

ECSE-200 Electric Circuits 1

February 6, 2019 Lecture 14

4. Circuit Theorems

Source Transformations (5.2)

Today's lecture

- Linearity and the Principle of Superposition (5.3)
- Thévenin's Theorem (5.4)
- Norton's Theorem (5.5)
- Maximum Power Transfer Theorem (5.6)

(subsections in Svoboda & Dorf reference textbook)

Motivation

 Circuit theorems can greatly simplify circuit analysis and provide insight into the operation of circuits

Practical Sources

It is commonly observed in practical sources (as opposed to ideal sources) that:

- power is dissipated when a load is attached to the source (for example, a battery warms up when discharged)
- the voltage from a practical voltage source decreases as current is drawn from the source
- the current from a practical current source decreases as voltage develops across the terminals of the source

While the origin and nature of these effects can be very complex, the **Thévenin and Norton equivalent circuits** are **very useful models** for practical sources.

Practical Voltage Source

A practical voltage source can often be modeled as a **Thévenin circuit**:

 \rightarrow a voltage source v_{OC} called the "open circuit voltage" in series with a resistance R_T , called the "Thévenin resistance".

An ideal voltage source is recovered as $R_T \rightarrow 0\Omega$ (corresponding to a short).

Practical Current Source

A practical current source can often be modeled as a Norton circuit:

 \rightarrow an independent current source i_{SC} called the "short circuit current" in parallel with a resistance R_T , called the "Thévenin resistance."

An ideal current source is recovered as $R_T \rightarrow \infty$ (open).

practical source $R_T \neq 0\Omega$

$$i_{AB} = i_{SC} - v_{AB} / R_T$$

terminal current is reduced as voltage is developed

6

A portable battery is characterized by an open circuit voltage of 3 V.

The internal (Thévenin) resistance is known to be 200 m Ω .

If a resistive load with 10 Ω equivalent resistance is attached to the battery, what voltage is applied to the load?

Which circuit analysis would you use to find the voltage to the load (i.e. v_{AB})?

- A. Node analysis
- D. Voltage division
- B. Mesh analysis
- E. Equivalent resistance
- C. Current with ohm's division

Strategy:

- apply the voltage divider equation

$$\frac{v_{AB}}{3V} = \frac{10\Omega}{10\Omega + 0.2\Omega}$$
$$v_{AB} = 0.980 \cdot 3V$$
$$v_{AB} = 2.94V$$

this is a 2% drop in voltage

An HVDC (high-voltage direct-current) power supply line is driven by a 800kV source with 2Ω internal resistance.

Of the total 5GW produced by the HVDC source, 10% of the power is lost in internal resistance, including a 3000km transmission line to the load.

What is the resistance of the load, the resistance of the transmission lines, and the voltage at the load?

photo: www.alstom.com

Strategy:

- use power and voltage to find resistance

10

From info given, find current, load and all internal resistances.

$$P_{del} = i_{AB} \cdot 800kV$$
 $P_{load} = i_{AB}^2 \cdot R_L$ $i_{AB} = \frac{5GW}{800kV} = 6.25kA$ $R_L = \frac{0.9 \times 5GW}{(6.25kA)^2} = 1.5$

$$P_{\text{internal}} = i_{AB}^2 \cdot R_T$$

$$R_T = \frac{0.1 \times 5GW}{(6.25kA)^2} = 12.8\Omega$$

Model of physical system adjusted based on value found:

Breakdown of internal resistance contributions to find resistance of transmission lines:

$$R_T = R_{source} + 2R_{line} = 12.8\Omega$$

$$R_T = 2\Omega + 2R_{line} == 12.8\Omega$$

$$R_{line} = \frac{12.8 - 2\Omega}{2} = 5.4\Omega$$

voltage divider to find voltage at the load:

$$\frac{v_{AB}}{800kV} = \frac{115.2\Omega}{12.8\Omega + 115.2\Omega}$$
$$v_{AB} = 0.900 \cdot 800kV = 720kV$$

this is a 10% drop in voltage

Source Transformation

Source Transformation:

A Thévenin circuit and a Norton circuit are actually equivalent when their i_{AB} - v_{AB} diagrams are identical!

Source Transformation

Proof: Show that the <u>terminal equations</u> relating v_{AB} and i_{AB} are <u>identical</u> for appropriately chosen component values.

In other words, show that the i_{AB} - v_{AB} diagrams are identical:

KVL:
$$0 = -v_{OC} + v_R + v_{AB}$$

Ohm:
$$v_R = i_{AB}R_T$$

Combining the above:

$$v_{AB} = v_{OC} - i_{AB}R_T$$

Source Transformation

Next, analyze the Norton circuit:

$$KCL: \qquad 0 = -i_{SC} + i_R + i_{AB}$$

Ohm:
$$i_R = v_{AB}/R_T$$

Combining the above:

$$i_{AB} = i_{SC} - v_{AB} / R_T$$

Comparing the two circuit terminal laws:

$$\begin{aligned} v_{AB} = & v_{OC} - i_{AB} R_T \\ i_{AB} = & i_{SC} - v_{AB} / R_T \longrightarrow v_{AB} = & i_{SC} R_T - i_{AB} R_T \end{aligned}$$

The two circuits are thus equivalent when: $v_{OC}=i_{SC}R_{T}$

$$v_{OC} = i_{SC} R_T$$

Reduce the following circuit to a single **Norton equivalent circuit** with respect to the terminals A and B.

Strategy:

- use transformations between Thévenin and Norton equivalent circuits, working from left to right

Transform Thévenin circuit on the left into a Norton circuit.

$$i_{SC} = v_{OC}/R_T$$
$$= 24V/4\Omega$$
$$= 6A$$

Transform circuit on the left into a Norton circuit.

$$i_{SC} = 2A + 6A = 8A$$

Transform circuit on the left into a Thévenin circuit.

$$v_{OC} = i_{SC}R_T$$
$$= 8A \cdot 4\Omega$$
$$= 32V$$

Use series equivalent resistance and transform circuit on the left into a Norton circuit

$$R_T = 4\Omega + 4\Omega = 8\Omega$$
$$i_{SC} = v_{OC}/R_T$$
$$= 32V/8\Omega$$
$$= 4A$$

Use parallel equivalent resistance to create a Norton circuit.

$$R_T = 8\Omega \parallel 1\Omega$$

$$R_T = \frac{8\Omega \cdot 1\Omega}{8\Omega + 1\Omega} = \frac{8}{9}\Omega$$

