Problem 9.7: Supply regular expressions that generate the following languages.

- We supply $(0*10*)^{500}$.
- We supply $\bigcup_{i=1}^{500} (0^*10^*)^i$.
- We supply $\bigcup_{i=1}^{500} (0^*10^*)^i (0^*10^*)^*$.

Problem 9.9, Claim: If $NP = P^{SAT}$, then NP = co-NP.

Proof. Suppose that $NP = P^{SAT}$. Now, let L be a language in coNP; then, its complement must be in NP. There must exist an oracle machine M that applies M^{SAT} to solve L; the machine that accepts input iff M rejects it is sufficient to show that $L^{\complement} \in P^{SAT} = NP$. Thus, L must be an element of coNP.

It can be similarly shown that $NP \supseteq coNP$. Thus, the claim holds. \square

Problem 9.12: Describe the problems with the given erroneous proof.

The proof claims that it follows from the Cook-Levin Theorem that $NP \subseteq TIME(n^k)$, where SAT is decided with time-complexity $\mathcal{O}(n^k)$.

However, the Cook-Levin Theorem only guarantees a polynomial-time reduction from $L \in NP$ to SAT; thus, it does not follow from this that $NP \subseteq TIME(n^k)$, as the author claims.

Problem 9.13, Claim: If $A \in TIME(n^6)$, then $pad(A, n^2) \in TIME(n^3)$.

Proof. Let M be a machine that decides A with time-complexity $\mathcal{O}(n^6)$. We define the machine M' that decides the specified padding of L as follows:

On input x, check if x is of the format $pad(w,|w|^2)$. If so, simulate M on w; otherwise, reject.

This decides $pad(A, n^2)$ with time-complexity $\mathcal{O}(n^6)$ as required.

Problem 9.14, Claim: If EXPTIME \neq NEXPTIME, then P \neq NP.

Proof. Suppose for contraposition that P = NP. Consider $L \in NEXPTIME$, and let c be a positive integer s.t. $L \in NTIME(2^{n^c})$. Clearly, $pad(A, 2^n) \in NP$, so by assumption, it is also in P. Therefore, $L \in TIME(2^{O(n^c)}) \subseteq EXPTIME$.

Consequently, EXPTIME = NEXPTIME, as required.

Supplementary Problem 1, Claim: If A is complete for EXPTIME under \leq_m^p restrictions, then there exists $\epsilon > 0$ s.t. $A \notin DTIME(2^{n^{\epsilon}})$.

This cannot be shown, because EXPTIME can be written as $\bigcup_{k\in\mathbb{N}}DTIME(2^{n^k})$. If A is complete for EXPTIME under polynomial-time m-reductions, then it must be in $DTIME(2^{n^\epsilon})$ for all ϵ . Thus, the converse is true.

Supplementary Problem 2, Claim: IF B is complete for PSPACE under logarithmic-time m-reductions then there exists $\epsilon > 0$ s.t. $A \notin DSPACE(2^{n^{\epsilon}})$.

Similarly with Problem 1, this is not true; the opposite can be proven.

Supplementary Problem 3, Claim: The language A, as defined, is complete in NP under logarithmic-time m-reductions.

Proof. First, we provide a reduction f from A to the Hamiltonian path problem as follows:

On input (x, y), accept iff M^{PATH} accepts x and rejects y.

Similarly, we provide a reudction g from the Hamiltonian path problem to A:

On input x, accept x iff M^A accepts (x,y), where y is the complement

of x.

Both reductions are in logarithmic-time, as required. Thus, A is Turing-equivalent to PATH. Since PATH is NP-complete, then so too must be A, as required.