CSC 1301 – Spring 2020 Homework #2 Due 02/11/2020

Binary Calculation, Data Manipulation & Representation

			- manual and a second			
Name	Ratid	Shaou	181 500	_Lab Time	Friday	- 3:00 PM

You must show all work for all problems -failure to show work results in Zero points

Complete the following problems for the other values.

	Decimal		Hexadecimal	Binary	Octal
1. $\frac{10111010_2}{2^7 2^5 2^7 2^3 2'}$	186,0	_	BA 16	if this yishid illoo ii 27.	2, 2
128 + 32 + 16 + 8 + 2 = 2. 11110011 ₂	243,0	1011 1010 18421 8421 1178 107A	F3,4	010 111 010	38 L Octal
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1111 0011 18421 84 <u>121</u> 7	AA.,	011/110/011 121 H21 421 25	2. Octal
28+32+8+2 4. 111111102			FEIL	3 6 3	Colal Octal
128+64+32+16+8+4+2= 5, 110110112		10-24 10-24 1111 1110 18421 8421	DB16	2 5 2 011 111 110 421 421 421 33	Octal
$128 + 64 + 16 + 8 + 2 + 1 = 6. 2E_{16}$		15 3 F 14 3 E	56, 2 Octal	3 7 6	estess decim
8 4 2 1 8 42 1 7. 1616	hh 10	13-D 11-B 101 110 ENT FEI	268 Leta	3 3 3 (1 101110 2 ⁵ 2 ³ 2 ² 2' //0/	102
842[1 9[12] 0001 8. AA ₁₆	17010	010 110	252° ×	32+8+4+2=46 10110 24221 101010	7102
		* 6		16+4+2=22	

Short Answers

1. What	are the 4-bit pattern	ns used to re	epresent each of the	he characters	in the string "1	302"?	
******Only	represent the char	acters betw	een the quotation	n marks.) Not	e: There is spe	ice	
between 1302	2" 2" 2 2 2 8 248 1024 312 256	128 64 32	27 23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2:	1302 278 024 -256 78 22		4
	is the biggest value	10,	100010110			in	~
binary	1117	<u>/ C</u>	decimal	15			
	is the smallest valu oth binary and in d		press in 4 bits if	we use unsign	ed numbers? I	Express	
binary	0000		decimal _	0	18.00		

FLOATING POINT BINARY CONVERSIONS

Sample Table

**** This table shows the smallest fraction that can be stored in a 23-bit mantissa. This table shows a few simple examples of binary floating-point numbers alongside their equivalent decimal fractions and decimal values:

Binary	Decimal Fraction	Decimal Value
.1	1/2	.5
.01	1/4	.25
.001	1/8	.125
.0001	1/16	.0625
.00001	1/32	.03125

1. Convert the following to binary:

2. Find and bring in a URL that explains floating point representation

if URL works, 3 points - only 1 if it's just present but doesn't work

3. Convert the following to decimal

a)
$$0110.01001$$

 $4 + 2 + \frac{1}{4} + \frac{1}{32} = 6.28125$

b)
$$1010.10001$$

 $8+2+\frac{1}{2}+\frac{1}{32}=10.53125$

Bonus

1) Demonstrate how to solve the hexadecimal Arithmetic (Show work)

a) 82CD
$$D+2=13+2$$
 b) A31 $I+C=1+12$ $I=13$ $I=13$

2) Show the unsigned binary number $1010 \ 1010 \ 1010 \ 1010 \ 1010 \ 1010 \ in decimal? (Show work)$