

Arduino Mega 2560

Arduino Mega 2560 R3 Front

Arduino Mega2560 R3 Back

Arduino Mega 2560 Front

Arduino Mega 2560 Back

Overview

The Arduino Mega 2560 is a microcontroller board based on the ATmega2560 (<u>datasheet</u>). It has 54 digital input/output pins (of which 14 can be used as PWM outputs), 16 analog inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB connection, a power jack, an CSP header, and a reset button. It contains everything needed to support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get started. The Mega is compatible with most shields designed for the Arduino Duemilanove or Diecimila.

The Mega 2560 is an update to the <u>Arduino Mega,</u> which it replaces.

Schematic, Reference Design & Pin Mapping

EAGLE files: arduino-mega2560-reference-design.zip

Schematic: arduino-mega2560-schematic.pdf

Pin Mapping: PinMap2560 page

Summary

ATmega2560 Operating Voltage Microcontroller

Input Voltage (recommended) 7-12V

6-20V Input Voltage (limits) 54 (of which 14 provide PWM output) Digital I/O Pins

16 Analog Input Pins

40 mA 50 mA DC Current for 3.3V Pin DC Current per I/O Pin

256 KB of which 8 KB used by bootloader Flash Memory

4 KB 8 KB **EEPROM** SRAM

16 MHz Clock Speed

Power

2.1mm center-positive plug into the board's power jack. Leads from a battery can be inserted in the Gnd and Vin pin headers of the POWER External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or battery. The adapter can be connected by plugging a The Arduino Mega can be powered via the USB connection or with an external power supply. The power source is selected automatically.

volts and the board may be unstable. If using more than 12V, the voltage regulator may overheat and damage the board. The recommended The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, however, the 5V pin may supply less than five range is 7 to 12 volts. The Mega2560 differs from all preceding boards in that it does not use the FTDI USB-to-serial driver chip. Instead, it features the ATmega16U2 (ATmega8U2 in the revision 1 and revision 2 boards) programmed as a USB-to-serial converter.

Revision 2 of the Mega2560 board has a resistor pulling the 8U2 HWB line to ground, making it easier to put into DFU mode. Revision 3 of the board has the following new features:

- use the AVR, which operate with 5V and with the Arduino Due that operate with 3.3V. The second one is a not connected pin, that is that allow the shields to adapt to the voltage provided from the board. In future, shields will be compatible both with the board that 1.0 pinout: added SDA and SCL pins that are near to the AREF pin and two other new pins placed near to the RESET pin, the IOREF reserved for future purposes.
 - Stronger RESET circuit.
- Atmega 16U2 replace the 8U2.

The power pins are as follows:

- VIN. The input voltage to the Arduino board when it's using an external power source (as opposed to 5 volts from the USB connection or other regulated power source). You can supply voltage through this pin, or, if supplying voltage via the power jack, access it through this pin.
- 5V. The regulated power supply used to power the microcontroller and other components on the board. This can come either from VIN via an on-board regulator, or be supplied by USB or another regulated 5V supply.
 - 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 mA.
 - **GND.** Ground pins.

Memory

The ATmega2560 has 256 KB of flash memory for storing code (of which 8 KB is used for the bootloader), 8 KB of SRAM and 4 KB of EEPROM (which can be read and written with the EEPROM library)

Input and Output

operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-Each of the 54 digital pins on the Mega can be used as an input or output, using pinMode(), digitalWrite(), and digitalRead() functions. They 50 kOhms. In addition, some pins have specialized functions:

- Jsed to receive (RX) and transmit (TX) TTL serial data. Pins 0 and 1 are also connected to the corresponding pins of the ATmega16U2 Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX) and 16 (TX); Serial 3: 15 (RX) and 14 (TX).
- External Interrupts: 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt 5), 19 (interrupt 4), 20 (interrupt 3), and 21 (interrupt 2). These pins can be configured to trigger an interrupt on a low value, a rising or falling edge, or a change in value. See the attachInterrupt() function for details.
 - PWM: 0 to 13. Provide 8-bit PWM output with the <u>analogWrite()</u> function.
- SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These pins support SPI communication using the SPI library. The SPI pins are also broken out on the ICSP header, which is physically compatible with the Uno, Duemilanove and Diecimila.

- **LED: 13.** There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is on, when the pin is LOW, it's off.
- TWI: 20 (SDA) and 21 (SCL). Support TWI communication using the Wire library. Note that these pins are not in the same location as the TWI pins on the Duemilanove or Diecimila.

The Mega2560 has 16 analog inputs, each of which provide 10 bits of resolution (i.e. 1024 different values). By default they measure from ground to 5 volts, though is it possible to change the upper end of their range using the AREF pin and analogReference() function. There are a couple of other pins on the board:

- **AREF.** Reference voltage for the analog inputs. Used with <u>analogReference()</u>.
- Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to shields which block the one on the

Communication

ATmega2560 provides four hardware UARTs for TTL (5V) serial communication. An ATmega16U2 (ATmega 8U2 on the revision 1 and revision 2 boards) on the board channels one of these over USB and provides a virtual com port to software on the computer (Windows machines will transmitted via the ATmega8U2/ATmega16U2 chip and USB connection to the computer (but not for serial communication on pins 0 and 1). monitor which allows simple textual data to be sent to and from the board. The RX and TX LEDs on the board will flash when data is being need a .inf file, but OSX and Linux machines will recognize the board as a COM port automatically. The Arduino software includes a serial The Arduino Mega2560 has a number of facilities for communicating with a computer, another Arduino, or other microcontrollers. The A SoftwareSerial library allows for serial communication on any of the Mega2560's digital pins.

The ATmega2560 also supports TWI and SPI communication. The Arduino software includes a Wire library to simplify use of the TWI bus; see the documentation for details. For SPI communication, use the SPI library.

Programming

The ATmega2560 on the Arduino Mega comes preburned with a bootloader that allows you to upload new code to it without the use of an The Arduino Mega can be programmed with the Arduino software (download). For details, see the reference and tutorials. external hardware programmer. It communicates using the original STK500 protocol (reference, C header files)

The ATmega16U2 (or 8U2 in the rev1 and rev2 boards) firmware source code is available in the Arduino repository. The ATmega16U2/8U2 is You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial Programming) header; see these instructions for details.

On Rev1 boards: connecting the solder jumper on the back of the board (near the map of Italy) and then resetting the 8U2.

loaded with a DFU bootloader, which can be activated by:

the ISP header with an external programmer (overwriting the DFU bootloader). See this user-contributed tutorial for more information. On Rev2 or later boards: there is a resistor that pulling the 8U2/16U2 HWB line to ground, making it easier to put into DFU mode. You can then use Atmel's FLIP software (Windows) or the DFU programmer (Mac OS X and Linux) to load a new firmware. Or you can use

Automatic (Software) Reset

reset by software running on a connected computer. One of the hardware flow control lines (DTR) of the ATmega8U2 is connected to the reset enable it. It's labeled "RESET-EN". You may also be able to disable the auto-reset by connecting a 110 ohm resistor from 5V to the reset line; The Mega2560 contains a trace that can be cut to disable the auto-reset. The pads on either side of the trace can be soldered together to rechip. The Arduino software uses this capability to allow you to upload code by simply pressing the upload button in the Arduino environment. connection is made to it from software (via USB). For the following half-second or so, the bootloader is running on the Mega2560. While it is board after a connection is opened. If a sketch running on the board receives one-time configuration or other data when it first starts, make ine of the ATmega2560 via a 100 nanofarad capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the programmed to ignore malformed data (i.e. anything besides an upload of new code), it will intercept the first few bytes of data sent to the Rather then requiring a physical press of the reset button before an upload, the Arduino Mega2560 is designed in a way that allows it to be This setup has other implications. When the Mega2560 is connected to either a computer running Mac OS X or Linux, it resets each time a This means that the bootloader can have a shorter timeout, as the lowering of DTR can be well-coordinated with the start of the upload. sure that the software with which it communicates waits a second after opening the connection and before sending this data. see this forum thread for details.

USB Overcurrent Protection

computers provide their own internal protection, the fuse provides an extra layer of protection. If more than 500 mA is applied to the USB The Arduino Mega2560 has a resettable polyfuse that protects your computer's USB ports from shorts and overcurrent. Although most port, the fuse will automatically break the connection until the short or overload is removed.

Physical Characteristics and Shield Compatibility

beyond the former dimension. Three screw holes allow the board to be attached to a surface or case. Note that the distance between digital The maximum length and width of the Mega2560 PCB are 4 and 2.1 inches respectively, with the USB connector and power jack extending pins 7 and 8 is 160 mil (0.16"), not an even multiple of the 100 mil spacing of the other pins.

adjacent AREF and GND pins), analog inputs 0 to 5, the power header, and ICSP header are all in equivalent locations. Further the main UART (serial port) is located on the same pins (0 and 1), as are external interrupts 0 and 1 (pins 2 and 3 respectively). SPI is available through the ICSP header on both the Mega2560 and Duemilanove / Diecimila. Please note that I^2C is not located on the same pins on the Mega (20 and The Mega2560 is designed to be compatible with most shields designed for the Uno, Diecimila or Duemilanove. Digital pins 0 to 13 (and the 21) as the Duemilanove / Diecimila (analog inputs 4 and 5).