Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) A method of treatment of bacterial infections caused by S.aureus, E.faecalis, M.catarrhalis, or S.pneumoniae in mammals, which method comprises the administration to a mammal in need of such treatment of an effective amount of a compound of formula (I) or a pharmaceutically acceptable derivative thereof:

A-B-(CH₂)_n
$$N - R^4$$

$$Z^{2}$$

$$Z^{3}$$

$$Z^{4}$$

$$N = R^{4}$$

$$(1)$$

wherein:

one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is N or CR^{1a} and the remainder are CH;

R¹ is selected from hydroxy; (C_{1-6}) alkoxy optionally substituted by (C_{1-6}) alkoxy, amino, piperidyl, guanidino or amidino optionally N-substituted by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups, NH2CO, hydroxy, thiol, (C_{1-6}) alkylthio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C_{1-6}) alkylsulphonyloxy; (C_{1-6}) alkoxy-substituted (C_{1-6}) alkyl; halogen; (C_{1-6}) alkyl; (C_{1-6}) alkylthio; trifluoromethyl; nitro; azido; acyl; acyloxy; acylthio; (C_{1-6}) alkylsulphonyl; (C_{1-6}) alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups, or when one of Z¹, Z², Z³, Z⁴ and Z⁵ is N, R¹ may instead be hydrogen;

R^{1a} is selected from hydrogen and the groups listed above for R¹;

R³ is in the 2- or 3-position and is:

carboxy; (C_{1-6}) alkoxycarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{1-6}) alkenylsulphonyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkenyloxycarbonyl or (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl or (C_{2-6}) alkenyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by (C_{1-6}) alkyl, aminocarbonyl; 3-hydroxy-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5-ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by (C_{1-6}) alkyl, or 5-oxo-1,2,4-oxadiazol-3-yl; or

 R^3 is in the 2- or 3-position and is (C₁₋₄)alkyl or ethenyl substituted with any of the groups listed above for R^3 and 0 to 2 groups R^{12} independently selected from:

thiol; halogen; (C₁₋₆)alkylthio; trifluoromethyl; azido; (C₁₋₆)alkoxycarbonyl; (C₁₋₆)alkylcarbonyl; (C₂₋₆)alkenyloxycarbonyl; (C₂₋₆)alkenylcarbonyl; hydroxy optionally substituted by (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkoxycarbonyl, (C₁₋ 6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl, (C2-6)alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋ 6)alkylcarbonyl or (C2-6)alkenylcarbonyl; amino optionally mono- or disubstituted by (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl, (C₂₋ 6)alkenylcarbonyl, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylsulphonyl, (C₂₋ 6)alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl, hydroxy (C₁₋₆)alkyl, aminocarbonyl(C₁₋ 6)alkyl, (C2-6)alkenyl, (C1-6)alkoxycarbonyl, (C1-6)alkylcarbonyl, (C2-6)alkenyloxycarbonyl or (C2-6)alkenylcarbonyl and optionally further substituted by (C₁₋₆)alkyl, hydroxy (C₁₋₆)alkyl, aminocarbonyl(C₁₋₆)alkyl or (C₂₋₆)alkenyl; oxo; (C₁₋₆)alkylsulphonyl; (C₂₋₆)alkenylsulphonyl; or (C₁₋₆)aminosulphonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; provided that when R³ is disubstituted with hydroxy or amino and carboxy containing substituents these may optionally together form a cyclic ester or amide linkage, respectively;

and provided that R^3 is other than (C_{1-4}) alkyl or ethenyl substituted by (C_{1-6}) alkoxycarbonyl or aminocarbonyl optionally substituted by (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl or

 (C_{2-6}) alkenylcarbonyl and optionally further substituted by (C_{1-6}) alkyl, hydroxy (C_{1-6}) alkyl, aminocarbonyl (C_{1-6}) alkyl or (C_{2-6}) alkenyl and 0 to 2 groups R^{12} ;

wherein R¹⁰ is selected from (C₁₋₄)alkyl; (C₂₋₄)alkenyl; aryl; a group R¹² as defined above; carboxy; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylsulphonyl, trifluoromethylsulphonyl, (C₁₋₆)alkenylsulphonyl, (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl or (C₂₋₆)alkenylcarbonyl and optionally further substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; cyano; or tetrazolyl;

 R^4 is a group $-\mathsf{CH}_2\text{-}\mathsf{R}^5$ in which R^5 is selected from:

 $(C_{3-12})\text{alkyl}; \ \text{hydroxy}\ (C_{3-12})\text{alkyl}; \ (C_{1-12})\text{alkoxy}(C_{3-12})\text{alkyl}; \ (C_{1-12})\text{alkoxy}(C_{3-12})\text{alkyl}; \ (C_{1-12})\text{alkyl}; \ (C_{1-12})\text{alkyl}; \ (C_{1-12})\text{alkyl}; \ (C_{1-12})\text{alkyl}; \ (C_{1-12})\text{alkyl}; \ (C_{2-12})\text{alkyl}; \ (C_{2-12})\text{alkyl}; \ (C_{2-12})\text{alkyl}; \ (C_{1-12})\text{alkyl}; \ (C_{1-12})\text{al$

n is 0, 1 or 2;

either A-B is NHC(O)NH or NHC(O)O, or

A is NR¹¹, O, S(O)_X or CR⁶R⁷ and B is NR¹¹, O, S(O)_X or CR⁸R⁹ where x is 0, 1 or 2 and wherein:

each of R⁶, R⁷, R⁸ and R⁹ is independently selected from: H; thiol; (C₁₋₆)alkylthio; halo; trifluoromethyl; azido; (C₁₋₆)alkyl; (C₂₋₆)alkenyl; (C₁₋₆)alkoxycarbonyl; (C₁₋₆)alkylcarbonyl; (C₂₋₆)alkenyloxycarbonyl; (C₂₋₆)alkenylcarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents in R³; (C₁₋₆)alkylsulphonyl; (C₂₋₆)alkenylsulphonyl; or (C₁₋₆)aminosulphonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl or (C₁₋₆)alkenyl; or R⁶ and R⁸ together represent a bond and R⁷ and R⁹ are as above defined;

or R^6 and R^8 together represent -O- and R^7 and R^9 are both hydrogen; or R^6 and R^7 or R^8 and R^9 together represent oxo; and each R^{11} is independently H, trifluoromethyl, (C_{1-6}) alkyl, (C_{1-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{1-6}) alkenyloxycarbonyl, (C_{1-6}) alkenyloxycarbonyl, (C_{1-6}) alkenyloxycarbonyl, (C_{1-6}) alkenyloxycarbonyl, and optionally further substituted by (C_{1-6}) alkyl or (C_{1-6}) alkenyl; provided that A and B cannot both be selected from (C_{1-6}) alkenyl; one of A and B is CO the other is not CO, O or (C_{1-6}) alkyl.

Claims 2-11 (Cancelled).

12. (Original) A pharmaceutical composition for use in the treatment of bacterial infections in mammals comprising a compound of formula (I) as defined in claim 1, or a pharmaceutically acceptable derivative thereof, and a pharmaceutically acceptable carrier.

13. (Cancelled).

- 14. (Previously presented) A method according to claim 1 which comprises administering a compound of formula (I) of claim 1 or a pharmaceutically acceptable derivative thereof wherein \mathbb{R}^3 is other than (C_{1-6}) alkoxycarbonyl; optionally substituted aminocarbonyl, CN or COOH.
- 15. (Previously presented) A method according to claim 1 which comprises administering a compound of formula (I) of claim 1 or a pharmaceutically acceptable derivative thereof in which Z^5 is CH or N and Z^1 - Z^4 are each CH.
- 16. (Previously presented) A method according to claim 1 which comprises administering a compound of formula (I) of claim 1 or a pharmaceutically acceptable derivative thereof in which R^1 is methoxy, amino- or guanidino- (C_{3-5}) alkyloxy, guanidino(C_{3-5})alkyloxy, piperidyl(C_{3-5})alkyloxy, nitro or fluoro, and R^{1a} is hydrogen.
- 17. (Previously presented) A method according to claim 1 which comprises administering a compound of formula (I) of claim 1 or a pharmaceutically

acceptable derivative thereof in which ${\sf R}^3$ is in the 3-position and is ${\sf CH_2CO_2H}$ or 2-oxo-oxazolidinyl.

- 18. (Previously presented) A method according to claim 1 which comprises administering a compound of formula (I) of claim 1 or a pharmaceutically acceptable derivative thereof in which $AB(CH_2)_n$ is $(CH_2)_3$.
- 19. (Previously presented) A method according to claim 1 which comprises administering a compound of formula (I) of claim 1 or a pharmaceutically acceptable derivative thereof in which R^4 is (C_{5-10}) alkyl, unsubstituted phenyl (C_{2-3}) alkyl or unsubstituted phenyl (C_{3-4}) alkenyl.
- 20. (Previously presented) A method according to claim 1 which comprises administering a compound of formula (I) of claim 1 or a pharmaceutically acceptable derivative thereof in which Z^5 is CH or N and Z^1 - Z^4 are each CH; R^1 is methoxy, amino- or guanidino- (C_{3-5}) alkyloxy, guanidino(C_{3-5})alkyloxy, piperidyl(C_{3-5})alkyloxy, nitro or fluoro, and R^{1a} is hydrogen; R^3 is in the 3-position and is CH₂CO₂H or 2-oxo-oxazolidinyl; AB(CH₂)_n is (CH₂)₃; and R^4 is (C₅₋₁₀)alkyl, unsubstituted phenyl(C_{2-3})alkyl or unsubstituted phenyl(C_{3-4})alkenyl.
- 21. (Previously presented) A method according to claim 1 which comprises administering a compound which is:
- [3R, 4R]-1-Heptyl-3-(1-(R or S)-hydroxy-2-cyanoethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;
- [3R, 4R]-1-Heptyl-3-(2-(R or S)-oxo-oxazolidin-5-yl)-4-[3-(6-methoxyquinolin-4-yl) propyl] piperidine;
- [3R, 4R]-1-Heptyl-3-(2-cyanoethyl)-4-[3-(6-methoxyquinolin-4-yl) propyl] piperidine;
- [3R, 4R]-1-Heptyl-3-(3-carboxyethyl)-4-[3-(6-methoxyquinolin-4-yl) propyl] piperidine;
- [3R, 4R]-1-Heptyl-3-carboxy-4-[3-(6-methoxyquinolin-4-yl) propyl] piperidine;
- [3R, 4R]-1-Heptyl-3-(carboxymethyl)-4-[3-(6-methoxyquinolin-4-yl) propyl] piperidine;
- [3R, 4R]-1-Heptyl-3-(1-(R or S)-hydroxy-2-carboxyethyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;
- [3R, 4R]-1-Heptyl-3-(2-(E-)-carboxyethenyl)-4-[3-(6-methoxyquinolin-4-yl)propyl]piperidine;

N-(cis-3-(R/S)-Ethoxycarbonyl-1-heptyl-4-(S/R)-piperidyl)-N'-(6-methoxyquinolin-4-yl)urea;

N-(cis-3-(R/S)-Ethoxycarbonyl-1-heptyl-4-(S/R)-piperidyl)-N'-(6-methoxy-[1,5]-naphthyridin-4-yl)urea;

N-(cis-3-(R/S)-Aminocarbonyl-1-heptyl-4-(S/R)-piperidyl)-N'-(6-methoxy-[1,5]-naphthyridin-4-yl)urea;

[3R, 4R]-1-Heptyl-4-[3-(R/S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]-3-(2-(R or S)-oxo-oxazolidin-5-yl)-piperidine;

[3R, 4R]-1-Heptyl-3-cyanomethyl-4-[3-(R/S)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

[3R, 4R]-1-Heptyl-3-cyanomethyl-4-(2-(R)-hydroxy-3-(6-methoxyquinolin-4-yl)propyl]piperidine;

 $\label{eq:N-constraint} N-(cis-3-(R/S)-Carboxy-1-heptyl-4-(S/R)-piperidyl)-N'-(6-methoxyquinolin-4-yl)urea; cis-3-(R/S)-Ethoxycarbonyl-1-heptyl-4-(S/R)-(6-methoxyquinolin-4-yl)urea; cis-3-(R/S)-Ethoxycarbonyl-1-heptyl-4-(S/R)-(6-methoxyquinolin-4-yl)urea; cis-3-(R/S)-Ethoxycarbonyl-1-heptyl-4-(S/R)-(6-methoxyquinolin-4-yl)urea; cis-3-(R/S)-Ethoxycarbonyl-1-heptyl-4-(S/R)-(6-methoxyquinolin-4-yl)urea; cis-3-(R/S)-Ethoxycarbonyl-1-heptyl-4-(S/R)-(6-methoxyquinolin-4-yl)urea; cis-3-(R/S)-Ethoxycarbonyl-1-heptyl-4-(S/R)-(6-methoxyquinolin-4-yl)urea; cis-3-(R/S)-(R/S$

yl)aminocarbonyl-oxypiperidine;

cis-3-(R/S)-Carboxy-1-heptyl-4-(S/R)-(6-methoxyquinolin-4-yl)aminocarbonyl-oxypiperidine;

a compound of Examples 18 to 36 from Table 1 as depicted below:

Example	A-B	n	R ¹	D	R ³	R ⁴
18	CH ₂ CH ₂	1	CH ₃ O	С	CH ₂ CN	n-heptyl
19	CH(NH ₂)CH ₂	1	CH ₃ O	С	CH ₂ CN	n-heptyl
20	CH ₂ CH ₂	1	CH ₃ O	С	CH ₂ COOH	5-methylhexyl
21	CH(N ₃)CH ₂	1	CH ₃ O	С	CH ₂ CN	n-heptyl
22	CH ₂ CH ₂	1	CH ₃ O	С	CONH ₂	n-heptyl
23	CH ₂ CH ₂	1	CH ₃ O	С	CH ₂ COOH	n-hexyl
24	COCH ₂	1	CH ₃ O	С	CH ₂ CN	n-heptyl
25	CH ₂ CH ₂	1	CH ₃ O	С	CH ₂ CH(CH ₃)COOH	n-heptyl

26	CH ₂ CH ₂	1	CH ₃ O	С	CH ₂ COOH	cinnamyl
	CH ₂ CH ₂		CH ₃ O	С	CH ₂ COOH	3-phenylpropyl
27	C112C112	1	01130	<u> </u>		3-prierry propyr
28	CH(OH)CH2	1	CH ₃ O	С	CH ₂ COOH	n-heptyl
29	CH(NH ₂)CH ₂	1	CH ₃ O	С	CH ₂ COOH	n-heptyl
30	CH(OH)CH ₂	1	CH ₃ O	C	CH(OH)COOH	n-heptyl
31	COCH ₂	1	CH ₃ O	C	CH(OH)COOH	n-heptyl
32	CH ₂ CH(OH)	1	CH ₃ O	C	CH ₂ COOH	n-heptyl
33	NHCO	1	CH ₃ O	Z	CH ₂ COOH	n-heptyl
34	CH ₂ CH ₂	1	ОН	C	CH ₂ COOH	n-heptyl
35	NHCOO	0	CH ₃ O	C	CONH ₂	n-heptyl
36	oxirane	1	CH ₃ O	С	CH ₂ CN	n-heptyl

or a pharmaceutically acceptable derivative of any of the foregoing compounds.

22. (Cancelled).

23. (Previously presented) A pharmaceutical composition comprising a compound of formula (I) of claim 1, or a pharmaceutically acceptable derivative thereof wherein R^3 is other than (C_{1-6}) alkoxycarbonyl; optionally substituted aminocarbonyl, CN or COOH, and a pharmaceutically acceptable carrier.

24. (Cancelled).