

分离工程

第二、三章

第二章 过滤

- 2.1 过滤的基本概念和原理
- 2.2 滤饼过滤
- 2.3 澄清过滤
- 2.4 其他过滤方式(膜过滤以及外加电场、磁场、声场的过滤)
- 2.5 过滤设备及选型

第二章 过滤

2.1 过滤过程

过滤三要素(介质、滤液、滤渣),过滤推动力,过滤分类(按过滤机理分、按促使流体流动的推动力分),过滤介质(分类、常见过滤介质),过滤介质特性(孔隙性质、孔径大小、孔隙率),过滤介质的基本性能。

2.2 滤饼过滤

过滤过程主要参数,滤饼过滤基本方程(滤饼可压缩性和比阻、恒压过滤和恒速过滤等),过滤常数测定,滤饼洗涤时间,过滤机生产能力的计算(间歇过滤和连续过滤)。

第二章 过滤

2.3 澄清过滤

澄清过滤分类,主要的截留机理,深层过滤过程(缓速过滤、快速过滤、活性炭过滤等)

2.4 其他过滤方式

膜分离过程原理,几种膜过滤过程特性,外加电场、 磁场、声场过滤工作原理

2.5 过滤设备以及选型

几种常用过滤设备的结构特点,设备选型方法等。

过滤过程

过滤: 研究三要素相互作用及其调控的科学与技术

过滤过程

过滤定义

- 混合物的分离:液体和气体混合物
- 什么现象属于过滤?

混合物中的流体在推动力(重力、压力、离心力)的作用下通过过滤介质,固体粒子被截留,而流体通过过滤介质,从而实现流体与颗粒物的分离。

液一固分离, 气一固分离

如砂滤池、袋式除尘器、口罩......

• 过滤分离的对象?

粗大颗粒、细微离子、细菌、病毒和高分子物质等

过滤分类

- 1.按过滤机理分:有滤饼过滤和澄清过滤
- 2.按促使流体流动的推动力分:
 - ·重力过滤: 在水位差的作用下被过滤的混合液通过过滤介质进行过滤,如水处理中的快滤池
 - •真空过滤:在真空下过滤,如水处理中的真空过滤机。
 - •压力差过滤:在加压条件下过滤,如水处理中的压滤滤池。
 - •离心过滤:使被分离的混合液旋转,在所产生的惯性离心力的作用下,使流体通过周边的滤饼和过滤介质,从而实现与颗粒物的分离。

按结构分类

● 过滤介质及其分类

定义:过滤介质 是任何一种有渗 透性的材料,在 过滤过程中,颗 粒沉积在其上或 其中。

几种介质的孔径

纺织物 滤布 10微米

非编织介质 纤维毡 10微米

滤纸 2微米

过滤纸板 0.5微米

刚性多孔介质 陶瓷 1微米

烧结金属 3微米

松散介质(纤维、粉末) <1微米

滤 膜 10~0.001微米

金属丝网 5微米左右

过滤介质的开孔特性

- 过滤介质孔隙性质
 介质孔隙性质、孔隙的空间结构、介质孔隙的表面形状和内部结构、孔间关系等
- 2. 过滤介质的孔径大小
- 3. 过滤介质的孔隙率

过滤介质的基本性能

机械性能	使用性能	过滤性能
刚度	化学稳定性	过滤精度
强度	热稳定性	截留效率
蠕变或拉伸抗力	生物学稳定性	透水性能
移动的稳定性	动态稳定性	再生性能
抗磨性	吸附性	纳污容量
振动稳定性	可湿性	堵塞倾向
制造工艺性	卫生和安全性	剥离性能
密封性	静电方面	
可供应尺寸	再使用可行性	

滤饼过滤

特点:

固体颗粒呈饼层状沉积于过滤介质的上游一侧,形成滤饼层适用:

处理颗粒含量较高的悬浮液,是化工生产中的主要过滤方式

过滤过程的主要参数

处理量:处理的流体流量或分离得到的纯流体量V(m³)

过滤推动力:由流体位差、压差或离心力场造成的过滤压差△p

过滤面积:表示过滤设备的大小A(m²)

过滤速度:单位时间通过单位面积的滤液量 и

过滤速度u定义为:

某一过滤时间#时的过滤状态

(表观)

$$u = \frac{dV}{Adt}$$

dt——微分过滤时间,s

dV——dt时间内通过过滤面的滤液量, m³

A——过滤面积, m²

$$\frac{dq}{dt} = \frac{K}{2(q+q_e)}$$

(滤饼过滤基本方程)

K: 过滤常数

- •滤饼的颗粒性质
- •悬浮液浓度
- •滤液黏度
- •滤饼的可压缩性

 q_e : 过滤介质特性参数

恒压过滤方程 恒速过滤方程

道过滤常数的测定

(一) 过滤常数K, q_e 的计算

对于恒压过滤,过滤积分方程改写为:

$$\frac{t}{q} = \frac{1}{K} q + \frac{2}{K} q_e$$

过滤常数的测定

(二) 压缩指数 s的计算

$$K = \frac{2\Delta p^{1-s}}{\mu r_0 f} \qquad \qquad \log K = (1-s) \log \Delta p + B$$

在不同的过滤压差下做过滤实验求得相应的K,由上式可得s

过滤机生产能力的计算

过滤机的生产能力一般以单位时间得到的滤液量qv表示。

(一) 间歇式过滤机

间歇式过滤机的每一个操作循环包括:

过滤
$$t_F$$
 洗涤 t_W 卸料 t_D 证 t_T

假设在每个操作循环中过滤机的滤液量为 V,则间歇式过滤机的生产能力为:

$$q_V = \frac{V}{t_F + t_W + t_D}$$
 (2.2.26)

澄清过滤

- > 利用过滤介质间空隙进行过滤
- 通常发生在以固体颗粒为滤料的 过滤操作中
- > 滤料内部空隙大于悬浮颗粒粒径
- 悬浮颗粒随流体进入滤料内部, 在拦截、惯性碰撞、扩散沉淀等 作用下颗粒附着在孔道中滤料表 面上而与流体分开

流体在颗粒滤料层中的流动规律

澄清过滤法的分类及比较

- 口 粒状层过滤或深层过滤
- 口 直接过滤
- 口 助滤剂过滤
- □ 膜过滤
- 口 磁过滤

截留机理

- 口筛分作用
- 口重力沉淀
- 口拦截
- 口惯性碰撞
- 口扩散
- 口流体动力干涉
- □静电吸引
- □电双层排斥
- 口范德华-伦敦力
- 口生物作用

深层过滤过程

快速过滤

表 缓速过滤与快速过滤的比较

比较项	缓速过滤	快速过滤
过滤速度	3~5m/d, 最大10m/d	120~400m/d, 1500m/d 也可能
除浊机理	借助生物过滤膜	以物理化学分离为主
预处理	不必要	必须絮凝处理
功能再生	刮掉过滤介质	逆流洗涤
过滤水质	臭气、气菌、氮也能除掉	不能除掉臭气和氮
原水水质	含有溶解氧的良质水	只要能絮凝就可以
构造	滤层不可发生负压	滤层发生负压也可以

膜过滤

膜材料

膜分离过程	驱动力压 力差	传递机理	透过膜的物质	被膜截留的物质	膜的类型
微滤(MF)	0.01-0.2	颗粒大小形状	水、溶剂和溶解物	悬浮物、细菌类、微粒子 (0.01~10μm)	多孔膜
超滤(UF)	0.1-0.5	分子特性、大小形状	溶剂、离子和小分子 (相对分子量<1000)	生物制品、胶体和大分子 (相对分子量1000- 300000)	非对称膜
反渗透(RO)	1.0-10	溶剂的扩散传递	水、溶剂	全部颗粒物、溶质和盐	非对称膜复合膜
纳滤(NF)	0.5-2.5	离子大小及电荷	水、溶剂 (相对分子量<200)	溶质、二价盐、糖和染料 (相对分子量200-1000)	复合胍

借助电场、磁场、声场的过滤

- □ 外加电场
- □ 外加磁场
- □ 外加声场

过滤设备

真空过滤机

加压过滤机

离心过滤机

过滤机的选型

过滤器选型的简要方法

第三章 场分离技术

- 3.1 重力沉降
- 3.2 旋流分离
- 3.3 离心分离

第三章 场分离技术

3.1 重力沉降

自由沉降、干涉沉降的物理概念及其沉降速度计算、间歇沉降曲 线及非稳态沉降四个阶段特点、沉降速度的主要影响因素、道尔 重力沉降槽的设计及重力沉降设备

3.2 旋流分离

旋流分离原理、旋流器的应用范围、旋流器的分流比、分离效率 和分割粒径、旋流器内流场特征及利用

3.3 离心分离

离心沉降的定义、原理及应用、重力沉降与离心沉降的异同点、 离心力场的基本特性,当量沉降面积计算、典型沉降离心机的种 类、结构及应用范围、不同工艺涉及的物性参数、分离要求及机 型选择、与离心机选型相关的物料特性、各种离心机的适用范围

重力沉降分离

◆ 沉降分离——在某种力场中利用分散相和连续相之间的密度差异,使之 发生相对运动而实现分离的操作过程

◆ 由地球引力作用而发生的颗粒沉降过程, 称为重力沉降 风选、冲积平原/都江堰

序号	类型	目的	实例
_	澄清	回收溶液	湿法冶金中浸取后矿浆的沉降分离
=	浓密	回收固体	电解液中阳极泥的回收
Ξ	分离	固体与溶液分离	湿法冶金中的固液分离沉降作业

自由沉降及其理论基础

自由沉降(含固<0.2%)速度计算

分析假定

- ◆ 颗粒为球形
- ◆ 自由沉降(沉降过程中颗粒的大小、形状、重量等不变)(非球形忽略 了固粒自转)。
- ◆ 颗粒只在重力作用下沉降,不受器壁($d_p/D<100$)和其他颗粒影响(含固浓度<0.2%)。
- ◆ 静水中悬浮颗粒开始沉降时,因受重力作用产生加速运动,经过很短的时间后,颗粒所受的合力为零时,颗粒即成等速下沉。

颗粒的自由沉降过程分析

设颗粒的密度为 ρ_s , 直径为d, 流体的密度为 ρ_L

• 重力
$$F_g = \frac{\pi}{6} d^3 \rho_s g$$

◆ 浮力
$$F_b = \frac{\pi}{6} d^3 \rho_{\rm L} g$$

• 曳力 $F_D = C_D \frac{\pi}{4} d^2 \bullet \frac{u^2 \rho_L}{2}$

曳力 F_D 型力 F_D 浮力 F_b 重力 F_g

颗粒投影面积:A

E:流体的动能

 $C_{\rm D}$: 曳力系数

颗粒的自由沉降过程分析

颗粒沉降过程中
$$F_g - F_b - F_D = ma$$

$$> u \rightarrow u_t$$
 时, $a = 0$

当 a = 0时, $u = u_t$,代入上式

$$\frac{\pi}{6}d^{3}\rho_{s}g - \frac{\pi}{6}d^{3}\rho_{L}g - C_{D}\frac{\pi}{4}d^{2}\frac{\rho_{L}u_{t}^{2}}{2} = 0$$

$$u_t = \sqrt{\frac{4d_p g(\rho_s - \rho_L)}{3\rho_L C_D}}$$

 \triangleright 因次分析法获得, C_D 值是颗粒和流体相对运动时的雷诺数 R_e 的函数

雷诺数R。

$$C_{D} = \frac{4d_{p}g(\rho_{s} - \rho_{L})}{3u_{t}^{2}\rho_{L}}$$

$$u_t = \sqrt{\frac{4d_p g(\rho_s - \rho_L)}{3\rho_L C_D}}$$

颗粒自由沉降速度

- 对于颗粒的自由沉降速度,按R。值大致分为三个区
- 1) 层流区或托斯克斯(Stokes)定律区(10-4<R_e<1)

$$C_D = \frac{24}{\text{Re}}$$
 \Longrightarrow $u_t = \frac{d_P^2(\rho_s - \rho_L)g}{18\mu}$ ——斯托克斯公式

2) 过渡区或艾伦定律区(Allen)(1<R_e<50000)

3)湍流区或牛顿定律区(R_e≥50000)

$$C_D = 0.44$$
 二二
$$u_t = 1.741 \sqrt{\frac{d_P(\rho_s - \rho_L)g}{\rho_L}}$$
 一牛顿公式

自由沉降速度计算

试差法 (u_t 未知, Re未知)

方法:

→ 当悬浮液中的颗粒的浓度增大(>0.2%)后,这种由于颗粒间的干扰对颗粒运动的影响,降低颗粒的沉降速度(相对于器壁而言)的沉降即称为干涉沉降。

干涉沉降速度 $u_{\varphi} = \eta u_t$

其中:
$$\eta = (1-\varphi)^n$$

$$n = f(d_p/D_T, R_e)$$

φ:悬浮液中固体粒子的体积浓度

重力沉降理论及相关模型

连续生产的浓密机

道尔沉降槽

L—澄清区

B—等速沉降区

C—干涉沉降区

D—压缩区

E—底流收集区

家密机物料平衡

$$\triangleright$$
总物料 $Q_{\rm F} = Q_{\rm u} + Q_{\rm 0}$

运体
$$\varphi_F Q_F = \varphi_u Q_u + \varphi_0 Q_0$$

| 液体
$$Q_{\rm F}(1-\varphi_{\rm F}) = Q_{\rm u}(1-\varphi_{\rm u}) + Q_{\rm 0}(1-\varphi_{\rm 0})$$

ightharpoonup若溢流不含固体 $\varphi_F Q_F = \varphi_u Q_u$

$$Q_{\mathrm{F}}\left(1-\varphi_{\mathrm{F}}\right) = Q_{\mathrm{u}}\left(1-\varphi_{\mathrm{u}}\right) + Q_{\mathrm{0}}$$

式中 $Q_F \setminus Q_u \setminus Q_o$ ——进料、底流及溢流的体积流量

 φ_F 、 φ_u 、 φ_o —进料、底流及溢流中固体的体积浓度

科克莱文杰(Coe-Clevenger)模型

◆ 等速沉降区,即B区沉降速度:

$$u_B = \Delta H / \Delta t = (H_a - H_b) / (t_b - t_a)$$

◆ 干涉沉降区,即C区沉降速度:

$$u_c = f(\varphi) \qquad u_C = (1 - \varphi)^{5.5} u_B$$

- ◆ 在稳态下操作的浓密机,为保证溢流液中不含固体,首先需满足的条件为: $Q_{\rm F}/A \le u_{\rm R}$
- ◆ C-C模型认为,当浓密机的进出料处于稳态,且溢流不含固体时,应有:

固体流量
$$Q_{\varphi}$$
:

$$Q_{\rm F}\varphi_{\rm F}=Q_{\rm o}=Q_{\rm u}\varphi_{\rm u}$$

C-C方程

液体流量:
$$Q_0 = Q_F (1-\varphi) - Q_u (1-\varphi_u)$$

上两式联立可得:
$$Q_0 = \varphi_F Q_F (1/\varphi - 1/\varphi_u)$$

上两式两边除以A可得:
$$Q_0/A = (Q_F \varphi_F/A)(1/\varphi - 1/\varphi_u)$$

或改写为:
$$A = \frac{G}{u_c} (\frac{1}{\varphi} - \frac{1}{\varphi_u})$$

A—沉降面积

G—固体通量

B区高度计算

ightharpoonup 如右图矩形槽所示: 长、宽、高分别为L、B、H,进料由顶面(B X L)进入。则有: $\Delta h_{\scriptscriptstyle R} \times B \times L = Q_{\scriptscriptstyle F} \Delta t_{\scriptscriptstyle R}$

式中: t_R—进料矿浆在等速沉降区B的停留时间

$$\Delta t_B \ge (\Delta h_B / u_B)$$

式中: *u_B*—间歇实验测得的悬浮液界面沉降速度

▶ B区的高度为:

$$\Delta h_B = (Q_F / A)(\Delta t_B) \vec{\boxtimes} Q_F = A u_B$$

式中, A=LXB为沉降面积

§ 上式表明,沉降设备的处理量在沉降速度一定的情况下只与沉降面积有 关,与高度无关。 ——面积(浅池)原理

重力沉降槽设计

主要设计参数:

- 沉降槽面积 A
- 沉降槽高度 H

A的计算方法

先做一系列不同浓度 的悬浮液的沉降实验

绘出沉降曲
$$A = \frac{G}{u_c} (\frac{1}{\varphi} - \frac{1}{\varphi_u})$$
 线,并确定 AS区域的沉 Pe速度

沉降槽 ↓ 乘以安全 ↓ 选出最大面积A 系数1~1.5 的A值

重力沉降槽设计

H的 计算方法

$$H = \Delta h_D + H_L + H_B + H_C$$

◆压缩区高度 Δhp

根据沉降曲线,
$$\Delta t_p = t_u - t_c$$

◆ 大型沉降槽的清液区高度 H_L 、自由沉降区高度 H_B 、干涉沉降区高度 H_C 按经验取值,通常为0.5~1m

重力沉降设备

按设备操作形式

间歇式沉降设备

连续式沉降设备

按悬浮液流动方向

单层沉降槽

多层沉降槽

双层

三层

四层

五层

按工作原理及操作方式

开式 连接式 平衡式

闭式

按刮泥机构传动形式

中心传动沉降槽

旋流分离原理及流动场

旋流器工作原理

- ▶ 非均相混合物,在压力差推动下,在旋流器的进口处,由直线运动转变为旋转运动,密度较轻的组分向轴心移动并从溢流口排出,密度较重组分向边壁移动,并从底流口排出,实现轻相与重相之间的分离。
- ▶ 液-液、液-固、液-气-固、液-液-固等非均相体系的密度差分离。
- 两相密度差大于0.05g/cm³,分散相颗粒当量直径大于2μm,粘度一般在1 cp左右。

旋流分离原理及流动场

外旋流、内旋流、短路流、循环流、空气柱

外旋流与内旋流,旋转方向相同,流动方向基本相反,外旋流做分离、内旋流做分流。

短路流的流量占进口流量 10%~20%,这部分原料没有分离直接从溢流口排出。

旋流分离原理及流动场

旋流分离器流场

- ➤ A区,未经分离的进料区,粒度基本与进料一致
- ▶ B区,粗粒级为主,类似于底流粒度组成
- ▶ C区,细粒级为主,类似于溢流粒度组成
- ▶ D区,中间粒级为主,随径向距离减小而减小, 粗细颗粒有效分离,是旋流分离的关键区域

150mm旋流器中 相似粒度分布

分类方法	种类	说明
按分散相类型	固-液旋流器 液-液旋流器	连续相液体,分散相固体 两相均为液体
按混合物组分密 度	轻质分散相旋流器 重质分散相旋流器	分散相的密度低 分散相的密度高
按旋流器结构	单锥旋流器 双锥旋流器 圆柱形旋流器	用于固-液分离和液-液分离 主要用于液-液分离 用于重介质分选
按分散相浓度	普通旋流器 分离浓稠介质用旋流器	分散相浓度≤10% 分散相浓度约为20%~50%
按有无运动部件	静态 动态	旋流器器壁高速旋转
按用途分类	澄清、增稠 固体颗粒分级、分选 颗粒冲洗 油水分离 液体脱气	

旋流器应用

◆ 旋流器广泛应用于分离、 澄清、浓缩、逆流洗涤、 颗粒分级、强化传质、 分选等方面。

旋流器结构参数

进口部分

进口截面形状:圆、方、长方、椭圆等

进口流动通道形状: 切线、渐开线、螺旋线

进口管个数: 1/2/4

进口截面当量尺寸

圆柱段部分

锥段

圆柱段的直径、长度

溢流管的直径与插入深度

溢流管与旋流器直管段内部间隙

锥段的个数

锥段的锥角

底流口直径

尾管段及其长度

溢流管

进料管

圆柱段

圆锥段

结构参数

基

本

3.2 旋流分离

旋流器设计-主要参数

▶物性参数:

分散相粒径及分布 两相的密度和粘度 两相的表面张力(液-液)

$$u_t = \frac{d_P^2 \left(\rho_s - \rho_L\right) g}{18 \mu}$$

> 性能参数:

分离效率

分离精度d₅₀

$$\Delta P = \frac{21.64 \rho^{1.3748} Q_i^{2.3748}}{\mu^{0.3748} D^{4.3744}}$$
$$d_{50}^2 = 0.1918 D^{0.842} \frac{\mu^{1.158}}{\Delta \rho} \sqrt{\frac{\rho^{0.842}}{\Delta \rho^{1.158}}}$$

> 操作参数:

温度t、

进料流量 Q_i和分散相浓度 Ci和压力Pi; 分流比(溢流/底流)、压差

旋流器的结构

$$Q_i = 0.274 \mu^{0.1578} D^{1.842} \frac{\Delta P^{0.4211}}{\rho^{0.5789}}$$

$$D = 220.3 \frac{\left(\frac{x_{50}^2 \Delta \rho}{18\mu}\right)^{1.188}}{\mu^{0.1874}} \sqrt{\frac{\Delta P^{1.375}}{\rho}}$$

旋流器的串联

▶ 固-液旋流器, "级"是指溢流产品通过净化设备的次数,水力旋流器的多级分离是通过水力旋流器的溢流串联系统来实现的; "段"指底流物料通过净化设备的次数,水力旋流器的多段分离则需要旋流器底流串联系统来实现。

二级一段筛选流程示意图

溢流合流的一级 三段流程示意图

离心过滤与离心沉降对比

离心机	沉降机 (分离机)	过滤机	
转鼓 示意图 柱型 锥柱型	图 5-1 1-转鼓回转轴:2-转鼓底;3-转鼓壁; 4~拦液板;5~滤流;6~滤液	图 5-3 1-转鼓回转轴; 2-转鼓底; 3-转鼓壁; 4-拦液板; 5-滤渣; 6-滤液; 7-滤网;	
** **		는 PX 사사가 나다 /	
转鼓结构	回转轴、转鼓(底、壁、拦液板)		
液流方向	轴向进出	轴向进 径向出	
转鼓壁	无孔 无滤网 固相沉降 液相经过	有孔 有滤网 固相滯留 液相排出	
转鼓内	卸料装置(沉降机) 旋转碟片组(分离机)	卸料装置 (刮刀、螺旋等)	

- **离心沉降**:在离心力场中,利用分散相和连续相之间的密度差异,使 之发生相对运动而实现分离、浓缩和提纯的操作过程。
- 重力沉降与离心沉降的主要区别:重力场可以认为是均匀的,重力场的强度是固定不变的;而离心力场强度是以分离因数表示的,分离因数可通过改变转鼓半径和转速来调节,离心力场是变化的。

离心力场的基本特性

离心力

离心力:由于做周圆运动的物体运动的方向或速度发生改变而产生的,是一种惯性力。它与向心力大小相等,方向相反。离心力的作用方向是沿旋转半径从圆心指向圆外,其大小可表示为:

$$F_r = mr\omega^2 = \frac{mu^2}{r} = mr(4\pi^2 n^2)$$
 (3-125)

式中: m —颗粒质量

r —颗粒质心在离心场中所处的回转半径

ω—离心场的旋转角速度

n —转速

 \triangleright 离心力 F_r 随着颗粒质量m、颗粒所处回转半径r、旋转角速度 ω 的增大而增大;离心力与重力场无关。

离心力场的基本特性

分离因数

分离因数:固体颗粒在离心力场中所受的离心力与重力之比称为分离因数。

$$f = \frac{F_r}{F_g} = \frac{mr\omega^2}{mg} = \frac{r\omega^2}{g} = \frac{4\pi^2 rn^2}{g}$$
 (3-126)

- 分离因数是表示离心机分离性能的主要指标之一, f 值越大, 物料受的 离心力愈大, 分离效果也越好。
- \triangleright 分离因数 f 与转鼓半径 r成正比且与转速 n 的 2次方成正比,因此提高转速时分离因数增长的很快。
- > 高速离心机的结构都是转速高,直径小,分离因数大。

离心沉降设备的Σ理论

离心机生产能力理论

沉降离心机的生产能力:能将所需分离的最小固相粒子沉降在转鼓内,而不随着分离液带出的最大悬浮液流量;这样,分离因数一定的同一离心机对不同的物料要求生产能力也将不同。

Σ—当量沉降面积,是另一个表示离心沉降设备分离性能的指标,是 1952年Ambler提出的计算离心机生产能力的理论 对于柱形(管式高速离心机)转鼓:

$$Q = u_o \frac{\omega^2 r}{g} \pi D L (1 - \lambda + \frac{\lambda^2}{4}) = u_o f A = u_o \Sigma$$
 (3-138)

式中 Q—离心沉降设备的生产能力

 u_0 —沉降速度

D—转鼓直径

L—转鼓长度

离心沉降设备的Σ理论

离心机生产能力理论

A—表示随半径变化而变化的沉降面积的修正面积

$$A = \pi DL(1 - \lambda + \frac{\lambda^2}{4})$$

式中: λ —系数,一般工业离心机取0.1-0.3

对于柱形转鼓, Σ 值:

$$\sum = f \pi D L (1 - \lambda + \frac{\lambda^2}{4}) \qquad (3-139)$$

对于锥形转鼓, Σ 值:

$$\Sigma = f \pi D L (\frac{1}{2} - \frac{2}{3}\lambda + \frac{\lambda^2}{4})$$
 (3-140)

不同形式转鼓几何尺寸

对于柱锥形转鼓, Σ 值:

$$\Sigma = f \pi D L \left[\left(\frac{1}{2} - \frac{2}{3} \lambda + \frac{\lambda^2}{4} \right) + \frac{L_1}{L} \left(\frac{1}{2} - \frac{1}{3} \lambda + \frac{\lambda^2}{12} \right) \right]$$

(3-141)

离心机的分类

- ◆ 按分离因数大小分为:
- \triangleright 低速离心机 (f < 3000) 主要用于分离颗粒较大的悬浮液或物料的脱水
- ightharpoons 高速离心机 (3000 < f < 5000)主要用于分离乳浊液和细颗粒悬浮液
- ightharpoons 超高速离心机 (f > 5000)主要用于分离超微细、高分子胶体悬浮液
- ◆ 按操作原理分为: 过滤式离心机和沉降式离心机
- ◆ 按操作方式分为: 间歇式离心机和连续式离心机
- ◆ 按卸料方式分为:人工卸料和自动卸料,自动卸料有包括刮刀卸料、活塞 推料、离心卸料、螺旋卸料、喷嘴卸料等
- ◆ 按转鼓形状分为:圆柱形、圆锥形、柱-锥形转鼓三类

根据不同的工艺要求进行离心机的选型。

