

IN THE SPECIFICATION

Please amend the paragraph at page 11, line 5
as follows:

--The ground station 10 has a processor 16
which uses the punctual and late correlation outputs IP,
IL₁, IL₂, IL₃, . . . , IL_n as disclosed hereinafter in
order to determine whether a fault exists.

Alternatively or additionally, the processor 16 can use
the early correlation outputs IE₁, IE₂, IE₃, . . . , IE_m as
disclosed hereinafter in order to ~~determine~~ determine
whether a fault exists.--

Please amend the paragraph at page 19, line 12
as follows:

A3
--where \tilde{d} is a vector representing the decorrelated
deviations generating the vector d . Equation ~~(9)~~ (8) can
be re-written according to the following equation:--

Please amend the paragraph at page 19, line 16
as follows:

A3
--Then, combining equations ~~(6)~~ and ~~(10)~~ (5) and (9)
produces the following equation:--

Please amend the paragraph at page 20, line 2
as follows:

A4
--By comparing equations (6) and (11) (7) and (10), it
can be seen that D is given by following equation:--

Please amend the paragraph at page 21, line 4
as follows:

A5
--A normalization to $\sigma = 1$ as required in the definition
of χ^2 will be performed in equation +14) (13). The value
 $d[\chi^2]$ is a single value which has reduced thermal and
multipath noise, which represents information regarding a
plurality of correlation measurements, and which may be
compared to a threshold D in order to determine the
existence of a fault.--