数学(80分)

【コース1(基本, Basic)・コース2(上級, Advanced)】

※ どちらかのコースを一つだけ選んで解答してください。

I 試験全体に関する注意

- 1. 係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

II 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 4. 足りないページがあったら、手をあげて知らせてください。
- 5. メモや計算などを書く場合は、問題冊子に書いてください。

III 解答方法に関する注意

- 1. 解答は、解答用紙に鉛筆(HB)で記入してください。
- 2. 問題文中のA, B, C,…には、それぞれ-(マイナスの符号), または, 0から9までの数が一つずつ入ります。あてはまるものを選び、解答用紙 (マークシート)の対応する解答欄にマークしてください。
- 3. 同一の問題文中に **A , BC** などが繰り返し現れる場合**,** 2 度目以降 は**, A , BC** のように表しています。

解答に関する記入上の注意

- (1) 根号 ($\sqrt{}$) の中に現れる自然数が最小となる形で答えてください。 (例: $\sqrt{32}$ のときは、 $2\sqrt{8}$ ではなく $4\sqrt{2}$ と答えます。)
- (2) 分数を答えるときは、符号は分子につけ、既約分数(reduced fraction) にして答えてください。

(例: $\frac{2}{6}$ は $\frac{1}{3}$, $-\frac{2}{\sqrt{6}}$ は $\frac{-2\sqrt{6}}{6}$ と分母を有理化してから約分し, $\frac{-\sqrt{6}}{3}$ と答えます。)

- (3) $\frac{A}{C}$ $\frac{-\sqrt{3}}{4}$ と答える場合は、以下のようにマークしてください。
- (4) DEx に-x と答える場合は、De-、Ee1 とし、以下のようにマークしてください。

【解答用紙】

Α	•	0	1	2	3	4	9	6	0	8	9	
В	Θ	0	1	2		4	6	6	0	8	9	
С	Θ	0	1	2	3	•	9	6	0	8	9	
D	•	0	1	2	3	4	9	6	0	8	9	
E	Θ	0	•	2	3	4	9	6	0	8	9	

- 4. 解答用紙に書いてある注意事項も必ず読んでください。
- ※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番	号	*			*			
名 i	前							

数学 コース 2 (上級コース)

「解答コース」記入方法

解答コースには「コース1」と「コース2」が ありますので、どちらかのコースを一つだけ 選んで解答してください。「コース2」を解答 する場合は、右のように、解答用紙の「解答 のマーク欄をマークしてください。

< 解答用紙記入例 >								
解答コー	解答コース Course							
コース 1 Course 1	Course 2							
0	•							

選択したコースを正しくマークしないと、採点されません。

T

問 1 x の 2 次関数 $y = ax^2 + bx + c$ が、次の条件【*】を満たしているとする。

【*】 x = -1 における値は y = -8 であり、x = 3 における値は y = 16 である。 さらに、区間 $-1 \le x \le 3$ において、x の値が増加すると共に y の値も増加する。

このとき, a, b, c に関する条件を求めよう。

条件【*】より、b, c は a を用いて

$$b = \boxed{\mbox{AB}} a + \boxed{\mbox{C}}$$
 ①
$$c = \boxed{\mbox{DE}} a - \boxed{\mbox{F}}$$
 ②

と表される。よって、この2次関数のグラフの軸の方程式は

$$x = \boxed{\mathbf{G}} - \frac{\boxed{\mathbf{H}}}{a}$$

である。

したがって、求める条件は、a, b, c が関係式 ①、② を満たし、さらに a が

を満たすことである。

問 2 a, b, c, d は a < b < c < d を満たす実数とし、実数の部分集合

$$A = \{x \mid a \leq x \leq c\}, \quad B = \{x \mid b \leq x \leq d\}$$

が

$$A \cap B = \{x \mid x^2 - 4x + 3 \le 0\}$$

を満たしているとする。

次の(1),(2)の各場合について答えなさい。

(1) A と B の和集合を

$$A \cup B = \{x \mid x^2 - 5x - 24 \le 0\}$$

とする。このときのa, b, c, d の値は

$$a = \boxed{\mathsf{NO}}, \quad b = \boxed{\mathsf{P}}, \quad c = \boxed{\mathsf{Q}}, \quad d = \boxed{\mathsf{R}}$$

である。

$$A \cap \overline{B} = \{x \mid x^2 + 5x - 6 \leq 0 \text{ to } x \neq 1\}$$

とし、Aの補集合 \overline{A} と B の共通部分を

$$\overline{A} \cap B = \{x \mid x^2 - 9x + 18 \le 0 \text{ to } x \ne 3\}$$

とする。このときの a, b, c, d の値は

$$a = \begin{bmatrix} \mathbf{ST} \end{bmatrix}, b = \begin{bmatrix} \mathbf{U} \end{bmatrix}, c = \begin{bmatrix} \mathbf{V} \end{bmatrix}, d = \begin{bmatrix} \mathbf{W} \end{bmatrix}$$

である。

注) 部分集合: subset, 補集合: complement

 $oxed{I}$ の問題はこれで終わりです。 $oxed{I}$ の解答欄 $oxed{X}$ \sim $oxed{Z}$ はマークしないでください。

II

O を中心とする半径 1 の球面 S 上に 3 点 A, B, C を

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OB} \cdot \overrightarrow{OC} = \overrightarrow{OC} \cdot \overrightarrow{OA} = 0$$

となるようにとる。ここで、 $\overrightarrow{OA} \cdot \overrightarrow{OB}$ は \overrightarrow{OA} と \overrightarrow{OB} の内積を表す。他も同様である。

- (1) $\overrightarrow{AB} \cdot \overrightarrow{AC} = \boxed{\textbf{A}}$, $|\overrightarrow{AB}| = \sqrt{\boxed{\textbf{B}}}$, $\cos \angle BAC = \boxed{\textbf{C}}$ であり、 三角形 ABC の面積は $\boxed{\textbf{F}}$ である。
- (2) 三角形 ABC の重心を G とし、半直線 OG と S との交点を P とする。

$$\overrightarrow{\mathrm{OG}} = \frac{\boxed{\mathbf{G}}}{\boxed{\mathbf{H}}} \left(\overrightarrow{\mathrm{OA}} + \overrightarrow{\mathrm{OB}} + \overrightarrow{\mathrm{OC}} \right)$$
 であるから

$$|\overrightarrow{\mathrm{OG}}| = \frac{\sqrt{1}}{J}, \quad |\overrightarrow{\mathrm{PG}}| = \frac{K - \sqrt{L}}{M},$$

$$\overrightarrow{AG} \cdot \overrightarrow{PG} = \boxed{N}$$

注) 内積: inner product, 重心: center of gravity, 半直線: ray (half line), 四面体: tetrahedron

 $oxed{II}$ の問題はこれで終わりです。 $oxed{II}$ の解答欄 $oxed{oxed{R}}$ \sim $oxed{oxed}$ はマークしないでください。

III

実数 x, y が

$$\frac{x^2}{2} + \frac{y^2}{4} = 1, \quad x \ge 0, \quad y \ge 0$$

を満たすとき

$$P = x^2 + xy + y^2$$

の最大値を求めよう。

条件を満たす x,y において, $x=\sqrt{2}\cos\theta$ $\left(0 \le \theta \le \frac{\pi}{2}\right)$ とおくと

$$y = \Box A \sin \theta$$

となる。よってPは

$$P = \sqrt{\begin{array}{c|c} \mathbf{B} & \sin 2\theta - \cos 2\theta + \boxed{\mathbf{C}} \\ & = \sqrt{\begin{array}{c|c} \mathbf{D} & \sin (2\theta - \alpha) + \boxed{\mathbf{E}} \end{array}}$$

と表され

$$\sin\alpha = \frac{\sqrt{\boxed{\mathbf{F}}}}{\boxed{\mathbf{G}}} \,, \quad \cos\alpha = \frac{\sqrt{\boxed{\mathbf{H}}}}{\boxed{\boxed{\mathbf{I}}}} \qquad \left(0 < \alpha < \frac{\pi}{2}\right)$$

である。したがって,P の最大値は $\sqrt{\mathbf{J}} + \mathbf{K}$ である。

また、P の値が最大になるときの θ を θ_0 とおくと

$$2\theta_0 = \alpha + \frac{\pi}{\boxed{\mathbf{L}}}$$

であるから

$$\sin 2\theta_0 = \frac{\sqrt{\boxed{\mathbf{M}}}}{\boxed{\mathbf{N}}} \,, \quad \cos 2\theta_0 = -\frac{\sqrt{\boxed{\mathbf{O}}}}{\boxed{\mathbf{P}}}$$

である。

 $oxed{III}$ の問題はこれで終わりです。 $oxed{III}$ の解答欄 $oxed{Q}$ \sim $oxed{Z}$ はマークしないでください。

問 1 数列 $\{S_n\}$ を

$$S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} \quad (n = 1, 2, 3, \dots)$$

と定めるとき,次の2つの極限:

$$\lim_{n\to\infty} S_n,$$

$$\lim_{n\to\infty} \frac{S_{2n} - S_n}{\sqrt{n}}$$

を求めよう。

(1) 次の問題文中の $oldsymbol{A}$ \sim $oldsymbol{I}$ には、下の $oldsymbol{0}$ \sim $oldsymbol{9}$ の中から適するものを選びなさい。

 $\lim_{n \to \infty} S_n$ を求めよう。関数 $y = \frac{1}{\sqrt{x}}$ について考えると

$$y' = -\frac{\boxed{\mathbf{A}}}{2\sqrt{x^{\boxed{\mathbf{B}}}}}$$

より、この関数 y は lacktriangle である。

そこで, 区間 $k \le x \le k+1$ $(k=1,2,\dots,n)$ で考えると

$$\frac{1}{\sqrt{k}} \quad \boxed{\mathbf{D}} \quad \int_{k}^{k+1} \frac{1}{\sqrt{x}} \ dx$$

が成り立つ。

この式の両辺を k=1 から k=n まで辺ごとに加えると

$$S_n \sqsubseteq \int_{\Box} \frac{1}{\sqrt{x}} dx = \boxed{\mathbf{H}} \left(\sqrt{\Box} - 1 \right)$$

が得られ

$$\lim_{n\to\infty} S_n = \boxed{}$$

となる。

- 0 ∞
- ① 1
- (2) 2
- ③ 3

- (4) n
- (5) n+1
- (6) <
- (7) >

- 8 単調増加
- 9 単調減少

(問1は次ページに続く)

次の問題文中の $oldsymbol{J}$ \sim $oldsymbol{P}$ には、下の $oldsymbol{0}$ \sim $oldsymbol{9}$ の中から適するものを選び なさい。

$$\lim_{n \to \infty} rac{S_{2n} - S_n}{\sqrt{n}}$$
 について考えると

$$S_{2n} - S_n = \sum_{k=1}^n \frac{1}{\sqrt{\boxed{\mathbf{J}}}}$$

であるから, 区分求積法より

$$\begin{split} \lim_{n \to \infty} \frac{S_{2n} - S_n}{\sqrt{n}} &= \lim_{n \to \infty} \frac{1}{\mathbf{K}} \sum_{k=1}^n \frac{1}{\sqrt{\mathbf{L} + \frac{k}{n}}} \\ &= \int_{\mathbf{M}}^{\mathbf{N}} \frac{1}{\sqrt{1+x}} \, dx \\ &= \mathbf{O} \left(\sqrt{\mathbf{P}} - 1 \right) \end{split}$$

となる。

- (5) n+1 (6) n-k (7) n+k (8) n+k-1 (9) n+k+1

注) 区分求積法: quadrature (mensuration) by parts

次の問題文中の \mathbf{Q} , \mathbf{S} , \mathbf{V} には、下の $\mathbf{0}$ \sim $\mathbf{7}$ の中から適する式を選び なさい。また、それ以外の には、適する数を入れなさい。

微分可能な関数 f(x) が次の等式を満たしている。

$$\int_0^x f(t)dt = (1 + e^{-x})f(x) + 2x - 4\log 2 \qquad \dots \dots \qquad \textcircled{1}$$

このとき, f(x) を定め, 極限値 $\lim_{x\to\infty} f(x)$ を求めよう。

① の両辺をxで微分し変形すると

$$(1+e^{-x})\left(\begin{array}{|c|c|} \hline {\bf Q} \end{array} \right) = \begin{array}{|c|c|} \hline {\bf R} \end{array}$$
 ②

を得る。次に、 $f(x) = e^x g(x)$ とおくと、② より

$$g'(x) = \frac{\boxed{\$}}{1 + e^{-x}}$$

となる。よって

を得る。ここで C は積分定数である。

また, g(0) = f(0) より, $C = \begin{bmatrix} \mathbf{U} \end{bmatrix}$ である。 したがって, g(x) が求まり

$$f(x) = \boxed{\mathbf{V}} \log(1 + e^{-x})$$

と定まる。

最後に、 $e^{-x} = t$ とおくと

$$f(x) = \boxed{\mathbf{W}} \log(1+t)^{\frac{1}{t}}$$

となる。よって

$$\lim_{x \to \infty} f(x) = \lim_{t \to \boxed{\mathbf{X}}} \boxed{\mathbf{W}} \log(1+t)^{\frac{1}{t}} = \boxed{\mathbf{Y}}$$

と求まる。

①
$$f'(x) - f(x)$$
 ① $f(x) - f'(x)$ ② $f'(x) - 2f(x)$

(3)
$$f(x) - 2f'(x)$$
 (4) $2e^x$

$$(5) -2e^x$$

6
$$2e^{-x}$$

$$\bigcirc{}$$
 $-2e^{-x}$

注) 微分可能な: differentiable, 積分定数: integral constant

〈数 学〉

		コース	1
	問	解答欄	正解
		ABC	-26
		DEF	-32
	問1	GH	13
		IJ	32
		KLM	-32
	4	NO	-3
Ι		Р	1
		Q	3
	問2	R	8
	ILIZ	ST	-6
		U	1
		V	3
		W	6
		AB	20
		С	4
	問1	DE	12
		FGH	240
I	14:15	1	5
Ш		J	3
	100000	KL	24
	BBO	MNOP	1-11
	問2	QRS	3-3
		TU	-7
		Α	0
		В	3
	Number	С	1
		D	0
		Е	4
		F	2
		G	1
N		ABC	120
	150	D	3
		EF	27
		GH	32
		IJ	33

			コー	ス	2	-1	
	問	解答欄	正解		問	解答欄	正解
		ABC	-26		問1	AB	13
	問1	DEF	-32			С	9
		GH	13			D	7
		IJ	32			E	7
		KLM	-32			FG	15
		NO	-3			Н	2
Ι		Р	1				0
h .		Q	3			J	7
ic.	問2	R	8	IV		KL	41
	ا المالا	ST	-6			MN	01
		U	1			OP	22
		V	3		問2	Q	1
		W	6			R	2
		Α	1			S	7
-		В	2			T	2
		CD	12			U	0
		EF	32			V	4
I		GH	13			W	2
		IJ	33			X	0
		KLM	333			Υ	2
		N	0				
100 III. 100 III.		OPQ	316				
		Α	2				
		ВС	23				
		DE	33				
		FG	33				
		Н	63				
		JK	33				
		L	2				
		MN	63				
		OP	33				