Notable Continuous Distributions

its pdf is $f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & otherwise \end{cases}$ or equivalently its cdf is

 $F(x) = \begin{cases} 0 & x \le a \\ \frac{k-a}{b-a} & a < x < b. \text{ We write } X \sim U(a,b). \\ 1 & x \ge b \end{cases}$ To map $X \sim U(0,1)$ to $Y \sim U(a,b)$; Y = a + (b-a)X.

To map $X \sim U(0,1)$ to $Y \sim U(a,b)$: Y = a + (b-a)X. Mean: $E(X) = \frac{a+b}{2}$. Variance: $Var(X) = \frac{(b-a)^2}{12}$.

Exponential Distribution Exp(λ): Consider a random variable X with $supp(X) = [0, \infty)$ and pdf $f(x) = \lambda e^{-\lambda x}, x \ge 0$ for some λ

 Then X is a exponential (or negative exponential) random variable with rate parameter \(\lambda\), and \(X \subseteq Exp(\lambda)\).
Integration between 0 and x leads to the cdf:

 $F(x) = 1 - e^{-\lambda x}, x \ge 0.$ Mean: $E(x) = \frac{1}{\lambda}$. Variance: $Var(X) = \frac{1}{\lambda^2}$.

Memoryless (Lack of memory) Property of the Exponential: The complementary cumulative distribution function (or survival function, or tail distribution) is $P(X > \chi) = e^{-\lambda \chi}$.