CS 2210 Data Structures and Algorithms Solution for Assignment I

1. To show that $1/n^2$ is O(1/n), we need to find constants c>0 and $n_0\geq 1$ such that

$$\frac{1}{n^2} \le c \frac{1}{n}, \quad \forall n \ge n_0.$$

(The symbol \forall means "for all".) Since we only consider values $n \geq n_0 \geq 1$ then we can multiply both sides of the above inequality by n^2 to get

$$1 < cn \quad \forall n > n_0.$$

We can now choose, for example, c = 1 and the above inequality becomes

$$1 < n \quad \forall n > n_0.$$

The inequality is true for all values $n \ge 1$, so we can choose $n_0 = 1$.

2. To show that 1/g(n) is O(1/f(n)), we must find constant values c>0 and $n_0\geq 1$ such that

$$\frac{1}{g(n)} \le c \frac{1}{f(n)}, \quad \forall n \ge n_0 \tag{1}$$

To find these values for c and n_0 we use the fact that f(n) is O(g(n)), which means that there are constant values c'>0 and $n'_0\geq 1$ such that

$$f(n) \le c'g(n), \quad \forall n \ge n'_0,$$
 (2)

Since f(n) and g(n) are non-negative functions, if we divide both sides of inequality (2) by $f(n) \times g(n)$ we get

$$\frac{1}{q(n)} \le c' \frac{1}{f(n)} \quad \forall n \ge n'_0. \tag{3}$$

Observe that inequality (3) has the same form as inequality (1), hence we can choose c = c' and $n_0 = n'_0$ noting that c' and n'_0 are constants. Since we have found constant values c and n_0 which make inequality (1) true, then we have shown that f(n)/g(n) is O(1).

3. To show that n-1 is not O(1) we use a proof by contradiction: We assume that n-1 is O(1) and derive a contradiction from this assumption. If n-1 is O(1) then there are constants c>0 and $n_0\geq 1$ for which

$$n-1 \le c, \quad \forall n \ge n_0.$$

Add 1 to both sides of the inequality to get

$$n \le c + 1$$
, for all $n \ge n_0$ (4)

Note that this last inequality cannot be true because c+1 is a constant but n grows without bound, hence it cannot be true that for all values of n larger than any constant n_0 the value of n is at most a constant c. Therefore, since inequality (4) is a contradiction we have shown that n-1 is not O(1).

```
4. public int most_times(int[] A, int n) {
// Input: Array A storing n integer values
// Output: The value that appears the largest number of times in
//A. If several values appear in A the largest number of
// times, the algorithm must return the smallest among these values.
  int pos_max = -1; // Position of the value that appears the maximum number
                    // of times in A
 int max_count = 0; // Number of times that A[pos_max] appears in A
 int count = 0;
 for (int i = 0; i < n; ++i) {
    count = 0;
    for (int j = i; j < n; ++j) // Count the number of times that A[i] appears
                                  // in A[i..n-1]
        if (A[i] == A[j]) ++count;
    // Select the value that appears the maximum number of times, breaking
    // ties in favor of smaller values
    if ((count>max_count) || (count == max_count && A[i] < A[pos_max])) {</pre>
        max_count = count;
        pos_max = i;
 return A[pos_max];
}
```

5. (Proof of termination) The algorithm does not always terminate. Consider an array L storing n integer values and a value x that is not in L. The condition of the first **if** statement (**if** L[i] == x) will never be true, so each iteration of the **while** loop will increase the value of i by 2.

Therefore, the variable i will take values 0, 2, 4, ..., but when i takes value n-1 (if n is odd) or n (if n is even), the second if statement (if $i \ge n-1$) will set the value of the variable i to 1, so in the following iterations of the loop the value of i will be 1, 3, 5, ... This time when i takes value n-1 (when n is even), or n (when n is odd) the second if statement will again set the value of i to 1 and hence the algorithm will never terminate.

- 6. (*Proof of correct output*) We need to prove 2 things:
 - If x is not in L the algorithm must return -1. Note that initially the variable j has value 0 and in each iteration of the while loop the value of j increases by 2 since the condition of the first if statement will always be false, given that x is not in L. We consider two cases.
 - Consider first the case when n is even. The variable j will take values 0, 2, 4, ..., n-2, n; when j=n the condition of the second if statement (if $j \ge n-1$) will

be true, so the value of j will be set to 1. Note that so far the algorithm will have compared the value of x with all values in L stored in even positions of the array. In the following iterations of the while loop the variable j takes values 1, 3, 5, ..., n-1 so the value of x is compared with all values stored in odd positions of the array L. At this point the value of x will have been compared with all values in L and so the value of variable i will be equal to n and therefore the while loop terminates and the algorithm correctly returns the value -1.

- The case when n is odd is very similar. Variable j takes values 0, 2, 4, ..., n-1, 1, 3, 5, ... <math>n-2 and then the while loop terminates. Since x is compared with all values in L, the algorithm will correctly return the value -1.
- If x is in L the algorithm must return the position of x in L. By the above argument, the algorithm compares the value x with all values stored in array L. Therefore if x is in L the condition of the first if statement will be true (if L[j] = x) and therefore the algorithm will correctly return the position i of x in L.
- 7. Here are tables giving possible running times for the algorithms.

n	Linear Search
5	27 ns
10	55 ns
100	496 ns
1000	3498 ns
100000	32843 ns
n	Quadratic Search
5	196 ns
10	774 ns
100	6045 ns
	1.60000
1000	168330 ns

n	Factorial Search
7	2159000 ns
8	11615700 ns
9	52594100 ns
10	540661500 ns
11	6828988100 ns
12	84883873100 ns

16150843 ns

10000