Foundations of Software Fall 2022

Week 11

1

Different Kinds of Maps

What is missing?

```
Term \rightarrow Term (\lambda x.t)

Type \rightarrow Term (\Lambda X.t)
```

Different Kinds of Maps

What is missing?

Agenda today:

- Type operators
- Dependent types

2

Type Operators and System F_{ω}

Type Operators

Example. Type operators in Scala:

```
type MkFun[T] = T => T
val f: MkFun[Int] = (x: Int) => x
```

4

Type Operators

Example. Type operators in Scala:

```
type MkFun[T] = T => T
val f: MkFun[Int] = (x: Int) => x
```

Type operators are functions at the type-level.

 $\lambda X :: K.T$

Type Operators

Example. Type operators in Scala:

```
type MkFun[T] = T => T
val f: MkFun[Int] = (x: Int) => x
```

Type operators are functions at the type-level.

```
\lambda X :: K.T
```

Two Problems:

- ► Type checking of type operators
- ► Equivalence of types

4

Kinding

Problem: avoid meaningless types, like MkFun[Int, String].

Kinding

Problem: avoid meaningless types, like MkFun[Int, String].

```
* proper types, e.g. Bool, Int \rightarrow Int

* \Rightarrow * type operators: map proper types to proper types

* \Rightarrow * \Rightarrow * two-argument operators

(* \Rightarrow *) \Rightarrow * type operators: map type operators to proper types
```

5

Kinding

Problem: avoid meaningless types, like MkFun[Int, String].

```
* proper types, e.g. Bool, Int \rightarrow Int
```

 $* \Rightarrow *$ type operators: map proper types to proper types

 $* \Rightarrow * \Rightarrow *$ two-argument operators

 $(* \Rightarrow *) \Rightarrow *$ type operators: map type operators to proper types

5

Equivalence of Types

Problem: all the types below are equivalent

```
Nat 	o Bool Nat 	o Id Bool Id Nat 	o Id Bool Id Nat 	o Bool Id (Nat 	o Bool) Id (Id (Id Nat 	o Bool)
```

We need to introduce *definitional equivalence* relation on types, written $S \equiv T$. The most important rule is:

$$(\lambda X :: K.S) T \equiv [X \mapsto T]S$$
 (Q-APPABS)

And we need one typing rule:

$$\frac{\Gamma \vdash t : S \qquad S \equiv T}{\Gamma \vdash t : T}$$
 (T-Eq)

6

First-class Type Operators

Scala supports passing type operators as argument:

```
def makeInt[F[_]](f: () => F[Int]): F[Int] = f()
```

```
makeInt[List](() => List[Int](3))
makeInt[Option](() => None)
```

First-class type operators supports *polymorphism* for type operators, which enables more patterns in type-safe functional programming.

System F_{ω} — Syntax

Formalizing first-class type operators leads to *System* F_{ω} :

t ::= ...
$$\lambda X :: K.t$$

terms type abstraction

T ::=
$$\begin{array}{ccc}
X \\
T \to T \\
\forall X :: K.T \\
\lambda X :: K.T
\end{array}$$

T

types
type variable
type of functions
universal type
operator abstraction
operator application

$$\begin{array}{ccc} \mathsf{K} & ::= & & \\ & * & \\ & \mathcal{K} \Rightarrow \mathcal{K} & \end{array}$$

kinds
kind of proper types
kind of operators

8

System F_{ω} — Semantics

$$rac{t_1 \longrightarrow t_1'}{t_1 \ t_2 \longrightarrow t_1' \ t_2}$$
 (E-App1)

$$rac{t_2 \longrightarrow t_2'}{t_1 \ t_2 \longrightarrow t_1 \ t_2'}$$
 (E-App2)

$$(\lambda x: T_1.t_1) \ v_2 \longrightarrow [x \mapsto v_2]t_1$$
 (E-APPABS)

$$rac{t\longrightarrow t'}{t\left[T
ight]\longrightarrow t'\left[T
ight]}$$
 (E-TAPP)

$$(\lambda X :: K.t_1) [T] \longrightarrow [X \mapsto T]t_1 \text{ (E-TAPPTABS)}$$

9

System F_{ω} — Kinding

$$\frac{X :: K \in \Gamma}{\Gamma \vdash X :: K}$$
 (K-TVAR)

$$\frac{\Gamma, X :: K_1 \vdash T_2 :: K_2}{\Gamma \vdash \lambda X :: K_1, T_2 :: K_1 \Rightarrow K_2}$$
 (K-Abs)

$$\frac{\Gamma \vdash T_1 : K_1 \Rightarrow K_2 \qquad \Gamma \vdash T_2 : K_1}{\Gamma \vdash T_1 \ T_2 :: K_2}$$
 (K-App)

$$\frac{\Gamma \vdash T_1 : * \qquad \Gamma \vdash T_2 : *}{\Gamma \vdash T_1 \to T_2 :: *}$$
 (K-Arrow)

$$\frac{\Gamma, X :: K_1 \vdash T_2 :: *}{\Gamma \vdash \forall X :: K_1, T_2 :: *}$$
 (K-ALL)

10

System F_{ω} — Type Equivalence

$$T \equiv T$$

$$\frac{T \equiv S}{S \equiv T}$$

$$\frac{S \equiv U \qquad U \equiv T}{S \equiv T}$$

$$\frac{S_1 \equiv T_1 \qquad S_2 \equiv T_2}{S_1 \to S_2 \equiv T_1 \to T_2}$$
 (Q-Arrow)

$$\frac{S_2 \equiv T_2}{\forall X :: K_1. S_2 \equiv \forall X :: K_1. T_2}$$
 (K-All)

$$\frac{S_2 \equiv T_2}{\lambda X :: K_1. S_2 \equiv \lambda X :: K_1. T_2}$$
 (Q-Abs)

$$\frac{S_1 \equiv T_1 \qquad S_2 \equiv T_2}{S_1 S_2 \equiv T_1 T_2} \tag{Q-App}$$

$$(\lambda X :: K \cdot T_1) T_2 \equiv [X \mapsto T_2] T_1$$
 (Q-AppAbs)

11

System F_{ω} — Typing

$$\frac{\mathsf{x}: T \in \Gamma}{\Gamma \vdash \mathsf{x}: T} \tag{T-VAR}$$

$$\frac{\Gamma \vdash T_1 :: * \qquad \Gamma, x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x : T_1 . t_2 : T_1 \to T_2}$$
 (T-Abs)

$$\frac{\Gamma \vdash t_1 : S \to T \qquad \Gamma \vdash t_2 : S}{\Gamma \vdash t_1 \ t_2 : T} \tag{T-APP}$$

$$\frac{\Gamma, X :: K_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda X :: K_1 . t_2 : \forall X :: K_1 . T_2}$$
 (T-TABS)

$$\frac{\Gamma \vdash t : \forall X :: K. T_2 \qquad \Gamma \vdash T :: K}{\Gamma \vdash t \ [T] : [X \mapsto T] T_2}$$
 (T-TAPP)

$$\frac{\Gamma \vdash t : S \qquad S \equiv T \qquad \Gamma \vdash T :: *}{\Gamma \vdash t : T}$$
 (T-Eq)

12

Example

```
type PairRep[Pair :: * \Rightarrow * \Rightarrow *] = \{
pair : \forall X. \forall Y. X \rightarrow Y \rightarrow (Pair X Y),
fst : \forall X. \forall Y. (Pair X Y) \rightarrow X,
snd : \forall X. \forall Y. (Pair X Y) \rightarrow Y
}

def swap[Pair :: * \Rightarrow * \Rightarrow *, X :: *, Y :: *]
(rep : PairRep Pair)
(pair : Pair X Y) : Pair Y X
=

let x = rep.fst [X] [Y] pair in
let y = rep.snd [X] [Y] pair in
rep.pair [Y] [X] y x
```

The method *swap* works for any representation of pairs.

Properties

```
Theorem [Preservation]: if \Gamma \vdash t : T and t \longrightarrow t', then \Gamma \vdash t' : T.
```

Theorem [*Progress*]: if $\vdash t : T$, then either t is a value or there exists t' with $t \longrightarrow t'$.

14

Dependent Types

Why Does It Matter?

Example 1. Track length of vectors in types:

```
NVec :: Nat \rightarrow * first : (n:Nat) \rightarrow NVec (n+1) \rightarrow Nat
```

 $(x:S) \to T$ is called dependent function type. It is impossible to pass a vector of length 0 to the function *first*.

16

Why Does It Matter?

Example 1. Track length of vectors in types:

```
	extit{NVec} :: 	extit{Nat} 	o * first : (n:Nat) 	o NVec (n+1) 	o Nat
```

 $(x:S) \rightarrow T$ is called dependent function type. It is impossible to pass a vector of length 0 to the function *first*.

Example 2. Safe formatting for *sprintf*:

```
sprintf : (f:Format) \rightarrow Data(f) \rightarrow String

Data([]) = Unit

Data('\%' :: 'd' :: cs) = Nat * Data(cs)

Data('\%' :: 's' :: cs) = String * Data(cs)

Data(c :: cs) = Data(cs)
```

Dependent Function Type (a.k.a. ☐ Types)

A dependent function type is inhabited by a dependent function:

$$\lambda x:S.t$$
 : $(x:S) \rightarrow T$

17

Dependent Function Type (a.k.a. ☐ Types)

A dependent function type is inhabited by a dependent function:

$$\lambda x:S.t$$
 : $(x:S) \rightarrow T$

If T does not depend on x, it degenerates to function types:

 $(x:S) \rightarrow T = S \rightarrow T$ where x does not appear free in T

The Calculus of Constructions

18

The Calculus of Constructions: Syntax

```
t ::=
                                                 terms
                                                  sort
        S
                                                  variable
        \lambda x:t.t
                                                  abstraction
                                                  application
        t t
        (x:t) \rightarrow t
                                                  dependent type
s ::=
                                                 sorts
                                                  sort of proper types
        sort of kinds
Γ ::=
                                                 contexts
                                                  empty context
        \Gamma, x: T
                                                  term variable binding
```

The semantics is the usual β -reduction.

The Calculus of Constructions: Typing

$$\vdash * : \Box \text{ (T-AXIOM)}$$
 $\frac{x: T \in \Gamma}{\Gamma \vdash x : T} \text{ (T-VAR)}$

$$\frac{\Gamma \vdash S : s_1 \qquad \Gamma, x:S \vdash t : T}{\Gamma \vdash \lambda x:S.t : (x:S) \to T}$$
 (T-Abs)

$$\frac{\Gamma \vdash t_1 : (x:S) \to T \qquad \Gamma \vdash t_2 : S}{\Gamma \vdash t_1 \ t_2 : [x \mapsto t_2]T}$$
 (T-APP)

$$\frac{\Gamma \vdash S : s_1 \qquad \Gamma, x : S \vdash T : s_2}{\Gamma \vdash (x : S) \to T : s_2}$$
 (T-PI)

$$\frac{\Gamma \vdash t : T \qquad T \equiv T' \qquad \Gamma \vdash T' : s}{\Gamma \vdash t : T'} \qquad \text{(T-Conv)}$$

The equivalence relation $T \equiv T'$ is based on β -reduction.

20

Four Kinds of Lambdas

Example	Туре
λx : \mathbb{N} . $x + 1$	$\mathbb{N} \to \mathbb{N}$
$\lambda f: \mathbb{N} \to \mathbb{N}.f \ x$	$(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$

Four Kinds of Lambdas

Example	Туре
λx : \mathbb{N} . $x + 1$	$\mathbb{N} \to \mathbb{N}$
$\lambda f: \mathbb{N} \to \mathbb{N}.f \ x$	$(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$
λX :*. λx : X . x	$(X:*) \rightarrow X \rightarrow X$
$\lambda F: * \to *.\lambda x: F \mathbb{N}. x$	$(F:* o *) o (F\;\mathbb{N}) o (F\;\mathbb{N})$

21

Four Kinds of Lambdas

Example	Туре
λx : $\mathbb{N}.x + 1$	$\mathbb{N} \to \mathbb{N}$
$\lambda f: \mathbb{N} \to \mathbb{N}.f \times \mathcal{M}$	$(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$
λX :*. λx : X . x	$(X:*) \rightarrow X \rightarrow X$
$\lambda F:* \to *.\lambda x: F \mathbb{N}.x$	$(F:* o *) o (F\;\mathbb{N}) o (F\;\mathbb{N})$
λX :*. X	$* \rightarrow *$
λF :* \rightarrow *. F $\mathbb N$	(* o *) o *

21

Four Kinds of Lambdas

Example	Туре
λx : \mathbb{N} . $x + 1$	$\mathbb{N} \to \mathbb{N}$
$\lambda f: \mathbb{N} \to \mathbb{N}.f \ x$	$(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$
λX :*. λx : X . x	$(X:*) \rightarrow X \rightarrow X$
$\lambda F: * \to *.\lambda x: F \mathbb{N}.x$	$(F:* o *) o (F\;\mathbb{N}) o (F\;\mathbb{N})$
λX :*. X	$* \rightarrow *$
$\lambda F : * \to * . F \mathbb{N}$	(* o *) o *
λn :N.NVec n	$\mathbb{N} o *$
$\lambda f:\mathbb{N} o \mathbb{N}.$ <i>NVec</i> $(f 6)$	$(\mathbb{N} \to \mathbb{N}) \to *$

21

Strong Normalization

Given the following β -reduction rules

$$\frac{t_1 \longrightarrow t_1'}{\lambda x: T_1.t_1 \longrightarrow \lambda x: T_1.t_1'}$$
 (\beta-Abs)

$$rac{t_1 \longrightarrow t_1'}{t_1 \ t_2 \longrightarrow t_1' \ t_2}$$
 (\beta-App1)

$$rac{t_2 \longrightarrow t_2'}{t_1 \ t_2 \longrightarrow t_1 \ t_2'}$$
 (\beta-App2)

$$(\lambda x: T_1.t_1)t_2 \longrightarrow [x \mapsto t_2]t_1$$
 $(\beta$ -APPABS)

Theorem [Strong Normalization]: if $\Gamma \vdash t : T$, then there is no infinite sequence of terms t_i such that $t = t_1$ and $t_i \longrightarrow t_{i+1}$.

Dependent Types in Coq

Proof Assistants

Dependent type theories are at the foundation of proof assistants, like Coq, Agda, etc.

By Curry-Howard Correspondence

- ▶ proofs ←→ programs
- ▶ propositions ←→ types

25

Proof Assistants

Dependent type theories are at the foundation of proof assistants, like Coq, Agda, etc.

By Curry-Howard Correspondence

- ightharpoonup proofs \longleftrightarrow programs
- ▶ propositions ←→ types

Two impactful projects based on Coq:

- ► CompCert: certified C compiler
- ► Mechanized proof of 4-color theorem

Type Universes in Coq

```
The rule \Gamma \vdash \mathit{Type} : \mathit{Type} is unsound (Girard's paradox). \Gamma \vdash \mathit{Prop} : \mathit{Type}_1 \Gamma \vdash \mathit{Set} : \mathit{Type}_1 \Gamma \vdash \mathit{Type}_i : \mathit{Type}_{i+1} \frac{\Gamma, x : A \vdash B : \mathit{Prop} \qquad \Gamma \vdash A : s}{\Gamma \vdash (x : A) \to B : \mathit{Prop}} \frac{\Gamma, x : A \vdash B : \mathit{Set} \qquad \Gamma \vdash A : s \qquad s \in \{\mathit{Prop}, \mathit{Set}\}}{\Gamma \vdash (x : A) \to B : \mathit{Set}} \frac{\Gamma, x : A \vdash B : \mathit{Type}_i \qquad \Gamma \vdash A : \mathit{Type}_i}{\Gamma \vdash (x : A) \to B : \mathit{Type}_i}
```

26

Coq 101 - inductive definitions and recursion

Coq 101 - inductive definitions and recursion

Recursion has to be structural.

27

Coq 101 - inductive definitions and recursion

Coq 101 - proofs

28

Coq 101 - proofs

The 2nd branch has the type even S(S(double n')), and Coq knows by normalizing the types:

```
even S(S(double n')) \equiv_{\beta} even(double(S n'))
```

Recap: Curry-Howard Correspondence

Propositions as types in the context of intuitionistic logic.

Proposition	Term & Type
$A \wedge B$	t:(A,B)
$A \vee B$	t: A + B
$A \rightarrow B$	t:A o B
T	t : False
$\neg A$	$t:A o extit{False}$
∀ <i>x</i> : <i>A</i> . <i>B</i>	$t:(x:A)\to B$
∃ <i>x</i> : <i>A</i> . <i>B</i>	t: (x:A, B)

29

Curry-Howard correspondence in Coq

```
Inductive and (A B:Prop) : Prop :=
conj : A -> B -> A /\ B
where "A /\ B" := (and A B) : type_scope.
```

Curry-Howard correspondence in Coq

```
Inductive and (A B:Prop) : Prop :=
conj : A -> B -> A /\ B
where "A /\ B" := (and A B) : type_scope.

Inductive or (A B:Prop) : Prop :=
lor_introl : A -> A \/ B
lor_intror : B -> A \/ B
where "A \/ B" := (or A B) : type_scope.
```

30

Curry-Howard correspondence in Coq

```
Inductive and (A B:Prop) : Prop :=
conj : A -> B -> A /\ B
where "A /\ B" := (and A B) : type_scope.

Inductive or (A B:Prop) : Prop :=
lor_introl : A -> A \/ B
lor_intror : B -> A \/ B
where "A \/ B" := (or A B) : type_scope.

Inductive False : Prop :=.
```

Curry-Howard correspondence in Coq

30

Curry-Howard correspondence in Coq - continued

```
Notation "A -> B" := (forall (_ : A), B) : type_scope.
Definition iff (A B:Prop) := (A -> B) /\ (B -> A).
Notation "A <-> B" := (iff A B) : type_scope.
```

Curry-Howard correspondence in Coq - continued

```
Notation "A -> B" := (forall (_ : A), B) : type_scope.
Definition iff (A B:Prop) := (A -> B) /\ (B -> A).
Notation "A <-> B" := (iff A B) : type_scope.

Inductive ex (A:Type) (P:A -> Prop) : Prop :=
ex_intro : forall x:A, P x -> ex (A:=A) P.

Notation "'exists' x .. y , p" :=
(ex (fun x => .. (ex (fun y => p)) ..)) : type_scope.
```

31

Curry-Howard correspondence in Cog - continued

```
Notation "A -> B" := (forall (_ : A), B) : type_scope.
Definition iff (A B:Prop) := (A -> B) /\ (B -> A).
Notation "A <-> B" := (iff A B) : type_scope.

Inductive ex (A:Type) (P:A -> Prop) : Prop :=
ex_intro : forall x:A, P x -> ex (A:=A) P.

Notation "'exists' x .. y , p" :=
(ex (fun x => .. (ex (fun y => p)) ..)) : type_scope.

Inductive eq (A:Type) (x:A) : A -> Prop :=
eq_refl : x = x :>A

Notation "x = y" := (eq x y) : type_scope.
```

The equivalence between LEM and DNE

In intuitionistic logics, the *law of excluded middle* (LEM) and the *law of double negation* (DNE) are not provable.

- **►** LEM: ∀*P*.*P* ∨ ¬*P*
- ▶ DNE: $\forall P. \neg \neg P \rightarrow P$

By curry-howard correspondence, there are no terms that inhabit the types above.

32

The equivalence between LEM and DNE

In intuitionistic logics, the *law of excluded middle* (LEM) and the *law of double negation* (DNE) are not provable.

- ▶ LEM: $\forall P.P \lor \neg P$
- \triangleright DNE: $\forall P. \neg \neg P \rightarrow P$

By curry-howard correspondence, there are no terms that inhabit the types above.

However, $\forall P.P \rightarrow \neg \neg P$ can be proved.

The equivalence between LEM and DNE

In intuitionistic logics, the *law of excluded middle* (LEM) and the *law of double negation* (DNE) are not provable.

LEM: ∀P.P ∨ ¬P
 DNE: ∀P.¬¬P → P

By curry-howard correspondence, there are no terms that inhabit the types above.

However, $\forall P.P \rightarrow \neg \neg P$ can be proved. How?

32

The equivalence between LEM and DNE

In intuitionistic logics, the *law of excluded middle* (LEM) and the *law of double negation* (DNE) are not provable.

LEM: ∀P.P ∨ ¬P
 DNE: ∀P.¬¬P → P

By curry-howard correspondence, there are no terms that inhabit the types above.

However, $\forall P.P \rightarrow \neg \neg P$ can be proved. How?

We will prove that LEM is equivalent to DNE:

```
Definition LEM: Prop := forall P: Prop, P \/~P.
Definition DNE: Prop := forall P: Prop, ~~P -> P.
Definition LEM_DNE_EQ: Prop := LEM <-> DNE.
```

$\mathsf{LEM} \to \mathsf{DNE}$

```
Definition LEM_To_DNE :=

fun (lem: forall P : Prop, P \/ ~ P) (Q:Prop) (q: ~~Q)

=>

match lem Q with

| or_introl l =>

l

or_intror r =>
match (q r) with end
end.

Check LEM_To_DNE : LEM -> DNE.
```

33

DNE → LEM

```
Definition DNE_To_LEM :=
  fun (dne: forall P : Prop, ~~P -> P) (Q:Prop) =>
  (dne (Q \/ ~ Q))
  (fun H: ~(Q \/ ~Q) =>
        let nq := (fun q: Q => H (or_introl q))
        in H (or_intror nq)
        ).

Check DNE_To_LEM : DNE -> LEM.

Definition proof := conj LEM_To_DNE DNE_To_LEM.
Check proof : LEM <-> DNE.
```

Dependent Types in Programming Languages

Despite the huge success in proof assistants, its adoption in programming languages is limited.

- Scala supports path-dependent types and literal types.
- Dependent Haskell is proposed by researchers.

35

Dependent Types in Programming Languages

Despite the huge success in proof assistants, its adoption in programming languages is limited.

- Scala supports path-dependent types and literal types.
- ▶ Dependent Haskell is proposed by researchers.

Challenge: the decidability of type checking.

Problem with Type Checking

Value constructors:

```
\begin{array}{lll} \textit{NVec} & : & \mathbb{N} \to * \\ \textit{nil} & : & \textit{NVec} \ 0 \\ \textit{cons} & : & \mathbb{N} \to (\textit{n} : \mathbb{N}) \to \textit{NVec} \ \textit{n} \to \textit{NVec} \ \textit{n} + 1 \end{array}
```

Appending vectors:

```
\begin{array}{ll} \textit{append} & : & (\textit{m}:\mathbb{N}) \rightarrow (\textit{n}:\mathbb{N}) \rightarrow \textit{NVec} \ \textit{m} \rightarrow \textit{NVec} \ \textit{n} \rightarrow \textit{NVec} \ (\textit{n}+\textit{m}) \\ \textit{append} & = & \lambda \textit{m}:\mathbb{N}.\ \lambda \textit{n}:\mathbb{N}.\ \lambda \textit{l}:\textit{NVec} \ \textit{m}.\ \lambda \textit{t}:\textit{NVec} \ \textit{n}. \\ & \textit{match} \ \textit{l} \ \textit{with} \\ & | \ \textit{nil} \Rightarrow \textit{t} \\ & | \ \textit{cons} \ \textit{x} \ \textit{r} \ \textit{y} \Rightarrow \textit{cons} \ \textit{x} \ (\textit{r}+\textit{n}) \ (\textit{append} \ \textit{r} \ \textit{n} \ \textit{y} \ \textit{t}) \end{array}
```

Question: How does the type checker know S(r+n) = n + (Sr)?

36