Package 'CSTE'

November 19, 2024

Version 3.0.0

Date 2024-11-16			
Type Package			
Title Covariate Specific Treatment Effect (CSTE) Curve			
Description A uniform statistical inferential tool in making individualized treatment decisions, which implements the methods of Ma et al. (2017) <doi:10.1177 0962280214541724=""> and Guo et al. (2021)<doi:10.1080 01621459.2020.1865167="">. It uses a flexible semiparametric modeling strategy for heterogeneous treatment effect estimation in high-dimensional settings and can gave valid confidence bands. Based on it, one can find the subgroups of patients that benefit from each treatment, thereby making individualized treatment selection.</doi:10.1080></doi:10.1177>			
License GPL (>= 2)			
Encoding UTF-8			
Imports Rcpp (>= 1.0.4), fda, splines, survival, locpol, dfoptim			
LinkingTo Repp			
RoxygenNote 7.1.1			
Suggests mytnorm, sigmoid			
NeedsCompilation yes			
Author Peng Wu [aut], Wenjie Hu [aut, cre], Yuhao Deng [aut], Haoxiang Wang [aut], Xiaohua Zhou [aut]			
Maintainer Wenjie Hu <huwenjie@pku.edu.cn></huwenjie@pku.edu.cn>			
Repository CRAN			
Date/Publication 2024-11-19 12:00:15 UTC			
Contents			
cste_bin			

2 cste_bin

```
      cste_surv_SCB
      7

      penC
      8

      predict_cste_bin
      8

      select_cste_bin
      9
```

Index 11

cste_bin

Estimate the CSTE curve for binary outcome.

Description

Estimate covariate-specific treatment effect (CSTE) curve. Input data contains covariates X, treatment assignment Z and binary outcome Y. The working model is

$$logit(\mu(X,Z)) = g_1(X\beta_1)Z + g_2(X\beta_2),$$

where $\mu(X, Z) = E(Y|X, Z)$. The model implies that $CSTE(x) = g_1(x\beta_1)$.

Usage

```
cste_bin(
    x,
    y,
    z,
    beta_ini = NULL,
    lam = 0,
    nknots = 1,
    max.iter = 200,
    eps = 0.001
)
```

Arguments

```
Х
                     samples of covariates which is a n * p matrix.
                     samples of binary outcome which is a n * 1 vector.
У
                     samples of treatment indicator which is a n * 1 vector.
Z
beta_ini
                     initial values for (\beta'_1, \beta'_2)', default value is NULL.
                     value of the lasso penalty parameter \lambda for \beta_1 and \beta_2, default value is 0.
lam
nknots
                     number of knots for the B-spline for estimating g_1 and g_2.
max.iter
                     maximum iteration for the algorithm.
                     numeric scalar \geq 0, the tolerance for the estimation of \beta_1 and \beta_2.
eps
```

cste_bin 3

Value

A S3 class of cste, which includes:

- beta1: estimate of β_1 .
- beta2: estimate of β_2 .
- B1: the B-spline basis for estimating g_1 .
- B2: the B-spline basis for estimating g_2 .
- delta1: the coefficient of B-spline for estimating g_1 .
- delta2: the coefficient for B-spline for estimating g_2 .
- iter: number of iteration.
- g1: the estimate of $g_1(X\beta_1)$.
- g2: the estimate of $g_2(X\beta_2)$.

References

Guo W., Zhou X. and Ma S. (2021). Estimation of Optimal Individualized Treatment Rules Using a Covariate-Specific Treatment Effect Curve with High-dimensional Covariates, *Journal of the American Statistical Association*, 116(533), 309-321

See Also

```
cste_bin_SCB, predict_cste_bin, select_cste_bin
```

Examples

```
## Quick example for the cste
library(mvtnorm)
library(sigmoid)
# ----- Example 1: p = 20 ----- #
## generate data
n <- 2000
p <- 20
set.seed(100)
# generate X
sigma \leftarrow outer(1:p, 1:p, function(i, j){ 2^(-abs(i-j)) } )
X \leftarrow rmvnorm(n, mean = rep(0,p), sigma = sigma)
X \leftarrow relu(X + 2) - 2
X \leftarrow 2 - relu(2 - X)
# generate Z
Z < - rbinom(n, 1, 0.5)
# generate Y
beta1 <- rep(0, p)
beta1[1:3] \leftarrow rep(1/sqrt(3), 3)
```

4 cste_bin

```
beta2 <- rep(0, p)
beta2[1:2] \leftarrow c(1, -2)/sqrt(5)
mu1 <- X %*% beta1
mu2 <- X %*% beta2
g1 <- mu1*(1 - mu1)
g2 \leftarrow exp(mu2)
prob <- sigmoid(g1*Z + g2)</pre>
Y <- rbinom(n, 1, prob)</pre>
## estimate the CSTE curve
fit <- cste_bin(X, Y, Z)</pre>
## plot
plot(mu1, g1, cex = 0.5, xlim = c(-2,2), ylim = c(-8, 3),
     xlab = expression(X*beta), ylab = expression(g1(X*beta)))
     ord <- order(mu1)</pre>
     points(mu1[ord], fit$g1[ord], col = 'blue', cex = 0.5)
## compute 95% simultaneous confidence band (SCB)
res <- cste_bin_SCB(X, fit, alpha = 0.05)
## plot
plot(res$or_x, res$fit_x, col = 'red',
     type="1", lwd=2, lty = 3, ylim = c(-10,8),
     ylab=expression(g1(X*beta)), xlab = expression(X*beta),
     main="Confidence Band")
lines(res$or_x, res$lower_bound, lwd=2.5, col = 'purple', lty=2)
lines(res$or_x, res$upper_bound, lwd=2.5, col = 'purple', lty=2)
abline(h=0, cex = 0.2, lty = 2)
legend("topleft", legend=c("Estimates", "SCB"),
        lwd=c(2, 2.5), lty=c(3,2), col=c('red', 'purple'))
# ----- Example 2: p = 1 ----- #
## generate data
set.seed(15)
p <- 1
n <- 2000
X <- runif(n)</pre>
Z < - rbinom(n, 1, 0.5)
g1 <- 2 * sin(5*X)
g2 \leftarrow exp(X-3) * 2
prob <- sigmoid( Z*g1 + g2)</pre>
Y <- rbinom(n, 1, prob)
## estimate the CSTE curve
fit <- cste_bin(X, Y, Z)</pre>
## simultaneous confidence band (SCB)
X <- as.matrix(X)</pre>
res <- cste_bin_SCB(X, fit)</pre>
```

5 cste_bin_SCB

```
## plot
plot(res$or_x, res$fit_x, col = 'red', type="l", lwd=2,
     lty = 3, xlim = c(0, 1), ylim = c(-4, 4),
     ylab=expression(g1(X)), xlab = expression(X),
    main="Confidence Band")
lines(res$or_x, res$lower_bound, lwd=2.5, col = 'purple', lty=2)
lines(res$or_x, res$upper_bound, lwd=2.5, col = 'purple', lty=2)
abline(h=0, cex = 0.2)
lines(X[order(X)], g1[order(X)], col = 'blue', lwd = 1.5)
legend("topright", legend=c("Estimates", "SCB", 'True CSTE Curve'),
lwd=c(2,\ 2.5,\ 1.5),\ lty=c(3,2,1),\ col=c('red',\ 'purple','blue'))
```

cste_bin_SCB

Calculate simultaneous confidence bands of CSTE curve for binary outcome.

Description

This function calculates simultaneous confidence bands of CSTE curve for binary outcome.

Usage

```
cste_bin_SCB(x, fit, h = NULL, alpha = 0.05)
```

Arguments

Х samples of predictor, which is a m * p matrix. fit a S3 class of cste. h

kernel bandwidth.

alpha the simultaneous confidence bands are of $1 - \alpha$ confidence level.

Value

A list which includes:

- or_x: the ordered value of $X\beta_1$.
- fit_x: the fitted value of CSTE curve corresponding to or_x.
- lower_bound: the lower bound of CSTE's simultaneous confidence band.
- upper_bound: the upper bound of CSTE's simultaneous confidence band.

References

Guo W., Zhou X. and Ma S. (2021). Estimation of Optimal Individualized Treatment Rules Using a Covariate-Specific Treatment Effect Curve with High-dimensional Covariates, Journal of the American Statistical Association, 116(533), 309-321

6 cste_surv

See Also

cste_bin

cste_surv

Estimate the CSTE curve for time to event outcome with right censoring.

Description

Estimate the CSTE curve for time to event outcome with right censoring. The working model is

$$\lambda(t|X,Z) = \lambda_0(t) \exp(\beta^T(X)Z + g(X)),$$

which implies that $CSTE(x) = \beta(x)$.

Usage

```
cste_surv(x, y, z, s, h)
```

Arguments

x	samples of biomarker (or covariate) which is a $n*1$ vector and should be scaled between 0 and 1.
у	samples of time to event which is a $n * 1$ vector.
Z	samples of treatment indicator which is a $n * K$ matrix.
S	samples of censoring indicator which is a $n * 1$ vector.
h	kernel bandwidth.

Value

A n * K matrix, estimation of $\beta(x)$.

References

Ma Y. and Zhou X. (2017). Treatment selection in a randomized clinical trial via covariate-specific treatment effect curves, *Statistical Methods in Medical Research*, 26(1), 124-141.

See Also

cste_surv_SCB

cste_surv_SCB 7

cste_surv_SCB	Calculate simultaneous confidence bands (SCB) of CSTE curve for time to event outcome with right censoring.

Description

This function calculates simultaneous confidence bands of CSTE curve for time to event outcome with right censoring.

Usage

```
cste\_surv\_SCB(1, x, y, z, s, h, m, alpha = 0.05)
```

Arguments

1	contraction vector with dimension K .
X	samples of biomarker (or covariate) which is a $n*1$ vector and should be scaled between 0 and 1.
у	samples of time to event which is a $n * 1$ vector.
z	samples of treatment indicator which is a $n * K$ matrix.
S	samples of censoring indicator which is a $n * 1$ vector.
h	kernel bandwidth.
m	number of turns of resampling.
alpha	the $(1-\alpha)$ -confidence level of SCB.

Value

A n*3 matrix, estimation of $l^T\beta(x)$ and its simultaneous confidence bands.

References

Ma Y. and Zhou X. (2017). Treatment selection in a randomized clinical trial via covariate-specific treatment effect curves, *Statistical Methods in Medical Research*, 26(1), 124-141.

See Also

```
cste_surv
```

8 predict_cste_bin

penC

Solve the penalized logistic regression.

Description

Solve the penalized logistic regression.

Usage

```
penC(x, y, off, beta, lam, pen)
```

Arguments

x samples of covariates which is a n * p matrix.

y samples of binary outcome which is a n * 1 vector.

off offset in logistic regression.

beta initial estimates.

lam value of the lasso penalty parameter λ for β_1 and β_2 .

pen 1: MCP estimator; 2: SCAD estimator.

Value

A numeric vector, estimate of beta

predict_cste_bin

Predict the CSTE curve of new data for binary outcome.

Description

Predict the CSTE curve of new data for binary outcome.

Usage

```
predict_cste_bin(obj, newx)
```

Arguments

obj a S3 class of cste.

newx samples of covariates which is a m * p matrix.

select_cste_bin 9

Value

A S3 class of cste which includes

```
• g1: predicted g_1(X\beta_1).
```

- g2: predicted $g_2(X\beta_2)$.
- B1: the B-spline basis for estimating g_1 .
- B2: the B-spline basis for estimating g_2 .

References

Guo W., Zhou X. and Ma S. (2021). Estimation of Optimal Individualized Treatment Rules Using a Covariate-Specific Treatment Effect Curve with High-dimensional Covariates, *Journal of the American Statistical Association*, 116(533), 309-321

See Also

```
cste_bin
```

select_cste_bin

Select the optimal tuning parameters in CSTE estimation for binary outcome.

Description

select lasso penalty parameter λ for β_1 and β_2 in CSTE estimation.

Usage

```
select_cste_bin(
    x,
    y,
    z,
    lam_seq,
    beta_ini = NULL,
    nknots = 1,
    max.iter = 2000,
    eps = 0.001
)
```

Arguments

```
x samples of covariates which is a n * p matrix.
```

y samples of binary outcome which is a n * 1 vector.

z samples of treatment indicator which is a n*1 vector.

lam_seq a sequence for the choice of λ .

select_cste_bin

beta_ini initial values for $(\beta_1',\beta_2')'$, default value is NULL. nknots number of knots for the B-spline for estimating g_1 and g_2 . max.iter maximum iteration for the algorithm. eps numeric scalar ≥ 0 , the tolerance for the estimation of β_1 and β_2 .

Value

A list which includes

• optimal: optimal cste within the given the sequence of λ .

• bic: BIC for the sequence of λ .

• lam_seq: the sequence of λ that is used.

References

Guo W., Zhou X. and Ma S. (2021). Estimation of Optimal Individualized Treatment Rules Using a Covariate-Specific Treatment Effect Curve with High-dimensional Covariates, *Journal of the American Statistical Association*, 116(533), 309-321

See Also

cste_bin

Index

```
cste_bin, 2, 6, 9, 10
cste_bin_SCB, 3, 5
cste_surv, 6, 7
cste_surv_SCB, 6, 7

penC, 8
predict_cste_bin, 3, 8
select_cste_bin, 3, 9
```