Nonparametric Identification of Dynamic Models with Unobserved State Variables

Yingyao Hu and Matthew Shum

Johns Hopkins University

FEMES 2008 Singapore Management University

Hu/Shum (JHU) Dynamics July 2008 1 / 46

Introduction

- Consider identification of first-order Markov process $\{W_t, X_t^*\}$ for t = 1, 2, ..., T
- Only $\{W_t\}$ for t = 1, 2, ..., T is observed
- Show:
 - **1** nonstationary: transition kernel $f_{W_t,X_t^*|W_{t-1},X_{t-1}^*}$ identified from $f_{W_{t+1},W_t,W_{t-1},W_{t-2},W_{t-3}}$ (5 obs.)
 - 2 stationary: transition kernel $f_{W_2,X_2^*|W_1,X_1^*}$ identified from $f_{W_{t+1},W_t,W_{t-1},W_{t-2}}$ (4 obs.)
- Identification of $f_{W_t,X_t^*|W_{t-1},X_{t-1}^*}$ is crucial input for estimating dynamic models using "conditional-choice-probability (CCP)" approach of Hotz & Miller

Hu/Shum (JHU) Dynamics July 2008 2 / 46

Examples

- In most empirical applications, $W_t = (Y_t, M_t)$:
 - \triangleright Y_t is "control variable": agent's action in period t
 - $ightharpoonup M_t$ is observed state variable
- ullet X_t^* is persistent unobserved state variable
- Example 1: generalized Rust (1987)
 - $ightharpoonup Y_t$: indicator for replacing bus engine
 - $ightharpoonup M_t$: mileage of bus since last replacement
 - X_t^{*}: shocks to driver's ability, weather conditions, etc. (Rust assumed i.i.d over time)
- Example 2: generalized Pakes (1986)
 - $ightharpoonup Y_t$: indicator for renewing patent
 - X_t^* : profitability from the patent (unobsd)
 - ▶ *M_t*: stock price, sales of patentholder

4 D > 4 D > 4 E > 4 E > E 9 Q P

Roadmap

- Background
- Identification argument: discrete case (more details)
- Identification argument: continuous case (quickly)
- Simulation: 0-1 dichotomous case
- Example to illustrate assumptions: version of Rust (1987) bus engine replacement model
- Concluding remarks

Usefulness

We show identification of the joint density $f_{W_t,X_t^*|W_{t-1},X_{t-1}^*}$; (also, unconditional $f_{W_t,X_t^*,W_{t-1},X_{t-1}^*}$ is identified).

In Markov dynamic choice models, this factorizes into economic components of interest:

$$\begin{split} f_{W_{t},X_{t}^{*}|W_{t-1},X_{t-1}^{*}} &= f_{Y_{t},M_{t},X_{t}^{*}|Y_{t-1},M_{t-1},X_{t-1}^{*}} \\ &= \underbrace{f_{Y_{t}|M_{t},X_{t}^{*}}}_{\mathsf{CCP}} \cdot \underbrace{f_{M_{t},X_{t}^{*}|Y_{t-1},M_{t-1},X_{t-1}^{*}}}_{\mathsf{Markov \ state \ transitions}} \end{split}$$

From identified object, can recover: (i) conditional choice probability; (ii) Markov transitions for state variables.

Hu/Shum (JHU) Dynamics July 2008 5 / 46

Relation to literature

- Use as inputs into CCP-based approach to estimate dynamic discrete-choice model (Hotz-Miller, Aguirregabiria-Mira, Bajari-Benkard-Levin (2008), Pesendorfer-Schmidt-Dengler (2003), Pakes-Ostrovsky-Berry (2007)). Avoid numeric dyn. programming.
- First step in argument for nonparametric identification of DDC process with unobsd state variables (as in Magnac-Thesmar (2002), Bajari-Chernozhukov-Hong-Nekipelov (2005))
- Recent literature on estimating parametric DDC models with correlated USV
 - Bayesian: Imai, Jain, Ching (2006), Norets (2007)
 - ► Efficient simulation (particle filtering): Fernandez-Villaverde, Rubio-Ramirez (2006)

Hu/Shum (JHU) Dynamics July 2008 6 / 46

Relation to literature

- General criticism of CCP-based approaches: cannot accommodate unobservables which are persistent over time
- Recent literature on identification and estimation of DDC models with discrete and time-invariant X* (unobserved heterogeneity)
 - Buchinsky-Hahn-Hotz (2004), Houde-Imai (2006), Kasahara-Shimotsu (2007)
 - ▶ Specifically: Kasahara-Shimotsu demonstrate identification of Markov process $W_t|W_{t-1}, X^*$
- Time-varying X_t^* :
 - Arcidiacono-Miller (2006): consider CCP estimation with discrete and time-varying X_t^* .
 - Cunha, Heckman, Schennach (2007): identify continuous X_t^* process in multivariate measurement error setting W_t consists of noisy measurements of X_t^* and random noise

Hu/Shum (JHU) Dynamics July 2008 7 / 46

Relation to literature: nonclassical measurement errors

"Message": in X-section context, three "observations" (x, y, z) of latent x^* enough to identify (x, y, z, x^*)

• Hu (2008, JOE): X*-discrete latent variable

$$f_{X,Y,Z} = \sum_{x^*} f_{X|X^*} f_{Y|X^*} f_{X^*,Z}$$

Hu and Schennach (2008, ECMA): X*:continuous latent variable

$$f_{X,Y,Z} = \int f_{X|X^*} f_{Y|X^*} f_{X^*,Z} dx^*$$

• Carroll, Chen and Hu (2008): S-sample indicator

$$f_{X,Y,Z,S} = \int f_{X|X^*,S} f_{Y|X^*,Z} f_{X^*,Z,S} dx^*$$

Hu/Shum (JHU) Dynamics July 2008 8 / 46

This paper

- X_t* continuous
- X_t^* serially correlated: unobserved state variable
- ullet Evolution of X_t^* can depend on W_{t-1} , X_{t-1}^*
- Focus on nonparametric identification of joint Markov process $W_t, X_t^* | W_{t-1}, X_{t-1}^*$

Hu/Shum (JHU) Dynamics July 2008 9 / 46

Basic setup: conditions for identification

- Consider dynamic processes $\{(W_T, X_T^*), ..., (W_t, X_t^*), ..., (W_1, X_1^*)\}_i$, i.i.d across agents $i \in \{1, 2, ..., n\}$.
- The researcher observes $\{W_{t+1}, W_t, W_{t-1}, W_{t-2}, W_{t-3}\}_i$ for many agents i (5 obs)
- Assumption: The dynamic process (W_t, X_t^*) satisfies
 - (i) First-order Markov: $f_{W_t, X_t^* | W_{t-1}, \dots, W_1, X_{t-1}^*, \dots, X_1^*} = f_{W_t, X_t^* | W_{t-1}, X_{t-1}^*}$
 - (ii) Limited feedback: $f_{W_t|W_{t-1},X_t^*,X_{t-1}^*} = f_{W_t|W_{t-1},X_t^*}$. Picture

Hu/Shum (JHU) Dynamics July 2008 10 / 46

Comments on conditions

- Markov assumption standard in most applications of DDC models
- Limited feedback rules out direct effects from previous USV X_{t-1}^* , on current W_t . Implies that

$$\begin{split} f_{W_{t}|W_{t-1},X_{t}^{*},X_{t-1}^{*}} &= f_{Y_{t},M_{t}|Y_{t-1},M_{t-1},X_{t}^{*},X_{t-1}^{*}} \\ &= f_{Y_{t}|M_{t},Y_{t-1},M_{t-1},X_{t}^{*},X_{t-1}^{*}} \cdot f_{M_{t}|Y_{t-1},M_{t-1},X_{t}^{*},X_{t-1}^{*}} \\ &= \underbrace{f_{Y_{t}|M_{t},Y_{t-1},M_{t-1},X_{t}^{*}}}_{\mathsf{CCP}} \cdot \underbrace{f_{M_{t}|Y_{t-1},M_{t-1},X_{t}^{*}}}_{\mathsf{mileage transition}}. \end{split}$$

- CCP usually simplifies further to $f_{Y_t|M_t,X_t^*}$.
- Simplification in mileage transition applies limited feedback condition.
 Satisfied by many empirical applications (in IO context: Crawford-Shum (2005), Das-Roberts-Tybout (2007), Xu (2008), Hendel-Nevo (2007))

Special case: Discrete X_t^*

- ullet Main result for case of continuous X_t^*
- Build intuition by considering discrete case:

$$\forall t, \ X_t^* \in \mathcal{X}^* \equiv \{1, 2, \dots, J\}.$$

• For convenience, assume W_t also discrete, with same support $\mathcal{W}_t = \mathcal{X}_t^*$.

◆ロ → ◆回 → ◆ 重 → ◆ 重 → ◆ へ ○

Hu/Shum (JHU) Dynamics July 2008 12 / 46

Backbone of argument

For fixed (w_t, w_{t-1}) , in matrix notation: here

$$L_{W_{t+1},w_{t}|w_{t-1},W_{t-2}} = L_{W_{t+1}|w_{t},X_{t}^{*}} \cdot L_{w_{t},X_{t}^{*}|w_{t-1},W_{t-2}}$$

$$L_{w_{t},X_{t}^{*}|w_{t-1},X_{t-1}^{*}} \cdot L_{X_{t-1}^{*}|w_{t-1},W_{t-2}}$$

Identify in several steps:

- **1&2:** Get $f_{W_{t+1}|W_t,X_t^*}$
- **3:** Get $f_{W_t,X_t^*|W_{t-1},W_{t-2}}$
- **4:** Get $f_{W_t,X_t^*|W_{t-1},X_{t-1}^*}$ (function of interest)
 - BROWN: elements identified from data
 - PURPLE: elements identified in proof

Hu/Shum (JHU) Dynamics July 2008 13 / 46

The key equation

$$\begin{split} &f_{W_{t+1},W_t,W_{t-1},W_{t-2}} \\ &= \int \int f_{W_{t+1},W_t,W_{t-1},W_{t-2},X_t^*,X_{t-1}^*} dx_t^* dx_{t-1}^* \\ &= \int \int f_{W_{t+1}|W_t,X_t^*} \cdot f_{W_t,X_t^*|W_{t-1},X_{t-1}^*} \cdot f_{W_{t-1},W_{t-2},X_{t-1}^*} dx_t^* dx_{t-1}^* \\ &= \int \int f_{W_{t+1}|W_t,X_t^*} \cdot f_{W_t|W_{t-1},X_t^*,X_{t-1}^*} \cdot f_{X_t^*,X_{t-1}^*,W_{t-1},W_{t-2}} dx_t^* dx_{t-1}^* \\ &= \int f_{W_{t+1}|W_t,X_t^*} f_{W_t|W_{t-1},X_t^*} \cdot f_{X_t^*,W_{t-1},W_{t-2}} dx_t^* \end{split}$$

• Discrete-case, matrix notation (for any fixed w_t , w_{t-1}) details:

$$L_{W_{t+1}, w_t | w_{t-1}, W_{t-2}} = L_{W_{t+1} | w_t, X_t^*} D_{w_t | w_{t-1}, X_t^*} L_{X_t^* | w_{t-1}, W_{t-2}}$$

4 D > 4 B > 4 E > E + 9 Q (*)

Step 1 (cont'd)

• Important fact: for (w_t, w_{t-1}) ,

$$L_{W_{t+1}, w_t | w_{t-1}, W_{t-2}} = \underbrace{L_{W_{t+1} | w_t, X_t^*}}_{\text{no } w_{t-1}} \underbrace{D_{w_t | w_{t-1}, X_t^*}}_{\text{only } J \text{ unkwns.}} \underbrace{L_{X_t^* | w_{t-1}, W_{t-2}}}_{\text{no } w_t}$$

• for (w_t, w_{t-1}) , $(\overline{w}_t, w_{t-1})$, $(\overline{w}_t, \overline{w}_{t-1})$ $(w_t, \overline{w}_{t-1})$,

Hu/Shum (JHU) Dynamics July 2008 15 / 46

- Assume: LHS invertible, which is testable
- eliminate $L_{X_t^*|w_{t-1},W_{t-2}}$ using first two equations

$$\begin{array}{lll} \mathbf{A} & \equiv & L_{W_{t+1}, w_t | w_{t-1}, W_{t-2}} L_{W_{t+1}, \overline{w}_t | w_{t-1}, W_{t-2}}^{-1} \\ & = & L_{W_{t+1} | w_t, X_t^*} D_{w_t | w_{t-1}, X_t^*} D_{\overline{w}_t | w_{t-1}, X_t^*}^{-1} L_{W_{t+1} | \overline{w}_t, X_t^*}^{-1} \end{array}$$

ullet eliminate $L_{X_t^*|\overline{w}_{t-1},W_{t-2}}$ using last two equations

$$\mathbf{B} \equiv L_{W_{t+1}, w_t | \overline{w}_{t-1}, W_{t-2}} L_{W_{t+1}, \overline{w}_t | \overline{w}_{t-1}, W_{t-2}}^{-1}
= L_{W_{t+1} | w_t, X_t^*} D_{w_t | \overline{w}_{t-1}, X_t^*} D_{\overline{w}_t | \overline{w}_{t-1}, X_t^*}^{-1} L_{W_{t+1} | \overline{w}_t, X_t^*}^{-1}$$

• eliminate $L^{-1}_{W_{t+1}|\overline{W}_t,X_t^*}$

$$\mathbf{AB}^{-1} = L_{W_{t+1}|w_t, X_t^*} D_{w_t, \overline{w}_t, w_{t-1}, \overline{w}_{t-1}, X_t^*} L_{W_{t+1}|w_t, X_t^*}^{-1}$$

with diagonal matrix

$$D_{w_{t},\overline{w}_{t},w_{t-1},\overline{w}_{t-1},X_{t}^{*}} = D_{w_{t}|w_{t-1},X_{t}^{*}} D_{\overline{w}_{t}|w_{t-1},X_{t}^{*}}^{-1} D_{\overline{w}_{t}|\overline{w}_{t-1},X_{t}^{*}}^{-1} D_{w_{t}|\overline{w}_{t-1},X_{t}^{*}}^{-1}$$

Hu/Shum (JHU) Dynamics July 2008 16 / 46

$$\mathbf{A}\mathbf{B}^{-1} = L_{W_{t+1}|w_t,X_t^*} D_{w_t,\overline{w}_t,w_{t-1},\overline{w}_{t-1},X_t^*} L_{W_{t+1}|w_t,X_t^*}^{-1}$$

represents eigenvalue-eigenvector decomposition of observed AB⁻¹

• eigenvalues: diagonal entry in $D_{w_t,\overline{w}_t,w_{t-1},\overline{w}_{t-1},X_t^*}$

$$(D_{w_t,\overline{w}_t,w_{t-1},\overline{w}_{t-1},X_t^*})_{j,j} = \frac{f_{W_t|W_{t-1},X_t^*}(w_t|w_{t-1},j)f_{W_t|W_{t-1},X_t^*}(\overline{w}_t|\overline{w}_{t-1},j)}{f_{W_t|W_{t-1},X_t^*}(\overline{w}_t|w_{t-1},j)f_{W_t|W_{t-1},X_t^*}(w_t|\overline{w}_{t-1},j)}$$

Assume: For uniqueness, $(D_{w_t,\overline{w}_t,w_{t-1},\overline{w}_{t-1},X_t^*})_{j,j}$ are finite, distinctive

• eigenvector: column in $L_{W_{t+1}|w_t,X_t^*}$, (normalized because sums to 1)

Hence, $L_{W_{t+1}|w_t,X_t^*}$ is identified (up to the value of x_t^*). Any permutation of eigenvectors yields same decomposition.

To pin-down the value of x_t^* : need to "order" eigenvectors

- not necessary in the time-invariant case, $X_t^* = X_{t-1}^*$
- useful in time-varying case: show how agents change types w/ time.
- $f_{W_{t+1}|W_t,X_t^*}(\cdot|w_t,x_t^*)$ for any w_t is identified up to value of x_t^*
- To pin-down the value of x_t^* : Assume there is known functional

$$h(w_t, x_t^*) \equiv G\left[f_{W_{t+1}|W_t, X_t^*}\left(\cdot|w_t, \cdot\right)\right]$$
 is monotonic in x_t^* .

Then set
$$x_t^* = G\left[f_{W_{t+1}|W_t,X_t^*}\left(\cdot|w_t,\cdot\right)\right]$$

- G[f] may be mean, mode, median, other quantile of f.
- Note: in unobserved heterogeneity case $(X_t^* = X^*, \forall t)$, it is enough to identify $f_{W_{t+1}|W_t,X_t^*}$.

18 / 46

Step 3: identify $f_{W_t,X_t^*,W_{t-1},W_{t-2}}$

ullet Go back to main equation: for any (w_t,w_{t-1}) here

$$L_{W_{t+1}, w_t | w_{t-1}, W_{t-2}} = L_{W_{t+1} | w_t, X^*} \cdot L_{w_t, X^*_t | w_{t-1}, W_{t-2}}$$

• Identify $f_{W_t,X_t^*|W_{t-1},W_{t-2}}$ through

$$L_{w_t,X_t^*|w_{t-1},W_{t-2}} = L_{W_{t+1}|w_t,X^*}^{-1} \cdot L_{W_{t+1},w_t|w_{t-1},W_{t-2}}$$

• Also $f_{W_t, X_t^*, W_{t-1}, W_{t-2}} = f_{W_t, X_t^* | W_{t-1}, W_{t-2}} \cdot f_{w_{t-1}, W_{t-2}}$ known.

< □ ▶ ◀♬ ▶ ◀돌 ▶ ◀돌 ▶ ○ 돌 ○ 쒸익()

19 / 46

Hu/Shum (JHU) Dynamics July 2008

Step 4: identify $f_{W_t,X_t^*|W_{t-1},X_{t-1}^*}$

Markov property implies

$$\mathbf{f}_{W_{t},X_{t}^{*}|W_{t-1},W_{t-2}} = \sum_{X_{t-1}^{*} \in \mathcal{X}_{t-1}^{*}} f_{W_{t},X_{t}^{*}|W_{t-1},X_{t-1}^{*}} \cdot f_{X_{t-1}^{*}|W_{t-1},W_{t-2}}$$

• Matrix notation (fixed w_t , w_{t-1}) here

$$L_{w_t, X_t^* | w_{t-1}, W_{t-2}} = L_{w_t, X_t^* | w_{t-1}, X_{t-1}^*} L_{X_{t-1}^* | w_{t-1}, W_{t-2}}$$

• Almost done, but what is $L_{X_{t-1}^*|w_{t-1},W_{t-2}}$? BUT: From

$$W_t, X_t^*, W_{t-1}, W_{t-2} \Rightarrow \text{(marginalize } W_{t-2}\text{)}$$

 $W_t, X_t^*, W_{t-1} = X_t^* | W_t, W_{t-1} \cdot W_t, W_{t-1}$

So we have $X_t^*|W_t, W_{t-1}$, but one-period off.

(ロ) (部) (注) (注) 注 り(○)

Hu/Shum (JHU) Dynamics July 2008 20 / 46

Step 4: identify $f_{W_t, X_t^* | W_{t-1}, X_{t-1}^*}$

- need 5 periods
- mimick above argument:

From
$$f_{W_{t+1},W_t,W_{t-1},W_{t-2}} \Rightarrow \text{identify } f_{W_t,X_t^*,W_{t-1},W_{t-2}}$$

From $f_{W_t,W_{t-1},W_{t-2},W_{t-3}} \Rightarrow \text{identify } f_{W_{t-1},X_{t-1}^*,W_{t-2},W_{t-3}}$

• for any (w_t, w_{t-1})

$$L_{w_{t}, X_{t}^{*}|w_{t-1}, W_{t-2}} = L_{w_{t}, X_{t}^{*}|w_{t-1}, X_{t-1}^{*}} \cdot L_{X_{t-1}^{*}|w_{t-1}, W_{t-2}}$$

$$\uparrow f_{W_{t}, X_{t}^{*}, W_{t-1}, W_{t-2}}$$

$$\uparrow f_{W_{t+1}, W_{t}, W_{t-1}, W_{t-2}}$$

$$\uparrow f_{W_{t-1}, X_{t-1}^{*}, W_{t-2}, W_{t-3}}$$

$$\uparrow f_{W_{t}, W_{t-1}, W_{t-2}, W_{t-3}}$$

• Hence, $f_{W_t,X_t^*|W_{t-1},X_t^*}$ is identified through

$$L_{w_t, X_t^* \mid w_{t-1}, X_{t-1}^*} = L_{w_t, X_t^* \mid w_{t-1}, W_{t-2}} L_{X_{t-1}^* \mid w_{t-1}, W_{t-2}}^{-1} \blacksquare$$

Hu/Shum (JHU) Dynamics July 2008 21 / 46

Stationary case

- stationarity: $f_{W_t, X_t^* | W_{t-1}, X_{t-1}^*} = f_{W_2, X_2^* | W_1, X_1^*}$
- only need 4 periods $\{W_{t+1}, W_t, W_{t-1}, W_{t-2}\}$
- ullet stationarity helps identify $f_{X_{t-1}^*|W_{t-1},W_{t-2}}$ without W_{t-3}

$$f_{W_{t}|W_{t-1},W_{t-2}} = \int f_{W_{t}|W_{t-1},X_{t-1}^{*}} f_{X_{t-1}^{*}|W_{t-1},W_{t-2}} dx_{t-1}^{*}$$

$$\parallel f_{W_{t+1}|W_{t},X_{t}^{*}}$$

$$\uparrow \text{step 1&2}$$

• the rest is the same

July 2008

22 / 46

Continuous case

generalize the results in discrete case

```
\begin{array}{cccc} \text{discrete } X_t^* & \Rightarrow & \text{continuous } X_t^* \\ \text{matrix} & \Rightarrow & \text{linear operator} & \\ \text{invertible} & \Rightarrow & \text{one-to-one, "injective"} \\ \text{matrix diagonalization} & \Rightarrow & \text{spectral decomposition} \\ \text{eigenvector} & \Rightarrow & \text{eigenfunction} \end{array}
```

- ullet $W_t=\mathcal{W}_t\subseteq\mathbb{R}^d$, $X_t^*\in\mathcal{X}_t^*\subseteq\mathbb{R}$, for all t
- Assume known fxn to reduce W_t to same dimensionality as X_t^* :

$$V_t = g(W_t)$$
, where $g: \mathcal{W}_t \to \mathcal{X}_t^*$

For convenience: avoid complicated argument involving adjoint operators (no extra insights)

• Example: Step 1

- 4 □ ▶ 4 Ē ▶ 4 Ē ▶ · Ē · · • ? ○ Q @

Hu/Shum (JHU) Dynamics July 2008 23 / 46

Summary of assumptions

- ① (i) First-order Markov $f_{W_t, X_t^* | W_{t-1}, X_{t-1}^*, \Omega_{< t-1}} = f_{W_t, X_t^* | W_{t-1}, X_{t-1}^*}$;
- (ii) Limited feedback $f_{W_t|W_{t-1},X_t^*,X_{t-1}^*} = f_{W_t|W_{t-1},X_t^*}$
- ② (Invertibility) for any w_t, w_{t-1} , (i) $L_{V_{t+1}|w_t,X_t^*}$ is one-to-one; (ii) $L_{V_{t+1},W_t|w_{t-1},V_{t-2}}$ is one-to-one
- \odot (finite, distinctive eigenvalues) for any w_t , (i)

$$0 < L(w_t, w_{t-1}) \le f_{W_t|W_{t-1}, X_t^*}(w_t|w_{t-1}, x_t^*) \le U(w_t, w_{t-1}) < \infty$$

(ii) for any x_t^* and w_t , there exists w_{t-1} such that

$$\frac{\partial^3}{\partial w_t \partial w_{t-1} \partial x_t^*} \ln f_{W_t|W_{t-1},X_t^*}(w_t|w_{t-1},x_t^*) \neq 0.$$

- (normalize value of x_t^*) for any $w_t \in \mathcal{W}_t$, $x_t^* = G\left\{f_{V_{t+1}|W_t,X_t^*}(\cdot|w_t,x_t^*)\right\}$
- **5** For any $w_{t-1} \in \mathcal{W}_{t-1}$, $L_{X_{t-1}^*|w_{t-1},V_{t-2}}$ is one-to-one. NB

Hu/Shum (JHU) Dynamics July 2008 24 / 46

Main result

- Theorem 1: Under assumptions above, the density $f_{W_{t+1},W_t,W_{t-1},W_{t-2},W_{t-3}}$ uniquely determines $f_{W_t,X_t^*|W_{t-1},X_{t-1}^*}$
- **Theorem 2**: With stationarity, the density $f_{W_{t+1},W_t,W_{t-1},W_{t-2}}$ uniquely determines $f_{W_2,X_2^*|W_1,X_1^*}$
- We can use existing argument from Magnac-Thesmar, Bajari-Chernozhukov-Hong-Nekipelov to argue identification of utility functions, once $W_t, X_t^* | W_{t-1}, X_{t-1}^*$ known here

<ロ > < 部 > < 注 > < 注 > ・ 注 ・ り へ ②

Simulation

- exactly follow the identification procedure of nonstationary case
- $\{W_t, X_t^*\}$ is generated as follows: $u_1, u_2 \sim uniform(0, 1)$

$$W_{t} = \begin{cases} I(u_{1} > 0.95) & \text{if } (X_{t}^{*}, W_{t-1}) = (0, 0) \\ I(u_{1} > 0.60) & \text{if } (X_{t}^{*}, W_{t-1}) = (1, 0) \\ I(u_{1} > 0.05) & \text{if } (X_{t}^{*}, W_{t-1}) = (0, 1) \\ I(u_{1} > 0.50) & \text{if } (X_{t}^{*}, W_{t-1}) = (1, 1) \end{cases},$$

$$X_{t}^{*} = \begin{cases} I(u_{2} > 0.25) & \text{if } (X_{t-1}^{*}, W_{t-1}) = (0,0) \\ I(u_{2} > 0.75) & \text{if } (X_{t-1}^{*}, W_{t-1}) = (1,0) \\ I(u_{2} > 0.60) & \text{if } (X_{t-1}^{*}, W_{t-1}) = (0,1) \\ I(u_{2} > 0.05) & \text{if } (X_{t-1}^{*}, W_{t-1}) = (1,1) \end{cases}.$$

- two estimators: using $\{W_t\}$ and using $\{W_t, X_t^*\}$
- n=50000, reps=200: \Longrightarrow mean (std.err)

4D + 4A + 4B + B + 990

Simulation

Simulation			
$\widehat{f}(W_t, X_t^* W_{t-1}, X_{t-1}^*)$	using $\{W_t\}$	using $\{W_t, X_t^*\}$	mean Differ.
(0,0 0,0)	0.0454 (0.0754)	0.0475 (0.0019)	-0.0021
(0,0 0,1)	0.4768 (0.0499)	0.4752 (0.0032)	0.0016
(0,0 1,0)	0.1357 (0.1354)	0.1491 (0.0075)	-0.0134
(0,0 1,1)	0.0030 (0.0092)	0.0011 (0.0008)	0.0019
(0,1 0,0)	0.5543 (0.0501)	0.5703 (0.0046)	-0.0161
(0,1 0,1)	0.2985 (0.0453)	0.3000 (0.0030)	-0.0015
(0,1 1,0)	0.3008 (0.1341)	0.3002 (0.0100)	0.0006
(0,1 1,1)	0.7317 (0.0136)	0.7465 (0.0047)	-0.0148
(1,0 0,0)	0.0021 (0.0047)	0.0025 (0.0004)	-0.0004
(1,0 0,1)	0.0245 (0.0176)	0.0250 (0.0011)	-0.0005
(1,0 1,0)	0.4363 (0.0886)	0.4504 (0.0103)	-0.0142
(1,0 1,1)	0.0083 (0.0210)	0.0033 (0.0024)	0.0050
(1,1 0,0)	0.3716 (0.0212)	0.3797 (0.0045)	-0.0081
(1,1 0,1)	0.1992 (0.0189)	0.1998 (0.0028)	-0.0006
(1,1 1,0)	0.1007 (0.0453)	0.1002 (0.0068)	0.0004
(1,1 1,1)	0.2441 (0.0143)	0.2491 (0.0040)	► 1 3 0.00 4 9 9 9 9 9
Hu/Shum (JHU)	Dynamics		July 2008 27 / 46

Hu/Shum (JHU)

Discuss assumptions: example from Rust (1987)

Consider particular version of Rust (1987): $W_t = (Y_t, M_t)$:

- $Y_t \in \{0,1\}$ (don't replace, replace)
- \bullet M_t is mileage
- X_t^* is trunc. normal process w/ bounded support [L, U]:

$$X_t^* = \left\{ \begin{array}{ll} 0.5X_{t-1}^* + 0.3\psi\left(M_{t-1}\right) + 0.2\nu_t & \text{if } Y_{t-1} = 0 \\ 0.8X_{t-1}^* + 0.2\nu_t & \text{if } Y_{t-1} = 1 \end{array} \right.$$

- ν_t are i.i.d. truncated normal on [L, U].
- $\psi(M_{t-1}) = L + (U L) \frac{\exp(M_{t-1}) 1}{\exp(M_{t-1}) + 1},$
- Dimension-redxn: $V_t = g(W_t) = M_t$ (continuous element of W_t)

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ 壹 釣९○

Two different specifications:

Specification A	Specification B	
$u_t = \begin{cases} -c(M_t) + X_t^* + \epsilon_{0t}, & Y_t = 0\\ -RC + \epsilon_{1t}, & Y_t = 1. \end{cases}$ $c(\cdot) \text{ bounded away from } 0, +\infty$	$u_t = \begin{cases} -c(M_t) + \epsilon_{0t} \\ -RC + \epsilon_{1t} \end{cases}$	
$M_{t+1} = \left\{ egin{array}{ll} M_t + \eta_{t+1}, & Y_t = 0 \\ \eta_{t+1}, & Y_t = 1 \\ \eta_t ext{ are } \textit{N}(0,1), ext{ trunc. to } [0,1], ext{ i.i.d.} \end{array} ight.$	$M_{t+1} = \begin{cases} M_t + \eta_{t+1} \cdot \exp(X_{t+1}^*) \\ \eta_{t+1} \cdot \exp(X_{t+1}^*). \\ \dots \end{cases}$	

- Specifications differ in where X_t^* enters.
- Discuss each assumption in turn
- Assumption 1 (Markov, LF) satisfied

Assumption 2

- $L_{M_{t+1}, w_t | w_{t-1}, M_{t-2}}$ is one-to-one: Consider w_t where $y_t = 1$.
 - ▶ **A:** M_{t+1} is trunc. N(0,1), regardless of (w_{t-1}, M_{t-2}) . FAILS
 - **B:** M_{t+1} depends on X_{t+1}^* , which is correlated with M_{t-2} . OK
- $L_{M_{t+1}|w_t,X_t^*}$ is one-to-one: Again, consider w_t where $y_t = 1$.
 - ▶ **A:** $M_{t+1}|w_t, X_t^*$ is trunc. N(0,1). FAILS
 - ▶ **B**: $M_{t+1}|w_t, X_t^*$ depends on X_t^* . OK
- Note: One-to-one rules out models where W_t only has discrete components, but X_t^* is continuous.

Hu/Shum (JHU) Dynamics July 2008 30 / 46

Assumption 3: Finite, distinct eigenvalues

1. Sufficient cdtn for *finite eigenvalues*: for all (w_t, w_{t-1}) , there exist functions $L(w_t, w_{t-1})$, $U(w_t, w_{t-1})$ st for all x_t^* :

$$0 < L(w_t, w_{t-1}) \le f_{W_t|W_{t-1}, X_t^*}(w_t|w_{t-1}, x_t^*) \le U(w_t, w_{t-1}) < \infty.$$

- $f_{W_t|W_{t-1},X_t^*} = f_{Y_t|M_t,X_t^*} \cdot f_{M_t|X_t^*,Y_{t-1},M_{t-1}}$. Are all terms bounded away from $0, +\infty$?
 - $f_{M_t|X_t^*,Y_{t-1},M_{t-1}}$ is truncated N(0,1). OK
 - ▶ Per-period utilities bounded (except ϵ 's), so CCP's also bounded away from 0
- Boundedness assumptions on M_t , period utility functions without much loss of generality. (Usually good for computing models)

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < で

Hu/Shum (JHU) Dynamics July 2008 31 / 46

Assumption 3: cont'd

2. Sufficient cdtn for distinct eigenvalues: for any $x_t^* \in \mathcal{X}_t^*$ & $w_t \in \mathcal{W}_t$, there exists $w_{t-1} \in \mathcal{W}_{t-1}$ st

$$\frac{\partial^3}{\partial m_t \partial m_{t-1} \partial x_t^*} \ln f_{W_t|W_{t-1},X_t^*}(w_t|w_{t-1},x_t^*) \neq 0.$$

Spec. B: pick w_{t-1} st $y_{t-1} = 0$.

$$m_t | m_{t-1}, y_{t-1}, X_t^* \sim \frac{1}{\exp(X_t^*)} \cdot \tilde{\phi}\left(\frac{m_t - m_{t-1}}{\exp(X_t^*)}\right)$$

where $\tilde{\phi}(\cdot)$ is N(0,1) density truncated to [0,1].

Clearly, $\frac{\partial^3}{\partial m_t \partial m_{t-1} \partial x_t^*} \ln f_{M_t | X_t^*, Y_{t-1}, M_{t-1}} (m_t | m_{t-1}, y_{t-1}, X_t^*) \neq 0$, implying sufficient cdtn.

Spec. A: $m_t | m_{t-1}, y_{t-1}, X_t^*$ is never function of X_t^* . Sufficient cdtn cannot hold.

Assumption 4

Appropriate normalization to pin down unobserved X_t^*

• Median of $f_{M_{t+1}|M_t,Y_t,X_t^*}(\cdot|m_t,y_t,z)$ is

$$h(w_t, z) = \begin{cases} m_t + C_{med} \cdot \exp(0.3\psi(m_t)) \cdot \exp(0.5z) & \text{if } y_t = 0\\ C_{med} \cdot \exp(0.8z) & \text{if } y_t = 1, \end{cases}$$

where C_{med} denotes med $\left[\eta_{t+1}\cdot \exp(0.2\nu_{t+1})\right]$ (fixed).

- $h(w_t, z)$ is monotonic in z
- So pin down $x_t^* = med\left[f_{M_{t+1}|M_t,Y_t,X_t^*}(\cdot|m_t,y_t,x_t^*)\right]$

Hu/Shum (JHU) Dynamics July 2008 33 / 46

Assumption 5

 $L_{X_{t-1}^*|w_{t-1},M_{t-2}}$ is one-to-one (from M_{t-2} to X_{t-1}^*).

- From inspection of transition density for the latent process X_t^* : X_{t-1}^* depends on M_{t-2} if $Y_{t-2} = 0$, but not if $Y_{t-2} = 1$.
- Conditional distribution of $X_{t-1}^*|w_{t-1}, M_{t-2}$ includes observations with both $Y_{t-2} = 1, 0$.
- So long as $P(Y_{t-2} = 0 | w_{t-1}, M_{t-2}) > 0$, then one-to-one assumption should hold.

Hu/Shum (JHU) Dynamics July 2008 34 / 46

Concluding remarks

- Identification of Markov process $f_{W_t,X_t^*|W_{t-1},X_{t-1}^*}$, where X_t^* is unobserved state variable
 - **1** nonstationary: transition kernel $f_{W_t, X_t^* | W_{t-1}, X_{t-1}^*}$ identified from $f_{W_{t+1}, W_t, W_{t-1}, W_{t-2}, W_{t-3}}$ (5 obs.)
 - 2 stationary: transition kernel $f_{W_2,X_2^*|W_1,X_1^*}$ identified from $f_{W_{t+1},W_t,W_{t-1},W_{t-2}}$ (4 obs.)
- Ongoing work: apply these results to estimate DDC models with unobserved state variables.
 - Start with discrete X_t^* case: identification proofed mimicked for estimation. Continuous case harder (invert linear operators) here
- Extension: allow latent process X_t^* to be multivariate. Useful for dynamic games applications (X_t^* includes USV's for each player).

Hu/Shum (JHU) Dynamics July 2008 35 / 46

Estimation

Recall that

$$f_{W_t,X_t^*|W_{t-1},X_{t-1}^*} = f_{W_t|W_{t-1},X_t^*} \cdot f_{X_t^*|X_{t-1}^*,W_{t-1}}.$$

• We have shown $f_{W_{t+1}|W_t,X_t^*}$, $f_{W_t|W_{t-1},X_t^*}$, and $f_{X_t^*|X_{t-1}^*,W_{t-1}}$ are identified from

$$f_{W_{t+1},W_t,W_{t-1},W_{t-2},W_{t-3}} = \int f_{W_{t+1}|W_t,X_t^*} f_{W_t|W_{t-1},X_t^*} \left(\int f_{X_t^*|X_{t-1}^*,W_{t-1}} f_{X_{t-1}^*,W_{t-1},W_{t-2},W_{t-3}} dx_{t-1}^* \right) dx_t^*$$

Leads to a semi-nonparametric MLE based on this density

Hu/Shum (JHU) Dynamics July 2008 36 / 46

Flowchart

Identifying utility functions (sketch)

Assumptions:

- **1** Action set: $\mathcal{Y} = \{0, 1, ..., K\}$.
- 2 State variables are $S \equiv (M, X^*)$.
- **3** Per-period utility from choosing $y \in \mathcal{Y}$:

$$u_y(S_t) + \epsilon_{y,t}, \ \forall y \in \mathcal{Y}, \ \epsilon \sim F(\epsilon), \ i.i.d.$$

- From data, the CCP's $P_y(S) \equiv \text{Prob}(Y = 1|S)$ and state transitions p(S'|Y,S) are identified. (Main Theorem)
- **3** $u_0(S) = 0$, for all S
- **1** Discount factor β is known.

Goal: From $W', X^{*'}|W, X^*$, identify $u_y(\cdot), y = 1, ..., K$

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ 壹 釣९○

38 / 46

Identifying utility functions

• From HM, MT: \exists known one-to-one mapping $q(S) : \mathbb{R}^K \to \mathbb{R}^K$, which maps $(p_1(S), \dots, p_K(S))$ to $(\Delta_1(S), \dots, \Delta_K(S))$, where

$$\Delta_y(S) \equiv V_y(S) - V_0(S)$$
 diff. in choice-specific value functions.

"Bellman" equation for zero choice:

$$V_0(S) = \beta E_{S'|S,Y} \left[G(\Delta_1(S'), \ldots, \Delta_K(S')) + V_0(S') \right].$$

Hence, can recover $V_0(\cdot)$ function. G is "social-surplus" function (known).

Hence, utilities identified from

$$u_{y}(S) = V_{y}(S) - \beta E_{S'|S,Y} \left[G(\Delta_{1}(S'), \ldots, \Delta_{K}(S')) + V_{0}(S') \right], \forall y \in \mathcal{Y},$$

Return

4 D > 4 A > 4 B > 4 B > B 9 Q A

Linear operators

• for example, for given w_t , w_{t-1}

$$(L_{W_{t+1}|W_t,X_t^*}h)(x) = \int f_{W_{t+1}|W_t,X_t^*}(x|w_t,x_t^*)h(x_t^*)dx_t^*$$

$$(L_{W_{t+1},W_t|W_{t-1},X_{t-2}}h)(x) = \int f_{W_{t+1},W_t|W_{t-1},X_{t-2}}(x,w_t|w_{t-1},z)h(z)dz.$$

Matrix is linear operator in finite-dimensional space

Hu/Shum (JHU) Dynamics July 2008 40 / 46

Continuous case: Step 1

Return

• The key equation is

$$f_{V_{t+1},W_t|W_{t-1},V_{t-2}} = \int f_{V_{t+1}|W_t,X_t^*} f_{W_t|W_{t-1},X_t^*} f_{X_t^*|W_{t-1},V_{t-2}} dx_t^*.$$

decomposition of an observed operator

$$L_{V_{t+1},w_t|w_{t-1},V_{t-2}} L_{V_{t+1},\overline{w}_t|w_{t-1},V_{t-2}}^{-1} \left(L_{V_{t+1},w_t|\overline{w}_{t-1},V_{t-2}} L_{V_{t+1},\overline{w}_t|\overline{w}_{t-1},V_{t-2}}^{-1} \right)^{-1}$$

$$= L_{V_{t+1}|w_t,X_t^*} D_{w_t,\overline{w}_t,w_{t-1},\overline{w}_{t-1},X_t^*} L_{V_{t+1}|w_t,X_t^*}^{-1}$$

where a diagonal operator $D_{w_t,\overline{w}_t,w_{t-1},\overline{w}_{t-1},X_t^*}$:

$$\left(D_{w_t,\overline{w}_t,w_{t-1},\overline{w}_{t-1},X_t^*g}\right)(x_t^*)=k\left(w_t,\overline{w}_t,w_{t-1},\overline{w}_{t-1},x_t^*\right)g(x_t^*).$$

• eigenvalue for index x_t^*

$$k\left(...,x_{t}^{*}\right) = \frac{f_{W_{t}\mid W_{t-1},X_{t}^{*}}(w_{t}\mid w_{t-1},x_{t}^{*})f_{W_{t}\mid W_{t-1},X_{t}^{*}}(\overline{w}_{t}\mid \overline{w}_{t-1},x_{t}^{*})}{f_{W_{t}\mid W_{t-1},X_{t}^{*}}(\overline{w}_{t}\mid w_{t-1},x_{t}^{*})f_{W_{t}\mid W_{t-1},X_{t}^{*}}(w_{t}\mid \overline{w}_{t-1},x_{t}^{*})}.$$

• eigenfunction for index x_t^* : $f_{V_{t+1}|W_t,X_t^*}(\cdot|w_t,X_t^*)$

Hu/Shum (JHU) Dynamics July 2008 41 / 46

Further details on assumption 5

$$\begin{array}{c} L_{X_{t+1}|w_{t},X_{t}^{*}}^{-1}L_{V_{t+1},w_{t}|w_{t-1},V_{t-2}} = L_{w_{t},X_{t}^{*}|w_{t-1},X_{t-1}^{*}} \cdot L_{X_{t-1}^{*}|w_{t-1},V_{t-2}} \\ & \uparrow \\ D_{w_{t}|w_{t-1},X_{t}^{*}}L_{X_{t}^{*}|w_{t-1},V_{t-2}} \\ & \uparrow \\ L_{w_{t},X_{t}^{*}|w_{t-1},V_{t-2}} \end{array}$$

- By Assumption 2, both LHS operators are one-to-one
- By Assumption 5, second operator on RHS is one-to-one
- Hence, we can conclude

$$L_{w_t,X_t^*|w_{t-1},X_{t-1}^*} = L_{V_{t+1}|w_t,X_t^*}^{-1} L_{V_{t+1},w_t|w_{t-1},V_{t-2}}^{-1} L_{X_{t-1}^*|w_{t-1},V_{t-2}}^{-1}$$

Hu/Shum (JHU) Dynamics July 2008 42 / 46

Matrix definitions

• $L_{w_t, X_t^*, w_{t-1}, W_{t-2}} = [f_{W_t, X_t^*, W_{t-1}, W_{t-2}}(w_t, i | w_{t-1}, j)]_{i, j}$ Return 2

•

$$L_{w_{t},X_{t}^{*}|w_{t-1},W_{t-2}} = \left[f_{W_{t},X_{t}^{*}|W_{t-1},W_{t-2}}(w_{t},i|w_{t-1},j) \right]_{i,j}$$

$$L_{w_{t},X_{t}^{*}|w_{t-1},X_{t-1}^{*}} = \left[f_{W_{t},X_{t}^{*}|W_{t-1},X_{t-1}^{*}}(w_{t},i|w_{t-1},j) \right]_{i,j}$$

$$L_{X_{t-1}^{*}|w_{t-1},W_{t-2}} = \left[f_{X_{t-1}^{*}|W_{t-1},W_{t-2}}(i|w_{t-1},j) \right]_{i,j}$$

Return 3

43 / 46

Hu/Shum (JHU) Dynamics July 2008

For w_t , set $\mathcal{B}(w_t)$ contains points $(\overline{w}_t, w_{t-1}, \overline{w}_{t-1})$ satisfying:

- ① $\overline{w}_t \in \mathcal{W}_t$; $w_{t-1}, \overline{w}_{t-1} \in \mathcal{A}\left(w_t\right) \cap \mathcal{A}\left(\overline{w}_t\right)$; $\overline{w}_t \neq w_t$; and $\overline{w}_{t-1} \neq w_{t-1}$; Implies that $L_{X_{t+1},\overline{w}_t|w_{t-1},Z_{t-2}}$, $L_{X_{t+1},w_t|\overline{w}_{t-1},Z_{t-2}}$, $L_{X_{t+1},\overline{w}_t|\overline{w}_{t-1},Z_{t-2}}$ are 1-to-1
- ② $k\left(w_t,\overline{w}_t,w_{t-1},\overline{w}_{t-1},x_t^*\right)<\infty$ for all $x_t^*\in\mathcal{X}_t^*$. So AB^{-1} is bounded operator. Sufficient condition for $k\left(w_t,\overline{w}_t,w_{t-1},\overline{w}_{t-1},x_t^*\right)<\infty$ for all $x_t^*\in\mathcal{X}_t^*$: for all $(w_t,w_{t-1})\in\mathcal{W}_t\times\mathcal{W}_{t-1}$, \exists $L(w_t,w_{t-1})$ and $U(w_t,w_{t-1})$ st for all x_t^*

$$0 < L(w_t, w_{t-1}) \le f_{W_t|W_{t-1}, X_t^*}(w_t|w_{t-1}, x_t^*) \le U(w_t, w_{t-1}) < \infty.$$

Return

| ◀□▶ ◀圖▶ ◀圖▶ ▲圖▶ | 釣९@

44 / 46

Logit case

$$G(\Delta_1(S),\ldots,\Delta_K(S)) = \log \left[1 + \sum_{y=1}^K \exp(\Delta_y(S))
ight]$$

$$q_y(S) = \Delta_y(S) = \log(p_y(S)) - \log(p_0(S)), \ \forall y = 1, \dots K,$$

where
$$p_0(S) \equiv 1 - \sum_{y=1}^{K} p_y(S)$$
.

45 / 46

Hu/Shum (JHU) Dynamics July 2008

Matrix notation

ullet Define the *J*-by-*J* matrices (fix w_t and w_{t-1})

Hu/Shum (JHU) Dynamics July 2008 46 / 46