8 Low discrepancy numbers	low discrepany
Low dixrepancy numbers numbers that are "evenly spread"	L. Academi
How is it with R(0,1) random numbers?	high diserepancy
CLT: d=1, x-n approximately N(0,1)	
de dimension i.e. I- n proportional to 1/10.	
X-1 proportional to 1/1 also for 1>1	
For low d'arepany numbers x-1 payorthanal to	clds(logn) d/n.
For fixed of,	$(4mn)^3/n$
$\frac{(\log n)^{d}/n}{1/(n^{2})} \to 0 \text{as } n \to \infty$	(Con)2/n
but the convergence will be slower as d increases.	1/16
	100 102 104 106 108
	(logn)/n
	ሃ/ ስ

8.1 Discrepancy We want to quantify discrepancy / inhomogenity/spread. de 3 Given N I dimonsional numbers 1, ..., In in [0,17d They may be for example pseudo random numbers. L'- discrepancy norm $T_{N}^{(0)} = \left(\int_{S_{0}} \frac{n_{S(y)}}{N} - T_{1}^{d} y_{i}^{2} dy \right)^{1/2}$ 10,178 n 5/4) = 5 1 1 } r; = 5/4)}, the number of points of 1,500 that are in sly), Sly) = [0,y,)x.,x [0,y] = [0,1]d subhypercube in 10,17d y = (3,) 6 [0,1] The more evenly spread the data are, the smaller TN (d)

Lo discrepancy norm DN = Sup (5/9) - 1, 4: Clearly PN(D) = TN. DN hard to evaluate. TN can be computed explicitly. For row on R10,17d) (und formly distributed in [0,17d), E (TN) 2 = + (2-4-3-4) Kokshma- Hlower inequality (Glesseman '03: MC welhods and Financial Engineering): $\left| \int_{[0,1]^d} g(x) \, dx - \frac{1}{N} \sum_{i=1}^N g(r_i) \right| \leq V(g) D_N^{(d)},$ dol: For any sequence rom ? DN > C, Low, quality if re 1 well w The Nel. This can motivate why better to use quadrature rules (ex Simpson's approximation)

Then MC-estimate for approximation of South for d=1.

For de? it is (still) generally believed that for any sequence risms ri	65 10.11d
$D_{N}^{(d)} \leq C_{d} (\log N)^{d} / N.$	Cip
A sequence r_{ij,r_N} is called a low discrepancy sequence if $Q_N^{(ij)} \le c_3 \frac{\ f_{ij}\ _N}{N}$) ^d .
Disunssion point (Asmussen 'OF Stochastic schoolation)	
To compute I 10.17 & g(x) dx we have at least three methods,	
quadrature quari MC quadrature quari MC	
$\frac{1}{N}\sum_{i=1}^{N}g(x_{i})$ $\frac{1}{N}\sum_{i=1}^{N}g(x_{i})$ using a low discrepancy using pseudo random	
sequence numbers	
Rule of thumb;	
de mall quadrature best de 12,15? d'intermediale quasi HK best d large MC best	
dx12,15? d intermediate quasi MC best	
For approximation of Jacked for ASR we may honeform it has Jackey) h (y)	dy
Con	