## Divide and Conquer

Given a problem of size *n*:

- 1) *Divide* the problem into *k* sub-problems of size *n/k* each
- 2) *Conquer* by solving each sub-problem independently
- 3) *Combine* the *k* solutions to sub-problems into a solution to the original problem

Time? 
$$T(n)=k \cdot T(n/k)+d(n)+c(n)$$

Examples. MergeSort, matrix multiplication, maximum contiguous sum, closest pair, etc.

# **Buying and Selling Stock**

- Suppose you are given the daily prices of a certain stock over a given period
- With hindsight, what would have been the best time to buy and sell in order to maximize your profit?



-

# **Proposed Algorithms**

**Algorithm 1.** Buy at the lowest point and sell at the highest point after it.

**Algorithm 2.** Sell at the highest point and buy at the lowest point before it.

Algorithm 3. Choose the best of 1 or 2.



**Algorithm 4.** Consider all pairs (i,j) of days where j > i and choose the best pair.

A Transformation

 What if you work instead with the sequence of daily changes?

| Day    | 0   | 1   | 2   | 3  | 4   | 5   | 6  | 7  | 8  | 9   | 10 | 11  | 12  | 13 | 14 | 15 | 16 |
|--------|-----|-----|-----|----|-----|-----|----|----|----|-----|----|-----|-----|----|----|----|----|
| Price  | 100 | 113 | 110 | 85 | 105 | 102 | 86 | 63 | 81 | 101 | 94 | 106 | 101 | 79 | 94 | 90 | 97 |
| Change |     |     |     |    |     |     |    |    |    |     |    |     |     |    |    |    |    |

Goal: find a contiguous subarray whose value has a largest sum



## MaxSum Subarray

**Algorithm 1.** For each subarray A[i..j] find the net change and keep the maximum.

```
MaxSubSum(A, n)

1 best \leftarrow 0

2 for i \leftarrow 1 to n do

3 for j \leftarrow i to n do

4 sum \leftarrow 0

5 for k \leftarrow i to j do

6 sum \leftarrow sum + A[k]

7 if sum > best then

8 best \leftarrow sum

9 return best T(n) \in \Theta(n^3)

end
```

# Algorithm 2

```
MaxSubSum(A, n)

1 best \leftarrow 0

2 for i \leftarrow 1 to n do

3 sum \leftarrow 0

4 for j \leftarrow i to n do

5 sum \leftarrow sum + A[j]

6 if sum > best then

7 best \leftarrow sum

8 return best

end

T(n) \in \Theta(n^2)
```



```
MaxSumSeq(A, low, high)
    if low = high \triangleright Base case
 2
        then if A[low] > 0
 3
                  then return A[low]
 4
                  else return 0
    ▷ Divide
                                         T(n) = 2T(n/2) + n \in \Theta(n \log n)
    mid \leftarrow \lfloor (low + high)/2 \rfloor

→ Conquer

 6 maxLeft ← MaxSumSeq(A, low, mid)
    maxRight \leftarrow MaxSumSeq(A, mid + 1, high)

→ Combine

    maxLeft2Center \leftarrow left2Center \leftarrow 0
    for i \leftarrow mid \ downto \ low
10
           do left2Center \leftarrow left2Center + A[i]
               maxLeft2Center \leftarrow max(left2Center, maxLeft2Center)
11
12
    maxRight2Center \leftarrow right2Center \leftarrow 0
13
    for i \leftarrow mid + 1 to high
14
           do right2Center \leftarrow right2Center + A[i]
15
               maxRight2Center \leftarrow max(right2Center, maxRight2Center)
16
    return \max(maxLeft, maxRight, maxLeft2Center + maxright2Center)
```

### **Exercise**

 Design and analyze an incremental algorithm to compute the maximum profit you could get by buying and selling a particular stock at the right times

9

## Matrix Multiplication

- Given two  $n \times n$  matrices A and B find  $C=A\times B$
- Recall: C is also  $n \times n$  and

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Example: n = 2

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \\ \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$

— How many scalar operations were needed to compute  $A \times B$ ?

# A Brute Force Algorithm

Input: two  $n \times n$  matrices A and B

SQUARE-MATRIX-MULTIPLY (A, B)

1 
$$n = A.rows$$
  
2 let  $C$  be a new  $n \times n$  matrix  
3 **for**  $i = 1$  **to**  $n$   
4 **for**  $j = 1$  **to**  $n$   
5  $c_{ij} = 0$   
6 **for**  $k = 1$  **to**  $n$   
7  $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$   
8 **return**  $C$ 

Input size:  $N = 2n^2$ 

Time? 
$$T(n) \in \Theta(n^3)$$
 or  $T(N) \in \Theta(N\sqrt{N})$ 

#### A DAC Solution

• Partition each  $n \times n$  matrix into four  $n/2 \times n/2$  submatrices

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21},$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22},$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21},$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}.$$

Recurrence?  $T(n) = 8T(n/2) + n^2$ 

#### A DAC Solution...

SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)

```
1 n = A.rows

2 let C be a new n \times n matrix

3 if n = 1

4 c_{11} = a_{11} \cdot b_{11}

5 else partition A, B, and C as in equations (4.9)

6 C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})

+ \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{12}, B_{21})

7 C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12})

+ \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{12}, B_{22})

8 C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11})

+ \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{22}, B_{21})

9 C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})

+ \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{22}, B_{22})

10 return C
```

Time? 
$$T(n) = 8T(n/2) + n^2 \in \Theta(n^3)$$

$$T(n) = n^{2} + 8 \cdot T(n/2)$$

$$= n^{2} + 8[(n/2)^{2} + 8 \cdot T(n/4)] = n^{2} + 2n^{2} + 8^{2} \cdot T(n/4)$$

$$= n^{2} + 2n^{2} + 8^{2}[(n/4)^{2} + 8 \cdot T(n/8)]$$

$$= n^{2} + 2n^{2} + 2^{2}n^{2} + 8^{3} \cdot T(n/2^{3})$$

$$= n^{2} + 2n^{2} + 2^{2}n^{2} + \dots + 2^{k-1}n^{2} + 8^{k} \cdot T(n/2^{k})$$

$$= n^{2} (1 + 2 + \dots + 2^{k-1}) + 2^{3k} \cdot T(n/2^{k})$$

$$= n^{2} (2^{k} - 1) + 2^{3k} \cdot T(n/2^{k}) \quad \text{Stop when } n = 2^{k}$$

$$= n^{2} (n - 1) + n^{3} \cdot T(1) \in \Theta(n^{3})$$

### A Different DAC Solution (Strassen '68)

$$S_{1} = B_{12} - B_{22}, S_{6} = B_{11} + B_{22},$$

$$S_{2} = A_{11} + A_{12}, S_{7} = A_{12} - A_{22},$$

$$S_{3} = A_{21} + A_{22}, S_{8} = B_{21} + B_{22},$$

$$S_{4} = B_{21} - B_{11}, S_{9} = A_{11} - A_{21},$$

$$S_{5} = A_{11} + A_{22}, S_{10} = B_{11} + B_{12}.$$

$$P_{1} = A_{11} \cdot S_{1} = A_{11} \cdot B_{12} - A_{11} \cdot B_{22}, C_{11} = P_{5} + P_{4} - P_{2} + P_{6},$$

$$P_{2} = S_{2} \cdot B_{22} = A_{11} \cdot B_{22} + A_{12} \cdot B_{22}, C_{12} = P_{1} + P_{2},$$

$$P_{3} = S_{3} \cdot B_{11} = A_{21} \cdot B_{11} + A_{22} \cdot B_{11}, C_{21} = P_{3} + P_{4},$$

$$P_{4} = A_{22} \cdot S_{4} = A_{22} \cdot B_{21} - A_{22} \cdot B_{11}, C_{22} = P_{5} + P_{1} - P_{3} - P_{7},$$

$$P_{5} = S_{5} \cdot S_{6} = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{21} - A_{22} \cdot B_{22},$$

$$P_{6} = S_{7} \cdot S_{8} = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22},$$

$$P_{7} = S_{9} \cdot S_{10} = A_{11} \cdot B_{11} + A_{11} \cdot B_{12} - A_{21} \cdot B_{11} - A_{21} \cdot B_{12}.$$

#### Strassen...

$$C_{11} = P_5 + P_4 - P_2 + P_6$$

$$C_{12} = P_1 + P_2$$

$$C_{21} = P_3 + P_4$$

$$C_{22} = P_5 + P_1 - P_3 - P_7$$

Recurrence? $T(n) = 7T(n/2) + n^2 \in \Theta(n^{\log_2 7})$ 

### **Closest Pair**

• Given a set  $P = \{p_1, p_2, ..., p_n\}$  of points on the plane find a and b such that

$$\operatorname{dist}(p_a, p_b) \le \operatorname{dist}(p_i, p_j), \forall 1 \le i \ne j \le n$$

- Brute force takes  $\Theta(n^2)$  time
- Can we do better?



17

# A Divide and Conquer Solution

To compute *CP(P):* 

1. Sort *P* lexicographically, i.e., such that

$$x_i < x_{i+1} \lor x_i = x_{i+1} \land y_i \le y_{i+1}$$

**2.** <u>Divide</u>:  $P_L = \{p_1, ..., p_{n/2}\}$  and  $P_R = \{p_{n/2+1}, ..., p_n\}$ 

3. Conquer: let  $\delta_1 = CP(P_L)$  and  $\delta_2 = CP(P_R)$ 

4. <u>Combine</u>: how? is  $\delta = \min(\delta_1, \delta_2)$  the answer?





### Exercise

- Design and analyze an efficient incremental algorithm for the closest-pair problem
  - Hint. As in the DAC algorithm, transform-andconquer is useful before you run your incremental solution

21

# **Solving Recurrences**

• Iteration / Recursion Trees

```
T(n) = n + 3T(n/3)
= n + 3(n/3 + 3T(n/9))
= 2n + 9T(n/9)
= 3n + 27T(n/27)
\vdots
= kn + 3^{k}T(n/3^{k})
= n + 3T(n/3)
T(n)
```

- Substitution (Induction)
- Master Theorem

### Substitution

- Prove  $T(n)=2T(n/2)+\Theta(n)=\Theta(n \log n)$ 
  - Will show T(n) ≤  $bn \log n$ , n≥2 (upper bound)
  - Can assume
    - $T(n) \le 2T(n/2) + cn$
    - $T(k) \le bk \log k$ , for  $2 \le k < n$

#### Proof:

$$T(n) \le 2T(n/2) + cn$$

$$\le 2\left(b\frac{n}{2}\log\frac{n}{2}\right) + cn$$

$$= bn(\log n - 1) + cn$$

$$= bn\log n - (bn - cn)$$

$$< bn\log n, \text{ if } b > c$$

23

### Lower bound?

- Show  $T(n) \ge dn \log n$
- What can you assume?
  - $T(n) \ge 2T(n/2) + an$
  - $T(k) \ge dk \log k$ , for k < n

#### Proof:

$$T(n) \ge 2T(n/2) + an$$

$$\ge 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + an$$

$$= dn(\log n - 1) + an$$

$$= dn\log n + (an - dn)$$

$$\ge dn\log n, \text{ if } a \ge d$$

#### **Master Theorem**

Consider a DAC algorithm with running time T(n) = a T(n/b) + f(n) where  $a \ge 1$  and b > 1 are constants and f(n) positive. Then:

- 1. If  $f(n) = O(n^{\log_b a \varepsilon})$  for some constant  $\varepsilon > 0$ , then  $T(n) = \Theta(n^{\log_b a})$
- 2. If  $f(n) = \Theta(n^{\log_b a} \log^k n)$  with  $k \ge 0$ , then  $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- 3. If  $f(n) = \Omega(n^{\log_b a + \varepsilon})$  with  $\varepsilon > 0$ , and f(n) satisfies the regularity condition, then  $T(n) = \Theta(f(n))$

#### **Regularity Condition:**

 $af(n/b) \le cf(n)$  for some c < 1 and large enough n

<sup>1</sup> In the textbook, k = 0.

25

#### **Practice Problems**

Solve each problem using the Master Theorem or indicate why the theorem does not apply:

- 1.  $T(n) = 8T(n/2) + n^2$
- 2.  $T(n) = T(n/2) + 2^n$
- 3. T(n) = 3T(n/2) + n
- 4.  $T(n) = 2^n T(n/2) + n^3$
- 5. T(n) = 4T(n/2) + n
- 6.  $T(n) = 2T(n/2) + n/\log n$
- 7.  $T(n) = \sqrt{2} T(n/2) + \log n$
- 8.  $T(n) = 2T(n/2) + n \log n$

### **Exercise**

- Describe a divide-and-conquer algorithm to compute the max of an array of n integers
- Write a recurrence for your algorithm and solve it using:
  - 1. Iteration
  - 2. Substitution (Induction)
  - 3. Master Method

27

#### **Subset Sum**

- Given a set A of positive integers and a target value t, find a subset  $S \subseteq A$ , whose elements add up to t Example:  $A = \{1,3,4,5\}, t = 11$
- A DAC algorithm can be built around two smaller instances, by including or excluding the first element
- Only one instance is needed, but we don't know which one

```
\begin{array}{lll} \text{SUBSETSUMQ}(X,n,from,t) & \text{Time?} \\ 1 & \text{if } t=0 \\ 2 & \text{then return TRUE} \\ 3 & \text{if } t<0 \text{ or } from=n \\ 4 & \text{then return FALSE} \\ 5 & \text{return SUBSETSUMQ}(X,n,from+1,t) \\ & \text{or SUBSETSUMQ}(X,n,from+1,t-X[from]) \end{array}
```

## Constructing the Subset

```
SUBSETSUM(X, n, from, t)

1 if t = 0

2 then return \{\}

3 if t < 0 or from = n

4 then return None

5 Y \leftarrow \text{SUBSETSUM}(X, from + 1, t)

6 if Y \neq \text{None}

7 then return Y

8 Y \leftarrow \text{SUBSETSUM}(X, from + 1, t - X[from])

9 if Y \neq \text{None}

10 then return \{X[from]\} \cup Y
```

# Algorithm Design Paradigms

- The problem with DAC subset sum is that it actually performs a recursive exhaustive search
- Backtracking constructs and evaluates the solution one component at a time using a state-space tree whose nodes are generated by DFS and reflect choices made for partial solutions. The root corresponds to start of search
- If a partial solution (a tree node) can be extended without violating the constraints, take the first remaining option for the next component; else, if there is no valid option for the next component, prune the node's subtree, and backtrack to replace the last component with next choice
- In the worst-case may still take exponential time

### The *n*-Queens Problem

- Place n queens on an  $n \times n$  board so that no two queens occupy the same row, column, or diagonal
- Clearly, need one queen per row
- Solution is an array Q[1:n], with Q[i] = the column for queen in row i



- In a partial solution, array Q contains positive values in the first t entries and zeros in the last n-t entries
- Algorithm proceeds row by row, from top to bottom, and recursively enumerates all solutions that are consistent with given partial solution.

31

# The Algorithm

- Parameter *r* denotes the first empty row, top to bottom
- Calling nQueens(Q,r) places a queen in row r, and nQueens(Q,1) recursively solves the problem

## 4-Queens State-Space Tree



- Why is this more efficient than brute-force?
- Can you think of other problems that can be solved by backtracking?

3

## Subset Sum by Backtracking

- Given a set A of positive integers and a target value t, find a subset S ⊆ A, whose elements add up to t
- Process A in a ascending order:  $a_1 < a_2 < \cdots < a_n$
- The state-space is a binary tree
  - Root represents the empty subset
  - Left (right) children correspond inclusion (exclusion) of the next element of  ${\cal A}$
  - Ancestors of a node at depth i, represent a subset of  $a_1, ..., a_i$
  - Record the sum s of the members of this subset at the node
    - If s = t, we found a solution
    - Prune if  $s + a_i > t \quad \text{or} \quad s + \sum_{i=i+1}^n a_i < t$

## Example



How is this better than exhaustive search?

35

#### **General Structure**

- The output is a tuple  $(x_1, x_2, ..., x_k)$  where  $x_i \in S_i$  In n-Queens,  $S_i = \{1, ..., n\}$
- Tuples may vary in size and need to satisfy additional constraints. Algorithm generates state-space tree with nodes  $X=(x_1,\ldots,x_i)$  of partial solutions representing earlier decisions, and adds  $x_{i+1}$  consistent with constraints
- If  $x_{i+1}$  does not exist, backtrack and try next  $x_i$ , and so on

```
\begin{aligned} \mathsf{Backtrack}(X,i) \colon \\ & \quad \text{if } X(1:i) \text{ is a solution, report it} \\ & \quad \text{else} \\ & \quad \text{foreach } x \in S_{i+1} \text{ consistent with } X(1:i) \text{ do} \\ & \quad X(i+1) \leftarrow x \\ & \quad \mathsf{Backtrack}(X,i+1) \end{aligned}
```

# How to Shrink the State Space

- Exploit problem symmetry
  - n-Queens: Limit  $S_1=\{1,\ldots,\lceil n/2\rceil\}$ , but keep  $S_i=\{1,\ldots,n\}$  for  $i\neq 1$ , as other solutions can be obtained by reflection
- Data presorting: rearrange input data
  - In subset sum, process values in ascending order

37

# Quicksort

- Worst case is  $\Theta(n^2)$
- Best case is  $\Theta(n \log n)$
- Average case is  $\Theta(n \log n)$
- Constant hidden in  $\Theta$ -notation is small
- Sorts in place
- Divide-and-conquer
  - Based on linear time partition algorithm (a clever divide)



# Quicksort...

- 1. Divide. Rearrange A[p..r] into three parts A[p..q-1], A[q], and A[q+1..r] such that each element of first part is A[q] and each element of third part is A[q]
- 2. Conquer. Recursively sort the two unsorted parts
- 3. Combine. Not needed!





# Quicksort...

QUICKSORT(A, p, r)

- 1 if p < r
- 2 **then**  $q \leftarrow PARTITION(A, p, r)$
- 3 QUICKSORT(A, p, q 1)
- 4 QUICKSORT(A, q + 1, r)



41

### **Partition**

- Choose pivot x = A[r]
- Scan array once from left to right
- During partition, array consists of four parts
  - Portion already scanned A[p..j-1] is partitioned into two parts A[p..i] and A[i+1..j-1] of elements smaller and bigger than x, respectively



## **Partition**

```
PARTITION(A, p, r)

1 x \leftarrow A[r]

2 i \leftarrow p - 1

3 for j \leftarrow p to r - 1

4 do if A[j] \leq x

5 then i \leftarrow i + 1

6 exchange A[i] \leftrightarrow A[j]

7 exchange A[i + 1] \leftrightarrow A[r]

8 return i + 1
```

• Runs in  $\Theta(n)$  time (where n = r - p + 1)

```
Example
                                  PARTITION (A, p, r)
                                      x \leftarrow A[r]
8 1 6 4 0 3 9 5
                                  2 \quad i \leftarrow p-1
8 1 6 4 0 3 9 5
                                      for j \leftarrow p to r-1
                                            do if A[j] \leq x
1 8 6 4 0 3 9 5
                                  5
                                                  then i \leftarrow i + 1
1 8 6 4 0 3 9 5
                                                        exchange A[i] \leftrightarrow A[j]
                                      exchange A[i+1] \leftrightarrow A[r]
                                      return i + 1
1 4 0 8 6 3 9 5
p i r
1 4 0 3 5 8 9 6
```

## **Invariant**

- At the beginning of each iteration (lines 3-6) the following conditions hold
  - 1. A[r] = x
  - 2.  $A[k] \le x$  for  $p \le k \le i$
  - 3. A[k] > x for i < k < j
- Verify!
  - Initialization
  - Maintenance
  - Termination



45

# Maintaining the Invariant

- Two cases
  - a) A[j] > x
  - b)  $A[j] \leq x$





## Running Time: Worst Case

$$T(n) = \max_{0 \le q < n} \{ T(q) + T(n - q - 1) + \Theta(n) \}$$
  
where  $q = \#$  elements in left part

- When does the worst case happen?
- Can you show  $T(n) = \Theta(n^2)$  in the worst case?
  - Prove by substitution (induction) Guess  $T(n) \le an^2$  to show  $T(n) = O(n^2)$

47

#### **Proof of Worst Case**

Guess 
$$T(n) \le an^2$$
  
Base case : choose  $a$  so  $T(1) \le a$   
Inductive step :  
 $T(n) \le T(q) + T(n-q-1) + cn$   
 $T(n) \le aq^2 + a(n-q-1)^2 + cn$ 

Max of 
$$f(q) = q^2 + (n - q - 1)^2$$
 in  $[0, n - 1]$   
occurs at  $\{0, n - 1\}$   
$$T(n) \le a(n - 1)^2 + cn = an^2 - (2an - a - cn) \le an^2$$
$$\ge 0$$

#### How about the best case?

- Is it enough to check the case q = n/2?
  - This only shows upper bound for best case!

### How about the average case?

- Will analyze in next section
- Get some insight by analyzing consistently unbalanced partitions

49

# A Pretty Bad Case?

• Suppose you consistently get a 9-to-1 partitioning



### RANDOMIZED-PARTITION (A, p, r)1 $i \leftarrow \text{RANDOM}(p, r)$ 2 exchange $A[r] \leftrightarrow A[i]$ 3 **return** PARTITION (A, p, r)

```
RANDOMIZED-QUICKSORT (A, p, r)

1 if p < r

2 then q \leftarrow \text{RANDOMIZED-PARTITION}(A, p, r)

3 RANDOMIZED-QUICKSORT (A, p, q - 1)

4 RANDOMIZED-QUICKSORT (A, q + 1, r)
```