Цель работы:

Изучение методов физического и логического кодирования, используемых в цифровых сетях передачи данных.

Задание:

- Выполнить физическое и логическое кодирование исходного сообщения в соответствии с заданными методами кодирования.
- Провести сравнительных анализ рассмотренных методов кодирования и сформулировать достоинства и недостатки
- Рассчитать частотные характеристик сигналов, используемых для передачи исходного сообщения, и требуемую полосу пропускания канала связи
- Выбрать и обосновать наилучший метод для передачи исходного сообщения

Формулирования сообщения:

Мансуров Б. Б.

М	а	н	С	у	р	0	В		Б			Б	•
СС	E0	ED	F1	F3	F0	EE	E2	20	C1	2E	20	C1	2E
110 011 00	111 000 00	111 011 01	111 100 01	111 100 11	111 100 00	111 011 10	111 000 10	001 000 00	110 000 01	001 011 10	001 000 00	110 000 01	001 000 01

Длина сообщения: 14 байт (112 бит)

Физическое кодирование исходного сообщения:

- Кодирование осуществляется первых 4 байт
- Для всех расчетах используется первые 4 гармоники сигнала
- Пропускная способность канала связи: С = 1 Гбит/с
- Битовый интервал: $t_b = 1$ нс

1. Манчестерский код

Верхняя и нижняя границы основных частот основной гармоники:

$$f_{\text{B0}} = \frac{1}{t_h} = 1 \ \Gamma \Gamma_{\text{II}}, \quad f_{\text{H0}} = \frac{1}{2t_h} = 500 \ \text{M} \Gamma_{\text{II}}$$

Верхняя и нижняя границы частот основной гармоники(спектр сигнала):

$$f_{_{\mathrm{B}}} = 7 f_{_{\mathrm{B}0}} = 7$$
 Ггц, $f_{_{\mathrm{H}}} = f_{_{\mathrm{H}0}} = 500$ МГц, $S = f_{_{d}} - f_{_{\mathrm{H}}} = 6500$ МГц

Среднее значение частоты основной гармоники:

$$f_{cp} = \frac{12f_{\text{H0}} + 20f_{\text{B0}}}{32} = 687,5 \text{ M}$$
Гц

Полоса пропускания, необходимая для качественной передачи данного сообщения:

$$F \geq S$$
, $F \geq 6500 \text{ M}$ Гц

2. Потенциальный код без возврата к нулю (NRZ)

Верхняя и нижняя границы основных частот основной гармоники:

$$f_{\text{в0}} = \frac{1}{2t_b} = 500 \text{ M}$$
Гц, $f_{\text{H0}} = \frac{1}{10t_b} = 100 \text{ M}$ Гц

Верхняя и нижняя границы частот основной гармоники(спектр сигнала):

$$f_{_{\mathrm{B}}} = 7 f_{_{\mathrm{B}0}} = 3,5$$
 Ггц, $f_{_{\mathrm{H}}} = f_{_{\mathrm{H}0}} = 100$ МГц, $S = f_d - f_{_{\mathrm{H}}} = 3400$ МГц

Среднее значение частоты основной гармоники:

$$f_{cp} = \frac{1}{32} (\frac{3}{2t_b} + \frac{10}{4t_b} + \frac{9}{6t_b} + \frac{10}{10t_b}) = 203, 125 \text{ M}$$
Гц

Полоса пропускания, необходимая для качественной передачи данного сообщения:

$$F \geq S$$
, $F \geq 3400 \text{ M}\Gamma$ ц

3. Биполярный импульсный код (RZ):

Верхняя и нижняя границы основных частот основной гармоники:

$$f_{\text{B0}} = \frac{1}{t_h} = 1 \ \Gamma \Gamma_{\text{II}}, \quad f_{\text{H0}} = \frac{1}{4t_h} = 250 \ \text{M} \Gamma_{\text{II}}$$

Верхняя и нижняя границы частот основной гармоники (спектр сигнала):

$$f_{\scriptscriptstyle \mathrm{B}} = 7 f_{\scriptscriptstyle \mathrm{B}0} = 7 \; \Gamma$$
гц, $f_{\scriptscriptstyle \mathrm{H}} = f_{\scriptscriptstyle \mathrm{H}0} = 250 \; \mathrm{M}$ гц, $S = f_d - f_{\scriptscriptstyle \mathrm{H}} = 6750 \; \mathrm{M}$ гц

Среднее значение частоты основной гармоники:

$$f_{c\mathrm{p}} = \frac{29f_{\mathrm{H0}} + 3f_{\mathrm{B0}}}{32} = 929,6875 \ \mathrm{M}\Gamma$$
ц

Полоса пропускания, необходимая для качественной передачи данного сообщения:

$$F \geq S$$
, $F \geq 6750 \,\mathrm{MFu}$

4. Биполярное кодирование с чередующиеся инверсией (АМІ):

Верхняя и нижняя границы основных частот основной гармоники:

$$f_{\text{в0}} = \frac{1}{2t_b} = 500 \text{ M}$$
Гц, $f_{\text{н0}} = \frac{1}{10t_b} = 100 \text{ M}$ Гц

Верхняя и нижняя границы частот основной гармоники(спектр сигнала):

$$f_{\rm B} = 7f_{\rm B0} = 3,5$$
 Ггц, $f_{\rm H} = f_{\rm H0} = 100$ МГц, $S = f_d - f_{\rm H} = 3400$ МГц

Среднее значение частоты основной гармоники:

$$f_{cp} = \frac{1}{32} (\frac{20}{2t_b} + \frac{4}{4t_b} + \frac{3}{6t_b} + \frac{5}{10t_b}) = 375 \text{ M}$$
Гц

Полоса пропускания, необходимая для качественной передачи данного сообщения:

$$F \geq S$$
, $F \geq 3400 \text{ M}\Gamma$ ц

5. Потенциальный код с инверсией при единице (NRZI)

Верхняя и нижняя границы основных частот основной гармоники:

$$f_{\text{в0}} = \frac{1}{2t_b} = 500 \text{ M}$$
Гц, $f_{\text{н0}} = \frac{1}{12t_b} = 83,333 \text{ M}$ Гц

Верхняя и нижняя границы частот основной гармоники (спектр сигнала):

$$f_{\scriptscriptstyle \mathrm{B}} = 7 f_{\scriptscriptstyle \mathrm{B}0} = 3,5$$
 Ггц, $f_{\scriptscriptstyle \mathrm{H}} = f_{\scriptscriptstyle \mathrm{H}0} = 83,333\,$ МГц, $S = f_d - f_{\scriptscriptstyle \mathrm{H}} = 3416,667\,$ МГц

Среднее значение частоты основной гармоники:

$$f_{cp} = \frac{1}{32} (\frac{12}{2t_b} + \frac{4}{4t_b} + \frac{6}{6t_b} + \frac{4}{8t_b} + \frac{6}{12t_b}) = 281,25 \text{ M}$$
Гц

Полоса пропускания, необходимая для качественной передачи данного сообщения:

$$F \ge S$$
, $F \ge 3416,667 \,\mathrm{MFu}$

Сравнительный анализ способов кодирования:

Свойство\Ко дирование	·		RZ	AMI	NRZI
Ширина спектра, МГц	6500	3400	6750	3400	3416.667
Среднее значение частоты, МГц	687.5	203.125	929.6875	375	281.25
Самосинхро низация	+	-	+	-	-
Постоянная составляющ ая	-	+	-	+	+
Обнаружени я ошибок	+	-	+	+	+
Количество уровней сигнала	2	2	3	3	2

По итогам больше преимуществ у манчестерского и и RZ.

Из способов кодирования, в которых присутствует постоянная составляющая лучше всего себя показали методы АМІ и NRZI имеющие менее широкий спектр сигнала в отличие от названных ранее методов. И еще NRZI имеет 2 уровня сигнала.

Логическое (избыточное) кодирования исходного сообщения:

М	а	Н	С	у	р	О
11011 11011	11100 11110	11100 11011	11101 01001	11101 10101	11101 11110	11100 11100
В		Б			Б	

В 16 системе счисления: СС E0 ED F1 F3 F0 EE E2 20 C1 2E 20 C1 2E

Длина нового сообщения: 17,5 (140 байт) Избыточность: (140-112)/112 = 0,25 = 25%

1. Биполярное кодирование с чередующиеся инверсией (АМІ):

Верхняя и нижняя границы основных частот основной гармоники:

$$f_{BO} = \frac{1}{2t_h} = 500 \text{ M}\Gamma\text{U}, \quad f_{HO} = \frac{1}{4t_h} = 250 \text{ M}\Gamma\text{U}$$

Верхняя и нижняя границы частот основной гармоники(спектр сигнала):

$$f_{\scriptscriptstyle \mathrm{B}} = 7 f_{\scriptscriptstyle \mathrm{B}0} = 3,5$$
 Ггц, $f_{\scriptscriptstyle \mathrm{H}} = f_{\scriptscriptstyle \mathrm{H}0} = 250$ МГц, $S = f_d - f_{\scriptscriptstyle \mathrm{H}} = 3250$ МГц

Среднее значение частоты основной гармоники:

$$f_{cp} = \frac{1}{32} (\frac{28}{2t_b} + \frac{4}{4t_b}) = 468,75 \text{ M}$$
Гц

Полоса пропускания, необходимая для качественной передачи данного сообщения:

$$F \geq S$$
, $F \geq 3250 \text{ M}\Gamma$ ц

2. Потенциальный код с инверсией при единице (NRZI)

Верхняя и нижняя границы основных частот основной гармоники:

$$f_{\text{в0}} = \frac{1}{2t_h} = 500 \text{ M}$$
Гц, $f_{\text{H0}} = \frac{1}{6t_h} = 166,666 \text{ M}$ Гц

Верхняя и нижняя границы частот основной гармоники (спектр сигнала):

$$f_{\rm B} = 7 f_{\rm B0} = 3,5$$
 Ггц, $f_{\rm H} = f_{\rm H0} = 166,666$ МГц, $S = f_d - f_{\rm H} = 3333,334$ МГц

Среднее значение частоты основной гармоники:

$$f_{cp} = \frac{1}{32} (\frac{18}{2t_h} + \frac{8}{4t_h} + \frac{6}{6t_h}) = 266,667 \text{ M}$$
Гц

Полоса пропускания, необходимая для качественной передачи данного сообщения:

$$F \ge S$$
, $F \ge 3333,334 \, \text{M} \Gamma \text{ц}$

Сравнительный анализ способов кодирования:

Свойство\Кодирование	AMI	NRZI	
Ширина спектра, МГц	3250	3333.334	
Среднее значение частоты, МГц	468.75	266.667	
Самосинхронизация	-	-	
Постоянная составляющая	+	+	
Обнаружения ошибок	+	+	
Количество уровней сигнала	3	2	

NRZI выигрывает по всем фронтам.

Скремблирование исходного сообщения:

Для скремблирования исходного сообщения был выбран полином Вi = Ai ⊕ Bi-5 ⊕ Bi-7 , так как он не дает частных чередований нулей и единиц, уменьшающих среднюю частоту передачи сообщения для выбранных способов кодирования.

```
B1 = A1 = 1
B2 = A2 = 1
B3 = A3 = 0
B4 = A4 = 0
B5 = A5 = 1
B6 = A6 \oplus B1 = 0
B7 = A7 \oplus B2 = 1
B8 = A8 + B3 + B1 = 1
B9 = A9 \oplus B4 \oplus B2 = 0
B10 = A10 \oplus B5 \oplus B3 = 0
B11 = A11 ⊕ B6 ⊕ B4 = 1
B12 = A12 \oplus B7 \oplus B5 = 0
B13 = A13 ⊕ B8 ⊕ B6 = 1
B14 = A14 \oplus B9 \oplus B7 = 1
B15 = A15 \oplus B10 \oplus B8 = 1
B16 = A16 \oplus B11 \oplus B9 = 1
B17 = A17 ⊕ B12 ⊕ B10 = 1
B18 = A18 + B13 + B11 = 1
B19 = A19 \oplus B14 \oplus B12 = 0
B20 = A20 \oplus B15 \oplus B13 = 0
```

B = 110010110010111111100110000001001

1. Биполярное кодирование с чередующиеся инверсией (AMI):

Верхняя и нижняя границы основных частот основной гармоники:

$$f_{\text{в0}} = \frac{1}{2t_b} = 500 \text{ M}$$
Гц, $f_{\text{н0}} = \frac{1}{12t_b} = 83,33 \text{ M}$ Гц

Верхняя и нижняя границы частот основной гармоники (спектр сигнала):

$$f_{\scriptscriptstyle \mathrm{B}} = 7 f_{\scriptscriptstyle \mathrm{B}0} = 3,5$$
 Ггц, $f_{\scriptscriptstyle \mathrm{H}} = f_{\scriptscriptstyle \mathrm{H}0} = 83,33$ МГц, $S = f_d - f_{\scriptscriptstyle \mathrm{H}} = 3416,67$ МГц

Среднее значение частоты основной гармоники:

$$f_{cp} = \frac{1}{32} \left(\frac{18}{2t_h} + \frac{8}{4t_h} + \frac{6}{12t_h} \right) = 359,375 \text{ M}$$
Гц

Полоса пропускания, необходимая для качественной передачи данного сообщения:

$$F \ge S$$
, $F \ge 3416,67 \,\mathrm{M}\Gamma$ ц

2. Потенциальный код с инверсией при единице (NRZI)

Верхняя и нижняя границы основных частот основной гармоники:

$$f_{BO} = \frac{1}{2t_b} = 500 \text{ M}\Gamma\text{II}, \quad f_{HO} = \frac{1}{14t_b} = 71,43 \text{ M}\Gamma\text{II}$$

Верхняя и нижняя границы частот основной гармоники (спектр сигнала):

$$f_{_{\mathrm{B}}} = 7 f_{_{\mathrm{B}0}} = 3,5$$
 Ггц, $f_{_{\mathrm{H}}} = f_{_{\mathrm{H}0}} = 71,43\,$ МГц, $S = f_{_d} - f_{_{\mathrm{H}}} = 3428,57$ МГц

Среднее значение частоты основной гармоники:

$$f_{cp} = \frac{1}{32} (\frac{10}{2t_b} + \frac{6}{4t_b} + \frac{9}{6t_b} + \frac{7}{14t_b}) = 265,625 \text{ М}\Gamma$$
ц

Полоса пропускания, необходимая для качественной передачи данного сообщения:

$$F \ge S$$
, $F \ge 3428,57 \,\mathrm{MГц}$

Сравнительный анализ способов кодирования:

Свойство\Кодирование	Манчестерский код	NRZI	
Ширина спектра, МГц	3416.67	3333.334	
Среднее значение частоты, МГц	359.375	266.667	
Самосинхронизация	-	-	
Постоянная составляющая	+	+	
Обнаружения ошибок	+	+	
Количество уровней сигнала	2	2	

NRZI выигрывает по всем фронтам.

Выводы:

Из всех рассмотренных способов кодирования исходного сообщения наименьшим спектром обладает способ кодирования NRZI. Наибольшей средней частотой основной гармоники обладают RZ и манчестерское кодирования. Манчестерское кодирование в отличие от RZ имеет 2 уровня сигнала и более помехоустойчив, поэтому является наилучшим для передачи исходного сообщения.