

 \bigcap

Video Presentation: https://youtu.be/kgDoH HyrRE

Group 1 - HexTech

Presenter: E Ching Kho (Noon) and Fuwei Zhuang (Elina)

Team Members

Benjamin Hui

Role: Group Leader, Report (Abstract, Introduction & Overview, Version Control, Data Dictionary)

Fuwei Zhuang

Role: Report (Use Case 1, Subsystems Breakdown), Presenter, Video Editor

Yixin Su

Role: Report (Subsystems Breakdown, Responsibilities, Lessons Learned)

E Ching Kho

Role: Report (Architecture styles), Presenter, Presentation Creator

Zewen Zheng

Role: Report (Subsystems Breakdown, Conclusion, References)

Ruiyang Su

Role: Report (Use Case 2, Subsystems Breakdown)

Report Link: https://docs.google.com/document/d/1UHGi-gtUFRV183ZPcmrYb2zuR-PvgD81nQ5lyotiyGg/edit?usp=sharing

Introduction

Source:

https://youtu.be/EY3 yVgLecf0

Level 1 - Driver Assistance

Level 2 - Partial Automation

Level 3 - Conditional Automation

Level 4 - High Automation

Level 5 - Full Automation

A high performance, flexible architecture which accelerates the development, testing, and deployment of Autonomous Vehicles

- Owned by Baidu
- Open Source (Apache-2.0)
- Since 2017 (version 7.0)

Link: https://github.com/ApolloAuto/apollo

Derivation Process

The Making of Components

Purpose of AI: Maximize your expected utility

Conceptual Architecture Apollo Architecture Overview **Architecture** 02 Subsystems breakdown & Interactions **Use Cases** 03 **Versions Evolution**

Conceptual Architecture Overview

Architecture - Repository Layer

Perception

Identifies the world surrounding the autonomous vehicle

- Obstacle detection
- Traffic light detection

Localization

Estimate where the autonomous vehicle is located

- GPS
- IMU
- LiDAR

HD Map

Frequently
functions as a query
engine support to
provide ad-hoc
structured
information
regarding the roads

Architecture - Calculation Layer

Prediction

Anticipates the future motion trajectories of the perceived obstacles

Routing

How to reach its destination from current position via a series of lanes or roads

Architecture - Action Layer

Planning

Plans the spatio-temporal trajectory for the autonomous vehicle to take

Control

Executes the planned trajectory by generating control commands

CAN Bus

Interface that passes control commands to the vehicle hardware.

Architecture - Others

Monitor

The surveillance system of all the modules in the vehicle including hardware

Guardian

Safety purpose module that performs the function of an Action Center and intervenes when Monitor detects a failure

HMI

Web APP for viewing the status of the vehicle and controlling functions of the vehicle in real-time

Use Case 1 - Automatic Rerouting

Use Case 2. Automated Valet Parking

Versions Evolution

Lessons Learned

- Knowledge on Autonomous Driving (Architecture, components, functionality, components interactions)
- Importance of cooperation, brainstorm ideas and solutions can be achieved much faster (if performed correctly)
- The effectiveness of running concurrency
- Work distribution
- Time management

Conclusion

- We believe that currently the 12 modules components are sufficient enough to perform accurate autonomous driving
- We believe that the architecture styles are a combination of Pipe & Filter, Pub & Sub, Process Control, Client/Server, Repository, Interpreter
- We believe the effect of concurrency for each layer can fasten the process of vehicle execution

We believe the interactions and data flows are based on this

diagram

References

- Apollo Auto. "Apollo 5.0 Technical Deep Dive." Medium, Apollo Auto, 3 July 2019, https://medium.com/apollo-auto/apollo-5-0-technical-deep-dive-d41ac74a23f9.
- "Apollo Governance." Apollo, https://apollo.auto/docs/manifesto.html.
- ApolloAuto. "ApolloAuto/Apollo: An Open Autonomous Driving Platform." GitHub, https://github.com/ApolloAuto/apollo.
- Ma, Changjie. "Baidu ApolloHD Map UN-GGIM." Intelligent Transportation and Autonomous Vehicles, https://ggim.un.org/unwgic/presentations/2.2_Ma_Changjie.pdf.
- Swords, Simon. "Software Development Team Roles and Responsibilities: Atlas." Atlas Computer Systems Ltd, 19 Jan. 2020,
 - https://www.atlascode.com/blog/software-development-project-roles-and-responsibilities/#SOFTWARE_DEVELOPERS.
- WEI, Hao. "How Baidu Apollo Builds HD (High-Definition) Maps for Autonomous Vehicles." Medium, Towards Data Science, 27 Oct. 2021,
 - https://towardsdatascience.com/how-baidu-apollo-builds-hd-high-definition-maps-for-autonomous-vehicles-167af3a3fea3.