Derivadas de orden superior

Juan Pablo Guerrero Escudero

01 abril, 2024

Derivadas en \mathbb{R}^2 : Las derivadas en \mathbb{R}^2 se llaman igualmente derivadas totales, y son de la forma $y' = \frac{dy}{dx}$, $y'' = \frac{d^3y}{dx^2}$, y $y''' = \frac{d^3x}{dx^3}$. Al derivar, "transformas" una función en otra función.

Derivadas en \mathbb{R}^3 : Para una función de dos variables independientes de la forma z = f(x, y), se puede obtener la derivada parcial respecto a cada variable. Usando la notación de Euler: $D_x f$ y $D_y f$, las cuáles son de primer orden.

Derivadas de orden superior: Sin embargo, si se busca obtener las derivadas parciales de segundo orden, hay cuatro posibles: $D_{xx}f$, $D_{xy}f$, $D_{yx}f$, $D_{yy}f$, debido a que se puede derivar parcialmente cada derivada de primer orden nuevamente respecto a la variable x o y. Es decir, se toma la derivada parcial de primer orden, y se vuelve a derivar respecto a cualquiera de las variables, y es por eso que se escribe $D_{xy}f$, ya que la derivada parcial de f respecto a f se deriva nuevamente respecto a f.

Se le llaman derivadas parciales mixtas cuando se deriva parcialmente una función respecto a dos o más variables en un órden específico.

En general, para calcular el número de derivadas, se hace mediante m^n , donde m es el número de variables, y n es el orden de la derivada parcial.

Teorema de Clairaut/Schwarz

Si f es una función $f: \mathbb{R}^2 \to \mathbb{R}$, que está definida en un disco D con el punto (x_0, y_0) dentro del disco, y $D_{xy}f$ y $D_{yx}f$ son continuas en D, entonces $D_{xy}f(x_0, y_0) = D_{yx}f(x_0, y_0)$. Entonces, lo que nos dice lo anterior es que las derivadas parciales mixtas van a ser iguales si estamos en el dominio de esas funciones, es decir "El orden de derivación es indistinto". El teorema funciona para derivadas de orden superior, es decir: $D_{xyx}f = D_{xxy}f = D_{yxx}f$.

En Matlab, para hacer $D_x f$ se hace con el comando diff(f, x). Igualmente, $D_{xxx} f$ se hace con el comando diff(f, x, 3). Por último, para evaluar $D_{xxx} f(0,1)$ se hace u_xxx(0, 1) para obtener el valor exacto, y double(u_xxx(0, 1)) para obtener el valor aproximado