

**PCT**

WELTORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE  
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |                                                                                                                                                     |                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>(51) Internationale Patentklassifikation<sup>6</sup>:</b><br><b>C07D 251/22, A61K 31/53, C07D 405/14,</b><br><b>409/14, 401/14, 403/14, 251/18, 403/04,</b><br><b>401/04, 417/04, 413/04, 405/04, 413/14,</b><br><b>417/14</b>                                                                                                                                                                                                                                                                                                                                                                                              |  | <b>A1</b>                                                                                                                                           | <b>(11) Internationale Veröffentlichungsnummer:</b> <b>WO 99/11633</b><br><b>(43) Internationales</b><br><b>Veröffentlichungsdatum:</b> <b>11. März 1999 (11.03.99)</b> |
| <b>(21) Internationales Aktenzeichen:</b> PCT/EP98/05101<br><b>(22) Internationales Anmeldedatum:</b> 12. August 1998 (12.08.98)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  | <b>(81) Bestimmungsstaaten:</b> CA, JP, MX, US, europäisches Patent<br>(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,<br>LU, MC, NL, PT, SE). |                                                                                                                                                                         |
| <b>(30) Prioritätsdaten:</b><br>197 35 800.4 18. August 1997 (18.08.97) DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  | <b>Veröffentlicht</b><br><i>Mit internationalem Recherchenbericht.</i><br><i>Mit geänderten Ansprüchen.</i>                                         |                                                                                                                                                                         |
| <b>(71) Anmelder</b> (für alle Bestimmungsstaaten ausser US):<br>BOEHRINGER INGELHEIM PHARMA KG [DE/DE];<br>D-55216 Ingelheim am Rhein (DE).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |                                                                                                                                                     |                                                                                                                                                                         |
| <b>(72) Erfinder; und</b><br><b>(75) Erfinder/Anmelder</b> (nur für US): KÜFNER-MÜHL, Ulrike [DE/DE]; Schlossbergstrasse 8, D-55218 Ingelheim am Rhein (DE). SCHEUPLEIN, Stefan, Wolfgang [DE/DE]; Selztalstrasse 44, D-55218 Ingelheim am Rhein (DE). POHL, Gerald [DE/DE]; Im Weiher 8, D-55435 Gau-Algesheim (DE). GAIDA, Wolfgang [DE/DE]; Selztalstrasse 77b, D-55218 Ingelheim am Rhein (DE). LEHR, Erich [DE/DE]; In der Toffel 5, D-55425 Waldalgesheim (DE). MIERAU, Joachim [DE/DE]; An den Weiden 3, D-55127 Mainz (DE). MEADE, Christopher, John, Montague [GB/DE]; Burgstrasse 104, D-55411 Bingen am Rhein (DE). |  |                                                                                                                                                     |                                                                                                                                                                         |
| <b>(54) Title:</b> TRIAZINES WITH AN ADENOSINE ANTAGONISTIC EFFECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |                                                                                                                                                     |                                                                                                                                                                         |
| <b>(54) Bezeichnung:</b> TRIAZINE MIT ADENOSINANTAGONISTISCHER WIRKUNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |                                                                                                                                                     |                                                                                                                                                                         |
| <b>(57) Abstract</b><br><br>The invention relates to novel triazine derivatives, a method for the production thereof and the use of triazines as medicaments, especially as medicaments with an adenosine antagonistic effect.                                                                                                                                                                                                                                                                                                                                                                                                 |  |                                                                                                                                                     |                                                                                                                                                                         |
| <b>(57) Zusammenfassung</b><br><br>Die Erfindung betrifft neue Triazin-Derivate, Verfahren zu ihrer Herstellung sowie die Verwendung von Triazinen als Arzneimittel, insbesondere als Arzneimittel mit adenosinantagonistischer Wirkung.                                                                                                                                                                                                                                                                                                                                                                                       |  |                                                                                                                                                     |                                                                                                                                                                         |

***LEDIGLICH ZUR INFORMATION***

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

|    |                              |    |                                   |    |                                                 |    |                                |
|----|------------------------------|----|-----------------------------------|----|-------------------------------------------------|----|--------------------------------|
| AL | Albanien                     | ES | Spanien                           | LS | Lesotho                                         | SI | Slowenien                      |
| AM | Armenien                     | FI | Finnland                          | LT | Litauen                                         | SK | Slowakei                       |
| AT | Österreich                   | FR | Frankreich                        | LU | Luxemburg                                       | SN | Senegal                        |
| AU | Australien                   | GA | Gabun                             | LV | Lettland                                        | SZ | Swasiland                      |
| AZ | Aserbaidschan                | GB | Vereinigtes Königreich            | MC | Monaco                                          | TD | Tschad                         |
| BA | Bosnien-Herzegowina          | GE | Georgien                          | MD | Republik Moldau                                 | TG | Togo                           |
| BB | Barbados                     | GH | Ghana                             | MG | Madagaskar                                      | TJ | Tadschikistan                  |
| BE | Belgien                      | GN | Guinea                            | MK | Die ehemalige jugoslawische Republik Mazedonien | TM | Turkmenistan                   |
| BF | Burkina Faso                 | GR | Griechenland                      |    |                                                 | TR | Türkei                         |
| BG | Bulgarien                    | HU | Ungarn                            | ML | Mali                                            | TT | Trinidad und Tobago            |
| BJ | Benin                        | IE | Irland                            | MN | Mongolei                                        | UA | Ukraine                        |
| BR | Brasilien                    | IL | Israel                            | MR | Mauretanien                                     | UG | Uganda                         |
| BY | Belarus                      | IS | Island                            | MW | Malawi                                          | US | Vereinigte Staaten von Amerika |
| CA | Kanada                       | IT | Italien                           | MX | Mexiko                                          |    |                                |
| CF | Zentralafrikanische Republik | JP | Japan                             | NE | Niger                                           | UZ | Usbekistan                     |
| CG | Kongo                        | KE | Kenia                             | NL | Niederlande                                     | VN | Vietnam                        |
| CH | Schweiz                      | KG | Kirgisistan                       | NO | Norwegen                                        | YU | Jugoslawien                    |
| CI | Côte d'Ivoire                | KP | Demokratische Volksrepublik Korea | NZ | Neuseeland                                      | ZW | Zimbabwe                       |
| CM | Kamerun                      | KR | Republik Korea                    | PL | Polen                                           |    |                                |
| CN | China                        | KZ | Kasachstan                        | PT | Portugal                                        |    |                                |
| CU | Kuba                         | LC | St. Lucia                         | RO | Rumänien                                        |    |                                |
| CZ | Tschechische Republik        | LI | Liechtenstein                     | RU | Russische Föderation                            |    |                                |
| DE | Deutschland                  | LK | Sri Lanka                         | SD | Sudan                                           |    |                                |
| DK | Dänemark                     | LR | Liberia                           | SE | Schweden                                        |    |                                |
| EE | Estland                      |    |                                   | SG | Singapur                                        |    |                                |

### Triazine mit adenosinantagonistischer Wirkung

Die Erfindung betrifft neue Triazin-Derivate, Verfahren zu ihrer Herstellung sowie die Verwendung von Triazinen als Arzneimittel, insbesondere als Arzneimittel mit

- 5 adenosinantagonistischer Wirkung.

Überraschenderweise wurde gefunden, daß Triazine der allgemeinen Formel (I) eine Affinität zu Adenosin-Rezeptoren aufweisen und somit eine neue Klasse von Adenosin-Antagonisten darstellen.

10

Adenosin-Antagonisten können in den Fällen eine therapeutisch nutzbare Wirkung entfalten, in denen Krankheiten oder pathologische Situationen mit einer Aktivierung von Adenosin-Rezeptoren verbunden sind.

15

Adenosin ist ein endogener Neuromodulator mit überwiegend hemmenden (inhibitorischen) Wirkungen im ZNS, im Herzen, in den Nieren und anderen Organen. Die Effekte von Adenosin werden über mindestens drei Rezeptor-Subtypen vermittelt: Adenosin A<sub>1</sub>-, A<sub>2</sub>- und A<sub>3</sub>-Rezeptoren.

20

Im ZNS entfaltet Adenosin inhibitorische Wirkungen vorwiegend über die Aktivierung von A<sub>1</sub>-Rezeptoren: praesynaptisch durch Hemmung der synaptischen Übertragung (Hemmung der Freisetzung von Neurotransmittern wie Acetylcholin, Dopamin, Noradrenalin, Serotonin, Glutamat u.a.), postsynaptisch durch Hemmung der neuronalen Aktivität.

25

A<sub>1</sub>-Antagonisten heben die inhibitorischen Wirkungen von Adenosin auf und fördern die neuronale Transmission und die neuronale Aktivität.

A<sub>1</sub> Antagonisten sind deshalb von großem Interesse für die Therapie

30 zentralnervöser degenerativer Erkrankungen wie senile Demenz vom Morbus Alzheimer Typ und altersassoziierte Störungen der Gedächtnis- und Lernleistungen.

Die Krankheit umfaßt neben der Vergeßlichkeit in der milden Form und der völligen

35 Hilflosigkeit und absoluten Pflegebedürftigkeit bei der schwersten Form eine Reihe anderer Begleitsymptome wie Schlafstörungen, Moto-Koordinationsstörungen bis zum Bild eines Morbus Parkinson, ferner eine erhöhte Affektlabilität sowie auch depressive Symptome. Die Krankheit ist progredient und kann zum Tode führen.

Die bisherige Therapie ist unbefriedigend. Spezifische Therapeutika fehlen bis jetzt vollständig. Therapieversuche mit Acetylcholinesterase-Inhibitoren zeigen nur bei einem geringen Teil der Patienten eine Wirkung, sind jedoch mit einer hohen Nebenwirkungsrate verbunden.

5

Die Pathophysiologie des M. Alzheimer und SDAT ist charakterisiert durch eine schwere Beeinträchtigung des cholinergen Systems, jedoch sind auch andere Transmittersysteme betroffen. Durch den Verlust praesynaptischer cholinriger und anderer Neurone und der daraus resultierenden mangelnden Bereitstellung von  
10 Neurotransmittern ist die neuronale Übertragung und die neuronale Aktivität in den für Lernen und Gedächtnis essentiellen Hirnarealen empfindlich vermindert.

Selektive Adenosin A<sub>1</sub>-Rezeptor Antagonisten fördern die neuronale Transmission durch vermehrte Bereitstellung von Neurotransmittern, erhöhen die Erregbarkeit  
15 postsynaptischer Neurone und können damit der Krankheit symptomatisch entgegenwirken.

Die hohe Rezeptoraffinität und -Selektivität einiger der beanspruchten Verbindungen sollte es erlauben, M. Alzheimer und SDAT mit niedrigen Dosen zu  
20 therapieren, so daß kaum mit Nebenwirkungen zu rechnen ist, die nicht auf die Blockade von A<sub>1</sub>-Rezeptoren zurückzuführen sind.

Eine weitere Indikation für zentralwirksame Adenosin-A<sub>1</sub>-Antagonisten ist die Depression. Der Therapieerfolg antidepressiver Substanzen scheint mit einer  
25 Aufregulation von A<sub>1</sub>-Rezeptoren verbunden zu sein. A<sub>1</sub>-Antagonisten können zur Aufregulierung von Adenosin-A<sub>1</sub>-Rezeptoren führen und somit einen neuen Therapieansatz zur Behandlung von depressiven Patienten bieten.

Weitere Einsatzgebiete insbesondere für A<sub>2</sub>-selektive Adenosinantagonisten sind  
30 neurodegenerative Erkrankungen wie Morbus Parkinson und darüberhinaus die Migräne. Adenosin hemmt die Freisetzung von Dopamin aus zentralen synaptischen Endigungen durch Interaktionen mit Dopamin-D<sub>2</sub>-Rezeptoren. A<sub>2</sub> Antagonisten steigern die Freisetzung und die Verfügbarkeit von Dopamin und bieten damit ein neues therapeutisches Prinzip zur Behandlung des M. Parkinson.

35

Bei der Migräne scheint eine über A<sub>2</sub>-Rezeptoren medierte Vasodilatation cerebraler Gefäße mitbeteilt zu sein. Selektive A<sub>2</sub>-Antagonisten hemmen die Vasodilatation und können somit nützlich zur Behandlung der Migräne sein.

Auch zur Therapie peripherer Indikationen können Adenosinantagonisten Verwendung finden.

- Beispielsweise kann die Aktivierung von A<sub>1</sub>-Rezeptoren in der Lunge zu einer
- 5 Bronchokonstriktion führen. Selektive Adenosin A<sub>1</sub>-Antagonisten relaxieren die tracheale glatte Muskulatur, bewirken eine Bronchodilatation und können dadurch als Antiasthmamittel nützlich sein.

- Über die Aktivierung von A<sub>2</sub>-Rezeptoren kann Adenosin unter anderem eine
- 10 respiratorische Depression und Atemstillstand hervorrufen. A<sub>2</sub>-Antagonisten bewirken eine respiratorische Stimulation. Beispielsweise werden Adenosin-Antagonisten (Theophyllin) zur Behandlung der Atemnot und zur Vorbeugung des "plötzlichen Kindstodes" bei Frühgebürtigen eingesetzt.
  - 15 Wichtige Therapiefelder für Adenosin-Antagonisten sind ferner kardiovaskuläre Erkrankungen und Nierenerkrankungen.

- Am Herzen entfaltet Adenosin über die Aktivierung von A<sub>1</sub>-Rezeptoren eine Hemmung der elektrischen und kontraktilen Aktivität. Verbunden mit einer über A<sub>2</sub>-Rezeptoren medierten koronaren Vasodilatation wirkt Adenosin negativ chronotrop,-inotrop,-dromotrop, -bathmotrop, bradykard und erniedrigt das Herzminutenvolumen.

- Adenosin A<sub>1</sub>-Rezeptor-Antagonisten vermögen durch Ischämie und nachfolgende Reperfusion bedingte Schädigungen am Herzen und an der Lunge zu verhindern. Deshalb könnten Adenosinantagonisten zur Prävention oder frühen Behandlung von Ischämie-Reperfusions bedingten Schädigungen des Herzens z.B. nach coronar Bypass-Chirurgie, Herztransplantation, Angioplastie oder thrombolytischer Therapie des Herzens und ähnlicher Eingriffe eingesetzt werden. Entsprechendes gilt für die Lunge.

- An den Nieren bewirkt die Aktivierung von A<sub>1</sub>-Rezeptoren eine Vasokonstriktion afferenter Arteriolen und dadurch bedingt einen Abfall des renalen Blutflusses und der glomerulären Filtration.
- 35 A<sub>1</sub> Antagonisten wirken an der Niere wie starke kaliumsparende Diuretika und können somit zur Nierenprotektion sowie zur Behandlung von Oedemen, Niereninsuffizienz und akutem Nierenversagen eingesetzt werden.

Aufgrund des Adenosin-Antagonismus am Herzen und der diuretischen Wirkung können A<sub>1</sub>-Antagonisten bei verschiedenen kardiovaskulären Erkrankungen therapeutisch wirksam eingesetzt werden wie z.B. bei Herzinsuffizienz, Arrhythmien (Bradyarrhythmien) assoziiert mit Hypoxie oder Ischämie, Überleitungsstörungen,

- 5    Hypertonie, Ascites bei Leberversagen (hepato-renales Syndrom) und als Analgetikum bei Durchblutungsstörungen.

A<sub>3</sub>-Antagonisten hemmen die durch A<sub>3</sub>-Rezeptor-Aktivierung bedingte Degranulation von Mastzellen und sind daher therapeutisch nützlich bei allen

- 10   Krankheiten und pathologischen Situationen, die in Zusammenhang mit Mastzellen-Degranulation stehen: z.B. als antiinflammatorische Substanzen, bei Überempfindlichkeitsreaktionen wie z.B. Asthma, allergischer Rhinitis, Urticaria, bei myocardialer reperfusion injury, Scleroderma, Arthritis, Autoimmun-Krankheiten, entzündlichen Darmkrankheiten u.a..
- 15   Die zystische Fibrose - auch als Mukoviszidose bekannt - ist eine erbliche Stoffwechselstörung, hervorgerufen durch einen genetischen Defekt eines bestimmten Chromosoms. Durch eine vermehrte Produktion und erhöhte Viskosität des Sekrets der mukösen Drüsen in den Bronchien kann es zu schweren Komplikationen im Bereich der Atemwege kommen. Erste Untersuchungen haben
- 20   gezeigt, daß A<sub>1</sub>-Antagonisten den Efflux von Chloridionen z.B. bei CF PAC Zellen erhöhen. Ausgehend von diesen Befunden kann erwartet werden, daß bei Patienten, die an zystischer Fibrose (Mukovizidose) erkrankt sind, die erfundungsgemäß Verbindungen den gestörten Elektrolythaushalt der Zellen regulieren und die Symptome der Erkrankung gemildert werden.

25

Die Erfindung betrifft die Verwendung von Triazinen der allgemeinen Formel (I)



30

als Arzneimittel, insbesondere als Arzneimittel mit adenosinantagonistischer Wirkung, worin

R<sup>1</sup>   Wasserstoff;

35

R<sup>2</sup>   Wasserstoff oder C<sub>1</sub>-C<sub>5</sub>-Alkyl, bevorzugt Wasserstoff;

- R<sup>3</sup> -COOH, -COO-C<sub>1</sub>-C<sub>4</sub>-Alkyl oder CN;
- 5 R<sup>3</sup> C<sub>3</sub>-C<sub>7</sub>-Cycloalkyl, welches gegebenenfalls substituiert sein kann durch OH, =O, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyloxy;
- 10 R<sup>3</sup> C<sub>6</sub>-C<sub>10</sub>-Aryl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Halogen, CN, NO<sub>2</sub>, CF<sub>3</sub>, CF<sub>3</sub>-SO<sub>2</sub>-O-, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyl, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino, C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;
- 15 R<sup>3</sup> ein über eine Einfachbindung oder über eine C<sub>1</sub>-C<sub>6</sub>-Alkyl-, C<sub>2</sub>-C<sub>6</sub>-Alkenyl- oder C<sub>2</sub>-C<sub>6</sub>-Alkinyl-brücke verknüpfter 5, 6 oder 7-gliedriger Heterocyclus, der ein oder mehrere Atome aus der Gruppe, Sauerstoff, Stickstoff oder Schwefel enthalten kann und gegebenenfalls durch einen oder mehrere der Reste Benzyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyl substituiert sein kann;
- 20 R<sup>3</sup> einer der bicyclischen Heterocyclen Chinolin, Isochinolin, Benzo[b]furan, Isobenzofuran, Benzothiophen, Benzoxazol, Benzothiazol, Benzimidazol, Benzodiazin oder 1,2-Methylendioxobenzol;
- 25 R<sup>4</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl, -COOH, -COO-C<sub>1</sub>-C<sub>4</sub>-Alkyl, NH<sub>2</sub> oder CN;
- 30 R<sup>4</sup> C<sub>3</sub>-C<sub>7</sub>-Cycloalkyl, welches gegebenenfalls substituiert sein kann durch OH, =O, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyloxy;
- 35 R<sup>4</sup> Cyclopentenyl oder Cyclohexenyl;
- R<sup>4</sup> C<sub>6</sub>-C<sub>10</sub>-Aryl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Halogen, CN, NO<sub>2</sub>, CF<sub>3</sub>, CF<sub>3</sub>-SO<sub>2</sub>-O-, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyl, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-,

## 6

C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino,  
 C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino,  
 C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;

- 5        R<sup>4</sup>      Phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkenyl,  
           Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkinyl, Biphenyl, 4-N-Pyrrolyl-phenyl, Naphthyl,  
           Phenoxy oder Phenylamino;
- 10      R<sup>4</sup>      ein über eine über eine Einfachbindung oder über eine C<sub>1</sub>-C<sub>6</sub>-Alkyl-,  
           C<sub>2</sub>-C<sub>6</sub>-Alkenyl- oder C<sub>2</sub>-C<sub>6</sub>-Alkinyl-Kette verknüpfter 5, 6 oder  
           7-gliedriger Heterocyclus, der ein oder mehrere Atome aus der Gruppe  
           Sauerstoff, Stickstoff oder Schwefel enthalten kann und gegebenenfalls  
           substituiert sein kann durch einen oder mehrere der Reste  
           C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl,  
           NO<sub>2</sub>, Oxazolyl, Halogen oder -S-C<sub>1</sub>-C<sub>4</sub>-Alkyl;
- 15      R<sup>4</sup>      einer der bicyclischen Heterocyclen Chinolin, Isochinolin,  
           Benzo[b]furan, Isobenzofuran, Benzothiophen, Benzoxazol,  
           Benzothiazol, Benzimidazol, Benzodiazin oder  
           1,2-Methylendioxobenzol, die gegebenenfalls substituiert sein können  
           durch einen oder mehrere der Reste C<sub>1</sub>-C<sub>4</sub>-Alkyl, NO<sub>2</sub> oder Halogen,  
           bedeuten können.

- 25      Erfindungsgemäß bevorzugt ist die Verwendung von Triazinen der allgemeinen  
           Formel (I)



- 30      als Arzneimittel, insbesondere als Arzneimittel mit adenosinantagonistischer  
           Wirkung, worin

R<sup>1</sup>      Wasserstoff;

R<sup>2</sup>      Wasserstoff oder C<sub>1</sub>-C<sub>5</sub>-Alkyl, bevorzugt Wasserstoff;

- R<sup>3</sup> C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl, welches gegebenenfalls substituiert sein kann durch OH, =O, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyloxy;
- R<sup>3</sup> Phenyl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Halogen, NO<sub>2</sub>, CF<sub>3</sub>, CF<sub>3</sub>-SO<sub>2</sub>-O-, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyl, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino, C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;
- R<sup>3</sup> ein 5, 6 oder 7-gliedriger Heterocyclus, der ein oder mehrere Atome aus der Gruppe, Sauerstoff, Stickstoff oder Schwefel enthalten kann und gegebenenfalls durch einen oder mehrere der Reste Benzyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyl substituiert sein kann;
- R<sup>4</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl, -COOH, -COO-C<sub>1</sub>-C<sub>4</sub>-Alkyl, NH<sub>2</sub> oder CN;
- R<sup>4</sup> C<sub>3</sub>-C<sub>7</sub>-Cycloalkyl, welches gegebenenfalls substituiert sein kann durch OH, =O, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyloxy;
- R<sup>4</sup> Cyclopentenyl oder Cyclohexenyl;
- R<sup>4</sup> Phenyl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Halogen, NO<sub>2</sub>, CF<sub>3</sub>, CF<sub>3</sub>-SO<sub>2</sub>-O-, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyl, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino, C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;
- R<sup>4</sup> Benzyl, Phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkenyl, Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkinyl, Biphenyl, 4-N-Pyrrolyl-phenyl, Naphthyl, Phenoxy oder Phenylamino;
- R<sup>4</sup> ein über eine über eine Einfachbindung oder über eine C<sub>1</sub>-C<sub>6</sub>-Alkyl-, C<sub>2</sub>-C<sub>6</sub>-Alkenyl- oder C<sub>2</sub>-C<sub>6</sub>-Alkinyl-Kette verknüpfter 5, 6 oder

7-gliedriger Heterocyclus, der ein oder mehrere Atome aus der Gruppe Sauerstoff, Stickstoff oder Schwefel enthalten kann und gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl, NO<sub>2</sub>, Oxazolyl, Halogen oder -S-C<sub>1</sub>-C<sub>4</sub>-Alkyl;

5

R<sup>4</sup> einer der bicyclischen Heterocyclen Chinolin, Isochinolin, Benzo[b]furan, Isobenzofuran, Benzothiophen, Benzoxazol, Benzothiazol, Benzimidazol, Benzodiazin oder 10 1,2-Methylendioxobenzol, die gegebenenfalls substituiert sein können durch einen oder mehrere der Reste C<sub>1</sub>-C<sub>4</sub>-Alkyl, NO<sub>2</sub> oder Halogen, bedeuten können.

Von besonderem Interesse ist ferner die Verwendung von Triazinen der 15 allgemeinen Formel (I)



als Arzneimittel, insbesondere als Arzneimittel mit adenosinantagonistischer Wirkung, worin

20

R<sup>1</sup> Wasserstoff;

R<sup>2</sup> Wasserstoff oder C<sub>1</sub>-C<sub>3</sub>-Alkyl, bevorzugt Wasserstoff;

25

R<sup>3</sup> C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl;

30

R<sup>3</sup> Phenyl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Halogen, NO<sub>2</sub>, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino, CF<sub>3</sub>, CF<sub>3</sub>SO<sub>2</sub>-O-, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;

- 5            R<sup>3</sup> ein 5, 6 oder 7-gliedriger Heterocyclus, der ein oder mehrere Atome aus der Gruppe, Sauerstoff, Stickstoff oder Schwefel enthalten kann und gegebenenfalls durch einen oder mehrere der Reste Benzyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyl substituiert sein kann;
- 10          R<sup>4</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl, -COOH, -COO-C<sub>1</sub>-C<sub>4</sub>-Alkyl, NH<sub>2</sub> oder CN;
- 15          R<sup>4</sup> C<sub>3</sub>-C<sub>7</sub>-Cycloalkyl, welches gegebenenfalls substituiert sein kann durch OH, =O, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyloxy;
- 20          R<sup>4</sup> Cyclopentenyl oder Cyclohexenyl;
- 25          R<sup>4</sup> Phenyl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Halogen, NO<sub>2</sub>, CF<sub>3</sub>, CF<sub>3</sub>-SO<sub>2</sub>-O-, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyl, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy, C<sub>6</sub>-C<sub>10</sub>-Arylcabonyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino, C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;
- 30          R<sup>4</sup> Benzyl, Phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkenyl, Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkinyl, Biphenyl, 4-N-Pyrrolyl-phenyl, Naphthyl, Phenoxy oder Phenylamino;
- 35          R<sup>4</sup> ein über eine über eine Einfachbindung oder über eine C<sub>1</sub>-C<sub>6</sub>-Alkyl-, C<sub>2</sub>-C<sub>6</sub>-Alkenyl- oder C<sub>2</sub>-C<sub>6</sub>-Alkinyl-Kette verknüpfter 5, 6 oder 7-gliedriger Heterocyclus, der ein oder mehrere Atome aus der Gruppe Sauerstoff, Stickstoff oder Schwefel enthalten kann und gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl, NO<sub>2</sub>, Oxazolyl, Halogen oder -S-C<sub>1</sub>-C<sub>4</sub>-Alkyl;
- 40          R<sup>4</sup> einer der bicyclischen Heterocyclen Chinolin, Isochinolin, Benzo[b]furan, Isobenzofuran, Benzothiophen, Benzoxazol, Benzothiazol, Benzimidazol, Benzodiazin oder 1,2-Methylendioxobenzol, die gegebenenfalls substituiert sein können durch einen oder mehrere der Reste C<sub>1</sub>-C<sub>4</sub>-Alkyl, NO<sub>2</sub> oder Halogen, bedeutet.

Gegenstand der Erfindung sind ferner pharmazeutische Zusammensetzungen, insbesondere pharmazeutische Zusammensetzungen mit adenosinantagonistischer Wirkung enthaltend als Wirkstoff einen oder mehrere Verbindungen der allgemeinen Formel (I), worin die Reste R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> und R<sup>4</sup> die zuvor genannte

- 5 Bedeutung aufweisen.

Die Verwendung der Verbindungen der allgemeinen Formel (I) schließt die Verwendung der gegebenenfalls vorliegenden Enantiomere oder Diastereomere in optisch reiner Form oder als Gemische mit ein. Des Weiteren können die

- 10 Verbindungen der allgemeinen Formel (I) in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit einer anorganischen oder organischen Säure, überführt werden. Als Säuren kommen hierfür beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Essigsäure, Fumarsäure, Bernsteinsäure, Milchsäure,
- 15 Methansulfonsäure, Zitronensäure, Weinsäure oder Maleinsäure in Betracht. Ferner können Mischungen der vorgenannten Säuren eingesetzt werden.

Die für die Verbindungen der Formel (I) ermittelten A<sub>1</sub>-Rezeptorbindungswerte wurden in Analogie zu Ensinger et al. in "Cloning and functional characterisation of

- 20 human A<sub>1</sub> adenosine Receptor - Biochemical and Biophysical Communications, Vol 187, No. 2, 919-926, 1992" bestimmt und sind in Tabelle 6 zusammengefaßt.

Die in Tabelle 7 zusammengefassten A<sub>3</sub>-Rezeptorbindungswerte wurden in Analogie zu Salvatore et al. "Molecular cloning and characterization of the human A<sub>3</sub>-adenosine receptor" (Proc. Natl. Acad. Sci. USA 90, 10365-10369, 1993)

- 25 ermittelt.

Aus dem Stand der Technik sind 1,3,5-Triazin-Derivate bekannt. Die Verbindungen 2-Amino-4,6-bis(4-methylphenyl)-1,3,5-triazin, 2-Amino-4,6-bis(3-methoxyphenyl)-1,3,5-triazin, 2-Amino-4,6-bis(3,4-dimethoxyphenyl)-1,3,5-triazin, 2-Amino-4,6-

- 30 bis(4-dimethylaminophenyl)-1,3,5-triazin und 2-Amino-4,6-bis(4-methoxyphenyl)-1,3,5-triazin werden beispielsweise durch die DE 1212547 beschrieben. Ein

Verfahren zur Herstellung von u.a. 2-Amino-4,6-diphenyl-1,3,5-triazin ist durch die DE 1135477 bekannt. Die BE 667044 offenbart unsymmetrisch substituierte

Triazine wie z.B. das 2-Amino-4-(2,4-dihydroxyphenyl)-6-phenyl-1,3,5-triazin, das

- 35 2-Amino-4-(2-hydroxy-4-ethoxyphenyl)-6-(4-chlorphenyl)-1,3,5-triazin, das 2-Amino-4-(2,4-dihydroxyphenyl)-6-(4-chlorphenyl)-1,3,5-triazin oder das 2-Methylamino-4-(2,4-dihydroxyphenyl)-6-(4-chlorphenyl)-1,3,5-triazin. Aus der DE 2013424 ist u.a.

das 2-Phenoxy-4-amino-6-phenyl-1,3,5-triazin bekannt. Die DE 2262188 beschreibt das 2-Amino-4,6-bis(4-pyridyl)-1,3,5-triazin. Ferner sind beispielsweise

bekannt die Amino-triazine 2-Amino-4,6-bis(2-hydroxyphenyl)-1,3,5-triazin (CH 419155) und 2-Amino-4,6-bis(2-furyl)-1,3,5-triazin (GB 1094858).

Die Erfindung betrifft ferner die neuen Triazin-Derivate der allgemeinen Formel (I)

5



worin

- $\text{R}^1$  Wasserstoff;
- $\text{R}^2$  Wasserstoff oder  $\text{C}_1\text{-}\text{C}_3$ -Alkyl, bevorzugt Wasserstoff;
- $\text{R}^3$   $\text{C}_3\text{-}\text{C}_6$ -Cycloalkyl;
- $\text{R}^3$  Phenyl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Halogen,  $\text{NO}_2$ ,  $\text{C}_1\text{-}\text{C}_4$ -Alkyl,  $\text{C}_1\text{-}\text{C}_4$ -Alkyloxy,  $\text{HO-C}_1\text{-}\text{C}_4$ -Alkyl-,  $\text{C}_1\text{-}\text{C}_4$ -Alkyloxy- $\text{C}_1\text{-}\text{C}_4$ -alkyl, Amino,  $\text{C}_1\text{-}\text{C}_4$ -Alkylamino,  $\text{C}_1\text{-}\text{C}_4$ -Dialkylamino,  $\text{C}_1\text{-}\text{C}_4$ -Alkylcarbonylamino,  $\text{CF}_3$ ,  $\text{CF}_3\text{SO}_2\text{-O}$ -,  $\text{C}_1\text{-}\text{C}_4$ -Alkylcarbonyloxy,  $\text{C}_6\text{-}\text{C}_{10}$ -Arylcarbonyloxy,  $\text{C}_1\text{-}\text{C}_4$ -Alkyloxycarbonyloxy oder  $\text{C}_6\text{-}\text{C}_{10}$ -Aryloxycarbonyloxy;
- $\text{R}^3$  ein 5, 6 oder 7-gliedriger Heterocyclus, der ein oder mehrere Atome aus der Gruppe, Sauerstoff, Stickstoff oder Schwefel enthalten kann und gegebenenfalls durch einen oder mehrere der Reste Benzyl oder  $\text{C}_1\text{-}\text{C}_4$ -Alkyl substituiert sein kann;
- $\text{R}^4$   $\text{C}_3\text{-}\text{C}_7$ -Cycloalkyl, welches gegebenenfalls substituiert sein kann durch OH, =O,  $\text{C}_1\text{-}\text{C}_4$ -Alkyl oder  $\text{C}_1\text{-}\text{C}_4$ -Alkyloxy;
- $\text{R}^4$  Cyclopentenyl oder Cyclohexenyl;
- $\text{R}^4$  Phenyl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Halogen,  $\text{NO}_2$ ,  $\text{CF}_3$ ,  $\text{CF}_3\text{-SO}_2\text{-O}$ -,  $\text{C}_1\text{-}\text{C}_4$ -Alkyl,  $\text{C}_1\text{-}\text{C}_4$ -Alkyloxy,  $\text{C}_1\text{-}\text{C}_4$ -Alkylcarbonyl,  $\text{C}_6\text{-}\text{C}_{10}$ -Arylcarbonyl,  $\text{C}_1\text{-}\text{C}_4$ -Alkylcarbonyloxy,

## 12

C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-,  
 C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino,  
 C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino,  
 C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;

5

R<sup>4</sup> Benzyl, Phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkenyl,  
 Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkinyl, Biphenyl, 4-N-Pyrrolyl-phenyl, Naphthyl,  
 Phenoxy oder Phenylamino;

10

R<sup>4</sup> ein über eine Einfachbindung oder über eine C<sub>1</sub>-C<sub>6</sub>-Alkyl-, C<sub>2</sub>-C<sub>6</sub>-Alkenyl- oder C<sub>2</sub>-C<sub>6</sub>-Alkinyl-Kette verknüpfter 5, 6 oder 7-gliedriger Heterocyclus, der ein oder mehrere Atome aus der Gruppe Sauerstoff, Stickstoff oder Schwefel enthalten kann und gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste Benzyl, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl, NO<sub>2</sub>, Oxazolyl, Halogen oder -S-C<sub>1</sub>-C<sub>4</sub>-Alkyl;

15

R<sup>4</sup> einer der bicyclischen Heterocyclen Chinolin, Isochinolin, Benzo[b]furan, Isobenzofuran, Benzothiophen, Benzoxazol, Benzothiazol, Benzimidazol, Benzodiazin oder 1,2-Methylendioxobenzol, die gegebenenfalls substituiert sein können durch einen oder mehrere der Reste C<sub>1</sub>-C<sub>4</sub>-Alkyl, NO<sub>2</sub> oder Halogen, bedeutet,

25

mit der Maßgabe, daß,

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> Phenyl bedeutet,

R<sup>4</sup> nicht Phenyl, Phenylamino, Phenoxy, 2-Hydroxyphenyl, 2,4-Dihydroxyphenyl, 4-Methylphenyl, 4-Nitrophenyl, Benzyl, 3-Pyridyl, 4-Pyridyl, 2-Furyl, 5-Nitro-2-furyl, 5-Brom-2-furyl oder 5-Methyl-2-furyl sein kann;

30

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Hydroxyphenyl bedeutet,

R<sup>4</sup> nicht Phenyl, 2-Methoxyphenyl, 2-Hydroxyphenyl, 4-Hydroxyphenyl oder Phenyl-CH=CH- sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Hydroxyphenyl bedeutet,

R<sup>4</sup> nicht 2-Hydroxyphenyl sein kann;

35

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2,4-Dihydroxyphenyl bedeutet,

R<sup>4</sup> nicht Phenyl, 2,4-Dihydroxyphenyl oder 4-Chlorphenyl sein kann;

## 13

- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Methoxyphenyl bedeutet,  
R<sup>4</sup> nicht 2-Hydroxyphenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Methylphenyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 4-Methylphenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Chlorphenyl bedeutet,  
R<sup>4</sup> nicht 4-Chlorphenyl, 2,4-Dihydroxyphenyl oder 2-Hydroxy-4-ethoxyphenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Nitrophenyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 3-Nitrophenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 3-Nitrophenyl bedeutet,  
R<sup>4</sup> nicht 4-Nitrophenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Hydroxy-4-ethoxyphenyl bedeutet,  
R<sup>4</sup> nicht 4-Chlorphenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 3-Pyridyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 2-Furyl, 3-Pyridyl oder 4-Pyridyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Pyridyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 3-Pyridyl oder 4-Pyridyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Furyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 2-Furyl oder 3-Pyridyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 5-Methyl-2-furyl bedeutet,  
R<sup>4</sup> nicht Phenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff bedeutet,  
R<sup>3</sup> und R<sup>4</sup> nicht gleichzeitig 3-Methoxyphenyl, 4-Methoxyphenyl, 3,4-Dimethoxyphenyl, 4-Diethylaminophenyl, 2-Pyridyl, 4-Ethyl-2-pyridyl, 2-Chlorphenyl, 2,4-Dichlorphenyl, 5-Methyl-2-furyl oder 3,4,5-Trimethoxyphenyl sein können,
- wenn R<sup>2</sup> Methyl und R<sup>3</sup> Phenyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 2-Hydroxyphenyl sein kann;
- wenn R<sup>2</sup> Methyl und R<sup>3</sup> 2-Hydroxyphenyl bedeutet,  
R<sup>4</sup> nicht Phenyl, Phenyl-CH=CH- oder 2-Hydroxyphenyl sein kann;
- wenn R<sup>2</sup> Methyl und R<sup>3</sup> 2,4-Dihydroxyphenyl bedeutet,  
R<sup>4</sup> nicht 4-Chlorphenyl sein kann;
- wenn R<sup>2</sup> Methyl und R<sup>3</sup> 4-Chlorphenyl bedeutet,  
R<sup>4</sup> nicht 2,4-Dihydroxyphenyl sein kann;
- wenn R<sup>2</sup> Ethyl und R<sup>3</sup> Phenyl bedeutet,  
R<sup>4</sup> nicht 2-Hydroxy-4-methoxyphenyl sein kann;

## 14

wenn R<sup>2</sup> Ethyl und R<sup>3</sup> 2-Hydroxy-4-methoxyphenyl bedeutet,

R<sup>4</sup> nicht Phenyl sein kann;

wenn R<sup>2</sup> Ethyl und R<sup>3</sup> 2-Hydroxy-4,6-dimethylphenyl bedeutet,

R<sup>4</sup> nicht 2-Hydroxy-5-chlorphenyl sein kann;

5 wenn R<sup>2</sup> Ethyl und R<sup>3</sup> 2-Hydroxy-5-chlorphenyl bedeutet,

R<sup>4</sup> nicht 2-Hydroxy-4,6-dimethylphenyl sein kann;

gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer  
10 Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer  
pharmakologisch unbedenklichen Säureadditionssalze.

Bevorzugt sind Verbindungen der allgemeinen Formel (I)



15

worin

R<sup>1</sup> Wasserstoff;

20

R<sup>2</sup> Wasserstoff oder C<sub>1</sub>-C<sub>3</sub>-Alkyl, bevorzugt Wasserstoff;

R<sup>3</sup> C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl;

25

R<sup>3</sup> Phenyl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Halogen, NO<sub>2</sub>, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino, CF<sub>3</sub>, CF<sub>3</sub>SO<sub>2</sub>-O-, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;

30

R<sup>3</sup> Furyl, Thienyl, Pyridyl oder Pyrrolyl, welches gegebenenfalls ein- oder mehrfach durch C<sub>1</sub>-C<sub>4</sub>-Alkyl substituiert sein kann;

35

R<sup>4</sup> C<sub>3</sub>-C<sub>7</sub>-Cycloalkyl, welches gegebenenfalls substituiert sein kann durch OH, =O, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyloxy;

- R<sup>4</sup> Cyclopentenyl oder Cyclohexenyl;
- 5 R<sup>4</sup> Phenyl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Halogen, NO<sub>2</sub>, CF<sub>3</sub>, CF<sub>3</sub>-SO<sub>2</sub>-O-, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyl, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino, C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;
- 10 R<sup>4</sup> Benzyl, Phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkenyl, Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkinyl, Biphenyl, 4-N-Pyrrolyl-phenyl, Naphthyl, Phenoxy oder Phenylamino;
- 15 R<sup>4</sup> Pyrimidinyl, Pyridyl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder -S-C<sub>1</sub>-C<sub>4</sub>-Alkyl;
- 20 R<sup>4</sup> Pyridyl-C<sub>1</sub>-C<sub>4</sub>-alkyl oder Pyridyl-C<sub>2</sub>-C<sub>4</sub>-alkenyl;
- 25 R<sup>4</sup> Furyl, welches gegebenenfalls durch einen oder mehrere der Reste C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl, NO<sub>2</sub> oder Halogen substituiert sein kann;
- R<sup>4</sup> Tetrahydropyranyl oder Tetrahydrofuranyl;
- 30 R<sup>4</sup> Thienyl, welches gegebenenfalls durch einen oder mehrere der Reste C<sub>1</sub>-C<sub>4</sub>-Alkyl, Halogen, Oxazolyl oder NO<sub>2</sub> substituiert sein kann;
- 35 R<sup>4</sup> Dithiolanyl, Thiolanyl, Pyrrolyl, Imidazolyl, Pyrazolyl, Thiazolyl, Thiadiazolyl, Oxazolyl, Chinolinyl, Benzo[b]furanyl, 3,4-Methylendioxophenyl oder 2,3-Methylendioxophenyl, die gegebenenfalls substituiert sein können durch einen oder mehrere der Reste C<sub>1</sub>-C<sub>4</sub>-Alkyl, bevorzugt Methyl, NO<sub>2</sub> oder Halogen, bedeutet,

mit der Maßgabe, daß,

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> Phenyl bedeutet,

R<sup>4</sup> nicht Phenyl, Phenylamino, Phenoxy, 2-Hydroxyphenyl,  
2,4-Dihydroxyphenyl, 4-Methylphenyl, 4-Nitrophenyl, Benzyl,  
5  
3-Pyridyl, 4-Pyridyl, 2-Furyl, 5-Nitro-2-furyl, 5-Brom-2-furyl oder  
5-Methyl-2-furyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Hydroxyphenyl bedeutet,

R<sup>4</sup> nicht Phenyl, 2-Methoxyphenyl, 2-Hydroxyphenyl,  
4-Hydroxyphenyl oder Phenyl-CH=CH- sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Hydroxyphenyl bedeutet,

R<sup>4</sup> nicht 2-Hydroxyphenyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2,4-Dihydroxyphenyl bedeutet,

R<sup>4</sup> nicht Phenyl, 2,4-Dihydroxyphenyl oder 4-Chlorphenyl sein  
kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Methoxyphenyl bedeutet,

R<sup>4</sup> nicht 2-Hydroxyphenyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Methylphenyl bedeutet,

R<sup>4</sup> nicht Phenyl oder 4-Methylphenyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Chlorphenyl bedeutet,

R<sup>4</sup> nicht 4-Chlorphenyl, 2,4-Dihydroxyphenyl oder 2-Hydroxy-4-  
ethoxyphenyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Nitrophenyl bedeutet,

R<sup>4</sup> nicht Phenyl oder 3-Nitrophenyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 3-Nitrophenyl bedeutet,

R<sup>4</sup> nicht 4-Nitrophenyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Hydroxy-4-ethoxyphenyl bedeutet,

R<sup>4</sup> nicht 4-Chlorphenyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 3-Pyridyl bedeutet,

R<sup>4</sup> nicht Phenyl, 2-Furyl, 3-Pyridyl oder 4-Pyridyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Pyridyl bedeutet,

R<sup>4</sup> nicht Phenyl, 3-Pyridyl oder 4-Pyridyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Furyl bedeutet,

R<sup>4</sup> nicht Phenyl, 2-Furyl oder 3-Pyridyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 5-Methyl-2-furyl bedeutet,

R<sup>4</sup> nicht Phenyl sein kann;

wenn R<sup>2</sup> Wasserstoff bedeutet,  
R<sup>3</sup> und R<sup>4</sup> nicht gleichzeitig 3-Methoxyphenyl, 4-Methoxyphenyl,  
3,4-Dimethoxyphenyl, 4-Diethylaminophenyl, 2-Pyridyl, 4-Ethyl-2-pyridyl, 2-Chlorphenyl, 2,4-Dichlorphenyl, 5-Methyl-2-furyl oder 3,4,5-Trimethoxyphenyl sein können,

5

wenn R<sup>2</sup> Methyl und R<sup>3</sup> Phenyl bedeutet,

R<sup>4</sup> nicht Phenyl oder 2-Hydroxyphenyl sein kann;

wenn R<sup>2</sup> Methyl und R<sup>3</sup> 2-Hydroxyphenyl bedeutet,

10 R<sup>4</sup> nicht Phenyl, Phenyl-CH=CH- oder 2-Hydroxyphenyl sein kann;

wenn R<sup>2</sup> Methyl und R<sup>3</sup> 2,4-Dihydroxyphenyl bedeutet,

R<sup>4</sup> nicht 4-Chlorphenyl sein kann;

wenn R<sup>2</sup> Methyl und R<sup>3</sup> 4-Chlorphenyl bedeutet,

R<sup>4</sup> nicht 2,4-Dihydroxyphenyl sein kann;

15

wenn R<sup>2</sup> Ethyl und R<sup>3</sup> Phenyl bedeutet,

R<sup>4</sup> nicht 2-Hydroxy-4-methoxyphenyl sein kann;

wenn R<sup>2</sup> Ethyl und R<sup>3</sup> 2-Hydroxy-4-methoxyphenyl bedeutet,

R<sup>4</sup> nicht Phenyl sein kann;

20

wenn R<sup>2</sup> Ethyl und R<sup>3</sup> 2-Hydroxy-4,6-dimethylphenyl bedeutet,

R<sup>4</sup> nicht 2-Hydroxy-5-chlorphenyl sein kann;

wenn R<sup>2</sup> Ethyl und R<sup>3</sup> 2-Hydroxy-5-chlorphenyl bedeutet,

R<sup>4</sup> nicht 2-Hydroxy-4,6-dimethylphenyl sein kann;

25

gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer pharmakologisch unbedenklichen Säureadditionssalze.

Von besonderem Interesse sind Verbindungen der allgemeinen Formel (I)



5        worin

R<sup>1</sup>    Wasserstoff;

R<sup>2</sup>    Wasserstoff, Methyl oder Ethyl, bevorzugt Wasserstoff;

10      R<sup>3</sup>    Cyclopropyl, Cyclopentyl oder Cyclohexyl;

15      R<sup>3</sup>    Phenyl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Chlor, Fluor, NO<sub>2</sub>, Methyl, Methoxy, Hydroxymethyl, Methoxymethyl, Amino, Methylamino, Ethylamino, N-Acetylamino, Dimethylamino, CF<sub>3</sub>, CF<sub>3</sub>SO<sub>2</sub>-O-, Acetoxy, Ethylcarbonyloxy, Phenylcarbonyloxy oder Phenyloxycarbonyloxy;

20      R<sup>3</sup>    Furyl, Thienyl, Pyridyl oder Pyrrolyl, die jeweils ein-, zwei- oder dreifach durch Methyl substituiert sein können;

R<sup>4</sup>    gegebenenfalls ein- oder mehrfach durch OH, =O, Methyl oder Methoxy substituiertes Cyclopropyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl;

25      R<sup>4</sup>    Cyclopentenyl oder Cyclohexenyl;

30      R<sup>4</sup>    Phenyl, welches gegebenenfalls durch einen oder mehrere der Reste OH, Fluor, Chlor, Brom, NO<sub>2</sub>, CF<sub>3</sub>, CF<sub>3</sub>-SO<sub>2</sub>-O-, Methyl, Ethyl, Propyl, Butyl, Methoxy, Acetyl, Phenylcarbonyl, Acetoxy, Ethylcarbonyloxy, Phenylcarbonyloxy, Hydroxymethyl, Hydroxyethyl, Methoxymethyl, Amino, Methylamino, Ethylamino, Dimethylamino, N-Acetylamino, Methoxycarbonyloxy, Ethoxycarbonyloxy oder Phenyloxycarbonyloxy substituiert sein kann;

- R<sup>4</sup> Benzyl, Phenylethyl, Phenylethenyl, Phenylethinyl, Biphenyl,  
4-N-Pyrrolyl-phenyl, Naphthyl, Phenoxy oder Phenylamino;
- 5 R<sup>4</sup> gegebenenfalls durch Methyl substituiertes Pyrimidinyl, Pyridyl,  
welches gegebenenfalls ein- oder mehrfach substituiert sein kann  
durch Fluor, Chlor, Brom, Methyl oder -S-Methyl;
- 10 R<sup>4</sup> Pyridylmethyl oder Pyridylethenyl;
- 15 R<sup>4</sup> Furyl, welches gegebenenfalls ein- oder mehrfach substituiert sein  
kann durch Methyl, Ethyl, Propyl, Butyl, Methoxy, Methoxymethyl,  
Phenyl, NO<sub>2</sub>, Fluor, Chlor oder Brom;
- 20 R<sup>4</sup> Tetrahydropyranyl oder Tetrahydrofuranyl;
- 25 R<sup>4</sup> Thienyl, welches gegebenenfalls ein- oder mehrfach substituiert sein  
kann durch Methyl, Fluor, Chlor, Brom, Oxazolyl oder NO<sub>2</sub>;
- 30 R<sup>4</sup> Dithiolanyl, Thiolanyl, Pyrrolyl, Imidazolyl, Pyrazolyl, Thiazolyl,  
Thiadiazolyl, Oxazolyl, Chinolinyl, Benzo[b]furanyl, 3,4-  
Methylendioxophenyl oder 2,3-Methylendioxophenyl, die  
gegebenenfalls ein- oder mehrfach substituiert sein können durch  
Methyl, Ethyl, Propyl, NO<sub>2</sub>, Fluor, Chlor oder Brom, bedeutet,
- 35 mit der Maßgabe, daß,  
wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> Phenyl bedeutet,  
R<sup>4</sup> nicht Phenyl, Phenylamino, Phenoxy, 2-Hydroxyphenyl,  
2,4-Dihydroxyphenyl, 4-Methylphenyl, 4-Nitrophenyl, Benzyl,  
3-Pyridyl, 4-Pyridyl, 2-Furyl, 5-Nitro-2-furyl, 5-Brom-2-furyl oder  
5-Methyl-2-furyl sein kann;  
wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Hydroxyphenyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 2-Methoxyphenyl, 2-Hydroxyphenyl,  
4-Hydroxyphenyl oder Phenyl-CH=CH- sein kann;  
wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Hydroxyphenyl bedeutet,  
R<sup>4</sup> nicht 2-Hydroxyphenyl sein kann;  
wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2,4-Dihydroxyphenyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 2,4-Dihydroxyphenyl oder 4-Chlorphenyl sein  
kann;

20

- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Methoxyphenyl bedeutet,  
R<sup>4</sup> nicht 2-Hydroxyphenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Methylphenyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 4-Methylphenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Chlorphenyl bedeutet,  
R<sup>4</sup> nicht 4-Chlorphenyl, 2,4-Dihydroxyphenyl oder  
2-Hydroxy-4-ethoxyphenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Nitrophenyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 3-Nitrophenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 3-Nitrophenyl bedeutet,  
R<sup>4</sup> nicht 4-Nitrophenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Hydroxy-4-ethoxyphenyl bedeutet,  
R<sup>4</sup> nicht 4-Chlorphenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 3-Pyridyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 2-Furyl, 3-Pyridyl oder 4-Pyridyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Pyridyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 3-Pyridyl oder 4-Pyridyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Furyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 2-Furyl oder 3-Pyridyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 5-Methyl-2-furyl bedeutet,  
R<sup>4</sup> nicht Phenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff bedeutet,  
R<sup>3</sup> und R<sup>4</sup> nicht gleichzeitig 3-Methoxyphenyl, 4-Methoxyphenyl,  
3,4-Dimethoxyphenyl, 4-Diethylaminophenyl, 2-Pyridyl,  
4-Ethyl-2-pyridyl, 2-Chlorphenyl, 2,4-Dichlorphenyl, 5-Methyl-2-furyl  
oder 3,4,5-Trimethoxyphenyl sein können,
- wenn R<sup>2</sup> Methyl und R<sup>3</sup> Phenyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 2-Hydroxyphenyl sein kann;
- wenn R<sup>2</sup> Methyl und R<sup>3</sup> 2-Hydroxyphenyl bedeutet,  
R<sup>4</sup> nicht Phenyl, Phenyl-CH=CH- oder 2-Hydroxyphenyl sein kann;
- wenn R<sup>2</sup> Methyl und R<sup>3</sup> 2,4-Dihydroxyphenyl bedeutet,  
R<sup>4</sup> nicht 4-Chlorphenyl sein kann;
- wenn R<sup>2</sup> Methyl und R<sup>3</sup> 4-Chlorphenyl bedeutet,  
R<sup>4</sup> nicht 2,4-Dihydroxyphenyl sein kann;
- wenn R<sup>2</sup> Ethyl und R<sup>3</sup> Phenyl bedeutet,  
R<sup>4</sup> nicht 2-Hydroxy-4-methoxyphenyl sein kann;

21

wenn R<sup>2</sup> Ethyl und R<sup>3</sup> 2-Hydroxy-4-methoxyphenyl bedeutet,

R<sup>4</sup> nicht Phenyl sein kann;

wenn R<sup>2</sup> Ethyl und R<sup>3</sup> 2-Hydroxy-4,6-dimethylphenyl bedeutet,

R<sup>4</sup> nicht 2-Hydroxy-5-chlorphenyl sein kann;

5 wenn R<sup>2</sup> Ethyl und R<sup>3</sup> 2-Hydroxy-5-chlorphenyl bedeutet,

R<sup>4</sup> nicht 2-Hydroxy-4,6-dimethylphenyl sein kann;

gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer  
10 Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer  
pharmakologisch unbedenklichen Säureadditionssalze.

Besonders bevorzugt sind Verbindungen der allgemeinen Formel (I)



15

worin

R<sup>1</sup> Wasserstoff;

20

R<sup>2</sup> Wasserstoff oder Ethyl, bevorzugt Wasserstoff;

25

R<sup>3</sup> Cyclohexyl, Phenyl, Hydroxyphenyl, 3,5-Dihydroxyphenyl,

Methoxyphenyl, 3,5-Dimethoxyphenyl, 3-Methylphenyl,

4-Methylphenyl, 3-Chlorphenyl, 4-Chlorphenyl, 3-Aminophenyl,

4-Aminophenyl, 3-Acetylaminophenyl, 4-Acetylaminophenyl,

3-Methylaminophenyl, 4-Methylaminophenyl, 3-Ethylaminophenyl,

4-Ethylaminophenyl, 3-Nitrophenyl, 4-Nitrophenyl,

3-Amino-4-methylphenyl, 4-Amino-3-methylphenyl,

3-Chlor-4-methylphenyl, 4-Chlor-3-methylphenyl,

3-Nitro-4-methylphenyl, 4-Nitro-3-methylphenyl,

3-Acetylamino-4-methylphenyl, 4-Acetylamino-3-methylphenyl,

3,5-Difluorphenyl, 3-Acetoxyphenyl, 3-Ethylcarbonyloxyphenyl,

3-Phenylcarbonyloxyphenyl, 3-Phenoxy carbonyloxyphenyl,

3-Trifluormethansulfonyloxyphenyl, 3-Methoxymethylphenyl, 2-Furyl,

30

2-Thienyl, Pyridyl oder 1,5-Dimethyl-2-pyrrolyl;

35

- R<sup>4</sup> Cylopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Hydroxycyclohexyl,  
Methoxycyclohexyl, Cyclopentenyl oder Cyclohexenyl;
- 5 R<sup>4</sup> Phenyl, Hydroxyphenyl, Methoxyphenyl, 2,3-Dihydroxyphenyl,  
3,5-Dihydroxyphenyl, 3,5-Dimethoxyphenyl, 2,3-Dimethoxyphenyl,  
3-Acetylphenyl, 3-Acetoxyphenyl, 3-(1'-Hydroxyethyl)phenyl,  
3-Methylaminophenyl, 4-Methylaminophenyl, 3-Ethylaminophenyl,  
4-Ethylaminophenyl, 3-Ethylcarbonyloxyphenyl,  
10 3-Phenylcarbonyloxyphenyl, 3-Phenoxy carbonyloxyphenyl,  
3-Trifluormethansulfonyloxyphenyl, Chlorphenyl, 3,4-Dichlorphenyl,  
Methylphenyl, Ethylphenyl, Propylphenyl, 4-t-Butylphenyl,  
3,4-Dimethylphenyl, 3,5-Dimethylphenyl, 3-Hydroxymethylphenyl,  
Aminophenyl, 3-Amino-4-methylphenyl, 4-Amino-3-methylphenyl,  
15 Acetylaminophenyl, 3-Acetylamino-4-methylphenyl,  
4-Acetylamino-3-methylphenyl, Nitrophenyl, 4-Nitro-3-methylphenyl, 3-  
Nitro-4-methylphenyl, 3-Chlor-4-methylphenyl,  
4-Chlor-3-methylphenyl, Fluorophenyl, 3,4-Difluorophenyl,  
Trifluormethylphenyl, 3-Methoxymethylphenyl, Benzyl, 2-Phenylethyl,  
20 Phenyl-CH=CH-, Phenyl-C≡C-, Biphenyl, 4-N-Pyrrolyl-phenyl,  
Naphthyl, Phenoxy, 3,4-Methylendioxophenyl,  
2,3-Methylendioxophenyl oder Phenylamino;
- R<sup>4</sup> gegebenenfalls durch Methyl substituiertes Pyrimidinyl, Pyridyl,  
25 Pyridylmethyl, Pyridyl-CH=CH-, 6-Chlor-3-pyridyl, 6-Methyl-3-pyridyl,  
2-Methyl-3-pyridyl, 2-Thiomethyl-pyridin-3-yl, 2-Benzo[b]furanyl, Furyl,  
5-Methyl-2-furyl, 5-Methyl-3-furyl, 2-Methyl-3-furyl, 3-Methoxymethyl-2-  
furyl, 3-Methyl-2-furyl, 2,5-Dimethyl-3-furyl, 4,5-Dimethyl-2-furyl,  
5-t-Butyl-2-methyl-3-furyl, 5-Nitro-2-furyl, 2-Methyl-5-phenyl-3-furyl,  
30 Tetrahydropyran-4-yl, Tetrahydrofuran-2-yl, Thienyl, 5-Methyl-2-thienyl,  
3-Methyl-2-thienyl, 2-Methyl-3-thienyl, 5-Chlor-3-thienyl,  
2,5-Dichlor-3-thienyl, 5-Nitro-3-thienyl, 5-Nitro-2-thienyl,  
1,3-Dithiolan-2-yl, 5-(1,2-Oxazol-3-yl)-3-thienyl, Thiolan-2-yl,  
1,5-Dimethyl-2-pyrrolyl, 1-Methyl-imidazol-2-yl, 1-Methyl-pyrazol-4-yl,  
35 1,5-Dimethyl-pyrazol-3-yl, 4,5-Dichlor-(1,2-thiazol)-3-yl,  
2,4-Dimethyl-(1,3-thiazol)-5-yl, 4-Methyl-(1-thia-2,3-diazol)-5-yl,  
1,2-Oxazol-5-yl, Chinolin-2-yl oder Chinolin-3-yl, bedeutet,

mit der Maßgabe, daß,

- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> Phenyl bedeutet,  
R<sup>4</sup> nicht Phenyl, Phenylamino, Phenoxy, 2-Hydroxyphenyl,  
4-Methylphenyl, 4-Nitrophenyl, Benzyl, 3-Pyridyl, 4-Pyridyl,  
2-Furyl, 5-Nitro-2-furyl oder 5-Methyl-2-furyl sein kann;
- 5 wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Hydroxyphenyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 2-Methoxyphenyl, 2-Hydroxyphenyl, 4-Hydroxyphenyl oder Phenyl-CH=CH- sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Hydroxyphenyl bedeutet,  
R<sup>4</sup> nicht 2-Hydroxyphenyl sein kann;
- 10 wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Methylphenyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 4-Methylphenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Methoxyphenyl bedeutet,  
R<sup>4</sup> nicht 2-Hydroxyphenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Nitrophenyl bedeutet,  
15 R<sup>4</sup> nicht Phenyl oder 3-Nitrophenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 3-Nitrophenyl bedeutet,  
R<sup>4</sup> nicht 4-Nitrophenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 3-Pyridyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 2-Furyl, 3-Pyridyl oder 4-Pyridyl sein kann;
- 20 wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Pyridyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 3-Pyridyl oder 4-Pyridyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Furyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 2-Furyl oder 3-Pyridyl sein kann;
- 25 wenn R<sup>2</sup> Wasserstoff bedeutet,  
R<sup>3</sup> und R<sup>4</sup> nicht gleichzeitig 3-Methoxyphenyl, 4-Methoxyphenyl, 4-Chlorphenyl oder 2-Pyridyl sein können,
- gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer  
30 Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer pharmakologisch unbedenklichen Säureadditionssalze.

## 24

Von besonderem Interesse sind ferner Verbindungen der allgemeinen Formel (I)



5        worin

R<sup>1</sup>    Wasserstoff;

R<sup>2</sup>    Wasserstoff oder Ethyl, bevorzugt Wasserstoff;

- 10      R<sup>3</sup>    Phenyl, 3-Hydroxyphenyl, 3,5-Dihydroxyphenyl, 3-Methylaminophenyl,  
 3-Chlorphenyl, 4-Chlorphenyl, 3-Methylphenyl, 4-Methylphenyl,  
 3-Aminophenyl, 4-Aminophenyl, 3-Acetylaminophenyl,  
 4-Acetylaminophenyl, 3-Methylaminophenyl, 4-Methylaminophenyl,  
 3-Ethylaminophenyl, 4-Ethylaminophenyl, 3-Nitrophenyl, 4-Nitrophenyl,  
 15     R<sup>4</sup>    3-Amino-4-methylphenyl, 4-Amino-3-methylphenyl,  
 3-Chlor-4-methylphenyl, 4-Chlor-3-methylphenyl,  
 3-Nitro-4-methylphenyl, 4-Nitro-3-methylphenyl,  
 3-Acetylamino-4-methylphenyl, 4-Acetylamino-3-methylphenyl,  
 20     R<sup>4</sup>    3,4-Difluorphenyl, 3-Pyridyl, 2-Thienyl oder 1,5-Dimethyl-2-pyrrolyl;  
  
 R<sup>4</sup>    Phenyl, 2-Hydroxyphenyl, 3-Hydroxyphenyl, 2,3-Dihydroxyphenyl,  
 3,5-Dihydroxyphenyl, 3-Acetoxyphenyl, 3-(1'-Hydroxyethyl)phenyl,  
 3-Chlorphenyl, 4-Chlorphenyl, 3-Methylphenyl, 4-Methylphenyl,  
 3-Hydroxymethylphenyl, 3-Acetylphenyl, 3-Aminophenyl,  
 4-Aminophenyl, 3-Methylaminophenyl, 4-Methylaminophenyl,  
 25     R<sup>4</sup>    3-Ethylaminophenyl, 4-Ethylaminophenyl, 3-Amino-4-methylphenyl,  
 4-Amino-3-methylphenyl, 3-Acetylaminophenyl, 4-Acetylaminophenyl,  
 3-Acetylamino-4-methylphenyl, 4-Acetylamino-3-methylphenyl,  
 3-Nitrophenyl, 4-Nitrophenyl, 3-Nitro-4-methylphenyl,  
 30     R<sup>4</sup>    4-Nitro-3-methylphenyl, 3-Chlor-4-methylphenyl,  
 4-Chlor-3-methylphenyl, 2-Fluorphenyl, 3-Fluorphenyl,  
 3,4-Difluorphenyl, 3-Methoxymethylphenyl, 3,4-Methylendioxophenyl  
 oder 2,3-Methylendioxophenyl;

25

- R<sup>4</sup> 1,3-Pyrimidin-2-yl, 1,3-Pyrimidin-5-yl,  
6-Chlor-3-pyridyl, 6-Methyl-3-pyridyl, 2-Methyl-3-pyridyl,  
2-Benzo[b]furanyl, Furyl, 5-Methyl-2-furyl, 5-Methyl-3-furyl,  
2-Methyl-3-furyl, 3-Methyl-2-furyl, 2,5-Dimethyl-3-furyl,  
4,5-Dimethyl-2-furyl, 5-t-Butyl-2-methyl-3-furyl, 5-Nitro-2-furyl,  
Tetrahydropyran-4-yl, Tetrahydrofuran-2-yl, Thienyl, 5-Methyl-2-thienyl,  
3-Methyl-2-thienyl, 2-Methyl-3-thienyl, 5-Chlor-3-thienyl,  
2,5-Dichlor-3-thienyl, 5-Nitro-3-thienyl, 5-Nitro-2-thienyl,  
5-(1,2-Oxazol-3-yl)-3-thienyl, 1,3-Dithiolan-2-yl, 1,5-Dimethyl-2-pyrrolyl,  
1-Methyl-imidazol-2-yl, 1-Methyl-pyrazol-4-yl,  
1,5-Dimethyl-pyrazol-3-yl, 4,5-Dichlor-(1,2-thiazol)-3-yl,  
2,4-Dimethyl-(1,3-thiazol)-5-yl, 4-Methyl-(1-thia-2,3-diazol)-5-yl,  
1,2-Oxazol-5-yl, 4,5-Dichlor-1,2-thiazol-3-yl, Chinolin-2-yl oder  
Chinolin-3-yl, bedeutet,
- 15 mit der Maßgabe, daß,  
wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> Phenyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 2-Hydroxyphenyl, 4-Methylphenyl, 4-Nitrophenyl, 2-Furyl, 5-Nitro-2-furyl oder 5-Methyl-2-furyl sein kann;  
20 wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Methylphenyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 4-Methylphenyl sein kann;  
wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Nitrophenyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 3-Nitrophenyl sein kann;  
25 wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 3-Nitrophenyl bedeutet,  
R<sup>4</sup> nicht 4-Nitrophenyl sein kann;  
wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 3-Pyridyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 2-Furyl sein kann;
- 30 wenn R<sup>2</sup> Wasserstoff bedeutet,  
R<sup>3</sup> und R<sup>4</sup> nicht gleichzeitig 4-Chlorphenyl sein können;

gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer pharmakologisch unbedenklichen Säureadditionssalze.

Ferner sind besonders bevorzugt Verbindungen der allgemeinen Formel (I)



5        worin

R<sup>1</sup>    Wasserstoff;

R<sup>2</sup>    Wasserstoff;

10      R<sup>3</sup>    Phenyl, 3-Hydroxyphenyl, 3-Methylaminophenyl, 3,5-Dihydroxyphenyl,  
2-Thienyl oder 3-Pyridyl;

15      R<sup>4</sup>    Phenyl, 3-Hydroxyphenyl, 2,3-Dihydroxyphenyl, 3,5-Dihydroxyphenyl,  
3-Acetoxyphenyl, 3-(1'-Hydroxyethyl)phenyl, 3-Methylaminophenyl,  
3-Chlorphenyl, 4-Chlorphenyl, 3-Methylphenyl, 4-Methylphenyl,  
3-Hydroxymethylphenyl, 3-Aminophenyl, 4-Aminophenyl,  
3-Amino-4-methylphenyl, 3-Acetylaminophenyl,  
3-Acetylamino-4-methylphenyl, 3-Nitrophenyl, 3-Nitro-4-methylphenyl,  
20      4-Chlor-3-methylphenyl, 3-Chlor-4-methylphenyl, 2-Fluorophenyl,  
3-Fluorophenyl, 3,4-Difluorophenyl, 3-Methoxymethylphenyl,  
3,4-Methylendioxophenyl, 2,3-Methylendioxophenyl, 6-Methyl-3-pyridyl,  
2-Methyl-3-pyridyl, 2-Benzo[b]furanyl, 1,5-Dimethyl-2-pyrrolyl,  
25      5-Methyl-3-furyl, 3-Methyl-2-furyl, 4,5-Dimethyl-2-furyl, 5-Methyl-2-thienyl,  
5-Chlor-3-thienyl, 5-Nitro-2-thienyl oder  
4,5-Dichlor-1,2-thiazol-3-yl bedeuten,

mit der Maßgabe, daß,  
wenn R<sup>3</sup> 3-Pyridyl bedeutet, R<sup>4</sup> nicht Phenyl sein kann und  
30      wenn R<sup>3</sup> Phenyl bedeutet, R<sup>4</sup> nicht Phenyl oder 4-Methylphenyl sein  
kann,

gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer  
Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer  
35      pharmakologisch unbedenklichen Säureadditionssalze.

Besonders bevorzugt sind Verbindungen der allgemeinen Formel (I)



5        worin

R<sup>1</sup> Wasserstoff;

R<sup>2</sup> Wasserstoff;

10      R<sup>3</sup> Phenyl, 3-Hydroxyphenyl, 3-Methylaminophenyl, 3,5-Dihydroxyphenyl  
oder 3-Pyridyl;

15      R<sup>4</sup> 3-Hydroxyphenyl, 2,3-Dihydroxyphenyl, 3,5-Dihydroxyphenyl,  
3-Methylaminophenyl, 3-Chlorphenyl, 4-Chlorphenyl, 3-Methylphenyl,  
4-Methylphenyl, 3-Hydroxymethylphenyl, 3-Aminophenyl,  
4-Aminophenyl, 3-Acetylaminophenyl, 3-Amino-4-methylphenyl,  
3-Acetylamino-4-methylphenyl, 3-Nitrophenyl, 3-Nitro-4-methylphenyl,  
3-Chlor-4-methylphenyl, 3,4-Difluorphenyl, 3-Methoxymethylphenyl,  
20      3-Methyl-2-furyl, 1,5-Dimethyl-2-pyrrolyl, 4,5-Dimethyl-2-furyl oder  
4,5-Dichlor-1,2-thiazol-3-yl bedeuten,

mit der Maßgabe, daß wenn R<sup>3</sup> Phenyl bedeutet, R<sup>4</sup> nicht 4-Methylphenyl sein kann.

25      Gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische können die Verbindungen der allgemeinen Formel (I) in ihre Salze, insbesondere für die pharmazeutische Anwendung, in ihre physiologisch verträglichen Salze mit einer anorganischen oder organischen Säure, überführt werden. Als Säuren kommen hierfür beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Essigsäure, Fumarsäure, Bernsteinsäure, Milchsäure, Zitronensäure, Weinsäure oder Maleinsäure in Betracht. Ferner können Mischungen der vorgenannten Säuren eingesetzt werden.

- Als Alkylgruppen (auch soweit sie Bestandteil anderer Reste sind) werden verzweigte und unverzweigte Alkylgruppen mit 1 bis 10 Kohlenstoffatomen, soweit nicht anders beschrieben bevorzugt mit 1 - 4 Kohlenstoffatomen betrachtet, beispielsweise werden genannt: Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl 5 und Octyl. Diese Bezeichnungen umfassen die jeweils möglichen Isomeren; sofern nicht anders beschrieben steht beispielsweise Propyl für n-Propyl, iso-Propyl, und Butyl steht für n-Butyl, iso-Butyl, sec. Butyl, tert.-Butyl etc.

- Substituierte Alkylgruppen können, sofern nicht anders beschrieben (auch soweit sie 10 Bestandteil anderer Reste sind), beispielsweise einen oder mehrere der nachfolgend genannten Substituenten tragen: Halogen, Hydroxy, Mercapto, C<sub>1</sub>-C<sub>6</sub>-Alkyloxy, Amino, Alkylamino, Dialkylamino, Cyano, Nitro, =O, -CHO, -COOH, -COO-C<sub>1</sub>-C<sub>6</sub>-Alkyl, -S-C<sub>1</sub>-C<sub>6</sub>-Alkyl.
- 15 Als Alkenylgruppen (auch soweit sie Bestandteil anderer Reste sind) werden verzweigte und unverzweigte Alkenylgruppen mit 2 bis 10 Kohlenstoffatomen, bevorzugt 2 bis 3 Kohlenstoffatomen genannt, soweit sie mindestens eine Doppelbindung aufweisen, beispielsweise auch oben genannte Alkylgruppen bezeichnet, soweit sie mindestens eine Doppelbindung aufweisen, wie zum Beispiel 20 Vinyl (soweit keine unbeständigen Enamine oder Enolether gebildet werden), Propenyl, iso-Propenyl, Butenyl, Pentenyl, Hexenyl.

- Substituierte Alkenylgruppen können, sofern nicht anders beschrieben (auch soweit sie Bestandteil anderer Reste sind), beispielsweise einen oder mehrere der 25 nachfolgend genannten Substituenten tragen: Halogen, Hydroxy, Mercapto, C<sub>1</sub>-C<sub>6</sub>-Alkyloxy, Amino, Alkylamino, Dialkylamino, Cyano, Nitro, =O, -CHO, -COOH, -COO-C<sub>1</sub>-C<sub>6</sub>-Alkyl, -S-C<sub>1</sub>-C<sub>6</sub>-Alkyl.

- Als Alkinylgruppen (auch soweit sie Bestandteil anderer Reste sind) werden 30 Alkinylgruppen mit 2 bis 10 Kohlenstoffatomen bezeichnet, soweit sie mindestens eine Dreifachbindung aufweisen, beispielsweise Ethinyl, Propargyl, Butinyl, Pentinyl, Hexinyl.

- Substituierte Alkinylgruppen können, sofern nicht anders beschrieben (auch soweit 35 sie Bestandteil anderer Reste sind), beispielsweise einen oder mehrere der nachfolgend genannten Substituenten tragen: Halogen, Hydroxy, Mercapto, C<sub>1</sub>-C<sub>6</sub>-Alkyloxy, Amino, Alkylamino, Dialkylamino, Cyano, Nitro, =O, -CHO, -COOH, -COO-C<sub>1</sub>-C<sub>6</sub>-Alkyl, -S-C<sub>1</sub>-C<sub>6</sub>-Alkyl.

Als Cycloalkylreste mit 3 - 6 Kohlenstoffatomen werden beispielsweise Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl bezeichnet, die auch durch verzweigtes oder unverzweigtes Alkyl mit 1 bis 4 Kohlenstoffatomen, Hydroxy, und/oder Halogen oder wie zuvor definiert substituiert sein können.

5

Als Halogen wird im allgemeinen Fluor, Chlor, Brom oder Jod bezeichnet.

- Der Begriff Aryl steht für ein aromatisches Ringsystem mit 6 bis 10 Kohlenstoffatomen, das, soweit nicht anders beschrieben, beispielsweise einen oder 10 mehrere der nachfolgend genannten Substituenten tragen kann: C<sub>1</sub>-C<sub>6</sub>-Alkyl, C<sub>1</sub>-C<sub>6</sub>-Alkyloxy, Halogen, Hydroxy, Mercapto, Amino, Alkylamino, Dialkylamino, CF<sub>3</sub>, Cyano, Nitro, -CHO, -COOH, -COO-C<sub>1</sub>-C<sub>6</sub>-Alkyl, -S-C<sub>1</sub>-C<sub>6</sub>-Alkyl. Bevorzugter Arylrest ist Phenyl.
- 15 Als Beispiele für N-verknüpfte cyclische Reste der allgemeinen Formel NR<sup>8</sup>R<sup>9</sup> werden genannt: Pyrrol, Pyrrolin, Pyrrolidin, 2-Methylpyrrolidin, 3-Methylpyrrolidin, Piperidin, Piperazin, N-Methylpiperazin, N-Ethylpiperazin, N-(n-Propyl)-piperazin, N-Benzylpiperazin, Morpholin, Thiomorpholin, Imidazol, Imidazolin, Imidazolidin, Pyrazol, Pyrazolin, Pyrazolidin, bevorzugt Morpholin, N-Benzylpiperazin, Piperazin, 20 und Piperidin, wobei die genannten Heterocyclen auch durch Alkyl mit 1 bis 4 Kohlenstoffatomen, bevorzugt Methyl, oder wie in den Definitionen angegeben substituiert sein können.

- Als C-verknüpfte 5- oder 6-gliedrige heterocyclische Ringe, die als Heteroatome 25 Stickstoff, Sauerstoff oder Schwefel enthalten können, werden beispielsweise Furan, Tetrahydrofuran, 2-Methyltetrahydrofuran, 2-Hydroxymethylfuran, Tetrahydrofuranon,  $\gamma$ -Butyrolacton,  $\alpha$ -Pyran,  $\gamma$ -Pyran, Dioxolan, Tetrahydropyran, Dioxan, Thiophen, Dihydrothiophen, Thiolan, Dithiolan, Pyrrol, Pyrrolin, Pyrrolidin, Pyrazol, Pyrazolin, Imidazol, Imidazolin, Imidazolidin, Triazol, Tetrazol, Pyridin, 30 Piperidin, Pyridazin, Pyrimidin, Pyrazin, Piperazin, Triazin, Tetrazin, Morpholin, Thiomorpholin, Oxazol, Isoxazol, Oxazin, Thiazol, Isothiazol, Thiadiazol, Oxadiazol, Pyrazolidin genannt, wobei der Heterocyclus wie in den Definitionen angegeben substituiert sein kann.
- 35 " $=O$ " bedeutet ein über eine Doppelbindung verknüpftes Sauerstoffatom.

Die neuen Verbindungen der allgemeinen Formel (I) können oral, transdermal, inhalativ oder parenteral verabreicht werden. Die erfindungsgemäßen Verbindungen liegen hierbei als aktive Bestandteile in üblichen Darreichungsformen vor,

- beispielsweise in Zusammensetzungen, die im wesentlichen aus einem inerten pharmazeutischen Träger und einer effektiven Dosis des Wirkstoffs bestehen, wie beispielsweise Tabletten, Dragées, Kapseln, Oblaten, Pulver, Lösungen, Suspensionen, Emulsionen, Sirupe, Suppositorien, transdermale Systeme etc. Eine
- 5 wirksame Dosis der erfindungsgemäßen Verbindungen liegt bei einer oralen Anwendung zwischen 1 und 100, vorzugsweise zwischen 1 und 50, besonders bevorzugt zwischen 5-30 mg/Dosis, bei intravenöser oder intramuskulärer Anwendung zwischen 0,001 und 50, vorzugsweise zwischen 0,1 und 10 mg/Dosis. Für die Inhalation sind erfindungsgemäß Lösungen geeignet, die 0,01 bis 1,0,
- 10 vorzugsweise 0,1 bis 0,5 % Wirkstoff enthalten. Für die inhalative Applikation ist die Verwendung von Pulvern bevorzugt. Gleichfalls ist es möglich, die erfindungsgemäßen Verbindungen als Infusionslösung, vorzugsweise in einer physiologischen Kochsalzlösung oder Nährsalzlösung einzusetzen.
- 15 Die erfindungsgemäßen Verbindungen können nach folgenden Verfahren, die teilweise aus dem Stand der Technik bekannt sind, hergestellt werden. Die Synthese von Triazinen der allgemeinen Formel (I), in denen  $R^3=R^4=R$  bedeutet, kann durch die Umsetzung von Nitrilen (1) mit den Guanidin-Derivaten (2)
- in Anlehnung an literaturbekannte Verfahren erfolgen (Schema 1).
- 20
- $$2 R\text{-CN} + \begin{array}{c} R^1 \\ | \\ \text{H}_2\text{N}-\text{NH} \end{array} \longrightarrow \begin{array}{c} R^1 \\ | \\ \text{R}^2 \\ | \\ \text{N}=\text{C}=\text{N} \\ | \\ \text{R}^3=\text{N}=\text{C}=\text{R}^4 \end{array}$$
- Schema 1: (1) (2)  $R = R^3 = R^4$  (I)
- Hierzu wird ein Nitril mit einem Guanidin-Derivat in einem inerten Lösungsmittel, bevorzugt Dimethylsulfoxid, gelöst und mit Base, bevorzugt Natriumhydrid versetzt. Nach Rühren bei Raumtemperatur wird die Reaktion auf 50 bis 100°C, bevorzugt 70
- 25 bis 90°C, besonders bevorzugt 80°C erwärmt. Die Reaktion ist nach 2 bis 24 Stunden, bevorzugt 4 bis 12 Stunden vollständig.

Triazin-Derivate der allgemeinen Formel (I), in denen  $R^3 \neq R^4$ , sind auf einem anderen Weg erhältlich. Hierzu werden zunächst die Nitrile (1) in die Imidoester (3)

30 überführt. (Schema 2).



Zur Darstellung der Imidoester (3) werden die käuflich erhältlichen oder nach literaturbekannten Verfahren zugänglichen Nitrile (1) in einem inerten Lösungsmittel, bevorzugt in einem etherischen Lösungsmittel, besonders bevorzugt in Diethylether gelöst und mit dem entsprechenden Alkohol, bevorzugt Methanol versetzt.

- 5 Anschließend wird trockenes Chlorwasserstoffgas eingeleitet und der Ansatz unter Kühlung oder bei Raumtemperatur zwischen 8 und 24 Stunden, bevorzugt zwischen 12 und 20 Stunden, besonders bevorzugt 18 Stunden gerührt. Die Hydrochloride der Imidoester (3) werden durch Kristallisation erhalten. Die Imidate (3) lassen sich anschließend aus den so erhaltenen Hydrochloriden durch Behandeln mit Base
- 10 freisetzen.

- Eine alternative Vorgehensweise zur Synthese der Imidate (3) umfaßt die Umsetzung der Nitrile (1) mit Alkali- oder Erdalkali-alkoholaten. Geeignete Alkali- und Erdalkalimetalle sind Beispielsweise Lithium, Natrium, Kalium, Magnesium,
- 15 Calcium, bevorzugt Natrium. Als Base bevorzugt ist Natriummethanolat. Diese Umsetzung ist z. B. in Anlehnung an J. Org. Chem. 26 (1961) 417 durchführbar.

Die Imidoester (3) werden anschließend durch Umsetzung mit Carbonsäurechloriden (4) in die Acylimidate (5) überführt (Schema 3).

20



Schema 3:

- Hierzu werden die Iminoether (3) in einem inerten Lösungsmittel, bevorzugt in einem schwach polaren Lösungsmittel, besonders bevorzugt in Toluol, gelöst und mit einer organischen Base, bevorzugt einem tertiären Amin, besonders bevorzugt Triethylamin versetzt. Unter Kühlung auf -10 bis +10°C, besonders bevorzugt 0-5°C, wird das geeignet substituierte Säurechlorid, welches entweder käuflich oder nach literaturbekannten Verfahren darstellbar ist, langsam zugegeben und bis zum
- 25 vollständigen Umsatz bei gleichbleibender Temperatur oder Raumtemperatur gerührt. Zur Aufarbeitung wird filtriert und das Filtrat vom Lösungsmittel befreit. Eine weitergehende Reinigung der so erhaltenen Rohprodukte (5) ist im allgemeinen nicht erforderlich.
- 30

Durch Behandeln der rohen Acylimide (5) mit den Guanidin-Derivaten (2) werden die unsymmetrisch substituierten Triazine der Formel (I) zugänglich (Schema 4).



5 Schema 4:

- Hierzu werden die Acylimide (5) in einem inerten Lösungsmittel, bevorzugt in einem alkoholischen Lösungsmittel, besonders bevorzugt in tert.-Butanol mit den Guanidin-Derivaten (2) unter Röhren umgesetzt. Die Reaktion kann bei erhöhter  
 10 Temperatur, bevorzugt aber bei Raumtemperatur durchgeführt werden und ist nach 0,5 bis 24 Stunden beendet. Das freie Guanidin wird bevorzugt direkt vor der Umsetzung aus einem Säureadditionssalz, bevorzugt aus Guanidinhydrochlorid durch Einwirken von Base generiert. Hierzu sind Alkalialkoholate in alkoholischer Lösung besonders geeignet, bevorzugt ist die Verwendung von Natrium- oder  
 15 Kaliummethanolat bzw. Natrium- oder Kalium-ethanolat, besonders bevorzugt ist Natriummethanolat.

Nach der oben beschriebenen Umsetzung gemäß Schema 4 werden die Triazine (I) je nach Löslichkeit durch Kristallisation oder Chromatographie an Kieselgel gereinigt.

- 20 Je nach Substitutionsmuster lassen sich die Triazine (I), in denen die Reste R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup> und R<sup>4</sup> die zuvor genannten Bedeutungen haben können, nach literaturbekannten Verfahren weitergehend funktionalisieren. Diese Funktionalisierungen umfassen die dem Fachmann vertrauten Prozesse der  
 25 Oxidation, Reduktion, Etherspaltung, Acylierungen, Alkylierungen, etc..

Die vorliegende Erfindung wird im Folgenden anhand Beispielhafter Synthesevorschriften näher erläutert. Diese Beispiele dienen der Illustration, ohne die Erfindung auf deren Umfang zu beschränken.

I. Darstellung von Triazinen der allgem in n Formel (I) mit R<sup>3</sup>=R<sup>4</sup> und R<sup>1</sup>=R<sup>2</sup>=HAllgemeine Arbeitsvorschrift

Zu 0,1 mol Nitril (1) und 0,025 mol Guanidin-Carbonat in 100 ml DMSO werden bei

- 5 Raumtemperatur 0,1 mol Natriumhydrid (60%-ige Dispersion in Mineralöl) gegeben.
- Nach 2 h Röhren bei Raumtemperatur wird weitere 4 bis 12 h bei 80°C gerührt.
- Nach vollständiger Reaktion wird der Ansatz mit 120 ml Wasser versetzt. Die erhaltenen Kristalle werden abgesaugt und mit Wasser gewaschen. Die Reinigung der rohen Triazine (I) erfolgt je nach Löslichkeit durch Kristallisation oder
- 10 Chromatographie an Kieselgel.

Nach diesem Verfahren wurden u.a. die folgenden Verbindungen erhalten.

Tabelle 1:

| Nr.  | -R <sup>3</sup>           | -R <sup>4</sup>           | Ausbeute [%] | Fp. [°C] |
|------|---------------------------|---------------------------|--------------|----------|
| 1.1  | 4-Methoxyphenyl-          | 4-Methoxyphenyl-          | 48           | 212-213  |
| 1.2  | 2-Methoxyphenyl-          | 2-Methoxyphenyl-          | 37           | 188-190  |
| 1.3  | 4-Pyridyl-                | 4-Pyridyl                 | 48           | >300°C   |
| 1.4  | 3-Methoxyphenyl-          | 3-Methoxyphenyl-          | 25           | 168-169  |
| 1.5  | 3,5-Dimethoxyphenyl-      | 3,5-Dimethoxyphenyl-      | 70           | 221-224  |
| 1.6  | Cyclohexyl-               | Cyclohexyl-               | 29           | 130-134  |
| 1.7  | 1,5-Dimethyl-pyrrol-2-yl- | 1,5-Dimethyl-pyrrol-2-yl- | 11           | 169-171  |
| 1.8  | 3-Methoxymethylphenyl-    | 3-Methoxymethylphenyl-    | 51           | 158-161  |
| 1.9  | 2-Furyl-                  | 2-Furyl-                  | 80           | 243-246  |
| 1.10 | 2-Thienyl-                | 2-Thienyl-                | 5            | 223-225  |
| 1.11 | 3-Methylaminophenyl-      | 3-Methylaminophenyl-      | 8            | 177-179  |
| 1.12 | Phenyl-                   | Phenyl-                   |              | 175-178  |
| 1.13 | 3-Pyridyl-                | 3-Pyridyl-                |              | 326-328  |
| 1.14 | 2-Pyridyl-                | 2-Pyridyl-                | 25           | >300°C   |

15

II. Darstellung von Triazinen der allgemeinen Formel (I) mit R<sup>3</sup>=R<sup>4</sup> und R<sup>2</sup>≠HAllgemeine Arbeitsvorschrift

- 20 In Anlehnung an literaturbekannte Verfahren (z.B. J. Heterocycl. Chem. 13, (1976) 917) werden zu 0,05 mol Nitril (1) und 0,025 mol des entsprechend substituierten Guanidinhydrochlorids (oder 0,0125 mol Guanidincarbonat oder -Sulfat) in 50 ml

DMSO 0,05 mol Natriumhydrid (60%-ige Dispersion in Mineralöl) gegeben. Nach 2 h Rühren bei Raumtemperatur wird weitere 20 bis 24 h bei 75°C gerührt. Nach vollständiger Reaktion wird der Ansatz auf 50 ml Eisswasser gegeben. Der ausfallende Feststoff wird abgesaugt, mit Wasser gewaschen und getrocknet. Die

- 5 Reinigung der rohen Triazine (I) erfolgt durch Umkristallisieren aus einem Alkohol.

Nach diesem Verfahren wurden u.a. die folgenden Verbindungen hergestellt.

Tabelle 2:

| Nr. | -R <sup>1</sup> | -R <sup>2</sup> | -R <sup>3</sup> | -R <sup>4</sup> | Ausbeute<br>[%] | Fp<br>[°C] |
|-----|-----------------|-----------------|-----------------|-----------------|-----------------|------------|
| 2.1 | H-              | Methyl-         | Phenyl-         | Phenyl-         | 60              | 140-141    |
| 2.2 | H-              | Ethyl-          | Phenyl-         | Phenyl-         | 18              | 85         |
| 2.3 | Methyl-         | Methyl-         | Phenyl-         | Phenyl-         | 13              | 167-168    |

10

### III. Darstellung von Triazinen der allgemeinen Formel (I) mit R<sup>3</sup>≠R<sup>4</sup>

#### A) Allgemeine Arbeitsvorschriften zur Herstellung der Imidoester (3)

15 Variante 1:

Zu 0,6 mol Nitril (1) werden in 550 ml Ether 1,2 mol Methanol gegeben.

Anschließend wird bei 10-15°C solange HCl-Gas eingeleitet, bis die Lösung gesättigt ist und weitere 16 h bei Raumtemperatur gerührt. Das entstandene Imidoesterhydrochlorid wird kristallisiert, abgesaugt, mit Ether gewaschen und

20 anschließend bei 10°C in eine Mischung aus 1,4 mol KOH in 700ml Wasser und 1,7 l Dichlormethan eingetragen. Nach 10 bis 15 minütigem Rühren wird die organische Phase abgetrennt, über MgSO<sub>4</sub> getrocknet und das Lösungsmittel im Vakuum abdestilliert. Der verbleibende Rückstand wird ohne weitere Reinigung umgesetzt.

25

Variante B:

In 5 ml wasserfreiem Methanol werden 52 mmol Natrium gelöst. Bei 10-15°C werden 52 mmol Nitril (1), gegebenenfalls in Methanol gelöst, zugetropft. Anschließend wird bis zum vollständigen Umsatz bei Raumtemperatur gerührt. Zur Aufarbeitung werden

30 100 ml Dichlormethan zugegeben. Die organische Phase wird mit Wasser gewaschen und über MgSO<sub>4</sub> getrocknet. Nach Abdestillieren des Lösungsmittels im Vakuum verbleiben die Imidoester (3) als Öl oder Feststoff. Die Rohprodukte werden ohne weitere Reinigung in die nächste Stufe eingesetzt.

B) Allgemeine Arbeitsvorschriften zur Herstellung der Acylimidate (5)

Zu 19,5 mol Imidoester (3) in 60 ml Toluol werden 21,5 mmol Triethylamin gegeben.

Nach Kühlung auf 0-2°C werden 21,5 mmol des Säurechlorids (4) langsam zugetropft und anschließend solange bei Raumtemperatur gerührt bis die

- 5 Umsetzung vollständig ist. Zur Aufarbeitung wird filtriert und das Filtrat im Vakuum vom Lösungsmittel befreit. Die erhaltenen Rohprodukte werden ohne weitere Reinigung in die nächsten Stufe eingesetzt.

C) Allgemeine Arbeitsvorschriften zur Herstellung der Triazine (I)

- 10 Guanidinhydrochlorid (90,9 mmol) wird zur Darstellung der freien Base zu einer Lösung von Natriummethanolat (90,9 mmol) in 75 ml wasserfreiem Ethanol gegeben und bei Raumtemperatur 20 min gerührt. Nach Filtration wird das Lösungsmittel im Vakuum abdestilliert, das so erhaltene Guanidin in 30 ml wasserfreiem tert.-Butanol aufgenommen, bei Raumtemperatur unter Röhren mit einer Lösung von Acylimidat 15 (5) (43,6 mmol) in 150 ml tert.-Butanol versetzt und bis zum vollständigen Umsatz (1 - 17 h) bei gleichbleibender Temperatur gerührt. Die reinen Triazine (I) werden durch Kristallisation oder Chromatographie an Kieselgel erhalten.

Entsprechend dieser Arbeitsvorschrift wurden u.a. die folgenden Verbindungen

- 20 erhalten.

Tabelle 3:

| Nr.  | R <sup>3</sup>   | R <sup>4</sup>        | Ausbeute<br>[%] | Fp<br>[°C] |
|------|------------------|-----------------------|-----------------|------------|
| 3.1  | Phenyl-          | 4-Pyridyl-            | 20              | 205-206    |
| 3.2  | Phenyl-          | 3-Pyridyl-            | 7               | 209-210    |
| 3.3  | Phenyl-          | Cyclohexyl-           | 25              | 167-168    |
| 3.4  | Phenyl-          | 4-Methoxyphenyl-      | 8               | 207-209    |
| 3.5  | 3-Pyridyl-       | 3-Methoxyphenyl-      | 86              | 234-237    |
| 3.6  | 3-Pyridyl-       | 3,5-Dimethoxyphenyl-  | 26              | 231-233    |
| 3.7  | Phenyl-          | 2-Pyridyl-            | 42              | 227-229    |
| 3.8  | Phenyl-          | 3,5-Dimethoxyphenyl-  | 57              | 174-176    |
| 3.9  | Phenyl-          | 3-Methoxy-cyclohexyl- | 39              | 202-204    |
| 3.10 | Phenyl-          | 3-Methoxyphenyl-      | 70              | 184-185    |
| 3.11 | Phenyl-          | 4-Methoxy-cyclohexyl- | 71              | 129-137    |
| 3.12 | 3-Methoxyphenyl- | 4-Methylphenyl-       | 60              | 184-186    |
| 3.13 | 3-Methoxyphenyl- | 3,5-Dimethoxyphenyl-  | 63              | 169-171    |
| 3.14 | 3-Methoxyphenyl- | 3-Methylphenyl-       | 56              | 166-168    |

| Nr.  | R <sup>3</sup>   | R <sup>4</sup>           | Ausbeute<br>[%] | Fp<br>°C |
|------|------------------|--------------------------|-----------------|----------|
| 3.15 | 3-Methoxyphenyl- | 2-Methylphenyl-          | 36              | 139-141  |
| 3.16 | 3-Pyridyl-       | 4-Chlorphenyl-           | 58              | 240-241  |
| 3.17 | 3-Pyridyl-       | 3-Chlorphenyl-           | 61              | 223-224  |
| 3.18 | 3-Pyridyl-       | 2-Furyl-                 | 80              | 238-239  |
| 3.19 | 3-Pyridyl-       | 2,3-Dimethoxyphenyl-     | 72              | 250-252  |
| 3.20 | 3-Pyridyl-       | 3-Thienyl-               | 55              | 234-235  |
| 3.21 | 3-Pyridyl-       | 2-Thienyl-               | 53              | 239-241  |
| 3.22 | 3-Pyridyl-       | Cyclohexyl-              | 23              | 195-196  |
| 3.23 | 3-Methoxyphenyl- | 2,3-Dimethoxyphenyl-     | 71              | 165-166  |
| 3.24 | 3-Pyridyl-       | 3-Furyl-                 | 58              | 234-235  |
| 3.25 | 3-Pyridyl-       | 2-Chlorphenyl-           | 44              | 214-217  |
| 3.26 | 3-Pyridyl-       | 4-Tetrahydropyranyl-     | 66              | 190-191  |
| 3.27 | 3-Pyridyl-       | Biphenyl-                | 63              | 247-249  |
| 3.28 | 3-Pyridyl-       | 2-Tetrahydrofuranyl-     | 17              | 174-176  |
| 3.29 | 3-Methoxyphenyl- | 2-Chlorphenyl-           | 43              | 152-155  |
| 3.30 | 3-Pyridyl-       | 4-Methylphenyl-          | 64              | 207-210  |
| 3.31 | 3-Pyridyl-       | 3-Methylphenyl-          | 48              | 180-183  |
| 3.32 | 3-Pyridyl-       | 1,5-Dimethyl-2-pyrrolyl- | 37              | 159-160  |
| 3.33 | 3-Pyridyl-       | 4-N-Pyrrolyl-phenyl-     | 16              | 242-245  |
| 3.34 | 3-Pyridyl-       | 4-Fluorophenyl-          | 88              | 267-269  |
| 3.35 | 3-Methoxyphenyl- | 3-Chlorphenyl-           | 72              | 165-167  |
| 3.36 | 3-Pyridyl-       | 3,5-Dimethylphenyl-      | 76              | 248-252  |
| 3.37 | 3-Pyridyl-       | 3,4-Dimethylphenyl-      | 51              | 196-199  |
| 3.38 | 3-Methoxyphenyl- | 4-Chlorphenyl-           | 86              | 197-199  |
| 3.39 | 3-Pyridyl-       | 4-Chlor-3-methylphenyl-  | 59              | 216-218  |
| 3.40 | 3-Pyridyl-       | 4-Trifluormethylphenyl-  | 63              | 220-222  |
| 3.41 | 3-Pyridyl-       | 3-Trifluormethylphenyl-  | 79              | 177-179  |
| 3.42 | 3-Pyridyl-       | 4-tert.-Butyl-phenyl-    | 42              | 215-217  |
| 3.43 | Phenyl-          | 3-Nitrophenyl-           | 73              | 221-223  |
| 3.44 | 3-Pyridyl-       | 3-Methyl-2-furyl-        | 46              | 254-257  |
| 3.45 | 3-Pyridyl-       | 5-Methyl-2-furyl-        | 10              | 205-208  |
| 3.46 | 3-Pyridyl-       | 6-Chlor-3-pyridyl-       | 95              | 301-303  |
| 3.47 | Phenyl-          | 6-Chlor-3-pyridyl-       | 65              | 220-222  |
| 3.48 | Phenyl-          | 1,3-Pyrimidin-2-yl-      | 12              | 250-254  |
| 3.49 | Phenyl-          | 1,5-Dimethyl-2-pyrrolyl- | 51              | 164-166  |

| Nr.  | R <sup>3</sup>           | R <sup>4</sup>                | Ausbeute<br>[%] | Fp<br>[°C] |
|------|--------------------------|-------------------------------|-----------------|------------|
| 3.50 | Phenyl-                  | 3-Methoxymethylphenyl-        | 79              | 180-182    |
| 3.51 | 3-Pyridyl-               | 3-Methoxymethylphenyl-        | 69              | 204-207    |
| 3.52 | Phenyl-                  | 3,4-Methylendioxophenyl-      | 51              | 237-239    |
| 3.53 | Phenyl-                  | 6-Methyl-3-pyridyl-           | n.b.            | 226-228    |
| 3.54 | Phenyl-                  | 3-(1-Hydroxy-ethyl)-phenyl-   | 47              | 157-159    |
| 3.55 | Phenyl-                  | 1,3-Pyrimidin-5-yl-           | 69              | 266-269    |
| 3.56 | 3-Pyridyl-               | 3,4-Methylendioxophenyl-      | 79              | 238-241    |
| 3.57 | 3-Pyridyl-               | 3-Nitrophenyl-                | 91              | 260-262    |
| 3.58 | Phenyl-                  | 3-Methyl-2-furyl-             | 66              | 237-239    |
| 3.59 | 3-Pyridyl-               | 2-Methyl-3-furyl-             | 26              | 207-209    |
| 3.60 | 3-Pyridyl-               | 3-Methoxymethyl-2-furyl-      | 51              | 219-222    |
| 3.61 | 3-Pyridyl-               | 3-Methyl-2-thienyl-           | 22              | 207-208    |
| 3.62 | 3-Pyridyl-               | 2-Benzo[b]furanyl-            | 47              | 239-241    |
| 3.63 | 1,5-Dimethyl-2-pyrrolyl- | 3-Methyl-2-furyl-             | 45              | 204-206    |
| 3.64 | 3-Pyridyl-               | 1,3-Dithiolan-2-yl-           | 55              | 218-220    |
| 3.65 | 3-Pyridyl-               | 5-Nitro-2-furyl-              | 59              | 313-314    |
| 3.66 | 3-Pyridyl-               | 5-Methyl-3-furyl-             | 45              | 213-217    |
| 3.67 | 3-Pyridyl-               | 2,5-Dimethyl-3-furyl-         | 23              | 180-182    |
| 3.68 | 3-Pyridyl-               | 5-Nitro-3-thienyl-            | 40              | 261-263    |
| 3.69 | 3-Pyridyl-               | 4,5-Dimethyl-2-furyl-         | 10              | 223-224    |
| 3.70 | 3-Pyridyl-               | 2-Methyl-5-t.-butyl-3-furyl-  | 53              | 157-159    |
| 3.71 | 3-Pyridyl-               | 2-Methyl-5-phenyl-3-furyl-    | 74              | 242-243    |
| 3.72 | 3-Pyridyl-               | 5(1,2-Oxazol-3-yl)-3-thienyl- | 11              | 240(Zers.) |
| 3.73 | 3-Pyridyl-               | 2,5-Dichlor-3-thienyl-        | 78              | 236-238    |
| 3.74 | 3-Pyridyl-               | 4-Ethyl-phenyl-               | 22              | 191-193    |
| 3.75 | 3-Pyridyl-               | 3,4-Dichlorphenyl-            | 100             | 249-251    |
| 3.76 | 3-Pyridyl-               | 4-Nitrophenyl-                | 67              | 302-304    |
| 3.77 | Phenyl-                  | 4-Nitrophenyl-                | 71              | 198-200    |
| 3.78 | Phenyl-                  | 2-Nitrophenyl-                | 12              | 164-166    |
| 3.79 | 3-Pyridyl-               | 3,4-Difluorphenyl-            | 80              | 236-238    |
| 3.80 | 3-Pyridyl-               | 4-n-Propyl-phenyl-            | 29              | 190-192    |
| 3.81 | Phenyl-                  | 3-Nitro-4-methylphenyl-       | 82              | 178-182    |
| 3.82 | Phenyl-                  | 3-Methyl-4-nitrophenyl-       | 85              | 206-208    |
| 3.83 | 3-Pyridyl-               | 2-Methyl-3-thienyl-           | 54              | 194-197    |
| 3.84 | 1,5-Dimethyl-2-pyrrolyl- | 3-Nitrophenyl-                | 65              | 220-222    |

| Nr.   | R <sup>3</sup>           | R <sup>4</sup>                     | Ausbeute<br>[%] | Fp<br>[°C] |
|-------|--------------------------|------------------------------------|-----------------|------------|
| 3.85  | 1,5-Dimethyl-2-pyrrolyl- | 3-Chlorphenyl-                     | 44              | 167-170    |
| 3.86  | 1,5-Dimethyl-2-pyrrolyl- | 3,4-Methylendioxophenyl-           | 71              | 207-210    |
| 3.87  | 1,5-Dimethyl-2-pyrrolyl- | 4-Chlor-3-methylphenyl-            | 68              | 185-187    |
| 3.88  | 3-Pyridyl-               | 2,3-Methylendioxophenyl-           | 30              | 236-238    |
| 3.89  | Phenyl-                  | 2,3-Methylendioxophenyl-           | 54              | 230-232    |
| 3.90  | 3-Pyridyl-               | 3-Chlor-4-methylphenyl-            | 56              | 207-209    |
| 3.91  | 3-Pyridyl-               | 3-Ethyl-phenyl-                    | 46              | 144-146    |
| 3.92  | 3-Pyridyl-               | 1-Cyclopentenyl-                   | 43              | 218-220    |
| 3.93  | 3-Pyridyl-               | 1-Cyclohexenyl-                    | 14              | 156-157    |
| 3.94  | 3-Pyridyl-               | Cycloheptyl-                       | 64              | 170-172    |
| 3.95  | Phenyl-                  | 2-(3-Pyridyl)-ethylen-             | 63              | 201-203    |
| 3.96  | Phenyl-                  | 3-Pyridylmethyl-                   | 62              | 192-193    |
| 3.97  | 3-Pyridyl-               | 3-Pyridylmethyl-                   | 28              | 198-200    |
| 3.98  | Phenyl-                  | 1,2-Oxazol-5-yl-                   | 61              | 221-223    |
| 3.99  | 3-Pyridyl-               | 1,2-Oxazol-5-yl-                   | 57              | 223(Zers.) |
| 3.100 | Phenyl-                  | 4,5-Dichlor-(1,2-thiazol)-3-yl-    | 52              | 223-225    |
| 3.101 | Phenyl-                  | 4-Methyl-(1-thia-2,3-diazol)-5-yl- | 69              | 203-205    |
| 3.102 | 3-Pyridyl-               | 4-Methyl-(1-thia-2,3-diazol)-5-yl- | 41              | 268-270    |
| 3.103 | Phenyl-                  | 2-(4-Pyridyl)-ethylen-             | 30              | 259-261    |
| 3.104 | 3-Pyridyl-               | 2,4-Dimethyl-(1,3-thiazol)-5-yl-   | 42              | 239-241    |
| 3.105 | Phenyl-                  | 1,5-Dimethyl-pyrazol-3-yl-         | 2               | 237-238    |
| 3.106 | Phenyl-                  | 2-Methyl-3-pyridyl-                | 13              | 223-225    |
| 3.107 | 3-Pyridyl-               | 1,5-Dimethyl-pyrazol-3-yl-         | 37              | 284-287    |
| 3.108 | Phenyl-                  | 2,4-Dimethyl-(1,3-thiazol)-5-yl-   | 27              | 206-209    |
| 3.109 | Phenyl-                  | 1-Methyl-pyrazol-4-yl-             | 14              | 206-209    |
| 3.110 | 3-Pyridyl-               | 1-Methyl-pyrazol-4-yl-             | 19              | 269-271    |
| 3.111 | Phenyl-                  | 1-Methyl-imidazol-2-yl-            | 21              | 227-229    |
| 3.112 | 4-Methylphenyl-          | 1-Methyl-imidazol-2-yl-            | 11              | 264-266    |
| 3.113 | Phenyl-                  | Methoxymethyl-                     | 31              | 162-165    |
| 3.114 | 3-Pyridyl-               | 3-Fluorphenyl-                     | 53              | 222-227    |
| 3.115 | 3-Pyridyl-               | 2-Fluorphenyl-                     | 57              | 193-195    |
| 3.116 | 3-Pyridyl-               | 5-Methyl-2-thienyl-                | n.b.            | 190-193    |
| 3.117 | 3-Pyridyl-               | 5-Chlor-3-thienyl-                 | 63              | 226-228    |
| 3.118 | 3-Pyridyl-               | 5-Nitro-3-thienyl-                 | 66              | 287-289    |
| 3.119 | 3-Pyridyl-               | 4,5-Dichlor-(1,2-thiazol)-3-yl-    | 69              | 268-270    |

| Nr.   | R <sup>3</sup> | R <sup>4</sup>          | Ausbeute<br>[%] | Fp<br>°C |
|-------|----------------|-------------------------|-----------------|----------|
| 3.120 | Phenyl-        | 2-Methylthio-3-pyridyl- | 49              | 225-229  |
| 3.121 | 3-Pyridyl-     | Cyclopropyl-            | 78              | 269-272  |

#### IV. Derivatisierung geeignet substituierter Triazine der Formel (I)

5

##### A) Etherspaltung Methoxyaryl-substituierter Triazine

Das Methoxyaryl-substituierte Triazin wird mit einem 10fachen Überschuß an Pyridiniumbromid gut vermischt und bei 180-190°C Ölbadtemperatur 1-2h gerührt. Anschließend wird die Schmelze auf Raumtemperatur abgekühlt, mit 4N HCl

- 10 verrieben, abgesaugt, mit Wasser gewaschen und anschließend mittels Säulenchromatographie gereinigt.

Nach diesem Verfahren wurden u.a. die folgenden Verbindungen hergestellt.

15 Tabelle 4a:

| Nr.  | R <sup>3</sup>       | R <sup>4</sup>       | Ausbeute<br>[%] | Fp<br>°C |
|------|----------------------|----------------------|-----------------|----------|
| 4.1  | 4-Hydroxyphenyl-     | 4-Hydroxyphenyl-     | -               | >310°C   |
| 4.2  | 3-Hydroxyphenyl-     | 3-Hydroxyphenyl-     | 86              | 272-274  |
| 4.3  | 2-Hydroxyphenyl-     | 2-Hydroxyphenyl-     | 63              | >300°C   |
| 4.4  | 3-Hydroxyphenyl-     | 3-Pyridyl-           | 11              | 257-259  |
| 4.5  | 3,5-Dihydroxyphenyl- | 3,5-Dihydroxyphenyl- | 4               | 312-315  |
| 4.6  | 3,5-Dihydroxyphenyl- | 3-Pyridyl-           | 36              | >320°C   |
| 4.7  | Phenyl-              | 3-Hydroxyphenyl-     | 11              | 225-227  |
| 4.8  | Phenyl-              | 3,5-Dihydroxyphenyl- | 15              | 290-292  |
| 4.9  | 3-Hydroxyphenyl-     | 4-Methylphenyl-      | 18              | 241-243  |
| 4.10 | 3,5-Dihydroxyphenyl- | 3-Hydroxyphenyl-     | 21              | 290-293  |
| 4.11 | 3-Hydroxyphenyl-     | 3-Methylphenyl-      | 11              | 204-205  |
| 4.12 | 3-Hydroxyphenyl-     | 2-Methylphenyl-      | 12              | 205-206  |
| 4.13 | 2,3-Dihydroxyphenyl- | 3-Pyridyl-           | 4               | 258-260  |
| 4.14 | 2,3-Dihydroxyphenyl- | 3-Hydroxyphenyl-     | 8               | 274-277  |
| 4.15 | 3-Hydroxyphenyl-     | 2-Chlorphenyl-       | 4               | 212-214  |
| 4.16 | 3-Hydroxyphenyl-     | 3-Chlorphenyl-       | 5               | 233-236  |
| 4.17 | 3-Hydroxyphenyl-     | 4-Chlorphenyl-       | 8               | 275-277  |

B) Spaltung von Methoxyalkylethern

Es werden 7,0 mmol Triazin und 30,0 mmol Tetrabutylammoniumjodid in 20 ml Chloroform suspendiert. Bei Raumtemperatur werden anschließend 50,0 mmol  $\text{BF}_3$ -Etherat zugesetzt und die entstandene braune Lösung 16h bei Rückflußtemperatur 5 gerührt. Zur Aufarbeitung wird der Ansatz auf Raumtemperatur abgekühlt, mit 200 ml Dichlormethan verdünnt und nacheinander mit je 100 ml 5%iger  $\text{NaHCO}_3$  Lösung (aq.), 5%iger Natriumthiosulfat-Lösung (aq.) und Wasser gewaschen. Die organische Phase wird über  $\text{MgSO}_4$  getrocknet und das Lösungsmittel im Vakuum abdestilliert. Der verbleibende Rückstand wird in 300 ml Ether aufgenommen, 6h 10 lang kräftig verrührt, abgesaugt und das Filtrat eingeengt. Die Reinigung erfolgt mittels Säulenchromatographie.

Nach diesem Verfahren wurden u.a. die folgenden Verbindungen hergestellt.

Tabelle 4 b:

| Nr.  | $\text{R}^3$ | $\text{R}^4$           | Ausbeute [%] | Fp [°C] |
|------|--------------|------------------------|--------------|---------|
| 4.18 | Phenyl-      | 4-Hydroxy-cyclohexyl-  | 65           | 189-190 |
| 4.19 | Phenyl-      | 3-Hydroxy-cyclohexyl-  | 46           | 148-152 |
| 4.20 | Phenyl-      | 3-Hydroxymethylphenyl- | 6            | 200-202 |

15

C) Hydrierungen von Nitroverbindungen

In 30 ml Tetrahydrofuran werden 10 mmol Triazin aufgenommen und mit ca. 1g Raney-Nickel (MeOH feucht) bei 24-30°C und 5,0 bar 5-7 h hydriert.

20 Nach Abtrennung des Raney-Nickels wird der Ansatz über Kieselgur abgesaugt und das Filtrat im Vakuum vom Lösungsmittel befreit. Der verbleibende Rückstand wird durch Kristallisation oder Chromatographie an Kieselgel gereinigt.

Nach diesem Verfahren wurden u.a. die folgenden Verbindungen dargestellt.

25 Tabelle 4c:

| Nr.  | $\text{R}^3$ | $\text{R}^4$            | Ausbeute [%] | Fp [°C] |
|------|--------------|-------------------------|--------------|---------|
| 4.21 | Phenyl-      | 3-Aminophenyl-          | 89           | 167-170 |
| 4.22 | Phenyl-      | 3-Amino-4-methylphenyl- | 100          | 191-192 |
| 4.23 | Phenyl-      | 4-Amino-3-methylphenyl- | 88           | 181-182 |
| 4.24 | Phenyl-      | 4-Aminophenyl-          | 4            | 222-224 |
| 4.25 | 3-Pridyl-    | 3-Aminophenyl-          | 82           | 247-249 |

D) O- und N-Acylierungen

- In 30-50 ml Dichlormethan werden 5,3 mmol Triazin suspendiert und mit 26,5 mmol Pyridin versetzt. Bei 5-7°C werden langsam 7,5 mmol Säurechlorid oder -anhydrid zugesetzt. Anschließend wird auf Raumtemperatur erwärmt und weitere 1-5 h gerührt. Liegt eine Suspension vor, wird abgesaugt, mit Dichlormethan gewaschen und gegebenenfalls ein alkoholisches Lösungsmittel zugesetzt. Liegt eine Lösung vor, wird mit Wasser und 1N HCl (aq.) gewaschen. Die organische Phase wird über MgSO<sub>4</sub> getrocknet und das Lösungsmittel im Vakuum abdestilliert.
- 10 Der verbleibende Rückstand wird durch Chromatographie an Kieselgel gereinigt.

Nach diesem Verfahren wurden u.a. die folgenden Verbindungen dargestellt.

Tabelle 4d:

| Nr.  | R <sup>3</sup>    | R <sup>4</sup>         | Ausbeute<br>[%] | Fp<br>[°C]  |
|------|-------------------|------------------------|-----------------|-------------|
| 4.26 | Phenyl-           | 3-Acetoxy-phenyl-      | 62              | 168-170     |
| 4.27 | 3-Acetoxy-phenyl- | 3-Acetoxy-phenyl-      | 35              | 248-250     |
| 4.28 |                   |                        | 68              | 230-232     |
| 4.29 |                   |                        | 44              | 196-198     |
| 4.30 |                   |                        | 36              | 205-207     |
| 4.31 |                   |                        | 53              | 160-163     |
| 4.32 | Phenyl-           | 3-N-Acetylaminophenyl- | 73              | 224-228     |
| 4.33 | Phenyl-           |                        | 72              | 283 (Zers.) |
| 4.34 | Phenyl-           |                        | 71              | 297-299     |
| 4.35 | Phenyl-           | 4-N-Acetylaminophenyl- | 91              | 286-289     |
| 4.36 | 3-Pyridyl-        | 3-N-Acetylaminophenyl- | 72              | 300-302     |

E) Oxidationen

in 25 ml Dichlormethan werden 1,9 mmol Triazin suspendiert. Anschließend werden 1,7 Äquivalente Pyridiniumchlorochromat zugegeben und über Nacht bei Raumtemperatur gerührt. Die erhaltene Suspension wird mit 50 ml Dichlormethan verdünnt, und zweimal mit Wasser gewaschen. Die organische Phase wird über MgSO<sub>4</sub> getrocknet, eingeengt und der verbleibende Rückstand durch Chromatographie an Kieselgel gereinigt.

Nach diesem Verfahren wurden u.a. die folgenden Verbindungen hergestellt.

10

Tabelle 4e:

| Nr.  | R <sup>3</sup> | R <sup>4</sup>   | Ausbeute<br>[%] | Fp<br>[°C] |
|------|----------------|------------------|-----------------|------------|
| 4.37 | Phenyl-        | 3-Acetyl-phenyl- | 90              | 191-193    |

Tabelle 5 faßt die in Analogie zu den zuvor beschriebenen Verfahren hergestellten Verbindungen der allgemeinen Formel (I) zusammen.



5  
Tabelle 5:

| Beispiel | -R1     | -R2     | -R3                                                                                 | -R4                                                                                 | Fp<br>[°C] | Chemische<br>Bezeichnung                       |
|----------|---------|---------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------|------------------------------------------------|
| 1        | H-      | H-      |  |  | 130-134    | 2-Amino-4,6-dicyclohexyl-1,3,5-triazin         |
| 2        | H-      | H-      |  |  | 175-178    | 2-Amino-4,6-diphenyl-1,3,5-triazin             |
| 3        | H-      | Methyl- |  |  | 140-141    | 2-Methylamino-4,6-diphenyl-1,3,5-triazin       |
| 4        | H-      | Ethyl-  |  |  | 85         | 2-Ethylamino-4,6-diphenyl-1,3,5-triazin        |
| 5        | Methyl- | Methyl- |  |  | 167-168    | 2-Dimethylamino-4,6-diphenyl-1,3,5-triazin     |
| 6        | H-      | H-      |  |  | 188-190    | 2-Amino-4,6-bis(2-methoxyphenyl)-1,3,5-triazin |

| Beispiel | -R <sup>1</sup> | -R <sup>2</sup> | -R <sup>3</sup>                     | -R <sup>4</sup>                     | Fp<br>[°C] | Chemische<br>Bezeichnung                                 |
|----------|-----------------|-----------------|-------------------------------------|-------------------------------------|------------|----------------------------------------------------------|
| 7        | H-              | H-              | OMe<br> <br>C6H <sub>4</sub><br>    | OMe<br> <br>C6H <sub>4</sub><br>    | 168-169    | 2-Amino-4,6-bis(3-methoxyphenyl)-1,3,5-triazin           |
| 8        | H-              | H-              | OMe<br> <br>C6H <sub>4</sub><br>    | OMe<br> <br>C6H <sub>4</sub><br>    | 212-213    | 2-Amino-4,6-bis(4-methoxyphenyl)-1,3,5-triazin           |
| 9        | H-              | H-              | OMe<br> <br>C6H <sub>4</sub><br>    | OMe<br> <br>C6H <sub>4</sub><br>    | 221-224    | 2-Amino-4,6-bis(3,5-dimethoxyphenyl)-1,3,5-triazin       |
| 10       | H-              | H-              | HO<br> <br>C6H <sub>4</sub><br>     | HO<br> <br>C6H <sub>4</sub><br>     | >300       | 2-Amino-4,6-bis(2-hydroxyphenyl)-1,3,5-triazin           |
| 11       | H-              | H-              | OH<br> <br>C6H <sub>4</sub><br>     | OH<br> <br>C6H <sub>4</sub><br>     | 272-274    | 2-Amino-4,6-bis(3-hydroxyphenyl)-1,3,5-triazin           |
| 12       | H-              | H-              | OH<br> <br>C6H <sub>4</sub><br>     | OH<br> <br>C6H <sub>4</sub><br>     | >310       | 2-Amino-4,6-bis(4-hydroxyphenyl)-1,3,5-triazin           |
| 13       | H-              | H-              | OH<br> <br>C6H <sub>4</sub><br>     | OH<br> <br>C6H <sub>4</sub><br>     | 312-315    | 2-Amino-4,6-bis(3,5-dihydroxyphenyl)-1,3,5-triazin       |
| 14       | H-              | H-              | OAc<br> <br>C6H <sub>4</sub><br>    | OAc<br> <br>C6H <sub>4</sub><br>    | 248-250    | 2-Amino-4,6-bis(3-acetoxy-phenyl)-1,3,5-triazin          |
| 15       | H-              | H-              | O-COEt<br> <br>C6H <sub>4</sub><br> | O-COEt<br> <br>C6H <sub>4</sub><br> | 230-232    | 2-Amino-4,6-bis(3-ethyl(carbonyloxyphenyl)-1,3,5-triazin |

| Beispiel | -R <sup>1</sup> | -R <sup>2</sup> | -R <sup>3</sup>                    | -R <sup>4</sup>                    | F <sub>p</sub><br>[°C] | Chemische<br>Bezeichnung                                          |
|----------|-----------------|-----------------|------------------------------------|------------------------------------|------------------------|-------------------------------------------------------------------|
| 16       | H-              | H-              | O-COPh                             | O-COPh                             | 196-198                | 2-Amino-4,6-bis(3-phenyl-carbonyloxy-phenyl)-1,3,5-triazin        |
| 17       | H-              | H-              | O-CO-OPh                           | O-CO-OPh                           | 205-207                | 2-Amino-4,6-bis(3-phenyloxy-carbonyloxy-phenyl)-1,3,5-triazin     |
| 18       | H-              | H-              | O-SO <sub>2</sub> -CF <sub>3</sub> | O-SO <sub>2</sub> -CF <sub>3</sub> | 160-163                | 2-Amino-4,6-bis(3-trifluormethan-sulfonyloxyphenyl)-1,3,5-triazin |
| 19       | H-              | H-              | OMe                                | OMe                                | 158-161                | 2-Amino-4,6-bis(3-methoxymethylphenyl)-1,3,5-triazin              |
| 20       | H-              | H-              | NHMe                               | NHMe                               | 177-179                | 2-Amino-4,6-bis(3-methylaminophenyl)-1,3,5-triazin                |
| 21       | H-              | H-              | —                                  | —                                  | 243-246                | 2-Amino-4,6-bis(2-furyl)-1,3,5-triazin                            |
| 22       | H-              | H-              | —                                  | —                                  | 223-225                | 2-Amino-4,6-bis(2-thienyl)-1,3,5-triazin                          |
| 23       | H-              | H-              | —                                  | —                                  | 169-171                | 2-Amino-4,6-bis(1,5-dimethyl-pyrrol-2-yl)-1,3,5-triazin           |
| 24       | H-              | H-              | —                                  | —                                  | >300                   | 2-Amino-4,6-bis(2-pyridyl)-1,3,5-triazin                          |
| 25       | H-              | H-              | —                                  | —                                  | 326-328                | 2-Amino-4,6-bis(3-pyridyl)-1,3,5-triazin                          |

| Beispiel | -R1 | -R2 | -R3                                                                                 | -R4                                                                                 | Fp<br>[°C] | Chemische<br>Bezeichnung                                     |
|----------|-----|-----|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------|--------------------------------------------------------------|
| 26       | H-  | H-  |    |    | >300       | 2-Amino-4,6-bis(4-pyridyl)-1,3,5-triazin                     |
| 27       | H-  | H-  |    |    | 165-166    | 2-Amino-4-(2,3-dimethoxyphenyl)-1,3,5-triazin                |
| 28       | H-  | H-  |    |    | 169-171    | 2-Amino-4-(3,5-dimethoxyphenyl)-1,3,5-triazin                |
| 29       | H-  | H-  |    |    | 152-155    | 2-Amino-4-(2-chlorophenyl)-6-(3-methoxyphenyl)-1,3,5-triazin |
| 30       | H-  | H-  |  |  | 165-167    | 2-Amino-4-(3-chlorophenyl)-6-(3-methoxyphenyl)-1,3,5-triazin |
| 31       | H-  | H-  |  |  | 197-199    | 2-Amino-4-(4-chlorophenyl)-6-(3-methoxyphenyl)-1,3,5-triazin |
| 32       | H-  | H-  |  |  | 139-141    | 2-Amino-4-(2-methylphenyl)-6-(3-methoxyphenyl)-1,3,5-triazin |
| 33       | H-  | H-  |  |  | 166-168    | 2-Amino-4-(3-methoxyphenyl)-6-(3-methylphenyl)-1,3,5-triazin |
| 34       | H-  | H-  |  |  | 184-186    | 2-Amino-4-(3-methoxyphenyl)-6-(4-methylphenyl)-1,3,5-triazin |
| 35       | H-  | H-  |  | -NH <sub>2</sub>                                                                    | 218-221    | 2,4-Diamino-6-(3-methoxyphenyl)-1,3,5-triazin                |

| Beispiel | -R <sup>1</sup> | -R <sup>2</sup> | -R <sup>3</sup> | -R <sup>4</sup> | F <sub>p</sub><br>[°C] | Chemische<br>Bezeichnung                                          |
|----------|-----------------|-----------------|-----------------|-----------------|------------------------|-------------------------------------------------------------------|
| 36       | H-              | H-              | OH              | HO              | 274-277                | 2-Amino-4-(2,3-dihydroxyphenyl)-6-(3-hydroxyphenyl)-1,3,5-triazin |
| 37       | H-              | H-              | OH              | OH              | 290-293                | 2-Amino-4-(3,5-dihydroxyphenyl)-6-(3-hydroxyphenyl)-1,3,5-triazin |
| 38       | H-              | H-              | OH              | Cl              | 212-214                | 2-Amino-4-(2-chlorophenyl)-6-(3-hydroxyphenyl)-1,3,5-triazin      |
| 39       | H-              | H-              | OH              | Cl              | 233-236                | 2-Amino-4-(3-chlorophenyl)-6-(3-hydroxyphenyl)-1,3,5-triazin      |
| 40       | H-              | H-              | OH              | Cl              | 275-277                | 2-Amino-4-(4-chlorophenyl)-6-(3-hydroxyphenyl)-1,3,5-triazin      |
| 41       | H-              | H-              | OH              | Me              | 205-206                | 2-Amino-4-(2-methylphenyl)-6-(3-hydroxyphenyl)-1,3,5-triazin      |
| 42       | H-              | H-              | OH              | Me              | 204-205                | 2-Amino-4-(3-hydroxyphenyl)-6-(3-methylphenyl)-1,3,5-triazin      |
| 43       | H-              | H-              | OH              | Me              | 241-243                | 2-Amino-4-(3-hydroxyphenyl)-6-(4-methylphenyl)-1,3,5-triazin      |
| 44       | H-              | H-              | Methyl-         | O               | 246-247                | 2-Amino-4-phenoxy-6-methyl-1,3,5-triazin                          |
| 45       | H-              | H-              |                 | Methyl-         | 153-156                | 2-Amino-4-phenyl-6-methyl-1,3,5-triazin                           |

| Beispiel | -R <sup>1</sup> | -R <sup>2</sup> | -R <sup>3</sup>                                                                     | -R <sup>4</sup>                                                                     | Fp<br>[°C] | Chemische<br>Bezeichnung                                |
|----------|-----------------|-----------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------|---------------------------------------------------------|
| 46       | H-              | H-              |    |    | 189-190    | 2-Amino-4-phenoxy-6-phenyl-1,3,5-triazin                |
| 47       | H-              | H-              |   |   | 184-185    | 2-Amino-4-(3-methoxyphenyl)-6-phenyl-1,3,5-triazin      |
| 48       | H-              | H-              |  |  | 225-227    | 2-Amino-4-(3-hydroxyphenyl)-6-phenyl-1,3,5-triazin      |
| 49       | H-              | H-              |  |  | 168-170    | 2-Amino-4-(3-acetoxyphenyl)-6-phenyl-1,3,5-triazin      |
| 50       | H-              | H-              |  |  | 174-176    | 2-Amino-4-(3,5-dimethoxyphenyl)-6-phenyl-1,3,5-triazin  |
| 51       | H-              | H-              |  |  | 290-292    | 2-Amino-4-(3,5-dihydroxyphenyl)-6-phenyl-1,3,5-triazin  |
| 52       | H-              | H-              |  |  | 207-209    | 2-Amino-4-(4-methoxyphenyl)-6-phenyl-1,3,5-triazin      |
| 53       | H-              | H-              |  |  | 167-168    | 2-Amino-4-phenyl-6-cyclohexyl-1,3,5-triazin             |
| 54       | H-              | H-              |  |  | 202-204    | 2-Amino-4-phenyl-6-(3-methoxy-cyclohexyl)-1,3,5-triazin |
| 55       | H-              | H-              |  |  | 148-152    | 2-Amino-4-phenyl-6-(3-hydroxy-cyclohexyl)-1,3,5-triazin |

| Beispiel | -R <sup>1</sup> | -R <sup>2</sup> | -R <sup>3</sup> | -R <sup>4</sup> | Fp<br>[°C] | Chemische<br>Bezeichnung                                     |
|----------|-----------------|-----------------|-----------------|-----------------|------------|--------------------------------------------------------------|
| 56       | H-              | H-              |                 |                 | 129-137    | 2-Amino-4-phenyl-6-(4-methoxy-cyclohexyl)-1,3,5-triazin      |
| 57       | H-              | H-              |                 |                 | 189-190    | 2-Amino-4-phenyl-6-(4-hydroxy-cyclohexyl)-1,3,5-triazin      |
| 58       | H-              | H-              |                 |                 | 180-182    | 2-Amino-4-(3-methoxymethylphenyl)-6-phenyl-1,3,5-triazin     |
| 59       | H-              | H-              |                 |                 | 200-202    | 2-Amino-4-(3-hydroxymethylphenyl)-6-phenyl-1,3,5-triazin     |
| 60       | H-              | H-              |                 |                 | 157-159    | 2-Amino-4-(3-(1-hydroxyethyl)-phenyl)-6-phenyl-1,3,5-triazin |
| 61       | H-              | H-              |                 |                 | 191-193    | 2-Amino-4-(3-acetylphenyl)-6-phenyl-1,3,5-triazin            |
| 62       | H-              | H-              |                 |                 | 162-165    | 2-Amino-4-phenyl-6-methoxymethyl-1,3,5-triazin               |
| 63       | H-              | H-              |                 |                 | 203-205    | 2-Amino-4-(carboxymethyl)-6-phenyl-1,3,5-triazin             |
| 64       | H-              | H-              |                 |                 | 210-213    | 2-Amino-4-cyano-6-phenyl-1,3,5-triazin                       |
| 65       | H-              | H-              |                 |                 | 167-170    | 2-Amino-4-(3-aminophenyl)-6-phenyl-1,3,5-triazin             |

| Beispiel | -R <sup>1</sup> | -R <sup>2</sup> | -R <sup>3</sup>                                                                     | -R <sup>4</sup>                                                                     | Fp<br>[°C] | Chemische<br>Bezeichnung                                      |
|----------|-----------------|-----------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------|---------------------------------------------------------------|
| 66       | H-              | H-              |    |    | 222-224    | 2-Amino-4-(4-aminophenyl)-6-phenyl-1,3,5-triazin              |
| 67       | H-              | H-              |   | NHAc                                                                                | 224-228    | 2-Amino-4-(3-acetylaminophenyl)-6-phenyl-1,3,5-triazin        |
| 68       | H-              | H-              |  |  | 286-289    | 2-Amino-4-(4-acetylaminophenyl)-6-phenyl-1,3,5-triazin        |
| 69       | H-              | H-              |  | Me                                                                                  | 181-182    | 2-Amino-4-(3-methyl-4-aminophenyl)-6-phenyl-1,3,5-triazin     |
| 70       | H-              | H-              |  | NH <sub>2</sub>                                                                     | 191-192    | 2-Amino-4-(3-amino-4-methylphenyl)-6-phenyl-1,3,5-triazin     |
| 71       | H-              | H-              |  | NHAc                                                                                | 297-299    | 2-Amino-4-(3-acetylamo-4-methylphenyl)-6-phenyl-1,3,5-triazin |
| 72       | H-              | H-              |  | Me                                                                                  | 283        | 2-Amino-4-(3-acetylaminophenyl)-6-phenyl-1,3,5-triazin        |
| 73       | H-              | H-              |  |  | 207-209    | 2-Amino-4-phenylamino-6-phenyl-1,3,5-triazin                  |
| 74       | H-              | H-              |  |  | 164-166    | 2-Amino-4-(2-nitrophenyl)-6-phenyl-1,3,5-triazin              |
| 75       | H-              | H-              |                                                                                     |  | 221-223    | 2-Amino-4-(3-nitrophenyl)-6-phenyl-1,3,5-triazin              |

| Beispiel | -R <sup>1</sup> | -R <sup>2</sup> | -R <sup>3</sup>                                                                     | -R <sup>4</sup>                                                                     | Fp<br>[°C] | Chemische<br>Bezeichnung                                  |
|----------|-----------------|-----------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------|-----------------------------------------------------------|
| 76       | H-              | H-              |   |   | 198-200    | 2-Amino-4-(4-nitrophenyl)-6-phenyl-1,3,5-triazin          |
| 77       | H-              | H-              |  |  | 178-182    | 2-Amino-4-(4-methyl-3-nitrophenyl)-6-phenyl-1,3,5-triazin |
| 78       | H-              | H-              |  |  | 206-208    | 2-Amino-4-(3-methyl-4-nitrophenyl)-6-phenyl-1,3,5-triazin |
| 79       | H-              | H-              |  |  | 250-254    | 2-Amino-4-(1,3-pyrimidin-2-yl)-6-phenyl-1,3,5-triazin     |
| 80       | H-              | H-              |  |  | 266-269    | 2-Amino-4-(1,3-pyrimidin-5-yl)-6-phenyl-1,3,5-triazin     |
| 81       | H-              | H-              |  |  | 227-229    | 2-Amino-4-(2-pyridyl)-6-phenyl-1,3,5-triazin              |
| 82       | H-              | H-              |  |  | 209-210    | 2-Amino-4-(2-pyridyl)-6-phenyl-1,3,5-triazin              |
| 83       | H-              | H-              |  |  | 205-206    | 2-Amino-4-(3-pyridyl)-6-phenyl-1,3,5-triazin              |
| 84       | H-              | H-              |  |  | 220-222    | 2-Amino-4-(6-chlor-3-pyridyl)-6-phenyl-1,3,5-triazin      |
| 85       | H-              | H-              |  |  | 226-228    | 2-Amino-4-(6-methyl-3-pyridyl)-6-phenyl-1,3,5-triazin     |

| Beispiel | -R <sup>1</sup> | -R <sup>2</sup> | -R <sup>3</sup>                                                                     | -R <sup>4</sup> | Fp<br>[°C] | Chemische<br>Bezeichnung                                            |
|----------|-----------------|-----------------|-------------------------------------------------------------------------------------|-----------------|------------|---------------------------------------------------------------------|
| 86       | H-              | H-              |    | Me              | 223-225    | 2-Amino-4-(2-methyl-3-pyridyl)-6-phenyl-1,3,5-triazin               |
| 87       | H-              | H-              |    | MeS             | 225-229    | 2-Amino-4-(2-methylthio-3-pyridyl)-6-phenyl-1,3,5-triazin           |
| 88       | H-              | H-              |   |                 | 192-193    | 2-Amino-4-phenyl-6-(4-pyridyl-methyl)-1,3,5-triazin                 |
| 89       | H-              | H-              |  |                 | 201-203    | 2-Amino-4-(2-(3-pyridyl)-ethylen)-6-phenyl-1,3,5-triazin            |
| 90       | H-              | H-              |  |                 | 259-261    | 2-Amino-4-(2-(4-pyridyl)-ethylen)-6-phenyl-1,3,5-triazin            |
| 91       | H-              | H-              |  | Me              | 164-166    | 2-Amino-4-(1,5-dimethyl-pyrrol-2-yl)-6-phenyl-1,3,5-triazin         |
| 92       | H-              | H-              |  | Me              | 227-229    | 2-Amino-4-(1-methyl-imidazol-2-yl)-6-phenyl-1,3,5-triazin           |
| 93       | H-              | H-              |  | Me              | 264-266    | 2-Amino-4-(1-methyl-imidazol-2-yl)-6-(4-methylphenyl)-1,3,5-triazin |
| 94       | H-              | H-              |  | Me              | 206-209    | 2-Amino-4-(1-methyl-pyrazol-4-yl)-6-phenyl-1,3,5-triazin            |
| 95       | H-              | H-              |  | Me              | 237-238    | 2-Amino-4-(1,5-dimethyl-pyrazol-3-yl)-6-phenyl-1,3,5-triazin        |

| Beispiel | -R <sup>1</sup> | -R <sup>2</sup> | -R <sup>3</sup>                                                                     | -R <sup>4</sup>                                                                     | Fp<br>[°C] | Chemische<br>Bezeichnung                                            |
|----------|-----------------|-----------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------|
| 96       | H-              | H-              |  |    | 223-225    | 2-Amino-4-(4,5-dichloro-(1,2-thiazol)-3-yl)-6-phenyl-1,3,5-triazin  |
| 97       | H-              | H-              |  |    | 206-209    | 2-Amino-4-(2,4-dimethyl-(1,3-thiazo)-5-yl)-6-phenyl-1,3,5-triazin   |
| 98       | H-              | H-              |  |   | 203-205    | 2-Amino-4-(4-methyl-(1-thia-2,3-diazo)-5-yl)-6-phenyl-1,3,5-triazin |
| 99       | H-              | H-              |  |  | 221-223    | 2-Amino-4-(oxazol-5-yl)-6-phenyl-1,3,5-triazin                      |
| 100      | H-              | H-              |  |  | 237-239    | 2-Amino-4-(3-methyl-furan-2-yl)-6-phenyl-1,3,5-triazin              |
| 101      | H-              | H-              |  |  | 230-232    | 2-Amino-4-(2,3-methylendioxophenyl)-6-phenyl-1,3,5-triazin          |
| 102      | H-              | H-              |  |  | 237-239    | 2-Amino-4-(3,4-methylendioxophenyl)-6-phenyl-1,3,5-triazin          |
| 103      | H-              | H-              |  | -COOMe                                                                              | 267-270    | 2-Amino-4-carboxymethyl-6-(3-pyridyl)-1,3,5-triazin                 |
| 104      | H-              | H-              |  | t-Butyl-                                                                            | 133-134    | 2-Amino-4-(3-pyridyl)-6-tert.-butyl-1,3,5-triazin                   |
| 105      | H-              | H-              |  | ▽                                                                                   | 269-272    | 2-Amino-4-(3-pyridyl)-6-cyclopropyl-1,3,5-triazin                   |

| Beispiel | -R <sup>1</sup> | -R <sup>2</sup> | -R <sup>3</sup> | -R <sup>4</sup> | Fp<br>[°C] | Chemische<br>Bezeichnung                                 |
|----------|-----------------|-----------------|-----------------|-----------------|------------|----------------------------------------------------------|
| 106      | H-              | H-              |                 |                 | 201-202    | 2-Amino-4-(3-pyridyl)-6-cyclopenty-1,3,5-triazin         |
| 107      | H-              | H-              |                 |                 | 195-196    | 2-Amino-4-(3-pyridyl)-6-cyclohexyl-1,3,5-triazin         |
| 108      | H-              | H-              |                 |                 | 160-172    | 2-Amino-4-(3-pyridyl)-6-cycloheptyl-1,3,5-triazin        |
| 109      | H-              | H-              |                 |                 | 218-220    | 2-Amino-4-(3-pyridyl)-6-(cyclopenten-1-yl)-1,3,5-triazin |
| 110      | H-              | H-              |                 |                 | 156-157    | 2-Amino-4-(3-pyridyl)-6-(cyclohexen-1-yl)-1,3,5-triazin  |
| 111      | H-              | H-              |                 |                 | 198-200    | 2-Amino-4-(3-pyridyl)-6-(4-pyridyl-methyl)-1,3,5-triazin |
| 112      | H-              | H-              |                 |                 | 213-214    | 2-Amino-4-(3-pyridyl)-6-benzyl-1,3,5-triazin             |
| 113      | H-              | H-              |                 |                 | 227-230    | 2-Amino-4-(3-pyridyl)-6-(2-phenylethyl)-1,3,5-triazin    |
| 114      | H-              | H-              |                 |                 | 206-208    | 2-Amino-4-(3-pyridyl)-6-(2-phenylethylene)-1,3,5-triazin |
| 115      | H-              | H-              |                 |                 | 215-217    | 2-Amino-4-(3-pyridyl)-6-(2-phenylethini)-1,3,5-triazin   |

| Beispiel | -R <sup>1</sup> | -R <sup>2</sup> | -R <sup>3</sup>                                                                      | -R <sup>4</sup> | Fp<br>[°C] | Chemische<br>Bezeichnung                                   |
|----------|-----------------|-----------------|--------------------------------------------------------------------------------------|-----------------|------------|------------------------------------------------------------|
| 116      | H-              | H-              |    |                 | 247-249    | 2-Amino-4-(3-pyridyl)-6-phenyl-1,3,5-triazin               |
| 117      | H-              | H-              |    |                 | 220-222    | 2-Amino-4-(3-pyridyl)-6-(1-naphthyl)-1,3,5-triazin         |
| 118      | H-              | H-              |    |                 | 233-234    | 2-Amino-4-(3-pyridyl)-6-(2-naphthyl)-1,3,5-triazin         |
| 119      | H-              | H-              |    |                 | 215-217    | 2-Amino-4-(3-pyridyl)-6-(4-tert-butylphenyl)-1,3,5-triazin |
| 120      | H-              | H-              |   |                 | 180-183    | 2-Amino-4-(3-pyridyl)-6-(3-methylphenyl)-1,3,5-triazin     |
| 121      | H-              | H-              |  |                 | 207-210    | 2-Amino-4-(3-pyridyl)-6-(4-methylphenyl)-1,3,5-triazin     |
| 122      | H-              | H-              |  |                 | 191-193    | 2-Amino-4-(3-pyridyl)-6-(4-ethyl-phenyl)-1,3,5-triazin     |
| 123      | H-              | H-              |  |                 | 144-146    | 2-Amino-4-(3-pyridyl)-6-(3-ethyl-phenyl)-1,3,5-triazin     |
| 124      | H-              | H-              |  |                 | 190-192    | 2-Amino-4-(3-pyridyl)-6-(4-n-propylphenyl)-1,3,5-triazin   |
| 125      | H-              | H-              |  |                 | 196-199    | 2-Amino-4-(3-pyridyl)-6-(3,4-dimethylphenyl)-1,3,5-triazin |

| Beispiel | -R <sup>1</sup> | -R <sup>2</sup> | -R <sup>3</sup> | -R <sup>4</sup> | F <sub>P</sub><br>[°C] | Chemische<br>Bezeichnung                                       |
|----------|-----------------|-----------------|-----------------|-----------------|------------------------|----------------------------------------------------------------|
| 126      | H-              | H-              |                 | Me              | 248-252                | 2-Amino-4-(3-pyridyl)-6-(3,5-dimethylphenyl)-1,3,5-triazin     |
| 127      | H-              | H-              |                 | Cl              | 207-209                | 2-Amino-4-(3-pyridyl)-6-(3-chlor-4-methylphenyl)-1,3,5-triazin |
| 128      | H-              | H-              |                 | Me              | 216-218                | 2-Amino-4-(3-pyridyl)-6-(4-chlor-3-methylphenyl)-1,3,5-triazin |
| 129      | H-              | H-              |                 | Cl              | 214-217                | 2-Amino-4-(3-pyridyl)-6-(2-chlorophenyl)-1,3,5-triazin         |
| 130      | H-              | H-              |                 | Cl              | 223-224                | 2-Amino-4-(3-pyridyl)-6-(3-chlorophenyl)-1,3,5-triazin         |
| 131      | H-              | H-              |                 | Cl              | 240-241                | 2-Amino-4-(3-pyridyl)-6-(4-chlorophenyl)-1,3,5-triazin         |
| 132      | H-              | H-              |                 | Cl              | 249-251                | 2-Amino-4-(3-pyridyl)-6-(3,4-dichlorophenyl)-1,3,5-triazin     |
| 133      | H-              | H-              |                 | F               | 193-195                | 2-Amino-4-(3-pyridyl)-6-(2-fluorophenyl)-1,3,5-triazin         |
| 134      | H-              | H-              |                 | F               | 222-227                | 2-Amino-4-(3-pyridyl)-6-(3-fluorophenyl)-1,3,5-triazin         |
| 135      | H-              | H-              |                 | F               | 267-269                | 2-Amino-4-(3-pyridyl)-6-(4-fluorophenyl)-1,3,5-triazin         |

| Beispiel | -R <sup>1</sup> | -R <sup>2</sup> | -R <sup>3</sup> | -R <sup>4</sup> | Fp<br>[°C] | Chemische<br>Bezeichnung                                       |
|----------|-----------------|-----------------|-----------------|-----------------|------------|----------------------------------------------------------------|
| 136      | H-              | H-              |                 | F               | 236-238    | 2-Amino-4-(3-pyridyl)-6-(3,4-difluorophenyl)-1,3,5-triazin     |
| 137      | H-              | H-              |                 | CF <sub>3</sub> | 177-179    | 2-Amino-4-(3-pyridyl)-6-(3-trifluormethylphenyl)-1,3,5-triazin |
| 138      | H-              | H-              |                 | CF <sub>3</sub> | 220-222    | 2-Amino-4-(3-pyridyl)-6-(4-trifluormethylphenyl)-1,3,5-triazin |
| 139      | H-              | H-              |                 | OMe             | 234-237    | 2-Amino-4-(3-pyridyl)-6-(3-methoxyphenyl)-1,3,5-triazin        |
| 140      | H-              | H-              |                 | OH              | 257-259    | 2-Amino-4-(3-pyridyl)-6-(3-hydroxyphenyl)-1,3,5-triazin        |
| 141      | H-              | H-              |                 | OMe             | 250-252    | 2-Amino-4-(3-pyridyl)-6-(2,3-dimethoxyphenyl)-1,3,5-triazin    |
| 142      | H-              | H-              |                 | HO OH           | 258-260    | 2-Amino-4-(3-pyridyl)-6-(2,3-dihydroxyphenyl)-1,3,5-triazin    |
| 143      | H-              | H-              |                 | OMe OMe         | 231-233    | 2-Amino-4-(3-pyridyl)-6-(3,5-dimethoxyphenyl)-1,3,5-triazin    |
| 144      | H-              | H-              |                 | OH OH           | >320       | 2-Amino-4-(3-pyridyl)-6-(3,5-dihydroxyphenyl)-1,3,5-triazin    |

| Beispiel | -R <sup>1</sup> | -R <sup>2</sup> | -R <sup>3</sup>                                                                      | -R <sup>4</sup>    | Fp<br>[°C] | Chemische<br>Bezeichnung                                                |
|----------|-----------------|-----------------|--------------------------------------------------------------------------------------|--------------------|------------|-------------------------------------------------------------------------|
| 145      | H-              | H-              |    | OMe                | 204-207    | 2-Amino-4-(3-pyridyl)-6-(3-methoxymethylphenyl)-1,3,5-triazin           |
| 146      | H-              | H-              |    | NH <sub>2</sub>    | 247-249    | 2-Amino-4-(3-pyridyl)-6-(3-aminophenyl)-1,3,5-triazin                   |
| 147      | H-              | H-              |    | NHAc               | 300-302    | 2-Amino-4-(3-pyridyl)-6-(3-acetylaminophenyl)-1,3,5-triazin             |
| 148      | H-              | H-              |  | NO <sub>2</sub>    | 260-262    | 2-Amino-4-(3-pyridyl)-6-(3-nitrophenyl)-1,3,5-triazin                   |
| 149      | H-              | H-              |  | NO <sub>2</sub>    | 302-304    | 2-Amino-4-(3-pyridyl)-6-(4-nitrophenyl)-1,3,5-triazin                   |
| 150      | H-              | H-              |  | N-<br>C6H5         | 242-245    | 2-Amino-4-(3-pyridyl)-6-(4-N-pyrrolyl-phenyl)-1,3,5-triazin             |
| 151      | H-              | H-              |  | Cl                 | 301-303    | 2-Amino-4-(6-chloro-3-pyridyl)-6-(3-pyridyl)-1,3,5-triazin              |
| 152      | H-              | H-              |  | N(Me) <sub>2</sub> | 159-160    | 2-Amino-4-(1,5-dimethyl-pyrrrol-2-yl)-6-(3-pyridyl)-1,3,5-triazin       |
| 153      | H-              | H-              |  | N(Me) <sub>2</sub> | 269-271    | 2-Amino-4-(1-methyl-(1,2-pyrazol)-4-yl)-6-(3-pyridyl)-1,3,5-triazin     |
| 154      | H-              | H-              |  | N(Me) <sub>2</sub> | 284-287    | 2-Amino-4-(1,5-dimethyl-(1,2-pyrazol)-3-yl)-6-(3-pyridyl)-1,3,5-triazin |

| Beispiel | -R <sup>1</sup> | -R <sup>2</sup> | -R <sup>3</sup> | -R <sup>4</sup> | Fp<br>[°C]  | Chemische<br>Bezeichnung                                                  |
|----------|-----------------|-----------------|-----------------|-----------------|-------------|---------------------------------------------------------------------------|
| 155      | H-              | H-              |                 |                 | 223 (Zers.) | 2-Amino-4-(1,2-oxazol-5-yl)-6-(3-pyridyl)-1,3,5-triazin                   |
| 156      | H-              | H-              |                 |                 | 239-241     | 2-Amino-4-(2,4-dimethyl-(1,3-thiazol)-5-yl)-6-(3-pyridyl)-1,3,5-triazin   |
| 157      | H-              | H-              |                 |                 | 268-270     | 2-Amino-4-(4,5-dichlor-(1,2-thiazol)-3-yl)-6-(3-pyridyl)-1,3,5-triazin    |
| 158      | H-              | H-              |                 |                 | 268-270     | 2-Amino-4-(4-methyl-(1-thia-2,3-diazol)-5-yl)-6-(3-pyridyl)-1,3,5-triazin |
| 159      | H-              | H-              |                 |                 | 247-250     | 2-Amino-4-(chinolin-2-yl)-6-(3-pyridyl)-1,3,5-triazin                     |
| 160      | H-              | H-              |                 |                 | 296-298     | 2-Amino-4-(chinolin-3-yl)-6-(3-pyridyl)-1,3,5-triazin                     |
| 161      | H-              | H-              |                 |                 | 239-241     | 2-Amino-4-(benzof[b]furan-2-yl)-6-(3-pyridyl)-1,3,5-triazin               |
| 162      | H-              | H-              |                 |                 | 236-238     | 2-Amino-4-(3-pyridyl)-6-(2,3-methylenedioxophenyl)-1,3,5-triazin          |
| 163      | H-              | H-              |                 |                 | 238-241     | 2-Amino-4-(3-pyridyl)-6-(3,4-methylenedioxophenyl)-1,3,5-triazin          |
| 164      | H-              | H-              |                 |                 | 190-191     | 2-Amino-4-(3-pyridyl)-6-(4-tetrahydropyranyl)-1,3,5-triazin               |

| Beispiel | -R <sup>1</sup> | -R <sup>2</sup> | -R <sup>3</sup> | -R <sup>4</sup> | Fp<br>[°C] | Chemische<br>Bezeichnung                                        |
|----------|-----------------|-----------------|-----------------|-----------------|------------|-----------------------------------------------------------------|
| 165      | H-              | H-              |                 |                 | 174-176    | 2-Amino-4-(2-tetrahydrofuryl)-6-(3-pyridyl)-1,3,5-triazin       |
| 166      | H-              | H-              |                 |                 | 238-239    | 2-Amino-4-(2-furyl)-6-(3-pyridyl)-1,3,5-triazin                 |
| 167      | H-              | H-              |                 |                 | 254-257    | 2-Amino-4-(3-methyl-2-furyl)-6-(3-pyridyl)-1,3,5-triazin        |
| 168      | H-              | H-              |                 |                 | 205-208    | 2-Amino-4-(5-methyl-2-furyl)-6-(3-pyridyl)-1,3,5-triazin        |
| 169      | H-              | H-              |                 |                 | 223-224    | 2-Amino-4-(4,5-dimethyl-2-furyl)-6-(3-pyridyl)-1,3,5-triazin    |
| 170      | H-              | H-              |                 |                 | 219-222    | 2-Amino-4-(3-methoxymethyl-2-furyl)-6-(3-pyridyl)-1,3,5-triazin |
| 171      | H-              | H-              |                 |                 | 313-314    | 2-Amino-4-(5-nitro-2-furyl)-6-(3-pyridyl)-1,3,5-triazin         |
| 172      | H-              | H-              |                 |                 | 234-235    | 2-Amino-4-(3-furyl)-6-(3-pyridyl)-1,3,5-triazin                 |
| 173      | H-              | H-              |                 |                 | 207-209    | 2-Amino-4-(2-methyl-3-furyl)-6-(3-pyridyl)-1,3,5-triazin        |
| 174      | H-              | H-              |                 |                 | 180-182    | 2-Amino-4-(2,5-dimethyl-3-furyl)-6-(3-pyridyl)-1,3,5-triazin    |

| Beispiel | -R <sup>1</sup> | -R <sup>2</sup> | -R <sup>3</sup> | -R <sup>4</sup> | Fp<br>[°C] | Chemische<br>Bezeichnung                                          |
|----------|-----------------|-----------------|-----------------|-----------------|------------|-------------------------------------------------------------------|
| 175      | H-              | H-              |                 |                 | 157-159    | 2-Amino-4-(2-methyl-5-phenyl-3-furyl)-6-(3-pyridyl)-1,3,5-triazin |
| 176      | H-              | H-              |                 |                 | 242-243    | 2-Amino-4-(2-methyl-5-phenyl-3-furyl)-6-(3-pyridyl)-1,3,5-triazin |
| 177      | H-              | H-              |                 |                 | 213-217    | 2-Amino-4-(5-methyl-3-furyl)-6-(3-pyridyl)-1,3,5-triazin          |
| 178      | H-              | H-              |                 |                 | 218-220    | 2-Amino-4-(1,3-dithiolan-2-yl)-6-(3-pyridyl)-1,3,5-triazin        |
| 179      | H-              | H-              |                 |                 | 239-241    | 2-Amino-4-(2-thienyl)-6-(3-pyridyl)-1,3,5-triazin                 |
| 180      | H-              | H-              |                 |                 | 207-208    | 2-Amino-4-(3-methyl-2-thienyl)-6-(3-pyridyl)-1,3,5-triazin        |
| 181      | H-              | H-              |                 |                 | 190-193    | 2-Amino-4-(5-methyl-2-thienyl)-6-(3-pyridyl)-1,3,5-triazin        |
| 182      | H-              | H-              |                 |                 | 234-235    | 2-Amino-4-(3-thienyl)-6-(3-pyridyl)-1,3,5-triazin                 |
| 183      | H-              | H-              |                 |                 | 194-197    | 2-Amino-4-(2-methyl-3-thienyl)-6-(3-pyridyl)-1,3,5-triazin        |
| 184      | H-              | H-              |                 |                 | 226-228    | 2-Amino-4-(5-chlor-3-thienyl)-6-(3-pyridyl)-1,3,5-triazin         |

| Beispiel | -R <sup>1</sup> | -R <sup>2</sup> | -R <sup>3</sup> | -R <sup>4</sup> | Fp<br>[°C]  | Chemische<br>Bezeichnung                                                        |
|----------|-----------------|-----------------|-----------------|-----------------|-------------|---------------------------------------------------------------------------------|
| 185      | H-              | H-              |                 |                 | 236-238     | 2-Amino-4-(2,5-dichlor-3-thienyl)-6-(3-pyridyl)-1,3,5-triazin                   |
| 186      | H-              | H-              |                 |                 | 287-289     | 2-Amino-4-(5-nitro-2-thienyl)-6-(3-pyridyl)-1,3,5-triazin                       |
| 187      | H-              | H-              |                 |                 | 261-263     | 2-Amino-4-(5-nitro-3-thienyl)-6-(3-pyridyl)-1,3,5-triazin                       |
| 188      | H-              | H-              |                 |                 | 240 (Zers.) | 2-Amino-4-(5-(1,2-oxazol-3-yl)-3-thienyl)-6-(3-pyridyl)-1,3,5-triazin           |
| 189      | H-              | H-              |                 |                 | 204-206     | 2-Amino-4-(3-methyl-2-furyl)-6-(1,5-dimethyl-pyrrol-2-yl)-1,3,5-triazin         |
| 190      | H-              | H-              |                 |                 | 220-222     | 2-Amino-4-(1,5-dimethyl-pyrrol-2-yl)-6-(3-nitrophenyl)-1,3,5-triazin            |
| 191      | H-              | H-              |                 |                 | 167-170     | 2-Amino-4-(1,5-dimethyl-pyrrol-2-yl)-6-(3-chlorophenyl)-1,3,5-triazin           |
| 192      | H-              | H-              |                 |                 | 185-187     | 2-Amino-4-(1,5-dimethyl-phenyl)-6-(4-chlor-3-methyl-phenyl)-1,3,5-triazin       |
| 193      | H-              | H-              |                 |                 | 207-210     | 2-Amino-4-(1,5-dimethyl-pyrrol-2-yl)-6-(3,4-methylenedioxophenyl)-1,3,5-triazin |

Die Strukturen der zuvor synthetisierten Beispiele der Verbindungen (I) wurden unter anderem durch NMR-Spektroskopie bestätigt. Im Folgenden werden NMR-spektroskopische Daten ausgewählter Verbindungen aufgeführt.

5 **Beispiel (2)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 8.54-7.45 (10H, m, aryl-H);  
7.65 (2H, s, broad, NH<sub>2</sub>).

**Beispiel (4)**

<sup>10</sup> <sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 8.57-7.50 (10H, m, aryl-H);  
8.14 (1H, t, J= 5.5 Hz, NH); 3.55 (2H, m, N-CH<sub>2</sub>); 1.25 (3H, t, J= 6.5 Hz, CH<sub>3</sub>).

**Beispiel (11)**

<sup>15</sup> <sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.50 (2H, s, broad, OH);  
7.89-6.99 (8H, m, aryl-H); 7.57 (2H, s, broad, NH<sub>2</sub>).

**Beispiel (13)**

<sup>10</sup> <sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.48 (4H, s, broad, OH);  
7.44 (2H, s, broad, NH<sub>2</sub>); 7.34 (4H, d, J= 2.0 Hz, aryl-H);  
<sup>20</sup> 6.40 (2H, t, J= 2.0 Hz, aryl-H).

**Beispiel (20)**

<sup>15</sup> <sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 7.71-6.69 (8H, m, aryl-H);  
7.47 (2H, s, broad, NH<sub>2</sub>); 5.87 (2H, q, J= 5.5 Hz, NH); 2.75 (6H, d, J= 5.5 Hz, CH<sub>3</sub>).

25

**Beispiel (36)**

<sup>10</sup> <sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 13.60, 9.78, 9.00 (3H, 3s, broad, OH);  
8.04, 7.91 (2H, 2s, broad, NH<sub>2</sub>); 7.88-6.72 (7H, m, aryl-H).

<sup>30</sup> **Beispiel (37)**

<sup>15</sup> <sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 7.93-6.94 (4H, m, aryl-H);  
7.34 (2H, d, J= 2.0 Hz, aryl-H); 6.45 (1H, t, J= 2.0 Hz, aryl-H);  
7.62 (2H, s, broad, NH<sub>2</sub>); 5.47 (3H, s, broad, OH).

<sup>35</sup> **Beispiel (39)**

<sup>10</sup> <sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.70 (1H, s, broad, OH);  
8.45-6.94 (8H, m, aryl-H); 7.71 (2H, s, broad, NH<sub>2</sub>).

**Beispiel (40)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.69 (1H, s, broad, OH);  
8.46, 7.64 (4H, 2m, aryl-H); 7.95-6.94 (4H, m, aryl-H); 7.68 (2H, s, broad, NH<sub>2</sub>).

**5 Beispiel (42)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.70 (1H, s, broad, OH);  
8.62-6.94 (8H, m, aryl-H); 7.59 (2H, s, broad, NH<sub>2</sub>); 2.44 (3H, s, CH<sub>3</sub>).

**Beispiel (43)**

<sup>10</sup> <sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.62 (1H, s, broad, OH);  
8.37, 7.38 (4H, 2m, aryl-H); 7.96-6.93 (4H, m, aryl-H); 7.57 (2H, s, broad, NH<sub>2</sub>);  
2.40 (3H, s, CH<sub>3</sub>).

**Beispiel (48)**

<sup>15</sup> <sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.69 (1H, s, broad, OH);  
8.46-6.99 (9H, m, aryl-H); 7.59 (2H, s, broad, NH<sub>2</sub>).

**Beispiel (49)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 8.50-7.33 (9H, m, aryl-H);  
<sup>20</sup> 7.71 (2H, s, broad, NH<sub>2</sub>); 2.33 (3H, s, CH<sub>3</sub>).

**Beispiel (51)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.55 (2H, s, broad, OH);  
8.46-7.45 (5H, m, aryl-H); 7.56 (2H, s, broad, NH<sub>2</sub>); 7.38 (2H, d, J= 2.0 Hz, aryl-H);  
<sup>25</sup> 6.41 (1H, t, J= 2.0 Hz, aryl-H).

**Beispiel (58)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 8.52-7.50 (9H, m, aryl-H);  
7.69 (2H, s, broad, NH<sub>2</sub>); 4.53 (2H, s, CH<sub>2</sub>-O); 3.33 (3H, s, CH<sub>3</sub>).

<sup>30</sup>

**Beispiel (59)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 8.52-7.43 (9H, m, aryl-H);  
7.66 (2H, s, broad, NH<sub>2</sub>); 5.34 (1H, t, J= 5.0 Hz, OH); 4.62 (3H, s, CH<sub>3</sub>).

**35 Beispiel (60)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 8.52-7.40 (9H, m, aryl-H);  
7.66 (2H, s, broad, NH<sub>2</sub>); 5.31 (1H, d, J= 3.5 Hz, OH); 4.84 (1H, m, CH);  
1.39 (3H, d, J= 6.5 Hz, CH<sub>3</sub>).

**Beispiel (61)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.10-7.50 (9H, m, aryl-H);  
7.80 (2H, s, broad, NH<sub>2</sub>); 2.68 (3H, s, CH<sub>3</sub>).

**5 Beispiel (65)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 8.50-6.71 (9H, m, aryl-H);  
7.52 (2H, s, broad, NH<sub>2</sub>); 5.28 (2H, s, broad, NH<sub>2</sub>).

**Beispiel (66)**

<sup>10</sup> <sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 8.19, 6.64 (4H, 2m, aryl-H);  
8.47-7.47 (5H, m, aryl-H); 7.31 (2H, s, broad, NH<sub>2</sub>); 5.83 (2H, s, broad, NH<sub>2</sub>).

**Beispiel (67)**

<sup>15</sup> <sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 10.54 (1H, s, NHCO);  
8.97-7.57 (9H, m, aryl-H); 7.90 (2H, s, broad, NH<sub>2</sub>); 2.06 (3H, s, CH<sub>3</sub>).

**Beispiel (69)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 8.46-6.69 (8H, m, aryl-H);  
7.31 (2H, s, broad, NH<sub>2</sub>); 5.61 (2H, s, broad, NH<sub>2</sub>); 2.14 (3H, s, CH<sub>3</sub>).

20

**Beispiel (70)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 8.45-6.68 (8H, m, aryl-H);  
7.32 (2H, s, broad, NH<sub>2</sub>); 5.61 (2H, s, broad, NH<sub>2</sub>); 2.14 (3H, s, CH<sub>3</sub>).

**25 Beispiel (71)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.60 (1H, s, NH);  
8.51-7.33 (8H, m, aryl-H); 7.60 (2H, s, broad, NH<sub>2</sub>); 2.29, 2.08 (6H, 2s, CH<sub>3</sub>).

**Beispiel (77)**

<sup>30</sup> <sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.20-7.51 (9H, m, aryl-H);  
7.84 (2H, s, broad, NH<sub>2</sub>).

**Beispiel (82)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.59, 8.76, 8.72, 7.57 (4H, 4m, pyridyl);  
<sup>35</sup> 8.47-7.50 (5H, m, aryl-H); 7.53 (2H, s, broad, NH<sub>2</sub>).

**Beispiel (85)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.47, 8.63, 7.45 (3H, 3m, pyridyl-H);  
8.52-7.50 (5H, m, aryl-H); 7.75 (2H, s, broad, NH<sub>2</sub>); 2.58 (3H, s, CH<sub>3</sub>).

**Bispiel (102)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 8.50-7.47 (5H, m, aryl-H);  
8.12, 7.91, 7.09 (3H, 3m, piperonyl-H); 7.57 (2H, s, broad, NH<sub>2</sub>); 6.18 (2H, s, CH<sub>2</sub>).

5

**Beispiel (121)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.59, 8.78, 8.72, 7.59 (4H, 4m, pyridyl);  
8.39-7.37 (4H, 2m, aryl-H); 7.75 (2H, s, broad, NH<sub>2</sub>); 2.42 (3H, s, CH<sub>3</sub>).

**10 Beispiel (127)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.56, 8.78, 8.72, 7.59 (4H, 4m, pyridyl-H);  
8.43, 8.33, 7.55 (3H, 3m, aryl-H); 7.83 (2H, s, broad, NH<sub>2</sub>); 2.43 (3H, s, CH<sub>3</sub>).

**Beispiel (128)**

<sup>15</sup> <sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.60, 8.78, 8.74, 7.58 (4H, 4m, pyridyl-H);  
8.44, 8.29, 7.59 (3H, 3m, aryl-H); 7.82 (2H, s, broad, NH<sub>2</sub>); 2.46 (3H, s, CH<sub>3</sub>).

**Beispiel (130)**

<sup>16</sup> <sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.67, 8.79, 8.74, 7.62 (4H, 4m, pyridyl);  
8.47-7.52 (4H, m, aryl-H); 7.89 (2H, s, broad, NH<sub>2</sub>).

**Beispiel (131)**

<sup>17</sup> <sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.59, 8.78, 8.71, 7.64 (4H, 4m, pyridyl-H);  
8.49, 7.63 (4H, 2m, aryl-H); 7.83 (2H, s, broad, NH<sub>2</sub>).

25

**Beispiel (133)**

<sup>18</sup> <sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.50, 8.78, 8.66, 7.58 (4H, 4m, pyridyl);  
8.19-7.26 (4H, 2m, aryl-H); 7.87 (2H, s, broad, NH<sub>2</sub>).

**30 Beispiel (134)**

<sup>19</sup> <sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.60, 8.79, 8.76, 7.62 (4H, 4m, pyridyl);  
8.38-7.41 (4H, 2m, aryl-H); 7.89 (2H, s, broad, NH<sub>2</sub>).

**Beispiel (136)**

<sup>20</sup> <sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.60, 8.78, 8.74, 7.60 (4H, 4m, pyridyl-H);  
8.47-7.55 (3H, m, aryl-H); 7.88 (2H, s, broad, NH<sub>2</sub>).

**Beispiel (140)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.70 (1H, s, broad, OH);  
9.57, 8.72, 8.70, 7.60 (4H, 4m, pyridyl); 7.74 (2H, s, broad, NH<sub>2</sub>);  
7.95-6.94 (4H, m, aryl-H).

5

**Beispiel (161)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.56, 8.78, 8.70, 7.60 (4H, 4m, pyridyl-H);  
8.00 (1H, s, furyl-H); 8.01, 7.90 (2H, 2s, broad, NH<sub>2</sub>);  
7.85-7.28 (4H, m, benzofuranyl-H).

10

**Beispiel (163)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.57, 8.77, 8.72, 7.57 (4H, 4m, pyridyl);  
8.13, 7.93, 7.08 (3H, 3m, aryl-H); 7.69 (2H, s, broad, NH<sub>2</sub>); 6.15 (2H, s, CH<sub>2</sub>).

15

**Beispiel (167)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.50, 8.76, 8.62, 7.58 (4H, 4m, pyridyl);  
7.83, 6.62 (2H, 2d, J= 2.0 Hz, furyl-H); 7.70 (2H, s, broad, NH<sub>2</sub>); 2.59 (3H, s, CH<sub>3</sub>).

20

**Beispiel (177)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.52, 8.76, 8.65, 7.57 (4H, 4m, pyridyl-H);  
8.38, 6.68 (2H, 2d, J= 1.0 Hz, furyl-H); 7.64 (2H, s, broad, NH<sub>2</sub>); 2.35 (3H, s, CH<sub>3</sub>).

25

**Beispiel (181)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.50, 8.77, 8.64, 7.52 (4H, 4m, pyridyl);  
7.71 (2H, s, broad, NH<sub>2</sub>); 7.94, 6.99 (2H, 2d, J= 3.5 Hz, thienyl-H);  
2.54 (3H, s, CH<sub>3</sub>).

30

**Beispiel (186)**

<sup>1</sup>H-NMR (250 MHz; DMSO-d<sub>6</sub>): δ [ppm] = 9.51, 8.78, 8.66, 7.59 (4H, 4m, pyridyl-H);  
8.17, 8.07 (2H, 2d, J= 4.0 Hz, thienyl-H); 8.07 (2H, s, broad, NH<sub>2</sub>).

Die nachfolgende Tabelle enthält KiA<sub>1</sub> (human) Rezeptorbindungswerte.

Tabelle 6:

| Beispiel-Nr.: | KiA <sub>1</sub><br>[nM] |
|---------------|--------------------------|
| 2             | 14,8                     |
| 10            | 14                       |
| 11            | 2,4                      |
| 36            | 1,7                      |
| 37            | 1,9                      |
| 39            | 7,2                      |
| 42            | 8,2                      |
| 48            | 12,3                     |
| 49            | 12,3                     |
| 51            | 2,6                      |
| 58            | 4,4                      |
| 61            | 19,9                     |
| 65            | 15,5                     |
| 67            | 18,6                     |
| 75            | 4                        |
| 82            | 18                       |
| 102           | 12,3                     |
| 121           | 16,5                     |
| 130           | 11,1                     |
| 133           | 17,8                     |
| 134           | 13                       |
| 140           | 19,8                     |
| 163           | 15,5                     |
| 167           | 2,6                      |
| 181           | 19,9                     |

Die nachfolgende Tabelle enthält  $K_{iA_3}$  (human) Rezeptorbindungswerte.

Tabelle 7:

| Beispiel Nr. | $K_{iA_3}$<br>[nM] |
|--------------|--------------------|
| 4            | 20                 |
| 13           | 16                 |
| 20           | 4,2                |
| 40           | 4,5                |
| 43           | 5,6                |
| 59           | 9,8                |
| 60           | 14,5               |
| 65           | 11                 |
| 66           | 9,2                |
| 67           | 14                 |
| 69           | 12,5               |
| 70           | 2,3                |
| 71           | 8,1                |
| 77           | 8,0                |
| 85           | 17                 |
| 127          | 8,5                |
| 128          | 19,5               |
| 131          | 13                 |
| 136          | 10                 |
| 161          | 15                 |
| 177          | 18,5               |
| 181          | 16,5               |
| 186          | 13                 |

5

Die Verbindungen der allgemeinen Formel (I) können allein oder in Kombination mit anderen erfindungsgemäßen Wirkstoffen, gegebenenfalls auch in Kombination mit weiteren pharmakologisch aktiven Wirkstoffen, zur Anwendung gelangen. Geeignete Anwendungsformen sind beispielsweise Tabletten, Kapseln, Zäpfchen, Lösungen, Säfte, Emulsionen oder dispersible Pulver. Entsprechende Tabletten können beispielsweise durch Mischen des oder der Wirkstoffe mit bekannten Hilfsstoffen, beispielsweise inerten Verdünnungsmitteln, wie Calciumcarbonat, Calciumphosphat oder Milchzucker, Sprengmitteln, wie Maisstärke oder Alginäsäure, Bindemitteln, wie

Stärke oder Gelatine, Schmiermitteln, wie Magnesiumstearat oder Talk, und/oder Mitteln zur Erzielung des Depoteffektes, wie Carboxymethylcellulose, Celluloseacetatphthalat, oder Polyvinylacetat erhalten werden. Die Tabletten können auch aus mehreren Schichten bestehen.

5

- Entsprechend können Dragees durch Überziehen von analog den Tabletten hergestellten Kernen mit üblicherweise in Drageeüberzügen verwendeten Mitteln, beispielsweise Kollidon oder Schellack, Gummi arabicum, Talk, Titandioxid oder Zucker, hergestellt werden. Zur Erzielung eines Depoteffektes oder zur Vermeidung von Inkompatibilitäten kann der Kern auch aus mehreren Schichten bestehen. Desgleichen kann auch die Drageehülle zur Erzielung eines Depoteffektes aus mehreren Schichten bestehen wobei die oben bei den Tabletten erwähnten Hilfsstoffe verwendet werden können.
- 15 Säfte der erfindungsgemäßen Wirkstoffe beziehungsweise Wirkstoffkombinationen können zusätzlich noch ein Süßungsmittel, wie Saccharin, Cyclamat, Glycerin oder Zucker sowie ein geschmacksverbesserndes Mittel, z.B. Aromastoffe, wie Vanillin oder Orangenextrakt, enthalten. Sie können außerdem Suspendierhilfsstoffe oder Dickungsmittel, wie Natriumcarboxymethylcellulose, Netzmittel, beispielsweise
- 20 Kondensationsprodukte von Fettalkoholen mit Ethylenoxid, oder Schutzstoffe, wie p-Hydroxybenzoate, enthalten.

- Injektionslösungen werden in üblicher Weise, z.B. unter Zusatz von Konservierungsmitteln, wie p-Hydroxybenzoaten, oder Stabilisatoren, wie
- 25 Alkalosalzen der Ethyldiamintetraessigsäure hergestellt und in Injektionsflaschen oder Ampullen abgefüllt.

- Die eine oder mehrere Wirkstoffe beziehungsweise Wirkstoffkombinationen enthaltenden Kapseln können beispielsweise hergestellt werden, indem man die
- 30 Wirkstoffe mit inerten Trägern, wie Milchzucker oder Sorbit, mischt und in Gelatinekapseln einkapselt.

- Geeignete Zäpfchen lassen sich beispielsweise durch Vermischen mit dafür vorgesehenen Trägermitteln, wie Neutralfetten oder Polyäthylenglykol
- 35 beziehungsweise dessen Derivaten, herstellen.

Eine therapeutisch wirksame Tagesdosis beträgt zwischen 1 und 800 mg, bevorzugt 10 - 300 mg pro Erwachsener.

Die nachfolgenden Beispiele illustrieren die vorliegende Erfindung ohne sie jedoch in ihrem Umfang zu beschränken:

Pharmazeutische Formulierungsbeispiele

5

| A) | <u>Tabletten</u>    | <u>pro Tablette</u> |
|----|---------------------|---------------------|
|    | Wirkstoff           | 100 mg              |
|    | Milchzucker         | 140 mg              |
| 10 | Maisstärke          | 240 mg              |
|    | Polyvinylpyrrolidon | 15 mg               |
|    | Magnesiumstearat    | <u>5</u> mg         |
|    |                     | 500 mg              |

- 15 Der feingemahlene Wirkstoff, Milchzucker und ein Teil der Maisstärke werden miteinander vermischt. Die Mischung wird gesiebt, worauf man sie mit einer Lösung von Polyvinylpyrrolidon in Wasser befeuchtet, knetet, feuchtgranuliert und trocknet. Das Granulat, der Rest der Maisstärke und das Magnesiumstearat werden gesiebt und miteinander vermischt. Das Gemisch wird zu Tabletten geeigneter Form und  
20 Größe verpreßt.

| B) | <u>Tabletten</u>            | <u>pro Tablette</u> |
|----|-----------------------------|---------------------|
|    | Wirkstoff                   | 80 mg               |
| 25 | Maisstärke                  | 190 mg              |
|    | Milchzucker                 | 55 mg               |
|    | Mikrokristalline Cellulose  | 35 mg               |
|    | Polyvinylpyrrolidon         | 15 mg               |
|    | Natrium-carboxymethylstärke | 23 mg               |
| 30 | Magnesiumstearat            | <u>2</u> mg         |
|    |                             | 400 mg              |

- Der feingemahlene Wirkstoff, ein Teil der Maisstärke, Milchzucker, mikrokristalline Cellulose und Polyvinylpyrrolidon werden miteinander vermischt, die Mischung  
gesiebt und mit dem Rest der Maisstärke und Wasser zu einem Granulat verarbeitet,  
welches getrocknet und gesiebt wird. Dazu gibt man die Natrium-carboxymethylstärke und das Magnesiumstearat, vermischt und verpreßt das  
Gemisch zu Tabletten geeigneter Größe.

| C) | <u>Dragées</u>      | <u>pro Dragée</u> |
|----|---------------------|-------------------|
|    | Wirkstoff           | 5 mg              |
|    | Maisstärke          | 41,5 mg           |
| 5  | Milchzucker         | 30 mg             |
|    | Polyvinylpyrrolidon | 3 mg              |
|    | Magnesiumstearat    | <u>0,5 mg</u>     |
|    |                     | 80 mg             |

- 10 Der Wirkstoff, Maisstärke, Milchzucker und Polyvinylpyrrolidon werden gut gemischt und mit Wasser befeuchtet. Die feuchte Masse drückt man durch ein Sieb mit 1 mm-Maschenweite, trocknet bei ca. 45°C und schlägt das Granulat anschließend durch dasselbe Sieb. Nach dem Zumischen von Magnesiumstearat werden auf einer Tablettiermaschine gewölbte Dragéekerne mit einem Durchmesser von 6 mm gepreßt. Die so hergestellten Dragéekerne werden auf bekannte Weise mit einer Schicht überzogen, die im wesentlichen aus Zucker und Talcum besteht. Die fertigen Dragées werden mit Wachs poliert.
- 15 Durchmesser von 6 mm gepreßt. Die so hergestellten Dragéekerne werden auf bekannte Weise mit einer Schicht überzogen, die im wesentlichen aus Zucker und Talcum besteht. Die fertigen Dragées werden mit Wachs poliert.

| D) | <u>Kapseln</u>   | <u>pro Kapsel</u> |
|----|------------------|-------------------|
| 20 | Wirkstoff        | 50 mg             |
|    | Maisstärke       | 268,5 mg          |
|    | Magnesiumstearat | <u>1,5 mg</u>     |
|    |                  | 320 mg            |

25 Substanz und Maisstärke werden gemischt und mit Wasser befeuchtet. Die feuchte Masse wird gesiebt und getrocknet. Das trockene Granulat wird gesiebt und mit Magnesiumstearat gemischt. Die Endmischung wird in Hartgelatinekapseln Größe 1 abgefüllt.

| E) | <u>Ampullenlösung</u> |       |
|----|-----------------------|-------|
|    | Wirkstoff             | 50 mg |
|    | Natriumchlorid        | 50 mg |
| 35 | Aqua pro inj.         | 5 ml  |

Der Wirkstoff wird bei Eigen-pH oder gegebenenfalls bei pH 5,5 bis 6,5 in Wasser gelöst und mit Natriumchlorid als Isotonans versetzt. die erhaltene Lösung wird pyrogenfrei filtriert und das Filtrat unter aseptischen Bedingungen in Ampullen

73

abgefüllt, die anschließend sterilisiert und zugeschmolzen werden. Die Ampullen enthalten 5 mg, 25 mg und 50 mg Wirkstoff.

F) Suppositorien

5

|               |                |
|---------------|----------------|
| Wirkstoff     | 50 mg          |
| Adeps solidus | <u>1650 mg</u> |
|               | 1700 mg        |

- 10 Das Hartfett wird geschmolzen. Bei 40°C wird die gemahlene Wirksubstanz homogen dispergiert. Es wird auf 38°C abgekühlt und in schwach vorgekühlte Suppositorienformen ausgegossen.

G) orale Suspension

15

|                       |        |
|-----------------------|--------|
| Wirkstoff             | 50 mg  |
| Hydroxyethylcellulose | 50 mg  |
| Sorbinsäure           | 5 mg   |
| Sorbit (70%ig)        | 600 mg |
| 20 Glycerin           | 200 mg |
| Aroma                 | 15 mg  |
| Wasser ad             | 5 ml   |

Destilliertes Wasser wird auf 70°C erhitzt. Hierin wird unter Röhren

- 25 Hydroxyethylcellulose gelöst. Nach Zugabe von Sorbitlösung und Glycerin wird auf Raumtemperatur abgekühlt. Bei Raumtemperatur werden Sorbinsäure, Aroma und Substanz zugegeben. Zur Entlüftung der Suspension wird unter Röhren evakuiert.

30

**Patentansprüche**

## 1) Triazin-Derivate der allgemeinen Formel (I)



worin

- R<sup>1</sup> Wasserstoff;
- 10 R<sup>2</sup> Wasserstoff oder C<sub>1</sub>-C<sub>3</sub>-Alkyl;
- R<sup>3</sup> C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl;
- 15 R<sup>3</sup> Phenyl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Halogen, NO<sub>2</sub>, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino, CF<sub>3</sub>, CF<sub>3</sub>SO<sub>2</sub>-O-, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;
- 20 R<sup>3</sup> ein 5, 6 oder 7-gliedriger Heterocyclus, der ein oder mehrere Atome aus der Gruppe, Sauerstoff, Stickstoff oder Schwefel enthalten kann und gegebenenfalls durch einen oder mehrere der Reste Benzyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyl substituiert sein kann;
- 25 R<sup>4</sup> C<sub>3</sub>-C<sub>7</sub>-Cycloalkyl, welches gegebenenfalls substituiert sein kann durch OH, =O, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyloxy;
- R<sup>4</sup> Cyclopentenyl oder Cyclohexenyl;
- 30 R<sup>4</sup> Phenyl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Halogen, NO<sub>2</sub>, CF<sub>3</sub>, CF<sub>3</sub>-SO<sub>2</sub>-O-, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyl, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-,

C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino,  
 C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino,  
 C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;

- 5      R<sup>4</sup>    Benzyl, Phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkenyl,  
           Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkinyl, Biphenyl, 4-N-Pyrrolyl-phenyl, Naphthyl,  
           Phenoxy oder Phenylamino;
- 10     R<sup>4</sup>    ein über eine Einfachbindung oder über eine C<sub>1</sub>-C<sub>6</sub>-Alkyl-,  
           C<sub>2</sub>-C<sub>6</sub>-Alkenyl- oder C<sub>2</sub>-C<sub>6</sub>-Alkinyl-Kette verknüpfter 5, 6 oder  
           7-gliedriger Heterocyclus, der ein oder mehrere Atome aus der Gruppe  
           Sauerstoff, Stickstoff oder Schwefel enthalten kann und gegebenenfalls  
           substituiert sein kann durch einen oder mehrere der Reste Benzyl,  
           C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl,  
           NO<sub>2</sub>, Oxazolyl, Halogen oder -S-C<sub>1</sub>-C<sub>4</sub>-Alkyl;
- 15     R<sup>4</sup>    einer der bicyclischen Heterocyclen Chinolin, Isochinolin,  
           Benzo[b]furan, Isobenzofuran, Benzothiophen, Benzoxazol,  
           Benzothiazol, Benzimidazol, Benzodiazin oder  
           1,2-Methylendioxobenzol, die gegebenenfalls substituiert sein können  
           durch einen oder mehrere der Reste C<sub>1</sub>-C<sub>4</sub>-Alkyl, NO<sub>2</sub> oder Halogen,  
           bedeutet,
- 20     mit der Maßgabe, daß,  
           wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> Phenyl bedeutet,  
           R<sup>4</sup>    nicht Phenyl, Phenylamino, Phenoxy, 2-Hydroxyphenyl,  
                   2,4-Dihydroxyphenyl, 4-Methylphenyl, 4-Nitrophenyl, Benzyl,  
                   3-Pyridyl, 4-Pyridyl, 2-Furyl, 5-Nitro-2-furyl, 5-Brom-2-furyl oder  
                   5-Methyl-2-furyl sein kann;
- 25     wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Hydroxyphenyl bedeutet,  
           R<sup>4</sup>    nicht Phenyl, 2-Methoxyphenyl, 2-Hydroxyphenyl,  
                   4-Hydroxyphenyl oder Phenyl-CH=CH- sein kann;
- 30     wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Hydroxyphenyl bedeutet,  
           R<sup>4</sup>    nicht 2-Hydroxyphenyl sein kann;
- 35     wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2,4-Dihydroxyphenyl bedeutet,  
           R<sup>4</sup>    nicht Phenyl, 2,4-Dihydroxyphenyl oder 4-Chlorphenyl sein  
                   kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Methoxyphenyl bedeutet,  
           R<sup>4</sup>    nicht 2-Hydroxyphenyl sein kann;

- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Methylphenyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 4-Methylphenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Chlorphenyl bedeutet,  
R<sup>4</sup> nicht 4-Chlorphenyl, 2,4-Dihydroxyphenyl oder 2-Hydroxy-4-ethoxyphenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Nitrophenyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 3-Nitrophenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 3-Nitrophenyl bedeutet,  
R<sup>4</sup> nicht 4-Nitrophenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Hydroxy-4-ethoxyphenyl bedeutet,  
R<sup>4</sup> nicht 4-Chlorphenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 3-Pyridyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 2-Furyl, 3-Pyridyl oder 4-Pyridyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Pyridyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 3-Pyridyl oder 4-Pyridyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Furyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 2-Furyl oder 3-Pyridyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 5-Methyl-2-furyl bedeutet,  
R<sup>4</sup> nicht Phenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff bedeutet,  
R<sup>3</sup> und R<sup>4</sup> nicht gleichzeitig 3-Methoxyphenyl, 4-Methoxyphenyl, 3,4-Dimethoxyphenyl, 4-Diethylaminophenyl, 2-Pyridyl, 4-Ethyl-2-pyridyl, 2-Chlorphenyl, 2,4-Dichlorphenyl, 5-Methyl-2-furyl oder 3,4,5-Trimethoxyphenyl sein können,
- wenn R<sup>2</sup> Methyl und R<sup>3</sup> Phenyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 2-Hydroxyphenyl sein kann;
- wenn R<sup>2</sup> Methyl und R<sup>3</sup> 2-Hydroxyphenyl bedeutet,  
R<sup>4</sup> nicht Phenyl, Phenyl-CH=CH- oder 2-Hydroxyphenyl sein kann;
- wenn R<sup>2</sup> Methyl und R<sup>3</sup> 2,4-Dihydroxyphenyl bedeutet,  
R<sup>4</sup> nicht 4-Chlorphenyl sein kann;
- wenn R<sup>2</sup> Methyl und R<sup>3</sup> 4-Chlorphenyl bedeutet,  
R<sup>4</sup> nicht 2,4-Dihydroxyphenyl sein kann;
- wenn R<sup>2</sup> Ethyl und R<sup>3</sup> Phenyl bedeutet,  
R<sup>4</sup> nicht 2-Hydroxy-4-methoxyphenyl sein kann;
- wenn R<sup>2</sup> Ethyl und R<sup>3</sup> 2-Hydroxy-4-methoxyphenyl bedeutet,  
R<sup>4</sup> nicht Phenyl sein kann;

wenn R<sup>2</sup> Ethyl und R<sup>3</sup> 2-Hydroxy-4,6-dimethylphenyl bedeutet,

R<sup>4</sup> nicht 2-Hydroxy-5-chlorphenyl sein kann;

wenn R<sup>2</sup> Ethyl und R<sup>3</sup> 2-Hydroxy-5-chlorphenyl bedeutet,

R<sup>4</sup> nicht 2-Hydroxy-4,6-dimethylphenyl sein kann;

5

gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer pharmakologisch unbedenklichen Säureadditionssalze.

10

- 2) Verbindungen der allgemeinen Formel (I) gemäß Anspruch 1 worin

R<sup>1</sup> Wasserstoff;

15

R<sup>2</sup> Wasserstoff oder C<sub>1</sub>-C<sub>3</sub>-Alkyl;

R<sup>3</sup> C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl;

20

R<sup>3</sup> Phenyl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Halogen, NO<sub>2</sub>, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino, CF<sub>3</sub>, CF<sub>3</sub>SO<sub>2</sub>-O-, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;

25

R<sup>3</sup> Furyl, Thienyl, Pyridyl oder Pyrrolyl, welches gegebenenfalls ein- oder mehrfach durch C<sub>1</sub>-C<sub>4</sub>-Alkyl substituiert sein kann;

30

R<sup>4</sup> C<sub>3</sub>-C<sub>7</sub>-Cycloalkyl, welches gegebenenfalls substituiert sein kann durch OH, =O, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyloxy;

R<sup>4</sup> Cyclopentenyl oder Cyclohexenyl;

35

R<sup>4</sup> Phenyl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Halogen, NO<sub>2</sub>, CF<sub>3</sub>, CF<sub>3</sub>-SO<sub>2</sub>-O-, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyl, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-,

C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino,  
 C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino,  
 C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;

- 5 R<sup>4</sup> Benzyl, Phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkenyl,  
 Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkinyl, Biphenyl, 4-N-Pyrrolyl-phenyl, Naphthyl,  
 Phenoxy oder Phenylamino;
- 10 R<sup>4</sup> Pyrimidinyl, Pyridyl, welches gegebenenfalls substituiert sein kann  
 durch einen oder mehrere der Reste Halogen, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder  
 -S-C<sub>1</sub>-C<sub>4</sub>-Alkyl;
- 15 R<sup>4</sup> Pyridyl-C<sub>1</sub>-C<sub>4</sub>-alkyl oder Pyridyl-C<sub>2</sub>-C<sub>4</sub>-alkenyl;
- 20 R<sup>4</sup> Furyl, welches gegebenenfalls durch einen oder mehrere der Reste  
 C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl,  
 NO<sub>2</sub> oder Halogen substituiert sein kann;
- 25 R<sup>4</sup> Tetrahydropyranyl oder Tetrahydrofuranyl;
- 30 R<sup>4</sup> Thienyl, welches gegebenenfalls durch einen oder mehrere der Reste  
 C<sub>1</sub>-C<sub>4</sub>-Alkyl, Halogen, Oxazolyl oder NO<sub>2</sub> substituiert sein kann;
- 35 R<sup>4</sup> Dithiolanyl, Thiolanyl, Pyrrolyl, Imidazolyl, Pyrazolyl, Thiazolyl,  
 Thiadiazolyl, Oxazolyl, Chinolinyl, Benzo[b]furanyl,  
 3,4-Methylendioxophenyl oder 2,3-Methylendioxophenyl, die  
 gegebenenfalls substituiert sein können durch einen oder mehrere der  
 Reste C<sub>1</sub>-C<sub>4</sub>-Alkyl, NO<sub>2</sub> oder Halogen, bedeutet,  
 mit der Maßgabe, daß,  
 wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> Phenyl bedeutet,  
 R<sup>4</sup> nicht Phenyl, Phenylamino, Phenoxy, 2-Hydroxyphenyl,  
 2,4-Dihydroxyphenyl, 4-Methylphenyl, 4-Nitrophenyl, Benzyl,  
 3-Pyridyl, 4-Pyridyl, 2-Furyl, 5-Nitro-2-furyl, 5-Brom-2-furyl oder  
 5-Methyl-2-furyl sein kann;  
 wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Hydroxyphenyl bedeutet,  
 R<sup>4</sup> nicht Phenyl, 2-Methoxyphenyl, 2-Hydroxyphenyl,  
 4-Hydroxyphenyl oder Phenyl-CH=CH- sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Hydroxyphenyl bedeutet,  
R<sup>4</sup> nicht 2-Hydroxyphenyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2,4-Dihydroxyphenyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 2,4-Dihydroxyphenyl oder 4-Chlorphenyl sein  
kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Methoxyphenyl bedeutet,  
R<sup>4</sup> nicht 2-Hydroxyphenyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Methylphenyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 4-Methylphenyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Chlorphenyl bedeutet,  
R<sup>4</sup> nicht 4-Chlorphenyl, 2,4-Dihydroxyphenyl oder 2-Hydroxy-4-ethoxyphenyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Nitrophenyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 3-Nitrophenyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 3-Nitrophenyl bedeutet,  
R<sup>4</sup> nicht 4-Nitrophenyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Hydroxy-4-ethoxyphenyl bedeutet,  
R<sup>4</sup> nicht 4-Chlorphenyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 3-Pyridyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 2-Furyl, 3-Pyridyl oder 4-Pyridyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Pyridyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 3-Pyridyl oder 4-Pyridyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Furyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 2-Furyl oder 3-Pyridyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 5-Methyl-2-furyl bedeutet,  
R<sup>4</sup> nicht Phenyl sein kann;

wenn R<sup>2</sup> Wasserstoff bedeutet,  
R<sup>3</sup> und R<sup>4</sup> nicht gleichzeitig 3-Methoxyphenyl, 4-Methoxyphenyl,  
3,4-Dimethoxyphenyl, 4-Diethylaminophenyl, 2-Pyridyl, 4-Ethyl-2-pyridyl, 2-Chlorphenyl, 2,4-Dichlorphenyl, 5-Methyl-2-furyl oder 3,4,5-Trimethoxyphenyl sein können,

wenn R<sup>2</sup> Methyl und R<sup>3</sup> Phenyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 2-Hydroxyphenyl sein kann;

wenn R<sup>2</sup> Methyl und R<sup>3</sup> 2-Hydroxyphenyl bedeutet,  
R<sup>4</sup> nicht Phenyl, Phenyl-CH=CH- oder 2-Hydroxyphenyl sein kann;

wenn R<sup>2</sup> Methyl und R<sup>3</sup> 2,4-Dihydroxyphenyl bedeutet,  
R<sup>4</sup> nicht 4-Chlorphenyl sein kann;

80

wenn R<sup>2</sup> Methyl und R<sup>3</sup> 4-Chlorphenyl bedeutet,  
R<sup>4</sup> nicht 2,4-Dihydroxyphenyl sein kann;

wenn R<sup>2</sup> Ethyl und R<sup>3</sup> Phenyl bedeutet,

5 R<sup>4</sup> nicht 2-Hydroxy-4-methoxyphenyl sein kann;

wenn R<sup>2</sup> Ethyl und R<sup>3</sup> 2-Hydroxy-4-methoxyphenyl bedeutet,

R<sup>4</sup> nicht Phenyl sein kann;

wenn R<sup>2</sup> Ethyl und R<sup>3</sup> 2-Hydroxy-4,6-dimethylphenyl bedeutet,

R<sup>4</sup> nicht 2-Hydroxy-5-chlorphenyl sein kann;

10 wenn R<sup>2</sup> Ethyl und R<sup>3</sup> 2-Hydroxy-5-chlorphenyl bedeutet,

R<sup>4</sup> nicht 2-Hydroxy-4,6-dimethylphenyl sein kann;

gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer

Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer

15 pharmakologisch unbedenklichen Säureadditionssalze.

3) Verbindungen der allgemeinen Formel (I) gemäß Anspruch 1 oder 2  
worin

20 R<sup>1</sup> Wasserstoff;

R<sup>2</sup> Wasserstoff, Methyl oder Ethyl;

25 R<sup>3</sup> Cyclopropyl, Cyclopentyl oder Cyclohexyl;

30 R<sup>3</sup> Phenyl, welches gegebenenfalls substituiert sein kann durch einen  
oder mehrere der Reste OH, Chlor, Fluor, NO<sub>2</sub>, Methyl, Methoxy,  
Hydroxymethyl, Methoxymethyl, Amino, Methylamino, Ethylamino,  
N-Acetylamino, Dimethylamino, CF<sub>3</sub>, CF<sub>3</sub>SO<sub>2</sub>-O-, Acetoxy,  
Ethylcarbonyloxy, Phenylcarbonyloxy oder Phenoxy carbonyloxy;

35 R<sup>3</sup> Furyl, Thienyl, Pyridyl oder Pyrrolyl, die jeweils ein-, zwei- oder  
dreifach durch Methyl substituiert sein können;

R<sup>4</sup> gegebenenfalls ein- oder mehrfach durch OH, =O, Methyl oder  
Methoxy substituiertes Cyclopropyl, Cyclopentyl, Cyclohexyl oder  
Cycloheptyl;

- R<sup>4</sup> Cyclopentenyl oder Cyclohexenyl;
- R<sup>4</sup> Phenyl, welches gegebenenfalls durch einen oder mehrere der Reste OH, Fluor, Chlor, Brom, NO<sub>2</sub>, CF<sub>3</sub>, CF<sub>3</sub>-SO<sub>2</sub>-O-, Methyl, Ethyl, Propyl, Butyl, Methoxy, Acetyl, Phenylcarbonyl, Acetoxy, Ethylcarbonyloxy, Phenylcarbonyloxy, Hydroxymethyl, Hydroxyethyl, Methoxymethyl, Amino, Methylamino, Ethylamino, Dimethylamino, N-Acetylamino, Methoxycarbonyloxy, Ethoxycarbonyloxy oder Phenoxy carbonyloxy substituiert sein kann;
- R<sup>4</sup> Benzyl, Phenylethyl, Phenylethenyl, Phenylethinyll, Biphenyl, 4-N-Pyrrolyl-phenyl, Naphthyl, Phenoxy oder Phenylamino;
- R<sup>4</sup> gegebenenfalls durch Methyl substituiertes Pyrimidinyl, Pyridyl, welches gegebenenfalls ein- oder mehrfach substituiert sein kann durch Fluor, Chlor, Brom, Methyl oder -S-Methyl;
- R<sup>4</sup> Pyridylmethyl oder Pyridylethenyl;
- R<sup>4</sup> Furyl, welches gegebenenfalls ein- oder mehrfach substituiert sein kann durch Methyl, Ethyl, Propyl, Butyl, Methoxy, Methoxymethyl, Phenyl, NO<sub>2</sub>, Fluor, Chlor oder Brom;
- R<sup>4</sup> Tetrahydropyranyl oder Tetrahydrofuranyl;
- R<sup>4</sup> Thienyl, welches gegebenenfalls ein- oder mehrfach substituiert sein kann durch Methyl, Fluor, Chlor, Brom, Oxazolyl oder NO<sub>2</sub>;
- R<sup>4</sup> Dithiolanyl, Thiolanyl, Pyrrolyl, Imidazolyl, Pyrazolyl, Thiazolyl, Thiadiazolyl, Oxazolyl, Chinolinyl, Benzo[b]furanyl, 3,4-Methylendioxophenyl oder 2,3-Methylendioxophenyl, die gegebenenfalls ein- oder mehrfach substituiert sein können durch Methyl, Ethyl, Propyl, NO<sub>2</sub>, Fluor, Chlor oder Brom, bedeutet,
- mit der Maßgabe, daß,

- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> Phenyl bedeutet,  
R<sup>4</sup> nicht Phenyl, Phenylamino, Phenoxy, 2-Hydroxyphenyl,  
2,4-Dihydroxyphenyl, 4-Methylphenyl, 4-Nitrophenyl, Benzyl,  
3-Pyridyl, 4-Pyridyl, 2-Furyl, 5-Nitro-2-furyl, 5-Brom-2-furyl oder  
5-Methyl-2-furyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Hydroxyphenyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 2-Methoxyphenyl, 2-Hydroxyphenyl,  
4-Hydroxyphenyl oder Phenyl-CH=CH- sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Hydroxyphenyl bedeutet,  
R<sup>4</sup> nicht 2-Hydroxyphenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2,4-Dihydroxyphenyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 2,4-Dihydroxyphenyl oder 4-Chlorphenyl sein  
kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Methoxyphenyl bedeutet,  
R<sup>4</sup> nicht 2-Hydroxyphenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Methylphenyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 4-Methylphenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Chlorphenyl bedeutet,  
R<sup>4</sup> nicht 4-Chlorphenyl, 2,4-Dihydroxyphenyl oder  
2-Hydroxy-4-ethoxyphenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Nitrophenyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 3-Nitrophenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 3-Nitrophenyl bedeutet,  
R<sup>4</sup> nicht 4-Nitrophenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Hydroxy-4-ethoxyphenyl bedeutet,  
R<sup>4</sup> nicht 4-Chlorphenyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 3-Pyridyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 2-Furyl, 3-Pyridyl oder 4-Pyridyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Pyridyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 3-Pyridyl oder 4-Pyridyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Furyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 2-Furyl oder 3-Pyridyl sein kann;
- wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 5-Methyl-2-furyl bedeutet,  
R<sup>4</sup> nicht Phenyl sein kann;

- wenn R<sup>2</sup> Wasserstoff bedeutet,  
R<sup>3</sup> und R<sup>4</sup> nicht gleichzeitig 3-Methoxyphenyl, 4-Methoxyphenyl,  
3,4-Dimethoxyphenyl, 4-Diethylaminophenyl, 2-Pyridyl,  
4-Ethyl-2-pyridyl, 2-Chlorphenyl, 2,4-Dichlorphenyl, 5-Methyl-2-furyl  
oder 3,4,5-Trimethoxyphenyl sein können,
- wenn R<sup>2</sup> Methyl und R<sup>3</sup> Phenyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 2-Hydroxyphenyl sein kann;
- wenn R<sup>2</sup> Methyl und R<sup>3</sup> 2-Hydroxyphenyl bedeutet,  
R<sup>4</sup> nicht Phenyl, Phenyl-CH=CH- oder 2-Hydroxyphenyl sein kann;
- wenn R<sup>2</sup> Methyl und R<sup>3</sup> 2,4-Dihydroxyphenyl bedeutet,  
R<sup>4</sup> nicht 4-Chlorphenyl sein kann;
- wenn R<sup>2</sup> Methyl und R<sup>3</sup> 4-Chlorphenyl bedeutet,  
R<sup>4</sup> nicht 2,4-Dihydroxyphenyl sein kann;
- wenn R<sup>2</sup> Ethyl und R<sup>3</sup> Phenyl bedeutet,  
R<sup>4</sup> nicht 2-Hydroxy-4-methoxyphenyl sein kann;
- wenn R<sup>2</sup> Ethyl und R<sup>3</sup> 2-Hydroxy-4-methoxyphenyl bedeutet,  
R<sup>4</sup> nicht Phenyl sein kann;
- wenn R<sup>2</sup> Ethyl und R<sup>3</sup> 2-Hydroxy-4,6-dimethylphenyl bedeutet,  
R<sup>4</sup> nicht 2-Hydroxy-5-chlorphenyl sein kann;
- wenn R<sup>2</sup> Ethyl und R<sup>3</sup> 2-Hydroxy-5-chlorphenyl bedeutet,  
R<sup>4</sup> nicht 2-Hydroxy-4,6-dimethylphenyl sein kann;
- gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer pharmakologisch unbedenklichen Säureadditionssalze.
- 4) Verbindungen der allgemeinen Formel (I) gemäß einem der Ansprüche 1, 2 oder 3 worin
- R<sup>1</sup> Wasserstoff;
- R<sup>2</sup> Wasserstoff oder Ethyl;
- R<sup>3</sup> Cyclohexyl, Phenyl, Hydroxyphenyl, 3,5-Dihydroxyphenyl,  
Methoxyphenyl, 3,5-Dimethoxyphenyl, 3-Methylphenyl,  
4-Methylphenyl, 3-Chlorphenyl, 4-Chlorphenyl, 3-Aminophenyl,

## 84

- 4-Aminophenyl, 3-Acetylaminophenyl, 4-Acetylaminophenyl,  
 3-Methylaminophenyl, 4-Methylaminophenyl, 3-Ethylaminophenyl,  
 4-Ethylaminophenyl, 3-Nitrophenyl, 4-Nitrophenyl,  
 3-Amino-4-methylphenyl, 4-Amino-3-methylphenyl,  
 5 3-Chlor-4-methylphenyl, 4-Chlor-3-methylphenyl,  
 3-Nitro-4-methylphenyl, 4-Nitro-3-methylphenyl,  
 3-Acetylamino-4-methylphenyl, 4-Acetylamino-3-methylphenyl,  
 3,5-Difluorophenyl, 3-Acetoxyphenyl, 3-Ethylcarbonyloxyphenyl,  
 3-Phenylcarbonyloxyphenyl, 3-Phenoxy carbonyloxyphenyl,  
 10 3-Trifluormethansulfonyloxyphenyl, 3-Methoxymethylphenyl, 2-Furyl,  
 2-Thienyl, Pyridyl oder 1,5-Dimethyl-2-pyrrolyl;
- R<sup>4</sup>** Cylopropyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Hydroxycyclohexyl,  
 Methoxycyclohexyl, Cyclopentenyl oder Cyclohexenyl;
- R<sup>4</sup>** Phenyl, Hydroxyphenyl, Methoxyphenyl, 2,3-Dihydroxyphenyl,  
 3,5-Dihydroxyphenyl, 3,5-Dimethoxyphenyl, 2,3-Dimethoxyphenyl,  
 3-Acetylphenyl, 3-Acetoxyphenyl, 3-(1'-Hydroxyethyl)phenyl,  
 3-Methylaminophenyl, 4-Methylaminophenyl, 3-Ethylaminophenyl,  
 15 4-Ethylaminophenyl, 3-Ethylcarbonyloxyphenyl,  
 3-Phenylcarbonyloxyphenyl, 3-Phenoxy carbonyloxyphenyl,  
 3-Trifluormethansulfonyloxyphenyl, Chlorphenyl, 3,4-Dichlorphenyl,  
 Methylphenyl, Ethylphenyl, Propylphenyl, 4-t-Butylphenyl,  
 3,4-Dimethylphenyl, 3,5-Dimethylphenyl, 3-Hydroxymethylphenyl,  
 20 25 Aminophenyl, 3-Amino-4-methylphenyl, 4-Amino-3-methylphenyl,  
 Acetylaminophenyl, 3-Acetylamino-4-methylphenyl,  
 4-Acetylamino-3-methylphenyl, Nitrophenyl, 4-Nitro-3-methylphenyl, 3-  
 Nitro-4-methylphenyl, 3-Chlor-4-methylphenyl,  
 4-Chlor-3-methylphenyl, Fluorophenyl, 3,4-Difluorophenyl,  
 30 Trifluormethylphenyl, 3-Methoxymethylphenyl, Benzyl, 2-Phenylethyl,  
 Phenyl-CH=CH-, Phenyl-C≡C-, Biphenyl, 4-N-Pyrrolyl-phenyl,  
 Naphthyl, Phenoxy, 3,4-Methylendioxophenyl,  
 2,3-Methylendioxophenyl oder Phenylamino;
- R<sup>4</sup>** gegebenenfalls durch Methyl substituiertes Pyrimidinyl, Pyridyl,  
 Pyridylmethyl, Pyridyl-CH=CH-, 6-Chlor-3-pyridyl, 6-Methyl-3-pyridyl,  
 2-Methyl-3-pyridyl, 2-Thiomethyl-pyridin-3-yl, 2-Benzo[b]furanyl, Furyl,  
 5-Methyl-2-furyl, 5-Methyl-3-furyl, 2-Methyl-3-furyl, 3-Methoxymethyl-2-  
 furyl, 3-Methyl-2-furyl, 2,5-Dimethyl-3-furyl, 4,5-Dimethyl-2-furyl,

5-t-Butyl-2-methyl-3-furyl, 5-Nitro-2-furyl, 2-Methyl-5-phenyl-3-furyl,  
 Tetrahydropyran-4-yl, Tetrahydrofuran-2-yl, Thienyl, 5-Methyl-2-thienyl,  
 3-Methyl-2-thienyl, 2-Methyl-3-thienyl, 5-Chlor-3-thienyl,  
 2,5-Dichlor-3-thienyl, 5-Nitro-3-thienyl, 5-Nitro-2-thienyl,  
 1,3-Dithiolan-2-yl, 5-(1,2-Oxazol-3-yl)-3-thienyl, Thiolan-2-yl,  
 1,5-Dimethyl-2-pyrrolyl, 1-Methyl-imidazol-2-yl, 1-Methyl-pyrazol-4-yl,  
 1,5-Dimethyl-pyrazol-3-yl, 4,5-Dichlor-(1,2-thiazol)-3-yl,  
 2,4-Dimethyl-(1,3-thiazol)-5-yl, 4-Methyl-(1-thia-2,3-diazol)-5-yl,  
 1,2-Oxazol-5-yl, Chinolin-2-yl oder Chinolin-3-yl, bedeutet,

10

mit der Maßgabe, daß,

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> Phenyl bedeutet,

R<sup>4</sup> nicht Phenyl, Phenylamino, Phenoxy, 2-Hydroxyphenyl,  
 4-Methylphenyl, 4-Nitrophenyl, Benzyl, 3-Pyridyl, 4-Pyridyl,  
 2-Furyl, 5-Nitro-2-furyl oder 5-Methyl-2-furyl sein kann;

15

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Hydroxyphenyl bedeutet,

R<sup>4</sup> nicht Phenyl, 2-Methoxyphenyl, 2-Hydroxyphenyl, 4-Hydroxyphenyl oder Phenyl-CH=CH- sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Hydroxyphenyl bedeutet,

R<sup>4</sup> nicht 2-Hydroxyphenyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Methylphenyl bedeutet,

R<sup>4</sup> nicht Phenyl oder 4-Methylphenyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Methoxyphenyl bedeutet,

R<sup>4</sup> nicht 2-Hydroxyphenyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Nitrophenyl bedeutet,

R<sup>4</sup> nicht Phenyl oder 3-Nitrophenyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 3-Nitrophenyl bedeutet,

R<sup>4</sup> nicht 4-Nitrophenyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 3-Pyridyl bedeutet,

R<sup>4</sup> nicht Phenyl, 2-Furyl, 3-Pyridyl oder 4-Pyridyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Pyridyl bedeutet,

R<sup>4</sup> nicht Phenyl, 3-Pyridyl oder 4-Pyridyl sein kann;

wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 2-Furyl bedeutet,

R<sup>4</sup> nicht Phenyl, 2-Furyl oder 3-Pyridyl sein kann;

35

wenn R<sup>2</sup> Wasserstoff bedeutet,

R<sup>3</sup> und R<sup>4</sup> nicht gleichzeitig 3-Methoxyphenyl, 4-Methoxyphenyl, 4-Chlorphenyl oder 2-Pyridyl sein können,

gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer pharmakologisch unbedenklichen Säureadditionssalze.

5

- 5) Verbindungen der allgemeinen Formel (I) gemäß einem der Ansprüche 1, 2, 3 oder 4, worin

R<sup>1</sup> Wasserstoff;

10

R<sup>2</sup> Wasserstoff oder Ethyl;

15

R<sup>3</sup> Phenyl, 3-Hydroxyphenyl, 3,5-Dihydroxyphenyl, 3-Methylaminophenyl, 3-Chlorphenyl, 4-Chlorphenyl, 3-Methylphenyl, 4-Methylphenyl, 3-Aminophenyl, 4-Aminophenyl, 3-Acetylaminophenyl, 4-Acetylaminophenyl, 3-Methylaminophenyl, 4-Methylaminophenyl, 3-Ethylaminophenyl, 4-Ethylaminophenyl, 3-Nitrophenyl, 4-Nitrophenyl, 3-Amino-4-methylphenyl, 4-Amino-3-methylphenyl, 3-Chlor-4-methylphenyl, 4-Chlor-3-methylphenyl, 3-Nitro-4-methylphenyl, 4-Nitro-3-methylphenyl, 3-Acetylamino-4-methylphenyl, 4-Acetylamino-3-methylphenyl, 3,4-Difluorphenyl, 3-Pyridyl, 2-Thienyl oder 1,5-Dimethyl-2-pyrrolyl;

20

R<sup>4</sup> Phenyl, 2-Hydroxyphenyl, 3-Hydroxyphenyl, 2,3-Dihydroxyphenyl, 3,5-Dihydroxyphenyl, 3-Acetoxyphenyl, 3-(1'-Hydroxyethyl)phenyl,

25

3-Chlorphenyl, 4-Chlorphenyl, 3-Methylphenyl, 4-Methylphenyl, 3-Hydroxymethylphenyl, 3-Acetylphenyl, 3-Aminophenyl,

4-Aminophenyl, 3-Methylaminophenyl, 4-Methylaminophenyl, 3-Ethylaminophenyl, 4-Ethylaminophenyl, 3-Amino-4-methylphenyl,

30

4-Amino-3-methylphenyl, 3-Acetylaminophenyl, 4-Acetylaminophenyl, 3-Acetylamino-4-methylphenyl, 4-Acetylamino-3-methylphenyl,

3-Nitrophenyl, 4-Nitrophenyl, 3-Nitro-4-methylphenyl, 4-Nitro-3-methylphenyl, 3-Chlor-4-methylphenyl,

4-Chlor-3-methylphenyl, 2-Fluorphenyl, 3-Fluorphenyl,

35

3,4-Difluorphenyl, 3-Methoxymethylphenyl, 3,4-Methylendioxophenyl oder 2,3-Methylendioxophenyl;

- R<sup>4</sup> 1,3-Pyrimidin-2-yl, 1,3-Pyrimidin-5-yl,  
6-Chlor-3-pyridyl, 6-Methyl-3-pyridyl, 2-Methyl-3-pyridyl,  
2-Benzo[b]furanyl, Furyl, 5-Methyl-2-furyl, 5-Methyl-3-furyl,  
2-Methyl-3-furyl, 3-Methyl-2-furyl, 2,5-Dimethyl-3-furyl,  
5,4-Dimethyl-2-furyl, 5-t-Butyl-2-methyl-3-furyl, 5-Nitro-2-furyl,  
Tetrahydropyran-4-yl, Tetrahydrofuran-2-yl, Thienyl, 5-Methyl-2-thienyl,  
3-Methyl-2-thienyl, 2-Methyl-3-thienyl, 5-Chlor-3-thienyl,  
2,5-Dichlor-3-thienyl, 5-Nitro-3-thienyl, 5-Nitro-2-thienyl,  
5-(1,2-Oxazol-3-yl)-3-thienyl, 1,3-Dithiolan-2-yl, 1,5-Dimethyl-2-pyrrolyl,  
1-Methyl-imidazol-2-yl, 1-Methyl-pyrazol-4-yl,  
1,5-Dimethyl-pyrazol-3-yl, 4,5-Dichlor-(1,2-thiazol)-3-yl,  
2,4-Dimethyl-(1,3-thiazol)-5-yl, 4-Methyl-(1-thia-2,3-diazol)-5-yl,  
1,2-Oxazol-5-yl, 4,5-Dichlor-1,2-thiazol-3-yl, Chinolin-2-yl oder  
Chinolin-3-yl, bedeutet,
- 15 mit der Maßgabe, daß,  
wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> Phenyl bedeutet,  
R<sup>4</sup> nicht Phenyl, 2-Hydroxyphenyl, 4-Methylphenyl, 4-Nitrophenyl, 2-Furyl, 5-Nitro-2-furyl oder 5-Methyl-2-furyl sein kann;  
20 wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Methylphenyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 4-Methylphenyl sein kann;  
wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 4-Nitrophenyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 3-Nitrophenyl sein kann;  
25 wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 3-Nitrophenyl bedeutet,  
R<sup>4</sup> nicht 4-Nitrophenyl sein kann;  
wenn R<sup>2</sup> Wasserstoff und R<sup>3</sup> 3-Pyridyl bedeutet,  
R<sup>4</sup> nicht Phenyl oder 2-Furyl sein kann;
- 30 wenn R<sup>2</sup> Wasserstoff bedeutet,  
R<sup>3</sup> und R<sup>4</sup> nicht gleichzeitig 4-Chlorphenyl sein können;  
gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer  
Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer  
pharmakologisch unbedenklichen Säureadditionssalze.

- 6) Verbindungen der allgemeinen Formel (I) gemäß einem der Ansprüche 1, 2, 3, 4 oder 5, worin

R<sup>1</sup> Wasserstoff;

5

R<sup>2</sup> Wasserstoff;

R<sup>3</sup> Phenyl, 3-Hydroxyphenyl, 3-Methylaminophenyl, 3,5-Dihydroxyphenyl, 2-Thienyl oder 3-Pyridyl;

10

R<sup>4</sup> Phenyl, 3-Hydroxyphenyl, 2,3-Dihydroxyphenyl, 3,5-Dihydroxyphenyl, 3-Acetoxyphenyl, 3-(1'-Hydroxyethyl)phenyl, 3-Methylaminophenyl, 3-Chlorphenyl, 4-Chlorphenyl, 3-Methylphenyl, 4-Methylphenyl, 3-Hydroxymethylphenyl, 3-Aminophenyl, 4-Aminophenyl, 3-Amino-4-methylphenyl, 3-Acetylaminophenyl, 3-Acetylamino-4-methylphenyl, 3-Nitrophenyl, 3-Nitro-4-methylphenyl, 4-Chlor-3-methylphenyl, 3-Chlor-4-methylphenyl, 2-Fluorphenyl, 3-Fluorphenyl, 3,4-Difluorphenyl, 3-Methoxymethylphenyl, 3,4-Methylendioxophenyl, 2,3-Methylendioxophenyl, 6-Methyl-3-pyridyl, 2-Methyl-3-pyridyl, 2-Benzo[b]furanyl, 1,5-Dimethyl-2-pyrrolyl, 5-Methyl-3-furyl, 3-Methyl-2-furyl, 4,5-Dimethyl-2-furyl, 5-Methyl-2-thienyl, 5-Chlor-3-thienyl, 5-Nitro-2-thienyl oder 4,5-Dichlor-1,2-thiazol-3-yl bedeuten,

25

mit der Maßgabe, daß,

wenn R<sup>3</sup> 3-Pyridyl bedeutet, R<sup>4</sup> nicht Phenyl sein kann und

wenn R<sup>3</sup> Phenyl bedeutet, R<sup>4</sup> nicht Phenyl oder 4-Methylphenyl sein kann,

30

gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer pharmakologisch unbedenklichen Säureadditionssalze.

- 7) Verbindungen der allgemeinen Formel (I) gemäß einem der Ansprüche 1, 2, 3, 4, 5 oder 6, worin

R<sup>1</sup> Wasserstoff;

35

R<sup>2</sup> Wasserstoff;

- R<sup>3</sup> Phenyl, 3-Hydroxyphenyl, 3-Methylaminophenyl, 3,5-Dihydroxyphenyl oder 3-Pyridyl;
- 5 R<sup>4</sup> 3-Hydroxyphenyl, 2,3-Dihydroxyphenyl, 3,5-Dihydroxyphenyl, 3-Methylaminophenyl, 3-Chlorphenyl, 4-Chlorphenyl, 3-Methylphenyl, 4-Methylphenyl, 3-Hydroxymethylphenyl, 3-Aminophenyl, 4-Aminophenyl, 3-Acetylaminophenyl, 3-Amino-4-methylphenyl, 3-Acetylamino-4-methylphenyl, 3-Nitrophenyl, 3-Nitro-4-methylphenyl, 10 3-Chlor-4-methylphenyl, 3,4-Difluorphenyl, 3-Methoxymethylphenyl, 1,5-Dimethyl-2-pyrrolyl, 3-Methyl-2-furyl, 4,5-Dimethyl-2-furyl oder 4,5-Dichlor-1,2-thiazol-3-yl bedeuten,
- 15 mit der Maßgabe, daß wenn R<sup>3</sup> Phenyl bedeutet, R<sup>4</sup> nicht 4-Methylphenyl sein kann, gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer pharmakologisch unbedenklichen Säureadditionssalze.

- 20 8) Verwendung von Triazinen der allgemeinen Formel (I)



- 25 als Arzneimittel, worin
- R<sup>1</sup> Wasserstoff;
- 30 R<sup>2</sup> Wasserstoff oder C<sub>1</sub>-C<sub>5</sub>-Alkyl;
- R<sup>3</sup> -COOH, -COO-C<sub>1</sub>-C<sub>4</sub>-Alkyl oder CN;
- 35 R<sup>3</sup> C<sub>3</sub>-C<sub>7</sub>-Cycloalkyl, welches gegebenenfalls substituiert sein kann durch OH, =O, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Alkoxy;

- 5        R<sup>3</sup> C<sub>6</sub>-C<sub>10</sub>-Aryl, welches gegebenenfalls substituiert sein kann durch  
einen oder mehrere der Reste OH, Halogen, CN, NO<sub>2</sub>, CF<sub>3</sub>,  
CF<sub>3</sub>-SO<sub>2</sub>-O-, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl,  
C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyl, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy,  
C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-,  
C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino,  
C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino,  
C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;
- 10      R<sup>3</sup> ein über eine Einfachbindung oder über eine C<sub>1</sub>-C<sub>6</sub>-Alkyl-,  
C<sub>2</sub>-C<sub>6</sub>-Alkenyl- oder C<sub>2</sub>-C<sub>6</sub>-Alkinyl-brücke verknüpfter 5, 6 oder  
7-gliedriger Heterocyclus, der ein oder mehrere Atome aus der Gruppe,  
Sauerstoff, Stickstoff oder Schwefel enthalten kann und gegebenenfalls  
durch einen oder mehrere der Reste Benzyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyl  
substituiert sein kann;
- 15      R<sup>3</sup> einer der bicyclischen Heterocyclen Chinolin, Isochinolin,  
Benzo[b]furan, Isobenzofuran, Benzothiophen, Benzoxazol,  
Benzothiazol, Benzimidazol, Benzodiazin oder  
1,2-Methylendioxobenzol;
- 20      R<sup>4</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl, -COOH, -COO-C<sub>1</sub>-C<sub>4</sub>-Alkyl, NH<sub>2</sub> oder CN;
- 25      R<sup>4</sup> C<sub>3</sub>-C<sub>7</sub>-Cycloalkyl, welches gegebenenfalls substituiert sein kann durch  
OH, =O, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyloxy;
- 30      R<sup>4</sup> Cyclopentenyl oder Cyclohexenyl;
- 35      R<sup>4</sup> C<sub>6</sub>-C<sub>10</sub>-Aryl, welches gegebenenfalls substituiert sein kann durch  
einen oder mehrere der Reste OH, Halogen, CN, NO<sub>2</sub>, CF<sub>3</sub>,  
CF<sub>3</sub>-SO<sub>2</sub>-O-, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl,  
C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyl, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy,  
C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-,  
C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino,  
C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino,  
C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;

- R<sup>4</sup> Phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkenyl,  
Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkinyl, Biphenyl, 4-N-Pyrrolyl-phenyl, Naphthyl,  
Phenoxy oder Phenylamino;
- 5 R<sup>4</sup> ein über eine über eine Einfachbindung oder über eine C<sub>1</sub>-C<sub>6</sub>-Alkyl-,  
C<sub>2</sub>-C<sub>6</sub>-Alkenyl- oder C<sub>2</sub>-C<sub>6</sub>-Alkinyl-Kette verknüpfter 5, 6 oder  
7-gliedriger Heterocyclus, der ein oder mehrere Atome aus der Gruppe  
Sauerstoff, Stickstoff oder Schwefel enthalten kann und gegebenenfalls  
substituiert sein kann durch einen oder mehrere der Reste  
10 C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl,  
NO<sub>2</sub>, Oxazolyl, Halogen oder -S-C<sub>1</sub>-C<sub>4</sub>-Alkyl;
- 15 R<sup>4</sup> einer der bicyclischen Heterocyclen Chinolin, Isochinolin,  
Benzo[b]furan, Isobenzofuran, Benzothiophen, Benzoxazol,  
Benzothiazol, Benzimidazol, Benzodiazin oder  
20 1,2-Methylendioxobenzol, die gegebenenfalls substituiert sein können  
durch einen oder mehrere der Reste C<sub>1</sub>-C<sub>4</sub>-Alkyl, NO<sub>2</sub> oder Halogen,  
bedeuten können,  
gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer  
Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer  
pharmakologisch unbedenklichen Säureadditionssalze.
- 9) Verwendung von Triazinen der allgemeinen Formel (I) gemäß Anspruch 8  
25 als Arzneimittel, worin
- R<sup>1</sup> Wasserstoff;
- R<sup>2</sup> Wasserstoff oder C<sub>1</sub>-C<sub>5</sub>-Alkyl;
- 30 R<sup>3</sup> C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl, welches gegebenenfalls substituiert sein kann durch  
OH, =O, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyloxy;
- 35 R<sup>3</sup> Phenyl, welches gegebenenfalls substituiert sein kann durch einen  
oder mehrere der Reste OH, Halogen, NO<sub>2</sub>, CF<sub>3</sub>, CF<sub>3</sub>-SO<sub>2</sub>-O-,  
C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl,  
C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyl, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy,  
C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-,  
C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino,

C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino,  
C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;

- 5           R<sup>3</sup>     ein 5, 6 oder 7-gliedriger Heterocyclus, der ein oder mehrere Atome  
aus der Gruppe, Sauerstoff, Stickstoff oder Schwefel enthalten kann  
und gegebenenfalls durch einen oder mehrere der Reste Benzyl oder  
C<sub>1</sub>-C<sub>4</sub>-Alkyl substituiert sein kann;
- 10          R<sup>4</sup>     C<sub>1</sub>-C<sub>4</sub>-Alkyl, -COOH, -COO-C<sub>1</sub>-C<sub>4</sub>-Alkyl, NH<sub>2</sub> oder CN;
- 15          R<sup>4</sup>     C<sub>3</sub>-C<sub>7</sub>-Cycloalkyl, welches gegebenenfalls substituiert sein kann durch  
OH, =O, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyloxy;
- 20          R<sup>4</sup>     Cyclopentenyl oder Cyclohexenyl;
- 15          R<sup>4</sup>     Phenyl, welches gegebenenfalls substituiert sein kann durch einen  
oder mehrere der Reste OH, Halogen, NO<sub>2</sub>, CF<sub>3</sub>, CF<sub>3</sub>-SO<sub>2</sub>-O-,  
C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl,  
C<sub>6</sub>-C<sub>10</sub>-Arylcyclon, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy,  
C<sub>6</sub>-C<sub>10</sub>-Arylcyclon, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-,  
C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino,  
C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino,  
C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;
- 25          R<sup>4</sup>     Benzyl, Phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkenyl,  
Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkinyl, Biphenyl, 4-N-Pyrrolyl-phenyl, Naphthyl,  
Phenoxy oder Phenylamino;
- 30          R<sup>4</sup>     ein über eine über eine Einfachbindung oder über eine C<sub>1</sub>-C<sub>6</sub>-Alkyl-,  
C<sub>2</sub>-C<sub>6</sub>-Alkenyl- oder C<sub>2</sub>-C<sub>6</sub>-Alkinyl-Kette verknüpfter 5, 6 oder  
7-gliedriger Heterocyclus, der ein oder mehrere Atome aus der Gruppe  
Sauerstoff, Stickstoff oder Schwefel enthalten kann und gegebenenfalls  
substituiert sein kann durch einen oder mehrere der Reste  
C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl,  
NO<sub>2</sub>, Oxazolyl, Halogen oder -S-C<sub>1</sub>-C<sub>4</sub>-Alkyl;
- 35          R<sup>4</sup>     einer der bicyclischen Heterocyclen Chinolin, Isochinolin,  
Benzo[b]furan, Isobenzofuran, Benzothiophen, Benzoxazol,  
Benzothiazol, Benzimidazol, Benzodiazin oder

1,2-Methylendioxobenzol, die gegebenenfalls substituiert sein können durch einen oder mehrere der Reste C<sub>1</sub>-C<sub>4</sub>-Alkyl, NO<sub>2</sub> oder Halogen, bedeuten können,

5 gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer pharmakologisch unbedenklichen Säureadditionssalze.

- 10) Verwendung von Triazinen der allgemeinen Formel (I) gemäß einem der  
10 Ansprüche 8 oder 9 als Arzneimittel, worin

R<sup>1</sup> Wasserstoff;

15 R<sup>2</sup> Wasserstoff oder C<sub>1</sub>-C<sub>3</sub>-Alkyl;

R<sup>3</sup> C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl;

20 R<sup>3</sup> Phenyl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Halogen, NO<sub>2</sub>, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino, CF<sub>3</sub>, CF<sub>3</sub>SO<sub>2</sub>-O-, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;

25 R<sup>3</sup> ein 5, 6 oder 7-gliedriger Heterocyclus, der ein oder mehrere Atome aus der Gruppe, Sauerstoff, Stickstoff oder Schwefel enthalten kann und gegebenenfalls durch einen oder mehrere der Reste Benzyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyl substituiert sein kann;

30 R<sup>4</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl, -COOH, -COO-C<sub>1</sub>-C<sub>4</sub>-Alkyl, NH<sub>2</sub> oder CN;

R<sup>4</sup> C<sub>3</sub>-C<sub>7</sub>-Cycloalkyl, welches gegebenenfalls substituiert sein kann durch OH, =O, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyloxy;

35 R<sup>4</sup> Cyclopentenyl oder Cyclohexenyl;

R<sup>4</sup> Phenyl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Halogen, NO<sub>2</sub>, CF<sub>3</sub>, CF<sub>3</sub>SO<sub>2</sub>-O-, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl,

94

C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyl, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy,  
C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-,  
C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino,  
C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino,  
C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;

5

R<sup>4</sup> Benzyl, Phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkenyl,  
Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkinyl, Biphenyl, 4-N-Pyrrolyl-phenyl, Naphthyl,  
Phenoxy oder Phenylamino;

10

R<sup>4</sup> ein über eine über eine Einfachbindung oder über eine C<sub>1</sub>-C<sub>6</sub>-Alkyl-,  
C<sub>2</sub>-C<sub>6</sub>-Alkenyl- oder C<sub>2</sub>-C<sub>6</sub>-Alkinyl-Kette verknüpfter 5, 6 oder  
7-gliedriger Heterocyclus, der ein oder mehrere Atome aus der Gruppe  
Sauerstoff, Stickstoff oder Schwefel enthalten kann und gegebenenfalls  
15 substituiert sein kann durch einen oder mehrere der Reste  
C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl,  
NO<sub>2</sub>, Oxazolyl, Halogen oder -S-C<sub>1</sub>-C<sub>4</sub>-Alkyl;

15

R<sup>4</sup> einer der bicyclischen Heterocyclen Chinolin, Isochinolin,  
20 Benzo[b]furan, Isobenzofuran, Benzothiophen, Benzoxazol,  
Benzothiazol, Benzimidazol, Benzodiazin oder  
1,2-Methylendioxobenzol, die gegebenenfalls substituiert sein können  
durch einen oder mehrere der Reste C<sub>1</sub>-C<sub>4</sub>-Alkyl, NO<sub>2</sub> oder Halogen,  
bedeutet,  
25 gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer  
Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer  
pharmakologisch unbedenklichen Säureadditionssalze.

20

30 11) Verwendung von Triazinen gemäß einem der Ansprüche 1 bis 7 als  
Arzneimittel.

12) Verwendung von Triazinen gemäß einem der Ansprüche 1 bis 10 als  
Arzneimittel mit adenosinantagonistischer Wirkung.

35

13) Verwendung von Triazinen gemäß einem der Ansprüche 1 bis 10 zur  
Herstellung eines Arzneimittels mit adenosinantagonistischer Wirkung.

95

- 14) Pharmazeutische Zubereitungen, enthaltend als Wirkstoff eine oder mehrere Verbindungen gemäß einem der Ansprüche 1 bis 10 oder deren physiologisch verträgliche Säureadditionssalze in Kombination mit üblichen Hilfs- und/oder Trägerstoffen.

## GEÄNDERTE ANSPRÜCHE

[beim Internationalen Büro am 19. Februar 1999 (19.02.99) eingegangen,  
ursprüngliche Ansprüche 1-14 durch Ansprüche 1-10 ersetzt  
(10 Seiten)]

## 1) Triazin-Derivate der allgemeinen Formel (I)



5

worin

- R<sup>1</sup> Wasserstoff;
- 10 R<sup>2</sup> Wasserstoff;
- R<sup>3</sup> Phenyl, 3-Hydroxyphenyl, 3,5-Dihydroxyphenyl, 3-Methylaminophenyl, 3-Chlorphenyl, 4-Chlorphenyl, 3-Methylphenyl, 4-Methylphenyl, 3-Aminophenyl, 4-Aminophenyl, 3-Acetylaminophenyl, 4-Acetylaminophenyl, 3-Methylaminophenyl, 4-Methylaminophenyl, 3-Ethylaminophenyl, 4-Ethylaminophenyl, 3-Nitrophenyl, 4-Nitrophenyl, 3-Amino-4-methylphenyl, 4-Amino-3-methylphenyl, 3-Chlor-4-methylphenyl, 4-Chlor-3-methylphenyl, 3-Nitro-4-methylphenyl, 4-Nitro-3-methylphenyl, 20 3-Acetylamino-4-methylphenyl, 4-Acetylamino-3-methylphenyl, 3,4-Difluorphenyl, 3-Pyridyl, 2-Thienyl oder 1,5-Dimethyl-2-pyrrolyl;
- R<sup>4</sup> Phenyl, 2-Hydroxyphenyl, 3-Hydroxyphenyl, 2,3-Dihydroxyphenyl, 3,5-Dihydroxyphenyl, 3-Acetoxyphenyl, 3-(1'-Hydroxyethyl)phenyl, 25 3-Chlorphenyl, 4-Chlorphenyl, 3-Methylphenyl, 4-Methylphenyl, 3-Hydroxymethylphenyl, 3-Acetylphenyl, 3-Aminophenyl, 4-Aminophenyl, 3-Methylaminophenyl, 4-Methylaminophenyl, 3-Ethylaminophenyl, 4-Ethylaminophenyl, 3-Amino-4-methylphenyl, 4-Amino-3-methylphenyl, 3-Acetylaminophenyl, 4-Acetylaminophenyl, 30 3-Acetylamino-4-methylphenyl, 4-Acetylamino-3-methylphenyl, 3-Nitrophenyl, 4-Nitrophenyl, 3-Nitro-4-methylphenyl, 4-Nitro-3-methylphenyl, 3-Chlor-4-methylphenyl, 2-Fluorphenyl, 3-Fluorphenyl, 3,4-Difluorphenyl, 3-Methoxymethylphenyl, 3,4-Methylendioxopnenyl 35 oder 2,3-Methylendioxophenyl;

- R<sup>4</sup> 1,3-Pyrimidin-2-yl, 1,3-Pyrimidin-5-yl,  
 6-Chlor-3-pyridyl, 6-Methyl-3-pyridyl, 2-Methyl-3-pyridyl,  
 2-Benzo[b]furanyl, Furyl, 5-Methyl-2-furyl, 5-Methyl-3-furyl,  
 2-Methyl-3-furyl, 3-Methyl-2-furyl, 2,5-Dimethyl-3-furyl,  
 5  
 4,5-Dimethyl-2-furyl, 5-t-Butyl-2-methyl-3-furyl, 5-Nitro-2-furyl,  
 Tetrahydropyran-4-yl, Tetrahydrofuran-2-yl, Thienyl, 5-Methyl-2-thienyl,  
 3-Methyl-2-thienyl, 2-Methyl-3-thienyl, 5-Chlor-3-thienyl,  
 2,5-Dichlor-3-thienyl, 5-Nitro-3-thienyl, 5-Nitro-2-thienyl,  
 5-(1,2-Oxazol-3-yl)-3-thienyl, 1,3-Dithiolan-2-yl, 1,5-Dimethyl-2-pyrrolyl,  
 10 1-Methyl-imidazol-2-yl, 1-Methyl-pyrazol-4-yl,  
 1,5-Dimethyl-pyrazol-3-yl, 4,5-Dichlor-(1,2-thiazol)-3-yl,  
 2,4-Dimethyl-(1,3-thiazol)-5-yl, 4-Methyl-(1-thia-2,3-diazol)-5-yl,  
 1,2-Oxazol-5-yl, 4,5-Dichlor-1,2-thiazol-3-yl, Chinolin-2-yl oder Chinolin-  
 3-yl, bedeutet,
- 15 mit der Maßgabe, daß,  
 wenn R<sup>3</sup> Phenyl bedeutet,  
 R<sup>4</sup> nicht 2-Hydroxyphenyl, 4-Methylphenyl, 4-Nitrophenyl, 2-Furyl,  
 5-Nitro-2-furyl oder 5-Methyl-2-furyl sein kann;
- 20 wenn R<sup>3</sup> 4-Methylphenyl bedeutet,  
 R<sup>4</sup> nicht Phenyl sein kann;  
 wenn R<sup>3</sup> 4-Nitrophenyl bedeutet,  
 R<sup>4</sup> nicht Phenyl oder 3-Nitrophenyl sein kann;  
 wenn R<sup>3</sup> 3-Nitrophenyl bedeutet,  
 R<sup>4</sup> nicht 4-Nitrophenyl sein kann;
- 25 wenn R<sup>3</sup> 3-Pyridyl bedeutet,  
 R<sup>4</sup> nicht Phenyl oder 2-Furyl sein kann;
- sowie mit der Maßgabe, daß R<sup>3</sup> und R<sup>4</sup> nicht gleichzeitig Phenyl,  
 4-Methylphenyl oder 4-Chlorphenyl sein können;  
 gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer  
 Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer  
 pharmakologisch unbedenklichen Säureadditionssalze.

2) Verbindungen der allgemeinen Formel (I) gemäß Anspruch 1, worin

R<sup>1</sup> Wasserstoff;

5 R<sup>2</sup> Wasserstoff;

R<sup>3</sup> Phenyl, 3-Hydroxyphenyl, 3-Methylaminophenyl, 3,5-Dihydroxyphenyl,  
2-Thienyl oder 3-Pyridyl;

10 R<sup>4</sup> Phenyl, 3-Hydroxyphenyl, 2,3-Dihydroxyphenyl, 3,5-Dihydroxyphenyl,  
3-Acetoxyphenyl, 3-(1'-Hydroxyethyl)phenyl, 3-Methylaminophenyl,  
3-Chlorphenyl, 4-Chlorphenyl, 3-Methylphenyl, 4-Methylphenyl,  
3-Hydroxymethylphenyl, 3-Aminophenyl, 4-Aminophenyl,  
3-Amino-4-methylphenyl, 3-Acetylaminophenyl,

15 3-Acetylamino-4-methylphenyl, 3-Nitrophenyl, 3-Nitro-4-methylphenyl,  
4-Chlor-3-methylphenyl, 3-Chlor-4-methylphenyl, 2-Fluorphenyl,  
3-Fluorphenyl, 3,4-Difluorphenyl, 3-Methoxymethylphenyl,  
3,4-Methylendioxophenyl, 2,3-Methylendioxophenyl, 6-Methyl-3-pyridyl,  
2-Methyl-3-pyridyl, 2-Benzo[b]furanyl, 1,5-Dimethyl-2-pyrrolyl,

20 5-Methyl-3-furyl, 3-Methyl-2-furyl, 4,5-Dimethyl-2-furyl,  
5-Methyl-2-thienyl, 5-Chlor-3-thienyl, 5-Nitro-2-thienyl oder  
4,5-Dichlor-1,2-thiazol-3-yl bedeuten,

mit der Maßgabe, daß,

25 wenn R<sup>3</sup> 3-Pyridyl bedeutet, R<sup>4</sup> nicht Phenyl sein kann und

wenn R<sup>3</sup> Phenyl bedeutet, R<sup>4</sup> nicht Phenyl oder 4-Methylphenyl sein  
kann,

30 gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer  
Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer  
pharmakologisch unbedenklichen Säureadditionssalze.

- 3) Verbindungen der allgemeinen Formel (I) gemäß einem der Ansprüche 1 oder 2, worin

R<sup>1</sup> Wasserstoff;

5 R<sup>2</sup> Wasserstoff;

R<sup>3</sup> Phenyl, 3-Hydroxyphenyl, 3-Methylaminophenyl, 3,5-Dihydroxyphenyl oder 3-Pyridyl;

10 R<sup>4</sup> 3-Hydroxyphenyl, 2,3-Dihydroxyphenyl, 3,5-Dihydroxyphenyl, 3-Methylaminophenyl, 3-Chlorphenyl, 4-Chlorphenyl, 3-Methylphenyl, 4-Methylphenyl, 3-Hydroxymethylphenyl, 3-Aminophenyl, 4-Aminophenyl, 3-Acetylaminophenyl, 3-Amino-4-methylphenyl, 3-Acetylamino-4-methylphenyl, 3-Nitrophenyl, 3-Nitro-4-methylphenyl, 3-Chlor-4-methylphenyl, 3,4-Difluorphenyl, 3-Methoxymethylphenyl, 1,5-Dimethyl-2-pyrrolyl, 3-Methyl-2-furyl, 4,5-Dimethyl-2-furyl oder 4,5-Dichlor-1,2-thiazol-3-yl bedeuten,

20 mit der Maßgabe, daß wenn R<sup>3</sup> Phenyl bedeutet, R<sup>4</sup> nicht 4-Methylphenyl sein kann,

gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer pharmakologisch unbedenklichen Säureadditionssalze.

25

## 4) Verwendung von Triazinen der allgemeinen Formel (I)



5 als Arzneimittel, worin

R<sup>1</sup> Wasserstoff;R<sup>2</sup> Wasserstoff oder C<sub>1</sub>-C<sub>5</sub>-Alkyl;10 R<sup>3</sup> -COOH, -COO-C<sub>1</sub>-C<sub>4</sub>-Alkyl oder CN;R<sup>3</sup> C<sub>3</sub>-C<sub>7</sub>-Cycloalkyl, welches gegebenenfalls substituiert sein kann durch OH, =O, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyloxy;15 R<sup>3</sup> C<sub>6</sub>-C<sub>10</sub>-Aryl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Halogen, CN, NO<sub>2</sub>, CF<sub>3</sub>, CF<sub>3</sub>-SO<sub>2</sub>-O-, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyl, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy,20 R<sup>3</sup> C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino, C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;25 R<sup>3</sup> ein über eine Einfachbindung oder über eine C<sub>1</sub>-C<sub>6</sub>-Alkyl-, C<sub>2</sub>-C<sub>6</sub>-Alkenyl- oder C<sub>2</sub>-C<sub>6</sub>-Alkinyl-brücke verknüpfter 5, 6 oder 7-gliedriger Heterocyclus, der ein oder mehrere Atome aus der Gruppe, Sauerstoff, Stickstoff oder Schwefel enthalten kann und gegebenenfalls durch einen oder mehrere der Reste Benzyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyl substituiert sein kann;30 R<sup>3</sup> einer der bicyclischen Heterocyclen Chinolin, Isochinolin, Benzo[b]furan, Isobenzofuran, Benzothiophen, Benzoxazol, Benzothiazol, Benzimidazol, Benzodiazin oder

1,2-Methylendioxobenzol;

- R<sup>4</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl, -COOH, -COO-C<sub>1</sub>-C<sub>4</sub>-Alkyl, NH<sub>2</sub> oder CN;
- 5 R<sup>4</sup> C<sub>3</sub>-C<sub>7</sub>-Cycloalkyl, welches gegebenenfalls substituiert sein kann durch OH, =O, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyloxy;
- R<sup>4</sup> Cyclopentenyl oder Cyclohexenyl;
- 10 R<sup>4</sup> C<sub>6</sub>-C<sub>10</sub>-Aryl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Halogen, CN, NO<sub>2</sub>, CF<sub>3</sub>, CF<sub>3</sub>-SO<sub>2</sub>-O-, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl, C<sub>6</sub>-C<sub>10</sub>-Arylcyclon, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy, C<sub>6</sub>-C<sub>10</sub>-Arylcyclon, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino, C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;
- 15 R<sup>4</sup> Phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkenyl, Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkinyl, Biphenyl, 4-N-Pyrrolyl-phenyl, Naphthyl, Phenoxy oder Phenylamino;
- 20 R<sup>4</sup> ein über eine über eine Einfachbindung oder über eine C<sub>1</sub>-C<sub>6</sub>-Alkyl-, C<sub>2</sub>-C<sub>6</sub>-Alkenyl- oder C<sub>2</sub>-C<sub>6</sub>-Alkinyl-Kette verknüpfter 5, 6 oder 7-gliedriger Heterocyclus, der ein oder mehrere Atome aus der Gruppe Sauerstoff, Stickstoff oder Schwefel enthalten kann und gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl, NO<sub>2</sub>, Oxazolyl, Halogen oder -S-C<sub>1</sub>-C<sub>4</sub>-Alkyl;
- 25 R<sup>4</sup> einer der bicyclischen Heterocyclen Chinolin, Isochinolin, Benzo[b]furan, Isobenzofuran, Benzothiophen, Benzoxazol, Benzothiazol, Benzimidazol, Benzodiazin oder 1,2-Methylendioxobenzol, die gegebenenfalls substituiert sein können durch einen oder mehrere der Reste C<sub>1</sub>-C<sub>4</sub>-Alkyl, NO<sub>2</sub> oder Halogen, bedeuten können,

gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer pharmakologisch unbedenklichen Säureadditionssalze.

5

- 5) Verwendung von Triazinen der allgemeinen Formel (I) gemäß Anspruch 4 als Arzneimittel, worin

R<sup>1</sup> Wasserstoff;

10

R<sup>2</sup> Wasserstoff oder C<sub>1</sub>-C<sub>5</sub>-Alkyl;

R<sup>3</sup> C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl, welches gegebenenfalls substituiert sein kann durch OH, =O, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyloxy;

15

R<sup>3</sup> Phenyl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Halogen, NO<sub>2</sub>, CF<sub>3</sub>, CF<sub>3</sub>-SO<sub>2</sub>-O-, C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl, C<sub>6</sub>-C<sub>10</sub>-Arylcyclon, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy,

20

C<sub>6</sub>-C<sub>10</sub>-Arylcyclon, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino, C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino, C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;

25

R<sup>3</sup> ein 5, 6 oder 7-gliedriger Heterocyclus, der ein oder mehrere Atome aus der Gruppe, Sauerstoff, Stickstoff oder Schwefel enthalten kann und gegebenenfalls durch einen oder mehrere der Reste Benzyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyl substituiert sein kann;

30

R<sup>4</sup> C<sub>1</sub>-C<sub>4</sub>-Alkyl, -COOH, -COO-C<sub>1</sub>-C<sub>4</sub>-Alkyl, NH<sub>2</sub> oder CN;

R<sup>4</sup> C<sub>3</sub>-C<sub>7</sub>-Cycloalkyl, welches gegebenenfalls substituiert sein kann durch OH, =O, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyloxy;

35

R<sup>4</sup> Cyclopentenyl oder Cyclohexenyl;

R<sup>4</sup> Phenyl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Rest OH, Halogen, NO<sub>2</sub>, CF<sub>3</sub>, CF<sub>3</sub>-SO<sub>2</sub>-O-,

C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl,  
C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyl, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy,  
C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-,  
C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino,  
5 C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino,  
C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;

10 R<sup>4</sup> Benzyl, Phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkenyl,  
Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkinyl, Biphenyl, 4-N-Pyrrolyl-phenyl, Naphthyl,  
Phenoxy oder Phenylamino;

15 R<sup>4</sup> ein über eine über eine Einfachbindung oder über eine C<sub>1</sub>-C<sub>6</sub>-Alkyl-,  
C<sub>2</sub>-C<sub>6</sub>-Alkenyl- oder C<sub>2</sub>-C<sub>6</sub>-Alkinyl-Kette verknüpfter 5, 6 oder  
7-gliedriger Heterocyclus, der ein oder mehrere Atome aus der Gruppe  
Sauerstoff, Stickstoff oder Schwefel enthalten kann und gegebenenfalls  
substituiert sein kann durch einen oder mehrere der Reste  
C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl,  
NO<sub>2</sub>, Oxazolyl, Halogen oder -S-C<sub>1</sub>-C<sub>4</sub>-Alkyl;

20 R<sup>4</sup> einer der bicyclischen Heterocyclen Chinolin, Isochinolin,  
Benzo[b]furan, Isobenzofuran, Benzothiophen, Benzoxazol,  
Benzothiazol, Benzimidazol, Benzodiazin oder  
25 1,2-Methylendioxobenzol, die gegebenenfalls substituiert sein können  
durch einen oder mehrere der Reste C<sub>1</sub>-C<sub>4</sub>-Alkyl, NO<sub>2</sub> oder Halogen,  
bedeuten können,  
gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer  
Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer  
pharmakologisch unbedenklichen Säureadditionssalze.

30 6) Verwendung von Triazinen der allgemeinen Formel (I) gemäß einem der  
Ansprüche 4 oder 5 als Arzneimittel, worin

R<sup>1</sup> Wasserstoff;

35 R<sup>2</sup> Wasserstoff oder C<sub>1</sub>-C<sub>3</sub>-Alkyl;

R<sup>3</sup> C<sub>3</sub>-C<sub>6</sub>-Cycloalkyl;

- 5            R<sup>3</sup>    Phenyl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Halogen, NO<sub>2</sub>, C<sub>1</sub>-C<sub>4</sub>-Alkyl,  
              C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino,  
              C<sub>1</sub>-C<sub>4</sub>-Alkylamino, C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino,  
              CF<sub>3</sub>, CF<sub>3</sub>SO<sub>2</sub>-O-, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy, C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyloxy,  
              C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;
- 10          R<sup>3</sup>    ein 5, 6 oder 7-gliedriger Heterocyclus, der ein oder mehrere Atome aus der Gruppe, Sauerstoff, Stickstoff oder Schwefel enthalten kann und gegebenenfalls durch einen oder mehrere der Reste Benzyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyl substituiert sein kann;
- 15          R<sup>4</sup>    C<sub>1</sub>-C<sub>4</sub>-Alkyl, -COOH, -COO-C<sub>1</sub>-C<sub>4</sub>-Alkyl, NH<sub>2</sub> oder CN;
- 20          R<sup>4</sup>    C<sub>3</sub>-C<sub>7</sub>-Cycloalkyl, welches gegebenenfalls substituiert sein kann durch OH, =O, C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Alkyloxy;
- 25          R<sup>4</sup>    Cyclopentenyl oder Cyclohexenyl;
- 30          R<sup>4</sup>    Phenyl, welches gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste OH, Halogen, NO<sub>2</sub>, CF<sub>3</sub>, CF<sub>3</sub>-SO<sub>2</sub>-O-,  
              C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyl,  
              C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyl, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonyloxy,  
              C<sub>6</sub>-C<sub>10</sub>-Arylcarbonyloxy, HO-C<sub>1</sub>-C<sub>4</sub>-Alkyl-,  
              C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino,  
              C<sub>1</sub>-C<sub>4</sub>-Dialkylamino, C<sub>1</sub>-C<sub>4</sub>-Alkylcarbonylamino,  
              C<sub>1</sub>-C<sub>4</sub>-Alkyloxycarbonyloxy oder C<sub>6</sub>-C<sub>10</sub>-Aryloxycarbonyloxy;
- 35          R<sup>4</sup>    Benzyl, Phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkenyl,  
              Phenyl-C<sub>2</sub>-C<sub>4</sub>-alkinyl, Biphenyl, 4-N-Pyrrolyl-phenyl, Naphthyl,  
              Phenoxy oder Phenylamino;
- R<sup>4</sup>    ein über eine über eine Einfachbindung oder über eine C<sub>1</sub>-C<sub>6</sub>-Alkyl-,  
              C<sub>2</sub>-C<sub>6</sub>-Alkenyl- oder C<sub>2</sub>-C<sub>6</sub>-Alkinyl-Kette verknüpfter 5, 6 oder  
              7-gliedriger Heterocyclus, der ein oder mehrere Atome aus der Gruppe Sauerstoff, Stickstoff oder Schwefel enthalten kann und gegebenenfalls substituiert sein kann durch einen oder mehrere der Reste

C<sub>1</sub>-C<sub>4</sub>-Alkyl, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy, C<sub>1</sub>-C<sub>4</sub>-Alkyloxy-C<sub>1</sub>-C<sub>4</sub>-alkyl, Phenyl,  
NO<sub>2</sub>, Oxazolyl, Halogen oder -S-C<sub>1</sub>-C<sub>4</sub>-Alkyl;

- R<sup>4</sup> einer der bicyclischen Heterocyclen Chinolin, Isochinolin,  
5 Benzo[b]furan, Isobenzofuran, Benzothiophen, Benzoxazol,  
Benzothiazol, Benzimidazol, Benzodiazin oder  
1,2-Methylendioxobenzol, die gegebenenfalls substituiert sein können  
durch einen oder mehrere der Reste C<sub>1</sub>-C<sub>4</sub>-Alkyl, NO<sub>2</sub> oder Halogen,  
bedeutet,
- 10 gegebenenfalls in Form ihrer Racemate, ihrer Enantiomere, ihrer  
Diastereomere und ihrer Gemische, sowie gegebenenfalls in Form ihrer  
pharmakologisch unbedenklichen Säureadditionssalze.
- 7) Verwendung von Triazinen gemäß einem der Ansprüche 1 bis 3 als  
15 Arzneimittel.
- 8) Verwendung von Triazinen gemäß einem der Ansprüche 1 bis 6 als  
Arzneimittel mit adenosinantagonistischer Wirkung.
- 20 9) Verwendung von Triazinen gemäß einem der Ansprüche 1 bis 6 zur  
Herstellung eines Arzneimittels mit adenosinantagonistischer Wirkung.
- 10) Pharmazeutische Zubereitungen, enthaltend als Wirkstoff eine oder mehrere  
25 Verbindungen gemäß einem der Ansprüche 1 bis 6 oder deren physiologisch  
verträgliche Säureadditionssalze in Kombination mit üblichen Hilfs- und/oder  
Trägerstoffen.

# INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 98/05101

## A. CLASSIFICATION OF SUBJECT MATTER

|                  |            |            |            |            |
|------------------|------------|------------|------------|------------|
| IPC 6 C07D251/22 | A61K31/53  | C07D405/14 | C07D409/14 | C07D401/14 |
| C07D403/14       | C07D251/18 | C07D403/04 | C07D401/04 | C07D417/04 |
| C07D413/04       | C07D405/04 | C07D413/14 | C07D417/14 |            |

According to International Patent Classification (IPC) or to both national classification and IPC

## B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07D A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

## C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category ° | Citation of document, with indication, where appropriate, of the relevant passages                                                             | Relevant to claim No. |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X          | EP 0 775 487 A (NIPPON SHINYAKU CO LTD)<br>28 May 1997<br>see page 2, line 28; claim 1; examples<br>---                                        | 1,8-14                |
| X          | WO 96 28164 A (UEDA FUSAO ;NIPPON SHINYAKU CO LTD (JP)) 19 September 1996<br>-& EP 0 813 874 A29 December 1997<br>see claim 1; examples<br>--- | 1,8-14                |
| P, X       | EP 0 563 386 A (NIPPON SHINYAKU CO LTD)<br>6 October 1993<br>see claim 1; examples<br>---                                                      | 8-14                  |
| X          | -/-                                                                                                                                            |                       |

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

### ° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

5 January 1999

Date of mailing of the international search report

18/01/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2  
NL - 2280 HV Rijswijk  
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,  
Fax: (+31-70) 340-3016

Authorized officer

De Jong, B

## INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 98/05101

| C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Category                                             | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Relevant to claim No. |
| X                                                    | <p>CHEMICAL ABSTRACTS, vol. 125, no. 9,<br/> 26 August 1996<br/> Columbus, Ohio, US;<br/> abstract no. 104423,<br/> HIROSE, YOSHINOBU ET AL: "Suppressing<br/> effects of<br/> 6-(2,5-dichlorophenyl)-2,4-diamino-1,3,5-triazine and related synthetic compounds<br/> on azoxymethane-induced aberrant crypt<br/> foci in rat colon"<br/> XP002089051<br/> see abstract<br/> -&amp; DATABASE CHEMICAL ABSTRACTS<br/> Chemical Abstracts Service, Columbus<br/> CA 125:104423,<br/> XP002089054<br/> see compounds with RN 57381-26-7;<br/> 33237-20-6; 29366-77-6; 4514-54-9;<br/> 4514-53-8<br/> &amp; JPN. J. CANCER RES. (1996), 87(6),<br/> 549-554 CODEN: JJCREP; ISSN: 0910-5050,<br/> 1996,</p> <p>---</p> | 8-14                  |
| X                                                    | <p>CHEMICAL ABSTRACTS, vol. 118, no. 15,<br/> 12 April 1993<br/> Columbus, Ohio, US;<br/> abstract no. 147586,<br/> HASEGAWA, YOSHIHIRO ET AL: "Preparation<br/> of 2,4-diamino-1,3,5-triazine derivatives<br/> as leukotriene antagonists"<br/> XP002089052<br/> see abstract<br/> -&amp; JP 04 300874 A (TSUMURA AND CO., JAPAN)</p> <p>---</p>                                                                                                                                                                                                                                                                                                                                                                 | 8-14                  |
| X                                                    | <p>OGINO, AKIO ET AL: "Structure-activity<br/> study of antiulcerous and antiinflammatory<br/> drugs by discriminant analysis"<br/> J. MED. CHEM. (1980), 23(4), 437-44 ,1980,<br/> XP002089048<br/> see table 1</p> <p>---</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8-14                  |
| X                                                    | <p>VANDERHOEK, RACHAEL ET AL:<br/> "Bis(dimethylamino)-s-triazinyl<br/> antiinflammatory agents"<br/> J. MED. CHEM. (1973), 16(11), 1305-6 ,<br/> 1973, XP002089049<br/> see table 1</p> <p>---</p> <p>-/-</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8-14                  |

## INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 98/05101

## C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Relevant to claim No.                  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| X          | H.J. KABBE ET AL.: "Substituierte<br>2-Aminotriazine"<br>LIEBIGS ANNALEN DER CHEMIE.,<br>vol. 704, 1967, pages 140-143, XP002089050<br>WEINHEIM DE<br>see compound 6b and the dimethylaminophenyl<br>compound in Table 1<br>---<br>DE 22 62 188 A (CIBA GEIGY AG) 5 July 1973<br>see claim 1; example 4<br>---<br>CH 419 155 A (CIBA GEIGY AG)<br>28 February 1967<br>see claim 1; example 5<br>---<br>GB 1 094 858 A (H.J. KABBE ET AL.)<br>see claim 1<br>---<br>CHEMICAL ABSTRACTS, vol. 103, no. 17,<br>28 October 1985<br>Columbus, Ohio, US;<br>abstract no. 142017,<br>BRZOWOWSKI, ZDZISLAW ET AL:<br>"2-Amino-6-(2-pyrazolino)-1,3,5-triazines"<br>XP002089053<br>see abstract<br>& PL 123 395 A (STAROGARDZKIE ZAKLADY<br>FARMACEUTYCZNE "POLFA", POL.;AKADEMIA<br>MEDYCZNA,) ---<br>FR 2 262 512 A (SYNTHELABO)<br>26 September 1975<br>see claim 1; example 3<br>----- | 1-3<br><br>1-3<br>1<br>1<br>1,8<br>1,8 |

**INTERNATIONAL SEARCH REPORT**

International application No.

PCT/EP 98/05101

**Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.  Claims Nos.: 1-14  
because they relate to subject matter not required to be searched by this Authority, namely:  
  
Remark: Although Claims 1-14 relate to a method for treating the human/animal body, the search was carried out and was based on the cited effects of the compound/composition.
2.  Claims Nos.: Not applicable  
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:  
  
The search revealed such a large number of documents which were prejudicial to novelty that it is not possible to produce a full International Search Report. The documents cited are to be regarded as a representative sample of the documents found.
3.  Claims Nos.:  
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

**Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)**

This International Searching Authority found multiple inventions in this international application, as follows:

1.  As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.  As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.  As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.  No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

**Remark on Protest**

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

**INTERNATIONAL SEARCH REPORT**

Information on patent family members

International Application No

PCT/EP 98/05101

| Patent document cited in search report | Publication date | Patent family member(s)                                                                                                                                                                                                                              |  |  | Publication date                                                                                                                                                                                                             |
|----------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EP 0775487 A                           | 28-05-1997       | AU 3192095 A<br>BR 9508539 A<br>CA 2197091 A<br>HU 77735 A<br>WO 9604914 A                                                                                                                                                                           |  |  | 07-03-1996<br>28-10-1997<br>22-02-1996<br>28-07-1998<br>22-02-1996                                                                                                                                                           |
| WO 9628164 A                           | 19-09-1996       | AU 4890196 A<br>CN 1177298 A<br>EP 0813874 A                                                                                                                                                                                                         |  |  | 02-10-1996<br>25-03-1998<br>29-12-1997                                                                                                                                                                                       |
| EP 0563386 A                           | 06-10-1993       | AU 9097991 A<br>WO 9211247 A                                                                                                                                                                                                                         |  |  | 22-07-1992<br>09-07-1992                                                                                                                                                                                                     |
| DE 2262188 A                           | 05-07-1973       | CH 560502 A<br>AT 320341 B<br>AU 463578 B<br>AU 5039272 A<br>BE 793112 A<br>BG 20261 A<br>CA 983492 A<br>CS 171178 B<br>DD 102268 A<br>FR 2164677 A<br>GB 1395020 A<br>JP 48068740 A<br>NL 7217102 A<br>US 3855220 A<br>US 3901678 A<br>ZA 7209072 A |  |  | 15-04-1975<br>10-02-1975<br>14-07-1975<br>27-06-1974<br>21-06-1973<br>05-11-1975<br>10-02-1976<br>29-10-1976<br>12-12-1973<br>03-08-1973<br>21-05-1975<br>19-09-1973<br>26-06-1973<br>17-12-1974<br>26-08-1975<br>31-10-1973 |
| CH 419155 A                            |                  | NONE                                                                                                                                                                                                                                                 |  |  |                                                                                                                                                                                                                              |
| GB 1094858 A                           |                  | NONE                                                                                                                                                                                                                                                 |  |  |                                                                                                                                                                                                                              |
| FR 2262512 A                           | 26-09-1975       | NONE                                                                                                                                                                                                                                                 |  |  |                                                                                                                                                                                                                              |

# INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 98/05101

| A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES |            |            |            |            |            |
|----------------------------------------------|------------|------------|------------|------------|------------|
| IPK 6                                        | C07D251/22 | A61K31/53  | C07D405/14 | C07D409/14 | C07D401/14 |
|                                              | C07D403/14 | C07D251/18 | C07D403/04 | C07D401/04 | C07D417/04 |
|                                              | C07D413/04 | C07D405/04 | C07D413/14 | C07D417/14 |            |

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

## B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 6 C07D A61K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

## C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

| Kategorie <sup>3</sup> | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile                                                     | Betr. Anspruch Nr. |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| X                      | EP 0 775 487 A (NIPPON SHINYAKU CO LTD)<br>28. Mai 1997<br>siehe Seite 2, Zeile 28; Anspruch 1;<br>Beispiele<br>---                                    | 1,8-14             |
| X<br>P,X               | WO 96 28164 A (UEDA FUSAO ;NIPPON SHINYAKU CO LTD (JP)) 19. September 1996<br>-& EP 0 813 874 A29. Dezember 1997<br>siehe Anspruch 1; Beispiele<br>--- | 1,8-14             |
| X                      | EP 0 563 386 A (NIPPON SHINYAKU CO LTD)<br>6. Oktober 1993<br>siehe Anspruch 1; Beispiele<br>---                                                       | 8-14               |

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

\* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchebericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Nutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

|                                                                                                                                                                                                                 |                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Datum des Abschlusses der internationalen Recherche                                                                                                                                                             | Absendedatum des internationalen Recherchenberichts |
| 5. Januar 1999                                                                                                                                                                                                  | 18/01/1999                                          |
| Name und Postanschrift der Internationalen Recherchenbehörde<br>Europäisches Patentamt, P.B. 5818 Patentlaan 2<br>NL - 2280 HV Rijswijk<br>Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,<br>Fax: (+31-70) 340-3016 | Bevollmächtigter Bediensteter<br><br>De Jong, B     |

**INTERNATIONALER RECHERCHENBERICHT**

Internationales Aktenzeichen

PCT/EP 98/05101

**C.(Fortsetzung) ALS WESENTLICH ANGESEHENEN UNTERLAGEN**

| Kategorie* | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Betr. Anspruch Nr. |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| X          | <p>CHEMICAL ABSTRACTS, vol. 125, no. 9,<br/> 26. August 1996<br/> Columbus, Ohio, US;<br/> abstract no. 104423,<br/> HIROSE, YOSHINOBU ET AL: "Suppressing<br/> effects of<br/> 6-(2,5-dichlorophenyl)-2,4-diamino-1,3,5-<br/> triazine and related synthetic compounds<br/> on azoxymethane-induced aberrant crypt<br/> foci in rat colon"<br/> XP002089051<br/> siehe Zusammenfassung<br/> -&amp; DATABASE CHEMICAL ABSTRACTS<br/> Chemical Abstracts Service, Columbus<br/> CA 125:104423,<br/> XP002089054<br/> siehe Verbindungen mit RN 57381-26-7;<br/> 33237-20-6; 29366-77-6; 4514-54-9;<br/> 4514-53-8<br/> &amp; JPN. J. CANCER RES. (1996), 87(6),<br/> 549-554 CODEN: JJCREP;ISSN: 0910-5050,<br/> 1996,</p> <p>---</p> | 8-14               |
| X          | <p>CHEMICAL ABSTRACTS, vol. 118, no. 15,<br/> 12. April 1993<br/> Columbus, Ohio, US;<br/> abstract no. 147586,<br/> HASEGAWA, YOSHIHIRO ET AL: "Preparation<br/> of 2,4-diamino-1,3,5-triazine derivatives<br/> as leukotriene antagonists"<br/> XP002089052<br/> siehe Zusammenfassung<br/> -&amp; JP 04 300874 A (TSUMURA AND CO., JAPAN)</p> <p>---</p>                                                                                                                                                                                                                                                                                                                                                                          | 8-14               |
| X          | <p>OGINO, AKIO ET AL: "Structure-activity<br/> study of antiulcerous and antiinflammatory<br/> drugs by discriminant analysis"<br/> J. MED. CHEM. (1980), 23(4), 437-44 ,1980,<br/> XP002089048<br/> siehe Tabelle 1</p> <p>---</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8-14               |
| X          | <p>VANDERHOEK, RACHAEL ET AL:<br/> "Bis(dimethylamino)-s-triazinyl<br/> antiinflammatory agents"<br/> J. MED. CHEM. (1973), 16(11), 1305-6 ,<br/> 1973, XP002089049<br/> siehe Tabelle 1</p> <p>---</p> <p align="right">-/--</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8-14               |

**INTERNATIONALER RECHERCHENBERICHT**

Internationales Aktenzeichen

PCT/EP 98/05101

**C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN**

| Kategorie* | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile                                                                                                                                                                                                                                    | Betr. Anspruch Nr. |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| X          | H.J. KABBE ET AL.: "Substituierte<br>2-Aminotriazine"<br>LIEBIGS ANNALEN DER CHEMIE.,<br>Bd. 704, 1967, Seiten 140-143, XP002089050<br>WEINHEIM DE<br>siehe Verbindung 6b und die<br>Dimethylaminophenylverbindung in<br>Tabelle 1<br>---                                                                                             | 1-3                |
| X          | DE 22 62 188 A (CIBA GEIGY AG)<br>5. Juli 1973<br>siehe Anspruch 1; Beispiel 4<br>---                                                                                                                                                                                                                                                 | 1-3                |
| X          | CH 419 155 A (CIBA GEIGY AG)<br>28. Februar 1967<br>siehe Anspruch 1; Beispiel 5<br>---                                                                                                                                                                                                                                               | 1                  |
| X          | GB 1 094 858 A (H.J. KABBE ET AL.)<br>siehe Anspruch 1<br>---                                                                                                                                                                                                                                                                         | 1                  |
| X          | CHEMICAL ABSTRACTS, vol. 103, no. 17,<br>28. Oktober 1985<br>Columbus, Ohio, US;<br>abstract no. 142017,<br>BRZOZOWSKI, ZDZISLAW ET AL:<br>"2-Amino-6-(2-pyrazolino)-1,3,5-triazines"<br>XP002089053<br>siehe Zusammenfassung<br>& PL 123 395 A (STAROGARDZKIE ZAKLADY<br>FARMACEUTYCZNE "POLFA", POL.;AKADEMIA<br>MEDYCZNA, )<br>--- | 1,8                |
| X          | FR 2 262 512 A (SYNTHELABO)<br>26. September 1975<br>siehe Anspruch 1; Beispiel 3<br>-----                                                                                                                                                                                                                                            | 1,8                |

**INTERNATIONALER RECHERCHENBERICHT**

Internationales Aktenzeichen

PCT/EP 98/05101

Feld I Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 1 auf Blatt 1)

Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:

1.  Ansprüche Nr. 1-14  
weil Sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich  
**Bemerkung: Obwohl die Ansprüche 1-14 sich auf ein Verfahren zur Behandlung des menschlichen/tierischen Körpers beziehen, wurde die Recherche durchgeführt und gründete sich auf die angeführten Wirkungen der Verbindung/Zusammensetzung.**
2.  Ansprüche Nr. nicht zutreffend  
weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich  
**Die Recherche hat eine so grosse Anzahl neuheitsschädliche Dokumente offenbart, dass die Erstellung eines vollständigen Internationalen Recherchenberichtes nicht möglich ist. Die zitierten Dokumente sind als repräsentative Auswahl aus den gefundenen Dokumenten anzusehen.**
3.  Ansprüche Nr.  
weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.

Feld II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 2 auf Blatt 1)

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:

1.  Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche der internationalen Anmeldung.
2.  Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Internationale Recherchenbehörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
3.  Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche der internationalen Anmeldung, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
4.  Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:

Bemerkungen hinsichtlich eines Widerspruchs

- Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.
- Die Zahlung zusätzlicher Gebühren erfolgte ohne Widerspruch.

**INTERNATIONALER RECHERCHENBERICHT**

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 98/05101

| Im Recherchenbericht<br>angeführtes Patentdokument |   | Datum der<br>Veröffentlichung | Mitglied(er) der<br>Patentfamilie                                                                                                                                                                                                                    |       | Datum der<br>Veröffentlichung                                                                                                                                                                                                |
|----------------------------------------------------|---|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EP 0775487                                         | A | 28-05-1997                    | AU 3192095 A<br>BR 9508539 A<br>CA 2197091 A<br>HU 77735 A<br>WO 9604914 A                                                                                                                                                                           |       | 07-03-1996<br>28-10-1997<br>22-02-1996<br>28-07-1998<br>22-02-1996                                                                                                                                                           |
| WO 9628164                                         | A | 19-09-1996                    | AU 4890196 A<br>CN 1177298 A<br>EP 0813874 A                                                                                                                                                                                                         |       | 02-10-1996<br>25-03-1998<br>29-12-1997                                                                                                                                                                                       |
| EP 0563386                                         | A | 06-10-1993                    | AU 9097991 A<br>WO 9211247 A                                                                                                                                                                                                                         |       | 22-07-1992<br>09-07-1992                                                                                                                                                                                                     |
| DE 2262188                                         | A | 05-07-1973                    | CH 560502 A<br>AT 320341 B<br>AU 463578 B<br>AU 5039272 A<br>BE 793112 A<br>BG 20261 A<br>CA 983492 A<br>CS 171178 B<br>DD 102268 A<br>FR 2164677 A<br>GB 1395020 A<br>JP 48068740 A<br>NL 7217102 A<br>US 3855220 A<br>US 3901678 A<br>ZA 7209072 A |       | 15-04-1975<br>10-02-1975<br>14-07-1975<br>27-06-1974<br>21-06-1973<br>05-11-1975<br>10-02-1976<br>29-10-1976<br>12-12-1973<br>03-08-1973<br>21-05-1975<br>19-09-1973<br>26-06-1973<br>17-12-1974<br>26-08-1975<br>31-10-1973 |
| CH 419155                                          | A |                               |                                                                                                                                                                                                                                                      | KEINE |                                                                                                                                                                                                                              |
| GB 1094858                                         | A |                               |                                                                                                                                                                                                                                                      | KEINE |                                                                                                                                                                                                                              |
| FR 2262512                                         | A | 26-09-1975                    |                                                                                                                                                                                                                                                      | KEINE |                                                                                                                                                                                                                              |