

Security Mechanisms in Operating Systems

Gergő Ládi Laboratory of Cryptography and System Security Department of Networked Systems and Services Gergo.Ladi@CrySyS.hu

Introduction

Introduction

- Some relevant topics are not discussed as they have already been discussed on previous subjects or will be discussed later during the semester
 - Memory management, separation of processes (BSc, Operating systems)
 - Basics of AAA and Access Control on Linux and Windows (BSc, IT Security)
 - Specifics of Android and iOS (two separate lectures this semester)
 - Virtualization, containerization (a separate lecture this semester)

Outline

- Security in Linux systems
- Security in Windows systems

SECURITY IN LINUX SYSTEMS

Data Protection

- While the OS implements access control and enforces the policy, it cannot protect against external access
 - An attacker may steal a disk or boot a different OS and read or modify data
- Common solutions
 - Full disk encryption the entire disk (or partition) is encrypted as a whole » Generally, the boot disk (OS disk) may be protected as well
 - File level encryption individual files are encrypted

Full Disk Encryption

- Linux Unified Key Setup (LUKS)
 - Encrypts the device in blocks, using a master key
 - The master key is protected by one or more individual keys (separately)
 - » Derived from a password (using a KDF)
 - » Stored on a media (e.g. pendrive)
 - » Stored in the TPM
 - User-configurable algorithms for encryption and integrity protection
 - Transparent operation
- VeraCrypt (TrueCrypt)
 - Open source, cross platform solution
 - Typically used to create virtual, encrypted drives, but may also be used to protect the boot/OS drive

File Level Encryption

eCryptfs

- Each file is encrypted using a different FEK (File Encryption Key)
 - » FEKs are protected using one common FEKEK (FEK Encryption Key)
- Encryption is based on the OpenPGP file format
 - » The metadata is stored in the file itself -> portability
- File and directory names are also encrypted
- Used by ChromeOS and Ubuntu's Encrypted Home Directory feature

EncFS

- Relies on FUSE -> does not require root
- Easier to configure
- Development status: unclear as of Sept 2023

Pluggable Authentication Modules (PAM)

- An authentication framework, available on modern Linux systems
- Applications may rely on PAM instead of having their own authentication logic
- Administrators may define how they would like users to be authenticated
 - Configuration in /etc/pam.conf, /etc/pam.d/*
 - Rules may be set on a program-by-program basis
 - One or more authentication methods may be required
 - » Passwords, keys, LDAP/Kerberos, SAML, ...
- Extensibility: custom modules may be written and installed

Pluggable Authentication Modules (PAM)

- Module types
 - Authentication provides authentication features
 - Account provides account-related checks
 - » E.g. expired passwords, logon hours
 - Session provides session-related features
 - » E.g. logging, clean-up on disconnect
 - Password allows users to change credentials (passwords, keys, ...)
- Several modules of the same type may be active at the same time
 - The order of evaluation is sequential but the behaviour may be different based on the control flags

PAM Control Flags

Required

- The module must return success for authentication to succeed
- Evaluation continues upon failure

Requisite

- The module must return success for authentication to succeed
- Evaluation is terminated upon failure

Sufficient

- Authentication failure is ignored
- Upon success
 - » If no required modules reported failure, terminate with success
 - » If at least one required module reported failure, continue evaluation

Optional

Results only matter if there are only optional modules listed for a given type

Sample PAM Configuration File

```
gergo.ladi@ubuntu2204:~$ cat /etc/pam.d/common-auth
#
# /etc/pam.d/common-auth - authentication settings common to all services
#
# This file is included from other service-specific PAM config files,
# and should contain a list of the authentication modules that define
# the central authentication scheme for use on the system
# (e.g., /etc/shadow, LDAP, Kerberos, etc.). The default is to use the
# traditional Unix authentication mechanisms.
#
# As of pam 1.0.1-6, this file is managed by pam-auth-update by default.
# To take advantage of this, it is recommended that you configure any
# local modules either before or after the default block, and use
# pam-auth-update to manage selection of other modules. See
# pam-auth-update(8) for details.
# here are the per-package modules (the "Primary" block)
        [success=2 default=ignore]
                                        pam unix.so nullok
auth
        [success=1 default=ignore]
                                        pam sss.so use first pass
auth
# here's the fallback if no module succeeds
auth
        requisite
                                        pam deny.so
# prime the stack with a positive return value if there isn't one already;
# this avoids us returning an error just because nothing sets a success code
# since the modules above will each just jump around
       reauired
auth
                                        pam permit.so
# and here are more per-package modules (the "Additional" block)
        optional
auth
                                        pam_cap.so
# end of pam-auth-update config
```

Capabilities

- System-wide permissions that may be assigned to processes
 - This may help avoid the need to use the root account too frequently

Examples:

- CAP_CHOWN can change ownership information on files/folders
- CAP DAC READ SEARCH pass all file system ACL checks for reads
- CAP_DAC_OVERRIDE pass all file system ACL checks
- CAP_KILL send any signal to any process (not just SIGKILL)
- CAP_NET_RAW low-level networking access (e.g. RAW sockets)
- CAP_SETUID can arbitarily change UIDs on processes
- CAP SETGID like above, but with GIDs
- CAP_SYS_ADMIN mount file systems, set quotas, resource limits, ...
- Use man 7 capabilities to read the whole list gergo.ladi@ubuntu2204:~\$ sudo getcap /bin/ping /bin/ping = cap net raw+ep

Secure Computing Mode (SecComp)

- Processes may enter Secure Computing Mode on request prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT);
- In this mode, only four types of syscalls are allowed
 - exit()
 - sigreturn()
 - read() using already open descriptors only
 - write() using already open descriptors only
- Any other kinds of syscalls result in SIGKILL
- Extension: SecComp-BPF (Berkeley Packet Filters)
 - Customizable as to which syscalls to allow
 - Process may ask for a SIGSYS when a violation occurs, giving it a chance to recover

```
prctl(PR SET SECCOMP, SECCOMP MODE FILTER, &bpf prog);
```

Namespaces

- Namespaces make it possible to isolate processes from other processes and resources in other namespaces
 - The foundation of containerization (LXC, Docker, ...)
- Common namespaces
 - net Isolation of network NICs can be assigned to namespaces, with each namespace having their own routing tables, firewall rules, etc.
 - user Isolation of users Namespaces may have different sets of users, including different root users
 - pid Isolation of processes Namespaces cannot see processes in others
 - mnt Isolation of mount points File systems mounted in a namespace are not visible from others
 - ipc Isolation of inter-process communication
 - UTS The same host may choose to have a different hostname in each of the namespaces
 - cgroup Isolation of control groups (used for resource allocation)

grsecurity

- A set of kernel patches that aim to make Linux systems more secure
- Features
 - PaX (memory protection)
 - RBAC with automated policy learning
 - Process hiding
 - Stricter chroot restrictions
 - More auditing, logging capabilities
 - GCC Plugins
- No longer free as of 2017-04-26

fail2ban

- An optional service that monitors log files and triggers actions when specific criteria are met
 - The log files are typically those of network services
 - The criteria are typically failed login attempts
 - The action is typically blocking ("banning") the user using iptables
- Jail a set of configuration items
 - Which log file to monitor
 - What to look for
 - What action to take
 - How long to ban for
- Multiple jails may be active at the same time

BitLocker

- Windows' built-in full disk encryption solution
 - Supported since Windows Vista
 - Not available on Home editions

Operation

- Encrypts the contents of the partition using AES-CBC (older versions or compatibility mode) or AES-XTS
- Protects the encryption key using one or more individual keys
 - » Derived from passwords
 - » Stored in a file or on a pendrive
 - » Stored in the TPM
 - » Derived from a recovery key (printed when BitLocker is set up)
- Transparent operation

Encrypting File System (EFS)

- A built-in file level encryption solution
- Requires a file system that supports metadata (e.g. NTFS or ReFS)
- May be enabled at a file or folder level
 - The latter is preferred

Operation

- On first use (per user), an RSA key pair is generated
 - » The key pair is then protected using the user's credentials
- Each file is encrypted using a symmetric FEK (File Encryption Key)
- FEKs are protected using the user's RSA key pair
- Transparent operation

Local Security Authority Subsystem

- A service that handles most AAA-related tasks (Isass.exe)
 - Verification of credentials
 - Handling password changes
 - Logging
 - Enforcement of the security policy
- This process must be protected
 - A crash will lead to a system reboot
 - Cached credentials may be stolen from its memory -> could be disastrous
- Extensibility via Security Support Providers (SSPs)
 - Rogue SSP may steal passwords and subvert authentication

Privileges

- Similar to capabilities on Linux
 - But privileges are assigned to users or groups, not processes
- Can be configured using the Local Group Policy Editor or via GPOs (in enterprise environments)
- Current privileges may be listed using whoami /priv

Privileges

C:\Users\gergo.ladi\Desktop>whoami /priv

PRIVILEGES INFORMATION

Privilege Name	Description	State
Cal ack Mamany Drivilage	Lock pages in memory	====== Disabled
SeLockMemoryPrivilege	Lock pages in memory	Disabled
SeIncreaseQuotaPrivilege	Adjust memory quotas for a process	
SeSecurityPrivilege	Manage auditing and security log	Disabled
SeTakeOwnershipPrivilege	Take ownership of files or other objects	Disabled
SeLoadDriverPrivilege	Load and unload device drivers	Disabled
SeSystemProfilePrivilege	Profile system performance	Disabled
SeSystemtimePrivilege	Change the system time	Disabled
SeProfileSingleProcessPrivilege	Profile single process	Disabled
SeIncreaseBasePriorityPrivilege	Increase scheduling priority	Disabled
SeCreatePagefilePrivilege	Create a pagefile	Disabled
SeCreatePermanentPrivilege	Create permanent shared objects	Disabled
SeBackupPrivilege	Back up files and directories	Disabled
SeRestorePrivilege	Restore files and directories	Disabled
SeShutdownPrivilege	Shut down the system	Disabled
SeDebugPrivilege	Debug programs	Disabled
SeSystemEnvironmentPrivilege	Modify firmware environment values	Disabled
SeChangeNotifyPrivilege	Bypass traverse checking	Enabled
SeRemoteShutdownPrivilege	Force shutdown from a remote system	Disabled
SeUndockPrivilege	Remove computer from docking station	Disabled
SeManageVolumePrivilege	Perform volume maintenance tasks	Disabled
SeImpersonatePrivilege	Impersonate a client after authentication	Enabled
SeCreateGlobalPrivilege	Create global objects	Enabled
SeIncreaseWorkingSetPrivilege	Increase a process working set	Disabled
SeTimeZonePrivilege	Change the time zone	Disabled
SeCreateSymbolicLinkPrivilege	Create symbolic links	Disabled
•	Obtain an impersonation token for another user in the same session	Disabled

Privileges

Group Policies

- Used in enterprise environments to distribute settings (including security settings) to large amounts of computers
- Group Policy Object (GPO) a group of settings
- May be linked to specific points in the domain hierarchy
- Configuration items
 - Computer configuration settings that apply to computers
 - User configuration settings that apply to users
- Item types
 - Policy mandatory and is enforced by the system
 - Preference administrators set an initial value that may be overridden

Group Policies – Password Policy

Group Policies – Audit Policy

Group Policies – Audit Policy

Group Policies – Security Options

AppLocker

- Lets administrators control which applications may be started
- **Approaches**
 - Blacklist (relatively easy to bypass)
 - Whitelist (preferred)

This app has been blocked by your system administrator.

Contact your system administrator for more info.

Copy to clipboard

Close

AppLocker

- Rules may be defined
 - Manually
 - By running a scan on a known good installation
- Applications may be filtered using
 - Path and name
 - Publisher (name, product name, file name, file version)
 - File hash
- The Application Identity service must be running on the computers

AppLocker

Windows Defender Exploit Guard

- New feature as of Windows 10 v1709
- Four components
 - Network Protection
 - » URL/IP-based filter that blocks outgoing connections
 - Controlled Folder Access
 - » Blocks unknown applications from accessing Protected Folders
 - The list is customizable, includes Documents and similar folders by default
 - Attack Surface Reduction
 - » Blocks suspicious JavaScript, VBScript and PowerShell scripts
 - » Prevents Office apps from forking, injecting code, and some macro functionality
 - Exploit Guard
 - » Enables various memory and program integrity checks

MISCELLANEOUS

Further Reading

- The Linux-PAM System Administrators' Guide http://www.linux-pam.org/Linux-PAM-html/Linux-PAM SAG.html
- A seccomp overview https://lwn.net/Articles/656307/
- capabilities(7) Linux man page https://linux.die.net/man/7/capabilities
- Grsecurity goes private https://lwn.net/Articles/721848/
- Péter Gombos: LM, NTLM, Net-NTLMv2, oh my! https://medium.com/@petergombos/lm-ntlm-net-ntlmv2-oh-my-a9b235c58ed4
- **Privilege Constants** https://docs.microsoft.com/en-us/windows/desktop/secauthz/privilege-constants
- Attack Surface Reduction feature in Windows Defender https://www.thewindowsclub.com/attack-surface-reduction-windows-defender

Control Questions – General & Linux

- Explain the purpose and typical operation of full disk encryption.
- Explain the purpose and typical operation of file level encryption.
- What is LUKS? Explain how it works.
- What file level encryption solutions do you know that work on Linux? How do these work?
- What is PAM? What is its purpose, how does it work?
- Explain what Capabilities are.
- What is SecComp?
- Explain the purpose of Namespaces.
- What is fail2ban? How does it work?

Control Questions – Windows

- What is BitLocker? Explain how it works.
- Explain what the Encrypting File System is and how it works.
- What is the LSASS? Why is it important to protect its process?
- Explain what Privileges are in Windows and why they are important from a security point of view.
- What are Group Policies? How can you use GPOs to improve security in your organization?
- Explain what AppLocker is and how it works.

