Basic Setur

The Likelihood

The Linear

Variance in

Estimation

and

Optimization

Binomial Models

Maximum Likelihood Estimation

February 20, 2013

The Linear Model in MLE

Variance in MLE

Estimation and

Optimization

Binomial Models • We want to estimate parametric models of the form:

$$y \sim f(\theta)$$

Inference

Basic Setup

The Likelihood Approach

The Linear Model in MLE

Variance in MLE

and
Optimization

Binomial Models • We want to estimate parametric models of the form:

$$y \sim f(\theta)$$

• The $f(\cdot)$ is the part we assume (the model), θ is the part that we want to estimate (the parameters), and we observe y (the data).

The Linear Model in MLE

Variance in MLE

and
Optimization

Binomia Models • We want to estimate parametric models of the form:

$$y \sim f(\theta)$$

- The $f(\cdot)$ is the part we assume (the model), θ is the part that we want to estimate (the parameters), and we observe y (the data).
- What social scientists wish we could do:
 - Estimate P(unknown|known) or $P(f(\theta)|(y))$

Inference

Basic Setup

The Likelihood Approach

The Linear Model in MLE

Variance in MLE

and
Optimization

Binomial Models • We want to estimate parametric models of the form:

$$y \sim f(\theta)$$

- The $f(\cdot)$ is the part we assume (the model), θ is the part that we want to estimate (the parameters), and we observe y (the data).
- What social scientists wish we could do:
 - Estimate P(unknown|known) or $P(f(\theta)|(y))$
 - This is the problem of inverse probability: what is the probability of the model given the data?

Basic Setup

The Likelihood Approach

The Linear Model in MLE

Variance in MLE

Estimation and

Optimization

Binomial Models

- What about the reverse?
 - Estimate $P(\theta|f(\cdot),y)$ or, more simply, $P(\theta|y)$

Basic Setup

The Likelihood Approach

The Linear Model in MLE

Variance in MLE

Estimation and

Binomia Models

- What about the reverse?
 - Estimate $P(\theta|f(\cdot),y)$ or, more simply, $P(\theta|y)$
- Apply Bayes' theorem:

$$P(\theta|y) = \frac{P(\theta,y)}{P(y)}$$

Basic Setup

The Likelihood Approach

The Linear Model in MLE

Variance in MLE

Estimation and

Binomial Models What about the reverse?

- Estimate $P(\theta|f(\cdot),y)$ or, more simply, $P(\theta|y)$
- Apply Bayes' theorem:

$$P(\theta|y) = \frac{P(\theta, y)}{P(y)}$$
$$= \frac{P(\theta)P(y|\theta)}{P(y)}$$

Basic Setup

The Likelihood Approach

The Linear Model in MLE

Variance in MLE

and Optimizatio

Binomial Models What about the reverse?

• Estimate $P(\theta|f(\cdot),y)$ or, more simply, $P(\theta|y)$

Apply Bayes' theorem:

$$P(\theta|y) = \frac{P(\theta, y)}{P(y)}$$
$$= \frac{P(\theta)P(y|\theta)}{P(y)}$$

- The Prior: $P(\theta)$

- The Sampling (Data): $P(y|\theta)$

- The Posterior: $P(\theta|y)$

- The Marginal: P(y)

Basic Setup

The Likelihood Approach

The Linear Model in MLE

Variance i MLE

and Optimizatio

Binomial Models What about the reverse?

• Estimate $P(\theta|f(\cdot),y)$ or, more simply, $P(\theta|y)$

• Apply Bayes' theorem:

$$P(\theta|y) = \frac{P(\theta, y)}{P(y)}$$
$$= \frac{P(\theta)P(y|\theta)}{P(y)}$$

- The Prior: $P(\theta)$

- The Sampling (Data): $P(y|\theta)$

- The Posterior: $P(\theta|y)$

- The Marginal: P(y)

Basic Setup

Basic Setup

The Likelihood Approach

The Linear Model in MLE

Variance in MLE

Estimation and

Optimization

Binomial Models

The Likelihood Approach

 Like randomization as the "reasoned basis of inference", developed by R.A. Fisher (in his junior year).

The Likelihood Approach

Basic Setup

The Likelihood Approach

The Linear Model in MLE

Variance in MLE

and
Optimizatio

Binomial Models • Like randomization as the "reasoned basis of inference", developed by R.A. Fisher (in his junior year).

• Following frequentist principles: θ is fixed and y is random. Define the likelihood:

$$\mathcal{L}(\theta|y) = \mathcal{K}(y)P(y|\theta)$$

$$\propto P(y|\theta)$$

where $\mathcal{K}(y)$ is unknown, but does not depend on θ .

The Likelihood Approach

Basic Setur

The Likelihood Approach

The Linear Model in MLE

Variance in MLE

and
Optimizatio

Binomial Models • Like randomization as the "reasoned basis of inference", developed by R.A. Fisher (in his junior year).

• Following frequentist principles: θ is fixed and y is random. Define the likelihood:

$$\mathcal{L}(\theta|y) = \mathcal{K}(y)P(y|\theta)$$

$$\propto P(y|\theta)$$

where K(y) is unknown, but does not depend on θ .

• Fixing y at observed values, and assuming a model of the sampling distribution $P(y|\theta)$, $\mathcal{L}(\theta|y)$ measures the "likelihood" that $\theta = \hat{\theta}$

The Likelihood Approach

Basic Setup

The Likelihood Approach

The Linear Model in MLE

Variance in MLE

and
Optimization

Binomial

• Like randomization as the "reasoned basis of inference", developed by R.A. Fisher (in his junior year).

• Following frequentist principles: θ is fixed and y is random. Define the likelihood:

$$\mathcal{L}(\theta|y) = \mathcal{K}(y)P(y|\theta)$$

$$\propto P(y|\theta)$$

where $\mathcal{K}(y)$ is unknown, but does not depend on θ .

- Fixing y at observed values, and assuming a model of the sampling distribution $P(y|\theta)$, $\mathcal{L}(\theta|y)$ measures the "likelihood" that $\theta = \hat{\theta}$
- Then $\hat{\theta}$ is found at arg max $_{\theta} \mathcal{L}(\theta|y)$
 - Note: $\arg \max_{\theta} \mathcal{L}(\theta|y) \implies \arg \max_{\theta} P(y|\theta)$

The Linear Model in MLE

Variance in MLE

Estimation and

Optimizati

Binomial Models • We randomly sample (iid) n units, and observe y_i and X_i . Assuming $y \sim N(X\beta, \sigma^2)$:

$$P(y|\theta,X) = \prod_{i=1}^{n} p(y_i|\theta)$$

$$\mathcal{L}(y|\beta,\sigma,X) \propto \prod_{i=1}^{n} N(y_i|X_i\beta,\sigma^2)$$

$$\propto \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\left(\frac{y_i - X_i\beta}{\sigma}\right)^2\right\}$$

The Linear Model in MLE

Variance in MLE

Estimation and

Binomial

• Easier to evaluate the $log(\mathcal{L}) = \ell$. In this case $\ell(y|\beta, \sigma, X)$:

$$(\beta, \sigma, X)$$
:

$$\propto \sum_{i=1}^{n} \left\{ -\log(\sigma) - \frac{1}{2}\log(2\pi) - \frac{1}{2\sigma^2} \left(y_i - X_i\beta\right)^2 \right\}$$

$$\propto -n\log(\sigma) - \frac{n}{2}\log(2\pi) - \frac{1}{2\sigma^2}\sum_{i=1}^n(y_i - X_i\beta)^2$$

OLS in MLE

Basic Setur

The Likelihood Approach

The Linear Model in MLE

Variance in MLE

and
Optimization

Binomial Models • Easier to evaluate the $log(\mathcal{L}) = \ell$. In this case $\ell(y|\beta, \sigma, X)$:

$$\propto \sum_{i=1}^{n} \left\{ -\log(\sigma) - \frac{1}{2}\log(2\pi) - \frac{1}{2\sigma^2} \left(y_i - X_i\beta\right)^2 \right\}$$

$$\propto -n\log(\sigma) - \frac{n}{2}\log(2\pi) - \frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - X_i\beta)^2$$

- How do we find $\hat{\beta}$?
 - Maximize $\ell(y|\beta, \sigma, X)$ w/r/t to β
 - Solve $\frac{\partial \ell(y|\beta,\sigma,X)}{\partial \beta}=0$, to find $\hat{\beta}$ i
 - Solve $\frac{\partial^2 \ell(y|\beta,\sigma,X)}{\partial \beta^2} < 0$, to ensure $\hat{\beta}$ is a maximum
 - IF derivatives exist, can solve analytically

Variance i

Estimation

optimization

Binomia Models

Bivariate Normal with $\sigma = 1$

• Here:

$$\ell(y|\beta,\sigma,x) \propto -\frac{n}{2}\log(2\pi) - \frac{1}{2}\sum_{i=1}^{n}(y_i - X_i\beta)^2$$

Bivariate Normal with $\sigma = 1$

Basic Setur

The Likelihood Approach

The Linear Model in MLE

Variance in MLE

Estimation and

Binomial Models • Here:

$$\ell(y|\beta,\sigma,x) \propto -\frac{n}{2}\log(2\pi) - \frac{1}{2}\sum_{i=1}^{n}(y_i - X_i\beta)^2$$

First derivative:

$$\frac{\partial \ell(y|\beta,\sigma,X)}{\partial \beta} = \sum_{i=1}^{n} (X_i y_i - X_i^2 \beta)$$
$$= \sum_{i=1}^{n} X_i y_i - \beta \sum_{i=1}^{n} X_i^2$$

Bivariate Normal with $\sigma = 1$

Basic Setur

The Likelihood Approach

The Linear Model in MLE

Variance in MLE

Estimation and Optimization

Binomial Models • Here:

$$\ell(y|\beta,\sigma,x) \propto -\frac{n}{2}\log(2\pi) - \frac{1}{2}\sum_{i=1}^{n}(y_i - X_i\beta)^2$$

First derivative:

$$\frac{\partial \ell(y|\beta,\sigma,X)}{\partial \beta} = \sum_{i=1}^{n} (X_i y_i - X_i^2 \beta)$$
$$= \sum_{i=1}^{n} X_i y_i - \beta \sum_{i=1}^{n} X_i^2$$

 Setting to zero and solving gives us (implicitly assuming zero intercept):

$$\hat{\beta} = \frac{\sum_{i=1}^{n} X_i y_i}{\sum_{i=1}^{n} X_i^2}$$

Bivariate Normal with $\sigma=1$

Basic Setur

Likelihood

The Linear Model in MLE

Variance i MLE

Estimation and

and Optimization

Binomial Models • Check the second derivative:

$$\frac{\partial^{2}\ell(y|\beta,\sigma,X)}{\partial\beta^{2}} = \frac{\partial\sum_{i=1}^{n} (X_{i}y_{i} - X_{i}^{2}\beta)}{\partial\beta}$$
$$= -\sum_{i=1}^{n} X_{i}^{2} < 0$$

Variance in MLE

Estimation and

Optimizat

Multivariate Normal MLE

• Again $\ell(y|\beta,\sigma,x)$:

$$\propto -\frac{n}{2}\log(\sigma^2) - \frac{n}{2}\log(2\pi) - \frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{x}\beta)'(\mathbf{y} - \mathbf{x}\beta)$$

$$\propto -\frac{n}{2}\log(\sigma^2) - \frac{n}{2}\log(2\pi) - \frac{1}{2\sigma^2}(\mathbf{y}'\mathbf{y} - 2\beta'\mathbf{y}'\mathbf{x} + \beta'\mathbf{x}'\mathbf{x}\beta)$$

Variance in MLE

and
Optimizatio

Binomia Models

Multivariate Normal MLE

• Again $\ell(y|\beta,\sigma,x)$:

$$\propto -\frac{n}{2}\log(\sigma^2) - \frac{n}{2}\log(2\pi) - \frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{x}\beta)'(\mathbf{y} - \mathbf{x}\beta)$$

$$\propto -\frac{n}{2}\log(\sigma^2) - \frac{n}{2}\log(2\pi) - \frac{1}{2\sigma^2}(\mathbf{y}'\mathbf{y} - 2\beta'\mathbf{y}'\mathbf{x} + \beta'\mathbf{x}'\mathbf{x}\beta)$$

• First derivative:

$$\frac{\partial \ell(\mathbf{y}|\beta, \sigma, \mathbf{x})}{\partial \beta} = \frac{1}{\sigma^2} (\mathbf{x}' \mathbf{y} - \mathbf{x}' \mathbf{x} \beta)$$

Multivariate Normal MLE

Basic Setur

The Likelihood Approach

The Linear Model in MLE

Variance in MLE

and Optimizatio

Binomia Models • Again $\ell(y|\beta,\sigma,x)$:

$$\propto -\frac{n}{2}\log(\sigma^2) - \frac{n}{2}\log(2\pi) - \frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{x}\beta)'(\mathbf{y} - \mathbf{x}\beta)$$

$$\propto -\frac{n}{2}\log(\sigma^2) - \frac{n}{2}\log(2\pi) - \frac{1}{2\sigma^2}(\mathbf{y}'\mathbf{y} - 2\beta'\mathbf{y}'\mathbf{x} + \beta'\mathbf{x}'\mathbf{x}\beta)$$

First derivative:

$$\frac{\partial \ell(\mathbf{y}|\beta, \sigma, \mathbf{x})}{\partial \beta} = \frac{1}{\sigma^2} (\mathbf{x}' \mathbf{y} - \mathbf{x}' \mathbf{x} \beta)$$

• Setting to zero and solving:

$$0 = \frac{1}{\sigma^2} (\mathbf{x}' \mathbf{y} - \mathbf{x}' \mathbf{x} \beta)$$

$$\mathbf{x}' \mathbf{x} \beta = \mathbf{x}' \mathbf{y}$$

$$\hat{\beta} = (\mathbf{x}' \mathbf{x})^{-1} \mathbf{x}' \mathbf{y}$$

Variance in MLE

Estimation and

Binomia Models

Estimating the Variance σ^2

• To estimate σ^2 , take the derivative w/r/t to σ^2 :

$$\ell \propto -\frac{n}{2}\log(\sigma^2) - \frac{1}{2}(\sigma^2)^{-1}(\mathbf{y} - \mathbf{x}\beta)'(\mathbf{y} - \mathbf{x}\beta)$$
$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4}(\mathbf{y} - \mathbf{x}\beta)'(\mathbf{y} - \mathbf{x}\beta)$$

Variance in MLE

Estimation and

Binomial Models

Estimating the Variance σ^2

• To estimate σ^2 , take the derivative w/r/t to σ^2 :

$$\ell \propto -\frac{n}{2}\log(\sigma^2) - \frac{1}{2}(\sigma^2)^{-1}(\mathbf{y} - \mathbf{x}\beta)'(\mathbf{y} - \mathbf{x}\beta)$$

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4}(\mathbf{y} - \mathbf{x}\beta)'(\mathbf{y} - \mathbf{x}\beta)$$

• Setting to zero and solving:

$$n = \frac{1}{\sigma^2} (\mathbf{y} - \mathbf{x}\beta)' (\mathbf{y} - \mathbf{x}\beta)$$

$$n = \frac{1}{\sigma^2} (\mathbf{y} - \hat{\mathbf{y}})' (\mathbf{y} - \hat{\mathbf{y}})$$

$$n = \frac{1}{\sigma^2} \mathbf{e}' \mathbf{e}$$

$$\hat{\sigma}^2 = \frac{\mathbf{e}' \mathbf{e}}{\sigma^2}$$
(1)

Fisher Information

Basic Setur

The Likelihood Approach

The Linear Model in MLI

Variance in MLE

and Optimizatio

Binomial

Fisher Theorem: Suppose $X_1, X_2, ..., X_n$ are IID with probability distribution governed by the parameter θ . Let θ_0 be the true value of θ . Under regularity conditions, the MLE for θ is asymptotically normal. The asymptotic mean of the MLE is θ_0 . The asymptotic variance can be computed as follows:

$$\left[-\frac{\partial^2 \mathcal{L}_n(\theta)}{\partial \theta \theta'}\right]^{-1}$$

If $\hat{\theta}$ is the MLE and v_n is the asymptotic variance, the theorem says that $\frac{\hat{\theta}-\theta}{\sqrt{v_n}} \sim \mathcal{N}(0,1)$ (nearly), when the sample size n is large

The Linear Model in MLE

Variance in MLE

Estimation and Optimizatio

Binomial Models

- Let θ be a vector containing the paramters being estimated. For example, in the regression $y = \alpha + \beta x + \epsilon$ with variance σ ; θ : $\{\alpha, \beta, \sigma\}$.
- The Hessian is a matrix of second derivatives defined as:

$$\mathbf{H}(\theta) = \frac{\partial^{2}\ell(\theta)}{\partial\theta\partial\theta'}$$

$$\mathbf{H}(\theta) = \begin{pmatrix} \frac{\partial^{2}\ell(\theta)}{\partial\alpha\partial\alpha} & \frac{\partial^{2}\ell(\theta)}{\partial\alpha\partial\beta} & \frac{\partial^{2}\ell(\theta)}{\partial\alpha\partial\sigma} \\ \frac{\partial^{2}\ell(\theta)}{\partial\beta\partial\alpha} & \frac{\partial^{2}\ell(\theta)}{\partial\beta\partial\beta} & \frac{\partial^{2}\ell(\theta)}{\partial\beta\partial\sigma} \\ \frac{\partial^{2}\ell(\theta)}{\partial\sigma\partial\alpha} & \frac{\partial^{2}\ell(\theta)}{\partial\sigma\partial\beta} & \frac{\partial^{2}\ell(\theta)}{\partial\sigma\partial\sigma} \end{pmatrix}$$

The Linear Model in MLE

Variance in MLE

and Optimization

Binomial Models • The information matrix is defined as the negative of the expected value of the Hessian: $-E[\mathbf{H}(\theta)]$. Under very general conditions, the covariance matrix for the ML estimator is the inverse of the information matrix:

$$Var(\hat{\theta}) = -E[\mathbf{H}(\theta)]^{-1}$$

$$Var(\theta) = \begin{pmatrix} -E\left(\frac{\partial^2 \ell(\theta)}{\partial \alpha \partial \alpha}\right) & -E\left(\frac{\partial^2 \ell(\theta)}{\partial \alpha \partial \beta}\right) & -E\left(\frac{\partial^2 \ell(\theta)}{\partial \alpha \partial \sigma}\right) \\ -E\left(\frac{\partial^2 \ell(\theta)}{\partial \beta \partial \alpha}\right) & -E\left(\frac{\partial^2 \ell(\theta)}{\partial \beta \partial \beta}\right) & -E\left(\frac{\partial^2 \ell(\theta)}{\partial \beta \partial \sigma}\right) \\ -E\left(\frac{\partial^2 \ell(\theta)}{\partial \sigma \partial \alpha}\right) & -E\left(\frac{\partial^2 \ell(\theta)}{\partial \sigma \partial \beta}\right) & -E\left(\frac{\partial^2 \ell(\theta)}{\partial \sigma \partial \sigma}\right) \end{pmatrix}^{-1}$$

Estimating θ Numerically

Estimation and Optimization

• No analytical solution for derivatives to solve for $\hat{\theta}$, due to non-linearities, complex functions, etc.

- Brute-force methods:
 - Search over all permissible values of θ

Likelihood for One Parameter

Basic Setup

Likelihood Approach

The Linear

Variance in MLE

Estimation and Optimization

Binomia Models

Basic Setup

The Likelihood

The Linear

Variance in MI F

Estimation and Optimization

Binomial

Likelihood for Two Parameters

Estimation

Estimation and Optimization

Estimating θ Numerically

- No analytical solution for derivatives to solve for $\hat{\theta}$, due to non-linearities, complex functions, etc.
- Brute-force methods:
 - Search over all permissible values of θ
 - Very inefficient
 - Impossible as dimensions in θ increase

Basic Setup

Likelihoo

The Linear Model in MLE

Variance in MLE

Estimation and Optimization

Binomial Models

- Recall that maximum at $\mathcal{L}(\beta)$ when $\mathcal{L}'(\beta) = 0$
- Find root of $\mathcal{L}'(\beta)$ using an iterative algorithm to approximate a quadratic function around β_i

Basic Setup

Likelihood Approach

The Linear Model in MLE

Variance in MLE

Estimation and Optimization

Binomial Models

- Recall that maximum at $\mathcal{L}(\beta)$ when $\mathcal{L}'(\beta) = 0$
- Find root of $\mathcal{L}'(\beta)$ using an iterative algorithm to approximate a quadratic function around β_i
- Newton Algorithm:
 - Start with initial values β_0

Estimation and Optimization

Newton Algorithm

- Recall that maximum at $\mathcal{L}(\beta)$ when $\mathcal{L}'(\beta) = 0$
- Find root of $\mathcal{L}'(\beta)$ using an iterative algorithm to approximate a quadratic function around β_i
- Newton Algorithm:
 - Start with initial values β_0
 - So long as $\mathcal{L}'(\beta) \neq 0$

Estimation and Optimization

- Recall that maximum at $\mathcal{L}(\beta)$ when $\mathcal{L}'(\beta) = 0$
- Find root of $\mathcal{L}'(\beta)$ using an iterative algorithm to approximate a quadratic function around β_i
- Newton Algorithm:
 - Start with initial values β_0
 - So long as $\mathcal{L}'(\beta) \neq 0$
 - Improve guess about β by linear approximation at β_i
 - Accordingly: $\beta_{i+1} = \beta_i \frac{\mathcal{L}'(\beta_i)}{\mathcal{L}''(\beta_i)}$
 - Matrix notation this is: β_{i+1} = β_i + [-H(β_i)]⁻¹ g(β_i), where $g(\beta)$ is the matrix of first derivatives

Basic Setup

The Likelihood Approach

The Linear Model in MLE

Variance i MLE

Estimation and Optimization

Binomial Models • Recall that maximum at $\mathcal{L}(\beta)$ when $\mathcal{L}'(\beta) = 0$

- Find root of $\mathcal{L}'(\beta)$ using an iterative algorithm to approximate a quadratic function around β_i
- Newton Algorithm:
 - Start with initial values β_0
 - So long as $\mathcal{L}'(\beta) \neq 0$
 - Improve guess about β by linear approximation at β_i
 - Accordingly: $\beta_{i+1} = \beta_i \frac{\mathcal{L}'(\beta_i)}{\mathcal{L}''(\beta_i)}$
 - Matrix notation this is: $\beta_{i+1} = \beta_i + [-\mathbf{H}(\beta_i)]^{-1} g(\beta_i)$, where $g(\beta)$ is the matrix of first derivatives
 - If approximation $\beta_i \frac{\mathcal{L}'(\beta_i)}{\mathcal{L}''(\beta_i)} > 0$, decrease β_i
 - If approximation $\beta_i \frac{\mathcal{L}'(\beta_i)}{\mathcal{L}''(\beta_i)} < 0$, increase β_i

Basic Setup

The Likelihood Approach

The Linear Model in MLE

Variance i MLE

Estimation and Optimization

Binomial Models • Recall that maximum at $\mathcal{L}(\beta)$ when $\mathcal{L}'(\beta)=0$

- Find root of $\mathcal{L}'(\beta)$ using an iterative algorithm to approximate a quadratic function around β_i
- Newton Algorithm:
 - Start with initial values β_0
 - So long as $\mathcal{L}'(\beta) \neq 0$
 - Improve guess about β by linear approximation at β_i
 - Accordingly: $\beta_{i+1} = \beta_i \frac{\mathcal{L}'(\beta_i)}{\mathcal{L}''(\beta_i)}$
 - Matrix notation this is: $\beta_{i+1} = \beta_i + [-\mathbf{H}(\beta_i)]^{-1} g(\beta_i)$, where $g(\beta)$ is the matrix of first derivatives
 - If approximation $\beta_i \frac{\mathcal{L}'(\beta_i)}{\mathcal{L}''(\beta_i)} > 0$, decrease β_i
 - If approximation $\beta_i \frac{\mathcal{L}'(\beta_i)}{\mathcal{L}''(\beta_i)} < 0$, increase β_i
- Often must compute numerical derivatives; very inefficient

Optimization

Basic Setup

Likelihood Approach

The Linear Model in MLE

Variance in MLE

Estimation and Optimization

Binomia Models Many additional optimization methods:

- Newton-Rhapson
- BFGS
- genoud
- Some of these emphasize efficiency
 - Newton-Rhapson
 - BFGS
- Others emphasize robustness to saddle points and significant irregularities
 - genoud

Binomial Model(s) in MLE

Basic Setup

The Likelihood Approach

The Linear Model in MLE

Variance in MLE

Estimation and Optimization

Binomial Models • For n (iid) random trials, y measures whether the ith trial was a 'success,' so $y \sim Binomial(p)$, where p is the probability of success

• Define $m = \sum y_i$ to be the number of successes. Following the binomial:

$$\mathcal{L} \propto \prod_{i=1}^{n} p^{y_i} (1 - p^{1-y_i})$$
 $\ell \propto \sum_{i=1}^{n} [y_i log(p) + (1 - y_i) log(1 - p)]$
 $\propto log(p) \sum_{i=1}^{n} y_i + log(1 - p) \sum_{i=1}^{n} (1 - y_i)$
 $\propto log(p) m + log(1 - p) (n - m)$

Binomial Model(s) in MLE

Basic Setur

Likelihood Approach

The Linear Model in MLE

Variance in MLE

Estimation and Optimization

Binomial Models • First derivative:

$$\frac{\partial \ell}{\partial p} = \frac{\partial \log(p)m + \log(1-p)(n-m)}{\partial p}$$
$$= \frac{m}{p} - \frac{n-m}{1-p}$$

• Setting to zero and solving:

$$\frac{m}{p} = \frac{n-m}{1-p}$$

$$\hat{p} = \frac{m}{p}$$

Binomial Model(s) in MLE

Binomial

Models

Second derivative:

$$\frac{\partial^{2} \ell}{\partial p^{2}} = \frac{\partial \left(\frac{m}{p} - \frac{n-m}{1-p}\right)}{\partial p}$$
$$= -\frac{m}{p^{2}} - \frac{n-m}{(1-p)^{2}} < 0$$

The Probit Model

Basic Setur

The Likelihood Approach

The Linear Model in MLE

Variance in MLE

and
Optimization

Binomial Models Let y_i be a binary response variable that is a function of covariates x_i

• Given x_i , the y_i responses are assumed independent random variables where:

$$P(y_i = 1|x_i) = \Phi(x_i\beta)$$

where Φ is the CDF of the standard normal distribution

• The likelihood:

$$\mathcal{L}(x_i,\beta) = \prod_{i=1}^n y_i \cdot \Phi(x_i\beta) \times (1 - y_i) \cdot \{1 - \Phi(x_i\beta)\}$$

$$\ell(x_i,\beta) = \sum_{i=1}^n (y_i \log [\Phi(x_i\beta)] + (1 - y_i) \log \{1 - \Phi(x_i\beta)\})$$