High-Dimensional Probability: Answers, Theorems, and Definitions

Last revised on May 28, 2021

- Companion notes for *High-Dimensional Probability*, by Roman Vershynin. Link to book (PDF available online): www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-book.html.
- **Disclaimer:** These notes compile my answers to the exercises, and lift the required theorems and definitions from the book. I wrote these notes to aid my personal study of the book. Read them at your own risk!*

Contents

0	Appetizer: Using probability to cover a geometric set	2
1	Preliminaries on random variables	9
	1.1 Basic quantities	3
	1.2 Inequalities	3
	1.3 Limits of random variables	9

^{*}Scribe: Alex Bie, alexbie98@gmail.com.

0 Appetizer: Using probability to cover a geometric set

A point $x \in \mathbb{R}^n$ is a **convex combination** of points $x_1, ..., x_m \in \mathbb{R}^n$ if

$$x = \sum_{i=1}^{m} \lambda_i x_i$$
 with each $\lambda_i \ge 0$ and $\sum_{i=1}^{m} \lambda_i = 1$.

The **convex hull** of $T \subseteq \mathbb{R}^n$, conv(T), is the set of all convex combinations of T.

Theorem 0.0.1 (Catheodory's Theorem). Let $x \in \text{conv}(T)$. There exists $k \leq n+1$ points $x_1, ..., x_k \in T$ such that x is a convex combination of $x_1, ..., x_k$.

The result says we can obtain any point in the convex hull of T using at most a dimension-dependent number of points. Let the **diameter** of a set T be defined as $diam(T) = \sup\{||x - y||_2 : x, y \in T\}$.

Theorem 0.0.2 (Approximate Catheodory's Theorem). Let diam(T) = 1. Let $x \in conv(T)$. For any k, there exists k points $x_1, ..., x_k$ such that

$$\left\| x - \frac{1}{k} \sum_{j=1}^{k} x_j \right\|_2 \le \frac{1}{\sqrt{k}}$$

Proof. Suppose |T| = m. We write $x = \sum_{i=1}^{m} \lambda_i x_i$, and interpret λ_i as probabilities. We define the random variable

$$X = x_i$$
 with probability λ_i

for i=1,...,m. We can verify that $\mathbb{E}\,X=\sum_{i=1}^m\lambda_ix_i=x$. Taking $X_1,...,X_k\stackrel{\mathrm{iid}}{\sim}X$. It remains to analyse the quantity $\mathbb{E}\,\|x-\frac{1}{k}\sum_{j=1}^kX_j\|_2^2$.

$$\mathbb{E} \left\| x - \frac{1}{k} \sum_{j=1}^{k} X_j \right\|_2^2 \le \frac{1}{k^2} \mathbb{E} \left\| \sum_{j=1}^{k} X_j - x \right\|_2^2$$

$$= \frac{1}{k^2} \sum_{j=1}^{k} \mathbb{E} \left\| X_j - x \right\|_2^2 \quad \text{by Exercise 0.0.3 (a)}$$

Exercise 0.0.3. Check the following identities for random vectors.

(a) Let $X_1, ..., X_k$ be independent, mean zero random vectors in \mathbb{R}^n . Show that

$$\mathbb{E} \left\| \sum_{j=1}^{k} X_j \right\|_2^2 = \sum_{j=1}^{k} \mathbb{E} \|X_j\|_2^2$$

Solution. \Box

(b) Let X be a random vector in \mathbb{R}^n . Show that

$$\mathbb{E} \|X - \mathbb{E} X\|_{2}^{2} = \mathbb{E} \|X\|^{2} - \|\mathbb{E} X\|_{2}^{2}$$

Solution. \Box

1 Preliminaries on random variables

1.1 Basic quantities

The **expection** of a random variable X is denoted as $\mathbb{E}X$, and **variance** is denoted as $Var(X) = \mathbb{E}(X - \mathbb{E}X)^2$. (We note that the expectation operator \mathbb{E} can be directly defined as the Lebesgue integral of the random variable $X: \Omega \to \mathbb{R}$ in the probability space (Ω, M, μ) .

The **p-th moment** of X is given by $\mathbb{E} X^p$. We also let $||X||_p = (\mathbb{E} X^p)^{\frac{1}{p}}$ denote the **p-norm** of X. For $p = \infty$, we have

$$||X||_{\infty} = \operatorname{ess\,sup} X$$

recalling that the **essential supremum** of a function f is the "smallest value γ such that $\{\omega \in \Omega : |f(\omega)| > \gamma\}$ has measure 0".

From this, we can define the L^p spaces[†], given a probability space (Ω, M, μ)

$$L^p = \{X : ||X||_p < \infty\}$$

Results from measure and integration theory tell us that the $(L^p, \|\cdot\|_p)$ are complete. In the case of L^2 , we have that with the inner product

$$\langle X, Y \rangle = \int_{\Omega} XY(\omega)\mu(\omega)$$

= $\mathbb{E} XY$

 $(L^2, \langle \cdot, \cdot \rangle)$ is a Hilbert space. In this case we can express the **standard deviation** of X as $\sqrt{\operatorname{Var}(X)} = \|X - \mathbb{E} X\|_2$, and the **covariance** of random variable X and Y as

$$Cov(X, Y) = \mathbb{E}(X - \mathbb{E} X)(Y - \mathbb{E} Y) = \langle X - \mathbb{E} X, Y - \mathbb{E} Y \rangle$$

Remark I. n this setting, considering random variables as vectors in L^2 , the covariance between X and Y can be interpreted as the *alignment* between the vectors $X - \mathbb{E}X$ and $Y - \mathbb{E}Y$.

1.2 Inequalities

1.3 Limits of random variables

[†]A technical note is that the objects of L_p are actually equivalence classes of functions [X] with equality almost everywhere, otherwise $\|\cdot\|_p$ is only a semi-norm.