Package 'webr'

October 12, 2022

Type Package

Title Data and Functions for Web-Based Analysis

Version 0.1.5

Imports moonBook, ggplot2, shiny, stringr, sjlabelled, flextable, magrittr, rrtable, dplyr, tibble, purrr, rlang, tidyr, tidyselect, psych, grid, ztable, ggforce, scales, vcd

URL https://github.com/cardiomoon/webr

BugReports https://github.com/cardiomoon/webr/issues

Description Several analysis-related functions for the book entitled

"Web-based Analysis without R in Your Computer"(written in Korean, ISBN 978-89-5566-185-9)

by Keon-Woong Moon. The main function plot.htest() shows the distribution of statistic for the object of class 'htest'.

Depends R (>= 2.10)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

VignetteBuilder knitr

Suggests testthat, knitr, rmarkdown

NeedsCompilation no

Author Keon-Woong Moon [aut, cre], Tommaso Martino [ctb]

Maintainer Keon-Woong Moon <cardiomoon@gmail.com>

Repository CRAN

Date/Publication 2020-01-26 14:20:02 UTC

2 BiVar

R topics documented:

	B1Var	2
	Continuous Var	3
	cox.stuart.test	3
	extractLabels	4
	freqSummary	4
	freqTable	5
	gg_color_hue	5
	GroupVar	6
	langchoice1	6
	makeSub	7
	makeSubColor	7
	mychisq.test	7
	numSummary	8
	numSummaryTable	9
	PieDonut	9
	plot.htest	12
	renew_dic	
	runs.test	
	transparent	
	x2result	
	x2summary	
	x2Table	16
Index		17

BiVar

Extract bivariate variables

Description

Extract bivariate variables

Usage

BiVar(df)

Arguments

df

a data.frame

Continuous Var 3

ContinuousVar

Extract continuous variables

Description

Extract continuous variables

Usage

ContinuousVar(df)

Arguments

df

a data.frame

cox.stuart.test

Cox-Stuart test for trend analysis The Cox-Stuart test is defined as a little powerful test (power equal to 0.78), but very robust for the trend analysis. It is therefore applicable to a wide variety of situations, to get an idea of the evolution of values obtained. The proposed method is based on the binomial distribution. This function was written by Tommaso Martino<todoslogos@gmail.com> (See 'References')

Description

Cox-Stuart test for trend analysis The Cox-Stuart test is defined as a little powerful test (power equal to 0.78), but very robust for the trend analysis. It is therefore applicable to a wide variety of situations, to get an idea of the evolution of values obtained. The proposed method is based on the binomial distribution. This function was written by Tommaso Martino<todoslogos@gmail.com> (See 'References')

Usage

```
cox.stuart.test(x)
```

Arguments

Х

A numeric vector

Value

A list with class "htest"

References

Original code: http://statistic-on-air.blogspot.kr/2009/08/trend-analysis-with-cox-stuart-test-in.html

4 freqSummary

Examples

```
customers = c(5, 9, 12, 18, 17, 16, 19, 20, 4, 3, 18, 16, 17, 15, 14)
cox.stuart.test(customers)
```

extractLabels

Extract labels

Description

Extract labels

Usage

```
extractLabels(x)
```

Arguments

Х

a vector

freqSummary

Make table summarizing frequency

Description

Make table summarizing frequency

Usage

```
freqSummary(x, digits = 1, lang = "en")
```

Arguments

x A vector

digits integer indicating the number of decimal places lang Language. choices are one of c("en","kor")

```
require(moonBook)
freqSummary(acs$Dx)
#freqSummary(acs$smoking,lang="kor")
```

freqTable 5

freqTable

Make flextable summarizing frequency

Description

Make flextable summarizing frequency

Usage

```
freqTable(
   x,
   digits = 1,
   lang = getOption("freqTable.lang", "en"),
   vanilla = FALSE,
   ...
)
```

Arguments

X	A vector
digits	integer indicating the number of decimal places
lang	Language. choices are one of c("en", "kor")
vanilla	Logical. Whether make vanilla table or not
	Further arguments to paseed to the df2flextable function

Value

An object of clss flextable

Examples

```
require(moonBook)
freqTable(acs$Dx)
#freqTable(acs$smoking,lang="kor",vanilla=TRUE,fontsize=12)
```

gg_color_hue

Make default palette

Description

Make default palette

Usage

```
gg_color_hue(n)
```

6 langchoice1

Arguments

n

number of colors

GroupVar

Extract categorical variables

Description

Extract categorical variables

Usage

```
GroupVar(df, max.ylev = 20)
```

Arguments

df

a data.frame

max.ylev

maximal length of unique values of catergorical variables

langchoice1

Select word

Description

Select word

Usage

```
langchoice1(id, lang = "en")
```

Arguments

id

data id

lang

language. Possible choices are c("en","kor")

makeSub 7

makeSub

Make subtitle

Description

Make subtitle

Usage

makeSub(x)

Arguments

Х

An object of class "htest"

makeSubColor

Make subcolors with main colors

Description

Make subcolors with main colors

Usage

```
makeSubColor(main, no = 3)
```

Arguments

main character. main colors no number of subcolors

 ${\it mychisq.test}$

My chisquare test

Description

My chisquare test

Usage

```
mychisq.test(x)
```

Arguments

Χ

a table

8 numSummary

numSummary

Numerical Summary

Description

Numerical Summary

Usage

```
numSummary(x, ..., digits = 2, lang = "en")
numSummary1(x, ..., digits = 2, lang = "en")
numSummary2(x, ..., digits = 2, lang = "en")
```

Arguments

X	A numeric vector or a data.frame or a grouped_df
	further arguments to be passed
digits	integer indicating the number of decimal places
lang	Language. choices are one of c("en", "kor")

Functions

- numSummary1: Numerical Summary of a data.frame or a vector
- numSummary2: Numerical Summary of a grouped_df

```
require(moonBook)
require(magrittr)
require(dplyr)
require(vebr)
require(tibble)
numSummary(acs)
numSummary(acs$age)
numSummary(acs,age,EF)
acs %>% group_by(sex) %>% numSummary(age,BMI)
acs %>% group_by(sex) %>% select(age) %>% numSummary
acs %>% group_by(sex) %>% select(age,EF) %>% numSummary
acs %>% group_by(sex,Dx) %>% select(age,EF) %>% numSummary
acs %>% group_by(sex,Dx) %>% select(age,EF) %>% numSummary
acs %>% group_by(sex,Dx) %>% select(age,EF) %>% numSummary
```

numSummaryTable 9

numSummaryTable

Make a table showing numerical summary

Description

Make a table showing numerical summary

Usage

```
numSummaryTable(
    x,
    ...,
    lang = getOption("numSummaryTable.lang", "en"),
    vanilla = FALSE,
    add.rownames = NULL
)
```

Arguments

A grouped_df or a data.frame or a vector
further argument to be passed
lang
Language. choices are one of c("en","kor")
vanilla
Logical. Whether make vanilla table or not
add.rownames
Logical. Whether or not add rownames

Examples

```
require(moonBook)
require(dplyr)
numSummaryTable(acs)
numSummaryTable(acs$age)
acs %>% group_by(sex) %>% select(age) %>% numSummaryTable
acs %>% group_by(sex) %>% select(age,EF) %>% numSummaryTable
acs %>% group_by(sex,Dx) %>% select(age,EF) %>% numSummaryTable(vanilla=FALSE)
acs %>% group_by(sex,Dx) %>% numSummaryTable(age,EF,add.rownames=FALSE)
```

PieDonut

Draw a PieDonut plot

Description

Draw a PieDonut plot

PieDonut PieDonut

Usage

```
PieDonut(
  data,
  mapping,
  start = getOption("PieDonut.start", 0),
  addPieLabel = TRUE,
  addDonutLabel = TRUE,
  showRatioDonut = TRUE,
  showRatioPie = TRUE,
  ratioByGroup = TRUE,
  showRatioThreshold = getOption("PieDonut.showRatioThreshold", 0.02),
  labelposition = getOption("PieDonut.labelposition", 2),
  labelpositionThreshold = 0.1,
  r0 = getOption("PieDonut.r0", 0.3),
  r1 = getOption("PieDonut.r1", 1),
  r2 = getOption("PieDonut.r2", 1.2),
  explode = NULL,
  selected = NULL,
  explodePos = 0.1,
  color = "white",
  pieAlpha = 0.8,
  donutAlpha = 1,
  maxx = NULL,
  showPieName = TRUE,
  showDonutName = FALSE,
  title = NULL,
  pieLabelSize = 4,
  donutLabelSize = 3,
  titlesize = 5,
  explodePie = TRUE,
  explodeDonut = FALSE,
  use.label = TRUE,
  use.labels = TRUE,
  family = getOption("PieDonut.family", "")
)
```

Arguments

data	A data.frame
mapping	Set of aesthetic mappings created by aes or aes
start	offset of starting point from 12 o'clock in radians
addPieLabel	A logical value. If TRUE, labels are added to the Pies
addDonutLabel	A logical value. If TRUE, labels are added to the Donuts
showRatioDonut	A logical value. If TRUE, ratios are added to the DonutLabels
showRatioPie	A logical value. If TRUE, ratios are added to the PieLabels
ratioByGroup	A logical value. If TRUE, ratios ara calculated per group

PieDonut 11

showRatioThreshold

An integer. Threshold to show label as a ratio of total. default value is 0.02.

labelposition A number indicating the label position

label position Threshold

label position threshold. Default value is 0.1.

r0 Integer. start point of pie r1 Integer. end point of pie r2 Integer. end point of donut

explode pies to explode selected donuts to explode explodePos explode position

color color

pieAlpha transparency of pie donutAlpha transparency of pie

maxx maximum position of plot

showPieName logical. Whether or not show Pie Name showDonutName logical. Whether or not show Pie Name

title title of plot

pieLabelSize integer. Pie label size donutLabelSize integer. Donut label size

titlesize integer. Title size

explodePie Logical. Whether or not explode pies explodeDonut Logical. Whether or not explode donuts

use.label Logical. Whether or not use column label in case of labelled data use.labels Logical. Whether or not use value labels in case of labelled data

family font family

```
require(moonBook)
require(ggplot2)
browser=c("MSIE", "Firefox", "Chrome", "Safari", "Opera")
share=c(50,21.9,10.8,6.5,1.8)
df=data.frame(browser, share)
PieDonut(df,aes(browser, count=share), r0=0.7, start=3*pi/2, labelpositionThreshold=0.1)

PieDonut(df,aes(browser, count=share), r0=0.7, explode=5, start=3*pi/2)
PieDonut(mtcars,aes(gear,carb), start=3*pi/2, explode=3, explodeDonut=TRUE, maxx=1.7)
PieDonut(mtcars,aes(carb,gear),r0=0)
PieDonut(acs,aes(smoking,Dx),title="Distribution of smoking status by diagnosis")
PieDonut(acs,aes(Dx,smoking),ratioByGroup=FALSE,r0=0)
PieDonut(acs,aes(Dx,smoking),selected=c(1,3,5,7),explodeDonut=TRUE)
PieDonut(acs,aes(Dx,smoking),explode=1,selected=c(2,4,6,8),labelposition=0,explodeDonut=TRUE)
```

12 plot.htest

```
PieDonut(acs,aes(Dx,smoking),explode=1)
PieDonut(acs,aes(Dx,smoking),explode=1,explodeDonut=TRUE,labelposition=0)
PieDonut(acs,aes(Dx,smoking),explode=1,explodePie=FALSE,explodeDonut=TRUE,labelposition=0)
PieDonut(acs,aes(Dx,smoking),selected=c(2,5,8), explodeDonut=TRUE,start=pi/2,labelposition=0)
PieDonut(acs,aes(Dx,smoking),r0=0.2,r1=0.9,r2=1.3,explode=1,start=pi/2,explodeDonut=TRUE)
PieDonut(acs,aes(Dx,smoking),r0=0.2,r1=0.9,r2=1.3,explode=1,start=pi/2,labelposition=0)
PieDonut(acs,aes(Dx,smoking),explode=1,start=pi,explodeDonut=TRUE,labelposition=0)
PieDonut(acs,aes(Dx,smoking),explode=1,start=pi,explodeDonut=TRUE,labelposition=0)
PieDonut(acs,aes(Dx,smoking),explode=1,start=pi,explodeDonut=TRUE,labelposition=0)
PieDonut(acs,aes(Dx,smoking),explode=1,start=pi,explodeDonut=TRUE,labelposition=0)
PieDonut(acs,aes(Dx,smoking),explode=1,start=pi,explodeDonut=TRUE,labelposition=0)
PieDonut(acs,aes(Dx,smoking),r0=0.2,r1=0.9,r2=1.3,explode=1,start=pi/2,labelposition=0)
PieDonut(acs,aes(Dx,smoking),r0=0.2,r1=0.9,r2=1.3,explode=1,start=pi/2,labelposition=0)
PieDonut(acs,aes(Dx,smoking),r0=0.2,r1=0.9,r2=1.3,explode=1,start=pi/2,labelposition=0)
PieDonut(acs,aes(Dx,smoking),r0=0.2,r1=0.9,r2=1.3,explode=1,start=pi/2,labelposition=0)
PieDonut(acs,aes(Dx,smoking),r0=0.2,r1=0.9,r2=1.3,explode=1,start=pi/2,labelposition=0)
PieDonut(acs,aes(Dx,smoking),r0=0.2,r1=0.9,r2=1.3,explode=1,start=pi/2,labelposition=0)
PieDonut(acs,aes(Dx,smoking),r0=0.2,r1=0.9,r2=1.3,explode=1,start=pi/2,labelposition=0)
PieDonut(acs,aes(Dx,smoking),explode=1,start=pi,explode=1,start=pi/2,labelposition=0)
PieDonut(acs,aes(Dx,smoking),explode=1,start=pi,explode=1,start=pi/2,labelposition=0)
PieDonut(acs,aes(Dx,smoking),explode=1,start=pi,explode=1,start=pi/2,labelposition=0)
PieDonut(acs,aes(Dx,smoking),explode=1,start=pi/2,labelposition=0)
PieDonut(acs,aes(Dx,smoking),explode=1,start=pi/2,labelposition=0)
PieDonut(acs,aes(Dx,smoking),explode=1,start=pi/2,labelposition=0)
PieDonut(acs,aes(Dx,smoking),explode=1,start=pi/2,labelposition=0)
PieDonu
```

plot.htest

Plotting distribution of statistic for object "htest"

Description

Plotting distribution of statistic for object "htest"

Usage

```
## S3 method for class 'htest' plot(x, ...)
```

Arguments

x object of class "htest"
... further arguments to ggplot

Value

a ggplot or NULL

```
require(moonBook)
require(webr)
## chi-square test
x=chisq.test(table(mtcars$am,mtcars$cyl))
plot(x)

#Welch Two Sample t-test
x=t.test(mpg~am,data=mtcars)
plot(x)

x=t.test(BMI~sex,data=acs)
plot(x)
```

renew_dic 13

```
# F test to compare two variances
x=var.test(age~sex,data=acs,alternative="less")
plot(x)

# Paired t-test
x=t.test(iris$Sepal.Length,iris$Sepal.Width,paired=TRUE)
plot(x)

# One sample t-test
plot(t.test(acs$age,mu=63))

# Two sample t-test
x=t.test(age~sex, data=acs,conf.level=0.99,alternative="greater",var.equal=TRUE)
plot(x)
```

renew_dic

Renew dictionary Renew dictionary

Description

Renew dictionary Renew dictionary

Usage

```
renew_dic()
```

runs.test

Runs test for randomness

Description

Runs test for randomness

Usage

```
runs.test(
   y,
   plot.it = FALSE,
   alternative = c("two.sided", "positive.correlated", "negative.correlated")
)
```

Arguments

y A vector

plot.it A logical. whether or not draw a plot

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"

(default), "greater" or "less".

x2result

Value

A list with class "htest" containing the following components: statistic,p-value,method and data.name

Examples

```
y=c(1,2,2,1,1,2,1,2)
runs.test(y)
y=c("A","B","B","A","A","B","A","B")
runs.test(y,alternative="p")
```

transparent

Make transparent theme

Description

Make transparent theme

Usage

```
transparent(size = 0)
```

Arguments

size

border size. default value is 0

x2result

Extract x2 statistical result

Description

Extract x2 statistical result

Usage

```
x2result(x)
```

Arguments

Х

a table

x2summary 15

x2summary

Summarize chisquare result

Description

Summarize chisquare result

Usage

```
x2summary(
  data = NULL,
  x = NULL,
  y = NULL,
  a,
  b,
  margin = 1,
  show.percent = TRUE,
  show.label = TRUE
)
```

Arguments

data	A data.frame
X	a column name
У	a column name
а	a vector
b	a vector
margin	numeric If 1 row percent, if 2 col percent
show.percent	logical
show.label	logical

```
require(moonBook)
x2summary(acs,sex,DM)
```

16 x2Table

x2Table

Make a chisquare result table

Description

Make a chisquare result table

Usage

```
x2Table(
  data,
  x,
  y,
  margin = 1,
  show.percent = TRUE,
  show.label = TRUE,
  show.stat = TRUE,
  vanilla = FALSE,
  fontsize = 12,
  ...
)
```

Arguments

```
data
                  A data.frame
                  a column name
Х
                  a column name
У
                  numeric If 1 row percent, if 2 col percent
margin
show.percent
                  logical
                  logical
show.label
show.stat
                  logical
vanilla
                  logical whether or not make vanilla table
fontsize
                  A numeric
                  Further arguments to be passed to df2flextable()
. . .
```

```
require(moonBook)
x2Table(acs,sex,DM)
```

Index

```
BiVar, 2
Continuous Var, 3
cox.stuart.test, 3
extractLabels, 4
{\it freqSummary}, {\it 4}
freqTable, 5
gg_color_hue, 5
GroupVar, 6
langchoice1,6
makeSub, 7
makeSubColor, 7
mychisq.test, 7
numSummary, 8
numSummary1 (numSummary), 8
numSummary2 (numSummary), 8
PieDonut, 9
plot.htest, 12
renew_dic, 13
runs.test, 13
transparent, 14
x2result, 14
x2summary, 15
x2Table, 16
```