Solutions to Homework 4:

1. Proof. $\forall n \geq 0 \in \mathbb{Z}, 9 \mid n^3 + (n+1)^3 + (n+2)^3$ We know that if a number is divisible by 9 then it is also divisible by 3. So if a number is not divisible by 3 then it is not divisible by 9 as well by contraposition

Case 1: Number is divisible by 3 i.e n = 3 * k where $\exists k \in \mathbb{Z}$ Substituting the value of n in the equation $n^3 + (n+1)^3 + (n+2)^3$ we get,

$$(3k)^3 + (3k+1)^3 + (3k+2)^3 \tag{1}$$

$$27k^{3} + (27k^{3} + 9k + 27k^{2} + 1) + (27k^{3} + 36k + 54k^{2} + 8)$$
(2)

$$81k^3 + 81k^2 + 45k + 9 \tag{3}$$

$$9(9k^3 + 9k^2 + 5k + 1) \tag{4}$$

(5)

So, $\exists m \in \mathbb{Z}$ where $m = 9k^3 + 9k^2 + 5k + 1$ such that

$$n^{3} + (n+1)^{3} + (n+2)^{3} = 9m$$
(6)

Case 2: Number is not divisible by 3 i.e n = 3 * k + 1 where $\exists k \in \mathbb{Z}$ Substituting the value of n in the equation $n^3 + (n+1)^3 + (n+2)^3$ we get,

$$(3k+1)^3 + (3k+2)^3 + (3k+3)^3$$
 (7)

$$(27k^3 + 9k + 27k^2 + 1) + (27k^3 + 36k + 54k^2 + 8) + (27k^3 + 81k + 81k^2 + 27)$$
 (8)

$$81k^3 + 162k^2 + 126k + 9 \qquad (9)$$

$$9(9k^3 + 18k^2 + 14k + 1) \quad (10)$$

(11)

So, $\exists m \in \mathbb{Z}$ where $m = 9k^3 + 18k^2 + 14k + 1$ such that

$$n^{3} + (n+1)^{3} + (n+2)^{3} = 9m$$
(12)

Case 3: Number is not divisible by 3 i.e n = 3 * k + 2 where $\exists k \in \mathbb{Z}$ Substituting the value of n in the equation $n^3 + (n+1)^3 + (n+2)^3$ we get,

$$(3k+2)^{3} + (3k+3)^{3} + (3k+4)^{3}$$

$$(13)$$

$$(27k^{3} + 36k + 54k^{2} + 8) + (27k^{3} + 81k + 81k^{2} + 27) + (27k^{3} + 144k + 108k^{2} + 64)$$

$$(14)$$

$$81k^{3} + 243k^{2} + 279k + 99$$

$$(15)$$

$$9(9k^{3} + 27k^{2} + 31k + 11)$$

$$(16)$$

$$(17)$$

So, $\exists m \in \mathbb{Z}$ where $m = 9k^3 + 27k^2 + 31k + 11$ such that

$$n^{3} + (n+1)^{3} + (n+2)^{3} = 9m$$
(18)

Hence
$$9 \mid n^3 + (n+1)^3 + (n+2)^3$$

2. Proof. We need that $\exists a, b, c \in \mathbb{Z}$ such that $\gcd(a,b) = 1 \implies ((a \mid bc) \implies (a \mid c))$ Now, from Bezout's identity $\exists x, y \in \mathbb{Z}$ such that $ax + by = \gcd(a,b) \exists a, b \in \mathbb{Z}$ Since $\gcd(a,b) = 1$ we have that ax + by = 1On multiplying the above equation with c we get,

$$c.ax + c.by = c (19)$$

Now, we also know that $a \mid bc$ so $\exists k \in \mathbb{Z}$ such that ak = bc Substituting the above equation in eq. (19) we get,

$$c.ax + a.k.y = c (20)$$

$$a(c.x + k.y) = c (21)$$

So $\exists m \in \mathbb{Z}$ such that m = c.x + k.y and hence,

$$a.m = ca \mid c \tag{22}$$

3. It is given that $P = \{2, 3, 5, 7, 11, ...\}$

(a) The statement $\forall x \in P, \forall y \in P, x+y \in P$ is false. We will prove this statement by taking a counter example.

Let x = 3 and y = 5, so here x+y = 8 which is not a prime number and hence this statement is false.

(b) The statement $\forall x \in P, \exists y \in P$ such that, $x + y \in P$ is false. This is because when you take a prime number such as 7 you find that there exists no prime number such that their sum is a prime number as well. This is due to the fact that every prime number greater than 2 is odd and sum of odd prime number computes to even numbers which are not primes.

So if x = 7 and y = 2 then x + y = 9 which is not a prime number.

(c) The statement $\exists x \in P$ such that, $\forall x \in P, x + y \in P$ is false. This is because similar to the previous case there exists no prime that when you add it to another prime number say 7 to get a prime number as well. This is also due to the fact that every prime number greater than 2 is odd and sum of odd number is an even number which are not primes.

So if x = 5 and y = 7 then x + y = 12 which is not a prime number.

- (d) This statement is true. Let's consider two prime number x and y such that, x = 5 and y = 2, so x + y = 7 which is a prime number as well.
- 4. Proof. We need to prove that $\forall \epsilon > 0, \exists M > 0$ such that, $\left|\frac{2x^2}{x^2+1} 2\right| < \epsilon$ whenever x > M

So, let's consider $M = \sqrt{(\frac{2}{\epsilon})}$, so $x \ge \sqrt{(\frac{2}{\epsilon})}$,

Consider $\left|\frac{2x^2}{x^2+1}-2\right|$, here we will substitute M for x because of the inequality after simplifying the equation. So,

$$\left| \frac{2x^2}{x^2 + 1} - 2 \right| \tag{23}$$

$$\left| \frac{2x^2 - (2x^2 + 2)}{x^2 + 1} \right| \tag{24}$$

$$\left| \frac{-2}{x^2 + 1} \right|$$
 (25)

$$\left| \frac{2}{x^2 + 1} \right|$$
 (26)

$$\left|\frac{2}{(\sqrt{(\frac{2}{\epsilon})})^2 + 1}\right| \tag{27}$$

$$\left|\frac{2}{\frac{2}{\epsilon}+1}\right|\tag{28}$$

$$\left|\frac{2\epsilon}{2+\epsilon}\right|\tag{29}$$

Now, we know that $2 + \epsilon$ is greater than 2 so $\frac{1}{2+\epsilon} < \frac{1}{2}$

$$\frac{2\epsilon}{2+\epsilon} < \frac{2\epsilon}{2} \tag{30}$$

$$\frac{2\epsilon}{2} = \epsilon \tag{31}$$

So,

$$\left| \frac{2x^2}{x^2 + 1} - 2 \right| < \epsilon \tag{32}$$

5. Proof. We know that a function $f: \mathbb{R} \to \mathbb{R}$ is continuous at $a \in \mathbb{R}$ if $\lim_{x \to a} f(x) = f(a)$ We know by first principles of limits that,

$$\forall \epsilon > 0, \exists \delta > 0, (0 < |x - a| < \delta) \implies (|f(x) - L| < \epsilon) \tag{33}$$

Let's consider $\delta = \sqrt{\epsilon}$,

We also have that $0 < |x - 0| < \delta$ and so,

 $x < \delta$ or $x^2 < \delta^2$

Consider the function $f(x) = x^2 sin(\frac{1}{x})$ when $x \neq 0$

$$|f(x) - 0| = |x^2 \sin(\frac{1}{x}) - 0| \tag{34}$$

$$|x^2 sin(\frac{1}{x})| \tag{35}$$

Now since the value of Sin lies between -1 and 1 we have that,

$$0 < |x^2 \sin(\frac{1}{x})| < x^2 \tag{36}$$

$$0 < |x^2 sin(\frac{1}{x})| < \delta^2 \tag{37}$$

But we have $\delta = \sqrt{\epsilon}$ so,

$$0 < |x^2 \sin(\frac{1}{x})| < (\sqrt{\epsilon})^2 \tag{38}$$

$$0 < |x^2 sin(\frac{1}{x})| < \epsilon \tag{39}$$

$$0 < |x^2 \sin(\frac{1}{x}) - 0| < \epsilon \tag{40}$$

$$0 < |f(x) - 0| < \epsilon \tag{41}$$

Hence function f is continuous at x=0

Kashish Joshipura Page 4 27745629

6. Case 1: n ; N

Now we know that x_n converges to 0 so $|x_n-0|<\epsilon$ and hence we can take the value of $M=\epsilon$

This you result in $|x_n - 0| \le M$ and therefore this case holds true.

Case 2: $n \leq N$

Now we know that x_n converges to 0 so $|x_n - 0| < \epsilon$ and hence we can take the value of $M = \max\{x_1, x_2, \dots, x_N\}$

This you result in $|x_n - 0| \leq M$ and therefore this case holds true.

7. Proof. Case 1: $M \geq 0$

Let's consider $t = e^{-2M}$ where M is any arbitrary real number, So, consider the equation,

$$f(t) = log(t) \tag{42}$$

$$f(t) = \log(e^{-2M}) \tag{43}$$

$$f(t) = -2M \tag{44}$$

Now, the absolute value of f(t) is,

$$|f(t)| = |-2M| \tag{45}$$

$$|f(t)| = 2M \tag{46}$$

(47)

Case 2: M < 0

Let's consider $t = e^{2M}$ where M is any arbitrary real number, So, consider the equation,

$$f(t) = \log(t) \tag{48}$$

$$f(t) = \log(e^{2M}) \tag{49}$$

$$f(t) = 2M \tag{50}$$

Now, the absolute value of f(t) is,

$$|f(t)| = |2M| \tag{51}$$

$$|f(t)| = 2M \tag{52}$$

(53)

Now since, 2M > M

Hence, $\log(x)$ is unbounded on (1,0)

8. Proof. Since we want to prove that x_n does not converge we essentially prove that,

$$\exists \epsilon > 0, \forall N \in \mathbb{N}, \exists n > N, |x_n - L| \ge \epsilon \tag{54}$$

Case 1: $L \ge 0$

Now, let us consider $\epsilon = 1 - L$ and n = 2NSo, for the equation $(-1)^n + \frac{1}{n}$ we have that,

$$(-1)^{2N} + \frac{1}{2N} \tag{55}$$

$$1 + \frac{1}{2N} \tag{56}$$

We know that as N gets bigger the value of $\frac{1}{2N}$ will approach 0 and hence

$$1 + \frac{1}{2N} \le 1\tag{57}$$

$$1 + \frac{1}{2N} - L \le 1 - L \tag{58}$$

$$1 + \frac{1}{2N} - L \le \epsilon \tag{59}$$

$$|1 + \frac{1}{2N} - L| \le \epsilon \tag{60}$$

$$|(-1)^n + \frac{1}{n} - L| \le \epsilon \tag{61}$$

Case 2: L < 0

Now, let us consider $\epsilon = 1 - L$ and n = 2N + 1So, for the equation $(-1)^n + \frac{1}{n}$ we have that,

$$(-1)^{2N+1} + \frac{1}{2N+1} \tag{62}$$

$$-1 + \frac{1}{2N+1} \tag{63}$$

We know that as N gets bigger the value of $\frac{1}{2N+1}$ will approach 0 and hence Now for $|x_n - L|$

$$|x_n| - |L| \tag{64}$$

$$|-1 + \frac{1}{2N+1}| - L \tag{65}$$

$$|-1 + \frac{1}{2N+1}| - L \le 1 - L \tag{66}$$

$$|-1 + \frac{1}{2N+1}| - L \le \epsilon$$
 (67)

$$|(-1)^n + \frac{1}{n} - L| \le \epsilon \tag{68}$$

Hence $|(-1)^n + \frac{1}{n} - L| \le \epsilon$ or $|x_n - L| \le \epsilon$ and so $x_n = (-1)^n + \frac{1}{n}$ does not converge to any $L \in \mathbb{R}$ using Proof by Cases