Path-based depth-first search for strong and biconnected components

Author of the paper: Harold N. Gabow

Reported by: T.T. Liu D.P. Xu B.Y. Chen

May 28, 2017

Outline

- Introduction
- Strong Components
 - Thinking about Strong Components
 - Purdom and Munro's High-Level Algorithm
 - Contribution
 - Discussion
- Biconnected Components
 - Thinking about Biconnected Components
 - High-Level Algorithm
 - Gabow's Algorithms

Characterastics of Gabow's Algorithms

- One-pass algorithm. But for the algorithm of strong components, what we have learned from the textbook is a two-pass algorithm, by which we must traverse the whole graph twice.
- Lower time and space complexity. This algorithm only use stacks and an array, and do not employ a disjoint-set data structure.

Outline

- Introduction
- Strong Components
 - Thinking about Strong Components
 - Purdom and Munro's High-Level Algorithm
 - Contribution
 - Discussion
- Biconnected Components
 - Thinking about Biconnected Components
 - High-Level Algorithm
 - Gabow's Algorithms

Review: What have we learned from the textbook? Concepts of Strong Components

 Two mutually reachable vertices are in the same strong component.

Review: What have we learned from the textbook? Algorithms to Find Strong Components

- Idea: Run DFS twice. Once on the original graph G, once on the *tranposition* of G^T .
- Trick: Using finishing times of each vertex computed by the first DFS.
- Linear time complexity: O(V + E)

Outline

- Introduction
- Strong Components
 - Thinking about Strong Components
 - Purdom and Munro's High-Level Algorithm
 - Contribution
 - Discussion
- Biconnected Components
 - Thinking about Biconnected Components
 - High-Level Algorithm
 - Gabow's Algorithms

Purdom and Munro's High-Level Algorithm

Algorithm 1: Strong Components

```
H=G:
while H still has a vertex v do
   start a new path P = (v);
   while P is not empty do /* Grows path P
                                                                     * /
       if the last vertex v_k of P has an edge (v_k, w) then
           if w \notin P then
               add w to P, as the new last vertex of P;
           else /* w and v_i are identical.
               contract the cycle v_i, v_{i+1}, \dots, v_k, both in H and in P;
       else
           output v_k as a vertex of the strong component graph;
           delete v_k from both H and P;
```


Assessment

- Note that contracting means selecting one vertex as a representation and merging others rather than deleting them.
- Correctness: If no edge leaves v_k then v_k is a vertex of the finest acyclic contraction.

Assessment

 The time consumption of each statement in the pseudo-code is clear. Total time complexity is linear. except this statement:

```
contract the cycle v_i, v_{i+1}, \dots, v_k, both in H and in P;
```

- Problem is how to merge in linear time while keeping the next time accessing this vertex still in constant time.
- Therefore, a good data structure for disjoint-set merging is needed usually.

Outline

- Introduction
- Strong Components
 - Thinking about Strong Components
 - Purdom and Munro's High-Level Algorithm
 - Contribution
 - Discussion
- Biconnected Components
 - Thinking about Biconnected Components
 - High-Level Algorithm
 - Gabow's Algorithms

Gabow's Contribution

- He gave a simple list-based implementation that achieves linear time.
- Use only stacks and arrays as data structure.
- Do not need a disjoint set merging data structure.

Data Structure Used in Algorithm

- In DFS, the path P from root to each node is almost always significant. So it is in this algorithm.
- A stack S contains the sequence of vertices in P.
- A stack B contains the boundaries between contracted vertices.
- An array I[1...n] is used to store stack indices corresponding to vertices.

Contraction Makes Much Difference

- When contraction is executed, some vertices merges into a set.
- It is possible that several elements in stack S are in the same vertex in path P. More formal,

$$v_i = S[j] : B[i] \le j < B[i+1]$$

• By the way, the formal definition of I[v] is

$$I[j] = \begin{cases} 0, & \text{if } v \text{ has never been in P;} \\ j, & \text{if } v \text{ is currently in P and } S[j] = v; \\ c, & \text{if the strong component containing } v \text{ has been deleted and numbered as } c. \end{cases}$$

where c counts from n + 1.

New algorithm to discover strong components

```
Procedure 2: STRONG(G)

empty stacks S and B;

for v \in V do

|I[v] = 0;

c = n;

for v \in V do

|if I[v] = 0 then /* vertex v has never been accessed yet
```


DFS(v);

New algorithm to discover strong components

```
Procedure 3: DFS(v)
PUSH(v, S); I[v] = TOP(S); PUSH(I[v], B);
/* add v to the end of P
for egdes(v, w) \in E do
   if I[w] = 0 then
       \mathsf{DFS}(w);
   else /* contract if necessary
       while I[w] < B[TOP(B)] do
          POP(B);
if I[v] = B[TOP(B)] then /* number vertices of the next
 strong component
                                                               * /
   POP(B);
   c = c + 1;
   while I[v] < TOP(S) do
       I[\mathsf{POP}(S)] = c;
```


- Call Stack: STRONG()
- This state is the first after initialized. DFS(1) is going to be called.

- Call Stack: STRONG()→DFS(1)
- Code: for edges(v,w)∈E do ...
- w = 2.

- Call Stack: STRONG()→DFS(1)→DFS(2)
- Code: for edges(v,w)∈E do ...
- w = 3.

- Call Stack: STRONG()→DFS(1)→DFS(2)→DFS(3)
- Code: if I[v]=B[TOP(B)] then ...
- Go back.

- Call Stack: STRONG()→DFS(1)→DFS(2)→DFS(4)
- Code: for edges(v,w)∈E do ...
- w = 5.

- Call Stack: $\cdots \rightarrow DFS(1) \rightarrow DFS(2) \rightarrow DFS(4) \rightarrow DFS(5)$
- Code: for edges(v,w)∈E do ...
- w = 2.

Data in memory						
B and S: stack. I: array.						
В	S	1	1			
1	1	i 1	1			
3	2	2	2			
3	4	3	7			
4	5	¦ 4	3			
		¦5	4			
Ш		6	0			

- Call Stack: $\cdots \rightarrow DFS(1) \rightarrow DFS(2) \rightarrow DFS(4) \rightarrow DFS(5)$
- Code: while I[w] < B[TOP(B)] do POP(B);
- Now, w = 2, contract!

4 m > 4 m > 4 m > 4 m >

- Call Stack: $\cdots \rightarrow DFS(1) \rightarrow DFS(2) \rightarrow DFS(4) \rightarrow DFS(5)$
- Code: while I[w] < B[TOP(B)] do POP(B);</pre>
- Now, w = 2, contract!

- Call Stack: $\cdots \rightarrow DFS(1) \rightarrow DFS(2) \rightarrow DFS(4) \rightarrow DFS(5)$
- Code: if I[w] = 0 then DFS(w);
- w = 6.

- Call Stack: $\cdots \rightarrow DFS(2) \rightarrow DFS(4) \rightarrow DFS(5) \rightarrow DFS(6)$
- Code: for edges(v,w)∈E do ...
- w = 4.

イロナイ御ナイミナイミナー

- Call Stack: $\cdots \rightarrow DFS(2) \rightarrow DFS(4) \rightarrow DFS(5) \rightarrow DFS(6)$
- Code: while I[w] < B[TOP(B)] do POP(B);</pre>
- Now, w = 4, contract!

- Call Stack: $\cdots \rightarrow DFS(2) \rightarrow DFS(4) \rightarrow DFS(5) \rightarrow DFS(6)$
- Code: if I[v]=B[TOP(B)] then ...
- Go back.

- Call Stack: · · · → DFS(2) → DFS(4) → DFS(5)
- Code: if I[v]=B[TOP(B)] then ...
- Go back.

- Call Stack: · · · → DFS(2) → DFS(4)
- Code: if I[v]=B[TOP(B)] then ...
- Go back.

Data in memory				
B and S: stack. I: array.				
В	S	<u> </u>		
1	1	1 1		
2	2	2 2		
	4	3 7		
	5	4 3		
	6	5 4		
Ш		6 5		

- Call Stack: STRONG()→DFS(1)→DFS(2)
- Code: if I[v]=B[TOP(B)] then ...
- Go back. But this time, Condition in last line is satisfied!

- Call Stack: STRONG()→DFS(1)→DFS(2)
- Code: while I[v]≤TOP(S) do I[POP(S)]=c;
- Pop 2 from B, while 2, 4, 5, 6 in S are also popped.

- Call Stack: STRONG()→DFS(1)
- Code: while I[v]≤TOP(S) do I[POP(S)]=c;
- Pop the last one both in B and in S. Finished!!

Outline

- Introduction
- Strong Components
 - Thinking about Strong Components
 - Purdom and Munro's High-Level Algorithm
 - Gontribution
 - Discussion
- Biconnected Components
 - Thinking about Biconnected Components
 - High-Level Algorithm
 - Gabow's Algorithms

Correctness of Gabow's Strong Components Algorithm

Theorem (Correctness and Time Complexity)

When STRONG(G) halts each vertex $v \in V$ belongs to the strong component numbered I[v]. The time and space are both O(V + E).

 The key of proof is to show that STRONG(G) is a valid implementation of the P&M's high-level algorithm.

Framework of STRONG(G)

Algorithm 4: Framework of High-Level Algorithm

```
H = G;

while H still has a vertex v do

start a new path P = (v);

\cdots;
```

Procedure 5: STRONG(G)

```
empty stacks S and B;

for v \in V do

\mid I[v] = 0;

c = n;

for v \in V do

\mid if I[v] = 0 then /*\ v has never been accessed
```

 $\mathsf{DFS}(v)$;

Growing Path P

Algorithm 6: A Part of High-Level Algorithm

```
if the last vertex v_k of P has an edge (v_k, w) then

if w \notin P then

add w to P, as the new last vertex of P;

else /* w and v_i are identical.

contract the cycle v_i, v_{i+1}, \dots, v_k, both in H and in P;
```

Procedure 7: A Part of DFS(v)

Having Found a Strong Components

Algorithm 8: A Part of High-Level Algorithm

```
if the last vertex v_k of P has an edge (v_k, w) then | \cdots |
```

else

output v_k as a vertex of the strong component graph; delete v_k from both H and P;

Procedure 9: A Part of DFS(v)

Time Complexity

- Every vertex is pushed onto and popped from each stack S, B exactly once. So the algorithm spends O(1) time on each vertex or edge.
- Time Complexity: O(V + E)
- Intuitively, from another view, this algorithm is based on DFS, and no loop is executed on one vertex or one edge.

Outline

- Introduction
- Strong Components
 - Thinking about Strong Components
 - Purdom and Munro's High-Level Algorithm
 - Contribution
 - Discussion
- Biconnected Components
 - Thinking about Biconnected Components
 - High-Level Algorithm
 - Gabow's Algorithms

Concepts: Biconnected Component

 A biconnected component of G is a maximal set of edges such that any two edges in the set lie on a common simple cycle.

Outline

- Introduction
- Strong Components
 - Thinking about Strong Components
 - Purdom and Munro's High-Level Algorithm
 - Contribution
 - Discussion
- 3 Biconnected Components
 - Thinking about Biconnected Components
 - High-Level Algorithm
 - Gabow's Algorithms

Pseudo Code

Algorithm 10: Biconnected Components

```
H=G:
while H still has an edge \{v, w\} do
    start a new path P = (v, \{v, w\});
    while P is not empty do /* Grows path P
        if the last vertex v_k of P has an edge (v_k, w) then
            if w \notin VP then / \star V\{P\} is the set of all
             vertices in P
                add v, \{v, w\} to the end of P, as the new last vertex
                 and edge of P:
            else /* w \in e_i - v_{i+1}, but most likely w \neq v_i
                replace the cycle w, e_i, v_{i+1}, e_{i+1}, \cdots, v_k, e_k, v, \{v, w\}
                 to a new edge e = \bigcup_{i=1}^k e_i, both in H and in P;
        else
            output v_k as a vertex of the strong component graph;
```

delete v_k from both H and P;

Concepts: Hypergraph

- A hypergraph H = (V, E) is a generalization of a graph in which an edge can join any number of vertices.
- In the following hypergraph,

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$$

$$E = \{e_1, e_2, e_3, e_4\}$$

$$= \{\{v_1, v_2, v_3\}, \{v_2, v_3\}, \{v_3, v_5, v_6\}, \{v_4\}\}$$

Concepts: Hypergraph

- Therefore, we need redefine the edge, path, cycle, ..., and nearly all concepts as long as it is relative to edge.
- A path is a sequence $(v_1, e_1, \cdots, v_k, e_k)$ of distinct vertices v_i and distinct edges e_i , $1 \le i \le k$, with $v_1 \in e_1$ and $v_i \in e_{i-1} \cap e_i$ for every $1 < i \le k$.
- An important property:

$$v_{i+1} \in e_i - v_i, \quad 1 \le i < k$$

 Merging a set of edges is to replace old edges with the new one:

$$e_{new} = \bigcup_{i=1}^{k} e_i$$

Outline

- Introduction
- Strong Components
 - Thinking about Strong Components
 - Purdom and Munro's High-Level Algorithm
 - Contribution
 - Discussion
- Biconnected Components
 - Thinking about Biconnected Components
 - High-Level Algorithm
 - Gabow's Algorithms

Algorithms

```
Procedure 11: BICONN(G)
```

```
empty stacks S and B;

for v \in V do

\mid I[v] = 0;

c = n;

for v \in V do

\mid \text{if } I[v] = 0 \text{ and } v \text{ is not isolated then}

\mid \mathsf{DFS}(v);
```


Algorithms

```
Procedure 12: DFS(v)
PUSH(v, S); I[v] = TOP(S);
if I[v] > 1 then /* create a filled arrow on B
   PUSH(I[v], B);
for egdes\{v, w\} \in E do
   if I[w] = 0 then /* create an open arrow on B
       PUSH(I[v], B); DFS(w);
   else /* possible merge
       while I[v] > 1 and I[w] < B[TOP(B) - 1] do
          POP(B); POP(B);
if I[v] = 1 then
   I[\mathsf{POP}(S)] = c;
else if I[v] = B[TOP(B)] then
   POP(B); POP(B); c = c + 1;
   while I[v] < TOP(S) do I[POP(S)] = c;
```

Summary

- Gabow gave algorithms to find the strong components and biconnected components more effectively. They are one-pass algorithms while do not need a disjoint-set data structure.
- There is a close relationship between strong components and biconnected components, like two faces of a coin: one is directed graph, another is undirected graph.

