

Wstęp

Tablice są jedną z najczęściej wykorzystywanych struktur danych w programowaniu. Są statycznymi strukturami danych - oznacza to, że musimy w trakcie deklaracji podać ich wymiary. Pojemność tablicy będzie jednoznacznie określona w trakcie całego programu (tj. nie możemy np. usuwać z nich elementy na zasadzie zwalniania pamięci ze sterty). Tablice są referencyjnym typem danych – oznacza to, że przekazywane są np. do innych metod poprzez referencję – czyli wskaźnik na nie. Tablice jako typ referencyjny są, tak samo wszystkie inne struktury danych w JAVIE, przechowywane na stercie.

Np.

Poniższą deklarację Tablicy jednowymiarowej, należy czytać (rozumieć):

int [] Tab = new int[3];

Na Stosie (zakładając deklarację tablicy w jakiejś metodzie) zostanie odłożony wskaźnik Tab, który będzie wskazywać na adres ze Sterty, pod którym kolejno będą zapisane 3 wartości całkowite.

Ponieważ tablica jest typem referencyjnym, jeśli ją przekażemy do innej metody, to nie będziemy działać na jej 'kopii', tylko na niej samej, ponieważ w istocie przekazujemy wartość jednego wskaźnika (adres tablicy), który jest przechwytywany przez inny wskaźnik.

Tablica dwuwymiarowa jest interpretowana jako tablica tablic – tj. jednowymiarowa tablica wskaźników na kolejne tablice jednowymiarowe. Dzięki temu możemy bez problemu np. definiować tablice o zmiennej liczbie kolumn. Tablicę dwuwymiarową interpretujemy jako macierz. Poniżej przykład klasycznego przejścia przez elementy tablicy dwuwymiarowe za pomocą dwóch zagnieżdżonych pętli:

Wynik działania takiego kodu (Console):

Dodatkowo jako załącznik na ostatniej stronie zaprezentowano rozwiązanie zadania 4.

Lista 4

1. (kod Java)

Zaprezentuj funkcje, za pomocą których można:

- wygenerować losowe wartości (int) dla 100-elementowej tablicy jednowymiarowej (rozpoznaj i wykorzystaj klasę Random),
- wyszukać wartość maksymalną w tablicy,
- wyszukać wartość minimalną w tablicy,
- określić wartość średnią w tablicy (średnia arytmetyczna),
- wyszukać tylko wartości parzyste oraz wpisać je do osobnej tablicy.

2. (schemat Blokowy)

Przedstaw schemat blokowy dla algorytmu mnożenia dwóch macierzy.

3. (kod Java)

Zaprezentuj funkcję, która wykonuje mnożenie dwóch macierzy.

4. (kod Java)

Zdefiniuj tablicę dwuwymiarową o liczbie wierszy 5 i zmiennej liczbie kolumn:

- wiersz 1: 4 kolumn,
- wiersz 2: 2 kolumny,
- wiersz 3: 3 kolumn,
- wiersz 4: 2 kolumny,
- wiersz 5: 5 kolumny.

Zaprezentuj funkcję, za pomocą której wyszukasz wartość maksymalną w tak określonej tablicy.

Uwaga: zastanów się jak przekazać tablicę do funkcji (metody). *Nazwa tablicy to wskaźnik, który* ...


```
package Tablica2D przykład;
import java.util.Random;
public class Table2D example {
     final static int w = 5;
     public static void main(String[] args)
          //Generujemy tablice o różnej liczbie kolumn
           double [][] Tab = new double[w][];
          Tab[0] = new double[4];
          Tab[1] = new double[2];
          Tab[2] = new double[3];
          Tab[3] = new double[2];
          Tab[4] = new double[5];
           Table2D_example obT = new Table2D_example();
           obT.wypelnijMacierz(Tab);
           obT.drukujMacierz(Tab);
          System.out.println("\n\nMax Tablicy = " + obT.szukajMax(Tab));
     //Wypełniamy losowo tablicę liczbami typu double z zakresu 0 - 10
     public void wypelnijMacierz(double [][] T)
```



```
Random generator = new Random();
     for(int i=0; i<T.length; i++)</pre>
           for(int j=0; j<T[i].length; j++)</pre>
                 T[i][j] = generator.nextDouble()*10;
//Wyświetlamy wartości tablicy
public void drukujMacierz(double [][] T)
     for(int i=0; i<T.length; i++)</pre>
           for(int j=0; j<T[i].length; j++)</pre>
                 System.out.print("Tab[" + i + "]" + "[" + j + "]" + "=" + T[i][j] + "\t" );
      System.out.println();
//Znajdujemy max
public double szukajMax(double [][] T)
     double Max = T[0][0];
     for(int i=0; i<T.length; i++)</pre>
           for(int j=0; j<T[i].length; j++)</pre>
                 if (T[i][j] > Max) Max = T[i][j];
     return Max;
```


}

Console:

```
Tab[0][0]=6.044309682151625 Tab[0][1]=0.6116608046090977 Tab[0][2]=5.5378806833526575 Tab[0][3]=9.565020958279103 Tab[1][0]=9.484942038499993 Tab[1][1]=5.137896603922634 Tab[2][0]=5.619902650861813 Tab[2][1]=3.2530344926035184 Tab[2][2]=9.225801479823387 Tab[3][0]=4.093873787462499 Tab[3][1]=6.703191683860022 Tab[4][0]=4.333331936847239 Tab[4][1]=6.278305916070151 Tab[4][2]=8.984443401321109 Tab[4][3]=1.8895716275910734 Tab[4][4]=1.9909351503352624
```

Max Tablicy = 9.565020958279103