四、实验数据记录及数据处理

评阅	实验	
老师	成组	

中南大學自动化学院本科生

自动控制原理								_ 课 桯 实 验 报 🖯			
班级:_	智能 2101	姓名:	钱兴宇	学号	: 8207211	912	序	号:	2		
预定:_	2023.6.1 星	期 <u>四</u> 节	ĭ次 <u>上午1−</u> 2	2_实验:_	2023. 6. 1	_星期_	<u>四</u> 节	次 上生	<u>F 1-2</u>		
- 排占・	信自株 200	승무.	9	授 进·	拟工品		华县.	=	拉工品		

实验名称: 实验 6.采样系统的稳定性分析

一、实验原理、目的与要求

实验目的:

- 1. 掌握香农定理,了解信号的采样保持与采样周期的关系。
- 2. 掌握采样周期对采样系统的稳定性影响。

实验原理及内容:

本实验采用"采样一保持器"LF398 芯片,它具有将连续信号离散后以零阶保持器输出信号的功能。其管脚连接图如 5.1-1 所示,采样周期 T 等于输入至 LF398 第 8 脚 (PU)的脉冲信号周期,此脉冲由多谐振器(由 MC1555 和阻容元件构成)发生的方波经单稳电路(由 MC14538 和阻容元件构成)产生,改变多谐振荡器的周期,即改变采样周期。

二、实验仪器设备及软件(标注实验设备名称及设备号)

PC 机一台, TD-ACC+(或 TD-ACS)教学实验系统一套。

1

三、实验线路示图、内容步骤

本实验采用"采样一保持器"LF398 芯片,它具有将连续信号离散后以零阶保持器输出 信号的功能。其管脚连接图如 5.1-1 所示,采样周期 T 等于输入至 LF398 第 8 脚 (PU) 的脉 冲信号周期,此脉冲由多谐振器(由 MC1555 和阻容元件构成)发生的方波经单稳电路(由 MC14538 和阻容元件构成)产生,改变多谐振荡器的周期,即改变采样周期。 加阶跃信号至 r (t),按动阶跃按钮,观察并记录系统的输出波形 c (t),测量超调量 Mp。(5)调节信号源单元的 "S"信号频率使周期为 50ms 即采样周期 T=50ms。系统加入阶 跃信号,观察并记录系统输出波形,测量超调量 Mp。(6)调节采样周期使 T=120ms,观察并记录系统输出波形。

实验步骤

- 1. 准备:将信号源单元的"ST"的插针和"+5V"插针用"短路块"短接。
- 2. 信号的采样保持实验步骤
- (1) 按图 5.1-3 接线。检查无误后开启设备电源。
- (2) 将正弦波单元的正弦信号 (将频率调为 2.5HZ) 接至 LF398 的输入端 "IN1"。 (3) 调节信号源单元的信号频率 使 "S"端的方波周期为 20ms 即采样周期 T = 20ms。 (4) 用示波器同时观测 LF398 的 0UT1 输出和 IN1 输入,此时输出波形和输入波形一致。
- (5) 改变采样周期,直到 200ms,观测输出波形。此时输出波形仍为输入波形的采样波 形,还未失真,但当 T > 200ms 时,没有输出波形,即系统采样失真,从而验证了香农定理。
- 3. 闭环采样控制系统实验步骤
- (1) 按图 5.1-5 接线。检查无误后开启设备电源。
- (2) 取 "S"端的方波信号周期 T = 20ms。
- (3) 阶跃信号的产生:产生 1V 的阶跃信号。
- (4) 加阶跃信号至 r(t), 按动阶跃按钮, 观察并记录系统的输出波形 c(t), 测量超调量 Mp。
- (5) 调节信号源单元的 "S"信号频率使周期为 50ms 即采样周期 T = 50ms。系统加入阶 跃信号,观察并记录系统输出波形,测量超调量 Mp。
- (6) 调节采样周期使 T = 120ms,观察并记录系统输出波形

2. 闭环采样控制系统

(1) 原理方块图

图 5.1-4 闭环采样系统

(2) 模拟电路图

图 5.1-5 闭环采样系统电路

图 5.1-1 LF398 连接图

图 5.1-2 是 LF398 采样-保持器功能的原理方块图。

图 5.1-2 LF398 功能图

1. 信号的采样保持: 电路如图 5.1-3 所示。

图 5.1-3 采样保持电路

3