Visualizing Survey Data Analysis Results: Marrying the Best from Stata and R

2022 Stata Conference

4 - 5 August 2022 Washington DC

Nel Jason (Jason) L. Haw, MS

PhD Student, Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health

✓ nhaw1@jh.edu

in linkedin.com/in/neljasonhaw

Highly flexible execution of the Grammar of Graphics

Image from Kirsten Packer's ggplot2 presentation last February 2019: http://www.seec.uct.ac.za/ggplot2-grammar-graphics

Highly flexible execution of the Grammar of Graphics

Ensure reproducibility during handoff

Processed survey data

Survey data analysis

Create plots using ggplot2

Highly flexible execution of the Grammar of Graphics

Processed survey data

Survey data analysis

Analysis results stored using postfile

Read .dta using haven

Create plots using ggplot2

Upload repository to Github

TOBACCO EXPENDITURE

ALCOHOL EXPENDITURE

HEALTH OUT-OF-POCKET EXPENDITURE

Mean share (%) of household expenditure among households reporting

Mean absolute expenditure in 2018 prices (PHP) among households reporting

Highly flexible execution of the Grammar of Graphics

Processed survey data

EXAMPLE

Philippines expenditure data from 229,432 households

Survey data analysis

EXAMPLE

Proportion reporting tobacco expenditure between poor and non-poor households

Analysis results stored using postfile

Read .dta using haven

Create plots using ggplot2

EXAMPLE Dumbbell plots

Upload repository to Github

Data description

- Family Income and Expenditure Survey 2012, 2015, 2018
- Two-stage sampling design:
 - Primary sampling units (PSU): villages (barangays)
 - Secondary sampling units: households within villages
- Stratified by subnational boundaries (region/province by urban/rural status)
- Post-stratification survey weights
- Outcome: reported tobacco expenditure during the year (yes/no)
- Exposure: Poverty status based on the provincial poverty line (poor/non-poor)

Stata variable name

survey

psu

stratum

weight

prev_tobacco

poverty

1. Declare survey design using svyset

clustering variable **psu** (primary sampling unit)

Stata output

Sampling weights: weight

VCE: linearized

Single unit: centered

Strata 1: stratum

Sampling unit 1: psu

FPC 1: <zero>

8

2. Calculate proportions of tobacco expenditure over survey round and poverty status

svyset psu [pweight = weight], strata(stratum) singleunit(centered)

svy: mean prev_tobacco, over(survey poverty)

Stata output			Mean	Linearized std. err.	[95% conf.	interval]
	c.prev_tobacco@survey#poverty					
	2012#No	.528	1905	.0039855	.5203784	.5360025
	2012#Yes	.677	4919	.0064277	.6648929	.6900909
	2015#No	.501	.8166	.0037622	.4944423	.509191
	2015#Yes	.648	35802	.0064525	.6359325	.6612278
	2018#No	.483	88312	.0025353	.4788616	.4888007
	2018#Yes	.593	37887	.0050016	.5839849	.6035925

1. Identify the data structure needed for the plot

Dumbbell plot

visualizes the difference between two groups

Survey	Non-poor	Poor	N
2012			
2015			
2018			

2. Declare the postfile dataset

Name assigned to Stata in internal memory

3. Declare survey design using svyset

clustering variable **psu** (primary sampling unit)

Stata output

Sampling weights: weight

VCE: linearized

Single unit: centered

Strata 1: stratum

Sampling unit 1: psu

FPC 1: <zero>

4. Calculate proportions of tobacco expenditure over survey round and poverty status

postfile dumbbell int survey float (nonpoor poor N) using "dumbbell.dta", replace svyset psu [pweight = weight], strata(stratum) singleunit(centered)

svy: mean prev_tobacco, over(survey poverty)

		Linearized		
į.	Mean	std. err.	[95% conf.	interval]
c.prev_tobacco@survey#poverty				
2012#No	.5281905	.0039855	.5203784	.5360025
2012#Yes	.6774919	.0064277	.6648929	.6900909
2015#No	.5018166	.0037622	.4944423	.509191
2015#Yes	.6485802	.0064525	.6359325	.6612278
2018#No	.4838312	.0025353	.4788616	.4888007
2018#Yes	.5937887	.0050016	.5839849	.6035925

Contains the means

matrices:

 $e(b) : 1 \times 6$

e(V): 6 x 6

e(_N_subp) : 1 x 6

 $e(V_srssub)$: 6 x 6

 $e(V_srs)$: 6 x 6

 $e(N) : 1 \times 6$

Stata output

t							
	 		Mean	Linearized std. err.	[95% conf.	interval]	
	c.prev_tobacco@survey#poverty						
	2012#No	.528	1905	.0039855	.5203784	.5360025	
	2012#Yes	.677	4919	.0064277	.6648929	.6900909	
	2015#No	.501	8166	.0037622	.4944423	.509191	
	2015#Yes	.648	5802	.0064525	.6359325	.6612278	
	2018#No	.483	8312	.0025353	.4788616	.4888007	
	2018#Yes	.593	7887	.0050016	.5839849	.6035925	
							14

matrix list e(b) Stata output

c.pre	c.prev_tob~o@ c.prev_tob~o@ c.prev_tob~o@ c.prev_tob~o@ c.prev_tob~o@ c.prev_tob~o@							
	1.survey#	1.survey#	2.survey#	2.survey#	3.survey#	3.survey#		
	<pre>0.poverty</pre>	<pre>1.poverty</pre>	<pre>0.poverty</pre>	<pre>1.poverty</pre>	<pre>0.poverty</pre>	<pre>1.poverty</pre>		
y1	.52819046	.67749186	.50181664	.64858015	.48383119	.5937887		
	e(b)[1,1]	e(b)[1,2]	e(b)[1,3]	e(b)[1,4]	e(b)[1,5]	e(b)[1,6]		

Stata output

1	•	Linearized			
 	Mean	std. err.	[95% conf.	interval]	
c.prev_tobacco@survey#poverty					
2012#No	.5281905	.0039855	.5203784	.5360025	
2012#Yes	.6774919	.0064277	.6648929	.6900909	
2015#No	.5018166	.0037622	.4944423	.509191	
2015#Yes	.6485802	.0064525	.6359325	.6612278	
2018#No	.4838312	.0025353	.4788616	.4888007	
2018#Yes	.5937887	.0050016	.5839849	.6035925	
					1

ereturn list Stata output (selected)

matrices:

 $e(b) : 1 \times 6$

e(V) : 6 x 6

e(_N_subp) : 1 x 6

 $e(V_srssub)$: 6 x 6

 $e(V_srs): 6 \times 6$

e(N): 1 x 6

Contains the sample size (not in main output)

matrix list e(_N) Stata output

$$e(N)[1,1] + e(N)[1,2]$$

for 2012 sample size

$$e(N)[1,3] + e(N)[1,4]$$

for 2015 sample size

$$e(N)[1,5] + e(N)[1,6]$$

for 2018 sample size

5. Call the results from the relevant matrices and post on the file

```
postfile dumbbell int survey float (nonpoor poor N) using "dumbbell.dta", replace
svyset psu [pweight = weight], strata(stratum) singleunit(centered)
svy: mean prev_tobacco, over(survey poverty)
post dumbbell (2012) (e(b)[1,1]) (e(b)[1,2]) (e(_N)[1,1] + e(_N)[1,2])
post dumbbell (2015) (e(b)[1,3]) (e(b)[1,4]) (e(_N)[1,3] + e(_N)[1,4])
post dumbbell (2018) (e(b)[1,5]) (e(b)[1,6]) (e(_N)[1,5] + e(_N)[1,6])
```


6. Postclose when done

```
postfile dumbbell int survey float (nonpoor poor N) using "dumbbell.dta", replace
svyset psu [pweight = weight], strata(stratum) singleunit(centered)
svy: mean prev_tobacco, over(survey poverty)
post dumbbell (2012) (e(b)[1,1]) (e(b)[1,2]) (e(_N)[1,1] + e(_N)[1,2])
post dumbbell (2015) (e(b)[1,3]) (e(b)[1,4]) (e(_N)[1,3] + e(_N)[1,4])
post dumbbell (2018) (e(b)[1,5]) (e(b)[1,6]) (e(_N)[1,5] + e(_N)[1,6])
postclose dumbbell
```


Analysis results stored using postfile

Postfile commands post results in a Stata dataset

7. Check output

use dumbbell.dta, clear
list

	Stata output	t					
-	+ survey 	nonpoor	poor	N			
1. 2. 3.	2012 2015 2018	.5281904 .5018166 .4838312	.6774918 .6485801 .5937887	40171 41544 147717			
-	++						

<pre>svy: mean prev_tobacco, over(survey poverty) Stata output (selected)</pre>								
 	Mean							
c.prev_tobacco@survey#poverty	c.prev tobacco@survey#poverty							
2012#No	.5281905							
2012#Yes	.6774919							
2015#No	.5018166							
2015#Yes	.6485802							
2018#No	.4838312							
2018#Yes	.5937887 19							


```
# install.packages("haven")  # install if doing this for the first time
library(haven)  # For opening Stata dta files
data <- read_dta("dumbbell.dta")
data</pre>
```

R console output

use d	dumbbell.	dta, clear	/// list	Stata output
	+			
	survey 	nonpoor	poor	N
1.	2012	.5281904	.6774918	40171
2.	2015	.5018166	.6485801	41544
3.	2018	.4838312	.5937887	147717
	+			+

1. Start with the basic plot

```
# install.packages(c("tidyverse", "ggalt"))
library(tidyverse) # Includes ggplot2
library(ggalt)
                       # Dumbbell plot extension of ggplot2
dumbbell <- ggplot(data = data,</pre>
                   aes(y = as.factor(survey),
                       x = nonpoor,
                       xend = poor)) +
            geom_dumbbell()
dumbbell
```


1. Start with the basic plot

```
# install.packages(c("tidyverse", "ggalt"))
library(tidyverse) # Includes ggplot2
library(ggalt)
                        # Dumbbell plot extension of ggplot2
dumbbell <- ggplot(data = data,</pre>
                    aes(y = as.factor(survey);
                                                     2018
                        x = nonpoor
                        xend = poor)) +
                                                    as factor(s
             geom_dumbbell()
dumbbell
                                                                            0.65
                                                                                   22
```


2. Emphasize the plot by adjusting aesthetics

```
dumbbell <- dumbbell +</pre>
  geom_dumbbell(size = 2, color = "gray50"
                    size_x = 6,
                    colour_x = "#024873",
                    size_xend = 6,
                    colour_xend = "#920045")
                                                             as.factor(survey)
dumbbell
                                                              2012 -
                                                                    0.50
                                                                           0.55
                                                                                  0.60
                                                                                         0.65
                                                                                                 23
                                                                              nonpoor
```


3. Finish the plot by applying a theme and additional modifications

axis.title.y = element_blank(),
axis.ticks = element blank(),

dumbbel1

panel.background = element blank())

```
dumbbell <- dumbbell +</pre>
 # Fix the axes
 scale y discrete(name = "", labels = paste0(data$survey, " (N = ", format(data$N, big.mark = ","), ")")) +
 scale x continuous(name = "", limits = c(0.4, 0.8), breaks = seq(0.4, 0.8, 0.2)) +
 # Add percentage labels
                                                                                                                   NONPOOR
                                                                                                                                   POOR
 geom text(aes(x = nonpoor, y = as.factor(survey), label = format(nonpoor*100, digits = 3)),
                                                                                               2018 (N = 147,717)
         color = "#024873", size = 5, vjust = 2) +
                                                                                                                        48.4
                                                                                                                                 59.4
 geom text(aes(x = poor, y = as.factor(survey), label = format(poor*100, digits = 3)),
           color = "#920045", size = 5, vjust = 2) +
   # Add the dot legends
 geom text(data = filter(data, as.factor(survey) == 2018),
                                                                                                2015 (N = 41.544)
         aes(x = nonpoor, y = 3, label = "NONPOOR"),
                                                                                                                          50.2
                                                                                                                                      64.9
         color = "#024873", size = 5, vjust = -1.5, hjust = 0.75, fontface = "bold") +
 geom text(data = filter(data, as.factor(survey) == 2018),
           aes(x = poor, y = 3, label = "POOR"),
           color = "#920045", size = 5, vjust = -1.5, hjust = 0, fontface = "bold") +
 # Add the theme
                                                                                                2012 (N = 40,171)
                                                                                                                            52.8
                                                                                                                                        67.7
 theme(plot.title = element blank(),
       axis.text.x = element blank(),
       axis.text.y = element text(size = 16, color = "black"),
       axis.title.x = element text(face = "bold", size = 16, color = "black"),
```

```
****** Store summary data in a new Stata .dta file and this will be fed into the R code to generate the dumbbell plot
postfile dumbbell str20 (outcome poverty) int survey float (nonpoor poor N) ///
         using "02 Figures\dumbbell.dta", replace
// Run summary statistics commands for prevalence
foreach var of varlist prev tobacco prev alcohol prev health {
         foreach poor of varlist poor_new2015 poor_old2015 {
                   svy: mean `var', over(survey `poor')
                   post \ dumbbell \ ("`var'") \ ("`poor'") \ (2012) \ (e(b)[1,1]) \ (e(b)[1,2]) \ (e(\_N)[1,1] \ + \ e(\_N)[1,2])
                   post dumbbell ("`var'") ("`poor'") (2015) (e(b)[1,3]) (e(b)[1,4]) (e(_N)[1,3] + e(_N)[1,4])
                   post dumbbell ("`var'") ("`poor'") (2018) (e(b)[1,5]) (e(b)[1,6]) (e(N)[1,5] + e(N)[1,6])
// Run summary statistics commands for share and absolute value, subsetting on prevalence
local outcomes group "share tobacco totex share alcohol totex share health totex tobacco 2018 alcohol 2018 health 2018"
local subsets group "prev tobacco prev alcohol prev health prev alcohol prev alcohol prev health"
local n: word count `outcomes group'
forvalues i = 1/`n' {
         local outcomes: word `i' of `outcomes group'
         local subsets: word `i' of `subsets group'
         foreach poor of varlist poor_new2015 poor_old2015 {
                   svy, subpop(`subsets'): mean `outcomes', over(survey `poor')
                   post dumbbell ("`outcomes'") ("`poor'") (2012) (e(b)[1,1]) (e(b)[1,2]) (e(_N)[1,1] + e(_N)[1,2])
                   post dumbbell ("`outcomes'") ("`poor'") (2015) (e(b)[1,3]) (e(b)[1,4]) (e(_N)[1,3] + e(_N)[1,4])
                   post dumbbell ("`outcomes'") ("`poor'") (2018) (e(b)[1,5]) (e(b)[1,6]) (e(N)[1,5] + e(N)[1,6])
postclose dumbbell
```

TOBACCO EXPENDITURE

ALCOHOL EXPENDITURE

HEALTH OUT-OF-POCKET EXPENDITURE

reporting some expenditure

Mean share (%) of household expenditure among households reporting

Mean absolute expenditure in 2018 prices (PHP) among households reporting 26

- 1 Set up pre-requisites
- a. Install Git (git-scm.com/downloads)
- b. Check for the installation of Git in the shell where git (Windows) / which git (Linux/Mac)
- c. Register / sign in on Github (github.com)
- d. Create a new repository

e. Copy the URL via the "Code" button

On RStudio, File > New Project... then select Version Control

Select Git –
Clone a project from a Git repository

Copy the repository URL and identify the local subfolder where the files are housed and click Create Project

Copy any relevant local files into the local subdirectory of the Git repository and they will all appear on the Git tab on RStudio

Stage any file to be uploaded on Github then click Commit

Add a commit message the click Commit then Push

The files will appear on your Github repository

Highly flexible execution of the Grammar of Graphics

Processed survey data

Survey data analysis

Analysis results stored using postfile

Read .dta using haven

Create plots using ggplot2

Upload repository to Github

Visualizing Survey Data Analysis Results: Marrying the Best from Stata and R

The Github repository for this demonstration is found at github.com/neljasonhaw/svydata_viz_stata_to_r

The Github repository for the entire research project used in this demonstration is found at github.com/neljasonhaw/fies_health_inequalities

Nel Jason (Jason) L. Haw, MS

PhD Student, Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health

■ @jasonhaw_

in linkedin.com/in/neljasonhaw