1 Números enteros

1.1 Operaciones

Pretendemos precisar nuestro conocimiento intuitivo de los números enteros, lo denotamos por \mathbf{Z} (del alemán Zahl número).

Definición 1 Los números enteros admiten tres operaciones:

```
la \ suma, \ denotada \ x + y
la \ resta \ x - y
y \ el \ producto \ xy
```

Propiedades

- 1. Propiedades asociativas: (x + y) + z = x + (y + z) y (xy)z = x(yz).
- 2. Propiedades conmutativas: x + y = y + x y xy = yx.
- 3. Existencia de elementos neutros: x + 0 = x y x1 = x
- 4. Existencia de opuesto: x + (-x) = 0.
- 5. Propiedad distributiva: x(y+z) = xy + xz.

Entonces decimos que Z es un anillo conmutativo.

Otras propiedades

- 1. **Dominio de integridad**: Si a, b son enteros, y $a \neq 0, b \neq 0$ entonces $ab \neq 0$.
- 2. Como consecuencia:

Propiedad cancelativa: Para cualesquiera $a, b, c \in \mathbf{Z}$ con $c \neq 0$, si ac = bc entonces a = b.

3. Multiplicación por a es una aplicación inyectiva:

$$f: \mathbf{Z} \to \mathbf{Z},$$
$$x \to xa$$

1.2 Orden total

Ley de tricotomía. Para dos números enteros cualesquiera x, y se tiene:

$$x < y, x = y \text{ ó } y < x$$

Relación con las operaciones.

- 1. Si $x_1 \le x_2$ y $y_1 \le y_2$, entonces $x_1 + y_1 \le x_2 + y_2$.
- 2. Si $x \le y$ y z > 0, entonces $zx \le zy$.

1.3 Los números naturales

Destacamos el conjunto de los números enteros no negativos

$$\mathbf{N} = \{0, 1, 2, \ldots\}$$

a sus elementos los llamamos números naturales.

Principio de buena ordenación. Cada subconjunto no vacío de números naturales tiene un elemento mínimo, i.e. un elemento más pequeño que cualquiera del subconjunto.

Principio de inducción

Teorema 1 Sea S es un subconjunto del conjunto $\mathbf N$ de los números naturales verificando que

- $a) \ 0 \in S$,
- b) para todo $n \in \mathbb{N}$, si $n \in S$ entonces $n + 1 \in S$,
- (o bien b') para todo $n \in \mathbf{N}$ si $m \in S$ para cada m < n, entonces $n \in S$) necesariamente $S = \mathbf{N}$

Demostración. Sea S' el complementario de S en \mathbb{N} . Entonces por el principio de buena ordenación S' tiene un elemento mínimo m. Pero $m \neq 0$ pues $0 \notin S'$ y como $m \notin S$, $m-1 \notin S$, i.e. $m-1 \in S'$ contradicción.

Demostración por inducción

Sea P(n) una proposición relativa a un número natural n. Si queremos demostrar P(n) para todo número natural n bastará:

- 1. probar P(0),
- 2. probar que si suponemos que P(n) es cierta entonces P(n+1) es cierta. o bien
- 3. probar que si suponemos que P(m) es cierta para todo m < n, entonces P(n) es cierta.

2 Divisibilidad

2.1 Algoritmo de Euclides

Definición 2 Dados dos números enteros $a, b \in \mathbf{Z}$, decimos que b divide a a, escribiremos b|a si a = bq para algún $q \in \mathbf{Z}$

Proposición 1 Divisibilidad en Z satisface las propiedades siguientes:

- 1. $c|b \ y \ b|a \ implica \ que \ c|a$.
- 2. $a \mid a \text{ para todo } a \in \mathbf{Z}$.
- 3. Si a|b y b|a, entonces $a = \pm b$.
- 4. Si $b|a_1$ y $b|a_2$, entonces $b|a_1 a_2$.
- 5. Si b|a entonces b|ac para cualquier $c \in \mathbf{Z}$.

Teorema 2 (División de enteros) Dados $a,b \in \mathbf{Z}$, si b > 0 existen $q,r \in \mathbf{Z}$ tales que

$$a = bq + r, 0 < r < b$$

Demostración. Tomamos q el entero más grande no mayor que a/b, entonces $0 \le (a/b) - q < 1$ entonces r = a - bq satisface la desigualdad.

Definición 3 Un número primo es un entero p mayor que 1 cuyos únicos divisores positivos son 1 y p.

Definición 4 Un número entero d es un máximo común divisor de a, b si

- 1. es un divisor común de a y b, i.e. d|a y d|b; y
- 2. $si\ e\ es\ otro\ divisor\ común\ entonces\ e|d.$

Si d es un máximo común divisor, entonces —d también los es. Por el máximo común divisor entenderemos el positivo.

Definición 5 Dos números enteros se llaman primos relativos si su máximo comun divisor es uno.

El algoritmo siguiente ya aparece en el famoso libro de Euclides, Elementos, Libro VII, Proposición 2.

Teorema 3 (Algoritmo de Euclides.) Dados dos números enteros positivos a y b, aplicamos el algoritmo de la división repetidamente para obtener

$$\begin{array}{rcl}
a & = & bq_1 + r_1 \\
b & = & r_1q_2 + r_2 \\
r_1 & = & r_2q_3 + r_3 \\
& \vdots \\
r_{n-2} & = & r_{n-1}q_n + r_n \\
r_{n-1} & = & r_nq_{n+1} + 0
\end{array}$$

entonces r_n es el máximo común divisor de a y b. Además se verifica la identidad de Bezout

$$mcd(a,b) = ax + by$$

para algunos enteros x, y.

Demostración

Probaremos que r_n es el máximo común divisor y que $r_n = ax + by$ (Identidad de Bezout) para algunos enteros x, y.

Si n = 0 entonces b|a y el resultado es trivial.

Si n=1, entonces el algoritmo de Euclides para a y b tiene la forma

$$a = bq_1 + r_1$$

$$b = r_1 q_2 + 0$$

Entonces es fácil ver que r_1 es el máximo común divisor de a y b; también $r_1 = a \cdot 1 + b(-q)$ y la identidad de Bezout se verifica.

Supongamos que el teorema es cierto para n-1. Para el caso n el algoritmo toma la forma anterior.

Si eliminamos la primera ecuación, obtendríamos un algoritmo de Euclides para n-1, por hipótesis de inducción

$$r_n = (b, r_1)$$

y la identidad de Bezout sería

$$r_n = bu + r_1 v.$$

Ahora $a = bq_1 + r_1$, entonces $(a, b) = (b, r_1) = r_n$.

Como $r_1 = a - bq_1$, sustituyendo en $r_n = bu + r_1v$

$$r_n = bu + (a - bq_1)v = av + b(u - q_1v).$$

2.2 Consecuencias de la identidad de Bezout

Corolario 1 Si $x|a \ y \ x|b$, entonces x|(a,b).

Corolario 2 Si a|bc y (a,b) = 1, entonces a|c.

Demostración. De la identidad de Bezout, sabemos que

$$ar + bs = 1$$

para enteros r, s.

Multiplicando por c,

$$acr + bcs = c$$
.

Como a|bc divide a bcs y por tanto a|c.

2.3 Ecuaciones de la forma ax + by = e

Proposición 2 Dados enteros a, b, e, existen enteros m y n con am+bn = e si y sólo si (a,b) divide a e.

Demostración. Si am + bn = e para algunos enteros m, n, entonce el máximo común divisor de a y b divide a e.

Recíprocamente la identidad de Bezout nos da ar + bs = d. Si dm = e para algún m, entonces x = rm, y = sm resuelve la ecuación ax + by = e.

3 Factorización

3.1 Números primos

Definición 6 Un número primo es un entero p mayor que 1 cuyos únicos divisores positivos son 1 y p.

Denotaremos por $\pi(x)$ el número de primos menores que x.

Teorema 4 (J. Hadamard y Ch. J. de la Vallé Poussin)

$$\lim_{x \to \infty} \frac{\pi(x)}{x/lnx} = 1$$

3.1.1 Algunas conjeturas

Muchos primos aparecen por parejas: 3 y 5, 17 y 19, 29 y 31. Se denominan **primos gemelos**.

Conjetura 1 ¿Existen infinitas parejas de primos gemelos, i.e. de la forma $n \ y \ n + 2$?

Conjetura 2 (C.H. Goldbach, 1742) Cada número par es suma de dos números primos.

Teorema 5 (I.M. Vinogradov, 1937) Los números impares suficientes grandes pueden escribirse como suma de tres primos.

Para más infomación http://primes.utm.edu/

3.2 Factorización

Lema 1 Cada entero positivo puede escribirse como producto de primos.

Demostración. Lo demostraremos por inducción.

Primero, 2 es primo.

Supongamos que el resultado es cierto para para cada entero positivo menor que n.

Si n es primo entonces hemos terminado. En caso contrario, n=xy con x,y < n por la hipótesis de inducción x e y se escriben como producto de primos.

Así n también es producto de primos.

Unicidad

Lema 2 Si p es un número primo y $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ tales que

$$p|a_1a_2\cdots a_n,$$

entonces $p|a_i$ para algún i = 1, ... n.

Demostración. Probaremos el contrarecíproco de esta afirmación, i.e. si $p \not| a_i$ para todo i = 1, ..., n entonces $p \not| a_1 a_2 ... a_n$.

Para el caso n = 1 no hay que probar.

Supongamos n=2. Debemos probar si $p \nmid a, p \nmid b$ entonces $p \mid ab$.

Como p es primo, a, p son primos relativos, entonces la identidad de Bezout nos dice que ax + py = 1 para algunos $x, y \in \mathbf{Z}$, análogamente bu + pv = 1.

Multiplicando ambas igualdades

$$1 = (ax + py)(bu + vp) = abxu + p(ybu + axv + ypv)$$

y esto demuestra que ab y p son primos relativos, por tanto $p \not| ab$.

Supongamos que n > 2 y el resultado cierto para valores menores que n.

Dado un primo p tal que $p \not| a_i$ para todo i = 1, ... n, usando la hipótesis de inducción $p \not| a_1 \cdots a_{n-1}$.

Como también $p \not | a_n$, el caso n=2 nos demuestra que $p \not | a_1 \cdots a_n$.

Teorema 6 Cada entero positivo a puede escribirse como producto de números primos $a = p_1 p_2 \dots p_r$.

Además, si tenemos otra factorización $a = q_1 q_2 \dots q_s$, entonces r = s

y reordenando convenientemente los q_i se tiene que $p_i = q_i$.

Demostración Si tenemos

$$a = p_1 p_2 \cdots p_r = q_1 q_2 \cdots q_s$$

Entonces $p_1|q_1\cdots q_s$, por el lema anterior $p_1|q_i$ para algún i. Renumerando podemos suponer que $p_1|q_1$. Como q_1 es primo, $p_1=q_1$. Simplificamos p_1

$$p_2 \cdots p_r = q_2 \cdots q_s$$

Aplicando inducción sobre r se sigue que r-1=s-1 y reordenando $p_i=q_i$ para $i=2\ldots n$. Así r=s y $p_i=q_i$ para $i=1,\ldots,n$.

Teorema 7 (Teorema de Euclides) Existen infinitos números primos

Demostración. Supongamos que existieran sólo un número finito, digamos que p_1, p_2, \ldots, p_r son todos los que hay.

Consideremos el número $m = p_1 p_2 \cdots p_r + 1$.

Tendrá que tener un divisor primo, q. Entonces q será uno de los que existen p_1, p_2, \ldots, p_r , por tanto divide a $p_1 p_2 \cdots p_r$ y como dividía a m dividirá a 1.

Pero esto es una contradicción.

4 Congruencias

4.1 Propiedades elementales

Introducidas por Gauss en su libro Disquisitiones Arithmeticae (1801).

Definición 7 Dos enteros a, b son congruentes módulo m, escribimos

$$a \equiv b \pmod{m}$$

si m divide a a-b, o equivalentemente a=b+km para algún $k \in \mathbb{Z}$.

Proposición 3 Sea m un número natural > 1. Cada número entero es congruente con m exactamente a un número del conjunto $\{0, 1, \ldots, m-1\}$

Teorema 8 Sea m un entero positivo. Entonces la relación de congruencia mod m es una relación de equivalencia en **Z**. Además

- 1) $si \ a \equiv b \ and \ a' \equiv b' \ (mod \ m) \ entonces \ a + a' \equiv b + b' \ (mod \ m),$
- 2) $si \ a \equiv b \ and \ a' \equiv b' \ (mod \ m) \ entonces \ aa' \equiv bb' \ (mod \ m),$
- 3) si ca \equiv cb (mod m) y c es primo con m, entonces a \equiv b (mod m),
- 4) si $a \equiv b \pmod{km}$ y $k \neq 0$, entonces $a \equiv b \pmod{m}$.

Demostración 3) Supongamos $ca \equiv cb \pmod{m}$, como c y m son primos relativos, por la identidad de Bezout uc + vm = 1 con u, v números enteros, i.e. $uc \equiv 1 \pmod{m}$.

Entonces $auc \equiv a$, $buc \equiv b \pmod{m}$. Multiplicando la equivalencia dada por u se sigue que $uca \equiv ucb \pmod{m}$. Por tanto $a \equiv auc \equiv buc \equiv b \pmod{m}$.

Proposición 4 Sean a y b dos números naturales entonces a es congruente a b módulo m si ambos dan el mismo resto al dividirlos por m

Demostración. Si $a = q_1 m + r$ y $b = q_2 m + r$, entonces $a - b = (q_1 - q_2)m$, así $a \equiv b \pmod{m}$.

Recíprocamente si $a \equiv b \pmod{m}$, entonces a = b + km. Si b = qm + r, se sigue que a = qm + r + km = (q + k)m + r y ambos dan el mismo resto al dividirlos por m.

Prueba de los nueves

Apareció en Europa en el libro Liber Abaci (1202) de Fibonacci

Lema 3 Sea x un entero positivo, 9 divide a x si y sólo si x divide a las suma de las cifras de x.

Demostración. Observamos que $10^r \equiv 1 \pmod{9}$ para todo r > 0. Entonces

$$x = x_n 10^n + x_{n-1} 10^{n-1} + \dots + x_2 10^2 + x_1 10 + x_0$$
$$\equiv x_n + x_{n-1} + \dots + x_2 + x_1 + x_0$$

Proposición 5 La ecuación $ax \equiv 1 \pmod{m}$ tiene solución si y sólo si a y m son primos relativos.

Demostración. La ecuación es equivalente a ax = 1+km, o ax-km = 1 y aplicamos la Proposición 2 de la lección 7.

4.2 Clases de restos

La relación de congruencia módulo m es una relación de equivalencia, sus clases de equivalencia son la clases de restos módulo m, las denotamos \overline{a} . Entonces el conjunto cociente lo denotamos

$$\mathbf{Z}/m\mathbf{Z} = \{\overline{0}, \overline{1}, \dots, \overline{m-1}\}$$

En este conjunto cociente se pueden definir las operaciones suma y producto.

$$\overline{a} + \overline{b} = \overline{a+b}$$

$$\overline{a} \cdot \overline{b} = \overline{ab}$$
.

Supongamos que $\overline{a} = \overline{a}'$, $\overline{b} = \overline{a}'$, entonces $a \equiv a'$ y $b \equiv b' \pmod{m}$. Se sigue que $a + b \equiv a' + b'$, i.e. $\overline{a + b} = \overline{a' + b'}$.

Análogamente para el producto.

El conjunto $\mathbb{Z}/m\mathbb{Z}$ se denomina el anillo de enteros módulo m.

Definición 8 Un elemento de un anillo u se dice que es una unidad si existe un elemento v tal que uv = vu = 1, a v se le denomina el inverso de u y se denota u^{-1} .

Teorema 9 En $\mathbb{Z}/m\mathbb{Z}$, \overline{a} es una una unidad si y sólo si a y m son primos relativos.

Demostración. $\overline{a}\overline{b} = 1$ es equivalente a $uv \equiv 1 \pmod{m}$.

Corolario 3 El número de unidades de $\mathbb{Z}/m\mathbb{Z}$ es igual al número de enteros x, $1 \le x \le a$ que son primos relativos con m.

El número de enteros x, $1 \le x \le a$ que son primos relativos con m se denota $\phi(x)$, la función fi de Euler.

Corolario 4 Si p es primo, todos los elementos no cero de $\mathbb{Z}/p\mathbb{Z}$ son unidades, i.e. es un cuerpo.

En particular $\phi(p) = p - 1$. No es dificil ver que

$$\phi(p^r) = p^r - p^{r-1} = p^r (1 - \frac{1}{p}).$$

5 Teoremas de Fermat y Euler

5.1 Ordenes de elementos

Proposición 6 Si a y m son primos relativos, entonces $a^t \equiv 1$ para algún $t, 1 \leq t < m$.

Demostración. Como a y m son primos relativos, m no divide a a^s para cualquier s. Así los números

$$1, a, a^2, \ldots, a^{m-1}$$

pertenecen a clases de restos distintos de la $\overline{0}$. Por tanto dos de ellos deben de estar en la misma clase, i.e.

$$a^s \equiv a^{s+t}$$

donde $s \ge 0$ y $0 \le t < m-1$. Ahora como a y m son primos relativos, podemos simplificar a^s de ambos términos de la igualdad, se obtiene

$$1 \equiv a^t \ (mod \ m).$$

Definición 9 Sea $m \ge 2$ and a un entero primo relativo con m. El **orden** de a módulo m es el menor entero positivo e tal que $a^e \equiv 1 \pmod{m}$.

Proposición 7 Si e es el orden de un módulo m, y $a^f \equiv 1 \pmod{m}$, entonces e divide f.

Demostración. Tenemos $a^e \equiv 1$ y $a^f \equiv 1 \pmod{m}$. Dividimos f entre e, i.e. f = eq + r con $0 \le r < e$. Entonces

$$1 \equiv a^f \equiv (a^e)^q a^r \equiv a^r,$$

por tanto $a^r \equiv 1$, pero e era el menor natural tal que $a^e \equiv 1 \pmod{m}$, por tanto r = 0 y e divide a f.

5.2 Teorema de Fermat

Fue descubierto por P. Fermat en 1640.

Teorema 10 Si p es un primo y a es un entero no divisible por p, entonces

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Demostración. Sea $\overline{a} \neq \overline{0}$ la clase de restos de a módulo p. Multiplicación por \overline{a} es una aplicación inyectiva de $\mathbf{Z}/p\mathbf{Z}$, i.e. la aplicación $\mathbf{Z}/p\mathbf{Z} \to \mathbf{Z}/p\mathbf{Z}$, enviando $\overline{x} \to \overline{ax}$ es inyectiva. Como son conjuntos finitos la aplicación tiene que ser biyectiva, es decir,

$$\{\overline{1},\overline{2},\ldots,\overline{p-1}\}=\{\overline{a}\times\overline{1},\overline{a}\times\overline{2},\ldots,\overline{a}\times\overline{p-1}\}.$$

Al multiplicar ambos conjuntos tendremos el mismo resultado

$$\overline{1} \times \overline{2} \times \cdots \times \overline{p-1} = \overline{a} \times \overline{1} \times \overline{a} \times \overline{2} \times \cdots \times \overline{a} \times \overline{p-1}.$$

Podemos simplificar $\overline{1} \times \overline{2} \times \cdots \times \overline{p-1}$ para obtener

$$\overline{1} = (\overline{a})^{p-1}$$

si se translada esta acuación a congruencias obtenemos el resultado del teorema.

5.3 Teorema de Euler

Una función definida sobre \mathbf{Z} se denomina una función aritmética. Como por ejemplo ϕ .

Una función aritmética f se llama **multiplicativa** si

$$f(mn) = f(m)f(n)$$

cuando (m, n) = 1.

Teorema 11 La función ϕ es multiplicativa.

Demostración. Como $\phi(1)=1$ la ecuación es cierta para n=1 o m=1. Podemos suponer que n>1 y m>1. Escribimos los restos módulo nm en una tabla de la forma siguiente

La primera fila incluye todos los posibles restos módulo m. Habrá $\phi(m)$ elementos primos con m. Por otro lado una fila arbitraria de la tabla anterior es congruente con la primera módulo m. Por tanto cada fila contiene $\phi(m)$ elementos primos con m. Habrá $\phi(m)$ columnas formadas completamente por enteros primos con m.

Una columna arbitraria es de la forma

$$b, m + b, 2m + b, \dots, (n - 1)m + b.$$

Claramente estos forman un conjunto con todos los restos posibles módulo n. Efectivamente hay n-1 números positivos y dos de ellos no pueden dar el mismo resto módulo n pues si

$$im + b \equiv jm + b \pmod{n}$$

se tendría

$$im \equiv jm \pmod{n}$$

y como m es primo con n se puede simplificar dando i=j, pues ambos son menores que n. Así en cada columna hay $\phi(n)$ números primos con n. En total tendremos en la tabla $\phi(n)\phi(m)$ números que son primos con n y con m. Pero como n y m son primos relativos, esto es lo mismo que decir que esos números son primos con n. Se tiene

$$\phi(n)\phi(m) = \phi(nm).$$

Teorema 12 Para cada n > 1 se tiene que

$$\phi(n) = n \prod_{p|n} (1 - \frac{1}{p})$$

donde el producto significa que multiplicamos sobre todos los primos que dividen a n.

bf Demostración. Sea $n = p_1^{a_1} \times p_2^{a_2} \times \cdots \times p_k^{a_k}$ aplicando ϕ y teniendo en cuenta que ϕ es multiplicativa

$$\phi(n) = \phi(p_1^{a_1}) \times \phi(p_2^{a_2}) \times \dots \times \phi(p_k^{a_k})$$

Ahora bien como hemos visto

$$\phi(p^r) = p^r (1 - \frac{1}{p})$$

así se obtiene que

$$\phi(n) = p^{a_1} \left(1 - \frac{1}{p_1}\right) \times p^{a_2} \left(1 - \frac{1}{p_2}\right) \times \dots \times p^{a_r} \left(1 - \frac{1}{p_r}\right)$$

Agrupando términos se tiene

$$\phi(n) = (p^{a_1} \times p^{a_2} \times \dots \times p^{a_r}) \times (1 - \frac{1}{p_1}) \times (1 - \frac{1}{p_2}) \times \dots \times (1 - \frac{1}{p_r})$$

la fórmula buscada.

Teorema 13 Teorema de Euler Si(a, m) = 1, entonces

$$a^{\phi(m)} \equiv 1 \pmod{m}$$
.

Demostración. La idea es similar a la demostración del teorema de Fermat. En esta ocasión tenemos que tomar el conjunto de las unidades de $\mathbf{Z}/m\mathbf{Z}$. Sabemos que hay sólo $\phi(m)$ de tales unidades, i.e

$$U = {\overline{u_1}, \dots, \overline{u_{\phi(m)}}}.$$

Por la misma razón que en el teorema de Fermat si multiplicamos por \overline{a} . Entonces

$$U = \{\overline{au_1}, \dots, \overline{au_{\phi(m)}}\}.$$

Si multiplicamos los elementos de ambos conjuntos

$$\overline{u_1} \times \cdots \times \overline{u_{\phi(m)}} = \overline{au_1} \times \cdots \times \overline{au_{\phi(m)}}.$$

Simplificando de nuevo por $\overline{u_1} \times \cdots \times \overline{u_{\phi(m)}}$, esto se puede hacer pues es una unidad, se sigue que

$$\overline{1} = \overline{a}^{\phi(m)}.$$

Esta igualdad es equivalente a la igualdad de congruencias que establece el enunciado.