P452 / P752 / PH652 Computational Physics

End-Semester examination, 2024 NISER, Bhubaneswar

Full marks: 40 Time: 3 hours

Marks are given in **boldface** along with the questions. Attempt all.

- Show necessary calculations, if needed, in the exam copy.
- Comment on the accuracy (if relevant) of the outcome of your code.
- Append the code generated I/O at the end of your corresponding code under comments section.
- Question may not explicitly ask for plot(s), but still you have to supplement your answer with plot(s) where ever necessary.
- 1. Consider a decaying radioactive source whose activity is measured at intervals of 15 seconds. The time (t in sec), total counts during each period (N) and uncertainties in counts ($\sigma(N) = \sqrt{N}$) is given in the file endsemfit.txt as columns. Use χ^2 linear regression to determine the lifetime (along with its error) of this source. Is the fit acceptable at 5% level of significance? (Take $\sigma(\ln N) = 1/\sqrt{N}$) [6]
- 2. Consider the van der Waals equation of state

$$\left(p + \frac{a}{V^2}\right)(V - b) = RT$$

Use fixed point method to compute volume V to an accuracy of 10^{-5} of Cl_2 at a temperature of $T = 300 \,\mathrm{K}$, given $p = 5.95 \,\mathrm{atm}$, R = 0.0821, $a = 6.254 \,\mathrm{and}$ b = 0.05422 (all in appropriate units). You may get two different solutions if you try doing it with two different fixed-point equations. Why? [4+1]

3. Prove the following statement for a 2×2 system: The solution vector \mathbf{x}^* of the equation $\mathbf{A}\mathbf{x} = \mathbf{b}$, where \mathbf{A} is positive definite and symmetric, is the minimal value of the quadratic form [4]

$$f(\mathbf{x}) = \frac{1}{2} \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle - \langle \mathbf{x}, \mathbf{b} \rangle$$

- 4. Householder reflector is a symmetric matrix of the form $\mathbf{P} = \mathbb{I} \tau \mathbf{v} \mathbf{v}^T$. It reflects a nonzero vector \mathbf{x} in a hyperplane which is perpendicular to the vector \mathbf{v} *i.e.* $\mathbf{P} \mathbf{x}$ is the reflected vector.
 - (a) Determine τ so that **P** becomes orthogonal. [2]
 - (b) Using a 2×2 system, where $\mathbf{v} = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$ and $\mathbf{x} = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$, prove the above statement on reflection. [2]
- 5. Consider the 5 × 5 tridiagonal matrix given in the file endsemmat.txt. Using Power iteration method, verify that the first two largest eigenvalues and their corresponding eigenvectors of the matrix satisfy

$$\lambda_k = b + 2\sqrt{ac}\cos\left(\frac{k\pi}{n+1}\right)$$
 and $v_k^i = 2\left(\sqrt{\frac{c}{a}}\right)^k\sin\left(\frac{ik\pi}{n+1}\right)$

where a=c=-1, b=2, n=5, $k=1,2,\ldots 5$ and i is the i-th component of the k-th eigenvector. In case of any discrepancies, discuss its possible source(s). [4+4]

6. Use accept / reject method to generate pRNG distributed as

$$p(x) = 0.5 (a^2 - x^2)$$
 for $|x| < a$, where $a = 2$ (1)

and zero otherwise. You may use Gaussian distributed sample pdf g(x) and system generated pRNG's. Comment on the success success probability. [7]

7. Use variational Monte Carlo to solve simple harmonic oscillator using the trial wavefunction in equation (1) with a being the variational parameter. Use at least 20 equally spaced a-values and 20k Monte Carlo steps. [6]