The alternative model of the spherical oscillator

Levon Mardoyan

Yerevan State University Alex Manougian str., 1, 0025 Yerevan, Armenia E-mail: mardoyan@ysu.am

Abstract

The quasiradial wave functions and energy spectra of the alternative model of spherical oscillator on the D-dimensional sphere and two-sheeted hyperboloid are found.

Keywords: Spherical oscillator, sphere, two-sheeted hyperboloid.

1 Introduction

The spherical oscillator was suggested by Higgs [1, 2]. The D-dimensional spherical oscillator is defined by the potential

$$V_{SD} = \frac{\omega^2}{2} \frac{x_\mu x_\mu}{x_0^2}, \qquad \mu = 1, 2, \dots, D,$$
 (1)

where x_0 , x_{μ} are the Euclidean coordinates of the ambient space \mathbb{R}^{D+1} : $x_0^2 + x_{\mu}x_{\mu} = r_0^2$ for D-dimensional sphere and $x_0^2 - x_{\mu}x_{\mu} = r_0^2$ for D-dimensional two-sheeted hyperboloid. (We use a system of units in which the reduced mass m and Planck constant \hbar satisfy $m = \hbar = 1$.) The spherical oscillator (1) on the D-dimensional sphere and two-sheeted hyperboloid is considered in [3] in detail.

The oscillator problem on spheres and pseudospheres was discussed from many point of view in [4, 5, 6, 7, 8, 9, 10].

The alternative model of spherical oscillator, which was suggested in our previous papers [11, 12], is defined by the potential

$$V_S^D = 2\omega^2 r_0^2 \frac{r_0 - x_0}{r_0 + x_0} \tag{2}$$

on the D-dimensional sphere, and

$$V_H^D = 2\omega^2 r_0^2 \frac{x_0 - r_0}{x_0 + r_0} \tag{3}$$

on the *D*-dimensional two-sheeted hyperboloid.

The two-dimensional case of the oscillator potentials (2) and (3) was considered in [13, 14].

2 Quasiradial function on *D*-sphere

The Schrödinger equation describing the nonrelativistic quantum motion in the D-dimensional curved space has the following form:

$$\hat{H}\Psi = \left[-\frac{1}{2}\Delta_{LB} + V\left(\vec{x}\right) \right]\Psi = E\Psi,\tag{4}$$

where the Laplace-Beltrami operator in arbitrary curvilinear coordinates ξ_{μ} is

 $x_0 = r_0 \cos \chi$

$$\Delta_{LB} = \frac{1}{\sqrt{g}} \frac{\partial}{\partial \xi_{\mu}} \left(g^{\mu\nu} \sqrt{g} \frac{\partial}{\partial \xi_{\mu}} \right), \qquad g = det g_{\mu\nu}, \qquad g_{\alpha\mu} g^{\mu\beta} = \delta_{\alpha}^{\beta}.$$

In the hyperspherical coordinates

$$x_1 = r_0 \sin \chi \cos \theta_1,$$

$$x_2 = r_0 \sin \chi \sin \theta_1 \cos \theta_2,$$

$$\vdots$$

$$x_{D-1} = r_0 \sin \chi \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{D-2} \cos \varphi,$$

$$x_D = r_0 \sin \chi \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{D-2} \sin \varphi,$$

where $\chi, \theta_1, \dots, \theta_{D-2} \in [0, \pi], \varphi \in [0, 2\pi)$, the oscillator potential (2) reads

$$V_S^D = 2\omega^2 r_0^2 \tan^2 \frac{\chi}{2}.$$
 (5)

The Schrödinger equation (4) for the potential (5) may be solved by searching for a wave function in the form

$$\Psi\left(\chi,\theta_{1},\ldots,\theta_{D-2},\varphi\right)=R(\chi)\,Y_{Ll_{1}l_{2}\ldots l_{D-2}}\left(\theta_{1},\ldots,\theta_{D-2},\varphi\right),\,$$

where l_i are the angular hypermomenta and L is total angular momentum, and the hyperspherical function $Y_{Ll_1l_2...l_{D-2}}(\theta_1,...,\theta_{D-2},\varphi)$ is the solution of the Laplace-Beltrami eigenvalue equation on the (D-1)-dimensional sphere. After the separation of variables in (4) we obtain the quasiradial equation

$$\frac{1}{\left(\sin\chi\right)^{D-1}}\frac{\partial}{\partial\chi}\left[\left(\sin\chi\right)^{D-1}\frac{\partial R}{\partial\chi}\right] + \left[2r_0^2E - \frac{L(L+D-2)}{\sin^2\chi} - 4\omega^2r_0^4\tan^2\frac{\chi}{2}\right]R = 0.$$

Using the substitution

$$R(\chi) = (\sin \chi)^{-\frac{D-1}{2}} Z(\chi)$$

we find the Pöschl-Teller type equation

$$\frac{d^2Z}{d\xi^2} + \left[\epsilon - \frac{\nu^2 - \frac{1}{4}}{\cos^2 \xi} - \frac{\left(L + \frac{D-2}{2}\right)^2 - \frac{1}{4}}{\sin^2 \xi}\right] Z = 0,\tag{6}$$

where $\xi = \frac{\chi}{2} \in \left[0, \frac{\pi}{2}\right]$, and

$$\epsilon = 8r_0^2 E + (D-1)^2 + 16\omega^2 r_0^4, \qquad \nu = \sqrt{\left(L + \frac{D-2}{2}\right)^2 + 16\omega^2 r_0^4}.$$

The solution of Eq. (6) regular for $\xi \in \left[0, \frac{\pi}{2}\right]$ and expressed in terms of the hypergeometric function is [15]

$$R_{n_r L \nu}^D(\chi) = C_{n_r L \nu}^D \left(\sin \frac{\chi}{2}\right)^L \left(\cos \frac{\chi}{2}\right)^{\nu - \frac{D}{2} + 1} \times$$

$$\times_2 F_1 \left(-n_r, n_r + L + \nu + \frac{D}{2}; L + \frac{D}{2}; \sin^2 \frac{\chi}{2}\right),$$

$$(7)$$

and the ϵ is quantized as

$$\epsilon = \left(2n_r + L + \nu + \frac{D}{2}\right)^2,$$

where $n_r = 0, 1, 2, ...$ is a "quasiradial" quantum number. The eigenvalues E are given by

$$E_N^D = \frac{1}{8r_0^2} \left[(N+1)(N+D) + (2\nu - 1)\left(N + \frac{D}{2}\right) + L(L+D-2) - \frac{D}{2}(D-1) \right],\tag{8}$$

where $N = 2n_r + L = 0, 1, 2, ...$ is the principal quantum number.

For the quasiradial wave function $R_{n_{\nu}L\nu}^{D}(\chi)$ we choose the normalization condition

$$r_0^D \int_{0}^{\pi} \left| R_{n_r L \nu}^D(\chi) \right|^2 (\sin \chi)^{D-1} d\chi = 1$$

and find:

$$C_{n_r L \nu}^D = \sqrt{\frac{\left(2n_r + L + \nu + \frac{D}{2}\right) \Gamma\left(n_r + L + \nu + \frac{D}{2}\right) \Gamma\left(n_r + L + \frac{D}{2}\right)}{2^{D-1} r_0^D (n_r)! \Gamma\left(n_r + \nu + 1\right) \left[\Gamma\left(L + \frac{D}{2}\right)\right]^2}}.$$
 (9)

In the limit $r_0 \to \infty$, $\chi \to 0$ and $\chi r_0 \sim r$ - fixed and $\nu \sim 4\omega r_0^2$, we see that

$$\lim_{r_0 \to \infty} E_N^D = \omega \left(N + \frac{D}{2} \right) \tag{10}$$

and

$$\lim_{r_0 \to \infty} R_{NL\nu}^D(\chi) = \frac{\omega^{\frac{L}{2} + \frac{D}{4}}}{\Gamma\left(L + \frac{D}{2}\right)} \sqrt{\frac{2\Gamma\left(\frac{N+L+D}{2}\right)}{\left(\frac{N-L}{2}\right)!}} r^L e^{-\frac{\omega r^2}{2}} F\left(-\frac{N-L}{2}; L + \frac{D}{2}; \omega r^2\right),\tag{11}$$

where F(a; c; x) is the confluent hypergeometric function. Formula (11) coincides with the known formula for D-dimensional flat radial wave functions [16].

3 Oscillator on the *D*-dimensional hyperboloid

The pseudospherical coordinates on the *D*-dimensional two-sheeted hyperboloid: $x_0^2 - x_1^2 - x_2^2 - x_D^2 = r_0^2$, $x_0 \ge r_0$, are

 $x_{0} = r_{0} \cosh \tau,$ $x_{1} = r_{0} \sinh \tau \cos \theta_{1},$ $x_{2} = r_{0} \sinh \tau \sin \theta_{1} \cos \theta_{2},$ \vdots $x_{D-1} = r_{0} \sinh \tau \sin \theta_{1} \sin \theta_{2} \cdots \sin \theta_{D-2} \cos \varphi,$ $x_{D} = r_{0} \sinh \tau \sin \theta_{1} \sin \theta_{2} \cdots \sin \theta_{D-2} \sin \varphi,$

where $\tau \in [0, \infty)$. Variables in the Schrödinger equation (4) may be separated for oscillator potential (3) which in the pseudospherical coordinates has the form

$$V_H^D = 2\omega^2 r_0^2 \tanh^2 \frac{\tau}{2},$$

by the ansatz

$$\Psi\left(\tau, \theta_{1}, \dots, \theta_{D-2}, \varphi\right) = R(\tau) Y_{Ll_{1}l_{2}\dots l_{D-2}} \left(\theta_{1}, \dots, \theta_{D-2}, \varphi\right),$$

where, as in the previous case l_i , are the angular hypermomenta and L is the total angular momentum, and the hyperspherical function $Y_{Ll_1l_2...l_{D-2}}(\theta_1,\ldots,\theta_{D-2},\varphi)$ is the solution of the Laplace-Beltrami eigenvalue equation on the (D-1)-dimensional sphere. After separation of variables in (4) we find the quasiradial equation

$$\frac{1}{\left(\sinh\tau\right)^{D-1}}\frac{\partial}{\partial\tau}\left[\left(\sinh\tau\right)^{D-1}\frac{\partial R}{\partial\tau}\right] + \left[2r_0^2E - \frac{L(L+D-2)}{\sinh^2\tau} - 4\omega^2r_0^4\tanh^2\frac{\tau}{2}\right]R = 0.$$

Using now the substitution

$$R(\tau) = (\sinh \tau)^{-\frac{D-1}{2}} Z(\tau)$$

we come to the equation

$$\frac{d^2 Z}{d\rho^2} + \left[\epsilon - \frac{\nu^2 - \frac{1}{4}}{\cosh^2 \rho} - \frac{\left(L + \frac{D-2}{2}\right)^2 - \frac{1}{4}}{\sinh^2 \rho} \right] Z = 0, \tag{12}$$

where $\rho = \frac{\tau}{2} \in [0, \infty)$, and $\epsilon = 8r_0^2 - (D - 1)^2 - 16\omega^2 r_0^4$.

Thus, the oscillator problem on the two-sheeted hyperboloid is described by the modified Pöschl-Teller equation and, unlike the oscillator equation on the sphere which has only a discrete spectrum, equation (12) possesses both bound and unbound states.

The discrete quasiradial wave function regular on the line $\tau \in [0, \infty)$ and normalized by the condition

$$r_0^D \int_0^\infty |R_{n_r L \nu}^D(\tau)|^2 (\sinh \tau)^{D-1} d\tau = 1$$

has the form

$$R_{n_{r}L\nu}^{D}(\tau) = \frac{1}{\Gamma\left(L + \frac{D}{2}\right)} \sqrt{\frac{\left(\nu - 2n_{r} - L - \frac{D}{2}\right)\Gamma\left(\nu - n_{r}\right)\Gamma\left(n_{r} + L + \frac{D}{2}\right)}{2^{D-1}r_{0}^{D}(n_{r})!\Gamma\left(\nu - n_{r} - L - \frac{D}{2} + 1\right)}} \times \left(\sinh\frac{\tau}{2}\right)^{L} \left(\cosh\frac{\tau}{2}\right)^{2n_{r} - \nu - \frac{D}{2} + 1} \times {}_{2}F_{1}\left(-n_{r}, -n_{r} + \nu; L + \frac{D}{2}; \tanh^{2}\frac{\tau}{2}\right),$$
(13)

with the "quasiradial" quantum number $n_r = 0, 1, 2, \dots, \left[\frac{1}{2}\left(\nu - L - \frac{D}{2}\right)\right]$. The ϵ is quantized by

$$\epsilon = -\left(2n_r + L - \nu + \frac{D}{2}\right)^2,$$

and the energy spectrum for the alternative model of quantum spherical oscillator on the D-dimensional two-sheeted hyperboloid takes the value

$$E_N^D = \frac{1}{8r_0^2} \left[(2\nu - 1)\left(N + \frac{D}{2}\right) - N(N + D - 1) - L(L + D - 2) + \frac{D}{2}(D - 1) \right]. \tag{14}$$

Here $N = 2n_r + L$ is the principal quantum number and the bound state solution is possible only for

$$0 \le N \le \left\lceil \nu - \frac{D}{2} \right\rceil.$$

In the contractio limit $r_0 \to \infty$, $\tau \sim r/r_0$ and $\nu \sim 4\omega r_0^2$, we see that the continuous spectrum vanishes while the discrete spectrum is infinite, and it is easy to reproduce the oscillator energy spectrum (10) and wave function (11).

Acknowledgments.

The author is grateful to Dr. A. Nersessian for many dicussions and to the Organizing Committee and personally to Prof. C. Burdik for the invitation to the XVI-th International Colloquium on *Integrable Systems and Quantum Symmetries* and for warm hospitality in Prague. This work was partially supported by the grant NFSAT-CRDF ARP1-3228-YE-04.

References

- [1] P.W. Higgs: J. Phys. A12, 309–323 (1979).
- [2] H.I. Leemon: J. Phys. A12, 489–501 (1979).
- [3] E.G. Kalnins, W.J. Miller, G.S. Pogosyan: Phys. At. Nucl. 65, 1086–1094 (2002).
- [4] D. Bonatos, C. Daskaloyannis, K. Kokkotas: Phys. Rev. A50, 3700–3709 (1994).
- [5] C. Grocshe, G.S. Pogosyan, A.N. Sissakian: Fortschritte der Physik 43, 523–563 (1995).
- [6] C. Grocshe, G.S. Pogosyan, A.N. Sissakian: Phys. Part. Nucl. 27, 244–278 (1996).
- [7] C. Grocshe, G.S. Pogosyan, A.N. Sissakian: Phys. Part. Nucl. 28, 486–519 (1997).

- [8] E.G. Kalnins, W.J. Miller, G.S. Pogosyan: J. Mat. Phys. 37, 6439-6467 (1996).
- [9] E.G. Kalnins, W.J. Miller, G.S. Pogosyan: J. Mat. Phys. 38, 5416–5433 (1997).
- [10] L. Mardoyan, A. Nersessian: *Phys. Rev.* **B72**, 233303 (2005).
- [11] S. Bellucci, L. Mardoyan, A. Nersessian: Phys. Lett. B636, 137–141 (2006).
- [12] L. Mardoyan, A. Nersessian, A Yeranyan: Phys. Lett. A366, 30–35 (2007).
- [13] S. Bellucci, A. Nersessian: *Phys. Rev.* **D67**, 065013 (2003).
- [14] S. Bellucci, A. Nersessian, A. Yeranyan: Phys. Rev. D70, 085013 (2004).
- [15] S. Flügge: Problems in quantum mechanics, V.1, Springer-Verlag, Berlin-Heidelberg-New York 1971.
- [16] L.G. Mardoyan, G.S. Pogosyan, A.N. Sissakian, V.M. Ter-Antonyan: Quantum systems with hidden symmetry, FIZMATLIT Publ., Moscow 2006 (in Russian).