Université de Sherbrooke Département d'informatique

MAT115 : Logique et mathématiques discrètes

Examen périodique

 ${\bf Professeur}:\,{\bf Marc}\,\,{\bf Frappier}$

Samedi 14 octobre 2017, 9h à 12h.

Notes importantes :

- Documentation permise.
- Ne dégrafez pas ce questionnaire.
- Répondez dans les espaces prévus à cet effet.
- La correction est, entre autres, basée sur le fait que chacune de vos réponses soit :
 - claire, c'est-à-dire lisible et compréhensible pour le lecteur;
 - précise, c'est-à-dire exacte et sans erreur;
 - concise, c'est-à-dire qu'il n'y ait pas d'élément superflu;
 - complète, c'est-à-dire que tous les éléments requis sont présents.
- nombre de pages de l'examen, incluant celle-ci : 9.

Pondération:

Question	Point
1	30
2	15
3	10
4	10
5	15
6	20
total	100

Nom :	Prenom :	
Signature :	Matricule ·	

$(a) \; \vdash ((\mathbf{b} \land (\mathbf{a} \lor (\mathbf{b} \Rightarrow \mathbf{c}))) \Rightarrow (\mathbf{a} \lor \mathbf{c}))$		
$(b) \vdash ((\mathbf{a} \land \neg \mathbf{b}) \Rightarrow \neg (\mathbf{a} \Rightarrow \mathbf{b}))$		

1. (30 pts) Prouvez les formules suivantes en utilisant seulement les règles d'inférence de la

$(c) \vdash (((\mathbf{a} \Rightarrow \mathbf{b}) \land \neg \mathbf{b}) \Rightarrow \neg \mathbf{a})$	

(a)	Le triangle a et le triangle b sont sur une même ligne. a est à gauche de b . De plus, to les cubes situés entre le triangle a et le triangle b , et sur la même ligne que a et b , se petits.
(b)	Tous les cubes sont situés entre le triangle ${\sf a}$ et le triangle ${\sf b}$ sur une même ligne. ${\sf a}$ es gauche de ${\sf b}$. De plus, tous les cubes sont petits.
(c)	Une condition suffisante pour que tous les carrés soient petits est que le triangle a sgrand.
	Une condition nécessaire pour que le triangle a soit grand est que tous les carrés soie
(d)	petits.
(d)	
(d)	
(d)	
(d)	

(d)	Est-ce que ces trois formules sont cohérentes? Justifiez.
lois d racco Vous	pots) Pour les deux sous-questions suivantes, prouvez votre transformation en utilisant les le la logique propositionnelle. Justifiez chaque étape de votre preuve par une loi. Pour purcir la preuve, vous pouvez invoquer la même loi plusieurs fois dans une même étape. pouvez aussi invoquer commutativité et associativité en même temps qu'une autre loi une étape. Donnez la formule la plus simple.
(a) '	Transformez la formule suivante en une formule équivalente en forme normale disjonctive.
	$ eg X_1 \Rightarrow (X_2 \wedge eg X_3)$
-	
-	

$(X_1 \Rightarrow \neg X_2) \Leftrightarrow (X_2 \wedge \neg X_3)$

 ${\rm (b)}\ \ {\rm Transformez\ la\ formule\ suivante\ en\ une\ formule\ \'equivalente\ en\ forme\ normale\ conjonctive.}$

5. (15 pts) Soit les définitions suivantes :

```
MACHINE q5
SETS S=\{s1,s2,s3,s4\}; T=\{t1,t2,t3\}; U=\{u1,u2,u3\}
CONSTANTS r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,S1,T1,T2
  r1 = \{(s1,t2), (s2,t2), (s3,t2), (s4,t2)\}
& r2 = \{(t1,u3), (t2,u3), (t3,u3)\}
& r3 = \{(s1,s2), (s2,s3), (s3,s1)\}
\& r4 = (r1; r2)
& r5 = {s1} < |r1
& r6 = r1|>\{t1\}
& r7 = r1|>>{t1}
& r8 = closure1(r3) |> {s4}
& r9 = (r1^{-}; r3)
& r10 = r1 <+ {s1|->t3}
& r11 = iterate(r3,3)
& S1 = dom(r1)
& T1 = ran(r1)
& T2 = r1[{s2}]
END
```

Donnez la valeur des expressions suivantes:

(a) r	4
(b) r	5
(c) r	6
(d) r	7
(e) r	3
(f) r	9
(g) r	10
(h) r	11
(i) S	1
(j) T	1
(k) T	2

6. (20 pts) Soit les définitions suivantes inspirées du devoir 3 :
MACHINE q6 SETS Personne={h1,h2,h3,h4,h5,h6,h7,f0,f1,f2} CONSTANTS Homme,Femme,Parent,DemiFrere,GrandOncle PROPERTIES Homme={h1,h2,h3,h4,h5,h6,h7} & Femme=Personne-Homme & Parent = {(f0,h2), (f0,f1), (h1,h2), (h1,f1), (h3,h5), (f1,h5), (f1,h6), (f1,f2), (h4,h6), (h4,f2), (h5,h7)} (a) Définissez par compréhension la relation DemiFrere, qui contient les couples x → y tels
que x est le demi-frère de y . On dit que x est le demi-frère de y ssi x est un homme qui a un seul parent en commun avec y . Dans l'exemple de Parent ci-dessus, h5 est le demi-frère de h6 et f2, et h6 est le demi-frère de h5.
(b) Définissez, en utilisant seulement des opérations sur les relations et les ensembles, la relation $GrandOncle$. On dit que x est un grand oncle de y ssi x est un homme et x est le frère d'un grand-parent de y . Dans l'exemple ci-dessus, $h2$ est le grand-oncle de $h7$.