CSE307

Internet Networking Essentials

Name: Ayushman Behera

Registration Number: 12301257

Roll Number: 49

Section: K23UP

GitHub Repository:

https://github.com/ayubeh1513/Internet-Networking-CA-1

Overview

An eight-floor office building implements a well-designed hybrid network that provides both efficient communication and scalable and tolerant network functionality. The six computers on each of the first three floors use star topology to connect to a centralized switch which enhances management capabilities. Data transmission through the ring topology design in the following two floors maintains continuous data flow as well as system redundancy. All devices on the final three floors benefit from mesh topology which ensures maximum tolerance through their straight device-to-device connections.

The first three floors receive Class C private IPv4 addresses but Class A public IPv4 addresses power the remaining floors to connect with external networks. Routers in this topology follow a bus arrangement to communicate using Class A public IP addresses as they connect between each other.

Inter-floor communication remains predictable in static routing because it prevents useless route changes. All floors experience smooth connectivity according to ping tests that validate both the address scheme and routing design. An organized method provides an organization with secure operations along with scalable and highperformance networking services.

Physical Scenario

The eight-storied office structure contains organizational networking elements which maximize operational connectivity and administrative expandability. Six computers in each of the first three floors function under a star topology which connects to a central switch to make management simpler while accommodating growth needs. A ring topology covers the following two floors through circular computer connections that maintain redundancy for improved data flow efficiency. The mesh topology connection between devices throughout the last three floors provides complete tolerance and high levels of reliability. The combination of topologies provides good performance as well as operational resiliency and extends scalability throughout the building's footprint.

Ground Floor (Lan 1)

• 2nd Floor (Lan 2)

• 3rd Floor (Lan 3)

• 4th Floor (Lan 4)

• 5th Floor (Lan 5)

• 6th Floor (Lan 6)

• 7th Floor (Lan 7)

IP Address Allocation

The organization has established a planned IP addressing format to allow smooth network connectivity among the eight-floor workplace. Each floor of the three initial sections will receive Class C private IPv4 addresses which provide exclusive addressings for six computers each floor while maintaining network security. Class A public IPv4 addresses will be assigned to the remaining five floors which enables extensive external connections. The routers utilize a bus topology to link their network segments with each router using Class A public IPv4 addresses for router-to-router communication establishing effortless data transmission between network segments. Network performance shows maximum scalability alongside unique IP allocation while ensuring optimized network connections throughout all different floors of the building.

• LAN 1 (Network Address: 192.168.0.0)

• LAN 2 (Network Address: 192.168.1.0)

LAN 3 (Network Address: 192.168.2.0)

• LAN 4 (Network Address: 20.0.0.0)

• LAN 5 (Network Address: 30.0.0.0)

LAN 6 (Network Address: 40.0.0.0)

• LAN 7 (Network Address: 50.0.0.0)

• LAN 8 (Network Address: 60.0.0.0)

Router 1

Static Routing

The office building requires static routing for inter-floor communication which will deliver controlled and predictable data transmission. The networks on each floor will include manually set routes to manage traffic flow with minimal effort while avoiding dynamic routing protocol resource utilization. The manual configuration of routes through this method offers security benefits with simplified routing structures while providing route stability since manual intervention is needed for changes. A bus topology connects all routers in this network so static routes create efficient transmission paths between floors to establish continuous connectivity. The technique performs well with orderly networks when traffic follows established patterns because it enables optimal performance alongside reduced unnecessary route modifications.

```
Press RETURN to get started.
  Router>enable
  Router#configure terminal
  Enter configuration commands, one per line. End with CNTL/Z.
  Router(config) #ip route 192.168.1.0 255.255.255.0 100.0.0.1
  %Invalid next hop address (it's this router)
  Router(config) #ip route 192.168.1.0 255.255.255.0 100.0.0.2 Router(config) #ip route 70.0.0.0 255.0.0.0 100.0.0.2
  Router(config) #ip route 192.168.2.0 255.255.255.0 100.0.0.2
  Router(config) #ip route 110.0.0.0 255.0.0.0 100.0.0.2
  Router(config) #ip route 20.0.0.0 255.0.0.0 100.0.0.2
  Router(config) #ip route 80.0.0.0 255.0.0.0 100.0.0.2
  Router(config) #ip route 30.0.0.0 255.0.0.0 100.0.0.2
  Router(config) #ip route 120.0.0.0 255.0.0.0 100.0.0.2
  Router(config) #ip route 40.0.0.0 255.0.0.0 100.0.0.2
  Router(config) #ip route 90.0.0.0 255.0.0.0 100.0.0.2
  Router(config) #ip route 50.0.0.0 255.0.0.0 100.0.0.2
Router(config) #ip route 122.0.0.0 255.0.0.0 100.0.0.2
  Router(config) #ip route 60.0.0.0 255.0.0.0 100.0.0.2
  Router (config) #
                                                                                                  Сору
Тор
```


Communication Between LANs

The successful ping test verifies that every Local Area Network (LAN) located across eight floors communicates without problems. Every Local Area Network which has its designated classful IP range achieves successful ICMP echo communication with all other networks in the building. The established static routing protocol maintains predetermined network routes to enable efficient floor-to-floor data connection. All devices on the Floors 1-3 Class C private network possess a dual capability for intra-network communication as well as external connectivity to the Class A public network devices that exist on Floors 4-8 through router configuration. The bus topology successfully links all routers to facilitate constant data transmission which provides swift and dependable network connections. Network design and routing effectiveness is verified when packets sent from various floors reach all intended destinations without suffering any losses according to ping test results.

From LAN 1

Ping statistics for 192.168.2.2:

Pinging 20.0.0.2 with 32 bytes of data:

Reply from 20.0.0.2: bytes=32 time<1ms TTL=124

C:\>ping 20.0.0.2

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 6ms, Average = 1ms

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms

```
Ping statistics for 20.0.0.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\>

Top

C:\>ping 30.0.0.2

Pinging 30.0.0.2 with 32 bytes of data:

Reply from 30.0.0.2: bytes=32 time<lms TTL=123

Ping statistics for 30.0.0.2:
```


From LAN

2

- 🗆 X

From LAN

3

Тор

```
Physical
           Config Desktop Programming
                                                Attributes
  Command Prompt
                                                                                                                              X
  Cisco Packet Tracer PC Command Line 1.0
  C:\>ping 30.0.0.2
  Pinging 30.0.0.2 with 32 bytes of data:
  Reply from 30.0.0.2: bytes=32 time<1ms TTL=126
  Reply from 30.0.0.2: bytes=32 time<lms TTL=126
  Reply from 30.0.0.2: bytes=32 time<lms TTL=126
  Reply from 30.0.0.2: bytes=32 time<lms TTL=126
  Ping statistics for 30.0.0.2:
  Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
       Minimum = Oms, Maximum = Oms, Average = Oms
   C:\>ping 40.0.0.2
   Pinging 40.0.0.2 with 32 bytes of data:
  Reply from 40.0.0.2: bytes=32 time=9ms TTL=125
  Reply from 40.0.0.2: bytes=32 time<lms TTL=125 Reply from 40.0.0.2: bytes=32 time<lms TTL=125
  Reply from 40.0.0.2: bytes=32 time<lms TTL=125
  Ping statistics for 40.0.0.2:
  Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
       Minimum = 0ms, Maximum = 9ms, Average = 2ms
  C:\>ping 50.0.0.2
  Pinging 50.0.0.2 with 32 bytes of data:
  Reply from 50.0.0.2: bytes=32 time<lms TTL=124
  Reply from 50.0.0.2: bytes=32 time<lms TTL=124
  Reply from 50.0.0.2: bytes=32 time<1ms TTL=124
Reply from 50.0.0.2: bytes=32 time<1ms TTL=124
  Ping statistics for 50.0.0.2:
  Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
  C:\>
Тор
```

```
C:\>ping 60.0.0.2

Pinging 60.0.0.2 with 32 bytes of data:

Reply from 60.0.0.2: bytes=32 time=10ms TTL=123
Reply from 60.0.0.2: bytes=32 time<1ms TTL=123
Reply from 60.0.0.2: bytes=32 time=19ms TTL=123
Reply from 60.0.0.2: bytes=32 time<1ms TTL=123

Ping statistics for 60.0.0.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 19ms, Average = 7ms
C:\>
```

```
Physical Config Desktop Programming Attributes
                                                                                                                                                               X
   Command Prompt
    Cisco Packet Tracer PC Command Line 1.0
   C:\>ping 40.0.0.2
   Pinging 40.0.0.2 with 32 bytes of data:
   Reply from 40.0.0.2: bytes=32 time<1ms TTL=126
   Reply from 40.0.0.2: bytes=32 time<1ms TTL=126
Reply from 40.0.0.2: bytes=32 time<1ms TTL=126
Reply from 40.0.0.2: bytes=32 time<1ms TTL=126
   Ping statistics for 40.0.0.2:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
   C:\>ping 50.0.0.2
   Pinging 50.0.0.2 with 32 bytes of data:
   Reply from 50.0.0.2: bytes=32 time<1ms TTL=125
   Reply from 50.0.0.2: bytes=32 time<1ms TTL=125
Reply from 50.0.0.2: bytes=32 time<1ms TTL=125
Reply from 50.0.0.2: bytes=32 time<1ms TTL=125
   Ping statistics for 50.0.0.2:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
   C:\>ping 60.0.0.2
   Pinging 60.0.0.2 with 32 bytes of data:
   Reply from 60.0.0.2: bytes=32 time=1ms TTL=124
Reply from 60.0.0.2: bytes=32 time<1ms TTL=124
Reply from 60.0.0.2: bytes=32 time<1ms TTL=124
   Reply from 60.0.0.2: bytes=32 time<lms TTL=124
   Ping statistics for 60.0.0.2:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
         Minimum = 0ms, Maximum = 1ms, Average = 0ms
Тор
```

```
₹ CP601
                                                                                                                                                                  Config Desktop Programming
   Physical
                                                                   Attributes
   Command Prompt
    Cisco Packet Tracer PC Command Line 1.0
    C:\>ping 50.0.0.2
    Pinging 50.0.0.2 with 32 bytes of data:
   Reply from 50.0.0.2: bytes=32 time=6ms TTL=126
Reply from 50.0.0.2: bytes=32 time<1ms TTL=126
Reply from 50.0.0.2: bytes=32 time=8ms TTL=126
Reply from 50.0.0.2: bytes=32 time<1ms TTL=126
    Ping statistics for 50.0.0.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
           Minimum = 0ms, Maximum = 8ms, Average = 3ms
    C:\>ping 60.0.0.2
    Pinging 60.0.0.2 with 32 bytes of data:
    Reply from 60.0.0.2: bytes=32 time<1ms TTL=125
    Reply from 60.0.0.2: bytes=32 time<lms TTL=125
Reply from 60.0.0.2: bytes=32 time<lms TTL=125
Reply from 60.0.0.2: bytes=32 time=5ms TTL=125
    Ping statistics for 60.0.0.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 5ms, Average = 1ms
    C:\>
Тор
```


Ping Table

Test ID	From	То	Result
101	LAN 1	LAN 2	Successful
102	LAN 1	LAN 3	Successful
103	LAN 1	LAN 4	Successful
104	LAN 1	LAN 5	Successful
105	LAN 1	LAN 6	Successful
106	LAN 1	LAN 7	Successful
107	LAN 1	LAN 8	Successful
108	LAN 2	LAN 3	Successful
109	LAN 2	LAN 4	Successful
110	LAN 2	LAN 5	Successful
111	LAN 2	LAN 6	Successful
112	LAN 2	LAN 7	Successful
113	LAN 2	LAN 8	Successful
114	LAN 3	LAN 4	Successful
115	LAN 3	LAN 5	Successful
116	LAN 3	LAN 6	Successful
117	LAN 3	LAN 7	Successful
118	LAN 3	LAN 8	Successful
119	LAN 4	LAN 5	Successful
120	LAN 4	LAN 6	Successful
121	LAN 4	LAN 7	Successful
122	LAN 4	LAN 8	Successful
123	LAN 5	LAN 6	Successful
124	LAN 5	LAN 7	Successful

125	LAN 5	LAN 8	Successful
126	LAN 6	LAN 7	Successful
127	LAN 6	LAN 8	Successful
128	LAN 7	LAN 8	Successful