

Task Grid

Симона мечтает стать безмерно богатой. Ей предложили сыграть игру за большой приз.

Симона начнет игру из клетки (0,0) таблицы A размера $N \times M$, заполненной положительными целыми числами. Она должна попасть в клетку (N-1, M-1). За один ход ей разрешено переместится из текущей клетки (x,y) в любую другую клетку (x+d,y) или (x,y+d), где d>0. За каждый такой ход Симона будет получать приз в размере $|A_{x,y} - A_{x',y'}| - C$ монет, где x',y' - ее новые координаты, а C - постоянная стоимость, фиксированная до начала игры. Если выражение $|A_{x,y} - A_{x',y'}| - C$ оказалось отрицательным числом, Симона теряет монеты. Обратите внимание, что игру можно закончить с отрицательным числом монет.

Помогите Симоне закончить игру с максимальным количеством монет.

Примечание: |a| = a если $a \ge 0$ и |a| = -a, иначе.

1 Implementation details

Вы должны реализовать функцию max profit:

long long max profit(int n, int m, int c, std::vector<std::vector<int>> a)

- *N, M*: размеры таблицы;
- С: фиксированная константа для теста;
- A: вектор векторов целых чисел размера $N \times M$, представляющий числа в таблице (индексированные по строке, затем по столбцу).

Эта функция будет вызвана один раз для каждого теста и должна будет вывести максимальный выигрыш с которым можно закончить игру.

d Constraints

- 1 ≤ N, M
- $N \times M \le 5 \times 10^5$
- $1 \leq A_{i,j} \leq 10^6$ для $0 \leq i < N$ и $0 \leq j < M$
- $0 < C < 10^6$

Подзадача	Баллы	Требуемые подзадачи	Дополнительные ограничения
0	0	_	Примеры.
1	9	_	$N = 1, M \le 200$
2	5	_	$N=1, A_{i,j} \leq A_{i,j+1}$
3	8	_	N=1, C=0
4	10	1	$N = 1, M \le 5 \times 10^4$
5	7	1 - 4	N = 1
6	15	1	$N, M \le 200$
7	9	2	$A_{i,j} \le A_{i+1,j}, A_{i,j+1}$
8	12	3	C = 0
9	12	0-1, 4, 6	$N \times M \le 5 \times 10^4$
10	13	0 - 9	_

Example

Рассмотрим следующий вызов:

В таком случае, оптимальном путем будет $(0,0) \stackrel{7}{\to} (0,2) \stackrel{2}{\to} (1,2) \stackrel{10}{\to} (1,5) \stackrel{8}{\to} (4,5)$ и выигрыш будет равен 7+2+10+8=27. Ваша функция должна вернуть 27.

```
find_sum(2, 2, 100, {{1, 2}, {3, 4}})
```

В этом случае функция должна вернуть: -197. Обратите внимание, что ответ может быть отрицательным.

Nample grader

Формат входных данных следующий:

- 1-ая строка: три целых числа значения N, M и C.
- 2-(N+1)-ые строки: M чисел значения $A_{i,j}$.

Формат выходных данных следующий:

• 1-ая строка: одно число - возвращаемое функцией значение.