1 Problem: The Pulverizer!

There is a pond. Inside the pond there are n pebbles, arranged in a cycle. A frog is sitting on one of the pebbles. Whenever he jumps, he lands exactly k pebbles away in the clockwise direction, where 0 < k < n. The frog's meal, a delicious worm, lies on the pebble right next to his, in the clockwise direction.

- (a) Describe a situation where the frog can't reach the worm.
 - A multiplicative inverse of k under modulo n doesn't exist \iff the greatest common divisor of k and n is greater than $1 \iff k$ and n are not co-prime.
- (b) In a situation where the frog can actually reach the worm, explain how to use the Pulverizer to find how many jumps the frog will need.
 - The Pulverizer produces the greatest common divisor of a and b as a linear combination sa + tb = 1. To find the multiplicative inverse (i.e., the number of jumps required by the frog to get to the worm), find t such that $t \cdot b \equiv 1 \pmod{a}$ and t > 0.
- (c) Compute the number of jumps if n = 50 and k = 21. Anything strange? Can you fix it?

The number of jumps using the Pulverizer algorithm yields a multiplicative inverse of t = -19 (see below). To find this value in $\{0, 1, 2, 3, \dots, 49\}$, we add multiples of 50 until we yield a number in this set: -19 + 50 = 31.

\boldsymbol{x}	y	rem(x, y)		x - qy
50	21	8	=	50 - (2)21
21	8	5	=	(-2)50 + (5)21
8	5	3	=	(3)50 - (7)21
5	3	2	=	(-5)50 + (12)21
3	2	1	=	(8)50 - (19)21
2	1	0	=	

2 Problem: The Fibonacci Numbers

The Fibonacci numbers are defined as follows:

$$F_0 = 0$$
 $F_1 = 1$ $F_n = F_{n-1} + F_{n-2}$ (for $n \ge 2$)

Give an inductive proof that the Fibonacci numbers F_n and F_{n+1} are relatively prime for all $n \geq 0$.

Proof (by induction). We will complete this proof by induction by inducting on n with the inductive hypothesis $P(n) := F_n$, F_{n-1} are relatively prime over all nonnegative integers n.

Base cases. P(0) and P(1) are true because 0,1 and 1,1 are coprime, respectively.

Inductive case. To establish $P(n) \implies P(n+1)$ for integers $n \ge 1$, we will first prove the following lemma:

Lemma 2.1. The sum of two coprime nonnegative integers (i + j) is coprime with both i and j.

Proof (by contradiction). Assume for the sake of setting up a contradiction that i+j is not relatively prime to i or not relatively prime to j. First, let k>1 be a divisor that divides i and i+j. This implies $k\mid j$, but this results in a contradiction because i and j are coprime (i.e., no k exists that divides both i and j). Similar reasoning also shows that i+j and j are coprime.

For $n \ge 1$, $P(n) \implies P(n+1)$ is true because F_{n+1} and F_n are coprime by Lemma 2.1.

By induction, for all nonnegative integers n, P(n) is proven true.