Customer Personality Analysis

•••

Group 2 - Hou Bo, Tian Shulin, Wang Yaoxuan

Content

- 1. Dataset, Objective & EDA (Wang Yaoxuan)
- 2. Data Cleaning (Tian Shulin)
- 3. Machine Learning Methods (All)
- 4. Clustering Analysis & Conclusion (Hou Bo)

Problem Formulation

About the Dataset

29 Columns & 2240 Entries Numeric & Categorical Data

0	ID	2240 non-null int64	non-i	
1	Year_Birth	2240 non-null int64	non-r	
2	Education	2240 non-null object	non-r	
3	Marital_Status	2240 non-null object	non-r	
4	Income	2216 non-null float64	non-r	
5	Kidhome	2240 non-null int64	non-r	
6	Teenhome	2240 non-null int64	non-r	
7	Dt_Customer	2240 non-null object	non-r	
8	Recency	2240 non-null int64	non-r	
9	MntWines	2240 non-null int64	non-r	
10	MntFruits	2240 non-null int64	non-r	
11	MntMeatProducts	2240 non-null int64	non-r	
12	MntFishProducts	2240 non-null int64	non-r	
13	MntSweetProducts	2240 non-null int64	non-r	
14	MntGoldProds	2240 non-null int64	non-r	
15	NumDealsPurchases	2240 non-null int64	non-r	
16	NumWebPurchases	2240 non-null int64	non-r	
17	NumCatalogPurchases	2240 non-null int64	non-r	
18	NumStorePurchases	2240 non-null int64	non-r	
19	NumWebVisitsMonth	2240 non-null int64	non-r	
20	AcceptedCmp3	2240 non-null int64	non-r	
21	AcceptedCmp4	2240 non-null int64	non-r	
22	AcceptedCmp5	2240 non-null int64	non-r	
23	AcceptedCmp1	2240 non-null int64	non-r	
24	AcceptedCmp2	2240 non-null int64	non-r	
25	Complain	2240 non-null int64	non-r	
26	Z_CostContact	2240 non-null int64	non-r	
27	Z_Revenue	2240 non-null int64	non-r	
28	Response	2240 non-null int64	non-r	

Project objective:

Summarize the customer segments & Give advice on how to market different types of products

Statistical Description

1. Numeric Data: Overall Descriptions

39.74

0.00

2.00

8.00

33.00

199.00

224.25

0.00

16.00

68.00

232.25

1725.00

337.32

0.00

24.00

175.50

505.00

1493.00

21527.28

1730.00

35233.50

51371.00

68487.00

162397.00

11.74

16.00

36.00

43.00

54.00

73.00

std

min

25%

50%

75%

max

	Age	Income	MntWines	MntFruits	MntMeatProducts	MntFishProducts	MntSweetProducts	MntGoldProds	Spent	NumDealsPurchases	NumWebPurchases
count	2212.00	2212.00	2212.00	2212.00	2212.00	2212.00	2212.00	2212.00	2212.00	2212.00	2212.00
mean	44.11	51958.81	305.29	26.33	167.03	37.65	27.05	43.93	607.27	2.32	4.09

54.77

0.00

3.00

12.00

50.00

259.00

41.09

0.00

1.00

8.00

33.00

262.00

51.71

0.00

9.00

24.50

602.51

5.00

69.00

397.00

56.00 1048.00

321.00 2525.00

1.92

0.00

1.00

2.00

3.00

15.00

2.74

0.00

2.00

4.00

6.00

27.00

2. Numeric Data: Box-Plot + Histogram + Density

3. Numeric Data (Amount spent on different products): Distribution Plot

4. Numeric Data (Number of purchases in different places): Distribution Plot

5. Categorical Data

5. Categorical Data

6. Correlation: Heat Map

7. Correlation: Regplot

Structure Detection -> Clustering

1. NA Values

- 2240 Data points VS 24 NA values in "Income"
- => Drop

```
In [556]: custdata.isna().any()
Out[556]: ID
                                  False
          Year Birth
                                  False
          Education
                                  False
          Marital Status
                                  False
          Income
                                   True
          Kidhome
                                  False
          Teenhome
                                  False
          Dt Customer
                                  False
                                  False
          Recency
```

2. Convention Representation

• "Year_Birth" => "Age"

```
# Age of customers
import datetime
for i in range(2216):
    #transform Dt_customer to standard timestamp
    custdata['Dt_Customer'][i] = datetime.datetime.strptime(str(custdata['Dt_Customer'][i]), "%d-%m-%Y").strftime(me("%Y-%m-%d")
    # access the YYYY of timestamp
    custdata['Dt_Customer'][i] = int(str(custdata['Dt_Customer'][i]).split('-')[0])

custdata["Age"] = custdata["Dt_Customer"] - custdata["Year_Birth"]
custdata["Age"] = custdata["Age"].astype(int)
custdata.info()
```

3. Outliers

• Drop outliers by calculating "Z-Score"

1. Age

```
# Drop outliers of age by calculating Z-Score
 from scipy import stats
 custdata["z value age"] = np.abs(stats.zscore(custdata["Age"]))
 custdata["z value age"]
 In [9]: threshold = 3
         z1 = np.abs(stats.zscore(custdata["Age"]))
         np.where(z1>3)
Out[9]: (array([181, 228, 326]),)
In [10]: custdata.iloc[np.where(z1>3)]
Out[10]:
                 ID Year Birth Education Marital Status Income Kidhome Teenhome Dt Customer Recency MntWines ... AcceptedCmp4 AcceptedCmp5 Accepte
                                                                                                  15 ...
          181 7829
                        1900
                              2n Cycle
                                          Divorced 36640.0
                                                                        0
                                                                                2013
                                                                                          99
                                                                                                                               0
          228 11004
                              2n Cycle
                                            Single 60182.0
                                                              0
                                                                       1
                                                                                2014
                                                                                         23
                                                                                                   8 ...
                                          Together 83532.0
                                                                                2013
                                                                                                  755 ...
          326 1150
                                  PhD
```

4. Feature Engineering

Add attributes and use conventional representation

2. Feature Engineering

```
: #Total spendings on various items
    custdata["Spent"] = custdata["MntWines"]+ custdata["MntFruits"]+ custdata["MntMeatProducts"]+ custdata["MntFishProducts

#Deriving living situation by marital status"Alone"
    custdata["Living_With"]=custdata["Marital_Status"].replace({"Married":"Partner", "Together":"Partner", "Absurd":"Alone"

#Feature indicating total children living in the household
    custdata["Children"]=custdata["Kidhome"]+custdata["Teenhome"]

#Feature for total members in the householde
    custdata["Family_Size"] = custdata["Living_With"].replace({"Alone": 1, "Partner":2})+ custdata["Children"]

#Feature pertaining parenthood
    custdata["Is_Parent"] = np.where(custdata.Children> 0, 1, 0)

#segmenting education levels in three groups
    custdata["Education"]=custdata["Education"].replace({"Basic":"Undergraduate", "2n Cycle":"Undergraduate", "Graduation":"

#Dropping some of the redundant features
    to_drop = ["ID", "Year_Birth", "Marital_Status", "Dt_Customer", "Z_CostContact", "Z_Revenue", "z_value_age", "z_value_i
    custdata = custdata.drop(to_drop, axis=1)
```

Machine Learning

K-Means++ 4 steps to initialize centroids

Select a random first centroid point from the given dataset. Phase 1: Select Calculate the distance from every instance to the closest, Phase 2: Calculate previously chosen centroid. Select the following centroid (the likelihood of picking a Phase 3: Select point as centroid is corresponding to the distance from phase 2.) Phase 4: Repeat Last 2 steps are repeated until you get k mean points.

MiniBatch K-Means

Phase 1: Draw random sample

Small random batches of data of fixed size

Phase 2: Iteration

Update clusters

Phase 3: Convergence

No changes in the clusters

DBSCAN

Phase 1: Parameters

 ϵ & minimum number of points to form a cluster

Phase 2: Formation

Samples/instances are located within the $\epsilon\text{-neighborhood}$

Phase 3: Noise Detection

Data points that are not within the ε-neighborhood

Sources: https://en.wikipedia.org/wiki/DBSCAN

Sources:https://realpython.com/k-means-clustering-python/

BIRCH (balanced iterative reducing and clustering using hierarchies)

Which one to choose

Calculating silhouette score (S_score)

```
1. K-Means++
In [51]: S score(X labeled KM, labels, metric='euclidean', sample size=None, random state=None)
Out[51]: 0.25036933749708906
 2. Mini Batch K-Means
In [63]: S score(X labeled MBK, labels, metric='euclidean', sample size=None, random state=None)
Out[63]: 0.18440301494692635
 3. DBSCAN
In [74]: S score(X labeled DP, labels, metric='euclidean', sample size=None, random state=None)
Out[74]: 0.15981687335223357
 4. BIRCH
 In [82]: S score(scaled features df, result, metric='euclidean', sample size=None, random state=None)
 Out[82]: 0.11816302751380603
```

What we have learned so far

- 1. Machine learning methods
- 2. EDA visualization methods
- 3. Evaluate the effectiveness by calculating numeric parameters.

Cluster Analysis & Conclusion

Cluster 0: has the highest income & highest spending.

Cluster 2: the 2nd highest Cluster 1: the 3rd highest

Cluster3: lowest income & spending

Conclusions & Fun Facts

Most popular product: Wines

Wines and kids

Conclusions & Fun Facts

Family size and purchasing amount

The Team & Task Distribution

- Exploratory Data Analysis:
 Categorical Data Visualization
- 2. Machine Learning: K-Means++
- Cluster Analysis: Cluster Distribution

Tian Shulin

- 1. Data Preparation
- Exploratory Data Analysis: Numeric
 Data Overall Visualization & Heat Map
- 3. Machine Learning: MiniBatch KMeans & DBSCAN
- 4. Cluster Analysis: Cluster Interpretation

Wang Yaoxuan

- Exploratory Data Analysis:
 Distribution Plots &
 Regression Plots
- 2. Machine Learning: BIRCH
- Cluster Analysis: ProductsDistribution by Clusters