pàg. 1 de 2

1. Completa la taula, calculant el corrent I en funció de la tensió V, en un circuit elèctric amb una resistència R de 10 Ω .

$$R = \frac{V}{I}$$

Dibuixa un gràfic on l'eix horitzontal representi la tensió V i l'eix vertical el corrent I.

L'escala de l'eix horitzontal ha de ser de 10 $\frac{V}{cm}$, la de l'eix vertical de 1 $\frac{A}{cm}$.

Tensió V en V	10	30	50	70	90
Corrent <i>I</i> en A					

2. Calcula el resultat.

$$5 - \frac{5}{3} \cdot (\frac{2}{3} \div \frac{-1}{2}) + \frac{3}{18} \cdot \frac{5}{3} = i$$

3. Simplifica les expressions

a)
$$\frac{a^3 \times a^5 \times a^{-2}}{a^5 \times a}$$

b)
$$\frac{b^3 \times a^5 \times c^2}{a^5 \times b^6}$$

Paulino Posada

4. Descompon en factors primers els nombres i simplifica fins obtenir una fracció irreductible

$$\frac{36.525}{126.90} =$$

5. Indica el resultat amb notació científica

a) 5 550 000
$$\cdot$$
 10⁻¹ =

c)
$$3.5 \cdot 10^{-4} \cdot 5 \cdot 10^{5} =$$

d)
$$3.5 \cdot 10^{-4} : 5 \cdot 10^{5} =$$

6. Indica el resultat

a)
$$\sqrt[3]{b} \cdot \sqrt[3]{b} \cdot \sqrt[3]{b} =$$

b)
$$a^{\frac{1}{2}} \cdot a^{\frac{4}{3}} =$$

$$c) \ a^{\frac{1}{2}} \cdot \sqrt[3]{a} =$$