Terakreditasi SINTA Peringkat 4

Surat Keputusan Dirjen Penguatan Riset dan Pengembangan Ristek Dikti No. 28/E/KPT/2019 masa berlaku mulai Vol.3 No. 1 tahun 2018 s.d Vol. 7 No. 1 tahun 2022

Terbit online pada laman web jurnal:

http://publishing-widyagama.ac.id/ejournal-v2/index.php/jointecs

JOINTECS

(Journal of Information Technology and Computer Science)

e-ISSN:2541-6448

p-ISSN:2541-3619

Deteksi Penyakit Dan Hama Tanaman Pepaya Menggunakan Metode Forward Chaining dan Best First Search

Wahyuni Eka Sari^{1,2}, Eny Maria¹, Rizki Kurniawan Santoso²

¹Program Studi Teknologi Rekayasa Perangkat Lunak, Politeknik Pertanian Negeri Samarinda

²Program Studi Teknik Rekayasa Komputer, Politeknik Negeri Samarinda

¹wahyunisari52@gmail.com, ²enymaria.siringo2@gmail.com, ³r16615003@gmail.com

Abstract

Papaya is one of the fruits commodity that grow in the plateau and lowlands. It makes papaya vulnerable to pests and diseases that impedes optimal yields. In this study, an expert sistem was build that was able to store a knowledge base for the diagnosis of pests and diseases of papaya plants. A method of information retrieval is needed that the knowledge base becomes dynamic. Forward Chaining is a method of finding knowledge that starts with existing information and combines rules to produce a conclusion. The Best First Search technique is used for fact finding to obtain optimal results. Forward Chaining method that was build in expert sistems allow the sistem to perform the simple searching result on the database facts. The knowledge was obtained from experts. Web-based expert sistem has 6 pest data and 7 disease data, 41 pest and disease symptom data, and also 12 treatment techniques. Fifty data of papaya trees that had been sustained by disease were used in the test. The test results showed a sistem accuracy is 96% compared to experts.

Keywords: papaya; kaltim; forward; chaining; expert.

Abstrak

Pepaya merupakan salah satu buah komoditas yang dapat hidup di dataran tinggi dan dataran rendah. Hal ini menyebabkan papaya mudah diserang hama dan penyakit sehingga menghambat hasil panen yang optimal. Oleh sebab itu diperlukan suatu sistem pakar yang menyimpan basis pengetahuan untuk diagnosis hama dan penyakit tanaman pepaya. Agar basis pengetahuan menjadi dinamis diperlukan suatu metode penelusuran informasi secara tepat. Forward Chaining adalah salah satu metode pencarian metode pencarian pengetahuan yang dimulai dengan informasi yang ada dan penggabungan rule untuk menghasilkan suatu kesimpulan atau tujuan. Kemudian untuk mempermudah pencarian fakta dilakukan Teknik pencarian Best First Search sehingga hasil lebih optimal. Penerapan metode Forward Chaining pada sistem pakar memudahkan sistem untuk melakukan penelusuran fakta pada basis data. Pengetahuan ini diperoleh dari pakar. Pada sistem pakar berbasis web ini terdapat 6 data hama dan 7 data penyakit, 41 data gejala hama dan penyakit, serta 12 cara pengendalian. Data uji yang digunakan pada penelitian ini adalah sebanyak 50 data pohon papaya yang terserang penyakit. Hasil pengujian menunjukkan tingkat akurasi sistem sebesar 96%.

Kata kunci: pepaya; kaltim; forward; chaining; pakar.

© 2020 Jurnal JOINTECS

1. Pendahuluan

Pepaya adalah salah satu komoditas unggul di Kalimantan timur [1]. Pepaya banyak dibudidayakan di Samarinda, Balikpapan, dan Samboja. Pepaya (Carica

pepaya L.) merupakan tanaman yang berasal dari Amerika. Di Indonesia, tanaman pepaya umumnya tumbuh menyebar dari dataran rendah sampai dataran tinggi, yaitu sampai 1.000 m diatas permukaan laut. Secara umum tanaman pepaya dapat tumbuh pada

Diterima Redaksi: 11-07-2020 | Selesai Revisi: 04-08-2020 | Diterbitkan Online: 30-09-2020

berbagai jenis tanah. Namun, kondisi lingkungan yang Chaining untuk sistem pakar deteksi penyakit tanaman berubah-ubah serta kondisi tanah yang kurang baik padi [7]. Terbentuk 13 aturan berdasarkan metode menyebabkan permasalahan pada pertumbuhan tanaman Forward Chaining. dan buah pepaya. Penyakit tanaman merupakan perubahan seluruh atau sebagian organ-organ tanaman Kemudian penelitian lain tentang sistem pakar pada yang menyebabkan terganggunya kegiatan fisiologis tanaman menggunakan metode Forward Chaining sehari-hari [2]. Selain penyakit yang muncul, beberapa diterapkan pada jamur timur [8]. Aplikasi yang hama tanaman juga menyerang pepaya. Hama dihasilkan adalah aplikasi berbasis web. Diagnosis yang merupakan semua binatang yang mengganggu dan dihasilkan meliputi hama dan tanaman yang menyerang merugikan tanaman yang diusahakan manusia.

penanganan penyakit tanaman pepaya. memperoleh Informasi tentang penyakit, gejala dan cara penanggulangan penyakit pada tanaman pepaya Sistem pakar untuk penyakit dan hama tanaman cabai biasanya masyarakat mendapatkannya dari penyuluh menggunakan metode Forward Chaining dan Dempsterpertanian dari dinas terkait. Akan tetapi kegiatan Shafer yang berfungsi memberikan solusi kepada petani tersebut sangat jarang sekali, sehingga para petani untuk menentukan varietas cabai yang unggul [10]. kesulitan mendapatkan informasi tersebut.

Untuk mengatasi pemecahan masalah tersebut, maka berdasarkan fakta-fakta yang ada setelah itu dihitung perlu dibangun sistem pakar untuk mendeteksi penyakit dengan metode Dempster- Shafer. Nilai akurasi yang dan hama tanaman pepaya. Salah satu cakupan *Artificial* dihasilkan sebesar 90%. Intelligence (AI) adalah sistem pakar (Expert Sistem) dalam bidang tersebut.

adalah Metode Forward Chaining. Metode ini sangat lain tentang penerapan metode Forward Chaining pada baik jika bekerja dengan permasalahan yang dimulai penyakit manusia yaitu untuk penyakit Tuberkulosis dengan rekaman informasi awal dan ingin dicapai [13]. Keakuratan sistem adalah 93,33% dari 15 data penyelesaian akhir, karena seluruh proses akan pasien. Terdapat 26 gejala dengan 3 jenis penanganan. dikerjakan secara berurutan maju. Namun metode Selanjutnya pada penyakit syaraf manusia [14] dengan Forward Chaining ini memiliki kekurangan yaitu kurang metode Forward Chaining. Selain penerapan pada kasus efektif dalam hal waktu pencarian. Sehingga untuk tumbuhan dan manusia, metode Forward Chaining dan pencarian jalur akan digunakan Teknik pencarian Depth First Search juga diterapkan untuk diagnosis Heuristic Best First Search yang berfungsi untuk penyakit pada burung Perkutut [15]. Terdapat 13 jenis mengurangi beban komputasi karena hanya solusi yang penyakit burung perkutut dengan 19 gejala. Aplikasi memberikan harapan saja yang diuji dan akan berhenti yang dihasilkan dapat mendiagnosis dengan akurat. apabila solusi sudah mendekati alternatif yang terbaik.

java dengan metode Forward Chaining sebagai mesin para petani untuk melakukan pencegahan inferensi. Penelitian lain menggunakan metode Forward

jamur tiram. Terdapat 16 gejala yang dianalisis pada sistem pakar ini. Kemudian untuk diagnosis tanaman Banyak masyarakat yang kurang paham tentang anggrek [9] menggunakan metode Forward Chaining Untuk dan Certainty Factor.

> Hasil dari metode ini berupa perangkingan. Metode Forward Chaining berfungsi sebagai mesin inferensi

yang diperuntukkan guna membantu masyarakat awam Selain untuk sistem pakar pada penyakit tanaman, dengan berdasarkan pengalaman dari pakar [3]. metode Forward Chaining juga banyak diterapkan pada Implementasi sistem pakar banyak digunakan untuk penyakit yang diderita manusia yaitu untuk deteksi kepentingan komersil [4], dan untuk tanaman pepaya [5] penyakit saluran pernapasan [11]. Pada penelitian ini sistem pakar dipandang sebagai cara terdapat 30 gejala dengan 9 jenis penyakit ISPA. Aturan penyimpanan pengetahuan pakar pada bidang tertentu yang dihasilkan dari metode Forward Chaining yang disimpan dalam program komputer, sehingga sebanyak 9 aturan. Validitas sistem pakar dibandingkan keputusan dapat diberikan dalam melakukan penalaran dengan pengetahuan pakar adalah 94% dari 100 data uji. secara cerdas. Umumnya pengetahuan yang ada diambil Penelitian lain tentang sistem pakar deteksi penyakit dari seorang manusia yang mempunyai keahlian (pakar) jamur pada manusia juga dikembangkan [12]. Penelitian ini menggunakan 20 data uji dengan hasil keakuratan 95%. Sistem pakar yang dihasilkan dari penelitian ini Salah satu metode untuk mengembangkan sistem pakar berbasis android dengan input berupa suara. Penelitian

Berdasarkan permasalahan yang ada, maka pada Penelitian yang membahas tentang penerapan metode penelitian ini dibangun sistem pakar pendeteksi penyakit Forward Chaining cukup banyak. Salah satunya adalah dan hama tanaman pepaya menggunakan metode penelitian yang dilakukan oleh [6] di Indragiri hilir yang Forward Chaining dan Best First Search untuk merupakan kabupaten penghasil kakao. Penyakit pada pencarian jalur terbaik. Hasil dari penelitian ini Kakao menyerang batang, buah dan daun. Pada divisualisasikan dalam aplikasi berbasis web. Petani penelitian ini dibangun aplikasi sistem pakar pendeteksi dapat memilih gejala kemudian mendapatkan hasil penyakit kakao menggunakan Bahasa pemrograman analisa secara langsung. Aplikasi ini adalah solusi bagi

pengobatan akibat serangan hama dan penyakit sehingga mengambil kesimpulan karena terbatas aturan. hasil panen menjadi optimal.

2. Metode Penelitian

Pada metode penelitian dijelaskan tentang teori Forward Chaining dan Best First Search, data hama, data penyakit, data penanganan penyakit dan hama, serta desain sistem.

2.1. Forward Chaining

Metode Forward Chaining adalah metode pencarian atau teknik pelacakan ke depan yang dimulai dengan informasi yang ada dan penggabungan rule untuk menghasilkan suatu kesimpulan atau tujuan. Pelacakan maju ini sangat baik jika bekerja dengan permasalahan yang dimulai dengan rekaman informasi awal dan ingin dicapai penyelesaian akhir, karena seluruh proses akan dikerjakan secara berurutan maju. Berikut adalah diagram Forward Chaining secara umum untuk menghasilkan sebuah goal yang dapat dilihat pada Gambar 1.

Gambar 1. Penerapan Metode Forward Chaining [16]

Forward Chaining berarti menggunakan himpunan aturan kondisi-aksi. Dalam metode ini, data digunakan untuk menentukan aturan mana yang akan dijalankan, kemudian aturan tersebut dijalankan. Mungkin proses menambahkan data ke memori kerja. Proses diulang sampai ditemukan suatu hasil. Metode inferensi runut maju cocok digunakan untuk menangani masalah pengendalian (controlling) dan peramalan (prognosis). Untuk mempermudah pemahaman mengenai metode ini, akan diberikan ilustrasi kasus pembuatan sistem pakar papaya adalah 6 jenis. Hama yang paling sering dengan daftar aturannya sebagai berikut:

Program Jurnal R1: Jika Premis 1 Dan Premis 2 Dan Premis 3 Maka papaya. Konklusi 1 R2: Jika Premis 1 Dan Premis 3 Dan Premis 4 R3: Jika Premis 2 Dan Premis 3 Dan Premis 5 Maka Konklusi 3 R4: Jika Premis 1 Dan Premis 4 Dan Premis 5 Dan Premis 6 Maka Konklusi 4. End

Penelusuran maju pada kasus ini adalah untuk mengetahui apakah suatu fakta yang dialami oleh pengguna itu termasuk konklusi 1, konklusi 2, konklusi 3, atau konklusi 4 atau bahkan bukan salah satu dari konklusi tersebut, yang artinya sistem belum mampu

Seandainya user memilih premis 1 dan premis 6, maka sistem akan mengarah pada aturan R4 dengan konklusinya adalah konklusi 4, tetapi karena aturan tersebut premisnya adalah premis 1, premis 4, premis 5, dan premis 6, maka premis-premis yang dipilih oleh user tidak cukup untuk mengambil kesimpulan konklusi 4 sebagai konklusi terpilih [16].

2.2. Best First Search

Best First Search adalah penelusuran yang menggunakan pengetahuan akan suatu masalah untuk melakukan panduan pencarian ke arah node tempat di mana solusi berada. Pencarian jenis ini dikenal juga sebagai heuristik. Pendekatan yang dilakukan adalah mencari solusi yang terbaik berdasarkan pengetahuan yang di miliki sehingga penelusuran dapat ditentukan harus bagaimana menggunakan proses terbaik untuk mencari solusi. Keuntungan jenis penelusuran ini adalah mengurangi beban komputasi karena hanya solusi yang memberikan harapan saja yang diuji dan akan berhenti apabila solusi sudah mendekati alternatif yang terbaik

2.3. Hama Penyakit dan Cara Pengendalian

Pada penelitian ini terdapat 6 jenis hama dan 7 jenis penyakit pada tanaman papaya. Sedangkan untuk Teknik pengendalian sejumlah 12 alternatif. Berikut pada Tabel 1 daftar hama papaya.

Tabel 1. Data Hama Pepaya

Kode	Hama
P1	Tungau (Tycleus linarocatus)
P2	Kutu putih (Paracoccus marginatus)
P3	Lalat buah (Bactrocera pepayae)
P4	Thrips
P5	Bekicot (Achatina fulica)
P6	Burung dan Tupai (Callosciurus notatus)

Pada Tabel 1 data hama yang menyerang tanaman menyerang tanaman papaya di Samarinda adalah kutu putih dan bekicot. Jenis papaya yang digunakan sebagai obyek pada penelitian ini adalah semua jenis tanaman

Tabel 2. Data Penyakit Pepaya

Kode	Penyakit
P7	Busuk pangkal batang (Phytophthora palmivora)
P8	Bercak Daun Helminthosporium (Helminthosporium
	biseptatum)
P9	Layu fusarium (fusarium oxysporum sinonim F.
	angustum dan F. aurantiacum)
P10	Layu rhizoctonia (Rhizocnia solani)
P11	Busuk Buah Fusarium (fusarium sporotrichoides)
P12	Antraknosa (Colletotrichum gloeosporioides)
P13	Bercak Daun (Corynespora (Corynespora cassiicola)

Pada Tabel 2 data penyakit pepaya sebanyak 7 penyakit. Berdasarkan Tabel 2, penyakit yang paling sering ditemui menyerang tanaman papaya di kota Samarinda adalah Busuk pangkal batang dan Bercak daun. Namun untuk kasus serangan hama dan penyakit dapat berubahubah sesuai dengan kondisi cuaca. Dari Tabel 1 dan 2, total serangan hama dan tanaman adalah 13 jenis.

Tabel 3. Daftar Gejala

Kode	Nama Gejala		
G1	Daun terdapat bercak kekuningan		
G1	Daun terdapat bercak kekuningan		
G2	Daun bagian bawah terjadi kerusakan jaringan mesofil		
G3	Daun bagian atas bergelombang, bercak-bercak klorosis		
G4	Daun tersisa pada bagian puncak		
G5	Bercak bagian luar berwarna kuning seperti matang		
G6	Daun muncul garis coklat sejajar dengan tulang daun dari		
	ujung		
G7	Daun menguning kemudian berubah coklat, menggulung		
	lalu mongering		
G8	Daun menguning dan kering		
G9	Daun bercak berwarna coklat muda dengan pinggiran		
	bercak berwarna kuning		
G10	Daun bagian bawah terdapat bercak bulat berwarna coklat		
	muda, mengering dan berlubang		
G11	Daun bagian tulang berwarna hijau tetapi daging daun		
	menguning		
G12	Daun kaku dan melengkung keluar		
G13	Tanaman layu		
G14	Daun bercak abu-abu, mengering, dan berlubang		
G15	Tangkai daun dan buah berubah warna menjadi seperti		
	perunggu		
G16	Bercak pada bagian tengah berwarna coklat gelap		
	dikelilingi lingkaran coklat kebasahan		
G17	Batang menjadi kusam, muncul bercak berwarna coklat		
G18	Batang bagian kulit menjadi kering dan mengelupas		
G19	Batang bagian pangkal seringkali busuk, keropos dan		
	pohon roboh		
G20	Buah terdapat bercak besar kebasahan		
G21	Buah busuk, ketika dibelah terdapat larva berwarna putih		
	keruh		
G22	Buah tampak titik-titik kecil yang berkembang menjadi		
	alur berwarna putih perak		
G23	Buah terlihat kusam		
G24	Buah berlubang dibagian ujung buah		
G25	Buah terdapat bercak coklat kehitaman kering, timbul,		
	dan kasar jika diraba		
G26	Getah mengering dan meninggalkan bekas lubang-lubang		
	kecil berwarna hitam atau coklat gelap		
G27	Buah terdapat luka-luka kecil dan mengeluarkan getah		
G28	Buah timbul bercak kecil, bulat, coklat kemerahan dan		
J - 0	kebasahan		
G29	Buah terdapat bercak berwarna coklat muda dengan pusat		
J-2	berwarna abu - abu, Bercak cekung membusuk dan		
	berwarna hitam		
G30	Buah busuk mengeluarkan aroma menyengat		
G31	Sasaran utama adalah Daun dan buah		
G32	Sasaran utama adalah buah berwarna kuning/mengkal dan		
352	matang dipohon		
G33	Sasaran utama adalah tanaman yang ditanam dekat		
355	dengan sumber air		
G34	Sasaran utama adalah buah matang dipohon		
G35	Sasaran utama adalah pepaya berbatang tinggi		
G36	Serangan tingkat lanjut, daun cepat mengering dan gugur		
G37	Serangan tingkat lanjut, daun renjadi hitam akibat jamur		
U3/	jelaga		
G38	Serangan tingkat lanjut, daun belang-belang dan tanaman		
030	terhambat		
G39	Serangan tingkat lanjut, pangkal batang membusuk dan		
UJJ	berangan ungkat lanjut, pangkat batang membusuk dan		

tanaman mati

Kode	Nama Gejala
G40	Kutu berwarna kuning ditutupi lilin putih
G41	Bekicot menyerang putik buah atau bunga, dan bekicot
	berada dipucuk tanaman

Pada Tabel 3, dipaparkan 41 gejala untuk semua serangan hama dan penyakit. Total gejala ini terdapat gejala umum yang dapat diderita pada beberapa jenis penyakit. Selain itu, terdapat gejala khusus yang hanya terjadi pada kasus penyakit tertentu.

Tabel 4. Teknik Penanganan

	<u> </u>
Kode	Jenis Pengendalian
A1	Tambahkan tanaman lain yang menjadi tempat hidup hama ini, seperti singkong, cabai, buah naga. Penggunaan insektisida nabati berbahan akar tuba, daun sirsak, mimba & sereh. Penggunaan akarisida atau
	insektisida pada bagian batang dan daun
A2	Buah terserang segera dimusnahkan, saat panen jangan
	disisakan buah yang mulai matang, pengasapan disekitar dan tengah kebun pagi dan sore, pemasangan
A3	perangkap lalat buah Bersihkan kebun dari gulma, gunakan umpan beracun seperti pepaya muda cincang dicampur insektisida,
	pemungutan bekicot yang ditemukan
A4	Bersihkan tanaman terserang, penyemprotan dengan air sabun, penyemprotan dengan insektisida, gunakan
A5	agens hayati Drainase kebun yang baik, bersihkan tanaman terserang hingga akar, bersihkan buah terserang, bila terserang seluruh kebun rotasi tanaman dengan tanaman yang tidak memiliki riwayat penyakit ini, penggunaan Trichompos sebagai media semi maupun diberikan
A6	pada lubang tanam Bersihkan tanaman terserang hingga akar, bersihkan buah terserang, perbaikan drainase kebun, penggunaan trichompos sebagai media persemaian maupun diberikan pada lubang tanam dan pupuk susulan,
A7	pemberian fungisida yang efektif Sanitasi lingkungan untuk mengurangi gulma yang merangkap sebagai inang alternatif, terutama gulma yang mempunyai bunga, Pemberian mulsa untuk memutus siklus hidup hama thrips, Pemakaian insektisida, Pemanfaatan predator kelompok thrips seperti Leptothrips mali (Franklinothrips orizabenzis, Scolothrips sexmaculatus, Aeolothrips fasciatus dan A.
	kuwanaii). Pemanfaatan parasit larva kelompok lebah seperti Ceranisus menes, Thripobius semiluters.
A8	Pemasangan perangkap beracun, memburu, membungkus buah, clan khusus burung dapat dikendalikan dengan cara mengusir atau menakutnakutinya dengan bunyi bunyian.
A9	Pemeliharaan tanaman yang baik, aplikasi fungisida efektif apabila serangan hebat.
A10	Penyemprotan fungisida, Perbaikan irigasi
A11	Buah-buah yang sakit dipetik lalu dimusnahkan,
	Pembungkusan buah dengan kertas saat panen untuk menghindari luka pada buah, Perendaman buah ke air panas yang bersuhu 47°C selama 20 menit untuk mencegah pembusukan, Penyimpanan buah pada suhu rendah 10°C
A12	Hindari terjadinya pelukaan pada buah sejak masih muda sampai saat setelah panen, Memusnahkan daun dan buah yang bergejala penyakit, Jarak tanam tidak terlalu rapat (minimal 2-3 m x 3 m), Hindari tumpang sari dengan tanaman inang alternatif penyakit antraknosa

Pada Tabel 4 terdapat 12 cara penanganan dari serangan hama dan penyakit tanaman papaya. Terdapat teknik

dan penyakit. Namun, ada teknik penanganan yang keakuratan. Hal ini berfungsi untuk mengetahui tingkat khusus hanya untuk hama dan penyakit tertentu.

2.4. Desain Sistem

Desain sistem pakar ini menggunakan physical data akurasi = model untuk pemetaan data. Aplikasi ini dibangun menggunakan basis data MySQL dan berbasis web. Berikut ini pada Gambar 2 dijelaskan physical data model yang terbentuk pada sistem ini.

Gambar 2. Physical Data Model pada Sistem Pakar

Pada Gambar 2 proses physical data model terdapat 6 Tabel, yaitu Tabel user, pengendalian, gejala, penyakit, gejala_penyakit, dan analisa. Tabel yang tersedia dalam physical data model nantinya akan menjadi Tabel pada database, sehingga bias dikatakan bahwa phisycal data model merupakan perwujudan dari desain basis data itu sendiri.

penanganan yang dapat diterapkan pada beberapa hama Kemudian untuk evaluasi sistem menggunakan nilai galat atau error dan keberhasilan sistem menampilkan output. Perhitungan nilai keakuratan sistem dijelaskan pada rumus 1.

$$akurasi = \frac{jumlah hasil sesuai}{jumlah kasus} x 100\%$$
 (1)

Nilai keakuratan diperoleh dari jumlah keluaran sistem yang sesuai dengan pengetahuan pakar dibagi dengan total kasus yang diujicoba.

3. Hasil dan Pembahasan

3.1. Data Uii

Pakar pada penelitian ini Pegawai di POPT Madya pada UPTD Proteksi Tanaman Pangan dan Hortikultura Kalimantan Timur. Kemudian data uji diperoleh dari kondisi tanaman pepaya di Kota Samarinda. Sebanyak 50 pohon pepaya dilakukan uji coba pencocokan dengan sistem dan pengetahuan pakar. Berikut ini pohon keputusan dari penerapan metode Forward Chaining dan best first search pada Gambar 3. Simbol kotak kuning merupakan penanganan, sedangkan simbol lingkaran putih merupakan gejala penyakit atau hama.

Pada penyakit tanaman pepaya, terdapat banyak gejala khusus hanya terjadi pada suatu kasus tertentu. Dengan teknik penelusuran best-first search, penelusuran dilakukan dilakukan secara mendalam dari simpul atas kesimpul dibawahnya secara terurut.

Berikut ini Gambar 3 merupakan pohon keputusan yang terbentuk dari jenis hama, penyakit, dan gejala serta Teknik penanganan yang terbentuk. Basis pengetahuan dari penyakit tanaman pepaya menggunakan metode Forward Chaining dan Best First Search pada Tabel 5. Terdapat 13 aturan dari 13 penyakit tanaman papaya.

Gambar 3. Pohon Keputusan

Tabel 5. Basis Pengetahuan

Kode Penyakit	Kode Gejala	Pengendalian
P1	G36, G1, G2, G15	A1
P2	G36, G31, G37, G40	A4
Р3	G20, G21, G32	A2
P4	G3, G22, G23, G38	A7
P5	G30, G33	A3
P6	G24, G34, G35	A8
P7	G4, G25, G39	A5
P8	G9, G11, G12, G14	A9
P9	G13, G6, G7	A6
P10	G13, G8, G17, G18, G19	A10
P11	G26, G27	A11
P12	G9, G5, G16, G28	A12
P13	G10, G29, G30	A9

Berikut ini langkah-langkah untuk memproses aturan pada proses Forward Chaining untuk serangan hama untuk penyakit yang disebabkan oleh hama Thrips. Lalat buah (Bactrocera pepayae) dijelaskan pada Tabel Sehingga kecenderungan tanaman pepaya mengalami 6. Pada Tabel 6, terdapat 3 (tiga) aturan yang tersimpan serangan Thrips. dalam basis pengetahuan. Dengan fakta awal yang diberikan hanya G20 pada R-1.

Tabel 6. Aturan Lalat Buah (Bactrocera pepayae)

No.	Aturan
R-1	IF G20 then G21
R-2	IF G21 then G32
R-3	IF G32 then P3

Kemudian berlanjut ke R-2 dengan fakta baru yakni G21 dan pada R-3 menemukan kesimpulan akhir. Sedangkan alur inferensinya terlihat dalam Gambar 4. Dari Gambar 4 dapat dijelaskan bahwa G320, G21, dan G32 menyatakan gejala serangan hama sedangkan P3 menyatakan jenis hama.

Gambar 4. Aturan Lalat Buah

Alur inferensi dengan Metode Forward Chaining pada gambar tersebut dimulai dari kiri terlebih dahulu. Gejala penyakit diuji satu per satu sampai mencapai gejala yang spesifik. Sehingga memperoleh kesimpulan akhir berupa jenis hama P3 Lalat buah (Bactrocera pepayae) dan memiliki rekomendasi pengendalian yakni A2.

ditemukan pada satu tanaman, atau ada gejala lain yang yang ditunjukkan pada Gambar 6.

mengindikasikan bahwa tanaman pepaya mengalami serangan tidak hanya satu jenis hama maupun satu jenis penyakit. Sehingga untuk gejala yang umum diberi presentase 10%, pada gejala khusus diberi bobot 25%, kemudian presentase diatas 50% menyatakan bahwa penyakit tersebut terdeteksi.

Selanjutnya terdapat suatu kasus dimana pada satu pohon papaya ditemukan indikasi serangan tidak hanya satu penyakit, maka hasil pembobotan diakumulasikan. Kemudian jika nilai akhir dari penyakit yang diderita kurang dari 50% berarti keputusan diragukan. Berikut ini contoh kasus dengan hasil keputusan Thrips 100% pada Tabel 7.

Tabel 7. Bobot Setiap Gejala pada Hama Thrips

Gejala	Aksi	Bobot	Keterangan
G03	Ya	25	G22
G22	Ya	25	G23
G23	Ya	25	G38
G38	Ya	25	Thrips (P4)

Pada Tabel 7 keempat gejala memenuhi bobot 100%

3.2. Tampilan Sistem

Tampilan sistem pakar deteksi penyakit papaya berbasis web dibuat dengan desain yang sederhana dan minimalis agar mempermudah pengguna dalam mengoperasikan sistem. Implementasi antarmuka pada halaman utama menggambarkan tampilan selamat datang. menampilkan beberapa menu form dan lihat data. Berikut tampilannya seperti yang ditunjukkan pada Gambar 5.

Gambar 5. Tampilan Halaman Utama

Implementasi antarmuka pada proses Kemudian langkah selanjutnya diperlukan pengetahuan menampilkan beberapa penyakit yang berada baris dari pakar untuk memberikan nilai bobot pada setiap paling atas dalam tree, dan telah terhubung untuk gejala. Hal ini bertujuan untuk mendeteksi gejala sesuai diagnosa proses ke 2 untuk menampilkan turunan dari dengan fakta. Pada beberapa kasus, tidak semua gejala gejala yang telah di klik. Berikut tampilannya seperti

Gambar 6. Tampilan Proses Diagnosa

Pada Gambar 6, setelah melalui proses memilih gejala, kemudian user akan menjumpai tahap diagnosa, sistem pakar akan memberikan jawaban atas gejala — gejala yang di alami tanaman pepaya user. Jawaban dalam bentuk persen memudahkan user mengetahui seberapa parah penyakit yang di alami tanaman pepaya miliknya. Jawaban juga dapat lebih dari 1, tergantung pada gejala penyakit yang dialami. Berikut tampilan hasil analisa dapat dilihat pada Gambar 7.

Gambar 7. Tampilan Hasil Analisa

Pada Gambar 7, hasil analisa menunjukkan bahwa sebuah pohon papaya mengalami serangan hama dan penyakit. Nilai tertinggi adalah serangan hama Thrips 100%, kemudian penyakit antraknosa dan busuk pangkal batang.

Gambar 8. Tampilan Informasi Penyakit/Hama

Selanjutnya user dapat menekan tombol informasi untuk mendapatkan informasi yang lebih lanjut mengenai penyakit yang divoniskan kepada tanaman pepaya milik petani. Terdapat nama latin, definisi, cara penanggulangan dan pencegahan penyakit tersebut. Dilengkapi gambar yang dapat menambah penjelasan dari keterangan yang sebelumnya. Berikut tampilan informasi mengenai penyakit yang dapat dilihat pada Gambar 8.

3.3. Pengujian Sistem

Pengujian dilakukan untuk mengetahui sejauh mana program yang dibuat sudah benar-benar sesuai dengan kebutuhan dalam proses diagnosa penyakit tanaman pepaya dengan Metode *Forward Chaining*. Hasil pengujiannya ditunjukkan pada Tabel 8

Tabel 8. Pengujian Aplikasi

Form	Masukan	Pengamatan	Hasil	
Sistem Pakar analisa 1	Memilih gejala	Gejala dapat dipilih dan dapat diproses	Berhasil	
	Menekan tombol analisa selanjutnya	Tombol analisa selanjutnya dapat ditekan, dapat memproses gejala yang dipilih menampilkan gejala turunan dari gejala yang telah dipilih pada halaman analisa ke	Berhasil	
Sistem Pakar analisa 2	Memilih gejala	Gejala dapat dipilih dan dapat diproses Tombol <i>analisa</i>	Berhasil	
	Menekan tombol analisa selanjutnya	selanjutnya dapat ditekan, dapat memproses gejala yang dipilih menampilkan gejala turunan dari gejala yang telah dipilih pada halaman analisa ke	Berhasil	
Sistem	Memilih gejala	Gejala dapat dipilih dan dapat diproses	Berhasil	
Pakar analisa 3	Menekan tombol analisa selanjutnya	Hasil dapat ditampilkan sesuai dengan gejala yang dipilih pada halaman hasil analisa	Berhasil	
Hasil analisa	Menekan tombol <i>Informasi</i>	Dapat menampilkan informasi mengenai penyakit atau hama sesuai gejala pada halaman penjelasan penyakit	Berhasil	

Berdasarkan Tabel 8, pengujian sistem sebanyak 7 skenario berhasil. Pengamatan dilakukan pada waktu yang bersamaan. Hal ini menunjukkan bahwa sistem tidak lagi menunjukkan galat ketika memproses data.

3.4. Pembahasan

Pada penelitian ini dilakukan pengujian dengan data 50 tanaman pepaya yang terserang penyakit. Sejumlah 50 *sample* pohon pepaya yang berasal dari kebun pepaya di

petani di kota Samarinda. Sample tersebut dikumpulkan berpindah dari satu node ke node lain. Hal ini dapat pada waktu berbeda, antara bulan November 2019 – Juni terjadi karena banyaknya percabangan dari satu gejala. 2020.

Tabel 9. Diagnosis Sistem dan Diagnosis Pakar

Tabel 9. Diagnosis Sistem dan Diagnosis Pakar				
No	Gejala	Diagnose sistem	Diagnose pakar	Hasil
1	Daun cepat mengering	Kutu	Kutu	Ses
	dan gugur,	putih (Paracoc	putih (<i>Paracocc</i>	uai
	serangan di Daun dan buah,	cus	us	
	daun menjadi hitam	marginat	marginatu	
	akibat jamur jelaga, Kutu	us), 85%	s)	
	berwarna kuning ditutupi			
2	lilin putih Buah berlubang dibagian	Burung	Burung	Ses
_	ujung buah,	dan	dan Tupai	uai
	buah matang dipohon,	Tupai	(Callosciu	
	pepaya berbatang tinggi,	(Callosci	rus	
		urus	notatus)	
		notatus), 100%		
3	Daun tersisa pada bagian	Busuk	Busuk	Ses
	puncak,	pangkal	pangkal	uai
	Buah terdapat bercak	batang	batang	
	coklat kehitaman kering, timbul, dan kasar jika	(Phytopht hora	(Phytopht hora	
	diraba,	palmivor	palmivora	
	pangkal batang	a), 100%)	
	membusuk dan tanaman			
48	mati Getah mengering dan			Ses
	meninggalkan bekas	Busuk	Busuk	uai
	lubang-lubang kecil	Buah Fusarium	Buah	
	berwarna hitam atau	(fusarium	Fusarium	
	coklat gelap, Buah terdapat luka-luka	sporotric	(fusarium sporotrich	
	kecil dan mengeluarkan	hoides),	oides)	
	getah	85%	,	
49	Daun bercak berwarna	Antrakno	Antraknos	Ses
	coklat muda dengan pinggiran bercak	sa (Colletotr	a (Colletotri	uai
	berwarna kuning,	ichum	chum	
	Bercak bagian luar	gloeospo	gloeospor	
	berwarna kuning seperti	rioides),	ioides)	
	matang, Bercak pada bagian tengah berwarna	75%		
	coklat gelap dikelilingi			
	lingkaran coklat			
	kebasahan,			
	Buah timbul bercak kecil, bulat, coklat kemerahan			
	dan kebasahan			
50	daun cepat mengering	Tungau	Kutu	Tida
	dan gugur dan bercak	(Tycleus	putih	k
	kekuningan, kerusakan jaringan mesofil di daun	linarocat us)	(Paracocc us	sesu ai
	bagian bawah, Tangkai	us)	us marginatu	aı
	daun dan buah berubah		s)	
	warna menjadi seperti			
	perunggu			

Pada Tabel 9 ditampilkan 5 hasil uji dari 50 data. Berdasarkan hasil pengujian pada Tabel 9 dari 50 data diperoleh keakuratan sistem sebesar 96%. Terdapat 2 data uji yang tidak sesuai dengan pengetahuan pakar. Data uji yang tidak sesuai dengan data pakar dapat disebabkan oleh algoritma alur pencarian pada metode

lingkungan kampus Politani Samarinda dan kebun milik forward chaining dan best first search kurang tepat

Berikut ini pada Gambar 9 merupakan salah satu data uji untuk kasus serangan hama lalat buah. Serangan hama tidak menentu pada suatu waktu. Pada akhir tahun 2019, sebagian besar data uji adalah tanaman yang terserang hama kutu putih. Sedangkan pada pertengahan tahun 2020 hama yang sering menyerang adalah lalat buah.

Gambar 9. Pohon Pepaya Terserang Lalat Buah

4. Kesimpulan

Penerapan penelusuran maju (Forward Chaining) dan Best First Search pada kasus serangan hama dan penyakit tanaman pepaya cukup mudah diterapkan. Hal ini disebabkan oleh beberapa gejala khusus yang hanya mewakili satu serangan penyakit maupun hama tertentu. Keakuratan hasil yang diperoleh antara sistem pakar dengan pengetahuan pakar memberikan hasil yang cukup baik yaitu 96% dari 50 data uji. Hal ini menunjukkan bahwa terdapat dua data yang tidak sesuai dengan pengetahuan pakar dan 48 data telah sesuai dengan pakar. Metode ini mudah dan ringan ketika diterapkan pada sistem, sehingga memberikan respon output yang cepat. Penelitian ini dapat dikembangkan dengan menerapkan metode penelurusan lain sehingga memberikan hasil yang lebih akurat.

Ucapan Terimakasih

Terima kasih kepada Kemenristek-BRIN atas Penelitian Dosen Pemula Tahun 2019 dengan nomor kontrak 008/PL.21.C/PL/2020.

Daftar Pustaka

[1] I. N. Dewi, A. Zaini, and N. Imang, "Pengaruh Faktor Sosial Ekonomi Dan Efisiensi Pemanfaatan Faktor Produksi Terhadap Produksi Usahatani Pepaya Callina (Carica papaya L.) di Kota Balikpapan," J. Pertan. Terpadu, vol. 7, no. 2, pp. 236-250, 2019, doi: 10.36084/jpt..v7i2.203.

- [2] A. Pramurjadi, I. W. Arsanti, D. Gartina, and K. Budiarto, "Sistem Pakar Identifikasi Gangguan Organisme Pengganggu Tanaman Dan Defisiensi Hara Tanaman Hias Krisan," *Inform.* [10] *Pertan.*, vol. 26, no. 2, p. 67, 2017, doi: 10.21082/ip.v26n2.2017.p67-90.
- [3] T. Paul Manason Sahala Simanjuntak, Edy Santoso, "Sistem Pakar Diagnosa Penyakit Gigi dan Mulut Menggunakan Metode Naive Bayes [11] Weighted Product," *J. Pengemb. Teknol. Inf. dan Ilmu Komput.*, vol. 2, no. 12, pp. 6952–6958, 2018.
- [4] C. Fiarni, A. S. Gunawan, Ricky, H. Maharani, and H. Kurniawan, "Automated Scheduling System for Thesis and Project Presentation [12] Using Forward Chaining Method with Dynamic Allocation Resources," *Procedia Comput. Sci.*, vol. 72, pp. 209–216, 2015, doi: 10.1016/j.procs.2015.12.133.
- [5] M. T. Habib, A. Majumder, A. Z. M. Jakaria, M. Akter, M. S. Uddin, and F. Ahmed, "Machine [13] vision based papaya disease recognition," *J. King Saud Univ. Comput. Inf. Sci.*, vol. 32, no. 3, pp. 300–309, 2020, doi: 10.1016/j.jksuci.2018.06.006.
- [6] S. Hawa, Abdullah, and Usman, "Sistem Pakar Diagnosa Penyakit Pada Tanaman Kakao [14] Menggunakan Metode Forward Chaining (Studi Kasus Dinas Perkebunan Indragiri Hilir)," *Sistemasi*, vol. 4, no. 2, pp. 1–8, 2015.
- [7] Y. Nur, J. T. Elektro, F. Teknik, and U. N. Semarang, "Perancangan Sistem Pakar Penyuluh Diagnosa Hama Padi dengan Metode [15] Forward Chaining," *J. Tek. Elektro*, vol. 7, no. 1, pp. 30–36, 2015.
- [8] A. Baianis, L. S. Nusantara, and F. A. Suciono, "Sistem Pakar Diagnosa Hama dan Penyakit [16] pada Jamur Tiram Menggunakan Metode Forward Chaining," *JOINTECS (Journal Inf. Technol. Comput. Sci.*, vol. 2, no. 1, 2017, doi: 10.31328/jointecs.v2i1.414.
- [9] D. T. Yuwono, A. Fadlil, and S. Sunardi, "Penerapan Metode Forward Chaining Dan Certainty Factor Pada Sistem Pakar Diagnosa

- Hama Anggrek Coelogyne Pandurata," *Klik Kumpul. J. Ilmu Komput.*, vol. 4, no. 2, p. 136, 2017, doi: 10.20527/klik.v4i2.89.
- E. H. Wijaya and N. Hidayat, "Diagnosis Penyakit Cabai Dengan Menggunakan Metode Forward Chaining Dempster-Shafer," *J. Pengemb. Teknol. Inf. dan Ilmu Komput.*, vol. 2, no. 12, pp. 7202–7208, 2018.
- T. F. Ramadhani, I. Fitri, and E. T. E. Handayani, "Sistem Pakar Diagnosa Penyakit ISPA Berbasis Web Dengan Metode Forward Chaining," *JOINTECS (Journal Inf. Technol. Comput. Sci.*, vol. 5, no. 2, p. 81, 2020, doi: 10.31328/jointecs.v5i2.1243.
- F. S. Pranata, Jufriadif Na'am, and Sumijan, "Sistem Pakar Diagnosis Penyakit Jamur pada Manusia Menggunakan Input Suara Berbasis Android," *J. RESTI (Rekayasa Sist. dan Teknol. Informasi)*, vol. 3, no. 3, pp. 435–442, 2019, doi: 10.29207/resti.v3i3.1187.
- W. Supartini and H. Hindarto, "Sistem Pakar Berbasis Web Dengan Metode Forward Chaining Dalam Mendiagnosa Dini Penyakit Tuberkulosis Di Jawa Timur," *Kinetik*, vol. 1, no. 3, p. 147, 2016, doi: 10.22219/kinetik.v1i3.123.'
- D. A. O. Turang, "Aplikasi Sistem Pakar Berbasis Web Untuk Mendiagnosa Penyakit Syaraf Pusat Dengan Metode Forward Chaining," *Klik Kumpul. J. Ilmu Komput.*, vol. 5, no. 1, p. 87, 2018, doi: 10.20527/klik.v5i1.133.
- T. Hastono, S. Oyama, and S. Informatika, "Identifikasi Penyakit Burung Perkutut," *Kumpul. J. Ilmu Komput.*, vol. 07, no. 1, pp. 23–34, 2020.
- W. Verina, "Penerapan Metode Forward Chaining untuk Mendeteksi Penyakit THT," *J. Tek. Inform. Dan Sist. Inf.*, vol. 1, no. 2, pp. 123–138, 2015.

