# Visão Computacional

Transformações Geométricas



### Definição

Transformações geométricas são operações de processamento de imagens cujo principal efeito é a alteração da posição espacial dos pixels que a compõem. Elas costumam ser úteis em situações que vão desde a correção de distorções até a produção de efeitos artísticos sobre imagens.





### Ampliação e Redução (zoom in, zoom out)

As operações de ampliação e redução de imagens são processos pelos quais as dimensões de uma imagem são aumentadas ou diminuídas para efeito de visualização. A maneira mais simples de ampliar uma imagem é duplicar os valores dos pixels na direção X ou Y ou em ambas. Se o fator de ampliação não for o mesmo para as duas direções, a razão de aspecto da imagem será alterada.





### Ampliação e Redução (zoom in , zoom out)

Para expandir uma imagem por um fator 2, cada pixel é copiado 4 vezes na imagem resultante. Convém notar que a resolução da imagem não é alterada, apenas seu tamanho para efeito de visualização.







### Ampliação e Redução (zoom in , zoom out)

Para reduzir as dimensões de uma imagem de um fator 2, basta utilizar o processo inverso, isto é converter cada agrupamento de quatro pixels novamente em 1 pixel. O problema neste caso é que normalmente estes pixels apresentarão valores diferentes de cinza, o que equivale a dizer que poderá haver perda de informação no processo de zoom out. Para minimizar este aspecto, uma técnica comum é substituir na imagem resultante o valor do pixel pela média dos quatro pixels equivalentes na imagem original.





### Ampliação e Redução

Exemplo de ampliação e redução de imagem

monocromática









### Translação

A translação de uma imagem consiste basicamente no deslocamento linear de cada pixel de coordenadas (X,Y) na horizontal e/ou na vertical, mapeando para o ponto de coordenadas (X',Y'), calculadas como: (X',Y') = (X + FX, Y + FY), onde FX é o deslocamento vertical e FY é o deslocamento horizontal (em pixels).





### Rotação

Uma imagem pode ser rotacionada de um ângulo arbitrário, tanto no sentido horário quanto no anti-horário. Rotações com ângulos múltiplos de 90º são mais simples de implementar, pois consistem na cópia de pixels que estão organizados em linhas, reordenando-os em colunas na direção em que se deseja rotacionar a imagem.





Rotação

Exemplo







### Rotação

A rotação por ângulos quaisquer é uma tarefa mais complexa, que pode ser implementada usando as técnicas de warping. Matematicamente, a rotação de cada ponto (X,Y) de uma imagem por um ângulo arbitrário Ang, mapeará este ponto na localidade de coordenadas (X',Y'), onde X' e Y' são calculados pelas equações

$$X' = X\cos(Ang) + Y\sin(Ang)$$

$$Y = Y\cos(Ang) - X\sin(Ang)$$





### Espelhamento (Flip)

O espelhamento (flip) é uma operação que combina a rotação por ângulos múltiplos de 90º com o cálculo de matriz transposta. Um flip horizontal nada mais é que uma rotação de 90º no sentido anti-horário (ou 270º no sentido horário) da versão transposta da imagem, enquanto um flip vertical é uma rotação de 90º no sentido horário (ou 270º no sentido anti-horário) da versão transposta da imagem.





**Imagem Original** 





**Espelhamento Horizontal** 

**Espelhamento Vertical** 







### Warping

É o nome dado ao processo de alteração de uma imagem de tal modo que a relação espacial entre seus objetos e características é alterada conforme outra imagem ou gabarito (template). Na prática, um programa para a solução simultânea de um sistema de equações é utilizado para calcular os valores dos coeficientes. Então, entrando com as coordenadas X' e Y' da imagem destino, calcula-se os valores correspondentes de X e Y na imagem original. O nível de cinza do ponto de coordenadas (X,Y) é então atribuído à posição (X',Y') na imagem destino. Este processo de mapeamento pode ser facilmente executado em paralelo, pois cada ponto na imagem resultante depende de apenas um ponto da imagem original.





Warping







#### Cropping, cutting e pasting

Recortar e colar trechos de imagens para compor novas imagens são operações corriqueiras de manipulação de imagens. Existem três formas de se recortar uma imagem. A primeira e mais simples consiste em utilizar uma região retangular, definida pelas coordenadas de dois de seus vértices. A segunda consiste em utilizar uma figura geométrica regular qualquer ou um polígono, regular ou não. A terceira e mais complexa consiste em se permitir delimitar a área de recorte 'à mão livre' utilizando o mouse ou dispositivo equivalente.





## Visão Computacional

#### Referências

https://www.serpro.gov.br/menu/noticias/noticias-2020/o-que-eh-visao-computacional

http://digital.br.synnex.com/o-que-e-visao-computacional

MARQUES FILHO, Ogê; VIEIRA NETO, Hugo. Processamento Digital de Imagens, Rio de Janeiro: Brasport, 2013. ISBN 8574520098



