Quasi-geostrophic dynamics for frictional flows

Assumptions: homegeneous, rotational, visicid fluids, flat surface and bottom

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} - fv = -\frac{1}{\rho_0} \frac{\partial p}{\partial x} + \frac{\partial}{\partial z} (A_V \frac{\partial u}{\partial z})$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} + fu = -\frac{1}{\rho_0} \frac{\partial p}{\partial y} + \frac{\partial}{\partial z} (A_V \frac{\partial v}{\partial z})$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

$$z' = 0$$
 SBL

interior

Define the non-dimensional variables:

$$z' = -1$$
 BBL

$$(u,v) = U(u',v') \qquad w = Ww' \qquad (x,y) = L(x',y') \qquad z = Hz' \qquad p = Pp'$$

$$\frac{U}{T}\frac{\partial u'}{\partial t'} + \frac{U^2}{L}u'\frac{\partial u'}{\partial x'} + \frac{U^2}{L}v'\frac{\partial u'}{\partial y'} + \frac{U^2}{L}w'\frac{\partial u'}{\partial z'} - fUv' = -\frac{P}{\rho_0 L}\frac{\partial p'}{\partial x'} + \frac{A_V U}{H^2}\frac{\partial^2 u'}{\partial z'^2}$$

$$\frac{U}{T}\frac{\partial u'}{\partial t'} + \frac{U^2}{L}u'\frac{\partial u'}{\partial x'} + \frac{U^2}{L}v'\frac{\partial u'}{\partial y'} + \frac{U^2}{L}w'\frac{\partial u'}{\partial z'} - fUv' = -\frac{P}{\rho_0 L}\frac{\partial p'}{\partial x'} + \frac{A_V U}{H^2}\frac{\partial^2 u'}{\partial z'^2}$$

Divide the equation by fU, and remove the symbol ':

$$\varepsilon \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}\right) - v = -\frac{\partial p}{\partial x} + \frac{E_v}{2} \frac{\partial^2 u}{\partial z^2} \qquad E_v = \frac{2A_v}{fH^2} \sim \varepsilon^2$$

$$\varepsilon \left(\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z}\right) + u = -\frac{\partial p}{\partial y} + \frac{E_v}{2} \frac{\partial^2 v}{\partial z^2}$$

Now take the asympotic expansion of the non-dimensional variables:

$$u = u_0 + \varepsilon u_1 + \varepsilon^2 u_2$$

$$v = v_0 + \varepsilon v_1 + \varepsilon^2 v_2$$

$$w = w_0 + \varepsilon w_1 + \varepsilon^2 w_2$$

$$p = p_0 + \varepsilon p_1 + \varepsilon^2 p_2$$

Substitution into the momentum equation, and to the order of O(1):

$$-v_0 = -\frac{\partial p}{\partial x} \qquad u_0 = -\frac{\partial p}{\partial y}$$

To the order of
$$O(\varepsilon)$$
:
$$\varepsilon (\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}) - v = -\frac{\partial p}{\partial x} + \frac{E_v}{2} \frac{\partial^2 u}{\partial z^2}$$

$$\frac{\partial u_0}{\partial t} + u_0 \frac{\partial u_0}{\partial x} + v_0 \frac{\partial u_0}{\partial y} + w_0 \frac{\partial u_0}{\partial z} - v_1 = -\frac{\partial p_1}{\partial x} \tag{1}$$

$$\frac{\partial v_0}{\partial t} + u_0 \frac{\partial v_0}{\partial x} + v_0 \frac{\partial v_0}{\partial y} + w_0 \frac{\partial v_0}{\partial z} + u_1 = -\frac{\partial p_1}{\partial y}$$
 (2)

$$\frac{\partial u_1}{\partial x} + \frac{\partial v_1}{\partial y} + \frac{\partial w_1}{\partial z} = 0$$

$$z' = 0$$
 SBL

interior

$$\frac{\partial(2)}{\partial x} - \frac{\partial(1)}{\partial y}:$$

$$\frac{d\zeta_0}{dt} = -\left(\frac{\partial u_1}{\partial x} + \frac{\partial v_1}{\partial y}\right) = \frac{\partial w_1}{\partial z} = \frac{w_1|_{z'=0} - w_1|_{z'=-1}}{1}$$

$$z' = -1$$
_____BBL

$$\frac{d\zeta_0}{dt} = w_1|_{z=0} - w_1|_{z=-1}$$

The Ekman pumping velocity in the bottom boundary layer is:

$$\begin{aligned} w|_{z'=-1} &= \frac{d}{2} \left(\frac{\partial \bar{v}}{\partial x} - \frac{\partial \bar{u}}{\partial y} \right) = \frac{1}{2} \sqrt{\frac{2A_v}{f}} \, \bar{\zeta} = \frac{H}{2} E_v^{1/2} \bar{\zeta} \\ Ww'|_{z'=-1} &= \frac{H}{2} E_v^{\frac{1}{2}} \frac{U}{L} \left(\frac{\partial v_0}{\partial x'} - \frac{\partial u_0}{\partial y'} \right) \\ w'|_{z'=-1} &= \frac{1}{2} \frac{H}{W} \frac{U}{L} E_v^{\frac{1}{2}} \left(\frac{\partial v_0}{\partial x'} - \frac{\partial u_0}{\partial y'} \right) \end{aligned}$$

Remove the symbol ':

$$w|_{z=-1} = \frac{1}{2} \frac{1}{E_v^2} \zeta_0 = w_0|_{z=-1} + \varepsilon w_1|_{z=-1}$$

$$\frac{\frac{\partial w_0}{\partial z}}{\frac{\partial z}{\partial z}} = 0$$

$$w_0|_{z=-1} = 0 \qquad w_0 = 0$$

$$w_1|_{z=-1} = \frac{E_v^{\frac{1}{2}}}{2\varepsilon} \zeta_0$$

The Ekman pumping velocity for the surface boundary layer is:

$$\begin{split} w|_{z=0} &= \frac{1}{\rho_0 f} \left(\frac{\partial \tau^y}{\partial x} - \frac{\partial \tau^x}{\partial y} \right) = \frac{1}{\rho_0 f} \left(\frac{\partial}{\partial x} \left(\rho_0 A_v \frac{\partial v}{\partial z} \right) - \frac{\partial}{\partial y} \left(\rho_0 A_v \frac{\partial u}{\partial z} \right) \right) \\ &= \frac{A_v}{f} \left(\frac{\partial}{\partial x} \left(\frac{v_s - \bar{v}}{d} \right) - \frac{\partial}{\partial y} \left(\frac{u_s - \bar{u}}{d} \right) \right) \\ &= \frac{A_v}{f d} (\zeta_s - \bar{\zeta}) \qquad d = \sqrt{\frac{2A_v}{f}} \\ E_v &= \frac{2A_V}{f H^2} \qquad = \frac{1}{2} \sqrt{\frac{2A_v}{f}} (\zeta_s - \bar{\zeta}) \qquad = \frac{1}{2} E_v^{\frac{1}{2}} H(\zeta_s - \bar{\zeta}) \\ Ww'|_{z'=0} &= \frac{1}{2} E_v^{\frac{1}{2}} H \frac{U}{L} (\zeta_s' - \zeta_0) \qquad \qquad w'|_{z'=0} = \frac{1}{2} E_v^{\frac{1}{2}} (\zeta_s' - \zeta_0) \\ \text{Remove the symbol ':} \qquad w|_{z=0} &= \frac{E_v^{\frac{1}{2}}}{2\varepsilon} (\zeta_s - \zeta_0) \end{split}$$

$$\frac{d\zeta_0}{dt} = w_1|_{z=0} - w_1|_{z=-1}$$

$$w_1|_{z=0} = \frac{E_v^{\frac{1}{2}}}{2\varepsilon} (\zeta_s - \zeta_0)$$

$$w_1|_{z=-1} = \frac{E_v^{\frac{1}{2}}}{2\varepsilon} \zeta_0$$

$$\frac{d\zeta_0}{dt} = -\frac{E_v^{\frac{1}{2}}}{\varepsilon} (\zeta_0 - \frac{1}{2}\zeta_s) = -r(\zeta_0 - \frac{1}{2}\zeta_s)$$

If the surface forcing disappears $(\zeta_s = 0)$: $\frac{d\zeta_0}{dt} = -r\zeta_0$ $\zeta_0 = \zeta_c e^{-rt}$

Circulation:

$$C = \oint \mathbf{u_0} d\mathbf{r} = \iint \zeta_0 dS$$

geostrophic flow is non-divergent

$$\frac{dC}{dt} = \iint \frac{d\zeta_0}{dt} dS + \iint \zeta_0 \frac{d}{dt} (dS) = \iint -r\zeta_0 dS = -rC \longrightarrow C = C_0 e^{-rt}$$

Spindown time (decay timescale of the flow or vorticity):

$$\zeta_0 = \zeta_c e^{-rt} = \zeta_c e^{-\frac{t}{1/r}}$$

The e-folding decay timescale:
$$\tau = \frac{1}{r} = \frac{\varepsilon}{E_v^{\frac{1}{2}}} = \frac{U/fL}{E_v^{\frac{1}{2}}} = \frac{1/fT}{E_v^{\frac{1}{2}}} \sim O(1)$$

larger E_{ν} , smaller T, faster disspitation of vorticity and kinetic energy

$$|w_1|_{z=-1} = \frac{E_v^{\frac{1}{2}}}{2\varepsilon} \zeta_0 > 0$$
 $|w_1|_{z=0} = -\frac{E_v^{\frac{1}{2}}}{2\varepsilon} \zeta_0 < 0$

The water column is squeezed $(h \downarrow)$, and for PV conservation, $\zeta_0 \downarrow$

The pressure gradient force does negative work, flow deaccelerates

The spindown timescale determines the life time of eddies

Dynamics for the subtropical gyre

For the interior ocean (shallow-water model):

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} - fv = -\frac{1}{\rho_0} \frac{\partial p'}{\partial x}$$
$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + fu = -\frac{1}{\rho_0} \frac{\partial p'}{\partial y}$$

Take the curl of the equation:

$$\frac{\partial}{\partial t} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) + \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + u \frac{\partial^2 v}{\partial x^2} - \frac{\partial u}{\partial y} \frac{\partial u}{\partial x} - u \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial v}{\partial x} \frac{\partial v}{\partial y} + v \frac{\partial^2 v}{\partial x \partial y} - \frac{\partial v}{\partial y} \frac{\partial u}{\partial y} - v \frac{\partial^2 u}{\partial y^2} + f \frac{\partial u}{\partial x} + \frac{\partial f}{\partial y} v + f \frac{\partial v}{\partial y} v + f \frac{\partial v}{\partial y} v = 0$$

$$\frac{\partial \zeta}{\partial t} + \frac{\partial u}{\partial x} \zeta + u \frac{\partial \zeta}{\partial x} + \frac{\partial v}{\partial y} \zeta + v \frac{\partial \zeta}{\partial y} + f \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \beta_0 v = 0$$

$$\frac{\partial \zeta}{\partial t} + \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) (f + \zeta) + \beta_0 v = 0$$

$$\frac{\partial \zeta}{\partial t} + \beta_0 v = f \frac{\partial w}{\partial z}$$

$$\frac{\partial \zeta}{\partial t} + \beta_0 v = f \frac{\partial w}{\partial z}$$

$$\frac{d\zeta}{dt} + \beta_0 v = f \frac{\partial w}{\partial z}$$

SBL

interior

Take the vertical integral, and given that $\frac{\partial u}{\partial z} = \frac{\partial v}{\partial z} = 0$, $\frac{\partial \zeta}{\partial z} = 0$

 $z = z_0$ BBL

 $z = z_1$ —

$$\left(\frac{d\zeta}{dt} + \beta_0 v \right) H = f(w|_{z_1} - w|_{z_0})$$

$$= f \left\{ \frac{1}{\rho_0} \left[\frac{\partial}{\partial x} \left(\frac{\tau^y}{f} \right) - \frac{\partial}{\partial y} \left(\frac{\tau^x}{f} \right) \right] - \frac{d}{2} \zeta \right\}$$

$$= f \left\{ \frac{1}{\rho_0 f} \frac{\partial \tau^y}{\partial x} - \frac{1}{\rho_0 f} \frac{\partial \tau^x}{\partial y} + \frac{\tau^x}{\rho_0 f^2} \beta_0 - \frac{d}{2} \zeta \right\}$$

Define non-dimensional variables:

$$(u,v) = U(u',v') \qquad (x,y) = L(x',y') \qquad t = Tt' \qquad \tau = \tau_0 \tau'$$

$$H\left(\frac{U}{LT}\frac{d\zeta'}{dt'} + \beta_0 Uv'\right) = \frac{1}{\rho_0} \frac{\tau_0}{L} curl\tau' + \frac{\tau_0}{\rho_0 f} \beta_0 \tau^{x'} - \frac{d}{2} f \frac{U}{L} \zeta'$$

$$H\left(\frac{U}{LT}\frac{d\zeta'}{dt} + \beta_{0}Uv'\right) = \frac{1}{\rho_{0}}\frac{\tau_{0}}{L} curl\tau' + \frac{\tau_{0}}{\rho_{0}f}\beta_{0}\tau^{x'} - \frac{d}{2}f\frac{U}{L}\zeta'$$

$$H\frac{U^{2}}{L^{2}}\left(\frac{d\zeta'}{dt} + \frac{\beta_{0}L^{2}}{U}v'\right) = \frac{\tau_{0}}{\rho_{0}L}\left(curl\tau' + \frac{\beta_{0}L}{f}\tau^{x'}\right) - \frac{d}{2}f\frac{U}{L}\zeta'$$

$$<<1$$

$$d = \sqrt{\frac{\nu_{E}}{f}} = E_{k}^{1/2}H$$

$$\frac{d\zeta'}{dt} + \frac{\beta_{0}L^{2}}{U}v' = \frac{\tau_{0}L}{\rho_{0}HU^{2}}\left(curl\tau' + \frac{\beta_{0}L}{f}\tau^{x'}\right) - \frac{1}{2}\frac{fL}{U}\frac{d}{H}\zeta'$$

$$-\frac{1}{2}\frac{1}{R_{0}}E_{k}^{1/2}\zeta'$$

Remove the prime symbol '

$$\frac{d\zeta}{dt} + \beta v = \frac{\tau_0 L}{\rho_0 H U^2} curl\tau - r\zeta$$

For steady, large-scale flow, and assuming the bottom friction is negligible:

 $v = curl\tau$ Sverdrup balance

Figure 12.7 Ekman pumping that produces a downward velocity at the base of the Ekman layer forces the fluid in the interior of the ocean to move southward. (From Niiler, 1987)

How about at the laternal boundaries?

Laternal boundaries:

West:
$$x = X_w(y)$$

West:
$$x = X_w(y)$$
 East: $x = X_E(y)$

$$x - X_w(y) = 0 x - X_E(y) = 0$$

$$x - X_E(y) = 0$$

mid-ocean

 $x = X_E(y)$

 $x = X_w(y)$

No normal flows:

$$\mathbf{u} \cdot \nabla (x - X_w(y)) = 0 \longrightarrow u - v \frac{\partial X_w}{\partial y} = 0 \text{ at } x = X_w$$

$$\mathbf{u} \cdot \nabla (x - X_E(y)) = 0 \longrightarrow u - v \frac{\partial X_E}{\partial y} = 0 \text{ at } x = X_E$$

For interior geostrophic flow:

$$\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial y} = -\frac{\partial curl\tau}{\partial y}$$

For a point in the mid-ocean x_0 :

$$\int_{x_0}^{x} \frac{\partial u}{\partial x} dx' = -\int_{x_0}^{x} \frac{\partial curl\tau}{\partial y} dx'$$

$$u(x,y) = -\int_{x_0}^{x} \frac{\partial curl\tau}{\partial y} dx' + U(x_0,y) \quad \text{unknown, and needs to be determined}$$

If the Sverdrup relation is valid at the eastern boundary: $u = v \frac{\partial X_E}{\partial y} at x = X_E$

$$-\int_{x_0}^{X_E} \frac{\partial curl\tau}{\partial y} dx' + U(x_0, y) = v \frac{\partial X_E}{\partial y} = curl\tau(X_E, y) \frac{\partial X_E}{\partial y}$$

$$U(x_0, y) = \int_{x_0}^{X_E} \frac{\partial curl\tau}{\partial y} dx' + curl\tau(X_E, y) \frac{\partial X_E}{\partial y}$$

$$u(x, y) = -\int_{x_0}^{x} \frac{\partial curl\tau}{\partial y} dx' + \int_{x_0}^{X_E} \frac{\partial curl\tau}{\partial y} dx' + curl\tau(X_E, y) \frac{\partial X_E}{\partial y}$$

$$= \int_{x_0}^{X_E} \frac{\partial curl\tau}{\partial y} dx' + curl\tau(X_E, y) \frac{\partial X_E}{\partial y}$$

$$u(x,y) = \int_{x}^{X_{E}} \frac{\partial curl\tau}{\partial y} dx' + curl\tau(X_{E}, y) \frac{\partial X_{E}}{\partial y}$$

If the Sverdrup relation is also valid at the western boundary: $u = v \frac{\partial X_W}{\partial y} at x = X_W$

$$u(X_W, y) = \int_{X_W}^{X_E} \frac{\partial curl\tau}{\partial y} dx' + curl\tau(X_E, y) \frac{\partial X_E}{\partial y} = v \frac{\partial X_W}{\partial y} = curl\tau(X_W, y) \frac{\partial X_W}{\partial y}$$

$$\int_{X_W}^{X_E} \frac{\partial curl\tau}{\partial y} dx' + curl\tau(X_E, y) \frac{\partial X_E}{\partial y} - curl\tau(X_W, y) \frac{\partial X_W}{\partial y} = 0$$

$$\frac{\partial}{\partial y} \int_{X_W}^{X_E} curl\tau dx' = 0$$

condition for Sverdrup relation to be valid at both boundaries

$$\frac{\partial}{\partial y} \int_{X_W}^{X_E} curl\tau dx' = 0$$

For the trade wind and westerly wind:

$$\tau = (-\tau_0 \cos \pi y, \quad 0)$$

$$v = curl \tau = -\frac{\partial \tau^x}{\partial y} = -\pi \tau_0 \sin \pi y < 0$$

$$0 < y < 1$$

$$0 < \pi y < \pi$$

$$y = 1/2$$

$$y = 0$$

$$Y = 1/2$$

$$Y = 0$$

$$\frac{\partial}{\partial y} \int_{X_W}^{X_E} curl\tau dx' = \frac{\partial}{\partial y} \int_{X_W}^{X_E} -\pi \tau_0 sin\pi y dx' = -\pi^2 \tau_0 cos\pi y (X_E - X_W)$$

$$only = 0 \text{ at } y = 1/2$$

Sverdrup relation cannot hold at both boundaries

If Sverdrup relation holds at the eastern boundary:

$$u(x,y) = \int_{x}^{X_{E}} \frac{\partial curl\tau}{\partial y} dx' + curl\tau(X_{E},y) \frac{\partial X_{E}}{\partial y} \qquad \text{straight coastline } X_{E} = C$$

$$curl\tau = -\frac{\partial \tau^{x}}{\partial y} = -\pi \tau_{0} sin\pi y \qquad = \frac{\partial}{\partial y} \int_{x}^{X_{E}} curl\tau dx' = -\pi^{2} \tau_{0} cos\pi y (X_{E} - x) \qquad \begin{cases} > 0, y > 1/2 \\ < 0, y < 1/2 \end{cases}$$

If Sverdrup relation holds at the western boundary:

opposite to the wind direction (X)

$$u(x,y) = \int_{x}^{X_{W}} \frac{\partial curl\tau}{\partial y} dx' + curl\tau(X_{W}, y) \frac{\partial X_{W}}{\partial y}$$
 straight coastline $X_{W} = C$
$$= \frac{\partial}{\partial y} \int_{x}^{X_{W}} curl\tau dx' = -\pi^{2} \tau_{0} cos\pi y (X_{W} - x)$$
 $\begin{cases} < 0, y > 1/2 \\ > 0, y < 1/2 \end{cases}$

Stommel's model for western boundary intensification — bottom friction

$$\frac{d\zeta}{dt} + \beta v = \frac{\tau_0 L}{\rho_0 H U^2} curl\tau - r\zeta$$

For the boundary layers, retain bottom friction, and divide the equation by β :

$$v = curl\tau - \frac{r}{\beta}\zeta$$

For geostrophic flow:

$$\frac{\partial \psi}{\partial x} = curl\tau - \varepsilon_s \nabla^2 \psi$$

$$\psi = \psi_I(x, y) + \psi_B(x, y)$$
 boundary layer correction

interior (mid-ocean) solution

$$\frac{\partial \psi_I}{\partial x}(x,y) = curl\tau$$

$$\varepsilon_{S}(\nabla^{2}\psi_{I} + \nabla^{2}\psi_{B}) + \frac{\partial\psi_{I}}{\partial x} + \frac{\partial\psi_{B}}{\partial x} = curl\tau$$

West:
$$\alpha = \frac{x - 0}{\varepsilon} \sim O(1)$$
 $\frac{\partial}{\partial x} = \frac{1}{\varepsilon} \frac{\partial}{\partial \alpha}$ $\frac{\partial^2}{\partial x^2} = \frac{1}{\varepsilon^2} \frac{\partial^2}{\partial \alpha^2}$ $\varepsilon: boundary layer$

$$\frac{\partial}{\partial x} = \frac{1}{\varepsilon} \frac{\partial}{\partial \alpha}$$

$$\frac{\partial^2}{\partial x^2} = \frac{1}{\varepsilon^2} \frac{\partial^2}{\partial \alpha^2}$$

thickness ($\ll 1$)

East:
$$\alpha = \frac{x-1}{\varepsilon} \sim O(1)$$

$$\varepsilon_{S} \left(\nabla^{2} \psi_{I} + \frac{1}{\varepsilon^{2}} \frac{\partial^{2} \psi_{B}}{\partial \alpha^{2}} + \frac{\partial^{2} \psi_{B}}{\partial y^{2}} \right) + \frac{1}{\varepsilon} \frac{\partial \psi_{B}}{\partial \alpha} = 0$$

Only retain the large terms:

$$\frac{\partial^2 \psi_B}{\partial \alpha^2} + \frac{\partial \psi_B}{\partial \alpha} = 0$$

$$\frac{\partial^2 \psi_B}{\partial \alpha^2} + \frac{\partial \psi_B}{\partial \alpha} = 0$$

$$\psi_B = A(y)e^{\lambda \alpha} \longrightarrow \lambda^2 + \lambda = 0 \longrightarrow \lambda = -1$$

$$\psi_B = A(y)e^{-\alpha}$$

If ψ_B applies to the western boundary: $\alpha = \frac{x-0}{\varepsilon} > 0$

 ψ_B decays expotentially toward the mid-ocean \checkmark

If ψ_B applies to the eastern boundary: $\alpha = \frac{x-1}{\varepsilon} < 0$

 ψ_B grows expotentially toward the mid-ocean \times

The correction applies to the western boundary, and Sverdrup relation holds for the eastern boundary For the interior and the eastern boundary: $\frac{\partial \psi_I}{\partial x}(x,y) = curl\tau$

$$\int_{x}^{1} \frac{\partial \psi_{I}}{\partial x} dx' = \int_{x}^{1} curl\tau dx' \qquad curl\tau = -\frac{\partial \tau^{x}}{\partial y} = -\pi \tau_{0} sin\pi y$$

$$\psi_{I}(1, y) - \psi_{I}(x, y) = -\pi \tau_{0} sin\pi y (1 - x)$$

$$\psi_{I}(x, y) = \pi \tau_{0} sin\pi y (1 - x)$$

At the western boundary: $\psi_B = A(y)e^{-\alpha}$

$$\psi(0,y) = \psi_I(0,y) + \psi_B(0,y) = \pi \tau_0 \sin \pi y + A(y) = 0$$

$$A(y) = -\pi \tau_0 \sin \pi y$$

$$\alpha = \frac{x - 0}{\varepsilon}$$

$$\psi(x,y) = \psi_I(x,y) + \psi_B(x,y) = \pi \tau_0 \sin \pi y (1-x) - \pi \tau_0 \sin \pi y e^{-x/\varepsilon}$$
$$= (1-x-e^{-x/\varepsilon}) \pi \tau_0 \sin \pi y$$

Streamfunction

Wind stress

Figure 20-7 The two possible configurations for a northward boundary current to return the southward Sverdrup flow that exists across most of an ocean basin in the mid-latitudes of the Northern Hemisphere: (a) boundary current on the eastern side, (b) boundary current on the western side. The former is to be rejected on dynamic grounds, leaving the latter as the correct configuration.