Algoritmos y Estructuras de Datos I

Segundo cuatrimestre de 2025

Departamento de Computación - FCEyN - UBA

Introducción a la Programación Funcional

Repasando un poco

- ► Hasta ahora estudiamos lógica y aprendimos a especificar problemas
- ► El objetivo es ahora escribir un algoritmo que cumpla esa especificación
 - ▶ Secuencia de pasos que pueden llevarse a cabo mecánicamente
- ▶ Puede haber varios algoritmos que cumplan una misma especificación
- ► Una vez que se tiene el algoritmo, se escribe el programa que implementa el algoritmo
 - Expresión formal de un algoritmo
 - Lenguajes de programación
 - sintaxis definida
 - semántica definida
 - qué hace una computadora cuando recibe ese programa
 - qué especificaciones cumple
 - ejemplos: Haskell, C, C++, C#, Python, Java, Smalltalk, Prolog, etc.
- A partir de un algoritmo van a exister múltiples programas que implementan dicho algoritmo.

IP - AED I: Temario de la clase

- ► Programación funcional
 - ¿Qué es un programa en el Paradigma Funcional?
 - Ecuaciones orientadas
 - Transparencia referencial
 - Expresiones bien formadas
 - Mecanismo de reducción
 - Orden de evaluación (Lazy vs Eagger)
 - Funciones parciales y totales. Definición de funciones por casos en Haskell
 - Pattern Matching
 - Tipos de datos en Haskell
 - Polimorfismo
 - Variables de tipos y clases de tipos
 - Tuplas
 - ▶ Pattern matching sobre tuplas
 - Parámetros vs tuplas
 - Currificación y aplicación parcial de funciones
 - Funciones binarias: notación prefija vs. infija
 - Renombre de tipos

2

Paradigmas de Programación

- Existen distintos paradigmas de programación
 - Formas de pensar un algoritmo que cumpla una especificación
 - ► Cada uno tiene asociado un conjunto de lenguajes
 - Nos llevan a encarar la programación según ese paradigma
- ► En esta materia vamos a estudiar dos paradigmas bien distintos: Funcional e Imperativo.
- Ahora vamos a ver Haskell que pertenece al paradigma de programación funcional
 - programa = colección de funciones
 - Transforman datos de entrada en un resultado
 - Los lenguajes funcionales nos dan herramientas para explicarle a la computadora cómo computar esas funciones

Programación funcional

► Un programa en un lenguage funcional es un conjunto de ecuaciones orientadas que definen una o más funciones.

Por ejemplo:

doble
$$x = x + x$$

► La ejecución de un programa en este caso corresponde a la evaluación de una expresión, habitualmente solicitada desde la consola del entorno de programación.

- ► La expresión se evalúa usando las ecuaciones definidas en el programa, hasta llegar a un resultado.
- Las ecuaciones orientadas junto con el mecanismo de reducción describen algoritmos.

Ecuaciones orientadas

- Lado izquierdo: expresión a definir
- ► Lado derecho: definición
- ► Cálculo del valor de una expresión : reemplazamos las subexpresiones que sean lado izquierdo de una ecuación por su lado derecho

```
Ejemplo: doble x = x + x doble (1 + 1) \rightsquigarrow (1 + 1) + (1 + 1) \rightsquigarrow 2 + (1 + 1) \rightsquigarrow 2 + 2 \rightsquigarrow 4 También podría ser:
```

doble $(1 + 1) \rightsquigarrow doble 2 \rightsquigarrow 2 + 2 \rightsquigarrow 4$

Más adelante veremos cómo funciona Haskell en particular.

Ecuaciones

Para determinar el valor de la aplicación de una función se reemplaza cada expresión por otra, según las ecuaciones.

- ► Este proceso puede no terminar, aún con ecuaciones bien definidas.
- ► Por ejemplo, consideremos la expresión:

```
doble (1 + 1)
Si reemplazamos 1 + 1 por doble 1 obtenemos doble (doble 1)
Y ahora podemos reemplazar doble 1 por 1 + 1
Volvimos a empezar...
```

doble $(1 + 1) \rightsquigarrow doble (doble 1) \rightsquigarrow doble <math>(1 + 1) \rightsquigarrow \dots$

О

Transparencia referencial

Es la propiedad de un lenguaje que garantiza que el valor de una expresión depende exclusivamente de sus subexpresiones.

Por lo tanto.

- Cada expresión del lenguaje representa siempre el mismo valor en cualquier lugar de un programa
- ► Es una propiedad muy importante en el paradigma de la programación funcional.
 - En otros paradigmas el significado de una expresión depende del contexto
- ► Es muy útil para verificar correctitud (demostrar que se cumple la especificación)
 - Podemos usar propiedades ya probadas para sub expresiones
 - ► El valor no depende de la historia
 - ► Valen en cualquier contexto

.

Formación de expresiones

- ► Expresiones atómicas
 - También se llaman formas normales
 - Son las más simples, no se puede reducir más.
 - Son la forma más intuitiva de representar un valor
 - Ejemplos:
 - **>** 2
 - ► False
 - ▶ (3, True)
 - Es común llamarlas "valores" aunque no son un valor, *denotan* un valor, como las demás expresiones
- ► Expresiones compuestas
 - Se construyen combinando expresiones atómicas con operaciones
 - Ejemplos:
 - 1+1
 - **1==2**
 - ▶ (4-1, True || False)

9

¿Cómo ejecuta Haskell?

¿Qué sucede en Haskell cuando escribo una expresión? ¿Cómo se transforma esa expresión en un resultado?

► Dado el siguiente programa:

resta
$$x y = x - y$$

suma $x y = x + y$
negar $x = -x$
suc $x = x + 1$

ightharpoonup ¿Qué sucede al evaluar la expresión suma (resta 2 (negar 42)) 4

Formación de expresiones

- ► Algunas cadenas de símbolos no forman expresiones
 - por problemas sintácticos:
 - **+*1-**
 - ▶ (True
 - ('a',)
 - o por error de tipos:
 - ▶ 2 + False
 - ▶ 2 || 'a'
 - ▶ 4 * 'b'
- ► Para saber si una expresión está bien formada, aplicamos
 - Reglas sintácticas
 - Reglas de asignación o inferencia de tipos (algoritmo de Hindley-Milner)
- ► En Haskell toda expresión denota un valor, y ese valor pertenece a un tipo de datos y no se puede usar como si fuera de otro tipo distinto.
 - ► Haskell es un lenguaje fuertemente tipado

10

Reducción

```
suma (resta 2 (negar 42)) 4
```

El mecanismo de evaluación en un lenguaje funcional es la reducción:

- 1. Elegimos una subexpresión. Vamos a reemplazar esta subexpresión por otra.
- 2. La subexpresión a reemplazar es alguna instancia del lado izquierdo de alguna ecuación orientada del programa, y se la llama radical o redex (reducible expression).
 - Buscamos un redex: suma (resta 2 (negar 42)) 4
- 3. La reemplazaremos por el lado derecho de esa misma ecuación, ligando los parámetros.
 - resta x y = x y
 x ← 2
 - y ← (negar 42)
- 4. Reemplazamos el redex con lo anterior y el resto de la expresión no cambia.
 - suma (resta 2 (negar 42)) 4 → suma (2 (negar 42)) 4
- Si la expresión resultante aún puede reducirse, volvemos al paso 1, sino llegamos a una expresión atómica (forma normal) y ese es el resultado del cómputo.

```
suma (2 - (negar 42)) 4 \leadsto suma (2 - (- 42)) 4 suma (2 - (- 42)) 4 \leadsto suma (44) 4 \leadsto 44 + 4 \leadsto 48
```

Órdenes de evaluación en Haskell

Haskell tiene un orden de evaluación normal o lazy (perezoso): se reduce el redex más externo y más a la izquierda para el cual se sepa qué ecuación del programa se debe aplicar; es decir que primero se evalúa la función y después los argumentos (si se necesitan).

Ejemplo:

```
suma (3+4) (suc (2*3))

→ (3+4) + (suc (2*3))

→ 7 + (suc (2*3))

→ 7 + ((2*3) + 1)

→ 7 + (6 + 1)

→ 7 + 7

→ 14
```

Otros lenguajes de programación (C, C++, Pascal, Java) tienen un orden de evaluación eager (ansioso): primero se evalúan los argumentos y después la función.

13

Definiciones de funciones por casos

Podemos usar guardas para definir funciones por casos:

$$f(n) = \begin{cases} 1 & \text{si } n = 0 \\ 0 & \text{si no} \end{cases}$$

f n | n == 0 = 1
| n
$$\neq$$
 0 = 0

Palabra clave "si no".

Indefinición

- ► Las expresiones para las cuales Haskell no encuentra un resultado se dicen que están indefinidas (⊥).
- ► ¿Cómo podemos clasificar las funciones?
 - ► Funciones totales: nunca se indefinen. suc x = x + 1
 - Funciones parciales: hay argumentos para los cuales se indefinen. division x y = div x y

¿Qué pasa al reducir las siguientes expresiones en Haskell?

- ▶ (division 1 1 ==0) && (division 1 0 ==1)
- \blacktriangleright (division 1 1 ==1) && (division 1 0 ==1)
- ► (division 1 0 ==1) && (division 1 1 ==1)

¿Y si hiciéramos una evaluación eager o ansiosa?

14

La función signo

$$signo(n) = \begin{cases} 1 & \text{si } n > 0 \\ 0 & \text{si } n = 0 \\ -1 & \text{si } n < 0 \end{cases}$$

La función máximo

17

¿Qué hacen las siguientes funciones?

$$f1 n | n \ge 3 = 5$$

f2 n | n
$$\geq$$
 3 = 5 | n \leq 1 = 8

f3 n | n
$$\geq$$
 3 = 5
| n \Longrightarrow 2 = undefined
| otherwise = 8

- 1

¿Qué hacen las siguientes funciones?

f5 n | n
$$\leq$$
 9 = 7 | n \geq 3 = 5

Prestar atención al orden de las guardas. ¡Cuando las condiciones se solapan, el orden de las guardas cambia el comportamiento de la función!

Otra posibilidad usando pattern matching

$$f(n) = \begin{cases} 1 & \text{si } n = 0 \\ 0 & \text{si no} \end{cases}$$

También se puede hacer:

$$f 0 = 1$$

$$f n = 0$$

1

Otra posibilidad usando pattern matching

$$signo(n) = \begin{cases} 1 & \text{si } n > 0 \\ 0 & \text{si } n = 0 \\ -1 & \text{si } n < 0 \end{cases}$$

signo n |
$$n > 0 = 1$$

| $n == 0 = 0$
| $n < 0 = -1$

También se puede hacer:

```
 \begin{array}{lll} {\tt signo} & {\tt 0} & {\tt 0} \\ {\tt signo} & {\tt n} & | & {\tt n} > {\tt 0} = 1 \\ & & | & {\tt otherwise} = -1 \end{array}
```

21

Tipos de datos

Un conjunto de valores a los que se les puede aplicar un conjunto de funciones.

Ejemplos:

- 1. Int = $(\mathbb{Z}, \{+, -, *, \text{div}, \text{mod}\})$ es el tipo de datos que representa a los enteros con las operaciones aritméticas habituales.
- 2. Float = $(\mathbb{Q}, \{+, -, *, /\})$ es el tipo de datos que representa a los racionales, con la aritmética de punto flotante.
- Char = ({'a', 'A', '1', '?'}, {ord, chr, isUpper, toUpper}) es el tipo de datos que representan los caracteres.
- 4. $Bool = (\{True, False\}, \{\&\&, ||, not\})$ representa a los valores lógicos.
- ► Podemos declarar explícitamente el tipo de datos del *dominio* y *codominio* de las funciones. A esto lo llamamos dar la signatura de la función.
- ► No es estrictamente necesario hacerlo (Haskell puede inferir el tipo), pero suele ser una buena práctica (y inosotros lo vamos a pedir!).

Un ejemplo con especificación

Dados tres números a, b y c, calcular la cantidad de soluciones reales de la ecuación cuadrática: $aX^2 + bX + c = 0$.

```
problema cantidadDeSoluciones(a : \mathbb{Z}, b : \mathbb{Z}, c : \mathbb{Z}) : \mathbb{Z} {
  requiere: \{a \neq 0\}
  asegura: \{res = 2 \leftrightarrow discriminante(a, b, c) > 0\}
  asegura: \{res = 1 \leftrightarrow discriminante(a, b, c) = 0\}
  asegura: \{res = 0 \leftrightarrow discriminante(a, b, c) < 0\}
problema discriminante(a : \mathbb{Z}, b : \mathbb{Z}, c : \mathbb{Z}) : \mathbb{Z}  {
  requiere: \{a \neq 0\}
  asegura: \{ res = b^2 - 4 * a * c \}
  cantidadDeSoluciones a b c | b^2 - 4*a*c > 0 = 2
                                        1 b^2 - 4*a*c == 0 = 1
                                        | otherwise = 0
Otra posibilidad:
  cantidadDeSoluciones a b c \mid discriminante > 0 = 2
                                        | discriminante == 0 = 1
                                        | otherwise = 0
                                        where discriminante = b^2 - 4*a*c
```

Aplicación de funciones

En programación funcional (como en matemática) las funciones son elementos (valores).

```
Notación f :: T1 -> T2 -> T3 -> ... -> Tn
```

- ▶ Una función es un valor
- la operación básica que podemos realizar con ese valor es la aplicación
 - Aplicar la función a un elemento para obtener un resultado
- Sintácticamente, la aplicación se escribe como una yuxtaposición (la función seguida de su parámetro).
- Por ejemplo: sea f :: T1 → T2, y e de tipo T1 entonces f e es una expresión de tipo T2.

Sea doble :: Int -> Int, entonces doble 2 representa un número entero.

Ejemplos de funciones con la signatura

```
\mathtt{maximo} \; :: \; \mathtt{Int} \; \rightarrow \; \mathtt{Int} \; \rightarrow \; \mathtt{Int}
maximo x y | x \ge y = x
                 | otherwise = y
{\tt maximoRac} :: {\tt Float} 	o {\tt Float}
maximoRac x y | x \ge y = x
                      | otherwise = y
esMayorA9 :: Int \rightarrow Bool
esMayorA9 n | n > 9 = True
                   | otherwise = False
\mathtt{esPar} \; :: \; \mathtt{Int} \; \rightarrow \; \mathtt{Bool}
esPar n \mid mod n 2 \Longrightarrow 0 = True
             | otherwise = False
\mathtt{esPar2} \; :: \; \mathtt{Int} \; \rightarrow \; \mathtt{Bool}
esPar2 n = mod n 2 == 0
\mathtt{esImpar} \; :: \; \mathtt{Int} \; \to \; \mathtt{Bool}
esImpar n = not (esPar n)
```

Otro ejemplo más raro:

```
funcionRara :: Float \rightarrow Float \rightarrow Bool \rightarrow Bool funcionRara x y z = (x > y) || z
```

Otras posibilidades, usando pattern matching:

```
\begin{array}{l} \texttt{funcionRara} \ :: \ \texttt{Float} \ \to \ \texttt{Float} \ \to \ \texttt{Bool} \ \to \ \texttt{Bool} \\ \texttt{funcionRara} \ x \ y \ \texttt{True} = \texttt{True} \\ \texttt{funcionRara} \ x \ y \ \texttt{False} = x \ \ge \ y \\ \\ \\ \texttt{funcionRara} \ :: \ \texttt{Float} \ \to \ \texttt{Float} \ \to \ \texttt{Bool} \ \to \ \texttt{Bool} \\ \texttt{funcionRara} \ \_ \ \texttt{True} = \ \texttt{True} \\ \texttt{funcionRara} \ x \ y \ \texttt{False} = x \ \ge \ y \end{array}
```

26

Polimorfismo

- Se llama polimorfismo a una función que puede aplicarse a distintos tipos de datos (sin redefinirla).
- ► Se usa cuando el comportamiento de la función no depende del tipo de sus argumentos
- ► En el lenguaje de especificación lo vimos con las funciones que aceptaban tipo de datos genéricos.
- ► En Haskell los polimorfismos se escriben usando variables de tipo y conviven con el tipado fuerte.
- ► Ejemplo de una función polimórfica: la función identidad.

Variables de tipos

¿Qué tipo tienen las siguientes funciones?

```
identidad x = x

primero x y = x

segundo x y = y

constante5 x y z = 5
```

Variables de tipo

- ► Son parámetros que se escriben en la signatura usando variables minúsculas
- ► En lugar de valores, denotan tipos
- ► Cuando se invoca la función se usa como argumento el tipo del valor

Variables de tipo (cont.)

Funciones con variables de tipo

```
identidad :: t \to t identidad x = x primero :: tx \to ty \to tx primero x \ y = x segundo :: tx \to ty \to ty segundo x \ y = y constante5 :: tx \to ty \to tz \to Int constante5 x \ y \ z = 5 mismoTipo :: t \to t \to Bool mismoTipo x \ y = True
```

Si dos argumentos deben tener el mismo tipo, se debe usar la misma variable de tipo

▶ Luego, primero True 5 :: Bool, pero mismoTipo 1 True no tipa

29

Clases de tipos (cont)

Clase de tipos

 Conjunto de tipos de datos a los que se les puede aplicar un conjunto de funciones

Algunas clases:

```
1. Integral := ({ Int, Integer, o.. }, { mod, div, o.. })
2. Fractional := ({ Float, Double, o.. }, { (/), o.. })
3. Floating := ({ Float, Double, o.. }, { sqrt, sin, cos, tan, o.. })
4. Num := ({ Int, Integer, Float, Double, o.. }, { (+), (*), abs, o.. })
5. Ord := ({Bool, Int, Integer, Float, Double, o.. }, { (≤), compare })
6. Eq := ({ Bool, Int, Integer, Float, Double, o.. }, { (==), (/=) })
```

Clases de tipos

¿Qué tipo tienen las siguientes funciones?

```
triple x = 3*x

maximo x y \mid x \ge y = x

| otherwise = y

distintos x y = x \neq y
```

Clases de tipos

- ► Conjunto de tipos a los que se le pueden aplicar ciertas funciones
- ► Un tipo puede pertenecer a distintas clases

Los Float son números (Num), con orden (Ord), de punto flotante (Floating), etc.

En este curso

- ► No vamos a evaluar el uso de clases de tipos, pero ...
- ... saber la mecánica permite comprender los mensajes del compilador de Haskell (GHCi)

30

Clases de tipos (cont)

Las clases de tipos se describen como restricciones sobre variables de tipos

(Floating t, Eq t, Num u, Eq u) $\Rightarrow \circ$.. significa que:

- ▶ la variable t tiene que ser de un tipo que pertenezca a Floating y Eq
- ▶ la variable u tiene que ser de un tipo que pertenezca a Num y Eq

Ejercitación conjunta

Averiguar el tipo asignado por Haskell a las siguientes funciones

¿Qué error ocurre cuándo ejecutamos f4 5 5 True? ¿Tiene sentido?

¿Y si ejecutamos f5 5 5 True? ¿Qué cambió?

22

Pattern matching sobre tuplas

Podemos usar pattern matching sobre constructores de tuplas y números

Nueva familia de tipos: Tuplas

Tuplas

```
▶ Dados tipos A<sub>1</sub>,..., A<sub>k</sub>, el tipo k-upla (A<sub>1</sub>,..., A<sub>k</sub>) es el conjunto de las
k-uplas (v<sub>1</sub>,..., v<sub>k</sub>) donde v<sub>i</sub> es de tipo A<sub>i</sub>
(1, 2) :: (Int, Int)
(1.1, 3.2, 5.0) :: (Float, Float, Float)
```

```
(1, 2) :: (Int, Int)
(1.1, 3.2, 5.0) :: (Float, Float, Float
(True, (1, 2)) :: (Bool, (Int, Int))
(True, 1, 2) :: (Bool, Int, Int)
```

► En Haskell hay infinitos tipos de tuplas

Funciones de acceso a los valores de un par en Prelude

```
▶ fst :: (a, b) \rightarrowa Ejemplo: fst (1 +4, 2) \rightsquigarrow 5

▶ snd :: (a, b) \rightarrowb Ejemplo: snd (1, (2, 3)) \rightsquigarrow (2, 3)
```

Ejemplo: suma de vectores en \mathbb{R}^2

```
suma :: (Float, Float) \rightarrow (Float, Float) \rightarrow (Float, Float) suma v w = ((fst v) + (fst w), (snd v) + (snd w))
```

Podemos usar pattern matching para acceder a los valores de una tupla

```
suma (vx, vy) (wx, wy) = (vx + wx, vy + wy)
```

34

Parámetros vs. tuplas

¿Conviene tener dos parámetros escalares o un parámetro dupla?

```
suma :: (Float, Float) → (Float, Float) → (Float, Float)
suma (vx, vy) (wx, wy) = (vx + wx, vy + wy)

— normaVectorial2 x y es la norma de (x,y)
normaVectorial2 :: Float → Float → Float
normaVectorial2 x y = sqrt (x^2 + y^2)

— normaVectorial1 (x,y) es la norma de (x,y)
normaVectorial1 :: (Float, Float) → Float
normaVectorial1 (x,y) = sqrt (x^2 + y^2)

normaISuma :: (Float, Float) → (Float, Float) → Float
normaISuma v1 v2 = normaVectorial1 (suma v1 v2)

norma2Suma :: (Float, Float) → (Float, Float) → Float
norma2Suma v1 v2 = normaVectorial2 (fst s) (snd s)
    where s = suma v1 v2
```

Currificación

► Diferencia entre promedio1 y promedio2

```
promedio1 :: (Float, Float) -> Float
promedio1 (x,y) = (x+y)/2
promedio2 :: Float -> Float -> Float
promedio2 x y = (x+y)/2
```

- ▶ solo cambia el tipo de datos de la función
 - promedio1 recibe un solo parámetro (una dupla)
 - promedio2 recibe dos Float separados por un espacio
 - para declararla, separamos los tipos de los parámetros con una flecha
- la notación se llama currificación en honor al matemático Haskell B. Curry
- para nosotros, alcanza con ver que evita el uso de varios signos de puntuación (comas y paréntesis)
 - promedio1 (promedio1 (2, 3), promedio1 (1, 2))
 - promedio2 (promedio2 2 3) (promedio2 1 2)

37

Funciones binarias: notación prefija vs. infija

Funciones binarias

- ► Notación prefija: función antes de los argumentos (e.g., suma x y)
- ► Notación infija: función entre argumentos (e.g. x +y, 5 * 3, etc)
- ► La notación infija se permite para funciones cuyos nombres son operadores
- ► El nombre real de una función definido por un operador es (•)
- ► Se puede usar el nombre real con notación prefija, e.g. (+) 2 3
- ► Haskell permite definir nuevas funciones con símbolos, e.g., (*+) (no hacerlo!)
- ► Una función binaria f puede ser usada de forma infija escribiendo `f`

Ejemplos:

```
\begin{tabular}{lll} (\geq) & :: Ord $a\Rightarrow a\to a\to Bool$ \\ (\geq) 5 3 & --evalua a True$ \\ (=) & :: Eq $a\Rightarrow a\to a\to Bool$ \\ (=) 3 4 & --evalua a False$ \\ (^) & :: (Num a, Int b) \Rightarrow a\to b\to a $$ \\ (^) & 25 & --evalua 32.0 $$ mod & :: (Integral a) \Rightarrow a\to a\to a $$ 5 `mod` & --evalua 2 $$ \\ div & :: (Integral a) \Rightarrow a\to a\to a $$ 5 `div` 3 & --evalua 1$ \end{tabular}
```

Aplicación parcial de funciones

- ► La currificación nos permite hacer una aplicación parcial de las funciones, es decir, aplicar una función a sólo alguno de los arumentos, en lugar de todos, resultando en una nueva función que toma los argumentos restantes
- ▶ Por ejemplo, supongamos que tenemos una función que suma dos enteros:

```
\begin{array}{l} \mathtt{suma} \ :: \ \mathtt{Int} \ \to \ \mathtt{Int} \ \to \ \mathtt{Int} \\ \mathtt{suma} \ \mathtt{x} \ \mathtt{y} = \mathtt{x} \ + \ \mathtt{y} \end{array}
```

En lugar de entenderla como una función que toma dos enteros y devuelve un entero, podemos aplicarla parcialmente con un sólo entero y pensarla como una función que devuelve una función que toma un entero y devuelve otro, entonces podemos usarla así:

```
sumaCinco :: Int \rightarrow Int

sumaCinco = suma 5
```

36

Renombre de tipos

- ▶ Un renombre de tipos (o *alias* en inglés) en un lenguaje es una forma de crear un nuevo nombre para un tipo de dato que ya existe.
- ► Este nuevo nombre no crea un nuevo tipo de dato, sino que simplemente actúa como un sinónimo del tipo original.
- ▶ Puede ser útil para hacer la especificación más legible o para adaptar un tipo genérico a un contexto específico.
- ► En Haskell el renombre de tipos se define con type T2 =T1
- ► Ejemplo: podemos renombrar la dupla de dos flotantes como un número complejo, donde el primer elemento es la componente real, y el segundo elemento es la componente imaginaria:

```
type Complejo = (Float, Float).
```