Chapter 3: Joint Distributions

1 JOINT DISTRIBUTIONS FOR MULTIPLE RANDOM VARIABLES

- Very often, we are interested in more than one random variables simultaneously.
- For example, an investigator might be interested in both the height (*H*) and the weight (*W*) of an individual from a certain population.
- Another investigator could be interested in both the hardness (H) and the tensile strength (T) of a piece of cold-drawn copper.

DEFINITION 1

- Let E be an experiment and S be a corresponding sample space.
- Let X and Y be two functions each assigning a real number to each $s \in S$.
- We call (X,Y) a two-dimensional random vector, or a two-dimensional random variable.

Similarly to one-dimensional situation, we can denote the **range space** of (X,Y) by

$$R_{X,Y} = \{(x,y) | x = X(s), y = Y(s), s \in S \}.$$

The definition above can be extended to more than two random variables.

DEFINITION 2

Let $X_1, X_2, ..., X_n$ be n functions each assigning a real number to every outcome $s \in S$. We call $(X_1, X_2, ..., X_n)$ an n-dimensional random variable (or an n-dimensional random vector).

We define the discrete and continuous two-dimensional RVs as follows.

DEFINITION 3

1 (X,Y) is a **discrete** two-dimensional RV if the number of possible values of (X(s),Y(s)) are finite or countable.

That is the possible values of (X(s), Y(s)) may be represented by

$$(x_i, y_j), i = 1, 2, 3, \dots; j = 1, 2, 3, \dots$$

2 (X,Y) is a **continuous** two-dimensional RV if the possible values of (X(s),Y(s)) can assume any value in some region of the Euclidean space \mathbb{R}^2 .

REMARK

we can view X and Y separately to judge whether (X,Y) is discrete or continuous.

- If both X and Y are discrete RVs, then (X,Y) is a discrete RV.
- Likewise, if both X and Y are continuous random variables, then (X,Y) is a continuous RV.
- Clearly, there are other cases. For example, *X* is discrete, but *Y* is continuous. These are not our focus in this module.

Example 3.1 (Discrete Random Vector)

- Consider a TV set to be serviced.
- Let

$$X = \{ age to the nearest year of the set \};$$

$$Y = \{ \text{# of defective components in the set} \}.$$

- (X,Y) is a discrete 2-dimensional RV.
- $R_{X,Y} = \{(x,y)|x = 0,1,2,...;y = 0,1,2,...,n\}$, where n is the total number of components in the TV.
- (X,Y) = (5,3) means that the TV is 5 years old and has 3 defective components.

L-example 3.1

- A fast food restaurant operates a **drive-up facility** and a **walk-up window**.
- On a day, Let

X =the proportion of time that the **drive-up facility** is in use;

Y = the proportion of time that the **walk-up window** is in use.

- Then $R_{X,Y} = \{(x,y) | \underbrace{0 \le x, 0 \le y \le 1} \}.$
- (X,Y) is a continuous 2-dimensional RV.

Joint Probability Function

- We introduce the probability function for the discrete and continuous RVs separately.
- For discrete random vector, similar to the one-dimensional case, we define its probability function by associate a number with each possible value of the RV.

DEFINITION 4 (JOINT PROBABILITY FUNCTION FOR DISCRETE RV)

Let (X,Y) be a 2-dimensional **discrete** RV, the **joint probability (mass) function** is defined by

$$f_{X,Y}(x,y) = P(X = x, Y = y),$$

for x, y being possible values of X and Y, or in the other words $(x, y) \in R_{X,Y}$.

The joint probability mass function has the following properties:

(1)
$$f_{X,Y}(x,y) \ge 0$$
 for any $(x,y) \in R_{X,Y}$.

(1)
$$f_{X,Y}(x,y) \ge 0$$
 for any $(x,y) \in R_{X,Y}$.
(2) $f_{X,Y}(x,y) = 0$ for any $(x,y) \notin R_{X,Y}$.

(2)
$$f_{X,Y}(x,y) = 0$$
 for any $(x,y) \notin R_{X,Y}$.
(3) $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} f_{X,Y}(x_i, y_j) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} P(X = x_i, Y = y_j) = 1;$
or equivalently $\sum \sum_{(x,y) \in R_{X,Y}} f(x,y) = 1.$

(4) Let A be any subset of $R_{X,Y}$, then

$$P((X,Y) \in A) = \sum \sum_{(x,y) \in A} f_{X,Y}(x,y).$$

Example 3.2 Find the value of k such that f(x,y) = kxy for x = 1,2,3 and y = 1,2,3 can serve as a joint probability function.

Solution:
$$R_{X,Y} = \{(x,y)|x=1,2,3; y=1,2,3\}.$$

$$f(1,1) = k$$
, $f(1,2) = 2k$, $f(1,3) = 3k$, $f(2,1) = 2k$, $f(2,2) = 4k$, $f(2,3) = 6k$, $f(3,1) = 3k$, $f(3,2) = 6k$, $f(3,3) = 9k$.

Based on property (3), we have

$$1 = \sum_{(x,y)\in R_{X,Y}} f(x,y)$$

= $1k + 2k + 3k + 2k + 4k + 6k + 3k + 6k + 9k$,

which results in k = 1/36.

L-example 3.2

- A company has 2 production lines, *A* and *B*, which produce at most 5 and 3 machines respectively.
- Let

X = number of machines produced by line A Y = number of machines produced by line B.

- The joint probability function f(x,y) for (X,Y) is given in the table, where each entry represents $f(x_i,y_i) = P(X=x_i,Y=y_i)$.
- What is the probability that in a day line *A* produces more machines than line *B*?

Table for the joint probability function f(x,y)

31		Row					
<i>y</i>	0	1	2	3	4	5	Total
0	0	0.01	0.02	0.05	0.06	0.08	0.22
/ 1	0.01	0.03	0.04	0.05	0.05	0.07	0.25
2	ı		0.05				0.29
3			0.03				0.24
Column Total	0.05	0.11	0.14	0.20	0.23	0.27	1

$$Y=2$$
, $Y=3$
 $f_{X_{1}}(^{2},3)=0.03$

Consider the event

 $A = \{ \text{line } A \text{ produces more machines than line } B \} = \{ X > Y \}.$

Then we have

$$P(A) = P(X > Y)$$

$$= P((X,Y) = (1,0) \text{ or } (X,Y) = (2,0) \text{ or}$$

$$(X,Y) = (2,1) \text{ or } \dots \text{ or } (X,Y) = (5,3)$$

$$= P((X,Y) = (1,0)) + \dots + P((X,Y) = (5,3))$$

$$= f(1,0) + f(2,0) + \dots + f(5,3) = 0.73.$$

L-example 3.3

- A company has 9 executives; 4 are married, 3 have never married, and 2 are divorced.
- Three executives are to be randomly selected for promotion.
- Among the selective executives, let

```
X = \{\text{number of married executives}\}\

Y = \{\text{number of never married executives}\}.
```

• Find the joint probability function of *X* and *Y*.

<u>Solution</u>: Note that the executives are selected randomly; so every possible selection of the executives are equally likely.

- The total number of ways to select 3 executives out of 9 is $\binom{9}{3}$.
- The possible values of x and y are constrained by x, y = 0, 1, 2, 3 and $1 \le x + y \le 3$. The number of ways to select x married and y never married is given by $\binom{4}{x}\binom{3}{y}\binom{2}{3-x-y}$.

• Therefore, the joint probability function of (X,Y) is given by

$$f_{X,Y}(x,y) = \underbrace{P(X = x, Y = y)}_{\left(\begin{array}{c} 4 \\ x \end{array}\right) \left(\begin{array}{c} 3 \\ y \end{array}\right) \left(\begin{array}{c} 2 \\ 3 \end{array}\right)}_{\left(\begin{array}{c} 9 \\ 3 \end{array}\right)}, \qquad \underbrace{\left(\begin{array}{c} 4 \\ y \end{array}\right) \left(\begin{array}{c} 3 \\ 3 \end{array}\right)}_{\left(\begin{array}{c} 3 \\ 3 \end{array}\right)}$$
 for $x,y=0,1,2,3$ such that $1 \le x+y \le 3$ and $f_{X,Y}(x,y)=0$ other-

• This joint p.f. can be summarized as a table.

DEFINITION 5 (JOINT PROBABILITY FUNCTION FOR CONTINUOUS RV) Let (X,Y) be a 2-dimensional continuous RV; its joint probability (den-

sity) function is a function $f_{X,Y}(x,y)$ such that

$$P((X,Y) \in D) = \int \int_{(x,y)\in D} f_{X,Y}(x,y) dy dx,$$

for any $D \subset \mathbb{R}^2$. More specifically,

$$P(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d f_{X,Y}(x,y) dy dx.$$

The joint probability density function has the following properties:

 $f(x,y) \geq 0$ $= \int f(x,y) dx dy = 1$

(1)
$$f_{X,Y}(x,y) \ge 0$$
, for any $(x,y) \in R_{X,Y}$.

$$\begin{cases} (1) & f_{X,Y}(x,y) \ge 0, \text{ for any } (x,y) \in R_{X,Y}. \\ (2) & f_{X,Y}(x,y) = 0, \text{ for any } (x,y) \notin R_{X,Y}. \end{cases}$$

(3)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy = 1;$$

or equivalently $\int \int_{(x,y)\in R_{X,Y}} f_{X,Y}(x,y) dxdy = 1.$

Example 3.3 Find the value c such that f(x,y) below can serve as a joint p.d.f. for a RV (X,Y):

$$f(x,y) = \begin{cases} cx(x+y), & 0 \le x \le 1; 1 \le y \le 2\\ 0, & \text{elsewhere} \end{cases}$$

Solution: In order for f(x, y) to be a p.d.f., we need

$$1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dy dx = \int_{0}^{1} \int_{1}^{2} cx(x + y) dy dx = c \int_{0}^{1} x \left(x + \frac{1}{2} y^{2} \Big|_{1}^{2} \right) dx$$

$$= c \int_{0}^{1} x(x + 1.5) dx = c \left(\frac{1}{3} x^{3} + 1.5 \cdot \frac{1}{2} x^{2} \right) \Big|_{0}^{1} = c \left(\frac{13}{12}, \frac{13}{12}, \frac{1}{12}, \frac{1}{1$$

L-example 3.4

Reuse the p.d.f. of Example 3.3:

$$f(x,y) = \begin{cases} \frac{12}{13}x(x+y), & 0 \le x \le 1, 1 \le y \le 2\\ 0, & \text{elsewhere} \end{cases}$$

Assume that it is the joint p.d.f. of (X,Y). Let $A = \underbrace{\{(x,y) \mid \emptyset < x < 1/2; 1 < y < 2\}}_{X \in \mathcal{X}}$

y < 2}. Compute $P((X,Y) \in A)$.

- Set *A* corresponds to the shaped area in the figure on the right.
- We have

We have
$$P((X,Y) \in A) = P(0 < X < 1/2; 1 < Y < 2)$$

$$\int_{1}^{2} (\gamma + \gamma) d\gamma = \int_{1}^{1/2} \int_{1}^{2} \frac{12}{13} x(x + y) dy dx$$

$$\int_{0}^{2} (\gamma + y) dy = \int_{0}^{1/2} \int_{1}^{2} \frac{12}{13} x(x + y) dy dx$$

$$= \frac{12}{13} \int_{0}^{1/2} \frac{x(x + 1.5) dx}{x(x + 1.5) dx}$$

$$= \frac{12}{12} \left(\frac{1}{12} x^{3} + \frac{1}{12} x^{2} \right) \Big|_{1/2}^{1/2}$$

$$\begin{array}{rcl}
\gamma + \int_{1}^{2} y \, dy & = \frac{12}{13} \int_{0}^{7} x(x+1.5) dx \\
& = \frac{12}{13} \left(\frac{1}{3} x^{3} + 1.5 \cdot \frac{1}{2} x^{2} \right) \Big|_{0}^{1/2} \\
& = \frac{11}{52} \int_{0}^{7} x(x+1.5) \, dx
\end{array}$$

X

DEFINITION 6 (MARGINAL PROBABILITY DISTRIBUTION)

Let (X,Y) be a two-dimensional RV with joint p.f. $f_{X,Y}(x,y)$. We define the marginal distribution for X as follows.

• If Y is a discrete RV, then for any x,

$$f_X(x) = \sum f_{X,Y}(x,y).$$

• *If* Y *is a continuous RV, then for any* x*,*

$$-f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy.$$

REMARK

- $f_Y(y)$ for Y is defined in the same way as that of X.
- We can view the marginal distribution as the projection of the 2D function $f_{X,Y}(x,y)$ to the 1D function.
- More intuitively, it is the distribution of *X* by ignoring the presence of *Y*.

For example, consider a person of a certain community,

- suppose X = body weight, Y = height. (X, Y) has a joint distribution $f_{X,Y}(x,y)$.
- the marginal distribution $f_X(x)$ of X is the **distribution of** body weights for all people in the community.

- $f_X(x)$ should not involve the variable y; this can be viewed from its definition: y is either summed out or integrated over.
- $f_X(x)$ is a **probability function** so it satisfies all the properties of the probability function.

Example 3.4

- Revisit Example 3.2. The joint p.f. is given by $f(x,y) = \frac{1}{36}xy$ for x = 1, 2, 3 and y = 1, 2, 3.
- Note that *X* has three possible values: 1, 2, and 3. The marginal distribution for *X* is given by
 - for x = 1, $f_X(1) = f(1,1) + f(1,2) + f(1,3) = 6/36 = 1/6$.
 - for x = 2, $f_X(2) = f(2,1) + f(2,2) + f(2,3) = 12/36 = 1/3$.
 - for x = 3, $f_X(3) = f(3,1) + f(3,2) + f(3,3) = 18/36 = 1/2$.
 - for other values of x, $f_X(x) = 0$.

• Alternatively, for each
$$x \in \{1, 2, 3\}$$
,

 $= \frac{1}{36}x\sum_{v=1}^{3}y = \frac{1}{6}x.$

• Alternatively, for each
$$x \in \{1,2,3\}$$
,
$$f_X(x) = \sum_y f(x,y) = \sum_{y=1}^3 \frac{1}{36} xy$$

L-example 3.5

We reuse the joint p.f. of (X,Y) derived in L–Example 1:

X	У				Row	
	0	1	2	3	Total	fux
0	0	3/84	6/84	1/84	10/84) ~
1	4/84	24/84	12/84	0	40/84	
2	12/84	18/84	0	0	30/84	
3	4/84	0_	0	0	4/84	
Column Total	20/84	45/84	18/84	1/84	1 h	(M.)
-					771	9

Can we read out the marginal p.f. of *X* and *Y* from the table directly?

L-example 3.6

Reuse the p.d.f. of Example 3.3:

$$f(x,y) = \begin{cases} \frac{12}{13}x(x+y), & 0 \le x \le 1, 1 \le y \le 2\\ 0, & \text{elsewhere} \end{cases}.$$

Assume that it is the joint p.d.f. of (X,Y). Find the marginal distribution of X.

Solution: (X,Y) is a continuous RV. For each $x \in [0,1]$ we have

$$f_X(x) = \int_{-\infty}^{\infty} f(x,y)dy = \int_{1}^{2} \frac{12}{13}x(x+y)dy$$

$$= \frac{12}{13}x\left(x+\int_{1}^{2} ydy\right)$$

$$= \frac{12}{13}x(x+1.5);$$

and for $x \notin [0,1]$, $f_X(x) = 0$.

DEFINITION 7 (CONDITIONAL DISTRIBUTION)

Let (X,Y) be a RV with joint p.f. $f_{X,Y}(x,y)$. Let $f_X(x)$ be the marginal p.f. for X. Then for any x such that $f_X(x) > 0$, the **conditional probability** function of Y given X = x is defined to be

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}.$$

REMARK

• For any y such that $f_Y(y) > 0$, we can similarly define the **conditional distribution of** X **given** Y = y:

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}.$$

- $f_{Y|X}(y|x)$ is defined only for x such that $f_X(x) > 0$; likewise $f_{X|Y}(x|y)$ is defined only for y such that $f_Y(y) > 0$.
- The practical meaning of $f_{Y|X}(y|x)$: the distribution of Y given that the random variable X is observed to take the value x.

- Considering y as the variable (x as a fixed value), $f_{Y|X}(y|x)$ is a p.f., so it must satisfy all the properties of p.f.. $\sum f_{y|X}(y|x) = 1$.

 • But $f_{Y|X}(y|x)$ is not a p.f. for $f_{Y|X}(x)$ this means that there is NO re
 - quirement $\int_{-\infty}^{\infty} f_{Y|X}(y|x)dx \neq 1$ for X continuous or $\sum f_{Y|X}(y|x) \neq 1$ for X discrete.
- With the definition, we immediately have
- If $f_X(x) > 0$, $f_{X,Y}(x,y) = f_X(x)f_{Y|X}(y|x)$.
- If $f_Y(y) > 0$, $f_{X,Y}(x,y) = f_Y(y) f_{X|Y}(x|y)$.

• One immediate application of the conditional distribution is to compute, for continuous RV,

Their practical meanings are clear: the former is the probability that $Y \le y$, given X = x; the latter is the average value of Y given X = x.

For discrete case, the computation is similarly established based on $f_{Y|X}(y|x)$; please fill in the details on your own.

Example 3.5 Revisit Examples 3.2 and 3.4.

- The joint p.f. for (X, Y) is given by $f(x, y) = \frac{1}{36}xy$ for x = 1, 2, 3 and y = 1, 2, 3.
- The marginal p.f. for X is $f_X(x) = \frac{1}{6}x$ for x = 1, 2, 3.
- Therefore, $f_{Y|X}(y|x)$ is defined for any x = 1, 2, or 3:

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{(1/36)xy}{(1/6)x} = \frac{1}{6}y,$$

for y = 1, 2, 3.

We can compute
$$P(Y=2|X=1) = f_{Y|X}(2|1) = \frac{1}{6} \cdot 2 = 1/3;$$

 $P(Y \le 2|X = 1) = P(Y = 1|X = 1) + P(Y = 2|X = 1)$

- $= f_{Y|X}(1|1) + f_{Y|X}(2|1) = 1/6 + 1/3 = 1/2;$
- $E(Y|X=2) = 1 \cdot f_{Y|X}(1|2) + 2 \cdot f_{Y|X}(2|2) + 3 \cdot f_{Y|X}(3|2)$

 $= 1 \cdot (1/6) + 2 \cdot (2/6) + 3 \cdot (3/6) = 7/3.$

L-example 3.7

We reuse the joint p.f. of (X,Y) derived in L-Example 1:

·	D(1=0)x=0= 7/84					
	X	y				Row
E(Y X=1)		(O)	1	2	3	Total
	0	0	3/84	6/84	1/84	10/84
		4/84	24/84	(12/84)		(40/84)
	2	12/84	18/84	0	0	30/84
	3	4/84	0	0	0	4/84
	Column Total	20/84	45/84	18/84	1/84	1

Can we read out the conditional p.f. $f_{X|Y}(x|y)$ and $f_{Y|X}(y|x)$ from the table directly? How to compute E(Y|X=x)?

L-example 3.8 Reuse Examples 3.3 and L-Example 2.

• The joint p.f. for (X,Y) is given by

$$f(x,y) = \begin{cases} \underbrace{12}_{13} x(x+y), & 0 \le x \le 1 \\ 0, & \text{elsewhere} \end{cases}$$

• The marginal p.f. for *X* is given by

$$f_X(x) = \frac{12}{13}x(x+1.5),$$

for $x \in [0, 1]$.

• For each $x \in [0,1]$, the conditional p.f. $f_{Y|X}(y|x)$,

• For each
$$x \in [0,1]$$
, the conditional p.f. $f_{Y|X}(y|x)$,

for $y \in [1, 2]$.

$$f_{Y|X}(y|x) = \underbrace{f_{X}(x)}_{f_{X}(x)} = \underbrace{\frac{(12/13)x(x+y)}{(12/13)x(x+1.5)}}_{= \frac{x+y}{1.5}},$$

$$= \frac{f_X(x)}{x+y}, \qquad (12/13)x(x+1.5)$$

$$= \frac{x+y}{x+1.5}, \qquad (12/13)x(x+1.5)$$

We can compute
$$P(Y \le 1.5)X = 0.5) = \int_{0.5}^{1.5} \frac{0.5 + y}{0.5 + 1.5} dy = 0.5625.$$

Furthermore

$$E(Y|X = 0.5) = \int_{1}^{2} \sqrt{\frac{0.5 + y}{0.5 + 1.5}} dy$$

$$= \frac{1}{2} \int_{1}^{2} (0.5y + y^{2}) dy$$

$$= \frac{1}{2} \left(\frac{3}{4} + \frac{7}{3}\right) = 37/24.$$

DEFINITION 8 (INDEPENDENT RANDOM VARIABLES)

• Random variables X and Y are **independent** if and only if for **any** x and y,

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

• Random variables $X_1, X_2, ..., X_n$ are **independent** if and only if for any $x_1, x_2, ..., x_n$,

$$f_{X_1,X_2,...,X_n}(x_1,x_2,...x_n) = f_{X_1}(x_1)f_{X_2}(x_2)\cdots f_{X_n}(x_n).$$

REMARK

- The above definition is applicable no matter whether (X,Y) is continuous or discrete.
- The "product feature" in the definition implies one necessary condition for independence: $R_{X,Y}$ needs to be a product space. In the sense that if X and Y are independent, for any $x \in R_X$ and any $y \in R_Y$, we have

$$y \in R_Y, \text{ we have} \qquad \begin{cases} x, y = \frac{1}{2} & (x, y) : f(x, y) > 0 \\ f_{X,Y}(x, y) = f_X(x) f_Y(y) > 0, \end{cases}$$

$$\text{implying } R_{X,Y} = \{(x, y) | x \in R_X; y \in R_y\} = R_X \times R_Y.$$

Conclusion: if $R_{X,Y}$ is not a product space, then X and Y are not independent!

Properties of Independent Random Variables

Suppose X, Y are independent RVs.

(1) If *A* and *B* are arbitrary subsets of \mathbb{R} , the events $X \in A$ and $Y \in B$ are independent events in *S*. Thus

$$P(X \in A; Y \in B) = P(X \in A)P(Y \in B).$$

In particular, for any real numbers x, y,

$$P(X \le x; Y \le y) = P(X \le x)P(Y \le y).$$

$$F(x, y) = F(x)F(y)$$

- (2) For arbitrary functions $g_1(\cdot)$ and $g_2(\cdot)$, $g_1(X)$ and $g_2(Y)$ are independent dent! For example,
 - X^2 and Y are independent.

 - $\sin(X)$ and $\cos(Y)$ are independent. $E(X^2Y) = EX^2 \cdot EY$ e^X and $\log(Y)$ are independent. $E(e^{X+Y}) = Ee^X \cdot EQ^X$
- (3) Independence is connected with conditional distribution.
 - If $f_X(x) > 0$, then $f_{Y|X}(y|x) = f_Y(y)$.
 - Likewise, if $f_Y(y) > 0$, then $f_{X|Y}(x|y) = f_X(x)$.

Example 3.6 The joint p.f. of (X,Y) is given below.

·		$f_{xx}(y)$		
\mathcal{X}	1	3	5	$f_X(x)$
2	0.1	0.2	0.1	0.4
4	0.15	0.3	0.15	0.6
$f_Y(y)$	0.25	0.5	0.25	1

Are *X* and *Y* independent?

Solution:

• We need to check that for every *x* and *y* combination, whether we have

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

For example, from the table, we have $f_{X,Y}(2,1) = 0.1$; $f_X(2) = 0.4$, $f_Y(1) = 0.25$. Therefore

$$f_{X,Y}(2,1) = 0.1 = 0.4 \times 0.25 = f_X(2)f_Y(1).$$

- In fact, we can check for each $x \in \{2,4\}$ and $y \in \{1,3,5\}$ combination, the equality holds.
- We conclude that *X* and *Y* are independent.

L-example 3.9 Given that

$$f_{X,Y}(x,y) = \begin{cases} 2(x+y), \\ 0 \end{cases}$$

Are
$$X$$
 and Y independent?

$$f(y) = \int_{0}^{\infty} f(x, y) dy$$

$$f(y) = \int_{0}^{\infty} f(x, y) dx$$

Solution:

• The direct way of checking the independence is to check whether

holds for every (x,y) combination. The detail of this method is left as an exercise.

• For this question, we can immediately conclude that X and Y are not independent by checking that $R_{X,Y}$ is not a product space.

L–example 3.10 Suppose that (X,Y) is a discrete RV. The joint p.f. is given by

v	y				$f_{-}(x)$
\mathcal{X}	0	1	2	3	$f_X(x)$
0 (1/8	1/4	1/8	(0)	1/2
1	0	1/8	1/4	1/8	1/2
$f_Y(y)$	1/8	3/8	3/8	1/8	1

Are *X* and *Y* independent?

Solution:

The zero entries in the table indicate that $R_{X,Y}$ is not a product space. Therefore, X and Y are not independent.

L–example 3.11 We have a handy way to check independence when $f_{X,Y}(x,y)$ has an explicit formula in $R_{X,Y}$.

X and *Y* are independent if and only if both of the following hold:

- $R_{X,Y}$, the range that the p.f. is positive, is a product space.
 - For any $(x,y) \in R_{X,Y}$, we have $f_{X,Y}(x,y) \neq C \cdot g_1(x)g_2(y)$; that is, it can be "factorized" as the product of two functions g_1 and g_2 , where the former **depends on** x **only**, the latter **depends on** y **only**, and C is a constant not depending on both x and y.

Note: $g_1(x)$ and $g_2(y)$ on their own are NOT necessarily p.f.s.

- We use the joint p.d. in Example 3.2 to illustrate: $f(x,y) = \frac{1}{36}xy$ for x = 1, 2, 3 and y = 1, 2, 3.
- $A_1 = \{1,2,3\}$ and $A_2 = \{1,2,3\}$, so the $R_{X,Y}$ is a product space.
- $f_{X,Y}(x,y) = \frac{1}{36} \cdot (x) \cdot (y)$: $C = 1/36, g_1(x) = x, g_2(y) = y$.
- We conclude that *X* and *Y* are independent.
- The advantage of this method is that we don't need to find the marginal distributions $f_X(x)$ and $f_Y(y)$ and check $f_{X,Y}(x,y) = f_X(x)f_Y(y)$

Following this strategy, we can get $f_X(x)$ and $f_Y(y)$ by standardizing $g_1(x)$ and $g_2(y)$. Consider $f_X(x)$ for illustration; $f_Y(y)$ is obtained similarly.

• If *X* is a discrete RV, its p.m.f. is given by

$$f_X(x) = \frac{g_1(x)}{\sum_{t \in R_X} g_1(t)}.$$

• If *X* is a continuous RV, its p.d.f. is given by

$$\int \int \int \left| \frac{g_1(x)}{f_X(x)} \right| = \frac{\left(g_1(x)\right)}{\int \int \int \left| \frac{g_1(x)}{g_1(t)} \right|} dt.$$

• We continue to use the example above to illustrate. Here X is a discrete RV, $R_X = A_1 = \{1, 2, 3\}$. We obtain its p.m.f.:

$$f_X(x) = \frac{g_1(x)}{\sum_{x \in R_X} g_1(x)} = \frac{x}{\sum_{x=1}^3 x} = x/6.$$

• Similarly, we get $f_Y(y) = y/6$.

L–example 3.12 Given that

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{2}x(1+y), & \text{for } 0 < x < 2, 0 < y < 1 \\ 0, & \text{elsewhere} \end{cases}$$

Are *X* and *Y* independent?

Solution:

- Set $A_1 = (0,2)$ and $A_2 = (0,1)$, then $R_{X,Y} = A_1 \times A_2$ is a product space.
- $f_{X,Y}(x,y)$ in $R_{X,Y}$ can be factorized by C = 1/3, $g_1(x) = x$ $g_2(y) = 1+y$. Therefore, we conclude that X and Y are independent.
- Furthermore,

$$f_X(x) = \frac{g_1(x)}{\int_{x \in A_1} g_1(x) dx} = \frac{x}{\int_0^2 x dx} = \frac{x/2};$$

$$f_Y(y) = \frac{g_2(y)}{\int_{y \in A_2} g_2(y) dy} = \frac{1+y}{\int_0^1 (1+y) dy} = \frac{2}{3}(1+y).$$

4 EXPECTATION AND COVARIANCE

DEFINITION 9 (EXPECTATION)

For any two variable function g(x, y),

• if(X,Y) is a discrete RV,

$$E(g(X,Y)) = \sum_{x} \sum_{y} g(x,y) f_{X,Y}(x,y);$$

• *if* (X,Y) *is a continuous RV,*

$$E(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dy dx.$$

If we let

$$g(X,Y) = (X - E(X))(Y - E(Y)) = (X - \mu_X)(Y - \mu_Y),$$

the expectation E[g(X,Y)] leads to the covariance of X and Y.

DEFINITION 10 (COVARIANCE)

The *covariance* of *X* and *Y* is defined to be

$$cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

• If *X* and *Y* are discrete RVs,

• If *X* and *Y* are continuous RVs,

$$cov(X,Y) = \sum_{x} \sum_{y} (x - \mu_X)(y - \mu_Y) f_{X,Y}(x,y).$$

x - y

$$cov(X,Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y) f_{X,Y}(x,y) dx dy.$$

The covariance has the following properties.

(1)
$$\operatorname{cov}(X,Y) = E(XY) - E(X)E(Y)$$
.

(2) If *X* and *Y* are independent, then cov(X,Y) = 0. However, cov(X,Y) = 0 does not imply that *X* and *Y* are independent.

$$Cou(J(Y)S(Y)) = EJ(X)EJUY)$$

(3)
$$\operatorname{cov}(AX - CY - CY - COV(X, Y))$$
.

$$Cov(X, -1) = (1) Cov(X, Y) = - Cov(X, Y)$$

(4)
$$V(aX + bY) = a^2V(X) + b^2V(Y) + 2ab \cdot cov(X, Y)$$
.

Example 3.7 Given the joint distribution for (X,Y):

v	y				f(x)
\mathcal{X}	0	1	2	3	$f_X(x)$
0	1/8	1/4	1/8	0	1/2
1	0	1/8	1/4	1/8	1/2
$f_Y(y)$	1/8	3/8	3/8	1/8	1

- (a) Find E(Y X).
- (b) Find cov(X, Y).

Solution:

(a) Method 1:

$$\underbrace{E(Y-X)}_{+\ldots+(3-1)(1/8)+(1-0)(1/4)+(2-0)(1/8)}_{+\ldots+(3-1)(1/8)=1.$$

Method 2:

$$E(Y-X) = E(Y) - E(X) = 1.5 - 0.5 = 1,$$

where

$$E(Y) = 0 \cdot (1/8) + 1 \cdot (3/8) + 2 \cdot (3/8) + 3 \cdot (1/8) = 1.5$$

 $E(X) = 0 \cdot (1/2) + 1 \cdot (1/2) = 0.5.$

(b) We use cov(X,Y) = E(XY) - E(X)E(Y) to compute. Note that we have computed E(X) and E(Y) in Part (a).

$$E(XY) = (0)(0)(1/8) + (0)(1)(1/4) + (0)(2)(1/8) + \dots + (1)(3)(1/8) = 1.$$

Therefore

$$cov(X,Y) = E(XY) - E(X)E(Y) = 1 - (0.5)(1.5) = 0.25.$$

L-example 3.13 Suppose that
$$(X,Y)$$
 has the p.f.
$$(Y,Y) = \begin{cases} x^2 + \frac{xy}{3}, & \text{for } 0 \le x \le 1, 0 \le y \le 2 \\ 0, & \text{otherwise} \end{cases}$$

- (a) Find $f_X(x)$, $f_Y(y)$ and $f_{Y|X}(y|x)$.
- (b) Find cov(X, Y).

Solution:

(a) We first find the marginal density of *X*.

For
$$0 \le x \le 1$$
,

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy = \int_{0}^{2} \left(x^2 + \frac{xy}{3} \right) \, dy$$
$$= \left(x^2 y + \frac{xy^2}{6} \right) \Big|_{y=0}^{2} = 2x^2 + \frac{2x}{3}.$$

It is clear that $f_X(x) = 0$ for x < 0 or x > 1. Thus

$$f_X(x) = \begin{cases} 2x^2 + \frac{2x}{3}, & \text{for } 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$

Similarly, the marginal density of *Y* is given as

$$f_Y(y) = \begin{cases} \frac{1}{3} + \frac{y}{6}, & \text{for } 0 \le y \le 2\\ 0, & \text{otherwise} \end{cases}$$
.

The conditional probability density function of *Y* given X = x when

$$0 \le x \le 1 \text{ is then given as}$$

$$f_{Y|X}(y|x) = f_{X,Y}(x,y) = \begin{cases} \frac{x^2 + xy/3}{2x^2 + 2x/3}, & \text{for } 0 \le y \le 2\\ 0, & \text{otherwise} \end{cases}$$

$$\frac{3x + 3}{3x + 3} \text{ of } 0 \le y \le 2$$

$$\frac{3x + 3}{2(3x + 1)} \text{ of } 0 \le y \le 2$$

$$0, & \text{otherwise} \end{cases}$$

$$0, & \text{otherwise}$$

(b) We shall use the expression cov(X,Y) = E(XY) - E(X)E(Y).

Now

$$E(XY) = \int_0^2 \int_0^1 xy \left(x^2 + \frac{xy}{3}\right) dx dy$$

$$= \int_0^2 \int_0^1 \left(yx^3 + \frac{y^2x^2}{3}\right) dx dy$$

$$= \int_0^2 \left(y\frac{x^4}{4} + \frac{y^2x^3}{9}\right) \Big|_{x=0}^1 dy$$

$$= \int_0^2 \left(\frac{y}{4} + \frac{y^2}{9}\right) dy$$

$$= \frac{43}{51}$$

We have computed the marginal distributions for *X* and *Y* in Part (a). Thus

$$E(X) = \int_0^1 x \left(2x^2 + \frac{2x}{3}\right) dx = \left(\frac{2x^4}{4} + \frac{2x^3}{9}\right) \Big|_{x=0}^1 = \frac{13}{18},$$

and

and
$$E(Y) = \int_0^2 y \left(\frac{1}{3} + \frac{y}{6} \right) dy = \left(\frac{y^2}{6} + \frac{y^3}{18} \right) \Big|_{y=0}^2 = \frac{10}{9}.$$

This gives

$$cov(X,Y) = E(XY) - E(X)E(Y) = \frac{43}{54} - \frac{13}{18} \times \frac{10}{9} = -\frac{1}{162}.$$

L-example 3.14 $(X+Y) = \underbrace{E(X+Y)^2 - \underbrace{E(X+Y)^2 - E(X+Y)^2 - E(X$

- Start from $V(X+Y)=V(X)+V(Y)+2\operatorname{cov}(X,Y)$, we can have some interesting results. $V(X-Y)=V(X)+V(Y)+V(Y)+2\operatorname{cov}(X,Y)$
- By induction, we have for any random variables X_1, X_2, \dots, X_n ,

$$V(X_1 + X_2 + \dots + X_n) = V(X_1) + V(X_2) + \dots + V(X_n) + 2\sum_{i>i} cov(X_i, X_j).$$

• If
$$X$$
 and Y are independent, we have
$$\frac{\bigvee(X\pm Y)=\bigvee(X)+\bigvee(Y)}{\bigvee(X+(-Y))}$$
$$\bigvee(X+(-Y))=\bigvee(X+(-Y))$$
$$\bigvee(X+(-Y))=\bigvee(X+(-Y))$$
$$\bigvee(X+(-Y))=\bigvee(X+(-Y))$$

• By induction, we have if $X_1, X_2, ..., X_n$ are independent,

$$V(X_1 \pm X_2 \pm \ldots \pm X_n) = V(X_1) + V(X_2) + \ldots + V(X_n).$$