Сьогодні 15.04.2024

Υροκ №57

Загальні способи добування неорганічних речовин

Повідомлення мети уроку

Ви зможете:

- узагальнити знання хімічних властивостей простих і складних речовин;
- характеризувати способи добування оксидів, основ, кислот, середніх солей;
- наводити приклади розчинних і нерозчинних основ;
 - розрізняти розчинні й нерозчинні основи.

Актуалізація опорних знань

Прийом «Хімічна розминка»

Назвіть речовини:

Cu(OH)₂,Na₂O, P₂O₅, HNO₃, AL₂(SO₄)₃, KOH, HCI

Fe(OH)₂, CaO, SO₃, H₃PO₄, MgCI₂, NaOH, H₂S

 $Fe(OH)_3$, K_2O , CO_2 , HCI, $Zn_3(PO_4)_2$, $Ba(OH)_2$, HNO_3 .

Мотивація навчальної діяльності

Вивчаючи тему «Основні класи неорганічних сполук», ви ознайомилися з багатьма представниками кожного класу. Частина з них є у природі, та набагато більше — створені людиною. Сьогодні ми пригадаємо відомі вам основні способи добування неорганічних сполук і розглянемо нові.

Поняття про оксиди

Оксиди – це бінарні сполуки будь-якого хімічного елемента з Оксигеном.

Способи добування оксидів

1.Окиснення простих речовин:

$$2Cu + O_2 = 2CuO$$
$$S + O_2 = SO_2$$

2. Окиснення складних речовин:

$$2H_2S+3O_2 = 2SO_2 + 2H_2O$$

 $CH_4+2O_2 = CO_2 + 2H_2O$

3. Розкладання нерозчинних основ:

Cu
$$(OH)_2 \rightarrow CuO + H_2O$$

2Fe $(OH)_3 \rightarrow Fe_2O_3 + 3 H_2O$

4. Розкладання солей:

$$CaCO_3 \rightarrow CaO + CO_2$$

 $CaSiO_3 \rightarrow CaO + SiO_3$

Поняття про кислоти

Кислоти – це складні речовини, що містять атоми Гідрогену, здатні заміщуватися на метал, та кислотний залишок.

За вмістом Оксигену

Безоксигеновмісні HCl, HI, H_2S

Oксигеновмісні H₂SO₄, HNO₃ За кількістю атомів Гідрогену Одноосновні HF, HNO₂ Двоосновні H₂SO₃, H₂CO₃ Трьохосновні

H₃PO₄

Способи добування кислот

1. Взаємодія кислотних оксидів з водою:

$$SO_2 + H_2O \rightarrow H_2SO_3$$

$$P_2O_5 + 3H_2O \rightarrow 2H_3PO_4$$

2. Взаємодія водню з неметалами:

$$H_2+S \rightarrow H_2S$$

$$H_2+Cl_2 \rightarrow 2HCl$$

Сьогодні

Поняття про основи. Добування основ

Розчинні основи (луги)

підгрупа, крім метали.

$$H_2O + K = KOH + H_2 \uparrow$$

 $2Na + 2H_2O = 2NaOH + H_2 \uparrow$
 $Ba + 2H_2O = Ba(OH)_2 + H_2 \uparrow$

Дія води (за звичайних умов) на оксиди лужних та лужно-земельних металів.

$$H_2O + K_2O = 2KOH$$

 $Na_2O + H_2O = 2NaOH$

 $CaO+H_2O=Ca(OH)_2$

Нерозчинні основи та амфотерні гідроксиди

1) Дія води (за звичайних умов) 1) Взаємодія лугів із розчиннами на лужні (І група, головна солей, якщо при цьому випадає Н) та осад (нерозчинна основа).

лужноземельні (Ca, Sr, Ba) Сіль + луг = нерозч. основа + сіль
$$CuSO_4 + 2NaOH = Cu(OH)_2 \downarrow + Na_2 SO_4$$
 $O + K = KOH + H_2 \uparrow$ $FeCl_3 + 3KOH = Fe(OH)_3 \downarrow + 3KCI$

BCIM pptx

Поняття про солі

Солі — це складні речовини, утворені атомами металів і кислотними залишками.

Взаємодією кислот з основами (реакція нейтралізації) або амфотерними гідроксидами:

$$Ca(OH)_2 + 2HNO_3 = Ca(NO_3)_2 + 2H_2O;$$

 $Zn(OH)_2 + 2HCl = ZnCl_2 + 2H_2O.$

Взаємодією кислот з основними або амфотерними оксидами:

$$MgO + H_2SO_4 = MgSO_4 + H_2O;$$

 $ZnO + 2HNO_3 = Zn(NO_3)_2 + H_2O.$

Взаємодія кислот з металами:

$$Zn + H_2SO_4 = ZnSO_4 + H_2 \uparrow$$
.

Взаємодією кислот з іншими солями:

$$H_2SO_4 + BaCl_2 = BaSO_{4\downarrow} + 2HCl.$$

Взаємодія кислотних оксидів з основними або амфотерними:

$$N_2O_5 + CuO = Cu(NO_3)_2$$
;
 $SO_3 + ZnO = ZnSO_4$.

Взаємодія кислотних оксидів з основними або амфотерними гідроксидами:

$$P_2O_5 + 6NaOH = 2Na_3PO_4 + 3H_2O;$$

 $N_2O_5 + Zn(OH)_2 = Zn(NO_3)_2 + H_2O.$

Взаємодія кислотних оксидів із солями: $CaCO_3 + SiO_2 = CaSiO_3 + CO_2 \uparrow$.

Взаємодія сильних основ з амфотерними гідроксидами: $Ba(OH)_2 + Pb(OH)_4 = Ba[Pb(OH)_6].$

Взаємодія основ із солями: $FeSO_4 + 2KOH = Fe(OH)_2 \downarrow + K_2SO_4$.

Взаємодія солей із солями: $K_3PO_4 + 3CaCl_2 = Ca_3(PO_4)_2 \downarrow + 6KCl.$

Взаємодія солей з металами, що мають вищу активність, ніж метали, які входять до складу солей: $CuSO_4 + Fe = Cu + FeSO_4$.

Взаємодія металів з неметалами:

$$Zn + Cl_2 = ZnCl_2$$

BCIM

Термічний розклад солей:

$$2KNO_3 = 2KNO_2 + O_2 \uparrow;$$

$$2KCIO_3 = 2KCI + 3O_2 \uparrow$$
.

Розгляд прикладів

ſ	3 металів	Метал + неметал	$Mg + Cl_2 = MgCl_2$
		Метал(в ряду активності металів до H) + кислота	$2AI + 6HCI = 2AICI3 + 3H2 \uparrow$
		Метал(в ряду активності металів знаходиться лівіше, ніж метал у складі солі) + сіль	Zn + CuCl ₂ = Cu + ZnCl ₂
	3 оксидів	Основний оксид + кислота	$CaO + 2HCl = CaCl_2 + H_2O$
		Амфотерний оксид + кислота	$ZnO + 2HCl = ZnCl_2 + H_2O$
		Кислотний оксид + луг	$CO_2 + Ca(OH)_2 = CaCO_3 \downarrow + H_2O$
		Основний оксид + кислотний оксид	$MgO + CO_2 = MgCO_3$
	3 солей	Сіль + сіль (якщо утворена сіль випадає в осад)	$K_2SO_4 + BaCl_2 = BaSO_4 \downarrow + 2KCl$
		Сіль + луг (якщо в результаті реакції хоча б один із продуктів випадає в осад)	$AICI_3 + 3KOH = AI(OH)_3 \downarrow + 3KCI$
		Сіль + кислота (якщо серед продуктів реакції буде осад або газ)	Na ₂ S + 2HCl = 2NaCl + H ₂ S个
	3 основ	Основа+кислота а/ розчинна б/ нерозчинна основа	a/ KOH + HCl = KCl + H_2O 6/ Al(OH) ₃ + 3HCl = AlCl ₃ + 3 H_2O

Сторінка природодослідника

Навчальний проєкт «Вирощування кристалів солей» Кристали утворюються внаслідок кристалізації речовин із розчинів чи розплавів. У цьому ви можете переконатися самостійно.

Завдання 1. Виділіть речовину йонної будови натрій хлорид з розчину у вигляді кристалів. Для виконання досліду знайдіть необхідну інформацію в Інтернеті.

Завдання 2. На заняттях гуртка виконайте цікавий дослід, що дістав назву водорості морського дна. Він аналогічний попередньому, проте урізноманітнення набору солей для його проведення (CoCl₂, CuSO₄, CrCl₃, FeSO₄, MnCl₂, FeCl₃, Al₂(SO₄)₃, MgCl₂) дасть змогу отримати кристали, що нагадують химерний підводний світ водоростей і коралів.

Карбон утворює з Оксигеном два оксиди: в одному він проявляє валентність два, у другому— чотири. Запишіть рівняння реакцій утворення цих оксидів.

$$2C + O_2 = 2CO$$
 карбон (II) оксид $C + O_2 = CO_2$ карбон (IV) оксид

Напишіть рівняння добування однієї із солей якомога більшою кількістю способів.

 $Zn+Cl_2=ZnCl_2$ $Zn+2HCl=ZnCl_2+H_2$ $Zn+CuCl_2=ZnCl_2+Cu$ $ZnO+2HCl=ZnCl_2+H_2O$ $Zn(OH)_2 \downarrow +2HCl=ZnCl_2+2H_2O$ $ZnSO_3+2HCl=ZnCl_2+H_2 \uparrow +SO_2 \uparrow$ $ZnSO_4+BaCl_2=ZnCl_2+BaSO_4 \downarrow$

Під час добування яких речовин у реакцію вступає вода: хлоридна кислота, натрій хлорид, сульфітна кислота, ферум(III) гідроксид, барій гідроксид? Запишіть рівняння відповідних реакцій.

Вода є реагентом при добуванні сульфітної кислоти, барій гідроксиду.

$$H_2O + SO_2 = H_2SO_3$$

 $H_2O + BaO = Ba(OH)_2$

Алюміній оксид, добутий розкладанням алюміній гідроксиду кількістю речовини 2 моль, використали для взаємодії з хлоридною кислотою. Обчисліть масу утвореної солі.

$$v(Al(OH)_3) = 2$$
 моль $m(AlCl_3) - ?$

1.
$$2AI(OH)_3=AI_2O_3+3H_2O$$

 $v(AI_2O_3)=\frac{v(AI(OH)_3)}{2}=1$ моль.
2. $AI_2O_3+6HCI=2AICI_3+3H_2O$

 $V(AICI_3)=v(AI_2O_3) \cdot 2=2$ моль.

3. $M_r(AlCl_3) = A_r(Al) + 3 \cdot A_r(Cl) = 27 + 3 \cdot 35,5 = 133,5$, тому $M(AlCl_3) = 133,5$ г/моль.

 $m(AICI_3)=v(AICI_3) \cdot M(AICI_3)= 267 r.$

Відповідь: 267 г алюміній хлориду.

Формулюємо висновки

Хімічні реакції супроводжуються утворенням різних речовин, що дає змогу з відповідних реагентів добути потрібні продукти реакції.

До загальних способів добування оксидів належать: окиснення простих і складних речовин, розкладання нерозчинних гідроксидів під час нагрівання та деякі інші.

До загальних способів добування розчинних основ (лугів) належать: взаємодія відповідних металів із водою, взаємодія відповідних оксидів із водою.

Формулюємо висновки

Нерозчинні основи добувають взаємодією лугу із сіллю металічного елемента в розчині.

До загальних способів добування кислот належать реакції сполучення водню з неметалом (безоксигенова кислота) та води й кислотного оксиду (оксигеновмісна кислота).

Солі добувають із речовин, що містять металічний елемент (метал, оксид металічного елемента, основа, амфотерний гідроксид, сіль), піддаючи їх взаємодії з речовинами, до складу яких входить кислотний залишок (кислота, сіль), а також із кислотними оксидами.

1. Запропонувати рівняння реакцій добування неорганічних речовин.