Measures of similarity and dissimilarity

Outline

- Similarity and Dissimilarity
- Distance

Similarity and Dissimilarity

- Similarity
 - 두 데이터가 얼마나 유사한지를 수치화
 - 수치가 높을수록 두 데이터가 더 유사함 range [0,1]
- Dissimilarity
 - 얼마나 다른가를 나타냄
 - 값이 낮을수록 두 데이터가 더 유사함
 - Distance가 사용됨 유사할 수록 0에 가까움. Upper limit varies
- Proximity (closeness) refers to either similarity or dissimilarity

Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.

Attribute	Dissimilarity	Similarity	
Type			
Nominal	$d = \left\{egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \left\{egin{array}{ll} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$	
Ordinal	$d=rac{ p-q }{n-1}$ 예) 신라면 맛에 대한 평가 $(ext{values mapped to integers } 0 ext{ to } n-1,$ where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$	
Interval or Ratio	d = p - q	$s = -d, \ s = \frac{1}{1+d}$ or	
		$s = -d, s = \frac{1}{1+d}$ or $s = 1 - \frac{d-min_d}{max_d-min_d}$	

Table 2.7. Similarity and dissimilarity for simple attributes

Euclidean Distance

- Euclidean Distance
 - Where n is the number of dimensions (attributes) and p_k and q_k are, respectively, the kth attributes (components) or data objects p and q.
- Standardization is necessary, if scales differ.

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Euclidean Distance – distance matrix

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Minkowski Distance

- Minkowski Distance is a generalization of Euclidean Distance
 - Where r is a parameter, n is the number of dimensions (attributes) and p_k and q_k are, respectively, the kth attributes (components) or data objects p and q.

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

Minkowski Distance – examples

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

- r = 1. City block (Manhattan, taxicab, L₁ norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- ❖ $r \rightarrow \infty$. "supremum" (L_{max} norm, L_∞ norm) distance.
 - This is the maximum difference between any component of the vectors
- ❖ Do not confuse *r* with *n*, i.e., all these distances are defined for all numbers of dimensions.

Minkowski Distance

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

L2	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
р4	5.099	3.162	2	0

L∞	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

Distance Matrix

Mahalanobis Distance

mahalanobis
$$(p,q) = (p-q)\sum^{-1}(p-q)^T$$

 Σ is the covariance matrix of the input data X

$$\Sigma_{j,k} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{ij} - \overline{X}_{j})(X_{ik} - \overline{X}_{k})$$

- To compute distance when there is correlation between some of the attributes
- A generalization of Euclidean distance

Mahalanobis Distance

Covariance Matrix:

$$\Sigma = \begin{bmatrix} 0.3 & 0.2 \\ 0.2 & 0.3 \end{bmatrix}$$

A: (0.5, 0.5)

B: (0, 1)

C: (1.5, 1.5)

Mahal(A,B) = 5

Mahal(A,C) = 4

Common Properties of a Distance

- Distances, such as the Euclidean distance, have some well known properties.
 - 1. $d(p, q) \ge 0$ for all p and q and d(p, q) = 0 only if p = q. (Positive definiteness)
 - 2. d(p, q) = d(q, p) for all p and q. (Symmetry)
 - 3. $d(p, r) \le d(p, q) + d(q, r)$ for all points p, q, and r. (Triangle Inequality)

where d(p, q) is the distance (dissimilarity) between points (data objects), p and q.

❖ A distance that satisfies these properties is a metric

Common Properties of a Similarity

- Similarities, also have some well known properties.
 - 1. s(p, q) = 1 (or maximum similarity) only if p = q.
 - 2. s(p, q) = s(q, p) for all p and q. (Symmetry)

where s(p, q) is the similarity between points (data objects), p and q.

Similarity Between Binary Vectors

- \diamond Common situation is that objects, p and q, have only binary attributes
- ❖ Compute similarities using the following quantities M₀₁ = the number of attributes where p was 0 and q was 1 M₁₀ = the number of attributes where p was 1 and q was 0 M₀₀ = the number of attributes where p was 0 and q was 0 M₁₁ = the number of attributes where p was 1 and q was 1
- Simple Matching Coefficient (SMC) and Jaccard Coefficient (J)
 - SMC = number of matches / number of attributes = $(M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})$
 - J = number of 11 matches / number of not-both-zero attributes values = $(M_{11}) / (M_{01} + M_{10} + M_{11})$

SMC versus Jaccard

Example

♦ When M₀₀ outnumbers M₁₁, all transactions would have very similar SMC. So J is frequently used to handle objects consisting of asymmetric binary attributes.

Cosine Similarity

If d_1 and d_2 are two document vectors, then $\cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$, where \cdot indicates vector dot product and ||d|| is the length of vector d.

Example: two document data (count attributes)

$$d_1 = 3205000200$$

 $d_2 = 1000000102$

$$\begin{aligned} &d_1 \bullet d_2 = \ 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5 \\ &||d_1|| = (3*3 + 2*2 + 0*0 + 5*5 + 0*0 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = (42)^{0.5} = 6.481 \\ &||d_2|| = (1*1 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 0*0 + 2*2)^{0.5} = (6)^{0.5} = 2.245 \end{aligned}$$

$$\cos(d_1, d_2) = .3150$$

Extended Jaccard Coefficient

- Variation of Jaccard for continuous or count attributes such as document data
 - Reduces to Jaccard for binary attributes

$$T(p,q) = rac{p ullet q}{\|p\|^2 + \|q\|^2 - p ullet q}$$

Correlation

- Correlation measures the linear relationship between objects
- To compute correlation, we standardize data objects, p and q, and then take their dot product

$$p'_{k} = (p_{k} - mean(p))/std(p)$$
 $q'_{k} = (q_{k} - mean(q))/std(q)$
 $correlation(p,q) = p' \cdot q'$

Visually Evaluating Correlation

Scatter plots showing the similarity from –1 to 1.

General Approach for Combining Similarities

Sometimes attributes are of many different types (*i.e.* heterogeneous), but an overall similarity is needed.

- 1. For the k^{th} attribute, compute a similarity, s_k , in the range [0,1].
- 2. Define an indicator variable, δ_k , for the k_{th} attribute as follows:

$$\delta_k = \begin{cases} 0 & \text{if the } k^{th} \text{ attribute is a binary asymmetric attribute and both objects have} \\ & \text{a value of 0, or if one of the objects has a missing values for the } k^{th} \text{ attribute} \\ & 1 & \text{otherwise} \end{cases}$$

3. Compute the overall similarity between the two objects using the following formula:

$$similarity(p,q) = rac{\sum_{k=1}^n \delta_k s_k}{\sum_{k=1}^n \delta_k}$$

Using Weights to Combine Similarities

- Treating all attributes the same may not be desirable.
 - > Use weights w_k which are between 0 and 1 and sum to 1.

$$similarity(p,q) = rac{\sum_{k=1}^n w_k \delta_k s_k}{\sum_{k=1}^n \delta_k}$$

$$distance(p,q) = \left(\sum_{k=1}^n w_k |p_k - q_k|^r
ight)^{1/r}.$$