Generación y distribución de claves

RELACIÓN DE EJERCICIOS

EJERCICIO 1:

Teniendo en cuenta el siguiente protocolo:

- A → B: A, B
 B → A: B, A, N_b
 A → B: K_{AT}{N_b}, ___
 B → T: B, T, K_{BT}{A, ___, K_{AT}{N_b}}
 T → B: T, B, K_{BT}{K_{AB}, N_b}, K_{AT}{K_{AB}, ___}}

y que Trent tiene compartido una clase secreta K_{BT} con B y una clave K_{AT} con A.

Analizar el protocolo, contestando a las siguientes preguntas:

- 1. ¿Qué significa cada parámetro del protocolo y para qué sirve?
- 2. ¿Qué problemas existen a la hora de trabajar con las claves K_{BT} y K_{AT}?
- 3. Completar el protocolo anterior para evitar ataques de tipo *replay*.
- 4. ¿Crees que está completamente controlado todos los posibles ataques de reenvío en todo el protocolo? Es decir, ¿Bob controla el ataque? ¿Y Alice?
- 5. ¿Hay desafío y respuesta? Si es así, dónde.
- 6. ¿De qué tipo es el protocolo? ¿pull o push?

EJERCICIO 2:

Teniendo en cuenta el siguiente protocolo:

- 1. $A \rightarrow B : A, N_a$
- 2. $B \rightarrow T : B, E_{KBT}\{A, N_a, N_b\}$
- 3. $T \rightarrow A : E_{KAT}\{B, K_{AB}, N_a, N_b\}, E_{KBT}\{A, K_{AB}\}$
- 4. $A \rightarrow B : E_{KBT}\{A, K_{AB}\}, E_{KAB}\{N_b\}$

y que Trent tiene compartido una clase secreta K_{BT} con B y una clave K_{AT} con A.

Analizar el protocolo, contestando a las siguientes preguntas:

- 1. ¿Quién inicializa el proceso de negociación de la clave de sesión K_{AB}?
- 2. ¿Quién inicializa el proceso de negociación de la clave K_{AB} con T?
- 3. ¿Qué modelo sigue este protocolo (PULL o PUSH)?
- 4. ¿Existe posibilidad de ataques de repetición?
- 5. ¿Tiene Bob alguna forma de verificar que el mensaje viene de Alice y que está realmente hablando con ella?

Generación y distribución de claves

EJERCICIO 3:

Teniendo en cuenta el siguiente protocolo:

- 1. $A \rightarrow B: A, E_{KAB}\{N_a\}$
- 2. $B \rightarrow A$: $E_{KAB}\{f_1(N_a), N_b\}$
- 3. A \rightarrow B: $E_{KAB}\{f_2(N_b)\}$
- 4. $A \rightarrow B: E_{KAB} \{f_3(N_b)\}$
- 5.
- 6. $B \rightarrow A$: $E_{KAB}\{N_{b'}\}$
- 7. $B \rightarrow A$: $E_{KAB}\{K_{AB'}, N_{b'}\}$

Analizar el protocolo, contestando a las siguientes preguntas:

- 1. ¿Se debe reordenar los mensajes para que tenga sentido el protocolo? En caso afirmativo, reordenarlo.
- 2. ¿Por qué se aplica f1, f2 y f3?
- 3. ¿Qué significa la clave K_{AB},?¿Por qué se envía en el paso 5 un N_b,?
- 4. ¿Qué sentido tendría usar un código MAC en este protocolo?

EJERCICIO 4:

Supongamos ahora que en vez de aplicar criptografía simétrica para la gestión de claves K_{AB}, aplicamos sólo y únicamente criptografía asimétrica para:

- (i) gestionar las claves públicas de cada entidad A y B, y desde T, y
- (ii) para buscar la forma de compartir un nonce (N_a y N_b) que les permitan a cada entidad (A y B) verificar el "freshness" de las transacciones.

Dado esto, y los mensajes siguientes:

- 1. A, B
- 2. K_{pub} $A\{N_a, N_b, B\}$
- 3. K_{priv} $T{K_{pub}$ $B, B}$
- 4. K_{pub} $B\{N_b\}$
- 5. K_{priv} $T{K_{pub}$ $A, A}$
- 6. $K_{pub\ b}\{N_A, A\}$

se pide

1. Reorganizar los mensajes teniendo en cuenta la existencia de Trent (T) - como mediador entre A y B -, y la existencia de sus claves Kpriv_T y Kpub_T.

Relación de ejercicios I – Tema 3

Generación y distribución de claves

Para realizar el ejercicio, es fundamental identificar el origen y el destino de cada mensaje (ej: A → B) y asumir que T (i) conoce las claves públicas de A y B y (ii) se encarga de enviarlas cuando ellos las solicitan.

- 2. ¿Qué hace realmente el protocolo? ¿Cuál es su objetivo final?
- 3. ¿Para qué sirve el N_A?

EJERCICIO 5:

Teniendo en cuenta el siguiente protocolo:

- 1. Alice \rightarrow Bob: Bob, M, $S_{Alice}(Bob, H(M))$
- 2. Bob \rightarrow Alice: Alice, $S_{Bob}(Alice, H(M))$

se pide:

- 1. Analizar el protocolo y determinar su principal objetivo.
- 2. ¿Crees que hay suficiente evidencia para asegurar el no repudio tanto en el lado del origen como en el destino?

EJERCICIO 6:

Si suponemos que el canal es fiable y las entidades NO son honestas, entonces se introduce una tercera persona confiable para este nuevo protocolo, tal que:

- 1. Alice \rightarrow TTP: TTP, Bob, M, S_{Alice} (TTP, Bob, H(M))
- 2. TTP \rightarrow Bob: Alice, Bob, M, S_{TTP} (Alice, Bob, H(M))
- 3. TTP \rightarrow Alice: Alice, Bob, S_{TTP} (Alice, Bob, H(M))

se pide:

- 1. Analizar el protocolo y determinar su principal objetivo.
- 2. ¿Crees que hay suficiente evidencia para asegurar el no repudio tanto en el lado del origen como en el destino? ¿Quién firma esas evidencias?

EJERCICIO 7:

Si suponemos que el canal NO es fiable y las entidades NO son honestas, pero no se introduce una tercera persona confiable para este nuevo protocolo, tal que:

- 1. Alice \rightarrow Bob: Bob, C, $S_{Alice}(Bob, H(C))$
- 2. Bob \rightarrow Alice: Alice, $S_{Bob}(Alice, H(C))$
- 3. Alice \rightarrow Bob: Bob, K, $S_{Alice}(Bob, K)$
- 4. Bob \rightarrow Alice: Alice, $S_{Bob}(Alice, K)$

Relación de ejercicios I – Tema 3

Generación y distribución de claves

se pide:

- 1. Analizar el protocolo, y determinar qué es C en el punto 1 del protocolo y K en el punto 3 de dicho protocolo.
- 2. Determinar el principal objetivo de este protocolo, razonando la respuesta.
- 3. En el punto 3 y 4 no se realiza el H(K) para la firma, es decir: S_{Alice}(Bob, H(K)) o S_{Bob}(Alice, H(K)). Explicar las razones.

EJERCICIO 8:

Teniendo en cuenta el siguiente protocolo:

- 1. $A \rightarrow B: K_{pub A}$
- 2. $B \rightarrow A: K_{pub B}$
- 3. A \rightarrow B: K_{pub} $B\{K_{AB}\}$

se pide:

- 1. Optimizar el protocolo para que Alice pueda verificar que la clave pública es genuina y pertenece a Bob.
- 2. ¿Qué hace Alice y Bob cuando recibe la clave pública asumiendo la modificación del punto 1? Establecer la secuencia de acciones que toma cada parte para la verificación.

EJERCICIO 9:

Teniendo en cuenta el siguiente protocolo:

- 1. $CA_1 \rightarrow A : Cert_{A CA1}$
- 2. $CA_2 \rightarrow B : Cert_{B CA2}$
- 3. $A \rightarrow B$: Cert_{A CA1}
- 4. B \rightarrow A: Cert_{B CA2}

y asumiendo que A conoce CA_1 y tiene su clave pública K_{pub_CA1} y B conoce CA_2 y tiene su clave pública K_{pub_CA2} , se pide contestar a las siguientes preguntas:

- 1. ¿Puede A verificar el certificado Cert_{B_CA2} si CA₁ =! CA₂? Razonar la respuesta.
- **2.** ¿Existe alguna forma de que A y B puedan compartir las claves de forma segura?