La Demografía del Parentesco Una introducción práctica

Diego Alburez Gutiérrez[†]

[†]Grupo de Investigación sobre Desigualdades de Parentesco, Instituto Max Planck de Investigación Demográfica

Taller de Verano CEDUA Colegio de México, 24-28 de julio de 2023

MAX PLANCK INSTITUTE MAX-PLANCK-INSTITUT
FOR DEMOGRAPHIC FÜR DEMOGRAFISCHE
RESEARCH FORSCHUNG

Agenda

- 1. Introducción
- 2. Modelos demográficos de parentesco
- 3. Las ecuaciones de parentesco de Goodman-Keyfitz-Pullum
- 4. Modelos matriciales de parentesco
- 5. Ejemplo 1: Disponibilidad de familiares
- 6. Ejemplo 2 : Muerte de familiares

Introducción

Grupo de Investigación sobre Desigualdades de Parentesco

Considera a una bebé nacida en México en 1950...

- 1 ¿Qué edad tenían sus abuelos cuando ella nació, en promedio?
- ¿Cuántos hijos vivos tenía en su cumpleaños número 70?
- 3 ¿Cuántos nietos?

El parentesco como un universal humano demográfico

- 1 Todos los seres humanos nacen
- 2 Todos los seres humanos mueren
- 3 Todos los seres humanos están subsumidos en estructuras de parentesco¹
- 4 No hay una configuración familiar particular que sea universal o estable

¹Caswell, H. (2019). The formal demography of kinship: A matrix formulation. *Demographic Research*, *41*, 679-712

El papel del parentesco en las sociedades humanas

- 1 Socialización, protección y sustento
- 2 Solidaridad intergeneracional: intercambios y herencias
- 3 Estructura social e identidad
- 4 Determinante de los resultados en la vida posterior

Gran interés social²

The Economist

²'The age of the grandparent has arrived.' (enero de 2023). The Economist. https://www.economist.com/international/2023/01/12/the-age-of-the-grandparent-has-arrived

Definiciones $(1)^3$

Parentesco

Relaciones sociales que unen a las personas a través de definiciones culturalmente compartidas de parentesco en términos biológicos, legales o normativos, constituyendo en última instancia sistemas familiares.

Familia

Grupo más reducido de parientes que gozan de privilegios especiales y que, entre otras cosas, organizan la provisión de apoyo, socialización y ubicación social de sus miembros.

9 / 68

 $^{^3}$ Alburez-Gutierrez, D., Barban, N., Caswell, H., Kolk, M., Margolis, R., Smith-Greenaway, E., Song, X., Verdery, A., & Zagheni, E. (2022). Kinship, Demography, and Inequality: Review and Key Areas for Future Development. $SocArXiv. \ https://doi.org/10.31235/osf.io/fk7x9$

Definiciones (2)

Demografía del parentesco

El estudio de las redes familiares, sus estructuras y dinámicas desde una perspectiva demográfica y utilizando métodos demográficos.

Áreas interés

- 1 Estructura del parentesco y transferencias intergeneracionales
- 2 Pérdida de parientes
- 3 Papel del parentesco en la estratificación social
- 4 Desarrollo formal y metodológico
- **5** → Parentesco y migración, salud...

Modelos demográficos de parentesco

¿Qué son los modelos de parentesco?

- El parentesco es una propiedad emergente de los sistemas demográficos
- 2 Representación simplificada de la interacción entre reproducción y muerte
- 3 No se limita a los seres humanos⁴
- → ¿Qué son las propiedades emergentes?
- \rightarrow ¿Puedes pensar en otras propiedades emergentes en la naturaleza, la sociedad o la demografía?

Modelos formales de parentesco

Dados un conjunto de:

- tasas de fertilidad específicas por edad
- probabilidades de supervivencia
- suposiciones simplificadoras

Los modelos producen:

- 1 Número de parientes (vivos/muertos)
- 2 Distribución por edad de los parientes
- Oesde el punto de vista de un miembro promedio de la población ('Focal')

Focal: un miembro promedio de la población

Tipología de los modelos de parentesco

tiempo	sexo	estado	referencia
	femenino		5 6
invariante	femenino ambos	edad edad	8
variante invariante	ambos femenino	edad múltiple	DemoKin 9

⁵Goodman, L. A. (1974). Family Formation and the Frequency of Various Kinship Relationships. *Theoretical Population Biology*, 27

⁶Caswell, H. (2019). The formal demography of kinship: A matrix formulation. *Demographic Research*, *41*, 679-712

⁷Caswell, H., & Song, X. (2021). The formal demography of kinship. III. Kinship dynamics with time-varying demographic rates. *Demographic Research*, 45, 517-546

⁸Caswell, H. (2022). The formal demography of kinship IV: Two-sex models and their approximations. *Demographic Research*, 47, 359-396

⁹Caswell, H. (2020). The formal demography of kinship II: Multistate models, parity, and sibship. *Demographic Research*, 42, d 1097 d 1146 ≥ → √ ≥ →

Características del modelo

Define las siguientes características del modelo:

- (In)varianza en el tiempo
- 2 Modelos de uno/dos sexos
- 3 Modelos de (multi)estados

Las ecuaciones de parentesco de Goodman-Keyfitz-Pullum

El árbol de la vida

Número esperado de parientes

Hijas

 $B_1(a)$ es el número esperado de hijas vivas en una población femenina y no variable en el tiempo¹⁰:

$$B_1(a) = \int_{\alpha}^{a} m(x) I(a - x) dx \tag{1}$$

22 / 68

donde:

- m(x) son las tasas de fertilidad de las madres
- I(a-x) son las probabilidades de supervivencia de las hijas

¹⁰Goodman, L. A. (1974). Family Formation and the Frequency of Various

Hijas

Si a = 20 y $\alpha = 15$; entonces:

$$B_1(20) \approx \sum_{15}^{20} m(x) I(20-x)$$

Entonces...

$$B_1(20) \approx m(15)/(0) + m(16)/(1) + m(17)/(2) \dots$$

Nietas

 $B_1(a)$ es el número esperado de nietas vivas en una población femenina y no variable en el tiempo¹¹:

$$B_2(a) = \int_{\alpha}^{a} m(x) \int_{\alpha}^{a-x} l(y)m(y)l(a-x-y) dy dx \qquad (2)$$

Madres

 $M_1(a)$ es la probabilidad de tener una madre viva en una población femenina y no variable en el tiempo 12 :

$$M_{1}(a) = \int_{\alpha}^{\beta} \underbrace{\frac{I(x+a)}{I(x)}}_{\text{probabilidad de sobrevivir}} \times \underbrace{W(x)}_{\text{distribución etaria de las madres}} dx.$$
 (3

donde:

- $W(x) = e^{-rx}I(x)m(x)$ es la distribución etaria de madres
- \triangleright I(x) son las probabilidades de supervivencia
- m(x) son las tasas de fertilidad
- r es la tasa de crecimiento de la población
- $ightharpoonup \alpha$ - β es el período reproductivo

26 / 68

¹²Goodman, L. A. (1974). Family Formation and the Frequency of Various

Abuelas

 $M_2(a)$ es el número esperado de abuelas vivas en una población femenina y no variable en el tiempo¹³:

$$M_2(a) = \int_{\alpha}^{\beta} \underbrace{M_1(a)}_{\text{número de madres vivas}} \times \underbrace{W(x)}_{\text{distribución de edades de madres}} dx. \tag{4}$$

Bisabuelas

 $M_3(a)$ es el número esperado de bisabuelas vivas en una población femenina y no variable en el tiempo¹⁴:

$$M_3(a) = \int_{\alpha}^{\beta} \underbrace{M_2(a)}_{\substack{\text{número de} \\ \text{abuelas}}} \times \underbrace{W(x)}_{\substack{\text{distribución de edades de} \\ \text{las madres}}} dx.$$
 (5)

Hermanas

 $S_1(a)$ es el número esperado de hermanas mayores vivas en una población femenina y no variable en el tiempo¹⁵:

$$S^{mayor}(a) = \int_{\alpha}^{\beta} \int_{\alpha}^{x} m(y) I(a + x - y) W(x) \, dy \, dx \tag{6}$$

$$S^{menor}(a) = \int_{\alpha}^{\beta} \int_{0}^{a} \left[\frac{I(x+u)}{I(x)} \right] m(x+u) I(a-u) du W(x) dx$$
(7)

 $^{^{15}} Goodman, L. A. (1974).$ Family Formation and the Frequency of Various Kinship Relationships. Theoretical Population Biology, 27 $_{\odot}$ and $_{\odot}$ and $_{\odot}$ are $_{\odot}$

Subsidio demográfico

"Los nuevos miembros de la población no surgen de la reproducción de los miembros actuales, sino de otro lugar" ¹⁶

Qué ejemplos de subsidio demográfico conoces?

¹⁶Caswell, H. (2019). The formal demography of kinship: A matrix formulation. *Demographic Research*, *41*, 679-712

Descanso

Modelos matriciales de parentesco

De ecuaciones recursivas a operaciones matriciales

- Los parientes de Focal constituyen una población
- Se pueden modelar utilizando métodos de proyección tradicionales
- 3 Las operaciones matriciales proporcionan una implementación eficiente

El árbol de la vida (2)

Implementación: modelos de tiempo invariante y de un solo sexo¹⁷

Los modelos tienen la siguiente forma general:

$$\underbrace{\mathbf{k}(x+1)}_{\text{estructura etaria de parientes}} = \underbrace{\mathbf{U}\,\mathbf{k}(x)}_{\text{envejecimiento y supervivencia}} + \underbrace{\left\{\begin{array}{c} 0\\ \mathbf{F}\,\mathbf{k}^*(x) \end{array}\right.}_{\text{nuevos parientes}}$$

donde:

- ▶ U es una matriz con probabilidades de supervivencia en la subdiagonal
- ▶ **F** es una matriz con tasas de fertilidad en la primera fila

¹⁷Caswell, H. (2019). The formal demography of kinship: A matrix formulation. *Demographic Research*, *41*, 679-712

Distribuciones de edad de los parientes

Número esperado de parientes

Hijas

Las hijas (a) son el resultado de la reproducción de Focal:

$$\underbrace{\mathbf{a}(x+1)}_{\text{estructura etaria de hijas}} = \underbrace{\mathbf{U}\,\mathbf{a}(x)}_{\text{envejecimiento y supervivencia}} + \underbrace{\mathbf{F}\,\mathbf{e}_x.}_{\text{nuevas hijas}} \tag{8}$$
en la edad de Focal $x+1$

$$b(0)=\mathbf{0}.$$

donde:

- U es una matriz con probabilidades de supervivencia en la subdiagonal
- ▶ **F** es una matriz con tasas de fertilidad en la primera fila
- ightharpoonup **F e**_x es el vector de subsidio
- $ightharpoonup e_x$ es el vector unitario para la edad x
- \blacktriangleright b(0) es la distribución de hijas en el nacimiento de Focal

Madres

La población de madres (d) de Focal consiste en como máximo una sola persona:

$$\underbrace{\mathbf{d}(x+1)}_{\text{estructura etaria de madres en la edad de Focal }x+1} = \underbrace{\mathbf{U}\,\mathbf{d}(x)}_{\text{envejecimiento y supervivencia de madres existentes}} + \underbrace{\mathbf{0}.}_{\substack{\text{nuevas madres (subsidio)}}}$$

$$\underbrace{\mathbf{d}(x+1)}_{\text{envejecimiento y supervivencia de madres existentes}} + \underbrace{\mathbf{0}.}_{\substack{\text{nuevas madres (subsidio)}}}$$

$$d(0) = \pi$$
.

donde:

- ightharpoonup b(0) es la distribución de las madres en el nacimiento de Focal
- $ightharpoonup \pi$ es la distribución de edades de las madres en la población

Todos los modelos¹⁸

Table 1: Summary of the components of the kin model given in equations (4) and (5)

Symbol	Kin	Initial condition	Subsidy $\beta(x)$
a	daughters	0	\mathbf{Fe}_x
b	granddaughters	0	Fa(x)
c	great-granddaughters	0	$\mathbf{Fb}(x)$
d	mothers	π	0
g	grandmothers	$\sum_{i} \pi_{i} \mathbf{d}(i)$	0
h	great-grandmothers	$\sum_{i} \pi_{i} \mathbf{g}(i)$	0
m	older sisters	$\sum_{i} \pi_{i} \mathbf{a}(i)$	0
n	younger sisters	0	Fd(x)
p	nieces via older sisters	$\sum_{i} \pi_{i} \mathbf{b}(i)$	Fm(x)
q	nieces via younger sisters	0	$\mathbf{Fn}(x)$
r	aunts older than mother	$\sum_{i} \pi_{i} \mathbf{m}(i)$	0
S	aunts younger than mother	$\sum_{i} \pi_{i} \mathbf{n}(i)$	Fg(x)
t	cousins from aunts older than mother	$\sum_{i} \pi_{i} \mathbf{p}(i)$	$\mathbf{Fr}(x)$
v	cousins from aunts younger than mother	$\sum_{i} \pi_{i} \mathbf{q}(i)$	Fs(x)

¹⁸Caswell, H. (2019). The formal demography of kinship: A matrix formulation. Demographic Research, 41, 679-712

Considera a una bebé nacida en México en 1950...

- 1 ¿Qué edad tenían sus abuelos cuando ella nació, en promedio?
- ¿Cuántos hijos vivos tenía en su cumpleaños número 70?
- 3 ¿Cuántos nietos?

DemoKin: modelos matricial de parentesco en R

- ► Modelos de tiempo (in-)variante
- Modelos de uno o dos sexos
- Modelos multiestado (multistate)
- https://cran.r-project.org/web/packages/ DemoKin/
- Más en la sesión de laboratorio...

Hal Caswell

Ivan Williams

Xi Song

Descanso

Ejemplo 1: Disponibilidad de familiares

El enigma demográfico

- ▶ ¿La Transición Demográfica...
 - 1 Disminución o estancamiento de la fertilidad
 - 2 Aumento de la edad al momento de tener hijos
 - 3 Menor mortalidad infantil
 - Mayor longevidad
- ... conducirá a una Transición de Parentesco?
 - 1 Reorganización de las redes de parentesco
 - Mayor superposición generacional
 - 3 Cambio en la demanda de cuidado informal

Objetivo

- Proyectar las estructuras globales de parentesco biológico (1950-2100)
- ② Discutir las implicaciones de los cambios en las estructuras familiares, especialmente para el suministro de cuidado informal

Parentesco biológico

Bisabuelos, abuelos, padres, hijos, nietos, bisnietos, tíos/tías, sobrinos/as (es decir, niblings), hermanos/as y primos/as.

Datos: estimaciones empíricas y proyecciones probabilísticas

- Revisión 2022 del World Population Prospects (UNWPP, por sus siglas en inglés)
- 2 Datos empíricos (1950-2021)
- 3 Proyecciones probabilísticas (2022-2100): 1,000 trayectorias por país

Guatemala: Annual number of births

© 2022 United Nations, DESA, Population Division. Licensed under Creative Commons license CC BY 3.0 IGO. United Nations, DESA, Population Division. World Population Prospects 2022. http://population.un.org/wpp/

Guatemala: Annual number of deaths

© 2022 United Nations, DESA, Population Division. Licensed under Creative Commons license CC BY 3.0 IGO. United Nations, DESA, Population Division. World Population Prospects 2022 . http://population.un.org/wpp/

Guatemala: Total Population

© 2022 United Nations, DESA, Population Division. Licensed under Creative Commons license CC BY 3.0 IGO. United Nations, DESA, Population Division. World Population Prospects 2022. http://population.un.org/wpp/

Análisis

- Modelos matriciales de parentesco
 - ► Modelos de dos sexos (fertilidad andrógina)¹⁹
 - ► Variantes en el tiempo²⁰
 - Paquete R 'DemoKin'
- 2 210 países \times 1,000 trayectorias = 210,1000 modelos
- 3 Enfoque en una Focal femenina

²⁰Caswell, H. (2020). The formal demography of kinship II: Multistate models, parity, and sibship. *Demographic Research*, 42, d.097d1146 ≥ → √ ≥ →

¹⁹Caswell, H. (2022). The formal demography of kinship IV: Two-sex models and their approximations. *Demographic Research*, 47, 359-396

Tres tendencias principales

- 1 Disminución drástica de la disponibilidad de parentesco
- 2 Cambio en la composición de las redes familiares
- 3 Envejecimiento de las redes familiares

Menos parientes a nivel regional

Menos parientes a nivel nacional

Cambio en composición de redes familiares (en China)

Envejecimiento de redes familiares

Ejemplo 2 : Muerte de familiares

Muerte y pérdida

"Las personas que viven la [pandemia de Covid-19] no experimentan el mundo a través de tasas semanales; perciben el riesgo de mortalidad a través de las experiencias de su propia red social." ²¹

²¹Trinitapoli, J. (2021). Demography Beyond the Foot. En L. MacKellar & R. Friedman (Eds.), *Covid-19 and the Global Demographic Research Agenda* (pp. 68-72). Population Council

Cambio demográfico y pérdida de parientes

- Mortalidad en exceso por Covid-19 (marzo de 2020 a junio de 2021)
- 2 Algunas muertes no habrían ocurrido en ausencia de la pandemia
- 3 Algunas personas no habrían perdido un familiar (es decir, 'sobreduelo')

El "multiplicador de duelo"

"... cada muerte por COVID-19 dejará aproximadamente nueve personas en duelo." ²²

²²Verdery, A. M., Smith-Greenaway, E., Margolis, R., & Daw, J. (2020). Tracking the reach of COVID-19 kin loss with a bereavement multiplier applied to the United States. *Proceedings of the National Academy of Sciences*, 117(30), 17695. https://doi.org/10.1073/pnas.2007476117

'Sobreduelo': la perspectiva de los sobrevivientes²³

²³Snyder, M., Alburez-Gutierrez, D., Williams, I., & Zagheni, E. (2022). Estimates from 31 countries show the significant impact of COVID-19 excess mortality on the incidence of family bereavement. *Proceedings of the National Academy of Sciences*, 119(26), e2202686119.

La pérdida de seres queridos en el contexto de Covid-19

¿Cuántas personas en el Reino Unido perdieron un familiar a causa de Covid-19?²⁴

²⁴Snyder, M., Alburez-Gutierrez, D., Williams, I., & Zagheni, E. (2022). Estimates from 31 countries show the significant impact of COVID-19 excess mortality on the incidence of family bereavement. *Proceedings of the National Academy of Sciences*, 110(26), e2202696110.

¿Cuántas personas perdieron un familiar a causa de Covid-19?²⁵

Familiar perdido	Noruega	Suecia
Abuelos	.7	44
Padres	.3	20
Hermanos	.1	10
Hijos	.1	.8

Cuadro: Individuos en duelo (en miles)

²⁵Snyder, M., Alburez-Gutierrez, D., Williams, I., & Zagheni, E. (2022). Estimates from 31 countries show the significant impact of COVID-19 excess mortality on the incidence of family bereavement. *Proceedings of the National Academy of Sciences*, 119(26), e2202686119. https://doi.org/10.1073/pnas.2202686119

La mortalidad desde una perspectiva de parentesco

- **1** Mortalidad \Rightarrow pérdida de seres queridos \Rightarrow duelo
- 2 Las crisis de mortalidad 'aceleran' la experiencia de duelo
- 3 Implicaciones para individuos y poblaciones

Pérdida de seres queridos \approx Mortalidad \times Estructura de parentesco

Modelos vs realidad

Discutir:

- ¿Cuál es la relación entre los modelos demográficos y la realidad?
- **2** ¿Esperaríamos que los modelos de parentesco coincidan con mediciones 'empíricas' de parentesco?
- 3 ¿Dónde podemos encontrar datos empíricos sobre la disponibilidad de parentesco?