

पृष्ठइण अने घनइण

13

13.1 પ્રાસ્તાવિક

અગાઉ ધોરણ IX માં તમે કેટલાક નિયમિત આકારના ઘન પદાર્થો જેવા કે લંબઘન, શંકુ, નળાકાર અને ગોલક વિશે પરિચિત થયાં છો. (જુઓ આકૃતિ 13.1.) તમે એ પણ જાણો છો કે, આપણે તેમનાં પૃષ્ઠફળ અને ઘનફળ કેવી રીતે શોધી શકીએ.

આપણે દૈનિક જીવનમાં ઉપર દર્શાવેલ મૂળભૂત ઘન પદાર્થો પૈકી બે કે તેથી વધુ ઘન પદાર્થોના સંયોજનથી બનેલા પદાર્થો જોઈએ છીએ.

તમે કોઈ ખટારાની પાછળ રાખેલું મોટું પાત્ર (container) અવશ્ય જોયું હશે. (જુઓ આકૃતિ 13.2), તેમાં એક જગ્યાએથી બીજી જગ્યાએ તેલ અથવા પાણી લઈ જવાય છે. શું ઉપરના ચાર મૂળભૂત ઘન આકારમાંથી કોઈ આકાર જોવા મળે છે ? તમે કલ્પી શકો કે, તે નળાકાર અને બે અર્ધગોલકમાંથી બનેલો છે.

પુનઃ તમે આકૃતિ 13.3 માં બતાવ્યું છે તેવું કોઈ પાત્ર જોયું હશે. તમે તેનું નામ આપી શકશો ? તે એક કસનળી છે. સાચું છે ! તમે તેનો તમારી વિજ્ઞાનની પ્રયોગશાળામાં ઉપયોગ કર્યો હશે. આ કસનળી પણ એક નળાકાર અને અર્ધગોળાનું સંયોજન છે. તેવી જ રીતે મુસાફરી કરતી વખતે કેટલાંક મોટાં અને સુંદર બિલ્ડિંગ અથવા સ્મારકો તમને ઉપર જણાવેલા જેવાં ઘન પદાર્થોના સંયોજનથી બનેલાં જોવા મળે છે.

આકૃતિ 13.3

જો તમને આ પદાર્થોનું પૃષ્ઠફળ અથવા ઘનફળ અથવા તેની ક્ષમતા શોધવાની જરૂર પડે, તો તે કેવી રીતે શોધી શકશો ? આપણે આવા ઘનાકાર પદાર્થીનું અગાઉ શીખી ગયાં તેવા ઘનાકારોમાં વર્ગીકરણ કરી શકતા નથી.

આ પ્રકરણમાં તમે કેટલાક પદાર્થોનું પૃષ્ઠફળ અને ઘનફળ કેવી રીતે શોધી શકાય તે શીખશો.

13.2 સંયોજિત ઘન પદાર્થોનું કુલ પૃષ્ઠફળ

આવો આપણે આકૃતિ 13.2માં જોયેલા પાત્ર ઉપર વિચાર કરીએ. આ પ્રકારના ઘન પદાર્થોનું પૃષ્ઠફળ કેવી રીતે શોધીશું ? જ્યારે આપણી સમક્ષ કોઈ નવી સમસ્યા આવે છે, ત્યારે આપણે સૌપ્રથમ તેને અગાઉ ઉકેલેલી નાની સમસ્યાઓમાં વિભાજિત કરીશું. આપણે જોઈ શકીએ છીએ કે, આ ઘન પદાર્થ નળાકારના બંને છેડા અર્ધગોલકથી બંધ કરીને બનાવવામાં આવ્યો છે. ટુકડાઓ એક સાથે ભેગા કરવાથી આ ઘન પદાર્થ કેવી રીતે બને છે તે આકૃતિ 13.4માં દર્શાવ્યું છે.

જો આપણે નવી બનેલી વસ્તુની સપાટી જોઈશું, તો આપણને માત્ર બે અર્ધગોલકના વક્રપૃષ્ઠ તથા નળાકારનું વક્રપૃષ્ઠ દેખાશે.

તેથી, નવા પદાર્થનું કુલ પૃષ્ઠફળ એ ત્રણ સ્વતંત્ર વક્ર ક્ષેત્રફળોના સરવાળા બરાબર થશે. તેનાથી આપણને નીચેનું સૂત્ર પ્રાપ્ત થશે :

નવા પદાર્થનું કુલ પૃષ્ઠફળ (TSA) = એક અર્ધગોલકની વક્ર સપાટીનું ક્ષેત્રફળ (CSA) + નળાકારની વક્ર સપાટીનું ક્ષેત્રફળ (CSA) + બીજા અર્ધગોલકની વક્ર સપાટીનું ક્ષેત્રફળ (CSA)

અહીં TSA (Total surface area), CSA (Curved surface area) નો અર્થ અનુક્રમે 'કુલ પૃષ્ઠફળ' અને 'વક સપાટીનું ક્ષેત્રફળ' છે.

ચાલો, આપણે હવે બીજી પરિસ્થિતિનો વિચાર કરીએ. ધારો કે, આપણે અર્ધગોલક અને શંકુ સાથે મૂકીને એક રમકડું બનાવીએ, તો તે કેવી રીતે થાય તેનાં સોપાન જોઈએ.

પહેલા આપણે શંકુ અને અર્ધગોલક લઈ તેમની સમતલીય સપાટી એક સાથે રાખીએ. અલબત્ત, આપણે રમકડાની સપાટી સરખી રહે તે માટે શંકુના પાયાની ત્રિજ્યા અને અર્ધગોલકની ત્રિજ્યા સમાન લઈએ છીએ. તે બનાવવાનાં પગલાં આકૃતિ 13.5માં બતાવ્યા છે.

આકૃતિ 13.5

અંતમાં આપણને એક સુંદર અર્ધગોળાકાર આધારવાળું રમકડું મળશે. હવે, જો આપણે આ રમકડાની વક્ર સપાટીને રંગવા માંગતા હોઈએ, તો કેટલા જથ્થામાં રંગની જરૂર પડે તે માટે આપણી પાસે શું માહિતી હોવી જોઈએ ? આપણને રમકડાના કુલ પૃષ્ઠફળની આવશ્યકતા પડશે. તે અર્ધગોલકની વક્રસપાટીનું ક્ષેત્રફળ અને શંકુની વક્રસપાટીનું ક્ષેત્રફળ બંનેનો સરવાળો કરવાથી મળશે.

તેથી, આપણે કહીશું :

રમકડાનું કુલ પૃષ્ઠફળ = અર્ધગોલકની વક્રસપાટીનું ક્ષેત્રફળ + શંકુની વક્રસપાટીનું ક્ષેત્રફળ

હવે, આપશે કેટલાંક ઉદાહરણ જોઈશું.

ઉદાહરણ 1 : રશીદને તેના જન્મદિવસે ભેટ સ્વરૂપે એક ભમરડો મળ્યો તે રંગેલો ન હતો. તે પોતાના ક્રેયોન રંગોથી ભમરડાને રંગ કરવા માગતો હતો. આ ભમરડો એક શંકુ ઉપર અર્ધગોળા જેવા ભાગથી બનેલો છે. (જુઓ આકૃતિ 13.6) ભમરડાની કુલ ઊંચાઈ 5 સેમી છે અને અર્ધગોળાનો વ્યાસ 3.5 સેમી છે તો ભમરડાને રંગ કરવાના સંપૂર્ણ ભાગનું કુલ પૃષ્ઠફળ શોધો. $(\pi = \frac{22}{7})$ લો.)

આકૃતિ 13.6

ઉકેલ : આપણે જેની ચર્ચા કરી છે તે ભમરડો આકૃતિ 13.6 માં દર્શાવ્યો છે. આપણે સરળતા ખાતર ગણતરી નીચે પ્રમાણે દર્શાવી શકીએ.

ભમરડાનું કુલ પૃષ્ઠફળ = અર્ધગોલકની વક્રસપાટીનું ક્ષેત્રફળ + શંકુની વક્રસપાટીનું ક્ષેત્રફળ

હવે, અર્ધગોલકની વક્કસપાટીનું ક્ષેત્રફળ = $\frac{1}{2}$ $(4\pi r^2)$ = $2\pi r^2$

$$=\left(2\times\frac{22}{7}\times\frac{3.5}{2}\times\frac{3.5}{2}\right)$$
 સેમી²

વળી, શંકુની ઊંચાઈ = ભમરડાની ઊંચાઈ – અર્ધગોલકની ઊંચાઈ (ત્રિજ્યા)

$$= \left(5 - \frac{3.5}{2}\right) \text{ સેમી } = 3.25 \text{ સેમી}$$

તેથી, શંકુની તિર્યક ઊંચાઈ (
$$l$$
) = $\sqrt{r^2 + h^2} = \sqrt{\left(\frac{3.5}{2}\right)^2 + (3.25)^2}$ સેમી = 3.7 સેમી (આશરે)

∴ શંકુની વક્રસપાટીનું ક્ષેત્રફળ = πrl

$$=\left(\frac{22}{7}\times\frac{3.5}{2}\times3.7\right)$$
 સેમી²

ચકાસો કે, 'ભમરડાનું કુલ પૃષ્ઠફળ' એ શંકુ અને અર્ધગોલકના કુલ પૃષ્ઠફળોના સરવાળા બરાબર નથી.

ઉદાહરણ 2: બાજુની આકૃતિ 13.7 માં બતાવેલ એક શો-પીસ એ સમઘન અને અર્ધગોલકનો બનેલો છે. આ શો-પીસનો પાયો સમઘન છે, અને તેની પ્રત્યેક ધાર 5 સેમી છે અને 4.2 સેમી વ્યાસવાળો અર્ધગોલક તેની ઉપર બેસાડેલો છે. આ શો-પીસનું કુલ પૃષ્ઠફળ શોધો. $(\pi = \frac{22}{7}$ લો.)

ઉંકેલ : સમઘનનું કુલ પૃષ્ઠફળ = $6 \times (બાજુનું માપ)^2 = 6 \times 5 \times 5 સેમી^2$ $= 150 સેમી^2$

 $= (150 + 13.86) \text{ સ} + \text{H}^2 = 163.86 \text{ સ} + \text{H}^2$

ઉદાહરણ 3: બાજુમાં આકૃતિ 13.8 માં બતાવેલ એક લાકડાનું રૉકેટ એક નળાકાર ઉપર શંકુ મૂકી બનાવેલું છે. રૉકેટની કુલ ઊંચાઈ 26 સેમી છે, જ્યારે શંકુની ઊંચાઈ 6 સેમી છે. શંકુના પાયાનો વ્યાસ 5 સેમી અને નળાકાર ભાગનો વ્યાસ 3 સેમી છે. જો શંકુ આકાર ભાગને નારંગી રંગ કરવો હોય અને નળાકાર ભાગને પીળો રંગ કરવો હોય, તો રંગ પ્રમાણે રોકેટના પ્રત્યેક ભાગનું ક્ષેત્રફળ શોધો. ($\pi = 3.14$ લો.)

ઉકેલ : શંકુની ત્રિજ્યાને r વડે, શંકુની તિર્યક ઊંચાઈને l વડે, શંકુની ઊંચાઈને h વડે, નળાકારની ત્રિજ્યાને r' વડે, નળાકારની ઊંચાઈને h' વડે દર્શાવ્યાં છે. r=2.5 સેમી, h=6 સેમી, r'=1.5 સેમી, h'=26-6=20 સેમી તથા

$$l = \sqrt{r^2 + h^2} = \sqrt{2.5^2 + 6^2}$$
 સેમી = 6.5 સેમી

અહીં, શંકુનો પાયાનો ભાગ નળાકારની વર્તુળાકાર સપાટી ઉપર મુકાયેલો છે, પરંતુ શંકુના પાયાનો ભાગ નળાકારના વર્તુળાકાર ભાગ કરતાં વધારે છે. તેથી શંકુના આધારની વધારાની સપાટીને પણ રંગવાની છે.

તેથી નારંગી રંગના ભાગનું ક્ષેત્રફળ = શંકુની વક્રસપાટીનું ક્ષેત્રફળ + શંકુના આધારનું ક્ષેત્રફળ

– નળાકારના આધારનું ક્ષેત્રફળ

 $= \pi r l + \pi r^2 - \pi (r')^2$

= $\pi \left[(2.5 \times 6.5) + (2.5)^2 - (1.5)^2 \right]$ સેમી²

= π [20.25] સેમી²

 $= 3.14 \times 20.25$ સેમી²

 $= 63.585 સેમી^2$

હવે, પીળા રંગના ભાગનું ક્ષેત્રફળ 📁 નળાકારની વક્રસપાટીનું ક્ષેત્રફળ + નળાકારના પાયાનું ક્ષેત્રફળ

 $= 2\pi r'h' + \pi(r')^2$

 $= \pi r' (2h' + r')$

= (3.14 × 1.5) (2 × 20 + 1.5) સેમી²

 $= 4.71 \times 41.5 સેમી^2$

= 195.465 સેમી²

ઉદાહરણ 4: મયંકે તેના બગીચામાં પક્ષીઓને પાણી પીવા માટે નળાકારના એક છેડે અર્ધગોળાકાર હોય તેવું પક્ષીકુંડ બનાવ્યું છે. (જુઓ આકૃતિ 13.9.) જો નળાકારની ઊંચાઈ 1.45 મીટર અને તેની ત્રિજ્યા 30 સેમી હોય, તો પક્ષીઓ માટે પાણી પીવાના આ પાત્રનું કુલ પૃષ્ઠફળ શોધો.

$$\left(\pi = \frac{22}{7} \text{ ell.}\right)$$

6કેલ : ધારો કે નળાકારની ઊંચાઈ h છે અને નળાકાર અને અર્ધગોળાની ત્રિજ્યા r સમાન છે.

તેથી, પક્ષીઓને પાણી પીવાના પાત્રનું કુલ પૃષ્ઠફળ = નળાકારની વક્કસપાટીનું ક્ષેત્રફળ + અર્ધગોળાની વક્ક સપાટીનું ક્ષેત્રફળ
$$=2 \pi r h + 2\pi r^2$$

$$=2 \pi r (h+r)$$

$$=2 \times \frac{22}{7} \times 30 \ (145+30) \ સેમી^2$$

$$=33000 \ સેમી^2$$

$$=3.3 \ મીટર^2$$
 સ્વાધ્યાય 13.1

(જો π નું મૂલ્ય આપેલ ન હોય, તો $\pi = \frac{22}{7}$ લો.)

- 1. બે ઘન પૈકી પ્રત્યેકનું ઘનફળ 64 સેમી³ હોય તેવા બે ઘનને જોડવાથી બનતા લંબઘનનું પૃષ્ઠફળ શોધો.
- 2. એક પોલા અર્ધગોલક ઉપર એક પોલો નળાકાર બેસાડેલો હોય તેવું એક પાત્ર છે. અર્ધગોલકનો વ્યાસ 14 સેમી છે અને વાસણની કુલ ઊંચાઈ 13 સેમી છે વાસણની અંદરની સપાટીનું પૃષ્ઠફળ શોધો.
- અર્ધગોલકની ઉપર શંકુ લગાવેલો હોય તેવું એક રમકડું છે. તે બંનેની ત્રિજ્યા 3.5 સેમી છે. રમકડાની કુલ ઊંચાઈ 15.5 સેમી હોય, તો રમકડાનું કુલ પૃષ્ઠફળ શોધો.
- 4. 7 સેમી બાજુના માપવાળા સમઘનની ઉપર અર્ધગોલક મૂકેલો છે. તો અર્ધગોલકનો મહત્તમ વ્યાસ શું હોઈ શકે ? આ રીતે બનેલા પદાર્થનું કુલ પૃષ્ઠફળ શોધો.
- 5. એક સમઘન લાકડાના ટુકડાના એક પૃષ્ઠમાંથી એક અર્ધગોલક કાપવામાં આવે છે. અર્ધગોલકનો વ્યાસ l એ સમઘનની બાજુના માપ બરાબર છે, બાકી પદાર્થનું કુલ પૃષ્ઠફળ શોધો.
- 6. દવાની એક કેપ્સૂલનો આકાર નળાકારની બંને બાજુએ અર્ધગોલક લગાડેલો હોય તે રીતનો છે. (જુઓ આકૃતિ 13.10.) કેપ્સૂલની લંબાઈ 14 મિમી છે અને તેનો વ્યાસ 5 મિમી છે. તો કેપ્સૂલનું પૃષ્ઠફળ શોધો.

આકૃતિ 13.10

7. એક તંબુનો આકાર નળાકાર ઉપર શંકુ મૂકવામાં આવેલ હોય તેવો છે. જો નળાકાર ભાગની ઊંચાઈ અને વ્યાસ અનુક્રમે 2.1 મીટર અને 4 મીટર હોય તથા ઉપરના ભાગની તિર્યક ઊંચાઈ 2.8 મીટર હોય, તો આ તંબુ

બનાવવા વપરાતા કેનવાસનું ક્ષેત્રફળ શોધો અને જો કેનવાસનો ભાવ ₹ 500 પ્રતિ મીટર² હોય, તો તેમાં વપરાતા કેનવાસની કિંમત પણ શોધો. (તંબુના તળિયાને કેનવાસથી ઢાંકવામાં આવતો નથી તે ધ્યાનમાં લેવું.)

- 8. નળાકાર પદાર્થની ઊંચાઈ 2.4 સેમી અને વ્યાસ 1.4 સેમી છે. તેમાંથી તેટલી જ ઊંચાઈ અને વ્યાસવાળો શંકુ કાપી લેવામાં આવે તો વધેલા પદાર્થનું કુલ પૃષ્ઠફળ નજીકના સેમી² માં શોધો.
- 9. બાજુમાં આકૃતિ 13.11 માં દર્શાવ્યા પ્રમાણે લાકડાના નળાકારમાંથી બંને બાજુએથી અર્ધગોલક કાઢી એક લાકડાનો શો-પીસ બનાવ્યો છે. જો નળાકારની ઊંચાઈ 10 સેમી હોય અને પાયાની ત્રિજ્યા 3.5 સેમી હોય તો શો-પીસનું કુલ પૃષ્ઠફળ શોધો.

13.3 સંયોજિત ઘન પદાર્થોનું ઘનફળ

પ્રકરણની શરૂઆતમાં આપણે બે જાણીતા ઘન પદાર્થોના સંયોજનથી બનતા ઘન પદાર્થોનું પૃષ્કફળ કેવી રીતે મેળવવું તે જોઈ ગયા. અહીં આપણે આવા ઘન પદાર્થોનું ઘનફળ શોધતાં શીખીશું. આપણે જોઇશું કે પૃષ્ઠફળની ગણતરીમાં આપણે બે ઘટક પદાર્થોના પૃષ્ઠફળને ઉમેરી શકતા નથી, કારણ કે તેમનો કેટલોક ભાગ બે ઘન પદાર્થોને જોડવાથી દૂર થાય છે. પરંતુ ઘનફળ શોધવામાં આવું નહિ થાય. બે મૂળભૂત ઘન પદાર્થીને જોડવાથી મળતા ઘન પદાર્થનું ઘનફળ એ આપેલા બંને ઘન પદાર્થીના ઘનફળના સરવાળા બરાબર થશે. હવે આપણે નીચેનાં ઉદાહરણોમાં આ સત્ય જોઈશું.

આકૃતિ 13.11

ઉદાહરણ 5 : શાંતા શેડમાં એક ઉદ્યોગ ચલાવે છે. આ શેડનો આકાર લંબઘન ઉપર અર્ધનળાકારથી બંધ છે. (જુઓ આકૃતિ 13.12.) તે શેડના પાયાનું માપ 7 મી × 15 મી અને લંબઘનાકારની ઊંચાઈ 8 મીટર હોય, તો આ શેડમાં સમાતી હવાનું ઘનફળ શોધો. ઉપરાંત શેડમાં મશીનરીના 8 મી ભાગનું કુલ ઘનફળ 300 મી³ અને 20 કારીગરો પૈકી પ્રત્યેક કારીગરે રોકેલી જગ્યાનું ઘનફળ 0.08 મીટર³ છે. તો શેડમાં કેટલી હવા હશે ?

$$\left(\pi = \frac{22}{7} \text{ ell.}\right)$$

ઉકેલ : શેડની હવાનું ઘનફળ (જ્યારે શેડમાં કારીગરો અને મશીનરી ન હોય) એ લંબઘન અને અર્ધનળાકારની અંદર રહેલી હવાના ઘનફળના સરવાળા જેટલું છે.

હવે, લંબઘનની લંબાઈ, પહોળાઈ અને ઊંચાઈ અનુક્રમે 15 મીટર, 7 મીટર અને 8 મીટર છે. તથા અર્ધનળાકારનો વ્યાસ 7 મીટર અને તેની ઊંચાઈ 15 મીટર છે.

તેથી માંગેલ ઘનફળ = લંબઘનનું ઘનફળ + $\frac{1}{2}$ નળાકારનું ઘનફળ

$$= \left[15 \times 7 \times 8 + \frac{1}{2} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 15\right] \text{HISE}^3$$

= 1128.75 મીટર3

હવે, મશીનરીએ રોકેલી જગ્યાનું ઘનફળ = 300 મીટર³

અને કારીગરોએ રોકેલી જગ્યાનું કુલ ઘન ϕ 0.08 મીટર 3 = 1.6 મીટર 3

તેથી, મશીનરી અને કારીગરોની સાથે શેડમાં રહેલી હવાનું ઘનફળ

$$= [1128.75 - (300.00 + 1.60)]$$
 મીટર³

$$= 827.15 \text{ Hlz}^3$$

ઉદાહરણ 6: એક જયૂસ વેચવાવાળો તેના ગ્રાહકોને આકૃતિ 13.13 માં દર્શાવ્યા પ્રમાણેના પ્યાલામાં જયૂસ આપતો હતો. નળાકાર પ્યાલાનો અંદરનો વ્યાસ 5 સેમી છે, પરંતુ પ્યાલાના પાયામાં અર્ધગોલક ભાગ ઊપસી આવેલો હતો. જેથી, પ્યાલાની ક્ષમતા ઓછી થતી હતી. જો પ્યાલાની ઊંચાઈ 10 સેમી હોય, તો તેની આભાસી ક્ષમતા તથા તેની વાસ્તવિક ક્ષમતા શોધો. ($\pi = 3.14$ લો.)

ઉકેલ: પ્યાલાની અંદરનો વ્યાસ = 5 સેમી અને ઊંચાઈ = 10 સેમી છે,

જેથી પ્યાલાની આભાસી ક્ષમતા = $\pi r^2 h$

$$= 3.14 \times 2.5 \times 2.5 \times 10$$
 સેમી³

પણ પ્યાલાની વાસ્તવિક ક્ષમતા એ પ્યાલાના ઉપસી આવેલા અર્ધગોલકના કદ જેટલી ઓછી થાય છે.

એટલે કે,
$$\frac{2}{3}\pi r^3$$
 જેટલી ઓછી છે તેનું મૂલ્ય = $\frac{2}{3} \times 3.14 \times 2.5 \times 2.5 \times 2.5$ સેમી 3 = 32.71 સેમી 3

તેથી, પ્યાલાની વાસ્તવિક ક્ષમતા = પ્યાલાની આભાસી ક્ષમતા – પ્યાલામાં સમાવિષ્ટ અર્ધગોલકનું ઘનફળ

$$= 163.54 \text{ A} \text{H}^{3}$$

ઉદાહરણ 7: એક નક્કર રમકડું એ અર્ધગોલકની ઉપર શંકુ લગાવ્યો હોય તેવા સ્વરૂપે છે. શંકુની ઊંચાઈ 2 સેમી અને પાયાનો વ્યાસ 4 સેમી છે, તો રમકડાનું ઘનફળ શોધો. જો એક લંબવૃત્તીય નળાકાર રમકડાને પરિગત હોય, તો નળાકારના અને રમકડાના ઘનફળનો તફાવત શોધો. ($\pi = 3.14$ લો.)

ઉકેલ : ધારો કે, BPC અર્ધગોલક અને ABC એ અર્ધગોલકના પાયા ઉપર રાખેલો શંકુ છે. (જુઓ આકૃતિ 13.14) અર્ધગોલકની ત્રિજ્યા OB (= શંકુની ત્રિજ્યા) છે.

આકૃતિ 13.14

તે
$$\frac{1}{2} \times 4$$
 સેમી = 2 સેમી છે.

તેથી, રમકડાનું ઘનફળ =
$$\frac{2}{3} \pi r^3 + \frac{1}{3} \pi r^2 h$$

=
$$\left[\frac{2}{3} \times 3.14 \times (2)^3 + \frac{1}{3} \times 3.14 \times (2)^2 \times 2\right]$$
 સેમી³ = 25.12 સેમી³

હવે, ધારો કે, લંબવૃત્તીય નળાકાર EFGH એ રમકડાને પરિગત છે.

તે લંબવૃત્તીય નળાકારના પાયાની ત્રિજ્યા = HP = BO = 2 સેમી અને

તેની ઊંચાઈ EH = AO + OP =
$$(2 + 2)$$
 સેમી = 4 સેમી

તેથી, માંગેલું ઘનફળ = લંબવૃત્તીય નળાકારનું ઘનફળ – રમકડાનું ઘનફળ

$$= [3.14 \times 2^2 \times 4 - 25.12]$$
સેમી³

= 25.12 સેમી³

તેથી, માંગેલા બે ઘનફળોનો તફાવત = 25.12 સેમી³

स्वाध्याय 13.2

(જો π નું મૂલ્ય આપેલ ન હોય, તો $\pi = \frac{22}{7}$ લો.)

- 1. એક ઘન પદાર્થ એ 1 સેમી ત્રિજ્યા ધરાવતા અર્ધગોલક ઉપર તેટલી જ ત્રિજ્યાવાળો શંકુ ગોઠવીને બનાવાયો છે. શંકુની ઊંચાઈ એ તેની ત્રિજ્યા જેટલી હોય, તો આ ઘન પદાર્થનું ઘનફળ π ના ગુણિતમાં શોધો.
- એન્જિનિયરિંગના વિદ્યાર્થી રશેલને નળાકારના બંને છેડે પાતળી ઍલ્યુમિનિયમની શીટમાંથી બનેલો શંકુ બેસાડી એક નમૂનો તૈયાર કરવાનું કહેવામાં આવ્યું. નમૂનાનો વ્યાસ 3 સેમી અને લંબાઈ 12 સેમી છે. જો શંકુની ઊંચાઈ 2 સેમી હોય, તો રશેલે બનાવેલ નમૂનામાં કેટલી હવા સમાશે તે શોધો. (ધારી લો કે નમૂનાના બહારનાં અને અંદરનાં માપો લગભગ સમાન છે.)
- 3. ગુલાબજાંબુમાં તેના કદના 30 % જેટલી ખાંડની ચાસણી છે. દરેક ગુલાબજાંબુનો આકાર નળાકારના બંને છેડે અર્ધગોલક લગાવ્યા હોય તેવો છે. તેની કુલ લંબાઈ 5 સેમી અને વ્યાસ 2.8 સેમી છે. તો આવાં 45 ગુલાબજાંબુમાં આશરે કેટલી ખાંડની ચાસણી હશે તે શોધો. (જુઓ આકૃતિ 13.15.)

આકૃતિ 13.15

- એક લાકડાનું લંબઘન પેન-સ્ટૅન્ડ ચાર શંકુ આકારના છિદ્રવાળું બનાવેલું છે. લંબઘનનાં માપ 15 સેમી × 10 સેમી × 3.5 સેમી છે. છિદ્રવાળા દરેક ભાગની ત્રિજ્યા 0.5 સેમી અને ઊંડાઈ 1.4 સેમી છે, તો લાકડાના આ સ્ટૅન્ડનું ઘનફળ શોધો. (જુઓ આકૃતિ 13.16.)
- 5. એક વાસણનું સ્વરૂપ ઊંધા શંકુ જેવું છે. તેની ઊંચાઈ 8 સેમી અને ઉપરના ખુલ્લા ભાગની ત્રિજ્યા 5 સેમી છે. તે ઉપરની ધાર સુધી પાણીથી ભરેલું છે. જ્યારે વાસણમાં 0.5 સેમી ત્રિજ્યાવાળી ધાતુની ગોળીઓ નાખવામાં આવે છે, ત્યારે એક ચતુર્થાંશ જેટલું પાણી બહાર નીકળે છે તો વાસણમાં નાખેલી ધાતુની ગોળીઓની સંખ્યા શોધો.

આકૃતિ 13.16

- 6. એક લોખંડના નળાકાર સ્વરૂપના નક્કર થાંભલાની ઊંચાઈ 220 સેમી છે અને પાયાનો વ્યાસ 24 સેમી છે. તેની ઉપર 60 સેમી ઊંચાઈ અને 8 સેમી ત્રિજ્યાવાળા બીજા નળાકારને મૂકવામાં આવે છે, તો થાંભલાનું દળ શોધો. 1 સેમી³ લોખંડનું દળ આશરે 8 ગ્રામ છે. (π = 3.14 લો.)
- 7. 60 સેમી ત્રિજ્યાવાળા અર્ધગોલક પર સ્થિત લંબવૃત્તીય શંકુની ઊંચાઈ 120 સેમી અને ત્રિજ્યા 60 સેમી છે. તેને પાણીથી સંપૂર્ણ ભરેલા એક લંબવૃત્તીય નળાકારમાં તેના તળિયાને સ્પર્શે તે રીતે ઊભો મૂક્યો છે. જો નળાકારની ત્રિજ્યા 60 સેમી અને ઊંચાઈ 180 સેમી હોય, તો નળાકારમાં બાકી રહેલા પાણીનું ઘનફળ શોધો.
- 8. એક ગોળાકાર કાચના વાસણની ઉપરનો ભાગ નળાકાર છે. તે નળાકારની ઊંચાઈ 8 સેમી છે અને વ્યાસ 2 સેમી છે. ગોળાકાર ભાગનો વ્યાસ 8.5 સેમી છે. એક બાળક માહિતી પ્રાપ્ત કરે છે કે તેમાં ભરેલા પાણીનું ઘનફળ 345 સેમી³ છે. બાળકનો જવાબ સાચો છે કે નહિ તે ચકાસો. ઉપરનાં માપો તેના અંદરના ભાગના છે. $\pi = 3.14$ લો.

13.4 એક ઘનાકારનું બીજા ઘનાકારમાં રૂપાંતર

નિશ્ચિત રીતે તમે મીણબત્તી જોઈ હશે. સામાન્ય રીતે તે નળાકાર સ્વરૂપે હોય છે. તમે કેટલીક મીણબત્તી પ્રાણીઓના આકારની પણ જોઈ હશે. (જુઓ આકૃતિ 13.17.)

આકૃતિ 13.17

એ કેવી રીતે બનાવી હશે ? જો તમે મીણબત્તી બીજા વિશિષ્ટ આકારમાં બનાવવા માંગતા હો તો તમારે ધાતુના

વાસણમાં તે સંપૂર્ણપણે પીગળી ન જાય ત્યાં સુધી મીણ ગરમ કરવું પડશે. પછી મીણને તમે જે આકારમાં ઢાળવા માગતા હો તે આકારના વાસણમાં રેડવું પડશે. આથી તમને જોઈતા આકારની મીણબત્તી મળશે. ઉદાહરણ તરીકે, એક નળાકાર આકારની મીણબત્તી લો, તેને પૂર્ણ રીતે પીગાળો તથા પીગાળેલું સંપૂર્ણ મીણ સસલા આકારના પાત્રમાં નાખો. ઠંડું કરવાથી સસલા આકારની મીણબત્તી તૈયાર થઈ જશે. નવી મીણબત્તીનું ઘનફળ પહેલાની મીણબત્તીના ઘનફળ જેટલું જ થશે. કોઈ પદાર્થને એક આકારમાંથી બીજા આકારમાં પરિવર્તિત કરતાં

આકૃતિ 13.18

હોઈએ અથવા જ્યારે કોઈ એક આકારના પાત્રમાંથી પ્રવાહીને બીજા આકારના પાત્રમાં ભરતાં હોઈએ છીએ, ત્યારે આ વાત યાદ રાખવી જોઈએ. તે તમે આકૃતિ 13.18 માં આ વસ્તુ જોઈ શકો છો.

ઉપર્યુક્ત ચર્ચા સમજવા માટે આપણે કેટલાંક ઉદાહરણ લઈએ.

ઉદાહરણ 8: નમૂના બનાવવાની માટીમાંથી 24 સેમી ઊંચાઈ અને 6 સેમી પાયાની ત્રિજ્યાવાળો એક શંકુ બનાવેલો છે. એક બાળકે તેને ગોળાકાર સ્વરૂપમાં પરિવર્તિત કરી નાખ્યો છે, તો ગોળાની ત્રિજ્યા શોધો.

ઉકેલ : શંકુનું ઘનફળ =
$$\frac{1}{3} \times \pi \times 6 \times 6 \times 24$$
 સેમી³

જો ગોળાની ત્રિજ્યા r હોય, તો તેનું ઘનફળ $\frac{4}{3}\pi r^3$ છે.

શંકુની અને ગોળાની માટીનું ઘનફળ સમાન છે.

એટલે કે
$$\frac{4}{3} \times \pi \times r^3 = \frac{1}{3} \times \pi \times 6 \times 6 \times 24$$

અર્થાત,
$$r^3 = 3 \times 3 \times 24 = 3^3 \times 2^3$$

તેથી,
$$r = 3 \times 2 = 6$$

એટલે કે, ગોળાની ત્રિજ્યા 6 સેમી છે.

ઉદાહરણ 9: સેલ્વીના ઘરની છત ઉપર નળાકાર આકારની એક ટાંકી છે. આમાં ભોંયતિળયાની લંબઘન ટાંકીમાંથી પંપ દ્વારા પાણી ભરવામાં આવે છે. આ ભૂગર્ભની ટાંકી ઘનાકાર છે. ટાંકીનાં માપ 1.57 મીટર \times 1.44 મીટર \times 95 સેમી છે. છત ઉપરની ટાંકીની ત્રિજ્યા 60 સેમી છે અને ઊંચાઈ 95 સેમી છે. જો ભોંયતિળયાની ટાંકી પાણીથી પૂરેપૂરી ભરેલી હોય, તો તેમાંથી છત ઉપરની ટાંકીને પૂરેપૂરી ભરી લીધા પછી ભોંયતિળયાની ટાંકીમાં પાણીની ઊંચાઈ કેટલી બાકી રહશે ? છતની ટાંકીની ક્ષમતાની સાથે ભોંયતિળયાની ટાંકીની ક્ષમતાની સરખામણી કરો. (π = 3.14 લો.)

6કેલ : છતની ટાંકીનું ઘનફળ = ભૂગર્ભની ટાંકીમાંથી નીકળેલા પાણીનું ઘનફળ હવે, છતની ટાંકી (નળાકાર)નું ઘનફળ = $\pi r^2 h$

$$= 3.14 \times 0.6 \times 0.6 \times 0.95$$
 મીટર³

પાણીથી પૂર્ણ ભરેલી ભોંયતળિયાની ટાંકીનું ઘનફળ = $l \times b \times h = 1.57 \times 1.44 \times 0.95$ મીટર 3

છતની ટાંકી પાણીથી પૂરી ભરાયા બાદ ભોંયતળિયાની ટાંકીમાં બાકી રહેલા પાણીનું ઘનફળ

=
$$[(1.57 \times 1.44 \times 0.95) - (3.14 \times 0.6 \times 0.6 \times 0.95)]$$
 મીટર $^3 = (1.57 \times 0.6 \times 0.6 \times 0.95 \times 2)$ મીટર 3 બાદી રહેલા પાણીનું ઇનકળ

એટલે કે, ભૂગર્ભની ટાંકીમાં બાકી રહેલા પાણીની ઊંચાઈ
$$=rac{$$
બાકી રહેલા પાણીનું ઘનફળ $l imes b$

$$=\frac{1.57\times0.6\times0.6\times0.95\times2}{1.57\times1.44} \text{ Hlzz}$$

$$\frac{\text{છતની ટાંકીની ક્ષમતા}}{\text{ભોંયતિળયાની ટાંકીની ક્ષમતા}} = \frac{3.14 \times 0.6 \times 0.6 \times 0.95}{1.57 \times 1.44 \times 0.95} = \frac{1}{2}$$

તેથી, છતની ટાંકીની ક્ષમતા ભોંયતળિયાની ટાંકીની ક્ષમતા કરતાં અડધી છે.

<mark>ઉદાહરણ 10 :</mark> 1 સેમી વ્યાસ અને 8 સેમી લંબાઈવાળો એક તાંબાનો સળિયો છે. તેમાંથી 18 મીટર લંબાઈનો એકસરખી જાડાઈવાળો તાર બનાવવો છે, તો તારની જાડાઈ શોધો.

ઉકેલ : સળિયાનું ઘનફળ =
$$\pi \times \left(\frac{1}{2}\right)^2 \times 8$$
 સેમી 3 = 2π સેમી 3

સમાન ઘનફળવાળા નવા તારની લંબાઈ = 18 મીટર = 1800 સેમી

જો તારના આડછેદની ત્રિજ્યા r સેમી હોય, તો તારનું ઘન \mathfrak{s} ળ $=\pi imes r^2 imes 1800$ સેમી 3

તેથી,
$$\pi \times r^2 \times 1800 = 2\pi$$

$$r^2 = \frac{1}{900}$$

$$r = \frac{1}{30}$$

તેથી, આડછેદનો વ્યાસ એટલે કે તારની જાડાઈ $\frac{1}{15}$ સેમી છે. એટલે કે, 0.67 મિમી (લગભગ)

ઉદાહરણ 11 : પાણીથી પૂર્ણ ભરેલી એક અર્ધગોળાકાર ટાંકી છે. તેને પાઇપ દ્વારા $3\frac{4}{7}$ લિટર/સેકન્ડના દરથી ખાલી કરવામાં આવે છે. જો ટાંકીનો વ્યાસ 3 મીટર હોય, તો તેને અડધી ખાલી કરવા માટે કેટલો સમય જોઈએ ? $(\pi = \frac{22}{7} \text{ el.})$

ઉકેલ : અર્ધગોળાકાર ટાંકીની ત્રિજ્યા = $\frac{3}{2}$ મીટર

ટાંકીનું ધનફળ
$$=\frac{2}{3} imes \frac{22}{7} imes \left(\frac{3}{2}\right)^3$$
 મીટર 3 $=\frac{99}{14}$ મીટર 3

તેથી, ખાલી કરેલા પાણીનું ઘનફળ $=\frac{1}{2} imes \frac{99}{14}$ મીટર $^3=\frac{99}{28} imes 1000$ લિટર

$$=\frac{99000}{28}$$
 (सेटर

 $\frac{25}{7}$ લિટર પાણી ખાલી કરવા લાગતો સમય 1 સેકન્ડ છે.

તો, $\frac{99000}{28}$ લિટર પાણી ખાલી કરવા માટે $\frac{99000}{28} imes \frac{7}{25}$ સેકન્ડની જરૂર પડે અથવા 16.5 મિનિટમાં પાણી ખાલી થાય.

સ્વાધ્યાય 13.3

(જો π નું મૂલ્ય આપેલ ન હોય, તો $\pi = \frac{22}{7}$ લો.)

- 4.2 સેમી ત્રિજ્યાવાળા ધાતુના ગોલકને ઓગાળીને 6 સેમી ત્રિજ્યાવાળા નળાકાર સ્વરૂપમાં રૂપાંતરિત કરવામાં આવે છે. નળાકારની ઊંચાઈ શોધો.
- 6 સેમી, 8 સેમી અને 10 સેમી ત્રિજ્યાવાળા ધાતુના ગોળાઓને ઓગાળીને એક મોટો નક્કર ગોળો બનાવવામાં આવે છે, તો આ રીતે બનતા ગોળાની ત્રિજ્યા શોધો.

- 3. એક કૂવો 7 મીટર વ્યાસવાળા વર્તુળ પર 20 મીટર સુધી ખોદવામાં આવે છે, અને તે ખોદવાથી નીકળેલી માટીને એક સરખી રીતે પાથરી 22 મીટર × 14 મીટરની એક વ્યાસપીઠ બનાવવામાં આવે છે, તો વ્યાસપીઠની ઊંચાઈ શોધો.
- 4. 3 મીટર વ્યાસવાળા એક વર્તુળ પર એક કૂવો 14 મીટર સુધી ખોદવામાં આવે છે. તેમાંથી નીકળેલી માટીને કૂવાની આસપાસ 4 મીટર પહોળા વર્તુળાકાર વલયમાં સમાન રીતે પાથરીને ઓટલો બનાવ્યો છે. તો ઓટલાની ઊંચાઈ શોધો.
- 5. 12 સેમી વ્યાસ અને 15 સેમી ઊંચાઈવાળા એક પાત્રનો આકાર લંબવૃત્તીય નળાકાર છે. તે આઇસક્રીમથી સંપૂર્ણ ભરેલો છે. તેમાંથી 12 સેમી ઊંચાઈ અને 6 સેમી વ્યાસવાળા શંકુ આકારના કોન પર અર્ધગોળાકાર સ્વરૂપમાં આઇસક્રીમ ભરવામાં આવે છે. તો આ આઈસક્રીમ દ્વારા કેટલા કોન ભરી શકાય તે શોધો.
- 6. 5.5 સેમી × 10 સેમી × 3.5 સેમી ના માપનો લંબઘન બનાવવા 1.75 સેમી વ્યાસ અને 2 મિમી જાડાઈવાળા ચાંદીના કેટલા સિક્કા ઓગાળવા પડે ?
- 7. 32 સેમી ઊંચાઈ અને પાયાની ત્રિજ્યા 18 સેમી હોય તેવી એક નળાકાર ડોલ રેતીથી ભરેલી છે, આ ડોલને જમીન પર ખાલી કરી શંકુ આકારનો ઢગલો બનાવ્યો છે. જો શંકુ આકારના ઢગલાની ઊંચાઈ 24 સેમી હોય, તો ઢગલાની ત્રિજ્યા અને તિર્યક ઊંચાઈ શોધો.
- 8. 6 મીટર પહોળી અને 1.5 મીટર ઊંડી એક પાણીની નહેરમાં પાણી 10 કિમી/કલાકની ઝડપે વહે છે. 30 મિનિટમાં આ નહેરમાંથી કેટલા ક્ષેત્રફળની સિંચાઈ કરી શકાશે. સિંચાઈ માટે 8 સેમી પાણીની ઊંચાઈ આવશ્યક છે.
- 9. એક ખેડૂત પોતાના ખેતરમાં 10 મીટર વ્યાસવાળી અને 2 મીટર ઊંડી એક નળાકાર ટાંકીને અંદરથી 20 સેમી વ્યાસવાળી એક પાઇપ દ્વારા એક નહેર સાથે જોડે છે. જો પાઇપમાં પાણીનો પ્રવાહ 3 કિમી/કલાકની ઝડપે વહેતો હોય છે, તો કેટલા સમયમાં ટાંકી પાણીથી પૂર્ણ રીતે ભરાઈ જશે ?

13.5 શંકુનો આડછેદ

વિભાગ 13.2 માં આપશે બે જાશીતા ઘન પદાર્થીને એક સાથે જોડતાં મળતા ઘન પદાર્થી જોયા છે. અહીં આપશે કાંઈક વિશેષ કરીશું. આપશે એક ઊભો શંકુ લઈશું અને તેનો થોડોક ભાગ કાઢી નાખીશું. આ કાર્ય આપશે ઘણી બધી રીતે કરી શકીએ છીએ. પરંતુ અહીં આપશે તેમાંનો એક વિશિષ્ટ પ્રકાર લઈશું તેમાં પાયાને સમાંતર સમતલ વડે નાનો શંકુ કાપી નાખવાનો છે. તમે સામાન્ય રીતે પાણી પીવાના પ્યાલા વગેરે જોયા છે. તે આવા આકારના હોય છે. (જુઓ આકૃતિ 13.19.)

આકૃતિ 13.19

પ્રવૃત્તિ 1 : થોડી ભીની મસળેલી માટી લો અથવા બીજો કોઈ પદાર્થ (પ્લાસ્ટિક જેવો વગેરે) લો અને શંકુ આકાર બનાવો. તેને પાયાને સમાંતર એક છરી વડે કાપો. ઉપરનો નાનો શંકુ દૂર કરો. કયો ભાગ બાકી વધ્યો ? બાકી વધેલા ભાગને શંકુનો આડછેદ કહે છે. તમારી પાસે શંકુનો આડછેદ કહેવાતો ઘન પદાર્થ વધશે. તમે જોઈ શકશો કે, તેને ભિન્ન ત્રિજયાવાળા બે વર્તુળાકાર છેડા છે.

જો શંકુ અપેલો હોય અને તેને પાયાને સમાંતર સમતલ વડે કાપીએ તથા સમતલની એક બાજુ બનતા શંકુને દૂર કરીએ તો સમતલની બીજી બાજુએ શંકુનો આડછેદ* (Frustum) કહેવાતો ભાગ બચે છે. (જુઓ આકૃતિ 13.20.)

^{* &#}x27;Frustum' એક લેટિન શબ્દ છે, તેના અર્થ 'કાપેલા ટુકડા' અને તેનું બહુવચન 'Frusta' છે.

આપણે શંકુના આડછેદની સપાટીનું ક્ષેત્રફળ અને ઘનક્લા કુલી રીતે શોધી શકીએ તે માટે કેટલાંક ઉદાહરણ જોઈએ.

ઉદાહરણ 12 : શંકુના આડછેદના બે છેડાની ત્રિજ્યાઓ અનુક્રમે 28 સેમી અને 7 સેમી છે અને તેની ઊંચાઈ 45 સેમી છે. (જુઓ આકૃતિ 13.21.) તેનું ઘનફળ, વક્રસપાટીનું ક્ષેત્રફળ અને કુલ ક્ષેત્રફળ શોધો.

$$(\pi = \frac{22}{7} \text{ ell.})$$

ઉકેલ : શંકુનો આડછેદ એ ઊભા બે શંકુઓ OAB અને OCD નો તફાવત છે. (જુઓ આકૃતિ 13.21.)

ધારો કે શંકુ OAB ની ઊંચાઈ (સેમીમાં) h_1 અને તિર્યક ઊંચાઈ l_1 છે. તેથી $\mathrm{OP}=h_1$ અને $\mathrm{OA}=\mathrm{OB}=l_1$. ધારો કે શંકુ OCD ની ઊંચાઈ h_2 અને તિર્યક ઊંચાઈ l_2 છે.

અહીં, આપણે $r_1=28$ સેમી, $r_2=7$ સેમી અને આડછેદની ઊંચાઈ h=45 સેમી છે.

તેથી
$$h_1 = 45 + h_2$$
 (1)

સૌથી પહેલાં શંકુઓ OAB અને OCD ની ઊંચાઈઓ અનુક્રમે h_1 અને h_2 નિશ્ચિત કરવી આવશ્યક છે. બંને ત્રિકોણો OPB અને OQD સમરૂપ છે. (શા માટે ?)

તેથી,
$$\frac{h_1}{h_2} = \frac{28}{7} = \frac{4}{1}$$
 (2)

(1) અને (2) ઉપરથી, આપણને $h_2 = 15$ અને $h_1 = 60$ મળશે.

હવે, શંકુના આડછેદનું ઘનફળ = શંકુ OABનું ઘનફળ – શંકુ OCD નું ઘનફળ

$$= \left[\frac{1}{3} \cdot \frac{22}{7} \cdot (28)^2 \cdot (60) - \frac{1}{3} \cdot \frac{22}{7} \cdot (7)^2 \cdot (15) \right] \ \text{Hel}^3$$

 $= 48510 સેમી^3$

શંકુઓ OCD અને OAB ની તિર્યક ઊંચાઈઓ અનુક્રમે $l_{_{\! 2}}$ અને $l_{_{\! 1}}$ છે.

$$l_2 = \sqrt{(7)^2 + (15)^2} = 16.55$$
 સેમી (લગભગ)

$$l_1 = \sqrt{(28)^2 + (60)^2} = 4\sqrt{(7)^2 + (15)^2} = 4 \times 16.55 = 66.20$$
 સેમી

શંકુના આડછેદની વક્કસપાટીનું ક્ષેત્રફળ = $\pi r_1 l_1 - \pi r_2 l_2$

=
$$\frac{22}{7}$$
 (28) (66.20) - $\frac{22}{7}$ (7) (16.55)
= 5461.5 સેમી²

શંકુના આડછેદનું કુલ ક્ષેત્રફળ = વક્કસપાટીનું ક્ષેત્રફળ + $\pi r_1^2 + \pi r_2^2$ = 5461.5 સેમી $^2 + \frac{22}{7}$ $(28)^2$ સેમી $^2 + \frac{22}{7}$ $(7)^2$ સેમી 2 = 5461.5 સેમી $^2 + 2464$ સેમી $^2 + 154$ સેમી 2 = 8079.5 સેમી 2

વ્યાપક રીતે, ધારો કે શંકુના આડછેદની ઊંચાઈ h, તિર્યક ઊંચાઈ l, છેડાની ત્રિજ્યાઓ r_1 અને r_2 છે. $(r_1>r_2)$ તો આપણે શંકુના આડછેદનું ઘનફળ, વક્કસપાટીનું ક્ષેત્રફળ અને કુલ ક્ષેત્રફળ નીચે આપેલ સૂત્રો દ્વારા મેળવીશું.

(i) શંકુના આડછેદનું ઘનકળ =
$$\frac{1}{3}\pi h \left(r_1^2 + r_2^2 + r_1 r_2 \right)$$

(ii) શંકુના આડછેદની વક્રસપાટીનું ક્ષેત્રફળ =
$$\pi \; (r_1 + r_2 \;) \; I$$

$$\text{vai } l = \sqrt{h^2 + (r_1 - r_2)^2}$$

(iii) શંકુના આડછેદની કુલસપાટીનું ક્ષેત્રફળ = $\pi l \left(r_1 + r_2 \right) + \pi r_1^2 + \pi r_2^2$

$$\mathbf{vui} \ l = \sqrt{h^2 + (r_1 - r_2)^2}$$

આ સૂત્રો ત્રિકોણની સમરૂપતાના ખ્યાલ પરથી મેળવી શકાય પરંતુ આપણે તેને અહીં તારવીશું નહિ. ચાલો, આપણે ઉદાહરણ 12 ને સૂત્રોના ઉપયોગથી ગણીશું.

(i) શંકુના આડછેદનું ઘનફળ
$$=\frac{1}{3}\pi h \left(r_1^2+r_2^2+r_1\,r_2\right)$$
 $=\frac{1}{3}\cdot\frac{22}{7}\cdot 45\left[(28)^2+(7)^2+(28)\,(7)\right]$ સેમી 3 $=48510$ સેમી 3

(ii) આપણી પાસે
$$l=\sqrt{h^2+(r_1-r_2)^2}$$

$$=\sqrt{(45)^2+(28-7)^2} \ \ {\rm ahl}$$

$$= 3\sqrt{(15)^2 + (7)^2} \text{ સેમી}$$
$$= 49.65 \text{ સેમી}$$

તેથી શંકુના આડછેદની વક્રસપાટીનું ક્ષેત્રફળ

=
$$\pi (r_1 + r_2) l$$

= $\frac{22}{7} (28 + 7) (49.65)$
= 5461.5 Hel^2

(iii) શંકુના આડછેદની કુલ સપાટીનું ક્ષેત્રફળ =
$$\pi \left(r_1+r_2\right)l+\pi r_1^2+\pi r_2^2$$
 = $[5461.5+rac{22}{7}~(28)^2~+rac{22}{7}~(7)^2]$ સેમી 2 = 8079.5 સેમી 2

ચાલો આપણે કેટલાંક ઉદાહરણોમાં આ સૂત્રોનો ઉપયોગ કરીએ.

ઉદાહરણ 13: હનુમપ્પા અને તેની પત્ની ગંગામ્મા શેરડીના રસમાંથી ગોળ બનાવે છે. તેમણે શેરડીના રસને ગરમ કરી રાબ બનાવેલી છે. તેને શંકુના આડછેદ આકારના નમૂનામાં નાખવામાં આવી છે. તેમાં અનુકૂળ બે વર્તુળાકાર સપાટીના વ્યાસ 30 સેમી અને 35 સેમી અને નમૂનાની શિરોલંબ ઊંચાઈ 14 સેમી છે. (જુઓ આકૃતિ 13.22) જો 1 સેમી³ રાબનું દળ 1.2 ગ્રામ હોય, તો પ્રત્યેક નમૂનામાં ભરી શકાય તેટલી રાબનું દ્રવ્યમાન શોધો. $(\pi = \frac{22}{7})$ લો.)

આકૃતિ 13.22

ઉકેલ : આપેલ નમૂનાનો આકાર શંકુના આડછેદ જેવો છે. તેથી તેમાં ભરી શકાય તેટલી

રાબનું ધનફળ =
$$\frac{\pi}{3}h(r_1^2 + r_2^2 + r_1 r_2)$$

જ્યાં r_1 મોટા પાયાની ત્રિજ્યા અને r_2 એ નાના પાયાની ત્રિજ્યા છે.

$$= \frac{1}{3} \times \frac{22}{7} \times 14 \left[\left(\frac{35}{2} \right)^2 + \left(\frac{30}{2} \right)^2 + \left(\frac{35}{2} \times \frac{30}{2} \right) \right] સેમી^3$$

 $= 11641.7 સેમી^3$

અહીં આપેલ છે કે, 1 સેમી³ રાબનું દ્રવ્યમાન 1.2 ગ્રામ છે,

તેથી, પ્રત્યેક નમૂનામાં ભરેલી રાબનું દ્રવ્યમાન = (11641.7 × 1.2) ગ્રામ

= 13970.04 มเห

= 13.97 કિલોગ્રામ

= 14 કિલોગ્રામ (લગભગ)

ઉદાહરણ 14 : એક ધાતુની ખુલ્લી ડોલ શંકુના આડછેદના આકારની છે, અને તે એક ધાતુના ખુલ્લા નળાકારના આધાર પર છે. (જુઓ આકૃતિ 13.23) આ ડોલના બંને વર્ત્ળાકાર છેડાના વ્યાસ 45 સેમી અને 25 સેમી છે અને ડોલની કુલ શિરોલંબ ઊંચાઈ 40 સેમી છે. ખુલ્લી ડોલના પાયાના નળાકારની ઊંચાઈ 6 સેમી છે. આ ડોલ બનાવવા માટે કેટલા ક્ષેત્રફળવાળી ધાતુની શીટ જોઈએ તે શોધો. ડોલના હૅન્ડલની ગણતરી કરવામાં આવી નથી તથા તે ડોલમાં સમાઈ શકતા પાણીનું ઘનફળ કેટલું

આકૃતિ 13.23

હશે તે પણ શોધો.
$$(\pi = \frac{22}{7})$$
 લો.)

ઉકેલ : ડોલની કુલ ઊંચાઈ 40 સેમી છે. તેમાં પાયાની ઊંચાઈનો સમાવેશ થાય છે. તેથી શંકુના આડછેદની ઊંચાઈ (40 –6) સેમી = 34 સેમી છે.

તેથી, શંકુના આડછેદની તિર્યક ઊંચાઈ $l=\sqrt{h^2+(r_1-r_2)^2}$

જ્યાં r_1 = 22.5 સેમી, r_2 = 12.5 સેમી અને h= 34 સેમી.

તેથી,
$$l = \sqrt{(34)^2 + (22.5 - 12.5)^2}$$
 સેમી
$$= \sqrt{(34)^2 + (10)^2}$$
 સેમી
$$= 35.44$$
 સેમી

અહીં વપરાયેલ ધાતુની શીટનું ક્ષેત્રફળ = શંકુના આડછેદની વક્રસપાટીનું ક્ષેત્રફળ + આડછેદના વર્તુળાકાર પાયાનું ક્ષેત્રફળ

+ નળાકારની વકસપાટીનું ક્ષેત્રફળ

$$= \ [\ \pi imes 35.44\ (22.5 + 12.5) + \pi imes (12.5)^2 + 2\pi imes 12.5 imes 6]$$
 સેમી 2

$$=\frac{22}{7}[1240.4+156.25+150]$$
 સેમી²

 $=4860.9 \text{ A} \text{H}^2$

હવે, ડોલમાં સમાઈ શકતા પાણીનું ઘનફળ (જેને ડોલની ક્ષમતા પણ કહે છે.)

$$= \frac{\pi \times h}{3} \times (r_1^2 + r_2^2 + r_1 r_2)$$

$$= \frac{22}{7} \times \frac{34}{3} \times [(22.5)^2 + (12.5)^2 + 22.5 \times 12.5] સેમી^3$$

$$= \frac{22}{7} \times \frac{34}{3} \times 943.75$$

$$= 33615.48 સેમી^3$$

$$= 33.62 લિટર (લગભગ)$$

સ્વાધ્યાય 13.4

(જો π નું મૂલ્ય આપેલ ન હોય, તો $\pi = \frac{22}{7}$ લો.)

- 14 સેમી ઊંચાઈવાળા પીવાના પાણીનો પ્યાલો શંકુના આડછેદના આકારનો છે. બંને વર્તુળાકાર છેડાના વ્યાસ 4 સેમી અને 2 સેમી હોય, તો આ પ્યાલાની ક્ષમતા શોધો.
- એક શંકુના આડછેદની તિર્યક ઊંચાઈ 4 સેમી છે તથા તેના વર્તુળાકાર છેડાની પરિમિતિ (પરિઘ) 18 સેમી અને 6 સેમી છે. તો શંકુના આડછેદની વક્રસપાટીનું ક્ષેત્રફળ શોધો.
- 3. એક તુર્કી ટોપીનો આકાર શંકુના આડછેદ જેવો છે. (જુઓ આકૃતિ 13.24.) જો તેની ખુલ્લી બાજુની ત્રિજ્યા 10 સેમી અને ઉપરની બાજુના વર્તુળની ત્રિજ્યા 4 સેમી હોય અને તિર્યક ઊંચાઈ 15 સેમી હોય, તો તેને બનાવવા માટે વપરાતા કાપડનું ક્ષેત્રફળ શોધો.
- 4. એક વાસણ એક ધાતુની શીટમાંથી બનાવવામાં આવ્યું છે. તે ઉપરથી ખુલ્લું છે અને શંકુના આડછેદ જેવા આકારનું છે. તેની ઊંચાઈ 16 સેમી તથા બંને અંત્ય વર્તુળોની નીચેની અને ઉપરની ત્રિજ્યાઓ અનુક્રમે 8 સેમી અને 20 સેમી છે. દૂધથી સંપૂર્ણ ભરેલા વાસણમાં

આકૃતિ 13.24

- ₹ 20 પ્રતિ લિટર કિંમતવાળા આ વાસણમાં સમાઈ શકતા દૂધની કિંમત શોધો. આ વાસણ બનાવવા માટે વપરાયેલ ધાતુની શીટની કિંમત ₹ 8 પ્રતિ 100 સેમી 2 ના દરે શોધો. ($\pi = 3.14$ લો.)
- 5. ધાતુના લંબવૃત્તીય શંકુની ઊંચાઈ 20 સેમી તથા શિરઃકોણ 60° છે. પાયાને સમાંતર સમતલથી તેના ઊંચાઈના બે સમાન ભાગ થાય તે રીતે કાપવામાં આવ્યો છે. જો આડછેદનું $\frac{1}{16}$ સેમી વ્યાસવાળા તાર સ્વરૂપમાં રૂપાંતર કરવામાં આવે તો તારની લંબાઈ શોધો.

स्वाध्याय 13.5 (वैडिस्पिड)*

- 3 મિમી વ્યાસવાળા તાંબાના તારને 12 સેમી ઊંચાઈ અને 10 સેમી વ્યાસવાળા નળાકાર પર એવી રીતે વીંટવામાં આવે છે કે નળાકારની વક્રસપાટી સંપૂર્ણપણે ઢંકાઈ જાય છે. તો તારની લંબાઈ અને દળ શોધો. તાંબાની ઘનતા 8.88 ગ્રામ/સેમી³ સ્વીકારવામાં આવી છે.
- એક કાટકોણ ત્રિકોણની બાજુઓ 3 સેમી અને 4 સેમી (કર્ણ સિવાયની બાજુઓ) છે. તેને તેના કર્ણ આસપાસ પરિભ્રમણ કરાવવામાં આવે છે. તેનાથી પ્રાપ્ત થતા બે શંકુનું ઘનફળ અને તેમની સપાટીનું ક્ષેત્રફળ શોધો. (π ની કિંમત તમને અનુકૂળ પસંદ કરો.)
- 3. એક ટાંકીનાં આંતિરક માપ 150 સેમી \times 120 સેમી \times 110 સેમી છે. તેમાં 129600 સેમી³ પાણી છે. ટાંકી પૂરેપૂરી ભરાય ન જાય ત્યાં સુધી તે પાણીમાં છિદ્રવાળી ઇંટો નાખવામાં આવે છે. પ્રત્યેક ઇંટ તેના $\frac{1}{17}$ ઘનફળ જેટલું પાણી શોષી લે છે. પ્રત્યેક ઇંટનું માપ 22.5 સેમી \times 7.5 સેમી \times 6.5 સેમી છે, તો પાણી બહાર ન આવે તે રીતે તે ટાંકીમાં કેટલી ઇંટો નાખી શકાય ?
- 4. આપેલા મહિનાના કોઈ એક પખવાડિયામાં એક નદીની ઘાટીમાં 10 સેમી વરસાદ પડ્યો છે. જો તે ઘાટીનું

^{*} આ સ્વાધ્યાય પરીક્ષાના હેતુથી બનાવેલ નથી.

ગણિત

ક્ષેત્રફળ 97280 કિમી² હદ્ધોય, તો બતાવો કે, કુલ વરસાદ લગભગ ત્રણ નદીઓના સામાન્ય પાણીના સરવાળા બરાબર હતો. પ્રત્યેક નદી 1072 કિમી લાંબી, 75 મીટર પહોળી અને 3 મીટર ઊંડી છે.

5. પતરાની એક ચીમની 10 સેમી લાંબા નળાકારના છેડે શંકુના આડછેદથી બનેલી છે. જો તેની કુલ ઊંચાઈ 22 સેમી હોય તથા નળાકાર ભાગનો વ્યાસ 8 સેમી અને ચીમનીના ઉપરના ભાગનો વ્યાસ 18 સેમી હોય, તો ચીમની બનાવવામાં વપરાતા પતરાનું ક્ષેત્રફળ શોધો. (જુઓ આકૃતિ 13.25.)

- વિભાગ 13.5 માં આપવામાં આવેલા સંકેતોની મદદથી શંકુના આડછેદની વક્કસપાટીનું ક્ષેત્રફળ અને કુલ પૃષ્ઠફળનું સૂત્ર તારવો.
- 7. વિભાગ 13.5 માં આપેલા સંકેતોની મદદથી શંકુના આડછેદનું ઘનફળ શોધવાનું સૂત્ર તારવો.

13.6 સારાંશ

આ પ્રકરણમાં તમે નીચે આપેલા મુદ્દાઓનો અભ્યાસ કર્યો :

- 1. બે જાણીતા પદાર્થો જેવા કે લંબઘન, શંકુ, નળાકાર, ગોલક અને અર્ધગોલકના સંયોજનથી બનતા પદાર્થનું પૃષ્ઠફળ શોધવું.
- 2. કોઈપણ બે પદાર્થો જેવા કે લંબઘન, શંકુ, નળાકાર, ગોલક અને અર્ધગોલકના સંયોજનથી બનતા પદાર્થનું ઘનફળ શોધવું.
- આપેલા શંકુના પાયાને સમાંતર સમતલ દ્વારા કાપીએ તથા સમતલની એક બાજુના શંકુને દૂર કરવાથી મળતા ઘનાકારને શંકુનો આડછેદ કહેવાય છે.
- 4. શંકુના આડછેદ સંબંધી સૂત્રો નીચે પ્રમાણે છે :
 - (i) શંકુના આડછેદનું ઘનકળ = $\frac{1}{3}\pi h (r_1^2 + r_2^2 + r_1 r_2)$
 - (ii) શંકુના આડછેદની વક્રસપાટીના પૃષ્ઠફળનું ક્ષેત્રફળ = $\pi l \; (r_1 + r_2 \;)$

$$\text{wii } l = \sqrt{h^2 + (r_1 - r_2)^2}$$

(iii) શંકુના આડછેદનું કુલ પૃષ્ઠફળ = $\pi l (r_1 + r_2) + \pi (r_1^2 + r_2^2)$

ઉપરના સૂત્રોમાં h= આડછેદની ઊંચાઈ, l= આડછેદની તિર્યક ઊંચાઈ તથા શંકુના આડછેદના બંને છેડાની ત્રિજ્યાઓ r_1 અને r_2 છે.