THAPAR INSTITUTE OF ENGINEERING AND TECHNOLOGY, PATIALA MICROPROCESSOR-BASED SYSTEMS DESIGN

UCS617 2122EVESEM

Lab Assignment-1 (8085)

Submitted By:

Kunal Garg	101903683
Riya Mittal	101903687
Sameer Mahajan	101903686
Saksham Chauhan	101903682
Abhinav Goyal	101903684

Batch: 3COE26

Submitted To:

Dr. Manju Khurana Assistant Professor, CSED TIET, Patiala

INDEX

S.No	Problem	Pg Number
1	Introduction of 8085-microprocessor kit and steps for execution on the kit.	3 - 4
2	Familiarity with 8085-microprocessor kit.	5 – 20
3	Write a program for the sum of a series of numbers.	21 – 22
4	Write a program for data transfer from memory block B1 to memory block B2.	23 – 28
5	Write a program for multiplying two 8-bit numbers.	29 – 30
6	Write a program to add ten 8-bit numbers. Assume the numbers are stored in 8500-8509. Store the result in 850A and 850B memory addresses.	31 – 32
7	Write a program to find the negative numbers in a block of data.	33 – 34
8	Write a program to count the number of one's in a number.	35 – 36
9	Write a program to arrange numbers in Ascending order.	37 – 41
10	Calculate the sum of a series of even numbers.	42 – 43
11	Write an assembly language program to verify how many bytes are present in a given set, which resembles 10101101 in 8085.	44 – 45
12	Write an assembly language program to find the numbers of even parity in ten consecutive memory locations in 8085.	46 – 47
13	Write an assembly language program to convert a BCD number into its equivalent binary in 8085.	48 – 49
14	Write an assembly language program for exchanging the contents of memory location.	50 – 51
15	Write a program to find the largest number in an array of 10 elements.	52 – 53

Problem 1: Introduction of 8085-microprocessor kit and steps for execution on the kit.

Features of 8085 Microprocessor:

The Intel 8085 microprocessor is an NMOS 8-bit device. It has a 16-bit address bus and an 8- bit data bus. The total addressable memory size of 8085 microprocessor is 64 KB. It has a set of registers which contribute to the effective and efficient working of the microprocessor.

To view the overall working of the 8085 microprocessor, a kit has been designed so that the programming on this microprocessor can be best understood by the students.

The kit consists of the following components:

- A 6-byte display screen which is further divided into two parts, one containing 4-byte
- displaying the address and the remaining 2-bytes which are used to display the data.
- A keypad which is used to operate the kit.
- A 40-pin 8085 microprocessor.
- A 20-pin address latch used to manage the address transfer from the AD bus.

- A memory unit which consists of three 28-pin IC's which are used to provide memory to the processor.
- A 24-pin timer controller which is used to control the clock frequency.

Hardware Specifications:

- Operating System: Windows XP (sp3), Windows Vista, Windows 7 and above 32-bit and 64-bit operating systems.
- Minimum Screen Resolution: 1024x768
- Memory Space:3 to 5 MB
- .net Framework: 4.0.3210

Steps for Execution:

- Press Reset
- Press Examine Memory
- Enter starting address
- Press Next
- Enter opcodes by subsequently pressing Next
- Press Reset
- Press Go
- Enter starting address of the program to compile
- Press EXEC/FILL
- Press Reset
- Press Examine Memory
- Enter Output Address
- Press Next

Program 2.1: Write a program to store 8-bit data into one register and then copy that to all registers.

Code	Memory Location	Opcode
MVI A, 48	8000, 8001	3E, 48
MOV B, A	8002	47
MOV C, A	8003	4F
MOV D, A	8004	57
MOV E, A	8005	5F
MOV H, A	8006	67
MOV L, A	8007	6F
RST 5	8008	EF

Output:

$$A - 48$$
, $B - 48$, $C - 48$, $D - 48$, $E - 48$, $H - 48$, $L - 48$

Program 2.2:

Write a program for addition of two 8-bit numbers.

Code:

Code	Memory Location	Opcode
MVI A, 48	8000, 8001	3E, 48
MOV B, 48	8002,8003	06,48
ADD B	8004	80
STA 8500	8005,8006,8007	32,00,85
RST 5	8008	EF

Output: [8500] - 90

Program 2.3
Write a program to add 8-bit numbers using <u>Direct addressing</u> mode.

Code	Memory Location	Opcode
LDA 8500	8000,8001,8002	3A,00,85
MOV B,A	8003	47
LDA 8501	8004,8005,8006	3A,01,85
ADD B	8007	80
STA 8502	8008,8009,800A	32,02,85
RST 5	800B	EF

Input – [8500] - 88, [8501] - 88 **Output** – [8502] - 10

Program 2.3: Write a program to add 8-bit numbers using <u>Indirect addressing</u> mode.

Code	Memory Location	Opcode
LXI H,8500	8000,8001,8002	21,00,85
MOV A,M	8003	7E
INX H	8004	23
ADD M	8005	86
INX H	8006	23
MOV M,A	8007	77
RST 5	8008	EF

Input – [8500] - 88, [8501] - 88

Output – [8502] – 10

Program 2.4
Write a program to add 16-bit numbers using <u>Direct addressing</u> mode.

Code	Memory Location	Opcode
LHLD 8500	8000,8001,8002	2A,00,85
XCHG	8003	ЕВ
LHLD 8502	8004,8005,8006	2A,02,85
DAD D	8007	19
SHLD 8504	8008,8009,800A	22,04,85
RST 5	800B	EF

Input – [8500] - 48, [8501] - 48, [8502] - 48, [8503] - 48 **Output** – [8504] - 90, [8505] - 90

Program 2.4
Write a program to add 16-bit numbers using <u>Indirect addressing</u> mode.

Code	Memory Location	Opcode
LXI B,8500	8000,8001,8002	01,00,85
LDAX B	8003	0A
MOV D,A	8004	57
INX B	8005	03
LDAX	8006	0A
ADD D	8007	82
STA 8504	8008,8009,800A	32,04,85
INX B	800B	03
LDAX B	800C	0A
MOV D,A	800D	57
INX B	800E	03
LDAX B	800F	0A
ADC D	8010	8A
STA 8505	8011,8012,8013	32,05,85
RST 5	8014	EF

Input – [8500] - 34, [8501] - 48, [8502] - 54, [8503] - 78 **Output** – [8504] - 7C, [8505] - CC

Program 2.5: Write a program to 8-bit numbers using carry (using JNC instruction).

Code	Memory Location	Opcode
MVI C, 00	8000, 8001	0E, 00
LXI H, 8500	8002, 8003, 8004	21, 00, 85
MOV A, M	8005	7E
INX H	8006	23
ADD M	8007	86
JNC Next	8008, 8009, 800A	D2, 0D, 80
INR C	800B	ОС
INX H	800C	23
Next: MOV M, A	800D	77
INX H	800E	23
MOV M, C	800F	71
RST 5	8010	EF

Input - [8500] - 88, [8501] - 88 **Output -** [8502] - 10, [8503] - 01

Program 2.6: Write a program to find 1's complement and 2's complement of 8-bit numbers.

Code	Memory Location	Opcode
LDA 8500H	8000, 8001, 8002	3A, 00, 85
CMA	8003	2F
STA 8501H	8004, 8005, 8006	32, 01, 85
RST 5	8007	EF

Input - [8500] – 48 **Output -** [8501] – B7

Problem: 2's complement of 8-bit numbers

Code	Memory Location	Opcode
LDA 8500H	8000, 8001, 8002	3A, 00, 85
CMA	8003	2F
INR A	8004	3C
STA 8501H	8005, 8006, 8007	32, 01, 85
RST 5	8008	EF

Input - [8500] – 48 **Output -** [8501] – B8

Program 3:
Write a program for the sum of a series of numbers.

Code	Memory Location	Opcode
LDA 8500H	8000, 8001, 8002	3A, 00, 85
MOV C, A	8003	4F
SUB A	8004	97
LXI H, 8501H	8005.8006,8007	21,01,85
BACK: ADD M	8008	86
INX H	8009	23
DCR C	800A	0D
JNZ Back	800B,800C,800D	C2,08,80
STA 8600H	800E,800F,8010	32,00,86
RST 5	8011	EF

 $\textbf{Input -} \ [8500] - 04, \ [8501] - 9A, \ [8502] - 52, \ [8503] - 89, \ [8504] - 3E$

Result - 1B3

Output - [8600] – B3

Program 4: Write a program for data transfer from memory block B1 to memory block

Code	Memory Location	Opcode
MVI C, 0AH	8000, 8001	0E,0A
LXI H, 8500H	8002, 8003, 8004	21,00,85
LXI D,8600H	8005, 8006, 8007	11,00,86
BACK: MOV A, M	8008	7E
STAX D	8009	12
INX H	800A	23
INX D	800B	13
DCR C	800C	0D
JNZ Back	800D,800E,800F	C2,08,80
RST 5	8010	EF

Program 5: Write a program for multiplying two 8-bit numbers.

Code	Memory Location	Opcode
LDA 8500H	8000, 8001, 8002	3A, 00, 85
MOV E, A	8003	5F
MVI D, 00	8004, 8005	16, 00
LDA 8501H	8006, 8007, 8008	3A, 01, 85
MOV C, A	8009	4F
LXI H, 0000H	800A, 800B, 800C	21, 00, 00
Back: DAD D	800D	19
DCR C	800E	0D
JNZ Back	800F, 8010, 8011	C2, 0D, 80
SHLD 8600H	8012, 8013, 8014	22, 00, 86
RST 5	8015	EF

Input - [8500] - B2, [8501] - 03Result - B2 + B2 + B2 = 0216 H Output - [8600] - 16, [8601] - 02

Program 6: Write a program to add ten 8-bit numbers. Assume the numbers are stored in 8500-8509. Store the result in 850A and 850B memory addresses.

Code	Memory Location	Opcode
MVI C,00	8000, 8001	0E, 00
MVI B,09	8002, 8003	06, 09
LXI H, 8501H	8004, 8005, 8006	21, 00, 85
MOV A, M	8007	4E
Back: INX H	8008	23
ADD M	8009	86
JNC Next	800A, 800B, 800C	D2, 0E, 80
INR C	800D	ОС
Next: DCR B	800E	05
JNZ Back	800F, 8010, 8011	C2, 08, 80
INX H	8012	23
MOV M,A	8013	77
INX H	8014	23
MOV M,C	8015	71
RST 5	8016	EF

Output - [850A] - 08, [850B] - 01

Program 7: Write a program to find the negative numbers in a block of data.

Code	Memory Location	Opcode
LDA 8500H	8000, 8001, 8002	3A, 00, 85
MOV C, A	8003	4F
MVI B, 00	8004, 8005	06, 00
LXI H, 8501H	8006, 8007, 8008	21, 01, 85
Back: MOV A, M	8009	7E
ANI 80H	800A, 800B	E6, 80
JZ Skip	800C, 800D, 800E	CA, 10, 80
INR B	800F	04
Skip: INX H	8010	23
DCR C	8011	0D
JNZ Back	8012, 8013, 8014	C2, 09, 80
MOV A, B	8015	78
STA 8600H	8016, 8017, 8018	32, 00, 86
RST 5	8019	EF

Input - [8500] - 04, [8501] - 56, [8502] - A9, [8503] - 73, [8504] - 82

Result - 02

Output - [8600] – 02

Program 8:

Write a program to count the number of one's in a number.

Code:

Code	Memory Location	Opcode
LDA 8500H	8000,8001,8002	3A,00,85
MVI B,08	8003,8004	06,08
MVI D,00	8005,8006	16,00
Loop1: RLC	8007	07
JNC Loop2	8008,8009,800A	D2,0C,80
INR D	800B	14
Loop2: DCR B	800C	05
JNZ Loop1	800D,800E,800F	C2,07,80
MOV A,D	8010	7A
STA 8600H	8011,8012,8013	32,00,86
RST 5	8014	EF

Simulation:

Input – [8500] - 25 **Output** – [8600] - 03

Program 9:
Write a program to arrange numbers in Ascending order

Code	Memory Location	Opcode
LXI H, 8500H	8000, 8001, 8002	21, 00, 85
MOV C, M	8003	4E
DCR C	8004	0D
Repeat: MOV D, C	8005	51
LXI H, 8501H	8006,8007,8008	21,01,85
Loop: MOV A,M	8009	7E
INX H	800A	23
CMP M	800B	BE
JC Skip	800C,800D,800E	DA,14,80
MOV B, M	800F	46
MOV M, A	8010	77
DCX H	8011	2B
MOV M, B	8012	70
INX H	8013	23

Skip: DCR D	8014	15
JNZ Loop	8015,8016,8017	C2,09,80
DCR C	8018	0D
JNZ Repeat	8019,801A,801B	C2,05,80
RST5	801C	EF

Input - [8500] - 05, [8501] - 05, [8502] - 04, [8503] - 03, [8504] - 02, [8505] - 01

Output - [8500] - 05, [8501] - 01, [8502] - 02, [8503] - 03, [8504] - 04, [8505] - 05

Program 10:

Calculate the sum of a series of even numbers.

Code:

Code	Memory Location	Opcode
LDA 8500	8000,8001,8002	3A,00,85
MOV C,A	8003	4F
MVI B,00	8004,8005	06,00
LXI H,8501	8006,8007,8008	21,01,85
Back : MOV A,M	8009	7E
ANI 01	800A,800B	E6,01
JNZ Skip	800C,800D,800E	C2,12,80
MOV A,B	800F	78
ADD M	8010	86
MOV B,A	8011	47
Skip: INX H	8012	23
DCR C	8013	0D
JNZ Back	8014,8015,8016	C2,09,80
STA 8510	8017,8018,8019	32,10,85
RST 5	8010	EF

Simulation:

Input – [8500] - 04, [8501] - 20, [8502] - 15, [8503] - 13, [8504] - 22 **Output** – [8600] - 42

Program 11: Write an assembly language program to verify how many bytes are present in a given set, which resembles 10101101 in 8085.

Code	Memory Location	Opcode
MVI B, 0A	8000, 8001	06, 0A
MVI D, AD	8002, 8003	16, AD
MVI C, 00	8004, 8005	0E, 00
LXI H, 8500H	8006, 8007, 8008	21, 00, 85
Back: MOV A, M	8009	7E
CMP D	800A	BA
JNZ Next	800B, 800C, 800D	C2, 0F, 80
INR C	800E	ОС
Next: INX H	800F	23
DCR B	8010	05
JNZ Back	8011, 8012, 8013	C2, 09, 80
MOV A, C	8014	79
STA 8600H	8015, 8016, 8017	32, 00, 86
RST 5	8018	EF

Input -
$$[8500]$$
 – AD, $[8501]$ – 01, $[8502]$ – 01, $[8503]$ – 01, $[8504]$ – 01, $[8505]$ – 01, $[8506]$ – 01, $[8507]$ – 01, $[8508]$ – 01, $[8509]$ – 01

Output - [8600] – 01

Program 12: Write an assembly language program to find the numbers of even parity in ten consecutive memory locations in 8085.

Code	Memory Location	Opcode
MVI B, 0A	8000,8001	06,0A
MVI C,00	8002,8003	0E,00
LXI H,8500	8004,8005,8006	21,00,85
Back: MOV A,M	8007	7E
ANI FF	8008,8009	E6,FF
JPO Next	800A,800B,800C	E2,0E,80
INC C	800D	0C
Next: INX H	800E	23
DCR B	800F	05
JNZ Back	8010,8011,8012	C2,07,80
MOV A,C	8013	79
STA 850A	8014,8015,8016	32,0A,85
RST 5	8017	EF

Output – [8600] - 05

Program 13: Write an assembly language program to convert a BCD number into its equivalent binary in 8085.

Code	Memory Location	Opcode
LDA 8500H	8000, 8001,8002	3A,00,85
MOV B,A	8003	47
ANI 0F	8004,8005	E6,0F
MOV C,A	8006	4F
MOV A,B	8007	78
ANI F0	8008, 8009	E6,F0
RRC	800A	0F
RRC	800B	0F
RRC	800C	0F
RRC	800D	0F
MOV B,A	800E	47
XRA A	800F	AF
MVI D,0A	8010,8011	16,08
Sum: ADD D	8012	82
DCR B	8013	05

JNZ Sum	8014,8015,8016	C2,12,80
ADD C	8017	81
STA 8600H	8018,8019,801A	32,00,86
RST 5	801B	EF

Input - [8500] - 67**Output** - [8600] - 43

Program 14: Write an assembly language program for exchange the contents of memory location.

Code	Memory Location	Opcode
LDA 8500H	8000, 8001, 8002	3A, 00, 85
MOV B, A	8003	47
LDA 8600H	8004, 8005, 8006	3A, 00, 86
STA 8500H	8007, 8008, 8009	32, 00, 85
MOV A,B	800A	78
STA 8600H	800B, 800C, 800D	32, 00, 86
RST 5	800E	EF

Input - [8500] - 48, [8600] - 88

Output - [8500] - 88, [8600] - 48

Program 15: Write a program to find the largest number in an array of 10 elements.

Code	Memory Location	Opcode
MVI B, 09	8000, 8001	06, 09
LXI H, 8500H	8002, 8003, 8004	21, 00, 85
MOV A, M	8005	7E
INX H	8006	23
Back: CMP M	8007	BE
JNC Next	8008, 8009, 800A	D2, 0C, 80
MOV A, M	800B	7E
Next: INX H	800C	23
DCR B	800D	05
JNZ Back	800E, 800F, 8010	C2, 07, 80
STA 850AH	8011, 8012, 8013	32, 0A, 85
RST 5	8014	EF

Input - [8500] - 01, [8501] - 02... [8509] - 0AOutput - [850A] - 0A

