

RECONSTITUIREA ELEMENTELOR GEOMETRICE ALE UNUI ANGRENAJ MELCAT

1. Scopul lucrării

Restabilirea elementelor geometrice ale unui angrenaj melcat, deteriorat.

2. Elemente teoretice.

2.1. Angrenaje melcate-elemente specifice

Sunt angrenaje cu axe necoplanare, cu unghiul dintre axe de 90° . Melcul cilindric trebuie imaginat ca provenind dintr-o roată cilindrică cu dinți înclinați la care numărul de dinți a scăzut la $1\dots4$, unghiul β_1 a crescut către 90° , iar diametrul de divizare și pasul elicei dintelui s-au micșorat, determinând înfășurarea elicei de mai multe ori pe lățimea roții. În aceste condiții roata dintată pinion, numită în continuare melc, ia aspectul unui șurub cu filet trapezoidal. Întrucât la melc unghiul de înclinare al dintelui $\beta_{01} > 45^\circ$, se folosește, ca și la șurub, noțiunea de unghiul elicei dat de relația: $\gamma_{01} = \frac{\pi}{2} - \beta_{01}$, figura 1. Filetul melcului poate fi

cu 1, 2, 3, 4 începuturi. Numărul de începuturi este asimilat cu numărul de dinți de la angrenajele cilindrice și intervine în raportul de transmitere.

$$i = \frac{z_2}{z_1} \quad (1)$$

unde: z_1 - numărul de începuturi, z_2 - numărul de dinți al roții melcate.

Fig. 1 Similitudinea roata cilindrică cu dinți înclinați - melc cilindric

Roata melcată poate fi privită ca o roată cilindrică cu dinți înclinați cu unghiul de înclinare al danturii $\beta_{02} = \gamma_{01}$, cu deosebirea că roata melcată îmbracă melcul pe un anumit unghi $2\cdot\theta$, figura 3, asigurând o lungime de contact mai mare între flancuri.

2.2. Melc de referință, melc generator, melc de funcționare

Datorită formei toroidale a roții melcate, dantura angrenajului melcat nu mai poate fi definită de o cremalieră de referință, ca la angrenajele cilindrice, fiind adoptat un melc cilindric de referință, figura 2.

Cilindrul de referință este cilindrul pentru care grosimea dintelui este egală cu grosimea golului, pe el se măsoară pasul axial p_x . În secțiunea axială, figura 2, mai sunt definite h_{0a} - înălțimea capului dintelui; h_{0f} - înălțimea piciorului dintelui; h_0 - înălțimea dintelui. Înălțimile sunt precizate în funcție de modulul axial al melcului $m_x = p_x/\pi$. Modulul axial m_x are valori normalizate conform SR ISO 10828:2012, [1], tabelul 1.

În funcție de execuția melcului și de tipul secțiunii aplicată flancului se obține și forma profilului flancului care va defini tipul de melc:

- i. Melc ZA - profilul flancului este cu muchii drepte într-o secțiune axială, iar într-o secțiune frontală - profilul este o spirală a lui Arhimede (foarte utilizat în România), obținut prin strunjire cu cuțit profilat cu flancuri drepte înclinate cu unghi α_n (suprafață riglată, poate fi rectificată).
- ii. Melcul ZE - cu profil în evolventă într-un plan frontal T-T, flancurile au profilul rectangular într-un plan paralel cu axa, dar tangent la un cilindru de bază (necesită scule speciale);
- iii. Melcul ZN1 și ZN2 - melci cu flancuri cu profil rectiliniu într-o secțiune normală pe direcția normală N-N a elicei, ZN1 - pentru perpendiculara pe dintre, ZN2 - pentru perpendiculara pe golul dintre dinți;
- iv. Melcul ZK1 și ZK2 - melci cu flancuri profilate, nu se pot rectifica;

Melcul generator este melcul utilizat pentru definirea sculei de prelucrare a roții melcate și este identic cu melcul de referință, având înălțimea capului h_{0a} mai mare cu o cantitate $c_0 = c_0^* \cdot m_x$, ($c_0^* = 0,2$) pentru a asigura jocul necesar la picior, în procesul de angrenare dintre roată și melcul de funcționare, [2].

Melcul de funcționare, cel care formează cu roata angrenajul melcat, are forma și dimensiunile identice cu cele ale melcului de referință, cu excepția grosimii dintelui care este micșorată în scopul obținerii jocului între flancuri în angrenajul melcat.

2.3. Angrenajul melcat-elemente de calcul geometric

Pe baza pasului axial se determină pasul frontal p_t , și pasul normal p_n , figura 2, și corespunzător relațiile pentru modulul frontal m_t și modulul normal m_n :

$$p_t = \frac{p_x}{\operatorname{tg}(\gamma_{01})}, \quad m_t = \frac{m_x}{\operatorname{tg}(\gamma_{01})} \quad (2)$$

$$p_n = p_x \cdot \cos(\gamma_{01}), \quad m_n = m_x \cdot \cos(\gamma_{01}) \quad (3)$$

Fig. 2 Pasul axial - p_x , pasul frontal - p_t și pasul normal - p_n

La angrenajele melcate, figura 3, în loc de diametrele de divizare sunt definite diametrele de referință d_{01} și d_{02} :

$$d_{01} = m_t \cdot z_1 = m_x \cdot \frac{z_1}{\operatorname{tg}(\gamma_{01})} = m_x \cdot q \quad (4)$$

$$d_{02} = m_x \cdot z_2 \quad (5)$$

$$\text{unde: } q = \frac{z_1}{\operatorname{tg}(\gamma_{01})} \quad (6)$$

este numit coeficient diametral, tabelul 1.

Diametrele de cap d_{a1} și d_{a2} , la angrenajele nedeplasate, sunt:

$$d_{a1} = m_x \cdot q + 2 \cdot h_{0a}^* \cdot m_x = m_x \cdot (q + 2) \quad (7)$$

$$d_{a2} = m_x \cdot z_2 + 2 \cdot h_{0a}^* \cdot m_x = m_x \cdot (z_2 + 2) \quad (8)$$

unde: h_{0a}^* - coeficientul înălțimii capului de referință, $h_{0a}^* = 1$

Fig. 3 Elementele geometrice ale angrenajului melcat, [2]

Diametrele de picior d_{f1} și d_{f2} la angrenajele nedeplasate sunt:

$$d_{f1} = m_x \cdot q - 2 \cdot (h_{0f}^* + c_0^*) \cdot m_x = m_x \cdot (q - 2,4) \quad (9)$$

$$d_{f2} = m_x \cdot z_2 - 2 \cdot (h_{0f}^* + c_0^*) \cdot m_x = m_x \cdot (z_2 - 2,4) \quad (10)$$

unde: h_{0f}^* - coeficientul înălțimii piciorului de referință, $h_{0f}^* = 1$,

c_0^* - coeficientul jocului la piciorul dintelui, ușual $c_0^* = 0,2$.

Tabelul 1 Valori recomandate pentru m_x și q (SR ISO 10828:2012)

m_x	1; 1,25; 1,5; 1,6	2; 2,5	3; 3,15; 3,5; 4	5; 6; 6,3	7; 8; 10	12; 12,5; 16	20; 25
q	12	10	10	9	9	8	7
	14	12	11	10	10	9	8
	16	14	12	12	11	10	9

2.4. Modificarea danturii prin deplasarea sculei generatoare

a) Păstrarea numărului de dinți z_2 și modificarea distanței dintre axe pentru încadrarea în valorile standardizate a STAS. În aceste condiții:

$$d_{01} = m_t \cdot z_1 = m_x \cdot \frac{z_1}{\operatorname{tg} \gamma_{01}} = m_x \cdot q \quad (11)$$

$$d_{w1} = d_{01} + 2 \cdot x \cdot m_x = m_x \cdot (q + 2 \cdot x) \quad (12)$$

$$d_{02} = d_{w2} + 2 \cdot x \cdot m_x = m_x \cdot (z_2 + 2 \cdot x) \quad (13)$$

$$d_{w2} = m_x \cdot z_2 \quad (14)$$

$$a = r_{w1} + r_{w2} = \frac{m_x}{2} \cdot (q + z_2 + 2 \cdot x) \quad (15)$$

În ultima relație se impune astăs de unde rezultă valoarea coeficientului de deplasare.

b) Menținerea valorii distanței dintre axe și modificarea z_2 în z_2' .

Se pune condiția ca $z_2 - z_2'$ să fie 1 sau 2 și se obține $x = -1; -0,5; +0,5;$ sau $+1.$ De obicei $-0,5 < x < 0,5.$

3. Modul de lucru

- 1) Se numără dinții roții melcate z_2 și numărul de începuturi z_1 al melcului și se determină raportul de transmitere $i.$
- 2) Se măsoară diametrele de cap d_{a1}, d_{a2} și se determină valorile pentru modulul axial m_x și coeficientul diametral $q,$ care se normalizează conform SR ISO 10828:2012, (tabelul 1).
- 3) Se determină deplasarea de profil, dacă există;
- 4) Se calculează elementele geometrice, pentru melc și pentru roata melcată.
- 5) Se întocmesc desenele de execuție pentru melc și roata melcată.

4. Aplicație

Prin măsurare directă: $z_1 = 2; z_2 = 59; d_{a1} = 96 \text{ mm}; d_{a2} = 488 \text{ mm};$

1. Raportul de transmitere $i = n_1/n_2 = z_2/z_1 = 59/2 = 29,5;$

2. Determinarea modulul axial m_x și coeficientul diametral $q:$

$$d_{a1} = m_x \cdot (q + 2) = 96;$$

$$d_{a2} = m_x \cdot (z_2 + 2) = 488;$$

Soluționând sistemul celor două ecuații se obține: $m_x = 8 \text{ mm}$ și $q = 10.$

Bibliografie

1. SR ISO 10828: 2012 - Angrenaje melcate cilindrice. Geometria profilurilor melcilor.
2. Crețu, S., Hagiu, Gh., Grigoraș, Ș., Leohchi, D., Hantelmann, M., Bălan, R., 1992, Proiectarea angrenajelor, Rotaprint Iași.

Modulul axial	3
Coefficientul diametral	10
Numărul de dinți	2
Mechul de referință	20°-1-0,2
Diametrul de referință	30
Deplasarea specifică	0
Clasa de precizie și jocul	7-JC
Distanța între axe	63
Roata conjugată	Nr. desen
Nr. dinți	RM-16.09
Toleranța boțătilor radiale	32
Toleranța abaterii profilului la spira melenului	0,015
	0,025
ISO 6411 (la ambele capete)	
Găură de centrage A2 SR EN	
Materiel: 20MnCr5-SR EN 10084	
LOC INDICATOR	
6.3 / \	
-	
- Dantura melenului se va cimenta pe adâncimea de 0,6...0,8 mm	
- După călire, duritatea stratului superficial cementat 55...58 HRC și	
duritatea mijlociu 28...35 HRC	
- Dimensiunile canalului de pană conform SR ISO 3912	
- Muchile asculite necolatoare se vor leși cu 1x45°	
- Rozetele de racordare necolatoare sunt R 1	
- Toleranțe la cote libere ISO 2768-m	