

Group Equivariant Capsule Networks

Jan Eric Lenssen, Matthias Fey, Pascal Libuschewski

Equivariance of pose vectors: $L_{\mathbf{p}}(\mathbf{g} \circ \mathbf{P}, \mathbf{a}) = \mathbf{g} \circ L_{\mathbf{p}}(\mathbf{P}, \mathbf{a})$

Invariance of agreements:

$$L_{\mathbf{a}}(\mathbf{g} \circ \mathbf{P}, \mathbf{a}) = L_{\mathbf{a}}(\mathbf{P}, \mathbf{a})$$

Spatial aggregation in capsule networks

Pose-aligning transformation kernel windows using induced representations

Guaranteed equivariance and invariance in capsule networks

Equivariant routing by agreement

Given a Lie group G:

If we have a weighted mean operator $\mathcal{M}: G^n \times [0,1]^n \to G$ that is

- left equivariant: $\mathcal{M}(\mathbf{g} \circ \mathbf{P}, \mathbf{x}) = \mathbf{g} \circ \mathcal{M}(\mathbf{P}, \mathbf{x})$
- permutation invariant: $\mathcal{M}(\mathbf{P}, \mathbf{x}) = \mathcal{M}(\pi(\mathbf{P}), \pi(\mathbf{x}))$

and a **distance measure** δ which is preserved by applications of $\mathbf{g} \in G$

Then: We can formulate a routing by agreement algorithm which produces equivariant poses and invariant activations

Input: poses $\mathbf{P} = (\mathbf{p}_1, \dots, \mathbf{p}_n) \in G^n$, activations $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{R}^n$ **Trainable parameters**: transformations $\mathbf{t}_{i,j}$ Output: poses $\hat{\mathbf{P}} = (\hat{\mathbf{p}}_1, \dots, \hat{\mathbf{p}}_m) \in G^m$, activations $\hat{\mathbf{a}} = (\hat{a}_1, \dots, \hat{a}_m) \in \mathbb{R}^m$ for all input capsules i and output capsules j $\mathbf{v}_{i,j} \leftarrow \mathbf{p}_i \circ \mathbf{t}_{i,j}$ $\hat{\mathbf{p}}_j \leftarrow \mathcal{M}((\mathbf{v}_{1,j},\ldots,\mathbf{v}_{n,j}),\mathbf{a})$ **for** r iterations **do** $\forall i, j$ $w_{i,j} \leftarrow \sigma(-\delta(\hat{\mathbf{p}}_j, \mathbf{v}_{i,j})) \cdot a_i$ $\hat{\mathbf{p}}_j \leftarrow \mathcal{M}((\mathbf{v}_{1,j},\ldots,\hat{\mathbf{v}}_{n,j}),\mathbf{w}_{:,j})$ end for $\hat{a}_j \leftarrow \sigma(-\frac{1}{n} \sum_{i=1}^n \delta(\hat{\mathbf{p}}_j, \mathbf{v}_{i,j}))$ $\forall j$ Return $\hat{\mathbf{p}}_1, \dots, \hat{\mathbf{p}}_m, \hat{\mathbf{a}}$

Group invariant CNNs through pose induction

Transferring invariance from capsule agreements to activations of group CNNs

$$[f \star \psi](\mathbf{g}) = \int_{\mathbf{h} \in G} f(\mathbf{h}) \psi(\mathbf{g}^{-1}\mathbf{h}) d\mathbf{h}$$

Realization: Using pose vector fields to transform local receptive fields

Experiments

- Proof of concept experiments on different MNIST datasets with SO(2)
- Perfect equi- and invariance for $\pi/2$ rotations

Results for training on rotated data

Ablation Study: Accuracy

	MNIST rot. (50k)	AffNist	MNIST rot. (10k)
CNN	92.30%	81.64%	90.19%
Capsules	94.68%	71.86%	91.87%
Whole	98.42%	89.10%	97.40%

Quality of pose vectors

	Average pose error [degree]
Naive average poses	70.92
Capsules w/o recon. loss	28.32
Capsules with recon. loss	16.21

Output poses

3 3 4 cm co & 8 5 6 cm co 3

Intermediate poses

Reconstructions

3 3 4 6 6 8 8 4 4 3 4 H A TIAH P L I S 7 7 A P P C (L b w w) シャマスカンとかかいかんりょう 9 9 8 8 5 5 5 6 6 9 8 9 9 6 6 6 6 6 6 6 \$ \$ to the second of the second of

5 5 5 9 9 5 5 5 6

* + * ~ + * * * * * * *

Takeaway

- We provide a mathematically grounded version of capsule networks
- Equivariance and invariance are possible under certain conditions
- Poses are useful for classification or unsupervised pose prediction tasks
- Group invariant CNNs can be sparsely evaluated by using external pose vector fields