

2N2218A (SILICON)
2N2219A
2N2221A
2N2222A

CASE 22 (TO-18)

CASE 31 (TO-5)

2N2221A 2N2218A 2N2222A 2N2219A NPN silicon annular Star transistors for high-speed switching and DC to VHF amplifier applications.

Collector connected to case

MAXIMUM RATINGS

Rating	Symbol	2N2218A 2N2219A (TO-5)	2N2221A 2N2222A (TO-18)	Unit
Collector-Base Voltage	V _{CB}	75	75	Vdc
Collector-Emitter Voltage	V _{CEO}	40	40	Vdc
Emitter-Base Voltage	V _{EB}	6	6	Vdc
Total Device Dissipation at 25°C Case Temperature Derating Factor Above 25°C	PD	3 20	1.8 12	Watts mW/°C
Total Device Dissipation at 25°C Ambient Temperature Derating Factor Above 25°C	P_{D}	0.8 5.33	0. 5 3. 33	Watts mW/°C
Junction Temperature Range	$\mathbf{T}_{\mathbf{J}}$	-65 to	°C	
Storage Temperature Range	T _{stg}	-65 to	°C	

www.datasheetcatalog.com

2N2218A, 2N2219A, 2N2221A, 2N2222A (continued)

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)

Static Characteristics		Symbol	Min	Max	Unit
Collector-Base Breakdown Voltage $(I_C = 10 \mu \text{ Adc}, I_E = 0)$	4	вусво	75	_	Vdc
Collector-Emitter Breakdown Voltage $(I_C = 10 \text{ mAdc}, I_B = 0)$		BV _{CEO}	40	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)	4	BV _{EBO}	6	_	Vdc
Collector Cutoff Current $(V_{CB} = 60 \text{ Vdc}, I_E = 0)$		I _{СВО}	_	0.01	μ Adc
$(V_{CB} = 60 \text{ Vdc}, I_{E} = 0, T_{A} = 150^{\circ}\text{C})$	F -		_	10	
Collector Cutoff Current (V _{CE} = 60 Vdc, V _{EB(off)} = 3.0 Vdc)		ICEX		10	nAdc
Base Cutoff Current $(V_{CE} = 60 \text{ Vdc}, V_{EB(off)} = 3.0 \text{ Vdc})$		I _{BL}	_	20	nAdc
Emitter Cutoff Current (V _{BE} = 3 Vdc, I _C = 0)		IEBO	_	10	nAdc
Collector-Emitter Saturation Voltage* (I _C = 150 mAdc, I _B = 15 mAdc)	4	V _{CE} (sat)	_	0.3	Vdc
$(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	0 0			1.0	
Base-Emitter Saturation Voltage* (I _C = 150 mAdc, I _B = 15 mAdc)		V _{BE(sat)} *	0.6	1.2	Vdc
$(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$				2.0	
DC Forward Current Transfer Ratio* (I _C = 0.1 mAdc, V _{CE} = 10 Vdc)	2N2218A, 2N2221A 2N2219A, 2N2222A	h _{FE} *	20 35	=	
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N2218A, 2N2221A 2N2219A, 2N2222A		25 50	_	2-
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N2218A, 2N2221A 2N2219A, 2N2222A	1.0	35 75	= 1	
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, T_A = -55^{\circ}\text{C})$	2N2218A, 2N2221A 2N2219A, 2N2222A		15 35	=	-
$(I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N2218A, 2N2221A 2N2219A, 2N2222A		40 100	120 300	18
$(I_C = 150 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	2N2218A, 2N2221A 2N2219A, 2N2222A	0	20 50	=	
$(I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	2N2218A, 2N2221A 2N2219A, 2N2222A		25 40	_	

^{*} Pulse Test \leq 300 μ s, duty cycle \leq 2%

						
SMALL SIGNAL CHARACT	ERISTICS	Symbol	Min	Max	Unit	
Small Signal Current Gain (I _C = 1.0 mA, V _{CE} = 10 V, f = 1 kHz)	2N2218A, 2N2221A 2N2219A, 2N2222A	h _{fe}	30 50	150 300	_	
$(I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1 \text{ kHz})$	2N2218A, 2N2221A 2N2219A, 2N2222A		50 75	300 375		
Voltage Feedback Ratio $(I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1 \text{ kHz})$	2N2218A, 2N2221A 2N2219A, 2N2222A	h _{re}	-	5 8	X10 ⁻⁴	
$(I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1 \text{ kHz})$	2N2218A, 2N2221A 2N2219A, 2N2222A		-	2.5 4		
Input Impedance $(I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1 \text{ kHz})$	2N2218A, 2N2221A 2N2219A, 2N2222A	h _{ie}	1 2.0	3.5 8	k ohms	
$(I_C = 10 \text{ mA, } V_{CE} = 10 \text{ V, } f = 1 \text{ kHz})$	2N2218A, 2N2221A 2N2219A, 2N2222A		0.2 0.25	1.0 1.25		
Output Admittance $(I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1 \text{ kHz})$	2N2218A, 2N2221A 2N2219A, 2N2222A	h _{oe}	3 5	15 35	μ mhos	
$(I_C = 10 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1 \text{ kHz})$	2N2218A, 2N2221A 2N2219A, 2N2222A		10 25	100 200		
Collector-Base Time Constant (I _C = 20 mA, V _{CE} = 20 V, f = 31.8 MHz)		r' _b C _c	-	150	ps	
Noise Figure ($I_C = 100 \mu$ A, $V_{CE} = 10 \text{ V}$, Rg = 1 k Ω , f = 1 kHz)	2N2219A, 2N2222A	NF	-	4	dB	

2N2218A, 2N2219A, 2N2221A, 2N2222A (continued)

SMALL SIGNAL FORWARD CURRENT GAIN AND VOLTAGE FEEDBACK RATIO versus collector current $V_{\text{CE}} = 10 \text{ V} \ @ 1 \text{ KHz}$

SMALL SIGNAL INPUT IMPEDANCE AND OUTPUT CONDUCTANCE versus COLLECTOR CURRENT

VCE = 10 V @ 1 KHz

www.datasheetcatalog.com

1 KC NOISE FIGURE Versus SOURCE IMPEDANCE

NOISE FIGURE versus FREQUENCY

www.datasheetcatalog.com

2N2223, A