In-Class Problem Solutions for Session 2

Samuel Lair

August 2022

Contents

1	Problem 1	2
2	Problem 2	3
3	Problem 3	4
4	Problem 4	5

Prove that if $a \cdot b = n$, then either a or b must be $\leq \sqrt{n}$ where a, b, and c are nonnegative real numbers.

Proof. We use proof by contradiction. Suppose $a \cdot b = n$ but $a > \sqrt{n}$ and $b > \sqrt{n}$. Then

$$a\cdot b>\sqrt{n}\sqrt{n}=n$$

This is a contradiction. Hence, the claim must be true.

We can generalize Theorem 1.8.1 to any prime number p. However, we should first prove a more general version of Problem 14 from Chapter 1.

Given a prime number p, prove that if n^2 is a multiple of p, then n must be a multiple of p.

Proof. We use proof by contradiction. Suppose n^2 is a multiple of p but n is not a multiple of p. Therefore, p is not a factor of n. Since p is prime, we can deduce by the *Fundamental Theorem of Arithmetic* that p is not a factor of n^2 . This leads us to the contradiction that n^2 is not a multiple of p. Hence, the claim must be true.

With that proof out of the way, we are now ready to generalize Theorem 1.8.1.

Given a prime number p, prove that \sqrt{p} is irrational.

Proof. We use proof by contradiction. Suppose that \sqrt{p} is ration. Then $\sqrt{p} = \frac{n}{d}$ where n and d are integers such that d > 0 and n and d have no common factors. Consider the following:

$$p = \frac{n^2}{d^2}$$
$$pd^2 = n^2$$

So p is a factor of n^2 . From our previous proof, we know that this is only possible if p is also a factor of n. Therefore, n = pk for some nonzero integer k and:

$$n^{2} = (pk)^{2} = p^{2}k^{2}$$
$$pd^{2} = p^{2}k^{2}$$
$$d^{2} = pk^{2}$$

I.e. p is a factor of d^2 . From our previous proof, we know that this is only possible if p is also a factor of d. We have reached a contradiction since n and d share a common factor of p. Hence, the claim must be true.

Prove that raising an irrational number to an irrational power can result in a rational number.

Proof. The proof is by case analysis. Let us consider two cases:

- 1. $\sqrt{2}^{\sqrt{2}}$ is rational.
- 2. $\sqrt{2}^{\sqrt{2}}$ is irrational.

Since $\sqrt{2}^{\sqrt{2}}$ must be either rational or irrational, we can prove that the claim is true by showing that the claim holds in both cases.

Case 1: The claim holds since $\sqrt{2}$ is irrational.

Case 2: Consider the following:

$$\sqrt{2}^{\sqrt{2}^{\sqrt{2}}} = \sqrt{2}^{\sqrt{2}\sqrt{2}} = \sqrt{2}^2 = 2$$

The claim holds since $\sqrt{2}$ is irrational and 2 is rational.

The claim holds in all cases. Hence, we can conclude that the claim is true. $\hfill\Box$

Prove that $2\log_2 3$ is irrational.

Proof. We use proof by contradiction. Suppose that $\log_2 3$ is rational. Then $\log_2 3 = \frac{n}{d}$ where n and d are integers, d > 0, and n and d do not share any common factors. Consider the following:

$$2^{\log_2 3} = 2^{\frac{n}{d}}$$

Apply the definition of the log function:

$$3 = 2^{\frac{n}{d}}$$

$$3^d = 2^n$$

Since both 3 and 2 are prime numbers, we conclude from the *Fundamental Theorem of Arithmetic* that the above equation can only satisfied if both sides equal 1. I.e. d=n=0. This is a contradiction since d>0. Hence, the claim must be true.