Lecture 4: König's theorem and the Hungarian algorithm

Dabeen Lee

Industrial and Systems Engineering, KAIST

2025 Winter Lecture Series on Combinatorial Optimization

January 14, 2025

Outline

- Vertex cover problem
- LP duality-based proof for König's theorem
- Hungarian algorithm for maximum weight bipartite matching

Vertex cover

 Given a graph G = (V, E), a subset B of the vertex set V is called a vertex cover if for every edge e ∈ E, e has an endpoint in B.

Figure: vertex cover examples

 The vertex cover problem is to find a vertex cover with the minimum number of vertices.

Connection to bipartite matching

Proposition

Let G = (V, E) be a graph. Then the minimum size of a vertex cover for G is greater than or equal to the maximum size of a matching in G.

König's theorem

Theorem (König's theorem)

Let G = (V, E) be a bipartite graph. Then the minimum size of a vertex cover for G equals the maximum size of a matching in G.

Figure: vertex set decomposition by the alternating tree procedure

Remarks

- The proof suggests that the augmenting path algorithm not only gives us a maximum matching but also a minimum vertex cover.
- This means that the vertex cover problem can be solved in polynomial time.
- However, the vertex cover problem for general graphs is known to be NP-hard.

- As for the matching problem, vertex cover also admits an integer linear programming formulation.
- For each vertex $v \in V$, we use a variable y_v to indicate whether v is picked for our vertex cover B or not, i.e.,

$$y_{v} = egin{cases} 1 & ext{if } v ext{ is included in vertex cover } B, \ 0 & ext{otherwise}. \end{cases}$$

 Then we may impose the condition that y corresponds to a vertex cover by setting

$$y_u + y_v \geq 1$$

for all $uv \in E$.

 Therefore, the vertex cover problem can be equivalently formulated as the following integer linear program:

$$\begin{array}{ll} \text{minimize} & \displaystyle \sum_{v \in V} y_v \\ \text{subject to} & \displaystyle y_u + y_v \geq 1 \quad \text{for all } uv \in E, \\ & \displaystyle y_v \in \{0,1\} \quad \text{for all } v \in V. \end{array} \tag{IP}$$

Proposition

Let G = (V, E) be a graph, not necessarily bipartite. Then solving the optimization problem (IP) computes a minimum vertex cover for G.

• The LP relaxation of (IP) is given by

$$\begin{array}{ll} \text{minimize} & \displaystyle \sum_{v \in V} y_v \\ \text{subject to} & \displaystyle y_u + y_v \geq 1 \quad \text{for all } uv \in E, \\ & \displaystyle y_v \geq 0 \quad \text{for all } v \in V. \end{array} \tag{LP}$$

Theorem

Let G=(V,E) be a bipartite graph. Then the LP relaxation (LP) has an optimal solution y^* that satisfies $y_v^* \in \{0,1\}$ for all $v \in V$. Moreover, one can find a minimum vertex cover for G by solving the linear program (LP).

- Let \bar{y} be an optimal solution to (LP). By the nonnegativity constraint, we have $\bar{y}_v \geq 0$ for all $v \in V$.
- If \$\bar{y}_{\nu} > 1\$ for some \$\nu \in V\$, then one may replace \$\bar{y}_{\nu}\$ with 1 to improve the objective while keeping feasibility.
- This means that $\bar{y}_v \leq 1$ for all $v \in V$ because \bar{y} is an optimal solution.

Theorem

Let G=(V,E) be a bipartite graph. Then the LP relaxation (LP) has an optimal solution y^* that satisfies $y_v^* \in \{0,1\}$ for all $v \in V$. Moreover, one can find a minimum vertex cover for G by solving the linear program (LP).

Randomized algorithm

- **1** Pick a random threshold $\theta \in (0,1)$ uniformly at random.
- **2** Take $U_1 = \{v \in V_1 : \bar{y}_v \ge \theta\}$ and $U_2 = \{v \in V_2 : \bar{y}_v \ge 1 \theta\}$.
- **3** Define $y^* \in \{0,1\}^{|V|}$ as the incidence vector of $U_1 \cup U_2$.

LP-based algorithm for minimum vertex cover

Algorithm 1 LP-based algorithm for minimum vertex cover

The bipartition $V_1 \cup V_2$ of the vertex set VSolve the linear program (LP) and get an optimal solution \bar{y} Take $U_1 = \{v \in V_1 : \bar{y}_v \ge 1/2\}$ and $U_2 = \{v \in V_2 : \bar{y}_v \ge 1/2\}$ Return $U_1 \cup U_2$

LP-based proof for König's theorem

• The strong duality theorem for linear programming implies

$$\underbrace{\min\left\{\sum_{v\in V}y_v:\ y_u+y_v\geq 1\quad\text{for all }uv\in E,\ y\in\{0,1\}^{|V|}\right\}}$$

the minimum size of a vertex cover

$$= \min \left\{ \sum_{v \in V} y_v : \ y_u + y_v \ge 1 \quad ext{for all } uv \in \mathcal{E}, \ y \in \mathbb{R}_+^{|V|}
ight\}$$

strong duality

$$\max \left\{ \sum_{e \in E} w_e x_e : \sum_{v \in V: uv \in E} x_{uv} \le 1 \quad \text{for all } u \in V, \ x \in \mathbb{R}_+^{|E|} \right\}$$

$$= \max \left\{ \sum_{e \in E} w_e x_e : \sum_{v \in V: uv \in E} x_{uv} \le 1 \quad \text{for all } u \in V, \ x \in \{0, 1\}^{|E|} \right\}$$

the maximum size of a matching

Combinatorial algorithm for maximum weight bipartite matching

- In Lecture 3, we learned an LP-based algorithm for maximum weight bipartite matching.
- Net we cover a combinatorial algorithm, that is known as the Hungarian algorithm.

Preprocessing step

- First, as we are interested in a maximum weight matching, we may discard edges with a negative weight.
- ② Up to adding dummy vertices and dummy edges with weight zero, we obtain a complete bipartite graph $K_{n,n}$ for some $n \ge 1$.

Figure: illustrating the preprocessing step

- After the preprocessing step, we may assume that $G = K_{n,n}$ for some $n \ge 1$ and $w \in \mathbb{R}_+^{|E|}$.
- Then the problem boils down to finding a maximum weight perfect matching in G.
- As before, let the vertex set V be partitioned into V_1 amd V_2 with $|V_1| = |V_2| = n$.
- Then a maximum weight matching in G can be computed by

$$\begin{array}{ll} \text{maximize} & \displaystyle \sum_{e \in E} w_e x_e \\ \\ \text{subject to} & \displaystyle \sum_{v \in V_2} x_{uv} \leq 1 \quad \text{for all } u \in V_1, \\ & \displaystyle \sum_{u \in V_1} x_{uv} \leq 1 \quad \text{for all } v \in V_2, \\ & \displaystyle x_e \geq 0 \quad \text{for all } e \in E. \end{array} \tag{1}$$

- Again, as $w_e \ge 0$ for all $e \in E$ and G is a complete bipartite graph, (1) has an optimal solution that corresponds to a perfect matching.
- Then it follows that (1) is equivalent to

$$\begin{array}{ll} \text{maximize} & \displaystyle \sum_{e \in E} w_e x_e \\ \text{subject to} & \displaystyle \sum_{v \in V_2} x_{uv} = 1 \quad \text{for all } u \in V_1, \\ & \displaystyle \sum_{u \in V_1} x_{uv} = 1 \quad \text{for all } v \in V_2, \\ & \displaystyle x_e \geq 0 \quad \text{for all } e \in E. \end{array} \tag{Primal}$$

The dual of (Primal) is given by

minimize
$$\sum_{u \in V_1} y_u + \sum_{v \in V_2} z_v$$
 (Dual) subject to
$$y_u + z_v \ge w_{uv} \quad \text{for all } uv \in E.$$

 The following result is a direct consequence of the complementary slackness condition for linear programming.

Lemma

Let M be a perfect matching in G. Suppose that there exists a feasible solution (y,z) to (Dual) that satisfies $y_u+z_v=w_{uv}$ for every $uv\in M$. Then M is a maximum weight matching.

- Based on the lemma, the main idea behind the Hungarian algorithm is as follows.
 - (y, z) always remains feasible to (Dual), satisfying the constraints of (Dual).
 - Only an edge $uv \in E$ satisfying $y_u + z_v = w_{uv}$ can be added to our matching M.
- Once M becomes a perfect matching, then it will satisfy the conditions of the lemma, which guarantees that M is a maximum weight matching.

- To implement this idea, we introduce the notion of equality subgraphs.
- Given a feasible solution (y, z) to (Dual), we define the subgraph of G taking the edges $uv \in E$ satisfying $y_u + z_v = w_{uv}$.
- We use notation $G_{y,z}$ to denote the equality subgraph of G associated with (y,z).
 - Given a feasible solution (y, z) to (Dual), we take a maximum matching M in $G_{y,z}$.

Algorithm 1 Hungarian algorithm for maximum weight bipartite matching

Input: complete bipartite graph G=(V,E) with $V=V_1\cup V_2$ and $w\in\mathbb{R}_+^{|E|}$ Initialize $y_u=\max_{v\in V_2}w_{uv}$ for $u\in V_1$, $z_v=0$ for $v\in V_2$ Initialize $M=\emptyset$ and $B=\emptyset$

while M is not a perfect matching do

Construct the equality subgraph $G_{y,z}$ associated with (y,z)

Set M and B as a maximum matching and a minimum vertex cover in $G_{v,z}$, respectively

Set $R = V_1 \cap B$ and $T = V_2 \cap B$ Compute $\epsilon = \min \{y_u + z_v - w_{uv} : u \in V_1 - R, v \in V_2 - T\}$ Update $y_u = y_u - \epsilon$ for $u \in V_1 - R$ and $z_v = z_v + \epsilon$ for $v \in T$

end while

Return M

Example

Example

Let us consider an example with $G = K_{5,5}$.

In each matrix, the rows correspond to the vertices in V_1 , and the columns are for the vertices in V_2 .

Correctness

Theorem

Let G=(V,E) be a complete bipartite graph, and let $w\in\mathbb{R}_+^{|E|}$. Then Algorithm 1 finds a maximum weight pefect matching in G.

Correctness