230E-11
1	3	14	57	227	3.1230E-11
1	3	14	57	228	3.1240E-11
1	3	15	56	227	3.1250E-11
1	3	15	56	228	3.1260E-11
1	3	15	57	227	3.1260E-11
1	3	15	57	228	3.1270E-11
1	4	14	56	227	3.1010E-11
1	4	14	56	228	3.1020E-11
1	4	14	57	227	3.1020E-11
1	4	14	57	228	3.1030E-11
1	4	<mark>15</mark>	<mark>56</mark>	<mark>227</mark>	3.0990E-11
1	4	15	56	228	3.1000E-11
1	4	15	57	227	3.1000E-11
1	4	15	57	228	3.1010E-11

Digital IC

测量结果:插入缓冲器含4级反相器

S 2	S 4	S5	S6	S7	延迟 (s)
2	3	14	56	227	3.1770E-11
2	3	14	56	228	3.1780E-11
2	3	14	57	227	3.1780E-11
2	3	14	57	228	3.1790E-11
2	3	15	56	227	3.1800E-11
2	3	15	56	228	3.1810E-11
2	3	15	57	227	3.1810E-11
2	3	15	57	228	3.1820E-11
2	4	14	56	227	3.1540E-11
2	4	14	56	228	3.1550E-11
2	4	14	57	227	3.1550E-11
2	4	14	57	228	3.1560E-11
2	4	15	56	227	3.1510E-11
2	4	15	56	228	3.1520E-11
2	4	15	57	227	3.1520E-11
2	4	15	57	228	3.1530E-11

Digital IC

Task3 (Optional): Use Logical Effort to Optimize 7x128 Decoder

- □ For a 7x128 decoder, first think about the scheme design. Then optimize the critical path to minimize the propagation delay of decoder
 - Use the logical effort method
 - Assume that the input inverter/buffer is minimum sized
 - Assume that each output of decoder has a load of 512X minimum sized Finfet inverter
 - You can insert buffer at the output if necessary

关键路径分析

□ 可以看到一共有三条不同支路,对于这三条 支路,其H1=512*64*1.5*1.5=73728, H2=H3=512*64*1.5*1.5*1.5=110592,对应 的最优化级数为

N1=
$$log_4(73728) = 8.08$$

N2=N3= $log_4(110592) = 8.37$

- 口 第一条支路延迟低于第二和第三条,因此第二和第三条为关键路径
- 本次实验分析第二和第三条关键路径,且不 考虑第一级反相器后分支

word127逻辑表达式: $A_0A_1A_2A_3$ A_4A_5 A_6

7 input

考虑第二条支路

S1	S2	S 3	S4	S5
1x	1.33x	1.78x	0.30x	1.19x

S 6	S7	S8	S 9	
4.76x	19.04x	76.16x	304.64x	
插入buffer (含4级反相器)				

测量结果:插入buffer含2级反相器

S2	S3	S 5	S6	S7	延迟 (s)
1	1	1	4	19	5.9710E-11
1	1	1	4	20	5.8910E-11
1	1	1	5	19	5.9770E-11
1	1	1	5	20	5.8930E-11
1	1	2	4	19	5.9450E-11
1	1	2	4	20	5.8650E-11
1	1	2	5	19	5.9140E-11
1	1	2	5	20	5.8290E-11
1	2	1	4	19	5.3770E-11
1	2	1	4	20	5.2970E-11
1	2	1	5	19	5.3830E-11
1	2	1	5	20	5.2990E-11
1	2	2	4	19	5.3080E-11
1	2	2	4	20	5.2280E-11
1	2	2	5	19	5.2750E-11
1	2	2	5	20	5.1910E-11

测量结果:插入buffer含2级反相器

S2	S 3	S 5	S6	S 7	延迟 (s)
2	1	1	4	19	6.1080E-11
2	1	1	4	20	6.0280E-11
2	1	1	5	19	6.1140E-11
2	1	1	5	20	6.0310E-11
2	1	2	4	19	6.0830E-11
2	1	2	4	20	6.0020E-11
2	1	2	5	19	6.0510E-11
2	1	2	5	20	5.9670E-11
2	2	1	4	19	5.4280E-11
2	2	1	4	20	5.3490E-11
2	2	1	5	19	5.4340E-11
2	2	1	5	20	5.3510E-11
2	2	2	4	19	5.3600E-11
2	2	2	4	20	5.2790E-11
2	2	2	5	19	5.3270E-11
2	2	2	5	20	5.2420E-11

测量结果:插入buffer含4级反相器

考虑第三条支路

S6	S7	S8	S 9		
4.76x	19.04x	76.16x	304.64x		
插入buffer (含4级反相器)					

测量结果:插入buffer含2级反相器

S2	S 5	S6	S 7	延迟 (s)
1	1	4	19	5.3850E-11
1	1	4	20	5.3050E-11
1	1	5	19	5.3910E-11
1	1	5	20	5.3070E-11
1	2	4	19	5.3140E-11
1	2	4	20	5.2330E-11
1	2	5	19	5.2800E-11
1	2	5	20	5.1960E-11
2	1	4	19	5.4290E-11
2	1	4	20	5.3490E-11
2	1	5	19	5.4350E-11
2	1	5	20	5.3520E-11
2	2	4	19	5.3580E-11
2	2	4	20	5.2780E-11
2	2	5	19	5.3250E-11
2	2	5	20	5.2410E-11

测量结果:插入buffer含4级反相器

S2	S5	S6	S7	S8	S9
1x	2x	5x	20x	76x	304x

延迟 (s)

择一条优化即可

注意支路二和支路三应该拥有相同的延迟,但是由于finfet 的fin数量只能取整,在优化时候尺寸偏 离了理想值,所以两条支路延迟存在差异,但是实际测出来两条支路的延迟差距不大,本次实验选

Digital IC

作业批改情况汇总

- 1、Task 1注意标准逻辑门尺寸size, 堆叠管子尺寸需要相应增大
- 2、Task 2/3 部分同学没有考虑最优级数优化
- 3、Task 2/3 部分同学通过优化级数后重新取h值也是可以的;因为h选取不一样,测量结果会有不同,但是误差应该不会太大
- 4、部分同学只有理论推导,完全没有仿真结果
- 5、部分同学仿真精度和仿真步长设置和参考答案不同,所以结果会有几皮秒差 距,属于可接受范围
- 6、实验报告里面不需要大量粘贴代码,介绍核心代码如子电路即可