

Plyny

11 plynných prvků

Vzácné plyny
He, Ne, Ar, Kr, Xe, Rn
Diatomické plynné prvky
H₂, N₂, O₂, F₂, Cl₂

Plyn	T _v , K
H_2	20
Не	4.4
Ne	27
Ar	87
Kr	120
Xe	165
Rn	211
N_2	77
O_2	90
F_2	85
Cl_2	238

Plyn

Velká část chemických a fyzikálních teorií byla rozvinuta v souvislosti s experimenty s plyny.

Jsou různé druhy "vzduchu"
→ první studium plynů, pojem plyn

Gas sylvestre = divoký plyn = CO_2

CO₂ vzniká:

Grotto del Cane

Hořením dřeveného uhlí s KNO₃ (salpetr) Kvašením piva, vína Působením octa na vápenec

Johann Baptista van Helmont (1579-1644)

Tlak

Nárazy molekul plynu na stěny nádoby

F = sila N $A = plocha m^2$

$$p = \frac{F}{A}$$

101325 Pa 760 mm Hg 760 torr (Torricelli) 1 atm

Evangelista Torricelli (1608-1647)

barometr 1643

 $g = 9.80665 \text{ m s}^{-2}$

Hydrostatický tlak

$$p = h \rho g$$

Boyleův zákon

1662

Součin tlaku a objemu je konstantní pro dané množství plynu a teplotu

$$p V = konst.$$

Isotermický děj

Robert Boyle (1627 - 1691)

Nezávisí na druhu plynu, nebo více plynů ve směsi

Výjimka např. NO₂

Stlačení plynu za konstantní teploty

$$p_1V_1=p_2V_2$$
 Za konstantní teploty

Boyleův zákon

V = konst. / p

Pressure (torr)	Volume (ml)
760	29.0
960	23.0
1160	19.0
1360	16.2
1500	14.7
1650	13.3

Pressure (torr)	Volume (ml)	1/Volume (1/ml)	Pressure × Volume
760	29.0	0.0345	22040
960	23.0	0.0435	22080
1160	19.0	0.0526	22040
1360	16.2	0.0617	22032
1500	14.7	0.0680	22050
1650	13.3	0.0752	21945

Izotermy

$$p = \frac{konst}{V}$$

T = konst.

$$p_1V_1=p_2V_2$$

Aplikace

Vzduch v tlakové láhvi na 60 minut

Vzduch na? min.

Kinetická teorie plynů

p V = konst.

Molekuly plynu narazí na stěny nádoby, odrazí se a předají impulz. Tím se vytváří tlak plynu, který vyrovnává vnější tlak.

Pokud snížíme objem na polovinu, nárazy na stěnu jsou dvakrát častější a tlak je dvojnásobný.

p = konst Isobarický děj

1787

Různé plyny se roztahují o stejný zlomek objemu při stejném zvýšení teploty

Jacques A. C. Charles (1746 - 1823)

první solo let balonem první H₂ balon

Joseph Louis Gay-Lussac (1778 - 1850) 13

$$V = a t + b$$

$$V = a t + b$$
$$V = a (t + b/a)$$

p = konst Isobarický děj

b/a = 273 °C absolutní stupnice teploty

$$V = k T$$
 $T = absolutní teplota [K]$

Pojem absolutní nuly

Izobary

$$V = V_0 (1 + \alpha t)$$

 $\alpha = 1/273$ koeficient tepelné roztažnosti t = teplota ve °C

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

za konst. n a p

Amontonův zákon

$$p = p_0 (1 + \alpha t)$$

 $\alpha = 1/273$ koeficient tepelné roztažnosti

$$\frac{p_1}{T_1} = \frac{p_2}{T_2}$$
 za konst. n a V

Zákon stálých objemů (Gay-Lussakův)

1809 Plyny se slučují v jednoduchých poměrech objemových 2 objemy vodíku + 1 objem kyslíku → 2 objemy vodní páry

Avogadrova hypotéza

1811 A. Avogadro z Daltonovy atomové teorie a Gay-Lussakova zákona vyvodil:

Při stejné teplotě a tlaku obsahují stejné objemy

různých plynů stejný počet částic.

Plyny jsou dvouatomové molekuly.

 H_2, N_2, O_2

Nepřijato až do 1858, Cannizzaro Voda do té doby OH, M(O) = 8po 1858 H_2O , M(O) = 16

Amadeo Avogadro (1776 - 1856) 21

Zákon stálých objemů

Při stejné teplotě a tlaku obsahují stejné objemy různých plynů stejný počet částic.

Plyny jsou dvouatomové molekuly.

Avogadrův zákon

1811

Stejné objemy plynů obsahují stejný počet molekul (za stejných podmínek p, T)

V = n konst.

Objem 1 molu plynu je 22.4 litru

V/n = konst.

při 0 °C a 101 325 Pa (STP)

 $V_{\rm M} = 22.4~{\rm 1\,mol^{-1}}$ molární objem ideálního plynu

(při 0 °C a 100 000 Pa (1 bar) $V_{\rm M} = 22.71 \ 1 \ {\rm mol}^{-1}$)

Tedy tlak závisí na počtu molekul, teplotě, objemu

$$p V = f(N, T)$$

Ideální plyn

- Je složen z malých částic (atomů, molekul), které jsou v neustálém pohybu po **přímých drahách** v náhodných směrech vysokými rychlostmi.
- Rozměry částic jsou **velmi malé** ve srovnání s jejich vzdálenostmi a **nepůsobí na sebe** přitažlivými nebo odpudivými silami.
- Vzájemné srážky jsou elastické, bez ztráty energie.
- Kinetická energie částice je závislá na teplotě (ale ne na tlaku).

$$E_{kin} = \frac{1}{2} \text{ m } \text{v}^2$$

$$E_{kin} = \frac{1}{2} m \langle v^2 \rangle = \frac{3}{2} k_B T$$

V = n konst.

1 mol plynu

V/n = konst.

$$V_{\rm m} = 22.41 \ 1 \, \rm mol^{-1}$$

Za standardní teploty a tlaku (STP) p = 101.325 kPa = 1 atm = 760 torr $t = 0 \, ^{\circ}\text{C}$

Rovnice ideálního plynu

Ideální plyn

- Objem molekul nulový (zanedbatelný oproti objemu plynu)
- Žádné mezimolekulové síly

$$pV = nRT$$

$$V = (n R T) / p$$
$$p = (n R T) / V$$
$$n/V = p / RT$$

$$V = (n R T) / p$$
 $R = plynová konstanta$

$$R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$$

Rovnice ideálního plynu

Výpočet hustoty a M_r plynu

$$p V = n R T = (m/M) R T$$

$$\rho = m/V = p M / R T$$

hustota plynu

$$M = \rho RT / p = \rho V_m$$

molekulová hmotnost plynu

$$V_m = R T / p$$

Parciální tlak, pi

p_i = Tlak komponenty ve směsi, kdyby byla v daném objemu sama.

Molární zlomek

$$x_i = n_i / \sum n_i$$

$$\sum x_i = 1$$

$$x_i = \frac{n_i}{\sum n_i}$$

Tlak plynu uzavřeného nad kapalinou

p = p(plynu) + tenze par kapaliny

Daltonův zákon

$$p_{celk} = p_1 + p_2 + p_3 + \dots + p_n = \sum p_i$$

 $p(vzduch) = p(O_2) + p(N_2) + p(Ar) + p(CO_2) + p(ost.)$

Parciální tlak

Tlak komponenty ve směsi, kdyby byla v daném objemu sama.

$$P_{He} = x_{He} P_{celk}$$
 $P_{Ne} = x_{Ne} P_{celk}$

$$P_{\text{celk}} = P_{\text{He}} + P_{\text{Ne}}$$

Neideální (reálný) plyn

Chování neideálního plynu se blíží ideálnímu za vysoké teploty a nízkého tlaku

Neideální (reálný) plyn

- Z = kompresibilitní faktor
- Z > 1 molární objem neideálního plynu je větší než ideálního Odpudivé mezimolekulové interakce převládají
- Z < 1 molární objem neideálního plynu je menší než ideálního Přitažlivé mezimolekulové interakce převládají

0		
	Ideal gas	22.41
	Argon	22.09
	Carbon dioxide	22.26
	Nitrogen	22.40
	Oxygen	22.40
	Hydrogen	22.43

Van der Waalsova stavová rovnice reálného plynu

$$\left(p + \frac{a}{V_m^2}\right)\left(V_m - b\right) = RT$$

V_m = molární objem plynu

b = vlastní objem molekul plynu (odečíst)

a = mezimolekulová přitažlivost (zvětšit p)

J. D. van der Waals(1837-1923)NP za chemii 1910

Van der Waalsova stavová rovnice reálného plynu

$$(P + \frac{an^2}{V^2})(V - nb) = nRT$$

$$P = \frac{nRT}{(V - nb)} - (\frac{an^2}{V^2})$$

Plyn	a (l ² bar mol ⁻²)	b (l mol ⁻¹)
Helium	0.034598	0.023733
Vodík	0.24646	0.026665
Dusík	1.3661	0.038577
Kyslík	1.3820	0.031860
Benzen	18.876	0.11974

Properly Inflated

Underinflated/ Overloaded

Zkapalňování plynů

Kondenzace je podmíněna působením vdW sil Nízká T, vysoký p, snížení E_{kin}, přiblížení molekul

Ideální plyn nelze zkapalnit

Kritická teplota plynu = nad ní nelze plyn zkapalnit libovolně vysokým tlakem

Joule-Thompsonův efekt

Joule-Thompsonův efekt = změna teploty při adiabatické expanzi stlačeného plynu tryskou (pokles tlaku dp < 0)

 $\mu = dT/dp$ Joule-Thompsonův koeficient

 μ > 0 ochlazení (dT < 0) způsobené trháním vdW vazeb, potřebná energie se bere z $E_{\rm kin}$, klesá T.

Pod J-T inverzní teplotou. O₂, N₂, NH₃, CO₂, freony

 $N_2 (348 \, ^{\circ}C)$ $O_2 (491 \, ^{\circ}C)$

 $\mu = 0$ ideální plyn, reálný plyn při J-T inverzní teplotě

Joule-Thompsonův efekt

Joule-Thompsonův efekt = změna teploty při adiabatické expanzi stlačeného plynu tryskou (dp < 0)

 $\mu = dT/dp$ Joule-Thompsonův koeficient

 μ < 0 ohřátí (dT > 0) Nad J-T inverzní teplotou. H₂, He, Ne.

He (-222 °C)

Ve stlačeném plynu jsou odpudivé interakce, které se při expanzi zruší, energie se uvolní = ohřátí

Zkapalňování plynů

Tryska

Kinetická teorie plynů

 $17\overline{38}$

Daniel Bernoulli (1700-1782)

Atomy a molekuly jsou v neustálém pohybu, teplota je mírou intenzity tohoto pohybu

Statistická mechanika: Clausius, Maxwell, Boltzmann

Střední rychlost molekuly H₂ při 0 °C

$$\langle v \rangle = 1.84 \ 10^3 \ \text{m s}^{-1} = 6624 \ \text{km h}^{-1}$$

Kinetická teorie plynů

Střední kinetická energie molekuly plynu

$$E_{kin} = \frac{1}{2} m < v^2 >$$

m = hmotnost molekuly plynu

<v> = střední rychlost molekuly plynu

Střední kinetická energie všech plynů při dané teplotě je stejná.

$$E_{kin} = \frac{3}{2} k_B T$$

Maxwell-Boltzmannovo rozdělení rychlostí

Maxwell-Boltzmannovo rozdělení rychlostí

$$dN = 4\pi N (m / 2 \pi kT)^{3/2} \exp(-\frac{1}{2} mv^2 / kT) v^2 dv$$

$$v_{mp} = (2kT / m)^{1/2}$$

$$v_{av} = (8kT / \pi m)^{1/2}$$

$$v_{rms} = (3kT / m)^{1/2}$$

Rychlost
$$\sim$$
 $\frac{kT}{m} = \frac{RT}{M}$

Kinetická teorie plynů

Počet molekul

Rychlost, m s⁻¹

Žádná molekula nemá nulovou rychlost Maximální rychlost → ∞ Čím vyšší rychlost, tím méně molekul

Maxwell-Boltzmannovo rozdělení rychlostí

$$p V = R T = N_A k_B T$$

$$E_{kin} = \frac{1}{2} m \langle v^2 \rangle = \frac{3}{2} k_B T$$

Celková energie na jednotkový objem

$$U = \frac{3}{2} N_A k T / V [J m^{-3}]$$

Pak
$$p = \frac{2}{3}U$$

$$p = 1/3 \text{ n m} < v^2 > = 1/3 \rho < v^2 >$$

$$<$$
v $> = (3kT / m)^{1/2}$

$$n = počet částic na m3$$

Difuze

Střední volná dráha, *l*, průměrná vzdálenost mezi dvěma srážkami

Závisí na p a T

 $l = \text{konst T/ p} = \text{konst /n} \ \pi (2r)^2$

n = počet částic na m³ r = poloměr molekuly

l = 500 - 1000 ÅZa laboratorních podmínek p,T

Viskozita, tepelná vodivost

Efuze

Grahamův zákon
$$v_1/v_2 = (\rho_2/\rho_1)^{1/2} = (M_2/M_1)^{1/2}$$