Universidad Mayor de San Simón Facultad de Ciencias y Tecnología

Nota:			

UMSS

CIRCUITOS ELÉCTRICOS I

TEMA 7: RESPUESTA NATURAL Y ESCALON RL Y RC PRÁCTICA 7

Grupo:			
Apellido (s)	y Nombre (s):		
Docentes:	M.Sc. Ing. Juan José E. MONTERO G. – Ing. Yuri PÉREZ P.		
Auxiliares:			
Carrera:	Ingeniería: Eléctrica - Electrónica - Electromecánica		
Semestre:	2° Semestre – 4° Semestre		
Fecha de ent	trega: Chha / / 20		

Universidad Mayor de San Simón Facultad de Ciencias y Tecnología

Ingeniería: Eléctrica - Electrónica - Electromecánica

Circuitos Eléctricos I: 2º Semestre - 4º Semestre

PRÁCTICA 7

Problema 1.

El conmutador del circuito mostrado ha estado cerrado durante un largo periodo de tiempo v se abre en t=0.

a) Calcular el valor inicial de i.

R.: -12.5[A]

b) Calcule la energía inicial almacenada en la bobina.

R.: 625[mJ]

c) ξ Cuál es la constante de relajación del circuito para t > 0?

R.: 4[ms]

d) ¿Cuál es la ecuación que nos da i(t) para $t \ge 0$?

 $R.: -12.5 e^{-250 t} [A]$

e) ¿Qué porcentaje de la energía inicial almacenada se habrá disipado en la resistencia de $2[\Omega]$, 5[ms] después de abrir el conmutador? R.: 98.5 %

Problema 2.

En t = 0, el conmutador del circuito mostrado se mueve instantáneamente de la posición "a" a la posición "b".

a) Calcule v_o para $t \ge 0^+$.

R.: $-8e^{-10t}$ [V], $t \ge 0$

b) ¿Qué porcentaje de la energía inicial almacenada en la bobina terminará por disiparse en la resistencia de $4[\Omega]$? R.: 80%

Problema 3.

El conmutador del circuito mostrado ha estado cerrado durante un largo periodo de tiempo y se abre en t = 0. Calcule:

a) El valor inicial de v(t)

R.: 200[V]

b) La constante de relajación para t > 0

R.: 20[ms]

c) La ecuación correspondiente a v(t) después de abrir el conmutador.

R.: 200e-50t [V]

d) La energía inicial almacenada en el condensador.

R.: 8[mJ]

e) El tiempo necesario para disipar el 75% de la energía inicialmente almacenada.

R.: 13.86[ms]

Problema 4.

El conmutador del circuito mostrado ha estado cerrado durante un largo periodo de tiempo antes de abrirlo en t=0.

a) Calcule v_o para $t \ge 0$.

R.: $8e^{-25t} + 4e^{-10t}$ [V]

b) ¿Qué porcentaje de la energía inicial almacenada en el circuito se habrá disipado después de que el conmutador haya estado abierto durante 60 [ms]? R.: 81.05 %

Problema 5.

El conmutador de la figura a estado abierto durante un largo periodo de tiempo. En t=0 se cierra el conmutador.

a) Determine $i_0(0^+)$ e $i_0(\infty)$.

R.: 4; 6[A]

b) Determine $i_0(t)$ para $t \ge 0^+$.

 $R.: 6 - 2e^{-4t}[A]$

c) ¿Cuántos milisegundos después de haber cerrado el conmutador será la corriente que atraviesa el conmutador igual 5[A]? R.: 173.3[ms]

Problema 6.

El conmutador del circuito mostrado en la figura ha estado en la posición 1 durante un largo periodo de tiempo. En t=0, el conmutador se mueve instantáneamente a la posición 2. Calcule el valor de R de modo que el 20 % de la energía inicial almacenada en la bobina de 30[mH] se disipe en R en 15[μ s].

R.: 223.14[Ω]

Problema 7.

El conmutador del circuito de la figura ha estado en la posición a durante un largo periodo de tiempo. En t = 0, se, mueve instantáneamente de "a" a "b".

a) Determine $i_0(t)$ para $t \ge 0$.

 $R.: -10e^{-5000t}[A]$

b) ¿Cuál es la energía total suministrada a la resistencia de $8[\Omega]$?.

R.: 80[mJ]

Problema 8.

El conmutador del circuito de la figura ha estado cerrado durante un largo periodo de tiempo. En t=0, se abre el conmutador.

a) Calcule $i_0(t)$ para $t \ge 0$.

 $R.: 4.05e^{-80t}[A]$

b) Calcule la potencia instantánea disipada por la resistencia de $54[\Omega]$.

R.: 205.335e-160t[W]

c) Suponiendo que el conmutador del circuito de la figura ha estado abierto durante una constante de tiempo. ¿Qué porcentaje de la energía total almacenada en la bobina de 0.5[H] se habrá disipado en la resistencia de $54[\Omega]$? R.: 12.3 %

Problema 9.

El conmutador del circuito de la figura ha estado cerrado durante un largo periodo de tiempo antes de abrirse en t = 0. Determine:

a. $i_L(t)$, $t \ge 0$.

R.: 11,2e^{-2625t} [V] t≥0⁺

b. $v_L(t)$, $t \ge 0$.

 $R.: -588e^{-2625t}[V]$

c. $i_{\Delta}(t)$, $t \geq 0^+$.

 $R.: -4.9e^{-2625t}[A]$

Problema 10.

El conmutador del circuito de la figura ha estado cerrado durante un largo periodo de tiempo antes de abrirse en t=0.

a. Cuando se abre el conmutador. ¿La respuesta es natural o escalón?. R.: Natural

b. Determine $v_o(t)$, $t \ge 0$.

 $R.: -e^{-50t}[V], t \ge 0$

Problema 11.

El conmutador del circuito de la figura ha estado en la posición "1" durante un largo periodo de tiempo. En t=0, el conmutador se mueve instantáneamente a la posición "2".

- a. Determine $v_0(t)$ para todo tiempo.R.: 80[V] para t < 0; $-80e^{-250t} + 144e^{-250t}[V]$ para $t \ge 0$.
- b. Determine el porcentaje de la energía inicialmente almacenada en la bobina que se disipa en la resistencia de $40[\Omega]$. R.:8.89%

Problema 12.

El conmutador del circuito de la figura ha estado cerrado durante un largo periodo de tiempo antes de abrirse en t=0.

- a) Determine el valor de L de modo que $v_0(t)$ sea igual a 0.5 veces $v_0(0^+)$ cuando t=1[ms]. R::14.43[mH]
- b) Determine el porcentaje de la energía almacenada que se habrá disipado en la resistencia de $10[\Omega]$ cuando t=1[ms]. R.: 75%

Problema 13.

Los dos conmutadores del circuito de la figura están sincronizados. Los conmutadores han estado cerrados durante un largo periodo de tiempo antes de abrirlos en t=0.

- a) ¿Cuántos milisegundos después de abrirse los conmutadores será la energía disipada en la resistencia de $4[k\Omega]$ igual al 10% de la energía inicialmente almacenada en la bobina de 6[H]?.

 R.:114.54[μ s]
- b) En el instante calculado en el inciso a. ¿Qué porcentaje de la energía total almacenada en la bobina se habrá disipado?. R.: 60%

Problema 14.

El conmutador del circuito de la figura ha estado en la posición a durante un largo periodo de tiempo. En t=0, el conmutador pasa a la posición b.

a) Calcule $i_0(t)$ para $t \ge 0^+$.

R.: 9.9e^{-1000t} [mA]

b) ¿Qué porcentaje de la energía inicialmente almacenada en el condensador se disipará en la resistencia de $3[k\Omega]$ durante los primeros $500[\mu s]$ después de cerrarse el conmutador?.

Problema 15.

En el circuito de la figura las ecuaciones correspondientes a la tensión y la corriente son:

$$v=48 \text{ e}^{-25t} \text{ [V]}, t \ge 0;$$

$$i=12 e^{-25t} [mA], t \ge 0^+$$

Determine R, C, τ y la energía inicial almacenada en el condensador.

R.: $4[k\Omega]$; $10[\mu F]$; 40[ms]; 11.52[mJ]

Problema 16.

El conmutador del circuito de la figura se cierra en t=0 después de haber estado abierto durante un largo periodo de tiempo.

a. Determine $i_1(0-)$ e $i_2(0-)$.

R.: $i_1(0-) = i_2(0-) = 100[mA]$

b. Determine $i_1(0+)$ e $i_2(0+)$.

R.: $i_1(0+) = 100[mA]$; $i_2(0+) = -25[mA]$

c. Explique por qué $i_1(0-) = i_1(0+)$.

d. Explique por qué $i_2(0-) \neq i_2(0+)$.

e. Determine $i_1(t)$ para $t \ge 0$.

R.: 0,1e-312,500t [A]

f. Determine $i_2(t)$ para $t \ge 0$.

 $R.: -25e^{-312.500t}[mA]$

Problema 17.

El conmutador del circuito mostrado en la figura ha estado en la posición "x" durante un largo periodo de tiempo. En t=0, el conmutador se mueve instantáneamente a la posición "v".

a. Calcule α de modo que la constante de relajación para t > 0 sea 40[ms].

R.: $2.5 \times 10^{-4} [A/V]$

b. Para el valor de α determinado en el inciso a, calcule $v_{\Delta}(t)$.

R.: $-1.8e^{-25t}$ [V], $t \ge 0^+$

Problema 18.

El conmutador del circuito de la figura ha estado en la posición "1" durante un largo periodo de tiempo antes de moverse a la posición "2" en t=0. Determine $i_0(t)$ para $t\geq 0^+$.

 $R.: -0.75e^{-25000t}$ [A]

Problema 19.

Los dos conmutadores del circuito de la figura han estado cerrados durante un largo periodo de tiempo. En t=0, ambos conmutadores se abren simultáneamente.

a. Determine $i_0(t)$ para $t \ge 0^+$.

R.: $24e^{-5000t}$ [mA].

b. Determine $v_o(t)$ para $t \ge 0^+$.

R.: $80 - 8e^{-5000t}$ [V].

c. Determine la energía en [mJ] atrapada en el circuito.

R.: 2.937[mJ].

Problema 20.

El conmutador del circuito mostrado en la figura ha estado cerrado durante un largo periodo de tiempo antes de abrirse en t=0.

a. Determine las expresiones numéricas para $i_L(t)$ y $v_o(t)$ para $t \ge 0$

R.:
$$-2 - 3e^{-5000t}$$
 [A]; $48 - 48e^{-5000t}$ [V].

b. Determine las expresiones numéricas para $v_L(0^+)$ y $v_0(0^+)$ para $t \ge 0$. R.: 60; 0 [V].

Problema 21.

El conmutador del circuito mostrado en la figura ha estado abierto durante un largo periodo de tiempo antes de cerrarse en t=0.

Para t = 0.15[s], encontrar el valor de i_L , i_1 e i_2 .

R.: 0.756[A]; 0 [A]; 1.244[A].

Problema 22.

Determinar i(t) para todos los valores de tiempo en el circuito siguiente.

R.: 25 [A] para t < 0; 25 + 25 $(1 - e^{-0.5t})u(t)$ [A] para t > 0

Problema 23.

Determinar $v_c(t)$ en t igual a: (a) 0^- ; (b) 0^+ ; (c) ∞ ; (d) 0.08 [s]

R.: 20; 20; 28; 24.4 [V].

Problema 24.

Determinar $i_x(t)$ para todo tiempo.

Tomar en cuenta que la fuente independiente de tensión se comporta de acuerdo a la siguiente función escalón unitario:

$$v_s = 20 \ u(-t) \ [V]$$

Sug: El circuito es un RC y RL al mismo tiempo, NO ES UN CIRCUITO RLC ya que son circuitos separados.

Problema 25.

El valor de i_s en el circuito de la figura es 1[mA] para t < 0 y 0 [A] para t > 0. Determinar v_x para todo tiempo.

Sug: Resolver por separado ya que el circuito es un RL y RC. Este ejercicio corresponde al programa de circuitos eléctricos I.

Problema 26.

El conmutador del circuito mostrado ha estado en la posición a durante un largo periodo de tiempo. En t=0, el conmutador se mueve instantáneamente a la posición b.

- a. Determine la expresión numérica correspondiente a $i_0(t)$ para $t \ge 0$. R.: $5 + 15e^{-1000t}$ [A].
- b. Determine la expresión numérica correspondiente a $v_o(t)$ para $t \ge 0^+$.R.: $50 450e^{-1000t}$ [V].

Problema 27.

El conmutador del circuito mostrado ha estado abierto durante un largo periodo de tiempo antes de cerrarse en t = 0. Determine $i_o(t)$ para $t \ge 0$. R.: $8 - 4e^{-500t}$ [A].

Problema 28.

El conmutador del circuito mostrado ha estado abierto durante un largo periodo de tiempo antes de cerrarse en t = 0. Determine $v_o(t)$ para $t \ge 0$. R.: $-80e^{-4000t}$ [mV].

Problema 29.

El conmutador del circuito de la figura se abre en t=0 después de haber estado cerrado durante un largo periodo de tiempo. ¿Cuántos milisegundos después de abrirse el conmutador será la energía almacenada en el condensador un 36% de su valor final?

R.: 3.67[ms]

Problema 30.

El conmutador del circuito mostrado ha estado en la posición OFF durante un largo periodo de tiempo. En t=0, el conmutador se mueve instantáneamente a la posición ON. Determine $v_o(t)$ para $t \ge 0$.

R.: $45 - 90e^{-4000t}$ [V].

Problema 31.

Calcular la corriente i(t) para $t \ge 0$.

