Ответы на вопросы 36-38

Александр Старовойтов < Telegram >

3 января 2022 г.

1. Вопрос 36

Дать определение группы подстановок. Сформулировать и доказать теорему о разложении подстановки в произведение независимых циклов и произведение транспозиций.

Определение 1 (Группа подстановок (или группа перестановок)). Это множество всех биекций n-элементного множества на себя с операцией композиции биекций. Множество всех перестановок множества $\{1,2,\dots n\}$ обозначается S_n .

Элемент этой группы называется подстановкой:

$$\pi = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}$$

 $\pi(1) = i_1, \pi(2) = i_2 \dots$

Операцию композиции будем называть произведением $(\pi \circ \rho)(x) = \rho(\pi(x))$. Через $(i_1 \ i_2 \ \dots \ i_n)$ обозначается цикл длины n, который переводит $i_1 \mapsto i_2, \ i_2 \mapsto i_3, \ \dots, \ i_n \mapsto i_1$. Циклы являются независимыми, если они представляют непересекающиеся множества элементов.

Транспозицией называется цикл длины 2.

Теорема 1 (О разложении подстановки в произведение независимых циклов и произведение транспозиций). а) Любая перестановка разбивается в произведение непересекающихся циклов. б) Любая перестановка может быть представлена в виде произведения транспозиций.

Доказательство. а) Пусть $\pi \in S_n$. Если $\forall i \ \pi(i) = i$, то $\pi = e$. Пусть $\exists i : \pi(i) \neq i$ и i_1 — первый такой элемент, что $\pi(i_1) \neq i_1 \Rightarrow \pi(i_1) > i_1$ Тогда пусть $\pi(i_1) = i_2$; Ясно, что $\pi(i_2) \neq i_2$ (иначе перестановка не взаимооднозначна) $\Rightarrow \pi(i_2) = i_3$ $|M| < \infty \Rightarrow \exists k \in \mathbb{N} : i_k \neq i_1, i_{k+1} = \pi(i_k) = i_1$ $\pi_1 = \begin{pmatrix} i_1 & i_2 & \dots & i_k \end{pmatrix}$ Рассмотрим $\pi' = \pi \pi_1^{-1}$

В π' элементы $1, 2, \ldots i_1$ остаются на месте. Также остаются на месте элементы i_2, \ldots, i_k . Повторим рассуждение для π' . Получим цикл π_2 , не пересекающийся с π_1 ; $\pi'' = \pi \pi_1^{-1} \pi_2^{-1}$, в π'' неподвижных элементов стало больше и т.д.

После конечного числа шагов получим

$$\pi \pi_1^{-1} \pi_2^{-1} \dots \pi_s^{-1} = e$$

$$\pi = \pi_s \pi_{s-1} \dots \pi_1$$
 — требуемое разложение

 $E \partial u n c m b e n n c m c m c m = \pi_1 \pi_2 \dots \pi_s = \tau_1 \tau_2 \dots \tau_r$ — два таких разложения. i_1 — первый элемент, который не остается на месте: $\pi(i_1) \neq i_1$. Можно считать, что i_1 входит в π_1 и τ_1 . Далее легко видеть, что $\pi_1 = \tau_1 \Rightarrow \pi_2 = \tau_2, \dots, \pi_s = \tau_r$

б) Ввиду а) достаточно разложить на транспозиции любой цикл.

$$(i_1 \quad i_2 \quad \dots \quad i_k) = (i_1 \quad i_2) (i_1 \quad i_3) \dots (i_1 \quad i_k)$$

2. Вопрос 37

Дать определение чётной и нечётной подстановки. Объяснить и обосновать, как чётность подстановки определяется по её разложению в произведение транспозиций. Дать определение знакопеременной группы.

Определение 2 (Четная и нечетная подстановка). Подстановка $\pi \in S_n$ четная, если количество инверсий в π четное, и нечетная в противном случае.

$$\pi \in S_n, 1 \le i < j \le n$$
. Пара (i, j) — инверсия, если $\pi(i) > \pi(j)$.

Подстановка $\pi \in S_n$ является четной \Leftrightarrow количество транспозиций в ее разложении на транспозиции четно.

Доказательство. Достаточно доказать, что если τ — транспозиция, то подстановки π и $\tau\pi$ имеют разную четность.

Если $\tau=(i\ j)=(i\ i+1)(i+1\ i+2)\dots(j-1\ j)(j-2\ j-1)\dots(i\ i+1).$ В этом разложении j-i+j-i-1=2(j-i)-1— нечетное число транспозиций. \Rightarrow можно считать, что τ переставляет соседние элементы.

Пусть
$$\tau = (k \ k + 1)$$

 $\tau'=\tau\pi$

$$\pi = \begin{pmatrix} 1 & \dots & k & k+1 & \dots & n \\ i_1 & \dots & i_k & i_{k+1} & \dots & i_n \end{pmatrix}$$
$$\pi' = \begin{pmatrix} 1 & \dots & k & k+1 & \dots & n \\ i_1 & \dots & i_{k+1} & i_k & \dots & i_n \end{pmatrix}$$

```
orall (l,m) — инверсия в \pi l \neq k, k+1, m \neq k, k+1 \Rightarrow (l,m) — инверсия и в \pi' l=k,m>k+1 \Rightarrow пара (k+1,m) — инверсия в \pi' l=k+1 \Rightarrow (k,m) — инверсия в \pi' l\neq k, k+1, m=k или k+1 — аналогично
```

Пара (k,k+1) правильная для $\pi \Leftrightarrow$ она инверсия для $\pi' \Rightarrow i(\pi') = i(\pi)+1$ т.е. четность разная.

Аналогично, если (k,k+1) - инверсия для π , то она правильная для π' $\Rightarrow i(\pi') = i(\pi) - 1$ т.е. четность разная.

Определение 3 (Знакопеременная группа). Множество всех четных подстановок в группе S_n образует подгруппу и называется знакопеременной группой на n элементах. Обозначается A_n .

3. Вопрос 38

Дать определение кольца. Какое кольцо называется ассоциативным, коммутативным, кольцом с единицей? Сформулировать и обосновать основные положения теории делимости в кольце целых чисел: бесконечность множества простых чисел, деление с остатком, наибольший общий делитель и алгоритм Евклида, основная теорема арифметики.

Определение 4 (Кольцо). Кольцо — алгебраическая структура $(R,+,\cdot)$ с двумя бинарными операциями, удовлетворяющими аксиомам кольца:

- 1. (R, +) абелева группа;
- 2. Дистрибутивность: $\forall a, b, c \ a(b+c) = ab + ac$ и (a+b)c = ac + bc

Если операция умножения ассоциативна, то R называют ассоциативным кольцом; коммутативна — коммутативным кольцом. Если существует нейтральный элемент по умножению, его обозначают 1, а кольцо называют кольцом c единицей.

Теорема 2 (О бесконечности множества простых чисел). *Множество простых чисел бесконечно*.

Доказательство. Пусть p_1, \ldots, p_k — все простые числа. Рассмотрим число $p = p_1 \cdot p_2 \cdot \ldots \cdot p_k + 1$. p не делится ни на одно из p_1, \ldots, p_k . Оно либо само простое, либо делится на простое $\neq p_1, \ldots, p_k$. Противоречие.

Теорема 3 (О делении с остатком). Пусть $a, b \in \mathbb{Z}, b \neq 0$. Тогда $\exists ! q, r \in \mathbb{Z}, 0 \leq r < |b| : a = qb + r$, где q - (неполное) частное, а r -остаток.

Доказательство. Рассмотрим множество $M = \{a - k \cdot b \mid k \in \mathbb{Z}\}.$ r — минимальное неотрицательное число множества M.

```
Cуществование: Покажем, что r<|b|: Пусть r\geq |b|: r=a-kb при a\geq 0: r'=a-(k+1)b
```

при
$$a < 0 : r' = a + (k-1)b$$

 $r' \in M, r' \geq 0, r' < r$ — противоречие \Rightarrow существование q и r

$$E$$
динственность: Пусть $a=q_1b+r_1=q_2b+r_2;\ 0\leq r_1<|b|,\ 0\leq r_2<|b|$ Пусть $r_2\geq r_1$: $\underbrace{(q_1-q_2)b}_{\geq|b|}=\underbrace{r_2-r_1}_{<|b|}$ ⇒ противоречие, если $q_1\neq q_2,r_1\neq r_2$

Определение 5 (НОД). Число $d \in \mathbb{N}$ называют наибольшим общим делителем чисел $a, b \in \mathbb{Z}$, если d|a, d|b, и d — наибольшее число с таким свойством ($a \neq 0$ или $b \neq 0$). Обозначается d = HOД(a, b) = qcd(a, b) = (a, b).

Определение 6 (Алгоритм Евклида).

$$a, b \in \mathbb{Z}, b \neq 0$$

$$a = q_1 b + r_1, 0 \le r_1 < |b|$$

$$b = q_2 r_1 + r_2, 0 \le r_2 < r_1$$

$$\dots$$

$$r_{k-2} = q_k r_{k-1} + r_k, 0 \le r_n < r_{k-1}$$

$$r_{k-1} = q_{k+1} r_k$$

 r_k — последний ненулевой остаток.

Теорема 4 (НОД и алгоритм Евклида).

$$d = (a, b) = r_k$$

Доказательство. Пойдем по алгоритму (сверху вниз) $d|a,d|b \Rightarrow d|r_1 \Rightarrow d|r_2 \Rightarrow \ldots \Rightarrow d|r_k$

(снизу вверх)
$$r_k|r_{k-1} \Rightarrow r_k|r_{k-2} \Rightarrow \ldots \Rightarrow r_k|b, r_k|a \Rightarrow r_k = d$$

Лемма 1 (Следствие алгоритма Евклида). Пусть d=(a,b). Тогда $\exists u,v \in \mathbb{Z}, d=ua+vb$.

Доказательство.
$$d=r_k=r_{k-2}-q_k\cdot r_{k-1}=r_{k-2}-q_k(r_{k-3}-q_{k-1}r_{k-2})=\ldots=k_1a+k_2b$$
— выражение через a и b

Лемма 2. Eсли $a,b \in \mathbb{Z}, p-npocmoe\ u\ p|ab,\ mo\ p|a\$ или p|b

Доказательство. Пусть $p \nmid a$ и $p \nmid b \Rightarrow (p, a) = 1$ и (p, b) = 1 По Лемме $1 \exists u_1, u_2, v_1, v_2 \in \mathbb{Z}$

 $u_1p + v_1a = 1$

 $u_2p + v_2b = 1$

перемножим: $u_1u_2p^2 + u_1v_2pb + u_2v_1pa + v_1v_2ab = 1 \Rightarrow p|1$ – противоречие \square

Теорема 5 (Основная теорема арифметики). Любое целое число $a \in \mathbb{Z}$ можно представить в виде $a = \pm p_1 p_2 \dots p_k$, где p_1, \dots, p_k — простые числа. Такое представление единственно с точностью до порядка множителей.

Доказательство. Существование: $a\in\mathbb{Z}$. Если $a=\pm p,\, p$ — простое, то $a=\pm p$ — требуемое разложение. Если a — составное, то a=bc, где |b|,|c|<|a|. Далее применяем те же рассуждения к b и c.

Единственность: $a=\pm p_1\dots p_k=\pm q_1\dots q_l$ $p_1|q_1\dots q_l\Rightarrow$ (по Лемме 2) $\exists ip_i|q_i,p_i,q_i$ — простые $\Rightarrow p_i=q_i$. Можно считать, что $i=1,\Rightarrow p_2\dots p_k=q_2\dots q_l$, и т.д.