T	F	1. DES uses a 56-bit block and a 64-bit key.
T	F	2. A problem with the ideal block cipher using a small block size is that it is vulnerable to a statistical analysis of the plaintext.
T	F	3. Confusion seeks to make the statistical relationship between the plaintext and ciphertext as complex as possible in order to thwart attempts to deduce the key.
T	F	4. All other things being equal, smaller block sizes mean greater security.
T	F	5. Greater complexity in the subkey generation algorithm should lead to greater difficulty of cryptanalysis.
T	F	6. Fast software encryption/decryption and ease of analysis are two considerations in the design of a Feistel cipher.
T	F	7. A prime concern with DES has been its vulnerability to brute-force attack because of its relatively short key length.
Т	F	8. One criteria for an S-box is: "If two inputs to an S-box differ in exactly one bit, the outputs must also differ in exactly one bit. "
Т	F	9. The heart of a Feistel block cipher is the function F, which relies on the use of S-boxes.
T	F	10. The strict avalanche criterion and the bit independence criterion appear to weaken the effectiveness of the confusion function.
T	F	11. An advantage of key-dependent S-boxes is that because they are not fixed, it is impossible to analyze the S-boxes ahead of time to look for weaknesses.
Т	F	12. The key schedule algorithm is more popular and has received more attention than S-box design.
T	F	13. AES uses a Feistel structure.
Т	F	14. At each horizontal point, State is the same for both encryption and decryption.
T	F	15. DES is a block cipher intended to replace AES for commercial applications.
T	F	16. The nonlinearity of the S-box is due to the use of the

6.	Two areas of concern regarding the level of security provided by DES are the nature of the algorithm and the $___$.
7.	The criterion states that output bits j and k should change independently when any single input bit i is inverted for all i, j and k.
8.	The cipher structure, which dates back over a quarter century and which, in turn, is based on Shannon's proposal of 1945, is the structure used by many significant symmetric block ciphers currently in use.
9.	The cryptographic strength of a Feistel cipher derives from three aspects of the design: the function F, the key schedule algorithm, and
10.	Two alternatives to DES are AES and DES.
11.	The is a block cipher intended to replace DES for commercial applications. It uses a 128-bit block size and a key size of 128, 192, or 256 bits.
12.	The four separate functions of the Advanced Encryption Standard are: permutation, arithmetic operations over a finite field, XOR with a key, and
13.	The cipher consists of N rounds, where the number of rounds depends on the
14.	AES processes the entire data block as a single matrix during each round using and permutation.
15.	The first N - 1 rounds consist of four distinct transformation functions: SubBytes, ShiftRows, AddRoundKey, and $___$.
16.	The transformation operates on each column individually. Each byte of a column is mapped into a new value that is a function of all four bytes in that column.
17.	The mix column transformation combined with the transformation ensures that after a few rounds all output bits depend on all input bits.
18.	The AES key expansion algorithm takes as input a four-word (16-byte) key and produces a linear array of words (176 bytes).
19.	The standard decryption round has the structure InvShiftRows, InvSubBytes,, InvMixColumns.

20.	affects the sequence of bytes in State but does not alter byte
	contents and does not depend on byte contents to perform its
	transformation