RESEARCH ARTICLE

WILEY

Median control charts for monitoring asymmetric quality characteristics double bounded

Luiz M. A. Lima-Filho¹ | Marcelo Bourguignon² | Linda L. Ho³ | Fidel Henrique Fernandes²

Correspondence

Linda Lee Ho, Production Engineering Department, Universidade de São Paulo, São Paulo, Brazil.

Email: lindalee@usp.br

Funding information

Conselho Nacional de Desenvolvimento Científico e Tecnológico, Grant/Award Numbers: 301994/2018-8, 421656/2018-2

Abstract

In many practical situations, the quality characteristics of interest assume values in the range (0,1), like rates and proportions (but they are not results from Bernoulli experiments). Most control charts built for these quality characteristics rely on monitoring parameters of their probability distribution functions or on their averages after some reparameterization of their density probability function. However, for highly asymmetric distributions, the median is a more appropriate location parameter than the average. In this paper, we propose Shewhart-type control charts for monitoring the median of observations taken from quality characteristics double bounded after reparameterization of two probability density functions: Kumaraswamy and unit Weibull. The performance of the control charts is evaluated and compared in terms of run length (RL) analysis considering three estimators for the median. Finally, we also carry out two applications to demonstrate the applicability of these control charts.

KEYWORDS

average run length, double-bounded processes, Kumaraswamy distribution, reparameterization, unit-Weibull distribution

1 | INTRODUCTION

Attribute control charts are important tools in statistical process control to monitor processes with discrete data. In particular, there is interest in monitoring/controlling rates and proportions of the quality characteristics. When the quality characteristics are results of Bernoulli experiments, the np or p control charts have been used for this aim.²

Alternative control charts have been proposed by many contributors for situations where the rates and proportions are not results of Bernoulli experiments although they assume values in the standard unit interval. For example, Sant'Anna and ten Caten¹ presented the beta control chart, where the quality characteristic follows a beta probability distribution.³ In situations where the quality characteristic is affected by external covariates, Bayer et al.⁴ suggested the beta regression control chart considering the beta regression model varying dispersion. Lima-Filho et al.⁵ proposed a control chart for monitoring double-bounded processes in the intervals (0,1], [0,1), or [0,1], based on the inflated beta probability distribution. For quality characteristics following simplex and unit-gamma distributions, Ho et al.⁶ have studied the consequences in terms of speed to sign shifts on the rates when control charts built for beta distribution are equivocally used to monitor simplex (or unit-gamma) quality

¹Departamento de Estatística, Universidade Federal da Paraíba, João Pessoa, Brazil

²Departamento de Estatística, Universidade Federal do Rio Grande do Norte, Natal, Brazil

³Production Engineering Department, Universidade de São Paulo, São Paulo, Brazil

characteristics (and vice versa). These contributions⁴⁻⁶ were considered monitoring the average rate or proportion after a reparameterization of the probability density functions.

However, in this paper, we are concerned with situations when the mean may not be a good location measure to represent a set of data, particularly in data sets with strong asymmetry. In these cases, the median appears to be more adequate as it is a robust measure of location parameters mainly in the presence of outliers.

The contribution of this paper is twofold. First, we presented a median-dispersion reparameterization for unit-Weibull distribution. Second, Shewhart control charts are proposed for monitoring the stability of their medians in two cases: when only individual observations are available and for sample size n>1, three estimators for the median are considered. The performance of the control charts is made in terms of the usual metrics, to know average (ARL), median (MRL), and standard deviation (SDRL) of the run length (RL).

Kumaraswamy and unit-Weibull distributions are chosen in this study as they exhibit suitable features as closed expressions for their cumulative distribution functions as also their inverse function. Thus, the median-dispersion reparameterizations in these distributions can be achieved. To our knowledge, there is a gap in the current literature on control charts for these distributions. Only few contributions are found in literature. For example, Lima-Filho and Bayer⁸ proposed a control chart for monitoring the shape parameter of the Kumaraswamy distribution but not for the median and applied it in an environmental data set.

One may claim that the reason such median-dispersion reparameterizations were not tried for other distributions such as beta, simplex, and unit-gamma density functions is because they also assume values in the standard unit. As the cumulative distribution functions of these distributions do not present closed expressions, such median-reparameterizations are not feasible. On the other hand, the mean reparameterizations are allowable for the beta, simplex, and unit-gamma distributions but unfeasible for the Kumaraswamy and unit-Weibull distributions. For example, the average and variance of unit-Weibull distribution do not have closed expressions.

The paper proceeds as follows. Section 2 covers a brief review of the Kumaraswamy and unit-Weibull distributions and their respective median reparameterizations for modeling rates and proportions in the intervals (0,1). The Shewhart-type control charts for individual observations from the Kumaraswamy and unit-Weibull distributions are presented in Section 3, and their performances are evaluated in terms of RL. In Section 4, control charts for sample size n>1 are developed considering three estimators for the median: the sample median (SM), the estimator proposed by Hodges and Lehmann (HL), and the maximum likelihood (ML). The performance of these control charts is compared in terms of ARL. Applications using two real data sets are illustrated in Section 5. Finally, concluding remarks are outlined in Section 6.

2 | DISTRIBUTIONS TO MODEL DOUBLE-BOUNDED PROCESSES

In this section, we briefly present the Kumaraswamy and unit-Weibull distributions reparameterized in terms of their medians in order to be used to model data that assume values in the unit interval.

2.1 | Kumaraswamy distribution

Suppose that Y_K follows the Kumaraswamy distribution with shape parameters $\delta_K > 0$ and $\gamma_K > 0$, denoted by $Y_K \sim \text{Kuma}(\delta_K, \gamma_K)$. The probability density function (pdf) is defined by 10

$$f(y_K; \delta_K, \gamma_K) = \delta_K \gamma_K y_K^{\delta_K - 1} (1 - y_K^{\delta_K})^{\gamma_K - 1}, \ 0 < y_K < 1.$$

The mean and variance of $Y_K \sim \text{Kuma}(\delta_K, \gamma_K)$ are given, respectively, by

$$E(Y_K) = \gamma_K B \left(1 + \frac{1}{\delta_K}, \gamma_K \right),$$

$$\operatorname{Var}(Y_K) = \gamma_K B \left(1 + \frac{2}{\delta_K}, \gamma_K \right) - \left\{ \gamma_K B \left(1 + \frac{1}{\delta_K}, \gamma_K \right) \right\}^2,$$

where $B(a,b) = \int_0^1 s^{a-1} (1-s)^{b-1} ds = \Gamma(a)\Gamma(b)/\Gamma(a+b)$ is the beta function, where $\Gamma(\nu) = \int_0^\infty t^{\nu-1} \mathrm{e}^{-t} dt$ is the gamma function.

The cumulative distribution and quantile functions are defined, respectively, by

$$F(y_K; \delta_K, \gamma_K) = P(Y \le y_K) = \int_0^{y_K} f(t; \delta_K, \gamma_K) dt = 1 - (1 - y_K^{\delta_K})^{\gamma_K}, \ 0 < y_K < 1,$$

$$\psi(u; \delta_K, \gamma_K) = F(u; \delta_K, \gamma_K)^{-1} = \left\{1 - (1 - u)^{1/\gamma_K}\right\}^{1/\delta_K}, \ 0 < u < 1.$$
(1)

Using (1), an expression for the median of the distribution can be obtained, 11 which is given by

$$md(Y_K) = \tilde{\mu}_K = (1 - 0.5^{1/\gamma_K})^{1/\delta_K}.$$

Thus, making $\varphi_K = \delta_K$ (dispersion parameter), the parameter γ_K can be expressed by

$$\gamma_K = \frac{\ln(0.5)}{\ln(1 - \tilde{\mu}_K^{\varphi_K})}.$$

For the Kumaraswamy distribution, we adopted the following notation $Y_K \sim \text{Kuma}(\tilde{\mu}_K, \varphi_K)$. Considering this reparameterization, the probability density, cumulative distribution, and quantile functions can be re-expressed as

$$f(y_K; \tilde{\mu}_K, \varphi_K) = \frac{\varphi_K \ln(0.5)}{\ln(1 - \tilde{\mu}_K^{\varphi_K})} y_K^{\varphi_K - 1} (1 - y_K^{\varphi_K})^{\frac{\ln(0.5)}{\ln(1 - \tilde{\mu}_K^{\varphi_K})} - 1}, \tag{2}$$

$$F(y_K; \tilde{\mu}_K, \varphi_K) = 1 - (1 - y_K^{\varphi_K})^{\frac{\ln(0.5)}{\ln(1 - \tilde{\mu}_K^{\varphi_K})}}, \tag{3}$$

$$\psi(u; \tilde{\mu}_K, \varphi_K) = F(u; \tilde{\mu}_K, \varphi_K)^{-1} = \left[1 - (1 - u)^{\frac{\ln(1 - \tilde{\mu}_K^{\varphi_K})}{\ln(0.5)}}\right]^{1/\varphi_K},$$

for $0 < y_K < 1$, $\tilde{\mu}_K$ being the median of the y_K , $\varphi_K > 0$, and 0 < u < 1. Notice that φ_K can be interpreted as a precision parameter, in the sense that for fixed γ_K , the response variance decreases as φ_K increases. The mean and variance under this reparameterization are given, respectively, by

$$E(Y_K) = \gamma_K B \left(1 + \frac{1}{\varphi_K}, \gamma_K \right),$$

and

$$\operatorname{Var}(Y_K) = \gamma_K B \left(1 + \frac{2}{\varphi_K}, \gamma_K \right) - \left\{ \gamma_K B \left(1 + \frac{1}{\varphi_K}, \gamma_K \right) \right\}^2.$$

2.2 | Unit-Weibull distribution

A random variable Y_U follows a unit-Weibull distribution⁷ with shape parameters $\delta_U > 0$ and $\gamma_U > 0$, denoted by $Y_U \sim \text{UW}(\delta_U, \gamma_U)$ if its pdf is given by

$$f(y_U; \delta_U, \gamma_U) = \frac{1}{y_U} \delta_U \gamma_W [-\ln(y_U)^{\gamma_U - 1} \exp\{-\delta_U [-\ln(y_U)]^{\gamma_U}\}, 0 < y_U < 1.$$

The cumulative distribution function and quantile function are defined, respectively, by

$$F(y_U; \delta_U, \gamma_U) = P(Y_U \le y_U) = \int_0^{y_U} f(t; \delta_U, \gamma_U) dt = \exp\left[-\delta_U (-\ln y_U)^{\gamma_U}\right], \quad 0 < y_U < 1,$$

$$\psi(u; \delta_U, \gamma_U) = F(u; \delta_U, \gamma_U)^{-1} = \exp\left[-\left(-\frac{\ln u}{\delta_U}\right)^{1/\gamma_U}\right], \quad 0 < u < 1.$$

$$(4)$$

By Equation (4), an expression for the median can be obtained as

$$\operatorname{md}(Y_U) = \tilde{\mu}_U = \exp\left[-\left(-\frac{\ln(0.5)}{\delta_U}\right)^{1/\gamma_U}\right].$$

Thus, making $\varphi_U = \gamma_U$ (dispersion parameter), the parameter δ_U can be expressed by

$$\delta_U = -\frac{\ln(0.5)}{\left[-\ln(\tilde{\mu}_U)\right]^{\varphi_U}}.$$

For the unit-Weibull distribution, we adopted the notation $Y_U \sim UW(\tilde{\mu}_U, \varphi_U)$. Considering this reparameterization, the probability density and the cumulative distribution can be expressed as

$$f(y_U; \tilde{\mu}_U, \varphi_U) = \frac{\varphi_U}{y_U} \left[\frac{\ln(0.5)}{\ln(\tilde{\mu}_U)} \right] \left[\frac{\ln(y_U)}{\ln(\tilde{\mu}_U)} \right]^{\varphi_U - 1} 0.5^{(\ln(y_U)/\ln(\tilde{\mu}_U))^{\varphi_U}}, \tag{5}$$

and

$$F(y_U; \tilde{\mu}_U, \varphi_U) = 0.5^{[\ln(y_U)/\ln(\tilde{\mu}_U)]^{\varphi_U}}, \tag{6}$$

for $0 < y_U < 1$, $\tilde{\mu}_U$ being the median of the y_U and $\phi_U > 0$. It is worth mentioning that the mean and variance of unit-Weibull distribution do not present closed expressions.

3 | MONITORING INDIVIDUAL OBSERVATIONS OF KUMARASWAMY AND UNIT-WEIBULL DISTRIBUTIONS

Let Y_K be the random variable that follows a Kumaraswamy distribution. Considering an in-control process with parameters $\tilde{\mu}_{0K}$ and φ_{0K} and a Type I error α , the lower and upper probability control limits LCL_K and UCL_K for a Shewhart-type control chart are determined such that

$$\begin{split} P(Y_K &< LCL_K | \tilde{\mu}_{0K}, \phi_{0K}) = P(Y_K > UCL_K | \tilde{\mu}_{0K}, \phi_{0K}) = \alpha/2, \\ &\int_0^{LCL_K} f(y_K; \tilde{\mu}_{0K}, \phi_{0K}) dy_K = \int_{UCL_K}^1 f(y_K; \tilde{\mu}_{0K}, \phi_{0K}) dy_K = \alpha/2, \end{split}$$

where $f(y_K; \tilde{\mu}_{0K}, \varphi_{0K})$ is expressed in (2). Using (3), the probability control limits LCL_K and UCL_K are easily achieved. If Y_U comes from unit-Weibull distribution, the probability control limits LCL_U and UCL_U can be similarly established as

$$\begin{split} P(Y_{U} < & LCL_{U} | \tilde{\mu}_{0U}, \varphi_{0U}) = P(Y_{U} > UCL_{U} | \tilde{\mu}_{0U}, \varphi_{0U}) = \alpha/2, \\ & \int_{0}^{LCL_{U}} f(y_{U}; \tilde{\mu}_{0U}, \varphi_{0U}) dy_{U} = \int_{UCL_{U}}^{1} f(y_{U}; \tilde{\mu}_{0U}, \varphi_{0U}) dy_{U} = \alpha/2, \end{split}$$

with $f(y_U; \tilde{\mu}_{0U}, \varphi_{0U})$ expressed in (5). Using (6), LCL_U and UCL_U are easily determined. In both control charts, the central line (CL) is the median $(\tilde{\mu}_j)$, j = K, U. Thus, whenever $Y_j < LCL_j$ or $Y_j > UCL_j$ j = K, U, the process is declared out of control, and the search for special causes begins. The power $(1-\beta)$ of these control charts can be calculated as

$$1 - \beta = P(Y_i < LCL_i | \Theta_{1i}) + P(Y_i > UCL_i | \Theta_{1i}),$$

j=K,U, with $\Theta_{1j}=\{(\tilde{\mu}_{1K},\varphi_{1K}),(\tilde{\mu}_{1U},\varphi_{1U})\}$, respectively, for the out-of-control parameters of the Kumaraswamy and unit-Weibull parameters. Depending on the context of interest, the out-of-control median proportion $\tilde{\mu}_{1j}$ can be expressed by $\tilde{\mu}_{1j}=\tilde{\mu}_{0j}+k\sqrt{\mathrm{Var}(Y_j)},\,\tilde{\mu}_{1j}=\tilde{\mu}_{0j}+\Delta_j\,\,\mathrm{or}\,\,\tilde{\mu}_{1j}=\tilde{\mu}_{0j}\Delta_j,\,j=K,U.$ In this paper, we consider the third approach. In addition, we consider shifts only on the median proportion and no shifts on the dispersion parameters.

The performance of these control charts for individual observations is usually measured in terms of RL analysis. The RL distribution follows a geometric distribution with parameter p.⁶ For this aim, the average RL (ARL) is one of the most commonly used metrics.² For the in-control process, the ARL₀ can be written in terms of the probability of a Type I error (α), that is, ARL₀=1/ α . In an out-of-control process, the ARL₁ can be written in terms of the probability of a Type II error (β), that is, ARL₁=1/(1- β). Thus, when the process is in control, $p=\alpha$, and when the process is out of control, $p=1-\beta$. Additional analysis of the control chart performance can be carried out with the median (MRL=ln(0.5)/ln(1-p)) and standard deviation (SDRL= $\sqrt{(1-p)/p^2}$) of the RL distribution.^{6,8}

In this section, we evaluate and compare the performance of the control charts in terms of ARL, SDRL, and MRL. These measures are evaluated in two situations: considering the process in control and the process out of control. All results are performed using the statistical computing environment \mathbb{R}^{12} We wrote \mathbb{R} codes to determine the limits of the proposed control charts, which are available upon request.

Table 1 presents the values of the parameters that will compose the different cases evaluated in this study. These scenarios are determined considering different degrees of variability, asymmetry, and kurtosis. As noted in Figure 1, Cases 1 and 4 have lower and higher variances, respectively.

All results presented in this section are obtained considering as in-control median proportion $\tilde{\mu}_{0K} = \tilde{\mu}_{0_U} = 0.1, 0.3, 0.5, 0.7$ and out-of-control $\tilde{\mu}_{1_K} = \tilde{\mu}_{1_U} = \tilde{\mu}(\cdot)\Delta$, $\Delta = \{0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4\}$. When $\Delta = 1.0$, the process is in control. In addition, a Type I error (α) equal to 0.0027 was used to evaluate the performance of the control charts.

Furthermore, it would be interesting to measure the impact on the speed to detect shifts in the median proportion if a set of control limits determined under distribution "A" is equivocally used to monitor proportions under distribution "B," or vice versa.

Tables 2–4 present the performance for the Shewhart control chart. Table 2 considers the case where the median proportion shifts in two directions (decreases and increases). Tables 3 and 4 are built to describe the results related to the shifts of the median proportion in a single direction, respectively, considering only decreases or increases.

The results in terms of ARL, SDRL, and MRL are presented in Tables 2 to 4. In this study, two approaches are considered: the correct control limits are used (Kumaraswamy—true or unit-Weibull—true), and the incorrect limits are used (unit-Weibull control chart when the data follow Kumaraswamy distribution or vice versa).

According to Table 2, when the correct control limits are used, both control charts have obtained good results. However, due to the asymmetry of probability distributions, the impact on the detection of change in the process occurs differently. For example, considering Case 1, the unit Weibull to be true, the control chart takes approximately five

TABLE 1 Cases considered in the study

Case	$ ilde{\mu}$	$arphi_K$	$arphi_U$
1	0.1	10	14.73
2	0.3	8	6.84
3	0.5	6	3.43
4	0.7	4	1.57

FIGURE 1 Kumaraswamy (solid line) and unit-Weibull (dashed line) probability density function (pdf) of cases

samples to detect a 20% decrease in the median and 220 samples to detect an increase in the median of the same magnitude. The use of equivocal control limits produces a great variety of impacts. For example, in Case 2, the Kumaraswamy control chart wrongly used results in an ARL of approximately 87 (previous false alarms), when Δ =1.0, and an ARL of approximately 960 (no detection) when Δ =0.6. In general, the cases with lower variability can detect changes in the process more quickly.

Tables 3 and 4 present the results of unilateral control charts. Like bilateral control charts, when the correct control limits are used, both control charts have obtained good results. However, the use of equivocal control limits produces poor results. This result is expected if we analyze the density function shown in Figure 1. The tail densities (left and right) of the two distributions are vastly different, which explains the different performances observed in the four cases. Note that more impact is observed in cases of unilateral shifts (decreases or increases in the median proportion).

The results shown in Tables 2–4 highlight the importance of considering adequate data distribution to reduce false alarms and ensuring the control chart power to detect changes in the process. When this information is unknown, assuming that the process is in control state at Phase I, a general framework with the following steps can be used:

- 1 Select the possible distributions.
- 2 Estimate the parameters of the candidate distributions.
- 3 Use one or more criteria for the selection of the best distribution, such as Akaike information criterion (AIC), Bayesian information criterion (BIC), or some adherence tests: Kolmogorov-Smirnov, Anderson-Darling, and Cramér von Mises.
- 4 Check the adjustment of the selected distribution. Considering that the choice was adequate, determine the control limits and start monitoring the process; otherwise, go back to Step 1.

4 | CONTROL CHARTS TO MONITOR THE MEDIAN PARAMETER OF THE KUMARASWAMY AND UNIT-WEIBULL DISTRIBUTIONS BUILT WITH SEVERAL ESTIMATORS FOR THE MEDIAN

In this section, we proposed control charts to monitor the median proportion of the Kumaraswamy and unit-Weibull distributions considering three estimators for this parameter. The first one is the SM. Let $y_1, y_2, ..., y_n$, be a random sample

TABLE 2 Comparing the performances of the control charts

		Kuma	Kumaraswamy—true	true	ו	Unit Weibull		K	Kumaraswamy	1	Unit	Unit Weibull—true	rue
	4	ARL	SDRL	MRL	ARL	SDRL	MRL	ARL	SDRL	MRL	ARL	SDRL	MRL
Case 1:	9.0	4.99	4.46	3.10	1.18	0.46	0.37	1630.68	1630.18	1129.95	1.41	0.76	0.56
$\phi_K = 10.00$	0.7	21.39	20.89	14.48	3.03	2.48	1.73	711.41	710.91	492.76	2.21	1.63	1.15
$\varphi_U = 14.73$	8.0	79.90	79.40	55.04	10.00	9.49	6.58	333.38	332.88	230.74	5.42	4.89	3.40
	6.0	258.35	257.85	178.73	31.33	30.83	21.37	165.26	164.75	114.20	29.88	29.37	20.36
	1	370.00	369.50	256.12	88.93	88.43	61.29	85.74	85.24	59.09	370.00	369.50	256.12
	1.1	12.69	12.18	8.44	229.85	229.35	158.98	46.24	45.74	31.70	396.57	396.07	274.53
	1.2	2.90	2.35	1.64	548.01	547.51	379.51	25.80	25.29	17.53	219.93	219.43	152.10
	1.3	1.61	1.00	0.72	1219.53	1219.03	844.97	14.86	14.35	9.95	125.00	124.50	86.30
	1.4	1.26	0.57	0.44	2558.27	2557.77	1772.91	8.83	8.32	5.77	72.70	72.19	50.04
	TCL	0.0536			0.0663			0.0249			0.0683		
	NCL	0.1253			0.2177			0.1746			0.2215		
Case 2:	9.0	12.93	12.42	8.61	2.02	1.44	1.02	960.31	959.81	665.29	1.80	1.20	0.85
$\phi_K = 8.00$	0.7	43.13	42.63	29.55	5.55	5.03	3.49	514.36	513.86	356.18	3.06	2.51	1.75
$ \phi_U = 6.84 $	8.0	124.56	124.06	85.99	15.17	14.66	10.16	279.20	278.70	193.18	7.86	7.34	5.09
	6.0	318.80	318.30	220.63	38.12	37.61	26.07	155.12	154.62	107.17	40.08	39.58	27.44
	1	370.00	369.50	256.12	87.88	87.38	60.57	87.61	87.10	60.38	370.00	369.50	256.12
	1.1	21.50	21.00	14.56	187.81	187.31	129.84	50.05	49.55	34.35	419.57	419.07	290.48
	1.2	4.64	4.11	2.86	376.26	375.76	260.46	28.83	28.33	19.64	241.01	240.51	166.71
	1.3	2.25	1.67	1.18	713.45	712.95	494.18	16.72	16.21	11.24	138.15	137.65	95.41
	1.4	1.56	0.94	0.68	1288.69	1288.19	892.91	9.76	9.25	6.41	79.07	78.57	54.46
	TCL	0.1375			0.1796			0.0771			0.1875		
	NCL	0.3976			0.6090			0.5163			0.6166		
													(Continues)

TABLE 2 (Continued)

		Kuma	Kumaraswamy—true	true		Unit Weibull		H	Kumaraswamy	X	Unit	Unit Weibull—true	rue
	4	ARL	SDRL	MRL	ARL	SDRL	MRL	ARL	SDRL	MRL	ARL	SDRL	MRL
Case 3:	9.0	34.75	34.24	23.74	5.13	4.60	3.20	73.95	73.44	50.91	2.70	2.15	1.50
$\phi_K = 6.00$	0.7	86.90	86.40	59.89	12.15	11.64	8.07	328.45	327.95	227.31	4.91	4.38	3.04
	8.0	193.23	192.73	133.59	26.47	25.96	18.00	286.87	286.37	198.49	12.57	12.06	8.36
	6.0	391.47	390.97	271.00	53.25	52.75	36.57	179.85	179.35	124.32	55.70	55.19	38.26
	1	370.00	369.50	256.12	100.13	99.63	90.69	110.92	110.42	76.54	370.00	369.50	256.12
	1.1	39.49	38.99	27.02	178.09	177.59	123.09	67.00	99.30	46.09	442.46	441.96	306.34
	1.2	8.79	8.28	5.74	298.01	297.51	206.22	39.28	38.78	26.88	260.24	259.74	180.04
	1.3	3.77	3.23	2.25	222.72	222.22	154.03	22.13	21.62	14.99	145.31	144.81	100.38
	1.4	2.30	1.72	1.21	40.72	40.22	27.88	11.83	11.32	7.85	76.31	75.81	52.55
	TCL	0.1770			0.2472			0.1268			0.2624		
	NCL	0.7201			0.8887			0.8224			0.8938		
Case 4:	9.0	85.64	85.14	59.01	25.25	24.75	17.15	11.03	10.52	7.29	5.16	4.63	3.21
$\phi_K = 4.00$	0.7	160.42	159.92	110.85	46.99	46.48	32.22	25.61	25.11	17.40	9.27	8.75	6.07
$\phi_U = 1.57$	8.0	279.32	278.82	193.26	81.55	81.05	56.18	80.15	79.64	55.21	21.60	21.09	14.62
	6.0	456.83	456.32	316.30	134.69	134.19	93.01	250.16	249.66	173.05	76.21	75.71	52.48
	1	370.00	369.50	256.12	210.29	209.78	145.41	268.47	267.97	185.74	370.00	369.50	256.12
	1.1	62.37	61.87	42.88	163.62	163.12	113.07	167.91	167.41	116.04	450.50	450.00	311.92
	1.2	13.81	13.30	9.22	34.87	34.37	23.82	89.29	88.79	61.55	241.50	241.00	167.05
	1.3	4.79	4.26	2.96	8.53	8.02	5.56	34.41	33.91	23.50	92.54	92.04	63.80
	1.4	2.03	1.45	1.02	2.65	2.09	1.46	3.56	3.02	2.10	8.75	8.23	5.71
	TCL	0.1521			0.2071			0.1463			0.2221		
	NCL	0.9812			0.9931			0.9875			0.9934		

TABLE 3 Comparing the performance of the control charts: Decreases in median proportion

		Kum	Kumaraswamy—true	-true	נ	Unit Weibull			Kumaraswamy		Unit	Unit Weibull—true	rue
	4	ARL	SDRL	MRL	ARL	SDRL	MRL	ARL	SDRL	MRL	ARL	SDRL	MRL
Case 1:	9.0	2.77	2.22	1.55	1.11	0.35	0.30	3.84×10^{8}	3.84×10^{8}	2.66×10^8	1.36	0.70	0.52
$\varphi_K = 10.00$	0.7	10.95	10.43	7.23	2.58	2.02	1.41	4.85×10^{19}	4.85×10^{19}	Inf	2.03	1.45	1.02
$\varphi_U = 14.73$	8.0	40.18	39.67	27.50	8.26	7.74	5.37	1.10×10^{42}	1.10×10^{42}	Inf	4.55	4.02	2.79
	6.0	129.34	128.84	89.30	25.66	25.15	17.44	8.79×10^{84}	8.79×10^{84}	Inf	21.32	20.81	14.43
	1	370.00	369.50	256.12	72.65	72.14	50.01	1.50×10^{164}	Inf	Inf	370.00	369.50	256.12
	TCL	0.0574			0.0676			0.0292			0.0697		
Case 2:	9.0	6.72	6.20	4.30	1.75	1.14	0.82	1142.15	1141.65	791.33	1.69	1.08	0.78
	0.7	21.80	21.30	14.76	4.56	4.03	2.80	6.67×10^5	6.67×10^5	4.62×10^5	2.72	2.17	1.52
$ \phi_U = 6.84 $	8.0	62.49	61.99	42.97	12.26	11.75	8.15	5.47×10^{10}	5.47×10^{10}	3.79×10^{10}	6.35	5.83	4.04
	6.0	159.56	159.05	110.25	30.66	30.16	20.91	2.27×10^{19}	2.27×10^{19}	Inf	27.98	27.47	19.04
	1	370.00	369.50	256.12	70.57	70.07	48.57	2.28×10^{34}	2.28×10^{34}	Inf	370.00	369.50	256.12
	TCL	0.1500			0.1846			0.0901			0.1926		
Case 3:	9.0	17.62	17.11	11.86	4.06	3.52	2.45	28.77	28.26	19.59	2.44	1.87	1.31
$\phi_K = 6.00$	0.7	43.67	43.17	29.92	9.43	8.91	6.18	215.50	215.00	149.03	4.16	3.62	2.52
$\varphi_U = 3.43$	8.0	96.80	96.30	66.75	20.40	19.89	13.79	5247.80	5247.30	3637.15	69.6	9.18	6.37
	6.0	196.14	195.64	135.61	40.92	40.42	28.02	9.16×10^5	9.16×10^5	6.35×10^5	38.12	37.61	26.07
	1	370.00	369.50	256.12	76.84	76.34	52.92	4.83×10^9	4.83×10^{9}	3.35×10^9	370.00	369.50	256.12
	TCL	0.1987			0.2584			0.1484			0.2738		
Case 4:	9.0	43.04	42.54	29.49	16.59	16.09	11.15	7.89	7.37	5.11	4.35	3.81	2.65
$\varphi_K = 4.00$	0.7	80.41	79.91	55.39	30.72	30.22	20.95	16.54	16.04	11.12	7.36	6.85	4.75
$\varphi_U = 1.57$	8.0	139.82	139.32	96.57	53.19	52.68	36.52	48.53	48.03	33.29	15.84	15.33	10.63
	6.0	231.18	230.68	159.90	87.74	87.24	60.47	254.85	254.35	176.30	51.55	51.04	35.38
	1	370.00	369.50	256.12	140.23	139.73	98.96	4067.13	4066.63	2818.77	370.00	369.50	256.12
	TCL	0.1809			0.2307			0.1752			0.2462		

TABLE 4 Comparing the performance of the control charts: Increases in median proportion

		Kuma	Kumaraswamy—true	-true		Unit Weibull		K	Kumaraswamy	, str	Unit	Unit Weibull—true	rue
	4	ARL	SDRL	MRL	ARL	SDRL	MRL	ARL	SDRL	MRL	ARL	SDRL	MRL
Case 1:	1	370.00	369.50	256.12	Inf	Inf	Inf	69.42	68.92	47.77	370.00	369.50	256.12
$\phi_K = 10.00$	1.1	9.78	9.26	6.42	Inf	Inf	Inf	37.48	36.98	25.63	198.76	198.25	137.42
$\varphi_U = 14.73$	1.2	2.60	2.04	1.43	Inf	Inf	Inf	20.95	20.45	14.17	110.14	109.64	76.00
	1.3	1.54	0.91	99:0	Inf	Inf	Inf	12.11	11.60	8.04	62.71	62.21	43.12
	1.4	1.23	0.53	0.41	8.50×10^{11}	8.50×10^{11}	5.89×10^{11}	7.24	6.72	4.66	36.58	36.07	25.00
	NCL	0.1239			0.2023			0.1702			0.2059		
Case 2:	1	370.00	369.50	256.12	Inf	Inf	Inf	68.58	80.89	47.19	370.00	369.50	256.12
$\phi_K = 8.00$	1.1	15.78	15.27	10.59	Inf	Inf	Inf	39.23	38.72	26.84	210.69	210.19	145.69
$ \phi_U = 6.84 $	1.2	3.96	3.42	2.38	1.97×10^{13}	1.97×10^{13}	1.37×10^{13}	22.64	22.14	15.35	120.68	120.17	83.30
	1.3	2.06	1.48	1.05	1.02×10^7	1.02×10^7	7.05×10^6	13.18	12.67	8.78	69.28	82.89	47.67
	1.4	1.49	0.86	0.63	7455.55	7452.66	5167.45	7.74	7.23	5.01	39.76	39.26	27.21
	NCL	0.3922			0.5776			0.5039			0.5855		
Case 3:	1	370.00	369.50	256.12	2.71×10^{10}	2.70×10^{10}	1.88×10^{10}	80.60	80.10	55.52	370.00	369.50	256.12
$\phi_K = 6.00$	1.1	27.59	27.09	18.78	7.14×10^5	7.11×10^5	4.95×10^5	48.74	48.24	33.44	223.03	222.53	154.24
$\varphi_U = 3.43$	1.2	7.02	6.50	4.51	2747.60	2742.99	1904.15	28.64	28.13	19.50	130.28	129.78	96.68
	1.3	3.28	2.73	1.91	124.57	124.29	86.00	16.19	15.68	10.87	72.86	72.36	50.15
	1.4	2.10	1.52	1.08	20.55	20.29	13.89	8.72	8.21	5.69	38.38	37.88	26.26
	NCL	0.7078			0.8656			0.8067			0.8715		
Case 4:	1	370.00	369.50	256.12	2921.60	2914.64	2024.75	162.99	162.49	112.63	370.00	369.50	256.12
$\phi_K = 4.00$	1.1	42.46	41.96	29.08	157.35	156.87	108.72	100.34	99.84	69.21	227.54	227.04	157.37
$\varphi_U = 1.57$	1.2	10.56	10.05	6.97	24.06	23.71	16.33	53.46	52.95	36.71	120.92	120.42	83.47
	1.3	4.07	3.53	2.46	6.64	6.24	4.25	20.73	20.22	14.02	46.49	45.99	31.88
	1.4	1.89	1.29	0.92	2.36	1.86	1.26	2.36	1.79	1.25	4.64	4.11	2.85
	NCL	0.9751			0.9892			0.9827			0.9897		

from Y. Because the parameter $\tilde{\mu}$ is the median of the distribution of interest, the sample median (SM) seems to be a natural choice as an estimator of $\tilde{\mu}$. We denote the SM estimator of $\tilde{\mu}$ by

$$\widehat{\widetilde{\mu}}_{SM} = \text{median}\{y_1, y_2, ..., y_n\},$$

which can be defined as follows:

$$\widehat{\widetilde{\mu}}_{SM} = \begin{pmatrix} Y_{(k+1)}, & \text{if } n = 2k+1, \\ (Y_{(k)} + Y_{(k+1)})/2, & \text{if } n = 2k, \end{pmatrix}$$

where $Y_{(k)}$ is the kth-order statistic from $y_1, y_2, ..., y_n$.

The second is related to the Hodges and Lehmann's proposal⁹ and introduces the point estimator currently known as the HL estimator of the median parameter. The HL estimator of $\tilde{\mu}$ is the median of all pairwise means of those observations, that is,

$$\hat{\tilde{\mu}}_{\mathrm{HL}} = \mathrm{median} \left[\frac{Y_i + Y_j}{2}, \ 1 \le i \le j \le n \right].$$

Finally, the third estimator is the one with ML, denoted by $\hat{\tilde{\mu}}_{ML}$ with

$$\widehat{\widetilde{\mu}}_{ML} = \arg\max\prod_{i=1}^{n} f(\widetilde{\mu}, \widetilde{\varphi}|y_i),$$

where $f(\tilde{\mu}|y_i)$ is the probability density function of Y (see expressions 2 and 5, respectively, for the Kumaraswamy and unit-Weibull distributions). ML estimators will be obtained using numerical methods, as equating the first-order log-likelihood derivatives to 0 leads us to a complicated system of nonlinear equations.

To compare the performance of these three estimators in terms of speed to sign a shift in the median proportion, metrics like ARL (or MRL and SDRL) are considered. Due to challenges in obtaining closed expressions for distributions of the three median estimators, we use the Monte Carlo simulation approach in two procedures. In the first procedure, empirical probability control limits are stated as follows:

- Step 1: Choose the in-control parameters $\tilde{\mu}_0$ and φ of the random variable Y.
- Step 2: Take *n* (in-control) values of random variable *Y*.
- Step 3: Obtain the statistics $\hat{\mu}_{(i)}$ j = SM, HL, ML.
- Step 4: Repeat Steps 2 and 3 t times (such as 10 000) to obtain the empirical distribution of $\hat{\mu}_{(j)}$ j = SM, HL, ML.
- Step 5: Obtain the quantiles $q_{\alpha/2,\hat{\mu}_{(j)}}$, $q_{1-\alpha/2,\hat{\mu}_{(j)}}$, $q_{\alpha,\hat{\mu}_{(j)}}$, $q_{1-\alpha,\hat{\mu}_{(j)}}$, $q_{1-\alpha,\hat{\mu}$

In the second procedure, metrics such as out-of-control ARL (ARL₁) (or other metrics such as out-of-control MRL $[MRL_1]$ and out-of-control SDRL $[SDRL_1]$) proceed as follows:

- Step 1: Use LCL_j and/or UCL_j from Step 5 of the first procedure; make k=0; and choose the out-of-control parameters $\tilde{\mu}_1$ and φ of the random variable Y.
- Step 2: Take *n* (out-of-control) values of random variable *Y*.
- Step 3: Obtain the statistics $\widehat{\mu}_{(j)}$, j = SM, HL, ML.
- Step 4: If $\widehat{\mu}_{(j)} < LCL_j$ or $\widehat{\mu}_{(j)} > UCL_j$, then k = k+1.
- Step 5: Repeat Steps 2–4 *t* times (like 10 000).
- Step 6: p = k/t is the power of the control chart and its $ARL_1 = 1/p$. Other metrics like MRL_1 or $SDRL_1$ can be easily derived from p.

Kumaraswamy distribution: Comparing the performance of SM, HL, and ML estimators for the median in terms of ARL (bilateral shifts) TABLE 5

	ML	1.000	1.000	1.000	1.000	357.143	1.000	1.000	1.000	1.000	0.0961	0.1033	1.000	1.000	1.000	1.000	357.143	1.001	1.000	1.000	1.000	0.2869	0.3131	(Continues)
n=100Estimator	HL	1.000	1.000	1.000	1.000	357.143	1.000	1.000	1.000	1.000	0.0956	0.1029	1.000	1.000	1.000	1.000	357.143	1.001	1.000	1.000	1.000	0.2841	0.3109	
	SM	1.000	1.000	1.000	1.000	357.143	1.000	1.000	1.000	1.000	0.0954	0.1041	1.000	1.000	1.000	1.002	357.143	1.012	1.000	1.000	1.000	0.2842	0.3159	
	ML	1.000	1.000	1.000	1.050] 357.143	1.060	1.000	1.000	1.000	0.0931	0.1061	1.000	1.000	1.000	1.381	357.143	1.266	1.000	1.000	1.000	0.2742	0.3229	
n=30 Estimator	HL	1.000	1.000	1.000	1.091	357.143	1.072	1.000	1.000	1.000	0.0921	0.1056	1.000	1.000	1.000	1.442	357.143	1.294	1.000	1.000	1.000	0.2717	0.3208	
	SM	1.000	1.000	1.000	1.250	357.143	1.185	1.000	1.000	1.000	0.0918	0.1071	1.000	1.000	1.000	1.910	357.143	1.714	1.005	1.000	1.000	0.2704	0.3278	
	ML	1	1.000	1.001	3.774	357.143	1.822	1.016	1.000	1.000	0.0879	0.1097	1.000	1.000	1.080	7.686	357.143	3.698	1.123	1.005	1.000	0.2555	0.3393	
n=10Estimator	нг	1.000	1.000	1.010	5.618	357.143	2.174	1.026	1.000	1.000	0.0861	0.1097	1.000	1.000	1.154	10.870	357.143	3.611	1.134	1.005	1.000	0.2505	0.3370	
	SM	1.000	1.000	1.068	9.615	357.143	2.759	1.065	1.001	1.000	0.0849	0.1115	1.000	1.000	1.502	19.342	357.143	5.013	1.268	1.023	1.001	0.2452	0.3442	
	ML	1.000	1.036	3.220	37.594	357.143	5.537	1.493	1.080	1.013	0.0768	0.1159	1.005	1.735	9.823	91.743	357.143	10.593	2.212	1.277	1.080	0.2133	0.3651	
n=3 Estimator	HL	1.000	1.163	5.244	58.480	357.143	6.452	1.576	1.097	1.021	0.0745	0.1163	1.010	1.911	10.460	86.207	357.143	14.409	2.527	1.347	1.107	0.2093	0.3651	
	SM	1.000	1.558	8.772	81.967	357.143	8.110	1.865	1.185	1.046	0.0719	0.1190	1.205	4.120	22.472	153.846	357.143	13.459	2.722	1.479	1.154	0.1956	0.3717	
	4	9.0	0.7	8.0	6.0	1.0	1.1	1.2	1.3	1.4	TCL	CL	9.0	0.7	8.0	6.0	1.0	1.1	1.2	1.3	1.4	TCL	NCL	
	$ ilde{\mu}_{f 0}; \phi$	0.1;10											0.3; 8											

TABLE 5 (Continued)

	ML	1.000	1.000	1.000	1.012	357.143	1.023	1.000	1.000	1.000	0.4697	0.5281	1.000	1.000	1.000	1.178	357.143	1.160	1.000	1.000	1.000	0.6471	0.7508
n=100Estimator	H	1.000	1.000	1.000	1.012	357.143	1.026	1.000	1.000	1.000	0.4663	0.5240	1.000	1.000	1.000	1.221	357.143	1.309	1.000	1.000	1.000	0.6371	0.7397
	SM	1.000	1.000	1.000	1.093	357.143	1.121	1.000	1.000	1.000	0.4644	0.5335	1.000	1.000	1.000	1.707	357.143	1.621	1.001	1.000	1.000	0.6339	0.7633
	ML	1.000	1.000	1.000	2.591	357.143	2.190	1.011	1.000	1.000	0.4457	0.5521	1.000	1.000	1.087	6.293	357.143	3.722	1.051	1.000	1.000	0.5992	0.7889
n=30 Estimator	H	1.000	1.000	1.001	2.869	357.143	2.063	1.012	1.000	1.000	0.4399	0.5464	1.000	1.000	1.171	9.328	357.143	4.912	1.157	1.003	1.000	0.5845	0.7800
	SM	1.000	1.000	1.032	5.984	357.143	2.595	1.050	1.001	1.000	0.4306	0.5567	1.000	1.003	1.635	16.722	357.143	6.116	1.246	1.005	1.000	0.5703	0.8075
	ML	1.000	1.004	1.768	17.182	357.143	5.400	1.388	1.041	1.002	0.4051	0.5794	1.005	1.365	5.479	54.645	357.143	10.627	1.872	1.082	1.001	0.5162	0.8370
n=10 Estimator	H	1.000	1.010	2.128	28.169	357.143	8.598	1.678	1.086	1.007	0.3953	0.5856	1.008	1.526	6.658	70.423	357.143	22.173	3.216	1.335	1.021	0.5036	0.8438
	SM	1.000	1.119	4.054	52.632	357.143	11.198	2.008	1.162	1.025	0.3796	0.5991	1.060	2.133	9.337	69.444	357.143	20.661	3.068	1.291	1.012	0.4870	0.8645
	ML	1.532	5.491	26.042	158.730	357.143	24.390	4.290	1.905	1.313	0.3142	0.6481	3.459	11.416	38.610	151.515	357.143	43.478	6.887	2.259	1.191	0.3820	0.9199
n=3 Estimator	HL	1.727	7.022	37.175	181.818	357.143	22.779	4.203	1.947	1.335	0.3045	0.6403	4.090	13.947	47.847	166.667	357.143	47.619	8.013	2.894	1.437	0.3702	0.9105
	SM	3.855	17.007	67.568	303.030	357.143	22.779	4.963	2.216	1.456	0.2748	0.6584	10.638	36.630	98.039	263.158	357.143	50.505	9.416	3.106	1.407	0.3115	0.9459
	4	9.0	0.7	8.0	6.0	1.0	1.1	1.2	1.3	1.4	TCL	NCL	9.0	0.7	8.0	6.0	1.0	1.1	1.2	1.3	1.4	TCL	NCL
	$\tilde{\mu}_0$; ϕ	0.5; 6											0.7; 4										

Kumaraswamy distribution: Comparing the performance of SM, HL, and ML estimators for the median in terms of ARL (unilateral shifts)—Increases in the median TABLE 6

	ML	370.370	1.000	1.000	1.000	1.000	0.1031	370.370	1.000	1.000	1.000	1.000	0.3120	370.370	1.014	1.000	1.000	1.000	0.5262	370.370	1.111	1.000	1.000	1.000	0.7477
n=100Estimator	HIL	370.370	1.000	1.000	1.000	1.000	0.1026	370.370	1.001	1.000	1.000	1.000	0.3100	370.370	1.017	1.000	1.000	1.000	0.5220	370.370	1.213	1.000	1.000	1.000	0.7358
	SM	370.370	1.000	1.000	1.000	1.000	0.1038	370.370	1.007	1.000	1.000	1.000	0.3147	370.370	1.090	1.000	1.000	1.000	0.5314	370.370	1.449	1.000	1.000	1.000	0.7591
	ML	370.370	1.034	1.000	1.000	1.000	0.1055	370.370	1.198	1.000	1.000	1.000	0.3213	370.370	1.835	1.006	1.000	1.000	0.5481	370.370	1.034	1.000	1.000	1.000	0.7824
n=30 Estimator	HIL	370.370	1.052	1.000	1.000	1.000	0.1052	370.370	1.206	1.000	1.000	1.000	0.3190	370.370	1.856	1.009	1.000	1.000	0.5436	370.370	3.932	1.120	1.001	1.000	0.7748
	SM	370.370	1.149	1.000	1.000	1.000	0.1067	370.370	1.584	1.003	1.000	1.000	0.3263	370.370	2.284	1.036	1.001	1.000	0.5534	370.370	4.425	1.170	1.003	1.000	0.7994
	ML	370.370	1.665	1.013	1.000	1.000	0.1091	370.370	2.959	1.093	1.004	1.000	0.3365	370.370	4.933	1.351	1.037	1.002	0.5772	370.370	8.613	1.725	1.066	1.000	0.8312
n=10Estimator	HIL	370.370	1.911	1.019	1.000	1.000	0.1090	370.370	2.898	1.099	1.003	1.000	0.3340	370.370	6:039	1.486	1.059	1.005	0.5786	370.370	12.970	2.489	1.234	1.014	0.8312
	SM	370.370	2.304	1.047	1.001	1.000	0.1107	370.370	3.831	1.199	1.016	1.001	0.3408	370.370	7.918	1.792	1.125	1.020	0.5924	370.370	13.870	2.532	1.227	1.009	0.8540
	ML	370.370	4.088	1.371	1.062	1.009	0.1145	370.370	7.628	1.932	1.215	1.064	0.3601	370.370	17.544	3.575	1.744	1.258	0.6399	370.370	26.316	5.339	1.997	1.157	0.9099
n=3 Estimator	HIL	370.370	4.857	1.455	1.077	1.016	0.1150	370.370	9.881	2.163	1.273	1.082	0.3600	370.370	15.038	3.349	1.733	1.261	0.6291	370.370	31.056	6.386	2.561	1.364	0.9011
	SM	370.370	5.549	1.634	1.138	1.035	0.1173	370.370	9.328	2.335	1.382	1.122	0.3664	370.370	17.301	4.274	2.042	1.396	0.6503	370.370	29.412	6.341	2.489	1.303	0.9304
	٥	1.0	1.1	1.2	1.3	1.4	NCL	1.0	1.1	1.2	1.3	1.4	NCL	1.0	1.1	1.2	1.3	1.4	NCL	1.0	1.1	1.2	1.3	1.4	NCL
	$ ilde{\mu}_{f 0}; \phi$	0.1;10						0.3; 8						0.5; 6						0.7; 4					

Kumaraswamy distribution: Comparing the performance of SM, HL, and ML estimators for the median in terms of ARL (unilateral shifts)—Decreases in the median TABLE 7

		ML	1.000	1.000	1.000	1.000	370.370	0.0965	1.000	1.000	1.000	1.000	370.370	0.2878	1.000	1.000	1.000	1.005	370.370	0.4725	1.000	1.000	1.000	1.113	370.370	0.6511
	n=100Estimator	HI	1.000	1.000	1.000	1.000	370.370	0.0959	1.000	1.000	1.000	1.000	370.370	0.2852	1.000	1.000	1.000	1.005	370.370	0.4692	1.000	1.000	1.000	1.168	370.370	0.6395
		SM	1.000	1.000	1.000	1.000	370.370	0.0958	1.000	1.000	1.000	1.001	370.370	0.2853	1.000	1.000	1.000	1.056	370.370	0.4668	1.000	1.000	1.000	1.500	370.370	0.6383
		MI	1.000	1.000	1.000	1.028	370.370	0.0935	1.000	1.000	1.000	1.215	370.370	0.2766	1.000	1.000	1.000	2.319	370.370	0.4476	1.000	1.000	1.052	4.581	370.370	0.6065
;	n=30 Estimator	HIL	1.000	1.000	1.000	1.038	370.370	0.0929	1.000	1.000	1.000	1.246	370.370	0.2742	1.000	1.000	1.001	2.323	370.370	0.4436	1.000	1.000	1.107	6.640	370.370	0.5910
		SM	1.000	1.000	1.000	1.158	370.370	0.0924	1.000	1.000	1.000	1.611	370.370	0.2726	1.000	1.000	1.009	3.531	370.370	0.4384	1.000	1.001	1.357	9.625	370.370	0.5816
		ML	1.000	1.000	1.000	2.586	370.370	0.0890	1.000	1.000	1.047	5.777	370.370	0.2580	1.000	1.001	1.496	11.481	370.370	0.4117	1.002	1.199	3.805	28.736	370.370	0.5301
	n=10 Estimator	HIL	1.000	1.000	1.002	3.415	370.370	0.0875	1.000	1.000	1.076	6.798	370.370	0.2545	1.000	1.004	1.746	17.331	370.370	0.4020	1.002	1.300	4.361	36.232	370.370	0.5181
		SM	1.000	1.000	1.025	5.834	370.370	0.0862	1.000	1.000	1.243	10.537	370.370	0.2505	1.000	1.037	2.534	23.981	370.370	0.3919	1.028	1.706	6.177	39.841	370.370	0.5020
		ML	1.000	1.012	2.392	23.810	370.370	0.0783	1.001	1.375	5.893	44.643	370.370	0.2202	1.217	3.360	13.947	70.922	370.370	0.3306	2.521	7.502	23.585	81.967	370.370	0.4029
•	n=3 Estimator	HIL	1.000	1.063	3.541	34.602	370.370	0.0763	1.002	1.547	7.072	56.497	370.370	0.2151	1.372	4.365	20.833	106.383	370.370	0.3182	2.686	8.130	25.445	74.627	370.370	0.3954
		SM	1.000	1.194	4.579	36.101	370.370	0.0749	1.040	2.218	9.579	926.09	370.370	0.2078	2.236	8.052	30.864	136.986	370.370	0.2957	6.826	21.978	56.818	153.846	370.370	0.3344
		4	9.0	0.7	8.0	6.0	1.0	TCL	9.0	0.7	8.0	6.0	1.0	TCL	9.0	0.7	8.0	6.0	1.0	TCL	9.0	0.7	8.0	6.0	1.0	TCL
		$ ilde{\mu}_{f 0}; \phi$	0.1;10						0.3; 8						0.5; 6						0.7					

TABLE 8 Unit-Weibull distribution: Comparing the performance of SM, HL, and ML estimators for the median in terms of ARL (bilateral shifts)

	ML	1.000	1.000	1.000	1.003	357.143	1.009	1.000	1.000	1.000	0.0949	0.1057	1.000	1.000	1.000	1.032	357.143	1.050	1.000	1.000	1.000	0.2817	0.3196	(Continues)
n=100 Estimator	HIL	1.000	1.000	1.000	1.016	357.143	1.051	1.000	1.000	1.000	0.0961	0.1086	1.000	1.000	1.000	1.056	357.143	1.070	1.000	1.000	1.000	0.2867	0.3257	
	SM	1.000	1.000	1.000	1.037	357.143	1.154	1.000	1.000	1.000	0.0940	0.1075	1.000	1.000	1.000	1.127	357.143	1.296	1.000	1.000	1.000	0.2793	0.3245	
	ML	1.000	1.000	1.001	1.621	357.143	2.711	1.005	1.000	1.000	0.0909	0.1112	1.000	1.000	1.007	2.081	357.143	4.037	1.018	1.000	1.000	0.2694	0.3376	
n=30 Estimator	HIL	1.000	1.000	1.003	1.925	357.143	4.847	1.037	1.000	1.000	0.0921	0.1153	1.000	1.000	1.014	2.320	357.143	4.914	1.048	1.000	1.000	0.2734	0.3457	
	SM	1.000	1.000	1.011	2.293	357.143	5.855	1.093	1.000	1.000	0.0894	0.1143	1.000	1.000	1.046	3.234	357.143	8.475	1.213	1.000	1.000	0.2636	0.3473	
	ML	1.000	1.003	1.144	4.237	357.143	20.576	2.434	1.094	1.001	0.0862	0.1214	1.000	1.027	1.429	7.616	357.143	45.872	4.376	1.274	1.004	0.2492	0.3748	
n=10Estimator	HIL	1.000	1.009	1.240	5.280	357.143	20.284	2.878	1.174	1.003	0.0868	0.1248	1.001	1.047	1.531	8.190	357.143	36.364	4.333	1.344	1.011	0.2538	0.3816	
	SM	1.000	1.019	1.355	6.532	357.143	54.348	5.942	1.600	1.041	0.0841	0.1277	1.004	1.068	1.624	8.368	357.143	51.282	6.743	1.740	1.053	0.2465	0.3862	
	ML	1.039	1.243	2.374	13.072	357.143	153.846	40.816	10.977	3.979	0.0778	0.1487	1.127	1.533	3.370	18.622	357.143	188.679	67.568	17.544	5.685	0.2221	0.4557	
<i>n</i> =3 Estimator	HL	1.066	1.348	2.801	16.502	357.143	123.457	45.045	13.605	5.165	0.0785	0.1554	1.183	1.681	3.861	20.661	357.143	243.902	64.935	18.868	6.317	0.2252	0.4663	
	SM	1.083	1.403	2.869	15.748	357.143	344.828	163.934	45.249	17.036	0.0760	0.1690	1.237	1.846	4.312	25.641	357.143	243.902	91.743	30.395	11.682	0.2146	0.4850	
	٥	9.0	0.7	8.0	6.0	1	1.1	1.2	1.3	1.4	Γ C Γ	NCL	9.0	0.7	8.0	6.0	1	1.1	1.2	1.3	1.4	TCL	NCL	
	$ ilde{\mu}_{f 0}; \phi$	0.1; 14.73											0.3; 6.84											

TABLE 8 (Continued)

	ML	1.000	1.000	1.000	1.093	357.143	1.118	1.000	1.000	1.000	0.4669	0.5362	1.000	1.000	1.000	1.340	357.143	1.189	1.000	1.000	1.000	0.6440	0.7546
n=100Estimator	HI	1.000	1.000	1.000	1.136	357.143	1.164	1.000	1.000	1.000	0.4730	0.5433	1.000	1.000	1.000	1.317	357.143	1.143	1.000	1.000	1.000	0.6403	0.7453
	SM	1.000	1.000	1.000	1.302	357.143	1.531	1.000	1.000	1.000	0.4610	0.5445	1.000	1.000	1.009	1.890	357.143	1.793	1.000	1.000	1.000	0.6317	0.7673
	ML	1.000	1.000	1.051	3.182	357.143	4.843	1.044	1.000	1.000	0.4392	0.5672	1.000	1.016	1.269	5.285	357.143	6.658	1.021	1.000	1.000	0.5945	0.7973
n=30 Estimator	HIL	1.000	1.001	1.063	3.171	357.143	7.418	1.094	1.000	1.000	0.4468	0.5784	1.000	1.012	1.250	5.179	357.143	6.053	1.013	1.000	1.000	0.5946	0.7876
	SM	1.000	1.005	1.165	4.230	357.143	16.920	1.483	1.001	1.000	0.4312	0.5900	1.007	1.074	1.635	7.937	357.143	13.624	1.216	1.000	1.000	0.5747	0.8165
	ML	1.012	1.120	1.916	10.672	357.143	42.194	4.433	1.250	1.001	0.4013	0.6241	1.168	1.606	3.547	22.989	357.143	42.373	3.194	1.007	1.000	0.5132	0.8556
n=10 Estimator	HL	1.028	1.199	2.282	12.937	357.143	65.789	905.9	1.467	1.006	0.4029	0.6390	1.151	1.542	3.182	16.978	357.143	61.728	3.784	1.011	1.000	0.5248	0.8546
	SM	1.040	1.221	2.265	11.834	357.143	96.154	10.549	2.132	1.059	0.3943	0.6526	1.300	1.930	4.433	24.938	357.143	94.340	7.138	1.139	1.000	0.4945	908800
	ML	1.454	2.358	5.977	34.483	357.143	166.667	47.619	13.298	3.982	0.3341	0.7316	2.205	3.828	8.591	36.630	357.143	227.273	51.282	6.131	1.001	0.3925	0.9419
n=3 Estimator	HIL	1.537	2.480	6.532	43.103	357.143	285.714	57.471	15.432	4.421	0.3413	0.7400	2.574	4.625	11.587	46.729	357.143	204.082	39.216	4.498	1.000	0.3939	0.9307
	SM	1.655	2.827	7.077	36.496	357.143	294.118	87.719	28.490	9.242	0.3214	0.7734	2.926	5.365	12.970	51.813	357.143	163.934	58.480	669.6	1.021	0.3490	0.9557
	4	9.0	0.7	8.0	6.0	1	1.1	1.2	1.3	1.4	TCL	NCL	9.0	0.7	8.0	6.0	1	1.1	1.2	1.3	1.4	TCL	NCL
	$ ilde{\mu}_{f 0}; arphi$	0.5; 3.43											0.7; 1.57										

TABLE 9 Unit-Weibull distribution: Comparing the performance of SM, HL, and ML estimators for the median in terms of ARL (unilateral shifts)—Increases in the median

	ML	370.370	1.005	1.000	1.000	1.000	0.1054	370.370	1.025	1.000	1.000	1.000	0.3180	370.370	1.083	1.000	1.000	1.000	0.5342	370.370	1.114	1.000	1.000	1.000	0.7504
n=100Estimator	HIL	370.370	1.027	1.000	1.000	1.000	0.1080	370.370	1.050	1.000	1.000	1.000	0.3246	370.370	1.117	1.000	1.000	1.000	0.5414	370.370	1.079	1.000	1.000	1.000	0.7410
	SM	370.370	1.085	1.000	1.000	1.000	0.1068	370.370	1.198	1.000	1.000	1.000	0.3228	370.370	1.337	1.000	1.000	1.000	0.5407	370.370	1.561	1.000	1.000	1.000	0.7633
	ML	370.370	2.205	1.002	1.000	1.000	0.1104	370.370	2.921	1.009	1.000	1.000	0.3345	370.370	3.697	1.026	1.000	1.000	0.5626	370.370	4.636	1.009	1.000	1.000	0.7906
n=30 Estimator	HIL	370.370	2.987	1.011	1.000	1.000	0.1136	370.370	3.799	1.029	1.000	1.000	0.3431	370.370	4.936	1.049	1.000	1.000	0.5727	370.370	4.177	1.005	1.000	1.000	0.7807
	SM	370.370	3.903	1.040	1.000	1.000	0.1129	370.370	6.321	1.139	1.000	1.000	0.3443	370.370	8.177	1.219	1.000	1.000	0.5795	370.370	9.285	1.130	1.000	1.000	0.8098
	ML	370.370	13.021	1.898	1.046	1.000	0.1195	370.370	25.773	3.094	1.155	1.001	0.3688	370.370	22.124	3.008	1.119	1.001	0.6133	370.370	22.883	2.293	1.002	1.000	0.8447
n=10Estimator	HIL	370.370	13.736	2.247	1.101	1.001	0.1230	370.370	22.272	3.163	1.203	1.004	0.3755	370.370	22.222	2.999	1.144	1.000	0.6195	370.370	32.787	2.755	1.004	1.000	0.8450
	SM	370.370	26.525	3.586	1.296	1.014	0.1247	370.370	31.447	4.805	1.484	1.026	0.3802	370.370	33.223	5.084	1.466	1.012	0.6336	370.370	47.847	4.671	1.060	1.000	0.8702
	ML	370.370	80.000	19.841	6.064	2.506	0.1430	370.370	126.582	38.760	11.338	3.970	0.4444	370.370	95.238	27.778	8.230	2.752	0.7160	370.370	128.205	27.397	3.965	1.000	0.9320
<i>n</i> =3 Estimator	HIL	370.370	76.336	24.752	8.006	3.229	0.1498	370.370	129.870	33.784	11.198	3.967	0.4518	370.370	161.290	38.314	11.025	3.342	0.7292	370.370	96.154	18.553	2.691	1.000	0.9164
	SM	370.370	149.254	49.261	16.835	6.916	0.1578	370.370	144.928	50.000	18.622	7.369	0.4705	370.370	125.000	46.729	15.699	5.394	0.7525	370.370	93.458	32.787	6.053	1.004	0.9468
	4	1	1.1	1.2	1.3	1.4	NCL	1	1.1	1.2	1.3	1.4	NCL	1	1.1	1.2	1.3	1.4	CCL	1	1.1	1.2	1.3	1.4	NCL
	$ ilde{\mu}_{f 0}; \phi$	0.1; 14.73						0.3; 6.84						0.5; 3.43						0.7; 1.57					

TABLE 10 Unit-Weibull distribution: Comparing the performance of SM, HL, and ML estimators for the median in terms of ARL (unilateral shifts)—Decrease in the median

	ML	1.000	1.000	1.000	1.002	370.370	0.0953	1.000	1.000	1.000	1.018	370.370	0.2835	1.000	1.000	1.000	1.068	370.370	0.4691	1.000	1.000	1.000	1.260	370.370	0.6474
n=100Estimator	HL	1.000	1.000	1.000	1.006	370.370	0.0967	1.000	1.000	1.000	1.035	370.370	0.2880	1.000	1.000	1.000	1.092	370.370	0.4755	1.000	1.000	1.000	1.220	370.370	0.6445
	SM	1.000	1.000	1.000	1.025	370.370	0.0945	1.000	1.000	1.000	1.094	370.370	0.2805	1.000	1.000	1.000	1.240	370.370	0.4629	1.000	1.000	1.006	1.730	370.370	0.6351
	ML	1.000	1.000	1.000	1.421	370.370	0.0917	1.000	1.000	1.004	1.737	370.370	0.2719	1.000	1.000	1.036	2.596	370.370	0.4435	1.000	1.010	1.194	3.940	370.370	0.6030
n=30 Estimator	HIL	1.000	1.000	1.002	1.647	370.370	0.0928	1.000	1.000	1.009	1.949	370.370	0.2758	1.000	1.000	1.044	2.554	370.370	0.4515	1.000	1.007	1.175	3.885	370.370	0.6024
	SM	1.000	1.000	1.007	1.886	370.370	0.0903	1.000	1.000	1.030	2.640	370.370	0.2661	1.000	1.004	1.139	3.654	370.370	0.4338	1.005	1.054	1.487	2.967	370.370	0.5837
	ML	1.000	1.002	1.117	3.522	370.370	0.0869	1.000	1.018	1.308	5.441	370.370	0.2531	1.010	1.101	1.780	8.696	370.370	0.4053	1.127	1.470	2.924	14.970	370.370	0.5263
n=10Estimator	HL	1.000	1.006	1.193	4.288	370.370	0.0876	1.001	1.037	1.430	6.317	370.370	0.2564	1.022	1.154	2.001	9.416	370.370	0.4090	1.118	1.437	2.755	12.690	370.370	0.5346
	SM	1.000	1.015	1.289	5.102	370.370	0.0850	1.004	1.059	1.538	7.097	370.370	0.2485	1.032	1.185	2.049	9.328	370.370	0.3995	1.257	1.794	3.882	18.727	370.370	0.5036
	ML	1.035	1.218	2.218	11.001	370.370	0.0785	1.107	1.443	2.897	13.055	370.370	0.2261	1.384	2.101	4.866	23.641	370.370	0.3430	2.083	3.482	7.457	30.303	370.370	0.4033
n=3 Estimator	HL	1.052	1.282	2.376	11.236	370.370	0.0800	1.155	1.569	3.286	14.970	370.370	0.2294	1.432	2.167	5.094	26.247	370.370	0.3515	2.240	3.690	8.460	31.949	370.370	0.4146
	SM	1.069	1.339	2.521	11.641	370.370	0.0772	1.202	1.705	3.602	17.699	370.370	0.2191	1.539	2.499	5.718	24.631	370.370	0.3311	2.540	4.357	9.506	34.247	370.370	0.3716
	4	9.0	0.7	8.0	6.0	1	TCL	9.0	0.7	8.0	6.0	1	TCL	9.0	0.7	8.0	6.0	1	TCL	9.0	0.7	8.0	6.0	1	TCL
	$ ilde{\mu}_{f 0}; \phi$	0.1; 14.73						0.3; 6.84						0.5; 3.43						0.7; 1.57					

We use the same set of in-control parameters (see Table 1) and the same magnitude of shifts as in the previous Section 3 with the following sample sizes $n = \{3,10,30,100\}$ in Monte Carlo simulations.

Tables 5–7 and 8–10 present results related to the Kumaraswamy and unit-Weibull distributions, respectively, considering the three estimators for the median parameter. In these tables, we assumed similar performances for those ARL₁ values, which differ less than 0.5 from the minimum ARL₁ among the values provided by the estimators SM, HL, and ML for a fixed case, Δ and n. These values are bold in the tables. Results with sample sizes n > 100 are obtained but not shown here as most of the cases present ARL₁ = 1 even for n = 30,100. In general, the control charts present good performance (with ARL₁ < 2) even for small samples like n = 3 for increases or decreases $\geq 30\%$ (that is, $\Delta = 0.6,0.7,1.3,1.4$) in cases with larger precise parameters ($\varphi \geq 8$). As expected, the ML estimator provides the lowest ARL₁ in most cases. Instabilities, nonconvergence, more process time, and dependence of the initial values are the prices paid for this good performance. However, the HL estimator also presents good performance and some cases with similar performance as the ML. Therefore, it can be viewed as an alternative due to its simplicity to obtain. In some cases, it has better performance than ML.

5 | REAL-DATA APPLICATIONS

In this section, we present two applications to real data to illustrate our methodology. The first is an application of a control chart for individual proportion observations, and the second is for sample sizes n > 1. In order to estimate the parameters of these models, we adopt the ML method (as discussed in Section 4) and perform all the computations using the function optim of the R software.

5.1 | First application: Control chart for individual observations

This application consists of an individual observation of a data set of a study of contaminated peanuts by toxic substances in 34 batches of 120 pounds.¹³, p. 63, Exercise K This data set was used in the study of Ho et al.⁶ The quality characteristic monitored is the proportion of noncontaminated peanuts (ratio between continuous numbers). For this reason, the use of the Kumaraswamy and unit-Weibull distributions for fitting this data set is well justified.

In this application, we follow the steps described at the end of Section 3. First, the Kumaraswamy and unit-Weibull distributions are selected, and the parameters of these distributions are estimated using the ML method. For this stage (Phase I), the first 20 observations are used. The remaining 14 observations (Phase II) are used to monitor the proportion of noncontaminated peanuts. The empirical median and standard deviation for the first 20 observations are 0.9655 and 0.0345, respectively. The ML estimates of the parameters AIC and BIC for the Kumaraswamy and unit-Weibull models for the first 20 observations are listed in Table 11. In addition, Figure 2 illustrates the histogram and pdf of the Kumaraswamy and unit-Weibull fitted models to these data. According to the criteria AIC, BIC, and graphical analysis, the Kumaraswamy distribution seems to be the most appropriate model.

Figure 3 graphically presents the control limits of the Kumaraswamy control chart for α =0.0027. As it may be of interest to control the quality characteristic in a single direction, we present the bilateral and unilateral control chart. During Phase I, the control charts do not trigger an alarm, so we do not obtain any contradictions against the models. In Phase II, the control chart detected six and seven points out of control considering the bilateral and unilateral control charts, respectively. In the same phase, the control chart triggers a signal, for the first time, at Sample 5.

TABLE 11 Estimates of the parameters and goodness-of-fit statistics for the proportion of noncontaminated peanuts

Model	Parameter	Estimate	AIC	BIC
Kumaraswamy	$ ilde{\mu}$	0.9602	-86.103	-84.111
	$arphi_K$	37.078		
Unit Weibull	$ ilde{\mu}$	0.9589	-83.770	-81.778
	$arphi_{UW}$	1.474		

FIGURE 2 Estimated pdf for the Kumaraswamy (solid line) and unit-Weibull (dashed line) models for the proportion of noncontaminated peanuts

FIGURE 3 Kumaraswamy control chart for the proportion of noncontaminated peanuts (Phase I: 1–20; Phase II: 21–34)

 TABLE 12
 Estimates of the parameters and goodness-of-fit statistics data set of the relative humidity

Model	Parameter	Estimate	AIC	BIC
Kumaraswamy	$ ilde{\mu}$	0.7240	-2264.443	-2254.080
	$arphi_K$	7.5020		
Unit Weibull	$ ilde{\mu}$	0.7095	-2189.497	-2179.133
	$arphi_{UW}$	2.4060		

FIGURE 4 Estimated pdf for the Kumaraswamy (solid line) and unit-Weibull (dashed line) models

5.2 | Second application: Control chart for nonindividual observations

This application is related to a data set of relative humidity (RELH). The quality characteristic monitored is given in terms of percentage, being the ratio of the partial pressure of water to the equilibrium vapor pressure of water (ratio between continuous numbers). The quality characteristic is measured several times throughout the day (sample size

FIGURE 5 Kumaraswamy control chart for the relative humidity data (Phase I: 1–62; Phase II: 63–82)

n > 1). This data set was obtained from the database available at the Iowa Environmental Mesonet (IEM) website (http://mesonet.agron.iastate.edu/), from Los Angeles Downtown, California, USA, during 2019, from March 21, 2019, until July 10, 2019. A total of 2718 observations (from March 21 to June 20) were used for Phase I to estimate the parameters of the distributions of interest. Table 12 reports the estimates of the parameters of the two distributions, as well as AIC and BIC values. According to these indexes, the Kumaraswamy distribution is a better fit for the data set. The histogram and probability density functions are drawn together in Figure 4.

With the estimated parameters of the Kumaraswamy distribution, the lower and upper probability control limits 0.650 and 0.771 for the median estimator HL are obtained by the simulated empirical distribution considering that an average of 30 observations of relative humidity are taken daily. The control chart is applied, considering $\alpha = 0.0027$, for the daily HL median estimators of the relative humidity from June 21 to July 10, showing that the relative humidity on June 24 seems higher than usual, as shown in Figure 5. We present the bilateral and unilateral control charts. During Phase I, the control charts do not trigger an alarm. In Phase II, the control charts detected four points out of control. In the same phase, considering bilateral and unilateral control charts, the control charts trigger a signal, for the first time, at Samples 4 and 9, respectively.

6 | CONCLUSION

In this paper, we highlight the fact that most of the control charts proposed to model rates and proportions when they are not results of Bernoulli experiments used mean reparameterized continuous distributions. However, the mean is not always a good measure of a set of data. For this reason, we proposed new control charts for monitoring double-bounded quality characteristic considering median-dispersion reparameterized continuous distributions. The proposed control charts use the Kumaraswamy and unit-Weibull distributions to determine control limits. When the correct limits were used, good results were obtained. However, the use of incorrect control limits provokes, in general, a high number of false alarms, compromising the performance of the control chart. In addition, it was also observed that lower variability can detect changes in the process more quickly. In this way, given the results, the importance of identifying which distribution better fits the data set among many possible distributions is evident.

ACKNOWLEDGEMENT

The authors would like to acknowledge Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil, Grants 301994/2018-8 and 421656/2018-2) for the partial financial support.

ORCID

Luiz M. A. Lima-Filho https://orcid.org/0000-0001-8841-8433

Marcelo Bourguignon https://orcid.org/0000-0002-1182-5193

Linda L. Ho https://orcid.org/0000-0001-9984-8711

Fidel Henrique Fernandes https://orcid.org/0000-0001-6953-6987

REFERENCES

- 1. Sant'Anna AMO, ten Caten CS. Beta control charts for monitoring fraction data. Exp Syst Appl. 2012;39(11):10,236-10,243.
- 2. Montgomery DC. Introduction to Statistical Quality Control. 6th ed. Roboken, NJ: John Wiley & Sons; 2009.
- 3. Gupta AK, Nadarajah S. Handbook of Beta Distribution and its Applications. Boca Raton FL: CRC Press LLC; 2004.
- 4. Bayer FAM, Tondolo CM, Muller FM. Beta regression control chart for monitoring fractions and proportions. *Comput Indust Eng.* 2018; 119(1):416-426.
- 5. Lima-Filho LMA, Pereira TL, Souza TC, Bayer FAM. Inflated beta control chart for monitoring double bounded processes. *Comput Indust Eng.* 2019;136:265-276.
- 6. Ho LL, Fernandes FH, Bourguignon M. Control charts to monitor rates and proportions. Qual Reliab Eng Intern. 2019;35(1):74-83.
- 7. Mazucheli J, Menezes AFB, Ghitany ME. The unit-Weibull distribution and associated inference. J Appl Prob Stat. 2018;13(2):1-22.
- 8. Lima-Filho LMA, Bayer FAM. Kumaraswamy control chart for monitoring double bounded environmental data. *Communications in Statistics—Simulation and Computation*. 2019. https://doi.org/10.1080/03610918.2019.1635159
- 9. Hodges JL Jr, Lehmann EL. Estimates of location based on rank tests. The Annals of Mathematical Statistics. 1963;34(2):598-611.
- 10. Kumaraswamy P. A generalized probability density function for double-bounded random processes. J Hydrol. 1980;46(1-2):79-88.
- 11. Mitnik PA, Baek S. The Kumaraswamy distribution: median-dispersion re-parameterizations for regression modeling and simulation-based estimation. *Stat Pap.* 2013;54:177-192.

- 12. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2016. https://www.R-project.org/
- 13. Draper NR, Smith H. Applied Regression Analysis. 2nd ed.: New York: John Wiley & Sons; 1981.

AUTHOR BIOGRAPHIES

Luiz M. A. Lima-Filho is a professor in the Statistics Department at the Federal University of Paraíba (UFPB), located in João Pessoa, Brazil. His main areas of expertise are regression models and statistical process control.

Marcelo Bourguignon is an assistant professor at the Federal University of Rio Grande do Norte, located in Natal, Brazil. He carried out his doctoral studies (2011–2014) at the Federal University of Pernambuco, Recife, Brazil. His studies were related to fatigue life models and count time series. He has recently won the "2017 ISI Jan Tinbergen Award," a biennial award, named after the famous Dutch econometrician, recognize best papers from young statisticians from 138 developing countries. He was the first prize winner for his paper "Modelling time series of counts with deflation or inflation of zeros."

Linda Lee Ho is a full professor at the University of São Paulo. Her main subjects are related to statistical process monitoring, design of experiments, and statistical models applied in industrial engineering.

Fidel Henrique Fernandes holds a degree in Statistics and a master's degree also in Statistics (Federal University of Rio Grande do Norte).

How to cite this article: Lima-Filho LMA, Bourguignon M, Ho LL, Fernandes FH. Median control charts for monitoring asymmetric quality characteristics double bounded. *Qual Reliab Engng Int.* 2020;1–24. https://doi.org/10.1002/qre.2696