|                                        | $\sigma_{1^{+}lphaeta}^{\sharp1}$        | $\sigma_{1^{+}lphaeta}^{\#2}$                             | $	au_{1}^{\#1}{}_{lphaeta}$                              | $\sigma_1^{\#1}{}_{lpha}$                 | $\sigma_{1-lpha}^{\#2}$                                            | $\tau_{1}^{\#1}{}_{\alpha}$ | τ <sub>1</sub> - α                                                |
|----------------------------------------|------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------|
| $\sigma_{1}^{*1}$ † $^{lphaeta}$       | $\frac{1}{k^2(2r_3+r_5)}$                | $-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$                  | $-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$                  | 0                                         | 0                                                                  | 0                           | 0                                                                 |
| $\sigma_{1}^{\#2}$ † $^{lphaeta}$      | $-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$ | $\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$      | $\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$ | 0                                         | 0                                                                  | 0                           | 0                                                                 |
| $	au_1^{\#1} \dagger^{lphaeta}$        | $\frac{i \sqrt{2}}{k(1+k^2)(2r_3+r_5)}$  | $-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$ |                                                          | 0                                         | 0                                                                  | 0                           | 0                                                                 |
| $\sigma_{1}^{\sharp 1} \dagger^{lpha}$ | 0                                        | 0                                                         | 0                                                        | $\frac{2}{k^2(r_3+2r_5)}$                 | $\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$                          | 0                           | $\frac{4i}{k(1+2k^2)(r_3+2r_5)}$                                  |
| $\sigma_1^{\#2} \dagger^{\alpha}$      | 0                                        | 0                                                         | 0                                                        | $\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$ | $\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$              | 0                           | $\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$ |
| $\tau_1^{\#1} \uparrow^{\alpha}$       | 0                                        | 0                                                         | 0                                                        | 0                                         | 0                                                                  | 0                           | 0                                                                 |
| $\tau_1^{\#2} \uparrow^{\alpha}$       | 0                                        | 0                                                         | 0                                                        | $-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$         | $-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$ | 0                           | $\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$             |

|                                              | $\omega_{1^{+}lphaeta}^{\sharp1}$   | $\omega_{1}^{\#2}{}_{\alpha\beta}$ | $f_{1}^{\#1}{}_{\alpha\beta}$ | $\omega_{1^{-}\ lpha}^{\#1}$                            | $\omega_{1}^{\#2}{}_{lpha}$ | $f_{1-\alpha}^{\#1}$ | $f_{1}^{#2}\alpha$               |
|----------------------------------------------|-------------------------------------|------------------------------------|-------------------------------|---------------------------------------------------------|-----------------------------|----------------------|----------------------------------|
| $\omega_1^{\sharp 1} \dagger^{\alpha \beta}$ | $k^2 (2r_3 + r_5) + \frac{2t_2}{3}$ | $\frac{\sqrt{2} t_2}{3}$           | $\frac{1}{3}i\sqrt{2}kt_2$    | 0                                                       | 0                           | 0                    | 0                                |
| $\omega_{1}^{\#2} \dagger^{\alpha\beta}$     | $\frac{\sqrt{2} t_2}{3}$            | <u>t2</u><br>3                     | <u>i kt2</u><br>3             | 0                                                       | 0                           | 0                    | 0                                |
| $f_{1}^{\#1} \dagger^{\alpha\beta}$          | $-\frac{1}{3}\bar{l}\sqrt{2}kt_2$   | $-\frac{1}{3}i\!\!\!/kt_2$         | $\frac{k^2t_2}{3}$            | 0                                                       | 0                           | 0                    | 0                                |
| $\omega_{1}^{#1}\dagger^{\alpha}$            | 0                                   | 0                                  | 0                             | $k^2 \left(\frac{r_3}{2} + r_5\right) + \frac{2t_3}{3}$ | $-\frac{\sqrt{2} t_3}{3}$   | 0                    | $-\frac{2}{3}l\!\!/kt_3$         |
| $\omega_{1}^{#2}$ † $^{\alpha}$              | 0                                   | 0                                  | 0                             | $-\frac{\sqrt{2} t_3}{3}$                               | <u>t3</u><br>3              | 0                    | $\frac{1}{3}\bar{l}\sqrt{2}kt_3$ |
| $f_{1}^{#1} \dagger^{\alpha}$                | 0                                   | 0                                  | 0                             | 0                                                       | 0                           | 0                    | 0                                |
| $f_{1}^{#2} + \alpha$                        | 0                                   | 0                                  | 0                             | <u>2 i kt</u> 3<br>3                                    | $-\frac{1}{3}i\sqrt{2}kt_3$ | 0                    | $\frac{2k^{2}t_{3}}{2}$          |

| #  |
|----|
| 1  |
| 1  |
| 3  |
| 3  |
| 3  |
| 5  |
| 5  |
| 21 |
|    |

Source constraints



|                                        | $\omega_{2^{+}\alpha\beta}^{\#1}$ | $f_{2+\alpha\beta}^{\#1}$ | $\omega_{2-\alpha\beta\chi}^{\#1}$ |
|----------------------------------------|-----------------------------------|---------------------------|------------------------------------|
| $\omega_{2}^{\#1} \dagger^{lphaeta}$   | $-\frac{3k^2r_3}{2}$              | 0                         | 0                                  |
| $f_{2}^{\#1} \dagger^{\alpha\beta}$    | 0                                 | 0                         | 0                                  |
| $\omega_2^{\#1} \dagger^{lphaeta\chi}$ | 0                                 | 0                         | 0                                  |

|                                            | $\sigma_{2^{+}\alpha\beta}^{\#1}$ | $	au_2^{\#1}{}_{lphaeta}$ | $\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$ |
|--------------------------------------------|-----------------------------------|---------------------------|----------------------------------------|
| $\sigma_{2}^{\#1} \dagger^{\alpha\beta}$   | $-\frac{2}{3k^2r_3}$              | 0                         | 0                                      |
| $\tau_{2}^{\#1} \dagger^{\alpha\beta}$     | 0                                 | 0                         | 0                                      |
| $\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$ | 0                                 | 0                         | 0                                      |

|                               | $\sigma_{0}^{\#1}$                   | $	au_{0}^{\#1}$                       | $	au_{0}^{\#2}$ | $\sigma_0^{\#1}$          |
|-------------------------------|--------------------------------------|---------------------------------------|-----------------|---------------------------|
| $\sigma_{0^{+}}^{#1}$ †       | $\frac{1}{(1+2k^2)^2t_3}$            | $-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$ | 0               | 0                         |
| $	au_{0^{+}}^{\#1}$ †         | $\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$ | $\frac{2k^2}{(1+2k^2)^2t_3}$          | 0               | 0                         |
| $	au_{0}^{\#2} \dagger$       | 0                                    | 0                                     | 0               | 0                         |
| $\sigma_{0^{-}}^{\sharp 1}$ † | 0                                    | 0                                     | 0               | $\frac{1}{k^2 r_2 + t_2}$ |

| _                           | $\omega_0^{\sharp 1}$ | $f_{0^{+}}^{#1}$   | $f_{0^{+}}^{#2}$ | $\omega_0^{\sharp 1}$ |
|-----------------------------|-----------------------|--------------------|------------------|-----------------------|
| $\omega_{0^+}^{\#1}\dagger$ | $t_3$                 | $-i \sqrt{2} kt_3$ | 0                | 0                     |
| $f_{0^{+}}^{#1}\dagger$     | $i\sqrt{2} kt_3$      | $2k^2t_3$          | 0                | 0                     |
| $f_{0}^{#2} \dagger$        | 0                     | 0                  | 0                | 0                     |
| $\omega_0^{\sharp 1}$ †     | 0                     | 0                  | 0                | $k^2 r_2 + t_2$       |





| Massive particle |                                                 |  |  |  |  |
|------------------|-------------------------------------------------|--|--|--|--|
| Pole residue:    | $-\frac{1}{r_2} > 0$                            |  |  |  |  |
| Polarisations:   | 1                                               |  |  |  |  |
| Square mass:     | $-\frac{t_2}{r_2} > 0$                          |  |  |  |  |
| Spin:            | 0                                               |  |  |  |  |
| Parity:          | Odd                                             |  |  |  |  |
|                  | Pole residue: Polarisations: Square mass: Spin: |  |  |  |  |

## Unitarity conditions

$$r_2 < 0 \&\& r_3 < 0 \&\& r_5 < -\frac{r_3}{2} \&\& t_2 > 0 || r_2 < 0 \&\& r_3 < 0 \&\& r_5 > -2 r_3 \&\& t_2 > 0 ||$$

$$r_2 < 0 \&\& r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2} \&\& t_2 > 0$$