GPU Simulation

GPU Cycle Level Simulation (Part 1)

Learning Objectives

- 1. Describe cycle-level performance modeling for CPUs and GPUs
- 2. Explain queue-based performance modeling
- 3. Describe the basic simulation code structures for CPUs and GPUs
- 4. Get ready for the architecture modeling programming project

Performance Modeling Techniques

- 1. Cycle level simulation
- 2. Event driven simulation
- 3. Analytical Model
- 4. Sampling based techniques
- 5. Data based statistical/ML modeling
- 6. FPGA based emulation

Cycle Level Simulation

- 1. Commonly used in many architecture simulators
- 2. Typically, a global clock exists
- 3. Each cycle, events, such as instruction fetch and decode are modeled
- 4. Multiple clock domains can exist (e.g., memory clock, processor clock, network-on-chip (NoC) clock)

Execution Driven vs Trace Driven Simulation

- 1. Execution driven: Instructions are executed during the simulation
 - Execute-at-fetch vs execute-at-execute
 - Execute-at-fetch: Instruction is executed when fetched
 - Execute-at-execute: Instruction is executed at the execution stage
- 2. Trace driven: Traces are collected; simulation and execution are decoupled
- 3. Benefits of execution driven: No need to store traces
- 4. Trace driven cannot model run-time dependent behaviors (lock-acquire, barriors)
- 5. Trace-driven simulators are simpler and often lighter and easier to develop
 - e.g., Memory traces only for memory simulation or cache

Queue Based Modeling

- 1. Instructions are moving between queues
- 2. Scheduler selects instructions that will be sent to the execution stage among ready instructions; not implemented as a queue structure
- 3. Other queues are FIFO
- 4. When instruction is complete, the dependent instructions are ready
 - The dependency chain needs to be modeled and broadcasting also needs to be modeled
- 5. Cache and memory are modeled to provide memory instruction latency

Queue Based Modeling

Modeling Parameters with Queue Based Modeling

- 1. Number of cycles in each pipeline stage -> depth of queue
- 2. How many instructions can move between queues represent pipeline width (e.g., issue/execution bandwidth)
- 3. Question: How do you know the latency of each instruction?
- 4. Instruciton latency assumptions:
 - Instruction latency is given as a parameter (ADD takes 1 cycle, MUL takes 3 cycles)
 - Latency can be obtained from literature or simulators like CACTI or RTL simulation

5-Stage CPU Processor Modeling

```
int main(int argc, char** argv)
    macsim_c* sim;
    // Instantiate
    sim = new macsim_c();
    // Initialize simulation state
    sim->initialize(argc, argv);
    // Run simulation
    // report("run core (single threads)");
    while (sim->run_a_cycle())
    // Finalize simulation state
    sim->finalize();
    return 0;
}
macsim::run_a_cycle(...)
    cycle++;
    cpu->run_a_cycle();
    mem->run_a_cycle();
    noc->run_a_cycle();
}
```

```
cpu->run_a_cycle(...)
{
    wb->run_a_cycle();
    exec->run_a_cycle();
    sch->run_a_cycle();
    de->run_a_cycle();
    fe->run_a_cycle();
}
```

Example

- 1. Each modeled instruction has an op data structure
- 2. Op data structure tracks instruction progress and cycle
- 3. op->done_cycle = op->schedule_cycle + latency
- 4. Question: What if latency is not fixed?
 - e.g., Cache miss
 - After cache simulation (cache hit/miss hierarchy), we can know the memory instruction latency

Scheduler

- 1. Scheduler checks ready instructions
- 2. Scheduler handles resource constraints
- 3. e.g., # of FP instructions, # of load and store queues, execution units, ports in cache, etc.
- 4. Ensuring resources are available for multiple cycles

GPU Cycle-level Modeling

- 1. Similar to CPU modeling
- 2. The simulation modeling unit is a warp
 - Warp instruction fetched/decoded/scheduled/executed
- 3. Scheduler chooses instructions for the head of each warp
- 4. Differences from CPUs:
 - In-order scheduling within a warp
 - Out-of-order across warps
- 5. Major differences between CPU vs GPU
 - Handling divergent warps
 - Warp, thread block, and kernel concepts
 - Scheduler

End of Simulation

- 1. Entire thread block scheduled to one SM
- 2. Tracking complete threads
- 3. All threads within a CUDA block, the corresponding CUDA block completes
- 4. When all thread blocks are complete, the kernel ends
- 5. When all kernel ends, the application ends

Summary

- 1. CPU and GPU cycle-level simulation techniques review
- 2. Review how to model latency and bandwidth using queues

GPU Cycle Level Simluation (Part 2)

Learning Objectives

- 1. Describe advanced GPU cycle-level modeling techniques such as divergent warps, coalesced memory
- 2. Introduce several open source GPGPU simulators

Modeling Unit

- 1. Instructions are modeled at a warp level
- 2. Accessing I-cache, PC registers
- 3. Reflecting microarchitecture access behavior
- 4. Mask bits are needed to keep track of resource constraints
- 5. Question: How to model divergent warps and memory coalescing?

Recap: Divergent Branches

- 1. Within a warp, instructions take different paths
- 2. Simulator also needs to model the SIMT stack
- 3. Execution driven simulation:
 - Faithfully model SIMT stack
- 4. Trace driven simulation
 - Follow how the traces are collected
 - It's challenging to simulate different divergent branch handling mechanisms than the trace collection's machine
 - The trace should contain all the paths already
 - The trace needs to have the contents of mask bits

Memory Coalescing Model

- 1. Modeling memory coalescing is critical
- 2. Memory requests need to be merged
- 3. Typically, this follows cache line sizes
- 4. Assume a 64B cache line size

Modeling Memory Coalescing with Trace

- 1. The trace should contain all the memory address from each warp
- 2. The trace generator can insert all memory instructions individually
 - e.g., va1, va2, va3, etc.
- 3. Or trace generator already coalesces memory requests -> can reduce the trace size
 - e.g., 0x0, 0x4, 0x8, 0xC, 0x10 etc. vs 0x0 and size 28

Cache Hierarchy Modeling

1. After addresses are coalesced, memory requests access TLB, L1, L2 caches depending on GPU microarchitecture

Sectored Cache Modeling

- 1. Modern GPUs adopt sectored cache
- 2. Sectored cache allows bringing a sector of the cache block instead of the entire cache block
- 3. Benefit: Reduces bandwidth
- 4. Drawback: Reduces spatial locality
- 5. Share the tag

GPU Simulators

- 1. Several open-source GPU simulators are available
- 2. GPU simulators for different ISAs

	Туре		Open Source
NVIDIA PTX/SASS	Execution driven	GPGPU only	http://www.gpgpu- sim.org/
NVIDIA PTX/SASS	Trace driven	GPGPU and accelerator	https://accel- sim.github.io/
AMD GPU	Execution driven	Multi GPUS are supported	[ISCA2019]
NVIDIA/Intel GPU	Trace driven	Heterogeneous computing	https://github.com/gt hparch/macsim
AMD GPU or NVIDIA PTX	Execution driven	Heterogeneous computing	https://cpu-gpu- sim.ece.wisc.edu/
4	NVIDIA PTX/SASS AMD GPU NVIDIA/Intel GPU AMD GPU or	AMD GPU Execution driven Trace driven Trace driven Trace driven Execution driven Execution driven	AMD GPU Execution driven GPGPU and accelerator NVIDIA/Intel GPU Trace driven Heterogeneous computing AMD GPU or Execution driven Heterogeneous

GPU Simulators

Summary

- 1. Review of GPU and GPU cycle-level simulation techniques
- 2. To support divergent warps, it is necessary to either model the SIMT stack

Summary

- 1. Recap of techniques for accelerating simulation speed
- 2. Emphasis on sampling and workload reduction or include mask bits inside the trace
- 3. Modeling memory coalescing is also the most crucial in the simulation

Analytical Models of GPUs

Learning Objectives

- 1. Describe analytical models of GPUs
- 2. Apply analytical models to determine the first order of GPU design space explorations
- 3. Explain CPI and interval-based analysis
- 4. Describe the roofline model

Analytical Models

- 1. Analytical models do not require execution of the entire program
- 2. Analytical models are typically simple and capture the first order of performance modeling
- 3. Analytical models often provide insights to understand performance behavior

First Order of GPU Architecture Design (1)

- 1. Let's consider accelerating a vector dot product with a goal of 1T vector dot products per second (sum +=x[i]*y[i])
- 2. For compute units, we need to achieve 2T FLOPS operations (multiply and add) or 1T FMA/sec
- 3. If GPU operates at 1GHz, 1000 FMA units are needed; at 2GHz, 500 FMA units are needed
- 4. Memory units need to supply 2 memory bytes with a 2TB/sec memory bandwidth

First Order of GPU Architecture Design (2)

- 1. 500 FMA units are approximately equal to 16 warps (with 32 threads)
- 2. If each SM can execute 1 warp per cycle at 2GHz and there are 16 SMs, it can compute 1T vector dot products
- 3. Alternatively, 8 SMs with 2 warps per cycle can also achieve this

First Order of GPU Architecture Design (3)

- 1. Multithreading: How about the total number of active warps in each SM?
- 2. W_width: The number of threads (warps) that can run in one cycle
 - (W_width * W_depth) number of warps are resident in one SM
- 3. W_depth: The number of threads (warps) that can be scheduled during one stall cycle

W_depth and W_width Hardware Constraints

- 1. W_width is determined by the number of ALU units (along with the width of the scheduler)
- 2. W_depth is determined by the number of registers (along with the number of PC registers)
- 3. W_depth 20 means 20x32 (W_width) x (# register per thread) number of registers are needed
- 4. W_depth 20 also means at least $20 \times W_depth$ number of PC registers are needed

Finding W_depth

- 1. Strong correlation factor of W depth is memory latency
- 2. In the dot product example, assume memory latency is 200 cycles
- 3. Case 1) 1 comp, 1 memory (dot product):
 - To hide 200 cycles, 200/(1 comp + 1 memory) = 100 warps are needed
- 4. Case 2) If we have 1 memory instruction per 4 compute instructions
 - To hide 200 cycles, 200/(1+4) = 40 warps are needed

Decision Factors for the Number of SMs

- 1. Previous example: 500 FMA units
- 2. 1 warp x 16 SMs vs 2 warps x 8 SMs
- 3. Large and fewer SMs vs small and many SMs
- 4. Cache and registers also need to be split
- 5. Large cache with fewer SMs vs small cache with many SMs
- 6. Large cache increases cache access time, but large cache can increase cache hits among multiple CUDA blocks
- 7. Sub-core can also be a design decision factor
 - Many of these decisions require the analysis of trade-off between size vs time

Sub-core

Resource management

Sub-core

Roofline Model

- 1. A visual performance model to determine whether an application (or a processor) is limited by the compute bandwidth or memory bandwidth)
- 2. Vector sum example: 2 bytes per 1 FLOPs
 - Arithmetic intensity = 0.5
- 3. Another example: sum += x[i] * x[i] * y[i] * y[i]
 - Arithmetic intensity = 2

X-axis: arithmetic intensity (FLOPS/BYTES)

Roofline

CPU (Cycle Per Instruction) Computation

- 1. CPI = CPI(steady state) + CPI(event1) + CPI(event2) + ...
- $2.\,$ CPI(steady state): Sustainable performance without any miss events
- 3. Example: 5 stage in-order processor $\,$
 - Assumptions:
 - CPI(steady state) = 1
 - CPI(br misprediction) = 3
 - CPI(cache miss) = 5

- 2% instructions have branch misprediction
- 5% instructions have cache misses
- Average CPI = 1 + 0.02 * 3 + 0.05 * 5 = 1.31
 - Easy to compute the average performance
 - All penalties assumed to be serialized

CPI Computation for Multi-threading

- 1. CPI(ideal multithreading) = CPI(single thread) / W_depth
- 2. W_depth: The number of warps that can be scheduled during the stall cycles
- 3. CPU(multithreading) = CPI(ideal multithreading) + CPI(resource contention)
- 4. Resource contention:
 - MSHR: Number of memory misses
 - Busy states of execution units
 - DRAM bandwidth
- 5. GPU is modeled for multi-threading

Interval-based Modeling: Extension of CPI Modeling

- 1. Simplified model
 - Interval: One steady state and one long latency event
- 2. First-order Modeling: Model the effect of pipeline drain and refill time
- 3. Depending on the events (branch misprediction vs cache miss): pipeline drain shape is different

Applying Interval Analysis on GPUs

- 1. Naive approach: Consider GPU as just a multithreading processor
- 2. Major performance differences between GPU and multi-threading processor
 - Branch divergence: Not all warps are active; some part of branch code is serialized
 - Memory divergence: Memory latency can be significantly different depending on whether memory is coalesced or uncoalesced
- 3. Newer models improve the performance models by modeling sub-core, sectored cache, and other resource contentions more accurately

Summary

- 1. CPU and GPU cycle level simulation techniques are reviewed
- 2. Analytical model provides the first order of processor design parameters or application performance analysis
- 3. CPI computation was reviewed
- 4. Roofline was introduced
- 5. Compute bounded or memory bandwidth bounded is the most critical factor

Accelerating GPU Simulation

Learning Objectives

- 1. Describe techniques to accelerate simulation speed
- 2. Identify challenges in cycle-level simulation
- 3. Explore techniques for accelerating simulation
- 4. Describe sampling based techniques

Challenges of Cycle Level Simulation

1. Cycle level simulation takes too long

- 2. If a simulation speed is 10KIPS (10 instructions per sec), simulating 1B instructions (1 sec in a real machine) takes \sim 28 hours
- 3. ML workload takes hours
 - 10 hours of ML workloads -> 100 years of simulation

Accelerating Simulations

- 1. Accelerating simulation itself
 - Parallelizing the simulator
 - Event drive simulation
 - Simplifying the model
 - Sampling
 - Statistical modeling
 - ML based modeling
- 2. Reducing the workloads
 - Micro benchmarks
 - Reducing the workload size
 - Create small representative workloads

Parallelizing Simulator

- 1. Each p-thread simulates a core. Cores are typically run in parallel anyway
- 2. Memory/NoC (network on chip) needs to be communicated
- 3. Bottlenecks on the memory

Event Drive Simulation

- 1. Instead of operating by cycle, simulator is operated with events
- 2. Speeding up long latency operation simulations is possible
- 3. New event is inserted into the event queue

Simplifying Models

- 1. Depending on which one to model, we could simplify the modeling
- 2. Non-critical components are modeled based on the average throughputs and average latency
- 3. Detailed modeling is needed for modeling any resource contention
- 4. Option 1: Simplify the pipeline
 - Instead of modeling instruction fetch/decode/execution, we could assume IPC = issue width
 - Model only caches and memory
 - z-sim CPU simulator simplifies the core pipeline
- 5. Option 2: Simplify the memory model
 - Assume memory system has a fixed latency

Sampling Techniques

- 1. Random sampling: Simple; randomly choose where to simulate
 - Execution drive: Fast forward the part that won't be simulated or use a checkpoint based method
 - Trace driven: Generate traces only for simulating sessions
- 2. Handling state information (cache, branch predictors)
 - Warm up time is needed
 - Or, running time is sufficiently long enough to overcome
- 3. Program phase based sampling (e.g., Simpoint)

GPU Sampling Techniques

1. Program phase based sampling is non-trivial

- Execution length for one single thread is too short
- 2. Solutions
 - CUDA block level sampling: Simulate 100 CUDA blocks instead of 1000s of CUDA blocks
 - Kernel level sampling: Simulate 1-2 kernels instead of 10s of kernels
 - Warp level sampling: Reduce the number of warps to simulate

Reducing Workloads

- 1. Reducing iteration counts
 - Machine learning workloads run 1000 iterations. Each iteration shows very similar characteristics; instead of 1000 iterations, iterate only once
- 2. Reducing input sizes
 - Graph algorithm traverses for 1B nodes -> graph algorithm traverses for 1M nodes
- 3. Identify dominant kernels
 - A program has 100s of functions
 - One or two functions dominate 90% of application time; change the application to run only those two functions

Data-driven Modeling

- 1. Collect important data on a program execution
 - Number of instructions
 - Number of loads
 - Number of divergent branches
 - Hardware performance counters
- 2. Use statistical or ML analysis to build a model
 - Cycle count = C1 x instruction ^ exp1 + C2 x FP instructions ^ exp2 + C3 x memory instructions ^ exp3
 - Find the coefficients with machine learning model

Summary

- 1. Recap of techniques for accelerating simulation speed
- 2. Emphasis on sampling and workload reduction