Conformal Mapping

Definition

To say that a curve C represented by z(t) = x(t) + iy(t) is continuously differentiable in an interval [a, b] means that z'(t) exists and is continuous $\forall t \in [a, b]$.

To say that C is a *regular curve* means that:

- 1). *C* is continuously differentiable
- 2). $z'(t) \neq 0$, except at perhaps the endpoints

Theorem

Let f(z) = u + iv be analytic in a domain D. The Jacobian of f(z) is given by:

$$J = \left| f'(z) \right|^2$$

Proof

From
$$J = \frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} = u_x v_y - v_x u_y = u_x u_x = v_x (-v_x) = u_x^2 + v_x^2$$

$$f'(z) = f_x = u_x + i v_x$$

$$|f'(z)| = \sqrt{u_x^2 + v_x^2}$$

$$|f'(z)|^2 = u_x^2 + v_x^2$$

$$J = |f'(z)|^2$$

Definition

To say that the mapping u = u(x, y) and v = v(x, y) defined on a domain D is conformal in D means that the angle between any two intersecting regular curves in z is preserved in w under the map.

Theorem

Let f(z) = u(x,y) + iv(x,y) be a continuously differentiable mapping on a domain D such that $J \neq 0$ in D:

f(z) is analytic in $D \iff$ the mapping is conformal on D

Proof

 \implies Assume f(z) is analytic in D

Let $C_1: p_1(t)$ and $C_2: p_2(t)$ be two regular curves in D on [a,b] intersecting at $z_0 \in D$ $z_0 = p_1(t_0) = p_2(t_0)$ for some $t_0 \in [a,b]$

Let θ be the angle between C_1 and C_2 at z_0

$$\theta = \arg \frac{p_1'(t_0)}{p_2'(t_0)} = \arg p_2'(t_0) - \arg p_1'(t_0)$$

Let $\Gamma_1:P_1(t)=f(p_1(t))$ and $\Gamma_2:P_2(t)=f(p_2(t))$ be the corresponding image curves Γ_1 and Γ_2 intersect at $w_0=f(z_0)$

Let ϕ be the angle between Γ_1 and Γ_2 at w_0

$$\phi = \arg \frac{P_1'(t_0)}{P_2'(t_0)}
= \arg P_1'(t_0) - \arg P_2'(t_0)
= \arg[f'(p_1(t_0))p_1'(t_0)] - \arg[f'(p_2(t_0))p_2'(t_0)]
= \arg[f'(z_0)p_1'(t_0)] - \arg[f'(z_0)p_2'(t_0)]
= \arg f'(z_0) + \arg p_1'(t_0) - \arg f'(z_0) - \arg p_2'(t_0)
= \arg p_1'(t_0) - \arg p_2'(t_0)
= \theta$$

Assume that the mapping is conformal

Example

Let D be |z-1| < 1 and $f(z) = z^3$

f(z) is entire, so it is analytic in D

$$f'(z) = 3z^2$$

$$f'(z) = 0$$
 at $z = 0 \notin D$

$$f'(z) \neq 0$$
 in D

 $\therefore f(z)$ is conformal in D

Example

Let D be $|\zeta| < 1$ and $z = w(\zeta) = (1 + \zeta)^2$

 $w(\zeta)$ is entire, so it is analytic in D

$$w'(\zeta) = 2(1+\zeta)$$

$$w'(\zeta) = 0$$
 at $z = -1 \notin D$

$$w'(\zeta) \neq 0 \text{ in } D$$

 $\therefore w(\zeta)$ is conformal in D

But what does the image look like?

$$z = (1+\sigma)^{2}$$

$$= (1+e^{i\theta})^{2}$$

$$= (1+\cos\theta + i\sin\theta)^{2}$$

$$= \left[2\cos^{2}\left(\frac{\theta}{2}\right) + i2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)\right]^{2}$$

$$= 4\cos^{2}\left(\frac{\theta}{2}\right)\left[\cos\left(\frac{\theta}{2}\right) + i\sin\left(\frac{\theta}{2}\right)\right]$$

$$= 4\cos^{2}\left(\frac{\theta}{2}\right)e^{i\theta}$$

Now, let
$$z=re^{i\phi}$$
 and let $\theta=\phi$:
$$re^{i\phi} = 4\cos^2\left(\frac{\theta}{2}\right)e^{i\theta}$$

$$r = 4\cos^2\left(\frac{\theta}{2}\right)$$

$$r = 2(1+\cos\phi)$$

Which is a cardiod.