정리하기

```
# 1.데이터 준비, 패키지 준비
mpg <- as.data.frame(ggplot2::mpg) # 데이터 불러오기
                             # dplyr 로드
library(dplyr)
library(ggplot2)
                             # gaplot2 로드
# 2.데이터 파악
head(mpg) # Raw 데이터 앞부분
          # Raw 데이터 뒷부분
tail(mpg)
View(mpg) # Raw 데이터 뷰어창에서 확인
dim(mpg)
          # 차워
          # 속성
str(mpg)
summary(mpg) #요약 통계량
# 3.변수명 수정
mpg <- rename(mpg, company = manufacturer)</pre>
# 4.파생변수 생성
mpg$total <- (mpg$cty + mpg$hwy)/2</pre>
                                            # 변수 조합
mpg$test <- ifelse(mpg$total >= 20, "pass", "fail") # 조건문 활용
# 5. 빈도 확인
table(mpg$test) # 빈도표 출력
qplot(mpg$test) # 막대 그래프 생성
```

분석 도전

ggplot2 패키지에는 미국 동북중부 437개 지역의 인구통계 정보를 담은 midwest라는 데이터가 포함되어 있습니다. midwest 데이터를 사용해 데이터 분석 문제를 해결해보세요.

- 문제 1. ggplot2 의 midwest 데이터를 데이터 프레임 형태로 불러와서 데이터의 특성을 파악하세요.
- 문제 2. poptotal(전체 인구)을 total 로, popasian(아시아 인구)을 asian 으로 변수명을 수정하세요.
- 문제 3. total, asian 변수를 이용해 '전체 인구 대비 아시아 인구 백분율' 파생변수를 만들고, 히스토그램을 만들어 도시들이 어떻게 분포하는지 살펴보세요.
- 문제 4. 아시아 인구 백분율 전체 평균을 구하고, 평균을 초과하면 "large", 그 외에는 "small"을 부여하는 파생변수를 만들어 보세요.

• 문제 5. "large"와 "small"에 해당하는 지역이 얼마나 되는지, 빈도표를 만들어 확인해 보세요.

[자유자재로 데이터 가공하기]

[원하는 형태로 데이터 가공하기]

데이터 전처리(Preprocessing) - dplyr 패키지

- 함수이 기능
- filter()
 행 추출
- select()
 열(변수) 추출
- arrange() 정렬
- mutate()
 변수 추가(새필드)
- summarise()
 통계치 산출
- group_by() 집단별로 나누기
- left_join()
 데이터 합치기(열)
- bind rows() 데이터 합치기(행)

혼자서 해보기

mpg 데이터를 이용해 분석 문제를 해결해 보세요.

• Q1. 자동차 배기량에 따라 고속도로 연비가 다른지 알아보려고 합니다. displ(배기량)이 4 이하인 자동차와 5 이상인 자동차 중 어떤 자동차의 hwy(고속도로 연비)가 평균적으로 더 높은지 알아보세요.

- Q2. 자동차 제조 회사에 따라 도시 연비가 다른지 알아보려고 합니다. "audi"와 "toyota" 중 어느 manufacturer(자동차 제조 회사)의 cty(도시 연비)가 평균적으로 더 높은지 알아보세요.
- Q3. "chevrolet", "ford", "honda" 자동차의 고속도로 연비 평균을 알아보려고 합니다. 이회사들의 자동차를 추출한 뒤 hwy 전체 평균을 구해보세요.

[필요한 변수만 추출하기]

id	class	english	science		class	english
1	2	98	50		2	98
2	1	97	60		1	97
3	2	86	78	\rightarrow	2	86
4	1	98	58		1	98
5	1	80	65		1	80
6	2	89	98		2	89

혼자서 해보기

mpg 데이터를 이용해서 분석 문제를 해결해보세요.

- Q1. mpg 데이터는 11개 변수로 구성되어 있습니다. 이 중 일부만 추출해서 분석에 활용하려고 합니다. mpg 데이터에서 class(자동차 종류), cty(도시 연비) 변수를 추출해 새로운 데이터를 만드세요. 새로 만든 데이터의 일부를 출력해서 두 변수로만 구성되어 있는지 확인하세요.
- Q2. 자동차 종류에 따라 도시 연비가 다른지 알아보려고 합니다. 앞에서 추출한 데이터를 이용해서 class(자동차 종류)가 "suv"인 자동차와 "compact"인 자동차 중 어떤 자동차의 cty(도시 연비)가 더 높은지 알아보세요.

[순서대로 정렬하기]

id	english	science		id	english	science	
1	98	50		6	89	98	
2	97	60		5	86	78	
3	86	78	-	4	80	65	
4	98	58		3	97	60	
5	80	65		2	98	58	
6	89	98		1	98	50	

혼자서 해보기

mpg 데이터를 이용해서 분석 문제를 해결해보세요.

• "audi"에서 생산한 자동차 중에 어떤 자동차 모델의 hwy(고속도로 연비)가 높은지 알아보려고 합니다. "audi"에서 생산한 자동차 중 hwy가 1~5위에 해당하는 자동차의 데이터를 출력하세요.

[파생변수 추가하기]

id	english	science		id	english	science	total
1	98	50		1	98	50	148
2	97	60		2	97	60	157
3	86	78	\rightarrow	3	86	78	164
4	98	58		4	98	58	156
5	80	65		5	80	65	145
6	89	98		6	89	98	187

혼자서 해보기

mpg 데이터를 이용해서 분석 문제를 해결해보세요.

mpg 데이터는 연비를 나타내는 변수가 hwy(고속도로 연비), cty(도시 연비) 두 종류로 분리되어 있습니다. 두 변수를 각각 활용하는 대신 하나의 통합 연비 변수를 만들어 분석하려고 합니다.

- Q1. mpg 데이터 복사본을 만들고, cty 와 hwy 를 더한 '합산 연비 변수'를 추가하세요.
- Q2. 앞에서 만든 '합산 연비 변수'를 2로 나눠 '평균 연비 변수'를 추가세요.
- Q3. '평균 연비 변수'가 가장 높은 자동차 3종의 데이터를 출력하세요.
- Q4. 1~3 번 문제를 해결할 수 있는 하나로 연결된 dplyr 구문을 만들어 출력하세요. 데이터는 복사본 대신 mpg 원본을 이용하세요.

[집단별로 요약하기]

자주 사용하는 요약통계량 함수

- 함수의미
- mean() 평균
- sd()표준편차
- sum() 합계
- median() 중앙값
- min() 최솟값
- max() 최댓값
- n() 빈도

혼자서 해보기

mpg 데이터를 이용해서 분석 문제를 해결해 보세요.

- Q1. mpg 데이터의 class 는 "suv", "compact" 등 자동차를 특징에 따라 일곱 종류로 분류한 변수입니다. 어떤 차종의 연비가 높은지 비교해보려고 합니다. class 별 cty 평균을 구해보세요.
- Q2. 앞 문제의 출력 결과는 class 값 알파벳 순으로 정렬되어 있습니다. 어떤 차종의 도시 연비가 높은지 쉽게 알아볼 수 있도록 cty 평균이 높은 순으로 정렬해 출력하세요.
- Q3. 어떤 회사 자동차의 hwy(고속도로 연비)가 가장 높은지 알아보려고 합니다. hwy 평균이 가장 높은 회사 세 곳을 출력하세요.
- Q4. 어떤 회사에서 "compact"(경차) 차종을 가장 많이 생산하는지 알아보려고 합니다. 각회사별 "compact" 차종 수를 내림차순으로 정렬해 출력하세요.

[데이터 합치기]

가로로 합치기

id	midterm		id	final		id	midterm	final
1	60	4	1	70	_	1	60	70
2	80	-	2	83	_	2	80	83
3	70		3	65		3	70	65

가로로 합치기

세로로 합치기

id	test		id	test		id	test
1	60		4	70		1	60
2	80		5	83	=	2	80
3	70	+	6	65		3	70
세로로 합치기	1					4	70
						5	83
						6	65

혼자서 해보기

mpg 데이터를 이용해서 분석 문제를 해결해 보세요.

mpg 데이터의 fl 변수는 자동차에 사용하는 연료(fuel)를 의미합니다. 아래는 자동차 연료별 가격을 나타낸 표입니다.

- fl 연료 종류 가격(갤런당 USD)
- c CNG 2.35
- d diesel 2.38
- e ethanol E85 2.11
- p premium 2.76
- r regular 2.22

우선 이 정보를 이용해서 연료와 가격으로 구성된 데이터 프레임을 만들어 보세요.

- Q1. mpg 데이터에는 연료 종류를 나타낸 fl 변수는 있지만 연료 가격을 나타낸 변수는 없습니다. 위에서 만든 fuel 데이터를 이용해서 mpg 데이터에 price_fl(연료 가격) 변수를 추가하세요.
- Q2. 연료 가격 변수가 잘 추가됐는지 확인하기 위해서 model, f1, price_f1 변수를 추출해 앞부분 5 행을 출력해 보세요.

힌트

Q1. left_join()을 이용해서 mpg 데이터에 fuel 데이터를 합치면 됩니다. 두 데이터에 공통으로 들어있는 변수를 기준으로 삼아야 합니다.

Q2. select()와 head()를 조합하면 됩니다.

분석 도전

미국 동북중부 437개 지역의 인구통계 정보를 담고 있는 midwest 데이터를 사용해 데이터 분석 문제를 해결해 보세요. midwest는 ggplot2 패키지에 들어 있습니다.

- 문제 1. popadults 는 해당 지역의 성인 인구, poptotal 은 전체 인구를 나타냅니다. midwest 데이터에 '전체 인구 대비 미성년 인구 백분율' 변수를 추가하세요.
- 문제 2. 미성년 인구 백분율이 가장 높은 상위 5개 county(지역)의 미성년 인구 백분율을 출력하세요.
- 문제 3. 분류표의 기준에 따라 미성년 비율 등급 변수를 추가하고, 각 등급에 몇 개의 지역이 있는지 알아보세요.
 - 분류
 기준
 - large 40% 이상
 - middle 30% ~ 40% 미만
 - small 30% 미만
- 문제4. popasian은 해당 지역의 아시아인 인구를 나타냅니다. '전체 인구 대비 아시아인 인구 백분율' 변수를 추가하고, 하위 10개 지역의 state(주), county(지역명), 아시아인 인구 백분율을 출력하세요.
- 상자그림으로 극단치 기준 정해서 제거하기
- mpg <- as.data.frame(ggplot2::mpg) boxplot(mpg\$hwy)
- 정상범위 기준 정해서 벗어나면 결측 처리
- 판단 기준예
- 논리적 판단 성인 몸무게 40kg~150kg 벗어나면 극단치
- 통계적 판단 상하위 0.3% 극단치 또는 상자그림 1.5 IQR 벗어나면 극단치

•

혼자서 해보기

mpg 데이터를 이용해서 분석 문제를 해결해 보세요.

우선 mpg 데이터를 불러와서 일부러 이상치를 만들겠습니다. drv(구동방식) 변수의 값은 4(사륜구동), f(전륜구동), r(후륜구동) 세 종류로 되어있습니다. 몇 개의 행에 존재할 수 없는 값 k를 할당하겠습니다. cty(도시 연비) 변수도 몇 개의 행에 극단적으로 크거나 작은 값을 할당하겠습니다.

```
mpg <- as.data.frame(ggplot2::mpg) # mpg 데이터 불러오기
mpg[c(10, 14, 58, 93), "drv"] <- "k" # drv 이상치 할당
mpg[c(29, 43, 129, 203), "cty"] <- c(3, 4, 39, 42) # cty 이상치 할당
```

이상치가 들어있는 mpg 데이터를 활용해서 문제를 해결해보세요.

구동방식별로 도시 연비가 다른지 알아보려고 합니다. 분석을 하려면 우선 두 변수에 이상치가 있는지 확인하려고 합니다.

• Q1. drv 에 이상치가 있는지 확인하세요. 이상치를 결측 처리한 다음 이상치가 사라졌는지 확인하세요. 결측 처리 할 때는 %in% 기호를 활용하세요.

- Q2. 상자 그림을 이용해서 cty에 이상치가 있는지 확인하세요. 상자 그림의 통계치를 이용해 정상 범위를 벗어난 값을 결측 처리한 후 다시 상자 그림을 만들어 이상치가 사라졌는지 확인하세요.
- Q3. 두 변수의 이상치를 결측처리 했으니 이제 분석할 차례입니다. 이상치를 제외한 다음 drv 별로 cty 평균이 어떻게 다른지 알아보세요. 하나의 dplyr 구문으로 만들어야 합니다.