机器学习导论 (2024 春季学期)

降维: 主成分分析

主讲教师: 赵鹏

机器学习的维度问题

机器学习常常会面临高维问题

Spice out the first that he point and the po

文本分析

基因组学数据分析

高维带来的挑战:数据样本稀疏、距离计算困难

维度灾难 (curse of dimensionality)

高维带来的挑战:数据样本稀疏、距离计算困难

很多学习算法依赖于"密采样"假设: K近邻算法

如何应对"维度灾难"

缓解"维度灾难"的重要途径——降维(维数约简)

通过某种数学变换 将原始高维属性空间,变成一个低维的"子空间"

(a) 三维空间中观察到的样本点

(b) 二维空间中的曲面

"嵌入" (embedding)

主成分分析 (Principal Component Analysis, PCA)

给定一些高维属性空间中的样本点,如何使用一个低维的超平面对所有样本进行"恰当"的表达?

主成分分析 (Principal Component Analysis, PCA)

给定一些高维属性空间中的样本点,如何使用一个低维的 超平面对所有样本进行"恰当"的表达?

若存在这样的超平面, 直观上我们希望它大概具有这样的性质:

- 最大可分性:样本点在这个超平面上的投影能尽可能分开
- 最近重构性:样本点到这个超平面的距离都足够近

二二〉 由此可得主成分分析的两种等价推导

对样本进行中心化: $\sum_{i} x_i = 0$

(主要为方便推导;不妨课后考虑:如未进行中心化会怎样?)

记投影变换 $\mathbf{W} = (\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_d) \in \mathbb{R}^{d \times d}$

其中每列是标准正交基向量,满足 $\|\boldsymbol{w}_i\|_2 = 1, \boldsymbol{w}_i^{\mathsf{T}} \boldsymbol{w}_j = 0 \ (\forall i \neq j)$

样本点 $\mathbf{x}_i \in \mathbb{R}^d$ 在新空间中超平面上的投影是 $\mathbf{W}[1:d']^{\mathsf{T}}\mathbf{x}_i \in \mathbb{R}^{d'}$ 若所有样本点的投影尽可能分开,则应最大化投影后样本点方差

考虑投影至**1**维场景(d'=1):

$$\mathbf{Var}[\{\mathbf{W}^{\top}\boldsymbol{x}_i\}] = \frac{1}{m}\sum_{i=1}^{m}\boldsymbol{w}_1^{\top}\boldsymbol{x}_i\boldsymbol{x}_i^{\top}\boldsymbol{w}_1$$

于是:
$$\max_{\boldsymbol{w}_1} \ \boldsymbol{w}_1^{\top} \left(\sum_i \boldsymbol{x}_i \boldsymbol{x}_i^{\top} \right) \boldsymbol{w}_1$$
s. t. $\boldsymbol{w}_1^{\top} \boldsymbol{w}_1 = 1$

进一步,考虑投影到一般的d'维场景

样本点 x_i 在新空间中超平面上的投影是 $\mathbf{W}^{\top}x_i$,若所有样本点的投影能尽可能分开,希望投影后样本点的方差最大化

ightharpoonup 关键:如何表达 $\operatorname{Var}[\{\mathbf{W}^{ op} \boldsymbol{x}_i\}]$?

考虑两个d维随机变量 $X,Y \in \mathbb{R}^d$,其期望为 $\mathbb{E}[X] = \mu$, $\mathbb{E}[Y] = \nu$.

- 可以定义协方差矩阵 $\mathbf{Cov}(X,Y) \in \mathbb{R}^{d \times d}$ 如下 $\mathbf{Cov}(X,Y) = \mathbb{E}[(X-\boldsymbol{\mu})(Y-\boldsymbol{\nu})^{\top}] = \mathbb{E}[XY^{\top}] \boldsymbol{\mu}\boldsymbol{\nu}$
- 方差是协方差的一个特例,当两个变量相同时,定义给出方差
- 当随机变量X和Y统计独立时,二者协方差为0 (反之未必)

进一步,考虑投影到一般的d'维场景

样本点 x_i 在新空间中超平面上的投影是 $\mathbf{W}^{\top}x_i$,若所有样本点的投影能尽可能分开,希望投影后样本点的方差最大化

ightharpoonup 关键:如何表达 $\operatorname{Var}[\{\mathbf{W}^{ op} x_i\}]$?

• **d**维随机变量 $X \in \mathbb{R}^d$ (假设**0**期望均值);数据样本 $\{x_i\}_{i=1}^m$ 是其观测

$$\mathbf{Cov}(W^{\top}X, W^{\top}X) = \mathbb{E}[W^{\top}X(W^{\top}X)^{\top}]$$
$$= \mathbb{E}[W^{\top}XXW^{\top}]$$

通过数据样本 $oldsymbol{x}_1, oldsymbol{x}_2, \dots, oldsymbol{x}_m$ 对其进行估计 $\sum_i \mathbf{W}^ op oldsymbol{x}_i oldsymbol{x}_i^ op \mathbf{W}$

样本点 x_i 在新空间中超平面上的投影是 $\mathbf{W}^{\mathsf{T}}x_i$,若所有样本点的投影能尽可能分开,则应该使得投影后样本点的方差最大化

投影后样本点估计得到的协方差矩阵是 $\sum_i \mathbf{W}^{\mathrm{T}} oldsymbol{x}_i oldsymbol{x}_i^{\mathrm{T}} \mathbf{W}$

于是: $\max_{\mathbf{W}} \operatorname{tr}(\mathbf{W}^{\mathrm{T}}\mathbf{X}\mathbf{X}^{\mathrm{T}}\mathbf{W})$

s.t. $\mathbf{W}^{\mathrm{T}}\mathbf{W} = \mathbf{I}$.

等价于:

$$\min_{\mathbf{W}} \quad -\operatorname{tr}(\mathbf{W}^{\mathrm{T}}\mathbf{X}\mathbf{X}^{\mathrm{T}}\mathbf{W})$$

s.t. $\mathbf{W}^{\mathrm{T}}\mathbf{W} = \mathbf{I}$.

PCA 求解

$$\max_{\mathbf{W}} \quad \text{tr}(\mathbf{W}^{T}\mathbf{X}\mathbf{X}^{T}\mathbf{W})$$
s.t.
$$\mathbf{W}^{T}\mathbf{W} = \mathbf{I}.$$

使用拉格朗日乘子法可得

$$L(\mathbf{W}, \Theta) = -\operatorname{tr}\left(\mathbf{W}^{\mathrm{T}}\mathbf{X}\mathbf{X}^{\mathrm{T}}\mathbf{W}\right) + \left\langle \Theta, \mathbf{W}^{\mathrm{T}}\mathbf{W} - \mathbf{I} \right\rangle$$
$$= -\operatorname{tr}\left(\mathbf{W}^{\mathrm{T}}\mathbf{X}\mathbf{X}^{\mathrm{T}}\mathbf{W}\right) + \operatorname{tr}\left(\Theta^{\mathrm{T}}\left(\mathbf{W}^{\mathrm{T}}\mathbf{W} - \mathbf{I}\right)\right)$$

经过推导可得, 最终只需求解

$$\mathbf{X}\mathbf{X}^{\mathrm{T}}\boldsymbol{w}_{i}=\lambda_{i}\boldsymbol{w}_{i}$$

只需对协方差矩阵 $\mathbf{X}\mathbf{X}^{\mathrm{T}}$ 进行特征值分解,并将求得的特征值排序: $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$,再取前 d' 个特征值对应的特征向量构成 $\mathbf{W}^* = (\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_{d'})$,这就是主成分分析的解

关键变量: 子空间方差

PCA - 最近重构性

对样本进行中心化:
$$\sum_i x_i = 0$$

假定投影变换后得到的新坐标系为 $\{\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_d\}$,

其中每维是标准正交基向量,满足 $\|\boldsymbol{w}_i\|_2 = 1, \boldsymbol{w}_i^{\mathsf{T}} \boldsymbol{w}_j = 0 \ (\forall i \neq j)$

若丟弃新坐标系中的部分坐标,即将维度降低到 d' < d,则样本点在低维坐标系中的投影是

$$oldsymbol{z}_i = (z_{i1}; z_{i2}; \dots; z_{id'}) \quad z_{ij} = oldsymbol{w}_j^ op oldsymbol{x}_i$$

若基于 \boldsymbol{z}_i 来重构 \boldsymbol{x}_i ,则会得到 $\hat{\boldsymbol{x}}_i = \sum_{j=1}^d z_{ij} \boldsymbol{w}_j$.

PCA - 最近重构性

原样本点 x_i 与基于投影重构的样本点 \hat{x}_i 之间的距离为

$$\sum_{i=1}^{m} \|\hat{\boldsymbol{x}}_{t} - \boldsymbol{x}_{t}\|_{2}^{2} = \sum_{i=1}^{m} \left\| \sum_{j=1}^{d'} z_{ij} \boldsymbol{w}_{j} - \boldsymbol{x}_{i} \right\|_{2}^{2} \qquad (\boldsymbol{z}_{i} = \mathbf{W} \begin{bmatrix} 1 : d' \end{bmatrix}^{\top} \boldsymbol{x}_{i})$$

$$= \sum_{i=1}^{m} \|\mathbf{W} \boldsymbol{z}_{i} - \boldsymbol{x}_{i}\|_{2}^{2} \qquad (\mathbf{W} \triangleq \mathbf{W} \begin{bmatrix} 1 : d' \end{bmatrix} \in \mathbb{R}^{d \times d'})$$

$$= \sum_{i=1}^{m} (\boldsymbol{z}_{i}^{\mathrm{T}} \mathbf{W}^{\mathrm{T}} \mathbf{W} \boldsymbol{z}_{i} - \boldsymbol{z}_{i}^{\mathrm{T}} \mathbf{W}^{\mathrm{T}} \boldsymbol{x}_{i} - \boldsymbol{x}_{i}^{\mathrm{T}} \mathbf{W} \boldsymbol{z}_{i} + \boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{x}_{i})$$

$$= -\sum_{i=1}^{m} \boldsymbol{z}_{i}^{\mathrm{T}} \boldsymbol{z}_{i} + \text{ const} \qquad (\mathbf{W}^{\top} \mathbf{W} = \mathbf{I}_{d' \times d'})$$

$$= -\text{tr} \left(\mathbf{W}^{\mathrm{T}} \left(\sum_{i=1}^{m} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\mathrm{T}}\right) \mathbf{W}\right) + \text{ const}$$

PCA - 最近重构性

原样本点 x_i 与基于投影重构的样本点 \hat{x}_i 之间的距离为

$$\sum_{i=1}^{m} \|\hat{\boldsymbol{x}}_t - \boldsymbol{x}_t\|_2^2 = -\operatorname{tr}\left(\mathbf{W}^{\mathrm{T}}\left(\sum_{i=1}^{m} \boldsymbol{x}_i \boldsymbol{x}_i^{\mathrm{T}}\right) \mathbf{W}\right) + \operatorname{const}$$

于是得到主成分分析的优化目标:

$$\min_{\mathbf{W}} - \operatorname{tr}(\mathbf{W}^{\mathrm{T}}\mathbf{X}\mathbf{X}^{\mathrm{T}}\mathbf{W})$$
s.t.
$$\mathbf{W}^{\mathrm{T}}\mathbf{W} = \mathbf{I}.$$

关键变量: 重构误差

若存在这样的超平面, 直观上我们希望它大概具有这样的性质:

- 最大可分性: 样本点在这个超平面上的投影能尽可能分开
- 最近重构性: 样本点到这个超平面的距离都足够近

由此可得主成分分析的两种等价推导

最大化子空间方差

$$\max_{\mathbf{W}} \operatorname{tr}(\mathbf{W}^{\mathrm{T}}\mathbf{X}\mathbf{X}^{\mathrm{T}}\mathbf{W})$$

s.t.
$$\mathbf{W}^{\mathrm{T}}\mathbf{W} = \mathbf{I}$$
.

最小化重构误差

$$\min_{\mathbf{W}} - \operatorname{tr}(\mathbf{W}^{\mathrm{T}}\mathbf{X}\mathbf{X}^{\mathrm{T}}\mathbf{W})$$
s.t. $\mathbf{W}^{\mathrm{T}}\mathbf{W} = \mathbf{I}$.

降维的子空间维度 d' 的设置:

□用户指定

□ 通过低维空间的"二次训练"进行交叉验证

 $lacksymbol{\square}$ 通过重构误差判断 $\dfrac{\sum_{i=1}^{d'} \lambda_i}{\sum_{i=1}^{d} \lambda_i} \geq t$

协方差矩阵易受到特征尺度影响

通过对数据进行标准化, 使所有特征在同一尺度上

PCA 是最常用的降维方法, 在不同领域有不同的称谓

例如在人脸识别中该技术被称为"特征脸"(eigenface)因为若将前 d' 个特征值对应的特征向量还原为图像,则得到

PCA拓展: Kernelized PCA

通过引入核函数技巧,将PCA的映射函数,从线性拓展到非线性

PCA拓展: Robust PCA

PCA的低秩理解:

$$\min_{\operatorname{rank}(\hat{X})=d'} \|X - \widehat{X}\|_2^2$$

Robust PCA:

$$\min_{\hat{X}} \|X - \hat{X}\|_0 + \operatorname{rank}(\hat{X})$$

$$\triangle$$

$$\min_{\hat{X}} \|X - \hat{X}\|_1 + \|\hat{X}\|_*$$

PCA拓展: Robust PCA

Robust PCA:

$$\min_{\hat{X}} \|X - \hat{X}\|_1 + \|\hat{X}\|_*$$

输入数据 X

低秩 $\|\hat{X}\|_*$

稀疏 $||X - \hat{X}||_1$

PCA & LDA

PCA是无监督学习方法,而LDA是监督学习方法(考虑了标记)

瑞利商 (Rayleigh quotient)

Definition 1 (Rayleigh quotient). Let A be a positive semi-definite matrix in $\mathbb{R}^{d \times d}$. The normalized quadratic form $\frac{\mathbf{x}^{\top} A \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}$ is called a *Rayleigh quotient*.

Definition 2 (Generalized Rayleigh quotient). Let A and B be two positive semi-definite matrices in $\mathbb{R}^{d \times d}$. The normalized quadratic form $\frac{\mathbf{x}^{\top} A \mathbf{x}}{\mathbf{x}^{\top} B \mathbf{x}}$ is called a *generalized Rayleigh quotient*.

Rayleigh quotients have many applications:

• PCA
$$\max_{\mathbf{x} \neq 0} \frac{\mathbf{x}^\top A \mathbf{x}}{\mathbf{x}^\top \mathbf{x}}$$

• LDA
$$\max_{\mathbf{x} \neq 0} \frac{\mathbf{x}^{\top} A \mathbf{x}}{\mathbf{x}^{\top} \mathbf{x}}$$

Theorem 1. Let $A \in \mathbb{R}^{d \times d}$ be a psd matrix.

•
$$\max_{\mathbf{x} \in \mathbb{R}^d, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^\top A \mathbf{x}}{\mathbf{x}^\top \mathbf{x}} = \lambda_{\max}(A).$$

•
$$\min_{\mathbf{x} \in \mathbb{R}^d, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^\top A \mathbf{x}}{\mathbf{x}^\top \mathbf{x}} = \lambda_{\min}(A).$$

前往下一站.....

