Geproci sets: a confluence of geometry, algebra, combinatorics and representation theory

Brian Harbourne

Cather Professor of Mathematics Fellow of the AMS Department of Mathematics University of Nebraska-Lincoln (UNL)

Algebra and Algebraic Geometry Seminar, McMaster Univ.: January 26, 2023

Slides will be available at my website (green text is clickable): https://www.math.unl.edu/~bharbourne1/

Main reference: arXiv:2209.04820

0/22 : 50

This talk is on joint work of the POLITUS Team (PT):

Luca Chiantini

Łucja Farnik

Giuseppe Favacchio

Brian Harbourne

Juan Migliore

Tomasz Szemberg

Justyna Szpond

1/22 : 47.

POLITUS: POLand, ITaly and the US

An international collaboration of 7 researchers whose logo is a stylized D_4 configuration:

2/22 : 45.5

Connections

Our work has connections to:

Algebraic Geometry

Commutative Algebra

Combinatorics

Representation Theory

Quantum Physics

It can also be considered in a larger not-only-mathematical context!

3/22 : 43.:

Abstract

Studying inverse scattering problems has led to remarkable advances in scientific knowledge. Here we propose carrying this idea over to classification problems in algebraic geometry. As a specific example we consider the following problem: which finite subsets of 3 dimensional projective space project from a general point to a complete intersection in a plane?

Inverse scattering Problems (ISP): try to discern structure from projected or reflected data.

Idea: classify structures algebro-geometrically based on properties of projected images.

4/22 : 40.9

Some examples of ISP

Echolocation (biology):

Rutherford scattering (physics; led to Bohr model of atom):

X-ray crystallography (chem/bio; led to DNA double helix model):

5/22 : 38.6

More examples

Tomography (medicine):

GePro- \mathcal{P} (math): Pick a property \mathcal{P} and classify finite point sets in \mathbb{P}^n whose Ge neral Pro jections to a hyperplane satisfy \mathcal{P} .

Here are 12 points (10 visible) in space whose projections from general points to a plane are complete intersections (so \mathcal{P} is "being a CI"). These 12 points (known as D_4) are "geproci."

6/22 : 36.4

Why D_4 is geproci

The quartic comes from lines through collinear points:

The cubic is one in a pencil of cubics:

7/22 : 34.1

$\mathsf{Gepro-}\mathcal{P}$

General Problem: Given a property \mathcal{P} of finite point sets $\overline{Z} \subset \mathbb{P}^{n-1}$, classify all finite $Z \subset \mathbb{P}^n$ such that $\overline{Z} \subset H \cong \mathbb{P}^{n-1}$ has property \mathcal{P} (where \overline{Z} is the image of Z under projection $\mathbb{P}^n \dashrightarrow H$ from a general point P to a hyperplane $H \subset \mathbb{P}^n$).

Example 1: Say $\mathcal P$ means " $\overline Z$ is Gorenstein". Then a set Z of n+1 general points in $\mathbb P^n$ is gepro- $\mathcal P$ since the image $\overline Z$ is a set of n+1 general points in H, which is Gorenstein.

Open Problem 1: Classify gepro-Gorenstein sets *Z*.

Every geproci set is also gepro-Gorenstein but not conversely.

Open Problem 2: Classify geproci sets in \mathbb{P}^n .

8/22 : 31.

History of geproci

We know no interesting examples of geproci sets in \mathbb{P}^n for n > 3.

We say $Z \subset \mathbb{P}^3$ is (a, b)-geproci if \overline{Z} is the intersection of a curve A of degree a with a curve B of degree b, with $a \leq b$.

A geproci set Z in a plane $H \subset \mathbb{P}^3$ is called *degenerate*; it is just the complete intersection of two curves in H.

Question 1 (F. Polizzi 2011): Is every geproci set in \mathbb{P}^3 degenerate?

Answer (D. Panov, 2011): No! (a, b)-grids are nondegenerate and geproci. I.e., $2 \le a \le b$ with A being a skew black lines and B being b skew orange lines, where each black line intersects each orange line in exactly 1 point. (Here a = b = 3.)

9/22 9/22

We understand grids.

Fact: For an (a, b)-grid with $3 \le a \le b$, the grid lines come from the rulings on a smooth quadric.

Fact: A (2, b)-grid consists of b points on each of two skew lines (but the grid lines need not all lie on a smooth quadric).

10/22 : 27.3

New Question and a partial answer

For simplicity, call a geproci set in \mathbb{P}^3 *trivial* if it is either a grid or contained in a plane.

Question 1' (F. Polizzi 2011): Is every geproci $Z \subset \mathbb{P}^3$ trivial? If not, can such Z be classified up to projective equivalence, at least when |Z| is small?

Answer (2018, Lefschetz Working Group at Levico Terme): Certain finite sets Z given by root systems (such as D_4 and F_4) which have unexpected cones (see Harbourne-Migliore-Nagel-Teitler: arXiv:1805.10626, Michigan Math. J. 2020) turn out to be nontrivial geproci sets.

Theorem (Levico Terme Working Group, 2018): A finite set $Z \subset \mathbb{P}^3$ is (a,b)-geproci if |Z|=ab and it has unexpected cones of degrees $a \leq b$ with no common components.

11/22 : 25.0

The 2018 Levico Terme Working Group (LTWG)

Alessandra Bernardi

Luca Chiantini

Graham Denham

Giuseppe Favacchio

Brian Harbourne

Tomasz Szemberg

Justyna Szpond

12/22 : 22.

Unexpected cones

Let $p_1, \ldots, p_s \in \mathbb{P}^n$ be distinct and let $P \in \mathbb{P}^n$ be general.

Let $Z=\{p_1,\ldots,p_s\}$ and $I(Z)\subset k[\mathbb{P}^n]=k[x_0,\ldots,x_n]$ its ideal.

The cones of degree t with vertex P: $[I(P)^t]_t$

The cones of degree t with vertex P containing Z: $[I(Z)]_t \cap [I(P)^t]_t$

They're "unexpected" if there are more than expected:

$$\dim\left([I(Z)]_t\cap[I(P)^t]_t\right)>\max\left\{0,\dim[I(Z)]_t-\binom{n+t-1}{n}\right\}.$$

We write "Z satisfies C(t)" if Z has unexpected cones of degree t.

13/22 : 20.5

A result and an Open Problem

Theorem (Chiantini-Migliore, arXiv:1904.02047, TAMS 2021): Every (a, b)-grid with $3 \le a \le b$ satisfies both C(a) and C(b).

Open Problem 3: Does every nontrivial (a, b)-geproci $Z \subset \mathbb{P}^3$ satisfy both C(a) and C(b)?

14/22 : 18.3

D_4 played a special role; F_4 was important too!

Theorem (Chiantini-Migliore, arXiv:1904.02047, TAMS 2021): The least |Z| for a nontrivial geproci set is |Z| = 12. An example is given by the D_4 configuration of 12 points; it is (3,4)-geproci.

Theorem 1 (PT, 2022): The D_4 configuration is, up to projective equivalence, the only nontrivial (a, b)-geproci set in \mathbb{P}^3 with $a \leq 3$.

 D_4 and F_4 motivated the following theorem:

Theorem 2 (PT, 2022): For each $4 \le a \le b$, there is a nontrivial (a,b)-geproci $Z \subset \mathbb{P}^3$.

The proof of Theorem 2 starts with specific (a, a)-grids and adds one (or two) specific set(s) of a collinear points, as exemplified by D_4 (or F_4), followed by deletions of certain collinear subsets.

15/22 : 15.

How D_4 and F_4 motivated Theorem 2

 D_4 is at right: the gray and dashed lines give a (3,3)-grid. The main diagonal of the cube through the white point is the additional set of 3 collinear points.

 F_4 is the 24 intersection points of the $\binom{8}{2} = 28$ lines through pairs of vertices of a cube.

Fact: It has unexpected cones of degrees 4 and 6, and $|F_4| = 24$.

Conclusion (LTWG): F_4 is a (4,6)-geproci set.

For F_4 , \overline{Z} is the intersection of 6 lines with an irreducible quartic.

Here is a 3D view of F_4 , its (4,4)-subgrid and its unexpected cones.

16/22 : 13.4

D_4 and F_4 are half grids

Definition: A nontrivial (a, b)-geproci set Z is a half grid if \overline{Z} is the intersection of two curves, exactly one of which can always be taken to be a union of lines.

Example: $Z = D_4$ is not contained in a smooth quadric so it is not a grid. Here \overline{Z} is contained in 4 lines, so it is a half grid.

Example: $Z = F_4$ is not contained in a smooth quadric so it is not a grid. Here \overline{Z} is contained in 6 lines, so it is a half grid.

17/22 : 11.

Open Problems

- (a) We know only a few examples of nontrivial geproci non-half grids:
 - The 60 point set for the H₄ root system (Wiśniewska-Zięba).
 - A 40 point (5,8)-geproci set applied by Penrose to quantum mechanics (QM).
 - A 120 point (10, 12)-geproci set also related to QM.

Open Problem 4: Are there only finitely many nontrivial geproci non-half grids?

(b) Every nontrivial geproci set in \mathbb{P}^3 that we know of has multiple subsets of at least 3 collinear points.

Open Problem 5: Can a nontrivial geproci set be linearly general?

(c) The 40 point Penrose set is Gorenstein.

Open Problem 6: Are there other finite Gorenstein geproci sets?

18/22 : 9.1

More Open Problems

(a) There are, up to projective equivalence, uncountably many grids.

Open Problem 7: Up to projective equivalence, is there any (a, b) with infinitely many nontrivial (a, b)-geproci sets?

(b) We know no example of a geproci set in \mathbb{P}^n for n > 3.

Open Problem 8: Do geproci sets exist in \mathbb{P}^n , n > 3?

(c) We can define a geproci variety as any variety whose general projection is a complete intersection. A cone with a general vertex over a finite geproci set is a geproci curve, the cone over that is a geproci surface, etc. These geproci varieties all have codimension 3.

Open Problem 9: Are there other kinds of geproci varieties? Are there any with codimension greater than 3?

19/22 : 6.8

Terao type problems

Terao's Conjecture concerns whether a certain property of hyperplane arrangements is a combinatorial property. A geproci set also has combinatorics (e.g., its collinear subsets).

Open Problem 10: If two geproci sets have the same combinatorics, are they projectively equivalent?

Open Problem 11: If a set has the same combinatorics as a geproci set, is it geproci?

20/22 : 4.5

Other work: Exploring geproci in positive characteristics.

Theorem [Jake Kettinger]: Let k be a finite field, q=|k|, \overline{k} its algebraic closure and let $Z=\mathbb{P}^3_k$ be all k-points of $\mathbb{P}^3_{\overline{k}}$. Then Z is a nontrivial $(q+1,q^2+1)$ -geproci set.

Proof: Uses the fact that \mathbb{P}^3_k has a full *spread*; i.e., a decomposition into q^2+1 disjoint sets of q+1 collinear points.

Definition: A partial spread for k consists of $b < q^2 + 1$ disjoint sets each with q + 1 collinear k-rational points. A maximal partial spread is a partial spread maximal with respect to inclusion.

Theorem [Jake Kettinger]: Let k be a finite field, q = |k|, \overline{k} its algebraic closure and let Z be the complement in \mathbb{P}^3_k of a maximal partial spread. Then Z is a nontrivial non-halfgrid $\{q+1,b\}$ -geproci set (where $\{q+1,b\}=(q+1,b)$ if q+1< b and $\{q+1,b\}=(b,q+1)$ if $b\leq q+1$).

21/22 : 2.3

Thanks for your attention!

FINIS

22/22 22/22 22/22 22/22