(CS5020, Jul-Nov 2023) Nonlinear Optimisation: Theory and Algorithms Worksheet - 2

- (1) Let $\alpha_* = \max\{\alpha_1, \alpha_2, \dots, \alpha_m\}$ (i.e., α_* is the maximum of m real numbers $\alpha_i, i = 1..., m$). Express this as a linear optimisation problem in one variable and m linear constraints (**Note**: α_i are given and are to be used as constants in the optimisation problem, please don't use them as variables. Also α_* is unknown and needs to be found).
- (2) Sketch the feasible directions at $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$ for the constraint sets below.

In Fig(2) assume unit length for each segment. In Fig (5) assume circle of unit radius.

- (3) Consider the problem of $\min_{x \in \mathbb{R}^2} f(x)$. For the following functions, sketch the improving directions at $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$.
 - $(1) \ f(x) = x_1 + x_2$
 - (2) $f(x) = -x_1 + x_2$
 - (3) $f(x) = x_1 x_2$
 - $(4) f(x) = -x_1 x_2$

- $(5) \ f(x) = 2x_1 + x_2$
- (6) $f(x) = (x_1 1)^2 + (x_2 2)^2$
- (7) $f(x) = (x_1 + 3)^2 + (x_2 + 2)^2$
- (8) $f(x) = 5(x_1 1)^2 + 2(x_2 2)^2$ (9) $f(x) = x_1^2 + 2x_2^2 + x_1 x_2 + 4$
- $(10) f(x) = x_1^2 + x_2^2 + 2x_1x_2$
- (4) For n = 1, 2, ..., find if the following sequences converge
 - $(1) \frac{1}{n}$
 - $(2) \frac{(-1)^n}{n} \\ (3) (-1)^n$

 - $(4) \sin((-1)^n)$
 - $(5) (\sin(-1))^n$
 - (6) n^2
 - (7) $\frac{n^2}{2^n}$
 - $(8) n^2(\sin(-1))^n$
 - (9) $n^2(\sin(-0.5))^n$
 - $(10) \ 2^n (\sin(-0.5))^n$
- (5) Find f'(x), f''(x), f'''(x) for
 - (1) f(x) = x
 - (2) f(x) = |x|
 - $(3) f(x) = x^2$
 - (4) $f(x) = |x|^2$
 - (5) $f(x) = x^3$.
 - (6) $f(x) = |x|^3$.