Lógica y Programación

Lógica Proposicional: Corrección y Completitud

Corrección y completitud

¿Cuál es la relación entre la sintaxis y la semántica de PROP?

Sintaxis

lacktriangle Conjunto de fórmulas ϕ tal que $\vdash \phi$ es un secuente válido

Semántica

Conjunto de fórmulas ϕ tal que $v \models \phi$, para toda valuación v (i.e. tautologías).

Corrección

 $\vdash \phi$ secuente válido ϕ tiene una prueba implica que ϕ es tautología

Completitud

 ϕ tautología implica que $\vdash \phi$ es secuente válido ϕ tiene una prueba.

Valuaciones

- ▶ Valuación: función $v: \mathcal{V} \to \{\mathbf{T}, \mathbf{F}\}$ que asigna valores de verdad a las variables proposicionales
- ► Satisfactibilidad: v satisface A si $v \models A$ donde:

$$v \vDash p \quad sii \quad v(p) = \mathbf{T}$$

$$v \vDash \neg \phi \quad sii \quad v \nvDash \phi \ (i.e. \text{ no } v \vDash \phi)$$

$$v \vDash \phi \lor \psi \quad sii \quad v \vDash \phi \text{ o } v \vDash \psi$$

$$v \vDash \phi \land \psi \quad sii \quad v \vDash \phi \text{ y } v \vDash \psi$$

$$v \vDash \phi \rightarrow \psi \quad sii \quad v \nvDash \phi \text{ o } v \vDash \psi$$

$$v \vDash \phi \leftrightarrow \psi \quad sii \quad (v \vDash \phi \text{ sii } v \vDash \psi)$$

Tautologías y satisfactibilidad

Una proposición A es

- una tautología si $v \models A$ para toda valuación v
- ightharpoonup satisfactible si existe una valuación v tal que $v \models A$
- ▶ insatisfactible si no es satisfactible

Consecuencia semántica (semantic entailment)

Consecuencia semántica

Para $\phi_1, \phi_2, \dots, \phi_n, \psi$ fórmulas de la lógica proposicional,

$$\phi_1, \phi_2, \ldots, \phi_n \vDash \psi$$

cuando toda valuación v que satisface todas las premisas (esto es $v \models \phi_i$ para todo $i \in 1..n$) también satisface la conclusión ($v \models \psi$).

Ejemplos

- $ightharpoonup p \land q \models p$
- $ightharpoonup \neg q, p \lor q \vDash p$
- $\triangleright p \lor q \nvDash q$
- $ightharpoonup p \models q \lor \neg q$

Corrección y completitud (Generalizado)

- Conviene generalizar los enunciados de corrección y completitud
- Motivo: Facilita su demostración

Corrección

 $\vdash \phi$ secuente válido implica que ϕ es tautología

Completitud

 ϕ tautología implica que $\vdash \phi$ es secuente válido.

Corrección (generalizada)

 $\psi_1, \ldots, \psi_n \vdash \phi$ secuente válido implica que $\psi_1, \ldots, \psi_n \models \phi$

Completitud (generalizada)

 $\psi_1, \dots, \psi_n \vDash \phi$ implica que $\psi_1, \dots, \psi_n \vdash \phi$ es secuente válido.

Completitue

Teorema

Si
$$\phi_1, \phi_2, \dots, \phi_n \vdash \psi$$
 entonces $\phi_1, \phi_2, \dots, \phi_n \vDash \psi$

Demostración:

- Por inducción en la estructura de la prueba
- Procedemos analizando por casos la última regla aplicada en la prueba
- Arrancamos con el caso base
- Caso base) La prueba consiste únicamente de la regla Hyp: $\psi = \phi_i$ para algún i. Como $v \models \phi_i$ por hipótesis, tenemos que $v \models \psi$.

sigue...

continuación

- ► Caso $\wedge i$) $\psi = \eta_1 \wedge \eta_2$ con $\phi_1, \phi_2, \dots, \phi_n \vdash \eta_1$ (1) y $\phi_1, \phi_2, \dots, \phi_n \vdash \eta_2$ (2).
 - Por HI en (1) $\phi_1, \phi_2, \ldots, \phi_n \vDash \eta_1$.
 - Por HI en (2) $\phi_1, \phi_2, \ldots, \phi_n \vDash \eta_2$.

Por def. de consecuencia semántica, para toda valuación v que satisface las premisas $\phi_1, \phi_2, \dots, \phi_n$,

- \triangleright $v \models \eta_1$
- \triangleright $v \models \eta_2$

Luego $v \vDash \eta_1 \land \eta_2$ (es decir $v \vDash \psi$) por definición de satisface. Finalmente, $\phi_1, \phi_2, \dots, \phi_n \vDash \psi$. sigue...

continuación

Caso $\wedge e_1$) $\psi = \eta_1$ con $\phi_1, \phi_2, \dots, \phi_n \vdash \eta_1 \land \eta_2$. Aplicando HI, $\phi_1, \phi_2, \dots, \phi_n \vdash \eta_1 \land \eta_2$.

Por definición de consecuencia semántica, si v satisface todas las premisas, entonces

$$v \vDash \eta_1 \wedge \eta_2$$
.

Luego, $v \vDash \eta_1$ (es decir $v \vDash \psi$). Finalmente $\phi_1, \phi_2, \dots, \phi_n \vDash \psi$.

ightharpoonup Caso $\land e_2$) análogo anterior.

sigue...

continuación

- ▶ Caso $\forall e$) $\psi = \chi$ con
 - (1) $\phi_1, \phi_2, \ldots, \phi_n \vdash \eta_1 \vee \eta_2$
 - (2) $\phi_1, \phi_2, \ldots, \phi_n, \eta_1 \vdash \chi$
 - (3) $\phi_1, \phi_2, \dots, \phi_n, \eta_2 \vdash \chi$.

Usando hipótesis inductiva en (1-3), tenemos que

- $(4) \ \phi_1, \phi_2, \ldots, \phi_n \vDash \eta_1 \vee \eta_2$
- (5) $\phi_1, \phi_2, \ldots, \phi_n, \eta_1 \vDash \chi$
- (6) $\phi_1, \phi_2, \ldots, \phi_n, \eta_2 \vDash \chi$.

Por (3), sabemos que para toda valuación v que satisface las premisas,

 $v \vDash \eta_1 \lor \eta_2$. Luego $v \vDash \eta_1$ o $v \vDash \eta_2$

- ▶ Si $v \vDash \eta_1$, por (5) $v \vDash \chi$ y luego $\phi_1, \phi_2, \dots, \phi_n \vDash \chi$.
- ► Si $v \vDash \eta_2$, por (6) $v \vDash \chi$ y luego $\phi_1, \phi_2, \ldots, \phi_n \vDash \chi$.

En los dos casos $\phi_1, \phi_2, \dots, \phi_n \vDash \psi$ (porque $\psi = \chi$).

restantes casos como práctica

Comentarios adicionales sobre corrección

- Resultado es esperado
- Muestra que las reglas lógica del sistema de Deducción Natural para PROP son "razonables"
- ▶ Beneficio adicional: se puede usar para probar que una fórmula no es demostrable
 - ► p no es un secuente válido (¿Por qué?)

Completitud

Completitud

Completitud

 $\psi_1, \ldots, \psi_n \vDash \phi$ implica que $\psi_1, \ldots, \psi_n \vdash \phi$ es secuente válido.

Estrategia: vamos a probar el contrarecíproco

Completitud (definición equivalente a la anterior)

 $\psi_1, \dots, \psi_n \vdash \phi$ no es secuente válido implica que $\psi_1, \dots, \psi_n \nvDash \phi$.

Recordar:

- " $\psi_1, \ldots, \psi_n \vdash \phi$ no es secuente válido" significa que no hay una prueba de ϕ a partir de las hipótesis ψ_1, \ldots, ψ_n .
- " $\psi_1, \ldots, \psi_n \nvDash \phi$ " significa que existe una valuación v tal que $v \vDash \psi_i$, para toda $i \in 1...n$ pero $v \nvDash \phi$.

Nociones preliminares

Conjunto consistente de fórmulas

 Γ se dice consistente si $\Gamma \not\vdash \bot$.

Γ es consistente si no se puede derivar una contradicción a partir de él

Ejemplos:

- $\{p, q \rightarrow r\}$ es consistente (¿Cómo lo pruebo?)
- $ightharpoonup \{p,q,q
 ightarrow \neg p\}$ no es consistente

Nociones preliminares

Recordamos la definición de satisfactibilidad de un conjunto de fórmulas

Γ un conjunto de fórmulas

Definición

 Γ tiene un modelo (o es satisfactible) si existe una valuación v tal que

$$v \vDash \phi$$
, para toda $\phi \in \Gamma$

Ejemplos:

- $\{p, q \rightarrow r\}$ tiene un modelo (¿Ejemplo de valuación?)
- $ightharpoonup \{p,q,q
 ightarrow
 eg p\}$ no tiene un modelo

Completitud: $\Gamma \nvdash \phi$ implica $\Gamma \nvdash \phi$

Demostración requiere dos lemas:

- L1. Si $\Gamma \nvdash \phi$, entonces $\Gamma \cup \{\neg \phi\}$ es consistente
- L2. Si Γ es consistente, entonces tiene modelo

La prueba

Supongamos que $\Gamma \nvdash \phi$

- \Rightarrow $\Gamma \cup \{\neg \phi\}$ es consistente (por L1)
- $\Rightarrow \Gamma \cup \{\neg \phi\}$ tiene modelo (por L2)
- $\Rightarrow \exists v \text{ tal que } \forall \psi \in \Gamma \cup \{\neg \phi\}, \ v \vDash \psi \text{ (def. de tener modelo)}$
- $\Rightarrow \exists v \text{ tal que } v \nvDash \phi \text{ y } \forall \psi \in \Gamma, \ v \vDash \psi \text{ (def. de } \vDash)$
- \Rightarrow $\Gamma \nvDash \phi$ (def. de consecuencia semántica).

Prueba del L1

Si $\Gamma \nvdash \phi$, entonces $\Gamma \cup \{\neg \phi\}$ es consistente

Prueba

Por contrarecíproco.

Supongamos que $\Gamma \cup \{\neg \phi\}$ es inconsistente.

$$\Rightarrow$$
 $\Gamma, \neg \phi \vdash \perp$.

$$\Rightarrow$$
 Hay una prueba de \perp a partir de $\Gamma, \neg \phi$:

$$\Rightarrow$$
 La usamos para otra de $φ$ a partir de $Γ$:

$$\Rightarrow \Gamma \vdash \phi$$

Sobre L2 – Primero una observación

L2

Si Γ es consistente, entonces tiene modelo

Vale la vuelta también: Si Γ tiene modelo, es consistente

Prueba de la vuelta Por el absurdo

$$\Gamma \vdash \perp$$

- \Rightarrow Sea ν tal que $\forall \phi \in \Gamma$, $\nu \models \phi$ (ν existe porque Γ tiene modelo)
- \Rightarrow Por Teorema de Corrección, ν debería satisfacer \perp .
- \Rightarrow ¡Ninguna v verifica $v \models \bot !$
- $\Rightarrow \Gamma \nvdash \bot$.

Prueba del L2: Si Γ es consistente, entonces tiene modelo

Objetivo

▶ Definir v tal que $\forall \phi \in \Gamma$, $v \models \phi$

Consideraciones:

- ▶ Hay que definir *v* sobre las variables proposicionales
- Si $p \in \Gamma$, no queda otra que definir $v(p) \stackrel{\text{def}}{=} \mathbf{T}$
- ▶ Si $\neg p \in \Gamma$, no queda otra que definir $v(p) \stackrel{\text{def}}{=} \mathbf{F}$.
- ▶ ¿Si $p \notin \Gamma$ y $\neg p \notin \Gamma$? ¿Podemos definir, digamos, $v(p) \stackrel{\text{def}}{=} \mathbf{T}$?
 - ► Considerar $\Gamma = \{q, q \rightarrow \neg p\}$ y $v(q) \stackrel{\text{def}}{=} \mathbf{T}$ y $v(p) \stackrel{\text{def}}{=} \mathbf{T}$.

Observación 1

- Primero "completar" Γ con todas sus consecuencias lógicas
 - $Th(\Gamma) = \{q, q \to \neg p, \neg p, q \land \neg p \ldots \}$
 - ► En general $Th(Γ) = {\phi | Γ \vdash φ}$

Prueba del L2: Si Γ es consistente, entonces tiene modelo

¿Alcanza con completar Γ con sus consecuencias lógicas para poder definir ν ?

- No.
- **▶** Considerar $\Gamma = \{q, q \rightarrow \neg p\}$
- ightharpoonup ig
- ightharpoonup ig
- ► Entonces ni r ni $\neg r$ van a aparecer en $Th(\Gamma)$
- ▶ Problema: ¿cómo definimos v en r?

Observación 2

Podemos usar L1 y agregarlo $(r \circ \neg r)$ a Γ conservando consistencia

Prueba del L2: Si Γ es consistente, entonces tiene modelo

- Vamos a definir una técnica que se encarga de atender ambas observaciones a la vez:
 - Agrega las consecuencias lógicas y además
 - Agrega las fórmulas que no son consecuencia lógica y que no generan inconsistencias
- Permite obtener la extensión consistente maximal de Γ y se escribe Γ*
- Nuestro plan de prueba de L2 ahora será:
 - 1. Dado Γ. obtenemos Γ*
 - 2. A partir de Γ^* obtenemos una valuación ν
 - 3. Probamos que v satisface a todas las fórmulas de Γ

Conjunto consistente maximal

Γ es consistente maximal si

- 1. Γ es consistente
- 2. Si $\Gamma \subseteq \Gamma'$ y Γ' consistente, entonces $\Gamma' = \Gamma$

Observación

▶ (2) puede reemplazarse equivalentemente por:

Si $\Gamma \subset \Gamma'$, entonces Γ' es inconsistente

Ejemplo

 $\Gamma = \{\phi \mid v \vDash \phi\}$ para una valuación v cualquiera dada.

- ► Es consistente por vuelta de L2 (si tiene modelo es consistente)
- ▶ Si $\Gamma \subset \Gamma'$, entonces Γ' es inconsistente (¿por qué?)

Lema de saturación

Lema

 Γ consistente está contenido en un conjunto consistente maximal Γ^*

Prueba

- ▶ Sea ϕ_0, ϕ_1, \dots la lista de todas las fórmulas de PROP
- Definimos una secuencia de conjuntos de fórmulas

$$\Gamma_0 \stackrel{\text{def}}{=} \Gamma
\Gamma_{n+1} \stackrel{\text{def}}{=} \begin{cases} \Gamma_n \cup \{\phi_n\} & \text{si } \Gamma_n \cup \{\phi_n\} \text{ es consistente} \\ \Gamma_n & \text{sino} \end{cases}$$

► Luego definimos

$$\Gamma^* \stackrel{\text{def}}{=} \bigcup \{\Gamma_i \mid i \geq 0\}$$

- **►** Es claro que $\Gamma \subseteq \Gamma^*$
- ► Veremos que Γ* es consistente maximal

Lema de saturación

Lema

 Γ consistente está contenido en un conjunto consistente maximal Γ^*

Prueba (continuación)

Cada Γ_n es consistente (trivial)

- \Rightarrow Γ^* es consistente. Se muestra por el absurdo
- ⇒ Γ* es consistente maximal

Asumir Δ consistente tal que $\Gamma^* \subseteq \Delta$ y $\psi \in \Delta$

- \Rightarrow Existe *m* tal que $\psi = \phi_m$
- \Rightarrow Como $\Gamma_m \subseteq \Gamma^* \subseteq \Delta$, $\Gamma_m \cup \{\phi_m\}$ consistente
- \Rightarrow $\Gamma_{m+1} = \Gamma_m \cup \{\phi_m\}$ y por ende $\phi_m \in \Gamma^*$

Finalmente: Prueba de L2

L2

Si Γ es consistente, entonces tiene modelo

Prueba

- Por lema de saturación existe Γ* consistente maximal que incluye a Γ
- Definimos:

$$v(p_i) \stackrel{\text{def}}{=} \left\{ egin{array}{ll} \mathbf{T} & ext{si } p_i \in \Gamma^* \\ \mathbf{F} & ext{sino} \end{array} \right.$$

- ▶ Probamos que $v \models \phi$ sii $\phi \in \Gamma^*$
- ► Concluimos que $v \models \phi$ para todo $\phi \in \Gamma$

Resumen de resultados

Caracterización sintáctica y semántica de verdades universales

Ambas coinciden

Corrección

 ϕ tiene una prueba implica que ϕ es tautología

Completitud

 ϕ tautología implica que ϕ tiene una prueba.