Zusammenfassung WR

Samuel Brinkmann (Matr. 624568)

22. Januar 2023

Inhaltsverzeichnis

Inhaltsverzeichnis				
1	Vorlesung I			
	1.1	Einführung	3	
	1.2	Modellierung	4	
	1.3	mathematisches Modell zu numerischem Modell	4	
2	Vorlesung II			
	2.1	Finite Differenzen in 2D	5	
	2.2	LinA Wiederholung	6	
3	Vorlesung III			
	3.1	Speicher	7	
	3.2	Dichte Vektor-Matrix-Operationen	7	
	3.3	Dünn besetzte Matrizen	8	
4	Vorlesung IV			
	4.1	direkte Lösungsverfahren	9	
	4.2	Cholesky-Zerlegung	9	
	4.3	Iterative Lösungsverfahren	10	
5	Vorlesung V			
	5.1	Konjugierte Gradienten (CG)	11	

 $_{ ext{Kapitel}} 1$

Vorlesung I

1.1 Einführung

Def.: Lösen von mathematisch formulierten Problemstellungen die physikalische Sachverhalte beschreiben mit dem Computer.

Wissenschaftlicher Rechnen \iff Rechnergestützte (Ingenieur-))Wissenschaft Entwurf von Verfahren \iff Verwendung dieser Verfahren

Workflow:

physikalisches Problem

- \Longrightarrow mathematisches Modell
- \implies numerisches Modell
- ⇒ Lösungsmethode, Code, Rechner (Fokus in WR)

Problemstellungen:

- 1 Agentenbasierte Simulation
- 2 (Nicht-)Lineare Optimierung
- 3 Reduktion von Sensordaten

Beispiel Anwendungen:

- 1 Wetter und Klima
- 2 Computertomografie
- 3 Simulationen von Pandemien

1.2 Modellierung

Def.: Ein Modell ist ein vereinfachtes Abbild der Realität.

Phasen: (Beispiel Pandemie Simulation)

- 1 Abgrenzung: Irrelevantes ausschließen (Lieblingsfarbe, Schuhgröße)
- 2 Reduktion: Irrelevantes ausschließen (Kontaktmatrix statt positionsgetreue Nachverfolgung)
- 3 Dekomposition: Bildung einzelner Segmente (Populationsgruppen nach Region, Alter, Impfstatus, ...)
- 4 Aggregation: Zusammenfassung von Segmenten (nur jeden 1000. Menschen simulieren)
- 5 Abstraktion: Bildung von Klassen (S (susceptible), I (infected), R (recovered))

1.3 mathematisches Modell zu numerischem Modell

Mathematisches Modell: System von PDEs

 \longrightarrow Gleichungen geben nur Kopplung der Variablen an und keine tatsächlichen Werte **Lösung:** Ableitungen werden durch den Differenzenquotienten approximiert

$$\left. \frac{\partial f}{\partial x} \right|_{x=x_0} \longrightarrow \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Diskretisierung: Konstruktion eines Gitternetzes, wobei jede Variable an ihre benachbarten Gitterpunkte gekoppelt ist. So wird aus dem System von PDEs ein System algebraischer Gleichungen (endlich viele).

Kapitel 2

Vorlesung II

2.1 Finite Differenzen in 2D

FD-Approximation der Wärmeleitung in 2D

Wärmeleitungsgleichung:

$$\Delta u = \frac{\partial u}{\partial t} \text{ mit } \Delta = \sum_{i=1}^{\#dim} \frac{\partial^2}{\partial x_i^2}$$

Randbedingungen:

a linker Rand besitzt konstanten Wert u_0

b rechter Rand besitzt konstanten Wert u_1

Approximation durch 2D-Gitter $(x_j, t_n)_{j=1,\dots,N}$ mit $x_0 = 0$ und $x_N = 1$:

$$u_{0}^{n} = u_{0} \ \forall n \ (Randbedingung)$$

$$u_{N}^{n} = u_{1} \ \forall n \ (Randbedingung)$$

$$u_{j}^{0} = f(x_{j}) \ \text{für } 1 < j < N \ (Anfangswerte)$$

$$\frac{\partial u}{\partial t} \approx \frac{u_{j}^{n+1} - u_{j}^{n}}{\Delta t}$$

$$\frac{\partial^{2} u}{\partial x^{2}} \approx \frac{u_{j-1}^{n} - 2u_{j}^{n} + u_{j+1}^{n}}{\Delta x^{2}} \ (explizit)$$

$$\frac{\partial^{2} u}{\partial x^{2}} \approx \frac{u_{j-1}^{n+1} - 2u_{j}^{n+1} + u_{j+1}^{n+1}}{\Delta x^{2}} \ (implizit)$$

In PDE einsetzen und nach u_j^{n+1} umstellen!

5-Punkte-Stern für 2D

1 Randpunkte: Randbedingung

2 Innere Punkte:

a) Randfern: 5-Punkte-Stern

b) Randnah: Anpassung durch Einfügen der Randbedingung für Randknoten

3 LGS: $A_h u_h = q_h$ mit $q_h = -\hat{A}_h g + f$ (g Randwerte, f 5-Punkte-Stern) $(\hat{A}_h)_{ij} = -\frac{1}{h^2}$, falls Knoten i randnah und j ein Nachbar mit 5-Punkte-Stern ist $(\hat{A}_h)_{ij} = 0$, sonst $f_{ij} = \frac{1}{h^2}(-u_{i,j-1} - u_{i-1,j} + 4u_{i,j} - u_{i+1,j} - u_{i,j+1})$

2.2 LinA Wiederholung

Laplace-Matrix für Graphen: L = Gradmatrix - Adjazenzmatrix

geometrische Bedeutung LGS: Schnittmenge von #dim Hyperebenen

Matrixnorm: $||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$

Kondition einer Matrix: $\operatorname{cond}(A) = ||A|| ||A^{-1}||$ Kondition einer sym. Matrix: $\operatorname{cond}(A) = \frac{|\lambda_{max}|}{|\lambda_{min}|}$

Kapitel 3

Vorlesung III

3.1 Speicher

Zeitliche Lokalität: Adressbereiche, auf die zugegriffen wird, werden auch in naher Zukunft mit hoher Wahrscheinlichkeit wieder benutzt.

Beispiel: int sum

```
\mathbf{sum} = 0

\mathbf{for} \ \mathbf{i} \ \mathbf{in} \ \mathbf{range}(1,n):

\mathbf{sum} += 1
```

Räumliche Lokalität: Nach einem Zugriff auf einen Adressbereich erfolgt mit hoher Wahrscheinlichkeit der nächste Zugriff auf eine Adresse in unmittelbarer Nachbarschaft.

Beispiel: list A

```
A = [...]

for i in range(len(A):
    print(A[i])
```

ACHTUNG: Aufpassen, ob Arrays in *column-major order* oder *row-major order* im Speicher liegen (räumliche Lokalität).

3.2 Dichte Vektor-Matrix-Operationen

```
Skalarprodukt a^{\mathrm{T}} \cdot b : \mathcal{O}(n)
Skalarprodukt a \cdot b^{\mathrm{T}} : \mathcal{O}(n)
Matrix-Vektor-Produkt A \cdot b : \mathcal{O}(n^2)
Matrix-Matrix-Produkt A \cdot B : \mathcal{O}(n^3) (Cache-Effizient durch Blockbasierte Abarbeitung)
```


3.3 Dünn besetzte Matrizen

CSR - compressed sparse row

- 3 Arrays der Datenstruktur:
 - IR: Größe N+1, Index des Zeilenstarts in anderen Arrays
 - JC: Größe nnz, Spaltenindex des Eintrags
 - NUM: Größe nnz, Wert des Eintrags

Alterantiven: CSC, CSR mit Diagonalverschiebung (Diagonale in separatem Array)

Grundoperationen:

Zeilenindizierung A[i]: $\mathcal{O}(1)$

SpMV (sparse matrix vector product) $A \cdot b$: $\mathcal{O}(nnz)$

SpGEMM $A \cdot B : \mathcal{O}(nnz(A) + flops) \longrightarrow Sparse Accumulator (SPA)$

Kapitel 4

Vorlesung IV

4.1 direkte Lösungsverfahren

Voraussetzung: A invertierbar, d.h. $\det(A) \neq 0$. (Sonst keine exakte Lösung) **Bespiele:**

- LR-Zerlegung (allg. Matrizen)
- Cholesky-Zerlegung (spd. Matrizen)
- QR-Zerlegung (allg. Matrizen)

Vorteil: exakte Lösung nach Faktorisierung schnell

Nachteil: kubische Laufzeit, dichtere Zwischenergebnisse

4.2 Cholesky-Zerlegung

Voraussetzung: $A \in \mathbb{R}^{n \times n}$ ist symmetrisch und positiv definit.

Zerlegung: $A = LL^{T}$ mit $L = (\ell_{ij}) \in \mathbb{R}^{n \times n}$ untere Dreiecksmatrix.

Verfahren:

$$\ell_{kk} = \sqrt{a_{kk} - \sum_{j=1}^{k-1} \ell_{kj}^2}$$

$$\ell_{ik} = \frac{1}{\ell_{kk}} \left(a_{ik} - \sum_{j=1}^{k-1} \ell_{ij} \cdot \ell_{kj} \right)$$

Laufzeit: $O(n^3) = O(\#Multiplikation + \#Division + \#Wurzeln)$

4.3 Iterative Lösungsverfahren

Raten einer Anfangslösung x_0 und dann iterative Verbessung dieser. Mit M als Approximation von A^{-1} .

$$x^{(t+1)} = x^{(t)} - M(Ax^{(t)} - b)$$

Jacobi-Verfahren (Splitting-Verfahren)

Sei $A \in \mathbb{R}^{n \times n}$, $D = \operatorname{diag}(a_{11}, \dots, a_{nn})$ und Ax = b das zu lösende LGS. Dann gilt für die i-te $(i = 1, \dots, n)$ Komponente der iterierten Lösung des nächsten Schrittes

$$x_i^{(t+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(t)} \right).$$

Das Verfahren ist gut parallelisierbar, da es komponentenweise vorgeht und auf $x^{(t+1)}$ nur schreibend und $x^{(t)}$ lesend zugegriffen wird.

Kanitel - J	

Vorlesung V

5.1 Konjugierte Gradienten (CG)

Voraussetzung: Matrix A ist symmetrisch und positiv definit.

Residuum: $r := b - Ax^{(t)}$

Verfahren: