Electronic Circuits

Final Examination

10:20am ~ 12:00pm, Jan. 15, 2010

- 1. The ladder network in Fig. 1 is a second-order highpass filter when $Z_1 = Z_3 = \frac{1}{M^2}$ and $Z_2 = Z_4 = R$.
 - (b) [8] Take $\underline{V}_{out} = 1$ to find \underline{V}_{in} and then obtain $H(s) = \underline{V}_{out}/\underline{V}_{in}$.
 - (c) [7] Find ω_{co} in terms of RC with the definition $a^2(\omega_{co}) = 1/2$. (Hint: let $x = R^2C^2\omega_{co}^2$ and solve the quadratic equation of x.)

2. [15] The capacitor in Fig. 2 has been chosen to minimize the current from the 60Hz AC source. Given that the motor has pf = 0.4 and $|I|_{\min} = 10 \text{ A}(\text{rms})$, find the power and rms current drawn by the motor, and calculate the value of C.

Fig. 2

- 3. If $i_e = 3i_v$ and $v_e = 4v_x$ in Fig. 3.
 - (a) [6] write down the matrix mesh equation.
 - (b) [6] what are the values of v_1, v_2, i_1 , and i_2 ?

- 4. Consider the phase-shift oscillator in Fig. 4.
 - (a) [6] Derive the differential equation governing the behavior of v_{out} with arbitrary value of K.
 - (b) [4] Let $C = 2\mu F$, $R = \frac{100}{\sqrt{3}}\Omega$, L = 10 mH. To obtain a sinusoidal output with constant amplitude, what is the value of K? What is the oscillation frequency?
 - (c) [8] Given that $v_c(0^-) = 4V$ and $i_L(0^-) = 0$, find $v_{out}(t)$ for t > 0.

NOTE: There are problems in the back.

- 5. (a) [10] Calculate the Laplace transform of the function below.
 - (b) [10] If this function repeats itself with the period T = 5, derive the new Laplace transform of the periodic function.

6. [20] In the circuit below, use Laplace transform to find v(t) and i(t) given that v(0) = 5V and i(0) = -1A.

