Fall 2022, MATH 3215-J, Final (60 pts)

TN T					
1	9	m	n	$\boldsymbol{\alpha}$	

GT ID:

- Regular exam time is 170 min.
- Open-book/notes. Calculators are allowed. No communication in any form.
- All the solutions are supposed to be short and can fit in the given space. Please read the problem statements carefully.
- Consider skipping a part if you get stuck somewhere.
- If there is a mistake in a problem statement making it unsolvable, skip it and you will be awarded full points for that problem.

- 1. In a 5-game series played between two teams, the first team to win a total of 3 games is the winner. Suppose that the outcomes of games are independent, and that team A wins each game with probability 0.8 and team B wins each game with probability 0.2.
 - (a) (2 pts) Conditional on the event that team A leads by 2 to 0, what is the probability that team A wins the series?
 - (b) (2 pts) Conditional on the event that team A leads by 1 to 0, what is the probability that team B wins the series?

The final answers (numerical values) should be computed explicitly and exactly.

Let the probability that team A wins a game be p = 0.8.

- (a) If team B wins the series, it must win 3 consecutive games, which happens with probability $(1-p)^3$. Therefore, the answer is $1-(1-p)^3=0.992$.
- (b) Let E be the event that team A leads by 1 to 0, and let F be the event that team B wins the series. For the event $E \cap F$, the series can have winners ABBB, AABBB, ABABB, or ABBAB. Therefore,

$$\mathcal{P}(F \mid E) = \frac{\mathcal{P}(E \cap F)}{\mathcal{P}(E)} = \frac{p(1-p)^3 + 3p^2(1-p)^3}{p} = (1-p)^3 + 3p(1-p)^3 = 0.0272.$$

2. (2 pts) Suppose that the total weight of products produced daily at a factory is X^3 lbs where $X \sim \mathcal{N}(21, 0.25)$. What is the probability that the total weight exceeds 8,000 lbs in a day? Use the CDF Φ of $\mathcal{N}(0,1)$ to express the answer.

The probability is

$$\mathbb{P}{X^3 > 8000} = \mathbb{P}{X > 20} = \mathbb{P}\left{\frac{X - 21}{0.5} > \frac{20 - 21}{0.5}\right} = 1 - \Phi(-2) = \Phi(2).$$

- 3. Suppose that the number of accidents on Highway A in a year has the Poisson distribution Poi(100), and that number on Highway B has distribution Poi(300), independently from the number on Highway A. Use the CDF Φ of the standard normal $\mathcal{N}(0,1)$ to approximate the probabilities of the following events (no need to worry about correction for continuity or strict vs. non-strict inequalities):
 - (a) (2 pts) The number of accidents on Highway A is at least 110.
 - (b) (2 pts) The total number of accidents on Highway A and Highway B is at most 410.
 - (c) (2 pts) There are more accidents on Highway B than on Highway A.
 - (a) Let X be the number of accidents on Highway A. Then $X \sim \text{Poi}(100)$, so $\mathbb{E}[X] = 100$ and Var(X) = 100. It follows that

$$\mathbb{P}\{X \ge 110\} = \mathbb{P}\left\{\frac{X - 100}{10} \ge \frac{110 - 100}{10}\right\} \approx 1 - \Phi(1) = \Phi(-1).$$

(b) Let Y be the number of accidents on Highway B. Then $Y \sim \text{Poi}(300)$, so $\mathbb{E}[Y] = 300$ and Var(Y) = 300. Hence, X + Y is approximately $\mathcal{N}(400, 400)$. It follows that

$$\mathbb{P}\{X+Y \le 410\} = \mathbb{P}\left\{\frac{X+Y-400}{20} \le \frac{410-400}{20}\right\} \approx \Phi(0.5).$$

(c) We have that Y-X is approximately $\mathcal{N}(200,400)$, so

$$\mathbb{P}\{Y > X\} = \mathbb{P}\left\{\frac{Y - X - 200}{20} > \frac{-200}{20}\right\} \approx 1 - \Phi(-10) = \Phi(10) \approx 1.$$

- **4.** Let $\mathsf{Exp}(3)$ denote the exponential distribution with PDF $f(x) = \lambda e^{-3x}$ for $x \ge 0$ and f(x) = 0 for x < 0, where λ is a fixed constant. Let X and Y be i.i.d. $\mathsf{Exp}(3)$ random variables.
 - (a) (2 pts) What is λ ?
 - (b) (1 pt) Denote the joint PDF of (X, Y) by $\tilde{f}(x, y)$. What is $\tilde{f}(x, y)$? (The domain of the function needs to be clearly indicated.)
 - (c) (2 pts) Denote the CDF of X + Y by F(t) for $t \in \mathbb{R}$. What is F(t) for $t \geq 0$?
 - (d) (2 pts) Denote the PDF of X + Y by f(t) for $t \in \mathbb{R}$. What is f(t) for $t \geq 0$?
 - (a) We have $1 = \int_0^\infty \lambda e^{-3x} dx = \lambda/3$, so $\lambda = 3$.
 - (b) We have

$$\tilde{f}(x,y) = 9e^{-3(x+y)}$$

for $x, y \ge 0$, and $\tilde{f}(x, y) = 0$ otherwise.

(c) For $t \geq 0$, we have

$$F(t) = \mathbb{P}\{X + Y \le t\} = \int_0^t \int_0^{t-y} 9e^{-3(x+y)} dx dy$$

$$= \int_0^t -3e^{-3(x+y)} \Big|_{x=0}^{t-y} dy$$

$$= \int_0^t 3(e^{-3y} - e^{-3t}) dy$$

$$= -e^{-3y} \Big|_{y=0}^t - 3te^{-3t}$$

$$= 1 - e^{-3t} - 3te^{-3t}.$$

(d) For $t \geq 0$, we have

$$f(t) = F'(t) = 3e^{-3t} - 3e^{-3t} + 9te^{-3t} = 9te^{-3t}.$$

- **5.** A plane is missing and is equally likely to have gone down in one of three possible regions. For i = 1, 2, 3, let p_i be the probability that the plane can be found upon a search of the *i*th region when the plane is in fact in that region.
 - (a) (1 pt) What is the probability that a search in the 2nd region is successful?
 - (b) (2 pts) Conditional on the event that a search of the 2nd region is unsuccessful, what is the probability that the plane is in the 1st region?
 - (c) (2 pts) Conditional on the event that a search of the 2nd region is unsuccessful, what is the probability that the plane is in the 2nd region?

(Express the answers in terms of p_1 , p_2 , and p_3 .)

Let X be the region the plane is in. Let Y be the indicator that the search in the 2nd region is successful (i.e., Y = 1, successful; Y = 0, unsuccessful).

(a) We have

$$\mathbb{P}\{Y=1\} = \sum_{i=1}^{3} \mathbb{P}\{Y=1 \mid X=i\} \cdot \mathbb{P}\{X=i\} = \frac{p_2}{3}.$$

(b) We have

$$\mathbb{P}\{X=1 \mid Y=0\} = \frac{\mathbb{P}\{Y=0 \mid X=1\} \cdot \mathbb{P}\{X=1\}}{\mathbb{P}\{Y=0\}} = \frac{1/3}{1-p_2/3} = \frac{1}{3-p_2}.$$

(c) We have

$$\mathbb{P}\{X=2 \mid Y=0\} = \frac{\mathbb{P}\{Y=0 \mid X=2\} \cdot \mathbb{P}\{X=2\}}{\mathbb{P}\{Y=0\}} = \frac{(1-p_2)/3}{1-p_2/3} = \frac{1-p_2}{3-p_2}.$$

- **6.** Let X have PDF $f_X(x) = x/4$ for $x \in [1,3]$ and $f_X(x) = 0$ otherwise. Conditional on X = x, let Y have the uniform distribution over [0,x].
 - (a) (1 pt) What is the conditional PDF of Y given $X = x \in [1, 3]$?
 - (b) (2 pts) What is the joint PDF f(x, y) of (X, Y)?
 - (c) (2 pts) What is the marginal PDF $f_Y(y)$ of Y?

The domains of the above functions (where a function is nonzero) should be clearly specified.

(a) We have

$$f_{Y|X}(y|x) = 1/x, \qquad y \in [0, x].$$

(b) We have

$$f(x,y) = f_X(x) \cdot f_{Y|X}(y|x) = 1/4, \qquad x \in [1,3], y \in [0,x].$$

(c) For $y \in [0, 1]$,

$$f_Y(y) = \int_1^3 \frac{1}{4} dx = \frac{1}{2},$$

and for $y \in (1,3]$,

$$f_Y(y) = \int_y^3 \frac{1}{4} dx = \frac{3-y}{4}.$$

- 7. Suppose that we are given i.i.d. X_1, \ldots, X_n from the Pareto distribution with PDF $f(x) = \lambda \theta^{\lambda} x^{-(\lambda+1)}$ for $x \geq \theta$ and f(x) = 0 otherwise, where $\theta > 0$ and $\lambda > 0$ are both unknown parameters.
 - (a) (2 pts) What is the joint PDF of (X_1, \ldots, X_n) ? (Write it as a function of x_1, \ldots, x_n with the domain clearly specified.)
 - (b) (1 pt) What is the MLE $\hat{\theta}$ of θ ?
 - (c) (1 pt) Now fix $\theta = \hat{\theta}$ (no need to plug in its formula from the previous part). What is the log-likelihood for λ ?
 - (d) (2 pts) What is the MLE $\hat{\lambda}$ of λ ?
 - (a) The joint PDF is $\lambda^n \theta^{n\lambda} (x_1 \cdots x_n)^{-(\lambda+1)}$ if $x_i \leq \theta$ for all $i = 1, \dots, n$ and is zero otherwise.
 - (b) The likelihood is the same as the joint PDF. To maximize this function over θ , we should take $\theta = \min_{1 \le i \le n} x_i$. Therefore, the MLE of θ is

$$\hat{\theta} = \min_{1 \le i \le n} X_i.$$

(c) The log-likelihood is

$$n \log \lambda + n \lambda \log \hat{\theta} - (\lambda + 1) \log(x_1 \cdots x_n).$$

(d) Differentiating the log-likelihood with respect to λ and setting the result to zero, we obtain

$$\frac{n}{\lambda} + n \log \hat{\theta} - \log(x_1 \cdots x_n) = 0.$$

Therefore, the MLE of λ is

$$\hat{\lambda} = \frac{n}{\log(X_1 \cdots X_n) - n \log(\hat{\theta})}.$$

- 8. The mean breaking strength of a type of fiber is believed to be at least 200 psi. Suppose that the breaking strength is normally distributed with standard deviation equal to 2 psi. A sample of 16 pieces of fiber yielded average breaking strength 190 psi.
 - (a) (1 pt) If we would like to show with high confidence that this type of fiber is not as strong as it is believed to be, what is the null hypothesis H_0 and what is alternative hypothesis H_1 ? (Write the hypotheses in mathematical terms like $H_0: \mu...$)
 - (b) (1 pt) What is the test statistic that has the standard normal distribution? Compute its numerical value.
 - (c) (1 pt) What is the test at significance level 0.05? Express the test as rejecting H_0 if some condition holds (in terms of the above statistic and an explicit numerical threshold). (Recall that $\Phi(1.96) \approx 0.975$ and $\Phi(1.645) \approx 0.95$ where Φ is the CDF of $\mathcal{N}(0,1)$).
 - (d) (1 pt) Do we reject H_0 or not?
 - (e) (1 pt) What is the p-value, expressed using Φ ?
 - (f) (1 pt) What is the p-value approximately? Choose your answer from: (i) 0.1; (ii) 0.05; (iii) 0.01; (iv) 0.005; (v) 0.
 - (a) $H_0: \mu \ge 200; H_1: \mu < 200$
 - (b) $\frac{\sqrt{n}}{\sigma}(\bar{X} \mu_0) = \frac{\sqrt{16}}{2}(190 200) = -20$
 - (c) Reject H_0 if $\frac{\sqrt{n}}{\sigma}(\bar{X}-\mu_0)<-z_\alpha=\Phi^{-1}(0.95)\approx-1.645$
 - (d) Reject H_0 . Not acceptable.
 - (e) $\mathbb{P}\{Z < -20\} = \Phi(-20)$
 - (f) 0

9. Consider two independent samples of sizes n_1 and n_2 from $\mathcal{N}(\mu_1, \sigma_1^2)$ and $\mathcal{N}(\mu_2, \sigma_2^2)$ respectively. Let S_1^2 and S_2^2 be the respective sample variances. Let \mathcal{F} denote the F-distribution with $n_1 - 1$ and $n_2 - 1$ degrees of freedom. Recall that

$$R := \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim \mathcal{F}.$$

Note that R takes values in $(0, \infty)$. Let G denote the CDF of \mathcal{F} . For $\alpha \in (0, 1)$, let $g_{\alpha} := G^{-1}(1-\alpha)$ be the quantile of order $1-\alpha$.

- (a) (1 pt) Give a test statistic (in terms of S_1^2 and S_2^2 only) that has distribution \mathcal{F} if $\sigma_1^2 = 2\sigma_2^2$.
- (b) (2 pts) Suppose that we test $H_0: \sigma_1^2 \leq 2\sigma_2^2$ (or $\sigma_1^2 = 2\sigma_2^2$) against $H_1: \sigma_1^2 > 2\sigma_2^2$. What is the one-sided test at significance level $\alpha \in (0,1)$? Express the test as rejecting H_0 if some condition holds (in terms of the above statistic and a quantile).
- (c) (2 pts) What is the p-value associated with the above test (i.e., associated with the statistic from part (a))? Express it in terms of S_1^2 , S_2^2 , and the CDF G.
- (d) (1 pt) Suppose that we test $H_0: \sigma_1^2 \geq 2\sigma_2^2$ (or $\sigma_1^2 = 2\sigma_2^2$) against $H_1: \sigma_1^2 < 2\sigma_2^2$. What is the one-sided test at significance level $\alpha \in (0,1)$? Express the test as rejecting H_0 if some condition holds (in terms of S_1^2 , S_2^2 , and a quantile).
- (a) If $\sigma_1^2 = 2\sigma_2^2$, then

$$\frac{S_1^2}{2S_2^2} = \frac{S_1^2 \sigma_2^2}{S_2^2 \sigma_1^2} = R \sim \mathcal{F}.$$

- (b) We have $\mathbb{P}\left\{\frac{S_1^2}{2S_2^2} > g_{\alpha}\right\} = \alpha$, so we reject H_0 if $S_1^2 > 2g_{\alpha}S_2^2$.
- (c) The *p*-value is

$$\mathbb{P}\left\{L > \frac{S_1^2}{2S_2^2}\right\} = 1 - G\left(\frac{S_1^2}{2S_2^2}\right),$$

where the probability is with respect to $L \sim \mathcal{F}$.

(d) We reject H_0 if $S_1^2 < 2g_{1-\alpha}S_2^2$.

- **10.** Suppose that we observe i.i.d. $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$ where σ^2 is unknown. Consider testing $H_0: \mu \leq \mu_0$ against $H_1: \mu > \mu_0$. Let S^2 denote the sample variance. For $\alpha \in (0,1)$, let $t_{\alpha} := F^{-1}(1-\alpha)$, where F denotes the CDF of the t-distribution with n-1 degrees of freedom.
 - (a) (2 pts) Find a statistic B (a quantity expressed in terms of the quantile t_{α} and the data) such that the following holds: The test that rejects H_0 if $B > \mu_0$ achieves significance level α exactly.
 - (b) (2 pts) Find a p-value P (a quantity expressed in terms of F, μ_0 , and the data) such that the following holds: The test that rejects H_0 if $P < \alpha$ achieves significance level α exactly.
 - (c) (1 pt) Are the above two tests equivalent?
 - (d) (1 pt) If $\mu = \mu_0$, what is the CDF $\tilde{F}(t)$ of the P? (Recall that the p-value is expressed in terms of the random data, so it is a random variable and therefore has its own CDF.)
 - (a) The t-test at significance level α rejects H_0 if $\frac{\sqrt{n}}{S}(\bar{X} \mu_0) > t_{\alpha}$. The rejection rule is equivalent to $\bar{X} \mu_0 > t_{\alpha} \frac{S}{\sqrt{n}}$, i.e., $\mu_0 < \bar{X} t_{\alpha} \frac{S}{\sqrt{n}}$. Therefore, it suffices to set $B = \bar{X} t_{\alpha} \frac{S}{\sqrt{n}}$.
 - (b) The *p*-value is $1 F(\frac{\sqrt{n}}{S}(\bar{X} \mu_0))$.
 - (c) They are equivalent because, by (a) and (b),

$$\mu_0 < B \iff \frac{\sqrt{n}}{S}(\bar{X} - \mu_0) > t_\alpha \iff F\left(\frac{\sqrt{n}}{S}(\bar{X} - \mu_0)\right) > F(t_\alpha) = 1 - \alpha,$$

where the last condition is equivalent to p-value smaller than α .

(d) The test at significance level α rejects H_0 if $P < \alpha$. This literally means that if $\mu = \mu_0$, then $\mathbb{P}\{P < \alpha\} = \alpha$. Therefore, $\tilde{F}(t) = t$ for $t \in (0, 1)$, $\tilde{F}(t) = 0$ for $t \leq 0$, and $\tilde{F}(t) = 1$ for $t \geq 1$.

11. Consider the linear regression model

$$Y_i = \beta x_i + \varepsilon_i, \qquad i = 1, \dots, n,$$

where β is the parameter to be estimated, x_i are fixed covariates, and the noise terms ε_i are i.i.d. $\mathcal{N}(0,1)$ random variables.

- (a) (1 pt) What is the distribution of Y_i ?

 (The name and parameters of the distribution all need to be specified.)
- (b) (1 pt) What is the joint PDF of (Y_1, \ldots, Y_n) ?
- (c) (1 pt) What is the log-likelihood at β ?
- (d) (2 pts) What is the MLE $\hat{\beta}$ of β ?
- (e) (2 pts) What is the mean of $\hat{\beta}$?
- (a) We have $Y_i \sim \mathcal{N}(\beta x_i, 1)$.
- (b) The joint PDF is

$$f(y_1, \dots, y_n) = \frac{1}{(2\pi\sigma)^{n/2}} \exp\left(-\frac{1}{2} \sum_{i=1}^n (y_i - \beta x_i)^2\right).$$

(c) The log-likelihood is

$$-\frac{n}{2}\log(2\pi\sigma) - \sum_{i=1}^{n} (y_i - \beta x_i)^2.$$

(d) To find the MLE, we need to minimize

$$\sum_{i=1}^{n} (Y_i - \beta x_i)^2,$$

take its derivative with respect to β and set the result to zero:

$$2\sum_{i=1}^{n} x_i (Y_i - \beta x_i) = 0.$$

This yields

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i Y_i}{\sum_{i=1}^{n} x_i^2}.$$

(e) The mean of $\hat{\beta}$ is

$$\frac{\sum_{i=1}^{n} x_{i} \mathbb{E}[Y_{i}]}{\sum_{i=1}^{n} x_{i}^{2}} = \frac{\sum_{i=1}^{n} x_{i} \beta x_{i}}{\sum_{i=1}^{n} x_{i}^{2}} = \beta.$$