GYROSCOPE

Linear Momentum: $\overrightarrow{P} = m\overrightarrow{V}$	Angular Mon	nentum: $\overrightarrow{L} = \overline{r}$	$\overrightarrow{X} \times \overrightarrow{P} = I \overrightarrow{\omega}$	
Cross Product: $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{a} \cdot \overrightarrow{b} \sin \theta \hat{\eta}$	\widehat{K}	CW: + ve	CCW: -ve	ĵ
Gyro: Circular Motion			î	

Newtons 2 nd Law of Motion:	Magnitude: $ \overrightarrow{L} = I\omega$ Direction: $\widehat{L} = \widehat{\omega}$
$\overrightarrow{\tau} = \frac{d\overrightarrow{L}}{dt} = \frac{d(\overrightarrow{r} \times \overrightarrow{P})}{dt} = \frac{d(I\overrightarrow{\omega})}{dt} = \frac{d(I\omega \widehat{\omega})}{dt}$	Precision Velocity: $\frac{d\widehat{\omega}}{dt} = \overrightarrow{\omega_P}$
CASE-I: Let the direction of angular velocity remains	CASE-II: Let the magnitude of angular velocity remains
same w. r. t. time. only it's magnitude is changing.	same w. r. t. time. only it's direction is changing.
$\overrightarrow{\tau} = \frac{d(I\omega \widehat{\omega})}{dt} = I \overrightarrow{\alpha} \widehat{\alpha}$	$\overrightarrow{\tau} = \frac{d(I\omega \widehat{\omega})}{dt} = I\omega \frac{d\widehat{\omega}}{dt} = I[\overrightarrow{\omega_P} \times \overrightarrow{\omega}] = \frac{Gyroscopic}{Active\ Torque}$
Acceleration: $\hat{\alpha} = \widehat{\omega}$ Retardation: $\hat{\alpha} = -\widehat{\omega}$	Reactive Gyroscopic Torque: $\overrightarrow{T} = I[\overrightarrow{\omega} \times \overrightarrow{\omega_P}]$
	Magnitude: $T = I \omega \omega_P$ Direction: $\widehat{T} = \widehat{\omega} \times \widehat{\omega_P}$

Newtons 3rd Law of Motion: Every action has equal and opposite reaction. Hence, for all Active gyroscopic, Reactive gyroscopic Will be present in the system.

GYROSCOPIC PHENOMENON:

Spin $(\overrightarrow{\omega})$: Direction of Angular MomentumAxisPlanesPrecession $(\overrightarrow{\omega_P})$: Direction about which direction of angular momentum changes. $\overrightarrow{\omega}$ $\overrightarrow{\omega}$ Reactive Gyroscopic Torque: $\overrightarrow{T} = I[\overrightarrow{\omega} \times \overrightarrow{\omega_P}]$ $\overrightarrow{\omega_P}$ $\overrightarrow{\omega} \times \overrightarrow{\omega_P}$

DIAGRAM METHOD: It's almost same as table method with Torque diagram. This diagram will give the active gyroscopic torque direction. Reactive Gyroscopic torque will be opposite to Active Gyroscopic torque.

FOR NAVAL SHIP:

- 1. Steering: Turning of the ship either towards starboard side or port side in known as steering.
- 2. Pitching: Oscillation of the ship about horizontal transverse axis is known as pitching. Bow will rise or fall.
- **3. Rolling:** Oscillation of the ship about longitudinal axis.

NOTE:

1. Sometime Pitching is given in SHM.

$\lambda = \lambda_0 \sin \omega t$ $\omega = 2\pi/T \text{ time } t = t \cos \omega$

2. There will be no gyroscopic effect due to Rolling.