MA3104

Linear Algebra II

Autumn 2021

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Contents

1	Line	ear operators on a vector space	1
	1.1	Preliminaries	1
	1.2	Ideals in a ring	1
	1.3	Eigenvalues and eigenvectors	2
	1.4	Annihilating polynomials	3
	1.5	Invariant subspaces	5
	1.6	Triangulability and diagonalizability	7
	1.7	Simultaneous triangulation and diagonalization	8

1 Linear operators on a vector space

1.1 Preliminaries

We discuss finite dimensional vector spaces V over some field \mathbb{F} , along with linear operators $T \colon V \to V$. We also assume that V has the inner product $\langle \cdot, \cdot \rangle$.

Theorem 1.1. Let $\mathcal{L}(V)$ be the set of all linear operators on the vector space V. Then, $\mathcal{L}(V)$ is a linear algebra over the field \mathbb{F} .

1.2 Ideals in a ring

Definition 1.1. Let $(R, +, \cdot)$ be a ring, where (R, +) is its additive subgroup. A set $I \subseteq R$ is a left ideal of R if (I, +) is a subgroup of (R, +), and $rx \in I$ for every $r \in R$, $x \in I$.

Example. Let \mathbb{Z} be the ring of integers. For some $n \in \mathbb{N}$, the set $n\mathbb{Z}$ is an ideal. In fact, these are the only ideals (along with $\{0\}$).

Definition 1.2. The principal left ideal generated by $x \in R$ is the set

$$I_x = Rx = \{rx : r \in R\}.$$

Example. In the ring of integers \mathbb{Z} , every ideal is a principal ideal. This follows directly from the fact that $(\mathbb{Z}, +)$ is a cyclic group, thus any subgroup is cyclic and generated by a single element.

Let $I \subseteq \mathbb{Z}$ be an ideal. If $I = \{0\}$, we are done. Otherwise, let n be the smallest positive integer in I (note that if $a \in I$, then $-a \in I$ which means that I must contain positive integers). This immediately gives $I \supseteq n\mathbb{Z}$. Now for any $m \in I$, use Euclid's Division Lemma to write m = nq + r, where $q, r \in \mathbb{Z}$, $0 \le r < n$. Since I is an ideal, $nq \in I$ hence $m - nq = r \in I$. The minimality of n in I forces r = 0, hence m = nq and $I \subseteq n\mathbb{Z}$. This proves $I = n\mathbb{Z}$.

Theorem 1.2. Let \mathbb{F} be a field and let $\mathbb{F}[x]$ denote the ring of polynomials with coefficients from \mathbb{F} . Then, every ideal in $\mathbb{F}[x]$ is a principal ideal.

Remark. This is analogous to the theorem which states that every subgroup of a cyclic group is cyclic. Both lead to a precise definition of the greatest common divisor.

Corollary 1.2.1. Let I be a non-trivial ideal in $\mathbb{F}[x]$. Then, there exists a unique monic polynomial $p \in \mathbb{F}[x]$ (leading coefficient 1) such that I is precisely the principal ideal generated by p.

1.3 Eigenvalues and eigenvectors

Definition 1.3. Let $T \in \mathcal{L}(V)$ and $c \in \mathbb{F}$. We say that c is an eigenvalue or characteristic value of T if $T\mathbf{v} = c\mathbf{v}$ for some non-zero $\mathbf{v} \in V$. The vector \mathbf{v} is called an eigenvector of T.

Theorem 1.3. Let $T \in \mathcal{L}(V)$ and $c \in \mathbb{F}$. The following are equivalent.

- 1. c is an eigenvalue of T.
- 2. T cI is singular.
- 3. $\det(T cI) = 0.$

Definition 1.4. The polynomial det(T - xI) is called the characteristic polynomial of T.

Definition 1.5. Two linear operators $S, T \in \mathcal{L}(V)$ are similar if there exists an invertible operator $X \in \mathcal{L}(V)$ such that $S = X^{-1}TX$.

Remark. Similarity is an equivalence relation on $\mathcal{L}(V)$, thus partitioning it into similarity classes.

Lemma 1.4. Similar linear operators have the same characteristic polynomial.

Proof. Let S, T be similar with $S = X^{-1}TX$. Then,

$$det(S - xI) = det(X^{-1}TX - xX^{-1}X)$$

$$= det(X^{-1}) det(T - xI) det(X)$$

$$= det(T - xI).$$

Definition 1.6. A linear operator $T \in \mathcal{L}(V)$ is diagonalizable if there is a basis of V consisting of eigenvectors of T.

Remark. The matrix of T with respect to such a basis is diagonal.

Theorem 1.5. Let $T \in \mathcal{L}(V)$ where V is finite dimensional, let c_1, \ldots, c_k be distinct eigenvalues of T, and let $W_i = \ker(T - c_i I)$ be the corresponding eigenspaces. The following are equivalent.

- 1. T is diagonalizable.
- 2. The characteristic polynomial of T is of the form

$$f(x) = (x - c_1)^{d_1} \dots (x - c_k)^{d_k}$$

where each $d_i = \dim W_i$.

3. $\dim V = \dim W_1 + \cdots + \dim W_k$.

1.4 Annihilating polynomials

Definition 1.7. An polynomial p such that p(T) = 0 for a given linear operator $T \in \mathcal{L}(V)$ is called an annihilating polynomial of T.

Lemma 1.6. Every linear operator $T \in \mathcal{L}(V)$, where V is finite dimensional, has a non-trivial annihilating polynomial.

Proof. Note that the operators $I, T, T^2, \ldots, T^{n^2} \in \mathcal{L}(V)$, of which there are $n^2 + 1$, are linearly dependent, since dim $\mathcal{L}(V) = n^2$.

Lemma 1.7. The annihilating polynomials of T form an ideal in $\mathbb{F}[x]$.

Definition 1.8. The minimal polynomial of T is the unique monic generator of the annihilating polynomials of T.

Remark. The minimal polynomial of T divides all its annihilating polynomials.

Theorem 1.8. The minimal polynomial and characteristic polynomial of T share the same roots, except for multiplicities.

Proof. Let p be the minimal polynomial of T and let f be its characteristic polynomial.

First, let $c \in \mathbb{F}$ be a root of the minimal polynomial, i.e. p(c) = 0. The Division Algorithm guarantees

$$p(x) = (x - c) q(x)$$

for some monic polynomial q. By the minimality of the degree of p, we have $q(T) \neq 0$, hence there exists non-zero $\mathbf{v} \in V$ such that $\mathbf{w} = q(T) \mathbf{v} \neq \mathbf{0}$. Thus, $p(T) \mathbf{v} = \mathbf{0}$ gives

$$(T - cI) q(T) \mathbf{v} = \mathbf{0}, \qquad T\mathbf{w} = c\mathbf{w},$$

which shows that c is an eigenvalue, i.e. a root of the characteristic polynomial f.

Next, suppose that c is a root of the characteristic polynomial, i.e. f(c) = 0. Thus, c is an eigenvalue of T, hence there exists non-zero $\mathbf{v} \in V$ such that $T\mathbf{v} = c\mathbf{v}$. This gives $p(T)\mathbf{v} = p(c)\mathbf{v}$, but p(T) = 0 identically, forcing p(c) = 0.

Theorem 1.9 (Cayley-Hamilton). The characteristic polynomial of T annihilates T.

Proof. Set $S = \operatorname{adj}(T - xI)$. This is a matrix with polynomial entries, satisfying

$$(T - xI)S = \det(T - xI)I = f(x)I,$$

where f is the characteristic polynomial of T. Now, we can also collect the powers x^n from S and write

$$S = \sum_{k=0}^{n-1} x^k S_k$$

for matrices S_k . Now, calculate

$$f(x)I = (T - xI)S$$

$$= (T - xI) \sum_{k=0}^{n-1} x^k S_k$$

$$= -x^k S_{k-1} + \sum_{k=1}^{n-1} x^k (TS_k - S_{k-1}) + TS_0.$$

Compare coefficients with

$$f(x)I = x^n I + a_{n-1}x^{n-1} + \dots + a_0 I$$

to get

$$S_{n-1} = -I$$
, $TS_0 = a_0I$, $TS_k - S_{k-1} = a_kI$ for $1 \le k \le n-1$.

Thus,

$$f(T) = \sum_{k=0}^{n} a_k T^k$$

$$= -T^n S_{n-1} + \sum_{k=1}^{n-1} (TS_k - S_{k-1}) T^k + TS_0$$

$$= 0.$$

Corollary 1.9.1. The minimal polynomial of T divides its characteristic polynomial.

Corollary 1.9.2. The minimal polynomial of T in a finite-dimensional vector space V is at most dim V.

Theorem 1.10. The minimal polynomial for a diagonalizable linear operator T in a finite-dimensional vector space is

$$p(x) = (x - c_1) \dots (x - c_k),$$

where c_1, \ldots, c_k are distinct eigenvalues of T.

Proof. The diagonalizability of T implies that V admits a basis of eigenvectors of T. Thus, for any such eigenvector \mathbf{v}_i , the operator $T - c_i I$ kills it where c_i is the corresponding eigenvalue. Thus, $p(T)\mathbf{v}_i$ vanishes for every basis vector \mathbf{v}_i

Remark. The converse is also true, i.e. T is diagonalizable if and only if the minimal polynomial is the product of distinct linear factors.

1.5 Invariant subspaces

Definition 1.9. Let $T \in \mathcal{L}(V)$ where V is finite-dimensional, and let $W \subseteq V$ be a subspace. We say that W is invariant under T if $T(W) \subseteq W$.

If a subspace W is invariant under T, we define the linear map $T_W \in \mathcal{L}(W)$ as the restriction of T to W in the natural way, by setting $T_W(\boldsymbol{w}) = T(\boldsymbol{w})$ for all $\boldsymbol{w} \in W$.

Lemma 1.11. If W is an invariant subspace under $T \in \mathcal{L}(V)$, then there is a basis of V in which T has the block triangular form

$$[T]_{\beta} = \begin{bmatrix} A & B \\ 0 & C \end{bmatrix},$$

where A is an $r \times r$ matrix, $r = \dim W$.

Proof. Let $\beta_W = \{v_1, \dots, v_r\}$ be an ordered basis of W, and extend it to an ordered basis $\beta = \{v_1, \dots, v_n\}$ of V. Thus, the matrix $[T]_{\beta}$ has coefficients a_{ij} such that

$$T\mathbf{v}_j = a_{1j}\mathbf{v}_1 + \dots + a_{rj}\mathbf{v}_r + \dots + a_{nj}\mathbf{v}_n.$$

However for all $j \leq r$, $T\mathbf{v}_j \in W$ by the invariance of W, so the coefficients of $\mathbf{v}_{i>r}$ in the expansion of $T\mathbf{v}_j$ must vanish. Thus, all $a_{ij} = 0$ where i > r, $j \leq r$.

Lemma 1.12. If W is an invariant subspace under $T \in \mathcal{L}(V)$, the characteristic polynomial of T_W divides the characteristic polynomial of T, and the minimal polynomial of T_W divides the minimal polynomial of T.

Proof. Choose an ordered basis β of V such that

$$[T]_{\beta} = \begin{bmatrix} A & B \\ 0 & C \end{bmatrix} = D.$$

Note that the matrix of T_W in the restricted basis β_W is just A. It can be shown that

$$\det(xI - D) = \det(xI - A) \det(xI - C),$$

which immediately gives the first result.

Now, it can also be shown that the powers of D are of the form

$$[T^k]_{\beta} = \begin{bmatrix} A^k & B_k \\ 0 & C^k \end{bmatrix} = D^k.$$

Now, $T^k \mathbf{v} = \mathbf{0}$ implies $T_W^k \mathbf{v} = \mathbf{0}$, hence any polynomial which annihilates T also annihilates T_W . This gives the second result.

Definition 1.10. Let W be an invariant subspace under $T \in \mathcal{L}(V)$, and let $\mathbf{v} \in V$. We define the T-conductor of \mathbf{v} into W as the set $S_T(\mathbf{v}; W)$ of all polynomials g such that $g(T)\mathbf{v} \in W$.

When $W = \{0\}$, $S_T(\mathbf{v}, \{0\})$ is called the T-annihilator of \mathbf{v} .

Lemma 1.13. If W is invariant under T, then it is invariant under all polynomials of T. Thus, the conductor $S_T(\mathbf{v}, W)$ is an ideal in the ring of polynomials $\mathbb{F}[x]$.

Definition 1.11. If W is an invariant subspace under $T \in \mathcal{L}(V)$, and $\mathbf{v} \in V$, then the unique monic generator of $S_T(\mathbf{v}, W)$ is also called the T-conductor of \mathbf{v} into W.

The unique monic generator of $S_T(\mathbf{v}, \{0\})$ is also called the T-annihilator of \mathbf{v} .

Remark. The *T*-annihilator of \boldsymbol{v} is the unique monic polynomial g of least degree such that $g(T)\boldsymbol{v}=\mathbf{0}$.

Remark. The minimal polynomial is a T-conductor for every $v \in V$, thus every T-conductor divides the minimal polynomial of T.

Lemma 1.14. Let $T \in \mathcal{L}(V)$ for finite-dimensional V, where the minimal polynomial of T is a product of linear operators

$$p(x) = (x - c_1)^{r_1} \dots (x - c_k)^{r_k}.$$

Let W be a proper subspace of V which is invariant under T. Then, there exists a vector $\mathbf{v} \in V$ such that $\mathbf{v} \notin W$, and $(T - cI)\mathbf{v} \in W$ for some eigenvalue c.

Proof. What we must show is that the T-conductor of v into W is a linear polynomial. Choose arbitrary $w \in V \setminus W$, and let g be the T-conductor of w into W. Thus, g divides the minimal polynomial of T, and hence is a product of linear factors of the form $x - c_i$ for eigenvalues c_i . Thus write

$$g = (x - c_i)h.$$

The minimality of g ensures that $\boldsymbol{v} = h(T)\boldsymbol{w} \notin W$. Finally, note that

$$(T - c_i I)\mathbf{v} = (T - c_i)h(T)\mathbf{w} = g(T)\mathbf{w} \in W.$$

1.6 Triangulability and diagonalizability

Theorem 1.15. Let $T \in \mathcal{L}(V)$ for finite-dimensional V. Then, T is triangulable if and only if the minimal polynomial is a product of linear polynomials.

Proof. First suppose that the minimal polynomial is of the form

$$p(x) = (x - c_1)^{r_1} \dots (x - c_k)^{r_k}.$$

We want to find an ordered basis $\beta = \{v_1, \dots, v_n\}$ in which

$$[T]_{\beta} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}.$$

Thus, we demand

$$T\mathbf{v}_i = a_{1i}\mathbf{v}_1 + \cdots + a_{ii}\mathbf{v}_i,$$

i.e. each Tv_i is in the span of v_1, \ldots, v_j .

Apply the previous lemma on $W = \{\mathbf{0}\}$ to obtain \mathbf{v}_1 . Next, let W_1 be the subspace spanned by \mathbf{v}_1 and use the lemma to obtain \mathbf{v}_2 . Then let W_2 be the subspace spanned by $\mathbf{v}_1, \mathbf{v}_2$ and use the lemma to obtain \mathbf{v}_3 , and so on. Note that at each step, the newly generated vector \mathbf{v}_j satisfies $\mathbf{v}_j \notin W_{j-1}$ and $(T - c_i I)\mathbf{v}_j \in W_{j-1}$, hence

$$T\mathbf{v}_j = a_{ij}\mathbf{v}_1 + \dots + a_{(j-1)j}\mathbf{v}_{j-1} + c_i\mathbf{v}_j$$

as desired.

Next, suppose that T is triangulable. Thus, there is a basis in which the matrix of T is diagonal, which immediately means that the characteristic polynomial is the product of linear factors $x - a_{ii}$. Furthermore, the diagonal elements are precisely the eigenvalues of T. Since the minimal polynomial divides the characteristic polynomial, it too is a product of linear polynomials.

Corollary 1.15.1. In an algebraically closed field \mathbb{F} , any $n \times n$ matrix over \mathbb{F} is triangulable.

Theorem 1.16. Let $T \in \mathcal{L}(V)$ for finite-dimensional V. Then, T is diagonalizable if and only if the minimal polynomial is a product of distinct linear factors, i.e.

$$p(x) = (x - c_1) \dots (x - c_k)$$

where c_i are distinct eigenvalues of T.

Proof. We have already shown that if T is diagonalizable, then its minimal polynomial must have the given form.

Next, let the minimal polynomial of T have the given form. Let W be the subspace spanned by all eigenvectors of V. Suppose that $W \neq V$. Using the fact that W is an invariant subspace under T and the previous lemma, we find $\mathbf{v} \notin W$ and an eigenvalue c_j such that $\mathbf{w} = (T - c_j I)\mathbf{v} \in W$. Now, \mathbf{w} can be written as the sum of eigenvectors

$$\boldsymbol{w} = \boldsymbol{w}_1 + \cdots + \boldsymbol{w}_k$$

where each $T\mathbf{w}_i = c_i\mathbf{w}_i$. Thus for every polynomial h, we have

$$h(T)\boldsymbol{w} = h(c_1)\boldsymbol{w}_1 + \dots + h(c_k)\boldsymbol{w}_k \in W.$$

Since c_j is an eigenvalue of T, write $p = (x - c_j)q$ for some polynomial q. Further write $q - q(c_j) = (x - c_j)h$ using the Remainder Theorem. Thus,

$$q(T)\boldsymbol{v} - q(c_j)\boldsymbol{v} = h(T)(T - c_j I)\boldsymbol{v} = h(T)\boldsymbol{w} \in W.$$

Since

$$\mathbf{0} = p(T)\mathbf{v} = (T - c_i I)q(T)\mathbf{v},$$

the vector $q(T)\mathbf{v}$ is an eigenvector and hence in W. However, $\mathbf{v} \notin W$, forcing $q(c_j) = 0$. This contradicts the fact that the factor $x - c_j$ appears only once in the minimal polynomial. \square

1.7 Simultaneous triangulation and diagonalization

Definition 1.12. Let V be a finite-dimensional vector space, and let \mathscr{F} be a family of linear operators on V. The family \mathscr{F} is said to be simultaneously triangulable if there exists a basis of V in which every operator in \mathscr{F} is represented by an upper triangular matrix.

An analogous definition holds for simultaneous diagonalizability.

Lemma 1.17. Let \mathcal{F} be a simultaneously diagonalizable family of linear operators. Then, every pair of operators from \mathcal{F} commute.

Proof. This follows trivially from the fact that diagonal matrices commute.