Document Analysis in the Era of LLMs

Thomas Breuel

NVIDIA Research

Talk Outline

- The Al Revolution
- Three Types of OCR and Document Analysis Systems
- Documents as Sources of Facts for LLMs

REVOLUTION IN MACHINE LEARNING / AI

LLMs / VLMs Have been Fundamentally Transforming ML/AI

- tasks that used to require extensive, specialized training
 - are now handled by foundation models
 - or with minimal fine tuning

Zero/Few Shot with LLMs and VLMs

LLMs	VLMs
Named Entity Recognition (NER)	Object Recognition/Classification
Document Categorization	Object Detection
Sentiment Analysis	Scene Understanding
Text Summarization	Action Recognition
Machine Translation	•••
•••	

Example: Zero-Shot VLM Tasks

- "Is there a dog in the image?"
- "What is the bounding box for the dog in the image?"
- "How many balls are there in the image?"
- "Is Marylin Monroe in the picture?"
- "Caption the picture."
- "Is the picture in focus?"

Example: Zero-Shot Document Classification

```
prompt = """
### Instructions
You are given the text of the first page of a PDF document. Please extract the title,
author, year, and abstract. Then assign a category to the document chosen
from the following list of categories:

    ocr: text recognition, layout analysis, page segmentation

    handwriting: handwriting recognition, handwriting synthesis, etc.

- scene-text: text recognition in natural images and scenes
... more categories ...
- other: anything else
You must return only a JSON format dictionary with fields of
title, author, abstract, year, and category. Your output
will be parsed by machine.
111111
classifier = OpenAIClient(prompt)
result = classifier.json query(text)
```

Some Tasks Still Require Specialized Custom Models

- Stereo -- two image input, specialized preprocessing
- Gaze Estimation -- high precision, specialized datasets
- Anomaly Detection -- specialized statistics
- 3D Pose Estimation for Articulated Objects -- complex structured outputs

• ...

(For now)

Big Changes over the Last Decade

- broad, general models that work across many tasks and modalities
- very large scale unsupervised pretraining
- multitask training and multitask models
- efficient and simple fine-tuning on small datasets
- many problems solved with zero-shot or few-shot methods
- task specifications through natural language

Current State of OCR

Users & Use Cases

- Personal Library of Biomedical Researcher (>10⁶ users)
 - Digital PDFs, some scanned.
 - Use LLMs for categorization, retrieval; not high-accuracy.
 - Combo of OCR, pdf2text, and existing LLMs adequate.
- Financial Data Services Provider (<1000 users)
 - Native digital PDFs; specialized layouts
 - Avoids image-based OCR, prefers text extraction
 - Mix of manual keying, OCR, digital formats; incremental improvements possible.

Users & Use Cases (2)

- Large Academic/Non-Profit Archives (<100 users)
 - Large diverse collections of scanned docs
 - Requires low error, high quality markup, reading order.
 - Often used by academics interested in the details of the text.
 - Not currently well-served.
- Companies Training Foundation Models (<100 users)
 - Large, scanned datasets for LLM training.
 - Unclear how much OCR errors affect LLM quality.

"Traditional" OCR Pipeline

Document Analysis in the Era of LLMs

OCR

- high accuracy scanned-to-text conversion
- outputs some kind of markup (hOCR, Abbyy, XML, TEI, etc.)
- fast on high resolution images
- $\bullet < 0.5\%$ CER (character error rate)
- substantial problems with reading order, logical layout

OCR Output

- search/indexing
- electronic publishing
- training data for LLM training
- NLP, LLM and RAG pipelines

Three Types of OCR and LLM Combinations

- OCR + LLM
- OCR + multimodal model
- OCR-free multimodal model

Current Benchmarks and Leaderboards for OCR + LLM Tasks

What these combos do is indicated by benchmarks:

- text localization (receipts, etc)
- full handwriting and scene text recognition (IAM, ICDAR)
- page segmentation and reading order (PubLayNet, PubTables-1M)
- question answering (DocVQA)
- key information extraction (KIE on SROIE)
- no widely used, complete end-to-end OCR benchmarks

OCR + LLM

Document Analysis in the Era of LLMs

OCR + LLM

- LLMs can solve many traditional retrieval and information extraction tasks
- LLMs are remarkably robust to OCR errors and layout errors
- LLMs also are good at OCR error correction ("correct the OCR errors in this text")
- combination of Traditional OCR + LLM works pretty well
- e.g. Tesseract + GPT-4o

OCR + Multimodal Model

- substantial information is contained in the visual layout of documents
- traditional OCR systems are not very good at high level layout analysis

Examples: LayoutLMv3, UDOP, TILT, DocFormer, StrucText, ...

OCR + Multimodal Model

ZI

OCR + Multimodal Model

- OCR system can operate efficiently at high image resolutions
- multimodal model can handle layout analysis, reading order, etc.
- modularity of the system makes training, testing, and fine-tuning easier
- currently the most popular approach: good tradeoffs

OCR-Free Approaches

- attempt to solve document understanding tasks without separate OCR system
- usually, a single transformer model performs both text recognition and layout analysis
- may perform full page recognition
- may be prompted multitask or prompt-free recognition-only models

Examples: Donut, DAN, TrOCR, ...

OCR-Free

Document Analysis in the Era of LLMs

Transformer-Based Image → Markup

Most "OCR-free" transformers cannot perform full OCR. A few can:

- TrOCR (CER 2.89% handwriting only)
- UDOP (CER 2.56%, IOU 91.62%)
- Nougat (CER 25.5%)
- Kosmos 2.5 (CER 9.2%, IOU 82.1%)

Note:

- These are not particularly good results by OCR standards.
- Unknown how much is due to language modeling and even memorization.

NVIDIA OCR Efforts and Foundation Models

Ambitious all-in-one effort:

- VLMs that handle vision, scenes, and documents
- prompted responses
- document capabilities:
 - high accuracy image-to-text for books, articles
 - outputs logical and physical markup (headers, footnotes, etc.)
 - handles math and other special content
- massive training and data management effort due to generality of model

NVIDIA Architecture

Document Analysis in the Era of LLMs

NVIDIA Results

Internal Test Set		
	Word Error Rate	Passed Pages (F1 > 0.75)
NVIDIA OCR	6.0%	99.1%
(commercial hosted OCR)	8.4%	96.4%
Kosmos-2.5	15.9%	91.2%
PyMuPDF	22.9%	94.75%

28

What's Missing

- Need better end-to-end OCR benchmarks, not just task-specific benchmarks.
- Need more dense and diverse annotated dataset and benchmarks with complete annotation
- Better coverage (training+benchmarks) of mathematical equations, chemistry, etc.
- More diversity: different set of layout, languages, fonts, etc.
- Better coverage of uncommon layouts.

Complex Tradeoffs in OCR Systems

- separation of concerns during development
- access to training data for different domains
- overall speed and efficiency of the system
- training costs and training dataset size and complexity
- achievable and required accuracy for...
 - character recognition
 - reading order
 - semantic labeling
 - special content (math, etc.)
- maximum resolution that can be processed on current hardware

OCR Future

- Different OCR approaches will likely co-exist:
 - High performance self-contained OCR as input to LLMs and multimodal models (easier to integrate)
 - Multimodal models that perform basic OCR/layout and invoke specialized agents.
 (potentially more accurate)

OCR Training Future

- LLMs and VLMs help tremendously with training:
 - LLMs for data prepration, synthetic data, and quality evaluation
 - VLMs+multitask learning for dealing with variety of training datasets (DocVQA, text-to-html, text-to-LaTeX, etc.)
- new OCR systems build on old systems
 - Tesseract has been a workhorse for many efforts
 - self-supervised training and improvement of OCR models
 - distillation and model combination for better+faster models

What do we need OCR for?

What do we still need OCR for?

- largely already converted (e.g. Gutenberg)
 - important pre-1924 books
 - important scientific papers
- good alternatives to OCR / good custom solutions
 - business, legal, government communications
 - scene text (camera based translation, self-driving cars, etc.)
- largely available in digital format
 - open-source textbooks and other publications
 - scientific publications (tagged PDF/A will have large impact)

The "paperless future" is gradually happening...

Higher-Level Purpose of OCR

We are trying to obtain facts

Types of Tasks Involved in LLM Answers

- knowledge of facts ("Lincoln was president")
- knowledge of meta-facts ("this fact is true according to...")
- knowledge of erroneous/counterfactual beliefs ("The Prussian Army cannot reach Waterloo in time, according to Napoleon in 1815.")
- ability to reason ("Lincoln was a US citizen because he was president.")
 - reasoning can be imitated with factual knowledge
- ability to recall verbatim ("please quote ...")

MMLU Examples of Multiple-Choice Questions

Typical LLM benchmark.

Biology Example: (fact, knowledge)

What is the powerhouse of the cell?

(A) Nucleus (B) Mitochondria (C) Ribosome (D) Endoplasmic Reticulum

Mathematics Example: (inference)

If 4 daps = 7 yaps, and 5 yaps = 3 baps, how many daps equal 42 baps? (A) 28 (B) 21 (C) 40 (D) 30

What do facts look like?

Douglas Adams, also known as Douglas Noel Adams, was a human. He authored the novel "The Hitchhiker's Guide to the Galaxy", first published in 1979. From 1971 to 1974, he was educated at St John's College, Cambridge, which is a college of the University of Cambridge in the United Kingdom.

What do Facts Look Like?

```
wikidata_item:
 item id: Q42 # Unique identifier
 labels: "Douglas Adams" # Main name
 descriptions: "English writer and humorist" # Short description
  aliases: ["Douglas Noël Adams"] # Alternative names
  sitelinks: ["https://en.wikipedia.org/wiki/Douglas Adams"] # Wikipedia link
  statements:
    - property: Height
      property id: P2048
      value: "185 cm" # Simple property example
    - property: Educated at
      property_id: P69
      value: {item: "St John's College, Cambridge", item id: Q691283} # Statement pointing to another Q item
      qualifiers:
        - {qualifier: Start date, qualifier_id: P580, value: 1971}
       - {qualifier: End date, qualifier id: P582, value: 1974}
      references:
        - {reference_property: Reference URL, reference_property_id: P854, value: "https://source.link"} # Reference URL
```

Document Analysis in the Era of LLMs

What do Facts Look Like?

What do Facts Look Like?

```
<"Q42 (Douglas Adams)", "name", "Douglas Adams">
<"Q42 (Douglas Adams)", "alias", "Douglas Noel Adams">
<"Q42 (Douglas Adams)", "P31 (instance of)", "Q5 (human)">
<"Q42 (Douglas Adams)", "P22 (father)", "_:b0 (educational period)">
<"Q42 (Douglas Adams)", "P50 (author)", "Q148882 (The Hitchhiker's Guide to the Galaxy)">
<" :b0 (educational period)", "startTime", "1971">
<"_:b0 (educational period)", "endTime", "1974">
<"_:b0 (educational period)", "P69 (educated at)", "Q131305 (St John's College, Cambridge)">
<"_:b0 (educational period)", "P31 (instance of)", "Q39562 (educational stage)">
<" :b0 (educational period)", "P854 (reference URL)", "http://example/...">
<"Q131305 (St John's College, Cambridge)", "P27 (country)", "Q145 (United Kingdom)">
<"Q131305 (St John's College, Cambridge)", "P31 (instance of)", "Q3918 (college of the University of Cambridge)">
<"Q148882 (The Hitchhiker's Guide to the Galaxy)", "title", "The Hitchhiker's Guide to the Galaxy">
<"Q148882 (The Hitchhiker's Guide to the Galaxy)", "firstPublished", "1979">
<"0148882 (The Hitchhiker's Guide to the Galaxy)", "P31 (instance of)", "07725634 (novel)">
```

Document Analysis in the Era of LLMs

Classical Problems with Symbolic Al

- term resolution, aliases
 - "Douglas Adams" "Douglas Noel Adams"
- disambiguation
 - "John Smith (actor)" vs "John Smith (politician)"
- ontology mapping
 - Wikidata "educated at" vs. DBpedia "alma mater"
- LLMs are good at resolving these problems
- LLMs can bridge the gap between natural language and structured data

Facts and Documents

Documents can be understood as collections of facts:

- simple statements of facts ("Hydrogen is the lightest element")
- context-dependent facts ("Lincoln was president from 1861 to 1865")
- meta-facts ("According to ... Lincoln was president from 1861 to 1865")
- textual facts ("'Shall I compare thee to a summer's day?' is the first line of a sonnet by Shakespeare")

Understanding the Impact of OCR Errors on LLM Performance

- how do OCR errors affect facts
 - named entity errors
 - reading order errors
 - o ...
- how does redundancy in fact coverage affect LLM performance
 - many facts are repeated across documents
 - OCR errors that destroy one fact statement may not destroy another
 - OCR errors that lead to false facts are more problematic

o ...

A Statistical Model of Facts

Model:

- facts are distributed across texts in a power law distribution
- ullet LLMs need to be exposed to each fact approximately k times to learn it
 - $\circ \; k$ depends on number of parameters: the more parameters, the smaller k
- performance on fact-based benchmarks reflects the percentage of facts learned

Prediction:

• how long does it take to learn x% of facts in a corpus?

Predictions of Learning Behavior

46

Actual Observations

Scaling Laws for Neural Language Models

Kaplan et al. 2021

Observations

- learning itself is a power law process
- the exponent of the power law is critical in determining learning time
- we can potentially achieve great improvements by achieving a more uniform distribution of facts

Approaches to Achieving Uniform Fact Distribution

- machine learning approaches
 - use umbrella sampling of documents
 - use boosting
- data driven approaches
 - careful manual selection of training data (e.g., textbooks)
 - small LLMs + utilize facts directly during inference
 - train directly on facts instead of documents

More Far Reaching Consequences of Documents as Facts

- consider documents-to-facts as the primary purpose of document analysis
 - easier to benchmark, evaluate, and improve than overall OCR+LLM performance
- documents = collection of fact enables...
 - better quality control, dataset composition, alignment
- caveats
 - \circ some subtlety and nuances are lost in natural language \to facts
 - context and meta-facts can become overwhelming for some documents
- best suited for encyclopedic knowledge, scientific literature, reference materials, etc.

Summary

State of OCR

- Traditional OCR: high text accuracy, layout issues
- Three approaches: OCR+LLM, OCR+VLM, OCR-free
- Likely will continue to co-exist: different strengths/weaknesses.
- High performance image-to-markup desirable for many applications.
- Need:
 - Improve coverage: diverse layouts, math, formulas, etc.
 - Better end-to-end OCR benchmarks

State of Knowledge and Reasoning

- LLMs learn and reason from facts, and are benchmarked on facts
- OCR and document analysis crucial step in deriving facts from documents
- Making facts explicit helps with acquisition, testing, reasoning
- Power law governs learning efficiency
- Scaling laws crucial for fact acquisition
- Uniform fact distribution potentially improves learning