2018年春季学期第17周周报

姓名 杜晓冬

本周进展

【本周研究】

● 上庄鸡舍改造

近两周跟踪大鸡舍改造进度,清理3号舍旧线缆和鸡笼,将清粪板和底网进行了 更换,下周冲洗鸡舍后可以联系进鸡适宜(7周龄蛋鸡),同步增加料槽和栖杆等。

大鸡舍改造初步方案已经成型,明确我们自己所需传感器、摄像头、栖杆安装位置和数量,并绘制布局图,按前中后三大组进行划分,鸡舍长 16.8 米,宽 8.6 米。舍内设备用于全方位监测蛋鸡活动和生存环境。①观察前期青年鸡上架情况②观察后期舍内小气候对生产性能的影响(此处,刘慕霖补充传感器尺寸图)。

组会后补充细节尺寸(栖杆)

3号鸡舍

目前小鸡舍已确定最终饲养面积,栖架饲养鸡只数(50-60 只),借鉴之前师兄的试验设计方案。海兰褐生长期笼养饲养密度推荐310cm²/只,835cm²/只;产蛋期欧盟标准450~550cm²/只。笼养养殖规模一样。

的80只海兰褐蛋鸡(86日龄)为研究对象,进鸡时间为2013年6月3日,随机将海兰褐蛋鸡分成两组,一组蛋鸡饲养于栖架散养系统中(55只蛋鸡),另一组饲养于笼养系统中(25只蛋鸡)。

栖架散养系统(图 5-1)的大小为 4.5 m×0.75 m×2.9 m(长×宽×高), 主要包括 2 层产蛋箱(总面积为 0.675 m², 位于顶部, 分为上下层), 3 层采食槽, 2 条饮水线(乳头式饮水器), 12 根长为 75cm 的栖杆(平均每只蛋鸡所占的栖杆长度为 16.4 cm)以及面积为 1.05 m²的沙浴区域,各层平台与网面均采用金属网上铺设塑料网,总面积为 32625 cm²(平均每只蛋鸡所占面积为 593 cm²),鸡粪通过塑料网掉入下层;笼养系统采用传统典型鸡笼(图 5-2),每个鸡笼饲养 5 只海兰褐蛋鸡,平均每只鸡占有的笼底面积为 500 cm²。

饲养期间,栖架散养系统与笼养系统放置在同一房间内,保证两个系统的免疫流程(表 5-1)及光照制度(表 5-2)等管理方式、舍内的空气温湿度、光照度以及粉尘浓度等环境条件均相同,两个系统中蛋鸡均饲喂相同成分的饲料和饮用水。

三层料槽,两层产蛋箱面积,近一个周预计完成底网和线材的采购工作,然后安排研究生一 起安装。栖杆采用称重传感器,配备音视频监控设备。监测水线和料线,采食和饮水处安置摄像

头观察行为。

● 完善试验方案

1、试验材料

若干 Kinect 设备,移动硬盘存储设备(热应激状态下鸡只发声识别(喘息声)、图像识别(鸡嘴张开等)开发算法[1],原始数据存储,处理数据存入数据库),环境传感器(温湿度、二氧化碳、氨气、粉尘传感器,根据环境舒适度选型传感器)。采集程序和数据分析程序基于 LabVIEW 软件平台编写,已经完成现场调试工作。试验地点选取上庄 3 号鸡舍(平养模式/栖架/笼养模式),计

划七月底进鸡,育成期3个月试验周期,针对夏季热环境状态下动物行为表现进行观察,产蛋期分析其生产性能的综合影响因素。

2、试验方法(热应激行为)

安装 Kinect 设备采集图像和声音样本数据,选取白天最热的时间段(13:00-15:00)进行试验,记录当时所处的室内外环境状况,音视频同步拍摄录制蛋鸡群体活动,同时饲养员或实验员记录农场日志(记录试验期间鸡舍内的日常操作状态)作为对比或黄金法则。

白天侧重蛋鸡热应激行为(夏季热应激、冬季呼吸道声音),热应激行为可以人为创造(粗放控制蛋鸡舍小气候、生理参数测试可配合验证热应激行为,如正常运动心率为 280-320 次/分钟,静止心率 230 次/分钟,呼吸频率相对固定),采用加温设备/关闭小鸡舍风机等,提升鸡舍温度。鸡群热应激行为特点[2]:

- ✓ 适宜温度范围 24-27℃,当环境气温超过临界温度 27℃上限时,机体散热出现困难,呼吸加快,体温上升,为及时散发热量,蛋鸡会减少运动(图像活动度指标),常呈蹲伏状,或将翅膀悬挂于身体两侧站着,扩大体表面积(图像空间占有率指标),增加散热,饮水增加,采食下降。
- ✓ 在急性热应激中,如气温在 90 分钟内从 24℃升至 45℃,血浆 pH 从 7.31 升至 7.508; 原饲养于 15~22℃的轻型杂交系母鸡,如突然分别受 35℃3 小时和 41℃2 小时的急性热应激,血液 pH 值分别升至 7.55 和 7.65,达到严重呼吸性喊中毒。
- ✓ 高温情况下采食、饮水、热喘息行为(声音监测,音色特征或 MFCC 感知特征)比例较高^[3] 蛋鸡的适宜温度为 13~24℃。27℃以上环境温度,鸡群会表现出不同程度的热应激状态^[4],环境温度 38℃以上对蛋鸡有很大伤害^[5]。

类型	THI 指数	生理参数	行为表现				
正常	< 70	如正常运动心率为	采食和饮水表现正				
		280-320 次/分钟,静	常,鸡只运动正常				
		止心率 230 次/分钟,					
		成年鸡呼吸率 20-25					
		次/分钟; 血液 pH7.3					
		左右;正产体温 40-					
		42.5°C					
轻微热应激	70-75		常呈蹲伏状,或				
严重热应激	>76	35℃,呼吸次数达到	将翅膀悬挂于身体两				
		120-160 次/分钟,消	侧站着,扩大体表面				
		耗大量水分;血液 pH	积,增加散热;温度				
		超过 7.5; 体温超过	越高,采食量越少,				
		43.4℃,体温每上升	每上升 1℃, 采食量				
		0.6℃,心率上升30次	下降 1.5%-2.0%; 热				
		/分,45℃为鸡只休克	喘息率(热喘息蛋鸡				
		温度	所占百分比,分六级				
			进行福利评分)[1]				

没有热喘息-100 分,少数热喘息-80 分,接近半数蛋鸡热喘息-60 分,超过一半鸡热喘息-40 分,75%以上鸡热喘息-20 分,所有鸡热喘息-0 分。

相对湿度(%)																						
温度	°F	$^{\circ}$	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
	68	20	63	63	63	64	64	64	64	65	65	65	66	66	66	66	67	67	67	67	68	68
	72	22	64	65	65	66	66	66	67	67	67	68	68	69	69	69	70	70	70	71	71	72
	75	24	66	67	67	68	68	69	69	70	70	70	71	71	72	72	73	73	74	74	75	75
	79	26	68	69	69	70	70	71	71	72	73	73	74	74	75	75	76	77	77	78	78	79
	82	28	70	70	71	72	72	73	74	74	75	76	76	77	78	78	79	80	80	81	82	82
	86	30	71	72	73	74	74	75	76	77	78	78	79	80	81	81	82	83	84	84	85	86
	90	32	73	74	75	76	77	77	78	79	80	81	82	83	84	84	85	86	87	88	89	90
	93	34	75	76	77	78	79	80	81	82	83	84	84	85	86	87	88	89	90	91	92	93
	97	36	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	93	94	95	96	97
	100	38	78	79	81	82	83	84	85	86	88	89	90	91	92	93	95	96	97	98	99	100

图 热应激指数对应表

Xin 等人还制作了蛋鸡热应激指数表^[6],THI=0.60t_{db}+0.40t_{wb}。根据该表,当热应激指数小于70 时的空气湿热状态为蛋鸡的舒适区;当热应激指数在70 到75 之间时的空气湿热状态为蛋鸡的轻度热应激区,在该区间时,鸡群开始出现一些热应激的反应;当热应激指数大于76 到81 之间时,鸡群出现明显热应激的反应;当热应激指数大于81 时的空气湿热状态为蛋鸡的重度热应激区,蛋鸡的生产水平严重下降,甚至会出现大面积死亡。

轻微热应激和严重热应激状态考虑到生产实际条件限制和动物福利,限制在每次持续 2h 之内试验时间,间歇 0.5h,一天共进行 2 次,舒适过渡到轻微热应激再过渡到严重热应激,连续进行 2 个月试验保证数据量充足(满足 80%数据完整性)。

离线声音样本处理,运行 LabVIEW 程序,分析短时谱(SFFT)、声谱图等,获取蛋鸡热应激行为下的图像和音频特征(鸡发声主要频率范围是 400-6000Hz),50%试验数据用于建模和音视频数据库,25%试验数据作为验证数据(重复试验),25%数据作为模型的应用。

【参考文献】

- [1] 林海,杨军香.家禽养殖福利评价技术.中国农业科学技术出版社,2014
- [2] 田允波. 蛋鸡热应激. 辽宁畜牧兽医, 1993(04):38~40
- [3] 郭盈盈. 热应激对不同饲养模式蛋鸡福利状况的影响. 中国畜牧兽医学会动物营养学分会第十次学术研讨会论文集.2008: 中国浙江杭州. 1
- [4] 秦宗才. 养殖场蛋鸡热应激的影响与防治. 畜禽业, 2017,28(4):30~31
- [5] 杨雪峰, 王艳玲. 蛋鸡热应激的研究进展. 家畜生态学报, 1999, 20(1):41~45
- [6] http://www.hyline.com/userdocs/pages/TU_HEAT_ENG.pdf