Моделирование с использованием генераторов случайных чисел

Анализ сложности алгоритмов Логинов Сергей НФИмд-01-22

Случайные числа

Главные свойства:

- Нельзя предсказать число до генерации
- Число не связано с другими числами последовательности и не зависит от них
- Числа распределены равномерно (или почти равномерно)

1- график функции плотности распределения вероятностей

2 - гистограмма

Генераторы случайных чисел

	Плюсы	Минусы
Генератор истинных случайных чисел	По-настоящему случайные числа	Сложность эксплуатации, требование внешнего источника а также считывающего устройства
	Практически не задействуется вычислительный ресурс	Долгая и дорогая генерация
Генератор псевдослучайных чисел	Быстрая и недорогая генерация	Псевдослучайность и повторение последовательности в пределе
	Множество алгоритмов	Использование системных ресурсов

Генераторы истинных случайных чисел (ГИСЧ)

- Радиоактивный распад атомов
- Дробовой шум
- Тепловой шум
- Атмосферный шум

Генераторы псевдослучайных чисел (ГПСЧ)

- Линейный конгруэнтный метод
- Метод перемешивания
- Метод квадратичных вычетов
- Blum Blum Shub
- ANSI X9.17
- PGP

• ...

Линейный конгруэнтный метод (ЛКМ)

$$X_{n+1} = (aX_n + c) \bmod m,$$

$$(0 < m < 2^{31} - 1), (0 \le a \le m), (0 \le c \le m)$$

Алгоритм перемешивания

R = 8 bit

$$R_0^* = 10010001_2 = 145_{10}$$

 $R_0^{**} = 101000001_2 = 161_{10}$
 $R_0^* + R_0^{**} = 100110010_2 = 306_{10}$
 $R_1 \text{ (MSB/LSB)} = 00110010_2 = 50_{10}$

Проверка ГСЧ на равномерность

$$m_r \approx 0.5$$
, $D_r \approx 0.0833$, $\sigma_r \approx 0.2887$

$$\chi_{\text{ЭКСП}}^{2} = \sum_{i=1}^{k} \frac{(n_{i} - p_{i} * N)^{2}}{p_{i} * N} = \frac{1}{N} \sum_{i=1}^{k} \left(\frac{n_{i}^{2}}{p_{i}}\right) - N$$

Проверка ГСЧ на независимость

Проверка частоты появления цифры:

- 1. $x_1 = 0.2463389991$, $x_2 = 0.5467766618$.
- 2. X = [2,4,6,3,3,8,9,9,9,1,5,4,6,7,7,6,6,6,1,8]
- 3. $p_{i \text{ Teop}} = 0.1, i \in [0, 9]$
- 4. $p_{i \rightarrow KCII}$ считается по частоте
- 5. $\chi^2_{\text{эксп}}$

ГСЧ в моделировании

- Метод Монте-Карло
- Имитация случайных событий
- Моделирование полной группы несовместных событий
- Моделирование случайных величин
- Моделирование нормального распределения
- Моделирование потоков случайных событий
- Моделирование марковских процессов

ГСЧ в методе Монте-Карло

Использование метода Монте-Карло для исследования систем со случайными параметрами

Имитация случайных событий

Моделирование полной группы несовместных событий

Моделирование случайных величин

Моделирование нормального распределения

Получить последовательность X вида $Norm(m_X, \sigma_X)$

- 1. Генерация n случайных чисел r_i , образующих ряд S,где $m_S = \frac{n}{2}$, $\sigma_S = \sqrt{\frac{n}{12}}$
- 2. z-стандартизация: $z_i = \frac{s_i m_S}{\sigma_S}$
- 3. Сдвиг и масштабирование до требуемого распределения: $x_i = z_i * \sigma_x + m_x$

Моделирование потоков случайных событий

$$P_{m} = \frac{a^{m}e^{-a}}{m!}$$

$$\lambda(t) = const$$

$$P_{m} = \frac{(\lambda \tau)^{m}e^{-\lambda \tau}}{m!}$$

$$P_{m} = \frac{(\lambda \tau)^{0}e^{-\lambda \tau}}{m!}$$

$$P_{0} = \frac{(\lambda \tau)^{0}e^{-\lambda \tau}}{0!} = e^{-\lambda \tau}$$

$$P_{m>0} = 1 - P_{0} = 1 - e^{-\lambda \tau}$$

Алгоритм моделирования потока случайных событий

1.
$$t = 0, N = 0$$

2. Получить r из ГСЧ

3.
$$\tau = -\frac{1}{\lambda} \ln(r)$$

4.
$$t = t + \tau$$

5.
$$N = N + 1$$

- 6. $t \le T$?
- 7. Да возврат к шагу 2, нет конец

Моделирование марковских процессов

Интервалы P_{i1} , P_{i2} , P_{i3} , ... $(P_{i1} + P_{i2} + P_{i3} + ... = 1)$

Пример моделирования марковского процесса

	S ₀	S ₁	S ₂
S ₀	0.45	0.4	0.15
S ₁	0	0.45	0.55
S ₂	0	0	1

Вектор начальных состояний $P_0 = (1, 0, 0)$

Последовательность переходов:

1.
$$r = 0.27, S_0$$

2.
$$r = 0.49, S_1$$

3.
$$r = 0.34, S_1$$

4.
$$r = 0.78, S_2$$