Departamento de Matemática da Universidade de Aveiro

CÁLCULO III - agrup. 4

2022/23

Folha 6: integrais de linha e de superfície

- 1. Calcule os seguintes integrais de linha relativamente ao comprimento de arco
 - (a) $\int_{\mathcal{C}} y ds$, sendo \mathcal{C} o segmento de recta que une (1,1) a (2,3).
 - (b) $\int_{\mathcal{C}} (x^2 + yz) ds$, sendo \mathcal{C} parametrizada por $\mathbf{r}(t) = (\sin(2t), \cos(2t), t), t \in [0, \pi]$.
 - (c) $\int_{\mathcal{C}} xyds$, onde \mathcal{C} denota o quadrilátero de equação |x|+|y|=4, percorrido em sentido horário.
- 2. Dada uma espiral de uma mola cujo material tem densidade $\rho(x, y, z) = x^2 + y^2 + z^2$, e que possui forma de hélice cilíndrica parametrizada por $\mathbf{r}(t) = (a\cos(t), a\sin(t), bt)$, calcule
 - (a) a sua massa $M := \int_{\mathcal{C}} \rho ds$;
 - (b) o seu centro de massa

$$\mathbf{P} := \left(\int_{\mathcal{C}} x \rho ds, \int_{\mathcal{C}} y \rho ds, \int_{\mathcal{C}} z \rho ds \right),$$

- 3. Calcule o integral de linha relativamente às curvas indicadas:
 - (a) $\int_{\mathcal{C}} x dy$, com \mathcal{C} dada por $\mathbf{r}(t) = (e^t, 1), t \in [0, 1]$.
 - (b) $\int_{\mathcal{C}} x dy y dx$, com \mathcal{C} dada por $\mathbf{r}(t) = (\cos t, \sin t), t \in [0, \pi]$.
 - (c) $\int_{\mathcal{C}} (x^2 2xy) dx + (y^2 2xy) dy$, onde \mathcal{C} denota a porção de curva da parábola $y = x^2$ entre os pontos (-1,1) e (1,1).
 - (d) $\int_{\mathcal{C}} yzdx + xzdy + xydz$, com \mathcal{C} dada por $\mathbf{r}(t) = (3\cos t, 5\sin t, 4\cos t), t \in [0, 2\pi]$.
- 4. Calcule o trabalho realizado pelo campo de forças $\mathbf{F}(x,y,z)=(y^2,z^2,x^2)$ ao longo da curva \mathcal{C} resultante da intersecção da superfície esférica $x^2+y^2+z^2=a^2$ com o cilíndro $x^2+y^2=ax$ (assuma a trajectória percorrida no sentido de $\mathbf{P}_0=(a,0,0)$ para $\mathbf{P}_1=(a/2,a/2,\sqrt{2}a/2)$ em sentido directo).
- 5. Para cada um dos seguintes campos de forças, verifique se este é um campo conservativo e calcule o trabalho realizado pelo campo de forças ao longo da curva curva C, sendo
 - (a) $\mathbf{F}(x,y) = (y,x)$ e \mathcal{C} dada por $\mathbf{r}(t) = (\cos t, \sin t), t \in [0,\pi]$.
 - (b) $\mathbf{F}(x,y) = (x^2 + y^2, 2xy)$ e C dada por $\mathbf{r}(t) = (\cos t, \sin t), t \in [0, 2\pi].$

- (c) $\mathbf{F}(x,y,z) = (yz,xz,xy)$ e \mathcal{C} o triângulo de vértices (0,0,0), (1,1,1) e (-1,1,-1), percorrido nesta ordem.
- 6. Uma partícula de massa m desloca-se sobre uma curva $\mathcal{C} = \mathbf{r}([a,b])$. A força exercida, em cada instante t, sobre a partícula em \mathcal{C} é dada pela segunda Lei de Newton, $\mathbf{F} = m\mathbf{a}$, onde $t \mapsto \mathbf{a}(t)$ representa o vector aceleração da partícula. Mostre então que trabalho realizado por esta força é um campo conservativo.
- 7. Sendo C^+ uma curva fechada, justifique que a circulação do campo $\mathbf{F}(x,y,z) = (x^2 yz, y^2 xz, z^2 xy)$ é nula ao longo dessa curva.
- 8. Determine a circulação (em sentido directo) do campo vectorial $\mathbf{F}(x,y) = (-y,x)$ ao longo da fronteira do disco unitário $B_1(0)$.
- 9. Determine a circulação (em sentido directo) do campo vectorial $\mathbf{F}(x,y) = (\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2})$ ao longo da fronteira do disco unitário $B_1(0)$.
- 10. Calcule a área da superfície resultante da intersecção das superfícies cilíndricas $x^2 + y^2 = 1$ com $x^2 + z^2 = 1$.
- 11. Calcule a área das seguintes superfícies:
 - (a) a porção do paraboló
ide elíptico $z=x^2+y^2$ no interior do cilíndro $x^2+y^2\leq 1.$
 - (b) a porção da superfície $z=1+2x+3y+4y^2$ condicionada a $1\leq x\leq 4$ e $0\leq y\leq 1$.
 - (c) a porção da superfície cónica $x^2 = y^2 z^2$ compreendida entre os planos y = 1 e y = 2.
- 12. Calcule

$$\iint_{\mathcal{S}} \frac{x}{\sqrt{x^2 + y^2}} dS,$$

onde S é a superfície do parabolóide $z=x^2+y^2$ no interior do cilíndro $x^2+y^2-2y\leq 0$.

- 13. Calcule o integral de superfície $\iint_{\mathcal{S}} x^2 dS$, sendo \mathcal{S} a superfície esférica $x^2 + y^2 + z^2 = 1$.
- 14. Calcule $\iint_{\mathcal{S}} y dS$, sendo \mathcal{S} a superfície $z = x + y^2$, com $0 \le x \le 1, \ 0 \le y \le 2$.
- 15. Calcule $\iint_{\mathcal{S}} z dS$, onde \mathcal{S} é a superféie que delimita a porção do cilíndro $x^2 + y^2 \le 1$ compreendida entre os planos z = x + 1 e z = 0.
- 16. Calcule o fluxo do campo vectorial \mathbf{F} através da superfície \mathcal{S} , onde
 - (a) $\mathbf{F}(x, y, z) = (z, y, x) \in \mathcal{S} : x^2 + y^2 + z^2 = 1.$

- (b) $\mathbf{F}(x,y,z)=(y,x,z)$ e \mathcal{S} é a fronteira da região delimitada pelo parabolóide $z=1-x^2-y^2$ e pelo plano z=0.
- (c) A temperatura t=t(x,y,z) numa bola metálica é proporcional à distância do ponto ao centro da bola. Encontre fluxo do calor através da superfície esférica \mathcal{S} de raio R>0 e centrada no centro da bola metálica.