Chapter 10: Collisions www.tensionnot.com http://www.aolcdn.com

Lecture 18 – Collisions

Key Ideas of Chapter 10

- Collisions are brief interactions involving large forces
- To analyze collisions in detail, we must apply both
 The Energy Principle and The Momentum Principle
- In analyzing collisions it is useful to choose all colliding objects as the system. With this choice of system:
- External forces are negligible during the collision
- The total momentum of the system is constant
- The total energy of the system is constant
- Collisions in which there is no change in internal energy are called "elastic."
 Other collisions are "inelastic."
- Changing to a reference frame moving with the center of mass of the system simplifies the analysis of a collision.

What Qualifies as a Collision?

Key Idea: Collisions are brief interactions involving large forces

- Two objects interacting during a small time interval, with little interaction before or after interval
- During this time interval, the interaction between the two objects is much stronger than any other external interactions

Example: System = Two Colliding Students (p. 80)

Exert |F| = 21000 N on each other for 0.017 seconds.

External friction force is present, but negligible during interaction of students.

What Qualifies as a Collision?

Key Idea: Collisions are brief interactions involving large forces

Example: Hitting a Home Run

Bat and ball exert |F| = 10000 N on each other for 1 millisecond.

The gravitational force is present, but negligible during collision of ball and bat.

Note: Both before and after collision, gravity is non-negligible.

Examples: What Wouldn't Qualify as a Collision

 p⁺ and e⁻ in a hydrogen atom: The p⁺-e⁻ electric interaction may be much stronger than external interactions, but Δt isn't small!

Energy and Momentum Conservation

Key Idea: Apply both The Energy Principle and The Momentum Principle

$$\Delta \vec{p}_{system} + \Delta \vec{p}_{surroundings} = 0$$

$$\Delta E_{system} + \Delta E_{surroundings} = 0$$
 Always True

- Let system = objects participating in a collision.
- By our definition of a collision, system and surroundings don't interact significantly during the collision.
- Therefore, neither momentum nor energy may be transferred between system and surroundings:

$$\Delta E_{system} = 0 \qquad \Delta \vec{p}_{system} = 0$$

during a collision process (system defined as above)

Now let's look at each of these conservation equations more closely.

Momentum Conservation in a Collision

Key Idea: Total Momentum of The System (all colliding objects) is constant

The System = all colliding objects

$$\Delta \vec{p}_{system} = \vec{F}_{net,ext} \Delta t$$

During the collision, external forces \approx 0.

$$\vec{p}_{f, system} = \vec{p}_{i, system}$$

$$\vec{p}_{f,system} = \vec{p}_{i,system}$$
 where $\vec{p}_{system} = \vec{p}_1 + \vec{p}_2$

Energy Conservation in a Collision

Key Idea: Total Energy of The System (all colliding objects) is constant

The System = all colliding objects

$$\Delta E_{system} = W_{surr}^{0} + Q_{surr}^{0}$$

During the collision, external interactions ≈ 0 .

$$\Delta E_{system} = \Delta \left(K_{1,trans} + K_{2,trans} + E_{internal} \right) = 0$$

$$U + K_{rot} + K_{vib} + E_{therm} + E_{chem} + \dots$$

We usually write this as
$$\Delta E_{system} = \Delta K_1 + \Delta K_2 + \Delta E_{int} = 0$$

with the understanding that ΔK_1 means $\Delta K_{1,trans}$, etc.

Elastic and inelastic collision

Key Idea: Collisions in which $\Delta E_{int} = 0$ are elastic. Other collisions are inelastic.

ELASTIC COLLISION:

the internal energy of the objects in the system does not change: $\Delta E_{int} = 0$

INELASTIC COLLISION:

the internal energy of the objects in the system changes: $\Delta E_{int} \neq 0$

MAXIMALLY INELASTIC COLLISION:

Objects stick together – maximum energy dissipation

Elastic and Inelastic Collisions

Key Idea: Collisions in which $\Delta E_{int} = 0$ are elastic. Other collisions are inelastic.

$$\Delta E_{system} = \Delta K_1 + \Delta K_2 + \Delta E_{int} = 0$$

If $\Delta E_{int} = 0$, collision is <u>elastic</u>.

- The total macroscopic kinetic energy is constant.
- A low-energy proton collision is perfectly elastic.
- A billiard ball collision is approximately elastic.

If $\Delta E_{int} \neq 0$, collision is <u>inelastic</u>.

- Some macroscopic kinetic energy got transformed into internal energy, or vice versa.
- A basketball bouncing off a wall is an inelastic collision.
- If two objects collide and stick together, collision is perfectly inelastic (head-on car-crash, or two lumps of clay colliding).

Quantum Collision

Key Idea: Collisions in which $\Delta E_{int} = 0$ are elastic. Other collisions are inelastic.

energy levels for atom A

An electron ($K_{electron} = 1eV$) is heading straight toward atom A, which is at rest and in its ground state.

Can the collision be inelastic? No.

Inelastic means $\Delta E_{int} \neq 0$. Only possibility is for atom to get excited. But the necessary (threshold) energy to excite the atom is 4 eV.

The incident electron isn't energetic enough to excite the atom. Further, U = 0 before and after (since atom will be far away from electron). Hence, $\Delta E_{int} \neq 0$ isn't possible here.

Elastic Head-On (1-D) Collisions

Key Idea: Apply both The Energy Principle and The Momentum Principle

Initial

(just before collision)

Final

(just after collision)

Momentum conservation:

$$\Delta \vec{P}_{tot} = \Delta \vec{p}_m + \Delta \vec{p}_M = 0$$

$$(\vec{p}_{1,f} - \vec{p}_{1,i}) + (\vec{p}_{2,f} - \vec{p}_{2,i}) = 0$$

$$(p_{1,f}^x - p_{1,i}^x) + (p_{2,f}^x - 0) = 0$$

Energy conservation:

elastic

$$\Delta E_{sys} = \Delta K_m + \Delta K_M + \Delta E_{int} = 0$$

$$(K_{1,f} - K_{1,i}) + (K_{2,f} - K_{2,i}) = 0$$

$$(\vec{p}_{1,f} - \vec{p}_{1,i}) + (\vec{p}_{2,f} - \vec{p}_{2,i}) = 0 \\ (p_{1,f}^x - p_{1,i}^x) + (p_{2,f}^x - 0) = 0 \\ \text{two unknowns}$$

$$(K_{1,f} - K_{1,i}) + (K_{2,f} - K_{2,i}) = 0 \\ (\frac{(p_{1,f}^x)^2}{2m} - \frac{(p_{1,i}^x)^2}{2m}) + (\frac{(p_{2,f}^x)^2}{2M} - 0) = 0 \\ \text{same two unknowns}$$

Elastic Head-On (1-D) Collisions

Key Idea: Apply both The Energy Principle and The Momentum Principle

2 unknowns, 2 equations: we can solve for $p_{1,f}^{x}$ and $p_{2,f}^{x}$.

Note: if collision had been inelastic, we'd have too many unknowns!

Do algebra. For $m \le M$, result is a quadratic equation with two solutions:

Solution #1:
$$p_{1,f}^x = p_{1,i}^x$$
 and $p_{2,f}^x = 0$ (no collision! – objects not lined up)

Two Special Cases

Key Idea: Apply both The Energy Principle and The Momentum Principle

$$\vec{p}_{1,i} \qquad \vec{p}_{2,i} = 0$$

$$p_{1,f}^x = \left(\frac{m-M}{m+M}\right)p_{1,i}^x$$

$$\vec{p}_{1,f} = \frac{2m}{m+M}v_{1,i}^x$$

Case I:
$$\mathbf{m} \approx \mathbf{M}$$
 $p_{1,f}^x \approx 0$ and $v_{2,f}^x \approx v_{1,i}^x$

First ball stops in place, second ball moves ahead with same speed.

Case II: m << M
$$p_{1,f}^x \approx -p_{1,i}^x \text{ and } v_{2,f}^x \approx 0$$

First ball stops bounces straight back, second ball doesn't move

A Concluding Puzzle

James Clerk Maxwell once walked into a pool hall to observe a game of billiards. He remarked that he knew with certainty, without making any measurements, that the collisions between the billiard balls were inelastic. How did he know this?

Key Ideas of Chapter 10

- Collsions are brief interactions involving large forces
- To analyze collisions in detail, we must apply both
 The Energy Principle and The Momentum Principle
- In analyzing collisions it is useful to choose all colliding objects as the system. With this choice of system:
- External forces are negligible during the collision
- The total momentum of the system is constant
- The total energy of the system is constant
- Collisions in which there is no change in internal energy are called "elastic."
 Other collisions are "inelastic."
- Changing to a reference frame moving with the center of mass of the system simplifies the analysis of a collision.