机器学习与数据挖掘期末作业

IMDB电影评论文本表征学习与情感分类

19335015 陈恩婷

概述

表征学习与文本分类都是目前在机器学习领域的常见应用。本实验通过尝试不同的文本表征学习算法,并将所得的文本嵌入应用于深度神经网络的训练,对IMDB电影评论文本进行情感分类,探究与比较了不同的表征学习算法与他们的情感分类效果,其中采用Word2vec模型时得到了最大测试集正确率88.49%。

关键词:表征学习、TF-IDF、Word2vec、文本情感分类、多层感知机、机器学习、数据挖掘

研究问题的背景与动机

表征学习

在机器学习领域,表征学习(Representation Learning)是一种将原始数据转换成为更容易被机器学习应用的数据的过程。表征学习的目的是对复杂的原始数据化繁为简,把原始数据提炼成更好的数据表达,使后续的任务事半功倍。表征学习可以用于很多下游的机器学习应用,包括分类、聚类、异常检测等等。

文本情感分类

在机器学习中,文本情感分类是一类有监督学习,它主要的任务是对输入的文本,确定它情感态度上是积极还是消极(或者中立)。文本情感分类任务有很多应用,包括用于调查公众对于某一作品或事件的态度,用于电商平台等的推荐系统,用于预测未来市场的走向等等。文本情感分类主要借助于文本的表征学习,然后把学到的文本嵌入传入深度神经网络进行训练,得到文本分类模型。

本实验采用IMDB电影评论的数据集,利用多种不同的文本表征学习的方法,生成了文本的向量化表示,并通过多层感知机的训练出文本情感分类模型,通过模型在测试集上的结果分析和探究各文本生成算法的优劣。

现有的主要方法

文本的表征学习

在机器学习中,目前文本的表征学习主要包括以下几种方法:

One-Hot Representation

最简单的表示文本数据的方法就是用一个one-hot vector来表示单词集中的每一个单词,例如

接着,每一个句子就可以表示为这些单词的one-hot编码按顺序拼接成的矩阵,比如句子I have a dot可以表示为

one-hot编码的主要缺陷在于,它无法反映单词之前语义的相似性,而且使用起来非常麻烦,维度也很高,文本的矩阵也非常稀疏。所以就有了如下的其他表征学习方法。

TF (Term Frequency, or BOW, Bag of Words)

Bag-of-Word (BOW) 方法忽略了单词在文本中的出现顺序,只保留了每个单词在当前文本中出现的次数:

这种方法的弊端是假设每个单词都有同等的重要性,而实际上不同的单词所携带的信息量是不同的,例如英文中the, a之类的单词(称为stop words)通常就比classroom, football之类的单词要携带的信息要少。这个问题可以通过在文本预处理中,去除stop words来改善,或者采用TF-IDF的方法。

TF-IDF

TF-IDF在TF的基础上,尝试给每个单词赋予不同的权重,具体来说,TF-IDF又两个统计结果的值相乘而得:

$$t f i d f(w, d, D) = t f(w, d) \times i d f(w, D)$$

其中w为当前单词,d为第d篇文本,D为语料库(所有文本的集合)。

tf(w,d) 代表了单词w在第d篇文本中的频率

$$tf(w,d) = rac{\# \ of \ word \ w \ in \ d}{\# \ of \ all \ words \ in \ d}$$

idf(w,D) 则为如下表达式

$$idf(w,D) = log rac{\# \ of \ documents \ in \ D}{\# \ of \ documents \ containing \ word \ w \ in \ D}$$

idf(w,D) 代表了单词w携带的信息量大小,idf(w,D)值越大,单词w携带的信息量越大。

所以,TF-IDF值tfidf(w,d,D)=tf(w,d) imes idf(w,D) 涵盖了单词w在文本d的频率,以及它在语料库D中携带的信息量。

		$\operatorname{diam}(i, a, D) = \operatorname{diam}(i, a) \cdot \operatorname{idi}(i, D)$							
		blue	bright	can	see	shining	sky	sun	today
Document 1	1	0.301	0	0	0	0	0.151	0	0
Document 2	2	0	0.0417	0	0	0	0	0.0417	0.201
Document 3	3	0	0.0417	0	0	0	0.100	0.0417	0
Document 4	4	0	0.0209	0.100	0.100	0.100	0	0.0417	0

 $tfidf(t, d, D) = tf(t, d) \cdot idf(t, D)$

如图所示,每一行代表了每个文本的tf-idf值,每一列代表了每个单词的tf-idf值。

tf-idf的主要缺陷在于,它同样无法反映单词之间语义的相似性,也没有包含任何关于单词在文本中的顺序的信息,同样它非常稀疏,维度也非常高。

Word2Vec

Word2vec是一种更加新兴的文本表征学习方法。它的目标是通过机器学习方法,获得单词的数值向量表示,而且这些向量具有如下特征

- 1. 稠密 (低维向量)
- 2. 能反映单词之间的语义相似性,如下图所示

文本的嵌入则可以在单词的词嵌入的基础上计算而得。

Word2Vec的主要思想为:单词之间词义的相似性就隐含在现有的文本当中。例如,如果两个单词频繁地同时出现,那么他们的词义可能非常相近

A cup of tea
A cup of coffee
Tea or coffee?
Coffee and tea have caffeine
Let's go for a coffee
Let's get a tea
Coffee vs Tea: Which is Best?
I avoid adding sugar to my tea
I drink coffee with two spoons of sugar

Word2Vec的具体方法主要有两种,一种是Skip-gram,即用中心的单词预测周围的单词;另一种是CBOW(Continuous bag of words),即用周围的单词预测中心的单词。

文本的分类

文本分类的常用方法是将文本嵌入传入深度神经网络进行训练,从而得到一个文本分类器。本实验采用多层感知机来训练一个文本分类模型。根据Lecture6-Neural Networks中的介绍,多层感知机(MLP,multiplayer perception)就是全连接神经网络(fully connected Neural Network)。按照一般的PyTorch神经网络设计方法可以很方便实现一个简单的MLP,在接下来的部分会有详细的介绍。

分类结果的Accuracy, Precision, Recall, F measure

对于二分类的任务,主要的模型性能度量包括accuracy, precision, recall, F measure等。其中accuracy, precision, recall的示意图如下:

gold standard labels

对于F measure,本实验采用的是平衡的F1,公式如下:

$$F_1 = \frac{2PR}{P+R}$$

其中P和R分别代表precision和recall。

本实验采用的模型与算法

读入与预处理数据

读入预处理数据的代码存于preprocess.py中,代码如下:

先导入需要用到的库:

```
import re
import csv
import string
import numpy as np
import pandas as pd
import unicodedata
from bs4 import BeautifulSoup
from nltk import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
```

读入和预处理的主要函数如下:

```
def read_and_preprocess():
    df = pd.read_csv('IMDB Dataset.csv', encoding = 'utf-8')
    df['review'] = df['review'].apply(denoise_text)
    df['sentiment'] = df['sentiment'].apply(convert_string_to_true_false)
    X = df['review'].values
    Y = df['sentiment'].values
    return X, Y
```

首先用pandas中的read_csv函数按utf-8编码读入数据集,然后对影评文本进行清洗,将影评的情感分类转换为布尔矩阵,最后将影评部分和分类部分分别赋值给X,Y数组。

其中denoise_text函数的代码如下:

```
def denoise_text(text):
    # Remove stopwords, punctuation, and convert to lowercase etc
    text = remove_non_utf8_characters(text)
    text = remove_html_tags(text)
    text = remove_URL(text)
    text = remove_punctuation(text)
    text = remove_single_characters(text)
    text = remove_digits(text)
    text = remove_digits(text)
    text = convert_to_lowercase(text)
    text = word_tokenize(text)
    text = remove_stopwords(text)
    text = lemmatize(text)
    return text
```

最后将处理好的数据用numpy.save放入npy文件中:

```
X, Y = read_and_preprocess()
with open('X_Y.npy', 'wb') as f:
    np.save(f, X)
    np.save(f, Y)
```

分出训练集、测试集和验证集

这一部分比较简单, 先读入清洗好的数据集:

```
import numpy as np
with open('X_Y.npy', 'rb') as f:
    X = np.load(f, allow_pickle=True)
    Y = np.load(f, allow_pickle=True)
```

分割数据集:

```
X_train = X[:30000]
Y_train = Y[:30000]
X_test = X[30000:40000]
Y_test = Y[30000:40000]
X_valid = X[40000:]
Y_valid = Y[40000:]
```

保存:

```
with open('X_splitted.npy', 'wb') as f:
    np.save(f, X_train)
    np.save(f, X_test)
    np.save(f, X_valid)

with open('Y_splitted.npy', 'wb') as f:
    np.save(f, Y_train)
    np.save(f, Y_test)
    np.save(f, Y_valid)
```

接下来就到了向量化的步骤。

TF

首先导入需要的库:

```
# Importing required modules
import pickle
import numpy as np
from nltk.tokenize import word_tokenize
```

读入训练集、测试集和验证集后,先遍历一遍训练集中的所有影评,将所有的单词放入word_set,把它们在所有影评中出现的次数放入collection_freq_dict:

再根据单词出现的频率过滤掉低频词:

```
def remove_low_freq_words(X_train, threshold, word_set):
   word_set_copy = word_set.copy()
   for word in word_set_copy:
      if collection_freq_dict[word] < threshold:
            word_set.remove(word)
   return word_set</pre>
```

然后就给用剩余的每个单词创建索引值了,存在word_index_dict中:

```
def get_word_index_dict(word_set):
    word_set = list(word_set)
    word_set.sort()
    word_index_dict = {}
    for i, word in enumerate(word_set):
        word_index_dict[word] = i
    return word_index_dict
```

为了实现Tf向量的计算,需要实现对每个影评进行词频的计算。先遍历一遍影评中的所有单词得到每个单词出现的次数,再除以影评的长度得到频率:

```
# Term Frequency (TF)
def get_tf_dict(review):
    tf_dict = {}
    for word in review:
        if word in tf_dict:
            tf_dict[word] += 1
        else:
            tf_dict[word] = 1
    return tf_dict
def tf(word, review, tf_dict):
    return tf_dict[word] / len(review)
```

最后就可以为每篇影评计算tf向量了:

```
def tf_vec(review, N, df_dict):
    tf_vector = np.zeros(len(word_index_dict))
    tf_dict = get_tf_dict(review)
    for word in review:
        if word in word_index_dict:
            tf_vector[word_index_dict[word]] = tf(word, review, tf_dict)
    return tf_vector
```

TF-IDF

tf-idf向量的计算流程和tf类似,但要多乘一项idf,仿照tf的写法,先遍历数据集(训练集、测试集或验证集)得到每个单词出现的影评个数,存在df_dict中,再获取每个单词的idf:

```
def get_df_dict(X):
    df_dict = {}
    for review in X:
        for word in review:
            if word in df_dict:
                df_dict[word] += 1
            else:
                 df_dict[word] = 1
        return df_dict

# Inverse Document Frequency (IDF)
def idf(word, N, df_dict):
    return np.log10(N / df_dict[word])
```

然后就可以获取每篇影评的tf-idf向量了:

```
def tf_idf_vec(review, N, df_dict):
    tf_idf_vector = np.zeros(len(word_index_dict))
    tf_dict = get_tf_dict(review)
    for word in review:
        if word in word_index_dict:
            tf_idf_vector[word_index_dict[word]] = tf(word, review, tf_dict) *
idf(word, N, df_dict)
    return tf_idf_vector
```

word2vec

word2vec的实现思路和前两种不太一样,主要是调用库函数来获取向量。首先导入需要的库:

```
import pickle
import numpy as np
from gensim.test.utils import common_texts
from gensim.models import Word2vec
```

创建并训练模型:

```
model = Word2Vec(X_train, min_count = min_count, vector_size=100, workers=1, seed=1)
# 以上采用的Word2vec参数在实验中有调整
```

这样还只是得到了每个单词的向量,要得到每篇影评的向量,我参考了stackoverflow.com上面的问题 How to get vector for a sentence from the word2vec of tokens in sentence:

There are different methods to get the sentence vectors:

- 1. **Doc2Vec**: you can train your dataset using Doc2Vec and then use the sentence vectors.
- 2. **Average of Word2Vec vectors**: You can just take the average of all the word vectors in a sentence. This average vector will represent your sentence vector.
- 3. **Average of Word2Vec vectors with TF-IDF**: this is one of the best approach which I will recommend. Just take the word vectors and multiply it with their TF-IDF scores. Just take the average and it will represent your sentence vector.

这里我选择了第二种办法,将影评中的每个单词的向量计算平均值得到影评的向量(第三种方法尝试过但正确率不如第二种方法高),其中保留的单词最小出现次数为50,与tf和tf-idf最小为100略有不同。

代码如下:

前馈神经网络

设计

分类方法我选用了前馈神经网络,主要借助pytorch中的库函数来搭建,包括两层节点,每层100个节点,使用ReLU和sigmoid等函数。代码如下:

```
import pickle
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch
class FFNN(nn.Module):
    def __init__(self, input_size, hidden_size_1, hidden_size_2, output_size):
        super(FFNN, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size_1)
        self.relu_1 = nn.ReLU()
        self.fc2 = nn.Linear(hidden_size_1, hidden_size_2)
        self.relu_2 = nn.ReLU()
        self.fc3 = nn.Linear(hidden_size_2, output_size)
    def forward(self, x):
        out = self.fc1(x)
        out = self.relu_1(out)
        out = self.fc2(out)
        out = self.relu_2(out)
        out = self.fc3(out)
        return torch.squeeze(torch.sigmoid(out))
    def predict(self, x):
        self.eval()
        torch.no_grad()
        return self.forward(x)
    def evaluate(self, output, y):
```

```
output = torch.round(output)
correct = (output == y).float()
return correct.sum() / len(correct)
```

训练

模型的训练主要用train_model成员函数完成,每次循环先计算出结果再求出与标准结果之间的损失,再用损失对神经网络中的权值进行调整。由于想要观察训练过程中损失和正确率的变化,每二十次循环都记录一次训练集和测试集上的损失和正确率,用于作图。

训练函数的代码如下:

```
def train_model(self, x, y, x_test, y_test, epochs):
    self.train()
    epoch_list = []
    train_loss = []
    test_loss = []
    train_acc = []
    test_acc = []
    for epoch in range(epochs):
        output = self.forward(x)
        loss = criterion(output, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if epoch % 20 == 0:
            epoch_list.append(epoch)
            accuracy = self.evaluate(output, y)
            train_loss.append(loss.item())
            train_acc.append(accuracy.item())
            output = self.forward(x_test)
            loss = criterion(output, y_test)
            accuracy = self.evaluate(output, y_test)
            test_loss.append(loss.item())
            test_acc.append(accuracy.item())
    return train_loss, train_acc, test_loss, test_acc, epoch_list
```

作图的代码如下:

```
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure

figure(figsize=(8, 8))
plt.plot(epoch_list, train_loss)
plt.plot(epoch_list, test_loss)
plt.title(feature + 'Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['train', 'val'], loc='upper right')
plt.show()

figure(figsize=(8, 8))
plt.plot(epoch_list, train_acc)
plt.plot(epoch_list, test_acc)
plt.title(feature + 'Accuracy')
plt.ylabel('Accuracy')
```

```
plt.xlabel('Epoch')
plt.legend(['train', 'val'], loc='upper right')
plt.show()
```

最后保存checkpoint:

```
model.save(feature + '.pth')
```

验证训练结果

从保存的checkpoint文件中恢复模型,在验证集上进行结果的预测并计算准确率,代码如下:

```
model.load(feature+'.pth')
print("validation set: ", model.evaluate(
    model.predict(X_valid), Y_valid).item().__round__(4))
```

实验结果与分析

训练集和验证集上的损失与正确率

TF

如图所示,TF的文本表示用于训练文本情感分类模型时,正确率上升和损失下降都很快,到后面趋于平稳,逐渐拟合到最优解,最终在验证集上达到87%左右的正确率。

TF-IDF

如图所示,TF-IDF的训练过程也是呈先快后慢的趋势,最终在验证机上收敛到88%左右的正确率。

word2vec

本实验探究了word2vec和前馈神经网络中的一些超参数对于模型最终正确率的影响,列表如下:

#	alpha	window	vector_size	epochs	training_iterations	accuracy
1	0.025	5	100	5	3000	0.8611
2	0.025	5	100	5	5000	0.8406
3	0.025	5	100	5	5000	0.8591
4	0.025	5	100	5	3000	0.8565
5	0.025	5	100	5	3000	0.8542
6	0.025	5	100	5	3000	0.8588
7	0.025	5	100	5	3000	0.8586
8	0.01	5	100	5	3000	0.8293
9	0.05	5	100	5	1500	0.8601
10	0.04	5	100	5	1000	0.8573
11	0.05	10	100	5	1000	0.8697
12	0.05	25	100	5	1000	0.8749
13	0.05	50	100	5	1000	0.8751
14	0.05	50	200	5	1000	0.8775
15	0.05	50	500	5	1000	0.8792
16	0.05	50	500	5	1000	0.8811
17	0.05	50	500	5	1000	0.8812
18	0.05	50	500	10	1000	0.8821
19	0.05	50	500	10	1000	0.8809
20	0.05	50	1000	10	1000	0.8837
21	0.05	50	1000	15	1000	0.8799

其中前四列为训练得到Word2vec向量表示时的参数,第五列training iteration为训练二分类的神经网络时的迭代次数。IMDB电影评论文本corpus的min_count均设为100。

在表格中可以看到,增大滑动窗口的大小、word2vec向量长度,以及增大训练生成word2vec的epoch数都有助于提高文本表征学习的效果。

对比表格中的第9、11、12、13次训练,可以看到增大滑动窗口的大小可以提升二分类的正确率,这是因为增大窗口有利于发掘距离较远的单词之间的关系,尤其是带有感情色彩的单词与其他单词的关系。下图是第9、11、12、13次训练的Validation Accuracy的对比:

如图所示,可以看到从window = 5增大到window = 10有比较大的改进,而从window = 10增大到25或50的改进就没那么明显了。

对比第13、14、15次训练,可以得出增大vector size提升了文本分类的正确率,这是因为增大向量长度可以增加文本表征学习的结果所携带的信息。下图是第13、14、15次训练的Validation Accuracy的对比:

对比第17、18次训练和第20、21次训练,可以得出一定程度增大训练轮数有利于提升实验的正确率,这是因为增大训练轮数有助于在多次迭代中发掘单词蕴含的信息,但训练轮数过大时,word2vec模型可能会学习到一些噪音,产生过拟合的现象,反而在分类任务中的性能下降了。

实验中最好的一次训练(第20次)的loss和accuracy图表如下:

验证集上的正确率

```
C:\Users\豹豹\OneDrive - 中山大学\大三下\机器学习与数据挖掘\19335015-陈恩婷\劳train最优>python -u "c:\Users\豹豹\OneDrive - 中山大学\大三下\机器学习与数据挖掘\19335015-陈恩婷\劳train最优\test.py" finished loading created model tf test set: 0.8752 precision = 0.8633 recall = 0.8903 f_score = 0.8766 valid set: 0.8738 precision = 0.871 recall = 0.878 f_score = 0.8745

C:\Users\豹豹\OneDrive - 中山大学\大三下\机器学习与数据挖掘\19335015-陈恩婷\劳train最优>python -u "c:\Users\豹豹\OneDrive - 中山大学\大三下\机器学习与数据挖掘\19335015-陈恩婷\劳train最优>python -u "c:\Users\豹豹\OneDrive - 中山大学\大三下\机器学习与数据挖掘\19335015-陈恩婷\劳train最优>python -u "c:\Users\豹豹\OneDrive - 中山大学\大三下\机器学习与数据挖掘\19335015-陈恩婷\劳train最优>python -u "c:\Users\豹豹\OneDrive - 中山大学\大三下\机器学习与数据挖证\19335015-陈恩婷\劳train最优>python -u "c:\Users\豹豹\OneDrive - 中山大学\大三下\机器学习与数据挖掘\19335015-陈恩婷\劳train最优\test.py" finished loading created model word2vec test set: 0.883 precision = 0.8744 recall = 0.8933 f_score = 0.8837 valid set: 0.8849 precision = 0.8875 recall = 0.882 f_score = 0.8847
```

如图所示,三种向量化方法都达到了85%以上的正确率和F score,其中Word2vec的性能最好,在测试集达到了88.3%的正确率,TF-IDF次之,TF的正确率最低。这是因为Word2vec作为一个深度学习模型,相对于传统的TF-IDF等方法能挖掘出文本蕴含的信息。

实验中遇到的一些问题和讨论

计算TF-IDF时一直算不出结果

解决方法:检查代码发现,原先的实现方法不是很好,每次计算tf或者idf都把影评遍历一遍,非常浪费时间,其实只遍历一次影评就可以得到tf和idf,改进之后性能明显提高了。

使用Matplotlib时出现报错

实验的代码中使用matplotlib进行作图,但是一调用其库函数就会报如下错误:

Warning: QT DEVICE PIXEL RATIO is deprecated. Instead use:

QT_AUTO_SCREEN_SCALE_FACTOR to enable platform plugin controlled per-screen factors.

QT_SCREEN_SCALE_FACTORS to set per-screen DPI.

QT_SCALE_FACTOR to set the application global scale factor.

This application failed to start because no Qt platform plugin could be initialized

解决方法: 查阅资料发现这其实是两个不同的报错。关于第二个报错,我参考<u>这篇文章</u>,补充了相应环境变量再重启电脑,但是还有前面的报错,于是按照<u>这篇文章</u>的建议补充了一下代码:

```
def suppress_qt_warnings():
    environ["QT_DEVICE_PIXEL_RATIO"] = "0"
    environ["QT_AUTO_SCREEN_SCALE_FACTOR"] = "1"
    environ["QT_SCREEN_SCALE_FACTORS"] = "1"
    environ["QT_SCALE_FACTOR"] = "1"
    suppress_qt_warnings()
```

这样就不会有原来的报错了,可以正常使用matplotlib。

训练好模型以后, 一旦重新计算每篇影评的向量, 模型就会失效

训练好模型后,如果删除了一开始生成的存有文本表征的.bin文件,重新运行代码来生成这几个文件后,验证集上面的结果就会出现反弹回了很低的正确率的情况

解决方法: 仔细检查代码每一步的结果并查阅资料后, 发现是这两个问题:

tf和tf-idf向量中的set顺序问题

Python中的set里面使用的是hash结构,即使存储的数据内容相同,每次运行也会按不同顺序存放,就会导致下面这段代码遍历word_set中每个单词的顺序不同,相同的单词就会每次在word_index_dict中都获得不同id:

```
def get_word_index_dict(word_set):
    word_index_dict = {}
    for i, word in enumerate(word_set):
        word_index_dict[word] = i
    return word_index_dict
```

由于生成向量的函数会根据每个单词在word_index_dict中的id对向量的各维度进行赋值,影评向量化的结果就会不一样:

```
def tf_vec(review, N, df_dict):
    tf_vector = np.zeros(len(word_index_dict))
    tf_dict = get_tf_dict(review)
    for word in review:
        if word in word_index_dict:
            tf_vector[word_index_dict[word]] = tf(word, review, tf_dict)
    return tf_vector
```

解决这个问题的一种方法是修改PYTHONHASHSEED(见<u>这个问题</u>),但是我在尝试了在代码中修改的方式(os.environ['PYTHONHASHSEED'] ='0')好像没有效果,为了简便起见,我直接将set转换为list,再给list排序(见这篇文章):

```
word_set = list(word_set)
word_set.sort()
```

这样就可以避免每次计算出的向量不同的问题。

word2vec训练出的模型的随机性

word2vec情况类似,也是PYTHONHASHSEED导致的问题,虽然<u>找到的文章</u>中说python3除了修改代码还要配置环境变量,但是我尝试后发现修改代码就已经可以解决问题了:

```
model = Word2Vec(X_train, min_count = min_count, vector_size=100, workers=1,
seed=1)
```

这里加上workers=1, seed=1即可。

实验结论与总结

本实验通过尝试了TF(CBOW)、TF-IDF和Word2vec等不同的文本表征学习算法于模型,复习于巩固了关于表征学习部分的相关知识,并将所得的文本嵌入应用于深度神经网络的训练,对IMDB电影评论文本进行情感分类,探究与比较了不同的表征学习算法与他们的情感分类效果,其中采用TF-IDF时得到了最大测试集正确率88.49%。对于Word2Vec模型,实验发现增大滑动窗口的大小、word2vec向量长度,以及增大训练生成word2vec的epoch数都有助于提高文本表征学习的效果。

在实现模型的过程中,我还遇到了一些关于python的matplotlib、set和word2vec等等的问题,经过详细查阅资料和不断试验都成功解决了问题,也收获了很多知识与技能。

参考链接

- 1. Pattern Recognition and Machine Learning
- 2. https://www.tensorflow.org/tutorials/text/word2vec
- 3. https://stackoverflow.com/questions/29760935/how-to-get-vector-for-a-sentence-from-the-word2vec-of-tokens-in-sentence
- 4. https://blog.csdn.net/qg/43480604/article/details/117906343
- 5. https://blog.csdn.net/QinZheng7575/article/details/108980162
- 6. https://stackoverflow.com/questions/3812429/is-pythons-set-stable
- 7. https://blog.xiaoquankong.ai/python-set-%E8%BF%AD%E4%BB%A3%E8%BF%94%E5%9B%9
 https://blog.xiaoquankong.ai/python-set-%E8%BF%AD%E4%BB%A3%E8%BF%94%E5%9B%9
 https://blog.xiaoquankong.ai/python-set-%E8%BF%AD%E4%BB%A3%E8%BF%94%E5%9B%98%E5%BA%8F%E6%9C%BA%E5%8F%98%E6%9C%BA%E5%BF%98%E6%9C%BA%E5%BF%98%E6%9C%BA%E5%BF%98%E6%9C%BA%E5%BF%98%E6%9C%BA%E5%BF%E6%9C%BA%E5%BF%P8%E6%P
- 8. https://blog.csdn.net/zdm 0301/article/details/120013915