

Bayesian Nonparametric Models

M. Clyde

Regression

Illustrations

Summary

Bayesian Nonparametric Models using Levy Random Fields and Overcomplete Dictionaries

Merlise Clyde

Department of Statistical Science Duke University

WISE June 5, 2011

Problem Setting

Bayesian Nonparametric Models

M. Clyde

Nonparametric Regression Lévy Random

Lévy Random Field Priors

Illustrations

_

Consider the nonparametric regression problem where we observe noisy measurements $\{Y_i\}$ $i \in I$ of an unknown function $f(\mathbf{x}): \mathcal{X} \to \mathbb{R}$

$$\mathsf{E}[Y \mid \mathbf{x}] = f(\mathbf{x}), \quad \mathbf{x} \in \mathcal{X}$$

Need flexible prior distributions on functions Usual Suspects:

- Gaussian Process Priors
- Dirichlet Process priors
- ► Expansions of *f*

Focus on Lévy Processes! (related to GP & DP)

Goals

Bayesian Nonparametric Models

M. Clyde

Nonparametric Regression Lévy Random

Lévy Randon Field Priors

Illustrations

- "Machine Learning" Classification/Prediction problems
- ► Learning "features" of *f*
 - ▶ which variables in **x** are important for classification
 - location of peaks/proteins in spectra
 - sources/spread of pollutants in space/time models

Multiple Spectra

Bayesian Nonparametric Models

M. Clyde

Nonparametric Regression

Lévy Rando

Field Friors

Illustration

Summai

Learning "features" that are common versus those that separate groups of functions (spectra)

Stochastic Expansions

Bavesian Nonparametric Models

Nonparametric Regression

Expand $f(\mathbf{x}_i) = \sum_{i=0}^{J} \psi_j(\mathbf{x}_i)\beta_j$ in terms of an Overcomplete Dictionary where

- \blacktriangleright { ψ_i }: dictionary elements
- \triangleright { β_i }: unknown coefficients
- ▶ J: number of elements in expansion (finite and infinite)

Advantages: may lead to more flexibility in choosing "building" blocks to match features than GP or DP models.

How should we choose prior distributions so that the resulting f is well defined with desired smoothness properties?

Finite Expansions

Bayesian Nonparametric Models

M. Clyde

Nonparametric Regression Lévy Random

Field Priors

Illustrations

Summa

Consider finite expansions for some collection J of dictionary elements ψ_{j}

$$f(\mathbf{x}) = \sum_{j \le J} \psi_j(\mathbf{x}) \beta_j \qquad \{ \psi_j \in \mathcal{F} \}$$

Independent scale mixtures of normals (Generalized Ridge Priors)

$$eta_j \mid \varphi_j \quad \stackrel{\textit{ind}}{\sim} \quad \mathsf{N}(0, \varphi_j^{-1})$$
 $\varphi_j \quad \stackrel{\textit{iid}}{\sim} \quad \mathsf{G}(a, b)$

Tipping considers modal estimates in the case a = b = 0Improper prior and posterior!

Model Selection Priors

Bayesian Nonparametric Models

Nonparametric Regression

For selection of dictionary elements from a Bayesian perspective, add a point mass at zero in the distribution for β_i

$$eta_j \mid arphi_j \quad \stackrel{ind}{\sim} \quad \mathsf{N}(0, \gamma_j arphi_j^{-1})$$
 $egin{array}{ccc} arphi_j & \stackrel{iid}{\sim} & \mathsf{G}(a, b) \\ \gamma_j & \stackrel{iid}{\sim} & \mathsf{Ber}(\pi) \end{array}$

- ► Choice of global scale as *J* increases?
- \triangleright Choice of π as J increases?
- ▶ Number of non-zero coefficients is Binomial with mean $J\pi$. Limit as $J\to\infty$ such that $J\pi\to\nu_+$ is Poisson with mean ν_+

Consider model to unify finite and infinite dimensional models!

Lévy Priors

Bayesian Nonparametric Models

M. Clyde

Nonparametric Regression

Lévy Rando Field Priors

Illustration

Hierarchical Student-t prior

$$eta_j \mid arphi_j \stackrel{\mathit{ind}}{\sim} \operatorname{N}(0, arphi_j^{-1})$$
 $egin{array}{l} arphi_j & \stackrel{\mathit{ind}}{\sim} \operatorname{G}\left(rac{lpha}{2}, rac{lpha\epsilon^2}{2}
ight) \\ J & \sim \operatorname{P}(
u_\epsilon^+) \end{array}$

where
$$\nu_{\epsilon}^+ = \nu_{\epsilon}(\mathbb{R}) = \frac{\alpha^{1-\alpha/2}\Gamma(\alpha)\Gamma(\alpha/2)}{\epsilon^{\alpha}\pi^{1/2}\Gamma(\frac{\alpha+1}{2})}\sin(\frac{\pi\alpha}{2})$$

Limit as $\epsilon \to 0$ leads to Lévy *alpha*-Stable process!

Lévy Adaptive Regression Kernels

Bayesian Nonparametric Models

IVI. CIY

Nonparametric Regression

Lévy Randon Field Priors

Illustration:

Stochastic Integral Representation

$$f(\mathbf{x}) = \sum_{j \leq J} \psi(\mathbf{x}; \boldsymbol{\omega}_j) \beta_j \equiv \int_{\Omega} \psi(\mathbf{x}; \boldsymbol{\omega}) \mathcal{L}(d\boldsymbol{\omega})$$

 $\psi(\mathbf{x}, \boldsymbol{\omega}_i) \equiv g(\mathbf{\Lambda}_i(\mathbf{x} - \boldsymbol{\chi}_i))$ "generator"

 \mathcal{L} is a Signed Measure:

$$\mathcal{L}(doldsymbol{\omega}) = \sum_{j \leq J} eta_j \delta_{oldsymbol{\omega}_j}(doldsymbol{\omega})$$

- support points of \mathcal{L} : $\{\omega_j\} = \{\chi_j, \lambda_j\}$
 - "location" parameters: $\chi_j \in \mathcal{X}$
 - "scaling" parameters: $\lambda_i \in \mathbb{R}^+$
- **•** jump sizes of measure: β_j
- number of support points J

Generators

Bayesian Nonparametric Models

M. Cly

Nonparametric Regression

Lévy Randor Field Priors

Illustrations

Dictionary elements generated by $\psi(\mathbf{x}, \omega_j) \equiv g(\mathbf{\Lambda}_j(\mathbf{x} - \chi_j))$ translation and scaling as in wavelets

- kernels (as in kernel regression or SVM)
- densities of location-scale families Gaussian or Cauchy kernel (for mass spect)
- exponential densities (pollutant concentrations)
- wavelet families

No need for symmetric kernels as in SVM Generates continuous dictionaries

Lévy Random Fields

Bayesian Nonparametric Models

M. Clyd

Nonparametr Regression Lévy Random Field Priors

Illustrations

_

- $ightharpoonup \mathcal{L}(d\omega)$ is a random (signed) measure on Ω
- ightharpoonup Convenient to think of a random measure as stochastic process where $\mathcal L$ assigns random variables to sets $A\in \Omega$
- Take

$$\mathcal{L} \sim \mathrm{Lv}(
u)$$
 with Lévy measure $u(deta, doldsymbol{\omega})$

where ν satisfies integrability condition:

$$\int_{\mathbb{R}\times\Omega}\min(1,\beta^2)\,\nu(d\beta,d\omega)<\infty\tag{1}$$

Poisson Representation of Lévy Random Fields is the key to Bayesian Inference!

Poisson Representation

Bayesian Nonparametric Models

M. Clyde

Regression
Lévy Random
Field Priors

Goal: $f(x) = \sum_{j < J} \psi(\mathbf{x}, \omega_j) \beta_j = \sum_{j < J} g(\mathbf{\Lambda}_j(\mathbf{x} - \chi_j))$ Sufficient condition for bounded g:

$$\int_{\mathbb{R}\times\Omega}\min(1,|\beta|)\nu(d\beta,d\omega)<\infty$$
 (2)

$$\Rightarrow J \sim \mathsf{P}(
u_+), \qquad
u_+ \equiv
u(\mathbb{R} imes \mathbf{\Omega})$$

$$\Rightarrow \ eta_j, oldsymbol{\omega}_j \mid J \stackrel{\mathit{iid}}{\sim} \pi(deta, doldsymbol{\omega}) \propto
u(deta, doldsymbol{\omega}).$$

- ▶ Finite number of "big" coefficients $|\beta_i|$
- ▶ Possibly infinite number of $\beta \in [-\epsilon, \epsilon]$
- ▶ Coefficients $|\beta_i|$ are absolutely summable¹

¹need to add a term to "compensate" the infinite number of tiny jumps that are not absolutely summable under the more general integrability condition Equation (1)

Existence Theorem

Bayesian Nonparametric Models

M. Cly

Nonparameti Regression Lévy Random Field Priors

Illustrations

Theorem

Let ν be a Lévy measure on $\mathbb{R} \times \Omega$ satisfying (1). Then $f(\mathbf{x})$ is well-defined if $\psi(\omega) \equiv g(\mathbf{\Lambda}(\cdot - \chi))$ satisfies

$$\iint_{[-1,1]^c \times \Omega} \left(1 \wedge |\beta \psi(\omega)| \right) \nu(d\beta \ d\omega) < \infty \tag{3a}$$

$$\iint_{[-1,1]\times\Omega} \left(|\beta\psi(\omega)| \wedge |\beta\psi(\omega)|^2 \right) \nu(d\beta \ d\omega) < \infty. \tag{3b}$$

For ν satisfying Equation (2) the condition simplifies

$$\iint_{\mathbb{R}\times\Omega} \left(1 \wedge |\beta\phi(\omega)|\right) \nu(d\beta \ d\omega) < \infty \tag{3c}$$

g is in a "Musielak-Orlicz space"

Function Spaces

Bayesian Nonparametric Models

M. Clyde

Nonparametri Regression Lévy Random Field Priors

Illustrations

Summar

The Besov space \mathbb{B}_{pq}^s consists of those $f \in L_p(\mathbb{R}^d)$ whose Besov semi-norms are finite

$$||f||_{pq}^{s} = ||f||_{p} + |f|_{pq}^{s} < \infty$$
 (4)

For $p,q \geq 0$ and $s > d(1/p-1)_+$ and for any integer m > s set

$$|f|_{pq}^{s} = \left(\int_{|h| \le 1} |h|^{-sq} \|\Delta_{h}^{m} f\|_{p}^{q} dh/|h|^{d}\right)^{1/q}$$

where Δ_h^m denotes the *m*th forward finite difference,

$$\Delta_{h}^{0}f(x) = f(x)
\Delta_{h}^{m}f(x) = \left[\Delta_{h}^{m-1}f(x+h) - \Delta_{h}^{m-1}f(x)\right]
= \sum_{k=0}^{m} {m \choose k} (-1)^{m-k} f(x+kh).$$
(5)

LARK Models and Besov Spaces

Bayesian Nonparametric Models

M. Cly

Regression
Lévy Random
Field Priors

Illustration

Let $f(\mathbf{x}) = \int_{\Omega} \psi(\mathbf{x}, \omega) \mathcal{L}(d\omega)$ where $\psi(\mathbf{x}, \omega) = g(\mathbf{\Lambda}(\mathbf{x} - \chi))$ and $\mathcal{L} \sim \operatorname{Lv}(\nu)$

Theorem

Fix $g \in \mathbb{B}^s_{pq}(\mathbb{R}^d)$ for some $p,q \geq 1$ and s > 0 and a Lévy measure ν on $\mathbb{R} \times \Omega$ with $\Omega = (\mathcal{S}^d_+ \times \mathbb{R}^d)$ of translation-invariant product form $\nu(d\beta \ d\omega) = \tilde{\nu}(d\beta \ d\Lambda)d\chi$ for a σ -finite measure $\tilde{\nu}(d\beta \ d\Lambda)$ on $\mathbb{R} \times \mathcal{S}^d_+$ that satisfies the integrability condition Equation (2) and the Existence Theorem. Then $f \in \mathbb{B}^s_{pq}$ almost surely if $\tilde{\nu}$ satisfies:

$$L_p: \int \!\! \int_{\mathbb{R} imes \mathcal{S}^d_+} \left(1 \wedge |eta| |oldsymbol{\Lambda}|^{-1/p} \right) ilde{
u} (deta \, doldsymbol{\Lambda}) < \infty$$
 (6a)

$$\mathbb{B}_{pq}^{s}: \int \!\! \int_{\mathbb{R} \times \mathcal{S}_{+}^{d}} \left(1 \wedge |\beta| |\mathbf{\Lambda}|^{s-1/p} \right) \tilde{\nu} (d\beta \, d\mathbf{\Lambda}) < \infty. \tag{6b}$$

Lévy Measures

Bayesian Nonparametric Models

M. Clyd

Nonparametri Regression Lévy Random Field Priors

Illustrations

Summa

 α -Stable measure: $\nu(d\beta, d\omega) = c_{\alpha}|\beta|^{-(\alpha+1)} \gamma(d\omega)$ For α - Stable $\nu^+(\mathbb{R}, \mathbf{\Omega}) = \infty$ Fine in theory, but not in practice for MCMC!

Truncate measure to obtain a finite expansion:

- ▶ The random number of support points ω with β in $[-\epsilon, \epsilon]^c$ is finite
- ightharpoonup Fix ϵ (practical significance)
- ▶ Use approximate Lévy measure

$$\nu_{\epsilon}(d\beta, d\omega) \equiv \nu(d\beta, d\omega) \mathbf{1}(|\beta| > \epsilon)$$

$$\Rightarrow J \sim P(\nu_{\epsilon}^+) \text{ where } \nu_{\epsilon}^+ = \nu([-\epsilon, \epsilon]^c, \Omega)$$

$$\Rightarrow \beta_i, \omega_i \stackrel{iid}{\sim} \pi(d\beta, d\omega) \equiv \nu_{\epsilon}(d\beta, d\omega)/\nu_{\epsilon}^+$$

Approximate Lévy Prior

Bayesian Nonparametric Models

M. Clyde

Regression Lévy Random Field Priors

Illustrations

_

Continuous Approximation:

$$\nu_{\epsilon}(d\beta, d\omega) = c_{\alpha}(\beta^2 + \alpha \epsilon^2)^{-(\alpha+1)/2} d\beta \ \gamma(d\omega)$$

Based on the following hierarchical prior

where $\nu_{\epsilon}^{+} = \nu_{\epsilon}(\mathbb{R}, \mathbf{\Omega}) = \frac{\alpha^{1-\alpha/2}\Gamma(\alpha)\Gamma(\alpha/2)}{\epsilon^{\alpha}\pi^{1/2}\Gamma(\frac{\alpha+1}{2})}\sin(\frac{\pi\alpha}{2})\gamma(\mathbf{\Omega})$ Advantage: Conjugate prior so β can be integrated out for MCMC

Limiting Case

Bayesian Nonparametric Models

M. Clyde

Regression
Lévy Random
Field Priors

Illustrations

$$eta_j \mid arphi_j \stackrel{\textit{ind}}{\sim} \operatorname{N}(0, 1/arphi_j)$$
 $\varphi_j \stackrel{\textit{iid}}{\sim} \operatorname{G}(lpha/2, "0")$

Notes:

- ▶ Require $0 < \alpha < 2$ for characteristic function for \mathcal{L} and functionals to exist.
- ▶ Cauchy corresponds to $\alpha = 1$
- ▶ Tipping's choice corresponds to $\alpha = 0$
- Provides an extension of Generalized Ridge Priors to infinite dimensional
- ▶ Infinite dimensional analog of Cauchy priors

Wavelet Test Functions (SNR = 7)

Bayesian Nonparametric Models

M. Clyd

Nonparametr Regression

Illustration

Wavelet Examples

Multivariate Features Regression Examples

Boston Housing Classification Examples

Summar

Kernel Functions

Bayesian Nonparametric Models

M. Clyde

Nonparametr Regression

Ill. strations

Wavelet Examples MALDI-TOF Multivariate Features Regression Examples Boston Housing Classification

Summa

Comparisons of OCD Methods

Bayesian Nonparametric Models

... -., --

Nonparametr Regression

Wavelet Examples MALDI-TOF Multivariate Features Regression Examples Boston Housing Classification Examples Multiple Spectr

Summar

- ► Translational Invariant Wavelets Laplace Priors (Johnstone & Silverman 2005)
- Continuous Wavelet Dictionary Compound Poisson with Gaussian Priors (Chu, Clyde, Liang 2007)
- ► LARK Symmetric Gamma
- LARK Cauchy

Range of Over-complete Dictionaries and Priors

Comparison of Mean Square Error w/ OCDs

Bayesian Nonparametric Models

M. Clyde

Nonparameti Regression

Wavelet
Examples
MALDI-TOF
Multivariate
Features
Regression
Examples
Boston Housing
Classification
Examples
Multiple Secret

Summar

100 realizations of each function

MALDI-TOF Mass Spectroscopy

Bayesian Nonparametric Models

M. Clyde

Nonparamet Regression

Illustrations

Examples MALDI-TOF

Features
Regression
Examples
Boston Housing
Classification
Examples

Summary

Higher Dimensional ${\mathcal X}$

Bayesian Nonparametric Models

M. Clyde

Nonparametri Regression

Wavelet
Examples
MALDI-TOF
Multivariate
Features
Regression
Examples
Boston Housing
Classification
Examples
Multiple Spectra

Summar

MCMC is too slow to allow

- ▶ location χ to be arbitrary; restrict to observed $\{x_i\}$
- ightharpoonup scale parameter to vary with location; use common Λ
- ightharpoonup arbitrary Λ ; restrict to diagonal Λ

$$k(\mathbf{x}, \omega_j) = \prod_d \exp\{-\lambda_d (x_d - x_{jd})^2\}$$

 $f(\mathbf{x}) = \sum_j k(\mathbf{x}, \omega_j)\beta_j$

- ▶ Product structure allows interactions between variables
- Many input variables may be irrelevant
- ▶ Feature selection; if $\lambda_d = 0$ variable x_d is removed

Regression Out of Sample Prediction

Bayesian Nonparametric Models

M. Clyd

Nonparametr Regression

Wavelet Examples MALDI-TOF Multivariate Features Regression Examples Boston Housing Classification Examples Multiple Spectra

Summa

Average Relative MSE to best procedure

Average Relative MSE to best procedure								
Data Sets		BARK	SVM	BART				
	D	S + E	S + D	2 0 101	DAIL			
Friedman1	1.22	2.26	1.93	5.36	1.97			
Friedman2	1.07	1.09	1.04	4.36	3.64			
Friedman3	1.46	2.30	1.44	2.70	1.00			
Boston Housing	1.09	1.23	1.20	1.56	1.01			
Body Fat	1.81	1.01	2.19	4.04	1.68			
Basketball	1.01	1.01	1.02	1.16	1.10			

D: dimension specific scale λ_d

E: equal scales $\lambda_d = \lambda \forall d$

S: selection $\lambda_d = 0$ with probability ρ

Feature Selection in Boston Housing Data

Bayesian Nonparametric Models

M. Clyd

Regression

Wavelet
Examples
MALDI-TOF
Multivariate
Features
Regression
Examples
Boston Housing

Summa

Posterior Distribution of λ_d

Boston Housing in BARK with different weights

Classification Examples

Bayesian Nonparametric Models

M. Clyd

Nonparametr Regression

Wavelet
Examples
MALDI-TOF
Multivariate
Features
Regression
Examples
Boston Housing
Classification
Examples
Multiple Spectra

Summa

Name	d	data type	n (train/test)
Circle	2	simulation	200/1000
Circle (3 null)	5	simulation	200/1000
Circle (18 null)	20	simulation	200/1000
Swiss Bank Notes	6	real data	200 (5 <i>cv</i>)
Breast Cancer	30	real data	569 (5 <i>cv</i>)
Ionosphere	33	real data	351 (5 <i>cv</i>)

- ▶ Add latent Gaussian Z_i for probit regression (as in Albert & Chib)
- Same model as before conditional on Z
- ightharpoonup Advantage: Draw eta in a block from full conditional

Predictive Error Rate for Classification

Bayesian Nonparametric Models

M. Clyc

Nonparametri Regression

Illustrations
Wavelet
Examples
MALDI-TOF
Multivariate
Features
Regression
Examples
Boston Housing
Classification
Examples

Summar

Data Sets		BARK	SVM	BART	
Data Sets	D	S + E	S + D	3 4 141	DAIL
Circle 2	4.91%	1.88%	1.93%	5.03%	3.97%
Circle 5	4.70%	1.47%	1.65%	10.99%	6.51%
Circle 20	4.84%	2.09%	3.69%	44.10%	15.10%
Bank	1.25%	0.55%	0.88%	1.12%	0.50%
BC	4.02%	2.49%	6.09%	2.70%	3.36%
lonosphere	8.59%	5.78%	10.87%	5.17%	7.34%

D: dimension specific scale λ_d

E: equal scales $\lambda_d = \lambda \forall d$

S: selection $\lambda_d = 0$ with probability ρ

Multiple Spectra

Bayesian Nonparametric Models

Multiple Spectra

Decompose into Control,

Summary

Bavesian Nonparametric Models

Summary

Lévy Random Field Priors & LARK models:

- ▶ Provide limit of finite dimensional priors (GRP & SVSS) to infinite dimensional setting
- Adaptive bandwidth for kernel regression
- Allow flexible generating functions (non-parametric)
- Provide sparse representations compared to SVM & RVM, with coherent Bayesian interpretation
- ▶ Incorporation of prior knowledge if available
- relax assumptions of equally spaced data
- Hierarchical Extensions
- ► Formulation allows one to define stochastic processes on arbitrary spaces (spheres, manifolds) periodicities

Open problems – rates of convergence!