Universidade do Minho

3 de fevereiro de 2023

Exame de recurso de

Computabilidade e Complexidade

Lic. Ciências da Computação

Duração: 2h15min

Este exame é constituído por 5 perguntas. Todas as respostas devem ser devidamente justificadas.

1. Seja $A = \{a, b\}$. Considere a máquina de Turing

$$\mathcal{T} = (\{0, 1, 2, 3, 4\}, A, A \cup \{\Delta\}, \delta, 0, 4, \Delta)$$

onde a função transição δ é definida pela tabela seguinte:

δ	a	b	Δ
0			$(1, \Delta, D)$
1	(1,b,D)	(1, a, D)	$(2, \Delta, E)$
2	(2, a, E)	(3,b,E)	
3	(3,b,E)	(3, a, E)	$(4, \Delta, C)$

A máquina \mathcal{T} calcula uma função parcial $g: A^* \to A^*$.

- a) Represente \mathcal{T} graficamente.
- b) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \underline{\Delta}babaaabb)$.
- c) Identifique o domínio D da função g.
- d) Para cada elemento $u \in D$, determine a palavra g(u).
- 2. Considere o alfabeto $A = \{a, b\}$ e a linguagem

$$L = \{a^m b^k a^n : m, n \in \mathbb{N}_0, k = m + n\}.$$

- a) Construa uma máquina de Turing que reconheça L e descreva informalmente a estratégia dessa máquina.
- b) Explique se o problema de decisão P(w): " $w \in L$ e $|w|_a$ é par" é ou não decidível.
- c) Sendo $K = \{b^n a^n : n \in \mathbb{N}_0\}$, mostre que $L \leq_p K$.
- **3**. Seja h a função obtida por recursão primitiva das funções $f: x \mapsto x+1$ e $g: (x,y,z) \mapsto x+z$.
 - a) Identifique a função h.
 - **b)** Mostre que h é uma função recursiva primitiva.
 - c) Determine a função M_g de minimização de g.

4. Seja $A = \{a, b\}$ e seja \mathcal{T} a seguinte máquina de Turing sobre A com duas fitas,

- a) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \underline{\Delta}abbbab, \underline{\Delta})$ e diga se a palavra abbbab é aceite por \mathcal{T} .
- **b)** Identifique a linguagem L reconhecida por \mathcal{T} .
- c) Determine a função de complexidade temporal da máquina \mathcal{T} .
- **d)** Mostre que $L \in DTIME(n)$.
- 5. Diga, justificando, quais das afirmações seguintes são verdadeiras e quais são falsas.
 - a) O seguinte problema é decidível: Dada uma máquina de Turing \mathcal{T} , será que $L(\mathcal{T})$ é aceite em tempo polinomial?
 - b) Se L é uma linguagem recursivamente enumerável e K é uma linguagem recursiva, então $L \cap K$ é uma linguagem recursiva.
 - c) Existem máquinas de Turing \mathcal{T}_1 e \mathcal{T}_2 tais que $L(\mathcal{T}_1) \neq \emptyset$ e $L(\mathcal{T}_1 \longrightarrow \mathcal{T}_2) = \emptyset$.
 - d) A função $f(n) = \frac{1}{2n^3+n+1} + 3n^2 + n + 2$ é de ordem $\mathcal{O}(n^3)$.

(FIM)

$$\text{Cotação:} \begin{cases} \textbf{1.} & 3,75 \text{ valores } (1+0,75+1+1) \\ \textbf{2.} & 4,5 \text{ valores } (2+1+1,5) \\ \textbf{3.} & 3,5 \text{ valores } (1,25+1+1,25) \\ \textbf{4.} & 4,25 \text{ valores } (0,75+1,25+1,25+1) \\ \textbf{5.} & 4 \text{ valores } (1+1+1+1) \end{cases}$$