Module 4.3: Output Functions and Loss Functions

We need to answer two questions

- How to choose the loss function $\mathcal{L}(\theta)$?
- How to compute $\nabla \theta$ which is composed of $\nabla W_1, \nabla W_2, ..., \nabla W_{L-1} \in \mathbb{R}^{n \times n}, \nabla W_L \in \mathbb{R}^{n \times k}, \nabla b_1, \nabla b_2, ..., \nabla b_{L-1} \in \mathbb{R}^n \text{ and } \nabla b_L \in \mathbb{R}^k$?

We need to answer two questions

- How to choose the loss function $\mathcal{L}(\theta)$?
- How to compute $\nabla \theta$ which is composed of $\nabla W_1, \nabla W_2, ..., \nabla W_{L-1} \in \mathbb{R}^{n \times n}, \nabla W_L \in \mathbb{R}^{n \times k}, \nabla b_1, \nabla b_2, ..., \nabla b_{L-1} \in \mathbb{R}^n \text{ and } \nabla b_L \in \mathbb{R}^k$?

• The choice of loss function depends on the problem at hand

- The choice of loss function depends on the problem at hand
- We will illustrate this with the help of two examples

- The choice of loss function depends on the problem at hand
- We will illustrate this with the help of two examples
- Consider our movie example again but this time we are interested in predicting ratings

- The choice of loss function depends on the problem at hand
- We will illustrate this with the help of two examples
- Consider our movie example again but this time we are interested in predicting ratings
- Here $y_i \in \mathbb{R}^3$

- The choice of loss function depends on the problem at hand
- We will illustrate this with the help of two examples
- Consider our movie example again but this time we are interested in predicting ratings
- Here $y_i \in \mathbb{R}^3$
- The loss function should capture how much \hat{y}_i deviates from y_i

- The choice of loss function depends on the problem at hand
- We will illustrate this with the help of two examples
- Consider our movie example again but this time we are interested in predicting ratings
- Here $u_i \in \mathbb{R}^3$
- The loss function should capture how much \hat{y}_i deviates from y_i
- If $y_i \in \mathbb{R}^n$ then the squared error

loss can capture this deviation
$$\mathcal{L}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{3} (\hat{y}_{ij} - y_{ij})^2$$

• A related question: What should the output function 'O' be if $y_i \in \mathbb{R}$?

- A related question: What should the output function 'O' be if $y_i \in \mathbb{R}$?
- More specifically, can it be the logistic function?

- A related question: What should the output function 'O' be if $y_i \in \mathbb{R}$?
- More specifically, can it be the logistic function?
- No, because it restricts \hat{y}_i to a value between 0 & 1 but we want $\hat{y}_i \in \mathbb{R}$

- A related question: What should the output function 'O' be if $y_i \in \mathbb{R}$?
- More specifically, can it be the logistic function?
- No, because it restricts \hat{y}_i to a value between 0 & 1 but we want $\hat{y}_i \in \mathbb{R}$
- So, in such cases it makes sense to have 'O' as identity function

$$f(x) = h_L = O(a_L)$$
$$= a_L = W_L h_{L-1} + b_L$$

- A related question: What should the output function 'O' be if $y_i \in \mathbb{R}$?
- More specifically, can it be the logistic function?
- No, because it restricts \hat{y}_i to a value between 0 & 1 but we want $\hat{y}_i \in \mathbb{R}$
- So, in such cases it makes sense to have 'O' as identity function

$$f(x) = h_L = O(a_L)$$
$$= a_L = W_L h_{L-1} + b_L$$

• $\hat{y}_i = f(x_i)$ is no longer bounded between 0 and 1

• Now let us consider another problem for which a different loss function would be appropriate

- Now let us consider another problem for which a different loss function would be appropriate
- Suppose we want to classify an image into 1 of k classes

- Now let us consider another problem for which a different loss function would be appropriate
- Suppose we want to classify an image into 1 of k classes
- Here again we could use the squared error loss to capture the deviation

- Now let us consider another problem for which a different loss function would be appropriate
- Suppose we want to classify an image into 1 of k classes
- Here again we could use the squared error loss to capture the deviation
- But can you think of a better function?

• Notice that y is a probability distribution

- Notice that y is a probability distribution
- Therefore we should also ensure that \hat{y} is a probability distribution

- Notice that y is a probability distribution
- Therefore we should also ensure that \hat{y} is a probability distribution
- What choice of the output activation 'O' will ensure this?

$$a_L = W_L h_{L-1} + b_L$$

- Notice that y is a probability distribution
- Therefore we should also ensure that \hat{y} is a probability distribution
- What choice of the output activation 'O' will ensure this?

$$a_{L} = W_{L}h_{L-1} + b_{L}$$

$$f(x)_{j} = O(a_{L})_{j} = \frac{e^{a_{L,j}}}{\sum_{j'=1}^{k} e^{a_{L,j'}}}$$

 $O(a_L)_j$ is the j^{th} element of \hat{y} $a_{L,j}$ is the j^{th} element of the vector a_L .

- Notice that y is a probability distribution
- Therefore we should also ensure that \hat{y} is a probability distribution
- What choice of the output activation 'O' will ensure this?

$$a_L = W_L h_{L-1} + b_L$$

 $f(x)_j = O(a_L)_j = \frac{e^{a_{L,j}}}{\sum_{j'=1}^k e^{a_{L,j'}}}$

 $O(a_L)_j$ is the j^{th} element of \hat{y} $a_{L,j}$ is the j^{th} element of the vector a_L .

• This function is called the *softmax* function

• Now that we have ensured that both $y \& \hat{y}$ are probability distributions can you think of a function which captures the difference between them?

- Now that we have ensured that both $y \& \hat{y}$ are probability distributions can you think of a function which captures the difference between them?
- Cross-entropy

$$\mathscr{L}(\theta) = -\sum_{c=1}^{k} y_c \log \hat{y}_c$$

- Now that we have ensured that both $y \& \hat{y}$ are probability distributions can you think of a function which captures the difference between them?
- Cross-entropy

$$\mathscr{L}(\theta) = -\sum_{c=1}^{k} y_c \log \hat{y}_c$$

• Notice that

 $\mathcal{L}(\theta) = -\log \hat{y}_{\ell}$

$$y_c = 1$$
 if $c = \ell$ (the true class label)
= 0 otherwise

minimize
$$\mathscr{L}_{\theta} = -\log \hat{y}_{\ell}$$
 or maximize $-\mathscr{L}_{\theta} = \log \hat{y}_{\ell}$

• But wait! Is \hat{y}_{ℓ} a function of $\theta = [W_1, W_2, ..., W_L, b_1, b_2, ..., b_L]$?

minimize
$$\mathscr{L}_{\theta} = -\log \hat{y}_{\ell}$$
 or maximize $-\mathscr{L}_{\theta} = \log \hat{y}_{\ell}$

- But wait! Is \hat{y}_{ℓ} a function of $\theta = [W_1, W_2, ..., W_L, b_1, b_2, ..., b_L]$?
- Yes, it is indeed a function of θ

$$\hat{y}_{\ell} = [O(W^3g(W^2g(W^1x + b_1) + b_2) + b_3)]_{\ell}$$

minimize
$$\mathscr{L}_{\theta} = -\log \hat{y}_{\ell}$$
 or maximize $-\mathscr{L}_{\theta} = \log \hat{y}_{\ell}$

- But wait! Is \hat{y}_{ℓ} a function of $\theta = [W_1, W_2, ..., W_L, b_1, b_2, ..., b_L]$?
- Yes, it is indeed a function of θ $\hat{y}_{\ell} = [O(W^3g(W^2g(W^1x + b_1) + b_2) + b_3)]_{\ell}$
- What does \hat{y}_{ℓ} encode?

minimize
$$\mathscr{L}_{\theta} = -\log \hat{y}_{\ell}$$
 or maximize $-\mathscr{L}_{\theta} = \log \hat{y}_{\ell}$

- But wait! Is \hat{y}_{ℓ} a function of $\theta = [W_1, W_2, ..., W_L, b_1, b_2, ..., b_L]$?
- Yes, it is indeed a function of θ $\hat{y}_{\ell} = [O(W^3g(W^2g(W^1x + b_1) + b_2) + b_3)]_{\ell}$
- What does \hat{y}_{ℓ} encode?
- It is the probability that x belongs to the ℓ^{th} class (bring it as close to 1).

minimize
$$\mathscr{L}_{\theta} = -\log \hat{y}_{\ell}$$
 or maximize $-\mathscr{L}_{\theta} = \log \hat{y}_{\ell}$

- But wait! Is \hat{y}_{ℓ} a function of $\theta = [W_1, W_2, ..., W_L, b_1, b_2, ..., b_L]$?
- Yes, it is indeed a function of θ $\hat{y}_{\ell} = [O(W^3g(W^2g(W^1x + b_1) + b_2) + b_3)]_{\ell}$
- What does \hat{y}_{ℓ} encode?
- It is the probability that x belongs to the ℓ^{th} class (bring it as close to 1).
- $\log \hat{y}_{\ell}$ is called the *log-likelihood* of the data.

	Outputs	
	Real Values	Probabilities
Output Activation		
Loss Function		

	Outputs	
	Real Values	Probabilities
Output Activation	Linear	
Loss Function		

	Outputs	
	Real Values	Probabilities
Output Activation	Linear	Softmax
Loss Function		

	Outputs	
	Real Values	Probabilities
Output Activation	Linear	Softmax
Loss Function	Squared Error	

	Outputs	
	Real Values	Probabilities
Output Activation	Linear	Softmax
Loss Function	Squared Error	Cross Entropy

	Outputs	
	Real Values	Probabilities
Output Activation	Linear	Softmax
Loss Function	Squared Error	Cross Entropy

• Of course, there could be other loss functions depending on the problem at hand but the two loss functions that we just saw are encountered very often

	Outputs	
	Real Values	Probabilities
Output Activation	Linear	Softmax
Loss Function	Squared Error	Cross Entropy

- Of course, there could be other loss functions depending on the problem at hand but the two loss functions that we just saw are encountered very often
- For the rest of this lecture we will focus on the case where the output activation is a softmax function and the loss function is cross entropy