Домашнее задание 1

(1) Постройте грамматику для языка $\{a^nb^m|n>m>0\}$ и докажите, что она на самом деле порождает этот язык. Построим следующую грамматику:

 $G = (\{S, A\}, \{a, b\}, \{S \to aA, A \to aA | aAb | ab\}, \{S\})$

Докажем по индукции, что данная грамматика порождает язык $\{a^nb^m|n>m>0\}$, натуральный параметр - количество совершенных переходов:

- 1) База k = 2:
- $S \xrightarrow{a} A \rightarrow \{a^2b, a^2Ab, a^2A\}$
- 2) Пусть на k = n переходе:
- $S \xrightarrow{n} \{a^n b^m, a^n A b^m, a^n A\}$, где m принимает все значения из отрезка [2, n-1].

Индукционный переход: на n+1 переходе получаютя цепочки:

 $S \xrightarrow{n+1} \{a^{n+1}b^{m+1}, a^{n+1}Ab^{m+1}, a^{n+1}A\}$, где m принимает все значения из отрезка $\in [2, n-1]$.

- Рассмотрим n+1 переход: $a^nAb^m \to \left\{a^{n+1}b^{m+1}, a^{n+1}Ab^{m+1}, a^{n+1}Ab^m\right\}$
- $a^{n}A \to \{a^{n+1}b, a^{n+1}Ab, a^{n+1}A\} \Rightarrow$ предположение индукции доказано, то есть данная грамматика действительно пораждает данный язык.
- (2) Докажите, что для любого регулярного множества R можно построить грамматику G, которая будет порождать это множество.

Регулярное множество R будет описываться регулярным выражением r. Будем доказывать по индукции, натуральным параметром является длина регулярного выражения.

- 1)База индукции: n=0 пустое слово: $G=(\{S\},\{\},\{S\to\epsilon\},\{S\})$
- 2) Пусть для регулярных множеств, которые описываюся регулярным выражением длины k, существует грамматика, которая порождает это множество. Докажем, что это справедливо для выражений длины больше k. Пусть P,Q - регулярные множества, описывающееся регулярными выражениеми p,q,|p|=k,|q|=l,l <= k. По предположению индукции $G_1(P)=(\{N_1\},\{T_1\},\{P_1\},\{S_1\}),G_2(Q)=(\{N_1\},\{T_1\},\{P_1\},$ $(\{N_2\}, \{T_2\}, \{P_2\}, \{S_2\}).$

p|q описывает множество $P \cup Q$. Построим следующую грамматику: $G = (\{N_1, N_2\}, \{T_1, T_2\}, \{S \rightarrow P\})$ $S_1|S_2\},\{S\}$). Легко проверить, что такая грамматика порождает множество $P\cup Q$ - длина регулярного вы ражения |P|q| = k + l + 1.

Для множества PQ построим $G = (\{N_1, N_2\}, \{T_1, T_2\}, \{S \to S_1S_2\}, \{S\})$. Очевидно, что она порождает множество PQ, длина регулярного выражения |pq| = l + k + 1.

Для множества P^* : зададим грамматику по индукции: для P^1, P^0 - очевидно, для P^h $G=(\{N_1\}, \{T_1\}, \{S \to T_1\}, \{S \to T_2\})$ $S_1...S_1$ }, {S}), где $S_1...S_1$ - S_1 п раз.

Таким образом, получаем, что для любого регулярного выражения длиной больше k существует грамматика, которая их порождает. (так как регулярное выражение длины k есть подвыражения меньшей длины, связанные опрециями | или * или конкатенация. Что и требовалось доказать.

(3) Постройте грамматику для языка $\{a^n b^m | n, m > 0, m \neq n\}$ и докажите, что она на самом деле порождает этот язык.

Обозначим за $P = \{a^n, a^m\}^*, n > m > 0, Q = \{a^n, b^m\}, 0 < n < m$. Тогда искомый язык $L = P \cup Q$. Для множества P грамматика $G_1 = (\{S_1, A_1\}, \{a, b\}, \{S \rightarrow aA, A_1 \rightarrow aA_1 | aA_1b | ab\}, \{S_1\})$, для Q аналгично: $G_2 = (\{S_2, A_2\}, \{a, b\}, \{S_2 \to A_2 b, A_2 \to A_2 b | a A_2 b | a b\}, \{S_2\})$, тогда $G(L) = (\{S, A_1, A_2, S_1, S_2\}, \{a, b\}, \{S \to A_2 b, A_2 \to A_2 b | a A_2 b | a b\}$ $S_1|S_2\}, \{S\}$

- (4) Постройте РВ для языка:
 - а) Всех всех слов четной длины над алфавитом $\{a, b\}$
 - б) Всех всех слов, содержащих ровно одно подслово "ab"над алфавитом $\{a,b\}$
 - в) Всех слов в "camelCase" над алфавитом a, b, A, B (слово начинается с нескольких строчных букв, далее повторяются блоки из одной заглавной и некоторого, возможно нулевого, количества строчных букв)
 - a) $(aa|bb|ab|ba)^*$
 - б) $(b|\epsilon)(b^*|a^*)(ab)(a^*|b^*)(a|\epsilon)$
 - B) $(a|b)(a|b)^*((A|B)(a|b)^*)^*$

(5) Постройте РВ для языка $L \subseteq \{t,x\}^*$ всех слов, которые начинаются и заканчиваются на "txt"и докажите его корректность.

 $(txt)(t|x)^*(txt)|(txtxt)|(txt)$ - регулярное выражение для данного языка. Докажем, что построенное множество содержит те и только те слова, которые указаны в условии.

Сначала докажем включение $L \subseteq R$, где R - регулярное множество, описываемое данным регулярным выражением. Пусть $w \in L$, тогда возможны 3 случая: w = txt, w = txtxt - очевидно, что $w \in R$, третий вариант: w = txtutxt, где $u \in \{x,t\}^*$ Очевидно, что $\forall w \in L \hookrightarrow w \in R \Rightarrow L \subseteq R$.

Докажем обратное включение: пусть $w \in R$. Очевидно, что w = txtutxt|txtxt|txt, где $u \in \{t, x\}^* \Rightarrow R \subseteq L$.

Доказали, что L=R, то есть данное регулярное выражение корректно.

(6) 1)Есть процедура генерации цепочек языка. Чтобы проверить, принадлежит ли $w \in \{a,b\}^*$ языку, нумеруем сгенерированные цепочки. Далее сравниваем w со всеми цепочками L. Если принадлежит, процедура останавливается, если нет, то, если язык L конечен, то сравнив w с каждой цепочкой, не найдя соответсвие, процедура остановится с ответом нет. Если язык L не является конечным, то процедура никогда не остановится.

2)В обратную сторону: занумеруем слова из $\{a,b^*$ в лексикографическом порядке: $1-\epsilon,2-a,3-b,4-aa,5-ab,6-ba,7-bb...$ Если принадлежит - добавляем в L, если нет, итерируемся далешь по номерую Таким образом перечислим все цепочки L.