Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №5

на тему «Синтез цифрових автоматів на тригерах» з дисципліни "Комп'ютерна логіка. Частина 1"

Виконав: *Давидчук А. М.*Факультет ФІОТ
Група ІО-41
Номер варіанту № 4108

Перевірив *Верба О.А.*

<u>Тема:</u> «Синтез цифрових автоматів на тригерах».

<u>Мета:</u> Вивчити методи структурного синтезу керуючих автоматів із жорсткою логікою, одержати навички в їх налагодженні та експериментальному дослідженні.

Виконання роботи

Мій варіант 4108, що у двійковому коді 0001 0000 0000 1100, тому h_9 = 0, h_8 = 0, h_7 = 0, h_6 = 0, h_5 = 0, h_4 = 1, h_3 = 1, h_2 = 0, h_1 = 0. Згідно з таблицями варіантів мій варіант:

Порядок з'єднання фрагментів ($h_8^{}h_4^{}h_2^{}=010$): 2, 3, 1

Послідовність логічних умов $(h_8 h_7 h_3 = 001)$: x_1 , x_2 , x_1

Послідовність вихідних сигналів ($h_9 h_4 h_1 = 010$): y_1 , y_2 , y_4 , y_3 , y_1 , y_2

Тип тригерів ($h_8 h_4 = 01$): D

Тип автомата ($h_1 = 0$): Мілі

Сигнал, тривалістю 2 $t\ (h_6^{}h_2^{}=\ 00)$: $y_1^{}$

Елементний базис ($h_3^{}h_2^{}h_1^{}=100$): 2АБО-НЕ, 4І

Мікроалгоритм автомата:

Із зірочкою зазначений додатковий стан

Граф автомата:

Таблиця кодування станів:

Стан	Код стану					
	$Q_{_{1}}$	Q_{2}	Q_{3}			
Z ₁	0	0	0			
z_2	0	0	1			
z_3	0	1	1			
Z_4	0	1	0			
z_{5}	1	1	0			
z_6	1	1	1			
z_{7}	1	0	1			
z_8	1	0	0			

Структурна таблиця автомата:

ПС		Код ПС	C	НС	Код НС		Логічні Керуючі сигнали умови			Функції збудження тригерів						
	Q_1^{t}	Q_2^{t}	Q_3^{t}		Q_1^{t+1}	Q_2^{t+1}	Q_3^{t+1}	x_{1}	x_2	<i>y</i> ₁	y_2	<i>y</i> ₃	y_4	D_{1}	D_{2}	D_3
z_{1}	0	0	0	z_2	0	0	1	1	-	1	0	0	0	0	0	1
Z_{2}	0	0	1	Z_{3}	0	1	1	ı	ı	1	0	0	0	0	1	1
z_3	0	1	1	Z_{4}	0	1	0	1	ı	0	1	0	0	0	1	0
Z_3	0	1	1	Z_{4}	0	1	0	0	ı	0	0	0	0	0	1	0
Z_{4}	0	1	0	Z ₅	1	1	0	ı	1	0	0	1	0	1	1	0
Z_{4}	0	1	0	Z ₅	1	1	0	ı	0	0	0	0	1	1	1	0
Z ₅	1	1	0	Z ₆	1	1	1	ı	ı	0	0	0	0	1	1	1
<i>z</i> ₆	1	1	1	Z ₇	1	0	1	ı	ı	1	0	0	0	1	0	1
<i>Z</i> ₇	1	0	1	<i>z</i> ₈	1	0	0	-	-	1	0	0	0	1	0	0
Z_8	1	0	0	Z ₅	1	1	0	1	-	0	0	0	0	1	1	0
z_8	1	0	0	<i>z</i> ₁	0	0	0	0	-	0	1	0	0	0	0	0

Мінімізація функцій $\boldsymbol{y}_1, \boldsymbol{y}_2, \boldsymbol{y}_3, \boldsymbol{y}_4, \boldsymbol{D}_1, \boldsymbol{D}_2, \boldsymbol{D}_3$ як МКНФ:

Звідси МКНФ функцій:

$$\begin{split} y_1 &= (\overline{Q_1} \vee Q_3)(Q_1 \vee \overline{Q_2}) \\ y_2 &= (\overline{Q_1} \vee \overline{Q_3})(Q_2 \vee \overline{x_1})(Q_1 \vee x_1)(\overline{Q_2} \vee Q_3) \\ y_3 &= Q_2(\overline{Q_2} \vee \overline{Q_3})(\overline{Q_1} \vee \overline{Q_2})(Q_3 \vee \overline{Q_2} \vee x_2) \\ y_4 &= \overline{Q_1}Q_2(\overline{Q_2} \vee \overline{x_2})(\overline{Q_2} \vee \overline{Q_3}) \\ D_1 &= (Q_1 \vee \overline{Q_3})(Q_1 \vee Q_2)(Q_3 \vee Q_2 \vee x_1) \\ D_2 &= (\overline{Q_1} \vee \overline{Q_3})(Q_3 \vee Q_2 \vee Q_1)(\overline{Q_1} \vee Q_2 \vee x_1) \\ D_3 &= (\overline{Q_2} \vee Q_1)(\overline{Q_1} \vee Q_2) \end{split}$$

Дозволі логічні елементи: 2AБО-НЕ та 4I, звідси я роблю висновок, що я маю представити автомат за допомогою пари 4I/2AБО-НЕ:

$$\begin{split} Y_1 &= \overline{Q_1} \overline{Q_3} \vee \overline{Q_1} \overline{Q_2} \\ Y_2 &= \overline{\overline{Q_1} Q_3} \vee \overline{\overline{Q_2}} \overline{x_1} \vee \overline{\overline{Q_1}} \overline{x_1} \vee \overline{Q_2} \overline{\overline{Q_3}} \\ Y_3 &= \overline{\overline{\overline{Q_2}} \vee \overline{Q_2} \overline{Q_3}} \vee \overline{\overline{Q_1}} \overline{\overline{Q_2}} \vee \overline{\overline{Q_3}} \overline{\overline{Q_2}} \overline{\overline{x_2}} \\ Y_4 &= \overline{\overline{\overline{Q_1}} \overline{\overline{Q_2}}} \vee \overline{\overline{\overline{Q_2}}} \vee \overline{\overline{Q_2}} \overline{\overline{Q_2}} \vee \overline{\overline{Q_2}} \overline{\overline{Q_2}} \overline{\overline{x_2}} \\ D_1 &= \overline{\overline{\overline{Q_1}} \overline{Q_3} \vee \overline{\overline{Q_1}} \overline{\overline{Q_2}}} \vee \overline{\overline{Q_2}} \overline{\overline{Q_2}} \overline{\overline{Q_2}} \overline{\overline{x_1}} \\ D_2 &= \overline{\overline{\overline{Q_1}} \overline{Q_3} \vee \overline{\overline{Q_3}} \overline{\overline{Q_2}} \overline{\overline{Q_2}}} \vee \overline{\overline{Q_1}} \overline{\overline{Q_2}} \overline{\overline{x_1}} \\ D_3 &= \overline{\overline{Q_2}} \overline{\overline{Q_1}} \vee \overline{\overline{Q_1}} \overline{\overline{Q_2}} \overline{\overline{Q_2}} \overline{\overline{Q_2}} \\ \end{split}$$

Схема:

Висновок:

Із заданим мікроалгоритмом я розмітив керючі та логічні умови, розставив стани, а також додав додатковий, щоб закодувати їх за кодом Грея. Побудував граф автомата Мілі, з неї створив структурну таблицю автомата та мінімізував функції виходу та переходу за допомогою діаграм Вейча для 5 аргументів. Побудував схему і для спрощення розуміння розмітив виходи автомата змінними Q. Успішну роботу автомата продемонстрував на часовій діаграмі, в якості перевірки я змінював аргументи х1, х2 задля демонстрування проходження мікроалгоритму.

Контрольні питання

1. Подати узагальнену структурну схему керуючого автомата:

2. Написати вирази, що визначають закон функціонування автоматів Мілі і Мура:

Функція переходів незмінна, а функція виходів для Мілі ϵ бінарною: прийма ϵ поточний стан та аргументи, а функція виходів для Мура ϵ унарною: прийма ϵ лише поточний стан.

3. В чому відмінність автоматів Мілі і Мура?

Відповідно у функціях виходу.

4. Як побудувати граф автомата?

Спираючись на мікроалгоритм, почати треба з вузлів: один вузол – певний стан, перехід між станами це дуги. Якщо це автомат Мілі: у вузлах пишемо тільки назву стану, а на дугах аргумент (умова переходу)/вихід. Якщо це автомат Мура: у вузлах пишемо назву стану та вихід, а на дугах аргумент (умова переходу).

5. Як здійснюється розмітка станів автомата?

Якщо це автомат Мілі: після початкового блоку "Початок" та перед блоком "Кінець" помічаємо як за стан z_1 . Після інших логічних або операторних блоків ставимо стани z_i , де $i=\overline{2,n}$.

Якщо це автомат Мура: на початковому блоці "Початок" та на кінцевому "Кінець" помічаємо як стан z_1 . На інших логічних або операторних блоках ставимо стани z_i , де $i=\overline{2,n}$.

6. Від чого залежить кількість тригерів, необхідна для побудови автомата?

Відповідно від кількості станів, а саме $k = \lceil log_2(M) \rceil$, де k – число тригерів, а M – число станів.

7. В чому сутність "протигоночного" кодування станів автомата?

У тому, що кодувати стани треба за кодом Грея: тобто кодування попереднього стану і поточного відрізняється лише одним бітом, а біт в кодуванні автомата це вивід стану тригера Q. А якщо кодування виконуватиметься не за кодом Грея, то можлива ситуація, коли кодування попереднього та поточного станів відрізняється на 2 і більше бітів, а значить, що станів тригера треба змінювати не один, що може спричинити короткочасні помилкові значення.

8. Як скласти структурну таблицю автомата?

3 огляду на граф, ми маємо записати перехід між станами, кодування, вихід, логічні умови та збудження тригерів один рядок для одного переходу.

9. Як побудувати часову діаграму роботи автомата?

Ввести у часову діаграму змінні у, х, Q автоматів, а також RESET задля скидання станів до початкового.

10. Скласти таблицю переходів для JK-, RS-, T- і D-тригерів:

	t	<i>t</i> ±1							
Тригери	Q^t	Q^{t+1}	Умови переходу:						
JK	0	0	J=0; K=*						
	0	1	J=1; K=*						
JK	1	0	J=*; K=1						
	1	1	J=*; K=0						
	0	0	T=0						
Т	0	1	T=1						
Į.	1	0	T=1						
	1	1	T=0						
· · · · · · · · · · · · · · · · · · ·									
	0	0	R=*; S=0						
RS	0	1	R=0; S=1						
KO	1	0	R=1; S=0						
	1	1	R=0; S=*						
·									
	0	0	D=0						
D	0	1	D=1						
D	1	0	D=0						
	1	1	D=1						

11. Коли можливе виникнення помилкових керуючих сигналів (не передбачених графом автомата) і чим визначається їх тривалість?

Різними інтервалами переходу станів тригера.

12. Як визначити час переходу автомата з одного стану в інший?

Час переходу залежить від часу генерації синхросигналів, а також логіки переходу, тобто час затримки КС. яка реалізує функцію переходів.