

CSE 151A Intro to Machine Kearning

Lecture 06 – Part 01 Regression and Loss Functions

What influences salary?

- Numerical: age, height, years of experience
- Categorical: college, city, gender
- Boolean: knows Python?, had internship?

Regression

► **Given**: someone's age, experience, city, etc.

Predict: their salary.

Since the output space is \mathbb{R} , this is a regression problem.

Today

► **Goal**: Predict salary from years of experience.

Prediction Rules

- Salary is a function of experience.
- ▶ I.e., there is a function *H* so that:

salary ≈ *H*(years of experience)

- H is a hypothesis function or prediction rule.
- Our goal: find a good prediction rule, H.

Example Prediction Rules

 H_1 (years of experience) = \$50,000 + \$2,000 × (years of experience)

 H_2 (years of experience) = \$60,000 × 1.05^(years of experience)

 H_3 (years of experience) = \$100,000 - \$5,000 × (years of experience)

Comparing Predictions

- ► How do we know which is best: H_1 , H_2 , H_3 ?
- We gather data from n people. Let x_i be experience, y_i be salary:

(Experience₁, Salary₁)
$$(x_1, y_1)$$

(Experience₂, Salary₂) \rightarrow (x_2, y_2)
... (x_n, y_n)

See which rule works better on data.

Example

Quantifying the Error

- \triangleright Our prediction for person i's salary is $H(x_i)$
- ► The absolute error in this prediction:

$$|H(x_i) - y_i|$$

► The **mean absolute error** of *H*:

$$R_{abs}(H) = \frac{1}{n} \sum_{i=1}^{n} \left| H(x_i) - y_i \right|$$

Smaller the mean absolute error, the better the prediction rule.

Mean Absolute Error

Finding the best prediction rule

▶ **Goal:** out of all functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean absolute error.

► That is, find:

$$H^* = \underset{H}{\text{arg min}} \frac{1}{n} \sum_{i=1}^{n} |H(x_i) - y_i|$$

Finding the best prediction rule

▶ **Goal:** out of all functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean absolute error.

► That is, find:

$$H^* = \underset{H}{\text{arg min}} \frac{1}{n} \sum_{i=1}^{n} |H(x_i) - y_i|$$

There are two problems with this.

Question

Is there a prediction rule *H* which has **zero** mean absolute error?

Problem #1

We can make mean absolute error very small, even zero!

- But the function will be weird.
- This is called overfitting.
- Remember our real goal: make good predictions on data we haven't seen.

Solution

- Don't allow H to be just any function.
- Require that it has a certain form.
- Examples:
 - ► Linear: $H(x) = w_1 x + w_0$
 - Quadratic: $H(x) = w_2 x^2 + w_1 x + w_0$
 - Exponential: $H(x) = w_0 e^{w_1 x}$
 - \triangleright Constant: $H(x) = w_0$

Finding the best linear rule

▶ **Goal:** out of all **linear** functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean absolute error.

► That is, find:

$$H^* = \underset{\text{linear } H}{\text{arg min}} \frac{1}{n} \sum_{i=1}^{n} |H(x_i) - y_i|$$

Finding the best linear rule

▶ **Goal:** out of all **linear** functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean absolute error.

► That is, find:

$$H^* = \underset{\text{linear } H}{\text{arg min}} \frac{1}{n} \sum_{i=1}^{n} |H(x_i) - y_i|$$

There is still a problem with this.

Problem #2

▶ It is hard to minimize the mean absolute error: 1

$$\frac{1}{n}\sum_{i=1}^{n}\left|H(x_i)-y_i\right|$$

- Not differentiable!
- ▶ What can we do?

¹Though it can be done with linear programming.

Quantifying the Error

Instead of absolute error, use the squared error of a prediction:

$$(H(x_i) - y_i)^2$$

► The mean squared error (MSE) of H:

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (H(x_i) - y_i)^2$$

Is differentiable!

Mean Squared Error

Our Goal

Out of all **linear** functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest **mean squared** error.

► That is, find:

$$H^* = \underset{\text{linear } H}{\text{arg min}} \frac{1}{n} \sum_{i=1}^{n} (H(x_i) - y_i)^2$$

This problem is called least squares regression.

By the way...

- Prediction functions will play a large role.
- Absolute error and squared error are loss functions.

$$|H(x) - y_i|$$
 $(H(x_i) - y_i)^2$

By the way...

- The average loss on the training data is called the empirical risk
- Example: the mean squared error is the empirical risk of the square loss:

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (H(x_i) - y_i)^2$$

By the way...

- A major paradigm in ML: find the prediction function which minimizes risk.
- Called Empirical Risk Minimization, or ERM.

...minimizing the MSE.

Up next...

CSE 151A Intro to Machine Learning

Lecture 06 – Part 02 Minimizing the MSE

Our Goal

Out of all **linear** functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest **mean squared** error.

► That is, find:

$$H^* = \underset{\text{linear } H}{\text{arg min}} \frac{1}{n} \sum_{i=1}^{n} (H(x_i) - y_i)^2$$

This problem is called least squares regression.

Minimizing the MSE

► The MSE is a function of a function:

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (H(x_i) - y_i)^2$$

▶ But since H is linear, $H(x) = w_1x + w_0$.

$$R_{\text{sq}}(w_1, w_0) = \frac{1}{n} \sum_{i=1}^{n} ((w_1 x + w_0) - y_i)^2$$

Now it's a function of w_1, w_0 .

Updated Goal

Find slope w_1 and intercept w_0 which minimize the MSE, $R_{sq}(w_1, w_0)$:

$$R_{\text{sq}}(w_1, w_0) = \frac{1}{n} \sum_{i=1}^{n} ((w_1 x + w_0) - y_i)^2$$

Strategy: multivariate calculus.

Recall: the gradient

If f(x, y) is a function of two variables, the gradient of f at the point (x₀, y₀) is a vector of partial derivatives:

$$\nabla f(x_0, y_0) = \begin{pmatrix} \frac{\partial f}{\partial x}(x_0) \\ \frac{\partial f}{\partial y}(y_0) \end{pmatrix}$$

Key Fact: gradient is zero at critical points.

Strategy

To minimize $R(w_1, w_0)$: compute the gradient, set equal to zero, solve.

$$R_{\text{sq}}(w_1, w_0) = \frac{1}{n} \sum_{i=1}^{n} ((w_1 x + w_0) - y_i)^2$$

 $\frac{\partial R_{\text{sq}}}{\partial x_0} = \frac{1}{n} \sum_{i=1}^{n} (w_1 x + w_0) - y_i$

$$R_{\text{sq}}(w_1, w_0) = \frac{1}{n} \sum_{i=1}^{n} ((w_1 x + w_0) - y_i)^2$$

 $\frac{\partial R_{\text{sq}}}{\partial x_0} = \frac{1}{n} \sum_{i=1}^{n} ((w_1 x + w_0) - y_i)^2$

Strategy

$$0 = \frac{2}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i) x_i \quad 0 = \frac{2}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i)$$

- 1. Solve for w_0 in second equation.
- 2. Plug solution for w_0 into first equation, solve for w_1 .

Solve for W_0

$$0 = \frac{2}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i)$$

Solve for W_0

$$0 = \frac{2}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i)$$

Key Fact

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

$$\sum_{i=1}^{\infty} (x_i - \bar{x}) = 0 \qquad \sum_{i=1}^{\infty} (y_i - \bar{y}) = 0$$

Solve for w₁

$$0 = \frac{2}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i) x_i \qquad w_0 = \bar{y} - w_1 \bar{x}$$

Solve for w₁

$$0 = \frac{2}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i) x_i \qquad w_0 = \bar{y} - w_1 \bar{x}$$

Least Squares Solutions

► The **least squares solutions** for the slope w_1 and intercept w_0 are:

$$w_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$w_0 = \bar{y} - w_1 \bar{x}$$

where $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$ $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$

$$W_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

- ▶ What is the sign of $(x_i \bar{x})(y_i \bar{y})$ when:
 - $\triangleright x_i > \bar{x} \text{ and } y_i > \bar{y}?$

$$W_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

- ▶ What is the sign of $(x_i \bar{x})(y_i \bar{y})$ when:
 - \triangleright $x_i < \bar{x}$ and $y_i < \bar{y}$?

$$W_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

- ▶ What is the sign of $(x_i \bar{x})(y_i \bar{y})$ when:
 - $\triangleright x_i > \bar{x}$ and $y_i < \bar{y}$?

$$W_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

- ▶ What is the sign of $(x_i \bar{x})(y_i \bar{y})$ when:
 - $\triangleright x_i < \bar{x} \text{ and } y_i > \bar{y}?$

Interpretation of Intercept

$$w_0=\bar{y}-w_1\bar{x}$$

Mhat is $H(\bar{x})$?

Question

We fit a linear prediction rule for salary given years of experience. Then everyone gets a \$5,000 raise. What happens to slope/intercept?

Example

$$\bar{x} =$$
 $\bar{y} =$

$$w_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} =$$

$$w_0 = \bar{y} - w_1 \bar{x}$$

$$x_i$$
 y_i $(x_i - \bar{x})$ $(y_i - \bar{y})$ $(x_i - \bar{x})(y_i - \bar{y})$ $(x_i - \bar{x})^2$

CSE 151A Intro to Machine Learning

Lecture 06 – Part 03
Fitting Non-Linear
Trends

Example: Parallel Processing

Problem

- Some parts of a program are necessarily sequential.
- E.g., downloading the data must happen before analysis.
- More processors do not speed up sequential code.

But they do speed up non-sequential code.

Speedup

Amdahl's Law

The time *T* it takes to run a program on *p* processors is:

$$T(p) = t_{S} + \frac{t_{NS}}{p}$$

where $t_{\rm S}$ and $t_{\rm NS}$ are the time it takes the sequential and non-sequential parts to run on one processor, respectively.

Amdahl's Law

The time *T* it takes to run a program on *p* processors is:

$$T(p) = t_{S} + \frac{t_{NS}}{p}$$

where $t_{\rm S}$ and $t_{\rm NS}$ are the time it takes the sequential and non-sequential parts to run on one processor, respectively.

Problem: we don't know t_{S} and t_{NS} .

Fitting Amdahl's Law

- **Solution**: we will learn t_s and t_{NS} from data.
- Run with varying number of processors:

Find prediction rule $H(p) = \frac{t_{NS}}{p} + t_{S}$ by minimizing MSE.

General Problem

• Given data $(x_1, y_1), ..., (x_n, y_n)$.

Fit a **non-linear** rule $H(x) = w_1 \cdot \frac{1}{x} + w_0$ by minimizing MSE:

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (H(x_i) - y_i)^2$$

Using definition of *H*:

Minimizing MSE

► Take derivatives, you'll find:

$$\frac{\partial R_{\text{sq}}}{\partial w_1}(w_1, w_0) = \frac{2}{n} \sum_{i=1}^n \left[\left(w_1 \cdot \frac{1}{x_i} + w_0 \right) - y_i \right] \frac{1}{x_i}$$

$$\frac{\partial R_{\text{sq}}}{\partial W_0}(W_1, W_0) = \frac{2}{n} \sum_{i=1}^n \left[\left(W_1 \cdot \frac{1}{X_i} + W_0 \right) - Y_i \right]$$

Minimizing MSE

Set to zero, solve. You'll find:

$$w_{1} = \frac{\sum_{i=1}^{n} \left(\frac{1}{x_{i}} - \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}\right) (y_{i} - \bar{y})}{\sum_{i=1}^{n} \left(\frac{1}{x_{i}} - \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}\right)^{2}} \qquad w_{0} = \bar{y} - w_{1} \cdot \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}$$

Minimizing MSE

► Set to zero, solve. You'll find:

$$w_{1} = \frac{\sum_{i=1}^{n} \left(\frac{1}{x_{i}} - \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}} \right) (y_{i} - \bar{y})}{\sum_{i=1}^{n} \left(\frac{1}{x_{i}} - \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}} \right)^{2}} \qquad w_{0} = \bar{y} - w_{1} \cdot \frac{1}{n} \sum_{i=1}^{n} \frac{1}{x_{i}}$$

▶ Define $z_i = \frac{1}{x_i}$, $\bar{z} = \frac{1}{n} \sum_{i=1}^n z_i = \frac{1}{n} \sum_{i=1}^n \frac{1}{x_i}$. Then:

$$W_1 = W_0 =$$

To fit a prediction rule of the form $H(x) = w_1 \cdot \frac{1}{x} + w_0$:

1. Create a new data set $(z_1, y_1), \dots, (z_n, y_n)$, where $z_i = \frac{1}{x_i}$.

To fit a prediction rule of the form $H(x) = w_1 \cdot \frac{1}{x} + w_0$:

2. Fit $H(z) = w_1 z + w_0$ using familiar least squares solutions:

$$w_1 = \frac{\sum_{i=1}^{n} (z_i - \bar{z})(y_i - \bar{y})}{\sum_{i=1}^{n} (z_i - \bar{z})^2}$$

 $w_0 = \bar{y} - w_1 \cdot \bar{z}$

To fit a prediction rule of the form $H(x) = w_1 \cdot \frac{1}{x} + w_0$:

3. Use w_1 and w_0 in original prediction rule, H(x).

Example: Amdahl's Law

► We have timed our program:

Processors	Time (Hours)
1	8
2	4
4	3

Fit prediction rule:
$$H(p) = \frac{t_{NS}}{p} + t_{S}$$

Example: fitting $H(x) = w_1 \cdot \frac{1}{x_i} + x_0$

$$\bar{y} = \sum_{i=1}^{n} (z_i - \bar{z})(y_i - \bar{z})$$

$$\frac{\sum_{i=1}^{n} (z_i - \bar{z})(\bar{y}_i - \bar{y})}{\sum_{i=1}^{n} (z_i - \bar{z})^2}$$

$$w_0 = \bar{y} - w_1 \bar{z}$$

x _i	zi	y_i	$(z_i - \bar{z})$	$(y_i - \bar{y})$	$(z_i - \bar{z})(y_i - \bar{y})$	$(z_i - \bar{z})^2$
3 4 8	7 3 2					

Example: Amdahl's Law

► We found:
$$t_{NS} = \frac{48}{7} \approx 6.88$$
, $t_{S} = 1$

Our prediction rule:

$$H(p) = \frac{t_{NS}}{p} + t_{S}$$
$$= \frac{6.88}{p} + 1$$

► We can fit rules like:

$$w_1 x + w_0$$
 $w_1 \cdot \frac{1}{x} + w_0$ $w_1 x^2 + w_0$ $w_1 e^x + w_0$

We can't fit rules like:

$$w_0 e^{w_1 x}$$
 $\sin(w_1 x + w_0)$

 \triangleright Can fit as long as linear function of w_1, w_0 .

What's Left?

How do we make predictions with lots of features?

E.g., experience, age, GPA, number of internships, etc.