Search for Immobile Hider on a Network

Every edge e of Q has a length $L\left(e\right)$ and the total length is denoted by $L\left(Q\right)=\mu$. I will use 'vertex' and 'node' interchangeably.

The distance function d on Q is the 'shortest path' distance.

The Game G=G(Q,O)

The Hider simply picks (as a pure strategy) any point H in Q (not necessarily a node). The $\mathcal{H}=Q$. A mixed strategy h is a probability distribution on Q, for $A\subset Q$ we write $h\left(A\right)$ as the probability that H is in A. Thus $h\left(Q\right)=1$.

The Searcher picks a unit speed path S = S(t) which covers Q. A mixed strategy is a probability distribution s over S (such paths).

The payoff is the time

$$T = T(S, H) = \min\{t : S(t) = H\}.$$

Note that T is only *lower semicontinuous*, but the game has a Value and an optimal mixed searcher strategy and an ε -optimal mixed Hider strategy anyway. We shall not worry about these matters, as we don't use this theorem. [Appendix A].

Calculating Expected Meeting Time

Suppose we fix search space the Q, and Searcher and Hider strategies (at least one of them mixed). Let F(t) denote the probability that $T \leq t$. Then the expected value of T, denoted E(T) can be calculated in either of the following ways (the first is the definition) [Prop. 2.4]:

$$E(T) = \int_0^\infty t \ dF(t) = \int_0^\infty \Pr[T > t] \ dF(t).$$

Note: for continuous distributions with F'(t) = f(t), the left integral is

$$\int_0^\infty t \ f(t) \ dt.$$

Search Higher Density Region First

For fixed Q (below) and Hider distribution h, which has lower expected time E, X,A,B,Y or X,B,A,Y?

Suppose density B > density A, where density(C) is h(C)/(time in C), recall h(C) is probability Hider in C (recall answer from 'alternating search')

Also recall that constant density searches can be carried out without interruption.

Search Higher Density Region First

Theorem: Fix network and Hider distribution. Suppose S (with T distribution F) searches disjoint regions A and B in time intervals [a,b] and [b,c], while S' search in other order.

If
$$\frac{F(c) - F(b)}{c - b} \ge \frac{F(b) - F(a)}{b - a}$$
, then $E(S) \ge E(S')$.

Proof: E(S) - E(S') is

$$\left[\int_{a}^{b} t \, dF(t) + \int_{b}^{c} t \, dF(t) \right] - \left[\int_{a}^{b} (t + (c - b)) \, dF(t) + \int_{b}^{c} (t - (b - a)) \, dF(t) \right] \\
= - \int_{a}^{b} (c - b) \, dF(t) + \int_{b}^{c} (b - a) \, dF(t) \\
= - (b - c) (F(b) - F(a)) + (c - b) (F(c) - F(b)) \\
= \frac{F(c) - F(b)}{c - b} - \frac{F(b) - F(a)}{b - a} \ge 0.$$

Note: For continuous distributions with F'(t) = f(t), E(S) - E(S') is

$$\left[\int_{a}^{b} t \ f(t) \ dt + \int_{b}^{c} t \ f(t) \ dt \right] - \\
\left[\int_{a}^{b} (t + (c - b)) \ f(t) \ dt + \int_{b}^{c} (t - (b - a)) \ f(t) \ dt \right] \\
= - \int_{a}^{b} (c - b) f(t) \ dt + \int_{b}^{c} (b - a) \ f(t) \ dt \\
= - (b - c) (F(b) - F(a)) + (c - b) (F(c) - F(b)) \\
= \frac{F(c) - F(b)}{c - b} - \frac{F(b) - F(a)}{b - a} \le 0.$$

Uniform Hider Strategy

A mixed strategy always available to the Hider is the *uniform strategy* h=u which hides in any interval J of any edge with probability proportional to it's length, that is $h(J) = L(J)/\mu$.

Theorem [Thm 3.3]: For any (Q, O) and any $S, T(S, u) \ge \mu/2$. Hence $V \ge \mu/2$.

Theorem [Thm 3.3]: For any (Q, O) and any $S, T(S, u) \ge \mu/2$. Hence $V \ge \mu/2$.

Proof: Since S has unit speed, the region $S_t = S [0, t]$ searched by time t has total length satisfying $L_t \leq t$ and hence

$$\Pr[T \le t] = F(t) = u(S_t) \le L_t/\mu \le t/\mu$$
. So $T(S,u) = \int_0^\infty (1 - F(t)) dt \ge \int_0^\infty \max[1 - t/\mu, 0] dt$ $= \int_0^\mu (1 - t/\mu) dt = \mu/2$.

Note: equality holds iff $S([0, \mu]) = Q$, Eulerian path from O

Chinese Postman Tours

A covering path S is called a tour if it ends back at O. If it has minimum length, denoted $\bar{\mu}$, it is called a *Chinese Postman Tour*. A tour is called *Eulerian* if it has length μ (traverses each edge once). An Eulerian tour exists iff all nodes have even degree (number of incident edges), in which case Q is called *Eulerian*.

Thick red arcs Q_2 traversed twice, thin black ones Q_1 once. $\bar{\mu} = L(Q_1) + 2L(Q_2)$. Q_1 is union of Eulerian tours

Eulerian Networks

Lemma [3.15]: Any minimal tour of Q satisfies $\bar{\mu} \leq 2\mu$, with equality only for trees.

Proof: Define Q' by doubling every edge of Q (adding another edge with same length). All nodes of Q' have even degree so there is an Eulerian tour of Q' of length 2μ , which also constitutes a covering tour of Q. If Q is not a tree it contains a circuit (closed path of distinct edges), in which case we don't have to double the edges in the circuit.

Random Chinese Postman Tours

Suppose that $S:[0,\bar{\mu}]\to Q$ is a CPT. Let S^r denote it's reverse path defined by $S^r(t)=S(\bar{\mu}-t)$. A Random Chinese Postman Tour (RCPT) \bar{s} is an equiprobable mixture of S and S^r .

Lemma[3.18]: Let \bar{s} be a RCPT on any network Q, O. Then for any $H \in Q$, $T(\bar{s}, H) \leq \bar{\mu}/2$. Hence $V \leq \bar{\mu}/2$.

Proof: For some least $t \leq \bar{\mu}$ we have S(t) = H, and so T(S, H) = t. Since $S^r(\bar{\mu} - t) = S(t) = H$, we have $T(S^r, H) \leq \bar{\mu} - t$. Consequently

$$T(\bar{s}, H) = \frac{1}{2}T(S, H) + \frac{1}{2}T(S^r, H) \le \frac{1}{2}(t + (\bar{\mu} - t)) = \frac{\bar{\mu}}{2}.$$

Bounds on V=V(Q,O) for a General Network

Summarizing our previous results, we have shown.

Theorem[3.19]: For any network (Q, O), the value V of the search game for an immobile hider satisfies

$$\frac{\mu}{2} \le v \le \frac{\bar{\mu}}{2} \le \mu.$$

The lower bound holds iff Q is Eulerian (has Eulerian Tour). The upper is only possible if Q is a tree.

Search Game on an Intervalu

Let Q be an interval of length $\mu=a_1+a_2$ as shown below

Only the terminal nodes v_1, v_2 are undominated by for the Hider. So assume his mixed strategy has $h\left(v_1\right) = p_1$ and $h\left(v_2\right) = p_2$. The Searcher has two 'searches' which can be done in either order, $A_1 = Ov_1O$ and $A_2 = Ov_2O$. We showed earlier that he should adopt the higher density (probability found/time) one first. That is, A_1A_2 if $p_1/\left(2a_1\right)$ gt $p_2/\left(2a_2\right)$. If the hider makes both densities equal (so $p_i = a_i/\left(a_1 + a_2\right)$, then A_1A_2 and A_2A_1 are equally good and the expected payoff is (using A_1A_2)

$$T = \frac{a_1}{a_1 + a_2}(a_1) + \frac{a_2}{a_1 + a_2}(2a_1 + a_2) = a_1 + a_2 = \mu = V$$

Depth-First Search on a Tree

A path on a rooted tree is called **depth-first** if whenever reaching a branch node, it searches all the branches fully before going back towards the root.

A tour of a tree, starting from the root, has minimal length (CPT) if and only if it is a depth-first search path followed by the direct path back to the root. Such a tour traverses every edge exactly twice.

Equal Branch Density (EBD) Hider Distributions

So for the interval the optimal hider strategy is concentrated on the terminal nodes and at every nonterminal node the search density (total probability/twice total length) of all branches are equal. Such a distribution on any tree will be called an Equal Branch Density (EBD) distribution. The same argument used for the interval shows that an EBD distribution on a tree guarantees that $T \geq \mu$, and hence $V = \mu$.

Consecutive Search of Adjacent Terminal Nodes

EBD Lemma: There is an optimal search strategy S(t) for a tree with an EBD Hider distribution h, which searches two terminal vertices v_1 and v_2 adjacent to a common vertex v consecutively (no other terminal vertices in between).

Proof: Suppose S is optimal against h and adopts the searches $A_1=v,v_1,v,$ $A_2=v,v_2,v$ with some search A (starting and ending at v) in between. The 'higher density first' property of optimal searches implies that $\rho\left(A_1\right) \leq \rho\left(A\right) \leq \rho\left(A_2\right)$, where ρ denotes density (probability discovered/time taken). But since h is EBD, we have $\rho\left(A_1\right) = \rho\left(A_2\right) = \rho\left(A\right)$. Consequently the search which changes the order to A_1A_2A has the same expected time, and has the required property.

EBD Theorem: If h is an EBD distribution on a tree Q, then $T(S,h) \ge \mu$ for any search strategy S. So $V \ge \mu$.

Proof (by induction on the number m of edges): If m=1, Q is an interval with O at one end, so it takes time μ to reach the other end. So assume the Theorem is true for trees with m edges. Let Q be a tree with m+1 edges, and let v_1 and v_2 be vertices at distances a_1 and a_2 from a common vertex v. Define an m edge tree Q' by replacing the edges vv_1 and vv_2 by a single edge va of length a_1+a_2 . Define h' on Q' as h except that $h'(a)=h(v_1)+h(v_2)$. Since the density of the edge va is the same as that of vv_1 and vv_2 , h' is also EBD. So $T(S',h')\geq \mu$ for any search S' on Q', by the induction hypothesis. But if S^* is optimal on Q, h, searching v_1,v_2 consecutively, the S' on Q' which searches vav when S^* searches vv_1vv_2v has $T_Q(S^*,h)=T_{Q'}(S',h')\geq \mu$.

Induction Step in EBD Theorem

Converting Q to Q' by adding two adjacent terminal edges

$$V=\mu=ar{\mu}/2$$
 for Trees

Tree Theorem: Let Q be a tree of length μ with any starting vertex 0. Then $V=\mu$

Proof: We showed (using a random CPT for the Searcher) that for any network Q we have $V \leq \bar{\mu}/2$, where $\bar{\mu}$ is the length of a CPT. For a tree we have $\bar{\mu} = 2\mu$, so this implies $V \leq \mu$. For a tree, the EBD Theorem showed (using an EBD hider distribution) that $V \geq \mu$. Thus for a tree we have $V = \mu$.

Arc-Adding Lemma: Get Q' from a Q by adding edge e of length $l \geq 0$ between points $x,y \in Q$. Then

1.
$$V(Q') \leq V(Q) + 2l$$
, so $V(Q') \leq V(Q)$ if we identify v_1, v_2 $(l = 0)$

2. If $l \geq d_Q(v_1, v_2)$, then $V(Q') \geq V(Q)$. Any hiding strategy on Q does as well on Q'.

Arc-Adding Lemma: Get Q' from a Q by adding edge e of length $l \geq 0$ between points $x,y \in Q$. Then

1.
$$V\left(Q'\right) \leq V\left(Q\right) + 2l$$
, so $V\left(Q'\right) \leq V\left(Q\right)$ if we identify $v_1, v_2 \ (l=0)$

Proof. [1] Replace every pure S in an optimal strategy s by S' which follows S until it reaches x, then tours e, then follows S again. $T(s,z) \leq V(Q) + l$ for $z \in e$, $T(s,z) \leq V(Q) + 2l$ for $z \in Q$.

Arc-Adding Lemma: Get Q' from a Q by adding edge e of length $l \geq 0$ between points $x, y \in Q$. Then

2 If $l \ge d_Q(v_1, v_2)$, then $V(Q') \ge V(Q)$. Any hiding strategy on Q does as well on Q'.

Proof. [2] Let h' on Q' be same as h (don't hide in e). Note that for $H \in Q$, $T_{Q'}(S',H) \geq T_Q(S,H)$, where S like S' but replaces e by x to y in Q.

Recall Problem 1 from Homework 3

Identify the two nodes of the circuit, to produce network Q^* below, same $\bar{\mu}=18$, so $V(Q) \geq V(Q^*) = \bar{\mu}/2 = 9$. But always $V(Q) \leq \bar{\mu}/2$, so $V(Q) = \bar{\mu}/2$.

Proposition: If Q is a weakly Eulerian network then $V = \bar{\mu}/2$.

All three networks have same $\bar{\mu}$. $V(Q^*) \leq V(Q)$ by (?).

$$V\left(Q^{*}\right)\geq V\left(Q^{**}\right)$$
 by $(?).$ $V\left(Q^{**}\right)=\bar{\mu}$ by $(?).$ So
$$\bar{\mu}\leq V\left(Q\right)\leq\bar{\mu}.$$

Weakly Eulerian Networks

Definition: A network is weakly Eulerian if it contains a set of disjoint Eulerian networks such that shrinking each to a point transforms the network into a tree. (In top network on previous page, the 'shrunk' network is tree with edges of length 2 and 4.) Equivalently a network is WE if removing all disconnecting edges leaves network of all even degrees (Eulerian). (In top network of previous page, this leaves a figure eight network and two isolated nodes of degree zero.)

Proposition: If Q is a weakly Eulerian network then $V = \bar{\mu}/2$.

All three networks have same $\bar{\mu}$. $V(Q^*) \leq V(Q)$ by (?).

$$V\left(Q^{*}
ight)\geq V\left(Q^{**}
ight)$$
 by $(?).$ $V\left(Q^{**}
ight)=ar{\mu}_{/2}$ $\tilde{\mu}_{/2}$ $\tilde{\mu}_{/2}\leq V\left(Q
ight)\leq ar{\mu}_{/2}$

Proposition: If h is a mixed hiding strategy on Q with $T(S,h) = \bar{\mu}/2$ for all S, then Q is weakly Eulerian.

Proof: Fix any CP Tour of Q and let Q_1 and Q_2 denote the arcs traversed once and twice by it. We know that $Q-Q_2$ is the union of disjoint Eulerian tours and hence that Q-a is connected if a is in Q_1 . So by the (alternate) definition of WE, we must show that arcs in Q_2 disconnect Q. So suppose, on the contrary, that there is an arc b=AC of Q_2 such that Q-b is connected. Let Q_A be the network resulting from disconnecting b from A and adding a new terminal node A', with Q_C the same for C. All three networks Q, Q_A and Q_B have the same value of $\bar{\mu}=L\left(Q_1\right)+2L\left(Q_2\right)$.

Since the Searcher has strategies guaranteeing $T \leq \bar{\mu}/2$ for both Q_A and Q_B it must be that h is optimal for both. In $G(Q_A)$ points b-A' are dominated and in $G(Q_C)$ those in b-C' are dominated. So no point of b is undominated in both games, and hence h gives zero probility to hiding in b. But for such an h, a randomized CPT of Q-b guarantees an expected capture time $T \leq (\bar{\mu}-2\ L(b))/2 < \bar{\mu}/2$, contradicting the definition of h.

Gal's Theorem

Theorem [3.26]: For any network Q, if $V = \bar{\mu}/2$ then Q is weakly Eulerian.

Note that our previous result proves this for the case that the Hider has an optimal strategy. If he has only ε —optimal strategies, then the proof becomes more involved, but the idea is largely the same. See [p.30]. Instead of concluding that hiding in b is impossible, we can only say the hiding in b must have very low probability. In that case searching b last finds the low probability hiders in b.

Details of ε -argument: Suppose h guarantees that $T(S,h) \geq \bar{\mu}/2 - \varepsilon$. Let $p = p_{\varepsilon} = h(b)$ and l = L(b) denote the length of b. Without loss of generality we may assume that the center of gravity of h on b is at least as close to C as to A. Let s be a RCP Tour of Q_A , so that $T(s,H) \leq \bar{\mu}/2$ for all H. For H in b we have T(s,H) = T(s,A) - d(A,H) and the mean on $H \in b$ of d(A,H) is at least l/2. Hence

$$T(s,h) \leq (1-p)\frac{\bar{\mu}}{2} + p\left(\frac{\bar{\mu}}{2} - \frac{l}{2}\right) = \frac{\bar{\mu}}{2} - \frac{pl}{2}, \text{ so } p \leq \frac{2\varepsilon}{l}.$$

Let s' be a RCP tour of Q-b followed by a path which reaches A' at some finite time M ($\leq 3\bar{\mu}$). Then

$$T\left(s',h\right) \leq (1-p)\frac{\bar{\mu}-2l}{2} + pM = \frac{\bar{\mu}}{2} - l + p\left(M - \frac{\bar{\mu}-2l}{2}\right)$$
$$\leq \frac{\bar{\mu}}{2} - l + p\varepsilon\left(M - \frac{\bar{\mu}-2l}{2}\right) \to \frac{\bar{\mu}}{2} - l$$

which leads to a contradiction for ε sufficiently small.

The 'Three Arc' Network

If Searcher follows minimal search path (or tour), and d(H, A) = x, 0 < x < 1,

$$T = \frac{2}{3} \left(\frac{1}{2} (1 - x) + \frac{1}{2} (1 + x) \right) + \frac{1}{3} (3 - x) = \frac{5 - x}{3} \le \frac{5}{3}.$$

Best to hide near A. Pick x (on random arc) with probability density $f(x) = e^{-x}$ $0 < x < \ln 2 \approx .693$. Searcher goes to A, back a bit on another arc, back to A, back to A, back to A, back towards A. (S. Gal, L. Pavlovic). $V = (4 + \ln 2)/3 \approx 1.56 < \bar{\mu}/2$.