Homework 1.5 344

Chris Rytting

September 14, 2015

2.1 (i)

Note that

$$L(a(x_1, x_2) + b(y_1, y_2)) = L((ax_1, ax_2) + (by_1, by_2))$$

$$= ((ay_1, ay_2) + (bx_1, bx_2))$$

$$= aL(x_1, x_2) + bL(y_1, y_2)$$

$$\mathscr{N} = \mathbf{0}$$

$$\mathscr{R} = \mathbb{R}^2$$

Thus this is a linear transformation.

2.1 (ii)

$$L(a(x_1, x_2) + b(y_1, y_2)) = L((ax_1, ax_2) + (by_1, by_2))$$

$$= ((ax_1, 0) + (by_1, 0))$$

$$= aL(x_1, x_2) + bL(y_1, y_2)$$

$$\mathcal{N} = \{(0, y) | x \in \mathbb{R}^2\}$$

$$\mathcal{R} = \{(x, 0) | x \in \mathbb{R}^2\}$$

Thus this is a linear transformation.

2.1 (iii)

$$L(a(x_1, x_2) + b(y_1, y_2)) = L((ax_1, ax_2) + (by_1, by_2))$$

$$= ((ax_1 + 1, ax_2 + 1) + (by_1 + 1, ax_2 + 1))$$

$$\neq aL(x_1, x_2) + bL(y_1, y_2)$$

$$= (ax_1 + a, ax_2 + a) + (by_1 + b, by_2 + b)$$

Thus this is not a linear transformation.

2.1 (iv)

$$L(a(x_1, x_2) + b(y_1, y_2)) = L((ax_1, ax_2) + (by_1, by_2))$$

$$= (a^2x_1^2, a^2x_2^2) + (b^2y_1^2, a^2x_2^2)$$

$$\neq aL(x_1, x_2) + bL(y_1, y_2)$$

$$= (ax_1^2, ax_2^2) + (by_1^2, by_2^2)$$

Thus this is not a linear transformation.

2.2(i)

Let $p(x), q(x) \in \mathbb{F}_2$

$$L(a(p(x)) + b(q(x))) = x^2 + y^2$$

$$\neq aL(p(x)) + bL(q(x))$$

$$= ax^2 + bx^2$$

2.2(ii)

Note that $xp(x) \in \mathbb{F}[x]_4 \quad \forall p(x) \in \mathbb{F}[x]_2$ Note that

$$L(a(p(x)) + b(q(x))) = axp(x) + bxq(x)$$
$$= aL(p(x)) + bL(q(x))$$

2.2(iii)

Note that $x^4 + p(x) \in \mathbb{F}[x]_4 \quad \forall p(x) \in \mathbb{F}[x]_2$ Note that

$$L(a(p(x)) + b(q(y))) = x^4 + ap(x) + y^4 + bq(y)$$

 $\neq aL(p(x)) + bL(q(x))$

Thus it is not a linear transformation

2.2(iv)

Note that $(4x^2 - 3x)p'(x) \in \mathbb{F}[x]_4 \quad \forall p(x) \in \mathbb{F}[x]_2$ Note that

$$L(a(p(x))) + L(b(q(x))) = (4x^2 - 3x)ap'(x) + (4x^2 - 3x)bq'(x)$$
$$= a((4x^2 - 3x)p'(x)) + b((4x^2 - 3xq'(x)))$$
$$= aL(p(x)) + bL(q(x))$$

Thus it is a linear transformation

2.3

Let $f(x), g(x) \in C^1([0,1]; \mathbb{F})$. Note also that $\forall f(x), h(x) = f(x) + f'(x)$ is continuous since f(x) and f'(x) are both continuous.

$$L(a(f(x))) + L(b(g(x))) = af(x) + af'(x) + bg(x) + bg'(x)$$

= $a(f(x) + f'(x)) + b(g(x) + g'(x))$
= $aL(f(x)) + bL(g(x))$

As for L(f) = q, note that

$$L(f) = e^{-x} \int_0^x g(t)d^t dt + Ce^{-x} + (-e^{-x} \int_0^x g(t)e^t dt) + e^{-x}g(x)c^x - Ce^{-x}$$

$$= g(x) + c^{-x} - e^{-x}$$

$$= g(x)$$

2.4

Let $L, K, M \in \mathcal{L}(V, W)$ $\mathbf{v} \in V$, $a, b \in \mathbb{F}$.

2.4 (i)

By the properties of linear maps,

$$(L+K)(\mathbf{v}) = L(\mathbf{v}) + K(\mathbf{v}) = K(\mathbf{v}) + L(\mathbf{v}) = (K+L)(\mathbf{v})$$

2.4 (ii)

As with (i)

$$(L+K)(\mathbf{v}) + M(\mathbf{v}) = (L(\mathbf{v}) + K(\mathbf{v})) + M(\mathbf{v}) = L + (K+M)(\mathbf{v}) =$$

2.4 (iii)

 $M(\mathbf{v}) = 0$ satisfies the additive identity

2.4 (iv)

Let $L'(\mathbf{v}) = -\mathbf{v}$. This linear transformation yields the additive inverse

2.4 (v)

As with (i),

$$a(L+K)(\mathbf{v}) = a(L(\mathbf{v}) + K(\mathbf{v})) = aL(\mathbf{v}) + aK(\mathbf{v}) = a(K+L)(\mathbf{v})$$

2.4 (vi)

$$(a+b)L(\mathbf{v}) = aL(\mathbf{v} + bL(\mathbf{v})) = bL(\mathbf{v} + aL(\mathbf{v})) = (b+a)L(\mathbf{v})$$

2.4 (vii)

$$\exists \mathbf{w} \in W \quad 1L(\mathbf{v}) = 1 * \mathbf{w} = \mathbf{w} = L(\mathbf{v})$$

2.4 (viii)

By properties of vector spaces, there are elements in W such that

$$(ab)L(\mathbf{v}) = ab(\mathbf{w}) = a(b\mathbf{w}) = a(bL(\mathbf{v}))$$

2.5

By induction, we see that for n = 1, we have V_1, V_2, L_1 $L_1 : V_1 \to V_2$ $(L_1)^{-1} = L_1^{-1}$ Suppose that $L_n L_{n-1} \cdots L_1)^{-1} = L_1^{-1} \cdots L_{n-1}^{-1} L_n^{-1}$. For $\{V_i\}_{i=1}^{n+1}\}$, and $\{L_i\}_{i=1}^n\}$, we have the expression

$$(L_nL_{n-1}\cdots L_1)^{-1}=(L_n(L_{n-1}\cdots L_1)^{-1})^{-1}$$

And by remark 2.1.20, we can express it as follows

$$= ((L_{n-1} \cdots L_1)^{-1} L_n^{-1})$$

And inductively conclude

$$=L_1^{-1}\cdots L_n^{-1}$$

2.6

To show $\mathcal{N}(KL) = L^1 \mathcal{N}(K) = \mathbf{v} | L(\mathbf{v}) \in \mathcal{N}(K)$, we note by definiton:

$$\mathcal{N}(KL) = v \in V | KL(\mathbf{v}) = \mathbf{0}$$

$$\mathcal{N}(K) = w \in W | K(\mathbf{w}) = \mathbf{0}$$

We also know that $L^1:W\to V$ is a bijective map, because the two spaces are isomorphic. Let $v\in \mathcal{N}(KL)$. Thus $KL(\mathbf{v})=0$, and $KL(\mathbf{v})\in W$. Thus, $vL1KL(\mathbf{v})\in V$ To show the other direction, let $v\in L^{-1}\mathcal{N}(K)$. Because L inverse is bijective, there exists $v\in V$, forevery $w\in W$ that is in the null space of K, and $L^1\mathcal{N}(K)=v\in V|v=L^1(\mathcal{N}(K))$, and thus $v\in \mathcal{N}(KL)$. To show $\mathcal{R}(KL)\cong \mathcal{R}(K)$, we note by Definition:

$$\mathscr{R}(KL) = u \in U | \exists v \in V \text{ Where } KL(v) = u$$

 $\mathscr{R}(K) = u \in U | \exists wW \text{ Where } K(w) = u$

Let $u \in \mathcal{R}(KL)$. Thus, $\exists v \in V$, where KL(v) = w. Note $L(v) \in W$, and K(L(v)) = u. Thus, $u \in \mathcal{R}(K)$. As for the other direction, let $u \in \mathcal{R}(K)$. Thus $\exists w \in W$, where K(w) = u. Because $L \cong W$, $\exists v \in V$ s.t. L(v) = w, KL(v) = u. Thus $u \in \mathcal{R}(KL)$. Thus, $\mathcal{R}(KL) = \mathcal{R}(K)$.

2.7(i)

Let $\mathbf{x} \in V$, and $\mathbf{x} \in \mathcal{N}(L^k)$. Thus, $L^k \mathbf{x} = \mathbf{0}$. It follows that

$$L(L^k \mathbf{x}) = L(\mathbf{0}) = \mathbf{0})$$

And thus that

$$\mathbf{x} \in \mathscr{N}(L^{k+1})$$

2.7(ii)

Let $\mathbf{w} \in \mathcal{R}(L^{k+1})$. Thus, there exists $\mathbf{v} \in V$ such that $L^{k+1}(\mathbf{v}) = L(L(\mathbf{v}))$. Thus, $\exists \mathbf{v}' \in V \quad L(\mathbf{v}) = \mathbf{v}'$. Thus $L^k(\mathbf{v}') = \mathbf{w}$ and $\mathbf{w} \in \mathcal{R}(L^k)$.

$$\implies \mathscr{R}(L^{k+1}) \subset \mathscr{R}(L^k)$$