Problem 1

- 1) (a^l×a^m)×a^n = a^l×(a^m×a^n),构成半群任意 m∈Z有 a^0×a^m = a^m×a^0 = a^m,构成独异点任意 m∈Z有 n=-m 使 a^m×a^n = 1,构成群.
- 2) a, b, c∈Q+, (a×b)×c = a×(b×c), 构成半群 任意 a∈Q+有 a×1 = 1×a = a, 构成独异点 任意 a∈Q+有 b=1/a 使 a×b = 1, 构成群
- 3) a, b, c∈Q+, (a+b)+c = a+(b+c), 构成半群 任意 a∈O+有 a+0 = 0+a = a, 但 0[€]Q+, 不构成独异点, 不构成群
- 4) 满足结合律, 构成半群; 有幺元 0, 构成独异点; 多项式取负即为逆元, 构成群
- 5) 满足结合律,构成半群;有幺元1,构成独异点非常数多项式取倒数不是多项式,多项式不一定存在逆元,不构成群
- 6) x, y, z∈C 且 x^l=1, y^m=1, z^n=1, (xy)z = x(yz) = xyz (xyz)^(lmn) = 1^(mn) × 1^(ln) × 1^(lm) = 1×1×1 = 1, 构成半群 任意 x∈Un 有 1·x = x·1 = x, 构成独异点 对 x=a+bi 有 y=(a-bi)/(a^2+b^2)使 x·y = 1, 构成群

Problem 2

♥x,y∈S, x*y=x∈S, *在 S 上封闭, (S, *)为代数系统 (x*y)*z = x*z = x, x*(y*z) = x*y = x, 满足结合性, S 关于*运算构成半群

Problem 3

V=<{a, b}, *>是半群, 则*在{a, b}上封闭且满足结合性

- 1) 若 a*b≠b*a, 不妨设 a*b=a, b*a=b, (a*b)*a = a*a = b, a*(b*a) = a*b = a (a*b)*a≠a*(b*a), 与结合性矛盾, 则必有 a*b=b*a
- 2) 若 b*b=a 即(a*a)*(a*a) = a*(a*a)*a a*b*a= a 由(1)有 a*b=b*a=a, a*b*a = a*a = b, 或 a*b=b*a=b, a*b*a = b*a = b 与 b*b = a*b*a = a 矛盾, 则必有 b*b=b

Problem 4

对于 a ∈ G, 若 a=a^-1, a^2 = a×a^-1 = e, $|a| \le 2$, a 为 1 阶或 2 阶元 对于|a| > 2 有 a ≠ a^-1, 即 G 中阶大于 2 的元素 a 与 b=a^-1 总数成对出现 即 G 的阶数为偶数, G 中阶大于 2 的元素个数为偶数, 则阶为 1 或 2 的元素个数为偶数, 1 阶元只有 e 一个, 2 阶元有奇数个(至少一个)

Problem 5

设|abc|=m, |bca| = n, (abc)^m = (bca)^n = e
(abc)^n = (abc)(abc)······(abc) = (abc)······(abc)aa^-1 = a(bca)······(bca)a^-1
= a(bca)^m a^-1 = aea^-1 = aa^-1 = e, 则有 m | n
(bca)^m = (bca)(bca)······(bca) = a^-1a(bca)······(bca) = a^-1(abc)····(abc)a
= a^-1(abc)^m a = a^-1ea = a^-1a = e, 则有 n | m
则 m=n 即|abc| = |bca|, 同理|bca| = |cab|, 则|abc| = |bca| = |cab|

Problem 6

任取 $|c| = |b^{-1} \cdot c \cdot b| = n$,则有 $c^{n} = (b^{-1} \cdot c \cdot b)^{n} = b^{-1} \cdot a^{n} \cdot b = b^{-1} \cdot b = e$ 若对任意 b 都有 $b^{-1} = b$,任取 $a^{-1} = a$, $b^{-1} = b$,ab $= x = x^{-1}$,ba $= y = y^{-1} x = ab = a^{-1} \cdot b^{-1} = (ba)^{-1} = y^{-1} = y$,则 x = y,ab = ba,与 G 为非 Abel 群矛盾 故存在 b 使得 $b^{-1} \neq b$,令 $a = b^{-1}$,a,b 非单元且 $ab = b^{-1}$ b = b $b^{-1} = ba$

Problem 7

	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

 $S \neq \emptyset$, 观察表格可知乘法在 S 上封闭, 且同时满足结合性与交换性 对任意 $x \in S$ 有 $1 \cdot x = x \cdot 1 = x$, 1 为幺元, $1^{-1} = 1$, $(-1)^{-1} = -1$, $i^{-1} =$

Problem 8

a, $b \in G$, $(ab)(ab)^{-1} = a(b(ab)^{-1}) = e$, $b(ab)^{-1} = a^{-1}$ $b^{-1}(b(ab)^{-1}) = b^{-1}a^{-1} = (b^{-1}b)(ab)^{-1} = e(ab)^{-1} = (ab)^{-1}$

Problem 9

假设半群 S 有左单位元 e, 对任意 a \in S 有 e·a=a, 存在 b \in S 使 b·a=e, 半群满足结合性,则对任意 a \in S 有 a·e = a·(b·a) = (a·b)·a = e·a = a 即 e 也是 S 的右单位元, (a·b)·(a·b) = a·(b·a)·b = a·e·b = a·b 令 c=a·b \neq e, c·c=c, 存在 d \in S 使 d·c=e, (d·c)·c = e·c = c = d·(c·c) = d·c = e 即 c=a·b=e. 矛盾. 故 a·b=e. a 有右逆元且等于左逆元. < S. > 是一个群.

假设半群 S 有右单位元 e. 对任意 a ∈ S 有 a·e=a. 存在 b ∈ S 使 a·b=e. 同理.

Problem 10

 $x^3=e$, 则 x 的阶数 n | 3, x 为 1 阶元素或 3 阶元素 若 x 为 1 阶元素, x = e, 有且只有一个这样的 x 若 x 为 3 阶元素, $x(x^2)=e$, $(x^2)^3=(x^2)^3=(x^3)^2=e^2=e$ 若 $x=x^4$, $x^2=x$, $x^3=x^2=x=e$, x 为 1 阶元素, 矛盾, 故 $x\neq x^4$ 符合条件的 x 与 x^4 成对出现, x 为 3 阶元素有偶数种情形.则 G 中使得 $x^3=e$ 的元素 x 的个数是奇数