Conjuntos y Números, UAM

Examen Final 17 de enero de 2022

Apellidos y Nombre:		Grupo:

Se pide razonar y justificar todas las respuestas

Tiempo disponible: 3 horas

- 1. (1 punto) Demostrar que $2^{4n+2} + 7^{2n+1}$ es múltiplo de 11 para todo $n \in \mathbb{N} \cup \{0\}$.
- 2. (1 punto) Sea $f:A\longrightarrow B$ una función definida entre dos conjuntos arbitrarios no vacios A y B. Demostrar la doble implicación

f es inyectiva $\iff f(A_1) \cap f(A_2) \subset f(A_1 \cap A_2)$ para todo par de subconjuntos A_1, A_2 de A_1

3. (2 puntos) Resolver el sistema de congruencias

$$\begin{cases} x \equiv 4 \pmod{73} \\ x \equiv 5 \pmod{97} \end{cases}$$

- 4. (2 puntos) Descomponer el polinomio $p(x) = x^7 + x^6 + x + 1$ en sus factores irreducibles en $\mathbb{Q}[x], \mathbb{R}[x]$ y $\mathbb{C}[x]$. Usar (en la respuesta final) la forma $a + b\mathbf{i}$ para los complejos.
- 5. (2 puntos) En el conjunto \mathbb{R} definimos la relación de equivalencia

$$a \mathcal{R} b \iff |\cos a| = |\cos b|$$

- (a) Describir la clase de equivalencia $\overline{x}:=\{y\in\mathbb{R}:y\,\mathcal{R}\,x\}$ para x=0 y $x=\pi/6$.
- (b) Considera la función $f: \mathbb{R}/\mathcal{R} \longrightarrow \mathbb{R}$ dada por

$$f(\overline{x}) = 2\cos^2 x - \lfloor 2\cos^2 x \rfloor$$
 para toda clase $\overline{x} \in \mathbb{R}/\mathcal{R}$

donde $\lfloor u \rfloor$ denota la parte entera del número real u. Comprueba que f está bien definida y determina el conjunto imagen de f. Estudia si f es o no inyectiva.

- 6. (a)(1 punto) Sea A el conjunto formado por todas las funciones $f: \{1,2,3\} \longrightarrow \mathbb{N}$. Decidir (y justificar) si la cardinalidad de A coincide con la de \mathbb{N} o la de \mathbb{R} .
 - (b)(1 punto) Definir una función inyectiva de \mathbb{R} en $\mathbb{R} \setminus \mathbb{N}$ y demostrar que ambos conjuntos tienen la misma cardinalidad.

Debes definir mediante una fórmula las funciones y comprobar las propiedades de las mismas que te permitan concluir tus afirmaciones.