${
m Ca^{2+}}$ ions. The ion concentrations in the saturated solution are 1.1×10^{-3} for the calcium ion and $2(1.1\times 10^{-3})$, or 2.2×10^{-3} , for the fluoride ion. Note that at equilibrium at 25°C, [Ca²⁺] equals the solubility of 1.1×10^{-3} mol/L but [F⁻] equals twice the solubility, or 2.2×10^{-3} mol/L. The number of moles of positive and negative ions per mole of compound must always be accounted for when using K_{sp} and solubilities.

$$K_{sp} = [\text{Ca}^{2+}][\text{F}^{-}]^{2}$$

 $K_{sp} = (1.1 \times 10^{-3})(2.2 \times 10^{-3})^{2}$
 $K_{sp} = 5.3 \times 10^{-9}$

Thus, the solubility product constant of CaF_2 is 5.3×10^{-9} at $25^{\circ}C$.

It is difficult to measure very small concentrations of a solute with precision. For this reason, solubility data from different sources may report different values of K_{sp} for a substance. Thus, calculations of K_{sp} ordinarily should be limited to two significant figures. Representative values of K_{sp} at 25°C for some sparingly soluble compounds are listed in **Table 3.** Assume that all data used in K_{sp} calculations have been taken at 25°C unless otherwise specified.

At this point, you should note the difference between the solubility of a given solid and its solubility product constant. Remember that the *solubility product constant* is an equilibrium constant representing the product of the molar concentrations of its ions in a saturated solution. It

TABLE 3 Solubility Product Constants, K _{sp} , at 25°C					
Salt	Ion product	K _{sp}	Salt	Ion product	K _{sp}
AgCH ₃ COO	[Ag ⁺][CH ₃ COO ⁻]	1.9×10^{-3}	CuCl	[Cu ⁺][Cl ⁻]	1.2×10^{-6}
AgBr	[Ag ⁺][Br ⁻]	5.0×10^{-13}	CuS	$[Cu^{2+}][S^{2-}]$	6.3×10^{-36}
Ag ₂ CO ₃	$[Ag^{+}]^{2}[CO_{3}^{2-}]$	8.1×10^{-12}	FeS	$[Fe^{2+}][S^{2-}]$	6.3×10^{-18}
AgCl	[Ag ⁺][Cl ⁻]	1.8×10^{-10}	Fe(OH) ₂	$[Fe^{2+}][OH^{-}]^{2}$	8.0×10^{-16}
AgI	$[Ag^+][I^-]$	8.3×10^{-17}	Fe(OH) ₃	$[Fe^{3+}][OH^{-}]^{3}$	4×10^{-38}
Ag ₂ S	$[Ag^{+}]^{2}[S^{2-}]$	6.3×10^{-50}	HgS	$[Hg^{2+}][S^{2-}]$	1.6×10^{-52}
Al(OH) ₃	$[Al^{3+}][OH^{-}]^{3}$	1.3×10^{-33}	MgCO ₃	$[{ m Mg^{2+}}][{ m CO_3^{2-}}]$	3.5×10^{-8}
BaCO ₃	[Ba ²⁺][CO ₃ ²⁻]	5.1×10^{-9}	$Mg(OH)_2$	$[Mg^{2+}][OH^{-}]^{2}$	1.8×10^{-11}
BaSO ₄	[Ba ²⁺][SO ₄ ²⁻]	1.1×10^{-10}	MnS	$[Mn^{2+}][S^{2-}]$	2.5×10^{-13}
CdS	$[Cd^{2+}][S^{2-}]$	8.0×10^{-27}	PbCl ₂	$[Pb^{2+}][Cl^{-}]^{2}$	1.6×10^{-5}
CaCO ₃	$[Ca^{2+}][CO_3^{2-}]$	2.8×10^{-9}	PbCrO ₄	[Pb ²⁺][CrO ₄ ²⁻]	2.8×10^{-13}
CaF ₂	$[Ca^{2+}][F^{-}]^{2}$	5.3×10^{-9}	PbSO ₄	$[Pb^{2+}][SO_4^{2-}]$	1.6×10^{-8}
Ca(OH) ₂	[Ca ²⁺][OH ⁻] ²	5.5×10^{-6}	PbS	$[Pb^{2+}][S^{2-}]$	8.0×10^{-28}
CaSO ₄	$[Ca^{2+}][SO_4^{2-}]$	9.1×10^{-6}	SnS	$[Sn^{2+}][S^{2-}]$	1.0×10^{-25}
CoCO ₃	$[\text{Co}^{2+}][\text{CO}_3^{2-}]$	1.4×10^{-13}	SrSO ₄	$[Sr^{2+}][SO_4^{2-}]$	3.2×10^{-7}
CoS	$[\text{Co}^{2+}][\text{S}^{2-}]$	4.0×10^{-21}	ZnS	$[Zn^{2+}][S^{2-}]$	1.6×10^{-24}