Hash Functions CSCI 232

Hash Tables 101

Theory.

Hash Functions.

Statistical likelihood.

Expected performance.

Application.

Tools in hand.

Java functionality.

Hash Tables 101

Hash Tables 101

Function that translates key values into array indices.

hash(key) = key % 100

Key	Value		0	100, Flora's Flowers,
100	Flora's Flowers,		1	101, The Bank,
101	The Bank,		- 2	102, Ted's Drug Store,
102	Ted's Drug Store,			102, led's Drug Store,
103	Joe's Gas Station,		3	103, Joe's Gas Station,
:	•		:	
198	Aristocrat Art,		98	198, Aristocrat Art,
199	Fire Station,	y		
200	More Art,		99	199, Fire Station,

Hash Function:

Lessons:

Keys Hash Value

516-07-0854

516-66-6218

531-01-7352

336-82-2121

517-90-7152

516-98-8002

517-45-0907

531-81-7489

517-07-7312

516-24-6185

669-44-6499

516-16-4236

530-92-1795

611-52-4556

516-34-3352

Hash Function:

```
(First three) % 100 digits
```

Lessons:

Keys Hash Value

```
516-07-0854
516-66-6218
531-01-7352
336-82-2121
517-90-7152
516-98-8002
517-45-0907
531-81-7489
517-07-7312
516-24-6185
669-44-6499
516-16-4236
530-92-1795
611-52-4556
```

516-34-3352

Hash Function:

(First three) % 100 digits

Called Modular Hashing

Size of the array

Lessons:

Hash Value Keys

516-07-0854

516-66-6218

531-01-7352

336-82-2121

517-90-7152

516-98-8002

517-45-0907

531-81-7489

517-07-7312

516-24-6185

669-44-6499

516-16-4236

530-92-1795

611-52-4556

516-34-3352

Hash Function:

```
(First three) % 100 digits
```

Lessons:

```
516-07-0854
                  55
516-66-6218
531-01-7352
336-82-2121
517-90-7152
516-98-8002
517-45-0907
531-81-7489
517-07-7312
516-24-6185
669-44-6499
516-16-4236
530-92-1795
611-52-4556
516-34-3352
607-86-0812
```

Hash Function:

```
(First three) % 100 digits
```

Lessons:

516-07-0854	16
516-66-6218	??
531-01-7352	
336-82-2121	
517-90-7152	
516-98-8002	
517-45-0907	
531-81-7489	
517-07-7312	
516-24-6185	
669-44-6499	
516-16-4236	
530-92-1795	
611-52-4556	
516-34-3352	
607-86-0812	

Hash Function:

```
(First three digits) % 100
```

Lessons:

16
16
31
36
17
16
17
31
17
16
69
16
30
11
16
07

Hash Function:

(First three) % 100 digits

Lessons:

What is the problem?
Why is the problem occurring?
How can we fix it?

516-07-0854	16
516-66-6218	16
531-01-7352	31
336-82-2121	36
517-90-7152	17
516-98-8002	16
517-45-0907	17
531-81-7489	31
517-07-7312	17
516-24-6185	16
669-44-6499	69
516-16-4236	16
530-92-1795	30
611-52-4556	11
516-34-3352	16
607-86-0812	07

Hash Function:

(First three) % 100 digits

Lessons:

What is the problem?
Why is the problem occurring?
How can we fix it?

Hash Function:

(First three) % 100

Lessons:

1. Use as much of the key as possible.

Keys Hash Value

516-07-0854	5,
516-66-6218	
531-01-7352	
336-82-2121	
517-90-7152	
516-98-8002	
517-45-0907	
531-81-7489	
517-07-7312	
516-24-6185	
669-44-6499	
516-16-4236	
530-92-1795	

611-52-4556

516-34-3352

607-86-0812

Hash Function:

(Nine-digit) % 5

Lessons:

1. Use as much of the key as possible.

Hash Function:

```
(Nine-digit ) % 5
```

Lessons:

1. Use as much of the key as possible.

Keys Hash Value

1

516-07-0854	4
516-66-6218	3
531-01-7352	2
336-82-2121	1
517-90-7152	2
516-98-8002	2
517-45-0907	2
531-81-7489	4
517-07-7312	2
516-24-6185	0
669-44-6499	4
516-16-4236	1
530-92-1795	0

 $\Gamma 1C \Omega 7 \Omega \Gamma I$

611-52-4556

516-34-3352

Hash Function:

```
(Nine-digit ) % 5
```

Lessons:

1. Use as much of the key as possible.

Keys Hash Value

516-07-0854	4
516-66-6218	3
531-01-7352	2
336-82-2121	1
517-90-7152	2
516-98-8002	2
517-45-0907	2
531-81-7489	4
517-07-7312	2
516-24-6185	0
669-44-6499	4
516-16-4236	1
530-92-1795	0
611-52-4556	1

516-34-3352

Hash Function:

```
(Nine-digit ) % 5 number
```

Lessons:

- 1. Use as much of the key as possible.
- 2. Make sure your array is big enough (but not too big).

516-07-0854	4
516-66-6218	3
531-01-7352	2
336-82-2121	1
517-90-7152	2
516-98-8002	2
517-45-0907	2
531-81-7489	4
517-07-7312	2
516-24-6185	0
669-44-6499	4
516-16-4236	1
530-92-1795	0
611-52-4556	1
516-34-3352	2
607-86-0812	2

Hash Function:

(Nine-digit) % 100

Lessons:

- 1. Use as much of the key as possible.
- 2. Make sure your array is big enough (but not too big).

Keys Hash Value

516-07-0854

516-66-6218

531-01-7352

336-82-2121

517-90-7152

516-98-8002

517-45-0907

531-81-7489

517-07-7312

516-24-6185

669-44-6499

516-16-4236

530-92-1795

611-52-4556

516-34-3352

607-86-0812

55

Hash Function:

```
(Nine-digit ) % 100
```

Lessons:

- 1. Use as much of the key as possible.
- 2. Make sure your array is big enough (but not too big).

Keys Hash Value

516-07-0854	54
516-66-6218	??
531-01-7352	
336-82-2121	
517-90-7152	
516-98-8002	
517-45-0907	
531-81-7489	
517-07-7312	
516-24-6185	
669-44-6499	
516-16-4236	
530-92-1795	
611-52-4556	
516-34-3352	

Hash Function:

(Nine-digit) % 100

Lessons:

- 1. Use as much of the key as possible.
- 2. Make sure your array is big enough (but not too big).

Keys Hash Value

54

95

56

52

12

313 37 333 1	•
516-66-6218	18
531-01-7352	52
336-82-2121	21
517-90-7152	52
516-98-8002	02
517-45-0907	07
531-81-7489	89
517-07-7312	12
516-24-6185	85
669-44-6499	99
516-16-4236	36

516-07-0854

530-92-1795

611-52-4556

516-34-3352

Hash Function:

(Nine-digit) % 100

Lessons:

- 1. Use as much of the key as possible.
- 2. Make sure your array is big enough (but not too big).

Hash Value Keys

 $\Gamma \Lambda$

 Ω

310-07-0634	34
516-66-6218	18
531-01-7352	52
336-82-2121	21

E16 07 00E1

516 00 0002

517-07-7312

517-90-7152	52

310-36-6002	UZ
517-45-0907	07

516-34-3352	52

Hash Function:

(Nine-digit) % 100

Lessons:

- 1. Use as much of the key as possible.
- 2. Make sure your array is big enough (but not too big).
- 3. Use a prime number array size.

Keys Hash Value

516-07-0854	54
516-66-6218	18
531-01-7352	52
226 92 2121	21

 $\Gamma 1 C \Omega 7 \Omega \Gamma 1$

330-02-2121	21
517-90-7152	52

516-98-8002	02
517-45-0907	07

516-24-6185	85

Hash Function:

(Nine-digit) % 97

Lessons:

- 1. Use as much of the key as possible.
- 2. Make sure your array is big enough (but not too big).
- 3. Use a prime number array size.

Keys Hash Value

42

8
83
67
0

517-90-7152	96
516-98-8002	21

517-45-0907

	
531-81-7489	51
517-07-7312	91
516-24-6185	60

669-44-6499	29

516-16-4236	76
530-92-1795	55
611-52-4556	84

516-34-3352	33
607-86-0812	30

Function that translates key values into array indices.

Requirements:

- Well defined for all input.
- Identical keys map to identical indices.
- Maps to a specified range.

Goals:

- Easy to compute.
- Uniformly distributes keys across range (collision avoidance).

Collisions

Collision Avoidance = Hash Function

Collision Resolution = ?

Key	value		
100	Flora's Flowers,	0	100, Flora's Flowers,
101	The Bank,	1	101, The Bank,
•		•	:
199	Fire Station,	99	199, Fire Station,
200	More Art,		

Announcements

Program 2 due tomorrow @ 11:59 PM

Lab 5 due Wednesday @ 11:59 PM

Quiz 2 due on Thursday @ 11:59

- Will talk about it more on Wednesday
- No Lecture on Thursday

Next weeks lectures will be at an alternative location (location coming soon)

(Online people) If you have not talked to me yet this Summer, you should schedule a time to check-in with me this week or next week ©

insert(76)

insert (93)
$$93\%7 = 2$$

Collision!

上	0)	INDCIC (33			
76%7 = 6			9	3%7 = 2	
0		(0		
1		:	1		
2		,	2	93	
				<i></i>	
3		:	3		
		•	,		
4			1		
7		4	4		
_					
5		!	5		
6	76		6	76	
				,	

insert(76) 76%7 = 6

insert(76) 76%7 = 6

Linear Probing- Place collided value into a nearby open space

	nsert(7	- /	nsert(93 93%7 = 2		nsert(3 34%7 = 6	- /	nsert(41 11%7 = 6		
0		0		0					
1		1		1					
2		2	93	2	93		93		
3		3		3					
4		4		4			41		
5		5		5	34		34		
6	76	6	76	6	76		76		

insert(76) 76%7 = 6						
0						
1						
2						
3						
4						
5						
6	76					

i	nsert(4	1)
4	11%7 = 6)
	03	
	93	
	41	
	41	
	2.4	
	34	
	76	

insert(38)

Linear Probing

	nsert(76 76%7 = 6	,	nsert(93 3%7 = 2		nsert(3 34%7 = 6	- /	nsert(4) 11%7 = 6	nsert(3 38%7 = 3	nsert(7 75%7 = 3	
0		0		0						
1		1		1						
2		2	93	2	93		93	93	93	
3		3		3				38	38	75
4		4		4			41	41	41	
5		5		5	34		34	34	34	
6	76	6	76	6	76		76	76	76	

Linear Probing

insert(41)					
41%7 = 6					
93					
1.4					
41					
34					
76					

insert(38)	insert(75)
38%7 = 3	75%7 = 3
	75
93	93
38	38
41	41
34	34
76	76

Separate Chaining Database Index **Hash Function** 0 **<>** % 100 **Student ID** <> <> 12345 <> 11 99899 Student < > <> <> <> 55545 45 Student Student < <> <> • • • <> • • • 99 < > Student

