itolo nota 25/04/2012

SUL NUCLEO E L'IMMAGINE DI UN'APPLICAZIONE LINEARE.

Le supe di quite note à d'provere il segmente terrence d'Grassmann:

TEOREMA: Lie A:X->Y linear, con dim X < 00. Allore

dim X = dim Ker A + dim A(X)

Ordervetore: il teoreme, vero in ogni coso, he
un significato divers mi tre così:

- 1) dim A(X) = 0
- 2) dim Ken A = 0
- 3) dim KuA > 0 e dim A(X) > 0

DIM.

CASO 1) dim ACX) = 0 (X) = {0}

I tel ceso A(x)=0 tet X a dangue Ken A=X de cui seque immediatements le tess.

CASO 2) dim Ku A = 0 (A i niethve

die en-en une borne per X, che eriste peter X et di dinuncire fonte. Allen, trex \(\frac{1}{2}\xi_1...\xi_n\) tote the $\chi = \sum_{i=1}^{n} x_i'e_i'$ e de co $A(x) = A(\sum_{i=1}^{n} x_i'e_i') = \sum_{i=1}^{n} x_i'A(e_i')$

e dunque l'immegine l'queluque jount x e X è combnetime lemen dyli n vettoi A(e,). A (en), ossie

e dingue dim $A(X) \leq M$. Per provene l'uguegliente e di consequente la Tes, beste verfzere l'indipendeure di $A(l_1)$,..., $A(l_n)$, me prime di forlo osserwano especitamente che il semple regionamente pre cudente assicure, quand'auche Y forse di dimensore infritte, cost non è per A(X) = Jm A. Applicare ad uno spano une applicatione livere non può animentorire la dimensore.

Fer promin l'indipendente, consolerame une combine 2m mille d' $A(e_i)$, $A(e_i)$, . , $A(e_n)$ $\sum \alpha_i A(e_i) = 0$

Per la Romaite d' A, ne segue A(5 xie') = 0 e priché din Ku A = 0 (Ku A = 10) re reque I xie 20 e doll indjendeme d'ei signe $\alpha_1 = \alpha_2 = \dots = \alpha_k = 0$ Dungen A(es) -. A(en) i un sortene d' generator molfren denti di A(X), e cisè une one base, en regue dom A(X)=n, de ani la les. dim Kn A >0 2 dm A(X) >0. CASO 3) In tel caso sie W. -- Wk une bose for Ken A, Dryne dom Ku A=k >0. Le pri Xk+1 ... Xn un completements d' wy-wk and une lose d' X. Per ogni ne X emtrana «,-«k, pk+1-pn tol du $x = \sum_{i} x_i w_i + \sum_{k \neq i} \beta_i x_i$ de ai signe $A(n) = A(\xi \times w_i) + A(\xi \times y_i) = \sum_{k+1}^{n} B(x_i)$ perdre Wicker of a durgue I xiwicker of a it form toling si annulle. Ve conseque come prime che $A(X) = \langle A(x_{k+1}), A(x_{k+2}), \dots, A(x_n) \rangle$

Proveno com prime che A(xxx,)..., A(Xx) sons indipendenti. Le 25 he $\sum_{k+1} \sum_{j} A(x_{j}) = 0$ ne segne ju liverità de $A(\Sigma_{k+1})=0$ e dugne E \(\text{x}' \) \(\text{Ker A} \) e, enends \(\text{w}_1 \) \(\text{w}_k \) \(\text{une} \) bese ju Ku A, enstrum & -. & tol ch E bjøj = E & Wy Ktl jøj = [2, Poiche W. Wk, Xk+1, ..., Xn soms une ben di X, e soms gund indipendenti, ne segne du $d_1 = d_1 = \dots = d_k = \lambda_{k+2} = \dots = \lambda_n = 0$ de ai l'indipendence d' $A(z_{k+1})$, ..., $A(x_n)$. Ne segue allre de dim A(X) = n-k e poiché d'un ker A = km segue suite le test. Anche se è stato osserveto nel 4000 della prone

preadente, it ritreme utile enuncière separatimente il resultat grè traveta, pe la ana importante tear ca.

TEOREMA: Sie A: X-Y, un Almere

e dim X=n<+v. Allre dim A(X) < n.

Atolopopoito o consider l'applicanone (x, B) -> x cost + Boint

defute in R² a solni in C°(R). Anche se C°(R) i di dominima inforte, un i con per A(R²) = < cost, sint > , che i generate de cost e sint ed he duper dominim 2.

Insortunte l'immagine di une sperie di dumenne fonte non pui avere dimensure mappine di suelle del donno, e poi essure strettamente minne se este se din van A >0, e cioè se A non è invetthe.

Le applicami luci metter (o "a fartion" bliether)
sono quelle su conserveuro la dimensione del dommo
nell'immagne: infatti, fu un'applicame in ettive, il
mucho 2 riduce al solo 0 ed se quind'dimensione 0, e
bel terruro d'Gressmann, la dimensione dell'immagne comode
con quelle del domnis.