

Data Driven Engineering II: Advaced Topics

Dynamic Mode Decomposition

Institute of Thermal Turbomachinery Prof. Dr.-Ing. Hans-Jörg Bauer

Term Projects

Welcome to DDE II projects!

If you are interested in the group projects for fun or planning to take the final exam for credits, you need to register to a topic before 14.05.021. Note that each topic has a number of maximum participants. You may find the details in Lecture 1.

Particle Image Density Analysis in PIV Recordings

An object detection study for PIV analysis

Free places: 1

Physical interpretation of LCSs

Data driven model discovery in air blast atomizers

Free places: 5

Time resolved flow field analysis in film cooling

PIV data will be used for flow analysis.

Free places: 5

Others

for HPC access

Period of Event: Today - 14. May 2021

- * Dynamical system analysis
- * Nonlinear => linear mapping
- * Koopman analysis
- * DMD: how it works ?
- * Applications -> alternatives
- * Py DMD

Non-linear dynamical system:

$$\frac{d}{dt} x = f(x, t, u, \mu)$$
parameters
$$\int_{-1}^{q} T ...$$
state (vector)
$$-information - control$$

NS equations

Naxwell equipments

Schrödinger equipments

"Rule of Thombs,"

Simple Example: 1-D, transpert flow

$$\ell \frac{\partial \theta_2}{\partial t} = \mu \frac{\partial^2 \theta_2}{\partial x^2}$$

•
$$X = 0$$
 $0_{\frac{1}{2}} = V$
• $X = B$ $0_{\frac{1}{2}} = 0$

$$\frac{\text{viscous forces}}{\text{rt. of movestru}} = \frac{\mu \sqrt{B^2}}{e \sqrt{t}} = \frac{\nu t}{B^2}$$
 Fourser number

$$\frac{\partial \theta}{\partial z} = \frac{\partial^2 \theta}{\partial g^2}$$

$$\frac{\partial z}{\partial z} = \frac{\partial^2 \theta}{\partial z^2}$$

$$\frac{\partial z}{\partial z} = \frac{\partial z}{\partial z}$$

Simple Example: 1-D, tronsrett flow

Step II Divide & Conquer

(i)
$$\theta(z,\xi) = \theta_{\infty}(\xi) - \theta_{\xi}(z,\xi)$$

steady transfect

(ii)
$$\theta_{\infty} = 1 - \xi + \xi$$
 3 st. st. solution

$$\frac{\partial \theta_{t}}{\partial 7} = \frac{\partial^{2} \theta_{t}}{\partial g^{2}} \begin{cases} z = 0 ; \theta_{t} = 1 - g \\ g = 0 ; \theta_{t} = 0 \end{cases}$$

$$\frac{\partial \theta_{t}}{\partial 7} = \frac{\partial^{2} \theta_{t}}{\partial g^{2}} \begin{cases} z = 0 ; \theta_{t} = 1 - g \\ g = 1 ; \theta_{t} = 0 \end{cases}$$

$$\Theta_{\xi}(z,\xi) = F(z) 6(\xi)$$

Simple Example: 1-D, tronsrett flow

(iv)
$$\theta(q, z) = 1 - g - \frac{2}{\pi} \int_{n=1}^{\infty} \frac{1}{n} \exp(-n^2 \pi^2 z) \sin(n\pi q)$$

- (1) Split the spatial & temporal dynamico
- (2) Change coord- b use eign values/functions
- (3) 00 -> N' way Truncate the solution

21.05.2021

montphear

dynamical

system

$$\dot{X} = f(X)$$

Transformation

 $\dot{X} = f(X)$

Equivalent 19 near

dynamical system

 $\dot{X} = f(X)$

Equivalent 19 near

 $\dot{X} = f(X)$

$$X = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{math}, \quad \text{f}$$

Data-driver
algorithm

algorithm

algorithm

Interpolation

$$(i) X_{n+1} = F(X_n)$$

(iii)
$$t \rightarrow n+1$$
;
$$g(X_{n+1}) = g(F(X_n)) = Kg(X_n)$$
| Inear operator

$$(fr) \longrightarrow X_n \xrightarrow{F} X_{n+1} \xrightarrow{F} X_{n+2} \longrightarrow \cdots$$

$$0 = g_n \xrightarrow{K} g_{n+1} \xrightarrow{K} g_{n+2} \longrightarrow \cdots$$

? What is here
$$\Rightarrow$$
 (finite-dim. nonlinear system) \Rightarrow (infinite-dim. you need it to be \S

How infinite is the "infinite, ?

$$\infty \rightarrow 3$$

$$\begin{array}{ccc}
\dot{X}_{1} = aX_{1} & \text{finite dim.} \\
\dot{X}_{2} = b(X_{2} - X_{1}^{2}) & \text{non linear}
\end{array}$$

(2)
$$X_1$$
 X_2 Y_2 Y_1 Y_2 Y_2 Y_1 Y_2 Y_2 Y_3 Y_4 Y_3 Y_4 Y_4 Y_5 Y_6 Y_6 Y_7 Y_8 Y

$$\frac{d}{dt} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} a & \emptyset & \emptyset \\ \emptyset & b - b \\ \emptyset & \emptyset & 2a \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \quad \begin{cases} \text{linear} \\ \text{system} \end{cases}$$

$$\frac{d}{dt} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} a & \emptyset & \emptyset \\ \emptyset & b - b \\ \emptyset & \emptyset & 2a \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \quad \begin{cases} \text{linear} \\ \text{system} \end{cases}$$

"how my equations look like in y space ...,

$$X_{n+1} = \beta X_n (1 - X_n) \rightarrow logistic map$$

$$X_{n+1} = \beta X_n - \beta X_n^2 \longrightarrow \{y_n, y_n^2\}$$

$$\begin{pmatrix} y \\ y^2 \\ 1 \end{pmatrix}_{n+1} = \begin{pmatrix} \beta & -\beta & \dots \\ & & & \\ & & & \\ & & & \\ \end{pmatrix} \begin{pmatrix} y \\ y^2 \\ 1 \end{pmatrix}_n \quad \infty \rightarrow \infty$$

@ "exp, would work.

* How do we reach closure?

In a single recipe &

* we need invariant subspace

* we need invariant subspace > use eigen functions &

$$g(x) = \emptyset_0^g \longrightarrow g(x_k) = K^k \emptyset_0^g = \emptyset_0^g \lambda^k$$

temporal ~dynamico

Data Decomposition:

need a unique sol.

Shape of 'C' matrix

$$C = \begin{pmatrix} 1 & \lambda_1 & \lambda_1^2 & \dots \\ 1 & \lambda_2 & \lambda_2^2 & \dots \\ 1 & \lambda_3 & \lambda_3^2 & \dots \\ 1 & \vdots & \vdots & \vdots \\ 1 & \lambda_n & \lambda_n^2 & \dots \end{pmatrix} \Rightarrow \text{independent} \qquad \Rightarrow \text{k} = \begin{pmatrix} 0 & \alpha_1 \\ 1 & \alpha_2 \\ \vdots & \vdots & \vdots \\ 1 & \alpha_n \end{pmatrix}$$

$$= \begin{pmatrix} 0 & \alpha_1 \\ \alpha_2 \\ \vdots & \vdots \\ \alpha_3 \\ \vdots \\ 1 & \alpha_n \end{pmatrix}$$

$$= \begin{pmatrix} 0 & \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_3 \\ \vdots \\ 1 & \alpha_n \end{pmatrix}$$

$$= \begin{pmatrix} 0 & \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \\ \vdots \\ 1 & \alpha_n \end{pmatrix}$$

$$= \begin{pmatrix} 0 & \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \\ \vdots \\ 1 & \alpha_n \end{pmatrix}$$

$$= \begin{pmatrix} 0 & \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \\ \vdots \\ 1 & \alpha_n \end{pmatrix}$$

21.05.2021

$$K = \begin{pmatrix} 0 & a_1 \\ 1 & a_2 \\ & & a_3 \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

K ⇒ shifts the columns;

$$D = ABC$$

$$\rightarrow$$
 D = D'

 $D = D' \not\vdash$ back-shifted data matrix

$$D = ACK$$

> D'& K can be found together

$$\begin{array}{c} \star & D = D' K \\ \checkmark & \times & \times \end{array}$$

by booking II conseq. snapshots

$$X = \begin{cases} | & | & | & | \\ x_1 & x_2 & x_3 & \dots & x_{m-1} \\ | & | & | & | & | \end{cases}, \quad X' = \begin{cases} | & | & | & | \\ x_2 & x_3 & x_4 & \dots & x_m \\ | & | & | & | & | \end{cases}$$

$$0 \longrightarrow t \ell me$$

(i)
$$\chi' = K \chi$$
 (ii) $K = \chi' \chi' = \chi' = \chi' \chi' = \chi' = \chi' \chi' = \chi' =$

Can we do it & practically

* Transport Ph.

oranges

nom.

oranges

nom.

DNS

lb. grids

1 billion.

Too many dim. Dim. Reduction

- $U, V \rightarrow unitary$ U*U = UU*=I
- ∑ → diagonal, decreosing, ron-regative

Too many dim. Dim. Reduction

* SVD := Singular Value Decoup. (V)

Too many dim. Dim. Reduction

* SVD := Singular Value Decoup. (V)

3

DMD Algorithm:

Step #1 Dinersionality reduction with SVD.

•
$$\chi = U_r \Sigma_r V_r^*$$
 (r rank)

Subspace we will work at.

Regression

•
$$K = X'X^{+}$$
; in the reduced subspace;

$$k \to S = U_r^* \chi' V_r \Sigma_r^{-1}$$

• we do not need to find high dem. K;
$$X'(t+1) \approx S X(t)$$

Algorithm:

Spectral de composition
$$\Rightarrow \emptyset$$
, λ (coord-tv.)

$$S \phi = \phi \lambda$$
 (instead of k)
eig. vectors Diagonal = λ_1, λ_2 ...
(columns)

$$\phi$$
, $\wedge \leftarrow eig(s)$

Algorithu:

• DM =
$$X' V_R = \sum_{k=1}^{n-1} \emptyset$$
 columns one eig. vectors of K

(i)
$$\omega_{k} = \ln (\lambda_{k})/\Delta t$$
 contidence of K (ii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contidence of K (iii) $\omega_{k} = \ln (\lambda_{k})/\Delta t$ contiden

(ii)
$$\chi(t) \cong \int_{k=1}^{\infty} dm_k \exp(\omega_k t) b_k$$

colab

Things to remember

DMD -> Regression > optimization } 'tiny errors,

into circle > e'

solution de

solution duezes converges

* Regression outliers & outliers & Robust DND

* Nonlinea > Great

[Many sol.] --> ['a' solution] away from us.

*
$$\frac{dx}{dt} = Ax$$
 } linear; $x(t_0+t) = e^{At}x(t_0)$

•
$$x = T^{2}$$

 $\dot{z} = T^{3}\dot{x} = T^{4}Ax = T^{4}AT^{2} = \Lambda^{2}$
 $\dot{z} = \Lambda^{2} \Rightarrow diagonal \left[\begin{array}{c} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{array} \right] \Rightarrow decoupled$

*
$$\ddot{z} = T^{-1}\dot{x}$$
after transformation; dynamics one reflected in a coordinates.

Note that
$$AT = TX$$
; $T^{-1}AT^{2} = \Lambda^{2}$
Eigen value eq.

eig. values }
Turn a linear system into a diagonal system.

$$X(t) = T_{2}(t)$$

$$= T_{2}(t)$$

Figure 3.2. Schematic of how to use data to generate dynamical systems models of an unknown complex system in the DMD/Koopman framework. In standard DMD, we take measurements of the states of the system and construct a model that maps X to X'. Koopman spectral analysis enriches the measurements with nonlinear observations y = g(x) to provide a better mapping from Y to Y' that approximates the infinite-dimensional Koopman mapping. The prediction of the observables in the future from the Koopman model may be used to recover the future state \mathbf{x}_{m+1} , provided that the observation function g is injective. Both the DMD and Koopman approaches are equation-free, in that they do not rely on knowing F,.