MiDAS course 2025

Miriam Peces, Sofie Zacho Vestergaard, Marta Nierychlo

2025-05-21, Aalborg, Denmark

Note: This is an R markdown report see this cheat sheet for more information on how to make nice Rmarkdown documents.

Background to the project

The dataset contains timeseries data from 4 Danish Wastewater Treatment Plants (WWTPs) from year 2020 collected in the frame of MiDAS project. The following excersices aim to get you familiar with the main microbial community analysis using the ampvis2 package, and other auxiliary packages such as ggplot2 for nice plots and dplyr for data wrangling.

Install ampvis2

Installation instructions and guides for ampvis2 can be found on the associated homepage. If you need to install it, please execute the code from the first chunk below (for windows users you need to start Rstudio as administrator).

Note: eval=F in the code chunk header means that it is not evaluated (run) when the html is build.

Load the packages

Remember to load the packages before you try to use the associated functions.

1. Load and prepare the data for analysis

1.1 Set your working directory

1.2 Load the data into R

With ampvis2 we can load all the necessary files into a single object, to make the further analysis easier and ordered. You can call it anything, but it's best to keep it short but meaningful To make the analysis easy the metadata, taxonomy and asvtable is combined into a single object d. You could name it however you like.

```
## Warning: Only 141 of 161 unique sample names match between metadata and otutable. The following unmark# metadata (20):
```

^{## &}quot;MQ221006-200", "MQ221006-201", "MQ221006-202", "MQ221006-203", "MQ221006-204", "MQ221006-205", "MQ

Q: What does the warning mean?

1.3 Let's explore the original data sets:

ASV-table. It contains the ASV ID (e.g. "ASV15", even though the column name says OTU, it contain ASVs), which can be linked to the original DNA sequence; the sample-identifier (e.g. "MQ201118-152"); the number of reads associated to each ASV in each sample (e.g. "ASV1" is seen 1539 times in sample "MQ201118-152").

```
## # A tibble: 3 x 4
##
     '#OTU ID' 'MQ201118-152' 'MQ201118-153' 'MQ211213-113'
##
                         <dbl>
## 1 ASV2
                          1539
                                                           3016
                                           998
## 2 ASV4
                           863
                                           533
                                                           1901
## 3 ASV5
                           404
                                           246
                                                           2204
```

We also load the metadata which contains information on each sample. Note that the **SampleID** is what connects your metadata to your ASV-table.

```
SampleID Line SampleContent SampleSite SampleDate
## 1 MQ201030-215
                                   AS Kalundborg 15/01/2020
                    LT
## 2 MQ201030-216
                    LT
                                   AS Kalundborg 24/01/2020
                                   AS Kalundborg 27/01/2020
## 3 MQ201030-217
                    LT
## 4 MQ201030-218
                    LT
                                   AS Kalundborg 03/02/2020
## 5 MQ201030-219
                    LT
                                   AS Kalundborg 10/02/2020
## 6 MQ201030-220
                    LT
                                   AS Kalundborg 17/02/2020
```

We can also check that everything in the ampvis2 object is correct, and get an overview of the object. Look at the first rows of the ASV table inside the ampvis2 object:

##		MQ201118-152	MQ201118-153	MQ201118-154	MQ201118-155	MQ201118-156
##	ASV1	174	147	155	173	232
##	ASV2	1539	998	990	2486	1542
##	ASV3	430	312	477	498	514
##	ASV4	863	533	452	614	597
##	ASV5	404	246	257	583	355
##	ASV6	1107	1067	1284	1341	1312
##		MQ201118-157	MQ201118-158	MQ201118-159	MQ201118-160	MQ201118-161
##	ASV1	249	305	259	232	255
##	ASV2	2476	1504	2466	1873	2146
##	ASV3	554	705	720	773	854
##	ASV4	561	572	658	562	571
##	ASV5	533	414	638	501	599
##	ASV6	1091	1450	1181	1008	920
##		MQ201118-162	MQ201118-163	MQ201118-164	MQ201118-165	MQ201118-166
##	ASV1	280	326	324	285	308
##	ASV2	2113	2366	2316	2423	1833
##	ASV3	1267	1074	1301	1166	1478
##	ASV4	690	575	487	469	514
##	ASV5	638	696	898	918	839
##	ASV6	1026	1057	1156	986	830
##		MQ201118-167	MQ201118-168	MQ201118-169	MQ201009-287	MQ201009-288

	ASV1	508	431	792	996	633	
	ASV2	798	1059	3593	957	1354	
	ASV3	1308	1905	4163	428	712	
	ASV4	316	518	449	363	303	
	ASV5	279	429	1677	888	797	
	ASV6	561	463	399	170	101	
##					MQ201009-292		
	ASV1	552	406	241	241	177	
	ASV2	1134	1270	718	541	464	
	ASV3	666	695	817	1016	1613	
	ASV4	239	274	229	179	153	
	ASV5	812	709	375	290	217	
	ASV6	113	73	64	68	52	010610 00
##	A CI 114				MQ210618-87 MC		
	ASV1	251	212	615	1064	613	1541
	ASV2	400	263	547	671	469	535
	ASV3	1576	1773	1085	1640	709	477
	ASV4	142	152	159	232	309	360
	ASV5	257 57	171	512	750	477	520
	ASV6		60 40010618 01 M	79	103	79	70
##	ASV1	1553	1939 1939	128 - 151 MU 128	Q201118−170 M(485	484	
	ASV1	626	507	849	1156	738	
	ASV3	457	416	290	1582	1706	
	ASV4	367	595	652	220	238	
	ASV5	683	599 599	196	924	417	
	ASV6	61	63	1321	387	439	
##	ADVO				MQ201118-175		
	ASV1	647	442	391	427	374	
	ASV2	862	401	234	188	169	
	ASV3	2856	1363	1127	1163	1229	
	ASV4	380	160	126	130	183	
	ASV5	582	315	219	196	231	
	ASV6	931	407	349	260	398	
##					MQ201118-180		
	ASV1	377	370	307	564	0	
	ASV2	227	184	223	176	2	
	ASV3	1097	1038	1023	1198	0	
	ASV4	156	117	137	151	0	
	ASV5	338	382	365	323	0	
##	ASV6	405	432	501	724	0	
##		MQ201118-182	MQ201118-183		MQ211213-102	MQ211213-103	
##	ASV1	56	. 0	1115	934	846	
##	ASV2	670	1	1145	1356	1146	
##	ASV3	108	0	4085	4038	3220	
##	ASV4	143	0	226	440	364	
##	ASV5	282	0	2103	2660	2130	
##	ASV6	133	0	699	527	397	
##			MQ201110-289		MQ201110-291		
##	ASV1	1190	957	1022	836	1305	
	ASV2	21	12	18	13	29	
##	ASV3	0	0	0	0	0	
##	ASV4	326	414	295	425	423	
##	ASV5	87	82	56	51	87	

##	ASV6	40	41	36	45	47
##					MQ201110-296	MQ201110-297
	ASV1	1117	1606	2811	1176	822
	ASV2	38	56	45	65	92
	ASV3	0	0	0	0	0
	ASV4	459	1117	581	934	1044
	ASV5	133	206	195	235	245
	ASV6	31	62	35	40	39
##					MQ201110-301	
	ASV1	855	585	589	276	288
	ASV2	97	92	122	62	55
	ASV3	0	0	0	0	0
	ASV4	770	706	813	400	643
	ASV5	227	214	220	143	139
##	ASV6	36	38	39	16	15
##	A CI 114				MQ201110-306	
	ASV1	274	347	286	682	357
	ASV2 ASV3	55 0	58 0	46 0	56 0	44 0
	ASV4	519	490	516	374	498
	ASV4	128	179	180	300	220
	ASV6	13	9	17	29	19
##	ADVO				MQ201030-234	
	ASV1	360	0	0	1	1
	ASV2	41	0	1	0	0
	ASV3	0	0	0	0	0
	ASV4	469	147	122	270	122
	ASV5	248	122	100	146	77
	ASV6	17	8	4	8	2
##				MQ201030-238	MQ201030-239	MQ201030-240
##	ASV1	. 0	. 0	. 0	. 1	. 0
##	ASV2	0	0	0	0	0
##	ASV3	0	0	0	0	0
##	ASV4	200	206	289	176	192
##	ASV5	73	75	77	102	77
##	ASV6	5	2	2	7	1
##		MQ201030-241	MQ220601-127	MQ220601-128	MQ220601-129	MQ220601-130
##	ASV1	0	0	0	0	0
	ASV2	0	0	1	0	0
	ASV3	0	0	0	0	0
	ASV4	169	57	69	58	55
	ASV5	46	14	9	15	5
	ASV6	4	1	1	2	1
##					MQ220601-134	
	ASV1	0	0	0	0	0
	ASV2	0	1	0	0	1
	ASV3	0	0	0	0	0
	ASV4	63	71	65	83	116
	ASV5	4	10	5	4	2
	ASV6	M0220601_126	M0220601_127	M0000601-139	4 M0201000-282	M0201000-284
##	ASV1				MQ201009-283 444	
		0	0	0		416
	ASV2	0	0	0	542	450
##	ASV3	1	0	0	180	95

##	ASV4	93	167	72	451	573
	ASV5	5	0	1	692	548
##	ASV6	4	2	0	83	102
##		MQ201009-285	MQ201009-286	MQ211213-114	MQ211213-115	MQ211213-116
##	ASV1	512	623	1465	993	866
##	ASV2	804	831	3309	2165	1888
##	ASV3	308	266	1736	1104	959
##	ASV4	401	384	1954	959	654
##	ASV5	687	720	2257	1322	922
##	ASV6	114	125	1400	944	855
##					MQ211213-120	
	ASV1	1210	776	960	1156	986
	ASV2	1949	1132	2148	3033	6
	ASV3	1215	1074	786	1097	0
	ASV4	568	258	1080	2654	560
	ASV5	937	422	800	972	91
##	ASV6	1137	1284	964	1214	30
## ##	ASV1	1228	1325	1272	MQ201110-283 1163	MQ201110-284 816
	ASV1	1228	1325	1272	1103	16
	ASV3	0	0	0	0	0
	ASV4	557	453	369	413	255
	ASV5	84	83	86	82	62
	ASV6	36	35	37	47	44
##	110 0 0				MQ201030-215	= =
	ASV1	670	812	1007	0	0
	ASV2	9	12	10	10	9
##	ASV3	0	0	0	0	0
##	ASV4	239	346	348	409	566
##	ASV5	50	61	86	304	363
##	ASV6	18	37	25	60	62
##		MQ201030-217	MQ201030-218	MQ201030-219	MQ201030-220	MQ201030-221
##	ASV1	1	0	1	0	0
##	ASV2	5	3	1	3	4
##	ASV3	0	0	0	0	0
	ASV4	483	406	431	666	508
	ASV5	376	390	430	469	347
	ASV6	45	50	42	59	44
##					MQ201030-225	
	ASV1	1	0	1	0	0
	ASV2	2	3	4	1	0
	ASV3 ASV4	0	0	0	0	0
	ASV4	437 303	511 321	541 254	566 271	310 175
	ASV6	47	35	42	49	28
##	ADVO				MQ201030-230	
	ASV1	0	0	1	0	0
	ASV2	4	1	1	1	1
	ASV3	0	0	0	0	0
	ASV4	286	299	264	363	310
	ASV5	129	154	203	194	170
	ASV6	22	15	10	12	6
##		MQ211213-104	MQ211213-105	MQ211213-106	MQ211213-107	MQ211213-108
##	ASV1	773	863	1136	1149	953

##	ASV2	944	793	1024	1239	791
##	ASV3	2238	2072	2146	2327	1806
##	ASV4	406	462	473	549	338
##	ASV5	1777	1548	1728	1979	1057
##	ASV6	445	493	718	909	956
##		MQ211213-109	MQ211213-110	MQ211213-111	MQ211213-112	MQ211213-113
##	ASV1	880	766	1248	919	1405
##	ASV2	807	863	2018	1957	3016
##	ASV3	1314	933	1534	1149	1825
##	ASV4	303	420	1132	1179	1901
##	ASV5	983	1043	1985	1550	2204
##	ASV6	857	808	1181	921	1336

Look at the last rows of the metadata inside the ampvis2 object:

```
SampleID Line SampleContent SampleSite SampleDate
##
## MQ211213-108 MQ211213-108
                                                     Randers 05/10/2020
                                LT
                                              AS
## MQ211213-109 MQ211213-109
                                              AS
                                                     Randers 14/10/2020
## MQ211213-110 MQ211213-110
                                LT
                                              AS
                                                     Randers 19/10/2020
## MQ211213-111 MQ211213-111
                                              AS
                                                     Randers 26/10/2020
## MQ211213-112 MQ211213-112
                                LT
                                              AS
                                                     Randers 04/11/2020
## MQ211213-113 MQ211213-113
                                LT
                                              AS
                                                     Randers 09/11/2020
```

Look at the first rows of the taxonomy table inside the ampvis2 object:

```
Kingdom
                                 Phylum
                                                          Class
                                                                             Order
## ASV1 k__Bacteria p__Actinobacteriota
                                              c__Actinobacteria
                                                                  o__Micrococcales
## ASV2 k__Bacteria p__Actinobacteriota
                                              c__Acidimicrobiia o__Microtrichales
## ASV3 k__Bacteria
                         p__Chloroflexi
                                                c__Anaerolineae
                                                                       o__C10-SB1A
## ASV4 k Bacteria
                          p__Firmicutes
                                                     c__Bacilli o__Lactobacillales
## ASV5 k__Bacteria p__Actinobacteriota
                                             c__Acidimicrobiia o__Microtrichales
## ASV6 k__Bacteria
                      p__Proteobacteria c__Alphaproteobacteria o__Rhodobacterales
                       Family
                                                                          Species
## ASV1 f__Intrasporangiaceae g__Ca_Phosphoribacter
                                                                     s_midas_s_5
## ASV2
           f__Microtrichaceae
                                   g__Ca_Microthrix s__Ca_Microthrix_parvicella
## ASV3
            f__Amarolineaceae
                                   g__Ca_Amarolinea
                                                        s__Ca_Amarolinea_dominans
## ASV4
        f__Carnobacteriaceae
                                    g__Trichococcus
                                                                     s_{midas_s_4}
           f\_Microtrichaceae
## ASV5
                                   g__Ca_Microthrix s__Ca_Microthrix_subdominans
                                     g__Rhodobacter
##
  ASV6
          f__Rhodobacteraceae
##
## ASV1 ASV1
## ASV2 ASV2
## ASV3 ASV3
## ASV4 ASV4
## ASV5 ASV5
## ASV6 ASV6
```

Q: What are the minimum and maximum number of reads in the dataset?

```
## ampvis2 object with 4 elements.
## Summary of OTU table:
## Samples OTUs Total#Reads Min#Reads Max#Reads Median#Reads
```

```
##
            141
                        12229
                                   6316036
                                                     886
                                                                127366
                                                                              42719
##
      Avg#Reads
       44794.58
##
##
##
  Assigned taxonomy:
                                                       Order
##
         Kingdom
                         Phylum
                                        Class
                                                                     Family
     12229(100%) 12159(99.43%) 12117(99.08%) 12019(98.28%) 11839(96.81%)
##
##
           Genus
                        Species
## 11114(90.88%)
                  8897 (72.75%)
##
## Metadata variables: 5
    SampleID, Line, SampleContent, SampleSite, SampleDate
Q: What are the minimum and maximum number of reads in Ribe?
## 111 samples and 4341 OTUs have been filtered
## Before: 141 samples and 12229 OTUs
## After: 30 samples and 7888 OTUs
## ampvis2 object with 4 elements.
   Summary of OTU table:
##
##
        Samples
                         0TUs
                              Total#Reads
                                               Min#Reads
                                                            Max#Reads Median#Reads
##
             30
                         7888
                                   1138608
                                                   25903
                                                                 69635
                                                                            37354.5
##
      Avg#Reads
##
        37953.6
##
##
   Assigned taxonomy:
##
        Kingdom
                       Phylum
                                     Class
                                                   Order
                                                               Family
                                                                              Genus
##
     7888(100%) 7865(99.71%) 7854(99.57%)
                                            7817(99.1%) 7742(98.15%) 7313(92.71%)
##
        Species
    5782 (73.3%)
##
##
## Metadata variables: 5
    SampleID, Line, SampleContent, SampleSite, SampleDate
```

1.4 Add/modify metadata

Sometimes the data types in the metadata columns are not what we want. For example, we would like *SampleDate* to be a Date column, but now is character. This can create some conflicts later on, so it's better to change upfront. Also, you can create a new column in the metadata with the Month information (as a character) based on the SampleDate column or as a factor if you'd like to have the months names.

```
##
  'data.frame':
                   141 obs. of 5 variables:
##
   $ SampleID
                          "MQ201118-152" "MQ201118-153" "MQ201118-154" "MQ201118-155" ...
                   : chr
##
                   : chr
                          "LT" "LT" "LT" "LT" ...
                         "AS" "AS" "AS" "AS" ...
##
   $ SampleContent: chr
   $ SampleSite
                          "Randers" "Randers" "Randers" ...
                   : chr
                          "07/01/2020" "17/01/2020" "21/01/2020" "29/01/2020" ...
   $ SampleDate
                   : chr
```

Check the data types in the metadata after modifications

```
## 'data.frame':
                    141 obs. of 7 variables:
##
   $ SampleID
                          "MQ201118-152" "MQ201118-153" "MQ201118-154" "MQ201118-155" ...
                   : chr
                          "LT" "LT" "LT" "LT" ...
##
   $ Line
                   : chr
                          "AS" "AS" "AS" "AS" ...
##
   $ SampleContent: chr
                          "Randers" "Randers" "Randers" ...
##
   $ SampleSite
                   : chr
   $ SampleDate
                   : Date, format: "2020-01-07" "2020-01-17" ...
##
                          "01" "01" "01" "01" ...
   $ Month
                   : Factor w/ 12 levels "January", "February", ...: 1 1 1 1 2 2 2 2 3 3 ...
   $ MonthName
```

Remove unnecessary files

Basic QC analysis

Evaluation of negative controls: as we often work with tiny amounts of DNA contamination often occur. This could be from other samples, yourself and even the kits/reagents we use. Hence, it is important to take a critical look at the negative controls compared to the real samples. However, in the interest of time you can assume that problematic samples have been removed from the data set.

1. Rarefaction curves

The goal of this analysis is to evaluate if we have sequenced enough reads pr. sample to represent the diversity in the samples. This is often a subjective decision. For every sample, we take 1 read at a time, and evaluate if this belongs to an ASV we have already observed, or if this read represents new diversity (and ASV that has not been observed before). Every time we evaluate a new read we move 1 point on the x-axis and if it is a new ASV we also move 1 point up on the y-axis. When the curve is steep we discover new ASVs often, indicating that we need to sequence more reads to capture the diversity in the sample. When the curve flattens, we rarely observe new ASVs, indicating that we have captured most of the diversity in the sample. Often you have to compromise with the number of reads in order to keep more samples in your analysis.

The function amp_alphadiv takes the metadata and appends the number of reads and ASVs in each sample which then can be used for further analysis.

```
##
                    SampleID Line SampleContent SampleSite SampleDate Month
## MQ201118-181 MQ201118-181
                                                     Randers 2020-07-27
                                LT
                                              AS
## MQ201118-183 MQ201118-183
                                                     Randers 2020-08-11
                                                                            08
                                LT
                                              AS
## MQ220601-131 MQ220601-131
                                LT
                                              AS Kalundborg 2020-10-16
                                                                            10
## MQ220601-130 MQ220601-130
                                              AS Kalundborg 2020-10-05
                                LT
                                                                            10
## MQ220601-129 MQ220601-129
                                LT
                                              AS Kalundborg 2020-09-30
                                                                            09
## MQ220601-127 MQ220601-127
                                LT
                                              AS Kalundborg 2020-09-09
                                                                            09
##
                MonthName Reads uniqueOTUs
                                             Shannon
                                                        Simpson invSimpson
                                                                 13.943586
## MQ201118-181
                     July
                             886
                                         30 2.864474 0.9282824
## MQ201118-183
                                         31 2.387568 0.8009968
                                                                  5.025044
                   August
                           1188
## MQ220601-131
                  October 14136
                                       1776 5.818483 0.9879157
                                                                 82.752046
## MQ220601-130
                  October 14258
                                       1771 5.825115 0.9874007
                                                                 79.369266
## MQ220601-129 September 14497
                                       1689 5.796092 0.9871528
                                                                 77.838007
## MQ220601-127 September 14532
                                       1743 5.865044 0.9888748
                                                                 89.885752
```

2. Check the number of reads produced pr. sample.

Note: You can use "+" to modify all ampvis2 plots as behind the surface they are just ggplot2 objects. Here we change a number of features (e.g. y axis title or x axis label position).

3. Subset to a miminum number of reads per sample

After we have decided that we don't trust that samples with less than 10000 we remove them from our analysis. We store the subset in the object "ds_midas".

2 samples and 11 OTUs have been filtered

 $\mbox{\tt \#\#}$ Before: 141 samples and 12229 OTUs

After: 139 samples and 12218 OTUs

4. Count the number of samples per plant

Use the function count() from the tidyverse package to summarize how many samples were taken at each WWTP as a simple table. You could also visualize it using e.g. geom_col() or geom_bar() from the ggplot2 package.

```
## # A tibble: 4 x 2
               SampleSite [4]
## # Groups:
##
     SampleSite
##
     <chr>
                 <int>
## 1 Kalundborg
                    39
## 2 Lynetten
                    19
## 3 Randers
                    51
## 4 Ribe
                    30
```


5. Rarefy

For some analyses it is preferable to rarefy the dataset, in other words standardise sequencing depth across samples, to make fair comparisons. It is a topic that gets highly debated in literature since it produces a "data-loss", but in general it is advisable to use it when performing alpha diversity comparisons.

Warning: The chosen rarefy size (10000) is smaller than the smallest amount of ## reads in any sample (14136).

0 samples have been filtered.

Q: Should we worry about the warning?

6. Normalise

For some analyses we may want to have our ampvis2 object to normalise the ASv read counts to 100 (relative abundance). Many ampvis functions have the option to normalise when calling it.

0 samples have been filtered.

Data analysis

1. Alpha diversity

In microbial community analysis we often also quantify the diversity of the community in any single sample. This can be quantified with a single number that takes into account the number and abundance of the individual taxa. There are numerous ways of calculating these diversity indices, and many can be calculated using the amp_alpha_diversity() function. The results are appended to the end of metadata as simple columns.

```
##
                    SampleID Line SampleContent SampleSite SampleDate Month
                                                    Randers 2020-01-07
## MQ201118-152 MQ201118-152
## MQ201118-153 MQ201118-153
                                                    Randers 2020-01-17
                               LT
                                              AS
                                                                           01
## MQ201118-154 MQ201118-154
                                                    Randers 2020-01-21
                                                                           01
                               LT
                                              AS
## MQ201118-155 MQ201118-155
                                              AS
                                                    Randers 2020-01-29
                               LT
                                                                           01
## MQ201118-156 MQ201118-156
                               LT
                                              AS
                                                    Randers 2020-02-06
                                                                           02
## MQ201118-157 MQ201118-157
                                              AS
                               LT
                                                    Randers 2020-02-14
                                                                           02
##
                MonthName Reads uniqueOTUs
                                            Shannon
                                                       Simpson invSimpson
## MQ201118-152
                  January 10000
                                       1827 6.198710 0.9932242
                                                                  147.5832
## MQ201118-153
                  January 10000
                                       1872 6.196973 0.9928831
                                                                  140.5098
                                                                  119.1262
## MQ201118-154
                  January 10000
                                       1882 6.109789 0.9916055
                  January 10000
## MQ201118-155
                                       1856 6.126986 0.9917604
                                                                  121.3657
## MQ201118-156
                 February 10000
                                       1797 6.125199 0.9923990
                                                                  131.5613
                 February 10000
## MQ201118-157
                                       1915 6.161394 0.9916501
                                                                  119.7613
```

Plot the species richness - ObservedOTUs and Shannon diversity of the alpha data set using the geom_boxplot() from the ggplot2 package. See e.g. [this example](http://www.sthda.com/english/wiki/ggplot2-box-plot-quick-start-guide-r-software-and-data-visualization. In which plant the microbial community is least diverse?

1.1 Alpha-diversity additional tasks

Compare the alpha diversity results using the non-rarefied dataset. What are your observations?

2. Beta diversity

When we are comparing between samples we call it beta-diversity. One of the most common ways or comparing large data sets and identify similarities and differences are using ordination. See this guide for an introduction to the topic. Ordination is trying to show you the largest differences between samples. In ordination we take the ASV table with 1000's of bacteria and try to visualize which samples have similar microbial communities. Samples (colored dots) located close together have similar microbial communities, while samples located far apart have different microbial communities. There are many versions of the ordination. One of the most simple and commonly used is PCA where the raw ASV counts are often transformed using hellinger transformation that takes the square root of the relative abundance. See this guide for short intro on Hellinger and other data transformations. In addition to transforming the data, different types of ordination can be made (PCoA or NMDS are also often used).

2.1 Perform a PCA

Q: What can you say about the similarity of microbial communities in the 4 WWTPs based on PCA plot?

10898 OTUs not present in more than 0.1% relative abundance in any sample have been filtered

Before: 12218 OTUs ## After: 1320 OTUs

2.2 Problematic samples

Identify the outlier (by e.g. using amp_ordination & sample_label_by option or amp_heatmap & adjusting the "Group_by" parameter to show the "Sample"), subset the dataset to remove the outlier sample and replot the ordination and heatmap.

10898 OTUs not present in more than 0.1% relative abundance in any sample have been filtered

Before: 12218 OTUs ## After: 1320 OTUs

Warning: ggrepel: 138 unlabeled data points (too many overlaps). Consider

increasing max.overlaps

Remove outlier. Depending on which stage of your analysis, it can be necessary to re-do it with the outlier(s) removed from the beginning. For this exercise we will move from here on without the outlier: **Create new ampvis2 object**

```
## 1 samples and 25 OTUs have been filtered
## Before: 139 samples and 12218 OTUs
## After: 138 samples and 12193 OTUs
## 1 samples and 25 OTUs have been filtered
## Before: 139 samples and 12218 OTUs
## After: 138 samples and 12193 OTUs
```

Check that we have effectively removed the outlier

```
## 10986 OTUs not present in more than 0.1% relative abundance in any sample have been filtered
## Before: 12193 OTUs
## After: 1207 OTUs
```


2.3 Explore ordinations

Which bacteria are mainly causing the differences among the observed clusters (hint: try using species_nlabels and species_label_taxonomy). Keep the ordination results handy, how do the ordination relate the ordination results to your heatmap?

10986 OTUs not present in more than 0.1% relative abundance in any sample have been filtered

Before: 12193 OTUs ## After: 1207 OTUs

2.4. Beta-diveristy addtional tasks

Try different ordinations, e.g PCoA based on bray-curtis distance

10986 OTUs not present in more than 0.1% relative abundance in any sample have been filtered

Before: 12193 OTUs ## After: 1207 OTUs

(Advanced) Evaluate the statistical significance Install vegan package (install only if you don't have it) Plot adding the statistical significance

10986 OTUs not present in more than 0.1% relative abundance in any sample have been filtered

Before: 12193 OTUs ## After: 1207 OTUs

3. Microbial abundance

3.1 Which are the 25 most abundant genera in each Plant?

We normally start data analysis by making overview using the amp_heatmap() function. Modify the heatmap below using the relevant options - inspirations can be found in the Get started guide.

Top 25 genera using MiDAS 5.3

	_	_		
_ Ca_Microthrix <i>-</i>	0.6	4.8	4.9	0.6
JGI_0001001-H03-	8	0.3	0.7	0.8
Ca_Opimibacter -	0	0.6	0.9	10.5
R <u>h</u> odobacter-	0.7	2.7	4.1	1.3
Rhodoferax-	0.1	0.4	3.4	2.9
Ca Microthrix - JGI 0001001-H03 - Ca Opimibacter - Rhodobacter - Rhodoferax - Ca Leptovillus - Trichococcus - Hyphomicrobium - Ca Competibacter - midas g 6 - Stenotrophobacter - Ca Phosphoribacter - Defluviicoccus - Acidovorax - midas g 59 -	6	0.8	0	0
Trichococcus -	1.2	1.4	1.7	2.5
Hyphomicrobium -	1.9	1.3	1.2	1.9
Ca_Competibacter -	0.6	8.8	0.1	0.3
midas_g_6-	0.4	0	3.6	0.3
Stenotrophobacter-	3.8	0	0.5	1
Ca_Phosphoribacter-	0	2.6	1.4	2.8
Defluviicoccus -	4.6	0.3	0.1	0.1
Acidovorax -	0.3	0.4	2.4	1.2
midas_g_59 - Ca_Amarolin <u>ea</u> -	0.9	2.6	1.2	0.8
Ca_Amarolinea -	0	2	2.6	0
midas_g_57 - Ca_Promineofilum - _ Terrimonas -	0.6	0.9	1.4	1.6
Ca_Promineofilum -	0.6	5	0.2	0.4
_ Terrimonas -	0.1	0.8	1.6	1.4
Ferruginibacter-	0	0.4	0.9	2.9
midas_g_31 -	0.6	1	0.9	1.1
Ferruginibacter - midas_g_31 - Ca_Sarcinithrix -	2.2	0.9	0.1	0.2
Ca_Amarobacter-	0.9	0.4	1.1	0.7
Ca_Lutibacillus -	0	0.3	0	3.6
Ca_Amarobacter - Ca_Lutibacillus - midas_g_321 -	2.4	0.2	0.3	0
G	L D	_	Ś	(I)
	o o	重	e e	Ribe
	용	<u>e</u>	þ	~
	Kalundborg -	-ynetten -	Randers -	
	a F	_	Ľ.	
	~			

3.2 Try visualising with a boxplot

3.3 Which are the 25 most abundant genera in each WWTP and month?

	Kalundborg							Lynetten											Randers										Ribe									
Ca_Microthrix -	1.1 1.2	1	0.9	8.0	0.7	0.4 (0.4	0.4	0.2 0	.1 0.1	5.5	6.9	8.2	8.6	6.5	3.1	2.2	3.8	2.5	2.7 2	2.3	4	6	7.2	5.7	6.2 1	.4 1	.6 7	.2 5	5 4.4	4 5.	4 5.1	0.3	0.3	0.3	0.6	1 0.	.7 0.9
JGI_0001001-H03-	5.2 6.8	6	6.5	5.4	5.3	6.7	6.2	1.4 9	9.9 17	.2 26	0.4	0.3	0.3	0.2	0.2	0.3	0.2	0.3	0.3	0.2	0.2	1	1.1	1.1	1 (0.8	.8 0	.7 0	.3 0	3 0.3	3 0.:	3 0.4	0.8	1	1	0.9	0.8	.6 0.5
Ca_Opimibacter -	0 0	0	0	0	0	0	0	0	0	0 0	0.7	0.9	0.5	0.7	8.0	8.0	0.6	0.4	0.5	0.3	0.4	1.2	1.3	1.2 (0.8	1	1	1 0	.6 0	7 0.6	6 0.	0.7	4.6	6.1	6.7	8.3 1	3.3	17.8
Rhodobacter -	1.5 1.2	1	0.9	0.5	0.3	0.2	0.3	0.7	0.9	0.5	3.9	4.5	5.1	3	2.1	1.5	1.7	2.5	2.1	1.9	1.6	6.1	6.7	5.7	4 2	2.6 2	.2 2	.9 2	.9 2	5 3.8	3.	5 5.2	1.4	1.3	1.7	1.7 1	.5 0	.7 0.6
Rhodoferax -	0.1 0.1	0.2	0.1	0.1	0	0	0	0	0	0 0	0.6	0.5	0.5	0.5	0.5	0.4	0.3	0.1	0.2	0.2	0.2	6.2	4.9	5.1	5.1	3.6	3 2	.3 1	.7 1	4 1.9	9 2	2.5	3.3	4.1	3.2	2.9 2	2.3 2	.2 1.8
Ca_Leptovillus -	3.4 4	3.9	4.8	7.5	7 7	7.5	7.8	7.9 6	6.6 4	.9 4.3	0.3	1.2	0.7	1	1.2	1.1	0.9	0.2	0.4	0.4	0.4	0	0	0	0	0	0	0 () (0	0	0	0	0	0	0	0 (0 0
Trichococcus -	1.9 1.8	1.9	1.8	1.2	0.8	0.6	0.7	0.8	0.8 1	.2 0.8	2.9	2.2	1.8	1.3	1.3	0.9	0.7	0.7	0.9	0.9	1.3	2.5	2.3	2.3	1.8	1.1 0	.6 0	.6 0	.8 1	1 1.3	3 2.	5 2.6	2.3	1.6	1.9	2.8 3	3.8 2	.6 2.2
Hyphomicrobium -	2.4 2	1.9	2.9	2.6	1.4	1 1	1.1 1	1.6 1	1.4 1	.7 1.2	1.7	1.3	1.3	1	1	0.9	1.1	1.9	1.5	1.3	1.2	1.3	1.4	1.3	1.2 (0.9	.9 1	.2 1	.1 0	9 1.5	5 1	1.7	2.1	2.2	2.3	2.4 1	.9 1.	.2 1
Ca_Competibacter -	0.6 0.6	0.5	8.0	1.3	1 (0.7	0.6	0.2	0.2 0	.2 0.4	12.3	6.5	4.7	8.4	8.5	7.8	7.6	8	9.4	1	2.7	0.1	0.1	0 (0.1 (0.1	.1 0	.1 0	.2 0	3 0.3	3 0.	3 0.2	0.4	0.3	0.2	0.2	0.3 0.	.3 0.3
midas_g_6-	0.1 0.3	0.4	8.0	1.1	0.5	0.3	0	0	0 0	1 1.6	0	0.1	0	0	0.1	0.1	0.1	0	0.1	0	0	0.4	0.4	0.6	0.9	2.4	5 6	.4	5 10	.3 5	6	2	0.2	0.3	0.2	0.2	0.2 0.	.3 0.4
Stenotrophobacter -	1.9 2.5	2.2	2.1	2.3	2.6	4.7	5.7	4.9 5	5.6 5	.6 5	0	0	0	0	0.1	0	0	0	0	0	0	8.0	0.8	0.8	0.8	0.6	.6 0	.5 0	.2 0	2 0.2	2 0.:	3 0.3	1.4	1.4	1.3	1.1 (0.8	.6 0.5
Ca_Phosphoribacter -	0 0	0	0	0	0	0	0	0	0	0 0	2.3	3	4.5	2.9	1.6	1	1.2	3.3	2	3.8	4.2	0.5	0.8	0.9	1.3	1.7 1	.4 1	.4 2	.1 1	8 1.9	9 1.	5 2	3.8	2.8	3.3	4.2 2	2.2	1 1.4
Defluviicoccus -	2.8 2.5	2.5	4.4	5.3	4.9 3	3.2	4 7	7.7 6	6.2 5	.8 3.6	0.3	0.3	0.3	0.2	0.1	0.1	0.2	0.3	0.7	0.6	0.5	0	0	0 (0.1	0	0 0	.1 0	.1 0	1 0.1	1 0.	0.1	0.1	0.1	0.1	0.1	0.1 0	.1 0.1
Acidovorax -	0.6 0.6	1.1	0.5	0.4	0.3	0.3	0.2	0.1	0.1 0	.2 0.2	1	0.7	0.7	0.5	0.4	0.3	0.3	0.1	0.1	0.1	0.1	3.6	3	2.6	2.2 2	2.1 2	.5 2	.6 1	.7 1	5 2.1	1 2	2.3	1.2	1.2	1.5	1.2 1	.4 0	.9 0.8
midas_g_59 -	1.2 1.2	1.5	8.0	0.6	0.7	1 '	1.3	0.6	0.6 0	.6 0.6	3.1	1.8	1.5	1.8	2.6	3.4	3.7	1.8	3.7	2.6 2	2.3	1.2	1.1	1.2	1.6	1.5 2	.2 2	.2 0	.9 0	8 0.9	9 0.	8.0	0.9	1	0.9	0.8	.7 0	.6 0.7
Ca_Amarolinea -	0 0	0	0	0	0	0	0	0	0	0 0	0.4	0.9	1.2	1.9	2.3	3.9	4.7	2.6	1.2	0.7	0.5	0.9	1.4	2.4	3.4	5.1 2	.9 2	.5 6	.4 3	6 2.2	2 1.	5 1.6	0	0	0	0	0 (0 0
midas_g_57 -	1.4 1.2	0.9	0.7	0.4	0.3	0.3	0.3	0.4	0.5	.6 0.5	1.1	1	1	0.7	0.8	8.0	0.9	1.3	1	0.8	0.7	1.2	1.4	1.3	1 (0.9	.9 1	.1 1	.6 1	4 2	1.	4 2.1	1.4	1.7	2.1	2 1	.9	0.7
Ca_Promineofilum -	0.8 0.8	0.9	8.0	0.5	0.5	0.4	0.5	0.8	0.6	7 0.4	2	2.1	2.3	2.3	1.9	2.1	3	9.3	8.7	1	1.7	0.1	0.1	0.2	0.1	0.1	.1 0	.1 0	.3 0	3 0.4	4 0.3	3 0.3	0.5	0.4	0.5	0.4	0.4 0	.3 0.4
Terrimonas -	0.1 0.1	0.1	0.1	0.1	0.1	0	0	0	0	0 0	0.8	8.0	0.7	0.7	1.1	1.4	0.9	0.6	0.6	0.6	0.6	1.8	1.7	1.7	1.8	1.8 2	.1 2	.3	1 1	4 0.9	9 1.	8.0	1.1	1.2	1.2	1.4 2	2.2 2	.1 1
Ferruginibacter -	0 0	0	0	0	0	0	0	0	0	0 0	0.3	0.5	0.4	0.7	0.7	0.6	0.4	0.2	0.2	0.2	0.2	1.1	0.9	1 (0.9	0.9	1 1	.1 0	.6 0	7 0.6	6 1	0.5	2.7	2.9	2.7	2.7 3	3.4 3	.4 2.7
midas_g_31 -	0.4 0.7	0.8	0.8	0.9	0.5	0.7	0.4	0.5	0.4 0	.4 0.4	0.7	1	0.8	1	1.3	1.6	1.1	0.9	0.8	0.6	0.6	1.3	1.4	1.7	1.5	1 0	.8 0	.8 0	.5 0	3 0.2	2 0.:	3 0.3	8.0	1.2	1.5	1.3 1	.1 0	.9 0.7
Ca_Sarcinithrix -	2.2 1.8	2	2.8	2.9	2.9 1	1.7	1.8 2	2.9 1	1.8 1	.6 1.3	0.7	0.6	0.6	8.0	0.8	0.9	0.7	1.3	1.4	1.1 (0.9	0.1	0.1	0.1	0.1	0.1 0	.1 0	.1 0	.2 0	2 0.2	2 0.:	2 0.2	0.2	0.2	0.2	0.2	0.2 0	.3 0.3
Ca_Amarobacter -	0.9 1	1	1.2	1.1	0.9	0.9	0.9	0.7	0.7 0	.6 0.6	0.3	0.4	0.4	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.3	8.0	0.8	0.9	1 1	1.3 1	.5 1	.5 1	.3 1	1 1.1	1 0.	3 0.9	0.7	0.7	0.7	0.7	.7 0	.6 0.7
Ca_Lutibacillus -	0 0	0	0	0	0	0	0	0	0	0 0	0.3	0.4	0.6	0.2	0.1	0.1	0.1	0.3	0.1	0.4	0.4	0	0	0	0	0	0	0 1) (0	0	0	5.2	3.3	4	6 2	2.5 1.	.4 1.7
midas_g_321 -	0.3 0.5	0.5	0.4	0.7	3.6 1	2.3	4.7 2	2.7 1	.7 0	.7 0.6	0.1	0.1		0.2	0.4	0.3	0.2	0	0.1	0 0	0.1	0.2	0.2	0.3).4 (0.6	.7 0	.4 0	.2 0	3 0.2	2 0.	0.1	0	0	0	0	0 (0 0
	January - February -	March-	- April	May-	- June -	-yluly	August -	September -	October -	December -	January -	February -	March-	May-	- June -	-yuly-	August-	September -	October -	November -	December -	January -	February -	March-	- April	May-	- anne	-dinc	- Isugus	October -	November -	December -	January -	February -	March-	April -	May-	July

3.4 Which genera within Proteobacteria are the most abundant across all samples?

9123 OTUs have been filtered

Before: 12193 OTUs ## After: 3070 OTUs

3.5 Taxonomic reference database

Compare the results of microbial composition based on MiDAS 5 vs SiLVA 138.2

Q: Does the choice of taxonomic database influence alpha and beta-diversity analysis? When does it matter?

Create an ampvis2 file using Silva taxonomy

```
## Warning: Only 141 of 161 unique sample names match between metadata and otutable. The following unma
```

"MQ221006-200", "MQ221006-201", "MQ221006-202", "MQ221006-203", "MQ221006-204", "MQ221006-205", "MQ

Create the normalised dataset removing the outlier and subseting for samples with at least 10000 reads (tip: you can do all at once)

```
## 3 samples and 36 OTUs have been filtered
## Before: 141 samples and 12229 OTUs
## After: 138 samples and 12193 OTUs
```

What are the most abundant 25 genera based on silva?

```
## Warning in scale_fill_gradientn(colours = color.pal, trans = plot_colorscale, :
## log-10 transformation introduced infinite values.
```

Top 25 genera using SiLVA 138.2

<u></u>		_		
Tetrasphaera - Rhodoferax -	0	3.2	1.5	6.4
Rhodoferax -	0.1	0.4	3.2	2.9
fSaprospiraceae_ASV688 - Candidatus Microthrix -	0	0	0	6.5
Candidatus Microthrix -	0	2.1	2.9	0.1
fSaprospiraceae_AŞV69 -	0	0	3.6	0.2
Hyphomicrobium -	1.4	1.2	1.1	1.6
_ oC10-SB1A_ASV3-	0	1.9	2.6	0
pPseudomonadota_ASV2289-	4.2	0	0	0
pPseudomonadota_ASV2289 - fBlastocatellaceae_ASV1503 -	3.9	0	0	0
Terrimonas -	0.1	0.8	1.6	1.4
oArdenticatenales_ASV398 - fCarnobacteriaceae_ASV4 -	3.6	0	0	0
fCarnobacteriaceae_ASV4-	0.7	0.8	1	1.4
t Microtrichaceae ASVA-	0.3	1.4	1.5	0.4
Fuscovulum - OLB8 -	0.3	0.5	1.9	0.5
OLB8-	0	0.8	1.6	0.5
Ferruginibacter - f_Blastocatellaceae_ASV1320 -	0	0.4	0.6	2.3
fBlastocatellaceae_ASV1320-	2.8	0	0	0
	0	0.3	1.9	0.3
Novosphingobium -	0.4	1.3	1	0.4
Novosphingobium - f_Saprospiraceae_ASV2897 - Candidatus Nitrosoarchaeum -	2.4	0	0	0
Candidatus Nitrosoarchaeum -	0.8	0.6	0.6	0.5
Stenotrophobacter -	1.4	0	0.2	0.5
Candidatus Competibacter -	0.6	2.4	0.1	0.2
fParacoccaceae_ASV19-	0	0.3	1	0.7
Stenotrophobacter - Candidatus Competibacter - f_Paracoccaceae_ASV19 - f_Sphingomonadaceae_ASV291 -	0.8	2.2	0	0
	רט י	_	ι	(I)
	ò	Ę	e	Ribe
	용	et	þ	∝
	Ĕ	-ynetten - <mark>2.2</mark>	Randers - o	
	Kalundborg	_	L.	
	ス			

Q: why is it important to get good taxonomic classifications? What strikes you the most?

4. Additional tasks, timeseries

4.1 Time-series ordinations

Make 2 PCA plots for Kalundborg and Randers using sample_trajectory option to see the changes in the community over time. Comment on the stability of the communities in the two WWTPs. What do you think may cause the progression of the communities that you see on the plot?

88 samples and 2843 OTUs have been filtered

Before: 138 samples and 12193 OTUs
After: 50 samples and 9350 OTUs

8906 OTUs not present in more than 0.1% relative abundance in any sample have been filtered

Before: 9350 OTUs ## After: 444 OTUs

Warning: ggrepel: 1 unlabeled data points (too many overlaps). Consider

increasing max.overlaps

99 samples and 4759 OTUs have been filtered

Before: 138 samples and 12193 OTUs
After: 39 samples and 7434 OTUs

7021 OTUs not present in more than 0.1% relative abundance in any sample have been filtered

Before: 7434 OTUs ## After: 413 OTUs

4.2 Timeseries plots

Subset the Tetrasphaera, Ca. Phosphoribacter, Azonexus and Ca, Accumulibactergenus data from Randers WWTP using amp_subset_taxa() and amp_timeseries() functions; and plot the data to identify the temporal dynamics of the different polyphospate accumulating genera.

12078 OTUs have been filtered

Before: 12193 OTUs ## After: 115 OTUs

88 samples and 11 OTUs have been filtered

Before: 138 samples and 115 OTUs
After: 50 samples and 104 OTUs

4.3 Functional information

Subset the data for Lynetten and plot the heatmap showing the 25 most abundant genera. The amp_heatmap function offers the possibility of directly linking the genus-level plot with functional information from midas field guide. To do that, use:

```
option plot_functions = TRUE functions = c("Filamentous", "AOB", "NOB", "PAO", "GAO")
```

How many of the genera have the functional information available? What is the function of the most abundant bacteria in this WWTP?

```
## 119 samples and 5157 OTUs have been filtered
## Before: 138 samples and 12193 OTUs
## After: 19 samples and 7036 OTUs
## Warning: package 'jsonlite' was built under R version 4.4.2
##
## Attaching package: 'jsonlite'
##
  The following object is masked from 'package:purrr':
##
##
       flatten
```

Warning: package 'patchwork' was built under R version 4.4.2

5. Core communities

(Advanced) We will evaluate the core communities in our dataset, First we need to choose the desired taxonomic level. For this exercise we will choose "Species". The analysis is done outside ampvis2, therefore we will export the ampvis2 object to a long format data.frame

Calculate the relative abundance per species and the mean abundance in each WWTP

```
## # A tibble: 6 x 7
  # Groups:
               SampleSite, Species [6]
     SampleID
                  OTU
                         count SampleSite Species
                                                                    sumSpp meanSppSite
     <chr>
                                          <chr>
                                                                     <dbl>
                                                                                 <dbl>
##
                   <chr> <dbl> <chr>
## 1 MQ201118-152 ASV1
                         0.361 Randers
                                          s_{midas_s_5}
                                                                     0.364
                                                                              1.04
                                          s__Ca_Microthrix_parvi~
## 2 MQ201118-152 ASV2
                                                                     3.22
                         3.20
                               Randers
                                                                              2.65
## 3 MQ201118-152 ASV3
                         0.893 Randers
                                          s__Ca_Amarolinea_domin~
                                                                    0.900
                                                                              2.61
## 4 MQ201118-152 ASV4
                         1.79
                               Randers
                                          s_midas_s_4
                                                                     3.38
                                                                              1.70
## 5 MQ201118-152 ASV5
                         0.839 Randers
                                          s__Ca_Microthrix_subdo~
                                                                     1.09
                                                                              2.02
## 6 MQ201118-152 ASV7
                                          s_midas_s_220
                                                                              0.000297
                               Randers
```

Define core groups based on abundance and create combined data.frame

```
## 2 s__Ca_Microthrix_su~ 1.44 strict ~ k_Bac~ p_Ac~ c_A~ o_M~ f_Mi~ g_C~ ## 3 s__midas_s_57 0.573 strict ~ k_Bac~ p_Pr~ c_A~ o_R~ f_Rh~ g_m~ ## 4 s__midas_s_1112 0.316 strict ~ k_Bac~ p_Ac~ c_T~ o_T~ f_Th~ g_S~ ## 5 s__midas_s_101 0.181 strict ~ k_Bac~ p_Fi~ c_C~ o_C~ f_Cl~ g_C~ ## 6 s__midas_s_64 0.179 strict ~ k_Bac~ p_Fi~ c_C~ o_C~ f_Cl~ g_C~
```

Visualise how many species are per core category and the total mean cumulative abundance the three categories explain

5.1 Core community additional tasks

Find the core communities at ASV level and visualise the outcomes

