

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação

SSC512 Elementos de Lógica Digital

Simplificação de Funções

Prof.Dr. Danilo Spatti

São Carlos - 2018

$$(2) X \bullet 1 = X$$

O complemento da soma é igual ao produto dos complementos.

$$\triangleright$$
 $(\overline{X+Y}) = \overline{X} \bullet \overline{Y}$

O complemento do produto é igual a soma dos complementos.

$$\triangleright (\overline{X \bullet Y}) = \overline{X} + \overline{Y}$$

Qualquer expressão booleana pode ser decomposta nas três operações básicas: AND, OR ou NOT. Além disso, é possível implementar qualquer expressão usando somente portas NANDs.

Teoremas da Álgebra Booleana

Lógica Digital

Simbologia Alternativa das Operações Primitivas

Teoremas da Álgebra Booleana

Formas de Análise

Representação Por Diagrama de Tempo

В

A	В	$F = \overline{A} + AB$
0	0	1
0	1	1
1	0	0
1	1	1

- Consiste em dois ou mais termos AND conectados por uma operação OR.
- As variáveis podem estar complementadas, porém nunca com barras sobre mais de uma variável.

Exemplo:

$$S = AB\bar{C} + \bar{A}\bar{B}C + AB\bar{C}$$

- Consiste em dois ou mais termos OR conectados por operações AND.
- As variáveis podem estar complementadas, porém nunca com barras sobre mais de uma variável.
- Exemplo:

$$S = (A + \bar{B} + C)(\bar{A} + \bar{B} + C)(A + B + \bar{C})$$

Mintermos / Maxtermos (I)

- Para cada linha da tabela verdade de um circuito lógico, pode ser associado um mintermo e um maxtermo correspondente.
- Mintermos: produto de variáveis não repetidas. Para n variáveis, tem-se 2ⁿ mintermos. Obtido pelo produto das entradas que resultam em nível alto. Lógica Direta.
- Maxtermos: soma de variáveis não repetidas. Para n variáveis, tem-se 2ⁿ maxtermos. Obtido pela soma das entradas que resultam em nível baixo. Lógica Inversa.

Lógica Digital

Mintermos / Maxtermos (II)

Decimal	$oldsymbol{A}$	B	C
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1

Mintermo
$ar{A}ar{B}ar{C}$
$ar{A}ar{B}C$
$\bar{A}B\bar{C}$
ĀBC
$Aar{B}ar{C}$
$A\overline{B}C$
$AB\bar{C}$
ABC

Maxtermo
$$A + B + C$$

$$A + B + \overline{C}$$

$$A + \overline{B} + C$$

$$A + \overline{B} + C$$

$$\overline{A} + B + C$$

$$\overline{A} + \overline{B} + C$$

Lógica Digital

SSC512

Soma Canônica

- Soma dos mintermos de uma função lógica das linhas de sua tabela verdade que resultam em nível alto. Lógica Direta.
- Ex: obter a função lógica da tabela abaixo utilizando a Soma Canônica.

$$S = \sum_{A,B,C} (0,3,4,6,7)$$

$$S = \bar{A}\bar{B}\bar{C} + \bar{A}BC + A\bar{B}\bar{C} + AB\bar{C} + ABC$$

Decimal	Α	В	C	S
0	0	0	0	1
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

Lógica Digital

SSC512

Produto Canônico

- Produto dos maxtermos de uma função lógica das linhas de sua tabela verdade que resultam em nível baixo. Lógica Inversa.
- Ex: obter a função lógica da tabela abaixo utilizando a Produto Canônico.

$$S = \prod_{ABC} (1,2,5)$$

$$S = (A + B + \overline{C})(A + \overline{B} + C)(\overline{A} + B + \overline{C})$$

Decimal	Α	В	С	S
0	0	0	0	1
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

Exemplo 1

- Simplifique $S = ABC + A\bar{B}(\bar{A}\bar{C})$
- Usando DeMorgan, para quebrar todas as barras de inversão.

$$S = ABC + A\bar{B}(\bar{A}\bar{C})$$

 $S = ABC + A\bar{B}(\bar{A} + \bar{C})$ DeMorgan
 $S = ABC + A\bar{B}(A + C)$ Cancela Inversões duplas
 $S = ABC + A\bar{B}A + A\bar{B}C$ $A \cdot A = A$
 $S = ABC + A\bar{B} + A\bar{B}C$

Procurar por termos comuns.

$$S = AC(B + \overline{B}) + A\overline{B}$$
 $B + \overline{B} = 1$
 $S = AC(1) + A\overline{B}$
 $S = A(C + \overline{B})$

SSC512

Exemplo 2

• Simplifique $S = A\bar{B}\bar{C} + A\bar{B}C + ABC$

$$S = A\bar{B}\bar{C} + A\bar{B}C + ABC$$
 Escolher $A\bar{B}$ ou AC ?
 $S = A\bar{B}\bar{C} + A\bar{B}C + A\bar{B}C + ABC$
 $S = A\bar{B}(\bar{C} + C) + AC(\bar{B} + B)$
 $S = A\bar{B}(1) + AC(1)$

$$S = A(\overline{B} + C)$$

SSC512

Exemplo 3

■ Simplifique $S = \bar{A}C(\bar{A}BD) + \bar{A}B\bar{C}\bar{D} + A\bar{B}C$

$$S = \bar{A}C(A + \bar{B} + \bar{D}) + \bar{A}B\bar{C}\bar{D} + A\bar{B}C$$

$$S = \bar{A}CA + \bar{A}C\bar{B} + \bar{A}C\bar{D} + \bar{A}B\bar{C}\bar{D} + A\bar{B}C \quad A \bullet \bar{A} = 0$$

$$S = \bar{A}C\bar{B} + \bar{A}C\bar{D} + \bar{A}B\bar{C}\bar{D} + A\bar{B}C \quad \bar{B}C, \bar{A}\bar{D}$$

$$S = \bar{B}C(\bar{A} + A) + \bar{A}\bar{D}(C + B\bar{C}) \quad C + B\bar{C} = B + C$$

$$S = \bar{B}C(1) + \bar{A}\bar{D}(B + C)$$

$$S = \bar{B}C + \bar{A}\bar{D}(B + C)$$

Lógica Digital

Exemplo 4

• Simplifique $S = (\bar{A} + B)(A + B + D)\bar{D}$

$$S = \bar{A}A\bar{D} + \bar{A}B\bar{D} + \bar{A}D\bar{D} + BA\bar{D} + BB\bar{D} + BD\bar{D}$$

$$A \bullet \bar{A} = 0, B \bullet B = B$$

$$S = \bar{A}B\bar{D} + BA\bar{D} + B\bar{D}$$

$$S = B\bar{D}(\bar{A} + A + 1)$$

$$S = B\overline{D}$$

Lógica Digital

Exemplo 5 (I)

- Projetar um circuito digital com com três entradas A, B e C, cuja saída seja nível alto quando a maioria das entradas for nível alto.
- Passo 1: fazer a tabela verdade.
- Passo 2: escrever a soma canônica.

$$S = \sum_{A,B,C} (3,5,6,7)$$

$$S = \bar{A}BC + A\bar{B}C + AB\bar{C} + ABC$$

Decimal	Α	В	С	S
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

Passo 3: simplificar.

$$S = \bar{A}BC + A\bar{B}C + AB\bar{C} + ABC$$

$$S = \bar{A}BC + A\bar{B}C + AB\bar{C} + ABC$$

$$S = \bar{A}BC + ABC + A\bar{B}C + ABC + AB\bar{C} + AB\bar{C} + ABC$$

$$S = BC(\bar{A} + A) + AC(\bar{B} + B) + AB(\bar{C} + C)$$

$$S = AB + BC + AC$$

Exemplo 5 (III)

Passo 4: implementar o circuito.

$$S = AB + BC + AC$$

spatti@icmc.usp.br

