

Note: This is a sample question with the solution. It aims at helping you better understand the **Bottom-Up Computation** method.

Bottom-Up Computation

1. Consider a 2-D data array containing **two** dimensions A and B. The data contained in the array is as follows:

$(a_0,b_0):1$	$(a_0,b_1):1$
$(a_1,b_0):1$	$(a_1,b_1):1$
$(a_2, b_0): 1$	$(a_2,b_1):1$

Now, we want to construct the iceberg cube for dimension A and B. If we set $mini_support = 2$ with the order of $A \to B$, how many cells would be considered/computed? Draw the trace tree and you should report the number of cells to be considered/computed. For these cells, you should also list each cell with its count and report whether the cell is expansible in the **BUC** process.

Solution:

Trace Tree in Figure 1.

Figure 1: The trace tree.

Mingkun 2

If we follow the order of $A \to B$, the cells with their information (count, expansibility) that need to be computed are listed as follows:

All
$$(*,*): 6$$
 - expansion

A $(a_0,*):2$ - expansion

A $(a_1,*):2$ - expansion

A $(a_2,*):2$ - expansion

AB $(a_0, b_0) : 1$

AB $(a_0, b_1): 1$

AB $(a_1, b_0): 1$

AB $(a_1, b_1): 1$

AB $(a_2, b_0): 1$

AB $(a_2, b_1): 1$

B $(*, b_0): 3$

B $(*,b_1):3$

Thus, there are totally 12 cells which would have to be computed.