Exercise Sheet 6

Discrete Mathematics, 2021.10.12

- 1. (P56, Ex.43, [R]) Consider the first order language with symbol set $S = \{P, Q\}$ in which P and Q represent two unary predicates. Determine whether $\forall x. (P(x) \to Q(x))$ and $\forall x. P(x) \to \forall x. Q(x)$ are logically equivalent. Justify your answer.
- 2. Is $\neg \forall x. \ (\phi \to \psi)$ logically equivalent to $\exists x. \ (\phi \land \neg \psi)$? You do not need to give a formal proof, but try to explain the intuition behind your answer.
- 3. Suppose R is a binary predicate symbol. Prove that $\exists x. \forall y. R(x,y) \vDash \exists x. R(x,x)$.
- 4. a) Prove that if $\phi \vDash \psi$ then $\forall x. \phi \vDash \forall x. \psi$.
 - b) Prove that if $\Phi, \phi \vDash \psi$ and x does not freely occur in Φ then $\Phi, \forall x.\phi \vDash \forall x.\psi$.
 - c) Demonstrate an example in which
 - $-\Phi, \phi \vDash \psi$
 - -x does freely occur in Φ
 - $-\Phi, \forall x.\phi \not\vDash \forall x.\psi.$