Johdatus tilastolliseen päättelyyn - erilliskoe 4. 3. 2014

Vastaa valintasi mukaan neljään (4) tehtävään. Omia taulukoita ja kaavakirjoja ei saa käyttää. Tarvittava taulukko on ohessa.

- 1. Kolikko on painotettu meille tuntemattomalla tavalla emmekä tiedä, millä todennäköisyydellä heiton tuloksena saadaan klaava. Olkoon tämä todennäköisyys θ , jossa $0 < \theta < 1$. Tutkitaan koejärjestelyä, jossa kolikkoa heitetään 100 kertaa ja lasketaan klaavojen lukumäärä X.
 - a) Mitä θ :sta riipuvaa jakaumaa satunnaismuuttuja X noudattaa (jakauman nimi ja pistetodennäköisyysfunktio)?
 - b) Mikä on parametrin θ suurimman uskottavuuden estimaatti, kun saatiin X=39 klaavaa?
- 2. Dialyysipotilaalta mitataan veren fosfaattipitoisuus kullakin klinikkakäynnillä. Oletetaan, että pitoisuudet vaihtelevat likimäärin normaalijakauman mukaan ja että eri käynneillä tehtyjä mittauksia voidaan pitää toisistaan riippumattomina. Kuudella klinikkakäynnillä tehtyjen mittausten keskiarvo oli 5.2 ja keskihajonta 1.1 (milligrammaa desilitrassa).
 - a) Määritä 95 %:n luottamusväli tämän potilaan keskimääräiselle fosfaattitasolle.
 - b) Onko seuraava väite oikein vai väärin: 95 %:n luottamusväli tarkoittaa sitä, että mikäli tehdään suuri määrä fosfaattipitoisuuden mittauksia tarkasteltavasta potilaasta, noin 95 % mittaustuloksista sijaitsee kyseisellä välillä. Perustele lyhyesti.
- 3. Oletetaan, että havainnot y_1, \ldots, y_n ovat peräisin mallista, jossa vastaavat satunnaismuuttujat Y_1, \ldots, Y_n ovat riippumattomia ja noudattavat kukin normaalijakaumaa $N(\mu, \sigma^2)$. Halutaan testata nollahypoteesia $H_0: \mu = \mu_0$ vastaan hypoteesia $H_1: \mu > \mu_0$, jossa μ_0 on tunnettu reaaliluku. Kurssilla on opittu, että testaus perustuu tunnuslukuun

$$t = \frac{\bar{y} - \mu_0}{s / \sqrt{n}}.$$

- a) Kuinka suureet \bar{y} ja s määritellään?
- b) Selosta yksityiskohtaisesti, miten määritellään ja lasketaan testin p-arvo (esim. sopivaa taulukkoa tai tietokoneohjelmaa apuna käyttäen).
- c) Hylätäänkö vai hyväksytäänkö H_0 , kun p-arvo on 0.013 ja merkitsevyystaso $\alpha=0.01$?
- 4. Tietystä sairaudesta kärsiviltä 10 vastasyntyneeltä tutkittiin veren bilirubiinipitoisuus x ja selkäydinnesteen proteiinikonsentraatio y. Tulos on alla (sopivissa yksiköissä ilmaistuna).

											keskiarvo
x_i	0.14	0.08	0.07	0.26	0.08	0.02	0.03	0.22	0.06	0.23	0.119
y_i	83	65	71	140	135	30	30	128	80	168	93

Määritä pienimmän neliösumman regressiosuora, joka antaa x-arvoa vastaavan ennusteen proteiinikonsentraation odotusarvolle. Kuinka paljon proteiinikonsentraation odotusarvomuuttuu, jos bilirubiinipitoisuus kasvaa 0.1 yksikköä?

5. Esillä on kolme identtistä kulhoa, joista kussakin on viisi palloa: kulhossa 1 on viisi valkoista palloa, kulhossa 2 on kolme valkoista sekä kaksi mustaa palloa ja kulhossa 3 on yksi valkoinen sekä neljä mustaa palloa.

Yksi kulhoista valitaan umpimähkään, mutta valitun kulhon numeroa K (1, 2 tai 3) ei paljasteta, vaan se on tuntematon parametri. Valitusta kulhosta nostetaan palloja umpimähkään siten, että nostettu pallo aina palautetaan kulhoon ennen uutta nostoa. Ensimmäinen nostettu pallo on valkoinen ja toinen nostettu pallo on valkoinen. Johda posteriorijakauma.

Taulukko: t-jakauman u-yläkvantiileja $t_{\nu}(u)$, joille $u = P(X > t_{\nu}(u))$, kun $X \sim t_{\nu}$. Tässä ν on jakauman vapausasteluku ja t_{∞} tarkoittaa standardinormaalijakaumaa N(0,1).

$\nu \backslash u$	0.1	0.05	0.025	0.01	0.005
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819
23	1.319	1.714	2.069	2.500	2.807
24	1.318	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.787
30	1.310	1.697	2.042	2.457	2.750
40	1.303	1.684	2.021	2.423	2.704
60	1.296	1.671	2.000	2.390	2.660
120	1.289	1.658	1.980	2.358	2.617
∞	1.282	1.645	1.960	2.326	2.576