

BEST AVAILABLE COPY

ノートPC

ノートPCに的を絞った、低消費電力・薄型設計の8.4インチTFTカラー

シャープ
液晶事業本部TFT開発センター
福岡 宏文

カラー・ノート型パソコン向けに開発した8.4インチTFT液晶パネルは、薄型、低消費電力化で工夫を凝らしている。低電圧化のためにCsオン・ゲート構造十コモンAC駆動+5V単一ソース・ドライバを実現した。液晶駆動回路の消費電力は2Wである。開口率も40%を確保している。さらに、バックライトは寿命を延ばすことと薄くすることを考え4.1φ冷陰極蛍光管で、2灯のエッジライト方式にした。

我々のOA用TFT液晶は1990年、8色表示の10.4インチの試作からスタートした。専用のドライバがなくて、デューティ用を使った。10.4インチの商品としてVGAを念頭に置き各色3ビット、512色対応と決めて新しくドライバを開発した。さらにカラー・ノート型パソコン向けには低消費電力化したスリム・チップ・ドライバを開発した。このパソコンは1.2V、1800mAhのNiCd 2次電池を6個使い、7.2V、13Whの電源となっている。

バッテリ1時間駆動が最低目標

このCPUは、周辺装置も含めてパワー・マネージメント機能を持つ（表1）。全体で消費電力は19Wになる。さらに、パワー・ダウン・モードの一つでは、バックライトを少し暗くして液晶を駆動し8Wになる。シャット・ダウン・モードでは、必要なバックアップ機能だけが動いており、0.05Wとなる。仮に各モード、50%，25%，25%とするとトータルの消費電力が11.5Wとなる。この結果、電池が13Whであるから約1時間使用できる。

8.4インチにしても消費電力6W中、バックライトで4W使う。したがってバックライトの効率を上げることが最

優先課題となる（表2）。

8.4インチでは、まず必要輝度を75cd/m²に設定した。次に寿命を延ばすことと、薄くすることを考えて4.1φ

冷陰極蛍光管（CCFT）を採用した。バックライト・ユニットは2灯のエッジライト方式を採用し消費電力は4Wである。表面輝度は1500cd/m²で、パ

表1●8.4インチ・ノート型パソコンの消費電力

	ノーマル・モード	パワー・ダウン・モード	
クロック信号	オン	オン	オフ
バックライト	高輝度	中輝度	オフ
液晶駆動	オン	オン	オフ
消費電力	19W	8W	0.05W

表2●バックライトの特性

	10.4型TFTカラー	8.4型TFTカラー	9.6型TSTNモノクロ
ランプ種類	熱陰極管	冷陰極管	冷陰極管
サイズ	ø12	ø4.1	ø4.1
方式	2灯直下式	2灯エッジライト式	1灯エッジライト式
消費電力(W)	16W	4W	2W
拡散板面輝度	3800cd / m ²	1500cd / m ²	500cd / m ²
パネル表面輝度	114cd / m ²	75cd / m ²	60cd / m ²

表3●偏光板透過率とコントラスト

	偏光板A	偏光板B
偏光板透過率	34%	39%
モジュール透過率	3.1%	3.6%
コントラスト	180	110

BEST AVAILABLE COPY

ネル面では75cd/m²を得ている。

バックライトを明るくしても、パネルの透過率が低いと効率は良くならない。偏光板、カラー・フィルタ、開口率で、パネル透過率をさらに上げることから8.4インチはスタートした。

まず偏光板を代え（AからBへ）、偏光度を少し落とすと透過率は3.1%から3.6%に上がる（表3）。ただし、コントラストは180から110に下がる。この変化は人間の目としてはほとんど気にならない。ちなみに、モノクロ液晶のコントラストは15程度である。

次にカラー・フィルタについて考えてみる（表4）。AV仕様からスタートした通常のカラー・フィルタの透過率は24%である。さらに、カラー・フィルタの透過率を上げてみたものがカラー・フィルタBである。この透過率を上げていくと図1のように3角形が小さくなり色の鮮やかさが消えていく。

40%の開口率を達成

開口率は10.4インチでは40%だったのに対し、面積比65%の8.4インチ・パネルでも同じ40%の開口率を確保した。ただしこれでも不十分である。マルチメディア用ディスプレイでは、テレビ画面を兼ねるため150～200cd/m²が必要となる。輝度が低いといいくら良い色を出してもきれいに見えない。開口率を上げると同時に透過率重視の部材を使った場合、透過率が6.9%になりバックライトの消費電力を低減できる。

8.4インチTFT液晶のブロック・ダイアグラムを示す（図2）。独自のデジタル・ソース・ドライバを使う。大画面になるとサンプリングのクロック速度が上がってくる。さらに、ドライバの能力アップも必要となる。ドライバのコストと性能も含めて、デジタルで進むという結論になった。

次に、デジタル・ドライバが進むべき道は、LSIと同じ5V駆動である。そこで8.4インチには低しきい値の液晶

図1 ●8.4インチTFTカラー液晶の色度図

	A	B
カラー・フィルタ透過率	24%	38%
モジュール色度		
赤 X	0.615	0.545
赤 Y	0.347	0.353
緑 X	0.288	0.299
緑 Y	0.595	0.499
青 X	0.145	0.157
青 Y	0.09	0.125

表4 ●カラー・フィルタの透過率と色度

を開発した。従来10.4インチ用に比べ低電圧で同じ黒が得られ、低消費電力にもなっている。

一方、液晶は正負の駆動をするため±5V、すなわち10Vの振幅が必要となる。そのためにコモン電圧V_cを±5Vのソース・ドライバが可能となつた。

レンジを下げ、その分をコモンに負担させる。この場合コモンとソースの位相を変えて液晶にはトータル±5Vかかる。こうしてコモンのAC駆動で±5Vのソース・ドライバが可能となつた。

ただし、このとき矛盾が一つ生じる。パネルの開口率を上げるために、補助

BEST AVAILABLE COPY

図2●表示回路システム・ブロック・ダイヤグラム

図3●駆動波形

10.4インチでは12φの熱陰極蛍光管(HCFT)を採用した。2灯式の直下型である。消費電力は16Wで拡散板面上の輝度は、3800cd/m²で、パネル面は110cd/m²となっている。

容量Csをゲート線につなぐ方式を採用していることである。液晶に印加される電圧は、コモン電極だけでなく補助容量Csの電極にもなるゲート線電位にも依存する。したがってこのままでは液晶に初期の電圧がかからない。そこでゲート線電位を同時に振らせるフローティング・ゲート回路を採用した。こうしてCsオン・ゲート構造パネル+コモンAC駆動+5V単一ソース・ドライバの駆動システムを実現した。

8.4インチTFT液晶の駆動回路系での消費電力を4Wから2Wに半減させた。例えば各データに応じてあらかじめ用意する階調ソース電圧回路を1Wから0.5Wに下げた。これは液晶駆動を低電圧化し、ここのオペアンプの電源回路を下げることで達成した。

コモン電圧回路も低しきい値液晶で0.9Wから0.6Wに下げた。ゲート電源回路は、ゲート・ドライバが直接にレベルを変えるフローティング回路方式を使い0.8Wから0.2Wとなった。

電源設計、周辺回路複合化と進める

最後に今後の進み方について触れる。まず1番目にセット全体の効率の良い電源設計が挙げられる。液晶モジュールとセットの電源をできるだけ、一体化することにより少し下げられる可能性が残っている。

2番目は周辺回路の複合化である。例えば共通部品をパッケージに入れる、オペアンプを一つにまとめる、などでパワーは下がる。またドライバももっときめ細かくパワー・マネジメントする。プランニング時はクロックを止めるなどの工夫も必要である。

3番目には、これから3V系システムに合わせて液晶も3V化することである。不要輻射低減にも効果がある。

4番目に、駆動方式の工夫でパワーは下がる。例えばライン反転からフレーム反転駆動することにより消費電力は1/3に低減できる。