IN THE CLAIMS:

- 1. (CANCELLED)
- 2. (PREVIOUSLY PRESENTED) The motion detection apparatus of claim 4, further comprising a motion expansion unit expanding an extent of a pixel motion detected based upon a motion information value from the pixel with the motion to a neighboring pixel.
- 3. (PREVIOUSLY PRESENTED) The motion detection apparatus of claim 4, wherein the motion detection unit calculates each motion information value based upon a previous field and a next field immediately before and after the nth field, respectively, and depending on a difference of the pixel values between pixels/blocks at corresponding locations in the previous field and the next field.
- 4. (PREVIOUSLY PRESENTED) A motion detection apparatus, comprising: a motion detection unit sequentially being input with a plurality of fields that are temporally successive and detecting motion information values representing presence and absence of a motion for each pixel/block of an input nth field;

a motion calculation buffer storing the motion information values for each pixel/block; and a motion calculator correcting the motion information values of the input nth field stored in the motion calculation buffer unit, based on the motion information values of an input n+1th field detected by the motion detection unit, by adding a given first value to a motion information value stored in the motion calculation buffer unit if a corresponding pixel/block has motion, and subtracting a given second value from a motion information value stored in the motion calculation buffer unit if a corresponding pixel/block has no motion.

- 5. (ORIGINAL) The motion detection apparatus of claim 4, wherein the given first value is greater than the given second value.
- 6. (ORIGINAL) The motion detection apparatus of claim 4, wherein the motion calculation unit comprises:

an adder adding the given first value to the motion information value and outputting an added value;

a subtracter subtracting the given second value from the motion information value and outputting a subtracted value;

first and second limiters correcting the motion information values output from the adder and the subtracter to be within a certain range and outputting respective corrected motion information values of the limiters; and

a multiplexer selectively outputting either of the motion information values output from the first and the second limiters depending on a motion information value of the input n+1th field.

7. (CANCELLED)

- 8. (PREVIOUSLY PRESENTED) The motion detection method of claim 10, further comprising expanding an extent of a pixel motion detected from a motion information value from the pixel with the motion to a neighboring pixel.
- 9. (PREVIOUSLY PRESENTED) The motion detection method of claim 10, wherein the detecting of the motion information values comprises calculating the motion information values based upon a previous field and a next field immediately before and after the input nth field, respectively, and depending on a difference of the pixel values between pixels/blocks at corresponding location in the previous field and the next field.
- 10. (PREVIOUSLY PRESENTED) A motion detection method, comprising: sequentially inputting a plurality of fields that are temporally successive; detecting motion information values representing presence and absence of a motion for each pixel/block of an input nth field;

storing the motion information values for each pixel/block; and

correcting the motion information values of the input nth field stored in the motion calculation buffer unit, based on the motion information values of an input n+1th field, by adding a given first value to a stored motion information value if a corresponding pixel/block has motion, and subtracting a given second value from a stored motion information value if the corresponding pixel/block has no motion.

- 11. (ORIGINAL) The motion detection method of claim 10, wherein the given first value is greater than the given second value.
- 12. (ORIGINAL) The motion detection method of claim 10, wherein the correcting of the motion information values further comprises:

adding the given first value to the motion information value and outputting the added value;

subtracting the given second value from the motion information value and outputting the subtracted value;

limiting the motion information values output from the adding and the subtracting to be within a certain range and outputting the corrected values of the adding and the subtracting; and selectively outputting either of the motion information values output from the limiting depending on a motion information value of the input n+1th field.

13. (PREVIOUSLY PRESENTED) A moving image processor, comprising: a motion detector detecting motion information values representing presence and absence of a motion for each pixel/block of an input nth image field; and

a motion calculator adjusting according to a formulaic value the detected motion information values of the input nth image field based upon motion information values of an input n+1th image field.

- 14. (ORIGINAL) The processor of claim 13, wherein the motion calculator calculates a mixed value (α) according to the adjusted detected motion information values of the input nth image field and outputs the mixed value to a deinterlacing processor outputting an image frame based upon the mixed value.
- 15. (ORIGINAL) The processor of claim 14, wherein the deinterlacing processor mixes intra-field and inter-field interpolation outputs and the adjusted detected motion information values to output the image frame.
- 16. (ORIGINAL) The processor of claim 13, wherein the motion information values are adjusted according to a formula V(i, j) = V(i, j) + T1 or a formula V(i, j) = V(i, j) T2, and wherein the V(i, j) represents a motion information value for jth pixel on line ith of the input nth image field, and T1 and T2 are random first and second values within a predetermined range, respectively.
- 17. (PREVIOUSLY PRESENTED) A machine readable storage storing at least one program controlling a moving image processor according to a process comprising:

Serial No. 10/695,169

removing spurious still regions and spurious motion regions during an image field motion detection, based upon a limited added to or a limited subtracted from, pixel motion information values of a current image field using only immediately preceding and succeeding image fields to the current image field.