V18

Der Germanium-Detektor

Fritz Agildere fritz.agildere@udo.edu

Amelie Strathmann amelie.strathmann@udo.edu

Durchführung: 22. April 2024 Abgabe:

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	2
2	Theorie	2
3	Die Wechselwirkung von Strahlung mit Materie	2
4	Aufbau	3
5	Durchführung	3
6	Auswertung	3
7	Diskussion	3
Lit	Literatur	
Ar	Anhang	

1 Zielsetzung

Ziel des Versuches ist es die Funktionsweise eines hochreinen Germaniumdektektors zu untersuchen. Zunächst wird die Energiekalibration und die Vollenergienachweiswahrscheinlichkeit des Detektors bestimmt. Anschließend wird anhand der gesammelten Daten über die Eigenschaften des hochreinen Germaniumdektektors ein Spektrum eines unbekannten Strahlers aufgenommen und hinsichtlich dessen Energie und Aktivität ausgewertet.

2 Theorie

Zum Verständnis des hochreinen Germaniumdektektors werden die theorethschen Grundlagen dessen im Folgenden erläutert.

3 Die Wechselwirkung von Strahlung mit Materie

Bei der Gamma-Strahlungs-Detektion werden Elektronen des Detektor-Matrials von den Gamma-Photonen angeregt und damit werden die Atome ionisiert. Daher bilden sich Elektronen-Loch-Paare. Die Primärenelektronen ionisieren wiederum weitere Atome des Detektor-Mediums und erzeugen somit weitere Elektron Loch Paare. Die Anzahl der Elektronen-Loch Paare ist direkt proportional zur Energie des Elektrons aus der primären Wechselwirkung. Da der Absorbtionskoeffizient für Gamma-Strahlung bei Gasen sehr niedrig ist, werden Gamma-Strahlen-Detektoren aus Festkörpern gebaut. Das Matrial des Detektors muss so gewählt werden, dass die Anzahl Elektronen-Loch-Paare gesammelt und als elektrisches Signal wiedergegeben werden kann. Zusätzlich ist der Grad der Interaktion von Gamma-Strahlung mit Materie abhängig von der Energie der Strahlung. In Abbildung1 ist der Dämpfungskoeffizient, welcher die Reduzierung der Strahlungsintensität bei bestimmter Energie verursacht durch den Absorber misst, gegen die Gamma-Strahlen Energie aufgetragen.

4 Aufbau

5 Durchführung

6 Auswertung

7 Diskussion

Literatur

[1] G.Gilmore. Practical Gamma-ray Spectrometry. 2. Aufl. Wiley, 2008.

Anhang