Inside a layer: Units/Neurons

Notation 1

Layer l, for $1 \leq l \leq L$:

- ullet Produces output vector $\mathbf{y}_{(l)}$
- ullet $\mathbf{y}_{(l)}$ is a vector of $n_{(l)}$ synthetic features

$$n_{(l)} = ||\mathbf{y}_{(l)}||$$

ullet Takes as input $\mathbf{y}_{(l-1)}$, the output of the preceding layer

- $\bullet \;\; \mbox{Layer} \; L$ will typically implement Regression or Classification
- The first (L-1) layers create synthetic features of increasing complexity We will use layer (L+1) to compute a Loss

The input ${f x}$

- Is called "layer 0"
- $\mathbf{y}_{(0)} = \mathbf{x}$

The output $\mathbf{y}_{(L-1)}$ of the penultimate layer (L-1)

 $\bullet\,$ Becomes the input of a Classifier/Regression model at layer L

Our first layer type: the Fully Connected/Dense Layer

Let's look inside layer l (of a particular type called *Fully Connected* or *Dense*)

- ullet Input vector of $n_{(l-1)}$ features: $\mathbf{y}_{(l-1)}$
- ullet Produces output vector or $n_{(l)}$ features $\mathbf{y}_{(l)}$
- $\bullet \;\; \mbox{Feature} \; j \; \mbox{defined} \; \mbox{by the function}$

$$\mathbf{y}_{(l),j} = \sigma(\mathbf{y}_{(l-1)} \cdot \mathbf{W}_{(l),j})$$

Each feature $\mathbf{y}_{(l),j}$ is produced by a unit (neuron)

- $\bullet \;$ There are $n_{(l)}$ units in layer l
- The units are homogenous
 - lacksquare same input $\mathbf{y}_{(l-1)}$ to every unit
 - same functional form for every unit
 - lacksquare units differ only in $\mathbf{W}_{(l),j}$

Units are also sometimes refered to as Hidden Units

- They are internal to a layer.
- From the standpoint of the Input/Output behavior of a layer, the units are "hidden"

The functional form

$$\mathbf{y}_{(l),j} = \sigma(\mathbf{y}_{(l-1)} \cdot \mathbf{W}_{(l),j})$$

is called a Dense or Fully Connected unit.

It is called Fully connected since

- each unit takes as input $\mathbf{y}_{(l-1)}$, all $n_{(l-1)}$ outputs of the preceding layer

The *Fully Connected* part can be better appreciated by looking at a diagram of the connectivity of a *single* unit producing a *single* feature.

A Fully Connected/Dense Layer producing a single feature at layer l computes

$$\mathbf{y}_{(l),1} = a_{(l)} (\mathbf{y}_{(l-1)} \cdot \mathbf{W}_{(l),1}) \, .$$

A function, $a_{(l)}$, is applied to the dot product

- It is called an activation function
- $\bullet\;$ A very common choice for activation function is the sigmoid σ

Fully connected unit, single feature

 $\mathbf{y}_{(l-1)}$ $\mathbf{y}_{(l)}$

A Fully Connected/Dense Layer with multiple units producing multiple feature at layer l computes

$$\mathbf{y}_{(l),j} = a_{(l)}(\mathbf{y}_{(l-1)} \cdot \mathbf{W}_{(l),j})$$

Fully connected, two features

 $\mathbf{y}_{(l-1)}$ $\mathbf{y}_{(l)}$

The edges into each unit of layer l correspond to

- $\mathbf{W}_{(l),1},\mathbf{W}_{(l),2}\dots$
- ullet Separate colors for each units/row of f W

Each unit $\mathbf{y}_{(l),j}$ in layer l creates a new feature using pattern $\mathbf{W}_{(l),j}$

The functional form is of

- A dot product $\mathbf{y}_{(l-1)} \cdot \mathbf{W}_{(l),j}$
 - ${\color{gray}\bullet}$ Which can be thought of matching input $\mathbf{y}_{(l-1)}$ against pattern $\mathbf{W}_{(l),j}$
- Fed into an activation function $\boldsymbol{a}_{(l)}$
 - \blacksquare Here, $a_{(l)}=\sigma$, the $\emph{sigmoid}$ function we have previously encountered in Logistic Regression.

where

- ullet $\mathbf{y}_{(l)}$ is a vector of length $n_{(l)}$
- $\mathbf{W}_{(l)}$ is a matrix

 - $egin{array}{ll} oldsymbol{n}_{(l)} \operatorname{rows} \ oldsymbol{W}_{(l)}^{(j)} \end{array}$
 - $= \mathbf{W}_{(l),j}$

Written with the shorthand Dense(n_l)

We will introduce other types of layers.

- Most will be homogeneous
- Not all will be fully Connected
- The dot product will play a similar role

Non-linear activation

The sigmoid function σ may be the *most significant part* of the functional form

- The dot product is a *linear* operation
- The outputs of sigmoid are non-linear in its inputs

So the sigmoid induces a non-linear transformation of the features $\mathbf{y}_{(l-1)}$

The outer function $a_{(l)}$ which applies a non-linear transformation to linear inputs

- Is called an activation function
- Sigmoid is one of several activation functions we will study

- The operation of a layer does not always need to be a dot production
- The activation function of a layer need not always be the sigmoid

More generically we write a layer as

Layers

$$\mathbf{y}_{(l)} = a_{(l)} \left(f_{(l)}(\mathbf{y}_{(l-1)}, \mathbf{W}_{(l)})
ight)$$

where

- $extbf{ extit{f}}_{(l)}$ is a function of $extbf{ extit{y}}_{(l)-1}$ and $extbf{ extit{W}}_{(l)}$
- $a_{(l)}$ is an activation function

Pattern matching

We again meet our old friend: the dot product.

We have argued that the dot product is nothing more than pattern matching

- ullet $\mathbf{W}_{(l),j}$ is a pattern
- ullet That layer l is trying to match against layer (l-1) output $\mathbf{y}_{(l-1)}$

What then, is the role of the Sigmoid activation in the Dense layer?

The Sigmoid

- converts the intensity of the match (the dot product)
- into the range [0,1]
- which we can interpret as a probability that
 - the input
 - matches the pattern

At the two extremes 0 and 1, the Sigmoid output can be interpreted as a binary test

Does the input match the pattern ?

```
In [4]: print("Done")
```

Done