Course Materials May Not Be Distributed or Posted Electronically

These course materials are the sole property of Dr. Todd M. Gross. They are strictly for use by students enrolled in a course taught by Dr. Gross. They may not be altered, excerpted, distributed, or posted to any website or other document-sharing service.

PSTAT 126 Regression Analysis

Dr. Todd Gross

Department of Statistics and Applied Probability

UCSB

Lecture 3 Inference in Simple Regression

Text Readings for this Lecture

In Introduction to Statistical Learning (ISL)

 Ch 3 Section 3.1.3 – Assessing the Accuracy of the Model

Lecture Outline

The Logic of Hypothesis Testing and Confidence Intervals

• Testing the Regression Parameters (β_1 and β_0)

The Logic of Hypothesis Testing

Inferential Statistics

- Inferential statistics allow us to <u>draw conclusions</u> about a <u>population</u> based on information in a <u>sample</u>.
 - Contrast with Descriptive Statistics, which allows us to describe information in a sample
- The question we need to answer is:

"Is there sufficient evidence in the <u>sample</u> to conclude that there is a relationship between X and Y in the <u>population</u>?"

Uncertainty - Sampling Error

The Logic of Hypothesis Testing

- Research Question
 - What you want to prove, stated as a question
- Statistical Hypothesis
 - Define the Null (H₀) and Alternative (H₁) hypotheses
 - H₀ is the <u>opposite</u> of what you want to prove
- Conduct Study
 - Collect data to test the hypothesis
- Statistical Analysis
 - Calculate the <u>probability</u> of observing your results GIVEN that H₀ is true
- Statistical Conclusion
 - If the probability is low enough, then Reject HO
 - If not, Retain H₀ (can't accept it yet)

Exercise: Is My Coin Fair?

Research Question: Is my coin "fair" (i.e., are heads and tails are equally likely outcomes)

How many heads would lead you to conclude that coin is biased?

Exercise:

- Toss your coin 10 times
- Record the number of Heads
 - Example: 7 heads out of 10 tosses
- Do the results of your "experiment" suggest that your coin is <u>not</u> fair?
 - Assuming a fair coin, what is the probability of obtaining your results?
 - If the results are very unlikely, reject the hypothesis that coin is fair

Sampling Distribution for Coin Tosses

Hypothesis Test for Coin Toss

- Research Question: Is my coin fair (i.e., equally likely to produce a heads or a tails)?
- Statistical Hypotheses
 - H_0 : $\pi = 0.5$
 - H_1 : $\pi \neq 0.5$
- Data: 9 heads out of 10 tosses
- What is the probability of 9 heads out of 10 tosses, <u>assuming</u> that the coin is fair?
- From the binomial distribution:
 - P(9 out of 10 | $\pi = 0.5$) = 0.00977
 - P(10 out of 10 | $\pi = 0.5$) = 0.0001
- The probability of 9 or more heads out of 10 tosses, given a fair coin, is about 1%, therefore conclude that coin is not fair!

Sampling Distribution of Sample Mean (Review)

- I believe students sleep an average of 6 hours per night
- I select 25 students at random and find:
 - Mean = 7.2
- Did my sample come from a population with a mean of 6?
 - $P(\bar{X} = 7.2 | \mu = 6) = ?$
 - We need to know the sampling distribution of the sample mean

Sampling Dist of Mean (con't)

 There are an infinite number of samples of size
 25 that I could have drawn, each with its own mean

Under the Central Limit
 Theorem the distribution
 of sample means is
 approximately Normal,
 with mean = Mu

t-test for sample mean

We can construct a statistical test using a t-test

- In the numerator, we are taking the <u>difference</u> between the <u>observed sample mean</u> and the <u>expected mean</u> under the <u>null hypothesis</u>.
 - Increases when the null hypothesis is false
- The denominator is the <u>standard error</u> of the sample mean, which is an estimate of the <u>variability</u> of the sample mean given the sample size.
 - <u>Decreases</u> when variance is small, or sample size is large

t-test for sample mean

Hypothesis Test for Sample Mean

- Research Question:
 - Do students sleep longer than six hours?
- Null and Alternative Hypotheses:
 - H_0 : $\mu = 6$ and H_1 : $\mu \neq 6$
- Data:
 - n = 25, \bar{X} = 7.2, s = 1.9
 - Standard error of the mean, $s_{\bar{\chi}} = \frac{s}{\sqrt{n}} = \frac{1.9}{\sqrt{25}} = 0.38$
- Calculate probability of data given H₀
 - $t_{\text{observed}} = \frac{\overline{X} \mu_0}{S_{\overline{X}}} = (7.2 6)/0.38 = 3.16$
 - Alpha = 0.05, alpha/2 = 0.25, df = n-1 = 24
 - $t_{critical}(0.025, 24) = 2.064$
- If |t_{observed}| > t_{critical} then Reject H₀
- Conclude the Research Question is confirmed.

Calculations in R

```
> tobs = (7.2-6)/(1.9/sqrt(25))
> tobs
[1] 3.157895
> tcrit = qt(.025,24)
> tcrit
[1] -2.063899
> abs(tobs)> abs(tcrit)
[1] TRUE
```

Confidence Intervals

- Interval estimation is an alternative to point estimation
- Example: the <u>point</u> estimate for μ is \overline{X}
- We can create an interval that contains most likely values of μ
- Lower Limit = $\bar{X} t_{crit}(s_{\bar{x}}) = 7.2 2.064 * 0.38 = 6.42$
- Upper Limit = $\bar{X} + t_{crit}(s_{\bar{x}}) = 7.2 + 2.064 * 0.38 = 7.98$
- We are 95% confidence that our sample mean of 7.2 comes from a population with a mean between 6.42 and 7.98

Inference in Regression

Research Questions in Regression

- Slope: Is $\beta_1 \neq 0$?
- Intercept: Is $\beta_0 \neq 0$? (often not meaningful)
- Full Model: Does the regression equation fit better than chance alone?

- Confidence Intervals
 - Slope
 - Predicted value of Y
 - Regression Line

Testing the Slope (B₁)

- We will test the following Null and Alternative Hypotheses
 - H0: $\beta_1 = 0$
 - H1: $\beta_1 \neq 0$
- If the slope is zero, then there is <u>no</u> linear relationship between X and Y (no predictive value)
- We will need to know:
 - sampling distribution of b₁
 - variance and standard error of b₁
 - appropriate test statistic (t)

Gauss and the Normal Curve

Normality Assumption

- The regression model $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ assumes that:
 - Y is a random variable
 - X is known and measured without error
 - The residual errors are unbiased, $E[\varepsilon_i] = 0$
 - The values of Y are independent of each other, $Cov(\varepsilon_i, \varepsilon_i) = 0$
 - It does <u>NOT</u> assume that Y is normally distributed.
- In order to do <u>hypothesis testing</u>, we need to add the assumption of a normal distribution.
- This gives us the <u>Normal Regression Model</u>

$$Y_i = \beta_0 + \beta_1 X_i + \mathcal{E}_i$$
 where $\mathcal{E}_i^{\sim} iid N(0, \sigma^2)$

Sampling Distribution of b₁

- We estimate the population parameter β_{1} using the sample statistic \boldsymbol{b}_{1}
- Under the normal regression model, we assume that Y is normally distributed.
- We can show that b₁ is a linear combination of Y
- Therefore, b₁ is normally distributed because:
 a linear combinations of normally distributed random
 variables is also normally distributed

$$b_1 \sim N(\beta_1, Var(b_1))$$

T-test for the slope

• We can now define a t-test for H_0 : $\beta_1 = 0$

$$t = \frac{b1}{SE(b_1)}$$

The standard error of b₁ is:

$$SE(b_1) = \sqrt{\frac{\sum (Y - \hat{Y})^2 / (n - 2)}{\sum (X - \bar{X})^2}} = \sqrt{\frac{SSRes/dfres}{SSX}}$$

Hours of Study and Exam Score

Students Study for an Exam

For each student we measure:

- the number of hours of study (X)
- the score on the exam (Y)

We want to know:

- 1. Is there a relationship between hours of study and score?
- 2. Is the relationship linear?
- 3. Describe the relationship

Student	Hours of Study	Exam Score
1	1.0	29
2	1.2	13
3	1.4	31
4	1.6	27
5	1.9	45
6	2.8	48
7	3.8	44
8	4.2	50
9	5.0	44
10	5.2	61
11	5.8	73
12	6.2	50
13	6.8	78
14	7.4	54
15	8.1	83
16	8.4	61
17	10.0	74
18	10.7	67
19	11.1	80

R Scatterplot with Regression Line

Using R to Perform Regression

```
x<-c(1, 1.2, 1.4, 1.6, 1.9, 2.8, 3.8, 4.2, 5, 5.2, 5.8, 6.2, 6.8, 7.4, 8.1, 8.4, 10, 10.7,
11.1)
> y<-c(29, 13, 31, 27, 45, 48, 44, 50, 44, 61, 73, 50, 78, 54, 83, 61, 74, 67, 80)
> fit1<-lm(y~x)
> summary(fit1)
Call:
lm(formula = y \sim x)
Residuals:
            10 Median
    Min
                            30
                                   Max
-18.909 - 7.280 - 1.925
                        8.355 17.703
Coefficients:
                                                              Regression
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 25.8073
                        4.8378 5.335 5.48e-05 ***
                                                              parameters
                                 6.601 4.50e-06 ***
              5.0844
                        0.7703
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 10.77 on 17 degrees of freedom
Multiple R-squared: 0.7193, Adjusted R-squared: 0.7028
F-statistic: 43.57 on 1 and 17 DF, p-value: 4.497e-06
> plot(x,y,xlab="Hours of Study",ylab="Exam Score")
> abline(fit1)
```

T-test for b₁ in R (manual calc)

```
> SSX = sum((x-mean(x))^2)
> SSX
[1] 195.44
> SSres = sum((y-predict(fit1))^2)
> SSres
[1] 1971.291
> dfres=length(y)-2
> dfres
[1] 17
> seb1 = sqrt((SSres/dfres)/SSX)
> seb1
[1] 0.7702722
> b1=5.084425
> tobs=b1/seb1
> tobs
[1] 6.600816
> tcrit = qt(.975,24)
> tcrit
[1] 2.063899
```

Hypothesis test for slope

- H0: $\beta_1 = 0$ vs. H1: $\beta_1 \neq 0$
- Data:
 - $b_1 = 5.08$
 - SSX = 195.44, SSres = 1971.29, dfres = 17
 - se(b1) = sqrt((1971.29/17)/195.44) = 0.77
 - $t_{obs} = 5.08/0.77 = 6.60$
 - $t_{crit}(0.025, df=17) = 2.063$
 - Note: the probability of observing a slope of 5.08 in this sample, assuming that $\beta 1 = 0$ is less than 0.05 (p < 0.05)
- Conclusion:
 - |t_{obs}|> t_{crit}, <u>therefore</u> Reject H₀
 - There is sufficient evidence to conclude that there is a statistically significant linear relationship between Hours of Study and Exam Score

T-test for the slope in R (summary)

```
x<-c(1, 1.2, 1.4, 1.6, 1.9, 2.8, 3.8, 4.2, 5, 5.2, 5.8, 6.2, 6.8, 7.4, 8.1, 8.4, 10, 10.7,
11.1)
> y<-c(29, 13, 31, 27, 45, 48, 44, 50, 44, 61, 73, 50, 78, 54, 83, 61, 74, 67, 80)
> fit1<-lm(y~x)
> summary(fit1)
Call:
lm(formula = y \sim x)
Residuals:
             10 Median
    Min
                             30
                                    Max
-18.909 -7.280 -1.925 8.355 17.703
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                         4.8378
                                  5.335 5.48e-05 ***
(Intercept) 25.8073
                                                                    t-test for the
              5.0844
                         0.7703
                                  6.601 4.50e-06 ***
X
                                                                        slope
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 10.77 on 17 degrees of freedom
Multiple R-squared: 0.7193, Adjusted R-squared: 0.7028
F-statistic: 43.57 on 1 and 17 DF, p-value: 4.497e-06
> plot(x,y,xlab="Hours of Study",ylab="Exam Score")
> abline(fit1)
```

Confidence Interval for B₁

- What values of β_1 could have resulted in our sample slope (b₁)?
- Just like the CI for Mu, we need:
 - the point estimate: b₁
 - Standard error of slope: se(b₁)
 - The sampling distribution: $t(\alpha/2, dfres)$
- Lower Limit = $b_1 t_{crit} * se(b_1)$
- Upper Limit = $b_1 + t_{crit} * se(b_1)$

Confidence Interval for slope

- For Hours of Study and Exam Score
 - LL = 5.08 2.063(0.77) = 3.49
 - UL = 5.08 + 2.063(0.77) = 6.67
- "We are 95% confident that the population slope (β_1) is between 3.49 and 6.67"

Confidence Intervals for Regression Coefficients in R

95% CI for slope and intercept

90% CI for slope and intercept