The Device is a carrier grade gateway designed for IoT applications. The device is intended to be installed in controlled area (overhead cable, stranded-mounted) with restricted access to general public. The installation and maintenance must be performed by professional trained RF technician.

The device has 2 transmitter antenna ports, which must be used with antenna respecting the requirement specified in the technical documentation.

Per OET Bulletin 65 Edition 97-01, Appendix A Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Controlled Exposure (table 1 A) Power Density 'S' (mW/cm²)	Uncontrolled Exposure (table 1 B) Power Density 'S' (mW/cm²)
300-1500	f/300	f/1500

We are using the lowest transmitter frequency for worst case calculation: 923.3 MHz

S = 0.616 mW/cm², for uncontrolled exposure

S = 3.078 mW/cm², for controlled exposure

The table below shows the worst calculated EIRP value from the conducted power measurement from the test report in section 2.2.5.

Ar	ntenna ID	Frequency (MHz)	Corrected Reading (dBm)	RF Output (Watts)	Duty cycle (ratio)	Avg Power (dBm)	Cable loss (dB)	Max. antenna gain (dBi)	Avg EIRP (dBm)	Avg EIRP (mW)
	1	923.3 + 924.5	29.93	0.98	1	29.93	0	6	35.93	3917

And with the equation (4) from the OET bulletin 65,

$$S = EIRP / (4 \pi R^2)$$

Where: S, power density in 'mW/cm2'

EIRP, Effective Isotropic Radiated Power in 'mW'

R, distance to the center of the radiation of the antenna in 'cm'

and then re-arrange to determine the minimum safe distance.

$$R = \sqrt{[EIRP/(4 \pi S)]}$$

R = 22.5 cm, for uncontrolled exposure (rounded up to the first decimal)

R = 10.1 cm, for controlled exposure (rounded up to the first decimal)