REGRESIA

TEHNICI DE DATA MINING

INVATARE SUPERVIZATA

Supervised learning

- CLASIFICAREA ATRIBUT TINTA DISCRET
- REGRESIE ATRIBUT TINTA CONTINUU

INVATARE NESUPERVIZATA

Unsupervised learning

- ASOCIERE
- CLUSTERIZARE

REGRESIA

Estimarea valorilor atributului tinta in functie de valorile celorlalte atribute

Atributul tinta: variabila dependenta

Celelalte atribute: variabilele independente

EXEMPLU 1

- Analiza relatiei dintre pretul unui apartament si suprafata lui intr-o zona dintr-un oras.
- Estimarea pretului in functie de suprafata

SUPRAFATA (m2)	PRET (Euro)
90	110000
45	60000
75	80000
60	????

- Atribut tinta: pret
- Atribut de intrare: suprafata

SUPRAFATA (m2)	PRET (Euro)
90	110000
45	60000
75	80000

Estimare pret in functie de suprafata

EXEMPLU 2

- Analiza relatiei dintre greutatea unei persoane si inaltimea sa
- Estimarea greutatii in functie de inaltime sau invers

Inaltime (cm)	Greutate (kg)
160	54
165	60
170	85
185	90

- Atribut tinta: greutate
- Atribut de intrare: inaltime

EXEMPLU 3

• Estimarea punctajului la un test al unui student in functie de nr de ore de studiu pentru test

- Atribut tinta: punctaj
- Atribut de intrare: nr ore studiu

Nr ore studiu	Punctaj test
4	54
8	60
5	85
7	90
16	100
6	???

Tipuri de regresie

Regresie simpla

Estimarea atributului tinta in functie de un singur atribut independent se numeste **regresie simpla.**

$$\bullet \mathsf{Y} = \mathsf{f}(\mathsf{X})$$

Regresie multipla

- Daca estimarea se face in functie de mai multe attribute independente atunci avem regresie multipla.
- Y=f(X1,X2,..., Xk)

CYLINDER	DISPLACEMENT	HORSEPOWER	WEIGHT	ACCELERATION	MPG
8	307	130	3504	12	18
8	350	165	3693	11.5	15
8	318	150	3436	11	18
8	304	150	3433	12	16
8	302	140	3449	10.5	17

- Estimarea consumului de combustibil al unei masini in functie de cateva caracteristici ale sale:
- greutate
- marimea motorului
- puterea motorului
- nr. cilindri
- acceleratie
- displacement

REGRESIE SIMPLA

• Se da o multime de puncte in plan. Sa se gaseasca o functie al carui grafic sa se potriveasca cu aceste puncte, sa fie cat mai aproape de aceste puncte.

In imagine aceasta functie este un polinom de grad I, ax+b al carui graphic este o dreapta.

wikipedia

15

Regresia liniara

- Multimea de puncte este aproximata printr-o dreapta.
- Functia care va estima relatia dintre variabila de intrare si variabila de iesire (numit atributul tinta, in acest caz) este liniara
- Y=a + b X

- Date punctele
- $(x_1,y_1), (x_2, y_2),...,(x_n,y_n)$
- vrem sa determinam a si b astfel incat dreapta
- Y=a +b x
 sa aproximeze bine aceste puncte adica

sa treaca sufficient de aproape de puncte

Metoda celor mai mici patrate

- Masuram distantele de la fiecare punct la punctul corespunzator de pe dreapta,
- (x_i, y_i) -> (x_i, ŷ_i)
 distanta = | y_i ŷ_i | pt fiecare i=1,n
 S= suma patratelor acestor distante

Cautam a si b astfel incat S sa fie minima.

Metoda celor mai mici patrate

•
$$S = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 =$$

$$\bullet = \sum_{i=1}^{n} (y_i - a - b \times_i)^2$$

- S = S(a,b) = functie de doua variabile.
- S este minima cand $\frac{\partial S}{\partial a} = \frac{\partial S}{\partial b} = 0$

Se rezolva sistemul

$$\bullet \ a * n + b \sum x_i = \sum y_i$$

Exemplu – Regresie liniara

Evolutia nr cazurilor confirmate de COV-ID 19 in statul New York

Perioada: 17.03.2020 - 30.03.2020						
Data	Nr cazuri confirmate					
3/17/2020	1374					
3/18/2020	2481					
3/19/2020	4597					
3/20/2020	7245					
3/21/2020	10356					
3/22/2020	15168					
3/23/2020	20875					
3/24/2020	25665					
3/25/2020	30811					
3/26/2020	37258					
3/27/2020	44635					
3/28/2020	52318					
3/29/2020	59513					
3/30/2020	68369					

Regresie patratica

EVALUAREA MODELELOR DE REGRESIE

Metrics

10.323824
12.903307
0.87377
0.745059
0.254941

MAE: Mean Absolute Error

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

Root Mean Squared Error

RMSE este radical din MSE

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \widehat{y_i})^2$$

$$RMSE = \sqrt{MSE}$$

Coefficient of determination = R2-score

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \widehat{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \overline{y})^{2}}$$

$$\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$