I. Introduction & Background

- 1.1 What is Operating System
- 1.2 Function & Goals of Operating System
- 1.3 Types of Operating system
- 1.4 Multiprogrammed Operating System
- 1.5 Architectural requirements for multiprogrammed OS
- \$\simeq 1.6 Mode Shifting in Multiprogrammed OS
- 1.7 System Calls
- 1.8 Fork System Call
- 1.9 Problem Solving

II. Process Management

- 2.Process Concepts
 - 2.1 program Vs Process
 - 2.2 Process as ADT
 - 2.3 Process State Transition Diagram
 - 2.4 Schedulers & Dispatchers
 - 2.5 Problem Solving

3.CPU Scheduling & -(90%)

- 3.1 Need For Scheduling & Scheduling Criteria
- 3.2 Process Times
- 3.3 Scheduling Algorithms
 - 3.3.1 FCFS
 - 3.3.2 SJF
 - 3.3.3 SRTF
 - 3.3.4 LRTF
 - 3.3.4 LRTF
 - 3.3.5 Priority
 - 3.3.6 Round Robin
 - 3.3.7 Multilevel Queue Scheduling
- 3.4 Problem Solving

4. Multithreading

- 4.1 Thread Concept & Benefits
- 4.2 Types of Threads
- 4.3 Thread Issues
- 4.4 Thread Libraries
- 4.5 Problem Solving

5. Process Synchronization/Coordination

- 5.1 What is IPC & Synchronization
- 5.2 Types of Synchronization
- 5.3 Critical Section Problem
- 5.4 Requirements of CS Problem

Theoretical

5.5 Synchronization Mechanism

- 5.5.1 Lock Variables
- 5.5.2 Strict Alternation
- 5.5.3 Peterson Solution
- 5.5.4 Synchronization Hardware
- 5.5.5 Semaphores Intro

5.6 Classical IPC Problems

- 5.6.1 Producer Consumer Problem
- 5.6.2 Reader-Writer Problem
- 5.6.3 Dining Philosopher Problem

5.7 Monitors

5.8 Concurrency Mechanisms

- 5.8.1 Parallel Construct
- 5.8.2 Fork & Join Statement

5.10 Problem Solving

6. Deadlocks

- 6.1 Concepts of Deadlock
- 6.2 System Model
- 6.3 Deadlock Characterizations
 - 6.3.1 Necessary conditions
 - 6.3.2 Resource Allocation Graph

6.4 Deadlock Handling Strategies

- 6.4.1 Prevention
- 6.4.2 Avoidance
 - 6.4.2.1 Bankers Algorithm
- 6.4.3 Detection & Recovery
- 6.4.4 Deadlock Ignorance
- 6.5 Problem Solving

III Memory Management

- 7. Abstract View of Memory:
- 8. Loading vs Linking ~
- 9. Address Binding
- 10. Memory Management Techniques

- 10.1 Swapping
- 10.2 Partitioning
 - 10.2.1 Fixed Partitions
 - 10.2.2 Variable partitions

- Non Contiguous Allocation
 - 11.3.1 Simple Paging
 - 11.3.2 Paging With TLB
 - 11.3.3 Hashed Paging
 - * 11.3.4 Multilevel Paging
 - 11.3.5 Inverted Paging
 - 11.3.6 Shared Paging
 - 11.3.7 Segmentation
 - * 11.3.8 Segmented-Paging Architecture

13. Problem Solving

IV. File System & Device Management

- 14. Physical Structure of Disk
- 15. Logical Structure of Disk
- 16. File System Interface
 - 16.1 File & Directory Concept
 - 16.2 File Attributes
 - 16.3 File Operations
 - 16.4 Types of Files
 - 16.5 Directory Structure

17. File System Implementation

- 17.1 Allocation Methods
- 17.2 Disk Free Space Management Algorithms

19. IO Scheduling(Disk Scheduling)

- 19.1 Need for Disk Scheduling
- 19.2 Disk Scheduling Techniques
 - 19.2.1 FCFS
 - 19.2.2 SSTF
 - 19.2.3 SCAN
 - * 19.2.4 LOOK
 - * 19.2.5 C-SCAN
 - * 19.2.6 C-LOOK
- 20. Problem Solving

OS Course > SATE TIFR UGC-NET ISRO > Subject Knowledge - Strengtune p placements in level-1 Companies

Jypes of Questions

M.C.Q:

M.S.Q:

NAT:

WINDOWS:

LZ: Desktop

D

LZ Shell
C:>:

other sefris 9 05 -> Resource Manager Devide Divers, Semaphores

-> Control Program(s) > Set quililities to Simplify appl. development (Platform Envir

-> Acts Junctions like a Govt

(Functions & Goals)

Non-volatile Memory Secondary Auniliary Disk; Centridges; Physical

