FR

Outreach of vaccine-critical content

Fon French-speaking Twitter

Mauro Faccin
IRD/CEPED, University of Paris, France

Complenet 2022 (Online)

BI

VII

MU

Twitter data

Extracted only tweets in French merging 3 keyword searches:

- ▶ Vaccines
- ► COVID-19
- ► Hydroxychloroquine From this dataset we extract tweets on both vaccines AND COVID-19.

Numbers

3M tweets

10M retweets

840k users

360 vaccine-critical URLs

382 news media URLs

Question

Does vaccine-critical advocates extended their reach during the COVID-19 pandemic?

Methods:

- ► Engagement analysis of users sharing a set of URLs.
- ► Community detection and their role in content spreading.

User engagement

🧸 SIS Compartmental model

Engagement

Engaged users share a URL from the set within a time window $\tau=3$ days.

$$dE_{t} = \alpha_{t} \frac{E_{t}(N_{t} - E_{t})}{N_{t}} - \beta_{t}E_{t}$$

$$R_{t} = \frac{\alpha_{t}}{\beta_{t}}$$

 $lpha_t$ engagement rate eta_t disengagement rate R_t reproduction number

2+ Engagement evolution

Community structure and role

T Hypergraphs

Hypergraph: $\{N, E\}$: nodes and

hyperedges

Nodes: same as before

Hyperedges: $e_{\alpha} = \{ \mathrm{tail}, \mathrm{head} \} \in \mathit{E}$

🕏 Random walker on a hypergraph

The walker

- ▶ sits on a node *i*
- ▶ chooses a hyperedge e_{α} incident on i in its tail (user i tweeted α);
- ▶ chooses an exit node j from the head of e_{α} (α get retweeted by user j).

? Yes but why?

Dynamics and Modularity

Modularity is a function of the dynamics:

$$Q = \sum_{c} \mathbf{Cov} \left(\chi_{c}(t), \chi_{c}(t+1) \right)$$

where χ_c is the characteristic function of class c.

Usual modularity:

$$Q = \frac{1}{2m} \sum_{ii} \left[A_{ij} - \frac{k_i k_j}{2m} \right] \delta(c_i, c_j)$$

Shen et al. (2010) PRE, 82, 016114

Communities and roles

Visiting probability probability of being visited by a random walker (a retweet)

Escape probability probability of reaching other communities (being retweeted outside one's bubble)

Comm.	Interpretation
C_0	media aggregators or web influencers.
C ₁	Far right groups.
C_2	health institutions and MDs
C_3	French news media.
C_4	international news media.
C_5	Far left and trade unions.
C_6	government representatives.
C ₇	Canada

*C*₁ and *C*₅ are the main actors in spreading vaccine-critical content (high visiting and escape probability).

■ Community URL usage pattern.

Clustering of communities by URL usage pattern.

right wing C₁ use an original body of URLs.

left wing and news media use a similar set or sources.

health institutions use an original set of sources.

▼ Finally...

? Questions?

Joint work with:

Gemass-CNRS
U. Paris-Sorbonne

Floriana Gargiulo

Jeremy Ward
CERMES3 INSERM-CNRS-EHESS
U. Paris

https://maurofaccin.github.iomauro.fccn@gmail.com

arxiv:2202.10952 ←Vaccines and Covid

arxiv:2202.12810 ← Directed Hypergraphs