$$f: \mathbb{N} \longrightarrow \mathbb{R}_{+}$$

1)
$$f(n) = O(g(n))$$
:

2)
$$f(n) = \mathcal{N}(g(u))$$
:

3)
$$f(n) = \Theta(g(n));$$

$$n \stackrel{?}{=} O(n) V$$

$$n \stackrel{?}{=} O(n^{2}) V$$

$$10 n \stackrel{?}{=} O(n) V$$

$$E>0$$

$$n^{\epsilon} = O(\log n)$$

$$oTpu 4. O:$$

$$AC>0 ANeW \exists n > N: f(n) > Cg(n)$$
..., $n^{\epsilon} > C\log n$

$$n^{\epsilon} > C$$

$$f(n) - ????$$

 $f(n) = O(n^{k})$
 $f(n) = SL(n^{m})$
 $f(n) = N^{\frac{3}{2}}$
 $f(n) = n^{\frac{3}{2}}$

MANNYYWUE OGEHKU

$$N^{K}$$
, $K \in \mathbb{N}$
 $g = n^{K} - HAUN.045.77PU K \in \mathbb{N}$:

 $SF(4) = O(n^{K})$
 $F(u) \neq O(u^{K-1})$

$$f(u) = O(g(n))$$

$$\in \qquad p \neq 1$$

$$\begin{cases} n, C \cdot n, \log n, n^{2}, \dots, q^{2} \end{cases}$$

$$f(h) = \sum_{i=1}^{n} \frac{1}{i(i+1)} \qquad n^{i} \cdot \log^{p} n \qquad q^{n}$$

$$OUSEHUTD f(n)$$

$$f(u) = O(g(u))$$

$$O(0, \dots, q^{1})$$

$$O(0, \dots, q^{1})$$

$$O(0, \dots, q^{1})$$

$$O(0, \dots, q^{1})$$

$$O(1, \dots, q^{1})$$

$$O(2^{k})$$

$$O(1, \dots, q^{1})$$

32 FNTA HA YUCAO
K MUCEN

$$AAUHA$$
 BX, = $32K = N$

$$f(n) = \sum_{i=1}^{n} \frac{1}{i(i+1)} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1}$$

$$\frac{1}{i(i+1)} = \frac{1}{i} - \frac{1}{i+1}$$

$$0(1)$$

$$0(1)$$

$$f(n) \ge \frac{1}{2}$$

 $g(n) = 1$ $f(n) \ge \frac{1}{2} \cdot 1$

$$f(n) = 1 - \frac{1}{n+1}$$
 < 1 f(

$$C_1 \cdot 1 \leq f(n) \leq C_2 \cdot 1$$

$$f(n) = \sum_{i=1}^{n} \frac{1}{i(i+1)} \leq \sum_{i=1}^{n} \frac{1}{i^2} \leq \sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{JC^2}{6}$$

$$S = \frac{gt^2}{2} = 1 \cdot n$$

$$t^2 = \frac{2}{9} \cdot n$$

$$t = C \cdot \sqrt{n}$$

$$t = 0 \cdot \sqrt{n}$$

æ	· 	0	Ø	0	11	
R	0	O	B	0	1	
1	•	1	1	1	1	•
12	' 4	1	1	1	1	