EAIiIB	Piotr Morawie	cki, Tymoteusz Paszun	Rok II	Grupa 3a	Zespół 6		
Ter	nat: Mostek Whe	atstone'a	Numer éwiczenia: 35				
Data wykonania: 22.11.2017r.	Data oddania: 29.11.2017r.	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	Ocena:		

1 Cel ćwiczenia

Celem ćwiczenia jest pomiar nieznanych oporów oraz kombinacji ich połączeń.

2 Wstęp teoretyczny

Wyznaczenie wartości napięć i prądów w poszczególnych częściach obwodu opiera się na trzech prawach:

- I prawo Kirchoffa (prądowe prawo Kirchoffa) w węzłach sieci, czyli w punktach połączeń trzech lub więcej przewodów, algebraiczna suma prądów wpływających równa jest zeru.
- II prawo Kirchoffa (napięciowe prawo Kirchoffa) suma różnic potencjałów w zamkniętej pętli obwodu (tzw. oczku) równa się zeru.
- Prawo Ohma stosunek napięcia na końcach przewodu do wartości natężenia prądu jest wartością stałą, nazywaną opornością.

Aby znaleźć poszukiwane prądy powyższe warunki zapisujemy w formie układu odpowiedniej liczby niezależnych równań liniowych.

Analizując układ z rysunku 1 możemy wyprowadzić stosunek oporów:

$$\frac{R_x}{R_2} = \frac{R_3}{R_4}$$

i przekształcając równanie:

$$R_x = R_2 \frac{R_3}{R_4}$$

gdzie R_x jest poszukiwanym oporem.

Rysunek 1: Schemat oporowego mostka Wheatstone'a

3 Układ pomiarowy

Na rysunku 2 przedstawiony jest przyrząd pomiarowy, w którym zastosowano drut oporowy wraz z linijką o dokładności 1 mm służącą określeniu położenia punktu D od początku drutu (długość a). Długość drutu wynosi $l=100\,\mathrm{cm}$. Napięcie zasilania układu wynosiło 0, 288 V. Opór R_2 stanowi opornica dekadowa. Symbolem R_x oznaczono zestaw badanych oporników.

Jako, że w układzie zastosowano jednorodny drut oporowy równanie wartości poszukiwanego oporu możemy przedstawić jako:

$$R_x = R_2 \frac{a}{b}$$

Wiedząc, że a+b=l, możemy zapisać je w postaci:

$$R_x = R_2 \frac{a}{l-a}$$

Rysunek 2: Przyrząd pomiarowy - mostek Wheatstone'a z drutem oporowym

4 Wykonanie ćwiczenia

- 1. Podłączenie układu pomiarowego zgodnie ze schematem.
- 2. Wykonanie dziesięciu pomiarów oporów dla różnych wartości R_2 dla każdego z badanych oporów.

$R_2[\Omega]$	10	11	12	13	14	9	8	7	6	5
a[mm]	492	468	447	427	411	513	537	559	594	633
R_{x_1}	9,69	9,68	9,70	9,69	9,77	9,48	9,28	8,87	8,78	8,62

Tablica 1: Pomiary dla opornika R_{x_1}

$R_2[\Omega]$	20	22	24	26	28	18	16	14	12	10
a[mm]	490	466	450	430	413	502	532	553	604	644
R_{x_1}	19,22	19,20	19,64	19,61	19,70	18,15	18,19	17,32	18,30	18,09

Tablica 2: Pomiary dla opornika R_{x_2}

5 Wyniki pomiarów

Niepewność pomiaru wartości oporu wyznaczamy przy pomocy wzoru:

$$u(R_x) = \sqrt{\frac{\sum_{i=1}^{n} (R_i - \overline{R_x})^2}{n(n-1)}}$$

$$\overline{R_{x_1}} = 9,36[\Omega]$$

$$u(R_{x_1}) = 0,37$$

$$\overline{R_{x_2}} = 18,74[\Omega]$$

$$u(R_{x_2}) = 0,73$$

$$\overline{R_{x_3}} = 33,53[\Omega]$$

$$u(R_{x_3}) = 1,41$$

$$\overline{R_{x_{1,2szer}}} = 29,01[\Omega]$$

$$u(R_{x_{1,3szer}}) = 0,36$$

$$\overline{R_{x_{1,2rown}}} = 5,33[\Omega]$$

$$u(R_{x_{1,2rown}}) = 0,93$$

$$\overline{R_{x_{12rown,3szer}}} = 41,21[\Omega]$$

$$u(R_{x_{12rown,3szer}}) = 1,48$$

$R_2[\Omega]$	30	33	36	39	42	27	24	21	18	15
a[mm]	516	502	484	474	449	532	571	609	666	700
R_{x_1}	31,98	33,27	33,77	33,15	34,23	30,69	31,94	32,71	36,89	35,68

Tablica 3: Pomiary dla opornika R_{x_3}

$R_2[\Omega]$	30	33	36	39	42	27	24	21	18	15
a[mm]	492	470	449	430	412	508	547	576	620	658
R_{x_1}	31,98	33,27	33,77	33,15	34,23	30,69	31,94	32,71	36,89	35,68

Tablica 4: Pomiary dla opornika R_{x_1} i R_{x_2} szeregowo

$R_2[\Omega]$	6	7	8	9	10	5	4	3	2	1
a[mm]	506	469	442	413	387	513	548	607	677	755
R_{x_1}	6,14	6,18	6,34	6,33	6,31	5,27	4,85	4,64	4,19	3,08

Tablica 5: Pomiary dla opornika R_{x_1} i R_{x_2} rownolegle

6 Opracowanie wyników

6.1 Połączenie szeregowe

Wartość oporu przy szeregowym połączeniu oporów R_{x_1} oraz R_{x_2} możemy obliczyć stosując wzór na opór zastępczy:

$$R_{szer} = R_{x_1} + R_{x_2} = 28,10\,\Omega$$

Niepewność z prawa przenoszenia niepewności:

$$u(R_{szer}) = \sqrt{\left(\frac{\delta R_{szer}}{\delta R_1} u(R_1)\right)^2 + \left(\frac{\delta R_{szer}}{\delta R_2} u(R_2)\right)^2} = \sqrt{u(R_1)^2 + u(R_2)^2} = 0,82\,\Omega$$

6.2 Połączenie równoległe

Wartość oporu przy szeregowym połączeniu oporów R_{x_1} oraz R_{x_2} możemy obliczyć stosując wzór na opór zastępczy:

$$R_{row} = \frac{R_{x_1} R_{x_2}}{R_{x_1} + R_{x_2}} = 6,24\,\Omega$$

Niepewność z prawa przenoszenia niepewności:

$$u(R_{row}) = \sqrt{\left(\frac{\delta R_{row}}{\delta R_1}u(R_1)\right)^2 + \left(\frac{\delta R_{row}}{\delta R_2}u(R_2)\right)^2} = \sqrt{\left(\frac{R_{x_1}}{R_{x_1} + R_{x_2}}\right)^4 u(R_{x_1})^2 + \left(\frac{R_{x_2}}{R_{x_1} + R_{x_2}}\right)^4 u(R_{x_2})^2} = 0,33\Omega$$

6.3 Połączenie mieszane 1

Wartość oporu przy równoległym połączeniu oporów R_{x_1} i R_{x_2} oraz szeregowym dołączeniu oporu R_{x_3} możemy obliczyć stosując wzór:

$$R_{p_1} = R_{szer} + R_{x_3} = 39,78\,\Omega$$

Niepewność możemy obliczyć używając wzoru dla niepewności połączenia szeregowego:

$$u(R_{p_1}) = 1,45\,\Omega$$

$R_2[\Omega]$	40	45	50	55	60	35	30	25	20	15
a[mm]	511	487	460	437	415	540	585	599	667	722
R_{x_1}	41,80	42,72	42,59	42,69	42,56	41,09	42,29	37,34	40,06	38,96

Tablica 6: Pomiary dla opornika R_{x_1} i R_{x_2} růwnolegle i R_{x_2} szeregowo

$R_2[\Omega]$	15	17	19	21	23	13	11	9	7	5
a[mm]	512	486	457	432	411	541	561	619	654	714
R_{x_1}	15,74	16,07	16,00	15,97	16,05	15,32	14,06	14,62	13,23	12,48

Tablica 7: Pomiary dla opornika R_{x_1} i R_{x_2} i szeregowo i R_{x_3} růwnolegle

$$\overline{R_{x_{12own,3szer}}} = 14,95[\Omega]$$

$$u(R_{x_{12rown,3szer}}) = 1,08$$

6.4 Połączenie mieszane 2

Wartość oporu przy szeregowym połączeniu oporów R_{x_1} i R_{x_2} oraz równoległym dołączeniu oporu R_{x_3} możemy obliczyć stosując wzór:

$$R_{p_{1}} = \frac{R_{szer}R_{x_{3}}}{R_{szer} + R_{x_{3}}} = 15,29\,\Omega$$

Niepewność możemy obliczyć używając wzoru dla niepewności połączenia równoległego:

$$u(R_{p_1}) = 0,45\,\Omega$$

6.5 Analiza błędów

Podczas analizy wyników nie znaleźliśmy błędów grubych. Natomiast analizując wykresy (rysunek) możemy zauważyć, że zależność odległości a od oporu wzorcowego w powtarzalny sposób odbiega od spodziewanej prostej. Wnioskujemy, że może być to związane z niejednorodnością zastosowanego drutu oporowego, bądź korozją wpływającą na opór punktu styku drutu z suwakiem.

Rysunek 3: Zależność długości a od oporu wzorcowego R_2

6.6 Ocena zgodności uzyskanych wyników

7 Wnioski

Rysunek 4: Zależność długości aod oporu wzorcowego ${\cal R}_3$

Rysunek 5: Zależność długości aod oporu wzorcowego ${\cal R}_1, {\cal R}_2$ połączonych równolegle