

Primer examen parcial. Matemáticas discretas II Duración 2 horas

Carlos Andres Delgado S, Ing *

27 de Marzo de 2017

1. Ecuaciones de recurrencia $_{puntos}$

1. [10 puntos] Muestre y resuelva la ecuación de recurrencia producto de la siguiente sucesión:

\mathbf{n}	T(n)
0	2
1	6
2	14
3	28

2. [15 puntos] Solucione la siguiente ecuación de recurrencia:

$$T(n) = 11T(n-1) - 30T(n-2) + 5^{n}$$
$$T(0) = 2, T(1) = 4$$

3. [15 puntos] Defina una ecuación de recurrencia que permita contar las cadenas de n bits que siempre tienen al menos dos unos seguidos, en este caso $n \geq 2$. Solucione la ecuación.

2. Grafos [60 puntos]

- 1. [20 puntos] Encuentre el número de aristas del grafo bipartito completo $K_{m,n}$ $m \ge 1$ y $n \ge 1$ en términos de m y n. Muestre su demostración.
- 2. $[10 \quad puntos]$ La secuencia de grado de un pseudografo no dirigido es $\{1,1,1,1,2,2,2,2,3,3,4,4,4,5\}$ Utilizando el teorema de Handshaking indique si el grafo existe o no. Muestre su demostración

3. [10 puntos] Dibuje el grafo dirigido $G(V, E), V = \{a, b, c, d, e, f\}$ asociado a la siguiente matriz de advacencia:

[0	1	0	1	0	0
0	1 0 1 0 0	1	1	1	1
0	1	0	1	0	0
1	0	0	0	1	1
1	0	1	0	1 0	1
$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$	1	0	0	1	0 1 0 1 1 0

4. [20 puntos] Determinar si el siguiente multigrafo tiene un circuito Euleriano y cual es:

Ayudas

• Ecuación cuadrática: $ax^2 + bx + c$

$$r = \frac{b \pm \sqrt{b^2 - 4ac}}{2a}$$

^{*}carlos. and res. del gado @correounival le. edu. co