Static-2

Title

Continuous beam with fixed ends and an intermediate hinge support

Description

A continuous beam with fixed ends and an intermediate hinge support is subjected to a uniformly distributed load and a concentrated load.

Determine the bending moments of the structure.

Structural geometry and analysis model

Model

Analysis Type

2-D static analysis (X-Z plane)

Unit System

ft, kip

Dimension

Length 30.0 ft

Element

Beam element

Material

Modulus of elasticity $E = 4320.0 \times 10^3 \text{ ksf}$

Section Property

Element **1** – Moment of inertia $I_{yy} = 0.0201 \text{ ft}^4$ Element **2** – Moment of inertia $I_{yy} = 0.0067 \text{ ft}^4$

Boundary Condition

Nodes 1 and 3; Constrain all DOFs.

Node 2 ; Constrain Dx and Dz. (Rotational hinge about the Y-axis)

Load Case

A uniformly distributed load, 1.2 kips/ft, is applied at the element $\boxed{1}$ in the -Z direction.

A concentrated load, 8.0 kips is applied to the mid-point of the element 2 in the -Z direction.

Results

Bending moment diagram of the structure

Comparison of Results

Unit: kip-ft

Element	Node	Bending Moment (M _y)	
		Theoretical	MIDAS/Civil
1	1	-49.0	-49.0
2	2	-22.0	-22.0
2	2	-22.0	-22.0
	3	-4.0	-4.0

References

Lausen, Harold I, "Structural Analysis", McGraw Hill Book Co. Inc., New York, 1969. pp. $323 \sim 325$.