Table 1. Results of the number of winning benchmarks, where *LS-Sampling-Plus* achieves significantly higher t-wise coverage than each of *Baital*, *NS*, *PLEDGE* and *LS-Sampling* (i.e., the p-value of Wilcoxon signed-rank test for the related pairwise comparison is smaller than 0.05) under various settings of t ($2 \le t \le 6$) and k (k = 50, 100 and 500) over 123 public benchmarks.

	LS-Sampling-Plus vs. Uniform	LS-Sampling-Plus vs. Baital		LS-Sampling-Plus vs. PLEDGE	LS-Sampling-Plus vs. LS-Sampling
	#win	#win	#win	#win	#win
2-wise (k=50)	122	123	122	122	122
2-wise $(k=100)$	122	122	122	122	122
2-wise (<i>k</i> =500)	122	122	122	121	121
3-wise (<i>k</i> =50)	123	123	123	123	123
3-wise $(k=100)$	123	123	123	123	123
3-wise (<i>k</i> =500)	122	122	122	122	122
4-wise (<i>k</i> =50)	123	123	122	123	123
4-wise $(k=100)$	123	123	122	123	123
4-wise (<i>k</i> =500)	122	122	121	122	122
5-wise (<i>k</i> =50)	123	123	123	123	123
5-wise $(k=100)$	123	123	122	123	123
5-wise (<i>k</i> =500)	122	122	121	122	122
6-wise (<i>k</i> =50)	123	123	123	123	123
6-wise $(k=100)$	123	123	123	123	123
6-wise $(k=500)$	123	122	122	123	122

	$\lambda = 1000$ vs. $\lambda = 10$	$\lambda = 1000$ vs. $\lambda = 50$	$\lambda = 1000$ vs. $\lambda = 100$	$\lambda = 1000$ vs. $\lambda = 500$
	#win	#win	#win	#win
2-wise (k=50)	121	121	120	119
2-wise $(k=100)$	120	84	26	10
2-wise (<i>k</i> =500)	18	16	11	8
3-wise (<i>k</i> =50)	122	122	122	121
3-wise $(k=100)$	122	121	122	119
3-wise (<i>k</i> =500)	27	108	81	16
4-wise (k=50)	123	123	123	121
4-wise $(k=100)$	122	122	122	120
4-wise (k=500)	120	119	119	116
5-wise (<i>k</i> =50)	123	123	123	121
5-wise $(k=100)$	123	122	122	122
5-wise (<i>k</i> =500)	122	122	122	120
6-wise (<i>k</i> =50)	123	123	123	122
6-wise $(k=100)$	123	123	123	121
6-wise $(k=500)$	122	122	121	121

Table 3. Results of the number of winning benchmarks where LS-Sampling-Plus with δ =2 \cdot 10⁶ achieves significantly higher t-wise coverage than each of LS-Sampling-Plus with δ = 5 \cdot 10⁵, 1 \cdot 10⁶ and 1.5 \cdot 10⁶ (i.e., the p-value of Wilcoxon signed-rank test for the related pairwise comparison is smaller than 0.05) under various settings of t (3 \leq t \leq 6) and t (t = 50, 100 and 500) over 123 public benchmarks.

	$\delta=2\cdot 10^6$ vs. $\delta=5\cdot 10^5$	$\delta=2\cdot 10^6$ vs. $\delta=1\cdot 10^6$	$\delta = 2 \cdot 10^6$ vs. $\delta = 1.5 \cdot 10^6$
	#win	#win	#win
3-wise (<i>k</i> =50)	46	8	11
3-wise $(k=100)$	121	93	20
3-wise (<i>k</i> =500)	122	121	120
4-wise (k=50)	32	12	9
4-wise $(k=100)$	123	41	11
4-wise (<i>k</i> =500)	121	121	121
5-wise (<i>k</i> =50)	49	12	9
5-wise ($k=100$)	121	44	10
5-wise (<i>k</i> =500)	122	122	120
6-wise (<i>k</i> =50)	96	22	10
6-wise $(k=100)$	123	58	19
6-wise ($k=500$)	123	122	120

Table 4. Results of the number of winning benchmarks where LS-Sampling-Plus achieves significantly higher t-wise coverage than each of LS-Sampling-Plus-alt1, LS-Sampling-Plus-alt2 and LS-Sampling-Plus-alt3 (i.e., the p-value of Wilcoxon signed-rank test for the related pairwise comparison is smaller than 0.05) under various settings of t ($2 \le t \le 6$) and k (k = 50, 100 and 500) over 123 public benchmarks.

	LS-Sampling-Plus vs. LS-Sampling-Plus-alt1	LS-Sampling-Plus vs. LS-Sampling-Plus-alt2	LS-Sampling-Plus vs. LS-Sampling-Plus-alt3	
	#win	#win	#win	
2-wise (k=50)	119	122	121	
2-wise $(k=100)$	120	121	121	
2-wise (<i>k</i> =500)	120	121	119	
3-wise (<i>k</i> =50)	122	123	123	
3-wise $(k=100)$	123	123	123	
3-wise ($k=500$)	123	123	123	
4-wise (k=50)	123	123	123	
4-wise $(k=100)$	123	123	123	
4-wise (<i>k</i> =500)	121	122	122	
5-wise (<i>k</i> =50)	123	123	123	
5-wise $(k=100)$	123	123	123	
5-wise (<i>k</i> =500)	122	122	123	
6-wise (<i>k</i> =50)	123	123	123	
6-wise $(k=100)$	123	123	123	
6-wise $(k=500)$	123	122	123	

Table 5. Results of the number of winning benchmarks where LS-Sampling-Plus achieves significantly higher t-option fault detection rate than each of NS, PLEDGE and LS-Sampling (i.e., the p-value of Wilcoxon signedrank test for the related pairwise comparison is smaller than 0.05) under various settings of t ($2 \le t \le 6$) and k (k = 50, 100 and 500) over the entire benchmark collection of 31 public benchmarks for assessing the fault detection capability.

	LS-Sampling-Plus vs. NS	LS-Sampling-Plus vs. PLEDGE	LS-Sampling-Plus vs. LS-Sampling	
	#win	#win	#win	
2-option (<i>k</i> =50)	25	25	14	
2-option $(k=100)$	21	22	12	
2-option (k =500)	17	16	10	
3-option (<i>k</i> =50)	30	30	24	
3-option $(k=100)$	27	27	21	
3-option (k =500)	18	19	17	
4-option (k=50)	31	31	27	
4-option $(k=100)$	30	29	25	
4-option (k =500)	23	21	22	
5-option (<i>k</i> =50)	31	30	27	
5-option $(k=100)$	30	30	26	
5-option (<i>k</i> =500)	23	23	23	
6-option (<i>k</i> =50)	30	30	26	
6-option $(k=100)$	31	31	27	
6-option (<i>k</i> =500)	25	26	27	

Table 6. Results of the number of winning benchmarks where LS-Sampling-Plus achieves significantly higher t-wise coverage than each of Baital, NS, PLEDGE and LS-Sampling (i.e., the p-value of Wilcoxon signed-rank test for the related pairwise comparison is smaller than 0.05) under various settings of t ($2 \le t \le 6$) and k (k = 1) 50, 100 and 500) over 5 non-binary benchmarks of Healthcare4, Insurance, ProcessorComm2, Strorage4 and Storage5.

	LS-Sampling-Plus vs. Uniform	LS-Sampling-Plus vs. Baital	LS-Sampling-Plus vs. NS	LS-Sampling-Plus vs. PLEDGE	LS-Sampling-Plus vs. LS-Sampling
	#win	#win	#win	#win	#win
2-wise (k=50)	5	5	5	5	4
2-wise $(k=100)$	5	5	5	5	2
2-wise (<i>k</i> =500)	5	3	3	3	2
3-wise (<i>k</i> =50)	5	5	5	5	5
3-wise $(k=100)$	5	5	5	5	4
3-wise (<i>k</i> =500)	5	5	5	5	5
4-wise (<i>k</i> =50)	5	5	5	5	5
4-wise $(k=100)$	5	5	5	5	4
4-wise (<i>k</i> =500)	5	5	5	5	5
5-wise (<i>k</i> =50)	5	5	5	5	5
5-wise $(k=100)$	5	5	5	5	4
5-wise (<i>k</i> =500)	5	5	5	5	5
6-wise (<i>k</i> =50)	5	5	5	5	5
6-wise $(k=100)$	5	5	5	5	5
6-wise (<i>k</i> =500)	5	5	5	5	5

Table 7. Results of the number of winning benchmarks where LS-Sampling-Plus achieves significantly higher t-wise coverage than each of Baital, NS, PLEDGE and LS-Sampling (i.e., the p-value of Wilcoxon signed-rank test for the related pairwise comparison is smaller than 0.05) under various settings of t ($2 \le t \le 6$) and k(k = 50, 100 and 500) over the remaining 15 benchmarks.

	LS-Sampling-Plus vs. Uniform	LS-Sampling-Plus vs. Baital	LS-Sampling-Plus vs. NS	LS-Sampling-Plus vs. PLEDGE	LS-Sampling-Plus vs. LS-Sampling
	#win	#win	#win	#win	#win
2-wise (k=50)	14	14	14	15	5
2-wise $(k=100)$	10	9	11	13	3
2-wise (<i>k</i> =500)	5	2	5	5	0
3-wise (<i>k</i> =50)	15	14	15	15	14
3-wise $(k=100)$	14	14	15	15	14
3-wise (<i>k</i> =500)	8	8	9	10	9
4-wise (<i>k</i> =50)	15	15	15	15	15
4-wise $(k=100)$	14	14	15	15	15
4-wise (<i>k</i> =500)	12	12	13	14	14
5-wise (<i>k</i> =50)	15	15	15	15	15
5-wise ($k=100$)	14	14	15	15	15
5-wise (<i>k</i> =500)	13	13	15	15	14
6-wise (<i>k</i> =50)	15	15	15	15	15
6-wise $(k=100)$	14	14	15	15	15
6-wise $(k=500)$	13	13	15	15	14

Fig. 1. Box plots demonstrating the t-wise coverage $(2 \le t \le 6)$ achieved by NS, PLEDGE, LS-Sampling and LS-Sampling-Plus.

0.5

Sampling

(a) LS-Sampling-Plus vs. Uniform

0.7

Fig. 3. Scatter plots demonstrating the 6-wise coverage achieved by Uniform Sampling, Baital and LS-Sampling-Plus.

0.3

0.7

6-wise Coverage Achieved by LS-Sampling-Plus

(b) LS-Sampling-Plus vs. Baital

Fig. 4. Box plots demonstrating the t-wise coverage (2 $\leq t \leq$ 6) achieved by LS-Sampling-Plus-alt1, LS-Sampling-Plus-alt2, LS-Sampling-Plus-alt3 and LS-Sampling-Plus.

Fig. 5. Scatter plots demonstrating the 6-wise coverage achieved by LS-Sampling-Plus-alt1, LS-Sampling-Plus-alt2, LS-Sampling-Plus-alt3 and LS-Sampling-Plus.

Fig. 6. Box plots demonstrating the *t*-wise coverage ($2 \le t \le 6$) achieved by *LS-Sampling-Plus* with different hyper-parameter settings of λ .

Fig. 7. Scatter plots demonstrating the 6-wise coverage achieved *LS-Sampling-Plus* with different hyper-parameter settings of λ .

Fig. 8. Box plots demonstrating the *t*-wise coverage ($3 \le t \le 6$) achieved by *LS-Sampling-Plus* with different hyper-parameter settings of δ .

Fig. 9. Scatter plots demonstrating the 6-wise coverage achieved by *LS-Sampling-Plus* with different hyper-parameter settings of δ .

Fig. 10. Box plots demonstrating the t-option fault detection rate (2 $\leq t \leq$ 6) achieved by NS, PLEDGE, LS-Sampling and LS-Sampling-Plus.

Fig. 11. Scatter plots demonstrating the 6-option fault detection rate achieved by NS, PLEDGE, LS-Sampling and LS-Sampling-Plus.

Fig. 12. Box plots demonstrating the t-wise coverage ($2 \le t \le 6$) achieved by uniform sampling, *Baital*, *NS*, *PLEDGE*, *LS-Sampling* and *LS-Sampling-Plus* over 5 non-binary benchmarks of Healthcare4, Insurance, ProcessorComm2, Strorage4 and Storage5.

Fig. 13. Scatter plots demonstrating the t-wise coverage ($2 \le t \le 6$) achieved by uniform sampling, *Baital*, *NS*, *PLEDGE*, *LS-Sampling* and *LS-Sampling-Plus* over 5 non-binary benchmarks of Healthcare4, Insurance, ProcessorComm2, Strorage4 and Storage5.

Fig. 14. Box plots demonstrating the t-wise coverage ($2 \le t \le 6$) achieved by uniform sampling, *Baital*, *NS*, *PLEDGE*, *LS-Sampling* and *LS-Sampling-Plus* over the remaining 15 non-binary benchmarks.

Fig. 15. Scatter plots demonstrating the t-wise coverage ($2 \le t \le 6$) achieved by uniform sampling, *Baital*, *NS*, *PLEDGE*, *LS-Sampling* and *LS-Sampling-Plus* over the remaining 15 non-binary benchmarks.