Definition: Subset

A Set A is a subset of a set B, denoted $A \subseteq B$, if every element of A is also an element of B.

Formal Definition

$$A \subseteq B \iff \forall x (x \in A \implies x \in B)$$

In words: A is a subset of B if and only if for all x, if x is in A, then x is in B.

Notation and Terminology

- $A \subseteq B$: "A is a subset of B" or "A is contained in B"
- $B \supseteq A$: "B is a superset of A" or "B contains A"
- $A \subset B$: "A is a proper subset of B" (when $A \subseteq B$ and $A \neq B$)
- $A \nsubseteq B$: "A is not a subset of B"

Properties

- 1. **Reflexivity**: Every set is a subset of itself: $A \subseteq A$
- 2. Transitivity: If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$
- 3. **Antisymmetry**: If $A \subseteq B$ and $B \subseteq A$, then A = B
- 4. **Empty set**: The empty set \emptyset is a subset of every set

Examples

- $\{1,2\} \subseteq \{1,2,3,4\}$
- $\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}$
- For any set $A: \emptyset \subseteq A \subseteq A$

Related Concepts

- Power Set: The set of all subsets of a given set
- Set equality can be proven by showing mutual subset relations
- The subset relation defines a partial order on the power set

Dependency Graph

Local dependency graph