(a)
$$L_1 = \{a^i b^j c^k \mid i, j, k \ge 0, i + j = k, i < j\}$$

(b)
$$L_2 = \{a^i b^j c^k \mid i, j, k \ge 0, i + j = k, j < k\}$$

K zadanému konečnému automatu zkonstruujte ekvivalentní nedeterministický konečný automat bez ε -kroků.

Příklad 2 30 bodů

(Pokud nepoužijete standardní algoritmus, dokažte ekvivalenci obou automatů.)

	a .	b	ε
$\rightarrow 1$	{1}	$\{1, 4\}$	{5}
← 2	{2}	{1}	{3}
← 3	Ø	$\{2, 5\}$	{2}
4	$\{1, 4\}$	$\{2,4\}$	$\{1, 5\}$
← 5	$\{2, 5\}$	0	Ø

Je dána gramatika $\mathcal{G} = (\{S, A, B\}, \{a, b\}, P, S)$, kde

$$P = \{ \begin{array}{ccc} S \rightarrow bAB & | & AB \\ A \rightarrow Ab^{3} & | & ab \\ B \rightarrow AB^{3} & | & bb^{4} & \varepsilon^{2} \end{array} \}.$$

- (a) Zkonstruujte PDA A pro nedeterministickou syntaktickou analýzu shora dolů. Uveď te způsob akceptování.
- (b) Zapište akceptující výpočet automatu A nad slovem babbab.

Napište algoritmus, který pro zadanou bezkontextovou gramatiku $\mathcal{G}=(N,\Sigma,P,S)$ spočítá množinu M všech neterminálů, ze kterých lze odvodit prázdný řetězec, tj. $M=\{A\in N\mid A\Rightarrow^*\varepsilon\}$.

Příklad 4 4<u>0 b</u>odů

Rozhodněte, zda existují následující gramatiky. V kladném případě uveď te příklad takové gramatiky, v záporném důkaz její neexistence.

Příklad 5 17+17 bodů

- (a) Bezkontextová gramatika, která má vlastnost sebevložení, a přitom generuje konečný jazyk.
- (b) Bezkontextová gramatika, která je vlastní, obsahuje levorekursivní neterminál, a přitom generuje konečný jazyk.

Nechť $(Q, \Sigma, \delta, q_0, F)$ je NFA s ε -kroky.

Příklad 6 6+15+15 bodů

- (a) Napište typu funkce δ.
- (b) Definujte funkci D_{ε} (včetně typu) a její rozšíření na množiny stavů.
- (c) Definujte rozšířenou přechodovou funkci $\hat{\delta}$ (včetně typu).