1 Paper Details

Title Group-Based Sparse Representation for Image Restoration

Venue IEEE Transactions on Image Processing

Year of Publication 2014

Problem Description is to improve the traditional patch-based sparse representation of natural images used in image restoration which considers each patch independently, with an *efficient* (low complexity) method exploiting both the *local sparsity and the nonlocal similarity of patches*. This novel is concept called group-based sparse representation (GSR). An *algorithm* is also needed to be developed to solve the resultant GSR-driven ℓ_0 minimization problem for image restoration.

$$y = Hx + n \tag{1}$$

Here, \boldsymbol{x} is the original image, \boldsymbol{y} is the measurement vector, \boldsymbol{H} is an $m \times n$ measurement matrix such that m is much smaller than n and \boldsymbol{n} is additive Gaussian noise.

Sensing matrix is a Gaussian random projection matrix applied to the image at block level (block-based CS). It is constructed by designing a measurement matrix (32×32) for each block independently (Gaussian IID) and then concatenating all these matrices.

Sparsifying basis is a novel sparse representation called group-based sparse representation (GSR) which first involves group construction where each group G_k contains all the patches with similar structures as measured my euclidean distance. Then each group is represented accurately by a self-adaptive learning dictionary D_{G_k} . Concatenating all such dictionaries gives us D_G , the sparsifying basis.

CS-based Estimator This results in the formulation of the following minimization problem for the GSR image restoration scheme.

$$\hat{\boldsymbol{\alpha}}_{\boldsymbol{G}} = \underset{\boldsymbol{\alpha}_{\boldsymbol{G}}}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{H} \boldsymbol{D}_{\boldsymbol{G}} \circ \boldsymbol{\alpha}_{\boldsymbol{G}} - \boldsymbol{y} \|_{2}^{2} + \lambda \| \boldsymbol{\alpha}_{\boldsymbol{G}} \|_{0}$$
 (2)

where the original image is $x = D_G \circ \alpha_G$ and the reconstructed image is $\hat{x} = D_G \circ \hat{\alpha_G}$. D_G is the sparsifying basis and α_G is the concatenation of all sparse codes α_{G_k} of the corresponding group G_k over dictionary

 D_{G_k} . The \circ operator essentially reconstructs the image vector by using the information D_G and α_G .

To solve this problem, the estimator used is Split Bregman Iteration (SBI) which splits the minimization problem into two sub-problems (u, α_G) , where after u is intended to be $D_G \circ \alpha_G$.

We start by initialising $m{b}^0,\,m{u}^0$ and $m{lpha}_{m{G}}^0$ to $m{0}$ and then iteratively compute the following until convergence

$$u^{t+1} = \underset{u}{\operatorname{argmin}} \frac{1}{2} ||Hu - y||_{2}^{2} + \frac{\mu}{2} ||u - D_{G} \circ \alpha_{G}^{t} - b^{t}||_{2}^{2}$$
 (3)

$$\mathbf{u}^{t} = \underset{\boldsymbol{\alpha}_{G}}{\operatorname{argmin}} \lambda \|\boldsymbol{\alpha}_{G}\|_{0} + \frac{\mu}{2} \|\mathbf{u}^{t+1} - \mathbf{D}_{G} \circ \boldsymbol{\alpha}_{G} - \mathbf{b}^{t}\|_{2}^{2}$$

$$\mathbf{b}^{t+1} = \mathbf{b}^{t} - (\mathbf{u}^{t+1} - \mathbf{D}_{G} \circ \boldsymbol{\alpha}_{G}^{t+1})$$
(5)

$$b^{t+1} = b^t - (u^{t+1} - D_G \circ \alpha_G^{t+1})$$
(5)

where μ is a positive hyperparameter.