Exercise 9.22

	Malcev's	Bolzano's	Boole's	Wittgenstein's
1	False	False	True	False
2	True	False	False	False
3	True	False	False	False
4	True	False	False	False
5	True	False	True	False
6	False	False	False	False
7	False	False	True	False
8	False	True	True	False
9	True	True	True	True
10	False	False	True	True

Exercise 10.1

	Annotated Sentence	Truth Functional Form	a/b/c
1	$\frac{\forall x \ x=x}{A}$	A	b
2	$\frac{\exists x \text{ Cube}(x)}{A} \rightarrow \frac{\text{Cube}(a)}{B}$	$A \rightarrow B$	С
3	$\frac{\text{Cube(a)}}{A} \to \frac{\exists x \text{ Cube(x)}}{B}$	$A \rightarrow B$	b
4	$\frac{\forall x (\text{Cube}(x) \land \text{Small}(x))}{A} \rightarrow \frac{\forall x (\text{Small}(x) \land \text{Cube}(x))}{B}$	$A \rightarrow B$	b
5	$\frac{\forall v (\text{Cube}(v) \leftrightarrow \text{Small}(v))}{A} \leftrightarrow \frac{\neg \neg}{A} \forall v (\text{Cube}(v) \leftrightarrow \text{Small}(v))}{A}$	$A \leftrightarrow \neg \neg A$	a

6	$ \frac{\forall x \text{ Cube}(x)}{A} \rightarrow \frac{\neg \exists x \neg \text{Cube}(x)}{B} $	$A \rightarrow \neg B$	С
7	$ \begin{array}{c c} [$	$\begin{bmatrix} A \land B \end{bmatrix} \rightarrow C$	b
8	$ \frac{\exists x \text{ Cube}(x) \to (\exists x \text{ Cube}(x) \lor \exists y \text{ Dodec}(y))}{A A B} $	$A \to A \vee B$	a
9	$ \begin{array}{ccc} (\exists x \ Cube(x) & \forall \ \exists y \ Dodec(y)) \rightarrow \exists x \ Cube(x) \\ A & B & A \end{array} $	$A \vee B \to A$	С
10	$ \begin{array}{c cccc} [($	$ \begin{bmatrix} (A \to B) \land \neg B \end{bmatrix} \to \neg A $	a

Exercise 10.3

Truth	Fun	ction	nal	Form	١.
11111111	гип	CHOI	1111	гон	

 $A \rightarrow B$

 $\neg B$

C

(b) logically, but not tautologically valid

Exercise 10.4

Truth Functional Form:

 $A \rightarrow B$

 $\neg B$

 $\neg A$

(a) tautologically valid

Exercise 10.9

	Written out	Logical Truth	FO Validity
1	There is a block to the left of block b and block b is to the right of that one	Yes	No

2	If a small block is in the back of block c then it is a dodec	No	No
3	If there is a cube that is not b, it is then larger or smaller than block b	No	No
4	If block d is a dodec, then any block named d is a dodec	Yes	No
5	If the block is larger than block a and smaller than block b, then block a is smaller than block b	Yes	No
6	Every block larger than c is not c	Yes	No
7	Every block is either between a and d or is not between a and d	Yes	Yes
8	Every block is either between a and d or is not between d and a	Yes	Yes
9	Dodec are either small or d	No	No
10	If all cubes to the left of block e there is not a block that is a cube and not left of block e	Yes	Yes

First Order Counter Examples:

- 1. If we replaced the blue block with SameRow and orange block with SameColumn, then we would have a counterexample
- 4. If the blue block is replaced with Dodec then this would be a counterexample.
- 5. If the blue blocks are replaced with DifferentShape then this would a counterexample
- 6. If we replaced the orange block with SameShape then we would have a counterexample.

Exercise 10.12

The argument is not tautologically valid. From its truth-functional form, we cannot get the conclusion based on the given premises, thus the conclusion is not always true given the premises in truth-normal form. The argument is logically valid because we can prove the conclusion based on the premises.

(b) first-order consequences that are not tautological consequences

Exercise 10.13

Truth Functional Form:

```
A \rightarrow B
\neg B
----
\neg A
```

This argument is tautologically valid. From its truth-functional form, we can con get the conclusion based on the given premises as they are executed. The conclusion is always true given the premises in the truth-normal form. The argument is logically valid because we can prove the conclusion based on the premises.

Shivani Patel Philos 12A Klaus / 106

Assignment #8

(a) tautological consequences of the premises