Answers to selected exercises

5a, page 3

- $\{1\} \in C$ but $\{1\} \not\subseteq C$;
- $\{2\} \notin C$ but $\{2\} \subseteq C$;
- $\{3\} \in C$ and $\{3\} \subseteq C$; and
- $\{4\} \notin C$ and $\{4\} \not\subseteq C$.

5b, page 7

No. For a counterexample, let $A=C=\varnothing$ and $B=\{1\}$. Then

$$(A \setminus B) \cup (B \setminus C) = \emptyset \cup \{1\} = \{1\} \neq \emptyset = A \setminus C.$$

@ 6a, page 9

We show $\{|x|: x \in \mathbb{Q}\} = \mathbb{Q}_{\geq 0}$.

Proof. 1. (\subseteq)

- 1.1. Let $z \in \{|x| : x \in \mathbb{Q}\}.$
- 1.2. Find $x \in \mathbb{Q}$ such that z = |x|.
- 1.3. 1.3.1. Case 1: Suppose $x \ge 0$.
 - 1.3.2. Then $z = |x| = x \in \mathbb{Q}_{\geqslant 0}$ by the definition of $|\cdot|$.
- 1.4. 1.4.1. Case 2: Suppose x < 0.
 - 1.4.2. Then z = |x| = -x by the definition of $|\cdot|$.
 - 1.4.3. As x < 0, we know -x > 0.
 - 1.4.4. As $x \in \mathbb{Q}$, we know $-x \in \mathbb{Q}$.
 - 1.4.5. Thus $z = -x \in \mathbb{Q}_{\geqslant 0}$.
- 1.5. In either case, we have $z \in \mathbb{Q}_{\geq 0}$.
- $2. (\supseteq)$
 - 2.1. Let $z \in \mathbb{Q}_{\geqslant 0}$.
 - 2.2. Then the definition of $|\cdot|$ implies $z = |z| \in \{|x| : x \in \mathbb{Q}\}.$

6b, page 9

We only show (1) here. The proof of (2) is similar.

Proof. 1. We know $|x| \in \mathbb{Z}$ by the definition of |x|.

- 2. As $\lfloor x \rfloor + 1 \in \mathbb{Z}$ and $\lfloor x \rfloor + 1 > \lfloor x \rfloor$, it follows from the largestness of $\lfloor x \rfloor$ that $\lfloor x \rfloor \leqslant x < \lfloor x \rfloor + 1$.
- 3. Now let us show uniqueness: let $y \in \mathbb{Z}$ such that $y \leqslant x < y + 1$.
- 4. 4.1. Suppose |x| < y.
 - 4.2. Then $|x| + 1 \leq y$ as $|x|, y \in \mathbb{Z}$.
 - 4.3. This implies $x < |x| + 1 \le y \le x$ by line 2 and line 3, which is a contradiction.

- 5. So $\lfloor x \rfloor \geqslant y$.
- 6. Similarly, one shows $|x| \leq y$.
- 7. Thus |x| = y.

∅ 6c, page 9

It does not make f assign any value in the codomain \mathbb{Q} to the element 1/2 of the domain \mathbb{Q} . (Recall $2^{1/2} = \sqrt{2} \notin \mathbb{Q}$.)

@ 6d, page 9

It does not make g assign any value in the codomain \mathbb{Q} to the element -1 of the domain \mathbb{Q} .

6e, page 9

It makes $h(1/2) = 1 \neq 2 = h(2/4)$, although 1/2 = 2/4.

@ 6f, page 13

Only the top-middle, the bottom-left and the bottom-right diagrams represent functions. Of these, the first is a surjection but not an injection; the second is an injection but not a surjection; and the third is both an injection and a surjection. Thus only the last one is a bijection.

@ 6g, page 14

The following are true statements:

$$q(0) = 0$$
, $q(\{0\}) = \{0\}$, $q^{-1}(\{0\}) = \{0\}$.

Each of the following has a type mismatch error because there is a number on one side of the equation, and a set on the other side:

$$g(0) = \{0\}, \quad g(\{0\}) = 0, \quad g^{-1}(\{0\}) = 0.$$

The following refer to the inverse of g, which does not exist in view of Example 6.2.8 or Example 6.2.11, and Theorem 6.2.18:

$$q^{-1}(0) = 0, \quad q^{-1}(0) = \{0\}.$$

7a, page 19

On line 3.2.7, it is implicitly assumed that some participant stayed in the meeting throughout. This is not true when k = 1.

7b, page 23

$$a_n = a_{n-1} + n$$
 by the definition of a_{n-1} ;
$$= a_{n-2} + (n-1) + n$$
 by the definition of a_{n-2} ;
$$\vdots$$

$$= a_1 + 2 + 3 + \dots + (n-1) + n$$
 by the definition of a_2 ;
$$= 1 + 2 + 3 + \dots + (n-1) + n$$
 by the definition of a_1 ;
$$= \frac{1}{2} n(n+1)$$
 by Example 7.1.3.

7c, page 25

Structural induction over S. To prove that $\forall n \in S \mid P(n)$ is true, where each P(n) is a proposition, it suffices to:

(base step) show that P(1) is true; and

(induction step) show that $\forall x \in S \ (P(x) \Rightarrow P(2x) \land P(3x))$ is true.

One can show by structural induction over S that

$$S = \{2^a 3^b : a, b \in \mathbb{Z}_{\geqslant 0}\}.$$

Thus $9,12 \in S$ but $10,11,13 \not\in S$ because

$$9 = 2^{0} \times 3^{2}$$
, $12 = 2^{2} \times 3^{1}$, $10 = 2^{1} \times 5$, $11 = 11$, $13 = 13$

when each of these numbers is written as a product of prime numbers. Here we implicitly use the Fundamental Theorem of Arithmetic when we claim that certain numbers here cannot be written as $2^a 3^b$ for any $a, b \in \mathbb{Z}_{\geq 0}$.

8a, page 28

This is a discussion question in Tutorial 6.

8b, page 28

This is a discussion question in Tutorial 6.

∅ 8c, page 32

 $(10101010)_2 = 170$ and $(777)_8 = 511$ and $(ABC)_{16} = 2748$.

8d, page 32

$$(b, n) = (7, 1231)$$

So $1231 = (3406)_7$.

8e, page 34

Proof. 1. Let $q = m \underline{\text{div}} n$ and $r = m \underline{\text{mod}} n$, so that m = nq + r and $0 \le r < n$.

- 2. ("if")
 - 2.1. Suppose gcd(m, n) = n.
 - 2.2. Then $n \mid m$.
 - 2.3. So $n \mid r$ by the Closure Lemma as r = m nq.
 - 2.4. Note $|n| = n \le r = |r|$ as $n, r \ge 0$.
 - 2.5. Thus the contrapositive of Proposition 8.1.10 tells us $m \mod n = r = 0$.
- 3. ("Only if")
 - 3.1. Suppose r = 0.
 - 3.2. Then m = qn + 0 = qn.
 - 3.3. Thus $n \mid m$ by the definition of divisibility.
 - 3.4. As $n \mid n$ by Example 8.1.6, this implies n is a common divisor of m and n.
 - 3.5. So $n \leq \gcd(m, n)$ by the greatestness of gcd.
 - 3.6. Since $gcd(m, n) \mid n$ and n > 0, Proposition 8.1.10 tells us that

$$\gcd(m, n) = |\gcd(m, n)| \leqslant |n| = n.$$

3.7. Hence gcd(m, n) = n.

8f, page 34

Example 8.1.7 tells us that every integer is a divisor of 0. As every integer is a common divisor of 0 and 0, there is no greatest one.

8g, page 34

Proof. 1. Suppose p is prime.

- 2. As m, p > 0, we know gcd(m, p) exists and is positive by Remark 8.4.4.
- 3. The primality of p tells us that gcd(m, p) = 1 or gcd(m, p) = p.
- 4. Case 1: suppose gcd(m, p) = 1.
 - 4.1. Then we are done.
- 5. Case 2: suppose gcd(m, p) = p.
 - 5.1. Then $m \mod p = 0$ by Exercise 8.4.3.
 - 5.2. Thus m = pq + 0 = pq, where $p = m \operatorname{\underline{div}} p \in \mathbb{Z}$.
 - 5.3. So $p \mid m$.

8h, page 34

Proof. 1. We first show that every common divisor of m and n is a common divisor of |m| and |n|.

- 1.1. Let $d \in \mathbb{Z}$ such that $d \mid m$ and $d \mid n$.
- 1.2. Then $d \mid -m$ and $d \mid -n$ by Lemma 8.1.9.
- 1.3. Thus $d \mid |m|$ and $d \mid |n|$ as $|m| \in \{m, -m\}$ and $|n| \in \{n, -n\}$ by the definition of $|\cdot|$.
- 2. Next we show that every common divisor of |m| and |n| is a common divisor of m and n.
 - 2.1. Let $d \in \mathbb{Z}$ such that $d \mid |m|$ and $d \mid |n|$.
 - 2.2. Recall that |m| = m or |m| = -m by the definition of $|\cdot|$.
 - 2.3. If |m| = m, then $d \mid m$ by the choice of d.
 - 2.4. If |m| = -m, then $d \mid -(-m) = m$ by the choice of d and Lemma 8.1.9.
 - 2.5. So $d \mid m$ in all cases.
 - 2.6. Recall that |n| = n or |n| = -n by the definition of $|\cdot|$.
 - 2.7. Similarly, if |n| = n, then $d \mid n$ by the choice of d.
 - 2.8. If |n| = -n, then $d \mid -(-n) = n$ by the choice of d and Lemma 8.1.9.
 - 2.9. So $d \mid n$ in all cases.