ALGORITMI I STRUKTURE PODATAKA

RAČUNSKE VEŽBE – TERMIN BR. 13 – HASH TABELE

ALDINA AVDIĆ, DIPL. INŽ. - <u>apljaskovic@np.ac.rs</u>

RAČUNARSKA TEHNIKA, SOFTVERSKO INŽENJERSTVO, INFORMATIKA I MATEMATIKA

2 Uvod

```
Hash (eng.): potiče od francuskog glagola hacher (seckati);
(neformalno) nered
(kulinarstvo) mešavina fino seckanih namirnica
Heširanje: tehnika kojom se vrši preslikavanje skupa ključeva
na tabelu značajno manjih dimenzija
Cilj heširanja: ostvariti efikasan pristup (pretraga,
```

umetanje, brisanje) klju**č**evima smeštenih u tabelu, uz malu

cenu re**ž**ije

Uvod

- × Preslikavanje se vrši primenom **heš funkcije** nad klju**č**evima.
- × Heš funkcija kao rezultat vraća redni broj ulaza (matičnu adresu) u tabeli gde treba smestiti ključ
- Problem: više ključeva ima istu matičnu adresu kolizija.
 Takvi ključevi se nazivaju sinonimima
- × Rešenja:
 - primeniti savršenu heš funkciju koja garantuje da nema kolizije (nije jednostavna za određivanje, ključevi moraju biti unapred poznati
 - i postoji samo ako je hash tabela ve**ć**a ili jednaka skupu klju**č**eva)
 - 2. primeniti neku od tehnika za razrešavanje kolizije
 - otvoreno adresiranje
 - ulančavanje

⁴ Zadatak 1

- × Podaci se smeštaju u heš tabelu sa 9 ulaza primenom metode
- × otvorenog adresiranja sa dvostrukim heširanjem.
- \times Primarna heš funkcija je $h_p(K)=K \mod 9$,
- \times a sekundarna heš funkcija je $h_s(K)=4+(K \mod 2)$.
- × Prikazati popunjavanje tabele ako redom dolaze klju**č**evi
- × 38, 28, 33, 20, 23, 39.

- ×Metoda otvorenog adresiranja: dozvoliti da se ključ smesti u lokaciju koja nije njegova matična adresa.
- *Kada se konstatuje kolizija na matičnoj adresi, generiše se niz adresa (ispitni niz), od kojih se prva prazna koristi za smeštanje ključa.
- ×Metode generisanja niza adresa:
 - × linearno pretra**ž**ivanje
 - × kvadratno pretra**ž**ivanje
 - × dvostruko heširanje

 \times Uopšteno: $h_{i+1}(K) = (h_i(K) + g(K)) \mod n$

```
38, 28, 33, 20, 23, 39
h_n(K) = K \mod 9
h_s(K) = 4 + (K \mod 2)
                                                                       28
                                                                       38
(38 \mod 9) = 2 - \text{ulaz je slobodan}
                                                                 2
(28 \mod 9) = 1 - \text{ulaz je slobodan}
                                                                 3
                                                                       39
(33 \mod 9) = 6 - \text{ulaz je slobodan}
(20 \mod 9) = 2 - \text{ulaz nije slobodan}
      (2 + 4 + 20 \mod 2) \mod 9 = 6 - ulaz nije slobodan
      (6 + 4 + 20 \mod 2) \mod 9 = 1 - \text{ulaz nije slobodan}
                                                                       20
      (1 + 4 + 20 \mod 2) \mod 9 = 5 - \text{ulaz je slobodan}
                                                                       33
                                                                 6
(23 \mod 9) = 5 - \text{ulaz nije slobodan}
      (5 + 4 + 23 \mod 2) \mod 9 = 1 - \text{ulaz nije slobodam} 7
                                                                       23
      (1 + 4 + 23 \mod 2) \mod 9 = 6 - ulaz nije slobodan
      (6 + 4 + 23 \mod 2) \mod 9 = 2 - \text{ulaz nije slobodan} 8
      (2 + 4 + 23 \mod 2) \mod 9 = 7 - \text{ulaz je slobodan}
(39 \mod 9) = 3 - \text{ulaz je slobodan}
```

38, 28, 33, 20, 23, 39 h_p(K)=K mod 9 h_s(K)=4 + (K mod 2)

Ispitni	nizovi:
K parno	K neparno
0	0
4	5
8	1
3	6
7	2
2	7
6	3
1	8
5	4
0	0

0	
1	28
2	38
3	39
4	
5	20
6	33
7	23
8	

8

- × Podaci se smeštaju u heš tabelu sa 7 ulaza primenom metode
- × otvorenog adresiranja sa dvostrukim heširanjem.
- \times Primarna heš funkcija je $h_p(K)=K \mod 7$,
- \times a sekundarna heš funkcija je $h_s(K)=2 + (K \mod 3)$.
- × Prikazati popunjavanje tabele ako redom dolaze klju**č**evi
- × 18, 23, 4, 13 i 8.

9

 $(18 \mod 7) = 4 - \text{ulaz je slobodan}$

 $(23 \mod 7) = 2 - \text{ulaz je slobodan}$

 $(4 \mod 7) = 4 - \text{ulaz nije slobodan}$

 $(4+2+4 \mod 3) \mod 7 = 0$ - ulaz je slobodan

 $(13 \mod 7) = 6 - \text{ulaz je slobodan}$

(8 mod 7) = 1 - ulaz je slobodan

0	4
1	8
2	23
3	
4	18
5	
6	13

0	4
1	8
2	23
3	
4	18
5	
6	13

25. 5. 2020.

Zadatak 3 - Za samostalnu ve**ž**bu

Podaci se smeštaju u heš tabelu sa 7 ulaza primenom metode otvorenog adresiranja sa dvostrukim heširanjem.

Primarna heš funkcija je $h_p(K)=K \mod 7$, a sekundarna heš funkcija je $h_s(K)=2 + (K \mod 3)$.

a) Prikazati popunjavanje tabele ako redom dolaze klju**č**evi 45, 35, 17, 25, 18.

Isp	itni	nizovi:	
K%3	=0	K%3 = 1	K%3 = 2
0	0	0	
2	3	4	
4	6	1	
6	2	5	
1	5	2	
3	1	6	
5	4	3	
0	0	0	

0	35
1	18
2	
3	45
4	17
5	
6	25

Zadatak 4

 \times Ključevi se smeštaju u heš tabelu sa 10 ulaza primenom metode **objedinjenog ulančavanja**. Heš funkcija je $h_1(K) = K \mod 10$.

×Prikazati popunjavanje tabele ako redom dolaze klju**č**evi

× 42, 9, 25, 62, 88, 50, 19 i 78.

Razrešenje kolizije ulan**č**avanjem klju**č**eva

Odvojeno ulan**č**avanje

- ulaz tabele sadr**ž**i pokaziva**č** na ulan**č**anu listu umetnutih sinonima
- koristi se posebno alocirana memorija (veliko rasipanje za malu popunjenost tabele)

Objedinjeno ulan**č**avanje

- svaki ulaz tabele sadrži indeks sledećeg ključa u sekvenci
- koristi memoriju alociranu za tabelu
- efikasnije iskorišćenje memorije za malu popunjenost tabele

Pseudo-kod algoritma za pretra**ž**ivanje/umetanje klju**č**a

```
SEARCH-INSERT-CH (T, K)
i = h(K)
while (T[i]. key) \neq K and (T[i]. next \neq -1) do
    i = T[i]. next
end while
if (T[i]. key = K) then return i end_if
if (T[i]. key = empty) then j = i
else/
    while (T[free]. key \neq empty) do
        free = free - 1
        if (free < 0) then ERROR(Tabela puna)</pre>
        end if
    end while
    j = free
    T[i]. next = free
end if
T[j]. key = K
return j
```

U po**č**etnom stanju u svim ulazima polje klju**č**a ima vrednost *empty*, a polje *next* je -1, što je analogno praznom pokaziva**č**u

U po**č**etnom stanju se free postavlja na poslednju lokaciju u tabeli, iza koje sigurno nema praznih ulaza.

Pri brisanju ključa vrši se njegovo
Izlančavanje Iz liste, a polje key se postavlja na vrednost empty.
Ukoliko je njegov indeks iza trenutne vrednosti pokazivača free, free će dobiti vrednost indeksa u tabeli oslobočenog ključa.

42, 9, 25, 62, 88, 50, 19 i 78

16

Insert 42: 42 mod 10 = 2

0	1	2	3	4	5	6	7	8	9
empty	empty	42	empty						
/-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

free

Insert 9: 9 mod 10 = 9

0	1	2	3	4	5	6	7	8	9
empty	empty	42	empty	empty	empty	empty	empty	empty	9
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

free

Insert 25: 25 mod 10 = 5

0	1	2	3	4	5	6	7	8	9
empty	empty	42	empty	empty	25	empty	empty	empty	9
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

42, 9, 25, 62, 88, 50, 19 i 78

17

Insert 62: 62 mod 10 = 2

0	1	2	3	4	5	6	7	8	9
empty	empty	42	empty	empty	25	empty	empty	62	9
/-1	-1	4 8	-1	-1	-1	-1	-1	-1	-1

free free

Insert 88: 88 mod 10 = 8

0	1	2	3	4	5	6	7	8	9
empty	empty	42	empty	empty	25	empty	88	62	9
-1	-1	8	-1	-1	-1	-1	-1	7	-1

free

Insert 50: 50 mod 10 = 0

0	1	2	3	4	5	6	7	8	9
50	empty	42	empty	empty	25	empty	88	62	9
-1	-1	8	-1	-1	-1	-1	-1	7	-1

42, 9, 25, 62, 88, 50, 19 i 78

18

Insert 19: 19 mod 10 = 9

0	1	2	3	4	5	6	7	8	9
50	empty	42	empty	empty	25	19	88	62	9
/-1	-1	8	-1	-1	-1	-1	-1	7	6

free

Insert 78: 78 mod 10 = 8

0	1	2	3	4	5	6	7	8	9
50	empty	42	empty	78	25	19	88	62	9
-1	-1	8	-1	-1	-1	-1	4	7	6

19

Zadatak 5

- × Podaci se smeštaju u heš tabelu sa 10 ulaza.
- \times Primarna heš funkcija je $h_1(K) = K \mod 10$.

- × Prikazati punjenje tabele ako redom dolaze klju**č**evi
- × 8, 29, 52, 13, 89, 23, 50 i 44
- × u slu**č**ajevima primene slede**ć**ih metoda:
 - × linearno pretra**ž**ivanje
 - \times dvostruko heširanje sa sekundarnom heš funkcijom $h_2(K) = 2 + (K \mod 2)$
 - × odvojeno ulan**č**avanje
 - × objedinjeno ulan**č**avanje.

8, 29, 52, 13, 89, 23, 50 i 44

 $h_1(K) = K \mod 10$

 $h_2(K) = 2 + (K \mod 2)$ Objedinjeno

ulan**č**avan je

()dvojeno	۷
υ	ılan č avan j	ie
	50	
	52	
	13 →23	
	44	
	8	
	29→89	

()dvojeno	112
	ilan č avanj	io
L	ıran c avan	je i
	50	
	52	
	13 →23	
	44	
	8	
	29 -> 89	

u1an c a	<u>avanje</u>
50	-1
	-1
52	-1
13	-1 6
44	-1
	-1
23	-1
89	-1
8	-1
29	-4 7

pretraživanje heširanje

Linearno

Dvostruko

Test

- 1. Šta je heširanje?
- 2. Šta je hash funkcija?
- 3. Šta zna**č**i primarna, a šta sekundarna hash funkcija?
- 4. Koliko vrsta heširanja postoji i naborajti ih?
- 5. Kako se vrši heširanje pomoću ulančane liste?
- 6. Šta je dvostruko heširanje?
- 7. Šta je linearno heširanje?
- 8. Koje su osobine dobre hash funkcije.
- 9. Dati niz 6, 17, 8, 34, 1, 12, 9 heširati na sva 4 načina. Tabela je dužine 11, a primarnu i sekundarnu funkciju izabrati samostalno.
- 10. Za prethodni zadatak, koje se heširanje pokazalo kao najbolje i zbog **č**ega?

Test

× Test poslati do 01.06.2020. u 14h na mejl <u>apljaskovic@np.ac.rs</u> prema uputstvima sa sajta univerziteta

