Домашнее задание №4

Планаризация графа

Назирджанов Некруз Р3110 варирант 40

	e_1	e_2	e ₃	e ₄	e ₅	e ₆	e ₇	e ₈	e ₉	e ₁₀	e ₁₁	e ₁₂	r
e_1	0	1		1	1		1		1		1	1	7
e_2	1	0	1						1	1	1		5
e ₃		1	0	1			1		1			1	5
e_4	1		1	0	1	1			1	1	1	1	8
e ₅	1			1	0	1	1	1				1	6
e_6				1	1	0	1		1		1	1	6
e ₇	1		1		1	1	0	1			1	1	7
e ₈					1		1	0					2
e ₉	1	1	1	1		1			0	1			6
e ₁₀		1		1					1	0			3
e ₁₁	1	1		1		1	1				0		5
e ₁₂	1		1	1	1	1	1					0	6

1. Поиск Гамильтонова цикла

$$S = \{e_1\}$$

$$S = \{e_1, e_2\}$$

$$S = \{e_1, e_2, e_3\}$$

$$S = \{e_1, e_2, e_3, e_4\}$$

$$S = \{e_1, e_2, e_3, e_4, e_{10}\}$$

$$S = \{e_1, e_2, e_3, e_4, e_{10}, e_9\}$$

$$S = \{e_1, e_2, e_3, e_4, e_{10}, e_9, e_6\}$$

$$S = \{e_1, e_2, e_3, e_4, e_{10}, e_9, e_6, e_{11}\}$$

$$S = \{e_1, e_2, e_3, e_4, e_{10}, e_9, e_6, e_{11}, e_7\}$$

$$S = \{e_1, e_2, e_3, e_4, e_{10}, e_9, e_6, e_{11}, e_7, e_8\}$$

$$S = \{e_1, e_2, e_3, e_4, e_{10}, e_9, e_6, e_{11}, e_7, e_8, e_5\}$$

$$S = \{e_1, e_2, e_3, e_4, e_{10}, e_9, e_6, e_{11}, e_7, e_8, e_5, e_{12}\}$$

Ребро е₁₂е₁ существует, Гамильтонов цикл найден.

2. Построение графа пересечений G'

До перенумерации	e_1	e_2	e ₃	e ₄	e ₁₀	e 9	e ₆	e ₁₁	e ₇	e ₈	e ₅	e ₁₂
После перенумерации	e_1	e_2	e_3	e_4	e ₅	e_6	e ₇	e_8	e 9	e ₁₀	e ₁₁	e ₁₂

Матрица соединений графа с перенумерованными вершинами:

	e_1	e_2	e_3	e_4	e ₅	e_6	e ₇	e ₈	e 9	e ₁₀	e ₁₁	e ₁₂
e_1	0	X		1		1		1	1		1	X
e_2	X	0	X		1	1		1				
e_3		X	0	X		1			1			1
e ₄	1		X	0	X	1	1	1			1	1
e ₅		1		X	0	X						
e_6	1	1	1	1	X	0	X					
e ₇				1		X	0	X	1		1	1
e ₈	1	1		1			X	0	X			
e 9	1		1				1	X	0	X	1	1
e_{10}									X	0	X	
e ₁₁	1			1			1		1	X	0	X
e ₁₂	X		1	1			1		1		X	0

Матрица графа пересечений ребер:

	0.	0-	0.	0-	0-	0.0	0.	0.	0.	0.0	0-	0.	0.	0.	0.
	e ₁₋	e ₂₋	e ₁₋	e ₂ -	e ₂₋	e ₃₋	e ₁₋	e ₁₋	e ₁₋	e ₃₋	e ₃₋	e ₄₋	e ₄₋	e ₄₋	e ₄₋
	4	8	6	6	5	12	8	9	11	9	6	12	11	8	7
e_{1-4}	1	1		1	1	1				1	1				
e ₂₋₈	1	1	1			1				1		1	1		
e ₁₋₆		1	1			1				1		1	1	1	1
e ₂₋₆	1			1		1				1		1	1	1	1
e ₂₋₅	1				1	1				1	1	1	1	1	1
e ₃₋	1	1	1	1	1	1	1	1	1						
12															
e ₁₋₈						1	1			1		1	1		
e ₁₋₉						1		1				1	1		
e ₁₋						1			1			1			
11															
e ₃₋₉	1	1	1	1	1		1			1		1	1		
e ₃₋₆	1				1						1	1	1	1	1
e ₄₋		1	1	1	1		1	1	1	1	1	1			
12															
e ₄₋		1	1	1	1		1	1		1	1		1		
11															
e ₄₋₈			1	1	1						1			1	
e ₄₋₇			1	1	1						1				1

3. Построение семейства Ψ_G

 $M_{1\,3\,7\,9}$ =111111101111111 $M_{1\,3\,8}$ =111111010111111 $M_{1\,3\,9}$ =111111001111111 $M_{1\,7}$ =110111100111100

 $\psi_3 = \{e_1 4, e_1 11, e_4 11, e_4 8, e_4 7\}$

 $\psi_4 = \{e_1 4, e_4 12, e_4 11, e_4 8, e_4 7\}$

 $\psi_5 = \{e_2 \, 8, e_2 \, 6, e_2 \, 5, e_1 \, 8, e_1 \, 9, e_1 \, 11\}$

 $\psi_6 = \{e_2 \, 8, e_2 \, 6, e_1 \, 8, e_1 \, 9, e_1 \, 11, e_3 \, 6\}$

 M_{2} 4 7 8 11=111111111111111 M_{2} 4 7 9=1111011011011111 M_{2} 4 7 11=1111111100111111 M_{2} 4 8=111101010101111

M2 4 9=111101001101111
M2 5=111011000111111
M2 7 8=111001110101100
M2 7 8 9 11=111011111111111
M2 7 8 9 14 15=11111111111111

 ψ 7={e₂ 8,e₁ 8,e₁ 9,e₁ 11,e₄ 8,e₄ 7}

M2 7 8 9 15=111111111111111111
M2 7 8 14=11111111111111
M2 7 9=111001101101100
M2 7 14=1111111100111110
M2 8=11100101010101
M2 11=111011000111111
M2 15=1111111000111111
M3 4 5 7 8=111111110111111

 $\begin{array}{l} M_{2\,7\,8\,11}{=}\,1110111101111111\\ M_{2\,7\,8\,15}{=}\,111111111111111\\ M_{2\,7\,11}{=}\,111011100111111\\ M_{2\,7\,15}{=}\,1111111001111101\\ M_{2\,9}{=}\,111001001101100\\ M_{2\,14}{=}\,111111000111110\\ M_{3\,4}{=}\,11111101000101111\\ M_{3\,4\,5\,7}{=}\,11111111111111\\ M_{3\,4\,5\,7\,8\,9}{=}\,11111111111111111\\ \end{array}$

 ψ 8={e₁ 6,e₂ 6,e₂ 5,e₁ 8,e₁ 9,e₁ 11}

M3 4 5 7 9=111111101111111 M3 4 7 8=111101110101111 M3 4 7 8 9 11=111111111111111 M3 4 7=111101100101111 M3 4 7 8 9=111101111101111

 $\psi_9 = \{e_1 6, e_2 6, e_1 8, e_1 9, e_1 11, e_3 6\}$

M3 4 7 9=1111011011011111
M3 4 8=111101010101111
M3 4 11=1111111000111111
M3 7=0110011001011111
M3 9=011001001101111
M4 5=100111000111111
M4 8=100101010101111
M4 11=100111000111111
M5 8=100011010111111
M6 10=111111111101100

```
\psi_{10}=\{e_3\,12,e_3\,9,e_3\,6\}
```

 ψ 13={e₁ 9,e₁ 11,e₃ 9,e₃ 6}

M8 9 10 15=1111111111111111	M8 9 11=100011011011111
M8 9 14=0011110110111110	M8 9 15=001111011011101
M _{8 10} =1111111110101100	M8 11=100011010011111
M _{8 14} =001111010011110	M8 15=001111010011101
M _{9 10} =1111111101101100	M9 11=100011001011111
M9 13=011111111111100	M9 14=001111001011010
M ₉ 15=001111001011001	

Семейство максимальных внутрение устойчивых множеств:

 $\psi_{1} = \{e_{1} 4, e_{1} 6, e_{1} 8, e_{1} 9, e_{1} 11\} \ \psi_{2} = \{e_{1} 4, e_{1} 8, e_{1} 9, e_{1} 11, e_{4} 8, e_{4} 7\}$ $\psi_{3} = \{e_{1} 4, e_{1} 11, e_{4} 11, e_{4} 8, e_{4} 7\} \ \psi_{4} = \{e_{1} 4, e_{4} 12, e_{4} 11, e_{4} 8, e_{4} 7\}$ $\psi_{5} = \{e_{2} 8, e_{2} 6, e_{2} 5, e_{1} 8, e_{1} 9, e_{1} 11\} \ \psi_{6} = \{e_{2} 8, e_{2} 6, e_{1} 8, e_{1} 9, e_{1} 11, e_{3} 6\}$

$$\psi_7 = \{e_2 \, 8, e_1 \, 8, e_1 \, 9, e_1 \, 11, e_4 \, 8, e_4 \, 7\} \ \psi_8 = \{e_1 \, 6, e_2 \, 6, e_2 \, 5, e_1 \, 8, e_1 \, 9, e_1 \, 11\}$$

$$\psi_9 = \{e_1 \, 6, e_2 \, 6, e_1 \, 8, e_1 \, 9, e_1 \, 11, e_3 \, 6\} \ \psi_{10} = \{e_3 \, 12, e_3 \, 9, e_3 \, 6\}$$

$$\psi_{11} = \{e_3 \, 12, e_3 \, 9, e_4 \, 8, e_4 \, 7\} \ \psi_{12} = \{e_3 \, 12, e_4 \, 12, e_4 \, 11, e_4 \, 8, e_4 \, 7\}$$

$$\psi_{13} = \{e_1 \, 9, e_1 \, 11, e_3 \, 9, e_3 \, 6\} \ \psi_{14} = \{e_1 \, 9, e_1 \, 11, e_3 \, 9, e_4 \, 8, e_4 \, 7\}$$

4. Для всех множеств построим матрицу значений критерия $\alpha_{\gamma\delta} = |\psi_{\gamma}| + |\psi_{\delta}| - |\psi_{\gamma} \cap \psi_{\delta}|$

1771		2			τγ ·	70	-	0		10	11	10	12	1.4
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	0	7	8	9	8	8	8	7	7	8	9	10	7	8
2		0	7	8	9	9	7	9	9	9	8	9	8	7
3			0	6	10	10	8	10	10	8	7	7	8	7
4				0	11	11	9	11	11	8	7	6	9	8
5					0	7	8	7	8	9	10	11	8	9
6						0	8	8	7	8	10	11	7	9
7							0	9	9	9	8	9	8	7
8								0	7	9	10	11	8	9
9									0	8	10	11	7	9
10										0	5	7	5	7
11											0	6	7	6
12												0	9	8
13													0	6
14														0

Мае $\alpha_{\gamma\delta}$ = 11 даёт несколько пар множеств, возьмём пару ψ_4 , ψ_5 $\psi_4=\{$ e1 4, e4 12, e4 11, e4 8, e4 7 $\}$, $\psi_5=\{$ e2 8, e2 6, e2 5, e1 8, e1 9, e1 11 $\}$

В суграфе H, содержащем максимальное число непересекающихся ребер, ребра, вошедшие в ψ_4 , проводим внутри гамильтонова цикла, а в ψ_5 – вне его:

Удалим из ψ_G , реализованные ребра:

 $\psi_1 = \{e_1 6\} \qquad \psi_2 = \{\} \qquad \psi_3 = \{\} \qquad \psi_6 = \{e_3 6\} \qquad \psi_7 = \{\} \qquad \psi_8 = \{e_1 6\}$ $\psi_9 = \{e_1 6, e_3 6\} \qquad \psi_{10} = \{e_3 12, e_3 9, e_3 6\} \qquad \psi_{11} = \{e_3 12, e_3 9\} \qquad \psi_{12} = \{e_3 12\}$ $\psi_{13} = \{e_3 9, e_3 6\} \qquad \psi_{14} = \{e_3 9\}$

Объединим множества: ψ_1 ={e₁ 6}, ψ_1 0={e₃ 12,e₃ 9,e₃ 6}

Нереализованными остались ребра e_1 6, e_3 6, e_3 12, e_3 9. Проведем их.

Все ребра графа реализованы. Толщина графа M=2.