Assignment 1 Avinash Iyer

Solution (18.1):

- (a) The function $f(z) = z^n$ is analytic on $\mathbb{C} \cup \{\infty\}$.
- (b) The functions $f(z) = \sin(z)$ is analytic on \mathbb{C} , $f(z) = \cos(z)$ is analytic on $\mathbb{C} \cup \{\infty\}$, while $f(z) = \tan(z)$ is analytic everywhere except for singularities at $n\pi/2$.
- (c) The function f(z) = |z| is analytic nowhere.
- (d) The function $f(z) = \frac{z-i}{z+1}$ is analytic everywhere except for z = -1.
- (e) The function $f(z) = \frac{z^2+1}{z}$ is analytic everywhere except for z = 0.
- (f) The function $f(z) = \frac{p_n(z)}{q_m(z)}$ is analytic everywhere except for the roots of q.
- (g) The function $x^2 + y^2$ is analytic nowhere.
- (h) The function e^z is analytic on \mathbb{C} .
- (i) The function e^{-iy} is analytic nowhere.
- (j) The function ln(z) is analytic everywhere except for $(-\infty, 0]$.

Solution (18.2): Let w(z) = u(x, y) + iv(x, y). Then,

$$\begin{split} &i\frac{\partial}{\partial x}(w(x+iy)) - \frac{\partial}{\partial y}(w(x+iy)) = i\frac{\partial}{\partial x}(u(x,y)+iv(x,y)) - \frac{\partial}{\partial y}(u(x,y)+iv(x,y)) \\ &= i\bigg(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}\bigg) - \bigg(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\bigg). \end{split}$$

- | **Solution** (18.4):
- | **Solution** (18.5):
- | **Solution** (18.6):
- | **Solution** (18.7):
- | **Solution** (18.11):
- | **Solution** (18.14):
- **Solution** (18.15):
- | **Solution** (18.18):