Лабораторная работа №1. Задачи.

1.2

Постановка задачи:

Написать простую программу. Ввести два числа с клавиатуры, вычислить их сумму и напечатать результат. Использовать функцию printf для приглашений на ввод и для распечатки результата. Использовать функцию scanf для ввода каждого числа отдельно с клавиатуры. Для получения доступа к функциям printf и scanf включить в программу заголовочный файл stdio.h. Использовать корректные спецификаторы форматирования. Здесь и далее для распечатки надписей на экране использовать латинские буквы для избежания проблем с кодировками символов.

Математическая модель: -

Список идентификаторов:

Имя	Тип	Смысл
A	float	1-ая вводимая переменная
В	Float	2-ая вводимая переменная
S	float	Сумма переменных а и b

```
#include <stdio.h>
#include <Windows.h>
#include <locale.h>
int main() {
    SetConsoleOutputCP(CP_UTF8);
    setlocale(LC_ALL, "ru_RU.UTF-8");

    float a, b;
    float s;
    printf("Ввод чисел:\n");
    scanf("%f%f", &a, &b);
    s = a + b;
    printf("Сумма: %f", s);
    return 0;
}
```

Ввод чисел:

7 8

Сумма: 15.00000

Постановка задачи:

Вычислить значение выражения:

$$u(x,y) = \frac{1 + \sin^2(x+y)}{2 + \left| x - \frac{2x^2}{1 + |\sin(x+y)|} \right|},$$

Математическая модель:

$$u(x,y) = \frac{1 + \sin^2(x+y)}{2 + \left|x - \frac{2x^2}{1 + |\sin(x+y)|}\right|},$$

Список идентификаторов:

Имя	Тип	Смысл
X	float	1-ая вводимая переменная
Y	Float	2-ая вводимая переменная
a	float	Временная переменная
S	float	Результат вычислений

```
#include <stdio.h>
#include <math.h>
#include <Windows.h>
#include <locale.h>
float u(float x, float y) {
    float a;
    a = sin(x + y);
    return (1 + a * a)/(2 + fabs(x - (2 * x * x) / (1 + fabs(a))));
}
int main() {
    SetConsoleOutputCP(CP_UTF8);
    setlocale(LC_ALL, "ru_RU.UTF-8");

float x, y, a, s;
    printf("Введите x:\n");
    scanf("%f", &x);
```

```
printf("Введите y:\n");
scanf("%f", &y);

s = u(x, y);

printf("u(%f,%f) = %f", x,y,s);
return 0;
```

```
Введите x:
12
Введите y:
13
u(12.000000,13.000000) = 0.004164
```

Постановка задачи:

Вычислить значение выражения:

$$h(x) = -\frac{x-a}{\sqrt[3]{x^2 + a^2}} - \frac{4\sqrt[4]{(x^2 + b^2)^3}}{2 + a + b + \sqrt[3]{(x-c)^2}}.$$
 (2)

Выполнить для следующих значений:

$$a = 0.12, b = 3.5, c = 2.4, x = 1.4;$$

 $a = 0.12, b = 3.5, c = 2.4, x = 1.6;$
 $a = 0.27, b = 3.9, c = 2.8, x = 1.8.$

Значения параметров и аргументов можно вводить прямо в коде программы без ввода с клавиатуры.

Математическая модель:

$$h(x) = -\frac{x-a}{\sqrt[3]{x^2 + a^2}} - \frac{4\sqrt[4]{(x^2 + b^2)^3}}{2 + a + b + \sqrt[3]{(x-c)^2}}.$$

Список идентификаторов:

Имя	Тип	Смысл
X	float	Переменная в выражении
A	Float	Переменная в выражении
В	float	Переменная в выражении
С	float	Переменная в выражении
M	float	Временная переменная
n	float	Временная переменная
A1,a2,a3	float	Значение по условию
B1,b2,b3	float	Значение по условию
C1,c2,c3	float	Значение по условию
H1	float	Результат вычислений
H2	float	Результат вычислений
Н3	float	Результат вычислений

Код программы:

#include <stdio.h>

#include <math.h>

#include <Windows.h>

#include <locale.h>

float h(float a, float b, float c, float x) {

```
float m, n;
  m = (x - a) / cbrt(x * x + a * a);
  n = (4 * pow((x * x + b * b), 3.0 / 4.0)) / (2 + a + b + cbrt((x - c) * (x - c)));
  return -m - n;
int main() {
  SetConsoleOutputCP(CP UTF8);
  setlocale(LC_ALL, "ru_RU.UTF-8");
  float a1 = 0.12, b1 = 3.5, c1 = 2.4, x1 = 1.4;
  float a2 = 0.12, b2 = 3.5, c2 = 2.4, x2 = 1.6;
  float a3 = 0.27, b3 = 3.9, c3 = 2.8, x3 = 1.8;
  float h1, h2, h3;
  h1 = h(a1, b1, c1, x1);
  h2 = h(a2, b2, c2, x2);
  h3 = h(a3, b3, c3, x3);
  printf("h(%f): %f\n", x1, h1);
  printf("h(%f): %f\n", x2, h2);
  printf("h(%f): %f\n", x3, h3);
  return 0;
```

```
h(1.400000): -5.442602
h(1.600000): -5.738755
h(1.800000): -5.992693
```

Комплект 2: Организация циклов. Условные конструкции.

2.1

Постановка задачи:

Вычислить используя цикл **for** координаты планеты Марс относительно Земли с течением времени t. Распечатать на экране координаты для каждой итерации по t. Координаты планеты Марс для каждой итерации задаются заданы формулами:

$$x = r_1 \cos(w_1 t) - r_2 \cos(w_2 t), \tag{3}$$

$$y = r_1 \sin(w_1 t) - r_2 \sin(w_2 t), \tag{4}$$

$$w_1 = \frac{2\pi}{T_1} \,, \tag{5}$$

$$w_2 = \frac{2\pi}{T_2} \,,$$
 (6)

где r_1 – радиус орбиты Марса, r_2 – радиус орбиты Земли, T_1 и T_2 — периоды обращения указанных планет соответственно, t – каждый заданный момент времени внутри цикла по времени. Подберите подходящие единицы измерения для времени и расстояния.

Математическая модель:

$$x = r_1 * \cos\left(\frac{2\pi}{T_1} * t\right) - r_2 * \cos\left(\frac{2\pi}{T_2} * t\right)$$

$$y = r_1 * \sin\left(\frac{2\pi}{T_1} * t\right) - r_2 * \sin\left(\frac{2\pi}{T_2} * t\right)$$

Список идентификаторов:

Имя	Тип	Смысл
T1	float	Период обращения Марса
T2	Float	Период обращения Земли
R1	float	Радиус орбиты Марса
R2	float	Радиус орбиты Земли
W1	Float	Угловая скорость марса
W2	Float	Угловая скорость Земли
X	Float	Координата х
Y	Float	Координата у
t	int	Сутки

Код программы:

#include <stdio.h>

#include <math.h>

#include <Windows.h>

#include <locale.h>

```
int main() {
  SetConsoleOutputCP(CP_UTF8);
  setlocale(LC_ALL, "ru_RU.UTF-8");
  float T1 = 687, T2 = 365, r1 = 228, r2 = 150;
  float w1, w2, x, y;
  float pi = 3.1415;
  w1 = 2 * pi / T1;
  w2 = 2 * pi / T2;
  printf("x\ty\tcyток\n");
  for (int t=0; t<=150; t+=10){
    x = r1 * cos(w1 * t) - r2 * cos(w2 * t);
    y = r1 * sin(w1 * t) - r2 * sin(w2 * t);
    printf("%.2f\t%.2f\t%d\n", x, y, t);
  }
  return 0;
}
```

X	у	суток
78.00	0.00	
79.26	-4.87	10
83.00	-9.16	20
89.03	-12.29	30
97.09	-13.75	40
106.79	-13.08	50
117.67	-9.89	60
129.19	-3.88	70
140.78	5.13	80
151.79	17.22	90
161.61	32.34	100
169.60	50.34	110
175.17	70.93	120
177.76	93.72	130
176.90	118.23	140
172.19	143.88	150

Постановка задачи:

Вычислить определённый интеграл от заданной функции методом трапеций:

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} e^{x+2}dx. \tag{7}$$

Функция f(x) может быть выбрана и самостоятельно. Результат интегрирования сравнить с вычисленным вручную и убедиться в корректности результата.

Математическая модель:

$$\int_{0}^{1} e^{x+2} dx$$

Список идентификаторов:

Имя	Тип	Смысл
a	double	Нижний предел
		интегрирования
b	double	Верхний предел
		интегрирования
n	Int	Точность
X	Double	Аргумент функции
h	Double	Шаг разбиения интервала
sum	Double	Накопленная сумма для
		метода трапеций
i	Int	Счётчик итераций цикла
result	double	Результат вычисления

```
#include <stdio.h>
#include <math.h>
#include <Windows.h>
#include <locale.h>

double f(double x) {
   return exp(x + 2);
}
```

```
double trap(double a, double b, int n) {
  double h = (b - a) / n;
  double sum = (f(a) + f(b)) / 2.0;
  for (int i = 1; i < n; i++) {
    sum += f(a + i * h);
  }
  return sum * h;
}
int main() {
  SetConsoleOutputCP(CP_UTF8);
  setlocale(LC_ALL, "ru_RU.UTF-8");
  double a = 0, b = 1;
  int n = 1000;
  double result = trap(a, b, n);
  printf("Значение интеграла с точностью %d: %.6f\n", n, result);
  return 0;
}
```

Значение интеграла С точностью 1000: 12.696482

Постановка задачи:

2.3: Организовать и распечатать последовательность чисел Падована превосходящих число m, введенное с клавиатуры. Числа Падована представлены следующим рядом: 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, ... Использовать конструкцию for и простые варианты условной конструкции if else. Для этих чисел заданы формулы:

$$P(0) = P(1) = P(2) = 1,$$
 (8)

$$P(n) = P(n-2) + P(n-3). (9)$$

Математическая модель:

$$P(0) = P(1) = P(2) = 1$$
,

$$P(n) = P(n-2) + P(n-3)$$
.

Список идентификаторов:

Имя	Тип	Смысл
m	int	Максимальное значение числа
		Падована
P0	Int	Текущее значение P(n-3)
P1	Int	Текущее значение P(n-2)
p2	int	Текущее значение P(n-1)
next	int	Следующее число
		последовательности

```
#include <stdio.h>

int main() {
    int m;
    printf("Введите число m: ");
    scanf("%d", &m);

int p0 = 1, p1 = 1, p2 = 1;
    printf("1, 1, 1");
```

```
if (m == 1) {
    return 0;
}

for (int next = p0 + p1; next <= m; ) {
    printf(", %d", next);

    p0 = p1;
    p1 = p2;
    p2 = next;
    next = p0 + p1;
}

return 0;</pre>
```

```
Введите число m:
300
1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265
```

Постановка задачи:

С клавиатуры вводится трёхзначное число, считается сумма его цифр. Если сумма цифр числа больше 10, то вводится следующее трёхзначное число, если сумма меньше либо равна 10 — программа завершается.

Математическая модель: -

Список идентификаторов:

имя	тип	смысл
Num	int	Вводимое число
One	int	Промежуточный результат вычисления
Two	int	Промежуточный результат вычисления
Three	int	Промежуточный результат вычисления
sum	int	Результат вычислений

```
#include <stdio.h>

int main() {
    int num;

while (1) {
    printf("Введите трехзначное число: ");
    scanf("%d", &num);

int one = num / 100;
    int two = (num / 10) % 10;
    int three = num % 10;
    int sum = one + two + three;

printf("Сумма цифр: %d\n", sum);

if (sum <= 10) {
    break;
}
```

```
}
return 0;
```

```
Введите трехзначное число:
546
Сумма цифр: 15
Введите трехзначное число:
777
Сумма цифр: 21
Введите трехзначное число:
123
Сумма цифр: 6
```

Комплект 3: Основы работы со статическими массивами.

3.1

Постановка задачи:

3.1: Для некоторого числового вектора X, введённого с клавиатуры, вычислить значения вектора $Y = X \cdot X$ ($y_i = x_i \cdot x_i$ — поэлементно).

Математическая модель:

$$Y = X \cdot X$$
 ($y_i = x_i \cdot x_i$ — поэлементно).

Список идентификаторов:

Имя	Тип	Смысл
size	int	Размер вектора
X	double	Вектор исходных значений
у	double	Вектор квадратов значений Х
i	int	Счётчик для итерации по
		элементам векторов

```
#include <stdio.h>

int main() {
    int size;
    printf("Введите размер вектора X: ");
    scanf("%d", &size);

double X[size], Y[size];

printf("Введите %d элементов вектора X:\n", size);
    for (int i = 0; i < size; i++) {
        scanf("%lf", &X[i]);
    }

for (int i = 0; i < size; i++) {
        Y[i] = X[i] * X[i];
```

```
printf("\nВектор X: ");
for (int i = 0; i < size; i++) {
    printf("%.2f", X[i]);
}

printf("\nВектор Y: ");
for (int i = 0; i < size; i++) {
    printf("%.2f", Y[i]);
}

return 0;</pre>
```

```
Введите 4 элементов вектора X:

1

2

3

4

Вектор X: 1.00 2.00 3.00 4.00

Вектор Y: 1.00 4.00 9.00 16.00
```

Постановка задачи:

Для некоторого числового массива X, введённого с клавиатуры поэлементно, изменить порядок элементов на обратный и распечатать результат на экране.

Математическая модель:

Список идентификаторов:

Имя	Тип	Смысл
size	int	Размер массива
X	double	Исходный массив элементов
i	int	Счётчик для итерации по
		элементам
temp	double	Временная переменная

```
#include <stdio.h>
int main() {
    int size;
    printf("Введите размер массива X: ");
    scanf(""%d", &size);

double X[size];

printf("Введите %d элементов массива X:\n", size);
for (int i = 0; i < size; i++) {
    scanf("%lf", &X[i]);
}

for (int i = 0; i < size / 2; i++) {
    double temp = X[i];
    X[i] = X[size - 1 - i];
    X[size - 1 - i] = temp;
}</pre>
```

```
printf("\nMaccub X в обратном порядке: ");
for (int i = 0; i < size; i++) {
    printf("%.2f ", X[i]);
}
return 0;
}</pre>
```

```
Введите размер массива X:
4
Введите 4 элементов массива X:
1
2
3
4
Массив X в обратном порядке: 4.00 3.00 2.00 1.00
```

Постановка задачи:

Транспонировать матрицу:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Математическая модель:

 $\boldsymbol{A^T}$

Список идентификаторов:

Имя	Тип	Смысл
A	Int	Исходная матрица
В	Int	Транспонированная матрица А
i	Int	Индекс строки матрицы
j	int	Индекс столбца матрицы

```
#include <stdio.h>
```

```
int main() {  int A[3][3] = \{ \\ \{1,2,3\}, \\ \{4,5,6\}, \\ \{7,8,9\} \} \};   int B[3][3];   for (int i = 0; i < 3; i++) \{ \\ for (int j = 0; j < 3; j++) \{ \\ B[j][i] = A[i][j]; \\ \}   \}   printf("Исходная матрица: \n");   for (int i = 0; i < 3; i++) \{ \\ for (int j = 0; j < 3; j++) \{ \}
```

```
printf("%d ", A[i][j]);
}
printf("\n");
}

printf("\nТранспонированная матрица:\n");
for (int i = 0; i < 3; i++) {
    for (int j = 0; j < 3; j++) {
        printf("%d ", B[i][j]);
    }
    printf("\n");
}</pre>
```

```
Исходная матрица:
1 2 3
4 5 6
7 8 9

Транспонированная матрица:
1 4 7
2 5 8
3 6 9
```

Постановка задачи:

Преобразовать исходную матрицу так, чтобы первый элемент каждой строки был заменён средним арифметическим элементов этой строки.

Математическая модель: -

Список идентификаторов:

Имя	Тип	Смысл
matrix	double	Исходная матрица
i	Int	Индекс строки матрицы
sum	Double	Сумма элементов строки
i	int	Индекс столбца матрицы

```
#include <stdio.h>
int main() {
  double matrix[3][3] = {
     \{1, 2, 3\},\
     {4, 5, 6},
     \{7, 8, 9\}
  };
  for (int i = 0; i < 3; i++) {
     double sum = 0.0;
     for (int j = 0; j < 3; j++) {
       sum += matrix[i][j];
     matrix[i][0] = sum / 3;
  }
  printf("Преобразованная матрица:\n");
  for (int i = 0; i < 3; i++) {
     for (int j = 0; j < 3; j++) {
```

```
printf("%.2f", matrix[i][j]);
}
printf("\n");
}
return 0;
```

```
Преобразованная матрица:
2.00 2.00 3.00
5.00 5.00 6.00
8.00 8.00 9.00
```

Постановка задачи:

Реализовать самостоятельно алгоритм сортировки вставками (без создания своих функций, внутри функции main)

Математическая модель: -

Список идентификаторов:

Имя	Тип	Смысл
arr	int	Исходный массив
n	Int	Количество элементов в массиве
i	Int	Индекс для сравнения элементов
k	Int	Значение элемента для вставки
j	int	Индекс текущего элемента во
		внешнем цикле

```
#include <stdio.h>
int main() {
  int arr[] = \{12, 11, 13, 5, 6\};
  int n = sizeof(arr) / sizeof(arr[0]);
  printf("Исходный массив: ");
  for (int i = 0; i < n; i++) {
     printf("%d ", arr[i]);
  }
  printf("\n");
  for (int i = 1; i < n; i++) {
     int k = arr[i];
     int j = i - 1;
     while (j \ge 0 \&\& arr[j] \ge k) {
        arr[j+1] = arr[j];
       j--;
     arr[j+1] = k;
```

```
printf("Отсортированный массив: ");
for (int i = 0; i < n; i++) {
    printf("%d ", arr[i]);
}
printf("\n");
return 0;
}</pre>
```

```
Исходный массив: 12 11 13 5 6
Отсортированный массив: 5 6 11 12 13
```