

Redes sem Fios

- Redes locais sem fios (Wireless LANs) / IEEE 802.11
 - Introdução
 - Evolução da norma
 - Protocolos e camadas da norma IEEE 802.11
 - Protocolo do sub-nível MAC
 - Estrutura da trama
 - Endereçamento
 - IEEE 802.11n e evolução futura

Redes locais sem fios (Wireless LANs) - Introdução -

Motivação:

- Permitir o acesso sem fios de computadores portáteis à Internet em aeroportos, edifícios de escritórios, hotéis, centros comerciais, universidades, etc
- Norma IEEE 802.11 (WiFi):
 - Dois modos de funcionamento: (1) Com estação Base; (2) Redes ad hoc
 - Compatibilidade com a Ethernet acima do nível de ligação de dados
 - Diferenças para a Ethernet no nível físico e no nível de ligação de dados
 - O sinal rádio não se propaga a toda a rede => problema da estação escondida e da estação exposta
 - Desvanecimento multipercurso (multipath fading)
 - Mudança de estação base por parte das estações móveis (i.e. handover, handoff)

Evolução da Norma IEEE 802.11

Norma	Frequência (GHz)	Data Rate Máximo (Mbps)	Data Rate Típico (Mbps)	Alcance (interior/ exterior em m)	
802.11	2,4	2	0,9	20/100	
802.11a	5	54	23	35/120	
802.11b	2,4	11	4,3	38/140	
802.11g	2,4	54	19	38/140	
802.11n	2,4/5	150 (x n)	74 (x n)	70/250	

Protocolos e camadas da norma IEEE 802.11

- O nível físico utiliza cinco técnicas de transmissão:
 - Infravermelho: 1 e 2 Mbps (usa a tecnologia dos controlos remotos de TV)
 - FHHS (Frequency Hopping Spread Spectrum): 1 e 2 Mbps (banda 2.4 GHz ISM)
 - DSSS (Direct Sequence Spread Spectrum): 1 e 2 Mbps (banda 2.4 GHz ISM)
 - OFDM (Orthogonal Frequency Division Multiplexing): max. 54 Mbps (banda 5 GHz ISM)
 - HR-DSSS (High Rate Direct Sequence Spread Spectrum): max. 11 Mbps (banda 2.4 GHz ISM)

IEEE 802.11: Canais e Frequências (2.4 GHz)

Protocolo de Controlo de Acesso ao Meio para Redes Sem Fios

Problema da estação escondida

Problema da estação exposta

- A limitação colocada pelo alcance radio (Radio range) impossibilita a detecção colisões.
- Protocolo CSMA/CD n\u00e3o pode ser usado como \u00eanico mecanismo de controlo de acesso ao meio

ISCTE 2015/2016 Equipa Redes Digitais I 40

Multiple Acess with Collision Avoidance - MACA

RTS - Request To Send

CTS - Clear To Send

ISCTE 2015/2016 Equipa Redes Digitais I 41

Multiple Acess with Collision Avoidance for Wireless - MACAW

- Introdução de um ACK após a recepção com sucesso de cada trama para reduzir os atrasos associados à retransmissão do nível de transporte.
- Introdução de CSMA para evitar colisões na transmissão do RTS de duas estações vizinhas para o mesmo destinatário.
- Aplicação do algoritmo de backoff ao nível de cada ligação em vez da aplicação apenas ao nível de cada estação.
- Troca de informação de congestão entre as estações de modo a evitar reacções violentas a problemas temporários.

Protocolo do sub-nível MAC (1)

- A norma IEEE 802.11 suporta dois modos de funcionamento:
 - a) Point Coordination Function (PCF), acesso determinístico ao canal pois é controlado centralmente pelo Ponto de Acesso
 - b) Distributed Coordination Function (DCF), acesso ao canal controlado numa forma distribuída e com contenção

Todas as implementações suportam o DCF. O PCF é opcional.

Protocolo do sub-nível MAC (2)

- Quando o modo de funcionamento PCF o Access Point efectua o controlo de acesso ao meio através de polling.
- Cada "SuperFrame" começa com uma trama de controlo de tipo "Beacon" que é enviada periodicamente, contendo:
 - Capability Information (e.g., QoS, privacy).
 - SSID 32 caracteres, indicando o ID do Service Set ("nome da rede").
 - Supported rates.

NAV (Network Allocation Vector) - Reserva canal para transmitir trama de dados e o respectivo ACK.

Protocolo do sub-nível MAC (3)

- Quando o modo de funcionamento DCF é utilizado, a norma IEEE 802.11 usa o protocolo CSMA/CA (CSMA with colision avoidance)
- O CSMA/CA suporta dois modos de funcionamento:
 - **Escuta física do canal** (a estação escuta o canal, se estiver livre transmite; enquanto transmite não escuta o canal; em caso de colisão (ausência de ACK) utiliza o algoritmo *exponential backoff* da *Ethernet -> tempo de contenção*
 - Escuta virtual do canal (baseado no MACAW)

NAV (Network Allocation Vector) - Reserva canal para transmitir trama de dados e o respectivo ACK, utilizando RTS/CTS. Devido às mensagens adicionais RTS/CTS, este *handshake* deve ser utilizado preferencialmente em cenários com muitas colisões e tramas de tamanho adequado.

Protocolo do sub-nível MAC (4)

Problema:

- As redes sem fios são ruidosas e não fiáveis => probabilidade de uma transmissão com sucesso diminui com o tamanho da trama

Solução:

 A norma IEEE 802.11 permite que as tramas sejam fragmentadas. Estes fragmentos são devidamente identificados e confirmados através de um protocolo Stop and Wait

								PIFS SIFS
		NAV (RT\$)		NAV (Fragment 0)		NAV (Fragment 1)	1	Backoff-Window
Other		NAV (CTS)	NAV (ACK II)		NAV (ACK 1)			
	SIF8	SIFS S	FS ►	SiFS SiFS Fregment 1 ← ▶		SIFS SIFS		
Source								
D4 4	ста	3	ACK 0		ACK 1		ACK 3	
Destination								

- A fragmentação permite aumentar o débito através da restrição das retransmissões apenas aos fragmentos com erro e não à trama inteira
- O NAV mantém as outras estações em silêncio apenas até ao próximo ACK. Existe um outro mecanismo que permite o envio de todos o fragmentos (fragment burst) sem interferência

Protocolo do sub-nível MAC (5)

- No modo PCF o controlo das operações está centralizado na estação base, cujas principais funções são:
 - Coordenar a transmissão das outras estações (polling) => não há colisões, nem tempo de contenção no acesso ao meio
 - Difundir uma trama de aviso (*beacon* frame) periodicamente (10 a 100 vezes por segundo) que permite, por exemplo, a novas estações móveis seleccionar o AP mais conveniente para se associarem
 - Gestão de energia da bateria das estações móveis (sleep state)
- Os modos DCF e PCF podem coexistir. A base desta coexistência é a definição cuidadosa do intervalo de tempo entre tramas

 Prioridade + elevada

SIFS - Short InterFrame Spacing

PIFS - PCF InterFrame Spacing

DIFS - DCF InterFrame Spacing

EIFS - Extended InterFrame Spacing

Estrutura da trama

- A norma IEEE 802.11 define três tipos de tramas:
 - Dados Sub-Tipos
 - Controlo (e.g. RTS, CTS, ACK (só para unicast))
 - Gestão (e.g. Beacon, Associação AP)
- Existem quatro campos de endereço:
 - Endereço de destino
 - Endereço de origem
 - Endereço da estação base de destino
 - Endereço da estação base de origem

To DS - To Distribution Station

From DS- From Distribution Station

MF - More FragmentsRetry - Retransmission

Pwr - Power-save mode (0-active; 1-power-save)

More - Additional Frames
O - Strictly Ordered

11 11, 11

Endereçamento (1)

 Comunicação (1 trama) entre duas estações móveis (A e B) pertencentes à mesma rede AdHoc com o identificador BSSId (modo DCF):

Tramas Tx	To DS	From DS	A1	A2	A3	A4
$A \rightarrow B$	0	0	Destino (B)	Origem (A)	BSSId	-

Endereçamento (2)

 Comunicação (2 tramas) entre duas estações móveis (A e B) pertencentes à mesma rede 802.11 (e.g. AP1) do tipo infraestrutura (modo PCF)

Tramas Tx.	To DS	From DS	A1	A2	A3	A4
$A \rightarrow AP1$	1	0	AP_Receptor (AP1)	Origem (A)	Destino (B)	-
AP1-> B	0	1	Destino (B)	AP_Emissor (AP1)	Origem (A)	

Endereçamento (3)

 Comunicação (2 tramas) entre duas estações móveis (A e C) pertencentes redes 802.11 diferentes do tipo infraestrutura (modo PCF).
 Ambas as estações base pertencem ao mesmo sistema de distribuição (DS).

Tramas Tx.	To DS	From DS	A1	A2	A3	A4
$A \rightarrow AP1$	1	0	AP_Receptor (AP1)	Origem (A)	Destino (C)	-
<i>AP1->AP2</i>	1	1	AP_Receptor (AP2)	AP_Emissor (AP1)	Destino (C)	Origem (A)
AP2->C	0	1	Destino (C)	AP_Emissor (AP2)	Origem (A)	

IEEE 802.11n e Evolução Futura

- IEEE 802.11n foi aprovado em Outubro de 2009 como um *amendment* à norma IEEE 802.11-2007, suportando a funcionalidade *Multiple Input Multiple Output* (MIMO) para o envio de múltiplos *streams* de dados em paralelo (1 a 4):
 - Emissor transmite através de várias antenas (1 a 4)
 - Receptor recebe de várias antenas (1 a 4) e processa as diversos *streams* para atingir os seguintes objectivos:
 - Maximizar o nível de sinal na recepção
 - Aumentar o desempenho na transmissão de dados
 - MAC alterado para agregar tramas e diminuir o overhead na comunicação:
 - No acesso ao meio físico (fase de contenda)
 - Informação redundante adicionada aos dados (e.g., cabeçalho, controlo de erros)
- **IEEE 802.11ac** (estado de *draft* em Dezembro de 2012) pretende melhorar o desempenho na transmissão de dados relativamente ao 802.11n, nomeadamente, nos seguintes aspectos:
 - Aumentar de 4 para 8 o número de data streams enviados em paralelo
 - Quadruplicar a largura de banda de cada canal físico