Homework 4: Subspace, Linear Combination, Span

Assignments should be **stapled** and written clearly and legibly.

1. $\S4.2$, #3(b), #5(a)(b), 10(b)(c), 12(b)(d), 14(a)(b)(c).

Note: All answers to textbook problems should be justified.

- 2. Give an example of two nonzero vectors \mathbf{u}, \mathbf{v} in \mathbb{R}^2 such that $\mathbf{u} \neq \mathbf{v}$ and span $\{\mathbf{u}, \mathbf{v}\}$ is not equal to \mathbb{R}^2 .
- 3. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}$ be vectors in a vector space V. Suppose that \mathbf{x} and \mathbf{y} are in span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ and \mathbf{c} is a scalar. Prove that:
 - (a) $\mathbf{x} + \mathbf{y}$ is in span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.
 - (b) $c\mathbf{x}$ is in span{ $\mathbf{u}, \mathbf{v}, \mathbf{w}$ }.

Note: For this problem and the next one, you may not use any theorems. You should use only definitions.

- 4. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$, be vectors in a vector space V.
 - (a) Prove that $span\{u, v\} \subseteq span\{u, v, w\}$.

Hint. Begin the proof as follows:

"Suppose that z is in span $\{u, v\}$. I must show that z is also in span $\{u, v, w\}$."

(b) Suppose that \mathbf{w} is in $\operatorname{span}\{\mathbf{u},\mathbf{v}\}$. Prove that $\operatorname{span}\{\mathbf{u},\mathbf{v},\mathbf{w}\}\subseteq \operatorname{span}\{\mathbf{u},\mathbf{v}\}$. Hint. Begin the proof as follows:

"Suppose that z is in span $\{u, v, w\}$. I must show that z is also in span $\{u, v\}$."

(c) Use parts (a) and (b) to prove that if \mathbf{w} is in span $\{\mathbf{u}, \mathbf{v}\}$, then span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\} = \text{span}\{\mathbf{u}, \mathbf{v}\}$.

For part (c) you should use the definition of what it means for two sets S and T to be equal: S = T if $S \subseteq T$ and $T \subseteq S$.

5. (Putnam Competition) Let S be a set and let \circ be a binary operation on S satisfying the two laws

$$x \circ x = x$$
 for all x in S , and $(x \circ y) \circ z = (y \circ z) \circ x$ for all x, y, z in S .

Show that \circ is associative and commutative.