Pattern Recognition

吴庭明 51151500059 2016/06/23

Reference paper

- Human Action Recognition using Depth Maps
 - ♦ Vennila Megavannan
 - Bhuvnesh Agarwal
 - R. Venkatesh Babu

Roadmap

- Dataset
- Action Representation
 - Motion history image
 - ◆ Average Depth Image
 - ◆ Depth Difference Image
- Implementation
 - ◆ Tools
 - ◆ Feature extraction results
- Results
 - ◆ Training
 - ◆ Testing

Data Information

- Dataset
 - Different kind of motion videos
 - Bend, bowling, box, jump, kick, squat, strength, swim, trumble, wave
 - ◆ Each video contains 19 frames
 - ◆ Depth Image

Roadmap

- Dataset
- Action Representation
 - Motion history image
 - Average Depth Image
 - ◆ Depth Difference Image
- Implementation
 - ◆ Tools
 - ◆ Feature extraction results
- Results
 - ◆ Training
 - ◆ Testing

Motion History Image

$$B(i,j,t) = \begin{cases} 1, & \text{if } D(i,j,t) > 0, \\ 0, & \text{otherwise,} \end{cases}$$

$$B_{diff}(i, j, t) = B(i, j, t) - B(i, j, t - 1)$$

$$I_{mhi}(i,j,t) = \begin{cases} \tau, \text{if } B_{diff}(i,j,t) = 1, \\ \max(0,I_{mhi}(i,j,t-1) - \tau) \text{ o.w,} \end{cases}$$

$$I_{mhi}^k = I_{mhi}(i, j, k+N-1)$$

Average Depth Image

$$I_{avg}^{k} = \frac{\sum_{t=k}^{k+N-1} D(i,j,t)}{\sum_{t=k}^{k+N-1} B(i,j,t)}$$

Depth Difference Image

$$I_{max}^{k}(i,j) = \max\{D(i,j,t) : D(i,j,t) \neq 0, \\ \forall t \in [k \dots (k+N-1)]\}$$
$$I_{min}^{k}(i,j) = \min\{D(i,j,t) : D(i,j,t) \neq 0, \\ \forall t \in [k \dots (k+N-1)]\}$$
$$I_{diff}^{k} = I_{max}^{k} - I_{min}^{k}$$

Roadmap

- Dataset
- Action Representation
 - Motion history image
 - ◆ Average Depth Image
 - ◆ Depth Difference Image
- Implementation
 - ◆ Tools
 - Feature extraction results
- Results
 - ◆ Training
 - ◆ Testing

Information

Tools

- ♦ Visual Studio 2010
- ◆ Opency 2.4.10
- **♦ LibSVM 3.2.1**

- Cut all videos into frames
- Bounding box features
 - Compute depth difference image(DDI) for each class
 - Extract 108 features from different windows each of different size

$$F1_{k}^{b} = \max_{(i,j)\in R_{b}} \{I_{diff}^{k}(i,j) : I_{diff}^{k}(i,j) \neq 0\},$$

$$F2_{k}^{b} = \min_{(i,j)\in R_{b}} \{I_{diff}^{k}(i,j) : I_{diff}^{k}(i,j) \neq 0\},$$

- Hu Moments features
 - Compute motion history image(MHI) for each class
 - ◆ Compute for each class average depth image(ADI)
 - Extract 14 features from depth different image

MHI

ADI

Roadmap

- Dataset
- Action Representation
 - Motion history image
 - ◆ Average Depth Image
 - ◆ Depth Difference Image
- Implementation
 - ◆ Tools
 - ◆ Feature extraction results
- Results
 - ◆ Training
 - ◆ Testing

- SVM Type
 - ◆ C-SVC (multi-class classification)
- Kernel
 - Linear
 - □ 108(DDI)
 - Cross Validation Accuracy = 95.1872%
 - Accuracy = 100% (20/20) (classification)
 - **□14**
 - Cross Validation Accuracy = 23.5294%
 - Accuracy = 25% (5/20) (classification)

- SVM Type
 - ◆ C-SVC (multi-class classification)
- Kernel
 - polynomial
 - □ 108(DDI)
 - Cross Validation Accuracy = 94.1176%
 - Accuracy = 100% (20/20) (classification)
 - **□14**
 - Cross Validation Accuracy = 10.1604%
 - Accuracy = 10% (2/20) (classification)

- SVM Type
 - ◆ C-SVC (multi-class classification)
- Kernel
 - RBF
 - □ 108(DDI)
 - Cross Validation Accuracy = 20.3209%
 - Accuracy = 20% (4/20) (classification)
 - **□14**
 - Cross Validation Accuracy = 22.9947%
 - Accuracy = 25% (5/20) (classification)

- SVM Type
 - ◆ C-SVC (multi-class classification)
- Kernel
 - ◆ 108(MHI)
 - □ Linear
 - Cross Validation Accuracy = 97.3262%
 - Accuracy = 95% (19/20) (classification)
 - □ Polynomial
 - Cross Validation Accuracy = 96.7914%
 - Accuracy = 95% (19/20) (classification)

- SVM Type
 - ◆ C-SVC (multi-class classification)
- Kernel
 - ◆ 108(ADI)
 - □ Linear
 - Cross Validation Accuracy = 10.1604%
 - Accuracy = 10% (2/20) (classification)
 - □ Polynomial
 - Cross Validation Accuracy = 10.1604%
 - Accuracy = 10% (2/20) (classification)

- SVM Type
 - ◆ C-SVC (multi-class classification)
- Kernel
 - Combined
 - □ Linear
 - Cross Validation Accuracy = 97.861%
 - Accuracy = 100% (20/20) (classification)
 - □ Polynomial
 - Cross Validation Accuracy = 96.2567%
 - Accuracy = 100% (20/20) (classification)
 - **□** RBF
 - Cross Validation Accuracy = 18.7166%
 - Accuracy = 25% (5/20) (classification)

Thank you!