

# Storyfier: Exploring Vocabulary Learning Support with T ext Generation Models

Zhenhui Peng, Xingbo Wang, Qiushi Han, Junkai Zhu, Xiaojuan Ma, Huamin Qu

**ACM UIST** 





#### conquer the shortage of existed vocabulary learning tools with context

### **Motivaion**



• Existed tools fall short in 2 aspects:



Only leverage existing materials



lack of flexibility



Use language receptively



lack of prodctive task to master usage of words

# **Design & develop phases**





Figure 1: Our two-phases design and development process of *Storyfier* with teachers, learners, and HCI researchers.

In the whole 2-phases develop procedure, phase 1 mainly consists of 3 steps:

- develop story generation model;
- **validation** of the model;
- explore learning activities supported by this m odel.

#### develop a story generation model for target words context generation

# **Model development**



Target: controllable model which can generate stories with target word sets

| Attributes              | Values    |  |
|-------------------------|-----------|--|
| # of stories            | 101,661   |  |
| # of words              | 4,640,319 |  |
| Average story length    | 45.65     |  |
| Average sentence length | 7.80      |  |
| Average readability     | 57.14     |  |
| Coverage of CET-4 words | 89.52%    |  |



tuple:{ story title, target words, sto
ry sentences}



#### validate the quality of generated stories

## **Model validation**



- Validating object: 20 human-machine story pairs
  - 20 stories from ROCstory with varied difficulty levels of contained words
    - 20 stories generated by model based on corresponding story title and contained words
- Validation methods: technical and human

Automatically evaluated

| 7).<br>7) | Grammar | Type-token<br>ratio | 0    | Sentence coherence |
|-----------|---------|---------------------|------|--------------------|
| Human     | 1.00    | 0.75                | 0.01 | 0.42               |
| Machine   | 1.00    | 0.77                | 0.01 | 0.43               |

Adequate

Overall

4.26

4.01

Evaluated by English skilled people



#### conduct interview to explore learning activities that can be supported by the model

# **Explore learning activities**





- Explore possible activities by conducting **semi-structured interviews**
- **interviewees:** skilled English **teacher** and well-experienced **students** in using vocabulary learning tools









Interact with rough interf ace to try generative mo del and brainstorm



- Story reading
- Cloze test
- Turn-taking writing

# **Design & develop phases**





Figure 1: Our two-phases design and development process of *Storyfier* with teachers, learners, and HCI researchers.

In the whole 2-phases develop procedure, phase 2 mainly consists of 3 steps:

- system implementation;
- tests for feedback;
- refinement according to feedback.

#### design process about how to implement storyfier

# **System implementation**





### Test for feedback & refinement



• **Target**: not to evaluate system effectiveness but to **improve** with quick feedback

# Usability test with **12 ES L learners**

- Storyfier is more use ful than baseline with out context;
- Some have difficulti
   es in writing next se
   ntence in turn-taking
   writing.

# Workshop with **English teachers**

- Maximize 3 activitie s's value by chaining into a flow;
- Add main translation

# Workshop with **HCI res** earchers

- Use clear widgets in learning flow;
- **Remove metrics** to reduce distraction

#### refinement after test and workshops

# **System refinement**





#### verify the impact of Storyfier on vocabulary learning

# **Experiment**



- **Subjects**: 28 ESL Chinese students (1/12 have not passed CET-4)
- **Conditions**: 2 (with vs. without AI features) x 2 (read-only vs. read-cloze-write activities)
- Research Questions:
  - Learning outcome
  - Experience
  - Perceptions towards Storyfier
- Procedure:



#### verify the impact of Storyfier on vocabulary learning

# **Experiment**









- Read-only
  - with AI A+B
  - without Al A

- Read-cloze-write
  - with AI A+B+C
  - without Al A+B+D

#### Learning out come

# **Analyses and results**





Figure 5: RQ1 results regarding numbers of correct choices on target words' meanings, numbers of sentences that correctly use target words, and total scores of the written sentences in each condition. \*\*\*: p < 0.001, \*\*: p < 0.01, \*: p < 0.05.

- Read-cloze-wirte learning session has better perfor mance comparing to plain reading session;
- Storyfier's **AI features reduce learning gains** on ret ention words' meanings in read-cloze-wirte learning session.

# **Analyses and results**





Figure 6: RQ2 results regarding perceived engagement, enjoyment, and workload in vocabulary learning sessions with Read-sen, Read-AI, Storyfier-sen, and Storyfier-AI interfaces. \*\*: p < 0.01, \*: p < 0.05, +: p < 0.1.

#### user perceptions

# **Analyses and results**





Figure 7: RQ3 results regarding user perceptions with each interface. \*: p < 0.05, +: p < 0.1.

#### • quantitative:

- prefer read-cloze-writing session than read-only;
- find AI-generated stories more useful and feel re ady to use in read-only session.

#### • qualitative:

- participants generally prefer Storyfier with AI gen erative models;
- model should be further improved regarding coherence, complexity and style of content.

#### insights from findings

### **Discussion**



#### generative model:

- not enough coherent when 5 target words are not naturally relevant;
- stories contain unknown words -> content too complex.

#### learning activities:

read-cloze-writing session provides more learning gains.

#### impact of genarative model in learning:

- though AI-generated stories do not improve learning gains -> more coherent could help;
- Al support leads to reducesd learning gains in read-cloze-writing sessions -> participants favor **assistance** from generative model in writing.

#### design condsiderations & limitations

### **Discussion**



#### design consideration

- integrate mutiple activities to provide in-situ assistance;
- provide feedback relevant to learning goals;
- balance machine and human efforts

#### limitation

- Only consider main meaning of vocabularies;
- quality of stories (balance trade-off between simplicity and coherence);
- no quantitative evaluation of contribution from cloze and writing seperately.



# Thank you