Participant	Х	Υ	ŷ
1	9	2	2.500
2	7	5	3.786
3	5	4	5.071
4	1	7	7.643
5	2	8	7.000
Mean	4.8	5.2	
SD	3.347	2.387	

For 5 participants, their scores on a predictor (X) and dependent variable (Y) were registered. The correlation between X and Y = -0.901. Use these values for the following questions:

1) Calculate the slope of the corresponding regression model, in which X pre	edicts	ore	X	h)	ich	/h	W	۱ (in	l, i	el	de	oc	m	۱ r	or	essi	ξr	re	g	lin	nc	oc	esp	rr	COI	9 (he	f t	of	e)pe	slo	e s	the	e 1	ate	ula	lcι	Cal	(1)	1
--	--------	-----	---	-----	-----	----	---	-----	----	------	----	----	----	---	-----	----	------	----	----	---	-----	----	----	-----	----	-----	-----	----	-----	----	---	-----	-----	-----	-----	-----	-----	-----	-----	-----	---	----	---

- 2) Calculate the intercept of the corresponding regression model
- 3) Calculate the two-sided p-value of the slope. It's true that you don't have the standard error of the slope, so you'll have to use a different t-formula that will get you the same answer in this situation.
- 4) Calculate the 95% confidence interval around the correlation
- 5) Calculate the standardized slope of the corresponding regression model, in which X predicts Y
- 6) Calculate R, the correlation between the model and the dependent variable

8)	Calcula	ate R²W	V, the	Adjusted R²					
:	(y^), ar	nd the s. N an	mean	of y in the t	able. This sho	ould allow	you to be ab	lues (Y), predicted valle to calculate all sure all degrees of	
Effect			SS		DF		MS	F	
Model									
Error (F	Residua	al)							
Total									
A multip	you cal	lculate ression	d for o	question 3?	s this always	true for si	mple linear	quare of the t-value regression? dination" were used estions 11 – 20.	
Correla	ation	Speed		HandEye	Skill				
Speed		1		0.2	0.4				
HandE	ye	0.2		1	0.6				
Skill		0.4		0.6	1				
11)	Calcula	ate the	stand	lardized slop	e (b*) for Ha	nd eye coo	ordination		

12) Calculate the partial correlation (pr) for Hand eye coordination

7) Calculate R^2 , the multiple correlation coefficient or coefficient of determination

13) Calculate the semi-partial explained variance (sr²) for Speed
14) Calculate the R ² for the model as a whole
15) Calculate R ² Stein for the model
16) Calculate the semi-partial correlation for Hand eye coordination
Additional information : The standard deviation for Speed = 3, The standard deviation for Hand Eye coordination = 2, The standard deviation for Skill = 6
17) Calculate the unstandardized slope (b) for Hand eye coordination. Tip: the value you calculated for question 11 can help you here
18) Assume that the standard error of the slope you just calculated is 1. Calculate the two-sided p-value of this slope
19) Calculate the 95% confidence interval for this slope

20) Now that you have so much information on the relationship between Hand-eye coordination and gaming skill, how would you interpret this slope? What does the slope itself mean? Is it significant? What is the effect size? How would you describe the effect size?

Now, some ballentine puzzles. Since there are different ballentines out there, I will use the picture below for reference. Note that this ballentine shows explained variance, so for example, if you calculate sr with the formula of the formula sheet, never forget to square it.

Correlation	X1	X2	Υ
X1	1	0.2	-0.4
X2	0.2	1	0.4
Υ	-0.4	0.4	1

21) What is the explained variance of X1 in Y, without partialing out X2 from either X1 or Y?

22) What is the explained variance of X2 in Y, when X1 is partialed out of both X1 and Y?

23) Calculate the area "C"

24) Calculate the area "C + F"
25) Calculate the area "A". What does this stand for?
26) What is the difference between partial and semi-partial correlation of X1?A) Partial correlation removes overlap with X2 from both X1 and Y. Semi-partial correlation only
removes overlap with Y B) Partial correlation removes overlap with X2 from both X1 and Y. Semi-partial correlation only removes overlap with X1
C) Partial correlation removes overlap with X2 from X1. Semi-partial correlation only removes overlap with Y
D) Partial correlation removes overlap with X2 from Y. Semi-partial correlation only removes overlap with X1
 27) Which of the following purely corrects R² for inflation due to number of predictors A) Stein correction B) Wherry correction C) Both D) Neither
 28) Which value is the most appropriate for comparing unique contributions from predictors in explaining the variance of the dependent variable? A) Semi-partial explained variance B) Partial explained variance C) R² D) Adjusted R²
 29) Which type of interval has the largest width? A) Confidence interval for the slope B) Confidence interval for mean response C) Prediction interval D) That differs for different samples

30) For simple linear regression, what is always true?

- A) $pr^2 > sr^2$
- B) $pr^2 < sr^2$
- C) $pr^2 = sr^2$
- D) That differs for different samples