F3-TEK4040 02.09.2024

Teorem A.1 Grahm-Schmidt ortogonalisering.

Dersom vi har et sett med basisvektorer $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$ kan vi lage et ortonormalt sett av basisvektorer $\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n$ hvor $\langle \vec{e}_i, \vec{e}_j \rangle = \delta_{ij}$ på følgende måte:

$$\stackrel{\overrightarrow{G}_{2}}{\longrightarrow} \stackrel{\cancel{G}_{3}}{\longrightarrow} \stackrel{\overrightarrow{G}_{7}}{\longrightarrow} \stackrel{\overrightarrow{h}_{k} = \vec{a}_{k} - \sum_{i=1}^{k-1} \langle \vec{a}_{k}, \vec{e}_{i} \rangle \vec{e}_{i}}{\vec{e}_{k} = \vec{h}_{i} \| \vec{h}_{k} \|^{-1}} \right\} k = 1, 2, \dots, n \tag{A-3}$$

$$\vec{e}_{i}$$
 \vec{a}_{2}
 \vec{a}_{3}
 \vec{a}_{4}
 \vec{a}_{5}

Example
$$n=2$$

$$\vec{h}_{1} = \vec{a}_{1} - \sum_{i=1}^{\infty} \langle \vec{a}_{1}, \vec{e}_{i} \rangle \vec{e}_{i} = \vec{a}_{1}$$

$$\vec{e}_{1} = \vec{h}_{1} / |\vec{h}_{1}| = |\vec{e}_{2}| = |\vec{e}_{2}| - |\vec{e}_{3}| |\vec{e}_{1}| = |\vec{e}_{2}| - |\vec{e}_{3}| |\vec{e}_{1}| = |\vec{e}_{2}| |\vec{e}_{1}| = |\vec{e}_{3}| |\vec{e}_{1}| = |\vec{e}_{2}| |\vec{e}_{1}| = |\vec{e}_{3}| |\vec{e}_{3}| |\vec{e}_{3}| |\vec{e}_{3}| |\vec{e}_{3}| = |\vec{e}_{3}| |\vec{e}_$$

F3-TEK4040

A22 Matrix representation of geometrical vectors

Problem: Given a geometrical vector \vec{r} and a basis (frome) $\{\vec{p}_i\}$, what is the algebraic vector \vec{r}

Theorem A.2 Column representation (algebraic vector) of FeV is:

$$\overrightarrow{\Gamma} = \Gamma_1^{r} \overrightarrow{p}_1 + \Gamma_2^{r} \overrightarrow{p}_2 + \dots + \Gamma_n^{r} \overrightarrow{p}_n = \sum_{i=1}^{r} \Gamma_i^{r} \overrightarrow{p}_i$$

$$\Gamma_{b} = \left(\begin{array}{c} L_{b} \\ L_{b} \\ \end{array} \right) = \left(\begin{array}{c} L_{b} \\ \end{array} \right)$$

From linear algebra we know we can write: $\vec{r} = \sum_{i=1}^{n} r_i^* \vec{p}_i$ We first calculate the dual basis $\{\vec{p}_i^*\}$ where $\{\vec{p}_i, \vec{p}_i^*\} = \partial_{ij}$ Take innerproduct of \vec{r} with the dual basis \vec{p}_i^*

$$\langle \vec{r}, \vec{p}_{i}^{*} \rangle = \langle \sum_{i=1}^{r} r_{i}^{*} \vec{p}_{i}, \vec{p}_{i}^{*} \rangle = \sum_{i=1}^{r} r_{i}^{*} \langle \vec{p}_{i}, \vec{p}_{i}^{*} \rangle = r_{i}^{*}$$

i.e. if we switch in dex:

F3-TEK4040

That means: given \vec{r} and $\{\vec{p}_i\}$ then $\vec{r} = [\vec{r}, \vec{p}_i^*]$

Independent of choise of basis vectors and c.s

Dependent on the choise of basis vectors and type of C.S.

V: n-dimensional vector space

R: R × R × R × R n-din n-dimensional space of real numbers ER

Cr: coordinate system C.s

(cartesian if o.n axis)

If the basis vectors are orthonormal (o.n.)

$$\langle \vec{p}_i, \vec{p}_j \rangle = \delta_{ij} = \langle \vec{p}_i, \vec{p}_j^* \rangle$$

$$\Longrightarrow \vec{p}_i = \vec{p}_j^*$$

F3-TEK4040

The law of parallellograms Mathematically we use {p}} and {p;}

Projecting down on the axis Mathematically use {q;}

When we use polar - or spherical coordinates we also need to

specify a frame (basis)

$$\binom{r}{b}\binom{r}{b} = \overline{b}$$

$$S_{\nu}^{\rho}(\vec{r}) = \begin{bmatrix} r \\ \varphi \\ \theta \end{bmatrix}$$

We see that the wordinates a coordinate function (C, S,) gives depend on the frame F, and how the coordinates are calculated (carterian, polar, spherical.). We will just almost use Carterian wordinates.

A2.3 Matrix representation of linear operator

A operator is a tunchion that given a vector calculatus a new vector: $O(\vec{r}) = \vec{a}$: $V \rightarrow V$

We will look at Linear operators

Def fi.10 Linear operator it and only if

Operator A is linear
$$\Rightarrow$$
 $\forall \vec{x}, \vec{y} \in V$ and $\forall a, b \in R$ then:

$$A(a\vec{x} + b\vec{y}) = aA\vec{x} + bA\vec{y}$$
Example: $\vec{w} \times \vec{r}$

$$A(a\vec{x} + b\vec{y}) = \vec{w} \times (a\vec{x} + b\vec{y})$$
That means the cross product
$$= \vec{w} \times a\vec{x} + \vec{w} \times b\vec{y}$$

$$= a \vec{w} \times \vec{x} + b \vec{w} \times \vec{y}$$

$$= a A\vec{x} + b A\vec{y}$$

Theorem A.3 Matrix representation of a linear operator

Given {Pi} in the vector space V. Then any linear operator A can be represented in R" as the matrix A". We have:

$$A^{r} = [\alpha_{ij}^{r}] = [\langle A \overrightarrow{p}_{i}, \overrightarrow{p}_{i}^{*} \rangle]$$

$$\overrightarrow{y} = A \overrightarrow{x} \iff y^{r} = A^{r} x^{r}$$

Proof of theorem:
(iven
$$\mathcal{F}_{v}^{p} = \{\vec{p}_{i}\}, A: \vec{y} = A\vec{x}$$

02.09.2024 F3-TEK4040

From before:
$$\vec{y} = \sum_{i=1}^{n} y_{i}^{r} \vec{p}_{i}^{r}$$
,

 $y_{i}^{r} = (\vec{y}_{i}, \vec{p}_{i}^{r}) = (\vec{A} \times \vec{p}_{i}^{r})$

Lin. $= (\vec{A}(\sum_{j=1}^{n} \times_{j}^{r} \vec{p}_{j}), \vec{p}_{i}^{r})$
 $= (\sum_{j=1}^{n} \times_{j}^{r} \vec{p}_{j}, \vec{p}_{i}^{r})$
 $= \sum_{j=1}^{n} \times_{j}^{r} (\vec{A} \vec{p}_{j}, \vec{p}_{i}^{r})$
 $y_{i}^{r} = \sum_{j=1}^{n} \alpha_{ij}^{r} \chi_{i}^{r}$
 $y_{i}^{r} = \sum_{j=1}^{n} \alpha_{ij}^{r} \chi_{i}^{r}$

From before:
$$\vec{y} = \sum_{i=1}^{n} y_{i}^{n} \vec{p}_{i}^{i}$$
, $\vec{x} = \sum_{j=1}^{n} x_{j}^{n} \vec{p}_{j}^{i}$, $\vec{y} = A \vec{x}$

$$y_{i}^{n} = \langle \vec{y}_{i}, \vec{p}_{i}^{n} \rangle = \langle A \vec{x}_{i}, \vec{p}_{i}^{n} \rangle$$

$$y_{i}^{n} = \langle A \langle \sum_{j=1}^{n} x_{j}^{n} \vec{p}_{j}^{n} \rangle, \vec{p}_{i}^{n} \rangle$$

$$y_{i}^{n} = \langle A \langle \sum_{j=1}^{n} x_{j}^{n} \vec{p}_{j}^{n} \rangle, \vec{p}_{i}^{n} \rangle$$

$$y_{i}^{n} = \langle A \rangle \langle A \vec{p}_{i}, \vec{p}_{i}^{n} \rangle$$

$$y_{i}^{n} = \langle A \rangle \langle A \vec{p}_{i}, \vec{p}_{i}^{n} \rangle$$

$$y_{i}^{n} = \langle A \rangle \langle A \vec{p}_{i}, \vec{p}_{i}^{n} \rangle$$

$$y_{i}^{n} = \langle A \rangle \langle A \vec{p}_{i}, \vec{p}_{i}^{n} \rangle$$

$$y_{i}^{n} = \langle A \rangle \langle$$