Teorema 3 Propiedades de los límites (Cont.)

- (III) Si $m=1, \lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x})=b_1$, y $\lim_{\mathbf{x}\to\mathbf{x}_0} g(\mathbf{x})=b_2$, entonces $\lim_{\mathbf{x}\to\mathbf{x}_0} (fg)(\mathbf{x})=b_1b_2$, donde $(fg)\colon A\to\mathbb{R}$ se define mediante $\mathbf{x}\mapsto f(\mathbf{x})g(\mathbf{x})$.
- (IV) Si m=1, $\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x})=b\neq 0$, y $f(\mathbf{x})\neq 0$ para todo $\mathbf{x}\in A$, entonces $\lim_{\mathbf{x}\to\mathbf{x}_0} 1/f(\mathbf{x})=1/b$, donde $1/f\colon A\to\mathbb{R}$ se define mediante $\mathbf{x}\mapsto 1/f(\mathbf{x})$.
- (v) Si $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$, donde $f_i : A \to \mathbb{R}$, $i = 1, \dots, m$, son las componentes de la función f, entonces $\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = \mathbf{b} = (b_1, \dots, b_m)$ si y solo si $\lim_{\mathbf{x} \to \mathbf{x}_0} f_i(\mathbf{x}) = b_i$ para cada $i = 1, \dots, m$.

Estos resultados debieran ser intuitivamente claros. Por ejemplo, la regla II dice que si $f(\mathbf{x})$ está cerca de \mathbf{b}_1 y $g(\mathbf{x})$ está cerca de \mathbf{b}_2 cuando \mathbf{x} está cerca de \mathbf{x}_0 , entonces $f(\mathbf{x}) + g(\mathbf{x})$ está cerca de $\mathbf{b}_1 + \mathbf{b}_2$ cuando \mathbf{x} está cerca de \mathbf{x}_0 . El siguiente ejemplo ilustra cómo se utiliza esto.

Ejemplo 6

Sea $f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x^2 + y^2 + 2$. Calcular el límite

$$\lim_{(x,y)\to(0,1)} f(x,y).$$

Solución

Aquí f es la suma de las tres funciones $(x,y)\mapsto x^2,\,(x,y)\mapsto y^2$ y $(x,y)\mapsto 2$. El límite de una suma es la suma de los límites y el límite de un producto es el producto de los límites (Teorema 3). Por tanto, usando el hecho de que $\lim_{(x,y)\to(x_0,y_0)}x=x_0$ (Ejemplo 4), obtenemos

$$\lim_{(x,y)\to(x_0\,,y_0)}x^2=\left(\lim_{(x,y)\to(x_0,y_0)}\right)\left(\lim_{(x,y)\to(x_0,y_0)}\right)=x_0^2$$

y usando el mismo razonamiento, $\lim_{(x,y)\to (x_0,y_0)} \!\! y^2 = y_0^2.$ En consecuencia,

$$\lim_{(x,y)\to(0,1)} f(x,y) = 0^2 + 1^2 + 2 = 3.$$

Funciones continuas

En el cálculo de una variable aprendimos que la idea de función continua se basa en la noción intuitiva de una función cuya gráfica es una curva sin fracturas; es decir, una curva que no tiene saltos, o la curva que trazaría una partícula en movimiento o la punta de un lápiz deslizándose por el papel sin levantarse.

Para realizar un detallado análisis de las funciones, necesitamos conceptos más precisos que esta vaga noción. Un ejemplo puede clarificar