Gensko inženirstvo: TEHNOLOGIJA REKOMBINANTNE DNA

Tehnologija rekombinantne DNA

- Gensko inženirstvo je tehnologija, ki omogoča sestavljanje umetnih molekul DNA.
- Rekombinantna DNA je v laboratoriju pripravljena DNA, ki združuje genetski material iz različnih virov (organizmov).
- Molekulsko kloniranje je pridobivanje veliko kopij rekombinantne DNA.
 - Običajno pride do molekulskega kloniranja znotraj plazmidov, ki se samostojno podvojujejo.
- Če v gostiteljsko celico vstavimo <u>zapis za protein</u>, ki je <u>pod kontrolo</u> <u>promotorja</u>, bo v gostiteljski celici nastal <u>rekombinantni protein</u>.

Tehnologija rekombinantne DNA

- Gensko spremenjeni organizmi (GSO) ali transgeni organizmi so organizmi, ki vsebujejo tuje gene, ki so bili v njihov genom vstavljeni z metodami genskega inženirstva.
- Tehnologija rekombinantne DNA prinaša mnoge <u>možnosti</u> za <u>izboljševanje lastnosti organizmov</u>, hkrati pa prinaša <u>nova tveganja</u> in <u>etične probleme</u>.

Prof. Danja Bregant - Znanstveni licej Simon Gregorčič - Gorica Šolsko leto 2016/17

Primeri proizvodov, pridobljenih z genskim inženiringom

Proizvod	Gensko spremenjeni organizem, ki proizvod izdeluje	Uporaba
Človeški insulin	bakterija	zdravljenje sladkorne bolezni
Človeški rastni hormon	bakterija	zdravljenje motenj rasti
Goveji rastni hormon	bakterija	pospeševanje rasti goveda
Celulaza iz bakterij ali gliv	bakterija	razgradnja celuloze za krmila ali pridobivanje bioetanola
Taksol (strup iz drevesa tise)	bakterija	zdravljenje raka
Cepivo proti hepatitisu B	kvasovka	preprečevanje okužbe z virusom
Eritropoetin (EPO)	celice sesalcev	zdravljenje anemije (slabokrvnosti)
Faktor VIII	celice sesalcev	zdravljenje hemofilije
Tkivni aktivator plazminogena (TPA)	celice sesalcev	zdravljenje srčnih napadov

Bakterije, ki izdelujejo človeški insulin

- Leta 1973 so znanstveniki ustvarili prvi gensko spremenjeni organizem (bakterijo).
- Leta 1982 so začeli uporabljati beljakovinski hormon insulin, ki so ga izdelali z uporabo gensko spremenjenih organizmov.
 - <u>Insulin</u> povzroča <u>privzem glukoze iz krvi v jetrne</u> in <u>mišične</u> celice, kjer se glukoza uskladišči v obliki <u>glikogena</u>.
 - <u>Insulin</u> si kot <u>zdravilo</u> vbrizgavajo <u>sladkorni bolniki</u>, katerih telo izdela premalo ali nič insulina.
 - Pred razvojem metod genskega inženirstva so <u>insulin pridobivali</u> iz <u>trebušnih slinavk živali</u>, predvsem goveda, <u>prašičev</u> in <u>konj</u>.
- Danes v svetovnem merilu izdelajo približno 70% insulina z uporabo gensko spremenjenih bakterij z vstavljenim genom za človeški insulin.

Proizvodnja insulina (oranžna barva) v bakteriji *E. Coli.*

Princip vnosa tujega gena v bakterijsko celico

- Iz evkariontskih celic izoliramo molekule DNA, iz katerih izrežemo gen, ki nas zanima.
- Iz bakterije izoliramo plazmid (vektor) in vanj vstavimo tuji gen.
- Nato plazmide z vstavljenim genom vnesemo v bakterijske celice.
- Bakterije se začnejo v gojišču razmnoževati in proizvajati tudi tujo beljakovino, ki je zapisana v tujem genu.
- Ko se bakterije dovolj namnožijo in proizvedejo dovolj tuje beljakovine, iz njih to beljakovino izoliramo.

Postopek izrezovanja in vstavljanja genov v vektorje

- Za rezanje molekul DNA na specifičnih mestih uporabljajo znanstveniki restrikcijske encime.
 - <u>Restrikcijski encimi</u> so <u>naravne molekule</u>, ki jih celice uporabljajo <u>za obrambo pred virusi</u> (restrikcijski encimi namreč <u>razrežejo tujo</u> <u>DNA</u>).
 - Različne vrste bakterij izdelujejo različne restrikcijske encime.
- Danes poznamo na stotine različnih restrikcijskih encimov.
- Vsak restrikcijski encim "prepozna" določeno kratko zaporedje nukleotidov v molekuli DNA, običajno dolgo od 4 do 8 nukleotidnih parov.

Palindromna zaporedja

Velika večina restrikcijskih encimov prepozna palindromna zaporedja, t.j. zaporedja, ki se lahko berejo v obeh smereh.

Delovanje restrikcijskega encima *Eco* RI iz bakterije *Escherichia coli*.

- <u>Restrikcijski encim razreže</u> molekulo <u>DNA</u> tako, da <u>nastaneta</u> stopničasta konca, ki jima pravimo lepljiva konca.
- Če dve molekuli DNA obdelamo z istim restrikcijskim encimom, imata obe enaka lepljiva konca.
- Lepljiva konca različnih molekul se povežeta med seboj z vodikovimi vezmi zaradi parjenja komplementarnih baz.
- DNA ligaza zlepi obe verigi (rdeče puščice na sliki).

Vstavljanje gena v plazmid z uporabo restrikcijskega encima in DNA-ligaze

- Iz celice darovalke gena izoliramo DNA.
- Izberemo tak restrikcijski encim, ki iz DNA izreže celoten gen.
- S pomočjo restrikcijskega encima izrežemo želeni gen.
- Z istim restrikcijskim encimom prerežemo plazmid.
- Izrezani gen in prerezani plazmid prenesemo v isto epruveto.
- Lepljivi konci se povežejo z vodikovimi vezmi.
- V epruveto dodamo DNA-ligazo, ki tvori kovalentne vezi med sosednjimi nukleotidi.
- Uspešno se vključi le nekaj genov.

Vključitev plazmida v bakterijo (transformacija)

- Bakterije in plazmide damo v isto epruveto, kjer bo potekala transformacija (=vnos tuje DNA v kompetentne bakterijske celice).
- Bakterijo je treba ustrezno obdelati, da postane sposobna za transformacijo (kompetentna).
- V ta namen izvedemo <u>elektroporacijo</u>: epruveto s suspenzijo celic in plazmidov izpostavimo <u>električnemu polju</u> ustrezne jakosti in trajanja, ki povzroči <u>nastanek por v bakterijski membrani</u>, skozi katere lahko vstopi plazmid.
- Dodamo še CaCl₂, ki pospešuje vstop plazmida v bakterijo.
- Uspešno se vključi le nekaj plazmidov.
- Po transformaciji vstavimo bakterije v gojišče, kjer se bodo razmnoževale in proizvajale želeno beljakovino.

Testiranje učinkovitosti transformacije

- Za vnos gena v bakterijo uporabimo plazmid pBR322, ki vsebuje gena za odpornost proti ampicilinu in tetraciklinu.
- Uporabimo restrikcijski encim *Bam*HI, ki prereže plazmid znotraj gena za odpornost na tetraciklin.
- Vklučimo gen v plazmid.
- Izvedemo transformacijo.
- Bakterije s **pBR322** bodo rasle v obeh gojiščih.
- Bakterije s **hibridnim pBR322** bodo preživele v gojišču z ampicilinom, ne pa v gojišču s <u>tetraciklinom</u>.
- Bakterije, ki **niso transformirale**, ne bodo preživele <u>ne v ampicilinu, ne v</u> tetraciklinu.

ampicilin

Priprava rekombinantne DNA (povzetek)

1. Priprava gena za prenos:

- izrezovanje z restrikcijskim encimom
- ali prepis mRNA z reverzno transkriptazo
- ali sinteza iz nukleotidov.
- 2. Izbor in izolacija plazmida (ali drugega **vektorja**) za prenos v bakterijo.
 - Rezanje vektorja z restrikcijskim encimom.
- 3. Vstavitev fragmenta tuje DNA v vektor nastane **rekombinantna** ali **hibridna DNA**.
- 4. Vnos hibridne DNA v bakterijo (transformacija).
- 5. Postavitev bakterij v gojišče s hranilnim agarjem.
- 6. Razvoj metode za pregledovanje bakterij s hibridno DNA.

Izbira gostiteljskih celic

- Idealne lastnosti gostiteljskih celic so sledeče:
 - hitra rast,
 - prehranjevanje s cenovno ugodnimi hranili,
 - nepatogenost,
 - sposobnost transformacije,
 - stabilnost.
- Mikroorganizmi s temi lastnostmi so:
 - E. coli,
 - Bacillus subtilis
 - Saccaromyces cerevisiae.

Kloniranje rekombinantne DNA

- Rekombinantno DNA kloniramo s pomočjo klonirnih vektorjev.
- Izbira klonirnih vektorjev je odvisna od velikosti fragmenta DNA, ki ga hočemo klonirati.

KLONIRNI VEKTORJI

- Plazmidi
- Bakteriofagi
- Kozmidi
- Umetni kromosomi bakterij (BAC)
- Umetni kromosomi kvasovk (YAC)

VELIKOST FRAGMENTA DNA

do 10.000 *bp*

do 21.000 *bp*

do 45.000 *bp*

do 300.000 *bp*

nad 1.000.000 *bp*.

Plazmidi

- Plazmidi so majhne krožne molekule.
- Običajno nosijo gene za odpornost proti antibiotikom.
- Vsebujejo mesta za restrikcijske encime.
- V bakterijski celici se samostojno razmnožujejo.
- Njihov način podvojevanja je lahko:
 - omejen: samo nekaj kopij v celici
 - sproščen: tudi do 200 kopij v celici; lahko nastane tudi do 2000 ali 3000 kopij.
- Lahko sprejmejo vključke do 10.000 baznih parov.

Idealni plazmidni klonirni vektor

- Podvojevanje na sproščen način.
- Biti mora majhen
 - lažja ločitev od velike kromosomske DNA
 - lažja obdelava brez poškodb
- Vsebovati mora markerje (označevalce) za odpornost proti antibiotikom (za testiranje učinkovitosti molekulskega kloniranja)
- Imeti mora le eno cepitveno mesto za določeno restrikcijsko endonukleazo.

Bakteriofagi

- Bakteriofage kot vektorje uporabljamo za molekulsko kloniranje daljših fragmentov DNA.
- Najpogosteje uporabljeni klonirni vektor te skupine je $fag \lambda$, molekula DNA s približno 50.000 baznimi pari.
- Prednosti:
 - Fag λ je večji od plazmidne DNA primeren za vnos daljših fragmentov evkariontske DNA (8.000 do 20.000 bp).
 - Rekombinantna fagna DNA se lahko učinkovito pakira v fagne glave.
 - V bakteriji je možna namnožitev mnogo kopij rekombinantne DNA.
 - Možna je preprosta identifikacija rekombinantne fagne DNA.

Lizni in lizogeni cikel faga λ

Kapaciteta fagne glave

- DNA faga λ je sestavljen iz 50.000 bp z enoverižnima zaporedjema cos na obeh straneh.
 - Mesti cos sta sestavljeni iz 12 nukleotidov, ki so med sabo komplementarni.
- V fagno glavo pa se lahko pakirajo tudi malo krajše ali malo daljše molekule DNA in sicer od 38.000 do 51.000 bp.
- Pri manipulaciji fagne DNA moramo upoštevati, da fagu moramo pustiti 30.000 bp, ki so esencialni za njegovo razmnoževanje.
- Na to DNA lahko povežemo gen dolžine od 8.000 do 21.000 bp.

Bakteriofag $\boldsymbol{\lambda}$

Podvojevanje fagne DNA in njeno pakiranje v fagne glave

- Ko vstopi fag v bakterijo, se dve mesti cos povežeta.
- Tako nastane krožna molekula, ki je varna pred eksonukleazami.
- Krožna molekula se začne podvojevati po modelu odvijajočega se kroga.
- Nastane dolga veriga DNA, sestavljena iz zaporedja fagnih genomov.
- Na mestih cos jo encim prereže, tako da se lahko DNA pakira v fagne glave.

KLONIRANJE REKOMBINANTNE DNA

- 1. Pakiranje gena v fagno glavo
 - Približno 1/3 bakteriofagne DNA je neesencialne in jo lahko nadomestimo z insertom od 8.000 do 21.000 bp.
 - Za vezanje uporabimo DNA ligazo.
 - Dobimo verige rekombinantne DNA, ki jih vstavimo v lizat* bakterij, tako da se <u>in vitro</u> spakirajo v virusne delce.
 - *Lizat bakterij = suspenzija, ki vsebuje ostanke bakterij po lizi. V lizatu so prisotni tudi fagni delci (kapside, repi,...)

 Prof. Danja Bregant - Znanstveni licej Simon Gregorčič - Gorica

Šolsko leto 2016/17

2. Vstop faga λ v bakterije

Razmnoževanje faga povzroči lizo celic, kar je razvidno s pojavom liznih plakov na trdnem gojišču.

- V epruveto s tekočim gojiščem damo fage λ in bakterije *E. coli*.
- Suspenzijo zlijemo na trdno gojišče v petrijevki in inkubiramo za 12-16 ur pri 37°C.
- Fagi λ vstopijo v bakterijske celice.
- Na gojišču bomo opazili prozorne plake, ki pričajo o lizi bakterijskih celic.
- Iz plakov lahko izoliramo fage z rekombinantno DNA.

Nastanek plakov v bakterijski kulturi

*Plak ali razbistritev je okrogla, transparentna čistina v bakterijski kulturi, ki nastane zaradi lize z virulentnim virusom.

- Plaki* na trdnem gojišču so znak za bakterijsko lizo.
- Tu je velika gostota fagov z rekombinantno DNA.

3. Testiranje prisotnosti rekombinantnih fagov

- Uporabljamo kolonije bakterij Lac Z^- , ki so <u>nesposobne metabolizirati</u> <u>laktozo</u>, ker <u>ne proizvajajo</u> encima β -galaktosidaze.
- V fagno DNA vključimo tudi gen Lac Z ,ki bo povzročil nastanek encima β-galaktosidaze.

- Po okužbi s fagom bodo bakterije postale $Lac\ Z^{+}$ in bodo torej proizvajale β -galaktosidazo.
- Z uporabo ustreznega indikatorja, ki se obarva modro v prisotnosti β -galaktosidaze, evidentiramo plake $Lac\ Z^{+}$ (v katerih so rekombinantni fagi).

MODRI PLAKI =
REKOMBINANTNI FAGI

BELI PLAKI = NEREKOMBINANTNI FAGI

DNA IZOLIRAMO IZ MODRIH PLAKOV. BELI PLAKI NE VSEBUJEJO INSERTA.

Fragmentacija genomske DNA z restrikcijskimi encimi

Vključitev fragmentov v fagno DNA

Transfekcija*v *E. coli* in pomnožitev fagov

Nastanek knjižnice fragmentov celotnega genoma v fagu λ

Ustvarjanje knjižnice fragmentov celotnega genoma

- Z uporabo bakteriofagnih vektorjev lahko ustvarimo knjižnico fragmentov celotnega genoma nekega organizma. Postopek:
- 1. Z restrikcijskimi endonukleazami razrežemo genomsko DNA na več 1000 fragmentov naključna populacija fragmentov.
- 2. Z gelsko elektroforezo ločimo fragmente po velikosti. Za evidentiranje fragmentov agarozni gel obarvamo.
- 3. Iz gela izrežemo posamezne frakcije in jih izoliramo.
- 4. Fragmente ustreznih velikosti (cca.15kb) vstavimo v bakteriofagno DNA.
- 5. Vstop fagov v bakterije.
- 6. *Transfekcija (=vključitev tujega gena) v bakterije.
- 7. Pomnožitev fagov.
- 8. Nastanek knjižnice fragmentov celotnega genoma v fagu.

Gelska elektroforeza

- Gelska elektroforeza je postopek, s katerim ločimo molekule DNA po velikosti.
- Elektroforeza temelji na dejstvu, da v električnem polju električno nabiti delci potujejo proti polu z nasprotnim nabojem.
- V vodnem okolju imajo molekule DNA negativni naboj, saj vsebujejo veliko negativno nabitih fosfatnih skupin.
- Zato molekule DNA potujejo proti pozitivnemu polu.
- Fragmenti DNA se ločijo glede na molekulsko maso.
- Najmanjše molekule potujejo najhitreje in dosežejo pozitivni pol, največje molekule potujejo počasneje in ostanejo v bližini negativnega pola.

Gelska elektroforeza - postopek

 Najprej pripravimo agarozni* gel; to je pravokotna ploščica s posebnimi vdolbinami (žepki), v katere lahko vnesemo vzorec.

*Agaroza je polisaharid, ki ga pridobivamo iz alg.

- Gel potopimo v pufer, ki bo ohranjal negativne naboje na DNA.
- V žepke nanesemo vzorce z molekulami DNA.
- S priklopom na vir napetosti v gelu vzpostavimo električno polje.
- Negativni pol je pri vzorcih DNA, pozitivni pa na naspronem koncu gela.
- Negativno nabite molekule DNA začnejo potovati proti pozitivnemu polu.

Gelska elektroforeza - postopek

- Molekule agaroze tvorijo gosto prepleteno mrežo.
- Mreža agaroze bolj ovira potovanje daljših molekul DNA, kot krajših.
- Zato daljše molekule DNA potujejo počasneje kot krajše.
- Molekule DNA se ločujejo po velikosti.
- Po določenem času vir napetosti izključimo.
- Ker so molekule DNA brezbarvne, jih moramo obarvati, da jih lahko vidimo.
- Skupek enako velikih molekul DNA vidimo kot podolgovato liso na gelu.

Gelska elektroforeza

Kozmidi

- Kozmidi so umetni **plazmidi**, primerni za kloniranje dolgih fragmentov evkariontske DNA.
- Kozmidi imajo značilnosti plazmidov in bakteriofagov.
- Zgradimo jih tako, da v plazmid vcepimo lokus cos faga λ, (→ "cosmid"), ki omogoči pakiranje kozmida v kapsido.
- Kozmidno DNA je zato možno obdati s fagovim ovojem in vitro.
- Take fage lahko uporabimo za transfekcijo (=vključitev tujega gena) v *E. coli*.
- Prednost uporabe faga je tudi ta, da so fagi veliko stabilnejši od plazmidov: v njih lahko ohranimo rekombinantno DNA za dolga obdobja (genoteka ali genomska knjižnica).

Gen za odpornost proti antibiotiku

Razpoznavno mesto za restrikcijski encim

Bakterijski umetni kromosom - BAC (*Bacterial Artificial Chromosome*)

Šolsko leto 2016/17

- BAC je sintetični vektor, prirejen za vnos dolgih fragmentov DNA –100.000 do 300.000 bp.
- BAC vsebuje:
 - mesto *ori*, ki omogoča replikacijo v bakterijah.
 - par gene, ki so normalno prisotni v plazmidu F bakterije E.coli in omogočajo enakomerno porazdelitev plazmidov med hčerinski celici pri delitvi.
 - Cm^R—zapis za rezistenco za kloramfenikol.
 - *lac Z* gen za β-galaktosidazo, ki omogoča selekcijo rekombinantnih bakterij.
 - Znotraj gena *lac Z* je mesto za vključitev tuje DNA.

Kloniranje z bakterijskim umetnim kromosomom - BAC

- V vektor BAC (znotraj gena lac Z)
 vključimo fragment DNA, ki ga hočemo
 klonirati. Dobimo rekombinantni BAC.
- Z elektroporacijo vključimo rekombinantni BAC v kolonijo bakterij.
- Bakterije morajo biti:
 - Lac Z⁻ (nesposobne metabolizirati laktozo, ker <u>ne proizvajajo encima β-galaktosidaze</u>);
 - Cm⁻ (občutljive na kloramfenikol).
- Zlijemo suspenzijo bakterij v petrijevko s hranilnim agarjem, s kloramfenikolom in z indikatorjem za β-galaktosidazo.

Kloniranje z bakterijskim umetnim kromosomom - BAC

- Bakterije, v katere se BAC ni vključil, ne preživijo v prisotnosti kloramfenikola.
- Bakterije, v katere se je vključil samo fragment DNA, tudi ne preživijo v prisotnosti kloramfenikola.
- Preživita samo 2 vrsti bakterijskih kolonij:
 - Bakterije, v katere se je vključil BAC brez fragmenta DNA, preživijo in so modre barve, ker gen *lac Z* ni bil prekinjen.
 - Bakterije, v katere se je vključil rekombinantni BAC, preživijo in so bele barve, ker je bil gen lac Z prekinjen.

Bakterijski umetni kromosom - BAC (*Bacterial Artificial Chromosome*)_β

- Med vsemi vektorji lahko YAC sprejme najdaljše fragmente DNA (nad 1.000.000 bp), kar je zelo pripravno za kloniranje človeškega genoma, vendar je njegova sposobnost transformacije v kvasovke zelo nizka.
- Druga pomanjkljivost je ta, da je vektorje YAC težko manipulirati, ker so zelo labilni in v gostitelju težijo k rekombinaciji.
- Vektorji YAC se razmnožujejo bodisi v bakterijah, kot v kvasovkah.
- Ohranjamo jih v bakterijah *E.coli*.

- Rekombinantni YAC kloniramo:
 - v bakterijah z mutacijo amp⁻ (niso odporne na ampicilin);
 - v kvasovkah s sledečimi mutacijami:
 - Trp (niso sposobne sintetizirati triptofana);
 - Ura (niso sposobne sintetizirati uracila);
 - Ade (niso sposobne sintetizirati adenina in so rdeče).

- Umetni kromosom YAC ima značilnosti, ki so skupne vsem evkariontskim kromosomom in sicer:
 - 2 telomera (TEL), ki stabilizirata vektor
 - centromer (CEN), ki omogoča pravilno ločevanje vektorja med mitozo
 - izhodišče za replikacijo (ARS).

- Ostale značilnosti:
 - Eno prepoznavno mesto za **EcoRI** in dve mesti za **BamHI**.
 - Mesto *ori*, ki omogoča replikacijo v bakterijah.
 - AMP: gen za odpornost proti ampicilinu (genski marker za selekcijo rekombinantnih bakterij).
 - TRP, URA, SUP: genski markerji za selekcijo rekombinantnih celic kvasovk.

- Gen *TRP* omogoča biosintezo triptofana v kvasovkah *trp*-.
- Gen *URA* omogoča biosintezo uracila v kvasovkah *ura*⁻.
- Gen *SUP* prepreči tvorbo rdečega barvila, zato so v njegovi prisotnosti kolonije bele barve.

Postopek kloniranja z vektorjem YAC

- 1. Parcialno rezanje genomske DNA z encimom EcoRI.
- 2. Ločitev dveh vej vektorja YAC z encimoma EcoRI in BamHI.
 - Na eni veji je gen TRP, ki omogoča biosintezo triptofana.
 - Na drugi veji je gen URA, ki omogoča biosintezo uracila.
- 3. Vezava obeh vej vektorja z insertom genomske DNA (DNA ligaza).

Postopek kloniranja z vektorjem YAC

- 3. Transformacija v kvasovke *ade-, ura-, trp-* na terenu brez uracila in triptofana.
- 4. Selekcija rekombinantnih kvasovk:
 - Kolonije kvasovk, ki vsebujejo kompleten vektor (obe veji, z genomsko DNA v sredini) so rdeče barve (ker se gen SUP inaktivira zaradi vključitve genomske DNA) in preživijo v terenu brez uracila in triptofana.
 - (Kolonije kvasovk, ki vsebujejo vektor YAC brez genomske DNA tudi preživijo, vendar so bele, ker je ostal gen SUP cel).

Verižna reakcija s polimerazo (PCR)

- V nekaterih <u>genetskih raziskavah</u> ali v <u>sodni medicini</u> imamo ponavadi <u>na razpolago zelo majhne količine DNA</u>, npr. dedni material ene same celice, človeškega lasu, biopsiranega tkiva itd.
- Verižna reakcija s polimerazo (PCR) omogoča pomnoževanje in vitro določenega zaporedja DNA, ki ga hočemo analizirati.
- S tem ga dejansko ojačamo in ga lažje določimo ali kloniramo.

Verižna reakcija s polimerazo (PCR) Nobelova nagrada 1993: ameriški biokemik Kary Mullis

- V verižni reakciji s polimerazo (PCR) se ciklično ponavljajo sledeče 3 stopnje:
 - 1. Denaturacija (=ločitev verig) izvorne DNA, ki jo želimo pomnožiti, pri 95 °C (30 s).
 - 2. Ohladitev na 50 65 °C za vezavo dveh sintetičnih oligonukleotidov (*primer*) na mesto 5' vsakega fragmenta DNA.
 - 3. Segrevanje na 72 °C: polimerizacija DNA v smeri 5` − 3` (1000 nukleotidov/min).
- V 1-3 urah dobimo milijardkratno pomnožitev DNA.

Verižna reakcija s polimerazo (PCR)

- Postopek je avtomatiziran, v reakcijo moramo poleg naštetih materialov dodati še vse 4 deoksiribonukleozidtrifosfate dNTP, in sicer dATP, dGTP,dCTP in dTTP ter ustrezen pufer.
- Uporabiti moramo termostabilno taq DNA polimerazo.
 - Taq DNA polimeraza je značilna DNA polimeraza termofilne bakterije *Thermus aquaticus* in je optimalno aktivna pri temperaturah 70-80°C.

Verižna reakcija s polimerazo (PCR)

Določanje nukleotidnega zaporedja: Sangerjeva metoda

- 1. Pomnožimo fragment DNA z metodo PCR in ga denaturiramo (93-94°C).
- 2. Vzamemo 4 epruvete in jih označimo s črkami G, T, A, C.
- 3. V vsako epruveto damo denaturirani DNA, primer, nukleotide (dNTP) in DNA polimerazo.
 - V epruveto G dodamo še ddGTP (dideoksi G nukleotid)
 - V epruveto T dodamo še ddTTP (dideoksi T nukleotid)
 - V epruveto A dodamo še ddATP (dideoksi A nukleotid)
 - V epruveto C dodamo še ddCTP (dideoksi C nukleotid)
 - Razmerje med ddNTP in dNTP je 1 : 100.
 - Vsak ddNTP je markiran z različnim fluorokromom, molekulo, ki oddaja različno barvo fluorescentne svetlobe.

Nukleotid ddNTP onemogoča nadaljevanje sinteze DNA

dNTP omogoča podaljševanje verige DNA ddNTP onemogoča podaljševanje verige DNA

Določanje nukleotidnega zaporedja Sangerjeva metoda

- 4. V vsaki epruveti se sintetizirajo različno dolgi fragmenti DNA: sinteza se prekine, ko se na verigo naključno poveže ddNTP, ki onemogoči vezavo naslednjega nukleotida.
- V epruveti G bodo nastali vsi možni fragmenti, ki se končajo z G.
- V epruveti T bodo nastali vsi možni fragmenti, ki se končajo s T.
- V epruveti A bodo nastali vsi možni fragmenti, ki se končajo z A.
- V epruveti C bodo nastali vsi možni fragmenti, ki se končajo s C.

PRIMER SINTEZE FRAGMENTOV V EPRUVETI A

Določanje nukleotidnega zaporedja Sangerjeva metoda

- 5. Pripravimo gel za elektroforezo in ga vstavimo v stekleno kapilaro.
- 6. Vse dobljene fragmente damo v kapilaro z gelom in izvedemo kapilarno elektroforezo. Fragmenti se bodo ločili po velikosti.

Aparatura za PCR

cDNA knjižnice

- cDNA molekule so molekule DNA, ki so komplementarne mRNA.
- cDNA molekule ne vsebujejo intronov, zato so bolj uporabne pri molekulskem kloniranju zapisov za proteine kot genomska DNA.
- cDNA knjižnice so zbirke molekul cDNA in so zelo koristne za ekspresijo specifičnih genov posameznih tkiv.

Sinteza cDNA

- Evkariontske mRNA se lahko ločijo od ostalih molekul RNA, ker imajo rep poli A.
- Da se RNA lahko prepiše v dvoverižno DNA, potrebujemo encim reverzno transkriptazo.
- Temu encimu kot matrica služi RNA, potrebuje pa tudi začetni oligonukleotid (primer).
- Najprej pride do nastanka hibrida mRNA-DNA.
- Potem RNaza H (encim, ki cepi samo RNA v hibridu z DNA) razgradi RNA verigo.
- Dodatek primerja na 3' konec cDNA.
- Sledi sinteza komplementarne DNA s polimerazo DNA I.

Sinteza cDNA

Kloniranje cDNA v vektorju (npr. v fagu λ)

Dobljenim fragmentom dodamo esencialno fagno DNA.

Za vezanje uporabimo DNA ligazo.

Dobimo verige rekombinantne DNA, ki jih vstavimo v lizat bakterij, tako da se in vitro spakirajo v virusne delce.

Izolacija klonov v liznih plakih.