Modulation

1. Amplitude Shift Keying (ASK) - (a):

- Modulation: In ASK, the amplitude of the carrier signal is varied according to the digital data. A high amplitude represents a binary '1' and a low (or zero) amplitude represents a binary '0.'
- Demodulation: The demodulator detects the presence or absence of the carrier signal's amplitude to determine the binary state. It uses an envelope detector to extract the signal's amplitude variations.

2. Frequency Shift Keying (FSK) - (b):

- Modulation: In FSK, the frequency of the carrier signal is varied. One frequency represents a binary '1' and another frequency represents a binary '0'
- Demodulation: The demodulator uses a frequency discriminator or a phase-locked loop (PLL) to distinguish between the different frequencies and reconstruct the original binary data.

3. Phase Shift Keying (PSK) - (c):

- Modulation: In PSK, the phase of the carrier signal is shifted. For example, a 0-degree phase shift might represent a binary '0' and a 180degree phase shift might represent a binary '1.'
- Demodulation: The demodulator detects phase shifts in the received signal. This can be done using a phase detector which compares the phase of the received signal with a reference signal.

Demodulation

• ASK Demodulation:

 The demodulator receives the modulated signal and passes it through an envelope detector which extracts the amplitude variations. These variations are then compared to a threshold to determine whether the signal represents a '1' or a '0.'

FSK Demodulation:

 The demodulator uses a frequency discriminator to detect the different frequencies. Each frequency corresponds to a binary value, which is then decoded to reconstruct the original digital data.

PSK Demodulation:

 The demodulator uses a phase detector to detect changes in the phase of the carrier signal. By comparing the phase of the received signal to a reference signal, the demodulator can determine the binary value based on the phase shifts.