### A visual comparison

Last week we discussed how optimization methods can be visualised:



How would an evolutionary algorithm look from this perspective?



|                               | At each time point we have | Each update is |
|-------------------------------|----------------------------|----------------|
| Gradient descent              |                            |                |
| Simulated annealing           |                            |                |
| <b>Evolutionary algorithm</b> |                            |                |

|                         | At each time point we have | Each update is |
|-------------------------|----------------------------|----------------|
| <b>Gradient descent</b> | one candidate solution     | deterministic  |
| Simulated annealing     |                            |                |
| Evolutionary algorithm  |                            |                |

|                               | At each time point we have | Each update is |
|-------------------------------|----------------------------|----------------|
| Gradient descent              | one candidate solution     | deterministic  |
| Simulated annealing           | one candidate solution     | stochastic     |
| <b>Evolutionary algorithm</b> |                            |                |

|                               | At each time point we have | Each update is |
|-------------------------------|----------------------------|----------------|
| Gradient descent              | one candidate solution     | deterministic  |
| Simulated annealing           | one candidate solution     | stochastic     |
| <b>Evolutionary algorithm</b> | many candidate solutions   | stochastic     |

|                        | At each time point we have | Each update is |
|------------------------|----------------------------|----------------|
| Gradient descent       | one candidate solution     | deterministic  |
| Simulated annealing    | one candidate solution     | stochastic     |
| Evolutionary algorithm | many candidate solutions   | stochastic     |

Can you summarize in a few words:

- what type of optimization problems each method is suitable for?

|                        | At each time point we have | Each update is |
|------------------------|----------------------------|----------------|
| Gradient descent       | one candidate solution     | deterministic  |
| Simulated annealing    | one candidate solution     | stochastic     |
| Evolutionary algorithm | many candidate solutions   | stochastic     |

#### Can you summarize in a few words:

- what type of optimization problems each method is suitable for?
- what type of solution each method finds (one or many/local or global)?

|                        | At each time point we have | Each update is |
|------------------------|----------------------------|----------------|
| Gradient descent       | one candidate solution     | deterministic  |
| Simulated annealing    | one candidate solution     | stochastic     |
| Evolutionary algorithm | many candidate solutions   | stochastic     |

#### Can you summarize in a few words:

- what type of optimization problems each method is suitable for?
- what type of solution each method finds (one or many/local or global)?
- how fast they are relative to each other?

|                        | At each time point we have | Each update is |
|------------------------|----------------------------|----------------|
| Gradient descent       | one candidate solution     | deterministic  |
| Simulated annealing    | one candidate solution     | stochastic     |
| Evolutionary algorithm | many candidate solutions   | stochastic     |

#### Can you summarize in a few words:

- what type of optimization problems each method is suitable for?
- what type of solution each method finds (one or many/local or global)?
- how fast they are relative to each other?
- how hard they are to implement for a given problem?





- What happens if I skip:
  - mutation?
  - recombination?



- What happens if I skip:
  - mutation?
  - recombination?
- Are very small or very large population sizes a problem?



- What happens if I skip:
  - mutation?
  - recombination?
- Are very small or very large population sizes a problem?
- Any specific recommendations regarding population size?

As in other optimization, an EA seeks to optimize a function f(x).

- In EA you always need to represent (code) the x value in a special way. Why is it so important which representation of x we choose?

- In EA you always need to represent (code) the x value in a special way. Why is it so important which representation of x we choose?
- Can the representation of x have different length for different x values?

- In EA you always need to represent (code) the x value in a special way. Why is it so important which representation of x we choose?
- Can the representation of x have different length for different x values?
- I want to find the maximum of  $f(x) = x^5 6x^3 + 2$  with EA. Could you give a couple of examples of how I can represent x in this case?

- In EA you always need to represent (code) the x value in a special way. Why is it so important which representation of x we choose?
- Can the representation of x have different lengths for different x values?
- I want to find the maximum of  $f(x) = x^5 6x^3 + 2$  with EA. Could you give a couple of examples of how I can represent x in this case?

### **Mutation**

There are multiple ways to perform mutations, for example in the case of floating point representations:

- draw a new value from a uniform distribution
- draw a new value from a normal distribution
- draw a new value from any other continuous distribution

How do I select mutation method in practice? Do I need to argue in favor of the particular solution I choose? Should I always try multiple methods?

### Recombination

This is arguably the hardest step to understand, since there are many ways to do it and some are quite intricate:

- Normal crossover
- Intermediate recombination
- Simple arithmetic crossover
- Partially mapped crossover
- Edge recombination
- Order crossover
- Cycle crossover

Why do we need several methods for this? [can I learn just one?]

Any general guidelines concerning choice of method?