## Statistics

Jihang Li

November 21, 2019

## Contents

| Co | Contents                              |    |  |
|----|---------------------------------------|----|--|
| Ι  | Distributions                         | 5  |  |
| 1  | Normal Distribution                   | 7  |  |
|    | 1.1 Basic Form                        | 7  |  |
|    | 1.2 Multivariate Form                 | 7  |  |
| 2  | Poisson Distribution                  | 9  |  |
| Η  | Pattern Recognition                   | 11 |  |
| 3  | Likelihood                            | 13 |  |
|    | 3.1 Discrete Probability Distribution | 13 |  |

4 CONTENTS

# Part I Distributions

## Chapter 1

## Normal Distribution

#### 1.1 Basic Form

- $\bullet$  X: random variable.
- $\mu$ : mean or expectation.
- $\sigma$ : standard deviation.
- $\sigma^2$ : variance.
- $X \sim \mathcal{N}(\mu, \sigma^2)$ : X is distributed normally with  $\mu$  and  $\sigma^2$ ,

$$f(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2}).$$
 (1.1)

#### 1.2 Multivariate Form

- **X**: random vector,  $\mathbf{X} = (X_1, \dots, X_k)$ .
- $\mu$ : mean or expectation vector,  $\mu = E[X] = (E[X_1], E[X_2], \dots, E[X_k])$ .
- $\Sigma$ :  $k \times k$  convariance matrix,  $\Sigma_{i,j} = \mathrm{E}[(X_i \mu_i)(X_j \mu_j)] = \mathrm{Cov}[X_i, X_j]$ , where  $1 \le i, j \le k$ .
- Q: precision matric  $\Sigma^{-1}$
- $X \sim \mathcal{N}_{\parallel}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ : X is distributed normally with  $\boldsymbol{\mu}$  and  $\boldsymbol{\Sigma}$  and k indicates k-dimension.

#### For non-degenerate case:

$$f_{\mathbf{X}}(x_1, \dots, x_k) = \frac{1}{\sqrt{(2\pi)^k |\mathbf{\Sigma}|}} \exp\left(-\frac{(\mathbf{X} - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu})}{2}\right)$$
(1.2)

The descriptive statistic  $\sqrt{\left(\mathbf{X} - \boldsymbol{\mu}\right)^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu})}$  is known as the Mahalanobis distance.

## Chapter 2

## Poisson Distribution

$$f(k;\lambda) = P(X = k) = \frac{\lambda^k e^- - \lambda}{k!}$$
 (2.1)

where the positive real number  $\lambda=\mathrm{E}(X)=\mathrm{Var}X$  is the average number of events per intervel, and  $k=0,1,2,\ldots$ 

# Part II Pattern Recognition

## Chapter 3

### Likelihood

[References: Likelihood Function, Bayes' Theorem]

The likelihood expresses how likely particular values of statistical model parameters are for a given sample of data. It is **equal** to the joint probability distribution of a random sample, but with the random variable fixed at the given observations.

The likelihood describes a hypersurface whose peak, if it exists, represents the combination of model parameter values that **maximize** the probability of drawing the sample obtained.

$$\label{eq:posterior Probability} \begin{aligned} \text{Posterior Probability} &= \frac{\text{Likelihood} \cdot \text{Prior Probability}}{\text{Evidence}} \end{aligned}$$

#### 3.1 Discrete Probability Distribution

Let X be a discrete random variable with probability mass function p depending on a parameter  $\theta$ , then the likelihood function is

$$\mathcal{L}(\theta|x) = p_{\theta}(x) = P_{\theta}(X = x).$$

**Example:** Consider a statistical model of a coin flip.  $p_H \in [0.0, 1.0]$  expresses the "fairness" of the coin, which is the probability that a coin lands heads up ("H") when tossed. For a perfectly fair coin,  $p_H = 0.5$ . In a case that two heads observed in two tosses ("HH") and assuming each successive coin flip is i.i.d., then

$$P(HH|p_H = 0.5) = 0.5^2 = 0.25.$$

Hence, given this observed data HH, the likelihood that  $p_H=0.5$  is 0.25:

$$\mathcal{L}(p_H = 0.5|\text{HH}) = 0.25.$$

This is **NOT** the same as saying that the probability that  $p_H = 0.5$  is 0.25 given the observation HH.



Figure 3.1: The likelihood function  $(p_H^2(1-p_H))$  for the probability of a coin landing heads-up (without prior knowledge of the coin's fairness), given that we have observed HHT.