

Prova de Tabela Periódica - ITA

- **1** (ITA-13) Os átomos A e B do segundo período da tabela periódica têm configurações eletrônicas da camada de valência representadas por ns2np3 e ns2np5 , respectivamente. Com base nessas informações, são feitas as seguintes afirmações para as espécies gasosas no estado fundamental:
- ${\bf I.}$ O átomo ${\bf A}$ deve ter maior energia de ionização que o átomo ${\bf B}$.
- **II.** A distância da ligação entre os átomos na molécula A2 deve ser menor do que aquela na molécula B2.
- **III.** A energia de ionização do elétron no orbital 1s do átomo A deve ser maior do que aquela do elétron no orbital 1s do átomo de hidrogênio.
- IV. A energia de ligação dos átomos na molécula B
- a) I,II e IV. b) I e III. c) II e III. d) III e IV. e) IV.
- **2 -** (ITA-09) Suponha que um metal alcalino terroso se desintegre radioativamente emitindo uma partícula alfa. Após três desintegrações sucessivas, em qual grupo (família) da tabela periódica deve-se encontrar o elemento resultante deste processo?
- a) 13 (IIIA) b) 14 (IVA) c) 15 (VA) d) 16 (VIA) e) 17 (VIIA)
- **3** (ITA-09) Considere os átomos hipotéticos neutros V, X, Y e Z no estado gasoso. Quando tais átomos recebem um elétron cada um, as configurações eletrônicas no estado fundamental de seus respectivos ânions são dadas por:

$$V_{(g)}^{-}$$
: [gás nobre] $ns^{2}np^{6}nd^{10}(n+1)s^{2}(n+1)p^{6}$

 $X_{(g)}^-$: [gás nobre] ns^2np^6

 $Y_{(g)}^{-}:[g\acute{a}s\,nobre]ns^{2}np^{6}nd^{10}(n+1)s^{2}(n+1)p^{3}$

 $Z_{(g)}^-$:[gás nobre]ns 2 np 3

Nas configurações acima [gás nobre] representa a configuração eletrônica no diagrama de Linus Pauling para o mesmo gás nobre, e n é o mesmo número quântico principal para todos os ânions. Baseado nestas informações é CORRETO afirmar que:

- a) o átomo neutro V deve ter a maior energia de ionização entre eles.
- b) o átomo neutro Y deve ter a maior energia de ionização entre eles.
- c) o átomo neutro V deve ter maior afinidade eletrônica do que o átomo neutro X.
- d) o átomo neutro Z deve ter maior afinidade eletrônica do que o átomo neutro X.

- e) o átomo neutro Z deve ter maior afinidade eletrônica do que o átomo neutro Y.
- **4 -** (ITA-06) Considere as afirmações abaixo, todas relacionadas a átomos e íons no estado gasoso:
- I. A energia do íon Be²⁺, no seu estado fundamental, é igual à energia do átomo de He neutro no seu estado fundamental.
- II. Conhecendo a segunda energia de ionização do átomo de He neutro, é possível conhecer o valor da afinidade eletrônica do íon He²⁺.
- III. Conhecendo o valor da afinidade eletrônica e da primeira energia de ionização do átomo de Li neutro, é

deve se**possível 2:dohpæaquelaedgiaátorvolvida maléculasãe** h**id**rogêni primeiro estado excitado do átomo de Li neutro para o seu estado fundamental.

IV. A primeira energia de ionização de íon H⁻ é menor do que a primeira energia de ionização do átomo de H neutro.

V. O primeiro estado excitado do átomo de He neutro tem a mesma configuração eletrônica do primeiro estado excitado do íon Be^{2+} .

Então, das afirmações acima, estão CORRETAS

A () apenas I e III.

B() apenas I, II e V.

C() apenas I e IV.

D () apenas II, IV e V.

E() apenas III e V.

- **5** (ITA-04) Qual das opções abaixo apresenta a comparação **ERRADA** relativa aos raios de átomos e de íons?
- A. () raio do Na⁺ < raio do Na.
- B. () raio do Na⁺ < raio do F⁻.
- C. () raio do Mg^{2+} < raio do O^{2-} .
- D. () raio do F^- < raio do O^{2-} .
- E. () raio do F^- < raio do Mg^{2+} .
- **6** (ITA-04) Considere as seguintes configurações eletrônicas e respectivas energias da espécie atômica (A), na fase gasosa, na forma neutra, aniônica ou catiônica, no estado fundamental ou excitado:

I. $ns^2 np^5 (n + 1)s^2$; E_I.

II. $ns^2 np^6 (n + 1)s^1 (n + 1)p^1$; E_{II} .

III. $ns^2 np^4 (n + 1)s^2$; E_{III} .

IV. $ns^2 np^5$; E_{IV} .

V. $ns^2 np^6 (n + 1)s^2$; E_V .

VI. ns² np⁶; E_{VI}.

VII. $ns^2 np^5 (n + 1)s^1 (n + 1)p^1$; E_{VII} .

VIII. $ns^2 np^6 (n + 1)s^1$; E_{VIII} .

Sabendo que | E₁ | é a energia, em módulo, do primeiro estado excitado do átomo neutro (A),

assinale a alternativa ERRADA.

- A. () |E_{III} -E_{IV} | - pode representar a energia equivalente a uma excitação eletrônica do cátion (A⁺).
- B. () $|E_{II} E_{IV}|$ pode representar a energia equivalente a uma excitação eletrônica do ânion (A-).
- C. () $|E_{IV} E_{VI}|$ pode representar a energia equivalente à ionização do cátion (A+).
- D. () $|E_{\parallel} E_{\vee \parallel \parallel}|$ pode representar a energia equivlente à afinidade eletrônica do átomo neutro (A).
- E. () $|E_{VII} E_{VIII}|$ pode representar a energia equivalente a uma excitação eletrônica do átomo neutro (A).
- 7 (ITA-93) Considere as duas famílias seguintes da classificação periódica:

II. F; Cl; X; I; At

Assinale a opção que contém a afirmação ERRADA a respeito de propriedades dos elementos M e X ou de seus compostos:

- a) M é um metal que reage com X₂, sendo o produto um sólido iônico.
- b) O hidreto MII cristalino é iônico, onde o ânion é H⁻.
- c) Uma forma estável de X é X₂, substância covalente que é um oxidante forte.
- d) Os óxidos de M são bastante solúveis em água e as soluções resultantes contêm hidróxido de M.
- e) Várias propriedades de M são mais semelhantes às do Li do que às do K.
- 8 (ITA-90) Entre as opções abaixo, assinale aquela que contém a afirmação CERTA:
- a) Tanto oxigênio gasoso como ozônio gasoso são exemplos de substâncias simples.
- b) Substância pura é aquela que não pode ser decomposta em outras mais simples.
- c) A conceituação de elemento só foi possível depois que Dalton propôs sua teoria atômica.
- d) Uma mistura de água e etanol, nas condições ambientais, ser decomposta pode componentes por decantação.
- e) A substituição do hidrogênio por deutério não altera as propriedades da água.
- 9 (ITA-90) Entre as afirmações seguintes, todas relacionadas aos elementos pertencentes ao grupo IA (Li, Na, etc.) e ao grupo IB (Cu, Ag, etc.) da tabela periódica, assinale a ERRADA:
- a) Os elementos de ambos os grupos têm "elétrons de valência" em subníveis do tipo s.
- b) Os elementos de ambos os grupos são capazes de

formar compostos do tipo M₁X₁, onde M representa um átomo dos elementos citados e X um átomo de halogênio.

- c) A energia de ionização de um elemento do grupo IA é menor do que a do elemento do grupo IB situado na mesma linha da tabela periódica.
- d) Na tabela original de Mendeleev, os grupos IA e IB eram agrupados na primeira coluna da tabela.
- e) Tanto os elementos do grupo IA como os elementos do grupo IB formam óxidos, todos coloridos.

As questões 10 a 14, referem – se a classificação periódica dos elementos esquematizados abaixo. Os símbolos dos elementos foram substituídos por letras arbitrariamente escolhidas.

V							
F						W	
	М		G	J	L	R	
X	Υ	כ		ď		Z	Т

10 - Um elemento cujo hidreto gasoso dissolve – se em água para formar um ácido forte é representado pela letra:

11 - Que elemento, ou grupo de elementos, tem seus elétrons de valência em orbitais com a distribuição :

$$ns^2 np_x^1 n p_y^1 np_z^1$$

12 - Qual dos elementos forma um hidreto que tem as seguintes propriedades: é sólido na temperatura ambiente, é bom condutor de corrente elétrica quando fundido, reage com a água originando base forte

a)
$$V$$
 b) F c) Z d) U e) Q

13 - Baseado na posição dos elementos mencionados na tabela periódica acima, assinale qual das fórmulas deve ser incorreta

a)
$$X_2L$$
 b) YW_2 c) M_2J_3 d) QV_3 e) GR_4

14 - Dos elementos assinalados, aquele que apresenta o menor potencial de ionização é:

- 15 Assinale qual das seguintes afirmações é FALSA a respeito de um átomo neutro cuja configuração eletrônica é $1 s^2 2 s^2 2 p^5 3 s^1$.
- a) O átomo não está na configuração mais estável.

- b) O átomo emite radiação eletromagnética ao passar a 1 s 2 2 s 2 2 p 6 .
- c) O átomo deve receber energia para passar a 1 s 2 2 s 2 2 p 6 .
- d) Os orbitais 1 s e 2 s estão completos.
- e) Trata-se de um gás, a 25° C e 1 atm.
- **16** Os elementos que constituem uma certa família [grupo vertical] do sistema periódico têm os seguintes números atômicos : 8, 16, 34, X, 84. A respeito desses elementos fazem-se as seguintes afirmações :
- I − O segundo elemento tem peso atômico 16 e é o oxigênio.
- II O número de nêutrons no núcleo do terceiro elemento é necessariamente igual a 34.
- III O átomo eletricamente neutro do último elemento têm necessariamente 84 elétrons na sua eletrosfera

IV – O número atômico do elemento X é 52.

Quais dessas afirmações são CERTAS?

- a) apenas I.
- b) apenas I e III.
- c) apenas II e III.
- d) apenas III e IV.
- e) apenas I, II e IV.

GABARITO

*		
В		
E		
D		
E		
D		
E		
Α		
E		
В		
С		
В		
С		
Α		
С		
D		