МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ" НАВЧАЛЬНО-НАУКОВИЙ КОМПЛЕКС "ІНСТИТУТ ПРИКЛАДНОГО СИСТЕМНОГО АНАЛІЗУ"

ЛАБОРАТОРНА РОБОТА №8

з курсу: "Чисельні методи" на тему: «Чисельне диференціювання та інтегрування функцій»

виконав: студент II курсу групи ДА-72 **Кондратюк Т.Є.**

Варіант: № 15

No	Функція	X ₀	Xn	Ручний	Машиний	Рекурентна
				розрахунок	розрахунок	формула
15 si	$n(x)/(x^2+1)$	0	0.5	4	1, 5	4

Порядок виконання роботи:

- 1. Скористатися варіантами завдань з табл 8.1 і для аналітично заданої функції обрати кро розташування вузлів таким чином, щоб на інтервалі знаходилося не більш 5 точок. Визначити 1-у і 2-у похідні функції в утворених вузлах функції, використовуючи для цього несиметричні обернені, несиметричні прямі і симетричні формули диференціювання, визначаючи доцільність застосування тієї чи іншої формули розташуванням вузла функції.
- 2. Записати інтерполяційний поліном (можна скористатися вже отриманим в лабораторній роботі № 7), за допомогою якого знайти 1 і 2 похідні функції, що задана таблицею, у вузлах інтерполяції. Порівняти отримані значення з тими, що були визначені в попередньому пункті.
- 3. За допомогою стандартних операторів Mathematica визначити першу і другу похідні функції і знайти значення похідних у вибраних вузлах. За допомогою цих значень визначити похибки чисельного диференціювання. Зробити висновки про вплив обраної формули диференціювання на рівень похибки.
- 4. Побудувати графіки початкової функції, її першої і другої похідних. Переконатися в додатності функції на визначеному інтервалі, інакше перевизначити інтервали інтегрування таким чином, щоб функція була невід'ємною.
- 5. Згідно з заданою в таблиці формулою для ручного розрахунку, визначити значення інтеграла з точністю не менше 0.05.
- 6. Скласти програми чисельного інтегрування по заданим розрахунковим формулам.
- 7. Обрати крок інтегрування, що забезпечує точність отриманого результату на рівні 0.001;
- 8. Визначити похибку отриманого результату за залишковим членом, за правилом Рунге і за допомогою екстраполяції Річардсона.
- 9. Використовуючи згідно з варіантом завдання рекурентний алгоритм, отримати декілька наближень для заданого інтеграла.
- 10. Скласти звіт на основі отриманих результатів і математичних формул використаних методів у кожному пункті завдання, давши оцінку порівняльної точності отриманих рішень різними методами.

Розрахуємо похідні функції в заданих вузлах, використовуючи формули диференціювання вперед для першого вузла, симетричні формули для другого, третього і четвертого вузлів, формулу диференціювання назад для п'ятого вузла.

```
ln[2] = f[x_] := Sin[x] / (x * x + 1);
                синус
      X = \{0.1, 0.4, 0.7, 1.0, 1.3\};
      h = 0.3;
      Y = f[X]
Out[5]= {0.098845, 0.335705, 0.432361, 0.420735, 0.3582}
 ln[8] = f11 = (Y[[2]] - Y[[1]]) / h
Out[6]= 0.789535
 ln[7] = f12 = (Y[[3]] - Y[[1]]) / (2h)
Out[7]= 0.55586
 ln[8] = f13 = (-Y[[5]] + 8Y[[4]] - 8Y[[2]] + Y[[1]]) / (12h)
Out[8]= 0.116913
 ln[9] = f14 = (Y[[5]] - Y[[3]]) / (2h)
Out[9]= -0.123601
ln[28] = f15 = (Y[[5]] - Y[[4]]) / h
Out[28]= -0.208451
ln[27] = f21 = (Y[[3]] - 2Y[[2]] + Y[[1]]) / (h^2)
Out[27]= -1.55783
ln[28] = f22 = (Y[[1]] - 2Y[[2]] + Y[[3]]) / (h^2)
Out[28]= -1.55783
ln[13] = f23 = (-Y[[1]] + 16Y[[2]] - 30Y[[3]] + 16Y[[4]] - Y[[5]]) / (12 * (h^2))
Out[13]= -1.22668
ln[29] = f24 = (Y[[5]] - 2Y[[4]] + Y[[3]]) / (h^2)
Out[29]= -0.565667
ln[14] = f25 = (2Y[[5]] - 5Y[[4]] + 4Y[[3]] - Y[[2]]) / (h^2)
Out[25]= 0.271785
```

Побудуємо інтерполяційний поліном, знайдемо похідні і розрахуємо значення першої й другої похідної в заданих точках

```
\label{eq:ln[30]:= f2 = Expand[InterpolatingPolynomial[{X[[1]], Y[[1]]}, {X[[2]], Y[[2]]}, \\
            розкр... інтерполяційний многочлен
            {X[[3]], Y[[3]]}, {X[[4]], Y[[4]]}, {X[[5]], Y[[5]]}}, x]
Out[30]= -0.0131179 + 1.20113 \times -0.807268 \times^2 -0.0909096 \times^3 +0.130897 \times^4
ln[31] = FD1 = D[f2, x]
             диференцін
Out[31]= 1.20113 - 1.61454 \times - 0.272729 \times^2 + 0.523588 \times^3
\ln[32] = D1[x] := 1.20113 - 1.61454 * x - 0.272729 * x * x + 0.523588 * x^3;
       PlynD1 = D1[X]
Out[33]= {1.03747, 0.545187, 0.116905, -0.162551, -0.208361}
ln[34] = FD2 = D[f2, \{x, 2\}]
             диференціювати
Out[34]= -1.61454 - 0.545458 x + 1.57076 x<sup>2</sup>
ln[17] = D2[x_] = -1.61454 - 0.545458 * x + 1.57076 * x^2;
       PlynD2 = D2[X]
Out[18]= {-1.65338, -1.5814, -1.22669, -0.589238, 0.330949}
```

Знайдемо похідні за допомогою математичного пакету і розрахуємо значення першої та другої похідних в заданих точках. Побудуємо графіки.

повна похідна

$$\frac{\text{Cos}[x]}{1+x^2} - \frac{2 \, x \, \text{Sin}[x]}{\left(1+x^2\right)^2}$$

In[19] = PFun1[
$$x_1$$
] := $\frac{\cos[x]}{1+x^2} - \frac{2 \times \sin[x]}{(1+x^2)^2}$;

MatcD1 = PFun1[X]

Out[20]= {0.965579, 0.562497, 0.107072, -0.150584, -0.246774}

Dt[f[x], {x, 2}]

повна похідна

$$-\frac{4 \times \text{Cos}[x]}{\left(1+x^2\right)^2} - \frac{\text{Sin}[x]}{1+x^2} + \left(\frac{8 \, x^2}{\left(1+x^2\right)^3} - \frac{2}{\left(1+x^2\right)^2}\right) \, \text{Sin}[x]$$

In[21]:= PFun2[x_] :=
$$-\frac{4 \times \cos[x]}{(1+x^2)^2} - \frac{\sin[x]}{1+x^2} + \left(\frac{8 \times^2}{(1+x^2)^3} - \frac{2}{(1+x^2)^2}\right) \sin[x];$$

MatcD2 = PFun2[X]

**Tut[24]= {-1.67699, -1.69037, -1.21392, -0.540302, 0.247485}

Plot[{f[x], PFun1[x], PFun2[x]}, {x, 0, 1.5}]

графік функції

	Перша похідна			Друга похідна			
xi	Формули диференці ювання	Поліном	Мат. пакет	Формули диференці ювання	Поліном	Мат. пакет	
X1	0.789535	1.03747	0.965579	-1.55783	-1.65338	-1.67699	
X2	0.55586	0.545187	0.562497	-1.55783	-1.5814	-1.69037	
Х3	0.116913	0.116905	0.107072	-1.22688	-1.22669	-1.21392	
X4	-0.123601	-0.162551	-0.150584	-0.565667	-0.589238	-0.540302	
X5	-0.208451	-0.208361	-0.247774	0.271785	0.330949	0.247485	

Розрахунок похибок

Xi	Перша похідна Формули диференціювання	Перша похідна поліном	Друга похідна Формули диференціювання	Друга похідна Поліном
X1	0.176044	0,07189	0,11916	0,02361
X2	0,006637	0,07189	0,13254	0,10897
X3	0,00984	0,00983	0,01296	0,01277
X4	0,02698	0,011967	0,025365	0,048936
X5	0,03932	0,03941	0,0243	0,08346

Розрахуємо шаг для інтегрування методом лівих прямокутників h

Метод лівих прямокутників

```
FindMinimum[PFun2[x], x]

| знайти мінімум

{-1.69154, {x → 0.411423}}

M2 = 1.69154;

H = Sqrt[24 * 0.005 / (0.5 * M2)]

| квадратний корінь

0.376673

H = 0.4;

n = IntegerPart[0.5 / H]

| ціла частина

1

J = H * Sum[f[i * h], {i, 0, n}]
| сума

0.108448
```

```
Метод трапецій і метод Сімпсона
 a = 0;
 b = 0.5;
 Do[q[i] = N[(b-a)/(i+1)];
 оператор … числове наближення
  u[i] = q[i] / 2* (f[a] + 2*Sum[f[a+q[i]*j], {j, i}] + f[b]);
                           сума
  Eps[i] = Abs[(J - u[i])], \{i, 12\}]
          абсолютне значення
 p = TableForm[Table[{i+1, u[i], Eps[i]}, {i, 12}]]
    таблична … таблиця значень
 2
       0.106155 0.00229253
 3
      0.107943 0.0005048
 4
      0.108562 0.000113881
 5
      0.108847 0.000399049
      0.109001 0.000553642
 6
      0.109095 0.000646752
 7
 8
      0.109155 0.000707141
 9
      0.109196 0.000748525
 10 0.109226 0.000778117
 11 0.109248 0.000800006
     0.109264 0.000816652
 12
     0.109277 0.000829605
 13
 n = 64;
 h = (b - a) / (2n);
 JS = N[h/3*(f[a] + 4*Sum[f[a + (2i - 1)*h], \{i, n\}] + 2*Sum[f[a + 2i*h], \{i, n - 1\}] + f[b])]
     числове наближення сума
                                                         сума
  0.109352
  Abs [ J - JS]
  абсолютне значення
  0.000904182
  n = 32; h = (b - a) / (2 * n);
  JS2 = N[h/3*(f[a] + 4*Sum[f[a + (2i-1)*h], {i, n}] + 2*Sum[f[a + 2i*h], {i, n-1}] + f[b])];
       числове наближення сума
         Abs [J - J52]
         абсолютне значенн
   Out[73]= 0.000903218
J – значення інтеграла, розрахованого за допомогою мат.пакету.
Розглянемо метод оцінки погрішності по остаточному члену.
 ln[77] := h = 0.1; c = \{0, 0.1, 0.2, 0.3, 0.4, 0.5\};
       1 = f[c]
Out[78]= {0, 0.098845, 0.191028, 0.271119, 0.335705, 0.38354}
 ln[79] = delta = l[[2]] - l[[1]]
Out[79]= 0.098845
```

Розрахуємо найбільшу кінцеву різницю першого порядку для використання її у

формулі за допомогою якого для даного методу розраховується остаточний член

```
In[80]:= R = (b - a) / 2 * delta
Out[80]= 0.0247112
```

Використаємо метод Рунге для розрахування погрішності про використання метода Сімпсона, були знайденні значення інтеграла цим методом для 64 і 32 інегралів.

```
In[82]:= DeltaRunge = (JS - JS2) / (2^4 - 1)
Out[82]= -6.90579 × 10<sup>-8</sup>
```

Розрахуємо інтеграл, використовуючи рекурентну формулу для методу трапецій

Висновок: У виводі після використання різних формул інтегрування, можемо сазати, що найкращий результат дасть формула інтегрування вищих порядків(в даному випадку — формула Сімпсона). Методи прямокутників і трапецій дали приблизно однакові результати. Рекурентна формула після певної кількості приближень так само отримали потрібний результат.