Příklad 1 - interpolace a extrapolace

Zadání:

Podle údajů od výrobce závisí elektrický odpor R součástky na teplotě T kvadraticky podle funkce $R = a + bT + cT^2$ s následujícími nezávislými parametry:

$$\begin{array}{ll} a = 60.4 \; \Omega & \sigma_a = 8.2 \; \Omega \\ b = 25.2 \times 10^{-3} \; \Omega \; \mathrm{K}^{-1} & \sigma_b = 9.3 \times 10^{-3} \; \Omega \; \mathrm{K}^{-1} \\ c = 0.442 \times 10^{-3} \; \Omega \; \mathrm{K}^{-2} & \sigma_c = 0.048 \times 10^{-3} \; \Omega \; \mathrm{K}^{-2} \end{array}$$

Jaký je odpor součástky při teplotách $T_1=300~{\rm K}$ a $T_2=600~{\rm K}$ (očekávaná hodnota a chyba)? Výsledky zapište ve správném tvaru.

(10 bodů)

Řošoní

Spočítejme hodnoty odporů R_1 a R_2 dosazením teplot $T_1=300~{\rm K}$ a $T_2=600~{\rm K}$ do teoretického kvadratického vztahu.

$$R_1 = a + bT_1 + cT_1^2 = 107.74 \Omega$$

 $R_2 = a + bT_2 + cT_2^2 = 234.64 \Omega$

Odpor R_1 jsme hledali uvnitř intervalu měřených teplot 200 - 550 K (interpolace), zatímco odpor R_2 jsme získali mimo tento interval (extrapolace).

V jednodušším případě nezávislých parametrů kvadratické funkce a, b, c jsou jejich vzájemné kovariance nulové. Chyby vypočítaných odporů R_1 a R_2 určíme pomocí metody přenosu chyb $\sigma_a, \sigma_b, \sigma_c$ parametrů a, b, c.

$$\sigma_{R_1}^2 = \left(\frac{\partial R_1}{\partial a}\sigma_a\right)^2 + \left(\frac{\partial R_1}{\partial b}\sigma_b\right)^2 + \left(\frac{\partial R_1}{\partial c}\sigma_c\right)^2$$

$$\sigma_{R_1}^2 = (\sigma_a)^2 + (\sigma_b T_1)^2 + \left(\sigma_c T_1^2\right)^2$$

$$\sigma_{R_1} = \sqrt{\sigma_a^2 + \sigma_b^2 T_1^2 + \sigma_c^2 T_1^4}$$

$$\sigma_{R_1} = 9.68 \Omega$$

$$\sigma_{R_2}^2 = \left(\frac{\partial R_2}{\partial a}\sigma_a\right)^2 + \left(\frac{\partial R_2}{\partial b}\sigma_b\right)^2 + \left(\frac{\partial R_2}{\partial c}\sigma_c\right)^2$$

$$\sigma_{R_2}^2 = (\sigma_a)^2 + (\sigma_b T_2)^2 + \left(\sigma_c T_2^2\right)^2$$

$$\sigma_{R_2} = \sqrt{\sigma_a^2 + \sigma_b^2 T_2^2 + \sigma_c^2 T_2^4}$$

$$\sigma_{R_2} = 19.92 \Omega$$

Obě chyby σ_{R_1} a σ_{R_2} zaokrouhlíme na desítky Ω a podle nich zaokrouhlíme i očekávané hodnoty R_1 a R_2 . Výsledné odpory můžeme zapsat ve tvaru:

$$R_1 = (110 \pm 10) \Omega$$

 $R_2 = (230 \pm 20) \Omega$

nebo lépe¹ ve tvaru:

$$R_1 = (0.11 \pm 0.01) \text{ k}\Omega$$

 $R_2 = (0.23 \pm 0.02) \text{ k}\Omega$

¹Chyby ve tvaru $\sigma_{R_1}=10~\Omega$ a $\sigma_{R_2}=20~\Omega$ jsou uvedené na 2 platné číslice, což není správný výsledek. Proto je vhodnější je zapsat ve tvaru $\sigma_{R_1}=0.01~\mathrm{k}\Omega$ a $\sigma_{R_2}=0.02~\mathrm{k}\Omega$ obsahujícím pouze 1 platnou číslici. Poznamenejme, že výsledky zapsané na 2 platné číslice chyby jsou správně $R_1=(108\pm10)~\Omega$ a $R_2=(235\pm20)~\Omega$.

Příklad 2 - odhady parametrů

Zadání:

V tabulce je uvedeno 10 hodnot měření tloušťky tenké hliníkové vrstvy pomocí kontaktního profilometru.

Jaká je tloušťka tenké vrstvy?

n	d (nm)
1	211
2	213
3	212
4	212
5	218
6	205
7	215
8	220
9	225
10	228

Poznámky k řešení:

- (a) Předpokládáme, že d je náhodná proměnná s normálním rozdělením $N(\mu, \sigma)$. Určete parametry μ a σ jako nejlepší odhady těchto parametrů.
- (b) Jaký typ neurčitosti (typ A nebo B) je standardní odchylka σ ?
- (c) Vypočítejte chybu odhadu očekávané hodnoty μ .
- (d) Výsledek zapište ve správném tvaru!

(5 bodů)

Řešení:

(a) Očekávanou hodnotu odhadneme jako aritmetický průměr \bar{d} naměřených hodnot tloušťky d_i . Standardní odchylku odhadneme pomocí vzorce pro nepředpojatý odhad.

$$\hat{\mu} = \bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$

$$\hat{\mu} = \bar{d} = 215.9 \text{ nm}$$
(1)

$$\hat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(d_i - \bar{d} \right)^2} \tag{2}$$

$$\hat{\sigma} = \sqrt{\frac{1}{n-1} \left(\sum_{i=1}^{n} d_i^2 - n\bar{d}^2 \right)} \tag{3}$$

$$\hat{\sigma} = 6.9 \text{ nm}$$

Poznamenejme, že vztah (3), který lze získat jednoduchou úpravou vztahu (2), umožňuje jednodušší výpočet odhadu standardní odchylky $\hat{\sigma}$.

- (b) Odchylku $\hat{\sigma}$ jsme zpracovali statistickými metodami, jedná se o neurčitost typu A.
- (c) Každá naměřená hodnota d_i je zatížena pouze statistickou chybou $\hat{\sigma}$. Chybu aritmetického průměru spočítáme známým vzorcem, kde za chybu jednoho měření dosadíme chybu jednoho měření $\hat{\sigma}$.

$$\sigma_{\bar{d}} = \frac{\hat{\sigma}}{\sqrt{n}}$$

$$\sigma_{\bar{d}} = 2.2 \text{ nm} \doteq 2 \text{ nm}$$

(d) Zapišme výsledek ve správném tvaru, tj. s průměrnou tloušťkou \bar{d} i s chybou $\sigma_{\bar{d}}$ zaokrouhlenými na nanometry.

$$d = (216 \pm 2) \text{ nm}$$