Rechnernetze

github/bircni

1. Einleitung

Datenübertragung im Internet

- Die Bitübertragungsschicht
 - Bit wird in Form physikalischer Signale übertragen
 - Übertragungsmedien
 - * Kupferkabel elektrische Signale
 - * Glasfaserkabel Lichtpulse (Itensität)
 - * Funkwellen Amplitude, Frequenz
 - Problem: Übertragungsfehler wegen Signalverfälschung
- Die Sicherungsschicht
 - Verantwortlich für zuverlässigen Datenaustausch zwischen direkt verbundenen Rechnern
 - Möglichkeiten: Punkt zu Punkt, Bus, Stern
 - Aufgaben:
 - * Framing: Generierung der Datenpakete
 - * Fehlererkennung: Generierung der Prüfsummen
 - * (Bus)Media-Access-Control (MAC): Wer darf wann senden?
 - * (Stern)Hardware-Adressierung: Eindeutige Adressierung der Interfaces
- Die Vermittlungsschicht (IP)
 - IP ist optimiert f\u00fcr Daten\u00fcbertragung \u00fcber heterogene, nicht zuverl\u00e4ssige Netzwerke
 - * Übertragung erfolgt in Form unabhängiger Pakete
 - * Einheitliches, übergreifendes Adressschema
 - * Keine Mechanismen zur Fehlerbehebung

- Die Transportschicht (TCP)
 - Ziel:
 - * Zuverlässigkeit des Datentransports
 - * Sicherung der Übertragung zwischen Anwendungsprozessen
 - TCP:
 - * Anwendung übergibt Daten an die TCP-Schicht
 - $\ast\,$ korrekter Transport als Aufgabe von TCP

ISO/OSI-Modell

- 7 Schichten
- Jede Schicht definiert Funktionen die als Dienste der nächst höheren Schicht zu Verfügung stehen
- keine Implementierungsvorgaben
- höhere Schicht nutzt die Funktionen der darunter liegenden Schicht
- Prinzip: "Information Hiding"
- Grobstruktur:
 - Schicht 1-3: Netz orientiert, reine Transportfunktionalitäten, Inhalt irrelevant
 - Schicht 4: Verbindet die Netz- und Anwendungsschicht
 - Schicht 5-7: Anwendungs orientiert, Festlegung des Datenaustauschs und Datenformats

7	Anwendungsschicht
6	Darstellungsschicht
5	Sitzungsschicht
4	Transportschicht
3	Vermittlungsschicht
2	Sicherungsschicht
1	Bitübertragungsschicht

• Funktionen der Schichten:

- 1. Bitübertragungsschicht: (Bit-Repräsentation) ermöglicht die Übertragung unstrukturierter Bitsröme; z.B. physikalische Darstellung
- 2. Sicherungsschicht: (Ethernet) dient zur Entdeckung von Übertragungsfehlern und deren Korrektur
- 3. Vermittlungsschicht: (IP) ermöglicht transparente Übertragung der Daten im Netzwerk (Routing)
- 4. Transportschicht: (TCP) Sicherung der Übertragung zw. zwei Anwendungen auf versch. Rechnern
- 5. Sitzungsschicht: (Dialog-Steuerung) sorgt für Synchronisation und den geregelten Dialogablaug zw. zwi Anwendungsprozessen (Login)
- 6. Darstellungsschicht: Umsetzung der Darstellungen der Informationen
- 7. Anwendungsschicht: einzige Zugriffsmöglichkeit der Anwendungsprozesse zur Datenübertragung (Mail,DNS)

2. Datenübertragung

Fourieranalyse

Jede periodische Funktion g(t) mit t (Zeit) und Periode T kann als Überlagerung von Sinus- und Cosinustermen dargestellt werden.

$$g(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left[a_n cos(\omega_n t) + b_n sin(\omega_n t) \right]$$

 a_n und b_n sind Fourierkoeffizienten mit $\omega_n = 2\pi n/T$

Der n-te Summand heißt n-te Harmonische.

Ist g(t) der Spanungsverlust eines elektr. Signals dann ist $(a_n^2 + b_n^2)$ proportional zur Leistung, die bei der Frequenz f_n übertragen wird.

Beispiel-Applet: https://falstad.com/fourier

Dämpfung D

Üblicherweise wird die Dämpfung in der Einheit Dezibel angegeben

$$D_{dB} = 10 * \log_{10}(P_{in}/P_{out})[dB]$$

$$D_{dB} = 20 * \log_{10}(U_{in}/U_{out})[dB]$$

 \rightarrow Unabhängig davon ob Leistung [P] oder Spannung [U] verglichen werden ergibt sich bei der Formel der gleiche Wert. Wird als Einheit dB verwendet, addieren sich die Dämpfungen einzelner Abschnitte.

Bandbreite B

Bandbreite eines Übertragungskanals $B = f_{max} - f_{min}$

- Frequenzbereich der ohne wesentl. Dämpfung übertragen werden kann.
- f_{max} und f_{min} sind dadurch gegeben, dass die außen liegenden Frequenzen unter 50% der leistungsstärksten Frequenzen liegen.

Nyquist-Theorem

Zusammenhang zwischen Bandbreite B und der maximal möglichen Datenrate D eines idealen Übertragungskanals:

$$D = 2 * B * \log_2(N)$$

- \rightarrow B = Bandbreite des Übertragungskanals in [Hz]
- \rightarrow N = Anzahl der möglichen diskreten Signalstufen pro Signaländerung
- \rightarrow D = Datenrate in bps (Bit pro Sekunde)

Beispiel:

 \bullet Binäres Signal mit N=2 und Übertragungskanal mit 3000Hz \to maximal erreichbare Datenrate beträgt 6000 bps

Shannon'scher Kanalkapazitätssatz

- Maximale Datenrate eines realen Datenkanals
 - D hängt vom "Signal-Rausch"-Abstand (SNR) ab

$$D = B * \log_2(1 + SNR)$$

 \rightarrow B = Bandbreite des Übertragungskanals in [Hz]

$$\rightarrow SNR = P_S/P_R$$

 $P_S = \text{mittlere Leistung im Nutzsignal}$

 P_R = mittlere Leistung im Rauschsignal

– Die gebräuchliche Einheit von SNR ist [dB]

$$\rightarrow (SNR)_{dB} = 10 * \log_{10}(SNR)$$

- Beispiel
 - Übertragungskanal mit 3000 Hz (Telefon); $(SNR)_{dB} = 30dB$

$$\rightarrow SNR = 1000$$

 $\rightarrow D = 3000 * \log_2(1 + 1000) \approx 30000 bit/s$

Bitrate vs. Signalgeschwindigkeit

- Signalgeschwindigkeit: Anzahl der Signalwechsel pro Sekunde
 - Die Signalgeschwindigkeit wird in Baud [Bd] angegeben
 - Oft auch als "Baudrate" bezeichnet
- Bit-Rate: Anzahl der übertragenen Bits pro Sekunde
 - Die Bitrate kann größer als die Baudrate werden
 - Für binäre Signalstufe (2-Stufen-Kodierung) gilt: Bitrate = Baudrate
 - Bei Nutzung einer 4-Stufen-Kodierung gilt: Bitrate = 2x Baudrate

Die Ende-zu-Ende-Verzögerung von Datenpaketen

- Zeit: Datenpaketübertragung von Quell-Knoten zu Ziel-Knoten
- Verzögerungsarten die zur Verzögerung beitragen:

$$d_{end-to-end} = \sum_{i=1}^{N} d_{nodal}^{j}$$

- $-\ d_{nodal}^{j}$ bezeichnet die Verzögerung in einem Knoten i
- Die Knoten-Verzögerung d_{nodal}^j setzt sich aus folgenden Anteilen zusammen:

$$d_{nodal}^j = d_{proc}^j + d_{queue}^j + d_{trans}^j + d_{prop}^j$$

- * $d_{proc}^{j} = \text{Verarbeitungsverz\"{o}gerung}$ (processing delay)
- $\ast \ d_{queue}^{j} =$ Warteschlangenverzögerung (queuing delay)
- * $d_{trans}^{j} = \ddot{\mathbf{U}} \mathrm{bertragungsverz\ddot{o}gerung}$ (transmission delay)
- * $d_{prop}^{j} =$ Ausbreitungsverzögerung (propagation delay)

 $\mathbf{t_1} - \mathbf{t_0} = \text{Ausbreitungsverz\"{o}gerung} = \mathbf{d} [m] / \mathbf{s} [m/s]$

 $t_2 - t_1 = Übertragungsverzögerung = L [bit] / R [bps]$

Grundlegende Übertragungstechniken

- Digitale Eingabe, digitale Übertragung: Digitale Leitungscodierung
 - Beispiel: Ethernet
 - \rightarrow Bits werden direkt als digitale Signale auf die Leitung gegeben
 - \rightarrow Einsatz sog. Basisband-Übertragungsverfahren

- Digitale Eingabe, analoge Übertragung: Modulationstechniken
 - Beispiel: DSL-Modemstrecken
 - \rightarrow Binäre Daten werden über eine Trägerwelle übertragen
 - \rightarrow Einsatz sog. breitband-Übertragungsverfahren

Digitale Leitungscodierung

- Direkte Übertragung rechteckförmiger Signale
 - Signal belegt gesamte verfügbare Bandbreite des Übertragungskanals
- Die Zuordnungsvorschrift Datenelement zwischen Signalelement heißt Signal- oder Leitungscodierung
- Die sich ergebende Signaverläufe heißen Signalcodes oder Übertragungscodes
- Erwünschte Eigenschaften von Übertragungscodes:
 - Bittaktrückgewinnung
 - Codierung mehrerer Bits pro Baud (pro Signalwechsel)
 - Vermeidung von Gleichstromanteilen
 - Erkennung von Signalfehlern auf Signalebene
- Beispiele:
 - NRZ (Non Return to Zero)-Codes:
 - Fester Pegel während eines Bitintervalls, Signalwechsel an Intervallgrenzen
 - → Max. 1 Signalwechsel pro Bit
 - → Vorteil: einfach zu implementieren
 - → Nachteil: Gleichstromanteile und Synchronisationsprobleme bei langen "0"-Folgen

Manchester-Codierung

- XOR-Verknüpfung von NRZ-Kodierung mit internem Taktsignal
 - → Codierungsvorschrift: "1" ⇒ Übergang high/low in der Intervallmitte "0" ⇒ Übergang low/high in der Intervallmitte
 - Effizienz nur 50%: Verdoppelt Baudrate gegenüber NRZ (\rightarrow betrachte lange "1"- oder "0"-Folgen…)
 - Jedoch keine Gleichstromanteile; gute Synchronisationseigenschaften
 - → Eingesetzt bei Ethernet (10 Mb)

4B/5B-Kodierung

- Ziel: Ineffizienz der Manchester-Kodierung umgehen, ohne längere Gleichstromanteile zu erzeugen
- Verfahren: Umkodierung der Daten gemäß 4B/5B-Code und Übertragung gemäß NRZI-Signalcode
 - → NRZI-Signalcode verhindert lange "1"-Level-Folgen: 1= Übergang in der Intervallmitte 0= kein Übergang
 - 4B/5B-Codierung vermeidet lange "0"-Folgen: nie mehr als eine führende Null, nie mehr als zwei nachgestellte Nullen
 - → Effizienz 80%

Rechner

Eingesetzt z.B. bei FastEthernet über Glasfaser oder FDDI Übertragungsarten

Parallele Übertragung Daten Rechner Rechner Rechner Masse Masse Strobe Spannung +5V Daten -5V Strobe +5V -5V +5V Busy -5V Zeit

- Synchronisation bei Bit serieller Übertragung
 - Beispiel "RS-232-C"-Schnittstelle
 - * Standart-Schnittstelle zur Übertragung alphanum. Zeichen
 - * Sender und Empfänger sind vor Datenaustausch nicht synchronisiert
 - \rightarrow Sender-/Empfängertakt müssen gleich sein
 - \rightarrow Start/Stop-Verfahren Signalisierung von Anfang/Ende einer Übertragung
 - \rightarrow Sender-Verhalten:

Übertragung von Daten beginnt, sobald Daten anliegen, beliebige Wartezeiten

 \rightarrow Empfänger-Verhalten:

Ständige Empfangsbereitschaft

- * Spezifikationen
 - \rightarrow "1" Signalpegel von -3V bis -15V
 - \rightarrow "0" Signalpegel von +3V bis +15V
 - ightarrow Start-Bit setzt Leitung auf "0" und startet Taktgeber des Empfängers
 - \rightarrow Stop-Bit setzt Leitung auf "1"
- Modulationstechniken
 - Nutzung elektromag. Wellen zur Datenübertragung
 - * Träger wird vom Sender moduliert
 - * Empfänger demoduliert Träger und rekonstruiert Originaldaten
 - Amplitudendarstellung einer Trägerwelle

$$A(t) = A_0 * sin(2\pi ft - \phi)$$

 A_0 : Amplitude; ϕ : Phasenverschiebung;

f = 1/T =Frequenz; T =Schwingungsperiode;