BAB IV

PERANCANGAN DAN IMPLEMENTASI PERANGKAT LUNAK

Pada bab ini, akan diuraikan mengenai perancangan perangkat lunak meliputi deskripsi umum sistem, perancangan sistem, serta implementasinya.

IV.1 Deskripsi Umum Sistem

Fungsi utama dari AGI adalah melakukan pengambilan informasi yang merupakan parameter dari sebuah tulisan tangan berdasarkan kaidah grafologi, serta melakukan interpretasi berdasarkan parameter-parameter yang berhasil diambil.

Perangkat lunak akan menerima input tulisan tangan yang telah terlebih dahulu diubah menjadi sebuah citra digital. Setelah itu dilakukan penyesuaian terhadap citra digital yang masukan dengan citra acuan sehingga citra masukan benar-benar siap diolah oleh perangkat lunak untuk diambil parameter yang diperlukan. Parameter-parameter yang didapatkan akan disimpan disebuah file XML sehingga dapat digunakan untuk keperluan selanjutnya.

Untuk melengkapi aturan yang sudah ada, perangkat lunak AGI dapat juga ditambahkan aturan baru dengan cara menambahkan *library eksternal* kedalam perangkat lunak utama. *Library eksternal* ini dapat dikembangkan secara terpisah dan bisa ditambahkan kapan saja selama *library eksternal* yang dimasukkan mememenuhi spesifikasi standard yang ditetapkan oleh AGI.

IV.1.1 Arsitektur Perangkat Lunak

AGI memiliki tiga buah modul utama, yaitu modul untuk perhitungan parameter dari sebuah citra, modul pemanfaatan parameter berdasarkan kaidah grafologi serta modul untuk memfasilitasi penambahan aturan grafologi. Arsitektur dari AGI ditunjukkan pada gambar IV-1.

Gambar IV-1 Arsitektur Perangkat Lunak AGI

Masukan untuk modul perhitungan parameter adalah sebuah citra dan keluarannya adalah hasil pengukuran yang disimpan dalam bentuk file XML. Keluaran dari modul ini akan dimanfatkan untuk modul kedua yaitu modul interpretasi dari citra berdasarkan kaidah grafologi umum. Sedangkan modul ketiga atau penambahan *rule* baru dilakukan untuk melengkapi aturan sudah ada dan menambahkan hasil akhir dari perangkat lunak.

IV.1.2 Fitur Perangkat Lunak

Fitur perangkat lunak AGI yang akan dikembangkan akan dijelaskan dalam kebutuhan-kebutuhan baik fungsional maupun non-fungsional perangkat lunak. Kebutuhan fungsional adalah *task-task* spesifik yang harus bisa dilakukan oleh sistem. Sedangkan kebutuhan non fungsional adalah standar atau kualitas yang harus dimiliki oleh sistem. Kebutuhan fungsional dari perangkat lunak yang akan

dikembangkan pada tugas akhir ini dapat dilihat pada tabel IV-1, sedangkan kebutuhan non fungsional-nya dapat dilihat pada tabel IV-2.

Tabel IV-1 Kebutuhan Fungsional Sistem

ID	Deskripsi		
SRS-F-001	Sistem mampu melakukan proses preprocessing terhadap citra		
	masukan berupa perubahan bentuk citra menjadi bentuk biner		
	serta transformasi dasar untuk menyesuaikan citra masukan		
	dengan citra acuan.		
SRS-F-002	Sistem mampu mengambil parameter grafologi yang		
	dibutuhkan dari citra masukan yang diterima		
SRS-F-003	Sistem mampu melakukan penyimpanan hasil pengukuran citra		
	masukan		
SRS-F-004	Sistem mampu melakukan interpretasi dari rule yang diberikan		
	dan hasil pengukuran yang didapat		
SRS-F-005	Sistem mampu menambah pengetahuan dengan menambah		
	Library kedalam perangkat lunak utama.		

Tabel IV-2 Kebutuhan Non-fungsional Sistem

ID	Deskripsi
SRS-NF-001	Sistem akan memberitahu kepada pengguna perangkat lunak
	mengenai aksi dari perangkat lunak melalui notifikasi atau
	sejenisnya

IV.1.3 Diagram Use Case

Untuk menggambarkan kebutuhan perangkat lunak secara visual akan digunakan diagram *use case* seperti pada gambar IV-2 sedangkan deskripsi untuk aktor dapat dilihat pada tabel IV-3 dan deskripsi masing-masing *use case* dapat dilihat pada tabel IV-4.

Gambar IV-2 Diagram Usecase

Tabel IV-3 Definisi Aktor

ID	Actor	Deskripsi		
AC-01	Pengguna	Actor ini dapat memilih citra yang akan diukur		
		parameternya dan memilih berkas file hasil		
		pengukuran serta menambahkan library		

Tabel IV-4 Definisi Usecase

ID	Use Case	Deskripsi	
UC-01	Memasukkan	Use case ini dilakukan oleh pengguna untuk memilih	
	Citra Digital	file citra yang akan diperiksa parameternya	
UC-02	Memasukkan	Use case ini dilakukan oleh pengguna untuk memilih	
	File Hasil	file berkas hasil penyimpanan parameter hasil	
	Pengukuran	pengukuran	
UC-03	Menambah	Use case ini dilakukan oleh pengguna untuk	
	Pengetahuan	menambahkan pengetahuan baru kedalam perangkat	
	Baru	lunak	

Perangkat Lunak AGI memiliki tiga buah usecase utama dan sebuah aktor. Aktor atau pengguna pada perangkat lunak AGI dapat melakukan tiga hal utama yaitu memasukkan citra digital dan memasukkan berkas hasil pengukuran serta memasukkan *library eksternal*. Usecase memasukkan citra digital merupakan

usecase yang mewakili aksi dari admin untuk memilih gambar berkas tulisan yang sudah berbentuk citra digital kedalam perangkat lunak untuk dihitung nilai parameter yang digunakan. Usecase memasukkan file hasil pengukuran, merupakan usecase yang dilakukan oleh pengguna untuk memasukkan input kedalam perangkat lunak untuk melakukan interpretasi dari hasil pengukuran yang sudah ditulis kedalam sebuah file eksternal. Sedangkan usecase memasukkan aturan baru dapat dilakukan oleh aktor apabila aktor ingin melengkapi aturan yang terdapat pada perangkat lunak AGI.

IV.2 Perancangan Perangkat Lunak

Sebelum melakukan perancangan perangkat lunak, akan lebih baik jika analisis mengenai kebutuhan-kebutuhan dari perangkat lunak sudah dilakukan. Analisis terhadap kebutuhan perangkat lunak digambarkan dalam bentuk skenario *usecase*, diagram-diagram kelas analisis, serta *sequence* diagram yang hasilnya akan digunakan untuk melakukan perancangan terhadap perangkat lunak. Hasil akhir dari tahapan analisis kebutuhan dan perancangan perangkat lunak dapat dilihat pada lampiran B tugas akhir ini.

IV.3 Implementasi Perangkat Lunak

Bagian ini berisi penjabaran mengenai lingkungan perangkat lunak dan perangkat keras pengembangan, implementasi dari kelas-kelas yang digunakan dalam pengembangan perangkat lunak AGI, spesifikasi XML masukan dan keluaran serta spesifikasi *library eksternal* perangkat lunak AGI.

IV.3.1 Lingkungan Pengembangan

Perangkat lunak AGI dibangun pada lingkungan perangkat keras dengan spesifikasi sebagai berikut:

- 1. Prosesor Intel Dualcore T2100 1.6 GHz,
- 2. Memori 3GB RAM DDR2,
- 3. *hard disk* 120 GB.

Sedangkan spesifikasi perangkat lunak yang digunakan untuk mengembangkan perangkat lunak adalah sebagai berikut:

- 1. Sistem operasi Microsoft Windows Vista
- 2. Microsoft Visual Studio 2005 C#

IV.3.2 Batasan Implementasi

Perangkat lunak yang diimplementasikan memiliki batasan-batasan implementasi berikut ini:

- Pengetahuan yang diimplementasikan dalam perangkat lunak ini hanya berupa kaidah grafologi dasar dan dapat diidentifikasi melalui perangkat lunak.
- 2. Perangkat lunak menyediakan fasilitas menambah aturan selama *library eksternal* yang ditambahkan memenuhi spesifikasi standard yang telah ditentukan.
- 3. Perangkat lunak tidak menyediakan fitur untuk keterhubungan antar library eksternal.

IV.4 Proses dan Hasil Implementasi

Kelas-kelas yang sebelumnya telah dibuat pada tahap analisis dan perancangan diimplementasikan ke dalam kelas-kelas dalam bahasa C#.

IV.4.1 Implementasi Kelas

Kelas-kelas yang sudah dirancang pada tahapan perancangan diimplementasikan kedalam kelas-kelas dalam bahasa C#. Tabel IV-5 menunjukkan daftar nama kelas-kelas utama yang diimplementasikan. Adapun penjelasan lebih lengkap mengenai kelas-kelas utama berupa definisi atribut serta *method* didalamnya dapat dilihat pada lampiran C tugas akhir ini.

Tabel IV-5 Daftar Kelas Implementasi

No	Perancangan	Nama File	Tanggung Jawab Kelas
1	Main Controller	mainPanel	Menghubungkan kelas-kelas utama
			pada perangkat lunak
2	Interpretasi	Interpretasi	Mengatur proses interpretasi hasil
	Controller		pengukuran
3	Preprosesor	Preprocessing	Mengatur proses awal terhadap citra
			masukan
4	Parameter	Parameter	Mengatur proses pengambilan
	Controller		parameter dari citra masukan
5	Library	Library	Mengatur proses penambahan library
	Controller		Eksternal
6	File Controller	-	-
7	-	sizeParameter	Mengambil ukuran tulisan dari citra
			masukan
8	-	<i>space</i> Parameter	Mengambil spasi tulisan dari citra
			masukan
9	-	marginParameter	Mengambil margin tulisan dari citra
			masukan
10	-	baselineParameter	Mengambil <i>baseline</i> tulisan dari citra
			masukan
12	-	Size	Interpretasi ukuran tulisan dari hasil
			pengukuran
13	-	Space	Interpretasi spasi tulisan dari hasil
			pengukuran
14	-	Margin	Interpretasi margin tulisan dari hasil
			pengukuran
15	-	baseline	Interpretasi baseline tulisan dari
			hasil pengukuran
17	-	XMLReader	Mengatur pembacaan File XML

18	-	XMLWriter	Mengatur penulisan File XML
19	-	Tulisan	Mengatur nilai-nilai yang terdapat
			pada citra tulisan
20	-	Config	Mengatur konfigurasi yang
			digunakan oleh perangkat lunak

IV.4.2 Spesifikasi File Masukan Dan Keluaran

Terdapat dua tipe file masukan untuk perangkat lunak AGI yaitu file citra dan file *library external*. Format masukan citra yang diterima oleh perangkat lunak AGI adalah file citra hasil pemindaian yang mengikuti format citra acuan dan bertipe citra *bitmap*. Sedangkan *library external* yang diterima oleh perangkat lunak AGI adalah file bertipe dll (*dynamic link library*) yang memiliki spesifikasi sebagai berikut:

- 1. Memiliki *namespace* AGI
- 2. Memiliki sebuah kelas dengan nama definitionClass.cs
- 3. Memiliki sebuah konstruktor berparameter yang sesuai dengan nilai yang dikirimkan oleh perangkat lunak utama (AGI)
- 4. Memiliki sebuah *method* input yang mengeluarkan sebuah string informasi kerja *library*
- 5. Memiliki sebuah *method* output yang mengeluarkan string hasil pemrosesan *library*

Spesifikasi diatas merupakan spesifikasi dasar yang harus dipenuhi oleh *library* external. Sedangkan kelas-kelas atau fungsi-fungsi lain dapat secara bebas ditambahkan oleh pengembang *library eksternal* sesuai dengan kebutuhannya.

Perangkat lunak AGI menghasilkan sebuah file keluaran berformat XML yang akan dimanfaatkan oleh modul interpretasi hasil pengukuran atau perangkat lunak lain. File keluaran tersebut telah memenuhi standard sebuah file xml yang berisikan node-node mengenai informasi dari hasil pengukuran.