GEOMETRIA		Napon, 10 glugno 2009
COGNOME	NOME	MATRICOLA
\bigcirc Gr. 1 Bader (A-G)	○ Gr. 2 Cioffi	(H-Z)
calcoli effettuati e fornendo	endo le risposte negli spazi p o spiegazioni chiare ed essen SPOSTE SU ALTRI FOGLI.	predisposti con indicazione dei ziali.
	sistema di t vettori di uno spa è un sistema di generatori di V	
(ii) Se S è un sistema di g corretta? \bigcirc Sì \bigcirc No Perch	·	e "la dimensione di V è $t+1$ " è
2. Si consideri il sottospazio (i) Determinare la dimensi		$-1), (1, 1, 3, 0), (2, 0, 0, 1))$ di \mathbb{R}^4 .

- **3.** Si consideri l'applicazione lineare $f: \mathbb{R}^4 \to \mathbb{R}^3$ tale che $f(x_1, x_2, x_3, x_4) = (2x_1 2x_4, x_2 + x_3 + x_4, x_1 + x_2 + x_3)$.
 - (a) Determinare una base per il nucleo e una base per l'immagine di f.

(b) Scrivere la matrice associata a f nei riferimenti:

 $\mathcal{R} = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)) \quad e \quad \mathcal{R}' = ((0,0,1),(1,0,0),(0,1,0)).$

- **4.** Un'applicazione lineare $g: \mathbb{R}^5 \to \mathbb{R}^4$ può essere iniettiva?
- Sì No Perché? (Suggerimento: ricordare il teorema della dimensione)

5. Data una matrice quadrata A di ordine n su \mathbb{R} , cosa è un autovettore di A?

6. Si consideri la matrice $\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$. È diagonalizzabile? \bigcirc Sì \bigcirc No Perché?

È invertibile? \bigcirc Sì \bigcirc No Perché?

- **7.** Sia fissato un riferimento cartesiano monometrico ortogonale del piano della geometria elementare. Determinare:
 - (i) un vettore parallelo e uno ortogonale a v(2, -5);
 - (ii) la retta per i punti A(1,-1) e B(2,-1);

(iii) la circonferenza di centro l'origine e tangente alla retta s: x + y = 2.

- 8. Sia fissato un riferimento cartesiano monometrico ortogonale dello spazio della geometria elementare.
- (i) Le rette r:(x,y,z)=(1,-2,1)+t(1,0,-1) e $r':\begin{cases} x-y+2=0\\ y+2z-1=0 \end{cases}$ sono parallele, incidenti o sghembe?

(ii) Determinare il piano π ortogonale a r e passante per A(1,-2,1) e la distanza di π dal punto P(1,-5,3).