Examen Parcial 1: MAT0123

Profesora: Yandira Cuvero

12/06/2017

La prueba tiene una duración de 70 minutos. Resultados sin procedimiento no tendrán calificación. No están permitidos ningún tipo de formularios, calculadora o aparatos electrónicas. Indique claramente sus respuestas. Sólo se pueden realizar preguntas sobre la redacción de las preguntas.

Nombre completo (dos nombres y dos apellidos):

- 1. (25 puntos) Dado que se conoce el gráfico de la función $g(x)=x^2$.
 - (a) Mediante traslación y escalamiento gráfique la función $f(x) = 2(x+1)^2 5$ en el mismo gráfico que la función g.
 - (b) Determine el cobwebing y punto de equilibrio para la función f, si $m_0=1$.

- 2. (25 puntos) Un Pascal se expresa en unidades de masa sobre longitud elevada al cuadrado. Si 1 pie = 12 pulg y 1 lb = 16 oz, ¿a qué es igual $144 \frac{lb}{pie^2}$?
- 3. (25 puntos) Indique el valor de la siguiente operación

$$\sin\left(\frac{13}{6}\pi\right) + \cos\left(\frac{7}{2}\pi\right) + \log((e^{\sin(\pi)}e^{\cos(\pi)})^2) =$$

 $sin(\pi/6) = 1/2.$

4. (25 puntos) La función de actualización de un sistema dinámico, en la siguiente tabla se describen dos observaciones del mismo:

t	m_t			
3	5			
6	14			

y tiene un comportamiento lineal.

- (a) Calcule la función de actualización utilizando los valores de la tabla.
- (b) Si $m_7 = 2$ calcule m_9 , m_{11} , m_{13} , m_{15} utilizando composición de funciones y m_{16} utilizando directamente la función de actualización.
- (c) Calcule m_6 utilizando la inversa de la función de actualización.
- (d) En base a los resultados obtenidos en los literales anteriores, ¿cuál cree que es el valor de m_{1000} o de m_{-302} ? Justifique su respuesta.
- 5. (10 puntos extra) Grafique $2\log(x^4) 3$.

Preguntas:	1	2	3	4	5	Total
Puntos:	25	25	25	25	0	100
Calificación:						