CLAIMS

- 1. A Cu-Ni-Mn-Al alloy containing nickel in the range $\geq 21\%$ to $\leq 26\%$ by weight, aluminium in the range $\geq 2.1\%$ to $\leq 3.2\%$ by weight and which possesses a Ni:Al ratio of between 8 and 10 (in terms of wt%).
- 2. The alloy of claim 1 further including iron, chromium and niobium.
- 10 3. The alloy of claim 2 further including one or more of titanium, vanadium, silicon, tantalum or tungsten.
 - 4. A Cu-Ni-Mn-Al alloy having Ni:Al ratio of between 8 and 10 (in terms of wt%) and the composition (% by weight):

15

5

21.0 - 26.0
2.1 - 3.2
2.8 - 4.1
0.4 - 1.5
0.3 - 1.5
0.7 - 1.2
0.0 - 0.5
0.0 - 0.5
0.0 - 0.5
0.0 - 0.5
0.0 - 0.5
Remainder

5. The alloy according to claim 4 wherein the nickel, aluminium, and manganese are present in the following amounts (% by weight):

Nickel	21.5 - 24.0
Aluminium	2.2 - 2.5
Manganese	3.0 - 4.1
Iron	0.4 - 1.1
Chromium	0.3 - 1.4
Niobium	0.7 - 1.2

5

6. The alloy according to claim 5 wherein the nickel, aluminium, and manganese are present in the following amounts (% by weight):

Nickel	21.9 - 22.1
Aluminium	2.4 - 2.5
Manganese	3.0 – 3.1

7. The alloy according to any one of claims 1 to 6 having the following properties after thermo-mechanical processing in the temperature range 800°C to 1000°C and heat treatment in the temperature range 350°C to 600°C:

15 0.2% Proof Stress $\geq 850 \text{ N/mm}^2$

Tensile Strength ≥ 1000 N/mm²

Elongation $(5.65\sqrt{S_0}) \geq 8\%$

Hardness ≥ 280 BHN

20 8. The alloy according to claim 7 wherein the 0.2% proof stress is \geq 900 N/mm².

WO 2004/113578 PCT/GB2004/002662

14

- 9. The alloy according to claim 7 or claim 8 wherein the hardness is \geq 300 BHN.
- 5 10. The alloy according to any one of the preceding claims wherein the Ni:Al ratio is ≥ 9 .
 - 11. A Cu-Ni-Mn-Al alloy substantially as hereinbefore described with reference to Example 1.

10

12. A Cu-Ni-Mn-Al alloy substantially as hereinbefore described with reference to Example 2.