Chapter 7

Series-Parallel Circuits

OBJECTIVES

- Learn about the unique characteristics of series-parallel configurations and how to solve for the voltage, current, or power to any individual element or combination of elements.
- Become familiar with the voltage divider supply and the conditions needed to use it effectively.

INTRODUCTION

- A series-parallel configuration is one that is formed by a combination of series and parallel elements.
- A complex configuration is one in which none of the elements are in series or parallel.

SERIES-PARALLEL NETWORKS

FIG. 7.1 Series-parallel dc network.

FIG. 7.2 Introducing the reduce and return approach.

FIG. 7.3 Series-parallel network for Example 7.1.

FIG. 7.4 Substituting the parallel equivalent resistance for resistors R_2 and R_3 in Fig. 7.3.

FIG. 7.5 Series-parallel network for Example 7.2.

FIG. 7.6 Schematic representation of the network in Fig. 7.5 after substituting the equivalent resistance R for the parallel combination of R_2 and R_3 .

FIG. 7.7 Inserting an ammeter and a voltmeter to measure I_4 and V_2 , respectively.

- Once the grouping of elements reveals the most direct approach, you can examine the impact of the individual components in each group.
- This grouping of elements is called the block diagram approach

FIG. 7.8 Introducing the block diagram approach.

FIG. 7.9 Block diagram format of Fig. 7.3.

FIG. 7.10 Example 7.3.

FIG. 7.11 Reduced equivalent of Fig. 7.10.

- 1. Total resistance (RT)
- 2. Source current (IS)
- 3. (Branch current (Current through every resistive element)
- 4. Voltage drop (across every resistive element)
- 5. power (across every resistive element)
- 6. KCL varify at node
- 7. KVL varify

FIG. 7.14 *Example 7.5.*

FIG. 7.15 Block diagram of Fig. 7.14.

FIG. 7.16 Alternative block diagram for the first parallel branch in Fig. 7.14.

FIG. 7.18 Block diagram for Fig. 7.17.

FIG. 7.19 Reduced form of Fig. 7.17.

FIG. 7.21 Network in Fig. 7.20 redrawn.

FIG. 7.22 Example 7.8.

FIG. 7.23 Network in Fig. 7.22 redrawn.

FIG. 7.26 Example 7.10.

FIG. 7.27 Network in Fig. 7.26 redrawn.

FIG. 7.28 An alternative approach to Example 7.10.

FIG. 7.29 Example 7.11.

FIG. 7.30 Network in Fig. 7.29 redrawn to better define a path toward the desired unknowns.

APPLICATIONS

Boosting a Car Battery, Electronic Circuits

AMMETER, VOLTMETER, AND OHMMETER DESIGN

FIG. 7.47 Iron-vane movement; (a) photo, (b) symbol and ratings.

FIG. 7.48 Basic ammeter.

AMMETER, VOLTMETER, AND OHMMETER DESIGN

FIG. 7.49 Multirange ammeter.

AMMETER, VOLTMETER, AND OHMMETER DESIGN The Voltmeter

FIG. 7.51 Multirange voltmeter.

AMMETER, VOLTMETER, AND OHMMETER DESIGN The Ohmmeter

- In general, ohmmeters are designed to measure resistance in the low, middle, or high range.
- The most common is the series
 ohmmeter, designed to read
 resistance levels in the midrange.

AMMETER, VOLTMETER, AND OHMMETER DESIGN The Ohmmeter

