Corrigés des exercices pour le contrôle 2 de chimie

1. Donner les molécules qui se forment à partir des couples d'ions suivants (charge des ions non donnée, attention à l'ordre des atomes dans la molécule).

Li/Cl Li/O Cl/Ca O/Ca Li/sulfate

Réponse: LiCl Li₂O CaCl₂ CaO Li₂SO₄

2. Donner la réaction chimique équilibrée entre le couple suivant:

a. Li et l'eau Réponse : $2 \text{ Li}(s) + 2 \text{ H}_20(l) \rightarrow 2 \text{ LiOH}(s) + \text{ H}_2(g)$

b. Al et S Réponse: $2 \text{ Al}(s) + 3 \text{ S}(s) \rightarrow \text{Al}_2\text{S}_3(s)$

c. H et Br Réponse: $H_2(g) + Br_2(I) \rightarrow 2 HBr(g)$

3. Classer les espèces des ensembles suivants selon l'ordre croissant de leur volume :

a.
$$Be^{2+} - K - Mg - Mg^{2+} - Na$$

b.
$$O - O^{2-} - P^{3-} - S^{2-}$$

Réponse : a. $Be^{2+} < Mg^{2+} < Mg < Na < K$

b. $O < O^{2-} < S^{2-} < P^{3-}$

4. Quelles sont les propriétés magnétiques (para- ou diamagnétique) du Ni, du Ni²⁺ et du Ni⁴⁺? Justifier les réponses à l'aide des cases quantiques et comparer l'intensité magnétique (sans calculs) des trois espèces avec explication.

Ni : $[Ar]4s^2 3d^8$

2 électrons célibataires, para

3d

4s

Ni²⁺: [Ar]4s⁰ 3d⁸ **2 électrons célibataires, para**

3d

4s

 Ni^{4+} : [Ar] $4s^0 3d^6$

4 électrons célibataires, para

Comparaison et explication : <u>Ni⁴⁺ avec ses 4 électrons célibataires a la plus grande intensité</u> <u>magnétique qui dépend du nombre d'électrons célibataires. Ni et Ni²⁺ont 2 électrons célibataires chacun et une intensité magnétique comparable.</u>

 Représenter les espèces suivantes selon la notation de Lewis (préciser si le composé est linéaire ou pas)

$$H_2S$$
: MgI_2 : $Br - Br$
 $H \longrightarrow H$
 $H \longrightarrow H$

6. Donner la structure de Lewis du peroxyde d'hydrogène, H2O2, et du formaldéhyde, H2CO :

Réponse :

$$C = 0$$

 Donner les orbitales moléculaires selon la méthode « OM » des espèces suivantes : He₂⁺, F₂⁻, O₂⁻⁺

Pour chaque espèce de l'exercice 6, donner les informations suivantes :

- a. les propriétés magnétiques,
- b. la possibilité que cette espèce existe,
- c. l'index de liaison.

a: paramagnétique

b: oui possible

- a) paramagnétique
- b) oui possible
- c) $J_{\ell} = (8-3)/2 = 2.5$

8.a.Quelle est la charge effective d'un électron de valence de strontium (Sr) ?

Réponse :

- configuration électronique selon les couches électroniques :

$$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 5s^2 = 38$$
 électrons

- Electrons de valence : les deux électrons 5s
- D'après le tableau de Slater :

$$(2 \times 1s = 2) + (8 \times 2s + p = 8) + (8 \times 3s + p = 8) + (10 \times 3d = 10) + (8 \times 4s + p = 6.8) + (1 \times 5s = 0.35)$$

$$Z^* = 38 - (2 + 8 + 8 + 10 + 6.8 + 0.35) = 38 - 35.15 = 2.85$$

b. Comparer l'énergie de première ionisation de rubidium, Rb, avec I1 de Sr (plus petite ou plus grande?) et justifier la réponse par la charge nucléaire effective pour les deux atomes.

Réponse :

Par périodicité, le rayon atomique de Rb est plus grand et l'énergie d'ionisation plus petite que pour Sr.

Charge effective de l'électron 5s de Rb :

configuration électronique selon les couches électroniques :

$$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 5s^1 = 37$$
 électrons

- Electron de valence : l'électrons 5s
- D'après le tableau de Slater :

$$(2 \times 1s = 2) + (8 \times 2s + p = 8) + (8 \times 3s + p = 8) + (10 \times 3d = 10) + (8 \times 4s + p = 6.8)$$

$$Z^* = 37 - (2 + 8 + 8 + 10 + 6.8) = 37 - 34.8 = 2.2$$

Z de Rb est plus petite que Z de Sr, donc l'énergie d'ionisation est plus basse pour Rb.