

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

International Bureau

F5

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ : A23D 7/00, 9/00, A01H 5/10 C12N 5/14, 15/29, 15/82		A1	(11) International Publication Number: WO 92/20236 (43) International Publication Date: 26 November 1992 (26.11.92)																												
<p>(21) International Application Number: PCT/US92/04332</p> <p>(22) International Filing Date: 21 May 1992 (21.05.92)</p> <p>(30) Priority data:</p> <table> <tr><td>704,861</td><td>21 May 1991 (21.05.91)</td><td>US</td></tr> <tr><td>773,096</td><td>7 October 1991 (07.10.91)</td><td>US</td></tr> <tr><td>782,263</td><td>24 October 1991 (24.10.91)</td><td>US</td></tr> <tr><td>824,247</td><td>22 January 1992 (22.01.92)</td><td>US</td></tr> </table> <p>(60) Parent Applications or Grants (63) Related by Continuation</p> <table> <tr><td>US</td><td>824,247 (CIP)</td></tr> <tr><td>Filed on</td><td>22 January 1992 (22.01.92)</td></tr> <tr><td>US</td><td>773,096 (CIP)</td></tr> <tr><td>Filed on</td><td>7 October 1991 (07.10.91)</td></tr> <tr><td>US</td><td>782,263 (CIP)</td></tr> <tr><td>Filed on</td><td>24 October 1991 (24.10.91)</td></tr> <tr><td>US</td><td>704,861 (CIP)</td></tr> <tr><td>Filed on</td><td>21 May 1991 (21.05.91)</td></tr> </table>		704,861	21 May 1991 (21.05.91)	US	773,096	7 October 1991 (07.10.91)	US	782,263	24 October 1991 (24.10.91)	US	824,247	22 January 1992 (22.01.92)	US	US	824,247 (CIP)	Filed on	22 January 1992 (22.01.92)	US	773,096 (CIP)	Filed on	7 October 1991 (07.10.91)	US	782,263 (CIP)	Filed on	24 October 1991 (24.10.91)	US	704,861 (CIP)	Filed on	21 May 1991 (21.05.91)	<p>(72) Inventors; and (75) Inventors/Applicants (<i>for US only</i>) : VOELKER, Toni, Alois [DE/US]; 1206 Covell Place, Davis, CA 95616 (US). DAVIES, Huw, Maelor [GB/US]; 307 Grande Avenue, Davis, CA 95616 (US).</p> <p>(74) Agents: LASSEN, Elizabeth et al.; Calgene, Inc., 1920 Fifth Street, Davis, CA 95616 (US).</p> <p>(81) Designated States: AT (European patent), BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), MC (European patent), NL (European patent), SE (European patent), US .</p> <p>Published: <i>With international search report.</i></p>	
704,861	21 May 1991 (21.05.91)	US																													
773,096	7 October 1991 (07.10.91)	US																													
782,263	24 October 1991 (24.10.91)	US																													
824,247	22 January 1992 (22.01.92)	US																													
US	824,247 (CIP)																														
Filed on	22 January 1992 (22.01.92)																														
US	773,096 (CIP)																														
Filed on	7 October 1991 (07.10.91)																														
US	782,263 (CIP)																														
Filed on	24 October 1991 (24.10.91)																														
US	704,861 (CIP)																														
Filed on	21 May 1991 (21.05.91)																														
<p>(71) Applicant (<i>for all designated States except US</i>): CALGENE, INC. [US/US]; 1920 Fifth Street, Davis, CA 95616 (US).</p>																															

(54) Title: PLANT MEDIUM-CHAIN THIOESTERASES

(57) Abstract

By this invention, further properties and uses of plant medium-chain thioesterases are provided. In a first embodiment, this invention relates to plant seed and oil derived from that seed, which normally do not contain laurate, but now are found to contain laurate. In yet a different embodiment, this invention relates to a particular medium-chain thioesterase sequence, the Bay medium-chain thioesterase DNA sequence and to DNA constructs for the expression of this enzyme in a host cell. Other aspects of this invention relate to methods for using a plant medium-chain thioesterase. Expression of a plant medium-chain thioesterase in a bacterial cell to produce medium-chain fatty acids is provided. Methods to produce an unsaturated medium-chain thioesterase by the use of a plant medium-chain thioesterase are also described herein.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FI	Finland	ML	Mali
AU	Australia	FR	France	MN	Mongolia
BB	Barbados	GA	Gabon	MR	Mauritania
BE	Belgium	GB	United Kingdom	MW	Malawi
BF	Burkina Faso	GN	Guinea	NL	Netherlands
BG	Bulgaria	GR	Greece	NO	Norway
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	IE	Ireland	RO	Romania
CA	Canada	IT	Italy	RU	Russian Federation
CF	Central African Republic	JP	Japan	SD	Sudan
CG	Congo	KP	Democratic People's Republic of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SN	Senegal
CI	Côte d'Ivoire	LI	Liechtenstein	SU	Soviet Union
CM	Cameroon	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
DE	Germany	MC	Monaco	US	United States of America
DK	Denmark	MC	Madagascar		
ES	Spain				

PLANT MEDIUM-CHAIN THIOESTERASES

Background

Members of several plant families synthesize large amount of predominantly medium-chain (C8-C14) triacylglycerols in specialized storage tissues, some of which are harvested for production of important dietary or industrial medium-chain fatty acids (F.D. Gunstone, *The Lipid Handbook* (Chapman & Hall, New York, 1986) pp. 55-112). Laurate (C12:0), for example, is currently extracted from seeds of tropical trees at a rate approaching one million tons annually (Battey, et al., *Tibtech* (1989) 71:122-125).

The mechanism by which the ubiquitous long-chain fatty acid synthesis is switched to specialized medium-chain production has been the subject of speculation for many years (Harwood, *Ann. Rev. Plant Physiol. Plant Mol. Biology* (1988) 39:101-138). Recently, Pollard, et al., (*Arch. of Biochem. and Biophys.* (1991) 284:1-7) identified a medium-chain acyl-ACP thioesterase activity in developing oilseeds of California bay, *Umbellularia californica*. This activity appears only when the developing cotyledons become committed to the near-exclusive production of triglycerides with lauroyl (12:0) and caproyl (10:0) fatty acids. This work presented the first evidence for a mechanism for medium-chain fatty acid synthesis in plants: During elongation the fatty acids remain esterified to acyl-carrier protein (ACP). If the thioester is hydrolyzed prematurely, elongation is terminated by release of the medium-chain fatty acid. The Bay thioesterase was subsequently purified by Davies et al., (*Arch. Biochem. Biophys.* (1991) 290:37-45) which allowed the cloning of a corresponding cDNA and described its use to obtain related clones and to modify the triglyceride composition of plants (WO 91/16421).

Summary of the Invention

By this invention, further properties and uses of plant medium-chain thioesterases are provided.

- In a first embodiment, this invention relates to plant seed and oil derived from that seed, which normally do not contain laurate, but now are found to contain laurate.
- 5 Seed having as little as 1.0 percent mole laurate are significantly different from wild-type plant species which do not naturally store laurate in seed triglyceride oils.
- 10 Seed having a minimum of about 15 percent mole laurate, 33 percent laurate or 50 percent laurate are contemplated hereunder. Triglyceride oils in seed or derived from seed with at least two lauroyl fatty acyl groups is likewise contemplated. Brassica seed and oil derived from such seed
- 15 containing greater than 1.0 percent mole laurate is especially preferred.

In yet a different embodiment, this invention relates to a particular medium-chain thioesterase sequence, the Bay medium-chain thioesterase DNA sequence and to DNA constructs for the expression of this enzyme in a host cell. In particular, a start site for the structural gene sequence upstream to the start site previously reported for this sequence is described.

Other aspects of this invention relate to methods for using a plant medium-chain thioesterase. Expression of a plant medium-chain thioesterase in a bacterial cell to produce medium-chain fatty acids is provided. By this method, quantities of such fatty acids may be harvested in crystalline form from bacteria. Exemplified in the application is the use of *E.coli* and Bay thioesterase; the *fad D* *E.coli* mutant is particularly preferred. In addition, temperature ranges for improved laurate production are described.

Methods to produce an unsaturated medium-chain thioesterase by the use of a plant medium-chain

thioesterase are also described herein. It is now found that, even in plants which exclusively produce and incorporate quantities of saturated medium-chain acyl-ACP fatty acids into triglycerides, the thioesterase may have 5 activity against unsaturated fatty acids of the same length.

Description of the Figures

Figure 1. The full length of a bay thioesterase (pCGN3822) having an ATG codon at nucleotides 145-147 is 10 given. In 1A the nucleic acid sequence is given. In 1B, the translated amino acid sequence beginning at the ATG codon at nucleotides 145-147 is given.

Figure 2. Correlation of lauroyl thioesterase activity with the accumulation of acyl 12:0 in seeds of *A thaliana* is provided. Thioesterase activity is measured in 15 developing seeds of different independent transgenic plants. The % 12:0 value reflects the percent lauroyl acyl group in total fatty acid extracts, as measured by quantitative gas chromatography.

Figure 3. Nucleic acid and translated amino acid 20 sequence of a bay thioesterase clone, Bay D, which represents a second class of bay thioesterase genes, is presented.

Figure 4. Nucleic acid and translated amino acid 25 sequences of two safflower thioesterase clones, pCGN3264 (4A) and pCGN3265 (4B), is presented. DNA sequence, including additional 3' untranslated sequence of pCGN3265 is presented in Figure 4C.

Figure 5. Nucleic acid sequence of a camphor 30 thioesterase PCR fragment is presented in Figure 5A. Nucleic acid and translated amino acid sequences of a camphor PCR-generated thioesterase encoding sequence is presented in Figure 5B.

Figure 6. Nucleic acid sequence of a *Brassica campestris* thioesterase clone is presented in Figure 6. Translated amino acid sequence from the proposed MET initiation codon is also shown.

5 Figure 7. Lauroyl levels and C12:0-ACP thioesterase activity for seeds from transgenic *B. napus* is presented.

Figure 8. Comparison of safflower and bay thioesterase amino acid sequence is presented. The top line represents amino acids 61-385 of the safflower 10 thioesterase amino acid sequence in Figure 4B. The bottom line represents amino acids 84-382 of the bay thioesterase amino acid sequence in Figure 1B.

15 Figure 9. Fatty acid composition of 100 seeds from transgenic *Arabidopsis* plant 3828-13 is compared to the fatty acid composition of seeds from a control *Arabidopsis* plant.

20 Figure 10. Fatty acid content of 26 transgenic *Arabidopsis* plants is provided in Figure 10A in order of increasing fatty acid content. The transformants producing detectable levels of laurate are indicated. In Figure 10B, the content of C18:3, C18:2 and C16:0 fatty acids in these plants are shown.

25 Figure 11. Mole percent laurate contents in developing seeds of transgenic *Brassica napus* are presented as the number of transgenic events yielding the indicated laurate levels. Results from pCGN3824 transformants are shown in Figure 11A and results from pCGN3828 transformants are shown in Figure 11B.

30 Figure 12. DNA sequence of a PCR fragment of a *Cuphea* thioesterase gene is presented. Translated amino acid sequence in the region corresponding to the *Cuphea* thioesterase gene is also shown.

DETAILED DESCRIPTION OF THE INVENTION

Plant thioesterases, including medium-chain plant thioesterases are described in WO 91/16421 (PCT/US91/02960) and USSN 07/824,247 which are hereby incorporated by reference in their entirety.

A plant medium-chain thioesterase of this invention includes any sequence of amino acids, peptide, polypeptide or protein obtainable from a plant source which demonstrates the ability to catalyze the production of free fatty acid(s) from C8-C14 fatty acyl-ACP substrates under plant enzyme reactive conditions. By "enzyme reactive conditions" is meant that any necessary conditions are available in an environment (i.e., such factors as temperature, pH, lack of inhibiting substances) which will permit the enzyme to function.

Plant thioesterases are obtainable from the specific exemplified sequences provided herein and from related sources. For example, several species in the genus *Cuphea* accumulate triglycerides containing medium-chain fatty acids in their seeds, e.g., *procumbens*, *lutea*, *hookeriana*, *hyssopifolia*, *wrightii* and *inflata*. Another natural plant source of medium-chain fatty acids are seeds of the Lauraceae family: e.g., *Pisa* (*Actinodophne hookeri*) and Sweet Bay (*Laurus nobilis*). Other plant sources include Ulmaceae (elm), Myristicaceae, Simarubaceae, Vochysiaceae, and Salvadoraceae, and rainforest species of *Erisma*, *Picramnia* and *Virola*, which have been reported to accumulate C14 fatty acids.

As noted above, plants having significant presence of medium-chain fatty acids therein are preferred candidates to obtain naturally-derived medium-chain preferring plant thioesterases. However, it should also be recognized that other plant sources which do not have a significant presence of medium-chain fatty acids may be readily screened as other enzyme sources. In addition, a

comparison between endogenous medium-chain preferring plant thioesterases and between longer and/or shorter chain preferring plant thioesterases may yield insights for protein modeling or other modifications to create synthetic 5 medium-chain preferring plant thioesterases as well as discussed above.

One skilled in the art will readily recognize that antibody preparations, nucleic acid probes (DNA and RNA) and the like may be prepared and used to screen and recover 10 "homologous" or "related" thioesterases from a variety of plant sources. For immunological screening methods, antibody preparations either monoclonal or polyclonal are utilized. For detection, the antibody is labeled using radioactivity or any one of a variety of second 15 antibody/enzyme conjugate systems that are commercially available. Examples of some of the available antibody detection systems are described by Oberfilder (*Focus* (1989) BRL Life Technologies, Inc., 11:1-5).

Homologous sequences are found when there is an 20 identity of sequence, which may be determined upon comparison of sequence information, nucleic acid or amino acid, or through hybridization reactions between a known thioesterase and a candidate source. Conservative changes, such as Glu/Asp, Val/Ile, Ser/Thr, Arg/Lys and Gln/Asn may 25 also be considered in determining amino acid sequence homology. Amino acid sequences are considered homologous by as little as 25% sequence identity between the two complete mature proteins. (See generally, Doolittle, R.F., *OF URFS and ORFS* (University Science Books, CA, 1986.) 30 Typically, a lengthy nucleic acid sequence may show as little as 50-60% sequence identity; and more preferably at least about 70% sequence identity, between the target sequence and the given plant thioesterase of interest excluding any deletions which may be present, and still be 35 considered related.

A genomic or other appropriate library prepared from the candidate plant source of interest may be probed with conserved sequences from plant thioesterase to identify homologously related sequences. Shorter probes are often 5 particularly useful for polymerase chain reactions (PCR), especially when highly conserved sequences can be identified.

When longer nucleic acid fragments are employed (>100 bp) as probes, especially when using complete or large cDNA 10 sequences, one would screen with low stringencies (for example 40-50°C below the melting temperature of the probe) in order to obtain signal from the target sample with 20-50% deviation, i.e., homologous sequences. (See, Beltz, et al., *Methods in Enzymology* (1983) 100:266-285.).

15 Using methods known to those of ordinary skill in the art, a DNA sequence encoding a plant medium-chain thioesterase can be inserted into constructs which can be introduced into a host cell of choice for expression of the enzyme, including plant cells for the production of 20 transgenic plants. Thus, potential host cells include both prokaryotic and eukaryotic cells. A host cell may be unicellular or found in a multicellular differentiated or undifferentiated organism depending upon the intended use. Cells of this invention may be distinguished by having a 25 plant thioesterase foreign to the wild-type cell present therein, for example, by having a recombinant nucleic acid construct encoding a plant thioesterase therein.

Also, depending upon the host, the regulatory regions will vary, including regions from viral, plasmid or 30 chromosomal genes, or the like. For expression in prokaryotic or eukaryotic microorganisms, particularly unicellular hosts, a wide variety of constitutive or regulatable promoters may be employed. Among transcriptional initiation regions which have been 35 described are regions from bacterial and yeast hosts, such as *E. coli*, *B. subtilis*, *Saccharomyces cerevisiae*, including

genes such as beta-galactosidase, T7 polymerase, tryptophan E and the like.

For the most part, when expression in a plant host cell is desired, the constructs will involve regulatory regions (promoters and termination regions) functional in plants. The open reading frame, coding for the plant thioesterase or functional fragment thereof will be joined at its 5' end to a transcription initiation regulatory region such as the wild-type sequence naturally found 5' upstream to the thioesterase structural gene. Numerous other transcription initiation regions are available which provide for a wide variety of constitutive or regulatable, e.g., inducible, transcription of the structural gene functions. Among transcriptional initiation regions used for plants are such regions associated with the structural genes such as for CaMV 35S and nopaline and mannopine synthases, or with napin, ACP promoters and the like. The transcription/translation initiation regions corresponding to such structural genes are found immediately 5' upstream to the respective start codons. If a particular promoter is desired, such as a promoter native to the plant host of interest or a modified promoter, i.e., having transcription initiation regions derived from one gene source and translation initiation regions derived from a different gene source, including the sequence encoding the plant thioesterase of interest, or enhanced promoters, such as double 35S CaMV promoters, the sequences may be joined together using standard techniques. For most applications desiring the expression of medium-chain thioesterases in plants, the use of seed specific promoters are preferred. It is now observed that such a plant medium-chain thioesterase is biologically active when expressed in bacteria and heterologous plant cells.

In particular, it is now seen that plant seed which would not normally contain medium-chain fatty acid, either as free fatty acids or incorporated into triglyceride molecules, can be found to contain such medium-chain fatty

acids. By seed which would not normally contain medium-chain fatty acid is meant seed which contains less than 0.1 mole percent of a given medium-chain fatty acid in total fatty acids. Thus, any plant seed containing a minimum of 5 1.0 mole percent of a given medium-chain fatty acid in total fatty acids is significantly modified. The use of a "mole percent in total fatty acids" is used to describe the relative ratio of medium-chain fatty acids out of the total fatty acid content. These figures can be converted to 10 weight percent if desired.

Medium chain fatty acid contents from a minimum of 1.0 mole percent laurate in total fatty acids to a minimum of 50.0 mole percent laurate in total fatty acids have been measured. The total fatty acids of a plant seed include 15 the embryo, endosperm and seed coat lipids. Additionally, it is noted that in medium-chain fatty acid containing seed, the content of laurate in total fatty acids directly corresponded with the laurate contents of the triacylglyceride. Thus, it is appropriate to consider the 20 total fatty acid content as the "total extractable oils" as well.

As to triacylglycerides which incorporate the medium-chain fatty acids, it is not clear which positions of the glycerol backbone are involved. Based upon the high levels 25 of medium-chain fatty acids measured, however, it is apparent that at least two positions of the triacylglyceride are involved.

Medium chain containing seed of *Arabidopsis* and *Brassica* are exemplified herein. In particular, seed of 30 transgenic *Arabidopsis* and *Brassica* plants containing novel fatty acid compositions as the result of expression of a heterologous medium-chain thioesterase structural gene under the regulatory control of seed specific promoters are described. By the expression of the DNA sequence encoding 35 the medium-chain thioesterase obtained from *Umbellularia californica* (Bay), laurate is now found in the extractible

oil of these respective seeds. As the presence of laurate increases, a corresponding decrease in oleic acid (18:1) is observed. Other fatty acid compositional changes with increased laurate include the increase of myristate (14:0) 5 and to a lesser degree, declines in the amounts of linolate (18:2), linolenate (18:3) and palmitate (16:0).

In *Arabidopsis*, analysis of 100 seed pools led to identification of transformed plants whose seeds contain up to 23.5 mole percent laurate, as compared to the 10 approximately 0% laurate measured in control seeds. As the T2 seeds, that is mature seeds from T1 plants (original transformant) represent a segregating population, even higher levels of laurate would be expected in seeds from second generation plants (T2) grown from the T2 seed.

15 Analysis of transgenic *Brassica* seed expressing a bay thioesterase gene (25-30 seed pools) results in identification of transformants whose seeds contain up to 37 mole percent laurate. Single and half-seed TAG analyses of these plants demonstrate that the levels of laurate in 20 the segregating seed population are at least as high as 50 mole percent. Half-seed TAG analysis allows for identification of the highest laurate producing T2 seeds, and subsequent germination of the remaining seed portion to produce second generation plants with desirable high 25 laurate seeds.

Correlations between the mole percent medium-chain fatty acid in total fatty acid and gene copy number have been observed. Therefore, although the minimum mole percent medium-chain fatty acid in total fatty acid 30 measured is approximately 50.0 mole percent, it is possible to increase medium-chain fatty acid levels further by the insertion of more genes. Such techniques may involve genetic engineering or plant breeding methods.

Some genetic engineering approaches to increase 35 medium-chain fatty acids would include insertion of additional DNA sequence encoding plant thioesterase

structural genes into cells, use of transcriptional initiation regions evidencing higher mRNA copy numbers or an improved timing specificity profile which corresponds better to the availability of substrate, for example. For 5 example, analysis of the time course of laurate production, under regulatory control of a napin promoter, in seeds of a *Brassica* plant demonstrates that the appearance of medium-chain thioesterase activity lags behind the onset of storage oil synthesis by approximately 5-7 days.

10 Calculations show that about 20% of the total fatty acids are already synthesized before the medium-chain thioesterase makes significant impact. Thus, substantially higher laurate levels (10-20%) might be obtained if the thioesterase gene is expressed at an earlier stage of

15 embryo development

Additionally, means to increase the efficiency of translation may include the use of the complete structural coding sequence of the medium-chain thioesterase gene. Thus, use of the complete 5'-region of the bay thioesterase 20 coding sequence, shown in Fig. 1B, may improve laurate production. Alternatively, if a medium-chain thioesterase has an unusual transit peptide sequence, i.e., one showing similarities with plastid thylakoid targeting, such as found with the bay thioesterase, then use of a more typical 25 plant transit, such as found in safflower (Fig. 4), acyl carrier protein, or ssu may be substituted.

The present invention also provides the opportunity for production of unsaturated fatty acids in a host cell, including plant cells. Plant medium-chain thioesterases, 30 even from plants which do not have any unsaturated medium-chain fatty acids, may be active against such substrate. Hence, a plant medium-chain fatty acid may be used to provide unsaturated medium-chain fatty acids.

For example, expression of the bay thioesterase in *E. coli* results in the production of laurate (C12:0), myristate (C14:0) and also unsaturated species of medium-

chain fatty acids (C12:1 and C14:1). The production of unsaturated fatty acids in *E. coli* is catalyzed by the action of β -hydroxydecanoyl thioester dehydrase. Sequence of the dehydrase is published (Cronan, et al., *J. Biol. Chem.* (1988) 263:4641-4646) and thus can be inserted into a host cell of interest, including a plant cell, for use in conjunction with a medium-chain thioesterase.

- When a plant medium-chain thioesterase is expressed in a bacterial cell, particularly in a bacterial cell which is not capable of efficiently degrading fatty acids, an abundance of medium-chain fatty acids can be produced and harvested from the cell. In some instances, medium-chain fatty acid salts form crystals which can be readily separated from the bacterial cells. Bacterial mutants which are deficient in acyl-CoA synthase, such as the *E. coli fadD* and *fadE* mutants, may be employed. In studies with *fadD* mutants, growth of *fadD* bay thioesterase transformants relative to the vector transformed control was severely retarded at 37°C, and less so at 25-30°C.
- Liquid cultures growing at the lower temperatures accumulated a precipitate and colonies formed on petri dishes at 25°C deposit large quantities of laurate crystals, especially at the surface. These deposits, as identified by FAB-mass spectrometry were identified as laurate. After separation and quantitation by gas chromatography, it is estimated that the laurate crystals deposited by the *fadD*-bay thioesterase transformants on petri dishes represented about 30-100% of the total dry weight of the producing bacteria.
- When expression of the medium-chain thioesterase is desired in plant cells, various plants of interest include, but are not limited to, rapeseed (Canola and High Erucic Acid varieties), sunflower, safflower, cotton, *Cuphea*, soybean, peanut, coconut and oil palms, and corn.
- Depending on the method for introducing the recombinant constructs into the host cell, other DNA sequences may be required. Importantly, this invention is applicable to

dicotyledyons and monocotyledons species alike and will be readily applicable to new and/or improved transformation and regulation techniques.

In any event, the method of transformation is not critical to the instant invention; various methods of plant transformation are currently available. As newer methods are available to transform crops, they may be directly applied hereunder. For example, many plant species naturally susceptible to *Agrobacterium* infection may be successfully transformed via tripartite or binary vector methods of *Agrobacterium* mediated transformation. In addition, techniques of microinjection, DNA particle bombardment, electroporation have been developed which allow for the transformation of various monocot and dicot plant species.

The following examples are provided by way of illustration and not by limitation.

EXAMPLES

Example 1 - Acyl-ACP Thioesterase cDNA Sequences

Sequence of a full length bay medium-chain thioesterase cDNA clone, pCGN3822, (3A-17), is presented in Fig. 1A.

The translated amino acid sequence of the bay thioesterase beginning at the ATG codon at positions 145-147 is shown in Figure 1B. This ATG is surrounded by a sequence which matches the rules for plant initiation of translation and is therefore likely to be the initiation codon utilized *in vivo*. Using the ATG at bp 145 for initiation, a 382 amino acid polypeptide can be translated from the bay thioesterase mRNA. DNA sequence of second class of bay thioesterase genes is provided in Fig. 3.

The N-terminal sequence of the mature bay thioesterase, isolated from the developing seeds, starts at amino acid residue 84 of the derived protein sequence. The

N-terminal 83 amino acids therefore represent sequence of a transit peptide. This sequence has features common to plastid transit peptides, which are usually between 40 and 100 amino acids long (Keegstra et al., *Ann. Rev. Plant Physiol. and Plant Mol. Biol.* (1989) 40:471-501). A hydropathy plot of this transit peptide region reveals a hydrophobic domain at each end of the transit sequence. Other transit peptide sequences have been shown to contain similar hydrophobic N-terminal domains. The significance of this N-terminal domain is not known, but certain experiments suggest that lipid-mediated binding may be important for plastid import of some proteins (Friedman and Keegstra, *Plant Physiol.* (1989) 89:993-999). As to the C-terminal domain, comparison of hydropathy plots of known imported chloroplastic stromal protein transit peptides (Keegstra et al, *supra*) indicates that these transit peptides do not have a hydrophobic domain at the C-terminus. However, preproteins destined to the thylakoid lumen of the chloroplast have an alanine-rich hydrophobic domain at the C-terminal end of their transit peptides (Smeekens et al., *TIBS* (1990) 15:73-76). The existence of such a domain in the transit sequence of the bay thioesterase suggests that it has a double-domain transit peptide targeting this enzyme to the lumen of the thylakoid equivalent or to the intermembrane space. This is unexpected, since the substrate, acyl-ACP, has been detected in the stroma (Ohlrogge et al., *Proc. Nat. Acad. Sci.* (1979) 76: 1194-1198). An alternative explanation for the existence of such a domain in the bay thioesterase preprotein is that it may represent a membrane anchor of the mature protein that is cleaved upon purification, leading to a sequence determination of an artificial N-terminus. The *in vivo* N-terminus of the mature thioesterase protein would then lie at a location further upstream than indicated by amino acid sequence analysis.

Gene bank searches with the derived amino acid sequence do not reveal significant matches with any entry, including the vertebrate medium-chain acyl-ACP thioesterase

II (Naggert et al., *Biochem. J.* (1987) 243:597-601). Also, the bay thioesterase does not contain a sequence resembling the fatty acid synthetase thioesterase active-site motif (Aitken, 1990 in *Identification of Protein Concensus Sequences, Active Site Motifs, Phosphorylation and other Post-translational Modifications* (Ellis Horwood, Chichester, West Sussex, England, pp. 40-147).

For comparison, isolation and sequence of a long-chain acyl-ACP thioesterase is provided. Sequence information from cyanogen bromide peptide sequences of safflower 34 and 40 kD thioesterase proteins is analyzed to obtain a peptide map of the safflower thioesterase. Homology comparisons of these peptides to the amino acid sequence of the bay thioesterase confirm the safflower thioesterase peptide map.

Degenerate oligonucleotide primers are designed from amino acid sequences of safflower thioesterase peptide sequences and used as primers in polymerase chain reactions (PCR) to obtain a fragment of a safflower thioesterase gene.

The thioesterase PCR gene product of the reaction is gel-purified and used as a probe to screen a safflower embryo cDNA library. Six clones are isolated; restriction mapping indicates that they fall into two gene classes. The nucleotide and translated amino acid sequences of a representative from each class, pCGN3264 (2-1) and pCGN3265 (5-2) are presented in Figure 4A and 4B. DNA sequence of pCGN3265 (5-2) with additional 3' untranslated sequence is shown in Figure 4C. Based on N-terminal amino acid sequence information, the amino terminal of the mature safflower thioesterases is assigned to the alanine residue at amino acid 61 of the translated amino acid sequences in Figure 4A and 4B.

Comparison of the deduced amino acid sequences of the two acyl-ACP thioesterase cDNA clones indicates that the mature proteins are 82% identical while the corresponding

DNA sequences share 80% identity. Computer estimates of the isoelectric point of the two proteins differ considerably. The estimated pI for the mature protein encoded by 2-1 is 5.8, while that of the protein encoded by

5 5-2 is 8.1.

The results of safflower thioesterase purification indicated that there are potentially several forms of the safflower thioesterase. Two distinct molecular mass classes, as well as two separate peak fractions from
10 chromatofocusing were observed. Both molecular mass species are represented in each activity peak. However, protein sequence analysis of each form indicates that these isoforms, are likely products of a single protein. The N-terminal sequence of each species is identical, and no
15 differences in protein sequence of any of the internal CNBr fragments were observed. The different molecular weight species may be the result of a C-terminal peptide being removed either by processing *in vivo* or by degradation during the extraction and purification, perhaps during the
20 acid precipitation step

While peptide sequence evidence indicates that all of the isoforms observed in purification of the safflower thioesterase may be derived from the same protein, two highly homologous but distinct classes of cDNAs were
25 isolated from a safflower embryo cDNA library. Both classes encode an acyl-ACP thioesterase having preferential activity towards C18:1 substrates based on expression in *E. coli*. However, the peptide sequences data matches only the translated amino acid sequence from the 2-1 encoded protein
30 (with allowance for minor discrepancies due to amino acid sequencing), and no peptides were found that uniquely correspond to the thioesterase encoded by the 5-2 gene. Possibly, the protein encoded by 5-2 is lower in abundance and is not a sufficiently prominent band to be considered
35 for sequencing. Alternatively, the protein encoded by 5-2 may have been a minor component of the digested sample, with the result that the CNBr fragments were not

sufficiently abundant to detect after SDS-PAGE and electroblotting. As examination of the predicted pI's of the two protein products indicates that 5-2 encodes a much more basic protein than does 2-1, the protein corresponding 5 to 5-2 may have been eliminated during the acid precipitation step in purification.

Example 2 - Expression of Acyl-ACP Thioesterases In *E. coli*

Example 2A

Expression of bay thioesterase proteins in *E. coli* is 10 described.

A truncated Bay (1200 bp) cDNA is expressed as a 30 kD protein in an *E. coli* host cell and data is provided demonstrating that the cDNA fragment confers upon the transformant an increased C12 acyl-ACP thioesterase 15 activity.

A pET3a vector (Rosenberg, et al., Gene (1987) 56:125-135) is used in an *E. coli* strain BL21 (DE3) (Studier and Moffat, J. Mol. Biol. (1986) 189:113-130) host for this study. The pET3a vector contains a promoter and 33 bp of 20 the 5' reading frame of bacteriophage T7. T7 polymerase is under the regulatory control of an isopropyl-β-D-thiogalactopyranoside (IPTG)-inducible lac UV5 promoter found in the *E. coli* BL21 (DE3) strain. Thus, by the addition of IPTG to *E. coli* BL21 (DE3) transformed with 25 pET3a, the T7 promoter will be activated.

Constructs are prepared containing the truncated cDNA of Fig. 1 fused in reading frame by deletion of the BamHI/EcoRI fragment and replacement of the thioesterase sequence. *E. coli* are transformed with pET3a constructs 30 containing the thioesterase (pET3a-THI0) and unmodified pET3a as a control. The *E. coli* are grown at 37°C in liquid medium and expression is induced by the addition of 1mM IPTG. After 1 hour induction, cells are harvested by centrifugation, resuspended in assay buffer and lysed by

sonication. Cell debris is removed by further centrifugation and the supernant used in activity assays as per Pollard et al., *Arch. Biochem & Biophys.* (1991) 281:306-312.

5

Table 1

	<u>E. coli Lysate</u>	<u>Assay Substrate</u>	Hydrolysis Activity (mean cpm in ether extract)
10	pET3a	8:0-ACP	370
	"	10:0-ACP	787
	"	12:0-ACP	1028
	"	14:0-ACP	1271
	"	16:0-ACP	2848
15	"	18:1-ACP	2877
20	pET3a-THIO	8:0-ACP	349
	"	10:0-ACP	621
	"	12:0-ACP	2127
	"	14:0-ACP	1035
	"	16:0-ACP	1900
	"	18:1-ACP	2025

The results demonstrate that a lysate of control *E. coli* cells contains hydrolytic activity towards all the acyl-ACP substrates that were tested, with preference for the long-chain substrates. Comparing the pET3a-THIO results with the control results it is evident that the pattern of substrate preferences differs. The transformant lysate shows greatly increased activity with 12:0-ACP in relation to the other substrates, as compared with the control lysate. This increased 12:0-ACP activity demonstrates that this cDNA fragment comprises sufficient of the the Bay 12:0-ACP thioesterase gene to produce active enzyme in *E. coli* cells.

In addition, the entire mature bay thioesterase protein is expressed as a lac fusion in *E. coli* cells. Sequence analysis of the full length bay thioesterase cDNA,

pCGN3822, described in Example 1, reveals an *Xba*I site at base 394. Digestion at this *Xba*I site cleaves the coding region immediately 5' of the codon representing the leucine at amino acid position 72. This leucine has been

- 5 identified as a candidate for the amino terminal residue as described in Example 1A.

An approximately 1200 bp fragment of pCGN3822 cDNA is generated by digestion with *Xba*I, which cuts at the postulated mature protein start site, as described above, 10 and in the vector sequences flanking the 3' end of the cDNA. The *Xba*I fragment is cloned on *Xba*I digest of the minus version of a Bluescribe M13(+-) (also called pBS+/-) cloning vector (Stratagene; San Diego, CA.). The thioesterase gene clone is inserted such that the mature 15 protein is in reading frame with a portion of the lacZ gene of the Bluescribe vector and under control of the lac promoter.

The resulting construct, pCGN3823, and a control Bluescribe construct having the bay thioesterase gene 20 inserted in the opposite orientation are transformed into *E. coli*. The *E. coli* cells are grown at 37°C in liquid medium and expression from the lac promoter is induced by addition of IPTG to a final concentration of 0.1mM IPTG. Following one hour of induction, cells are harvested, lysed 25 and assayed as described above for the truncated bay thioesterase.

Table 2

	<u>Induced <i>E. coli</i> Lysate</u>	<u>Dilution</u>	<u>Assay Substrate</u>	<u>Hydrolysis Activity (mean cpm in ether extract)</u>
30	pCGN3823	1/4000	8:0-ACP	0
	"	"	10:0-ACP	0
	"	"	12:0-ACP	1840
35	"	"	14:0-ACP	116
	"	"	16:0-ACP	20
	"	"	18:1-ACP	5

	control	1/4000	8:0-ACP	0
	"	"	10:0-ACP	0
	"	"	12:0-ACP	0
5	"	"	14:0-ACP	0
	"	"	16:0-ACP	13
	"	"	18:1-ACP	6

The results demonstrate that a lysate from *E. coli* cells expressing the postulated mature bay thioesterase enzyme has significantly greater activity towards a 12:0-ACP substrate than towards other ACP substrates of varying carbon chain length. In addition, this activity is more than two orders of magnitude greater than that in a lysate of *E. coli* cells expressing the truncated bay thioesterase. Studies are being conducted to determine if expression of the bay thioesterase protein in *E. coli* cells has an effect on the fatty acid composition of these cells. Initial studies failed to identify a substantial change in the fatty acid composites of the *E. coli* cells containing the bay thioesterase. However, analysis of larger samples of either pelleted transformed cells or the growth media from which the transformed cells have been pelleted, as described below, indicates a change in the fatty acid profile of the transformed cells. C12 fatty acids are produced in higher amounts in the cells containing the bay thioesterase as compared to untransformed control cells.

Approximately 100ml of *E. coli* control cells transformed with the plasmid vector Bluescribe (Stratagene; San Diego, CA) and cells transformed with the mature thioesterase construct are grown to an approximate O.D of 0.6 in ECLB (*E. coli* Luria broth) media, and pelleted by centrifugation. The cells and medium are extracted using an acidic method as follows. The pelleted cells are resuspended in 4ml of 5% (v/v) H₂SO₄ in methanol. The medium is recovered following centrifugation and 10ml of acetic acid is added. The sample is shaken vigorously with 50ml ether. The phases are allowed to separate and the

lower layer is discarded. The ether layer is allowed to evaporate overnight resulting in 1-2ml of remaining solution. Four ml of 5% (v/v) H₂SO₄ in methanol is added to the remaining medium solution.

- 5 The following steps apply for fatty acid analysis of both the media solution and the pelleted cells described above. The cells or medium samples in H₂SO₄/methanol are transferred to screw-capped tubes and 2ml of toluene containing 0.5mg/ml of a C17 standard is added. The tubes
10 are capped tightly, incubated at 90°C for 2 hours, after which 4ml of 0.9% (w/v) NaCl and 2ml of hexane are added. The samples are vortexed to mix thoroughly and then centrifuged for 5 minutes at 1500rpm. The upper (hexane) layer of each sample is then centrifuged for 5 minutes at
15 1000rpm in a table top centrifuge to separate any extracted fatty acid methyl esters that could be trapped within the layer of *E. coli* cells.

- The samples are analyzed by gas-liquid chromatography (GC) using a temperature program to enhance the separation
20 of components having 10 or fewer carbons. The temperature program used provides for a temperature of 140°C for 3 minutes, followed by a temperature increase of 5°C/minute until 230°C is reached, and 230°C is maintained for 11 minutes. Samples are analyzed on a Hewlett-Packard 5890
25 (Palo Alto, CA) gas chromatograph. Fatty acid content calculations are based on the internal C17 standard.

- GC analysis indicates that approximately 70% of the fatty acids in the medium from the transformed cells are C12 fatty acids. This compares to levels of approximately
30 2% C12 fatty acids in the medium from the control cells. In addition, an approximately 2 fold increase in the C12 content of transformed cells over that of nontransformed cells is observed.

Substrate analysis of the bay thioesterase enzyme purified from developing seeds as described in Pollard, et al, *Supra*, is also conducted. Results are presented in Table 3 below.

5

Table 3

	<u>Assay Substrate</u>	Hydrolysis Activity (mean cpm in)	
		Ether Extract	
10	8:0-ACP	0	1
	10:0-ACP	0	
	12:0-ACP	1261	
	14:0-ACP	69	
15	16:0-ACP	12	
	18:1-ACP	432	

Comparison of the results of substrate analysis of the thioesterase in the *E. coli* extracts and as purified from developing bay seeds reveals that the activity profile of 20 the enzyme from the two sources is essentially identical with respect to activity with C8, 10, 12, 14, and 16 ACP substrates. Although the enzyme purified from embryos is slightly more active with C18:1 substrates than is the *E. coli*-expressed thioesterase, this difference is believed 25 due to activity of a long chain bay thioesterase which is not completely removed from the medium-chain thioesterase protein preparation.

1) Production of Laurate

For further studies, the bay thioesterase expression 30 plasmid (pCGN3823) was established in an *E. coli* strain, *fadD*, which lacks the medium-chain specific acyl-CoA synthetase (Overath et al., *Eur. J. Biochem* (1969) 7:559-574) and is therefore unable to degrade laurate. Growth of 35 *fadD* bay thioesterase transformants relative to the vector transformed control was studied at 25°, 30° and 37° C. In liquid culture bay thioesterase transformed *fadD* bacteria

multiply, at all three temperatures, at nearly the same rate as the control during the exponential phase of growth. However, at 37°C, *fadD* cells harboring the bay thioesterase plasmid cannot be recovered from cultures nearing the 5 stationary growth phase. In contrast the plasmids are stably contained at the lower temperatures for several days and these stationary cultures produce a significant amount of a precipitate which is soluble in methanol and ether.

Growth of *fadD*-bay thioesterase colonies on agar at is 10 severely retarded 37°C, but only slightly so at the lower temperatures. The colonies formed on petri dishes at 25°C deposit large quantities of crystals, especially at the surface, but also in and at the surface of the cell free agar matrix. These crystal deposits were identified as 15 potassium laurate by (FAB) mass spectrometry. After separation and quantitation by gas chromatography, the laurate crystals are estimated to represent up to 30% of the total dry weight of the producing bacteria.

2) Thiosterase Activity on Unsaturated Fatty Acyl
20 Groups

In addition several new methyl ester peaks are present in the *fadD*-bay thioesterase, but not in the control *E. coli fadD* cells. Analyses indicate that two of these peaks represent 12:1 and 14:1 fatty acids. Thus, the bay 25 thioesterase is able to hydrolyze fatty acyl-ACPs from both the saturated and unsaturated fatty acid synthetase pathways that are present in *E. coli*. The saturated pathway is intercepted essentially to 100% in late log phase, and the unsaturated pathway to about 70%. This 30 causes a reduction of saturates in the phospholipids of the cells, substituted mainly by 16:1 and 18:1. The ratio of 12:1 to 14:1 accumulated is approximately 0.9 to 1, whereas the ratio of 12:0 to 14:0 accumulation is approximately 9 to 1. This may indicate that the chain-length specificity 35 of the thioesterase on unsaturated fatty acyl ACPs is different from that on saturated substrates, or

alternatively that the 14:1-ACP pool is much larger than the 12:1-ACP pool. In addition, the near complete interception of the saturated pathway appears to result in continuous synthesis of saturated fatty acids during the 5 stationary phase of growth.

The striking difference in laurate accumulation levels between the *fadD*⁺ and the *fadD* transformants is in agreement with studies of bay thioesterase substrates specificity (Pollard, et al., *supra*). Laurate generated by 10 the introduced bay thioesterase in *fadD*⁺ *E. coli* can be esterified to CoA, a much less effective substrate for the bay thioesterase, and subsequently degraded by β -oxidation or recycled for fatty acid synthesis. Therefore, only a small portion can accumulate and escape into the medium. 15 In the *fadD* strain, laurate is not esterified to CoA and cannot be recycled. The observed slight growth retardation may indicate that the accumulation of laurate to such high levels results in a toxic effect on the *E. coli* host cells.

At 37°C, the synthesis of laurate in the *fadD* strain 20 is tolerated only during exponential growth. The rapid loss of bay thioesterase plasmid containing cell titer at the end of the log phase may reflect a temperature dependence of laurate toxicity, or a physiological shift to stationary phase metabolism, which causes the introduced 25 bay thioesterase activity to become lethal. The fatty acid composition of *E. coli* changes in aging cultures, and a reduced demand for saturated fatty acids at lower temperatures may lower the negative impact of the bay thioesterase expression at these temperatures. The pathway 30 for unsaturated fatty acids in *E. coli* diverges at the C₁₀ stage and is most likely not intercepted by the bay thioesterase.

The accumulation of laurate in the medium is accompanied by deposition of smaller amounts of caprate 35 (10:0). This is in contrast with the the thioesterase activity profile where 14:0-ACP hydrolysis is more

significant than 10:0-ACP hydrolysis. The high amount of bay thioesterase in these cells may effectively reduce the *in vivo* pool sizes of acyl-ACP's \geq 12:0, so that less 14:0 acyl ACP substrate is available. The caprate production by 5 the bay thioesterase in *E. coli* may indicate that this enzyme is responsible for both 10:0 and 12:0 fatty acid deposition in bay seeds.

Example 2B

Expression of safflower thioesterase proteins in *E.* 10 *coli* is described.

Safflower acyl-ACP thioesterase clones pCGN3264 and pCGN3265 are altered by site-directed mutagenesis to insert SalI and NcoI sites immediately at the start of the mature protein coding region of these clones. The mature coding 15 region plus 3'-untranslated sequences in the cDNA clones are removed as a NcoI/SmaI fragment and inserted into pET8c (Studier et al., 1990) that has been digested with BamHI and treated with Klenow fragment of DNA polymerase to create a blunt end, and then cut with NcoI. The resulting 20 expression constructs, pCGN3270 (2-1) and pCGN3271 (5-2) were designed to express the mature safflower acyl-ACP thioesterase cDNA sequences directly from the T7 promoter. For expression analysis, the constructs are transferred into *E. coli* strain BL21(DE3) containing the T7 RNA 25 polymerase gene under control of the isopropyl β -D-thiogalactopyranoside (IPTG)-inducible lacUV5 promoter (Studier et al., Methods Enzymol (1990) 185:60-89).

For thioesterase activity assay, cells containing pCGN3270, pCGN3271, or pET8c as a control are grown at 37°C 30 to an OD₆₀₀ of ~0.5 in 2YT (16 g tryptone, 10 g yeast extract, 5 g NaCl per liter, pH 7.0) containing 0.4% glucose and 300 μ g/ml penicillin. Induction is achieved by the addition of IPTG to 0.4 mM and 1.5 hours further growth. Ten-ml aliquots of culture are harvested by 35 centrifugation and the pelleted cells stored at -70°C. Prior to assay, pellets are resuspended in 500 μ l of

thioesterase assay buffer and sonicated for three bursts of 20 seconds each. Protein concentrations are determined using the Bio-Rad Protein Assay.

Total protein profiles of *E. coli* containing pCGN3270 and pCGN3271 are analyzed by SDS-PAGE. In each case a new protein band is observed in the IPTG-induced cultures relative to the pET8c control. Although the computer-predicted molecular weight of the 2-1 and 5-2 encoded proteins are very similar, the mobility of these proteins as expressed from pCGN3270 and pCGN3271 is significantly different. The protein encoded by pCGN3270 has a mobility of approximately 40 kD, while the protein encoded by pCGN3271 is approximately 36 kD. The induced proteins were subjected to N-terminal sequencing to confirm their identity. In each case, the protein sequence matched that predicted by the cDNA. In addition, the nucleotide sequence of the 3' region of the 5-2 cDNA insert in pCGN3271 was resequenced to ensure that no premature stop codons had been introduced during the cloning steps.

Total extracts of cells expressing either pET8c (control), pCGN3270, or pCGN3271 are assayed for thioesterase activity using 18:1-ACP. The 18:1-ACP thioesterase activity in cells containing pCGN3270 and pCGN3271 is ~100- and 50-fold higher respectively, than the activity in control cells. To further characterize the safflower acyl-ACP thioesterase, the chain-length specificity of the thioesterase activities expressed from the cDNA clones is tested for a variety of acyl-ACP substrates, and compared to control thioesterase activities of *E. coli* and a crude safflower embryo extract. The pCGN3270 and pCGN3271 cultures contain thioesterase activity characteristic of safflower embryos, i.e. much higher preference for 18:1-ACP vs. 18:0-ACP as compared to control *E. coli*. Between the two safflower thioesterase clones, the activity expressed from pCGN3271 displays a slightly broader specificity for the saturated 18:0-ACP and 16:0-ACP substrates.

Example 3 - Constructs & Methods for Plant Transformation

A. Constructs for expression of bay thioesterase in plant cells which utilize phaseolin, napin, CaMV35S and Bce4 promoter regions are prepared as follows.

5 Phaseolin/thioesterase

A 1.45kb fragment of pCGN3822 (3A-17) is obtained by digestion with *Bal*I and *Sal*I. The *Bal*I site is located at position 149 of the cDNA insert, and the *Sal*I site is in the polylinker located 3' to the cDNA insert. Thus, this 10 fragment contains the entire thioesterase coding region and the entire cDNA 3' region, including the polyadenylation signal, AAATAA, located at bases 1447-1452, and also contains the restriction digestion sites *Kpn*I, *Sma*I, *Xba*I and *Sal*I located directly 3' to the cDNA.

15 An 850bp *Bgl*III fragment of the β -phaseolin 5' noncoding region was obtained from p8.8pro (Hoffman et al. (1987) *EMBO J.* 6:3213-3221) and cloned into pUC9 (Vieira and Messing, *supra*) at the *Bam*HI site to yield pTV796. The phaseolin fragment in pTV796 is oriented such that *Sma*I 20 site of pUC9 is located 3' to the phaseolin promoter. An ~850bp fragment is generated by digestion of pTV796 with *Hind*III and *Sma*I and gel-purified.

The phaseolin promoter (*Hind*III/*Sma*I) and thioesterase coding region (*Bal*I/*Sal*I) are joined by three way ligation 25 into a Bluescript (Stratagene) cloning vector that has been digested with *Hind*III and *Sal*I. The resulting plasmid contains the phaseolin promoter/thioesterase construct on a *Hind*III/*Sal*I fragment that is flanked by various restriction sites, including a 5' *Bam*HI site and a 3' *Kpn*I 30 site. No additional plant 3' noncoding region is provided as the thioesterase fragment contains a polyadenylation signal. The phaseolin promoter/thioesterase fragment may be obtained by digestion with *Bam*HI and *Kpn*I, or alternatively by partial digestion with *Xba*I, and ligated 35 into an appropriate binary vector, such as pCGN1557 or

pCGN1578 (McBride and Summerfelt, (1990) *Plant Mol. Biol.* 14:269-276), for plant transformation. Ligation of the phaseolin promoter/thioesterase fragment, resulting from *Bam*HI and *Kpn*I digestion, into pCGN1578 results in
5 pCGN3821.

35S/thioesterase/mas

An *Bal*I/*Pst*I fragment of the thioesterase cDNA 3A-17 containing approximately 1200bp, and including the entire coding region, is obtained by partial digestion with
10 restriction enzymes *Bal*I and *Pst*I and gel-purification of the 1200bp fragment. The fragment is ligated into a plasmid cloning vector, such as a Bluescript vector (Stratagene Cloning Systems; La Jolla, CA), that has been digested with *Pst*I and *Bam*HI, and the *Bam*HI site filled in
15 using the Klenow fragment of DNA Polymerase I. In this procedure, the *Bam*HI site is restored by ligation to the *Bal*I site of the thioesterase cDNA.

The resulting plasmid is partially digested with *Bam*HI and *Eco*RI to obtain the approximately 1200bp thioesterase
20 fragment. This fragment is then cloned into an approximately 4.4kb *Bam*HI/*Eco*RI DNA fragment which contains approximately 0.94kb of 5' noncoding sequence from a cauliflower mosaic (CaMV) 35S gene (immediately 5' to the *Bam*HI site), approximately 0.77kb of 3' noncoding sequence
25 from an *Agrobacterium tumefaciens* manopine synthase (mas) gene (immediately 3' to the *Eco*RI site), and a pUC19 (New England BioLabs, Beverly, MA) backbone. The *Bam*HI/*Eco*RI DNA fragment is obtained by partial digestion of a larger plasmid vector and gel purification of the desired 4.4kb
30 fragment. The 35S 5' region is from bases 6492 to 7433 of strain CM1841 (Gardner, et al. (1981) *Nucl. Acids Res.* 9:2871-2887), which is from about -640 to about +2 in relation to the transcription start site. The mas 3'
35 noncoding region is from about bases 19,239 to 18,474 of octopine Ti plasmid pTiA6 (numbering corresponds to that of

closely related pTi15955 as reported by Barker et al.
(*Plant Mol. Biol.* (1983) 2:335-350)).

The resulting 35S/thioesterase/mas plasmid is digested at flanking *Bgl*II sites and cloned into a *Bam*HI digested 5 binary vector, such as pCGN1557 or pCGN1578 (McBride and Summerfelt, *supra*).

Bce4/thioesterase

A 1.45kb thioesterase cDNA *Bal*II/*Sal*I fragment is prepared as described above. A Bce4 expression cassette, 10 pCGN1870, which provides for preferential expression in early seed development is described in copending US Patent Application Serial No. 07/494,722, which is incorporated herein by reference.

An approximately 1kb fragment of the Bce4 5' noncoding 15 region whose 3' end is immediately 5' to the Bce4 start codon, is obtained by digestion of pCGN1870 with *Xba*I and *Xho*I and gel purification of the resulting 1kb fragment.

The Bce4 promoter (*Xba*I/*Xho*I) and thioesterase coding region (*Bal*II/*Sal*I) are joined by three way ligation into a 20 Bluescribe (Stratagene) cloning vector that has been digested with *Xba*I and *Sal*I. The resulting plasmid contains the Bce4 promoter/thioesterase construct on a *Xba*I/*Sal*I fragment that is flanked by various restriction sites, including a 5' *Bam*HI site and a 3' *Kpn*I site. No 25 additional plant 3' noncoding region is provided as the thioesterase fragment contains a polyadenylation signal. The Bce4 promoter/thioesterase fragment may be obtained by digestion with *Bam*HI and partial digestion with *Kpn*I (or *Asp*718 which has the same recognition sequence), or 30 alternatively by partial digestion with *Xba*I, and ligated into an appropriate binary vector, such as pCGN1557 or pCGN1578 (McBride and Summerfelt, *supra*), for plant transformation. Ligation of the Bce4 promoter/thioesterase fragment, resulting from *Bam*HI and *Kpn*I digestion, into 35 pCGN1578 results in pCGN3820.

Napin/thioesterase/napin

The napin expression cassette, pCGN1808, is described in copending US Patent Application serial number 07/550,804, which is incorporated herein by reference.

- 5 pCGN1808 is modified to contain flanking restriction sites to allow movement of only the expression sequences and not the antibiotic resistance marker to binary vectors such as pCGN1557 (McBride and Summerfelt, *supra*). Synthetic oligonucleotides containing *KpnI*, *NotI* and *HindIII*
- 10 restriction sites are annealed and ligated at the unique *HindIII* site of pCGN1808, such that only one *HindIII* site is recovered. The resulting plasmid, pCGN3200 contains unique *HindIII*, *NotI* and *KpnI* restriction sites at the 3'-end of the napin 3'-regulatory sequences as confirmed by
- 15 sequence analysis.

The majority of the napin expression cassette is subcloned from pCGN3200 by digestion with *HindIII* and *SacI* and ligation to *HindIII* and *SacI* digested pIC19R (Marsh, et al. (1984) *Gene* 32:481-485) to make pCGN3212. The extreme 20 5'-sequences of the napin promoter region are reconstructed by PCR using pCGN3200 as a template and two primers flanking the *SacI* site and the junction of the napin 5'-promoter and the pUC backbone of pCGN3200 from the pCGN1808 construct. The forward primer contains *ClaI*, *HindIII*, *NotI*, and *KpnI* restriction sites as well as nucleotides 408-423 of the napin 5'-sequence (from the *EcoRV* site) and the reverse primer contains the complement to napin 25 sequences 718-739 which include the unique *SacI* site in the 5'-promoter. The PCR was performed using in a Perkin 30 Elmer/Cetus thermocycler according to manufacturer's specifications. The PCR fragment is subcloned as a blunt-ended fragment into pUC8 (Vieira and Messing (1982) *Gene* 19:259-268) digested with *HincII* to give pCGN3217. Sequenced of pCGN3217 across the napin insert verifies that 35 no improper nucleotides were introduced by PCR. The napin 5-sequences in pCGN3217 are ligated to the remainder of the napin expression cassette by digestion with *ClaI* and *SacI*

and ligation to pCGN3212 digested with *Cla*I and *Sac*I. The resulting expression cassette pCGN3221, is digested with *Hind*III and the napin expression sequences are gel purified away and ligated to pIC20H (Marsh, *supra*) digested with 5 *Hind*III. The final expression cassette is pCGN3223, which contains in an ampicillin resistant background, essentially identical 1.725 napin 5' and 1.265 3' regulatory sequences as found in pCGN1808. The regulatory regions are flanked with *Hind*III, *Not*I and *Kpn*I restriction sites and unique 10 *Sal*I, *Bgl*III, *Pst*I, and *Xho*I cloning sites are located between the 5' and 3' noncoding regions.

The 1200bp *Bal*I/*Pst*I thioesterase cDNA fragment described above is cloned into the napin expression cassette, pCGN3223, which has been digested with *Sal*I, and 15 the *Sal*I site filled in using the Klenow fragment of DNA Polymerase I, followed by digestion with *Pst*I. The *Sal*I site is reconstituted in this ligation.

The napin/thioesterase/napin plasmid generated by these manipulations is digested with *Bam*HI and partially 20 digested with *Kpn*I to generate an approximately 3.3kb fragment. This fragment contains ~1.7kb of napin 5' noncoding sequence, the ~1200bp *Bal*I/*Pst*I thioesterase cDNA fragment and ~0.33kb of 3' napin noncoding region, the rest of the 1.265kb of the napin 3' having been deleted due to 25 the *Bam*HI site in this region. The ~3.3kb fragment is ligated to *Kpn*I/*Bam*HI digested pCGN1557 or pCGN1578 (McBride and Summerfelt, *supra*) for plant transformation. Insertion of the ~3.3kb fragment into pCGN1578 results in pCGN3816.

30 Napin/thioesterase

An approximately 1.5kb fragment of the full length thioesterase cDNA is obtained by partial digestion of pCGN3822 with *Bam*HI and *Kpn*I and subsequent gel-purification of the resulting 1.5kb fragment. The *Bam*HI site is at nucleotide 74 of the cDNA sequence and the *Kpn*I site is in the vector polylinker located 3' to the cDNA 35

insert. Thus, this fragment contains the entire thioesterase coding region, including the ATG codon at positions 145-147, and the entire cDNA 3' region, which contains a polyadenylation signal as described above.

5 An approximately 1.7kb fragment of the napin 5' noncoding region is obtained by digestion of pCGN3223 (described above) with *Hind*III and *Bgl*II and subsequent gel-purification of the 1.7 kb fragment.

10 The napin promoter (*Hind*III/*Bgl*II) and the thioesterase coding region (*Bam*HI/*Kpn*I) are joined by a three fragment ligation into a binary vector, such as pCGN1557 or pCGN1578 (McBride and Summerfelt, *supra*) that is digested with *Hind*III and *Kpn*I. In this reaction, the complementary overhanging ends of the *Bam*HI and *Bgl*II sites 15 allows fusion of the 3' end of the napin fragment to the 5' end of the thioesterase fragment. The resulting plasmid for plant transformation from ligation into pCGN1578, pCGN3824, contains the thioesterase cDNA positioned for expression under the regulatory control of the napin 20 promoter. No additional plant 3' noncoding region is provided as the thioesterase fragment contains a polyadenylation signal.

Napin/thioesterase/napin

A construct for expression of thioesterase under the transcriptional and translational control of napin promoter 25 and 3' transcriptional termination regions is made as follows. pCGN3822 (described above) is engineered using PCR techniques to insert a *Bam*HI site immediately 5' to the thymine nucleotide at position 140 (5 bases upstream of the 30 ATG start codon) of the bay thioesterase sequence shown in Figure 6A (SEQ ID NO:41), resulting in pCGN3826. An approximately 1225bp fragment containing the entire thioesterase encoding region is obtained from pCGN3826 as a *Bam*HI to *Pst*I fragment and ligated into *Bgl*II/*Pst*I digested 35 pCGN3223, the napin expression cassette described above, resulting in pCGN3827. A vector for plant transformation,

pCGN3828, is constructed by partially digesting pCGN3827 with *Kpn*I and *Bam*HI, and cloning the approximately 3.2kb fragment containing the napin 5'/ thioesterase/ napin 3' construct into *Kpn*I/*Bam*HI digested pCGN1578 (McBride and 5 Summerfelt, *supra*).

- A construct, pCGN3837, is prepared which is similar to pCGN3828, but has the bay transit peptide coding region replaced with a sequence encoding the safflower thioesterase transit peptide and 6 amino acids of the 10 mature safflower thioesterase from clone 2-1. The safflower fragment for this construct may be prepared using PCR techniques to provide convenient restriction digestion sites. Another construct having napin 5' and 3' regulatory regions is prepared which replaces the region encoding the 15 bay thioesterase transit peptide and the first 11 amino acids of the mature bay thioesterase protein with a sequence encoding the safflower thioesterase transit peptide and the first 31 amino acids of the mature safflower thioesterase protein.
- 20 An appropriate *Agrobacterium* strain is transformed with the binary constructs and used to generate transformed laurate producing plants. Seeds are collected and analyzed as described above to determine efficiency of plastid transport and oil composition.
- 25 B. A variety of methods have been developed to insert a DNA sequence of interest into the genome of a plant host to obtain the transcription or transcription and translation of the sequence to effect phenotypic changes.

Brassica Transformation

- 30 Seeds of *Brassica napus* cv. Westar are soaked in 95% ethanol for 2 min. surface sterilized in a 1.0% solution of sodium hypochlorite containing a drop of Tween 20 for 45 min., and rinsed three times in sterile, distilled water. Seeds are then plated in Magenta boxes with 1/10th 35 concentration of Murashige minimal organics medium (Gibco;

Grand Island, NY) supplemented with pyridoxine (50 μ g/l), nicotinic acid (50 μ g/l), glycine (200 μ g/l), and 0.6% Phytagar (Gibco) pH 5.8. Seeds are germinated in a Percival chamber at 22°C. in a 16 h photoperiod with cool 5 fluorescent and red light of intensity approximately 65 μ Einstins per square meter per second (μ Em $^{-2}$ s $^{-1}$).

Hypocotyls are excised from 5-7 day old seedlings, cut into pieces approximately 4mm in length, and plated on feeder plates (Horsch et al., *Science* (1985) 227:1229-10 1231). Feeder plates are prepared one day before use by plating 1.0ml of a tobacco suspension culture onto a petri plate (100x25mm) containing about 30ml MS salt base (Carolina Biological, Burlington, NC) 100mg/l inositol, 1.3mg/l thiamine-HCl, 200mg KH₂PO₄ with 3% sucrose, 2,4-D 15 (1.0mg/l), 0.6% w/v Phytagar, and pH adjusted to 5.8 prior to autoclaving (MS 0/1/0 medium). A sterile filter paper disc (Whatman 3mm) is placed on top of the feeder layer prior to use. Tobacco suspension cultures are subcultured weekly by transfer of 10ml of culture into 100ml fresh MS 20 medium as described for the feeder plates with 2,4-D (0.2mg/l), Kinetin (0.1mg/l). In experiments where feeder cells are not used hypocotyl explants are cut and placed onto a filter paper disc on top of MS0/1/0 medium. All hypocotyl explants are preincubated on feeder plates for 24 25 h. at 22°C in continuous light of intensity 30 μ Em $^{-2}$ s $^{-1}$ to 65 μ Em $^{-2}$ s $^{-1}$.

Single colonies of *A. tumefaciens* strain EHA 101 containing a binary plasmid are transferred to 5ml MG/L broth and grown overnight at 30°C. Hypocotyl explants are 30 immersed in 7-12ml MG/L broth with bacteria diluted to 1x10⁸ bacteria/ml and after 10-25 min. are placed onto feeder plates. Per liter MG/L broth contains 5g mannitol, 1g L-Glutamic acid or 1.15g sodium glutamate, 0.25g KH₂PO₄, 0.10g NaCl, 0.10g MGSO₄·7H₂O, 1mg biotin, 5g tryptone, and 35 2.5g yeast extract, and the broth is adjusted to pH 7.0. After 48 hours of co-incubation with *Agrobacterium*, the hypocotyl explants are transferred to B5 0/1/0 callus

induction medium which contains filter sterilized carbenicillin (500mg/l, added after autoclaving) and kanamycin sulfate (Boehringer Mannheim; Indianapolis, IN) at concentrations of 25mg/l.

5 After 3-7 days in culture at $65\mu\text{EM}^{-2}\text{s}^{-1}$ continuous light, callus tissue is visible on the cut surface and the hypocotyl explants are transferred to shoot induction medium, B5BZ (B5 salts and vitamins supplemented with 3mg/l benzylaminopurine, 1mg/l zeatin, 1% sucrose, 0.6% Phytagar 10 and pH adjusted to 5.8). This medium also contains carbenicillin (500mg/l) and kanamycin sulfate (25mg/l). Hypocotyl explants are subcultured onto fresh shoot induction medium every two weeks.

Shoots regenerate from the hypocotyl calli after one 15 to three months. Green shoots at least 1cm tall are excised from the calli and placed on medium containing B5 salts and vitamins, 1% sucrose, carbenicillin (300mg/l), kanamycin sulfate (50mg/l) and 0.6% w/v Phytagar). After 20 2-4 weeks shoots which remain green are cut at the base and transferred to Magenta boxes containing root induction medium (B5 salts and vitamins, 1% sucrose, 2mg/l indolebutyric acid, 50mg/l kanamycin sulfate and 0.6% Phytagar). Green rooted shoots are tested for thioesterase activity.

25 Arabidopsis Transformation

Transgenic *Arabidopsis thaliana* plants may be obtained by *Agrobacterium*-mediated transformation as described by Valverkens et al., (*Proc. Nat. Acad. Sci.* (1988) 85:5536-5540). Constructs are transformed into *Agrobacterium* 30 cells, such as of strain EHA101 (Hood et al., *J. Bacteriol.* (1986) 168:1291-1301), by the method of Holsters et al. (*Mol. Gen. Genet.* (1978) 163:181-187).

Peanut Transformation

DNA sequences of interest may be introduced as expression cassettes, comprising at least a promoter region, a gene of interest, and a termination region, into 5 a plant genome via particle bombardment as described in European Patent Application 332 855 and in co-pending application USSN 07/225,332, filed July 27, 1988.

Briefly, tungsten or gold particles of a size ranging from 0.5 μ M-3 μ M are coated with DNA of an expression 10 cassette. This DNA may be in the form of an aqueous mixture or a dry DNA/particle precipitate.

Tissue used as the target for bombardment may be from cotyledonary explants, shoot meristems, immature leaflets, or anthers.

15 The bombardment of the tissue with the DNA-coated particles is carried out using a Biolistics™ particle gun (Dupont; Wilmington, DE). The particles are placed in the barrel at variable distances ranging from 1cm-14cm from the barrel mouth. The tissue to be bombarded is placed beneath 20 the stopping plate; testing is performed on the tissue at distances up to 20cm. At the moment of discharge, the tissue is protected by a nylon net or a combination of nylon nets with mesh ranging from 10 μ M to 300 μ M.

Following bombardment, plants may be regenerated 25 following the method of Atreya, et al., (*Plant Science Letters* (1984) 34:379-383). Briefly, embryo axis tissue or cotyledon segments are placed on MS medium (Murashige and Skoog, *Physio. Plant.* (1962) 15:473) (MS plus 2.0 mg/l 6-benzyladenine (BA) for the cotyledon segments) and 30 incubated in the dark for 1 week at 25 ± 2°C and are subsequently transferred to continuous cool white fluorescent light (6.8 W/m²). On the 10th day of culture, the plantlets are transferred to pots containing sterile soil, are kept in the shade for 3-5 days and finally 35 moved to greenhouse.

The putative transgenic shoots are rooted.

Integration of exogenous DNA into the plant genome may be confirmed by various methods known to those skilled in the art.

- 5 C. Transgenic plants transformed with thioesterase constructs are analyzed for thioesterase activity and fatty acid and triglyceride compositions.

Arabidopsis seeds from selfed transgenic *A. thaliana* plants transformed with pCGN3816 and pCGN3821 are analyzed

10 for 12:0 and 14:0 acyl-ACP thioesterase activities.

Developing seeds are extracted with thioesterase assay buffer (Example 1) and the soluble fraction assayed.

Transgenic seeds show significant increase of 12:0 thioesterase activity over the controls. Also, the 14:0-

15 ACP hydrolysis increases, but at a smaller scale, in agreement with enzyme specificity data from transformed *E. coli*.

Total fatty acid analysis of mature *A. thaliana* seeds reveals up to 5% laurate in plants transformed with the

20 above described constructs, as compared to 0% laurate as measured in control plant seeds. Figure 7 demonstrates that the percent laurate directly correlates with lauroyl thioesterase activity in transgenic seeds. Also, the myristate content in transgenic seeds increases from 0.1%

25 (control) up to 0.7% in the highest expressers and also correlates with the myristoyl thioesterase activity.

Triglyceride analysis by thin-layer chromatography shows that the laurate detected by total fatty acid analysis is present in the neutral lipids fraction, evidence that the

30 laurate is incorporated (esterified) into triglycerides.

Mature seeds from *A. thaliana* plants transformed with pCGN3828 are analyzed for total fatty acids essentially as described by Browse et al. (*Anal. Biochem.* (1986) 152:141-145) as described in detail in Example 16. These studies

35 reveal at least one plant, 3828-13, whose seeds contain up to approximately 17% by weight (23.5 mole percent) laurate.

Mature seeds from this transformed plant are subjected to a pancreatic lipase digestion protocol (Brockerhoff (1975) *Meth. Enzymol.* 35:315-325) to distinguish acyl compositions of the sn-2 and sn-1+3 (combined) positions. Preliminary

5 results from these analyses are as follows:

sn-1+2+3 (methanolysis)	17.8% C12
sn-2 (lipase digestion)	2.9% C12
sn-1+3 (calculated from above)	25.3% C12
sn-1+3 (lipase digestion)	21.9% C12.

10 These preliminary results suggest that medium-chain fatty acids are efficiently incorporated into the sn-1 and/or sn-3 positions of the triglyceride molecule.

A total of 26 pCGN3828-transformed *Arabidopsis* plants were tested for 12:0-ACP thioesterase activity, with seven 15 testing positive. The presence of "transformants" that are negative for laurate expression is not surprising as the *Arabidopsis* transformation method does not include selection at the rooting stage. Thus, the laurate negative plants would be expected to include non-transformed 20 "escapes," as well as transformed plants which are not expressing the bay thioesterase gene. Analysis of mature seeds (100-seed pools) from these seven positive plants shows that the positive plants contain significant amounts of 12:0, which is absent from controls. The amounts of 25 12:0 ranged from 2.1 to 23.5 mole percent and approximately correlate with the thioesterase activity. The total fatty acid contents of the seeds are within the range typically seen in *Arabidopsis*, suggesting that the 12:0 deposition does not adversely affect oil yield. No obvious effects on 30 seed development or morphology are observed. Lipid class analysis (TLC) demonstrates that the triglyceride fraction contains the same proportion of laurate as the total extractable fatty acids, i.e. at these levels the 12:0 is readily incorporated into triglyceride.

35 A small amount of 14:0 also accumulates in transgenic *Arabidopsis* seeds. The ratio of 12:0 to 14:0 fatty acids in

the seeds (6-8) is similar to the ratio of *in vitro* thioesterase activities on 12:0-ACP and 14:0-ACP. The near-constant ratio between the 12:0 and 14:0 products presumably reflects the specificity of the bay thioesterase
5 towards 12:0-ACP and 14:0-ACP, and suggests that the enzyme function *in vivo* in the transgenic seeds by direct action on similarly sized pools of 12:0-ACP and 14:0-ACP. The bay thioesterase appears to have no significant action on 10:0-ACP *in vitro* and only a minor trace of 10:0 is
10 detected in the transgenic seeds.

Additional studies were conducted to determine if the medium-chains were synthesized at the expense of all, or only some, of the "native" *Arabidopsis* fatty acids. The average fatty acid composition of 100 mature seeds from a
15 control *Arabidopsis* plant were compared with that from transgenic plant 3828-13. The results of these studies are shown in Figure 14. The differences in 12:0 and 14:0 contents of the two plants are clear, but differences in the contents of other fatty acids as a result of
20 medium-chain production are more difficult to identify. The total fatty acid contents varied considerably between *Arabidopsis* plants, making comparisons of absolute fatty acid levels very difficult. Expression of the data in percentage terms (total fatty acids = 100) to eliminate
25 these differences created further difficulties with interpretation.

Thus, a way to distinguish unique fatty acid compositions from typical inter-plant variation was devised as follows. The total fatty acid contents of mature (T2)
30 seeds from the 26 T1 *Arabidopsis* plants were arranged in increasing order, and produced a smooth spread of values as shown in Figure 15A. The six highest laurate producers are indicated by arrows, along with the corresponding weight % 12:0 data. There appears to be no relationship between the
35 levels of 12:0 production and total fatty acid content. In Figure 15B the data are shown ordered in the same way, but for three fatty acids individually. The data for 18:2 and

16:0 also formed a smooth line, except for the positive events in which laurate accumulated. In those instances the contents of 18:2 and 16:0 were noticeably below the overall trend, showing that 12:0 was produced in those 5 seeds at the expense of 18:2 and 16:0. This was also true for 18:1, 20:1, and 20:2. The only major fatty acid constituent to be relatively unaffected by 12:0 production was 18:3, as shown in Figure 15B, although low-18:3 controls can be found, for example in plant 10.

10 Seeds from *Brassica napus* plants transformed with pCGN3816 are also analyzed for total fatty acids as described above. Analysis of single segregating seeds from T2 transformed plants reveals levels of C12:0 ranging from zero to 14.5%, as compared to zero percent in seeds from 15 untransformed control plants. C12:0 levels correlate to C12:0-ACP thioesterase activities in corresponding immature seeds, as demonstrated in Figure 7. In addition, C14:0 is also detected in these seeds at levels correlating with those of the C12:0, although C14:0 levels are lower.

20 Transformed *Brassica napus* plants containing the pCGN3824 (napin/thioesterase) and pCGN3828 (napin/thioesterase/napin) constructs were analyzed to determine seed fatty acid composition. Pooled seeds from 34 plants transformed with pCGN3824 and 31 plants 25 transformed with pCGN3828 were analyzed (25-50 seeds per assay) to determine the ranges of laurate levels in the seeds. The results of these analyses, presented as the number of transgenic events having a given percentage of laurate, are presented in Figure 11A and 11B. The 30 pCGN3824-transformants had laurate contents ranging from 0-11 mole percent, with the exception of a single plant whose seeds contained 17 mole percent laurate. The pCGN3828 construct plants had laurate contents ranging from 1-17 mole percent, with two representatives outside this range 35 having 37 mole percent laurate (plant 3828-23) and 27 mole percent laurate (plant 3828-35). In addition, the seed oils of these plants also have smaller amounts of C14:0

fatty acids, corresponding to approximately 16% of the laurate levels. Trace levels of C10:0 are also observed, typically at 1% of the laurate level. Additional pCGN3828-transformants are also being analyzed to identify plants
5 having even higher laurate contents.

Half-seed analysis is also used to determine laurate levels in mature seeds from transformed plants. For half-seed analysis, seeds are placed on a moistened (2-3ml water) filter paper disc in a Petri dish which is sealed
10 and left in the dark for 20 to 48 hours at room temperature or 30°C. Germinated seeds have 2-5mm radicles protruding from the seed coats. Fine forceps are used to remove each seedling from its coat and tease away the outer cotyledon. Dissected cotyledons are placed in 4ml vials and dried for
15 2-12 hours in a 110°C oven prior to fatty acid analysis. The dissected seedlings are planted directly into potting soil in 12-pack containers, misted, covered with transparent plastic lids, placed in a growth chamber at 22°C in 150-200 microEinstens $m^{-2}s^{-1}$ light intensity with a
20 16h/8h photoperiod, and allowed to grow to produce T2 (second generation transformants) plants. Alternatively, half-seed analysis may be conducted using a chipped portion of a mature seed. Seeds are held under a dissecting scope and a chip of approximately 30% of the seed is removed,
25 avoiding the embryonic axis. The seed chip is used for fatty acid analysis by GC, and the remaining seed portion is germinated in water for 5-7 days in a microtiter dish, transferred to soil, and grown to produce T2 seed.

The laurate content of 144 assayed pCGN3828-35 half seeds ranged from 4 to 42 mole percent. The laurate content of 214 assayed pCGN3828-23 half seeds ranged from 12 to 50 mole percent. No seeds that were analyzed from either the pCGN3828-23 or pCGN3828-35 plants had zero laurate, indicating that these transformants have three or
35 more thioesterase inserts in their genome. In addition, analyses using approximately 60 half-seeds of the pCGN3828-transformants having 10-20 mole % laurate in their seeds

indicates that these plants have 1-2 insertions of the bay thioesterase gene.

To examine the fate of the laurate in transgenic *Brassica napus* seeds, the fatty acid compositions of 5 different lipid classes extracted from mature transgenic seeds of two transgenic plants, pCGN3828-23 and pCGN3828-7, were examined. TLC analysis of the phospholipids indicates that nearly 100% of the laurate is in the TAG fraction. Analyses of the acyl compositions of the sn-2 and sn-1+3 10 positions of the TAG are conducted using the pancreatic lipase protocol (Brokerhoff (1975), *supra*). Ideally with this protocol, the lipase cleaves fatty acids from the sn-1 and sn-3 positions, and not from the sn-2 position. Thus, the fatty acids in the resulting mono-glyceride are 15 presumed to be those in the sn-2 position. Initial studies of TAG in the laurate transformants with this method indicate that C12:0 fatty acids are not incorporated into the sn-2 position. However, it is noted that those previously attempting to study TAG having shorter-chain 20 fatty acids by this method (Entressangles et al. (1964) *Biochem. Biophys. Acta* 84:140-148), reported that shorter-chain fatty acids located at the sn-2 position were quickly hydrolyzed during such a digestion, which the authors reported to be the result of a spontaneous migration of 25 internal shorter-chain fatty acids towards outer positions in diglycerides and monoglycerides.

Additional analyses of transformed plants containing the pCGN3828 construct are conducted to further characterize the expression of bay thioesterase in these 30 plants. The extractable C12:0 thioesterase activity in developing seeds of pCGN3828-23 transformants is measured and is determined to be considerably higher than the endogenous 18:1 thioesterase activity. In view of the high 35 bay thioesterase activity in transgenic plants, additional factors are being investigated for optimization of laurate production.

The presence of the processed (34kD) bay thioesterase in transformed 3828-23 plants is investigated by Western analysis of a developmental time course of seeds from this plant. Experiments are conducted using polyclonal antibody 5 to bay thioesterase and a biotin labeled second antibody. These studies indicate that a major seed storage protein in *Brassica* migrates with the same mobility as the bay thioesterase, causing non-specific background staining. However, a band of approximately 42kD apparent molecular 10 weight which reacts with the bay Ab is detected in transformed laurate producing plants. This apparent molecular weight is consistent with that of the unprocessed bay thioesterase.

Alternate Western detection methods are under study to 15 reduce the non-specific background staining. For example, a second antibody method where the second antibody is coupled to alkaline phosphatase, results in reduced background staining. Accumulation of bay thioesterase is detectable at low levels at day 24 after pollination, with 20 strong signals observed in seeds from days 30-40 after pollination. Initial results suggest that most of the signal is the 42kD unprocessed preprotein, with only 10-20% of the thioesterase antigen migrating at 34kD. These studies suggest that the unusual transit peptide of the bay 25 thioesterase may result in non-optimal plastid targeting in *Brassica*.

RNA analysis of the above developmental time course seed samples shows that the napin-driven bay thioesterase mRNA accumulates with the same kinetics as the total 30 endogenous napin message, with peak transcription in the 27-50 day range. Thus, the bay thioesterase activity lags behind the onset of storage oil synthesis by about 5-7 days, and earlier expression of the bay thioesterase may make a significant impact on total laurate levels in mature 35 seeds. Northern analysis of ACP and stearoyl-ACP desaturase transcripts in the above seed samples indicates that the native transcripts of these genes accumulate 3-5

days earlier than the bay thioesterase transcript produced by the napin promoter. These data suggest that the ACP and stearoyl-ACP desaturase gene promoters may be useful for earlier expression of the bay thioesterase gene. Cloning 5 of a cDNA for a *Brassica rapa* stearoyl-ACP desaturase and a promoter region for *B. rapa* ACP have been described (Knutzon et al. (1992) *Proc. Nat. Acad. Sci.* 89:2624-2628; Scherer et al. (1992) *Plant Mol. Biol.* 18:591-594).

Transformed *Arabidopsis* plants which contain a 10 construct (pCGN3836) having the 1.2kb bay thioesterase gene fragment positioned for expression from an approximately 1.5 kb region of the *B. rapa* ACP promoter, and approximately 0.3kb of a napin 3' regulatory region, have been obtained. Initial analysis of the seeds from the 15 pCGN3836-transformed plants for laurate content, indicates that laurate does not accumulate to detectable levels in these seeds. However, it is possible that when expression timing and targeting of bay thioesterase are optimized in transgenic *Brassica* seeds a small amount of thioesterase 20 will make a great deal of laurate, as appears to occur in bay, and a lower level of expression of bay thioesterase may be sufficient.

Example 4 - Transgenic Plants

Plants transformed with thioesterase constructs are 25 analyzed for thioesterase activity and fatty acid and triglyceride compositions.

A. Arabidopsis

Arabidopsis seeds from selfed transgenic *A. thaliana* plants transformed with pCGN3816 and pCGN3821 are analyzed 30 for 12:0 and 14:0 acyl-ACP thioesterase activities. Developing seeds are extracted with thioesterase assay buffer (Pollard, et al, *supra*) and the soluble fraction assayed. Transgenic seeds show significant increase of 12:0 thioesterase activity over the controls. Also, the 35 14:0-ACP hydrolysis increases, but at a smaller scale, in

agreement with enzyme specificity data from transformed *E. coli*.

Total fatty acid analysis of mature *A. thaliana* seeds reveals up to 5% laurate in plants transformed with the above described constructs, as compared to 0% laurate as measured in control plant seeds. Figure 2 demonstrates that the percent laurate directly correlates with lauroyl thioesterase activity in transgenic seeds. Also, the myristate content in transgenic seeds increases from 0.1% (control) up to 0.7% in the highest expressers and also correlates with the myristoyl thioesterase activity. Triglyceride analysis by thin-layer chromatography (TLC) shows that the laurate detected by total fatty acid analysis is present in the neutral lipids fraction, evidence that the laurate is incorporated (esterified) into triglycerides.

Mature seeds from *A. thaliana* plants transformed with PCGN3828 are analyzed for total fatty acids by GC essentially as described by Browse et al. (*Anal. Biochem.* 20. (1986) 152:141-145) as described in detail in Example 2. These studies reveal at least one plant, 3828-13, whose seeds contain up to approximately 17% by weight (23.5 mole percent) laurate. Mature seeds from this transformed plant are subjected to a pancreatic lipase digestion protocol 25 (Brokerhoff (1975) *Meth. Enzymol.* 35:315-325) to distinguish acyl compositions of the sn-2 and sn-1+3 (combined) positions. Preliminary results from these analyses are as follows:

	sn-1+2+3 (methanolysis)	17.8% C12
30	sn-2 (lipase digestion)	2.9% C12
	sn-1+3 (calculated from above)	25.3% C12
	sn-1+3 (lipase digestion)	21.9% C12.

These preliminary results suggest that medium-chain fatty acids are efficiently incorporated into the sn-1 and/or sn-35 3 positions of the triglyceride molecule. (Further discussion of this technique is provided below.)

In a different experiment, out of 26 pCGN3828-transformed *Arabidopsis* plants tested for 12:0-ACP thioesterase activity, seven tested positive. The presence of "transformants" that are negative for laurate expression is not surprising as the *Arabidopsis* transformation method does not include selection at the rooting stage. Thus, the laurate negative plants would be expected to include non-transformed "escapes," as well as transformed plants which are not expressing the bay thioesterase gene. Analysis of mature seeds (100-seed pools) from these seven positive plants shows that the positive plants contain significant amounts of 12:0, which is absent from controls. The amounts of 12:0 ranged from 2.1 to 23.5 mole percent and approximately correlate with the thioesterase activity. The total fatty acid contents of the seeds are within the range typically seen in *Arabidopsis*, suggesting that the 12:0 deposition does not adversely affect oil yield. No obvious effects on seed development or morphology are observed. Lipid class analysis (TLC) demonstrates that the triglyceride fraction contains the same proportion of laurate as the total extractable fatty acids, i.e. at these levels the 12:0 is readily incorporated into triglyceride.

A small amount of 14:0 also accumulates in transgenic *Arabidopsis* seeds. The ratio of 12:0 to 14:0 fatty acids in the seeds is similar to the ratio of in vitro thioesterase activities on 12:0-ACP and 14:0-ACP. The near-constant ratio between the 12:0 and 14:0 products presumably reflects the specificity of the bay thioesterase towards 12:0-ACP and 14:0-ACP, and suggests that the enzyme function in vivo in the transgenic seeds by direct action on similarly sized pools of 12:0-ACP and 14:0-ACP. The bay thioesterase appears to have no significant action on 10:0-ACP in vitro and only a minor trace of 10:0 is detected in the transgenic seeds.

Additional studies were conducted to determine if the medium-chains were synthesized at the expense of all, or only some, of the "native" *Arabidopsis* fatty acids. The

average fatty acid composition of 100 mature seeds from a control *Arabidopsis* plant were compared with that from transgenic plant 3828-13. The results of these studies are shown in Figure 9. The differences in 12:0 and 14:0 contents of the two plants are clear, but differences in the contents of other fatty acids as a result of medium-chain production are more difficult to identify. The total fatty acid contents varied considerably between *Arabidopsis* plants, making comparisons of absolute fatty acid levels very difficult. Expression of the data in percentage terms (total fatty acids = 100) to eliminate these differences created further difficulties with interpretation.

Thus, a way to distinguish unique fatty acid compositions from typical inter-plant variation was devised as follows. The total fatty acid contents of mature (T2) seeds from the 26 T1 *Arabidopsis* plants were arranged in increasing order, and produced a smooth spread of values as shown in Figure 10A. The six highest laurate producers are indicated by arrows, along with the corresponding weight percent 12:0 data. There appears to be no relationship between the levels of 12:0 production and total fatty acid content. In Figure 10B the data are shown ordered in the same way, but for three fatty acids individually. The data for 18:2 and 16:0 also formed a smooth line, except for the positive events in which laurate accumulated. In those instances the contents of 18:2 and 16:0 were noticeably below the overall trend, showing that 12:0 was produced in those seeds at the expense of 18:2 and 16:0. This was also true for 18:1, 20:1, and 20:2. The only major fatty acid constituent to be relatively unaffected by 12:0 production was 18:3, as shown in Figure 10B, although low-18:3 controls can be found, for example in plant 10.

B. Brassica

Seeds from *Brassica napus* plants transformed with pCGN3816 are also analyzed for total fatty acids by GC as

described above. Analysis of single segregating seeds (T2 seeds) from transformed plants (T1 plants) reveals levels of C12:0 ranging from zero to 14.5%, as compared to zero percent in seeds from untransformed control plants. C12:0 levels correlate to C12:0-ACP thioesterase activities in corresponding immature seeds, as demonstrated in Figure 7. In addition, C14:0 is also detected in these seeds at levels correlating with those of the C12:0, although C14:0 levels are lower.

10 Minor modifications may be made to the GC temperature program used for analysis of laurate-containing TAG. An additional useful temperature cycle is as follows: 160°C for 3 minutes, followed by a 5 degrees per minute temperature ramp to final temperature of 240°C, which is 15 held for 6 minutes; this results in a total run time of 26 minutes.

Transformed *Brassica napus* plants containing the pCGN3824 (napin/thioesterase) and pCGN3828 (napin/thioesterase/napin) constructs were analyzed to 20 determine seed fatty acid composition. Pooled seeds from 34 plants transformed with pCGN3824 and 31 plants transformed with pCGN3828 were analyzed (25-50 seeds per assay) to determine the ranges of laurate levels in the seeds. The results of these analyses, presented as the 25 number of transgenic events having a given percentage of laurate, are presented in Figure 11. The pCGN3824-transformants had laurate contents ranging from 0-11 mole percent, with the exception of a single plant whose seeds contained 17 mole percent laurate. The pCGN3828 construct 30 plants had laurate contents ranging from 1-17 mole percent, with two representatives outside this range having 37 mole percent laurate (plant 3828-23) and 27 mole percent laurate (plant 3828-35). It is noted that in addition to containing laurate, the seed oils of these plants also have 35 smaller amounts of C14:0 fatty acids, corresponding to approximately 16% of the laurate levels.

Half-seed analysis is also used to determine laurate levels in mature seeds from transformed plants. For half-seed analysis, seeds are placed on a moistened (2-3ml water) filter paper disc in a Petri dish which is sealed

5 and left in the dark for 20 to 48 hours at room temperature or 30°C. Germinated seeds have 2-5mm radicles protruding from the seed coats. Fine forceps are used to remove each seedling from its coat and tease away the outer cotyledon. Dissected cotyledons are placed in 4ml vials and dried for

10 2-12 hours in a 110°C oven prior to fatty acid analysis. The dissected seedlings are planted directly into potting soil in 12-pack containers, misted, covered with transparent plastic lids, placed in a growth chamber at 22°C in 150-200 microEinsteins m⁻²s⁻¹ light intensity with a

15 16h/8h photoperiod, and allowed to grow to produce T2 (second generation transformants) plants. Alternatively, half-seed analysis may be conducted using a chipped portion of a mature seed. Seeds are held under a dissecting scope and a chip of approximately 30% of the seed is removed,

20 avoiding the embryonic axis. The seed chip is used for fatty acid analysis by gas chromatography, and the remaining seed portion is germinated in water for 5-7 days in a microtiter dish, transferred to soil, and grown to produce T2 plants. A chart providing fatty acid

25 composition as mole percent of total fatty acids of 15 representative pCGN3828-23 half-seeds is shown in Table 4A. Similar data from single seeds collected from non-transformed regenerated control plants are shown in Table 4B. Data are from GC half-seed analysis as described

30 above.

Table 4A

	<u>12:0</u>	<u>14:0</u>	<u>16:0</u>	<u>18:0</u>	<u>18:1</u>	<u>18:2</u>	<u>18:3</u>
3828-23# 112	12.00	1.43	4.51	1.42	47.70	16.73	13.90
3828-23# 45	20.50	2.04	4.45	0.88	47.29	11.39	10.89
3828-23# 121	21.43	2.34	4.19	1.11	45.16	13.34	9.75
3828-23# 122	24.11	2.67	4.18	1.08	40.75	12.43	12.29
3828-23# 122	28.54	3.33	4.01	0.86	42.71	10.21	7.62
3828-23# 133	32.14	3.21	3.71	1.05	38.15	8.85	10.29
3828-23# 197	35.89	3.77	3.39	1.07	35.20	9.78	8.70
3828-23# 209	40.74	3.63	3.19	0.98	32.81	10.19	6.43
3828-23# 205	43.56	4.22	3.13	0.79	27.30	9.16	9.71
3828-23# 199	45.87	4.43	3.21	0.99	25.32	7.98	9.95
3828-23# 132	47.52	4.20	2.87	1.70	23.91	9.88	7.54
3828-23# 56	47.93	4.18	3.03	0.62	24.62	12.43	5.51
3828-23# 65	49.54	4.71	3.18	0.80	19.60	11.49	8.65
3828-23# 12	50.69	4.35	2.94	0.70	20.03	12.28	7.81

50A

Table 4B

	<u>12:0</u>	<u>14:0</u>	<u>16:0</u>	<u>18:0</u>	<u>18:1</u>	<u>18:2</u>	<u>18:3</u>
R-1	0.0	0.0	5.9	1.8	56.9	19.5	12.7
R-1	0.0	0.0	6.0	1.5	57.8	21.7	10.3
R-2	0.0	0.0	5.9	1.9	56.2	20.0	12.7
R-2	0.0	0.0	5.4	1.1	59.8	18.8	12.3
R-3	0.0	0.0	4.8	1.3	60.2	20.4	11.1
R-3	0.0	0.0	4.6	1.2	58.2	22.1	11.7
R-4	0.0	0.0	5.4	1.3	57.7	20.5	12.6

The laurate content of 144 assayed pCGN3828-35 half seeds (T2 seed obtained from a T1 plant) ranged from 4 to 42 mole percent. The laurate content of 214 assayed pCGN3828-23 half seeds ranged from 12 to 50 mole percent.

5 No seeds that were analyzed from either the pCGN3828-23 or pCGN3828-35 plants had zero laurate which statistically indicates that these transformants have three or more thioesterase inserts in their genome. Analysis of seed produced from the T2 generation will further confirm this
10 result. In addition, analyses using approximately 60 half-seeds of the pCGN3828-transformants having 10-20 mole percent laurate in their seeds indicates that these plants have 1-2 insertions of the bay thioesterase gene.

To examine the fate of the laurate in transgenic
15 Brassica napus seeds, the fatty acid compositions of different lipid classes extracted from mature transgenic seeds of two transgenic plants, pCGN3828-23 and pCGN3828-7, were examined. TLC analysis of the phospholipids indicates that nearly 100% of the laurate is in the triacylglyceride
20 (TAG) fraction. Analyses of the acyl compositions of the sn-2 and sn-1+3 positions of the TAG are conducted using the pancreatic lipase protocol (Brockhoff (1975), *supra*). Ideally with this protocol, the lipase cleaves fatty acids from the sn-1 and sn-3 positions, and not from the sn-2 position.
25 Thus, the fatty acids in the resulting monoglyceride are presumed to be those in the sn-2 position. Initial studies of TAG in the laurate transformants with this method indicate that C12:0 fatty acids are not incorporated into the sn-2 position. However, it is noted
30 that those previously attempting to study TAG having shorter-chain fatty acids by this method (Entressangles et al. (1964) *Biochim. Biophys. Acta* 84:140-148), reported that shorter-chain fatty acids located at the sn-2 position were quickly hydrolyzed during such a digestion, which the
35 authors reported to be the result of a spontaneous migration of internal shorter-chain fatty acids towards outer positions in diglycerides and monoglycerides.

Additional analyses of transformed plants containing the pCGN3828 construct are conducted to further characterize the expression of bay thioesterase in these plants. The extractable C12:0 thioesterase activity in 5 developing seeds of pCGN3828-23 transformants is measured and is determined to be considerably higher than the endogenous 18:1 thioesterase activity. In view of the high bay thioesterase activity in transgenic plants, additional factors are being investigated for optimization of laurate 10 production.

The presence of the processed (34kD) bay thioesterase in transformed 3828-23 plants is investigated by Western analysis of a developmental time course of seeds from this plant. Experiments are conducted using polyclonal antibody 15 to bay thioesterase and a biotin labeled second antibody. These studies indicate that a major seed storage protein in *Brassica* migrates with the same mobility as the bay thioesterase, causing non-specific background staining. However, a band of approximately 42kD apparent molecular 20 weight which reacts with the bay antibody is detected in transformed laurate producing plants. This apparent molecular weight is consistent with that of the unprocessed bay thioesterase.

Alternate Western detection methods are under study to 25 reduce the non-specific background staining. For example, a second antibody method where the second antibody is coupled to alkaline phosphatase, results in reduced background staining. Accumulation of bay thioesterase is detectable at low levels at day 24 after pollination, with 30 strong signals observed in seeds from days 30-40 after pollination. Initial results suggest that most of the signal is the 42kD unprocessed preprotein, with only 10-20% of the thioesterase antigen migrating at 34kD. These studies suggest that the unusual transit peptide of the bay 35 thioesterase may result in non-optimal plastid targeting in *Brassica*.

RNA analysis of the above developmental time course seed samples shows that the napin-driven bay thioesterase mRNA accumulates with the same kinetics as the total endogenous napin message, with peak transcription in the 5 27-50 day range. Thus, the bay thioesterase activity lags behind the onset of storage oil synthesis by about 5 - 7 days, and earlier expression of the bay thioesterase may make a significant impact on total laurate levels in mature seeds. Northern analysis of ACP and stearoyl-ACP 10 desaturase transcripts in the above seed samples indicates that the native transcripts of these genes accumulate 3-5 days earlier than the bay thioesterase transcript produced by the napin promoter. These data suggest that the ACP and stearoyl-ACP desaturase gene promoters may be useful for 15 earlier expression of the bay thioesterase gene. Cloning of a cDNA for a *Brassica rapa* stearoyl-ACP desaturase and a promoter region for *B. rapa* ACP have been described (Knutzon et al. (1992) *Proc. Nat. Acad. Sci.* 89:2624-2628; Scherer et al. (1992) *Plant Mol. Biol.* 18:591-594).

20 Transformed *Arabidopsis* plants which contain a construct (pCGN3836) having the 1.2kb bay thioesterase gene fragment positioned for expression from an approximately 1.5 kb region of the *B. rapa* ACP promoter, and approximately 0.3kb of a napin 3' regulatory region, have 25 been obtained. Initial analysis of the seeds from the pCGN3836-transformed plants for laurate content, indicates that laurate does not accumulate to detectable levels in these seeds. However, it is possible that when expression timing and targeting of bay thioesterase are optimized in 30 transgenic *Brassica* seeds a small amount of thioesterase will make a great deal of laurate, as appears to occur in bay, and a lower level of expression of bay thioesterase may be sufficient.

Example 5 - Obtaining Other Plant ThioesterasesA. Additional Sources of Plant Thioesterases

In addition to the Bay and safflower thioesterases identified in previous Examples, other plants are sources 5 of desirable thioesterases which have varying specificities with respect to fatty acyl chain length and/or degree of saturation. Such additional plant thioesterases may be identified by analyzing the triacylglyceride composition of various plant oils and the presence of a specific 10 thioesterase confirmed by assays using the appropriate acyl-ACP substrate.

Other plants which may have desirable thioesterase enzymes include elm (*Ulmaceae*) and camphor (*Cinnamomum camphora*). A significant percentage of 10:0 fatty acids 15 are detected in elm seeds, and both 10:0 and 12:0 fatty acids are prominent in seeds from camphor. Results of biochemical assays to test for thioesterase activity in developing embryos from camphor and elm are presented below in Table 5.

20

Table 5

	<u>Substrate</u>	<u>Activity</u>	
		(mean cpm in ether extract)	
		<u>elm</u>	<u>camphor</u>
25	8:0-ACP	84	0
	10:0-ACP	2199	465
	12:0-ACP	383	1529
	14:0-ACP	1774	645
	16:0-ACP	3460	940
30	18:1-ACP	3931	3649

With elm, a peak of thioesterase activity is seen with the C10:0-ACP substrate, in addition to significant activity with longer-chain substrates. This evidence suggests that a thioesterase with specific activity towards C10:0-ACP 35 substrate is present in elm embryos. Significant activity

towards C12:0-ACP substrate is detected in camphor extracts. In addition, camphor extracts demonstrate greater activity towards C10:0-ACP substrates than do similar extracts from bay embryos. This evidence suggests 5 that a medium-chain acyl-ACP thioesterase having specificity towards C10:0-ACP and C12:0-ACP substrates is present in camphor embryos.

In a like fashion, longer chain fatty acyl thioesterase (C16 or C18) can also be obtained. For example, a significant 10 percentage (45%) of 16:0 fatty acids is found in the tallow layer of the seeds of the Chinese tallow tree (*Sapium sebiferum*) and in the seed oil of cotton (*Gossypium hirsutum*) (Gunstone, Harwood and Padley eds. *The Lipid Handbook*, (1986) Chapman and Hall, Ltd., The University Press, Cambridge).

15 Approximately 250mg each of developing Chinese tallow tissue, cotton embryos (var. Stoneville 506, day 21 post-anthesis) or *Brassica napus* embryos (cv. Delta, day 28 post-anthesis) are ground to a fine powder in a mortar and pestle under liquid nitrogen and extracted by homogenization in 1 ml 20 50mM sodium phosphate pH 7.5, 2 mM dithiothreitol, 2 mM sodium ascorbate, 20% v/v glycerol, 1% w/v PVP-10 and 5 mM diethyldithiocarbamate in a glass homogenizer with a motor driven pestle. The homogenate is centrifuged in a microcentrifuge tube for 15 min and aliquots of the 25 supernatant fraction are assayed for thioesterase activity as follows.

Twenty-five μ l of a 1/20 dilution of the supernatant in assay buffer (7 mM potassium phosphate, pH 8.0, 20% v/v glycerol, 0.02% w/v Triton X-100, 1 mM dithiothreitol) is 30 added to 70 μ l of assay buffer in a glass screw top vial. Fifty pmoles of [14 C]-radiolabeled acyl-substrate are added to start the reaction. The substrates are myristoyl-ACP (14:0-ACP), palmitoyl-ACP (16:0-ACP), stearoyl-ACP (18:0-ACP) or oleoyl-ACP (18:1-ACP) synthesized as described for lauroyl-ACP 35 in Pollard, et al., supra. Vials are incubated 30 min, 30 C. The reactions are stopped with acetic acid and free fatty

acids are extracted with ether by adding 0.5ml 10% (v/v) cold (4°) acetic acid and placing the reaction mixture on ice for a few minutes. The fatty acid product of the hydrolytic enzyme action is extracted away from the unhydrolyzed substrate by 5 adding 2ml diethyl ether and mixing vigorously. The ether is transferred to 5ml scintillation fluid for scintillation counting. Additional ether extracts may be performed to recover remaining traces of product for more accurate quantitation of the activity if desired.

10 Substrate specificity analysis results for cotton, Chinese tallow and *Brassica* are shown in Table 6.

Table 6

	<u>Substrate</u>	<u>Activity</u>		
		(mean cpm in ether extract)		
15		tallow	cotton	<i>Brassica</i>
	14:0-ACP	254	944	180
	16:0-ACP	1038	1542	506
	18:0-ACP	733	860	500
20	18:1-ACP	2586	3667	4389

A peak of activity is seen with the 16:0-ACP substrate as well as the 18:1-ACP substrate in both cotton and Chinese tallow whereas the *Brassica* seed profile only shows significant activity with the 18:1-ACP. It appears that an acyl-ACP 25 thioesterase with specificity for 16:0 fatty-acyl ACP accounts for the triacylglyceride composition of Chinese tallow and cotton.

Two peaks of thioesterase activity are observed in extracts of cotton embryos chromatographed on heparin-agarose. 30 This chromatography has been shown to separate two different thioesterases, a 12:0-ACP thioesterase and an 18:1 thioesterase from Bay extracts (Pollard, et al., Arch. Biochem. Biophys. (1991) 284:306-312). Of the two peaks of activity observed from the chromatography of cotton extracts 35 the first has higher 18:1 activity than 16:0 activity and the

second peak has higher 16:0 activity than 18:1 activity. The data suggests the presence of two enzymes with distinct specificities in cotton.

- In addition, kernel oil of mango (*Mangifera indica*)
- 5 contains 24-49% stearic acid and 6-18% palmitic acid in triacylglycerols and the oil has been suggested for use as a cocoa butter substitute (Osman, S.M., "Mango Fat", in *New Sources of Fats and Oils*, (1981) eds. Pryde, E.H., Princen, L.H., and Mukherjee, K.D., American Oil Chemists Society).
- 10 Similarly to the examples described above, a thioesterase with 18:0-ACP specificity can be demonstrated by biochemical assay of embryo extracts.

B. Isolating Thioesterase Genes

Having obtained sequence (amino acid and DNA) for Bay and safflower thioesterase, similar genes from other plant sources such as those identified above can be readily isolated. In this example, two methods are described to isolate other thioesterase genes: (1) by DNA hybridization techniques using sequences or peptide sequence information

15 from the Bay and safflower thioesterase gene and (2) by immunological cross-reactivity using antibodies to the Bay protein as a probe.

In either of these techniques, cDNA or genomic libraries from the desired plants are required. Many

25 methods of constructing cDNA or genomic libraries are provided for example in Chapter 8 and 9 of Maniatis, et al. (*Molecular Cloning: A Laboratory Manual*, Second Edition (1989) Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).

30 Probes for use in DNA hybridizations to isolate other plant thioesterase genes can be obtained from the Bay and safflower thioesterase gene sequences provided or alternatively by PCR using oligonucleotides from thioesterase peptide sequences.

In this example, a PCR-generated DNA fragment is used as a probe. Northern analysis of embryo RNA from the desired plant species is conducted to determine appropriate hybridization conditions. RNA is electrophoresed in a formaldehyde/agarose gel and transferred to a nylon membrane filter as described by Fourney, et al. (*Focus* (1988) Bethesda Research Laboratories/Life Technologies, Inc., 10:5-7. A ^{32}P -labeled probe (Random Primed DNA labeling kit, Boehringer Mannheim, Indianapolis, IN) is added to a hybridization solution containing 50% formamide, 6 x SSC (or 6 x SSPE), 5 x Denhardt's reagent, 0.5% SDS, and 100 $\mu\text{g}/\text{ml}$ denatured salmon sperm DNA fragments.

The hybridization solution containing the labeled probe is incubated with the Northern filter at approximately 40°C for 18 hours or longer to allow hybridization of the probe to homologous (50-80%) sequences. The filter is then washed at low stringency (room temperature to 42°C in about 1X SSC). Hybridization and washing temperatures may be adjusted based on the estimated melting temperature of the probe as discussed in Beltz, et al. (*Methods in Enzymology* (1983) 100:266-285). In further testing the temperature is raised either in the hybridization or washing steps, and/or salt content is lowered to improve detection of the specific hybridizing sequence.

A useful probe and appropriate hybridization and washing conditions having been identified as described above, cDNA libraries are screened using the ^{32}P -labeled fragment and optimized conditions.

For example, an ~600bp *Bam*HI/*Xba*I fragment of thioesterase clone pCGN3263 is radio-labeled and used as a heterologous probe to isolate a thioesterase clone from a *B. campestris* embryo cDNA library. DNA sequence of a *Brassica* thioesterase cDNA clone is presented in Figure 6. Along with the translated amino acid sequence from the proposed ATG start codon. Additional *Brassica* clones which

show some variations in DNA sequence are also being analyzed.

- In addition to direct hybridization techniques using heterologous thioesterase genes as probes, PCR techniques
- 5 may also be used to create probes for hybridization or to generate thioesterase encoding sequences from mRNA or DNA from the desired plant source. For example, a camphor (*Cinnamomum camphora*) thioesterase clone may be isolated using nucleic acid and amino acid sequence information from
- 10 the bay and safflower thioesterase clones. Homology of the bay thioesterase cDNA clone to RNA isolated from developing camphor embryos is observed by Northern analysis as follows. Total RNA is isolated from 1g of developing camphor embryos by adaptation of the SDS/phenol extraction
- 15 method described in *Current Protocols in Molecular Biology*, pages 4.3.1-4.3.4 (Ausubel et al., eds. (1987); John Wiley & Sons). The grinding buffer for this extraction contains 100mM LiCl, 100mM Tris pH9, 10mM EDTA, 1%SDS and 0.5% β -mercaptoethanol. For extraction from 1g of embryos, 10ml
- 20 of grinding buffer plus 3ml of phenol equilibrated to pH8 are added to powdered embryos. The homogenization step may be conducted in a mortar instead of with a polytron, as described in the published method, and the heating step which follows homogenization in that method is omitted.
- 25 Centrifugation, phenol/chloroform extractions of the sample and LiCl precipitation of RNA are as described.

- Total RNA (10-20 μ g) is electrophoresed in a formaldehyde/agarose gel and transferred to a nylon membrane filter as described by Fourney et al. (*supra*). A
- 30 probe for hybridization of the Northern filter is prepared from a *Sall* digest of pCGN3822, the full length bay thioesterase cDNA by PCR using oligonucleotides to the safflower thioesterase cDNA sequence to generate an approximately 1300bp fragment. The forward primer contains
- 35 nucleotides 212 to 228 of the safflower thioesterase cDNA sequence (SEQ ID NO:38) and the reverse primer is the complement to nucleotides 1510-1526 of the cDNA sequence.

The fragment is gel purified using a Prep-A-Gene DNA purification kit (BioRad; Richmond, CA) and radiolabeled using a Boehringer Mannheim (Indianapolis, IN) random priming labeling kit. The Northern filter is hybridized 5 overnight in 50% formamide, 5X SSC, 50mM sodium phosphate (pH7), 5X Denhardt's solution, 0.1% SDS, 5mM EDTA and 0.1mg/ml denatured DNA at 30°C. The filter is washed twice (15 minutes each wash) in 0.1X SSC, 0.1% SDS.

Autoradiography of the hybridized filter reveals a strong 10 hybridization signal to an approximately 1300bp RNA band in the camphor embryo sample. This band is approximately the same size as the bay thioesterase mRNA.

To obtain a fragment of the camphor thioesterase gene, PCR is conducted using oligonucleotides to peptides 15 conserved between the bay and safflower thioesterases. A comparison of the safflower and bay thioesterase translated amino acid sequence is presented in Figure 8.

Polymerase chain reactions are conducted using reverse transcribed camphor RNA as template. The reactions are 20 conducted in a Bioscycler Oven (Bios Corp.; New Haven, CT) programmed for the following cycles:

N	95°C for 2 min.	P	95°C for 15 sec.
	1 sec. drop to 65°C		1 sec. drop to 65°C
	hold 65°C for 1 sec.		hold 65°C for 1 sec.
25	2 min. drop to 45°C		2 min. drop to 55°C
	hold 45°C for 30 sec.		hold 55°C for 15 sec.
	1 sec. rise to 72°C		1 sec. rise to 72°C
	hold 72°C for 30 sec.		hold 72°C for 15 sec.
	1 sec. rise to 95°C		1 sec. rise to 95°C

30 Cycle N is run and repeated 6 times after which cycle P is run and repeated 37 times.

An approximately 500-600bp band is identified by agarose gel electrophoresis of the PCR products. This is the approximate fragment size predicted from analysis of 35 the distance between the peptides in the bay thioesterase

sequence. The PCR fragment is subcloned into an appropriate cloning vector and its DNA sequence determined to verify thioesterase sequence. DNA sequence of the camphor PCR fragment is presented in Figure 5A. The 5 fragment can then be utilized to screen a camphor cDNA or genomic library to isolate a camphor thioesterase clone.

Alternative to screening gene libraries, additional PCR techniques may be used to recover entire thioesterase encoding sequences. For example, the camphor thioesterase 10 PCR fragment sequence is used to generate additional camphor thioesterase encoding sequence. For sequences 3' to the PCR fragment, the RACE procedure of Frohman et al. (Proc. Nat. Acad. Sci. (1988) 85:8998-9002) is utilized. Briefly, cDNA is generated from camphor endosperm poly(A)+ 15 RNA using 200ng of RNA, a poly(T) oligonucleotide (with 5' restriction recognition sites for EcoRI, XhoI and SalI) and reverse transcriptase. The product of this reaction is used in a PCR 3' RACE with an oligonucleotide encoding EcoRI, XhoI and SalI recognition sites and an oligonucleotide 20 representing nucleotides 443-463 of the camphor gene fragment of Figure 5A. The reaction is run in a Bioscycler oven with the following program:

1 cycle at: 94°C for 40 sec.
25 50°C for 2 min.
72°C for 40 min.
40 cycles at: 94°C for 40 sec.
50°C for 2 min.
72°C for 3 min.

In this manner, an approximately 700bp fragment 30 representing the 3' portion of the camphor thioesterase gene sequence is obtained.

In addition, 5' sequence of the camphor thioesterase encoding sequence may also be obtained using PCR. For this reaction, cDNA to camphor endosperm poly(A)+ RNA is 35 generated using random hexamer oligonucleotide primers in a reverse transcription reaction essentially as described by

Frohman et al. (*supra*). The cDNA product of this reaction is A-tailed using terminal deoxynucleotide transferase and used in PCR. Oligonucleotide primers for this reaction are MET-1-2898, which contains nucleotides 140-155 of the bay 5 thioesterase sequence in Figure 1A and a 5' *Bam*HI recognition site, and 2356, a degenerate oligonucleotide containing a sequence complementary to nucleotides 115-126 of the camphor thioesterase gene fragment of Figure 5A. The reaction is run in a Bioscycler oven with the following 10 program:

35 cycles at:
94°C for 1 min.
55°C for 1.5 min.
72°C for 2.5 min.

In this manner, an approximately 450bp fragment 15 representing the 5' portion of the camphor thioesterase gene sequence is obtained.

The various camphor thioesterase gene fragments are combined in a convenient cloning vector using restriction sites as inserted from the PCR procedures. Preliminary 20 nucleic acid sequence and translated amino acid sequences of the camphor thioesterase gene generated in this manner is presented in Figure 5B.

DNA sequences corresponding to *Cuphea* thioesterase may also be obtained using PCR methods. Degenerate 25 oligonucleotides for use as primers may be designed from peptide fragments that are conserved between the bay, safflower and camphor thioesterase cDNA clones. The forward primer, TECU3, contains 18 nucleotides corresponding to all possible coding sequences for amino acids 283-288 of the bay (Figure 1B) and camphor (Figure 5B) thioesterase proteins, and amino acids 282-287 of the safflower thioesterase of Figure 4A. The reverse primer, TECU4A, contains 17 nucleotides corresponding to all possible coding sequences for amino acids 315-320 of the 30 bay (Figure 1B) and camphor (Figure 5B) thioesterase proteins, and amino acids 314-319 of the safflower 35

thioesterase of Figure 4A. In addition, the forward and reverse primers contain *Bam*HI or *Xho*I restriction sites, respectively, at the 5' end, and an inosine nucleotide at the 3' end. Inosine residues at the 3' terminus have been
5 reported to enhance amplification from degenerate oligonucleotide primers (Batzer et al. (1991) *Nucl. Acids Res.* 19:5081). The safflower peptides differ from the bay and camphor sequences in one amino acid in each of the designated peptide regions, and thus the oligonucleotide
10 primers degeneracy is such that they encode both the safflower and bay/camphor sequences.

Polymerase chain reaction samples (100 μ l) are prepared using reverse transcribed *Cuphea hookeriana* RNA as template and 1 μ M of each of the oligonucleotide primers. Samples
15 are boiled for 5 minutes and cooled to 75°C prior to addition of Taq enzyme. PCR is conducted in a Perkin-Elmer thermocycler programmed for the following temperature cycle:

94°C for 1 min.
20 65°C for 1 sec.
2 min. drop to 40°C
hold 40°C for 30 sec.
1 min. rise to 72°C
1 sec. rise to 94°C
25 repeat cycle 40 times.

A termination cycle of 2 minutes at 72°C is then run.

PCR products are analyzed by agarose gel electrophoresis, and an approximately 120 bp DNA fragment, the predicted size from the thioesterase peptide sequences, 30 is observed. The DNA fragment is isolated and cloned into a convenient plasmid vector using the PCR-inserted *Bam*HI and *Xho*I restriction digest sites. The cloned fragments are sequenced, and three clones are identified which match 21 out of 38 amino acids of the corresponding bay (Figure 35 1B) thioesterase sequence (including the 12 amino acids encoded by the primers). Further comparison of one clone,

CUPHEA-14-2, indicates that the translated peptide sequence matches 25 amino acids in the corresponding bay D (Figure 3) region, 22 in the camphor thioesterase, and 22 and 23, respectively in the safflower 2-1 and 5-2 encoded thioesterase sequences. The DNA sequence of the CUPHEA-14-2 clone and amino acid translation of the thioesterase coding region are presented in Figure 12. The thioesterase encoding fragment is labeled and used to screen a Cuphea hookeriana cDNA library to isolate the corresponding thioesterase cDNA.

Analysis of Thioesterase Sequences

Clones identified using DNA hybridization or immunological screening techniques are then purified and the DNA isolated using techniques as provided in Maniatis, et al. (*supra*). DNA sequence of the genes is determined to verify that the clones encode a related thioesterase. Alternatively, the protein is expressed in *E. coli* to show that it has the desired activity. The newly isolated plant thioesterase sequences can also be used to isolate genes for thioesterases from other plant species using the techniques described above.

For example, comparison of amino acid and nucleic acid sequences of the Bay, camphor and safflower thioesterases reveals homology that is useful for isolation of additional thioesterase genes. The bay and camphor clones demonstrate extensive homology, especially at the amino acid level, and may be useful for isolation of other thioesterases having similar short or medium-chain acyl-ACP substrate specificities, such as *Cuphea*, *elm*, *nutmeg*, etc. Similarly, the long chain thioesterase genes of safflower or *Brassica*, which have significant homology, may be useful for isolation of plant thioesterases having specificities for longer chain acyl-ACP substrates, such as those identified from Chinese tallow or cotton which have specificity for 16:0 fatty-acyl ACP and mango (18:0).

In addition, regions of the long chain thioesterase proteins and the short or medium-chain specific thioesterase proteins also demonstrate homology. These homologous regions may be useful for designing degenerate oligonucleotides for use in PCR to isolate additional plant thioesterases. For example, as described above, oligonucleotides to bay and safflower thioesterase regions were used to obtain camphor thioesterase encoding sequence. This conserved region corresponds to amino acids 113-119 of the bay and camphor amino acid sequences in Figures 1B and 5B, respectively and amino acids 108-114 of the safflower amino acid sequence in Figure 4A. Similarly, other conserved regions are found in the bay, camphor and safflower amino acid sequences (as shown in Figures 1B, 5B and 4B, respectively), such as in 174-188 of bay and camphor and 169-183 of safflower; 219-229 of bay and camphor and 214-224 of safflower; and 138-145 of bay and camphor and 133-140 of safflower.

The above described plant acyl-ACP thioesterases are more highly conserved towards the center of the proteins than at either the carboxy- or amino-termini. The conserved regions may represent areas related to the catalytic site of the enzyme, and the observed substrate specificity differences may be related to the amino acid sequence differences in the regions at either end of the polypeptide chain. The plant acyl-ACP thioesterase protein sequences do not contain an active site consensus sequence (GHSxG) that is found in animal and yeast thioesterases and other fatty acid synthesis enzymes, or the active site motif of the cysteine-based hydrolases (Aitken (1990) in *Identification of Protein Consensus Sequences*, Ellis Horwood, London, pp. 81-91). As inhibitor studies indicate that the plant thioesterase enzymes are sensitive to sulfhydryl-specific reagents such as N-ethylmaleimide (Pollard, et al., *supra*), a cysteine residue may be involved at the active site.

Thus, other plant thioesterase genes may be isolated by the above described methods and used for expression of plant thioesterases. In particular, expression in *E. coli* will be useful for verifying the acyl chain length specificity of these thioesterases, and expression in plant seeds will be useful for producing modified oils.

Example 6 - Plant Thioesterases and Dehydrases in Plants

- The enzyme 3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.60), also referred to herein as 10 dehydrase, catalyzes the dehydration of 3-hydroxydecanoyl-ACP (C10:0-ACP) to 2-decenoyl-ACP (C10:1-ACP), a key step in the production of unsaturated fatty acids in bacteria. Expression of this enzyme in plant seeds is useful for production of unsaturated medium-chain acyl-ACPs in plants 15 which also contain the bay medium-chain acyl-ACP thioesterase gene. In this manner, medium-chain unsaturated free fatty acids are formed as the result of hydrolysis activity of the bay thioesterase on C12:1 and C14:1 substrates.
- 20 A useful construct for expression of dehydrase in plant seeds provides for expression of the enzyme in plant seed tissue under control of a napin promoter region. In addition, a transit peptide region is provided for translocation of the dehydrase enzyme into plastids.
- 25 A dehydrase nucleic acid sequence from the *E. coli* dehydrase gene (Cronan et al. (1988) *J. Biol. Chem.* 263:4641-4646) is constructed, which encodes all but the initial Met amino acid of the dehydrase enzyme. A PCR DNA fragment which encodes the safflower thioesterase transit 30 peptide and 6 amino acids of the mature safflower thioesterase (from clone 2-1) is inserted immediately 5' to the dehydrase such that the transit peptide and dehydrase sequences are in the same reading frame. The safflower thioesterase transit/dehydrase sequence is inserted into 35 the napin expression cassette, pCGN3223, between the 5' and 3' napin regulatory sequences.

The dehydrase expression construct is transformed into a binary construct for plant transformation. A vector which encodes a selectable marker other than kanamycin is preferred. In this manner, transgenic *Brassica* plants 5 which produce medium-chain acyl-ACP fatty acids as the result of an inserted bay thioesterase construct (such as those described in Example 4), may be re-transformed with the dehydrase expression construct. For example, the dehydrase expression construct may be inserted into a 10 binary vector, pCGN2769 (described below), which encodes resistance to the antibiotic hygromycin B. *Agrobacterium* cells containing the resulting construct are obtained and used in *Brassica* transformation methods as described in Example 3.

15 The binary vector, pCGN2769, contains the right and left borders of *Agrobacterium* T-DNA, and between these borders, a 35S/hygromycin/tr7 construct for selection of transformed plant cells. The vector was constructed to be directly analogous to the binary vectors described by 20 McBride and Summerfelt (*supra*), except for the use of an alternate selectable marker. The *hph* gene encoding hygromycin B phosphotransferase is described by Gritz and Davies (*Gene* (1983) 25:179-188). A DNA *Xba*I fragment containing the following *hph* and plant regulatory sequences 25 was constructed using polymerase chain reaction techniques: -289 to +114 (relative to the transcriptional start site) of a CaMV35S promoter; *hph* coding region nucleotides 211-1236 (Gritz and Davies; *supra*), with the ATG initiation codon contained in the sequence ATCATGAAA, to provide a 30 plant consensus translation initiation sequence (Kozak (1989) *J. Cell. Biol.* 108:229-241); an *Agrobacterium* transcript 7 (tr7) transcription termination region, from nucleotides 2921-2402 of T-DNA as numbered by Barker et al. (Plant Mol. Biol. (1983) 2:335-350). The *Xba*I *hph* 35 expression fragment was ligated into pCGN1541 to create pCGN2768 which has a *Bgl*II fragment containing the left border of pTiA6 T-DNA, the *hph* expression construct, a *Hae*II fragment containing the 425 bp *E. coli* lac alpha

encoding region, and the right border of pTiA6 T-DNA (T-DNA border and lac- α regions are described in McBride et al.

(supra). The above described *Bgl*III fragment is cloned into the unique *Bam*HI fragment of pCGN1532 McBride et al.

5 (supra) resulting in pCGN2769.

Alternatively, the dehydrase expression construct and a bay thioesterase expression construct (such as pCGN3828) may both be inserted into a single binary vector, such as the McBride et al. (supra) vectors which contain a marker 10 for selection of kanamycin resistant plants. In either of these methods, plants which are able to produce medium-chain unsaturated and saturated fatty acids are produced.

All publications and patent applications mentioned in this specification are indicative of the level of skill of 15 those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated 20 by reference.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within 25 the scope of the appended claim.

What is claimed is:

1. A plant seed comprising a minimum of 1.0 mole percent laurate in total fatty acids, wherein said laurate is incorporated into at least one position of a triglyceride molecule and wherein wild-type seed of said plant contains less than 1.0 mole percent laurate in fatty acids.
2. The seed of Claim 1 comprising a minimum of about 15 mole percent laurate in fatty acids.
- 10 3. The seed of Claim 1 comprising a minimum of about 33 mole percent laurate in fatty acids.
4. The seed of Claim 1 comprising a minimum of about 50 mole percent laurate in fatty acids.
5. The seed of Claim 1 wherein said laurate is found in at least two positions of a triglyceride molecule.
- 15 6. An oil derived from a seed of Claim 1.
7. A *Brassica* seed comprising a minimum of 15.0 mole percent laurate in fatty acids incorporated into at least one position of a triglyceride molecule.
- 20 8. The *Brassica* seed of Claim 7 comprising a minimum of 50 mole percent laurate in fatty acids.
9. An oil derived from a seed of Claim 7.
10. A DNA construct capable of producing a plant thioesterase in a host cell comprising, in the 5' to 3' direction of transcription, a transcriptional initiation region functional in said host cell, a translational initiation region functional in said host cell, a DNA structural gene sequence encoding a Bay thioesterase having at least the 5'-terminal sequences of Figure 1B, and a transcriptional and translational termination region functional in said host cell.

11. A *Brassica* plant cell comprising a DNA construct according to Claim 10.

12. A method of harvesting medium-chain fatty acids from a bacterial cell comprising:

5 culturing a bacterial cell having a DNA sequence encoding a plant medium-chain thioesterase under the control of regulatory sequences functional in said cell under conditions to result in the expression of said thioesterase, wherein said cell is deficient in fatty acid
10 degradation and

recovering fatty acid salts from a cell free medium.

13. The method of Claim 12 wherein said bacterial cell is acyl-CoA synthase deficient and selected from the group consisting of *E. coli fadD* and *E. coli fadE*.

15 14. The method of Claim 13 wherein said bacterial cell is cultured at a temperature of about 25-30°C.

15 15. The method of Claim 12 wherein said fatty acid salts are extracellularly deposited laurate salt crystals.

16. The method of Claim 12 wherein said fatty acid
20 salts are unsaturated fatty acids.

17. A method of producing an unsaturated medium-chain free fatty acid comprising the steps of

contacting, under enzyme reactive conditions, (1) an unsaturated fatty acyl-ACP substrate and (2) a plant
25 medium-chain thioesterase, and said plant thioesterase being capable of hydrolyzing a saturated fatty acyl-ACP substrate of the same length as said unsaturated fatty acyl-ACP substrate, whereby a medium-chain fatty acid is released from ACP.

30 18. The method of Claim 17 wherein said plant medium-chain thioesterase is a Bay thioesterase and said

contacting occurs as the result of the expression of said Bay thioesterase within an *E.coli* cell.

19. The method of Claim 17 wherein at least one of C12:1 or C14:1 is produced.

5 20. The method of Claim 17 wherein said contacting occurs in a plant cell.

21. The method of Claim 20 wherein said unsaturated fatty acyl-ACP substrate is produced from the steps of contacting, under enzyme reactive conditions, (a) a 10 saturated fatty acyl-ACP substrate and (b) a β -hydroxydecanoyl thioesterase dehydrase.

AGAGAGAGAG	AGAGAGAGAG	AGCTAAATTAA	AAAAAAAAC	CCAGAAGTGG	GAAATCTTCC	60
CCATGAAATA	ACGGATCCTC	TTGCTACTGC	TACTACTACT	ACTACAAACT	GTAGGCCATT	120
ATATAATTCT	ATATAATTCTT	CAACATGGCC	ACCACCTCTT	TAGCTTCGGC	TTTCTGCTCG	180
ATGAAAGCTG	TAATGTTGGC	TCGTGATGGC	CGGGGCATGA	AACCCAGGAG	CAGTGATTG	240
CAGCTGAGGG	CGGAAATGC	GCCAACCTCT	TTGAAGATGA	TCAATGGAC	CAAGTTCAGT	300
TACACGGAGA	GCTTGGAAAG	GTGAGCCTGAC	TGGAGCATGC	TCTTTGCAGT	GATCACAAACC	360
ATCTTTCTGG	CTGCTGAGAA	GCAGTGGACC	AATCTAGAGT	GGAAAGCCGAA	GCCGAAAGCTA	420
CCCCCAGTGC	TTGATGACCA	TTTTGGACTG	CATGGGTTAG	TTTTCAGGGC	CACCTTTGCC	480
ATCAGATCTT	ATGAGGGGG	ACCTGACCGC	TCCACATCTA	TACTGGCTGT	TATGAATCAC	540
ATGCAGGAGG	CTACACTTAA	TCATGGGAAG	AGTGTGGAA	TTCTAGGAGA	TGGATTCTGGG	600
ACGACGCTAG	AGATGAGTAA	GAGAGATCTG	ATGTGGGTG	TGAGACGCAC	GCATGTTGCT	660
GTGGAACGGT	ACCCCTACTTG	GGGTGATACT	GTAGAAAGTAG	AGTGCTGGAT	TGGTGCATCT	720
GGAAATAATG	GCATGGGACG	TGATTTCCTT	GTCCGGGACT	GCAAAMACAGG	CGAAATTCCTT	780

FIGURE 1A(1)

ACAAGATGTA CCAGCCCTTC GGTGCTGATG AATACAAGGA CAAGGAGGTT GTCCACAAATC 840
 CCTGACGAAG TTAGAGGGAA GATAAGGCCT GCATTCAATTG ATAATGTGGC TGTCAAGGAC 900
 GATGAAATTAA AGAAACTACA GAAGCTCAAT GACAGCACTG CAGATTACAT CCAAGGAGGT 960
 TTGACTCCTC GATGGAATGA TTGGAATGTC AATCAGGCATG TGAACAAACCT CAAATACGTT 1020
 GCCTGGGTTT TTGAGACCGT CCCAGACTCC ATCTTGTGAGA GTCATCATAT TTCCAGCTTC 1080
 ACTCTTGAAAT ACAGGAGAGA GTGCCACGGAGG GATAGCGGTGC TGCGGGTCCCT GACCACTGTC 1140
 TCTGGGTGCT CGTCCGGAGGC TGGGTTAGTG TGCGATCACT TGCTCCAGCT TGAAGGTGGG 1200
 TCTGAGGTAT TGAGGGCAAG AACAGAGTGG AGGCCTAAAGC TTACCGATAG TTTCAAGAGGG 1260
 ATTAGTGTGA TACCCGCAGA ACCGAGGGTG TAACTAATGA AAGAACATC TGTTGAAGTT 1320
 TCTCCCATGC TGTTCGTGAG GATACTTTT AGAACGCTGCA GTTTCAGGATTC CTTGTGCCAGA 1380
 ATCATGGTCT GTGGTTTAG ATGTATATAA AAAATAGTCC TGTAGTCATG AAACCTAAATA 1440
 TCAGAAAAAT AACTCAATGG GTCAAGGTTA TCGAAGTAGT CATTAAAGCT TTGAAATATG 1500
 TTTTGTATTTC CTGGGCTTAA TCTGTAAGCT CTTFTCTCTTG CAATAAAGTT CGCCTTTCAA 1560
 T 1561

FIGURE 1a (2)

Met Ala Thr Thr Ser Leu Ala Ser Ala Phe Cys Ser Met Lys Ala Val
1 5
Met Leu Ala Arg Asp Gly Arg Gly Met Lys Pro Arg Ser Ser Asp Leu
20 25 30
Gln Leu Arg Ala Gly Asn Ala Pro Thr Ser Leu Lys Met Ile Asn Gly
35 40 45
Thr Lys Phe Ser Tyr Thr Glu Ser Leu Lys Arg Leu Pro Asp Trp Ser
50 55 60
Met Leu Phe Ala Val Ile Thr Thr Ile Phe Ser Ala Ala Glu Lys Gln
65 70 75 80
Trp Thr Asn Leu Glu Trp Lys Pro Lys Pro Lys Leu Pro Gln Leu Leu
85 90 95
Asp Asp His Phe Gly Leu His Gly Leu Val Phe Arg Arg Thr Phe Ala
100 105 110

FIGURE 1B (1)

FIGURE 1B (2)

Arg Thr Arg Arg Leu Ser Thr Ile Pro Asp Glu Val Arg Gly Glu Ile
225 230 235 240

Gly Pro Ala Phe Ile Asp Asn Val Ala Val Lys Asp Asp Glu Ile Lys
245 250 255 255

Lys Leu Gln Lys Leu Asn Asp Ser Thr Ala Asp Tyr Ile Gln Gly Gly
260 265 270 270

Leu Thr Pro Arg Trp Asn Asp Leu Asp Val Asn Gln His Val Asn Asn
275 280 285 285

Leu Lys Tyr Val Ala Trp Val Phe Glu Thr Val Pro Asp Ser Ile Phe
290 295 300 300

Glu Ser His His Ile Ser Ser Phe Thr Leu Glu Tyr Arg Arg Glu Cys
305 310 315 320 320

Thr Arg Asp Ser Val Leu Arg Ser Leu Thr Thr Val Ser Gly Gly Ser
325 330 335 335

FIGURE 1B (3)

Ser Glu Ala Gly Leu Val Cys Asp His Leu Leu Gln Leu Glu Gly Gly
340 345 350

Ser Glu Val Leu Arg Ala Arg Thr Glu Trp Arg Pro Lys Leu Thr Asp
355 360 365

Ser Phe Arg Gly Ile Ser Val Ile Pro Ala Glu Pro Arg Val
370 375 380

FIGURE 1B (4)

7/42

FIGURE 2
7/43

8/42

AAAAAAGTAC AAACTGTATG GTAGCCATT ACATATAACT ACTCTATAAT TTTCAAC ATG 60
 Met 1

GTC	ACC	ACC	TCT	TTA	GCT	TCC	GCT	TTC	TTC	TCG	ATG	AAA	GCT	GTA	ATG
Val	Thr	Thr	Ser	Leu	Ala	Ser	Ala	Phe	Phe	Ser	Met	Lys	Ala	Val	Met
5											10				108

TRG	GCT	CCT	GAT	GGC	AGT	GGC	ATA	AAA	CCC	AGG	AGC	AGT	GGT	T ^T TG	CAG
Leu	Ala	Pro	Asp	Gly	Ser	Gly	Ile	Lys	Pro	Arg	Ser	Ser	Gly	Leu	Gln
20											25				156

GTG	AGG	GCG	GGA	GAA	CAA	AAC	TCT	TGC	AAG	ATG	ATC	AAT	GGG	ACC	204
Val	Arg	Ala	Gly	Lys	Glu	Gln	Asn	Ser	Cys	Lys	Met	Ile	Asn	Gly	Thr
35											40				45

AAG	GTC	AAA	GAC	ACG	GAG	GGC	TTG	AAA	GGG	GGC	AGC	ACA	TTG	CAT	GGC
Lys	Val	Lys	Asp	Thr	Glu	Gly	Leu	Lys	Gly	Arg	Ser	Thr	Leu	His	Gly
50										55					65

FIGURE 3 (1)

9/42

TGG	AGC	ATG	CCC	CTT	GAA	TTC	ATC	ACA	ACC	ATC	TTT	TCG	GCT	GAG	300
Trp	Ser	Met	Pro	Leu	Glu	Leu	Ile	Thr	Thr	Ile	Phe	Ser	Ala	Ala	Glu
							75								80
AAG	CAG	TGG	ACC	AAT	CTA	GTT	AGT	AAG	CCA	CCG	CAG	TTG	CTT	GAT	348
Lys	Gln	Trp	Trp	Thr	Asn	Leu	Val	Ser	Lys	Pro	Pro	Gln	Leu	Leu	Asp
							85								90
CAT	TTA	GGT	CTG	CAT	GGG	CTA	GTT	TTC	AGG	CGC	ACC	TTT	GCA	ATC	396
His	Leu	Gly	Leu	His	Gly	Leu	Val	Phe	Arg	Arg	Thr	Phe	Ala	Ile	Arg
							100								105
TGC	AGT	GAG	GTT	GGA	CCT	GAC	CGC	TCC	ACA	TCC	ATA	GTG	GCT	ATG	444
Cys	Ser	Glu	Val	Gly	Pro	Asp	Arg	Ser	Thr	Ser	Ile	Val	Ala	Val	Met
							115								120
AAT	TAC	TTG	CAG	GAA	GCT	GCA	TGT	AAT	CAT	GCG	GAG	AGT	CTG	GGA	492
Asn	Tyr	Leu	Gln	Glu	Ala	Ala	Cys	Asn	His	Ala	Glu	Ser	Leu	Gly	Leu
															135
															140
															145

FIGURE 3 (2)

10/42

CTA	GGA	GAT	GGA	TTC	GGT	GAG	ACA	CTA	GAG	ATG	AGT	AGG	AGA	GAT	CTG	540
Leu	Gly	Asp	Gly	Phe	Gly	Glu	Thr	Leu	Glu	Met	Ser	Arg	Arg	Asp	Leu	160
	150							155								
ATA	TGG	GTT	GTG	AGA	CGC	ACG	CAT	GTT	GTT	GGA	ACG	TAC	CCT	GCT	588	
Ile	Trp	Val	Val	Arg	Arg	Thr	His	Val	Val	Gly	Thr	Tyr	Pro	Ala		
	165							170				175				
TGG	GGC	GAT	ACT	GTT	GAA	GTC	GCC	GCC	TGG	ATC	GGT	GCA	GCT	GGA	AAC	636
Trp	Gly	Asp	Thr	Val	Glu	Val	Glu	Ala	Ala	Trp	Ile	Gly	Ala	Gly	Asn	
	180							185				190				
ATT	GGC	ATG	CGC	CGC	CAT	TTT	CTT	GTC	CGC	GAC	TGC	AAA	ACT	GGC	CAC	684
Ile	Gly	Met	Arg	Arg	His	Phe	Leu	Val	Arg	Asp	CYS	Lys	Thr	Gly	His	
	195							200			205					
ATT	CTT	GCA	AGA	TGT	ACC	AGT	GTT	TCA	GTC	ATG	AAT	ATG	AGG	ACA	732	
Ile	Leu	Ala	Arg	Cys	Thr	Ser	Val	Ser	Val	Met	Met	Asn	Met	Arg	Thr	
	210				215					220				225		

FIGURE 3 (3)

11/42

AGG	AGA	TTC	AAA	ATT	CCC	CAA	GAA	GTT	AGA	GGG	GAG	ATT	GAC	CCT
Arg	Arg	Leu	Ser	Lys	Ile	Pro	Gln	Glu	Val	Arg	Gly	Glu	Ile	Asp
230														Pro
														240
														780
CTT	TTC	ATC	GAA	AAG	TTT	GCT	GTC	AAG	GAA	GGG	GAA	ATT	AAG	AAA
Leu	Phe	Ile	Glu	Lys	Phe	Ala	Val	Lys	Glu	Gly	Glu	Ile	Lys	TTA
245														828
CAG	AAG	TTC	AAT	GAT	AGC	ACT	GCA	GAT	TAC	ATT	CAA	GGG	GGT	TGG
Gln	Lys	Phe	Asn	Asp	Ser	Thr	Ala	Asp	Tyr	Ile	Gln	Gly	Gly	ACT
260														876
CCG	CGA	TGG	AAT	GAT	TTC	GAT	GTC	AAT	CAG	CAC	GTG	AAC	AAT	ATC
Pro	Arg	Trp	Asn	Asp	Leu	Asp	Val	Asn	Gln	His	Val	Asn	Ile	AAA
275														924
TAC	GTT	GGC	TGG	ATT	TTT	AAG	AGC	GTC	CCA	GAC	TCT	ATC	TAT	GAG
Tyr	Val	Gly	Trp	Ile	Phe	Lys	Ser	Val	Pro	Asp	Ser	Ile	Tyr	AAT
290														972
														305

FIGURE 3 (4)

12/42

CAT	CAT	TCT	TCT	AGC	ATC	ACT	CTC	GAA	TAC	AGG	AGA	GAG	TGC	ACA	AGG
His	His	Leu	Ser	Ser	Ile	Thr	Leu	Glu	Tyr	Arg	Arg	Glu	Cys	Thr	Arg
															320
															315
															310
															1020
GGC	AGA	GCA	CTG	CAG	TCC	CTG	ACC	ACT	GTT	TGT	GGT	GGC	TCG	TCC	GAA
Gly	Arg	Ala	Leu	Gln	Ser	Leu	Thr	Thr	Val	Cys	Gly	Gly	Ser	Ser	Glu
															335
															330
GCT	GGG	ATC	ATA	TGT	GAG	CAC	CTA	CTC	CAG	CTT	GAG	GGG	TCT	GAG	1116
Ala	Gly	Ile	Ile	Cys	Glu	His	Leu	Leu	Gln	Leu	Glu	Asp	Gly	Ser	Glu
															350
															345
															340
GTT	TTG	AGG	GGA	AGA	ACA	GAT	TGG	AGG	CCC	AAG	CGC	ACC	GAT	AGT	TTG
Val	Leu	Arg	Gly	Gly	Arg	Thr	Asp	Trp	Arg	Pro	Lys	Arg	Thr	Asp	Phe
															365
															360
															355
GAA	GGC	ATT	AGT	GAG	AGA	TTC	CCG	CAG	CAA	GAA	CCG	CAT	AAT	TAAT	1210
Glu	Gly	Ile	Ser	Glu	Arg	Phe	Pro	Gln	Gln	Glu	Pro	His	Asn		
															375
															370
															380

FIGURE 3 (5)

13/42

GACAGAAGCA TCAGATATAG TTTCCTCCTGT GCTGTTCCCTG AGAATGCATC TTACAAGTCG 1270
TGGTTTGAT TGCTTGTGCA GAATCATGGT TGTGCTTTC AGAAGTATAT CTAATTAGT 1330
CCAAGTTATA TGACTCCATA TTGGAAAATA ACTCAATGAG TCGTGCTCTT GAAATGGTCT 1390
TTAAGCTTT GAAATAAAGT TCCACCTTAAT CCATGTAAAA AAAA 1435

FIGURE 3 (6)

14/42

GGGTAACATG	GCATAAACGT	GATAACTGC	AACTCCAGTG	TCACTTTCCC	TTTCCCTTTC	60
ACCACCATCT	CCTCCCTCGG	TCCCCATCGAC	GGCAAACCTCC	ATAAAACAC	CACCACCTCT	120
TCAAATCAAAC	ACCTCTTCCG	AACCACCAAC	ACCACCCACG	CCGCCGGCAA	CT ATG CTA	178
					Met Leu	
TCA	CGA	CCT	CTT	CCG	ACC	6
Ser	Arg	Pro	Leu	Pro	Thr	10
						14
AAT	TGC	AAT	GGC	GTC	AAC	18
Asn	Cys	Asn	Gly	Val	Asn	22
						26
GTT	GGA	TTC	GCC	TCG	ATT	28
Vai	Gly	Phe	Ala	Ser	Ile	32
						36
						40
						44
						48
						52
						56
						60
						64
						68
						72
						76
						80
						84
						88
						92
						96
						100
						104
						108
						112
						116
						120
						124
						128
						132
						136
						140
						144
						148
						152
						156
						160
						164
						168
						172
						176
						180
						184
						188
						192
						196
						200
						204
						208
						212
						216
						220
						224
						228
						232
						236
						240
						244
						248
						252
						256
						260
						264
						268
						272
						276
						280
						284
						288
						292
						296
						300
						304
						308
						312
						316
						320
						324
						328
						332
						336
						340
						344
						348
						352
						356
						360
						364
						368
						372
						376
						380
						384
						388
						392
						396
						400
						404
						408
						412
						416
						420
						424
						428
						432
						436
						440
						444
						448
						452
						456
						460
						464
						468
						472
						476
						480
						484
						488
						492
						496
						500

FIGURE 4B (1)

15/42

TCG	CCG	CCG	CGG	ACG	GTG	GCG	CCG	ATG	GCG	GTG	AGG	ACC	GGT	GAG
Ser	Pro	Pro	Arg	Thr	Val	Ala	Pro	Val	Met	Ala	Val	Arg	Thr	Gly
55									60					65
CAA	CCC	ACC	GGC	GTT	GCC	GTC	GGG	TTC	AAG	GAG	GCG	GAG	GCG	GTG
Gln	Pro	Thr	Gly	Val	Ala	Val	Gly	Leu	Lys	Glu	Ala	Glu	Ala	Glu
70									75					80
GAG	AAG	AGC	CTG	GCG	GAT	CGG	CTT	CGG	ATG	GGG	AGC	TTG	ACG	GAA
Glu	Lys	Ser	Leu	Ala	Asp	Arg	Leu	Arg	Met	Gly	Ser	Leu	Thr	Glu
85										90				95
GGA	TTG	TCG	TAT	AAG	GAG	AGG	TTC	ATC	ATA	AGG	TGT	TAT	GAA	GTC
Gly	Leu	Ser	Tyr	Lys	Glu	Arg	Phe	Ile	Ile	Arg	CYS	Tyr	Glu	Val
100										105				110
ATT	AAT	AAG	ACT	GCA	ACT	GTT	GAA	ACC	ATT	GCT	AAT	CTA	TTG	CAG
Ile	Asn	Lys	Thr	Ala	Thr	Val	Glu	Thr	Ile	Ala	Asn	Leu	Gln	Glu
115										120				130

FIGURE 4A (2)

16/42

GTT	GGA	GGT	AAT	CAT	GCT	CAG	AGT	GTT	GGA	TTT	TCA	ACA	GAC	GGA	TTT		
Val	Gly	Gly	Asn	His	Ala	Gln	Ser	Val	Gly	Phe	Ser	Thr	Asp	Gly	Gly	Phe	610
																	135
																	140
																	145
GCC	ACC	ACG	ACC	ACT	ATG	CGA	AAA	TTG	CAT	CTC	ATA	TGG	GTG	ACT	TCG		
Ala	Thr	Thr	Thr	Met	Arg	Lys		Leu	His	Leu	Ile	Trp	Val	Thr	Ser		
																	150
																	155
																	160
CGA	ATG	CAC	ATT	GAA	ATT	TAC	AGA	TAC	CCC	GCT	TGG	AGT	GAT	GTG	GTG		
Arg	Met	His	Ile	Glu	Ile	Tyr	Arg	Tyr	Pro	Ala	Trp	Ser	Asp	Val	Val		
																	165
																	170
																	175
GAA	ATC	GAG	ACT	TGG	TGT	CAA	AGT	GAA	GGA	AGG	ATT	GGG	ACT	AGA	CGT		
Glu	Ile	Glu	Thr	Trp	Cys	Gln	Ser	Glu	Gly	Arg	Ile	Gly	Thr	Arg	Arg		
																	180
																	185
																	190
GAT	TGG	ATT	ATG	AAA	GAC	CAT	GCG	AGT	GGT	GAA	GTC	ATT	GGA	AGG	GCT		
Asp	Trp	Ile	Met	Lys	Asp	His	Ala	Ser	Gly	Glu	Val	Ile	Gly	Arg	Ala		
																	195
																	200
																	210

FIGURE 4A (3)

17/42

ACA	AGC	AAA	TGG	GTG	ATG	AAC	GAG	GAT	ACT	AGA	AGA	CTC	CAG	AAA	850	
Thr	Ser	Lys	Trp	Val	Met	Met	Asn	Glu	Asp	Thr	Arg	Arg	Leu	Gln	Lys	
															225	
GTC	AAC	GAT	GAC	GTC	AGA	GAC	GAA	TAT	CTC	GTT	TTT	TGT	CCC	AAG	ACA	898
Val	Asn	Asp	Asp	Val	Arg	Asp	Glu	Tyr	Leu	Val	Phe	Cys	Pro	Lys	Thr	
															240	
CCA	AGA	TAA	GCA	TTT	CCT	GAA	AAG	AAC	ACT	AGC	CTG	AAG	AAA	ATA	946	
Pro	Arg	Leu	Ala	Phe	Pro	Glu	Lys	Asn	Thr	Ser	Ser	Leu	Lys	Ile		
															255	
GCA	AAA	CTA	GAA	GAC	CCC	GCC	GAA	TAT	TCG	ACG	CTA	GGG	CTT	GTG	CCA	994
Ala	Lys	Leu	Glu	Asp	Pro	Ala	Glu	Tyr	Ser	Thr	Leu	Gly	Leu	Val	Pro	
															270	
AGA	AGA	GCC	GAT	CTC	GAT	ATG	AAC	AAG	CAT	GTT	AAC	AAT	GTT	ACC	TAC	1042
Arg	Arg	Ala	Asp	Leu	Asp	Met	Asn	Lys	His	Val	Asn	Val	Thr	Tyr		
															285	
															290	

FIGURE 4B (4)

18/42

FIGURE 4A (5)

19/42

GAT GGT CTC GAA CTA AAT AGG GGT CGC ACC GAG TGG AGA AAG AAA CCC
Asp Gly Leu Glu Leu Asn Arg Gly Arg Thr Glu Trp Arg Lys Lys Pro
375 380 385

GCG AAA AAA TGAGCAACAC CCTTCGGTTT GTTTAGCGTA CCCTTTTTTG
Ala Lys Lys Lys

CGTGTTCATAATTCGC CTTTAGGGN NNNGCGTTT TATGTAGCG 1439

TATTTGTGT AGATGGACTA GGTTTCCGA TTCTCGAACCG GATAAGGTGC TATCTTTATC 1499

TTCCTATGTT TIGCTTGTAG ATGGTATGA ATAAACTAGT TTCGAAGTAA TGTGTTTGGT 1559

AG 1561

FIGURE 4A (6)

20/42

GCACAAACCA	GGAAAAAAA	AACCCTCTCT	CCCTAACCTA	ACTGCCATC	GGAGAAATCT	60
CTGTCGACGG	TGACGTTCGA	GATCGTAACA	ATC ATG CTA TCG AAA GGT	GCT CCG		114
Ala Ala Pro	Ala Val Ala	Ala Met Tyr Asn Ala	Ser Ala Ser Ala	Lys G1y	Ala Pro	5
10	15	20				
GCG GCA CCG GCG GTG GCG GCG	ATG TAC AAT GCC TCC GCC	AAA GAC ACT				162
Ala Ala Pro	Ala Val Ala	Ala Met Tyr Asn Ala	Ser Ala Ser Ala	Lys Asp	Thr	5
10	15	20				
ACT TTT GCC CTA ACT CAC TCC CGA TCG ATT GGT	TCC GTC TCA ATT CGC					210
Thr Phe Ala Leu Thr His Ser Arg Ser Ile Gly	Ser Val Ser Ile Arg					35
25	30					
AGA CGA TAC AAC GTG TTT TGC AAT TCT TCG	TCG AGA AAG					258
Arg Arg Tyr Asn Val Phe Leu Cys Asn Ser Ser	Ser Ser Arg Lys					55
40	45	50				
GTT TCT CCG TTG CTA GCG GTG GCG ACC GGA GAG CAG CCG AGC GGT	GTT					306
Val Ser Pro Leu Leu Ala Val Ala Thr G1y Glu Gln Pro Ser G1y Val	65	70				

FIGURE 4B (1)

GCT AGT TTA CGT GAG GCG GAT AAG GAG AAC T^{TG} GGG AAC CCG CTA
 Ala Ser Leu Arg Glu Ala Asp Lys Glu Lys Ser Leu Gly Asn Arg Leu
 75 80 85 354

CGG T^{TG} GGG AGC T^{TG} ACG GAG GAT GGA T^{TA} TCG TAT AAG GAG AAG TTC
 Arg Leu Gly Ser Leu Thr Glu Asp Gly Ile Asn Lys Tyr Lys Glu Lys Phe
 90 95 100 402

GTT ATA AGG TGT TAT GAA GTC GGA ATT AAC AAA ACT GCT ACG ATT GAA
 Val Ile Arg Cys Tyr Glu Val Gly Ile Asn Lys Thr Ala Thr Ile Glu
 105 110 115 450

ACG ATT GCA AAT CTG TTG CAG GAG GTT GGA GGT ATT CAT GCT CAG GGT
 Thr Ile Ala Asn Leu Leu Gln Glu Val Gly Asn His Ala Gln Gly
 120 125 130 135 498

GTT GGA T^{TTT} TCT ACT GAT GGG T^{TT} GCC ACA ACG ACC ACT ATG AGG AAA
 Val Gly Phe Ser Thr Asp Gly Phe Ala Thr Thr Met Arg Lys
 140 145 150 546

FIGURE 4B (2)

22/42

TTC	CAT	CTC	ATA	TGG	GTT	ACT	GCA	CGA	ATG	CAT	ATT	GAA	ATA	TAT	AGA	594
Leu	His	Leu	Ile	Trp	Val	Thr	Ala	Arg	Met	His	Ile	Glu	Ile	Tyr	Arg	
155																165
TAC	CCT	GCT	TGG	AGT	GAT	GTG	ATT	GAA	ATT	GAG	ACT	TGG	GTT	CAG	GGT	642
Tyr	Pro	Ala	Trp	Ser	Asp	Val	Ile	Gl	Ile	Glu	Thr	Trp	Val	Gln	Gly	
170																175
GAG	GGG	AAG	GTC	GGG	ACC	AGG	CGT	GAT	TGG	ATC	CTC	AAA	GAC	TAT	GCC	690
Glu	Gly	Lys	Val	Gly	Thr	Arg	Arg	Asp	Trp	Ile	Leu	Lys	Asp	Tyr	Ala	
185																190
AAT	GGT	GAG	GTT	ATT	GGA	AGG	GCC	ACA	AGC	AAA	TGG	GTG	ATG	ATG	AAC	738
Asn	Gly	Glu	Val	Ile	Gly	Arg	Ala	Thr	Ser	lys	Trp	Val	Met	Met	Asn	
200																205
GAG	GAT	ACT	AGA	AGA	TTG	CAG	AAA	GTC	AGT	GAT	GTC	AGA	GAG	GAG	GAG	786
Glu	Asp	Thr	Arg	Arg	Leu	Gln	Lys	Val	Ser	Asp	Asp	Val	Arg	Glu	Glu	
																225
																230

FIGURE 4B (3)

23/42

TAT	TTA	GTG	TTT	TGC	CCC	AGG	ACA	TTG	AGA	TTA	GCA	TTT	CCT	GAA	GAG	834
Tyr	Leu	Val	Phe	Cys	Pro	Arg	Thr	Leu	Arg	Leu	Ala	Phe	Pro	Glu	Glu	
235																245
AAC	AAC	AAT	AGC	ATG	AAG	AAA	ATA	CCA	AAA	CTG	GAA	GAT	CCA	GCT	GAA	882
Asn	Asn	Asn	Ser	Met	Lys	Lys	Ile	Pro	Lys	Leu	Glu	Asp	Pro	Ala	Glu	
250																260
TAT	TCC	AGG	CTT	GGA	CTT	GTC	CCA	AGG	AGA	TCC	GAT	TTG	GAT	ATG	AAC	930
Tyr	Ser	Arg	Leu	Gly	Leu	Val	Pro	Arg	Arg	Ser	Asp	Leu	Asp	Met	Asn	
265																270
AAA	CAC	GTT	AAC	AAT	GTT	ACC	TAC	ATC	GGG	TGG	GCT	CTA	GAG	AGC	ATC	978
Lys	His	Val	Asn	Asn	Val	Thr	Tyr	Ile	Gly	Trp	Ala	Leu	Glu	Ser	Ile	
280																285
CCA	CCA	GAA	ATC	ATC	GAC	ACC	CAT	GAA	CTG	CAA	GCT	ATT	ACC	TTA	GAC	1026
Pro	Pro	Glu	Ile	Ile	Asp	Thr	His	Glu	Leu	Gln	Ala	Ile	Thr	Leu	Asp	
300																310

FIGURE 4B (4)

24/42

TAC	AGA	CGT	GAA	TGC	CAA	CGG	GAT	GAC	ATA	GTT	GAT	TCA	CTC	ACT	AGC	1074
Tyr	Arg	Arg	Glu	Cys	Gln	Arg	Asp	Asp	Ile	Val	Asp	Ser	Leu	Thr	Ser	
																315
																320
																325
CGT	GAA	CCA	CTC	GGG	AAT	GCT	GCA	GGT	GTC	AAG	TTT	AAA	GAA	ATC	AAT	1122
Arg	Glu	Pro	Leu	Gly	Asn	Ala	Ala	Gly	Val	Lys	Phe	Lys	Glu	Ile	Asn	
																330
																335
																340
GGA	TCT	GTT	TCC	CCC	AAA	AAG	GAC	GAA	CAA	GAT	CTA	AGC	CGA	TTT	ATG	1170
Gly	Ser	Val	Ser	Pro	Lys	Lys	Asp	Glu	Gln	Asp	Leu	Ser	Arg	Phe	Met	
																345
CAT	CTA	CTG	AGA	TCA	GCT	GGC	AGT	GGT	CTT	GAA	ATC	AAC	AGG	TGT	CGC	1218
His	Leu	Leu	Arg	Ser	Ala	Gly	Ser	Gly	Leu	Glu	Ile	Asn	Arg	Cys	Arg	
																360
																365
																370
																375
ACC	GAA	TGG	AGA	AAG	AAG	CCA	GCA	AAA	AGA	TAAGCATATC	TGATCCCTCG					1268
Thr	Glu	Trp	Arg	Lys	Lys	Pro	Ala	Lys	Arg							
																380
																385
ATTGTACCGT TTTACCG'RTC CTGTTCAAAG TCTAGTTCT' TTTT																
1312																

FIGURE 4B (5)

25/42

TCAAC	ATG	GCC	ACC	ACC	TCT	TTA	GCT	TTC	GCT	TGC	ATG	AAA	GCT		
Met	Ala	Thr	Thr	Ser	Leu	Ala	Ser	Ala	Phe	Cys	Ser	Met	Lys	Ala	
1														15	
GTA	ATG	TTG	GCT	CGT	GAT	GGC	AGG	GGC	ATG	AAA	CCC	AGG	AGC	AGT	
Val	Met	Leu	Ala	Arg	Asp	Gly	Arg	Gly	Met	Lys	Pro	Arg	Ser	Ser	
														Asp	
														30	
TTG	CAG	CTG	AGG	GCG	GGA	AAT	GCA	CAA	ACC	TCT	TTG	AAG	ATG	ATC	
Leu	Gln	Leu	Arg	Ala	Gly	Asn	Ala	Gln	Thr	Ser	Leu	lys	Met	Ile	
														Asn	
														45	
GGG	ACC	AAG	TTC	AGT	TAC	ACA	GAG	AGC	TTG	AAA	AAG	TTG	CCT	GAC	
Gly	Thr	Lys	Phe	Ser	Tyr	Thr	Glu	Ser	Leu	Lys	Lys	Leu	Pro	Asp	
														Trp	
														60	
AGC	ATG	CTC	TTT	GCA	GTG	ATC	ACG	ACC	ATC	TTT	TCG	GCT	GAG	AAG	
Ser	Met	Leu	Phe	Ala	Val	Ile	Thr	Ile	Thr	Ile	Phe	Ser	Ala	Glu	
														Lys	
														75	
CAG	TGG	ACC	AAT	CTA	GAG	TGG	AAG	CCG	AAG	CCG	AAT	CCA	CCC	CAG	
Gln	Trp	Thr	Asn	Leu	Glu	Trp	Lys	Pro	Lys	Pro	Asn	Pro	Pro	Trp	
														90	
														95	

FIGURE 5B (1)

26/42

CTT	GAT	GAC	CAT	TTC	GGG	CCG	CAT	GGG	TTA	GTC	AGG	CGC	ACC	TTC	338	
Leu	Asp	Asp	His	Phe	Gly	Pro	His	Gly	Leu	Val	Phe	Arg	Arg	Thr	Phe	110
																105
GCC	ATC	AGA	TGC	TAT	GAG	GTC	GGA	CCT	GAC	CGC	TCC	ACA	TCT	ATA	GTG	386
Ile	Arg	Ser	Tyr	Glu	Val	Gly	Pro	Asp	Arg	Ser	Thr	Ser	Ile	Val		
																125
																115
GCT	GTT	ATG	AAT	CAC	TTC	CAG	GAG	GCT	GCA	CTT	AAT	CAT	GCG	AAG	AGT	434
Ala	Val	Met	Asn	His	Leu	Gln	Glu	Ala	Ala	Leu	Asn	His	Ala	Lys	Ser	
																140
																135
GTC	GGA	ATT	CTA	GGA	GAT	GGA	TTC	GGT	ACG	CTA	GAG	ATG	AGT	AAG	482	
Val	Gly	Ile	Leu	Gly	Asp	Gly	Phe	Gly	Thr	Thr	Leu	Glu	Met	Ser	Lys	
																155
																145
AGA	GAT	CTG	ATA	TGG	GTT	GTG	AAA	CGC	ACG	CAT	GCT	GTG	GAA	CGG	530	
Arg	Asp	Leu	Ile	Trp	Val	Val	Lys	Arg	Thr	His	Val	Ala	Val	Glu	Arg	
																165
																170
																175

FIGURE 5B (2)

27/42

TAC	CCT	GCT	TGG	GGT	GAT	ACT	GTT	GAA	GTA	GAG	TGC	TGG	GTT	GGT	GCA
Tyr	Pro	Ala	Trp	Gly	Asp	Thr	Val	Glu	Val	Glu	Cys	Trp	Val	Gly	Ala
															578
															185
															190
TCG	GGA	AAT	GGC	AGG	CGC	CAT	GAT	TTC	CTT	GTC	CGG	GAC	TGC	AAA	626
Ser	Gly	Asn	Asn	Gly	Arg	Arg	His	Asp	Phe	Leu	Val	Arg	Asp	Cys	LYS
															205
ACA	GGC	GAA	ATT	CTT	ACA	AGA	TGT	ACC	AGT	CTT	TCG	GTG	ATG	AAT	674
Thr	Gly	Glu	Ile	Ile	Leu	Thr	Arg	Cys	Thr	Ser	Leu	Ser	Val	Met	Asn
															215
ACA	AGG	ACA	AGG	AGG	TTG	TCC	AAA	ATC	CCT	GAA	GAA	GTT	AGA	GGG	GAG
Thr	Arg	Thr	Arg	Arg	Leu	Ser	Lys	Ile	Pro	Glu	Glu	Val	Arg	Gly	Glu
															220
ATA	GGG	CCT	GCA	TTC	ATT	GAT	AAT	GTG	GCT	GTC	AAG	GAC	GAG	GAA	ATT
Ile	Gly	Pro	Ala	Phe	Ile	Asp	Asn	Val	Ala	Val	Lys	Asp	Glu	Glu	Ile
															225
															235
															240
															250
															255

FIGURE 5B (3)

28/42

AAG AAA CCA CAG AAG CTC AAT GAC AGC ACT GCA GAT TAC ATC CAA GGA
 Lys Pro Gln Lys Leu Asn Asp Ser Thr Ala Asp Tyr Ile Gln Glv
 260 265 270 818

GGA TTG ACT CCT CGA TGG AAT GAT TTG GAT ATC AAT CAG CAC GTT AAC
 Gly Leu Thr Pro Arg Trp Asn Asp Leu Asp Ile Asn Gln His Val Asn
 275 280 285 866

AAC ATC AAA TAC GTT GAC TGG ATT CTT GAG ACT GTC CCA GAC TCA ATC
 Asn Ile Lys Tyr Val Asp Trp Ile Leu Glu Thr Val Pro Asp Ser Ile
 290 295 300 914

TTC GAG AGT CAT CAT ATT TCC AGC TTC ACT ATT GAA TAC AGG AGA GAG
 Phe Glu Ser His Ile Ser Phe Thr Ile Glu Tyr Arg Arg Glu
 305 310 315 962

TGC ACG ATG GAT AGC GTG CTG CAG TCC CTG ACC ACT GTC TCC GGT GGC
 Cys Thr Met Asp Ser Val Leu Gln Ser Leu Thr Val Ser Gly Glv
 320 325 330 335 1010

FIGURE 5B (4)

29/42

TCG	TCG	GAA	GCT	GGG	T _{TA}	GTG	TGC	GAG	CAC	T _{TG}	CTC	CAG	CTT	GAA	GGT	1058
Ser	Ser	Glu	Ala	Gly	Leu	Val	Cys	Glu	His	Leu	Leu	Gln	Leu	Glu	Gly	
																350
																345

GGG	TCT	GAG	GTA	TTG	AGG	GCA	AAA	ACA	GAG	TGG	AGG	CCT	AAG	C _{TT}	ACC	1106
Gly	Ser	Glu	Val	Leu	Arg	Ala	Lys	Thr	Glu	Trp	Arg	Pro	Lys	Leu	Thr	
																360
																355

GAT	AGT	TTC	AGA	GGG	ATT	AGT	GTG	ATA	CCC	GCA	GAA	TCG	AGT	GTC	1151
Asp	Ser	Phe	Arg	Gly	Ile	Ser	Val	Ile	Pro	Ala	Glu	Ser	Ser	Val	
															380
															375

TAACTAACGA AAGAACCATC TGATGAAGTT TCTCCCTGTGC TGGTGTTCT GTGGATGGCTT 1211

TTTAGAAGCT GCAGTTGCA TTGCTTGTGC AGAACATGG CCTGGGGTT TAGATATATA 1271

TCCAAAATTG TCCTATAGTC AGAAACTTA ATATCAGAAA AATAACTCAA TGAGTCAGG 1331

FIGURE 5B (5)

TTATCGAAGT AGTCATGTAA GCTTTGAAAT ATGTTGTGTA TTCCCTGGCT TTATGTAATC 1391
TGTAAGCTCT TtCTCTTGCA ATAAATTTCG CCTTTCAATA ATAAAAAAA AAAAAAAGG 1451
TCGACTCGAG 1461

FIGURE 5B (6)

31/42

GCTCGCCTCC	CACATTTCT	TCTTTCGATCC	CGAAAAAG	ATG	TTG	AAG	CTC	TCG	TGT	55						
Asn	Ala	Thr	Asp	Lys	Leu	Gln	Thr	Leu	His	Cys						
										5						
AAT	GGC	ACT	GAT	AAG	TTA	CAG	ACC	CTC	TTC	TCG	CAT	TCT	CAT	CAA	CCG	103
Asn	Ala	Thr	Asp	Lys	Leu	Gln	Thr	Leu	Phe	Ser	His	Ser	His	Gln	Pro	20
																1
GAT	CCG	GCA	CAC	CGG	AGA	ACC	GTC	TCC	TCC	GTG	TCG	TGC	TCT	CAT	CTG	151
Asp	Pro	Ala	His	Arg	Arg	Thr	Val	Ser	Ser	Val	Ser	Cys	Ser	Ser	His	Leu
																25
AGG	AAA	CCG	GTT	CTC	GAT	CCT	TTG	CGA	GCG	ATC	GTA	TCT	GCT	GAT	CAA	199
Arg	Lys	Pro	Val	Leu	Asp	Pro	Leu	Arg	Ala	Ile	Val	Ser	Ala	Asp	Gln	
																40
GGA	AGT	GTG	ATT	CGA	GCA	GAA	CAA	GGT	TTG	GGC	TCA	CTC	GCG	GAT	CAG	247
Gly	Ser	Val	Ile	Arg	Ala	Glu	Gln	Gly	Leu	Gly	Ser	Leu	Ala	Asp	Gln	
																55
CTC	CGA	TTG	GGT	AGC	TTG	ACG	GAG	GAT	GGT	TTG	TCG	TAT	AAG	GAG	AAG	295
Leu	Arg	Leu	Gly	Ser	Leu	Thr	Glu	Asp	Gly	Leu	Ser	Tyr	Lys	Glu	Lys	
																75
TTC	ATC	GTC	AGA	TCC	TAC	GAA	GTG	GGG	AGT	AAC	AAG	GCC	ACT	GTC		343
Phe	Ile	Val	Arg	Ser	Tyr	Glu	Val	Gly	Ser	Asn	Lys	Thr	Ala	Thr	Val	
																90
																95
																100

FIGURE 6 (1)

GAA	ACC	GTC	GCT	AAT	CTT	TTG	CAG	GAG	GTG	GGA	TGT	AAT	CAT	GCG	CAG	391	
Gl	u	Thr	Vai	Ala	Asn	Leu	Leu	Gln	Glu	Val	Gly	Cys	Asn	His	Ala	Gln	
																115	
AGC	GTT	GG	TTC	TCG	ACT	GAT	GGG	TTT	GG	ACA	ACA	CCG	ACC	ATG	AGG	439	
Ser	Vai	Gly	Phe	Ser	Thr	Asp	Gly	Phe	Ala	Thr	Thr	Pro	Thr	Met	Arg		
																125	
AAA	CTG	CAT	CTC	ATT	TGG	GTC	ACT	GCG	AGA	ATG	CAT	ATA	GAG	ATC	TAC	487	
LYS	Leu	His	Leu	Ile	Trp	Val	Thr	Ala	Arg	Met	His	Ile	Glu	Ile	Tyr		
																135	
AAG	TAC	CCT	GCT	TGG	GGT	GAT	GTT	GAG	ATA	GAG	ACA	TGG	TGT	CAG	535		
LYS	Tyr	Pro	Ala	Trp	Gly	Asp	Val	Glu	Ile	Glu	Thr	Trp	CYS	Gln			
															140		
AGT	GAA	GG	AGG	ATC	GGG	ACT	AGG	CGT	GAT	TGG	ATT	CTT	AAG	GAT	GTT	583	
Ser	Glu	Gly	Arg	Ile	Gly	Thr	Arg	Arg	Asp	Trp	Ile	Leu	Lys	Asp	Val		
															155		
GCT	ACG	GGT	GAA	GTC	ACT	GGC	CGT	GCT	ACA	AGC	AAG	TGG	ATG	ATG	631		
Ala	Thr	Gly	Glu	Val	Thr	Gly	Arg	Ala	Thr	Ser	Lys	Trp	Val	Met			
															185		
AAC	CAA	GAC	ACA	AGA	CGG	CTT	CAG	AAA	GTT	TCT	GAT	GTT	CGG	GAC	679		
Asn	Gln	Asp	Thr	Arg	Arg	Leu	Gln	Lys	Val	Ser	Asp	Asp	Val	Arg			
															200		
															210		

FIGURE 6 (2)

33/42

GAG	TAC	TTG	GTC	TTC	TGT	CCT	AAA	GAA	CTC	AGA	TTA	GCA	TTT	CCT	GAG	727
Glu	Tyr	Leu	Val	Phe	Cys	Pro	Lys	Glu	Leu	Arg	Leu	Ala	Phe	Pro	Glu	230
215		220														230
GAG	AAT	AAC	AGA	AGC	TTG	AAG	AAA	ATT	CCG	AAA	CTC	GAA	GAT	CCA	GCT	775
Glu	Asn	Asn	Arg	Ser	Leu	Lys	Lys	Ile	Pro	Lys	Leu	Glu	Asp	Pro	Ala	
																245
CAG	TAT	TCG	ATG	ATT	GGG	CTT	AAG	CCT	AGA	CGA	GCT	GAT	CTC	GAC	ATG	823
Gln	Tyr	Ser	Met	Ile	Gly	Leu	Lys	Pro	Arg	Arg	Ala	Asp	Leu	Asp	Met	
																260
AAC	CAG	CAT	GTC	AAT	AAT	GTC	ACC	TAT	ATT	GGA	TGG	GTG	CTT	GAG	AGC	871
Asn	Gln	His	Val	Asn	Asn	Val	Thr	Tyr	Ile	Gly	Trp	Val	Leu	Glu	Ser	
																275
ATA	CCT	CAA	GAG	ATT	GTA	GAC	ACG	CAC	GAA	CTT	CAG	GTC	ATA	ACT	CTG	919
Ile	Pro	Gln	Glu	Ile	Val	Asp	Thr	His	Glu	Leu	Gln	Val	Ile	Thr	Leu	
																290
GAT	TAC	AGA	AGA	GAA	TGT	CAA	GAC	GAT	GTG	GAT	TCA	CTC	ACC			967
Asp	Tyr	Arg	Arg	Glu	Cys	Gln	Gln	Asp	Val	Val	Asp	Ser	Leu	Thr		
																310
ACT	ACC	ACC	TCA	GAG	ATT	GGT	GGG	ACC	AAT	GGC	TCT	GCA	TCA	TCA	GGC	1015
Thr	Thr	Thr	Ser	Glu	Ile	Gly	Gly	Thr	Asn	Gly	Ser	Ala	Ser	Ser	Gly	
																325

FIGURE 6 (3)

ACA CAG GGG CAA AAC GAT AGC CAG TTC TTA CAT CTC TTA AGG CTG TCT
Thr Gln Gly Gln Asn Asp Ser Gln Phe Leu His Leu Arg Leu Ser 1063
330 335 340

GGA GAC GGT CAG GAG ATC AAC CGC GGG ACA ACC CTG TGG AGA AAG AAG
Gly Asp G1Y Gln Glu Ile Asn Arg Gly Thr Thr Leu Trip Arg Lys Lys 1111
345 350 355

CCC TCC AAT CTC TAAGGCCATT CGTTCTTAAG TTTCCTCTAT CTGTCGCT
Pro Ser Asn Leu 1163
360

CGATGCTTCA CGAGTCTAGT CAGGTCTCAT TTTTTCAAT CTAATTTGG GTTAGACTAG 1223

AGAACTGGAA TTATTGGAAT TTATGAGTTT TCGTTCTTGT TTCTGTACAA ATCTTGAGGA 1283

TTGAAGCCAA ACCCATTTCA TCTT 1307

FIGURE 6 (4)

35/42

FIGURE 7
36/43

SAFFLOWER	61	avatgeqpsqvasLreadKeKsLgnrLrlgsltedGLsykekFvIRCYEVGinktatleti
BAY	84	LewkpKPK L pqLlddhfghGLvfrrtFaIrsYEVGpdrstsIlav
SAFFLOWER	122	aN11QEVggNHAqqGVGfstDGFattMrKlhLiWVtaRmHieiyRYPawsDviEiEtWvq
BAY	130	mNhmQEat1NHaksVGi1gDGFgTTleMsKrdLmWvrrtHvaveryPtwgDtvevEcwig
SAFFLOWER	183	qeGkvGRRDwilkDyanGEvigRaTSkwVmMNedTTRRLqkvsDdvReEy1vfcPrtlrla
BAY	191	asGnnGmRRDflvrDcktGEiltRcts1sv1MNTrrRRLstipDeVRGE igP afidn
SAFFLOWER	244	fpeennnsmKkipkledpAeYsr1GLvPRrsDLdmNkHVNNvtYigWalesiPpeidtHe
BAY	248	vavkddeikKlqk1ndstAdriqgGLtPRwnDLDvNqHVNN1kYvaWvfeTtvPdsIfesHh
SAFFLOWER	305	1qaitLdYRRECqRDiudsLTsrepagnaAGvkfkeingsvspkdeqdlssRfmh11Rsa
BAY	309	issftleyRRECTRDsv1rSLTTvsggssseAG lvcdh11qleggse vL RartewR
SAFFLOWER	366	gsgleinRctrewrkpkakr
BAY	364	pkltdsfRgisisvipaePrv

FIGURE B
37/43

FIGURE 9
38/43

Plant Identification Number

FIGURE 10A
39/43

FIGURE 10B
40/43

Plant Identification Number

FIGURE 11A
41/43

FIGURE 11B
42/43

42/42

TGGATCC AAT CAA CAT GTC AAC AAT GTG AAA TAC ATT GGG TGG ATT CTC 49
Asn Gln His Val Asn Asn Val Lys Tyr Ile Gly Trp Ile Leu
1 5 10

AAG AGT GTT CCA ACA AAA GTT TTC GAG ACC CAG GAG TTA TGT GGC GTC 97
Lys Ser Val Pro Thr Lys Val Phe Glu Thr Gln Glu Leu Cys Gly Val
15 20 25 30

ACG CTC GAG TAC CGG CGG GAA TGC TCGAG 126
Thr Leu Glu Tyr Arg Arg Glu Cys
35

FIGURE 12
43/43

INTERNATIONAL SEARCH REPORT

International application No.

PCT US92 04332

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5) : A23D 7/00, 9/00; A01H 5/10; C12N 5/14, 15/29, 15/82

US CL : 426/601, 607; 435/69.1, 240.4, 320.1; 800/250

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 800/DIG 15, DIG 16, DIG 17, 200

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X P,Y	ARCHIVES of Biochemistry and Biophysics, Volume 290(1), Issued October 1991, Davies, et al., "Developmental Induction, Purification, and further characterization of 12:0-ACP Thioesterase From immature cotyledons of <u>Umbellularia California</u> ," pages 37-45, see the entire document.	1-6 7-11, 17-21
Y	The Journal of Biological Chemistry, Volume 260(29), Issued 15 December 1985, Poulose, et al., "Cloning and sequencing of the cDNA for S-acyl fatty acid synthase thioesterase from the uropygial gland of mallard duck," pages 15953-15958, see the entire document.	1-11, 17-21
Y	Biochem. J. Volume 243, Issued 1987, Naggett, et al., "Cloning and Sequencing of the medium-chain S-acyl Fatty acid synthetase thioester hydrolase cDNA from rat mammary gland", pages 597-601, see the entire document.	1-11, 17-21
Y	The metabolism, Structure and Function of Plant Lipids, Issued 1987, Pollard, et al., "Fatty Acid Synthesis in developing oilseeds," pages 455-463, see especially pages 459-460.	1-11, 17-21

Further documents are listed in the continuation of Box C. See patent family annex.

• Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
'A' document defining the general state of the art which is not considered to be part of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
'E' earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
'L' document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
'O' document referring to an oral disclosure, use, exhibition or other means		
'P' document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

18 AUGUST 1992

Date of mailing of the international search report

25 AUG 1992

Name and mailing address of the ISA/
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Authorized officer

CHE S. CHERESKIN

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US92/04333

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X P,Y	Archives of Biochemistry and Biophysics, Volume 284(2), Issued 01 February 1991, Pollard; et al., "A specific acyl-ACP thioesterase implicated in medium-chain fatty acid production in immature cotyledons of <u>Umbellularia California</u> ", pages 306-312.	1-6 7-11, 17-21
Y	Tibtech, Volume 5, Issued February 1987, Knauf, "The application of genetic engineering to oilseed crops," pages 40-47, see especially pages 44-45.	1-11, 17-21
Y	Bio/Technology, Volume 6, Issued October 1988, Bayley et al., "Metabolic Consequences of expression of the medium chain hydrolase gene of the rat in mouse NIH 3T3 cells," pages 1219-1221, see the entire document.	1-11, 17-21
X Y	US,A 4,721,626 (Rule) 26 January 1988, see the entire document, especially Tables II and VII.	6,9 6,9
X Y	US,A 4,386,111 (van Heteren, et al.) 31 May 1983, see the entire document, especially column 1.	6,9 6,9
X Y	US,A 4,614,663 (Rule) 30 September 1986, see the entire document, especially Tables II and VII.	6,9 6,9
X Y	US,A 4,410,557 (Miller) 18 October 1983, see the entire document, especially Table I.	6,9 6,9
X	Chemical Abstracts, Volume 112, Issued 18 June 1990, Daulatabad, et al., "Studies on Verbenaceae seed oils, page 345, Abstract 232551q, see the entire document.	1,6
X Y	Plant Physiology, Volume 84, Issued 1987, Cao, et al. "Acyl coenzyme A preference of diacylglycerol acyltransferase from the maturing seeds of <u>Cuphea</u> , maize, rapeseed, and canola," pages 762-765, see the entire document.	1-6 1-9