

Universidad Tecnológica de la Mixteca

Clave DGP: 110506

Maestría en Modelación Matemática

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA	
	Dinámica topológica

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Optativa	221525TS	80

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

El alumno aplicará los conceptos topológicos necesarios para analizar y comprender las propiedades cualitativas o de forma de los sistemas dinámicos discretos. Además, conocerá de manera integral el desarrollo de ejemplos, analítica y gráficamente, de las nociones estudiadas.

TEMAS Y SUBTEMAS

1. Conceptos básicos de topología

- 1.1. Conjuntos y funciones.
- 1.2. Espacios métricos y topológicos.
- 1.3. Conceptos básicos de topología: conjuntos abiertos, conjuntos cerrados, interior, clausura.
- 1.4. Sucesiones y subsucesiones.
- 1.5. Continuidad. Homeomorfismos.
- 1.6. Compacidad, conexidad y completitud.

2. Nociones de dinámica topológica

- 2.1. Iteración de funciones.
- 2.2. Definición de sistema dinámico.
- 2.3. Conjuntos invariantes.
- 2.4. Puntos límite.
- 2.5. Órbitas. Análisis gráfico.
- 2.6. Puntos fijos: atractores y repulsores.
- 2.7. Omega conjunto límite.
- 2.8. Puntos periódicos y preperiódicos.

3. Tipos de sistemas dinámicos discretos

- 3.1. Sistemas transitivos, mezclantes, exactos, sensitivos, minimales, caóticos.
- 3.2. Propiedades y ejemplos.
- 3.3. Equivalencias de las definiciones.
- 3.4. Conjugación topológica.
- 3.5. Propiedades que se preservan bajo conjugación topológica.

4. Modelos mediante dinámica discreta

- 4.1. Modelos de crecimiento de poblaciones.
- 4.2. Modelos en economía.
- 4.3. Modelos en epidemiología.
- 4.4. Modelos en finanzas.

ICE-RECTORIA ACADEMICA

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por parte del profesor, quien expondrá la totalidad de los temas. Los estudiantes acudirán a asesorías extra clase para analizar y discutir las tareas y ejercicios a realizar relacionados con los temas vistos en clase.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Se aplican por lo menos tres exámenes parciales cuyo promedio equivale al 50% de la calificación final, el 50% restante se obtiene de un examen final. Las participaciones en clase, asistencias a las sesiones y el cumplimiento de tareas y proyectos también forma parte de la evaluación final de los estudiantes.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- 1. An Introduction to Chaotic Dynamical Systems, R. L. Devaney, Second Edition, Westview Press, 2003.
- 2. Introduction to Dynamical Systems, M. Brin y G. Stuck, Cambridge University Press, 2003.
- 3. Dynamical Systems An Introduction, L. Barreira y C. Valls, Spriger, 2013.

Consulta:

- 1. Topology, J. Dugundji, Allyn and Bacon, 1966.
- 2. Sistemas Dinámicos Discretos, J. E. King Dávalos y H. Méndez-Lango, Serie: Temas de Matemáticas, Facultad de Ciencias, UNAM, 2014.
- 3. Cours Spécialisés [Specialized Courses] 11, P. Kurka; Société Mathématique de France, Paris, 2003.

PERFIL PROFESIONAL DEL DOCENTE

Estudios mínimos de Doctorado en Matemáticas o Doctorado en Matemáticas Aplicadas.

Vo.Bo

DE POSGRADO DR. JOSÉ ANIBAL ARIAS AGUILAR JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO

UTORIZÓ DR. AGUSTÍN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO