Übungsblatt Ferienkurs Analysis II

16.09.2009

Approximation von Funktionen und Extremwertprobleme im \mathbb{R}^n

Aufgabe 1)

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = \sin(x + y)$.

- a) Entwickeln Sie die Funktion f bis zur zweiten Ordnung im Punkt (π, π) .
- b) Entwickeln Sie die Funktion f bis zur dritten Ordnung um die Null.
- c) Wie lautet die Hesse-Matrix von f am Punkt $\left(-\frac{\pi}{4}, -\frac{\pi}{4}\right)$?

Sei nun $g: \mathbb{R}^3 \to \mathbb{R}$, g(x, y, z) = f(x, y + z).

- d) Entwickeln Sie die Funktion g bis zur ersten Ordnung um die Null.
- e) Wie viele verschiedene Polynome dritter Ordnung hat die Taylorentwicklung von g bis zur dritten Ordnung um (0,0,0)?

I	0	2	4	6	8	10	12	$\prod 14$
L								

f) Wie lautet die Hesse-Matrix von g am Punkt $(0,0,2\pi)$?

Aufgabe 2)

Bestimmen Sie die Taylorentwicklung der folgenden Funktionen bis zu zweiten Ordnung.

a)
$$f(x,y) = \frac{1+x^2-y^2}{x+y+3}$$
 im Entwicklungspunkt (0,0).

b)
$$g(x,y) = \frac{\cosh(y)}{\sin(x) \cdot e^y}$$
 im Entwicklungspunkt $(\frac{\pi}{6}, 0)$.

Anmerkung: Es genügt hier vor dem Ausmultiplizieren eine Form, wie etwa $(a_0 + a_1 y + a_2 y^2) \cdot (b_0 + b_1 x + b_2 x^2)$ anzugeben. Entwickeln Sie die einzelnen Faktoren und multiplizieren Sie sie aneinander.

c) $h(x,y) = \frac{1}{\sqrt{2x^2 + 2y^2}}$ im Entwicklungspunkt (h,h).

(Die Entwicklung des Coulomb – Potentials ist zeitaufwendig.)

d) Berechnen Sie den Grenzwert $h \to \infty$ für die Taylorentwicklung aus Aufgabe c).

Aufgabe 3)

Gegeben sei eine dreimal stetig differenzierbare Funktion ψ , die am Ursprung einen kritischen Punkt besitzt. Außerdem sind folgende Werte angegeben.

$$\psi(0) = \pi$$
, $(\partial_2^2 \psi)(0) = 2$, $(\partial_1^2 \psi)(0) = 4$, $(\partial_1 \partial_2 \psi)(0) = 0$

Wie lautet die Taylorentwicklung bis zur zweiten Ordnung von ψ im Entwicklungspunkt $\mathbf{0} \in \mathbb{R}^2$.

Aufgabe 4)

Gegeben ist die Funktion $f(x,y) = x^4 + \frac{1}{3}y^3 + x^2 - y + 1$, sowie die Punkte im \mathbb{R}^2 :

$$x_1 = (0,0), \ x_2 = (-1,0), \ x_3 = (0,1), \ x_4 = (0,-1), \ x_5 = (1,0), \ x_6 = (1,1)$$

Welche der folgenden Aussagen sind richtig?

a)	f besitzt	einen	kritischen	Punkt in
u,	j ocsitzt	CITICII	KIIIISCIICII	I dilkt iii

b) f besitzt ein lokales Maximum in

$$\square x_1 \qquad \square x_2 \qquad \square x_3 \qquad \square x_4 \qquad \square x_5 \qquad \square x_6$$

c) f besitzt ein lokales Minimum in

d) f besitzt einen Sattelpunkt in

Gegeben sind nun die beiden Kurven: $p(t) = {t \choose t^2}$ und $k(t) = {\cos(t) \choose \sin(t)}$

e) Bestimmen und klassifizieren Sie die kritischen Stellen von f entlang der beiden Kurven.

Aufgabe 5)

Bestimmen und charakterisieren Sie die kritischen Punkte der folgenden Funktionen.

a)
$$f(x,y) = \frac{x^3}{4} - 3xy + 2y^3$$

b)
$$k(a,b) = a^3 + b^3 + a^2 + b^2$$

c)
$$z(x, y) = x^y$$

Aufgabe 6)

Bestimmen Sie für die Funktion $f(x, y) = x^3 y^3$

- a) Eine Funktion, deren Graph Tangentialebene am Punkt $(1, y_0)$ ist.
- b) Eine quadratische Funktion, die mit *f* bis zu den zweiten Ableitungen bei (1,1) übereinstimmt.
- c) Lokale Minima und Maxima für $(x, y) = [-2, 2] \times [-1, 1]$.

Aufgabe 7)

Gegeben ist die Ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1$ (a, b > 0).

- a) Gesucht ist ein achsenparalleles Rechteck innerhalb dieser Ellipse mit größtmöglichem Flächeninhalt. Geben Sie die Kantenlängen, sowie den Flächeninhalt an. Benutzen Sie die Methode der Lagrange'schen Multiplikation.
- b) Nun ist ein Kreis innerhalb der Ellipse gesucht mit dem größtmöglichen Flächeninhalt. Geben Sie den Radius, sowie den Flächeninhalt an.

Aufgabe 8)

Ein Kreis-Kegel mit Radius R und Höhe H, mit der Spitze nach oben auf der x-y-Ebene stehend, kann durch $\frac{R}{r} = \frac{H}{H-Z}$ parametrisiert werden.

- a) Berechnen Sie das größtmögliche Volumen eines Zylinders, welcher aus dem Kegel ausgeschnitten wird.
- b) Nun soll ein Quader aus diesem Kegel herausgeschnitten werden. Berechnen Sie das maximale Volumen eines solchen Quaders.
 (Hinweis: Beachten Sie die Symmetrie dieses Problems.)

Aufgabe 9)

- a) Suchen Sie den Punkt auf der Ebene E: x + y + z = 10, welcher am nächsten am Ursprung liegt.
- b) Suchen Sie den Punkt auf der Ebene F: x + 2y + 4z = 8, welcher am nächsten am Punkt (1,1,1) liegt.
- c) Suchen Sie die Punkte auf dem Kreisrand $K: (x-2)^2 + (y-2)^2 = 4$, welche am nächsten und am weitesten entfernt vom Punkt (8,8) sind.

Aufgabe 10)

Die Landau-Symbole dienen zum Beispiel dazu das Restglied aus der Taylorentwicklung abzuschätzen. Sie sind folgendermaßen definiert:

f ist "groß-Oh" von g bei a, d.h. $f(x) = O(g(x)) f \ddot{u} r x \to a$, genau dann, wenn gilt:

$$\limsup_{x \to a} \left| \frac{f(x)}{g(x)} \right| < \infty$$

f ist <u>,klein-Oh</u>" von g bei a, d.h. $f(x) = o(g(x)) f \ddot{u} r x \rightarrow a$, genau dann, wenn gilt:

$$\lim_{x \to a} \left| \frac{f(x)}{g(x)} \right| = 0$$

- a) Zeigen Sie, dass $ln(x) = o(x^{-\alpha}) f \ddot{u} r x \to 0$ gilt.
- b) Zeigen Sie, dass $ln(x) = o(x^{\alpha}) f \ddot{u} r x \rightarrow \infty$ gilt.
- c) Zeigen Sie, dass $sin(x) = O(x) f \ddot{u} r x \rightarrow 0$ gilt.
- d) Welche Aussagen sind richtig bei $x \to 0$? $\sin(x^2) =$