

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И

 Π РОЦЕССЫ УПРАВЛЕНИЯ N 3 , 2001

Электронный журнал, рег. N П23275 от 07.03.97

http://www.neva.ru/journal e-mail: diff@osipenko.stu.neva.ru

Системы уравнений в частных производных

СПЕКТРАЛЬНЫЙ МЕТОД ПОСТРОЕНИЯ ИНТЕГРАЛЬНОГО БАЗИСА ЯКОБИЕВОЙ СИСТЕМЫ В ЧАСТНЫХ ПРОИЗВОДНЫХ

В. Н. Горбузов, А. Ф. Проневич

Гродненский государственный университет им. Я. Купалы 230023, Гродно, ул. Ожешко, 22 e-mail: gorbuzov@grsu.unibel.by

Постановка задачи. Рассмотрим линейную однородную дифференциальную систему уравнений в частных производных

$$\mathfrak{A}_{j}(x) u = 0, \quad j = \overline{1, m}, \qquad x \in \mathbb{R}^{n},$$
 (1)

построенную посредством линейных дифференциальных операторов

$$\mathfrak{A}_j(x) = \sum_{i=1}^n a_{ji}(x) \, \partial_i, \quad \forall x \in \mathbb{R}^n,$$

с линейными координатными функциями

$$a_{ji}: x \to \sum_{\xi=1}^n a_{ji\xi} x_{\xi}, \quad \forall x \in \mathbb{R}^n, \qquad a_{ji\xi} \in \mathbb{R}, \quad j = \overline{1, m}, \quad i = \overline{1, n}, \quad \xi = \overline{1, n}.$$

По необходимости [1,c.70] будем считать $m\leqslant n$, а также, что линейные дифференциальные операторы первого порядка \mathfrak{A}_j , $j=\overline{1,m}$, не являются линейно связанными на арифметическом пространстве \mathbb{R}^n .

Размерность базиса первых интегралов дифференциальной системы (1) зависит от её полноты. Если система (1) полная [2, c.524], то базис состоит из n-m функционально независимых на области \mathcal{X} из пространства \mathbb{R}^n первых интегралов [1, c.70]. У неполной дифференциальной системы (1) размерность базиса первых интегралов устанавливаем по размерности базиса интегрально равносильной ей полной системы на области нормализации [3].

Поставим задачу построения базиса первых интегралов дифференциальной системы (1) в случае, когда она является якобиевой [2, c. 523], что с помощью скобок Пуассона выражается системой коммутаторных тождеств

$$\left[\mathfrak{A}_{j}(x), \mathfrak{A}_{\zeta}(x) \right] = 0, \quad \forall x \in \mathbb{R}^{n}, \quad j = \overline{1, m}, \ \zeta = \overline{1, m}. \tag{2}$$

С целью однозначного толкования определим следующие понятия.

Определение 1. Построенное на основании голоморфной на области \mathfrak{X} пространства \mathbb{R}^n функции $W\colon \mathfrak{X} \to \mathbb{R}$ семейство гиперповерхностей $W = \{x\colon W(x) = C\}$ назовём первым интегралом на области \mathfrak{X} системы (1), если производные Ли функции W в силу этой системы тождественно равны нулю на области \mathfrak{X} :

$$\mathfrak{A}_{j}W(x) = 0, \quad \forall x \in \mathfrak{X}, \quad j = \overline{1, m}.$$
 (3)

Определение 2[4-6]. Полином $w \colon \mathbb{R}^n \to \mathbb{C}$ назовём частным интегралом дифференциальной системы (1), если его производные Πu в силу этой системы тождественно равны

$$\mathfrak{A}_{j} w(x) = w(x) \lambda^{j}, \quad \forall x \in \mathbb{R}^{n}, \quad \lambda^{j} \in \mathbb{C}, \quad j = \overline{1, m}.$$
 (4)

Известные методы Якоби и Майера [1, c. 66-76; 7, c. 59-77; 8, c. 77-81] глобального и локального решения задачи по нахождению функционально независимых первых интегралов предполагают последовательное сведение системы (1) к обыкновенным дифференциальным системам. Вместе с тем для обыкновенных дифференциальных систем [6, 9] и системы Якоби в частных производных [10, 11] в настоящее время получены новые подходы к их интегрированию. Они позволили нам разработать

 $^{^{1}}$ Здесь и далее C — произвольная вещественная постоянная.

спектральный метод построения интегрального базиса системы (1), который основан на методе частных интегралов, изложенном в статье [9], и является регулярным.

Интегральная характеристическая система. Линейная однородная функция

$$p \colon x \to \sum_{i=1}^{n} b_i x_i, \quad \forall x \in \mathbb{R}^n, \qquad (p_i \in \mathbb{C}, i = \overline{1, n})$$

в соответствии с определением 2 будет частным интегралом системы (1), если и только если выполняется система тождеств (4) при w=p. Эта система тождеств распадается на линейную однородную систему

$$(A_j - \lambda^j E)b = 0, \quad j = \overline{1, m}, \qquad (5)$$

где $b=\operatorname{colon}(b_1,\dots,b_n)$, E — единичная матрица, квадратные матрицы n-го порядка $A_j=\|a_{j\xi i}\|$ (ξ — номер строки, i — номер столбца).

Систему

$$\det(A_j - \lambda^j E) = 0, \quad j = \overline{1, m}, \tag{6}$$

назовём интегральной характеристической системой, а её корни будем называть интегральными характеристическими корнями системы (1).

Заметим, что условие (2) якобиевости системы (1) равносильно перестановочности матриц : $A_jA_\zeta=A_\zeta A_j$, $j=\overline{1,m}$, $\zeta=\overline{1,m}$, что определяет связи между собственными числами и собственными векторами матриц A_j , $j=\overline{1,m}$ [12, с. 191 – 194].

 $oldsymbol{\Pi}$ емма 1. Пусть u — общий собственный вектор матриц A_j , $j=\overline{1,m}$. Тогда линейная однородная функция $p\colon x \to \nu x$, $\forall x \in \mathbb{R}^n$, является частным интегралом системы (1).

Действительно, если ν — общий собственный вектор матриц A_j , $j=1,\overline{m}$, то он является решением линейной однородной системы (5), где λ^j — собственные числа соответственно матриц A_j , $j=\overline{1,m}$, которым соответствует собственный вектор ν . Тогда выполняется система тождеств

$$\mathfrak{A}_{j}(\nu x) = \lambda^{j} \nu x, \quad \forall x \in \mathbb{R}^{n}, \qquad j = \overline{1, m},$$

и линейная однородная функция p является частным интегралом дифференциальной системы (1).

Построение первых интегралов в случае простых вещественных интегральных характеристических корней. Из системы (1) произвольным образом выделим уравнение в частных производных

$$\mathfrak{A}_{\zeta}(x)u = 0 \tag{1.}\zeta$$

со свойством: у матрицы A_{ζ} число элементарных делителей не превосходит числа элементарных делителей каждой из матриц A_{j} , $j=\overline{1,m}$. При этом интегральным характеристическим уравнением линейного однородного дифференциального уравнения в частных производных $(1,\zeta)$ является ζ —ое уравнение интегральной характеристической системы (6), которое будем обозначать $(6,\zeta)$.

Теорема 1. Пусть ν^k , $k=\overline{1,m+1}$, — общие вещественные собственные векторы матриц A_j , $j=\overline{1,m}$. Тогда первым интегралом якобиевой системы (1) будет семейство гиперповерхностей

$$W = \left\{ x \colon \prod_{k=1}^{m+1} |\nu^k x|^{h_k} = C \right\}, \tag{7}$$

где вещественные числа h_k , $k=\overline{1,m+1}$, являются нетривиальным решением линейной однородной системы

$$\sum_{k=1}^{m+1} \lambda_k^j h_k = 0, \quad j = \overline{1, m},$$

a λ_k^j — вещественные собственные числа матриц A_j , которым соответствуют собственные векторы ν^k , $k=\overline{1,m+1}$, $j=\overline{1,m}$.

Доказательство. Пусть [12, c. 194] ν^k , $k = \overline{1, m+1}$, — общие вещественные собственные векторы матриц A_1, \ldots, A_m . Тогда у этих матриц существуют вещественные собственные числа λ_k^j , $k = \overline{1, m+1}$, $j = \overline{1, m}$, которым соответствуют собственные векторы ν^k , $k = \overline{1, m+1}$. Согласно лемме 1 линейные однородные функции

$$p_k \colon x \to \nu^k x \,, \quad \forall \, x \in \mathbb{R}^n \,, \qquad k = \overline{1, m+1} \,,$$

являются частными интегралами системы (1), и выполняется система тождеств

$$\mathfrak{A}_j p_k(x) = \lambda_k^j p_k(x), \quad \forall x \in \mathbb{R}^n, \qquad j = \overline{1, m}, \ k = \overline{1, m+1}.$$
 (8)

Составим функцию

$$W \colon x \to \prod_{k=1}^{m+1} |p_k(x)|^{h_k}, \quad \forall x \in \mathfrak{X}, \qquad \mathfrak{X} \subset \mathbb{R}^n,$$

где h_k , $k=\overline{1,m+1}$, — вещественные числа, одновременно не равные нулю. Производные Ли этой функции в силу системы (1)

$$\mathfrak{A}_j W(x) =$$

$$= \prod_{k=1}^{m+1} |p_k(x)|^{h_k-1} \sum_{k=1}^{m+1} \operatorname{sgn} p_k(x) h_k \prod_{l=1, l \neq k}^{m+1} |p_l(x)| \mathfrak{A}_j p_k(x), \ \forall x \in \mathfrak{X}, j = \overline{1, m}.$$

С учётом тождеств (8) устанавливаем, что

$$\mathfrak{A}_j W(x) = \sum_{k=1}^{m+1} \lambda_k^j h_k W(x), \quad \forall x \in \mathfrak{X}, \qquad j = \overline{1, m}.$$

Если $\sum_{k=1}^{m+1} \lambda_k^j h_k = 0$, $j = \overline{1,m}$, то семейство (7) будет первым интегралом дифференциальной системы (1).

Следствие 1. Пусть ν^k , $k=\overline{1,m+1}$, — общие вещественные собственные векторы матриц A_j , $j=\overline{1,m}$. Тогда первым интегралом якобиевой системы (1) будет семейство гиперповерхностей

$$W_{12...m(m+1)} = \left\{ x \colon \prod_{k=1}^{m} |\nu^k x|^{-\triangle_k} |\nu^{m+1} x|^{\triangle} = C \right\},\,$$

где определитель $\Delta = \left| \lambda_k^j \right|$, а определители Δ_k , $k = \overline{1,m}$, — получены заменой k — го столбца в определителе Δ на $\operatorname{colon} \left(\lambda_{m+1}^1, \ldots, \lambda_{m+1}^m \right)$, λ_k^j — вещественные собственные числа матриц A_j , которым соответствуют собственные векторы ν^k , $k = \overline{1,m+1}$, $j = \overline{1,m}$.

У якобиевой системы

$$-x_1 \partial_1 u + (-3x_1 - 8x_2 - 18x_3 - 12x_4 - 15x_5) \partial_2 u +$$

$$+ (-4x_1 - 6x_2 - 9x_4 - 2x_5) \partial_3 u + (2x_2 + 10x_3 + 3x_4 + 6x_5) \partial_4 u +$$

$$+ (8x_1 + 12x_2 + 4x_3 + 18x_4 + 6x_5) \partial_5 u = 0,$$

$$-3x_{1} \partial_{1} u + (-4x_{1} - 15x_{2} - 29x_{3} - 21x_{4} - 20x_{5}) \partial_{2} u +$$

$$+ (-6x_{1} - 10x_{2} - 2x_{3} - 15x_{4} - 4x_{5}) \partial_{3} u + (4x_{2} + 16x_{3} + 5x_{4} + 10x_{5}) \partial_{4} u +$$

$$+ (12x_{1} + 20x_{2} + 8x_{3} + 30x_{4} + 10x_{5}) \partial_{5} u = 0$$

базис первых интегралов на областях $\mathfrak{X}_1 = \{x \colon x_1 < 0\}$ и $\mathfrak{X}_2 = \{x \colon x_1 > 0\}$ составляют семейства гиперповерхностей

$$W_{123} = \left\{ x : \frac{(2x_1 + 2x_2 + x_3 + 3x_4 + x_5)(x_1 + x_2 + 3x_3 + x_4 + 2x_5)^2}{x_1^2} = C_1 \right\},\,$$

$$W_{124} = \left\{ x : \frac{(2x_1 + 2x_2 + x_3 + 3x_4 + x_5)(x_1 + 2x_2 + 2x_3 + 3x_4 + 2x_5)}{x_1} = C_2 \right\},\,$$

$$W_{125} = \left\{ x : \frac{(2x_1 + 2x_2 + x_3 + 3x_4 + x_5)^2 (2x_3 + x_5)}{x_1^2} = C_3 \right\},\,$$

которые построены (следствие 1) на основании общих линейно независимых собственных векторов $\nu^1=(2,2,1,3,1),\ \nu^2=(1,0,0,0,0),\ \nu^3=(1,1,3,1,2),\ \nu^4=(1,2,2,3,2),\ \nu^5=(0,0,2,0,1),\ \text{соответствующих собственным числам }\lambda^1_1=-2,\ \lambda^2_1=-4;\ \lambda^1_2=-1,\ \lambda^2_2=-3;\ \lambda^1_3=0,\ \lambda^2_3=-1;\ \lambda^1_4=1,\ \lambda^2_4=1;\ \lambda^1_5=2,\ \lambda^2_5=2.$

У якобиевой системы [7, с. 200]

$$2(x_3 + x_4) \partial_2 u + x_2 \partial_3 u + x_2 \partial_4 u = 0,$$

$$-x_1 \partial_1 u + x_2 \partial_2 u + x_4 \partial_3 u + x_3 \partial_4 u = 0$$

базис первых интегралов на областях $\mathfrak{X}_1 = \{x \colon x_1 < 0\}$ и $\mathfrak{X}_2 = \{x \colon x_1 > 0\}$ составляют семейства гиперповерхностей

$$W_{123} = \left\{ x \colon \frac{x_3 - x_4}{x_1} = C_1 \right\},\,$$

$$W_{124} = \{x: x_1^2 [x_2^2 - (x_3 + x_4)^2] = C_2 \},$$

которые построены (следствие 1) на основании общих линейно независимых собственных векторов $\nu^1=(0,-1,1,1),\ \nu^2=(1,0,0,0),\ \nu^3=(0,0,1,-1),\ \nu^4=(0,1,1,1),$ соответствующих собственным числам $\lambda^1_1=-2,\ \lambda^2_1=1;\ \lambda^1_2=0,\ \lambda^2_2=-1;\ \lambda^1_3=0,\ \lambda^2_3=-1;\ \lambda^1_4=2,\ \lambda^2_4=1.$

Построение первых интегралов в случае простых комплексных интегральных характеристических корней. В случае, когда w — комплекснозначный частный интеграл системы (1), система тождеств (4) распадается на вещественную систему тождеств

$$\mathfrak{A}_{j}\operatorname{Re}w(x) = \operatorname{Re}w(x) \stackrel{*}{\lambda}^{j} - \operatorname{Im}w(x) \stackrel{\sim}{\lambda}^{j},$$

$$\mathfrak{A}_{j}\operatorname{Im}w(x) = \operatorname{Re}w(x) \stackrel{\sim}{\lambda}^{j} + \operatorname{Im}w(x) \stackrel{*}{\lambda}^{j},$$

$$\forall x \in \mathbb{R}^{n}, \quad \lambda^{j} = \stackrel{*}{\lambda}^{j} + \stackrel{\sim}{\lambda}^{j}i, \quad j = \overline{1,m}.$$

$$(9)$$

Тем самым, получаем следующий критерий существования комплекснозначного частного интеграла у системы (1).

 Π емма 2. Полином w является комплекснозначным частным интегралом дифференциальной системы (1) тогда и только тогда, когда выполняется система тождеств (9).

С учётом этого критерия устанавливаем следующие закономерности относительно комплекснозначного частного интеграла системы (1).

Свойство 1. Если система (1) имеет комплекснозначный частный интеграл w, то ему комплексно сопряженный полином \overline{w} также является комплексозначным частным интегралом системы (1), причём имеет место система тождеств

$$\mathfrak{A}_{j}\overline{w}(x) = \overline{w}(x)\overline{\lambda^{j}}, \quad \forall x \in \mathbb{R}^{n}, \quad j = \overline{1, m},$$

где $\overline{\lambda^j}$, $j=\overline{1,m}$, комплексно сопряжены соответственно с числами λ^j из тождеств (4).

Свойство 2. Если система (1) имеет комплекснозначный частный интеграл w, то вещественный полином

$$P: x \to \operatorname{Re}^2 w(x) + \operatorname{Im}^2 w(x), \quad \forall x \in \mathbb{R}^n,$$
 (10)

является частным интегралом дифференциальной системы (1) и на пространстве \mathbb{R}^n выполняется система тождеств

$$\mathfrak{A}_{j}\left[\operatorname{Re}^{2}w(x)+\operatorname{Im}^{2}w(x)\right]\equiv2\left[\operatorname{Re}^{2}w(x)+\operatorname{Im}^{2}w(x)\right]\overset{*}{\lambda}{}^{j},\ j=\overline{1,m},\ (11)$$
 где числа $\lambda^{j},\ j=\overline{1,m},\$ находятся из тождеств (4).

Свойство 3. Пусть система (1) имеет комплекснозначный частный интеграл w. Тогда производные Ли в силу системы (1) функции

$$\psi \colon x \to \exp \varphi(x), \quad \forall \, x \in \mathfrak{X},$$

где

$$\varphi(x) \colon x \to \arctan \frac{\operatorname{Im} w(x)}{\operatorname{Re} w(x)}, \quad \forall x \in \mathfrak{X},$$
(12)

равны

$$\mathfrak{A}_{j} \exp \varphi(x) = \exp \varphi(x) \stackrel{\sim}{\lambda}^{j}, \quad \forall x \in \mathfrak{X}, \quad j = \overline{1, m},$$
 (13)

где числа λ^j , $j=\overline{1,m}$, находятся из тождеств (4), область $\mathfrak X$ из пространства $\mathbb R^n$ такова, что её дополнение до пространства $\mathbb R^n$ есть множество всех нулей полинома $\mathrm{Re}\,w$.

Из тождеств (13) следует формула вычисления производных Ли в силу системы (1) функции аргумента (12) комплекснозначного частного интеграла w этой системы:

$$\mathfrak{A}_{j}\varphi(x) = \widetilde{\lambda}^{j}, \quad \forall x \in \mathfrak{X}, \quad j = \overline{1, m}.$$
 (14)

Свойство 4. Произведение u_1u_2 полиномов $u_1: \mathbb{R}^n \to \mathbb{K}$ и $u_2: \mathbb{R}^n \to \mathbb{K}$, где \mathbb{K} — поле вещественных \mathbb{R} или комплексных \mathbb{C} чисел, является частным интегралом (вещественным или комплекснозначным) системы (1) тогда и только тогда, когда его сомножители u_1 и u_2 являются частными интегралами системы (1).

Свойство 5. Вещественный полином (10) является частным интегралом системы (1), если и только если система (1) имеет комплекснозначный частный интеграл w (или комплексно сопряжённый ему).

 ${f Teopema~2.}~ \mathit{Пусть}~ \nu^k = \stackrel{*}{\nu}{}^k + \stackrel{\sim}{\nu}{}^k i\,, \ k=\overline{1,s}\,, \ s\leqslant (m+1)/2\,,$ $u~ \nu^{\theta}\,, \ \theta=\overline{s+1,m+1-s}$ — соответственно общие комплексные (среди которых нет комплексно сопряжённых) и вещественные собственные векторы матриц $A_j\,, \ j=\overline{1,m}\,.$ Тогда первым интегралом якобиевой системы (1) является семейство гиперповерхностей

$$W = \left\{ x \colon \prod_{k=1}^{s} \left[P_{k}(x) \right]^{h_{k}^{*}} \exp \left[-2 \stackrel{\sim}{h_{k}} \varphi_{k}(x) \right] \prod_{\theta=s+1}^{m+1-s} \left| \nu^{\theta} x \right|^{h_{\theta}} = C \right\}, \quad (15)$$

где полиномы

$$P_k \colon x \to \left(\stackrel{*}{\nu}{}^k x \right)^2 + \left(\stackrel{\sim}{\nu}{}^k x \right)^2, \quad \forall x \in \mathbb{R}^n, \qquad k = \overline{1, s},$$

функции

$$\varphi_k \colon x \to \arctan \frac{\widetilde{\nu}^k x}{{\nu^k x}}, \quad \forall x \in \mathfrak{X}, \qquad k = \overline{1, s},$$

а вещественные числа $\stackrel{*}{h_k}$, $\stackrel{\sim}{h_k}$, $k=\overline{1,s}$, h_{θ} , $\theta=\overline{s+1,m+1-s}$, составляют нетривиальное решение линейной однородной системы

$$\sum_{k=1}^{s} \left(2 \lambda_{k}^{*j} h_{k}^{*} - 2 \lambda_{k}^{*j} h_{k}^{*} \right) + \sum_{\theta=s+1}^{m+1-s} \lambda_{\theta}^{j} h_{\theta} = 0, \quad j = \overline{1, m},$$

где $\lambda_k^j = \stackrel{*}{\lambda}_k^j + \stackrel{\sim}{\lambda}_k^j i$, $k = \overline{1,s}$, $j = \overline{1,m}$, $u \lambda_\theta^j$, $\theta = \overline{s+1,m+1-s}$, $j = \overline{1,m}$ — соответственно комплексные u вещественные собственные u числа матриц A_j , $j = \overline{1,m}$, которым соответствуют собственные векторы ν^k , $k = \overline{1,s}$, $u \nu^\theta$, $\theta = \overline{s+1,m+1-s}$.

Доказательство. Пусть $\nu^k = \stackrel{*}{\nu}{}^k + \stackrel{\sim}{\nu}{}^k i$, $k = \overline{1,s}$, $s \leqslant (m+1)/2$, и ν^θ , $\theta = \overline{s+1}, m+1-s$, — соответственно общие комплексные и вещественные собственные векторы матриц A_j , $j = \overline{1,m}$ [12, c.194]. Тогда у этих матриц существуют комплексные собственные числа λ_k^j , $k = \overline{1,s}$, $j = \overline{1,m}$, и вещественные собственные числа λ_θ^j , $\theta = \overline{s+1}, m+1-s$, $j = \overline{1,m}$, которым соответствуют собственные векторы ν^k , $k = \overline{1,s}$, и ν^θ , $\theta = \overline{s+1}, m+1-s$. При этом согласно лемме 1 и свойству 1 линейные однородные функции $p_k \colon x \to \nu^k x$, $\overline{p_k} \colon x \to \overline{\nu^k x}$, $p_\theta \colon x \to \nu^\theta x$, $\forall x \in \mathbb{R}^n$, $k = \overline{1,s}$, $\theta = \overline{s+1}, m+1-s$, являются частными интегралами системы (1). Следовательно, на пространстве \mathbb{R}^n выполняется система тождеств

$$\mathfrak{A}_{j} \overset{*}{\nu}{}^{k} x \equiv \overset{*}{\lambda}_{k}^{j} \overset{*}{\nu}{}^{k} x - \overset{\sim}{\lambda}_{k}^{j} \overset{\sim}{\nu}{}^{k} x, \quad \mathfrak{A}_{j} \overset{\sim}{\nu}{}^{k} x \equiv \overset{\sim}{\lambda}_{k}^{j} \overset{*}{\nu}{}^{k} x + \overset{*}{\lambda}_{k}^{j} \overset{\sim}{\nu}{}^{k} x,$$

$$\mathfrak{A}_{j} \nu^{\theta} x \equiv \lambda_{\theta}^{j} \nu^{\theta} x, \quad j = \overline{1, m}, \quad k = \overline{1, s}, \quad \theta = \overline{s + 1, m + 1 - s}.$$

$$(16)$$

Составим функцию

$$W: x \to \prod_{k=1}^{s} [P_k(x)]^{h_k^*} \exp \left[-2 h_k^{\infty} \varphi_k(x)\right] \prod_{\theta=s+1}^{m+1-s} |\nu^{\theta} x|^{h_{\theta}}, \ \forall x \in \mathcal{X},$$

где $\overset{*}{h_k}$, $\overset{\sim}{h_k}$, $k=\overline{1,s}$, h_{θ} , $\theta=\overline{s+1,m+1-s}$ — вещественные числа одновременно не равные нулю. Производные Ли в силу системы (1)

$$\mathfrak{A}_i W(x) =$$

$$= \left\{ \prod_{k=1}^{s} \left[P_{k}(x) \right]^{\overset{*}{h_{k}}-1} \exp \left[-2 \stackrel{\sim}{h_{k}} \varphi_{k}(x) \right] \sum_{k=1}^{s} \overset{*}{h_{k}} \prod_{l=1, l \neq k}^{s} P_{l}(x) \mathfrak{A}_{j} P_{k}(x) + \prod_{k=1}^{s} \left[P_{k}(x) \right]^{\overset{*}{h_{k}}} \sum_{k=1}^{s} \mathfrak{A}_{j} \exp \left[-2 \stackrel{\sim}{h_{k}} \varphi_{k}(x) \right] \right\} \prod_{\theta=s+1}^{m+1-s} \left| \nu^{\theta} x \right|^{h_{\theta}} + \left\{ \prod_{k=1}^{s} \left[P_{k}(x) \right]^{\overset{*}{h_{k}}} \exp \left[-2 \stackrel{\sim}{h_{k}} \varphi_{k}(x) \right] \prod_{\theta=s+1}^{m+1-s} \left| \nu^{\theta} x \right|^{h_{\theta}-1} \cdot \sum_{\theta=s}^{m+1-s} \sup \left(\nu^{\theta} x \right) h_{\theta} \prod_{l=s+1, l \neq \theta}^{m+1-s} \left| \nu^{l} x \right| \mathfrak{A}_{j} \left(\nu^{\theta} x \right), \forall x \in \mathfrak{X}, j = \overline{1, m}.$$

Отсюда в силу тождеств (16) и свойств 2, 3 устанавливаем, что

$$\mathfrak{A}_{j}W(x) \equiv \left[\sum_{k=1}^{s} \left(2 \stackrel{*}{\lambda_{k}}^{j} \stackrel{*}{h_{k}} - 2 \stackrel{\sim}{\lambda_{k}}^{j} \stackrel{\sim}{h_{k}} \right) + \sum_{\theta=s+1}^{m+1-s} \lambda_{\theta}^{j} h_{\theta} \right] W(x), \ j = \overline{1, m}.$$

Если

$$\sum_{k=1}^{s} \left(2 \stackrel{*}{\lambda_{k}} \stackrel{*}{h_{k}} - 2 \stackrel{\sim}{\lambda_{k}} \stackrel{\sim}{h_{k}} \right) + \sum_{\theta=s+1}^{m+1-s} \lambda_{\theta}^{j} h_{\theta} = 0, \ j = \overline{1, m},$$

то семейство (15) будет первым интегралом системы (1).

Для якобиевой системы

$$(-x_1 + 2x_2 - 2x_3) \partial_1 u + (-6x_1 + 5x_2 - 4x_3 + 2x_4) \partial_2 u +$$

$$+ (-3x_1 + 2x_2 - 2x_3) \partial_3 u + (2x_1 - x_2 + 2x_3) \partial_4 u = 0,$$

$$(-4x_1 + 2x_2 + 2x_3 + 4x_4) \partial_1 u + (-5x_1 + x_2 + 6x_3 + 6x_4) \partial_2 u +$$

$$+ (-x_2 + 3x_3 + x_4) \partial_3 u + (-3x_1 + 2x_2 + 3x_4) \partial_4 u = 0$$

по собственным числам $\lambda_1^1=1+i,\ \lambda_2^1=1-i,\ \lambda_3^1=-1,\ \lambda_4^1=1;$ $\lambda_1^2=i,\ \lambda_2^2=-i,\ \lambda_3^2=1,\ \lambda_4^2=2$ и общим линейно независимым собственным векторам $\nu^1=(1+i,-i,-1+i,-1),\ \nu^2=(1-i,i,-1-i,-1),$

 $u^3 = (1, -1, 2, 0), \quad \nu^4 = (-1, 0, 2, 2)$ строим (теорема 2) базис первых интегралов на областях $\mathcal{X}_1 = \{x\colon x_1-x_3-x_4<0\}$ и $\mathcal{X}_2 = \{x\colon x_1-x_3-x_4>0\}$, состоящий из двух семейств гиперповерхностей

$$W_1 = \left\{ x : (x_1 - x_2 + 2x_3) \left[(x_1 - x_3 - x_4)^2 + \right] \right\}$$

+
$$(x_1 - x_2 + x_3)^2$$
 exp $\left(-\arctan \frac{x_1 - x_2 + x_3}{x_1 - x_3 - x_4} \right) = C_1$

И

$$W_2 = \left\{ x: (-x_1 + 2x_3 + 2x_4)^2 \left[(x_1 - x_3 - x_4)^2 + \right] \right\}$$

+
$$(x_1 - x_2 + x_3)^2$$
 $\left[\exp \left(-4 \operatorname{arctg} \frac{x_1 - x_2 + x_3}{x_1 - x_3 - x_4} \right) = C_2 \right]$.

Для якобиевой системы [7, с. 197]

$$x_1 \partial_1 u + x_2 \partial_2 u + x_3 \partial_3 u = 0, \qquad x_2 \partial_1 u - x_1 \partial_2 u - x_3 \partial_3 u = 0$$

по собственным числам $\lambda_1^1=\lambda_2^1=\lambda_3^1=1$; $\lambda_1^2=-i$, $\lambda_2^2=i$, $\lambda_3^2=-1$ и общим линейно независимым собственным векторам $\nu^1=(1,i,0)$, $\nu^2=(1,-i,0),\ \nu^3=(0,0,1)$ строим (теорема 2) базис первых интегралов на областях из множества $\{x\colon x_1\neq 0,\ x_3\neq 0\}$, состоящий из семейства гиперповерхностей

$$W = \left\{ x \colon \frac{x_1^2 + x_2^2}{x_3^2} \exp \left[2 \arctan \frac{x_2}{x_1} \right] = C \right\}.$$

Для якобиевой системы [7, с. 202]

$$x_1 \partial_1 u - x_2 \partial_2 u + x_3 \partial_3 u - x_4 \partial_4 u = 0,$$

$$x_3 \partial_1 u - x_1 \partial_3 u = 0, \qquad x_4 \partial_2 u - x_2 \partial_4 u = 0$$

по собственным числам $\lambda_1^1 = \lambda_2^1 = -1$, $\lambda_3^1 = \lambda_4^1 = 1$; $\lambda_1^2 = \lambda_2^2 = 0$, $\lambda_3^2 = -i$, $\lambda_4^2 = i$; $\lambda_1^3 = \lambda_2^3 = 0$, $\lambda_3^3 = -i$, $\lambda_4^2 = i$ и общим линейно независимым собственным векторам $\nu^1 = (0, -i, 0, 1)$, $\nu^2 = (0, i, 0, 1)$, $\nu^3 = (1, 0, i, 0)$, $\nu^4 = (1, 0, -i, 0)$ строим (теорема 2) базис первых интегралов

$$W = \{x: (x_1^2 + x_3^2)(x_2^2 + x_4^2) = C \}.$$

 ${f Teopema~3.}$ Пусть ${
u}^{2 au-1}={
u}^*{\ }^{ au}+{
u}^{ au}{\ }^{ au}i,\ {
u}^{2 au}={
u}^*{\ }^{ au}-{
u}^{ au}i,\ {
u}={
u}^{ au}i,\ {$

$$W_{1} = \left\{ x : \prod_{k=1}^{s} \left[P_{k}(x) \right]^{\stackrel{*}{h_{2k-1}} + \stackrel{*}{h_{2k}}} \exp \left[-2 \left(\stackrel{\sim}{h_{2k-1}} - \stackrel{\sim}{h_{2k}} \right) \varphi_{k}(x) \right] \right\}$$

$$\cdot \left[P_{2s+1}(x) \right]^{\stackrel{*}{h_{2s+1}}} \exp \left[-2 \stackrel{\sim}{h_{2s+1}} \varphi_{2s+1}(x) \right] \prod_{\theta=2s+2}^{m+1} \left(\nu^{\theta} x \right)^{\stackrel{*}{2h_{\theta}}} = C_{1} \right\},$$

$$(17)$$

$$W_{2} = \left\{ x : \prod_{k=1}^{s} \left[P_{k}(x) \right]^{\widetilde{h}_{2k-1} + \widetilde{h}_{2k}} \exp \left[2 \left(h_{2k-1}^{*} - h_{2k}^{*} \right) \varphi_{k}(x) \right] \cdot \left[P_{2s+1}(x) \right]^{\widetilde{h}_{2s+1}} \exp \left[2 h_{2s+1}^{*} \varphi_{2s+1}(x) \right] \prod_{\theta=2s+2}^{m+1} \left(\nu^{\theta} x \right)^{2\widetilde{h}_{\theta}} = C_{2} \right\},$$

$$(18)$$

где полиномы

$$P_k: x \to \left(\overset{*}{\nu}{}^k x\right)^2 + \left(\widetilde{\nu}{}^k x\right)^2, \quad \forall x \in \mathbb{R}^n, \qquad k = \overline{1,s}, \ k = 2s + 1,$$

функции

$$\varphi_k \colon x \to \arctan \frac{\widetilde{\nu}^k x}{v^k x}, \quad \forall x \in \mathfrak{X}, \qquad k = \overline{1, s}, \ k = 2s + 1,$$

а комплексные числа $h_k = \overset{*}{h_k} + \overset{\sim}{h_k} i, \ k = \overline{1,m+1},$ составляют нетривиальное решение линейной однородной системы

$$\sum_{k=1}^{m+1} \lambda_k^j h_k = 0, \quad j = \overline{1, m},$$

 $z\partial e$ $\lambda_{2 au-1}^j=\overset{*}{\lambda_{ au}^j}+\overset{\sim}{\lambda_{ au}^j}i\,,\;\;\lambda_{2 au}^j=\overset{*}{\lambda_{ au}^j}-\overset{\sim}{\lambda_{ au}^j}i\,,\;\;s\leqslant m/2\,,\;\; au=\overline{1,s}\,,\;\;\lambda_{2s+1}^j==\overset{*}{\lambda_{2s+1}^j}+\overset{\sim}{\lambda_{2s+1}^j}i\,,\;\;u\;\;\lambda_{\theta}^j,\;\theta=\overline{2s+2,m+1}\,,\;-$ соответственно комплексные и вещественные собственные числа матриц $A_j\,,\;j=\overline{1,m}\,,\;\;$ которым соответствуют собственные векторы $\nu^k\,,\;k=\overline{1,m+1}\,.$

Доказательство. Построим две функции

$$\overset{*}{W} \colon x \to \prod_{k=1}^{2s} (\nu^{k} x)^{h_{k}} (\nu^{2s+1} x)^{h_{2s+1}} \prod_{\theta=2s+2}^{m+1} (\nu^{\theta} x)^{h_{\theta}}, \quad \forall x \in \mathfrak{X},$$

И

$$\overset{**}{W}: x \to \prod_{k=1}^{2s} (\nu^k x)^{l_k} (\overline{\nu^{2s+1}} x)^{l_{2s+1}} \prod_{\theta=2s+2}^{m+1} (\nu^{\theta} x)^{l_{\theta}}, \quad \forall x \in \mathcal{X},$$

где h_k , l_k , $k=\overline{1,m+1}$, — некоторые комплексные числа. Функции $\stackrel{*}{W}$ и $\stackrel{*}{W}$ в общем случае представляют собой скалярные комплекснозначные функции вещественных аргументов. Действие операторов на них

$$\mathfrak{A}_{j} \overset{**}{W}(x) = \left[\sum_{k=1}^{2s} \lambda_{k}^{j} l_{k} + \overline{\lambda_{2s+1}^{j}} l_{2s+1} + \sum_{\theta=2s+2}^{m+1} \lambda_{\theta}^{j} l_{\theta} \right] \overset{**}{W}(x),$$

$$\mathfrak{A}_{j} \overset{*}{W}(x) = \sum_{k=1}^{m+1} \lambda_{k}^{j} h_{k} \overset{*}{W}(x), \quad \forall x \in \mathfrak{X}, \qquad j = \overline{1, m}.$$

Если совместна система

$$\sum_{k=1}^{m+1} \lambda_k^j h_k = 0, \qquad j = \overline{1, m},$$

то семейство гиперповерхностей $\stackrel{*}{W}=\left\{x\colon\stackrel{*}{W}(x)=C\right\}$ будет первым интегралом дифференциальной системы (1) .

Пусть $h_k=\stackrel{*}{h_k}+\stackrel{\sim}{h_k}i\,,\;k=\overline{1,m+1}\,,$ — решение этой системы. Тогда решением системы

$$\sum_{k=1}^{2s} \lambda_k^j l_k + \overline{\lambda_{2s+1}^j} l_{2s+1} + \sum_{\theta=2s+2}^{m+1} \lambda_{\theta}^j l_{\theta} = 0, \quad j = \overline{1, m},$$

являются числа

$$l_{2k-1} = \overset{*}{h}_{2k} - \tilde{h}_{2k} i, \ l_{2k} = \overset{*}{h}_{2k-1} - \tilde{h}_{2k-1} i, \quad k = \overline{1,s},$$

$$l_{2s+1} = \overset{*}{h}_{2s+1} - \tilde{h}_{2s+1} i, \quad l_{\theta} = \overset{*}{h}_{\theta} - \tilde{h}_{\theta} i, \quad \theta = \overline{2s+2, m+1}.$$

При этом семейство гиперповерхностей $\stackrel{**}{W} = \left\{ x \colon \stackrel{**}{W}(x) = C \right\}$ будет первым интегралом системы (1).

Положив $W_1 = \stackrel{*}{W} \stackrel{**}{W}$ и $W_2 = \left(\stackrel{**}{W} / \stackrel{*}{W} \right)^i$, получим соответственно первые интегралы видов (17) и (18).

Для якобиевой системы [1, с. 73; 7, с. 200]

$$x_1 \partial_1 u - x_2 \partial_2 u + x_3 \partial_3 u - x_4 \partial_4 u = 0,$$

$$x_3 \partial_1 u + x_4 \partial_2 u - x_1 \partial_3 u - x_2 \partial_4 u = 0$$

по собственными числами $\lambda_1^1=\lambda_2^1=-1$, $\lambda_3^1=\lambda_4^1=1$; $\lambda_1^2=\lambda_2^2=-i$, $\lambda_3^2=\lambda_4^2=i$ и общим линейно независимым собственным векторам $\nu^1=(0,-i,0,1),\ \nu^2=(0,i,0,1),\ \nu^3=(-i,0,1,0),\ \nu^4=(i,0,1,0)$ строим (теорема 3) базис первых интегралов

$$W_1 = \{ x: x_1x_2 + x_3x_4 = C_1 \}, \quad W_2 = \{ x: x_1x_4 - x_2x_3 = C_2 \}.$$

Для якобиевой системы

$$(4x_1 - 4x_4 - 4x_5) \partial_1 u + (-2x_1 + 2x_2 + 4x_3 + 8x_4 + 4x_5) \partial_2 u +$$

$$+ (2x_1 + 2x_2 - 8x_4 - 4x_5) \partial_3 u + (-7x_1 - 7x_2 - 2x_3 + 6x_4 + 4x_5) \partial_4 u +$$

$$+ (11x_1 + 7x_2 + 2x_3 - 2x_4) \partial_5 u = 0,$$

$$(4x_1 - 2x_4 - 2x_5) \partial_1 u + (4x_2 + 4x_3 + 6x_4 + 2x_5) \partial_2 u + (-6x_4 - 2x_5) \partial_3 u + (-5x_1 - 5x_2 + 6x_4 + 2x_5) \partial_4 u + (7x_1 + 5x_2 - 2x_4 + 2x_5) \partial_5 u = 0,$$

$$(8x_4 - 8x_5) \partial_1 u + (6x_1 + 6x_2 + 12x_3 + 20x_4 + 8x_5) \partial_2 u +$$

$$+ (-6x_1 - 18x_2 - 24x_3 - 20x_4 - 8x_5) \partial_3 u + (-9x_1 + 3x_2 + 18x_3 +$$

$$+ 14x_4 + 8x_5) \partial_4 u + (17x_1 - 3x_2 - 18x_3 - 14x_4 - 8x_5) \partial_5 u = 0$$

по комплексным и вещественным собственным числам $\lambda_1^1=4+4i,\ \lambda_2^1=4-4i,\ \lambda_3^1=4i,\ \lambda_4^1=-4i,\ \lambda_5^1=4;\ \lambda_1^2=4+2i,\ \lambda_2^2=4-2i,\ \lambda_3^2=2+4i,\ \lambda_4^2=2-4i,\ \lambda_5^2=4;\ \lambda_1^3=8i,\ \lambda_2^3=-8i,\ \lambda_3^3=12i,\ \lambda_4^3=-12i,\ \lambda_5^2=-12$ и общим линейно независимым собственным векторам $\nu^1=(1,0,0,i,i),\ \nu^2=(1,0,0,-i,-i),\ \nu^3=(1+2i,1+2i,2,2,0),\ \nu^4=(1-2i,1-2i,2,2,0),\ \nu^5=(0,1,1,0,0)$ строим (теорема 3) базис первых интегралов

$$W_1 = \left\{ x : \frac{\left[x_1^2 + (x_4 + x_5)^2 \right]^2}{(x_2 + x_3)^2 \left[(x_1 + x_2 + 2x_3 + 2x_4)^2 + (2x_1 + 2x_2)^2 \right]} \right\}$$

$$\cdot \exp\left(-2 \arctan \frac{2x_1 + 2x_2}{x_1 + x_2 + 2x_3 + 2x_4}\right) = C_1 \right\},\,$$

$$W_2 = \left\{ x : \frac{\left[(x_1 + x_2 + 2x_3 + 2x_4)^2 + (2x_1 + 2x_2)^2 \right]^5}{(x_2 + x_3)^{10}} \cdot \exp \left(12 \arctan \frac{x_4 + x_5}{x_1} - 10 \arctan \frac{2x_1 + 2x_2}{x_1 + x_2 + 2x_3 + 2x_4} \right) = C_2 \right\}$$

на областях \mathfrak{X} из множества $\{x: x_1 \neq 0, x_2 + x_3 \neq 0, x_1 + x_2 + 2x_3 + 2x_4 \neq 0\}$.

Для якобиевой системы

$$(2x_1 - 3x_2 - 6x_3 - 4x_4) \partial_1 u + (-4x_1 + 4x_2 + 6x_3 + 2x_4) \partial_2 u +$$

$$+ (4x_1 - 4x_2 - 8x_3 - 5x_4) \partial_3 u + (-3x_1 + 4x_2 + 7x_3 + 4x_4) \partial_4 u = 0,$$

$$(3x_1 - x_2 - 6x_3 - 6x_4) \partial_1 u + (-6x_1 + 3x_2 + 4x_3) \partial_2 u +$$

$$+ (6x_1 - x_2 - 5x_3 - 4x_4) \partial_3 u + (-4x_1 + 2x_2 + 6x_3 + 5x_4) \partial_4 u = 0$$

по комплексным собственным числам $\lambda_1^1=1+i,\ \lambda_2^1=1-i,\ \lambda_3^1=i,$ $\lambda_4^1=-i;\ \lambda_1^2=2+i,\ \lambda_2^2=2-i,\ \lambda_3^2=1+2i,\ \lambda_4^2=1-2i$ и общим линейно независимым собственным векторам $\nu^1=(-1+i,2-i,2,2i),\ \nu^2=(-1-i,2+i,2,-2i,),\ \nu^3=(1,-i,1,2+i),\ \nu^4=(1,i,1,2-i)$ строим (теорема 3) семейства гиперповерхностей

$$W_1 = \left\{ x : \frac{(-x_1 + 2x_2 + 2x_3)^2 + (x_1 - x_2 + 2x_4)^2}{(x_1 + x_3 + 2x_4)^2 + (-x_2 + x_4)^2} \cdot \exp\left(-2 \arctan \frac{x_1 - x_2 + 2x_4}{-x_1 + 2x_2 + 2x_3} \right) = C_1 \right\}$$

И

$$W_2 = \left\{ x : \left[(-x_1 + 2x_2 + 2x_3)^2 + (x_1 - x_2 + 2x_4)^2 \right] \cdot \exp\left(-4 \arctan \frac{-x_2 + x_4}{x_1 + x_3 + 2x_4} \right) = C_2 \right\},$$

которые, будучи функционально независимыми, образуют базис первых интегралов на областях $\mathfrak X$ из множества $\{x: x_1+x_3+2x_4\neq 0\,,\ x_1-2x_2-2x_3\neq 0\,\}$.

Построение первых интегралов в случае кратных интегральных характеристических корней основано на следующем понятии.

Определение 3. Пусть λ_l^{ζ} — собственное число матрицы A_{ζ} , которому соответствует элементарный делитель кратности s и собственный вектор ν^{0l} . Вектор ν^{kl} , координатами которого являются решения системы уравнений

$$\left(A_{\zeta} - \lambda_{l}^{\zeta} E\right) \operatorname{colon}\left(\nu_{1}^{kl}, \dots, \nu_{n}^{kl}\right) = k \operatorname{colon}\left(\nu_{1}^{k-1, l}, \dots, \nu_{n}^{k-1, l}\right),
k = \overline{1, s-1},$$
(19)

назовём k-ым присоединённым вектором матрицы A_{ζ} соответствующим собственному числу λ_{l}^{ζ} .

Теорема 4. Пусть ν^{0l} и $\nu^{\theta l}$, $\theta = \overline{1,s_l-1}$, $l = \overline{1,r}$, — общие вещественные собственные и присоединённые векторы матриц A_j , $j = \overline{1,m}$, которые соответствуют собственным числам λ_l^{ζ} , $l = \overline{1,r}$, имеющим элементарные делители кратности s_l при $\sum_{l=1}^r s_l \geqslant m+1$. Тогда первым интегралом якобиевой дифференциальной системы (1) является семейство гиперповерхностей

$$W = \left\{ x : \prod_{\xi=1}^{k} \left(\nu^{0\xi} x \right)^{h_{\xi 0}} \exp \sum_{q=1}^{\varepsilon_{\xi}} h_{\xi q} v_{q}^{\xi}(x) = C \right\},$$
 (20)

где функции $v_q^\xi \colon \mathfrak{X} \to \mathbb{R} \,, \ q = \overline{1, arepsilon_\xi} \,, \ \xi = \overline{1, k} \,, \ makue, что$

$$\nu^{i\xi}x = \sum_{q=1}^{i} {i-1 \choose q-1} v_q^{\xi}(x) \nu^{i-q,\xi}x, \quad \forall x \in \mathcal{X}, \quad i = \overline{1, \varepsilon_{\xi}}, \ \xi = \overline{1, k}, \quad (21)$$

 $u\sum_{ au=1}^k arepsilon_{ au}=m-k+1, \quad arepsilon_{\xi}\leqslant s_{\xi}-1, \quad \xi=\overline{1,k}, \quad k\leqslant r.$ При этом функции-решения v_a^{ξ} такие, что

$$\mathfrak{A}_j\,v_q^\xi(x)=\mu_q^{\xi j}\,,\quad \forall x\in\mathfrak{X}\,,\qquad \mu_q^{\xi j}=\mathrm{const}\,,\ q=\overline{1,\varepsilon_\xi}\,,\ \xi=\overline{1,k}\,,\ j=\overline{1,m}\,,$$

а числа $h_{\xi q}$, $q=\overline{0,\varepsilon_{\xi}}$, $\xi=\overline{1,k}$, составляют нетривиальное решение алгебраической линейной однородной системы

$$\sum_{\xi=1}^{k} \left(\lambda_{\xi}^{j} h_{\xi 0} + \sum_{q=1}^{\varepsilon_{\xi}} \mu_{q}^{\xi j} h_{\xi q} \right) = 0, \quad j = \overline{1, m},$$

где λ_{ξ}^{j} , $\xi=\overline{1,k}$, $j=\overline{1,m}$, суть вещественные собственные числа матриц A_{j} , $j=\overline{1,m}$, которым соответствуют собственные векторы $\nu^{0\xi}$, $\xi=\overline{1,k}$.

Доказательство. На основании системы равенств (19) и леммы 1 устанавливаем, что

$$\mathfrak{A}_{\zeta}\left(\nu^{0l} x\right) = \lambda_{l}^{\zeta} \nu^{0l} x, \quad \forall x \in \mathbb{R}^{n}, \qquad l = \overline{1, r},$$

$$\mathfrak{A}_{\zeta}\left(\nu^{\theta l} x\right) = \lambda_{l}^{\zeta} \nu^{\theta l} x + \theta \nu^{\theta - 1, l} x, \quad \forall x \in \mathbb{R}^{n}, \qquad \theta = \overline{1, s_{l}}, \ l = \overline{1, r}.$$

$$(22)$$

Систему (21) всегда можно разрешить относительно v_q^ξ , так как её определитель равен $\left(\nu^{0\xi}x\right)^{\varepsilon_\xi-1}$, $\forall\,x\in\mathbb{R}^n$, и отличен от тождественного нуля на области $\mathfrak X$.

Докажем, что для функций v_q^l справедливы тождества

$$\mathfrak{A}_{\zeta} v_q^l(x) = \begin{bmatrix} 1, & \forall x \in \mathfrak{X}, & \text{при } q = 1; \\ 0, & \forall x \in \mathfrak{X}, & \text{при } q = \overline{2, s_l - 1}, & l = \overline{1, r}. \end{bmatrix}$$
(23)

Соотношения (23) при q=1 и q=2 непосредственно проверяются на основании тождеств (22). Доказательство для случаев $q\geqslant 3$ проведём методом математической индукции. Предположим, что тождества (23) выполняются при $q=\overline{1,\varepsilon-1}$. Вычислим производную Ли в силу уравнения $(1.\zeta)$ от функции $p\colon x\to \nu^{\varepsilon l}x$, $\forall x\in\mathbb{R}^n$, с учётом соотношений (21), (22) и (23) при $q=\overline{1,\varepsilon-1}$ на области $\mathfrak X$:

$$\mathfrak{A}_{\zeta}\left(\,\nu^{\varepsilon l}x\,\right) \ = \ \lambda_{l}^{\zeta} \ \sum_{q=1}^{\varepsilon} \, \begin{pmatrix} \varepsilon-1 \\ q-1 \end{pmatrix} \, v_{q}^{l}(x) \ \nu^{\varepsilon-q,\,l} \, x \ +$$

$$+ (\varepsilon - 1) \sum_{q=1}^{\varepsilon - 1} {\varepsilon - 2 \choose q - 1} v_q^l(x) \nu^{\varepsilon - q - 1, l} x + \nu^{\varepsilon - 1, l} x + \nu^{0l} x \mathfrak{A}_{\zeta} v_{\varepsilon}^l(x).$$

Отсюда, в силу соотношений (21) при $i=\varepsilon-1$ и $i=\varepsilon$, соотношений (22) при $i=\varepsilon$ и того, что $\nu^{0l}x\neq 0$, $\forall\,x\in\mathbb{R}^n$, получаем, что

$$\mathfrak{A}_{\zeta} v_{\varepsilon}^{l}(x) = 0, \quad \forall x \in \mathfrak{X}.$$

Пусть

$$v_0^l(x) = \ln\left(\nu^{0l}x\right), \quad \forall x \in \mathcal{X}, \quad l = \overline{1, r}.$$
 (24)

Тогда из соотношений (22) и (23) получаем, что

$$\mathfrak{A}_{\zeta} v_0^l(x) = \lambda_l^{\zeta}, \quad \forall x \in \mathfrak{X}, \qquad l = \overline{1, r},$$
 (25)

$$\mathfrak{A}_{\zeta} v_1^l(x) = 1, \quad \forall x \in \mathfrak{X}, \qquad l = \overline{1, r},$$
 (26)

$$\mathfrak{A}_{\zeta} v_q^l(x) = 0, \quad \forall x \in \mathfrak{X}, \qquad q = \overline{2, s_l - 1}, \quad l = \overline{1, r}.$$
 (27)

Из условий (2) вытекает, что матрицы A_j , $j=\overline{1,m}$, перестановочны. На основании $[12, c.\ 191-194]$ получаем, что матрицы A_j , $j=\overline{1,m}$, имеют r общих собственных векторов и выполняются соотношения

$$\mathfrak{A}_j v_0^l(x) = \lambda_l^j, \quad \forall x \in \mathfrak{X}, \quad l = \overline{1, r}, \quad j = \overline{1, m}.$$
 (28)

Учитывая, что линейные дифференциальные операторы первого порядка $\mathfrak{A}_j(x)$, $j=\overline{1,m}$, перестановочны, из соотношений (26) и (27) получаем, что на области \mathfrak{X}

$$\mathfrak{A}_j v_q^l(x) = \mu_q^{lj}, \quad q = \overline{1, s_l - 1}, \quad l = \overline{1, r}, \quad j = \overline{1, m}, \quad j \neq \zeta.$$
 (29)

Следовательно, существует $\sum_{l=1}^r s_l$ функций $v_q^l \colon \mathfrak{X} \to \mathbb{R}$, $q = \overline{0, s_l - 1}$, $l = \overline{1, r}$, заданных соотношениями (21) и (24), относительно которых выполняются условия (23), (25) – (29) и которые, учитывая способ их построения, функционально независимы.

Построим функцию

$$\overset{*}{W}: x \to \sum_{\xi=1}^{k} \sum_{q=0}^{\varepsilon_{\xi}} h_{\xi q} v_{q}^{\xi}(x), \quad \forall x \in \mathcal{X}, \quad \mathcal{X} \subset \mathbb{R}^{n},$$

и вычислим действия операторов на неё:

$$\mathfrak{A}_{j}\overset{*}{W}\left(x\right) \;=\; \sum_{\xi=1}^{k}\left(\lambda_{\xi}^{j}\,h_{\xi0}\;+\;\sum_{q=1}^{\varepsilon_{\xi}}\,\mu_{q}^{\xi j}\,h_{\xi q}\right)\overset{*}{W}\left(x\right),\quad\forall\,x\in\mathfrak{X}\,,\qquad j=\overline{1,m}\,.$$

Если
$$\sum_{\xi=1}^k \left(\lambda_\xi^j \, h_{\xi 0} \, + \, \sum_{q=1}^{\varepsilon_\xi} \, \mu_q^{\xi j} \, h_{\xi q} \right) = 0 \, , \ j = \overline{1,m} \, ,$$
 то семейство гиперповерхностей $\stackrel{*}{W} = \left\{ x \colon \stackrel{*}{W} (x) = C \right\}$ является первым интегралом дифференциальной системы (1) .

Полагая $W(x) = \exp \stackrel{*}{W}(x)$, $\forall x \in \mathfrak{X}$, получим первый интеграл вида (20) якобиевой системы (1).

Для якобиевой системы

 $x_2 \, \partial_1 u + (2x_2 - x_3 - x_4) \, \partial_2 u + (x_1 - x_4) \, \partial_3 u + (-x_1 + 2x_3 + 2x_4) \, \partial_4 u = 0$, $(2x_1 - x_3) \, \partial_1 u + (-x_1 + 2x_2 + x_4) \, \partial_2 u + (-x_1 + 3x_3 + x_4) \, \partial_3 u + (x_2 - 3x_3 + x_4) \, \partial_4 u = 0$ по собственному числу $\lambda_1^1 = 1$, которому отвечает элементарный делитель $(\lambda^1 - 1)^4$ кратности четыре, соответствующим ему собственному вектору $\nu^0 = (-1, 1, -1, 0)$ и присоединённым векторам $\nu^1 = (1, 0, -1, -1)$, $\nu^2 = (1, -1, 3, 0)$, $\nu^3 = (-3, 0, 9, 9)$ получаем функции

$$v_1 \colon x \to \frac{x_1 - x_3 - x_4}{-x_1 + x_2 - x_3}, \quad \forall x \in \mathcal{X},$$

$$v_2 \colon x \to \frac{(-x_1 + x_2 - x_3)(x_1 - x_2 + 3x_3) - (x_1 - x_3 - x_4)^2}{(-x_1 + x_2 - x_3)^2}, \quad \forall x \in \mathcal{X},$$

$$v_3: x \to \frac{1}{(-x_1 + x_2 - x_3)^3} \Big[(-3x_1 + 9x_3 + 9x_4)(-x_1 + x_2 - x_3)^2 - \Big]$$

$$-3(-x_1+x_2-x_3)(x_1-x_3-x_4)(x_1-x_2+3x_3)+2(x_1-x_3-x_4)^3, \forall x \in \mathcal{X},$$

где \mathfrak{X} — произвольная область из множества $\{x\colon x_1-x_2+x_3\neq 0\}$. Тогда в соответствии с теоремой 4 семейства гиперповерхностей

$$W_1 = \{ x \colon v_2(x) = C_1 \}$$

И

$$W_2 = \left\{ x: (-x_1 + x_2 - x_3)^2 \exp \left[-2v_1(x) - v_3(x) \right] = C_2 \right\},\,$$

образуют базис первых интегралов якобиевой системы на областях $\mathfrak{X}_1=\{x\colon x_1-x_2+x_3<0\}$ и $\mathfrak{X}_2=\{x\colon x_1-x_2+x_3>0\}$.

Доказательство теоремы 4 предусматривает также случай, когда матрицы A_j , $j=\overline{1,m}$, имеют некоторое число общих комплексных собственных вектора $\nu^{0\,l}$, соответствующих собственным числам λ_l^ζ с элементарными делителями кратности s_l . В данном случае, на основании определённой группировки m+1 функций v_q^l , $l=\overline{1,r}$, $q=\overline{0,s_l-1}$ всегда получим одну из двух возможностей.

- $1.~{\rm B}$ наборе из m+1~ функций наряду с каждой комплекснозначной функцией вещественного аргумента содержится и комплексно сопряжённая.
- 2. В совокупности из m+1 функций имеется одна комплекснозначная функция вещественного аргумента, не имеющая комплесно сопряжённой.

В каждом из этих случаев линейная однородная дифференциальная система уравнений в частных производных (1) будет иметь следующие первые интегралы.

В первом случае это — семейство гиперповерхностей

$$W = \left\{ x : \prod_{\xi=1}^{k_1} \left[\left({\stackrel{*}{\nu}}{}^{0\xi} x \right)^2 + \left({\stackrel{\sim}{\nu}}{}^{0\xi} x \right)^2 \right]^{\stackrel{*}{h_{\xi 0}}} \exp \left[-2 {\stackrel{\sim}{h_{\xi 0}}} \arctan \frac{{\stackrel{\sim}{\nu}}{}^{0\xi} x}{{\stackrel{*}{\nu}}{}^{0\xi} x} \right] + \right\}$$

$$+ \sum_{q=1}^{\varepsilon_{\xi}} 2 \left(h_{\xi q}^* v_q^{\xi}(x) - h_{\xi q}^{\widetilde{\varepsilon}} v_q^{\xi}(x) \right) \prod_{\theta=1}^{k_2} |\nu^{0\theta} x|^{h_{\theta 0}} \exp \sum_{q=1}^{\varepsilon_{\theta}} h_{\theta q} v_q^{\theta}(x) = C \right),$$

где вещественные числа $\overset{*}{h}_{\xi q}$, $\overset{*}{h}_{\xi q}$, $h_{\xi q}$, $q=\overline{0,\varepsilon_k}$, $k=\xi$ или $k=\theta$, $\xi=\overline{1,k_1}$, $\theta=\overline{1,k_2}$, составляют нетривиальное решение линейной однородной системы

$$\sum_{\xi=1}^{k_1} \left[\left(2 \stackrel{*}{\lambda_{\xi}} \stackrel{*}{h_{\xi 0}} - 2 \stackrel{\sim}{\lambda_{\xi}} \stackrel{\circ}{h_{\xi 0}} \right) + \sum_{q=1}^{\varepsilon_{\xi}} 2 \left(\stackrel{*}{\mu_{q}} \stackrel{*}{h_{\xi q}} - \stackrel{\sim}{\mu_{q}} \stackrel{\circ}{h_{\xi q}} \stackrel{\sim}{h_{\xi q}} \right) \right] +$$

$$+ \sum_{\theta=1}^{k_1} \left(\lambda_{\theta}^{j} h_{\theta 0} + \sum_{q=1}^{\varepsilon_{\theta}} \mu_{q}^{\theta j} h_{\theta q} \right) = 0, \qquad j = \overline{1, m},$$

а $\lambda_{\xi}^{j} = \overset{*}{\lambda}_{\xi}^{j} + \overset{\sim}{\lambda}_{\xi}^{j} i$, $\xi = \overline{1, k_{1}}$, $j = \overline{1, m}$, и λ_{θ}^{j} , $\theta = \overline{1, k_{2}}$, $j = \overline{1, m}$, — соответственно комплексные и вещественные собственные числа матриц A_{j} , $j = \overline{1, m}$, которым соответствуют собственные векторы $\nu^{0\xi} = \overset{*}{\nu^{0\xi}} + \overset{\sim}{\nu^{0\xi}} i$, $\xi = \overline{1, k_{1}}$, и $\nu^{0\theta}$, $\theta = \overline{1, k_{2}}$. Числа

$$\overset{*}{\mu}_{q}^{\xi j} = \operatorname{Re} \mathfrak{A}_{j} v_{q}^{\xi}(x) , \quad \overset{\sim}{\mu}_{q}^{\xi j} = \operatorname{Im} \mathfrak{A}_{j} v_{q}^{\xi}(x) , \quad \mu_{q}^{\theta j} = \mathfrak{A}_{j} v_{q}^{\theta}(x) ,$$

при $q=\overline{1,\varepsilon_k}$, $k=\xi$ или $k=\theta$, $\xi=\overline{1,k_1}$, $\theta=\overline{1,k_2}$, $j=\overline{1,m}$. Функции $v_q^\xi=\overset{*}{v}_q^\xi+\tilde{v}_q^\xi i$ и v_q^θ находятся из системы (21), причём

$$2\sum_{\xi=1}^{k_1} \varepsilon_{\xi} + \sum_{\theta=1}^{k_2} \varepsilon_{\theta} = m - 2k_1 - k_2 + 1, \qquad 2k_1 + k_2 \leqslant r,$$

 $\varepsilon_{\xi} \leqslant s_{\xi} - 1$, $\xi = \overline{1, k_1}$, где k_1 — количество пар комплексно сопряжённых собственных векторов, $\varepsilon_{\theta} \leqslant s_{\theta} - 1$, $\xi = \overline{1, k_2}$, где k_2 — количество вещественных собственных векторов.

Для якобиевой линейной однородной дифференциальной системы уравнений в частных производных

$$\mathfrak{A}_{j}(x) u = 0, \quad j = \overline{1,3}, \tag{30}$$

где

$$\mathfrak{A}_{1}(x) = (3x_{1} - 4x_{2} + 4x_{3} + x_{4} + 2x_{6}) \partial_{1} + (-x_{1} + 3x_{2} - 3x_{3} - 2x_{5} - 3x_{6}) \partial_{2} + (-3x_{1} + 5x_{2} - 5x_{3} - x_{4} - 2x_{5} - 4x_{6}) \partial_{3} + (3x_{1} - 6x_{2} + 4x_{3} + 4x_{4} - x_{5} + 5x_{6}) \partial_{4} + (5x_{1} - 5x_{2} + 8x_{3} + 3x_{4} + 3x_{5} + 6x_{6}) \partial_{5} + (-2x_{1} + 5x_{2} - 4x_{3} - 3x_{4} + x_{5} - 2x_{6}) \partial_{6}, \quad \forall x \in \mathbb{R}^{6},$$

$$\mathfrak{A}_{2}(x) = (-4x_{2} + 2x_{3} + x_{4} - x_{5} + x_{6}) \partial_{1} + (x_{1} + 3x_{2} + x_{5} - x_{6}) \partial_{2} + (6x_{2} - 2x_{3} - x_{4} + 2x_{5} - x_{6}) \partial_{3} + (2x_{1} - 6x_{2} + 2x_{3} + 3x_{4} - 4x_{5} + 2x_{6}) \partial_{4} + (x_{1} - 6x_{2} + 3x_{3} + 2x_{4} - 2x_{5} + 2x_{6}) \partial_{5} + (-2x_{1} + 4x_{2} - 3x_{3} - 3x_{4} + 2x_{5} - 2x_{6}) \partial_{6}, \quad \forall x \in \mathbb{R}^{6},$$

$$\mathfrak{A}_{3}(x) = (-3x_{1} + 2x_{2} - 4x_{3} - 3x_{4} - 2x_{6}) \partial_{1} + (2x_{1} - 3x_{2} + 3x_{3} + 3x_{4} - x_{5} + 2x_{6}) \partial_{2} + (3x_{1} - 3x_{2} + 5x_{3} + 4x_{4} + 2x_{6}) \partial_{3} - (3x_{1} - 2x_{2} + 6x_{3} + 4x_{4} + x_{5} + x_{6}) \partial_{4} - (3x_{1} - 3x_{2} + 6x_{3} + 4x_{4} + x_{5} + 2x_{6}) \partial_{5} + (2x_{1} - x_{2} + 4x_{3} + 2x_{4} + x_{5}) \partial_{6}, \quad \forall x \in \mathbb{R}^{6},$$

на основании собственного числа $\lambda_1^1=1+2i$, которому соответствует элементарный делитель $\left(\lambda^1-1-2i\right)^3$ кратности три, собственного, первого и второго присоединённых векторов $\nu^0=(1,0,1+i,1,i,1)\,,\;\nu^1=(1,1+i,0,0,i,i)\,,\;\nu^2=(2+2i,0,2+2i,0,2i,2i)$ составляем функции

$$\overset{*}{v_1} \colon x \to \frac{(x_1 + x_2)(x_1 + x_3 + x_4 + x_6) + (x_3 + x_5)(x_2 + x_5 + x_6)}{(x_1 + x_3 + x_4 + x_6)^2 + (x_3 + x_5)^2}, \ \forall x \in \mathcal{X},$$

$$\widetilde{v}_1 \colon x \to \frac{(x_1 + x_3 + x_4 + x_6)(x_2 + x_5 + x_6) - (x_1 + x_2)(x_3 + x_5)}{(x_1 + x_3 + x_4 + x_6)^2 + (x_3 + x_5)^2}, \ \forall x \in \mathcal{X},$$

и строим (случай 1) семейства гиперповерхностей

$$W_1 = \left\{ x: \left[(x_1 + x_3 + x_4 + x_6)^2 + (x_3 + x_5)^2 \right] \cdot \right.$$

$$\cdot \exp \left[-4 \arctan \frac{x_3 + x_5}{x_1 + x_3 + x_4 + x_6} + 6 \overset{*}{v}_1(x) + 2 \tilde{v}_1(x) \right] = C_1 \right\},\,$$

$$W_2 = \left\{ x: \left[(x_1 + x_3 + x_4 + x_6)^2 + (x_3 + x_5)^2 \right]^2 \cdot \right.$$

$$\cdot \exp \left[-2 \arctan \frac{x_3 + x_5}{x_1 + x_3 + x_4 + x_6} + \overset{*}{v}_2(x) - \tilde{v}_2(x) \right] = C_2 \right\}$$

И

$$W_3 = \left\{ x \colon 2 \tilde{v}_1(x) - 2 \overset{*}{v}_2(x) - \tilde{v}_2(x) = C_3 \right\},\,$$

которые, будучи функционально независимыми, образуют базис первых интегралов на областях \mathfrak{X} из множества $\{x\colon x_1+x_3+x_4+x_6\neq 0\}$.

Во втором случае будем различать две возможности.

Случай а. Общий собственный вектор матриц A_j , $j=\overline{1,m}$, не имеет комплексно сопряжённого вектора. Тогда система (1) имеет первые интегралы :

$$W_{1} = \left\{ x : \prod_{\xi=1}^{k_{1}} \left[P_{\xi}(x) \right]^{\overset{*}{h_{2\xi-1,0} + \overset{*}{h_{2\xi,0}}}} \exp \left\{ -2 \left(\overset{\sim}{h_{2\xi-1,0}} - \overset{\sim}{h_{2\xi,0}} \right) \varphi_{\xi}(x) + \right. \right. \\ \left. + \sum_{q=1}^{\varepsilon_{\xi}} 2 \left[\left(\overset{*}{h_{\xi,(2q-1)}} + \overset{*}{h_{\xi,2q}} \right) \overset{*}{v_{q}^{\xi}}(x) + \left(\overset{\sim}{h_{\xi,2q}} - \overset{\sim}{h_{\xi,(2q-1)}} \right) \overset{\sim}{v_{q}^{\xi}}(x) \right] \right\} \cdot \\ \cdot \left[P_{2k_{1}+1}(x) \right]^{\overset{*}{h_{2k_{1}+1,0}}} \exp \left[-2 \overset{\sim}{h_{2k_{1}+1,0}} \varphi_{2k_{1}+1}(x) \right] \cdot \\ \cdot \prod_{\theta=1}^{k_{2}} \left(\nu^{0\theta} x \right)^{2\overset{*}{h_{\theta0}}} \exp \left[2 \sum_{q=1}^{\varepsilon_{\theta}} \overset{*}{h_{\theta q}} v_{q}^{\theta}(x) \right] = C_{1} \right\}$$

И

$$W_{2} = \left\{ x : \prod_{\xi=1}^{k_{1}} \left[P_{\xi}(x) \right]^{\widetilde{h}_{2\xi-1,0} + \widetilde{h}_{2\xi,0}} \exp \left\{ 2 \left(h_{2\xi-1,0}^{*} - h_{2\xi,0}^{*} \right) \varphi_{\xi}(x) + \sum_{q=1}^{\varepsilon_{\xi}} 2 \left[\left(\widetilde{h}_{\xi,(2q-1)} + \widetilde{h}_{\xi,2q} \right) v_{q}^{*}(x) + \left(h_{\xi,(2q-1)} - h_{\xi,2q}^{*} \right) \widetilde{v}_{q}^{\xi}(x) \right] \right\} \cdot \left[P_{2k_{1}+1}(x) \right]^{\widetilde{h}_{2k_{1}+1,0}} \exp \left[2 h_{2k_{1}+1,0}^{*} \varphi_{2k_{1}+1}(x) \right] \cdot \left[P_{2k_{1}+1}(x) \right]^{\widetilde{h}_{2k_{1}+1,0}} \exp \left[2 h_{2k_{1}+1,0}^{*} \varphi_{2k_{1}+1}(x) \right] \cdot \left[P_{2k_{1}+1}(x) \right]^{\widetilde{h}_{2k_{1}+1,0}} \exp \left[2 h_{2k_{1}+1,0}^{*} \varphi_{2k_{1}+1}(x) \right] \cdot \left[P_{2k_{1}+1}(x) \right]^{\widetilde{h}_{2k_{1}+1,0}} \exp \left[2 h_{2k_{1}+1,0}^{*} \varphi_{2k_{1}+1}(x) \right] \cdot \left[P_{2k_{1}+1}(x) \right]^{\widetilde{h}_{2k_{1}+1,0}} \exp \left[2 h_{2k_{1}+1,0}^{*} \varphi_{2k_{1}+1}(x) \right] \cdot \left[P_{2k_{1}+1}(x) \right]^{\widetilde{h}_{2k_{1}+1,0}} \exp \left[2 h_{2k_{1}+1,0}^{*} \varphi_{2k_{1}+1}(x) \right] \cdot \left[P_{2k_{1}+1}(x) \right]^{\widetilde{h}_{2k_{1}+1,0}} \exp \left[2 h_{2k_{1}+1,0}^{*} \varphi_{2k_{1}+1}(x) \right] \cdot \left[P_{2k_{1}+1}(x) \right]^{\widetilde{h}_{2k_{1}+1,0}} \exp \left[2 h_{2k_{1}+1,0}^{*} \varphi_{2k_{1}+1}(x) \right] \cdot \left[P_{2k_{1}+1}(x) \right]^{\widetilde{h}_{2k_{1}+1,0}} \exp \left[2 h_{2k_{1}+1,0}^{*} \varphi_{2k_{1}+1}(x) \right] \cdot \left[P_{2k_{1}+1}(x) \right]^{\widetilde{h}_{2k_{1}+1,0}} \exp \left[2 h_{2k_{1}+1,0}^{*} \varphi_{2k_{1}+1}(x) \right] \cdot \left[P_{2k_{1}+1}(x) \right]^{\widetilde{h}_{2k_{1}+1,0}} \exp \left[2 h_{2k_{1}+1,0}^{*} \varphi_{2k_{1}+1}(x) \right] \cdot \left[P_{2k_{1}+1}(x) \right]^{\widetilde{h}_{2k_{1}+1,0}} \exp \left[2 h_{2k_{1}+1,0}^{*} \varphi_{2k_{1}+1}(x) \right] \cdot \left[P_{2k_{1}+1}(x) \right]^{\widetilde{h}_{2k_{1}+1,0}} \exp \left[2 h_{2k_{1}+1,0}^{*} \varphi_{2k_{1}+1}(x) \right] \cdot \left[P_{2k_{1}+1}(x) \right]^{\widetilde{h}_{2k_{1}+1,0}} \exp \left[2 h_{2k_{1}+1,0}^{*} \varphi_{2k_{1}+1}(x) \right] \cdot \left[P_{2k_{1}+1}(x) \right]^{\widetilde{h}_{2k_{1}+1,0}} \exp \left[2 h_{2k_{1}+1,0}^{*} \varphi_{2k_{1}+1}(x) \right] \cdot \left[P_{2k_{1}+1}(x) \right]^{\widetilde{h}_{2k_{1}+1,0}} \exp \left[2 h_{2k_{1}+1,0}^{*} \varphi_{2k_{1}+1}(x) \right] \cdot \left[P_{2k_{1}+1}(x) \right]^{\widetilde{h}_{2k_{1}+1,0}} \exp \left[2 h_{2k_{1}+1,0}^{*} \varphi_{2k_{1}+1,0}^{*} \varphi_{2k_{$$

$$\cdot \prod_{\theta=1}^{k_2} \left(\nu^{0\theta} x \right)^{2 h_{\theta 0}} \exp \left[2 \sum_{q=1}^{\varepsilon_{\theta}} h_{\theta q} v_q^{\theta}(x) \right] = C_2 \right\},\,$$

где полиномы

$$P_{\xi}: x \to \left(v^{0\xi}x\right)^2 + \left(\tilde{v}^{0\xi}x\right)^2, \quad \forall x \in \mathbb{R}^n, \qquad \xi = \overline{1, k_1 + 1},$$

функции

$$\varphi_{\xi} \colon x \to \operatorname{arctg} \frac{\widetilde{\nu}^{0\xi} x}{v^{0\xi} x}, \quad \forall x \in \mathfrak{X}, \quad \mathfrak{X} \subset \mathbb{R}^n, \qquad \xi = \overline{1, k_1 + 1},$$

числа $h_{\xi q} = \overset{*}{h_{\xi q}} + \overset{\sim}{h_{\xi q}} i$, $h_{\theta q} = \overset{*}{h_{\theta q}} + \overset{\sim}{h_{\theta q}} i$, $q = \overline{0, \varepsilon_k}$, $k = \xi$ или $k = \theta$, $\xi = \overline{1, k_1 + 1}$, $\theta = \overline{1, k_2}$, составляют нетривиальное решение системы

$$\sum_{\xi=1}^{2k_1} \left(\lambda_{\xi}^j h_{\xi 0} + \sum_{q=1}^{\varepsilon_{\xi}} \mu_q^{\xi j} h_{\xi q} \right) + \lambda_{2k_1+1}^j h_{2k_1+1,0} +$$

$$+ \sum_{\theta=1}^{k_2} \left(\lambda_{\theta}^{j} h_{\theta 0} + \sum_{q=1}^{\varepsilon_{\theta}} \mu_{q}^{\theta j} h_{\theta q} \right) = 0, \qquad j = \overline{1, m},$$

а $\lambda_{2\xi-1}^{j} = \lambda_{\xi}^{*j} + \lambda_{\xi}^{j}i$, $\lambda_{2\xi}^{j} = \lambda_{\xi}^{*j} - \lambda_{\xi}^{j}i$, $\xi = \overline{1, k_{1}}$, $\lambda_{2k_{1}+1}^{j} = \lambda_{2k_{1}+1}^{*j} + \lambda_{2k_{1}+1}^{*j}i$, и λ_{θ}^{j} , $\theta = \overline{1, k_{2}}$, $j = \overline{1, m}$, — соответственно комплексные и вещественные собственные числа матриц A_{j} , $j = \overline{1, m}$, которым соответствуют собственные векторы $\nu^{0,(2\xi-1)} = \nu^{0\xi} + \nu^{0\xi}i$, $\nu^{0,2\xi} = \nu^{0\xi} - \nu^{0\xi}i$, $\xi = \overline{1, k_{1}}$, $\nu^{0,(2k_{1}+1)} = \nu^{0,(2k_{1}+1)} + \nu^{0,(2k_{1}+1)}i$, и $\nu^{0\theta}$, $\theta = \overline{1, k_{2}}$. Числа

$$\mu_q^{\xi j} = \mathfrak{A}_j v_q^{\xi}(x), \quad \overset{*}{\mu}_q^{\xi j} = \operatorname{Re} \mu_q^{\xi j}, \quad \overset{\sim}{\mu}_q^{\xi j} = \operatorname{Im} \mu_q^{\xi j}, \quad \mu_q^{\theta j} = \mathfrak{A}_j v_q^{\theta}(x)$$

при $q = \overline{1, \varepsilon_k}$, $k = \xi$ или $k = \theta$, $\xi = \overline{1, k_1 + 1}$, $\theta = \overline{1, k_2}$, $j = \overline{1, m}$. Функции $v_q^{\xi} = v_q^{\xi} + \widetilde{v}_q^{\xi} i$ и v_q^{θ} , $q = \overline{1, \varepsilon_k}$, $k = \xi$ или $k = \theta$, $\xi = \overline{1, k_1 + 1}$, $\theta = \overline{1, k_2}$, находятся из системы (21), а ε_{ξ} и ε_{θ} выбираются так, чтобы выполнялось равенство

$$2\sum_{\xi=1}^{k_1} \varepsilon_{\xi} + \sum_{\theta=1}^{k_2} \varepsilon_{\theta} = m - 2k_1 - k_2, \quad 2k_1 + 1 + k_2 \leqslant r,$$

 $\varepsilon_{\xi} \leqslant s_{\xi}-1\,,\;\;\xi=\overline{1,k_{1}}\,,\;\;$ где k_{1} — количество комплексно сопряжённых пар собственных векторов, $\varepsilon_{\theta} \leqslant s_{\theta}-1\,,\;\;\theta=\overline{1,k_{2}}\,,\;\;$ а k_{2} — количество вещественных собственных векторов.

Для якобиевой системы

$$(x_{1} - 2x_{2} + 2x_{3} + x_{5} + x_{6}) \partial_{1}u + (2x_{2} - 2x_{3} - 2x_{5} - 2x_{6}) \partial_{2}u +$$

$$+ (3x_{2} - 2x_{3} - 2x_{5} - 2x_{6}) \partial_{3}u + (-4x_{2} + 2x_{4} - 2x_{5} + 2x_{6})\partial_{4}u +$$

$$+ (2x_{1} - 3x_{2} + 4x_{3} + 2x_{4} + 2x_{5} + 4x_{6})\partial_{5}u + (-x_{1} + 3x_{2} - 2x_{3} - 2x_{4} + x_{5} - x_{6}) \partial_{6}u = 0,$$

$$(2x_{2} + x_{5} + x_{6}) \partial_{1}u - (x_{1} + 3x_{2} + x_{5} + x_{6}) \partial_{2}u -$$

$$-(x_1 + 3x_2 + x_3 + 2x_5 + 2x_6) \partial_3 u + (2x_1 + 2x_2 + x_4 + 4x_6)\partial_4 u +$$

$$+(3x_1 + 3x_2 + 2x_3 + 2x_4 + x_5 + 4x_6)\partial_5 u - (2x_1 + x_2 + 2x_3 + 2x_4 + x_5 + 4x_6) \partial_6 u = 0,$$

$$(3x_1 - x_5 - x_6) \partial_1 u + (-x_1 + 2x_2 + x_5 + x_6) \partial_2 u +$$

$$+(-2x_1 - x_2 + 2x_3 + x_5 + x_6) \partial_3 u + (x_1 + 2x_2 - 2x_3 + x_4 - x_5 - x_6)\partial_4 u +$$

$$+(2x_1 + x_2 - x_3 - x_6)\partial_5 u + (-x_1 - x_2 + x_3 + x_5 + 2x_6) \partial_6 u = 0,$$

$$(x_1 - 2x_2 + 4x_3 + 2x_5 + 2x_6) \partial_1 u - (2x_1 + x_2 + 4x_3 + 4x_5 + 4x_6) \partial_2 u - (3x_1 - 2x_2 + 7x_3 + 5x_5 + 5x_6) \partial_3 u + (3x_1 - 4x_2 + 10x_3 + 2x_4 + 7x_5 + 7x_6) \partial_4 u + (3x_1 - 2x_2 + 9x_3 + 7x_5 + 5x_6) \partial_5 u + (x_1 + 4x_2 - 5x_3 - 4x_5 - 2x_6) \partial_6 u = 0,$$

на основании собственных чисел $\lambda_2^1=\lambda_1^1=1+i,\ \lambda_5^1=2i$, которым соответствуют элементарные делители $\left(\lambda^1-1-i\right)^2$ и λ^1-2i , собственных векторов $\nu^{01}=\left(1,1+i,0,0,i,i\right),\ \nu^{02}=\left(1,0,1+i,1,i,1\right)$ и присоединённого вектора $\nu^{11}=\left(1+i,0,1+i,0,i,i\right),$ составляем функции

$$\overset{*}{v_1} \colon x \to \frac{(x_1 + x_2)(x_1 + x_3) + (x_2 + x_5 + x_6)(x_1 + x_3 + x_5 + x_6)}{(x_1 + x_2)^2 + (x_2 + x_5 + x_6)^2}, \quad \forall x \in \mathfrak{X},$$

$$\widetilde{v}_1 \colon x \to \frac{(x_1 + x_2)(x_1 + x_3 + x_5 + x_6) - (x_1 + x_3)(x_2 + x_5 + x_6)}{(x_1 + x_2)^2 + (x_2 + x_5 + x_6)^2}, \quad \forall x \in \mathfrak{X}$$

и строим (случай 2а) семейства гиперповерхностей

$$W_{1} = \left\{ x : \left[(x_{1} + x_{2})^{2} + (x_{2} + x_{5} + x_{6})^{2} \right] \left[(x_{1} + x_{3} + x_{4} + x_{6})^{2} + (x_{3} + x_{5})^{2} \right]^{2} \cdot \exp \left[-10 \operatorname{arctg} \frac{x_{2} + x_{5} + x_{6}}{x_{1} + x_{2}} + 8 \overset{*}{v}_{1}(x) + 6 \tilde{v}_{1}(x) \right] = C_{1} \right\}$$

И

$$W_2 = \left\{ x: \left[(x_1 + x_2)^2 + (x_2 + x_5 + x_6)^2 \right]^3 \exp \left[-10 \arctan \frac{x_2 + x_5 + x_6}{x_1 + x_2} - 4 \arctan \frac{x_3 + x_5}{x_1 + x_3 + x_4 + x_6} + 12 \overset{*}{v}_1(x) + 14 \tilde{v}_1(x) \right] = C_2 \right\},$$

которые, будучи функционально независимыми, образуют интегральный базис на областях $\mathfrak X$ из множества $\{x\colon x_1+x_2\neq 0,\ x_1+x_3+x_4+x_6\neq 0\}$.

Случай б. Функция v_l^γ , $\gamma \in \{1,\ldots,k_1\}$, $l \in \{1,\ldots,\varepsilon_\gamma\}$, не имеет комлексно сопряжённой функции. Тогда у дифференциальной системы (1) существуют первые интегралы

$$W_1 = \left\{ x : \prod_{\xi=1}^{k_1} \left[P_{\xi}(x) \right]^{*}_{h_{2\xi-1,0} + h_{2\xi,0}} \exp \left\{ -2 \left(\widetilde{h}_{2\xi-1,0} - \widetilde{h}_{2\xi,0} \right) \varphi_{\xi}(x) + \right. \right.$$

$$+ \sum_{q=1}^{\varepsilon_{\xi}} 2(1 - \delta_{ql} \, \delta_{\xi\gamma}) \left[\left(h_{\xi,(2q-1)}^* + h_{\xi,2q}^* \right) \, v_q^{\xi}(x) + \left(h_{\xi,2q}^* - h_{\xi,(2q-1)}^* \right) \, v_q^{\xi}(x) \right] \right\} \cdot$$

$$\cdot \exp\left[2\left(\mathop{h_{\gamma l}}^{*}\mathop{v}_{l}^{\gamma}(x) - \widetilde{h_{\gamma l}}\mathop{v}_{l}^{\gamma}(x)\right)\right] \prod_{\theta=1}^{k_{2}} \left(\nu^{0\theta}x\right)^{2h_{\theta 0}^{*}} \exp\left[2\sum_{q=1}^{\varepsilon_{\theta}} \mathop{h_{\theta q}}^{*} v_{q}^{\theta}(x)\right] = C_{1}\right\},\,$$

И

$$W_2 = \left\{ x : \prod_{\xi=1}^{k_1} \left[P_{\xi}(x) \right]^{\widetilde{h}_{2\xi-1,0} + \widetilde{h}_{2\xi,0}} \exp \left\{ 2 \left(h_{2\xi-1,0}^* - h_{2\xi,0}^* \right) \varphi_{\xi}(x) + \right. \right.$$

$$+ \sum_{q=1}^{\varepsilon_{\xi}} 2(1 - \delta_{ql} \, \delta_{\xi\gamma}) \left[\left(\tilde{h}_{\xi,(2q-1)} + \tilde{h}_{\xi,2q} \right) \, \overset{*}{v}_{q}^{\xi}(x) + \left(\overset{*}{h}_{\xi,(2q-1)} - \overset{*}{h}_{\xi,2q} \right) \, \tilde{v}_{q}^{\xi}(x) \right] \right\} \cdot$$

$$\cdot \exp\left[2\left(\stackrel{*}{h_{\gamma l}}\stackrel{\sim}{v}_{l}^{\gamma}(x) - \stackrel{\sim}{h_{\gamma l}}\stackrel{*}{v}_{l}^{\gamma}(x)\right)\right] \prod_{\theta=1}^{k_{2}} \left(\nu^{0\theta}x\right)^{2\stackrel{\sim}{h_{\theta 0}}} \exp\left[2\sum_{q=1}^{\varepsilon_{\theta}}\stackrel{\sim}{h_{\theta q}}v_{q}^{\theta}(x)\right] = C_{2}\right\},$$

где полиномы

$$P_{\xi}: x \to \left(v^{0\xi}x\right)^2 + \left(v^{0\xi}x\right)^2, \quad \forall x \in \mathbb{R}^n, \qquad \xi = \overline{1, k_1 + 1},$$

функции

$$\varphi_{\xi} \colon x \to \operatorname{arctg} \frac{\widetilde{\nu}^{0\xi} x}{v^{0\xi} x}, \quad \forall x \in \mathfrak{X}, \quad \mathfrak{X} \subset \mathbb{R}^{n}, \qquad \xi = \overline{1, k_{1} + 1},$$

числа $h_{\xi q} = \stackrel{*}{h_{\xi q}} + \stackrel{\sim}{h_{\xi q}} i, h_{\theta q} = \stackrel{*}{h_{\theta q}} + \stackrel{\sim}{h_{\theta q}} i, q = \overline{0, \varepsilon_k}, k = \xi$ или

 $k=\theta\,,\;\xi=\overline{1,k_1+1}\,,\;\theta=\overline{1,k_2}\,,\;$ составляют нетривиальное решение алгебраической системы

$$\sum_{\xi=1}^{2k_1} \left[\lambda_{\xi}^{j} h_{\xi 0} + \sum_{q=1}^{\varepsilon_{\xi}} \left(1 - \delta_{ql} \, \delta_{\xi \gamma} \right) \mu_{q}^{\xi j} h_{\xi q} \right] + \mu_{l}^{\gamma j} h_{\gamma l} + \\
+ \sum_{\theta=1}^{k_2} \left(\lambda_{\theta}^{j} h_{\theta 0} + \sum_{q=1}^{\varepsilon_{\theta}} \mu_{q}^{\theta j} h_{\theta q} \right) = 0, \quad j = \overline{1, m},$$

а $\lambda_{2\xi-1}^{j} = \overset{*}{\lambda}_{\xi}^{j} + \overset{\sim}{\lambda}_{\xi}^{j} i$, $\lambda_{2\xi}^{j} = \overset{*}{\lambda}_{\xi}^{j} - \overset{\sim}{\lambda}_{\xi}^{j} i$, $\xi = \overline{1, k_{1}}$, $\lambda_{2k_{1}+1}^{j} = \overset{*}{\lambda}_{2k_{1}+1}^{j} + \widetilde{\lambda}_{2k_{1}+1}^{j} + \widetilde{\lambda}_{2k_{1}+1}^{j} i$, и λ_{θ}^{j} , $\theta = \overline{1, k_{2}}$, $j = \overline{1, m}$, — соответственно комплексные и вещественные собственные числа матриц A_{j} , $j = \overline{1, m}$, которым соответствуют собственные векторы $\nu^{0,(2\xi-1)} = \overset{*}{\nu}^{0\xi} + \overset{\sim}{\nu}^{0\xi} i$, $\nu^{0,2\xi} = \overset{*}{\nu}^{0\xi} - \overset{\sim}{\nu}^{0\xi} i$, $\xi = \overline{1, k_{1}}$, $\nu^{0,(2k_{1}+1)} = \overset{*}{\nu}^{0,(2k_{1}+1)} + \overset{\sim}{\nu}^{0,(2k_{1}+1)} i$, и $\nu^{0\theta}$, $\theta = \overline{1, k_{2}}$. Числа

$$\mu_q^{\xi j} \ = \ \mathfrak{A}_j v_q^{\xi (x)} \,, \quad \overset{*}{\mu}_q^{\xi j} \ = \ \operatorname{Re} \, \mu_q^{\xi j} \,, \quad \overset{\sim}{\mu}_q^{\xi j} \ = \ \operatorname{Im} \, \mu_q^{\xi j} \,, \quad \mu_q^{\theta j} \ = \ \mathfrak{A}_j v_q^{\theta (x)}$$

при $q=\overline{1,\varepsilon_k}$, $k=\xi$ или $k=\theta$, $\xi=\overline{1,k_1+1}$, $\theta=\overline{1,k_2}$, $j=\overline{1,m}$. Функции $v_q^\xi=\overset{*}{v_q^\xi}+\overset{\sim}{v_q^\xi}i$ и v_q^θ , $q=\overline{1,\varepsilon_k}$, $k=\xi$ или $k=\theta$, $\xi=\overline{1,k_1+1}$, $\theta=\overline{1,k_2}$, находятся из системы (21), а ε_ξ и ε_θ выбираются так, чтобы выполнялось равенство

$$2\sum_{\xi=1}^{k_1} \varepsilon_{\xi} + \sum_{\theta=1}^{k_2} \varepsilon_{\theta} = m - 2k_1 - k_2 + 1, \qquad 2k_1 + k_2 \leqslant r,$$

 $\varepsilon_{\xi} \leqslant s_{\xi} - 1$, $\xi = \overline{1, k_1}$, где k_1 — количество комплексно сопряжённых пар собственных векторов, $\varepsilon_{\theta} \leqslant s_{\theta} - 1$, $\theta = \overline{1, k_2}$, а k_2 — количество вещественных собственных векторов.

Для якобиевой системы

$$\mathfrak{A}_1(x) u = 0, \quad \mathfrak{A}_2(x) u = 0,$$

построенной на основании линейных дифференциальных операторов \mathfrak{A}_1 и \mathfrak{A}_2 из системы (30), находим (случай 26) семейства гиперповерхностей

$$W_1 = \left\{ x: \left[(x_1 + x_3 + x_4 + x_6)^2 + (x_3 + x_5)^2 \right] \cdot \right.$$

$$\cdot \exp \left[-\arctan \frac{x_3 + x_5}{x_1 + x_3 + x_4 + x_6} - \tilde{v}_1(x) \right] = C_1 \right\},$$

$$W_2 = \left\{ x \colon \left[(x_1 + x_3 + x_4 + x_6)^2 + (x_3 + x_5)^2 \right] \cdot \right.$$

$$\cdot \exp \left[-2 \arctan \left(\frac{x_3 + x_5}{x_1 + x_3 + x_4 + x_6} \right) + 2 v_1^*(x) \right] = C_2 \right\},$$

$$W_3 = \left\{ x: \left[(x_1 + x_3 + x_4 + x_6)^2 + (x_3 + x_5)^2 \right]^2 \cdot \right.$$

$$\cdot \exp \left[-2 \arctan \frac{x_3 + x_5}{x_1 + x_3 + x_4 + x_6} - \tilde{v}_2(x) \right] = C_3 \right\}$$

И

$$W_4 = \left\{ x \colon \stackrel{*}{v_2}(x) = C_4 \right\},\,$$

где функции $\overset{\sim}{v_1}$, $\overset{*}{v_1}$, $\overset{*}{v_2}$ и $\overset{*}{v_2}$ такие же, как и соответствующие по обозначению функции, посредством которых построен интегральный базис системы (30).

Эти семейства гиперповерхностей, будучи функционально независимыми, образуют базис первых интегралов на областях \mathcal{X} из множества $\{x\colon x_1+x_3+x_4+x_6\neq 0\}$ рассматриваемой дифференциальной системы.

Список литературы

- 1. $\Gamma w u m e p$ H. M. Интегрирование уравнений первого порядка в частных производных. Л.; М.: ГТТИ, 1934.
- 2. $\Gamma y p c a$ Э. Курс математического анализа. Т. 2. М.; Л.: ОНТИ, 1936.
- 3. Γ о p б y з о e B. H. Симметрии многомерных дифференциальных систем с неполной интегрируемостью // Вестник Гродненского гос. ун-та. Сер. 2. − 1999. − № 1. − С. 26 − 37.

- 4. $\mathit{Bycank}\,\mathcal{A}$. В. Интегралы и последние множители дифференциальных систем в частных производных // Дифференц. уравнения. 1999. Т. 35, № 3. С. 418 419.
- 5. Горбузов В. Н. Об одной дифференциальной системе второго порядка и её периодических решениях // Дифференц. уравнения. 1994. Т. 30, № 9. С. 1487 1497.
- 6. Горбузов В. Н. Построение первых интегралов и последних множителей полиномиальных автономных многомерных дифференциальных систем // Дифференц. уравнения. − 1998. − Т. 34, № 4. − С. 562 − 564.
- 7. $Kam \kappa e$ Э. Справочник по дифференциальным уравнениям в частных производных первого порядка. М.: Наука, 1966.
- 8. Goursat E. Lecons sur l'intégration des équations aux dérivées partielles du premier ordre. Paris, 1921.
- 9. Горбузов В. Н. Частные интегралы вещественной автономной полиномиальной системы уравнений в полных дифференциалах // Дифференц. уравнения и процессы управления (http://www.neva.ru). 2000. №2. С. 1 36.
- 10. $Bycnn\kappa$ Д. В., $\Gamma op \delta y so a$ В. Н. Интегралы системы Якоби в частных производных //Вестник Гродненского гос. ун-та. Сер. 2. − 2000. − № 1. − С. 4 − 11.
- 11. $Bycn \kappa \mathcal{A}$. В. Интегралы и последние множители дифференциальных систем уравнений в частных производных : Дис. . . . канд. физ.-мат. наук. Гродно, 2000.
 - 12. $\Gamma a \mu m \mu a x e p \Phi$. Р. Теория матриц. М.: Наука, 1988.