Problem 1 (50pts). Consider the following linear program:

$$\begin{array}{lll} \text{maximize} & 3x_1 + 4x_2 + 3x_3 + 6x_4 \\ \text{subject to} & 2x_1 + x_2 - x_3 + x_4 & \geq 12 \\ & x_1 + x_2 + x_3 + x_4 & = 8 \\ & -x_2 + 2x_3 + x_4 & \leq 10 \\ & x_1, x_2, x_3, x_4 & \geq 0. \end{array} \tag{1}$$

After transforming the problem into standard form and apply Simplex method, we obtain the final tableau as follow:

В	0	2	9	0	3	0	36
1	1	0	-2	0	-1	0	4
4	0	1	3	1	1	0	4
6	0	-2	-1	0	-1	1	6

a) Derive the dual problem of the linear program (1) and calculate a dual solution based on complementarity conditions. Given that the optimal solution to the primal solution is unique, investigate whether the dual solution is unique.

minimize 124,+842+1045 (a) Dual problem=

U1 ≤0, U2 free, 4,70.

According to the complementality conditions =

Since the optimal solution is unique, according to the complementarity conditions, the dual solution is unique.

- b) Do the optimal solution and the objective function value change if we
 - decrease the objective function coefficient for x_3 to 0?
 - increase the objective function coefficient for x_3 to 9?
 - decrease the objective function coefficient for x_4 to 5?
 - increase the objective function coefficient for x_1 to 7?

(b). 3EN.

$$\begin{bmatrix} z \\ q \\ z \end{bmatrix} + \lambda \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} > 0 \Rightarrow \lambda \in [-9, +\infty)$$

Hence, decrease the objective function coefficient for is to 0 will not change the optimal solution and objective function value.

Hence, increase the objective function coefficient for is to 9 will not change the optimal solution and objective function value.

46B

$$\begin{bmatrix} 2 \\ 9 \\ 3 \end{bmatrix} - \lambda \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 1 - 1 & 0 \\ -1 & 2 & 0 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \\ -1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 9 \\ 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix} > 0$$

⇒ X ∈ [-3,2]

Hence, decrease the objective function coefficient for it to 5 will not change the optimal solution but objective function value change to 32

$$\begin{bmatrix} 2 \\ 9 \\ 3 \end{bmatrix} - \lambda \begin{bmatrix} 0 \\ 0 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 1 - 10 \\ -1 & 20 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1 - 1 & 1 \\ 1 & 0 \\ -1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 9 \\ 3 \end{bmatrix} - \lambda \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix} 7,0$$

$$\lambda \in \left[-\frac{9}{2}, 3\right]$$

Hence, increase the objective function coefficient for in to 7 will not change the optimal solution, but objective function value change to 52.

e) Find the possible range for adjusting the coefficient 8 of the second constraint such that the

(e)
$$\begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 2 & 10 & 7 & 1 \\ 1 & 10 & 10 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & 2 & 0 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} -1 \\ 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 1 & -2 & 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & -1 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$$

3 X E [-2,5]

Hence, possible Fange = [b, 1]
Problem 2 (50pts). An insurance company is introducing three products: special risk insurance. mortgage insurance, and long-term care insurance. The expected profit is \$500 per unit on special risk insurance, \$250 per unit on mortgage insurance and \$600 per unit on long term care insurance. The work requirements are as follows:

Department	Wor	rking hours	Working hours available	
	Special risk	Mortgage	Long-term care	
Underwriting	2	1	1	240
Administration	3	1	2	150
Claims	1	2	4	180

The management team wants to establish sales quotas for each product to maximize the total expected profit.

1. Formulate this problem as a linear optimization problem. Specify the decision variables, objective function, and constraints.

1. Decision variable= the sales quotas for special risk insurance, mortgage insurance, long-term care insurance
ate X1, X2, X2, tespectively.
Objective function= 500 X, + 250 Xz + 600 X;
Constraints= ZX1+ X2+ X3 ≤ 240 (Wofking houts available for underwitting)
3x1+x2+x1≤150 (Wotking houts available for administration)
11+2x2+4X65180 (Working hours available for claims)
X1. X2. X3. 7. ○
maximize 500 X1+250 X2+600 X3
5.t. 2x1+ X2+ X3 ≤ 240
λχ, + χ ₂ +)χ, ≤ 150
X1 + 2 X2 + 4 X3 € 180
χι, Χ ₂ , Χ, 7, 0
2. After solving the problem, the final simplex tableau (for the standard form) is given as below (the variables are in the natural order as in the description of the problem):
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Show the dual variables corresponding to the services of the three departments. Using complementarity conditions to explain why mortgage insurance is not sold.
premientality conditions to capital with interesting institution is not soon.
Pual= minimize 2404;+1504z+18045
s.t. 241+342+43 7500
41t 41t 24s 7250
41+42+ 445 7, 600
y1, y2, 70
From the final tableau, we know optimal solution (0, (40, 80)
*
X2 (y1+ y2+2y3 -250) = 50 X2=0
110mm since V = flee motestee instituence is use a let
Hence, since X2=0, the mortgage insurance is not sold.

Hence, the range of working hours available for underwriting: $[87, +\infty)$

4. Find the range of the expected profit on long-term care insurance such that the current basis remains optimal.

4. 36B

$$\begin{bmatrix}
50 \\
140 \\
80
\end{bmatrix} - \lambda \begin{bmatrix}
0 \\
1 \\
0 \\
0 \\
1 \\
0
\end{bmatrix}
\begin{bmatrix}
0 \\
0.4 \\
-0.7 \\
0.1
\end{bmatrix}
\begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix}
= \begin{bmatrix}
50 \\
140 \\
0.7
\end{bmatrix}
- \lambda \begin{bmatrix}
0.5 \\
-0.1 \\
0.7
\end{bmatrix}
7/0$$

NE [-1400,100]

Hence, the range of the expected profit on long-term care insurance = [-800, 700]

