Lab: Exploring KNN and Distance Metrics

Objective

- Understand how different distance metrics (Euclidean, Manhattan) affect KNN performance.
- Visualize decision boundaries.
- Experiment with different values of k.

Part 1: Euclidean Distance on Iris Dataset

- 1. Dataset: Use the Iris dataset (sklearn.datasets.load_iris).
- 2. Tasks:
 - a. Split the dataset into training and test sets.
 - b. Implement a KNN classifier using **Euclidean distance**.
 - c. Evaluate the accuracy of your model.
- 3. Questions to think about:
 - Why is Euclidean distance appropriate for this dataset?
 - How would changing k affect your accuracy?

Part 2: Manhattan Distance on Grid-like Dataset

- 1. **Dataset:** Create a synthetic dataset with make_classification (2 features, 2 classes). Round feature values to simulate a **grid structure**.
- 2. Tasks:
 - a. Split into training and test sets.
 - b. Implement a KNN classifier using Manhattan distance.

c. Evaluate accuracy.

3. Questions to think about:

- Why is Manhattan distance more suitable here?
- What happens if you use Euclidean distance instead?

Part 3: Decision Boundary Visualization

- 1. Plot decision boundaries for your KNN models.
- 2. Compare Euclidean vs Manhattan (for the grid dataset).
- 3. Questions:
 - o How does the choice of distance metric affect the shape of the boundary?
 - o Can you explain why it looks the way it does?

Part 4: Experimenting with K

- 1. Try different values of k (1, 3, 5, 7, 15).
- 2. Observe how accuracy changes.
- 3. Questions:
 - Which k gives the best performance?
 - How does a very small k vs very large k affect overfitting/underfitting?

Hints / Tips (Without Giving Solutions)

- Use KNeighborsClassifier from sklearn.
- For Manhattan distance: metric='manhattan'.
- For Euclidean distance: metric='euclidean'.
- Use train_test_split for splitting the dataset.
- Optional: Use cross_val_score to pick the best k.
- For plotting, you can use np.meshgrid and plt.contourf.

Deliverables

- 1. Code for both datasets with KNN implementation.
- 2. Plots of decision boundaries.
- 3. A short explanation answering all the "Questions to think about".
- 4. Optional: A table showing accuracy for different k values.