Patent claims

1. Compounds of the formula (I)

$$\begin{array}{c|c} & G & X \\ & & & \\ & & & \\ H & & & \\ O & Z & \\ \end{array} \qquad \qquad Y \qquad \qquad (I)$$

5 in which

X represents halogen,

Y represents alkyl and

Z represents C₂-C₆-alkyl,

A and B together with the carbon atom to which they are attached represent a saturated or unsaturated C₃-C₈-ring which optionally contains at least one heteroatom and which is optionally substituted by alkoxy or haloalkyl,

and.

G represents hydrogen (a) or represents one of the groups

in which

E represents a metal ion equivalent or an ammonium ion,

L represents oxygen or sulphur,

M represents oxygen or sulphur,

R¹ represents in each case optionally substituted alkyl, alkenyl, alkoxyalkyl, alkylthioalkyl or polyalkoxyalkyl or represents in each case optionally halogen-, alkyl- or alkoxy-substituted cycloalkyl or heterocyclyl or represents in each case optionally substituted phenyl, phenylalkyl, phenylalkenyl or hetaryl,

R² represents in each case optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl or polyalkoxyalkyl or represents in each case optionally substituted cycloalkyl, phenyl or benzyl,

R³, R⁴ and R⁵ independently of one another represent in each case optionally halogensubstituted alkyl, alkoxy, alkylamino, dialkylamino, alkylthio, alkenylthio or cycloalkylthio or represent in each case optionally substituted phenyl, benzyl, phenoxy or phenylthio,

R⁶ and R⁷ independently of one another represent hydrogen, represent in each case optionally halogen-substituted alkyl, cycloalkyl, alkenyl, alkoxy, alkoxyalkyl, represent in each case optionally substituted phenyl or benzyl, or together with the N atom to which they are attached form an optionally substituted cycle which optionally contains oxygen or sulphur.

- 2. Compounds of the formula (I) according to Claim 1, in which
 - X represents chlorine or bromine,
 - Y represents C₁-C₃-alkyl,
- 20 Z represents ethyl, n-propyl or n-butyl,
 - A, B and the carbon atom to which they are attached represent saturated C₃-C₈-cycloalkyl in which optionally one methylene group is replaced by oxygen or sulphur and which is optionally substituted by C₁-C₄-haloalkyl or C₁-C₆-alkoxy,
 - G represents hydrogen (a) or represents one of the groups

$$R^{1}$$
 (b), R^{2} (c), SO_{2} R^{3} (d), R^{6} R^{5} (e), E (f) or R^{7} (g)

5

10

- E represents a metal ion equivalent or an ammonium ion,
- L represents oxygen or sulphur and
- M represents oxygen or sulphur,

oxygen and/or sulphur,

15

20

25

represents C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₁-C₆-alkoxy-C₁-C₆-alkyl, C₁-C₆-alkylthio-C₁-C₆-alkyl or poly-C₁-C₄-alkoxy-C₁-C₄-alkyl, each of which is optionally mono- to heptasubstituted by halogen, mono- or disubstituted by cyano, monosubstituted by COR¹³, C=N-OR¹³, CO₂R¹³ or CON R¹³, or represents C₃-C₈-cycloalkyl which is optionally mono- to trisubstituted by halogen, C₁-C₄-alkyl or C₁-C₄-alkoxy and in which optionally one or two not directly adjacent methylene groups are replaced by

represents phenyl, phenyl-C₁-C₂-alkyl or phenyl-C₁-C₂-alkenyl, each of which is optionally mono- to trisubstituted by halogen, cyano, nitro, C₁-C₆-alkyl, C₁-C₆-alkyl, C₁-C₆-alkylsulphinyl or C₁-C₆-alkylsulphonyl,

represents 5- or 6-membered hetaryl which is optionally mono- or disubstituted by halogen or C₁-C₆-alkyl and which contains one or two heteroatoms from the group consisting of oxygen, sulphur and nitrogen,

R² represents C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₁-C₆-alkoxy-C₂-C₆-alkyl or poly-C₁-C₆-alkoxy-C₂-C₆-alkyl, each of which is optionally mono- to trisubstituted by halogen,

represents C_3 - C_8 -cycloalkyl which is optionally mono- or disubstituted by halogen, C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy or

represents phenyl or benzyl, each of which is optionally mono- to trisubstituted by halogen, cyano, nitro, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkyl or C_1 - C_6 -haloalkoxy,

R³ represents C₁-C₈-alkyl which is optionally mono- or polysubstituted by halogen or represents phenyl or benzyl, each of which is optionally mono- or disubstituted by halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, cyano or nitro,

10

15

20

R⁴ and R⁵ independently of one another represent C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₈-alkyl-amino, di-(C₁-C₈-alkyl)amino, C₁-C₈-alkylthio or C₂-C₈-alkenylthio, each of which is optionally mono- to trisubstituted by halogen, or represent phenyl, phenoxy or phenylthio, each of which is optionally mono- to trisubstituted by halogen, nitro, cyano, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkyl,

R⁶ and R⁷ independently of one another represent hydrogen, represent C₁-C₈-alkyl, C₃-C₈-cycloalkyl, C₁-C₈-alkoxy, C₃-C₈-alkenyl or C₁-C₈-alkoxy-C₂-C₈-alkyl, each of which is optionally mono- to trisubstituted by halogen, represent phenyl or benzyl, each of which is optionally mono- to trisubstituted by halogen, C₁-C₈-alkyl, C₁-C₈-haloalkyl or C₁-C₈-alkoxy, or together represent a C₃-C₆-alkylene radical which is optionally mono- or disubstituted by C₁-C₄-alkyl and in which optionally one methylene group is replaced by oxygen or sulphur,

R¹³ represents C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-alkynyl or C₁-C₄-alkoxy-C₂-C₄-alkyl, each of which is optionally mono- to trisubstituted by halogen, or represents C₃-C₆-cycloalkyl which is optionally mono- or disubstituted by halogen, C₁-C₂-alkyl or C₁-C₂-alkoxy and in which optionally one or two not directly adjacent methylene groups are replaced by oxygen, or represents phenyl or phenyl-C₁-C₂-alkyl, each of which is optionally mono- or disubstituted by halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy, cyano or nitro

R¹³ represents hydrogen, C₁-C₆-alkyl or C₃-C₆-alkenyl.

- 3. Compounds of the formula (I) according to Claim 1, in which
 - X represents chlorine or bromine,
 - Y represents methyl or ethyl,
- 25 Z represents ethyl or n-propyl,
 - A, B and the carbon atom to which they are attached represent saturated C₃-C₇-cycloalkyl in which optionally one methylene group is replaced by oxygen and which is optionally monosubstituted by C₁-C₂-haloalkyl or C₁-C₄-alkoxy,
 - G represents hydrogen (a) or represents one of the groups

E represents a metal ion equivalent or an ammonium ion,

L represents oxygen or sulphur and

M represents oxygen or sulphur,

represents C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₁-C₄-alkoxy-C₁-C₂-alkyl, C₁-C₄-alkylthio-C₁-C₂-alkyl or poly-C₁-C₃-alkoxy-C₁-C₂-alkyl, each of which is optionally mono- to pentasubstituted by fluorine or chlorine, monosubstituted by cyano, monosubstituted by CO-R¹³, C=N-OR¹³ or CO₂R¹³, or represents C₃-C₆-cycloalkyl which is optionally mono- or disubstituted by fluorine, chlorine, C₁-C₂-alkyl or C₁-C₂-alkoxy and in which optionally one or two not directly adjacent methylene groups are replaced by oxygen,

represents phenyl or benzyl, each of which is optionally mono- or disubstituted by fluorine, chlorine, bromine, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-alkylthio, C₁-C₄-alkylsulphonyl, C₁-C₄-alkylsulphonyl, C₁-C₄-alkoxy, C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy,

represents pyrazolyl, thiazolyl, pyridyl, pyrimidyl, furanyl or thienyl, each of which is optionally mono- or disubstituted by fluorine, chlorine, bromine or C_1 - C_2 -alkyl,

represents C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₁-C₄-alkoxy-C₂-C₄-alkyl or poly-C₁-C₄-alkoxy-C₂-C₄-alkyl, each of which is optionally mono- to trisubstituted by fluorine or chlorine,

represents C_3 - C_7 -cycloalkyl which is optionally monosubstituted by C_1 - C_2 -alkyl or C_1 - C_2 -alkoxy, or

represents phenyl or benzyl, each of which is optionally mono- or disubstituted by fluorine, chlorine, bromine, cyano, nitro, C₁-C₄-alkyl, methoxy, trifluoromethyl or trifluoromethoxy,

5

10

15

20

 R^2

- R³ represents C₁-C₄-alkyl which is optionally mono- to trisubstituted by fluorine or chlorine or represents phenyl or benzyl, each of which is optionally monosubstituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, trifluoromethyl, trifluoromethoxy, cyano or nitro,
- R⁴ and R⁵ independently of one another each represent C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylamino, di-(C₁-C₆-alkyl)amino, C₁-C₆-alkylthio or C₃-C₄-alkenylthio, each of which is optionally mono- to trisubstituted by fluorine or chlorine, or represent phenyl, phenoxy or phenylthio, each of which is optionally mono- or disubstituted by fluorine, chlorine, bromine, nitro, cyano, C₁-C₃-alkoxy, trifluoromethoxy, C₁-C₃-alkylthio, C₁-C₃-alkyl or trifluoromethyl,
 - R⁶ and R⁷ independently of one another represent hydrogen, represent C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy, C₃-C₆-alkenyl or C₁-C₆-alkoxy-C₂-C₆-alkyl, each of which is optionally mono- to trisubstituted by fluorine or chlorine, represent phenyl which is optionally mono- or disubstituted by fluorine, chlorine, bromine, trifluoromethyl, C₁-C₄-alkyl or C₁-C₄-alkoxy, or together represent a C₅-C₆-alkylene radical which is optionally mono- or disubstituted by methyl and in which optionally one methylene group is replaced by oxygen,
 - R¹³ represents C₁-C₄-alkyl, C₃-C₄-alkenyl, C₃-C₄-alkynyl or C₁-C₄-alkoxy-C₂-C₃-alkyl or C₃-C₄-cycloalkyl in which optionally one methylene group is replaced by oxygen.
- 20 4. Compounds of the formula (I) according to Claim 1 in which
 - X represents chlorine or bromine,
 - Y represents methyl,

- Z represents ethyl,
- A, B and the carbon atom to which they are attached represent saturated C₆-cycloalkyl in which optionally one methylene group is replaced by oxygen and which is optionally monosubstituted by trifluoromethyl, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy or isobutoxy,
 - G represents hydrogen (a) or represents one of the groups

10

15

20

L represents oxygen and

M represents oxygen or sulphur,

represents phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, cyano, nitro, methyl, ethyl, n-propyl, isopropyl, methoxy, ethoxy, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, methylsulphonyl, trifluoromethyl or trifluoromethoxy,

represents furanyl, thienyl or pyridyl, each of which is optionally monosubstituted by chlorine, bromine or methyl,

R² represents C₁-C₈-alkyl, C₂-C₆-alkenyl or C₁-C₃-alkoxy-C₂-C₃-alkyl, cyclopentyl or cyclohexyl,

or represents phenyl or benzyl, each of which is optionally monosubstituted by fluorine, chlorine, bromine, cyano, nitro, methyl, methoxy, trifluoromethyl or trifluoromethoxy,

- R³ represents C₁-C₄-alkyl which is optionally mono- to trisubstituted by fluorine or chlorine or represents phenyl or benzyl, each of which is optionally monosubstituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, trifluoromethyl, trifluoromethoxy, cyano or nitro,
- 25 R⁶ represents hydrogen, represents C₁-C₄-alkyl, C₃-C₆-cycloalkyl or allyl, represents phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, methyl, methoxy or trifluoromethyl,
 - R⁷ represents methyl, ethyl, n-propyl, isopropyl or allyl,

R⁶ and R⁷ together represent a C₅-C₆-alkylene radical in which optionally one methylene group is replaced by oxygen.

- 5. Compounds of the formula (I) according to Claim 1 in which
 - X represents chlorine or bromine,
- 5 Y represents methyl,
 - Z represents ethyl,
 - A, B and the carbon atom to which they are attached represent saturated C₆-cycloalkyl in which optionally one methylene group is replaced by oxygen and which is optionally monosubstituted by methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy or isobutoxy,
- 10 G represents hydrogen (a) or represents one of the groups

- L represents oxygen and
- M represents oxygen,
- 15 R¹ represents C₁-C₆-alkyl, C₁-C₂-alkoxy-C₁-C₂-alkyl, each of which is optionally monoto trisubstituted by fluorine or chlorine, or represents cyclopropyl,
 - R² represents C₁-C₈-alkyl or C₂-C₆-alkenyl,
 - R^3 represents C_1 - C_4 -alkyl.
- 6. Process for preparing compounds of the formula (I) according to Claim 1, characterized in that, to obtain
 - (A) compounds of the formula (I-a),

A, B, X, Y and Z are as defined above,

compounds of the formula (II),

$$A \xrightarrow{CO_2R^8} B \\ X \\ H \xrightarrow{N} Q$$
 (II)

5

10

15

A, B, X, Y and Z are as defined above

and

in which

R⁸ represents alkyl,

are condensed intramolecularly in the presence of a diluent and in the presence of a base,

- (B) compounds of the formula (I-b) shown above in which A, B, R¹, X, Y and Z are as defined above, compounds of the formula (I-a) shown above in which A, B, X, Y and Z are as defined above are reacted
 - α) with acid halides of the formula (III),

 R^{i} is as defined above and represents halogen Hal or B) with carboxylic anhydrides of the formula (IV), R1-CO-O-CO-R1 5 (IV) in which R^1 is as defined above, if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder, compounds of the formula (I-c) shown above in which A, B, R², M, X, Y and Z are 10 (C) as defined above and L represents oxygen, compounds of the formula (I-a) shown above in which A, B, X, Y and Z are as defined above are in each case reacted with chloroformic esters or chloroformic thioesters of the formula (V), R²-M-CO-Cl (V) 15 in which R² and M are as defined above, if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder, compounds of the formula (I-c) shown above in which A, B, R², M, X, Y and Z are (D) as defined above and L represents sulphur, compounds of the formula (I-a) shown 20 above in which A, B, X, Y and Z are as defined above are in each case reacted a) with chloromonothioformic esters or chlorodithioformic esters of the formula (VI) CI M-R² (VI)

M and R^2 are as defined above, if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder or

B) with carbon disulphide and then with compounds of the formula (VII)

R²-Hal

(VII)

in which

5

10

R² is as defined above and

Hal represents chlorine, bromine or iodine,

if appropriate in the presence of a diluent and if appropriate in the presence of a base,

(E) compounds of the formula (I-d) shown above in which A, B, R³, X, Y and Z are as defined above, compounds of the formula (I-a) shown above in which A, B, X, Y and Z are as defined above are in each case reacted

with sulphonyl chlorides of the formula (VIII)

 R^3 -SO₂-Cl (VIII)

in which

R³ is as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

20 (F) compounds of the formula (I-e) shown above in which A, B, L, R⁴, R⁵, X, Y and Z are as defined above, compounds of the formula (I-a) shown above in which A, B, X, Y and Z are as defined above are in each case reacted

with phosphorus compounds of the formula (IX)

$$\begin{array}{ccc}
 & R^4 \\
 & & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & | & \\
 & |$$

5

10

15

L, R4 and R5 are as defined above and

Hal represents halogen,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

(G) compounds of the formula (I-f) shown above in which A, B, E, X, Y and Z are as defined above, compounds of the formula (I-a) shown above in which A, B, X, Y and Z are as defined above are in each case reacted

with metal compounds or amines of the formulae (X) and (XI), respectively,

$$R^{10} \sim R^{11}$$
 $N \sim R^{11}$
 $R^{10} \sim R^{11}$

in which

Me represents a mono- or divalent metal

t represents the number 1 or 2 and

R¹⁰, R¹¹, R¹² independently of one another represent hydrogen or alkyl,

if appropriate in the presence of a diluent,

- compounds of the formula (I-g) shown above in which A, B, L, R⁶, R⁷, X, Y and Z (H) are as defined above, compounds of the formula (I-a) shown above in which A, B, X, Y and Z are as defined above are in each case reacted
- 20 a) with isocyanates or isothiocyanates of the formula (XII),

$$R^6$$
-N=C=L (XII)

R⁶ and L are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of a catalyst, or

B) with carbamoyl chlorides or thiocarbamoyl chlorides of the formula (XIII)

$$R^6$$
 N CI $(XIII)$

5

in which

L, R⁶ and R⁷ are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder.

- 10 7. Use of compounds of the formula (I) according to Claim 1 for preparing pesticides and/or herbicides.
 - 8. Pesticides and/or herbicides, characterized in that they comprise at least one compound of the formula (I) according to Claim 1.
- Method for controlling animal pests and/or unwanted vegetation, characterized in that
 compounds of the formula (I) according to Claim 1 are allowed to act on pests and/or their habitat.
 - 10. Use of compounds of the formula (I) according to Claim 1 for controlling animal pests and/or unwanted vegetation.
- 11. Process for preparing pesticides and/or herbicides, characterized in that compounds of the formula (I) according to Claim 1 are mixed with extenders and/or surfactants.
 - 12. Compositions, comprising an effective amount of a combination of active compound comprising
 - (a') at least one substituted cyclic ketoenol of the formula (I) according to Claim 1 in which A, B, G, X, Y and Z are as defined above

25

and

b') at least one crop plant compatibility-improving compound from the following group of compounds:

4-dichloroacetyl-1-oxa-4-azaspiro[4.5]decane (AD-67, MON-4660), 1dichloroacetylhexahydro-3,3,8a-trimethylpyrrolo[1,2-a]pyrimidin-6(2H)-one (dicyclonon, BAS-145138), 4-dichloroacetyl-3,4-dihydro-3-methyl-2H-1,4benzoxazine (benoxacor), 1-methylhexyl 5-chloroquinoline-8-oxyacetate (cloquintocet-mexyl - cf. also related compounds in EP-A-86750, EP-A-94349, EP-A-191736, EP-A-492366), 3-(2-chlorobenzyl)-1-(1-methyl-1-phenylethyl)urea (cumyluron), α-(cyanomethoximino)phenylacetonitrile (cyometrinil), 2,4-dichlorophenoxyacetic acid (2,4-D), 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB),1-(1-methyl-1-phenylethyl)-3-(4-methylphenyl)urea (daimuron, 3,6-dichloro-2-methoxybenzoic acid S-1-methyl dymron), (dicamba). 1-phenylethyl piperidine-1-thiocarboxylate (dimepiperate), 2,2-dichloro-N-(2-oxo-2-(2-propenylamino)ethyl)-N-(2-propenyl)acetamide (DKA-24), 2,2-dichloro-N,Ndi-2-propenylacetamide (dichlormid), 4,6-dichloro-2-phenylpyrimidine (fenclorim), ethyl 1-(2,4-dichlorophenyl)-5-trichloromethyl-1H-1,2,4-triazole-3carboxylate (fenchlorazole-ethyl - cf. also related compounds in EP-A-174562 and EP-A-346620), phenylmethyl 2-chloro-4-trifluoromethylthiazole-5-carboxylate 4-chloro-N-(1,3-dioxolan-2-ylmethoxy)-α-trifluoroacetophenone (flurazole), oxime (fluxofenim), 3-dichloroacetyl-5-(2-furanyl)-2,2-dimethyloxazolidine (furilazole, MON-13900), ethyl 4,5-dihydro-5,5-diphenyl-3-isoxazolecarboxylate (isoxadifen-ethyl - cf. also related compounds in WO-A-95/07897), 1-(ethoxycarbonyl)ethyl 3,6-dichloro-2-methoxybenzoate (lactidichlor), (4-chloro-otolyloxy)acetic acid (MCPA), 2-(4-chloro-o-tolyloxy)propionic acid (mecoprop), diethyl 1-(2,4-dichorophenyl)-4,5-dihydro-5-methyl-1H-pyrazole-3,5dicarboxylate (mefenpyr-diethyl - cf. also related compounds in WO-A-91/07874), 2-dichloromethyl-2-methyl-1,3-dioxolane (MG-191), 2-propenyl 1-oxa-4azaspiro[4.5]decane-4-carbodithioate (MG-838), 1,8-naphthalic anhydride, α-(1,3dioxolan-2-ylmethoximino)phenylacetonitrile (oxabetrinil), 2,2-dichloro-N-(1,3dioxolan-2-ylmethyl)-N-(2-propenyl)acetamide (PPG-1292), 3-dichloroacetyl-2,2dimethyloxazolidine (R-28725), 3-dichloroacetyl-2,2,5-trimethyloxazolidine (R-29148), 4-(4-chloro-o-tolyl)butyric acid, 4-(4-chlorophenoxy)butyric acid, diphenylmethoxyacetic acid, diphenylmethoxyacetate, ethyl methyl diphenylmethoxyacetate, methyl 1-(2-chlorophenyl)-5-phenyl-1H-pyrazole-3carboxylate, ethyl 1-(2,4-dichlorophenyl)-5-methyl-1H-pyrazole-3-carboxylate, ethyl 1-(2,4-dichlorophenyl)-5-isopropyl-1H-pyrazole-3-carboxylate, ethyl 1-(2,4-

5

10

15

20

25

30

10

15

20

dichlorophenyl)-5-(1,1-dimethylethyl)-1H-pyrazole-3-carboxylate, ethyl 1-(2,4dichlorophenyl)-5-phenyl-1H-pyrazole-3-carboxylate (cf. also related compounds in EP-A-269806 and EP-A-333131), ethyl 5-(2,4-dichlorobenzyl)-2-isoxazoline-3carboxylate, ethyl 5-phenyl-2-isoxazoline-3-carboxylate, ethyl 5-(4-fluorophenyl)-5-phenyl-2-isoxazoline-3-carboxylate (cf. also related compounds in WO-A-91/08202), 1,3-dimethylbut-1-yl 5-chloroquinoline-8-oxyacetate, 4-allyloxybutyl 5-chloroquinoline-8-oxyacetate, 1-allyloxyprop-2-yl 5-chloroquinoline-8oxyacetate, methyl 5-chloroquinoxaline-8-oxyacetate, ethyl 5-chloroquinoline-8allyl 5-chloroquinoxaline-8-oxyacetate, oxyacetate. 2-oxoprop-1-yl 5-chloroquinoline-8-oxyacetate, diethyl 5-chloroquinoline-8-oxymalonate, diallyl 5-chloroquinoxaline-8-oxymalonate, diethyl 5-chloroquinoline-8-oxymalonate (cf. also related compounds in EP-A-582198), 4-carboxychroman-4-ylacetic acid (AC-304415, cf. EP-A-613618), 4-chlorophenoxyacetic acid, 3,3'-dimethyl-4methoxybenzophenone, 1-bromo-4-chloromethylsulphonylbenzene, 1-[4-(N-2methoxybenzoylsulphamoyl)phenyl]-3-methylurea (also known N-(2methoxybenzoyl)-4-[(methylaminocarbonyl)amino]benzenesulphonamide), 1-[4-(N-2-methoxybenzoylsulphamoyl)phenyl]-3,3-dimethylurea, 1-[4-(N-4,5dimethylbenzoylsulphamoyl)phenyl]-3-methylurea, 1-[4-(N-naphthylsulphamoyl)phenyl]-3,3-dimethylurea, N-(2-methoxy-5-

and/or one of the following compounds, defined by general formulae, of the general formula (IIa)

methylbenzoyl)-4-(cyclopropylaminocarbonyl)benzenesulphonamide,

$$(X^1)_m$$
 Q (IIa)

or of the general formula (IIb)

$$X^3$$
 X^2
 A^2
 A^2
 A^2
 A^2
 A^3
 A^2
(IIb)

or of the formula (IIc)

$$R^{16} \xrightarrow{0} R^{17}$$

$$R^{18}$$
(IIc)

where

10

15

20

m represents the number 0, 1, 2, 3, 4 or 5,

5 A¹ represents one of the divalent heterocyclic groupings shown below,

n represents the number 0, 1, 2, 3, 4 or 5,

A² represents optionally C₁-C₄-alkyl- and/or C₁-C₄-alkoxy-carbonyl- and/or C₁-C₄-alkenyloxy-carbonyl-substituted alkanediyl having 1 or 2 carbon atoms,

R¹⁴ represents hydroxyl, mercapto, amino, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₁-C₆-alkylamino or di-(C₁-C₄-alkyl)amino,

R¹⁵ represents hydroxyl, mercapto, amino, C₁-C₇-alkoxy, C₁-C₆-alkenyloxy, C₁-C₆-alkenyloxy, C₁-C₆-alkylthio, C₁-C₆-alkylamino or di-(C₁-C₄-alkyl)-amino,

R¹⁶ represents in each case optionally fluorine-, chlorine- and/or bromine-substituted C₁-C₄-alkyl,

R¹⁷ represents hydrogen, in each case optionally fluorine-, chlorine- and/or bromine-substituted C₁-C₆-alkyl, C₂-C₆-alkenyl or C₂-C₆-alkynyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, dioxolanyl-C₁-C₄-alkyl, furyl, furyl-C₁-C₄-alkyl, thienyl, thiazolyl, piperidinyl, or optionally fluorine-, chlorine- and/or bromine- or C₁-C₄-alkyl-substituted phenyl,

R¹⁸ represents hydrogen, in each case optionally fluorine-, chlorine- and/or bromine-substituted C₁-C₆-alkyl, C₂-C₆-alkenyl or C₂-C₆-alkynyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, dioxolanyl-C₁-C₄-alkyl, furyl, furyl-C₁-C₄-alkyl, thienyl, thiazolyl, piperidinyl, or

15

optionally fluorine-, chlorine- and/or bromine- or C₁-C₄-alkyl-substituted phenyl, R¹⁷ and R¹⁸ also together optionally represent C₃-C₆-alkanediyl or C₂-C₅-oxaalkanediyl, each of which is optionally substituted by C₁-C₄-alkyl, phenyl, furyl, a fused benzene ring or by two substituents which, together with the C atom to which they are attached, form a 5- or 6-membered carbocycle,

- R¹⁹ represents hydrogen, cyano, halogen, or represents in each case optionally fluorine-, chlorine- and/or bromine-substituted C₁-C₄-alkyl, C₃-C₆-cycloalkyl or phenyl,
- R^{20} represents hydrogen, optionally hydroxyl-, cyano-, halogen- or C_1 - C_4 -alkoxy-substituted C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl or tri- $(C_1$ - C_4 -alkyl)silyl,
- 10 R²¹ represents hydrogen, cyano, halogen, or represents in each case optionally fluorine-, chlorine- and/or bromine-substituted C₁-C₄-alkyl, C₃-C₆-cycloalkyl or phenyl,
 - X¹ represents nitro, cyano, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy,
 - X² represents hydrogen, cyano, nitro, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy,
 - X³ represents hydrogen, cyano, nitro, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy,

and/or the following compounds, defined by general formulae, of the general formula (IId)

$$O \nearrow N \longrightarrow (X^5)_v \qquad R^{22} \longrightarrow (X^4)_t \qquad (IId)$$

or of the general formula (IIe)

$$R^{25} \longrightarrow \begin{pmatrix} (X^5)_v \\ R^{22} \\ SO_2 \end{pmatrix} \longrightarrow \begin{pmatrix} (X^4)_t \\ (IIe) \end{pmatrix}$$

where	w	h	e	r	e
-------	---	---	---	---	---

- t represents the number 0, 1, 2, 3, 4 or 5,
- v represents the number 0, 1, 2, 3, 4 or 5,
- R²² represents hydrogen or C₁-C₄-alkyl,
- 5 R²³ represents hydrogen or C₁-C₄-alkyl,
 - R²⁴ represents hydrogen, in each case optionally cyano-, halogen- or C₁-C₄-alkoxy-substituted C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₁-C₆-alkylamino or di-(C₁-C₄-alkyl)amino, or in each case optionally cyano-, halogen- or C₁-C₄-alkyl-substituted C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyloxy, C₃-C₆-cycloalkylthio or C₃-C₆-cycloalkylamino,
 - R²⁵ represents hydrogen, optionally cyano-, hydroxyl-, halogen- or C₁-C₄-alkoxy-substituted C₁-C₆-alkyl, in each case optionally cyano- or halogen-substituted C₃-C₆-alkenyl or C₃-C₆-alkynyl, or optionally cyano-, halogen- or C₁-C₄-alkyl-substituted C₃-C₆-cycloalkyl,
- 15 R²⁶ represents hydrogen, optionally cyano-, hydroxyl-, halogen- or C₁-C₄-alkoxy-substituted C₁-C₆-alkyl, in each case optionally cyano- or halogen-substituted C₃-C₆-alkenyl or C₃-C₆-alkynyl, optionally cyano-, halogen- or C₁-C₄-alkyl-substituted C₃-C₆-cycloalkyl, or optionally nitro-, cyano-, halogen-, C₁-C₄-alkyl-, C₁-C₄-haloalkyl, C₁-C₄-alkoxy- or C₁-C₄-haloalkoxy-substituted phenyl, or together with R²⁵ represents in each case optionally C₁-C₄-alkyl-substituted C₂-C₆-alkanediyl or C₂-C₅-oxaalkanediyl,
 - X⁴ represents nitro, cyano, carboxyl, carbamoyl, formyl, sulphamoyl, hydroxyl, amino, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy, and
 - X⁵ represents nitro, cyano, carboxyl, carbamoyl, formyl, sulphamoyl, hydroxyl, amino, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy.
 - 13. Compositions according to Claim 12, where the crop plant compatibility-improving compound is selected from the following group of compounds:
 - cloquintocet-mexyl, fenchlorazole-ethyl, isoxadifen-ethyl, mefenpyr-diethyl, furilazole, fenclorim, cumyluron, dymron or the compounds

and

- 5 14. Compositions according to Claim 12 or 13 where the crop plant compatibility-improving compound is cloquintocet-mexyl or mefenpyr-diethyl.
 - 15. Method for controlling unwanted vegetation, characterized in that a composition according to Claim 12 is allowed to react on the plants or their habitat.
 - 16. Use of a composition according to Claim 12 for controlling unwanted vegetation.

10 17. Compounds of the formula (II)

in which

A, B, X, Y, Z and R⁸ are as defined above.

18. Compounds of the formula (XVI)

- A, B, X, Y and Z are as defined above.
- 19. 2-Chloro-4-methyl-6-ethylphenylacetic acid, methyl 2-chloro-4-methyl-6-phenylacetate, l'-(2-chloro-4-methyl-6-ethylphenyl)-2',2',2'-trichloroethane and 2-chloro-6-ethyl-4-methylaniline.