Computer Vision Quiz 2 - Feb 12, 2015

Maximum score: 30	Time: 30 mins
Name:	Roll No:

1. (10 points) State the number of degrees of freedom for the camera motion and the corresponding variables in each of the following cases.

- a) A fixed focal length camera rigidly mounted on a robot moving on a planar surface.
- b) A constant focal length camera installed on a car running on Delhi roads.
- c) A pan-tilt-zoom surveillance camera.

Solution:

- a) 3 dof, one for rotation and two for translation.
- b) 6 dof, 3 for rotation and 3 for translation.
- c) 3 dof, two for rotation and one for zoom (focal length).
- **2.** (10 points) Given a point $\mathbf{x} = [x, y, 1]^{\top}$ on the image plane. What is the set of lines that pass through this point? Write the expression in homogeneous coordinate representation and give the geometric interpretation of this set.

Solution: A line $\mathbf{l} = [l_1, l_2, l_3]^{\top}$ that passes through $[x, y, 1]^{\top}$ is a 3-vector satisfying $\mathbf{l}^{\top} \mathbf{x} = 0$, i.e., \mathbf{l} is orthogonal to the vector x. Therefore the set of lines that passes through points are the lines lying in the 3D plane with the normal \mathbf{x} .

3. (10 points) Given a 3D rotation matrix R, how would you find the rotation angle? Which points are invariant to this rotation? How are these invariant points related to the eigenvectors of R.

Solution: $\theta = \arccos((trace(\mathbf{R}) - 1)/2)$. The points invariant to the rotation are the ones that lie along the axis of rotation. The axis of rotation is given by the eigenvector of \mathbf{R} that has a corresponding eigenvalue of 1.

4. (10 points) Extra credit: Given a vector \mathbf{x} and a line with normal $\hat{\mathbf{n}}$ in 2D, write the transformation matrix **T** that would perform a reflection operation about the line given by $\hat{\mathbf{n}}$. Hint: What would the transformation be if the line is the y-axis and the vector is along the x-axis? Now generalize.

Solution: The reflection matrix is given by $\mathbf{T} = \mathbf{I} - 2\hat{\mathbf{n}}\hat{\mathbf{n}}^{\top}$.