

Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke

A mikroelektronika félvezető fizikai alapjai

Elektronika előadás Mérnök informatikus szak

Dr. Rencz Márta, Dr. Ress Sándor

http://www.eet.bme.hu

Mai témák

- ► Ismétlés: Szilárdtest fizikai alapok
- Töltéshordozó koncentrációk számítása félvezetőkben, egyensúlyban
 - A Fermi szint elhelyezkedése a különböző adalékoltságú félvezető anyagokban, egyensúlyban
- ► Áramok félvezetőkben
 - Drift áram
 - Diffúziós áram

Vegyérték sáv, vezetési sáv

W: az elektronok megengedett energia értékei szilárd testekben Sávos szerkezetű, a megengedett sávokat tiltott sávok választják el.

V = valence band

C = conduction band

Áramvezetési szempontból fontos:

- a legfelső, (majdnem) teli sáv
- a fölötte levő, (majdnem) üres sáv
- a köztük lévő tiltott sáv

Elektronok és lyukak (ismétlés)

- Generáció: a termikus átlagenergia (kT) felhasználásával
- ► Elektronok a vezetési sáv alján
- Lyukak a vegyértéksáv tetején
- Mindkettő szolgálja az áramvezetést!

Elektron negatív töltés, pozitív tömeg

Lyuk pozitív töltés, pozitív tömeg

Vezetők és szigetelők (ismétlés)

 $W_g = 1,12 \text{ eV szilíciumra}; 4,3 \text{ eV SiO}_2\text{-ra}$ 1 eV = 0,16 aJ = 0,16 10⁻¹⁸ J

A szilícium kristályszerkezete

Si

N = 14

4 vegyérték

IV. főcsoport

 $\rho = 2,33 \text{ g/cm}^3$

A térbeli elrendezés

Egyszerűsített síkbeli kép

Minden atomnak 4 közeli szomszédja van

Rácsállandó: a=0,543 nm

Intrinsic Si: adalékolatlan

Az intrinsic félvezető (Si)

T≠0 esetén kT energia hatására néhány elektron kiszabadul a vegyértékkötésből

n_i: elektron koncentráció

p_i: lyuk koncentráció

$$n_i = p_i$$

n típusú félvezető (Si)

Adalék pl. P, As, Sb

Elektronok

▶ többségi töltéshordozók

Lyukak

kisebbségi töltéshordozók

N_D + : donor koncentráció [1/cm³]

n_n: elektron koncentráció

p_n: lyuk koncentráció

$$n_n \sim N_D^+$$
 $n_n > p_n$

p típusú félvezető (Si)

Adalék pl. B, Ga, Al, In

Lyukak

▶ többségi töltéshordozók

Elektronok

kisebbségi töltéshordozók

N_A -: akceptor koncentráció [1/cm³]

n_p: elektron koncentráció

p_n: lyuk koncentráció

$$p_p \sim N_A^ p_p > n_p$$

Töltéshordozó koncentrációk számítása félvezetőkben, egyensúlyban

Termikus egyensúly 1.

 Dinamikus egyensúlyi állapot, minden folyamat egyensúlyban van az inverzével:

a generáció a rekombináció val

- Élettartam (τ): az az átlagos idő, amit egy elektron a vezetési sávban tölt
 1 ns...1 μs
- Rekombinációs ráta (R): időegység alatt, térfogategységben rekombinálódó töltéshordozó párok száma
- Generációs ráta (G): időegység alatt, térfogategységben generálódó töltéshordozó párok száma

$$R_n = \frac{n}{\tau_n}$$

$$G_n = R_{n,egyensúlyi} = \frac{n_0}{\tau_n}$$

Lyukakra hasonlóképpen...

Termikus egyensúly 2.

Az intrinsic töltéshordozó koncentráció (n_i) nagyságát a hőmérséklet határozza meg.

$$n_i^2 = f(T)$$

Adott hőmérsékleten termikus egyensúlyban:

$$n \cdot p = n_i^2$$

Tömeghatás törvénye

Töltéshordozó koncentrációk 1.

Félvezetőkben, egyensúlyban

- ► Elektromosan semleges félvezetőkben a pozitív és negatív töltések összege = 0.
 - Pozitív töltések
 - ionizált donorok N_D⁺ ≈ N_D
 - mozgásképes lyukak: p
 - Negatív töltések
 - ionizált akceptorok N_A⁻ ≈ N_A
 - · mozgásképes elektronok: n

Semlegességi törvény

$$N_D^{+} + p = N_A^{-} + n$$

Töltéshordozó koncentrációk 2.

Félvezetőkben, egyensúlyban

Mérnöki közelítések!

n típusú félvezetőre

$$N_D >> N_A \qquad N_D >> n_i$$

$$N_D >> n_i$$

$$n \approx N_D$$

$$p = \frac{n_i^2}{n} = \frac{n_i^2}{N_D}$$

p típusú félvezetőre

$$N_A >> N_D$$
 $N_A >> n_i$

$$N_A >> n_i$$

$$p \approx N_A$$

$$n = \frac{n_i^2}{p} = \frac{n_i^2}{N_A}$$

Az adalékkoncentrációk ismeretében a töltéshordozó koncentrációk számíthatók.

Példa

- ► Határozzuk meg n típusú Si tömbben az elektronok n és a lyukak p koncentrációját, ha a donor koncentráció N_D = 5·10¹⁴. (Ez azt jelenti, hogy 10⁸ Si atomra jut egy adalékatom.)
- Megoldás:

$$n = N_D = \underbrace{\frac{5 \cdot 10^{14} \text{ cm}^{-3}}{n}}_{D}$$

$$p = \frac{n_i^2}{n} = \underbrace{\frac{(1,45 \cdot 10^{10})^2}{5 \cdot 10^{14}}}_{D} = \underbrace{\frac{4,2 \cdot 10^5 \text{ cm}^{-3}}{n}}_{D}$$

$$n >> p$$

 Kérdés: mennyire változtatta meg ez az adalékolás a Si vezetőképességét? (Az intrinsic Si fajlagos ellenállása = 2,3·10⁵ Ωcm)

$$\sigma = q\mu_n n = \dots = 0,12 (\Omega \text{cm})^{-1}$$

$$\rho = \frac{1}{\sigma} = 8,3 \Omega \text{cm}$$

A vezetőképesség 5 nagyságrenddel növekedett 10⁸ Si atomra jutó egyetlen donor atomos adalékolás esetén.

Töltéshordozó koncentrációk

Fermi-szintek

Az energiaszintek betöltöttségének valószínűségét a Fermi-Dirac eloszlási függvény határozza meg:

$$f_D(W) = \frac{1}{1 + \exp[(W - W_F)/kT]}$$

- W_F: Fermi-energia vagy Fermi-szint
- k: Boltzmann-állandó
- T: hőmérséklet

$$f_D(W_F) = \frac{1}{2}$$

$$k \cdot T \mid_{300K} = 26 meV$$

A Fermi-Dirac eloszlási függvény annak a valószínűségét adja meg, hogy a W energia szintű állapot be van töltve.

Töltéshordozó koncentrációk 2.

Fermi-szintek

töltéshordozó koncentrációk felírhatók a

W_F (vagy E_F) Fermi-energia, vagy Fermi-szint

függvényében

$$n = const \cdot T^{3/2} \cdot \exp\left[-\frac{W_C - W_F}{kT}\right] \qquad p = const \cdot T^{3/2} \cdot \exp\left[-\frac{W_F - W_V}{kT}\right]$$

$$p = const \cdot T^{3/2} \cdot \exp\left[-\frac{W_F - W_V}{kT}\right]$$

ahol

W_c: a vezetési sáv aljához tartozó energia érték

W_v: a vegyérték sáv tetejéhez tartozó energia érték

Az energiaszintek helyzete

Egyensúlyi állapotban

- ► Egy anyag egyensúlyi állapotban van, ha a nettó elektrontranszport minden energiaszinten = 0.
- Erre a helyzetre az jellemző, hogy a Fermi-szint állandó a rendszerben.

Termikus egyensúly = állandó W_F

Áramok félvezetőkben

Drift áram (sodródási áram) 1.

Töltéshordozóknak elektromos erőtér hatására történő mozgása.

Nincs térerősség

Van térerősség

Drift áram (sodródási áram) 2.

- Töltéshordozóknak elektromos erőtér hatására történő mozgása.
- Drift sebesség (v_D): a töltéshordozóknak az erőtér irányában történő elmozdulásának sebessége.

$$v_D = -\mu_n \cdot E$$

$$v_D = \mu_p \cdot E$$

ahol

- E: elektromos térerősség
- μ_n: az elektronok mozgékonysága
- μ_p: a lyukak mozgékonysága

$$\mu_n \mid_{Si} = 1500 \frac{\text{cm}^2}{\text{Vs}}$$

$$\mu_p \mid_{Si} = 475 \frac{\text{cm}^2}{\text{Vs}}$$

Drift áram, vezetőképesség

► A drift áram áramsűrűsége:

$$\begin{split} J_{n_{drift}} &= -qnv_D = q\mu_n nE \\ J_{p_{drift}} &= qnv_D = q\mu_p pE \\ J_{drift} &= J_{n_{drift}} + J_{p_{drift}} = (q\mu_n n + q\mu_p p) \cdot E \end{split}$$

▶ A differenciális Ohm törvény szerint:

$$J_{drift} = \sigma \cdot E$$

Amiből az anyag vezetőképessége:

Diffúziós áram 1.

▶ Diffúzió: a részecskéknek a térbeli koncentrációkülönbség megszüntetésére irányuló mozgása.

Oka: a sűrűségkülönbség és a hőmozgás

Diffúziós áram 2.

▶ Diffúziós áram: a töltéshordozóknak a nagyobb koncentrációjú helyről a kisebb koncentrációjú hely irányában történő mozgása.

$$J_{n_{diff}} = qD_n \cdot \operatorname{grad} n$$
 $J_{p_{diff}} = -qD_p \cdot \operatorname{grad} p$

ahol

D_n, D_p: az elektronok ill. a lyukak diffúziós állandója

$$D = \frac{kT}{q}\mu$$

Einstein-reláció

Folytonossági egyenletek

- ► Végtelenül kis térrészben a töltéshordozók mennyiségének időbeli változását írják le.
- A térrészbe az áram által be-, ill. abból kiszállított, valamint az ott generálódó vagy rekombinálódó töltéshordozók változtatják meg adott térrészben a koncentrációt:

$$\frac{\partial n}{\partial t} = \frac{1}{q} \nabla J_n + G_n - R_n$$

$$\frac{\partial p}{\partial t} = -\frac{1}{q} \nabla J_p + G_p - R_p$$

pn átmenet, félvezető dióda

- ▶ pn átmenet: olyan egykristályos félvezető tartomány, amelyben egymással érintkezik egy p és egy n típusú zóna.
- Az 1 db. pn átmenetből álló eszköz a dióda

Pl. dióda megvalósítás:

- Az ábra torzított, a keresztmetszeti méretek általában sokkal kisebbek mint az oldalirányúak.
- Planáris szerkezet!

A = anód, K = katód

Ezt vizsgáljuk:

A dióda legfőbb tulajdonságai

- Pozitív feszültségekre (p típusú anyag pozitívabb potenciálon, nyitófeszültség), a struktúrán a feszültségtől exponenciálisan függő áram folyik.
- Negatív feszültségekre (p oldal negatívabb, zárófeszültség) a struktúrán nagyon kis, gyakorlatilag feszültségfüggetlen áram.

A pn átmenet statikus viszonyai 1.

A mozgásképes töltések diffúziója után helyhez kötött, kompenzálatlan töltések maradnak az átmenet két oldalán.

Megszűnik a semlegesség.

Erőtér jön létre.

A többségi töltéshordozók az átmenet környezetében átdiffundálnak a túloldalra → töltéshordozóktól kiürített réteg vagy tértöltésréteg jön létre az átmenetnél.

Egyensúly:

 A többségi töltéshordozók diffúziós árama egyensúlyban van a kisebbségi töltéshordozók drift áramával, I = 0

A pn átmenet statikus viszonyai 2.

A töltésegyenlőségből:

$$q S_n N_d = q S_p N_a$$

$$\frac{N_a}{N_d} = \frac{S_n}{S_p}$$

A kiürített réteg annál **keskenyebb**, minél nagyobb az adalékkoncentráció a tartományban.

A valóságban általában több nagyságrend különbség van a két oldal adalékkoncentrációi között → a kiürített réteg az átmenetnek főként a gyengébben adalékolt oldalára terjed ki.

A pn átmenet statikus viszonyai 3.

- ► Csak a kiürített rétegben van tértöltés, a p és az n tartományok elektromosan semlegesek
 - → Csak a kiürített rétegekben van térerősség, ill. potenciál esés.
- A pn átmeneten egyensúlyban kialakuló ún. beépített feszültség (diffúziós potenciál):

$$U_{bi} = U_T \ln \frac{N_A N_D}{n_i^2}$$

$$U_T = \frac{kT}{q}$$

termikus feszültség (26mV 300K-en)

► A beépített feszültség értéke szokásos adalékkoncentrációk mellett szilíciumban ≈ 0,75-0,8 V

31 / 36

Külső feszültség pn átmeneten

- ► A külső feszültség hozzáadódik a pn átmenet beépített feszültségéhez.
- ► Egyensúly: a többségi töltéshordozók diffúziós árama egyensúlyban van a kisebbségi töltéshordozók drift áramával, I = 0
- Nyitóirány (forward): a nyitófeszültség csökkenti a pn átmenet potenciálgátját, a többségi töltéshordozók diffúziós árama megnő, I₌: nagy
- ► Záróirány (reverse): a zárófeszültség hozzáadódik a beépített feszültséghez, a kisebbségi töltéshordozók drift árama kerül túlsúlyba, de ezek kis száma miatt az így kialakuló áram lp: kicsi

A karakterisztika egyenlete 1.

- ► A folytonossági egyenleteket oldjuk meg az adott határfeltételekkel, állandósult állapotra
 - 1. Inhomogén másodrendű lineáris differenciálegyenletek a töltéshordozó koncentrációk helyfüggésére
 - 2. A megoldást exp. függvények összegeként keressük, és a határértékek behelyettesítésével keressük meg az állandókat
 - 3. Az adódó eloszlások gradiensét számoljuk az x=0 helyen, ahol csak diffúziós áram van
 - 4. Az elektron és lyukáram összegeként felírjuk a teljes áramot

$$\frac{dn}{dt} = D_n \frac{d^2n}{dx^2} + G - R$$

$$R = \frac{n}{\tau_n}$$

$$G = \frac{n_p}{\tau_n}$$

$$\frac{dn}{dt} = D_n \frac{d^2n}{dx^2} - \frac{n - n_p}{\tau_n}$$

= 0

A karakterisztika egyenlete 2.

A folytonossági egyenletek megoldásával nyert eloszlás függvény az elektronokra (1 dim.):

A karakterisztika egyenlete 3.

Az adódó eloszlások gradiensét számoljuk az x=0 helyen, ahol csak diffúziós áram van.

$$n(x) = n_p + (n_0 - n_p) \exp(-x/L_n)$$

$$J_n(x) = -qD_n \frac{dn}{dx} = -qD_n(n_0 - n_p) \exp(-x/L_n) \left(\frac{-1}{L_n}\right)$$

$$J_n|_{x=0} = \frac{qD_n}{L_n}(n_0 - n_p) = \frac{qD_n n_p}{L_n}(\exp(U/U_T) - 1)$$

$$J_p = \frac{qD_p p_n}{L_p} (\exp(U/U_T) - 1)$$

$$I = A(J_n + J_p)$$

A karakterisztika egyenlete 4.

Az elektron és lyukáram összegeként felírjuk a teljes áramot

$$I = A(J_n + J_p)$$

$$I = Aq(D_{n}n_{p} / L_{n} + D_{p}p_{n} / L_{p})(\exp(U / U_{T}) - 1)$$

$$I = I_0 \left(\exp(U/U_T) - 1 \right)$$

- Ez az ideális dióda egyenlet
 - I_o a pn átmenet szaturációs vagy záróáram konstansa, csak anyagállandóktól és az adalékkoncentrációktól függ, a kisebbségi töltéshordozó koncentrációval arányos, I_o ≈ 10⁻¹⁴...10⁻¹⁵ A Si diódán.
 - A szokásos nyitófeszültség értéke: U_F ≈ 0,7 V Si dióda esetén

Példa: ideális dióda karakterisztika

Kérdés: Egy Si dióda telítési árama I₀ = 10⁻¹³ A. Mekkora a nyitófeszültség, ha az áram 10 mA?

Megoldás:

$$I = I_0 \left(\exp(U/U_T) - 1 \right)$$

$$U = U_T \ln(I/I_0 + 1)$$

$$U \cong 0.026V \cdot \ln(10^{-2}/10^{-13}) = 0.658 V$$

Mennyivel kell a nyitó feszültséget növelni ahhoz, hogy a nyitó áram tízszeres legyen?

$$\Delta U = U_2 - U_1 \cong U_T \left(\ln(I_2 / I_0) - \ln(I_1 / I_0) \right) = U_T \ln(I_2 / I_1)$$

$$\Delta U = 0.026V \cdot \ln 10 \cong 0.06 V = 60 \ mV$$

