New Product

Vishay Semiconductors formerly General Semiconductor

Small Signal Transistor (NPN)

Features

- NPN Silicon Epitaxial Planar Transistor for switching and amplifier applications.
- As complementary type, the PNP transistor 2N3906 is recommended.
- On special request, this transistor is also manufactured in the pin configuration TO-18.
- This transistor is also available in the SOT-23 case with the type designation MMBT3904.

Mechanical Data

Case: TO-92 Plastic Package

Weight: approx. 0.18g

Packaging Codes/Options:

E6/Bulk – 5K per container, 20K/box E7/4K per Ammo mag., 20K/box

Maximum Ratings & Thermal Characteristics Ratings at 25°C ambient temperature unless otherwise specified.

Parameter		Symbol	Value	Unit
Collector-Emitter Voltage		VCEO	40	V
Collector-Base Voltage		Vсво	60	V
Emitter-Base Voltage		V _{EBO}	6.0	V
Collector Current		Ic	200	mA
Power Dissipation	T _A = 25°C T _C = 25°C	Ptot	625 1.5	mW W
Thermal Resistance Junction to Ambient Ai	r	Rөja	250 ⁽¹⁾	°C/W
Junction Temperature		Tj	150	°C
Storage Temperature Range		Ts	-65 to +150	°C

Note:

(1) Valid provided that leads are kept at ambient temperature.

Vishay Semiconductors formerly General Semiconductor

Electrical Characteristics (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage	V(BR)CBO	I _C = 10 μA, I _E = 0	60	_	_	V
Collector-Emitter Breakdown Voltage ⁽¹⁾	V(BR)CEO	I _C = 1 mA, I _B = 0	40	_	_	V
Emitter-Base Breakdown Voltage	V(BR)EBO	IE = 10 μA, IC = 0	6	_	_	V
Collector Saturation Voltage	VCEsat	Ic = 10 mA, I _B = 1 mA Ic = 50 mA, I _B = 5 mA	_	_	0.2 0.3	V
Base Saturation Voltage	VBEsat	$I_{C} = 10 \text{ mA}, I_{B} = 1 \text{ mA}$ $I_{C} = 50 \text{ mA}, I_{B} = 5 \text{ mA}$		_	0.85 0.95	V
Collector-Emitter Cutoff Current	ICEV	VEB = 3 V, VCE = 30 V	_	_	50	nA
Emitter-Base Cutoff Current	I _{EBV}	V _{EB} = 3 V, V _{CE} = 30 V	_	_	50	nA
DC Current Gain	hFE	VCE = 1 V, IC = 0.1 mA VCE = 1 V, IC = 1 mA VCE = 1 V, IC = 10 mA VCE = 1 V, IC = 50 mA VCE = 1 V, IC = 100 mA	40 70 100 60 30	 300 		_
Input Impedance	hie	VCE = 10 V, IC = 1 mA f = 1 kHz	1	_	10	kΩ
Voltage Feedback Ratio	h _{re}	VCE = 10 V, IC = 1 mA f = 1 kHz	0.5 • 10-4		8 • 10 ⁻⁴	_
Gain-Bandwidth Product	fτ	VCE = 20 V, IC = 10 mA f = 100 MHz	300	_	_	MHz
Collector-Base Capacitance	Ссво	VcB = 5 V, f = 100 kHz	_	_	4	pF
Emitter-Base Capacitance	Сево	VcB = 0.5 V, f = 100 kHz	_	_	8	pF
Small Signal Current Gain	h _{fe}	V _{CE} = 10 V, I _C = 1 mA, f = 1 kHz	100	_	400	_
Output Admittance	h _{oe}	V _{CE} = 1 V, I _C = 1 mA, f = 1 kHz	1	_	40	μS
Noise Figure	NF	$V_{CE} = 5 \text{ V, I}_{C} = 100 \mu\text{A,}$ RG = 1 k Ω , f = 1015000 kHz	_	_	5	dB
Delay Time (see fig. 1)	t _d	I _{B1} = 1 mA, I _C = 10 mA	_	_	35	ns
Rise Time (see fig. 1)	tr	I _{B1} = 1 mA, I _C = 10 mA	_	_	35	ns
Storage Time (see fig. 2)	ts	-l _{B1} = l _{B2} = 1 mA l _C = 10 mA	_	_	200	ns
Fall Time (see fig. 2)	tf	-l _{B1} = l _{B2} = 1 mA l _C = 10 mA	_	_	50	ns

Fig. 1: Test circuit for delay and rise time * total shunt capacitance of test jig and connectors

Fig. 2: Test circuit for storage and fall time * total shunt capacitance of test jig and connectors