Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	M3304	К работе допущен	
Студент	Гаджиев Саид	Работа выполнена 1.12.2024	
Преподаватель_	Шоев В.И.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №5 (IBM.2)

Управляемые гейты и Квантовые алгоритмы

1. Цель работы.

Самостоятельная разработка квантовых схем. Получение навыков применения управляемых 2-х и 3-х кубитных гейтов и создания квантовых алгоритмов на их основе.

- 2. Задачи, решаемые при выполнении работы.
 - 1. Построить многокубитные квантовые цепи
 - 2. Зарегистрировать результаты моделирования цепочек
 - 3. Сравнить данные моделирований с теоретическими распределениями
- 3. Объект исследования.

Квантовый компьютер, распределение вероятности однокубитных и многокубитных цепей.

4. Метод экспериментального исследования.

Внедрение вентилей в построение схем, проведение моделирований.

- 5. Выполнение упражнения №3:
- 1. Соберите схему для получения запутанного состояния квантовой системы из двух кубитов $\frac{1}{\sqrt{2}}$ ($|00\rangle$ – $|11\rangle$). Выполните симуляцию работы схемы. Получите математическое обоснование результата.

Использован квантовый регистр из двух кубитов и классический регистр из двух битов. Применен Hadamard-гейт к первому кубиту для создания суперпозиции $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$. Применен CNOT-гейт, чтобы связать состояния первого и второго кубитов. Это создает запутанное состояние $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$.

Применен Z-гейт ко второму кубиту, чтобы изменить фазу $|11\rangle$, получив $\frac{1}{\sqrt{2}}(|00\rangle - |11\rangle)$.

2. Соберите схему для получения запутанного состояния квантовой системы из двух кубитов $\frac{1}{\sqrt{2}}$ ($|00\rangle+|11\rangle$). Выполните симуляцию работы схемы. Получите математическое обоснование результата

	Frequency (quantity)	
Shots	11⟩	00}
1024	490	534

	Frequency (out of 1)	
Shots	11⟩ 00⟩	
1024	0.4785	0.5214

Н-гейт на первом кубите переводит его в суперпозицию:

$$|0
angle \stackrel{H}{\longrightarrow} rac{1}{\sqrt{2}} (|0
angle + |1
angle)$$

СПОТ-гейт, где первый кубит — управляющий, а второй — управляемый, переносит состояние в:

$$rac{1}{\sqrt{2}}(|0
angle|0
angle+|1
angle|1
angle)=rac{1}{\sqrt{2}}(|00
angle+|11
angle)$$

3. Соберите схему для получения запутанного состояния квантовой системы из двух кубитов $\frac{1}{\sqrt{2}}$ ($|01\rangle-|10\rangle$). Выполните симуляцию работы схемы. Получите математическое обоснование результата

	Frequency (quantity)	
Shots	01>	10⟩
1024	520	504

	Frequency (out of 1)	
Shots	01> 10>	
1024	0.5078	0.4922

1. H-гейт (**Hadamard**) на **q**[0]

Переводит первый кубит q[0] из состояния |0) в суперпозицию:

$$H|0
angle=rac{1}{\sqrt{2}}(|0
angle+|1
angle)$$

После этого состояние всей системы:

$$rac{1}{\sqrt{2}}(\ket{0}+\ket{1})\otimes\ket{0}=rac{1}{\sqrt{2}}(\ket{00}+\ket{10})$$

2. Z-гейт на q[0]

Применение Z-гейта к первому кубиту q[0] изменяет фазу |1) на -1:

$$Z|0\rangle=|0\rangle, \quad Z|1\rangle=-|1\rangle$$

Таким образом, состояние превращается в:

$$rac{1}{\sqrt{2}}(\ket{00}-\ket{10})$$

3. СПОТ-гейт

q[0] является управляющим кубитом, а q[1] — управляемым. Применение CNOT переворачивает второй кубит q[1], если q[0] находится в состоянии $|1\rangle$:

$$CNOT(|00\rangle) = |00\rangle$$

$$CNOT(|10\rangle)=|11\rangle$$

После применения CNOT состояние системы будет:

$$rac{1}{\sqrt{2}}(\ket{01}-\ket{10})$$

4. Соберите схему для получения запутанного состояния квантовой системы из двух кубитов $\frac{1}{\sqrt{2}}$ ($|01\rangle+|10\rangle$). Выполните симуляцию работы схемы. Получите математическое обоснование результата

	Frequency (quantity)	
Shots	01⟩	10⟩
1024	510	514

	Frequency (out of 1)	
Shots	01⟩	10⟩
1024	0.4980	0.5019

- 1. Начальное состояние: $|q_0,q_1\rangle=|0\rangle|1\rangle=|01\rangle$
- 2. После Hadamard-гейта на q[0]]:

$$H|0
angle = rac{1}{\sqrt{2}}(|0
angle + |1
angle).$$

Система принимает вид:

$$rac{1}{\sqrt{2}}(\ket{0}+\ket{1})\otimes\ket{1}.$$

После раскрытия тензорного произведения:

$$rac{1}{\sqrt{2}}(\ket{01}+\ket{11}).$$

- 3. После СПОТ-гейта (контрольный q[0], управляемый q[1]):
 - |01⟩ остаётся неизменным
 - |11⟩ преобразуется в |10⟩

Таким образом, состояние становится:

$$rac{1}{\sqrt{2}}(\ket{01}+\ket{10}).$$

5. Соберите схему для получения запутанного состояния квантовой системы из двух кубитов в соответствии с вариантами задания приведенными в таблице 2. Выполните симуляцию работы схемы. Получите математическое обоснование результата.

Вариант №7:

Состояние кубитов:
$$a \mid 00 \rangle - b \mid 11 \rangle$$
 $|a|^2 = 65$

$$|b|^2 = 35$$

$$\theta = 2 arccos(\sqrt{0.65}) \approx 1,2668$$
 радиан

	Frequency (quantity)	
Shots	00> 11>	
1024	674	350

	Frequency (out of 1)	
Shots	00> 11>	
1024	0.6582	0.3418

1. **RY-гейт** на первом кубите:

$$RY(heta)|0
angle = \cos\left(rac{ heta}{2}
ight)|0
angle + \sin\left(rac{ heta}{2}
ight)|1
angle.$$

Параметр θ подбирается так, чтобы $\cos^2\left(\frac{\theta}{2}\right)=0.65$ и $\sin^2\left(\frac{\theta}{2}\right)=0.35$ Используем:

$$\theta = 2\arccos(\sqrt{0.65}).$$

После применения RY на первом кубите получаем:

$$\psi_1=a|0\rangle+b|1\rangle$$
.

2. СNОТ-гейт:

Если первый кубит в состоянии |1), второй кубит также переходит в состояние |1). Результат:

$$\psi_2 = a|00\rangle + b|11\rangle$$
.

3. Z-гейт на втором кубите:

Знак у компоненты |11) меняется на минус:

$$\psi=a|00
angle-b|11
angle.$$

6. Соберите схему для получения запутанного состояния квантовой системы из трех кубитов $a|010\rangle + b|111\rangle$ в соответствии с вариантами заданий, приведенными в таблице 2. Выполните симуляцию работы схемы. Получите математическое обоснование результата.

Вариант №7:

Состояние кубитов: $a \mid 00 \rangle - b \mid 11 \rangle$

 $|a|^2 = 65$

 $|b|^2 = 35$

$$\theta = 2arccos(\sqrt{0.65}) \approx 1,2668$$
 радиан

	Frequency (quantity)	
Shots	010⟩	111}
1024	666	358

	Frequency (out of 1)	
Shots	010> 111>	
1024	0.6504	0.3496

Мы начинаем с трех кубитов, все из которых изначально находятся в состоянии |0). То есть, изначальное состояние системы:

$$|\psi_{
m init}
angle = |0
angle \otimes |0
angle \otimes |0
angle = |000
angle.$$

На первом кубите (q[0]) применяется RY(θ)-гейт с углом $\theta = 1.2668$. Этот гейт изменяет состояние первого кубита с $|0\rangle$ в суперпозицию между состояниями $|0\rangle$ и $|1\rangle$. Согласно формуле для RY-гейта:

$$RY(heta)|0
angle = \cos\left(rac{ heta}{2}
ight)|0
angle + \sin\left(rac{ heta}{2}
ight)|1
angle.$$

Подставляем значение $\theta = 1.2668$:

$$RY(1.2668)|0\rangle = \sqrt{0.65}|0\rangle + \sqrt{0.35}|1\rangle.$$

Таким образом, после применения RY-гейта состояние первого кубита q[0] будет равно:

$$|\psi_0
angle = \sqrt{0.65}|0
angle + \sqrt{0.35}|1
angle.$$

После этого наше общее состояние будет:

$$|\psi
angle = (\sqrt{0.65}|0
angle + \sqrt{0.35}|1
angle)\otimes|0
angle\otimes|0
angle = \sqrt{0.65}|0,0,0
angle + \sqrt{0.35}|1,0,0
angle.$$

Затем применяется X-гейт (гейт NOT) на втором кубите q[1]. X-гейт изменяет состояние $|0\rangle$ на $|1\rangle$, так что:

$$X|0\rangle = |1\rangle.$$

Таким образом, состояние второго кубита q[1] становится |1), и система переходит в состояние:

$$|\psi
angle = \sqrt{0.65} |0,1,0
angle + \sqrt{0.35} |1,1,0
angle.$$

После этого применяется CNOT-гейт между кубитами q[0] (контрольный) и q[2] (цель). Этот гейт изменяет состояние целевого кубита q[2] в зависимости от состояния контрольного кубита q[0]:

Если $q[0]=|0\rangle$, состояние q[2] не изменяется.

Если $q[0]=|1\rangle$, состояние q[2]] инвертируется.

После применения CNOT, если первый кубит q[0] равен $|1\rangle$, состояние третьего кубита q[2] изменяется на $|1\rangle$. Таким образом, получаем:

$$|\psi\rangle = \sqrt{0.65}|0,1,0\rangle + \sqrt{0.35}|1,1,1\rangle.$$

7. Соберите схему для получения запутанного состояния квантовой системы из двух кубитов $\alpha|00\rangle+\beta|01\rangle+\gamma|11\rangle$, в соответствии с вариантами заданий, 49 приведенными в таблице 3. Выполните симуляцию работы схемы. Получите математическое обоснование результата.

Вариант №7:

$$|\alpha|^2 = 50 \ |\beta|^2 = 35 \ |\gamma|^2 = 15 \ /$$

	Frequency (quantity)		
Shots	01⟩	11⟩	00>
1024	333	216	475
	Frequency (out of 1)		
Shots	01⟩	11⟩	00>
1024	0.3252	0.2109	0.4639

Амплитуды α, β, γ связаны с вероятностями через:

$$|lpha|^2 = 0.5, \quad |eta|^2 = 0.35, \quad |\gamma|^2 = 0.15.$$

Соответствующие амплитуды (корни из вероятностей):

$$\alpha = \sqrt{0.5}, \quad \beta = \sqrt{0.35}, \quad \gamma = \sqrt{0.15}.$$

Численные значения:

$$lpha pprox 0.7071, \quad eta pprox 0.5916, \quad \gamma pprox 0.3873.$$

В начальный момент кубиты находятся в состоянии (00):

$$|\psi_0\rangle = |0\rangle \otimes |0\rangle.$$

Сначала **RY-гейт** применяется к первому кубиту q[0], который поворачивает его на угол θ_2 и приводит к состоянию:

$$ext{RY}(heta_2)|0
angle = \cos\left(rac{ heta_2}{2}
ight)|0
angle + \sin\left(rac{ heta_2}{2}
ight)|1
angle.$$

Параметр θ_2 подбирается так, чтобы амплитуда $|00\rangle$ равнялась α :

$$\cos\left(rac{ heta_2}{2}
ight) = lpha \implies heta_2 = 2rccos(lpha).$$

Подставляя $\alpha = \sqrt{0.5}$:

$$heta_2 = 2 \arccos(\sqrt{0.5}) = 2 \cdot rac{\pi}{4} = rac{\pi}{2}.$$

Затем на кубит q[1] применяется **управляемый RY-гейт** с параметром θ_1 , который действует, если первый кубит находится в состоянии |1 \rangle . Этот гейт поворачивает второй кубит, распределяя амплитуды между |01 \rangle и |11 \rangle . Гейт задается как:

$$ext{CRY}(heta_1)|0
angle = |0
angle, \quad ext{CRY}(heta_1)|1
angle = \cos\left(rac{ heta_1}{2}
ight)|0
angle + \sin\left(rac{ heta_1}{2}
ight)|1
angle.$$

Угол θ_1 выбирается так, чтобы амплитуда $|01\rangle$ была равна β , а амплитуда $|11\rangle$ была равна γ . Условие:

$$\sin\left(rac{ heta_1}{2}
ight) = rac{\gamma}{\sqrt{eta^2 + \gamma^2}}, \quad \cos\left(rac{ heta_1}{2}
ight) = rac{eta}{\sqrt{eta^2 + \gamma^2}}.$$

Находим $\sqrt{\beta^2 + \gamma^2}$:

$$\sqrt{eta^2 + \gamma^2} = \sqrt{0.35 + 0.15} = \sqrt{0.5}.$$

Тогда:

$$\sin\left(\frac{\theta_1}{2}\right) = \frac{\gamma}{\sqrt{0.5}} = \frac{0.3873}{0.7071} \approx 0.5477,$$

$$\cos\left(\frac{\theta_1}{2}\right) = \frac{\beta}{\sqrt{0.5}} = \frac{0.5916}{0.7071} \approx 0.8321.$$

Из этих значений находим угол θ_1 :

$$rac{ heta_1}{2}=rcsin(0.5477) \implies heta_1pprox 2\cdot 0.575pprox 1.15$$
 рад.

После применения RY и CRY гейтов схема приводит к состоянию:

$$|\psi
angle = lpha |00
angle + eta |01
angle + \gamma |11
angle.$$

С подставленными значениями амплитуд:

$$|\psi
anglepprox 0.7071|00
angle + 0.5916|01
angle + 0.3873|11
angle.$$

После измерения кубитов в базисе $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$, распределение вероятностей будет приближаться к:

$$P(\ket{00})pprox 0.5$$
, $P(\ket{01})pprox 0.35$, $P(\ket{11})pprox 0.15$, $P(\ket{10})=0$.

6. Выполнение упражнения №4:

Вариант №7

Реализуйте функцию f(x1, x2) = NOT(x1 AND x2). Выполните симуляцию. Получите математическое обоснование результата.

Постановка задачи:

Функция NAND (NOT AND) принимает два булевых входа x_1 и x_2 и возвращает 0 только тогда, когда оба входа равны 1. В остальных случаях результат равен 1.

x_1	x_2	x_1 AND x_2	$NOT(x_1AND x_2)$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Ввод: $x_1 = 0$, $x_2 = 0$

Ввод: $x_1 = 0$, $x_2 = 1$

Ввод: $x_1 = 1$, $x_2 = 0$

Ввод: $x_1 = 1$, $x_2 = 1$

Toffoli-гейт (или **ССХ-гейт**) — это трехкубитный вентиль, который выполняет операцию **X** на третьем кубите **только в случае, если оба входных кубита равны 1**. Формально его поведение можно описать следующим образом:

$$|x_1,x_2,x_3
angle
ightarrow |x_1,x_2,x_3\oplus (x_1\wedge x_2)
angle$$

Гле:

 \oplus — операция **XOR** (исключающее ИЛИ).

 x_1, x_2 — входные кубиты.

 x_3 — третий кубит, который изменяется только в случае, если оба входных кубита x_1 и x_2 равны 1.

Т. е. Toffoli-гейт инвертирует третий кубит, если оба входных кубита равны 1.

Для реализации функции $f(x_1, x_2) = \neg (x_1 \land x_2)$, можно использовать Toffoli-гейт следующим образом:

- 1. Инициализируем входные кубиты x_1 и x_2 , а также третий кубит x_3 , который будет хранить результат.
- 2. Применим Toffoli-гейт, который выполнит операцию $x_1 \wedge x_2$ и инвертирует x_3 только в случае, если оба входных кубита равны 1.
- 3. Затем применим дополнительный **X**-гейт (NOT-гейт) к x_3 , чтобы инвертировать результат, т. е. преобразовать x_3 в $\neg (x_1 \land x_2)$.

Формально:

- Входные кубиты: |x1, x2)
- Третий кубит, инициализированный в состоянии (0), для хранения результата.

После применения Toffoli-гейта результат будет:

$$|x_1,x_2,x_3
angle
ightarrow |x_1,x_2,x_3\oplus (x_1\wedge x_2)
angle$$

Затем мы применяем X-гейт к x_3 , чтобы инвертировать результат:

$$|x_1,x_2,x_3
angle
ightarrow |x_1,x_2,
eg(x_1\wedge x_2)
angle$$

Таким образом, на выходе третий кубит будет содержать значение $\neg (x_1 \land x_2)$, что является правильным результатом для данной функции.

Обобщая всё выше сказанное:

- 1. **Тоffoli-гейт** выполняет операцию $x_1 \wedge x_2$ для двух входных кубитов, изменяя третий кубит в случае, если оба входных кубита равны 1.
- 2. **Ж-гейт** применяется для инвертирования результата операции \wedge , что дает точную реализацию функции $\neg (x_1 \wedge x_2)$.

Вывод:

В этой работе рассмотрел как с помощью Toffoli-гейта и X-гейта можно реализовать логическую функцию $f(x_1, x_2) = \neg (x_1 \land x_2)$ на квантовом компьютере. Я доказал, что схема корректно работает для всех возможных значений входных кубитов и соответствует логическому действию NAND.