Linear Algebra. Final exam. Variant 1.

First name	Last name	Group	Points#1/2	Points#3
		BS1-		

I am,	(initials), confirming that I have read the following rules and agree to comply with them, that all solutions on this paper is my own
work.	

(signature)

Rules:

- no talking AT ALL is allowed during the exam and after it (if you are still in the room)
- when time is up, you have to put down your pen (pencil) and do NOT write anything else
- you can NOT leave your seat till the end of the test
- any electronic devices are not allowed
- **1.** (6 points) Find parameters α and β for which $f(x, \alpha, \beta) = \alpha x + \log \beta x$ best fits to the following points: (1, 1), (2, 2), (4, 2).
- **2.** (4 points) Find $det(e^A)$ for $A = \begin{pmatrix} 7 & 6 \\ 6 & 2 \end{pmatrix}$.
- **3.** (5 points) Find extrema of $f(x, y) = x^3 + y^3 6xy + 15$.

Linear Algebra. Final exam. Variant 1.

First name	Last name	Group	Points#4/5	Points#6
		BS1-		

I am,	(initials), confirming that I have read the following rules and agree to comply with them, that all solutions on t	his paper is my own
work		

_____ (signature)

- **4.** (5 points) For which α and β quadratic form Q is positive definite? Negative definite? $Q(x,y,z) = \alpha x^2 + y^2 + 8z^2 + bxy + 6xz$
- **5.** (2 points) Write down the system (and matrix) for the following differential equation: $y^{(IV)}+y^{\prime\prime\prime}-2y^{\prime\prime}+6y=0$ (2 points) Is this system stable?
- **6.** (5 points) Solve the following system of differential equations:

$$\begin{cases} \frac{dx}{dt} = -y \\ \frac{dy}{dt} = x + y - 2z \\ \frac{dz}{dt} = x - y \end{cases}$$

Linear Algebra. Final exam. Variant 1.

First name	Last name	Group	Points#7/8	Points#9
		BS1-		

I am,	(initials)	, confirming that I	have read the fo	ollowing rules ar	nd agree to comp	ly with them,	, that all solutions o	n this paper is	my own
work.									

/-:\
 (signature)

- **7.** (4 points) Write down the matrix of the linear transformation, which performs the following:
 - first, rotates every vector to 45 degrees clockwise around OX
 - and then project onto plane, which is goes through points (0,0,0), (1,0,1), (0,1,1)
- **8.** (4 points) Find the volume of the triangular pyramid with vertices (0, 9, 7), (1/2, -3, 1), (-3, 1, 2), (4, 2, 0)
- **9.** (1 point for each correct answer) Three theoretical questions for true/false
 - AB and BA have the same determinants
 - If eigenvalues of A 2, 2, 5 then the matrix is certainly invertible
 - If we know T(v) for n different nonzero vectors in \mathbb{R}^n (where T(v) linear transformation), then we know T(v) for every vector in \mathbb{R}^n .