Image Filtering

Filtering

 In signal processing, a filter is a process that removes from a signal some unwanted component or feature

1D Signal Filtering

2D Image Filtering

2D Image Filtering

Image Filtering

Image filtering: change range of image

$$g(x) = h(f(x))$$

Image warping: change domain of image

Image Filtering

Image filtering: change range of image

$$g(x) = h(f(x))$$

Image warping: change domain of image

$$g(x) = f(h(x))$$

Filtered image

Input image

$$\otimes \ G(x,y) = rac{1}{2\pi\sigma^2}e^{-rac{x^2+y^2}{2\sigma^2}}$$

Filter function

Gaussian Filtering in Spatial Domain

$$G(x,y) = rac{1}{2\pi\sigma^2}e^{-rac{x^2+y^2}{2\sigma^2}}$$

Ιιι	I 12	I13	I 14	I15	I 16	I 17	Ιιδ	I 19
I21	I 22	I 23	I 24	I ₂₅	I 26	I ₂₇	I 28	I29
I 31	I 32	I 33	I 34	I35	I 36	I 37	I 38	I 39
Ι4ι	I 42	I 43	I 44	I45	I 4ó	I47	Ι 48	I49
Ιsι	I 52	I 53	I 54	I55	I 56	I57	I 58	I 59
I 6 L	I 62	I63	I 64	I65	I 66	I 67	I 68	I 69

Ιιι	I 12	I13	I 14	I15	I 16	I 17	Ιιδ	I 19
I21	I 22	I 23	I 24	I ₂₅	I 26	I ₂₇	I 28	I29
I 31	I 32	I 33	I 34	I35	I 36	I 37	I 38	I 39
Ι4ι	I 42	I43	I 44	I45	I 46	I47	Ι 48	I49
Ιsι	I 52	I53	I 54	I55	I 56	I57	I 58	I 59
I 6 L	I 62	I63	I 64	I ₆₅	I 66	I 67	I 68	I 69

Ιιι	I 12	I13	I 14	I15	I 16	I 17	Ιιδ	I 19
I2L	I 22	I 23	I 24	I ₂₅	I 26	I ₂₇	I 28	I 29
Isr	I 32	I 33	I 34	I35	I 36	I 37	I 38	I 39
I4L	I 42	I 43	I 44	I45	I 46	I47	Ι 48	I49
Ιsι	I 52	I 53	I 54	I55	I 56	I 57	I 58	I 59
Ist	I 62	I 63	I 64	I65	I 66	I 67	I 68	I 69

Ιιι	I 12	I13	I 14	I15	I 16	I 17	Ιιδ	I 19
I2L	I 22	I 23	I 24	I ₂₅	I 26	I ₂₇	I 28	I29
I31	I 32	I 33	I 34	I35	I 36	I 37	I 38	I 39
Ι4ι	I 42	I 43	I 44	I45	I 46	I47	Ι 48	I49
Ιsι	I 52	I 53	I 54	I55	I 56	I 57	I 58	I 59
Isı	I 62	I 63	I 64	I65	I 66	I 67	I 68	I 69

1	4	7	4	1
4	16	26	16	4
7	26	41	26	7
4	16	26	16	4
1	4	7	4	1

Filtered_
$$I_{45} = \sum_{pixels \in windown}$$

I 23	I 24	I ₂₅	I 26	I27
I 33	I 34	I35	I 36	I 37
I43	I 44	I45	I 4ó	I47
I 53	I 54	I55	I 56	I57
I 63	I 64	I65	I 66	I 67

$$X \frac{1}{273}$$

1	4	7	4	1
4	16	26	16	4
7	26	41	26	7
4	16	26	16	4
1	4	7	4	1

Filtering

input

Gaussian filter

Median Filter

- For each neighbor in image, sliding the window
- Sort pixel values
- Set the center pixel to the median

Median Filter

input

Gaussian filter

Median filter

Median Filter Examples

input Median 7X7

Median Filter Examples

Median 3X3

Median 11X11

Median Filter Examples

Median Filter Properties

Can remove outliers (peppers and salts)

Window size controls size of structure

Preserve some details but sharp corners and edges might get lost

Comparison of Mean, Gaussian, and Median

original

Mean with 6 pixels

Comparison of Mean, Gaussian, and Median

original

Gaussian with 6 pixels

Comparison of Mean, Gaussian, and Median

original

Median with 6 pixels

Laplacian Filter

 A Laplacian filter is an edge detector used to compute the second derivatives of an image, measuring the rate at which the first derivatives change. This determines if a change in adjacent pixel values is from an edge or continuous progression.

Sharpening Filters

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & -1 & 0 \\ -1 & +4 & -1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} -1 & -1 & -1 \\ -1 & +8 & -1 \\ -1 & -1 & -1 \end{pmatrix}$$

Fig. 5.24 Four sample Laplacian masks

Fig. 5.25 Image sharpening spatial filters (a) Original image (b) Laplacian high-pass filter result

Line Detection

$$M_{1} = \begin{pmatrix} -1 & -1 & -1 \\ 2 & 2 & 2 \\ -1 & -1 & -1 \end{pmatrix}, M_{2} = \begin{pmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -1 & 2 & -1 \end{pmatrix}, M_{3} = \begin{pmatrix} -1 & -1 & 2 \\ -1 & 2 & -1 \\ 2 & -1 & -1 \end{pmatrix}, M_{4} = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
(a)

Prewitt Edge Operator

-1	-1	-1
0	0	0
-1	-1	-1

Horizontal

-1	0	-1
-1	0	-1
-1	0	-1

Vertical

Sobel Edge Operator

-1	-2	-1
0	0	0
1	2	1

Horizonta				
	\neg	PIT	ani	וכי
	-10		OHI	Laı

-1	0	1
-2	0	2
-1	0	1

Vertical

High-Boost Filter

High-boost image =
$$(A)$$
 (Original) – (Low-pass)
= $(A - 1)$ (Original) + (Original – Low-pass)
= $(A - 1)$ (Original) + (High-pass)

(b) Result of a high-boost filter

Unsharp Masking

The procedure for implementing an unsharp mask is as follows:

- Read the image.
- Blur the image using any image smoothing filters. This stage requires a convolution based smoothing filter. Let the smooth or blurred image be f(x, y).
- Let the mask = original image f(x, y).
 Subtracting the blurred version from the original image results in an image where there is a visible emphasis in edges.
- Add to the original image the weighted portion of the mask, to restore some of the lost visual information.

$$g(x, y) = f(x, y) + k \times \text{mask}$$