TCS II Formal Languages and Computability 2020/21 2nd Midterm

1	1	r		_	\mathbf{a}	\cap	\mathbf{a}	1
- 1		Ш	n	ıe	2	U	L	

Solve the assignments on your own.	
Time limit is 60 minutes	

Good luck!

ASSIGNMENT	POINTS	OUT OF	ASSIGNMENT	POINTS	OUT OF
1			2		
3			4		

FIRST AND LAST NAME:	
STUDENT ID:	
STODENT ID.	
CLONIBUDE	
Signiture:	

2

1. Assignment: (30 points)

Let's define the language:

$$L_1 = \left\{ 0^{2n} 1^n \mid n \ge 0 \right\}$$

- 1. Construct a TM for L_1 . For the TM, write down the 7-tuple defining it!
- 2. Using the Instantaneous descriptions (IDs), show how your TM accepts the input string 000011.

3

2. Assignment: (25 points)

You are given the following context free grammar (CFG) G, $\Sigma = \{x, y, z\}$:

$$\begin{split} S &\to XYZ \mid YZ \\ X &\to xX \mid y \\ Y &\to x \mid X \\ Z &\to z \\ W &\to xX \mid yy \mid z \end{split}$$

- 1. Turn this grammar into Chomsky Normal Form (CNF).
- 2. Using the CYK algorithm, check if the word xxyxz is in the language defined by grammar G.

4

3. Assignment: (20 points)

You are given the following 4 string pairs of a Modified Post Correspondence Problem (MPCP) – numbered from 1. to 4.:

- 1. (a, ab)
- 2. (b, ca)
- 3. (ca, a)
- 4. (abc, c)

- 1. Reduce the given MPCP to a PCP.
- 2. Find a solution to the given MPCP and show how this solution reduces to the solution of the PCP.

4. Assignment: (25 points)

You are given the following Boolean (or logical) expression (A, B and C are boolean variables; concatenation, + and - represent the operations <math>AND, OR and NOT, respectively):

$$A + B(-C)$$

- 1. Convert the given Boolean expression first to Conjunctive Normal Form (CNF) and then to 3–Conjunctive Normal Form (3–CNF) (if needed).
- 2. Reduce this 3–SAT problem (from the previous conversion into 3–CNF) to the Vertex Cover (VC) problem find a satisfying assignment to the 3-CNF and the vertex cover of the related graph.