

### PRÁCTICA Nº3 Álgebra de Matrices

#### Introducción a las matrices. Tipos especiales de matrices. Operaciones con matrices

1. Sean A = 
$$\begin{pmatrix} 1 & 0 \\ 0 & 3 \\ 2 & 0 \end{pmatrix}$$
, B =  $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -2 \end{pmatrix}$ , C =  $\begin{pmatrix} 1 & 1 \\ 3 & -4 \end{pmatrix}$ , D =  $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$  y E =  $\begin{pmatrix} 3 & -1 & 4 \end{pmatrix}$ 

- a) Establezca el orden de cada matriz.
- b) ¿Cuáles corresponden a matrices cuadradas?
- c) ¿Qué matrices son triangulares superiores?
- d) ¿Cuáles son vectores fila?
- e) ¿Cuáles son vectores columna?
- f) ¿De qué orden es la traspuesta de E?
  g) Determine A<sup>t</sup> y C<sup>t</sup>

2. Si 
$$A = \begin{pmatrix} 2 & 2 & -1 \\ -3 & 0 & 4 \end{pmatrix}$$
, verifique la propiedad general de que  $(A^t)^t = A$  encontrando  $A^t$  y después  $(A^t)^t$ .

3. Efectúe las siguientes operaciones con matrices siempre que sea posible.

a) 
$$-\begin{pmatrix} 4 & 7 \\ 5 & 8 \end{pmatrix} - \begin{pmatrix} 1 & 12 \\ 3 & 4 \end{pmatrix}$$

b) 
$$-2\begin{pmatrix} 4 & -2 \\ -1 & 4 \end{pmatrix} + 8\begin{pmatrix} 11 & 0 \\ -2 & 4 \end{pmatrix}$$

c) 
$$5\begin{pmatrix} -2 & 10\\ 5 & 15 \end{pmatrix} - 3\begin{pmatrix} 20 & -15\\ -10 & 5 \end{pmatrix}$$

d) 
$$(2 - 3) \binom{4}{8}$$

e) 
$$(3 - 1) \begin{pmatrix} 4 \\ -2 \\ -3 \end{pmatrix}$$

f) 
$$(a \ b) \begin{pmatrix} x \\ y \end{pmatrix}$$

g) 
$$\begin{pmatrix} -1 & 2 & -3 & 4 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix}$$

h) (a b c d) 
$$\begin{pmatrix} e \\ f \\ g \\ h \end{pmatrix}$$

i) 
$$\begin{pmatrix} 4 & 0 \\ -2 & 7 \end{pmatrix} \begin{pmatrix} 2 & 6 \\ -1 & 8 \end{pmatrix}$$

j) 
$$(20 - 8)\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

# UNIVERSIDAD CAECE (01)

Matemática I

$$k) \begin{pmatrix} 10 & -2 \\ 0 & 13 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

I) 
$$\begin{pmatrix} 4 & 4 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 4 & 20 \\ 3 & 4 \end{pmatrix}$$

m) 
$$\begin{pmatrix} 2 & -1 & 8 \\ 1 & 0 & -4 \\ 3 & -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 10 \\ 0 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

$$\mathsf{n}) \begin{pmatrix} \mathsf{a}_{11} & \mathsf{a}_{12} \\ \mathsf{a}_{21} & \mathsf{a}_{22} \end{pmatrix} \begin{pmatrix} \mathsf{x}_1 \\ \mathsf{x}_2 \end{pmatrix}$$

$$\tilde{\mathsf{n}}) \begin{pmatrix} 2 & -1 \\ 1 & 2 \\ 0 & 4 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} 2 & -1 & 0 & 5 & 3 \\ 6 & 2 & 2 & -2 & 0 \end{pmatrix} \qquad \qquad \mathsf{o}) \begin{pmatrix} 2 & 5 & -1 \\ 1 & 0 & -2 \\ 4 & 3 & 2 \end{pmatrix} \begin{pmatrix} -3 & 2 & 1 & 0 \\ 1 & 2 & 3 & 4 \\ -3 & 4 & -2 & 1 \end{pmatrix}$$

o) 
$$\begin{pmatrix} 2 & 5 & -1 \\ 1 & 0 & -2 \\ 4 & 3 & 2 \end{pmatrix} \begin{pmatrix} -3 & 2 & 1 & 0 \\ 1 & 2 & 3 & 4 \\ -3 & 4 & -2 & 1 \end{pmatrix}$$

4. Dadas las siguientes matrices: 
$$A = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$$

$$B = \begin{pmatrix} -1 & 5 \\ -3 & -7 \end{pmatrix}$$

$$C = \begin{pmatrix} -1 & -2 \\ 0 & 1 \end{pmatrix}$$

$$D = \begin{pmatrix} 1 & 3 & -2 \\ 2 & 0 & 4 \\ -1 & 5 & 1 \end{pmatrix}$$

$$D = \begin{pmatrix} 1 & 3 & -2 \\ 2 & 0 & 4 \\ -1 & 5 & 1 \end{pmatrix} \qquad E = \begin{pmatrix} 2 & 4 & -1 \\ 7 & -3 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$

Calcule:

d) 
$$\frac{6E + 3D}{10}$$

5. Dadas las siguientes matrices, efectúe todos los productos posibles tomándolascomo factores:

$$A = \begin{pmatrix} 1 & 0 & 5 \\ 3 & 4 & -1 \\ -1 & 2 & -5 \end{pmatrix} \qquad B = \begin{pmatrix} 7 & 0 \\ 2 & 1 \\ 5 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & 5 & -1 \\ 3 & 10 & 4 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & -1 \\ 4 & 6 \end{pmatrix}$$

$$B = \begin{pmatrix} 7 & 0 \\ 2 & 1 \\ 5 & 1 \end{pmatrix}$$

$$C = \begin{pmatrix} 2 & 5 & -1 \\ 3 & 10 & 4 \end{pmatrix}$$

$$D = \begin{pmatrix} 1 & -1 \\ 4 & 6 \end{pmatrix}$$

6. Determine los valores de a, b, c,  $d \in R$  para que se verifique la igualdad:

$$3.\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & 7 \\ -1 & 2d \end{pmatrix} + \begin{pmatrix} 4 & a+b \\ a+d & 3 \end{pmatrix}$$

- 7. Determine una matriz Xtal que: A +  $\frac{1}{3}$  .X = B, siendo A =  $\begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 2 & 3 & 5 \end{pmatrix}$  y B =  $\begin{pmatrix} 2 & 0 & -\frac{1}{2} \\ \frac{5}{2} & 5 & 2 \end{pmatrix}$
- 8. Dadas las matrices:  $A = \begin{bmatrix} 1 & -1 \\ 0 & 3 \\ 2 & 0 \end{bmatrix}$ ,  $B = \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 1 & 1 \end{bmatrix}$ ,  $C = \begin{bmatrix} 1 & 1 \\ 3 & -4 \end{bmatrix}$ ,  $D = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$  y  $E = \begin{bmatrix} 3 & -1 & 4 \end{bmatrix}$



## Matemática I

8.1. Calcule, en los casos en que la operación sea posible. Justifique.

a) 
$$C + A^t$$
. B

- 8.2. Obtenga, si existe, una matriz X que verifique A .C + 2X = B
- 8.3. Sea la matriz  $P_{m \times n}$ , ¿qué valores deben tomar m y n para que el producto B .P .C pueda realizarse?.¿Qué dimensión tendrá la matriz producto?

#### Ejercicios adicionales

9. Dadas las matrices  $A = \begin{pmatrix} -1 & 2 \\ 3 & 1 \\ 0 & 2 \end{pmatrix} B = \begin{pmatrix} -3 & -2 \\ -1 & 5 \\ 1 & 0 \end{pmatrix}$  y  $C = \begin{pmatrix} 1 & 1 \\ 2 & -4 \end{pmatrix}$ , calcule, si es posible. De lo contrario, justifique:

a) 
$$(A-2B)^t$$

10. **Obtenga**, si existen, los valores de x e y que verifiquen  $a_{11} = 2a_{22}$  y  $a_{12} = -a_{21}$ , siendo

$$A = \begin{pmatrix} x & -4 \\ y^2 & 1-x \end{pmatrix}$$

11. **Determine**, si existe, una matriz **X**, tal que:  $\frac{1}{2}$ **X** – B = I<sub>d</sub>, siendo

$$I_d$$
 la matriz identidad de orden 2 y  $B = \begin{pmatrix} -1 & 1 \\ 3 & -2 \end{pmatrix}$ 

12. Complete para que la proposición resulte verdadera:

$$Si\begin{pmatrix} -2 & 2b-3 \\ 5 & -7+a \end{pmatrix} = \begin{pmatrix} -2 & -4+b \\ 5 & 8 \end{pmatrix} \quad \Rightarrow a = \dots \qquad y \qquad b = \dots \dots$$

13. Dada A = 
$$\begin{pmatrix} 1 & 3 \\ 4 & -3 \end{pmatrix}$$
, **obtenga** U =  $\begin{pmatrix} x \\ y \end{pmatrix}$  no nula, tal que A.U = 3.U

- 14. Suponga que el precio de los productos A, B y C está dado, en ese orden, por el vector de precios P = (p<sub>1</sub> p<sub>2</sub> p<sub>3</sub>). Si los precios se incrementan en 10%, el vector de los nuevos precios puede obtenerse multiplicando P, ¿por qué escalar?
- 15. Los precios (en dólares por unidad) para tres libros de texto están representados por el vector de precios P = (26.25 34.75 28.50). Una librería universitaria hace un pedido de estos libros

en las cantidades dadas por el vector columna Q = 
$$\begin{pmatrix} 250\\325\\175 \end{pmatrix}$$
 . **Determine** el costo total (en

dólares) de la compra.



16. Una firma de automóviles dispone de dos plantas de fabricación en dos ciudades distintasen las que fabrica dos modelos M1 y M2, de tres colores x, y, z. Su capacidad de producción diaria en cada planta está dada por las siguientes matrices A y B.

$$A = \begin{pmatrix} 300 & 95 \\ 250 & 100 \\ 200 & 100 \end{pmatrix} \qquad B = \begin{pmatrix} 190 & 90 \\ 200 & 100 \\ 150 & 80 \end{pmatrix}$$

- a) Determine la representación matricial de la producción total por día.
- b) Si se eleva la producción en la plantea A un 20% y se disminuye en B un 10% ¿qué matriz representa la nueva producción total?

4 Práctica N⁰3

#### **RESPUESTAS**

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 3 \\ 2 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -2 \end{pmatrix}, C = \begin{pmatrix} 1 & 1 \\ 3 & -4 \end{pmatrix}, D = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \quad y \quad E = \begin{pmatrix} 3 & -1 & 4 \end{pmatrix}$$

- a) 3x2;3x3;2x2;3x1;1x3b) B y C

- e) D

g) 
$$A^t = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 3 & 0 \end{pmatrix}$$
 y  $C^t = \begin{pmatrix} 1 & 3 \\ 1 & -4 \end{pmatrix}$ 

3. a) 
$$\begin{pmatrix} -5 & -19 \\ -8 & -12 \end{pmatrix}$$
 b)  $\begin{pmatrix} 80 & 4 \\ -14 & 24 \end{pmatrix}$  c)  $\begin{pmatrix} -70 & 95 \\ 55 & 60 \end{pmatrix}$  d) (-16)

b) 
$$\begin{pmatrix} 80 & 4 \\ -14 & 24 \end{pmatrix}$$

c) 
$$\begin{pmatrix} -70 & 95 \\ 55 & 60 \end{pmatrix}$$

i) 
$$\begin{pmatrix} 8 & 24 \\ -11 & 44 \end{pmatrix}$$

i) 
$$\begin{pmatrix} 8 & 24 \\ -11 & 44 \end{pmatrix}$$
 j) (20 -8) k)  $\begin{pmatrix} 10 & -2 & 10 \\ 0 & 13 & 0 \end{pmatrix}$  l) no es posible

m) 
$$\begin{pmatrix} 10 & 9 & 28 \\ -3 & -4 & 6 \\ 2 & 0 & 29 \end{pmatrix}$$

n) 
$$\begin{pmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \end{pmatrix}$$

$$\tilde{\mathsf{n}}) \begin{pmatrix} -2 & -4 & -2 & 12 & 6 \\ 14 & 3 & 4 & 1 & 3 \\ 24 & 8 & 8 & -8 & 0 \\ -6 & -7 & -4 & 19 & 9 \end{pmatrix}$$

o) 
$$\begin{pmatrix} 2 & 10 & 19 & 19 \\ 3 & -6 & 5 & -2 \\ -15 & 22 & 9 & 14 \end{pmatrix}$$

4. a) 
$$\begin{pmatrix} 0 & -4 \\ 3 & 5 \end{pmatrix}$$

b) 
$$\begin{pmatrix} 1 & -19 \\ 9 & 23 \end{pmatrix}$$

c) 
$$\begin{pmatrix} -9 & -17 & 3 \\ -33 & 15 & -6 \\ -1 & 0 & -4 \end{pmatrix}$$

4. a) 
$$\begin{pmatrix} 0 & -4 \\ 3 & 5 \end{pmatrix}$$
 b)  $\begin{pmatrix} 1 & -19 \\ 9 & 23 \end{pmatrix}$  c)  $\begin{pmatrix} -9 & -17 & 3 \\ -33 & 15 & -6 \\ -1 & 0 & -4 \end{pmatrix}$  d)  $\begin{pmatrix} \frac{3}{2} & \frac{33}{10} & \frac{-6}{5} \\ \frac{24}{5} & \frac{-9}{5} & \frac{12}{5} \\ \frac{-3}{10} & \frac{21}{10} & \frac{9}{10} \end{pmatrix}$ 

5. A.B = 
$$\begin{pmatrix} 32 & 5 \\ 24 & 3 \\ -28 & -3 \end{pmatrix}$$

$$A^2 = \begin{pmatrix} -4 & 10 & -20 \\ 16 & 14 & 16 \\ 10 & -2 & 18 \end{pmatrix}$$

Matemática I

$$D^2 = \begin{pmatrix} -3 & -7 \\ 28 & 32 \end{pmatrix}$$

B. D = 
$$\begin{pmatrix} 7 & -7 \\ 6 & 4 \\ 9 & 1 \end{pmatrix}$$
 C. A =  $\begin{pmatrix} 18 & 18 & 10 \\ 29 & 48 & -15 \end{pmatrix}$ 

C .A = 
$$\begin{pmatrix} 18 & 18 & 10 \\ 29 & 48 & -15 \end{pmatrix}$$

C . B = 
$$\begin{pmatrix} 19 & 4 \\ 61 & 14 \end{pmatrix}$$

C. B = 
$$\begin{pmatrix} 19 & 4 \\ 61 & 14 \end{pmatrix}$$
 D. C =  $\begin{pmatrix} -1 & -5 & -5 \\ 26 & 80 & 20 \end{pmatrix}$ 

6. 
$$a = 2$$
;  $b = \frac{9}{2}$ ;  $c = \frac{4}{3}$ ;  $d = 3$ 

7. 
$$X = \begin{pmatrix} 3 & 0 & 0 \\ -1 & 6 & -9 \end{pmatrix}$$

8.

8.1) a) 
$$\begin{pmatrix} 5 & 3 \\ -2 & -1 \end{pmatrix}$$
 b)  $\begin{pmatrix} 6 & -2 & 8 \\ 0 & 0 & 0 \\ 3 & -1 & 4 \end{pmatrix}$  c)  $\begin{pmatrix} 5 & -16 \\ -14 & 35 \\ 13 & -22 \end{pmatrix}$ 

b) 
$$\begin{pmatrix} 6 & -2 & 8 \\ 0 & 0 & 0 \\ 3 & -1 & 4 \end{pmatrix}$$

c) 
$$\begin{pmatrix} 5 & -16 \\ -14 & 35 \\ 13 & -22 \end{pmatrix}$$

e) no es posible efectuar la resta

8.2) 
$$X = \begin{pmatrix} 2 & -5 \\ -5 & 13/2 \\ -1/2 & -1/2 \end{pmatrix}$$

8.3) m = 2 y n = 2. Orden del producto, 3x2.

9. a) 
$$\begin{pmatrix} 5 & 5 & -2 \\ 6 & -9 & 2 \end{pmatrix}$$
 b) no es posible

c) 
$$\begin{pmatrix} 3 & -3 \\ -6 & 18 \end{pmatrix}$$

11. 
$$X = \begin{pmatrix} 0 & 2 \\ 6 & -2 \end{pmatrix}$$

13. 
$$u = \begin{pmatrix} x \\ \frac{2}{3}x \end{pmatrix}$$
 Existen infinitas soluciones, una de ella es:  $\begin{pmatrix} 1 \\ \frac{2}{3} \end{pmatrix}$  si  $x = 1$ 



## Matemática I

16. 
$$A + B = \begin{pmatrix} 490 & 185 \\ 450 & 200 \\ 350 & 180 \end{pmatrix}$$
 1,2A + 0,9B =  $\begin{pmatrix} 531 & 195 \\ 480 & 210 \\ 375 & 192 \end{pmatrix}$ 

Práctica Nº2