Übung 3

Logik für Informatiker

Aussagenlogik

Welche der folgenden Ausdrücke A_i sind aussagenlogische Formeln?

- $\bullet \ A_1: \neg p_0$
- \bullet $A_2: \neg \neg p_0$
- $A_3: p_0 \lor \to p_1$
- $\bullet \ A_4: (p_0 \to (p_1 \land p_2))$
- $A_5:((p_0 \rightarrow p_1) \lor (p_0 \land p_2)) \lor \bot$
- $A_6:(p_0\wedge)p_1\vee$
- $\bullet \ A_7: p_0 \to (p_1 \vee p_2)$
- \bullet $A_8: \top$

Gib für jeden der obigen Ausdrücke A_i , der eine aussagenlogische Formel ist, die zugehörige Wertetabelle an.

Sei $\Pi = \{A, B, C\}$ eine Menge von Aussagenvariablen und F die folgenden Formel über Π :

$$F = ((A \land B) \to C) \leftrightarrow ((\neg C \lor B) \to ((A \to A) \land C))$$

- 1. Geben Sie für F eine Wahrheitstabelle an.
- 2. Begründen Sie mithilfe der Wahrheitstabelle ob F erfüllbar, unerfüllbar, oder tautologisch ist.
- 3. Gegeben die Formel $G = \neg A \lor B$ über Π . Untersuchen Sie mithilfe der Wahrheitstabelle ob $F \models G$ gilt. Begründen Sie Ihre Antwort mithilfe der Wahrheitstabelle.
- 4. Gegeben die Formel $H = A \vee C$ über Π . Untersuchen Sie mithilfe der Wahrheitstabelle ob $F \models H$ gilt. Begründen Sie Ihre Antwort mithilfe der Wahrheitstabelle.
- 5. Gegeben die Formel $K=(A\vee C)\wedge (B\vee C)$ über Π . Untersuchen Sie mithilfe der Wahrheitstabelle ob $F\equiv K$ gilt. Begründen Sie Ihre Antwort mithilfe der Wahrheitstabelle.

Seien $\Pi = \{P, Q, R\}$ eine Menge von Aussagenvariablen und F folgende Formel über Π :

$$F = \Big(\big(\neg P \lor (Q \to R) \big) \to (R \lor P) \Big) \leftrightarrow \Big(R \to (Q \land P) \big).$$

- 1. Man gebe die Wahrheitstabelle an.
- 2. Man gebe die Definition der Erfüllbarkeit, Unerfüllbarkeit und Allgemeingültigkeit einer aussagenlogischen Formel an.
- 3. Gegeben seien die Formel
n $G=Q\vee R,\,H=P\wedge (Q\vee (\neg Q\wedge \neg R)$ und $K=P\wedge \neg R$ über $\Pi.$
 - (a) Kreuzen Sie in der folgenden Tabelle an, welche Eigenschaften G, H und K haben.

n und n naben.			
G	erfüllbar	unerfüllbar	allgemeingültig
ja			
nein			
H	erfüllbar	unerfüllbar	allgemeingültig
ja			
nein			
K	erfüllbar	unerfüllbar	allgemeingültig
ja			
nein			

Sei $\Pi=\{P,Q\}$. Man untersuche, welche der folgenden Formeln über Π erfüllbar, unerfüllbar, tautologisch sind:

- 1. $\neg (P \lor \neg P)$
- 2. $(P \wedge Q) \vee \neg (P \vee Q)$
- 3. $((\neg P \to Q) \land (\neg P \to \neg Q)) \to P$

Beantworten Sie die folgenden Fragen. Begründen Sie jeweils Ihre Antwort.

- 1. Gilt die folgende Aussage: Es gibt eine aussagenlogische Formel F, sodass F erfüllbar und $\neg F$ erfüllbar ist?
- 2. Gilt die folgende Aussage für eine beliebige aussagenlogische Formel F: F ist erfüllbar genau dann, wenn $\neg F$ erfüllbar?
- 3. Seien F, G beliebige aussagenlogische Formeln. Gilt die folgende Aussage: $F \models G$ gdw. $F \land \neg G$ unerfüllbar ist?
- 4. Seien F, G beliebige aussagenlogische Formeln. Gilt die folgende Aussage: $F \models G$ gdw. $F \land G$ allgemeingültig ist?
- 5. Sei M eine beliebige unerfüllbare Formelmenge, F eine beliebige Formel. Gilt die folgende Aussage: $M \models F$?
- 6. Sei G eine erfüllbare Formel, die nicht allgemeingultig ist, H eine beliebige Formel und $G \models H$. Welche der Eigenschaften (erfüllbar, unerfüllbar, tautologisch) gilt für $G \land H$?