Biostatistics week 12

- ➤ Linear regression and ANOVA analysis
- > Linear regression with paired data
- ➤ Non-parametric tests for group comparison with >2 groups
- > Questions and answer hour

Steps in linear modelling

0) Preprocessing

- learning the meaning of all variables, check for correlations
- give short and informative names
- check for impossible values, errors
- if they exist (missing, error): set them to NA
- be very careful with imputation methods, are missings systematic?

1) First-aid transformations

- bring all variables to a suitable scale (use also field knowledge)
- routinely apply the first-aid transformations

2) Find a good model

- start with a model including important confounders
- perform a residual analysis
- improve model by transformations or adding better predictors
- reduce step by step complexity and use anova for comparison
- use your specific knowledge to choose between variables

Limits of linear Regression

If your residuals do not follow a Normal distribution (even after transformations) use generalized linear modeling (glm – e.g. logisitic regression)

If your predictors show a strong correlation use shrinkage methods (e.g. lasso)

If your data are not independent use mixed models or methods for time-series.

If you do not have a linear relation, use non-linear regression (e.g. nlm) or generalizes additive models (e.g. gam) or tree models

ANalysis Of Variance (ANOVA) = linear regression with factor variables

Example with one factorial predictor Do medical doctors spend less time with obese patients?

In an observational study it was measured how much time doctors spend with a patient.

"To prevent a heart attack, take one aspirin every day.

Take it out for a jog, then take it to the gym,

then take it for a bike ride...."

Do medical doctors spend less time with obese patients? How can we test this with linear regression and ANOVA?

```
normal weight
t.test(TIME~WEIGHT, data=dat)
\# t = 2.9, df = 67, p-value = 0.0057
                                                   normal$TIME
# alternative hypothesis: true difference in
# means is not equal to 0
# 95 percent confidence interval
        11
 sample estimates:
  mean of x mean of y
                     2.5
      31
                                                              norm quantiles
                                                               Normality check
# do it by regression with one factorial predictor:
                                                                obegassed
fit=lm(TIME~WEIGHT, data=dat)
anova (fit)
                                                   obese$TIME
# get anova-table from lm-object
 Response: TIME
             Df
                  Sum Sq Mean F value
                                           Pr (>F)
# WEIGHT 1 776 776 8.16
                                            0.0057
# Residuals 69 6561
                            95
                                                              norm quantiles
```

How to test for an effect between >2 groups? Applying 1-way ANOWA with >2 levels

Here, we want to investigate, if three different treatments result in different levels of the output: folate in red blood cells

We can apply a regression with the group factor as predictor to investigate this question, given the folate values y in each group are i.i.d. normal distributed (check not shown).

```
fit=lm(folate~group, data=dat)
anova(fit)  # p=0.044
```

Since p<5%, we can conclude that there are differences, i.e. the folate level is not the same in all groups.

group	red cell folate		
1	243		
1	251		
1	275		
1	291		
1	347		
1	354		
1	380		
1	392		
2	206		
2	210		
2	226		
2	249		
2	255		
2	273		
2	285		
2	295		
2	309		
3	241		
3	258		
3	270		
3	293		
3	328		

The ANOVA gets significant Between which groups are the differences?

The significant ANOVA result, only tells us, that there are any differences. We need to perform post-hoc tests to investigate, between which groups we can really find differences.

We can perform three pair-wise t-tests. Only the t-test comparing group 1 versus 2 gets significant.

We need to correct for multiple testing, e.g. by Bonferroni-correction. Here, this correction leads to non-significance for all 3 tests.

Result of (uncorrected) pair-wise t-tests:

	Mean Diff.	DF	t-Value	P-Value
1 vs. 2	60.181	15	2.558	0.0218
1 vs. 3	38.625	11	1.327	0.2115
2 vs. 3	-21.556	12	-1.072	0.3046

List of post-hoc tests (from wiki)

- Fisher's least significant difference: LSD
- Bonferroni correction
- Duncan's new multiple range test
- Friedman test
- Newman–Keuls method
- Scheffé's method
- Tukey's range test
- Dunnett's test

Non-parametric one-way ANOVA between >2 groups in the case of independent data

If outcome-values given a certain predictor-value do not follow a Normal distribution, we use a non-parametric test.

Data are independent, uncorrelated, un-paired

For the former example, it would look like:

kruskal.test(folate~group, data=dat)

independent data

All observation are independent

Dependent data each line correspond to 1 person

Unpaired and paired data with continuous outcome

Breaking the match results in a valid group/treat effect but invalid p-values.

Analyzing paired data with continuous outcome

Assumption: In each pair we assume to have the same treatment (x) effect size (treat.effect) meaning no interaction between pair and treatment.

Outcome is normal distributed in each treatment

- ~> Appropriate analysis approaches:
- paired t-test
- linear regression with fixed pair-effect (each pair has its own intercept)

```
lm(y \sim x + pair, data=dat)
```

Equivalent, yield same p-values and same treat.effect.fixMod

Alternative approach with valid treat.effect but problems with p-values:

 Mixed model with random pair-effect yields correct treatment effect, but p-values are only correct for no treatment effect and otherwise too small

```
treat.effect.mixMod = treat.effect.fixMod

\uparrow

Imer( y ~ x + (1|pair), data=dat, REML=T)
```

We assume that the intercepts (may vary across pairs) can be modeled as overall.intercept+random.intercept \sim N(0,s2) predicted random pair effects are a shrinked version of fixed pair-effects for the predicted random pair effects holds over all pairs: mix.pair.effect/(fix.pair.effect) = const

Non-parametric one-way ANOVA between >2 groups in the case of independent data

Data are dependent, matched, grouped

Three different wines were tasted and scored by 22 people, where each person scored every wine. The data are not independent, since we have a person-grouping. To take account for individual differences in scoring, we perform the friedman-test:

Dependent data each line correspond to 1 person

How to assess if there is an association between a numeric output variable and explanatory variables?

Outcome	Parametric tests: The observation fixed values of the input variables.	Non-parametric tests		
Variable	un-paired independent	<pre>paired, dependent, correlated</pre>	if the normality assumption is violated or the sample size is small	
Continuous (e.g. pain scale, conc., cognitive	Unpaired t-test= 1-way ANOVA with 2 groups: compares means between two independent groups	Paired t-test: compares means between two related groups (e.g., the same subjects before and after)	Wilcoxon sign-rank test: non-parametric alternative to the paired t-test for 2 groups Wilcoxon sum-rank test (=Mann-Whitney U test): non- parametric alternative to the unpaired t-test for 2 groups Kruskal-Wallis test: non-parametric alternative to ANOVA for >2 independent groups. Friedman test: non-parametric alternative to ANOVA >2 dependent groups. Spearman rank correlation coefficient: non-parametric	
function)	ANOVA: compares means between more than two independent groups: is there any difference between groups?	Repeated-measures ANOVA: compares changes over time in the means of ≥ 2 groups (repeated measurements)		
	Pearson's correlation coefficient (linear correlation): shows linear correlation between two continuous variables Linear regression: multivariate regression technique	Mixed models/GEE modeling: multivariate regression techniques to compare changes over time between two or more groups; gives rate of change over time		
	used when the outcome is continuous; gives slopes		alternative to Pearson's correlation coefficient	

Biostatistics looking back: any questions?

Topics

Tuesday, 11th December, 10-11am, HG E 3 Exam is on these topics, MC questions, 60 minutes

- data visualization
- basic terms and summary statistics
- > study types, confounding
- diagnostic tests
- models/distribution-types
- parameter estimation
- testing, confidence intervals, p-values
- > linear regression
- > reliability analysis
- > outlook on more advanced or modern regression methods