آزمایشگاه مدارهای الکتریکی

بررسی مدار معادل تونن (بخش دوم)

استاد: سرکار خانم پگاه امینی

دانشجو: پارسا یوسفی نثراد محمدی

شماره دانشجویی: ۱٤٠٠٥٣٦١١٠٤٨

تئورى آزمايش

در بخش دوم آزمایش مدار تونن قصد داریم تا این بار در بین دو سر نقاط a, b مقاومت R_L با اندازه های گوناگون را بگذاریم و به بررسی جریان دو سر مقاومت بار، و جریان گذرنده از R_L بپردازیم و با استفاده از مولتی متر مقادیر I_0 - I_0 را به ازای I_0 های گوناگون بدست بیاوریم و در نهایت منحنی I_0 - I_0 را در محیط I_0 - I_0 با استفاده از کتابخانه I_0 - I_0 را در محیط I_0 - I_0 با استفاده از کتابخانه I_0 - I_0

در بخش تئوری نیز میخواهیم مقادیر I_0 و V_0 را با استفاده از قوانین اهم و تقسیم ولتاژ بدست بیاوریم و با مقادیر تجربی مقایسه بکنیم.

مدار این بخش به شکل فوق است و در R_L مقاومتهای لود گوناگون قرار میدهیم و V_0 و I_0 را هم به صورت تئوری و هم عملی محاسبه می کنیم.

وسایل مورد نیاز

- 🗢 ۵ عدد مقاومت (۱۰، ۱۰ و ۱۸ کیلو و ۵۶۰ و ۴۷ اهمی)
 - 🗢 منبع تغذیه خطی ۸ ولت
 - 🗢 آوومتر (مولتی متر)
 - 🗢 سیمهای رابط

شرح آزمایش(بخش عملی)

a,b در ابتدا مدار رسم شده در صفحه قبل را بر روی بردبورد پیاده می کنیم و سپس به نقاط مقاومت های 0 47 10_K 18_K مقاومت های 0 10 اهم را متصل می کنیم و با استفاده از آمپرسنج و ولترمتر جریان 0 و 0 را اندازه گیری می کنیم.

 R_L برای اینکه ولتاژ دو سر مقاومت لود را اندازه بگیریم، ولتمتر را به صورت موازی با مقاومت R_L میبندیم و همچنین برای اندازه گیری جریان، آمپرسنج را به صورت سری با مقاومت R_L میبندیم تا جریان آن شاخه را بدست بیاوریم.

نتایج را در هر بخش می توانید به صورت تصویر و همچنین به صورت جدول مشاهده کنید.

pprox در اینجا لازم به ذکر است که منظور از مقاومت ∞ همان مدارباز و منظور از مقاومت 0 همان اتصال کوتاه میباشد.

RL	∞	18к	10к	47	0
V o	7.61 v	7.39 v	7.22 v	0.61 ♥	0.2 mV
lo	0 mA	0.41 mA	0.74 mA	13.34 mA	14.57 mA

شرح آزمایش (بخش تئوری)

در بخش تئوری کار ما راحت تر است و تنها نیاز است که مانند آزمایش قبلی مقاومت و ولتاژ تونن را محاسبه بکنیم و سپس مدار معادل ساده شده را رسم کنیم:

همانطور که در آزمایش ۱۴م دیدیم برای محاسبه مقاومت تونن از قانون تقسیم KVL استفاده می کنیم و ولتاژ منبع را برابر صفر (مدار کوتاه) در نظر می گیریم و سپس دو مقاومت موازی را معدل یک مقاومت می کنیم.

a, برای محاسبه از ولتاژ تونن هم تنها کافیست از قانون تقسیم ولتاژ استفاده کنیم و ولتاژ دو سر b را به عنوان ولتاژ تونن برگردانیم.

$$R_{th} = \frac{1}{\frac{1}{560_{\Omega}} + \frac{1}{10_{K\Omega}}} = 530.3_{\Omega}$$

$$V_{th} = \frac{10_{K\Omega}}{(10_{K\Omega} + 560_{\Omega})} \times 8_V = 7.57_V$$

حال میخواهیم که مقادیر مختلف ولتاژ V_0 و V_0 را به ازای R_L های مختلف بدست بیاوریم. برای برای بدست آوردن این مقادیر برای V_0 باید از قانون اهم و مقاومت معادل بهره بگیریم، به دلیل سری بودن دو مقاومت V_0 و V_0 جریان فوق از فرمول اهم بدست می آید. V_0

$$R = \frac{v}{I}$$

برای محاسبه ولتاژ V_0 ، باید ولتاژ دو سر مقاومت R_L را محاسبه کنیم، برای اینکار هم مجددا از قانون اهم استفاده می کنیم.

حال در صفحه بعدی به محاسبه مقادیر ولتاژ و جریان به ازای مقاومتهای $R_{\rm L}$ میپردازیم و سپس به پلات کردن آن میپردازیم.

RL	8	18к	10к	47	0
V o	7.57 ▼	7.35 v	7.18 v	0.61 ♥	0 mV
lo	0 mA	0.4 mA	0.71 mA	12.97 mA	14.28 m A

حال در نهایت پس از محاسبه کردن مقادیر بالا با استفاده از قوانین گفته شده، نمودار I_0 - V_0 را پلات می کنیم.

همانطور که در پلات فوق مشاهده می کنیم با افزایش جریان، ولتاژ مقاومت لود بخاطر قانون اهم باید کمتر بشود، تا حاصل تقسیم ولتاژ و جریان نشان دهنده مقاومت R_L شود.

جمعبندى آزمايش

در این آزمایش توانستیم با استفاده از مدار معادل توننی که از مدار اولیه به دست آوردیم، تغییرات ولتاژ و جریان در شاخه مقاومت load را ببینیم، و با گذاشتن مقاومتهای دیگر تاثیر این تغییرات را با استفاده از قوانین اهم و تقسیم ولتاژ ببینیم، در آخر پس از بدست آوردن جدول V_0 - V_0 پلات جدول دادهها را با استفاده از iupyter پلات کردیم.