SWEN430 - Compiler Engineering (2018)

Lecture 4 - Parsing II

Lindsay Groves & David J. Pearce

School of Engineering and Computer Science Victoria University of Wellington

When does the Choice Condition Fail?

•
$$S \longrightarrow a U \mid a V$$

•
$$S \longrightarrow a T \mid S b$$

What can we do about this?

Left factoring

Sometimes we can transform a non-LL(1) grammar into LL(1) form:

$$ullet$$
 $S\longrightarrow a\ U\mid a\ V$ $S\longrightarrow a\ (\ U\mid V\)$

$$\mathcal{S}\longrightarrow$$
a ($U\mid V$)

$$ullet egin{array}{lll} oldsymbol{S} &\longrightarrow egin{array}{lll} oldsymbol{U} & T & V & c & S & \longrightarrow egin{array}{lll} oldsymbol{S} &\longrightarrow egin{array}{lll} oldsymbol{U} & T & \longrightarrow eta & Y & T & \longrightarrow egin{array}{lll} oldsymbol{V} & T & \longrightarrow egin{array}{lll} & T$$

•
$$S \longrightarrow a U \mid T V \mid c$$
 $S \longrightarrow a (U \mid X V) \mid T V \mid c$
 $T \longrightarrow a X \mid b Y$ $T \longrightarrow b Y$

•
$$S \longrightarrow a T \mid S b$$

$$egin{array}{l} \mathcal{S} \longrightarrow \mathsf{a} \; \mathcal{T} \; \mathcal{U} \ \mathcal{U} \longrightarrow \mathsf{b} \; \mathcal{U} \mid \lambda \end{array}$$

Ex: Convince yourself that these produce the same languages.

Note:

- (i) We are using an extended grammar notation allowing nested alternatives.
- (ii) The transformation changes the parse tree, especially in the last case.
- (iii) Can't always do this!!

Ex: Can you find a counterexample?

Left factoring

Given productions $N \longrightarrow x \alpha$ and $N \longrightarrow x \beta$, where x is either a terminal or non-terminal.

We can rewrite this as $N \longrightarrow x M$ and $M \longrightarrow \alpha \mid \beta$.

• Example:

$$List \longrightarrow () \mid (ListBody)$$

 $ListBody \longrightarrow ListElt \mid ListElt$, $ListBody$
 $ListElt \longrightarrow N \mid List$

• Becomes [N=List, x=(, α =), β =ListBody)] :

Ex: Complete the transformation.

Eliminating Left Recursion

• Left recursion occurs frequently in PL grammars, e.g.:

$$E \longrightarrow E + T \mid T$$
 $T \longrightarrow n$

Using right-recursion instead gives:

$$E \longrightarrow T E'$$

$$E' \longrightarrow + T E' \mid \lambda$$

$$T \longrightarrow n$$

 Better to use an extended BNF grammar, allowing repetition as in regular expressions:

$$E \longrightarrow T (+T)^*$$
 $T \longrightarrow n$

When does it work? — Take two

- When else does the parser need to make a decision?
- Consider a grammar of the form:

$$S \longrightarrow a T U$$
 $T \longrightarrow \lambda \mid b$
 $U \longrightarrow b$

Since T can produce the empty string (λ) , we need to decide whether a b in the input is part of T or part of U (in which case T is λ).

• If the grammar is:

$$egin{array}{ll} S & \longrightarrow & a \ T \ U \ T & \longrightarrow & \lambda \mid b \ U & \longrightarrow & c \end{array}$$

There is no problem.

Follow sets

Let γ be a non-terminal symbol. Then $follow(\gamma)$ is the set of all terminal symbols which may follow a string derived from γ in a sentence.

• For example:

$$S \longrightarrow T \text{ a } | U \text{ c}$$
 (1,2)
 $T \longrightarrow \text{d} T | \text{e}$ (3,4)
 $U \longrightarrow \text{c} U | \lambda$ (5,6)

follow(U) =
$$\{ c \}$$

follow(T) = $\{ a \}$

- What does this tell us about production rules 5 and 6?
- Do we need *follow* sets if there are no λ productions?

LL(1) — Condition 2

For any non-terminal symbol N where $N \Longrightarrow^* \lambda$, it must hold that $\mathit{first}(N) \cap \mathit{follow}(N) = \emptyset$.

• For example:

(i)
$$S \longrightarrow a \mid T$$
 b $T \longrightarrow b \mid \epsilon$

(ii)
$$S \longrightarrow (T \mid \epsilon)$$
 $T \longrightarrow S \setminus S$

• What are the follow() sets for these grammars?

Recursive Descent Parsing with Extended BNF Grammars

- Extended BNF grammars allow:
 - Nested alternatives, using (...) for grouping.
 - [A] to mean that A is optional.
 - A* to mean that A may occur 0 or more times.
 - A^+ to mean that A may occur 1 or more times.
- How can we extend the recursive descent to handle these forms?
- How do we extend the LL(1) conditions?

Recursive Descent Parsing with Extended BNF Grammars

• To parse [*A*]:

```
if nextSym can start A then parseA;
```

• To parse *A**:

```
while nextSym can start A do parseA;
```

- To parse A⁺:
 - Treat as A A*

```
parseA; while nextSym can start A do parseA;
```

• Or:

```
do parseA while nextSym can start A
```

• [A] and A^* can produce λ , so need to apply λ Condition to them.