ECE374 SP23 HW3

Contributors

Zhirong Chen (zhirong4)

Ziyuan Chen (ziyuanc3)

Problem 1

A *finite-state transducer* (FST) gives an output based on the transition instead of the current state. It is defined by a 5-tuple:

$$(\Sigma, \Gamma, Q, \delta, s)$$

The output alphabet of a FST_{AR} consists of two signals, namely accept and reject ($\Gamma=\{A,R\}$). We say that $L(FST_{AR})$ represents the language consisting of all strings that end with an accept (A) output signal.

Prove that $L(FST_{
m AR})$ represents the class of regular languages.

Solution

Proof. We prove that a language is regular (i.e., can be represented by a DFA) *iff* it can be represented by a $FST_{\rm AR}$.

If. For any given $FST_{
m AR}$

$$M_{T1}=(\Sigma_1,\Gamma,Q_{T1},\delta_{T1},s_{T1})$$

, we construct a DFA

$$M_{D1} = (\Sigma_1, Q_{D1}, \delta_{D1}, s_{D1}, A_{D1})$$

such that $L(M_{D1}) = L(M_{T1})$, where

- $Q_{D1} = Q_{T1} \times \Gamma$
- $ullet \ \delta_{D1}((q,b),a) = \delta_{T1}(q,a), \quad orall q \in Q_{T1}, a \in \Sigma_1, b \in \Gamma$
- $s_{D1}=(s_{T1},\mathrm{R})$
- $\bullet \ \ A_{D1}=\{(q,\mathrm{A}) \mid q \in Q_{T1}\}$

Here $\delta_{T1}:Q_{T1} imes \Sigma_1 o Q_{T1} imes \Gamma$ and $\delta_{D1}:Q_{D1} imes \Sigma_1 o Q_{D1}.$

The core idea is to explicitly encode the last output signal in the states. There is a clear boundary between the *next-state logic* and *output logic*; thus, the expression of δ_{D1} is unrelated to b.

We have proven that any language representable by a $FST_{
m AR}$ is regular.

Only if. For any given regular language L represented by a DFA

$$M_{D2} = (\Sigma_2, Q_2, \delta_{D2}, s_2, A_{D2})$$

, we construct a $FST_{
m AR}$

$$M_{T2}=(\Sigma_2,\Gamma,Q_2,\delta_{T2},s_2)$$

such that $L(M_{T2}) = L(M_{D2})$, where

$$oldsymbol{eta}_{T2}(q,a) = egin{cases} (\delta_{D2}(q,a),\mathrm{A}) & ext{if } \delta_{D2}(q,a) \in A_{D2}, \ (\delta_{D2}(q,a),\mathrm{R}) & ext{if } \delta_{D2}(q,a)
otin A_{D2}, \end{cases} \quad orall q \in Q_2, a \in \Sigma_2$$

The idea is to encode the status of the next state in the arcs pointing to it.

We have proven that any regular language can be represented by a $FST_{
m AR}.$ **Q.E.D.**