§8.2 标准正交基习题参考答案

1. 已知 $\alpha_1 = (0, 2, 1, 0), \ \alpha_2 = (1, -1, 0, 0), \ \alpha_3 = (1, 2, 0, -1), \ \alpha_4 = (1, 0, 0, 1)$ 是欧氏空间 $\{R^4\}$ 的一个基. 对这个基 Schimidt 正交化, 求 \mathbb{R}^4 的一个标准正交基础.

解: 令

$$\beta_{1} = \alpha_{1} = (0, 2, 1, 0).$$

$$\beta_{2} = \alpha_{2} - \frac{(\alpha_{2}, \beta_{1})}{(\beta_{1}, \beta_{1})} \beta_{1} = (1, -1, 0, 0) + \frac{2}{5}(0, 2, 1, 0) = (1, -\frac{1}{5}, \frac{2}{5}, 0).$$

$$\beta_{3} = \alpha_{3} - \frac{(\alpha_{3}, \beta_{1})}{(\beta_{1}, \beta_{1})} \beta_{1} - \frac{(\alpha_{3}, \beta_{2})}{(\beta_{2}, \beta_{2})} \beta_{2} = (\frac{1}{2}, \frac{1}{2}, -1, -1).$$

$$\beta_{4} = \alpha_{4} - \frac{(\alpha_{4}, \beta_{1})}{(\beta_{1}, \beta_{1})} \beta_{1} - \frac{(\alpha_{4}, \beta_{2})}{(\beta_{2}, \beta_{2})} \beta_{2} - \frac{(\alpha_{4}, \beta_{3})}{(\beta_{3}, \beta_{3})} \beta_{3} = (\frac{4}{15}, \frac{4}{15}, -\frac{8}{15}, \frac{4}{5}).$$

$$\beta \Leftrightarrow \gamma_{1} = \frac{\beta_{1}}{|\beta_{1}|} = (0, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0).$$

$$\gamma_{2} = \frac{\beta_{2}}{|\beta_{2}|} = (\frac{5}{\sqrt{30}}, -\frac{1}{\sqrt{30}}, \frac{2}{\sqrt{30}}, 0).$$

$$\gamma_{1} = \frac{\beta_{1}}{|\beta_{1}|} = (0, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0).$$

$$\gamma_{2} = \frac{\beta_{2}}{|\beta_{2}|} = (\frac{5}{\sqrt{30}}, -\frac{1}{\sqrt{30}}, \frac{2}{\sqrt{30}}, 0).$$

$$\gamma_{3} = \frac{\beta_{3}}{|\beta_{3}|} = (\frac{1}{\sqrt{10}}, \frac{1}{\sqrt{10}}, -\frac{2}{\sqrt{10}}, -\frac{2}{\sqrt{10}}).$$

$$\gamma_{4} = \frac{\beta_{4}}{|\beta_{4}|} = (\frac{1}{\sqrt{15}}, \frac{1}{\sqrt{15}}, -\frac{2}{\sqrt{15}}, \frac{3}{\sqrt{15}}).$$

$$\parallel \gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4} \gamma_{5} | \text{新於飲綠維正交集}$$

则 $\gamma_1, \gamma_2, \gamma_3, \gamma_4$ 为所求的标准正交基.

2. 求齐次线性方程组

$$\begin{cases} x_1 - x_3 + x_4 = 0 \\ x_2 - x_4 = 0 \end{cases}$$

的解空间的标准正交基,并求与解空间正交的所有向量.

解:解方程可得 $x_1=x_3-x_4, x_2=x_4$. 若记解空间为 V,则取 V 一个基为 $\xi_1=(1,0,1,0)$,

性无关. 由本节例 3 结论知对于 $U=<\alpha_1,\alpha_2>$,有 $V^T=U$. 故与 V 正交的所有向量为 $\xi=c_1\alpha_1+c_2\alpha_2$, 其中 c_1, c_2 为任意实数.

- 3. 设 V_1, V_2 是有限维内积空间 V 的子空间, 求证:
- (1) $(V_1^{\perp})^{\perp} = V_1$:
- (2) $V_1 \subseteq V_2$, 则 $V_2^{\perp} \subseteq V_1^{\perp}$;
- (3) $(V_1 + V_2)^{\perp} = V_1^{\perp} \cap V_2^{\perp}$;
- $(4) (V_1 \cap V_2)^{\perp} = V_1^{\perp} + V_2^{\perp}.$

证明: (1) 一方面, $V = (V_1^{\perp}) \oplus (V_1^{\perp})^{\perp}$, 故 $\dim(V_1^{\perp})^{\perp} = n - \dim(V_1^{\perp}) = \dim V_1$. 另一方面,对任 意的 $u_1 \in V_1$, $u \in V_1^{\perp}$, $(u_1, u) = 0$, 故 $V_1 \subseteq (V_1^{\perp})^{\perp}$, 从而 $(V_1^{\perp})^{\perp} = V_1$.

- (2) 对任意的 $u \in V_2^{\perp}$, 任意的 $u_2 \in V_2$, 有 $(u, u_2) = 0$. 又已知 $V_1 \subseteq V_2$, 任意的 $u_1 \in V_1 \subseteq V_2$, $(u,u_1)=0$. 因而 $u\in V_1^{\perp}$, 从而 $V_2^{\perp}\subseteq V_1^{\perp}$.
- (3) 依题意,对任意的 $u \in (V_1 + V_2)^{\perp}$, $v_1 + v_2 \in V_1 + V_2$, 总有 $(u, v_1 + v_2) = 0$. 显然 $v_2 = 0 \in V_2$, 上 式即为对任意的 $v_1 \in V_1$, 总有 $(u,v_1)=0$, 因此 $u \in V_1^\perp$. 同理, $u \in V_2^\perp$, 因此 $(V_1+V_2)^\perp \subseteq V_1^\perp \bigcap V_2^\perp$.

另一方面,对任意的 $v \in V_1^{\perp} \cap V_2^{\perp}$, $u_1 + u_2 \in V_1 + V_2$, 有 $(v, u_1) = 0$, $(v, u_2) = 0$. 从而 $(v,u)=(v,u_1)+(v,u_2)=0$,于是 $v\in (V_1+V_2)^\perp$,即 $V_1^\perp\cap V_2^\perp\subseteq (V_1+V_2)^\perp$.综上所述,成立 $(V_1 + V_2)^{\perp} = V_1^{\perp} \cap V_2^{\perp}.$

(4) 由 (1) 及 (3), 我们可得 $(V_1^{\perp} + V_2^{\perp})^{\perp} = (V_1^{\perp})^{\perp} \cap (V_2^{\perp})^{\perp} = V_1 \cap V_2$, 从而有 $(V_1 \cap V_2)^{\perp} = V_1^{\perp} + V_2^{\perp}$.

4. (1) 实对角阵是正交阵,则其对角元为 ±1;

(2) 上(下) 三角阵是正交阵,则其为对角阵且对角元为 ±1;

$$(3) \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}, \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix} 是正交阵;$$

(4) 设 Q 是二阶正交阵,则 Q 只能是 (3) 中出现的两种形式.

证明: (1) 设 Q 为实对角阵是正交阵,设 $Q = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$,由 $QQ^T = I$,有 $\lambda_i^2 = 1$,得到 $\lambda_i = \pm 1$, 结论成立.

(2) 设 Q 为上 (\mathbb{T}) 三角阵且为正交阵,则设 Q^T 为 \mathbb{T} (上) 三角阵。又 Q^{-1} 是上 (\mathbb{T}) 三角阵则由 $QQ^T = I$, 有 $Q^T = Q^{-1}$. 故 Q 只能是对角阵. 由 (1) 知其对角元为 ±

$$QQ^T = I, \, \bar{q} \, Q^T = Q^{-1}. \, \text{ to } Q \, \text{只能是对角阵.} \, \text{ th } (1) \, \text{知其对角元为 } \pm 1.$$

$$(3) \, \text{因} \left(\begin{array}{ccc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right) \left(\begin{array}{ccc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right)^T = E, \left(\begin{array}{ccc} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{array} \right) \left(\begin{array}{ccc} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{array} \right)^T = E,$$
因此
$$\left(\begin{array}{ccc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right), \left(\begin{array}{ccc} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{array} \right) \, \text{是正交阵.}$$

$$(4) \, \text{设} \, A = \left(\begin{array}{ccc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right) \, \text{为正交阵.} \, \text{ th } A^TA = AA^T = E, \, \mathbb{P}$$

(4) 设
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 为正交阵. 由 $A^T A = AA^T = E$, 即

$$a_{11}^2 + a_{12}^2 = a_{11}^2 + a_{21}^2 = a_{21}^2 + a_{22}^2 = 1, a_{11}a_{21} + a_{12}a_{22} = 0.$$

因此不妨设 $a_{11} = \cos\theta$, $a_{21} = \sin\theta$, 则 $a_{12} = \pm\sin\theta$, $a_{22} = \mp\cos\theta$. \Box

5. 设 $\alpha_1, \alpha_2, \dots, \alpha_m$ 是欧氏空间 V 的非零正交向量组, α 是 V 中的任一向量,证明下面的 Bessel 不等式

$$\sum_{k=1}^{m} \frac{|(\alpha, \alpha_k)|^2}{|\alpha_k|^2} \le |\alpha_k|^2;$$

且等号成立的充分必要条件是

$$\alpha \in \langle \alpha_1, \alpha_2, \cdots, \alpha_m \rangle.$$

证明: (法一) 将 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 扩为 V 的一个正交基: $\alpha_1, \alpha_2, \cdots, \alpha_n$. 则对 $\alpha \in V, \alpha =$ $\sum_{i=1}^{n} a_{i}\alpha_{i}, \text{ 其中 } (\alpha,\alpha_{k}) = \sum_{i=1}^{n} a_{i}(\alpha_{i},\alpha_{k}) = a_{k}|\alpha_{k}|^{2}, \text{ 从而 } |\alpha|^{2} = (\alpha,\alpha) = \sum_{k=1}^{n} a_{k}^{2}|\alpha_{k}|^{2} = \sum_{k=1}^{n} \frac{|(\alpha,\alpha_{k})|^{2}}{|\alpha_{k}|^{2}}. \text{ 而 } \sum_{k=1}^{m} \frac{|(\alpha,\alpha_{k})|^{2}}{|\alpha_{k}|^{2}} = \sum_{k=1}^{m} a_{k}^{2}|\alpha_{k}|^{2} \leq \sum_{k=1}^{n} a_{k}^{2}|\alpha_{k}|^{2} = |\alpha|^{2} \text{ 当且仅当 } m = n \text{ 即}$ $V = \alpha \in \langle \alpha_1, \alpha_2, \cdots, \alpha_m \rangle$ 时等号成立.

(法二) 将正交向量组 $\alpha_1,\,\alpha_2,\,\cdots,\,\alpha_m$ 单位化后记为 $\beta_1,\,\beta_2,\,\cdots,\,\beta_m,\,$ 其中 $\beta_i=\frac{\alpha_i}{|\alpha_i|}(i=1,2,\cdots,m).$ 将 $\beta_1,\ \beta_2,\ \cdots,\ \beta_m$ 扩为 V 的一个标准正交基 $\beta_1,\ \cdots,\ \beta_m,\ \beta_{m+1},\ \cdots,\ \beta_n,\ 则$ V 中任意向量 $\alpha,\ \alpha=0$ $\sum_{i=1}^{m} (\alpha, \beta_i) \beta_i, \text{ 从而 } |\alpha|^2 = \sum_{i=1}^{n} (\alpha, \beta_i)^2 \geq \sum_{i=1}^{m} (\alpha, \beta_i)^2 \text{ 且等号成立当且仅当 } (\alpha, \beta_i) = 0 (i = m+1, \cdots, n)$ 即 $\beta \in \langle \beta_1, \beta_2, \cdots, \beta_m \rangle$. 将 $\beta_i = \frac{\alpha_i}{|\alpha_i|} (i = 1, 2, \cdots, m)$ 代入上式即得结论. \square

6. 写出 $\S 8.1$ 的例 1 和例 2 中 \mathbb{R}^n 作为不同两种内积的不同的欧氏空间之间的同构映射.

解:将例 1 和例 2 中的欧氏空间分别记为 V_1 和 V_2 .

(法一) 定义映射:
$$\varphi: V_1 \longrightarrow V_2, (x_1, x_2, \cdots, x_n)^T \longmapsto (x_1, \frac{x_2}{\sqrt{2}}, \cdots, \frac{x_n}{\sqrt{n}})^T$$
. 则 φ 为所求.

首先 φ 是线性的. 事实上,对任意实数 $k,l \in \mathbb{R}, X = (x_1,x_2,\cdots,x_n)^T, Y = (y_1,y_2,\cdots,y_n)^T \in V_1$, $\varphi(kX+lY) = (kx_1+ly_1,\frac{1}{\sqrt{2}}(kx_2+ly_2),\cdots,\frac{1}{\sqrt{n}}(kx_n+ly_1n))^T = (kx_1,k\frac{1}{\sqrt{2}}x_2,\cdots,k\frac{1}{\sqrt{n}}x_n)^T + (ly_1,l\frac{1}{\sqrt{2}}y_2,\cdots,l\frac{1}{\sqrt{n}}y_1n)^T = k\varphi(X)+l\varphi(Y).$

其次, φ 是可逆的.若 $\varphi(X) = (x_1, \frac{x_2}{\sqrt{2}}, \cdots, \frac{x_n}{\sqrt{n}})^T = 0$,则 $x_1 = x_2 = \cdots = x_n = 0$,故 φ 是单的.此外,对任意 $Y = (y_1, y_2, \cdots, y_n)^T \in V_2$,取 $X = (x_1, \sqrt{2}x_2, \cdots, \sqrt{n}x_n)^T \in V_1$,则 $\varphi(X) = Y$,因此 φ 是满的.

现证 φ 保持内积. 对任意的

$$X = (x_1, x_2, \dots, x_n)^T, Y = (y_1, y_2, \dots, y_n)^T \in V_1,$$

有

$$\varphi(X) = (x_1, \frac{x_2}{\sqrt{2}}, \dots, \frac{x_n}{\sqrt{n}})^T, \varphi(Y) = (y_1, \frac{y_2}{\sqrt{2}}, \dots, \frac{y_n}{\sqrt{n}})^T \in V_2,$$

按 V_1 和 V_2 的内积 (用 $(-,-)_{V_1}$ 和 $(-,-)_{V_2}$ 表示) 定义计算得

$$(\varphi(X), \varphi(Y))_{V_2} = x_1 y_1 + 2 \frac{x_2}{\sqrt{2}} \frac{y_2}{\sqrt{2}} + \dots + n \frac{x_n}{\sqrt{n}} \frac{y_n}{\sqrt{n}} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = (X, Y)_{V_1},$$

故 φ 保持内积.

综上, φ 为所求同构映射.

(法二) 容易验证 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 是例 1 的欧氏空间 V_1 的一个标准正交基, $\varepsilon_1, \frac{1}{\sqrt{2}}\varepsilon_2, \cdots, \frac{1}{\sqrt{n}}\varepsilon_n$ 是例 2 的欧氏空间 V_2 的一个标准正交基,定义 $\varphi: V_1 \to V_2$,使得 $\varepsilon_i \longmapsto \frac{1}{\sqrt{i}}\varepsilon_i$,即 φ 将 V_1 的标准正交基变为 V_2 的标准正交基,因此 φ 是 V_1 到 V_2 的同构映射. \square

7. 证明 V 的子空间 U 的正交补空间是唯一的,即若 $V=U\oplus W$,且对于任意的 $\alpha\in U$ 和任意的 $\beta\in W$,都有 $(\alpha,\beta)=0$,则 $W=U^{\perp}$.

证明: (法一) 先证明 $W\subseteq U^{\perp}$. 事实上,由已知条件,对任意的 $\beta\in W\subseteq V$, $\alpha\in U$,都有 $(\alpha,\beta)=0$,故 $\beta\in U^{\perp}$.

此外,因 $V=U\oplus W$,所以 $\dim W=n-\dim U=\dim U^{\perp}$. 结合 (1) 的结论即得 $W=U^{\perp}$. (法二) $W\subset U^{\perp}$ 证明同上.

现证 $U^{\perp} \subseteq W$. 事实上,对任意的 $\gamma \in U^{\perp} \subseteq V$,由已知条件知,存在 $u \in U, w \in W$,使得 $\gamma = u + w$,且 (u,w) = 0.故 $0 = (\gamma,u) = (u+w,u) = (u,u) + (w,u) = (u,u) = 0$,得 u = 0,因此 $\gamma \in W$ 即 $U^{\perp} \subset W$. 综上, $W = U^{\perp}$. \square

(黄雪娥解答)