Universität Ulm

Dr. Jan-Willem Liebezeit Marcus Müller Sommersemester 2019

Übungen Analysis 1 für Ingenieure und Informatiker: Blatt 9

43. Man berechne die folgenden Grenzwerte:

a)
$$\lim_{x \to 1} \frac{1 \cos \pi x}{x^2 - 2x + 1}$$

b)
$$\lim_{x \to 0} \left(\frac{1}{\sin^2 x} - \frac{1}{x^2} \right)$$

c)
$$\lim_{x \to 0} \frac{\ln \cos 3x}{\ln \cos 2x}$$

b)
$$\lim_{x \to 0} \left(\frac{1}{\sin^2 x} - \frac{1}{x^2} \right)$$
c)
$$\lim_{x \to 0} \frac{\ln \cos 3x}{\ln \cos 2x}$$
d)
$$\lim_{x \to 0} \frac{2 \cos x + e^x + e^{-x} - 4}{x^4}$$

e)
$$\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}}$$
 für $\alpha > 0$

f)
$$\lim_{x \to 0+} x^{\alpha} \ln x$$
 für $\alpha > 0$

$$g) \quad \lim_{x \to 0+} x^x$$

h)
$$\lim_{x \to +\infty} x \ln(1 + 1/x).$$

Hinweis zu h) und zu Aufgabe 44a): Es gilt $\lim_{n\to\infty} f(1/n) = \lim_{x\to 0+} f(x)$.

44. Man bestimme die folgenden Grenzwerte mithilfe der Mittelwertsätze:

a)
$$\lim_{n \to \infty} n(1 - \cos(1/n))$$

b)
$$\lim_{x \to a} \frac{x^{\alpha} - a^{\alpha}}{x^{\beta} - a^{\beta}}$$
 für $a > 0, \beta \neq 0$.

45. Man bestimme die Taylorentwicklung von $f: \mathbb{R} \to \mathbb{R}$ im Punkt 1 für

a)
$$f(x) = 3x^3 - 7x^2 + 2x + 4$$

b)
$$f(x) = e^x$$

46. Man bestimme die Extrema und Wendepunkte der durch die folgenden Ausdrücke gegebenen Funktionen:

a)
$$x^x$$
, für $x > 0$

b)
$$e^{\sin x}$$

c)
$$x^n e^{-x^2}$$
.

Hinweis: Es sei $I \subset \mathbb{R}$ ein offenes Intervall mit $x_0 \in I$. Für eine Funktion $f \in C^3(I;\mathbb{R})$ gelten $f''(x_0) = 0$ und $f'''(x_0) \neq 0$. Dann hat f in x_0 einen Wendepunkt. Gilt $f''(x) \neq 0$ für alle $x \in I$, so kann f keinen Wendepunkt besitzen.

- (a) Man berechne die Taylorreihe der allgemeinen Potenz $(1+x)^{\alpha}$ an der Stelle x mit Entwick-47. lungspunkt $x_0 = 0$.
 - Man berechne näherungsweise $\sqrt[5]{30}$ und schätze den Fehler der Näherung ab. (Hinweis: $\sqrt[5]{30} = 2\sqrt[5]{1 - (1/16)}$.)
- 48. Man löse die Differentialgleichung y'' = y mittels Potenzreihenansatz und bestimme die Lösung zu den Anfangsbedingungen $y(0)=0,\,y'(0)=1.$ Machen Sie also den Ansatz $y(x)=\sum_{k=0}^{\infty}a_kx^k$ und leiten Sie mithilfe der Differentialgleichung eine Rekursionsformel für die Koeffizienten a_k her.