

ACLA Monte Carlo group meetings, CERN, Nov – Dec 2007

PYTHIA 8.1 Introduction and Tutorial

Torbjörn Sjöstrand

CERN/PH and

Department of Theoretical Physics, Lund University

PYTHIA 6 status

PYTHIA has its roots in JETSET, begun in 1978 → almost 30 years.

PYTHIA 6 still being (slightly) developed and (fully) maintained:

- multiple interactions and underlying event, with
- transverse-momentum-ordered showers
- SUSY interfaces (SLHA) and simulation
- regular bug fixes and minor improvements
- moved to CEDAR HepForge (code management, bugtracking)

Currently PYTHIA 6.413:

- 75,000 lines of code (including comments/blanks)
- 580 page PYTHIA 6.4 Physics and Manual T. Sjöstrand, S. Mrenna and P. Skands, JHEP05 (2006) 026 [hep-ph/0603175]
- + update notes, sample main programs, etc.

... but

- only add, never subtract
- ⇒ has become bloated and unmanageable
- is in Fortran 77, so not understood by young people

PYTHIA 8: plans and reality

Tentative schedule (spring 2003):

time	date	processes	final states
0 =	1 Sept. 2004		
1 =	1 Sept. 2005	LHA-style input	incomplete draft
2 =	1 Sept. 2006	a few processes	complete, buggy(?)
3 =	1 Sept. 2007	more processes	stable, debugged

Status: involuntary break \sim 6 months + Murphy's law \implies currently \sim at year 2.5

PYTHIA 8.100 released on 20 October:

- Webpages revamped
 Recent
 — PYTHIA 6.4
 Present
 — PYTHIA 8.1
 Future
 — loose plans
- A Brief Introduction to PYTHIA 8.1 in arXiv:0710.3820 submitted to CPC

PYTHIA 8 status

task administative structure hard processes, internal resonance decays hard processes, external SUSY(+more) parameters initial-state showers final-state showers matching ME's to showers multiple interactions beam remnants & colour flow parton densities string fragmentation decays & particle data Bose-Einstein analysis graphical user interface tuning testing

status operational; extensions planned much of PYTHIA 6; SUSY & TC & more to do much of PYTHIA 6; SUSY & TC & more to do interfaces to LHA F77, LHEF, PYTHIA 6 primitive SLHA2; more needed operational operational some exists; much more needed operational; extensions planned operational; alternatives to come only 2 internal, but interface to LHAPDF operational; improvements planned operational; may need updates operational; off by default (tuning) some simple tools; may be enough operational; could be extended major task for MCnet postdocs!

major task for experimentalists!

Key differences between PYTHIA 6.4 and 8.1

Old features definitely removed include, among others:

- independent fragmentation
- mass-ordered showers

Features omitted so far include, among others:

- ullet ep, γ p and $\gamma\gamma$ beam configurations
- several processes, especially SUSY & Technicolor

New features, not found in 6.4:

- interleaved p_{\perp} -ordered MI + ISR + FSR evolution
- richer mix of underlying-event processes $(\gamma, J/\psi, DY, ...)$
- possibility for two selected hard interactions in same event
- possibility to use one PDF set for hard process and another for rest
- elastic scattering with Coulomb term (optional)
- updated decay data

Preliminary plans for the future:

- rescattering in multiple interactions
- NLO and L-CKKW matching

Trying It Out

- Download pythia8100.tgz from
 http://www.thep.lu.se/~torbjorn/Pythia.html
- tar xvfz pythia8100.tgz to unzip and expand
- cd pythia8100 to move to new directory
- ./configure ... needed for external libraries + debug/shared (see README, libraries: HepMC, LHAPDF, PYTHIA 6)
- make will compile in \sim 3 minutes (for archive library, same amount extra for shared)
- The htmldoc/pythia8100.pdf file contains A Brief Introduction
- Open html in a web browser for the full manual
- Install the phpdoc/ directory on a webserver and open
 phpdoc/Welcome.html in a web browser for an interactive manual
- The examples subdirectory contains 30 sample main programs: standalone, link to libraries, semi-internal processes, ...
 (make mainNN and then ./mainNN.exe > outfile)
- A Worksheet (on the web pages) contains step-by-step instructions and exercises how to write and run a main program

PYTHIA 8 structure

Example of a main program

```
// File: main01.cc. The charged multiplicity distribution at the LHC.
#include "Pythia.h"
using namespace Pythia8;
int main() {
 // Generator. Process selection. LHC initialization. Histogram.
 Pythia pythia;
 pythia.readString("HardQCD:all = on");
 pythia.readString("PhaseSpace:pTHatMin = 20.");
 pythia.init(2212, 2212, 14000.);
 Hist mult("charged multiplicity", 100, -0.5, 799.5);
  // Begin event loop. Generate event. Skip if error. List first one.
  for (int iEvent = 0; iEvent < 100; ++iEvent) {
    if (!pythia.next()) continue;
    if (iEvent < 1) {pythia.info.list(); pythia.event.list();}</pre>
    // Find number of all final charged particles and fill histogram.
    int nCharged = 0;
    for (int i = 0; i < pythia.event.size(); ++i)</pre>
      if (pythia.event[i].isFinal() && pythia.event[i].isCharged())
        ++nCharged;
    mult.fill( nCharged );
  // End of event loop. Statistics. Histogram. Done.
 pythia.statistics();
  cout << mult;</pre>
 return 0;
}
```

Initialization and generation commands

Standard in beginning:

- #include "Pythia.h"
- using namespace Pythia8;
- Pythia pythia;

Initialization by one of different forms:

- ullet pythia.init(idA, idB, eA, eB) along $\pm z$ axis
- pythia.init(idA, idB, eCM) in c.m. frame
- pythia.init("filename") for Les Houches Event Files
- pythia.init() takes above kinds of input from "cards"
- pythia.init(LHAinit*, LHAevnt*) for Les Houches Accord returns false if failed (normally user setup mistake!)

Generation of next event by:

```
• pythia.next()
with no arguments, but value false if failed (rare!)
```

At the end of the generation loop:

pythia.statistics()provides some summary information

Settings and Particle Data

Can read in settings and particle data changes by

- pythia.readString("command")
- pythia.readFile("filename") with one command per line in file

Settings come in four kinds

- Flags: on/off switches, bool
 (on = yes = ok = true = 1, off = no = false = 0)
- Modes: enumerated options, int
- Parms: (short for parameters) continuum of values, double
- Words: characters (no blanks), string

```
and command is of form task:property = value, e.g.
```

```
PartonLevel:ISR = off no initial-state radiation
```

```
SigmaProcess:alphaSorder = 0 freeze \alpha_s
```

TimeShower:pTmin = 1.0 cut off final-state radiation at 1 GeV

To access **particle data**, instead command should be of form id:property = value or id:channel:property = value, e.g. $3122:mayDecay = no do not allow <math>\Lambda^0$ to decay $215:3:products = 211 111 111 to let <math>a_2^+ \to \pi^+\pi^0\pi^0$

Note: case-insensitive search/matching in databases!

Example of a "cards" file

! This file contains commands to be read in for a Pythia8 run.

```
! Lines not beginning with a letter or digit are comments.
! 1) Settings that could be used in a main program, if desired.
Main:idBeamA = 2212
                                   ! first beam, p = 2212, pbar = -2212
Main:idBeamB = 2212
                                   ! second beam, p = 2212, pbar = -2212
Main:eCM = 14000.
                                   ! CM energy of collision
Main:numberOfEvents = 1000
                                   ! number of events to generate
Main:numberToList = 2
                                   ! number of events to print
Main:timesToShow = 20
                                   ! show how far along run is
                                   ! print changed flags/modes/parameters
Main:showChangedSettings = on
Main:showAllSettings = off
                                   ! print all flags/modes/parameters
! 2) Settings for the hard-process generation.
HiggsSM:gg2H = on
                                   ! Higgs production by gluon-gluon fusion
25:m0 = 123.5
                                   ! Higgs mass
25: onMode = off
                                   ! switch off all Higgs decay channels
25:onIfMatch = 22 22
                                   ! switch back on Higgs -> gamma gamma
SigmaProcess:alphaSvalue = 0.12
                                   ! alpha_s(m_Z) in matrix elements
! 3) Settings for the subsequent event generation process.
SpaceShower:alphaSvalue = 0.13
                                   ! alpha_s(m_Z) in initial-state radiation
MultipleInteractions:pTORef = 3.0
                                   ! pT_0 regularization at reference energy
#PartonLevel:MI = off
                                    ! no multiple interactions
                                    ! no initial-state radiation
#PartonLevel: ISR = off
#PartonLevel:FSR = off
                                    ! no final-state radiation
#HadronLevel:Hadronize = off
                                    ! no hadronization
```

More on settings

Settings are stored in four separate maps (flags/modes/parms/words). For each setting, need to store

- name: of form task:property, e.g. TimeShower:pTmin
- default value
- current value
- allowed range: minimum/maximum on/off (not for flags).

Useful commands:

- pythia.settings.listAll(): complete list
- pythia.settings.listChanged(): only changed ones

Name	1	Now	Default	Min	Max
HardQCD:all		on	off		
Main:eCM		14000.000	1960.000	10.00000	
Main:numberToList	1	1	2	0	
Main:showChangedParticleData	1	on	off		
Main:timesToShow	1	20	50	0	
MultipleInteractions:pTmin	1	3.00000	0.20000	0.10000	10.00000
PhaseSpace:pTHatMin	1	50.00000	0.0	0.0	
PromptPhoton:all	1	on	off		
SpaceShower:pTORef		2.00000	2.20000	0.50000	10.00000

Online manual \Longrightarrow Graphical User Interface

Example: timelike parton showers

Manual Sections

Program Overview

Frontpage
Program Flow
Settings Scheme
Particle Data Scheme
Program Files

Setup Run Tasks

Save Settings
Main-Program Settings
Random-Number Seed
PDF Selection
Master Switches
Process Selection

- QCD
- Electroweak
- Onia
- Top
- Fourth Generation
- Higgs
- SUSY
- New Gauge Bosons
- Left-Right Symmetry
- Leptoquark

- Compositeness
- Extra Dimensions

A Second Hard Process

Phase Space Cuts

Couplings and Scales

Standard-Model Parameters

Total Cross Sections

Resonance Decays

Timelike Showers

Spacelike Showers

Multiple Interactions

Beam Remnants

Fragmentation

Flavour Selection

Particle Decays

Bose-Einstein Effects

Particle Data

Error Checks

Tunes

Study Output

Four-Vectors
Particle Properties
Event Record

Event Information Event Statistics Histograms Event Analysis HepMC Interface

Link to Other Programs

Les Houches Accord
Access PYTHIA 6 Processes
Semi-Internal Processes
Semi-Internal Resonances
Hadron-Level Standalone
SUSY Les Houches Accord
Parton Distributions
External Decays
User Hooks
Random Numbers
Implement New Showers

Reference Materiel

Bibliography Glossary

Version

Hard-process generation

Processes can be switched on with

ProcessGroup:ProcessName = on

or sometimes

ProcessGroup:all = on

ProcessGroup	ProcessName					
SoftQCD	minBias, elastic, singleDiffractive,					
	doubleDiffractive					
HardQCD	gg2gg, gg2qqbar, qg2qg, qq2qq, qqbar2gg,					
	qqbar2qqbarNew, gg2ccbar, qqbar2ccbar,					
	gg2bbbar, qqbar2bbbar					
PromptPhoton	qg2qgamma, qqbar2ggamma, gg2ggamma,					
	ffbar2gammagamma, gg2gammagamma					
WeakBosonExchange	ff2ff(t:gmZ), ff2ff(t:W)					
WeakSingleBoson	ffbar2gmZ, ffbar2W, ffbar2ffbar(s:gm)					
WeakDoubleBoson	ffbar2gmZgmZ, ffbar2ZW, ffbar2WW					
WeakBosonAndParton	qqbar2gmZg, qg2gmZq, ffbar2gmZgm, fgm2gmZf					
	qqbar2Wg, qg2Wq, ffbar2Wgm, fgm2Wf					
Charmonium	gg2QQbar[3S1(1)]g, qg2QQbar[3PJ(8)]q,					
Bottomonium	gg2QQbar[3S1(1)]g, gg2QQbar[3P2(1)]g,					

ProcessGroup	ProcessName
Top	gg2ttbar, qqbar2ttbar, qq2tq(t:W),
	ffbar2ttbar(s:gmZ), ffbar2tqbar(s:W)
FourthBottom	gg2bPrimebPrimebar, qq2bPrimeq(t:W) ,
FourthTop	qqbar2tPrimetPrimebar, fbar2tPrimeqbar(s:W),
FourthPair	<pre>ffbar2tPrimebPrimebar(s:W), fbar2tauPrimenuPrimebar(s:W)</pre>
HiggsSM	ffbar2H, gg2H, ffbar2HZ, ff2Hff(t:WW),
HiggsBSM	h, H and A as above, charged Higgs, pairs
SUSY	qqbar2chi0chi0 (SUSY barely begun)
NewGaugeBoson	ffbar2gmZZprime, ffbar2Wprime, ffbar2RO
LeftRightSymmmetry	ffbar2ZR, ffbar2WR, ffbar2HLHL,
LeptoQuark	q12LQ, qg2LQ1, gg2LQLQbar, qqbar2LQLQbar
ExcitedFermion	dg2dStar, qq2uStarq, qqbar2muStarmu,
ExtraDimensionsG*	gg2G*, qqbar2G*,

Can also use (and sometimes mix with)

- Les Houches Event Files
- Les Houches Accord-style runtime C++ interface
- Les Houches Accord runtime Fortran 77 interface (and that way runtime link to PYTHIA 6.4)
- semi-internal matrix elements and resonances (external matrix elements, internal phase space)

More on particle data

The static ParticleDataTable class contains info by PDG id code: • name(id), hasAnti(id) spinType(id), chargeType(id), charge(id), colType(id) • mO(id), mWidth(id), mMin(id), mMax(id), tauO(id), ... plus a vector of DecayChannels with • onMode(), bRatio(), meMode(), multiplicity(), product(i) User modifies by methods, readString("...") and readFile("filename") with commands id:property = value Or id:channel:property = value. Some special commands: id:all = name antiName spinType chargeType colType m0 mWidth mMin mMax tau0 id:new = name antiName spinType chargeType colType m0 mWidth mMin mMax tau0

Useful commands:

- pythia.particleData.listAll(): complete list
- pythia.particleData.listChanged(): only changed ones
- pythia.particleData.list(id): only one (or vector<int>)

----- PYTHIA Particle Data Table (changed only) -----

id mMin	name mMax no onMo	ode			spn c ext vis prod		mO	mWidth
111	pi0				1	0 0	0.13498	0.00000
0.00000	0.00000	2	.51000e-05	0 0	0 1	0		
	0	1	0.9879900	0	22	22		
	1	1	0.0119800	11	22	11	-11	
	2	1	0.0000300	13	11	-11	11	-11
223 0.10000	omega 0.00000	0	.00000e+00	0 1	3 0 1	0 0	0.78259	0.00849
	0	1	0.8924000	1	211	-211	111	
	1	1	0.0892800	0	22	111		
	2	1	0.0170000	3	211	-211		
	3	1	0.0004900	0	221	22		
	4	1	0.0000700	0	111	111	22	
	5	1	0.0005900	0	111	11	-11	
	6	1	0.0001000	0	111	13	-13	
	7	1	0.0000700	0	11	-11		

----- End PYTHIA Particle Data Table -----

The Particle class in the event record

Each Particle object stores the properties:

- id(): particle identity, by PDG codes.
- status(): status code. Provides info on where and why a given particle was produced. Negative code = no longer existing particle.
- mother1(), mother2(): first and last mother indices.
- daughter1(), daughter2(): first and last daughter indices.
- col(), acol(): colour and anticolour tags, Les Houches Accord.
- px(), py(), pz(), e(): four-momentum components (in GeV).
- m(): mass.
- scale(): scale at which a parton was produced; model-specific.
- xProd(), yProd(), zProd(), tProd(): production vertex (in mm).
- tau(): proper lifetime.

Methods above can also be used, with argument, for setting properties. Many further methods for extraction only, e.g. for rapidity. Also pointer to ParticleDataTable entry; gives e.g. name() and charge().

The Event class

Two Event objects inside a Pythia object:

- process: hard subprocess, roughly like Les Houches.
- event : complete event history.

```
An Event pprox a vector<Particle>
```

e.g. pythia.event[i].id() = identity of i'th particle

index 0 = event-as-a-whole; not really part of history

- → throw line 0 for HepMC conversion
- \Rightarrow mother/daughter = 0 \Leftrightarrow empty

Specific methods include:

- size(): $0 \le i < event.size()$.
- list(): provide event listing.
- motherList(i), daughterList(i), sisterList():
 a vector<int> of mothers, daughters, sisters.
- iTopCopy(i), iBotCopy(i): top or bottom "carbon copy".

But *no* methods to edit the event.

Further: info on junctions, subsystems (multiple interactions), ...

Sample event listings

First with pythia.process.list(), truncated to fit:

	PYTHIA	Event Listing	(hard proc	ess)						
no	id	name	status	mc	others	daugh	ters	co	lours	p_x
0	90	(system)	-11	0	0	1	2	0	0	0.000
1	2212	(p+)	-12	0	0	3	0	0	0	0.000
2	2212	(p+)	-12	0	0	4	0	0	0	0.000
3	-2	(ubar)	-21	1	0	5	6	0	101	0.000
4	2	(u)	-21	2	0	5	6	102	0	0.000
5	-6	(tbar)	-22	3	4	7	8	0	101	-73.897
6	6	(t)	-22	3	4	9	10	102	0	73.897
7	-24	(W-)	-22	5	0	11	12	0	0	2.825
8	-5	bbar	23	5	0	0	0	0	101	-76.721
9	24	(W+)	-22	6	0	13	14	0	0	72.384
10	5	b	23	6	0	0	0	102	0	1.513
11	3	S	23	7	0	0	0	103	0	-26.914
12	-4	cbar	23	7	0	0	0	0	103	29.739
13	-11	e+	23	9	0	0	0	0	0	6.458
14	12	nu_e	23	9	0	0	0	0	0	65.926
			Charge s	um:	0.000		Mor	nentum	sum:	0.000

----- End PYTHIA Event Listing

next with pythia.event.list(), omissions to fit:

	PYTHIA	Event Listing	(complete	e even	t)									
no	id	name	status	me	others	daug	hters	col	lours	p_x	р_у	p_z	е	m
0	90	(system)	-11	0	0	1	2	0	0	0.000	0.000	0.000	14000.000	14000.000
1	2212	(p+)	-12	0	0	279	0	0	0	0.000	0.000	7000.000	7000.000	0.938
2	2212	(p+)	-12	0	0	280	0	0	0	0.000	0.000	-7000.000	7000.000	0.938
3	-2	(ubar)	-21	7	7	5	6	0	101	0.000	0.000	54.594	54.594	0.000
4	2	(u)	-21	8	0	5	6	102	0	0.000	0.000	-1042.471	1042.471	0.000
5	-6	(tbar)	-22	3	4	9	9	0	101	-73.897	-53.244	-174.768	261.166	171.372
6	6	(t)	-22	3	4	10	10	102	0	73.897	53.244	-813.108	835.899	171.131
7	-2	(ubar)	-42	12	0	3	3	0	101	0.000	0.000	54.594	54.594	0.000
8	2	(u)	-41	13	13	11	4	104	0	-0.000	-0.000	-1191.549	1191.549	0.000
9	-6	(tbar)	-44	5	5	14	14	0	101	-71.565	-51.768	-210.234	285.251	171.372
10	6	(t)	-44	6	6	15	15	102	0	82.715	58.828	-926.573	947.695	171.131
11	21	(g)	-43	8	0	16	16	104	102	-11.150	-7.060	-0.149	13.198	0.000
25	21	(g)	-51	23	0	37	37	106	105	19.037	28.329	38.331	51.325	0.000
26	21	(g)	-51	23	0	39	39	101	106	6.832	-19.532	2.861	20.889	0.000
27	-6	(tbar)	-52	20	20	34	34	0	101	-88.187	-52.597	-231.302	305.635	171.372
44	21	(g)	-31	48	0	46	47	114	113	0.000	0.000	0.707	0.707	0.000
45	1	(d)	-31	49	49	46	47	113	0	0.000	0.000	-255.118	255.118	0.000
46	21	(g)	-33	44	45	50	50	114	115	2.524	5.061	-11.187	12.535	0.000
47	1	(d)	-33	44	45	51	51	115	0	-2.524	-5.061	-243.224	243.290	0.330
378	2	(u)	-63	1	0	492	492	113	0	-0.319	-0.512	1340.638	1340.638	0.330
379	2101	(ud_0)	-63	1	0	492	492	0	113	-0.427	-1.024	3266.905	3266.906	0.579
380	2	(u)	-63	1	0	493	493	108	0	-0.720	-1.118	56.936	56.952	0.330
381	-3	(sbar)	-63	1	0	519	519	0	117	-0.382	-0.112	1364.384	1364.384	0.500
486	-11	e+	23	441	0	0	0	0	0	7.949	-14.875	-217.791	218.443	0.001
487	12	nu_e	23	441	0	0	0	0	0	70.533	75.395	-668.054	675.985	0.000
502	1	(d)	-71	342	342	505	508	115	0	-3.404	-4.046	-233.825	233.885	0.330
503	21	(g)	-71	367	367	505	508	181	115	-0.384	-0.368	-9.293	9.309	0.000
504	-2	(ubar)	-71	370	370	505	508	0	181	-3.167	-0.517	-68.782	68.858	0.330
505	311	(KO)	-83	502	504	789	789	0	0	-2.046	-0.406	-58.420	58.460	0.498
506	331	(eta')	-83	502	504	941	942	0	0	-1.070	-2.000	-93.597	93.629	0.958
507	-323	(K*-)	-83	502	504	790	791	0	0	-2.736	-2.575	-132.287	132.344	0.943
508	111	(pi0)	-84	502		943	944	0	0	-1.102	0.050	-27.596	27.618	0.135
789	130	K_LO	91	505	505	0	0	0	0	-2.046	-0.406	-58.420	58.460	0.498
790	-311	(Kbar0)	-91	507	0	932	932	0	0	-0.900	-1.003	-55.248	55.267	0.498
791	-211	pi-	91	507	0	0	0	0	0	-1.836	-1.571	-77.039	77.077	0.140
792	-211	pi-	91	516	0	0	0	0	0	0.117	-0.161	-1.617	1.635	0.140
793	111	(pi0)	-91	516	0	1069	1070	0	0	-0.431	-0.098	-0.498	0.680	0.135
794	2212	p+ 	91	537	0	0	0	0	0	-1.175	0.093	-0.721	1.670	0.938
795	211	pi+	91	537	0	0	0	0	0	-0.414	0.352	-0.340	0.657	0.140
1316	22	gamma	91		0	0	0	0	0	-1.574	0.014	-0.839	1.783	0.000
1317	22	gamma	91		0	0	0	0	0	-0.887	0.068	-0.569	1.056	0.000
			${\tt Charge}$	sum:	2.000		Mo	mentum	sum:	-0.000	0.000	-0.000	14000.000	14000.000

Other event information

You can use pythia.info.method() to extract one-of-a-kind information, such as:

- idA(), idB(), eCM(): incoming beams and cm energy.
- name(), code(): the name and code of the subprocess.
- id1(), id2(), x1(), x2(): the identities and x fractions of the two partons coming in to the hard subprocess.
- pdf1(), pdf2(), Q2Fac(): parton densities $x f(x, Q^2)$ evaluated for the two incoming partons, and the associated Q^2 scale.
- alphaS(), alphaEM(), Q2Ren(): α_s , α_{em} and their Q^2 scale.
- mHat(), sHat(), tHat(), uHat(): the invariant mass of the hard subprocess and the Mandelstam variables.
- pTHat(), thetaHat(), phiHat(): transverse momentum and polar and azimuthal scattering angles of the hard subprocess.
- bMI(), nMI(): impact parameter (rescaled) and number of multiple interactions.
- list(): list some information on output.
- sigmaGen(), sigmaErr(): the process-summed estimated cross section and its estimated statistical error, in mb.

Event analysis

Four-vectors in a class Vec4, with overloaded operators.

A small package for one-dimensional histograms:

```
    Book with Hist name( title, numberOfBins, xMin, xMax);
    Or Hist name; name.book(title, numberOfBins, xMin, xMax);
```

- Fill with name.fill(xValue, weight); with default weight = 1
- Print with cout << name;
- Overloaded operators for addition, multiplication, . . .

Sphericity analysis (similarly thrust):

- Instantiate with Sphericity sph(power, select);
- Analyze with sph.analyze(event);
- Info with sph.sph(), sph.EigenVector(i), sph.list(), ...

Cone jet finder a la UA1 (PYCELL) (similarly Lund/JADE/Durham):

- Instantiate with CellJet cellJet(etaMax, nEta, nPhi, select, smear, resolution, upperCut, threshold);
- Analyze with cellJet.analyze(event, eTjetMin, coneRadius, eTseed);
- Info with cellJet.size(), cellJet.eT(i), cellJet.list(), ...

Statistics

Output from pythia.statistics() (some blanks removed for space):

Subprocess	Code	Nı	umber of eve	ents	sigma +	- delta	
-		Tried	Selected	Accepted 	9		
		500				0.047	
g g -> g g	111	502	65	65	5.114e-01	3.247e-0	
g g -> q qbar (uds)	112	2	0	0	0.000e+00		
q g -> q g	113	247	34	34	3.038e-01		
q q(bar)' -> q q(bar)'	114	24	0	0	0.000e+00		
q qbar -> g g	115	1	0	0	0.000e+00	0.000e+0	
q dpar -> q' dpar' (uds)	116	0	0	0	0.000e+00		
g g -> c cbar	121	1	1	1	3.483e-03	3.483e-0	
g g -> b bbar	123	2	0	0	0.000e+00	0.000e+0	
sum	1	779	100	100	8.187e-01	4.284e-0	
End PYTHIA Event	and Cros	ss Section Sta	atistics				
PYTHIA Error and	Warning	Messages Stat	tistics				
times message							
3 Error in Pythia:	:next: h	nadronLevel fa	ailed; try a	again			
3 Error in StringF			•	•	junction fla	vour loop	
o de la companya de	$\overline{}$			hing off widt	•	_	

Link to other program

PYTHIA is standalone, but several possibilities to link to it.

Posibilities similar to PYTHIA 6.4:

- Input from Les Houches Accord & Les Houches Event Files
- Output to HepMC event format (more robust than PYTHIA 6!?)
- SUSY Les Houches Accord (input file with masses, couplings, ...)
- ullet Link to external decays, e.g. for au and B.
- Link to LHAPDF version 5.3.0 or later, or to your own PDF.

New possibilities, based on derived classes and pointers to them:

Semi-internal process: write derived matrix-element class,

```
SigmaProcess* mySigma = new MySigma();
pythia.setSigmaPtr( mySigma);
```

and let PYTHIA do phase space integration, process mixing, ...

- Semi-internal resonance in same style: calculate partial widths
- Link to external random-number generator.
- Link to external shower, e.g. VINCIA for FSR.
- User hooks: veto events early on or reweight cross section.

Sample Main Programs

- main01.cc: charged multiplicity distribution
- main02.cc: $Z^0 p_{\perp}$ spectrum
- main03.cc & main03.cmnd: single-particle analysis in jet events
- main04.cc & main04.cmnd: tests of event properties
- main05.cc: cone-jet analysis of LHC events
- main06.cc & main06.cmnd: study elastic/diffractive events
- main07.cc & main07.cmnd: study minimum-bias events
- main 08.cc & main 08.cmnd: combine results of subruns in p_{\perp} bins
- main09.cc: LEP events with sphericity/thrust/jetfinder analysis
- main10.cc: use UserHooks to interact with generation process
- main11.cc: set two hard interactions in the same event
- main12.cc & ttbar.lhe: input from a Les Houches Event File
- main13.cc & ttbar.lhe & ttbar2.lhe: input from two Les Houches Event Files; mix with internal processes
- main14.cc: **compare** several cross sections with PYTHIA 6.4 values
- main15.cc: redo B decays several times for each event

- main16.cc: user analysis class; command-line input file
- main17.cc: Pythia wrapper class; command-line input file
- main21.cc: input of parton configurations for hadronization only
- main22.cc & main22.cmnd & main22.spc: SUSY with SLHA input
- main23.cc: link an external decay handler
- main24.cc: link an external random number generator
- main25.cc: link an external process for internal use
- main26.cc: link an external resonance and process for internal use
- main31.cc & main31.cmnd: simple output to HepMC event file
- main32.cc & main32.cmnd: streamlined production to HepMC;
 command-line input and output files
- main41.cc: test shapes of PDF's in LHAPDF
- main42.cc: compare event properties for different LHAPDF PDF's
- main51.cc: runtime LHA link to PYTHIA 6.4
- main52.cc & main52.ccmnd & main52.fcmnd: ditto with input files
- main53.f: (Fortran!) have PYTHIA 6.4 generate an LHEF
- main54.cc & main54.cmnd: input from PYTHIA 6.4 and output to HepMC

License and Acknowledgements

Based on MCnet discussions during the spring there is a HERWIG++/SHERPA/PYTHIA/THEPEG/ARIADNE/...agreement:

- Our programs are licensed under the GPL version 2.
- Please respect the MCnet Guidelines for Event Generator Authors and Users.
 - 1. The integrity of the program should be respected.
 - report bugs & fixes to authors don't create own forks
 - redistribute a program in its entirety, not piecemeal
 - 2. The program and its physics should be properly cited when used for academic publications.
 - cite manuals, but also physics articles of special relevance
 - cite all programs used, commensurate with importance for study
 - document version/parameters for reproducibility of publications

Makefiles, configure scripts & HepMC interface by Mikhail Kirsanov. Conversion to PHP files by Ben Lloyd.

Win32/NMAKE by Bertrand Bellenot.

Extended Higgs sector by Marc Montull.

Some c/b decay tables from LHCb & DELPHI.

Outlook

We are now in a chicken-and-egg situation: the user community needs a mature program; but PYTHIA 8 will only mature if there is an active user community

So please ...

- implement in your experimental frameworks
- find volunteers to act as guinea pigs
- do some small-scale "production runs"
- report back problems & wishes (within reason)

Don't throw away PYTHIA 6.4 just yet!

- 8.1 still can't do everything 6.4 can
- 8.1 still needs testing and tuning

As new features are introduced, 8.1 will become the obvious choice:

- improved multiple interactions
- more matrix-element matching
- ???

