Accurate Evaluation of Layer Potentials up to the Boundary

Mathematics at Dartmouth

Introduction

DIRICHLET BOUNDARY VALUE PROBLEM

The goal of our research is to estimate the numerical solutions to the Laplace's equation, i.e. given a domain Ω and its boundary $\partial\Omega$, find a continuous function u satisfying the following equations

$$\begin{cases} \Delta u = u_{xx} + u_{yy} = 0 \text{ in } \Omega \\ u = f \text{ on } \partial \Omega \text{ with a given function } f \end{cases}$$

Applying potential theory [1], we represent the solution uniquely as a double-layer potential where $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$:

$$u(\mathbf{x}) = \int_{\partial\Omega} \frac{\partial \Phi(\mathbf{x}, \mathbf{y})}{\partial \mathbf{n}_y} \tau(\mathbf{y}) ds_y \quad \text{where} \quad \Phi(\mathbf{x}, \mathbf{y}) = \frac{1}{2\pi} \log \frac{1}{|\mathbf{x} - \mathbf{y}|}$$

For a given density function $\tau(y)$ on the boundary, we need to find an algorithm to evaluate u in the interior as accurately as possible.

ERROR NEAR THE BOUNDARY

A prevalent method to evaluate u uses discrete quadrature to turn the integral into the sum of the dipoles on $\partial\Omega$, which is accurate on the inner region but yields unacceptable error near $\partial\Omega$.

TAYLOR EXPANSION

To resolve the aforementioned problem, we identify \mathbb{R}^2 with \mathbb{C} and use the *Taylor expansion* centered at a point z_0 near $\partial\Omega$ to evaluate u locally instead of using quadrature on the entire domain.

$$u(\mathbf{x}) = Re\left(\sum_{n=0}^{T} c_n(z-z_0)^n\right)$$
 where $\begin{cases} z = x_1 + ix_2 \\ \mathbf{x} = (x_1, x_2) \end{cases}$

To evaluate the coefficient c_n , we introduce a boundary integral and Lagrange Interpolation. Now, from a small number of given values of u on $\partial\Omega$, say N, we can evaluate u accurately up to the boundary.

Evaluating the Taylor Coefficients

ALPERT CORRECTION & GAUSSIAN QUADRATURE

We can express the n^{th} Taylor coefficient as the following integral where y(t), $0 \le t < 2\pi$ parametrizes $\partial \Omega$ in the complex plane

$$c_n = \frac{-1}{2\pi} \int_0^{2\pi} \frac{e^{i\gamma(y(t))}}{(y(t) - z_0)^{n+1}} \, \tau(y(t)) y'(t) dt$$

To evaluate c_n , we build a set of finely spaced nodes on $\partial\Omega$ consisting of Gauss nodes on AB and original nodes on BA with the endpoints handled by Alpert correction.[2]

With the new grid, we apply Gaussian quadrature to estimate

$$\int_0^{2\pi} F(t)dt \approx \sum_{i=1}^n w_i F(t_i) \text{ where } w_i \text{ are known weights.}$$

Gaussian quadrature is guaranteed to converge uniformly for any continuous function.

LAGRANGE INTERPOLATION

With the new grid, we need to evaluate $\tau(t)$ at any point t given only the set of N points. Taking n local points t_i of density τ_i , $i \in \{1, 2, ..., n\}$, we want to find a polynomial p(t) that approximates $\tau(t)$, i.e. for all $i, p(t_i) = \tau_i$.

Lagrange polynomials

on [-1, 1] for n = 10

First, we define *Lagrange polynomials*:

$$L_j(t) = \prod_{i=1, i \neq j}^n rac{t-t_i}{t_j-t_i} ext{ so } L_j(t_i) = egin{cases} 0 & ext{if } i
eq j \ 1 & ext{if } i = j \end{cases}$$

The interpolating polynomial can be written as

$$p(t) = \tau_1 L_1(t) + \tau_2 L_2(t) + \dots + \tau_n L_n(t)$$

The equally spaced interpolation can sometimes diverge on the edges of the interval (e.g. Runge's Phenomenon). In our algorithm, we choose t_i such that the value of interest is at the middle of the interval where the interpolation is guaranteed to converge.

Result

We test our algorithm with a known function $u = x^2 - y^2$ and use MPSpack [3] to generate a density function τ for N = 100 points on the boundary. Parameters for our evaluation method include:

 $u = x^2 - y^2$

• $|z_0|$: radius of the Taylor expansion center

- δ : radius of the Taylor discs;
- N_{z_0} : number of points z_0 .

Notes:

- \log_{10} (Error) is shown.
- All trials use Taylor degree T=30, Gaussian quadrature with 200 points, interpolation order P=20, and Alpert order A=20.

Conclusion

Combining the mentioned techniques, we derive an algorithm to evaluate the numerical solutions of the Dirichlet Boundary Value Problem with high accuracy up to the boundary from a small number of given nodes. To ensure its accuracy, we need to test our method further on different u with singularities outside but near Ω .

References

- [1] Kress, Rainer. Linear Integral Equations. Berlin: Springer-Verlag, 1989. Print.
- [2] Alpert, Bradley. "High-order Quadratures for Integral Operators with Singular Kernels." Journal of Computational and Applied Mathematics 60.3 (1995): 367-78. Print.
- [3] Barnett, Alex, and Timo Betcke. MPSpack. MATLAB Toolbox to solve Helmholtz PDE, wave scattering, and eigenvalue problems.