#### Chrysafis Vogiatzis

Department of Industrial and Enterprise Systems Engineering University of Illinois at Urbana-Champaign

Lecture 10



ISE | Industrial & Enterprise Systems Engineering GRAINGER COLLEGE OF ENGINEERING

©Chrysafis Vogiatzis. Do not distribute without permission of the author





Figure: Throwing 1 die.





Figure: Throwing 1 die.



Figure: Throwing 2 dies.







Figure: Throwing 1 die.



Figure: Throwing 5 dies.



Figure: Throwing 2 dies.







Figure: Throwing 1 die.



Figure: Throwing 5 dies.



Figure: Throwing 2 dies.



Figure: Throwing 10 dies.





# The central limit theorem: attempt 1

#### **Theorem**

Let  $X_i$ , i = 1, ..., n be a series of independent, identically distributed random variables (continuous or discrete, Bernoulli, binomial, geometric, Poisson, exponential, uniform, normal – any of them). Also, define:

- $\blacksquare$   $Y = \sum_{i=1}^{n} X_i / n$  (i.e., as the average of all  $X_i$ ).
- $Z = \sum_{i=1}^{n} X_i$  (i.e., as the summation of all  $X_i$ ).

Then Y and Z follow a normal distribution when n is large enough

- The implication? Say we are measuring some random variable that is an average of independent random variables with same distributions, then it is likely to be normally distributed!
- That's the reason why the normal distribution appears so ofter in real life.



# The central limit theorem: attempt 1

#### **Theorem**

Let  $X_i$ , i = 1, ..., n be a series of independent, identically distributed random variables (continuous or discrete, Bernoulli, binomial, geometric, Poisson, exponential, uniform, normal – any of them). Also, define:

- $\mathbf{Y} = \sum_{i=1}^{n} X_i / n$  (i.e., as the average of all  $X_i$ ).
- $Z = \sum_{i=1}^{n} X_i$  (i.e., as the summation of all  $X_i$ ).

Then Y and Z follow a normal distribution when n is large enough.

- The implication? Say we are measuring some random variable that is an average of independent random variables with same distributions, then it is likely to be normally distributed!
- That's the reason why the normal distribution appears so ofter in real life.



# The central limit theorem: attempt 1

#### **Theorem**

Let  $X_i$ , i = 1, ..., n be a series of independent, identically distributed random variables (continuous or discrete, Bernoulli, binomial, geometric, Poisson, exponential, uniform, normal – any of them). Also, define:

- $\blacksquare$   $Y = \sum_{i=1}^{n} X_i / n$  (i.e., as the average of all  $X_i$ ).
- $Z = \sum_{i=1}^{n} X_i$  (i.e., as the summation of all  $X_i$ ).

Then Y and Z follow a normal distribution when n is large enough.

- The implication? Say we are measuring some random variable that is an average of independent random variables with same distributions, then it is likely to be normally distributed!
- That's the reason why the normal distribution appears so ofter in real life.



### **Example**

The time you have to wait for a bus every day is uniformly distributed between 0 and 4 minutes. What is the probability you have to wait for more than 3 minutes for the bus today?

**Answer**: Based on our knowledge of the uniform distribution, the probability is  $\frac{1}{4} = 0.25$ .

#### Example

The time you have to wait for a bus every day is uniformly distributed between 0 and 4 minutes. What is the probability you have to wait for more than 3 minutes for the bus on average in the next 300 days?

**Answer**: We can now use the central limit theorem, as 300 days is a big enough sample. Hence, we know that the average time you have to wait for the bus is normally distributed!



### **Example**

The time you have to wait for a bus every day is uniformly distributed between 0 and 4 minutes. What is the probability you have to wait for more than 3 minutes for the bus today?

**Answer**: Based on our knowledge of the uniform distribution, the probability is  $\frac{1}{4} = 0.25$ .

#### Example

The time you have to wait for a bus every day is uniformly distributed between 0 and 4 minutes. What is the probability you have to wait for more than 3 minutes for the bus on average in the next 300 days?

**Answer**: We can now use the central limit theorem, as 300 days is a big enough sample. Hence, we know that the average time you have to wait for the bus is normally distributed!



### **Example**

The time you have to wait for a bus every day is uniformly distributed between 0 and 4 minutes. What is the probability you have to wait for more than 3 minutes for the bus today?

**Answer**: Based on our knowledge of the uniform distribution, the probability is  $\frac{1}{4} = 0.25$ .

### **Example**

The time you have to wait for a bus every day is uniformly distributed between 0 and 4 minutes. What is the probability you have to wait for more than 3 minutes for the bus on average in the next 300 days?

**Answer**: We can now use the central limit theorem, as 300 days is a big enough sample. Hence, we know that the average time you have to wait for the bus is normally distributed!





#### **Example**

The time you have to wait for a bus every day is uniformly distributed between 0 and 4 minutes. What is the probability you have to wait for more than 3 minutes for the bus today?

**Answer**: Based on our knowledge of the uniform distribution, the probability is  $\frac{1}{4} = 0.25$ .

#### Example

The time you have to wait for a bus every day is uniformly distributed between 0 and 4 minutes. What is the probability you have to wait for more than 3 minutes for the bus on average in the next 300 days?

**Answer**: We can now use the central limit theorem, as 300 days is a big enough sample. Hence, we know that the average time you have to wait for the bus is normally distributed!

we'll see later how to compute this probability.

#### Theorem

Let  $X_i$ ,  $i=1,\ldots,n$  be a series of independent, identically distributed random variables with expected value  $E[X_i] = \mu$  and variance  $Var[X_i] = \sigma^2$ . Define  $Z = \sum_{i=1}^n X_i$  (i.e., as the summation of all random variables  $X_i$ ) and  $Y = \sum_{i=1}^n X_i/n$  (i.e., as the average of all  $X_i$ ). Then:

**Z** follows a normal distribution when n is large enough with parameters  $\mu_Z = \sum_{i=1}^{n} E[X_i] = n \cdot \mu$  and  $\sigma_Z^2 = \sum_{i=1}^{n} Var[X_i] = n \cdot \sigma^2$ .

$$Z \sim \mathcal{N}\left(n \cdot \mu, n \cdot \sigma^2\right)$$
.

Y tollows a normal distribution when n is large enough with parameters  $\mu_Y = \frac{1}{n} \sum_{i=1}^n E[X_i] = \mu \text{ and } \sigma_2^2 = \frac{1}{n} \sum_{i=1}^n Var[X_i] = \frac{\sigma^2}{n}.$ 

$$Y \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$
.

#### **Theorem**

Let  $X_i$ ,  $i=1,\ldots,n$  be a series of independent, identically distributed random variables with expected value  $E[X_i]=\mu$  and variance  $Var[X_i]=\sigma^2$ . Define  $Z=\sum\limits_{i=1}^n X_i$  (i.e., as the summation of all random variables  $X_i$ ) and  $Y=\sum\limits_{i=1}^n X_i/n$  (i.e., as the average of all  $X_i$ ). Then:

**Z** follows a normal distribution when n is large enough with parameters  $\mu_Z = \sum_{i=1}^{n} E[X_i] = n \cdot \mu$  and  $\sigma_Z^2 = \sum_{i=1}^{n} Var[X_i] = n \cdot \sigma^2$ .

$$Z \sim \mathcal{N}\left(\mathbf{n} \cdot \boldsymbol{\mu}, \mathbf{n} \cdot \boldsymbol{\sigma}^2\right).$$

Y follows a normal distribution when n is large enough with parameters  $\mu_Y = \frac{1}{n} \sum_{i=1}^n E\left[X_i\right] = \mu$  and  $\sigma_Z^2 = \frac{1}{n} \sum_{i=1}^n Var\left[X_i\right] = \frac{\sigma^2}{n}$ .

$$Y \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$
.

#### **Theorem**

Let  $X_i$ ,  $i=1,\ldots,n$  be a series of independent, identically distributed random variables with expected value  $E[X_i]=\mu$  and variance  $Var[X_i]=\sigma^2$ . Define  $Z=\sum\limits_{i=1}^n X_i$  (i.e., as the summation of all random variables  $X_i$ ) and  $Y=\sum\limits_{i=1}^n X_i/n$  (i.e., as the average of all  $X_i$ ). Then:

■ *Z* follows a normal distribution when *n* is large enough with parameters  $\mu_Z = \sum_{i=1}^n E[X_i] = n \cdot \mu$  and  $\sigma_Z^2 = \sum_{i=1}^n Var[X_i] = n \cdot \sigma^2$ .

$$Z \sim \mathcal{N}\left(\mathbf{n} \cdot \mathbf{\mu}, \mathbf{n} \cdot \mathbf{\sigma}^2\right)$$
.

Y follows a normal distribution when n is large enough with parameters  $\mu_Y = \frac{1}{n} \sum_{i=1}^n E\left[X_i\right] = \mu$  and  $\sigma_Z^2 = \frac{1}{n} \sum_{i=1}^n Var\left[X_i\right] = \frac{\sigma^2}{n}$ .

$$Y \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$
.



### **Example**

The time you have to wait for a bus every day is uniformly distributed between 0 and 4 minutes. What is the probability you have to wait for more than or equal to 2.2 minutes for the bus on average in the next 300 days?

**Answer**: We can now fully use the central limit theorem.

- Average time you wait for the bus is normally distributed.
- Each of the times you wait for the bus has mean 2 minutes and variance  $\frac{4}{3}$  minutes<sup>2</sup>.
- Hence, the average time you wait for the bus is  $\mathcal{N}(2, \frac{4}{900})$ . We are looking for P(T > 2.2) = 1 P(T < 2.2). First let us convert to the proper z value:

$$Z = \frac{X - \mu}{\sigma} = \frac{2.2 - 2}{2/30} = 3$$

Looking at the z-table:

 $P(T < 2.2) = 0.9987 \implies P(T \ge 2.2) = 1 - 0.9987 = 0.0013.$ 

### **Example**

The time you have to wait for a bus every day is uniformly distributed between 0 and 4 minutes. What is the probability you have to wait for more than or equal to 2.2 minutes for the bus on average in the next 300 days?

**Answer**: We can now fully use the central limit theorem.

- Average time you wait for the bus is normally distributed.
- Each of the times you wait for the bus has mean 2 minutes and variance  $\frac{4}{3}$  minutes<sup>2</sup>.
- Hence, the average time you wait for the bus is  $\mathcal{N}(2, \frac{4}{900})$ .

We are looking for P(T > 2.2) = 1 - P(T < 2.2). First let us convert to the proper z value:

$$Z = \frac{X - \mu}{\sigma} = \frac{2.2 - 2}{2/30} = 3$$

Looking at the z-table:

 $P(T < 2.2) = 0.9987 \implies P(T \ge 2.2) = 1 - 0.9987 = 0.0013.$ 

### **Example**

The time you have to wait for a bus every day is uniformly distributed between 0 and 4 minutes. What is the probability you have to wait for more than or equal to 2.2 minutes for the bus on average in the next 300 days?

**Answer**: We can now fully use the central limit theorem.

- Average time you wait for the bus is normally distributed.
- Each of the times you wait for the bus has mean 2 minutes and variance  $\frac{4}{3}$  minutes<sup>2</sup>.
- Hence, the average time you wait for the bus is  $\mathcal{N}(2, \frac{4}{900})$ .

We are looking for P(T > 2.2) = 1 - P(T < 2.2). First let us convert to the proper z value:

$$Z = \frac{X - \mu}{\sigma} = \frac{2.2 - 2}{2/30} = 3$$

Looking at the z-table:

 $P(T < 2.2) = 0.9987 \implies P(T \ge 2.2) = 1 - 0.9987 = 0.0013.$ 

### **Example**

The time you have to wait for a bus every day is uniformly distributed between 0 and 4 minutes. What is the probability you have to wait for more than or equal to 2.2 minutes for the bus on average in the next 300 days?

**Answer**: We can now fully use the central limit theorem.

- Average time you wait for the bus is normally distributed.
- Each of the times you wait for the bus has mean 2 minutes and variance  $\frac{4}{3}$  minutes<sup>2</sup>.
- Hence, the average time you wait for the bus is  $\mathcal{N}(2, \frac{4}{900})$ .

We are looking for P(T > 2.2) = 1 - P(T < 2.2). First let us convert to the proper z value:

$$Z = \frac{X - \mu}{\sigma} = \frac{2.2 - 2}{2/30} = 3$$

Looking at the z-table:

$$P(T < 2.2) = 0.9987 \implies P(T \ge 2.2) = 1 - 0.9987 = 0.0013.$$