Claim Count Forecasting Commercial Property

Mrudula Devarakonda

Agenda

- Executive Summary 3 Minutes
- Insurance 101 2 Minutes
- Data Exploration 4 Minutes
- Modeling Approach & Results 5 Minutes
 - Hail Model
 - Weather Model (Non-CAT & Non-Hail)
 - xWeather Model (Non-CAT & Non-Hail)
- Next Steps 1 Minutes

Executive Summary

Business Challenge: Forecast 12 months of claim frequency for commercial property risks

Intro

- Company in question is a major market share player in the USA
- Commercial property focused analysis
- Forecasting claim volumes assists in the reserving process
- Claims are difficult to predict due to behavior and non-behavior forces
- Property reserves are critical to managing the business

Data Analysis

- 10 years of claim data
- For frequency modeling, weather vs non-weather is the most important bifurcation of the data
- Non-Hail catastrophic (CAT) activity is all noise
- "All other" activity is all noise
- Seasonality is important
- Underwriting appetite has remained consistent

Modeling Approach & Results

- Break data into 3 independent datasets and build 3 separate models
- Hail Model: ESM Additive
- Non-CAT Weather: Winters Multiplicative
- Non-CAT xWeather: Winters Multiplicative
- Combine the results of the 3 models for guidance

Next Steps

- Work with loss analytics on seasonal pattern of non-weather water claims
- Peer review models with actuarial and R&D
- Recommend that Non-Hail CAT activity use industry standard models like RMS or AIR for hurricane, earthquake, terrorism & wildfire
- Recommend a simple 5 year average claim volume for "All Other" activity

Insurance 101

Slides 5-7

Why Are Reserves Important?

Property and Casualty Insurance Companies Differ Most Traditional Companies

Insurance

Product

Cost of Goods Sold

<u>UNKNOWN!!</u>

Distribution Costs

KNOWN

Administrative Exp.

KNOWN

Financial Costs

KNOWN

Ducati

KNOWN

KNOWN

KNOWN

KNOWN

Understanding Commercial Property

Typical Commercial Property Coverage

Understanding Commercial Property Losses

The Event That Causes The Loss Is Called A Peril

Illustration Of Peril Types (There Are More)

Losses Are Caused By Perils

Data Exploration

Slides 9-13

Making Sense out of Transactional Data

Transactional Data Loss zip Loss state abbrv. code Date stamp Policv CAT of claim number number Claim Building Industry number Damage ID Code Transform & Accumulate Weather **Business** Policv Weather Water ID unit number ID Coverage Program Product ID Code Policy Loss Loss Effective Date **Amount** Type Loss **Details**

Accumulated Time Series Data

Data Exploration Part 1

Analyzing Key Differentiators In the Data

Data Exploration Part 2

Uncovering The Key Drivers

Exploring The Time Series and Correlation

What Can Be Modeled?

What Cannot Be Modeled?

Catastrophic Activity Like Hurricanes or Vehicles Striking A Building Are Too Random

Catastrophic Activity Excluding Hail

All Other Loss Activity

Modeling Approach & Results

Slides 15-21

Modeling Approach

Approach = Create 3 Models

Model 1: Hail Model

Exploring The Signals

Signal Components

Trend

Seasonality

Cycle

Irregular

Model 1: Hail Model Selection

ARIMA Was Not Used Because 1 Seasonal Difference Left The Data Set = White Noise

Model 2: Weather Model xCAT & xHail

Exploring The Signals

Signal Components

Trend

Seasonality

Cycle

Irregular

Model 2: Weather Model Selection

Model 3: xWeather Model xAll Other

Exploring The Signals

Signal Components

Trend

Seasonality

Cycle

Irregular

Model 3: xWeather Model

Next Steps

Explore seasonality within the Non Weather data set

Peer review models with actuarial and R&D

Recommend that Non-Hail CAT activity use industry standard models like RMS or AIR for hurricane, earthquake, terrorism & wildfire

Recommend a simple 5 year average claim volume for "All Other" activity

Appendix

Slides 24-33

Model 1: Hail Model Alternative Modeling Slides 24-27

Model 2: Weather Model Alternative Modeling Slides 28-30

Model 3: xWeather Model Alternative Modeling Slides 31-33

Model 1: Hail Model - ESM Additive

Model 1: Hail Model - ESM Multiplicative

Model 1: Hail Model - ESM Multiplicative

Model and Forecasts for Total

2012 2013 2014 2015 2016 2017

Predicted
95% Confidence Band

Date of Claim Mnthly

1500

1000

-500

o Actual -

Model 1: Hail Model - Data Set After 1 Seasonal Differencing

Model 2: Weather Model - Winters Multiplicative

Model 2: Weather Model - Winters Additive

Model 2: Weather Model - Winters Additive

Model 3: xWeather Model - Winters Multiplicative

Model 3: xWeather Model - Winters Additive

Model 3: xWeather Model - Winters Additive

References

George Fernandez, Marc Huber, Jay Laramore, Danny Modlin, and Chip Wells, ISBN 978-1-64295-144-8, Time Series Modeling Essentials Course Notes