$11a_{355} (K11a_{355})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{21} - 2u^{20} + \dots - 4u + 1 \rangle$$

 $I_2^u = \langle u + 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 22 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{21} - 2u^{20} + \dots - 4u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{9} - 6u^{7} + 11u^{5} - 6u^{3} - u \\ u^{9} - 5u^{7} + 7u^{5} - 4u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{8} - 5u^{6} + 7u^{4} - 4u^{2} + 1 \\ u^{10} - 6u^{8} + 11u^{6} - 6u^{4} - u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2u^{20} - u^{19} + \dots + 7u - 1 \\ 3u^{20} - u^{19} + \dots + 7u - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2u^{20} - u^{19} + \dots + 7u - 1 \\ 3u^{20} - u^{19} + \dots + 7u - 2 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-4u^{19} + 56u^{17} - 320u^{15} + 960u^{13} - 4u^{12} - 1620u^{11} + 36u^{10} + 1528u^9 - 116u^8 - 752u^7 + 160u^6 + 180u^5 - 88u^4 - 36u^3 + 12u^2 + 4u - 22$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_7, c_8, c_9	$u^{21} + 2u^{20} + \dots - 4u - 1$
c_4, c_6	$u^{21} + 3u^{20} + \dots + 4u + 1$
c_5, c_{10}, c_{11}	$u^{21} - 9u^{19} + \dots - 4u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_7, c_8, c_9	$y^{21} - 30y^{20} + \dots + 12y - 1$
c_4, c_6	$y^{21} + 9y^{20} + \dots + 28y - 1$
c_5, c_{10}, c_{11}	$y^{21} - 18y^{20} + \dots + 12y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.06100	-4.92648	-18.3220
u = 1.123400 + 0.187937I	-2.53083 - 3.48480I	-13.9918 + 4.5261I
u = 1.123400 - 0.187937I	-2.53083 + 3.48480I	-13.9918 - 4.5261I
u = -1.180470 + 0.219512I	-7.35950 + 7.22347I	-18.6971 - 5.7555I
u = -1.180470 - 0.219512I	-7.35950 - 7.22347I	-18.6971 + 5.7555I
u = -0.767145	-4.86847	-19.4620
u = 1.26094	-11.2667	-21.9760
u = 0.442657 + 0.446366I	-2.17369 - 4.94044I	-14.7247 + 7.2253I
u = 0.442657 - 0.446366I	-2.17369 + 4.94044I	-14.7247 - 7.2253I
u = -0.341075 + 0.425594I	2.10652 + 1.43336I	-8.34043 - 5.02190I
u = -0.341075 - 0.425594I	2.10652 - 1.43336I	-8.34043 + 5.02190I
u = 0.211742 + 0.464791I	-1.49910 + 1.90309I	-12.01421 + 0.14434I
u = 0.211742 - 0.464791I	-1.49910 - 1.90309I	-12.01421 - 0.14434I
u = 0.310992	-0.471210	-21.0170
u = 1.75628 + 0.01884I	-15.1678 - 0.2987I	-17.7381 - 1.0909I
u = 1.75628 - 0.01884I	-15.1678 + 0.2987I	-17.7381 + 1.0909I
u = -1.76483 + 0.04483I	-13.01580 + 4.45873I	-14.9023 - 3.4290I
u = -1.76483 - 0.04483I	-13.01580 - 4.45873I	-14.9023 + 3.4290I
u = 1.77806 + 0.05536I	-18.1190 - 8.4232I	-19.2385 + 4.5719I
u = 1.77806 - 0.05536I	-18.1190 + 8.4232I	-19.2385 - 4.5719I
u = -1.79531	16.9713	-21.9280

II.
$$I_2^u = \langle u+1 \rangle$$

(i) Arc colorings

$$a_3 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -18

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_5, c_7, c_8 c_9, c_{10}, c_{11}	u-1
c_4, c_6	u

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_5, c_7, c_8 c_9, c_{10}, c_{11}	y-1
c_4, c_6	y

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000	-4.93480	-18.0000

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_7, c_8, c_9	$(u-1)(u^{21} + 2u^{20} + \dots - 4u - 1)$
c_4, c_6	$u(u^{21} + 3u^{20} + \dots + 4u + 1)$
c_5, c_{10}, c_{11}	$(u-1)(u^{21}-9u^{19}+\cdots-4u-1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_7, c_8, c_9	$(y-1)(y^{21}-30y^{20}+\cdots+12y-1)$
c_4, c_6	$y(y^{21} + 9y^{20} + \dots + 28y - 1)$
c_5, c_{10}, c_{11}	$(y-1)(y^{21}-18y^{20}+\cdots+12y-1)$