

الجامعة اللنانية

كلبة الصحة العامة

مياراة الدخول 2018-2019

عدد الصفحات: 2

المدة: ساعة واحدة

Exercice 1: (7 pts)

Partie A:

L'iode est indispensable à l'organisme humain. L'assimilation de l'iode se fait par la glande thyroïde. L'iode 131 est radioactif β^- de période 8 jours.

- 1- La radiation β^- est une particule de symbole :
 - a) $_{-1}^{0}e$
- b) n

- 2- Cette radioactivité concerne les noyaux riches en :
 - a) protons
- b) neutrons
- c) nucléons
- 3- Dans un examen de la thyroïde, on injecte dans un patient 8x10-9g de l'iode 131. Au bout de 20 jours, la masse désintégrée sera :
 - a) 1,41x10⁻⁹ g
- b) 6,58x10⁻⁹ g
- c) 5,5x10⁻⁹ g
- d) 1,5x10⁻⁹ g.

Partie B:

Le schéma ci-dessous est une reproduction de la figure de diffraction obtenue sur un écran situé à 3,4 m d'une fente de largeur « a » éclairée par une lumière émise par une diode laser de longueur d'onde 630 nm.

- 1) La largeur linéaire de la frange centrale de diffraction est donnée par :
- b) $\frac{\lambda D}{2a}$

- 2) La largeur de la fente déduite des mesures est :
 - a) a = 0.063 mm
- b) a = 0.126 mm
- c) a = 0.34 mm d) a = 0.034 mm
- 3) La lumière produite par le laser est :
 - a) violette
- b) rouge
- c) blanche
- d) jaune.

Exercice II: (8 pts)

On étudie le mouvement d'un oscil·lateur non amorti constitué d'un solide (S) de masse m = 200 g, lié à un ressort à spires non jointives de constante de raideur K dont l'autre extrémité est fixe. Le solide (S) peut se déplacer en translation rectiligne sans frottement selon l'axe horizontal [Ox). Le mouvement du centre d'inertie de (S) est représenté par la figure ci-dessous :

Par

Par

Exe Soil

L'in sa ré

Lal

entre

تابع - مسابقة في الفيزياء - فرنسي - 2 -

Partie A : Etude graphique :

- 1) A l'instant t = 0, le ressort est :
 - a) comprimé
- c) en équilibre
- 2) L'amplitude X_m du mouvement est :
 - a) $X_m = -4$ cm
- b) $X_m = 4$ cm
- c) $X_m = 0$ cm

- 3) La fréquence est :
 - a) f = 10 Hz
- **b)** $f = 5 \, \text{Hz}$
- c) f = 2.5 Hz

Partie B: Etude théorique :

1) L'expression de la période propre des oscillations est :

a)
$$T_0 = 2\pi \sqrt{\frac{K}{m}}$$

b)
$$T_0 = 2\pi \sqrt{Km}$$

c)
$$T_0 = 2\pi \sqrt{\frac{m}{K}}$$

- 2) La constante de raideur est :
 - a) K = 50 N/m
- b) K = 100 N/m
- c) K = 200 N/m

Partie C: Etude énergétique :

- 1) L'énergie mécanique Em du système au point C est :
 - a) $E_m = 0.08 J$
- b) $E_m = 0.04 \text{ J}$
- c) $E_m = 0.16 J$
- 2) La vitesse v du mobile au point D est:
 - a) v = 0.89 m/s
- **b)** v = 0 m/s
- c) v = 0.64 m/s
- 3) Si la masse était m' = 50 g, la période deviendrait :
 - a) $T' = \frac{T_0}{2}$

Exercice III: (5 pts)

Soit le montage de la figure suivante

L'inductance de la bobine est L = 0.6 H et

sa résistance interne $r = 20 \Omega$.

La lampe ne s'allume tant que la tension entre ses bornes est inférieure à 50 V.

- 1- L'interrupteur K est fermé, la lampe :
 - a) S'allume progressivement b) s'allume immédiatement
- c) ne s'allume pas
- 2- En régime permanent, l'intensité du courant Io traversant la bobine est :
 - a) 0 A
- b) 0,6 A
- c) 1,66 A
- 3- Juste à l'ouverture de K, (à 1 = 0s) la tension entre les bornes de la lampe est :
 - a) 132 V
- b) 50 V
- 4- La bobine se décharge à travers la lampe et l'intensité du courant est donnée par i = I_0 e τ

avec $\tau = \frac{L}{R+r}$. La lampe s'éteint à :

- a) t = 2.4 ms
- b) t = 0.6 ms
 - c) t = 1.2 ms