[Healthcare Project]

[Predicting the insurance cost based on several health parameters]

[Submitted by -Jyotiranjan Padhiary]

Table of Contents

Table of Contents	
Health care	(
1.Introduction	
2.EDA and Business Implication	<i>6</i>
3.Data Cleaning and Pr-Processing	
4.Model building	
5.Model Validation	
6. Final Recommendation	

List of Tables

Table 1 - Descriptive details of the data	<i>6</i>
Table 2 -Data Dictionary	7
Table 3 -Variable info	7
Table 4 -Clusters table	30
Table 5 -Intercepts of OLS stat model	31
Table 6 -OLS Summary	
Table 7 -Results of ANN, DT and RF	33
Table 8 - Results after Grid search cv	33
Table 9 -Results of the models built from only important features	34
Table 10 -Results of model built from important features after doing grid search cy	34

List of Figures

Figure 1 - Distribution of daily_avg_steps	8
Figure 2 - Distribution of age	
Figure 3 -Distribution of avg_glucose_level	
Figure 4 - Distribution of BMI	
Figure 5 -Distribution of weight	9
Figure 6 -Distribution of fat percentage	10
Figure 7 - Distribution of insurance cost	10
Figure 8 -Box plot of daily avg steps	11
Figure 9 -Box plot of age	
Figure 10 -box plot of avg glucose level	11
Figure 11 -box plot of BMI	
Figure 12 -Box Plot of weight	
Figure 13 -box plot of fat percentage	
Figure 14 -box plot of insurance cost	
Figure 15 -Distribution of years of insurance with us	
Figure 16 -Distribution of regular checkup last year	
Figure 17 -distribution of adventure sports	
Figure 18 -distribution of visited doctor last yr	
Figure 19 -distribution of heart disease history	
Figure 20 -distribution of other major disease history	
Figure 21 -distribution of weight change in last one year	
Figure 22 -Distribution of occupation	
Figure 23 -distribution of cholesterol levels	
Figure 24 -distribution of enotesic to tevels	
Figure 25 -distribution of location	
Figure 26 -Distribution of alcohol	
Figure 27 - distribution of exercise	
Figure 28 -distribution of covered by any other company	
Figure 30 -Correlation plot	
Figure 31 - Insurance cost vs weight	
Figure 32 -insurance cost vs age	
Figure 33 -insurance cost vs fat percentage	21
Figure 34 -insurance cost vs BMI	
Figure 35 -insurance cost vs avg glucose level	
Figure 36 - Insurance cost vs daily avg steps	
Figure 37 - Year of insurance with us vs adventure_sports	
Figure 38 -years of insurance with us vs regular checkup last yr	
Figure 39 -visited doctor last yr vs years of insurance with us	
Figure 40 -heart disease history vs years of insurance with us	
Figure 41 -years of insurance with us vs weight change in last one year	
Figure 42 -other major disease history vs years of insurance with us	
Figure 43 -Occupation vs cholesterol variables	
Figure 44 -Gender vs cholesterol	
Figure 45 -Exercise vs cholesterol	
Figure 46 -Smoking status vs cholesterol	
Figure 47 -Alcohol vs cholesterol	
Figure 48 - Applicant id column removed	
Figure 49 - Missing values dropped	
Figure 50 - After removal of outlier	
Figure 51 - Continuous variables after scaling	
Figure 52 -Clusters	
Figure 53 -Linear regression prediction against test data	31
Figure 54 -Feature importance plot of Random forest	33

Health care

1. Introduction

Health care expenditure is one of the major expenses and everybody wants to avoid it by taking insurance, but nowadays people are not aware of how much they should invest in insurance to properly cover themselves in case of medical emergencies. Insurance companies on the other hand should have mechanism to know how much they should take premium from an individual in order to reduce their risk.

It is very important for an individual to know how much they should invest in insurances to avoid financial crisis during emergencies and insurance companies should also know how much is the risk involved with an individuals life in order to align the cost of insurance for him/her.

It will have a great impact in society where we can tell people how much they should invest in insurance policy according to their medical history and health conditions. Also insurance companies will be benefited from this where they can use this model to predict the insurance premium for an individual by taking info about their medical history and health conditions. They can reduce the risk by doing this.

2. EDA and Business Implication

The quantitative data has been collected for 25000 individuals from an insurance company, in the year of 2018-19.

a) Visual inspection of data (rows, columns, descriptive details)

There are 25000 rows and 24 columns.

	years_of_insurance_with_us	regular checkup laev year	adventure enorte	Occupation	visited doctor last 1 year	cholesterol level	daily_avg_steps
	years_or_msurance_witir_us	regular_checkup_lasy_year	auventure_sports	Occupation	visited_doctor_last_1_year	Cholesterol_lever	dany_avg_steps
count	25000.000000	25000.000000	25000.000000	25000	25000.000000	25000	25000.000000
unique	NaN	NaN	NaN	3	NaN	5	NaN
top	NaN	NaN	NaN	Student	NaN	150 to 175	NaN
freq	NaN	NaN	NaN	10169	NaN	8763	NaN
mean	4.089040	0.773680	0.081720	NaN	3.104200	NaN	0.511062
std	2.606612	1.199449	0.273943	NaN	1.141663	NaN	0.204211
min	0.000000	0.000000	0.000000	NaN	0.000000	NaN	0.000000
25%	2.000000	0.000000	0.000000	NaN	2.000000	NaN	0.375000
50%	4.000000	0.000000	0.000000	NaN	3.000000	NaN	0.489996
75%	6.000000	1.000000	0.000000	NaN	4.000000	NaN	0.625000
max	8.000000	5.000000	1.000000	NaN	12.000000	NaN	1.000000

Table 1- Descriptive details of the data

b) Understanding of attributes (variable info, renaming if required) Data Dictionary

Variable	Business Definition
applicant_id	Applicant unique ID
years_of_insurance_with_u	Since how many years customer is taking policy from the same
S	company only
	Number of times customers has done the regular health check up in
regular_checkup_lasy_year	last one year
	Customer is involved with adventure sports like climbing, diving
adventure_sports	etc.
Occupation	Occupation of the customer
visited_doctor_last_1_year	Number of times customer has visited doctor in last one year
cholesterol_level	Cholesterol level of the customers while applying for insurance
daily_avg_steps	Average daily steps walked by customers
age	Age of the customer
heart_decs_history	Any past heart diseases
other_major_decs_history	Any past major diseases apart from heart like any operation
Gender	Gender of the customer
avg_glucose_level	Average glucose level of the customer while applying the insurance
bmi	BMI of the customer while applying the insurance
smoking_status	Smoking status of the customer

Table 2-Data Dictionary

Data	columns (total 24 columns):		
#	Column	Non-Null Count	Dtype
	11222		
0	applicant_id	25000 non-null	int64
1	years_of_insurance_with_us	25000 non-null	int64
2	regular_checkup_lasy_year	25000 non-null	int64
3	adventure_sports	25000 non-null	int64
4	Occupation	25000 non-null	object
5	<pre>visited_doctor_last_1_year</pre>	25000 non-null	int64
6	cholesterol_level	25000 non-null	object
7	daily_avg_steps	25000 non-null	int64
8	age	25000 non-null	int64
9	heart_decs_history	25000 non-null	int64
10	other_major_decs_history	25000 non-null	int64
11	Gender	25000 non-null	object
12	avg_glucose_level	25000 non-null	int64
13	bmi	24010 non-null	float64
14	smoking_status	25000 non-null	object
15	Year_last_admitted	13119 non-null	float64
16	Location	25000 non-null	object
17	weight	25000 non-null	int64
18	covered_by_any_other_company	25000 non-null	object
19	Alcohol	25000 non-null	object
20	exercise	25000 non-null	object
21	weight_change_in_last_one_year	25000 non-null	int64
22	fat_percentage	25000 non-null	int64
23	insurance_cost	25000 non-null	int64
dtype	es: float64(2), int64(14), objec	t(8)	

Table 3-Variable info

There are 25 variables 15 numerical and 10 categorical. From the 15 numerical there are 7 discrete

and 8 continuous variables.

Exploratory Data Analysis

Distribution of continuous attributes.

Histograms

Figure 1- Distribution of daily_avg_steps

Figure 2 - Distribution of age

Figure 3-Distribution of avg_glucose_level

Figure 4- Distribution of BMI

Figure 5-Distribution of weight

Figure 6-Distribution of fat_percentage

Figure 7- Distribution of insurance cost

From the above distribution plots of continuous variables it can be inferred that distribution of daily average steps and BMI are left skewed.

Box-plots

Figure 8-Box plot of daily avg steps

Figure 9-Box plot of age

Figure 10-box plot of avg glucose level

Figure 11-box plot of BMI

Figure 12-Box Plot of weight

Figure 13-box plot of fat_percentage

Figure 14-box plot of insurance cost

Inference: from the above box plots it can be observed that no variable is normally distributed.

Discrete attributes:

Figure 15-Distribution of years of insurance with us

Figure 16-Distribution of regular checkup last year

Figure 17-distribution of adventure sports

Figure 18-distribution of visited doctor last yr

Figure 19-distribution of heart disease history

Figure 20-distribution of other major disease history

Figure 21-distribution of weight change in last one year

Inference: very less people are having heart and other disease history, and having a max of 3yrs of insurance with the company.

Categorical attributes:

Figure 22-Distribution of occupation

Salaried people are taking very less insurance compared to students and business men. As they will be having a corporate insurance already provided by their employers.

Figure 23-distribution of cholesterol levels

Most people are having cholesterol in the range of 150-175

Females are having very less insurance compared to male.

Figure 24-distribution of smoking status

Most people have never smoked

Figure 25-distribution of location

Most of the people from Bangalore are taking insurance

Figure 26-Distribution of alcohol

Figure 27- distribution of exercise

Most people are on moderate exercise routine.

Figure 28-distribution of covered by any other company

Figure 29-Distribution of year last admitted

We can observe that most people last got admitted in the year of 2004.

Bi-variate analysis

Correlations

Figure 30-Correlation plot

There are no variables which are highly correlated to each other.

Relation between two variables.

Continuous variables

Figure 31- Insurance cost vs weight

It can be observed that there is a linear relationship between weight of a person and insurance cost.

Figure 32-insurance cost vs age

Figure 33-insurance cost vs fat percentage

Figure 34-insurance cost vs BMI

Figure 35-insurance cost vs avg glucose level

Figure 36- Insurance cost vs daily avg steps

Discrete attributes:

Figure 37- Year of insurance with us vs adventure_sports

Figure 38-years of insurance with us vs regular checkup last yr

Figure 39-visited doctor last yr vs years of insurance with us

Figure 40-heart disease history vs years of insurance with us

Year of insurance Vs Other major disease history

Figure 41-years of insurance with us vs weight change in last one year

Figure 42-other major disease history vs years of insurance with us

Categorical Variables

Figure 43-Occupation vs cholesterol variables

Figure 44-Gender vs cholesterol

Figure 45-Exercise vs cholesterol

Figure 46-Smoking status vs cholesterol

Figure 47-Alcohol vs cholesterol

Inference: men who are salaried professionals and having alcohol rarely and exercise moderately are having high cholesterol of 225 to 250

Business insights from EDA

From our analysis we can give the below insights

- 1. Men who are salaried professionals and having alcohol rarely and exercise moderately are having high cholesterol of 225 to 250.
- 2. Females are taking very less insurance as compared to men.
- 3. Weight is linearly related to insurance cost.
- 4. Most people are taking insurance for 3 yrs only.
- 5. The target variable distribution is skewed
- 6. Insurance cost is lowest for salaried professionals as they have already company provided insurance.
- 7. Cost of insurance for men are higher than women
- 8. People in the range of cholesterol level between 150-175 are paying highest insurance cost.
- 9. Highest no of people have taken an insurance in the range of Rs.5,000 to 10,000
- 10. Year last admitted, covered by any other company, regular check up last year, weight and weight change in last one year are significantly contributing in explaining the insurance cost.

3.Data Cleaning and Pre-Processing

a)Removal of unwanted variables (if applicable)

We have removed the applicant id column as it is not required.

100	applicant_id	years_of_insurance_with_us	regular_checkup_lasy_year	adventure_sports	Occupation	visited_doctor_last_1_year	cholesterol_level
0	5000	3	1	1	Salried	2	125 to 150
1	5001	0	0	0	Student	4	150 to 175
2	5002	1	0	0	Business	4	200 to 225
3	5003	7	4	0	Business	2	175 to 200
4	5004	3	1	0	Student	2	150 to 175

	years_of_insurance_with_us	regular_checkup_lasy_year	adventure_sports	Occupation	visited_doctor_last_1_year	cholesterol_level
0	3	1	1	Salried	2	125 to 150
1	0	0	0	Student	4	150 to 175
2	1	0	0	Business	4	200 to 225
3	7	4	0	Business	2	175 to 200
4	3	1	0	Student	2	150 to 175

Figure 48- Applicant id column removed

a) Missing Value treatment (if applicable)

There are missing values present which we need to treat here for better model performance.

applicant_id	0
years_of_insurance_with_us	0
regular_checkup_lasy_year	0
adventure_sports	0
Occupation	0
visited_doctor_last_1_year	0
cholesterol_level	0
daily_avg_steps	0
age	0
heart_decs_history	0
other_major_decs_history	0
Gender	0
avg_glucose_level	0
bmi	990
smoking_status	11001
Year_last_admitted Location	11881
	0
weight	0
covered_by_any_other_company Alcohol	0
exercise	0
weight change in last one year	0
fat percentage	0
insurance cost	0
dtype: int64	U
desper incoa	
applicant id	0
years_of_insurance_with_us	0
regular checkup lasy year	0
adventure sports	0
Occupation	0
visited_doctor_last_1_year	0
cholesterol level	0
daily_avg_steps	0
age	0
heart_decs_history	0
other major decs history	0
Gender	0
avg glucose level	0
bmi	0
smoking_status	0
Year last admitted	0
Location	0
weight	0
covered_by_any_other_company	0
Alcohol	0
exercise	0
weight_change_in_last_one_year	0
fat_percentage	0
insurance_cost	0
dtype: int64	

Figure 49- Missing values dropped

b) Outlier treatment (if required)

We have treated the outliers as we are dealing with a regression problem where outlier can impact the accuracy of the model badly.

Figure 50- After removal of outlier

c) Variable transformation (if applicable)

We could not get all the outliers removed after the treatment so we had to scale and transform the variables. So we scaled the variable insurance cost, bmi and avg daily steps.

	daily_avg_steps	age	avg_glucose_level	bmi	weight	fat_percentage	insurance_cost
0	0.443029	28.0	97.0	0.511111	67.0	25.0	0.283019
1	0.768429	50.0	2 <mark>1</mark> 2.0	0.594444	58.0	27.0	0.056604
2	0.367839	68.0	166.0	0.766667	73.0	32.0	0.396226
3	0.726938	51.0	109.0	0.280556	71.0	37.0	0.377358
4	0.458193	44.0	118.0	0.380556	74.0	34.0	0.415094

Figure 51- Continuous variables after scaling

d) Clustering

Figure 52-Clusters

years_of_insurance_with_us regular_checkup_lasy_year adventure_sports Occupation visited_doctor_last_1_year cholesterol_level daily_avg_steps

clusters							
1	5.548282	0.434248	0.057785	0.997504	3.088501	1.280860	0.014927
2	5.472480	0.433749	0.103964	1.022197	3.085844	1.223783	0.010156
3	3.197451	0.986277	0.083442	1.004162	3.114789	1.271787	-0.007973

3 rows × 24 columns

Table 4-Clusters table

Three different clusters have been identified above.

4. Model building.

Why Build various models

Linear Regression:

To understand the strength of relationships between variables.

To know what predictors in a model are statistically significant and which are not.

Decision Tree Regressor:

Easy to understand

Lesser data cleaning is required

Random forest Regressor:

To determine the importance of a given feature and its impact on the prediction.

It computes the score for each feature after training and scales them in a manner that summing them adds to one.

This gives us an idea of which feature to drop as they do not affect the entire prediction process. With lesser features, the model will less likely fall prey to over-fitting.

Artificial Neural Network:

Linear regression can only learn the linear relationship between the features and target and therefore cannot learn the complex non-linear relationship.

In order to learn the complex non-linear relationship between the features and target, we are in need of other techniques. One of those techniques is to use Artificial Neural Networks.

Building Linear Regression

We have separated the dependent and independent variables as x and y and split the data set into train and test set by 70% and 30%

After that the shape of x_train data is (17500,23) and y_test data shape is (7500,1) and y_train shape is (17500,1) and x_test shape is (7500,23)

We have build a basic model at first and found the train data R-Square value to be 0.944 and test data R-Square value to be 0.945

The MSE score is 0.05 and RMSE score is 0.23.

We have also plotted the predicted value against the test data and the plot has come something like below

Figure 53-Linear regression prediction against test data

Intercept	0.010988
Occupation	0.002747
cholesterol_level	0.002848
Gender	0.002551
smoking_status	-0.000185
Year_last_admitted	-0.003265
Location	0.000548
covered_by_any_other_company	0.084734
Alcohol	0.000687
exercise	0.000087
years_of_insurance_with_us	-0.000879
regular_checkup_lasy_year	-0.032901
adventure_sports	0.008052
visited_doctor_last_1_year	-0.002545
daily_avg_steps	-0.001995
age	0.003055
heart_decs_history	0.006384
other_major_decs_history	0.004376
avg_glucose_level	0.001603
bmi	-0.000520
weight	0.959220
weight_change_in_last_one_year	0.012979
fat_percentage	-0.000750
dtype: float64	

Table 5-Intercepts of OLS stat model

	LS Regres						
			quared:		0.945		
odel:			. R-squared		0.945		
			tatistic:		1.358e+04		
			b (F-statis	+10).	0.00		
			-Likelihood		450.41		
o. Observations:	17500				-854.8		
f Residuals:	17477	BIC	Table 1		-676.1		
f Model:	22	010			0,0		
	onrobust						
variance type.							
		oef	std err	t	P> t	[0.025	0.975]
itercept		110		0.932	0.351	-0.012	0.034
cupation	0.00		0.002	1.183	0.237	-0.002	0.007
nolesterol_level	0.00		0.002	1.721	0.085	-0.000	0.006
ender	0.00		0.004	0.615	0.538	-0.006	0.011
noking_status	-0.00	302		-0.106	0.916	-0.004	0.003
ar_last_admitted	-0.00	933	0.000	-7.773	0.000	-0.004	-0.002
cation	0.00	905	0.000	1.328	0.184	-0.000	0.001
vered_by_any_other_company	0.0		0.004	21.040	0.000	0.077	0.093
cohol	0.00	907	0.003	0.259	0.795	-0.005	0.006
ercise	8.655e	-05	0.003	0.031	0.975	-0.005	0.000
ers_of_insurance_with_us	-0.00	909	0.001	-1.239	0.215	-0.002	0.001
gular_checkup_lasy_year	-0.0	329	0.002	-21.675	0.000	-0.036	-0.036
venture_sports	0.00		0.007	1.228	0.219	-0.005	0.021
sited_doctor_last_1_year	-0.00	925	0.002	-1.590	0.112	-0.006	0.001
ily_avg_steps	-0.00		0.002	-1.088	0.277	-0.006	0.002
e	0.00	931	0.002	1.712	0.087	-0.000	0.007
eart_decs_history	0.00	964	0.008	0.796	0.426	-0.009	0.022
her_major_decs_history	0.00	944	0.006	0.705	0.481	-0.008	0.017
g_glucose_level	0.00	916	0.002	0.898	0.369	-0.002	0.009
ni	-0.00	905	0.002	-0.267	0.790	-0.004	0.003
eight	0.9		0.002	398.079	0.000	0.954	0.964
eight_change_in_last_one_yea			0.001	11.349	0.000	0.011	0.015
t_percentage	-0.00	307	0.002	-0.417	0.677	-0.004	0.003
nibus:	640.409		bin-Watson:		1.979		
ob(Omnibus):	0.000	Jar	que-Bera ()	B):	794.665	5	
ew:	0.418	Pro	b(JB):		2.76e-173	3	
rtosis:	3.626	Con	d. No.		118.		

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Table 6-OLS Summary

From the above table we can observe that there are only 5 variables where the p value is less than 0.05 and the null hypothesis is rejected.

Regression equation:

```
Insurance cost = 0.00*occupation+0.00*cholesterol_level+0.00*gender-0.00*smoking_status-0.00*year_last

admitted+0.00*location+0.08*covered_by_any_other_company+0.00*Alcohol+0.00*e

xcercise-0.00*years_of insurance_with_us-
0.03*regular_checkup_last_year+0.00*adventure_sports-
0.00*visited_doctor_last_1_year-
0.00*daily_avg_steps+0.00*age+0.00*heart_decease_history+0.00*other_major_dec

ease_history+0.00*avg*glucose level-
0.00*bmi+weight*0.95+0.01*weight_change_in_last_one_year-0.00*fat percentage
```

Building ANN, Decision Tree and Random Forest Regressor

We have made three models ANN, Decision tree and Random forest and below are the score mapped.

	Train RMSE	Test RMSE	Training Score	Test Score
Decision Tree Regressor	3.111544e-17	0.296986	1.000000	0.910455
Random Forest Regressor	7.969658e-02	0.214129	0.993689	0.953450
ANN Regressor	1.762023e-01	0.257123	0.969151	0.932880

Table 7-Results of ANN, DT and RF

From the above table we can see that the Random forest regression model is giving the best score with RMSE score 0.214

Improving Model Performance

To tune the models we are performing grid search CV to see if we are getting a better score

After performing the grid search CV we have found the below results.

	Train RMSE	Test RMSE	Training Score	Test Score
Decision Tree Regressor	0.197853	0.217529	0.961104	0.951960
Random Forest Regressor	0.217861	0.234351	0.952839	0.944242
ANN Regressor	0.226199	0.226050	0.949160	0.948122

Table 8- Results after Grid search cv

After grid search CV we can see that Decision tree model is giving 0.217 RMSE score which is the lowest.

We have also plotted the feature importance plot

Figure 54-Feature importance plot of Random forest

From the above table we can observe that the most important feature is fat percentage and least one is years of insurance with us.

We will build another model with only the important features.

Below are the important features we are considering for building model.

 $'fat_percentage', 'weight_change_in_last_one_year', 'exercise', 'Alcohol', 'covered_by_any_other_company', 'weight'$

We have found the below scores

	Train RMSE	Test RMSE	Training Score	Test Score
Linear Regression	0.239296	0.235292	0.943103	0.943794
Decision Tree Regressor	0.098839	0.297851	0.990293	0.909932
Random Forest Regressor	0.122338	0.243845	0.985129	0.939633
ANN Regressor	0.214520	0.218374	0.954275	0.951586

Table 9-Results of the models built from only important features

From the above table we can observe that ANN model is giving the best result with 0.218 as RMSE score.

Again we would like to do grid search CV to tune the models further and see if we can a better score.

	Train RMSE	Test RMSE	Training Score	Test Score
Linear regression	0.239296	0.235292	0.943103	0.943794
Decision Tree Regressor	0.210464	0.219969	0.955988	0.950876
Random Forest Regressor	0.212880	0.216330	0.954971	0.952488
ANN Regressor	0.214520	0.218374	0.954275	0.951586

Table 10-Results of model built from important features after doing grid search cv

From the above plot we can observe that Random forest regressor is giving the best score with 0.216 RMSE score.

5. Model Validation

Optimum model.

	Model Name	Test RMSE score
Regular	Linear regression	0.232
_	Decision Tree	0.296
	ANN	0.257
	Random Forest	0.214
After Grid search cv	Linear regression	0.232
	Decision Tree	0.217
	ANN	0.226
	Random Forest	0.234
Taking the important features only	Linear regression	0.235
	Decision Tree	0.297
	ANN	0.218
	Random Forest	0.243
Taking the important features only and then	Linear regression	0.235
doing grid search cv	Decision Tree	0.219
	ANN	0.218
	Random Forest	0.216

Table-11 - RMSE score on test data of all models.

After mapping all the RMSE scores of the models on test data we can conclude that the Random forest model is performing best with 0.214 score.

Business implications:

The random forest builds on the decision tree model, and makes it more sophisticated. Random forests representing "stochastic discrimination" or the "stochastic guessing" method on data applied to multidimensional spaces. Stochastic discrimination tends to be a way to enhance the analysis of data models beyond what a single decision tree can do.

Basically, a random forest creates many individual decision trees working on important variables with a certain data set applied. One key factor is that in a random forest, the data set and variable analysis of each decision tree will typically overlap. That's important to the model, because the random forest model takes the average results for each decision tree, and factors them into a weighted decision. In essence, the analysis is taking all of the votes of various decision trees and building a consensus to offer productive and logical results.

One way that this could be applied to business is to take various health parameter data from people and use a random forest to indicate how much insurance they should take based on their risk level.

This model needs to be changed time to time as it is a regression model and it has been trained on train data and it will perform in this ambit, any extrapolation might result in poor performance.

6. Final Recommendation

- The insurance premium should increase with the fat percentage, exercise and weight change in a year of an individual.
- Insurance cost should decrease with daily average steps, visited doctor last year, regular check up last year and years of insurance with the same insurance company.
- With one unit increase in weight, insurance cost should increase by 0.95unit.