microARNs - Prédiction à partir des données NGS

Mohamed Amine Remita

9 mars 2016

- Introduction
- Étapes de l'analyse des données NGS
 - 1. Prétraitement
 - 2. Mappage
 - 3. Élimination des reads par filtres
 - 4. Extraction et repliement
 - 5. Prédictions
 - 6. Analyse fonctionnelle
- Travail pratique

Séquençage à haut débit (NGS)

Platform	Library/ template preparation	NGS chemistry	Read length (bases)	Run time (days)	Gb per run	Machine cost (US\$)
Roche/454's GS FLX Titanium	Frag, MP/ emPCR	PS	330*	0.35	0.45	500,000
Illumina/ Solexa's GA _{II}	Frag, MP/ solid-phase	RTs	75 or 100	4 [‡] , 9 [§]	18 [‡] , 35 [§]	540,000
Life/APG's SOLiD 3	Frag, MP/ emPCR	Cleavable probe SBL	50	7 [‡] , 14 [§]	30 [‡] , 50 [§]	595,000
*Average read-lengths. Fragment run. Mate-pair run. Frag. fragment: CA. Genome Analyzer: CS. Genome Sequencer: MP. mate-pair NVA, not available: NCS. next-generation sequencing: PS, pyrosequencing; PS, reversible terminator; SBL, sequencing by ligation; SOLID, support oligonucleotide ligation detection.						

Sequencing technologies - the next generation (Metzker 2009)

Formats des données

```
@HWI-ST748:152:C0Y17ACXX:4:1101:1572:2125 1:N:0:ATCACG
CCTTGAACTCGCCAATCTGCTCCTCGCTGAGCTGGCCATGGCAAACCCCAAAGCGCCCCAAGGGGCGACGAGGGCCTGCAAATGTTACGCGAGCTGCCC
+
@@@;A8BDHHADHGGGBDFF>F<FD<AHIDCB4De9B9?6FE(=BA@G>DEEHH/?B(9A:?=;?/'))0905999???A33:(44::@@>>5@B9>999
@HWI-ST748:152:C0Y17ACXX:4:1101:1730:2146 1:N:0:ATCACG
GCCCGCTTCAGGTCGCCAGCTCGGCGAGCGCAACGGGTACCTCAAGGGCGTCGTCACCGATGTCATCCACGACCCGGGGCGTGGCCCACTGCCCA
+
@??DDDADH>FFCD:)1AG::?F>GHIHIF5AA5:?ECB33;ACCCCCB1;79@B@?3255<@@@4::92950<99@0)55<9(+49>599>BB?19
@HWI-ST748:152:C0Y17ACXX:4:1101:1697:2160 1:N:0:ATCACG
TATGCAACCCCTGGTAGTGTCCCCGGATGTGGGGACACTGGTGGACAAATTGAATTCAACCCAATGAGCATTCCTGGTATGGAAGGCATTACATTACATTACACCCCTGGTATGGAAGGCATTACATTACATTACACCCCTGGTATGGAAGGCATTACATTACATTACACCCCAATGAGCATTCCTGGTATGGAAGGCATTACATTACATTACACCCCAATGAGCATTCCTGGTATGGAAGGCATTACATTACATTACACCCCCAATGAGCATTCCTGGTATGGAAGGCATTACATTACATTACACCCCAATGAGCATTCCTGGTATGGAAGGCATTACATTACATTACACCCCAATGAGCATTCCTGGTATGGAAGGCATTACATTACATTACACCCCAATGAGCATTCCTGGTATGGAAGGCATTACATTACATTACACCCCAATGAGCATTACATTACATTACACCCCAATGAGCATTACATTACATTACACCCCAATGAGCATTACATTACATTACACCCCAATGAGCATTACATTACATTACACCCCAATGAGCATTACATTACATTACACCCCAATGAGCATTACATTACATTACACCCCAATGAGCATTACATTACATTACACCCCAATGAGCATTACATTACATTACACCCCAATGAGCATTACATTACATTACACCCCAATGAGCATTACATTACATTACACCCCAATGAGCATTACATTACATTACACCCCAATGAGCATTACATTACATTACACCCAATGAGCATTACATTACATTACACCCAATGAGCATTACATTACATTACACCCAATGAGCATTACATTACATTACACCCAATGAGCATTACATTACATTACACCCAATGAACTACAATTACAATTACACCCAATTACACCCAATGAGCATTACATTACATTACACCCAATGAGCATTACATTACATTACACCCAATGAGCATTACATTACATTACACCCAATGAGCATTACATTACACCCAATGAGCATTACATTACATTACACCCAATGAACTACAATTACATTACACCCAATGAACTACAATTACATTACACCCAATGAACTACAATTACATTACACCCAATGAACTACAATTACATTACACCCAATTACATTACACCCAATTACATTACACCCAATTACATTACACCCAATGAACTACAATTACATTACACCCAATTACATTACACCCAATTACATTACACCCAATTACATTACACCAATTACATTACACCCAATTACATTACACCCAATTACATTACACCCAATTACATTACACCCAATTACATTACACCCAATTACATTACACCCAATTACACCAATTACATTACACCAATTACATTACACCAATTACATTACACCAATTACATTACACCAATTACATTACACCAATTACATTACACCAATTACATTACACCAATTACATTACATTACACCAATTACATT
```

Format fastq

@CCFDEDFHAHBHICFGEBEHHJIG;AFHFHCFG@FDG>DGBD@FHGC=FE<DGHIFGGABBBAHG;=@EDCA@HAEHEH;BDEBC>>BABCCDDDEDCC

@HWT-ST748:152:COY17ACXX:4:1101:1508:2163:1:N:0:ATCACG

Formats des données

```
>1_103_36_F3
T12312101022310300001030000100000000
>1_131_554_F3
T30201102232113101023030001130000010
>1_134_560_F3
T00202301002000012201033020100030301
>1_141_466_F3
T23302011303101123020000203201030010
```

```
>1_103_386_F3
4 14 2 4 11 11 27 3 19 17 17 26 5 9 11 10 26 14 23 11 13 23 23 20 4 5 22 5 12 9 5 10 23 25 3
>1_131_554_F3
20 9 4 20 20 6 19 13 14 17 7 4 19 21 21 4 4 9 14 11 7 11 24 6 25 5 2 16 22 6 6 6 6 5 8
>1_134_560_F3
27 24 11 8 28 23 24 8 20 27 23 26 24 11 27 19 16 20 11 15 8 22 5 17 13 26 20 15 21 26 5 7 6 18 23
>1_141_466_F3
16 19 10 11 8 20 20 4 21 15 24 6 8 5 8 16 13 6 8 13 23 18 9 5 20 8 3 8 6 17 2 9 11 6 17
```

Format color space (csfata)

Formats des données

Figure 2. Two representations of the color-space (dibase) encoding used by the AB SOLID sequencing system. A: The standard representation, with the first and second letter of the queried pair along the horizontal and vertical axes, respectively. B: The equivalent Finite State Automaton representation, with edges labelled with the readouts and nodes corresponding to the basepairs of the underlying genome. doi:10.1371/journal.pcbi.1000386.0002

Étapes de l'analyse

Prétraitement

- Élimination des reads avec mauvaise qualité
- Suppression des adaptateurs (cutadapt)

- Alignement des reads contre :
 - Génome de reference
 - Ensemble de séquence EST et/ou GSS
 - Ensemble de microARNs valides (mirBase)
- Plusieurs programmes de mappage
 - BLAST, BLAT
 - MAQ, BOWTIE, SHRIMP
 - etc.

Tools for mapping high-throughput sequencing data (Fonseca et al 2012)

- Calcul de l'abondance (expression) des reads dans chaque librairie
- Normalisation des abondances

Filtrages

- Élimination des reads faiblement exprimés
- Élimination des reads qui s'alignent contre
 - Les ARNs non codants sauf les miARNs (ARNr, ARNt, snoARN, etc.)
 - Les ARNs messagers (proteines)
- Élimination des reads de faible complexité (RepeatMasker)

Extraction et repliement

- Extraction du précurseur (pre-miARN)
 - Un miARN peut être 5p ou 3p
 - Deux précurseurs possibles pour chaque reads
 - -160 nd +20 nd
 - -20 nd +160 nd
- Repliement des séquence extraites
 - Structures secondaires et MFE
 - Mfold, RNAFold

Prédictions

- Prédiction des précurseurs des miARNs
 - Triplet-SVM, Mipred
- Prédiction des miARNs
 - miRcheck, miRdup
- Prédiction des gènes ciblés par les miARNs
 - Tapir, DIANA-microT, psRNATarget

Analyse fonctionnelle

- Expression differentielle
- Enrichissement des fonctions des gènes cibles (Gene ontology, KEGG)
- Étude évolutive des miARNs prédits (inférence phylogénétique)

Travail pratique no 2

- Présentation de l'énoncé
- Réponse aux questions

