Assignment 5

100 points

Purpose

The purpose of this assignment is to give you some experience in writing simple classes, using C++ vectors and in writing multi-part programs.

Assignment

This assignment reads in a collection of data about ocean storms and generates some brief reports. The data for this assignment is condensed from the National Hurricane Center and Tropical Prediction Center's archive of past hurricane seasons and can be found on the web at http://www.nhc.noaa.gov/data/#hurdat.

The data in this set represents storms from 1851 to 2015 in the northern Atlantic Ocean and from 1949 to 2015 in the northeastern and north central Pacific Ocean.

Your program will read the data file into a vector and then process it, generating reports of the data in unsorted and sorted order, based on several sorting criteria.

Program

You will need to write a class and several functions for this assignment. From a design point of view this class is not a complete class. Only the methods needed to guarantee the proper functioning of the assignment are implemented.

class Storm

Your class should be implemented in a separate source code file, along with an associated header file. The header file should have appropriate header guards.

This class contains seven data members: four ints, two chars and a C++ string. The data members must be private. The class data member are:

- a single character indicating whether the storm was in the Atlantic or Pacific basin. An 'A' indicates the Atlantic Ocean, an 'E' the northeastern Pacific Ocean, and a 'C' the central Pacific Ocean.
- the name of the storm. Storms before 1950 (and a fair number after) were not named and therefore have the data name UNNAMED
- an integer for the sequence number of the storm. The sequence numbers start at 1 for each year and are assigned to the storms in each ocean basin in order of creation.
- an integer for the year of the storm.

- an integer for the maximum wind speed in nautical miles per hour (knots) recorded for the storm. If no max wind speed was recorded for the storm, then a max wind speed of -1 is listed.
- an integer for the minimum air pressure in millibars recorded for the storm. If no air pressure was recorded for the storm, then an air pressure of 10000 is listed.
- a character classifying the storm. An 'H' represents a storm that reached hurricane status (winds >= 64 knots). An 'S' is for a storm that was at most a tropical storm or subtropical storm (winds between 34 and 64 knots). A 'D' represents a tropical or subtropical depression (winds < 34 knots).

This class should have eight methods: (Don't worry. Most of them are quite small.)

- A default constructor. This should simply set the data members to values that would not normally be used. Default values of 'N', 'None' and 'N' should be used for the basin, name, and storm type, respectively. Zeros make good default values for the integer data members.
- A constructor that takes 7 values with which to set all of the data members of the class.
- A print method. This should print out the data fields of the instance on a single line. Examples of the fields can be seen below in the sample output. Points to be made here are
 - 1. The location and storm type should be printed out in a long form.
 - 2. The sequence and year should have a slash between them.
 - 3. If minimum pressure data does not exist, it should not be printed.
 - 4. If the storm category does not exist, it should not be printed.
 - 5. If the wind speed does not exist, it should not be printed.
- Five basic accessor methods. Specifically, methods for retrieving the storm type, sequence number, year, wind speed, and pressure. Accessor methods for the ocean basin and storm name will not be needed.

Main program

Your program should have at least seven more functions (in addition to main()). Two functions have to do with printing. One has to do with input, and four have to do with sorting.

One function will simply print a header for reports. It needs no arguments and returns no value.

One function will print an STL vector of constant Storm instances in the order given. The print function should keep track of the number of lines printed, printing out a break and a new header after every twenty lines. A symbolic constant should be used for this value of twenty lines.

When looping through the vector, you are required to use an iterator rather than an integer index.

One function should take an open ifstream and a Storm and read enough data from the file to fill the Storm.

The format of the data file is: each line contains the information for a single storm. The order of the data values on each line is basin, name, sequence number, year, max wind speed, minimum pressure, and storm type.

One function sorts an STL vector of Storm instances by increasing date.

One function sorts an STL vector of Storm instances by decreasing wind speed.

One function sorts an STL vector of Storm instances by increasing air pressure.

The sorting functions are all very similar. Their only difference is in how elements are compared. You may use any sorting algorithm you wish. But you may not use pre-built library sorting functions. Below is the pseudo-code for selection sort, if needed.

```
sort ( T data[])
{
   for(b = 0; b < data_size - 1; b++)
        minindex = b;
      for(i = b+1; i < data_size; i++)
        if data[i] less than data[minindex]
            minindex = i;
      swap data[b] and data[minindex]
}</pre>
```

You should write an additional function to compare two Storm instances by their dates and return true if the date of the first storm is less than the date of the second. This function is to assist your routine for sorting the storms by date.

The dates of two storms can be compared by their years. This comparison alone will determine the result unless the two years are the same. If the two years are equal, the sequence numbers should then be compared, and the result returned accordingly.

The main program should take the name of a data file to open as a command line argument. If the file can not be opened, an appropriate error message should be displayed and the program should exit.

The records from the file should be read into an STL vector of Storms. The input function created above should help read in one Storm.

After reading the records, print out the number of records input.

The program should then call the print function to display the data in the order that it exists in the file (which has been randomized). It should then sort the array by increasing date, decreasing wind speed and increasing pressure, printing the sorted results after each step.

Input

A link to a data set can be found on the web site. If you are working on turing/hopper, you can also make a copy or link directly to your directory from

/home/turing/duffin/courses/cs689/data/storm.dat

Output

Partial sample output from this program on turing/hopper is found below.

Your output may be slightly different depending on the sorting algorithm you use, and the exact comparisons you make (< vs. <=). These differences are OK, as long as the data is properly sorted by the specified fields.

z123456@turing\$ assign5 storm.dat

2864 storms read from storm.dat

Storm		Name	Date	Wind	mbar
Eastern Pacific	Storm	ILSA	8/1967	60	
Atlantic	Hurricane	UNNAMED	3/1881	80	
Eastern Pacific	Storm	UNNAMED	6/1954	45	
Atlantic	Hurricane	ILSA	9/1958	95	956
Eastern Pacific	Hurricane	MAGGIE	13/1974	120	934
Atlantic	Storm	UNNAMED	2/1865	50	
Atlantic	Hurricane	IGOR	11/2010		924
Atlantic	Hurricane	UNNAMED	5/1923	105	
Eastern Pacific		ODILE	16/2008	50	997
Atlantic	Depression	UNNAMED	3/1980	30	
Eastern Pacific	Storm	UNNAMED	1/1959	45	
Atlantic	Hurricane	JOSEPHINE	16/1984	90	965
Atlantic	Hurricane	UNNAMED	3/1904	70	
Atlantic	Storm	UNNAMED	3/1912	45	
Eastern Pacific	Depression	THREE	3/2007	30	1004
Atlantic	Depression	UNNAMED	5/1981	30	
Atlantic	Storm	UNNAMED	22/1981	60	978
Atlantic	Hurricane		9/1943		
Atlantic	Storm	UNNAMED	7/1859		
Atlantic	Storm	UNNAMED	2/1937	55	
Storm		Name	Date	Wind	mbar
Atlantic	Storm	UNNAMED	2/1931	60	1000
Atlantic	Hurricane	DEBBY	6/1982	115	950
Eastern Pacific	Storm	BORIS	2/2002	50	997
Atlantic	Hurricane	UNNAMED	2/1899	85	979
Eastern Pacific	Hurricane	JIMENA	13/2009	135	931

. . .

Sort by date:

Storm		Name	Date	Wind	mbar
Atlantic	Hurricane	UNNAMED	1/1851	80	
Atlantic	Hurricane	UNNAMED	2/1851	80	
Atlantic	Storm	UNNAMED	3/1851	50	
Atlantic	Hurricane	UNNAMED	4/1851	100	
Atlantic	Storm	UNNAMED	5/1851	50	
Atlantic	Storm	UNNAMED	6/1851	60	
Atlantic	Hurricane	UNNAMED	1/1852	100	961
Atlantic	Hurricane	UNNAMED	2/1852	70	
Atlantic	Hurricane	UNNAMED	3/1852	70	
Atlantic	Hurricane	UNNAMED	4/1852	80	
Atlantic	Hurricane	UNNAMED	5/1852	90	
Atlantic	Storm	UNNAMED	1/1853	50	
Atlantic	Storm	UNNAMED	2/1853	40	
Atlantic	Hurricane	UNNAMED	3/1853	130	924
Atlantic	Hurricane	UNNAMED	4/1853	100	
Atlantic	Storm	UNNAMED	5/1853	50	
Atlantic	Hurricane	UNNAMED	6/1853	70	
Atlantic	Storm	UNNAMED	7/1853	50	
Atlantic	Hurricane	UNNAMED	8/1853	90	

Atlantic	Hurricane	UNNAMED	1/1854	70	
Storm		Name	Date	Wind	mbar
Atlantic Atlantic Atlantic Atlantic Atlantic Atlantic Atlantic Atlantic Atlantic	Storm Hurricane Hurricane Storm Hurricane Hurricane Hurricane Storm	UNNAMED	2/1854 3/1854 4/1854 5/1854 1/1855 2/1855 3/1855 4/1855	60 110 90 60 90 90 70	938
Atlantic	Hurricane	UNNAMED	5/1855	110	231

. . .

Sort by wind speed:

Storm		Name	Date	Wind mbar
Eastern Pacific	Hurricane	PATRICIA	20/2015	185 872
Atlantic	Hurricane	ALLEN	4/1980	165 899
Atlantic	Hurricane	UNNAMED	3/1935	160 892
Atlantic	Hurricane	GILBERT	8/1988	160 888
Central Pacific	Hurricane	PAKA	5/1997	160
Eastern Pacific	Hurricane	LINDA	14/1997	160 902
Atlantic	Hurricane	WILMA	25/2005	160 882
Atlantic	Hurricane	MITCH	13/1998	155 905
Atlantic	Hurricane	RITA	18/2005	155 895
Eastern Pacific	Hurricane	RICK	20/2009	155 906
Atlantic	Hurricane	UNNAMED	14/1932	150 918
Atlantic	Hurricane	JANET	10/1955	150 914
Central Pacific	Hurricane	PATSY	2/1959	150
Atlantic	Hurricane	CARLA	3/1961	150 931
Atlantic	Hurricane	CAMILLE	9/1969	150 900
Atlantic	Hurricane	ANITA	5/1977	150 926
Atlantic	Hurricane	DAVID	9/1979	150 924
Atlantic	Hurricane	ANDREW	4/1992	150 922
Eastern Pacific	Hurricane	JOHN	10/1994	150 929
Atlantic	Hurricane	KATRINA	12/2005	150 902
Storm		Name	Date	Wind mbar
Atlantic	Hurricane	DEAN	4/2007	150 905
Atlantic	Hurricane	FELIX	6/2007	150 929
Atlantic	Hurricane	UNNAMED	10/1924	145 910
Eastern Pacific	Hurricane	KENNA	14/2002	145 913
Atlantic	Hurricane	ISABEL	13/2003	145 915
Atlantic	Hurricane	IVAN	9/2004	145 910
Atlantic	Hurricane	UNNAMED	4/1928	140 929
Atlantic	Hurricane	UNNAMED	4/1932	140
Atlantic	Hurricane	UNNAMED	8/1933	140 940
Atlantic	Hurricane	UNNAMED	14/1933	140 929
Atlantic	Hurricane	UNNAMED	6/1938	140 940
Atlantic	Hurricane	CAROL	4/1953	140 929
Atlantic	Hurricane	HATTIE	9/1961	140 920
Atlantic	Hurricane	BEULAH	13/1967	140 923
Atlantic	Hurricane	EDITH	13/1971	140 943

. . .

Sort by pressure:

Storm		Name	Date	Wind	mbar
Eastern Pacific	Hurricane	PATRICIA	20/2015	185	872
Atlantic	Hurricane	WILMA	25/2005	160	882
Atlantic	Hurricane	GILBERT	8/1988	160	888
Atlantic	Hurricane	UNNAMED	3/1935	160	892
Atlantic	Hurricane	RITA	18/2005	155	895
Atlantic	Hurricane	ALLEN	4/1980	165	899
Atlantic	Hurricane	CAMILLE	9/1969	150	900
Central Pacific	Hurricane	IOKE	1/2006	140	900
Eastern Pacific	Hurricane	LINDA	14/1997	160	902
Atlantic	Hurricane	KATRINA	12/2005	150	902
Atlantic	Hurricane	DEAN	4/2007	150	905
Atlantic	Hurricane	MITCH	13/1998	155	905
Eastern Pacific	Hurricane	RICK	20/2009	155	906
Atlantic	Hurricane	UNNAMED	10/1924	145	910
Atlantic	Hurricane	IVAN	9/2004	145	910
Eastern Pacific	Hurricane	KENNA	14/2002	145	913
Atlantic	Hurricane	JANET	10/1955	150	914
Atlantic	Hurricane	ISABEL	13/2003	145	915
Eastern Pacific	Hurricane	AVA	1/1973	140	915
Atlantic	Hurricane	OPAL	17/1995	130	916
Storm		Name	Date	Wind	mbar
Atlantic	 Hurricane	UNNAMED	14/1932	150	918
Atlantic	Hurricane	HUGO	11/1989	140	918
Eastern Pacific	Hurricane	GENEVIEVE	7/2014	140	918
Eastern Pacific	Hurricane	MARIE	13/2014	140	918
Eastern Pacific	Hurricane	ODILE	15/2014	120	918
Eastern Pacific	Hurricane	GUILLERMO	9/1997	140	919
Atlantic	Hurricane	HATTIE	9/1961	140	920
Eastern Pacific	Hurricane	GILMA	7/1994	140	920

. . .

Implementation Hints

• Focus first on getting the data read in, and printed out. Then work on the sorting.

Other Points

- You should have a source code file for main() and all the non-member functions. You should have a source code file for the implementation of the Storm class methods. You should have a header file for the the Storm class.
- Although they are short, none of your class methods should be inline.
- Your header file is required to have header guards.
- Use const as appropriate, both on methods and function arguments.
- Use references appropriately.
- Of course, a Makefile is required for this assignment.

- Symbolic constants should be used to avoid magic numbers. You should use const to make your symbolic constants.
- The name of your source code file containing main should be assign5.cc.
- Function prototypes are required for all functions you write (except main() of course)
- Programs that do not compile on turing/hopper automatically receive 0 points.
- Submit your program using the electronic submission guidelines.