

General information

Designation

Quercus rubra (L)

Typical uses

Lumber; sleepers; mine timbers; fenceposts; veneer; pulpwood; fuelwood; flooring; furniture; general millwork; boxes; pallets & crates; agricultural implements; caskets; woodenware; handles; railroad cars;

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O					
Material family	Natural				
Base material	Wood (hardwood)				
Renewable content	100		%		
Composition detail (polymers and natural	materials)				
Wood	100			%	
Price					
Price	* 2.01	-	2.68	USD/kg	
Physical properties					
Density	640	-	780	kg/m^3	
Mechanical properties					
Young's modulus	* 12.4	-	15.2	GPa	
Yield strength (elastic limit)	* 46.5	-	56.8	MPa	
Tensile strength	* 82.6	-	101	MPa	
Elongation	* 1.79	-	2.19	% strain	
Compressive strength	41.9	-	51.3	MPa	
Flexural modulus	11.3	-	13.8	GPa	
Flexural strength (modulus of rupture)	88.7	-	109	MPa	
Shear modulus	* 0.92	-	1.12	GPa	
Shear strength	11	-	13.5	MPa	
Bulk modulus	* 1.08	-	1.2	GPa	
Poisson's ratio	* 0.35	-	0.4		
Shape factor	5.3				
Hardness - Vickers	* 6.78	-	8.28	HV	
Hardness - Brinell	* 45.4	-	55.4	MPa	
Hardness - Janka	* 6.78	-	8.28	kN	
Fatigue strength at 10^7 cycles	* 26.6	-	32.5	MPa	

Oak (quercus rubra) (I)

Mechanical loss coefficient (tan delta)	* 0.0067	-	0.0082	
Differential shrinkage (radial)	0.14	-	0.18	%
Differential shrinkage (tangential)	0.28	-	0.34	%
Radial shrinkage (green to oven-dry)	3.6	-	4.4	%
Tangential shrinkage (green to oven-dry)	7.7	-	9.5	%
Volumetric shrinkage (green to oven-dry)	12.3	-	15.1	%
Work to maximum strength	90	-	110	kJ/m^3

Impact & fracture properties

Fracture toughness	* 5.8	- 7.1	MPa.m^0.5
--------------------	-------	-------	-----------

Thermal properties

Glass temperature	77	-	102	°C
Maximum service temperature	120	-	140	°C
Minimum service temperature	* -73	-	-23	°C
Thermal conductivity	* 0.31	-	0.37	W/m.°C
Specific heat capacity	1.66e3	-	1.71e3	J/kg.°C
Thermal expansion coefficient	* 2	-	11	μstrain/°C

Electrical properties

Electrical resistivity	1.27e14	-	1.55e14	µohm.cm
Dielectric constant (relative permittivity)	* 6.95	-	8.5	
Dissipation factor (dielectric loss tangent)	* 0.082	-	0.1	
Dielectric strength (dielectric breakdown)	* 0.4	-	0.6	MV/m

Magnetic properties

Optical properties

Transparency	Opaque

Durability

Water (fresh)	Limited use
Water (salt)	Limited use
Weak acids	Limited use
Strong acids	Unacceptable
Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good

Flammability

Shape

BEDOFICK			
	Highly fla	ammable	
Primary production energy, CO2 and water			
Embodied energy, primary production	11.6	- 12.8	MJ/kg
Sources 0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Ham MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)	mond and Jones, 2008);	11.6 MJ/kg (Hubb	ard and Bowe, 2010); 23.7
CO2 footprint, primary production	0.574	- 0.633	kg/kg
Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/	kg (Hammond and Jones,	2008); 0.909 kg/	kg (Hubbard and Bowe,
Water usage	* 665	- 735	l/kg
Processing energy, CO2 footprint & water			
Coarse machining energy (per unit wt removed)	* 1.1	- 1.21	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.0824	- 0.091	kg/kg
Fine machining energy (per unit wt removed)	* 6.71	- 7.41	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.503	- 0.556	kg/kg
Grinding energy (per unit wt removed)	* 12.9	- 14.3	MJ/kg
Grinding CO2 (per unit wt removed)	* 0.971	- 1.07	kg/kg
Recycling and end of life			
Recycle	×		
Recycle fraction in current supply	8.55	- 9.45	%
Downcycle	✓		
Combust for energy recovery	√		
Heat of combustion (net)	* 19.8	- 21.3	MJ/kg
Combustion CO2	* 1.69	- 1.78	kg/kg
Landfill	√		
Biodegrade	√		
Notes Warning			
All woods have properties which show variation; they de	pend principally on g	rowth conditio	ns and moisture conter
Links			
ProcessUniverse			
Reference			