Vecteurs dans l'espace-Géométrie analytique dans l'espace.

1 Vecteurs dans l'espace

1.1 Extension de la notion de vecteur à l'espace

Propriétés

- 1. Soient A et B deux points de l'espace. Le vecteur \overrightarrow{AB} est défini par :
 - Sa direction (la droite (AB)).
 - Son sens(de A vers B).
 - Sa norme (la distance AB).
- 2. $\overrightarrow{BA} = -\overrightarrow{AB}$. Le vecteur \overrightarrow{BA} est appelé l'opposé du vecteur \overrightarrow{AB} .
- 3. On dit que deux vecteurs sont égaux, s'ils ont même direction, le même sens et la même norme.
- 4. Soient ABCD un quadrilatère dans l'espace, on a : ABCD est un parallélogramme si et seulement si $\overrightarrow{AB} = \overrightarrow{DC}$.
- 5. \overrightarrow{ABCD} est un parallélogramme si et seulement si $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$ (Somme de deux vecteurs dans l'espace).
- 6. Pour tous points A,B et C de l'espace, on a : $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$ (Relation de Chasles).
- 7. Soit \vec{u} un vecteur non nul et $k \in \mathbb{R}^*$. Le produit du vecteur \vec{u} par le réel k est le vecteur \vec{v} noté $k\vec{u}$, qui vérifie les conditions suivantes :
 - \vec{u} et \vec{v} ont même direction.
 - Si k > 0 alors \vec{u} et \vec{v} ont même sens.si k < 0 alors \vec{u} et \vec{v} ont de sens contraire.
 - $-- \|\vec{v}\| = |k| \times \|\vec{u}\|.$
- 8. On a :0. $\vec{u} = \vec{0}$ et $k\vec{0} = \vec{0}$.
- 9. Pour tous vecteurs \vec{u} et \vec{v} et pour tous réels k et k' on a :

$$(k+k')\vec{u} = k\vec{u} + k'\vec{u}.$$

$$k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}.$$

$$k(k'\vec{u}) = (kk')\vec{u}.$$

$$k\vec{u} = \vec{0} \Leftrightarrow k = 0 \text{ ou } \vec{u} = \vec{0}.$$

- 10. On dit que \vec{u} et \vec{v} est colinéaires s'il existe k un nombre réel tel que $\vec{u}=k\vec{v}$ ou $\vec{v}=k\vec{u}$.
- 11. Soient A,B et C trois points de l'espace. On dit que A, B et C sont alignée si et seulement si \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

2 Définition vectorielle d'une droite de l'espace

Définition

Soit A un point de l'espace E et \vec{u} un vecteur non nul.L'ensemble des points M de l'espace tels que $\overrightarrow{AM} = k\vec{u}$ où $k \in \mathbb{R}$, est la droite passant par A et de vecteur directeur \vec{u} , cette droite est notée $D(A; \vec{u})$ et on écrit : $D(A; \vec{u}) = \{M \in E/\overrightarrow{AM} = k\vec{u}; k \in \mathbb{R}\}$

3 Définition vectorielle d'un plan-les vecteurs coplanaires

3.1 Définition vectorielle d'un plan

Définition

- Soit (P) un plan de l'espace et A,B et C sont trois points non alignés du plan (P).On dit que (P) est un plan passant par A et de vecteurs directeurs \overrightarrow{AB} et \overrightarrow{AC} .
- Deux vecteurs non colinéaires \vec{u} et \vec{v} et un point A définissent un plan unique noté :(P).Ce plan passe par A

et \vec{u} et \vec{v} sont deux vecteurs directeurs. On écrit $(P) = P(A; \vec{u}; \vec{v}) = \{M \in E/\overrightarrow{AM} = x\vec{u} + y\vec{v}; (x; y) \in \mathbb{R}^2\}.$

3.2 Vecteurs coplanaires

Définitions

- On dit que quatre points A,B,C et D de l'espace sont coplanaires s'ils sont dans un même plan.
- Soit \vec{u} , \vec{v} et \vec{w} trois vecteurs de l'espace. Il existe quatre points A, B, C et D de l'espace tels que $\vec{u} = \overrightarrow{AB}$, $\vec{v} = \overrightarrow{AC}$ et $\vec{w} = \overrightarrow{AD}$. On dit que les vecteurs \vec{u} , \vec{v} et \vec{w} sont coplanaires si et seulement si les quatre points A, B, C et D le sont.

Propriétés

- Soit \vec{u} et \vec{v} deux vecteurs non colinéaire et \vec{w} un vecteur de l'espace. Les vecteurs \vec{u} , \vec{v} et \vec{w} sont coplanaires si et seulement si, il existe deux nombres réels x et y tels que : $\vec{w} = x\vec{u} + y\vec{v}$.
- Soit A, B, C et D quatre points de l'espace, tels que A, B et C ne soient pas alignés. Alors, les points A, B, C et D sont coplanaires si et seulement si il existe deux réels x et y tels que : $\overrightarrow{AD} = x\overrightarrow{AB} + y\overrightarrow{AC}$.

4 Géométrie analytique dans l'espace

4.1 Coordonnées d'un point dans un repère-Coordonnées d'un vecteur dans une base

Définitions

Soient \vec{i}, \vec{j} et \vec{k} trois vecteurs non coplanaires et O un point de l'espace.

- Le triplet $(\vec{i}; \vec{j}; \vec{k})$ est appelé une base de l'espace.
- Le quadruplet $(O; \vec{i}; \vec{j}; \vec{k})$ est appelé un repère de l'espace.
- Quatre points non coplanaires déterminent une base et un repère de l'espace.
- Pour tout point M de l'espace, il existe un unique triplet (x; y; z) de réels tel que $:\overrightarrow{OM} = x\vec{i} + y\vec{j} + z\vec{k}$. Le triplet (x; y; z) est appelé le triplet de coordonnées du point M dans le repère $(O; \vec{i}; \vec{j}; \vec{k}).x$ est l'abscisse du point M, y est l'ordonnée du point M, z est la cote du point M et on écrit :M(x; y; z).
- Tout vecteur \vec{u} de l'espace, il existe un unique triplet de réels (x; y; z) tel que $: \vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$ et on écrit $: \vec{u}(x; y; z)$.

Dans toute la suite ,l'espace est rapporté à un repère $(O; \vec{i}; \vec{j}; \vec{k})$.

4.2 Déterminent de trois vecteurs

4.2.1 Condition de colinéarité de deux vecteurs

Propriété

Soient $\vec{u}(x; y; z)$ et $\vec{v}(x'; y'; z')$ deux vecteurs de l'espace.

- $1. \ \vec{u} \ \text{et} \ \vec{v} \ \text{sont colin\'eaire si et seulement si} \ \left| \begin{array}{cc} x & x' \\ y & y' \end{array} \right| = 0 \ \text{et} \ \left| \begin{array}{cc} x & x' \\ z & z' \end{array} \right| = 0 \ \text{et} \ \left| \begin{array}{cc} y & y' \\ z & z' \end{array} \right| = 0.$
- 2. \vec{u} et \vec{v} ne sont pas colinéaire si et seulement si $\begin{vmatrix} x & x' \\ y & y' \end{vmatrix} \neq 0$ ou $\begin{vmatrix} x & x' \\ z & z' \end{vmatrix} \neq 0$ ou $\begin{vmatrix} y & y' \\ z & z' \end{vmatrix} \neq 0$.

Année scolaire: 2021/2022

4.2.2 Vecteurs coplanaires

Définition

Soient $\vec{u}(x;y;z)$, $\vec{v}(x';y';z')$ et $\vec{w}(x'';y'';z'')$ trois vecteurs de l'espace. On appelle le déterminant des vecteurs \vec{u} , \vec{v}

$$x; y; z)$$
, $\vec{v}(x'; y'; z')$ et $\vec{w}(x''; y''; z'')$ trois vecteurs de l'espace. On appelle le déterminant des vect et \vec{w} , le nombre réel : $\det(\vec{u}, \vec{v}, \vec{w}) = \begin{vmatrix} x & x' & x'' \\ y & y' & y'' \\ z & z' & z'' \end{vmatrix} = x \begin{vmatrix} y' & y'' \\ z' & z'' \end{vmatrix} - y \begin{vmatrix} x' & x'' \\ z' & z'' \end{vmatrix} + z \begin{vmatrix} x' & x'' \\ y' & y'' \end{vmatrix}$

- Les vecteurs \vec{u} , \vec{v} et \vec{w} sont coplanaires si et seulement si : $\det(\vec{u}, \vec{v}, \vec{w}) = 0$.
- Les vecteurs \vec{u} , \vec{v} et \vec{w} ne sont pas coplanaires si et seulement si : $\det(\vec{u}, \vec{v}, \vec{w}) \neq 0$.

4.3 Représentation paramétrique d'une droite

Définition

 $y = y_A + bt \quad (t \in \mathbb{R}) \text{ est}$ $z = z_A + ct$ Soit $A(x_A; y_A; z_A)$ un point de l'espace et $\vec{u}(a; b; c)$ un vecteur non nul.Le système : appelé représentation paramétrique de la droite $D(A, \vec{u})$ passant par A et de vecteur directeur \vec{u} .

Position relatives de deux droites

Propriété

Soient $(D) = D(A; \vec{u})$ et $(\Delta) = D(B; \vec{v})$ deux droites de l'espace.

- Si \vec{u} et \vec{v} sont colinéaires et $A \in (\Delta)$ ou $B \in (D)$ alors (D) et (Δ) sont confondues.
- Si \vec{u} et \vec{v} sont colinéaires et $A \notin (\Delta)$ alors (D) et (Δ) sont strictement parallèles.
- Si \vec{u} et \vec{v} ne sont pas colinéaires et $det(\overrightarrow{AB}; \vec{u}; \vec{v}) = 0$ alors (D) et (Δ) sont sécantes (se coupent en un point).
- Si \vec{u} et \vec{v} ne sont pas colinéaires et $det(\overrightarrow{AB}; \vec{u}; \vec{v}) \neq 0$ alors (D) et (Δ) ne sont pas coplanaires.

Représentation paramétrique d'un plan-Équation cartésienne d'un plan

Représentation paramétrique d'un plan 4.4.1

Définition

Soient $A(x_A; y_A; z_A)$ un point de l'espace, $\vec{u}(a;b;c)$ et $\vec{v}(a';b';c')$ deux vecteurs non colinéaires. Le système $x = x_A + at + a't'$ $((t;t') \in \mathbb{R}^2)$ est appelé une représentation paramétrique du plan $P(A,\vec{u},\vec{v})$ passant par A $y = y_A + bt + b't'$ $z = z_A + ct + c't'$ et de vecteurs directeurs \vec{u} et \vec{v} .

Équation cartésienne d'un plan 4.4.2

Définition

Soient
$$A(x_A; y_A; z_A)$$
 un point de l'espace, $\vec{u}(a; b; c)$ et $\vec{v}(a'; b'; c')$ deux vecteurs non colinéaires. L'équation :
$$\det(\overrightarrow{AM}, \vec{u}, \vec{v}) = 0 \Leftrightarrow (x - x_A) \left| \begin{array}{cc} b & b' \\ c & c' \end{array} \right| - (y - y_A) \left| \begin{array}{cc} a & a' \\ c & c' \end{array} \right| + (z - z_A) \left| \begin{array}{cc} a & a' \\ b & b' \end{array} \right| = 0$$

pour tout point M(x; y; z) de l'espace est appelé une équation cartésienne du plan (P).

Une équation cartésienne d'un plan est de la forme ax + by + cz + d = 0 où a,b,c et d sont des réels tels que $(a;b;c) \neq (0;0;0).$

4.4.3 Positions relatives de deux plans

Propriété

Soient $(P) = P(A; \vec{u}; \vec{v})$ et $(Q) = P(B; \vec{u'}; \vec{v'})$ deux plans de l'espace.

- Si $det(\vec{u}; \vec{v}; \vec{u'}) = 0$ et $det(\vec{u}; \vec{v}; \vec{v'}) = 0$ alors (P) et (Q) sont confondus ou strictement parallèles.
- Si $det(\vec{u}; \vec{v}; \vec{u'}) \neq 0$ et $det(\vec{u}; \vec{v}; \vec{v'}) \neq 0$ alors (P) et (Q) se coupent suivant une droite.

4.5 Deux équations cartésiennes d'une droite

Définition

Soit (D) une droite passant par le point $A(x_A; y_A; z_A)$ et de vecteur $\vec{u}(a; b; c)$.

- 1. Si $a \neq 0$, $b \neq 0$ et $c \neq 0$ alors le système (S): $\frac{x-x_A}{a} = \frac{y-y_A}{b} = \frac{z-z_A}{c}$ est appelé une équation cartésienne de la droite (D).
- 2. Si l'un des nombres (un seul) est nul (par exemple a=0 et $b\neq 0$ et $c\neq 0$), alors le système (S) : $\begin{cases} \frac{y-y_A}{b}=\frac{z-z_A}{c} \\ x=x_A \end{cases}$ est une équation cartésienne de la droite (D).
- 3. Si deux de ces nombres sont nuls (par exemple a=0 et b=0 et $c\neq 0$) alors le système (S) : $\begin{cases} x=x_A \\ y=y_A \end{cases}$ est une équation cartésienne de la droite (D).

4.5.1 Positions relatives d'une droite et d'un plan-Étude analytique

Propriété

Soient une droite $(D) = D(A; \vec{w})$ et un plan $(P) = P(B; \vec{u}; \vec{v})$.

- 1. Si $det(\vec{u}; \vec{v}; \vec{w}) = 0$ et $A \in (P)$, alors $(D) \subset (P)$
- 2. Si $det(\vec{u}; \vec{v}; \vec{w}) = 0$ et $A \notin (P)$, alors (D) est strictement parallèle à (P).
- 3. Si $det(\vec{u}; \vec{v}; \vec{w}) \neq 0$, alors (D) perce le plan (P).