A Re-Evaluation of the nuclear Structure Function Ratios for D, He, 6 Li, C and Ca

THE NEW MUON COLLABORATION (NMC)

Bielefeld University¹⁺, Freiburg University²⁺, Max-Planck Institut für Kernphysik, Heidelberg³⁺, Heidelberg University⁴⁺, Mainz University⁵⁺, Mons University⁶, Neuchâtel University⁷, NIKHEF-K⁸⁺⁺, Oxford University⁹, Saclay DAPNIA/SPP^{10**}, University of California, Santa Cruz¹¹, Paul Scherrer Institut¹², Torino University and INFN Torino¹³, Uppsala University¹⁴, Soltan Institute for Nuclear Studies, Warsaw^{15*}, Warsaw University^{16*}, Wuppertal University¹⁷⁺

P. Amaudruz^{12v)}, M. Arneodo^{13a)}, A. Arvidson¹⁴, B. Badełek^{14,16}, M. Ballintijn^{8c)}, G. Baum¹, J. Beaufays^{8b)}, I.G. Bird^{3,8c)}, P. Björkholm¹⁴, M. Botje^{12d)}, C. Broggini^{7e)}, W. Brückner³, A. Brüll^{2f)}, W.J. Burger^{12g)}, J. Ciborowski^{8,16}, R. van Dantzig⁸, H. Döbbeling^{3w)}, J. Domingo^{12x)}, J. Drinkard¹¹⁾, A. Dyring¹⁴, H. Engelien^{2h)}, M.I. Ferrero¹³, L. Fluri^{7b)}, U. Gaul³, P. Grafstrom^{14c)}, T. Granier¹⁰, D. von Harrach^{3j)}, M. van der Heijden^{8d)}, C. Heusch¹¹, Q. Ingram¹², K. Janson-Prytz^{14k)}, M. de Jong^{8c)}, E.M. Kabuß^{3j)}, R. Kaiser², T.J. Ketel⁸, F. Klein⁵, B. Korzen¹⁷, U. Krüner¹⁷, S. Kullander¹⁴, U. Landgraf², F. Lettenström¹¹, T. Lindqvist¹⁴, G.K. Mallot⁵, C. Mariotti^{13l)}, G. van Middelkoop⁸, A. Milsztajn¹⁰, Y. Mizuno^{3m)}, A. Most³, A. Mücklich³, J. Nassalski¹⁵, D. Nowotny³ⁿ⁾, N. Pavel^{17k)}, J. Oberski⁸, A. Paić⁷, C. Peroni¹³, H. Peschel^{17y}, B. Povh^{3,4}, R. Rieger^{5o)}, K. Rith^{3p)}, K. Röhrich^{5q)}, E. Rondio¹⁵, L. Ropelewski¹⁶, A. Sandacz¹⁵, D. Sanders^{r)}, C. Scholz³ⁿ⁾, R. Schumacher^{12z)}, R. Seitz^{5u)}, U. Sennhauser^{12α)}, F. Sever^{1,8s)}, T.-A. Shibata⁴, M. Siebler¹, A. Simon^{3t)}, A. Staiano¹³, M. Szleper¹⁵, G. Taylor^{9β)}, M. Treichel^{3γ)}, Y. Tzamouranis^{3r)}, M. Virchaux¹⁰, J.L. Vuilleumier⁷, T. Walcher⁵, R. Windmolders⁶, A. Witzmann², F. Zetsche^{3k)}

(accepted by Nuclear Physics)

Abstract

We present a re-evaluation of the structure function ratios F_2^{He}/F_2^D , F_2^C/F_2^D and F_2^{Ca}/F_2^D measured in deep inelastic muon-nucleus scattering at an incident muon momentum of 200 GeV. We also present the ratios F_2^C/F_2^{Li} , F_2^{Ca}/F_2^{Li} and F_2^{Ca}/F_2^C measured at 90 GeV. The results are based on data already published by NMC; the main difference in the analysis is a correction for the masses of the deuterium targets and an improvement in the radiative corrections. The kinematic range covered is $0.0035 < x < 0.65, 0.5 < Q^2 < 90 \ {\rm GeV^2}$ for the He/D, C/D and Ca/D data and $0.0085 < x < 0.6, 0.84 < Q^2 < 17 \ {\rm GeV^2}$ for the Li/C/Ca ones.

For footnotes see next page.

- + Supported by Bundesministerium für Forschung und Technologie.
- ++ Supported in part by FOM, Vrije Universiteit Amsterdam and NWO.
- * Supported by KBN SPUB Nr 621/E 78/SPUB/P3/209/94.
- ** Supported by CEA, Direction des Sciences de la Matière.
- a) Now also at Dipartimento di Fisica, Università della Calabria,
 I-87036 Arcavacata di Rende (Cosenza), Italy.
- b) Now at Trasys, Brussels, Belgium.
- c) Now at CERN, 1211 Genève 23, Switzerland.
- d) Now at NIKHEF-H 1009 DB Amsterdam, The Netherlands.
- e) Now at University of Padova, 35131 Padova, Italy.
- f) Now at MPI für Kernphysik, 69029 Heidelberg, Germany.
- g) Now at Université de Genève, 1211 Genève 4, Switzerland.
- h) Now at LHS GmbH, 63303 Dreieich, Germany.
- i) Now at University of California, Los Angeles, 90024 Ca, USA.
- j) Now at University of Mainz, 55099 Mainz, Germany.
- k) Now at DESY, 22603 Hamburg, Germany.
- 1) Now at INFN-Istituto Superiore di Sanità, 00161 Roma, Italy.
- m) Now at Osaka University, 567 Osaka, Japan.
- n) Now at SAP AG, 69190 Walldorf, Germany.
- o) Now at Comparex GmbH, 68165 Mannheim, Germany.
- p) Now at University of Erlangen-Nürnburg, 91058 Erlangen, Germany.
- q) Now at IKP2-KFA, 52428 Jülich, Germany.
- r) Now at University of Houston, 77204 Tx, USA.
- s) Now at ESRF, 38043 Grenoble, France.
- t) Now at New Mexico State University, Las Cruces Nm, USA.
- u) Now at Dresden University, 01062 Dresden, Germany.
- v) Now at TRIUMF, Vancouver, BC V6T 2A3, Canada.
- w) Now at GSI, 64220 Darmstadt, Germany.
- x) Now at CEBAF, Newport News, 23606 Va, USA.
- y) Now at Gruner und Jahr AG & Co KG, 25524 Itzehoe, Germany.
- z) Now at Carnegie Mellon University, Pittsburgh, 15213 Pa, USA.
- α) Now at EMPA, 8600 Dubendorf, Switzerland.
- β) Now at University of Melbourne, Parkville, Victoria 3052, Australia.
- γ) Now at Neuchâtel University, 2000 Neuchâtel, Switzerland.
- δ) Now at Bundesamt für Statistik, 3003 Bern, Switzerland.

Results on the structure function ratios F_2^{He}/F_2^D , F_2^C/F_2^D and F_2^{Ca}/F_2^D [1] as well as F_2^C/F_2^{Li} , F_2^{Ca}/F_2^{Li} and F_2^{Ca}/F_2^C [2] were recently published by NMC. The kinematic range covered was 0.0035 < x < 0.65, $0.5 < Q^2 < 90$ GeV² for the He/D, C/D and Ca/D data and 0.0085 < x < 0.6, $0.84 < Q^2 < 17$ GeV² for the $^6\text{Li/C/Ca}$ ones. Here $-Q^2$ is four momentum squared of the virtual photon and $x = Q^2/(2M\nu)$ is the Bjorken scaling variable, with M the proton mass and ν the virtual photon energy in the laboratory frame. In this paper we present the results of a re-evaluation of these ratios.

The data were collected using the NMC spectrometer [3] at the CERN SPS muon beam line at nominal incident energies of 200 GeV for the He/D, C/D and Ca/D data and 90 GeV for the $^6\text{Li/C/Ca}$ ones.

In refs. [1, 2] radiative corrections were computed according to the prescription of Mo and Tsai [4]. The procedure corrects for the radiative tails of coherent elastic scattering from nuclei and of quasi-elastic scattering from nucleons, as well as for the inelastic radiative tails. The evaluation of the inelastic tail requires the knowledge of F_2 over a large range of x and Q^2 . A fit [5] to the results of deep inelastic scattering experiments and to low energy data in the resonance region was used for F_2^d . The bound nucleon structure functions F_2^A were obtained by multiplying F_2^d with empirical fits to our cross section ratios together with the SLAC-E139 data [6] for x > 0.4.

Since the publication of refs. [1, 2] new measurements of the structure function F_2^d in the range 0.006 < x < 0.6 and $0.5 < Q^2 < 55$ GeV² have become available [7]. At x less than 0.07 the measured values of F_2^d differ from those of the fit [5], by up to 18% at x = 0.0035 and $Q^2 = 0.6$ GeV². Furthermore the SLAC structure function ratios have been reanalysed [8]. These new ratios differ from the old ones by up to a few per cent.

In addition, it was found that the masses of the liquid deuterium targets used in ref. [1] for the C/D and Ca/D data had been incorrectly evaluated. Correcting these has increased the corresponding structure function ratios by 0.74%.

We therefore recomputed the radiative corrections using the new F_2^d data, the results of the SLAC reanalysis and the correct deuterium target masses for our C/D and Ca/D ratios. This has resulted in an increase of the structure function ratios at the smallest values of x which is negligible for the He/D data but ranges up to 2.5% for Ca/D.

Radiative corrections were calculated with three different programs. The first was the one used to obtain the results presented in refs. [1, 2], based on the Mo and Tsai formalism; the second was an improved version of the first including vacuum polarisation by quark and τ loops and electroweak interference terms. The third program is based on the covariant approach described in ref. [9]. The results obtained with the three methods are consistent. The ratios presented in this paper were obtained with the third method.

In fig. 1 the present results are shown as a function of x and are compared with the old ones. The new results are also given in table 1 and table 2 for the measurements at 200 GeV and 90 GeV, respectively. In fig. 2 we present our data for He/D, C/D and Ca/D together with the reanalysed SLAC results [8]. Finally, fig. 3 shows the logarithmic Q^2 slopes b obtained from fits of the form $F_2^A/F_2^D = a + b \ln Q^2$ to the He/D, C/D and Ca/D ratios in each x bin separately. The Q^2 dependences are essentially unchanged with respect to those presented in ref. [1].

Figure 1: Structure function ratios as function of x, averaged over Q^2 . The full circles represent the re-evaluated ratios, the open circles the old ratios. Only statistical errors are shown.

References

- [1] CERN NA37/NMC, P. Amaudruz et al., Z. Phys. C 51 (1991) 387
- [2] CERN NA37/NMC, P. Amaudruz et al., Z. Phys. C 53 (1992) 73
- [3] CERN NA37/NMC, P. Amaudruz et al., Nucl. Phys. **B371** (1992) 3
- [4] L.W. Mo and Y.S. Tsai, Rev. Mod. Phys. 41 (1969) 205;
 Y. S. Tsai, SLAC-PUB-848 (1971)
- [5] CERN NA37/NMC, P. Amaudruz et al., Phys. Rev. Lett. 66 (1991) 2712
- [6] SLAC-E139, R.G. Arnold et al., Phys. Rev. Lett. 52 (1984) 727;R.G. Arnold, SLAC-PUB-3257 (1983)
- [7] CERN NA37/NMC, P. Amaudruz et al., Phys. Lett. **B 295** (1992) 159
- [8] SLAC-E139, J. Gomez et al., Phys. Rev. **D49** (1994) 4348
- [9] A. Akhundov et al., DESY 94-115 (1994); CERN-TH 7339/94 (1994); IC/94/154 (1994)

x	$\langle Q^2 \rangle$	$\langle y \rangle$	F_2^{He}/F_2^D	stat	syst	
	$[GeV^2]$	(0)	- / -		v	
0.0035	0.77	0.65	0.938	0.026	0.022	
0.0055	1.3	0.65	0.948	0.011	0.022	
0.0085	1.8	0.59	0.968	0.011	0.013	
0.0125	2.4	0.53	0.955	0.009	0.011	
0.0126 0.0175	3.0	0.47	0.982	0.009	0.009	
0.025	3.8	0.42	0.986	0.008	0.008	
0.025	$\frac{3.8}{4.7}$	0.42 0.37	0.991	0.009	0.003	
0.035 0.045	5.6	0.37	1.003	0.009	0.007	
0.045	6.3	0.34	1.005 1.005	0.010	0.007	
0.035	7.3	0.31 0.29	0.990	0.011	0.007	
0.070	7.3 8.7	0.29 0.26	1.021	0.009		
					0.006	
0.125	11	0.24	0.998	0.008	0.006	
0.175	14	0.22	1.019	0.011	0.005	
0.25	19	0.21	0.996	0.011	0.005	
0.35	24	0.19	0.987	0.019	0.005	
0.45	31	0.19	0.925	0.029	0.005	
0.55	38	0.19	0.952	0.051	0.005	
0.65	44	0.18	1.052	0.085	0.005	
x	$\langle Q^2 \rangle$	$\langle y \rangle$	F_2^C/F_2^D	stat	syst	
	$[\mathrm{GeV}^2]$	•				
0.0035	0.74	0.62	0.902	0.018	0.016	
0.0055	1.2	0.57	0.912	0.011	0.010	
0.0085	1.7	0.54	0.920	0.011	0.008	
0.0125	2.3	0.51	0.926	0.009	0.007	
0.0175	3.0	0.47	0.953	0.010	0.006	
0.025	3.8	0.42	0.957	0.008	0.006	
0.035	4.9	0.38	0.983	0.009	0.005	
0.045	6.0	0.37	0.975	0.010	0.005	
0.055	7.2	0.36	1.004	0.012	0.005	
0.070	8.8	0.34	1.025	0.012	0.005	
0.090	11	0.33	1.039	0.012	0.005	
0.125	14	0.31	1.027	0.009	0.005	
0.175	17	0.27	1.024	0.012	0.005	
0.25	21	0.21	1.010	0.012	0.005	
0.25 0.35	26	0.23	0.974	0.012	0.005	
0.35 0.45	31	0.21 0.19	1.021	0.018	0.005	
$0.45 \\ 0.55$	37	0.19 0.19	0.970	0.030 0.046	0.006	
0.65	42	0.17	0.846	0.062	0.007	
	/O ² \	/ \	Ca / DD			
x	$\langle Q^2 \rangle$	$\langle y \rangle$	F_2^{Ca}/F_2^D	stat	syst	
0.000	$[GeV^2]$	0.47	0.010	0.001	0.010	
0.0035	0.60	0.47	0.819	0.021	0.019	
0.0055	0.94	0.46	0.805	0.009	0.013	
0.0085	1.4	0.43	0.846	0.009	0.010	
0.0125	1.9	0.41	0.870	0.007	0.008	
0.0175	2.5	0.40	0.908	0.008	0.007	
0.025	3.4	0.38	0.946	0.006	0.006	
0.035	4.7	0.36	0.956	0.007	0.005	
0.045	5.7	0.35	0.986	0.009	0.005	
0.055	6.8	0.34	0.973	0.010	0.005	
0.070	8.1	0.32	0.995	0.008	0.005	
0.090	9.7	0.30	1.027	0.010	0.005	
0.125	12	0.26	1.029	0.008	0.005	
0.175	14	0.23	1.042	0.010	0.005	
0.25	19	0.21	0.993	0.010	0.005	
0.35	24	0.19	0.993	0.017	0.006	
0.45	30	0.19	0.938	0.027	0.006	
0.55	35	0.18	0.877	0.042	0.006	
0.65	41	0.17	0.919	0.067	0.007	
		•				

Table 1: The structure function ratios F_2^A/F_2^D measured at 200 GeV and averaged over Q^2 . The normalisation uncertainty of 0.4% is not included in the systematic errors. The variable y is defined as ν/E , where E is the incident muon energy.

			1			1			1		
x	$\langle Q^2 \rangle$ [GeV ²]	$\langle y \rangle$	F_2^C/F_2^{Li}	stat	syst	F_2^{Ca}/F_2^{Li}	stat	syst	F_2^{Ca}/F_2^C	stat	syst
0.0085	0.8	0.57	0.910	0.009	0.012	0.856	0.008	0.022	0.941	0.009	0.023
0.0113	1.1	0.59	0.956	0.010	0.009	0.882	0.009	0.017	0.923	0.009	0.015
0.0138	1.2	0.53	0.966	0.010	0.007	0.908	0.009	0.013	0.939	0.010	0.011
0.0163	1.4	0.52	0.954	0.010	0.005	0.911	0.010	0.010	0.955	0.010	0.008
0.0188	1.6	0.52	0.988	0.011	0.004	0.962	0.010	0.008	0.972	0.010	0.007
0.0225	1.8	0.49	0.972	0.008	0.004	0.939	0.007	0.006	0.965	0.008	0.005
0.0275	2.0	0.44	0.964	0.008	0.003	0.937	0.008	0.004	0.972	0.008	0.003
0.0325	2.2	0.41	0.974	0.009	0.002	0.965	0.009	0.003	0.991	0.009	0.003
0.0375	2.3	0.37	0.979	0.009	0.002	0.981	0.009	0.002	1.003	0.009	0.002
0.0425	2.4	0.34	1.001	0.010	0.002	0.975	0.010	0.002	0.975	0.009	0.002
0.0475	2.6	0.33	0.998	0.010	0.002	0.967	0.010	0.002	0.970	0.010	0.002
0.0525	2.7	0.31	1.019	0.011	0.002	1.012	0.011	0.002	0.993	0.010	0.002
0.0575	2.8	0.29	1.020	0.012	0.002	1.013	0.011	0.002	0.992	0.011	0.002
0.065	3.0	0.28	0.999	0.009	0.002	1.006	0.008	0.002	1.007	0.008	0.002
0.075	3.3	0.27	1.012	0.009	0.002	1.008	0.009	0.002	0.995	0.009	0.002
0.085	3.6	0.26	1.004	0.010	0.002	1.012	0.010	0.002	1.009	0.010	0.002
0.095	3.9	0.25	1.009	0.011	0.002	1.010	0.011	0.002	1.001	0.011	0.002
0.113	4.3	0.23	1.028	0.008	0.002	1.020	0.008	0.002	0.994	0.008	0.002
0.138	5.1	0.22	1.012	0.010	0.002	1.017	0.010	0.002	1.007	0.010	0.002
0.175	6.2	0.22	1.018	0.009	0.002	1.018	0.009	0.002	1.001	0.009	0.002
0.225	7.7	0.21	1.002	0.013	0.002	1.017	0.013	0.002	1.015	0.012	0.002
0.275	9.1	0.20	1.000	0.017	0.002	0.998	0.016	0.002	0.998	0.016	0.002
0.35	11	0.19	0.987	0.017	0.002	0.983	0.017	0.002	0.996	0.017	0.002
0.45	14	0.18	0.965	0.028	0.002	0.988	0.028	0.002	1.024	0.029	0.002
0.60	17	0.17	1.012	0.040	0.004	0.966	0.038	0.004	0.955	0.036	0.002

Table 2: The nuclear structure function ratios measured at 90 GeV and averaged over Q^2 . The normalisation uncertainties (not included in the systematic errors) are 0.7%, 0.8% and 0.5% for C/Li, Ca/Li and Ca/C, respectively. The variable y is defined as ν/E , where E is the incident muon energy.

Figure 2: The re-evaluated NMC structure function ratios for He/D, C/D, Ca/D together with the reanalysed SLAC results. The error bars show the statistical and systematic errors added in quadrature. The normalisation uncertainties are not included.

Figure 3: The slopes b from a linear fit in $\ln Q^2$ for each x bin separately. The errors shown are statistical only.