诚信考试,公平竞争;以实力争取过硬成绩,以诚信展现良好学风。

*以下三种行为是严重作弊行为,学校将从严处理:

1. 替他人考试或由他人替考; 2. 通讯工具作弊; 3. 组织作弊。

*答案、解题过程必须写在答题卷上,写在试题卷上的内容不予计分。

大学 高等数学 A1 试题卷 (闭)

2021-2022 学年第一学期 使用班级 _____

班级		学号		姓名		
题号	_	=	Ξ	四四	五	六
小题数量	5	5	4	3	2	1

- 一、选择题(本大题共5小题,每小题3分,满分15分)
- 1. 曲线 $y = \frac{x^2 + 1}{1}$ 的斜渐近线方程是【 】.
- B. y = x + 2 C. y = x 1
- D. y = x 2
- 2. 曲线 $y = x \sin y$ 在点 (0,0) 处的切线方程是【 】.

- A. x + y = 0 B. x 2y = 0 C. x + 2y = 0 D. 2x y = 0
- 3. 函数 $y = (x-5)x^{2/3}$ 的极大值点是【 】.

- A. x = 0 B. x = 2 C. x = -2 D. x = -1

- 4. 下列反常积分收敛的是【】.
- A. $\int_{10}^{+\infty} \frac{1}{r \ln r \ln \ln r} dx$ B. $\int_{0}^{+\infty} \cos x dx$ C. $\int_{1}^{+\infty} x^{2} e^{-x} dx$ D. $\int_{1}^{+\infty} \frac{x}{1+x^{2}} dx$

- A. $I_2 < I_1 < I_3$ B. $I_3 < I_1 < I_2$ C. $I_1 < I_3 < I_2$ D. $I_1 < I_2 < I_3$
- 二、填空题(本大题共5小题,每小题3分,满分15分)
- 1. 函数 $f(x) = \frac{\tan x}{x}$ 的可去间断点是_____.
- 2. 设 $f(x) = xe^{2x}$,则 f'''(0) =______.
- 3. 曲线 $y = \frac{\ln x}{x}$ 的单调递减区间是______.
- 4. 由曲线 $y = 0, y = \ln x, x = e$ 围成的区域的面积为______
- 5. 积分 $\int x \tan^2 x dx =$ ______.

诚信考试,公平竞争;以实力争取过硬成绩,以诚信展现良好学风。*以下三种行为是严重作弊行为,学校将从严处理:

- 1. 替他人考试或由他人替考; 2. 通讯工具作弊; 3. 组织作弊。 *答案、解题过程必须写在答题卷上,写在试题卷上的内容不予计分。
- 三、解答题(本大题共4小题,每小题6分,满分24分)
- 1. 求极限 $\lim_{x\to 0^+} \left(\cos\sqrt{x}\right)^{\frac{1}{x}}$.

- 3. 求不定积分 $\int x \arcsin x dx$.
- 4. 求定积分 $\int_0^{\ln 2} \sqrt{e^x 1} dx$.
- 四、解答题(本大题共3小题,每小题8分,满分24分)
- 1. 求极限 $\lim_{x\to 0} \frac{\left(\int_0^x e^{t^2} dt\right)^2}{\int_0^x t \cos t dt}$.
- 2. 设函数 $f(x) = \begin{cases} x^{\lambda} \sin \frac{1}{x}, x \neq 0, \\ 0, & x = 0, \end{cases}$ 确定 λ 的取值范围,使得函数 f(x) 在 x = 0 处可导.
- 3. 设 $f(x) = \int_1^x \frac{\sin t}{t} dt$, 求定积分 $\int_0^1 x f(x) dx$.
- 五、应用题(本大题共2小题 每小题8分,满分16分)
- 1. 已知函数 $y = \frac{x^3}{(x-1)^2}$, 求函数的单调区间和极值.
- 2. 设区域 D 由 $y=0, y=\sqrt{x-2}, y=\sqrt{x-2}$ 的一条过原点的切线围成,求区域 D 绕直线 x=4 旋转一周所得到的旋转体的体积.

六、证明题(本大题共1小题,满分6分)

1. 证明:
$$\int_0^{\frac{\pi}{2}} \frac{\sin x}{1+x} dx \le \int_0^{\frac{\pi}{2}} \frac{\cos x}{1+x} dx.$$