

Development of a fast algorithm for solving the unsteady incompressible Navier-Stokes equations

Christopher Cox¹, Chunlei Liang² and Michael W. Plesniak³ ^{1,2}Computational Aerodynamics & Hydrodynamics Laboratory, ^{1,3}Biofluid Dynamics Laboratory Department of Mechanical & Aerospace Engineering

Motivation

In computational fluid dynamics (CFD), highorder (3rd and above) spatially accurate methods used to solve large scale problems require fast convergence. To address this need, we implement a local non-linear implicit LU-SGS time-stepping scheme to accelerate the convergence rate of unsteady incompressible flows¹ in complex geometries, particularly flows that are vortex dominated.

Governing Equations

Consider the unsteady incompressible Navier-Stokes equations with artificial compressibility (AC)

inpressibility (AC)
$$\frac{1}{\beta} \frac{\partial p}{\partial \tau} + \left| \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right| = 0$$

High-order Method

flux reconstruction

$$\frac{\partial u}{\partial \tau} + \frac{\partial u}{\partial t} + \frac{\partial (u^2 + p - v u_x)}{\partial x} + \frac{\partial (v u - v u_y)}{\partial y} = 0$$

$$\frac{\partial v}{\partial \tau} + \frac{\partial v}{\partial t} + \frac{\partial (u v - v v_x)}{\partial x} + \frac{\partial (v^2 + p - v v_y)}{\partial y} = 0$$

Pseudo Time Stepping <

Physical Time Stepping

Pros —

Third-order three-stage Runge-Kutta (RK33)

Implicit Time Stepping

(1) permits a large time step, $\Delta t \rightarrow$ quickly establish divergence-free velocity field

(2) utilizes advanced time-stepping techniques for solving hyperbolic/parabolic PDEs

(3) parallel processing and mesh deformation friendly to solve fluid-structure interaction problems

Cons (4) high memory requirement & implementation difficulty

Mapping to Reference Element

We extend the idea of flux reconstruction² to solve incompressible flows with high order accuracy while implementing the following concepts for unstructured linear quadrilateral elements Ω :

- isoparametric mapping of physical element Ω to reference element $\Omega_{E} = \{\xi, \eta \mid 0 \le \xi, \eta \le 1\}$
- curved boundaries represented via cubic Bezier curves

$$\begin{bmatrix} x \\ y \end{bmatrix} = \sum_{i=1}^{4} \Psi_i(\xi, \eta) \begin{bmatrix} x_i \\ y_i \end{bmatrix}$$

High-order CFD Method

Each reference cell contains NxN solution points in 2D; high order accuracy, solution points (SP) located at Legendre-Gauss positions, flux points

$$f_r^D(\xi) = \sum_{i=1}^N f_{r|i}^D l_i(\xi)$$

$$\frac{\partial f_r}{\partial \xi} = \frac{d f_r^D}{d \xi} + \left[f_{r-1/2}^{com} - f_r^D(0) \right] \frac{d g_r^{LB}}{d \xi} + \left[f_{r+1/2}^{com} - f_r^D(1) \right] \frac{d g_r^{RB}}{d \xi}$$

Implicit Time-Stepping

Referring back to our mass conservation equation, we can define the **Residual** for the first equation as

Residual:
$$R_r = \nabla \cdot \vec{V}_r \rightarrow 0$$

and develop an algorithm to drive this residual as close and fast to zero as possible. To solve the governing form with the implicit LU-SGS scheme, a linearization of the governing equations must be performed.

48x48

75x75

The system of equations is then solved directly using LU decomposition. For higher orders of accuracy, the size of matrix A renders the solution of x more computationally expensive.

		•		•	•	
Size of A	=	$[N_{eq} \cdot N^D]$	x	[N]	$_{eq}\!\cdot\! N^{T}$	$^{D}]$

Verification

• **Taylor-Couette** flow at *Re=10*

Steady Flow

- **NACA-0012** airfoil at $\alpha = 0^{\circ}$, Re = 1850, N = 3
- Speedup in CPU time to achieve steady state = 55

Unsteady Flow

- **Cylinder** at *Re=100, N=3*
- Efficiency speedup measured per shedding cycle

	Explicit	Implicit					
m max	10	10	10	10	10		
k	-	1	3	6	10		
C _{L,rms}	0.231	0.240	0.230	0.223	0.222		
C _D (C _{D,rms})	1.354 (0.006)	1.342 (0.006)	1.338 (0.006)	1.338 (0.006)	1.338 (0.006)		
Strouhal	0.162	0.160	0.162	0.163	0.163		
Speedup	1	25.2	8.5	4.5	2.7		

Pulsatile Flow

Channel with double constriction at Re=500, N=4

Future Implementation

- (1) Parallel processing
- (2) Three-dimensional implementation
- (3) Moving and deforming mesh for fluid-structure interaction

References

- 1) C. Cox, C. Liang and M.W. Plesniak, "A high-order method for solving unsteady incompressible Navier-Stokes equations with implicit tme stepping on unstructured grids," 53rd AIAA Aerospace Sciences Meeting, January 6, 2015.
- 2) Huynh, H., "A flux reconstruction approach to high-order schemes including discontinuous Galerkin method," AIAA Paper AIAA-2007-4079, 2007.
- 3) C. Liang, C. Cox and M.W. Plesniak, "A comparison of computational efficiencies of spectral difference method and correction procedure via reconstruction," Journal of Computational Physics, Vol 239, pp 138-146, April 15, 2013.