

Model Based Design of Embedded Systems 1DT059 Report A2

Simulink Matlab

Vivek Vivian September 15, 2020

Solution

\mathbf{a}

Using the equations which has been provided a suitable model of the car and the wheel has been designed. The angular Momentum was checked and is non-negative.

\mathbf{b}

Simulating the model using the conditions:

MB = 5500Nm

vF = 30m/s

While using these conditions the model takes around 3.985 seconds to come to 0m/s and travels a distance of 59.07m to come to a stop.

Time taken to stop = 3.958 sec

Distance covered = 59.07 m/sec

 \mathbf{c}

On plotting the function $\mu(\lambda)$ for $0 \le \lambda \le 1$, we find the value of λ_{Max} to be 0.13. This was achieved by substituting different λ values in the equtaion: $\mu(\lambda) = c1.(1 - \exp^{-c2\lambda}) - c3.\lambda$ which can be seen in the graph below

Values of μ vs λ

\mathbf{d}

The controller which improves the breaking and stops the car from suddenly stopping has been designed to produce a value $\Delta(t)$ which is added along with the breaking momentum $M_B and is simulated$.

\mathbf{e}

After designing the controller, the input is then $\Delta(t) + M_B$ and initial speed $v_F = 30m/s$. It takes the car 2.697 seconds to come to a halt and travels around 40.92m distance to come to a stop. The graph for the same has been shown below.

Time taken to stop = 2.697 sec

Distance covered = 40.92m