# **Lab 03 Tokenization / BERT representation**

22210802 Haeeul HWANG

# Using the Sequoia and German GSD corpora:

## - Extract all nouns and their gender

| German GSD |                     |       | French Sequoia |             |       |
|------------|---------------------|-------|----------------|-------------|-------|
|            | LEMMA               | FEATS |                | LEMMA       | FEATS |
| 0          | Beratung            | Fem   | 0              | exposition  | Fem   |
| 1          | Behebung            | Fem   | 1              | siècle      | Masc  |
| 2          | Problem             | Neut  | 2              | site        | Masc  |
| 3          | Kundenservice       | Neut  | 3              | industrie   | Fem   |
| 4          | Rahmen              | Masc  | 4              | forge       | Fem   |
| 5          | Gespräch            | Neut  | 5              | emplacement | Masc  |
| 6          | Ergebnis            | Neut  | 6              | fourneau    | Masc  |
| 7          | Zeit                | Fem   | 7              | fonderie    | Fem   |
| 8          | Behandlung          | Fem   | 8              | jour        | Masc  |
| 9          | Leiden              | Neut  | 9              | maire       | Masc  |
| 10         | Physiotherapieraxis | Fem   | 10             | échevin     | Masc  |
| 11         | Positive            | Neut  | 11             | lettre      | Fem   |
| 12         | Terminvergabe       | Fem   | 12             | val         | Masc  |
| 13         | Behandlungsraum     | Masc  | 13             | vallée      | Fem   |
| 14         | Trainingsplan       | Masc  | 14             | aval        | Masc  |
| 15         | Mitarbeiter         | Masc  | 15             | forge       | Fem   |
| 16         | Sauberkeit          | Fem   | 16             | apogée      | Masc  |
| 17         | Ordnung             | Fem   | 17             | siècle      | Masc  |
| 18         | Freundlichkeit      | Fem   | 18             | long        | Masc  |
| 19         | Standard            | Masc  | 19             | année       | Fem   |
|            |                     |       |                |             |       |

### - Tokenize the nouns using BERT tokenizer

German GSD

| TOKENS                  | FEATS | LEMMA         |   |  |  |  |  |
|-------------------------|-------|---------------|---|--|--|--|--|
| [Be, ##ratu, ##ng]      | Fem   | Beratung      | 0 |  |  |  |  |
| [Be, ##hebung]          | Fem   | Behebung      | 1 |  |  |  |  |
| [Problem]               | Neut  | Problem       | 2 |  |  |  |  |
| [Kunden, ##ser, ##vice] | Neut  | Kundenservice | 3 |  |  |  |  |
| [Rahmen]                | Masc  | Rahmen        | 4 |  |  |  |  |

French Sequoia

|   | LEMMA      | FEATS | TOKENS       |
|---|------------|-------|--------------|
| 0 | exposition | Fem   | [exposition] |
| 1 | siècle     | Masc  | [siècle]     |
| 2 | site       | Masc  | [site]       |
| 3 | industrie  | Fem   | [industrie]  |
| 4 | forge      | Fem   | [for, ##ge]  |

# - For each grammatical gender, determine the distribution of the number of subtokens resulting from the tokenization of a noun



Mean number of subtokens - GSD:

**FEATS** 

Fem 2.137908 Masc 2.054168 Neut 1.942116

Name: SUBTOKENS, dtype: float64



Mean number of subtokens - Sequoia:

**FEATS** 

Fem 1.629751 Masc 1.448567

Name: SUBTOKENS, dtype: float64

#### - Conclusion

In German, nouns are categorized into three genders: feminine, masculine, and neuter. It can be observed from the plot that words with up to 5 subtokens are prominently displayed. In the corpus, feminine nouns appear to be the most abundant, and overall, most words consist of a single token.

In French, nouns are classified as feminine or masculine, and in this corpus, masculine nouns seem to be more prevalent.

Most words consist of a single token, and it can be observed from the plot that words with up to 4 subtokens are prominently displayed.

The number of subtokens appears to be higher in German (2.06) compared to French (1.53), regardless of the gender of the nouns. In both languages, words with feminine nouns have the highest number of subtokens.

## **Using BERT features**

- The embeddings of the amazon\_polarity dataset
- Use this representations to train a logistic regression model

#### 1. Using the [CLS] token

```
# train a logistic regression model

clf = LogisticRegression(random_state = 42)
clf.fit(train_data_embeddings.cpu().numpy(), df_train_sample['label'])

# predict the test data

y_pred = clf.predict(test_data_embeddings.cpu().numpy())
accuracy = accuracy_score(df_test_sample['label'], y_pred)
print(f'Accuracy: {accuracy}')
```

Accuracy: 0.795

```
# test for different training sizes

train_sizes = [0.002, 0.003]
accuracies = []

for train_size in train_sizes:
    df_train_sample = df_train.sample(frac = train_size, random_state = 42)
    train_data = tokenize_data(df_train_sample)
    train_data_embeddings = get_embeddings(train_data)
    clf = LogisticRegression(random_state = 42)
    clf.fit(train_data_embeddings.cpu().numpy(), df_train_sample['label'])
    y_pred = clf.predict(test_data_embeddings.cpu().numpy())
    accuracy = accuracy_score(df_test_sample['label'], y_pred)
    accuracies.append(accuracy)
    print(f'Training size: {train_size}, Accuracy: {accuracy}')
```

Training size: 0.002, Accuracy: 0.8125 Training size: 0.003, Accuracy: 0.8325

#### 2. Using mean-pooling

```
# get the embeddings of the dataset using mean pooling with batch size 32
def get_embeddings_mean_pooling(data, batch_size = 32):
    dataset = TensorDataset(data['input_ids'], data['attention_mask'])
    dataloader = DataLoader(dataset, batch_size = batch_size)
    embeddings = []
    with torch.no_grad():
        for input_ids, attention_mask in dataloader:
            input_ids = input_ids.to(device)
           attention_mask = attention_mask.to(device)
           outputs = model(input_ids, attention_mask)
           mask = attention_mask.unsqueeze(2).expand(outputs.last_hidden_state.size())
            sum_embeddings = torch.sum(outputs.last_hidden_state * mask, 1)
           mask = mask.sum(1)
           embeddings.append(sum_embeddings / mask)
    return torch.cat(embeddings)
train_data_mean_embeddings = get_embeddings_mean_pooling(train_data)
test_data_mean_embeddings = get_embeddings_mean_pooling(test_data)
```

```
# train a logistic regression model

clf = LogisticRegression(random_state = 42)
clf.fit(train_data_mean_embeddings.cpu().numpy(), df_train_sample['label'])

# predict the test data

y_pred = clf.predict(test_data_mean_embeddings.cpu().numpy())
accuracy = accuracy_score(df_test_sample['label'], y_pred)
print(f'Accuracy: {accuracy}')
```

Accuracy: 0.83

```
# test for different training sizes

train_sizes = [0.002, 0.003]
accuracies = []

for train_size in train_sizes:
    df_train_sample = df_train.sample(frac = train_size, random_state = 42)
    train_data = tokenize_data(df_train_sample)
    train_data_mean_embeddings = get_embeddings_mean_pooling(train_data)
    clf = LogisticRegression(random_state = 42)
    clf.fit(train_data_mean_embeddings.cpu().numpy(), df_train_sample['label'])
    y_pred = clf.predict(test_data_mean_embeddings.cpu().numpy())
    accuracy = accuracy_score(df_test_sample['label'], y_pred)
    accuracies.append(accuracy)
    print(f'Training size: {train_size}, Accuracy: {accuracy}')
```

Training size: 0.002, Accuracy: 0.82 Training size: 0.003, Accuracy: 0.83

#### - compare the performance to the one you have achieved in the first lab

When increasing the size of the training set, the model's accuracy significantly improved when using [CLS] token embeddings.

However, when using mean-pooling for embeddings, the correlation with the size of the training set seemed weaker.

This might be because mean-pooling simply averages the embeddings of all tokens in the sentence.

Therefore, it seems that the mean-pooling method may not fully capture the essence of the data as effectively as the [CLS] token embeddings.

In conclusion, as observed in the first task, there is a higher likelihood of improved model accuracy when using embeddings generated by BERT, especially when using [CLS] token embeddings, compared to when using TfidfVectorizer for classification tasks.