1 GAATTCCCAA AGACAAAatq gattttcaaq tqcaqatttt caqcttcctq 51 ctaatcagtg cctcagtcat aatatccaga ggacaaattg ttctcaccca 101 gtctccagca atcatgtctg catctccagg ggagaaggtc accatgacct 151 gcagtgccag ctcaagtgta agttacatga actggtacca gcagaagtca 201 ggcacctccc ccaaaagatg gatttatgac acatccaaac tggcttctgg 251 agtecetget caetteaggg geagtgggte tgggaeetet taetetetea 301 caatcagcgg catggaggct gaagatgctg ccacttatta ctgccagcag 351 tggagtagta acccattcac gttcggctcg gggacaaagt tggaaataaa 401 coggetgat actgcaccaa ctgtatccat cttcccacca tccagtgage 451 agttaacatc tggaggtgcc tcagtcgtgt gcttcttgaa caacttctac cccaaagaca tcaatgtcaa gtggaagatt gatggcagtg aacgacaaaa 501 551 tggcgtcctg aacagttgga ctgatcagga cagcaaagac agcacctaca 601 gcatgagcag caccctcacg ttgaccaagg acgagtatga acgacataac 651 agctatacct gtgaggccac tcacaagaca tcaacttcac ccattgtcaa 701 gagcttcaac aggaatgagt gtTAGAGACA AAGGTCCTGA GACGCCACCA 751 CCAGCTCCCA GCTCCATCCT ATCTTCCCTT CTAAGGTCTT GGAGGCTTCC CCACAAGCGC tTACCACTGT TGCGGTGCTC tAAACCTCCT CCCACCTCCT 801 851 TCTCCTCCTC CTCCCTTTCC TTGGCTTTTA TCATGCTAAT ATTTGCAGAA 901

Fig. 1(a)

- 1 MDFOVOIFSF LLISASVIIS RGQIVLTQSP AIMSASPGEK VTMTCSASSS
- 51 VSYMNWYQQK SGTSPKRWIY DTSKLASGVP AHFRGSGSGT SYSLTISGME
- 101 AEDAATYYCQ QWSSNPFTFG SGTKLEINRA DTAPTVSIFP PSSEQLTSGG
- 151 ASVVCFLNNF YPKDINVKWK IDGSERQNGV LNSWTDQDSK DSTYSMSSTL
- 201 TLTKDEYERH NSYTCEATHK TSTSPIVKSF NRNEC*

Fig. 1(b)

1 GAATTCCCCT CTCCACAGAC ACTGAAAACT CTGACTCAAC ATGGAAAGGC 51 ACTGGATCTT TCTACTCCTG TTGTCAGTAA CTGCAGGTGT CCACTCCCAG 101 GTCCAGCTGC AGCAGTCTGG GGCTGAACTG GCAAGACCTG GGGCCTCAGT 151 GAAGATGTCC TGCAAGGCTT CTGGCTACAC CTTTACTAGG TACACGATGC 201 ACTGGGTAAA ACAGAGGCCT GGACAGGGTC TGGAATGGAT TGGATACATT 251 AATCCTAGCC GTGGTTATAC TAATTACAAT CAGAAGTTCA AGGACAAGGC 301 CACATTGACT ACAGACAAAT CCTCCAGCAC AGCCTACATG CAACTGAGCA 351 GCCTGACATC TGAGGACTCT GCAGTCTATT ACTGTGCAAG ATATTATGAT 401 GATCATTACT GCCTTGACTA CTGGGGCCAA GGCACCACTC TCACAGTCTC 451 CTCAGCCAAA ACAACAGCCC CATCGGTCTA TCCACTGGCC CCTGTGTGTG 501 GAGATACAAC TGGCTCCTCG GTGACTCTAG GATGCCTGGT CAAGGGTTAT 551 TTCCCTGAGC CAGTGACCTT GACCTGGAAC TCTGGATCCC TGTCCAGTGG 601 TGTGCACACC TTCCCAGCTG TCCTGCAGTC TGACCTCTAC ACCCTCAGCA 651 GCTCAGTGAC TGTAACCTCG AGCACCTGGC CCAGCCAGTC CATCACCTGC 701 AATGTGGCCC ACCCGGCAAG CAGCACCAAG GTGGACAAGA AAATTGAGCC 751 CAGAGGGCCC ACAATCAAGC CCTGTCCTCC ATGCAAATGC CCAGCACCTA 801 ACCTCTTGGG TGGACCATCC GTCTTCATCT TCCCTCCAAA GATCAAGGAT 851 GTACTCATGA TCTCCCTGAG CCCCATAGTC ACATGTGTGG TGGTGGATGT 901 GAGCGAGGAT GACCCAGATG TCCAGATCAG CTGGTTTGTG AACAACGTGG 951 AAGTACACA AGCTCAGACA CAAACCCATA GAGAGGATTA CAACAGTACT 1001 CTCCGGGTGG TCAGTGCCCT CCCCATCCAG CACCAGGACT GGATGAGTGG 1051 CAAGGAGTTC AAATGCAAGG TCAACAACAA AGACCTCCCA GCGCCCATCG 1101 AGAGAACCAT CTCAAAACCC AAAGGGTCAG TAAGAGCTCC ACAGGTATAT 1151 GTCTTGCCTC CACCAGAAGA AGAGATGACT AAGAAACAGG TCACTCTGAC 1201 CTGCATGGTC ACAGACTTCA TGCCTGAAGA CATTTACGTG GAGTGGACCA 1251 ACAACGGGAA AACAGAGCTA AACTACAAGA ACACTGAACC AGTCCTGGAC 1301 TCTGATGGTT CTTACTTCAT GTACAGCAAG CTGAGAGTGG AAAAGAAGAA 1351 CTGGGTGGAA AGAAATAGCT ACTCCTGTTC AGTGGTCCAC GAGGGTCTGC 1401 ACAATCACCA CACGACTAAG AGCTTCTCCC GGACTCCGGG TAAATGAGCT 1451 CAGCACCCAC AAAACTCTCA GGTCCAAAGA GACACCCACA CTCATCTCCA 1501 TGCTTCCCTT GTATAAATAA AGCACCCAGC AATGCCTGGG ACCATGTAAA 1551 AAAAAAAAA AAAGGAATTC

Fig. 2(a)

OKT 3 HEAVY CHAIN PROTEIN SEQUENCE DEDUCED FROM DNA SEQUENCE

```
MERHWIFLLL LSVTAGVHSQ VQLQQSGAEL ARPGASVKMS CKASGYTFTR
  1
    YTMHWVKQRP GQGLEWIGYI NPSRGYTNYN QKFKDKATLT TDKSSSTAYM
 51
101 QLSSLTSEDS AVYYCARYYD DHYCLDYWGQ GTTLTVSSAK TTAPSVYPLA
151 PVCGDTTGSS VTLGCLVKGY FPEPVTLTWN SGSLSSGVHT FPAVLOSDLY
201
    TLSSSVTVTS STWPSQSITC NVAHPASSTK VDKKIEPRGP TIKPCPPCKC
251 PAPNLLGGPS VFIFPPKIKD VLMISLSPIV TCVVVDVSED DPDVQISWFV
301 NNVEVHTAQT QTHREDYNST LRVVSALPIQ HQDWMSGKEF KCKVNNKDLP
351
    APIERTISKP KGSVRAPQVY VLPPPEEEMT KKOVTLTCMV TDFMPEDIYV
401
     EWTNNGKTEL NYKNTEPVLD SDGSYFMYSK LRVEKKNWVE RNSYSCSVVH
     EGLHNHHTTK SFSRTPGK*
451
                                   Fig. 2(b)
            1
                                  23
                                                       42
            NN
                    N
                                    N
                                              N
                                                   N
RES TYPE
            SBspSPESssBSbSsSssPSPSPsPssse*s*p*Pi^ISsSe
Okt3v1
            QIVLTQSPAIMSASPGEKVTMTCSASS.SVSYMNWYQQKSGT
REI
            DIQMTQSPSSLSASVGDRVTITCQASQDIIKYLNWYQQTPGK
            ? ?
              CDR1
                      (LOOP)
              CDR1
                      (KABAT)
                       56
                                                      85
              NN
          N
RES TYPE
          *IsiPpIeesesssSBEsePsPSBSSEsPspsPsseesSPePb
Okt3vl
          SPKRWIYDTSKLASGVPAHFRGSGSGTSYSLTISGMEAEDAAT
REI
          APKLLIYEASNLQAGVPSRFSGSGSGTD<u>Y</u>T<u>F</u>TISSLQPED<u>I</u>AT
              ??
                          CDR2 (LOOP/KABAT)
                         102
                                108
RES TYPE
          PiPIPies**iPIIsPPSPSPSS
                                              Fig. 3
Okt3v1
          YYCQQWSSNPFTFG8GTKLEINR
REIVI
          YYCQQYQSLPYTFGQGTK<u>LQ</u>I<u>T</u>R
```

CDR3 (LOOP)
CRD3 (KABAT)

?

SUBSTITUTE SHEET

NN N

92 N

RES TYPE Okt3vh

KOL

4/15

SESPs SBssS sSSsSpSpSPsPSEbSBssBePiPIpiesss RES TYPE QVQLQQ8GAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQ Okt3h QVQLVESGGGVVQPGRSLRLSCBBSGFIFSSYAMYWVRQAPGK KOL ?? ? CDR1 (LOOP) *** CDR1 (KABAT) 52a 60 65 N N RES TYPE IIeIppp assssss ps pssbspsessesp pspssbsse epb GLEWIGYINPSRGYTNTNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAV Okt3vh GLEWVAIIWDDGSDQHYADSVKGRFTISRDNSKNTLFLQMDSLRPEDTGV KOL ? ? ?? ? CDR2 (LOOP) CDR2 (KABAT)

23 26

32 35 N39

107

113

Line (2) (4) (3) of the material and a second

Fig. 4

PiPIEissssiiisssbibi*EIPIP*spSBSS

OKT 3 HEAVY CHAIN CDR GRAFTS

1. gh341 and derivatives

	1	26	35	39	43	
Okt3vh	QVQLQQSGAELARPGASVKMS	SCKASGYTFTI	RYTMHW	VKQR	PGQ	
gH341	QVQLVESGGGVVQPGRSLRLS	SCSS <u>SGYTFTI</u>	<u>RYTMH</u> W	VRQA	PGK	JA178
gH341A	QVQLV <u>Q</u> SGGGVVQPGRSLRLS	SC <u>KA</u> SGYTFT!	XYTMHW	VRQA	PGK	JA185
gH341E	QVQLV <u>Q</u> SGGGVVQPGRSLRLS	SC <u>KASGYTFTI</u>	NHMTY!	VRQA.	PGK	JA198
gH341*	QVQLV <u>Q</u> SGGGVVQPGRSLRLS	CKASGYTFTI	YTMHW	/RQA	PGK	JA207
gH341*	QVQLVQSGGGVVQPGRSLRLS	C <u>KA</u> SGYTFTI	YTMHW	/RQA	PGK	JA209
gH341D	QVQLV <u>Q</u> SGGGVVQPGRSLRLS	C <u>KASGYTFTI</u>	YTMHW	/RQA	PGK	JA197
gH341*	QVQLVQSGGGVVQPGRSLRLS	CKASGYTFTI	WH <u>WTY</u>	/RQA	PGK	JA199
gH341C	QVQLV <u>Q</u> SGGGVVQPGRSLRLS	C <u>KA</u> SGYTFTE	YTMHW7	/RQA	PGK	JA184
gH341*	QVQLVQSGGGVVQPGRSLRLS	CS <u>ASGYTFTR</u>	<u>YTM</u> HWV	RQAF	PGK	JA203
gH341*	QVQLVESGGGVVQPGRSLRLS	CS <u>ASGYTFTR</u>	YTMHWV	RQAF	GK	JA205
gH341B	QVQLVESGGGVVQPGRSLRLS	CSS <u>SGYTFTR</u>	<u>YTM</u> HWV	RQAF	PGK	JA183
gH341*	QVQLVQSGGGVVQPGRSLRLS	CS <u>ASGYTFTR</u>	<u>YTM</u> HWV	RQAF	PGK	JA204
gH341*	QVQLVESGGGVVQPGRSLRLS	CS <u>ASGYTFTR</u>	<u>YTM</u> HWV	RQAF	'GK	JA206
gH341*	QVQLVQSGGGVVQPGRSLRLS	CS <u>ASGYTFTR</u>	<u>YTM</u> HWV	RQAF	PGK	JA208
KOL	QVQLVESGGGVVQPGRSLRLS	SCSSSGFIFSS	/WYMAY	/RQAI	PGK	

Fig. 5(i)

	44	50		65			83	
Okt3vh	GLEW	IGYINPS	RGYTNYNQK	FKDKATL	TTDKSSS	IOMYAT	LSSLT	
gH341	GLEV	WA <u>YINPS</u>	RGYTNYNOK	<u>FKD</u> RFTI	SRDNSK	ntlflqi	MDSLR	JA 178
gH341A	GLEV	V <u>IGYINPS</u>	SRGYTNYNOK	V <u>KD</u> RĘTI	S <u>T</u> D <u>K</u> SK	<u>STA</u> FLQI	MDSLR	JA18 5
gH341E	GLEW	<u>IGYINPS</u>	<u>RGYTNYNOK</u>	V <u>KD</u> RFTI	S <u>T</u> D <u>K</u> SK <u>S</u>	TAFLON	DSLR	JA198
gH341*	GLÈW	<u>IGYINPS</u>	<u>RGYTNYNOK</u>	V <u>KD</u> RFTI:	s <u>t</u> d <u>k</u> skn	T <u>a</u> flqm	DSLR	JA207
gH341*	GLEW	<u>IGYINPS</u>	<u>RGYTNYNOK</u>	V <u>KD</u> RFTI:	SRDNSKN	T <u>a</u> flom	DSLR	JA209
gH341D	GLEW	<u>IGYINPS</u>	<u>RGYTNYNOK</u>	V <u>KD</u> RFTI:	S <u>T</u> D <u>K</u> SKN	TLFLQM	DSLR	JA197
gH341*	GLEW	<u>IGYINPS</u>	<u>RGYTNYNOK</u>	V <u>KD</u> RFTI	SRDNSKN	TLFLQM	DSLR	JA199
gH341C	GLEW	VA <u>YINPS</u>	RGYTNYNOK!	<u>FKD</u> RFTI	SRDNSKN	TLFLQM	IDSL R	JA184
gH341*	GLEW	<u>IGYINPS</u>	<u>RGYTNYNOK</u>	V <u>KD</u> RFTI:	s <u>t</u> d <u>k</u> sk <u>s</u>	T <u>A</u> FLQM	DSLR	JA207
gH341*	GLEW	<u>IGYINPS</u>	<u>RGYTNYNOK</u>	V <u>KD</u> RFTI:	S <u>T</u> d <u>k</u> sk <u>s</u>	T <u>A</u> FLQM	DSLR	JA205
gH341B	GLEW	<u>IGYINPS</u>	<u>RGYTNYNOK</u>	V <u>KD</u> RFTI:	s <u>t</u> d <u>k</u> sk <u>s</u>	T <u>A</u> FLQM	DSLR.	JA183
gH341*	GLEW	<u>IGYINPS</u>	<u>RGYTNYNOK</u>	V <u>KD</u> RFTI:	S <u>T</u> D <u>K</u> SK <u>S</u>	T <u>A</u> FLQM	DSLR	JA204
gH341*	GLEW	<u>IGYINPS</u>	<u>RGYTNYNOK</u>	V <u>KD</u> RFTI:	S <u>T</u> D <u>k</u> sk <u>s</u>	T <u>A</u> FLQM	DSLR	JA206
gH341*	GLEW	<u>IGYINPS</u>	RGYTNYNOK	V <u>KD</u> RFTI	S <u>T</u> D <u>K</u> SKN	T <u>A</u> FLQM	DSLR	JA208
KOL	GLEW	VAIIWDD	GSDOHYADS'	VKGRFTI	SRDNSKN	TLFLOM	DSLR	

Fig. 5(ii)

	84	. 95	102	113	
Okt3vh	SEDSA	AVYYCARYYDDHY.	CLDYWGQG	TTLTVSS	
gH341	PEDTO	VYFCAR <u>YYDDHY.</u>	CLDYWGQG	TTLTVSS	JA178
gH341A	PEDT	VYYCARYYDDHY.	CLDYWGQG	TTLTVSS	JA185
			•		
gH341E	PEDTO	SVYFCAR <u>YYDDHY.</u>	CLDYWGQG	TTLTVSS	JA198
gH341*	PEDTO	VYFCAR <u>YYDDHY.</u>	CLDYWGQG	TTLTVSS	JA207
gH341D	PEDTO	VYFCAR <u>YYDDHY.</u>	CLDYWGQG	TTLTVSS	JA197
gH341*	PEDTO	VYFCAR <u>YYDDHY.</u>	CLDYWGQG	TTLTVSS	JA209
gH341*	PEDTO	VYFCAR <u>YYDDHY.</u>	CLDYWGQG	TTLTVSS	JA199
gH341C	PEDTO	VYFCAR <u>YYDDHY.</u>	CLDYWGQG	TTLTVSS	JA184
gH341*	PEDT	VYYCARYYDDHY.	CLDYWGQG	TTLTVSS	JA203
gH341*	PEDT	VYYCARYYDDHY.	CLDYWGQG	TTLTVSS	JA205
gH341B	PEDT	VYYCARYYDDHY.	CLDYWGQG	TTLTVSS	JA183
gH341*	PEDTO	VYFCAR <u>YYDDHY.</u>	CLDYWGQG	TTLTVSS	JA204
gH341*	PEDTO	VYFCAR <u>YYDDHY.</u>	CLDYWGQG	TTLTVSS	JA206
gH341*	PEDTO	VYFCAR <u>YYDDHY.</u>	CLDYWGQG	TTLTVSS	JA208
KOL	PEDTO	VYFCARDGGHGFCS	SSASCFGPDYWGQG	TPVTVSS	

Fig. 5(iii)

OKT3 LIGHT CHAIN CDR GRAFTING

1. gL221 and derivatives

	1					24		34	4	2
Okt3vl	QIV	'LTQS	PAIM	SASPG	EKVT	MTCSASS	.svsy	DYWMM	QKSGI	• ~
gL221	DIC	MTQS	PSSL:	SASVG	DRVT	ITC <u>SASS</u>	.svsy	<u>MN</u> WYQ	QTPGK	:
gL221A	<u>O</u> I <u>V</u>	MTQS	PSSL	SASVG	DRVT	ITC <u>SASS</u>	.svsy	<u>MN</u> WYQ	QTPGK	:
gL221B	<u>O</u> IV	MTQS	PSSL:	SASVG	DRVT	ITC <u>SASS</u>	.svsy	<u>MN</u> WYQ	QTPGK	:
gL221C	DIC	MTQS	PSSL	SASVG	DRVT	ITC <u>SASS</u>	.svsy	<u>MN</u> WYQ	QTPGK	
REI	DIC	MTQS	PSSL	SASVG	DRVT	ITCQASQ	DIIKY	LNWYQ	QTPGK	
	43		50	56						85
Okt3v1	SPK	RWIY	DTSK	LASGV	PAHF	RGSGSGT	SYSLT	ISGME	AEDAA	T,
gL221	APK	LLIY	DTSK	<u>Las</u> gv	PSRF	SGSGSGT	DYTFT	ISSLQ	PEDIA	T
gL221A	APK	RWIY	DTSK	<u>Las</u> gv	PSRF	SGSGSGT	DYTFT	ISSLQ	PEDIA	T.
gL221B	APK	<u>RW</u> IY	DTSK	<u>Las</u> gv	PSRF	SGSGSGT	DYTFT	ISSLQ	PEDIA	T.
gL221C	APK	RWIY	DTSK	<u>LAS</u> GV	PSRF	SGSGSGT	DYTFT	ISSLQ	PEDIA	T.
REI	APK	CLLIY	EASN	LQAGV	PSRF	SGSGSGT	DYTFT	ISSLQ	PEDIA	T.
	86	91	96		:	108				
Okt3vl	YYCÇ	QWSS	NPFT	FGSGT	KLEI	NR				
gL221	YYC	OWSS	NPFT.	FGQGT	KLQI'	rr				
gL221A	YYC	OWSS	<u>NPF</u> T	FGQGT	KLQI'	TR		•		
gL221B	YYC	OWSS	NPFT.	FGQGT	KLQI'	rr ·				
gL221C	YYC	OWSS	NPFT	FGQGT	KLQI'	rr				
REI	YYC	QYQS	LPYT	FGQGT	KLQI'	rr -				

CDR'S ARE UNDERLINED

FRAMEWORK RESIDUES INCLUDED IN THE GENE ARE DOUBLE UNDERLINED

Fig. 6

SUBSTITUTE SHEET

SUBSTITUTE SHEET

Fig. 9

SUBSTITUTE SHEET

SUBSTITUTE SHEET

