《机器学习基础》

常见的卷积神经网络模型

▶LeNet-5

• AlexNet-8

VGG

▶ResNet

▶InceptionNet (GoogLeNet)

卷积神经网络参数选择的几个问题

▶1. 卷积神经网络的层数

▶2. 卷积核的大小

▶3. 学习效率和学习准确度

VGG

		ConvNet C	onfiguration				
A	A-LRN	В	С	D	Е		
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight		
layers	layers	layers	layers	layers	layers		
input (224 × 224 RGB image)							
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
	LRN	conv3-64 conv3-		conv3-64	conv3-64		
			pool				
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
		conv3-128	conv3-128	conv3-128	conv3-128		
		max	pool				
conv3-256 conv3-25		conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
					conv3-256		
		max	pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
			pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
			pool		•		
			4096				
			4096				
			1000				
		soft-	-max				

VGG 块

▶更深还是更宽?

- ▶5x5 卷积
- ▶3x3 卷积 (更多)
- ▶更深和更窄更好

▶VGG 块

- ▶3x3 卷积(填充=1) (n层, m个通道)
- ▶2x2 最大池化层 (步幅 =2)

VGG 块

AlexNet 一部分

VGG

残差网络

- ▶是一种深度卷积神经网络(CNN)架构,由微软研究院提出,2015 年在ImageNet竞赛中获得了冠军。
 - ▶假设在一个深度网络中,我们期望一个非线性单元(可以为一层或多层的卷积层) $f(x,\theta)$ 去逼近一个目标函数为h(x)。
 - ▶将目标函数拆分成两部分: 恒等函数和残差函数

$$h(\mathbf{x}) = \mathbf{x} + (h(\mathbf{x}) - \mathbf{x})$$
 恒等函数 $f(\mathbf{x}, \theta)$

残差网络

- ▶是一种深度卷积神经网络(CNN)架构,由微软研究院提出,2015 年在ImageNet竞赛中获得了冠军。
 - ▶ResNet的核心思想是引入了"残差学习"来解决深度网络训练中的退化问题,即随着网络层数的增加,网络的性能反而下降的问题。
 - ▶在传统的深度网络中,如果网络层数增加到一定程度,网络将难以训练,并且 准确率先是增加然后饱和,再增加层数甚至会导致准确率下降。这是因为,随 着层数的增加,网络中的梯度在反向传播过程中会逐渐消失或爆炸,导致网络 无法学习到有效的特征表示。
 - ▶ResNet通过引入跳跃连接(skip connections)或称为shortcut connections来解决这个问题。这些连接允许网络中的信号绕过一些层直接传播,从而使得网络可以学习到恒等映射(identity mapping),即直接传递输入到输出而不经过任何变化。这样,即使网络非常深,也可以保证网络至少能够学习到一个有效的恒等映射,从而保证了网络性能不会随着层数增加而下降。

ResNet

- ▶2015 ILSVRC winner (152层)
 - ▶错误率: 3.57%
 - ▶超深的网络结构(突破1000层)
 - ▶提出residual模块
 - ▶使用Batch Normalization加速训练(丢弃dropout)

添加层会提高准确性吗?

generic function classes

nested function classes

添加层会提高准确性吗?

残差网络 (ResNet)

▶添加层会更改原特征类

▶我们想要"加"到原函数中

"泰勒展开"的参数

$$f(x) = x + g(x)$$

1x1的卷积核

▶经卷积后的矩阵尺寸大小计算公式为:

$$\bullet Out = \frac{Inp - W + 2P}{S} + 1$$

- ① 输入图片大小 Inp× Inp
- ② Filter 大小 W× W
- ③ 步长 S
- ④ padding的像素数 P

1x1的卷积核

Padding: Valid

$$ightharpoonup Out = rac{Inp - W + 1}{S}$$
 向上取整

- ▶① 输入图片大小 Inp× Inp
 - ② Filter 大小 W× W
 - ③ 步长 S

Padding: Same

$$Out = \frac{Inp}{S}$$
向上取整

1x1的卷积核

- ▶GoogLeNet详解
 - ▶不使用1x1卷积核降维 channels: 512

使用64个5x5的卷 积核进行卷积

▶使用1x1卷积核降维

channels: 512

channels: 24

 $1 \times 1 \times 512 \times 24 = 12288$

 $5 \times 5 \times 24 \times 64 = 38400$

12288 + 38400 = 50688

残差块

3x3x256x256+3x3x256x256=1,179,648 1x1x256x64+3x3x64x64+1x1x64x256=69,632

残差块

《机器学习基础》

ResNet详解

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer				
conv1	112×112	7×7, 64, stride 2								
		3×3 max pool, stride 2								
conv2_x	56×56	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times3$	$ \left[\begin{array}{c} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{array} \right] \times 3 $	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$ \left[\begin{array}{c} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{array} \right] \times 3 $				
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 8 $				
conv4_x			$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 6$	[[1×1, 1024]	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23 $	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36 $				
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	$ \left[\begin{array}{c} 1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048 \end{array} \right] \times 3 $	$ \left[\begin{array}{c} 1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048 \end{array} \right] \times 3 $				
	1×1	average pool, 1000-d fc, softmax								
FLOPs		1.8×10^9	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10^9				

ResNet

ResNet

GluonCV 模型"动物园"
https://gluoncv.mxnet.io/model_zoo/class
ification.html

ResNet

- ▶残差块使得很深的网络更加容易训练
 - ▶甚至可以训练一千层的网络

Inception网络

▶2014 ILSVRC winner (22层)

- ▶参数: GoogLeNet: 4M VS AlexNet: 60M
- ▶错误率: 6.7%
- ▶Inception网络是由有多个inception模块和少量的汇聚层堆叠而成。

GoogLeNet

- ▶引入了Inception结构 (融合不同尺度的特征信息)
- ▶使用1x1的卷积核进行降维以及映射处理
- ▶添加两个辅助分类器帮助训练
- ▶丢弃全连接层,使用平均池化层(大大减少模型参数)

选最合适的卷积 ...

《机器学习基础》

25

Inspection结构

(a) Inception module, naïve version

Inspection结构

(b) Inception module with dimension reductions

Inception 块

(第一个初始块) 指定的通道大小

Inception 块

与单个3x3或5x5卷积层相比,初始块具有更少的参数和更低的计算复杂度

- ▶不同功能混合 (多样的功能类)
- ▶卷积核计算高效 (良好的泛化)

	#参数	浮点运算 FLOPS
Inception	0.16 M	128 M
3x3 卷积	0.44 M	346 M
5x5 卷积	1.22 M	963 M

辅助分类器(Auxiliary Classifier)

- ▶辅助分类器是一个附加网络结构, 其具体结构如下:
 - ▶平均池化层:使用5×5的过滤器尺寸和步长为3,对于(4a)阶段产生一个4×4×512的输出,对于(4d)阶段产生一个4×4×528的输出。
 - ▶1×1卷积层:使用128个过滤器进行维度缩减,并使用修正线性激活函数 (Rectified Linear Activation,即ReLU)。
 - ▶全连接层:包含1024个单元,同样使用修正线性激活函数。
 - ▶丢弃层 (Dropout Layer): 以70%的概率丢弃输出,这是一种防止过拟合的正则化技术。
 - ▶线性层:使用softmax损失作为分类器,这个分类器预测与主分类器相同的1000个类别,但在推理 (inference)时会被移除。

全连接架构

最后一层的诅咒

▶卷积层需要相对较少的参数

$$c_i \times c_o \times k^2$$

▶最后一层(稠密层)对于n个类的需要 许多参数

$$c \times m_w \times m_h \times n$$

- LeNet 16x5x5x120 = 48k
- \triangle AlexNet 256x5x5x4096 = 26M
- VGG 512x7x7x4096 = 102M

NiN 最后一层

- ▶用 NiN 块替换了 AlexNet 的稠密层
- ▶输出:全局平均池化层

GoogLeNet

GoogLeNet

- ▶5 个阶段
- ▶9 个 Inception 块

阶段1&2

▶由于更多层:

- ▶更小的内核
- >更小的输出通道

GoogLeNet

type	patch size/	output size	depth	#1×1	#3×3	#3×3	#5×5	#5×5	pool proj	params	ops
	stride				reduce		reduce				
convolution	$7 \times 7/2$	$112\times112\times64$	1							2.7K	34M
max pool	$3\times3/2$	$56 \times 56 \times 64$	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1\times1\times1024$	0								
dropout (40%)		$1 \times 1 \times 1024$	0								
linear		$1 \times 1 \times 1000$	1							1000K	1 M
softmax		$1 \times 1 \times 1000$	0								

许多种类的 Inception 网络

- ▶Inception-BN (v2) 添加批量归一化
- ▶Inception-V3 修改了初始块
 - ▶用多个3x3 卷积替换5x5
 - ▶用 1x7 和 7x1 卷积替换 5x5
 - ▶用 1x3 和 3x1 卷积替换 3x3
 - ▶通常用更深的堆
- ▶Inception-V4 添加残差块连接

GluonCV模型"动物园" https://gluoncv.mxnet.io/model zoo/class ification.html