Tytuł: Jump King B1

Autorzy: Miłosz Płonczyński, Tomasz Machnik

Ostatnia modyfikacja: 11.06.2025

Spis treści

1.	Repozytorium git	1
3.	Wstęp	1
	3.1. Opis ogólny algorytmu	3
4.	Architektura	2
	4.1. Moduł: top	4
	4.1.1. Schemat blokowy	4
	4.1.2. Porty	5
	4.1.3. Interfejsy	6
	4.2. Rozprowadzenie sygnału zegara	
5.	Implementacja	
	5.1. Lista zignorowanych ostrzeżeń Vivado	
	5.2. Wykorzystanie zasobów	9
	5.3. Marginesy czasowe	
6		1.0

1. Repozytorium git

Adres repozytorium GITa:

https://github.com/TMTomaszMachnik/JumpKingB1.git

2. Wstęp

Pomysł na grę był zaczerpnięty z popularnej gry "Jump King". Celem było stworzenie nieco cięższej mechanicznie gry, która będzie w pełni wykorzystywać realistyczną fizykę skoków oraz odbijanie się od krawędzi i platform.

3. Specyfikacja

3.1. Opis ogólny algorytmu

Gra rozpoczyna się w gdy gracze zgodnie z instrukcją podaną na ekranie startowym, przełączą switch_0 swojego basysa by zsynchronizować ze sobą wyświetlacze VGA. Gra polega na rywalizacji graczy, który w krótszym czasie osiągnie punkt końcowy (oznaczony jako złota korona na ostatnim poziomie). Rozgrywka skupia się na skakaniu po platformach wygenerowanych w module draw_background.sv. Skakanie oraz poruszanie się na boki jest realizowane za pomocą klawiatury (klawisze a,d,spacja) podłączonej do płytki Basys3 poprzez USB, interfejsowanej za pomocą protokołu PS2. Główną mechaniką jest zwiększanie się siły skoku proporcjonalnie do czasu, w którym przytrzymujemy spację. Należy odpowiednio dobrać kierunek oraz siłę wyskoku aby przeskoczyć na następne platformy i ominąć przeszkody.

W trakcie gry na ekranie gracza pokazuję się również postać sterowana przez przeciwnika. Umożliwia to komunikacja między układami przy użyciu trzech interfejsów UART przechowujących w buforze danych 8 bitów. Dane te odpowiadają za odpowiednią pozycję przeciwnego gracza oraz jego położenie na płaszczyźnie poziomów.

Z racji na kombinacyjny i nieliniowy charakter rozgrywki schemat blokowy (Rys 1.) jest mocno uproszczony natomiast prawidłowa struktura głównej maszyny stanów została pokazana na diagramie stanów (Rys 2.)

Rys 1. Uproszczony schemat blokowy gry

Rys 2. Uproszczony Diagram Stanów głównego FSM (jump_king_ctl.sv)

3.2. Tabela zdarzeń

Zdarzenie	Kategoria	Reakcja systemu
Reset/Uruchomienie części sprzętowej	Start	Zainicjalizowanie wszystkich rejestrów i pamięci wartościami domyślnymi i wyświetlenie na ekranie początkowego ekranu gry.
Przełączenie przełączników przez oboje graczy	Start	Ekran startowy znika. Pojawia się postać gracza. Gra gotowa do rozpoczęcia
Przytrzymanie przycisku "spacja"	Poruszanie postacią	Postać przechodzi do stanu ładowania skoku. Zwiększana jest wartość zmiennej przechowującej wartość początkową prędkości skoku.
Zwolnienie przycisku "spacja"	Poruszanie postacią	Postać wykonuje skok w górę w ruchu parabolicznym.
Wciśnięcie przycisku "A"	Poruszanie postacią	Podczas trzymania klawisza "A" postać porusza się w lewo ze stałą prędkością.

Wciśnięcie przycisku "D"	Poruszanie postacią	Podczas trzymania klawisza "D" postać porusza się w prawo ze stałą prędkością.
Sygnał collision_bot == 0	Fizyka ruchu horyzontalnego	Przy ruchu horyzontalnym postać zaczyna spadać w dół
Sygnał top_reached == 1	Fizyka spadania	Postać zaczyna spadać spadkiem swobodnym.
Sygnał collision_top == 1	Fizyka spadania	Postać odbija się od elementu otoczenia i zaczyna spadać spadkiem swobodnym.
Sygnał colision_bot == 1	Fizyka spadania	Postać zatrzymuje się na napotkanym elemencie otoczenia.
Postać gracza pojawia się w "obszarze korony"	Koniec	Na ekranie wyświetlają się grafiki determinującego gracza wygranego i przegranego.

4. Architektura

4.1. Moduł: top

Osoba odpowiedzialna: MP, TM

Moduł Top składa się z podmodułów połączonych za pomocą zmiennych typu wire realizujących poszczególne funkcjonalności.

Rys 3. Schemat blokowy modułu głównego (top_jk.sv)

4.1.2. Porty

a) keyboard – keyboard_ctl, input

nazwa portu	opis
ps2_data	szeregowe wejście danych z klawiatury (PS2)
ps2_clk	zegar klawiatury (PS2)

b) vga – vga_ctl, output

nazwa portu	opis
vga_vs	sygnał synchronizacji pionowej VGA
vga_hs	sygnał synchronizacji poziomej VGA
vga_r[3:0]	sygnał czerwonego koloru VGA
vga_g[3:0]	sygnał zielonego koloru VGA
vga_b[3:0]	sygnał niebieskiego koloru VGA

c) uart – uart_ctl, input

nazwa portu	opis
sync_remote	Sygnał synchronizacyjny odbierany od drugiego gracza
sw0	Sygnał synchronizacyjny uruchamiany za pomocą przełącznika sw0
rx1	Wejściowy sygnał odbiornika UART (kanał 1)
rx2	Wejściowy sygnał odbiornika UART (kanał 2)
rx3	Wejściowy sygnał odbiornika UART (kanał 3)

d) uart – uart_ctl, output

nazwa portu	opis
sync_remote	Sygnał synchronizacyjny odbierany od drugiego gracza
tx1	Wyjściowy sygnał odbiornika UART (kanał 1)
tx2	Wyjściowy sygnał odbiornika UART (kanał 2)
tx3	Wyjściowy sygnał odbiornika UART (kanał 3)

4.1.3. Interfejsy

Interfejsy w grze pozwalają na przysyłanie sygnałów kalibracyjnych i funkcjonalnych związanych z wyświetlaczem VGA między modułami. By poprawić czytelność i ustrukturyzować kod przyjęta została następująca konwencja nazywania interfejsów:

Rys 3. Przykładowy interfejs VGA używany w grze

Lista Interfejsów:

- vga_if vga_if_t_bg
- vga_if vga_if_bg_uart
- vga_if vga_if_uart_ctl
- vga if vga if ctl r
- vga_if vga_if_r_fin
- vga if vga if fin out

a) vga if t bg – vga timing to draw background

<u>"/ 'J"_'"</u>	rga ammig to aran_baongrouna
nazwa sygnału	Opis
hcount [10:0]	horyzontalny licznik VGA
vcount [10:0]	wertykalny licznik VGA
hsync	sygnał synchronizacji poziomej VGA
vsync	sygnał synchronizacji pionowej VGA
hblnk	sygnał horyzontalny blank VGA
vblnk	sygnał wertykalny blank VGA
rgb [11:0]	sygnał koloru rgb VGA

b) vga if bg uart - vga draw background to draw player uart

nazwa sygnału	Opis
hcount [10:0]	horyzontalny licznik VGA
vcount [10:0]	wertykalny licznik VGA
hsync	sygnał synchronizacji poziomej VGA
vsync	sygnał synchronizacji pionowej VGA
hblnk	sygnał horyzontalny blank VGA
vblnk	sygnał wertykalny blank VGA
rgb [11:0]	sygnał koloru rgb VGA

c) vga_if_uart_ctl - draw_player_uart to jump_king_ctl

nazwa sygnału	Opis
hcount [10:0]	horyzontalny licznik VGA
vcount [10:0]	wertykalny licznik VGA
hsync	sygnał synchronizacji poziomej VGA
vsync	sygnał synchronizacji pionowej VGA
hblnk	sygnał horyzontalny blank VGA
vblnk	sygnał wertykalny blank VGA
rgb [11:0]	sygnał koloru rgb VGA

d) vga_if_ctl_r - jump_king_ctl to draw_character

<u>u/ </u>	
nazwa sygnału	Opis
hcount [10:0]	horyzontalny licznik VGA
vcount [10:0]	wertykalny licznik VGA
hsync	sygnał synchronizacji poziomej VGA
vsync	sygnał synchronizacji pionowej VGA
hblnk	sygnał horyzontalny blank VGA
vblnk	sygnał wertykalny blank VGA
rgb [11:0]	sygnał koloru rgb VGA

e) vga_r_crown_ - draw_character to draw_crown

of tga_i_oronii_ aran_oranactor to aran_oronii	
nazwa sygnału	Opis
hcount [10:0]	horyzontalny licznik VGA
vcount [10:0]	wertykalny licznik VGA
hsync	sygnał synchronizacji poziomej VGA
vsync	sygnał synchronizacji pionowej VGA
hblnk	sygnał horyzontalny blank VGA
vblnk	sygnał wertykalny blank VGA
rgb [11:0]	sygnał koloru rgb VGA

f) vga_crown_fin_ - draw_crown to draw_finish_screen

nazwa sygnału	Opis	
hcount [10:0]	horyzontalny licznik VGA	
vcount [10:0]	wertykalny licznik VGA	
hsync	sygnał synchronizacji poziomej VGA	
vsync	sygnał synchronizacji pionowej VGA	
hblnk	sygnał horyzontalny blank VGA	
vblnk	sygnał wertykalny blank VGA	
rgb [11:0]	sygnał koloru rgb VGA	

g) vga if fin out- draw finish screen to output

nazwa sygnału	Opis		
hcount [10:0]	horyzontalny licznik VGA		
vcount [10:0]	wertykalny licznik VGA		
hsync	sygnał synchronizacji poziomej VGA		
vsync	sygnał synchronizacji pionowej VGA		
hblnk	sygnał horyzontalny blank VGA		
vblnk	sygnał wertykalny blank VGA		
rgb [11:0]	sygnał koloru rgb VGA		

4.2. Rozprowadzenie sygnału zegara

Osoba odpowiedzialna: MP,TM.

5. Implementacja

5.1. Lista zignorowanych ostrzeżeń Vivado.

Identyfikat or ostrzeżeni a	Liczba wystąpi eń	Uzasadnienie	
38-282	1	W ostrzeżeniu została zawarta informacja o nie spełnieniu przez projekt warunków czasowych. Wynika to ze skomplikowanej logiki używanej w jednym z bloków kombinacyjnych (dzielenie, potęgowanie, mnożenie). Podjęto próby naprawy (np. poprzez "pipeline"), jednak nie przynosiły one zamierzonych efektów, a działanie gry było zaburzone. Podejrzewa się, że na warunki czasowe mogły wpłynąć zegary, nie będące swoimi wielokrotnościami. Ze względu na stopień zaawansowania projektu nie podjęto próby zamiany zegara kontrolującego logikę gry.	
35-328	1	Ostrzeżenie wynikające z powyższego.	
8-7080	1	Projekt jest zbyt mały, przez co nie spełnia warunków równoległej syntezy	

5.2. Wykorzystanie zasobów

Resource	Utilization	Available	Utilization %
LUT	11313	20800	54.39
LUTRAM	89	9600	0.93
FF	1059	41600	2.55
BRAM	1.50	50	3.00
DSP	6	90	6.67
Ю	28	106	26.42
BUFG	3	32	9.38
MMCM	1	5	20.00

5.3. Marginesy czasowe

Worst Negative Slack (WNS): -14.671 ns

Worst Hold Slack (WHS): 0.032 ns

6. Konfiguracja sprzętu

Schemat połączenia ze sobą płytek Basys3 w trybie multiplayer.

Basys3: Pmod Pin-Out Diagram

Konfiguracja zworek i przełączników jest domyślna, natomiast Basys3 został jedynie podłączony do klawiatury poprzez PS2 oraz za pomocą przewodów do drugiej płytki.