Amazon.com - Employee Access. Classification model

By: Rajesh Sahu 20223076 MCA Third Semester

In [1]:

```
#Importing Required Libraries
2 import numpy as np
3 import pandas as pd
4 import matplotlib.pyplot as plt
  import seaborn as sns
```

In [2]:

ng Dataset =2pd.read_csv('/Users/rajeshsahu/Desktop/Data Science Learning/DataSciencePython Pro

In [3]:

- #printing dataset dataset
- Out[3]:

	ACTION	RESOURCE	MGR_ID	ROLE_ROLLUP_1	ROLE_ROLLUP_2	ROLE_DEPTNAME	F		
0	1	39353	85475	117961	118300	123472			
1	1	17183	1540	117961	118343	123125			
2	1	36724	14457	118219	118220	117884			
3	1	36135	5396	117961	118343	119993			
4	1	42680	5905	117929	117930	119569			
32764	1	23497	16971	117961	118300	119993			
32765	1	25139	311198	91261	118026	122392			
32766	1	34924	28805	117961	118327	120299			
32767	1	80574	55643	118256	118257	117945			
32768	1	14354	59575	117916	118150	117920			
32769 rows × 10 columns									

In [4]:

```
#printing Info of dataset
dataset.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 32769 entries, 0 to 32768 Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	ACTION	32769 non-null	int64
1	RESOURCE	32769 non-null	int64
2	MGR_ID	32769 non-null	int64
3	ROLE_ROLLUP_1	32769 non-null	int64
4	ROLE_ROLLUP_2	32769 non-null	int64
5	ROLE_DEPTNAME	32769 non-null	int64
6	ROLE_TITLE	32769 non-null	int64
7	ROLE_FAMILY_DESC	32769 non-null	int64
8	ROLE_FAMILY	32769 non-null	int64
9	ROLE_CODE	32769 non-null	int64

dtypes: int64(10) memory usage: 2.5 MB

In [5]:

```
#Describing dataset
dataset.describe()
```

Out[5]:

	ACTION	RESOURCE	MGR_ID	ROLE_ROLLUP_1	ROLE_ROLLUP_2	ROLE_[
count	32769.000000	32769.000000	32769.000000	32769.000000	32769.000000	32
mean	0.942110	42923.916171	25988.957979	116952.627788	118301.823156	118
std	0.233539	34173.892702	35928.031650	10875.563591	4551.588572	18
min	0.000000	0.000000	25.000000	4292.000000	23779.000000	4
25%	1.000000	20299.000000	4566.000000	117961.000000	118102.000000	118
50%	1.000000	35376.000000	13545.000000	117961.000000	118300.000000	118
75%	1.000000	74189.000000	42034.000000	117961.000000	118386.000000	120
max	1.000000	312153.000000	311696.000000	311178.000000	286791.000000	286

In [6]:

```
#finding correlation between all the features
corr_df = dataset.corr(method='pearson')
```

In [7]:

```
#printing correlation metrix
corr df
```

Out[7]:

	ACTION	RESOURCE	MGR_ID	ROLE_ROLLUP_1	ROLE_ROLLUP_2	ROL
ACTION	1.000000	0.000185	-0.005167	-0.013702	0.005179	
RESOURCE	0.000185	1.000000	0.011088	-0.005016	0.013438	
MGR_ID	-0.005167	0.011088	1.000000	-0.007132	-0.000364	
ROLE_ROLLUP_1	-0.013702	-0.005016	-0.007132	1.000000	0.033358	
ROLE_ROLLUP_2	0.005179	0.013438	-0.000364	0.033358	1.000000	
ROLE_DEPTNAME	0.001025	0.030004	-0.009551	-0.009548	-0.006056	
ROLE_TITLE	-0.010169	0.002936	0.017864	0.010207	0.008305	
ROLE_FAMILY_DESC	0.003565	0.021029	-0.018488	-0.007546	0.018873	
ROLE_FAMILY	0.000502	0.031060	-0.118254	0.029468	0.069558	
ROLE_CODE	0.017147	0.007733	-0.004067	-0.024927	0.015117	

In [8]:

```
plt.figure(figsize=(13,7))
2
  sns.heatmap(corr df,annot=True,fmt='0.1g',linecolor='black',linewidths=1).set(ti
  plt.show()
```


None of the feature is highly correlated with others.

In [9]:

```
#plotting Actions
sns.catplot(data=dataset,x=dataset.ACTION,kind='count')
```

Out[9]:

<seaborn.axisgrid.FacetGrid at 0x7fecf2aed9a0>

In [10]:

```
#counting 1 and 0 action
print(dataset.groupby('ACTION').get_group(0).value_counts())
```

ACTION	RESOURCE	MGR_ID	ROLE_ROLLUP_1	ROLE_ROLLUP_2	ROLE_DEPTNAME
ROLE_TI	TLE ROLE_	FAMILY_D	ESC ROLE_FAMIL	Y ROLE_CODE	
0	0	71215	117961	118386 118786 118225 118322 119597	118404
118784	11878	5	290919	118786	1
	42202	3838	117961	118225	119924
118321	11844	8	290919	118322	1
	42870	5228	119596	119597	168533
120789	30112	4	118424	120791	1
	42710	18096	118256	120791 118257	118623
118995	28610	6	292795	118997	1
		18073	118256	118257	118623
118995	95 286106 18073 95 286106		292795	118997	1
• •					
	25749	15510	118169	118170	118171
130479	18578	4	119784	130481	1
		14348	118169	118170	118623
117946	14422	1	292795	118170 117948	1
		4561	118169	118170	118575
118636	21566	7	118638	118170 118639	1
	25748	3053	117961	118225 121596	120663
121594	13116	3	4673	121596	1
	312132	4084	117961	118052	118992
				118322	
Length:	1897, dty	pe: int6	4		

In [11]:

dataset.groupby('ACTION').describe()

Out[11]:

		RESOURCE								MGR_
		count	mean	std	min	25%	50%	75%	max	count
	ACTION									
,	0	1897.0	42898.348972	35796.888757	0.0	20897.0	34924.0	52015.00	312132.0	1897
	1	30872.0	42925.487205	34072.248084	0.0	20299.0	35376.0	74278.25	312153.0	30872

2 rows × 72 columns

No. of Action 0 is 1892 No. of Action 1 is 30872 No. of Action 0 is 5.8 % of the total train dataset

In [12]:

```
#plotting Regression graph between all the variables
2
  plt.figure(figsize=(40,29))
3
  sns.set style(style='whitegrid')
  dataset_plot = sns.PairGrid(dataset,hue='ACTION')
  dataset_plot.map(sns.regplot)
  dataset_plot.add_legend()
7
  plt.show()
```

<Figure size 2880x2088 with 0 Axes>

In []:

In [13]:

```
#Analysing Action 0
action_0 = dataset.groupby('ACTION').get_group(0)
```

In [14]:

action_0

Out[14]:

	ACTION	RESOURCE	MGR_ID	ROLE_ROLLUP_1	ROLE_ROLLUP_2	ROLE_DEPTNAME F
5	0	45333	14561	117951	117952	118008
41	0	74310	49521	117961	118300	118301
55	0	78106	50613	117916	118150	118810
66	0	35043	14800	117961	117962	118352
68	0	15716	18073	118256	118257	118623
32645	0	25749	14348	118169	118170	118623
32661	0	25993	7243	117961	118343	118609
32681	0	14925	20361	117961	117962	118352
32707	0	41470	14289	118602	118603	117941
32713	0	77202	6982	117961	118300	118783

1897 rows × 10 columns

In [15]:

```
#printing action 1 sampled data
action_0.shape
```

Out[15]:

(1897, 10)

In [16]:

```
action_0.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 1897 entries, 5 to 32713 Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	ACTION	1897 non-null	int64
1	RESOURCE	1897 non-null	int64
2	MGR_ID	1897 non-null	int64
3	ROLE_ROLLUP_1	1897 non-null	int64
4	ROLE_ROLLUP_2	1897 non-null	int64
5	ROLE_DEPTNAME	1897 non-null	int64
6	ROLE_TITLE	1897 non-null	int64
7	ROLE_FAMILY_DESC	1897 non-null	int64
8	ROLE_FAMILY	1897 non-null	int64
9	ROLE_CODE	1897 non-null	int64

dtypes: int64(10) memory usage: 163.0 KB

There is no null value in the 0 group and no of the rows in group is 1897

In [17]:

```
action_0.describe()
```

Out[17]:

	ACTION	RESOURCE	MGR_ID	ROLE_ROLLUP_1	ROLE_ROLLUP_2	ROLE_DEPTI
count	1897.0	1897.000000	1897.000000	1897.000000	1897.000000	1897.0
mean	0.0	42898.348972	26737.799157	117553.749605	118206.734844	118834.3
std	0.0	35796.888757	32238.816523	6509.927394	6976.743628	16208.2
min	0.0	0.000000	25.000000	5110.000000	31010.000000	6104.0
25%	0.0	20897.000000	4965.000000	117961.000000	118052.000000	118317.0
50%	0.0	34924.000000	16588.000000	117961.000000	118300.000000	118810.0
75%	0.0	52015.000000	46663.000000	118169.000000	118386.000000	120323.0
max	0.0	312132.000000	310767.000000	130570.000000	286791.000000	286792.0

It represents the min max standard deviation and count of each column

In [18]:

```
#plotting Actions
sns.catplot(data=dataset, x=dataset.ACTION, kind='count')
```

Out[18]:

<seaborn.axisgrid.FacetGrid at 0x7fed315bc2e0>

In [19]:

```
#storing all action 1 rows in a df
action_1 = dataset.groupby('ACTION').get_group(1)
```

In [20]:

```
action_1
```

Out[20]:

	ACTION	RESOURCE	MGR_ID	ROLE_ROLLUP_1	ROLE_ROLLUP_2	ROLE_DEPTNAME	F
0	1	39353	85475	117961	118300	123472	
1	1	17183	1540	117961	118343	123125	
2	1	36724	14457	118219	118220	117884	
3	1	36135	5396	117961	118343	119993	
4	1	42680	5905	117929	117930	119569	
32764	1	23497	16971	117961	118300	119993	
32765	1	25139	311198	91261	118026	122392	
32766	1	34924	28805	117961	118327	120299	
32767	1	80574	55643	118256	118257	117945	
32768	1	14354	59575	117916	118150	117920	

30872 rows × 10 columns

In [21]:

```
#sampling action 1 rows
sampled_action_1 = action_1.sample(1897)
```

In [22]:

```
#printing action 1 sampled data
sampled_action_1.shape
```

Out[22]:

(1897, 10)

In [23]:

```
#Joining both datasets action_0 and sampled_action_1
new dataset = action 0.append(sampled action 1,sort=True)
len(new_dataset)
```

Out[23]:

3794

In [24]:

```
#mixing up the rows
new_dataset = new_dataset.sample(len(new_dataset))
new dataset
```

Out[24]:

	ACTION	MGR_ID	RESOURCE	ROLE_CODE	ROLE_DEPTNAME	ROLE_FAMILY	ROLE_FA
24782	1	44062	79501	118322	118910	290919	_
11587	1	4370	4675	118786	118514	290919	
3553	0	7370	29119	118322	118481	290919	
25754	0	17970	33209	118055	148450	117887	
30688	0	4511	19962	118786	119181	290919	
28317	0	257604	75639	118322	119214	290919	
16100	0	14758	74478	118705	120054	118704	
29853	1	49425	40069	118836	119598	118424	
5225	1	17058	25993	120419	119488	249618	
5120	1	7074	73806	118786	120096	290919	

3794 rows × 10 columns

In [25]:

```
#extracting features
X_feature = new_dataset.drop('ACTION',axis=1).values
```

In [26]:

```
Y_target = new_dataset['ACTION'].values
```

In [27]:

```
1 #Importing Modules for Prediction
2 from sklearn.linear model import LogisticRegression
3 from sklearn.preprocessing import StandardScaler
  from sklearn.model selection import train test split
5 logReg = LogisticRegression()
 sc = StandardScaler()
```

In [28]:

```
#spliting training and test data
X_train,X_test,Y_train,Y_test = train_test_split(X_feature,Y_target)
```

```
In [29]:
```

```
#fitting the standard scaler module
sc.fit(X_train)
```

Out[29]:

StandardScaler()

In [30]:

```
#transforming training data into stander scaler
X train = sc.transform(X train)
```

In [31]:

```
#training the logistic regression model
logReg.fit(X train, Y train)
```

Out[31]:

LogisticRegression()

In [32]:

```
#making prediction from the model
Y_predict = logReg.predict(sc.transform(X_test))
```

In [33]:

```
#Eveluating ther Logistic Regression model
from sklearn.metrics import accuracy_score, average_precision_score, recall_score,
```

In [34]:

```
print('Logistic Regression Model with Standardization')
2 print('Accuracy Score is ',accuracy_score(Y_test,Y_predict))
3 print('Precision Score is
                               ', average precision score(Y test, Y predict))
                               ',recall_score(Y_test,Y_predict))
4 print('Recall Score is
  print('Confusion Metrix is
6 print(confusion_matrix(Y_test,Y_predict))
  print('F1 Score is
                               ',f1 score(Y test,Y predict))
  print (classification_report(Y_test,Y_predict))
```

```
Logistic Regression Model with Standardization
Accuracy Score is
                       0.5458377239199157
                       0.5272285549888402
Precision Score is
Recall Score is
                       0.45588235294117646
Confusion Metrix is
[[301 172]
 [259 217]]
F1 Score is
                       0.5017341040462426
              precision
                          recall f1-score
                                               support
           0
                   0.54
                              0.64
                                        0.58
                                                    473
           1
                   0.56
                              0.46
                                        0.50
                                                    476
                                                   949
    accuracy
                                        0.55
                   0.55
                              0.55
                                                   949
   macro avg
                                        0.54
                   0.55
                                        0.54
                                                   949
weighted avg
                              0.55
```

In [35]:

```
#using knn classifier
  from sklearn.neighbors import KNeighborsClassifier
3 knn = KNeighborsClassifier(n neighbors=5)
```

In [36]:

```
#fitting knn model
2 knn.fit(X train, Y train)
```

Out[36]:

KNeighborsClassifier()

In [37]:

```
#making prediction from the KNNeighbors model
Y predict = knn.predict(sc.transform(X test))
```

In [38]:

```
print('KN Neighbors Model with Standardization')
 print('Accuracy Score is ',accuracy_score(Y_test,Y_predict))
                               ',average precision_score(Y_test,Y_predict))
3 print('Precision Score is
                               ',recall_score(Y_test,Y_predict))
4 print('Recall Score is
  print('Confusion Metrix is
6 print(confusion_matrix(Y_test,Y_predict))
  print('F1 Score is
                               ',f1 score(Y test,Y predict))
 print (classification_report(Y_test,Y_predict))
```

```
KN Neighbors Model with Standardization
Accuracy Score is
                     0.6080084299262382
Precision Score is
                      0.567558554219657
                       0.5945378151260504
Recall Score is
Confusion Metrix is
[[294 179]
 [193 283]]
F1 Score is
                       0.6034115138592749
              precision
                         recall f1-score
                                              support
           0
                   0.60
                             0.62
                                       0.61
                                                   473
           1
                   0.61
                             0.59
                                       0.60
                                                   476
                                                   949
    accuracy
                                       0.61
                                                   949
   macro avg
                   0.61
                             0.61
                                       0.61
                                       0.61
                                                   949
weighted avg
                   0.61
                             0.61
```

In [39]:

```
#importing Decision tree Model with criterion gini
from sklearn.tree import DecisionTreeClassifier
dectree = DecisionTreeClassifier(criterion='gini', random state = 20)
```

In [40]:

```
dectree.fit(X train, Y train)
```

Out[40]:

DecisionTreeClassifier(random state=20)

In [41]:

```
Y predict = dectree.predict(sc.transform(X test))
```

In [42]:

```
print('Decision Tree(gini) Model with Standardization')
2 print('Accuracy Score is ',accuracy_score(Y_test,Y_predict))
                               ',average precision_score(Y_test,Y_predict))
3 print('Precision Score is
                               ',recall_score(Y_test,Y_predict))
4 print('Recall Score is
  print('Confusion Metrix is
6 print(confusion_matrix(Y_test,Y_predict))
 print('F1 Score is
                               ',f1 score(Y test,Y predict))
 print (classification_report(Y_test,Y_predict))
```

```
Decision Tree(gini) Model with Standardization
Accuracy Score is
                    0.7007376185458377
Precision Score is
                       0.6434283073196292
Recall Score is
                       0.6848739495798319
Confusion Metrix is
[[339 134]
 [150 326]]
F1 Score is
                       0.6965811965811967
              precision recall f1-score
                                              support
           0
                   0.69
                             0.72
                                       0.70
                                                   473
           1
                   0.71
                             0.68
                                       0.70
                                                   476
                                                   949
    accuracy
                                       0.70
                   0.70
                             0.70
                                                   949
   macro avg
                                       0.70
                   0.70
                             0.70
                                       0.70
                                                   949
weighted avg
```

In [43]:

```
#decision tree with entropy
dt = DecisionTreeClassifier(criterion='entropy',random state=20)
```

In [44]:

```
dt.fit(X train, Y train)
```

Out[44]:

DecisionTreeClassifier(criterion='entropy', random state=20)

In [45]:

```
1 Y predict = dt.predict(sc.transform(X test))
```

In [46]:

```
print('Decision Tree(entropy) Model with Standardization')
 print('Accuracy Score is
                              ',accuracy_score(Y_test,Y_predict))
                               ',average precision_score(Y_test,Y_predict))
3 print('Precision Score is
                               ',recall_score(Y_test,Y_predict))
4 print('Recall Score is
  print('Confusion Metrix is
6 print(confusion_matrix(Y_test,Y_predict))
  print('F1 Score is
                               ',f1 score(Y test,Y predict))
  print (classification_report(Y_test,Y_predict))
```

```
Decision Tree(entropy) Model with Standardization
                    0.7133825079030558
Accuracy Score is
Precision Score is
                      0.6566513162745949
                       0.6827731092436975
Recall Score is
Confusion Metrix is
[[352 121]
 [151 325]]
F1 Score is
                       0.7049891540130152
              precision
                          recall f1-score
                                               support
           0
                   0.70
                             0.74
                                        0.72
                                                   473
           1
                   0.73
                             0.68
                                        0.70
                                                   476
                                                   949
    accuracy
                                        0.71
                   0.71
                             0.71
                                                   949
   macro avg
                                        0.71
                   0.71
                             0.71
                                        0.71
                                                   949
weighted avg
```

In [47]:

```
#importing Naive Bayes Model
 from sklearn.naive bayes import BernoulliNB
3 NB = BernoulliNB()
```

In [48]:

```
NB.fit(X train, Y train)
```

Out[48]:

BernoulliNB()

In [49]:

```
Y_predict = NB.predict(sc.transform(X_test))
```

In [50]:

```
print('Bernouli Naive Bayes) Model with Standardization')
2 print('Accuracy Score is ',accuracy_score(Y_test,Y_predict))
                               ',average precision_score(Y_test,Y_predict))
3 print('Precision Score is
                               ',recall_score(Y_test,Y_predict))
4 print('Recall Score is
  print('Confusion Metrix is
6 print(confusion_matrix(Y_test,Y_predict))
7
  print('F1 Score is
                               ',f1 score(Y test,Y predict))
 print (classification_report(Y_test,Y_predict))
```

```
Bernouli Naive Bayes) Model with Standardization
Accuracy Score is
                      0.5447839831401475
Precision Score is
                       0.5263553455323675
Recall Score is
                       0.4852941176470588
Confusion Metrix is
[[286 187]
 [245 231]]
F1 Score is
                       0.516778523489933
              precision
                          recall f1-score
                                               support
           0
                   0.54
                             0.60
                                        0.57
                                                   473
           1
                   0.55
                              0.49
                                        0.52
                                                   476
                                                   949
    accuracy
                                        0.54
                   0.55
                              0.54
                                        0.54
                                                   949
   macro avg
                   0.55
                              0.54
                                        0.54
                                                   949
weighted avg
```

In [51]:

```
#using svm model
 from sklearn import svm
3 clf = svm.SVC()
```

In [52]:

```
clf.fit(X train, Y train)
```

Out[52]:

SVC()

In [53]:

```
Y predict = clf.predict(sc.transform(X test))
```

In [54]:

```
print('SVM Classifier Model with Standardization')
 print('Accuracy Score is ',accuracy_score(Y_test,Y_predict))
                               ',average precision_score(Y_test,Y_predict))
3 print('Precision Score is
                               ',recall_score(Y_test,Y_predict))
4 print('Recall Score is
  print('Confusion Metrix is
6 print(confusion_matrix(Y_test,Y_predict))
 print('F1 Score is
                               ',f1 score(Y test,Y predict))
 print (classification_report(Y_test,Y_predict))
```

```
SVM Classifier Model with Standardization
Accuracy Score is
                    0.6143308746048473
Precision Score is
                      0.5715555538245712
                       0.6218487394957983
Recall Score is
Confusion Metrix is
[[287 186]
 [180 296]]
F1 Score is
                       0.6179540709812109
              precision recall f1-score
                                              support
           0
                   0.61
                             0.61
                                       0.61
                                                   473
           1
                   0.61
                             0.62
                                       0.62
                                                  476
    accuracy
                                       0.61
                                                  949
                                                  949
   macro avg
                   0.61
                             0.61
                                       0.61
                                       0.61
weighted avg
                   0.61
                             0.61
                                                  949
```

In [55]:

```
#using randome forest classifier
from sklearn.ensemble import RandomForestClassifier
ranfo gini = RandomForestClassifier(criterion='gini')
```

In [56]:

```
ranfo gini.fit(X train, Y train)
```

Out[56]:

RandomForestClassifier()

In [57]:

```
Y_predict = ranfo_gini.predict(sc.transform(X_test))
```

In [58]:

```
print('Random Forest(gini) Model with Standardization')
2 print('Accuracy Score is ',accuracy_score(Y_test,Y_predict))
3 print('Precision Score is
                              ',average precision_score(Y_test,Y_predict))
                              ',recall_score(Y_test,Y_predict))
4 print('Recall Score is
  print('Confusion Metrix is
6 print(confusion_matrix(Y_test,Y_predict))
 print('F1 Score is
7
                               ',f1 score(Y test,Y predict))
 print (classification_report(Y_test,Y_predict))
```

```
Random Forest(gini) Model with Standardization
Accuracy Score is
                   0.761854583772392
Precision Score is
                     0.6994860177914533
                      0.7710084033613446
Recall Score is
Confusion Metrix is
[[356 117]
 [109 367]]
F1 Score is
                      0.7645833333333333
             precision recall f1-score support
           0
                  0.77
                            0.75
                                      0.76
                                                 473
           1
                  0.76
                            0.77
                                      0.76
                                                 476
   accuracy
                                      0.76
                                                 949
                  0.76
                            0.76
                                                 949
  macro avg
                                      0.76
                  0.76
                                      0.76
weighted avg
                            0.76
                                                 949
```

In [59]:

```
ranfo_entropy = RandomForestClassifier(criterion='entropy')
```

In [60]:

```
ranfo_entropy.fit(X_train,Y_train)
```

Out[60]:

RandomForestClassifier(criterion='entropy')

In [61]:

```
Y predict = ranfo entropy.predict(sc.transform(X test))
```

In [62]:

```
print('Random Forest (entropy) Model with Standardization')
 print('Accuracy Score is ',accuracy_score(Y_test,Y_predict))
                              ',average precision_score(Y_test,Y_predict))
3 print('Precision Score is
4 print('Recall Score is
                              ',recall_score(Y_test,Y_predict))
  print('Confusion Metrix is ')
6 print(confusion_matrix(Y_test,Y_predict))
  print('F1 Score is
                               ',f1 score(Y test,Y predict))
  print (classification_report(Y_test,Y_predict))
```

```
Random Forest (entropy) Model with Standardization
Accuracy Score is 0.7692307692307693
Precision Score is
                     0.7077584962414187
Recall Score is
                      0.773109243697479
Confusion Metrix is
[[362 111]
 [108 368]]
F1 Score is
                      0.7706806282722513
             precision recall f1-score
                                            support
                  0.77
                            0.77
                                     0.77
                                                473
                  0.77
                            0.77
                                     0.77
          1
                                                476
                                                949
    accuracy
                                     0.77
                  0.77
                            0.77
                                                949
  macro avg
                                     0.77
                  0.77
                            0.77
                                     0.77
                                                949
weighted avg
```

Clearly - Randome Forest Algorithm with criterion gini gives best accuracy and performs better.

In [63]:

```
#Importing test Dataset
test_dataset = pd.read_csv('/Users/rajeshsahu/Desktop/Data Science Learning/Data
```

In [64]:

test_dataset

Out[64]:

	id	RESOURCE	MGR_ID	ROLE_ROLLUP_1	ROLE_ROLLUP_2	ROLE_DEPTNAME	F		
0	1	32642	7792	118573	118574	117945	_		
1	2	4696	14638	117961	118343	118514			
2	3	22662	1760	118887	118888	120171			
3	4	75078	7576	117961	118052	120671			
4	5	39879	55668	117902	118041	117945			
912358	912359	32642	7792	118573	118574	117945			
912359	912360	41594	25262	126974	126975	118320			
912360	912361	45784	141	117961	118225	122273			
912361	912362	15716	2456	118752	118753	118754			
912362	912363	43443	7022	119062	119091	118535			
912363 ı	912363 rows × 10 columns								

In [65]:

```
#randome forest prediction with test dataset
test_dataset.drop('id',axis=1,inplace=True)
```

In [66]:

1 test_dataset.head()

Out[66]:

	RESOURCE	MGR_ID	ROLE_ROLLUP_1	ROLE_ROLLUP_2	ROLE_DEPTNAME	ROLE_TITLE	R
0	32642	7792	118573	118574	117945	136261	
1	4696	14638	117961	118343	118514	118321	
2	22662	1760	118887	118888	120171	118396	
3	75078	7576	117961	118052	120671	118321	
4	39879	55668	117902	118041	117945	135951	

In [67]:

test_dataset.shape

Out[67]:

(912363, 9)

```
In [68]:
```

```
print(ranfo_gini.predict(sc.transform(test_dataset)))
```

```
[1 1 1 ... 1 1 1]
```

random forest prediction with biased training dataset

In [69]:

```
##random forest prediction with biased training dataset
#plotting Actions
sns.catplot(data=dataset, x=dataset.ACTION, kind='count')
```

<seaborn.axisgrid.FacetGrid at 0x7fed31352790>


```
In [70]:
```

```
X = dataset.drop('ACTION',axis=1).values
```

In [71]:

```
Y = dataset.ACTION.values
```

In [72]:

```
#spliting training and test data
X_train, X_test, Y_train, Y_test = train_test_split(X,Y)
```

In [73]:

```
sc biased = StandardScaler()
```

```
In [74]:
    sc biased.fit(X train)
Out[74]:
StandardScaler()
In [75]:
    X train = sc biased.transform(X train)
   X test = sc biased.transform(X test)
In [76]:
    ranfo gini biased = RandomForestClassifier(criterion='gini')
In [77]:
    ranfo_gini_biased.fit(X_train,Y_train)
Out[77]:
RandomForestClassifier()
In [78]:
    Y_predict = ranfo_gini_biased.predict(X_test)
In [79]:
    print('Random Forest(gini) Model with Biased dataset')
                               ',accuracy_score(Y_test,Y_predict))
   print('Accuracy Score is
 3 print('Precision Score is
                                  ,average_precision_score(Y_test,Y_predict))
                                 ',recall_score(Y_test,Y_predict))
 4 print('Recall Score is
 5 | print('Confusion Metrix is ')
   print(confusion_matrix(Y_test,Y_predict))
 7
    print('F1 Score is
                                 ',f1_score(Y_test,Y_predict))
    print (classification_report(Y_test,Y_predict))
Random Forest(gini) Model with Biased dataset
                     0.9459294519711949
Accuracy Score is
Precision Score is
                       0.9600679716197801
Recall Score is
                       0.9829892221789378
Confusion Metrix is
[[ 180 312]
 [ 131 7570]]
                       0.9715715844189181
F1 Score is
                          recall f1-score support
              precision
           0
                   0.58
                             0.37
                                       0.45
                                                  492
           1
                   0.96
                             0.98
                                       0.97
                                                 7701
                                       0.95
                                                 8193
    accuracy
```

Here the stats are facinating like -

macro avg weighted avg 0.77

0.94

0.67

0.95

0.71

0.94

8193

8193

Accuracy Score is 0.9461735627975101 Precision Score is 0.9581451130890075 Recall Score is 0.9854469854469855

But The confusion matrix is telling the truth that -

112 rows out of total 280 rows of class 0, it has predicted as class 1 which is appoximately 40%.i.e.

40% times it is predicting wrong results for class 0.

Comparison between baised and unbiased prediction results

	precision	recall	f1-score	support
for Biased datset macro avg	0.78	0.66	0.70	8193
for Unbiased dataset macro avg	0.76	0.76	0.76	949

clearly Unbiased dataset performs better

