Rodrigo Becerril Ferreyra Dr. Alireza Mehrnia Homework 3 19 March 2021

The code used to generate the following results can be found at the end of this document.

P3.1

Below are the plots of magnitude and argument for the DTFT of the given sequences.

Figure 1: Problem 3.1 Part 1

Note how this DTFT has very little (negligible) argument; for all purposes, the DTFT is purely real. $\,$

Figure 2: Problem 3.1 Part 3

Note how both the magnitude and argument seem to be centered around $\pi/2$.

P3.3

The following DTFTs were found analytically (using the definition of DTFT), then plotted using MATLAB. The definition is as follows:

$$\mathcal{F}(x[n]) = X\left(e^{j\omega}\right) = \sum_{n = -\infty}^{\infty} x[n]e^{-j\omega n} \tag{1}$$

Part 2

In this example, $x[n] = 0.6^{|n|}(u(n+10) - u(n-11))$, which has the following graph. Note that the value is zero at all indexes n < -10 and n > 10, where n is the index.

Figure 3: Graph of x[n].

Below is the calculation for the DTFT.

$$\begin{split} \mathcal{F}[0.6^{|n|}(u(n+10)-u(n-11))] \\ &= X\left(e^{j\omega}\right) = \sum_{n=-10}^{10} 0.6^{|n|}e^{-j\omega n} \\ &= 0.6^{10}e^{10j\omega} + 0.6^{9}e^{9j\omega} + 0.6^{8}e^{8j\omega} + 0.6^{7}e^{7j\omega} + 0.6^{6}e^{6j\omega} \\ &+ 0.6^{5}e^{5j\omega} + 0.6^{4}e^{4j\omega} + 0.6^{3}e^{3j\omega} + 0.6^{2}e^{2j\omega} + 0.6e^{j\omega} + 1 \\ &+ 0.6e^{-j\omega} + 0.6^{2}e^{-2j\omega} + 0.6^{3}e^{-3j\omega} + 0.6^{4}e^{-4j\omega} + 0.6^{5}e^{-5j\omega} \\ &+ 0.6^{6}e^{-6j\omega} + 0.6^{7}e^{-7j\omega} + 0.6^{8}e^{-8j\omega} + 0.6^{9}e^{-9j\omega} + 0.6^{10}e^{-10j\omega} \end{split}$$

Figure 4: Problem 3.3 Part 2

Part 5 In this example, $x[n] = 4(-0.7)^n \cos(0.25\pi n) u(n)$. The graph of this is below.

Figure 5: Graph of x[n].

Below is the calculation for the DTFT.

$$\begin{split} X\left(e^{j\omega}\right) &= \sum_{n=0}^{\infty} 4(-0.7)^n \cos(0.25\pi n) e^{-j\omega n} \\ &= \sum_{n=0}^{\infty} 2(-0.7)^n \left(e^{j0.25\pi n} + e^{-j0.25\pi n}\right) e^{-j\omega n} \\ &= \sum_{n=0}^{\infty} 2(-0.7)^n \left(e^{j\pi n/4} e^{-j\omega n} + e^{-j\pi n/4} e^{-j\omega n}\right) \\ &= \sum_{n=0}^{\infty} \left(2(-0.7)^n e^{j\pi n/4} e^{-j\omega n} + 2(-0.7)^n e^{-j\pi n/4} e^{-j\omega n}\right) \\ &= \sum_{n=0}^{\infty} 2(-0.7)^n e^{j\pi n/4} e^{-j\omega n} + \sum_{n=0}^{\infty} 2(-0.7)^n e^{-j\pi n/4} e^{-j\omega n} \\ &= \sum_{n=0}^{\infty} 2\left[(-0.7) e^{j\pi/4} e^{-j\omega}\right]^n + \sum_{n=0}^{\infty} 2\left[(-0.7) e^{-j\pi/4} e^{-j\omega}\right]^n \\ &= \frac{2}{1 + 0.7 e^{j\pi/4} e^{-j\omega}} + \frac{2}{1 + 0.7 e^{-j\pi/4} e^{-j\omega}} \end{split}$$

The summation reduction formula $\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$ only works if |r| < 1; in this case, since r is the complex number $(-0.7)e^{\pm j\pi/4-j\omega}$, its magnitude |r| = 0.7, making the summation reduction valid.

Figure 6: Problem 3.3 Part 5

P3.4

Below is the plot for the rectangular window function for M=50. Other values of M can be obtained via the code.

Figure 7: Problem 3.4 Part 1

Similarly, below is the plot for the rectangular window function for M=50. Other values of M can be obtained via the code.

Figure 8: Problem 3.4 Part 4

P3.5

Since the DTFT is an invertible transformation, one can find the original signal x[n] given the transform $\mathcal{F}(x[n])$.

$$\begin{split} X\left(e^{j\omega}\right) &= 3 + 2\cos(\omega) + 4\cos(2\omega) \\ &= 3 + 2\left(\frac{e^{j\omega} + e^{-j\omega}}{2}\right) + 4\left(\frac{e^{2j\omega} + e^{-2j\omega}}{2}\right) \\ &= 3 + e^{j\omega} + e^{-j\omega} + 2e^{2j\omega} + 2e^{-2j\omega} \\ &= 2e^{2j\omega} + e^{j\omega} + 3 + e^{-j\omega} + 2e^{-2j\omega} \\ &\quad x[n] = \{2, 1, 3, 1, 2\} \end{split}$$

Figure 9: Problem 3.5 Part 1

$$\begin{split} X\left(e^{j\omega}\right) &= \left[1 - 6\cos(3\omega) + 8\cos(5\omega)\right]e^{-3j\omega} \\ &= \left[1 - 6\left(\frac{e^{3j\omega} + e^{-3j\omega}}{2}\right) + 8\left(\frac{e^{5j\omega} + e^{-5j\omega}}{2}\right)\right]e^{-3j\omega} \\ &= \left[1 - 3e^{3j\omega} - 3e^{-3j\omega} + 4e^{5j\omega} + 4e^{-5j\omega}\right]e^{-3j\omega} \\ &= e^{-3j\omega} - 3e^{3j\omega - 3j\omega} - 3e^{-3j\omega - 3j\omega} + 4e^{5j\omega - 3j\omega} + 4e^{-5j\omega - 3j\omega} \\ &= e^{-3j\omega} - 1 - 3e^{-6j\omega} + 4e^{2j\omega} + 4e^{-8j\omega} \\ &= 4e^2j\omega - 1 + e^{-3j\omega} - 3e^{-6j\omega} + 4e^{-8j\omega} \\ &= x[n] = \{4, 0, -1, 0, 0, 1, 0, 0, -3, 0, 4\} \end{split}$$

Figure 10: Problem 3.5 Part 2

$$\begin{split} X\left(e^{j\omega}\right) &= \left[1 + 2\cos(\omega) + 3\cos(2\omega)\right]\cos(\omega/2)e^{-5j\omega/2} \\ &= \cos(\omega/2)e^{-5j\omega/2} + 2\cos(\omega)\cos(\omega/2)e^{-5j\omega/2} + 3\cos(2\omega)\cos(\omega/2)e^{-5j\omega/2} \\ &= \cos(\omega/2)e^{-5j\omega/2} + \left[\cos(\omega/2) + \cos(3\omega/2)\right]e^{-5j\omega/2} \\ &\quad + \frac{3}{2}\left[\cos(3\omega/2) + \cos(5\omega/2)\right]e^{-5j\omega/2} \\ &\quad + \frac{3}{2}\left[\cos(3\omega/2) + \cos(5\omega/2)\right]e^{-5j\omega/2} \\ &\quad + \frac{3}{2}\cos(3\omega/2)e^{-5j\omega/2} + \cos(3\omega/2)e^{-5j\omega/2} \\ &\quad + \frac{3}{2}\cos(3\omega/2)e^{-5j\omega/2} + \frac{3}{2}\cos(5\omega/2)e^{-5j\omega/2} \\ &\quad = \left(e^{j\omega/2} + e^{-j\omega/2}\right)e^{-5j\omega/2} + \frac{1}{2}\left(e^{3j\omega/2} + e^{-3j\omega/2}\right)e^{-5j\omega/2} \\ &\quad + \frac{3}{4}\left(e^{3j\omega/2} + e^{-3j\omega/2}\right)e^{-5j\omega/2} + \frac{3}{4}\left(e^{5j\omega/2} + e^{-5j\omega/2}\right)e^{-5j\omega/2} \\ &= e^{-2j\omega} + e^{-3j\omega} + \frac{1}{2}e^{-j\omega} + \frac{1}{2}e^{-4j\omega} + \frac{3}{4}e^{-j\omega} + \frac{3}{4}e^{-4j\omega} + \frac{3}{4}e^{-5j\omega} \\ &\quad = \frac{3}{4} + \frac{5}{4}e^{-j\omega} + e^{-2j\omega} + e^{-3j\omega} + \frac{5}{4}e^{-4j\omega} + \frac{3}{4}e^{-5j\omega} \\ &\quad x[n] = \left\{\frac{3}{4}, \frac{5}{4}, 1, 1, \frac{5}{4}, \frac{3}{4}\right\} \end{split}$$

Figure 11: Problem 3.5 Part 4

P3.6

The definition of the inverse DTFT is as follows:

$$\mathcal{F}^{-1}[\mathcal{F}[x[n]]] = \mathcal{F}^{-1}\left[X\left[e^{j\omega}\right]\right] \equiv \frac{1}{2\pi} \int_{-\pi}^{\pi} X\left(e^{j\omega}\right) e^{j\omega n} d\omega \tag{2}$$

$$X\left(e^{j\omega}\right) = \begin{cases} 1 & \text{if } 0 \le |\omega| \le \pi/3 \\ 0 & \pi/3 \le |\omega| \le \pi \end{cases}$$

$$x[n] = \frac{1}{2\pi} \left[\int_{-\pi}^{-\pi/3} 0 \, d\omega + \int_{-\pi/3}^{\pi/3} e^{j\omega n} \, d\omega + \int_{\pi/3}^{\pi} 0 \, d\omega \right]$$

$$= \frac{1}{2\pi} \int_{-\pi/3}^{\pi/3} e^{j\omega n} \, d\omega = \frac{1}{2\pi} \left[\frac{e^{j\omega n}}{0 + jn} \right]_{\omega = -\pi/3}^{\omega = \pi/3}$$

$$= \frac{1}{2\pi} \left(\frac{e^{jn\pi/3}}{ne^{j\pi/2}} - \frac{e^{-jn\pi/3}}{ne^{j\pi/2}} \right)$$

$$= \frac{e^{j(n\pi/3 - \pi/2)} - e^{j(-n\pi/3 - \pi/2)}}{2\pi n}$$

$$\begin{split} X\left(e^{j\omega}\right) &= \omega e^{j(\pi/2-10\omega)} \\ x[n] &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \omega e^{j(\pi/2-10\omega)} e^{j\omega n} \, d\omega \\ &= \frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} \omega e^{j(\pi/2-10\omega-\omega n)} \, d\omega \\ &= \frac{1}{2\pi} \left[\frac{\omega e^{j(\pi/2-10\omega-\omega n)}}{-j\left(10+n\right)} \bigg|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \frac{e^{j(\pi/2-10\omega-\omega n)}}{-j\left(10+n\right)} \, d\omega \right] \\ \frac{1}{2\pi} \left[\frac{\pi e^{j(-19\pi/2-\pi n)}}{-j\left(10+n\right)} + \frac{\pi e^{j(21\pi/2+\pi n)}}{-j\left(10+n\right)} - \frac{e^{j(\pi/2-10\omega-\omega n)}}{(-j\left(10+n\right))^2} \bigg|_{-\pi}^{\pi} \right] \\ &= \frac{e^{j(-19\pi/2-\pi n)}}{-2j\left(10+n\right)} + \frac{e^{j(21\pi/2+\pi n)}}{-2j\left(10+n\right)} \\ &+ \frac{e^{j(-19\pi/2-\pi n)}}{(100+20n+n^2)} - \frac{e^{j(21\pi/2-\pi n)}}{(100+20n+n^2)} \end{split}$$

P3.11

Part 1

$$h(n) = 0.9^{|n|}$$

$$\mathcal{F}[h(n)] = H\left(e^{j\omega}\right) = \frac{1 - 0.9^2}{1 - 2(0.9)\cos(\omega) + 0.9^2}$$

$$= \frac{0.19}{1.81 - 1.8\cos(\omega)}$$

This result was found using the given DTFT pairs.

Figure 12: Problem 11 Part 1

$$h(n) = 0.5^{|n|} \cos(0.1\pi n)$$

$$\mathcal{F}[h(n)] = \sum_{n=-\infty}^{\infty} 0.5^{|n|} \cos(0.1\pi n) e^{-j\omega n}$$

$$= \frac{1}{2} \sum_{n=-\infty}^{\infty} 0.5^{|n|} \left(e^{0.1\pi nj} + e^{-0.1\pi nj} \right) e^{-j\omega n}$$

$$= \frac{1}{2} \sum_{n=-\infty}^{\infty} 0.5^{|n|} \left[\left(e^{0.1\pi j - j\omega} \right)^n + \left(e^{-0.1\pi j - j\omega} \right)^n \right]$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} \left[\left(0.5 e^{j(0.1\pi - \omega)} \right)^n + \left(0.5 e^{j(-0.1\pi - \omega)} \right)^n \right]$$

$$+ \frac{1}{2} \sum_{n=0}^{\infty} \left[\left(0.5 e^{j(0.1\pi - \omega)} \right)^n + \left(0.5 e^{j(-0.1\pi - \omega)} \right)^n \right]$$

$$-1 \text{ (this is because we're adding n=0 twice)}$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} \left[\left(0.5 e^{j(0.1\pi - \omega)} \right)^{-n} + \left(0.5 e^{j(-0.1\pi - \omega)} \right)^{-n} \right]$$

$$+ \frac{1}{2} \sum_{n=0}^{\infty} \left[\left(0.5 e^{j(0.1\pi - \omega)} \right)^n + \left(0.5 e^{j(-0.1\pi - \omega)} \right)^n \right] - 1$$

$$= \frac{1}{1 - 0.5 e^{j(0.1\pi - \omega)}} + \frac{1}{1 - 0.5 e^{j(-0.1\pi - \omega)}} - 1$$

$$= \frac{2}{1 - 0.5 e^{j(0.1\pi - \omega)}} + \frac{2}{1 - 0.5 e^{j(-0.1\pi - \omega)}} - 1$$

Figure 13: Problem 11 Part 5