3.2. Combinacion lineal de vectores, dependencia e independencia lineal

Definición 3.4 Un vector $\beta \in V$, se dice **combinación lineal** de los vectores $\alpha_1, ..., \alpha_n \in V$, si existen escalares $a_1, ..., a_n \in K$, tales que:

$$\beta = \sum_{i=1}^{n} a_i \alpha_i.$$

Ejemplo 43 El vector $\begin{pmatrix} 6 \\ 7 \end{pmatrix}$ en \mathbb{R}^2 es combinación lineal de los vectores

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 y $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

ya que:

$$6 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 7 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 7 \end{pmatrix}$$

Definición 3.5 Sea S es cualquier colección de vectores de V. El subespacio generado por S se define como

$$L(S) = \{ \sum_{i=1}^{k} a_i \alpha_i \mid a_i \in K, \alpha_i \in S \ y \ k = 1, 2, 3, ... \}$$

 $Cuando\ L(S) = V,\ decimos\ que\ S\ genera\ a\ V$

Definición 3.6 Un subconjunto S de V se dice **linealmente dependiente**, si existen vectores distintos $\alpha_1, ..., \alpha_n$ de S y escalares $a_1, ..., a_n \in K$, no todos cero, tales que:

$$a_1\alpha_1 + \dots + a_n\alpha_n = 0.$$

Un conjunto que no es linealmente dependiente se dice **linealmente independiente**. Si el conjunto S solo tiene un número finito de vectores $\alpha_1, ..., \alpha_n$, se dice a veces que los $\alpha_1, ..., \alpha_n$ son dependientes (o independientes), en vez de decir que S es dependiente (o independiente). **Ejemplo 44** Los siguientes vectores en \mathbb{R}^2

$$\begin{pmatrix} 2 \\ 3 \end{pmatrix} \quad y \quad \begin{pmatrix} -1 \\ 5 \end{pmatrix}$$

 $son\ linealmente\ independientes.$

Solución: Sea

$$a_1 \cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix} + a_2 \cdot \begin{pmatrix} -1 \\ 5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

de lo anterior obtenemos el sistema de ecuaciones:

$$2a_1 - a_2 = 0$$

$$3a_1 + 5a_2 = 0$$

el cual tiene como solución: $a_1 = 0$ y $a_2 = 0$.

Ejemplo 45 Los vectores

$$\begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
 y $\begin{pmatrix} 4 \\ 6 \end{pmatrix}$

son linealmente dependientes. Esto se sigue de

$$-2 \cdot \begin{pmatrix} 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Ejemplo 46 Los vectores (1,2,3) y (1,1,0) son linealmente independientes en \mathbb{R}^3 .

Sea:

$$a_1 \cdot (1,2,3) + a_2 \cdot (1,1,0) = (0,0,0)$$

Entonces

$$a_1 + a_2 = 0$$

$$2a_1 + a_2 = 0$$

$$3a_1 = 0$$

Es fácil ver que el sistema de ecuaciones anterior tiene como única solución $a_1 = a_2 = 0$.

Ejemplo 47 Demostrar

- (a) Sí $\alpha_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ y $\alpha_2 = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$ son linealmente dependientes.
- (b) Sí $\alpha_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ y $\alpha_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ son linealmente independientes.

Solución:

- (a) Se ve que $\alpha_2 = 2\alpha_1$, luego $2\alpha_1 \alpha_2 = 0$. Tomando $a_1 = 2$ y $a_2 = -1$ se obtiene $a_1\alpha_1 + a_2\alpha_2 = 0$, lo cual prueba que a_1 y a_2 son linealmente dependientes.
- (b) La ecuación $a_1\alpha_1 + a_2\alpha_2 = 0$, da lugar al sistema

$$3a_1 + a_2 = 0$$

$$a_1 + 2a_2 = 0$$

que tiene como solución única $a_1 = a_2 = 0$. Por tanto α_1 y α_2 son linealmente independientes.

3.3. Base y dimensión

Definición 3.7 Una base de \mathbb{R}^n es un conjunto de vectores linealmente independientes de \mathbb{R}^n y que genera el espacio \mathbb{R}^n .

Teorema 3.8 Sea $\{\alpha_1, ..., \alpha_n\}$ un subconjunto de \mathbb{R}^n , entonces las siguientes condiciones son equivalentes:

- 1. El conjunto $\{\alpha_1, ..., \alpha_n\}$ es una base.
- 2. El conjunto $\{\alpha_1, ..., \alpha_n\}$ es linealmente independiente.
- 3. El conjunto $\{\alpha_1,...,\alpha_n\}$ genera a \mathbb{R}^n .

Ejemplo 48 Los vectores

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad y \quad \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

son una base de \mathbb{R}^2 . Si

$$a_1 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} + a_2 \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Entonces de la combinación lineal anterior, obtenemos el sistema de ecuaciones:

$$a_1 - a_2 = 0$$
$$a_1 + a_2 = 0$$

El cual tiene como única solución: $a_1 = a_2 = 0$. Ahora, sea $(x,y) \in \mathbb{R}^2$, veamos que existen $a_1, a_2 \in \mathbb{R}$ tales que $a_1 \cdot (1,1) + a_2 \cdot (-1,1) = (x,y)$. Es fácil ver que $a_1 = \frac{x+y}{2}$ y $a_2 = \frac{y-x}{2}$. De lo anterior se sigue que los vectores (1,1) y (-1,1) son linealmente independientes y que generan a \mathbb{R}^2 , por lo tanto son una base de \mathbb{R}^2 .

Definición 3.9 Dos bases cualesquiera de un espacio vectorial V contiene el mismo número de vectores. Este número que es compartido por todas las bases y expresa el número de grados de libertad del espacio, es la dimensión de V.

Ejemplo 49 En \mathbb{R}^n , sean $e_i = (0, ..., 0, 1, 0, ..., 0)$ donde el 1 aparece en el *i-ésimo* lugar y todas las otras coordenadas son cero. El conjunto $\{e_i\}_{i=1}^n$ es una base de \mathbb{R}^n llamada la **base canónica**, por lo tanto la dimensión del espacio \mathbb{R}^n es n.

Ejemplo 50 Si A es una matriz 3 por 2 con rango r, entonces:

- a) La dimensión del espacio columna C(A) es el rango r.
- b) La dimensión del espacio nulo de A es 2-r.
- c) La dimensión del espacio renglón $C(A^T)$ es también r.
- d) La dimensión del espacio nulo izquierdo $N(A^T) = 3 r$.