Exploring diverse-frequent patterns in classification

Mayank Gupta - 201101004 Ankush Jain - 201101010

Introduction

- Exploring Diverse Patterns in Classification
 - Diversity
 - Measure of variety
 - {Bread, Butter, Milk} vs {Soap, Chocolate, Rice}
 - Classification
 - Learn from some training data, and create a model that predicts the category of an entity

Background: Frequent Patterns

- Problem: To efficiently find patterns that occur frequently in a large database
- Useful in marketing, web usage mining, intrusion detection, product warehousing etc.
- Example: Given a list of all the transactions made in a grocery store, figure out which items are frequently bought together

Background: Example

```
{Bread, Butter, Eggs, Orange}
{Bread, Butter, Eggs, Apple}
{Bread, Eggs, Battery, Milk, Tea
{Bread, Eggs, Battery, Cherry}
{Butter, Diapers, Hair Spray, Whiskey}
{Butter, Diapers, Hair Spray}
```

Patterns

```
{Bread, Eggs}
{Bread, Apple}
{Bread, Butter, Eggs}
{Bread, Eggs, Battery}
```

But {bread, eggs} is much more important!!

- Support (of a pattern)
 - (No. of transactions a rule appears in) / (Total number of transactions)
 - Patterns with support greater than minSupport are called frequent patterns

Background: Association Rules

- Every pattern can be converted to a rule
 - o {bread, butter, eggs}
 - {bread} => {butter, eggs}
 - {butter, eggs} => {bread}
 - **=** ...
- Lots of frequent patterns are generated, how to find more important ones?
 - Confidence
 - Confidence(A => B)
 - Support(A union B) / Support(A)
 - Filter rules by minConfidence

Issues

- Even filtering by minSupport and minConfidence produces a lot of patterns
- A better method of telling "which pattern is more interesting" is needed
 - {Bread, Butter, Eggs} is not very interesting
 - Hence, notion of diversity

DiverseRank

- DiverseRank measure of diversity
- A data structure called concept hierarchy is used
- Patterns are more diverse if their root is farther from leaf nodes

.

DiverseRank - Description

Depends on Level Factor (LF), Merging Factor (MF), and Adjustment Factor(AF)

- MF Measure of the number of parents the children merged into
- LF Gives higher weightage to merging at higher levels (since that implies more diversity)
- AF Used to compensate the effect of dummy nodes added to an unbalanced concept

Classification

- Frequent pattern based classification
 - We try to mine rules to predict the class of unseen data
- Rules are of the form

$$(AT_{i1} = x_{i1}) \wedge (AT_{i2} = x_{i2}) \wedge ... \wedge (AT_{in} = x_{in}) \rightarrow p_{i1}$$

where AT_i represents an attribute and p_i represents a class label

Classification - Example

Table 2. Classification Data Set

Table 2. Classification Data Set								
Client #	Name	Current Job/year	Income	Criminal History	Loan			
1	Sam	5	35K	No	Yes			
2	Sara	1	40K	No	No			
3	Smith	10	55K	Yes	No			
4	Raj	5	40K	No	Yes			
5	Omar	1	35K	No	No			
6	Sandy	2	25K	No	No			
7	Kamal	6	40K	No	Yes			
8	Rony	5	34K	No	Yes			

Table. 3. Sample of unclassified data set

Client #	Name	Current Job/year	Income	Criminal History	Loan
24	Raba	3	50K	No	?
25	Samy	3	14K	No	?
26	Steve	25	10K	Yes	?
27	Rob	0	45K	No	?

Related Work - I

- Fast Algorithms For Mining Association Rules, Agarwal et al
 - Introduces frequent patterns and a basic algorithm for mining them (Apriori algorithm)
- Mining Frequent Patterns without Candidate Generation, Jiawei Han et al
 - Describes an efficient algorithm for mining frequent patterns (FP-Growth)

Related Work - II

- Discovering Diverse-Frequent Patterns In Transactional Databases, Somya Srivastava et al
 - Introduces the notion of diversity
 - Proposes a measure called DiverseRank
- Extracting Diverse-Frequent Patterns with Unbalanced Concept Hierarchy, Kswamy et al
 - Improves upon the previous paper, proposes algorithms to counter the limitation of balanced trees required by the previous paper

Problem Definition

Exploring Diverse-Frequent patterns in classification

DiverseRank - Measure of diversity **Classification** - Categorisation of data

Our task is to explore how the concept of DiverseRank can be extended to classification

Work Done Before Viva 1 - I

- Read the various research papers in the field, and understood the basic concepts about
 - Frequent Patterns
 - Association Rules
 - Apriori Algorithm
 - FP-Growth Algorithm
 - Diversity/DiverseRank

Work Done Before Viva 1 - II

- Implemented the Apriori Algorithm in Python
 - Takes CSV transaction files as input
 - Finds frequent patterns of all lengths with support greater than minSupport
 - For each frequent pattern, finds rules with confidence greater than minConfidence
- Tested the Apriori implementation on large datasets (100,000 transactions)
 - Dataset Source FIMI Repository
- Verified results against standard implementation

Work Done After Viva 1

- Research papers
 - Extracting Diverse-Frequent Patterns with Unbalanced Concept Hierarchy, M. Kumaraswamy et al
 - Proposes algorithms to counter the limitation of balanced trees required by the previous paper
- Implementation of DiverseRank
- Extending the above implementation to support unbalanced concept hierarchy

Work Ongoing

- Test our implementation of DiverseRank against standard datasets and verify results
- Read up on classification

Project Plan

- Read up on classification from the book "Demand Driven Associative Classification"
- Understand how the concept of Frequent-Pattern based Association Rules can be extended to classification
- Extend the DiverseRank implementation and explore its usage in classification

Deliverables

- The extended DiverseRank implementation, with classification features
- Results and analysis

References

- Demand-Driven Associative Classification -Adriano Veloso, Wagner Meira Jr.
- Classification based on Associative Rule
 Mining Techniques "Alaa Al Deen" Mustafa
 Nofal and Sulieman Bani-Ahmad

Thank You