

PRUEBAS CARRERA DE RELEVOS

David Gómez Rivas

23 DE ENERO DE 2024

PROGRAMACIÓN DE SERVICIOS Y PROCESOS 2ºDAM Las Naves Salesianos Alcala de Henares

Índice

Explicación de las Clases	2
Testigo	
-	
Atleta	
Equipo	2
Conclusión	2

Explicación de las Clases

Testigo

Actúa como el objeto compartido entre los atletas de un mismo equipo. Aquí está lo que hace, de manera resumida:

Método Sincronizado para Pasar Testigo: Contiene un método sincronizado pasarTestigo() para simular el acto de pasar el testigo entre atletas. Es sincronizado para asegurar que un atleta a la vez tome el testigo.

Atleta

representa a un corredor en la carrera de relevos. Aquí está lo que hace, de manera resumida:

Implementa Runnable: Al implementar la interfaz Runnable, esta clase se puede utilizar para simular la acción de cada atleta corriendo en su turno.

Almacena Referencia al Testigo y Número de Atleta: Cada Atleta tiene una referencia al Testigo y un identificador único.

Método run(): Dentro del método run(), que es el punto de entrada del hilo, el atleta toma el testigo, simula correr y pasa el testigo al siguiente atleta.

Equipo

representa a un equipo en la carrera de relevos. Aquí está lo que hace, de manera resumida:

Extiende de Thread: Al extender de Thread, cada instancia de Equipo se ejecuta en su propio hilo.

Contiene Atletas: Tiene una matriz de objetos Atleta que representan los corredores del equipo.

Método run(): Inicia la secuencia de carrera de los atletas dentro del equipo, pasando el testigo de un atleta a otro.

CarreraDeRelevos

es la clase principal que inicia la simulación. Aquí está lo que hace, de manera resumida:

Crea Instancias de Testigo y Equipos: Inicializa los objetos Testigo para cada equipo y crea instancias de la clase Equipo.

Inicia la Carrera: Pone en marcha los hilos de cada equipo, comenzando así la simulación de la carrera de relevos.

Conclusión

La simulación de la carrera de relevos en Java demuestra el uso de concurrencia, hilos y sincronización para modelar una competición deportiva. Cada clase tiene un papel específico y trabaja en conjunto para simular la carrera de una manera eficiente y coordinada.

Todo funciona bien

```
Atleta 1 del Equipo 4 está corriendo
Atleta 1 del Equipo 3 está corriendo
Atleta 1 del Equipo 2 está corriendo
Atleta 1 del Equipo 1 está corriendo
Atleta 2 del Equipo 4 está corriendo
Atleta 2 del Equipo 3 está corriendo
Atleta 2 del Equipo 2 está corriendo
Atleta 2 del Equipo 1 está corriendo
Atleta 3 del Equipo 3 está corriendo
Atleta 3 del Equipo 4 está corriendo
Atleta 3 del Equipo 2 está corriendo
Atleta 3 del Equipo 1 está corriendo
Atleta 4 del Equipo 3 está corriendo
Equipo 3 ha terminado la carrera
Atleta 4 del Equipo 2 está corriendo
Equipo 2 ha terminado la carrera
Atleta 4 del Equipo 4 está corriendo
Equipo 4 ha terminado la carrera
Atleta 4 del Equipo 1 está corriendo
Equipo 1 ha terminado la carrera
```