Prova scritta di Logica Matematica 23 gennaio 2018

Cognome Nome Matricola

Indicate su ogni foglio che consegnate cognome, nome e numero di matricola.

Nella prima parte ogni riposta corretta vale 1, ogni risposta sbagliata -1, ogni risposta non data 0. Il punteggio minimo per superare questa parte è 6. Il punteggio che eccede 6 viene sommato al risultato della seconda parte per ottenere il voto dello scritto.

Nella seconda parte per ogni esercizio è indicato il relativo punteggio.

	PRIMA PARTE	
	Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta	a.
a.	Ogni α -formula è logicamente equivalente alla disgiunzione dei suoi ridotti.	$\mathbf{V} \mathbf{F}$
b.	Se $F \vDash G \to H$ allora $F, \neg H \vDash \neg G$.	$\overline{\mathbf{V}} \mathbf{F} $
	$\neg(\neg r \to (\neg q \vee \neg p) \wedge (q \to p)) \equiv (\neg q \wedge \neg r \wedge \neg p) \vee (q \wedge p).$	$\mathbf{V} \mathbf{F}$
d.	Quante delle seguenti formule sono enunciati?	
	$\neg(\forall x \neg r(x, f(x)) \to r(z, x)), \neg \forall x \neg r(x, f(x)) \to \forall y r(x, y),$	
	$\exists x \neg r(x, f(x)) \to p(a), \forall x (\neg r(x, f(y)) \to p(x)). $	2 3 4
e.	Sia I l'interpretazione normale con $D^I = \{0, 1, 2, 3\}, f^I(0) = 1, f^I(1) = 2,$	
	$f^{I}(2) = 0, f^{I}(3) = 2, p^{I} = \{0, 1\}, r^{I} = \{(0, 0), (0, 2), (1, 2), (2, 0), (3, 2)\}.$	
	Allora $I \vDash \forall x (r(x, f(x)) \to p(x) \lor r(f(x), x)).$	$\mathbf{V} \mathbf{F}$
f.	$\forall x p(x) \to \forall x q(x) \equiv \forall x (\neg p(x) \lor q(x)).$	$\mathbf{V} \mathbf{F}$
$\mathbf{g}.$	Se \sim è una relazione di congruenza su I e $d_0, d_1, d_2 \in D^I$	
	sono tali che $d_0 \sim d_1$ e $d_0 \nsim d_2$ allora $d_1 \nsim d_2$.	$\mathbf{V} \mathbf{F}$
h.	Esiste un insieme di Hintikka che contiene le formule	
	$p(a), \forall x(p(x) \to r(x,x)) \in \exists y \neg r(a,y).$	$\mathbf{V} \mathbf{F}$
i.	Ogni insieme di Hintikka predicativo è valido.	$\mathbf{V} \mathbf{F}$
j.	Questo albero rappresenta una deduzione naturale corretta:	$\overline{\mathbf{V} \mathbf{F}}$
	$[G]^1$ $\neg G$	
	$\underbrace{F \vee G} \frac{[F]^1 F \to K}{K} \frac{[G]^1 \neg G}{\frac{\bot}{K}}_1$	
	$F \lor G$ \overline{K} \overline{K}	
	$\frac{1}{K}$	
k.	Scrivete nel riquadro l'enunciato del teorema di completezza per i tableaux pred	dicativi.

SECONDA PARTE

Usate il retro del foglio per svolgere tutti gli esercizi salvo il numero 6.

1. Usando l'algoritmo di Fitting mettete in forma normale disgiuntiva la formula

2pt

$$\neg ((\neg p \to \neg q \land r) \lor \neg s \to (\neg t \to \neg v \land u)).$$

2. Usando il metodo dei tableaux stabilite se

3pt

$$p \land (q \lor (r \rightarrow \neg p)), s \rightarrow \neg p \vDash q \land \neg s.$$

Se la conseguenza logica non vale definite una valutazione che lo testimoni.

3. Dimostrate che

4pt

$$\forall x (\exists y \, r(x, y) \to p(f(x))), \exists z \, r(z, f(z)), \forall v (p(v) \to \forall w \, \neg r(v, w)) \vDash \neg \forall u \, u = f(u).$$

4. Dimostrate che

4pt

$$\{ \forall x (q(x) \lor q(f(x))), \forall y f(f(y)) \neq y, \forall x (q(x) \rightarrow \neg q(f(x))) \}$$

è soddisfacibile nella logica con uguaglianza.

5. Mettete in forma prenessa la formula

2pt

$$\neg \exists x \, \forall y \, r(x,y) \rightarrow \forall z \, p(z) \vee (\exists u \, \neg p(f(u)) \wedge \neg \exists v \, r(f(v),v)).$$

Se riuscite, usate il minimo numero di quantificatori possibili.

1pt

- **6.** Sia $\mathcal{L} = \{b, c, i, s, u, =\}$ un linguaggio con uguaglianza, dove b e c sono simboli di costante, i è un simbolo di funzione unario, e s e u sono simboli di relazione binari. Interpretando b come "Bob", c come "Chiara", i(x) come "l'istruttore di x", s(x, y) come "x è severo con y" e u(x, y) come "x ubbidisce ad y", traducete le seguenti frasi:
 - (i) Bob e Chiara hanno lo stesso istruttore, e almeno uno di loro gli ubbidisce;

3pt

(ii) chiunque ubbidisce al suo istruttore oppure è severo con qualcuno ubbidisce a tutti quelli che non sono severi con lui.

3pt

5pt

- 7. Sia I l'interpretazione definita da $D^I = \{A, B, C, D, E, F\}$, $p^I = \{A, D, E\}$ e $q^I = \{C, E, F\}$. J è un'altra interpretazione per lo stesso linguaggio con $D^J = \{0, 1, 2, 3\}$, $p^J = \{0, 1\}$ e $q^J = \{1, 3\}$. Definite un omomorfismo forte suriettivo di I in J. Si può definire un omomorfismo forte di I in J che non sia suriettivo?
- 8. Usando il metodo dei tableaux stabilite che l'insieme di enunciati 4pt

$$\{\forall x \, \forall y (r(x,y) \to r(y,x)), \forall x (p(x) \to \forall y \, \neg r(x,y)), \exists x (p(x) \land r(c,x))\}$$

è insoddisfacibile.

9. Dimostrate, usando solo le regole della deduzione naturale predicativa (comprese le sei regole derivate) che

$$\exists x(p(x) \land \neg r(x, f(x))), \forall y(p(y) \rightarrow \forall z \, r(z, y)) \rhd \exists u \, \exists v(r(u, v) \land \neg r(v, u)).$$

Soluzioni

- a. F il Lemma 3.14 delle dispense asserisce che ogni α -formula è logicamente equivalente alla congiunzione dei suoi ridotti.
- **b.** V se $v(F) = \mathbf{V}$ e $v(\neg H) = \mathbf{V}$ (cioè $v(H) = \mathbf{F}$) allora non può essere $v(G) = \mathbf{V}$, perché altrimenti $v(G \to H) = \mathbf{F}$; quindi deve essere $v(\neg G) = \mathbf{V}$.
- **c.** F come si verifica per esempio con le tavole di verità: se $v(p) = \mathbf{V}$, $v(q) = \mathbf{V}$ e $v(r) = \mathbf{V}$ la prima formula è falsa e la seconda vera.
- **d. 1** la terza formula è un enunciato, mentre nella prima formula z è libera, nella seconda l'ultima occorrenza di x è libera e nella quarta formula y è libera.
- **e.** F perché $I, \sigma[x/3] \nvDash r(x, f(x)) \to p(x) \lor r(f(x), x)$.
- **f.** F come testimoniato da $D^I = \{0, 1\}, p^I = \{0\}, q^I = \emptyset$.
- **g.** V Se fosse $d_1 \sim d_2$ allora, dato che $d_0 \sim d_1$, la transitività di \sim (che discende dal fatto che è una relazione d'equivalenza) implicherebbe $d_0 \sim d_2$.
- **h.** V $\{p(a), \forall x(p(x) \to r(x,x)), p(a) \to r(a,a), r(a,a), \exists y \neg r(a,y), \neg r(a,b), p(b) \to r(b,b), \neg p(b)\}$ è un insieme di Hintikka.
- i. F il lemma di Hintikka (Lemma 10.42 delle dispense) asserisce solamente che ogni insieme di Hintikka è soddisfacibile: $\{p(a)\}$ è un insieme di Hintikka non valido.
- **j.** V le regole utilizzate sono $(\rightarrow e)$, $(\neg e)$, (ex-falso) e $(\lor e)$.
- k. Se esiste un tableau sistematico per l'enunciato F che è aperto allora F è soddisfacibile.
- 1. Utilizziamo l'Algoritmo 3.22 delle dispense, adottando le semplificazioni suggerite nella Nota 3.29:

$$\left[\left\langle \neg \left((\neg p \to \neg q \land r) \lor \neg s \to (\neg t \to \neg v \land u) \right) \right\rangle \right]$$

$$\left[\left\langle (\neg p \to \neg q \land r) \lor \neg s, \neg (\neg t \to \neg v \land u) \right\rangle \right]$$

$$\left[\left\langle (\neg p \to \neg q \land r) \lor \neg s, \neg t, \neg (\neg v \land u) \right\rangle \right]$$

$$\left[\left\langle \neg p \to \neg q \land r, \neg t, \neg (\neg v \land u) \right\rangle, \left\langle \neg s, \neg t, \neg (\neg v \land u) \right\rangle \right]$$

$$\left[\left\langle p, \neg t, \neg (\neg v \land u) \right\rangle, \left\langle \neg q \land r, \neg t, \neg (\neg v \land u) \right\rangle, \left\langle \neg s, \neg t, v \right\rangle, \left\langle \neg s, \neg t, \neg u \right\rangle \right]$$

$$\left[\left\langle p, \neg t, v \right\rangle, \left\langle p, \neg t, \neg u \right\rangle, \left\langle \neg q, r, \neg t, \neg (\neg v \land u) \right\rangle, \left\langle \neg s, \neg t, v \right\rangle, \left\langle \neg s, \neg t, \neg u \right\rangle \right]$$

$$\left[\left\langle p, \neg t, v \right\rangle, \left\langle p, \neg t, \neg u \right\rangle, \left\langle \neg q, r, \neg t, v \right\rangle, \left\langle \neg q, r, \neg t, \neg u \right\rangle, \left\langle \neg s, \neg t, v \right\rangle, \left\langle \neg s, \neg t, \neg u \right\rangle \right]$$

La formula in forma normale disgiuntiva ottenuta è

$$(p \wedge \neg t \wedge v) \vee (p \wedge \neg t \wedge \neg u) \vee (\neg q \wedge r \wedge \neg t \wedge v) \vee (\neg q \wedge r \wedge \neg t \wedge \neg u) \vee (\neg s \wedge \neg t \wedge v) \vee (\neg s \wedge \neg t \wedge \neg u).$$

2. Per stabilire se la conseguenza logica sussiste utilizziamo l'Algoritmo 4.40 delle dispense e costruiamo (utilizzando le convenzioni 4.31 e 4.32) un tableau con la radice etichettata dalle formule a sinistra del simbolo di conseguenza logica e dalla negazione della formula a destra. In ogni passaggio sottolineiamo le formule su cui agiamo.

$$\underbrace{p \land (q \lor (r \to \neg p))}_{|}, s \to \neg p, \neg (q \land \neg s) \\
p, q \lor (r \to \neg p), \underline{s \to \neg p}, \neg (q \land \neg s)$$

$$\underbrace{p, q \lor (r \to \neg p), \neg s, \underline{\neg (q \land \neg s)}}_{|} \quad p, q \lor (r \to \neg p), \neg p, \neg (q \land \neg s)$$

$$\underbrace{p, q \lor (r \to \neg p), \neg s, \neg q}_{|} \quad p, q \lor (r \to \neg p), \neg s, s$$

$$\underbrace{p, q \lor (r \to \neg p), \neg s, \neg q}_{|} \quad p, r \to \neg p, \neg s, \neg q$$

$$\underbrace{p, q, \neg s, \neg q}_{|} \quad p, r \to \neg p, \neg s, \neg q$$

$$\underbrace{p, \neg r, \neg s, \neg q}_{|} \quad p, \neg p, \neg s, \neg q$$

$$\underbrace{p, \neg r, \neg s, \neg q}_{|} \quad p, \neg p, \neg s, \neg q$$

Il tableau è aperto e quindi la conseguenza logica non sussiste. Una valutazione che lo testimonia è data da $v(p) = \mathbf{V}$, $v(q) = \mathbf{F}$, $v(r) = \mathbf{F}$ e $v(s) = \mathbf{F}$.

3. Supponiamo che I sia un'interpretazione normale che soddisfa i tre enunciati a sinistra del simbolo di conseguenza logica, che chiamiamo F, G e H. Vogliamo dimostrare che I soddisfa anche l'enunciato sulla destra.

Dato che $I \vDash G$ esiste $d_0 \in D^I$ tale che $(d_0, f^I(d_0)) \in r^I$. Quindi $I, \sigma[x/d_0] \vDash \exists y \, r(x, y)$ e, dato che da $I \vDash F$ segue in particolare $I, \sigma[x/d_0] \vDash \exists y \, r(x, y) \to p(f(x))$, si ha $f^I(d_0) \in p^I$. Da $I \vDash H$ si ha in particolare $I, \sigma[v/f^I(d_0)] \vDash p(v) \to \forall w \neg r(v, w)$ e perciò $I, \sigma[v/f^I(d_0)] \vDash \forall w \neg r(v, w)$. Questo implica in particolare $(f^I(d_0), d_0) \notin r^I$.

Abbiamo ottenuto $(d_0, f^I(d_0)) \in r^I$ e $(f^I(d_0), d_0) \notin r^I$, e questo implica che d_0 e $f^I(d_0)$ sono elementi distinti di D^I . Dato che I è normale si ha che $(d_0, f^I(d_0)) \notin =^I$. Allora $I \nvDash \forall u \, u = f(u)$, cioè $I \vDash \neg \forall u \, u = f(u)$, come volevamo.

4. Dobbiamo definire un'interpretazione normale che soddisfa i tre enunciati. Due interpretazioni normali con queste caratteristiche sono definite da

$$D^I = \{0, 1, 2, 3\}, \quad f^I(0) = 1, f^I(1) = 2, f^I(2) = 3, f^I(3) = 1, \quad q^I = \{1, 3\};$$

$$D^J = \mathbb{N}, \quad f^J(n) = n + 1, \quad q^J = \{n : n \text{ è pari }\}.$$

Dato che le interpretazioni sono normali non abbiamo bisogno di specificare $=^{I}$ e $=^{J}$.

5. Una soluzione in cui si usa il minimo numero di quantificatori è:

$$\neg\exists x\,\forall y\,r(x,y)\rightarrow\forall z\,p(z)\,\vee\,(\exists u\,\neg p(f(u))\,\wedge\,\neg\exists v\,r(f(v),v))$$

$$\forall x\,\exists y\,\neg r(x,y)\rightarrow\forall z\,p(z)\,\vee\,(\exists u\,\neg p(f(u))\,\wedge\,\forall v\,\neg r(f(v),v))$$

$$\forall x\,\exists y\,\neg r(x,y)\rightarrow\forall z\,p(z)\,\vee\,\forall v\,\exists u(\neg p(f(u))\,\wedge\,\neg r(f(v),v))$$

$$\forall x\,\exists y\,\neg r(x,y)\rightarrow\forall z\,\forall v(p(z)\,\vee\,\exists u(\neg p(f(u))\,\wedge\,\neg r(f(v),v)))$$

$$\forall x\,\exists y\,\neg r(x,y)\rightarrow\forall z\,\forall v\,\exists u(p(z)\,\vee\,(\neg p(f(u))\,\wedge\,\neg r(f(v),v)))$$

$$\forall z\,\forall v(\forall x\,\exists y\,\neg r(x,y)\rightarrow\exists u(p(z)\,\vee\,(\neg p(f(u))\,\wedge\,\neg r(f(v),v))))$$

$$\forall z\,\forall v\,\exists x\,\forall y\,\neg r(x,y)\rightarrow p(z)\,\vee\,(\neg p(f(x))\,\wedge\,\neg r(f(v),v)))$$

$$\forall z\,\forall v\,\exists x\,\forall y\,(\neg r(x,y)\rightarrow p(z)\,\vee\,(\neg p(f(x))\,\wedge\,\neg r(f(v),v)))$$

- (i) $i(b) = i(c) \land (u(b, i(b)) \lor u(c, i(c)));$
- (ii) $\forall x(u(x,i(x)) \lor \exists y \ s(x,y) \to \forall z(\neg s(z,x) \to u(x,z))).$ 7. Dato che $E \$ è l'unico elemento di D^I che sta sia in p^I che in q^I deve essere mandato in 1, che è l'unico elemento di D^J che sta sia in p^J che in q^J . Similmente, B e 2 sono gli unici elementi a non soddisfare né p né q. Invece $A \in D$ soddisfano p ma non q, esattamente come 0, mentre C, F e 3 soddisfano q ma non p.

Perciò, se φ è un omomorfismo forte di I in J deve essere $\varphi(A) = 0$, $\varphi(B) = 2$, $\varphi(C)=3, \ \varphi(D)=0, \ \varphi(E)=1, \ \varphi(F)=3. \ \varphi$ risulta quindi essere suriettivo e non ci sono altre possibilità di scelta, e quindi la risposta all'ultima domanda è negativa.

8. Per mostrare che l'insieme di enunciati è insoddisfacibile utilizziamo l'Algoritmo 10.48 delle dispense e costruiamo (utilizzando le convenzioni 10.20 e 10.22) un tableau chiuso con la radice etichettata dall'insieme di enunciati. Indichiamo con F, G, H e K le γ formule $\forall x \forall y (r(x,y) \rightarrow r(y,x)), \forall x (p(x) \rightarrow \forall y \neg r(x,y)), \forall y \neg r(a,y) \in \forall y (r(c,y) \rightarrow r(x,y)), \forall x (p(x) \rightarrow$ r(y,c)). In ogni passaggio sottolineiamo le formule su cui agiamo.

$$F,G, \underline{\exists x(p(x) \land r(c,x))}$$

$$| F,G,\underline{p(a) \land r(c,a)}|$$

$$| F,\underline{G},p(a),r(c,a)|$$

$$| F,G,\underline{p(a) \rightarrow \forall y \neg r(a,y)},p(a),r(c,a)$$

$$| F,G,\neg p(a),p(a),r(c,a)| \underline{F},G,H,p(c),r(c,a)$$

$$| F,\underline{K},G,H,p(c),r(c,a)|$$

$$| F,K,\underline{r(c,a) \rightarrow r(a,c)},G,H,p(c),r(c,a)$$

$$| F,K,r(a,c),G,\underline{H},p(c),r(c,a)|$$

$$| F,K,r(a,c),G,H,\neg r(a,c),p(c),r(c,a)|$$

$$| F,K,r(a,c),G,H,\neg r(a,c),p(c),r(c,a)|$$

$$| F,K,r(a,c),G,H,\neg r(a,c),p(c),r(c,a)|$$

Si noti l'importanza di scegliere in modo opportuno le istanze delle γ -formule (se le scelte non sono appropriate il tableaux cresce rapidamente di dimensione).

9. Ecco una deduzione naturale che mostra quanto richiesto:

$$\frac{[p(x) \land \neg r(x, f(x))]^1}{p(x)} \quad \frac{\forall y (p(y) \rightarrow \forall z \, r(z, y))}{p(x) \rightarrow \forall z \, r(z, x)} \\ \frac{\forall z \, r(z, x)}{r(f(x), x)} \quad \frac{[p(x) \land \neg r(x, f(x))]^1}{\neg r(x, f(x))} \\ \frac{[p(x) \land \neg r(x, f(x))]^1}{\neg r(x, f(x))} \\ \frac{\neg r(f(x), x) \land \neg r(x, f(x))}{\exists v (r(f(x), v) \land \neg r(v, f(x)))} \\ \exists x (p(x) \land \neg r(x, f(x)))$$

$$\exists u \, \exists v (r(u, v) \land \neg r(v, u))$$

$$\exists u \, \exists v (r(u, v) \land \neg r(v, u))$$

Prova scritta di Logica Matematica 23 gennaio 2018

Cognome Nome Matricola

Indicate su ogni foglio che consegnate cognome, nome e numero di matricola.

Nella prima parte ogni riposta corretta vale 1, ogni risposta sbagliata -1, ogni risposta non data 0. Il punteggio minimo per superare questa parte è 6. Il punteggio che eccede 6 viene sommato al risultato della seconda parte per ottenere il voto dello scritto.

Nella seconda parte per ogni esercizio è indicato il relativo punteggio.

PRIMA PARTE

	Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.
a.	$(p \land \neg q \land r) \lor (\neg p \land \neg r) \equiv \neg(\neg q \to (p \lor r) \land (p \to \neg r)).$
b.	Se $F \vDash G \to \neg H$ allora $F, H \vDash \neg G$.
c.	Ogni β -formula è logicamente equivalente alla disgiunzione dei suoi ridotti. $\overline{\mathbf{V} \mathbf{F}}$
	Questo albero rappresenta una deduzione naturale corretta: VF
α.	
	$[E]1 \qquad E \rightarrow H \qquad \frac{G \qquad [\neg G]^{\perp}}{}$
	$\frac{[\Gamma]^{-} \Gamma \to \Pi}{H} \qquad \frac{\perp}{H}$
	$ \underbrace{F \vee \neg G \qquad \frac{[F]^1 \qquad F \to H}{H} \qquad \frac{\Box \qquad [\neg G]}{\underline{H}}_{1}}_{H} $
P	Esiste un insieme di Hintikka che contiene le formule
С.	p(c), $\forall x(p(x) \to \neg r(x,x)) \in \exists y r(y,c)$.
f.	Sia <i>I</i> l'interpretazione normale con $D^{I} = \{0, 1, 2, 3\}, f^{I}(0) = 3, f^{I}(1) = 3,$
	$f^{I}(2) = 1, f^{I}(3) = 2, p^{I} = \{1, 2\}, r^{I} = \{(0, 3), (1, 3), (2, 2), (3, 0), (3, 2)\}.$
	Allora $I \vDash \forall x (r(x, f(x)) \to p(x) \lor r(f(x), x)).$ $\boxed{\mathbf{V} \mid \mathbf{F}}$
or	$\exists x p(x) \to \exists x q(x) \equiv \exists x (\neg p(x) \lor q(x)).$
_	Quante delle seguenti formule sono enunciati?
	$\neg \forall x \neg r(x, f(x)) \rightarrow p(x), \ \neg \forall x (\neg r(x, f(x)) \rightarrow p(x)),$
	$\exists x \neg r(x, f(x)) \rightarrow p(a), \forall x (\neg r(x, f(y)) \rightarrow p(x)).$ $\boxed{0 \boxed{1} \boxed{2} \boxed{3} \boxed{4}}$
i.	Se \sim è una relazione di congruenza su I e $d_0, d_1, d_2 \in D^I$
	sono tali che $d_0 \nsim d_2$ e $d_1 \sim d_2$ allora $d_0 \nsim d_1$.
i.	Ogni insieme di Hintikka proposizionale è valido.
-	Scrivete nel riquadro l'enunciato del teorema di completezza per i tableaux predicativi.
	The state of the s

SECONDA PARTE

Usate il retro del foglio per svolgere tutti gli esercizi salvo il numero 6.

1. Usando l'algoritmo di Fitting mettete in forma normale disgiuntiva la formula

2pt

$$\neg ((\neg u \to s \land \neg p) \lor \neg q \to (\neg r \to t \land \neg v)).$$

2. Usando il metodo dei tableaux stabilite se

3pt

$$\neg s \land (p \lor (\neg r \to s)), q \to s \vDash p \land \neg q.$$

Se la conseguenza logica non vale definite una valutazione che lo testimoni.

3. Dimostrate che

4pt

$$\forall x (p(x) \to \forall y \, r(y, x)), \exists z \, \neg r(f(z), z), \forall u (\exists v \, \neg r(v, u) \to p(f(u))) \vDash_{-} \neg \forall w \, w = f(w).$$

4. Dimostrate che

4pt

$$\{\forall x (p(x) \to \neg p(g(x))), \forall x (p(x) \lor p(g(x))), \forall y g(g(y)) \neq y\}$$

è soddisfacibile nella logica con uguaglianza.

5. Mettete in forma prenessa la formula

2pt

$$\neg \exists x \, \forall y \, r(y, f(x)) \rightarrow \forall z \, p(z) \land (\neg \exists u \, \neg r(u, f(u)) \lor \exists v \, p(f(v))).$$

Se riuscite, usate il minimo numero di quantificatori possibili.

1pt

- **6.** Sia $\mathcal{L} = \{a, b, m, s, u, =\}$ un linguaggio con uguaglianza, dove a e b sono simboli di costante, m è un simbolo di funzione unario, e s e u sono simboli di relazione binari. Interpretando a come "Alex", b come "Barbara", m(x) come "il maestro di x", s(x, y) come "x è severo con y" e u(x, y) come "x ubbidisce ad y", traducete le seguenti frasi:
 - (i) Alex e Barbara hanno lo stesso maestro, che è severo con almeno uno di loro;
- 3pt
- (ii) chiunque ubbidisce al suo maestro oppure è severo con qualcuno ubbidisce a tutti quelli che sono severi con lui.

3pt

3pt

- 7. Sia I l'interpretazione definita da $D^I = \{A, B, C, D, E, F\}$, $p^I = \{A, B, C\}$ e $q^I = \{B, D, F\}$. J è un'altra interpretazione per lo stesso linguaggio con $D^J = \{0, 1, 2, 3\}$, $p^J = \{0, 3\}$ e $q^J = \{2, 3\}$. Definite un omomorfismo forte suriettivo di I in J. Si può definire un omomorfismo forte di I in J che non sia suriettivo?
- 8. Usando il metodo dei tableaux stabilite che l'insieme di enunciati

4pt

$$\{ \forall x (p(x) \to \forall y \, r(y, x)), \exists x (p(x) \land \neg r(x, a)), \forall x \, \forall y (r(x, y) \to r(y, x)) \}$$

è insoddisfacibile.

9. Dimostrate, usando solo le regole della deduzione naturale predicativa (comprese le sei regole derivate) che

5pt

$$\forall x (p(x) \to \forall y \neg r(x,y)), \exists z (p(z) \land r(f(z),z)) \rhd \exists u \,\exists v (r(u,v) \land \neg r(v,u)).$$

Soluzioni

- **a.** \mathbf{F} come si verifica per esempio con le tavole di verità: se $v(p) = \mathbf{F}$, $v(q) = \mathbf{V}$ e $v(r) = \mathbf{F}$ la prima formula è vera e la seconda falsa.
- **b.** V se $v(F) = \mathbf{V}$ e $v(H) = \mathbf{V}$ allora non può essere $v(G) = \mathbf{V}$, perché altrimenti $v(G \to \neg H) = \mathbf{F}$; quindi deve essere $v(\neg G) = \mathbf{V}$.
- c. V è parte del Lemma 3.14 delle dispense.
- **d.** V le regole utilizzate sono $(\rightarrow e)$, $(\neg e)$, (ex-falso) e $(\lor e)$.
- **e.** V $\{p(c), \forall x(p(x) \to \neg r(x,x)), p(c) \to \neg r(c,c), \neg r(c,c), \exists y \, r(y,c), r(b,c), p(b) \to \neg r(b,b), \neg p(b)\}$ è un insieme di Hintikka.
- **f.** F perché $I, \sigma[x/3] \nvDash r(x, f(x)) \to p(x) \lor r(f(x), x)$.
- **g.** F come testimoniato da $D^I = \{0, 1\}, p^I = \{0\}, q^I = \emptyset$.
- **h. 2** la seconda e la terza formula sono enunciati, mentre nella prima formula l'ultima occorrenza di x è libera e nella quarta formula y è libera.
- i. V Se fosse $d_0 \sim d_1$ allora, dato che $d_1 \sim d_2$, la transitività di \sim (che discende dal fatto che è una relazione d'equivalenza) implicherebbe $d_0 \sim d_2$.
- **j.** F il lemma di Hintikka (Lemma 4.27 delle dispense) asserisce solamente che ogni insieme di Hintikka è soddisfacibile: $\{p\}$ è un insieme di Hintikka non valido.
- k. Se esiste un tableau sistematico per l'enunciato F che è aperto allora F è soddisfacibile.
- 1. Utilizziamo l'Algoritmo 3.22 delle dispense, adottando le semplificazioni suggerite nella Nota 3.29:

$$\left[\left\langle \neg \left((\neg u \to s \land \neg p) \lor \neg q \to (\neg r \to t \land \neg v) \right) \right\rangle \right]$$

$$\left[\left\langle (\neg u \to s \land \neg p) \lor \neg q, \neg (\neg r \to t \land \neg v) \right\rangle \right]$$

$$\left[\left\langle (\neg u \to s \land \neg p) \lor \neg q, \neg r, \neg (t \land \neg v) \right\rangle \right]$$

$$\left[\left\langle \neg u \to s \land \neg p, \neg r, \neg (t \land \neg v) \right\rangle, \left\langle \neg q, \neg r, \neg (t \land \neg v) \right\rangle \right]$$

$$\left[\left\langle u, \neg r, \neg (t \land \neg v) \right\rangle, \left\langle s \land \neg p, \neg r, \neg (t \land \neg v) \right\rangle, \left\langle \neg q, \neg r, \neg t \right\rangle, \left\langle \neg q, \neg r, v \right\rangle \right]$$

$$\left[\left\langle u, \neg r, \neg t \right\rangle, \left\langle u, \neg r, v \right\rangle, \left\langle s, \neg p, \neg r, \neg (t \land \neg v) \right\rangle, \left\langle \neg q, \neg r, \neg t \right\rangle, \left\langle \neg q, \neg r, v \right\rangle \right]$$

$$\left[\left\langle u, \neg r, \neg t \right\rangle, \left\langle u, \neg r, v \right\rangle, \left\langle s, \neg p, \neg r, \neg t \right\rangle, \left\langle s, \neg p, \neg r, v \right\rangle, \left\langle \neg q, \neg r, \neg t \right\rangle, \left\langle \neg q, \neg r, v \right\rangle \right]$$

La formula in forma normale disgiuntiva ottenuta è

 $(u \wedge \neg r \wedge \neg t) \vee (u \wedge \neg r \wedge v) \vee (s \wedge \neg p \wedge \neg r \wedge \neg t) \vee (s \wedge \neg p \wedge \neg r \wedge v) \vee (\neg q \wedge \neg r \wedge \neg t) \vee (\neg q \wedge \neg r \wedge v).$

2. Per stabilire se la conseguenza logica sussiste utilizziamo l'Algoritmo 4.40 delle dispense e costruiamo (utilizzando le convenzioni 4.31 e 4.32) un tableau con la radice etichettata dalle formule a sinistra del simbolo di conseguenza logica e dalla negazione della formula a destra. In ogni passaggio sottolineiamo le formule su cui agiamo.

$$\begin{array}{c|c} \neg s \wedge (p \vee (\neg r \rightarrow s)), q \rightarrow s, \neg (p \wedge \neg q) \\ & \neg s, p \vee (\neg r \rightarrow s), \underline{q \rightarrow s}, \neg (p \wedge \neg q) \\ \hline \neg s, p \vee (\neg r \rightarrow s), \neg q, \underline{\neg (p \wedge \neg q)} & \neg s, p \vee (\neg r \rightarrow s), s, \neg (p \wedge \neg q) \\ & \otimes \\ \hline \neg s, \underline{p \vee (\neg r \rightarrow s)}, \neg q, \neg p & \neg s, p \vee (\neg r \rightarrow s), \neg q, q \\ & \otimes \\ \hline \neg s, p, \neg q, \neg p & \neg s, \neg r \rightarrow s, \neg q, \neg p \\ & \otimes \\ \hline \neg s, r, \neg q, \neg p & \neg s, s, \neg q, \neg p \\ & & \otimes \\ \hline \end{array}$$

Il tableau è aperto e quindi la conseguenza logica non sussiste. Una valutazione che lo testimonia è data da $v(p) = \mathbf{F}, v(q) = \mathbf{F}, v(r) = \mathbf{V}$ e $v(s) = \mathbf{F}$.

3. Supponiamo che I sia un'interpretazione normale che soddisfa i tre enunciati a sinistra del simbolo di conseguenza logica, che chiamiamo F, G e H. Vogliamo dimostrare che I soddisfa anche l'enunciato sulla destra.

Dato che $I \vDash G$ esiste $d_0 \in D^I$ tale che $(f^I(d_0), d_0) \notin r^I$. Quindi $I, \sigma[u/d_0] \vDash \exists v \neg r(v, u)$ e, dato che da $I \vDash H$ segue in particolare $I, \sigma[u/d_0] \vDash \exists v \neg r(v, u) \rightarrow p(f(u))$, si ha $f^I(d_0) \in p^I$. Da $I \vDash F$ si ha in particolare $I, \sigma[x/f^I(d_0)] \vDash p(x) \rightarrow \forall y \, r(y, x)$ e perciò $I, \sigma[x/f^I(d_0)] \vDash \forall y \, r(y, x)$. Questo implica in particolare $(d_0, f^I(d_0)) \in r^I$.

Abbiamo ottenuto $(f^I(d_0), d_0) \notin r^I$ e $(d_0, f^I(d_0)) \in r^I$, e questo implica che d_0 e $f^I(d_0)$ sono elementi distinti di D^I . Dato che I è normale si ha che $(d_0, f^I(d_0)) \notin =^I$. Allora $I \nvDash \forall w \ w = f(w)$, cioè $I \vDash \neg \forall w \ w = f(w)$, come volevamo.

4. Dobbiamo definire un'interpretazione normale che soddisfa i tre enunciati. Due interpretazioni normali con queste caratteristiche sono definite da

$$D^{I} = \{0, 1, 2, 3\}, \quad g^{I}(0) = 1, g^{I}(1) = 2, g^{I}(2) = 3, g^{I}(3) = 1, \quad p^{I} = \{0, 2\};$$
$$D^{J} = \mathbb{N}, \quad g^{J}(n) = n + 1, \quad p^{J} = \{n : n \text{ è dispari }\}.$$

Dato che le interpretazioni sono normali non abbiamo bisogno di specificare $=^I$ e $=^J$.

5. Una soluzione in cui si usa il minimo numero di quantificatori è:

$$\neg\exists x \,\forall y \, r(y, f(x)) \rightarrow \forall z \, p(z) \, \wedge \, (\neg\exists u \,\neg r(u, f(u)) \,\vee \,\exists v \, p(f(v)))$$

$$\forall x \,\exists y \,\neg r(y, f(x)) \rightarrow \forall z \, p(z) \,\wedge \, (\forall u \,\neg\neg r(u, f(u)) \,\vee \,\exists v \, p(f(v)))$$

$$\forall x \,\exists y \,\neg r(y, f(x)) \rightarrow \forall z \, p(z) \,\wedge \,\forall u \,\exists v(r(u, f(u)) \,\vee \, p(f(v)))$$

$$\forall x \,\exists y \,\neg r(y, f(x)) \rightarrow \forall z \, (p(z) \,\wedge \,\exists v(r(z, f(z)) \,\vee \, p(f(v))))$$

$$\forall x \,\exists y \,\neg r(y, f(x)) \rightarrow \forall z \,\exists v(p(z) \,\wedge \, (r(z, f(z)) \,\vee \, p(f(v))))$$

$$\forall z \,(\forall x \,\exists y \,\neg r(y, f(x)) \rightarrow \exists v(p(z) \,\wedge \, (r(z, f(z)) \,\vee \, p(f(v)))))$$

$$\forall z \,\exists x \,(\exists y \,\neg r(y, f(x)) \rightarrow p(z) \,\wedge \, (r(z, f(z)) \,\vee \, p(f(x))))$$

$$\forall z \,\exists x \,\forall y \,(\neg r(y, f(x)) \rightarrow p(z) \,\wedge \, (r(z, f(z)) \,\vee \, p(f(x))))$$

- (i) $m(a) = m(b) \land (s(m(a), a) \lor s(m(b), b));$
 - (ii) $\forall x(u(x, m(x)) \lor \exists y \ s(x, y) \to \forall z(s(z, x) \to u(x, z))).$
- 7. Dato che B è l'unico elemento di D^I che sta sia in p^I che in q^I deve essere mandato in 3, che è l'unico elemento di D^J che sta sia in p^J che in q^J . Similmente, E e 1 sono gli unici elementi a non soddisfare né p né q. Invece $A \in C$ soddisfano p ma non q, esattamente come 0, mentre D, F e 2 soddisfano q ma non p.

Perciò, se φ è un omomorfismo forte di I in J deve essere $\varphi(A) = 0$, $\varphi(B) = 3$, $\varphi(C)=0, \ \varphi(D)=2, \ \varphi(E)=1, \ \varphi(F)=2. \ \varphi$ risulta quindi essere suriettivo e non ci sono altre possibilità di scelta, e quindi la risposta all'ultima domanda è negativa.

8. Per mostrare che l'insieme di enunciati è insoddisfacibile utilizziamo l'Algoritmo 10.48 delle dispense e costruiamo (utilizzando le convenzioni 10.20 e 10.22) un tableau chiuso con la radice etichettata dall'insieme di enunciati. Indichiamo con F, G, H e K le γ -formule $\forall x(p(x) \to \forall y \, r(y,x)), \ \forall x \, \forall y(r(x,y) \to r(y,x)), \ \forall y \, r(y,c) \in \forall y(r(a,y) \to r(y,x)), \ \forall y \, r(y,c) \in \forall y \, r(y,c) \in$ r(y,a)). In ogni passaggio sottolineiamo le formule su cui agiamo.

formule
$$\forall x(p(x) \to \forall y\,r(y,x)), \ \forall x\,\forall y(r(x,y) \to r(y,x)), \ \forall y\,r(y,c) \ \text{e} \ \forall y(r(a,y),a)).$$
 In ogni passaggio sottolineiamo le formule su cui agiamo.
$$F, \underline{\exists x(p(x) \land \neg r(x,a)), G} \\ | F, \underline{p(c) \land \neg r(c,a), G} \\ | F, \underline{p(c) \to \forall y\,r(y,c)}, p(c), \neg r(c,a), G} \\ | F, \underline{p(c) \to \forall y\,r(y,c)}, p(c), \neg r(c,a), G} \\ | F, H, p(c), \neg r(c,a), G, \underline{K} \\ | F, H, p(c), \neg r(c,a), G, K, \underline{r(a,c) \to r(c,a)} \\ | F, \underline{H}, p(c), \neg r(c,a), G, K, \underline{r(a,c) \to r(c,a)} \\ | F, H, r(a,c), p(c), \neg r(c,a), G, K, \neg r(a,c) \\ | & F, H, r(a,c), p(c), \neg r(c,a), G, K, \neg r(a,c) \\ | & \otimes \\ | \text{noti l'importanza di seegliere in modo opportuno le istanze delle } \gamma\text{-formule } (a, b)$$

Si noti l'importanza di scegliere in modo opportuno le istanze delle γ -formule (se le scelte non sono appropriate il tableaux cresce rapidamente di dimensione).

9. Ecco una deduzione naturale che mostra quanto richiesto:

$$\frac{[p(z) \land r(f(z),z)]^1}{p(z)} \qquad \frac{\forall x(p(x) \rightarrow \forall y \neg r(x,y))}{p(z) \rightarrow \forall y \neg r(x,y)}$$

$$\frac{[p(z) \land r(f(z),z)]^1}{r(f(z),z)} \qquad \frac{\forall y \neg r(z,y)}{\neg r(z,f(z))}$$

$$\frac{r(f(z),z) \land \neg r(z,f(z))}{\exists v(r(f(z),v) \land \neg r(v,f(z)))}$$

$$\exists z(p(z) \land r(f(z),z)) \qquad \exists u \, \exists v(r(u,v) \land \neg r(v,u))$$