Week 8

'Knowing your hardware

) Hardware items

- CPU
- Storage & Partitions
- Graphics Card
- Memory Modules
- Battery & status
- Network devices & configuration

⁾ Packages to install

- clinfo
- coreutils
- dmidecode
- fdisk
- hardinfo
- hdparm
- hwinfo
 - Will probe hardware and show output on the screen. Information about PCI, partitions, keyboard, tablet, earphones etc..
- lshw
 - List hardware. Output is in various sections. You can choose a particular section eg: 1shw -c display Or 1shw -c processor Or 1shw -c memory
- memtester
- net-tools
- pciutils
- procps
- sysstat
- upower
- util-linux
- Demo

- o cat /proc/cpuinfo gives information about the CPU.
- cat /proc/partitions gives partition information. The loop partitions are meant for snap packages
- lsblk -o NAME, SIZE gives information about the number of block devices that are available.
- 1spci gives the list of PCI devices connected to the computer using the PCI bus.
- free gives details about the amount of memory used. It is a practice to have double the size of the memory as swap
- sudo dmidecode --type memory gives information about the memory and modules.
- hardinfo is a GUI utility
- o clinfo gives information about the graphics card.
- upower -e to know about the battery status. This will give a list. Choose the one that says battery and execute upower -i /org/freedesktop/UPower/devices/battery_BAT0 for example.
- sudo hdparm -Tt /dev/sda runs diagnostics on the ssd or hdd. Timing cached reads and buffered disk reads.
- o iostat -dx /dev/sdb gives information about speeds of various disks.
- ifconfig is a network utility that gives information about ethernet / loopback / wifi adapter.

[?] Prompt strings

- Context for prompt strings
 - o bash, dash, zsh, ksh, csh
 - o python
 - o octave Mathlab compatible numerical package
 - o gnuplot Plotting tool
 - sage symbolic cumputing package. Perhaps better than Mathematica
- bash prompts
 - PS1 : primary prompt string : \$
 - PS2 : secondary prompt for multi-line input : >
 - PS3 : prompt string in select loops : #?
 - PS4: prompt srting for execution trace: + Explanation: There are 4 bash prompts that are configured. What we see is normally the primary prompt when we open the shell. PS2 is shown when a command is incomplete. PS3 is shown when we run a bash script in a select loop. PS4 is shown when every command that is executed is displayed on the screen when we use the option set -x
- Escape sequences

 $\uebegin{align*} \uebegin{align*} \ueb$

To change what is displayed in the prompt string.

- Python command line
 - o ps1 and ps2 are defined in the module sys
 - o Change sys.ps1 and sys.ps2 if needed
 - Override __str__ method to have dynamic prompt >>> Default python command prompt

Demo

- echo \$PS1 gives \[\e]0;\u@\h: \w\a\]\${debian_chroot:+(\$debian_chroot)}\
 [\033[01;32m\]\u@\h\[\033[00m\]:\[\033[01;34m\]\w\[\033[00m\]\\$
- It can be changed PS1="\u@\h:\w\\$". The color will be lost from above prompt string.
- If you do source .bashrc you get back the prompt after messing up the prompt string.
- less .bashrc to see where it is defined.
- echo \$PS3 doesn't display anything.
- select x in alpha beta gamma; do echo \$x; done displays PS3
- In octave x=[1:1:100] creates array
- In SageMath plot(sin(x),x,0,2*pi)

⁾ Important Utilities

- find locating files and processing them
- tar, gzip etc packaging collections of files
- make conditional actions

find [pathnames] [conditions]

) file packaging

- Deep file hierarchies
- Large number of tiny files
- tar: collect a file hierarchy into a single file
- gzip: compress a file
- Applications: backup, file sharing, reduce disc utilization Explanations:
- Sometimes when there are several small files in a hierarchy structure, the files may occupy the minimum block size so there is a wastage of space. In such situations doing a tar will save space.

Possibilities

- tar, zip
- compress (ncompress), gzip (ncompress), bzip2 (bzip2), xz (xz-utils), 7z (p7zip-full)
- Tarballs like bundle.tgz for package + compress
- Time & memory required to shrink / expand versus size ratio
- Portability
- Unique names using timestamp, process ID etc., for backup tarballs Explanation:
- Plain text or ASCII files can be compressed to a very good ratio (almost 1:10) if the file contains repeting patterns.
- For more efficiency, first zip and then make a tar. Zipping the files while adding it to tar .tgz file format combines tar and gzip together.
- The deciscion on which method to use is taken based on time required, space occupied etc..

make

make -f make.file

Network & ssh

Accessing remote machines on command line

- IPv4 address range
 - Localhost
 - **127.0.0.0/8**
 - Private network
 - Class A : 10.0.0.0/8 16,777,216
 - Class B : 172.16.0.0/12 1,048,,576
 - Class C: 192.168.0.0/16 65,536
 - Public network
- Ways to gain remote access
 - VPN access
 - ssh tunneling
 - Remote desktop: x2go, rdp, pcoip,
 - o Desktop over browser: Apache Guacomole
 - o Commercial, over internet : Teamviewer, AnyDesk,Zoho assist, ...
- Some important ports | Port | Service | Description | |---|---| 21 | ftp | File transfer |
 | 22 | ssh | Secure Shell | | 25 | smtp | Simple Mail Transfer Protocol | 80 | http |
 Hypertext Tranfer Protocol | 443 | https | Secure Hypertext Tranfer Protocol | 631 | cups |
 Common Unix Printing System | 3306 | mysq1 | MySQL database |
- Firewall
 - o Ports open on my machine
 - Ports needed to be accessed on remote machine
 - Network routing over the port
 - Firewall controls at each hop
- Protecting a server
 - Server with a public service > Web Application Filter > Network Firewall > Anonymous users
- SELinux
 - Security Enhanced Linux mode available on Ubuntu too, apart from server grade flavors like CentOS, Fedora, RHEL, SuSE Linux etc.,
 - o Additional layer of access control on files to services
 - o Role Based Access Control
 - Process sandboxing, least privilege access for subjects
 - Check using 1s -1z and ps -ez
 - RBAC items: user (unconfined_u), role (object_r), type (user_home_t), level (s0)
 - Modes: disabled, enforcing, permissive

- o Tools: semanage, restorecon
- o SELinux is recommended for all publicly visible servers
- Network tools

- High Performance Computing
 - Look at www.top500.org for statistics
 - Accessing a remote HPC machine is usually over SSH
 - Long duration jobs are submitted to a job scheduler for execution
 - Raw data if large needs to be processed remotely before being transferred to your machine (network charges? bandwidth?)
 - Comfort with command line is a must

² Automating scripts

⁷ Scheduled, recurring, automatic execution of scripts

- cron
 - Service to run scripts automatically at scheduled times
 - Tools: at , crontab , anacron , logrotate
 - Script locations:
 - /etc/crontab
 - /etc/cron.d
 - /etc/cron.hourly
 - /etc/cron.daily
 - /etc/cron.weekly
 - /etc/cron.monthly

Example of job definition: .----- minute $(0 - 59) \mid$.----- hour $(0 - 23) \mid$.---- day of month $(1 - 31) \mid$ | | .---- month (1 - 12) OR jan,feb,mar,apr ... | | | | .--- day of week (0 - 6) (Sunday=0 or 7) OR sun,mon,tue,wed,thu,fri,sat | | | |

user-name command to be executed

Job definition

- 5 2 * * 1-5 root cd /home/scripts/backup && ./mkbackup.sh
 - 5 minute (0-59)
 - 2 hour (0-23)
 - * day of the month (1-31)
 - * month (1-12) or jan, feb, ...
 - 1-5 day of week (0-6) or sun,mon, ...
 - root user-name
 - cd /home/scripts/backup command
- The above command runs mkbackup.sh as root every working day at 02:05 AM

Demonstration

- o The first time crontab is used you have to select the default editor
- o crontab is in etc directory
- o anacron is run by the System administrator
- cron.daily is a folder in etc that displays daily tasks.
 Similarly cron.hourly, cron.monthly, cron.weekly
- o By placing a script in any of these directories you can make it run at the specified schedule
- By running crontab -e you can execute a specific script at a time. Customize timely running of scripts.

Startup scripts

- Startup scripts: /etc/init/, /etc/init.d/
- Runlevel scripts:

⁷ Managing Storage

⁾ LVM & RAID

LVM

- Logical Volume Management
- o Pooling multiple storage devices as a single logical volume
- 1vm2 tools : create and manage virtual block devices from physical devices
- Suppose you need a very large partition but there is no HDD available of that size, you
 can define a logical volume that spans over multiple HDDs.
- Logical Volumes are mounted by the GNU Linux OS, which are mapped over multiple physical disks.

RAID

- Redundant Arrays of Independent Disks
- Distributing data over multiple discs for redundancy / speed / increased capacity
- Raid Controller: software or hardware

RAID modes

usable capacity < actual capacity

Explanation

- RAID 0 You are using 2 disks as 1. Half of one file is stored on 2 disks. Doubles speed of access of a file. Write Speed is 2x and Read Speed is 2x for 2 disks. If there are n disks in RAID 0 equivalent storage is size of minimum disk * n.
- RAID 1 Any piece of the file is written to both the disks. Reading is 2x but writing is n-1. People tend to use RAID 1 for OS alone.
- RAID 5 When you have more than 3 disks. Data is written to more than one disk. If one fails nothing is lost.
- RAID 6 Parity over 2 disks. If 2 disks fail you still have all your data.
- Most of the hardware supprts hot-swap.
- Useable capacity is less than the actual capacity
- o For storage people use RAID 5 or RAID 6.

Demo

- df -h to check system storage
- WHich RAID configuration to use to improve read performance and sustain at least one disk failure without losing data? RAID 4, RAID 6.