Relational Data Processing on MapReduce

Client Job Scheduler

Scheduler

Storage

Vassilis Christophides

christop@csd.uoc.gr http://www.csd.uoc.gr/~hy562 University of Crete, Fall 2019

(nria_

Big Data Analysis

- A lot of these datasets have some structure
 - Query logs
 - ◆Point-of-sale records
 - ◆User data (e.g., demographics)
 - **.**..
- How do we perform data analysis at scale?
 - ◆Relational databases and SQL
 - MapReduce (Hadoop)

Relational Databases vs. MapReduce

Relational databases:

- ◆Multipurpose: analysis and transactions; batch and interactive
- Data integrity via ACID transactions
- ◆Lots of tools in software ecosystem (for ingesting, reporting, etc.)
- Supports SQL (and SQL integration, e.g., JDBC)
- Automatic SQL query optimization
- MapReduce (Hadoop):
 - Designed for large clusters, fault tolerant
 - Data is accessed in "native format"
 - Supports many query languages
 - Programmers retain control over performance

Fall 2019

Parallel Relational Databases vs. MapReduce

Fall 2019

- Parallel relational databases
 - ◆Schema on "write"
 - ◆Failures are relatively infrequent
 - "Possessive" of data
 - Mostly proprietary
- MapReduce
 - ◆Schema on "read"
 - ◆Failures are relatively common
 - In situ data processing
 - Open source

Shared-nothing architecture for parallel processing

MapReduce: A Major Step Backwards?

MapReduce is a step backward in database access

- Separation of the schema from the application is good
 - Sharing across multiple MR programs is difficult
- Declarative access languages are good
 - Does not requires highly-skilled programmers
- MapReduce is poor implementation
 - Brute force and only brute force
 - no indexes: Wasteful access to unnecessary data
 - Don't need 1000 nodes to process petabytes
 - Parallel DBs do it in fewer than 100 nodes
- MapReduce is missing features
 - Bulk loader, indexing, updates, transactions...
 - ◆No support for JOINs:

Requires multiple MR phases for the analysis

Agrawal et al., VLDB 2010 Tutorial

Map Reduce vs Parallel DBMS

Fall 2019

	Parallel DBMS	MapReduce
Schema Support	✓	Not out of the box
Indexing	✓	Not out of the box
Programming Model	Declarative (SQL)	Imperative (C/C++, Java,) Extensions through Pig and Hive
Optimizations (Compression, Query Optimization)	✓	Not out of the box
Flexibility	Not out of the box	✓
Fault Tolerance	Coarse grained techniques	✓

Inría- [Pavlo et al., SIGMOD 2009, Stonebraker et al., CACM 2010, ...

Database Workloads

- OLTP (online transaction processing)
 - Typical applications: e-commerce, banking, airline reservations
 - ◆User facing: real-time, low latency, highly-concurrent
 - ◆Tasks: relatively small set of "standard" transactional queries
 - ◆Data access pattern: random reads, updates, writes (involving relatively small amounts of data)
- OLAP (online analytical processing)
 - Typical applications: business intelligence, data mining
 - ◆Back-end processing: batch workloads, less concurrency
 - ◆Tasks: complex analytical queries, often ad hoc
 - ◆Data access pattern: table scans, large amounts of data involved per query

nría

One Database or Two?

Fall 2019

- Downsides of co-existing OLTP
 Solution: separate databases and OLAP workloads
 - ◆ Poor memory management

 - Variable latency

- - ◆User-facing OLTP database for highvolume transactions
- ◆Conflicting data access patterns ◆Data warehouse for OLAP workloads
 - ◆How do we connect the two?

- OLTP database for user-facing transactions
 - Retain records of all activity
 - ◆Periodic ETL (e.g., nightly)
- Extract-Transform-Load (ETL)
 - ◆Extract records from source
 - Transform: clean data, check integrity, aggregate, etc.
 - Load into OLAP database
- OLAP database for data warehousing
 - ◆Business intelligence: reporting, ad hoc queries, data mining, etc.
 - ◆Feedback to improve OLTP services

Caria

OLTP/OLAP Architecture: Hadoop?

Fall 2019

Fall 2019

lnria

OLTP/OLAP/Hadoop Architecture

• Why does this make sense?

ETL Bottleneck

Fall 2019

- Reporting is often a nightly task:
 - ◆ETL is often slow (see next picture)!
 - What happens if processing 24 h of data takes longer than 24 h?
- Often, with noisy datasets, ETL is the analysis!
 - ◆ETL necessarily involves brute force data scans: L, then E and T?
- Hadoop is perfect:
 - Most likely, you already have some data warehousing solution
 - ◆Ingest is limited by speed of HDFS
 - ◆ Scales out with more nodes
 - ◆ Massively parallel and much cheaper than parallel databases
 - ◆Ability to use any processing tool
 - ◆ETL is a batch process anyway!

lnria

MapReduce Algorithms for Processing Relational Data

Secondary Sorting

MapReduce sorts input to reducers by key

Compound Key

- Values are arbitrarily ordered
- What if want to sort value also?
 - ◆E.g., k → (v1, R), (v3, R), (v4, R), (v8, R)...

Solution 1:

- Group comparator & Partitioner
- ◆Buffer values in memory, then sort
- Why is this a bad idea?
- Solution 2:

- Comparator
- ◆"Value-to-key conversion": extends the key with part of the value
- Let execution framework do the sorting
- ◆Preserve state across multiple key-value pairs to handle processing
- Anything else we need to do?

Value-to-Key Conversion

Fall 2019

Before

$$k \rightarrow (v1, R), (v4, R), (v8, R), (v3, R)...$$

Values arrive in arbitrary order...

After

- $(k, v1) \rightarrow (v1, R)$ Values arrive in sorted order...
- (k, v3) → (v3, R) Process by preserving state across multiple keys!
- $(k, v4) \rightarrow (v4, R)$
- $(k, v8) \rightarrow (v8, R)$

..

 Default comparator, group comparator, and Partitioner has to be tuned to use the appropriate part of the key

Caria

Working Scenario

- Two tables:
 - ◆User demographics (gender, age, income, etc.)
 - User page visits (URL, time spent, etc.)
- Analyses we might want to perform:
 - Statistics on demographic characteristics
 - Statistics on page visits
 - Statistics on page visits by URL
 - Statistics on page visits by demographic characteristic

♦...

Caria

Projection

Projection in MapReduce

Fall 2019

- Easy!
 - ◆Map over tuples, emit new tuples with the projected attributes
 - For each tuple t in R, construct a tuple t' by eliminating those components whose attributes are not in S, emit a key/value pair (t', t')
 - No reducers (reducers are the identity function), unless for regrouping or resorting tuples
 - the Reduce operation performs duplicate elimination
 - Alternatively: perform in reducer, after some other processing
- Basically limited by HDFS streaming speeds
 - Speed of encoding/decoding tuples becomes important
 - Relational databases take advantage of compression
 - Semi-structured data? No problem!

Selection

Selection in MapReduce

Fall 2019

- Easy!
 - ◆Map over tuples, emit only tuples that meet selection criteria
 - For each tuple t in R, check if t satisfies C and If so, emit a key/value pair (t, t)
 - No reducers (reducers are the identity function), unless for regrouping or resorting tuples
 - Alternatively: perform in reducer, after some other processing
- Basically limited by HDFS streaming speeds:
 - Speed of encoding/decoding tuples becomes important
 - Relational databases take advantage of compression
 - Semistructured data? No problem!

Set Operations in Map Reduce

- \bullet R(X,Y) U S(Y,Z)
 - ◆Map: for each tuple t either in R or in S, emit (t,t)
 - ◆Reduce: either receive (t,[t,t]) or (t,[t])
 - Always emit (t,t)
 - We perform duplicate elimination
- \bullet R(X,Y) \cap S(Y,Z)
 - ◆Map: for each tuple t either in R or in S, emit (t,t)
 - ◆Reduce: either receive (t,[t,t]) or (t,[t])
 - Emit (t,t) in the former case and nothing (t, NULL) in the latter
- \bullet R(X,Y) S(Y,Z)
 - ◆Map: for each tuple t either in R or in S, emit (t, R or S)
 - ◆Reduce: receive (t,[R]) or (t,[S]) or (t,[R,S])
 - Emit (t,t) only when received (t,[R]) otherwise nothing (t, NULL)

lnria

Group by... Aggregation

Fall 2019

- Example: What is the average time spent per URL?
- In SQL:
 - ◆SELECT url, AVG(time) FROM visits GROUP BY url
- In MapReduce: Let R(A, B, C) be a relation to which we apply $\gamma_{A,\theta(B)}(R)$
 - ◆The map operation prepares the grouping (e.g., emit time, keyed by url)
 - The grouping is done by the framework
 - ◆The reducer computes the aggregation (e.g. average)
 - ◆Eventually, optimize with combiners
 - Simplifying assumptions: one grouping attribute and one aggregation function

Caria

Types of Relationships

Fall 2019

Join Algorithms in MapReduce

- "Join" usually just means equi-join, but we also want to support other join predicates
- Hadoop has some built-in join support, but our goal is to understand important algorithm design principles
- Algorithms
 - ◆Reduce-side join
 - ◆Map-side join
 - ◆In-memory join
 - Striped variant
 - Memcached variant

Reduce-side Join

- Basic idea: group by join key
 - Execution framework brings together tuples sharing the same key
 - ◆Similar to a "sort-merge join" in the database terminology
- A map function
 - ◆Receives a record in R and S
 - ◆Emits its join attribute value as a key and the record as a value
- A reduce function
 - Receives each join attribute value with its records from R and S
 - ◆Perform actual join between the records in R and S
- Two variants
 - ◆1-to-1 joins
 - ◆1-to-many and many-to-many joins

loria

Reduce-side Join: 1-to-1

Fall 2019

Reduce

Note: no guarantee if R is going to come first or S!

(nria

Reduce-side Join: Many-to-Many

In reducer...

- What's the problem?
 - ◆R is the smaller dataset

Map-side Join: Basic Idea

Fall 2019

- What are the limitations of reduce-side joins?
 - ◆Both relations are transferred over the network
- Assume two datasets are sorted by the join key:

A sequential scan through both relations to join: called a "sort-merge join" in database terminology

(nria_

Map-side Join: Parallel Scans

 If datasets are sorted by join key, join can be accomplished by a scan over both relations

Map-side Join: Parallel Scans

Fall 2019

- How can we accomplish this in parallel?
 - ◆Partition and sort both relations in the same manner
- In MapReduce:
 - ◆Map over one relation, read from other corresponding partition
 - No reducers necessary (unless to repartition or resort)
- Consistently partitioned relations: realistic to expect?
 - Depends on the workflow
 - ◆For ad hoc data analysis, reduce-side are more general, although less efficient

(nria-

In-Memory Join: Variants

Basic idea: load one dataset into memory, stream over other dataset

- ◆Works if R << S and R fits into memory
- ◆Called a "hash join" in database terminology

<u>Hash Join</u>

Broadcast/Replication Join

Fall 2019

In-Memory Join: Variants

- MapReduce implementation
 - ◆Distribute R to all nodes
 - ◆Map over S, each mapper loads R in memory, hashed by join key
 - ◆For every tuple in S, look up join key in R
 - ◆No reducers, unless for regrouping or resorting tuples
- Downside: need to copy R to all mappers
 - ◆Not so bad, since R is small

Which Join to Use?

Fall 2019

- In-memory join > map-side join > reduce-side join
 - Why?
- Limitations of each?
 - ◆In-memory join: memory
 - ◆Map-side join: sort order and partitioning
 - Reduce-side join: general purpose algorithm but sensible to data skewness?
- What about non-equi joins?
 - ◆Inequality (S.A<R.A): map just forwards R-tuples, but replicates S-tuples for all larger R.A values as keys

blems With Standard Repartition Equi-Joins

Standard Repartition Equi-Join Algorithm

Consider only the pairs with the same join attribute values

	s ₁	S ₂	S ₃	S ₄	S ₅	S ₆
	a ₁	a ₁	a ₂	a ₂	a ₃	a ₄
r ₁ a	1 0	0				
r ₂ a	1 0	0				
r ₃ a	2		0	0		
r ₄ a	3				0	

Naïve join algorithm

Standard repartition join algorithm

	S ₁	S ₂	S ₃	S ₄	S ₅	s ₆
	a ₁	a ₁	a ₂	a ₂	a ₃	a ₄
r ₁ a ₁	0	0				
r ₂ a ₁	0	0				
r ₃ a ₂			0	0		
r ₄ a ₃					0	

(nria_

© Kyuseok Shim (VLDB 2012 TUTORIAL)

Reducer-Centric Cost Model

• Difference between join implementations starts with Map output

Optimization Goal: Minimal Job Completion time

Fall 2019

- Job completion time depends on the slowest map and reduce functions
- Balancing the workloads of map functions is easy and thus we ignore them
- Balance the workloads of reduce functions as evenly as possible
 - Assume all reducers are similarly capable
- Processing time at reducer is approximately monotonic in input and output size
- Hence need to minimize max-reducer-input or max-reducer-output
- Join problem classification
 - ◆Input-size dominated: minimize max-reducer-input
 - ◆Output-size dominated: minimize max-reducer-output
 - ◆Input-output balanced: minimize combination of both

(nria_

© Kyuseok Shim (VLDB 2012 TUTORIAL)

Join Model

- Join-matrix M: M(i, j) = true, if and only if (s_i, t_i) in join result
- Cover each true-valued cell by exactly one reducer

Caria

© Kyuseok Shim (VLDB 2012 TUTORIAL)

Fall 2019

Comparison of Reduce Allocation Methods

- Simple allocation
 - Minimize the maximum input size of reduce functions
 - ◆Output size may be skewed
- Random allocation
 - ◆Minimize the maximum output size of reduce functions
 - ◆Input size may be increased due to duplication
- Balanced allocation
 - ◆Minimize both maximum input and output sizes

© Kyuseok Shim (VLDB 2012 TUTORIAL)

How to Balance Reduce Allocation

- Assume r is desired number of reduce functions
- Partition join-matrix M into r regions
- A map function sends each record in R and S to mapped regions
- A reduce function outputs all possible (r,s) pairs satisfying the join predicates in its value-list
- Propose M-Bucket-I algorithm [Okcan Riedewald: SIGMOD 2011]

Processing Relational Data: Summary

- MapReduce algorithms for processing relational data:
 - Group by, sorting, partitioning are handled automatically by shuffle/sort in MapReduce
 - Selection, projection, and other computations (e.g., aggregation), are performed either in mapper or reducer
- Complex operations require multiple MapReduce jobs
 - Example: top ten URLs in terms of average time spent
 - Opportunities for automatic optimization
- Multiple strategies for relational joins

Join Implementations on MapReduce

Fall 2019

(nria_

Feng Li, Beng Chin Ooi, M. Tamer Özsu, and Sai Wu. 2014. Distributed data management using MapReduce. ACM Comput. Surv. 46, 3, January 20**1**24

Evolving Roles for Relational Database and MapReduce

Fall 2019

Traditional Way: Bringing Data to Compute

- Moving data around
- No complete views
- Cost of Analytics
 - Existing systems strained
 - No agility "BI backlog"
- - Time to Data Up-front modeling
 - Transforms slow Transforms lose data

Missing Data

- Leaving data behind
- Risk and compliance
- · High cost of storage

Evolution from Apache Hadoop to the Enterprise Data Hub A. Awadallah Co-Founder & CTO of Cloudera SMDB 2014

he New Way: Bringing Compute to Data

Need for High-Level Languages

Fall 2019

- Hadoop is great for large-data processing!
 - ◆But writing Java programs for everything is verbose and slow
 - Analysts don't want to (or can't) write Java
- Solution: develop higher-level data processing languages
 - ◆Hive: HQL is like SQL
 - ◆Pig: Pig Latin is a bit like Perl

(nria_

Hive and Pig

- Hive: data warehousing application in Hadoop
- Query language is HQL, variant of SQL
- Tables stored on HDFS as flat files
- Developed by Facebook, now open source
- Pig: large-scale data processing system
 - Scripts are written in Pig Latin, a dataflow language
 - Developed by Yahoo!, now open source
 - Roughly 1/3 of all Yahoo! internal jobs
- Common idea:
 - Provide higher-level language to facilitate large-data processing
 - ◆Higher-level language "compiles down" to Hadoop jobs

Fall 2019

- Hive looks similar to an SQL database
- Relational join on two tables:
 - ◆Table of word counts from Shakespeare collection
 - Table of word counts from the bible

SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

```
the
        25848
                62394
        23031
                8854
Τ
and
                38985
to
        18038
                13526
of
                34654
you
        12702
                2720
        11297
                 4135
my
        10797
in
                12445
        8882
                6884
```

Caria

Source: Material drawn from Cloudera training VM

Hive: Behind the Scenes

SELECT s.word, s.freq, k.freq FROM shakespeare s JOIN bible k ON (s.word = k.word) WHERE s.freq \Rightarrow 1 AND k.freq \Rightarrow 1 ORDER BY s.freq DESC LIMIT 10;

(Abstract Syntax Tree)

(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF shakespeare s) (TOK_TABREF bible k) (= (. (TOK_TABLE_OR_COL s) word) (. (TOK_TABLE_OR_COL k) word)))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) word)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq))) (TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq))) (TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq))) (TOK_UNTABLE_OR_COL s) freq))) (TOK_UNTABLE_OR_COL s) freq))) (TOK_LIMIT 10)))

(one or more of MapReduce jobs)

Fall 2019

Hive: Behind the Scenes

Pig: Example

Task: Find the top 10 most visited pages in each category

Visits	Url	Info

User	Url	Time
Amy	cnn.com	8:00
Amy	bbc.com	10:00
Amy	flickr.com	10:05
Fred	cnn.com	12:00

Url	Category	PageRank
cnn.com	News	0.9
bbc.com	News	0.8
flickr.com	Photos	0.7
espn.com	Sports	0.9

.

Pig Query Plan Load Visits Foreach url generate count Group by category Foreach category generate top10(urls)

Pig Script

```
visits = load '/data/visits' as (user, url, time);
gVisits = group visits by url;
visitCounts = foreach gVisits generate url, count(visits);
urlInfo = load '/data/urlInfo' as (url, category, pRank);
visitCounts = join visitCounts by url, urlInfo by url;
gCategories = group visitCounts by category;
topUrls = foreach gCategories generate top(visitCounts,10);
store topUrls into '/data/topUrls';
```

Ínria 68

References

- CS9223 Massive Data Analysis J. Freire & J. Simeon New York University Course 2013
- INFM 718G / CMSC 828G Data-Intensive Computing with MapReduce J. Lin University of Maryland 2013
- CS 6240: Parallel Data Processing in MapReduce Mirek Riedewald Northeastern University 2014
- Extreme Computing Stratis D. Viglas University of Edinburg 2014
- MapReduce Algorithms for Big Data Analysis Kyuseok Shim VLDB 2012 TUTORIAL

Fall 2019

Taxonomy of Parallel Architectures

Caria

Unicore vs Multi-core Architectures

Unicore

Multicore

