Часть 4. Упражнения

Упражнение №1

Основы работы в системе IBM Quantum

1. Цель работы: знакомство с системой *IBM Quantum*.

2. Реализация квантовых схем в системе IBM Quantum

Все реализации квантовых алгоритмов в лабораторных работах будет осуществляться с использованием системы *IBM Quantum*. Для начала работы вам необходима регистрация на сайте https://quantum-computing.ibm.com/.

После прохождения процедуры регистрации страница сайта системы *IBM Quantum* будет иметь следующий вид (рис. 4.1):

Рис. 4.1. Интерфейс страницы в системе IBM Quantum

Для разработки схемы квантового алгоритма и проведения моделирования его работы необходимо переключиться на страницу «*IBM Quantum Composer*». Переход осуществляется посредствам соответствующей кнопки «Launch Composer» (рис. 4.1). Окно страницы «*IBM Quantum Composer*» представлено на рис. 4.2.

Рис. 4.2. Интерфейс страницы «Quantum Composer» в системе IBM Quantum

Разработка схемы квантового алгоритма осуществляется посредствам выбора нужной последовательности гейтов из предлагаемого системой *IBM Quantum* набора (рис. 4.3). Вы можете использовать только гейты, реализованные в системе *IBM Quantum*.

Рис. 4.3. Набор квантовых гейтов в системе IBM Quantum

На рис. 4.4 представлены фрагменты области, в которой производится сборка элементов, выполняющих квантовый алгоритм. Система *IBM Quantum* позволяет добавлять и удалять кубиты, меняя тем самым количество кубитов, которое используется в текущей задаче. Для увеличения или уменьшения числа используемых кубитов нажмите на любой из символов кубитов (q0, q1 на рис. 4.4) и в выпавшем меню выберите знак «+» («Add qubit after») (рис. 4.4), или знак мусорной урны («Delete qubit»).

Рис. 4.4. Область сборки квантовой схемы в системе IBM Quantum Experience
Знак «...» в выпадающем меню предоставляет доступ к дополнительным возможностям по размещению новых кубитов и управлению их начальным состоянием.

Разработка квантовой схемы осуществляется посредствам перемещения необходимых гейтов в область схемы и подключением их к соответствующим *кубитам*. На рис. 4.5 представлены примеры включения в схему различных гейтов.

Рис. 4.5. Примеры установки гейтов в системе IBM Quantum

При нажатии на установленный в схеме гейт можно его удалить или внести изменения в его параметры и конфигурацию см. рис. 4.6. Изменение конфигурации необходимо при смене управляемого и управляющего *кубитов* для управляемых гейтов. Для удаления гейта необходимо выбрать иконку «урны» в выпадающем меню.

Рис. 4.6. Пример настройки гейтов в системе IBM Quantum

Для некоторых гейтов в системе *IBM Quantum* предусмотрена возможность редактирования их параметров. В частности, можно изменять углы в гейтах поворота Rx, Ry, Rz и гейтах U1, U2, U3, а также в соответствующих им управляемых гейтах. Пример изменения параметров показан на рис. 4.7.

Рис. 4.7. Пример управляемого гейта в системе IBM Quantum

В случае использования в схеме управляемых гейтов система предполагает возможность выбора контролирующего и контролируемого *кубита* (рис. 4.8). Изменение можно выполнить также в области редактирования.

Рис. 4.8. Примеры выбора контролируеющего и контролируемого кубита в системе IBM Quantum. Примеры гейтов с одним управляемым одним управляемым и одним управляющим кубитами (а) и примеры гейтов с одним управляемым одним управляемым и двумя управляющими кубитами (б). Управляемый кубит отмечен символом «+»

При разработке схемы квантового алгоритма система *IBM Quantum* в режиме реального времени показывает расчетные (теоретические) значения вероятностей всех состояний кубитов квантовой системы, состояние векторов и их положение на сфере Блоха (рис. 4.9).

e

Д

Рис. 4.9. Демонстрация процесса отображения амплитуд (д,е), вероятностей (в,г) и положений векторов на сфере Блоха (ж,з) в системе IBM Quantum

Помимо теоретических расчетов состояний квантовой системы, в *IBM Quantum* предусмотрена возможность реализации квантового алгоритма с использованием реальных квантовых компьютеров и режима симуляции, в том числе, возможен выбор количества измерений. Настройка запуска симуляции осуществляется в панели «Setup and run», расположенной в правом верхнем углу рабочего окна (см. рис. 4.2). Окно настройки процесса симуляции приведено на рис 4.10.

Рис. 4.10. Область настройки процесса симуляции в системе IBM Quantum

Следует отметить, что при запуске схемы в режиме симуляции или на каком-либо квантовом компьютере, полученные вероятности нахождения системы в том или ином состоянии будут отличаться от теоретических.

Также отметим, что с увеличением числа измерений полученные вероятности будут стремиться к теоретическим значениям. Рассмотрим пример запуска симуляции однокубитовой системы, представленной на рис. 4.11,а. В данном случае на кубит находящейся в состоянии 0 воздействуем гейтом Адамара, при этом мы получаем кубит в состоянии суперпозиции □ □ 1 0 12 □, т.е. теоретически данный кубит при измерении с вероятностью 50% принимает значение 0 или 1 (рис.4.11,6). На рис. 4.11,в показаны вероятности нахождения квантовой системы при выполнении 64-х измерений, а на рис. 4.11,г — при выполнении 1024 измерений.

Рис. 4.11. Пример симуляции в системе IBM Quantum: а) схема; б) теоретическое распределение вероятностей; в) распределение вероятностей для случая 64-х преобразований; г) распределение вероятностей для случая 1024-х преобразований

Выполнение измерений состояний *кубитов* в системе *IBM Quantum* осуществляется с помощью инструмента «*Measurement*» графическое обозначение которого представлено на рис. 4.12,а. Система будет выполнять измерение состояния только тех *кубитов* к которым подключен данный инструмент (рис. 4.126).

Рис. 4.12. Пример измерения состояния системы

При измерении будут перечислены все возможные варианты состояния системы, а в случае если инструмент «*Measurement*» не подключен к какому-то из *кубитов*, то его состояние всегда будет иметь нулевое значение.

3. Задание для упражнения 1

Выполните следующие задания:

- 1. Выполните регистрацию в системе ІВМ Quantum.
- 2. В «*IBM Quantum Composer*» создайте схему из двух кубитов: один кубит должен иметь состояние |0>, а второй кубит состояние |1>.

Состояние |1> можно получить с использованием гейта X. Примените операцию измерения для данных кубитов и выполните симуляцию.

- 3. В «*IBM Quantum Composer*» создайте схему из одного кубита находящегося в состоянии $\frac{1}{\sqrt{2}}(|0>+|1>)$.Примените операцию измерения к данному кубиту. Выполните симуляцию с различным количеством измерений: 1, 2, 8, 32, 64, 128, 512, 1024, 8192. Проанализируйте результаты измерений и сделайте выводы.
- 4. В «*IBM Quantum Composer*» создайте схемы, представленные на рис. 4.13.

Рис. 4.13. Квантовые схемы для задания №4

Выполните симуляцию данных схем с числом измерений – 1024. Проанализируйте результаты симуляции и сделайте выводы.

5. В «Circuit Composer» создайте схемы, представленные на рис. 4.14.

Рис. 4.14. Квантовые схемы для задания №5

Выполните симуляцию данных схем с числом измерений — 1024. Проанализируйте результаты симуляции и сделайте выводы.

6. В «Circuit Composer» создайте схемы, представленные на рис. 4.15.

Рис. 4.15. Квантовые схемы для задания №6

Выполните симуляцию данных схем с числом измерений — 1024. Проанализируйте результаты симуляции и положение векторов на сфере Блоха. Сделайте выводы.

7. Оформите отчет. Отчет должен включать в себя в себя изображения всех схем и результаты симуляции алгоритма, а также выводы.

Упражнение №2

Однокубитные гейты

1. Цель работы: получение навыков применения однокубитных гейтов и реализация различных состояний суперпозиции кубита.

2. Однокубитные гейты в системе IBM Quantum

В системе ІВМ Quantum возможно использовать следующие однокубитные гейты:

- 1. Гейт Адамара.
- **2.** Гейты X, Y, Z, S, Т.
- 3. Ѕ и Т сопряженные гейты
- **4.** Гейты RX, RY,RZ
- **5.** Гейты U и Р

Выполните следующие задания:

- 1. Получите кубит в состоянии суперпозиции $\frac{1}{\sqrt{2}}(|0>+|1>)$.
- 2. Двумя способами получите кубит в состоянии суперпозиции $\frac{1}{\sqrt{2}}(|0>-|1>)$
- 3. Получите кубит в состоянии суперпозиции $\frac{1}{\sqrt{2}}(-|0>+|1>)$
- 4. С помощью однокубитного гейта $\mathbf{R}\mathbf{x}$ получите кубит в состоянии суперпозиции a/0>+b/1> в соответствии с вариантом, представленном в таблице 4.1. Получите математическое обоснование результата.

Таблица 4.1. Варианты заданий

Вариант	Вероятность	Вероятность	
	состояния 0>	состояния 1>	
1	5	95	
2	10	90	
3	15	85	
4	20	80	
5	25	75	
6	30	70	
7	35	65	
8	40	60	
9	45	55	
10	55	45	
11	60	40	

12	65	35
13	70	30
14	75	25
15	80	20
16	85	15
17	90	10
18	95	5

- 5. С помощью однокубитного гейта $\mathbf{R}\mathbf{y}$ получите кубит в состоянии суперпозиции a/0>+b/1> в соответствии с вариантом, представленном в таблице 4.1. Выполните симуляцию. Получите математическое обоснование результата.
- 6. С помощью однокубитного гейта U получите кубит в состоянии суперпозиции a/0>+b/1> в соответствии с вариантом, представленном в таблице 4.1. Выполните симуляцию. Получите математическое обоснование результата.
- 7. С помощью однокубитного гейта RX получите кубит в состоянии суперпозиции a/0 > -b/1 > в соответствии с вариантом, представленном в таблице 4.1. Выполните симуляцию. Получите математическое обоснование результата.
- 8. С помощью однокубитного гейта RY получите кубит в состоянии суперпозиции a/0 > -b/1 > в соответствии с вариантом, представленном в таблице 4.1. Выполните симуляцию. Получите математическое обоснование результата.
- 9. С помощью однокубитного гейта U получите кубит в состоянии суперпозиции -a/0>+b/1> в соответствии с вариантом, представленном в таблице 4.1. Выполните симуляцию. Получите математическое обоснование результата.
- 10. С помощью однокубитных гейтов RX, RY, U получите кубит в состоянии суперпозиции a/0 > + b/1 > в соответствии с вариантом, представленном в таблице 4.1. Выполните симуляцию. Выполните их математическое обоснование результата.
- 11. Экспериментально покажите унитарность гейта Адамара. Получите математическое обоснование результата.
- 12. С помощью однокубитного гейта RX получите кубит в состоянии суперпозиции a/0 > + b/1 > в соответствии с вариантом, представленном в таблице 4.1. Далее составьте схему, представленную на рис. 4.16. Выполните симуляцию. Получив результаты симуляции, выполните их математическое обоснование.

Рис. 4.16. Квантовая схема к заданию №12

3. С помощью однокубитного гейта $\mathbf{R}\mathbf{x}$ получите кубит в состоянии суперпозиции a/0>+b/1> в соответствии с вариантом, представленном в таблице 4.1. Далее составьте схему, представленную на рис. 4.17. Выполните симуляцию. Получив результаты симуляции, выполните их математическое обоснование.

Рис. 4.17. Квантовая схема к заданию №13

14. Реализуйте симуляцию схем, представленных на рис. 4.18. Проанализируйте результаты, выполните их математическое обоснование и поясните различие.

Рис. 4.18. Квантовые схемы к заданию №14

15. Реализуйте симуляцию схем, представленных на рис. 4.19. Проанализируйте результаты, выполните их математическое обоснование и поясните различие.

Рис. 4.19. Квантовые схемы к заданию №15

16. Реализуйте трехкубитовую систему, к показано на рис. 4.20. В данной системы кубиты должны находиться в состояниях суперпозиции согласно варианту в таблице 4.2. Выполните симуляцию и проанализируйте результаты.

Рис. 4.20. Квантовая схема к заданию №16

Таблица 4.2. Варианты заданий

Вариант	Вероятность	Вероятность	Вероятность
	состояния /0>	состояния /0>	состояния /0>
	первого кубита	второго кубита	третьего кубита
1	5	10	20
2	10	20	15
3	20	35	85
4	30	70	55
5	40	60	65
6	55	45	45
7	60	40	25
8	70	30	10
9	80	20	5
10	90	10	35
11	95	5	80

17. Оформите отчет по лабораторной работе. Отчет включает в себя скриншоты всех схем и результатов симуляции по программе работы, выводы.

Упражнение №3

Управляемые гейты

- **1. Цель работы:** получение навыков применения управляемых 2-х и 3-х кубитных гейтов и реализации квантовых алгоритмов на их основе.
- 1. Реализуйте схему получения запутанного состояния двух кубитов согласно вашему варианту в таблице 4.3. Выполните симуляцию и обоснование результатов симуляции.

Таблица 4.3. Варианты заданий

Вариант	Состояние	вероятность	блица 4.3. Варианты задания вероятность
1	a/00> + b/11>	5	95
2		10	90
3		20	80
4		30	70
5		80	20
6		90	10
7		95	5
8		40	60
9		55	45
10	a/01 > + b/10 >	5	95
11		10	90
12		20	80
13		30	70
14		80	20
15		90	10
16		95	5
17		40	60
18		55	45

- 15. Реализуйте схему получения запутанного состояния трех кубитов a/001 > + b/111 > вероятностями согласно таблице 4.3. Выполните симуляцию и обоснование результатов симуляции.
- 16. Реализуйте схему получения запутанного состояния трех кубитов a/001 > -b/111 > вероятностями согласно таблице 4.3. Выполните симуляцию и обоснование результатов симуляции.

- 17. Реализуйте схему получения запутанного состояния трех кубитов a/010 > + b/111 > вероятностями согласно таблице 4.3. Выполните симуляцию и обоснование результатов симуляции.
- 18. Оформите отчет по лабораторной работе. Отчет включает в себя скриншоты всех схем и результатов симуляции по программе работы, выводы.

Упражнение №4

Квантовые алгоритмы

Цель работы: получение навыков разработки квантовых алгоритмов в системе *IBM Quantum*.

Задание 1

Реализуйте алгоритм квантовой телепортации от Алисы к Бобу кубита в состоянии суперпозиции. Состояние кубита должно соответствовать варианту в таблице 4.1.

Задание 2

В соответствии с вашим вариантом выполните одно из следующих заданий:

- **1.** Реализуйте функцию $f = 7 \mod 15$. Выполните симуляцию и обоснование полученных результатов.
- **2.** Реализуйте функцию $f = 6 \mod 15$. Выполните симуляцию и обоснование полученных результатов.
- **3.** Реализуйте функцию $f = 36 \mod 15$. Выполните симуляцию и обоснование полученных результатов.
- **4.** Реализуйте функцию $f = 49 \mod 15$. Выполните симуляцию и обоснование полученных результатов.
- **5.** Реализуйте алгоритм Дойча для функций $f_1(x)=0$, $f_2(x)=1$, $f_3(x)=x$ и $f_4(x)=NOT(X)$. Выполните симуляцию для каждой функции и обоснуйте полученные результаты.
- **6.** Реализуйте функцию $f(x_1, x_2) = x_1 XOR x_2$. Выполните симуляцию и обоснование полученных результатов.
- **7.** Реализуйте функцию $f(x_1, x_2) = NOT(x_1 XOR x_2)$. Выполните симуляцию и убедитесь в корректности работы.
- **8.** Реализуйте функцию $f(x_1, x_2) = x_1 \ OR \ x_2$. Выполните симуляцию и обоснование полученных результатов.
- **9.** Реализуйте функцию $f(x_1, x_2) = NOT(x_1 \ OR \ x_2)$. Выполните симуляцию и убедитесь в корректности работы.
- **10.** Реализуйте функцию $f(x_1, x_2) = x_1 \, AND \, x_2$. Выполните симуляцию и обоснование полученных результатов.
- **11.** Реализуйте функцию $f(x_1, x_2) = NOT(x_1 AND x_2)$. Выполните симуляцию и убедитесь в корректности работы.
- **12.** Реализуйте алгоритм Гровера для поиска числа 5. Выполните симуляцию и убедитесь в корректности работы.
- **13.** Реализуйте алгоритм Гровера для поиска числа 6. Выполните симуляцию и убедитесь в корректности работы.

- **14.** Реализуйте алгоритм Гровера для поиска числа 4. Выполните симуляцию и убедитесь в корректности работы.
- **15.** Реализуйте алгоритм Гровера для поиска числа 7. Выполните симуляцию и убедитесь в корректности работы.
- **16.** Реализуйте функцию алгоритм Шора для факторизации числа 15. Выполните симуляцию и обоснование полученных результатов.
- **17.** Реализуйте алгоритм полного сумматора. Выполните симуляцию и обоснование полученных результатов.
- **18.** Реализуйте алгоритм умножения на 4. Выполните симуляцию и обоснование полученных результатов.
- **19.** Реализуйте алгоритм умножения на 5. Выполните симуляцию и обоснование полученных результатов.
- **20.** Реализуйте алгоритм умножения на 6. Выполните симуляцию и обоснование полученных результатов.

Задание 3. Оформите отчет по лабораторной работе. Отчет включает в себя изображения всех схем и результатов симуляции по программе работы, а также выводы.