2 AA09/10 (Algebra: gruppi										ıa, 13 Sett	
OGNOME blyere il massimo numero di cizi predisposti. NON SI ACCI Nessuna domanda durante	esercizi accor ETTANO RI	mpagnan ISPOSTI	do le ri	isposte d ITTE SU	on spie	gazion	ni chia	re ed ess	enziali. <i>Ir</i>	nserire le r	risposte n
	FIRMA	1 2	3	4 5	6	7	8	TOT.			
Rispondere alle sequenti do		endo una	giustifi	icazione	di una	riga:			_		
			0			0					
										_	
a. È vero che se A è un a	nello commu	itativo e	$I \subset A$	è un ide	ale, allo	$\operatorname{ra} A/$	Iè un	anello o	commutat	ivo?	
h. E' ware aha sa C à un a	yruppo aboli	ana finita	o m di	ivido l <i>C</i>	allora	C ao	ntiono	un elem	onto di or	dina n?	
b. E' vero che se G è un g	gruppo abelia	ano finito	e n d	ivide $ G $, allora	G con	ntiene	un elem	ento di or	dine n ?	
b. E' vero che se G è un g	gruppo abelia	ano finite	$\mathbf{e} \; n \; \mathbf{d}$	ivide $ G $, allora	G con	ntiene	un elem	ento di or	dine n ?	
b. E' vero che se G è un g	gruppo abelia	ano finito	e n d	ivide $ G$, allora	G con	\dots	un elem	ento di or	dine n ?	
b. E' vero che se G è un g	gruppo abelia	ano finito	e n d	ivide $ G$, allora	G con	ntiene	un elem	ento di or	dine n ?	
b. E' vero che se G è un g	gruppo abelia	ano finito	e n d	ivide $ G$, allora	G con	ntiene	un elem	ento di or 	dine n ?	
b. E' vero che se G è un g	gruppo abeli:	ano finito	e n d	ivide $ G$, allora	<i>G</i> coi	ntiene	un elem	ento di or	dine n ?	
b. E' vero che se G è un g	gruppo abeli	ano finito	e n d:	ivide $ G$, allora	G con	ntiene	un elem	ento di or	dine n ?	•••••
b. E' vero che se G è un g	gruppo abelia	ano finito	e n d	ivide $ G$, allora	G con	ntiene	un elem	ento di or	dine n ?	
b. E' vero che se G è un g \ldots	gruppo abeli:	ano finito	e n d	ivide $ G$, allora	<i>G</i> con	ntiene	un elem	ento di or	dine n ?	
								un elem	ento di or	dine n ?	
b. E' vero che se G è un g $$ c. É vero che se F è un ca								un elem	ento di or	dine n ?	
								un elem	ento di or	dine n ?	
								un elem	ento di or	dine <i>n</i> ?	
								un elem	ento di or	dine n?	
								un elem	ento di or	dine n?	
								un elem	ento di or	dine n?	
								un elem	ento di or	dine <i>n</i> ?	

d. É vero che esiste un campo con 81 elementi.

4. Determinare tutti i sottogruppi di $S_3 \times {\bf Z}_2$ e per ciascuno stabilire se è o meno normale.
5. Dopo aver definito la nozione di anello a ideali principali, dimostrare che se $\psi:A\to B$ è un omomorfismo suriettivo di anelli e A è a ideali principali, allora anche B è a ideali principali.

