Texture Mapping

Prof. Vladlen Koltun
Computer Science Department
Stanford University

How do we simulate surface detail?

- Store functions in memory buffers and map them onto surfaces
- Functions can be generated through simulation or acquisition from the real world

Enhanced realism

Not just bitmaps

one-dimensional

two-dimensional

three-dimensional

Not really texture

UV mapping

- Associate texture coordinates (u,v) with vertices
- Interpolate within polygons
- Use texture values to determine reflection coefficients

Perspective-correct interpolation essential

linear

perspective-correct

Aliasing

unfiltered filtered

Texture filtering

Minification and magnification

Bilinear filtering

- Instead of rounding interpolated (u,v) coordinates to integer values,
 blend the four adjacent texels. Weigh contributions based on distance.
- Aimed to address aliasing artifacts due to magnification

- Pre-filter the texture map at multiple resolutions, store the hierarchy
- "mip" stands for "multum in parvo", meaning "much in little"
- Aimed to address aliasing artifacts due to minification

- I/3 increase in memory requirements
- Key simplification: approximate the pre-image of a pixel by a square

$$D = \max\left(\sqrt{\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial x}\right)^2}, \sqrt{\left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2}\right) \qquad d = \log D$$

- Hierarchy indexed by mipmap level d, which ranges from 0 to log(w)
- Texture value produced by bilinear interpolation within two mipmap levels adjacent to d, then linear interpolation between the two values

Anisotropic Filtering

Summed-Area Tables

- Precompute an "image" S in which every pixel (x,y) stores the sum of values of all pixels (i,j) in the texture such that $i \le x$ and $j \le y$.
- For each fragment, compute the texture coordinates for the lower left corner and the upper right corner of its pixel: $(u_{ll}, v_{ll}), (u_{ur}, v_{ur})$

Summed-Area Tables

- Precompute an "image" S in which every pixel (x,y) stores the sum of values of all pixels (i,j) in the texture such that $i \le x$ and $j \le y$.
- For each fragment, compute the texture coordinates for the bottom left corner and the upper right corner of its pixel: $(u_{ll}, v_{ll}), (u_{ur}, v_{ur})$

$$\bullet \quad \text{Take} \quad \frac{S(u_{ur},v_{ur})-S(u_{ll},v_{ur})-S(u_{ur},v_{ll})+S(u_{ll},v_{ll})}{(u_{ur}-u_{ll})(v_{ur}-v_{ll})}$$

Even More Accurate Filtering

$$D = \min\left(\sqrt{\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial v}{\partial x}\right)^2}, \sqrt{\left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial v}{\partial y}\right)^2}\right) \qquad d = \log D$$

- Take the mipmap level determined by the shorter edge of the pre-image
- Rasterize the pre-image as line segment
- Slower, but advantageous for narrow elongated pre-images