ASE o MLqE Story Latest

Runze

June 1, 2016

1 Problem Description

1.1 Uncontaminated Model

Let F be a distribution on $\mathcal{X} \in \mathbb{R}^d$, satisfying $x^T y \geq 0$ for all $x, y \in \mathcal{X}$. We now generate m i.i.d. graphs under the RDPG(F) model. First sample X_1, \dots, X_n independently from distribution F, and define $X = [X_1, \dots, X_n]^T \in \mathbb{R}^{n \times d}$, $P = XX^T \in [0, R]^{n \times n}$, where R is a constant. Then we can sample m conditionally i.i.d. symmetric and hollow graphs $G^{(1)}, \dots, G^{(m)}$, such that conditioned on X, $G_{ij}^{(t)} \stackrel{ind}{\sim} \operatorname{Exp}(P_{ij})$ for each $1 \leq t \leq m$, $1 \leq i < j \leq n$.

1.2 Contaminated Observations

Now we assume the observed edges are contaminated with probability ϵ .

Let G be a distribution on $\mathcal{Y} \in \mathbb{R}^{d'}$, satisfying $x^Ty \geq 0$ for all $x,y \in \mathcal{Y}$. First sample X from F and Y from G. Then we sample m conditionally i.i.d. symmetric and hollow graphs $A^{(1)}, \dots, A^{(m)}$ such that conditioning on X and Y, $A^{(t)}_{ij} \stackrel{ind}{\sim} (1-\epsilon) \operatorname{Exp}(P_{ij}) + \epsilon \operatorname{Exp}(C_{ij})$ for each $1 \leq t \leq m, 1 \leq i < j \leq n$, where the contamination is a rank-d' matrix $C = YY^T \in [0, R]^{n \times n}, Y \in \mathbb{R}^{n \times d'}$.

1.3 Goal

Given the contaminated observation of adjacency matrices of m graphs, i.e. $A^{(1)}, \dots, A^{(m)}$, we want to estimate the mean of the collection of uncontaminated graphs P.

2 Candidate Estimators

After observing contaminated adjacency matrices of m graphs $A^{(1)}, \dots, A^{(m)}$, we want to propose a good estimator for the mean of the collection of graphs P.

2.1 $\hat{P}^{(1)}$ based on entry-wise MLE

Under the independent edge setting, we can simplify the problem to finding an entry-wise estimate of P. And MLE is always our first choice, which exists and happen to be \bar{A} , the entry-wise mean in this case. For consistency, we define $\hat{P}^{(1)} = \bar{A}$.

2.2 $\hat{P}^{(q)}$ based on entry-wise MLqE

Since the observations are contaminated, robust estimators are preferred. A modified MLE estimator, the maximum likelihood L-q estimator, is considered in this case. Define $\hat{P}^{(q)}$ as the entry-wise MLqE.

Remark: MLE is a special case of MLqE when q=1. So we notate the entry-wise MLE to be $\hat{P}^{(1)}$ in consistent with entry-wise MLqE $\hat{P}^{(q)}$.

2.3 $\widetilde{P}^{(1)}$ based on ASE of entry-wise MLE

By taking advantages of the graph structure, we expect a better performance after applying a rank-reduction procedure to the entry-wise MLE $\hat{P}^{(1)}$ under the SBM. So we first apply ASE to $\hat{P}^{(1)}$ to get the latent positions $\hat{X}^{(1)}$ in dimension $d^{(1)}$, and then define $\tilde{P}^{(1)} = \hat{X}^{(1)} \hat{X}^{(1)T}$.

2.4 $\widetilde{P}^{(q)}$ based on ASE of entry-wise MLqE

Similarly, we also expect a better performance after applying a rank-reduction procedure to the entry-wise MLqE $\hat{P}^{(q)}$ under the SBM. So we first apply ASE to $\hat{P}^{(q)}$ to get the latent positions $\hat{X}^{(q)}$ in dimension $d^{(q)}$, and then define $\widetilde{P}^{(q)} = \hat{X}^{(q)} \hat{X}^{(q)T}$.

3 Compare Estimators

3.1 $\hat{P}^{(q)}$ is better than $\hat{P}^{(1)}$

Lemma 3.1 For any $0 < q, \epsilon < 1$, there exists $C_0(P_{ij}, \epsilon, q) > 0$ such that under the contaminated model with $C > C_0(P_{ij}, \epsilon, q)$,

$$\lim_{m \to \infty} \left| E[\hat{P}_{ij}^{(q)}] - P_{ij} \right| < \lim_{m \to \infty} \left| E[\hat{P}_{ij}^{(1)}] - P_{ij} \right|,$$

for $1 \le i, j, \le n$ and $i \ne j$.

Lemma 3.2 For $1 \le i, j \le n$, we have

$$\lim_{m \to \infty} \operatorname{Var}(\hat{P}_{ij}^{(1)}) = \lim_{m \to \infty} \operatorname{Var}(\hat{P}_{ij}^{(q)}) = 0,$$

Thus,

- By Lemma 3.1, when C is large enough, for every $1 \le i, j, \le n$ and $i \ne j$, $\hat{P}_{ij}^{(q)}$ has smaller asymptotic bias in absolute value than $\hat{P}_{ij}^{(1)}$ as $m \to \infty$;
- By Lemma 3.2, all entry-wise variances go to 0 for estimating P as $m \to \infty$;
- In terms of MSE, $\hat{P}^{(q)}$ is better than $\hat{P}^{(1)}$ when m and C are large enough.

3.2 $\widetilde{P}^{(1)}$ is better than $\widehat{P}^{(1)}$

Theorem 3.3 For fixed $m, 1 \le i, j \le n$,

$$\frac{\text{Var}(\widetilde{P}_{ij}^{(1)})}{\text{Var}(\hat{P}_{ij}^{(1)})} = O(mn^{-1}(\log n)^3).$$

Thus

$$ARE(\hat{P}_{ij}^{(1)}, \tilde{P}_{ij}^{(1)}) = 0.$$

Then

- For each $1 \leq i, j \leq n$, both $\hat{P}_{ij}^{(1)}$ and $\widetilde{P}_{ij}^{(1)}$ have the same asymptotic bias as $n \to \infty$;
- Fix m, for every $1 \leq i, j \leq n$, $ARE(\hat{P}_{ij}^{(1)}, \widetilde{P}_{ij}^{(1)}) = \lim_{n \to \infty} Var(\widetilde{P}_{ij}^{(1)}) / Var(\hat{P}_{ij}^{(1)}) = 0$, which means $\widetilde{P}^{(1)}$ is better than $\hat{P}^{(1)}$;
- Actually when fixing m, for every $1 \leq i, j \leq n$, $\operatorname{Var}(\widetilde{P}_{ij}^{(1)})/\operatorname{Var}(\widehat{P}_{ij}^{(1)})$ is of order $O(n^{-1}(\log n)^3)$ as $n \to \infty$.

3.3 $\widetilde{P}^{(q)}$ is better than $\hat{P}^{(q)}$

Define $H^{(q)} = E[\hat{P}^{(q)}]$. Let $d^{(q)} = \text{rank}(H^{(q)})$ be the dimension in which we are going to embed $\hat{P}^{(q)}$. Then

- For each $1 \leq i, j \leq n$, both $\hat{P}^{(q)}_{ij}$ and $\widetilde{P}^{(q)}_{ij}$ have the same asymptotic bias as $n \to \infty$;
- Fix m, for every $1 \le i, j \le n$, $ARE(\hat{P}_{ij}^{(q)}, \widetilde{P}_{ij}^{(q)}) = \lim_{n \to \infty} Var(\widetilde{P}_{ij}^{(q)}) / Var(\hat{P}_{ij}^{(q)}) = 0$, which means $\widetilde{P}^{(q)}$ is better than $\hat{P}^{(q)}$;
- Actually, even if m is not fixed, as long as m is growing with order $o(n^{1/2}(\log n)^{-3/2})$, we still have $\text{ARE}(\hat{P}_{ij}^{(q)}, \widetilde{P}_{ij}^{(q)}) = 0$,

3.4 $\widetilde{P}^{(q)}$ is better than $\widetilde{P}^{(1)}$

- When n is large enough, for every $1 \leq i, j \leq n$, $E[\widetilde{P}_{ij}^{(1)}]$ will be close to $E[\hat{P}_{ij}^{(1)}]$ and $E[\widetilde{P}_{ij}^{(q)}]$ will be close to $E[\hat{P}_{ij}^{(q)}]$. Combined with $\hat{P}_{ij}^{(q)}$ has smaller asymptotic bias (as $m \to \infty$) than $\hat{P}_{ij}^{(1)}$ when C is large enough, we have for sufficiently large m and n, C large enough, $\lim_{m \to \infty} \operatorname{Bias}(\widetilde{P}_{ij}^{(1)}) > \lim_{m \to \infty} \operatorname{Bias}(\widetilde{P}_{ij}^{(q)})$;
- Fix m, for any $1 \leq i, j \leq n$, when n is large enough, $\operatorname{Var}(\widetilde{P}_{ij}^{(1)})$ is less than $\operatorname{Var}(\widehat{P}_{ij}^{(1)})$ times $O(n^{-1})$ and $\operatorname{Var}(\widetilde{P}_{ij}^{(q)})$ is less than $\operatorname{Var}(\widehat{P}_{ij}^{(q)})$ times $O(n^{-1/2}(\log n)^{3/2})$. Thus $\lim_{n \to \infty} \operatorname{Var}(\widetilde{P}_{ij}^{(1)}) = \lim_{n \to \infty} \operatorname{Var}(\widetilde{P}_{ij}^{(q)}) = 0$;
- \bullet In terms of MSE, $\widetilde{P}^{(q)}$ is better than $\widetilde{P}^{(1)}$ when m, n and C are large enough.

Figure 1: Relationship between four estimators.

3.5 Summary

Thus, we should choose the estimator $\widetilde{P}^{(q)}$.

RT: The figure of relationship is NOT right.

4 Proof

4.1 $\hat{P}^{(q)}$ better than $\hat{P}^{(1)}$

Lemma 4.1 Consider the model $X_1, \dots, X_m \stackrel{iid}{\sim} \operatorname{Exp}(\theta)$ with $E[X_1] = \theta$. Given any data $x = (x_1, \dots, x_m)$ such that $x_{(1)} > 0$ and not all x_i 's are the same, then $\hat{\theta}_q(x) < \hat{\theta}_1(x)$ for 0 < q < 1, i.e. MLqE [2, 5] is always less than MLE under exponential distribution no matter how the data is sampled.

Proof: The MLE is

$$\hat{\theta}_1(x) = \bar{x}.$$

And the MLqE $\hat{\theta}_q(x)$ solves the equation

$$\sum_{i=1}^{m} e^{-\frac{(1-q)x_i}{\hat{\theta}_q(x)}} (x_i - \hat{\theta}_q(x)) = 0.$$

Consider the continuous function $g(\theta, x) = \sum_{i=1}^m e^{-\frac{(1-q)x_i}{\theta}} (x_i - \theta)$. Let $x_{(1)} \leq \cdots \leq x_{(l)} \leq \bar{x} \leq x_{(l+1)} \leq \cdots \leq x_{(m)}$. Define $s_i = \bar{x} - x_{(i)}$ for $1 \leq i \leq l$, and $t_i = x_{(l+i)} - \bar{x}$ for $1 \leq i \leq m-l$. Note that $\sum_{i=1}^l s_i = \sum_{i=1}^{m-l} t_i$. Then we have

$$\begin{split} g(\hat{\theta}_{1}(x),x) &= g(\bar{x},x) \\ &= \sum_{i=1}^{m} e^{-\frac{(1-q)x_{(i)}}{\bar{x}}} (x_{(i)} - \bar{x}) \\ &= -\sum_{i=1}^{l} e^{-\frac{(1-q)x_{(i)}}{\bar{x}}} s_{i} + \sum_{i=1}^{m-l} e^{-\frac{(1-q)x_{(i+l)}}{\bar{x}}} t_{i} \\ &\leq -e^{-(1-q)} \sum_{i=1}^{l} s_{i} + \sum_{i=1}^{m-l} e^{-\frac{(1-q)x_{(i+l)}}{\bar{x}}} t_{i} \\ &\leq -e^{-(1-q)} \sum_{i=1}^{m-l} t_{i} + \sum_{i=1}^{m-l} e^{-\frac{(1-q)x_{(i+l)}}{\bar{x}}} t_{i} \\ &\leq -\sum_{i=1}^{m-l} e^{-\frac{(1-q)x_{(i+l)}}{\bar{x}}} t_{i} + \sum_{i=1}^{m-l} e^{-\frac{(1-q)x_{(i+l)}}{\bar{x}}} t_{i} \\ &= 0, \end{split}$$

and equality holds if and only if all x_i 's are the same, which is excluded by the assumption. Thus $g(\hat{\theta}_1(x), x) < 0$.

Also we know:

- $g(\hat{\theta}_q(x), x) = 0;$
- $\lim_{\theta \to 0^+} g(\theta, x) = 0$;
- $g(\theta, x) > 0$ when $\theta < x_{(1)}$;

Combined with $g(\hat{\theta}_1(x), x) < 0$, we have $\hat{\theta}_q(x) < \hat{\theta}_1(x)$ for 0 < q < 1.

Lemma 4.2 (Lemma 3.1) For any 0 < q < 1, there exists $C_0(P_{ij}, \epsilon, q) > 0$ such that under the contaminated model with $C > C_0(P_{ij}, \epsilon, q)$,

$$\lim_{m \to \infty} \left| E[\hat{P}_{ij}^{(q)}] - P_{ij} \right| < \lim_{m \to \infty} \left| E[\hat{P}_{ij}^{(1)}] - P_{ij} \right|,$$

for $1 \le i, j, \le n$ and $i \ne j$.

Proof: For the MLE $\hat{P}_{ij}^{(1)} = \bar{A}_{ij}$,

$$E[\hat{P}_{ij}^{(1)}] = E[\bar{A}_{ij}] = \frac{1}{m} \sum_{t=1}^{m} E[A_{ij}^{(t)}] = E[A_{ij}^{(1)}] = (1 - \epsilon)P_{ij} + \epsilon C_{ij}.$$

For the MLqE $\hat{P}_{ij}^{(q)}$, according to Equation (3.2) in [2], the expectation $E[\hat{P}_{ij}^{(q)}]$, denoted as θ for simplicity, satisfies

$$\frac{\epsilon C_{ij}}{(C_{ij}(1-q)+\theta)^2} - \frac{\epsilon}{C_{ij}(1-q)+\theta} + \frac{(1-\epsilon)P_{ij}}{(P_{ij}(1-q)+\theta)^2} - \frac{(1-\epsilon)}{P_{ij}(1-q)+\theta} = 0,$$

i.e.

$$\frac{\epsilon(\theta - C_{ij}q)}{(C_{ij}(1-q) + \theta)^2} = \frac{(1-\epsilon)(P_{ij}q - \theta)}{(P_{ij}(1-q) + \theta)^2}.$$

Thus $\theta - C_{ij}q$ and $\theta - P_{ij}q$ should have different signs. Combined with $C_{ij} > P_{ij}$, we have

$$qP_{ij} < \theta$$
.

To have a smaller bias in absolute value, we need

$$|\theta - P_{ij}| < \epsilon (C_{ij} - P_{ij}).$$

Thus combined with Lemma 4.1, we need

$$qP_{ij} > P_{ij} - \epsilon (C_{ij} - P_{ij}),$$

i.e.

$$C_{ij} > P_{ij} + \frac{(1-q)P_{ij}}{\epsilon} = C_0(P_{ij}, \epsilon, q).$$

Lemma 4.3 (Lemma 3.2)

$$\lim_{m \to \infty} \operatorname{Var}(\hat{P}_{ij}^{(1)}) = \lim_{m \to \infty} \operatorname{Var}(\hat{P}_{ij}^{(q)}) = 0,$$

for $1 \le i, j \le n$.

Proof: Both MLE and MLqE follows a central limit theorem, which means their variances goes to 0 as $m \to \infty$.

4.2 $\widetilde{P}^{(1)}$ better than $\hat{P}^{(1)}$

Theorem 4.4 (Matrix Bernstein: Subexponential Case). Consider a finite sequence $\{X_k\}$ of independent, random, self-adjoint matrices with dimension d. Assume that

$$E[X_k] = 0$$
 and $E[X_k^p] \leq \frac{p!}{2} R^{p-2} A_k^2$ for $p = 2, 3, 4, ...$

Compute the variance parameter

$$\sigma^2 := \| \sum_k A_k^2 \|.$$

Then the following chain of inequalities holds for all $t \geq 0$.

$$P\left(\lambda_{\max}\left(\sum_{k} X_{k}\right) \ge t\right) \le d \cdot \exp\left(\frac{-t^{2}/2}{\sigma^{2} + Rt}\right).$$

Remark: Theorem 6.2 in [8].

Theorem 4.5 (Theorem 3.3) Let P and C be two n-by-n symmetric matrices satisfying element-wise conditions $0 < P_{ij} \le C_{ij} \le R$ for some constant R > 0. For $0 < \epsilon < 1$, we define m symmetric and hollow matrices as

$$A^{(t)} \stackrel{iid}{\sim} (1 - \epsilon) \operatorname{Exp}(P) + \epsilon \operatorname{Exp}(C),$$

for $1 \le t \le m$. Let $\hat{P}^{(1)}$ be the element-wise MLE based on exponential distribution with m observations. Define $H_{ij}^{(1)} = E[\hat{P}_{ij}^{(1)}] = (1-\epsilon)P_{ij} + \epsilon C_{ij}$, then for any constant c > 0, there exists another constant $n_0(c)$, independent of n, P, C and ϵ , such that if $n > n_0$, then for all η satisfying $n^{-c} \le \eta \le 1/2$,

$$P\left(\|\hat{P}^{(1)} - H^{(1)}\|_{2} \le 4R\sqrt{n\ln(n/\eta)}\right) \ge 1 - \eta.$$

Remark: This is the extended version of Theorem 3.1 in [4].

Proof: Let $\{e_i\}_{i=1}^n$ be the canonical basis for \mathbb{R}^n . For each $1 \leq i, j \leq n$, define a corresponding matrix G_{ij} :

$$G_{ij} \equiv \left\{ \begin{array}{ll} e_i e_j^T + e_j e_i^T, & i \neq j; \\ e_i e_i^T, & i = j. \end{array} \right.$$

Thus $\hat{P}^{(1)} = \sum_{1 \leq i < j \leq n} \hat{P}^{(1)}_{ij} G_{ij}$ and $H^{(1)} = \sum_{1 \leq i < j \leq n} H^{(1)}_{ij} G_{ij}$. Then we have $\hat{P}^{(1)} - H^{(1)} = \sum_{1 \leq i < j \leq n} X_{ij}$, where $X_{ij} \equiv \left(\hat{P}^{(1)}_{ij} - H^{(1)}_{ij}\right) G_{ij}$, $1 \leq i < j \leq n$. First consider the k-th moment of X_{ij} for $1 \leq i < j \leq n$. Since

$$\begin{split} E[(A_{ij}^{(1)} - H_{ij}^{(1)})^k] &\leq (1 - \epsilon) \cdot \exp(-H_{ij}/P_{ij}) P_{ij}^k \Gamma(1 + k, -H_{ij}/P_{ij}) \\ &+ \epsilon \cdot \exp(-H_{ij}/C_{ij}) C_{ij}^k \Gamma(1 + k, -H_{ij}/C_{ij}) \\ &\leq \left((1 - \epsilon) \cdot \exp(-H_{ij}/P_{ij}) P_{ij}^k + \epsilon \cdot \exp(-H_{ij}/C_{ij}) C_{ij}^k \right) k! \\ &\leq \left((1 - \epsilon) \cdot P_{ij}^k + \epsilon \cdot C_{ij}^k \right) k! \\ &\leq R^k k!, \end{split}$$

we have

$$E[(\hat{P}_{ij}^{(1)} - H_{ij}^{(1)})^k] = E[(\frac{1}{m} \sum_{t=1}^m A_{ij}^{(t)} - H_{ij}^{(1)})^k]$$

$$= E[(\frac{1}{m} \sum_{t=1}^m (A_{ij}^{(t)} - H_{ij}^{(1)}))^k]$$

$$= \frac{1}{m^k} E[(\sum_{t=1}^m (A_{ij}^{(t)} - H_{ij}^{(1)}))^k]$$

$$\leq R^k k!. \tag{1}$$

Combined with

$$G_{ij}^k \equiv \left\{ \begin{array}{ll} e_i e_i^T + e_j e_j^T, & \text{k is even;} \\ e_i e_j^T + e_j e_i^T, & \text{k is odd,} \end{array} \right.$$

thus we have

1. When k is even,

$$E[X_{ij}^k] = E[(\hat{P}_{ij}^{(1)} - H_{ij}^{(1)})^k]G_{ij}^2 \leq k!R^kG_{ij}^2;$$

2. When k is odd,

$$E[X_{ij}^k] = E[(\hat{P}_{ij}^{(1)} - H_{ij}^{(1)})^k]G_{ij} \le k!R^kG_{ij}^2.$$

So

$$E[X_{ij}^k] \leq k! R^k G_{ij}^2$$
.

Let

$$\sigma^2 := \left\| \sum_{1 \le i < j \le n} (\sqrt{2}RG_{ij})^2 \right\|_2 = 2R^2 \|(n-1)I\|_2 = 2R^2(n-1).$$

Notice that random matrices X_{ij} are independent, self-adjoint and have mean zero, apply Theorem 4.4 we have

$$P\left(\lambda_{\max}(\hat{P}^{(1)} - H^{(1)}) \ge t\right) \le n \exp\left(-\frac{t^2/2}{\sigma^2 + Rt}\right)$$
$$\le n \exp\left(-\frac{t^2/2}{2R^2n + Rt}\right).$$

Now consider $Y_{ij} \equiv \left(H^{(1)} - \hat{P}^{(1)}\right) G_{ij}$, $1 \leq i < j \leq n$. Then we have $H^{(1)} - \hat{P}^{(1)} = \sum_{1 \leq i < j \leq n} Y_{ij}$. Since

$$E[(H^{(1)} - \hat{P}^{(1)})^k] = (-1)^k E[(\hat{P}^{(1)} - H^{(1)})^k],$$

1. When k is even,

$$E[Y_{ij}^k] = E[(\hat{P}^{(1)} - H^{(1)})^k]G_{ij}^2 \leq k!R^kG_{ij}^2;$$

2. When k is odd,

$$E[Y_{ij}^k] = -E[(\hat{P}^{(1)} - H^{(1)})^k]G_{ij} \leq k!R^kG_{ij}^2.$$

Thus by similar arguments,

$$P\left(\lambda_{\min}(\hat{P}^{(1)} - H^{(1)}) \le -t\right) = P\left(\lambda_{\max}(H^{(1)} - \hat{P}^{(1)}) \ge t\right)$$

$$\le n \exp\left(-\frac{t^2/2}{2R^2n + Rt}\right).$$

Therefore we have

$$P\left(\|\hat{P}^{(1)} - H^{(1)}\|_{2} \ge t\right) \le n \exp\left(-\frac{t^{2}/2}{2R^{2}n + Rt}\right).$$

Now let c > 0 be given and assume $n^{-c} \le \eta \le 1/2$. Then there exists a $n_0(c)$ independent of n, P, C and ϵ such that whenever $n > n_0(c)$,

$$t = 4R\sqrt{n\ln(n/\eta)} \le 6Rn.$$

Plugging this t into the equation above, we get

$$P(\|\hat{P}^{(1)} - H^{(1)}\|_2 \ge 4R\sqrt{n\ln(n/\eta)}) \le n\exp\left(-\frac{t^2}{16R^2n}\right) = \eta.$$

Define $H^{(1)} = E[\hat{P}^{(1)}] = (1 - \epsilon)P + \epsilon C$, where $P = XX^T$, $X \in \mathbb{R}^{n \times d}$, $C = YY^T$, $Y \in \mathbb{R}^{n \times d'}$. Let $d^{(1)} = \operatorname{rank}(H^{(1)})$ be the dimension in which we are going to embed $\hat{P}^{(1)}$. Then we can define $H^{(1)} = ZZ^T$ where $Z \in \mathbb{R}^{n \times d^{(1)}}$. Since $H^{(1)} = [\sqrt{1 - \epsilon}X, \sqrt{\epsilon}Y][\sqrt{1 - \epsilon}X, \sqrt{\epsilon}Y]^T$, we have $d^{(1)} \leq d + d'$.

For simplicity, from now on, we will use \hat{P} to represent $\hat{P}^{(1)}$, use H to represent $H^{(1)}$ and use k to represent the dimension $d^{(1)}$ we are going to embed. Assume $H = USU^T = ZZ^T$, where $Z = [Z_1, \cdots, Z_n]^T$ is a n-by-k matrix. Then our estimate for Z up to rotation is $\hat{Z} = \hat{U}\hat{S}^{1/2}$, where $\hat{U}\hat{S}\hat{U}^T$ is the rank-k spectral decomposition of $|\hat{P}| = (\hat{P}^T\hat{P})^{1/2}$.

Furthermore, we assume that the second moment matrix $E[Z_1Z_1^T]$ is rank k and has distinct eigenvalues $\lambda_i(E[Z_1Z_1^T])$. In particular, we assume that there exists $\delta > 0$ such that

$$\delta < \min \left(\min_{i \neq j} |\lambda_i(E[Z_1 Z_1^T]) - \lambda_j(E[Z_1 Z_1^T])|, \lambda_k(E[Z_1 Z_1^T]) \right)$$

Lemma 4.6 Under the above assumptions, $\lambda_i(H) = \Theta(n)$ with high probability when $i \leq k$, i.e. the largest k eigenvalues of H is of order n. Moreover, we have $||S||_2 = \Theta(n)$ and $||\hat{S}||_2 = \Theta(n)$ with high probability.

Remark: This is a extended version of Proposition 4.3 in [7].

Proof: Note that $\lambda_i(H) = \lambda_i(ZZ^T) = \lambda_i(Z^TZ)$ when $i \leq k$. Since each entry of Z^TZ is a sum of n independent random variables each in [0, R], i.e. $(Z^TZ)_{ij} = \sum_{l=1}^n Z_{li}Z_{lj}$. By Hoeffding's inequality, for each entry we have

$$P(|(Z^TZ - nE[Z_1Z_1^T])_{ij}| \ge R\sqrt{n\log n}) \le \frac{2}{n^2}.$$

By the union bound, we have

$$P(\|(Z^TZ - nE[Z_1Z_1^T])_{ij}\|_F \ge kR\sqrt{n\log n}) \le \frac{2k^2}{n^2}.$$

Then by Weyl's Theorem [3], we have

$$|\lambda_i(H) - n\lambda_i(Z_1Z_1^T)| \le ||Z^TZ - nE[Z_1Z_1^T]||_2 \le kR\sqrt{n\log n}$$

with probability at least $1 - \frac{2k^2}{n^2}$. Thus $\lambda_i(H) = S_{ii} = \Theta(n)$ with probability at least $1 - \frac{2k^2}{n^2}$ when $i \leq k$.

Moreover,

$$||H||_2 - ||H - \hat{P}||_2 \le ||\hat{S}||_2 \le ||\hat{P} - H||_2 + ||H||_2.$$

Combined with Theorem 4.5, with high probability we have $\|\hat{S}\|_2 = \Theta(n)$.

Lemma 4.7 Let $W_1\Sigma W_2^T$ be the singular value decomposition of $U^T\hat{U}$. Then for sufficiently large n,

$$||U^T \hat{U} - W_1 W_2^T||_F = O(n^{-1} \log n)$$

with high probability.

Proof: Let $\sigma_1, \dots, \sigma_d$ denote the singular values of $U^T \hat{U}$. Then $\sigma_i = \cos(\theta_i)$ where the θ_i are the principal angles between the subspaces spanned by \hat{U} and U. Furthermore, by the Davis-Kahan $\sin(\Theta)$ theorem [1], combined with Theorem 4.5 and Lemma 4.6,

$$\|\hat{U}\hat{U}^T - UU^T\|_2 = \max_i |\sin(\theta_i)| \le \frac{\|\hat{P} - H\|_2}{\lambda_k(H)} \le \frac{C\sqrt{n\log n}}{n} = O(n^{-1/2}\sqrt{\log n})$$
(2)

for sufficiently large n. Here $\lambda_k(H)$ denotes the k-th largest eigenvalue of H. We thus have

$$||U^T \hat{U} - W_1 W_2^T||_F = ||\Sigma - I||_F = \sqrt{\sum_{i=1}^k (1 - \sigma_i)^2}$$

$$\leq \sum_{i=1}^k (1 - \sigma_i) \leq \sum_{i=1}^k (1 - \sigma_i^2)$$

$$= \sum_{i=1}^k \sin^2(\theta_i) \leq k ||\hat{U}\hat{U}^T - UU^T||_2^2$$

$$= O(n^{-1} \log n).$$

We will denote the orthogonal matrix $W_1W_2^T$ by W^* .

Lemma 4.8 For sufficiently large n,

$$||W^*\hat{S} - SW^*||_F = O(\log n),$$

$$||W^*\hat{S}^{1/2} - S^{1/2}W^*||_F = O(n^{-1/2}\log n)$$

and

$$||W^* \hat{S}^{-1/2} - S^{-1/2} W^*||_F = O(n^{-3/2} \log n)$$

with high probability.

Proof: By Proposition 2.1 in [6] and Equation (2), we have for some orthogonal matrix W,

$$\|\hat{U} - UW\|_F^2 \le \frac{2\|\hat{U}\hat{U}^T - UU^T\|_F^2}{\delta^2} = O(n^{-1/2}\sqrt{\log n}).$$

Let $Q = \hat{U} - UU^T\hat{U}$. And Q is the residual after projecting \hat{U} orthogonally onto the column space of U, we have

$$||Q||_F = ||\hat{U} - UU^T\hat{U}||_F \le ||\hat{U} - UT||_F = O(n^{-1/2}\sqrt{\log n}).$$
 (3)

for all $k \times k$ matrices T.

The

$$\begin{split} W^* \hat{S} = & (W^* - U^T \hat{U}) \hat{S} + U^T \hat{U} \hat{S} = (W^* - U^T \hat{U}) \hat{S} + U^T \hat{P} \hat{U} \\ = & (W^* - U^T \hat{U}) \hat{S} + U^T (\hat{P} - H) \hat{U} + U^T H \hat{U} \\ = & (W^* - U^T \hat{U}) \hat{S} + U^T (\hat{P} - H) Q + U^T (\hat{P} - H) U U^T \hat{U} + U^T H \hat{U} \\ = & (W^* - U^T \hat{U}) \hat{S} + U^T (\hat{P} - H) Q + U^T (\hat{P} - H) U U^T \hat{U} + S U^T \hat{U}. \end{split}$$

RT: Not right here, I am using the result for spectral norm as frobenius norm.

Combined with Theorem 4.5, Lemma 4.6, Lemma 4.7, we have

$$\begin{split} & \|W^*\hat{S} - SW^*\|_F \\ = & \|(W^* - U^T\hat{U})\hat{S} + U^T(\hat{P} - H)Q + U^T(\hat{P} - H)UU^T\hat{U} + S(U^T\hat{U} - W^*)\|_F \\ \leq & \|W^* - U^T\hat{U}\|_F (\|\hat{S}\|_2 + \|S\|_2) + \|U^T\|_F \|\hat{P} - H\|_2 \|Q\|_F + \|U^T(\hat{P} - H)U\|_F \\ \leq & O(\log n) + O(\log n) + \|U^T(\hat{P} - H)U\|_F \end{split}$$

with high probability. And we know $U^T(\hat{P}-H)U$ is a $k \times k$ matrix with ij-th entry to be

$$u_i^T (\hat{P} - H) u_j = \sum_{s=1}^n \sum_{t=1}^n (\hat{P}_{st} - H_{st}) u_{is} u_{jt} = 2 \sum_{s < t} (\hat{P}_{st} - H_{st}) u_{is} u_{jt}$$

where u_i and u_j are the *i*-th and *j*-th columns of U. Thus, conditioned on H, U is fixed and $u_i^T(\hat{P}-H)u_j$ is a sum of independent mean 0 random variables. By Equation (1), we have

$$E\left[\left((\hat{P}_{st} - H_{st})u_{is}u_{jt}\right)^{k}\right]$$

$$\leq k!R^{k}u_{is}^{k}u_{jt}^{k}$$

$$\leq \frac{k!}{2}R^{k-2}(\sqrt{2}u_{is}u_{jt}R)^{2}.$$

Also we have

$$\sigma^2 := |\sum_{s < t} 2R^2 u_{is}^2 u_{jt}^2| \le R^2,$$

then by Theorem 4.4, we have

$$P\left(\left|2\sum_{s< t}(\hat{P}_{st}-H_{st})u_{is}u_{jt}\right| \ge t\right) \le \exp\left(\frac{-t^2/8}{R^2+Rt}\right).$$

Let $t = \log n$, we have

$$P\left(\left|2\sum_{s < t} (\hat{P}_{st} - H_{st})u_{is}u_{jt}\right| \ge \log n\right) \le n^{-c}$$

for some constant c. Thus each entry of $U^T(\hat{P}-H)U$ is of order $O(\log n)$ with high probability and

$$||U^T(\hat{P} - H)U||_F = O(\log n) \tag{4}$$

with high probability. Hence

$$||W^*\hat{S} - SW^*||_F = O(\log n)$$

with high probability. Also, since

$$W_{ij}^*(\lambda_j^{1/2}(\hat{P}) - \lambda_i^{1/2}(H)) = W_{ij}^* \frac{\lambda_j(\hat{P}) - \lambda_i(H)}{\lambda_j^{1/2}(\hat{P}) + \lambda_i^{1/2}(H)}$$

and the eigenvalues $\lambda_i^{1/2}(\hat{P})$ and $\lambda_i^{1/2}(H)$ are both of order $\Theta(\sqrt{n})$, we have

$$||W^*\hat{S}^{1/2} - S^{1/2}W^*||_F = O(n^{-1/2}\log n).$$

Similarly, since

$$W_{ij}^*(\lambda_j^{-1/2}(\hat{P}) - \lambda_i^{-1/2}(H)) = W_{ij}^* \frac{\lambda_i(H) - \lambda_j(\hat{P})}{(\lambda_i^{-1/2}(\hat{P}) + \lambda_i^{-1/2}(H))\lambda_j(\hat{P})\lambda_i(H)}$$

and the eigenvalues $\lambda_j(\hat{P})$ and $\lambda_i(H)$ are both of order $\Theta(n)$, we have

$$||W^*\hat{S}^{-1/2} - S^{-1/2}W^*||_F = O(n^{-3/2}\log n).$$

Lemma 4.9 There exists a rotation matrix W such that for sufficiently large n.

$$\|\hat{Z} - ZW\|_F = \|(\hat{P} - H)US^{-1/2}\|_F + O(n^{-1/2}(\log n)^{3/2})$$

with high probability.

Proof: Let $Q_1 = UU^T\hat{U} - UW^*$, $Q_2 = W^*\hat{S}^{1/2} - S^{1/2}W^*$ and $Q_3 = \hat{U} - UW^* = \hat{U} - UU^T\hat{U} + Q_1 = Q + Q_1$. Then since $UU^TP = P$ and $\hat{U}\hat{S}^{1/2} = \hat{P}\hat{U}\hat{S}^{-1/2}$,

$$\begin{split} \hat{Z} - US^{1/2}W^* = & \hat{U}\hat{S}^{1/2} - UW^*\hat{S}^{1/2} + U(W^*\hat{S}^{1/2} - S^{1/2}W^*) \\ = & (\hat{U} - UU^T\hat{U})\hat{S}^{1/2} + Q_1\hat{S}^{1/2} + UQ_2 \\ = & (\hat{P} - H)\hat{U}\hat{S}^{-1/2} - UU^T(\hat{P} - H)\hat{U}\hat{S}^{-1/2} + Q_1\hat{S}^{1/2} + UQ_2 \\ = & (\hat{P} - H)UW^*\hat{S}^{-1/2} - UU^T(\hat{P} - H)UW^*\hat{S}^{-1/2} \\ & + (I - UU^T)(\hat{P} - H)Q_3\hat{S}^{-1/2} + Q_1\hat{S}^{1/2} + UQ_2. \end{split}$$

By Lemma 4.7,

$$||Q_1||_F \le ||U||_F ||U^T \hat{U} - W^*||_F = O(n^{-1} \log n).$$

By Lemma 4.8,

$$||Q_2||_F = O(n^{-1/2} \log n).$$

By Equation (3),

$$||Q_3||_F \le ||Q||_F + ||Q_1||_F = O(n^{-1/2}(\log n)^{1/2}).$$

By Equation (4),

$$||UU^{T}(\hat{P}-H)UW^{*}\hat{S}^{-1/2}||_{F} \le ||U^{T}(\hat{P}-H)U||_{F}||\hat{S}^{-1/2}||_{2} = O(n^{-1/2}\log n).$$

By Lemma 4.8,

$$||W^*\hat{S}^{-1/2} - S^{-1/2}W^*||_F = O(n^{-3/2}\log n).$$

Therefore,

$$\begin{split} &\|\hat{Z} - US^{1/2}W^*\|_F \\ = &\|(\hat{P} - H)UW^*\hat{S}^{-1/2}\|_F + O(n^{-1/2}\log n) + \|I - UU^T\|_2\|\hat{P} - H\|_2O(n^{-1}(\log n)^{1/2}) \\ &+ O(n^{-1/2}\log n) + O(n^{-1/2}\log n) \\ = &\|(\hat{P} - H)UW^*\hat{S}^{-1/2}\|_F + O(n^{-1/2}\log n) \\ \leq &\|(\hat{P} - H)US^{-1/2}W^*\|_F + \|(\hat{P} - H)U(W^*\hat{S}^{-1/2} - S^{-1/2}W^*)\|_F + O(n^{-1/2}\log n) \\ = &\|(\hat{P} - H)US^{-1/2}\|_F + O(n^{-1}(\log n)^{3/2}) + O(n^{-1/2}(\log n)^{3/2}) \\ = &\|(\hat{P} - H)US^{-1/2}\|_F + O(n^{-1/2}(\log n)^{3/2}). \end{split}$$

Note that $Z = US^{1/2}W$ for some orthogonal matrix W. As W^* is also orthogonal, therefore $Z\tilde{W} = US^{1/2}W^*$ for some orthogonal \tilde{W} , which completes the proof.

RT: $||I - UU^T||_2 = O(1)$

Theorem 4.10 There exists a rotation matrix W such that for sufficiently large n,

$$\max_{i} \|\hat{Z}_{i} - WZ_{i}\|_{2} = O(n^{-1/2}(\log n)^{3/2})$$

with high probability.

Proof: By Lemma 4.9, we have

$$\|\hat{Z} - ZW\|_F = \|(\hat{P} - H)US^{-1/2}\|_F + O(n^{-1/2}(\log n)^{3/2})$$

and similarly we could have the bound for each column vector

$$\max_{i} \|\hat{Z}_{i} - WZ_{i}\|_{2} \leq \frac{1}{\lambda_{k}^{1/2}(H)} \max_{i} \|((\hat{P} - H)U)_{i}\|_{2} + O(n^{-1/2}(\log n)^{3/2})$$
$$\leq \frac{k^{1/2}}{\lambda_{k}^{1/2}(H)} \max_{j} \|(\hat{P} - H)u_{j}\|_{\infty} + O(n^{-1/2}(\log n)^{3/2})$$

where $((\hat{P}-H)U)_i$ represents the *i*-th row of $(\hat{P}-H)U$ and u_j denotes the *j*-th column of U. Now given i and j, the *i*-th element of the vector $(\hat{P}-H)u_j$ is of the form

$$\sum_{s=1}^{n} (\hat{P}_{is} - H_{is}) u_{js} = \sum_{s \neq i} (\hat{P}_{is} - H_{is}) u_{js}.$$

Thus, conditioned on H, the *i*-th element of the vector $(\hat{P} - H)u_j$ is a sum of independent mean 0 random variables. By Equation (1), we have

$$E\left[\left((\hat{P}_{is} - H_{is})u_{js}\right)^{k}\right]$$

$$\leq k!R^{k}u_{js}^{k}$$

$$\leq \frac{k!}{2}R^{k-2}(\sqrt{2}Ru_{js})^{2}.$$

Also we have

$$\sigma^2:=|\sum_{s\neq i}2R^2u_{js}^2|\leq 2R^2,$$

then by Theorem 4.4, we have

$$P\left(\left|\sum_{s\neq i}(\hat{P}_{is}-H_{is})u_{js}\right|\geq t\right)\leq \exp\left(\frac{-t^2/2}{2R^2+Rt}\right),$$

i.e. it is of order $O(\log n)$ with high probability. Taking the union bound over all i and j, with high probability we have

$$\max_{i} \|\hat{Z}_{i} - WZ_{i}\|_{2} \leq \frac{Ck^{1/2}}{\lambda_{k}^{1/2}(H)} (\log n)^{3/2} + O(n^{-1/2}(\log n)^{3/2})$$
$$= O(n^{-1/2}(\log n)^{3/2}).$$

Lemma 4.11 $\left|\hat{Z}_i^T\hat{Z}_j - Z_i^TZ_j\right| = O(n^{-1}(\log n)^3)$ with high probability.

Proof: Let W be the rotation matrix in Theorem 4.10, then

$$\begin{aligned} \left| \hat{Z}_{i}^{T} \hat{Z}_{j} - Z_{i}^{T} Z_{j} \right| &= \left| \hat{Z}_{i}^{T} \hat{Z}_{j} - \hat{Z}_{i}^{T} W Z_{j} + \hat{Z}_{i}^{T} W Z_{j} - (W Z_{i})^{T} W Z_{j} \right| \\ &\leq \left| \hat{Z}_{i}^{T} (\hat{Z}_{j} - W Z_{j}) + (\hat{Z}_{i}^{T} - (W Z_{i})^{T}) W Z_{j} \right| \\ &\leq \|\hat{Z}_{i}\|_{2} \|\hat{Z}_{i} - W Z_{i}\|_{2} + \|Z_{i}\|_{2} \|\hat{Z}_{i}^{T} - (W Z_{i})^{T}\|_{2}. \end{aligned}$$

Since $||Z_i||_2^2 = Z_i^T Z_i = H_{ii}^{(1)} = E[\hat{P}_{ii}^{(1)}] = (1 - \epsilon)P_{ij} + \epsilon C_{ij} \leq R$, we have $||Z_i||_2 = O(1)$. Combined with Theorem 4.10,

$$\begin{aligned} \left| \hat{Z}_i^T \hat{Z}_j - Z_i^T Z_j \right| &= (\|\hat{Z}_i\|_2 + \|Z_j\|_2) O(n^{-1/2} (\log n)^{3/2}) \\ &\leq (\|\hat{Z}_i - W Z_i\|_2 + \|W Z_i\|_2 + \|Z_j\|_2) O(n^{-1/2} (\log n)^{3/2}) \\ &= O(n^{-1} (\log n)^3) \end{aligned}$$

with high probability.

Corollary 4.12 For fixed m, the estimator based on ASE of MLE has the same entry-wise asymptotic bias as MLE, i.e.

$$\lim_{n \to \infty} \text{Bias}(\widetilde{P}_{ij}^{(1)}) = \lim_{n \to \infty} E[\widetilde{P}_{ij}^{(1)}] - P_{ij} = \lim_{n \to \infty} E[\widehat{P}_{ij}^{(1)}] - P_{ij} = \lim_{n \to \infty} \text{Bias}(\widehat{P}_{ij}^{(1)}).$$

Proof: Direct result from Lemma 4.11 by noticing

$$\lim_{n \to \infty} E[\widetilde{P}_{ij}^{(1)}] = \lim_{n \to \infty} E[\widehat{P}_{ij}^{(1)}].$$

Theorem 4.13 $Var((\hat{Z}_i^T \hat{Z}_j)_{tr}) = O(n^{-2(1-\epsilon)}).$

Proof: By Lemma 4.11,

$$\begin{aligned} \operatorname{Var}((\hat{Z}_{i}^{T}\hat{Z}_{j})_{\operatorname{tr}}) = & E[((\hat{Z}_{i}^{T}\hat{Z}_{j})_{\operatorname{tr}} - E[(\hat{Z}_{i}^{T}\hat{Z}_{j})_{\operatorname{tr}}])^{2}] \\ = & E[((\hat{Z}_{i}^{T}\hat{Z}_{j})_{\operatorname{tr}} - Z_{i}^{T}Z_{j} + Z_{i}^{T}Z_{j} - E[(\hat{Z}_{i}^{T}\hat{Z}_{j})_{\operatorname{tr}}])^{2}] \\ = & E[((\hat{Z}_{i}^{T}\hat{Z}_{j})_{\operatorname{tr}} - Z_{i}^{T}Z_{j})^{2}] + E[(Z_{i}^{T}Z_{j} - E[(\hat{Z}_{i}^{T}\hat{Z}_{j})_{\operatorname{tr}}])^{2}] \\ & + 2E[((\hat{Z}_{i}^{T}\hat{Z}_{j})_{\operatorname{tr}} - Z_{i}^{T}Z_{j})(Z_{i}^{T}Z_{j} - E[(\hat{Z}_{i}^{T}\hat{Z}_{j})_{\operatorname{tr}}])] \\ \leq & E[((\hat{Z}_{i}^{T}\hat{Z}_{j})_{\operatorname{tr}} - Z_{i}^{T}Z_{j})^{2}] + E[(Z_{i}^{T}Z_{j} - E[(\hat{Z}_{i}^{T}\hat{Z}_{j})_{\operatorname{tr}}])^{2}] \\ & + 2\sqrt{E[((\hat{Z}_{i}^{T}\hat{Z}_{j})_{\operatorname{tr}} - Z_{i}^{T}Z_{j})^{2}]E[(Z_{i}^{T}Z_{j} - E[(\hat{Z}_{i}^{T}\hat{Z}_{j})_{\operatorname{tr}}])^{2}]} \\ \leq & 4E[((\hat{Z}_{i}^{T}\hat{Z}_{j})_{\operatorname{tr}} - Z_{i}^{T}Z_{j})^{2}] \end{aligned}$$

Fix some a > 0, we have

$$E[((\hat{Z}_i^T \hat{Z}_j)_{\text{tr}} - Z_i^T Z_j)^2]$$

$$= E[((\hat{Z}_i^T \hat{Z}_i)_{\text{tr}} - Z_i^T Z_j)^2 \mathbb{I}\{\hat{P}_{ij} \le a\}] + E[((\hat{Z}_i^T \hat{Z}_i)_{\text{tr}} - Z_i^T Z_j)^2 \mathbb{I}\{\hat{P}_{ij} > a\}]$$

For the first term, we have

$$\begin{split} &E[((\hat{Z}_i^T\hat{Z}_j)_{\mathrm{tr}} - Z_i^TZ_j)^2\mathbb{I}\{\hat{P}_{ij} \leq a\}] \\ &\leq E[((\hat{Z}_i^T\hat{Z}_j)_{\mathrm{tr}} - Z_i^TZ_j)^2\mathbb{I}\{\hat{P}_{ij} \leq a\}\mathbb{I}\{\mathrm{Lemma4.11holds}\}](1 - \frac{1}{n^2}) \\ &\quad + E[((\hat{Z}_i^T\hat{Z}_j)_{\mathrm{tr}} - Z_i^TZ_j)^2\mathbb{I}\{\hat{P}_{ij} \leq a\}\mathbb{I}\{\mathrm{Lemma4.11doesnothold}\}]\frac{1}{n^2} \\ &\leq O(n^{-2}(\log n)^6)(1 - \frac{1}{n^2}) + \frac{1}{n^2}2E[((\hat{Z}_i^T\hat{Z}_j)_{\mathrm{tr}} - \hat{P}_{ij})^2\mathbb{I}\{\hat{P}_{ij} \leq a\}] \\ &\quad + \frac{1}{n^2}2E[(\hat{P}_{ij} - Z_i^TZ_j)^2\mathbb{I}\{\hat{P}_{ij} \leq a\}] \\ &\leq O(n^{-2}(\log n)^6) + \frac{2}{n^2}E[\hat{P}_{ij}^2\mathbb{I}\{\hat{P}_{ij} \leq a\}] + \frac{2}{n^2}E[(\hat{P}_{ij} + M)^2\mathbb{I}\{\hat{P}_{ij} \leq a\}] \\ &\leq O(n^{-2}(\log n)^6) + \frac{2a^2}{n^2} + \frac{2(a + M)^2}{n^2} \\ &\leq O(n^{-2}(\log n)^6) + \frac{4}{n^2}(a + M)^2 \end{split}$$

For the second term, we have

$$E[((\hat{Z}_{i}^{T}\hat{Z}_{j})_{tr} - Z_{i}^{T}Z_{j})^{2}\mathbb{I}\{\hat{P}_{ij} > a\}]$$

$$\leq 2E[((\hat{Z}_{i}^{T}\hat{Z}_{j})_{tr} - \hat{P}_{ij})^{2}\mathbb{I}\{\hat{P}_{ij} > a\}] + 2E[(\hat{P}_{ij} - Z_{i}^{T}Z_{j})^{2}\mathbb{I}\{\hat{P}_{ij} > a\}]$$

$$\leq 2E[\hat{P}_{ij}^{2}\mathbb{I}\{\hat{P}_{ij} > a\}] + 2E[(\hat{P}_{ij} + M)^{2}\mathbb{I}\{\hat{P}_{ij} > a\}]$$

$$\leq 2e^{-a/R}(2a^{2} + M^{2} + 2MR + 4R^{2} + 2a(M + 2R))$$

$$\leq 4e^{-a/R}(a + M + 2R)^{2}$$

Thus,

$$\operatorname{Var}((\hat{Z}_i^T \hat{Z}_j)_{\operatorname{tr}}) \le O(n^{-2}(\log n)^6) + 16(a + M + 2R)^2(\frac{1}{n^2} + e^{-a/R}).$$

Let $a = n^{\epsilon}$ for any $\epsilon > 0$, then

$$\operatorname{Var}((\hat{Z}_i^T \hat{Z}_j)_{\operatorname{tr}}) \leq O(n^{-2}(\log n)^6) + 16n^{2\epsilon} (\frac{1}{n^2} + e^{-a/R})$$
$$= O(n^{-2}(\log n)^6) + O(n^{-2(1-\epsilon)})$$
$$= O(n^{-2(1-\epsilon)}).$$

RT: Assuming m graphs average is larger than 1 graph

Corollary 4.14 For fixed $n, 1 \leq i, j \leq n, \operatorname{Var}(\hat{P}_{ij}^{(1)}) = \Theta(m^{-1}).$

Proof: Direct result from central limit theorem.

Theorem 4.15 For fixed m, $1 \le i, j \le n$ and $i \ne j$,

$$\frac{\operatorname{Var}(\tilde{P}_{ij}^{(1)})}{\operatorname{Var}(\hat{P}_{ij}^{(1)})} = O(mn^{-2}(\log n)^{6}).$$

Thus

$$ARE(\hat{P}_{ij}^{(1)}, \tilde{P}_{ij}^{(1)}) = 0.$$

Furthermore, as long as m goes to infinity of order $o(n(\log n)^{-3})$,

$$ARE(\hat{P}_{ij}^{(1)}, \widetilde{P}_{ij}^{(1)}) = 0.$$

Proof: The results are direct from Theorem 4.13 and Corollary 4.14.

4.3 $\widetilde{P}^{(q)}$ better than $\hat{P}^{(q)}$

Theorem 4.16 Let P and C be two n-by-n symmetric and hollow matrices satisfying element-wise conditions $0 < P_{ij} \le C_{ij} \le R$ for some constant R > 0. For $0 < \epsilon < 1$, we define m symmetric and hollow matrices as

$$A^{(t)} \stackrel{iid}{\sim} (1 - \epsilon) \operatorname{Exp}(P) + \epsilon \operatorname{Exp}(C)$$

for $1 \le t \le m$. Let $\hat{P}^{(q)}$ be the entry-wise MLqE based on exponential distribution with m observations. Define $H^{(q)} = E[\hat{P}^{(q)}]$, then for any constant c > 0 there exists another constant $n_0(c)$, independent of n, P, C and ϵ , such that if $n > n_0$, then for all η satisfying $n^{-c} \le \eta \le 1/2$,

$$P\left(\|\hat{P}^{(q)} - H^{(q)}\|_{2} \le 8R\sqrt{2n\ln(n/\eta)}\right) \ge 1 - \eta.$$

Remark: This is the extended version of Theorem 3.1 in [4].

Proof: Let $\{e_i\}_{i=1}^n$ be the canonical basis for \mathbb{R}^n . For each $1 \leq i, j \leq n$, define a corresponding matrix G_{ij} :

$$G_{ij} \equiv \begin{cases} e_i e_j^T + e_j e_i^T, & i \neq j; \\ e_i e_i^T, & i = j. \end{cases}$$

Thus $\hat{P}^{(q)} = \sum_{1 \le i < j \le n} \hat{P}^{(q)}_{ij} G_{ij}$ and $H^{(q)} = \sum_{1 \le i < j \le n} H^{(q)}_{ij} G_{ij}$. Then we have $\hat{P}^{(q)} - H^{(q)} = \sum_{1 \le i < j \le n} X_{ij}$, where $X_{ij} \equiv \left(\hat{P}^{(q)}_{ij} - H^{(q)}_{ij}\right) G_{ij}$, $1 \le i < j \le n$.

First consider the k-th moment of X_{ij} for $1 \le i < j \le n$. By Lemma 4.1 we have

$$\begin{split} \left| \hat{P}_{ij}^{(q)} - H_{ij}^{(q)} \right| &= \left| \hat{P}_{ij}^{(q)} - \hat{P}_{ij}^{(1)} + \hat{P}_{ij}^{(1)} - H_{ij}^{(1)} + H_{ij}^{(1)} - H_{ij}^{(q)} \right| \\ &\leq \left| \hat{P}_{ij}^{(q)} - \hat{P}_{ij}^{(1)} \right| + \left| \hat{P}_{ij}^{(1)} - H_{ij}^{(1)} \right| + \left| H_{ij}^{(1)} - H_{ij}^{(q)} \right| \\ &\leq \hat{P}_{ij}^{(1)} + \left| \hat{P}_{ij}^{(1)} - H_{ij}^{(1)} \right| + H_{ij}^{(1)} \\ &\leq 2 \left(\left| \hat{P}_{ij}^{(1)} - H_{ij}^{(1)} \right| + H_{ij}^{(1)} \right). \end{split}$$

Since

$$E[(\hat{P}_{ij}^{(1)} - H_{ij}^{(1)})^k] \leq (1 - \epsilon) \exp(-H_{ij}/P_{ij}) P_{ij}^k \Gamma(1 + k, -H_{ij}/P_{ij})$$

$$+ \epsilon \exp(-H_{ij}/C_{ij}) C_{ij}^k \Gamma(1 + k, -H_{ij}/C_{ij})$$

$$\leq \left((1 - \epsilon) \exp(-H_{ij}/P_{ij}) P_{ij}^k + \epsilon \exp(-H_{ij}/C_{ij}) C_{ij}^k \right) k!$$

$$\leq \left((1 - \epsilon) P_{ij}^k + \epsilon C_{ij}^k \right) k!$$

$$\leq C_{ij}^k k!,$$

Then

$$E[(\hat{P}_{ij}^{(q)} - H_{ij}^{(q)})^{k}] \leq E\left[\left|\hat{P}_{ij}^{(q)} - H_{ij}^{(q)}\right|^{k}\right]$$

$$\leq 2^{k} E\left[\left(\left|\hat{P}_{ij}^{(1)} - H_{ij}^{(1)}\right| + H_{ij}^{(1)}\right)^{k}\right]$$

$$\leq 2^{k} \sum_{s=0}^{k} \binom{k}{s} E\left[\left|\hat{P}_{ij}^{(1)} - H_{ij}^{(1)}\right|^{s}\right] \left(H_{ij}^{(1)}\right)^{k-s}$$

$$\leq 2^{k} \sum_{s=0}^{k} \binom{k}{s} C_{ij}^{s} s! \left(H_{ij}^{(1)}\right)^{k-s}$$

$$\leq 2^{k} k! \sum_{s=0}^{k} \binom{k}{s} C_{ij}^{s} \left(H_{ij}^{(1)}\right)^{k-s}$$

$$= 2^{k} k! \left(C_{ij} + H_{ij}^{(1)}\right)^{k}. \tag{5}$$

Combined with for $i \neq j$,

$$G_{ij}^k \equiv \left\{ \begin{array}{ll} e_i e_i^T + e_j e_j^T, & \text{k is even;} \\ e_i e_j^T + e_j e_i^T, & \text{k is odd,} \end{array} \right.$$

thus we have

1. When k is even,

$$E[X_{ij}^k] = E[(\hat{P}_{ij}^{(q)} - H_{ij}^{(q)})^k]G_{ij}^2 \le 2^{2k}k!R^kG_{ij}^2;$$

2. When k is odd,

$$E[X_{ij}^k] = E[(\hat{P}_{ij}^{(q)} - H_{ij}^{(q)})^k]G_{ij} \le 2^{2k}k!R^kG_{ij}^2.$$

So

$$E[X_{ij}^k] \leq 2^{2k} k! R^k G_{ij}^2$$

Let

$$\sigma^2 := \left\| \sum_{1 \le i < j \le n} (4\sqrt{2}RG_{ij})^2 \right\| = 32R^2 \|(n-1)I\| = 32R^2(n-1),$$

notice that random matrices X_{ij} are independent, self-adjoint and have mean zero, apply Theorem 4.4 we have

$$P\left(\lambda_{\max}(\hat{P}^{(q)} - H^{(q)}) \ge t\right) \le n \exp\left(-\frac{t^2/2}{\sigma^2 + 4Rt}\right)$$
$$\le n \exp\left(-\frac{t^2/2}{32R^2n + Rt}\right).$$

Now consider $Y_{ij} \equiv \left(H^{(q)} - \hat{P}^{(q)}\right) G_{ij}$, $1 \leq i < j \leq n$. Then we have $H^{(q)} - \hat{P}^{(q)} = \sum_{1 \leq i \leq j \leq n} Y_{ij}$. Since

$$E[(H^{(q)} - \hat{P}^{(q)})^k] = (-1)^k E[(\hat{P}^{(q)} - H^{(q)})^k],$$

1. When k is even,

$$E[Y_{ij}^k] = E[(\hat{P}^{(q)} - H^{(q)})^k]G_{ij}^2 \preceq 2^{2k}k!R^kG_{ij}^2;$$

2. When k is odd,

$$E[Y_{ij}^k] = -E[(\hat{P}^{(q)} - H^{(q)})^k]G_{ij} \leq 2^{2k}k!R^kG_{ij}^2.$$

Thus

$$P\left(\lambda_{\min}(\hat{P}^{(q)} - H^{(q)}) \le -t\right) = P\left(\lambda_{\max}(H^{(q)} - \hat{P}^{(q)}) \ge t\right)$$
$$\le n \exp\left(-\frac{t^2/2}{32R^2n + Rt}\right).$$

Therefore we have

$$P\left(\|\hat{P}^{(q)} - H^{(q)}\| \ge t\right) \le n \exp\left(-\frac{t^2/2}{32R^2n + Rt}\right).$$

Now let c > 0 be given and assume $n^{-c} \le \eta \le 1/2$. Then there exists a $n_0(c)$ independent of n, P, C and ϵ such that whenever $n > n_0(c)$,

$$t = 8R\sqrt{2n\ln(n/\eta)} \le 32Rn.$$

Plugging this t into the equation above, we get

$$P(\|\hat{P}^{(q)} - H^{(q)}\| \ge 8R\sqrt{2n\ln(n/\eta)}) \le n\exp\left(-\frac{t^2}{64R^2n}\right) = \eta.$$

As we define $H^{(q)} = E[\hat{P}^{(q)}]$, let $d^{(q)} = \operatorname{rank}(H^{(q)})$ be the dimension in which we are going to embed $\hat{P}^{(q)}$. Then we can define $H^{(q)} = ZZ^T$ where $Z \in \mathbb{R}^{n \times d^{(q)}}$.

For simplicity, from now on, we will use \hat{P} to represent $\hat{P}^{(q)}$, use H to represent $H^{(q)}$ and use k to represent the dimension $d^{(q)}$ we are going to embed. Assume $H = USU^T = ZZ^T$, where Z is a n-by-k matrix. Then our estimate for Z up to rotation is $\hat{Z} = \hat{U}\hat{S}^{1/2}$, where $\hat{U}\hat{S}\hat{U}^T$ is the rank-d spectral decomposition of $|\hat{P}| = (\hat{P}^T\hat{P})^{1/2}$.

RT: We don't have any bound on $d^{(q)}$?

Lemma 4.17 Under the above assumptions, $\lambda_i(H) = \Theta(n)$ with high probability when $i \leq k$, i.e. the largest k eigenvalues of H is of order n. Moreover, we have $||S||_2 = \Theta(n)$ and $||\hat{S}||_2 = \Theta(n)$ with high probability.

Remark: This is a extended version of Proposition 4.3 in [7]. **Proof:** Exactly the same as proof for Lemma 4.6.

Lemma 4.18 Let $W_1\Sigma W_2^T$ be the singular value decomposition of $U^T\hat{U}$. Then for sufficiently large n,

$$||U^T \hat{U} - W_1 W_2^T||_F = O(n^{-1} \log n)$$

with high probability.

Proof: Exactly the same as proof for Lemma 4.7. We will denote the orthogonal matrix $W_1W_2^T$ by W^* .

Lemma 4.19 For sufficiently large n,

$$||W^*\hat{S} - SW^*||_F = O(\log n),$$

$$||W^*\hat{S}^{1/2} - S^{1/2}W^*||_F = O(n^{-1/2}\log n)$$

and

$$||W^*\hat{S}^{-1/2} - S^{-1/2}W^*||_F = O(n^{-3/2}\log n)$$

with high probability.

Proof:

By Proposition 2.1 in [6] and Equation (2), we have for some orthogonal matrix W,

$$\|\hat{U} - UW\|_F^2 \le \frac{2\|\hat{U}\hat{U}^T - UU^T\|_F^2}{\delta^2} = O(n^{-1/2}\sqrt{\log n}).$$

Let $Q = \hat{U} - UU^T\hat{U}$. And Q is the residual after projecting \hat{U} orthogonally onto the column space of U, we have

$$||Q||_F = ||\hat{U} - UU^T \hat{U}||_F \le ||\hat{U} - UT||_F = O(n^{-1/2} \sqrt{\log n}).$$
 (6)

for all $k \times k$ matrices T. Then

$$\begin{split} W^* \hat{S} = & (W^* - U^T \hat{U}) \hat{S} + U^T \hat{U} \hat{S} = (W^* - U^T \hat{U}) \hat{S} + U^T \hat{P} \hat{U} \\ = & (W^* - U^T \hat{U}) \hat{S} + U^T (\hat{P} - H) \hat{U} + U^T H \hat{U} \\ = & (W^* - U^T \hat{U}) \hat{S} + U^T (\hat{P} - H) Q + U^T (\hat{P} - H) U U^T \hat{U} + U^T H \hat{U} \\ = & (W^* - U^T \hat{U}) \hat{S} + U^T (\hat{P} - H) Q + U^T (\hat{P} - H) U U^T \hat{U} + S U^T \hat{U}. \end{split}$$

RT: Not right here, I am using the result for spectral norm as frobenius norm. Combined with Theorem 4.16, Lemma 4.17, Lemma 4.18, we have

$$\begin{split} & \|W^*\hat{S} - SW^*\|_F \\ = & \|(W^* - U^T\hat{U})\hat{S} + U^T(\hat{P} - H)Q + U^T(\hat{P} - H)UU^T\hat{U} + S(U^T\hat{U} - W^*)\|_F \\ \leq & \|W^* - U^T\hat{U}\|_F (\|\hat{S}\|_2 + \|S\|_2) + \|U^T\|_F \|\hat{P} - H\|_2 \|Q\|_F + \|U^T(\hat{P} - H)U\|_F \\ \leq & O(\log n) + O(\log n) + \|U^T(\hat{P} - H)U\|_F \end{split}$$

with high probability. And we know $U^T(\hat{P}-H)U$ is a $k \times k$ matrix with ij-th entry to be

$$u_i^T(\hat{P} - H)u_j = \sum_{s=1}^n \sum_{t=1}^n (\hat{P}_{st} - H_{st})u_{is}u_{jt} = 2\sum_{s < t} (\hat{P}_{st} - H_{st})u_{is}u_{jt}$$

where u_i and u_j are the *i*-th and *j*-th columns of U. Thus, conditioned on H, $u_i^T(\hat{P}-H)u_j$ is a sum of independent mean 0 random variables.

By Equation (5), we have

$$E\left[\left((\hat{P}_{st} - H_{st})u_{is}u_{jt}\right)^{k}\right]$$

$$\leq 2^{k}k!(C_{st} + H_{st}^{(1)})^{k}u_{is}^{k}u_{jt}^{k}$$

$$\leq \frac{k!}{2}(4R)^{k-2}(4\sqrt{2}Ru_{is}u_{jt})^{2}.$$

Also we have

$$\sigma^2 := |\sum_{s < t} 32 R^2 u_{is}^2 u_{jt}^2| \leq 32 R^2,$$

then by Theorem 4.4, we have

$$P\left(\left|2\sum_{s\leq t}(\hat{P}_{st}-H_{st})u_{is}u_{jt}\right|\geq t\right)\leq \exp\left(\frac{-t^2/8}{32R^2+2Rt}\right),$$

thus each entry of $U^T(\hat{P}-H)U$ is of order $O(\log n)$ with high probability and thus

$$||U^T(\hat{P} - H)U||_F = O(\log n) \tag{7}$$

with high probability. Hence

$$||W^*\hat{S} - SW^*||_F = O(\log n)$$

with high probability. Also, since

$$W_{ij}^*(\lambda_j^{1/2}(\hat{P}) - \lambda_i^{1/2}(H)) = W_{ij}^* \frac{\lambda_j(\hat{P}) - \lambda_i(H)}{\lambda_i^{1/2}(\hat{P}) + \lambda_i^{1/2}(H)}$$

and the eigenvalues $\lambda_j^{1/2}(\hat{P})$ and $\lambda_i^{1/2}(H)$ are both of order $\Theta(\sqrt{n})$, we have

$$||W^*\hat{S}^{1/2} - S^{1/2}W^*||_F = O(n^{-1/2}\log n).$$

Similarly, since

$$W_{ij}^*(\lambda_j^{-1/2}(\hat{P}) - \lambda_i^{-1/2}(H)) = W_{ij}^* \frac{\lambda_i(H) - \lambda_j(\hat{P})}{(\lambda_j^{-1/2}(\hat{P}) + \lambda_i^{-1/2}(H))\lambda_j(\hat{P})\lambda_i(H)}$$

and the eigenvalues $\lambda_i(\hat{P})$ and $\lambda_i(H)$ are both of order $\Theta(n)$, we have

$$||W^*\hat{S}^{-1/2} - S^{-1/2}W^*||_F = O(n^{-3/2}\log n).$$

Lemma 4.20 There exists a rotation matrix W such that for sufficiently large n.

$$\|\hat{Z} - ZW\|_F = \|(\hat{P} - H)US^{-1/2}\|_F + O(n^{-1/2}(\log n)^{3/2})$$

with high probability.

Proof: Exactly the same as proof for Lemma 4.9.

Theorem 4.21 There exists a rotation matrix W such that for sufficiently large n,

$$\max_{i} \|\hat{Z}_{i} - WZ_{i}\|_{2} = O(n^{-1/2}(\log n)^{3/2})$$

with high probability.

Proof: By Lemma 4.20, we have

$$\|\hat{Z} - ZW\|_F = \|(\hat{P} - H)US^{-1/2}\|_F + O(n^{-1/2}(\log n)^{3/2})$$

and similarly we could have the bound for each row vector

$$\max_{i} \|\hat{Z}_{i} - WZ_{i}\|_{2} \leq \frac{1}{\lambda_{k}^{1/2}(H)} \max_{i} \|((\hat{P} - H)U)_{i}\|_{2} + O(n^{-1/2}(\log n)^{3/2})$$
$$\leq \frac{k^{1/2}}{\lambda_{k}^{1/2}(H)} \max_{j} \|(\hat{P} - H)u_{j}\|_{\infty} + O(n^{-1/2}(\log n)^{3/2})$$

where u_j denotes the j-th column of U. Now given i and j, the i-th element of the vector $(\hat{P} - H)u_j$ is of the form

$$\sum_{s=1}^{n} (\hat{P}_{is} - H_{is}) u_{js} = \sum_{s \neq i} (\hat{P}_{is} - H_{is}) u_{js}.$$

Thus, conditioned on H, the *i*-th element of the vector $(\hat{P} - H)u_j$ is a sum of independent mean 0 random variables. By Equation (5), we have

$$E\left[\left((\hat{P}_{is} - H_{is})u_{js}\right)^{k}\right]$$

$$\leq 2^{k}k!(C_{is} + H_{is}^{(1)})^{k}u_{js}^{k}$$

$$\leq \frac{k!}{2}(4R)^{k-2}(4\sqrt{2}Ru_{js})^{2}.$$

Also we have

$$\sigma^2 := |\sum_{s \neq i} 32R^2 u_{js}^2| \le 32R^2,$$

then by Theorem 4.4, we have

$$P\left(\left|\sum_{s\neq i}(\hat{P}_{is}-H_{is})u_{js}\right|\geq t\right)\leq \exp\left(\frac{-t^2/2}{32R^2+Rt}\right),$$

i.e. it can be bounded by a constant with high probability. Taking the union bound over all i and j, we have

$$\max_{i} \|\hat{Z}_{i} - WZ_{i}\|_{2} \le \frac{Cd^{1/2}}{\lambda_{d}^{1/2}(H)} (\log n)^{3/2} + O(n^{-1/2}(\log n)^{3/2}) = O(n^{-1/2}(\log n)^{3/2}).$$

Lemma 4.22 $\left|\hat{Z}_i^T\hat{Z}_j - Z_i^TZ_j\right| = O(n^{-1}(\log n)^3)$ with high probability.

Proof: Let W be the rotation matrix in Theorem 4.21, then

$$\begin{aligned} \left| \hat{Z}_{i}^{T} \hat{Z}_{j} - Z_{i}^{T} Z_{j} \right| &= \left| \hat{Z}_{i}^{T} \hat{Z}_{j} - \hat{Z}_{i}^{T} W Z_{j} + \hat{Z}_{i}^{T} W Z_{j} - (W Z_{i})^{T} W Z_{j} \right| \\ &\leq \left| \hat{Z}_{i}^{T} (\hat{Z}_{j} - W Z_{j}) + (\hat{Z}_{i}^{T} - (W Z_{i})^{T}) W Z_{j} \right| \\ &\leq \|\hat{Z}_{i}\|_{2} \|\hat{Z}_{j} - W Z_{j}\|_{2} + \|Z_{j}\|_{2} \|\hat{Z}_{i}^{T} - (W Z_{i})^{T}\|_{2}. \end{aligned}$$

Since $||Z_i||_2^2 = Z_i^T Z_i = H_{ii}^q = E[\hat{P}_{ii}^{(q)}] \le E[\hat{P}_{ii}^{(1)}] = (1 - \epsilon)P_{ij} + \epsilon C_{ij} \le R$, we have $||Z_i||_2 = O(1)$. Combined with Theorem 4.21,

$$\begin{aligned} \left| \hat{Z}_i^T \hat{Z}_j - Z_i^T Z_j \right| &= (\|\hat{Z}_i\|_2 + \|Z_j\|_2) O(n^{-1/2} (\log n)^{3/2}) \\ &\leq (\|\hat{Z}_i - W Z_i\|_2 + \|W Z_i\|_2 + \|Z_j\|_2) O(n^{-1/2} (\log n)^{3/2}) \\ &= O(n^{-1} (\log n)^3) \end{aligned}$$

with high probability.

Corollary 4.23 For fixed m, the estimator based on ASE of MLqE has the same entry-wise asymptotic bias as MLqE, i.e.

$$\lim_{n\to\infty} \operatorname{Bias}(\widetilde{P}_{ij}^{(q)}) = \lim_{n\to\infty} E[\widetilde{P}_{ij}^{(q)}] - P_{ij} = \lim_{n\to\infty} E[\widehat{P}_{ij}^{(q)}] - P_{ij} = \lim_{n\to\infty} \operatorname{Bias}(\widehat{P}_{ij}^{(q)}).$$

Proof: Direct result from Lemma 4.22 by noticing

$$\lim_{n \to \infty} E[\widetilde{P}_{ij}^{(q)}] = \lim_{n \to \infty} E[\widehat{P}_{ij}^{(q)}].$$

Theorem 4.24 $\operatorname{Var}(\hat{Z}_i^T \hat{Z}_j) = O(n^{-2}(\log n)^6)$ with high probability.

Proof:

$$Var(\hat{Z}_{i}^{T}\hat{Z}_{j}) = E[(\hat{Z}_{i}^{T}\hat{Z}_{j} - E[\hat{Z}_{i}^{T}\hat{Z}_{j}])^{2}]$$

$$= E[(\hat{Z}_{i}^{T}\hat{Z}_{j} - Z_{i}^{T}Z_{j} + Z_{i}^{T}Z_{j} - E[\hat{Z}_{i}^{T}\hat{Z}_{j}])^{2}]$$

$$= E[(\hat{Z}_{i}^{T}\hat{Z}_{j} - Z_{i}^{T}Z_{j})^{2}] + E[(Z_{i}^{T}Z_{j} - E[\hat{Z}_{i}^{T}\hat{Z}_{j}])^{2}]$$

$$- 2E[(\hat{Z}_{i}^{T}\hat{Z}_{j} - Z_{i}^{T}Z_{j})(Z_{i}^{T}Z_{j} - E[\hat{Z}_{i}^{T}\hat{Z}_{j}])]$$

$$\leq E[(\hat{Z}_{i}^{T}\hat{Z}_{j} - Z_{i}^{T}Z_{j})^{2}] + E[(Z_{i}^{T}Z_{j} - E[\hat{Z}_{i}^{T}\hat{Z}_{j}])^{2}]$$

$$+ 2\sqrt{E[(\hat{Z}_{i}^{T}\hat{Z}_{j} - Z_{i}^{T}Z_{j})^{2}]E[(Z_{i}^{T}Z_{j} - E[\hat{Z}_{i}^{T}\hat{Z}_{j}])^{2}]}$$

$$\leq 4E[(\hat{Z}_{i}^{T}\hat{Z}_{j} - Z_{i}^{T}Z_{j})^{2}]$$

$$= O(n^{-2}(\log n)^{6})$$

with high probability.

Theorem 4.25 Let $u_q(\theta) = E_{\theta}[\hat{\theta}_{q,n}], \ \phi_q(x;\theta) = \frac{\partial}{\partial \theta} L_q(f(x;\theta)), \ and \ \phi'_q(x;\theta) = \frac{\partial^2}{\partial \theta^2} L_q(f(x;\theta)).$ Then the asymptotic distribution of $\hat{\theta}_{q,n}$ is $\sqrt{n}(\hat{\theta}_{q,n} - u_q(\theta)) \sim \mathcal{N}(0, V_q(\theta)), \ where \ V_q(\theta) = E[\phi_q(X;\theta)^2]/E[\phi'_q(X;\theta)]^2.$

Remark: See Theorem 1 in http://arxiv.org/pdf/1310.7278.pdf.

Corollary 4.26 $Var(\hat{P}_{ij}^{(q)}) = \Theta(m^{-1}).$

Proof: Direct result from Theorem 4.25.

Theorem 4.27 For fixed m, $1 \le i, j \le n$,

$$\frac{\operatorname{Var}(\widetilde{P}_{ij}^{(q)})}{\operatorname{Var}(\widehat{P}_{ij}^{(q)})} = O(mn^{-2}(\log n)^6).$$

Thus

$$ARE(\hat{P}_{ij}^{(q)}, \widetilde{P}_{ij}^{(q)}) = 0.$$

Furthermore, as long as m goes to infinity of order $o(n(\log n)^{-3})$,

$$ARE(\hat{P}_{ij}^{(q)}, \widetilde{P}_{ij}^{(q)}) = 0.$$

Proof: The results are direct from Theorem 4.24 and Corollary 4.26.

4.4 $\widetilde{P}^{(q)}$ better than $\widetilde{P}^{(1)}$

Theorem 4.28 For sufficiently large n and C, any $1 \le i, j \le n$,

$$\lim_{m \to \infty} \operatorname{Bias}(\widetilde{P}_{ij}^{(1)}) > \lim_{m \to \infty} \operatorname{Bias}(\widetilde{P}_{ij}^{(q)})$$

Proof: Direct result from Lemma 3.1, Corollary 4.12 and Corollary 4.23.

Theorem 4.29 For any fixed m, any $1 \le i, j \le n$,

$$\lim_{n \to \infty} \operatorname{Var}(\widetilde{P}_{ij}^{(1)}) = \lim_{n \to \infty} \operatorname{Var}(\widetilde{P}_{ij}^{(q)}) = 0$$

Proof: Direct result from Theorem 4.13 and Theorem 4.24.

5 Generalization

We can generalize the exponential distribution to F and generalize MLqE to \hat{P} with the following assumptions:

• There exists $C_0(P_{ij}, \epsilon) > 0$ such that under the contaminated model with $C > C_0(P_{ij}, \epsilon)$,

$$\lim_{m \to \infty} \left| E[\hat{P}_{ij}] - P_{ij} \right| < \lim_{m \to \infty} \left| E[\hat{P}_{ij}^{(1)}] - P_{ij} \right|,$$

for $1 \leq i, j \leq n$.

- Let $A^{(t)} \stackrel{iid}{\sim} (1 \epsilon)F(P) + \epsilon F(C)$ and $H_{ij}^{(1)} = E[\hat{P}_{ij}^{(1)}] = (1 \epsilon)E_F(P_{ij}) + \epsilon E_F(C_{ij})$, then $E[(A_{ij}^{(t)} H_{ij}^{(1)})^k] \leq \text{const} \cdot k!$.
- $\hat{P}_{ij} \leq \text{const} \cdot \hat{P}_{ij}^{(1)}$. This might be generalized to with high probability later.
- $\lim_{m\to\infty} \operatorname{Var}(\hat{P}_{ij}) = 0$

6 Analysis of MLqE under Exponential Model

Let $f(x,\theta) = \sum_{i=1}^m e^{-\frac{(1-q)x_i}{\theta}}(x-\theta)$, then $\frac{\partial f}{\partial x_i}(x,\theta) = e^{-\frac{(1-q)x_i}{\theta}}\left(-\frac{(1-q)x_i}{\theta} + 2 - q\right)$. Define $c_q = 1 + \frac{1}{1-q}$, then

$$\frac{\partial f}{\partial x_i}(x,\theta) = 0 \Leftrightarrow x_i \to \infty \text{ or } x_i = (1 + \frac{1}{1-q})\theta$$

Define $x = (x_1, \dots, x_m)$ and $x^- = (x_1, \dots, x_m) \setminus x_i$, then

- 1. θ_{\max} , $x_i = c_q \theta \le c_q \bar{x}$ $\frac{1}{m} (c_q \bar{x} + (m-1)\bar{x}^-) = \bar{x}$ Thus $\theta_{\max} \le \frac{m-1}{m-c_q} \bar{x}^-$
- 2. θ_{\min} 2 candidates: $x_i = 0$ or $x_i = \infty$. When $x_i = 0$, It's like m - 1 points x^- ; When $x_i = \infty$, $f(x, \theta) = f(x^-, \theta) - \theta$. Thus θ_{\min} solves $f(x, \theta)|_{x_i = 0} = 0$.

7 Appendix

Definition 7.1 A random variable Z is called central moment bounded with real parameter L > 0, if for any integer $i \ge 1$ we have

$$E\left[\left|Z - E[Z]\right|^{i}\right] \le i \cdot L \cdot E\left[\left|Z - E[Z]\right|^{i-1}\right].$$

References

- [1] Chandler Davis and William Morton Kahan. The rotation of eigenvectors by a perturbation. iii. SIAM Journal on Numerical Analysis, 7(1):1–46, 1970.
- [2] Davide Ferrari and Yuhong Yang. Maximum lq-likelihood estimation. *Ann. Statist.*, 38(2):753–783, 04 2010.
- [3] Roger A Horn and Charles R Johnson. *Matrix analysis*. Cambridge university press, 2012.
- [4] Roberto Imbuzeiro Oliveira. Concentration of the adjacency matrix and of the laplacian in random graphs with independent edges. arXiv preprint arXiv:0911.0600, 2009.
- [5] Yichen Qin and Carey E Priebe. Maximum l q-likelihood estimation via the expectation-maximization algorithm: A robust estimation of mixture models. *Journal of the American Statistical Association*, 108(503):914–928, 2013.
- [6] Karl Rohe, Sourav Chatterjee, and Bin Yu. Spectral clustering and the high-dimensional stochastic blockmodel. The Annals of Statistics, pages 1878–1915, 2011.

- [7] Daniel L Sussman, Minh Tang, and Carey E Priebe. Consistent latent position estimation and vertex classification for random dot product graphs. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 36(1):48–57, 2014.
- [8] Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computational mathematics, 12(4):389–434, 2012.