CE/CZ1005 - Digital Logic

Question 1

1)

a) Answer: D6.4E97

Convert to Binary number first: Integer Part:

 $214 = 11010110_{2}$

0100 1110 1001 0111

214 = 11010110. 0100 1110 1001 0111_2

= D6.4E97

b)

Decimal€	Binary€	Grey€	
0€	000€	000€	
1€	001	001	
2€	010€	011~	
3€	011	010€	
4€	100€	110€	
5€	101€	1114	
6€	110€	101€	
7∻	111€	100€	

Grey code change one bit when traversing from one point to another. In a not non-synchronized process, for a normal binary digit system, incrementing or decrementing can leave the number in a variety of intermediary states.

NOR Gate (A+B)'
$$F = ((x + y')' + (w' + z)')$$

$$X$$

$$Y$$

$$NOR$$

$$NOR$$

$$NOR$$

e)

AB/CD [←]	00€	01↔	11~	10€	*
00€	1€	0€	0	10	*
014	0	1€	10	0%	*
11€	00	1€	1€	0~	*
10€	1€	1€	00	16	*

Circle 0

Answer:
$$F = (B' + D)(A+B+D')(B+C'+D')$$

Question 2

2)

There is overflow, the 2 same sign bit added and got an answer with the opposite sign. Add two negative number and get a positive answer indicates that there is overflow.

No overflow

b)

i)
$$X=1$$
 when sum $>= 9$

Sum[3:0]	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	(1	1	1	1
10	0	0	1	1

$$X = sum[3]sum[2] + sum[3]sum[1]$$

Source: https://www.ques10.com/p/15365/implement-single-digit-bcd-adder-using-4-bit-bin-2/

c)

d)

i) Z = 1

Boolean Expression: A'(B' + C') + D'

B = 0 or C = 0 and A = 0 or D = 0, Z produces logic 1.

Z = 0

Boolean Expression: (A + BC)D

B = 1 and C = 1 or A = 1 and D = 1, Z produce logic O

ii)

A	В	C	D	Z
0	0	0	0	1
0	0	0	1	1
0	0	ı	D	1
0	0	- 1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
ſ	1	0	1	0
1	1	1	0	1
1	I	1	1	0

AB

Answer:

$$Z = (A' + D')(B' + C' + D')$$

3)

a)

i)

A[1]	A[0]	B[1]	B[0]	X	Υ
0	0	0	0	0	1
0	0	0	1	0	1
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	① 4	0
0	1	0	1	0	1
0	1	1	0	0	1
0	1	1	1	0	1
1	0	0	0	1 8	0
1	0	0	1	3 9	0
1	0	1	0	0	1
1	0	1	1	0	1
1	1	0	0	12 12	0
1	1	0	1	1 2 13	0
1	1	1	0	(1) 1¥	0
1	1	1	1	0	1

//write the module for the 2-4 decoder

//combinationalcircuit,instantiatedecodermodule

c) It is a 4 input multiplexer with 2 selection pin.


```
d)
  module mux_4to1 ( input [5:0]  X, output reg Y);
  always @ * begin
    case(X [1:0])
        2'b00: out <= X[2];
        2'b01: out <= X[3];
        2'b10: out <= X[4];
        2'b11: out <= X[5];
        endcase
    end
endmodule</pre>
```

4)

a)

i)

b)

i)

В	Current_State	Next_State [1:0]	Х
0	00	00	0
1	00	10	0
0	01	11	0
1	01	10	0
0	10	01	0
1	10	10	0
0	11	00	1
1	11	10	1

cst[1] cst[0] B	Next_State[1]	Next_State[0]
000	0	0
001	1	0
010	1	1
011	1	0
100	0	1
101	1	0
110	0	0
111	1	0

c)

== End of Answers ==

Solver: Yang Yubei

Email: C180052@e.ntu.edu.sg