

INSTITUTO INDUSTRIAL DE MATUNDO

INSITUTO INDUSTRIAL DE MATUNDO

Código do módulo: MOEPI05405171

Título do módulo: Calibrar os instrumentos de médida de varios processos industriais.

Nível: Médio/CV4

Qualificação: Electricidade de Manutenção Industrial

Tema:

Tipos de sensores, características, princípio de funcionamento, esquema de sensor de nível.

Formandos:

Celina José Liunde

Idrissa Ibraimo Jonh Said

Horácia Horácio

Ormilda Miguel Matsinhe

Marito Gervado

Formador:

Diogo

Tete, aos 27 de Fevereiro 2020.

INSTITUTO INDUSTRIAL DE MATUNDO

INSITUTO INDUSTRIAL DE MATUNDO

Código do módulo: MOEPI05405171

Título do módulo: Calibrar os instrumentos de médida de varios processos industriais.

Nível: Médio/CV4

Qualificação: Electricidade de Manutenção Industrial

Tema:

Tipos de sensores, características, princípio de funcionamento, esquema de sensor de nível.

Formandos:

Celina José Liunde

Idrissa Ibraimo Jonh Said

Horácia Horácio

Ormilda Miguel Matsinhe

Marito Gervado

	ŀ	orma	aor:	
		(Diog	(o)	

Tete, aos 27 de Fevereiro 2020.

Índice

1. Introdução.	2
1.1 Objectivos.	3
1.1.1 Objectivo geral.	3
1.1.2 Objectivos específicos.	3
1.2 Conceitos básicos	4
1.3 Tipos de sensores.	4
2. Características e princípios de Funcionamento	5
3.1 Principio de funcionamento do sensor de nível	10
3.2 Esquema de sensor de nível operacional.	11
4. Conclusão	12
5. Referências bibliográficas	13

1. Introdução.

Neste presente trabalho iremos abordar matérias pertinentes aos sensores, os seus tipos, as suas características, o princípio de funcionamento de cada um, e por fim o esquema de um sensor de nível.

1.1 Objectivos.

1.1.1 Objectivo geral.

• Obter noções básicas acerca dos sensores (tipos, características, princípio de funcionamento e esquemas equivalentes).

1.1.2 Objectivos específicos.

- Contextualizar com precisão os sensores, os seus tipos.
- Obter noções aprofundadas de funcionamento do mesmo.
- Interpretação e elaboração de um esquema (circuito) equivalente de acordo com cada tipo de sensor.

1.2 Conceitos básicos.

Um **sensor** é um dispositivo que responde a um estímulo físico/químico de maneira específica e que pode ser transformado em outra grandeza física para fins de medição e/ou monitoramento. Desta forma, o sensor associado a um módulo de transformação do estímulo em uma grandeza para fins de medição e/ou monitoramento pode ser definido como transdutor ou medidor, que converte um tipo de energia em outro.

Os sensores são usados em vários tipos de aplicações nas indústrias, comércios e até mesmo na sua residência.

Criados em 1950, os sensores tornaram-se ao longo dos anos peças fundamentais à automação industrial. Estes produtos são responsáveis pela detecção de quaisquer movimentações no ambiente fabril, seja para contagem de material, controle de direção, até nível de fluidos e verificação de material dentro do recipiente.

Há ainda os sensores utilizados para a segurança dos profissionais que operam o maquinário (NR-12). "Quando o usuário tenta infligir uma norma de segurança e posiciona alguma parte do corpo ou até mesmo um equipamento em local não permitido, a máquina para, impedindo que o trabalhador sofra danos físicos".

1.3 Tipos de sensores.

Existem vários tipos de sensores dos quais mais se destacam:

O sensor acústico, sensor de presença, sensor mecânico, sensor eléctrico, sensor de nível, sensor de temperatura, sensor magnético, sensor capacitivo, sensor indutivo e sensor de pressão.

2. Características e princípios de Funcionamento.

Sensor de presença.

Os sensores de presença são pequenos aparelhos colocados na **parede ou no teto** que identificam o movimento dentro de determinado raio de alcance. Quando detecta a presença de alguém no ambiente aciona um circuito que pode ligar lâmpadas e outros aparelhos no local.

Sensor de nível.

Um **sensor de nível** é um dispositivo utilizado para controlar líquidos ou sólidos granulados acondicionados em reservatórios, silos e tanques – abertos ou pressurizados. O sensor detecta o nível de líquidos em reservatórios, através do movimento dos flutuadores que geram um sinal magnético (o sinal é transmitido a um sensor magnético). Sua aplicação é voltada para o controle de fluxo e na medição contínua.

Sensor indutivo.

Os sensores indutivos, também conhecidos como sensores de proximidade, são dispositivos eletrônicos para o ambiente industrial na detecção de partes e peças metálicas não só de ferro ou aço, como também alumínio, latão e aço inox.

Sensor capacitivo.

Os sensores capacitivos detectam qualquer tipo de massa, logo, são aplicados onde existe a necessidade de detecção de materiais não metálicos como plásticos, madeiras e resinas. São utilizados também para detecção do nível de líquidos e sólidos.

Sensor fotoeléctrico.

Aumentando o range de detecção sem contato físico, os sensores fotoeléctricos são capazes de detectar não só partes e peças de máquinas automáticas, mas os próprios produtos manufaturados na linha de produção.

Sensor optico.

Sensores ópticos para fibras, modelos microprocessados, sistema de detecção da fibra por barreira ou fotosensora, lentes opcionais para diversas aplicações.

Sensor laser.

Os sensores laser têm alta sensibilidade e alta precisão se comparados aos tradicionais sensores fotoelétricos. Modelos não tubulares com alta resolução para as mais variadas aplicações.

Sensor de movimento.

Sensores microprocessados com saída digital simples ou dupla, saída analógica em tensão ou corrente. Modelos especiais para detecção de folha dupla.

Sensor de proximidade.

Os sensores de proximidade magnéticos foram idealizados para detectar o campo magnético gerado por um ímã que pode ser um acionador magnético. Podem ser aplicados no monitoramento de válvulas lineares ou cilindros pneumáticos.

Sensores Transdutores Lineares.

Permite a detecção da posição sem contato, o que elimina o desgaste de peças e aumenta a vida útil do transdutor. Com excelente resistência mecânica a vibração e a choques, podem ser instalados em ambientes hostis, inclusive na presença de agentes contaminantes ou presença de pó.

Sensor de pressão.

Os sensores de pressão podem ser aplicados em ambientes fabris que requerem produtos robustos. Há versões para pressão diferencial, com bargraph, anti-corrosivo e display duplo. Modelos para ar comprimido, gases ou líquidos (inclusive corrosivos). Podem ser microprocessados com alta resolução, com display, amplificador separado. Modelos tubulares com invólucros compactos e vários tipos de saída e faixas de pressão.

Sensor de imagem.

Os sensores da linha CVS são compactos e reúnem lente, sensor de imagem, LEDs, display LDC e processador em um único invólucro.

3.1 Principio de funcionamento do sensor de nível.

Os sensores detectam os níveis na altura em que forem instalados, com contato ON/OFF de saída ou a distância com o sensor ultrassom. Os sensores do tipo ON/OFF podem acionar relés, CLP e contatores para desligar/ligar bombas d'água. Estes sensores trabalham em uma potência próxima de 20W, que é capaz de gerar uma corrente para a sinalização sonora ou visual.

Um **sensor de nível** é um dispositivo utilizado para controlar líquidos ou sólidos granulados acondicionados em reservatórios, silos e tanques – abertos ou pressurizados. O sensor detecta o nível de líquidos em reservatórios, através do movimento dos flutuadores que geram um sinal magnético (o sinal é transmitido a um sensor magnético). Sua aplicação é voltada para o controle de fluxo e na medição contínua.

O controle de nível de líquidos é importante nos processos industriais e até no dia a dia, uma vez que encontramos equipamentos que necessitam do controle de nível, como a caixa d'água da casa e o tanque de combustível dos automóveis. Para verificar, quantificar ou controlar volumes de líquidos em recipientes, os sensores de nível fazem que o volume permaneça em um intervalo tolerado ou notificam o operador à variação de nível. Assim, permitem que os processos operacionais se realizem de maneira confiável.

3.2 Esquema de sensor de nível operacional.

Esquema de ligação de **sensores de nível** ao **contator** e bomba para controle automático de nível mínimo e máximo do reservatório.

Funcionamento:

- ➤ Reservatório vazio: os contatos dos sensores de nível **superior e inferior** estão fechados e alimentam a bobina (A1/A2) do contator, que fica retido pelos contatos 13/14, acionando a bomba.
- ➤ O nível inferior do reservatório se eleva abrindo o contato do sensor de nível **inferior**, mas a bobina (A1/A2) permanece energizada através do contato fechado do sensor de nível **superior** e dos contatos 13/14 do contator.
- ➤ O contato do sensor de nível **superior** se abre quando o reservatório está cheio, interrompendo a bomba.

4. Conclusão.

Chegada esta parte do presente trabalho podemos concluir sob vários aspectos acerca dos sensores, os seus tipos, as suas características, principio de funcionamento e esquemas equivalentes para cada sensor específico.

5. Referências bibliográficas.

https://www.google.com/search?ei=hXdWXr=Tipos+de+sensores

 $\underline{https://www.wikipedia.com/find-out=caracteristica+de+sensores}$

 $\underline{https://www.Yahoo./search?euxc=principio+de+funcionamento+de+sensores+esquema+de+se}\\ \underline{nsor+de+nivel}$