Projektowanie algorytmów i metody sztucznej inteligencji

Dawid Marszałkiewicz 218665 22 kwietnia 2016

1 Zadanie

Stwórz klasę pozwalająca na przechowywanie dowolnej ilości elementów w tablicy typu int. Wykonaj pomiary czasów zapisy do tablicy dla ilości elementów n = $10^1, 10^3, 10^5, 10^6, 10^8$

2 Strategia zwiększania tablicy o jeden

2.1 Tabela z średnimi wynikami

l. elementów	czas
	[s]
10	0.000002
1000	0.002299
10000	0.239421
100000	25.122323
1000000	2769.893513

2.2 Wykres złożoności obliczeniowej

Wykres złożoności obliczeniowej przy strategi zwiększania o jeden

3 Strategia zwiększania tablicy dwukrotnie

3.1 Tabela z średnimi wynikami

l. elementów	czas
	[s]
10	0.000002
1000	0.000032
100000	0.003080
1000000	0.027857
100000000	3.118702

3.2 Wykres złożoności oblczieniowej

Wykres złożoności obliczeniowej przy strategi zwiększania dwa razy

4 Strategia zwiększania tablicy dziesięciokrotnie

4.1 Tabela z średnimi wynikami

l. elementów	czas
	[s]
10	0.000002
1000	0.000031
100000	0.002004
1000000	0.018308
100000000	2.053186

4.2 Wykres złożoności obliczeniowej

Wykres złożoności obliczeniowej przy strategi zwiększania dziesięć razy

5 Wnioski

- Po 14 godzinach ciągłej pracy programu w strategii I zostały zebrane wyniki dla miliona liczb, a następnie przybliżone wielomianem stopnia 2 i ekstrapolowane. Dla 100 milionów elementów czas działania programu wyszedłby po za okres siedmiu dni dzielący zajęcia laboratoryjne.
- Początkowo testy były przewidziane na miliard elementów, jednak zasoby pamieci komputera nie pozwoliły na ich poprawne przeprowadzenie, został zgłaszany wyjątek bad_alloc.
- Najszybsza była strategia polegająca na 10-krotnym zwiększaniu rozmiaru tablicy, a najwolniejsza na zwiększaniu tablicy o 1 element.
- Najbardziej optymalna pod względem szybkości działania oraz wymaganych zasobów pamięciowych jest strategia powiększania tablicy dwa razy. Ogranicza się w ten sposób sytuację w których alokuje się 10 razy większa tablice, mimo że korzysta się tylko z niewielkiej jej części.
- Strategie polegające na powiększaniu tablicy o stałą należy do złożoności obliczeniowej $O(n^2)$. Natomiast stratetegie, który polegają na powiększaniu tablicy c razy posiadają złożoność obliczeniową O(n).