

Notes of

REAL AND FUNCTIONAL ANALYSIS

for the Master in Mathematical Engineering held by Prof. G. Verzini a.a. 2023/2024

Edited by Teo Bonfa

Indice

Ι	Introduction	1
0	Course structure	3
1	Set Theory 1.1 Equipotent, finite/infinite, countable/uncountable sets, cardinality of continuum 1.2 Families of subsets 1.3 Sequences of sets	5 5 6 7
II	Real Analysis	9
2		11
3		13
4		15
5		17
6		19
7		21
8		23
9		2 5
10		27
II	I Functional Analysis	29
11		31
12		33
13		35
14		37
15		39
16		41
17		43
18		45

IV	Esercitazioni	47
19		49
20		51
21		53
22		55
23		57
24		59
25		61
26		63
27		65
28		67

Parte I Introduction

Course structure

This course is splitted in two parts:

- 1. Real Analysis \rightarrow measure and integration theory, in particular:
 - Collections and sequences of sets
 - Measurable space, measure, outer measure
 - Generation of an outer measure
 - Carathéodory's condition, measure induced by an outer measure
 - Lebesgue's measure on \mathbb{R}^n
 - Measurable functions
 - The Lebesgue integral
 - Abstract integration
 - Monotone convergence theorem, Fatou's Lemma, Lebesgue's dominated convergence theorem
 - Comparison between the Lebesgue and Riemann integrals
 - Different types of convergence
 - Derivative of a measure and the Radon-Nikodym theorem
 - Product measures and the Fubini-Tonelli theorem
 - Functions of bounded variation and absolutely continuous functions
- 2. Functional Analysis \sim infinte dimensional linear algebra, in particular:
 - Metric spaces, completeness, separability, compactness
 - Normed spaces and Banach spaces
 - Spaces of integrable functions
 - Linear operators
 - Uniform boundedness theorem, open mapping theorem, closed graph theorem
 - Dual spaces and the Hahn-Banach theorem
 - Reflexivity
 - \bullet Weak and weak* convergences
 - Banach-Alaoglu theorem
 - Compact operators
 - Hilbert spaces
 - Projection theorem, Riesz representation theorem
 - Orthonormal basis, abstract Fourier series
 - Spectral theorem for compact symmetric operators

• Fredholm alternativ

The foundation of this theory is the $Set\ Theory$, that is going to be explained in the next chapter. Enjoy!

 ${f NB}$: this page will be updated with more details and maybe the list of proofs.

Set Theory

1.1 Equipotent, finite/infinite, countable/uncountable sets, cardinality of continuum

Let X, Y be sets.

Def — Equipotent sets.

X,Y are equipotent if there exists a bijection $f:X\to Y$ (1-1 injective + onto surjective).

If X, Y are equipotent, then they have the same cardinality. On the other hand, X has cardinality \geq than Y if there exists $f: X \to Y$ onto. For example, for

$$X = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad Y = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

exists $f: X \to Y$ s.t. $\forall y \in Y \exists x \in X$ s.t. f(x) = y (f takes all the elements of the codomain), but doesn't exist $g: Y \to X$ s.t. $\forall x \in X \exists y \in Y$ s.t. g(y) = x (g doesn't take all the elements of the codomain).

Def — Finite/infinite sets.

X is finite if it is equipotent to $Y = \{1, 2, ..., k\}$ for some $k \in \mathbb{N}$. X is infinite otherwise.

Prop. X is infinite iff it is equipotent to a proper subset, i.e. if exists a bijection between X and one of his subsets.

For example, between the integers set $\mathbb{Z} = \{0, \pm 1, \pm 2, ...\}$ and the even integers set $\{0, \pm 2, \pm 4, ...\}$ there exists f s.t. f(z) = 2z which is a bijection.

Def — Countable/uncountable (infinite) sets.

X inifinite is countable if it is equipotent to \mathbb{N} . It is uncountable otherwise, in which case is more than countable (countable sets are the "smallest" among infinite sets).

Def — Cardinality of continoum.

X has the cardinality of continuum if it is equipotent to \mathbb{R} . Any such set is uncountable.

For example:

- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ are countable
- $\mathbb{R}, \mathbb{R}^N, (0,1), (0,1)^N$ have the cardinality of continuum
- countable unions of countable sets are countable

1.2 Families of subsets

Let X be a set.

Def — Power set.

The power set of X, i.e. the set of all subsets of X, is

$$\mathcal{P}(X) = \{Y : Y \subset X\}$$

It is sometimes denoted as 2^X .

The power set has cardinality strictly bigger than X. For example, $\mathcal{P}(\mathbb{N})$ has the cardinality of continuum.

Def — Family of subsets.

A family, or collection, of subsets of X is just $\mathcal{C} \subset \mathcal{P}(X)$. Tipically, a family of subsets (induced by $I \subset \mathbb{R}$ set of indexes) is $\mathcal{C} = \{E_i\}_{i \in I}$ where $E_i \subset X \ \forall i \in I$.

For example, $\{E_1, E_2, E_3\}$ is a family of subsets.

Def — Union and intersection.

Given a family of sets $\{E_i\}_{i\in I}\subset \mathcal{P}(X)$, will often be considered

$$\bigcup_{i \in I} E_i = \{x \in X : \exists i \in I \text{ s.t. } x \in E_i\}$$
$$\bigcap_{i \in I} E_i = \{x \in X : x \in E_i \ \forall i \in I\}$$

 ${E_i}$ is said to be (pairwise) disjoint if $E_i \cap E_j = \emptyset \ \forall i \neq j$.

$\mathbf{E}\mathbf{x}$ — Standard topology of \mathbb{R} .

Given $X = \mathbb{R}$ (or \mathbb{R}^N), the standard/euclidian topology of \mathbb{R} (or \mathbb{R}^N) is $\mathcal{T} = \{E \subset X : E \text{ is open}\}$, i.e. it is the family of all open subsets of X.

More generally, this can be defined in metric spaces (X, d) where X is a set and d a distance between $x, y \in X$. Some properties of \mathcal{T} :

- $\varnothing, X \in \mathcal{T}$
- finite intersection of open sets is open [*]
- any (finite/infinite, countable/uncountable, ...) union of open sets is open [⊚]

Def — Covering and subcovering.

 $\{E_i\}_{i\in I}$ is a covering of X if $X=\bigcup_{i\in I}E_i$. Any subfamily $\{E_i\}_{i\in J,J\subset I}$ is a subcovering if it is a covering.

1.3 Sequences of sets

A sequence is just a family of subsets where $I \equiv \mathbb{N}$, e.g. $\{E_n\}_{n \in \mathbb{N}}$.

Def — Monotone sequences.

 $\{E_n\}$ is increasing (not decreasing), $\{E_n\} \nearrow$, if $E_n \subset E_{n+1} \ \forall n \in \mathbb{N}$. On the other hand, $\{E_n\}$ is decreasing (not increasing), $\{E_n\} \searrow$, if $E_{n+1} \subset E_n \ \forall n \in \mathbb{N}$. If $\{E_n\}$ is increasing/decreasing then it is monotone.

For example, given $X = \mathbb{R}$ and $E_n = \left(-\frac{1}{n}, 1 + \frac{1}{n}\right)$ for $n \geq 1$, we can say that E_n is a monotone decreasing sequence:

$$\begin{array}{c|cccc}
 & & & & & \\
\hline
 & 1 & & & & \\
\hline
 & n & & & & \\
\end{array}$$

But what is $\bigcap_{n=1}^{\infty} E_n$? We know that

$$\bigcap_{n=1}^{\infty} E_n = [0,1]$$

and this is an infinite intersection of open sets (this does not disagree with the prop \circledast). This type of intersection is called "G δ -set": a countable intersection of open sets.

Similarly, $E_n = \left[a + \frac{1}{n}, b - \frac{1}{n} \right]$, a<b, is increasing and

$$\bigcup_{n=1}^{\infty} E_n = (a, b)$$

is called "F σ -set": a countable union of closed sets (doesn't disagree with \odot).

Def — lim sup and lim inf.

Let $\{E_n\}_{n\in\mathbb{N}}\subset\mathcal{P}$. We define

$$\limsup_{n} E_{n} := \bigcap_{n=1}^{\infty} \left(\bigcup_{k=n}^{\infty} E_{k} \right) \qquad \liminf_{n} E_{n} := \bigcup_{n=1}^{\infty} \left(\bigcap_{k=n}^{\infty} E_{k} \right)$$

If these two sets are equal

$$\limsup_{n} E_n = \liminf_{n} E_n = \lim_{n} E_n = F$$

then F is the limit of the succession.

Take note that $\{E_n\} \nearrow (\searrow) \Longrightarrow \exists \lim_n E_n = \bigcup_n E_n (\bigcap_n E_n).$

Questo documento sucks.

Parte II Real Analysis

Parte III Functional Analysis

Parte IV Esercitazioni