Integracja metody LARS z pakietem ROI i analiza jej wydajności

Szymon Kowalik

Kosma Grochowski

Definicja zadania

$$\min_{\beta} \left[\frac{1}{2} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1 \right]$$

gdzie $X \in \mathbb{R}^{m \times n}$, $y \in \mathbb{R}^m$, $\beta \in \mathbb{R}^n$, $0 < \lambda \in \mathbb{R}$

LARS – Leastangle regression

FIG. 3. LARS analysis of the diabetes study: (left) estimates of regression coefficients $\hat{\beta}_j$, $j=1,2,\ldots,10$; plotted versus $\sum |\hat{\beta}_j|$; plot is slightly different than either Lasso or Stagewise, Figure 1; (right) absolute current correlations as function of LARS step; variables enter active set (2.9) in order 3, 9, 4, 7, ..., 1; heavy curve shows maximum current correlation \hat{C}_k declining with k.

ROI – R Optimization Infrastructure

Integracja pakietu LARS z ROI

Rozpatrywany problem w równoważnej postaci kwadratowej:

$$\min_{(\beta,\gamma,t)} \left[\frac{1}{2} \gamma^T \gamma + \lambda \mathbf{1}^T t \right]$$

przy ograniczeniach $y - X\beta = \gamma$

$$-t \le \beta \le t$$

gdzie $\gamma \in \mathbb{R}^n$, $t \in \mathbb{R}^n$.

Integracja pakietu LARS z ROI

Q_objective

przy ograniczeniach $y - X\beta = \gamma$

 $-t \le \beta \le t$

-

L_constraint

$$X\beta + \gamma = y$$
, $0 \le \beta + t$ oraz $\beta - t \le 0$

gdzie $\gamma \in \mathbb{R}^n$, $t \in \mathbb{R}^n$.

V_bound

$$(-\infty, \infty)$$

TABLE 1
Diabetes study: 442 diabetes patients were measured on 10 baseline variables; a prediction model was desired for the response variable, a measure of disease progression one year after baseline

	AGE	SEX x ₂	BMI x ₃	BP x ₄	Serum measurements						Response
Patient	$\mathbf{x_1}$				x ₅	x ₆	x 7	x 8	X 9	x ₁₀	y
1	59	2	32.1	101	157	93.2	38	4	4.9	87	151
2	48	1	21.6	87	183	103.2	70	3	3.9	69	75
3	72	2	30.5	93	156	93.6	41	4	4.7	85	141
4	24	1	25.3	84	198	131.4	40	5	4.9	89	206
5	50	1	23.0	101	192	125.4	52	4	4.3	80	135
6	23	1	22.6	89	139	64.8	61	2	4.2	68	97
÷	:	:	:	:	:	÷	:	:	÷	:	÷
441	36	1	30.0	95	201	125.2	42	5	5.1	85	220
442	36	1	19.6	71	250	133.2	97	3	4.6	92	57

Wyniki - zbiór
diabetyków

Solver	qpOASES	LARS
Długość działania [s]	10.268	0.046
Uzyskane minimum	5 821 850	5 821 850

Tabela 1: Zestawienie wyników działania metod qpOASES i LARS dla zbioru diabetyków

```
sampleSize = 10000
parameterSize = 1000
relevantParameters = 5
# input data
set.seed(42)
x <-data.frame(row.names=1:sampleSize)</pre>
for (i in 1:parameterSize){
   x[i] = rnorm(sampleSize, sample(1:5,1), sample(1:5,1))
x < -as.matrix(x)
expected_beta = c(1,2,3,4,5,6), integer(parameterSize - relevantParameters))
set.seed(1337)
       expected_beta[1] + rnorm(sampleSize,0,5) # random error
for(i in 1:relevantParameters)
   y = y + expected_beta[i+1]*x[1:sampleSize,i]
      1.995875e+00 3.008961e+00 3.975857e+00 5.009184e+00 5.993435e+00 1.667706e-02 4.261603e-02 -1.210468e-02 -6.640612e-02
      2.189152e-04 2.188099e-02 1.568798e-02 1.409422e-02 -2.246953e-02 -1.160973e-02 -1.485064e-02 1.939044e-02 9.835514e-03
      4.285601e-03 1.752309e-03 7.061594e-03 -2.191137e-03 -3.639575e-04 -9.637074e-03 -6.492898e-03 -1.687570e-02 1.696625e-02
      -9.833943e-03 -2.596959e-02 -2.602807e-02 4.090208e-02 -4.462902e-03 2.902277e-03 3.747867e-03 -7.485697e-02 1.967416e-02
      -1.115977e-02 1.302357e-02 -4.980054e-03 -1.072638e-02 -2.070503e-02 8.666690e-03 -1.293163e-02 1.191716e-01 -4.056124e-02
  [46] -9.295164e-02 5.399942e-02 1.614551e-03 -5.134621e-03 -4.791745e-03 2.233274e-02 2.450839e-03 2.016117e-02 1.788676e-07
      1.515971e-02 -3.866086e-02 2.968536e-02 4.128974e-02 -1.548843e-03 -2.799268e-02 2.335621e-02 2.019262e-02 1.474969e-02
      -8.893443e-03 -2.992327e-03 2.033466e-02 -4.780453e-03 4.042948e-02 4.579709e-03 -3.289773e-03 2.617861e-02 -2.515173e-02
                              7.471648e-04 -3.958956e-03 2.369591e-03 -7.484342e-04
                                                                               2.457282e-03 1.097061e-02 -5.142730e-02
      -4.213640e-05 1.074158e-02
      1.011753e-02 -1.686706e-02 -4.373651e-03 1.194226e-02 -3.892990e-02 -3.928281e-02 5.250893e-02 -4.295586e-03 -8.825925e-03
       1.404986e-02 3.581753e-02 2.528565e-03 -2.855080e-02 -1.754234e-02 -7.347552e-02 1.533609e-02 -1.119319e-02
      1.984225e+00 3.006116e+00 3.769562e+00 4.998976e+00 5.937082e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
                              0.000000e+00 8.739340e-03 0.000000e+00
                                                                   0.000000e+00 0.000000e+00
                  0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
                  0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
                                          0.000000e+00 0.000000e+00 0.000000e+00
                                           0.000000e+00 0.000000e+00 0.000000e+00
      2.589573e-04
                              0.000000e+00
                                                      0.000000e+00 0.000000e+00
                                           2.437127e-02
                  0.000000e+00
                              0.000000e+00
                                                       0.000000e+00 0.000000e+00
                                                                               0.000000e+00
                                          0.000000e+00
                               0.000000e+00
                                          0.000000e+00 0.000000e+00 0.000000e+00
                  0.000000e+00
                              0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 2.146420e-02 0.000000e+00
                  0.000000e+00 0.000000e+00 -1.545400e-02 -7.555467e-03 0.000000e+00 0.000000e+00 0.000000e+00
```

Wyniki - zbiór sztucznie wygenerowany

Solver	qpOASES	LARS
Długość działania [s]	_	52.218
Uzyskane minimum	_	4855338257

Tabela 2: Zestawienie wyników działania metod qpOASES i LARS dla zbioru Million Song Dataset. Wyniki metodą qpOASES nie zostały uzyskane ze względu na konieczność alokacji 1.98 TB pamięci, co nie było możliwe na dostępnym sprzęcie.

> lar	s solvedSsolut	ion							
			-0.0764143876	0.0260697824	-0.4862708458	-4.3935856715	-2.3670519570	-0.0641517548	-2.5538759843
[10]	2.2322219931	-7.9036106368	3.6006216701	1.1516981402	0.0121752567	0.0217104520	0.0011421394	0.0239042479	0.0761736594
[19]	0.0515965569	-0.0232086561	0.0727317738	0.0985964690	0.0008668678	0.1886522000	-0.2886676595	0.0005560200	-0.0128450373
[28]	0.0125541121	0.0126541251	0.0432787295	0.0480023564	-0.0003870457	0.0071250983	0.1168424827	0.1246476924	0.0115271259
[37]	-0.0133575340	-0.0099549843	0.0110775638	-0.0036024597	0.0585208117	0.0285495880	0.0514585387	0.0016100830	-0.0444386952
[46]								-0.0478259350	
[55]								-0.0524214290	
[64]	0.0227850008	-0.0268747435	-0.0159599035	-0.0805296612	-0.0102387241	-0.0528189120	-0.0316184212	-0.0144420883	-0.0195038765
[73]	0.0159409156	-0.0602471592	-0.0063217442	0.5778799256	0.0327854095	0.0483628772	0.0389492687	-0.0055737319	0.5107689048
[82]	-0.0323711377	-0.0849152856	-0.0599779835	-0.4040065907	0.1074068547	0.0091730145	0.9893902110	-0.0106387498	0.0351111141

Rysunek 3: Przedstawienie predyktorów dla $\lambda = 0$

> 1a	rs_solved\$solut	ion							
[1]	37.8422134050	-1.2455856329	-0.0963855568	-0.8958187010	0.0000000000	-0.7729077892	0.0000000000	0.0000000000	0.0000000000
[10]	0.0000000000	0.0000000000	0.0000000000	1.0075649415	0.0189157376	0.0150267264	0.0055158094	0.0322303557	0.0756651841
[19]	0.0464350044	0.0000000000	0.1159091095	0.0000000000	0.0000000000	0.2166998300	-0.3210318660	0.0000000000	0.0000000000
	0.0000000000								
	-0.0081218971								
[46]	0.2977076910								
[55]								-0.0347120242	
[64]								-0.0016141190	
[73]								-0.0206150917	
[82]	-0.0589551274	-0.0193331268	-0.0459084594	0.0000000000	0.0516776937	0.0000000000	0.0000000000	-0.0092742202	0.0000000000

Rysunek 4: Przedstawienie predyktorów dla $\lambda = 10e8$

Wyniki - Milion Song Dataset

Wnioski

Metoda LARS daje szybkie i dokładne wyniki nawet dla dużych zbiorów

Zwiększanie współczynnika lambda powoduje redukcję wariancji modelu

Pakiet ROI zapewnia standaryzację użycia implementacji algorytmów optymalizacyjnych Dziękujemy za uwagę:-)