Задача 2.11.1. Разгон при отключённом источнике (12 баллов). Две одинаковые прово-

дящие оболочки в форме цилиндров с малыми отверстиями на общей оси образуют конденсатор ёмкостью C. В центре левой оболочки удерживают шарик с зарядом q. Суммарный заряд всей системы, включая заряд шарика, равен нулю. Конденсатор заряжают, подключив к источнику с напряжением U, затем отключают от источника и отпускают шарик. Шарик начинает двигаться вдоль оси и, пролетев через отверстия, попадает внутрь правой оболочки.

Какую кинетическую энергию будет иметь шарик в центре правой оболочки?

При каком заряде шарика эта энергия максимальна и чему она равна?

Выделением тепла из-за тока в оболочках можно пренебречь. Поле тяжести не учитывайте.

Возможное решение. (И. Воробьев).

- **1.** Вначале на внутренней поверхности левой полости имеется экранирующий заряд -q, что даёт нуль в сумме с зарядом шарика. На внутренней поверхности правой полости заряда нет.
- **2.** После подключения источника, полный заряд системы остается равным нулю. Заряды на внешних поверхностях оболочек противоположные по знаку, а так как оболочки образуют конденсатор ёмкостью C, то эти заряды равны $Q_0 = CU$ и $-Q_0$.
- **3.** После перемещения шарика в центр правой оболочки к заряду $Q_0 = CU$ левой оболочки добавится заряд -q с её внутренней поверхности, а к заряду $-Q_0$ правой оболочки добавится заряд q из-за ухода заряда -q на поверхность полости правой оболочки (для экранировки заряда шарика). Таким образом, заряды на внешних поверхностях станут равными Q и -Q, где Q = CU q. Напряжение на конденсаторе при этом станет равным V = U q/C.
- **4.** Ввиду такого же, как в левом цилиндре, расположения заряда q справа, энергия его взаимодействия с «экранирующими» зарядами на внутренней поверхности цилиндра не изменится.
- **5.** Изменяется только кинетическая энергия шарика и энергия конденсатора. Тогда при отсутствии потерь энергии $CU^2/2 = CV^2/2 + K$, где K кинетическая энергия шарика в центре правой оболочки. $K = qU q^2/2C$.
- **6.** Наибольшая кинетическая энергия отвечает случаю V = U q/C = 0, тогда q = CU, а $K = CU^2/2$.

Примечание: При q, много меньшем CU, $K \cong qU$. В общем случае нужно учесть наведённые заряды и связанное с этим изменение напряжения между электродами. Важно понять, что потенциальная энергия системы складывается из энергии взаимодействия заряда с «экранирующими» зарядами на внутренней поверхности цилиндра и энергии конденсатора.

№	Задача 2.11.1. Критерий (12 баллов)	Баллы
1	Указание на экранирующий заряд – q	1
2	Указано (либо используется в решении), что разность потенциалов между оболочками зависит только от зарядов на их внешних поверхностях	1
3	Противоположный знак зарядов на внешней поверхности оболочек и их связь с напряжением $Q_o = CU$ и $-Q_o$.	2
4	Правильно определены заряды оболочек после перемещения шарика	2
5	Определено напряжение на конденсаторе после перемещения шарика	1
6	Неизменность энергии взаимодействия шарика с экранирующим зарядом	1
7	Нахождение кинетической энергии	2
8	Найден заряд шарика q , при котором кинетическая энергия максимальна	1
9	Нахождение максимальной величины кинетической энергии	1

Задача 2.11.2. Нелинейная цепь (12 баллов). Электрическая цепь состоит из идеального источника с ЭДС $\mathscr{E} = 20$ В, резистора с сопротивлением R = 5 Ом, катушки с индуктивностью L = 20 мГн и нулевым сопротивлением и нелинейного элемента, вольтамперная характеристика которого представлена на рисунке ($I_0 = 3$ А). Изначально ключ разомкнут, тока в цепи нет. Какое количество теплоты выделится на резисторе через большой промежуток времени после замыкания ключа?

Возможное решение (А. Уймин). Для малого промежутка времени dt количество тепла dQ, выделяющегося на резисторе с сопротивлением R

$$dQ = U_R I_R dt = U_R dq. (1)$$

Здесь $U_{\it R}$ и $I_{\it R}$ — напряжение на резисторе и сила тока, протекающего через него, dq — заряд, прошедший через резистор.

Установим связь $U_R(q)$ в нашем случае. Будем использовать известное соотношение для параллельно соединенных резистора R и индуктивности L:

$$RI_R = L\frac{dI_L}{dt}; \quad RI_R dt = Rdq = LdI_L; \quad \frac{R}{L}q = I_L.$$
 (2)

Сразу после замыкания ключа, нелинейный элемент ведет себя как резистор сопротивлением R (режим «постоянного сопротивления»). Затем он переходит в режим «постоянного тока». Такой переход реализуется, так как в установившемся режиме напряжение на индуктивности и сила тока через резистор будут равны нулю, а напряжение, при котором нелинейный элемент переходит в режим «постоянного тока», меньше ЭДС источника ($I_0R = 15 \text{ B} < E = 20 \text{ B}$). Определим связь $U_R(q)$ для этих режимов.

а) Режим «постоянного сопротивления». Для силы тока I через нелинейный элемент

$$I = I_L + I_R.$$

По второму правилу Кирхгофа

$$E = IR + I_R R = 2I_R R + I_I R.$$

Подставляя I_L из (2), получим

$$E = 2U_R + \frac{R^2}{L}q.$$

Отсюда для режима «постоянного сопротивления»

$$U_R = \frac{1}{2} \left(E - \frac{R^2}{L} q \right). \tag{3}$$

Нелинейный элемент остается в этом режиме до тех пор, пока выполняется условие

$$U_R \ge E - I_0 R$$
,

или, с учетом (3), пока величина прошедшего через резистор заряда

$$q < q_1 = \frac{L}{R} \left(2I_0 - \frac{E}{R} \right).$$

Согласно выражению (1) количество теплоты будет пропорционально площади под графиком $U_R(q)$ на участке $0 < q < q_1$. Поскольку зависимость (3) является линейной, получаем для количества теплоты Q_1 в этом режиме

$$Q_{\rm l} = rac{{
m E}\,/\,2 + {
m E}\,-I_{
m 0}R}{2} \, q_{
m l} = \left(rac{3{
m E}}{2R} - I_{
m 0}
ight) \! rac{L}{2} \! \left(2I_{
m 0} - \! rac{{
m E}}{R}
ight) \! = 0,06$$
 Дж.

б) Режим «постоянного тока»

$$I_{R} = I_{0} - I_{L} = I_{0} - \frac{R}{L}q;$$

$$U_R = RI_R = RI_0 - \frac{R^2}{L}q.$$

Этот режим реализуется до момента, пока U_R не станет равным нулю, т. е. пока q не станет равным $q_2 = \frac{LI_0}{R}$. Заряд, прошедший

через резистор в этом режиме

$$q_2 - q_1 = \frac{I_0 L}{R} - \frac{L}{R} \left(2I_0 - \frac{E}{R} \right) = \frac{L}{R} \left(\frac{E}{R} - I_0 \right).$$

Количество теплоты Q_2 , выделившееся в этом режиме, с учетом того, что $U_R(q)$ изменяется линейно от $U_R = \mathbf{E} - R \mathbf{I}_0$ до нуля

$$Q_2 = \frac{(q_2 - q_1)(E - I_0 R)}{2} = \frac{\frac{L}{R} \left(\frac{E}{R} - I_0\right)(E - I_0 R)}{2} = \frac{L \left(\frac{E}{R} - I_0\right)^2}{2} = 0,01 \text{ Дж.}$$

Общее количество теплоты, выделившееся на резисторе,

$$Q = Q_1 + Q_2 = \frac{LEI_0}{R} - \frac{LI_0^2}{2} - \frac{LE^2}{4R^2} = 0,07$$
 Дж.

№	Задача 2.11.2. Критерий (12 баллов)	Баллы				
1	Записано и использовано при решении выражение (1) для связи	1				
	выделившегося тепла с величиной заряда					
2	Получено выражение (2) для связи изменения силы тока через	1				
	индуктивность с величиной заряда, прошедшего через резистор					
3	Для режима "постоянного сопротивления" использовано уравнение второго	0,5				
	правила Кирхгофа $E = 2I_R R + I_L R$.					
4	Получено выражение для связи напряжения на резисторе с прошедшим	2				
	зарядом для режима "постоянного сопротивления" $U_R = \frac{1}{2} \left(E - \frac{R^2}{L} q \right)$.					
		1.5				
5	Получено условие для величины заряда, прошедшего через резистор, на	1,5				
	момент перехода между режимами $q_1 = \frac{L}{R} \left(2I_0 - \frac{E}{R} \right)$.					
6	При интегрировании (графическом или аналитическом) получено	1,5				
	выражение для Q_1					
7	Получен верный численный ответ для Q_1	0,5				
8	Получено выражение для связи напряжения на резисторе с прошедшим	1				
	зарядом для режима "постоянного тока" $U_{\scriptscriptstyle R} = RI_{\scriptscriptstyle R} = RI_{\scriptscriptstyle 0} - \frac{R^2}{L}q$					
9	Получено выражение для величины заряда, прошедшего через резистор за	0,5				
	все время $q_2 = \frac{LI_0}{R}$					
10	При использовании интегрирования (графического или аналитического)	2				
	получено выражение для Q_2					
11	Получен верный численный ответ для Q_2	0,5				

Примечание. Возможно решение, при котором аналитическое выражение для Q_1 и Q_2 не получено, однако определены численные значения точек "излома" на графике $U_R(q)$ и получен верный численный ответ. Такое решение должно оцениваться полным баллом.

Решение с использованием дифференциальных уравнений.

Пока сила тока, протекающего через нелинейный элемент, не достигла I_0 , токи в цепи удовлетворяют уравнениям

$$E = (I_R + I_L)R + I_R R; I_R R = L \frac{dI_L}{dt}.$$

Исключим I_R :

$$E = 2L\frac{dI_L}{dt} + RI_L.$$

Применим подстановку $I_L = \frac{E}{R} - x$: $\frac{dx}{dt} = -\frac{R}{2L}x$.

Отсюда с учетом того, что $x(0) = \frac{E}{R}$ получаем $x = \frac{E}{R} \left(e^{-\frac{Rt}{2L}} \right)$;

$$I_{L} = \frac{E}{R} \left(1 - e^{-\frac{Rt}{2L}} \right); \quad I_{R} = \frac{E}{2R} e^{-\frac{Rt}{2L}}.$$

Этот режим прекратится к моменту времени t_1 , когда

$$I_R + I_L = I_0;$$
 $e^{-\frac{RI_0}{2L}} = 2\left(1 - \frac{RI_0}{E}\right).$

К этому моменту времени сила ток, протекающего через катушку будет

$$I_{L1} = 2I_0 - \frac{\mathrm{E}}{R}.$$

Мощность, выделяющаяся на резисторе,

$$P_R = \frac{E^2}{4R} e^{-\frac{Rt}{L}}.$$

К моменту t_1 выделившаяся теплота составит

$$Q_{1} = \int_{0}^{t_{1}} P_{R} dt = \frac{LE^{2}}{4R^{2}} \left(1 - e^{-\frac{Rt_{1}}{L}} \right) = \frac{LE^{2}}{4R^{2}} - L \left(\frac{E}{R} - I_{0} \right)^{2}.$$

После того, как сила тока, протекающего через нелинейный элемент, установится на значении I_0 , токи в цепи можно описать уравнениями

$$I_R + I_L = I_0; \quad RI_R = L \frac{dI_L}{dt}.$$

Исключим I_R :

$$L\frac{dI_L}{dt} + RI_L = RI_0.$$

Применим подстановку $I_L = I_0 - y$:

$$\frac{dy}{dt} = -\frac{R}{L}y.$$

Отсюда с учетом $y(t_1) = I_0 - I_{L1} = \frac{\mathbf{E}}{R} - I_0$, получим: $y = \left(\frac{\mathbf{E}}{R} - I_0\right) e^{\frac{-R(t-t_1)}{L}}$;

$$I_R = \left(\frac{\mathbf{E}}{R} - I_0\right) e^{-\frac{R(t - t_1)}{L}}.$$

Мощность, выделяющаяся на резисторе, $P_R = R \left(\frac{E}{R} - I_0\right)^2 e^{-\frac{2R(t-t_1)}{L}}$.

Количество теплоты, выделившееся после истечения времени t_1 :

$$Q_2 = \int_{t_1}^{\infty} P_R dt = \frac{L\left(\frac{E}{R} - I_0\right)^2}{2} = 0,01 \,\text{Дж}.$$

Общее количество теплоты

$$Q = \frac{LE^2}{4R^2} - \frac{L}{2} \left(\frac{E}{R} - I_0\right)^2 - = 0,07$$
 Дж.

N₂	Задача 2.11.2. Критерий (12 баллов)	Баллы
1	При решении для режима "постоянного сопротивления" используется	0,5
	уравнение второго правила Кирхгофа: $E = 2RI_R + RI_L$	
2	Получено выражение для силы тока через резистор для режима	2,5
	"постоянного сопротивления" $I_R = \frac{E}{2R}e^{-\frac{Rt}{2L}}$	
3	Получено условие для силы тока на момент перехода между режимами	1,5
	$I_{L1} = 2I_0 - \frac{\mathrm{E}}{R}$ или $I_{L1} = I_{R1} = \frac{\mathrm{E}}{R} - I_0$.	
4	Получено выражение для Q_1	3
5	Получен верный численный ответ для Q_1	0,5
6	Получено выражение для силы тока через резистор для режима	1,5
	"постоянного тока" $I_R = \left(\frac{\mathrm{E}}{R} - I_0\right) e^{-\frac{R(t-t_1)}{L}}$.	
7	Получено выражение для Q_2	2
8	Получен верный численный ответ для Q_2	0,5

Задача 2.11.3. Вспышка в кубе (**12 баллов**). В кубе из вещества с показателем преломления n=2 точечный источник испустил кратковременную вспышку, свет от которой расходится однородно во всех направлениях. Свет веществом куба не поглощается. Какие значения может принимать доля η энергии вспышки, вышедшей наружу, в зависимости от положения источника внутри куба? Укажите, при каких положениях источника эта доля минимальна, при каких максимальна и чему она равна?

При падении света на границу раздела часть его энергии, зависящая от угла падения, отражается, а часть проходит через границу раздела.

Примечание: при решении Вам может понадобиться формула площади поверхности сферического сегмента (см. рисунок): $S = 2\pi Rh$, где R – радиус сферы, h – высота сегмента.

Возможное решение (А. Аполонский).

- **1.** Направим оси координат перпендикулярно граням куба. Пусть $\vec{c} = (c_x, c_y, c_z)$ вектор скорости некоторого луча света. При отражении от граней, перпендикулярных оси OX, у скорости отражённого луча меняет знак проекция на ось OX, а две остальные проекции остаются неизменными. Аналогично и при отражении от двух других пар граней.
- **2.** Полное отражение происходит, когда угол между падающим на грань лучом и нормалью к грани превосходит угол φ_0 , где $\sin\varphi_0=1/n=1/2$. Тогда свет через грань не проходит совсем. Если этот угол меньше $\varphi_0=30^\circ$, то происходит частичное отражение света, а ненулевая часть выходит из куба наружу.
- **3**. Рассмотрим луч, падающий на перпендикулярную *OX* грань, при котором нет полного отражения, а часть света выходит наружу. Условие этому $|c_x|/c > \sqrt{3}/2$. При этом модули проекций на две остальные оси обязательно меньше c/2.
- **4**. Если скорость луча удовлетворяет условию $|c_x|/c > \sqrt{3}/2$, но он попадает сначала на грани, перпендикулярные *OY* и *OZ*, то для соответствующих проекций имеем $|c_y|/c < 1/2$ и $|c_z|/c < 1/2$, т.е. на этих гранях происходит полные отражения, в результате которых свет попадёт на грани, перпендикулярные *OX*.
- 5. Итак, при выполнении условия $|c_x|/c > \sqrt{3}/2$ какими бы отражения не были свет будет выходить только через перпендикулярные OX грани и в конечном счёте (поскольку поглощение отсутствует) весь такой свет покинет куб независимо от того, где находится источник. Аналогично и для других двух пар граней.
- **6**. Итак, куб покинет свет, выходящий из точечного источника в шесть конусов, оси которых перпендикулярны граням куба, а угол раствора конуса составляет 60°. Остальной свет будет испытывать только полное отражение, и никогда куб не покинет.
- 7. Искомая доля вышедшего света равна отношению суммарного телесного угла этих шести конусов к полному телесному углу 4π . Из указанной в условии формулы телесный угол при вершине одного такого конуса

$$\Omega = \frac{2\pi Rh}{R^2} = \frac{2\pi R \cdot R(1 - \cos \varphi_0)}{R^2} = 2\pi \left(1 - \frac{\sqrt{3}}{2}\right).$$

Таких конусов шесть, поэтому доля энергии света, покидающего куб при любых положениях источника внутри куба одинакова и равна

$$\eta = \frac{6\Omega}{\Omega_{\text{полн}}} = \frac{12\pi}{4\pi} \left(1 - \frac{\sqrt{3}}{2}\right) = 3\left(\frac{2 - \sqrt{3}}{2}\right) \approx 0, 4 = 40\%.$$

№	Задача 2.11.3. Критерий (12 баллов)	Баллы
1	Утверждение о сохранении модуля проекции луча света на оси параллель-	1
	ные (перпендикулярные) ребрам куба или эквивалентный им анализ связи	
	углов падения	
2	Указано, что при значении углах падения на грань, превосходящих	1
	$\varphi_0 = \arcsin(1/n) = 30^\circ$, свет полностью отражается	
3	Показано, что свет, испытывающий частичное отражение на одной из гра-	2
	ней куба, в дальнейшем полностью отражается от перпендикулярных ей	
	граней	
4	Указано, что свет, испытывающий частичное отражение на одной из граней	1
	куба, после отражения от перпендикулярной ей грани вновь испытывает ча-	
	стичное отражение на параллельной ей грани	
5	Обоснованный (на основании п.4 и отсутствия поглощения) вывод о полном	1
	выходе из куба света, частично отражающегося от двух параллельных гра-	
	ней, в результате многократных отражений	
6	Вывод о независимости η от положения источника	2
7	Утверждение, что наружу из куба выходит свет, распространяющийся внут-	2
	ри шести конусов с углом раствора равным 60°	
8	Определена величина телесного угла для таких конусов	1
9	Окончательный верный ответ для η	1

Задача 2.11.4. Определение удельной теплоты испарения жидкого азота (14 баллов).

Цель эксперимента — определение удельной теплоты испарения жидкого азота при атмосферном давлении.

Масса цилиндра $m_{Al}=69\,$ г, начальная масса контейнера с азотом $M=250\,$ г, температура помещения $+23\,$ °C . Температура кипения жидкого азота — минус $196\,$ °C .

Описание эксперимента. Жидкий азот, налитый в пенопластовый контейнер, из-за теплообмена с окружающей средой испаряется, и его масса уменьшается. При погружении в жидкий азот алюминиевого цилиндра, имевшего температуру помещения, азот начинает активно кипеть и интенсивность его испарения увеличивается. Масса *М* контейнера с жидким азотом фиксируется с помощью электронных весов. Показания весов в зависимости от времени приведены в таблице.

<i>t</i> , мин : с	0:00	0:49	1:32	2:05	2:41	3:22	4:06	4:50	5:23	5:52	6:07	6:30
М, г	250	246	242	238	234	230	226	222	218	274	264	254
<i>t</i> , мин : с	6:54	7:25	7:48	8:20	8:49	9:33	10:15	5 10:5	55 11	:37	12:20	13:05
М, г	244	232	229	224	219	215	211	207	20	3	199	195

Примечание. Удельная теплоемкость алюминия зависит от температуры. График этой зависимости представлен на рисунке.

Задание. Используя результаты измерения зависимости массы азота от времени и график зависимости удельной теплоемкости алюминия от температуры, определите удельную теплоту испарения азота λ .

Из-за ограниченного времени выполнения задания погрешность определения λ оценивать не требуется, однако точность полученных вами промежуточных и конечных результатов будет учитываться при выставлении баллов.

Возможное решение (А. Аполонский). Способ 1. График зависимости массы M контейнера с жидким азотом от времени t представлен на рисунке. При определении массы испарившегося азота учитывалось изменение показаний весов при погружении в него цилиндра. Видно, что на начальном участке (до момента времени $t_1 \approx 320 \,\mathrm{c}$) скорость ис-

парения определялась теплообменом с окружающей средой. С момента t_1 до момента времени $t_2 \approx 440\,\mathrm{c}$ испарение определялось теплообменом с цилиндром и окружающей средой (бурное кипение). Начиная с момента времени t_2 вновь пошёл только теплообмен с окружающей средой (цилиндр охладился до температуры кипения азота).

t, с Далее возможны несколько t, с Далее возможны t, с Далее возможны несколько t, с Далее возможны t

Теплота Q, которую отдал алюминиевый цилиндр при охлаждении с учетом зависимости его теплоемкости от температуры, пропорциональна площади под графиком $c_{AI}(T)$ в интервале температур от $-196\,^{\circ}C$ до $+23\,^{\circ}C$.

Численное значение Q можно подсчитать по клеткам на графике. Получается

$$Q=m_{\scriptscriptstyle Al}\Sigma c_i\Delta T_i \approx 69\ \Gamma\cdot 155\ rac{\kappa\mbox{Дж}}{\Gamma} = 10,7\ \kappa\mbox{Дж}.$$

Значение удельной теплоты парообразования азота найдем из уравнения теплового баланса $Q = \lambda m_{_{\! N}}$. Отсюда

$$\lambda = \frac{Q}{m_{N}} = \frac{10.7}{48 \cdot 10^{-3}} \left(\frac{\text{кДж}}{\text{к}\Gamma} \right) = 223 \left(\frac{\text{кДж}}{\text{к}\Gamma} \right).$$

No	Задача 2.11.4. Критерии оценивания (14 баллов)	Баллы
1	Построен график зависимости массы азота (или массы испарившегося азота)	3
	от времени. При этом график хорошо читается, подписаны координатные оси,	
	выбран удобный масштаб и т.д.	
	Подписаны оси и указаны единицы измерения 0,5 балла	
	Выбран разумный масштаб координатных осей 0,5 балла	
	Нанесены все экспериментальные точки 0,5 балла	
	Через экспериментальные точки проведены соответствующие линии	
	1,5 балла	
2	Записано уравнения теплового баланса, получена формула $\lambda = \frac{Q}{m_N^{Al}}$.	2
3	Учтено изменение показаний весов, связанное с погружением цилиндра	2
	(1 балл) и теплообмена азота с окружающей средой (1 балл)	
4	Определена масса азота, выкипевшая из-за теплообмена с цилиндром	3
	$m_N \in (46 \div 50) \Gamma$	
	$m_N \in (44 \div 46)$ г или $m_N \in (50 \div 52)$ г (2 балла)	
	$m_N \in (42 \div 44)$ г или $m_N \in (52 \div 54)$ г (1 балл)	
	$m_N \in (38 \div 42)$ г или $m_N \in (54 \div 58)$ г (0,5 балла)	
5	Определено количество теплоты, отданное при охлаждении цилиндра	3
	$Q \in (10,5 \div 10,9)$ кДж	
	Если $Q \in (10,3 \div 10,5)$ кДж или $Q \in (10,9 \div 11,1)$ кДж (2 балла)	
	Если $Q \in (10,1 \div 10,3)$ кДж или $Q \in (11,1 \div 11,3)$ кДж (1 балл)	
	Если $Q \in (9,7 \div 10,1)$ кДж или $Q \in (11,3 \div 11,7)$ кДж (0,5 балла)	
6	Получен ответ для $\lambda \in (200 \div 245)$ кДж/кг	1

Способ 2. График зависимости массы испарившегося азота $m_N(t)$ от времени t представлен на рисунке. При определении массы испарившегося азота учитывалось изменение показаний весов при погружении цилиндра.

Видно, что на начальном участке до момента времени $t_1 \approx 323$ с скорость испарения азота определяется теплообменом с окружающей средой, с момента t_1 до момента времени $t_2 \approx 529$ с — теплообменом с цилиндром и окружающей средой (бурное кипение). Начиная с момента t_2 остаётся только теплообмен с окружающей средой (цилиндр охладился до температуры кипения азота).

При использовании графической обработки или метода наименьших квадратов, определяем скорости испарения азота k_1 - до погружения цилиндра и k_2 - после завершения бурного кипения, которое соответствует установлению температуры цилиндра, равной температуре кипения. Скорость испарения азота перед погружением цилиндра составляет $k_1 \approx 0,099$ г/с. Скорость испарения после завершения бурного кипения $k_2 \approx 0,094$ г/с. Таким образом, скорость испарения до и после погружения цилиндра немного отличаются. Поэтому скорость испарения азота во время бурного кипения из-за теплообмена с окружающей средой оценим, как среднее значение k_1 и k_2

$$k = \frac{k_1 + k_2}{2} \approx 0.0965 \frac{\Gamma}{c}$$
.

Масса азота, испарившегося из-за теплообмена с алюминиевым цилиндром равна

$$m_N^{Al} = \left(m_N(t_2) - m_N(t_1)\right) - k(t_2 - t_1) \approx 48,1$$
 г.

Количество теплоты, которое отдает алюминиевый цилиндр при охлаждении с учетом зависимости его теплоемкости от температуры, определяется интегралом

$$Q = m \int_{T_N}^{T_0} c_{Al}(T) dT$$

Значение интеграла, пропорционально площади под графиком $c_{Al}(T)$ и равно приблизительно $155\frac{\kappa \text{Дж}}{\text{кг}}$. Количество теплоты, отданное алюминием, $Q=69\cdot 155=10$,7 кДж.

Значение удельной теплоты парообразования азота найдем из уравнения теплового баланса

$$\lambda = \frac{Q}{m_N} = \frac{10.7}{48 \cdot 10^{-3}} \left(\frac{\text{кДж}}{\text{к}\Gamma} \right) = 223 \left(\frac{\text{кДж}}{\text{к}\Gamma} \right)$$

No	Задача 2.11.4. Критерии оценивания (14 баллов)	Баллы
1	Построен график зависимости массы азота (или массы испарившегося азота) от времени. При этом график хорошо читается, подписаны координатные оси, выбран удобный масштаб и т.д.	3
	Подписаны оси и указаны единицы измерения 0,5 балла	
	Выбран разумный масштаб координатных осей 0,5 балла	
	Нанесены все экспериментальные точки 0,5 балла	
	Через экспериментальные точки проведены соответствующие линии 1,5 балла	
2	Записано уравнения теплового баланса, получена формула $\lambda = Q / m_N$	2
3	Учтено изменение показаний весов, связанное с погружением цилиндра в азот (1 балл) и теплообмена азота с окружающей средой (1 балл)	2
	Если скорость испарения определена по данным таблицы без использования графика, за весь пункт оценка не должна превосходит 0,5 балла	
4	Определена масса азота, выкипевшая из-за теплообмена с цилиндром $m_{\scriptscriptstyle N} \in (46 \div 50) \Gamma$	3
	$m_N \in (44 \div 46)$ г или $m_N \in (50 \div 52)$ г (2 балла)	
	$m_N \in (42 \div 44)$ г или $m_N \in (52 \div 54)$ г (1 балл)	
	$m_N \in (38 \div 42)$ г или $m_N \in (54 \div 58)$ г (0,5 балла)	
5	Определено количество теплоты, отданное при охлаждении цилиндра $Q \in \big(10,5 \div 10,9\big) \mathrm{кДж}$	3
	Если $Q \in (10,3 \div 10,5)$ кДж или $Q \in (10,9 \div 11,1)$ кДж (2 балла)	
	Если $Q \in (10,1 \div 10,3)$ кДж или $Q \in (11,1 \div 11,3)$ кДж (1 балл)	
	Если $Q \in (9,7 \div 10,1)$ кДж или $Q \in (11,3 \div 11,7)$ кДж (0,5 балла)	
6	Получен ответ для $\lambda \in (200 \div 245)$ кДж/кг	1