Inner Product and Orthogonality

CE40282-1: Linear Algebra Hamid R. Rabiee and Maryam Ramezani Sharif University of Technology

Bilinear Form

Suppose V and W are vector spaces over the same field \mathbb{F} . Then a function $f: V \times W \to \mathbb{F}$ is called a **bilinear form** if it satisfies the following properties:

- a) It is linear in its first argument:
 - i) $f(\mathbf{v}_1 + \mathbf{v}_2, \mathbf{w}) = f(\mathbf{v}_1, \mathbf{w}) + f(\mathbf{v}_2, \mathbf{w})$ and
 - ii) $f(c\mathbf{v}_1, \mathbf{w}) = cf(\mathbf{v}_1, \mathbf{w})$ for all $c \in \mathbb{F}$, $\mathbf{v}_1, \mathbf{v}_2 \in \mathcal{V}$, and $\mathbf{w} \in \mathcal{W}$.
- b) It is linear in its second argument:
 - i) $f(\mathbf{v}, \mathbf{w}_1 + \mathbf{w}_2) = f(\mathbf{v}, \mathbf{w}_1) + f(\mathbf{v}, \mathbf{w}_2)$ and
 - ii) $f(\mathbf{v}, c\mathbf{w}_1) = cf(\mathbf{v}, \mathbf{w}_1)$ for all $c \in \mathbb{F}$, $\mathbf{v} \in \mathcal{V}$, and $\mathbf{w}_1, \mathbf{w}_2 \in \mathcal{W}$.

Let $\mathcal V$ be a vector space over a field $\mathbb F$. Then the **dual** of $\mathcal V$, denoted by $\mathcal V^*$, is the vector space consisting of all linear forms on $\mathcal V$.

Let \mathcal{V} be a vector space over a field \mathbb{F} . Show that the function $g: \mathcal{V}^* \times \mathcal{V} \to \mathbb{F}$ defined by

Example

$$g(f, \mathbf{v}) = f(\mathbf{v})$$
 for all $f \in \mathcal{V}^*, \mathbf{v} \in \mathcal{V}$

is a bilinear form.

Review: Inner products over real field

An inner product on V is a function $\langle , \rangle : V \times V \to \mathbb{R}$ such that

- $v < v, v \ge 0$ for all $v \in V$.
- $\langle v, v \rangle = 0$ if and only if v = 0.

- $(w, v) = \langle v, w \rangle$.

General Inner products

Suppose that $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$ and that \mathcal{V} is a vector space over \mathbb{F} . Then an **inner product** on \mathcal{V} is a function $\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathbb{F}$ such that the following three properties hold for all $c \in \mathbb{F}$ and all $\mathbf{v}, \mathbf{w}, \mathbf{x} \in \mathcal{V}$:

a)
$$\langle \mathbf{v}, \mathbf{w} \rangle = \overline{\langle \mathbf{w}, \mathbf{v} \rangle}$$
 (conjugate symmetry)
b) $\langle \mathbf{v}, \mathbf{w} + c\mathbf{x} \rangle = \langle \mathbf{v}, \mathbf{w} \rangle + c \langle \mathbf{v}, \mathbf{x} \rangle$ (linearity)
c) $\langle \mathbf{v}, \mathbf{v} \rangle \geq 0$, with equality if and only if $\mathbf{v} = \mathbf{0}$. (pos. definiteness)

- $F = \mathbb{R}$ bilinear forms
- $F = \mathbb{C}$ sesquilinear forms—they are linear in their second argument, but only conjugate linear in their first argument

$$\langle \mathbf{v} + c\mathbf{x}, \mathbf{w} \rangle = \overline{\langle \mathbf{w}, \mathbf{v} + c\mathbf{x} \rangle} = \overline{\langle \mathbf{w}, \mathbf{v} \rangle} + \overline{c \langle \mathbf{w}, \mathbf{x} \rangle} = \langle \mathbf{v}, \mathbf{w} \rangle + \overline{c} \langle \mathbf{x}, \mathbf{w} \rangle.$$

Complex Dot Product

Example

Show that the function $\langle \cdot, \cdot \rangle : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ defined by

$$\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v}^* \mathbf{w} = \sum_{i=1}^n \overline{v_i} w_i$$
 for all $\mathbf{v}, \mathbf{w} \in \mathbb{C}^n$

is an inner product on \mathbb{C}^n .

Inner Product on Continuous Functions

Example

Let a < b be real numbers and let $\mathcal{C}[a,b]$ be the vector space of continuous functions on the real interval [a,b]. Show that the function $\langle \cdot, \cdot \rangle : \mathcal{C}[a,b] \times \mathcal{C}[a,b] \to \mathbb{R}$ defined by

$$\langle f, g \rangle = \int_a^b f(x)g(x) \, dx$$
 for all $f, g \in \mathcal{C}[a, b]$

is an inner product on C[a,b].

Dot and inner product on Polynomials

- Example
 - Find <p,q>, ||p||, ||p-q||? $p = 3 - x + 2x^2$ and $q = 4x + x^2$

Inner product and norm

Theorem:

Take any inner product $\langle .,. \rangle$ and define $f(x) = \sqrt{\langle x,x \rangle}$. Then f is a norm.

Proof?

 Note: Every inner product gives rise to a norm, but not every norm comes from an inner product (Think about norm 2 and norm max ©)

Orthogonal vectors

Geometry:

- Algebra:
 - Two vectors **u** and **v** in \mathbb{R}^n are **orthogonal** (to each other) if $\mathbf{u} \cdot \mathbf{v} = 0$.
 - Suppose V is an inner product space. Two vectors $\mathbf{v}, \mathbf{w} \in V$ are called **orthogonal** if $\langle \mathbf{v}, \mathbf{w} \rangle = 0$.
 - The Pythagorean Theorem

 Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$

Projection

- Finding the distance from a point B to line l = Finding the length of line segment BP
- AP: projection of AB onto the line l

Definition If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n and $\mathbf{u} \neq \mathbf{0}$, then the **projection of** \mathbf{v} onto \mathbf{u} is the vector $\text{proj}_{\mathbf{u}}(\mathbf{v})$ defined by

The projection of v onto u

$$\operatorname{proj}_{\mathbf{u}}(\mathbf{v}) = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}$$

Orthogonal Sets

- A set of vectors $\{a_1, ..., a_k\}$ in \mathbb{R}^n is orthogonal set if each pair of distinct vectors is orthogonal (mutually orthogonal vectors).
- Theorem:
 - If $S = \{a_1, ..., a_k\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and is a basis for the subspace spanned by S.
 - Proof?

If k=n, then prove that S is a basis for \mathbb{R}^n

Orthonormal vectors

Orthonormal Bases

A basis B of an inner product space \mathcal{V} is called an **orthonormal basis** of \mathcal{V} if

a) $\langle \mathbf{v}, \mathbf{w} \rangle = 0$ for all $\mathbf{v} \neq \mathbf{w} \in B$, and

(mutual orthogonality)

b) $\|\mathbf{v}\| = 1$ for all $\mathbf{v} \in B$.

(normalization)

- ▶ set of *n*-vectors a_1, \ldots, a_k are (mutually) orthogonal if $a_i \perp a_i$ for $i \neq j$
- they are *normalized* if $||a_i|| = 1$ for i = 1, ..., k
- they are orthonormal if both hold
- can be expressed using inner products as

$$a_i^T a_j = \left\{ \begin{array}{ll} 1 & i = j \\ 0 & i \neq j \end{array} \right.$$

- orthonormal sets of vectors are linearly independent
- by independence-dimension inequality, must have $k \leq n$
- when $k = n, a_1, \dots, a_n$ are an *orthonormal basis*

Independence-dimension inequality. If the *n*-vectors $\overrightarrow{a_1}, \cdots, \overrightarrow{a_k}$ are linearly independent, then $k \leq n$.

SUT CE40282-1: Linear Algebra

Examples of orthonormal bases

- Standard unit n-vectors e_1, \ldots, e_n
- The 3-vectors $\begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$, $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$
- The 2-vectors shown below

The standard basis in $P^p[a,b]$ (be the set of real-valued polynomials of degree at most p.)

Linear combinations of orthonormal vectors

A simple way to check if an n-vector y is a linear combination of the orthonormal vectors a_1, \ldots, a_k , if and only if:

$$y = (a_1^T y)a_1 + \dots + (a_k^T y)a_k$$

• For orthogonal vectors a_1, \dots, a_k :

$$y = c_1 a_1 + \dots + c_k a_k$$
$$c_j = \frac{y \cdot a_j}{a_j \cdot a_j}$$

Example

• Write x as a linear combination of a_1 , a_2 , a_3 ?

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad a_1 = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}, \quad a_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad a_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

Orthogonal Complements

- If a vector z is orthogonal to every vector in a subspace W of \mathbb{R}^n , then z is said to be orthogonal to W.
- The set of all vectors z that are orthogonal to W is called the orthogonal complement of W and is denoted by \boldsymbol{w}^{\perp}

W be a plane through the origin in \mathbb{R}^3

$$L = W^{\perp}$$
 and $W = L^{\perp}$

- 1. A vector \mathbf{x} is in W^{\perp} if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.
- **2.** W^{\perp} is a subspace of \mathbb{R}^n .

Orthogonal Complements

- 1. A vector \mathbf{x} is in W^{\perp} if and only if \mathbf{x} is orthogonal to every vector in a set that spans W.
- **2.** W^{\perp} is a subspace of \mathbb{R}^n .
 - Proof?

We emphasize that W_1 and W_2 can be orthogonal without being complements.

 $W_1 = \text{span}((1,0,0)) \text{ and } W_2 = \text{span}((0,1,0)).$

Orthogonal Projection of y onto W:

The Orthogonal Decomposition Theorem

Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form

$$\mathbf{y} = (\hat{\mathbf{y}}) + \mathbf{z} \qquad \mathbf{proj}_W \mathbf{y}. \tag{1}$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} . In fact, if $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p \tag{2}$$

and $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

\hat{y} : orthogonal projection of y

Proof? Z is in W^{\perp}

The uniqueness of the decomposition (1) shows that the orthogonal projection $\hat{\mathbf{y}}$ depends only on W and not on the particular basis used in (2).

The orthogonal projection of y onto W.

Best Approximation

The Best Approximation Theorem

Let W be a subspace of \mathbb{R}^n , let \mathbf{y} be any vector in \mathbb{R}^n , and let $\hat{\mathbf{y}}$ be the orthogonal projection of \mathbf{y} onto W. Then $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y} , in the sense that

$$\|\mathbf{y} - \hat{\mathbf{y}}\| < \|\mathbf{y} - \mathbf{v}\|$$

for all \mathbf{v} in W distinct from $\hat{\mathbf{y}}$.

Proof?

The orthogonal projection of \mathbf{y} onto W is the closest point in W to \mathbf{y} .

Find orthonormal basis for span $\{a_1, a_2, \dots, a_k\}$

Geometry:

- Find orthonormal basis for span $\{a_1, a_2, \dots, a_k\}$
- Algebra:

$$\tilde{q}_2 = a_2 - (q_1^T a_2) q_1$$

$$\widetilde{q}_3 = a_3 - (q_1^T a_3) q_1 - (q_2^T a_3) q_2$$

$$\tilde{q}_k = a_k - (q_1^T a_k) q_1 - \ldots - (q_{k-1}^T a_k) q_{k-1}$$

$$q_1 = \frac{a_1}{\|a_1\|}$$

$$\rightarrow q_2 = \frac{\tilde{q}_2}{\|\tilde{q}_2\|}$$

$$\rightarrow q_3 = \frac{\tilde{q}_3}{\|\tilde{q}_3\|}$$

$$\to q_k = \frac{\tilde{q}_k}{\|\tilde{q}_k\|}$$

- Why $\{q_1, q_2, ..., q_k\}$ is a orthonormal basis for span $\{a_1, a_2, ..., a_k\}$?
 - $\{q_1, q_2, \dots, q_k\}$ are normalized.
 - $\{q_1, q_2, \dots, q_k\}$ is a orthogonal set
 - a_i is a linear combination of $\{q_1, q_2, ..., q_i\}$

$$\operatorname{span}\{q_1,q_2,\dots,q_k\} = \operatorname{span}\{a_1,a_2,\dots,a_k\}$$

• q_i is a linear combination of $\{a_1, a_2, ..., a_i\}$

given n-vectors a_1, \ldots, a_k

for
$$i = 1, ..., k$$

- 1. Orthogonalization: $\tilde{q}_i = a_i (q_1^T a_i)q_1 \dots (q_{i-1}^T a_i)q_{i-1}$
- 2. Test for linear dependence: if $\tilde{q}_i = 0$, quit
- 3. *Normalization:* $q_i = \tilde{q}_i / ||\tilde{q}_i||$

- if G–S does not stop early (in step 2), a_1, \ldots, a_k are linearly independent
- if G–S stops early in iteration i = j, then a_j is a linear combination of a_1, \ldots, a_{j-1} (so a_1, \ldots, a_k are linearly dependent)

$$a_j = (q_1^T a_j)q_1 + \dots + (q_{j-1}^T a_j)q_{j-1}$$

Complexity of Gram-Schmidt algorithm

given n-vectors a_1, \ldots, a_k

for
$$i = 1, ..., k$$

- 1. Orthogonalization: $\tilde{q}_i = a_i (q_1^T a_i)q_1 \cdots (q_{i-1}^T a_i)q_{i-1}$
- 2. Test for linear dependence: if $\tilde{q}_i = 0$, quit
- 3. Normalization: $q_i = \tilde{q}_i / ||\tilde{q}_i||$

Gram-Schmidt

Suppose $B = \{a_1, a_2, ..., a_n\}$ is a basis of an inner product space A. Then $C = \{q_1, q_2, ..., q_n\}$ is an orthonormal basis of $span\{a_1, a_2, ..., a_n\}$.

$$q_1 = \frac{a_1}{||a_1||} \qquad q_k = \frac{a_k - \sum_{i=1}^{k-1} \langle q_i, a_k \rangle q_i}{\left| \left| a_k - \sum_{i=1}^{k-1} \langle q_i, a_k \rangle q_i \right| \right|} \text{ for } 2 \le k \le n$$

Proof? We prove this result by induction on k.

TAKE HOME QUESTION

Example

Find an orthonormal basis for $\mathcal{P}^2[-1,1]$ with respect to the inner product

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) \ dx.$$

Conclusion

Existence of Orthonormal Bases

Every finite-dimensional inner product space has an orthonormal basis.

Since finite-dimensional inner product spaces (by definition) have a basis consisting of finitely many vectors, and the Gram–Schmidt process tells us how to convert that basis into an orthonormal basis, we now know that every finite-dimensional inner product space has an orthonormal basis:

Reference

- Chapter 1: Advanced Linear and Matrix Algebra,
 Nathaniel Johnston
- Chapter 6: Linear Algebra Devid Cherney
- Linear Algebra and Optimization for Machine Learning
- Introduction to Applied Linear Algebra Vectors,
 Matrices, and Least Squares