PSR

Reserva probabilistica dinamica

[alessandro@psr-inc.com]

Conteúdo

- ▶ Introdução
- Restrições de atendimento a reserva
- Metodologia do cálculo da reserva probabilistica dinamica
- Co-otimização da reserva e expansão
- Resultados em casos reais
 - Chile
 - Mexico
 - Argentina

Conteúdo

- ► Introdução
- ► Restrições de atendimento a reserva
- Metodologia do cálculo da reserva probabilistica dinamica
- Co-otimização da reserva e expansão
- Resultados em casos reais
 - Chile
 - Mexico
 - Argentina

Introdução

- ► Em termos gerais, o requerimento de reserva de um sistema elétrico é definido por 3 parcelas:
 - Erro na previsão de demanda
 - Erro na previsão de geração renovável
 - Perda do maior gerador térmico
- ➤ O requerimento deve ser cumprido pelo sistema através da Equação de Balanço de Reserva, onde cada um dos geradores elegíveis reservam parte de sua capacidade para atender reserva.

Introdução

- ► A metodologia proposta estima de forma simplificada o requerimento de reserva de um sistema elétrico, considerando a penetração de fontes renovaveis.
- A reserva deve ser:
 - Probabilistica: considerar o processo estocástico da geração de energia das renovaveis.
 - Dinamica: considerar que o requerimento de reserva varia no tempo.
- ► Em termos práticos, a metodologia desenvolvida estima um perfil horário de reserva por mês.

Conteúdo

- ▶ Introdução
- ► Restrições de atendimento a reserva
- Metodologia
- ▶ Co-otimização da reserva e expansão
- Resultados em casos reais
 - Chile
 - Mexico
 - Argentina

Restrições de atendimento a reserva

As restrições de atendimento a reserva são idênticas às restrições de atendimento a demanda.

$$\sum_{j \in a} r_{j,t,h}^s + \sum_{i \in a} r_{i,t,h}^s \ge R_{a,t,h}$$
$$g_{j,t,h}^s + r_{j,t,h}^s \le \overline{G}_j y_{j,t,h}^s$$
$$g_{i,t,h}^s + r_{i,t,h}^s \le \overline{H}_i$$

Restrições de atendimento a reserva

- ▶ O RHS das restrições, $R_{a,t,h}$, é o que chamamos de requerimento de reserva.
- ► Em sistemas que não possuem alta penetração de energia renovavel, o requerimento pode ser estimado como uma porcentagem da demanda, 5% por exemplo.
- Porém, a estimativa fica ruim em sistemas com alta penetração renovável, já que a variabilidade de sua geração deve ser considerada

Restrições de atendimento a reserva

- A metodologia proposta desenvolve uma estimativa para o RHS da restrição ($R_{a,t,h}$) de maneira probabilistica e dinâmica.
 - Essa reserva protege o sistema dos efeitos de variação de geração em rampa
- Além disso, vamos ver que essa estimativa é linear, logo pode ser escrita na forma de um PL
- ► O RHS da restrição de reserva pode "virar uma variável de decisão" e ser co-otimizada junto com o modelo, num problema de expansão por exemplo.

Conteúdo

- ▶ Introdução
- Equações de atendimento a reserva
- **▶** Metodologia
- ▶ Co-otimização da reserva e expansão
- Resultados em casos reais
 - Chile
 - Mexico
 - Argentina

- Seja d_h^s e r_h^s a demanda e a geração renovável na hora h e cenário s. Onde, para cada etapa (mês), $h \in 1...744$, $s \in 1...S$.
- Podemos definir a demanda líquida como:

$$e_h^s = d_h^s - r_h^s$$

► Toda a metodologia será aplicada na variável e_h^s . Note que, caso não queiramos considerar a demanda ou a renovável no requerimento de reserva, basta zerar d_h^s ou r_h^s e seguir com a metodologia a seguir.

- A metodologia se divide em 4 partes, e é aplicada mês a mês. Então, para um mês específico:
 - 1. Determine um perfil horário, de 24 horas, com a média da demanda líquida ao longo de todo o mês. Por exemplo, suponha que temos 100 cenários e que para cada um deles temos 30 dias, totalizando 3000 amostras de perfis. O perfil horário será a média dos 3000 perfis diários. Essa seria a previsão da demanda líquida para o mês atual.

- ► A metodologia se divide em 4 partes, e é aplicada mês a mês. Então, para um mês específico:
 - 2. Para toda hora e cenário, calcule o desvio de cada amostra para a média do passo 1. Por exemplo, suponha que para a hora 1 do cenário 1 a demanda líquida seja 1000 MW e que a previsão da hora 1 seja 950 MW, então o desvio será de 1000 950 = 50 MW. Esses desvios serão chamados de erro de previsão, ou demanda líquida imprevista.

- ► A metodologia se divide em 4 partes, e é aplicada mês a mês. Então, para um mês específico:
 - 3. Agora para cada erro de previsão, calcule o módulo da sua variação entre horas consecutivas. Por exemplo, suponha que o erro para a hora 1 e cenário 1 seja 50 MW e que para a hora seguinte (hora 2 cenário 1) seja 25 MW. Neste caso, o modulo da variação do erro de previsão seria |25 50| = 25 MW. Essa variação pode ser entendida como uma amostra da reserva.

- A metodologia se divide em 4 partes, e é aplicada mês a mês. Então, para um mês específico:
 - 4. Agora para cada hora do dia temos 30 x 100 amostras de reserva, que seria a distribuição de probabilidade da reserva por hora do dia. A reserva em si seria alguma estatística dessa distribuição, como média, P50, P75, P90, MAX, CVAR, etc, dependendo do seu nível de aversão a risco.

▶ Por exemplo, seja um caso com 3 cenários e um mês de 744

horas:

Mês	Hora do Mês	Hora do Dia	e(h,1)	e(h,2)	e(h,3)
1	1	1	726	1109	976
1	2	2	644	1119	936
1	3	3	556	957	845
1	4	4	571	946	875
1	5	5	515	933	817
1	6	6	512	966	804
1	7	7	602	1002	811
1	8	8	1316	1831	1578
1	9	9	1569	2101	1709
1	10	10	1706	2112	1883
1	11	11	1786	2110	1839
1	12	12	1856	2119	1882
1	13	13	1870	2172	1821
1	14	14	1887	2124	1784
1	15	15	1885	2116	1783
1	16	16	1898	2321	1973
1	17	17	2016	2308	2161
1	18	18	2298	2400	2372
1	19	19	2199	2483	2388
1	20	20	1896	2012	1894
1	21	21	1287	1493	1423
1	22	22	1277	1492	1461
1	23	23	1194	1502	1498
1	24	24	910	1442	1490
1	25	1	605	1009	1039
1	26	2	595	1104	895
1	27	3	531	1006	842
1	28	4	626	962	824
1	29	5	708	947	809

ightharpoonup Calculando a media para cada hora do dia g_H :

Hora	Perfil diario
1	1038
2	905
3	850
4	841
5	810
6	798
7	761
8	1393
9	1470
10	1729
11	1781
12	1831
13	1806
14	1782
15	1823
16	1949
17	2065
18	2259
19	2197
20	1834
21	1389
22	1389
23	1296
24	1216

► Calculando o erro de previsão $\delta_h^S = e_h^S - g_H$:

Mês	Hora do Mês	Hora do Dia	e(h,1)	e(h,2)	e(h,3)	Perfil Diario
1	1	1	726	1109	976	1038
1	2	2	644	1119	936	905
1	3	3	556	957	845	850
1	4	4	571	946	875	841
1	5	5	515	933	817	810
1	6	6	512	966	804	798
1	7	7	602	1002	811	761
1	8	8	1316	1831	1578	1393
1	9	9	1569	2101	1709	1470
1	10	10	1706	2112	1883	1729
1	11	11	1786	2110	1839	1781
1	12	12	1856	2119	1882	1831
1	13	13	1870	2172	1821	1806
1	14	14	1887	2124	1784	1782
1	15	15	1885	2116	1783	1823
1	16	16	1898	2321	1973	1949
1	17	17	2016	2308	2161	2065
1	18	18	2298	2400	2372	2259
1	19	19	2199	2483	2388	2197
1	20	20	1896	2012	1894	1834
1	21	21	1287	1493	1423	1389
1	22	22	1277	1492	1461	1389
1	23	23	1194	1502	1498	1296
1	24	24	910	1442	1490	1216
1	25	1	605	1009	1039	1038
1	26	2	595	1104	895	905
1	27	3	531	1006	842	850
1	28	4	626	962	824	841
1	29	5	708	947	809	810

Mês	Hora do Mês	Hora do Dia	δ(h,1)	δ(h,2)	δ(h,3)
1	1	1	-312	72	-62
1	2	2	-261	214	31
1	3	3	-294	108	-5
1	4	4	-270	105	34
1	5	5	-295	124	8
1	6	6	-286	168	6
1	7	7	-159	240	50
1	8	8	-77	439	185
1	9	9	99	631	239
1	10	10	-24	382	153
1	11	11	6	329	58
1	12	12	25	288	51
1	13	13	64	366	15
1	14	14	105	341	2
1	15	15	63	293	-39
1	16	16	-51	372	24
1	17	17	-49	243	96
1	18	18	39	141	113
1	19	19	2	285	191
1	20	20	62	178	60
1	21	21	-102	104	34
1	22	22	-113	103	71
1	23	23	-102	206	203
1	24	24	-306	226	274
1	25	1	-433	-29	1
1	26	2	-309	199	-10
1	27	3	-319	156	-7
1	28	4	-215	121	-17
1	29	5	-102	137	-1

► Calculando o erro de previsão $\delta_h^s = e_h^s - g_H$:

Mês	Hora do Mês	Hora do Dia	Δ(h,1)	Δ(h,2)	Δ(h,3)
1	1	1	0	0	0
1	2	2	51	142	93
1	3	3	33	106	35
1	4	4	24	3	39
1	5	5	25	19	27
1	6	6	9	44	2
1	7	7	127	72	44
1	8	8	82	198	135
1	9	9	176	192	54
1	10	10	122	248	86
1	11	11	29	53	95
1	12	12	19	42	7
1	13	13	40	78	36
1	14	14	40	24	13
1	15	15	42	48	41
1	16	16	114	79	63
1	17	17	2	129	72
1	18	18	88	102	18
1	19	19	37	145	77
1	20	20	60	107	131
1	21	21	164	74	26
1	22	22	11	1	38
1	23	23	11	104	131
1	24	24	204	20	72
1	25	1	127	255	273
1	26	2	123	228	11
1	27	3	10	43	2
1	28	4	104	34	10
1	29	5	113	16	16

Para cada hora vamos usar a seguinte estatistica:

$$R_{a,h} = \lambda E[\Delta_h^s] + (1 - \lambda)CVaR_{\alpha}[\Delta_h^s]$$

▶ Por exemplo, com λ = 70% e α = 10%

► Caso queiramos o pior caso ($\lambda = 0$ e $\alpha = 0$)

- Neste caso, podemos ver que a reserva é máxima nas horas
 18 e 19.
- ► Como estamos pegando o máximo da distribuição, podemos descobrir o dia e o cenário correspondente, para analizá-lo.

Conteúdo

- ▶ Introdução
- ► Equações de atendimento a reserva
- Metodologia do cálculo da reserva probabilistica dinamica
- ▶ Co-otimização da reserva e expansão
- Resultados em casos reais

Co-otimização da reserva e expansão

- A co-otimização pode ser feita de duas maneiras: escrevendo as equações do calculo da RPD como restrições, ou métodos de decomposição.
- A co-otimização é especialmente importante para modelos de expansão, pois o mesmo passará a tentar reduzir o requerimento de reserva:
 - Plantas solares distantes umas das outras (evitando problemas com dias nublados)
 - Plantas eólicas com efeito portfolio, com coeficiente de correlação negativo, por exemplo.

Co-otimização da reserva e expansão

Com as equações como restrições:

$$\sum_{j \in a} r_j(t, d, h, s) + \sum_{i \in a} r_i(t, d, h, s) - \mathsf{R}^{UP}(a, t, h) \ge 0$$

$$\delta(a,t,d,h,s) = \sum_{r \in a} (e(r,t,d,h,s) - g(r,t,h)) x_r \qquad \forall a,t,d,h,s$$

$$\Delta(a,t,d,h,s) \geq \delta(a,t,d,h-1,s) - \delta(a,t,d,h,s) \qquad \forall a,t,d,h,s$$

$$R^{UP}(a,t,h) \geq \Delta(a,t,d,h,s) \qquad \forall a,t,d,h,s$$

$$g_j(t,d,h,s) + r_j(t,d,h,s) \leq \overline{G_j} \gamma_j(t,d,h,s) \qquad \forall a,t,d,h,s$$

$$g_i(t,d,h,s) + r_i(t,d,h,s) \leq \overline{G_i} x_i \qquad \forall a,t,d,h,s$$

Co-otimização da reserva e expansão

▶ Com métodos de decomposição:

Conteúdo

- ▶ Introdução
- Equações de atendimento a reserva
- Metodologia do cálculo da reserva probabilistica dinamica
- Co-otimização da reserva e expansão
- Resultados em casos reais
 - Chile
 - Mexico
 - Argentina

Resultados em casos reais - Chile

Resultados em casos reais - Chile

Reserva probabilística dinamica do sistema chileno, com λ = 80% e α = 10%

Conteúdo

- ▶ Introdução
- Equações de atendimento a reserva
- Metodologia do cálculo da reserva probabilistica dinamica
- Co-otimização da reserva e expansão
- Resultados em casos reais
 - Chile
 - Mexico
 - Argentina

Resultados em casos reais - Mexico

Resultados em casos reais - Mexico

Reserva probabilística dinamica do sistema mexicano, com λ = 70% e α = 10%

Conteúdo

- ▶ Introdução
- Equações de atendimento a reserva
- Metodologia do cálculo da reserva probabilistica dinamica
- Co-otimização da reserva e expansão
- Resultados em casos reais
 - Chile
 - Mexico
 - Argentina

Resultados em casos reais - Argentina

Resultados em casos reais - Argentina

Reserva probabilística dinamica do sistema argentino, com λ = 70% e α = 10%

PSR

Reserva probabilistica dinamica

Obrigado!

alessandro@psr-inc.com

+55 21 3906-2121