Ecole Supérieure de la Statistique et de l'Analyse de l'Information de Tunis

1ère année

Durée: 1h30 Juin 2007

Examen de contrôle du module Analyse Numérique

Exercice (6pt).

- 1. Soit f une fonction continue sur un intervalle $[a, b] \subset \mathbf{R}$ avec f(a).f(b) < 0. Expliquer géométriquement la méthode de Newton dans la recherche d'une solution de l'équation f(x) = 0 sur [a, b].
- 2. Donner l'algorithme de la méthode de Newton pour la recherche d'une racine simple d'une fonction de classe C^2 sur [a,b].

Problème (14pt). Nous considérons l'ensemble des points

$$x_0 = -1,$$
 $x_1 = 0,$ $x_2 = 1,$ $x_3 = 2,$ $f_0 = 1,$ $f_1 = -1,$ $f_2 = 3,$ $f_3 = 19.$

- 1. Afin de déterminer une approximation du nuage de points (x_i, f_i) pour i de 0 à 3, calculer la droite de régression linéaire P_0 par la méthode des moindres carrés discrets.
- 2. Citer deux méthodes permettant de calculer le polynôme de Lagrange.
- 3. Montrer que les polynômes d'interpolation de Lagrange vérifient $L_i(x_i) = 1$ et $L_i(x_i) = 0$ pour tout i et $j \neq i$ de 0 à 3.
- 4. Calculer le polynôme de Lagrange P sur les points (x_0, f_0) , (x_1, f_1) , (x_2, f_2) et (x_3, f_3) .
- 5. Quelle est la différence entre P et P_0 .
- 6. Donner le théorème de convergence globale de la méthode de Newton pour une fonction de classe C^2 .
- 7. Calculer la racine de P(x) = 0 sur l'intervalle [0,3] par la méthode de Newton avec $x_0 = 1$. La précision des calculs est à 10^{-6} près.

 $\label{eq:BonTravail} \text{Bon Travail},$ Ines Abdeljaoued.