ZYCARS: JUEGO DE CONDUCCIÓN 2D

Ingeniería Técnica en Informática de Sistemas José Jesús Marente Florín

Universidad de Cádiz

Septiembre 2011

- Introducción
- DESCRIPCIÓN
- 3 CALENDARIO
- 4 IMPLEMENTACIÓN
- 6 HERRAMIENTAS
- **6** CONCLUSIONES
- BIBLIOGRAFÍA

- Introducción
- DESCRIPCIÓN
- 3 CALENDARIO
- IMPLEMENTACIÓN
- 6 HERRAMIENTAS
- **6** CONCLUSIONES
- BIBLIOGRAFÍA

Introducción

JUEGOS DE CONDUCCIÓN

- Adictivos
- Para todo tipo de jugadores
- Cortos tiempos de juego
- Variados modos de juego
- No pasan de moda

Super Sprint - Atari (1986)

Micromachines - NES (1991)

Introducción

ZYCARS

- Juego de conducción en 2D con vista cenital
- Tres modo de juego
- Uso de ítem durante las carreras

Toy Cars - Xbox 360 (2011)

¿POR QUÉ ESTE PROYECTO?

- Muy pocos juegos libre con las mismas características
- Interés por el mundo de los videojuegos
- Cursar la asignatura de Diseño de Videojuegos aumentó el interés por el desarrollo de estos
- Contribuir al mundo del software libre

Introducción

OBJETIVOS

- Realizar un juego de coches completamente funcional
- Dificultad progresiva (adicción por aprendizaje)
- Competidores aceptables, que proponga un desafío
- Fácilmente ampliable

No es un simulador

- Arcade, prima la diversión
- Coches fáciles de manejar
- Colisiones sólo paran a los coches (estrategia)

Super Mario Kart -SNES (1992)

- Introducción
- DESCRIPCIÓN
- 3 CALENDARIO
- 4 IMPLEMENTACIÓN
- 6 HERRAMIENTAS
- **6** CONCLUSIONES
- BIBLIOGRAFÍA

Modos de Juego

CARRERA RÁPIDA

- Jugador contra tres oponentes
- Número de vueltas deseadas
- Una única carrera.

CAMPEONATO

- Jugador contra tres oponentes
- Cuatro circuitos a completar
- Número de vueltas deseadas
- Puntuación

CONTRARRELOJ

- Jugador compite solo
- Sólo ítems de turbo
- Tres vueltas al circuito

RODUCCIÓN **DESCRIPCIÓN** CALENDARIO IMPLEMENTACIÓN HERRAMIENTAS CONCLUSIONES BIBLIOGRAFÍA

ELEMENTOS DEL JUEGO

PERSONAJES

- Variedad
- Distintas características (tamaño, velocidad...)
- Ampliables

BOLAS DE ÍTEMS

- A lo largo de todos los circuitos
- Proporcionan un ítem aleatorio

TIPOS DE ÍTEMS

- Ataques a distancia
- Obstáculos
- Velocidad

RODUCCIÓN **DESCRIPCIÓN** CALENDARIO IMPLEMENTACIÓN HERRAMIENTAS CONCLUSIONES BIBLIOGRAFÍA

COLABORACIÓN Y RECURSOS

DISEÑO GRÁFICO

Se ha contado con la colaboración de David Nieto Rojas, quien ha colaborado en el apartado gráfico del juego.

MÚSICA

Se usa música libre adecuada para el videojuego. Grupos:

- Bob Wizman
- Pirato Ketchup
- Los Cadaver
- The Wavers
- Zamalska

- Introducción
- DESCRIPCIÓN
- 3 CALENDARIO
- 4 IMPLEMENTACIÓN
- 6 HERRAMIENTAS
- **6** Conclusiones
- BIBLIOGRAFÍA

PLANIFICACIÓN

TIEMPO DE DESARROLLO

En septiembre de 2010 se comenzó el desarrollo, acabando aproximadamente a finales de Junio de 2011.

FASES

Durante el periodo de desarrollo tuvieron lugar las distintas fases:

- Fase de análisis: indentificación de las necesidades del software.
- Fase de diseño: diseño de todo el sistema.
- Fase de aprendizaje: familiarización con el lenguaje python y la biblioteca pygame.
- Fase de desarrollo: implementación de todo los obtenido en la fase de diseño. Fase más larga.
- Pruebas y correcciones: pruebas necesarias para comprobar el correcto funcionamiento. En paralelo a la fase de desarrollo
- Redacción de la memoria: realización de la memoria final.

NTRODUCCIÓN DESCRIPCIÓN CALENDARIO IMPLEMENTACIÓN HERRAMIENTAS CONCLUSIONES BIBLIOGRAFÍA

DIAGRAMA DE GANTT I

TRODUCCIÓN DESCRIPCIÓN CALENDARIO IMPLEMENTACIÓN HERRAMIENTAS CONCLUSIONES BIBLIOGRAFÍA

DIAGRAMA DE GANTT II

- Introducción
- DESCRIPCIÓN
- 3 CALENDARIO
- 4 IMPLEMENTACIÓN
- 6 HERRAMIENTAS
- 6 CONCLUSIONES
- BIBLIOGRAFÍA

SEPARAR DATOS DEL CÓDIGO

Desacople código / datos (personajes, circuitos, menús, etc).

VENTAJAS

- No es necesario saber programar para realizar cambios sobre cualquier parámetro.
- Cualquier persona puede ampliar el juego con nuevos personajes y nuevos circuitos, siguiendo los manuales creados para ello.

SOLUCIÓN

Todo se lee de ficheros XML

RODUCCIÓN DESCRIPCIÓN CALENDARIO **IMPLEMENTACIÓN** HERRAMIENTAS CONCLUSIONES BIBLIOGRAFÍA

FORMATO DE CIRCUITOS

MAPAS DE TILES

Tile: imagen cuadrada, rectangular o hexagonal, utilizada para generar imágenes de mayor complejidad.

Usor del editor de mapas Tiled.

TRODUCCIÓN DESCRIPCIÓN CALENDARIO **IMPLEMENTACIÓN** HERRAMIENTAS CONCLUSIONES BIBLIOGRAFÍA

FORMATO DE CIRCUITOS

INCONVENIENTE

No permite indicar de forma sencilla que tiles eran atravesables, colisionables o de cualquier otro tipo.

SOLUCIÓN

Una imagen extra con las mismas características, donde los tiles sera de un único color, en función del tipo que estos sean.

Colisiones

Una de los aspectos más importantes en este tipo de juegos

COLISIÓN CON EL ESCENARIO

- Detectamos si atravesamos algún tile no atravesable
- Si es así corregimos la posición del coche en según la dirección, sentido y lado del tile por el que colisione
- En el caso de que el tile sea de tipo ralentizador, diminuimos la velocidad del coche

RODUCCIÓN DESCRIPCIÓN CALENDARIO **IMPLEMENTACIÓN** HERRAMIENTAS CONCLUSIONES BIBLIOGRAFÍA

Colisiones

Colisión entre vehículos

- De forma similar a la colisión con el escenario
- Cuando se detecta la colisión se corrige la posición de los vehículos, en función la dirección, sentido y lado por el que colisionen
- Podemos usar nuestro coche para evitar adelantamientos

Colisión entre vehículos e ítems

Dos tipos de ítems:

- İtem de ataque a distancia: se destruye el ítem y se cambia el estado del coche que colisiona
- Obstáculos: cambia el estado del coche en función del tipo de obstáculo (atravesable o no)

INTELIGENCIA ARTIFICIAL

Aspectos muy importante en videojuego de las características de Zycars: interviene en en dos de los tres modos de juegos

HABILIDADES

- Realización del recorrido: debe ser capaz de realizar los recorridos de los circuitos.
- Lanzamiento de ítems: también debe poder usar los ítems que reciba de las bolas de ítems.

REALIZACIÓN DEL RECORRIDO. ALGORITMO A*

Teniendo un circuito de tiles podemos realizar búsquedas de caminos a través de estos.

OBJETIVO

Buscar el camino más corto y óptimo desde un nodo origen, hasta un nodo destino. Se tienen en cuenta factores como el valor heurístico de los nodos, así como el coste real del recorrido.

PARÁMETROS

Los parámetros que se tienen en cuenta en la búsqueda:

- h'(n) es el valor heurístico del nodo actual n, hasta el final
- g(n) el coste real del camino desde el origen al nodo actual
- Función de evaluación: f(n) = g(n) + h'(n)

ESTRUCTURAS

- Lista de abiertos: nodos por los que aún no se han pasado
- Lista de cerrados: nodos por los que ya se han pasado

REALIZACIÓN DEL RECORRIDO. ALGORITMO A*

FUNCIONAMIENTO

Partiendo del nodo actual:

- Obtenemos vecinos
- Si no están en abiertos ni cerrados y los metemos en abiertos
- Obtenemos de abiertos el nodo con menor f(n) y comenzamos de nuevo
- Una vez en el nodo objetivo, detenemos la búsqueda y devolvemos el camino

Lanzamientos de ítems

Capaz de lanzar los ítems disponibles a los largo del juego, según las distintas situaciones en la que se encuentre.

Solución

Cada vehículo tiene dos segmentos:

- Delantero: comprueba si algún oponente está delante para lanzar ítem
- Trasero: verifica la parte trasera en busca de algún oponente para dejar un obstáculo

- Introducción
- DESCRIPCIÓN
- 3 CALENDARIO
- 4 IMPLEMENTACIÓN
- 6 HERRAMIENTAS
- 6 CONCLUSIONES
- BIBLIOGRAFÍA

HERRAMIENTAS

LENGUAJE DE PROGRAMACIÓN: PYTHON

Oportunidad perfecta para aprender un nuevo lenguaje de programación. Entre sus principales características:

- Sintaxis limpia y que favorece un código legible.
- Multiplataforma

Destacar que se han obtenido unos resultado muy satisfactorios y ha cumplido todas las expectativas esperadas.

BIBLIOTECA GRÁFICA: PYGAME

Wrapper de la biblioteca SDL, de C/C++, para Python, por lo que tiene todas las virtudes de dicha biblioteca:

- Multiplataforma compatible con Microsoft Windows, GNU/Linux, Mac OS y QNX.
- Muy completa (imágenes 2D, sonido, música y entrada estándar)

HERRAMIENTAS

ANALIZADOR DE CÓDIGO: PYLINT

Analiza el código Python en busca de errores y señales de mala calidad. La nota obtenida en el código del proyecto es de 8.25 sobre 10.

FORJA DEL PROYECTO

Alojado en el sistema que proporciona Google Code, bajo el sistema de control de versiones subversion.

- Pública
- Descargas para windows, linux y código fuente
- Página inicial (vídeos de demos, descripción, capturas, etc)

DOCUMENTACIÓN DEL CÓDIGO: DOXYGEN

- Permite la documentación sencilla y legible de todo el código
- Generando en varios formatos como puede ser HTML o PDF.

Para python existe la herramienta Doxypy.

- Introducción
- DESCRIPCIÓN
- 3 CALENDARIO
- 4 IMPLEMENTACIÓN
- 6 HERRAMIENTAS
- **6** CONCLUSIONES
- BIBLIOGRAFÍA

CONCLUSIONES

INTRODUCCIÓN

CUMPLIMIENTO DE OBJETIVOS

- Todos los objetivos marcados al inicio del PFC han sido cumplidos.
- Más duración de la esperada
- Contribución al mundo del software libre
- Juego de coches en 2D totalmente funcional

VALORACIÓN PERSONAL

- Enfrentamiento a un proyecto complejo en solitario
- Aprendizaje de nuevas herramientas
- Puesta en práctica de conocimientos adquiridos

POSIBLES MEJORAS Y AMPLIACIONES:

- Modo dos jugadores: pantalla dividida en dos.
- Modo en red: más conveniente que el modo de dos jugadores.
- Varias resoluciones: el usuario elige el tamaño mas cómodo.
- Grabación de las mejores vueltas: visualizarlas posteriormente.

CONCLUSIONES

Zycars se incluirá en la próxima versión de Guadalinex

- Introducción
- DESCRIPCIÓN
- 3 CALENDARIO
- 4 IMPLEMENTACIÓN
- 6 HERRAMIENTAS
- **6** CONCLUSIONES
- BIBLIOGRAFÍA

INTRODUCCIÓN IMPLEMENTACIÓN HERRAMIENTAS BIBLIOGRAFÍA

BIBLIOGRAFÍA RECOMENDADA

Página de Python http://www.python.org/

Página oficial sobre Pygame http://www.pygame.org/

Larman, Craig Applying UML and Patterns, 3ª Edición. Prentice Hall, 2004.

Pilgrim, Mark Dive into Python. Appress, 2004. TRODUCCIÓN DESCRIPCIÓN CALENDARIO IMPLEMENTACIÓN HERRAMIENTAS CONCLUSIONES BIBLIOGRAFÍA

DEMOSTRACIÓN

Demostración de Zycars

ESTO ES TODO

Gracias por su atención

¿Preguntas?

http://code.google.com/p/zycars/

