Banco de Dados

Álgebra Relacional

2014-1

Profa.: Márcia Sampaio Lima

EST-UEA

Álgebra Relacional

- Sistema matemático que consiste de:
 - Operandos: variáveis ou valores a partir dos quais novos valores podem ser gerados.
 - Operadores: símbolos que denotam operações que geram novos valores a partir de valores existentes

O que é Álgebra Relacional?

- Álgebra cujos operandos são relações ou variáveis que representam relações.
- Os operandos foram projetados de forma a cobrir operações comuns sobre relações em um BD.
- Qualquer operação recebe como entrada uma ou mais relações e devolve como saída uma relação.

Por que Álgebra Relacional?

- Não é usada hoje como linguagem de consulta em SGBDs comerciais.
- Em vez disso, a linguagem de consulta "real", a SQL, incorpora a AR em seu cerne
 - Muitos comandos em SQL são na realidade expressões sintaticamente "açucaradas" da AR

Por que Álgebra Relacional?

- No processamento de consultas em um SGBD, a primeira coisa que acontece a uma consulta SQL é sua tradução em AR ou em uma representação interna muito semelhante.
- Os conhecimentos da álgebra relacional tornam mais fácil o aprendizado de SQL.

Operações Básicas

- União, Intersecção e Diferença
 - Operações usuais sobre conjuntos, mas os dois operandos devem ter um mesmo esquema.
- Seleção: filtra um subconjunto de tuplas.
- Projeção: filtra um subconjunto de colunas.
- Produtos e Junções: combina dados de tabelas diferentes.
- Renomeação de relações e atributos.

Álgebra Relacional - operadores

- Operadores provenientes da teoria dos conjuntos (matemática):
 - □ União (union): ∪

 - □ Diferença (minus): -
 - □ Produto Cartesiano (cross product): X

Álgebra Relacional - operadores

- Operadores desenvolvidos especificamente para os bancos de dados relacionais:
 - □ Seleção (select): **O**
 - Projeção (project): π
 - Junção (join):
 - □ Renomeação (rename): **P**
 - 🗖 Divisão: 🛨

Álgebra Relacional OPERADORES UNÁRIOS

- Atuam em relações únicas
 - Seleção (select): σ
 - Projeção (project): π
 - Renomeação: ρ

- Utilizado para selecionar um subconjunto de tuplas que satisfaça a um ou mais critérios de seleção.
- SINTAXE:

♂ <critério de seleção> (R)

ONDE:

- σ (Sigma): Operador Seleção
- □ <*Critério de Seleção*>: Expressão booleana, especificada nos valores de atributos da tabela
- □ (Relação R);

 A relação resultante da operação SELEÇÃO tem os mesmos atributos de R.

- Expressão Booleana: Composta por um número de n cláusulas da forma:
 - <nom_atributo> <op_relacional> <constante>Exemplo: CodCliente = 10OU
 - <nom_atributo> <op_relacional> <nom_atributo> Exemplo: CodResp = CodCliente

- <nom_atributo>
 - Qualquer Atributo de R
- <op_relacional>
 - Corresponde a um dos operadores:

$$\{ = , < , \le , >, \ge , \ne \}$$

- <constante >
 - qualquer valor do domínio do atributo
- As cláusulas podem ser conectadas pelos operadores booleanos AND, OR e NOT

Operadores Lógicos, Comparadores e Outros

Operador	Exemplo	Saída
=	(3+2) = (8-3)	Verdadeiro (True)
≠	(3 + 2) ≠ (8-3)	Falso (False)
>	(3 + 2) > (8-3)	Falso (False)
<	(3 + 2) < (8-3)	Falso (False)
≤ ≥	Análogo aos ant	eriores
AND	((3 + 2) < (8-3)) AND (3 =	Falso (False)
OR	((3+2) = (8-3)) OR $(3=3)$	Verdadeiro (True)
'string'	Representação de cadeir	ra de caracteres

Operador de SELEÇÃO (Select) EXEMPLOS

FUNCIONARIO

funcodigo	funnome	funsexo	Fundtnascto	Funsalario	fundepcodigo
1	Andrea Costa	F	01/01/1975	2.500	1
2	Francisca Chagas	F	13/05/1970	2.300	2
3	Maria Helena	F	25/03/1969	2.800	1
4	Rubens J Silva	М	30/10/1965	5.600	3
5	Carlos Alberto	М	01/01/1965	1.950	2

σ (funcodigo = 1) (FUNCIONARIO)

<u>funcodigo</u>	funnome	funsexo	Fundtnascto	Funsalario	fundepcodigo
1	Andrea Costa	F	01/01/1975	2.500	1

Operador de SELEÇÃO (Select) EXEMPLOS

Todos os funcionários do departamento 2

FUNCIONARIO

funcodigo	funnome	funsexo	Fundtnascto	Funsalario	fundepcodigo
1	Andrea Costa	F	01/01/1975	2.500	1
2	Francisca Chagas	F	13/05/1970	2.300	2
3	Maria Helena	F	25/03/1969	2.800	1
4	Rubens J Silva	M	30/10/1965	5.600	3
5	Carlos Alberto	M	01/01/1965	1.950	2

σ (fundepcodigo = 2) (FUNCIONARIO)

funcodigo	funnome	funsexo	fundtnascto	funsalario	fundepcodigo
2	Francisca Chagas	F	13/05/1970	2.300	2
5	Carlos Alberto	M	01/01/1965	1.950	2

Álgebra Relacional – Operador Select

a) σ (salariofun > 2500) (FUNCIONARIO)

CodFun	NomeFun	SexoFun	DtNasctoFun	SalarioFun	CodDepFun
3	Maria Helena	F	25/03/1969	2.800	1
4	Rubens J Silva	М	30/10/1965	5.600	3

b) σ (coddepfun = 1 AND salariofun > 2500) (FUNCIONARIO)

CodFun	NomeFun	SexoFun	DtNasctoFun	SalarioFun	CodDepFun
3	Maria Helena	F	25/03/1969	2.800	1

c) σ (coddepfun = 1 AND salariofun > 2500 OR (coddepfun = 2)) (FUNCIONARIO)

CodFun	NomeFun	SexoFun	DtNasctoFun	SalarioFun	CodDepFun
3	Maria Helena	F	25/03/1969	2.800	1
2	Francisca Chagas	F	13/05/1970	2.300	2
5	Carlos Alberto	М	01/01/1965	1.950	2

Álgebra Relacional Operador Select

- A operação a seguir resulta no mesmo subconjunto de tuplas da questão (b) anterior. Podemos usar operações "aninhadas".
- d) $\sigma_{\text{salariofun} > 2500}$ ($\sigma_{\text{coddepfun} = 1}$ (FUNCIONARIO))

Dica: para entender a ordem de execução, lembre-se das regras matemáticas:

Ref.: Slides Profa. Aurea

18

Operador de SELEÇÃO (Select)

Uma operação de seleção retorna linhas

Em que o número máximo de linhas pode ser igual ao número de tuplas (registros) existentes na tabela.

Operadores Unários PROJEÇÃO (Project) - π "pi"

 Operação Projeção (project): π - é utilizada para selecionar certos atributos (colunas) de uma relação.

 π < lista de colunas > (< tabela >)

- O resultado da operação de projeção contém os atributos listados na lista de colunas> na mesma ordem em que eles aparecem na lista.
- Os atributos que não estão na lista são automaticamente removidos.

Operadores Unários PROJEÇÃO (Project)

- Ao incluir na lista de colunas> atributos que não façam parte da chave, é provável que ocorram tuplas repetidas.
- A operação Projeção remove as tuplas repetidas.

PROJEÇÃO (Project) EXEMPLOS

FUNCIONARIO

<u>funcodigo</u>	funnome	funsexo	Fundtnascto	Funsalario	fundepcodigo
1	Andrea Costa	F	01/01/1975	2.500	1
2	Francisca Chagas	F	13/05/1970	2.300	2
3	Maria Helena	F	25/03/1969	2.800	1
4	Rubens J Silva	M	30/10/1965	5.600	3
5	Carlos Alberto	M	01/01/1965	1.950	2

a) π funcodigo, funnome (FUNCIONARIO)

<u>funcodigo</u>	Funnome
1	Andrea Costa
2	Francisca Chagas
3	Maria Helena
4	Rubens J Silva
5	Carlos Alberto

PROJEÇÃO (Project) EXEMPLOS

FUNCIONARIO

funcodigo	funnome	funsexo	Fundtnascto	Funsalario	fundepcodigo
1	Andrea Costa	F	01/01/1975	2.500	1
2	Francisca Chagas	F	13/05/1970	2.300	2
3	Maria Helena	F	25/03/1969	2.800	1
4	Rubens J Silva	М	30/10/1965	5.600	3
5	Carlos Alberto	М	01/01/1965	1.950	2

a) π fundepcodigo (FUNCIONARIO)

fundepcodigo
1
2
3

PROJEÇÃO (Project) EXEMPLOS

FUNCIONARIO

funcodigo	funnome	funsexo	Fundtnascto	Funsalario	fundepcodigo
1	Andrea Costa	F	01/01/1975	2.500	1
2	Francisca Chagas	F	13/05/1970	2.300	2
3	Maria Helena	F	25/03/1969	2.800	1
4	Rubens J Silva	М	30/10/1965	5.600	3
5	Carlos Alberto	M	01/01/1965	1.950	2

c) π funsexo, fundepcodigo (FUNCIONARIO)

funsexo	fundepcodi go
	go
F	1
F	2
М	3
IVI	2

Operadores Unários PROJEÇÃO (Project)

- A operação de Projeção permite operações aritméticas.
 - EXEMPLO:

 π sexofun, salariofun * 0,10, coddepfun (FUNCIONARIO)

Problema:

Qual o nome da 2^a coluna???

A solução é dada pelo operador RENAME

sexofun	???	coddepfun
F	250	1
F	230	2
M	280	3
M	560	2

PROJEÇÃO (Project)

 A operação de Projeção RETORNA n atributos (colunas).

 Em que o número máximo de colunas pode ser igual ao número de colunas (atributos) existentes na tabela.

Álgebra Relacional Operações Aninhadas

- Seqüência de Operações:
- As diferentes operações da álgebra relacional também podem ser "aninhadas". Ou seja, podemos aplicar várias operações, uma após a outra.

π nomefun,coddepfun (σ (salariofun ≥ 2500) (FUNCIONARIO))

nomeFun	coddepfun
Andrea Costa	1
Maria Helena	1
Rubens J Silva	3

RELAÇÃO

Exercícios

CD

CDId	CDTitulo	CDCAntor	CdPreco	CdGenero
100	The Best	Wanderley Andrade	R\$ 40,00	Brega
101	Os Piores	Alípio Martins	R\$ 25,00	Meio Brega
102	Ouvir e Dormir	Reginaldo Rossi	R\$30,00	Muito Brega
103	Alegria	XUXA	R\$ 45,00	Infantil
104	Ouvir e Chorar	Reginaldo Rossi	R\$ 10,00	Brega

- 1. Obter todos os cds cujo preço é maior que R\$ 25,00
- 2. Obter Os cds cujo gênero seja igual a infantil
- 3. Obter os cds do Reginaldo Rossi que custem até R\$ 20,00
- 4. Obter os títulos dos cds
- 5. Obter os títulos dos cds que custam mais que R\$ 40,00
- 6. Obter o título, cantor e o preço dos Cds de forma que cada cd receba um desconto de 10%

CD

CDId	CDTitulo	CDCAntor	CDPreco	CDGenero
100	The Best	Wanderley Andrade	40,00	Brega
101	Os Piores	Alípio Martins	25,00	Meio Brega
102	Ouvir e Dormir	Reginaldo Rossi	30,00	Muito Brega
103	Alegria	XUXA	45,00	Infantil
104	Ouvir e Chorar	Reginaldo Rossi	10,00	Brega

1. Obter todos os cds cujo preço é maior que R\$ 25,00 σCDPreco > 25,00(CD)

CD

CDId	CDTitulo	CDCAntor	CdPreco	CdGenero
100	The Best	Wanderley Andrade	R\$ 40,00	Brega
101	Os Piores	Alípio Martins	R\$ 25,00	Meio Brega
102	Ouvir e Dormir	Reginaldo Rossi	R\$30,00	Muito Brega
103	Alegria	XUXA	R\$ 45,00	Infantil
104	Ouvir e Chorar	Reginaldo Rossi	R\$ 10,00	Brega

2. Obter Os cds cujo gênero seja igual a infantil

σCDGenero = 'Infantil'(CD)

CDId	CDTitulo	CDCAntor	CdPreco	CdGenero
103	Alegria	XUXA	R\$ 45.00	Infantil
	9		, ,	

CD

CDId	CDTitulo	CDCAntor	CdPreco	CdGenero
100	The Best	Wanderley Andrade	R\$ 40,00	Brega
101	Os Piores	Alípio Martins	R\$ 25,00	Meio Brega
102	Ouvir e Dormir	Reginaldo Rossi	R\$30,00	Muito Brega
103	Alegria	XUXA	R\$ 45,00	Infantil
104	Ouvir e Chorar	Reginaldo Rossi	R\$ 10,00	Brega

3. Obter os cds do Reginaldo Rossi que custem até R\$ 20,00

 σ (CDPreco <= 20,00) (σ (CDCantor = 'Reginaldo Rossi') (CD))

CD

CDId	CDTitulo	CDCAntor	CdPreco	CdGenero
100	The Best	Wanderley Andrade	R\$ 40,00	Brega
101	Os Piores	Alípio Martins	R\$ 25,00	Meio Brega
102	Ouvir e Dormir	Reginaldo Rossi	R\$30,00	Muito Brega
103	Alegria	XUXA	R\$ 45,00	Infantil
104	Ouvir e Chorar	Reginaldo Rossi	R\$ 10,00	Brega

5. Obter os títulos dos cds que custam mais que R\$ 40,00

$$\pi$$
 CDTitulo (σ (CDPreco > 40,00)(CD))

CDTitulo

Alegria

CD

CDId	CDTitulo	CDCAntor	CdPreco	CdGenero
100	The Best	Wanderley Andrade	R\$ 40,00	Brega
101	Os Piores	Alípio Martins	R\$ 25,00	Meio Brega
102	Ouvir e Dormir	Reginaldo Rossi	R\$30,00	Muito Brega
103	Alegria	XUXA	R\$ 45,00	Infantil
104	Ouvir e Chorar	Reginaldo Rossi	R\$ 10,00	Brega

6. Obter o título, cantor e o preço dos Cds de forma que cada cd receba um desconto de 10%

π_{CDTitulo}, CDCantor, CDPreco- CDPreco * 0.10(CD)

 ρ CDDesc(CDTitulo, CDCantor, CDDesconto) (π CDTitulo, CDCantor, CDPreco * 0.10(CD))

Operadores Binários Operador UNIÃO (Union) ∪

 As operações de UNIÃO, INTERSECÇÃO e DIFERENÇA são operações binárias. Ou seja, possuem 2 relações como operandos.

Operadores Binários Operador UNIÃO (Union) ∪

- Possui 2 tabelas como operandos
- As tabelas devem ser compatíveis
 - □ Possuir o mesmo nº de colunas;
 - O domínio das colunas correspondentes devem ser os mesmos.
 - Quando as relações possuem essa compatibilidade de domínios denomina-se "compatíveis para união".
 - Quando os nomes das colunas forem diferentes, adota-se a convenção de usar os nomes das colunas da 1ª tabela.

Operador UNIÃO EXEMPLOS

Considere 2 relações: (R1) e (R2)

R1: ALUNO

<u>IdAlu</u>	NomeAlu	SexAlu	DtNascAlu
1	José Costa	F	01/01/1975
3	Sérgio Sá	М	18/07/1980
4	Ana Silva	М	01/05/1985

R2: FUNCIONÁRIO

<u>IdFun</u>	NomeFun	SexFun	DtNasctoFun
1	José Costa	F	01/01/1975
2	João Chagas	F	13/05/1970

R1 ∪ **R2**

<u>ldAlu</u>	NomeAlu	SexoAlu	DtNascAlu
1	José Costa	F	01/01/1975
3	Sérgio Sá	М	18/07/1980
4	Ana Silva	M	01/05/1985
2	João Chagas	F	13/05/1970

Para estas relações, a união apresenta uma relação com todos os alunos e todos os funcionários.

Operadores Binários Operador INTERSECÇÃO ∩

 Como na teoria dos conjuntos, retorna os elementos (tuplas) que estão nas duas relações.

R1: ALUNO

<u>IdAlu</u>	NomeAlu	SexAlu	DtNascAlu
1	José Costa	F	01/01/1975
3	Sérgio Sá	М	18/07/1980
4	Ana Silva	М	01/05/1985

R2: FUNCIONÁRIO

<u>IdFun</u>	NomeFun	SexFun	DtNasctoFun
1	José Costa	F	01/01/1975
2	João Chagas	F	13/05/1970

R1 ∩ R2:

CodAlu	NomeAlu	SexoAlu	DtNascAlu
1	José Costa	F	01/01/1975

Para estas relações, a intersecção retorna todos os alunos que são professores

Operadores Binários Operador INTERSECÇÃO ∩

- As operações de união e intersecção são comutativas:
 R1 ∪ R2 = R2 ∪ R1
 R1 ∩ R2 = R2 ∩ R1
- •União e Intersecção são também associativas, isto é, podem ser tratadas como operações n-árias aplicáveis a qualquer número de relações:

$$R1 \cup (R2 \cup R3) = (R1 \cup R2) \cup R3$$

$$R1 \cap (R2 \cap R3) = (R1 \cap R2) \cap R3$$

Operadores Binários Operador Diferença -

- Diferença ou Subtração (minus) –
- Não é comutativa. Portanto,
 - $R1 R2 \neq R2 R1$
- Retorna as tuplas que estão em R1 e NÃO estão em R2
 - Exemplo:

R1 – R2 (alunos que não são funcionários)

R1: ALUNO

<u>IdAlu</u>	NomeAlu	SexAlu	DtNascAlu
1	José Costa	F	01/01/1975
3	Sérgio Sá	M	18/07/1980
4	Ana Silva	M	01/05/1985

R2: FUNCIONÁRIO

<u>IdFun</u>	NomeFun	SexFun	DtNasctoFun
1	José Costa	F	01/01/1975
2	João Chagas	F	13/05/1970

Operador Diferença EXEMPLOS

■ R1 – R2 (alunos que não são funcionários)

R1: ALUNO

<u>IdAlu</u>	NomeAlu	SexAlu	DtNascAlu
1	José Costa	F	01/01/1975
3	Sérgio Sá	М	18/07/1980
4	Ana Silva	M	01/05/1985

R2: FUNCIONÁRIO

<u>ldFun</u>	NomeFun	SexFun	DtNasctoFun
1	José Costa	F	01/01/1975
2	João Chagas	F	13/05/1970

<u>IdAlu</u>	NomeAlu	SexoAlu	DtNascAlu
3	Sérgio Sá	M	18/07/1980
4	Ana Silva	M	01/05/1985

Operador Diferença EXEMPLOS

□ R2 – R1 (funcionários que não são alunos)

R1: ALUNO

<u>IdAlu</u>	NomeAlu	SexAlu	DtNascAlu
1	José Costa	F	01/01/1975
3	Sérgio Sá	M	18/07/1980
4	Ana Silva	М	01/05/1985

R2: FUNCIONÁRIO

<u>IdFun</u>	NomeFun	SexFun	DtNasctoFun
1	José Costa	F	01/01/1975
2	João Chagas	F	13/05/1970

<u>CodFun</u>	NomeFun	SexoFun	DtNasctoFun
2	João Chagas	F	13/05/1970

Álgebra Relacional Produto Cartesiano (X)

- R1 X R2: Permite realizar operação com 2 relações não "compatíveis para união".
- O resultado é uma 3ª relação contendo todas as combinações possíveis entre os elementos das tabelas originais.
- Para essa relação resultante:
 - Nº de Colunas = Nºcolunas R1 +
 Nº Colunas R2
 - □ Nº de Linhas = Nº linhas R1 x Nº linhas R2

Produto Cartesiano (X) EXEMPLOS

Funcionario

<u>IdFun</u>	NomeFun	SexoFun	IdCarFun
1	José Costa	F	1
2	Francisca Chagas	F	2
3	Maria Helena	F	2

Cargo

<u>IdCar</u>	DescricaoCar	SalarioCar
1	Analista	3.500
2	Programador	1.800

Produto Cartesiano (X)

<u>IdFun</u>	NomeFun	SexoFun	IdCarFun
	José Costa	gua.	1
2	Francisca Chagas	F	2
3	Maria Helena	F	2

<u>IdCar</u>	DescricaoCar	SalarioCar
1	Analista	3,500
2	Programador	1.800

Produto Cartesiano (X) Exemplos

Operação Funcionário X Cargo

<u>IdFun</u>	NomeFun	SexoFun	IdCarFun	<u>IdCar</u>	DescricaoCar	SalarioCar
1	José Costa	F	1	1	Analista	3.500
1	José Costa	F	1	2	Programador	1.800
2	Francisca Chagas	F	2	1	Analista	3.500
2	Francisca Chagas	F	2	2	Programador	1.800
3	Maria Helena	F	2	1	Analista	3.500
3	Maria Helena	F	2	2	Programador	1.800

Produto Cartesiano (X) Exemplos

- O resultado é inconsistente
- Após a combinação das colunas e linhas, não se sabe, exatamente, qual o salário de cada funcionário.
- Por isso:
 - Produto Cartesiano só tem sentido com uma operação de seleção que "case" os valores de determinados atributos das relações componentes (normalmente chaves primárias e estrangeiras)

Produto Cartesiano (X) Exemplos

σ IdCargoFun = IdCar (Funcionario x Cargo)

<u>IdFun</u>	NomeFun	SexoFun	IdCarFun	<u>IdCar</u>	DescricaoCar	SalarioCar
1	José Costa	F	1	1	Analista	3.500
2	Francisca Chagas	F	2	2	Programador	1.800
3	Maria Helena	F	2	2	Programador	1.800

Álgebra Relacional Junção (JOIN) ⋈

Sintaxe:

A operação de junção pode ser definida como uma operação de produto cartesiano seguido de uma operação de seleção em uma única operação

Junção (JOIN) M Exemplos

```
Funcionários_Cargo ← Funcionario x Cargo 

σ <sub>IdCarFun = IdCar</sub> (Funcionarios_Cargo ) 

OU

σ <sub>IdCarFun = IdCar</sub> (Funcionarios X Cargo ) 

OU
```

Substituindo pela operação de junção Funcionarios | IdCarFun = IdCar Cargo

Junção (JOIN) Exemplos

Funções_Reais ← Funcionario ⋈_{odCarFun = CodCar} Cargo

- Uma operação de junção R1 cond> R2 resulta em uma relação com n + m atributos
- em que:

n = nº de atributos de R1 e m: nº atributos de R2

Junção (JOIN) 🖂

Em uma operação de junção, diferentemente de um produto cartesiano aparecem na relação resultante apenas as combinações de tuplas que satisfazem a condição Este tipo de junção também é conhecido como junção Theta

<u>IdFun</u>	NomeFun	SexoFun	IdCarFun	<u>IdCar</u>	DescricaoCar	SalarioCar
1	José Costa	F	1	1	Analista	3.500
2	Francisca Chagas	F	2	2	Programador	1.800
3	Maria Helena	F	2	2	Programador	1.800

Álgebra Relacional Exercícios

Funcionario

<u>IdFun</u>	NomeFun	SexoFun	IdCarFun
1	José Costa	М	1
2	Francisca Chagas	F	2
3	Maria Helena	F	2

Cargo

<u>IdCar</u>	DescricaoCar	SalarioC ar
1	Analista	3.500
2	Programador	1.800

- 1. Obter todos os funcionários do sexo masculino
- 2. Obter o Nome dos Funcionários que não são analistas
- 3. Obter o nome dos cargos que não possuem funcionários para os mesmos.
- 4. Obter Nome e sexo dos funcionários que ganham mais de 2.000

Álgebra Relacional Respostas

Funcionario

<u>IdFun</u>	NomeFun	SexoFun	IdCarFun
1	José Costa	M	1
2	Francisca Chagas	F	2
3	Maria Helena	F	2

Cargo

<u>IdCar</u>	DescricaoCar	SalarioC ar
1	Analista	3.500
2	Programador	1.800

1. Obter todos os funcionários do sexo masculino $\sigma_{\text{SexoFun} = 'M'}$ (Funcionario)

2. Obter o Nome dos Funcionários que não são analistas

π_{NomeFun(σDescricaoCar <> 'Analista'}(Funcionario |X|_{IdCarFun = IdCarCargo}Cargo))

Algebra Relacional Respostas

Funcionario

<u>IdFun</u>	NomeFun	SexoFun	IdCarFun
1	José Costa	M	1
2	Francisca Chagas	F	2
3	Maria Helena	F	2

Cargo

<u>IdCar</u>	DescricaoCar	SalarioC ar
1	Analista	3.500
2	Programador	1.800

2. Obter o Nome dos Funcionários que não são analistas

π_{NomeFun(^σ DescriçaoCar <> 'Analista'}(Funcionario |X|_{IdCarFun = IdCarCargo}Cargo))

π_{NomeFun(}(Funcionario |X|_{IdCarFun = IdCarCargo AND DescricaoCar <> 'Analista'}

Cargo))

Álgebra Relacional Respostas

Funcionario

<u>IdFun</u>	NomeFun	SexoFun	IdCarFun
1	José Costa	M	1
2	Francisca Chagas	F	2
3	Maria Helena	F	2

Cargo

<u>IdCar</u>	DescricaoCar	SalarioC ar
1	Analista	3.500
2	Programador	1.800

3. Obter o nome dos cargos que não possuem funcionários para os mesmos.

 π DescricaoCar(Cargo) - π DescricaoCar(Funcionario \bowtie Cargo) IdCarFun = IdCar

4. Obter Nome e sexo dos funcionários que ganham mais de 2.000

πNomeFun, Sexo(σSalarioCar > 2000(Funcionario \bowtie Cargo))

IdCarFun = IdCar

Álgebra Relacional Variações do JOIN

- Equijunção (EquiJoin)
 - Quando o único operador de comparação utilizado for a igualdade (=)

Em que:

e < lista2> - são os nomes das colunas das tabelas 1 e 2, respectivamente, cujos valores são comparados um a um.

Álgebra Relacional EquiJOIN - exemplos

- Funcionario ⋈_{(CodCarFun), (CodCar)} Cargo
- A equijunção elimina a segunda coluna em cada um dos pares de campos que são comparados (já que os valores da 2ª coluna são idênticos aos primeiros).

<u>CodFun</u>	NomeFun	SexoFun	CodCarFun	DescricaoCar	SalarioCar
1	Andrea Costa	F	1	Analista	3.500
2	Francisca Chagas	F	2	Programador	1.800
3	Maria Helena	F	2	Programador	1.800

Álgebra Relacional Variações do JOIN

- Junção Natural ou Natural Join (*)
 - Exige que os 2 atributos de junção (ou cada par dos atributos de junção) tenham o mesmo nome em ambas as relações

Caso os nomes das colunas (da junção) das tabelas Funcionário e Cargo fossem iguais, poderíamos utilizar a junção natural:

Funcionario * Cargo

Álgebra Relacional Junção Natural

- Na junção natural, as listas de nomes de colunas não necessitam ser especificadas
- Caso os atributos não possuam o mesmo nome, uma operação de rename deve ser aplicada primeiro para igualar os nome dos atributos. Ver após explicação do rename (ρ) a seguir

Álgebra Relacional Operador Rename (ρ)-rô

- Atribui um novo nome a uma tabela ou a atributo(s) dessa tabela
- Exemplo:
 - Renomeando uma tabela:

ρ Func (Funcionario)

Renomeando ao mesmo tempo a tabela e os nomes de atributos:

ρ Func (cod, nome, s, codcarg) (Funcionario (CodFun, NomeFun, SexoFun, CodCarFun))

Álgebra Relacional Operador Rename (ρ)-rô

A partir do operador Rename, para tornar possível a junção natural do exemplo anterior, devemos proceder da seguinte forma:

Funcionario*ρ_(CodCarFun,DescricaoCar,SalarioCar)(Cargo)

O atributo CodCarFun é chamado Atributo de Junção