Kimyasal bileşikler ve Adlandırma

- ☐ Metaller ve Ametaller
- ☐ İyonlar ve iyon yükleri
- ☐ Bileşik türleri
- ☐ Sistematik adlandırmalar
- Adlandırma ve bileşik formülü yazma

Metaller ve Ametaller

- Periyodik cetvelde;
- C, P, Se, I, At ve sağındakiler ametaller
- B, Si, As, Ge, Sb, Te, Po yarı metaller
- Diğerleri de metallerdir

İyonlar: Anyon

- Negatif iyon.
- Elektron fazlalığı var
- Ametaller elektron almak isterler
- Yük atomun sembolünün sağ üst köşesinde gösterilir
 - F1- Flor atomu 1 elektron kazanmış ve florür iyonuna dönüşmüştür
 - Oksijen atomu 2 elektron kazanmış ve oksit iyonuna dönüşmüştür

Katyon

- Artı yüklü iyon.
- Elektron azlığı
- Protonlar elektronlardan fazla
- Metaller elektron kaybederler

 K^{1+}

Potasyum atomu 1 elektron kaybederek potasyum iyonuna dönüşmüştür

Ca²⁺

Kalsiyum 2 elektron kaybetmiştir

Grup 1A: 1 elektron kaybeder: 1+ yüklü iyon

H¹+ Li¹+ Na¹+ K¹+ Rb¹+

1 H 1.00794		_															He 4.002602
Li 6.941	4 Be 9.012182											B 10.811	C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.866	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	Ca 40.078	21 Sc 44.955910	Ti 47.867	V 50.9415	24 Cr 51.9961	25 Mn 54.938049	Fe 55.845	Co 58.933200	Ni 58.6934	Cu 63.546	$\overset{\scriptscriptstyle{30}}{\operatorname{Zn}}_{\scriptscriptstyle{65.39}}$	31 Ga 69.723	Ge 72.61	AS 74.92160	34 Se 78.96	Br 79.904	Kr 83.80
Rb 85.4678	38 Sr 87.62	Y 88.90585	2r 2r 91.224	41 Nb 92.90638	42 Mo 95.94	Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 197.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	Te 127.60	53 I 126.90447	Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	Pb 207.2	83 Bi 208.98038	PO (209)	85 At (210)	Rn (222)
Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	(272)	(277)		114 (289) (287)		116 (289)		

Grup 2A: 2 elektron kabeder: 2+ yüklü iyon

Be²⁺ Mg²⁺ Ca²⁺ Sr²⁺ Ba²⁺

1 H 1.00794																	He 4.002602
Li	Be											B	ć	N	8 O	F	Ne
6.941 11	9.012182											10.811	12.0107 14	14.00674 15	15.9994 16	18.9984032 17	20.1797 18
Na 22.989770	Mg 24.3050											Al 26.981538	Si	P 30.973761	S 32.866	C1 35.4527	Ar 39.948
19 K 39.0983	Ca 40.078	21 Sc 44.955910	Ti 47.867	V 50.9415	24 Cr 51.9961	25 Mn 54.938049	Fe 55.845	Co 58.933200	Ni 58.6934	Cu 63.546	$\operatorname*{Zn}_{\scriptscriptstyle{65.39}}^{\scriptscriptstyle{30}}$	31 Ga 69.723	Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	Kr 83.80
Rb 85.4678	38 Sr 87.62	Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 197.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	Te 127.60	53 I 126.90447	Xe 131.29
CS 132.9054	Ba 137.327	La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	Pb 207.2	83 Bi 208.98038	PO (209)	85 At (210)	86 Rn (222)
Fr (223)	88 Ra (226)	Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	(269)	(272)	(277)		114 (289) (287)		116 (289)		

Hiçbiri! Grup 4A elementleri çok nadir iyon oluşturular (elektron paylaşırlar)

Grup 4A: 4 elektron mu alır yoksa 4 elektron mu kaybeder?

1 H 1.00794													1				He 4.002602
Li 6.941	4 Be 9.012182											B 10.811	C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 90.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	Ti 47.867	V 50.9415	24 Cr 51.9961	25 Mn 54.938049	Fe 55.845	CO 58.933200	Ni 58.6934	Cu 63.546	$\overset{\scriptscriptstyle{30}}{\operatorname{Zn}}_{\scriptscriptstyle{65.39}}$	31 Ga 69.723	Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	Kr 83.80
Rb 85.4678	38 Sr 87.62	Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	Te 127.60	53 I 126.90447	Xe 131.29
Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	Pb 207.2	83 Bi 208.98038	PO (209)	85 At (210)	86 Rn (222)
Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	(269)	(272)	(277)		(289) (287)		116 (289)		

N³⁻ Nitrür

P³⁻ Fosfür

As³⁻ Arsenür

Grup 5A: 3 elektron Alır: -3 yüklü iyon

1 H 1.00794														7			He 4.002602
Li 6.941	4 Be 9.012182											B 10.811	C 12.0107	N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	Ca 40.078	21 Sc 44.955910	Ti 47.867	V 50.9415	24 Cr 51.9961	25 Mn 54.938049	Fe 55.845	Co 58.933200	Ni 58.6934	Cu 63.546	$\overset{\scriptscriptstyle{30}}{\operatorname{Zn}}_{\scriptscriptstyle{65.39}}$	31 Ga 69.723	Ge 72.61	33 As 74.92160	34 Se 78.96	Br 79.904	Kr 83.80
Rb 85.4678	38 Sr 87.62	Y 88.90585	2r 2r 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	Sb 121.760	Te 127.60	53 I 126.90447	Xe 131.29
Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	Hg 200.59	81 T1 204.3833	Pb 207.2	Bi 208.98038	PO (209)	At (210)	Rn (222)
Fr (223)	88 Ra (226)	Ac (227)	104 Rf (261)	Db (262)	106 Sg (263)	Bh (262)	108 Hs (265)	109 Mt (266)	(269)	(272)	(277)		114 (289) (287)		(289)		

O²- Oksit

S²⁻ Sülfür

Se²⁻ Selenür

Grup 6A: 2 elektron alır: -2 yüklü iyon

1 H 1.00794															4		He 4.002602
3 Li 6.941	4 Be 9.012182											B 10.811	C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	Ti 47.867	V 50.9415	24 Cr 51.9961	25 Mn 54.938049	Fe 55.845	CO 58.933200	28 Ni 58.6934	Cu 63.546	$\operatorname*{Zn}_{\scriptscriptstyle{65.39}}^{\scriptscriptstyle{30}}$	31 Ga 69.723	Ge 72.61	AS 74.92160	34 Se 78.96	35 Br 79.904	Kr 83.80
Rb 85.4678	38 Sr 87.62	Y 88.90585	2r 2r 91.224	41 Nb 92.90638	42 Mo 95.94	Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	Te	53 I 126.90447	Xe 131.29
CS 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	Hg 200.59	81 T1 204.3833	Pb 207.2	83 Bi 208.98038	PO (209)	85 At (210)	Rn (222)
Fr (223)	88 Ra (226)	AC (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	(269)	(272)	(277)		114 (289) (287)		(289)		

F¹⁻ Florür Cl¹⁻ Klorür Br¹⁻ Bromür I¹⁻ Iyodür Grup 7A: 1 elektron ahr: -1 yüklü iyon

1 H 1.00794																4	He 4.002602
Li 6.941	4 Be 9.012182											B 10.811	C 12.0107	7 N 14.00674	8 O 15.9994	F 18.998403	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	²⁰ Ca ^{40,078}	21 Sc 44.955910	Ti 47.867	V 50.9415	24 Cr 51.9961	25 Mn 54.938049	Fe 55.845	CO 58.933200	Ni 58.6934	Cu 63.546	$\overset{\scriptscriptstyle{30}}{\operatorname{Zn}}_{\scriptscriptstyle{65.39}}$	31 Ga 69.723	Ge 72.61	33 As 74.92160	34 Se 78.96	Br 79.904	Kr 83.80
37 Rb 85.4678	38 Sr 87.62	Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	Te 127.60	53 I 126.90447	Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	Pb 207.2	83 Bi 208.98038	PO (209)	85 At (210)	Rn (222)
Fr (223)	88 Ra (226)	Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	(269)	(272)	(277)		114 (289) (287)		116 (289)		

Grup B elementleri Birçok geçiş elementleri birden fazla farklı değerlik alabilirler

Değerlik parantez içinde Romen rakamı ile ifade edilir

Demir (II) = Fe^{2+} Demir (III) = Fe^{3+}

1 H 1.00794																	He 4.002602
Li 6.941	4 Be 9.012182					1						B 10.811	C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	Ca 40.078	21 Sc 44.955910	Ti 47.867	V 50.9415	24 Cr 51.9961	25 M11 54.9386 9	Fe 55.845	27 CO 6.933200	28 Ni 58.6934	Cu 63.546	$\overset{\scriptscriptstyle{30}}{Z}{\overset{\scriptscriptstyle{5.39}}{n}}$	31 Ga 69.723	Ge 72.61	AS 74.92.160	34 Se 78.96	Br 79.904	Kr 83.80
Rb 85.4678	38 Sr 87.62	Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	Tc (98)	Ru 101.07	Rh 102.90550	46 Pd 106.42	47 Ag 197.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	Te 127.60	53 I 126.90447	Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	Hg 200.59	81 T1 204.3833	Pb 207.2	83 Bi 208.98038	PO (209)	85 At (210)	86 Rn (222)
Fr (223)	88 Ra (226)	AC (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	(272)	(277)		114 (289) (287)		116 (289)		

- Bazı geçiş metalleri yalnızca bir değerlik alırlar:
 - Bunlarda değerliği Romen rakamı ifade etmeye gerek yoktur
 - Gümüş her zaman 1+ (Ag¹+)
 - <u>Kadmiyum</u> and <u>Çinko</u> her zaman 2+ (Cd²⁺ and Zn²⁺)

İyon adları: Katyon

Değerlikleri sabit olan pozitif iyonlar (katyonlar)

Li⁺: Lityum

K⁺: Potasyum

Cs⁺: Sezyum

Ca²⁺: Kalsiyum

Ba²⁺: Baryum

Zn²⁺: Çinko

Na⁺: Sodyum

Rb⁺: Rubidyum

Mg²⁺: Magnezyum

Sr²⁺: Stronsiyum

Al³⁺: Alüminyum

Ag⁺: Gümüş

İyon adları: Katyon

Farklı değerliklere sahip olan katyonlar

Cr³⁺: Krom (III)

Fe³⁺: Demir (III)

Co³⁺: Kobalt (III)

Cu²⁺: Bakır (II)

Hg²⁺: Civa (II)

Sn⁴⁺: Kalay (IV)

Pb⁴⁺: Kurşun (IV)

Cr²⁺: Krom (II)

Fe²⁺: Demir (II)

Co²⁺: Kobalt (II)

Cu+: Bakır (I)

 Hg_2^{2+} : Civa (I)

Sn²⁺: Kalay (II)

Pb²⁺: Kurşun (II)

İyon adları: Anyon

Negatif yüklü iyonlar (anyonlar)

H⁻: Hidrür F⁻: Florür

Cl⁻: Klorür Br⁻: Bromür

I⁻: İyodür O²⁻: Oksit

S²-: Sülfür N³-: Nitrür

Çok atomlu iyonlar

- Amonyum: NH₄⁺
- Asetat: CH₃COO⁻
- Karbonat: CO₃²⁻
- Kromat: CrO₄²⁻
- Dikromat: Cr₂O₇²⁻
- Siyanür: CN⁻

amonyum klorür: NH₄Cl

sodyum asetat: NaCH₃COO

sodyum karbonat: Na₂CO₃

amonyum kromat: (NH₄)₂CrO₄

amonyum dikromat: (NH₄)₂Cr₂O₇

potasyum siyanür: KCN

Çok atomlu iyonlar

- Hidroksit: OH⁻
- Nitrit: NO₂
- Nitrat: NO₃⁻
- Fosfat: PO₄³⁻
- Sülfit: SO_3^{2-}
- Sülfat: SO_4^{2-}

- lityum hidroksit: LiOH
- sodyum nitrit: NaNO₂
- sodyum nitrat: NaNO₃
- sodyum fosfat: Na₃PO₄
- sodyum sülfit: Na₂SO₃
- sodyum sülfat: Na₂SO₄

İyonik karakterli metal-ametal ikili bileşiklerinin adlandırılmasında şu kural izlenir:

- 1) Metalin adı olduğu gibi söylenir,
- 2) Ametalin adının sonuna "ür" eki getirilir.

Not: Farklı değerliklere sahip metal iyonları farklı formüllere sahip bileşikler oluşturacağı için, bunların

isimlendirilmesinde, metal iyonunun yükseltgenme basamağı da belirtilir.

Dikkat edilmesi gereken nokta, bileşiklerin oluşumunda elektriksel olarak nötralliğin sağlanmış olduğudur.

NaCI: Sodyum klorür

Mgl₂: Magnezyum iyodür

Al₂O₃: Alüminyum oksit

Na₂S: Sodyum sülfür

Farklı değerlikler alan metallerin bileşiklerinde aldığı değerlik parantez içinde roma rakamı ile gösterilir

FeCl₃: Demir(III) klorür

FeCl₂: Demir (II) klorür

 $Hg_2(NO_3)_2$: Civa (I) nitrat

 $Hg(NO_3)_2$: Civa (II) nitrat

Cu₂O: Bakır(I) oksit

Adı verilen iyonik bağlı bir bileşiğin formülünü yazarken;

Baryum oksit: Baryum 2A grubunda olduğu için Ba²⁺ değerlik alır; oksijen 6A grubunda olduğu için oksit iyonu O²⁻ değerlik alır. 1:1 oranında birleştiklerinde dışarıya karşı nötral oldukları için, herhangi bir katsayı kullanmaya gerek yoktur.

BaO

 $(Ba^{+2}O^{-2})$

Kalsiyum florür:

Kalsiyum 2A grubunda Ca²⁺ değerlik alır; flor 7A grubunda olduğu için oksit iyonu F⁻ değerlik alır. Kalsiyum 2 elektron vermek isteyeceğinden, her biri bir elektron alan 2 tane F gerekir.

$$CaF_2$$
 ($Ca^{2+}F_2$)

Demir (III) sülfür:

Demir farklı değerlik alabildiği için, bu bileşikte aldığı değerlik parantez içinde verilmiştir. O halde demirin bu bileşikteki değerliği: Fe³⁺

Sülfür elementi 6A grubunda olduğu için 2 elektrona ihtiyaç duyar ve S²⁻ değerlik alır. Oluşacak bileşikte verilen elektronların alınan elektronlara denk olması için metal ve ametal atomları uygun katsayılar ile denkleştirilir

$$Fe_2S_3$$

$$(Fe^{3+}_{2}S^{2-}_{3})$$

İyonik bileşiklerde atomun yüküne bakarak bileşiğin formülünü elde edebiliyoruz. Kovalent bağlı bileşiklerde yani moleküler bileşiklerde bileşiğin adı bize molekül formülündeki atomların sayısını da ifade eder.

İki ametalden oluşan kovalent bağlı bileşiklerin adlandırılması iyonik bileşiklerinkine benzer.

HCI: Hidrojen klorür

Önce pozitif yüklü iyonun, sonra da negatif yüklü iyonun yazıldığı görülmektedir.

Formülde yazılacak atomun sayısı lâtince karşılıkları söylenerek belirtilir

Sayı önekleri

SO₂: Kükürt dioksit

SO₃: Kükürt trioksit

CO: Karbon monoksit

CO₂: Karbon dioksit

Bu örneklerde, birinci atom tek olduğu için "mono" ön ekinin kullanılması gerektiği düşünülebilir, ancak basitlik amacı ile kullanılmaz. İkinci atom tek ise "mono" ön eki mutlaka kullanılır.

B₂Br₄: Dibor tetrabromür

Bu örnekte, birinci atomdan iki tane olduğu için, karşılık gelen "di" ön eki, ikinci atom dört tane olduğu için, karşılık gelen "tetra" ön eki kullanılmıştır.

H₂O (Su): Dihidrojen monoksit

NH₃ (amonyak): Trihidrojen mononitrür

gibi bileşiklerin sistematik adları geleneksel adlarının yaygınlaşmasından ötürü pek kullanılmaz

BCl₃: Bor triklorür

CO: Karbon monoksit

NO: Azot monoksit

N₂O: Diazot monoksit

N₂O₄: Diazot tetroksit

PCI₃: Fosfor triklorür

SF₆: Kükürt hekzaflorür

CCl₄: Karbon tetraklorür

CO₂: Karbon dioksit

NO₂: Azot dioksit

 N_2O_3 : Diazot trioksit

N₂O₅: Diazot pentoksit

PCI₅: Fosfor pentaklorür

Değerlik hesaplama

Çok atomlu bir iyonda ya da kovalent bağlı bir bileşikteki atomun aldığı değerlik hesaplanırken aşağıdaki örnekteki gibi yapılır:

H₂O bileşiğinde O atomu H atomuna göre daha çok ametalik özellik gösterdiğinden O atomu eksi değerlik (-2) alır; bu durumda H atomunun değerliği de artı olur.

Buna göre H atomunun değerliği= a ise;

2 x a + (-2) = 0 (Bileşik nötr olduğu için sıfıra eşitlenir)

a = +1 bulunur

Değerlik hesaplama

Eğer çok atomlu bir iyondaki atomların yüklerini bulmak istersek;

Kromat: CrO₄²⁻ iyonundaki Cr atomunun yükünü hesaplayalım: Burda iyonun net yükü -2 dir. Cr atomunun yükü a olsun;

$$a + 4x(-2) = -2$$

$$a = +6$$
 bulunur

Değerlik hesaplama

Şimdi de Sülfit: SO₃²⁻ iyonundaki sülfür (S) atomunun yükünü hesaplayalım: Bu bileşikte Oksijen atomu Sülfür atomundan daha iyi bir ametal olduğu için yükü eksi olacaktır (-2); Sülfür atomunun yüküne *a* dersek;

a + 3x(-2) = -2 (iyonun net yükü -2 dir)

a = +4 bulunur.

İkili Asitler

İkili asit bileşikleri suda çözündüğünde başka türlü, gaz halinde ise başka türlü isimlendirilir.

```
HF<sub>(suda)</sub>: Hidroflorik asit
```

Adlandırma: İkili Asitler

HCI_(suda): Hidroklorik asit

HBr_(suda): Hidrobromik asit

HI_(suda): Hidroiyodik asit

H₂S_(suda): Hidrosülfürik asit

Adlandırma: Bazlar

- Baz- Suda hidroksit iyonları (OH⁻¹) oluşturan bileşikler
- Bazlar diğer iyonik bileşiklerde olduğu gibi adlandırılır:
 - Katyon adı (metal) ve anyon adı (hidroksit) okunur

Adlandırma: Bazlar

- NaOH: sodyum hidroksit
- Ca(OH)₂: Kalsiyum hidroksit
- Bileşik formülünü elde etmek için:
 - 1) Metalin sembolü
 - 2) Daha sonra da hidroksit iyonu (OH⁻¹) yanına yazılır
 - Yüklerin denkleştirilmesi için uygun katsayılar eklenir

Adlandırma: Bazlar

- Magnezyum hidroksit: Mg(OH)₂
- Demir (III) hidroksit: Fe(OH)₃
- Çinko hidroksit: Zn(OH)₂