

SOEN 6011 : SOFTWARE ENGINEERING PROCESSES SUMMER 2021

SUPER CALCULATOR

PROBLEM - 6

Unit Test Cases

Authors Rokeya Begum Keya Kyle Taylor Lange Sijie Min

Manimaran Palani

 $\rm https://www.overleaf.com/project/610304de4e6b8d24f7c781b6$

Contents

a.)	Description or	n Unit Test	Cases					 								 													2	
JU)	, Description of	I CIII ICS	Cascs	•	•	•	•	 •	•	•	•	 •	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•		

Unit Test Cases Description

PROBLEM 6 - F2: tan(x)

SOEN 6011 - Summer 2021

Rokeya Begum Keya

Software Engineering Processes

40183615

Repository address: https://github.com/Dakatsu/SOEN6011Calculator

Unit Test Case for F2 Function

The unit test cases for tan(x) function is done using **JUnit 4** which are traceable to the requirements in problem-2.

Test Case: F2_UnitTestCase_1

Test Case ID F2_tanZeroCheck_1

Requirement ID F2-R1

Action The user clicks the button "Tan" and gives an input 0 (degree) and

then click result(=) button.

 $\begin{array}{ll} \textbf{Input(s)} & tan(0) \\ \textbf{Expected Output} & 0 \\ \textbf{Actual Output} & 0 \end{array}$

Test Result Success

Test Case: F2_UnitTestCase_2

Test Case ID F2_tanFortyCheck_2

Requirement ID F2-R2

Action The user clicks the button "Tan" and gives an input 40 (degree) and

then click result(=) button.

 $\begin{array}{ll} \textbf{Input(s)} & tan(40) \\ \textbf{Expected Output} & 0.83910101 \\ \textbf{Actual Output} & 0.83910101 \\ \textbf{Test Result} & Success \\ \end{array}$

Test Case ID F2_tanNinetyCheck_3

Requirement ID F2-R3

Action The user clicks the button "Tan" and gives an input 90 (degree) and

then click result(=) button.

 $\begin{array}{ll} \textbf{Input(s)} & tan(90) \\ \textbf{Expected Output} & undefined \\ \textbf{Actual Output} & undefined \\ \textbf{Test Result} & Success \end{array}$

Test Case: F2_UnitTestCase_4

Test Case ID F2_tanNegativeValueCheck_4

Requirement ID F2-R4

Action The user clicks the button "Tan" and gives an input 95 (degree) and

then click result(=) button.

 Input(s)
 tan(95)

 Expected Output
 -11.43005230

 Actual Output
 -11.43005230

 Test Result
 Success

Test Case: F2_UnitTestCase_5

Test Case ID F2_tanNegativeNumberCheck_5

Requirement ID F2-R5

Action The user clicks the button "Tan" and gives an input -10 (degree) and

then click result(=) button.

 $\begin{array}{ll} \textbf{Input(s)} & tan(-10) \\ \textbf{Expected Output} & -0.17723233 \\ \textbf{Actual Output} & -0.17723233 \\ \textbf{Test Result} & Success \end{array}$

Test Case ID F2_tanOneHundredAndEightyCheck_6

Requirement ID F2-R6

Action The user clicks the button "Tan" and gives an input 180 (degree) and

then click result(=) button.

Input(s) tan(180)

Expected Output 0 **Actual Output** 0

Test Result Success

Test Case: F2_UnitTestCase_7

Test Case ID F2_getRadCheck_7

Requirement ID F2-R7

Action To make sure that radian function in tan(x) is working properly,

I had to do the unit test of Rad(x) and gives an input for x = 90 (degree).

 $\begin{array}{lll} \textbf{Input(s)} & Rad(90) \\ \textbf{Expected Output} & 1.57079633 \\ \textbf{Actual Output} & 1.57079633 \\ \textbf{Test Result} & Success \end{array}$

Test Case: F2_UnitTestCase_8

Test Case ID F2_getRadOneHundredAndEightyCheck_8

Requirement ID F2-R8

Action To make sure that radian function in tan(x) is working properly,

I had to do the unit test of Rad(x) and gives an input for x = 180 (degree).

 $\begin{array}{ll} \textbf{Input(s)} & Rad(180) \\ \textbf{Expected Output} & 3.14159 \\ \textbf{Actual Output} & 3.14159 \\ \textbf{Test Result} & Success \\ \end{array}$

Test Case ID F2_getSinZeroCheck_9

Requirement ID F2-R9

Action To make sure that sin(x) function for tan(x) is working properly,

I had to do the unit test of sin(x) function and gives an input for 0 (degree).

 $\begin{array}{ll} \textbf{Input(s)} & sin(0) \\ \textbf{Expected Output} & 0.0 \\ \textbf{Actual Output} & 0.0 \\ \textbf{Test Result} & Success \end{array}$

Test Case: F2_UnitTestCase_10

Test Case ID F2_getSinFortyCheck_10

Requirement ID F2-R10

Action To make sure that sin(x) function for tan(x) is working properly,

I had to do the unit test of sin(x) function and gives an input for 40 (degree).

 $\begin{array}{ll} \textbf{Input(s)} & sin(40) \\ \textbf{Expected Output} & 0.642788 \\ \textbf{Actual Output} & 0.642788 \\ \textbf{Test Result} & \text{Success} \end{array}$

Test Case: F2_UnitTestCase_11

Test Case ID F2_getCosZeroCheck_11

Requirement ID F2-R11

Action To make sure that cos(x) function for tan(x) is working properly,

I had to do the unit test of cos(x) function and gives an input for 0 (degree).

 $\begin{array}{ll} \textbf{Input(s)} & cos(0) \\ \textbf{Expected Output} & 1 \\ \textbf{Actual Output} & 1 \end{array}$

Test Result Success

Test Case ID F2_getCosFortyCheck_12

Requirement ID F2-R12

Action To make sure that cos(x) function for tan(x) is working properly,

I had to do the unit test of cos(x) function and gives an input for 40 (degree).

 Input(s)
 cos(40)

 Expected Output
 0.76604305

 Actual Output
 0.76604305

 Test Result
 Success

Figure: Unit Testing results for tangent function (tan(x))

PROBLEM 6 - F3: Hyperbolic Sine, sinh(x)

 ${\rm SOEN~6011~-~Summer~2021}$

 ${\bf Software\ Engineering\ Processes}$

 $https://www.overleaf.com/project/610304 de 4e 6b 8d 24 f7c 781b 6 \\ https://github.com/Dakatsu/SOEN 6011 Calculator$

 ${\rm Kyle~Taylor~Lange} \\ 27627696$

Repository address:

PROBLEM 6 - F5

SOEN 6011 - Summer 2021

Sijie Min 401*****

 ${\bf Software\ Engineering\ Processes}$

 $Repository\ address: https://github.com/Dakatsu/SOEN6011Calculator$

Team please add your content here

PROBLEM 6 - F7 : x^y

SOEN 6011 - Summer 2021

Manimaran Palani 40167543

Software Engineering Processes

Repository address: https://github.com/Dakatsu/SOEN6011Calculator

Problem 6 - Unit Test Case Description

This section presents the unit test cases implemented using **JUnit4** for Super Calculator (F7-Power Function) which are traceable to requirements.

Test Case: F7_TestCase_1

Test Case ID F7_TestCase_1

Requirement ID F7-R1

Action The user inputs a base input and click power function button followed

by giving exponent input and click result(=) button.

Input(s) base = 0.0, exponent = 0.0

Expected Output1.0Actual Output1.0Test ResultSuccess

Test Case: F7_TestCase_2

Test Case ID F7_TestCase_2

Requirement ID F7-R2

Action The user inputs a base input and click power function button followed

by giving exponent input and click result(=) button.

Input(s) base = 0.0, exponent = 3.0

Expected Output 0.0 Actual Output 0.0 Test Result Success

Test Case: F7_TestCase_3

Test Case ID F7_TestCase_3

Requirement ID F7-R3

Action The user inputs a base input and click power function button followed

by giving exponent input and click result(=) button.

Input(s) base = 7.0, exponent = 0.0

Expected Output 1.0 Actual Output 1.0 Test Result Success

Test Case: F7_TestCase_4

Test Case ID F7_TestCase_4

Requirement ID F7-R4

Action The user inputs a base input and click power function button followed

by giving exponent input and click result(=) button.

Input(s) base = -4.0, exponent = 0.0

Expected Output 1.0 Actual Output 1.0 Test Result Success

Test Case: F7_TestCase_5

Test Case ID F7_TestCase_5

Requirement ID F7-R5

Action The user inputs a base input and click power function button followed

by giving exponent input and click result(=) button.

Input(s) base = 7.0, exponent = 1.0

Expected Output 7.0 Actual Output 7.0 Test Result Success

Test Case: F7_TestCase_6

Test Case ID F7_TestCase_6

Requirement ID F7-R6

Action The user inputs a base input and click power function button followed

by giving exponent input and click result(=) button.

Input(s) base = 5, exponent = 9

Expected Output1953125.0Actual Output1953125.0Test ResultSuccess

Test Case: F7_TestCase_7

Test Case ID F7_TestCase_7

Requirement ID F7-R6

Action The user inputs a base input and click power function button followed

by giving exponent input and click result(=) button.

Input(s) base = -3, exponent = 4.4

Expected Output 3.1631 Actual Output 3.1631 Test Result Success

Test Case: F7_TestCase_8

Test Case ID F7_TestCase_8

Requirement ID F7-R6

Action The user inputs a base input and click power function button followed

by giving exponent input and click result(=) button.

Input(s) base = -9, exponent = 3

Expected Output -729 Actual Output -729 Test Result Success

Test Case Results for F7

Figure 1: Test case result of function F7: x^y using Junit4