CS M51A, Winter 2021, Assignment 7 (Total Mark: 90 points, 9%)

Due: Wed Feb 24th, 10:00 AM Pacific Time Student Name: Student ID:

Note: You must complete the assignments entirely on your own, without discussing with others.

1. (10 Points) Consider the D flip-flop illustrated in the diagram below:

In the Figure below are traces of C and D; draw the resulting traces of QI and QE.

2. (10 Points) Now consider when we move the inverter in the D flip-flop illustrated in the diagram below:

In the Figure below are traces of C and D; draw the resulting traces of QI and QE.

3. In class, we designed an SR-latch using NOR gates. Suppose instead we try to implement it using NAND gates as given below:

(a) (4 Points) What setting of R and S sets Q to 1 and Q' to 0?

(b) (4 Points) What setting of R and S sets Q to 0 and Q' to 1?

(c) (4 Points) What setting of R and S sets Q to Q and Q' to Q'?

- 4. A PN flip-flop has four operations: 0(reset), 1(set), no change (output remains unchanged) and toggle (output changes to its complement), when inputs P and N are 00, 01, 10, 11, respectively.
 - (a) (4 Points) If we use Q(t) to represent the output of a PN flip-flop at time t, fill in the following table:

P	N	Q(t+1)
0	0	0
0	1	
1	0	Q(t)
1	1	Q(+) ¹

(b) (4 Points) Write the expression for Q(t+1) in terms of present input (P and N) and state Q(t).

(c) (14 Points) Show the state transition table and state diagram of a PN flip-flop with input $(P \in \{0, 1\})$ and $N \in \{0, 1\}$, output (z = Q(t)) and state $(Q(t) \in \{0, 1\})$.

(d) (4 Points) Show how a PN flip-flop can be converted to a D flip-flop.

5. We would like to analyze the following sequential network. It has two input bits x_1 and x_0 , with a single output bit z. Note, both D Flip-flops connect to the same CLK, not shown in the figure for simplicity.

(a) (4 Points) Write expressions for z, $y_1(t+1)$ and $y_0(t+1)$ in terms of inputs $(x_1$ and $x_0)$ and present states $(y_1$ and $y_0)$.

$$Z = \lambda'_1 \lambda'_0$$

$$\lambda'_1(+1) = \lambda'_1 \lambda'_0 + \lambda'_1 \lambda'_0$$

$$\lambda'_0(+1) = \lambda'_1 \lambda'_0 + \lambda'_1 \lambda'_0$$

(b) (8 Points) Using the expressions, fill in the table below.

PS		Output			
$y_1(t)y_0(t)$	00	01	10	11	z
00	1.1	01	10	01	l
01	10	11	10	1.1	0
10	11	61	10	00	0
11	10	10	10	10	0

(c) (4 Points) Is this a Moore or Mealy machine?

(d) (8 Points) Draw the state diagram for this system

6. (4 Points) For a sequential network, what is a set-up time and hold time? Please describe.

set-up time: minimal time interval from input to the triggering edge

hold time: minimal time interval from the triggering edge to the next change of input

- 7. (4 Points) Explain how does the Master-slave architecture realize the edge-triggering mechanism. You may use the Master-slave D Flip-flip as an example.
- (a) before the triggering edge, input is saved into the first latch but does not affect the second one.
- (b) when the triggering edge comes, the saved input /output of
 the first latch is transmitted to the second one checomes output)
- of the triggering edge, the output of the first latch/the input of the second latch remain undranged, therefore the output is also unchanged.