电子电路与系统基础

习题课第五讲

- 1、第三周作业讲解
- 2、实验室使用电阻阻值的说明
 - 3、分压器电路说明

李国林 清华大学电子工程系

习题课第五讲 大纲

• 第三讲作业讲解

• 手工列写电路方程本质上是回路电流法

• 对实验室使用电阻阻值的说明

• 分压器应用说明

作业1: 电源的线性抽象

- - 说明你是如何考虑的?

线性内阻模型

$$V_{S0} = 5V$$

$$R_S = \frac{\Delta v}{\Delta i} = \frac{5 - 4.97}{3 - 0} = \frac{0.03}{3} = 0.01\Omega = 10m\Omega$$

- 下面四个电压源是同一电压源,但是由于电压电流参考方向规定的原因,其伏安特性曲线不同
 - (**1**) 画出对应的四条伏安特性曲线,比较其不同之处
 - (2)将电压源模型转化为电流源模型,描述伏安特性曲线与两种模型及端口电压、电流参考方向的关系

作业**2** 关联参考方向 伏安特性曲线

这里:直流电压源 V_{so} 的实际方向就是图示标定方向,即 $V_{so}>0$ 。

电源端口 关联参考方向定义

一般端口 通常关联参考方向定义

只需记住一点:横轴截距为端口开路电压,纵轴截距为端口短路电流 $I_{S0} = V_{S0}/R_S$

- 电路功能,电路形态,真实电压 方向、真实电流方向等均不会因 端口电压、端口电流参考方向定 义而发生变化
 - 例如: 该电源接匹配电阻,负载获得额定功率,...

- 习惯上,人们选择习惯性定义
 - 看起来舒适,不别扭
 - 电压参考方向一般由上端点指向下端点 » 一般指向地端点
 - 电流参考方向一般由上端点流入(下端 点流出)
 - » 从地端点流出
 - » 如果确认是源,可反向定义电流参 考方向: 源关联

作业3 简单逆变器

• 假设直流电压源电压为+5V,开关控制电压v.为1MHz频率的±1V 幅度的方波信号。v_c=+1V时开关闭合,5V电压全部加载到电阻 R_L上,v_c=-1V时开关断开,5V电压全部加载到开关两端,电阻 上没有电流流通。

- (1) 画出电阻两端电压 $v_{\iota}(t)$ 和开关两端电压 $v_{sw}(t)$ 的时域波形。
- (2) 电阻获得的直流电压为多少伏?
- (3) 电阻获得的瞬时功率如何变化?
- (4) 电阻获得的平均功率为多少? 折合为有效值电压, 为多少伏的电压?
- (5) 开关消耗功率为多少?
- (6)负载电阻上消耗的直流功率和交流功率分别为多少?

平均负载电压

$$V_{L,DC} = \overline{v_L(t)} = 2.5V$$

负载瞬时功率

$$p_L(t) = \frac{v_L^2(t)}{R_L} = \frac{(5S_1)^2}{50} = 0.5S_1$$

负载平均功率

$$P_L = \overline{p_L(t)} = 0.25W$$

负载电压有效值

$$V_{rms} = \sqrt{P_L R_L}$$
$$= \sqrt{0.25 \times 50} = 3.54V$$

 \mathcal{V}_{c}

开关消耗功率

$$p_{SW} = v_c i_c + v_{sw} i_{sw}$$
$$= 0 + 0 = 0$$

负载消耗直流功率:直流分量提供的平均:功率

$$P_{L,DC} = \frac{V_{L,DC}^2}{R_L} = \frac{2.5^2}{50}$$

$$= 0.125W = 125mW$$

负载消耗交流功率:加流分量提供的平均功率

$$P_{L,AC} = P_L - P_{L,DC}$$

$$= 250mW - 125mW = 125mW$$

电压波形 $+5V_{---}$ 电流波形 +100mA0mA- – 11 消耗能量等于平均功率×总时间

 \mathcal{V}_{c}

总功率=直流功率+交流功率

$$f(t) = f_{DC} + f_{AC}(t)$$

$$f_{DC} = \overline{f(t)}$$

$$f_{AC}(t) = f(t) - \overline{f(t)}$$

$$\overline{f_{AC}(t)} = \overline{f(t)} - \overline{f(t)}$$

$$= \overline{f(t)} - \overline{\overline{f(t)}}$$

$$= \overline{f(t)} - \overline{f(t)}$$

$$= 0$$

$$f^{2}(t) = (f_{DC} + f_{AC}(t))^{2}$$
$$= f_{DC}^{2} + 2f_{DC}f_{AC}(t) + f_{AC}^{2}(t)$$

$$\overline{f^{2}(t)} = \overline{f_{DC}^{2} + 2f_{DC}f_{AC}(t) + f_{AC}^{2}(t)}$$

$$= \overline{f_{DC}^{2}} + \overline{2f_{DC}f_{AC}(t) + \overline{f_{AC}^{2}(t)}}$$

$$= f_{DC}^{2} + 2f_{DC}\overline{f_{AC}(t) + \overline{f_{AC}^{2}(t)}}$$

$$= f_{DC}^{2} + 2f_{DC}\overline{f_{AC}(t) + \overline{f_{AC}^{2}(t)}}$$

$$= f_{DC}^{2} + \overline{f_{AC}^{2}(t)}$$

$$P = P_{DC} + P_{AC}$$

针对平均功率而言

直流分量提供直流功率,交流分量提供交流功率,直流功率和交流功率都是平均功率

作业4: S型负阻做开关

• 用图解法分析V_{so}由0电压变化到15V,再由15V变化到0V, 这个过程中电阻电压的变化情况

第一步:为非线性器件建立一个简单模型 为了有一个定量的分析结果,这里对**S**型负阻做 三段折线化模型

高阻区

$$i_D = v_D \cdot \frac{3mA}{10V} = \frac{v_D}{3.33k\Omega}$$
$$\left(i_D < 3mA\right)$$

负阻区

$$\frac{i_D - 3mA}{v_D - 10V} = \frac{4mA - 3mA}{0.7V - 10V} = \frac{1mA}{-9.3V}$$

$$i_D = \frac{v_D}{-9.3k\Omega} + 4.08mA$$

按一般端口关联参考方向, 负系数代表负阻

$$\left(3mA < i_D < 4mA\right)$$

低阻区

$$v_D = 0.7V \qquad (i_D > 4mA)$$

流控器件: 流控表述

电压随电流变化而变化的描述方式:流控表述方式

高阻区:实际电阻远大于该值

$$v_D = f_{vi}(i_D) = \begin{cases} 3.33k\Omega \times i_D \\ -9.3k\Omega \times i_D + 37.9V \\ 0.7V \end{cases}$$

$$i_{D} < 3mA$$

$$3mA < i_{D} < 4mA$$

$$i_{D} > 4mA$$

低阻区: 微分电阻建模为0

负阻区: 微分电阻取值为-9.3k Ω

微分电阻
$$r = \frac{dv_D}{di_D}$$

模型虽然不很准确,但由此可以给出定量说明

原理分析:应该采用最简单模型,先把原理说清楚:电路抽象的核心思想

不是支路, 仅是电位参考地

把线性和非线性分离为两部分 线性部分为戴维南源

李国林 电子电路与系统基础

源电压从0到15V变化 第一阶段 $i_D(t) < 3mA ::: v_S(t) < V_{S1}$ 图示法画图 不容易,用 10mA等效电路分 4mA3mA $v_D(t) = \frac{R_D}{R_L + R_D} v_S(t) = \frac{3.33}{3.43} v_S(t) = 0.97 v_S(t) = 10.3V = 0.3V + 10V$ $R_D \qquad v_L(t) = 0.03 v_S(t) \qquad v_S(t) < V_{S1}$ $3.33k\Omega$ 100Ω 17

源电压从0到15V变化

第二阶段 $v_s(t) > V_{s1} = 10.3V$

$$V_S(t) > V_{S1} = 10.3V$$

源电压从15V到0V变化

源电压从15V到0V变化

输入电压输出电压转移滞回曲线

同一输入电压下,有两种输 出的可能性,和之前的经历 有关,故而这是有记忆系统

S型负阻做开关

有记忆的开关: 开关的断开与闭合和以前经历有关---电压由0上升到10.3V其后开关才闭合, 电压下降到1.1V其后开关才断开

作业5 反相电压放大倍数

- 选取NMOS反相器 的直流工作点位于 恒流导通区,且输 入电压以姆区分界点电压以姆区分界点电压低200mV, 求反相电压放大器 的电压增益
 - $-R=1.5k\Omega$
 - $R=33k\Omega$

$$V_{DD} = 3.3V$$

 $R = 1.5k\Omega$

NMOS反相器

课堂给出的是图解法

 $\beta_n = 320 \,\mu A/V^2$

$$V_{TH} = 0.8V$$

阈值电压 **Threshold Voltage**

$$i_{D} = \begin{cases} 0 \\ \beta_{n} (v_{GS} - V_{TH})^{2} \\ 2\beta_{n} ((v_{GS} - V_{TH}) v_{DS} - 0.5 v_{DS}^{2}) \end{cases}$$

求解第一步: 列方程

未知:被确定

$$v_{GS} = v_{IN}$$

已知

恒压源约束方程

$$i_G = 0$$

NMOS栅源端口约束方程

$$v_{OUT} = v_{DS} = V_{DD} - i_D R$$

$$i_D = f_{D,iv} (v_{GS}, v_{DS}) = f_{D,iv} (v_{IN}, v_{OUT})$$

未知: 待定

NMOS漏源端口约束方程

两个未知量

可解

求解第二步:

图解法直观分析

 $v_{OUT} = V_{DD} - i_D R$

$$i_D = f_{D,iv}(v_{IN}, v_{OUT}) = f_{D,iv}(v_{GS}, v_{DS})$$

求解第三步:

中学数学方法求解

$$i_D = \beta_n (v_{GS} - V_{TH})^2 = \beta_n v_{DS}^2$$

$$v_{DS} = V_{DD} - i_D R_D$$

$$v_{DS} = V_{DD} - i_D R_D = V_{DD} - \beta_n v_{DS}^2 R_D$$

$$\beta_n v_{DS}^2 R_D + v_{DS} - V_{DD} = 0$$

$$egin{align*} oldsymbol{eta}_{n}v_{DS}^{2}R_{D}+v_{DS}-V_{DD}&=\mathbf{0} \ v_{IN,01}=v_{GS}=V_{TH} \ v_{DS}=rac{-1\pm\sqrt{1+4eta_{n}R_{D}V_{DD}}}{2eta_{n}R_{D}}$$
 舍弃无意义解 $-1+\sqrt{1+4eta_{n}R_{D}V_{DD}}$

$$v_{IN,02} = v_{GS} = v_{DS} + V_{TH} = \frac{-1 + \sqrt{1 + 4\beta_n R_D V_{DD}}}{2\beta_n R_D} + V_{TH}$$

$$i_{D} = \begin{cases} 0 & v_{GS} < V_{TH} & v_{IN} < v_{IN,01} = V_{TH} \\ \beta_{n} (v_{GS} - V_{TH})^{2} & v_{GS} > V_{TH}, v_{DS} > v_{GS} - V_{TH} & v_{IN,01} < v_{IN} < v_{IN,02} \\ 2\beta_{n} ((v_{GS} - V_{TH})v_{DS} - 0.5v_{DS}^{2}) & v_{GS} > V_{TH}, v_{DS} < v_{GS} - V_{TH} & v_{IN} > v_{IN,02} \end{cases}$$

$$v_{GS} < V_{TH}$$

$$v_{GS} > V_{TH}, v_{DS} > v_{GS} - V_{TH}$$

$$v_{GS} > V_{TH}, v_{DS} < v_{GS} - V_{TH}$$

$$v_{IN} < v_{IN,01} = V_{TH}$$

 $v_{GD} = V_{TH}$

 $< v_{GS}$ -

 $v_{DS} = v_{GS} - V_{TH}$

 $v_{DS} > v_{GS} - V_{TH}$

 $v_{GS} > V_{TH}$

 $v_{GS} < V_{TH}$

29

 $v_{GS=1.5V}$ $v_{GS=1.0V}$ $v_{GS}=V_{TH}$

$$v_{IN,01} < v_{IN} < v_{IN,02}$$

$$v_{IN} > v_{IN,02}$$

晶体管处于截止区

$$v_{IN} < v_{IN,01} = V_{TH}$$

 $i_D = 0$ 漏极电流为0,沟道电阻无穷大

晶体管进入恒流导通区

 $v_{IN,01} < v_{IN} < v_{IN,02}$

$$i_D = \beta_n (v_{GS} - V_{TH})^2 = \beta_n (v_{IN} - V_{TH})^2$$

漏极电流受输入电压平方律控制增大

$$v_{OUT} = V_{DD} - i_D R_{B}$$

R_D电阻分压随之平方律增大

$$= V_{DD} - \beta_n R_D (v_{IN} - V_{TH})^2$$

沟道电阻分压随输入增大平方律 关系下降,下降速率快

$$v_{IN,02} = \frac{-1 + \sqrt{1 + 4\beta_n R_D V_{DD}}}{2\beta_n R_D} + V_{TH}$$

 $v_{IN,01} = V_{TH}$

晶体管进入欧姆导通区

$$v_{IN} > v_{IN,02}$$
 $i_D = 2\beta_n \left((v_{GS} - V_{TH})v_{DS} - 0.5v_{DS}^2 \right)$
= $2\beta_n \left((v_{IN} - V_{TH})v_{OUT} - 0.5v_{OUT}^2 \right)$

漏极电流同时受输入电压和输出电压控制 (受控) (非线性电阻关系)

沟道电阻阻值进一步下降

$$v_{IN,02} = \frac{-1 + \sqrt{1 + 4\beta_n R_D V_{DD}}}{2\beta_n R_D} + V_{TH}$$

$$v_{OUT} = V_{DD} - i_D R_D$$

= $V_{DD} - 2\beta_n R_D \left((v_{IN} - V_{TH}) v_{OUT} - 0.5 v_{OUT}^2 \right)$

 $0.5v_{OUT}^2 - \left(v_{IN} - V_{TH} + \frac{1}{2\beta_n R_D}\right)v_{OUT} + \frac{1}{2\beta_n R_D}V_{DD} = 0$

$$v_{OUT} = \left(v_{IN} - V_{TH} + \frac{1}{2\beta_n R_D}\right) - \sqrt{\left(v_{IN} - V_{TH} + \frac{1}{2\beta_n R_D}\right)^2 - \frac{V_{DD}}{\beta_n R_D}} \qquad v_{IN,01} = V_{TH}$$

$$V_{DD}$$
 MOSFET 截止区 $v_{IN} < 0.8V$ $v_{IN} > 0.8V$ v_{IN}

1.5

 $v_{IN}(V)$

2

0.5

0.5

 $Q_{3.0}$

3

3.5

33

NMOS 欧姆导通

2.5

第四步: 对解进行解析 说明电路功能

- 晶体管工作在不同区域,有不同的端口描述方程(不同的等效电路)
 - 截止区: DS端口开路
 - 恒流导通区: DS端口为受控恒流源
 - 欧姆导通区: DS端口为受控非线性电阻

$$v_{DD} = \begin{cases} V_{DD} & v_{IN} < 0.8V \\ \text{晶体管截止区, 晶体管沟道等效为开路} \end{cases}$$

$$v_{OUT} = f(v_{IN}) = \begin{cases} V_{DD} - R\beta_n (v_{IN} - V_{TH})^2 & 0.8V < v_{IN} < 2.58V \\ \text{晶体管恒流区, 晶体管沟道等效为压控恒流源} \\ \frac{2}{g_{ds0}R + 1 + \sqrt{(g_{ds0}R + 1)^2 - 4R\beta_n V_{DD}}} V_{DD} & v_{IN} > 2.58V \end{cases}$$

$$\approx \frac{1}{g_{ds0}R + 1} V_{DD} = \frac{r}{R + r} V_{DD} \qquad g_{ds0} = 2\beta_n (v_{IN} - V_{TH}) \\ r = 1/g_{ds0} \end{cases}$$

反相器做放大器使用 晶体管工作在恒流导通区

• 从输入输出转移特性曲线看,反相器可以作为反相电压放大器使用

$$v_{OUT}(t) = f(v_{IN}(t)) = f(V_{IN0} + v_{in}(t)) = f(V_{IN0}) + f'(V_{IN0})v_{in}(t) + 0.5f''(V_{IN0})v_{in}^{2}(t) + \dots$$

voltage amplifier

晶体管工作在恒流 区:晶体管是受控 电流源,随输入电 压变化,输出电流、 输出电压随之变化: 输出由输入线性决 定,线性放大器

直流偏置

DC Bias

原则上,扣除直流分量后,新的封装端口对外就是交流小信号放大器:实际电路有很多方法去除直流分量,例如可以用大电容实现直流电压的自动偏移:耦合电容、隔直电容

R

VDD

清华大学电子工程系 2020年春季学期

通过直流电压偏移,将小信号的坐标原点搬移 到直流工作点,这就是 直流偏置:直流偏置之 后,对小信号而言,可 实现线性放大

 V_{in}

 V_{GS0}

VIN=VGS

$$v_{IN,02} = V_{TH} + \frac{-1 + \sqrt{1 + 4R_D\beta_n V_{DD}}}{2\beta_n R_D} = \begin{cases} 0.8 + \frac{-1 + \sqrt{1 + 4 \times 1500 \times 320 \times 10^{-6} \times 3.3}}{2 \times 1500 \times 320 \times 10^{-6}} = 2.58V & R_D = 1.5k\Omega \\ 0.8 + \frac{-1 + \sqrt{1 + 4 \times 33000 \times 320 \times 10^{-6} \times 3.3}}{2 \times 33000 \times 320 \times 10^{-6}} = 1.31V & R_D = 33k\Omega \end{cases}$$

电压放大倍数电压增益

$$i_D = \beta_n (v_{GS} - V_{TH})^2$$
 恒流导通区 晶体管伏安特性方程

$$v_{OUT} = f(v_{IN}) = V_{DD} - Ri_D = V_{DD} - R\beta_n (v_{IN} - V_{TH})^2$$
 恒流导通区 输入输出非线性转移特性方程

$$A_{v} = \frac{dv_{OUT}}{dv_{vir}}\Big|_{Q} = -2R\beta_{n}(v_{IN} - V_{TH}) \cdot 1\Big|_{Q} = -2R\beta_{n}(V_{IN0} - V_{TH})$$
 直流工作点微分斜率 小信号电压放大倍数

 $v_{IN.02}$

$$A_{v1} = -2R_1\beta_n \left(V_{S0,1} - 0.2 - V_{TH}\right) = -2 \times 1500 \times 320 \times 10^{-6} \times \left(2.58 - 0.2 - 0.8\right) = -1.52$$

恒流区工作点,偏离欧姆导通200mV:人为设定

3.6dB反相电压放大

$$A_{v2} = -2R_2\beta_n (V_{S0,2} - 0.2 - V_{TH}) = -2 \times 33000 \times 320 \times 10^{-6} \times (1.31 - 0.2 - 0.8) = -6.55$$
 16.3dB反相电压放大

直流偏置电阻越大, 电压增益越高

二、理论课内容深化

方程列写的手工方法

$$i_1 R_1 + (i_1 - i_{test}) R_2 = v_s$$

$$i_3 R_3 + (i_3 + i_{test}) R_4 = v_s$$

$$-i_{1}R_{1} + i_{3}R_{3} + v_{test} = 0$$

$$i_{1} = \frac{1}{R_{1} + R_{2}} v_{s} + \frac{R_{2}}{R_{1} + R_{2}} i_{test}$$

$$i_{3} = \frac{1}{R_{3} + R_{4}} v_{s} - \frac{R_{4}}{R_{3} + R_{4}} i_{test}$$

$$\begin{aligned} v_{test} &= i_1 R_1 - i_3 R_3 \\ &= \left(\frac{R_1}{R_1 + R_2} - \frac{R_3}{R_3 + R_4} \right) v_s + \left(\frac{R_1 R_2}{R_1 + R_2} + \frac{R_3 R_4}{R_3 + R_4} \right) i_{test} \end{aligned}$$

李国林 电子电路与系统基础

是 $i_1 R_1 + (i_1 - i_{tost}) R_2 = v_s$ $i_{\alpha}R_{\alpha} + (i_{\alpha} + i_{\alpha\alpha})R_{\alpha} = v_{\alpha}$ 回

流

$$\begin{bmatrix} R_1 + R_2 & 0 \\ 0 & R_3 + R_4 \end{bmatrix} \begin{bmatrix} i_{l1} \\ i_{l3} \end{bmatrix} = \begin{bmatrix} v_S + R_2 i_{test} \\ v_S - R_4 i_{test} \end{bmatrix}$$

$$\begin{bmatrix} i_{l1} \\ i_{l3} \end{bmatrix} = \begin{bmatrix} \frac{1}{R_1 + R_2} & 0 \\ 0 & \frac{1}{R_3 + R_4} \end{bmatrix} \begin{bmatrix} v_S + R_2 i_{test} \\ v_S - R_4 i_{test} \end{bmatrix} = \begin{bmatrix} \frac{1}{R_1 + R_2} v_S + \frac{R_2}{R_1 + R_2} i_{test} \\ \frac{1}{R_3 + R_4} v_S - \frac{R_4}{R_3 + R_4} i_{test} \end{bmatrix}$$

$$\begin{split} v_{test} &= -i_{l3}R_3 + i_{l1}R_1 = \frac{-R_3}{R_3 + R_4}v_S + \frac{R_3R_4}{R_3 + R_4}i_{test} + \frac{R_1}{R_1 + R_2}v_S + \frac{R_1R_2}{R_1 + R_2}i_{test} \\ &= \left(\frac{R_1}{R_1 + R_2} - \frac{R_3}{R_3 + R_4}\right)v_S + \left(\frac{R_3R_4}{R_3 + R_4} + \frac{R_1R_2}{R_1 + R_2}\right)i_{test} \end{split}$$

何 可 测 电 阻

$$v_p = \left(\frac{R_1}{R_1 + R_2} - \frac{R_3}{R_3 + R_4}\right) v_S + \left(\frac{R_3 R_4}{R_3 + R_4} + \frac{R_1 R_2}{R_1 + R_2}\right) i_p$$

$$= \left(\frac{R_1 R_4 - R_2 R_3}{(R_1 + R_2)(R_3 + R_4)}\right) v_S + \left(\frac{R_3 R_4}{R_3 + R_4} + \frac{R_1 R_2}{R_1 + R_2}\right) i_p$$

如果电桥平衡, 在桥中就看不到源

当桥中电表看不到源时,电桥就平衡了

再练习: 惠斯通电桥回路电流法分析

回路电流法列方程

$$i_{l0} = i_{test}$$

$$R_{3}$$
 $i_{l1}R_{3} + (i_{l1} - i_{l2})R_{5} + (i_{l1} - i_{l0})R_{1} = 0$

$$i_{l2}R_4 + (i_{l2} - i_{l0})R_2 + (i_{l2} - i_{l1})R_5 = 0$$

$$i_{l1}(R_3 + R_5 + R_1) + i_{l2}(-R_5) = i_{test}R_1$$

$$i_{l1}(-R_5) + i_{l2}(R_4 + R_2 + R_5) = i_{test}R_2$$

$$\begin{bmatrix} R_3 + R_5 + R_1 & -R_5 \\ -R_5 & R_4 + R_2 + R_5 \end{bmatrix} \begin{bmatrix} i_{l1} \\ i_{l2} \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} i_{test}$$

路

$$\begin{bmatrix} i_{l1} \\ i_{l2} \end{bmatrix} = \frac{\begin{bmatrix} R_4 + R_2 + R_5 & R_5 \\ R_5 & R_3 + R_5 + R_1 \end{bmatrix} \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} i_{test}}{(R_3 + R_5 + R_1)(R_4 + R_2 + R_5) - R_5^2}$$

流

$$= \frac{\begin{bmatrix} (R_1 + R_2)R_5 + (R_2 + R_4)R_1 \\ (R_1 + R_2)R_5 + (R_1 + R_3)R_2 \end{bmatrix} i_{test}}{R_5(R_1 + R_2 + R_3 + R_4) + (R_1 + R_3)(R_2 + R_4)}$$

$$\begin{bmatrix} i_{l1} \\ i_{l2} \end{bmatrix} = \frac{\begin{bmatrix} (R_1 + R_2)R_5 + (R_2 + R_4)R_1 \\ (R_1 + R_2)R_5 + (R_1 + R_3)R_2 \end{bmatrix} i_{test} }{R_5(R_1 + R_2 + R_3 + R_4) + (R_1 + R_3)(R_2 + R_4)}$$

$$v_{test} = i_{l1}R_3 + i_{l2}R_4 = (\dots)i_{test}$$

$$R_{eq} = \frac{v_{test}}{i_{test}} = \frac{(R_1 + R_2)(R_3 + R_4)R_5 + R_2R_4(R_1 + R_3) + R_1R_3(R_2 + R_4)}{R_5(R_1 + R_2 + R_3 + R_4) + (R_1 + R_3)(R_2 + R_4)}$$

桥中电压电流

$$\begin{bmatrix} i_{l1} \\ i_{l2} \end{bmatrix} = \frac{\begin{bmatrix} (R_1 + R_2)R_5 + (R_2 + R_4)R_1 \\ (R_1 + R_2)R_5 + (R_1 + R_3)R_2 \end{bmatrix} i_{test} }{R_5(R_1 + R_2 + R_3 + R_4) + (R_1 + R_3)(R_2 + R_4)}$$

$$\begin{split} &i_5 = i_{l2} - i_{l1} \\ &= \frac{(R_2 R_3 - R_1 R_4) i_{test}}{R_5 (R_1 + R_2 + R_3 + R_4) + (R_1 + R_3) (R_2 + R_4)} \end{split}$$

$$i_5 = \frac{R_2 R_3 - R_1 R_4}{\left(R_1 + R_3\right)\left(R_2 + R_5\right) + R_5\left(R_1 + R_2 + R_3 + R_4\right)} i_{test} = 0$$

$$v_5 = i_5 R_5$$
 $= 0$ $R_2 R_3 = R_1 R_4$ 电桥平衡条件

电桥平衡条件满足时,R₅支路电压为0(等效短路,短路替代),电流为0(等效开路, 开路替代)

此时 R_5 取任意值,均不影响AB端口看入电阻: R_5 支路短路和 R_5 支路开路等效电阻相同

三、实验室实验电路使用电阻

- 一般元器件
 - -特性参数
 - 规格参数
 - 标称值
 - 允许偏差
 - 额定值
 - 质量参数

参考书:

王卫平,《电子产品制造技术》, 清华大学出版社,**2005**。

3.1 特性参数

- 特性参数
 - 用于描述电子元器件的基本电特性,体现其基本功能
 - 对于电阻类元器件,端口伏安特性就是其特性参数

电阻:线性关系

二极管:正向导通,反向截止非线性电阻

清华大学电子工程系 2020年春季学期

隧道二极管: 负斜率区 非线性电阻

3.2 规格参数

- 对电子元器件特性参数的量值表述称为规格参数
 - 对电阻而言, 电阻阻值就是电阻器的规格参数
 - 标称值
 - 允许偏差
 - 额定值
 - 封装外形,尺寸也属规格参数
 - 电子元器件在整机中占用一定的空间

标称值

- · 为了大批量生产的需求, 并可使得使用者能够取在 设定精度范围内选取记 合适的元器件,的数值是 一系列的离件基本参量 的标称值
- 一组有序排列的标称值 叫做标称值系列,电阻, 电容,电感等器件的特 性参数数值按右侧公式 取值

$$a_n = 10^{\frac{n-1}{E}}, n = 1, 2, ..., E$$

$$E = 6$$

$$6 \times 1 = 6$$

$$6 \times 2 = 12$$

$$E12$$

$$6 \times 4 = 24$$
 $E24$

$$6 \times 8 = 48$$
 E48

$$6 \times 16 = 96$$
 E96

$$6 \times 32 = 192$$
 E192

系列	E24	E12	E6	系列	E24	E12	E6
	1.0	1.0	1.0		3.3	3.3	3.3
	1.1				3.6		
	1.2	1.2			3.9	3.9	
	1.3				4.3		
	1.5	1.5	1.5		4.7	4.7	4.7
	1.6				5.1		
	1.8	1.8			5.6	5.6	
	2.0				6.2		
	2.2	2.2	2.2		6.8	6.8	6.8
	2.4				7.5		
	2.7	2.7			8.2	8.2	
	3.0				9.1		

 3.3Ω 33Ω 330Ω $3.3k\Omega$ $33k\Omega$ $330k\Omega$ $3.3M\Omega$ $33M\Omega$

允许偏差和精度等级

•	实际生产	出来的元器件,	其
	实际数值	面和标称值不可能	能完
	全相同,	总会存在一定的	的偏
	差		

$$E12 \pm 10\%$$
 K

$$E24 \pm 5\%$$
 J

*E*192

 $3.0k\Omega \pm 5\% : 2.85k\Omega \sim 3.15k\Omega$

 $\pm 0.5\%$

$$3.3k\Omega \pm 5\% : 3.135k\Omega \sim 3.465k\Omega \pm 0.1\% B$$

$$3.6k\Omega \pm 5\% : 3.42k\Omega \sim 3.78k\Omega$$

额定值

- 电压过大,元件内绝缘材料可能会被击穿
- 电流过大,功率消耗过大,可能发热烧毁
- 额定值
- 极限值

例: 金属膜电阻的额定值

额定功率(w)	最大工作电压(v)
0.25	250
0.5	500
1~2	750

环境温度小于70℃、气压小于一个大气压

3.3 质量参数

- 温度系数
- 噪声电动势

-^^-

- 高频特性
 - -器件到了高频区,特性一般都会发生改变

•

Datasheet: 元件数据手册,元件参数列表 会提供这些参数

四、电阻分压器

• 1、对KVL与KCL的额外说明

• 2、分压器应用例

4.1 对KCL的额外说明

- KCL: 结点流入总电流为零
 - 结点可以是广义结点

对KVL的额外说明

- KVL: 环路电压之和为零
 - 获得两点电压无需走闭环,环的一部分即可

4.2 分压 对偶分流

分压器和分流 器可视为二端 口网络

- 我们关注输 出与输入之 间的比值关 系

 - 分流器关注 输出短路电 流与输入电 流之比

$$i_o = \frac{G_2}{G_1 + G_2} i_i$$

$$i_o = \frac{G_2}{G_1 + G_2} i_i$$

$$i_{out} = \frac{G_n}{\sum_{k} G_k} i_{in}$$

 $v_o = \frac{R_2}{R_1 + R_2} v_i$

分压器应用例

$$v_o = \frac{R_2}{R_1 + R_2} v_i$$

- 已知BJT(Bipolar Junction Transistor, 双极结型晶体管)是三端器件,三端分别为基极(Base)、集电极 (Collector)、发射极(Emitter)
- BJT正常工作时

 $V_{CE} = 5V$

- 从基极流入的电流很小,可近似为0
- BE结电压近似等于0.7V
- 用分压器电路为这个BJT设置直流偏置
 - 要求C极流入电流为2mA
 - 要求CE极间电压为5V
 - 己知直流电源电压为12V

$$I_{B} \approx 0$$

$$V_{BE} \approx 0.7V$$

$$I_{E} = I_{C} + I_{B} \approx I_{C} = 2mA$$

$$E$$

分压器设计

$$I_E = 2mA$$
$$\Leftrightarrow R_E = 1k\Omega$$

$$V_E = I_E R_E = 2V$$

$$V_C = V_{CE} + V_E = 7V$$

$$R_C = \frac{V_{CC} - V_C}{I_C} = \frac{12 - 7}{2} = 2.5k\Omega$$

$$R_C = 2.4k \Omega$$

$$V_{R} = V_{RE} + V_{E} = 2.7V$$

$$\frac{R_1}{R_2} = \frac{V_{CC} - V_B}{V_B} = \frac{9.3}{2.7} = 3.44$$

$$R_2 = 10k\Omega, R_1 = 33k\Omega$$

可行吗?

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC} = \frac{10k}{33k + 10k} \cdot 12 = 2.79V$$

$$V_E = V_B - V_{BE} = 2.79 - 0.7 = 2.09V$$

$$I_E = \frac{V_E}{R_E} = \frac{2.09}{1k} = 2.09 mA$$

$$V_{CE} = V_{CC} - I_C R_C - I_E R_E$$

$$= 12 - 2.09m \times 2.4k - 2.09$$

$$= 4.89V$$

要求C极流入电流为2mA 要求CE极间电压为5V

$$I_C \approx 2.09 mA = 2mA + 4.5\%$$

$$V_{CE} \approx 4.89V = 5V - 2.2\%$$

最坏分析**1**
$$V_B = \frac{R_2}{R_1 + R_2} V_{CC} = \frac{10.5k}{31.35k + 10.5k} \cdot 12 = 3.01V$$

$$V_E = V_B - V_{BE} = 3.01 - 0.7 = 2.31V$$

$$I_E = \frac{V_E}{R_E} = \frac{2.31}{0.95k} = 2.43mA$$

$$V_{CE} = V_{CC} - I_C R_C - I_E R_E$$

$$= 12 - 2.43m \times (2.52k + 0.95k)$$

$$= 3.57V$$

要求C极流入电流为2mA 要求CE极间电压为5V

$$I_C \approx 2.43 mA = 2mA + 22\%$$

$$V_{CF} \approx 3.57V = 5V - 29\%$$

最坏分析2

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC} = \frac{9.5k}{34.65k + 9.5k} \cdot 12 = 2.58V$$

$$V_E = V_B - V_{BE} = 2.58 - 0.7 = 1.88V$$

$$I_E = \frac{V_E}{R_E} = \frac{1.88}{1.05k} = 1.79 mA$$

$$V_{CE} = V_{CC} - I_C R_C - I_E R_E$$

$$= 12 - 1.79m \times (2.28k + 1.05k)$$

$$= 6.04V$$

要求C极流入电流为2mA 要求CE极间电压为5V

$$I_C \approx 1.79 mA = 2mA - 11\%$$

$$V_{CE} \approx 6.05V = 5V + 21\%$$

$$I_{C}\approx 2.09mA=2mA+4.5\%$$

$$V_{CE}\approx 4.89V=5V-2.2\%$$

$$I_{C}\approx 2.43mA=2mA+22\%$$

$$I_{C}\approx 1.79mA=2mA-11\%$$

$$V_{CE}\approx 3.57V=5V-29\%$$

$$V_{CE}\approx 6.05V=5V+21\%$$

- · 两种极端情况出现的概率极小,几乎不可能出现,但不能说**100%**不会出现
- 出现这么大偏差我们还能容忍吗?
 - 如果出现概率极小,或许可以容忍
 - 主要看设计应用背景
 - 如果不能容忍,换高精度电阻,代价就是成本提高

电位器 potentiometer

- 电路调试中,采用 电位器将晶体管调 节到希望的直流偏 置电流上
 - 电位器是实验室电路调试中常见的可变电阻器件
 - 无需高精度电阻器, 高精度电阻器成本 太高

练习题 (非作业)

- 已知BJT是三端器件,三端分别为B 极、C极、E极
- BJT正常工作时
 - 从B极流入的电流很小,可近似为0
 - BE极间电压近似等于0.7V
- 用分压器电路为这个BJT设置直流偏置电压
 - 要求C极流入电流为4mA
 - 要求CE极间电压为5V
 - 已知直流电压源电压为+12V
- 给出你的设计过程,给出 R_1 , R_2 , R_c 、 R_r 具体数值
 - 要求 R_c 和 R_E 大小差不太多
 - 要求 R_1 , R_2 比 R_C 、 R_E 大一个量级
 - 要求 R_1 , R_2 , R_c 、 R_E 按E96系列电阻阻值取值
 - **E96**系列电阻的允许偏差为**1%**,给出你的设计的最坏情况分析