Recurrent Neural Network (RNN) for NLP

jujbob@gmail.com

KyungTae Lim

CONTENTS

- 1 Introduction of RNN
- 2 Structure of RNN
- (3) Application of RNN

CONTENTS

- 1 Introduction of RNN
- 2 Structure of RNN
- (3) Application of RNN

Time Series?

- A time series is a sequence of data points arranged at consistent time intervals. (Wikipedia)
- Time series data consists of observations ordered chronologically.
- It is used to predict current trends and future movements based on historical data.

Time Series?

- We aim to predict stock prices based on NCSoft's search frequency and stock price data. How might we approach this?
 - (1) Should we input all 2 years of data into an FFN? --> Too much data.
 - (2) Then let's input data for five into an FFN. --> Unable to model sequential relationships
 - (3) Isn't there a method to model considering previous prices over time? → RNN!!!

A	В	С
date	num_search	stock_price
2021.3.21	38	93200
2021.3.28	39	83400
2021.4.4	36	88500
2021.4.11	31	90600
2021.4.18	32	89400
2021.4.25	27	86100
2021.5.2	27	82000
2021.5.9	26	85000
2021.5.16	29	82300
2021.5.23	26	85600
2021.5.30	29	85400
2021.6.6	30	85800
2021.6.13	31	84800
2021.6.20	37	82500
2021.6.27	34	82000
2021.7.4	40	83400
2021.7.11	29	77800
2021.7.18	27	80900
2021.7.25	25	80900
2021.8.1	24	81200
2021.8.8	31	79000
2021.8.15	35	85300
2021.8.22	38	70900

What is RNN(Recurrent Neural Network)?

• RNN (Recurrent Neural Network) is a deep learning model suitable for continuous and sequential data (e.g., time series data, natural language, speech).

Α	В	С
date	num_search	stock_price
2021.3.21	38	932000
2021.3.28	39	834000
2021.4.4	36	885000
2021.4.11	31	906000
2021.4.18	32	894000
2021.4.25	27	861000
2021.5.2	27	820000
2021.5.9	26	850000
2021.5.16	29	823000
2021.5.23	26	856000
2021.5.30	29	854000
2021.6.6	30	858000
2021.6.13	31	848000
2021.6.20	37	825000
2021.6.27	34	820000
2021.7.4	40	834000
2021.7.11	29	778000
2021.7.18	27	809000
2021.7.25	25	809000
2021.8.1	24	812000
2021.8.8	31	790000
2021.8.15	35	853000
2021.8.22	38	709000

intuition of RNN

Let's illustrate the transmitted information with colors for each time step.

```
(input + empty_hidden) -> hidden -> output
 (input + prev_hidden) -> hidden -> output
 (input + prev_hidden) -> hidden -> output
(input + prev_hidden ) -> hidden -> output
                                                Info. From Info. From
                                                4 days ago 3 days ago
                                                                Price 2 3 Search frequency
                                                                        2 days ago
                                                                days ago
                                             Search frequency
                                             4 days ago
                                     days ago
```

Ref.: https://medium.com/@serbanliviu/the-intuition-behind-recurrent-neural-networks-6fce753fe9f0

CONTENTS

- 1 Introduction of RNN
- 2 Structure of RNN
- (3) Application of RNN

Comparison of FFN and RNN

Core idea: Apply the same weights W repeatedly!

Visualization of RNN

Core idea:

- Apply the same weights W repeatedly!
- The RNN illustrated below fundamentally assumes input and output as vectors.

Visualization of RNN

Core idea:

Apply the same weights W repeatedly!

Visualization of RNN

Figure Ref. : 머신러닝을 위한 파이썬 한조각

Visualization of RNN

 x_t : Input values for all samples

 y_t : Output of the recurrent layer for each sample at time step t

 h_t : hidden state, defined as $h_t = f(h_{t-1}, x_t)$, meaning the current hidden state is determined by the previous hidden state and the current input.

Hidden state: Information to be passed on to the next time step

Visualization of RNN

$$h_t = \tanh(X_t \cdot W_{xh} + h_{t-1} \cdot W_{hh} + b)$$

$$y_t = W_{hy} \cdot h_t$$

Language Model using RNN

Language Modeling is the task of predicting what word comes next

the students opened their

• More formally: given a sequence of words $x^{(1)}, x^{(2)}, \dots, x^{(t)}$, compute the probability distribution of the next word $x^{(t+1)}$:

$$P(\boldsymbol{x}^{(t+1)}|\ \boldsymbol{x}^{(t)},\dots,\boldsymbol{x}^{(1)})$$

where $oldsymbol{x}^{(t+1)}$ can be any word in the vocabulary $V = \{oldsymbol{w}_1, ..., oldsymbol{w}_{|V|}\}$

A system that does this is called a Language Model

Language Model using RNN

You can also use a Language Model to generate text

Language Model using RNN

 $\hat{\mathbf{y}}^{(4)} = P(\mathbf{x}^{(5)}|\text{the students opened their})$

output distribution

$$\hat{oldsymbol{y}}^{(t)} = \operatorname{softmax}\left(oldsymbol{U}oldsymbol{h}^{(t)} + oldsymbol{b}_2
ight) \in \mathbb{R}^{|V|}$$

hidden states

$$oldsymbol{h}^{(t)} = \sigma \left(oldsymbol{W}_h oldsymbol{h}^{(t-1)} + oldsymbol{W}_e oldsymbol{e}^{(t)} + oldsymbol{b}_1
ight)$$

 $m{h}^{(0)}$ is the initial hidden state

word embeddings

$$oldsymbol{e}^{(t)} = oldsymbol{E} oldsymbol{x}^{(t)}$$

words / one-hot vectors

$$oldsymbol{x}^{(t)} \in \mathbb{R}^{|V|}$$

Language Model using RNN

GPT??

Language Model using RNN

Language Model using RNN

Language Model using RNN

"Teacher forcing"

Why Hyperbolic Tangent?

• The sigmoid function outputs values close to 0 for negative inputs. Its derivative reaches a maximum of 0.25, leading to the problem of Vanishing Gradient.

$$\frac{d}{dx}sigmoid(x) = sigmoid(x)(1 - sigmoid(x))$$

Why Hyperbolic Tangent?

- To mitigate the Vanishing Gradient issue in RNNs, the Tanh function is used
- The derivative of Tanh function has a maximum value of 1

$$h_t = \tanh(X_t \cdot W_{xh} + h_{t-1} \cdot W_{hh} + b)$$

$$y_t = W_{hy} \cdot h_t$$

$$tanh(x) = 2\sigma(2x) - 1$$

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$tanh'(x) = 1 - tanh^2(x)$$

Structure of RNN

Structure of RNN

Spam Mail Recognizer

Structure of RNN

many-to-many Structure of RNN

Figure Ref: https://wikidocs.net/book/2155

RNN Training

Training Structure of RNN

$$h_t = \tanh(X_t \cdot W_{xh} + h_{t-1} \cdot W_{hh} + b)$$

$$y_t = W_{hy} \cdot h_t$$

RNN Training

Training Structure of RNN

Representation of RNN with vector and matrix operations

d: Dimension of the word at time-step t

 D_h : Size of the hidden layer

CONTENTS

- 1 Introduction of RNN
- 2 Structure of RNN
- (3) Application of RNN

RNN Operation

Next character prediction model

When 'h' is input, predict 'e' When 'e' is input, predict 'l'

Basic implementation form of RNN

rnn = torch.nn.RNN(input size, hidden size) outputs, _status = rnn(input_data)

shape=(-,-,-)

RNN input size and format (one-hot)

RNN's hidden state

RNN's output size

Sequence length of RNN input

Sequence length of RNN input

 $x_0 = [1, 0, 0, 0]$ $x_1 = [0, 1, 0, 0]$ $x_2 = [0, 0, 1, 0]$ h, e, I, I, o $x_3 = [0, 0, 1, 0]$ $x_4 = [0, 0, 0, 1]$

Automatically Calculated

Batch size for processing multiple samples simultaneously

Example of Character Sequence Prediction

```
import torch
import numpy as np
input size = 4
hidden size = 2
# 1-hot encoding
h = [1, 0, 0, 0]
e = [0, 1, 0, 0]
1 = [0, 0, 1, 0]
0 = [0, 0, 0, 1]
      input_data_np = np.array([[h, e, 1, 1, o],
                                   [e, o, 1, 1, 1],
             [1, 1, e, e, 1]], dtype=np.float32)
# transform as torch tensor
input data = torch.Tensor(input data np)
rnn = torch.nn.RNN(input size, hidden size) out
puts, _status = rnn(input_data)
```

'Hihello' example

- 'Hihello' problem
- Data setting
 - One hot encoding
- Cross entropy loss
- Code run through

'hihello' problem

- 'h', 'i', 'h', 'e', 'l', 'l', 'o'
- We will predict the next character!
- How can we represent characters in PyTorch?

How can we represent characters?

We can represent them by index

```
○ 'h' -> 0
```

```
# list of available characters char
_set = ['h', 'i', 'e', 'l', 'o']
```

One-hot encoding

We need to encode using one-hot encoding!

```
# list of available characters
char set = ['h', 'i', 'e', 'l', 'o']
x data = [[0, 1, 0, 2, 3, 3]]
x 	ext{ one hot} = [[[1, 0, 0, 0, 0],
               [0, 1, 0, 0, 0],
               [1, 0, 0, 0, 0],
               [0, 0, 1, 0, 0],
               [0, 0, 0, 1, 0],
               [0, 0, 0, 1, 0]]
 y data = [[1, 0, 2, 3, 3, 4]]
```

Cross Entropy Loss

Loss for categorical output (usually interpreted as probability)

```
Output label

0.1 0
0.2 0
0.3 0
0.4 1
```

```
# loss & optimizer setting
criterion = torch.nn.CrossEntropyLoss()
...
loss = criterion(outputs.view(-1, input_size), Y.view(-1))
```

Code run through (hihello)

```
char set = ['h', 'i', 'e', 'l', 'o']
# hyper parameters
input size = len(char_set)
hidden size = len(char set)
learning rate = 0.1
# data setting
x_{data} = [[0, 1, 0, 2, 3, 3]]
x 	ext{ one hot} = [[[1, 0, 0, 0, 0],
             [0, 1, 0, 0, 0],
             [1, 0, 0, 0, 0],
             [0, 0, 1, 0, 0],
              [0, 0, 0, 1, 0],
             [0, 0, 0, 1, 0]]
y data = [[1, 0, 2, 3, 3, 4]]
```

```
# transform as torch tensor variable
X = torch.FloatTensor(x_one_hot)
Y = torch.LongTensor(y_data)
```

Code run through

```
# declare RNN
rnn = torch.nn.RNN(input_size, hidden_size, batch_first=True) # batch_first guarantees the order of output = (B, S, F)
# loss & optimizer setting
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.Adam(rnn.parameters(), learning rate)
# start training
for i in range(100): optimi
  zer.zero grad() outputs,
   status = rnn(X)
  loss = criterion(outputs.view(-1, input size), Y.view(-1))
  loss.backward()
   optimizer.step()
  result = outputs.data.numpy().argmax(axis=2)
  result str = ''.join([char set[c] for c in np.squeeze(result)])
   print(i, "loss: ", loss.item(), "prediction: ", result, "true Y: ", y data, "prediction str: ", result str)
```

Code run through (charseq)

```
sample = " if you want you"
# make dictionary
char set = list(set(sample))
char dic = {c: i for i, c in enumerate(char set)}
# hyper parameters dic
size = len(char dic)
hidden size = len(char dic)
learning rate = 0.1
# data setting
sample_idx = [char_dic[c] for c in sample]
x_{data} = [sample_idx[:-1]]
x_one_hot = [np.eye(dic_size)[x] for x in x_data]
y data = [sample idx[1:]]
```

```
# transform as torch tensor variable
X = torch.FloatTensor(x_one_hot)
Y = torch.LongTensor(y_data)
```

Code run through

```
# declare RNN
rnn = torch.nn.RNN(input size, hidden size, batch first=True)
# loss & optimizer setting
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.Adam(rnn.parameters(), learning rate)
# start training
for i in range(100): optimi
  zer.zero grad() outputs,
   status = rnn(X)
  loss = criterion(outputs.view(-1, input size), Y.view(-1))
  loss.backward()
  optimizer.step()
  result = outputs.data.numpy().argmax(axis=2)
  result str = ''.join([char set[c] for c in np.squeeze(result)])
   print(i, "loss: ", loss.item(), "prediction: ", result, "true Y: ", y data, "prediction str: ", result str)
```

longseq

- We want to use longer dataset
- But we want to train in bigger chunks
- How can we create fixed size sequence dataset from long sentence?

Making sequence dataset from long sentence

```
"if you wan" -> "f you want"
"f you want" -> " you want "
" you want " -> "you want t"
"you want t" -> "ou want to"
"ou want to" -> "u want to"
```

• • •

Making sequence dataset from long sentence (code)

```
# data setting
x data = [] y
_data = []
for i in range(0, len(sentence) - sequence length):
   x str = sentence[i:i + sequence length]
  y str = sentence[i + 1: i + sequence length + 1]
   print(i, x str, '->', y str)
   x data.append([char dic[c] for c in x str]) # x str to index
  y data.append([char dic[c] for c in y str]) # y str to index
x one hot = [np.eye(dic size)[x]  for x in x data]
# transform as torch tensor variable
X = torch.FloatTensor(x one hot)
Y = torch.LongTensor(y data)
```

```
"if you wan" -> "f you want"
"f you want" -> " you want "
" you want " -> "you want t"
"you want t" -> "ou want to"
"ou want to" -> "u want to "
```

Adding FC layer and stacking RNN

```
# declare RNN + FC
class Net(torch.nn.Module):
  def init (self, input_dim, hidden_dim, layers):
       super(Net, self). init ()
       self.rnn = torch.nn.RNN(input dim, hidden dim, num layers=layers,
batch first=True)
       self.fc = torch.nn.Linear(hidden dim, hidden dim, bias=True)
  def forward(self, x):
      x, status = self.rnn(x)
       x = self.fc(x)
       return x
```

net = Net(dic size, hidden size, 2)

Vanilla RNN

Adding FC layer and stacking RNN

```
# declare RNN + FC
class Net(torch.nn.Module):
   def___init_(self, input_dim, hidden_dim, layers):
       super(Net, self). init ()
       self.rnn = torch.nn.RNN(input dim, hidden dim, num layers=layers,
batch first=True)
       self.fc = torch.nn.Linear(hidden dim, hidden dim, bias=True)
   def forward(self, x):
       x, _status = self.rnn(x)
       x = self.fc(x)
       return x
net = Net(dic_size, hidden_size, 2)
```


Code run through

```
# loss & optimizer setting
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), learning rate)
# start training
for i in range(100): op
   timizer.zero grad()
   outputs = net(X)
   loss = criterion(outputs.view(-1, dic size), Y.view(-1))
   loss.backward()
   optimizer.step()
   results = outputs.argmax(dim=2)
   predict str = ""
   for j, result in enumerate(results):
       print(i, j, ''.join([char_set[t] for t in result]), loss.item())
       if i == 0:
           predict str += ''.join([char set[t] for t in result])
       else:
           predict_str += char_set[result[-1]]
```

Application of RNN

Sentiment analysis: Is a movie review positive or negative?

- I work at google → 나는 구글에 근무한다.
- I google at work → 나는 일하면서 구글링한다.

Application of RNN

Sentiment analysis: Is a movie review positive or negative?

Application of RNN

Chatbot (seq2seq)

End of RNN

Further Discussion

- RNN Training Methods
 - ✓ RTRL (Real-time recurrent learning): Uses stochastic gradient descent for online learning
 - ✓ BPTT (Backpropagation through time): Time-based error backpropagation
- Advantages of RNN
 - Utilizes previous information for solving current problems
- Disadvantages of RNN
 - ✓ Long-term dependency: Difficulty handling context from distant past states due to gradient vanishing
 - → Resolved by LSTM (Long Short Term Memory) and GRU (Gated Recurrent Units)

