AD/A-002 869

A STRUCTURAL WEIGHT ESTIMATION PROGRAM (SWEEP) FOR AIRCRAFT. VOLUME VIII - PROGRAMMER'S MANUAL

C. Martindale, et al

Rockwell International Corporation

Prepared for:

Aeronautical Systems Division

June 1974

DISTRIBUTED BY:

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTA	TION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
ASD/XR 74-10	2. GOVT ACCESSION NO.	2) ACCIPIENT'S CATALOG NUMBER AD/A- 602869
4. TITLE (and Subtitle)		S. TYPE OF MEPORT & PERIOD COVERED
A Structural Weight Estimation for Aircraft		6. PERFORMING ORG. REPORT NUMBER
Volume VIII - Programmer's Mar	luai	8. CONTRACT OR GRANT NUMBER(s)
G. Hayase, R. M. Hiyama, C. W. H. H. Rockwell	. Martindale,	F33615-71-C-1922
Rockwell International Corp, Los Angeles International Airr Los Angeles, California 90009	L.A. Aircraft Div	PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT HUMBERS FX2826-71-01876/C093
Deputy for Development Planning		12. REPORT DATE June 1974
Air Force Systems Command Wright-Patterson Air Force Bas	_	13. NUMBER OF PAGES
	different from Controlling Office)	Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

1975

16 SUPPLEMENTARY NOTES

weight estimation, structural weights, integrated computer programs, preliminary weight estimation, first-order weight estimations, aircraft structure weights, aircraft structural weight optimization, flutter optimization program, structural synthesis

29 ABSTRACT (Continue on reverse side if necessary and identify by block number)

Three computer programs were written with the objective of predicting the structural weight of aircraft through analytical methods. The first program, the structural weight estimation program (SWEEP), is a completely integrated program including routines for airloads, loads spectra, skin temperatures, material properties, flutter stiffness requirements, fatigue life, structural sizing, and for weight estimation of each of the major aircraft structural components. The program produces first-order weight estimates

and indicates trends when parameters are varied. Fighters, bombers, and cargo aircraft can be analyzed by the program. The program operates within 100,000 octal units on the Control Data Corporation 6600 computer. Two stand-alone programs operating within 100,000 octal units were also developed to provide optional data sources for SWEEP. These include (1) the flexible airloads program to assess the effects of flexibility on lifting surface airloads, and (2) the flutter optimization program to optimize the stiftness distribution required for lifting surface flutter prevention.

The final report is composed of 11 volumes. This volume (Volume VIII) describes the program structure and operation. It provides a computer programmer with information for modifying or debugging the program. It is written to be used in conjunction with Volumes II through VII, which describe the methods and formulations, program descriptions, detail core maps, autoflow charts, and program listings.

PREFACE

This report was prepared by Rockwell International Corporation, Los Angeles Aircraft Division, Los Angeles, California, under Contract F33615-71-C-1922, No. FX2826-71-01876/C093. The work was performed for the Deputy for Development Planning, Air Force System Command, Wright-Patterson Air Force Base, Ohio, and extended from September 1971 to June 1974.

Eugene L. Bahns, ASD/XRHD, was the Air Force program manager. Leonard Ascani was the program manager for Rockwell International. Other Rockwell personnel contributing to the project included:

G. Hayase - Mass Properties
R. Hiyama - Mass Properties
D. Chaloff - Mass Properties
C. Martindale - Mass Properties
H. Rockwell - Mass Properties
R. Allen - Mass Properties
P. Wildermuth - Airloads

G. Rothamer - Airloads
T. Byar - Airloads

S. Siegel - Structural Dynamics
S. Mellin - Structure and Fatigue

H. Haroldson - Thermodynamics
D. Konishi - Advanced Composites
C. Hodson - Structural Dynamics

The final report was published in 11 volumes; the complete list is as follows:

Volume

I ''Executive Summary''

II "Program Integration and Data Management Module"

III "Airloads Estimation Module"

IV 'Material Properties, Structure Temperature, Flutter, and Fatigue'

V "Air Induction System and Landing Gear Modules"

VI 'Wing and Empennage Module'

VII "Fuselage Module"
VIII "Programmer's Manual"

IX 'User's Manual'

X ''Flutter Optimization Stand-Alone Program''

XI "Flexible Airloads Stand-Alone Program"

TABLE OF CONTENTS

Section		Page
I .	INTRODUCTION	6
II	PROGRAM DESCRIPTION	8
	Approach	8
	Overlay Structure	9
	Program Routines	9 9
	Peripheral Requirements	9
	Data Processing	10
III	PROGRAM OPERATION	32
	Input Arrangement	32
	Permanent Data Bank Deck	32
	Case Data Card Deck	36
	Operating Considerations	50
	Initialization and Computation	50
	Input Data Processing	50
	Design Data Development	50
	Structural Weight Estimation	79
	Program Debugging	79

LIST OF ILLUSTRATIONS

Figure		Page
1	SWEEP overlay structure	13
. 2	SWEEP control program logic flow diagram	18
3	SWEEP program sample input data deck arrangement	
4	SWEEP permanent data bank data deck setup and	
	mass storage file initialization	34
5	Relative read data card format	47

LIST OF TABLES

Table		Page
1	SWEEP Overlay Directives and Calling Statements	11
2	Module Descriptions	12
3	Alphabetic List and Description of SWEEP Routines	
4	Permanent Data Bank Data Descriptions	
5	Case Control Card 1 - Print Indicators	
6	Case Control Card 2 Indicators	
7	Usage Matrix of Input Data Decks	48
8	Logic and Data Requirements for Execution of	
	SWEEP Modules	51
9	SWEEP Program Mass Storage File Records	53
10	IFL Array Program Controls (IFLOW Block)	
11	XMISC Array Variables (MISC Block)	

Section I

INTRODUCTION

The analytical structural weight prediction procedure in SWEEP is an intergration of methods formulated to describe design criteria and constraints of aircraft components, synthesize structure to these requirements, and develop mass properties data. Various procedures, engineering methods, and computer programming techniques used in SWEEP provide comprehensive structural weight data in a single computer run.

The program is structured in a modular form which provides the user with multiple modes of operation. It is designed to operate as a fully integrated system such that compatible design constraints are satisfied by each of the structural components. SWEEP can also be used in stand-alone modes to evaluate individual components or develop design criteria. A stacked case capability is also provided which permits variation of any single design parameter without repeating other data.

SWEEP consists of modules which perform control and/or computational functions required for:

- 1. Master control
- 2. Input/output data processing
- 3. Vehicle performance data analysis
- 4. Vehicle geometry and initial weight distribution analysis
- 5. Basic flight design loads and fatique spectrum analysis
- 6. Fatigue and flutter requirement analysis
- 7. Material property descriptions and evaluation
- 8. Wing and empennage structural synthesis and weight analysis
- 9. Fuselage structural synthesis and weight analysis
- 10. Landing gear structural synthesis and weight analysis
- 11. Air induction system (nacelles, pylons, engine section, ducts, ramps, spikes) structural synthesis and weight analysis

Geometry definitions are based on mathematical approximations of vehicle physical features and structural arrangements. These definitions provide for weight sensitivity to configuration geometry and to geometric variations. The structural synthesis/weight analysis modules are designed to analytically evaluate design requirements and criteria and to synthesize structures for specified meterials and structural concepts. Structural elements are analyzed to satisfy strength, stiffness, life, local stability, and general stability requirements. The synthesis can be controlled to produce material sizing reflecting unconstrained "optimum" structural arrangements or to evaluate material requirements for design constraints resulting from compromises due to cost, producibility, maintainability, or unique local considerations. Some of these design constraints are:

- 1. Specified frame, stringer, rib, or spar spacings
- 2. Longeron locations
- 3. Frame or stringer geometry limits
- 4. Material minimum gages or fabrication minimums
- 5. Cutout sizes and locations
- 6. Bulkhead locations

Program logic is provided so that options are available to (1) control the scope of the analysis and the types of design information to be printed, and (2) provide for bypassing certain design data computations by user input of the pertinent information. The latter approach would be employed to substitute advanced engineering data which become available during the design cycle. Examples of these types of data are local description of geometry, gross design or net loads, and flutter stiffness requirements.

Section II

PROGRAM DESCRIPTION

APPROACH

SWEEP is an integrated program written in FORTRAN Extended compiler language for the CDC6600 computer with the SCOPE operating system, at WPAFB. The program consists of 253 routines and functions which are programmed in modular form using one level of overlay.

The basic program is structured to operate within a total of 50,000 octal (20,480 decimal) core locations. The appended version, SWEEP IV, which incorporates the additional capability for analyzing advanced composite wing and empennage structures, operates within a total of 100,000 octal core locations.

In order to operate within the computer core size restriction with a single level of overlay, various central memory minimization approaches are used. The main overlay (root segment) consists of the SWEEP control program, OLAY00, which is identified as overlay (0,0). Since OLAY00 always resides in central memory, it is structured only to provide executive controls. Specific control, data manipulation, and computation processes are performed in subprograms identified as overlays (n,0), where n is the unique integer assigned to each primary overlay. Other programming approaches used to operate within the central memory core restrictions are:

- 1. Small labeled common regions (253 words) reside with the main overlay
- 2. Data are stored and transmitted through an extensive use of mass storage files (188 records, approximately 55,000 words)
- 3. Certain analysis functions are subdivided into groupings of (n,0) overlays.
- 4. BUFFER IN/BUFFER OUT statements are used to maintain blank common between related (n.0) overlays
- 5. FORTRAN OPT=2 compiler is used to compile all SWEEP routines
- 6. PPLOADR is used to load the program

OVERLAY STRUCTURE

SWEEP is structured with a main overlay, overlay (0,0), and 18 primary (n,0) overlays. Analysis and data processing functions are performed either by individual (n,0) overlays or by groupings of (n,0) overlays. The designation 'module' is assigned to unique function primary overlays or groupings of functional overlays.

Table 1 shows the SCOPE overlay directives and calling statements for the SWEEP control program and the 18 primary overlays. All discussions, and references to overlays in this report address the decimal primary-level identification number. Table 2 shows the arrangement of overlays, which constitute the 10 program modules. Overlay (18,0) in this table is the advanced composite link for wing and empennage structures. This is the only link structured to the 100,000 octal core size restriction.

Sequential flow diagram through the 18 primary overlays and all of the data processing and computational routines within each overlay are shown in Figure 1.

PROGRAM ROUTINES

The main overlay routine, OLAY00, logic flow diagram is shown in Figure 2. Additional discussions, autoflow chart, and listing for this routine are presented in Volume II.

Programmed methods and formulations, autoflow charts, and program listings are presented in separate volumes which discuss the SWEEP modules. References to the report volumes are presented in Table 2. Table 3 is an alphabetical listing of all SWEEP routines.

PERIPHERAL REQUIREMENTS

SWEEP requirements as a stand-alone computing system consist of four input/output files and one mass storage file, file 1. These files consist of:

- 1. Mass storage file 1, TAPE1
- 2. System input file, TAPE5
- 3. System output file, TAPE6

- 4. Permanent data file, TAPE7
- 5. Common storage file, TAPE24

In addition to the foregoing files which are used during execution of the program, the method of operating shown in examples in Section III requires one magnetic tape unit. The program and permanent data are maintained on a magnetic tape and are transferred to internal files by the CDC control cards.

DATA PROCESSING

Blank common, labeled common, and mass storage files are used for the placement and retrieval of data. These media are readily made accessible to any unit of the program. Data sets are assigned to specific regions in blank common for each module and are maintained in multioverlay modules by the use of the BUFFER IN/BUFFER OUT statements.

Problem analysis controls and certain design data items are stored in labeled common blocks. These blocks are in the main overlay, and thus reside in core at all times and are universally accessible. These labeled common arrays are IFL, IP, and XMISC. Organization and discussion of variables in these common blocks are presented in Section III of this volume.

Mass storage file records are used to transmit design information between the input data processing module, design data development modules, weight analysis modules, and the output module. These records are also used within modules for temporary storage of data sets. Use of these files provides a means of transmitting the large amount of data required by this program within the restriction on core size. Discussion of the 188 file records used in SWEEP are presented in Section III of this volume.

TABLE 1. SWEEP OVERLAY DIRECTIVES AND CALLING STATEMENTS

Overlay Directive (Octal)	Calling Statement (Decimal)	Control Routine Name
OVERLAY(ALPHA,0,0)		OLAY00
OVERLAY(ALPHA,1,0)	OVERLAY (5HALPHA,1,0)	READ
OVERLAY (ALPHA, 2,0)	OVERLAY (SHALPHA,2,0)	DATAIN
OVERLAY (ALPHA, 3, 0)	OVERLAY (5HALPHA,3,0)	OLAY3
OVERLAY (ALPHA, 4, 0)	OVERLAY (SHALPHA,4,0)	BLCNTL
OVERLAY (ALPHA, 5, 0)	OVERLAY (SHALPHA, 5,0)	FATGUE
OVERLAY (ALPHA, 6, 0)	OVERLAY (SHALPHA, 6, 0)	LANDGR
OVERLAY (ALPHA,7,0)	OVERLAY (SHALPHA,7,0)	AISMN
OVERLAY(ALPHA,10,0)	OVERLAY (SHALPHA, 8,0)	OLAY8
OVERLAY(ALPHA,11,0)	OVERLAY (SHALPHA,9,0)	OLAY9
OVERLAY(ALPHA,12,0)	OVERLAY (5HALPHA, 10,0)	OLAY10
OVERLAY (ALPHA, 13,0)	OVERLAY (5HALPHA,11,0)	FUS01
OVERLAY (ALPHA, 14,0)	OVERLAY(5HALPHA,12,0)	FUS02
OVERLAY(ALPHA,15,0	OVERLAY(SHALPHA,13,0)	OUTPUT
OVERLAY (ALPHA, 16,0)	OVERLAY (SHALPHA, 14,0)	OLAY14
OVERLAY(ALPHA, 17,0)	OVERLAY(5HALPHA,15,0)	OLAY15
OVERLAY(ALPHA, 20,0)	OVERLAY (SHALPHA, 16,0)	OLAY16
OVERLAY (ALPHA, 21,0)	OVERLAY(5HALPHA,17,0)	OLAY17
OVERLAY (ALPHA, 22,0)	OVERLAY (5HALPHA, 18,0)	OLAY18

TABLE 2. MODULE DESCRIPTIONS

Module Name	Module Type	Overlay	Control Routine Name	Report Volume
Input data processing	Input data processing	(01,0)	READ	Vol II
Data management	Data develop- ment	(02,0)	DATAIN	Vol II
Flutter and temperature	Data develop- ment	(03,0)	OLAY3	Vol IV
Airloads	Data develop- ment	(04,0)	BLCNTL	Vol III
Fatigue	Data develop- ment	(05,0)	FATGUE	Vol IV
Landing gear	Structural syn- thesis and weight analysis	(06,0)	LANDGR	Vol V
Air induction system	Structural syn- thesis and weight analysis	(07,0)	AISMN	Vol V
Wing and empen- nage	Structural syn- thesis and weight analysis	(08,0) (09,0) (10,0) (14,0) (15,0) (16,0) (17,0) (18,0)	OLAY8 OLAY9 OLAY10 OLAY14 OLAY15 OLAY16 OLAY17 OLAY18	Vol VI
Fuselage	Structural syn- thesis and weight analysis	(11,0) (12,0)	FUS01 FUS02	Vol VII
Output	Output,data processing	(13,0)	OUTPUT	Vol II

Figure 1. SWEEP overlay structure.

Figure 1. SWEEP overlay structure (cont).

Figure 1. SWEEP overlay structure (cont).

Figure 1. SWEEP overlay structure (concl).

Figure 2. SWEEP control program logic flow diagram.

Figure 2. SWEEP control program logic flow diagram (cont).

Figure 2. | SWEEP control program logic flow diagram (cont).

Figure 2. SWEEP control program logic flow diagram (cont).

Figure 2. SWEEP control program logic flow diagram (cont).

Figure 2. SWEEP control program logic flow diagram (concl).

TABLE 3. ALPHABETIC LIST AND DESCRIPTION OF SWEEP ROUTINES

	dragge dame.			B chart																				=											
Y DESCRIPTION	INITIAL STRUCTURE AND CONTENT INERTIA LOAD SETUP	TORQUE-BOX CROSS-SECTIONAL AREA INTEGRATION	TORQUE-BOX E1/GJ EVALUATION - ADV. COMP. ANALYSIS	DESIGN LOAD DATA PROCESS - AC /. CUMP. ANALYSIS	SKIN-ST\$ LOAD DIST. SKIN STABILITY -ADV.COMP.ANALYSIS	SECTION DESIGN DATA/#I ANALYSIS CONTROL - ADV. COMP.	u	DESIGN DATA PRINT-TYPE A TURGUE-BUX SYNTHESIS SUMMARY	STRINGER GEOMETRY/SECTION PROPERTIES-ADV.COMP.ANALYSIS	CYCLIC STRESS-STRAIN CURVE CALCULATION	FULL DEPTH HC SECTION OPTIMIZATION - ADV.COMP.ANALYSIS	MISPAR, FOH TORAUE-BOX SYNTHESIS - ADY. COMP. ANALYSIS	MIRIB TURQUE-BOX SYNTHESIS - ADV. COMP. ANALYSIS	SKIN-STR/RIB SECTION OPTIMIZATION - ADV.COMP.ANALYSIS	PROGRAM FOR AIR INDUCTION SYSTEM MODULE	LIFE CALCULATION BY STRAIN-CYCLING METHOD	DESIGN AIRLOAD PROCESSING	TORQUE-BOXSTIFFNESS EVALUATION - ADV.COMP.ANALYSIS	ADV. CUMP. TURGUE-BOX SYNTHES IS CONTROL	ATMOSPHERE. RETURNS DENSITY.PRESSURE.TEMP. FOR ALT.		DEVELOP TOTAL VEHICLE WEIGHT. CG. AND INERTIA DATA.	CALCULATE INERTIAS FOR SUBROUTINE AVDATA.	14.	ដ						BENDING KUDULUS OF RUPTURE		INTERPOLATION/EVALUATION FOR FC OR B/T	PLATE BUCKLING B/T EVALUATION	TRAFECOIDAL/IDIAL PLANFORM CHORD EVALUATION
OVERLAY	16	80	18	18	18	18	18	18	18	02	18	18			07	60	16	18	18	45	7 0	05	05	02	18	02	01	18	70	12	90	70	2	200	2
DECK NAME	ABDW	ABOXC	ACE 16J	ACLUAD	ACMRSK	ACNSTR	ACPROG	ACPRTA	ACSTRG	ACURVE	ACWFOH	ACMAS	ACWRBS	ACWSTR	AISMN	AL IFE	ALOAD	ASTIFF	ATBOPT	ATMOS	AVDAOC	AVDATA	AVDINE	AVDWNG	AVLOAD	BCURVE	BHOJT	BHDJT	BLCNTL	BLKHDS	BMOR	BNLDS	BOT	8010	CAERO

!

TABLE 3. ALPHABETIC LIST AND DESCRIPTION OF SMEEP ROUTINES (CONT)

AY DESCRIPTION	GENERAL DATA INITIALIZATION AND CONTROL INITALIZATION - DATA TRANSFER FROM GENERAL DATA EXTERNAL CONCENTRATED DEADWEIGHT EVALUATION	PARABOLIC CURVE FIT AND EVALUATION STABILITY CHECK FOR FULL DEPTH HC CORE -ADV.COMP.CKING	COMP/SHEAR STABILITY CHECK FOR ADV. COMP. PANELS	TORQUE-BOX SYNTHESIS/WEIGHT ANALYSIS CONTROL	INTERPOLATION BETWEEN POINTS OF A CURVE	EVALUATION	DI AMEDIN CHIEF EVALUATION	GHORD GHORD	EVALUATION	DEVELOP PANEL NET EFFECTIVENESS DUE TO CUTOUTS		IN BC ARRAY AS REU.	IS		CURRENT TORUS-BOX INEKTIA LOAD EVALUATION	OKCUE-BOX INEKTIA LUAD	E READ FOR INPUT STREAM	READ FOR TAPE 7	I RAT IOS MOMENTS ETC.	FOR LANDING GEAR MODULE	EVALUATION OF BOX STRUCTURE REPLACED BY PIVOI	EVALUATION	ERT. SHEAR.TORQUE.	TEMP. AND PRESS. FACTORS FOR AIR INDUC.	DISTRIBUTE POINT WEIGHT BY STATICH SPACINGS	101000000000000000000000000000000000000
OVERLAY	08	10	18	2 2	\$ %	60	18	1 1	15	12	02	05	12	05	5 5	18	10	เ	70	20	1 6	30	E 0	6	200)
DECK NAME	CASE CCNTL CDL	CKSFDH	CKSTAB	CNSTR	CODIMS	CSECW	CSECW	CT071	CT0T2	CUTOUT	DATAIN	DBLCNT	DBLKHD	DCCNTL	DEADW	DEADW	DECRD	DECRD7	DFATMG	DLADGR	DLPVI	DMAX	DMAXLD	DSGNP	DSTNOR	

TABLE 3. ALPHABETIC LIST AND DESCRIPTION OF SWEEP ROUTINES (CONT)

AY DESCRIPTION	WT - TU S		DEVELOP DUCT GEOMETRY.		PRINT FOR DUCTS	DUCT WEIGHT EVALUATION PER NACELLE OR AIR VEHICLE	CHECK COMPATIBILITY OF DATA AND FURCE STAT.OR DYN.BAL.	SAVE SPEED-ALT. AND H-TAIL DATA FOR FLUTTEMP. MOD.	T FOR PASS 1+1	ARM ADJUSTMENT FOR	SECTION EI AND GJ STIFFNESS EVALUATION	DISTRIBUTE LIFT LOADS OF FUS. NOSE AND WING CARRYOVER	PROGRAM FOR FATIGUE MODULE	INITALIZE. CONTROL ITERATION. PRINT FINAL RESULTS.	BENDING MOMENT SPECTRA FOR MANEUVER. GUST AND TAXI	9	INTERPOLATION BETWEEN CURVES OF A FAMILY	COVER SYNTHESIS, STRENGTH, FL JITER, ACOUSTICS	FUEL WEIGHT/DIST AND INITIAL T-BOX WT. EVALUATION			SETUP EXTERNAL LUADS BY CONDITION TYPE	REORDER INPUT NET LOADS.	CALC. NET FUSELAGE SHEAR AND MOMENT DIAGRAMS	CONTROL FOR FRAME SPACING SEARCH	LOCATE EXTERNAL SUPPORT POINTS FOR WING , TAILS , L. G. , ETC	SSURE RING LOAD EVALUATION		DEVELOP FRAME NUDES FOR KUUNDED RECTANGULAR GEOMETRY	PUTENTIAL FUR F	FRAME NODE CUORDINATES(61 NODES) EVALUATION	GENERAL . SET UP STRESS LEVELS FROM BEND. MOM.OR PRESSURE		DISTRIBUTION OF FUSELAGE STRUCTURAL WEIGHT TO SYN. SEGS
OVERLAY	020	70	05	10	07	70	11	02	60	18	10	11	02	02	04	12	0	12	15	11	12	11	11	11	12	11	07	11	11	11	07	C 2	05	05
DECK NAME	DSTTRI	DUCFRM	DUCGEO	DUCPNL	DUCTS	DUCMET	DUMMY1	DWHVOO	DWYBA	DWYBA	EIGJC	FAKLD	FATGUE	FAT IGU	FATMG	FBEND	FCODM2	FCOVER	FDIS	FFRME	FHCMB	FLDDT	FLOIN	FLDNT	FPANEL	FRMEG	FRMELD	FRMLD	F RMND 1	F RMND2	F RMND3	FIGCTL	FTOTAL	FUSDST

TABLE 3. ALPHABETIC LIST AND DESCRIPTION OF SMEEP ROUTINES (CONT)

			1 1 1		
RLAY	DEVELOP EXTERNAL SHELL GEOMETRY. FUSELAGE LOADS CONTROL SAVE SPECIFIC LOADS DATA FOR FUSELAGE MODULE SHELL SYNTHESIS CONTROL PRUGRAM FUR FIRST FUSELAGE OVERLAY PRUGRAM FUR SECOND FUSELAGE OVERLAY	LE: TE GEOMETRY METRY DATA PROCE FORM GEOMETRY AN EKNAL SHELL GEOM	GEOMETRY EVALUATION AND CONTROL J. REOD CONTROL AND EVALUATION J. REOD CALCULATION AT STATION I J. REQUIRED FOR T TAILS ORUSE GEOMETRY DUE TO CUTOUTS, DECKS OTENTIAL FOR ELLIPTICAL GJIGEU	BOUNDARY LATER HEAT TRANSFER UNIT PITCH, ROLL, YAW INERTIAS FOR ROUNDED RECTANGLES DUMMY - POTENTIAL USE FOR ELLIPTICAL UNIT INERTIAS SECTION PROPERTIES FOR COVER, LONGERON / UNIT THICK, AREA DUMMY - POTENTIAL FOR ELLIPTICAL IILONG PRUGRAM FOR LANDING GEAR MUDULE SELECT CRITICAL DESIGN LOADS FOR SECTION SYNTHESIS LE/TE WEIGHT INTEGRATION	LE WEIGHT AND DISTRIBUTION EVALUATION COMPUTE LANDING GEAR LOADS COMPUTE LANDING GEAR WEIGHTS THREE PUINT INTERPOLATION COMPUTE LOADS PARALLEL AND PERPEND. TO STRUT EACH COND CONTROL FOR STRINGER SEARCH AND LUNGERON LOCATION INTERPOLATION FOR DESIRED TEMPERATURE ON MATERIAL DATA MATERIAL PROPERTY CURVE FIT MATERIAL PRINT - FUSELAGE COVER.LUNGERONS.FRAMES
OVERL	212411	0.08 0.08 111	177 6 6 8	0 1 1 1 1 0 1 1 2 2 1 1 2 2 1 1 2 1 2 1	100000000000000000000000000000000000000
DECK NAME	FUSGEO FUSNET FUSSHL FUSO1 FUSO2	FWE 1GH GCNTL GCOMP GEOMC GEOMF1	60MW 6JSI 6JIGEO	INERTI INERTZ INERTZ INERTZ INCONG IZLONG LANDGR LDCHK	LEWT LGEAR LGWT LGADS LONGS MATLF MATLF

TABLE 3. ALPHABETIC LIST AND DESCRIPTION OF SWEEP ROUTINES (CONT)

LAY DESCRIPTION		NET DESIGN LOAD ENVELOPE FOR EACH LIFTING SURFACE DEVELOP MATERIAL PROPERTIES FROM LIRRARY DATA	MAFERIAL PROPERTIES FROM LIBRARY	Y.FURCED C	OPTIMIZE BULKHEAD STIFFENER SPACING	MISC CONTENT WEIGHT INTEGRATION	MISC CONTENT WEIGHT/DISTRIBUTION EVAL/CONTROL	WEIGHTS OF ENG-MOUNTS. MISC. BOOKS, ETC. APPLY K FACTOR	MISC. WEIGHTS - FITTINGS. ENGINE DRAG BEAM. EJEC.FRAME	PROPERTY PROCE	PHUPERTY	_	SHELL ME	NACELLE	P NACELLE	DEFINE GEOMETRY OF NOSE SECTION.	VEKLAY CUNTRUL PROGRAM	PRUGRAM FOR FLUTTER AND TEMPERATURE MUDULE	FUR FIRST UVERLAY OF	FOR FIFTH OVERLAY OF WING-EMPENNAGE	FOR SIXTH OVERLAY OF	PRUGRAM FOR SECOND OVERLAY OF WING-EMPENNAGE MODULE	FOR	FOR FUURTH OVERLAY OF	FOR SEVENTH OVERLAY OF	FOR EIGHTH OVERLAY OF	PROGRAM FOR FINAL OUTPUT MODULE (WEIGHT SUMMARY)	- STATISTICAL WEIGHT ESTIMATE	IDESIGN DATA PUNCHIPRINT FUN	PIVOT SYNTHESIS AND WEIGHT	T SYNTHESIS AND WEIGHT	×	URE AT ALTITUDE	TOTAL SURFACE WEIGHT SYNTHESIS CONTROL
OVERLA	70	400	11	12	12	15	15	07	12	16	16	0 !	0	05	07	05	3	03	80	50	10	14	15	16	17	18	13	12	17	60	18	07	03	60
DECK NAME	7	MAXLDS	MFCNTL	MINFR	MINMUM	MISCIT	MISCNI	MISCOM	MISCHI	MILCE	MILE		NACELE	NACGEO	NCLGEO	NOSGEO	CLAYOO	OLAY3	OLAY8	OLAY9	OLAY10	OLAY14	OLAY15	OLAY16	OLAY17	OLAY18	OUTPUT	PARTIT	PINTO	PIVOT	PIVOT	REC	PRESH	2

TABLE 3. ALPHABETIC LIST AND DESCRIPTION OF SWEEP ROUTINES (CONT)

Y DESCRIPTION	DESIGN DATA PRINT-TYPE A TURUUE-BUX SYNTHESIS SUMMARY	DATA PRINT-TYPE & SECTION DESIGN DETAIL	DATA PRINT-TYPE B SECTION DESIGN DETAIL	PRINT-DETAIL SYNTHESIS SEARCH D	PRINT-TYPE C SECTION DESIGN	NI-TYPE C SECTION DESIGN DET	WEIGHT SUMMARY PRINT	WING, HOV GEUMETRY DATA PRINT	-TYPE H	DATA PRINT-IYPE A C-SEC/PIVOT DESIGN	S	PRINT OPERATIONAL WEIGHT EMPTY AND EXPEND. USEFUL LOAD		DETERMINE CRITICAL DYNAMIC PRESSURE FOR PANEL FLUTTER	MACH. LOC.PRESH.	N DYNAMIC PRESH. CORRECTED FOR COMPRES.	ů	OPERTIES FOR 2 I	KAM FUK INPUT DATA PRUCESS	RIB AND SHEAR TIE WEIGHT EVALUA	18 AND SHEAR	OF SECONDARY STRUCTURE	E-BOX SECTION SYNTHESIS-SEARCH LEVEL 1 C	. FOR COMPOSITE IN	EVEL 2 CONTROL	CRITICAL STRES	AS FUNCTION OF ALTI	PENN. SPANWISE SH-E	0	P. AND PRESS. FUR 9 PT.	KES BY STATISTICAL EQUATIO	FUSELAGE PRINT	IB T-WEB EVALUATION	S-STRAIN CURVE EVALUATION AT GIVEN	STRESS-STRAIN CURVE EVALUATION AT GIVEN STRESS
OVERLAY	60	10	18	10	10	18	17	80	60	18	15	05	70	11	03	03	02	6	01	10	18	12	10	=	10	10	60	04	07	77	70	12	2	01	91
DECK NAME	PRIA	PRTB	PRTB	PRTBK	PRIC	PRIC	PRTD	PRIG	PRIH	PRIH	PRTM	PRIOME	PYLONS	OCRIT	CINC	OSUB	QUIKIE	KAMPS	KEAD	KIKIB	RTRIB	SECOST	SECTD	SFUAWE	SFSCH	SKWEB	SOLARG	SPABM	SPAL	SPDALT	SPIKE	SPRINT	SRRIB	25	252

TABLE 3. ALPHABETIC LIST AND DESCRIPTION OF SWEEP ROUTINES (CONT)

• - • - DESCRIPTION - •

DECK NAME OVERLAY -

TOTAL COVER/SUPT STRUCTURE I-BAR EVALUATION STRINGER/CAP OPT MATL DIST/GEOMTRY EVALUATION STRINGER/CAP GEOMETRY/BOUNDARY INITIALIZATION RIB I-BAR SYNTHESIS AND CONTROL STRINGER COLUMN LENGTH EVALUATION AND COMTROL	SUMMARIZE AIS WEIGHTS AND C.G.S AND PRINT SUMMARIZE WEIGHTS AND DETERMINE C.G.DATA INTERPOLATED FLUTTER PARAMETER FOR EACH SURFACE EVALUATION OF X.Y COORD. OF ROTATED POINT FUEL/TORQUE-BOX WEIGHT INTEGRATION FUEL/TORQUE-BOX WEIGHT INTEGRATION	RATURE OF BOUNDARY LAYE TOROUE-BOX WEIGHT OPTIVE BOX SECTION GEOMETRY ING EUGH DEVICE WEIGHT DESIGN/SYNTHESIS DATA DESIGN/SYNTHESIS DATA	DESIGN/SYNTHESIS DATA TEMPERATURE AT ALTITUD AL PROPERTIES EVAL FOR IL SKIN TEMP. ITTERATIO KESSUKE EVAL PRUGRAM A ATURE AND PRESSUKE FUK GHT/DISTRIBUTION EVALU ICE WEIGHT/DISTRIBUTIO ILEVEL 3 CONTROL—OPTI	TOTAL TEMPERATURE FUNC. MACH AND LOGAL TEMP. WING AND EMPENNAGE UNIT AIRLOAD DISTRIBUTIONS SECTION TORSIONAL STIFFNESS REGMT EVALUATION ULTIMATE NET DESIGN LOADS PROCESSING ULTIMATE NET DESIGN LOADS PROCESSING
00000	A 7 B B N 7 (W V 80 4 V 30 V		0 W C D M
STBAR STRG STRGO STRIB STRIL STWEB	Z Z HX B B	18CP 1 18OP 1 18OP 1 18WDC 1EE 1EE 1EE 1EE 1EE	TEL TEMALT TEMPC TEMPE TEMPR TEWT TEWT TPINT	TTO USPAN VFCAL VLOAD

TABLE 3. ALPHABETIC LIST AND DESCRIPTION OF SWEEP ROLLINES (CONCL.)

Y DESCRIPTION	RUTATED SURFACE PLANFURM GEOMETRY EVALUATION	CONTROL FOR WEIGHT ESTIMATION OF CONTENTS	DESIGN DATA GENERATION CONTROL	INITIAL DIST. OF OPER. WT. EMPTY TO COMPONANTS	WT/INCH FOR AD	WI/INCH FUR	MASS/DESIGN DATA CALC/OUTPUT FOR FLEX LOADS PROGRAM	DEVELOP GEOMETRY OF WING, HORIZUNTAL AND VENTICAL	TEMP. VS. COMPRESSION YIELD STRESS AND SHEAR MODULUS	NORMALIZING FACT. AND NET LOADS. SAVES FOR WHY MODULE	CONTROL FOR CUMPRES. CURRECTION FUR 4. SHEAR MUDULUS	LEADING EUGE - TRAILING EUGE WEIGHT ESTIMATION CONTRUL	WEIGHT DISTRIBUTION FOR WING IND CONTENTS.	WING, HIV ANALYSIS OUTPUT DATA CONTROL	SECTION/PANEL WEIGHT EVALUATION AND CONTROL	WEIGHT EVALUATION	OTENT	LION	EIGHT!	MASS/DESIGN DATA CALC. FOR FLUTTER OPT. PRUGRAM	EVALUATION OF NO. OF N-PLIES FOR GIVEN L.M PLIES	EFFECTIVE BOX DEPTH INITIALIZATION
OVERLAY	80	15	16	02	18	18	17	05	03	70	03	14	05	17	10	18	12	10	18	17	18	16
DECK NAME	VSGEUM	MCONT	WDDATA	WE IDST	WE IGHI	WE IGHZ	WFLDD	WHVGEO	MHVMAT	MHVNET	SHACE	WLETE	WNGDST	WODATA	WTCAL	WTCAL	WTDIST	RIGIB	MIDIN	WVFDD	XX	YBSET

Section III

PROGRAM OPERATION

As an integrated engineering program, SWEEP requires three types of external data: (1) an input data set that is used to describe the design problem, (2) a data bank compilation of engineering data from which necessary design information can be drawn, as required, and (3) an input set of program analysis control words. The modules of SWEEP logically interpret the problem design information, convert them into engineering data, and order the results properly for all the evaluation routines. Mass storage files are used to transmit design information from design data modules to the weight analysis modules, which perform the necessary structural synthesis/weight analysis so that the primary result is a set of weight estimates for the major structural components.

INPUT ARRANGEMENT

Figure 3 shows a typical input card deck setup for a SWEEP run. This arrangement assumes that all SWEEP routines are stored in object form as the first file of a tape by the use of the COPYLIB operation. Also, that the second file of that tape is the permanent data stored in card image format. Figure 4 shows the sequential order of the data bank data deck. This set is used to create the permanent data file and, subsequently, TAPE7.

PERMANENT DATA BANK DECK

The permanent data bank deck, Figure 4, consists of the following:

- 1. Aerodynamic data for loads
- 2. Spectrum data for fatigue
- 3. Weight analysis constants and index factors
- 4. Flutter and temperature constants
- 5. Weight constants and data for initial weight distribution
- 6. Airfoil description
- 7. Material property descriptions

Records in this data bank are used to initialize mass storage, file, design data records for use by the different program modules. A description of these records is presented in Table 4.

Figure 4. SWEEP permanent data bank data deck setup and mass storage file initialization.

TABLE 4. PERMANENT DATA BANK DATA DESCRIPTIONS

Array Name and Size	Record No.	Description
DT(56)	1	Aerodynamic data (refer to Vol III)
DB(853)	2	Subsonic aerodynamic data (refer to Vol III)
DF(146)	3 4 5	Deflected flap data (refer to Vol III)
DP(734)	4	Supersonic aerodynamic data (refer to Vol III)
DS(288)		Blocked mission segment data (refer to Vol III)
DE(340)	6	Maneuver load factor spectra data (refer to Vol III)
DI (60)	7	Taxi load factor spectra data (refer to Vol III)
DG(72)	8	Turbulence field parameters (refer to Vol III)
DR(109)	9	Gust response factors (refer to Vol III)
D(2060)	23	Wing design data (refer to Vol VI)
D(2060)	26	Horizontal tail design data (refer to Vol VI)
D(2060)	27	Vertical tail design data (refer to Vol VI)
D(2000)	24	Fuselage design data (refer to Vol VII)
D(116)	25	Landing gear design data (refer to Vol V)
D(2000)	28	Air induction system, nacelle, and engine section design data (refer to Vol V)
DATA (312)	12	Flutter and temperature data (refer to Vol IV)
D(1606)	11	Design data for data management module (refer to Vol II)
DAF(500)	36	Airfoil data (refer to Vol VI)
GJDAT (100)	37	T-tail flutter constants (refer to Vol VI)
TMD(300)	41-60	Material properties data (refer to Vol IV)

CASE DATA CARD DECK

The first two cards in the input data deck for each case are title cards. 80 alphanumeric characters may be written on each card.

Control card 1 follows the two title cards. This card contains the optional output print indicators. These indicators are shown in Table 5.

Control card 2 follows control card 1. This card contains the airloads module indicators in columns 1 through 38, wing and empennage construction indicators in columns 39 through 44, program flow controls in columns 71 through 79, and an initialization indicator in column 80. Descriptions of these controls and indicators are shown in Table 6.

Data decks follows control card 2. The first card in each data deck must contain one of the identification titles shown in the following in columns 1 through 10. Columns 11 through 80 are not read by the program, and therefore may be used for deck identification or comments by the program user.

1	2	3	4	5	6	7	8	9	10
G	E	N	E	R	A	L			
_	_	N	_	•	•	_			
Н	0	R	I	Z	0	N	T	A	L
V	E	R	T	I	C	A	L		
F	U	S	E	L	A	G	E		
L	G								
A	I	S							
F	A	T	I	G	U	E			
W	H	V		L	0	A	D	S	
F	U	S		L	0	A	D	S	
I	N	E	R	T	I	A			

The remaining cards contain numeric data which are read and processed based on a relative address for the field data on each card (Figure 5). The last card of each data deck has a minus sign (-) punched in card column 1. Usage matrix of these data checks is shown in Table 7. Detail discussions of variables in these decks are presented in Volumne IV, Users' Manual.

The last card in the case data deck has "EXECUTE" punched in columns 1 through 7. Columns 8 through 10 on this card must be left blank.

TABLE 5. CASE CONTROL CARD 1 - PRINT INDICATORS

Control Card 1 Column	a		
(IP loc)	Routine	Overlay	Description
1	READ	(1,0)	Permanent data, first case only
2	READ	(1,0)	Case data
3	CCNTL	(8,0)	WD array, some of D-array before data transfer, total D-array, SPAL array (record 38)
4	GEOMC	(8,0)	YC, YTC, and TAF arrays
5	DMAX ABOXC TBWDC	(8,0) (8,0) (8,0)	Values from YIC, YC, and TAF arrays Values from YIC and TT arrays Title for DMAX print
6	PRTG(GEOMW)	(8,0)	Detail geometry
7	GEOMW PRTG VSGEOM	(8,0) (8,0) (8,0)	TCJ array TXY array - only when IP(6) also = 0 TVS array
8	CTOT 1 GCNTL LEWT TEDEV TEWT TEWT I	(14,0) (14,0) (14,0) (14,0) (14,0) (14,0)	TT(1), TT(2), and YC array Title for CTOT1 print
9	GCNTL	(14,0)	TG and TGA arrays
10	LETE I	(14,0)	TCS, TWG, CLEI, and CTEI arrays
11	LEWT TEWT TEWTI	(14,0) (14,0) (14,0)	TGR, TST, CCI, CCL, and CCW arrays CCW, CCT, and TE arrays TGR, TST and CCI arrays
12	WLETE	(14,0)	Leading and trail edge weight and loads summary
13	MISCNT PRTM(MISCIT)	(15,0) (15,0)	Detail - CCI, TST, and TGR arrays Detail - CCI, TST, TGR, and TCS arrays
14	MISCNT PRIM(MISCIT)	(15,0) (15,0)	Summary - CMII and TMVT arrays Summary - TCS and CCI arrays

TABLE 5. CASE CONTROL CARD 1 - PRINT INDICATORS (CONT)

Control Card 1 Column (IP loc)	Routine ^a	Overlay	Description
15	CLOT2 MISCNT MISCIT CDL FDIS	(15,0) (15,0) (15,0) (15,0) (15,0)	TT(1), TT(2), and YC array Title for CTOT2 print Title for CTOT2 print Title for CTOT2 print Title for CTOT2 print
16	CDL TBFWI1	(15,0) (15,0)	TGR and TCS arrays CCI and TCS arrays
17	FDIS	(15,0)	CCI, TST, TCS, TWG, and TVMT arrays
18	FDIS	(15.0)	Fuel distribution summary
19	MTLPW(MILCW) TEMPC	(16,0) (18,0)	Torque Lox and pivot material properties Material properties for advanced composites
20	ALOAD ACLOAD	(16,0) (18,0)	Limit airloads and scaling ratios ACL array
21	ABDW	(16,0)	Initial deadweight distribution
22	GJCAL GJTT	(16,0) (16,0)	Flutter analysis values, GJ and J comparison Design GJ values T-tail GJ values
23	WDDATA	(16,0)	T and CD arrays
24	VLOAD1 DEADW	(16,0) (9,0)	Initial design loads, required GJ Deadweight summary and adjustment results, for NODW > 1
	DWYBA	(9,0)	Deadweight and Y-bar adjustment values, for NODW > 1
	VLOAD	(9,0)	Design loads and required GJ, for NODW > 1
	DEADW	(18,0)	Deadweight summary and adjustment results, for NODW > 1
	DWYBA	(18,0)	Deadweight and Y-bar adjustment values, for NODW > 1
	AVLOAD	(18,0)	Design loads, required GJ, loads at each condition

TABLE 5. CASE CONTROL CARD 1 - PRINT INDICATORS (CONT)

Control Card 1 Column (IP loc)	Routine ^a	Overlay	Description
(11 100)	NOGETINE .	Over14,	203011pt10i.
25	DEADW	(9,0)	Deadweight summary and adjustment results, for NODW=1
	DWYBA	(9,0)	Deadweight and Y-bar adjustment values, for NODW=1
	VLOAD	(9,0)	Design loads and required GJ, for NODW=1
	DEADW	(18,0)	Deadweight summary and adjustment results, for NODW=1
	DWYBA	(18,0)	Deadweight and Y-bar adjustment values, for NODW=1
	AVLOAD	(18,0)	Design loads, required GJ, loads at each condition, for NODW=1
26	DLPVT	(9,0)	TW array
	PIVOT	(9,0)	Pivot values
	DLPVT	(18,0)	TW array
	PIVOT	(18,0)	Pivot values
27	PRTA (TBOPT)	(9,0)	Design synthesis and weight distribution summary, for NODW >1 and DGW=2
	ACPRTA (ATBOPT)	(18,0)	Design synthesis and weight distribution summary, for NODW >1 and DGW=2
28	PRTA(TBOPT)	(9,0)	Design synthesis and weight distribution summary, for NODW >1 and DGW=1,3
	ACPRTA (ATBOPT)	18,0)	Design synthesis and weight distribution summary, for NODW >1 and DGW=1,3
29	PRTA(TBOPT)	(9,0)	Design synthesis and weight distribution summary, for NODW=1 and DGW=2
	PRTH (TBOPT)	(9,0)	Pivot and center section analysis values, for NODW=1 and DGW=2
	ACPRTA (ATBOPT)	(18,0)	Design synthesis and weight distribution summary for NODW=1 and DGW=1,2,3
	PRTH(ATBOPT)	(18,0)	Pivot and center section analysis values, for NODW=1 and DGW=1,2,3
30	PRTA(TBOPT)	(9,0)	Design synthesis and weight distribution summary, for NODW=1 and DGW=1,3
	PRTH(TBOPT)	(9,0)	Pivot and center section analysis values, for NODW=1 and DGW=1,3

TABLE 5. CASE CONTROL CARD 1 - PRINT INDICATORS (CONT)

Control Card 1 Column (IP loc)	Routine ^a	Overlay	Description
31	PRTB (CNSTR) PRTC (CNSTR) PRTB (ACNSTR) PRTC (ACNSTR) ACNSTR ASTIFF	(10,0) (10,0) (18,0) (18,0) (18,0)	Synthesis details, for DGW=2 Weight analysis details, for DGW=2 Synthesis details, for DGW=2 Weight analysis details, for DGW=2 DDUC, DDLC, DDIS, DDFS, DDRS, and DDSTR arrays, for DGW=2 CD array, for DGW=2
32	PRTB(CNSTR) PRTC(CNSTR) PRTB(ACNSTR) PRTC(ACNSTR) ACNSTR ASTIFF	(10,0) (10,0) (18,0) (18,0) (18,0)	Synthesis details, for DGW=1,3 Weight analysis details, for DGW=1,3 Synthesis details, for DGW=1,3 Weight analysis details, for DGW=1,3 DDUC, DDLC, DDIS, DDFS, DDRS, and DDSTR arrays, for DGW=1,3 CD array, for DGW=1,3
33	PRTBK(STRG) PRTBK(TSCH)	(10,0) (10,0)	Checkout print, requires data indicators Checkout print, requires data indicators
34	WVFDD TBFWI	(17,0) (17,0)	TCS and CCDLI arrays TCS and CCI arrays
35	CTOT WVFDD WFLDD	(17,0) (17,0) (17,0)	TT(1), TT(2), and YC array Title for CTOT print Title for CTOT print
36	WODATA	(17,0)	Surface inertia summary
37	PRTD	(17,0)	Detail weight and coefficient summaries
38	WODATA	(17,0)	WCG, CTBW, CTBI, CLEI, CTEI, CMII, CFL1I, CFL2I, CCDLI, CIOY, and CCI arrays
39	not used	:	
40	OLAY00	(0,0)	Case title and module identification
41	WHVMAT WHVQQ SVFTAB	(3,0) (3,0) (3,0)	Stress vs temperature tables Compressible dynamics pressure values Flutter parameter vs mach number
42	SPDALT	(2,0)	Speed-altitude profile tables
43	DSGNPR	(2,0)	Speed profile design factors .

TABLE 5. CASE CONTROL CARD 1 - PRINT INDICATORS (CONT)

Control Card 1 Column (IP loc)	Routine ^a	Overlay	Description
44	QUIKIE	(2,0)	S-array
45	AVDINR	(2,0)	RT, RW, RH, RV, RA, and RO arrays
46	PRTOWE	(2,0)	Weight empty breakdown, expendable
10	(DATAIN)	(2,0)	useful load
47	DATAIN DMAXLD	(2,0) (2,0)	BC array Estimated shear, bending moment, and torque
	DCCNTL	(2,0)	WD array
48	AVDATA	(2,0)	S-array
49	DATAIN	(2,0)	Common at end of Data Management
50	BNLDS	(4,0)	Body loads
51	SPABM	(4,0)	Shear, bending moment, and torsion moment
52	USPAN	(4,0)	Airload distribution factors
53	WHVNET	(4,0)	Design loads and ratios
54	BLCNTL	(4,0)	Temperature and stress for 23 load con- ditions, design temperature and load conditions, maximum net bending moments for fatigue
55	FATMG	(4,0)	Fatigue spectra
56	FATGUE	(5,0)	Bending moment spectra input
57	FATIGU FTGCTL	(5,0) (5,0)	Damage table, calc life, etc "FATIGUE" input values
58	FATIGU	(5,0)	Intermediate values, iteration trace
59	LANDGR	(6,0)	Landing gear input data
60	LGEAR	(6,0)	Landing gear loads
61	AISMN	(7,0)	AIS system input data
62	SPAL	(7,0)	Speed-altitude profile tables
63	MATLP2 (MCNTL1)	(7,0)	Duct, ramp and nacelle material properties

TABLE 5. CASE CONTROL CARD 1 - PRINT INDICATORS (CONCL)

Control Card 1 Column	a		
(IP loc)	Routine ^a	Overlay	Description
64	MCNTL1	(7,0)	TMS array
65	DSGNP	(7,0)	Speed profile design factors
66	PRECRT	(7,0)	Ramp design conditions
67	RAMPS	(7,0)	Built-in parameters, reaction forces and weights
68	FRMELD	(7,0)	Duct frame data
69	DUCTS	(7,0)	Duct frame data and duct geometry - section data
70	NACELE	(7,0)	Nacelle geometry - section data
71	FUSLD	(11,0)	Puselage loads and inertia data
72	MATLP1 (MFCNTL)	(11,0)	Cover, longeron, major and minor frames material properties
73	MFCNTL	(11,0)	TMS array
74	FUSLD DUMNY1	(11,0) (11,0)	Loads array Input and corrected data
75	FFRME FRMND1	(11,0) (11,0)	External frame loads details Fuselage shape details
76	SFOAWE FRMLD	(11,0) (11,0)	Frame synthesis details Segment loads details
77	FFRME	(11,0)	Major frames detail weights
78	MINFR	(12,0)	T-array
79	FUSSHL	(12,0)	T-array
80	SPRINT	(12,0)	Details - Construction indicators, basic vehicle data, secondary structure, shell and section values

^aRoutine in which the corresponding IP element is tested and printing is done. If a second routine name appears in parenthesis as PRTG(GEOMW), this indicates that PRTG is strictly a print routine and the indicator is used in GEOMW to call or not call PRTG.

TABLE 6. CASE CONTROL CARD 2 INDICATORS

Control Card 2 Column	Labeled Common Location	Description
1-2	XMISC(51)	Air vehicle class indicator 01 = fighter (F) 02 = attack (A) 03 = tactical bomber (BI) 04 = strategic bomber (BII) 05 = cargo assault (CA) 06 = cargo transport (CT)
3-4	XMISC(52)	Wing-type indicator -1 = fixed wing 01 = variable-sweep wing
5-6	XMISC(53)	Vertical tail-type indicator -1 = single tail 00 = dual tail 01 = T-type tail
7-8	XMISC(54)	Load calculation option indicator -1 = calculate basic loads only 00 = calculate fatigue spectra only 01 = calculate both basic loads and fatigue spectra
9-10	XMISC(55)	Total vehicle load calculation control 01 = compute all loads (fuselage, wing, horizontal tail, vertical tail) 00 = compute loads as indicated by controls in columns 11 through 18
11-12	XMISC(56)	Fuselage load calculation indicator 01 = compute 00 = do not compute
13-14	XMISC(57)	Wing load calculation indicator 01 = compute 00 = do not compute
15-16	XMISC(58)	Horizontal tail load calculation indicator 01 = compute 00 = do not compute

TABLE 6. CASE CONTROL CARD 2 INDICATORS (CONT)

Control Card 2 Column	Labeled Common Location	Description
17-18	XMISC(59)	Vertical tail load calculation indicator 01 = compute 00 = do not compute
19-20	XMISC(60)	Load conditions 1 through 5 calculation indi- cator (positive maneuver conditions) 01 = compute 00 = do not compute
21-22	XMISC(61)	load conditions 6 and 7 calculation indicator (negative maneuver conditions) 01 = compute 00 = do not compute
23-24	XMISC(62)	Load condition 8 calculation indicator (flaps down, maneuver condition) 01 = compute 00 = do not compute
25-26	XMISC(63)	Load condition 9 calculation indicator (flaps down, landing) 01 = compute 00 = do not compute
27 - 28	XMISC(64)	Load conditions 10 through 13 calculation indicator (positive vertical gust conditions) 01 = compute 00 = do not compute
29-30	XMISC(65)	Load conditions 14 through 17 calculation indicator (negative vertical gust conditions) 01 = compute 00 = do not compute
31-32	XMISC(66)	Load conditions 18 and 19 calculation indi- cator (lateral gust conditions) 01 = compute 00 = do not compute

TABLE 6. CASE CONTROL CARD 2 INDICATORS (CONT)

Control Card 2 Column	Labeled Common Location	Description
33-34	XMISC(67)	Load conditions 20 and 21 calculation indi- cator (pitching acceleration conditions) 01 = compute 00 = do not compute
35-36	XMISC(68)	Load conditions 21 and 23 calculation indi- cator (yawing acceleration conditions) 01 = compute 00 = do not compute
37-38	XMISC(69)	Wing fatigue spectra calculation indicator -1 = compute gust and maneuver spectra 01 = compute gust spectra only
39-40	IFL(11)	Wing construction indicator 00 = metal structure 01 = advanced composite structure
41-42	IFL(12)	Horizontal tail construction indicator 00 = metal structure 01 = advanced composite structure
43-44	IFL(13)	Vertical tail construction indicator 00 = metal structure 01 = advanced composite structure
45-70		Not used
71	IFL(1)	Airloads module execution control 0 = execute 1 = do not execute
72	IFL(2)	Wing execution control for wing and empennage module 0 = execute 1 = do not execute
73	IFL(3)	Fuselage module execution control 0 = execute 1 = do not execute

TABLE 6. CASE CONTROL CARD 2 INDICATORS (CONCL)

Control Card 2 Column	Labeled Common Location	Description
74	IFL(4)	Landing gear module execution control 0 = execute 1 = do not execute
75	IFL(5)	Horizontal tail execution control for wing and empennage module 0 = execute 1 = do not execute
76	IFL(6)	Vertical tail execution control for wing and empennage module 0 = execute 1 = do not execute
77	IFL(7)	Air induction system module execution control 0 = execute 1 = do not execute
78	IFL(8)	Fatigue module execution control 0 = execute 1 = do not execute
79	IFL(9)	Final output module execution control 0 = execute 1 = do not execute
80	IFL(10)	File initialization control for subsequent cases (not applicable for first case) 0 = leave files as they exist and update with input data 1 = reinitialize data files (mass storage file records 1-9, 11, 12, 17, 21, 23-29, 32-34, 36-38, and 41-60) from TAPE7

7				73 80,	2 0 1 0 0 0 1 0	
1.3	7 1 1 6 5	2.5	17453	0 0	0 0	
-	Ū.	\$2	3.4	49	ق	

Figure 5. Relative read data card format.

Data Sheet

TABLE 7. USAGE MATRIX OF INPUT DATA DECKS

Data Deck	Mass Storage	2.443		
arir	rile kecora	MOGITE	Component	Description
GENERAL	п	Data management	Vehicle	Vehicle geometry and design data
	24ª	Fuselage	Fuselage	Fuselage geometry
	28a	Air induction system	Nacelles, ducts, and engine section	Nacelle, ducts, and engine section design data
	S	Airloads	Vehicle	Blocked mission segments
WING	23	Wing and empennage	Wing	Wing design data
HORIZONTAL	26	Wing and empennage	Horizontal tail	Horizontal tail design data
VERTICAL	27	Wing and empennage	Vertical tail	Vertical tail design data
FUSELAGE	24 ^a	Fuselage	Fuselage	Fuselage design data
971	25	Landing gear	Landing Gear	Landing gear design data
AIS	28 ^a	Air induction system	Nacelles, ducts, and engine section	Nacelle, ducts, and engine section design data
FATIGUE	59	Fatigue	Wing and fuselage	Fatigue design data
	35	Fatigue	Wing	Wing bending moment spectra
WHV LOADS	32	Wing and empennage	Wing, horizontal tail, and vertical tail	Surface loads data

TABLE 7. USAGE MATRIX OF INPUT DATA DECKS (CONCL)

Data Deck Title	Mass Storage File Record	Module	Component	Description
FUS LOADS	33	Fuselage	Fuselage	Vehicle airload, center-of- pressure, and inertia factor data
INERTIA	34	Fuselage	Fuselnge	Vehicle and component weight distributions and speed- altitude profile data
Some of the data decks, records whe	Some of the data in the "GEN data decks. The values in t records whenever the general	JENERAL" data deck duplinthe "GENERAL" data decreta	icate data required in t ck are transfered to the	^a Some of the data in the "GENERAL" data deck duplicate data required in the "FUSELAGE" and "AIS" data decks. The values in the "GENERAL" data deck are transfered to the fuselage and AIS data file records whenever the general data are read.

OPERATING CONSIDERATIONS

Problem definition and program controls require coordination between case control card 2 instructions and design data decks. The SWEEP main control program starts by calling the input data processing module. Program execution requirements through the design data development, weight analysis, and output module are shown in Table 8. This table presents minimum and optional execution requirements which can be employed for the range of problem modes. Definition of all user input variables is presented in Volume IX. User's Manual.

INITIALIZATION AND COMPUTATION

The SWEEP control program controls the execution of the problem. It occupies the main level of the overlay system and monitors the logic flow through initialization of data, design data development, weight analysis, and output.

INPUT DATA PROCESSING

The input data processing module organizes the data bank data and input variable design data in mass storage file records at the start of each problem case. A complete list of SWEEP mass storage file records is shown in Table 9. Computational flow instructions from case control cards 1 and 2 and certain key variables from the input design data are stored in labeled common locations. Labeled common block IFLOW indicators are shown in Table 10. Program definition and usage of the labeled common block MISC are shown in Table 11.

DESIGN DATA DEVELOPMENT

The design data development modules interpret input vehicle design specifications and geometry data and compute detail design data for use in evaluating the structural components. Modules programmed for design data development are:

- 1. Data management module, overlay (2,0)
- 2. Flutter and temperature module, overlay (3,0)
- 3. Airloads module, overlay (4,0)
- 4. Fatigue module, overlay (5,0)

TABLE 8. LOGIC AND DATA REQUIREMENTS FOR EXECUTION OF SWEEP MODULES

	Indicator a Data De		
Module	Control Card 2 Column	Data Deck	Discussion
Data management	None	GENERAL	Data management and flutter and temperature modules are executed in each case in which "GENERAL" is read
Flutter and temperature	None	GENERAL	This module uses speed-altitude profile and geometry data from the data management module
Airloads	71	GENERAL	This module requires data from the data management module from the same case or a previous case. Detail execution controls are in control card 2 columns 1 through 38.
Fatigue	78	FATIGUE	This module may be executed as a stand-alone program or with spectrum data created by the airloads module.
Landing gear	74	LG	This module may be executed as a stand-alone program or with design data from the data management module.
Air induction system	77	AIS	This module may be executed as a stand-alone program. If "GENERAL" data are part of the input case data, certain variables are transferred to the "AIS" data record.

TABLE 8. LOGIC AND DATA REQUIREMENTS FOR EXECUTION OF SWEEP MODULES (CONCL)

	Indicator a Data De	•	
Module	Control Card 2 Column	Data Deck	Discussion
Wing and empennage (wing)	39-40, 72	WING	This module may be executed as a stand-alone program. Loads may be defined either in the 'WING' deck, the 'WHV LOADS' deck, or by the airloads module. Flutter data may be defined in the 'WING' deck or obtained from the flutter and temperature module.
Wing and empennage (horizontal tail)	41-42, 75	HORIZONTAL	Refer to wing discussion.
Wing and em_mennage (vertical tail)	43-44, 76	VERTICAL	Refer to wing discussion
Fuselage	73	FUSELAGE	This module may be executed as a stand-alone program. If "GENERAL" data are part of the input case data, certain variables are transferred to the "FUSELAGE" data record. Inertia and loads data may be obtained through execution of the data management, flutter and temperature, and airloads module or by input of the "INERTIA" and "FUS LOADS" decks.
Final output	79	GENERAL	This module requires data from the data management module from the same case or a previous case

TABLE 9. SWEEP PROGRAM MASS STORAGE FILE RECORDS

	Description	Permanent file aerodynamic desa	Permanent file subsonic aero data	Permanent file deflected flap data	Permanent file supersonic aero data	Permanent file or input blocked mission segment tables	Permanent file maneuver load factor spectra	Permanent file taxi load factor spectra	Permanent file turbulence field parameter	Permanent file gust response factors
	Overlay	(4,0)	(4,0)	(4,0)	(4,0)	(1,0) (4,0)	(4,0)	(4,0)	(4,0)	(4,0)
Read	Routine	BLCNTL	BLCNTL	BLCNTL	BLCNTL	READ FATMG	FATIMG	FATMG	FATMG	FATMG
	Array Name & Size	DT(56)	DB(853)	DF(146)	DP(734)	D(288) DS(288)	DE(340)	DI (60)	DG(72)	DR(109)
	Source	TAPE7	TAPE7	TAPE7	TAPE7	TAPE7 and "GENERAL"	TAPE7	TAPE7	TAPE7	TAPE7
te	(horlay	(1,0)	(1,0)	(1,0)	(1,0)	(1,0)	(1,0)	(1,0)	(1,0)	(1,0)
Write	Routine	READ	READ	READ	READ	READ	READ	READ	READ	READ
	Array Name & Size	D(56)	D(853)	D(146)	D(734)	D(288)	D(340)	D(60)	D(72)	D(109)
	Record No.	1	2	3	4	. 2	9	7	∞	6

TABLE 9. SWEEP PROGRAM MASS STORAGE FILE RECORDS (CONT)

	Description	Geometry and design data for flutter requirement calculations	Input data set for data management module	Permanent file flutter and temperature data	Calculated torque-box stiffness data, gross weight 1	Calculated torque-box stiffness data, gross weight 2	Calculated torque-box stiffness data, gross weight 3	Not used
	Overlay	(16,0)	(1,0) (2,0) (13,0)	(3,0)		(17,0)		
Read	Routine	GJCAL	READ DATAIN OUTPUT	OLAY3		WVFDD		
	Array Name § Size	TGJ (200)	D(1606) D(1400) D(1400)	DATA (312)		යා(1401- 1800)		
	Source	Calculated TGJ(200)	TAPE7 and "GENERAL"	TAPE7	Calculated	Calculated CD(1401-1800)	Calculated	
Write	Overlay	(8,0)	(1,0)	(1,0)	(18,0)	(18,0)	(18,0)	
Wr	Routine	GEOW	READ	READ	ACPROG	ACPROG	ACPROG	
	Array Name & Size	TGJ (200)	D(1606)	D(312)	CD(400)	Œ(400)	CD(400)	
	Record No.	10	п	12	13	14	15	16

TABLE 9. SWEEP PROGRAM MASS STORAGE FILE RECORDS (CONT)

		Write	te			Read		
Record No.	Array Name § Size	Routine	Overlay	Source	Array Name § Size	Routine	Overlay	Description
17	RATIO (264)	READ	(1,0)	Initial- ized to 1.0	RATIO (264)	MHVNET	(4,0)	Load factor, temperature, and content normalizing factors
	RATIO (264)	MHVNET	(4,0)	Calculated RATIO (264)	RATIO (264)	ALOAD	(16,0)	
18	WLD(300)	GLYANG	(2,0)	Calculated WLD(300)	WLD(300)	BLCNTL	(4,0)	Wing and empennage inertia loads per unit load factor and wing net taxi loads data
19	īV(2320)	DATAIN	(2,0)	Calculated DV(2320)	DV(2320)	OUTPUT	(13,0)	Calculated variables from data management module
20								Not used
21	D(200)	READ	(1,0)	Initial- ized to	WD(200)	MAXLDS	(4,0)	Wing and empennage geometry and design data
	WD(200)	DCCNTL	(2,0)	Calculated WD(200)	WD(200)	CCNTIL	(8,0)	
22	BC(195)	DATAIN	(2,0)	Calculated BC(195) BC(195) EC(168)	BC(195) BC(195) EC(168)	OLAY3 BLCNTL WFLDD	(3,0) (4,0) (17,0)	Vehicle geometry and design data
23	D(2060)	READ	(1,0)	TAPE7 and "WING"	D(2060) D(2060)	READ	(1,0) (8,0)	Input wing design data

TABLE 9. SWEEP PROGRAM MASS STORAGE FILE RECORDS (CONT)

	Description	Input fuselage design data	Input landing gear design data	Input horizontal tail design data	Input vertical tail design data	Input air induction system and engine section design data
	Overlay	(11,0)	(1,0) (2,0) (6,0)	(1,0) (8,0)	(1,0) (8,0)	(1,0)
Read	Routine	READ FUS01	READ DIADGR LANDGR	READ CCNTL	READ CCNTL	READ AISMN
	Array Name & Size	D(2000) D(2000)	D(116) D(116) D(116)	D(2060) D(2060)	D(2060) D(2060)	D(2000) D(2000)
	Source	TAPE7, "GENERAL," and "FUS-	TAPE7 and "LG" Calculated	TAPE7 and "HORI - ZONTAL"	TAPE7 and "VERTI- CAL"	TAPE7, "AIS," and "GEN- ERAL"
te	Overlay	(1,0)	(1,0)	(1,0)	(1,0)	(1,0)
Write	Routine	READ	READ DLNDGR	READ	READ	READ
	Array Name § Size	D(2000)	D(116) D(116)	D(2060)	D(2060)	D(2000)
	Record No.	24	25	56	27	28

TABLE 9. SWEEP PROGRAM MASS STORAGE FILE RECORDS (CONT.)

	Description	Input fatigue design data	Design loads and loading condition data, advanced composite option	Ambient condition, temperature, and structural component material property data	Design airloads shear, moment, and torque data for wing and empennage	
	Overlay	(1,0) (5,0)	(18,0)	(4,0)	(1,0) (4,0)	(16,0)
Read	Routine	READ FATGUE	AVLOAD	BLCNTL	READ MHVNET	ALOAD
	Array Name & Size	D(2400) D(2400)	ACL (900)	SVF(180)	D(198) DUM(198)	SLD(198)
	Source	Initial- ized to 0.0., replaced by "FATIGUE"	Calculated ACL(900)	Calculated SVF(180)	Initial- ized to 0.0, replaced	LOADS" Calculated SLD(198)
a	Overlay	(1,0)	(18,0)	(3,0)	(1,0)	(4,0)
Write	Routine	READ	ACLOAD	OLAY3	READ	WHVNET
	Array Name § Size	D(2400)	ACL (900)	SVF(180)	D(198)	DUM(198)
	Record No.	53	30	31	32	

TABLE 9. SMEEP PROGRAM MASS STORAGE FILE RECORDS (CONT.)

	Description	Vehicle airloads, centers of pressure, and inertia factors	Vehicle and component weight, center of gravity, and pitch and yaw inertia and limit flight profile	Wing bending moment spectra data	Permanent file airfoil data
	Overlay	(1,0) (11,0)	(1,0) (11,0)	(2,0)	(8,0)
Read	Routine	READ FUSI_D	READ FUSILD	FATGUE	GECUM
	Array Name & Size	D(672) FUS(672)	D(480) FUSDWI (480)	DLMY (830)	DAF(500)
	Source	Initial- ized to 0.0, replaced by "FUS LOADS"	Initial- ized to 0.0 replaced by "INERTIA"	"FATIQUE" Calculated	TAPE7
te	Overlay	(1,0)	(1,0)	(1,0)	(1,0)
Write	Routine	READ FUSNET	READ	READ FATMG	READ
	Array Name § Size	D(672)	D(480) FUSDWI (480)	DUMAY (830) DUMAY (830)	D(500)
	Record No.	33	34	35	36

TABLE 9. SWEEP PROGRAM MASS STORAGE FILE RECORDS (CONT)

	Description	Permanent file T-tail flutter data	Speed-altitude profile and wing and empennage flutter design data			Scratch storage and normalizing factors, advanced composite option	Scratch storage and torque-box stiffness data, advanced composite option
	Overlay	(3,0)	(2,0)	(3,0)	(17,0)	(18,0)	(18,0) (18,0)
Read	Routine	MFNQQ	DMHVQQ	MHVQQ	WODATA	ACPROG	ACPRTA ATBOPT
	Array Name & Size	GJDAT (100) GJDAT (100)	SPAL (50)	SPAL(50) T(1001- 1050)	DUMNY (50)	RLDS (132)	CD(400) CD(400)
	Source	TAPE7	Initial- ized to 0.0	Calculated SPAL(50) Calculated T(1001-1050)	Calculated DUMNY (50)	Calculated	Calculated (D(400)
te	Overlay	(1,0)	(1,0)	(2,0 (3,0)	(17,0)	(18,0)	(18,0)
Write	Routine	READ	READ	DWFIVQQ	WODATA	ACPROG	ACNSTR
	Array Name § Size	D(100)	D(50)	SPAL (50) SPAL (50)	(50)	RLDS (132)	Œ(400)
	Record No.	37	38			39	40

TABLE 9. SWEEP PROGRAM MASS STORAGE FILE RECORDS (CONT)

	Description	Permanent file material property data	Fuselage net design loads data for each of 24 load conditions	Fuselage structural component material property data for each of 24 load conditions	Nacelle and duct material property data at each of 9 flight profile points	Scratch design data block 1, torque box optimization point 1	Scratch design data block 2, torque box optimization point 1	Scratch design data block 3, torque box optimization point 1
	Overlay	(3,0) (5,0) (7,0) (16,0)	(11,0)	(11,0)	(7,0) (7,0) (7,0)	(0 ° 6)	(0,6)	(0,6)
Read	Routine	MHVMAT FTGCTL NCNTL1 MTLCW MFCNTL	FFRME LDCHK	SPOAWE LDCHK	PYLONS NACELE PRECRT	PROG TBOPT	TBOPT	TBOPT
The state of the s	Array Name § Size	TM(300) TMD(300) TMD(300) TMD(300) TMD(300)	S6(200) S6(200)	TMS(120)	TMS(180) TMS(180)	TSC(150) TSC(150)	TWT (150)	TSS(100)
	Source	TAPE7 Calculated	Calculated	Calculated TMS(120)	Calculated	Calculated Calculated	Calculated Calculated	Calculated TSS(100)
te	Overlay	(1,0) (5,0)	(11,0)	(11,0)	(2,0)	(9,0) (10,0)	(9,0) (10,0)	(9,0) (10,0)
Write	Routine	READ FIGCIL	FUSLD	MFCNTL	MCNTL1	PROG CNSTR	PROG CNSTR	PROG CNSTR
	Array Name & Size	TMF (300) TMD (300)	S6(200)	TMS(120)	TMS (180)	CD(150) TSC(150)	CD(150) TWT(150)	CD(100) TSS(100)
	Record No.	41-60	61-84	85-100	109- 117	118	119	120

TABLE 9. SWEEP PROGRAM MASS STORAGE FILE RECORDS (CONT)

	Description	Scratch design data block 4, torque-box optimization point 1	Scratch design data block 5, torque-box optimization point 1	Scratch design data block 1, torque-box optimization point 2	Scratch design data block 2, torque-box optimization point 2	Scratch design data block 3, torque-box optimization point 2	Scratch design data block 4, torque-box optimization point 2	Scratch design data block 5, torque-box optimization point 2	Scratch design data block 1, torque-box optimization point 3	Scratch design data block 2, torque-box optimization point 3
	Overlay	(0,6)	(0*6)	(0°6)	(0,6)	(0,6)	(0,6)	(0,6)	(0°6)	(0*6)
Read	Routine	TBOPT	TBOPT	PROG TBOPT	TBOPT	TBOPT	TBOPT	TBOPT	PROG TBOPT	TBOPT
	Array Name & Size	TC(340)	Œ(400)	TSC(150) TSC(150)	TWT (150)	TSS(100)	TC(340)	Œ(400)	TSC(150) TSC(150)	TWT (150)
	Source	Calculated TC(340)	Calculated Calculated	Calculated Calculated	Calculated Calculated	Calculated TSS(100)	Calculated Calculated	Calculated Calculated	Calculated Calculated	Calculated Calculated
te	Overlay	(9,0) (10,0)	(9,0) (10,0)	(9,0) (10,0)	(9,0) (10,0)	(9,0) (10,0)	(9,0) (10,0)	(9,0) (10,0)	(9,0) (10,0)	(9,0) (10,0)
Write	Routine	PROG CNSTR	PROG CNSTR	PROG CNSTR	PROG CNSTR	PROG CNSTR	PROG CNSTR	PROG CNSTR	PROG CNSTR	PROC CNSTR
	Array Name & Size	CD(340) TC(340)	(400)	CD(150) TSC(150)	CD(150) TWT(150)	Ф(100) TSS(100)	CD(340) TC(340)	(400) (1)	©(150) TSC(150)	CD(150) TWT(150)
	Record No.	121	122	123	124	125	126	127	128	129

TABLE 9. SWEEP PROGRAM MASS STORAGE FILE RECORDS (CONT)

	Description	Scratch design data block 3, torque-box optimization point 3	Scratch design data block 4, torque-box optimization point 3	Scratch design data block 5, torque box optimization point 3	Scratch design data block 1, torque-box optimization point 4	Scratch design data block 2, torque-box optimization point 4	Scratch design data block 3, torque-box optimization point 4	Scratch design data block 4, torque-box optimization point 4	Scratch design data block 5, torque-box optimization point 4	Scratch design data block 1, torque-box optimization point 5
	Overlay	(0,6)	(0,6)	(0,6)	(0°6)	(0,6)	(0,6)	(0*6)	(0,6)	(0°6) (0°6)
Read	Routine	TBOPT	TBOPT	TBOPT	PROG TBOPT	TBOPT	TBOPT	TBOPT	TBOPT	PROG TBOPT
	Array Name & Size	TSS(100)	TC(340)	CD(400)	TSC(150) TSC(150)	TWT(150)	TSS(100)	TC(340)	CD(400)	TSC(150) TSC(150)
	Source	Calculated TSS(100)	Calculated Calculated	Calculated Calculated	Calculated Calculated	Calculated TWT(150)	Calculated Calculated	Calculated Calculated	Calculated CD(400)	Calculated TSC(150) Calculated TSC(150)
te	Overlay	(9,0) (10,0)	(9,0) (10,0)	(9,0) (10,0)	(9,0) (10,0)	(9,0) (10,0)	(9,0) (10,0)	(9 , 0) (10 , 0)	(9,0) (10,0)	(9,0) (10,0)
Write	Routine	PROG CNSTR	PROG CNSTR	PROG	PROG	PROG CNSTR	PROG CNSTR	PROG CNSTR	PROG	PROG CNSTR
	Array Name & Size	CD(100) TSS(100)	CD(340) TC(340)	(400) (D)(400)	Œ(150) TŠC(150)	CD(150) TWT(150)	Ф(100) TSS(100)	© (340) TC(340)	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	CD(150) TSC(150)
	Record No.	130	131	132	133	134	135	136	137	138

TABLE 9. SWEEP PROGRAM MASS STORAGE FILE RECORDS (CONT)

	Description	Scratch design data block 2, torque-box optimization point 5	Scratch design data block 3, torque-box optimization point 5	Scratch design data block 4, torque-box optimization point 5	Scratch design data block 5, torque-box optimization point 5	Scratch design data, gross weight change	Geometry data, aero and struc- tural chord calculation	Geometry data, mass distribu- tion calculations	Geometry data, mass distribu- tion calculations	Weight distribution and inertia loads data
	Overlay	(0,6)	(0,6)	(0,6)	(0,6)	(0*6)	(17,0)	(17,0)	(17,0)	(17,0)
Read	Routine	TBOPT	TBOPT	TBOPT	TBOPT	PROG	WODATA	WODATA	WODATA	WODATA
	Array Name § Size	TMT (150)	TSS(100)	TC(340)	CD(400)	TSC(200)	TG(200)	TGA(135)	TG(300)	TGW(400)
	Source	Calculated TMT(150)	Calculated Calculated	Calculated Calculated	Calculated CD(400) Calculated	Calculated TSC(200)	Calculated TG(200)	Calculated TGA(135)	Calculated TG(300)	Calculated
te	Overlay	(9,0) (10,0)	(9,0) (10,0)	(9,0) (10,0)	(9,0) (10,0)	(0,6)	(8,0)	(15,0)	(15,0)	(15,0)
Write	Routine	PROG CNSTR	PROG CNSTR	PROG CNSTR	PROG CNSTR	PROG	CASE	WCONT	WCONT	WCONT
	Array Name & Size	CD(150) TWT(150)	CD(100) TSS(100)	CD(340) TC(340)	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	TSC(200)	YC(200)	TGA(135)	TG(300)	TGW(400)
	Record No.	139	140	141	142	143	144	145	146	147

TABLE 9. SWEEP PROGRAM MASS STORAGE FILE RECORDS (CONT)

		Write	te			Read	72		
Record No.	Array Name & Size	Routine	Overlay	Source	Array Name § Size	Routine	Overlay	Description	
148	CCW(50)	WCONT	(15,0)	Calculated CCW(50)	CCW(50)	WODATA	(17,0)	Weight summary data, leading and trailing edge structures	Ţ <u>.</u>
149	CLEI (150)	ELIETIM	(14,0)	Calculated	CLEI (150) CLEI (150)	WODATA WDDATA	(17,0)	Calculated mass distribution data, leading edge structures	T
150	CTEI (150)	WLETE	(14,0)	Calculated CTEI (150) CTEI (150)	CTEI (150) CTEI (150)	WODATA	(17,0)	Calculated mass distribution data, trailing edge structures	<u> </u>
151	CFL11 (150)	WCONT	(15,0)	Calculated	CFL11 (150)	WODATA	(17,0)	Calculated mass distribution data, fuel cell 1	
152	CFL21 (150)	MCONI	(15,0)	Calculated	CFL21 (150)	WODATA	(17,0)	Calculated mass distribution data, fuel cell 2	
153	OMI (150)	MCONI	(15,0)	Calculated	OMII (150)	WODATA	(17,0)	Calculated mass distribution data, miscellaneous contents and structures	r
154	(150)	MCONT	(15,0)	Calculated CCDLI (150)	CCDL.I (150)	WODATA	(17,0)	Calculated mass distribution data, concentrated mass items	
155	TCS(150)	WODATA	(17,0)	Calculated	CTBI(150) WODATA	WODATA	(17,0)	Calculated mass distribution data, torque-box structures	
									7

TABLE 9. SWEEP PROGRAM MASS STORAGE FILE RECORDS (CONT)

	Description	Calculated torque-box structure data for mass distribution analysis, gross weight 1	Calculated torque box structure data for mass distribution analysis, gross weight 2	Calculated torque-box structure data for mass distribution analysis, gross weight 3	Load condition indicators	Wing and empennage airloads shear, bending moment, and torque for load conditions 1 through 24, advanced composite option
	Overlay	(17,0)	(17,0)	(17,0)	(18,0)	(18,0)
Read	Routine	WODATA	WODATA	WODATA	ACLOAD	ACLOAD
	Array Name & Size	CTBW(150)	CTBW(150)	CTBW(150)	WHVLID (24)	WBO(200)
	Source	Calculated CTBW(150) WODATA Calculated	Calculated CTBW(150) WODATA Calculated	Calculated CTBW(150) WODATA	Calculated WHVLID (24)	Calculated WBO(200)
te	Overlay	(9,0) (18,0)	(9,0) (18,0)	(9,0) (18,0)	(4,0)	(4,0)
Write	Routine	PROG ACPROG	PROG ACPROG	PROG ACPROG	MAXLDS	MAXLDS
	Array Name & Size	CTBW(150) PROG CTBW(150) ACPROG	CTBW(150) PROG CTBW(150) ACPROG	CTBW(150) PROG CTBW(150) ACPROG	WHVLID (24)	BO(200)
	Record No.	156	157	158	159	160-

TABLE 9. SWEEP PROGRAM MASS STORAGE FILE RECORDS (CONT.)

	Description	Weight summary data, wing and empennage exposed panel struc- tures, gross weight i	Weight summary data, wing and empennage exposed panel struc- tures, gross weight 2	Weight summary data, wing and empennage exposed panel structures, gross weight 3	Weight summary data, pivot and center-section structures, gross weight 1	Weight summary data, pivot and center-section structures, gross weight 2
	Overlay	(17,0)	(17,0)	(17,0)	(17,0)	(17,0)
Read	Routine	MODATA	MODATA	WODATA	MODATA	WODATA
	Array Name & Size	CD(400- 499)	CD(500- 599)	Ф(600- 699)	CD(800- 899)	Ф (900 - 999)
	Source	Calculated Calculated Calculated Calculated	Calculated (D(500-Calculated Calculated Calculated Calculated	Calculated (D(600- Calculated 699) Calculated	Calculated (D(800- Calculated 899) Calculated	Calculated (D(900-Calculated 999) Calculated Calculated Calculated
te	Overlay	(9,0) (9,0) (18,0) (18,0)	(9,0) (9,0) (18,0) (18,0)	(9,0) (9,0) (18,0) (18,0)	(9,0) (9,0) (18,0) (18,0)	(9,0) (9,0) (18,0) (18,0)
Write	Routine	PROG TBOPT ACPROG ATBOPT	PROG TBOPT ACPROG ATBOPT	PROG TBOPT ACPROG ATBOPT	PROG TBOPT ACPROG ATBOPT	PROG TBOPT ACPROG ATBOPT
	Array Name & Size	Ф(100) TSS(100) Ф(100) TSS(100)	CD(100) TSS(100) CD(100) TSS(100)	Ф(100) TSS(100) Ф(100) TSS(100)	Ф(100) TSS(100) Ф(100) TSS(100)	Ф(100) TSS(100) Ф(100) TSS(100)
	Record No.	184	185	186	28-	188

TABLE 9. SWEEP PROGRAM MASS STORAGE FILE RECORDS (CONCL)

		Write	te			Read		
Record No.	Array Name & Size	Routine	Overlay Source	Source	Array Name § Size	Routine Overlay	Overlay	Description
189	(D) (100) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D	PROG TBOPT ACPROG ATBOPT	(9,0) (9,0) (18,0) (18,0)	Calculated (D(1000- Calculated 1099) Calculated Calculated	Ф(1000- 1099)	WODATA	(17,0)	Weight summary data, pivot and center-section structures, gross weight 3
190	CIOY(150) WDDATA CCI(150) WODATA	WDDATA	(16,0)	Calculated CCI(150) WODATA Calculated CIOY(150) WODATA	CCI(150) CIOY(150)	WODATA	(17,0)	Calculated mass distribution data for yaw inertia
191- 200								Not used

TABLE 10. IFL ARRAY PROGRAM CONTROLS (IFLOW BLOCK)

		
IFL Loc	Control Card No. 2 Column	Description
1	71	Airloads module execution control 0 = execute 1 = do not execute
2	72	Wing execution control for wing and empennage module 0 = execute 1 = do not execute
3	73	Fuselage module execution control 0 = execute 1 = do not execute
4	74	Landing gear module execution control 0 = execute 1 = do not execute
5	75	Horizontal tail execution control for wing and empennage module 0 = execute 1 = do not execute
6	76	Vertical tail execution control for wing and empennage module: 0 = execute 1 = do not execute
7	77	Air induction system module execution control 0 = execute 1 = do not execute
8	78	Fatigue module execution control 0 = execute 1 = do not execute
9	79	Final output module execution control 0 = execute 1 = do not execute
10	80	File initialization control for subsequent cases 0 = leave files as they exist and update with input data 1 = reinitialize data files from TAPE 7

TABLE 10. IFL ARRAY PROGRAM CONTROLS (IFLOW BLOCK) (CONCL)

IFL Loc	Control Card No. 2 Column	Description
11	39-40	Wing construction indicator 00 = metal structure 01 = advanced composite
12	41-42	Horizontal tail construction indicator 00 = metal structure 01 = advanced composite
13	43-44	Vertical tail construction indicator 00 = metal structure 01 = advanced composite

The data management module develops compatible vehicle and structural component geometry data for use by the other design data development modules and the weight analysis modules. This module also provides weight distributions, balance, and inertia required for the evaluation of design loads. Per formance requirements are also organized for use by the airloads module. Methods, functions, processes, and description of the data management module are presented in Volume II.

Detail discussions of the flutter and temperature module are presented in Volume IV. This module calculates critical surface flutter design parameters for the wing, horizontal tail, and vertical tail. T-tail flutter is also evaluated for the vertical tail. Structural temperatures are calculated at critical flutter conditions and at the flight load evaluation conditions.

The airloads module develops design airloads and wing bending moment fatigue spectra. Component airloads and centers of pressure are calculated for a number of flight conditions to provide reasonable expectation that the maximum airloads are encompassed. Module methods, formulations, and program description are given in Volume III.

The fatigue module evaluates wing bending moment spectra and fuselage pressure cycle data to determine allowable operating stresses. These allowables are stored in the material property files for use by the wing and fuselage analysis modules. Methods, formulations, and program description are presented in Volume IV.

TABLE 11. XMISC ARRAY VARIABLES (MISC BLOCK)

	Defi	ned	Us	ed	
Loc	Routine	Overlay	Routine	Overlay	Description
1	READ	(1,0)	FATGUE AISMN CCNTL MFCNTL	(5,0) (7,0) (8,0) (11,0)	Number of arrays of material properties in mass storage in records 41-60
2	OLAY00	(0,0)	CCNTL ALOAD	(8,0) (16,0)	Component indicator for wing and empennage module 1 = wing 2 = horizontal tail 3 = vertical tail
3	OLAY00 PROG	(0,0) (9,0)	OLAY00	(0,0)	Set to 0.0 in OLAY00; set to 1.0 at end of PROG so that OLAY00 will call OLAY17.
4	OLAY00	(0,0)	READ CCNTL	(1,0) (8,0)	Case number
5	WHVQQ	(3,0)	CCNTL	(8,0)	Dynamic pressure for wing flutter design, 1b/ft ²
6	WHVQQ	(3,0)	CCNTL	(8,0)	Dynamic pressure for horizontal tail flutter design, 1b/ft ²
7	MIVQQ	(3,0)	CCNTL	(8,0)	Dynamic pressure for vertical tail flutter design, 1b/ft ²
8	WHVNET	(4,0)	CCNTL	(8,0)	Wing design (reference) temperature, ° F
9	WHVNET	(4,0)	CCNTL	(8,0)	Horizontal tail design (reference) temperature, ° F
10	WIVNET	(4,0)	CCNTL	(8,0)	Vertical tail design (reference) temperature, ° F
11	OLAY00 READ	(0,0) (1,0)	READ	(1,0)	Case indicator 1.0 = first case 2.0 = subsequent case

TABLE 11. XMISC ARRAY VARIABLES (MISC BLOCK) (CONT)

	Defi	ned	Us	ed	
Loc	Routine	Overlay	Routine	Overlay	Description
12	WHVGEO	(2,0)	SVFTAB	(3,0)	Wing aspect ratio (wing fixed or aft)
13	WHVGEO	(2,0)	SVFTAB CCNTL	(3,0) (8,0)	Sweep of wing quarter-chord (wing fixed or aft), deg
14	WHVGEO	(2,0)	SVFTAB	(3,0)	Wing taper ratio (wing fixed or aft)
15	READ	(1,0)	WHVQQ WHVMAT MAXLDS WHVNET FTGCTL	(3,0) (3,0) (4,0) (4,0) (5,0)	Wing material identification number
16	WHVGEO	(2,0)	SVFTAB	(3,0)	Horizontal tail aspect ratio
17	WHVGEO	(2,0)	SVFTAB	(3,0)	Sweep of horizontal tail quarter- chord, deg
18	WHVGEO	(2,0)	SVFTAB	(3,0)	Horizontal tail taper ratio
19	READ	(1,0)	WHVQQ WHVMAT MAXLDS WHVNET	(3,0) (3,0) (4,0) (4,0)	Horizontal tail material identifi- cation number
20	WHVGEO	(2,0)	SVFTAB	(3,0)	Vertical tail aspect ratio
21	WHVGEO	(2,0)	SVFTAB	(3,0)	Sweep of vertical tail quarter- chord, deg
22	WHVGEO	(2,0)	SVFTAB	(3,0)	Vertical tail taper ratio
23	READ	(1,0)	WHVQQ WHVMAT MAXLDS WHVNET	(3,0) (3,0) (4,0) (4,0)	Vertical tail material identification number

TABLE 11. XMISC ARRAY VARIABLES (MISC BLOCK) (CONT)

	Defined		Used		
Loc	Routine	Overlay	Routine	Overlay	Description
24	READ	(1,0)	DATAIN	(2,0)	Maximum taxi weight; if not defined, additional landing gear design data are transferred to record 25
25	WHVGEO	(2,0)	SVFTAB	(3,0)	Wing aspect ratio (forward position variable-sweep only)
26	WHVGEO	(2,0)	SVFTAB CCNTL	(3,0) (8,0)	Sweep of wing quarter-chord (for- ward position variable-sweep only), deg
27	WHVGEO	(2,0)	SVFTAB	(3,0)	Wing taper ratio (forward position variable-sweep only)
28	WHVQQ	(3,0)	CCNTL	(8,0)	Wing structural material shear mod- ulus at design flutter point, 1b/in. ²
29	WHVQQ	(3,0)	CONTL	(8,0)	Horizontal tail structural material shear modulus at design flutter point, 1b/in. ²
30	WHVQQ	(3,0)	CCNTL	(8,0)	Vertical tail structural material shear modulus at design flutter point, 1b/in. ²
31	READ	(1,0)	FTGCTL	(5,0)	Fuselage cover material identification number
32	BLCNTL	(4,0)	FATGUE	(5,0)	Maximum net unswept wing bending moment at side of fuselage station, in1b
33	BLCNTL	(4,0)	FATGUE	(5,0)	Maximum net swept wing bending moment at wing station 2, in1b
34	DFATMG	(2,0)	FATGUE	(5,0)	Vehicle service life, hr
35	READ	(1,0)	FUSNET	(4,0)	Vehicle sink speed at landing design weight, ft/sec

TABLE 11. XMISC ARRAY VARIABLES (MISC BLOCK) (CONT)

	Defined		Used		
Loc	Routine	Overlay	Routine	Overlay	Description
36	READ	(1,0)	FUSNET	(4,0)	Main landing gear stroke, in.
37	READ	(1,0)	FUSNET	(4,0)	Ratio of ultimate to limit design factor
38	READ	(1,0)	FUSNET	(4,0)	Taxi load factor
39	OLAY00 PROG TBOPT	(0,0) (9,0) (9,0)	PROG TBOPT	(9,0) (9,0)	Wing and empennage module flow control; initialized to 0.0 by OLAY00 at start of module execution.
40	OLAY00 READ	(0,0) (1,0)	OLAY00	(0,0)	Indicator set to 1.0 in OLAY00; set to 0.0 in READ if GENERAL data are input
41	READ	(1,0)	FTGCTL	(5,0)	Fuselage minor frame material identification number
42	WHVNET	(4,0)	VLOAD VLOAD1	(9,0) (16,0)	Indicator to designate that horizontal tail loads have been reversed 0.0 = loads have not been reversed 1.0 = loads have been reversed
43	DFATMG	(2,0)	BLCNTL	(4,0)	Unsweptwing inertia bending moment per g at basic flight design weight (wing fixed or aft) at side of fuselage station, in1b
44	DFATMG	(2,0)	BLCNTL	(4,0)	Sweptwing inertia bending moment per g at basic flight design weight (wing fixed or aft) at wing station 2, in1b
45	DFATMG	(2,0)	BLCNTL	(4,0)	Unsweptwing inertia bending moment per g at maximum design weight (wing fixed or fwd) at side of fuselage station, in1b

TABLE 11. XMISC ARRAY VARIABLES (MISC BLOCK) (CONT)

	Defined		Used		
Loc	Routine	Overlay	Routine	Overlay	Description
46	DFATMG	(2,0)	BLCNTL	(4,0)	Unsweptwing inertia bending moment per g at basic flight design weight (wing fwd) at side of fuselage station, in1b
47	DFATMG	(2,0)	BLCNTL	(4,0)	Unsweptwing inertia bending moment per g at landing design weight(wing fwd) at side of fuselage station, in1b
48	DFATMG	(2,0)	BLCNT!.	(4,0)	Sweptwing inertia bending moment per g at maximum design weight (wing fwd) at station 2, in1b
49	DFATMG	(2,0)	BLCNTL	(4,0)	Sweptwing inertia bending moment per g at basic flight design weight (wing fwd) at station 2, in1b
50	DFATMG	(2,0)	BLCNTL	(4,0)	Sweptwing inertia bending moment per g at landing design weight (wing fwd) at station 2, in1b
51	READ	(1,0)	BLCNTL	(4,0)	Air vehicle class indicator 1.0 = fighter (F) 2.0 = attack (A) 3.0 = tactical bomber (BI) 4.0 = strategic bomber (BII) 5.0 = cargo assault (CA) 6.0 = cargo transport (CT)
52	READ	(1,0)	BLCNTL	(4,0)	Wing-type indicator -1.0 = fixed wing 1.0 = variable sweep wing
53	READ	(1,0)	DCCNTL WHVQQ BLCNTL	(2,0) (3,0) (4,0)	Vertical-tail-type indicator -1.0 = single tail 0.0 = dual tail 1.0 = T-type tail

TABLE 11. XMISC ARRAY VARIABLES (MISC BLOCK) (CONT)

	Defined		Used		
Loc	Routine	Overlay	Routine	Overlay	Description
54	READ	(1,0)	BLCNTL	(4,0)	Load calculation option indicator -1.0 = calculate basic loads only 0.0 = calculate fatigue spectra only 1.0 = calculate both basic loads and fatigue spectra
55	READ	(1,0)	BLCNTL	(4,0)	Total vehicle load calculation control 1.0 = compute all loads (fuselage, wing, horizontal, vertical) 0.0 = compute loads as indicated by controls locations 56 through 59
56	READ	(1,0)	BLCNTL	(4,0)	Fuselage load calculation indicator 1.0 = compute 0.0 = do not compute
57	READ	(1,0)	BLCNTL	(4,0)	Wing load calculation indicator 1.0 = compute 0.0 = do not compute
58	READ	(1,0)	BLCNTL	(4,0)	Horizontal tail load calculation indicator 1.0 = compute 0.0 = do not compute
59	READ	(1,0)	BLCNTL	(4,0)	Vertical tail load calculation indicator 1.0 = compute 0.0 = do not compute
60	READ	(1,0)	BLCNTL	(4,0)	Load conditions 1 through 5 calculation indicator (positive maneuver conditions) 1.0 = compute 0.0 = do not compute

TABLE 11. XMISC ARRAY VARIABLES (MISC BLOCK) (CONT)

	Defined		Used		
Loc	Routine	Overlay	Routine	Overlay	Description
61	READ	(1,0)	BLCNTL	(4,0)	Load conditions 6 and 7 calculation indicator (negative maneuver conditions) 1.0 = compute 0.0 = do not compute
62	READ	(1,0)	BLCNTL	(4,0)	Load condition 8 calculation indi- cator (flap-down maneuver condition) 1.0 = compute 0.0 = do not compute
63	READ	(1,0)	BLCNTL	(4,0)	Load condition 9 calculation indi- cator (flaps-down landing) 1.0 = compute 0.0 = do not compute
64	READ	(1,0)	BLCNTL	(4,0)	Load conditions 10 through 13 cal- culation indicator (positive verti- cal gust conditions) 1.0 = compute 0.0 = do not compute
65	READ	(1,0)	BLCNTL	(4,0)	Load conditions 14 through 17 cal- culation indicator (negative verti- cal gust conditions) 1.0 = compute 0.0 = do not compute
66	READ	(1,0)	BLCNTL	(4,0)	Load conditions 18 and 19 calculation indicator (lateral gust conditions) 1.0 = compute 0.0 = do not compute
67	READ	(1,0)	BLCNTL	(4,0)	Load conditions 20 and 21 calculation indicator (pitching acceleration conditions) 1.0 = compute 0.0 = do not compute

TABLE 11. XMISC ARRAY VARIABLES (MISC BLOCK) (CONT)

	Defi	ned	Us	ed	
Loc	Routine	Overlay	Routine	Overlay	Description
68	READ	(1,0)	BLCNTL	(4,0)	Load conditions 22 and 23 calculation indicator (yawing acceleration conditions) 1.0 = compute 0.0 = do not compute
69	READ	(1,0)	BLCNTL	(4,0)	Wing fatigue spectra calculation indicator -1.0 = compute gust and maneuver spectra 1.0 = compute gust spectra only
70	OLAY00	(0,0)	READ	(1,0)	Input data deck identification ''GENERAL ''
71	OLAY00	(0,0)	READ	(1,0)	Input data deck identification 'WING ''
72	OLAY00	(0,0)	READ	(1,0)	Input data deck identification 'HORIZONTAL'
73	OLAY00	(0,0)	READ	(1,0)	Input data deck identification 'VERTICAL ''
74	OLAY00	(0,0)	READ	(1,0)	Input data deck identification ''FUSELAGE ''
75	OLAY00	(0,0)	READ	(1,0)	Input data deck identification ''LG ''
76	OLAY00	(0,0)	READ	(1,0)	Input data deck identification ''AIS ''
77	OLAY00	(0,0)	READ	(1,0)	Input data deck identification ''FATIGUE ''
78	OLAY00	(0,0)	READ	(1,0)	Input data deck identification 'WHV LOADS'
79	OLAY00	(0,0)	READ	(1,0)	Input data deck ident; "FUS LOADS"

TABLE 11. XMISC ARRAY VARIABLES (MISC BLOCK) (CONCL)

	Defined		Used		
Loc	Routine	Overlay	Routine	Overlay	Description
80	OLAY00	(0,0)	READ	(1,0)	Input data deck identification ''INERTIA ''
81	OLAY00	(0,0)	READ	(1,0)	End of case data identification "EXECUTE"
82	OLAY00	(0,0)		and the second s	Alphanumeric characters, 'WING'
83	OLAY00	(0,0)			Alphanumeric characters, "H.T."
84	OLAY00	(0,0)			Alphanumeric characters, 'V.T.''
85- 100	READ	(1,0)	OLAYOO READ SPDALT DSGNPR AISMN SPAL DSGNP DUCTS NACELE SUMARY CCNTL PRTG PRTA PRTH PRTB PRTC WLETE PRTD ACPRTA PRTB PRTC PRTD ACPRTA PRTB PRTC PRTD ACPRTA PRTB	(0,0) (1,0) (2,0) (2,0) (7,0) (7,0) (7,0) (7,0) (7,0) (8,0) (8,0) (9,0) (10,0) (10,0) (14,0) (17,0) (18,0) (18,0) (18,0)	Case title (alphanumeric information on first two cards in the input deck for each case)

STRUCTURAL WEIGHT ESTIMATION

Air vehicle structural component weight analysis modules calculate structural weights for:

- 1. Wing (refer to Volume VI)
- 2. Horizontal tail (refer to Volume VI)
- 3. Vertical tail (refer to Volume VI)
- 4. Fuselage (refer to Volume VII)
- 5. Landing gear (refer to Volume V)
- 6. Nacelles, engine section, and air induction system (refer to Volume V)

Computed weights are derived so that detail weight data are available at the end of the evaluation phase. Modules which evaluate these components may be operated in stand-alone modes or in the integrated mode by using data from the design data development modules.

PROGRAM DEBUGGING

Several levels of printed output are provided from the modules that are executed in the computation process. Summary weight results and error and warning messages are standard program output.

Error and warning messages are printed when data compatibility problems are encountered or when problem definitions are beyond the program limitations. These messages describe the problem, the path taken to circumvent the situation, and the routine which encountered the problem. This allows the completion of downstream computations which may produce unrelated errors.

Other types of program output are controlled through user selection of print indicators. Optional output that can be printed through control card indicators are as follows:

- 1. Details of weight analysis results
- 2. Details of structural synthesis results
- 3. Details of design data and requirements
- 4. Details of intermediate program calculations