2.2. ΠΑΡΑΛΕΛΕΗ ΜΟΔΕΛ ΗΑ ΠΟΛЯΡИЗΑЦИЯТА ΗΑ ΦΟΤΟΗИ

вантовата информация, подобно на класическата, е практически инвариантна по отношение на използваните физически носители. Всяка квантова система с две нива (енергийните нива на електроните в атомите или йоните, ядрените спинове, поляризацията на фотоните) може да служи за представяне на квантов бит (qubit).

Един от популярните примери при изучаването на квантовите изчисления е явлението *поляризация* на фотоните, най-вече заради неговата относителна простота, но и заради свойството на светлината да формира *квантов канал*.

Светлината е сложно явление, с корпускулярно-вълнова природа - проявява се едновременно като електромагнитна вълна и като поток от фотони¹.

Фиг. 2. 1. Линейно поляризирана електромагнитна вълна

Електромагнитната вълна се образува от трептенията на електрическия вектор *E* и магнитния вектор *B*. Физиологичното, фотохимичното и фотоелектрическото действие на светлината се определят основно от електрическият вектор *E*. На фиг. 2.1. е 1 Фотонът е елементарна частица, квант електромагнитно излъчване [В.13, В.14, В.17]. Има нулева маса на покой и се разпространява със скоростта на светлината във вакуум. Не е частица в смисъла на класическата физика. Спада към групата на *бозоните*, тъй като *спинът* му е 1. Фотоните възникват при прехода на атомите, молекулите, йоните и атомните ядра от възбудено високо енергийно ниво, към по-ниско невъзбудено енергийно ниво. Също и при разпадането и анихилацията на частици.

Фиг. 2. 2. Мястото на видимата светлина в електромагнитния спектър

представена хоризонтална, линейно поляризирана електромагнитна вълна, разпространяваща се по оста z. Затова оста z се асоциира с лъча. Дължината на вълната на видимата светлина е в диапазона $0.40-0.76~\mu m$ (фиг. 2.2).

Поляризирана се нарича светлина, колебанията на светлинния вектор E на която са ориентирани по определен начин. Ако колебанията на светлинния вектор са само във фиксирано направление, перпендикулярно на лъча, поляризацията се нарича линейна (или плоска). Ако краят на светлинния вектор E описва окръжност, поляризацията се нарича кръгова. Ако светлинният вектор се върти около лъча, но и пулсира, поляризацията се нарича елиптична. По исторически причини плоскостта, в която се колебае светлинният вектор E, се нарича плоскост на колебание, а перпендикулярната плоскост, в която се колебае магнитният вектор E, се нарича плоскост на поляризация.

Естествената светлина не е поляризирана, тъй като колебанията на светлинния вектор E са във всички посоки, перпендикулярни на лъча. Излъчването на светлинния източник е в резултат на наслагването на излъчванията на всеки един негов атом. Излъчването на отделния атом трае около 10^{-8} sec. За това време, което се определя от прехода на атома от възбудено в нормално състояние, се получава светлинен пакет (цуг) с дължина около 3 m. Плоскостта на колебанията на всеки цуг е ориентирана случайно. И резултантната светлинна вълна се колебае във всички посоки с една и съща вероятност. Това ни дава основание при определяне поляризацията на даден фотон в модела да използваме генератор на случайни числа с равномерна плътност.

Фиг. 2. 3. Съответствие между поляризацията и 1-qubit [A.8]

Приборите, чрез които светлината се поляризира, се наричат поляризатори. За основа на подобни прибори се използват например прозрачни диелектрици² с двойно пречупване на светлината. Диелектрикът поглъща в дълбочина единият от лъчите по-силно от другия³.

Както бе споменато в началото на тази точка, поляризацията на фотоните се използва широко за представяне на *1-qubit* квантова информация. От фиг. 2.3 добре се вижда съответствието на конкретния тип поляризация и представяния *1-qubit*.

Хоризонталната и вертикалната поляризация отговарят съответно на кет-векторите $|0\rangle$ и $|1\rangle$. Докато ъгловата поляризация съответства на двете възможни суперпозиции на базисните квантови състояния. Матричните представяния на различните видове поляризации са показани на фиг. 2.4. Те следват векторните дефиниции на 1-qubit от т. 1.3.

Преди компютърното моделиране на това явление е изготвен физически модел. На него е проведен практически експеримент в последователност от три опита [A.23].

При *опит* 1 се използва само поляризатор *A*, който е с хоризонтална поляризация (фиг. 2.5). На входа му постъпват фотони с хоризонтална, вертикална, ъглова положителна и ъглова

² При *турмалина* единият от лъчите се поглъща на разстояние 1 mm, докато при кристала на *йоднохининовия сулфат* (герапатита) - на разстояние 0,1 mm. Кристалите на йоднохининовия сулфат са много популярни за изработката на линейни поляризатори. Използва се целулоидна основа, наситена с голямо количество кристали на йоднохининовия сулфат. Преминавайки през такъв поляризатор, светлината се поляризира линейно, а интензитетът ѝ намалява двойно.

³ Вещества, свойствата на които зависят от посоката на разпространение на светлината, се наричат анизотропни.

Фиг. 2. 4. Матрично представяне на поляризацията [А.8]

Фиг. 2. 7. Поляризация – опит 3

отрицателна поляризация, тъй като използваният лазерен източник излъчва кохерентен светлинен поток с равномерна поляризация във всички посоки.

Поляризатор *А* пропуска всички фотони с хоризонтална и приблизително половината от фотоните с ъглова поляризация. Всички

Фиг. 2. 8. Физически модел за изследване на поляризацията

пропуснати фотони на изхода му се поляризират хоризонтално, което обяснява получения ефект.

При опит 2 след поляризатор A се разполага поляризатор C, който е с вертикална поляризация (фиг. 2.6). Всички фотони преминали поляризатор A са с хоризонтална поляризация и нито един не преминава през поляризатор C.

При опит 3 между поляризаторите A и C се разполага поляризатор B, който е с ъглова положителна или отрицателна поляризация (фиг. 2.7). На входа му постъпват фотони с хоризонтална поляризация. Около половината от тях преминават през поляризатор B. Той променя поляризацията им на ъглова. Поляризатор C пропуска около половината от фотоните, преминали през B.

Резултатът при първия и третия опит не може да се обясни, ако поляризаторите се разглеждат като класически филтри. Обяснението е в промяната на поляризацията на преминалите през поляризаторите фотони. То илюстрира един от основните постулати на квантовата механика: *измерването* на състоянието (извършвано в случая от поляризаторите), води до трансформация на това състояние в един от базисните вектори на измервателното устройство (поляризатора). С други думи, ако при измерването състоянието не е едно от базисните |0⟩ или |1⟩, а тяхна *суперпозиция*, измерването води до необратимата му промяна.

Физическият модел (фиг. 2.8), подготвен и използван от автора, включва:

- маломощен *лазер* (≈1 mW), който излъчва фотони, поляризирани във всички посоки, подобно на естествената светлина;
 - -три линейни поляризатора А, В и С, разположени непосредствено

след източника на светлина в този ред; при това, A е с хоризонтална, B – с ъглова от 45° , а C – с вертикална поляризация;

- екран, разположен след поляризатор *C*, на който се наблюдава резултата от преминаването на потока фотони през поляризаторите; за количествена оценка, на екрана се поставя фотоприемник за регистрация яркостта на резултантния поток фотони; сигналът от фотоприемника се подава към измервателна платка;
- *конзола*, на която се фиксират източника, поляризаторите и екрана.

Използвани са линейни поляризатори на фирмата *3DLens* с продуктов номер *P50*, предназначени за видимия спектър на светлината [А.И.2]. На фиг. 2.8 се виждат добре и трите поляризатора на съответните позиции върху конзолата.

Фиг. 2. 9. Принципна схема на измервателната платка

Освен субективната оценка е добре интензивността на светлинния поток върху екрана да се оцени количествено. Възможно е да се използва както пасивна, така и активна измервателна постановка.

Пасивната опитна постановка предполага монтиране върху екрана на фотоприемник. Поради нелинейността на лукс-амперната характеристика на фотоприемника (използван е фоторезистор от типа LDR07) пасивната схема не се оказа подходяща за количествена оценка.

Затова бе изработена активна измервателна платка 4 , при която сигналътотфоторезистора LDR07 сеусилва от операционенусилвател LM101. Така до голяма степен се компенсира нелинейността на луксамперната характеристика на фоторезистора, чието съпротивление $R_{\scriptscriptstyle F}$ е функция на осветеността. Операционният усилвател е свързан по инвертиращата схема. Изходното напрежение е равно на произведението на тока $I_{\scriptscriptstyle R}$ и сумарното съпротивление във веригата

⁴ Платката е проектирана с CAD средата CadSoft EAGLE 6.

на обратната връзка на операционния усилвател. Особеност на използваната схема е, че напрежението върху фоторезистора не се променя и токът I_R е строго пропорционален на осветеността [B.16, B.21].

Измервателната платка се поставя на мястото на екрана. Първоначално, съпротивлението в обратната връзка на операционния усилвател се донастройва с тримера, за да се получи изходно напрежение $U_{out} \approx 10 \text{ V}$ при включен източник без поляризатори. Количествените резултати от извършените измервания се съгласуват като тенденция с посочените в литературата:

- при пълна осветеност, без поляризаторите, на изхода на измервателната платка се установява напрежение $U_{\text{out}} \approx 10,12 \text{ V};$
- с поляризатора A светлинният поток, достигнал екрана, би трябвало да бъде ½ от първоначалния (при физическия експеримент е измерено напрежение $U_{cut} \approx 4,20 \text{ V}$);
- с поляризаторите A и C потокът, достигнал екрана, е нулев (измереното напрежение $U_{out} \approx 0.02$ V се дължи на фоновата осветеност на фотоприемника);
- при добавянето на поляризатора *B* потокът върху екрана трябва да се увеличава от нула на $\frac{1}{8}$ от първоначалния (при физическия експеримент е измерено напрежение $U_{\text{cut}} \approx 0,70 \text{ V}$).

Отклоненията на измерените напрежения от теоретичните се обясняват с остатъчната нелинейност на лукс-амперната характеристика на използвания фотоприемник. Това би могло да се коригира с по-добра компенсация от страна на измервателната платка.

Структурният характер на модела предполага използването на активни и пасивни обекти (фиг. 2.10). Активните обекти са светлинния източник LE, поляризаторите (A, B, C) и фотодетектора LD. Те се

Фиг. 2. 10. Структурна схема на паралелния модел на поляризацията

представят чрез активната системна единица процес.

Предложеният модел представлява паралелна система от пет процеса с линейна топология. Изпълнява се в паралелната среда на платформата *XCORE/XC*, която поддържа основните механизми на глобалния структурен паралелизъм (създаване/унищожаване, изпълнение, взаимодействие и синхронизация на процесите) на апаратно ниво. Процесите се изпълняват паралелно, което налага използването на разгледания в контролния пример от т.2.1 оператор placed par

Светлинният източник и фотодетекторът се разполагат в ядро 0, а поляризаторите — в ядро 1, 2 и 3 на изпълнителната среда. Всеки от процесите се параметризира с конкретни комуникационни канали. Процесът taskPolaroid(), моделиращ поляризаторите, има допълнителен параметър за фиксиране на позицията на поляризатора — A, B или C.

Използват се два вида комуникационни канали: управляващ и квантов. По управляващите канали се изпраща класическа информация, която синхронизира работата на процесите. Управляващата информация се формира от процеса LE и определя номера на текущия опит, както и момента на прекратяване на изпълнението. По квантовите канали се предават фотоните, т.е. квантовата информация.

Пасивните обекти – фотоните, се представят чрез структурата РНОТОМ и се предават като съобщения по квантовите канали между процесите

```
typedef struct
{
   UINT id; // identifier
```

```
POLAR pol; // променлива на състоянието
BOOL rndH; // вероятност при поляризация HORIZONTAL
BOOL rndV; // вероятност при поляризация VERTICAL
BOOL rndA_P; // вероятност при поляризация ANGULAR_
PLUS
BOOL rndA_M; // вероятност при поляризация ANGULAR_
MINUS
BOOL rndX1; // резервна вероятност
BOOL rndX2; // резервна вероятност
} PHOTON;
```

Елементите от структурата на фотона са съобразени с моделиранотоявление. *Идентификаторът* служизаразграничаване на отделните частици. *Променливата на състоянието* кодира типа на поляризацията - *NOPOLAR*, *HORIZONTAL*, *VERTICAL*, *ANGULAR_PLUS*, *ANGULAR_MINUS*. Булевите променливи определят вероятността при определен вид поляризация.

При формирането на всеки фотон, излъчен от източника *LE*, участва генератора на случайни числа *RNG*. Светлинният източник има два управляващи параметъра, чрез които се определя вида на поляризацията и номера на опита. В него се поддържат и броячите на генерираните фотони за всяка една поляризация.

Използват се два алгоритъма за генериране на случайни последователности [А.4]. Псевдослучайните последователности се генерират с примитивната функция CRC32() на изпълнителната среда. Действителнослучайните—чрез вградения в изпълнителната среда ентропиен източник с кръгови осцилатори.

Фиг. 2. 11. Формиране променливите на състоянието на фотона

Променливите на състоянието на фотона и формирането им е представено на фиг. 2.11. При едно обръщение към генератора на случайни числа *RNG* в променливата uintRandom се формира 32 битова случайна последователност. Тя се разбива на четири еднобайтови полета. Всяко едно такова поле задава стойностите на посочените случайни променливи за един фотон. Така, с едно обръщение към генератора на случайни числа се формират четири фотона.

Използваната схема за пренос на случайните характеристики със самите елементарни частици решава въпроса с поделянето на общия генератор на случайни последователности между всички процеси в системата. Такова решение е допустимо, тъй като по време на живота си частицата минава еднократно през даден тип смяна на поляризацията си.

Адекватността на предложения паралелен структурен модел на поляризацията, базиран на класически вероятности, е оценена чрез сравнение на резултатите от изпълнението му с тези от физическия модел.

	БРОЙ	1	2	3	4	5	6	7	8	9	10
LE	intCounterHorizontal	8296	8198	8210	8142	8217	8258	8169	8320	8230	8250
	intCounterVertical	8114	8214	8010	8125	8143	8056	8135	7999	8138	8169
	intCounterAngular_Plus	8240	8250	8246	8256	8185	8349	8450	8286	8211	8226
	intCounterAngular_Minus	8118	8106	8302	8245	8223	8105	8014	8163	8189	8123
	Общо фотони на опит	8192	8192	8192	8192	8192	8192	8192	8192	8192	8192
LD	intCounter[0]	8192	8192	8192	8192	8192	8192	8192	8192	8192	8192
	intCounter[1]	4123	4121	4190	4161	4090	4165	4108	4158	4209	4165
	intCounter[2]	0	0	0	0	0	0	0	0	0	0
	intCounter[3]	1031	1034	1079	1051	1005	992	1036	1029	1079	1074

Фиг. 2. 12. Количествени резултати от работата на модела на поляризацията

На фиг. 2.12 са приведени резултатите от десет последователни стартирания на модела. В горната част на таблицата са показани броячите на генерираните от източника *LE* фотони. Те отговарят на общия брой генерирани фотони с дадена поляризация за всички четири опита. За всеки един опит се генерират точно 8192 фотона (редът в зелено). Но конкретният брой фотони с даден вид поляризация се различава, заради случайния характер на работа на светлинния източник.

В долната част на таблицата са приведени стойностите на

броячите на регистрираните от фотодетектора LD фотони за всеки един от опитите — 0 (без поляризатори), 1, 2 и 3^5 . Вижда се съгласуването на получените от модела резултати с теоретичните и практическите.

Пълният код на разработения и представен в тази точка паралелен структурен модел на поляризацията е приведен в Приложение $\Pi 2$ (проект QC-T001).

⁵ Може да се проследи по индекса в масива intCounter[].