Quatrième composition de mathématiques

4 heures

- Tout résultat ou raisonnement doit être clairement justifié, sauf mention du contraire.
- La qualité de la rédaction sera prise en compte dans l'évaluation.
- La présentation de la copie sera prise en compte dans l'évaluation. Il vous est demandé :
 - ▷ d'encadrer les résultats principaux;
 - ▷ de souligner les résultats et arguments intermédiaires importants;
 - *⊳* de soigner votre écriture ;
 - ▷ de maintenir une marge dans vos copies et d'aérer vos copies;
 - ▷ de numéroter vos copies.
- Les documents, calculatrices et autres appareils électroniques sont interdits.

Suites qui piétinent

Définitions et notations

- Dans ce problème, toutes les suites sont indexées par N* et on pose E := R^{N*}.
 Les suites pourront être notées u, v, w, etc.
 Soit u ∈ E et soit n ∈ N*.
 - \triangleright Le terme d'indice n de u est noté u_n . Ainsi, on a $u = (u_n)_{n \in \mathbb{N}^*}$.
 - ightharpoonup On notera « $u \longrightarrow 0$ » l'assertion « $(u_n)_n$ tend vers 0 quand $n \to +\infty$ ».
 - \triangleright De même, on notera « $u \longrightarrow +\infty$ » quand la suite $(u_n)_n$ tend vers $+\infty$.
- $Si\ u \in E$, on note Δu la suite définie par

$$\forall n \geqslant 1, \ (\Delta u)_n = u_{n+1} - u_n.$$

- Soit u ∈ E.
 On dit que u piétine lorsque u_{n+1} u_n → 0.
 On note E_p l'ensemble des suites qui piétinent.
- Soit φ un endomorphisme de E.
 On rappelle que, pour p ∈ N, on note φ^p le p-ième itéré de φ défini par

$$\begin{cases} \varphi^0 := \mathrm{Id}_E \\ \varphi^p := \varphi \circ \varphi^{p-1} \quad si \ p \geqslant 1. \end{cases}$$

Toutes les parties du problème sont indépendantes.

Partie I – Généralités sur Δ

1. On rappelle que E est un \mathbb{R} -espace vectoriel. On considère l'application

$$\Delta: \left\{ \begin{array}{l} E \longrightarrow E \\ u \longmapsto \Delta u \end{array} \right..$$

Montrer que Δ est un endomorphisme de E.

- 2. (a) Montrer que Δ est surjectif.
 - (b) L'application Δ est-elle injective?

Partie II – Étude d'un exemple

Pour $p \in \mathbb{N}$, on note B(p) l'élément de E défini par

$$\forall n \in \mathbb{N}^*, \ B(p)_n = \binom{n}{p}.$$

On fixe $p \in \mathbb{N}^*$.

- **3.** (a) Calculer $B(p)_p$.
 - (b) Calculer $B(p)_1$.
- 4. (a) On cherche la limite éventuelle de B(p).
 - (i) Montrer que

$$\forall n \geqslant p+1, \ \binom{n}{p} \geqslant n.$$

- (ii) En déduire la limite de la suite B(p).
- (b) Donner un équivalent simple de $(B(p)_n)_n$ quand $n \to +\infty$.
- **5.** Donner une expression simple de la suite $\Delta(B(p+1))$.

Partie III – Les itérés de Δ et un exemple

Pour $u \in E$, on note Tu la suite définie par

$$\forall n \geqslant 1, \quad (Tu)_n = u_{n+1}$$

et on note T l'endomorphisme de E défini par $u \mapsto Tu$.

- **6.** Soit $u \in E$.
 - (a) Soit n un entier naturel non nul. Donner une expression du terme d'indice n de $\Delta^2 u$, c'est-à-dire une expression de $(\Delta^2 u)_n$.
 - (b) Exprimer l'endomorphisme Δ à l'aide de T et Id_E .
 - (c) En déduire que pour $p \in \mathbb{N}$, on a

$$\forall n \in \mathbb{N}, \ (\Delta^p u)_n = \sum_{k=0}^p (-1)^{p-k} \binom{p}{k} u_{n+k} \ .$$

7. Soit $\alpha \in \mathbb{R}$. On note a la suite géométrique $a := (\alpha^n)_{n \in \mathbb{N}^*}$. Soit $p \in \mathbb{N}$. Donner une expression simple de la suite $\Delta^p(a)$.

Partie IV – Piétinement : généralités et exemples

- 8. Montrer que E_p est un sous-espace vectoriel de E.
- 9. Soit $(u_n)_n \in E$. A-t-on

$$(u_n)_{n\in\mathbb{N}^*}$$
 piétine \Longrightarrow $(|u_n|)_{n\in\mathbb{N}^*}$ piétine ?

- **10.** Montrer que $(\ln(n))_{n\in\mathbb{N}^*}$ piétine.
- **11.** Soit $u \in E$.
 - (a) Montrer que

$$u$$
 converge $\implies u$ piétine.

- (b) La réciproque est-elle vraie?
- **12.** (a) Montrer que $(\sqrt{n})_n$ piétine.
 - (b) Soit a > 0.
 - (i) Soit $(\varepsilon_n)_n \in \mathbb{R}^{\mathbb{N}^*}$ telle que $\varepsilon_n \longrightarrow 0$. Montrer que

$$(1+\varepsilon_n)^a-1\sim a\,\varepsilon_n.$$

On pourra utiliser un taux d'accroissement.

(ii) Montrer que

$$(n^a)_{n\in\mathbb{N}^*}$$
 piétine $\iff a<1$.

- (c) Montrer que $(\sqrt[n]{n})_{n\in\mathbb{N}^*}$ piétine.
- **13.** (a) Montrer que la suite $\left(\frac{n}{\ln(n)}\right)_{n\geq 2}$ piétine.
 - (b) Soit $a \in]0,1[$. Entre les deux suites

$$(n^a)_{n\geqslant 1}$$
 et $\left(\frac{n}{\ln(n)}\right)_{n\geqslant 2}$

laquelle est négligeable devant l'autre?

- (c) Soit a > 1.
 - (i) Déterminer un équivalent simple de $\frac{n}{\ln^a(n+1)} \frac{n}{\ln^a(n)}$.
 - (ii) La suite $\left(\frac{n}{\ln^a(n)}\right)_{n\geqslant 2}$ piétine-t-elle?
- **14.** Soit $(u_n)_n \in E$ telle que

$$\begin{cases} \forall n \in \mathbb{N}^*, \ u_n \in \mathbb{R}_+^* \\ u_n \longrightarrow +\infty \\ (u_n)_n \text{ piétine.} \end{cases}$$

- (a) Montrer que $\left(\sqrt{u_n}\right)_{n\in\mathbb{N}^*}$ piétine.
- (b) Montrer que $(\ln(u_n))_{n\in\mathbb{N}^*}$ piétine.

- **15.** Soit $u \in E$.
 - (a) Montrer en exhibant un contre-exemple que l'implication

$$u$$
 piétine $\implies u_{n+1} \sim u_n$

est fausse en général.

(b) Montrer que

$$\left\{ \begin{array}{l}
 u \text{ piétine} \\
 u_n \longrightarrow +\infty
 \end{array} \right\} \implies u_{n+1} \sim u_n.$$

16. Soient $u, v \in E$ telles que $u_n \sim v_n$. A-t-on

$$u$$
 piétine $\implies v$ piétine ?

Partie V - Vitesse de divergence des suites qui piétinent

17. Théorème de Cesàro. Soient $(u_n)_n \in \mathbb{R}^{\mathbb{N}^*}$ et $\ell \in \mathbb{R}$. On note, pour $n \in \mathbb{N}^*$,

$$S_n := \sum_{k=1}^n u_k.$$

- (a) On suppose que $u_n \longrightarrow 0$.
 - (i) Soit $\varepsilon > 0$.

Montrer qu'il existe $N_0 \in \mathbb{N}^*$ tel que

$$\forall n \geqslant N_0, \quad \frac{\left|\sum_{k=1}^n u_k\right|}{n} \leqslant \frac{\sum_{k=1}^{N_0 - 1} |u_k|}{n} + \frac{\varepsilon}{2}.$$

- (ii) En déduire que $\left(\frac{S_n}{n}\right)_{n\in\mathbb{N}^*}\longrightarrow 0.$
- (b) En utilisant la question précédente, montrer le théorème de Cesàro :

$$u_n \longrightarrow \ell \implies \frac{S_n}{n} \longrightarrow \ell.$$

- **18.** Soit $u \in E$.
 - (a) En utilisant le théorème de Cesàro, montrer que

$$u$$
 piétine $\implies u_n = o(n)$.

(b) A-t-on l'implication

$$u_n = o(n) \implies u$$
 piétine ?

Partie VI – Une condition de piétinement dans le cas borné

Dans cette partie, u est un élément de E.

19. Montrer que

$$u$$
 bornée $\Longrightarrow \Delta u$ bornée.

- **20.** Soit C > 0.
 - (a) Soient $a, b \in \mathbb{N}^*$ tels que $a \leq b$. On suppose que

$$\forall n \in [a, b], \ u_{n+1} - u_n \geqslant C.$$

Montrer que

$$u_{b+1} - u_a \ge (b - a + 1)C$$
.

(b) On suppose que

$$\forall \ell \in \mathbb{N}^*, \exists n_0 \in \mathbb{N} : \forall n \in [n_0, n_0 + \ell], \ u_{n+1} - u_n \geqslant C.$$

Montrer que u ne peut pas être bornée.

21. Soit $v \in E$.

Dans cette question, on suppose que $\forall n \in \mathbb{N}, v_n \geq 0$.

On suppose que $v \to 0$ et $\Delta v \to 0$.

- (a) Écrire sous forme d'expression quantifiée l'assertion $v \to 0$.
- (b) Montrer que

$$\exists \varepsilon_0 > 0: \ \forall N \in \mathbb{N}^*, \exists n_0 \in \mathbb{N}^*: \left(v_{n_0} \geqslant \varepsilon_0 \ \text{et} \ \forall n \geqslant n_0, \ |v_{n+1} - v_n| \leqslant \frac{\varepsilon_0}{N}\right).$$

(c) On fixe un tel $\varepsilon_0 > 0$.

Montrer que

$$\forall \ell \in \mathbb{N}^*, \exists n_0 \in \mathbb{N}^* : \forall n \in [n_0, n_0 + \ell], \ v_n \geqslant \frac{\varepsilon_0}{2}.$$

- **22.** (a) On suppose que $\Delta^2 u \longrightarrow 0$ et $\Delta u \not\longrightarrow 0$. Montrer que u n'est pas bornée.
 - (b) On suppose u bornée. Montrer que

$$\Delta^2 u \longrightarrow 0 \implies \Delta u \longrightarrow 0.$$

- 23. On suppose u bornée. Montrer que les assertions suivantes sont équivalentes :
 - (i) $\Delta u \longrightarrow 0$
 - (ii) $\forall p \in \mathbb{N}^*, \ \Delta^p u \longrightarrow 0$
 - (iii) $\exists p \in \mathbb{N}^* : \Delta^p u \longrightarrow 0.$

