Rajiv V. Joshi

rajivj2002@gmail.com ♦ (703) 599-4743 ♦ www.linkedin.com/in/rajivj02/

Education:

Carnegie Mellon University Pittsburgh, PA

Master of Science in Mechanical Engineering - Research | GPA: 4.0/4.0

May 2026 Blacksburg, VA

Virginia Tech

May 2024

Bachelors of Science in Mechanical Engineering - Robotics and Mechatronics | GPA: 3.64/4.0

Bachelors of Science in Mechanical Engineering - Mechanical | GPA: 3.64/4.0

May 2024

Coursework:

Masters: ADV Mechatronics (TA) | Haptic Design Interfaces | Modern Control Theory | Computer Vision for Engineers (In-Progress) | ML and AI for Engineers (In-Progress)

Undergraduate: Robotics and Automation | Kinematics | Differential Equations | Deforms | Dynamics

Skills:

Software/Firmware: SolidWorks | Fusion 360 | ANSYS | KiCAD | Arduino | Serial Communication Protocols Hardware: Embedded Systems | PCB Design | Soldering | Rapid Prototyping | 3-D printing | Machining

Programming Languages: Python | C/C++ | MATLAB | Linux

Research Experience:

MetaMobility Lab at Carnegie Mellon University

Pittsburgh, PA

Knee Exoskeleton - MS Research Project

April 2025 - Present

- Coordinated and led a team of 5 students in research, design, and manufacturing a lightweight knee exoskeleton capable of delivering 20 Nm of torque directly to knee joints for people suffering from osteoarthritis or gait impairment
- Designed custom BOA ratcheting straps and orthotic cuffs utilizing SolidWorks and 3D-printing strategies for tighter mounting to user, preventing hardware shifting during gait and improving torque transfer to joint by 10%
- Utilized a Teensy 4.1 to implement SPI protocol, in C/C++, with IMU sensors using CAT6 connectors and twisted pair cable to shield signal from noise, increasing the gait cycle estimator loop frequency from 100Hz to 500Hz

MetaMobility Lab at Carnegie Mellon University

Pittsburgh, PA

Hip Exoskeleton – MS Research

May 2024 - Present

- Optimized hip exoskeleton hardware for improved fitting to users using human biomechanics concepts, SolidWorks, and 3D printing, yielding comfortable motor-joint alignment and 25% reduced system weight
- Redesigned circuit schematics and PCB designs integrating embedded systems such as MCUs, IMUs, and FSRs via KiCAD, reducing connections from 8 to 4 while maintaining robust connections and signal integrity
- Communicated with various global manufacturers for pricing and outsourcing manufacturing of Carbon Fiber and Nylon based parts designed in SolidWorks considering basic DFM and DFA concepts
- Integrated CAN bus and I2C protocols, in Python and C/C++, with motors encoders and IMUs, enabling gait cycle estimation for controllers and hardware torque control upwards of 18 Nm, cutting user hip work by 20% to 30%

Academic Projects:

Carnegie Mellon University

Pittsburgh, PA

Haptic Design Interfaces: 2 DoF Haptic Hand Interface – Course Project

April 2025 - May 2025

- Developed a open-source compact haptic fingers device, with a team of 6 graduate students, meshing STM32 MCU, 4 low torque motors, and 3D-printed parts as a teaching tool for robot kinematics, biological sensors, and haptics
- Visualized a finger joint workspace in MATLAB to define the mechanical operational range of a capstan-driven endeffector, which was controlled in C/C++ using PID and forward kinematics to successfully render virtual 3D objects.

Carnegie Mellon University

Pittsburgh, PA

ADV Mechatronics: Embedded System Game Design – Course Project

November 2024 - December 2024

 Demonstrated depth of knowledge in mechatronic system design by creating a robust arcade game with custom PCB design, H-bridge motor control, PWM + timer interrupts, state machines, and a GUI for seamless user interaction