### Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina

### Metodologia experimental e Análise

Prof. Tiago A. Almeida

### Motivação

- Contudo, ao testar a hipótese em um novo conjunto de amostras você descobriu que o método produz erros inaceitáveis nas suas predições. E agora?
  - Inserir mais amostras de treinamento ?
  - Reduzir a quantidade de atributos ?
  - Aumentar a quantidade de atributos ?
  - Adicionar atributos polinomiais (x<sub>1</sub><sup>2</sup>, x<sub>2</sub><sup>2</sup>, x<sub>1</sub>x<sub>2</sub>, ...)?
  - Reduzir o valor de λ?
  - Aumentar o valor de λ?

Muito tempo pode ser perdido tentando aleatoriamente uma ou mais opções

### Motivação

Suponha que você tenha aplicado o método de regressão linear com regularização para fazer predições

$$J(\theta) = \frac{1}{2m} \left[ \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

Tiago A. Ali

### Análise ou Diagnóstico

- Diagnóstico: teste para estimar o que está correto/incorreto com o método de aprendizado de máquina e descobrir qual é a melhor estratégia para aumentar o desempenho.
- A análise pode ser custosa (em termos de implementação), porém pode poupar muito tempo de tentativas erradas.

Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina

Avaliando uma hipótese















Avaliando uma hipótese

- Validação cruzada com k-partições
  - Escolhe k e divide a base de dados em k partes
  - Treina com k-1 partes e testa com 1 parte:
    - Calcula o parâmetro  $\theta$  a partir da base de treinamento (minimizando o erro de treinamento  $J(\theta)$ )
    - Calcula a tx de erro/acerto no conjunto de teste  $J(\theta)$
  - Repete até ter testado com todas as k partes
  - Calcula média e desvio padrão das taxas de erros/acertos

Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina

Seleção de modelo

Prof. Tiago A. Almeida

### Validação cruzada

k-fold cross-validation

| Tamanho | Valor |
|---------|-------|
| 2104    | 400   |
| 1600    | 330   |
| 2400    | 369   |
| 1416    | 232   |
| 3000    | 540   |
| 1985    | 300   |
| 1534    | 315   |
| 1427    | 199   |
| 1380    | 212   |
| 1494    | 243   |

Seleção de modelo

Modelos

• 1. 
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

• 2. 
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

**3**. 
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$$

• 10. 
$$\dot{h}_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$$

**Modelos:** possíveis graus do polinômio que forma a hipótese e/ou diferentes valores do parâmetro de regularização





### Seleção de modelo • Modelos • 1. $h_{\theta}(x) = \theta_0 + \theta_1 x$ • 2. $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$ • 3. $h_{\theta}(x) = \theta_0 + \theta_1 x + \cdots + \theta_3 x^3$ $\vdots$ • 10. $h_{\theta}(x) = \theta_0 + \theta_1 x + \cdots + \theta_{10} x^{10}$ Modelo escolhido. Como avaliar se o conjunto de teste foi usado para escolher o modelo?

### Seleção de modelo

- Procedimento de seleção e teste
  - Calcular o parâmetro  $\theta$  a partir da base de treinamento (minimizando o erro de treinamento  $J_{train}(\theta)$ )
  - Calcular o erro/acerto no conjunto de validação cruzada  $J_{cv}(\theta)$  e selecionar o modelo

Tiago A. A

# Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina Viés X Variância Prof. Tiago A. Almeida







# Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina Curvas de aprendizado Prof. Tiago A. Almeida













### Decisões

- Suponha que você tenha aplicado o método de regressão linear com regularização para fazer predições
- Contudo, ao testar a hipótese em um novo conjunto de amostras você descobriu que o método produz erros inaceitáveis nas suas predições. E agora?
  - Inserir mais amostras de treinamento (pode resolver alta variância)
  - Reduzir a quantidade de atributos (pode resolver alta variância)
  - Aumentar a quantidade de atributos (pode resolver alto viés)
  - Adicionar atributos polinomiais  $(x_1^2, x_2^2, x_1x_2, ...)$  (pode resolver alto viés)
  - Reduzir o valor de λ (pode resolver alto viés)
  - Aumentar o valor de λ (pode resolver alta variância)