29/04/2020

Bel(yn/
$$\delta(w^Tx_n)$$
) = $\delta(w^Tx_n)^{y_n} (1 - \delta(w^Tx_n))^{1-y_n}$
(og (Ber (yn/ $\delta(w^Tx_n)$) = $y_n \log(w^Tx_n) + (1-y_n)\log(1-\delta(w^Tx_n))$
 $1 - \frac{1}{1+\bar{e}^{w^Tx}} = \frac{1}{1+\bar{e}^{w^Tx}} = \frac{1}{1+\bar{e}^{w^Tx}}$

The following table lists a dataset of the scores students achieved on an exam described in terms of whether the student studied for the exam (Studied) and the energy level of the lecturer when grading the student's exam (Energy)

ID	Studied	Energy	Score
1	yes	tired	65
2	no	alert	20
3	yes	alert	90
4	yes	tired	70
5	no	tired	40
6	yes	alert	85
7	no	tired	35

Which of the two descriptive features should we use as the testing criterion at the root node of a decision tree to predict students' scores?

- A. Studied
- **B.** Energy

```
In [79]: studied_no = np.array([20, 40, 35])
In [80]: studied_yes = np.array([65, 90, 70, 85])
In [81]: energy_tired = np.array([65, 70, 40, 35])
In [82]: energy_alert = np.array([20, 90, 85])
In [83]: (4/7)*np.var(studied_yes, ddof=1) + (3/7)*np.var(studied_no, ddof=1)
Out[83]: 127.38095238095238
In [84]: (4/7)*np.var(energy_tired, ddof=1) + (3/7)*np.var(energy_alert, ddof=1)
Out[84]: 829.7619047619047
```