

Universidade Estadual de Campinas

FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO

EE531 (Laboratório de Eletrônica Básica I)

Prof. Fabiano Fruett

Data da realização do experimento:	/ /	Turma:

Experimento III – Transistores Bipolares

1 Objetivo:

Polarização da configuração Emissor Comum. Cálculo do ponto de operação e análise para pequenos sinais. Efeitos da temperatura nas características da configuração Emissor Comum. Estabilidade do ponto de operação e do ganho.

2 Componentes:

1 Resistor de cada valor: 470 Ω ; 1,2 k Ω ;

1 Transistor bipolar NPN, BC548

5,1 kΩ; 15 kΩ; 100 kΩ; 560 kΩ e 750 kΩ

1 Capacitor de 1 µF

1 Trimpot, 20 voltas, de $10 \text{ k}\Omega$

3 Parte Experimental:

- 3.1 Meça o ganho de corrente DC (β_{CC}) do transistor bipolar. OBS: Use o recurso do multímetro para efetuar esta medida.
- 3.2 O circuito mostrado na Figura 1 implementa um amplificador na configuração emissor-comum. Calcule o valor de $R_{\rm B1}$ para se obter $V_{\rm C}$ =8V.

OBS: Tome cuidado na soldagem do transistor

- 3.3 Meça R_C e R_{B1} . Monte o circuito da Figura 1. Polarize e meça V_C e V_B . Calcule I_B , I_C e β . Compare com os valores teóricos e tire suas conclusões.
- 3.4 Análise de pequenos sinais. Calcule:
 - a) A impedância de entrada R_{in} do circuito.
 - b) A frequência de passagem determinada por C_c e R_{in.}
 - c) A transcondutância do bipolar operando nesta condição.
 - d) O ganho (v_c/v_{in}) deste amplificador. OBS: Considere a impedância interna do gerador de sinais R_{ger} =50 Ω .
- 3.5 Aplique, através do capacitor de acoplamento, um sinal de 10mVp (offset=0 e freqüência=10 kHz) na entrada v_{in}. Meça o ganho experimental e compare com a teoria. Imprima v_{in} e v_c. Tome cuidado para que o transistor não opere próximo da região de saturação e nem da região de corte.
- 3.6 Monitorando constantemente com o osciloscópio o sinal do coletor, aqueça cuidadosamente o transistor com o ferro de soldar. Relate suas observações quanto ao efeito da temperatura tanto no ganho de tensão quanto no valor da tensão cc do coletor (v_c). Conclua.
- 3.7 Desconecte o gerador de sinais e introduza um resistor de emissor (R_E) no circuito. Recalcule R_{B1} para se obter a máxima excursão do sinal de saída ($V_C \cong 8V$).
- 3.8 Meça V_B , V_C e V_E e calcule I_B , I_C , I_E e β_{CC} .
- 3.9 Repita os itens 3.4, 3.5 e 3.6.
- 3.10 Desconecte o gerador de sinais, substitua R_{B1} =15 k Ω e introduza o trimpot (R_{B2}), no circuito.
- 3.11 Ajuste o valor de trimpot $R_{\rm B2}$, alterando o ponto de operação do circuito de forma a se obter a máxima excursão de sinal na saída (coletor de Q). Meça o valor de $R_{\rm B2}$.
- 3.12 Com a mesma regulagem obtida através de R_{B2} meça V_B , V_C , V_E e calcule I_B , I_C e I_E .
- 3.13 Na condição que satisfaz o item 3.11, repita os itens 3.4, 3.5 e 3.6.

4. Bibliografia

- 4.1 A. S. Sedra, K.C.Smith, Microeletrônica, Makron Books Ltda
- 4.2 R. Boylestad e L. Nashelsky, Dispositivos Eletrônicos e Teoria de Circuitos, Prentice-Hall.