TRIGONOMETRY - 1

Part I Model Problems

$$\sin(B) = \frac{opposite}{hypotenuse}$$

$$\cos(B) = \frac{adjacent}{hypotenuse}$$

$$tan(B) = \frac{opposite}{adjacent}$$

Model Problem 1) Identify The side adjacent, opposite to angle x and the hypotenuse

Adjacent to x: A

Opposite X: B

Hypotenuse: C

Model Problem 2) What is sin(k), cos(k) and tan(k)?

Use SOHCAHTOA

$$\sin(k) = \frac{opposite}{hypotenuse} = \frac{4}{5} = .8$$

$$\cos(k) = \frac{adjacent}{hypotenuse} = \frac{3}{5} = .6$$

$$\tan(k) = \frac{opposite}{adjacent} = \frac{4}{3} = 1.33$$

II. Identifying Opposite, Adjacent and Hypotenuse

Identify

- 1) the hypotenuse
- 2) the side opposite of $\angle Z$:
- 3) the side adjacent to $\angle Z$:_____

Identify

- 4) the hypotenuse
- 5) the side opposite of $\angle H$:_____
- 6) the side adjacent to ∠H:_____

Identify

- 7) the hypotenuse
- 8) the side opposite of $\angle Y$:
- 9) the side adjacent to $\angle Y$:_____

1) Which ratio represents cos A in the accompanying diagram of $\triangle ABC$?

2) Which ratio represents sin P in the accompanying triangle?

$$(1)\frac{6}{10}$$
 (3)

(1) $\frac{6}{10}$ (3) $\frac{6}{8}$ (2) $\frac{8}{10}$ (4) $\frac{10}{6}$

3) In the accompanying diagram of right triangle ABC, AB = 8, BC = 15, AC = 17, and m $\angle ABC = 90$.

What is $\tan \angle C$?

(1)
$$\frac{8}{15}$$

 $(3)\frac{8}{17}$

$$(2) \frac{17}{15}$$

(4) $\frac{15}{17}$

4) What is sin(x)?

5) What is sin(L), cos(L) and tan(L)?

6) What is $\sin(a)$, $\cos(a)$ and $\tan(a)$?

7) In triangle XYZ, $\angle y = 90^{\circ} \text{ XY} = 7$, YZ = 24, and XZ = 25, which ratio represents

cosine of $\angle x$?

$$(1)\frac{7}{24}$$
 $(3)\frac{7}{25}$

(1)
$$\frac{7}{24}$$
 (3) $\frac{7}{25}$
(2) $\frac{24}{25}$ (4) $\frac{24}{7}$

8) In triangle MCT, the measure of $\angle T = 90^{\circ}$, MC = 85 cm, CT = 84 cm, and TM = 13cm. Which ratio represents the sine of $\angle C$?

Error Analysis

A teacher asks the class if they can express the $\sin(A)$ in Triangle 1 and the $\sin(b)$ in triangle 2.

Jose says $sin(A) = \frac{4}{5}$ and sin(b) does not exist.

Jenny says
$$sin(A) = \frac{4}{5}$$
 and $sin(B) = \frac{2}{4.6}$

Who is correct? (explain your reasoning)

Triangle 2

IV. Answer Key

Identifying Opposite, Adjacent and Hypotenuse

1) the hypotenuse YZ

2) the side opposite of $\angle Z$: XY

3) the side adjacent to $\angle Z$: XZ

4) the hypotenuse: HU

5) the side opposite of $\angle H$: IU

6) the side adjacent to $\angle H$: HI

Writing Sine, Cosine, Tangent Ratios

1) (1)
$$\frac{5}{13}$$

2)
$$(1)\frac{6}{10}$$

2) (1)
$$\frac{6}{10}$$
 3) tan(c) (1) $\frac{8}{15}$

4)
$$\sin(x) \frac{8}{15}$$

5)
$$\sin(L) = \frac{6}{10}$$

$$\cos(L) = \frac{8}{10}$$

$$\tan(L) = \frac{6}{8}$$

6)
$$\sin(a) = \frac{12}{13}$$

$$\cos(a) = \frac{9}{13}$$

$$\tan(a) = \frac{12}{9}$$

7)
$$(3)\frac{7}{25}$$

8)
$$(3)\frac{13}{84}$$

Error Analysis

Jen is correct. Since triangle 2 is not aright triangle, you can not apply sine, cosine, tangent to the triangle