Math 172 Assignment 6 Tuesday, February 20, 2018

13.4.4, Problems B, C, D

13.4.4 Determine the splitting field and its degree over \mathbb{Q} for $x^6 - 4$.

B. Let p be a prime number and F the field of integers mod p, and let p(x) and q(x) be any two irreducible polynomials of degree 2 over F. Show that the fields F[x]/(p(x)) and F[x]/(q(x)) are isomorphic by constructing an explicit isomorphism.

C. Find a real number u such that $Q(\sqrt{3}, \sqrt{5}) = Q(u)$.

D. Suppose *K* is an extension of *F*, and $\phi : K \to K$ is an isomorphism that leaves every element of *F* fixed. Show that any polynomial in F[x] that has a root *r* in *K* also has $\phi(r)$ as a root.