REGRESSION ANALYSIS

First, the dependence of the output (target) characteristic of the object on one of the input variables x_i (pair regression) is built, and then the linear model on all input variables x_1 – x_n using the procedures of regression.

PAIR REGRESSION

Pairwise regression analysis is performed for the first sample - a car with mpg in the range of 20.1-22.5. A set of two-dimensional scattering diagrams is constructed. as the input variable I selected variable *cylinders*, since it has the greatest impact on the target variable – price.

Picture 1. The set of two-dimensional scattering diagrams

Next, the following models were constructed using the least squares method:

Linear model

Model: price=a1+a2*cylinders and R2=0,005826

Picture 2.. Linear regression model

Exponential model

Model: price=EXP(a1+a2*cylinders) and R2=0,005252

Picture 3. Exponential regression model

Inverse model

Model: price=1/((a1+a2*cylinders) and R²=0

Picture 4. Inverse regression model

Coefficient of determination R^2 shows the discrepancies between the observed and estimated values of the output variable, the closer it is to unity, the more consistent the model with the data. The best is a linear model.

MULTIVARIATE REGRESSION

In this part I analyzed multivariate regression . Variables that would be part of the model were planned

	Regression Summary for Dependent Variable: price (CarData1Lab) R= ,96775587 R?= ,93655143 Adjusted R?= ,86403878 F(8,7)=12,916 p<,00148 Std.Error of estimate: 474,19						
	b*	Std.Err.	b	Std.Err.	t(7)	p-value	
N=16	J	of b*		of b			
Intercept			-96987,4	12140,04	-7,98905	0,000092	
mpg	0,24992	0,206438	412,2	340,52	1,21064	0,265320	
cylinders	0,94437	0,446550	1197,1	566,07	2,11482	0,072272	
displace	-1,13161	0,385215	-29,9	10,19	-2,93760	0,021788	
horsepower	0,14226	0,197262	12,6	17,48	0,72119	0,494167	
accel	0,09244	0,224734	86,1	209,41	0,41132	0,693136	
year	1,03681	0,144605	1017,6	141,93	7,16995	0,000182	
weight	0,49289	0,274623	2,2	1,21	1,79480	0,115762	
origin	0,60216	0,222005	1341,3	494,50	2,71236	0,030096	

Table 1.. Multivariate regression model for all explanatory variables

Then these data were investigated for multicollinearity by calculating the eigenvalues:

	Eigenvalues of correlation matrix, and related statistic Active variables only						
	Eigenvalue	% Total	Cumulative	Cumulative			
Value number		variance	Eigenvalue	%			
1	3,616382	45,20478	3,616382	45,2048			
2	1,838890	22,98613	5,455273	68,1909			
3	1,524847	19,06059	6,980120	87,2515			
4	0,566622	7,08277	7,546742	94,3343			
5	0,240284	3,00355	7,787026	97,3378			
6	0,129920	1,62400	7,916946	98,9618			
7	0,055080	0,68850	7,972026	99,6503			
8	0,027974	0,34967	8,000000	100,0000			

Table 2. Contingency coefficients

 $\lambda_{max}/\lambda_{min} = 129,2766 = 129,3$

I've got a large value, so multicollinearity is present.

For regression model creating were deleted all insignificant variables from the regression equation.

	поВторого п	Jann	ioi sopon	aont rant	and price	- Pantanin	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ے ت
9	Regression Summary for Dependent Variable: price (CarData1t R= ,89577150 R?= ,80240658 Adjusted R?= ,77200760 F(2,13)=26,396 p<,00003 Std.Error of estimate: 614,05					.ab)		
é		b*	Std.Err.	b	Std.Err.	t(13)	p-value	
-1	N=16		of b*		of b			
	Intercept			-69849,8	10152,00	-6,88040	0,000011	
	year	0,938266	0,129606	920,9	127,21	7,23937	0,000007	
	origin	0,365736	0,129606	814,6	288,69	2,82191	0,014412	

Table 3. Multivariate regression model for significant explanatory variables

Were gotten multivariate regression equation: price=920,9* year+ 814,6*origin -69849,8

If $F_{\rm p} > F_{T[1-q;l;N-(k+1)]}$ the hypothesis that the regression coefficients are equal to zero is rejected.

In our case, F_T =19.40. F(2,13)=29,396. the hypothesis that the regression equation is a constant is rejected.

Picture 5. Graphic of residues

Graphic of residues has been created and according to the Darbin-Watson criterion, we make sure that random disturbances are not correlated:

$$d > d_U = 1.37$$

	Durbin-Watson d (CarData1Lab) and serial correlation of residuals					
	Durbin-	Serial				
	Watson d	Corr.				
Estimate	2,021283	-0,026479				

Table 4. The Darbin-Watson criterion