Hobbard - Skarbunich a) The energy needs to be extensive and \overline{Z} \overline{Z} S_i : S_j $\sim O(N^2)$ Therefore Joo needs to be O('/N) b) Completing the aguar: $\frac{Na}{2}y^{2} + axy = \frac{Na}{2}\left[y^{2} - \frac{2}{N}xy + \frac{x^{2}}{N^{2}} - \frac{x^{2}}{N}\right] = \frac{Na}{2}\left(y - \frac{x}{N}\right)^{2} + \frac{a}{2}x^{2}$ $\int \frac{dy}{\sqrt{\frac{Na}{2\pi}}} e^{\frac{Na}{2}y^2 + axy} = \frac{a^2}{2N} \times \frac{a^2}{\sqrt{\frac{Na}{2\pi}}} = \frac{x^2}{2} \left(y - \frac{x}{N}\right)^2$ let Z=y-X/X dZ=dy $= e^{\frac{\alpha}{2N}x^2} \int dz \sqrt{\frac{N\alpha}{2n}} e^{-\alpha z^2} = \frac{N\alpha}{z}$ Simu: | dz e = 1 $V\alpha$ $= \frac{a^2}{2V} = \int dy \sqrt{\frac{vq}{2n}} e^{-\frac{vq}{2}y^2 + axy}.$ c) Let $x = \sum_{i=1}^{N} s$ that the energy can be written: (Intiducy $J_{i} = J_{i}N$) E = 3 22 s.-s; -HZs; = - J x Hx Henry the partition function: $Z = \sum_{S_{1}=-1}^{2} \sum_{S_{2}}^{2} \sum_{S_{N}}^{2} = \sum_{S_{N}}^{2} \sum_{S_$ = Jay JN e zy (Ze (H+Jy)) =

f) To is a function of H:

$$3HL$$
 $X = 970$
 $8ech$ 5790 which diverge in $70 \rightarrow 0$
 $9H$
 $1-pr$ sech $pryo$ at $print$.