Introduction à l'optimisation non linéaire sans contraintes: Aspects théoriques

Djaffar Boussaa

CNRS/LMA

Contact: boussaa@lma.cnrs-mrs.fr

Plan

Formulation du problème

Optimisation sans contraintes : conditions d'optimalité

Convexité

Plan

Formulation du problème

Optimisation sans contraintes : conditions d'optimalité

Convexite

Le problème

Trouver $x^* \in X$ tel que pour tout $x \in X$ on ait $f(x^*) \leq f(x)$

οù

- ▶ $f: \mathbb{R}^n \to \mathbb{R}$ est une fonction à n variables, continue et suffisamment différentiable
- lacksquare X est \mathbb{R}^n ou une partie de \mathbb{R}^n ayant des propriétés de "continuité"

Lien entre maximisation et minimisation

$$\max f(x) = -\min -f(x)$$

Premières définitions

- f critère (fonction-coût, fonction économique, fonction objectif, etc.)
- X ensemble admissible
- x variables de décision (variable de commande, variables d'état, paramètres, variables de design, etc.)
- x* solution du problème ou minimum du problème. On parle de solution ou minimum global pour le distinguer du minimum local.
- ▶ **Minimum local** Un point x^* est une solution locale ou minimum local s'il existe un voisinage V de x^* tel que

$$x^* \in X$$
 et $f(x^*) \le f(x)$ pour tout $x \in X \cap V$

▶ **Minimum local strict** Un minimum local est dit **strict** si $f(x^*) < f(x)$ pour tout $x \in X \cap V \setminus \{x^*\}$

Notations usuelles

Le problème général

$$\begin{cases} \min f(x) \\ x \in X \end{cases} \qquad \min \{ f(x) : x \in X \} \qquad \qquad \min_{x \in X} f(x)$$

Forme générale du problème considéré dans le cours

$$X = \{x \in \mathbb{R}^n : h_i(x) = 0, i = 1, \dots, m; g_j(x) \le 0, \quad j = 1, \dots, p\}$$

$$\left\{\begin{array}{ll} \min f(x) & x \in \mathbb{R}^n \\ h_i(x) = 0 & i = 1, \dots, m \\ g_j(x) \leq 0 & j = 1, \dots, p \end{array}\right. \quad \begin{array}{ll} h_i \text{ contrainte d'égalité (fonction} \\ \text{de } \mathbb{R}^n \text{ dans } \mathbb{R}) \\ g_j \text{ contrainte d'inégalité (fonction} \\ \text{de } \mathbb{R}^n \text{ dans } \mathbb{R}) \end{array}$$

Existence de solution

Soit le problème

$$\min \{ f(x) : x \in X \}$$

Deux possibilités

- 1. L'ensemble $\{f(x):x\in X\}$ n'est pas borné inférieurement. Le problème n'admet pas de solution
- 2. L'ensemble $\{f(x): x \in X\}$ est borné inférieurement.
 - 2.1 Le problème admet un minimum global si f est continue et X est compact
 - 2.2 Le problème admet un minimum global si X est fermé et f est coercive (ie $\lim f(x) \to \infty$ lorsque $\|x\| \to \infty$)

Exemple 1

Exemple 2

$$\min e^{x_1} - x_1 x_2 + x_2^2$$

$$2x_1 + x_2 - 2 \le 0$$

$$x_1^2 + x_2^2 - 4 = 0$$

$$(x_1, x_2) \in \mathbb{R}^2$$

Exemple 3

Un peu de jargon

- ▶ Minimisation sans contrainte Si $X = \mathbb{R}^n$, le problème est dit problème de minimisation sans contrainte
- ▶ Point acceptable Si $x \in X$, x est dit acceptable (on dit aussi admissible ou réalisable)
- ▶ Optimisation linéaire Si f est linéaire et X polyédrique (f, les h_i et les g_j sont linéaires), le problème d'optimisation est dit linéaire. Sinon, on parle d'optimisation non linéaire.

Le cours traitera de l'optimisation non linéaire.

Gradient et matrice hessienne

Gradient

Matrice Hessienne

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix} \qquad \nabla^2 f(x) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

Rappel

Si f est deux fois continûment différentiable, alors la matrice hessienne est symétrique.

Gradient et matrice hessienne

Exemples de calcul

f(x)	$\nabla f(x)$	$\nabla^2 f(x)$
c'x + d	c	0
$\frac{1}{2}x'Qx + b'x + c$	$\frac{1}{2}\left(Q+Q'\right)x+b$	$\frac{1}{2}\left(Q+Q' ight)$
$\frac{1}{2} \sum_{i=1}^{m} (r_i(x))^2$	$\sum_{i=1}^{m} r_i \nabla r_i$	$\sum_{i=1}^{m} \left(\nabla r_i \nabla r_i' + r_i \nabla^2 r_i \right)$

Exercice

Déterminer le gradient et la hessienne de la fonction de Rosenbrock généralisée

$$f(x) = \sum_{i=1}^{n/2} \left[\alpha \left(x_{2i} - x_{2i-1}^2 \right)^2 + (1 - x_{2i-1})^2 \right]$$

Matrice définie positive, matrice semidéfinie positive

Définitions

Soit Q une matrice $n \times n$ symétrique. Q est dite

- définie positive si x'Qx > 0 pour tout $x \in \mathbb{R}^n$, $x \neq 0$
- ightharpoonup semidéfinie positive si $x'Qx \geq 0$ pour tout $x \in \mathbb{R}^n$

De même, Q est dite

- définie négative si x'Qx < 0 pour tout $x \in \mathbb{R}^n, x \neq 0$
- lacktriangle semidéfinie négative si $x'Qx \leq 0$ pour tout $x \in \mathbb{R}^n$

Reconnaître une matrice définie positive

Proposition

Soit Q une matrice $n \times n$ symétrique et Q_k la sous matrice de Q suivante :

$$Q_k = \left(\begin{array}{ccc} q_{11} & \cdots & q_{1k} \\ \vdots & \ddots & \vdots \\ q_{k1} & \cdots & q_{kk} \end{array}\right)$$

Alors Q est définie positive si et seulement si

- les valeurs propres de Q sont toutes strictement positives,
- ightharpoonup det $Q_k > 0$ pour tout $k \in \{1, \ldots, n\}$,
- Il existe une matrice triangulaire inférieure inversible L dont tous les termes diagonaux sont strictement positifs telle que Q=LL'. (Q=LL' est la factorisation de Cholesky de Q et L le facteur de Cholesky de Q).

Formules de Taylor

Soit $f:D\subset\mathbb{R}^n\to\mathbb{R}$, où D est un ouvert de \mathbb{R}^n . Si f est continûment différentiable, alors pour tout $x,\,y\in D$, on peut écrire

$$f(y) = f(x) + \nabla f(x)'(y - x) + R_1(x, y)$$

où le reste R_1 vérifie

$$\lim_{x \to y} \frac{R_1(x, y)}{\|x - y\|} = 0.$$

Si f est deux fois continûment différentiables, alors on peut écrire

$$f(y) = f(x) + (y - x)'\nabla f(x) + \frac{1}{2}(y - x)'\nabla^2 f(x)(y - x) + R_2(x, y)$$

où le reste R_2 vérifie

$$\lim_{x \to y} \frac{R_2(x, y)}{\|x - y\|^2} = 0.$$

Formules de Taylor (suite)

Il existe $y \in (x, x + p)$ tel que

$$f(x+p) = f(x) + \nabla f(y)'p$$

Il existe $z \in (x, x + p)$ tel que

$$f(x+p) = f(x) + \nabla f(x)'p + \frac{1}{2}p'\nabla^2 f(z)p$$

Plan

Formulation du problème

Optimisation sans contraintes : conditions d'optimalité

Convexite

Condition nécessaire du premier ordre

Le problème

$$\min_{x \in \mathbb{R}^n} f(x)$$

Proposition

Si x^* est un minimum local de f et si f est différentiable en x^* , alors $\nabla f(x^*) = 0$.

Définition

Un point x^\star tel que $\nabla f(x^\star) = 0$ est dit stationnaire.

Condition nécessaire du second ordre

Proposition

Si x^\star est un minimum local de f et si f est deux fois différentiable en x^\star , alors $\nabla f(x^\star)=0$ et $\nabla^2 f(x^\star)$ est semidéfinie positive

Ces conditions ne pas suffisantes Soit $f(x) = x^3$. Le point x = 0 satisfait les conditions nécessaires du premier et second ordres, mais il n'est pas un minimum de f.

Preuves

Condition du premier ordre Soit $p \in \mathbb{R}^n$ une direction fixe quelconque. Comme x^* est un minimum local,

$$0 \le \lim_{t \downarrow 0} \frac{f(x^* + tp) - f(x^*)}{t} = p' \nabla f(x^*)$$

on conclut que $\nabla f(x^*) = 0$ CQFD.

Condition du second ordre En vertu de Taylor au 2nd ordre

$$f(x^* + tp) - f(x^*) = tp'\nabla f(x^*) + \frac{t^2}{2}p'\nabla^2 f(x^*)p + o(t^2)$$

Comme x^* est un minimum local, $\nabla f\left(x^*\right)=0$ et il existe \overline{t} suffisamment petit tel que pour tout $t\in]0,\overline{t}[$

$$0 \le \frac{f(x^* + tp) - f(x^*)}{t^2} = \frac{1}{2}p'\nabla^2 f(x^*)p + \frac{o(t^2)}{t^2}$$

En passant à la limite sur t ($t \rightarrow 0$), on aboutit au résultat souhaité.

Condition suffisante de minimalité locale

Proposition Si un point x^\star est tel que $\nabla f(x^\star) = 0$ et $\nabla^2 f(x^\star)$ est définie positive alors x^\star est minimum local strict de f

Preuve Soit a la plus petite valeur propre de $\nabla^2 f(x^\star)$. Comme $\nabla^2 f(x^\star)$ est définie positive, a>0. En vertu de Taylor

$$f(x^* + p) - f(x^*) = \frac{1}{2} p' \nabla^2 f(x^*) p + o(\|p\|^2)$$

$$\geq \frac{a}{2} \|p\|^2 + o(\|p\|^2)$$

$$= \left(\frac{a}{2} + \frac{o(\|p\|^2)}{\|p\|^2}\right) \|p\|^2$$

Pour ||p|| suffisamment petit, $o(||p||^2)/||p||^2$ est négligeable devant a/2. Si bien que ce second membre est strictement positif pour ||p|| suffisamment petit.

Un exemple

$$\min\left\{\frac{1}{3}x_1^3 + \frac{1}{2}x_1^2 + 2x_1x_2 + \frac{1}{2}x_2^2 - x_2 + 9 : (x_1, x_2) \in \mathbb{R}^2\right\}$$

$$\nabla f(x) = \begin{pmatrix} x_1^2 + x_1 + 2x_2 \\ 2x_1 + x_2 - 1 \end{pmatrix} \qquad \nabla^2 f(x) = \begin{pmatrix} 2x_1 + 1 & 2 \\ 2 & 1 \end{pmatrix}$$

Les points stationnaires sont $x_a = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ et $x_b = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$

La hessienne en ces points est respectivement

$$abla^2 f(x_a) = \left(\begin{array}{cc} 3 & 2 \\ 2 & 1 \end{array} \right) \text{ et }
abla^2 f(x_b) = \left(\begin{array}{cc} 5 & 2 \\ 2 & 1 \end{array} \right)$$

En x_a , hessienne indéfinie, x_a ni un minimum ni un maximum.

En x_b , hessienne définie positive, x_b un minimum.

Cas quadratique

Le problème

$$\min_{x \in \mathbb{R}^n} f(x) \operatorname{avec} f(x) = \frac{1}{2} x' Q x - c' x$$

où Q matrice $n \times n$ symétrique et $c \in \mathbb{R}^n$

Conditions nécessaires

$$\nabla f(x^*) = Qx^* - c = 0 \qquad \qquad \nabla^2 f(x^*) = Q \ge 0$$

Discussion

- $ightharpoonup Q > 0: x^* = Q^{-1}c$ est l'unique minimum global.
- $Q \geq 0$ non inversible : Soit pas de solution, soit infinité de solutions
- $ightharpoonup Q \ngeq 0 : f$ n'a pas de minimum local

Plan

Formulation du problème

Optimisation sans contraintes : conditions d'optimalité

Convexité

Ensemble convexe

Un ensemble $C \subset \mathbb{R}^n$ est dit convexe si pour tout $x, y \in X$ le segment $[x,y] = \{(1-t)x + ty : t \in [0,1]\}$ est contenu dans X.

non convexe

Fonction convexe

Soit C un ensemble convexe. La fonction $f:C\subset\mathbb{R}^n\to\mathbb{R}$ est dite convexe si pour tout $x,\,y\in\mathbb{R}^n$ et pour tout $t\in[0,1]$,

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$

Exemples

- Les fonctions linéaires et affines
- Les normes
- Les fonctions quadratiques $f(x) = \frac{1}{2}x'Qx + q'x + r$ avec $Q \geq 0$
- $f(x) = x^2$
- $f(x) = -\ln x \qquad (x > 0)$
- ▶ f(x) = 1/x
- $e^{\alpha x}$
- ightharpoonup
- $ightharpoonup \max(0,x)$
- $ightharpoonup \max(0,-x)$

Reconnaître une fonction convexe par ses dérivées

Proposition

Soit f une fonction continûment différentiable. Alors f est convexe sur un ensemble convexe C si et seulement si

$$f(x) \ge f(y) + (x - y)' \nabla f(y)$$
 pour tout $x, y \in C$

Proposition

Soit f une fonction deux fois continûment différentiable. Alors f est convexe sur un ensemble convexe C si et seulement si $\nabla^2 f(x)$ est semidéfinie positive pour tout $x \in C$.

Problème d'optimisation convexe

 $\min_{x \in C} f(x)$ avec f une fonction convexe et C un ensemble convexe

Convexité et minimalité

Proposition

Soient $C\subseteq\mathbb{R}^n$ un ensemble convexe et $f:C\to\mathbb{R}^n$ une fonction convexe, alors tout minimum local de f est aussi un minimum global.

Preuve

Soit x un minimum local de f qui ne soit pas un minimum global. Alors il existe un $y \neq x$ tel que f(y) < f(x). L'inégalité de convexité permet d'écrire $f(tx+(1-t)y) \leq tf(x)+(1-t)f(y) < f(y) \text{ pour tout } t \in [0,1[\,,\, \text{ce qui contredit l'hypothèse que } x \text{ est un minimum local.}$