

Electricity Spot Prices Forecasting Using Stochastic Volatility Models

Student: Batyrov Andrei Renatovich

Supervisor: Kasianova Kseniya Alekseevna

Table of Contents

Electricity Spot Prices Forecasting Using Stochastic Volatility Models

- 1. Motivation
- 2. Approaches to Forecasting
- 3. SV Baseline Model
- 4. SV X Model
- 5. Cross-validation
- 6. Forecasting
- 7. Conclusion
- 8. References

Electricity prices forecasting is important

- Electricity is essential commodity, no doubt
- Electricity demand depends on individual and business activities, climate, weather and other factors
- Electricity is non-storable subject to sudden and large price change (shocks)

Research goal – generate probabilistic forecasts of day-ahead electricity prices in a spot marker for European and Siberian price zones for Peak and Off-peak hours, employing stochastic volatility models

Various approaches

- Multi-agent
- Fundamental
- Reduced-form
- Statistical
- Computational intelligence
- Hybrid solutions

Statistical approaches

- Similar-day and exponential smoothing
- Regression (AR, ARMA, etc.)
- Heteroscedastic (non-constant volatility)
 - 1. (Generalized) Autoregressive Conditional Heteroscedasticity ((G)ARCH)
 - 2. Stochastic Volatility (SV)

...stochastic volatility models almost always outperform their GARCH counterparts, suggesting that stochastic volatility models might provide a better alternative to the more conventional GARCH models. [1]

SV Baseline Model

Electricity Spot Prices Forecasting Using Stochastic Volatility Models

Consumer prices

Modeling time frame: 01.05.2023 – 30.04.2024, one year back

2400 - Mean = 1868 2000 - Mean = 1868 1800 - Mean = 1868

Mean hourly profile for European price zone

Trace plot for peak hour #14

Data: Daily Indices and Volumes of The Day-ahead Market [2]

Stationarity

Augmented Dickey-Fuller test

 \mathcal{H}_0 : Unit root (Non-stationary)

 \mathcal{H}_1 : Stationary

Hour	Statistic	p-value	Result at $lpha=$ 0.05
Peak #14	-2.56	0.10	Non-stationary
Off-peak #3	-2.71	0.07	Non-stationary

Consumer price is a non-stationary process – variance of price (volatility) can be modeled as a stochastic process.

Consumer price at time t

$$y_t \sim \mathcal{N}\left(\bar{y}, e^{h_t/2}\right).$$
 (1)

- \bar{y} , mean price
- h_t , latent log volatility at time t; $h_t = \mu + \phi(h_{t-1} \mu) + \delta_t \sigma$; $h_1 \sim \mathcal{N}\left(\mu, \frac{\sigma}{\sqrt{1-\phi^2}}\right)$; $\delta_t \sim \mathcal{N}(0,1)$
- μ , mean log volatility
- ϕ , persistence of volatility
- σ , white noise shock scale

Electricity Spot Prices Forecasting Using Stochastic Volatility Models

Parameters estimation results

• Stan – proprietary probabilistic language with Bayesian inference and prediction

Posterior distributions of estimated parameters

In-sample predictions

Actual price and 1,000 predictions

95% CI for 1,000 predictions

Volatility

Consumer prices and learned volatility

Volatility vs Price

SV Baseline Model

Electricity Spot Prices Forecasting Using Stochastic Volatility Models

Goodness-of-fit

MAE and RMSE metrics for predicted price

$$MAE(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|.$$
 (2)

RMSE
$$(y, \hat{y}) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}.$$
 (3)

Metric	SV Baseline	
MAE	99.18	
RMSE	137.04	

What about other factors?

Hypotheses:

- High and low air temperatures drive demand and thus price
- Hourly demand profiles differ during the week
- Autoregression use yesterday's information

Air temperature

2200 itted cubic 2100 Price, 1700 1600 1500 -15 25 20 Temperature, °C

Air temperature in Moscow

Price vs Temperature

Data: Reliable Prognosis [3]

Day of the week & Autoregression

Price vs day of the week

Consumer price at time t

$$y_t \sim \mathcal{N}\left(\bar{y} + \alpha y_{t-1} + \beta_3 X_{t-1}^5 + \beta_2 X_{t-1}^2 + \beta_1 X_{t-1} + \gamma D_t + \xi, e^{h_t/2}\right).$$
 (4)

 X_{t-1} – hourly air temperature at time t-1, to prevent target leakage, lagged one day behind (t-1); D_t – day of the week at time t.

6 new model parameters for 3 introduced exogenous regressors:

- ullet α , autoregressive component
- $\beta_{i=1...3}$, air temperature regressor
- γ , day of the week regressor
- ξ , constant term (intercept) for all exogenous regressors

Parameters estimation results

Posterior distributions of estimated parameters

In-sample predictions

Actual price and 1,000 predictions

95% CI for 1,000 predictions

Volatility

Consumer prices and learned volatility

Volatility vs Price

SV X Model

Electricity Spot Prices Forecasting Using Stochastic Volatility Models

Goodness-of-fit

MAE and RMSE metrics for predicted price

Metric	SV Baseline	SV X
MAE	99.18	85.23 (-14.06%)
RMSE	137.04	117.91 (-13.96%)

SV X model is a better fit

Model combinations

Combination #	Model family	Hour	Price zone
1		Peak	1 (European)
2	SV Baseline	Peak	2 (Siberian)
3		Off-peak	1
4		Off-peak	2
5		Peak	1
6	SV X	Peak	2
7		Off-peak Off-peak	1
8		Off-peak	2

- Time frame: 23.06.2014 30.04.2024 (3600 days), approx. ten years back
- Number of date sliding windows $N_{\rm w} = \frac{3600 30 \times 12}{30 \times 3} = 36$

Summary of metrics for all model combinations

Metric	Hour	Price zone	SV Baseline	SV X
	Peak	1	105.39	99.45
MAE	Peak	2	119.14	115.56
MAE	Off-peak	1	104.42	93.92
	Off-peak	2	134.86	118.18
Average			115.95	106.78 (-7.91%)
	Peak	1	130.53	123.59
RMSE	Peak	2	146.45	142.10
KIVISE	Off-peak	1	137.50	129.59
	Off-peak	2	168.31	150.73
	Average			136.50 (-6.31%)

Setup

- 8 model combinations, same as for cross-validation
- First train time frame: 01.05.2023 30.04.2024, same as for modeling
- Forecast time frame: 01.05.2024 07.05.2024, 1 week ahead

2250

Result plots: Peak hour

Price zone 1

Price zone 2

Result plots: Off-peak hour

Price zone 2

24 / 29

Summary of metrics for all model combinations

Metric	Hour	Price zone	SV Baseline	SV X
	Peak	1	148.06	114.95
MAE	Peak	2	309.28	99.56
IVIAE	Off-peak	1	82.84	91.94
	Off-peak	2	265.35	73.97
Average		201.38	95.11 (-52.77%)	
	Peak	1	191.49	130.60
RMSE	Peak	2	338.86	110.59
RIVISE	Off-peak	1	91.02	117.76
	Off-peak	2	281.16	105.44
	Average			116.10 (-48.54%)

Main results

Build and tested 8 model combinations

Cross-validation best performer

	European	Siberian
Peak	SV X	SV X
Off-peak	SV X	SV X

Forecasting best performer

	European	Siberian
Peak	SV X	SV X
Off-peak	SV Baseline	SV X

- Results confirm the applicability and robustness of the enhanced SV X model
- This model may be used in financial derivative instruments for hedging the risk associated with electricity trading

Future work

- Build models tailored for each hour for both price zones 48 models
- Introduce other climate and weather factors driving the electricity demand: humidity, precipitation, solar irradiance, wind speed, etc.
- Develop custom library to increase computation speed thus allowing to build more complex models and validate them more rigorously and promptly in production-like scenarios [4], [5]

"Prediction is difficult – particularly when it involves the future." – Mark Twain

Thank you!

References

Electricity Spot Prices Forecasting Using Stochastic Volatility Models

- [1] Joshua C.C. Chan, Angelia L. Grant, Modeling Energy Price Dynamics: GARCH versus Stochastic Volatility, Research School of Economics, Australian National University, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0140988315003539
- [2] Administrator of Trading System (ATS), Daily Indices and Volumes of The Day-ahead Market. [Online]. Available: https://www.atsenergo.ru/results/rsv/index
- [3] Raspisaniye Pogodi Ltd., Reliable Prognosis. [Online]. Available: https://rp5.ru/
- [4] Andrei Batyrov, Master's Thesis Materials. GitHub Repository, National Research University Higher School of Economics. Faculty of Computer Science, 2024. [Online]. Available: https://github.com/andrewha/mds2022/tree/main/Thesis
- [5] —, Sometimes you really want to re-invent the wheel: EasyML, National Research University Higher School of Economics. Faculty of Computer Science, 2024. [Online]. Available: https://medium.com/@handrewkha/ sometimes-you-really-want-to-re-invent-the-wheel-easyml-8fa3ab99aed5