Создание схемы ІР адресации

Антоненко Виталий anvial@lvk.cs.msu.su

Адресация на сетевом уровне

- IP-адреса, как способ реализации адресации сетевого уровня
- IP адрес состоит из ID сети и из ID хоста в сети
- Классовая адресация
 - Класс А: адрес сети 1 байт, начинается с бита 0 (0-127.)
 - Класс В: адрес сети 2 байта, начинается с битов 10 (128-191)
 - Класс С: адрес сети 3 байта, начинается с битов 110 (192-223)
- В поле ID хоста два значения зарезервированы и не могут назначаться хостам:
 - Все биты нули это адрес сети
 - Все биты единицы вещательный адрес
- Локальный и направленный вещательные адреса
 - Пакет с адресом 255.255.255.255 не выйдет за пределы вещательного домена
 - Пакет с направленным адресом может маршрутизироваться

Особые адреса

- Приватные адреса
 - Класс А: одна сеть 10.0.0.0
 - Класс В: 16 сетей с 172.16.0.0 по 172.31.0.0
 - Класс С: 256 сетей с 192.168.0.0 по 192.168.255.0
 - Приватные адреса не маршрутизируются в Интернете
- Адреса для локального тестирования
 - Сеть 127.0.0.0
- Адреса «нулевой конфигурации»
 - Сеть 169.254.0.0
- Групповые рассылки
 - 224.0.0.0 239.255.255.255
- Зарезервированные
 - 240.0.0.0 255.255.255.255

Что такое маска подсети?

- Говорит, сколько бит является сетевой частью адреса, а сколько - хостовой
- Позволяет уйти от классовой адресации в безклассовую
- Для маршрутизатора на сколько бит надо смотреть при маршрутизации пакета

Десятичная запись префикса

128	64	32	16	8	4	2	1		
1	0	0	0	0	0	0	0	=	128
1	1	0	0	0	0	0	0	=	192
1	1	1	0	0	0	0	0	=	224
1	1	1	1	0	0	0	0	=	240
1	1	1	1	1	0	0	0	-	248
1	1	1	1	1	1	0	0	=	252
1	1	1	1	1	1	1	0	=	254
1	1	1	1	1	1	1	1	-	255

Маски подсетей, как и IP адреса, представляются в десятичном формате с точками, например 255.255.25.0

Маски сетей по умолчанию

Example Class A address (decimal): 10.0.0.0

Default Class A mask (decimal): 255.0.0.0

Default classful prefix length: /8

Example Class B address (decimal): 172.16.0.0

Example Class B address (binary): 10010001.10101000.00000000.00000000

Default Class B mask (decimal): 255.255.0.0

Default classful prefix length: /16

Example Class C address (decimal): 192.168.42.0

Example Class C address (binary): 11000000.10101000.00101010.00000000

Default Class C mask (decimal): 255.255.255.0

Default classful prefix length: /24

Типичные задачи

- Спроектировать адресацию
 - пусть необходимо адресовать N узлов; какую маску надо выбрать с учетом того, что надо экономить IP-адреса?
 - реализовать эффективную адресацию для сети с подсетями из $N_1, ..., N_k$ узлов соответственно
- Вычислить по адресу узла и маске адрес сети вещательный адрес в этой сети
- Вычислить по набору IP-адресов суммарный адрес

Число хостов и подсетей в классе С

Network . Network . Network . Bыделение битов на подсети

Количество выделенных битов (s)	Количество возможных подсетей (2 ^S)	Оставшееся количество бит (8 - s = h)	Количество хостов в каждой подсети (2 ^h - 2)
1_1	2	7	126
2	4	6	62
3	8	5	30
4	16	4	14
5	32	3	6
6 64		2	2
7 128		1	2

Число хостов и подсетей в классе В

Количество выделенных битов	Количество возможных подсетей (2 ^s)	Оставшееся количество бит (16 - s = h)	Количество хостов в каждой подсети (2 ^h - 2)	
1	2	15	32,766	
2	4	14	16,382	
3	8	13	8,190	
4	16	12	4,094	
5	32	11	2,046	
6	64	10	1,022	
7	128	9	510	

Число хостов и подсетей в классе А

количество выделенных битов (s)	количество возможных подсетей (2 ^S)	Оставшееся количество бит (24 - s = h)	количество хостов в каждой подсети (2 ^h - 2)		
1	2	23	8,388,606		
2	4	22	4,194,302		
3	8	21	2,097,150		
4	16	20	1,048,574		
5	32	19	524,286		
6	6 64		262,142		
7 128		17	131,070		

Использование маски конечными хостами

Использование маски маршрутизаторами

Реализация подсетей

Определение подсетей по IP адресу и маске (1 из 2)

IP адрес 192.168.221.37 Маска подсети /29

Шаг	Описание	_. Пример
1.	Запишите в двоичном виде октет, который необходимо поделить.	Четвертый октет: 00100101
2.	Запишите маску в двоичном виде.	Назначенная маска: 255.255.255.248 (/29) Четвертый октет: 11111000
3.	Проведите вертикальную линию там, где заканчиваются единицы сетевой маски.Левая часть адреса относится к сетевой части.	Разделить октет: 0 <u>0100</u> 101 Разделить маску: 11111 <mark>000</mark>

Определение подсетей по IP адресу и маске (2 из 2)

Шаг	Описание	Пример
4.	Запишите сетевую часть маски четыре раза подряд.	00100 <mark>000</mark> (сетевой адрес) 00100 <mark>001</mark> (первый адрес в подсети)
5.	В первой строке получите адрес сети, заполнив оставшиеся биты нулями.	00100 110 (последний адрес в подсети) 00100 111 (широковещательный адрес) ? Готовые адреса подсети
6.	В последней строке получите широковещательный адрес, заполнив оставшиеся биты единицами.	Сетевой адрес: 192.168.221.32 Маска подсети: 255.255.255.248 Первая подсеть:192.168.221.32 Адрес первого хоста: 192.168.221.33 Адрес послед. хоста: 192.168.221.38
7.	В средних строках определите остальные адреса хостов.	Широковещат. адрес: 192.168.221.39 След. подсеть:192.168.221.40
8.	Повторяйте описанные шаги, увеличивая сетевую часть маски на единицу.	0010 <mark>1</mark> 000 (следующая подсеть)

Реализация подсетей (CIDR)

IP адрес 192.168.5.139 Маска подсети 255.255.255.224

IP адрес	192	168	5	139	
IP адрес	11000000	10101000	00000101	100 <mark>01011</mark>	
Маска подсети	11111111	11111111	11111111	111 <mark>00000</mark>	/27
Подсеть					
Подсеть					
Первый хост					
Последний хост					
Вещательный адрес					
Следующая подсеть					
					16

Реализация подсетей (CIDR)

IP адрес 192.168.5.139 Маска подсети 255.255.255.224

IP адрес	192	168	5	139	
IP адрес	11000000	10101000	00000101	100 <mark>01011</mark>	
Маска подсети	сети 11111111 1111111 1111111 111 <mark>0</mark> 0		111 <mark>00000</mark>	/27	
Подсеть	11000000	10101000	00000101	10000000	
Подсеть	192	168	5	128	
Первый хост 192 168 5		5	1000000	1=129	
Последний хост	192	168	5	1001111	0=158
Вещательный адрес 192 168 5		5	10011111=159		
Спелующая		1010000	0=160		

Реализация подсетей

Для сети, в которую входит хост с заданным ір и маской, определить

- сетевой адрес,
- вещательный адрес,
- наименьший адрес хоста,
- наибольший адрес хоста,
- число хостов в сети.
- 1. 172.16.139.46/20
- 2. 10.172.16.211/18
- 3. 192.168.254.9/30
- 4. 192.168.164.163/19

Что такое маска переменной длины?

- Подсеть 172.16.14.0/24 делится на несколько меньших подсетей
 - Несколько подсетей с маской /27
 - Для адресации Point to Point соединений выбирается одна неиспользуемая подсеть с маской /27 и разбивается далее на подсети с маской /30

1G_259

Подсчет VLSM

Исходный адрес: 172.16.32.0/20

В двоичном: 10101100. 00010000.00100000.00000000

VLSM-адрес: 172.16.32.0/26

В двоичном: 10101100. 00010000.00100000.00000000

1ая подсеть: .0010 00.000 16 172 2ая подсеть: .0010 0000.01 172 16 Зя подсеть: 0000.10 172 16 .0010 0000.11 4ая подсеть: 172 16 .0010 0001.00 5ая подсеть: 172 16 .0010

000000=172.16.32.0/26

000000=172.16.32.64/26

000000=172.16.32.128/26

000000=172.16.32.192/26

000000=172.16.33.0/26

Сеть Подсеть Подсеть Хост переменной длины

Подсчет VLSM

Исходный адрес: 172.16.32.0/20

В двоичном: 10101100. 00010000.00100000.00000000

VLSM-адрес: 172.16.32.0/26

В двоичном:

1ая подсеть:

2ая подсеть:

3я подсеть:

4ая подсеть:

5ая подсеть:

Рабочий пример VLSM

Что такое суммирование маршрутов?

- Протоколы маршрутизации могут суммировать адреса нескольких подсетей в один общий адрес

Суммирование маршрутов

172.16.168.0/24 =	10101100	. 00	0010000	10101	000 .	00000000
172.16.169.0/24 =	172		16	10101	001 .	0
172.16.170.0/24 =	172		16	10101	010 .	0
172.16.171.0/24 =	172		16	10101	011 .	0
172.16.172.0/24 =	172		16	10101	100 .	0
172.16.173.0/24 =	172		16	10101	101 .	0
172.16.174.0/24 =	172		16	10101	110 .	0
172.16.175.0/24 =	172		16	10101	111 .	0

Количество одинаковых битов = 21 Обобщенный адрес: 172.16.168.0/21

Разные биты = 11

Суммирование адресов в сети с VLSM

Маршрутизация в Cisco

192.16.5.33	/32	Хост
192.16.5.32	/27	Подсеть
192.16.5.0	/24	Сеть
192.16.0.0	/16	Блок сетей
0.0.0.0	/0	Маршрут по умолчанию

- Поддерживаются маршруты к хостам, подсетям, сетям, блокам подсетей и маршруты по умолчанию
- При маршрутизации пакета выбирается запись, в которой с адресом назначения совпадает максимальное число бит

