# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-160311

(43)Date of publication of application: 18.06.1999

(51)Int.Cl.

GO1N 33/497 GO1N 31/00

(21)Application number: 10-276132

(71)Applicant : SIEMENS ELEMA AB

(22)Date of filing:

29.09.1998

(72)Inventor: OLSSON SVEN-GUNNAR

RYDGREN GOERAN BRAUER STEFAN ANDAAS RINGE

(30)Priority

Priority number: 97 9703545

Priority date: 30.09.1997

Priority country: SE

# (54) METHOD FOR DETERMINING CONCENTRATION OF NO GAS IN RESPIRATORY GAS AND ANALYZER

# (57)Abstract:

PROBLEM TO BE SOLVED: To determine the concentration of NO in a respiratory gas accurately. SOLUTION: In a method and an analyzer for determining the concentration of NO in a respiratory gas containing O2 which forms NO2 by reaction with NO, the pressure of the respiratory gas is increased during a predetermined period of time that the NO in the respiratory gas is approximately completely converted into NO2 to measure the concentration of NO2, and the concentration of NO is determined from the measured concentration of NO2. The analyzer comprises the first reciprocating pump 30 and the second reciprocating pump 36 which alternately operates at the time of compressing a respiratory gas sample for a predetermined period of time. The gas sample is supplied for a measurement chamber 46 to measure the concentration of NO2. An analyzing unit 52 controls all analyzers and determines the concentration of NO from the measured concentration of NO2.



# (19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

# (11)特許出願公開番号

# 特開平11-160311

(43)公開日 平成11年(1999)6月18日

| (51) Int.Cl. <sup>6</sup> | 識別記号   | FΙ      |        |   |
|---------------------------|--------|---------|--------|---|
| G01N                      | 33/497 | C 0 1 N | 33/497 | Λ |
|                           | 31/00  |         | 31/00  | Н |

## 審査請求 未請求 請求項の数12 〇L (全 7 頁)

|             |                   | Pd 777114.14 | Manage Management of The Control |
|-------------|-------------------|--------------|----------------------------------|
| (21)出廢番号    | 特願平10-276132      | (71)出願人      | 593051272                        |
|             |                   |              | シーメンス -エレマ アクチボラゲット              |
| (22) 出顧日    | 平成10年(1998) 9月29日 |              | スウェーデン国 ソルナ (番地なし)               |
|             |                   | (72)発明者      | スヴェンーグンナー オルソン                   |
| (31)優先権主張番号 | 9703545-5         |              | スウェーデン国 アルレーヴ ヴィラ フ              |
| (32)優先日     | 1997年 9 月30日      |              | ォルトゥナ (番地なし)                     |
| (33)優先権主張国  | スウェーデン (SE)       | (72)発明者      | <b>グーラン リュドグレン</b>               |
|             |                   |              | スウェーデン国 プンケフロストラント               |
|             |                   |              | ストラントエングスフェーゲン 4                 |
|             |                   | (72)発明者      | ステファン プラウアー                      |
|             |                   |              | スウェーデン国 ルント エステン ウン              |
|             |                   |              | デンス ガータ 5                        |
|             |                   | (74)代理人      | 弁理士 矢野 敏雄 (外2名)                  |
|             |                   |              | 最終頁に続く                           |

#### (54) 【発明の名称】 呼吸気内のNO濃度の決定方法及びアナライザ

#### (57)【要約】

【課題】 呼吸気内のNO濃度を正確に決定すること。 【解決手段】 NOと反応してNO2を形成するO2を含んでいる呼吸気内のNO濃度の決定用の方法及びアナライザで、呼吸気内のNOがほぼ完全にNO2に変換される所定の時間周期の間、呼吸気の圧力を増加させ、NO2濃度を決定する。アナライザは、所定時間周期の間呼吸気の試料を圧縮する際に相互に作動する第1の往復ポンプと第2の往復ポンプを有している。気体試料は、NO2濃度が測定される測定室に送給される。分析ユニットは、全アナライザを制御し、測定されたNO2濃度からNO濃度を決定する。



#### 【特許請求の範囲】

【請求項1】 NOと反応してNO2を形成するO2を含んでいる呼吸気内のNO濃度の決定方法において、呼吸気圧を可変時間周期に亘って増加させ、前記呼吸気内のNOがほぼ完全にNO2に変換された時点で、最終NO2濃度を決定し、前記決定されたNO2濃度からNO濃度を算出することを特徴とする方法。

【請求項2】 呼吸気圧増加の大きさを、NOの、NO  $_2$  への変換が、可変時間周期の間に実質的に完了されるように選択し、最終NO $_2$  濃度を、前記NO $_2$  濃度を測定することによって決定する請求項 $_1$ 記載の方法。

【請求項3】 最終 $NO_2$  濃度を、可変時間周期の間に少なくとも2回測定することによって決定し、 $NO_0$ 、 $NO_2$  への変換曲線を決定し、最終 $NO_2$  濃度を、測定された $NO_2$  濃度と決定された変換曲線から形成する請求項1記載の方法。

【請求項4】 呼吸気内の $NO_2$  濃度を、当該呼吸気圧が増加される前に測定し、NO濃度を、前記呼吸気圧の増加の前後に決定された $NO_2$  濃度から決定する請求項  $1\sim3$ までのいずれか1記載の方法。

【請求項5】 NOと反応してNO2を形成するO2を含んでいる呼吸気内のNO濃度の決定用の、測定室(46;70;92)を有するアナライザ(10;60;84)において、分析ユニット(48,50,52;76,78,80;94,96,98)と少なくとも1つの加圧手段(30,36;72,74;102)とが設けられており、前記分析ユニットは、呼吸気内のNO2濃度を測定し、前記加圧手段は、所定の時間周期に亘って前記呼吸気圧を増加させるように構成されており、前記分析ユニット(48,50,52;76,78,80;94,96,98)は、前記呼吸気内のNO2の最終濃度を決定し、且つ、該決定されたNO2の最終濃度からNO濃度を決定することを特徴とするアナライザ。【請求項6】 サンプリング系(24-42;68;9

【請求項6】 サンプリング系(24-42;68;90,100-104)を有しており、該サンプリング系は、呼吸気から気体試料を抽出して、測定室(46;70;92)に搬送する請求項5記載のアナライザ。

【請求項7】 加圧手段(30,36;102)は、サンプリング系(26-42;90,100-104)の一部として構成されている請求項6記載のアナライザ。

【請求項8】 加圧手段(72,74)は、測定室(70)の一部として構成されている請求項5又は6記載のアナライザ。

【請求項9】 アナライザ(84)は、加圧手段(102)が呼吸気圧を増加させる前に、前記呼吸気内のNO2濃度を測定するように構成されており、分析ユニット(98)は、前記呼吸気圧の増加の前後それぞれで決定された前記NO2濃度からNO濃度を決定するように構成されている請求項5~8までのいずれか1記載のアナライザ。

【請求項10】 サンプリング系 (90, 100-10 4)は、第1の部分が、呼吸気試料を、 $NO_2$  濃度の測定用の測定室 (92)に搬送するように構成されており、第2の部分が、最終 $NO_2$  濃度の決定のために、加圧手段 (102)を介して、前記呼吸気試料を元に戻す請求項9又は6記載のアナライザ。

【請求項11】 サンプリング系(68,82;90,100-104)は、第1の部分が、 $NO_2$  濃度の測定のために、第1の気体試料を測定室(70;90)に搬送するように構成されており、第2の部分が、最終 $NO_2$  濃度の決定のために、加圧手段 $(72,74;10_2)$ を介して、第2の気体試料を測定室(70;92)に搬送するように構成されている請求項9又は6記載のアナライザ。

【請求項12】 分析ユニットは、 $N_2 O_4$  が存在する場合、NO濃度の決定を補償するように構成されている請求項5~11までのいずれか1記載のアナライザ。

## 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は、NOと反応してNO2を形成するO2を含んでいる呼吸気内のNO濃度の決定方法に関する。

【0002】本発明は、また、NO2反応して $NO_2$ を 形成する $O_2$ を含んでいる呼吸気内のNO濃度の決定用 の、測定室を有するアナライザに関する。

# [0003]

【従来の技術】近年、気体のNOは、種々の治療で大きな関心が持たれている。少量のNOが、気道を経て患者に投与された場合に、幾つかの有益な効果が記録されている。例えば、NOは、平滑筋を弛緩させる効果を有していることが分かっており、それにより、酸素化が改善され、肺の血圧が下げられる。従来技術で用いられてきたNOの効果がもっと良く分かる説明は、例えば、世界知的所有権機関第92/10228号明細書及び米国特許公開第542797号公報に記載されている。

【0004】NOは、通常、気体シリンダ内で $N_2$ で希釈され、それから、呼吸気、通常は、空気と酸素

 $(O_2)$ との混合気と混合されてから、最終混合気が患者に供給される。公知混合系の例は、ヨーロッパ特許公開第659445号公報及びスウェーデン特許第502724号に記載されている。

【0005】NOの最大の問題点は、NOが、 $O_2$ と一緒にNO $_2$ を形成する高反応性気体であり、この気体が、低濃度の場合ですら、高い毒性があるという点である。呼吸気は、一般に、増大した $O_2$ レベルを有しているので(例えば、 $50-80\%O_2$ )、特定の測定の際、患者に供給されるNO $_2$ 量を最小化する必要がある場合がある。

【0006】また、患者のNO摂取量を決定することは、NOを用いた治療での関心事項である。原理的に

は、この、患者のNO摂取量の決定は、呼吸気のNO含有量が最初に決定されてから、患者に供給され、それから、患者の呼息内のNOの気体濃度が決定されるようにして行われている。NO濃度の差は、患者の人体内への摂取量に相応する。

【0007】しかし、NOは、測定し易い気体ではない。しかも、上述のように、NOは、 $O_2$  と接触すると、 $NO_2$  に変換され、それにより、患者のNO摂取量の決定に影響が及ぼされる。NOを測定するための公知の方法は、例えば、化学光検出器を使用するが、しかし、化学光検出器は高価であって、環境パラメータ、例えば、湿気、及び、特に酸素レベルに敏感である。つまり、分析用の気体は、この気体測定の信頼度を高くするためには、特定の湿度含有量にする必要がある。

【0008】呼吸気内のNO濃度に関しては、NOを呼吸気に付加することは、引用した従来技術に記載されているような、NOが患者に達する以前に、NOの変換を最小にするための、何らかの適当な手段で実行することができる。従って、吸息のNO濃度は、比較的大きな精度で決定することができる。しかし、呼息に関しては、NO濃度を決定する際の問題点は大きい。その際、NO濃度を決定する時点迄、多くの時間が経過し、大きなパーセンテージのNOがNO2に変換されてしまう。

#### [0009]

【発明が解決しようとする課題】従って、本発明の目的は、呼吸気内のNO濃度、有利には、呼息内の濃度を正確に決定する方法を提供することにある。

【 0 0 1 0 】本発明の他の目的は、呼吸気内のN O 濃度 を決定するためのアナライザを提供することにある。 【 0 0 1 1 】

【課題を解決するための手段】この課題は、本発明によると、そのような方法の1つは、呼吸気圧を可変時間周期に亘って増加させ、前記呼吸気内のNOがほぼ完全に $NO_2$  に変換された時点で、最終 $NO_2$  濃度を決定し、前記決定された $NO_2$  濃度からNO濃度を算出することにより達成される。

【0012】この課題は、本発明によると、NOと反応して $NO_2$ を形成する $O_2$ を含んでいる呼吸気内のNO 濃度の決定用の、測定室を有するアナライザにおいて、分析ユニットと少なくとも1つの加圧手段とが設けられており、前記分析ユニットは、呼吸気内の $NO_2$  濃度を測定し、前記加圧手段は、所定の時間周期に亘って前記呼吸気圧を増加させるように構成されており、前記分析ユニットは、前記呼吸気内の $NO_2$ の最終濃度を決定し、且つ、該決定された $NO_2$ の最終濃度からNO濃度を決定するアナライザにより達成される。

#### [0013]

【発明の実施の形態】NO含有量を直接測定して、NO2の形成の際に測定又は決定を補償する代わりに(NOの、NO2への変換の時間関連の式は公知である)、N

〇の変換が加速され、 $NO_2$  の最終濃度が代わりに決定される。N 〇のレベルは、 $NO_2$  の最終濃度から形成することができる。

【0014】用語「最終濃度」とは、(ほぼ全ての)N Oが $NO_2$  に変換された際に優勢な濃度のことである。 最終濃度を決定する有利な方法は、2 つある。その1 つの方法では、圧力の増加は、N Oが殆ど完全に $NO_2$  に変換される程度に高く設定される。他の方法では、N O 2 の濃度は、変換曲線を決定することができる間に少なくとも 2 回測定される。それから、最終濃度を、測定値及び決定された変換曲線から算出することができる。

【0015】NOが完全にNO $_2$ に変換された場合、NO $_2$ の濃度は、NO $_2$ の濃度から決定することができる。増加した圧力によって、NO $_2$ との反応は加速される。と言うのは、気体の部分圧力が、増加した圧力に従って増加するからである。この反応は、圧力の $_3$ 乗で変化するので、圧力を $_2$ 倍にすると変換は $_3$ 8倍に増加し、圧力が $_3$ 9倍になると、変換は $_2$ 7倍に増加する、等である。温度は、これらのプロセスに何らかの影響を及ぼすので、温度を一定又は少なくとも分かっている温度に保持する必要がある。

【0016】吸収測定を用いる場合には、高い圧力で濃度を測定すると有利である。と言うのは、分子濃度、及び、従って、吸収は、低い圧力で測定する場合よりも大きい。

【0017】圧力増加が大きいということは、短い可変時間周期を選択することができるということである。圧力は、このように、反応に影響を及ぼすので、この方法は、N〇濃度を直接測定して、この測定値を、混合後、管路系を通って気体が流れる時間に、変換ファクタで補償するよりも遙かに安全である。と言うのは、系の気体圧力は、吸息及び呼息の間に変化するからであり、つまり、それに従って、反応速度が同様に変化するからである。変換されたN〇の補償ファクタの決定の際に圧力変化と時間の両者を考慮すると、特に複雑となる。

【0018】呼吸気内に存在するNO濃度(即ち、変換されていないNO濃度)を決定すべきである場合には、NOを $NO_2$ に変換するために呼吸気内で圧力が増加する前に、 $NO_2$  濃度を測定することができ、実際のNO濃度は、呼吸気内の圧力が増加する前後に決定される $NO_2$  濃度から決定することができる。

【0019】呼吸気圧増加の大きさを、NOの、 $NO_2$ への変換が、可変時間周期の間に実質的に完了されるように選択し、最終 $NO_2$ 濃度を、 $NO_2$ 濃度を測定することによって、有利には、可変時間周期の経過後に測定する。

【0020】本発明のアナライザは、NOと反応して $NO_2$ を形成する $O_2$ を含んでいる呼吸気内のNO濃度の決定用の、測定室を有するアナライザにおいて、分析ユニットと少なくとも1つの加圧手段とが設けられてお

り、前記分析ユニットは、呼吸気内のNO2 濃度を測定し、前記加圧手段は、所定の時間周期に亘って前記呼吸気圧を増加させるように構成されており、前記分析ユニットは、前記呼吸気内のNO2の最終濃度を決定し、且つ、該決定されたNO2の最終濃度からNO濃度を決定する。

【0021】原理的には、アナライザは、方法を実施するために必要な構成要素を有しており、即ち、 $NO_2$  濃度を決定するための分析ユニットと、所定時間周期の間気体の圧力を増加するための少なくとも1つの加圧手段を有している。

【0022】加圧手段は、殊に、種々異なったやり方で装置構成することができる。従って、加圧手段は、抽出気体試料用のサンプリング系の部分にすることができ、1つ又は直列接続された複数のポンプ(1つ又は複数の段で気体を連続的に圧縮する)から構成することができる。

【0023】択一選択的に、分析が実行される測定室を、その容積を低減して、それにより、測定室内の気体 試料を圧縮することができるように設計することもできる。

【0024】アナライザの有利な実施例は、請求項5の 従属請求項から明らかである。

【0025】加圧手段は、サンプリング系の一部として 構成されており、有利には、呼吸気試料を圧縮するよう に構成された、少なくとも1つの往復ポンプを有してい る。

#### [0026]

【実施例】本発明の図示の実施例及びアナライザの図示 の実施例について、以下、詳細に説明する。

【0027】図1には、吸息管路6を介して吸息を患者4に供給し、呼息を呼息管路8を介して患者4から分析ユニット10及び排気ユニット11に搬送するために、患者4に接続されたベンチレータ2が示されている。呼吸気内の成分気体は、ベンチレータ2に、例えば、空気用の第1の気体接続部12Aを介して、及び、例えば、 $O_2$ 用の第2の気体接続部を介して供給される。治療用気体、この例では、NOが、ベンチレータ2に気体シリンダ14(例えば、 $N_2$ で希釈した100ppm NOの混合物を含む)から第3の気体接続部16を介して供給される。

【0028】アナライザ10は、呼息のNO成分を決定するために、ベンチレータ2と排気ユニット11との間に接続されている。吸息のNO成分が分かっている場合には、患者4内のNOの摂取量を決定することができる。

【0029】図2には、アナライザ10の第1の実施例が示されている。呼息は、アナライザ10に気体入り口18を介して供給されて、混合室20に搬送される。混合室20の目的は、呼吸気が測定される前に呼吸気の均

一成分を達成するためである。その際、NO濃度の平均 値、同様に、患者内のNO摂取の平均値、又は、毎分容 量を決定することができる。分析された気体、又は、分 析されなかった気体は、アナライザ10から気体出口2 2を介して排気される。

【0030】分析すべき気体試料は、気体サンプリング 管路24を介して、第1のチェックバルブ26を通し て、又、気体管路28を介して、第1の往復ポンプ30 に搬送することができ、この第1の往復ポンプ30内に は、気体試料で、特定容積の空間を充填することができ る。気体試料が第1の往復ポンプ30を充填した場合、 気体は、第1の制御気体管路32を介して、正圧の印加 によって圧縮される。気体試料は、気体管路28を通っ て気体サンプリング管路24に戻され、第2のチェック バルブ34を通って第2の往復ポンプ36の方に押し出 される。第2の往復ポンプ36の容積は、第1の往復ポ ンプ30の容積よりも非常に小さく(例えば、1/3又 は1/10)、従って、気体試料は、当該気体試料が第 2の往復ポンプ36を充填した場合に圧縮される。容積 の比は、所望の圧力増加及び第1の制御気体管路32内 で利用可能な正圧に従って選択される。容積の差が大き いので、大きな圧力差が生じ、従って、一層急速にNO をNOっに変換される。

【0031】また、第2の往復ポンプ36は、第2の制御気体管路38を介して供給される正圧気体によって制御される。第1の制御気体管路32及び第2の制御気体管路38への正圧の印加は、スイッチ40を介して調整される。第2の往復ポンプ36が圧縮される場合、気体試料は、更に圧縮され、気体サンプリング管路24に返送され、この気体サンプリング管路24内では、測定室46の充填の前に、気体試料が第3のチェックバルブ42、触媒及び除湿器44を通過する。触媒作用は、変換を更に加速し、できる限り完全に変換させるように作用することができる。

【0032】特定時間周期の間生じる気体試料の圧縮により、 $NO6NO_2$  の化学反応の反応速度を増大することができ、気体試料中のNO6 、ほぼ全 $TNO_2$  に変換することができる。

【0033】測定室46内では、気体試料は、光源48からの光によって照明され、透過光の強度が検出器50によって検出される。生じた測定信号は、分析ユニット52に送給され、この分析ユニットは、光源48とスイッチ40とを制御する。分析ユニット52は、試料中のNO2気体濃度を、伝統的な分光光度法によって決定する。放射光の強度の基準信号は、公知のやり方で得ることができ、例えば、NO2を含んでいない基準室を使用することによって、又は、NO2が放射を吸収しない基準周波数で測定することによっても得ることができる。分析精度を高めるために、測定室46内の圧力が、圧力ゲージ54によって測定され、圧力ゲージは、測定信号

を分析ユニット52に送給する。それから、気体試料は、分析ユニット52によって制御されるバルブ56を通して気体出口22に搬送することができる。

【0034】第3の往復ポンプ58は、第1の往復ポンプ30及び第2の往復ポンプ36のポンピング動作を制御して、圧縮能力を増大するために、機械的に第1の往復ポンプ36に接続されている。

【0035】一端では、第3の往復ポンプ58は、第1の制御気体管路32に接続されており、他端では、第2の制御気体管路38に接続されている。3つの往復ポンプ30,36,58のピストンは、機械的に相互に結合されていて、効率的な相互作用を達成している。

【0036】 $NO_2$  濃度の実際の測定は、通常の分光分析法に加えて、他の公知の測定技術を用いて実行することができる。

【0037】大気中に開放されたバルブ (図示していない)が接続された場合には、周囲空気は、アナライザ内に導入されることができ、較正用の基準気体として使用することができる。

【0038】アナライザの第2の実施例は、図3に示されており、60で指示されている。呼吸気は、アナライザ60に気体入り口62を介して送給される。この例では、呼吸気の混合はない。分析されない呼吸気は、ストレートに気体出口64に通過することができる。気体試料は、第1のバルブ68と気体サンプリング管路66を介して測定室70に搬送される。

【0039】測定室70には、可動パーティション72が装置構成されており、このパーティションは、測定室70を2つの分離されたコンパートメントに分割している。パーティション72は、圧縮空気により可動であり、その際、制御バルブ74によって制御されて、気体試料を保持する測定室70の部分の容積を低減する。それに従って、気体は圧縮され、気体試料内に何らかのNOが存在すると、急激にNO2に変換される。圧縮は、特定時間周期の間、維持される。その際、測定が、光源76で気体試料を照明し、透過光の強度を検出器78によって検出することによって行うことができる。

【0040】測定は、特定の時間周期の間又は後に行うこともできる。測定が加圧期間中に行われる場合には、変換レートを決定することができ、又は、より正確には、変換曲線は、優勢圧力の場合に決定することができる。それに基づいて、気体試料中の最終 $NO_2$  濃度は、全ての $NOがNO_2$  に変換される前に決定することができる。こうすることによって、決定をスピードアップすることができる。特に、圧力があまり増大しないような状況の場合にスピードアップすることができる。

【0041】測定が、特定時間周期の後に行われる場合には、1回の濃度測定で十分である。これは、気体試料が依然として正圧を有している間か、又は、圧力が通常

圧に低減した後に行うことができる。 $NO_2$  濃度の測定は、しかし、増大圧力で一層簡単になる。

【0042】分析後、気体試料は、気体出口64に第2のバルブ82を介して送給される。

【0043】呼息呼吸気内に、依然として $NO_2$  に変換されていないNO含有量が決定され得るならば、 $NO_2$ 含有量は、加圧の前に測定される。

【0044】パーティション72を動かすのに、圧縮空気の代わりに、機械的又は油圧装置を使うこともできる。最も重要なことは、NOの変換の際の反応速度を加速するように比較的急速に増加する大きな圧力を達成することである。

【0045】分析ユニット80は、気体試料を測定室70に収容するため/気体試料を測定室70から放出するために、バルブ68,82を調整する。分析ユニット80は、又、制御バルブ74を制御する。分析ユニット80は、付加的に、圧縮の前後に、NO濃度を測定されたNO2濃度から決定する。

【0046】図4には、アナライザの第3の実施例が示されており、84で指示されている。呼吸気は、アナライザ84を通って気体入り口86と気体出口88との間を通過する。気体試料は、呼吸気から第1のバルブ90を介して取り込むことができ、何ら加圧せずに、測定室92にストレートに搬送することができ、即ち、NO2濃度は、NOが完全に変換される前に測定される。前述の実施例では、光源94と検出器96は、測定信号を発生するために設けられており、この測定信号は、分析ユニット98で分析される。また、分析ユニット98で分析される。また、分析ユニット98は、全アナライザ84を制御する。

【0047】分析が完了した場合、気体試料は、測定室 92から放出されて、第2のバルブ 100を介して、圧 力室等から構成することができる加圧手段 102に搬送される。気体試料は、ほぼ全てのNOがNO $_2$ に変換される特定時間周期の間、加圧手段 102で高圧に上昇される。気体試料は、それから、測定室 92の戻され、測定が繰り返される。測定結果の差は、気体試料が採取された時点でその気体試料が有しているNO濃度に変換することができる。この測定方法では、また、気体試料が採取された以前に、どの程度のNO $_2$ 量(形成する時間を有する)を有していたかについての何らかの情報が提供される。

【0048】気体試料は、気体出口88に第3のバルブ104を介して送給することができる。全バルブ90,100,104は、分析ユニットによって制御される。【0049】択一選択的に、第1の気体試料を、圧力を何ら増大せずに測定のために採取することができる。その際、第2のガス試料を採取して、加圧後に測定することができる。これは、全ての実施例で実行することができる。

【0050】吸収測定での波長の選択に依存して、必要

な場合、 $N_2$   $O_4$   $endote{NO}_2$  と平衡状態にさせるために、補償することができる。 $N_2$   $O_4$   $endote{NO}_2$  との平衡比は、十分に分かっており、補正値を分析ユニットによって算出するか、又は分析ユニット内に記憶することができる。 $N_2$   $endote{NO}_2$   $endote{NO}_2$   $endote{NO}_3$   $endote{NO}_4$   $endote{NO}_4$  endote

【0051】種々の実施例を、適切な場合には、相互に接続することができる。例えば、混合室は、第2及び第3の実施例で使用することができる。相応のやり方で、第1の実施例での混合室20は、省くことができる。また、ベンチレータ2の後ろ又はベンチレータ2内に組み込む代わりに、アナライザ10を呼息管路8内に配置することができる。加圧方法は、組み合わせることもできる。従って、第1の実施例でのピストンによって生じた連続的な圧力増加は、極めて高い圧力増加を達成するための第2の実施例に従った加圧室と組み合わせることができる。その際、ピストンは、正圧の約5バール迄圧力を増加するために、圧縮空気によって駆動することができる。加圧室は、付加的に、油圧手段によって、例えば、正圧の約10バールに圧力を増大することができる。変換を1000倍以上速くすることができる。

【0052】NOと反応して $NO_2$ を形成する $O_2$ を含んでいる呼吸気内のNO濃度の決定用の方法及Vアナライザでの、呼吸気のNO含有量を決定する際の信頼性の問題点は、先ず、呼吸気内にあるNOがほぼ完全に $NO_2$ に変換される所定の時間周期の間、呼吸気の圧力を増加させ、それにより、 $NO_2$  濃度を測定し、測定された  $NO_2$  濃度からNO2 濃度を決定するようにして解決される。アナライザは、所定時間周期の間呼吸気の試料を圧縮する際に相互に作動する第1の往復ポンプと第2の往復ポンプを有している。気体試料は、 $NO_2$  濃度が測定

される測定室に送給される。分析ユニットは、全アナライザを制御し、測定された $\mathrm{NO}_2$  濃度から $\mathrm{NO}$  濃度を決定する。

#### 【図面の簡単な説明】

【図1】 本発明のアナライザを有するベンチレータシス テムを示す図

【図2】アナライザの第1の実施例を示す図

【図3】アナライザの第2の実施例を示す図

【図4】アナライザの第3の実施例を示す図

#### 【符号の説明】

- 2 ベンチレータ
- 4 患者
- 6 吸息管路
- 8 呼息管路
- 10 分析ユニット
- 11 排気ユニット
- 20 混合室
- 26,34 チェックバルブ
- 28 気体管路
- 30,36,58 往復ポンプ
- 32,38 制御気体管路
- 40 スイッチ
- 44 除湿器
- 46,70,92 測定室
- 48,76,94 光源
- 50,78,96 検出器
- 52,80,98 分析ユニット
- 54 圧力ゲージ
- 60,84 アナライザ
- 66 気体サンプリング管路
- 74 制御バルブ
- 102 加圧手段

【図1】

14 12A 2 4

【図2】



(図3)
62 i 66 82 64
60 70 80 80



フロントページの続き

(72)発明者 アンダース リンゲスウェーデン国 ケヴリンゲ ヘルゲス ヴェーク 7