MATH 668 Homework 2 Solutions

$$P(y_1 > 0 \text{ and } y_3 > 0 | y_2 = 0) = P(y_1 > 0 | y_2 = 0) P(y_3 > 0 | y_2 = 0) = P\left(\frac{y_1 - (-1)}{\sqrt{4}} > \frac{1}{2} | y_2 = 0\right) P\left(\frac{y_3 - (-3)}{3} > \frac{3}{3} | y_2 = 0\right) = P\left(\frac{y_3 - (-1)}{\sqrt{4}} > 0.5 | y_2 = 0\right) P\left(\frac{y_3 - (-3)}{3} > 1 | y_2 = 0\right) = 0.0489511 \text{ as shown below.}$$

$$(1-pnorm(.5))*(1-pnorm(1))$$

[1] 0.0489511

(c) Since
$$\binom{y_3-y_2}{y_1} = \binom{0}{1} - 1 & 1 \ 1 & 0 & 0 \end{pmatrix} \binom{y_1}{y_2}$$
,
$$E \binom{y_3-y_2}{y_1} = \binom{0}{1} - 1 & 1 \ 1 & 0 & 0 \end{pmatrix} E \binom{y_1}{y_2} = \binom{0}{1} - 1 & 1 \ 1 & 0 & 0 \end{pmatrix} \binom{0}{1} = \binom{-2}{0} \text{ and}$$

$$\operatorname{var} \binom{y_3-y_2}{y_1} = \binom{0}{1} - 1 & 1 \ 1 & 0 & 0 \end{pmatrix} \operatorname{cov} \binom{y_1}{y_2} \binom{0}{1} - 1 & 0 \ 1 & 0 \end{pmatrix} = \binom{10}{1} \cdot \frac{1}{1} \cdot \frac{1}{5},$$

$$\operatorname{so} \binom{y_3-y_2}{y_1} \sim N_2 \left(\binom{-2}{0}, \binom{10}{1} \cdot \frac{1}{1} \cdot \frac{1}{5}\right).$$
Then $E(y_1|y_3-y_2=1) = 0 + 1(10)^{-1}(1-(-2)) = 0 + 0.3 = 0.3$ and
$$\operatorname{var}(y_1|y_3-y_2=1) = 5 - 1(10)^{-1}(1) = 5 - 0.1 = 4.9$$

$$\operatorname{so} y_1|y_3-y_2=1 \sim N(0.3, 4.9).$$

Then $P(y_1 > 0 | y_3 - y_2 = 1) = P\left(\frac{y_1 - (-0.3)}{\sqrt{4.9}} > \frac{0.3}{\sqrt{4.9}} | y_3 - y_2 = 1\right) = P\left(\frac{y_1 - (-0.3)}{\sqrt{4.9}} > 0.1355262 | y_3 - y_2 = 1\right) = 0.5539021$ as shown below.

1-pnorm(-.3/sqrt(4.9))

[1] 0.5539021

3. There are many answers. Here are two methods to find an answer.

Method 1: Find the eigenvectors of $\Sigma = \begin{pmatrix} 1+\alpha & 1 \\ 1 & 1 \end{pmatrix}$. The characteristic equation is $0 = \det(\Sigma - \lambda \mathbf{I}) = \begin{pmatrix} 1+\alpha-\lambda & 1 \\ 1 & 1-\lambda \end{pmatrix} = (1+\alpha-\lambda)(1-\lambda) - 1 = \lambda^2 - (2+\alpha)\lambda + \alpha$. Using the quadratic formula, the solutions are $\lambda = \frac{(2+\alpha)\pm\sqrt{(2+\alpha)^2-4\alpha}}{2} = 1 + \frac{\alpha}{2} \pm \sqrt{1+\frac{\alpha}{2}}$. Solving the system $\begin{pmatrix} 1+\alpha-\lambda & 1 \\ 1 & 1-\lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, an eigenvector corresponding to λ is the vector $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ where $(1+\alpha-\lambda)x_1+x_2=0$ so $x_2=-x_1(1+\alpha-\lambda)=x_1\left(-\frac{\alpha}{2}\pm\sqrt{1+\frac{\alpha}{2}}\right)$. So any multiple of $\begin{pmatrix} 1 \\ -\frac{\alpha}{2}\pm\sqrt{1+\frac{\alpha}{2}} \end{pmatrix}$ is an eigenvector corresponding to λ . Letting $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ -\frac{\alpha}{2}+\sqrt{1+\frac{\alpha}{2}} & -\frac{\alpha}{2}-\sqrt{1+\frac{\alpha}{2}} \end{pmatrix}^{\top} = \begin{pmatrix} 1 & -\frac{\alpha}{2}+\sqrt{1+\frac{\alpha}{2}} \\ 1 & -\frac{\alpha}{2}-\sqrt{1+\frac{\alpha}{2}} \end{pmatrix}$, we see that $\mathbf{A}\mathbf{x} \sim N_2 \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 2+\frac{\alpha^2}{2}+(2-\alpha)\sqrt{1+\frac{\alpha^2}{4}} & 0 \\ 0 & 2+\frac{\alpha^2}{2}-(2-\alpha)\sqrt{1+\frac{\alpha^2}{4}} \end{pmatrix}$.

Method 2: Consider a general matrix $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and compute $\cos(\mathbf{A}\mathbf{x}) = \mathbf{A} \cos(\mathbf{x}) \mathbf{A}^{\top} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1+\alpha & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} (1+\alpha)a^2+2ab+b^2 & (1+\alpha)ac+bc+ad+bd \\ (1+\alpha)ac+ad+bc+bd & (1+\alpha)c^2+2cd+d^2 \end{pmatrix}$. If the off-diagonal element $(1+\alpha)ac+bc+ad+bd$ equals 0, then x_1 and x_2 are independent. If c=0, then we can find a

solution that does not depend on α ; we only need $ad+bd=0 \Rightarrow (a+b)d=0$. In addition, if we let d=1, then we get $a+b=0 \Rightarrow a=-b$. Say we then choose a=1 and b=-1 so that $\mathbf{A}=\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. Then we see that $\mathbf{A}\boldsymbol{x} \sim N_2\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}\right)$.