MA 544: Homework 1

Carlos Salinas

January 20, 2016

PROBLEM 1.1 (WHEEDEN & ZYGMUND §2, Ex. 1)

Let $f(x) = x \sin(1/x)$ for $0 < x \le 1$ and f(0) = 0. Show that f is bounded and continuous on [0, 1], but that $V[f; 0, 1] = +\infty$.

Proof. Moreover, f is continuous on (0,1] since it is the product of continuous functions on (0,1]. To see that f is continuous at 0 is suffices to show that f(0+)=f(0)=0. To that end, let $\{x_n\}\subset [0,1]$ be a sequence such that $x_n\to 0$ and consider $\lim_{n\to\infty} f(x_n)$. Since $x_n\to 0$, for every $\varepsilon>0$, there exists a natural number N such that $n\geq N$ implies $|0-x_n|<\varepsilon$. Thus, for $n\geq N$ we have

$$|0 - f(x_n)| = |f(x_n)| = |x_n||\sin(1/x_n)| \le \varepsilon|\sin(1/\varepsilon)| \le \varepsilon.$$

Thus, $f(x_n) \to 0$ and we see that f(0+) = 0. Hence, f is continuous on [0, 1].

It is easy to see that f is bounded since $|\sin(1/x)| \le 1$ for all $x \in (0,1]$. More explicitly, we have

$$|f(x)| \le |x\sin(1/x)| = |x| \cdot |\sin(1/x)| \le 1 \cdot 1.$$

Thus, $|f(x)| \leq 1$ and we see that f is bounded.

Moreover, f is continuous on (0,1] since it is the product of continuous functions on (0,1]. To see that f is continuous at 0, it suffices to show that f(0+) = 0. To that end, we shall use the following limiting argument: Let $\varepsilon > 0$ and consider the limit (from the right) of $f(\varepsilon)$ as $\varepsilon \to 0$. This is

$$\lim_{\varepsilon \to 0} f(\varepsilon) \lim_{\varepsilon \to 0} \varepsilon \sin(1/\varepsilon) \leq \lim_{\varepsilon \to 0} |\varepsilon| |\sin(1/\varepsilon)| \leq \lim_{\varepsilon \to 0} |\varepsilon| \cdot 1 = 0.$$

Thus, f(0+) = 0 and we see that f is continuous on [0, 1].

Last but not least, we show that f is BV. Define the family of partitions $\{\Gamma_n\}_{n=1}^{\infty}$ by $x_i := \blacksquare$

PROBLEM 1.2 (WHEEDEN & ZYGMUND §2, Ex. 2)

Prove theorem (2.1).

Proof. Recall the statement of theorem (2.1):

Theorem (Wheeden & Zygmund, 2.1). (a) If f is of bounded variation on [a, b], then f is bounded on [a, b].

- (b) Let f and g be of bounded variation on [a,b]. Then cf (for any real constant c), f+g, and fg are of bounded variation on [a,b]. Moreover, f/g is of bounded variation on [a,b] if there exists an $\varepsilon > 0$ such that $|g(x)| \ge \varepsilon$ for $x \in [a,b]$.
- (a) We shall proceed by contradiction. Suppose that f is not bounded, i.e., for every positive real number M>0, there exists $x\in [a,b]$ such that |f(x)|>M. In particular, if V is the variation of f, then $|f(x_0)|>V+(f(a)+f(b))/2$ for some $x_0\in [a,b]$. Then, putting $\Gamma=\{a,x_0,b\}\subset [a,b]$, we have

$$S_{\Gamma} = |f(b) - f(x_0)| + |f(x_0) - f(a)|$$

$$= |f(x_0) - f(b)| + |f(x_0) - f(a)|$$

$$\geq |2f(x_0) - f(a) - f(b)|$$

$$= |2(V + (f(a) + f(b))/2) - f(a) - f(b)|$$

$$= |2V + f(a) + f(b) - f(a) - f(b)|$$

$$= 2V$$

$$> V.$$

This is a contradiction since V is the supremum over all such sums.

- (b) We shall prove these in the order in which they are listed above.
 - (i) The constant map g(x) := c for some real number c is of BV on [a, b] and this is easy to see: take any two partitions $\Gamma = \{x_0, ..., x_m\}$, and $\Gamma' = \{y_0, ..., y_n\}$ of [a, b], then

$$S_{\Gamma} = \sum_{i=0}^{m} |g(x_i) - g(x_{i-1})| = \sum_{i=0}^{m} |ct - c| = 0 = \sum_{i=0}^{m} |c - c| = \sum_{i=0}^{n} |g(y_i) - g(y_{i-1})| = S_{\Gamma'}.$$

It takes just a few more steps in logic to see that V[g; a, b] = 0. Therefore, by (iii) gf = cf is of BV.

(ii) This result follows quite effortlessly from Jordan's theorem, so we shall not trouble ourselves with picking partitions. By Jordan's theorem, there exist bounded increasing functions f_1, f_2 , and g_1, g_2 such that $f = f_1 - f_2$ and $g = g_1 - g_2$. Now, since since f_1, f_2, g_1, g_2 are bounded and increasing, the sums $h_1 = f_1 + g_1$ and $h_2 = f_2 + g_2$ are bounded and increasing. Thus,

$$f + g = f_1 - f_2 + g_1 - g_2 = (f_1 + g_1) - (f_2 + g_2) = h_1 - h_2$$

so by Jordan's theorem f + g is BV on [a, b].

(iii) For this result, Jordan's theorem is not very helpful so we rely on the definition of BV. First, note that by the triangle inequality, for any x < y in [a, b], we have

$$|f(x)g(x) - f(y)g(y)| = |(f(x)g(x) - f(x)g(y)) + (f(x)g(y) - f(y)g(y))|$$

$$\leq |f(x)||g(x) - g(y)| + |g(y)||f(x) - f(y)|$$

$$\leq M|g(x) - g(y)| + N|f(x) - f(y)|, \tag{1}$$

by part (a), where $|f| \leq M$ and $|g| \leq M$ for all $x \in [a, b]$. By (1), it follows that for any partition Γ of [a, b], we have

$$S_{\Gamma}[fg; a, b] \le MS_{\Gamma}[g; a, b] + NS_{\Gamma}[f; a, b].$$

Thus, passing to the supremum, we see that

$$V[fg; a, b] \le MV[g; a, b] + NV[f; a, b] < +\infty,$$

so fg is BV on [a, b].

(iv) Suppose $|g(x)| > \varepsilon$ for some $\varepsilon > 0$ for all $x \in [a, b]$. Then, by the triangle inequality, the following estimate holds

$$\left| \frac{f(x)}{g(x)} - \frac{f(y)}{g(y)} \right| \leq \left| \frac{g(y)f(x) - g(x)f(y)}{g(x)g(y)} \right| \\
= \frac{1}{|g(x)g(y)|} |g(y)f(x) - g(x)f(y)| \\
< \frac{1}{\varepsilon^2} |g(y)f(x) - g(x)f(y)| \\
< \frac{1}{\varepsilon^2} |g(y)f(x) - g(y)f(y) + g(y)f(y) - g(x)f(y)| \\
= \frac{1}{\varepsilon^2} |(g(y)f(x) - g(y)f(y)) - (g(x)f(y) - g(y)f(y))| \\
\leq \frac{1}{\varepsilon^2} (|g(y)||f(x) - f(y)| + |f(y)||g(x) - g(y)|) \\
\leq \frac{1}{\varepsilon^2} (|g(y)||f(x) - f(y)| + |f(y)|(|g(x)| - |g(y)|)) \\
\leq \frac{1}{\varepsilon^2} (N|f(x) - f(y)| + M|g(x) - g(y)|). \tag{2}$$

Hence, for any partition Γ of [a, b], we have

$$S_{\Gamma}[f/g;a,b] \le \frac{1}{\varepsilon^2} (NS_{\Gamma}[f;a,b] + MS_{\Gamma}[g;a,b]).$$

Thus, passing to the supremum, we see that

$$V[f/g;a,b] \le \frac{1}{\varepsilon^2} (NV[f;a,b] + MV[g;a,b]) < +\infty,$$

so f/g is BV on [a, b].

PROBLEM 1.3 (WHEEDEN & ZYGMUND §2, Ex. 3)

If [a',b'] is a subinterval of [a,b] show that $P[a',b'] \leq P[a,b]$ and $N[a',b'] \leq N[a,b]$.

Proof. Let $f:[a,b]\to \mathbf{R}$. If f is unbounded, then $V[f;a,b]=+\infty$ and, by theorem 2.6, the result holds trivially.

Suppose f is BV on [a, b]. Then $V[f; a, b] < +\infty$. Hence, by theorem 2.2, we have

$$V[f; a', b'] \le V[f; a, b]. \tag{3}$$

By theorem 2.6, we have

$$N[f;a',b'] = \frac{1}{2}(V[f;a',b'] + f(b') - f(a')) \qquad P[f;a',b'] = \frac{1}{2}(V[f;a',b'] - f(b') + f(a'))$$

which, by theorem 2.2, are bounded by

$$\leq \frac{1}{2}(V[f;a,b] - f(b) + f(a)) \qquad \qquad \leq \frac{1}{2}(V[f;a,b] - f(b) + f(a))$$

$$= N[f;a,b] \qquad \qquad = P[f;a,b],$$

as desired.

PROBLEM 1.4 (WHEEDEN & ZYGMUND §2, Ex. 11)

Show that $\int_a^b f \, d\phi$ exists if and only if given $\varepsilon > 0$ there exists $\delta > 0$ such that $|R_{\Gamma} - R_{\Gamma'}| < \varepsilon$ if $|\Gamma|, |\Gamma'| < \delta$.

Proof. \Longrightarrow Suppose that $I \coloneqq \int_a^b f \, \mathrm{d}\phi$ exists. Then, for every $\varepsilon > 0$ there exits $\delta > 0$ such that for any partition Γ'' of [a,b] with $|\Gamma''| < \delta/2$, $|I - R_{\Gamma''}| < \varepsilon$. Let Γ and Γ' be a partitions with $|\Gamma|, |\Gamma'| < \delta/2$. Then, for the given ε , we have $|I - R_{\Gamma}| < \varepsilon$ and $|I - R_{\Gamma'}| < \varepsilon$ from which we have the estimates

$$\begin{split} |R_{\Gamma} - R_{\Gamma'}| &= |-(I - R_{\Gamma}) + (I - R_{\Gamma'})| \\ &\leq |-(I - R_{\Gamma})| + |I - R_{\Gamma'}| \\ &= |I - R_{\Gamma}| + |I - R_{\Gamma'}| \\ &\leq \delta/2 + \delta/2 \\ &= \delta, \end{split}$$

as desired.

 \Leftarrow Conversely, suppose that given $\varepsilon > 0$ there exists $\delta > 0$ such that for any two partitions Γ, Γ' with $|\Gamma|, |\Gamma'| < \delta$ we have $|R_{\Gamma} - R_{\Gamma'}| < \varepsilon/2$. Put $I := \int_a^b f \, d\phi$. Then, we have the following estimates

$$\begin{split} |I - R_{\Gamma}| &= |(I - R_{\Gamma'}) - (R_{\Gamma} - R_{\Gamma'})| \\ &\leq |I - R_{\Gamma'}| + |R_{\Gamma} - R_{\Gamma'}| \\ &\leq |I - R_{\Gamma'}| + \varepsilon/2 \end{split}$$

PROBLEM 1.5 (WHEEDEN & ZYGMUND §2, Ex. 13)

Prove theorem (2.16).

Proof.

Theorem (Wheeden & Zygmund, 2.16). (i) If $\int_a^b f \, d\phi$ exists, then so do $\int_a^b cf \, d\phi$ and $\int_a^b f \, d(c\phi)$ for any constant c, and

 $\int_{a}^{b} cf \, d\phi = \int_{a}^{b} f \, d(c\phi) = c \int_{a}^{b} f \, d\phi.$

(ii) If $\int_a^b f_1 d\phi$ and $\int_a^b f_2 d\phi$ both exist, so does $\int_a^b (f_1 + f_2) d\phi$, and

$$\int_{a}^{b} (f_1 + f_2) d\phi = \int_{a}^{b} f_1 d\phi + \int_{a}^{b} f_2 d\phi.$$

(iii) If $\int_a^b f \, d\phi_1$ and $\int_a^b f \, d\phi_2$ both exist, so does $\int_a^b f \, d(\phi_1 + \phi_2)$, and

$$\int_{a}^{b} f \, d(\phi_1 + \phi_2) = \int_{a}^{b} f \, d\phi_1 + \int_{a}^{b} f \, d\phi_2.$$

(i) Suppose that $I := \int_a^b f \, d\phi$ exists and let c be a constant. Then, for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|\Gamma| < \delta$ implies $|I - R_{\Gamma}| < \varepsilon/|c|$. Then, we have

$$R_{\Gamma}[cf; a, b] = \sum_{i=1}^{n} cf(\xi_i)[\phi(x_i) - \phi(x_{i-1})] = c\left(\sum_{i=1}^{n} f(\xi_i)[\phi(x_i) - \phi(x_{i-1})]\right) = cR_{\Gamma}$$
(4)

and

$$R_{\Gamma}[f; c\phi; a, b] = \sum_{i=1}^{n} f(\xi_i)[c\phi(x_i) - c\phi(x_{i-1})] = c\left(\sum_{i=1}^{n} f(\xi_i)[\phi(x_i) - \phi(x_{i-1})]\right) = cR_{\Gamma}$$
 (5)

for $\Gamma = \{x_0, ..., x_n\}$. Hence, we have the estimates

$$\begin{aligned} |cI - R_{\Gamma}[cf; a, b]| &= |cI - cR_{\Gamma}| \\ &= |c(I - R_{\Gamma})| \\ &= |c||I - R_{\Gamma}| \\ &\leq |c|(\varepsilon/|c|) \\ &= \varepsilon \end{aligned}$$

for δ as given. A similar argument (in fact, the same) works for $R[f; c\phi; a, b]$. Thus, we have

$$\int_{a}^{b} cf \, d\phi = \int_{a}^{b} f \, d(c\phi) = c \int_{a}^{b} f \, d\phi,$$

¹The $R_{\Gamma}[f;c\phi;a,b]$ is just made up notation. I can't think of what else to call it.

as desired.

(ii) Suppose that $I_1 := \int_a^b f_1 \, \mathrm{d}\phi$ and $I_2 := \int_a^b f_2 \, \mathrm{d}\phi$ exits. Then, for every $\varepsilon > 0$ there exists δ such that if Γ is a partition of [a,b] with $|\Gamma| < \delta$ then $|I_1 - R_{\Gamma}[f_1;a,b]| < \varepsilon/2$ and $|I_2 - R_{\Gamma}[f_2;a,b]| < \varepsilon/2$. Now, note that

$$R_{\Gamma}[f_{1} + f_{2}; a, b] = \sum_{i=0}^{m} (f_{1}(\xi_{i}) + f_{2}(\xi_{i}))[\phi(x_{i}) - \phi(x_{i-1})]$$

$$= \sum_{i=0}^{m} (f_{1}(\xi_{i})[\phi(x_{i}) - \phi(x_{i-1})] + f_{2}(\xi_{i})[\phi(x_{i}) - \phi(x_{i-1})])$$

$$= \sum_{i=0}^{m} f_{1}(\xi_{i})[\phi(x_{i}) - \phi(x_{i-1})] + \sum_{i=0}^{m} f_{2}(\xi_{i})[\phi(x_{i}) - \phi(x_{i-1})]$$

$$= R_{\Gamma}[f_{1}; a, b] + R_{\Gamma}[f_{2}; a, b].$$
(6)

Thus, by (6), we have the following estimates

$$\begin{aligned} |(I_1 + I_2) - R_{\Gamma}[f_1 + f_2; a, b]| &= |(I_1 + I_2) - R_{\Gamma}[f_1 + f_2; a, b]| \\ &= |(I_1 + I_2) - (R_{\Gamma}[f_1; a, b] + R_{\Gamma}[f_2; a, b])| \\ &= |(I_1 - R_{\Gamma}[f_1; a, b]) + (I_2 - R_{\Gamma}[f_2; a, b])| \end{aligned}$$

which, by the triangle inequality, is

$$\leq |(I_1 - R_{\Gamma}[f_1; a, b])| + |(I_2 - R_{\Gamma}[f_2; a, b])|$$

$$\leq \varepsilon/2 + \varepsilon/2$$

$$= \varepsilon$$

or δ as given. Thus, $\int_a^b f_1 + f_2 d\phi$ exists and is equal to $\int_a^b f_1 d\phi + \int_a^b f_2 d\phi$.

(iii) Suppose $I_1 := \int_a^b f \, d\phi_1$ and $I_2 := \int_a^b f \, d\phi_2$ exist then for every $\varepsilon > 0$ there exists $\delta_1, \delta_2 > 0$ such that for every partition Γ_1, Γ_2 of [a, b] with $|\Gamma_1| < \delta_1$ and $|\Gamma_2| < \delta_2$ we have $|I_1 - R_{\Gamma_1}[f; \phi_1; a, b]| < \varepsilon/2$ and $|I_2 - R_{\Gamma_2}[f; \phi_2; a, b]| < \varepsilon/2$. Put $\delta := \min\{\delta_1, \delta_2\}$. Now, note that

$$R_{\Gamma}[f;\phi_{1}+\phi_{2};a,b] = \sum_{i=0}^{m} f[(\phi_{1}(x_{i})+\phi_{2}(x_{i}))-(\phi_{1}(x_{i-1})+\phi_{2}(x_{i-1}))]$$

$$= \sum_{i=0}^{m} f[(\phi_{1}(x_{i})-\phi_{1}(x_{i-1}))+(\phi_{2}(x_{i})-\phi_{2}(x_{i-1}))]$$

$$= \sum_{i=0}^{m} f[(\phi_{1}(x_{i})-\phi_{1}(x_{i-1}))] + \sum_{i=0}^{m} f[(\phi_{1}(x_{i})-\phi_{1}(x_{i-1}))]$$

$$= R_{\Gamma}[f;\phi_{1};a,b] + R_{\Gamma}[f;\phi_{2};a,b]. \tag{7}$$

Hence, we have the following estimates

$$|(I_1 + I_2) - R_{\Gamma}[f; \phi_1 + \phi_2; a, b]| = |(I_1 + I_2) - (R_{\Gamma}[f; \phi_1; a, b] + R_{\Gamma}[f; \phi_2; a, b])|$$

= |(I_1 - R_{\Gamma}[f; \phi_1; a, b]) + (I_2 - R_{\Gamma}[f; \phi_2; a, b])|

which, by the triangle inequality, is

$$\leq |I_1 - R_{\Gamma}[f; \phi_1; a, b]| + |I_2 - R_{\Gamma}[f; \phi_2; a, b]|$$

$$< \varepsilon/2 + \varepsilon/2$$

$$= \varepsilon.$$

Thus, $\int_a^b f \, d(\phi_1 + \phi_2)$ exists and it is equal to the sum $\int_a^b f \, d\phi_1 + \int_a^b f \, d\phi_2$.