Breast Cancer Prediction Case Study - Bayesian Logistic Regression with Comparison of Frequentist and Bayesian Variable Selection Methods

Laura Silvana Alvarez Luque, Florencia Luque, Nicolas Bühringer, Simon Schmetz

2025-03-14

```
library(readr); library(dplyr)
library(ggplot2); library(dplyr)
library(tidyr); library(corrplot)
library(caret); library(MCMCpack)
library(car); library(boot)
library(gridExtra); library(BAS)
```

Introduction

This case study is based on the Breast Cancer Wisconsin (Diagnostic) Data Set (https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data). The data set contains 569 observations and 32 variables. The data set is available at the UCI Machine Learning Repository. The data set contains mean (and at times min and max) values of the patient for the following numeric (continious) variables:

- a) radius (mean of distances from center to points on the perimeter)
- b) texture (standard deviation of gray-scale values)
- c) perimeter
- d) area
- e) smoothness (local variation in radius lengths)
- f) compactness (perimeter 2 / area 1.0)
- g) concavity (severity of concave portions of the contour)
- h) concave points (number of concave portions of the contour)
- i) symmetry
- j) fractal dimension ("coastline approximation" 1)

The data set also contains the following Binary variables:

2) Diagnosis (M = malignant, B = benign)

Where Malignant (M) means the tumor is cancerous, while Benign (B): means that the tumor is non-cancerous.

Read Data

```
data <- read.csv("data.csv", header = TRUE, sep = ",")
data <- dplyr::select(data, -c(X,id))
names(data) <- gsub("\\.", "_", names(data))
data$diagnosis <- ifelse(data$diagnosis == "M", 1, 0)</pre>
```

Exploratory Data Analysis

Relation with response var

```
numeric_vars <- data %>%select_if(is.numeric) %>% colnames()
numeric_vars <- setdiff(numeric_vars, "diagnosis")</pre>
plots <- lapply(numeric_vars, function(var) {</pre>
  ggplot(data, aes(x = factor(diagnosis), y = .data[[var]], fill = diagnosis)) +
    geom_boxplot() +
    labs(x = "Diagnosis", y = var) +
    theme_minimal()
})
# Print all plots
# Display plots in batches of 6 (2 rows \times 3 columns)
num_plots <- length(plots)</pre>
batch_size <- 6
for(i in seq(1, num_plots, batch_size)) {
  end_idx <- min(i + batch_size - 1, num_plots)</pre>
  batch_plots <- plots[i:end_idx]</pre>
  grid.arrange(grobs = batch_plots, ncol = 3)
```



```
## # A tibble: 300 x 4
##
      'factor(diagnosis)' variable
                                         stat
                                                 value
##
      <fct>
                            <chr>
                                                 <dbl>
                                          <chr>
##
    1 0
                           radius_mean
                                         mean
                                                 12.1
    2 0
##
                           radius_mean
                                                  1.78
                                         sd
```

summary_long

```
##
    3 0
                           radius mean median 12.2
##
    4 0
                           radius_mean
                                        min
                                                 6.98
##
    5 0
                           radius mean max
                                                17.8
    6 0
                                                17.9
##
                           texture_mean mean
##
    7 0
                           texture_mean sd
                                                 4.00
    8 0
##
                           texture_mean median 17.4
##
    9 0
                                                 9.71
                           texture mean min
## 10 0
                                                33.8
                           texture_mean max
## # i 290 more rows
```

Correlation

```
# Check correlation between numeric variables
cor_matrix <- cor(data[, numeric_vars])
corrplot(cor_matrix, method = "circle",type="lower",tl.cex = 0.6)</pre>
```



```
# Or find highly correlated variables
high_cor <- findCorrelation(cor_matrix, cutoff = 0.8)
problematic_vars <- numeric_vars[high_cor]
print(problematic_vars)</pre>
```

```
##
    [1] "concavity_mean"
                                "concave_points_mean"
                                                        "compactness_mean"
##
    [4] "concave_points_worst"
                                "concavity_worst"
                                                        "perimeter_worst"
##
    [7] "radius_worst"
                                "perimeter_mean"
                                                        "compactness_worst"
                                "radius_mean"
                                                        "perimeter_se"
## [10] "area_worst"
## [13] "compactness se"
                                "area_se"
                                                        "smoothness mean"
## [16] "texture_mean"
```

Variable Selection

Frequentist Approach

Check VIF and remove variables with extremely high values

```
predictors <- setdiff(names(data), c("diagnosis"))</pre>
formula_str <- paste("diagnosis ~", paste(predictors, collapse = " + "))</pre>
formula <- as.formula(formula_str)</pre>
l_reg = lm(formula, data)
vif_values <- vif(l_reg)</pre>
vif_df <- data.frame(</pre>
 Variable = names(vif_values),
 VIF = vif_values
vif_df <- vif_df %>% arrange(desc(VIF))
print(head(vif_df,5))
##
                           Variable
                                           VIF
## radius_mean
                       radius_mean 3806.1153
## perimeter_mean perimeter_mean 3786.4004
## radius_worst
                      radius_worst 799.1059
## perimeter_worst perimeter_worst 405.0233
## area_mean
                          area_mean 347.8787
vars to exclude <- c(head(vif df,15)$Variable)</pre>
```

Check correlations after excluding x VIF, variables to pay attention if something does not work.

```
# Check correlation between numeric variables
cor_matrix_f <- cor(data[, setdiff(numeric_vars, vars_to_exclude)])
# corrplot(cor_matrix, method = "circle")

# Or find highly correlated variables
high_cor_f <- findCorrelation(cor_matrix_f, cutoff = 0.8)
problematic_vars_f <- setdiff(numeric_vars, vars_to_exclude)[high_cor_f]
print(problematic_vars_f)

## [1] "compactness_se" "smoothness_mean" "texture_mean"
selected_freq <- setdiff(numeric_vars, vars_to_exclude)</pre>
```

Bayesian Approach

We obtain the posterior probability of including each beta, and also, some statistics for different models in order to select which one is the better. Then, we select the variables that compound the model with highest BF and lower logmang.

```
# Fit a Bayesian logistic regression with variable selection
model_bas <- bas.glm(diagnosis ~ .,</pre>
                     data = data,
                     family = binomial(),
                     method = "MCMC", # or "BAS" for deterministic sampling
                     MCMC.iterations = 10000,
                     modelprior = uniform()) # Prior over model space
# Summary of results
summary(model_bas)[30:36,]
##
                           P(B != 0 | Y)
                                                          model 2
                                             model 1
                                                                    model 3
## symmetry_worst
                                            1.0000000 1.0000000
                                   0.6746
                                                                    1.00000
## fractal_dimension_worst
                                   0.2648
                                            0.0000000
                                                        0.0000000
                                                                     0.00000
## BF
                                       NA
                                            0.3566076
                                                        0.3802395
                                                                     1.00000
## PostProbs
                                            0.0028000
                                                                     0.00260
                                       NA
                                                        0.0026000
## R2
                                       NA
                                            0.9281000
                                                        0.9228000
                                                                     0.91970
                                       NA 11.0000000 10.0000000
                                                                     9.00000
## dim
## logmarg
                                       NA -53.4100663 -53.3459012 -52.37895
##
                              model 4
                                           model 5
## symmetry_worst
                             0.000000
                                         1.0000000
## fractal_dimension_worst
                                        0.0000000
                             0.000000
                              0.014816
                                         0.0163772
## PostProbs
                             0.002500 0.0023000
## R2
                             0.914400
                                        0.9307000
                            10.000000 13.0000000
## dim
## logmarg
                           -56.590995 -56.4908124
# Posterior inclusion probabilities
pip <- model_bas$probne0</pre>
variable_names <- names(pip)</pre>
#pip_df <- data.frame(Variable = numeric_vars,</pre>
                      InclusionProb = pip)
#pip_df <- pip_df[order(pip_df$InclusionProb, decreasing = TRUE),]</pre>
#print(pip_df)
```

Logistic Models

Then we fit the models for the variable selected in each case, evaluate the autocorrelation and fix the thinning parameter and starting point. This second one is selected as the beta estimation of a regular linear model.

"concavity_mean", "area_se", "smoothness_se", "concave_points_se",

"fractal_dimension_se", "radius_worst", "texture_worst",

selected_bayes <- c("perimeter_mean", "concave_points_mean", "compactness_mean",</pre>

"fractal_dimension_worst")

Freq var selection

```
formula_str <- paste("diagnosis ~", paste(selected_freq, collapse = " + "))</pre>
formula <- as.formula(formula_str)</pre>
freq_model1<-lm(formula, data = data)</pre>
beta.start1 <- coef(freq_model1)</pre>
out = MCMClogit(formula, data, burnin=1000, mcmc=21000, beta.start = beta.start1)
# summary(out)
# acf(out[,1])
# acf(out[,2])
# Correct autocorrelation
out = MCMClogit(formula, data, burnin=5000, mcmc=30000, thin = 30,
                beta.start = beta.start1)
summary(out)
##
## Iterations = 5001:34971
## Thinning interval = 30
## Number of chains = 1
## Sample size per chain = 1000
##
## 1. Empirical mean and standard deviation for each variable,
      plus standard error of the mean:
##
##
##
                                Mean
                                           SD Naive SE Time-series SE
                             -6.9619
                                       2.9564 0.093488
## (Intercept)
                                                             0.174505
## texture_mean
                             0.1449 0.1338 0.004230
                                                             0.008603
                            210.3856 38.8092 1.227254
                                                             2.364636
## smoothness_mean
                              6.7972 13.7695 0.435430
                                                             0.874829
## symmetry_mean
## fractal_dimension_mean -692.9451 85.9090 2.716683
                                                             5.109411
                                      0.7698 0.024345
                                                             0.043598
## texture se
                            -1.4312
                          -245.3894 120.4758 3.809779
## smoothness_se
                                                             6.431210
## compactness_se
                             20.8806 28.9179 0.914463
                                                             1.881365
                                                             0.841066
## concavity se
                            -2.1651 11.8429 0.374504
## concave_points_se
                          419.8216 68.7222 2.173187
                                                             4.788362
                              2.8399 51.6192 1.632341
## symmetry_se
                                                             3.064199
## fractal_dimension_se
                          -235.3213 230.1363 7.277549
                                                            12.459032
## texture_worst
                             0.2585 0.1235 0.003904
                                                             0.008201
## smoothness_worst
                              0.4922 26.7191 0.844933
                                                             1.548509
## symmetry_worst
                             12.2236
                                      8.5569 0.270594
                                                             0.595713
## fractal_dimension_worst 153.6350 38.6341 1.221717
                                                             2.154905
##
## 2. Quantiles for each variable:
##
##
                                 2.5%
                                             25%
                                                       50%
                                                                 75%
                                                                          97.5%
## (Intercept)
                           -1.257e+01
                                        -8.82359
                                                   -7.1256
                                                             -4.9263
                                                                       -1.06303
## texture_mean
                           -1.264e-01
                                        0.05609
                                                   0.1493
                                                              0.2347
                                                                        0.42288
## smoothness mean
                           1.346e+02 185.56985
                                                  207.4429
                                                            237.4691
                                                                      285.25906
## symmetry_mean
                           -2.133e+01
                                        -2.07081
                                                    7.2447
                                                             16.8415
                                                                       33.46638
## fractal_dimension_mean -8.685e+02 -748.06764 -687.5111 -638.0705 -535.08845
## texture se
                           -3.011e+00
                                       -1.90562 -1.3896
                                                             -0.9116
                                                                      -0.01158
```

```
-4.695e+02 -329.76049 -253.4453 -166.7919
## smoothness_se
                                                                         2.89369
## compactness_se
                           -3.356e+01
                                         1.54953
                                                    21.3018
                                                              40.3877
                                                                        76.28100
                           -2.669e+01
                                                    -2.0245
                                                               6.0901
## concavity_se
                                       -10.76965
                                                                        20.70983
## concave_points_se
                            2.861e+02 374.51992
                                                  416.7823
                                                             463.6432
                                                                       566.28489
## symmetry_se
                           -1.014e+02
                                       -29.30766
                                                    2.0131
                                                              37.1225
                                                                        99.63610
## fractal_dimension_se
                           -7.050e+02 -385.97951 -235.5333
                                                             -66.6496
                                                                       194.69516
## texture_worst
                            2.987e-03
                                         0.17517
                                                    0.2570
                                                               0.3330
                                                                         0.52035
## smoothness_worst
                                                    -0.2086
                           -5.199e+01
                                      -17.05354
                                                              17.8640
                                                                        54.16787
## symmetry_worst
                           -2.732e+00
                                         6.80055
                                                    11.5672
                                                              17.4516
                                                                        30.08029
## fractal_dimension_worst
                                      126.52236
                                                             178.0914
                           7.957e+01
                                                  155.9399
                                                                       231.92666
par(mfrow=c(1,2))
acf(out[,1])
acf(out[,2])
```

Series out[, 1]

Series out[, 2]

plot(out)

Trace of (Intercept)

Trace of texture_mean

Trace of smoothness_mean

Trace of symmetry_mean

Density of (Intercept)

Density of texture_mean

Density of smoothness_mean

Density of symmetry_mean

Trace of fractal_dimension_mean

Trace of texture_se

Trace of smoothness_se

Trace of compactness_se

Density of fractal_dimension_mean

Density of texture_se

Density of smoothness_se

Density of compactness_se

Trace of concave_points_se

Trace of symmetry_se

Trace of fractal_dimension_se

Density of concavity_se

Density of concave_points_se

Density of symmetry_se

Density of fractal_dimension_se

Trace of texture_worst

Density of texture_worst

Trace of smoothness_worst

Density of smoothness_worst

Trace of symmetry_worst

Density of symmetry_worst

Trace of fractal_dimension_worst

Density of fractal_dimension_worst

Bayes var selection

```
formula_str_b <- paste("diagnosis ~", paste(selected_bayes, collapse = " + "))
formula_b <- as.formula(formula_str_b)

# starting point
freq_model<-lm(formula_b, data = data)
beta.start <- coef(freq_model)

out_b = MCMClogit(formula_b, data, burnin=1000, mcmc=21000)</pre>
```

```
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
```

summary(out_b)

```
##
## Iterations = 5001:54951
## Thinning interval = 50
## Number of chains = 1
## Sample size per chain = 1000
##
## 1. Empirical mean and standard deviation for each variable,
     plus standard error of the mean:
##
##
                                            SD Naive SE Time-series SE
## (Intercept)
                          -4.089e+01
                                       6.10325 1.930e-01
                                                             4.069e-01
## perimeter mean
                          -8.767e-02
                                       0.08165 2.582e-03
                                                             5.462e-03
## concave_points_mean
                           7.789e+01 33.64842 1.064e+00
                                                             2.578e+00
## compactness mean
                          -4.411e+01 20.79019 6.574e-01
                                                            1.713e+00
## concavity_mean
                          1.849e+01 10.76886 3.405e-01
                                                             8.339e-01
## area se
                          -7.147e-03
                                       0.01074 3.396e-04
                                                             5.185e-04
## smoothness se
                          2.135e+02 150.05698 4.745e+00
                                                             1.353e+01
## concave_points_se
                          2.921e+02 101.48434 3.209e+00
                                                             5.821e+00
## fractal_dimension_se
                          -1.196e+03 340.24976 1.076e+01
                                                             1.952e+01
## radius_worst
                           1.662e+00
                                       0.44882 1.419e-02
                                                             2.645e-02
                                                             3.775e-03
## texture_worst
                           2.749e-01
                                       0.05205 1.646e-03
## fractal_dimension_worst 1.559e+02 46.60596 1.474e+00
                                                             3.093e+00
## 2. Quantiles for each variable:
##
##
                                2.5%
                                            25%
                                                       50%
                                                                 75%
                                                                          97.5%
## (Intercept)
                          -5.348e+01 -4.504e+01 -4.084e+01 -3.637e+01
                                                                      -29.41492
## perimeter_mean
                          -2.363e-01 -1.449e-01 -9.337e-02 -3.226e-02
                                                                        0.08183
## concave_points_mean
                          1.352e+01 5.524e+01 7.861e+01 1.017e+02 141.59098
                                                                       -4.49315
## compactness_mean
                          -8.455e+01 -5.933e+01 -4.349e+01 -2.957e+01
## concavity mean
                          -2.063e+00 1.172e+01 1.872e+01 2.589e+01
                                                                       39.71891
                          -2.774e-02 -1.452e-02 -6.903e-03 -1.231e-04
## area se
                                                                        0.01324
## smoothness se
                          -8.381e+01 1.137e+02 2.063e+02 3.125e+02 512.29411
## concave_points_se
                          8.751e+01 2.252e+02 2.941e+02 3.573e+02 499.56987
## fractal_dimension_se
                          -1.905e+03 -1.411e+03 -1.177e+03 -9.488e+02 -589.19519
## radius_worst
                           7.393e-01 1.375e+00 1.711e+00 1.994e+00
                                                                        2.41334
## texture worst
                           1.752e-01 2.396e-01 2.744e-01 3.086e-01
                                                                        0.37594
## fractal_dimension_worst 7.238e+01 1.237e+02 1.556e+02 1.866e+02 255.52220
par(mfrow=c(1,2))
acf(out b[,1])
acf(out_b[,2])
```


Series out_b[, 2]

plot(out_b)

Density of (Intercept)

Trace of perimeter_mean

Density of perimeter_mean

Trace of concave_points_mean

Density of concave_points_mean

Density of compactness_mean

Trace of concavity_mean

Density of concavity_mean

Trace of area_se

Density of area_se

Density of smoothness_se

0

600

Trace of fractal_dimension_se

Density of fractal_dimension_se

Density of texture_worst

Evaluate Models with Deviance Information Criterion (DIC)

In the following code, we will calculate the Deviance Information Criterion (DIC) for both the Frequentist and Bayesian models. The DIC is a measure of model fit that penalizes the complexity of the model. Lower values of DIC indicate better model fit. The DIC is calculated as follows:

$$DIC = \bar{D} + p_D$$

where:

- \bar{D} is the posterior mean deviance:

$$\bar{D} = \mathbb{E}[D(\theta) \mid \mathcal{D}]$$

with $D(\theta) = -2 \log p(\mathcal{D} \mid \theta)$, the deviance evaluated at parameter θ . - p_D a penalization term (effective number of parameters to penalize model complexity):

$$p_D = \bar{D} - D(\hat{\theta})$$

where $\hat{\theta}$ is the posterior mean of θ .

The R implementation of the DIC function is as follows and was developed with help of Prof Michael Wiper:

```
# DIC Code
DIC = function(model, X, data, target) {
  # Calculate Average Deviance of MCMC
  for (i in 1:nrow(model)) {
    params <- model[i,]</pre>
    p = inv.logit(X %*% params)
    p[data[target] == 0] = 1-p[data[target] == 0]
    dev = dev - 2 * sum(log(p)) # Negative log-likelihood
  D_bar = dev / nrow(model)
  # D_theta: Deviance at the posterior mean (using the average parameter values)
  posterior_means <- colMeans(model)</pre>
  linear_predictor <- X %*% posterior_means</pre>
  p_post <- inv.logit(linear_predictor)</pre>
  p_post[data[target] == 0] = 1-p_post[data[target] == 0]
  D_{theta} = -2 * sum(log(p_post)) # Deviance at the posterior mean
  # p_D: Posterior deviance penalty
 p_D = D_{bar} - D_{theta}
  # DIC
 DIC = D_bar + p_D
  return(list(DIC=DIC, D_bar=D_bar, p_D=p_D))
}
```

We now continue with applying the DIC Score to the model derived from frequentist variable selection and the model derived from Bayesian variable selection. The straight forward conclusion is that the DIC is significantly better (lower) for the model that was set up with the Bayesian Variable Selection approach. Based on this result, we conclude this to be the best model and will use it for further analysis.

```
## [1] 229.9737
##
## $p D
## [1] 15.5509
# Bayesian
model = out b
X <- model.matrix(~ perimeter_mean + concave_points_mean + compactness_mean +
    concavity mean + area se + smoothness se + concave points se +
   fractal_dimension_se + radius_worst + texture_worst + fractal_dimension_worst, data = data) # model
target = "diagnosis"
print("Bayesian Variable Selection DIC Score")
## [1] "Bayesian Variable Selection DIC Score"
DIC(model, X, data, target)
## $DIC
## [1] 89.86894
##
## $D_bar
## [1] 80.33019
## $p_D
## [1] 9.538756
```

Prediction

Since we already have our posterior coefficients from the MCMC samples, predicting is fairly straightforward. We will just have to turn the log odds back into probability space and choose a suitable threshold probability for the two classes (1 = malignant (cancer), 0 = benign)).

The standard threshold is 0.5. However, in the light of classifying cancer, one might choose this threshold more carefully. Assuming we are performing an initial cancer screening, we would prefer having a false positive than a false negative. In simpler words, we would rather initially classify something as cancer that later turns out as no cancer than missing a cancer diagnosis that actually is one. By lowering the threshold, we reduce our exposure to false negatives and increase sensitivity.

```
# posterior mean coefficients from MCMC samples
posterior_means <- colMeans(out_b)

# linear preds is in log odds space
linear_preds <- X %*% posterior_means

# inverse logit to get probabilities
prob_preds <- 1 / (1 + exp(-linear_preds))

# turn proba into binary prediction
test_preds <- ifelse(prob_preds >= 0.4, 1, 0)
```

Now that we have our predictions, let's analyze the outcome

```
## Confusion Matrix and Statistics
##
##
             Reference
##
  Prediction
                0
            0 351
##
                6 207
##
##
##
                  Accuracy: 0.9807
                    95% CI : (0.9657, 0.9903)
##
##
       No Information Rate: 0.6274
       P-Value [Acc > NIR] : <2e-16
##
##
##
                     Kappa: 0.9587
##
##
    Mcnemar's Test P-Value : 1
##
##
               Sensitivity: 0.9764
##
               Specificity: 0.9832
##
            Pos Pred Value: 0.9718
            Neg Pred Value: 0.9860
##
                Prevalence: 0.3726
##
##
            Detection Rate: 0.3638
      Detection Prevalence: 0.3743
##
##
         Balanced Accuracy: 0.9798
##
##
          'Positive' Class: 1
##
```

Overall, the model performs very well accurately classifying 98% of both malignant and benign cases. Our goal of achieving a high sensitivity was reached by correctly detecting 207 cancer cases out of 212 overall (97.6%). The specificity is also high with 98.3% of all benign cases correctly classified. Although false negatives might cause unnecessary medical procedures, we still prefer it this way. The model seems highly reliable as shown by the positive prediction value. When the model predicts cancer, it is correct 97.2% of the time. Overall, we have a more than solid classifier at hand.

Conclusion

This report applied bayesian logistic regression to predict breast cancer by using a breast mass cell dataset made available by the University of Irvine. The exploratory data analysis revealed significant correlations among predictors, which required variable selection. A comparison between frequentist and bayesian variable selection methods was conducted which proved the bayesian approach as far superior when assessed on the Deviance Information Criterion. The final model was evaluated via a confusion matrix which yielded a highly reliable classifier for cancer detection