东南大学考试卷

课程名称	工科数分(上)期中	考试学期 _	17-18-2	得分
-	. ,			

适用专业 选学工科数分的各类专业 考试形式 闭卷 考试时间长度 120 分钟

题号	_	_	三	四	五	六	七
得分							
评阅人							

一、填空题(本题共5小题,每小题4分,共20分)

1.
$$\lim_{x \to 0} \arccos \frac{\sqrt{1+x}-1}{\sin x} = \underline{\hspace{1cm}}.$$

2. 已知
$$f(x) = \begin{cases} 1, & |x| < 1 \\ 0, & |x| = 1 \end{cases}$$
, $g(x) = e^x$, 则 $f(g(x))$ 的间断点为_____, -1 , $|x| > 1$

它是 间断点(请填间断点类型).

3. 若
$$f(x) = \lim_{t \to \infty} x \left(1 + \frac{1}{t}\right)^{2tx}$$
,则 $f'(x) =$ ______.

4. 若当
$$x \to 0$$
 时, $e^{x^2} - ax^2 - c$ 是 x^2 的高阶无穷小,则 $a =$ ______, $c =$ _______.

5. 写出数列 $\{x_n\}$ 是Cauchy列(或基本列)的定义

二、选择题(本题共4小题,每小题4分,共16分)

1. 若
$$\lim_{x \to 1} f(x)$$
 存在, $f(x) = x^2 + 2x \lim_{x \to 1} f(x)$,则 $f(x)$ 为 (A) $x^2 + 2x$ (B) $x^2 - 2x$ (C) $x^2 + x$ (D) $x^2 - x$

2. 设
$$f$$
 任意阶可导,且 $f'(x) = (f(x))^2$, n 为大于2的正整数, $f^{(n)}(x) = ($) (A) $n!(f(x))^{n+1}$ (B) $n(f(x))^{n+1}$ (C) $(f(x))^{n+1}$ (D) $n!(f(x))^n$

3. 设
$$f(x)$$
 在 $x = x_0$ 处间断,则有 ()

(A)
$$f(x)$$
 在 $x = x_0$ 处一定没有定义;

(B)
$$f(x_0 - 0) \neq f(x_0 + 0)$$
 (B) $\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x)$);

- (C) $\lim_{x\to x_0} f(x)$ 不存在,或 $\lim_{x\to x_0} f(x) = \infty$;
- (D) 若 f(x) 在 $x = x_0$ 处有定义,则 $x \to x_0$ 时, $f(x) f(x_0)$ 不是无穷小.
- 4. 下列命题正确的是

()

- $(A) 若 \lim_{x \to x_0} f(x) 和 \lim_{x \to x_0} g(x) 均不存在,则 \lim_{x \to x_0} (f(x) + g(x)) 不存在;$
- (B) $\lim_{x \to 0} \frac{\sqrt{1 \cos x}}{x} = \frac{\sqrt{2}}{2};$
- (C) 当 $x \to \infty$ 时,若 $f(x) = \frac{px^2 2}{x^2 + 1} + 3qx + 5$ 为无穷大量,则 p 可以为任意常数, q 为非零常数;
 - (D) 设函数 f(x) 在 x = 0 处连续, 若 $\lim_{x\to 0} \frac{f(x) f(-x)}{x}$ 存在,则 f'(0) 存在.
- 三、 计算下列各题(本题共4小题,每小题9分,满分36分)
- 1. 求函数极限 $\lim_{x\to 0} \frac{x \ln(1+x) x^2}{(1-\cos x)\sin x}$.

2. 设 y = y(x) 是由方程 $\tan y = x + y$ 所确定的隐函数,求 dy, y', y''.

3. 用函数极限的定义证明 $\lim_{x\to 1} \frac{x^2+1}{x+1} = 1$.

4. 求参数方程 $\begin{cases} x = \frac{t}{1+t^2} \\ y = \frac{t^2}{1+t^2} \end{cases}$ 所表示的曲线在 t = 2 所对应的点处的切线方程

四、 (本题满分8分) 证明方程 $e^x - \frac{1}{x} - x = 0$ 在区间 $(0, +\infty)$ 上有唯一根.

五、 (本题满分8分) 设 $0 < x_1 < 2, x_{n+1} = 2 - \sqrt{2 - x_n} \ (n = 1, 2, 3, \cdots)$,证明数列 $\{x_n\}$ 收敛,并求 $\lim_{n \to \infty} x_n$.

六、 (本题满分7分) 设
$$x_n = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n} (n = 1, 2, \dots), \ \ \vec{x} \lim_{n \to \infty} \sqrt[n]{x_n}.$$

七、 (本题满分5分) 设 f(x) 在 (0,a] 上可微,且 $\sqrt{x}f'(x)$ 在 (0,a] 上有界,证明 f(x) 在 (0,a] 上一致连续.