Computational Physics

Molecular Simulations Lab

Piyush R.Maharana 21msphcp02

EXPERIMENT 1: Lysozyme in Water

PROCEDURE:

Commands

VMD TkConsole [removing the crystal waters]

set sel [atomselect top all]

set sel1 [atomselect top protein]

set sel2[atomselect top water]

\$sel1 writepdb protein.pdb

\$sel2 writepdb water.pdb

1XEI.pdb

1XEI_clean.pdb

Generate Topology

generate a topology file for the (15: OPLS-AA/L all-atom force field (2001 aminoacid dihedrals) force field together with the SPC/E water model using the gmx pdb2gmx tool:

gmx pdb2gmx -f 1xei_clean.pdb -o 1AKI_processed.gro -water spce

1AKI_processed.gro is a GROMACS-formatted structure file that contains all the atoms defined

within the force field

Box and solvate [Adding Water]

Create a simulation box with gmx editconf and add solvent with gmx solvate

gmx editconf -f 1xei processed.gro -o 1xei newbox.gro -c -d 1.0 -bt cubic

minimum protein-edge distance 1.0 nm, -d 1.0); for simulations you want to publish this number should be 1.2...1.5 nm so that the electrostatic interactions between copies of the protein across periodic boundaries are sufficiently screened.

gmx solvate -cp 1xei_newbox.gro -cs spc216.gro -o 1xei_solv.gro -p topol.top

- -cp input file (protein with box)
- · -cs water box model
- ·-p topology
- -o output file (protein the box and the solvent)

1xei_newbox.gro

1xei_solv_ions.gro

Adding ions

lons can be added with the gmx genion

gmx grompp -f ions.mdp -c 1xei_solv.gro -p topol.top -o ions.tpr

gmx genion -s ions.tpr -o 1xei_solv_ions.gro -p topol.top -pname NA -nname CL -neutral

- -s Topology Portable Run file
- -o Output file, it will be called
- -p New topology file
- : ions.mdp used as input into grompp to generate ions.tpr
- : Parameters describing what to do, when to stop and what to save

integrator = steep : Algorithm (steep = steepest descent minimization)

emtol = 1000.0 ; Stop minimization when the maximum force < 1000.0 kJ/mol/nm

emstep = 0.01 ; Minimization step size

nsteps = 50000 ; Maximum number of (minimization) steps to perform

Energy Minimization

Before we can begin dynamics, we must ensure that the system has no steric clashes or inappropriate geometry. harmonic force constants of 1000 kJ mol-1 nm-2

use the simple steepest descent minimizer integrator = steep in minim.mdp

The *.mdp file contains the settings that dictate the nature of the simulation.

gmx grompp -f minim.mdp -c 1AKI_solv_ions.gro -p topol.top -o em.tpr

gmx mdrun -v -deffnm em

; minim.mdp - used as input into grompp to generate em.tpr

; Parameters describing what to do, when to stop and what to save

integrator = steep ; Algorithm (steep = steepest descent minimization)

emtol = 1000.0 ; Stop minimization when the maximum force < 1000.0 kJ/mol/nm

emstep = 0.01 ; Minimization step size

nsteps = 50000 ; Maximum number of (minimization) steps to perform

run input file (TPR) from the run parameter file (MDP), coordinate file (the solvated system with ions; PDB), and the topology (TOP)

Equilibration

The purpose of posre.itp is to apply a position restraining force on the heavy atoms of the protein (anything that is not a hydrogen).

NVT

This will help the added water molecules find a stable (equilibrium) distribution around the protein.

gmx grompp -f nvt.mdp -c em.gro -r em.gro -p topol.top -o nvt.tpr gmx mdrun -deffnm nvt

Temperature

$$T = 299.937 \pm 1.776 [K]$$

NPT

This will adjust the box size, ensuring that the density of water in the periodic box is correct for the simulation temperature and pressure.

gmx grompp -f npt.mdp -c nvt.gro -r nvt.gro -t nvt.cpt -p topol.top -o npt.tpr

gmx mdrun -deffnm npt

title = OPLS Lysozyme NPT equilibration

define = -DPOSRES; position restrain the protein

; Run parameters

integrator = md ; $leap-frog\ integrator$ nsteps = 50000 ; $2*50000 = 100\ ps$

dt = 0.002 ; 2 fs

gmx energy -f npt.edr -o pressure.xvg $P = -8.8621 \pm 174.157~[bar]$

gmx energy -f npt.edr -o density.xvg $~
ho=1017.490\pm3.754~[kgm^{-3}]$

MD run

The final step is the actual molecular dynamics simulation. Upon completion of the two equilibration phases, the system is now well-equilibrated at the desired temperature and pressure.

gmx grompp -f md.mdp -c npt.gro -t npt.cpt -p topol.top -o md_0_1.tpr

gmx mdrun -deffnm md_0_1

title = OPLS Lysozyme NPT equilibration

; Run parameters

integrator = md ; leap-frog integrator

nsteps = 500000 ; 2 * 500000 = 1000 ps (1 ns)

dt = 0.002 ; 2 fs

ANALYSIS

Generate a centered trajectory in the primary unit cell

gmx trjconv -s md_0_1.tpr -f md_0_1.xtc -o md_0_1_noPBC.xtc -pbc mol -center

Select 1 ("Protein") as the group to be centered and 0 ("System") for output.

RMSD

gmx rms -s md_0_1.tpr -f md_0_1_noPBC.xtc -o rmsd.xvg -tu ns

Select 4 ("Backbone") as the group to be centered and 4 ("Backbone") for output.

RMSD relative to the crystal structure

gmx rms -s em.tpr -f md_0_1_noPBC.xtc -o rmsd_xtal.xvg -tu ns

$$\rho^{\text{RMSD}}(t) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\mathbf{r}_i(t) - \mathbf{r}_i^{\text{ref}})^2}$$

$$\rho^{RMSD} = 0.0902 \pm 0.011 \, [nm]$$

Radius of Gyration

gmx gyrate -s md_0_1.tpr -f md_0_1_noPBC.xtc -o gyrate.xvg

group 1 (Protein) for analysis

$$R_{\rm gyr}^2 = \frac{1}{M} \sum_{i=1}^N m_i (\mathbf{r}_i - \mathbf{R})^2 \qquad \text{where} \qquad \mathbf{R} = N^{-1} \sum_{i=1}^N \mathbf{r}_i$$

is the center of mass of the protein

$$R_g = 1.4279 \pm 0.006 [nm]$$

EXPERIMENT 2: Biphasic System

PROCEDURE:

chx.gro Cyclohexane coordinate file chx.top Cyclohexane topology file

PRODRG CO	ORDS			
6				
1CHX	CAA 1	-0.0	0.815	-0.018
1CHX	CAB 2	0.0	0.913	0.051
1CHX	CAD 3	-0.0	066 1.039	0.094
1CHX	CAF 4	-0.1	.81 1.002	0.188
1CHX	CAE 5	-0.2	277 0.905	0.120
1CHX	CAC 6	-0.2	0.779	0.076
0.4360	0 0.43600	0.4	3600	

Commands

gmx insert-molecules -ci chx.gro -nmol 1200 -box 5 5 5 -o chx_box.gro

Expand the box:

gmx editconf -f chx_10ns.gro -o chx_newbox.gro -box 5 5 10 -center 2.5 2.5 2.5

Solvate your system

gmx solvate -cp chx_newbox.gro -cs spc216.gro -p chx.top -o chx_solv.gro

vdwradii.dat change C atom radius

Energy Minimization

Before we can begin dynamics, we must ensure that the system has no steric clashes or inappropriate geometry. harmonic force constants of 1000 kJ mol-1 nm-2

use the simple steepest descent minimizer integrator = steep in minim.mdp

The *.mdp file contains the settings that dictate the nature of the simulation.

gmx grompp -f minim.mdp -c chx_solv.gro -p chx.top -o em.tpr

gmx mdrun -v -deffnm em

; minim.mdp - used as input into grompp to generate em.tpr

; Parameters describing what to do, when to stop and what to save

integrator = steep ; Algorithm (steep = steepest descent minimization)

emtol = 1000.0 ; Stop minimization when the maximum force < 1000.0 kJ/mol/nm

emstep = 0.01 ; Minimization step size

nsteps = 50000 ; Maximum number of (minimization) steps to perform

run input file (TPR) from the run parameter file (MDP), coordinate file (the solvated system with ions; PDB), and the topology (TOP) $^{\circ}$

Equilibration

NVT

This will help the added water molecules find a stable (equilibrium) distribution around the cyclohexane molecules.

gmx grompp -f nvt.mdp -c em.gro -r em.gro -p topol.top -o nvt.tpr

gmx mdrun -deffnm nvt

Temperature

gmx energy -f nvt.edr -o temperature.xvg

$$T = 299.670 \pm 2.667 [K]$$

; Temperature coupling is on

tcoupl = V-rescale ; modified Berendsen thermostat

tc-grps = CHX SOL ; two coupling groups - more accurate

 $tau_t = 0.1$ 0.1 ; time constant, in ps

ref_t = 300 300 ; reference temperature, one for each group, in K

NPT

This will adjust the box size, ensuring that the density of water in the periodic box is correct for the simulation temperature and pressure.

gmx grompp -f npt.mdp -c nvt.gro -r nvt.gro -t nvt.cpt -p topol.top -o npt.tpr gmx mdrun -deffnm npt

; Temperature coupling is on

tcoupl = V-rescale ; modified Berendsen thermostat

tc-grps = CHX SOL ; two coupling groups - more accurate

 $tau_t = 0.1$ 0.1 ; time constant, in ps

ref_t = 300 300 ; reference temperature, one for each group, in K

 $P = 22.137 \pm 515.776[bar]$

gmx energy -f npt.edr -o density.xvg $~
ho = 859.104 \pm 18.67~[kgm^{-3}]$

MD run

The final step is the actual molecular dynamics simulation. Upon completion of the two equilibration phases, the system is now well-equilibrated at the desired temperature and pressure.

```
gmx grompp -f md.mdp -c npt.gro -t npt.cpt -p topol.top -o md_0_1.tpr

gmx mdrun -deffnm md_0_1

title = OPLS \ Lysozyme \ NPT \ equilibration

; Run parameters

integrator = md ; leap-frog \ integrator

nsteps = 500000 ; 2 * 500000 = 1000 \ ps \ (1 \ ns)

dt = 0.002 ; 2 \ fs
```

EXPERIMENT 3 : Biphasic System Protein in Aqueous Layer 30 Nov 2022

Construct chx.itp file:

Make changes in the topology file: #include chx.itp

Make index file

1 Protein 13 CHX 21 Water_and_ions

Energy Minimization

Before we can begin dynamics, we must ensure that the system has no steric clashes or inappropriate geometry. harmonic force constants of 1000 kJ mol-1 nm-2 $\,$

gmx grompp -f minim.mdp -c chx_solv.gro -n choco.ndx -p chx.top -o em.tpr gmx mdrun -v -deffnm em

This will help the added water molecules find a stable (equilibrium) distribution around the protein.

gmx grompp -f nvt.mdp -c em.gro -r em.gro -p topol.top -o nvt.tpr gmx mdrun -deffnm nvt

```
; Temperature coupling is on
tcoupl
                         = V-rescale
                                                  ; modified Berendsen
thermostat
                         = Protein CHX
                                         Water and ions
tc-grps
                                                           ; two coupling
groups - more accurate
tau t
                         = 0.1
                                     0.1
                                           0.1
                                                  ; time constant, in ps
ref t
                         = 300
                                     300
                                            300
                                                  ; reference temperature, one
for each group, in K
```


$$T = 300.109 \pm 3.049 \, [K]$$

NPT

This will adjust the box size, ensuring that the density of water in the periodic box is correct for the simulation temperature and pressure.

gmx grompp -f npt.mdp -c nvt.gro -r nvt.gro -t nvt.cpt -p topol.top -o npt.tpr gmx mdrun -deffnm npt

```
; Temperature coupling is on

tcoupl = V-rescale ; modified Berendsen thermostat

tc-grps = Protein CHX Water_and_ions ; two coupling groups - more accurate

tau_t = 0.1 0.1 0.1 ; time constant, in ps

ref_t = 300 300 300 ; reference temperature, one for each group, in K
```


 $P = 88.637 \pm 592.423 \, [bar]$

$$\rho = 804.146 \pm 23.07 \ [kgm^{-3}]$$

Analysis

 $\rho_{RMSD} = 0.1065 \pm 0.043 \, [nm]$

Radius of gyration

$$R_g = 0.792 \pm 0.033 \, [nm]$$

KALP-15

1. Orient the protein and membrane

gmx grompp -f minim.mdp -c dppc128.pdb -p topol_dppc.top -o dppc.tpr
gmx trjconv -s dppc.tpr -f dppc128.pdb -o dppc128_whole.gro -pbc mol -ur compact

dppc128_whole.gro

Use trjconv to remove periodicity (select group 0, "System" for output): place the center of mass of the peptide at the center of this box

gmx editconf -f KALP-15_processed.gro -o KALP_newbox.gro -c -box 6.41840 6.44350 6.59650

center of our system now lies at (3.20920, 3.22175, 3.29825)

Pack the lipids around the protein

cat KALP_newbox.gro dppc128_whole.gro > system.gro

```
396; Include Position restraint file
397 #ifdef POSRES
398 #include "posre.itp"
399 #endif
300
301
302; Strong position restraints for InflateGRO
303 #ifdef STRONG_POSRES
304 #include "strong_posre.itp"
305 #endif
306 #include "dppc.itp"
307
308; Include water topology
309 #include "gromos53a6.ff/spc.itp"
310
311 #ifdef POSRES_WATER
312; Position restraint for each water oxygen
313 [position_restraints]
314; i funct fcx fcy fcz
315 1 1 1000 1000 1000 1000
316 #endif
317
318; Include topology for ions
319 #include "gromos53a6.ff/ions.itp"
300
311 [system]
322; Name
323 frame t= 1.000 in water
324
325 [molecules]
326; Compound #mols
327 Protein 1
328 DPPC 126
330 CL 476
```

generate this new position restraint file using genrestr:

gmx genrestr -f KALP_newbox.gro -o strong_posre.itp -fc 100000 100000 100000

perl inflategro.pl system.gro 4 DPPC 14 system_inflated.gro 5 area.dat

inflategro.perl

```
$areaprotein_lower=($gridsize)**2 *$howmany *0.01;
$arealipid_lower=($box_x * $box_y - $areaprotein_lower)/($newlower);
print "Area per protein: $areaprotein_total nm^2\n";
print "Area per lipid: $arealipid_total nm^2\n\n";

print "Area per protein, upper half: $areaprotein_upper nm^2\n";
print "Area per lipid, upper leaflet : $arealipid_upper nm^2\n\n";

print "Area per protein, lower half: $areaprotein_lower nm^2\n";
print "Area per lipid, lower leaflet : $arealipid_lower nm^2\n";
```

```
; minim.mdp - used as input into grompp to generate em.tpr
; Parameters describing what to do, when to stop and what to save

define = -DSTRONG_POSRES ; Prevent protein from moving

integrator = steep ; Algorithm (steep = steepest descent minimization)

emtol = 1000.0 ; Stop minimization when the maximum force < 1000.0

kJ/mol/nm

emstep = 0.01 ; Energy step size

nsteps = 50000 ; Maximum number of (minimization) steps to perform
```

gmx grompp -f minim_inflategro.mdp -c system_inflated.gro -p topol.top -r system_inflated.gro -o system_inflated_em.tpr

gmx mdrun -deffnm system_inflated_em

reconstruct with triconv before attempting to use such coordinates with InflateGRO:

```
gmx trjconv -s system_inflated_em.tpr -f system_inflated_em.gro -o tmp.gro -pbc mol mv tmp.gro system_inflated_em.gro
```

begin packing the lipids around the protein by applying a scaling factor that is < 1

perl inflategro.pl system_inflated_em.gro 0.95 DPPC 0 system_shrink1.gro 5 area_shrink1.dat

run_inflategro.sh

```
# loop over 26 shrinking iterations
for curr in {1..26}
do
    prev=$((curr - 1))
.
.
.
.    # otherwise use minimized coordinates from previous iteration
    perl inflategro.pl system_shrink${prev}_em.gro 0.95 DPPC 0
system_shrink${curr}.gro 5 area_shrink${curr}.dat
    fi
    # run grompp and mdrun to carry out energy minimization
```

```
gmx grompp -f minim_inflategro.mdp -c system_shrink${curr}.gro -r
system_shrink${curr}.gro -p topol.top -o system_shrink${curr}_em.tpr
-maxwarn 2
    gmx mdrun -deffnm system_shrink${curr}_em

# make molecules whole
    gmx trjconv -s system shrink${curr}_em.tpr -f
system shrink${curr}_em.gro -o tmp.gro -pbc mol
    mv tmp.gro system shrink${curr}_em.gro
```

Solvate with water

gmx solvate -cp system_shrink26_em.gro -cs spc216.gro -o system_solv.gro -p topol.top

waterdeletor.perl

```
# Report what happened
print "$ndel water molecules have been deleted.\n";
my $watnew = $nwater_start - $ndel;
print "$watnew water molecules remain. Update your topology!\n";

# print the cleaned output
my $natoms_clean = scalar(@clean_atoms);
```

perl water_deletor.pl -in system_solv.gro -out system_solv_fix.gro -ref O33 -middle C50 -nwater 3

Adding Ions

gmx grompp -f ions.mdp -c system_solv_fix.gro -p topol.top -o ions.tpr
gmx genion -s ions.tpr -o system_solv_ions.gro -p topol.top -pname NA -nname CL
-neutral

Energy minimization

```
gmx grompp -f minim.mdp -c system_solv_ions.gro -p topol.top -o em.tpr
gmx mdrun -v -deffnm em
```


NVT

This will help the added water molecules find a stable (equilibrium) distribution around the protein.

gmx grompp -f nvt.mdp -c em.gro -r em.gro -p topol.top -n index.ndx -o nvt.tpr

gmx mdrun -deffnm nvt

```
title = NVT equilibration for KALP15-DPPC
define = -DPOSRES ; position restrain the protein
; Run parameters
integrator = md ; leap-frog integrator
nsteps = 50000 ; 2 * 50000 = 100 ps
dt = 0.002 ; 2 fs
```

```
; Temperature coupling is on
           = V-rescale
                                            ; modified Berendsen
tcoupl
thermostat
tc-grps
           = Protein DPPC Water and ions
                                            ; two coupling groups -
more accurate
                                            ; time constant, in ps
tau t
          = 0.1
                           0.1
                                            ; reference temperature,
ref t
          = 323
                           323
one for each group, in K
```


NPT This will adjust the box size, ensuring that the density of water in the periodic box is correct for the simulation temperature and pressure.

```
gmx grompp -f npt.mdp -c nvt.gro -r nvt.gro -t nvt.cpt -p topol.top -n
index.ndx -o npt.tpr

gmx mdrun -deffnm npt
```


MD run

The final step is the actual molecular dynamics simulation. Upon completion of the two equilibration phases, the system is now well-equilibrated at the desired temperature and pressure.

gmx grompp -f md.mdp -c npt.gro -t npt.cpt -p topol.top -n index.ndx -o md_0_1.tpr

gmx mdrun -deffnm md_0_1

1. Deuterium Order Parameters

```
gmx make_ndx -f md_0_1.tpr -o sn1.ndx
...
> a C34
> a C36
> a C37
> a C38
...
> a C50
> del 0-21
> q
```

gmx order -s md_0_1.tpr -f md_0_1.xtc -n sn1.ndx -d z -od deuter_sn1.xvg

repeat for the *sn-2* chain carbons C15, C17-C31 to give "sn2.ndx"

2.Density of the Membrane

```
gmx make_ndx -f md_0_1.tpr -o density_groups.ndx
...
> 13 & a C1 | a C2 | a C3 | a N4 | ... | a O11
> name 22 Headgroups
> 13 & a C12 | a C13 | a O14 | a C15 | a O16 | a C32 | a O33 | a C34 | a
O35
> name 23 Glycerol_Ester
> 13 & ! 22 & ! 23
> name 24 Acyl_Chains
> q
```

gmx density -s md_0_1.tpr -f md_0_1.xtc -n density_groups.ndx -o dens_headgroups.xvg -d Z gmx density -s md_0_1.tpr -f md_0_1.xtc -n density_groups.ndx -o dens_glycerolester.xvg -d Z gmx density -s md_0_1.tpr -f md_0_1.xtc -n density_groups.ndx -o dens_acylchains.xvg -d Z

Generate a centered trajectory in the primary unit cell gmx trjconv -s md_0_1.tpr -f md_0_1.xtc -o md_0_1_noPBC.xtc -pbc mol -center Select 1 ("Protein") as the group to be centered and 0 ("System") for output.

RMSD

gmx rms -s md_0_1.tpr -f md_0_1_noPBC.xtc -o rmsd.xvg -tu ns

Select 4 ("Backbone") as the group to be centered and 4 ("Backbone") for output.

Radius of Gyration

gmx gyrate -s md_0_1.tpr -f md_0_1_noPBC.xtc -o gyrate.xvg

group 1 (Protein) for analysis

$$R_{\rm gyr}^2 = \frac{1}{M} \sum_{i=1}^N m_i (\mathbf{r}_i - \mathbf{R})^2 \quad \text{where} \quad \mathbf{R} = N^{-1} \sum_{i=1}^N \mathbf{r}_i$$

Acyl chain order parameter profiles in phospholipid bilayers:computation from molecular dynamics simulations and comparison with 2H NMR experiments

Louic S. Vermeer et.al

https://www3.mpibpc.mpg.de/groups/de_groot/pdf/Vermeer_EBJ_2007.pdf

$$S_{\rm CD} = \left\langle \frac{3\cos^2\alpha - 1}{2} \right\rangle \tag{2d}$$

$$S_{\rm CD} = S_{\rm coll} \cdot S_{\rm mol} \cdot S_{\rm intra} \tag{2e}$$

$$S_{\text{coll}} = \left\langle \frac{3\cos^2 \phi - 1}{2} \right\rangle \tag{2f}$$

$$S_{\text{mol}} = \left\langle \frac{3\cos^2\beta - 1}{2} \right\rangle \tag{2g}$$

$$S_{intra} = \left\langle \frac{3\cos^2\gamma - 1}{2} \right\rangle \tag{2h}$$

 $\begin{array}{lll} \textbf{Fig. 1} & Visual \\ & representation \\ & observed \\ & order \\ & parameter \\ & S \\ & (Eq. 2a). \\ & Fast \\ & rotations \\ & of \\ & lipids \\ & about \\ & the \\ & vector \\ & normal \\ & to \\ & the \\ & bilayer \\ & permit \\ & to \\ & separate \\ & the \\ & contribution \\ & to \\ & to$

Calculating order parameters from MD simulations

gmx editconf -f myprotein_processed.gro -rotate 0 90 0 -o myprotein_newbox.gro -c -box 6.41840 6.44350 6.59650

