NOTAS DE AULA

Álgebra Booleana e Circuitos Lógicos

Prof. Dr. Antonio Carlos Schneider Beck Filho (UFSM) Prof. Dr. Júlio Carlos Balzano de Mattos (UFPel)

Sistemas de Numeração

Os dados encontrados nos sistemas digitais podem ser classificados em uma das seguintes categorias:

- números usados em cálculos aritméticos;
- letras do alfabeto, usadas no processamento de dados;
- símbolos discretos usados para diversos propósitos.

Todos os dados são representados no formato BINÁRIO porque o uso deste formato facilita o projeto de circuitos eletrônicos.

REPRESENTAÇÃO POSICIONAL

Na notação posicional o valor de um algarismo é determinado pela sua posição dentro do número.

Cada posição possui um determinado peso:

$$1999 = 1 \times 1000 + 9 \times 100 + 9 \times 10 + 9 \times 1$$
$$1 \times 10^{3} + 9 \times 10^{2} + 9 \times 10^{1} + 9 \times 10^{0}$$

Os sistemas atuais formam os números pela seguinte fórmula:

$$a = \sum_{i=-m}^{n} \left(x_i \quad B^i \right)$$

B \rightarrow representa a base do sistema de numeração $B \ge 2$

a → representa o número

 $x_i \rightarrow \text{representam os algarismos} \quad (0 \le x_i \le B)$

n → representa o número de posições utilizadas

Exemplo: $B = 10 \rightarrow \text{sistema decimal}$.

O algarismo x_i tem peso B^i , determinado pela sua posição. Para i com valores positivos, têm-se pesos maiores que a unidade. Para i = 0, têm-se exatamente o peso unitário (B_0 = 1).

Para valores negativos de i, têm-se pesos menores que a unidade (fracionárias).

Dígito (algarismo) mais à esquerda – dígito **mais** significativo.

Dígito (algarismo) mais à direita – dígito **menos** significativo.

Exemplo:

NÚMEROS BINÁRIOS

O sistema de números binários é um sistema que possui a base 2 com dois dígitos 0 e 1.

$$0_2 = 0_{10}$$

$$1 \quad 1 \quad 0 \quad 1 \quad 0_2 = 1x2^4 + 1x2^3 + 0x2^2 + 1x2^1 + 0x2^0 = 26_{10}$$

$$1_2 = 1_{10}$$

$$10_2 = 2_{10}$$

DECIMAL	BINÁRIO		
0	0		
1	1		
2	10		
3	11		
4	100		
5	101		
6	110		
7	111		
8	1000		
9	1001		
10	1010		
11	1011		
12	1100		
13	1101		
14	1110		
15	1111		
16	10000		
17	10001		
18	10010		
19	10011		
20	10100		
21	10101		
22	10110		
23	10111		
24	11000		
25	11001		
26	11010		
27	11011		
28	11100		
29	11101		
30	11110		
31	11111		

CONVERSÃO ENTRE BINÁRIO E DECIMAL/DECIMAL E BINÁRIO

BINÁRIO para **DECIMAL**

$$\begin{smallmatrix}4&3&2&1&0\\10011_2\end{smallmatrix}$$

$$10011_2 = 2^4 x1 + 2^3 x0 + 2^2 x0 + 2^1 x1 + 2^0 x1 = 19_{10}$$

DECIMAL para BINÁRIO

SOMA E SUBTRAÇÃO DE NÚMEROS BINÁRIOS

O procedimento para adição e subtração de números binários é semelhante ao que se usa para números decimais.

$$9 + 1 = 10 \text{ (vai-um)}$$

$$10 - 9 = 9$$
 (vem-um)

SOMA

Para a soma de dois números basta usar as seguintes regras:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0 e vai-um

1 + 1 + 1 = 1 e vai-um

Exemplo:

$$1001_2 + 1011_2 = 10100_2$$

SUBTRAÇÃO

Para a subtrair de dois números basta usar as seguintes regras:

0-0=0

0-1=1 e vem-um

1-0=1

1-1=0

Exemplo:

$$1010_2 - 110_2 = 100_2$$

$$11100_2 - 1010_2 = 10010_2$$

$$\frac{11100}{-1010}$$

$$\frac{11100}{10010}$$

Exercícios:

- 1. Faça as seguintes operações matemáticas e conversões abaixo:
 - a. $100110101_2 + 11010101_2 =$
 - b. $1100011_2 + 0111001_2 =$
 - c. $111101111_2 + 111101111_2 =$
 - d. $1000111110101101_2 + 000100111101101_2 =$
 - e. $100000_2 1_2 =$
 - f. $111010_2 100100_2 =$
 - g. $1111111111_2 1000000000_2 =$
 - h. $1110_2 = ()_{10}$
 - i. $111001_2 = ()_{10}$
 - j. $10000111_2 = ()_{10}$
 - k. $10111,010_2 = ()_{10}$
 - I. $107 = ()_2$
 - $_{m.}$ 26870 = ()₂
 - $_{n.}$ 342 = ()₂
 - o. $48,180 = ()_2$

NÚMEROS OCTAIS E HEXADECIMAIS

Além do sistema decimal (base 10) e do binário (base 2), outros sistemas são de grande importância por proverem representações compactas de números grandes e se "encaixam" melhor com o sistema binário do que o sistema decimal.

- Sistema Octal (base 8)
- Sistema Hexadecimal (base 16)

SISTEMA DECIMAL — cada dígito representa um valor de 0 a 9.

SISTEMA OCTAL – cada dígito representa um valor de 0 a 7.

SISTEMA BINÁRIO – cada dígito representa um valor de 0 a 1.

SISTEMA HEXADECIMAL – cada dígito representa um valor de 0 a F(15).

Tabela com as representações dos números de 0 a 31 (decimal) em binário, octal e hexadecimal:

DECIMAL	BINÁRIO	OCTAL	HEXADECIMAL
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13
20	10100	24	14
21	10101	25	15
22	10110	26	16
23	10111	27	17
24	11000	30	18
25	11001	31	19
26	11010	32	1A
27	11011	33	1B
28	11100	34	1C
29	11101	35	1D
30	11110	36	1E
31	11111	37	1F

CONVERSÃO ENTRE BASES NUMÉRICAS

(Método da Substituição Direta)

BINÁRIO para OCTAL

Para converter um número binário em octal, separam-se os dígitos em grupos de 3 (três).

$$\underbrace{001010011100}_{1}\underbrace{100}_{2}\underbrace{13100}_{3} = 1234_{8}$$
$$2^{3} = 8$$

OCTAL para BINÁRIO

$$765 = 111110101_{2}$$

BINÁRIO para HEXADECIMAL

$$\underbrace{001010011100}_{2}\underbrace{1100}_{9} = 29C_{16}$$
$$2^{4} = 16$$

HEXADECIMAL para BINÁRIO

$$FED_{16} = 1111 \ 1110 \ 1101_2$$

 $FE1_{16} = 1111 \ 1110 \ 0001_2$

OCTAL para HEXADECIMAL

- passar primeiro para binário

$$712_8 = \underbrace{0001}_{1} \underbrace{1100}_{C} \underbrace{1010}_{A} = 1CA_{16}$$

HEXADECIMAL para OCTAL

- passar primeiro para binário

$$A1F_8 = \underbrace{101000011111}_{5}\underbrace{1111}_{7} = 5037_8$$

HEXADECIMAL para **DECIMAL**

$$1A6_{16} = 1X16^2 + 10X16^1 + 6X16^0 = 422_{10}$$

OCTAL para DECIMAL

$$713_8 = 7x8^2 + 1x8^1 + 3x8^0 = 459_{10}$$

CONVERSÃO DE NÚMEROS DE UMA BASE B PARA BASE 10

(Método Polinomial)

$${}^{4\,3\,2\,1\,0}_{11\,0\,0\,1_2} = 1x2^4 + 1x2^3 + 0x2^2 + 0x2^1 + 0x1^0_{10} = 25_{10}$$

oи

$$2^4 + 2^3 + 2^0 = 25_{10}$$

$$3124 = 3x4^{2} + 1x4^{1} + 2x4^{0} = 54_{10}$$

$$\overset{3}{F}\overset{2}{A}\overset{1}{C}\overset{0}{A}_{16} = 15x16^3 + 10x16^2 + 12x16^1 + 10x16^0 = 64202_{10}$$

CONVERSÃO DE UM NÚMERO DE BASE 10 PARA UMA BASE B QUALQUER

(Método das Divisões Sucessivas)

CONVERSÃO ENTRE DUAS BASES QUAISQUER

 $\begin{array}{cccc} B & \longrightarrow & 10 & \longrightarrow & B \\ \text{Base} & & \text{Base} & & \text{Base} \\ \text{qualquer} & & 10 & & \text{qualquer} \end{array}$

EXERCÍCIOS:

Converta os seguintes números para as bases indicadas:

EXERCÍCIOS (respostas):

Converta os seguintes números para as bases indicadas:

1.
$$101110110_2 = 374_{10}$$

2.
$$1056_8 = 558_{10}$$

3.
$$FDE6_{16} = 64998_{10}$$

4.
$$1056_8 = 10001011110_2$$

5.
$$1111101011_2 = 1753_8$$

6.
$$111011011_2 = 1DB_{16}$$

7.
$$7663_8 = FB3_{16}$$

8.
$$FA1_{16} = 1111110100001_2$$

$$10.156_{10} = 10011100_2$$

$$11.876_{10} = 1554_8$$

$$12.9874_{10} = 2692_{16}$$

$$13.111_{10} = 1233_4$$

$$14.1453_{10} = 5AD_{16}$$

$$15.111110011_2 = 1F3_{16}$$

$$16.1111110_2 = 11200_3$$

$$17.16_8 = 1110_2$$

$$18.1022_3 = 35_{10}$$

$$19.1677_8 = 12314_5$$

$$20.134_{16} = 100110100_2$$

CONVERSÃO DE NÚMEROS FRACIONÁRIOS

Se o número for fracionário, a conversão se fará em duas etapas distintas, pois os algoritmos de conversão são diferentes:

- Parte Inteira: da forma que foi exposto acima (múltiplas divisões inteiras);
- Parte Fracionária: consiste de uma série de multiplicações sucessivas do número fracionário a ser convertido pela base; a parte inteira do resultado da primeira multiplicação será o valor da primeira casa fracionária e a parte fracionária será de novo multiplicada pela base; e assim por diante, até o resultado dar zero ou até chegarmos ao número de casas decimais desejado ou disponível.

Por exemplo, vamos converter 15,65₁₀ para a base 2, com 5 e com 10 algarismos fracionários:

$$N_{10} = a_n \cdot b^n + ... + a_2 \cdot b^2 + a_1 \cdot b^1 + a_0 \cdot b^0 + \underbrace{a_{-1} \cdot b^{-1} + ... + a_{-n} \cdot b^{-n} + \dots}_{parte fracionária}$$

 $B \rightarrow 10$

$$1001,01_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} = 9,25_{10}$$

$$0,25$$

 $10 \rightarrow B$

 $15,65_{10} = 1111,10100_2$

Outro exemplo:

Comuzado do mimoro decimal 15,65 para a base 2, usando 5 e 10 digitos fracionários

Números binários fracionários (números à direita da virgula) são expressos como potências negativas do número da base. Para determinar o valor decimal do número binário, basta multiplicar cada "bit" por seu peso posicional e somar os resultados.

Por exemplo, o número binário 0.11012 pode ser expresso com segue:

$$1*2^{-1} + 1*2^{-2} + 0*2^{-3} + 1*2^{-4} =$$

$$1*0.5 + 1*0.25 + 0*0.125 + 1*0.0625 =$$

$$0.5 + 0.25 + 0.0625 =$$

$$0.8125_{10}$$