Image Processing using concepts of Linear Algebra (Transformation Matrix) and Convolution

Group-06 (Machine Design)

By:

- Bharat Anant (224103410)
- Digboloy Borah (224103412)
- Himanshu Lahare (224103414)
- Rishabh Saluja (224103426)
- Vidisha Singh (224103438)

Course Instructors:

- Dr. Sajan Kapil
- Dr. NelsonMuthu

Department of Mechanical Engineering Indian Institute of Technology Guwahati

Introduction

❖In this project we will learn how to manipulate images in order to obtain different colour effects.

* We will use matrix multiplication in order to manipulate image colour and achieve different effects.

❖ We will look at several different ways to manipulate the image colours to obtain effects similar to those of *Instagram* and other *Graphic Softwares*.

What is an Image?

An image can be represented by a matrix with the dimensions corresponding to the dimensions of the image.

- Each of the elements of this matrix contains the number (or numbers) representing the colour of the corresponding pixel.
- ❖ If the image is a colour image, then the colour of the pixel is represented by three numbers {R, G, B} (Red, Green and Blue) with each number ranging from 0 to 255 (RGB system).

Relevant Topic from ME501

Linear Algebra

➤ Transformation Matrix (Kernel)

Convolution

What is Convolution?

- * Convolution is the process of adding each element of the image to its local neighbors, weighted by the kernel.
- * This is related to a form of mathematical convolution.

	I	mage	;		ı	Kerne	I		Р	roduc	ts		Sum	of Pro	ducts
0		128	64		1	-1	1		0	-128	64				
25	5	128	160	X	-1	4	-1	=	-255	512	-160	=		97	
19	2	224	96		1	-1	1		192	-224	96				

What is
$$(1,2,3)*(4,5,6)$$

clideo.com

Methodology

- Convolution Concept : Python
 - Blurring of an Image
 - Sharpening of an Image
- Transformation Matrix Concept : MATLAB
 - > RGB Channel
 - Concept of Identity Matrix
 - ➤ Grayscale & Sepia Effects

Python Code

```
In [1]: import cv2
        import matplotlib.pyplot as plt
        import numpy as np
In [2]: path="E:\\IITG\\ME 501 Maths\\Project\\Python\\"
        imgpath = path + "1.jpg"
        # cv2.cvtColor()
        img= cv2.imread(imgpath, 1)
        img= cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        k= np.array(np.ones((10,10),np.float32))/100 #For Blurring of Image
        output=cv2.filter2D(img,-1,k)
        plt.subplot(1,2,1)
        plt.imshow(img)
        plt.title('Original Image')
        plt.subplot(1,2,2)
        plt.imshow(output)
        plt.title('Blurred Image')
        plt.show()
In [3]: k = np.array(([0,-1,0],[-1,5,-1],
                    [0,-1,0]),np.float32)
                                              #For sharpening of image
         output=cv2.filter2D(img,-1,k)
         plt.subplot(1,2,1)
         plt.imshow(img)
         plt.title('Original Image')
         plt.subplot(1,2,2)
         plt.imshow(output)
         plt.title('Sharpened Image')
         plt.show()
```

Blurring of an Image

Kernel:

$$\frac{1}{9} \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$$

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Box Blur (Normalized)

Gaussian Blur (Weighted Averaging)

Sharpening of an Image

Kernel:

$$\left[egin{array}{cccc} 0 & -1 & 0 \ -1 & 5 & -1 \ 0 & -1 & 0 \ \end{array}
ight]$$

MATLAB Code

First Part : Image Input and Initialization of the Transformation Matrices

```
clear all
         clc
         ImJPG=imread('1.jpg');
          [m,n,l]=size(ImJPG);
 5
         GrayMatrix=[1/3 1/3 1/3; 1/3 1/3; 1/3; 1/3 1/3];
 6
         SepiaMatrix=[0.393 0.769 0.189;0.349 0.686 0.168;0.272 0.534 0.131];
         IdentityMatrix=[1 0 0; 0 1 0; 0 0 1];
 8
         RedChannel=[1 0 0; 0 0 0; 0 0 0];
         GreenChannel=[0 0 0; 0 1 0; 0 0 0];
10
         BlueChannel=[0 0 0; 0 0 0; 0 0 1];
11
```

Second Part: Changes done in the Image at Pixel Level

```
12
13
          for i=1:m
          for j=1:n
14
15
          PixelColor=reshape(double(ImJPG(i,j,:)),3,1);
          ImJPG Gray(i,j,:)=uint8(GrayMatrix*PixelColor);
16
          ImJPG Sepia(i,j,:)=uint8(SepiaMatrix*PixelColor);
17
          ImJPG_Identity(i,j,:)=uint8(IdentityMatrix*PixelColor);
18
          Red(i,j,:)=uint8(RedChannel*PixelColor);
19
          Green(i,j,:)=uint8(GreenChannel*PixelColor);
20
          Blue(i,j,:)=uint8(BlueChannel*PixelColor);
21
22
          end;
          end;
23
```

Third Part : Seeing the Magic happen!

```
24
         figure;
25
         subplot(1,2,1),imshow(ImJPG),subplot(1,2,2),imshow(ImJPG_Identity)
         figure;
26
         subplot(1,3,1),imshow(Red),subplot(1,3,2),imshow(Green),subplot(1,3,3),imshow(Blue)
27
         figure;
28
         subplot(1,2,1),imshow(ImJPG),subplot(1,2,2),imshow(ImJPG_Gray)
29
         figure;
30
         subplot(1,2,1),imshow(ImJPG),subplot(1,2,2),imshow(ImJPG_Sepia)
31
```

RGB Channels of an Image

Kernel:

[1]	0	0]
0	0	0
	0	0]

Red Channel

[0	0	0]
0	1	0
Lo	0	0]

Green Channel

$\lceil 0 \rceil$	0	0
0	0	0
0	0	14

Blue Channel

Green Channel

Unchanged Original Image

Kernel: Combination of the Individual RGB Channels

 [1
 0
 0]

 [0
 1
 0]

 [0
 0
 1]

Original Image

Filtered Image (No Effect)

Grayscale Effect

Kernel:

Γ1	1	17
$\lceil \frac{1}{3} \rceil$	3	$\frac{1}{3}$
	1	1
1 	3	3
	1	1
1 - 3	3	$\frac{1}{3}$

Original Image

Filtered Image

Sepia Effect

Kernel

[0.393	0.769	0.1897
0.349	0.686	0.168
L0.272	0.534	0.131

Original Image

Filtered Image

Individual Contribution

► Bharat Anant : MATLAB Code + Documentation

Digboloy Borah : Matrix Application research + Documentation

➤ Himanshu Lahare : Python Code + Documentation

Rishabh Saluja : Convolution Theorem and its application

+ Documentation

➤ Vidisha Singh : Research on Various Transformation Kernels + Documentation

THANK YOU!!

