Priyasri Sankaran

Project 3

Consider the health dataset, which consists of data from 54 cities. We want to build a multiple linear regression for predicting death rate per 1000 residents.

1)Fit a multiple linear regression model using all available predictors. Carry out regression diagnostics (including plot of absolute residuals). The analysis should include an assessment of the degree to which the key regression assumptions are satis ed. Clearly state each assumption, the diagnostic tools used to check it, and the conclusion. Use all tests and plots that were discussed in class.

Fit a multiple linear regression model using all available predictors. Health dataset has 53 observations and 4 predictors:-Doctor Availability, Hospital Availability, Capital income and Population Density.

The relationship between the Death Rate according to the fitted regession model.

Death rate = 12.26626+(0.00739* Doctor Availability)+(0.00058372*Hospital Availability)-

(0.33023*Capital income)-(0.00946*Population Density)

Doctor_Availability: β_1 =0.00739, P value =0.2917 Hospital Availability: β_2 =0.00058, P value =0.4228

Capital income: β_3 =-0.33023, P value=0.1656

Population Density: β_4 =-0.00946, P value =0.0587 *

None of the P values are significant at 0.05 level except Population Density very close to the 0.05 level.

Model Performance: $R^2 = 0.1437$ and adjusted $R^2 = 0.0723$ gives us the variation in Death rates. The F value=2.01 and the P value=0.1075, the P value is not significant at 0.05. Model is not statistically significant at

0.05 level.

Assumptions and Diagnostic: Linearity: We assume that the relationship between each predictor and the response variable is linear. The scatter plot shows non linear trend.

Shapiro-Wilk test W=0.9088 with a P Value-0.007< 0.05, shows non-normality.

Skewness= -1.2351339 and kurtosis= 2.7387. The negative skew values shows that the data is not normally distributed and sked to the left. We can observe that on the Q-Q plot.

The residuals deviate from the normality, evidence that our assumption of linearity is not satisfied. No significance if independent of each other variable. The model may not explain the variability on the variable death rate. If we take a look at the scatter plot predicted values and Death rate we can see non linearity. Q-Q Plot for residual, normality test shows that some data points are not on the line, indicating that the is no pattern. Lack of fit test: We performed lack of fit test to check linearity on the full model. No significant value is obtained from the result. That's because there were no replication in the data.

Breucsh Pagan test P Value=0.4255 > 0.05, suggests that the assumption is not met. This indicates that no significant heteroscedasticity.

The variance of residuals is constant across different levels of predictor variables. Here is no significant evidence of heteroscedasticity in the model, the variance of the residuals appears to be constant, the assumption of homoscedasticity is satisfied.

The Brown-Forsythe test results were not significant. The p Value=0.284<0.05. this indicates the variance homogeneity.

2) If an assumption is not met, attempt to remedy the situation. Explain the steps used to obtain the transformed model. Comment on the fit the transformed model using appropriate tests and statistics.

Note: For the remaining parts, continue in transformed scale, if a transformation was applied earlier.

Since the assumption is not met, remedy of the situation is to perform transformation on the model. By looking at the Q-Q plots some data points are off from the line. Looks like left skewed, also the skewed value=1.2351339 is a negative skewed data. Also the Death_Rate indicates non-normality in residuals.

So performed a square transformation on the model. Observed the Q-Q Plot after the transformation, now the data points are on the fitted line.

We did lack of test on transformed data, no significant value is obtained from the result. That's because there were no replication in the data.

The scatter plot after transformation looks same as the full model. The R^2 =0.1786. Adjust R^2 =0.1102. Indicates the variance is around 17.86% in square Death Rate is explained by the model.

F-Statistics=2.61, very low with the P-Value=0.0470 is now statistically significant at 0.05 level, different from original model.

Normality of the residuals:- Shapiro-Wilks test W=0.99215, P-Value=0.9790.

Breucsh pagan test result indicates no significant heteroscedasticity >0.05. Capital_income shows Marginal Pvlaue=0.0204.

The square transformation improved the model, over all variance remains moderate.

3) Use the principle of extra sum of squares (type I and III SS) to determine which variables can be removed from the model (try removing one variable at a time | the least significant one). Once a tentative model is obtained, compare it with the initial model (with all variables but in transformed scale obtained earlier) using appropriate extra sum of squares. Clearly state at each step the hypotheses being tested, the appropriate extra sum of squares, test statistic, p-value, and conclusion.

Model	Sum of Square	Error Sum	DF(model)	DF (Error)
		Squares		
Full-transformed Model	7857.09	36135	4	48
Reduced	7555.067	36437.186	3	49
Model(Hospital_Availability)				
Reduced	5675.34	38316	2	50
Model(Population_Density				
Doctor_Avalilability)				

 $Null\ Hypothesis (H_0): coefficient\ of\ Hospital_Availability\ and\ is\ not\ a\ significant\ variable$

Alternative Hypothesis(H_a):coefficient of Hospital _Availability is a significant variable.

The transformed full model includes all predictors. R²=0.1786, F= 2.61, P value=0.047. Please see the below results for both Final model and the transformed full model. Based on the high P value We are dropping Doctor_Availability and Hospital_Availability.

We have a final model with Capital_income and Population_Density.

Doctor_Availability: β_1 =0.15131, P value =0.2089 Hospital_Availability: β_2 =0.00784, P value =0.5295 Capital_income: β_3 =-07.45199, P value=0.0699

Population Density: β_4 =-17533, P value =0.0416 **

Model without Doctor_Availability and Hospital_Availability

H₀: The coefficient of Doctor_Availability is 0.

 H_a : The coefficient of $Doctor_Availability$ is not 0.

R2=0.1290R2=0.1290, F=3.70, p=0.0316. Type I and Type III SS for remaining predictors shows: Capital income: p = 0.1643 and Population Density: p = 0.0385 (significant).

The Extra sum of the square please see the below image and the values:

Type 1 SS for capital_income=3880.96, F=5.16, P value=0.0277<0.05, reject H₀

Type III SS =2588.165 F value=3.44, P value=0.0699>0.05

Type I SS For the Population Density=3300.651845, F-value=4.38, p value=0.0416<0.05,

Type III SS=3300.65, F value=4.38, P value=0.0416<0.05. reject H₀

Source	DF	Type I SS	Mean Square	F Value	Pr > F
Doctor_Availability	1	531.042251	531.042251	0.71	0.4051
Hospital_Availabilit	1	144.412739	144.412739	0.19	0.6634
Capital_income	1	3880.986458	3880.986458	5.16	0.0277
Population_Density	1	3300.651845	3300.651845	4.38	0.0416
	DF			4.38	0.0416
Source		Type III SS 1221.117277	3300.651845 Mean Square 1221.117277		
Source Doctor_Availability	DF 1	Type III SS 1221.117277	Mean Square 1221.117277	F Value	Pr > F 0.2089
Source	DF	Type III SS	Mean Square	F Value	Pr > F
Source Doctor_Availability	DF 1	Type III SS 1221.117277	Mean Square 1221.117277	F Value	Pr > F 0.2089

Therefore we conclude that we will keep Capital income and the Population Density in the model.

			Ana	alysis of V	ariance						_		
Source				Sum of	Mean	F.W-1	D- 1 E	Source	DF	Type I SS	Mean Squar	e F Val	ue Pr>
		DF		Squares	Square	F Value	Pr > F	Capital_income	1	2212.952724	2212.95272	4 2.	89 0.09
Model		4	785	7.09329	1964.27332	2.61	0.0470	Demolation Demolts	_	0.400.000000	3462.39208		FO 0.000
Error		48		36135	752.81581			Population_Density	1	3462.392088	3462.39208	8 4.	52 0.038
Corrected	Total	52		43992									
	Root MS			27.43749	R-Square	0.1786		Source	DF	Type III SS	Mean Squar	e F Val	ue Pr>
	Depende		ean	89.30717		0.1102		Capital_income	1	1526.855179	1526.85517	9 1.	99 0.164
•	Coeff Va	ır		30.72260)			Population_Density	1	3462.392088	3462.39208	8 4.	52 0.038
			Par	ameter Es							04		
/ariable			DF	Paramete Estimat		t Value	Pr > t	Parameter		Estimate	Standard Error	t Value	Pr > t
ntercept			1	156.8343	7 34.61504	4.53	<.0001	Intercept	1	156.5461757	34.22137620	4.57	<.0001
octor_Av	ailabilit	У	1	0.1513	0.11881	1.27	0.2089						
lospital_A	vailabil	ity	1	0.0078	4 0.01237	0.63	0.5295	Capital_income		-5.0808897	3.59957368	-1.41	0.1643
apital_in	come		1	-7.4519	9 4.01902	-1.85	0.0699	Population_Densi	ty	-0.1744056	0.08205074	-2.13	0.0385
	Densi		1	-0.1753	3 0.08374	-2.09	0.0416						

Also from the partial F test we can see that Pvalue=0.1921>0.05, we do not reject null hypothesis indicating that the Doctor Availability and Hospital Availability and capital income do not improve the model.

Partial F test	removing Doct	or_Ava	ilability Hosp	ital_Avail	ability C	apital_income
			REG Procedure odel: MODEL1			
	Test x1x2x3 Resu	ults for D	ependent Variabl	e square_De	ath_Rate	
	Source	DF	Mean Square	F Value	Pr > F	
	Numerator	3	1236.20122	1.64	0.1921	
	Denominator	48	752.81581			

4) Starting with the full model, find the best model(s) using adjusted R₂, C_p, and BIC criterion. Also, nd models using stepwise, forward, and backward selection methods. Compare all these models.

					Observations Read 53 Observations Used 53
			l	realitiber of	Observations used 55
Number in Model	Adjusted R-Square	R-Square	C(p)	BIC	Variables in Model
3	0.1210	0.1717	3.4012	356.9939	Doctor_Availability Capital_income Population_Density
4	0.1102	0.1786	5.0000	358.8306	Doctor_Availability Hospital_Availability Capital_income Population_Density
3	0.0989	0.1508	4.6221	358.1074	Hospital_Availability Capital_income Population_Density
2	0.0942	0.1290	3.8981	357.1622	Capital_income Population_Density
2	0.0806	0.1159	4.6617	357.8611	Hospital_Availability Population_Density
1	0.0765	0.0943	3.9263	356.9943	Population_Density
2	0.0693	0.1051	5.2971	358.4352	Doctor_Availability Population_Density
2	0.0672	0.1031	5.4132	358.5394	Doctor_Availability Capital_income
3	0.0659	0.1198	6.4380	359.7181	Doctor_Availability Hospital_Availability Population_Density
3	0.0487	0.1036	7.3844	360.5370	Doctor_Availability Hospital_Availability Capital_income
1	0.0317	0.0503	6.4974	359.3188	Capital_income
2	0.0214	0.0590	7.9874	360.7941	Hospital_Availability Capital_income
1	0073	0.0121	8.7315	361.2533	Doctor_Availability
1	0119	0.0076	8.9924	361.4744	Hospital_Availability
2	0240	0.0154	10.5397	362.9324	Doctor_Availability Hospital_Availability

Adjusted R square: By looking at the model $R_{adj}^2 = 0.1210$ is high for the model with these variables Doctor_Availability, Capital_income, Population_Density.

C_p: Lowest C_p= 3.4012~3 value for the model with Doctor_Availability ,Capital_income, Population_Density. **BIC:** Lowest BIC value=356.9943, model with variable Doctor_Availability ,Capital_income, Population Density.

Comparison table:

Table:

Selection	Variable	\mathbb{R}^2	Cp	F Value	P Value
Stepwise	Population	0.0943	3.9263	5.31	0.0253
	_Density				
Forward	Population	0.0943	3.9263	124.85	0.0253
	_Density				

Table:

Tuble .			
Backward- Selection	\mathbb{R}^2	Cp	P Value
removed	0.1717	3.4012	0.0494
(Hospital_avalilability			
Removed-	0.1290	3.8981	0.0385
Doctor_Availability			
Removed-	0.0943	3.9263	0.0253
Capital income			

Analysis:

 R^2 (highest)and $C_p(smallest)$ both has best values with these variables Doctor_Availability, Capital_income, Population Density. Please refer above.

Stepwise selection small p value with the variable as Population Density.

Forward Selection gives a Population Density with P value=0.025<0.05

BIC Criterion has the lowest value with the Doctor_Availability ,Capital_income, Population_Density variables.

If we observe Doctor_Availability ,Capital_income, Population_Density variables selected as a significant variable on various evaluation. These various selection methods giving us the best model to fit our given health data.

No other variable met the 0.0500 significance level for entry into the model.

		Summar	y of Forward	Selection			
Step	Variable Entered	Number Vars In	Partial R-Square	Model R-Square	C(p)	F Value	Pr > F
1	Population_Density	1	0.0943	0.0943	3.9263	5.31	0.0253

Bounds on condition number: 1, 1

All variables left in the model are significant at the 0.0500 level.

		Summary of	of Backward	Elimination			
Step	Variable Removed	Number Vars In	Partial R-Square	Model R-Square	C(p)	F Value	Pr > F
1	Hospital_Availability	3	0.0069	0.1717	3.4012	0.40	0.5295
2	Doctor_Availability	2	0.0427	0.1290	3.8981	2.53	0.1183
3	Capital_income	1	0.0347	0.0943	3.9263	1.99	0.1643

5) For one of the "final" models obtained from the previous part, report coefficients of multiple determination, multiple correlation, partial correlation, and partial determination. Multiple determination (R^2)=0.1717. Proportion of variance is explained in transformed model by the variable population_Density. This is not a very high R^2 value. There might be other factors that are contributing to the variance.

Multiple Correlation $R=\sqrt{0.1717}\approx0.414$. This explains the linear relationship between the transformed model and the variable Population_Density. The linear relationship is not very high. Ther is a moderate relationship is there.

Partial correlation(Population_Density)= - 0.27667.

Partial correlation (Doctor_Availability)=0.2214

Partial correlation(Capital income=-0.2729

Coefficient of Partial Determination(Population_Density)=0.0765 Coefficient of Partial correlation (Doctor_Availability)=0.049 Coefficient of Partial correlation(Capital_income)=0.07447

This explains the linear relationship between the transformed model and the variable Population_Density, Doctor_Availability and Capital_income. There is a negative correlation. The variance is not too high. Overall we see medium impact on the transformed model.

6) Consider the largest coefficient of partial determination. Show that its alternative interpretation in terms of coefficient of simple determination holds by fitting appropriate models and calculating R₂. Similarly, show that the alternative interpretation of the coefficient of multiple determination holds.

 $R^2_{partial} = 0.1936$, $R^2_{full} = 0.1786$, $R^2_{reduced} = 0.1210$. The result shows that the relationship between the coefficient of partial determination and the coefficient of simple determination, confirming the interpretation holds.

	Number of Observations Used 53										
	Analysis of Variance										
Source	Source		Sum of Squares			F	Value	Pr > F			
Model		2	14448	722	4.03725		6.00	0.0046			
Error		50	60192	120	3.84908						
Correc	ted Total	52	74641								
	Root MSE		34.69	653	R-Squar		0.1936	i			
	Dependen	t Mear	lean 116.09		434 Adj R-Sq		0.1613	3			
	Coeff Var		29.88								
			'								
		P	arameter	Estin	nates						
Variable	Variable DF			eter ate			t Value	Pr > t			
Intercept	t	1	-24.39	094	42.8917	0	-0.57	0.5721			
Capital_i	ncome	1	15.61	347	4.5115	6	3.46	0.0011			
Population	on_Density	y 1	-0.06	183	0.1028	4	-0.60	0.5504			

7) Use the final model to obtain 95% interval estimates for the mean response for the entire range of predictor and plot them against each predictor in the final model separately (by fixing other predictors' value to their averages). In the same plot, add two corresponding sets of intervals | (i) 95% interval estimates for death rate of a new city (not in the dataset) (ii) 95% simultaneous confidence bands for the entire regression line. Compare the three sets of intervals.

Please refer the below image of the confidence intervals. The confidence interval for mean response is narrow because it only counts the mean estimate's uncertainty. The Predictions interval is the widest, because it accounts for the individual variability. The simulation confidence bands are slightly wider than the confidence interval for the mean. The confidence and the prediction intervals for the predicted values are below. We see that the Predicted values fall in the interval.

