DPP - Daily Practice Problems

	_		
Date :	Start Time :	End Time :	

SYLLABUS: Sequences and Series

Max. Marks: 74 Time: 60 min.

GENERAL INSTRUCTIONS

• The Daily Practice Problem Sheet contains 20 Questions divided into 5 sections.

Section I has 6 MCQs with ONLY 1 Correct Option, 3 marks for each correct answer and −1 for each incorrect answer.

Section II has 4 MCQs with ONE or MORE THAN ONE Correct options.

For each question, marks will be awarded in one of the following categories:

Full marks: +4 If only the bubble(s) corresponding to all the correct option(s) is (are) darkened.

Partial marks: **+1** For darkening a bubble corresponding to each correct option provided NO INCORRECT option is darkened. Zero marks: If none of the bubbles is darkened.

Negative marks: **-2** In all other cases.

Section III has 4 Single Digit Integer Answer Type Questions, 3 marks for each Correct Answer and 0 marks in all other cases.

Section IV has Comprehension Type Questions having **4** MCQs with ONLY ONE corect option, 3 marks for each Correct Answer and **0** marks in all other cases.

Section V has 2 Matching Type Questions, 2 mark for the correct matching of each row and 0 marks in all other cases.

• You have to evaluate your Response Grids yourself with the help of Solutions.

Section I - Straight Objective Type

This section contains 6 multiple choice questions. Each question has 4 choices (a), (b), (c) and (d), out of which **ONLY ONE** is correct.

1. If
$$a_1, a_2, a_3, \dots$$
 are in H.P. and $f(k) = \left(\sum_{r=1}^n a_r\right) - a_k$, then

$$\frac{a_1}{f(1)}, \frac{a_2}{f(2)}, \frac{a_3}{f(3)} \dots \frac{a_n}{f(n)}$$
 are in

- (a) A.P.
- (b) G.P.
- (c) H.P.
- (d) None of these
- 2. If a, b, c, d are non-zero real numbers such that $(a^2 + b^2 + c^2)(b^2 + c^2 + d^2) \le (ab + bc + cd)^2, \text{ then } a, b,$
 - c, d are in
 - (a) AP
- (b) GP
- (c) HP
- (d) None of these

RESPONSE GRID

- 1. (a)(b)(c)(d)
- 2. abcd

- If a > 0, b > 0, c > 0 and the minimum value of $a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)$ is λabc , then find the value of λ
 - (a) 2
- (b) 1
- (c) 6
- (d) 3
- If S_r denotes the sum of the first r terms of an AP, and the value of = pr + q then find the value of p + q
 - (a) -1
- (c) 3
- (d) None of these
- 5. If H_1, H_2, \dots, H_n are *n* harmonic means between *a* and $b \neq a$,

then find the value of $\frac{H_1 + a}{H_1 - a} + \frac{H_n + b}{H_n - b}$

- (a) n+1
- (b) n-1
- (c) 2n
- (d) 2n+3
- If a_1, a_2, \dots, a_n are in H.P., then the expression $a_1a_2 + a_2a_3 + \dots + a_{n-1}a_n$ is equal to
 - (a) $n(a_1-a_n)$
- (b) $(n-1)(a_1-a_n)$
- (c) na_1a_n
- (d) $(n-1)a_1a_n$

Section II - Multiple Correct Answer Type

This section contains 4 multiple correct answer(s) type questions. Each question has 4 choices (a), (b), (c) and (d), out of which ONE OR MORE is/are correct.

- If a, b, c are in AP and a^2 , b^2 , c^2 are in HP, then

 - (a) a = b = c (b) $a, b, -\frac{1}{2}c$ are in GP
 - (c) a, b, c are in GP (d) $-\frac{1}{2}a, b, c$ are in GP

Sum to *n* terms of the series $S_n = \frac{1}{(1+x)(1+2x)}$

$$+\frac{1}{(1+2x)(1+3x)}+\frac{1}{(1+3x)(1+4x)}+\dots$$
 is

(a)
$$S_{10} = \frac{10}{(1+x)(1+11x)}$$

(b)
$$S_{10} = \frac{10}{(1+2x)(1+11x)}$$

(c)
$$S_{16} = \frac{16}{(1+x)(1+17x)}$$

(d)
$$S_{18} = \frac{18}{(1+x)(1+17x)}$$

For $0 < \phi < \pi/2$, if

$$x = \sum_{n=0}^{\infty} \cos^{2n} \phi$$
, $y = \sum_{n=0}^{\infty} \sin^{2n} \phi$, $z = \sum_{n=0}^{\infty} \cos^{2n} \phi \sin^{2n} \phi$ then:

- (a) xyz = xz + y
- (b) xyz = xy + z
- (c) xyz = x + y + z
- (d) xyz = yz + x
- Given that α , γ are roots of the equation $Ax^2 4x + 1 = 0$ 10. and β , δ the roots of the equation $Bx^2 - 6x + 1 = 0$, and α , β , α , γ and δ are in HP, then
 - (a) A = 3, B = 8
- (b) A = 8, B = 3
- (c) A = 3, B = -8
- (d) A + B = 11

RESPONSE GRID

- 3. (a)(b)(c)(d) 8. abcd
- 4. (a) (b) (c) (d) (9. (a) (b) (c) (d)
- 10. (a) (b) (c) (d)
- 5. abcd 6. abcd
- (a)(b)(c)(d)

Section III - Integer Type

This section contains 4 questions. The answer to each of the questions is a single digit integer ranging from 0 to 9

- 11. Let $a_1, a_2, ..., a_{10}$ be in AP and $h_1, h_2, ..., h_{10}$ be in HP. If $a_1 = h_1 = 2$ and $a_{10} = h_{10} = 3$, then find the value of $a_4 h_7$
- 12. If a, b, c are in G.P., x and y be the A.M.s between a, b and b, c respectively, then $\left(\frac{a}{x} + \frac{c}{v}\right) \left(\frac{b}{x} + \frac{b}{v}\right)$ is equal to.
- **13.** If $(1+x)(1+x^2)(1+x^4)...(1+x^{128}) = \sum_{r=0}^{n} x^r$, then unit digit of n is
- **14.** Sum to *n* terms of the series $\frac{1}{5!} + \frac{1!}{6!} + \frac{2!}{7!} + \frac{3!}{8!} + \frac{1}{8!}$

$$\dots = \frac{1}{a} \left[\frac{1}{b!} - \frac{(n+c)!}{(n+d)!} \right]$$
then $(a+b-c-d)$ is

Section IV - Comprehension Type

Based upon the given paragraphs, 4 multiple choice questions have to be answered. Each question has 4 choices (a), (b), (c) and (d), out of which **ONLY ONE** is correct.

PARAGRAPH-1

If $a_1, a_2, ..., a_n$ are in A.P., then $\frac{1}{a_1}, \frac{1}{a_2}, ..., \frac{1}{a_n}$ are in H.P. and vice-versa.

If a₁, a₂, ..., a_n are in A. P. with common difference d, then for any b (>0), the number $b^{a_1}, b^{a_2}, b^{a_3}, \dots, b^{a_n}$ are in G.P. with common ratio bd.

If $a_1, a_2, \dots a_n$ are positive and in G.P. with common ratio r, then for any base b (b > 0), $\log_b a_1$, $\log_b a_2$, ... $\log_b a_n$ are in A.P. with common difference log _br.

- **15.** If a, b, c are in H.P., then $e^{(-a)^{-1}}$, $e^{(-b)^{-1}}$, $e^{(-c)^{-1}}$ are in
 - (a) A.P.
- (b) GP
- (c) H.P.
- (d) None of these.
- **16.** If x, y, z are respectively the p^{th} , q^{th} and the r^{th} terms of an A.P., as well as of a G.P., then the value of (x^{y-z}) , (y^{z-x}) , (z^{x-y})
 - (a) 1
- (b) -1
- (c) 0
- (d) 2

PARAGRAPH-2

Let V_r denote the sum of first r terms of an arithmetic progression (A.P.) whose first term is r and the common difference is (2r-1). Let $T_r = V_{r+1} - V_r - 2$ and $Q_r = T_{r+1} - T_r$ for r = 1, 2, ...

- 17. The sum $V_1 + V_2 + ... + V_n$ is
 - (a) $\frac{1}{12}n(n+1)(3n^2-n+1)$
 - (b) $\frac{1}{12}n(n+1)(3n^2+n+2)$
 - (c) $\frac{1}{2}n(2n^2-n+1)$
 - (d) $\frac{1}{3}(2n^3-2n+3)$
- **18.** T is always
 - (a) an odd number
- (b) an even number
- (c) a prime number
- (d) a composite number

RESPONSE GRID

- 11. 0 1 2 3 4 5 6 7 8 9
- 16. a b c d 15. (a) (b) (c) (d)
- 12. 0 1 2 3 4 5 6 7 8 9
- 13. 0 1 2 3 4 3 6 7 8 9 14. 0 1 2 3 4 3 6 7 8 9 17. a b c d 18. a b c d

Section V - Matrix-Match Type

This section contains 2 questions. It contains statements given in two columns, which have to be matched. Statements in column I are labelled as A, B, C and D whereas statements in column II are labelled as p, q, r and s. The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-p, A-r, B-p, B-s, C-r, C-s and D-q, then the correctly bubbled matrix will look like the following:

19. Match the columns

Column I Column II

- (A) The sum of the first n natural number is one fifth of the sum of their squares, then n is

(*p*)

(*r*)

4

- (B) The harmonic mean of the roots of the equation $(5 + \sqrt{2})x^2$ $-(4+\sqrt{3})x+8+2\sqrt{3}=0$ is
- (q) 2
- (C) If x, y, z are in HP, (z > y > x). The value of $\frac{\left(\log(x+z) + \log(x-2y+z)\right)}{\log(z-x)}$

- (D) The nth term of GP is 128 and the sum to its *n* terms is 255. If its common ratio is 2, the its first term is
- 7 (s)

20. Match the columns

Column I Column II

- (A) The arithmetic mean of two positive numbers is 6 and their geometric mean G and harmonic mean H satisfy $G^2 + 3H = 48$ then G^2 is
- (p) 308
- (B) $S_n = n^3 (n-1)^3 + (n-2)^3 \dots + (-1)^{n-1} \cdot 1^3$ Then find $\frac{S_{39}}{100}$
- 32 *(q)*

If the first two terms of a harmonic progression be ½

are divisible by 7 but not by 21.

- and 1/3, then the harmonic mean of the first four terms is (D) Find the number of numbers lying between 100 and 500 that
- (s) 38

RESPONSE GRID

 $19. \, \overline{\text{A} - \text{pqTS}}; \, \overline{\text{B} - \text{pqTS}}; \, \overline{\text{C} - \text{pqTS}}; \, \overline{\text{D} - \text{pqTS}}$ 20. A - p@TS; B - p@TS; C - p@TS; D - p@TS

DAILY PRACTICE PROBLEM DPP CM07 - MATHEMATICS						
Total Questions	20	Total Marks 74				
Attempted		Correct				
Incorrect		Net Score				
Cut-off Score	26	Qualifying Score	37			

Net Score =
$$\sum_{i=1}^{V} \left[\left(\operatorname{correct}_{i} \times MM_{i} \right) - \left(\operatorname{In}_{i} - \operatorname{NM}_{i} \right) \right]$$

Space for Rough Work

DAILY PRACTICE PROBLEMS

MATHEMATICS SOLUTIONS

DPP/CM07

1. **(c)** We have

$$f(k) = \left(\sum_{r=1}^{n} a_r\right) - a_k = S_n - a_k$$

$$\Rightarrow \frac{f(k)}{a_k} = \frac{S_n}{a_k} - 1 \forall k = 1, 2, ..., n$$
Given $a_1, a_2, ..., a_n$ are in H.P.
$$\Rightarrow \frac{1}{a_1}, \frac{1}{a_2}, ..., \frac{1}{a_n} \text{ are in A.P.}$$

$$\Rightarrow \frac{S_n}{a_1} - 1, \frac{S_n}{a_2} - 1, ..., \frac{S_n}{a_n} - 1 \text{ are in A.P.}$$

$$\Rightarrow \frac{f(1)}{a_n}, \frac{f(2)}{a_2}, ..., \frac{f(n)}{a_n} \text{ are in A.P.}$$

2. (b) On simplification,

$$(b^2 - ac)^2 + (c^2 - bd)^2 + (ad - bc)^2 \le 0,$$

which is possible iff; each of

$$(b^2 - ac) = (c^2 - bd) = (ad - bc) = 0$$

$$\Rightarrow b^2 = ac, c^2 = bd, ad = bc \Rightarrow \frac{b}{a} = \frac{c}{b} = \frac{d}{c}$$

3. (c) We know that AM > GM

$$\frac{ab^2 + ac^2 + bc^2 + ba^2 + ca^2 + cb^2}{6} \ge \left(a^6b^6c^6\right)^{1/6}$$

$$\Rightarrow a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2) \ge 6abc$$

4. (c)
$$\frac{S_{3r} - S_{r-1}}{S_{2r} - S_{2r-1}}$$

$$= \frac{\frac{3r}{2} \left[2a + (3r - 1)d \right] - \frac{(r - 1)}{2} \left[2a + (r - 2)d \right]}{\frac{2r}{2} \left[2a + (2r - 1)d \right] - \frac{(2r - 1)}{2} \left[2a + (2r - 2)d \right]}$$

$$\Rightarrow \frac{2a(2r+1)+d(8r^2-2)}{2a+d(4r-2)}$$

$$= \frac{(2r+1)[2a+2(2r-1)d]}{[2a+2(2r-1)d]}$$

$$= (2x + 1) = (pr + q)$$

so $p = 2$ and $q = 1$

$$p + q = 2 + 1 = 3$$

5. (c) As a,
$$H_1, H_2, ..., H_n$$
, b are in HP.

$$\frac{1}{a}, \frac{1}{H_1}, \frac{1}{H_2}, \dots, \frac{1}{H_n}, \frac{1}{b}$$
 are in AP

Let d be the common difference of the AP, then

$$\frac{1}{b} = \frac{1}{a} + (n+1)d \implies d = \frac{1}{n+1} \frac{a-b}{ab}$$

Thus,
$$\frac{1}{H_1} = \frac{1}{a} + d$$
 and $\frac{1}{H_n} = \frac{1}{b} - d$

$$\Rightarrow \frac{a}{H_1} = 1 + ad$$
 and $\frac{b}{H_n} = 1 - bd$

Now,
$$\frac{H_1 + a}{H_1 - a} + \frac{H_n + b}{H_n - b} = \frac{1 + \frac{a}{H_1}}{1 - \frac{a}{H_1}} + \frac{1 + \frac{b}{H_n}}{1 - \frac{b}{H_n}}$$
$$= \frac{1 + 1 + ad}{1 - 1 - ad} + \frac{1 + 1 - ba}{1 - 1 + bd}$$
$$= \frac{2 + ad}{-ad} + \frac{2 - bd}{bd} = \frac{2a - abd - 2b - abd}{abd}$$
$$= \frac{2\left[(a - b) - abd\right]}{abd}$$
$$= \frac{2\left[(n + 1)dab - abd\right]}{abd} = 2n$$

6. (d)
$$\frac{1}{a_2} - \frac{1}{a_1} = \frac{1}{a_3} - \frac{1}{a_2} = \dots = \frac{1}{a_n} - \frac{1}{a_{n-1}} = d$$
 (say)

Then
$$a_1 a_2 = \frac{a_1 - a_2}{d}$$
, $a_2 a_3 = \frac{a_2 - a_3}{d}$,

....,
$$a_{n-1}a_n = \frac{a_{n-1} - a_n}{d}$$

$$a_1a_2 + a_2a_3 + \dots + a_{n-1}a_n$$

$$= \frac{a_1 - a_2}{d} + \frac{a_2 - a_3}{d} + \dots + \frac{a_{n-1} - a_n}{d}$$

$$= \frac{1}{d} [a_1 - a_2 + a_2 - a_3 + \dots + a_{n-1} - a_n]$$

$$=\frac{a_1-a_n}{d}$$

Also,
$$\frac{1}{a} = \frac{1}{a_1} + (n-1)d$$

$$\Rightarrow \frac{a_1 - a_n}{a_1 a_n} = (n-1)d \Rightarrow \frac{a_1 - a_n}{d} = (n-1)a_1 a_n$$

Which is the required result.

7. (a, b, d) Since three numbers in AP so
$$2b = a + c$$
 and

$$b^2 = \frac{2a^2c^2}{a^2 + c^2}$$

Eliminating b, we get $\left(\frac{a+c}{2}\right)^2 = \frac{2a^2c^2}{a^2+c^2}$

$$\Rightarrow$$
 $(a^2 + c^2)^2 + 2ac(a^2 + c^2) - 8a^2c^2 = 0$

$$\Rightarrow (a^2 + c^2 + 4ac)(a^2 + c^2 - 2ac) = 0$$

$$\Rightarrow \left[(a+c)^2 + 2ac \right] (a-c)^2 = 0$$

$$\Rightarrow 4\left(b^2 + \frac{1}{2}ac\right)(a-c)^2 = 0$$

$$\Rightarrow a-c=0 \quad or \quad b^2=-\frac{1}{2}ac$$

If
$$a = c$$
, we get $a = b = c$

If $b^2 = -\frac{1}{2}ac$, then either $a, b, -\frac{1}{2}c$ are in GP

or
$$-\frac{1}{2}a$$
, b, c are in GP

8. (a, c) If t_r denotes the rth term of the series, then

$$xt_r = \frac{x}{(1+rx)(1+(r+1)x)}$$

$$=\frac{1}{1+rx}-\frac{1}{1+(r+1)x}$$

$$\Rightarrow x \sum_{r=1}^{n} t_r = \sum_{r=1}^{n} \left[\frac{1}{1+rx} - \frac{1}{1+(r+1)x} \right]$$

$$= \frac{1}{1+x} - \frac{1}{1+(n+1)x} = \frac{nx}{(1+x)(1+(n+1)x)}$$

$$\Rightarrow S_n = \sum_{r=1}^n t_r = \frac{n}{(1+x)\left[1+(n+1)x\right]}$$

9. **(b, c)** We have for $0 < \phi < \frac{\pi}{2}$

$$x = \sum_{n=0}^{\infty} \cos^{2n} \phi = 1 + \cos^2 \phi + \cos^4 \phi + \dots \infty$$

$$\frac{1}{1 - \cos^2 \phi} = \frac{1}{\sin^2 \phi}$$
(1)

[Using sum of infinite G.P. $\cos^2 \alpha$ being < 1]

$$y = \sum_{n=0}^{\infty} \sin^{2n} \phi = 1 + \sin^2 \phi + \sin^4 \phi + \dots \infty$$

$$=\frac{1}{1-\sin^2\phi}=\frac{1}{\cos^2\phi}$$
(2)

$$z = \sum_{n=0}^{\infty} \cos^{2n} \phi \sin^{2n} \phi$$

$$= 1 + \cos^2 \phi \sin^2 \phi + \cos^4 \phi \sin^4 \phi + \dots \infty$$

$$= \frac{1}{1-\cos^2\phi\sin^2\phi} \qquad \dots (3)$$

Substituting the values of $\cos^2 \phi$ and $\sin^2 \phi$ in (3), from (1) and (2), we get

$$z = \frac{1}{1 - \frac{1}{x} \cdot \frac{1}{y}} \Rightarrow z = \frac{xy}{xy - 1}$$

$$\Rightarrow xyz - z = xy \Rightarrow xyz = xy + z$$

Also,
$$x+y+z = \frac{1}{\cos^2 \phi} + \frac{1}{\sin^2 \phi} + \frac{1}{1-\cos^2 \phi \sin^2 \phi}$$

$$[\sin^2\phi(1-\cos^2\phi\sin^2\phi)+\cos^2\phi(1-\cos^2\phi\sin^2\phi)$$

$$\frac{+\cos^2\phi\sin^2\phi]}{\cos^2\phi\sin^2\phi(1-\cos^2\phi\sin^2\phi)}$$

$$=\frac{(\sin^2\phi + \cos^2\phi)(1-\cos^2\phi\sin^2\phi) + \cos^2\phi\sin^2\phi}{\cos^2\phi\sin^2\phi(1-\cos^2\phi\sin^2\phi)}$$

$$= \frac{1}{\cos^2 \phi \sin^2 \phi (1 - \cos^2 \phi \sin^2 \phi)} = xyz$$

Thus (b) and (c) both are correct.

10. (a, d) α , β , γ and δ are in HP

$$\Rightarrow \frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}, \frac{1}{\delta} \text{ are in AP}$$

Let d be the common difference of this AP.

Now, a, γ are roots of $Ax^2 - 4x + 1 = 0$

$$\therefore \frac{\alpha + \gamma}{\alpha \gamma} = \frac{\frac{4}{A}}{\frac{1}{A}} = 4$$

or
$$\frac{1}{\alpha} + \frac{1}{\gamma} = 4ie, \frac{1}{\alpha} + \frac{1}{\alpha} + 2d = 4$$

or
$$\frac{1}{a} + d = 2$$
 ...(i)

 β , δ are roots of Bx² – 6x + 1 = 0

$$\therefore \frac{\beta + \delta}{\beta \delta} = \frac{1}{\beta} + \frac{1}{\delta} = \frac{6 / B}{1 / B} = 6$$

or
$$\frac{1}{\alpha} + d + \frac{1}{\alpha} + 3d = 6$$

or
$$\frac{1}{\alpha} + 2d = 3$$
 ...(ii)

From Eqs. (i) and (ii), on solving, we get

$$\frac{1}{\alpha} = 1$$
, $d = 1$: $\frac{1}{\alpha} = 1$, $\frac{1}{\beta} = 2$, $\frac{1}{\gamma} = 3$, $\frac{1}{\delta} = 4$

Since,
$$\frac{1}{\alpha \gamma} = A \Rightarrow A = 3$$

Also,
$$\frac{1}{\beta\delta} = B$$
, $\Rightarrow B = 8$

Hence, A = 3 and B = 8.

11. (6) Given that
$$a_{10} = 3 \Rightarrow a_1 + 9d = 3$$

$$\Rightarrow 2 + 9d = 3[a_1 = 2]$$

$$\Rightarrow$$
 d = $\frac{1}{9}$

$$\therefore a_4 = a_1 + 3d = 2 + \frac{3}{9} = \frac{7}{3}$$

$$h_{10} = 3$$

$$\Rightarrow \frac{1}{h_{10}} = \frac{1}{3}$$

 \Rightarrow Common difference of corresponding AP is D = $-\frac{1}{54}$

$$\therefore \frac{1}{h_7} = \frac{1}{h_1} + 6D = \frac{1}{2} - \frac{1}{9} = \frac{7}{18}$$

$$\Rightarrow h_7 = \frac{18}{7}$$

so,
$$a_4 h_7 = \frac{7}{3} \times \frac{18}{7} = 6$$

12. (4) Given
$$b^2 = ac$$
, $x = \frac{a+b}{2}$, $y = \frac{b+c}{2}$

Now,
$$\frac{a}{x} + \frac{c}{y} = \frac{2a}{a+b} + \frac{2c}{b+c}$$

$$= \frac{2(ab + ac + ac + bc)}{ab + ac + b^2 + bc} = 2 \qquad \left[\because b^2 = ac\right]$$

Again
$$\frac{b}{x} + \frac{b}{y} = 2b \left[\frac{1}{a+b} + \frac{1}{b+c} \right]$$
$$= \frac{2b(b+c+a+b)}{ab+ac+b^2+bc} = 2$$

$$\therefore \left(\frac{a}{x} + \frac{c}{y}\right) \left(\frac{b}{x} + \frac{b}{y}\right) = 4.$$

13. (5)
$$(1+x)(1+x^2)(1+x^4)...(1+x^{128})$$

$$=1+x+x^2+\ldots+x^n$$

$$\Rightarrow (1-x)\{(1+x)(1+x^2)(1+x^4)...(1+x^{128})\}$$

$$=1-x^{n+1}$$

$$\Rightarrow (1-x^2)\{(1+x^2)...(1+x^{128})\}=1-x^{n+1}$$

$$\Rightarrow$$
 $(1-x^4)(1+x^4)...(1+x^{128})=1-x^{n+1}$

$$\Rightarrow 1 - x^{256} = 1 - x^{n+1}$$

$$\therefore$$
 $n+1=256$ or $n=255$

14. (4) We have
$$t_r = \frac{(r-1)!}{(r+4)!}$$

And
$$t_{r+1} = \frac{r!}{(r+5)!}$$

Now,
$$rt_r - (r+5)t_{r+1} = \frac{r!}{(r+4)!} - \frac{r!}{(r+4)!} = 0$$

$$\Rightarrow rt_r - (r+1)t_{r+1} = 4t_{r+1}$$

$$\Rightarrow 4\sum_{r=1}^{n-1} t_{r+1} = \sum_{r=1}^{n-1} \left[rt_r - (r+1)t_{r+1} \right]$$

$$\Rightarrow$$
 $4(t_2+t_3+\ldots+t_n)=1t_1-nt_n$

$$\Rightarrow 4(t_1+t_2+\ldots+t_n)=5t_1-nt_n$$

$$=5\left(\frac{0!}{5!}\right)-\frac{n(n-1)!}{(n+4)!}=\frac{1}{4!}-\frac{n!}{(n+4)!}$$

$$\Rightarrow t_1 + t_2 + ... + t_n = \frac{1}{4} \left[\frac{1}{4!} - \frac{n!}{(n+4)!} \right]$$

So a = 4, b = 4, c = 0 and d = 4 and a + b - c - d = 4

- **15. (b)** Here a, b, c, are in H.P.
 - \Rightarrow a⁻¹, b⁻¹, c⁻¹ are in A.P.

$$\Rightarrow e^{(-a)^{-1}} \cdot e^{(-b)^{-1}} \cdot e^{(-c)^{-1}}$$
 are in G.P.

16. (a) Since x, y, z are respectively the p^{th} , q^{th} and the r^{th} terms of a G.P so ℓ n x, ℓ n y, ℓ n z are in A.P. with common difference ℓ nt. Here t is the common ratio

Also, x, y, z are in A.P.(say with common difference d.) Hence, x - y = (p-q)d etc.

and $\ln x - \ln y = (p - q) \ln t$.

Let
$$S = (x^{y-z}), (y^{z-x}), (z^{x-y})$$

so that
$$\ln S = (y-z)\ln x + (z-x)\ln y$$

$$+(x-y)\ln z$$

$$= (q-r)d\ln x + (r-p)d\ln y + (p-q)d\ln z$$

$$= d[p(\ln z - \ln y) + q(\ln x - \ln z)]$$

$$+ r(\ln y - \ln x)$$

$$= d \ln \left[p(r-q) + q(p-r) + r(q-p) \right] = 0$$

$$\Rightarrow S = 1$$

$$C = 1$$

17. **(b)**
$$V_1 + V_2 + \dots + V_n = \sum_{r=1}^n V_r = \sum_{r=1}^n \left(r^3 - \frac{r^2}{2} + \frac{r}{2} \right)$$

$$=\sum_{n} n^3 - \frac{\sum_{n} n^2}{2} + \frac{\sum_{n} n}{2}$$

$$= \frac{n^2 (n+1)^2}{4} - \frac{n(n+1)(2n+1)}{12} + \frac{n(n+1)}{4}$$

$$= \frac{n(n+1)}{4} \left[n(n+1) - \frac{2n+1}{3} + 1 \right]$$

$$= \frac{n(n+1)(3n^2 + n + 2)}{12}$$

18. (d)
$$T_r = V_{r+1} - V_r - 2$$

$$= \left[\left(r+1 \right)^3 - \frac{\left(r+1 \right)^2}{2} + \frac{r+1}{2} \right] - \left[r^3 - \frac{r^2}{2} + \frac{r}{2} \right] - 2$$

$$=3r^2+2r+1$$

$$T_r = (r+1)(3r-1)$$

For each r, T, has two different factors other than 1

:. T is always a composite number.

19. (A)
$$\rightarrow$$
 (s), (B) \rightarrow (p), (C) \rightarrow (q), (D) \rightarrow (r)

(A) Given,
$$\sum n = \frac{1}{5} \left(\sum n^2 \right)$$

or
$$\frac{n(n+1)}{2} = \frac{1}{5} \frac{n(n+1)(2n+1)}{6}$$

$$\Rightarrow$$
 2n + 1 = 15

$$\Rightarrow$$
 2n=14

$$\Rightarrow n=7$$

(B) Let α and β be the roots of the given equation,

$$\alpha + \beta = \frac{4 + \sqrt{3}}{5 + \sqrt{2}}$$
 and $\alpha\beta = \frac{8 + 2\sqrt{3}}{5 + \sqrt{2}}$

Hence, required harmonic mean

$$= \frac{2\alpha\beta}{\alpha + \beta} = \frac{2\left(\frac{8 + 2\sqrt{3}}{5 + \sqrt{2}}\right)}{\frac{4 + \sqrt{3}}{5 + \sqrt{2}}} = 4$$

(C) x, y, z are in HP.

$$y = \frac{2xz}{x+z}$$

$$\Rightarrow x-2y+z=x+z-\frac{4xz}{x+z}$$

$$= \frac{(x+z)^2 - 4xz}{x+z} = \frac{(z-x)^2}{x+z}$$

$$\Rightarrow$$
 $(x+z)(x-2y+z)=(z-x)^2$

$$\Rightarrow$$
 $\log(x+z) + \log(x-2y+z) = 2\log(z-x)$

(D)
$$\frac{128r-a}{r-1} = 255$$

$$\Rightarrow \frac{256 - a}{2 - 1} = 255$$

$$\Rightarrow 256 - a = 225$$

$$\Rightarrow a = 1$$
[since $r = 2$]

20. (A) \rightarrow (q); (B) \rightarrow (p); (C) \rightarrow (r); (D) \rightarrow (s)

(A)
$$a+b=12$$
$$ab + \frac{6ab}{a+b} = 48$$

$$ab + \frac{ab}{2} = 48$$

$$\therefore ab = 32$$

 $\therefore ab = 32$ (B) As n = 39 is odd, the value of the given expression $=1^3-2^3+3^3-...+n^3$ $= (1^3 + 2^3 + 3^3 + ... + n^3) - 2(2^3 + 4^3 + ... + (n-1)^3)$

$$= \left\{ \frac{n(n+1)}{2} \right\}^2 - 16 \left\{ 1^3 + 2^3 + \dots + \left(\frac{n-1}{2} \right)^3 \right\}$$

$$= \frac{n^2 (n+1)^2}{4} - 16 \cdot \left\{ \frac{n-1}{2} \cdot \frac{n+1}{2} \right\}^2$$

$$=\frac{\left(n+1\right)^2\cdot\left(2n-1\right)}{4}$$

On putting the value we get $\frac{S_{39}}{100} = \frac{30800}{100} = 308$

(C) HM of $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{5}$ is

$$\frac{4}{\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}} = \frac{240}{77}$$

(D) The numbers between 100 and 500 that are divisible by 7 are 105, 112, 119, 126, 133, 140, 147, ..., 483, 490,

Let such numbers be n.

Then,
$$497 = 105 + (n-1) \times 7$$
 or $n = 57$

So there are 57 number of numbers lying between 100 and 500 that are divisible by 7

The number between 100 and 500 that are divisible by 21 are 105, 126, 147, ..., 483.

Let such number be m.

Then,
$$483 = 105 + (m-1) \times 21$$
 or $n = 19$

So there are 19 number of numbers lying between 100 and 500 that are divisible by 21

Hence, the required number = n - m = 57 - 19 = 38