Лабораторная работа №1

Разведочный анализ данных. Исследование и визуализация данных.

Цель лабораторной работы: изучение различных методов визуализация данных.

Краткое описание. Построение основных графиков, входящих в этап разведочного анализа данных.

Текстовое описание датасета

load iris из Scikit-learn

Ирисы Фишера — это набор данных для задачи классификации, на примере которого Рональд Фишер в 1936 году продемонстрировал работу разработанного им метода дискриминантного анализа.

Ирисы Фишера состоят из данных о 150 экземплярах ириса, по 50 экземпляров из трёх видов — Ирис щетинистый (Iris setosa), Ирис виргинский (Iris virginica) и Ирис разноцветный (Iris versicolor). Для каждого экземпляра измерялись четыре характеристики (в сантиметрах):

- Длина наружной доли околоцветника (англ. sepal length);
- Ширина наружной доли околоцветника (англ. sepal width);
- Длина внутренней доли околоцветника (англ. petal length);
- Ширина внутренней доли околоцветника (англ. petal width).

Ввод [1]:

```
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

```
Ввод [2]:
```

```
iris = load_iris()
```

```
Ввод [3]:
```

Ввод [4]:

data

Out[4]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0.0
1	4.9	3.0	1.4	0.2	0.0
2	4.7	3.2	1.3	0.2	0.0
3	4.6	3.1	1.5	0.2	0.0
4	5.0	3.6	1.4	0.2	0.0
145	6.7	3.0	5.2	2.3	2.0
146	6.3	2.5	5.0	1.9	2.0
147	6.5	3.0	5.2	2.0	2.0
148	6.2	3.4	5.4	2.3	2.0
149	5.9	3.0	5.1	1.8	2.0

150 rows × 5 columns

Основные характеристики датасета

Ввод [5]:

```
# Первые 5 строк датасета data.head()
```

Out[5]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0.0
1	4.9	3.0	1.4	0.2	0.0
2	4.7	3.2	1.3	0.2	0.0
3	4.6	3.1	1.5	0.2	0.0
4	5.0	3.6	1.4	0.2	0.0

Ввод [6]:

```
# Размер датасета — 150 строк, 5 колонок data.shape
```

Out[6]:

(150, 5)

```
Ввод [7]:
```

```
total count = data.shape[0]
print('Bcero ctpok: {}'.format(total_count))
Всего строк: 150
Ввод [8]:
# Список колонок
data.columns
Out[8]:
Index(['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)',
        'petal width (cm)', 'target'],
      dtype='object')
Ввод [9]:
# Список колонок с типами данных
data.dtypes
Out[9]:
                      float64
sepal length (cm)
sepal width (cm)
                      float64
                      float64
petal length (cm)
petal width (cm)
                      float64
                      float64
target
dtype: object
Ввод [10]:
# Проверим наличие пустых значений
# Цикл по колонкам датасета
for col in data.columns:
    # Количество пустых значений - все значения заполнены
    temp_null_count = data[data[col].isnull()].shape[0]
    print('{} - {}'.format(col, temp null count))
sepal length (cm) - 0
sepal width (cm) - 0
petal length (cm) - 0
petal width (cm) - 0
```

В нашем датасете нет пропусков

target - 0

Ввод [11]:

Основные статистические характеристки набора данных data.describe()

Out[11]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333	1.000000
std	0.828066	0.435866	1.765298	0.762238	0.819232
min	4.300000	2.000000	1.000000	0.100000	0.000000
25%	5.100000	2.800000	1.600000	0.300000	0.000000
50%	5.800000	3.000000	4.350000	1.300000	1.000000
75%	6.400000	3.300000	5.100000	1.800000	2.000000
max	7.900000	4.400000	6.900000	2.500000	2.000000

Ввод [12]:

```
# Определим уникальные значения для целевого признака data.target.unique()
```

Out[12]:

array([0., 1., 2.])

Целевой признак содержит значения 0, 1, 2

Визуальное исследование

Диаграмма рассеяния

Ввод [13]:

```
fig, ax = plt.subplots(figsize=(5,5))
sns.scatterplot(ax=ax, x='sepal length (cm)', y='petal length (cm)', data=data)
```

Out[13]:

<AxesSubplot:xlabel='sepal length (cm)', ylabel='petal length (cm)'>

Можно видеть что между полями sepal length (cm) и petal length (cm) пристутствует почти линейная зависимость.

Посмотрим насколько на эту зависимость влияет целевой признак.

Ввод [14]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='sepal length (cm)', y='petal length (cm)', data=data, hue=
```

Out[14]:

<AxesSubplot:xlabel='sepal length (cm)', ylabel='petal length (cm)'>

Гистограмма

Ввод [15]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['sepal length (cm)'])
```

/Users/vadim/opt/anaconda3/lib/python3.9/site-packages/seaborn/distrib utions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use eit her `displot` (a figure-level function with similar flexibility) or `h istplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[15]:

<AxesSubplot:xlabel='sepal length (cm)', ylabel='Density'>

Ввод [16]:

sns.jointplot(x='sepal length (cm)', y='petal length (cm)', data=data)

Out[16]:

<seaborn.axisgrid.JointGrid at 0x7fca90d79a60>

Ввод [17]:

sns.jointplot(x='sepal length (cm)', y='petal length (cm)', data=data, kind="hex")

Out[17]:

<seaborn.axisgrid.JointGrid at 0x7fca90d73d00>

Парные диаграммы

Ввод [18]:

sns.pairplot(data)

Out[18]:

<seaborn.axisgrid.PairGrid at 0x7fcab06d2c10>

Ввод [19]:

sns.pairplot(data, hue="target")

Out[19]:

<seaborn.axisgrid.PairGrid at 0x7fca91a818e0>

Ввод [20]:

```
# Pacnpeделение параметра sepal length (cm) сгруппированные по target.
sns.boxplot(x='sepal length (cm)', y='target', data=data)
```

Out[20]:

<AxesSubplot:xlabel='sepal length (cm)', ylabel='target'>

Violin plot

Ввод [21]:

```
fig, ax = plt.subplots(2, 1, figsize=(10,10))
sns.violinplot(ax=ax[0], x=data['sepal length (cm)'])
sns.distplot(data['sepal length (cm)'], ax=ax[1])
```

/Users/vadim/opt/anaconda3/lib/python3.9/site-packages/seaborn/distrib utions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use eit her `displot` (a figure-level function with similar flexibility) or `h istplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[21]:

<AxesSubplot:xlabel='sepal length (cm)', ylabel='Density'>

Ввод [22]:

```
# Pacnpedeление параметра sepal length (cm) сгруппированные по target.
sns.violinplot(x='target', y='sepal length (cm)', data=data)
```

Out[22]:

<AxesSubplot:xlabel='target', ylabel='sepal length (cm)'>

Информация о корреляции признаков.

Ввод [23]:

data.corr()

Out[23]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
sepal length (cm)	1.000000	-0.117570	0.871754	0.817941	0.782561
sepal width (cm)	-0.117570	1.000000	-0.428440	-0.366126	-0.426658
petal length (cm)	0.871754	-0.428440	1.000000	0.962865	0.949035
petal width (cm)	0.817941	-0.366126	0.962865	1.000000	0.956547
target	0.782561	-0.426658	0.949035	0.956547	1.000000

Ввод [24]:

sns.heatmap(data.corr())

Out[24]:

<AxesSubplot:>

Ввод [25]:

```
# Вывод значений в ячейках sns.heatmap(data.corr(), annot=True, fmt='.3f')
```

Out[25]:

<AxesSubplot:>

Ввод [26]:

```
fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsize=(15,5))
sns.heatmap(data.corr(method='pearson'), ax=ax[0], annot=True, fmt='.2f')
sns.heatmap(data.corr(method='kendall'), ax=ax[1], annot=True, fmt='.2f')
sns.heatmap(data.corr(method='spearman'), ax=ax[2], annot=True, fmt='.2f')
fig.suptitle('Корреляционные матрицы, построенные различными методами')
ax[0].title.set_text('Pearson')
ax[1].title.set_text('Kendall')
ax[2].title.set_text('Spearman')
```


Ввод []: