Д.В.КРЕОПАЛОВ, М.Л. ПОЗДЫШЕВ

СВОБОДНОЕ ПАДЕНИЕ

Методические указания к лабораторной работе М106 по курсу общей физики

Цель работы — изучение прямолинейного движения тела под действием силы тяжести, экспериментальное исследование зависимости высоты падения от времени падения, вычисление ускорения свободного падения.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Гравитационное поле Земли в области пространства много меньшего по размеру чем земной шар можно считать однородным. На тело массой m в любой точке этой области действует постоянная сила тяжести F=mg, где g- ускорение свободного падения, направленная κ центру Земли. На широте Москвы на уровне моря $g=9.8152\,\mathrm{m/c^2}.$

Если считать Землю шаром радиусом $R\approx6371$ км., то на небольшое тело массой m со стороны Земли действует сила гравитации $F=GMm/(R+h)^2$, где $m=5,9736\cdot 10^{24}$ кг – масса Земли, $G=(6,673\pm0,003)\cdot 10^{-11}$ нм 2 /кг 2 – гравитационная постоянная, h- высота над поверхностью Земли. Приравняв силу тяжести и силу гравитации можно получить теоретическое выражение для ускорения свободного падения g на поверхности Земли (на уровне моря)

$$g = GM/R^2 = 9.816 \text{ m/c}^2$$

На самом деле Земля не является идеальным шаром. В хорошем приближении Земля — эллипсоид, у которого малая полуось — полярный радиус равен — 6356863 м, а большая полуось — экваториальный радиус - 6378245 м.

Таким образом, Земля немного сплюснута вдоль оси вращения. В основном поэтому g меняется от 9.83 м/c^2 на полюсах до 9.78 м/c^2 на экваторе.

Еще одна причина уменьшения измеренного значения g на экваторе связана с вращением земли вокруг своей оси. Так как тело массы m двигается вместе с Землей по окружности с радиусом равным расстоянию до оси вращения, то часть силы тяжести составляет центростремительную силу $F=m\omega^2R_0$, R_0 - расстояние до оси вращения, ω -угловая скорость вращения.

Таким образом, если бы Земля вращалась очень быстро, то при некоторой угловой скорости на экваторе было бы состояние невесомости.

В данной работе исследуется падение стального шарика диаметром 19мм (3/4 дюйма) с заданной высоты под действием силы тяжести.

Уравнение, описывающее свободное падение тела в однородном поле силы тяжести – это второй закон Ньютона. В проекции на ось, направленную вниз, оно имеет вид

$$md^2h/dt^2=mg (1),$$

где h(t)- путь, пройденный телом при падении,

t – время падения.

С учетом начальных условий dh(0)/dt=0, h(0)=0,

решение уравнения имеет вид

$$h(t) = gt^2/2 \tag{2}$$

График зависимости h(t) - парабола (рис.1)

Убедиться в этом можно, построив график $h(t^2)$ - (puc.2) он будет линейным.

Тангенс угла наклона этого графика равен g/2 в соответствии с уравнением (2).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ.

Соберите установку, изображенную на рис.3. Подключите выход «Start/Stop» (желтое и белое гнезда) универсального счетчика к верхней части, где будет закреплен шарик. Выход «Stop» (желтое и белое гнезда) к нижней части с приемной чашечкой.

ВНИМАНИЕ! Не втыкать провода в красные гнезда «+5V», чтобы не замкнуть их накоротко.

Рис.3

Включите счетчик рис.4 (выключатель находится на задней панели счетчика), установите режим «Тітег» (Время) с помощью кнопки «Function», кнопкой «Trigger» выберите двухимпульсный режим, кнопкой «Set» выберите «Digits» и кнопками «+» и «-» установите количество цифр после запятой на дисплее (достаточно одной). Время на дисплее будет отображаться в миллисекундах.

Рис.4

Установите шарик в верхний датчик (Start), зажав его с помощью тросика, и закрепите тросик с помощью винта. **Поднимите нижнюю чашечку**, разомкнув контакты нижнего датчика (Stop). Нажмите на кнопку сброса (Zero), а затем на кнопку пуска (Start). Установка готова к работе.

Если ослабить винт крепления тросика, шарик будет падать и разорвет цепь верхнего датчика. Начнется отсчет времени. Когда шарик упадет на чашечку, он замкнет цепь нижнего датчика и отсчет закончится (датчики срабатывают от электрических ипульсов, возникающих при резком изменении сопротивления цепи). Счетчик покажет время падения t (ms) с высоты h.

Задание

1. Установите шарик на определенной высоте h от нижней чашечки. Учтите размер шарика. Измерьте 5-7 раз время свободного падения t. Вычислите ускорение свободного падения $g=2h/t^2$, подставив среднее время t_{cp} .

Убедитесь, что полученное значение примерно (с точностью 5-10%), совпадает с табличным (если это не так, то прежде чем двигаться дальше, необходимо разобраться в причине расхождений).

Данные занесите в таблицу 1.

Таблица 1.

 $h \hspace{-0.5cm}=\hspace{0.5cm} t_{cp} \hspace{-0.5cm}=\hspace{0.5cm} g \hspace{-0.5cm}=\hspace{0.5cm}$

№	1	2	3	4	5	6	7
t							

Определите абсолютную- Δg и относительную - ϵ погрешности g

$$\Delta g = \sqrt{\left(\frac{2}{t^2}\right)^2 \Delta h^2 + \left(\frac{4h}{t^3}\right)^2 \Delta t^2}$$
, t=t_{cp} (3)

 $\varepsilon = \Delta g/g$, $\Delta h = 0.5$ mm,

$$\Delta t = t_{\alpha,f} \sqrt{\frac{\sum (t_{cp} - t_i)^2}{n(n-1)}} \quad , \tag{4}$$

n-число измерений, $t_{\alpha,f}$ - коэффициент Стьюдента, для n=7 и доверительной вероятности P=0,9 , $t_{\alpha,f}=1,943$.

2. Проведите измерение времени падения для 9-12 различных значений высоты. Каждое измерение повторите три раза. Данные занесите в таблицу 2.

Таблица 2.

h					
t					
t _{cp}					
g					
V					

Найдите погрешность Δt по формуле (4) для минимальной и максимальной высоты. Для n=3 и P=0,9 $t_{\alpha,f}$ =2,92 . По формуле (3) найдите Δg для этих высот.

Полученный результат сравните с Δt и Δg , вычисленные в 1 задании, сделайте выводы.

Постройте графики зависимости h(t) (рис.1), $h(t^2)$ (рис.2). Постройте график зависимости g(h) (рис.3) с учетом погрешности Δg . Определите g_{cp} .

Запишите результат в виде $g=g_{cp} \pm \Delta g$, значение Δg возьмите из 1 задания.

Вычислите конечную скорость падения по формуле

$$v=2h/t. (5)$$

Постройте графики v(h) и $v(h^{1/2})$. Объясните полученные результаты.

Контрольные вопросы

- 1. Какие случайные и систематические погрешности могут быть в данной работе?
- 2. В этой работе не учитывается сопротивление воздуха. Как этот факт повлияет на результат вычисления g?
- 3. Выведите формулы (3) и (5).
- 4. В первом приближении Земля имеет форму шара слегка сплюснутого по оси вращения. Где ускорение свободного падения будет большим: на полюсах или на экваторе?
- 5. Как влияет вращение Земли на измерение величины ускорения свободного падения?
- 6. На какой высоте от поверхности Земли ускорение свободного падения уменьшится на 1%?

- 7. Из автомата Калашникова выстрелили горизонтально. Что раньше упадет на землю пуля или горизонтально выпавшая гильза (сопротивлением воздуха пренебречь)?
- 8. Почему в воздухе быстрее падают тела с большей массой?
- 9. Какой опыт продемонстрировали американские астронавты с целью доказательства своего нахождения на Луне?
- 10. Сколько бы длились земные сутки, если бы на экваторе тела находились в состоянии невесомости?

СПИСОК ЛИТЕРАТУРЫ

- 1. Иродов И.Е. Механика. Основные законы, М.; СПб.: Физматлит, 2000.
- 2. Савельев И.А. Курс общей физики: Кн.1: Механика. М.: Наука, 1998.
- 3. Сивухин Д.В. Курс общей физики. Т.1:Механика. М.:Наука,1989.