放大器的频率特性研究实验报告

2*000***** 姓名某组n号 2024年9月23日

1 实验目的

- 1. 研究单级放大器的幅频特性。
- 2. 练习信号源和示波器的使用。

2 实验原理

由于放大器特别是交流放大电路中含有耦合电容、旁路电容、分布电容及晶体管极间 电容等,使放大倍数与信号的频率有关,这种关系称为放大器的频率特性,也称放大器的频 率响应。

在一个较宽的频率范围内,曲线是平坦的,即放大倍数是相等的,这段频率范围称为放大器的中频段,放大倍数记做 $A_{\rm um}$,随着频率的升高和降低,放大倍数都将下降,当放大倍数下降到中频放大倍数的 $\frac{1}{\sqrt{2}}=0.707$ 时,所对应的低频和高频截止频率,分别称为放大器的下(下限)频率 f_L 和上界(上限)频率 f_H 。在 f_L 和 f_H 之间的频率范围内,放大器几乎有相同的放大能力。

3 实验仪器和设备

信号发生器、示波器、电源。

4 数据记录和分析

4.1 测量单级放大器的幅频特性

表 1: 单级放大器的幅频特性

<u> </u>	人有计口3中田少火19 [2
频率 (Hz)	输出 (Vpp)
40	0.092
60	0.176
80	0.272
100	0.36
150	0.556
200	0.72
300	0.944
320	0.968
350	1.02
400	1.07
600	1.2
800	1.26
1000	1.26
2000	1.32
5000	1.36
10000	1.34
50000	1.26
100000	1.05
120000	1
130000	0.96
140000	0.928
150000	0.88
200000	0.72
250000	0.616
300000	0.52

图 1: 单级放大器的幅频特性

处理数据得: $f_{\rm L}=320\,{\rm Hz}, f_{\rm H}=130\,{\rm kHz}, A_2=40\,.$

4.2 考察放大器元件参数变化对放大器幅频特性的影响

- (1) $f_{\rm L} = 955 \,\rm Hz$.
- (2) $f_{\rm L} = 320 \,\rm Hz$.
- (3) $f_{\rm L} = 150 \,\rm Hz$.
- (4) $f_{\rm H} = 85 \, \rm kHz$.

5 问题讨论

- (1) C₁ 减小, C₂, C_e 不变, f_L 增大。
- (2) C₂ 减小, C₁, C_e 不变, f_L 几乎不变。
- (3) C_e 增大, C₁, C₂ 不变, f_L 减小。
- (4) 接入 C_L, f_H 减小。