数字逻辑课程设计报告

姓名:牟鑫一

学号:20161001764

班级:191164 班

学院:计算机学院

×/2	χ_{ι}	χ.	y2	y, y.	
0	0	0	0	0	
0	0	1	0	0 1	
0	1	0	1	00	
0		1)	0	
1	0	0	1	10	
1	0	1	1	1 1	
i	1	0	0	0 0	
l	l	1	0	0 0	

X ₀ X ₂	X, 00	01	11	10
0	0		0	$\left \begin{array}{c} 1 \end{array} \right $
1	0		0	

$$\int_{2} = \overline{\chi_{2}} \times_{1} + \chi_{2} \overline{\chi_{1}}$$

$$= \overline{\chi_{2}} \times_{1} \times_{3} + \overline{\chi_{2}} \times_{1} \overline{\chi_{3}} + \chi_{2} \overline{\chi_{1}} \overline{\chi_{3}} + \overline{\chi_{2}} \overline{\chi_{1}} \overline{\chi_{3}}$$

$$= M_{2} + M_{3} + M_{4} + M_{5}$$

$$= \overline{M_{2}} \overline{M_{3}} \overline{M_{4}} \overline{M_{5}}$$

Xo	(h	01	11	10	
0	0	0	0	1	
1	0	0	0)	

$$y_1 = \chi_2 \overline{\chi}_1$$

$$= \chi_2 \overline{\chi}_1 \chi_3 + \chi_2 \overline{\chi}_1 \overline{\chi}_3$$

$$= M_4 + M_5$$

$$= \overline{M_4} \overline{M_5}$$

X2)	00	0/	11	10
0	/	0	0	0
			0	1

电路图:

二、实验二

BARC	00	01	(1	10
OD	1	0	d	d
0)		d	d	d
11		d	d	d
10		d	d	d
		1=1		

BAC.	00	0	11	10
00			d	0
01			d	d
(1		1	d	d
10		1	d	d
,	<u> </u>	X=	-0	

$$F = \overline{Q}_{D} \, \overline{Q}_{C} + \overline{X} \, \overline{Q}_{D}$$

$$= \overline{\overline{Q}_{D} \, \overline{Q}_{C} \cdot \overline{X} \, \overline{Q}_{D}}$$

电路图:

当 X=1 时,为四模计数器

置"0": X=1 s_0 =0 s_1 =1

按下 CLK: L1、L2、L3=0 L4=1

按下 CLK: L1、L2、L4=0 L3=1

按下 CLK: L1、L2=0 L3、L4=1

按下 CLK: L1、L2、L3、L4=0

当 X=0 时, 为八模计数器

置"0": X=0 s_0 =1 s_1 =0

L1 L2 L3 L4

初始置"0": 0 0 0 0

按下 PO: 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

0 0 0 0

三、 实验三

设 A 和 B 分别为 4 位二进制数,其中 A=a₄a₃a₂a₁ 为被加数(或被减数), B=B₄B₃b₂b₁ 为加数(或减数),S=s₄s₃s₂s₁ 为和数(差数),令 M 为功能选择变量, 当 M=0 时,执行 A+B;当 M=1 是执行 A-B。减法采用补码计算。

可用一片 4 位二进制并行加法器和 4 个异或门实现上述逻辑功能,具体可将 4 位二进制数 A 直接加到并行加法器的 A_4 、 A_3 、 A_2 、 A_1 输入端,4 位二进制数 B 加到 B_4 、 B_3 、 B_2 、 B_1 输入端。将功能选择变量 M 作为异或门的另一个输入且同时加到并行加法器的 C_0 进位输入端。使之当 M=0 时, C_0 =0, b_1 ⊕M= b_1 ⊕0= b_1 ,加法器实现 A+B;当 M=1 时, C_0 =1, b_1 ⊕M= b_1 ⊕1= b_1 ,加法器实现 A+B+1 即 A-B。

原理图:

Master Ti	me Bar:	18.52	25 ns	◆ ▶ Pointer:	45.0 ns	Interval:	26.48 ns	Start:	End:	
	Name	Value a 18.53 r	O ps	20.0 ns 18.525 ns	40.0 ns	60.0 ns	80. Q ns	100.0 ns	120. ₀ ns	140.0 ns
₽ 0	м	A 1		T T						
i 1	a4	A 1								
₽ 2	a3	A O								
■ 3	a2	A 1								
<u>i</u> 4	a1	A 1								
<u>→</u> 5	ъ4	A O	<u> </u>							
<u>₽</u> 6	Ъ3	A 1								
₽ 7	ъ2 ъ1	A O	<u> </u>							
№ 8 ⊚ 9	54	A 1 A 0								
⊕ 9	s4 s3	A 1	<u> </u>							
□ 10 □ 11 □ 11	s2	A 1	<u> </u>							
	s1	A O								
	out	A 1	⊨							

四、 实验四

序列:

01000	X: 0)
000 - S.	20	000
00/ So	0/6	000
0/0 500	0	000
011 5000	160	000
100 S0000	100	101
101 S00001	001	110
110 S600011	1.11 /1	000
111 50000110	0	001

ا دی	Q <i>J.</i>	· .			
QoX.	ÓΟ	0	11	10	
00.	0	0			
0)	0	0	0		× , — -
(0	0	0		$D_2 = Q_2 Q_0 \times$
(0	0		0	0	+Q2Q1X +Q2Q1Q0X
_		D2	; = (12 N#1	•

0,01 0,01	00	0		[0	
00				0	$ \begin{array}{c} $
01	0	0	0		$+\partial_2\overline{\partial}_1\overline{\partial}_0X$
	0	0	0	0	+020,00X +020,00X
10	0	0	0		

原理图:

