When to Commit to an Action in Online Planning

Tianyi Gu¹ and Wheeler Ruml¹ and Shahaf Shperberg² and Eyal Shlomo Shimony² and Erez Karpas³

Problem Setting: Plan While Action Execution

Results

Conclusions

Classical Planning Environments:

single agent discrete state, discrete action complete observability deterministic state transition online planning: interleaving planning and execution

Introduction

Online Planning

An Example

Action
Commmitment

FACS

Results

Conclusions

An example: highway navigation

agent performs search for a bounded time

Introduction

■ Online Planning

■ An Example
■ Action
Commmitment

FACS

Results

Conclusions

An example: highway navigation

agent commits to best action and executes

An example: highway navigation

agent commits to best action and executes

Introduction

■ Online Planning

■ An Example
■ Action
Commmitment

FACS

Results

Conclusions

An example: highway navigation

online planning: interleaving search and action execution "receding horizon control"

For each node along the best prefix path: should we commit?

Introduction

■ Online Planning
■ An Example
■ Action
Commmitment

FACS

Results

Conclusions

For each node along the best prefix path: should we commit?

fixed strategies:

always commit one (Korf 1990)

always commit all (Koenig&Sun 2008, Burns et al 2013)

Can we do better?

always commit one is too conservative

ideal:

commit if an action in prefix is certainly the best to gain more planning time for next iteration

Introduction FACS Assumptions Our Approach Belief Decision Results Conclusions

Flexible Action Commitment Search

Assumptions

Introduction FACS Assumptions Our Approach Belief Decision Results Conclusions

- 1. system can't be uncontrolled, so force to commit if action queue is empty
- 2. search tree structure (order of decisions is fixed)
- 3. no replanning required
- 4. deterministic system
- 5. only propose commitment strategy

Our Approach: Flexible Action Commitment Search (FACS)

Introduction

FACS

Assumptions

Our Approach

Belief

Decision

Results

Conclusions

we propose a principled way to make meta-level decision

FACS: The Effect of Search

Introduction

FACS

Assumptions

Our Approach

Belief

Decision

Results

Conclusions

belief of where \hat{f} will be after search:

FACS: The Effect of Search

Introduction

FACS

- Assumptions
- Our Approach
- Belief
- Decision

Results

Conclusions

belief of where \hat{f} will be after search:

$$X_{\alpha\alpha}^d \sim \mathcal{N}(\hat{f}(\alpha\alpha), (\bar{\epsilon}_\alpha \cdot dtg(\alpha\alpha))^2 \cdot \min(1, \frac{\frac{d}{ed}}{dtg(\alpha\alpha)}))$$

FACS: Compute Utility

Introduction

FACS

- Assumptions
- Our Approach
- Belief
- Decision

Results

Conclusions

$$U_{\mathsf{commit}} = \mathbb{E}\left[\min(X_{\alpha\alpha}^d, X_{\alpha\beta}^d)\right]$$

where $d = d_r + d_f$

$$U_{\text{don't commit}} = P_{\text{choose }\alpha} \cdot U_{\alpha} + (1 - P_{\text{choose }\alpha}) \cdot U_{\beta}$$

commit when $U_{\text{commit}}^{t'} > U_{\text{don't commit}}^{t'}$

Introduction

FACS

Results

Domain

Results

Conclusions

Results

Synthetic Grid Pathfinding

- lacktriangle Left: tar pit area o high cost for reckless committing
- lacktriangle Right: corridor area ightarrow need long lookahead to observe the local minima
- lacktriangle Middle: empty area o gain lookahead, no harm to commit

Results

Introduction

FACS

Results

Domain

Results

Conclusions

commit-all perform badly

Results

Introduction

FACS

Results

Domain

Results

Conclusions

algorithms with small action queue perform badly

Results

Introduction

FACS

Results

Domain

Results

Conclusions

FACS consistently performs the best

Summary

- FACS starts to explore a principled way of doing online action commitment
- FACS is better than fixed baseline strategies in synthetic grid pathfinding scenarios.

More broadly:

■ Metareasoning pays off when planning under time pressure!

Questions?

Introduction

FACS

Results

Conclusions

Questions

■ Questions?

