Метод эллипсоидов

Самсонов Владислав 396 группа ФИВТ ПМИ e-mail: vvladxx@gmail.com

17 мая 2015

1 Введение

В данной работе рассматривается алгоритмическая реализация метода эллипсоидов на языке C++ для решения задач линейного программирования.

Впервые данный метод предложили Н. З. Шор [1], Д. Б. Юдин и А. С. Немировский [2]. Впоследствии, Л. Хачиян [3] показал как применять метод эллипсоидов для решения задач линейного программирования.

Важно отметить, в какой постановке задача решается за полиномиальное время. Рассмотрим

$$\max\{c^T x : Ax \le b\}$$

т.ч.

$$x \in \mathbb{R}^n, A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^m$$

Тогда метод эллипсоидов позволяет решить задачу за полиномиальное время от $m+n+\rho$, где ρ — максимальная длина бинарного представления рационального числа в A или b.

2 Теоретические сведения

Базовый метод эллипсоидов позволяет решать следующую задачу: дан многогранник P

$$P := \{Ax \le b\}$$

Найти любую точку $x \in P$ из многогранника P, или вывести, что P вырожден или неограничен. Таким образом, метод позволяет определить, имеет ли решение система неравенств $Ax \leq b$. Можно предпологать, что A имеет полный ранг по столбцам. В противном случае методом Гаусса находится матрица A', т.ч. AU = [A'|0]. A' имеет полный ранг по столбцам. Тогда система $A'x \leq b$ разрешима тогда и только тогда, когда $Ax \leq b$ разрешима.

Данная задача эквивалентна следующей задаче линейного программирования [4]

$$\min\{c^T x : Ax \le b, x \ge 0\} \tag{2.1}$$

В свою очередь, для решения 2.1 достаточно найти любое решение системы неравенств

$$Ax \leq b$$

$$x \geq 0 \Leftrightarrow -x \leq 0$$

$$A^{T}y \geq c \Leftrightarrow -A^{T}y \leq -c$$

$$y \geq 0 \Leftrightarrow -y \leq 0$$

$$b^{T}y - c^{T}x \leq 0$$

$$(2.2)$$

Любое допустимое решение 2.2 является оптимальным решением 2.1. Таким образом, применяя метод эллипсоидов к 2.2, получаем решение задачи линейного программирования 2.1. Поскольку входные данные для 2.2 полиномиально зависят от 2.1, полученный алгоритм тоже будет полиномиальным (при условии, что метод эллипсоидов имеет полиномиальное время).

2.1 Определения

Назовём эллипсоидом $E\subset\mathbb{R}^n$ с центром в точке $x_0\in\mathbb{R}^n$ и направляющей матрицей $E_0\in\mathbb{R}^{n\times n}$ множество точек

$$\{x \in \mathbb{R}^n : (x - x_0)^T E_0^{-1} (x - x_0) \le 1\}$$

Матрица E_0 – симметричная, положительно определённая. В частном случае, если $E_0 = R^2 I_n$, где I_n – единичная матрица, то E – n-мерный шар радиуса R.

2.2 Метод эллипсоидов

Пусть известно следующее:

- (1) ε если P невырожденный, то он содержит шар, а значит $\exists \varepsilon$, т.ч. $vol(P) \geq \varepsilon$.
- (2) Эллипсоид E_0 , т.ч. $P \subset E_0$, если P ограничен.

Тогда метод эллипсоидов описывается так:

- 1. k = 0
- 2. Если центр x_k эллипсоида E_k лежит в P (другими словами, выполнено $Ax_k \leq b$), то найдено решение.
- 3. Если $vol(E_k) < \varepsilon$, то P вырожден или неограничен.
- 4. Иначе, пусть a_i первая строка матрицы A, для которой выполнено $a_i x_k > b$. Полагаем

$$E_{k+1} = \frac{n^2}{n^2 - 1} (E_k - \frac{2}{n+1} CC^T)$$
$$x_{k+1} = x_k - \frac{1}{n+1} C$$

, где $C=\frac{Aa_i^T}{\sqrt{a_iAa_i^T}}$. Возвращаемся на 2-ой шаг алгоритма, полагая k=k+1.

Доказательство корректности формул для переходов $E_k \to E_{k+1}$ и $x_k \to x_{k+1}$ можно найти в [5].

Осталось понять, как выбирать ε и E_0 .

Лемма 1. Если $P \neq \emptyset$ и бинарное представление A конечно, то

$$vol(P) \ge 2^{n^3} (\prod_{i,j} (A_{ij} + 1))^{-(n+1)}$$

Доказательство можно найти в [6]. Исходя из леммы, можно выбрать

$$\varepsilon = 2^{n^3} (\prod_{i,j} (A_{ij} + 1))^{-(n+1)}$$

Лемма 2. Р лежит в шаре с центром в 0 и радиусом

$$R = \sqrt{n}2^{-n^2} \prod_{i,j} (A_{ij} + 1) \prod_i (b_i + 1)$$

Доказательство можно найти в [5]. В качестве E_0 выбираем шар $\mathbb{B}(0, R)$.

Лемма 3.

$$\frac{vol(E_{k+1})}{vol(E_k)} < e^{-\frac{1}{2(n+1)}}$$

Лемма позволяет оценить скорость сходимости алгоритма. Действительно, после k итераций $vol(E_k) \leq vol(E_0)e^{-\frac{k}{2(n+1)}}$. Если решение существует, то верхняя оценка количества итераций равна $2(n+1)\ln\frac{vol(E_0)}{vol(P)}$.

Доказательство. Воспользуемся тем фактом, что объем эллипсоида пропорционален произведению его осей. Имеем

$$E_{k+1} = \frac{n^2}{n^2 - 1} (E_k - \frac{2}{n+1} CC^T)$$

Тогда

$$\frac{vol(E_{k+1})}{vol(E_k)} = \frac{\left(\frac{n}{n+1}\right)\left(\frac{n^2}{n^2-1}\right)^{\frac{n-1}{2}}}{1} = \frac{n}{n+1}\left(\frac{n^2}{n^2-1}\right)^{\frac{n-1}{2}}$$

Используем неравенство $1 + x < e^x$, где x > 0

$$< e^{-\frac{1}{n+1}} e^{\frac{n-1}{2(n^2-1)}} = e^{-\frac{1}{n+1}} e^{\frac{1}{2(n+1)}} = e^{-\frac{1}{2(n+1)}}$$

3 Реализация алгоритма

3.1 Описание

Для удобства, весь приведённый здесь код также доступен по ссылке: https://github.com/VladX/Ellipsoid-Method

На вход алгоритму подается матрица A и вектор b. Алгоритм находит произвольное решение системы $Ax \leq b$, либо выводит, что решений

нет. В алгоритме не производится никаких дополнительных проверок на корректность матрицы A.

Первой строкой считывается число n — размер матрицы A. Матрица считается квадратной. Если это не так, то нужно дополнить матрицу нулями до квадратной.

Далее считывается n^2 чисел — элементы матрицы A.

Последней строкой считывается n чисел — элементы вектора b.

3.2 Сравнение с симплекс-методом, тесты

Для оценки эффективности было сгенерировано несколько случайных 100-мерных выпуклых многогранника. Затем решалась 100-мерная задача оптимизации симплекс методом и эквивалентная ≈200-мерная задача поиска допустимого решения методом эллипсоидов. По результатам тестовых запусков метод эллипсоидов совершал в среднем на 241% больше итераций.

3.3 Код на С++

```
#include <iostream>
2
   #include <math.h>
   #include <string.h>
   using namespace std;
6
   class Vector {
7
   private:
           double * data;
9
            const size_t n;
10
   public:
11
            inline Vector (size_t n) : n(n) {
12
                    data = new double[n]();
13
14
            inline Vector (size_t n, const double * d) : n(n) {
15
16
                    data = new double[n];
17
                    memcpy(data, d, sizeof(double) * n);
18
            }
19
20
            inline Vector (const Vector & v) : n(v.n) {
21
                    data = new double[v.n];
22
                    memcpy(data, v.data, sizeof(double) * v.n);
```

```
23
            }
24
25
            inline ~Vector () {
26
                    delete[] data;
27
28
29
            inline double operator[] (size_t i) const {
30
                    return data[i];
31
32
33
            inline double & operator[] (size_t i) {
34
                    return data[i];
            }
35
36
37
            inline double operator* (const Vector & v) const {
38
                    double res = 0;
39
                    for (size_t i = 0; i < n; ++i)
40
                             res += data[i] * v[i];
41
                    return res;
42
            }
43
44
            inline void operator == (const Vector & v) {
45
                    for (size_t i = 0; i < n; ++i)
46
                             data[i] -= v[i];
            }
47
48
49
            inline void operator/= (double s) {
50
                    for (size_t i = 0; i < n; ++i)
                             data[i] /= s;
51
52
            }
53
54
            inline void dump () const {
55
                    for (size_t i = 0; i < n; ++i)
56
                             cout << data[i] << '';
57
                     cout << endl;</pre>
            }
58
59
   };
60
61
   class Matrix {
62
   private:
63
            double * data;
64
            const size_t n;
65
   public:
66
            inline Matrix (size_t n) : n(n) {
67
                    data = new double[n*n]();
```

```
}
68
69
70
             inline Matrix (const Matrix * m) : n(m->n) {
71
                     data = new double[m->n * m->n];
72
                     memcpy(data, m->data, sizeof(double) * m->n *
                         m->n);
73
            }
74
             inline Matrix (const Matrix & m) : n(m.n) {
75
76
                     data = new double[m.n * m.n];
                     memcpy(data, m.data, sizeof(double) * m.n * m
77
            }
78
79
80
             inline ~Matrix () {
81
                     delete[] data;
            }
82
83
84
             inline size_t size () const {
85
                     return n;
             }
86
87
88
             inline const double * operator[] (size_t i) const {
89
                     return data + i * n;
             }
90
91
92
             inline double * operator[] (size_t i) {
93
                     return data + i * n;
            }
94
95
96
             // Определитель
97
             inline double det () const {
98
                     double det = 1;
99
                     double ** a = new double *[n];
100
                     for (size_t i = 0; i < n; ++i)
101
                              a[i] = new double[n];
102
                     const double EPS = 1E-9;
103
                     for (size_t i = 0; i < n; ++i)
104
                              for (size_t j = 0; j < n; ++j)
105
                                      a[i][j] = data[i * n + j];
106
                     for (size_t i = 0; i < n; ++i) {
107
                              size_t k = i;
108
                              for (size_t j=i+1; j < n; ++j)
109
                                      if (fabs(a[j][i]) > fabs(a[k
                                         ][i]))
```

```
110
                                                k = j;
111
                              if (fabs(a[k][i]) < EPS) {
112
                                       det = 0;
113
                                       break;
114
115
                              swap(a[i], a[k]);
116
                              if (i != k)
117
                                       det = -det;
                              det *= a[i][i];
118
119
                              for (size_t j = i + 1; j < n; ++j)
120
                                       a[i][j] /= a[i][i];
121
                              for (size_t j = 0; j < n; ++j)
122
                                       if (j != i && fabs(a[j][i]) >
                                            EPS)
123
                                                for (size_t k=i+1; k<</pre>
                                                   n; ++k
124
                                                         a[j][k] -= a[
                                                            i][k] * a[
                                                            j][i];
125
126
                     for (size_t i = 0; i < n; ++i)
127
                              delete[] a[i];
128
                      delete[] a;
129
                     return det;
130
             }
131
132
             inline void operator*= (double s) {
133
                     for (size_t i = 0; i < n*n; ++i)
134
                              data[i] *= s;
135
             }
136
137
             inline void operator -= (const Matrix & m) {
138
                     for (size_t i = 0; i < n*n; ++i)
139
                              data[i] -= m.data[i];
140
             }
141
    };
142
143
    // Единичная матрица
144
    class IdentityMatrix : public Matrix {
145
    public:
146
             IdentityMatrix (size_t n) : Matrix(n) {
147
                     for (size_t i = 0; i < n; ++i)
148
                              this->operator[](i)[i] = 1;
149
             }
150 | };
```

```
151
152
    // Объем эллипсоида с точностью до константы
153
    double volume (const Matrix & B) {
154
             return sqrt(B.det());
155
    }
156
157
    // Радиус сферы, сод. многогранник
    double ComputeInitialRadius (const Matrix & A, const Vector &
158
         b) {
159
             const size_t n = A.size();
160
             double R = ceil(sqrt(n)) * ceil(1.0/pow(2.0, n*n));
161
             for (size_t i = 0; i < n; ++i)
162
                      R *= fabs(b[i]) + 1.0;
163
             for (size_t i = 0; i < n; ++i)
164
                       for (size_t j = 0; j < n; ++j)
165
                                R *= fabs(A[i][j]) + 1.0;
166
             return R;
167
    }
168
169
    int main () {
170
             size_t n; // Размер матрицы A (n*n)
171
             cin >> n;
172
             IdentityMatrix I(n);
173
             Matrix A(n);
174
             Vector b(n);
175
             for (size_t i = 0; i < n; ++i)
176
                      for (size_t j = 0; j < n; ++j)
177
                                cin >> A[i][j]; // Считываем матрицу A
178
             for (size_t i = 0; i < n; ++i)
179
                      cin >> b[i]; // Считываем вектор b
180
             double R = ComputeInitialRadius(A, b); // Считаем
                 начальный радиус сферы, целиком сод. многогранник
181
             Vector x(n);
182
             Matrix B(I); // Начальный эллипсоид
183
             B *= R*R;
184
             const double L = 1e-2;
185
             while (volume(B) > L) {
186
                       size_t i = 0;
                      for (i = 0; i < n; ++i) { // Находим первое неравенство, которое не выполняется
187
188
                                double s = 0;
189
                                for (size_t j = 0; j < n; ++j)
                                         s += A[i][j] * x[j];
190
191
                                if (s > b[i])
192
                                         break;
193
                      }
```

```
194
                      if (i == n) { // Все неравенства выполнены, решение
195
                               cout << "Решение: \n";
196
                               for (i = 0; i < n; ++i)
197
                                        cout << x[i] << ',,';
                               cout << endl;</pre>
198
199
                               return 0;
200
201
                      Vector a(n, A[i]);
202
                      Vector Bka(n);
203
                      for (size_t i = 0; i < n; ++i)
204
                               for (size_t j = 0; j < n; ++j)
                                        Bka[i] += B[i][j] * a[j];
205
206
                      double aTBka = a * Bka;
207
                      { // Пересчитываем х (центр эллипсоида)
208
                               Vector tmp(Bka);
                               tmp /= (n + 1) * sqrt(aTBka);
209
210
                               x -= tmp;
211
                      }
212
                      { // Пересчитываем В (матрица, задающая эллипсоид)
213
                               Matrix tmp(n);
214
                               for (size_t i = 0; i < n; ++i)
215
                                        for (size_t j = 0; j < n; ++j)
216
                                                  tmp[i][j] = Bka[i] *
                                                     Bka[j];
217
                               tmp *= 2.0 / ((n + 1.0) * aTBka);
218
                               B -= tmp;
219
                               B *= ((double) n*n) / (n*n - 1.0);
220
                      }
221
222
             cout << "Решений не найдено" << endl;
223
             return 0;
224
    }
```

Список литературы

- [1] Шор Н.З. Использование операций растяжения пространства в задачах минимизации выпуклых функций. Кибернетика, 13(1):94–96, 1970.
- [2] Юдин Д.Б. и Немировский А.С. Вычислительная сложность и эффективные методы решения выпуклых оптимизационных задач. Эко-

- номика и математические методы, 12:357–369, 1976.
- [3] Л. Хачиян. Полиномиальный алгоритм в линейном программировании. Доклады академии наук СССР, 244:1093–1097, 1979.
- [4] S. Rebennack. Ellipsoid Method. Encyclopedia of Optimization, Second Edition, C.A. Floudas and P.M. Pardalos (Eds.), Springer, pp. 890–899, 2008.
- [5] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer, 1988.
- [6] M. Grötschel, L. Lovász, and A. Schrijver. The Ellipsoid Method and Its Consequences in Combinatorial Optimization. Combinatorica, 1:169–197, 1981.