Parámetro	Hipótesis	Estadístico contraste	RR _{CC} contraste bilateral
1 arametro	Impotesis	Estadistico contraste	rinα contraste bilateral
	Datos normales Varianza conocida	$rac{ ilde{X}-\mu_0}{\sigma/\sqrt{n}} \sim \mathit{N}(0,1)$	$\left\{z: \frac{\overline{x} - \mu_0}{\overline{\sigma}/\sqrt{n}} < z_{1-\alpha/2} \circ \frac{\overline{x} - \mu_0}{\overline{\sigma}/\sqrt{n}} > z_{\alpha/2}\right\}$
Media	Datos no normales Muestra grande	$\frac{X-\mu_0}{\hat{\sigma}/\sqrt{n}}\sim_{ap.} N(0,1)$	$\left\{z: \frac{\bar{x} - \mu_0}{\hat{\sigma} / \sqrt{n}} < z_{1-\alpha/2} \circ \frac{\bar{x} - \mu_0}{\hat{\sigma} / \sqrt{n}} > z_{\alpha/2}\right\}$
	Datos Bernoulli Muestra grande	$\frac{\hat{p}-p_0}{\sqrt{p_0(1-p_0)/n}} \sim_{ap.} N(0,1)$	$\left\{z: \frac{\hat{p}-p_0}{\sqrt{p_0(1-p_0)/n}} < z_{1-\alpha/2} \circ \frac{\hat{p}-p_0}{\sqrt{p_0(1-p_0)/n}} > z_{\alpha/2}\right\}$
	Datos normales Varianza descono- cida	$\frac{\bar{X} - \mu_0}{s / \sqrt{n}} \sim t_{n-1}$	$\left\{t: \frac{t}{\frac{\bar{x}-\mu_0}{s/\sqrt{n}}} < t_{n-1;1-\alpha/2} \circ \frac{\bar{x}-\mu_0}{s/\sqrt{n}} > t_{n-1;\alpha/2}\right\}$
Varianza	Datos normales	$\frac{(n-1)s^2}{\sigma_0^2} \sim \chi_{n-1}^2$	$\left\{ \chi^{2} : \overbrace{\frac{(n-1)s^{2}}{\sigma_{0}^{2}}}^{\chi^{2}} < \chi_{n-1;1-\alpha/2}^{2} \circ \frac{(n-1)s^{2}}{\sigma_{0}^{2}} > \chi_{n-1;\alpha/2}^{2} \right\}$
Desv. Típ.	Datos normales	$\frac{(n-1)s^2}{\sigma_0^2} \sim \chi_{n-1}^2$	$\left\{ \chi^2 : \frac{(n-1)s^2}{\sigma_0^2} < \chi^2_{n-1;1-\alpha/2} \circ \frac{(n-1)s^2}{\sigma_0^2} > \chi^2_{n-1;\alpha/2} \right\}$