WHAT IS CLAIMED IS:

	1. A method to control the post sinter dimensions of a multilayer ceramic
	substrate sintered under load comprising the steps of:
	providing at least one first continuous non-densifying structure (40);
	providing at least one personalized ceramic greensheet (10) having a local
	peripheral kerf area (30) and an external peripheral kerf area (20);
	placing said at least one first continuous non-densifying structure (40) on the local
	peripheral kerf area (30) of said at least one personalized ceramic greensheet (10);
	placing said at least one personalized ceramic greensheet (10) having said at least
	one first continuous non-densifying structure (40) in a stack of personalized
	greensheets;
	laminating said stack of personalized ceramic greensheets to form a green ceramic
_	

laminating said stack of personalized ceramic greensheets to form a green ceramic laminate (100) wherein said at least one first continuous non-densifying structure (40) will at least partially control the dimensions of said green ceramic laminate (100) during lamination;

sintering said green ceramic laminate (100) under load to form a multilayer ceramic substrate wherein said at least one first continuous non-densifying structure (40) will at least partially control the dimensions of said multilayer ceramic substrate during sintering.

2. The method of claim 1 further comprising the step of post sinter sizing said 1 multilayer ceramic substrate thereby separating said at least one first continuous non-2 densifying structure (40) from said multilayer ceramic substrate. 3 3. The method of claim 1 further comprising the steps of: 1 providing at least one second continuous non-densifying structure (60); 2 placing said at least one second continuous non-densifying structure (60) on the 3 external peripheral kerf area (20) of said at least one personalized ceramic greensheet 4 (10) prior to lamination wherein said at least one second continuous non-densifying 5 structure (60) will at least partially control the dimensions of said green ceramic 6 laminate (100) during lamination, and 7 pre-sinter sizing said green ceramic laminate (100) thereby separating said at least 8 one second continuous non-densifying structure (60) from said green ceramic 9 10 laminate (100) prior to sintering. 4. The method of claim 3 wherein said first and second continuous non-densifying 1

structure is metal, ceramic, polymer, or a combination thereof.

2

1

5. The method of claim 3 wherein said first and second continuous non-densifying

2	structure is a metal selected from the group consisting of molybdenum, nickel,
3	copper, tungsten, stainless-steel and zirconia.
1	6. The method of claim 3 wherein said first and second continuous non-densifying
2	structure has a thickness of approximately 0.0003 inch to 0.001 inch and width of
3	greater than 0.5 millimeters.
1	7. A method to control the post sinter dimensions of a multilayer ceramic
2	substrate which is laminated and sintered under load as a multi-up green ceramic
3	laminate comprising the steps of:
4	providing at least one first continuous non-densifying structure (40);
5	providing at least one personalized ceramic greensheet (10) having a plurality of
6	product samples (35) separated by a local kerf area (30) and having peripheral
7	external kerf area (20);
8	placing said at least one first continuous non-densifying structure (40) on the local
9	kerf area (30) of said at least one personalized ceramic greensheet (10);
10	placing said at least one personalized ceramic greensheet (10) having said at least
11	one first continuous non-densifying structure (40) in a stack of personalized
12	greensheets;
13	laminating said stack of personalized ceramic greensheets to form a multi-up
14	green ceramic laminate (100) wherein said at least one first continuous non-densifying

structure (40) will at least partially control the dimensions of said multi-up green ceramic laminate (100) during lamination;

sintering said green ceramic laminate (100) under load to form a multi-up multilayer ceramic substrate wherein said at least one first continuous non-densifying structure (40) will at least partially control the dimensions of said multi-up multilayer ceramic substrate during sintering.

- 8. The method of claim 7 further comprising the step of post sinter sizing said multi-up multilayer ceramic substrate to form individual multilayer ceramic substrates and thereby separating said at least one first continuous non-densifying structure (40) from said individual multilayer ceramic substrates.
- 9. The method of claim 7 further comprising the steps of:

 providing at least one second continuous non-densifying structure (60);

 placing said at least one second continuous non-densifying structure (60) on the

 external peripheral kerf area (20) of said at least one personalized ceramic greensheet

 (10) prior to lamination wherein said at least one second continuous non-densifying

 structure (60) will at least partially control the dimensions of said multi-up green

 ceramic laminate (100) during lamination, and

 pre-sinter sizing said multi-up green ceramic laminate (100) thereby separating

 said at least one second continuous non-densifying structure (60) from said multi-up

green ceramic laminate (100) prior to sintering. 10 1 10. The method of claim 7 wherein said at least one first continuous non-densifying structure (40) further comprises tailored shapes (51) to control local distortion within 2 said product samples (35). 3 The method of claim 9 wherein said first and second continuous 11. 1 non-densifying structure is metal, ceramic, polymer, or a combination thereof. 2 12. The method of claim 9 wherein said first and second continuous 1 non-densifying structure is a metal selected from the group consisting of 2 molybdenum, nickel, copper, tungsten, stainless-steel and zirconia. 3 13. 1 The method of claim 9 wherein said first and second continuous 2 non-densifying structure has a thickness of approximately 0.0003 inch to 0.001 inch 3 and width of greater than 0.5 millimeters. 1 14. A multilayer ceramic laminate structure comprising: 2 a plurality of laminated ceramic greensheets; 3 at least one personalized ceramic greensheet (10) having a local peripheral kerf

area (30) and an external peripheral kerf area (20); 4 at least one first continuous non-densifying structure (40) placed on said local 5 peripheral kerf area (30) of said at least one personalized ceramic greensheet (10). 6 15. The multilayer ceramic laminate structure of claim 14 further comprising: 1 2 at least one second continuous non-densifying structure (60) placed on said 3 external peripheral kerf area (20). 1 The multilayer ceramic laminate structure of claim 15 wherein said first and 2 second continuous non-densifying structure is metal, ceramic, polymer, or a 3 combination thereof. 1 17. The multilayer ceramic laminate structure of claim 15 wherein said first and 2 second continuous non-densifying structure is a metal selected from the group 3 consisting of molybdenum, nickel, copper, tungsten, stainless-steel and zirconia. 1 18. The multilayer ceramic laminate structure of claim 15 wherein said first and 2 second continuous non-densifying structure has a thickness of approximately 0.0003 3 inch to 0.001 inch and width of greater than 0.5 millimeters. 1 19. A multi-up multilayer ceramic laminate structure comprising:

2	a plurality of laminated ceramic greensheets;
3	at least one personalized ceramic greensheet (10) having a plurality of product
4	samples (35) separated by a local kerf area (30) and having peripheral external kerf
5	area (20);
6	at least one first continuous non-densifying structure (40) placed on said local kerf
7	area (30) of said at least one personalized ceramic greensheet (10).
1	20. The multi-up multilayer ceramic laminate structure of claim 19 further
2	comprising:
3	at least one second continuous non-densifying structure (60) placed on said
4	external peripheral kerf area (20).
1	21. The multi-up multilayer ceramic laminate structure of claim 19 wherein
2	said at least one first continuous non-densifying structure (40) further comprises
3	tailored shapes (51) to control local distortion within said product samples (35).
1	22. The multi-up multilayer ceramic laminate structure of claim 20 wherein said
2	first and second continuous non-densifying structure is metal, ceramic, polymer, or a
3	combination thereof.

The multi-up multilayer ceramic laminate structure of claim 20 wherein

1

23.

2	said first and second conditions non-densitying structure is a mount selected from the
3	group consisting of molybdenum, nickel, copper, tungsten, stainless-steel and
4	zirconia.
1	24. The multi-up multilayer ceramic laminate structure of claim 20 wherein said
2	first and second continuous non-densifying structure has a thickness of approximately
3	0.0003 inch to 0.001 inch and width of greater than 0.5 millimeters.
1	25. The multilayer ceramic laminate structure of claim 14 further comprising:
2	discrete tailored shapes to control local distortion within the multilayer
3	ceramic laminate.