

Machine Learning Approaches to the Blockchain

some hyped-up tagline

Jean-Paul Ebejer

Supervised by Dr Zhivago

Co-supervised by Dr Who

Department of Alchemy

Faculty of Something

University of Malta

April, 2022

A dissertation submitted in partial fulfilment of the requirements for the degree of M.Sc. in Your Degree.

Copyright ©2022 University of Malta

WWW.UM.EDU.MT

First edition, Tuesday 26th April, 2022

To The Avengers

You know, for saving the world.

Acknowledgements

Abstract

Contents

Li	st of A	Abbreviations	xv
1	Intro	oduction	1
	1.1	Motivation	1
	1.2	Proposed Solution	1
		1.2.1 Showing the Use of Acronyms	2
	1.3	Document Structure	2
2	Back	ground & Literature Overview	3
	2.1	An Example of an Equation	3
	2.2	An Example of a Numbered List	4
	2.3	An Example of a Bulleted List	4
	2.4	An Example of a Figure	5
	2.5	An Example of a Side-by-Side Figure	6
	2.6	An Example of a Table	6
	2.7	An Example of a Long Table	7
	2.8	A Landscape Table Example	10
	2.9	A Theorem Example	12
	2.10	A Lemma Example	12
	2.11	A Proof Example	13
	2.12	A Listing Example	14
	2.13	An Algorithm Example	15
	2.14	Some Technique One	15
		2.14.1 Some Sub-technique One	16
	2.15	Some Technique Two	17
	2.16	Evaluation Criteria	18
	2.17	Related Work	18
	2.18	An Example of Suppressing Page Numbers on A Float Page	18

Contents xi

	2.19 Summary	 19
3	Materials & Methods 3.1 Summary	 21 21
4	Results & Discussion 4.1 Summary	 23 24
5	Evaluation 5.1 Summary	 25 26
6	Conclusions	27
	6.1 Revisiting the Aims and Objectives	 27
	6.2 Critique and Limitations	 27
	6.3 Future Work	 28
	6.4 Final Remarks	 28
Aj	appendix A Media Content	29
Aı	appendix B Installation Instructions	31
Aı	appendix C User Manual	35
Re	References	37

List of Figures

2.1	This is the short caption for List of Figures	5
2.2	Short Caption	6
2.3	Short Random Caption	2(

List of Tables

2.1	A Beautiful and Complex Table (for tables captions above)	7
2.2	Performance of Ligity in HTS mode against the Ligity-compatible DUD-E	
	targets	7
2.3	A landscape table	11

List of Abbreviations

CDMA Code Division Multiple Access	. 2
GSM Global System for Mobile communication	
TDMA Time Division Multiple Access	2
UA Used Acronym	. 2

Introduction

Note that you may have multiple \include statements here, e.g. one for each subsection.

1.1 | Motivation

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

1.2 | Proposed Solution

1.2.1 | Showing the Use of Acronyms

In the early nineties, GSM was deployed in many European countries. Global System for Mobile communication (GSM) offered for the first time international roaming for mobile subscribers. The GSM's use of Time Division Multiple Access (TDMA) as its communication standard was debated at length. And every now and then there are big discussion whether Code Division Multiple Access (CDMA) should have been chosen over TDMA.

If you want to know more about Global System for Mobile communication (GSM), Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA) and other acronyms, just read a book about mobile communication. Just to mention it: There is another Used Acronym (UA), for testing.

1.3 | Document Structure

Background & Literature Overview

In this section you need to explain all the theory required to understand your dissertation (i.e. the following chapters). But really in this chapter I am going to show you some examples.

2.1 | An Example of an Equation

The following is the most beautiful equation in maths, Euler's Identity (Equation 2.1).

$$e^{i\pi} + 1 = 0 (2.1)$$

where:

e =the constant

i = of complex fame

 π = not of the apple variety

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in

of the original language. There is no need for special content, but the length of words should match the language.

2.2 | An Example of a Numbered List

This is an example of a numbered list:

- 1. This is my first point
- 2. My second
- 3. My third!
- 4. And my fourth?

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.3 | An Example of a Bulleted List

This is an example of a bulleted list:

- This is my first point
- My second
- My third!
- And my fourth?

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information

about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.4 | An Example of a Figure

A test figure is shown in Figure 2.1.

Figure 2.1: A test figure. This caption is huge, but in the list of figures only the smaller version in the square brackets will appear.

2.5 | An Example of a Side-by-Side Figure

Two figures shown side-by-side are shown in Figure 2.2.

Figure 2.2: The same super saiyan. Two times.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.6 | An Example of a Table

A beautiful table is shown in Table 2.1, data from Ebejer et al. (2012) (when citing as part of text, otherwise use parentheses (Ebejer et al., 2012) version).

w = 8w = 16t = 0t = 1t = 2t = 0t = 1t = 2dir = 10.0790 0.1692 0.2945 0.3670 3.1815 С 0.7187 -0.865150.0476 5.9384 -9.0714 297.0923 46.2143 С 124.2756 -50.9612 -14.2721 128.2265 -630.5455 -381.0930 С dir = 00.0357 1.2473 0.2119 0.3593 -0.27552.1764 -17.9048 -37.1111 8.8591 -30.7381 -9.5952 -3.0000 105.5518 232.1160 -94.7351 100.2497 141.2778-259.7326 С

Table 2.1: A Beautiful and Complex Table (for tables captions above)

2.7 | An Example of a Long Table

The following is an example of a table (Table 2.2) spanning multiple pages.

Table 2.2: Performance of Ligity in HTS mode against the Ligity-compatible DUD-E targets. The mean (and standard deviation in parentheses) values of ROC AUC using Tanimoto is 0.622 (± 0.132), while for Tversky it is 0.671 (± 0.142); the mean EF_{1%} using Tanimoto is 5.648 (± 8.668), while for EF_{1%} using Tversky it is 9.047 (± 12.713).

Target	No.	No.	ROC	ROC	BEDRO	CBEDRO	C EF _{1%}	EF _{1%}
	of	of	AUC	AUC	Tani-	Tver-	Tani-	Tversky
	Ac-	De-	Tani-	Tver-	moto	sky	moto	
	tives	coys	moto	sky				
ABL1	182	10,750	0.563	0.473	0.077	0.077	1.653	2.204
ACE	281	16,877	0.787	0.787	0.336	0.401	12.425	19.525
ACES	453	26,242	0.634	0.645	0.077	0.155	1.766	5.518
ADA	93	5,450	0.724	0.660	0.149	0.147	3.251	3.251
ADA17	532	35,898	0.638	0.728	0.103	0.283	1.317	9.030
ADRB1	247	15,850	0.523	0.647	0.065	0.129	1.619	5.262
ADRB2	231	14,999	0.523	0.589	0.052	0.040	1.735	0.000
AKT1	293	16,450	0.386	0.548	0.039	0.107	2.737	3.080
AKT2	117	6,900	0.511	0.685	0.140	0.194	8.568	8.568
ALDR	159	8,988	0.574	0.610	0.202	0.172	10.747	6.322
AMPC	48	2,845	0.521	0.541	0.049	0.023	0.000	0.000
ANDR	269	14,349	0.722	0.742	0.194	0.354	4.839	24.938

(continued...)

Ac-	Target	No.	No.	ROC	ROC	BEDRO	CBEDROC	C EF _{1%}	EF _{1%}	
AOFB	O	of	of	AUC	AUC	Tani-	Tver-	Tani-		
AOFB BACEI BACEI BACEI BACEI BAS BRAF 152 9950 0.612 0.639 0.208 0.165 12.502 0.000 13.062 CASP3 199 10.694 0.600 0.734 0.068 0.258 0.502 7.031 CDK2 474 27,838 0.467 0.507 0.021 0.048 0.000 0.1355 COMT 41 3,846 0.789 0.889 0.338 0.665 19.447 58.341 CP2C9 120 7,449 0.518 0.634 0.058 0.186 1.660 8.299 CP3A4 170 11,787 0.450 0.493 0.022 0.057 0.000 2.345 CSF1R 166 12,149 0.526 0.542 0.136 0.152 0.6031 0.723 CXCR4 40 3,405 0.575 0.722 0.217 0.134 12.665 0.000 DEF 102 5,6699 0.732 0.833 0.212 0.379 10.786 0.509 DHII 330 19,348 0.481 0.595 0.089 0.062 2.422 1.211 DPP4 533 49,041 0.556 0.591 0.154 0.157 0.373 DRD3 480 34,048 0.484 0.441 0.043 0.046 1.251 0.626 DYR 231 17,196 0.694 0.758 0.210 0.230 0.230 0.504 0.370 0.370 0.370 0.370 0.381 0.481 0.595 0.089 0.062 0.422 0.577 0.000 0.284 0.566 0.591 0.792 0.194 0.154 0.157 0.154 0.157 0.152 0.626 DYR 231 17,196 0.694 0.758 0.210 0.230 0.6504 7.371 DRD3 480 34,048 0.484 0.441 0.043 0.046 1.251 0.626 DYR 231 17,196 0.694 0.758 0.210 0.230 0.6504 7.371 ESR2 367 20,199 0.844 0.870 0.563 0.644 20,130 32,242 EARL FAT 114 6,249 0.762 0.859 0.210 0.332 6.105 8.721 FABP4 47 27,49 0.786 0.642 0.531 0.111 0.065 0.088 0.722 1.445 FKB1A 111 5,799 0.605 0.642 0.531 0.111 0.065 0.088 0.722 1.445 FKB1A 111 5,799 0.605 0.642 0.531 0.111 0.065 0.088 0.722 1.445 FKB1A 111 5,799 0.605 0.642 0.531 0.111 0.065 0.088 0.722 1.445 FKB1A 111 5,799 0.606 0.642 0.531 0.111 0.065 0.088 0.722 1.445 FKB1A 111 0.6249 0.766 0.684 0.244 0.324 0.324 0.392 8.116 GCCR 258 14,998 0.805 0.834 0.244 0.324 0.324 0.392 8.116 GCCR 258 14,998 0.805 0.834 0.244 0.324 0.332 0.776 0.300 0.403 0.406 0.888 0.722 1.445 FKB1A 111 0.655 0.000 0.000 0.603 0.604 0.734 0.000 0.605 0.608 0.007 0.797 0.191 0.000 0.607 0.600 0.608 0.000 0.797 0.191 0.000		Ac-	De-	Tani-	Tver-	moto	sky	moto	sky	
BACEI 283 18,100 0.441 0.775 0.017 0.310 0.000 13.062 CASP3 199 10,694 0.600 0.734 0.068 0.258 0.502 5.264 CASP3 199 10,694 0.600 0.734 0.068 0.258 0.502 7.031 CDK2 474 27,838 0.467 0.507 0.021 0.048 0.000 1.055 COMT 41 3,846 0.789 0.889 0.338 0.665 19.447 5.8341 CP2C9 120 7,449 0.518 0.634 0.058 0.186 1.660 8.299 CP3A4 170 11,787 0.450 0.493 0.022 0.057 0.000 2.345 CSFIR 166 12,149 0.526 0.542 0.136 0.152 6.031 7.238 CXCR4 40 3,405 0.575 0.722 0.217 0.134 12.665 0.000 DEF 102 5,699 0.732 0.833 0.212 0.379 10.786 0.5689 DHI1 330 19,348 0.481 0.595 0.089 0.062 2.422 1.211 DPP4 533 40,941 0.586 0.591 0.154 0.157 4.312 3.937 DRD3 480 34,048 0.484 0.441 0.043 0.046 1.251 0.626 DYR 231 17,196 0.694 0.758 0.210 0.230 6.504 7.371 EGFR 542 35,047 0.593 0.491 0.054 0.037 0.922 0.000 ESR1 383 20,683 0.838 0.861 0.527 0.594 31.281 39.101 ESR2 367 20,199 0.844 0.870 0.563 0.644 20,130 32.644 FA10 537 28,324 0.564 0.674 0.058 0.118 0.932 0.400 1.251 6.000 1.623 FAX1 114 6.249 0.762 0.859 0.210 0.332 6.105 8.721 FABP4 47 2.749 0.786 0.642 0.531 0.111 0.065 2.019 0.000 FGFR1 139 8.698 0.511 0.522 0.036 0.088 0.722 1.445 FKB1A 111 5,799 0.665 0.665 0.088 0.722 1.445 FKB1A 111 5,799 0.665 0.665 0.088 0.722 1.445 FKB1A 111 5,799 0.665 0.650 0.088 0.722 1.445 FKB1A 111 5,799 0.665 0.666 0.088 0.722 1.445 FKB1A 111 5,799 0.665 0.666 0.688 0.203 0.102 0.737 2.946 8.254 0.917 0.985 0.084 0.085 0.178 0.324 0.000 4.053 FFKB1A 111 5,799 0.665 0.665 0.688 0.203 0.102 0.799 1.873 11.240 0.614 0.751 0.662 0.084 0.035 0.000 1.623 EPPS 85 8.842 0.917 0.985 0.084 0.085 0.178 0.379 1.995 0.000 0.000 FGFR1 139 8.698 0.511 0.522 0.036 0.088 0.722 1.445 0.600 0.0		tives	coys	moto	sky		-		-	
BRAF 152 9,950 0.612 0.639 0.208 0.165 12.502 5.264 CASP3 199 10,694 0.600 0.734 0.068 0.258 0.502 7.031 CDK2 474 27,838 0.467 0.507 0.021 0.048 0.000 1.055 COMT 411 3,846 0.789 0.889 0.338 0.665 19,447 58,341 CP2OP 120 7,449 0.518 0.634 0.058 0.186 1.660 8.299 CP3A4 170 11,787 0.450 0.493 0.022 0.057 0.000 2.345 CSF1R 166 12,149 0.526 0.542 0.136 0.152 6.031 7.238 CXCR4 40 3,408 0.575 0.722 0.217 0.134 12.665 0.000 DBTI 333 40,941 0.586 0.591 0.154 0.157 4.312 3.937 DRD										
CASP3 199 10,694 0.600 0.734 0.068 0.258 0.502 7.031 CDK2 474 27,838 0.467 0.507 0.021 0.048 0.000 1.055 COMT 41 3,846 0.789 0.889 0.338 0.665 19,447 58.341 CP2C9 120 7,449 0.518 0.634 0.058 0.186 1.660 8.299 CP3A4 170 11,787 0.450 0.493 0.022 0.057 0.000 2.345 CSF1R 166 12,149 0.526 0.542 0.136 0.152 6.031 7.238 CXCR4 40 3,405 0.575 0.722 0.217 0.134 12.665 0.000 DEF 102 5,699 0.732 0.833 0.212 0.379 10.786 15.689 DH11 330 19,348 0.481 0.591 0.154 0.157 4.012 12.11 DRD3										
CDK2 474 27,838 0.467 0.507 0.021 0.048 0.000 1.055 COMT 41 3,846 0.789 0.889 0.338 0.665 19.447 58.341 CP2C9 120 7,449 0.518 0.634 0.058 0.186 1.660 8.299 CF3A4 170 11,787 0.450 0.493 0.022 0.057 0.000 2.345 CSFIR 166 12,149 0.526 0.542 0.136 0.152 6.031 7.238 CXCR4 40 3,405 0.575 0.722 0.217 0.134 12.665 0.000 DHI 330 19,348 0.481 0.895 0.089 0.062 2.422 1.211 DPP4 533 40,941 0.586 0.591 0.154 0.157 4.312 3.937 DRD3 480 34,048 0.484 0.441 0.043 0.046 1.251 0.626 DYR <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
COMT 41 3,846 0.789 0.889 0.338 0.665 19,447 58,341 CP2C9 120 7,449 0.518 0.634 0.058 0.186 1.660 8.299 CF3A4 170 11,787 0.450 0.493 0.022 0.057 0.000 2.345 CSFIR 166 12,149 0.526 0.542 0.136 0.152 6.031 7.238 CXCR4 40 3,405 0.575 0.722 0.217 0.134 12,665 0.000 DEF 102 5,699 0.732 0.833 0.212 0.379 10.786 15.689 DHII 330 19,348 0.481 0.595 0.089 0.062 2.422 1.211 DPP4 533 40,941 0.586 0.910 0.52 4.221 3.23 DRD3 480 34,048 0.484 0.441 0.043 0.046 1.251 0.626 DYR 231										
CP2C9 120 7,449 0.518 0.634 0.058 0.186 1.660 8.299 CP3A4 170 11,787 0.450 0.493 0.022 0.057 0.000 2.345 CSF1R 166 12,149 0.526 0.542 0.136 0.152 6.031 7.238 CXCR4 40 3,405 0.575 0.722 0.217 0.134 12.665 0.000 DHII 330 19,348 0.481 0.595 0.089 0.062 2.422 1.211 DPP4 533 40,941 0.586 0.591 0.154 0.157 4.312 3.937 DRD3 480 34,048 0.484 0.441 0.043 0.046 1.251 0.626 DYR 231 17,196 0.694 0.758 0.210 0.230 6.504 7.371 ESR1 383 20,683 0.838 0.861 0.527 0.594 31.281 39.101 ESR2										
CP3A4 170 11,787 0.450 0.493 0.022 0.057 0.000 2.345 CSF1R 166 12,149 0.526 0.542 0.136 0.152 6.031 7.238 CXCR4 40 3,405 0.575 0.722 0.217 0.134 12.665 0.000 DEF 102 5,699 0.732 0.833 0.212 0.379 10.786 15.689 DHI1 330 19,348 0.481 0.595 0.089 0.062 2.422 1.211 DPP4 533 40,941 0.586 0.591 0.154 0.157 4.312 3.937 DRD3 480 34,048 0.484 0.441 0.043 0.046 1.251 0.626 DYR 231 17,196 0.694 0.758 0.210 0.230 6.504 7.371 EGFR 542 35,047 0.593 0.491 0.054 0.037 0.922 0.000 ESR1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
CSFIR 166 12/149 0.526 0.542 0.136 0.152 6.031 7.238 CXCR4 40 3,405 0.575 0.722 0.217 0.134 12.665 0.000 DEF 102 5,699 0.732 0.833 0.212 0.379 10.786 15.689 DHI1 330 19,348 0.481 0.595 0.089 0.062 2.422 1.211 DRD3 480 34,048 0.484 0.441 0.043 0.046 1.251 0.626 DYR 231 17,196 0.694 0.758 0.210 0.230 6.504 7.371 EGFR 542 35,047 0.593 0.491 0.054 0.037 0.922 0.000 ESR1 383 20,683 0.838 0.861 0.527 0.594 31.281 39.101 ESR2 367 20,199 0.844 0.870 0.563 0.644 20.130 22.442 FAT										
CXCR4 40 3,405 0.575 0.722 0.217 0.134 12,665 0.000 DEF 102 5,699 0.732 0.833 0.212 0.379 10.786 15.689 DHII 330 19,348 0.481 0.595 0.089 0.062 2.422 1.211 DPP4 533 40,941 0.586 0.591 0.154 0.157 4.312 3.937 DRD3 480 34,048 0.484 0.441 0.043 0.046 1.251 0.626 DYR 231 17,196 0.694 0.758 0.210 0.230 6.504 7.371 EGFR 542 35,047 0.593 0.491 0.054 0.037 0.922 0.000 ESR1 383 20,683 0.8861 0.527 0.594 31.281 39.101 ESR2 367 20,199 0.844 0.870 0.563 0.644 20.130 0.332 6.105 8.721										
DEF 102										
DHII 330 19,348 0.481 0.595 0.089 0.062 2.422 1.211 DPP4 533 40,941 0.586 0.591 0.154 0.157 4.312 3.937 DRD3 480 34,048 0.484 0.441 0.043 0.046 1.251 0.626 DYR 231 17,196 0.694 0.758 0.210 0.230 6.504 7.371 EGFR 542 35,047 0.593 0.491 0.054 0.037 0.922 0.000 ESR1 383 20,683 0.861 0.527 0.594 31,281 39,101 ESR2 367 20,199 0.844 0.870 0.563 0.644 20,130 32,644 FAI0 537 28,324 0.564 0.674 0.058 0.118 0.930 2,232 FAY 114 6,249 0.762 0.859 0.210 0.332 6.105 8.721 FABI 47										
DPP4 533 40,941 0.586 0.591 0.154 0.157 4.312 3.937 DRD3 480 34,048 0.484 0.441 0.043 0.046 1.251 0.626 DYR 231 17,196 0.694 0.758 0.210 0.230 0.504 EGFR 542 35,047 0.593 0.491 0.054 0.037 0.922 0.000 ESR1 383 20,683 0.838 0.861 0.527 0.594 31.281 39.101 ESR2 367 20,199 0.844 0.870 0.558 0.118 0.930 2.232 FAD 114 6,249 0.762 0.859 0.210 0.332 6.105 8.721 FABP4 47 2,749 0.786 0.744 0.191 0.276 0.000 10.623 FAK1 100 5,350 0.642 0.531 0.11 0.002 0.006 0.751 0.162 0.164 8.122<										
DRD3 480 34,048 0.484 0.441 0.043 0.046 1.251 0.626 DYR 231 17,196 0.694 0.758 0.210 0.230 6.504 7.371 EGFR 542 35,047 0.593 0.491 0.054 0.037 0.922 0.000 ESR1 383 20,683 0.838 0.861 0.527 0.594 31.281 39.101 ESR2 367 20,199 0.844 0.870 0.563 0.644 20.130 32.644 FA10 537 28,324 0.564 0.674 0.058 0.118 0.930 2.232 FA7 114 6,249 0.762 0.859 0.210 0.332 6.105 8.721 FAAK1 100 5,350 0.642 0.531 0.111 0.065 2.019 0.000 FGFR1 139 8,698 0.511 0.522 0.036 0.888 0.722 1.445 FKB1A<										
DYR 231 17,196 0.694 0.758 0.210 0.230 6.504 7.371 EGFR 542 35,047 0.593 0.491 0.037 0.922 0.000 ESR1 383 20,683 0.838 0.861 0.527 0.594 31.281 39 101 ESR2 367 20,199 0.844 0.870 0.563 0.644 20.130 32.644 FA10 537 28,324 0.564 0.674 0.058 0.118 0.930 2.232 FA7 114 6,249 0.762 0.859 0.210 0.332 6.105 8.721 FABP4 47 2,749 0.786 0.744 0.191 0.276 0.000 10.623 FAK1 100 5,350 0.642 0.531 0.111 0.065 2.019 0.000 FGFR1 139 8,698 0.511 0.522 0.036 0.088 0.722 1.445 FKB1A 111 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
EGFR 542 35,047 0.593 0.491 0.054 0.037 0.922 0.000 ESR1 383 20,683 0.838 0.861 0.527 0.594 31,281 39,101 ESR2 367 20,199 0.844 0.870 0.563 0.644 20,130 32,644 FA10 537 28,324 0.564 0.674 0.058 0.118 0.930 2.232 FA7 114 6,249 0.762 0.859 0.210 0.332 6.105 8.721 FABP4 47 2,749 0.786 0.744 0.191 0.276 0.000 10,623 FAK1 100 5,350 0.642 0.531 0.111 0.065 2.019 0.000 FGFR1 139 8,698 0.511 0.522 0.036 0.088 0.722 1.445 FKB1A 111 5,799 0.605 0.751 0.162 0.164 8.122 3.610 FNTA </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
ESR1 383 20,683 0.838 0.861 0.527 0.594 31.281 39.101 ESR2 367 20,199 0.844 0.870 0.563 0.644 20.130 32.644 FA10 537 28,324 0.564 0.674 0.058 0.118 0.930 2.232 FA7 114 6,249 0.762 0.859 0.210 0.332 6.105 8.721 FABP4 47 2,749 0.786 0.744 0.191 0.276 0.000 10.623 FAK1 100 5,350 0.642 0.531 0.111 0.065 2.019 0.000 FGFR1 139 8,698 0.511 0.522 0.036 0.088 0.722 1.445 FKB1A 111 5,799 0.605 0.751 0.162 0.164 8.122 3.610 FNTA 592 51,493 0.411 0.625 0.012 0.132 0.000 4.053 FPPS 85 8,842 0.917 0.985 0.323 0.776 2.360 36.581 GCR 258 14,998 0.805 0.834 0.244 0.324 3.092 8.116 GLCM 54 3,790 0.667 0.685 0.182 0.279 1.873 11.240 GRIA2 158 11,842 0.662 0.684 0.248 0.154 11.392 5.696 GRIK1 101 6,547 0.656 0.668 0.203 0.102 7.978 1.995 HDAC2 185 10,300 0.676 0.734 0.187 0.201 4.318 4.318 HDAC8 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINT 100 6,640 0.390 0.554 0.030 0.116 0.000 3.018 HIVPR 535 35,724 0.663 0.872 0.072 0.490 0.187 23.898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35.963 HS90A 88 4,850 0.635 0.506 0.996 0.083 0.000 3.436 HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 1GF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 136 8,500 0.493 0.575 0.031 0.045 0.000 0.000 ITAL 136 8,699 0.753 0.813 0.220 0.338 8.923 12.641 ICK 419 27,391 0.447 0.437 0.031 0.043 0.000 1.910										
ESR2 367 20,199 0.844 0.870 0.563 0.644 20.130 32.644 FA10 537 28,324 0.564 0.674 0.058 0.118 0.930 2.232 FA7 114 6,249 0.762 0.859 0.210 0.332 6.105 8.721 FABP4 47 2,749 0.786 0.744 0.191 0.276 0.000 10.623 FAK1 100 5,350 0.642 0.531 0.111 0.065 2.019 0.000 FGFR1 139 8,698 0.511 0.522 0.036 0.088 0.722 1.445 FKB1A 111 5,799 0.605 0.751 0.162 0.164 8.122 3.610 FNTA 592 51,493 0.411 0.625 0.012 0.132 0.000 4.053 FPPS 85 8,842 0.917 0.985 0.323 0.776 2.360 36.581 GCR 258 14,998 0.805 0.834 0.244 0.324 3.092 8.116 GLCM 54 3,790 0.667 0.685 0.182 0.279 1.873 11.240 GRIA2 158 11,842 0.662 0.684 0.248 0.154 11.392 5.696 GRIK1 101 6,547 0.656 0.668 0.203 0.102 7.978 1.995 HDAC2 185 10,300 0.676 0.734 0.187 0.201 4.318 4.318 HDAC8 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINT 100 6,640 0.390 0.554 0.030 0.116 0.000 3.018 HIVPR 535 35,724 0.663 0.872 0.072 0.490 0.187 23.898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35,963 HS90A 88 4,850 0.635 0.506 0.096 0.083 0.000 3.436 HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 IGF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.575 0.037 0.065 0.000 0.728 JAK2 107 6,500 0.472 0.475 0.073 0.018 2.037 14.941 INHA 43 2,300 0.493 0.575 0.037 0.065 0.000 0.728 JAK2 107 6,500 0.497 0.475 0.018 2.007 14.085 4.443 1.777 HMDH 170 6,650 0.490 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.649 0.838 0.228 0.709 14.069 47.483 INHA 49 27,391 0.475 0.475 0.043 0.033 8.923 12.641 ICK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910										
FA10 537 28,324 0.564 0.674 0.058 0.118 0.930 2.232 FA7 114 6,249 0.762 0.859 0.210 0.332 6.105 8.721 FABP4 47 2,749 0.786 0.744 0.191 0.276 0.000 10.623 FAK1 100 5,350 0.642 0.531 0.111 0.065 2.019 0.000 FGFR1 139 8,698 0.511 0.522 0.036 0.088 0.722 1.445 FKB1A 111 5,799 0.605 0.751 0.162 0.164 8.122 3.610 FNTA 592 51,493 0.411 0.625 0.012 0.132 0.000 4.053 FPPS 85 8,842 0.917 0.985 0.323 0.776 2.360 36.581 GCR 258 14,998 0.805 0.834 0.244 0.324 3.092 8.116 GLCM 54 3,790 0.667 0.685 0.182 0.279 1.873 11.240 GRIA2 158 11,842 0.662 0.684 0.248 0.154 11.392 5.696 GRIK1 101 6,547 0.656 0.668 0.203 0.102 7.978 1.995 HDAC2 185 10,300 0.676 0.734 0.187 0.201 4.318 4.318 HDAC8 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINT 100 6,640 0.390 0.554 0.030 0.116 0.000 3.018 HIVPR 535 35,724 0.663 0.872 0.072 0.490 0.187 23.898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35,963 HS90A 88 4,850 0.635 0.506 0.096 0.083 0.000 3.436 HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 IGF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.505 0.755 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.505 0.755 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.505 0.755 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.505 0.755 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.505 0.755 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 0.000 ITA										
FA7										
FABP4 47 2,749 0.786 0.744 0.191 0.276 0.000 10.623 FAK1 100 5,350 0.642 0.531 0.111 0.065 2.019 0.000 FGFR1 139 8,698 0.511 0.522 0.036 0.088 0.722 1.445 FKB1A 111 5,799 0.605 0.751 0.162 0.164 8.122 3.610 FNTA 592 51,493 0.411 0.625 0.012 0.132 0.000 4.053 FPPS 85 8,842 0.917 0.985 0.323 0.776 2.360 36.581 GCR 258 14,998 0.805 0.834 0.244 0.324 3.092 8.116 GLCM 54 3,790 0.667 0.685 0.182 0.279 1.873 11.240 GRIA2 158 11,842 0.662 0.684 0.248 0.154 11.392 5.696 GRIK1 101 6,547 0.656 0.668 0.203 0.102 7.978 1.995 HDAC2 185 10,300 0.676 0.734 0.187 0.201 4.318 4.318 HDAC8 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINT 100 6,640 0.390 0.554 0.030 0.116 0.000 3.018 HIVPR 535 35,724 0.663 0.872 0.072 0.490 0.187 23.898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35,963 HS90A 88 4,850 0.635 0.506 0.996 0.083 0.000 3.436 HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 IGF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.000 0.000 ITAL 138 8,500 0.619 0.4										
FGFR1 139 8,698 0.511 0.522 0.036 0.088 0.722 1.445 FKB1A 111 5,799 0.605 0.751 0.162 0.164 8.122 3.610 FNTA 592 51,493 0.411 0.625 0.012 0.132 0.000 4.053 FPPS 85 8,842 0.917 0.985 0.323 0.776 2.360 36.581 GCR 258 14,998 0.805 0.834 0.244 0.324 3.092 8.116 GLCM 54 3,790 0.667 0.685 0.182 0.279 1.873 11.240 GRIA2 158 11,842 0.662 0.684 0.248 0.154 11.392 5.696 GRIK1 101 6,547 0.656 0.668 0.203 0.102 7.978 1.995 HDAC2 185 10,300 0.676 0.734 0.187 0.201 4.318 4.318 HDAC2 </td <td></td> <td></td> <td>2,749</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			2,749							
FKB1A 111 5,799 0.605 0.751 0.162 0.164 8.122 3.610 FNTA 592 51,493 0.411 0.625 0.012 0.132 0.000 4.053 FPPS 85 8,842 0.917 0.985 0.323 0.776 2.360 36.581 GCR 258 14,998 0.805 0.834 0.244 0.324 3.092 8.116 GLCM 54 3,790 0.667 0.685 0.182 0.279 1.873 11.240 GRIA2 158 11,842 0.662 0.684 0.248 0.154 11.392 5.696 GRIK1 101 6,547 0.656 0.668 0.203 0.102 7.978 1.995 HDAC2 185 10,300 0.676 0.734 0.187 0.201 4.318 4.318 HDAC8 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINT			5,350			0.111	0.065		0.000	
FNTA 592 51,493 0.411 0.625 0.012 0.132 0.000 4.053 FPPS 85 8,842 0.917 0.985 0.323 0.776 2.360 36.581 GCR 258 14,998 0.805 0.834 0.244 0.324 3.092 8.116 GLCM 54 3,790 0.667 0.685 0.182 0.279 1.873 11.240 GRIA2 158 11,842 0.662 0.684 0.248 0.154 11.392 5.696 GRIK1 101 6,547 0.656 0.668 0.203 0.102 7.978 1.995 HDAC2 185 10,300 0.676 0.734 0.187 0.201 4.318 4.318 HDAC8 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINT 100 6,640 0.390 0.554 0.030 0.116 0.000 3.018 HIVPR 535 35,724 0.663 0.872 0.072 0.490 0.187 23.898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35.963 HS90A 88 4,850 0.635 0.506 0.096 0.083 0.000 3.436 HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 IGF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.728 JAK2 107 6,500 0.472 0.475 0.073 0.118 2.807 6.549 KIF11 116 6,850 0.755 0.781 0.149 0.219 4.289 2.574 KIT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.000 KITH 57 2,850 0.649 0.838 0.220 0.338 8.923 12.641 LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910										
FPPS 85 8,842 0.917 0.985 0.323 0.776 2.360 36.581 GCR 258 14,998 0.805 0.834 0.244 0.324 3.092 8.116 GLCM 54 3,790 0.667 0.685 0.182 0.279 1.873 11.240 GRIA2 158 11,842 0.662 0.684 0.248 0.154 11.392 5.696 GRIK1 101 6,547 0.656 0.668 0.203 0.102 7.978 1.995 HDAC2 185 10,300 0.676 0.734 0.187 0.201 4.318 4.318 HDAC3 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVRT 100 6,640 0.390 0.554 0.030 0.116 0.000 3.018 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH<										
GCR 258 14,998 0.805 0.834 0.244 0.324 3.092 8.116 GLCM 54 3,790 0.667 0.685 0.182 0.279 1.873 11.240 GRIA2 158 11,842 0.662 0.684 0.248 0.154 11.392 5.696 GRIK1 101 6,547 0.656 0.668 0.203 0.102 7.978 1.995 HDAC2 185 10,300 0.676 0.734 0.187 0.201 4.318 4.318 HDAC8 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINT 100 6,640 0.390 0.554 0.030 0.116 0.000 3.018 HIVPR 535 35,724 0.663 0.872 0.072 0.490 0.187 23.898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 H										
GLCM 54 3,790 0.667 0.685 0.182 0.279 1.873 11.240 GRIA2 158 11,842 0.662 0.684 0.248 0.154 11.392 5.696 GRIK1 101 6,547 0.656 0.668 0.203 0.102 7.978 1.995 HDAC2 185 10,300 0.676 0.734 0.187 0.201 4.318 4.318 HDAC8 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINT 100 6,640 0.390 0.554 0.030 0.116 0.000 3.018 HIVPR 535 35,724 0.663 0.872 0.072 0.490 0.187 23.898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35.963			8,842							
GRIA2 158 11,842 0.662 0.684 0.248 0.154 11.392 5.696 GRIK1 101 6,547 0.656 0.668 0.203 0.102 7.978 1.995 HDAC2 185 10,300 0.676 0.734 0.187 0.201 4.318 4.318 HDAC8 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINT 100 6,640 0.390 0.554 0.030 0.116 0.000 3.018 HIVPR 535 35,724 0.663 0.872 0.072 0.490 0.187 23.898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35.963 HS90A 88 4,850 0.635 0.506 0.096 0.083 0.000 3.436										
GRIK1 101 6,547 0.656 0.668 0.203 0.102 7.978 1.995 HDAC2 185 10,300 0.676 0.734 0.187 0.201 4.318 4.318 HDAC8 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINT 100 6,640 0.390 0.554 0.030 0.116 0.000 3.018 HIVPR 535 35,724 0.663 0.872 0.072 0.490 0.187 23.898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35.963 HS90A 88 4,850 0.635 0.506 0.096 0.083 0.000 3.436 HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 IGF										
HDAC2 185 10,300 0.676 0.734 0.187 0.201 4.318 4.318 HDAC8 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINT 100 6,640 0.390 0.554 0.030 0.116 0.000 3.018 HIVPR 535 35,724 0.663 0.872 0.072 0.490 0.187 23.898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35.963 HS90A 88 4,850 0.635 0.506 0.096 0.083 0.000 3.436 HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 IGF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14.941 IN										
HDAC8 170 10,449 0.640 0.819 0.120 0.377 2.946 8.250 HIVINT 100 6,640 0.390 0.554 0.030 0.116 0.000 3.018 HIVPR 535 35,724 0.663 0.872 0.072 0.490 0.187 23.898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35.963 HS90A 88 4,850 0.635 0.506 0.096 0.083 0.000 3.436 HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 IGF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.000 ITAL<										
HIVINT 100 6,640 0.390 0.554 0.030 0.116 0.000 3.018 HIVPR 535 35,724 0.663 0.872 0.072 0.490 0.187 23.898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35.963 HS90A 88 4,850 0.635 0.506 0.096 0.083 0.000 3.436 HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 IGF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.728 JAK2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
HIVPR 535 35,724 0.663 0.872 0.072 0.490 0.187 23.898 HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35.963 HS90A 88 4,850 0.635 0.506 0.096 0.083 0.000 3.436 HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 IGF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.728 JAK2										
HIVRT 338 18,884 0.495 0.475 0.124 0.085 4.443 1.777 HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35.963 HS90A 88 4,850 0.635 0.506 0.096 0.083 0.000 3.436 HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 IGF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.728 JAK2 107 6,500 0.472 0.475 0.073 0.118 2.807 6.549 KIF11 116 6,850 0.755 0.781 0.149 0.219 4.289 2.574 KIT										
HMDH 170 8,750 0.480 0.906 0.068 0.652 2.358 35.963 HS90A 88 4,850 0.635 0.506 0.096 0.083 0.000 3.436 HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 IGF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.728 JAK2 107 6,500 0.472 0.475 0.073 0.118 2.807 6.549 KIF11 116 6,850 0.755 0.781 0.149 0.219 4.289 2.574 KIT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.000 KITH	T TIT ITS		40'004	0.40=	0 4==	0.404		4 4 4 4 4	4	
HS90A 88 4,850 0.635 0.506 0.096 0.083 0.000 3.436 HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 IGF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.728 JAK2 107 6,500 0.472 0.475 0.073 0.118 2.807 6.549 KIF11 116 6,850 0.755 0.781 0.149 0.219 4.289 2.574 KIT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.000 KITH 57 2,850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB										
HXK4 92 4,700 0.662 0.803 0.206 0.307 15.192 9.766 IGF1R 148 9,300 0.502 0.575 0.057 0.189 2.037 14.941 INHA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.728 JAK2 107 6,500 0.472 0.475 0.073 0.118 2.807 6.549 KIF11 116 6,850 0.755 0.781 0.149 0.219 4.289 2.574 KIT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.000 KITH 57 2,850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8,699 0.753 0.813 0.220 0.338 8.923 12.641 LCK			4,850							
INHA 43 2,300 0.493 0.575 0.031 0.045 0.000 0.000 ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.728 JAK2 107 6,500 0.472 0.475 0.073 0.118 2.807 6.549 KIF11 116 6,850 0.755 0.781 0.149 0.219 4.289 2.574 KIT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.000 KITH 57 2,850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8,699 0.753 0.813 0.220 0.338 8.923 12.641 LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910			4,700							
ITAL 138 8,500 0.619 0.465 0.037 0.065 0.000 0.728 JAK2 107 6,500 0.472 0.475 0.073 0.118 2.807 6.549 KIF11 116 6,850 0.755 0.781 0.149 0.219 4.289 2.574 KIT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.000 KITH 57 2,850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8,699 0.753 0.813 0.220 0.338 8.923 12.641 LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910	IGF1R	148	9,300	0.502	0.575	0.057	0.189	2.037	14.941	
JAK2 107 6,500 0.472 0.475 0.073 0.118 2.807 6.549 KIF11 116 6,850 0.755 0.781 0.149 0.219 4.289 2.574 KIT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.000 KITH 57 2,850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8,699 0.753 0.813 0.220 0.338 8.923 12.641 LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910			2,300							
KIF11 116 6,850 0.755 0.781 0.149 0.219 4.289 2.574 KIT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.000 KITH 57 2,850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8,699 0.753 0.813 0.220 0.338 8.923 12.641 LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910			8,500							
KIT 166 10,449 0.463 0.437 0.045 0.030 0.000 0.000 KITH 57 2,850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8,699 0.753 0.813 0.220 0.338 8.923 12.641 LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910	JAK2									
KITH 57 2,850 0.649 0.838 0.228 0.709 14.069 47.483 KPCB 135 8,699 0.753 0.813 0.220 0.338 8.923 12.641 LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910										
KPCB 135 8,699 0.753 0.813 0.220 0.338 8.923 12.641 LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910										
LCK 419 27,391 0.471 0.437 0.031 0.043 0.000 1.910										
LKIIA4 1/1 9,448 U./18 U.694 U.238 U.15U 8.203 1.758										
	LKHA4	1/1	9,448	U.718	0.694	0.238	0.150	8.203	1./58	

(continued...)

Target	No. No.		ROC ROC		BEDRO	CBEDRO	\mathbb{C} EF _{1%}	$EF_{1\%}$
	of	of	AUC	AUC	Tani-	Tver-	Tani-	Tver-
	Ac-	De-	Tani-	Tver-	moto	sky	moto	sky
	tives	coys	moto	sky		•		•
MAPK2	101	6,148	0.660	0.670	0.174	0.199	5.988	3.992
MCR	94	5,149	0.816	0.888	0.215	0.454	6.436	19.307
MET	166	11,249	0.566	0.531	0.130	0.065	6.032	0.603
MK01	79	4,550	0.518	0.602	0.121	0.206	5.095	3.821
MK10	104	6,600	0.488	0.489	0.020	0.031	0.962	0.962
MK14	578	35,847	0.511	0.589	0.040	0.064	0.173	0.519
MMP13	572	37,199	0.648	0.753	0.134	0.268	2.446	9.957
MP2K1	121	8,146	0.669	0.569	0.187	0.058	3.293	0.823
NOS1	98	8,028	0.483	0.451	0.109	0.041	3.071	0.000
NRAM	98	6,200	0.853	0.859	0.342	0.290	11.221	3.060
PA2GA	99	5,150	0.793	0.756	0.225	0.153	1.020	3.059
PARP1	508	30,029	0.635	0.692	0.215	0.231	11.234	7.884
PGH1	195	10,798	0.645	0.637	0.077	0.100	0.000	2.050
PGH2	435	23,139	0.716	0.780	0.166	0.291	3.444	9.874
PLK1	107	6,800	0.658	0.531	0.123	0.048	1.871	0.000
PNPH	103	6,946	0.575	0.578	0.161	0.181	4.888	8.799
PPARA	373	19,399	0.783	0.778	0.262	0.280	6.693	7.764
PPARD	240	12,250	0.547	0.544	0.078	0.098	1.665	2.498
PPARG PRGR	484 293	25,299 15,648	$0.515 \\ 0.740$	0.605 0.793	$0.055 \\ 0.142$	$0.118 \\ 0.318$	0.619 2.053	4.955 14.714
PTN1	130	7,249	0.740	0.793	0.142 0.055	0.090	0.000	3.068
PUR2	50	2,700	0.398	0.336	0.033	0.090	7.857	1.964
PYGM	77	3,944	0.831	0.637 0.492	0.231	0.233	0.000	3.917
PYRD	111	6,449	0.403	0.492 0.710	0.462	0.137	34.027	16.118
RENI	104	6,956	0.720	0.710	0.402	0.413	0.000	0.000
ROCK1	100	6,300	0.347	0.449	0.040	0.130	1.000	4.000
RXRA	131	6,950	0.788	0.900	0.219	0.596	6.091	27.407
SAHH	63	3,450	0.874	0.852	0.598	0.542	35.050	27.084
SRC	524	34,500	0.565	0.477	0.065	0.050	0.382	0.573
TGFR1	133	8,499	0.609	0.639	0.147	0.154	10.565	4.528
THB	103	7,450	0.794	0.762	0.238	0.150	10.614	0.965
THRB	461	27,000	0.605	0.706	0.063	0.166	2.166	5.632
TRY1	449	25,975	0.711	0.815	0.147	0.280	2.898	6.688
TRYB1	148	7,650	0.670	0.670	0.153	0.132	3.378	3.378
TYSY	109	6,745	0.594	0.725	0.071	0.226	0.911	5.468
UROK	162	9,850	0.525	0.650	0.036	0.120	0.000	1.854
VGFR2	409	24,948	0.632	0.578	0.083	0.093	1.465	1.465
WEE1	102	6,150	0.934	0.929	0.789	0.797	59.348	61.294
XIAP	100	5,150	0.752	0.974	0.190	0.897	8.077	51.490

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information

about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.8 | A Landscape Table Example

Next is an example of a wide table on a landscape oriented paper (Table 2.3).

Table 2.3: A table in landscape orientation.

m	х	y	Z	а	A_m	В	С	х	у	Z	а	A_m	В	С
1	16.128	+8.872	16.128	1.402	1.373	-146.6	-137.6	16.128	+8.872	16.128	1.402	1.373	-146.6	-137.6
2	3.442	-2.509	3.442	0.299	0.343	133.2	152.4	3.442	-2.509	3.442	0.299	0.343	133.2	152.4
3	1.826	-0.363	1.826	0.159	0.119	168.5	-161.1	1.826	-0.363	1.826	0.159	0.119	168.5	-161.1
4	0.993	-0.429	0.993	0.086	0.08	25.6	90	1.826	-0.363	1.826	0.159	0.119	168.5	-161.1
5	1.29	+0.099	1.29	0.112	0.097	-175.6	-114.7	1.826	-0.363	1.826	0.159	0.119	168.5	-161.1
6	0.483	-0.183	0.483	0.042	0.063	22.3	122.5	1.826	-0.363	1.826	0.159	0.119	168.5	-161.1
7	0.766	-0.475	0.766	0.067	0.039	141.6	-122	1.826	-0.363	1.826	0.159	0.119	168.5	-161.1
8	0.624	+0.365	0.624	0.054	0.04	-35.7	90	1.826	-0.363	1.826	0.159	0.119	168.5	-161.1
9	0.641	-0.466	0.641	0.056	0.045	133.3	-106.3	1.826	-0.363	1.826	0.159	0.119	168.5	-161.1
10	0.45	+0.421	0.45	0.039	0.034	-69.4	110.9	1.826	-0.363	1.826	0.159	0.119	168.5	-161.1
11	0.598	-0.597	0.598	0.052	0.025	92.3	-109.3	1.826	-0.363	1.826	0.159	0.119	168.5	-161.1

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.9 | A Theorem Example

Theorem 2.9.1. Let f be a function whose derivative exists in every point, then f is a continuous function.

Theorem 2.9.2 (Pythagorean theorem). This is a theorem about right triangles and can be summarised in the next equation

$$x^2 + y^2 = z^2$$

And a consequence of Theorem 2.9.2 is the statement in the next corollary.

Corollary 2.9.2.1. There's no right rectangle whose sides measure 3 cm, 4 cm, and 6 cm.

You can reference theorems such as 2.9.2 when a label is assigned.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.10 | A Lemma Example

Lemma 2.10.1. Given two line segments whose lengths are a and b respectively there is a real number r such that b = ra.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really?

Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.11 | A Proof Example

Lemma 2.11.1. Given two line segments whose lengths are a and b respectively there is a real number r such that b = ra.

Proof. To prove it by contradiction try and assume that the statement is false, proceed from there and at some point you will arrive to a contradiction. \Box

2.12 | A Listing Example

```
1 import numpy as np
3 def incmatrix(genl1,genl2):
   m = len(genl1)
   n = len(gen12)
   M = None #to become the incidence matrix
    VT = np.zeros((n*m,1), int) #dummy variable
7
9
    #compute the bitwise xor matrix
10
   M1 = bitxormatrix(genl1)
    M2 = np.triu(bitxormatrix(genl2),1)
11
12
13
   for i in range(m-1):
14
     for j in range(i+1, m):
       [r,c] = np.where(M2 == M1[i,j])
15
       for k in range(len(r)):
16
          VT[(i)*n + r[k]] = 1;
17
         VT[(i)*n + c[k]] = 1;
         VT[(j)*n + r[k]] = 1;
19
          VT[(j)*n + c[k]] = 1;
20
21
22
         if M is None:
23
          M = np.copy(VT)
         else:
24
25
            M = np.concatenate((M, VT), 1)
26
27
          VT = np.zeros((n*m,1), int)
28
  return M
```

Listing 2.1: My Listing Caption

2.13 | An Algorithm Example

Algorithm 1 An algorithm with caption

```
Require: n \ge 0

Ensure: y = x^n

y \leftarrow 1

X \leftarrow x

N \leftarrow n

while N \ne 0 do

if N is even then

X \leftarrow X \times X

N \leftarrow \frac{N}{2} \triangleright This is a comment

else if N is odd then

y \leftarrow y \times X

N \leftarrow N - 1

end if

end while
```

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.14 | Some Technique One

2.14.1 | Some Sub-technique One

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.14.1.1 | Some Sub-sub-technique One

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.15 | Some Technique Two with Super Long Title Which Will Overrun In Header

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression

of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Imagine some colourful description on Some Technique Three.

2.16 | Evaluation Criteria

This section should contain information on the metrics and background used to evaluate your work.

2.17 | Related Work

In this section you need to explain (and reference) similar work in literature. Make sure to:

- Give a systematic overview of papers with related/similar work
- Highlight similarities/differences to your work (perhaps in the form of a table)

For references use IEEE style (IEEE Ref. Guide) or Harvard style (Harvard Ref. Guide).

Note that this section may be sectioned based on the different aspects of your dissertation. Some referenced text, as an example (Arrighi, 2003; Ebejer et al., 2016; Withers-Martinez et al., 2012).

2.18 | An Example of Suppressing Page Numbers on A Float Page

Refer to Figure 2.3.

2.19 | Summary

Figure 2.3: Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Materials & Methods

This section should include a recipe of what you did (explain what you have done so if someone wants to reproduce the experiment, they can). A flow chart is typically helpful. Also, make sure to define all software that you used including version numbers and OS. Should also include a description of statistical methods used (if any).¹

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

3.1 | Summary

¹For more information see: http://rc.rcjournal.com/content/49/10/1229.short

Results & Discussion

Should include a reiteration of the experiments, and their outcome. Together with a description (discussion). Preamble should include a reminder of the aims and objectives together with a list of experiments to achieve these. Should include many charts and other visualization with appropriate descriptions.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

This is the second paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

After this fourth paragraph, we start a new paragraph sequence. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

4.1 | Summary

Evaluation

In an ideal world, you should have two kind of evaluations. The first is against some ground truth (perhaps a random model?). The second kind of evaluation is against other people's work (accuracy, speed, etc.). Any dimension which is of interest, should be evaluated. Evaluation should be statistically sound.

This is the second paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

And after the second paragraph follows the third paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

This is the second paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

5.1 | Summary

Conclusions

This section should have a summary of the whole project. The original aims and objective and whether these have been met should be discussed. It should include a section with a critique and a list of limitations of your proposed solutions. Future work should be described, and this should not be marginal or silly (e.g. add machine learning models). It is always good to end on a positive note (i.e. 'Final Remarks').

6.1 | Revisiting the Aims and Objectives

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

6.2 | Critique and Limitations

6.3 | Future Work

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

6.4 | Final Remarks

Media Content

If the dissertation has a DVD or pendrive attached to it, you will need a section which explains what is on the media (structure, files, data, etc.). This could be a table with filename and description.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Installation Instructions

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift - not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this

User Manual

And after the second paragraph follows the third paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

After this fourth paragraph, we start a new paragraph sequence. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

This is the second paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text

like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

References

- Arrighi, P. Quantum computation explained to my mother. arXiv preprint quant-ph/0305045, 2003.
- Ebejer, J.-P., Morris, G. M., and Deane, C. M. Freely available conformer generation methods: How good are they? *J. Chem. Inf. Model.*, 52(5):1146–1158, 2012.
- Ebejer, J.-P., Charlton, M. H., and Finn, P. W. Are the physicochemical properties of antibacterial compounds really different from other drugs? *Journal of Cheminformatics*, 8(1), 2016.
- Harvard Ref. Guide. Harvard References Style. https://www.um.edu.mt/__data/assets/pdf_file/0007/353662/Harvard_Guide.pdf. Last Accessed: March 18th, 2022.
- IEEE Ref. Guide. IEEE References Style. https://ieeeauthorcenter.ieee.org/wp-content/uploads/IEEE-Reference-Guide.pdf. Last Accessed: March 17th, 2022.
- Withers-Martinez, C., Suarez, C., Fulle, S., Kher, S., Penzo, M., Ebejer, J.-P., Koussis, K., Hackett, F., Jirgensons, A., Finn, P., and Blackman, M. J. Plasmodium subtilisin-like protease 1 (SUB1): Insights into the active-site structure, specificity and function of a pan-malaria drug target. *International Journal for Parasitology*, 42(6):597–612, 2012.