2.4 MODELY SIGNALU

Zameriame sa na modely deterministického signálu, pretože ako sme uviedli, model náhodného signálu môže byť určený modelom ohraničeného deterministického signálu (realizácie náhodného signálu) a vhodným pravdepodobnostným priestorom. Najskôr uvedieme modely signálov s diskrétnym časom. Model signálu s diskrétnym časom musí vyjadrovať hodnoty signálu v daných časových okamihoch. Tieto hodnoty môžeme oddeľovať čiarkami, napr.

$$f = (f_0, f_1, ..., f_{N-1})$$

alebo nejakým iným prvkom, napr. x alebo z^{-1} (prvok x je používanejší u číslicových signálov, prvok z^{-1} u diskrétnych signálov). Potom časť f z^{-n} znamená, že signál v čase n má hodnotu f.

Definícia:

ξú

Nech je daný obor integrity (F, \oplus , \odot), časová množina T = $\left\{0,1,2,\ldots,N-1\right\}$ (kde N je prirodzené číslo) a prvok z⁻¹, ktorý nepatrí do daného oboru integrity. Ak f_i \in F (i = 0,1, ..., N-1), potom výraz

$$f(z^{-1}) = f_0 + f_1 z^{-1} + f_2 z^{-2} + \dots + f_{N-1} t^{-(N-1)}$$

voláme polynómom (alebo podrobnejšie polynómom s neurčitou z⁻¹ nad daným oborom integrity) a číslo N-1 voláme stupňom polynómu, čo zapisujeme

$$deg f(z^{-1}) = N-1$$

Pre signály s diskrétnym časom, ktorých časová množina je nespočetná zavádzame iný model - formálny mocninný rad.

Definícia:

Nech je daný obor integrity (F, +), \odot), časová množina $T = \{0,1,2,\ldots\}$ a prvok z^{-1} , ktorý nepatrí do daného oboru integrity. Ak $f_i \in F$ ($i = 0,1,2,\ldots$), potom výraz

$$f(z^{-1}) = f_0 + f_1 z^{-1} + f_2 z^{-2} + \cdots$$

voláme formálnym mocninným radom.

Formálny mocninný rad nazveme rekurentným, ak existujú nezáporné celé čísla r, s a prvky k_1 , ..., $k_r \in F$ tak, že

$$f_{j+r} = k_1 \odot f_{j+r-1} \oplus k_2 \odot f_{j+r-2} \oplus \cdots \oplus k_r \odot f_j$$

pre j = n+s, n+s+1, ...

Dva polynómy $f'(z^{-1}) = f_0 + f_1 z^{-1} + \dots + f_{N-1} z^{-(N-1)}$ a $f'(z^{-1}) = f'_0 + f'_1 z^{-1} + \dots + f'_{N-1} z^{-(N-1)}$ považujeme za rovné, t.j. $f(z^{-1}) = f'(z^{-1})$ práve ak $f_i = f'_i$ pre $i = 0, 1, \dots, N-1$.

Podobne chápeme rovnosť dvoch formálnych mocninných radov. Pre spojité signály budeme predpokladať, že existuje funkčný predpis f(t), ktorý každému času t z časovej množiny $T=\langle t_1,t_2\rangle$ priradí prvok $f\in R$ v obore integrity $(R,+,\cdot)$ tak, že f=f(t). Spojité signály budeme označovať v tvare f(t).

2.5 ZÁKLADNÉ OPERÁCIE S DETERMINISTICKÝMI SIGNÁLMI

Súčet signálov s diskrétnym časom

Nech (F, \bigoplus , \bigcirc) je obor integrity a T C N je časová množina. Nech φ (z⁻¹) je množina všetkých signálov

$$f(z^{-1}) = \sum_{i \in T} f_i z^{-i}$$
 takých, že $f_i \in F$, $i \in T$ a nech sú dané signály

$$f(z^{-1}), f'(z^{-1}) \in \phi(z^{-1}).$$
 Signál $g(z^{-1}) = \sum_{i \in T} g_i z^{-i}$ nazývame súčtom

signálov
$$f(z^{-1}) = \sum_{i \in T} f_i z^{-i}$$
 a $f'(z^{-1}) = \sum_{i \in T} f'_i z^{-i}$ ak platí

$$g_i = f_i \oplus f_i', i \in T$$

a píšeme

$$g(z^{-1}) = f(z^{-1}) \oplus f'(z^{-1})$$

Súčet spojitých signálov

Je daná časová množina $T=\langle t_1,t_2\rangle$ a f(t), f'(t) pre $t\in T$ sú dané spojité signály. Signál g(t), $t\in T$ nazývame súčtom signálov f(t), f'(t) ak

$$f(t) = f(t) \oplus f'(t)$$
, $t \in T$

a píšeme

$$g(t) = f(t) \oplus f'(t)$$

Súčin diskrétnych a číslicových signálov

Nech abeceda signálu tvorí pole (F, \oplus , \odot) a T C N_o. Nech je daná množina signálov ϕ taká, že pre každý signál \bullet E F, g $\in \phi$ existuje signál \bullet \bullet , že pre všetky i \in T platí

$$h_{i} = \sum_{j \in T} f_{i-j} \odot g_{j}$$

Budeme písať h = f 🕟 g a hovoriť, že signál h je súčinom signálov f a

Poznámky:

- 1. V prípade konečného intervalu $T = \{0,1,2,...,N-1\}$ budeme konvolučnú sumu chápať tak, že k signálu $f = \{f_i, i \in T\}$ zostrojíme periodické pokračovanie, alebo rozdiel j-j nahradíme rozdielom modulo N , t.j. i 🕞 j .
- 2. Znak sumácie $\sum_{i=1}^{N-1} f_i$ budeme chápať ako $f_o \oplus f_1 \oplus \cdots \oplus f_{N-1}$.
- 3. Súčin signálov ako sme ho vyššie definovali sa zvykne nazývať tiež konvolúciou alebo v prípade ohraničenej alebo konečnej časovej množiny kruhovou konvolúciou.

Súčin spojitých signálov

Je daná časová množina $T = \langle t_1, t_2 \rangle$ a množina $\phi(t) = \{f(t), t \in T\}$ spojitých signálov integrovateľných v zmysle Riemanovho kritéria. Signál g(t) nazývame súčinom (resp. konvolúciou) signálov f(t), $f'(t) \in \phi(t)$, ak

$$g(t) = \int_{T} f(T - T) \cdot f'(T) dT, \quad t \in T$$

a píšeme

$$g(t) = f(t)$$
 \odot $f'(t)$, resp. $g(t) = f(t) * f'(t)$.

2.6 ZÁKLADNÉ OPERÁCIE S NÁHODNÝMI SIGNÁLMI

Označme kvôli jednoduchosti distribučnú funkciu náhodného signálu f (ω, t)

$$F(x) = F_{t_1, t_2, \dots, t_n}(x_1, x_2, \dots, x_n)$$

Súčet náhodných signálov

Nech $\left\{ \mathbf{F}^{\mathrm{T}}, \mathbf{\Psi}, \mathbf{P}^{\mathrm{T}} \right\}$ je pravdepodobnostný priestor, na ktorom sú definované náhodné signály $f_1(\omega, t)$, $f_2(\omega, t)$ s distribučnými funkciami $F_1(\mathbf{x})$, F2(x). Súčtom náhodných signálov budeme rozumieť taký náhodný signál

$$f_3(\omega, t) = f_1(\omega, t) + f_2(\omega, t)$$

že v prípade spojitých distribučných funkcií

I

$$F_3(x) = \int_{\mathbb{R}^T} F_1(x-y/y) f_2(y) dy$$

alebo v prípade diskrétneho a číslicového náhodného signálu

$$F_3(x) = \sum_{F^T} F_1(x-y/y) \cdot p_2(y)$$

kde F(x/y) je podmienená distribučná funkcia

kde
$$F(\mathbf{x}/\mathbf{y})$$
 je podmichom $f_1(\omega, \mathbf{t}_n) < \mathbf{x}_n / f_2(\omega, \mathbf{t}_1) = y_1, \dots, f_2(\omega, \mathbf{t}_n) = \mathbf{y}_1, \dots, \mathbf{y}_2(\omega, \mathbf{t}_n) = \mathbf{y}_n$

a $f_2(y)$ je hustota rozdelenia pravdepodobnosti.

Veta:

Ak náhodné signály $f_1(\omega, t)$, $f_2(\omega, t)$ majú stredné hodnoty $E_1(t)$, $\mathbf{E}_{2}(\mathbf{t})$, potom náhodný signál $\mathbf{f}_{1}(\omega,\mathbf{t})+\mathbf{f}_{2}(\omega,\mathbf{t})$ má strednú hodnotu

Dôkaz vyplýva z definície strednej hodnoty náhodného signálu a odpovedajúcej vlastnosti rezov náhodnými signálmi.

Nech $R_{12}(t_1,t_2)$ označuje krížovú kovariančnú funkciu centrovaných náhodných signálov $f_1(\omega, t), f_2(\omega, t)$

$$R_{12}(t_1,t_2) = \mathcal{E}\left\{f_1(\omega, t_1) \cdot f_2(\omega, t_2)\right\}$$

Potom kovariančná funkcia súčtu dvoch náhodných signálov s kovariančnými funkciami $R_1(t_1,t_2), R_2(t_1,t_2)$ je

$$R(t_1,t_2) = R_1(t_1,t_2) + 2R_{12}(t_1,t_2) + R_2(t_1,t_2)$$

Dôkaz dostaneme rozpísaním definičného vzťahu pre kovariančnú funkciu súčtu dvoch náhodných signálov.

2.7 ZÁKLADNÉ VLASTNOSTI SIGNÁLOV

Nech (F, \oplus , \odot) je obor integrity. Potom ($\mathcal{F}(x)$, \oplus , \odot), kde $\mathcal{F}(x) = \{f_0 + f_1x + \cdots + f_{n-1}x^{n-1}, n \in \mathbb{N}\}$ je oborom integrity, ale nie polom.

Dokážte, že (f(x) + , .) je oborom integrity a nájdite polynóm, ktorý nemá inverzný polynóm.

Pre rekurentné signály platí silnejšie tvrdenie.

Veta:

Nech (F, \oplus , \odot) je obor integrity. Potom (\mathcal{F} , \oplus , \odot),

kde
$$\mathcal{F} = \left\{ \frac{f(z^{-1})}{g(z^{-1})} ; f(z^{-1}) \in \mathcal{F}(z^{-1}), g(z^{-1}) \neq 0 \right\}$$
 je pole.

Dôkaz je uvedený v [2].

U číslicových signálov s konečnou časovou množinou a množinou hodnôt je možné zaviesť štruktúru poľa podobne ako sme to urobili v množine hodnôt, zavedením súčtu a súčinu modulo $q(\mathbf{x})$, kde $q(\mathbf{x})$ je ireducibilný polynóm.

Nech (f(x), \oplus , \odot) je Euklidovský odbor integrity, v ktorom normou δ je stupeň polynómu a polynóm $q(x) \in f(x)$. Ak platí

$$f(x) = q(x) \odot r(x) \oplus h(x)$$
,

potom píšeme

$$f(x) = h(x) \pmod{q(x)}$$

Odbor integrity ($\mathcal{F}(x)$, \oplus , \odot , v ktorom q(x) je ireducibilný polynóm q(x) q(x)

a pre všetky $f(x) \in \widehat{f}(x)$ je deg $f(x) < \deg q(x)$ je poľom (nazývame ho Galoisove pole).