

Evaluating the Functional Information Content of Protein Structure Prediction Model Embeddings using Deep Mutational Scanning Data

Laura McDonnell¹ & David Antolick²

¹Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University ²Department of Computational and Systems Biology, University of Pittsburgh

Deep Mutational Scanning (DMS) provides rich datasets measuring the effects of single-point mutations on protein function. And, protein language models such as ESM-2 learn high-dimensional representations (embeddings) of protein sequences. Deep Mutational Scanning (DMS) Concept Measure function Protein Mutagenesis Do ESM-2 embeddings contain information predictive of the functional consequences of mutations?

Protein Sequence

Embeddings

Results

Understanding this relationship could inform future work

in protein engineering and mutation effect prediction.

Model Performance in Predicting Mutation Functional Scores

Task	Description	Value
Α	Spearman correlation (embedding norm vs DMS score)	~0.27
В	Random Forest R ² (embeddings only)	~0.45
С	Spearman correlation (BLOSUM62 vs DMS score)	~0.46
D	Random Forest R ² (embeddings + BLOSUM62)	~0.73

Random Forest models trained on embeddings or BLOSUM62 substitution scores alone achieve moderate performance. However, combining both feature sets significantly improves predictive accuracy, suggesting complementary predictive signals in learned embeddings and evolutionary substitution scores.

Structural Visualization of Mutations with Reduced pLDDT Confidence

L146D Leucine > Aspartate

F58N
Phenylalanine
> Asparagine

Conclusions

- Protein language model embeddings, even extracted from the wild-type sequence, encode information related to mutation functional impact.
- Although embedding features alone offer moderate predictive power, combining them with classical features like BLOSUM62 scores significantly improves performance.
- Future directions include embedding mutant sequences directly, leveraging structural embeddings, and exploring fine-tuning approaches.

References

- [1] Jumper, J., et al. (2021). Highly accurate protein structure prediction with AlphaFold. *Nature*. [2] Lin, Z., et al. (2022). Language models of protein sequences at the scale of evolution enable accurate structure prediction. *bioRxiv*.
- [3] Esposito, D., et al. (2019). MaveDB: an open-source platform for massive assay data. *Genome Biology*.
- [4] Bidmon, Katrin & Reina, Guido & Bös, Fabian & Pleiss, Juergen & Ertl, Thomas. (2007). Time-Based Haptic Analysis of Protein Dynamics. 537-542. 10.1109/WHC.2007.115.