Zarządzanie ruchem i jakością usług w sieciach komputerowych

Część 1 wykładu

SKO2

Mapa wykładu

- Wprowadzenie
 - o 10 trendów rozwoju sieci
- Komunikacja multimedialna w sieciach IP
- Techniki QoS
 - O ATM
 - IEEE 802.1D
 - Integrated Services i Differentiated Services
 - MPLS
- Problemy i perspektywy rozwoju tych technologii

Zarys wykładu o komunikacji multimedialnej w sieciach IP

- Aplikacje sieci z jakością usług
- Przesyłanie
 strumieniowe
 przechowywanych
 plików audio i wideo
 - O RTSP
- Multimedia czasu
 rzeczywistego: studium
 przypadku telefonii
 internetowej

- Protokoły dla interaktywnych aplikacji czasu rzeczywistego
 - O RTP, RTCP
 - O SIP
- Poza best-effort
- Mechanizmyszeregowania i kontroli

Protokół czasu rzeczywistego (RTP)

- RTP określa strukturę pakietu dla pakietów przenoszących dane o obrazie i dźwięku
- □ RFC 1889.
- Pakiet RTP zapewnia
 - Identyfikację typu ładunku
 - Numerację sekwencji pakietów
 - Znacznik czasowy

- RTP działa w systemach końcowych.
- Pakiety RTP są wbudowane w segmenty UDP
- □ Kompatybilność: jeżeli dwie aplikacje telefonu internetowego używają standardowego protokołu (RTP), to mogą ze sobą współpracować

RTP korzysta z UDP

Biblioteki RTP zapewniają interfejs warstwy transportowej rozszerzający UDP:

- · numery portów, adresy IP
- identyfikacja rodzaju ładunku
- numerowanie sekwencji pakietów
- znacznikowanie czasowe

transport layer

RTP			
TILDD			
UDP			
IP			
Data Link			
Physical			

Przykład RTP

- Rozważmy wysyłanie głosu kodowanego w PCM przez RTP z prędkością 64 kb/s.
- Aplikacja gromadzi zakodowane dane w częściach, np., każde 20 ms = 160 bajtów.
- Część dźwięku z nagłówkiem RTP tworzy komunikat RTP, który jest wbudowany w segment UDP.

- Nagłówek RTP
 wskazuje typ
 kodowania dźwięku w
 każdym pakiecie
 - Nadawca może zmienić kodowanie w trakcie konferencji.
- □ Nagłówek RTP zawiera również kolejne numery i znaczniki czasowe.

RTP i QoS

- RTP nie zapewnia żadnego mechanizmu gwarantującego dostarczenie danych na czas ani innych gwarancji dotyczących jakości usługi.
- Nagłówki RTP widać tylko w systemach końcowych: nie widzą ich pośrednie rutery.
 - Rutery świadczące usługę best-effort nie dokładają żadnych specjalnych starań, aby zapewnić terminowe dotarcie pakietów RTP do miejsca przeznaczenia.

Nagłówek RTP

Тур	Numer	Znacznik	Źródło	Różne
ładunku	sekwencyjny	czasowy	strumienia	pola

Typ ładunku (7 bitów): Wskazuje używany w danym momencie typ kodowania. Jeżeli nadawca zmieni kodowanie w trakcie konferencji, nadawca informuje o tym odbiorcę za pośrednictwem tego pola typu ładunku.

- •Typ ładunku 0: PCM mu-law, 64 kb/s
- ·Typ ładunku 3, GSM, 13 kb/s
- •Typ ładunku 7, LPC, 2.4 kb/s
- ·Typ ładunku 26, ruchomy JPEG
- ·Typ ładunku 31. H.261
- ·Typ ładunku 33, wideo MPEG2

Numer sekwencyjny (16 bitów): Zwiększa się o jeden dla każdego wysłanego pakietu RTP i może być wykorzystany do wykrywania utraty pakietu i przywracania sekwencji pakietów.

Nagłówek RTP (2)

- Pole znacznika czasowego (32 bajty). Odzwierciedla chwilę próbkowania pierwszego bajtu w pakiecie danych RTP.
 - W wypadku dźwięku, zegar znacznika czasowego zazwyczaj zwiększa się o jeden dla każdego okresu próbkowania (na przykład, każde 125 mikrosekund dla zegara próbkowania 8 KHz)
 - Jeżeli aplikacja generuje grupy 160 zakodowanych próbek, to znacznik czasowy zwiększa się o 160 dla każdego pakietu RTP, gdy źródło jest aktywne. Zegar znacznika czasowego nadal się zwiększa w stałym tempie, gdy źródło jest nieaktywne.
- □ Pole SSRC (dł. 32 bitów). Identyfikuje źródło strumienia RTP. Każdy strumień w sesji RTP powinien mieć odrębny SSRC (Synchronization source identifier).

RTP Zadanie programistyczne

- Zbudować klienta/serwera UDP z prostym buforem o stałym opóźnieniu, współpracujący z wybranym kodekiem dźwięku
 - Brać kolejne dane z kodeka, dodać nagłówki RTP, utworzyć segmenty UDP, wysłać segmenty do gniazda UDP
 - O Dołączyć numery sekwencyjne i znaczniki czasowe
 - Utworzyć prosty bufor ze stałym opóźnieniem, który odtwarza orginalne odstępy czasowe
 - Testować!
 - także interaktywnie

<u>Protokół sterowania w czasie</u> <u>rzeczywistym (RTCP)</u>

- 🗇 Pracuje łącznie z RTP.
- Każdy uczestnik sesji RTP okresowo transmituje pakiety sterujące RTCP do wszystkich innych uczestników.
- Każdy pakiet RTCP zawiera raporty nadawcy i/lub odbiorcy
 - Statystyka raportu przydatna dla aplikacji

- Statystyki zawierają liczbę wysłanych pakietów, liczbę utraconych pakietów, zmienność opóźnień, itp.
- □ Informacje zwrotne mogą zostać wykorzystane do sterowania wydajnością
 - Nadawca może modyfikować swoje transmisje w oparciu o informacje zwrotne

RTCP - ciag dalszy

- W wypadku sesji RTP na ogół występuje pojedynczy adres grupowy (multicast); wszystkie pakiety RTP i RTCP należące do sesji używają adresu grupowego.
- Pakiety RTP i RTCP rozróżnia się przez użycie oddzielnych numerów portów.
- Aby ograniczyć ruch, każdy uczestnik ogranicza swój ruch RTCP w miarę zwiększania się liczby uczestników konferencji.

Pakiety RTCP

Pakiety raportów odbiorcy:

ułamek utraconych pakietów, ostatni numer sekwencyjny, średnia zmienność opóźnień.

Pakiety raportów nadawcy:

SSRC ze strumienia RTP, bieżący czas, liczba wysłanych pakietów oraz liczba wysłanych bajtów.

Pakiety opisu źródła:

- Adres e-mail nadawcy, nazwa nadawcy, SSRC powiązanego strumienia RTP.
- Zapewnić mapowanie między SSRC a nazwą użytkownika/hosta.

Synchronizacja strumieni

- RTCP może synchronizować różne strumienie mediów w ramach sesji RTP.
- Rozważmy aplikację wideokonferencji, dla której każdy nadawca generuje jeden strumień RTP dla obrazu i jeden dla dźwięku.
- Znaczniki czasowe w pakietach RTP powiązane z zegarami próbkowania obrazu i dźwięku
 - Nie powiązane z czasem rzeczywistym

- Każdy pakiet raportów nadawcy RTCP zawiera (dla ostatnio wygenerowanego pakietu w powiązanym strumieniu RTP):
 - Znacznik czasowy pakietu RTP
 - Czas rzeczywisty dla chwili utworzenia pakietu.
- Odbiorcy mogą wykorzystać to powiązanie do synchronizacji odtwarzania dźwięku i obrazu.

Skalowanie szerokości pasma RTCP

RTCP stara się ograniczyć swój ruch do 5% szerokości pasma sesji.

<u>Przykład</u>

- Przypuśćmy, że jeden nadawca wysyła obraz z prędkością 2 Mb/s. Następnie RTCP stara się ograniczyć swój ruch do 100 Kb/s.
- RTCP daje 75% tej prędkości odbiorcom; pozostałe 25% przypada na nadawcę

- 75 kb/s jest równo dzielone między odbiorców:
 - Przy liczbie odbiorców R, każdy odbiorca wysyła ruch RTCP z prędkością 75/R kb/s.
- Nadawca wysyła ruch RTCP z prędkością 25 kb/s.
- □ Uczestnik ustala okres transmisji pakietu RTCP obliczając średni rozmiar pakietu RTCP (w ciągu całej sesji) i dzieląc go przez przydzieloną prędkość.

SIP

- Protokół Inicjacji Sesji (Session Initiation Protocol)
- □ Pochodzi z IETF

<u>Długoterminowa wizja SIP</u>

- Wszystkie połączenia telefoniczne i wideokonferencyjne odbywają się w Internecie
- Ludzie są identyfikowani w oparciu o nazwiska lub adresy e-mail, a nie numery telefonów.
- Można dotrzeć do adresata połączenia bez względu na to, gdzie przebywa i jakiego urządzenia i adresu IP obecnie używa.

Usługi SIP

- Nawiązywanie połączenia
 - Zapewnia dzwoniącemu mechanizmy powiadomienia osoby, do której dzwoni, że chce nawiązać połączenie
 - Zapewnia mechanizmy umożliwiające dzwoniącemu i adresatowi połączenia uzgodnienie typu mediów i kodowania.
 - Zapewnia mechanizmy zakończenia połączenia.

- Ustalenie bieżącego adresu
 IP adresata połączenia.
 - Mapuje mnemoniczny identyfikator na bieżący adres IP
- Zarządzanie połączeniem
 - Dodawanie nowych strumieni mediów w trakcie połączenia
 - Zmiana kodowania w trakcie połączenia
 - Zaproszenie innych osób
 - Przeniesienie i zawieszenie połączenia

Nawiązywanie połączenia ze znanym adresem IP

- · Komunikat powitalny STP Alicji wskazuje jej numer portu i adres IP. Wskazuje kodowanie, jakie Alicja woli otrzymywać (PCM ulaw)
- Komunikat 200 OK Boba wskazuje jego numer portu, adres IP i preferowane kodowanie (GSM)
- komunikaty SIP mogą być wysyłane przez TCP lub UDP; tutaj są wysyłane przez RTP/UDP.
- •Domyślny numer portu SIP to 5060.

Nawiązywanie połączenia (więcej)

- Uzgodnienie kodeków:
 - Przypuśćmy, że Bob nie ma kodera PCM ulaw.
 - Zamiast tego Bob odpowie przy pomocy "606 Odpowiedź Nieakceptowalna" i wymieni kodery, których może używać.
 - Alicja może wtedy wysłać nowy komunikat INVITE, ogłaszający odpowiedni koder.

- Odrzucenie połączenia
 - Bob może odrzucić
 połączenie przy pomocy
 odpowiedzi "zajęty,"
 "nie odpowiada,"
 "wymagana opłata,"
 "zabroniony".
- Media można wysyłać przy pomocy RTP lub innego protokołu.

Przykład komunikatu SIP

INVITE sip:bob@domain.com SIP/2.0

Via: SIP/2.0/UDP 167.180.112.24

From: sip:alice@hereway.com

To: sip:bob@domain.com

Call-ID: a2e3a@pigeon.hereway.com

Content-Type: application/sdp

Content-Length: 885

c=IN IP4 167.180.112.24

m=audio 38060 RTP/AVP 0

pośrednie serwery SIP. Alicja wysyła i

· Tutaj nie znamy

Niezbędne będą

adresu IP Boba.

otrzymuje komunikaty SIP używając domyślnego numeru portu SIP 5060.

Uwagi:

- Składnia podobna do komunikatu HTTP
- □ sdp = protokół opisu sesji
- Identyfikator połączenia (Call-ID) jest unikalny dla każdego połączenia.
- Alicja określa w nagłówku Via:, że klient SIP wysyła i otrzymuje komunikaty SIP przez UDP

<u>Tłumaczenie nazwy i lokalizacja</u> <u>użytkownika</u>

- Dzwoniący chce nawiązać połączenie z adresatem połączenia, ale ma tylko nazwę lub adres e-mail adresata.
- □ Trzeba zdobyć adres IP obecnego hosta adresata połączenia, jeśli:
 - użytkownik jest mobilny
 - ma adres z DHCP
 - Użytkownik ma różne urządzenia IP (PC, PDA, zestaw samochodowy)

- Wynik może opierać się na:
 - porze dnia (praca, dom)
 - Dzwoniącym (nie chcesz, żeby szef dzwonił do ciebie do domu)
 - Statusie adresata połączenia (połączenia przesyłane do poczty głosowej, gdy adresat już z kimś rozmawia)

<u>Usługa świadczona przez</u> <u>serwery SIP:</u>

- serwer rejestrujący SIP
- □ serwer proxy SIP

Serwer rejestrujący SIP

□ Kiedy Bob uruchamia klienta SIP, klient wysyła komunikat SIP REGISTER do serwera rejestrującego Boba

(podobnej funkcji potrzebuje komunikator wiadomości)

Komunikat o rejestracji:

```
REGISTER sip:domain.com SIP/2.0
```

Via: SIP/2.0/UDP 193.64.210.89

From: sip:bob@domain.com

To: sip:bob@domain.com

Expires: 3600

Serwer proxy SIP

- Alicja wysyła komunikat powitalny do swojego serwera proxy
 - Zawiera adres sip:bob@domain.com
- Serwer proxy odpowiada za ruting komunikatów SIP do adresata połączenia
 - Potencjalnie za pośrednictwem wielu serwerów proxy.
- Adresat połączenia wysyła odpowiedź z powrotem przez ten sam zestaw serwerów proxy.
- Serwer proxy zwraca Alicji komunikat odpowiedzi SIP
 - Zawiera adres IP Boba
- Uwaga: serwer proxy jest analogiczny do lokalnego serwera
 DNS

<u>Przykład</u>

Dzwoniący jim@umass.edu nawiązuje połączenie z adresem keith@upenn.edu

- (1) Jim wysyła komunikat INVITE do serwera proxy umass SIP.
- (2) Proxy przekazuje żądanie do serwera archiwizacji upenn.
- (3) Serwer upenn zwraca odpowiedź przekierowania SIP client wskazując, że należy spróbować keith@eurecom.fr

SIP registrar upenn.edu

SIP proxy umass.edu

7

SIP registrar eurecom.fr

9

SIP client
197.87.54.21

(4) Serwer proxy umass wysyła INVITE do serwera rejestrującego eurecom. (5) Serwer rejestrujący eurecom przekazuje INVITE do 197.87.54.21, gdzie działa klient SIP Keitha. (6-8) Odpowiedź SIP przesłana z powrotem (9) media przesyłane bezpośrednio między klientami.

Uwaga: również komunikat SIP ack, którego tutaj nie pokazano.

Porównanie z H.323

- H.323 to kolejny protokół sygnalizacyjny czasu rzeczywistego, interaktywny
- H.323 jest to kompletny, zintegrowany pionowo zestaw protokołów do konferencji multimedialnych: sygnalizowania, rejestracji, sterowania dostępem, transportu i kodeków.
- □ SIP jest pojedynczym komponentem. Współpracuje z RTP, ale nie jest to konieczne. Może być łączony z innymi protokołami i usługami.

- H.323 pochodzi z ITU (telefonia).
- □ SIP pochodzi z IETF:
 Zapożycza wiele swoich
 pojęć z HTTP. SIP kojarzy
 się z siecią WWW,
 natomiast H.323 kojarzy
 się z telefonią.
- SIP używa reguły KISS (czyli "Keep it simple stupid" - ma być jak najprościej).

Zarys wykładu o komunikacji multimedialnej w sieciach IP

- Aplikacje sieci z jakością usług
- Przesyłanie
 strumieniowe
 przechowywanych
 plików audio i wideo
 - O RTSP
- Multimedia czasu
 rzeczywistego: studium
 przypadku telefonii
 internetowej

- Protokoły dla interaktywnych aplikacji czasu rzeczywistego
 - O RTP,RTCP
 - O SIP
- Poza best-effort
- Mechanizmyszeregowania i kontroli

Podnoszenie jakości usług w sieciach IP

Do tej pory: "jak najlepsze wykorzystanie best effort"

Przyszłość: Internet następnej generacji z gwarancjami QoS

- O RSVP: sygnalizacja do rezerwacji zasobów
- O Zróżnicowane usługi: gwarancje różnicowe
- O Zintegrowane usługi: trwałe gwarancje
- Prosty model do badań nad współużytkowaniem i przeciążeniem:

Najpierw omówimy zasady. Potem przyjrzyjmy się mechanizmom, dzięki którym się je realizuje....

Zasady dla gwarancji jakości usług - klasyfikacja

- Przykład: telefon IP 1 Mb/s, FTP współużytkują łącze 1.5 Mb/s.
 - połączenia FTP mogą przeciążyć ruter, spowodować utratę dźwięku
 - O Chcemy dać dźwiękowi priorytet w stosunku do FTP

Regula 1

Potrzebne znakowanie pakietów, żeby ruter rozróżniał poszczególne klasy; także nowa polityka rutera do odpowiedniego przetwarzania pakietów

Zasady dla gwarancji QoS - izolacja

- Co będzie, jeżeli aplikacje zachowają się nieprawidłowo (dźwięk wysyła więcej danych niż zadeklarowano)
 - kontrola: wymusić zgodność źródła z wynegocjowanym kontraktem ruchowym
- Egzekwowanie kontraktu ruchowego na skraju sieci:
 - podobne do ATM UNI (User Network Interface)

Regula 2

zapewnić ochronę (izolację) jednej klasy przed innymi

Zasady dla gwarancji QOS - kontrola dostępu

Podstawowy fakt: nie da się wspierać wymagań w zakresie ruchu przekraczających przepustowość łącza

Uwaga: trzeba utrzymywać wysokie wykorzystanie sieci.
 Dlatego na krótki czas można dopuścić do przeciążenia.

Regula 3

Dopuszczanie połączenia: przepływ deklaruje swoje potrzeby, sieć może zablokować połączenie (np., sygnał zajętości), jeżeli nie może spełnić potrzeb

Zasady dla gwarancji QOS - wydajność

Przydzielanie stałej (nie podlegającej współużytkowaniu) szerokości pasma do przepływu: niewydajne użytkowanie pasma, jeżeli przepływ nie zużywa swojego przydziału

Regula 4

Zapewniając izolację i kontrolując dostęp należy wykorzystywać zasoby tak wydajnie, jak tylko jest to możliwe

Zarys wykładu o komunikacji multimedialnej w sieciach IP

- Aplikacje sieci z jakością usług
- Przesyłanie
 strumieniowe
 przechowywanych
 plików audio i wideo
 - O RTSP
- Multimedia czasu
 rzeczywistego: studium
 przypadku telefonii
 internetowej

- Protokoły dla interaktywnych aplikacji czasu rzeczywistego
 - O RTP, RTCP
 - O SIP
- Poza best-effort
- Mechanizmyszeregowania i kontroli

Mechanizmy szeregowania i kontroli

- szeregowanie: wybierz następny pakiet do przesłania przez łącze
 - o ang. scheduling
- Szeregowanie FIFO (pierwszy na wejściu, pierwszy na wyjściu):
 wysyłaj w kolejności wejścia do kolejki
 - Przykład ze świata rzeczywistego?
 - Strategia usuwania: jeżeli pakiet wchodzi do pełnej kolejki: kogo usunąć?
 - Gubienie ogona (ang. droptail): gubienie nadchodzącego pakietu
 - priorytet: zgubić/usunąć w oparciu o priorytet
 - · losowo: zgubić/usunąć losowo

Strategie szeregowania: więcej

Szeregowanie priorytetów: transmisja pakietu o najwyższym priorytecie w kolejce

- Wiele klas o różnych priorytetach
 - klasa może zależeć od oznakowania lub innych informacji z nagłówka, np. IP źródła/przeznaczenia, numery portów, itp..
 - Przykład ze świata rzeczywistego?

Strategie szeregowania: jeszcze więcej

Szeregowanie cykliczne:

- Wiele klas
- cykliczne skanowanie kolejek klas, obsługa jednej z każdej klasy (jeżeli dostępna)
- przykład ze świata rzeczywistego?

Strategie szeregowania: jeszcze więcej

Ważone sprawiedliwe kolejkowanie (ang. weighted fair queuing, WFQ):

- Uogólniona cykliczność
- Każda klasa otrzymuje ważoną ilość usługi w każdym cyklu
- Przykład ze świata rzeczywistego?

Mechanizmy kontroli ruchu

<u>Cel</u>: ograniczyć ruch tak, żeby nie przekraczał zadeklarowanych parametrów

Trzy powszechnie stosowane kryteria:

- □ (długoterminowa) średnia prędkość: ile pakietów można wysłać na jednostkę czasu (na dłuższą metę)
 - Kluczowa kwestia: jaki jest odstęp czasu: 100 pakietów na sekundę czy 6000 pakietów na minutę to ta sama średnia!
- Szczytowa prędkość: np., 6000 pakietów na min. (p/m) średnio; prędkość szczytowa 1500 p/s
- (Maks.) Wielkość serii: maksymalna liczba pakietów wysyłanych po kolei (bez okresów bezczynności)

Mechanizmy kontroli

Token Bucket: ograniczyć wejście do określonego rozmiaru wiązki i średniej prędkości.

- kubełek może zawierać b żetonów
- Žetony generowane z prędkością r żetonów/sekundę chyba, że kubełek jest pełen
- W ciągu okresu o długości t: liczba dopuszczonych pakietów mniejsza lub równa (r t + b).

Mechanizmy kontroli (więcej)

token bucket, szeregowanie WFQ, aby zapewnić gwarantowane górne ograniczenie opóźnienia, tj., gwarancja jakości usługi!

Mapa wykładu

- Wprowadzenie
 - o 10 trendów rozwoju sieci
- Komunikacja multimedialna w sieciach IP
- □ Techniki QoS
 - O ATM
 - Wstęp do sieci ATM
 - Adresowanie i sygnalizacja w ATM
 - · Ruting w ATM
 - Kształtowanie ruchu w ATM
 - Zarządzanie ruchem i kontrola przeciążenia w ATM
 - IEEE 802.1D
 - Integrated Services i Differentiated Services
 - MPLS
- Problemy i perspektywy rozwoju tych technologii