Federated Learning distribuido mediante procesos de consenso en redes

Trabajo Fin de Máster Máster en Inteligencia Artificial, Reconocimiento de Formas e Imagen Digital

Autor: Picó Pascual, Aarón

Tutor: Rebollo Pedruelo, Miguel

Introducción y Problema

	Machine Learning / Deep Learning	Federated Learning
Computación Distribuida	No: Única máquina	Sí: Red de máquinas
Datos Distribuidos	No: Deben compartirse y reunirse en la máquina que realiza el entrenamiento	Sí: Cada máquina utiliza datos locales. Únicamente se comparte la actualización del modelo
Proceso Distribuido	No: El centralismo es total	No: Solo descentralizado (servidor central)

Problema	
Paralelización de la computación	
Datos sensibles	
Tamaño del conjunto inabarcable	
Fuertes dependencias	

Objetivos

- 1. Federated Learning distribuido con métodos de consenso en redes
 - Liberar al paradigma de FL de la dependencia de un servidor central

	Federated Learning + consenso
Computación Distribuida	Sí
Datos Distribuidos	Sí
Proceso Distribuido	Sí, se llega al valor medio mediante proceso de consenso entre pares

- 2. Entrenar Echo State | 3. Buscar Networks (ESN) mediante Federated Learning
 - ESN son modelos de RNN con estructura aleatoria

- posibles sinergias entre conceptos de FL y ESN
 - Diferentes métodos para la combinación de las estructuras

Estado del Arte - Federated Learning

Paso 1	Paso 2	Paso 3	Paso 4
Servidor Central	Servidor Central	Servidor Central	Servidor Central
El servidor central envía el modelo inicial al conjunto de nodos	Los nodos entrenan el modelo localmente con los datos que disponen	Los nodos envían los pesos actualizados al servidor central	El servidor central crea un modelo global mediando todos los pesos que vuelven a enviarse a los nodos . Se regresa al Paso 2.

Estado del Arte - Algoritmo de consenso

Proceso iterativo para consensuar el valor de una variable común sin un proceso central.

Por cada ronda de consenso, cada agente reúne el valor de los nodos vecinos y se actualiza suyo mediante la fórmula:

$$x_i(t+1) = x_i(t) + \epsilon \sum_{j \in N_i} [x_j(t) - x_i(t)]$$

Ronda a ronda, los nodos se acercan al valor promedio de toda la red hasta que todos convergen al mismo.

Estado del Arte - Echo State Networks

- Subtipo de RNN, basado en Reservoir Computing
- Reservorio:
 - Estructura recurrente aleatoria
 - Pesos no entrenables
 - Reserva de características
- Ventajas:
 - Entrenamiento rápido (solo capa de salida)
 - Desempeño competitivo

Solución

Federated Learning distribuido mediante proceso de consenso

	Federated Learning + consenso
Computación Distribuida	Sí
Datos Distribuidos	Sí
Proceso Distribuido	Sí, se llega al valor medio mediante proceso de consenso entre pares

Diseño e Implementación

Combinación estructuras ESN

Experimentos Estructuras ESN

Combinación de Estructura ESN:

- Original
- Promedio
- Mejor estructura
- Enlaces más repetidos
- Enlaces repetidos en las mejores estructuras

Resultados Comparación con Caso Real

Caso Real: Predicción de la producción de energía eólica

Dataset: AEMO - Datos de producción eólica en Australia 2018

Enlace: https://anero.id/energy/wind-energy

Resultados Comparación con Caso Real

Red: 51 granjas eólicas conectadas por proximidad (Random Geometric Graph)

	Loss (10 epochs)
Federated Learning	4.16
Machine Learning	4.30

Conclusiones y trabajos futuros

Conclusiones:

- Es posible implementar **FL distribuido mediante consenso en redes**.
- Es posible entrenar redes con estructura aleatoria (ESN) mediante FL.
- La combinación de las estructuras del reservorio de los modelos de ESN influye en el desempeño.
- Se verifica con un caso real la efectividad de este entrenamiento.

Trabajo a futuro:

- Búsqueda de métodos combinatorios para las estructuras que obtengan mejor beneficio.
- Modificación del algoritmo de FL para lograr mejor desempeño.