Analisi II

Riassunto da: "Analisi Matematica 2 - Claudio Canuto, Anita Tabacco"

Dispensa realizzata da Federico Cesari e Matteo Herz

Indice

1 Serie numeriche

Sia $a_n \subset C$ successione di numeri complessi, chiamiamo **serie numerica** la sommatoria

$$\sum_{n=0}^{\infty} a_n = a_1 + \dots + a_n + \dots$$

Chiamiamo invece ridotta ennesima della serie la quantità

$$S_N = \sum_{n=0}^N a_n = a_1 + \dots + a_N \qquad N \in N$$

Abbiamo costruito la successione delle ridotte S_N con $N \in N$.

1.1 Successioni di numeri complessi

-Definizione: Serie convergente divergente e indeterminata -

Se il limite

$$\lim_{N \to \infty} S_N = S \in C$$

diciamo che la serie

$$\sum_{n=0}^{\infty} a_n = S$$

converge ad S e chiamiamo S somma della serie.

Nel caso in cui S_N sia divergente o indeterminata la serie è divergente o indeterminata.

1.2 Carattere di una serie

Si osserva che preso $n_0 \in N$ e considerando la serie

$$\sum_{n=n_0}^{\infty} a_n \quad \text{questa ha lo stesso carattere di} \qquad \sum_{n=0}^{\infty} a_n$$

Chiaramente la somma sarà diversa, il carattere tuttavia non cambia.

Teorema: Condizione necessaria di convergenza

Sia $a_n \subset C$. Condizione necessaria affinché la serie

$$\sum_{n=0}^{\infty} a_n$$

converga è che

$$\lim_{n \to \infty} a_n = 0$$

Dimostrazione

Supponiamo che

$$\lim_{n \to \infty} S_N = S \in C \qquad a_n = S_n - S_{n-1}$$

allora

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} S_n - S_{n-1} = S - S = 0$$

Teorema: "Linearità delle serie"

Prendiamo due serie di numeri complessi convergenti rispettivamente ad A e a B:

$$sum_{n=0}^{\infty} a_n = A \qquad \qquad sum_{n=0}^{\infty} b_n = B$$

allora

i)
$$\forall \lambda \in C \quad \sum_{n=0}^{\infty} \lambda a_n = \lambda \sum_{n=0}^{\infty} a_n = \lambda A$$

ii)
$$\sum_{n=0}^{\infty} (a_n + b_n) = \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n = A + B$$

1.3 Serie geometrica, serie telescopiche e armoniche

Serie geometrica

Fissato $q \in C$ si dice **serie geometrica** di ragione q la serie

$$\sum_{n=0}^{\infty} q^n = \frac{1 - q^{N+1}}{1 - q}$$

il carattere è determinato da q:

 $\begin{array}{ll} |q|<1 & \text{la serie converge} \\ |q|>1 \text{ o } q=1 & \text{la serie diverge} \\ |q|=1 \text{ e } q\neq 1 & \text{la serie è indeterminata} \end{array}$

Dimostrazione

1. |q| < 1

$$S_N = \sum_{n=0}^{N} q^n = \frac{1 - q^{N+1}}{1 - q}$$

Verifichiamo che S_N sia effettivamente uguale a quanto scritto:

$$(1-q)\sum_{n=0}^{N} q^{n} = \sum_{n=0}^{N} q^{n} - q \sum_{n=0}^{N} q^{n}$$
$$= \sum_{n=0}^{N} q^{n} - \sum_{n=0}^{N} q^{n+1}$$
$$= 1 - q^{N+1}$$

Allora:

$$|q^{N+1}| = |q|^{N+1} \to 0 \text{ per } N \to +\infty$$

$$\Longrightarrow \lim_{N \to \infty} q^{N+1} = 0$$

Dunque:

$$\lim_{n \to \infty} S_N \ = \ \lim_{n \to \infty} \frac{1 - q^{N+1}}{1 - q} \ = \ \frac{1}{1 - q} \cdot \lim_{n \to \infty} (1 - q^{N+1}) \ = \ \frac{1}{1 - q}$$

2. |q| > 1

Usando la disuguaglianza triangolare inversa si ha:

$$|S_N| = \left| \frac{1 - q^{N+1}}{1 - q} \right| = \frac{|1 - q^{N+1}|}{|1 - q|} \ge \frac{|1| - |q^{N+1}|}{|1 - q|}$$

Da cui segue:

$$\begin{split} \lim_{N \to \infty} \frac{|1| - |q^{N+1}|}{|1 - q|} &= \frac{1}{|1 - q|} \lim_{N \to \infty} \left| 1 - |q|^{N+1} \right| \\ &= \frac{1}{|1 - q|} \left| 1 - \lim_{N \to \infty} |q|^{N+1} \right| \\ &= +\infty \end{split}$$

3. q = 1

$$S_N = \sum_{n=0}^{N} 1 = 1 + 1 + \dots + 1 = N + 1$$

$$\implies \lim_{N \to \infty} S_N = +\infty \implies \text{La serie è divergente}$$

Serie telescopiche

Chiamiamo serie telescopiche le seguenti le serie di forma

$$a_0 + \sum_{n=1}^{\infty} (a_n - a_{n-1}) \qquad a_n \subset C$$

alcuni esempi di serie telescopiche

$$i) \qquad \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1 \qquad \qquad ii) \qquad \sum_{n=1}^{\infty} \log\left(1 + \frac{1}{n}\right) = +\infty$$

Serie armonica

Prende il nome di serie armonica generalizzata

$$\sum_{n=1}^{\infty} \frac{1}{n^a}$$

Il carattere è terminato da a:

 $a \le 1$ la serie diverge a > 1 la serie converge

Mostriamo perché la serie con a=1 diverge:

$$a_n = \frac{1}{n} \to 0, \quad n \to \infty$$

$$\log\left(1+\frac{1}{n}\right) \approx \frac{1}{n}, \quad n \to \infty$$

$$\sum \log \left(1+\frac{1}{n}\right) \text{ diverge } \quad \Longrightarrow \quad \sum \frac{1}{n} \text{ diverge per il criterio del confronto asintotico}.$$

Dimostrazione —

1. $a \le 1$ con $a \in R$ così che valga $\frac{1}{n^a} \ge \frac{1}{n} \ \forall n \ge 1$.

$$\sum_{n=1}^{\infty} \frac{1}{n^a} \geq \sum_{n=1}^{\infty} \frac{1}{n} \quad \text{serie armonica divergente}$$

quindi per il criterio del confronto, essendo maggiore di una serie divergente, diverge anche la serie $\sum \frac{1}{n^a}$.

2. a > 1

In generale vale:

$$\frac{1}{n^{\alpha}} \le \int_{n-1}^{n} \frac{dx}{x^{\alpha}}$$

Allora:

$$S_n = \sum_{n=2}^n \frac{1}{n^{\alpha}} \le \int_1^n \frac{dx}{x^{\alpha}} \le \int_1^\infty \frac{dx}{x^{\alpha}}$$

Si ha inoltre:

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx = \left[\frac{x^{-\alpha+1}}{-\alpha+1} \right]_{1}^{\infty}$$
$$= \left[\frac{1}{(-\alpha+1)x^{\alpha-1}} \right]_{1}^{\infty}$$
$$= \frac{1}{\alpha-1} < \infty$$

 $\{S_n\}$ è monotona crescente e superiormente limitata \Longrightarrow la serie converge

1.4 Serie a termini non negativie a segni alterni

Termini non negativi
$$\sum_{n=0}^{\infty} a_n, \quad a_n \ge 0, \quad \forall n \in \mathbb{N}$$

Segni alterni
$$\sum_{n=0}^{\infty} (-1)^n b_n, \qquad b_n > 0, \qquad \forall n \in \mathbb{N}$$

Teorema: Le serie a termini non negativi o convergono o divergono

Sia $\sum_{n=0}^{\infty} a_n$ una serie a termini non negativi, questa può o convergere o divergere, non può essere indeterminata.

Dimostrazione

Prendo $\{S_N\}_{N\in\mathbb{N}}$ monotona crescente:

$$S_{N+1} = S_N + a_{N+1} \ge S_N$$

Se il limite converge a S limite superiore

$$\lim_{N \to \infty} S_N = S \in [0, +\infty) \qquad S = \sup_{N \in N} S_N$$

 \implies La serie converge

Se $\{S_N\}_{N\in \mathbb{N}}$ non è superiormente limitata si ha

$$\lim_{N\to\infty} S_N = +\infty$$

 \implies La serie diverge

Definizione: Convergenza assoluta -

Sata una serie di numeri complessi $\sum_{n=0}^{\infty} a_n \in C$ si dice che la serie è assolutamente convergente se è convergente la serie

$$\sum_{n=0}^{\infty} |a_n|$$

Teorema: Convergenza assoluta implica convergenza semplice

Sia $\sum_{n=0}^{\infty} a_n \subset C$. Supponiamo che la serie sia assolutamente convergente, allora la serie è anche semplicemente convergente. Inoltre vale

$$\left| \sum_{n=0}^{\infty} a_n \right| \le \sum_{n=0}^{\infty} |a_n|$$

1.5 Criteri applicabili alle serie

Criterio del confronto

Siano $\sum_{n=0}^{\infty} a_n$ e $\sum_{n=0}^{\infty} b_n$ due serie a termini positivi. Supponiamo che esiste finito $n_0 \in N$ t.c.

$$a_n \le b_n$$
 , $\forall n \ge n_0$

6

Allora:

- 1) se $\sum_{n=0}^{\infty} b_n$ è convergente $\Longrightarrow \sum_{n=0}^{\infty} a_n$ è convergente
- 2) se $\sum_{n=0}^{\infty} a_n$ è divergente $\Longrightarrow \sum_{n=0}^{\infty} b_n$ è divergente

Dimostrazione——

Non è restrittivo supporre $n_0 = 0$.

1)
$$S_N = \sum_{n=0}^{N} a_n \le \sum_{n=0}^{N} b_n \le \sum_{n=0}^{\infty} b_n < \infty$$

 S_N è una successione monotona crescente superiormente limitata \Longrightarrow è convergente

2) Per **contraddizione**, supponiamo che:

 $\sum_{n=0}^{\infty} b_n$ converga \Longrightarrow per il punto 1) la serie $\sum_{n=0}^{\infty} a_n$ dovrebbe convergere. Abbiamo ottenuto una contraddizione.

Dunque:

$$\Longrightarrow \sum_{n=0}^{\infty} b_n$$
 diverge.

Criterio del confronto asintotico

Criterio della radice

Sia $\sum a_n$ serie a termini positivi. Supponiamo che esista

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim a_n^{1/n} = l \in [0, +\infty]$$

allora

l < 1 la serie converge l > 1 la serie diverge l = 1 caso dubbio

Criterio del rapporto

Sia $\sum a_n$ serie a termini positivi. Supponiamo $a_n > 0 \forall n$ e che esista

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l \in [0, +\infty]$$

allora

l < 1 la serie converge l > 1 la serie diverge l = 1 caso dubbio

Criterio dell'integrale di Mc. Laurin

Criterio di Leibniz

Sia data la serie $\sum_{n=0}^{\infty} (-1)^n b_n$ con $b_n > 0 \forall n.$ Supponiamo

1) $b_{n+1} \leq b_n \quad \forall n$ (la serie è decrescente) 2) $\lim_{n\to\infty} b_n = 0$

Allora la serie converge a

$$S = \sum_{n=0}^{\infty} (-1)^n b_n$$

$$e |S - S_N| \le b_{N+1} \quad \forall N \in N.$$

1.6 Procedimento per la risoluzione degli esercizi

- 1. Verificare la condizione necessaria di convergenza
- 2. Se è a valori non negativi:
 - (a) Tramite confronto e confronto asintotico verificare se questa converge o diverge.
- 3. Se è a **segni alterni**:
 - (a) Ne studio il modulo;
 - (b) Tramite confronto e confronto asintotico verificare se questa converge o diverge assolutamente;
 - (c) Se diverge uso il **criterio di Leibniz**;
 - (d) Verifico che sia strettamente decrescente;
 - (e) Se lo è la serie è semplicemente convergente.

2 Topologia di \mathbb{R}^n

Questa sezione contiene solo definizioni, non sto a distinguerle con il riquadro colorato.

Intorno

Si dice **intorno sferico** di centro $x_0 \in \mathbb{R}^n$ e raggio r > 0 l'insieme

$$B(x_0, r) = \{x \in \mathbb{R}^n \mid d(x, x_0) = |x - x_0| < r\}$$

La distanza dalle due dimensioni in poi chiaramente è espressa come

$$d(x,x_0) = \sqrt{(x-x_0)^2 + (y-y_0)^2 + \dots}$$

Punto di accumulazione

Sia $A \subseteq \mathbb{R}^n$ e $x_0 \in \mathbb{R}^n$. Si dice **punto di accumulazione** per A se

$$\forall r > 0 \qquad (B(x_0, r)\{x_0\}) \cap A \neq$$

In sostanza è un punto di accumulazione se ogni suo intorno contiene punti di A diversi da se stesso

Insieme limitato

 $A\subseteq R^n$ si dice limitato se

$$\exists M>0 \quad |\quad \|x\|\leq M, \quad \forall x\in A$$

$$A\subseteq \overline{B(O,M)} \quad \text{con} \quad B(O,M)=\{x\in R \quad |\quad \|x\|\leq M\}$$

Insieme aperto

 $A \subseteq \mathbb{R}^n$ si dice aperto se

$$\forall x \in A \quad \exists r > 0 \quad | \quad B(x_o, r) \subset A$$

- R^n è un insieme aperto;
- L'intersezione di qualunque famigia di un chiuso è un aperto,
- L'unione di un numero finito di chiusi è un aperto.

Insieme chiuso

 $C \subseteq \mathbb{R}^n$ si dice **chiuso** se il suo complementare $\mathbb{R}^n \backslash \mathbb{C}$ è un aperto.

- Sono chiusi gli insiemi \mathbb{R}^n e;
- l'intersezione di qualunque famigia di un chiuso è un chiuso;
- l'unione di un numero finito di chiusi è un chiuso.

Insieme compatto

Un sottoinsieme $K \subset \mathbb{R}^n$ è detto **compatto** se è chiuso e limitato.

Putni interni, esterni e di frontiera

Interno:
$$\exists r > 0 \mid B(x_0, r) \subset A$$

Interno: $\exists r > 0 \mid B(x_0, r) \cap A =$

Se x_0 non è né interno né esterno è un put
no di frontiera.

- Int(A) è un aperto ed è il più grande aperto contenuto in A;
- $Int(A) \cap Fr(A)$ è un chiuso ed è il più piccolo chiuso contenente A e viene denotato con \bar{A} ;
- Fr(A) è un chiuso;
- $A \stackrel{.}{e} \text{chiuso} \iff A = Int(A);$

3 Limiti di funzioni in più variabili

-Definizione: Limite di funzione a più variabili-

Sia $F: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$.

Sia $x_0 \in \mathbb{R}^n$ punto di accumulazione per A.

Diciamo che $l \in \mathbb{R}^m$ è limite di F per $x \to x_0$ e scriviamo $\lim_{x \to x_0} F(x) = l$ se:

$$\forall \epsilon > 0, \exists \delta > 0 \mid \forall x \in A, 0 < ||x - x_0|| < \delta \Longrightarrow ||F(x) - l|| < \epsilon$$

Teorema: Equivalenza tra limite globale e limite componente per componente

Sia $F: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$.

Sia $x_0 \in \mathbb{R}^n$ punto di accumulazione per A ed $F(x) = (F_1(x), ..., F_m(x))$.

Allora, preso $l \in \mathbb{R}^m$ si ha:

$$\lim_{x \to x_0} F(x) = l \iff \lim_{x \to x_0} F_j(x) = l_j \quad \forall j = 1, ..., m$$

-Dimostrazione-

• \Longrightarrow Supponiamo $\lim_{x\to x_0} F(x) = l$, allora:

$$\forall \epsilon > 0, \exists \delta > 0 \mid \forall x \in A, 0 < ||x - x_0|| < \delta \Longrightarrow ||F(x) - l|| < \epsilon$$

Segue che:

$$|F_j(x) - l_j| = \sqrt{(F_j(x) - l_j)^2} \le \sqrt{(F_j(x) - l_j)^2 + \dots + (F_m(x) - l_m)^2} = ||F(x) - l|| < \epsilon$$

$$\forall j = 1, \dots, m$$

$$\Longrightarrow |F_j(x) - l_j| < \epsilon, \quad \forall x \in A \mid 0 < ||x - x_0|| < \delta$$

• \Leftarrow Supponiamo $\lim_{x\to x_0} F_j(x) = l_j$, $\forall j = 1, ..., m$

$$\forall \epsilon > 0 , \exists \delta > 0 \mid \forall x \in A, 0 < ||x - x_0|| < \delta \Longrightarrow ||F_j(x) - l_j|| < \frac{\epsilon}{\sqrt{m}} \quad \forall j = 1, ..., m$$

Dove abbiamo preso arbitrariamente $\epsilon = \frac{\epsilon}{\sqrt{m}}$

$$||F(x) - l||^2 = (F_1(x) - l_1)^2 + \dots + (F_m(x) - l_m)^2 < \frac{\epsilon^2}{m} + \dots + \frac{\epsilon^2}{m} = \epsilon^2$$

$$\forall x \in A \mid 0 < ||x - x_0|| < \delta \text{ dove } \delta = \min\{\delta_1, ..., \delta_m\}$$

Quindi:

$$||F(x) - l|| < \epsilon$$

Punto all'infinito In dimensioni maggiori di 1 non si può più distinguere tra $+\infty$ e $-\infty$, allora si parla solo di **punto all'infinito**

3.1 Utilizzo delle curve

Proprietà

Sia $f:A\subseteq R^n\to R,\, \pmb{x_0}\in R^n$ punto di accumulazione per A. Supponiamo che esista il limite

$$\lim_{\boldsymbol{x} \to \boldsymbol{x_0}} f(\boldsymbol{x}) = l$$

Allora presa una qualunque curva passante per x_0 e con sostegno in $A \cup \{x_0\}$, ovvero

$$\gamma: I \to A \cup \{x_0\}$$
 t.c. $\exists t_0 \in I, \ \gamma(t_0) = x_0$

si ha

$$\lim_{t \to t_0} f(\boldsymbol{\gamma}(t)) = l$$

Corollario Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$, $x_0 \in \mathbb{R}^n$ punto di accumulazione per A.

1. Se esiste una curva

$$\gamma: I \to A \cup \{x_0\}$$
 t.c. $\exists t_0 \in I, \ \gamma(t_0) = x_0$

е

$$\lim_{t \to t_0} f(\boldsymbol{\gamma}(t))$$

allora

$$\lim_{\boldsymbol{x}\to\boldsymbol{x_0}} f(\boldsymbol{x})$$

2. Se esistono due curve

$$\gamma_1, \gamma_2$$
 t.c. $\gamma_1(t_0) = \gamma_2(t_0') = x_0$

е

$$\lim_{t \to t_0} f(\boldsymbol{\gamma}(t)) = l_1 \\ \lim_{t \to t_0'} f(\boldsymbol{\gamma}(t)) = l_2$$
 t.c. $l_1 \neq l_2$

allora

$$\lim_{\boldsymbol{x} \to \boldsymbol{x_0}} f(\boldsymbol{x})$$

3.2 Punti stazionari per campi scalari e vettoriali

Teorema di Weierstraß

Sia $f: K \subset \mathbb{R}^n \to \mathbb{R}$ con $k \neq$ e compatto.

Se f è continua su K allora ammette un massimo su K.

-Definizione: Continuità-

Sia
$$f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$$
 e sia $\boldsymbol{x_0} \in A$.

f si dice continua in x_0 se

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad | \quad \forall x_0 \in A, \quad ||x - x_0|| < \delta \implies ||f(x) - f(x_0)|| < \varepsilon$$

Inoltre se $x_0 \in A$ è punto di accumulazione per A, allora dalla definizione di limite otteniamo

$$f$$
 continua in $x_0 \iff \lim_{x \to x_0} f(x) = f(x_0)$

-Definizione: Uniformemente continua-

Sia $f:A\subseteq \mathbb{R}^n\to \mathbb{R},\, f$ si dice uniformemente continua su A se

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad | \quad \forall x, y \in A, \quad ||x - y|| < \delta$$

allora

$$|f(x) - f(y)| < \varepsilon$$

Vale

f unif. cont. su $A \iff f$ continua su A

Definizione: Punto stazionario

Sia $A \subseteq \mathbb{R}^n$, A aperto, $f: A \to \mathbb{R}$, $f \in C^1(A)$. Sia $\bar{x} \in A$. Si dice che \bar{x} è un punto stazionario (o critico) se:

$$\nabla f(\bar{\boldsymbol{x}}) = 0$$

-Definizione: Massimi e Minimi

Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$, A sottoinsieme qualunque. Si dice che $\bar{x} \in A$ è:

1. Punto di minimo locale per f
 se: $\exists r > 0 \mid f(x) \geq f(\bar{x}), \forall x \in B(\bar{x}, r) \cap Dom f$

2. Punto di minimo locale per f
 se: $\exists r > 0 \mid f(x) \leq f(\bar{x}), \forall x \in B(\bar{x}, r) \cap Dom f$

In particolare, se la condizione 1) o 2) valgono $\forall x \in Dom f \Longrightarrow \bar{x}$ si dice punto di minimo/massimo globale per f.

-Definizione: Punti di sella-

Sia A aperto, $f:A\to R,\ f\in C^1(A)$. Se $\bar{\boldsymbol{x}}\in A$ è un punto stazionario $(\nabla f(\bar{\boldsymbol{x}})=0)$ e non è un punto di massimo o di minimo locale, allora si dice punto di sella.

Teorema di Fermat

Sia $A \subseteq \mathbb{R}^n$ aperto, $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ con $f \in \mathcal{C}^1(A)$. Se $\bar{x} \in A$ è un punto di minimo/massimo locale, allora

$$\nabla f(\bar{\boldsymbol{x}}) = 0$$

 \bar{x} è un punto stazionario.

Dimostrazione -

Ci riconduciamo al teorema di Fermat per funzioni di una variabile. Sia $\bar{x} = (\bar{x}_1, \dots, \bar{x}_n)$ punto di minimo locale:

$$\exists r > 0 \mid B(\bar{x}, r) \subset A \text{ e } f(x) \ge f(\bar{x}), \quad \forall x \in B(\bar{x}, r)$$

quindi si può dire anche che

$$x = \bar{x} + h \iff f(\bar{x} + h) \ge f(\bar{x}), \qquad \forall h \ t.c. \ ||h|| < r$$

Definiamo ora una funzione g

$$g(x_1) = f(x_1, \bar{x}_2, \dots, \bar{x}_n)$$

Se n=2

$$g:(\bar{x}_1-r,\bar{x}_1+r)\to R$$

$$g \in \mathcal{C}^1((\bar{x}_1 - r, \bar{x}_1 + r)) \quad \forall \, \mathbf{h} = (h_1, 0, 0, \dots, 0) \text{ t.c. } \|\mathbf{h}\| < r$$

Vale

$$g(\bar{x}_1 + h_1) = f(\bar{x}_1 + h_1, \bar{x}_2, \dots, \bar{x}_n) \ge f(\bar{x}_1, \dots, \bar{x}_n) = g(\bar{x}_1)$$

quindi

$$g(\bar{x}_1 + h_1) \ge g(\bar{x}_1), \quad \forall h_1 \text{ t.c. } |h_1| < r$$

e \bar{x}_1 è un punto di minimo locale per g.

 \Longrightarrow per il teorema di Fermat in dimensione $n=1,\,g'(\bar{x}_1)=0$

$$g'(\bar{x}_1) = \partial_{x_1} f(\bar{x}_1) \implies \partial_{x_1} f(\bar{x}) = 0$$

In maniera analoga lo si prova per $\partial_{x_i} f(\bar{x}) \quad \forall i = 2, \dots, n$

$$\implies \nabla f(\bar{x}) = 0$$

ovvero \bar{x} è punto stazionario.

Teorema: Condizione necessaria per essere min/max locale

Sia $A \in \mathbb{R}^n$ aperto, $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ con $f \in \mathcal{C}^2(A)$ e $\bar{x} \in A$ punto stazionario.

- 1. Se \bar{x} è un punto di minimo locale allora $Hf(\bar{x})$ è semidefinita positiva;
- 2. Se \bar{x} è un punto di massimo locale allora $Hf(\bar{x})$ è semidefinita negativa

Dimostrazione-

Mostriamo il caso 1), il caso 2) è analogo.

Per ipotesi il punto \bar{x} è un punto di minimo locale, quindi:

$$\exists r > 0 \mid B(\bar{x}, r) \subset A \text{ e } f(\bar{x} + h) \ge f(\bar{x}) \quad \forall h \mid \|h\| < r$$

Sia λ un qualunque autovalore di $Hf(\bar{x})$ e sia $v \neq 0$ un suo autovettore. Scriviamo la formula di Taylor al 2° ordine per h = tv. Prima di tutto sappiamo che

$$\| \boldsymbol{h} \| = \| t \boldsymbol{v} \| = |t| \| \boldsymbol{v} \| < r$$
 quindi $|t| < \frac{r}{\| v \|}$

la formula di Taylor sarà

$$f(\bar{\boldsymbol{x}} + t\boldsymbol{v}) = f(\bar{\boldsymbol{x}}) + \nabla f(\bar{\boldsymbol{x}}) \cdot (t\boldsymbol{v}) + \frac{1}{2} H f(\bar{\boldsymbol{x}})(t\boldsymbol{v}) \cdot (t\boldsymbol{v}) + o(\|t\boldsymbol{v}\|^2), \qquad t \to 0$$

Riscriviamo l'o-piccolo come

$$o(\|t\mathbf{v}\|^2) = o(t^2\|\mathbf{v}\|^2) = o(t^2), \qquad t \to 0$$

e il secondo termine dello sviluppo come

$$Hf(\bar{x})(tv) \cdot (tv) = t^2 Hf(\bar{x})v \cdot v$$

= $t^2 \lambda v \cdot v$
= $\lambda t^2 ||v||^2$

Quindi lo sviluppo di Taylor si può riscrivere come

$$f(\bar{x} + tv) = f(\bar{x}) + \frac{\lambda}{2}t^2||v||^2 + o(t^2), \qquad t \to 0$$

portando $f(\bar{x})$ a sinistra e raccogliendo t^2 si ha

$$0 \le f(\bar{x} + tv) - f(\bar{x}) = t^2 \left(\frac{\lambda}{2} ||v||^2 + o(1)\right), \quad t \to 0$$

da cui troviamo che λ deve essere positivo

$$\implies \lambda > 0$$

$$\left(\exists t_0 \in R \mid \forall t \mid |t| < t_0 \mid |o(1)| < \frac{\lambda}{4} ||\boldsymbol{v}||^2\right)$$

Teorema: Condizioni Sufficienti

Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$, A aperto, $f \subseteq C^2(A)$. Sia $x_0 \in A$ un punto stazionario di $f(\nabla f(x_0)) = 0$. Allora:

- 1. Se $Hf(x_0)$ è **definita positiva** $\implies x_0$ è un punto di **minimo** relativo (stretto).
- 2. Se $Hf(x_0)$ è **definita negativa** $\implies x_0$ è un punto di **massimo** relativo (stretto).
- 3. Se $Hf(x_0)$ è indefinita $\implies x_0$ è un punto di sella.

-Dimostrazione

1. Sia $x_0 \in A$, siccome $f \in C^2$ posso usare lo sviluppo di Taylor:

$$f(x_0 + h) - f(x_0) = \nabla f(x_0) \cdot h + \frac{1}{2} H f(x_0) h \cdot h + o(\|h\|^2)$$

Essendo A aperto $\exists B(x_0, r) \subset A \in \forall h \in B(x_0, r)$.

Siccome x_0 è stazionario so che $\nabla f(x_0) = 0$.

Per ipotesi so anche che $Hf(x_0)$ è definita positiva, allora, detto λ_{min} il più piccolo degli autovalori di $Hf(x_0)$, si ha che $\lambda_{min} > 0$ e vale $Hf(x_0)h \cdot h \geq \lambda_{min} ||h||^2 \quad \forall h \in \mathbb{R}^n$.

Allora

$$f(x_0 + h) - f(x_0) \ge \frac{1}{2} \lambda_{min} ||h||^2 + o(||h||^2)$$

$$f(x_0 + h) - f(x_0) \ge \frac{1}{2} ||h||^2 \left(\lambda_{min} + \frac{o(||h||^2)}{||h||^2} \right)$$

Sia

$$0 < r' \le r \quad t.c. \quad \left| \frac{o(\|h\|^2)}{\|h\|^2} \right| \le \frac{\lambda_{min}}{4} \quad \forall h \ t.c. \ \|h\| \le r'$$

Dunque

$$f(x_0 + h) - f(x_0) \ge \frac{1}{2} \|h\|^2 \left(\lambda_{min} - \frac{\lambda_{min}}{4}\right) \ge \frac{3}{8} \|h\|^2 \lambda_{min} \quad \forall h \ t.c. \ \|h\| \le r'$$

Se poi $h \neq 0$ e $||h|| \leq r'$

$$\implies f(x_0 + h) - f(x_0) > 0$$

- 2. Analogo al caso (1), ma con segni inversi. Non svolto a lezione.
- 3. $Hf(x_0)$ indefinita, x_0 punto stazionario.

Se per assurdo x_0 fosse un punto di minimo relativo per f allora $Hf(x_0)$ sarebbe semidefinita positiva, contraddicendo l'ipotesi di partenza.

Se per assurdo x_0 fosse un punto di massimo relativo per f allora $Hf(x_0)$ sarebbe semidefinita negativa, contraddicendo l'ipotesi di partenza.

 $\implies x_0$ è un punto di sella.

4 Calcolo differenziale per funzioni scalari

4.1 Derivate parziali

-Definizione: Derivata direzionale-

Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$, sia $\bar{x} \in A$ punto interno.

Si dice derivata parziale di f rispetto ad x_i , con $i = 1, \ldots, n$, il limite, se esiste finito

$$\frac{\partial f}{\partial x_i}(\bar{\boldsymbol{x}}) = \lim_{h \to 0} \frac{f(\bar{x}_1, \dots, \bar{x}_{i-1}, \bar{x}_i + h, \bar{x}_{i+1}, \dots, \bar{x}_n) - f(\bar{\boldsymbol{x}})}{h}$$

Derivate direzionali

-Definizione: Derivata direzionale

Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$, sia $\bar{x} \in A$ punto interno. Fissato $v \neq 0$ in \mathbb{R}^n si chiama derivata direzionale di f lungo la direzione del vettore v in \bar{x} il limite, se esiste finito,

$$\frac{\partial f}{\partial v}(\bar{\boldsymbol{x}}) = \lim_{h \to 0} \frac{f(\bar{\boldsymbol{x}} + h\boldsymbol{v}) - f(\bar{\boldsymbol{x}})}{h}$$

esempio

L'esistenza delle derivate direzionali lungo una qualsiasi direzione $[v \neq (0,0)]$ in un punto non implica la differenziabilità della funzione nel punto.

Esempio:

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

-Definizione: Gradiente di un campo scalare

Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$, sia $\bar{x} \in A$ punto interno. Si dice gradiente di f in \bar{x} il vettore:

$$\nabla_{\bar{x}} f = \left(\frac{\partial f}{\partial x_i}(\bar{x}),\, \dots, \frac{\partial f}{\partial x_n}(\bar{x})\right)$$

Corollario Sia f differenziabile in \bar{x} , allora

$$\boxed{\frac{\partial f}{\partial \boldsymbol{v}}(\bar{\boldsymbol{x}}) = \nabla_{\bar{\boldsymbol{x}}} f \cdot \boldsymbol{v}}$$

Gradiente come vettore di massima crescita Sviluppando il prodotto scalare si ottiene che

$$\frac{\partial f}{\partial \boldsymbol{v}}(\bar{\boldsymbol{x}}) = \|\nabla_{\bar{\boldsymbol{x}}} f\|\boldsymbol{v}\| \cos \theta$$

si vede che la derivata direzionale è massima per $\cos \vartheta = 1$, ovvero quando \boldsymbol{v} ha stessa direzione e verso di $\nabla_{\bar{\boldsymbol{x}}} f$. Quindi se $\nabla_{\bar{\boldsymbol{x}}} f \neq 0$ la direzione di massima crescita è rappresentata dal $\nabla_{\bar{\boldsymbol{x}}} f$.

Ortogonalità del gradiente agli insiemi di livello

Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$, A aperto, $f \in \mathcal{C}^1(A)$. Supponiamo che

$$\nabla f(x,y) \neq (0,0) \quad \forall (x,y) \in A$$

Prendiamo anche un valore c e andiamo a considerare la curva di livello c

$$c \in Inf(A)$$
 $\Sigma_c = \{(x, y) \in A \text{ t.c. } f(x, y) = c\}$

Se $(x_0, y_0) \in \Sigma_c (f(x_0, y_0) = c)$ allora $\nabla f(x_0, y_0)$ è ortogonale a Σ_c in (x_0, y_0) e punta verso le curve di livello più alte.

4.2 Differenziabilità

-Definizione: Differenziabilità-

Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ e \bar{x} punto interno ad A. Si dice che f è differenziabile in \bar{x} se esiste una funzione lineare:

$$\varphi: \mathbb{R}^n \to \mathbb{R}$$
 t.c.

$$(D) f(\bar{\boldsymbol{x}} + \boldsymbol{h}) - f(\bar{\boldsymbol{x}}) = \varphi(\boldsymbol{h}) + o(\|\boldsymbol{h}\|), \quad \boldsymbol{h} \to \boldsymbol{0}, \quad \boldsymbol{h} \in \mathbb{R}^n$$

- $h \to 0 \iff \sqrt{h_1^2 + \dots + h_n^2} \to 0$
- φ lineare se $\exists \alpha \in \mathbb{R}^n$, $\alpha = (\alpha_1, \dots, \alpha_n)$ t.c.

$$\varphi(\mathbf{h}) = \mathbf{\alpha} \cdot \mathbf{h} = \alpha_1 h_1 + \dots + \alpha_n h_n$$

 φ si dice differenziale di f in \bar{x} e si denota come $d_{\bar{x}}f$.

$$f(\bar{\boldsymbol{x}} + \boldsymbol{h}) - f(\bar{\boldsymbol{x}}) = \varphi(\boldsymbol{h}) + o(\|\boldsymbol{h}\|) \quad \Longleftrightarrow \quad \lim_{\boldsymbol{h} \to \boldsymbol{0}} \frac{f(\bar{\boldsymbol{x}} + \boldsymbol{h}) - f(\bar{\boldsymbol{x}}) - \varphi(\boldsymbol{h})}{\|\boldsymbol{h}\|} = 0$$

Teorema: differenziabilità implica esistenza della derivata direzionale

 $f:A\subseteq R^n\to R$ e $\bar{\boldsymbol{x}}$ punto interso ad A. Sia f differenziabile in $\bar{\boldsymbol{x}}$ e sia

$$d_{\bar{x}}f(h) = \alpha_1 h_1 + \dots + \alpha_n h_n$$

Allora f ammette derivata direzionale in \bar{x} lungo ogni direzione $v = (v_1, \dots, v_n) \neq 0$:

$$\frac{\partial f}{\partial \boldsymbol{v}}(\bar{\boldsymbol{x}}) = \boldsymbol{\alpha} \cdot \boldsymbol{v}$$

in particolare

$$\frac{\partial f}{\partial x_i}(\bar{\boldsymbol{x}}) = \alpha_i$$

Dunque

$$d_{\bar{x}}f(h) = \frac{\partial f}{\partial x_1}(\bar{x})h_1 + \dots + \frac{\partial f}{\partial x_n}(\bar{x})h_n$$

Dimostrazione

Sia $\mathbf{v} = (v_1, \dots, v_n) \neq \mathbf{0}$,

$$\begin{split} \frac{\partial f}{\partial \boldsymbol{v}}(\bar{\boldsymbol{x}}) &= \lim_{t \to 0} \frac{f(\bar{\boldsymbol{x}} + t\boldsymbol{v}) - f(\bar{\boldsymbol{x}})}{t} \\ (D) &= \lim_{t \to 0} \frac{\varphi(t\boldsymbol{v}) + o(\|t\boldsymbol{v}\|)}{t} = \lim_{t \to 0} \frac{t\varphi(\boldsymbol{v}) + o(t)}{t} \quad (\varphi \ \text{\`e lineare}) \end{split}$$

Sapendo che

$$||t\boldsymbol{v}|| = |t| ||\boldsymbol{v}|| = |t| |\boldsymbol{c}|$$

si ha che

$$o(||tv||) = o(c|t|) = o(|t|) = o(t)$$

Inoltre ricordando che in generale $\varphi(h) = \alpha \cdot h$ si ha

$$\lim_{t \to 0} \frac{t\varphi(\boldsymbol{v}) + o(t)}{t} = \lim_{t \to 0} \frac{t(\alpha \cdot \boldsymbol{v})}{t} + \frac{o(t)}{t} = \alpha \cdot \boldsymbol{v}$$

Dunque in generale, prendendo $\{e_1, ..., e_n\}$ base canonica:

$$\frac{\partial f}{\partial x_i} = \frac{\partial f}{\partial e_i} = \alpha_i e_i = \alpha_i \quad con \quad e_i = (0, ..., 1, ..., 0)$$

Allora:

$$d_{\boldsymbol{\bar{x}}}f(\boldsymbol{h}) = \frac{\partial f}{\partial x_i}(\boldsymbol{\bar{x}})\,\boldsymbol{h_i} + \ldots + \frac{\partial f}{\partial x_n}(\boldsymbol{\bar{x}})\,\boldsymbol{h_n}$$

Teorema: differenziabilità implica continità

Se f è differenziabile in \bar{x} punto interno al dominio di f, allora f è continua in \bar{x} .

Dimostrazione

Per provare che f è continua in \bar{x} dobbiamo mostrare che

$$\lim_{\boldsymbol{h}\to\boldsymbol{0}}f(\bar{\boldsymbol{x}}+\boldsymbol{h})-f(\bar{\boldsymbol{x}})=\boldsymbol{0}$$

Dall'equazione di differenziabilità $({\cal D})$ possiamo scrivere

$$\lim_{\boldsymbol{h} \to \boldsymbol{0}} f(\bar{\boldsymbol{x}} + \boldsymbol{h}) - f(\bar{\boldsymbol{x}}) = \lim_{\boldsymbol{h} \to \boldsymbol{0}} \left[\varphi(\boldsymbol{h}) + o(\|\boldsymbol{h}\|) \right]$$

dove

$$\varphi(\mathbf{h}) = \mathbf{\alpha} \cdot \mathbf{h}$$
 e $|h_i| = \sqrt{h_i^2} \le \sqrt{h_1^2 + \dots + h_n^2} = ||\mathbf{h}||$

se \boldsymbol{h} tende a zero tende a zero anche il suo modulo e quindi anche tutte le sue componenti:

$$h \to 0 \Longrightarrow |h_i| \to 0 \iff h_i \to 0 \quad \forall i = 1, \dots, n$$

Il limite diventa

$$\lim_{\mathbf{h} \to \mathbf{0}} \left[\boldsymbol{\alpha} \cdot \boldsymbol{h} + o(\|\boldsymbol{h}\|) = \lim_{\mathbf{h} \to \mathbf{0}} \left(\alpha_1 h_1 + \dots + \alpha_n h_n \right) + \lim_{\mathbf{h} \to \mathbf{0}} \left(o(\|\boldsymbol{h}\|) \right)$$
$$= \lim_{\mathbf{h} \to \mathbf{0}} \left(\alpha_1 h_1 + \dots + \alpha_n h_n \right) + \lim_{\mathbf{h} \to \mathbf{0}} \left(\frac{o(\|\boldsymbol{h}\|)}{\|\boldsymbol{h}\|} \|\boldsymbol{h}\| \right) = 0$$

poiché entrambi i limiti tendono a zero.

Teorema: condizione sufficiente di differenziabilità

Sia f un campo scalare dotato di derivate parziali in un intorno di \bar{x} e tale che le derivate parziali siano continue in \bar{x} . Allora f è differenziabile in \bar{x} .

Corollario Sia $f \in \mathcal{C}^1(A)$ con A aperto in \mathbb{R}^n . Allora f è differenziabile in ogni punto di A.

4.3 Derivate seconde

Sia $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ campo scalare, $\bar{x} \in Int(A)$. Supponiamo che esista

$$\frac{\partial f}{\partial x_i}(\bar{\boldsymbol{x}})$$
 per un certo $i \in \{1, \dots, n\}$

e supponiamo che la derivata parziale esista in un intorno di \bar{x} .

Se $\frac{\partial f}{\partial x_i}$ è derivabile rispetto a x_j in \bar{x} , dove $j \in \{1, \dots, n\}$, allora diciamo che f ammette derivata seconda rispetto a x_i e x_j :

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\bar{\boldsymbol{x}}) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i}\right)(\bar{\boldsymbol{x}})$$

se
$$i=j$$
 $\frac{\partial^2 f}{\partial x^2}(\bar{\boldsymbol{x}})$ si dice "derivata pura"

se
$$i \neq j$$
 $\frac{\partial^2 f}{\partial x_i \partial x_j}(\bar{x})$ si dice "derivata mista"

Matrice Hessiana

Definite le derivate seconde si costruisce la matrice Hessiana

$$Hf(\bar{\boldsymbol{x}}) = \left(\begin{array}{ccc} \partial_{x_1x_1}^2 f(\bar{\boldsymbol{x}}) & \partial_{x_2x_1}^2 f(\bar{\boldsymbol{x}}) & \cdots & \partial_{x_nx_1}^2 f(\bar{\boldsymbol{x}}) \\ \vdots & \ddots & \ddots & \vdots \\ \partial_{x_1x_n}^2 f(\bar{\boldsymbol{x}}) & \partial_{x_2x_n}^2 f(\bar{\boldsymbol{x}}) & \cdots & \partial_{x_nx_n}^2 f(\bar{\boldsymbol{x}}) \end{array} \right)$$

Teorema di Schwartz

Sia $f:A\subseteq \mathbb{R}^n\to \mathbb{R}$, A aperto, $f\in\mathcal{C}^2$. Allora le derivate miste

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\bar{\boldsymbol{x}}) \ \frac{\partial^2 f}{\partial x_i \partial x_i}(\bar{\boldsymbol{x}})$$

coincidono $\forall i, j = 1, \dots, n$

5 Calcolo differenziale per funzioni vettoriali

5.1 Curve parametriche

-Definizione: Curva parametrica

Sia $I \subseteq R$ un intervallo qualunque (chiuso, aperto, limitato, illimitato...). Una funzione

$$\gamma:I\to R^m$$

si dice curva se è continua.

$$\gamma(t) = (\gamma_1(t), \dots, \gamma_m(t))$$

 $\gamma_j:I\to R$ campi scalari γ continua $\Longleftrightarrow \gamma_j$ continua $\forall j=1,\ldots,m$

-Definizione: Derivabilità di una curva-

Sia $\gamma: I \to R^m$ e sia $t_0 \in I$.

Diciamo che

 γ è derivabile in $t_0 \iff \gamma_j : I \to R$ è derivabile in $t_0 \quad \forall j = 1, \dots, m$

Se γ è derivabile in t_0 si pone

$$\boldsymbol{\gamma'}(t_0) = (\gamma_1'(t_0), \dots, \gamma_m'(t_0))$$

In cinematica $\gamma'(t)$ è il vettore velocità all'instante $t=t_0$ del punto materiale che si muove lungo il sostegno di γ

Sostegno Si dice sostegno della curva γ la sua immagine $\gamma(I)$

Curva semplice Una curva γ si dice semplice se è iniettiva:

$$t_1 \neq t_2 \implies \gamma(t_1) \neq \gamma(t_2) \qquad \forall t_1, t_2 \in I$$

Arco di curva Se I = [a, b] oppure se $[a, b] \subseteq I$ e considero la restrizione di gamma su [a, b], allora γ si dice arco di curva.

Un arco si dice **chiuso** se $\gamma(a) = \gamma(b)$.

Estremi Si dicono estremi dell'arco γ

$$P_0 = \gamma(a)$$
 $P_1 = \gamma(b)$

.

Curva di Jordan Una curva si dice di Jordan se

$$\gamma: [a,b] \to R^m$$
 è semplice e chiusa : $\gamma(a) = \gamma(b)$

Curva regolare Una curva $\gamma:I\to R^m$ si dice regolare se

1. $\gamma(t)$ è di classe C^1 su I:

$$\gamma(t) = (\gamma_1(t), \dots, \gamma_m(t)) \qquad \gamma_j : I \to R$$

 γ è di classe $\mathcal{C}^1 \iff \gamma_j$ di classe $\mathcal{C}^1 \ \forall j = 1, \dots, m$

2. $\gamma'(t) \neq 0, \forall t \in I$

Quindi se γ è regolare, $\forall t \in I$ è ben definita la **retta tangente** al sostegno di γ in $P_0 = \gamma(t_0)$:

$$\sigma(t) = \gamma(t_0) + \gamma'(t_0)(t - t_0)$$

5.2 Derivate parziali

Derivate direzionali

-Definizione: derivata direzionale-

$$F: A \subseteq \mathbb{R}^n \to \mathbb{R}^m, \quad \bar{x} \in \text{Int}(A), \quad v \in \mathbb{R}^n, \quad v \neq 0$$

Si dice derivata direzionale di F lungo v in \bar{x} il limite, se esiste finito,

$$\frac{\partial F}{\partial \boldsymbol{v}}(\bar{\boldsymbol{x}}) = \lim_{t \to 0} \frac{F(\bar{\boldsymbol{x}} + t\boldsymbol{v}) - F(\bar{\boldsymbol{x}})}{t} \tag{1}$$

Sia

$$F(x) = (F_1(x), \dots, F_m(x)), \qquad F_j : A \subseteq \mathbb{R}^n \to \mathbb{R}$$

allora per il Teorema del limite globale

$$\frac{\partial F}{\partial \boldsymbol{v}}(\bar{\boldsymbol{x}})$$
 esiste \iff esistono $\frac{\partial F_j}{\partial \boldsymbol{v}}(\bar{\boldsymbol{x}})$ $\forall j = 1, \dots, m$

inoltre

$$\frac{\partial F}{\partial \boldsymbol{v}}(\bar{\boldsymbol{x}}) = \left(\frac{\partial F_1}{\partial \boldsymbol{v}}(\bar{\boldsymbol{x}}), ..., \frac{\partial F_m}{\partial \boldsymbol{v}}(\bar{\boldsymbol{x}})\right)$$

-Definizione: Differenziabilità e Matrice Jacobiana -

Sia $\bar{x} \in Int(A)$. Diciamo che F è differenziabile in \bar{x} se esiste una applicazione lineare $T: R^n \to R^m$ tale che

$$F(\bar{x} + h) - F(\bar{x}) = T(h) + o(||h||), \quad h \to 0$$

 $T: \mathbb{R}^n \to \mathbb{R}^m$ è lineare qui di esiste una matrice \mathbb{B} $m \times n$ tale che

$$T(\mathbf{h}) = B\mathbf{h}$$

Usando il Teorema del limite globale, $F(\mathbf{x}) = (F_1(\mathbf{x}), \dots, F_m(\mathbf{x}))$ è differenziabile in $\bar{\mathbf{x}}$ $\iff F_j(\mathbf{x})$ è differenziabile in $\bar{\mathbf{x}}$, $\forall j = 1, \dots, m$.

Definiamo la Matrice Jacobiana di F in \bar{x}

$$JF(\bar{\boldsymbol{x}}) = \left(\begin{array}{cccc} \partial_{x_1} F_1(\bar{\boldsymbol{x}}) & \partial_{x_2} F_1(\bar{\boldsymbol{x}}) & \cdots & \partial_{x_n} F_1(\bar{\boldsymbol{x}}) \\ \partial_{x_1} F_2(\bar{\boldsymbol{x}}) & \partial_{x_2} F_2(\bar{\boldsymbol{x}}) & \cdots & \partial_{x_n} F_2(\bar{\boldsymbol{x}}) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{x_1} F_m(\bar{\boldsymbol{x}}) & \partial_{x_2} F_m(\bar{\boldsymbol{x}}) & \cdots & \partial_{x_n} F_m(\bar{\boldsymbol{x}}) \end{array} \right)$$

Differenziale Definiamo il differenziale di un campo vettoriale come

$$d_x F_i = \nabla F_i(\bar{x}) \cdot \boldsymbol{h}$$

ovvero una riga della jacobiana per un vettore colonna generico h.

5.3 Composizione di campi vettoirali

Chain rule

Siano

$$F:A\subseteq R^n\to R^m$$

$$G:B\subseteq R^m\to R^k$$

e definiamo il vettore

$$\bar{\boldsymbol{x}} \in Int(A)$$
 t.c. $F(\bar{\boldsymbol{x}}) \in Int(B)$

Supponiamo F differenziabile in \bar{x} e G in $F(\bar{x})$.

Allora la funzione composta $G\circ F$ è differenziabile in $\bar{\boldsymbol{x}}$ e vale

$$J(G \circ F)(\bar{x}) = JG(F(\bar{x})) \cdot JF(\bar{x})$$

5.4 Teorema di inversione locale

TIL

Sia $A \subseteq \mathbb{R}^n$ aperto e $T : A \subseteq \mathbb{R}^n \to \mathbb{R}^n$ con $T \in \mathcal{C}^1(A)$.

Sia $x_0 \in A \ e \ y_0 = T(x_0)$.

Supponiamo det $[JT(x_0)] \neq 0$. Allora:

1. Esiste un intorno aperto U di x_0 tale che T(U) sia un intorno aperto di y_0 e la funzione

$$T:U\to T(U)$$

sia biettiva.

2. La funzione inversa locale

$$T^{-1}:T(U)\to U$$

è di classe \mathcal{C}^1 su T(U) e $JT^{-1}(y_0) = \left[JT(x_0)\right]^{-1}$

5.5 Teoremi della funzione implicita

Dini in 2 dimensioni

Sia $A \subseteq \mathbb{R}^2$ aperto e $f: A \to \mathbb{R}$ campo scalare di classe \mathcal{C}^{∞} su $A: f \in \mathcal{C}^1(A)$.

Definiamo un punto P_0 appartenente all'insieme di livello $\Sigma_c = \{(x,y) \in A : f(x,y) = c\}$:

$$P_0 = (x_0, y_0) \mid f(x_0, y_0) = c$$

Valgono le seguenti affermazioni:

1. Se $\frac{\partial f}{\partial u}(P_0) \neq 0$ allora esiste un rettangolo

$$I \times J = (x_0 - a, x_0 + a) \times (y_0 - b, y_0 + b)$$
 $a, b > 0$

tale che l'insieme intersezione del rettangolo con l'insieme di livello

$$\{f = c\} \cap (I \times J) = \{(x, y) \in I \times J : f(x, y) = c\}$$

è il grafico di una funzione

$$y = \varphi(x)$$

con

$$\varphi: I \to J$$
 di classe \mathcal{C}^1 su $I = (x_0 - a, x_0 + a)$

2. Se $\frac{\partial f}{\partial x}(P_0) \neq 0$ allora esiste un rettangolo

$$I \times J = (x_0 - a, x_0 + a) \times (y_0 - b, y_0 + b)$$
 $a, b > 0$

tale che l'insieme intersezione del rettangolo con l'insieme di livello

$$\{f = c\} \cap (I \times J) = \{(x, y) \in I \times J : f(x, y) = c\}$$

è il grafico di una funzione

$$y = \psi(x)$$

con

$$\psi: J \to I$$
 di classe \mathcal{C}^1 su $J = (y_0 - b, y_0 + b)$

esempio

Non è sempre possibile esplicitare una variabile rispetto all'altra: se prendiamo come esempio una circonferenza centrata nell'origine di raggio unitario notiamo che:

- In un intorno di $P_1 = (0,1)$ posso esplicitare $y = \sqrt{1-x^2}$ ma non posso esplicitare x (in una sola funzione).
- In un intorno di $P_2 = (1,0)$ è il contrario.

Corollario Sia $f:A\subset R^2\to R$ una funzione di classe \mathcal{C}^1 su A e sia $P_0=(x_0,y_0)\in A$ tale che $f(x_0,y_0)=c$. Allora si ha

1. Se $\frac{\partial f}{\partial y} \neq 0$ e $y = \varphi(x)$ è la funzione definita implicitamente da f(x,y) = c per $x \in (x_0 - a, x_0 + a)$, risulta:

$$\varphi'(x_0) = -\frac{\partial_x f(P_0)}{\partial_y f(P_0)}$$

2. Se $\frac{\partial f}{\partial x} \neq 0$ e $x = \psi(y)$ è la funzione definita implicitamente da f(x, y) = c per $y \in (y_0 - b, y_0 + b)$, risulta:

$$\psi'(y_0) = -\frac{\partial_y f(P_0)}{\partial_x f(P_0)}$$

Dimostrazione

Siamo nel caso in cui

$$y = \varphi(x)$$
 è l'unica soluzione di $f(x, \varphi(x)) = c$

nell'intorno $I = (x_0 - a, x_0 + a)$:

$$\varphi: I \to (y_0 - b, y_0 + b)$$

Per il teorema del Dini sappiamo che $\varphi \in \mathcal{C}^1$, quindi posso derivare $f(x, \varphi(x)) = c \quad \forall x \in I$. Derivando il primo membro con la chain rule e il secondo (d/dx(c) = 0):

$$\frac{d}{dx}f(x,\varphi(x)) = \nabla f(x,\varphi(x)) \cdot \nabla(x,\varphi(x))$$
$$= \partial_x f(x,\varphi(x)) \cdot 1 + \partial_y f(x,\varphi(x)) \cdot \varphi'(x) = 0$$

e poiché $f(x, \varphi(x))$ ha derivata $\partial_y f(x, \varphi(x))$ continua in I, in particolare $\partial_y f(x, y_0) \neq 0$, per il teorema della permanenza del segno

$$\exists 0 < a' \leq a$$
 t.c. $\partial_u f(x, \varphi(x)) \neq 0 \quad \forall x \in (x_0 - a, x_0 + a) \subseteq I$

Possiamo definire la derivata prima di $\varphi(x)$

$$\varphi'(x) = -\frac{\partial_x f(x, \varphi(x))}{\partial_u f(x, \varphi(x))} \qquad \forall x \in (x_0 - a', x_0 + a')$$

6 Superfici in R^3

Definizione: Insieme connesso per archi

Sia $A \subseteq \mathbb{R}^2$. A si dice connesso per archi se $\forall x, y \in A$ esiste una curva che li congiunge e il cui sostegno è tutto contenuto in A.

Definizione: Superficie in \mathbb{R}^3

Sia $A\subseteq R^2$ aperto connesso per archi. Una superficie in R^3 è un'applicazione continua $\sigma:A\subseteq R^2\to R^3,\,(u,v)\mapsto (x,y,z)$

$$\begin{cases} x = \sigma_1(u, v) \\ y = \sigma_2(u, v) \\ z = \sigma_3(u, v) \end{cases} \qquad \sigma(u, v) = (\sigma_1(u, v), \sigma_2(u, v), \sigma_3(u, v))$$

L'immagine $\Sigma = \sigma(A)$ è detta **sostegno** della superficie.

-Definizione: Superficie regolare

Una superficie $\sigma:A\subseteq R^2\to R^3$, con A aperto e connesso per archi, si dice regolare se

- 1. $\sigma \in \mathcal{C}^1$
- 2. $rk[J\sigma(u,v)]$ è massimo, ovvero se e solo se $\partial_u\sigma$ e $\partial_v\sigma$ sono linearmente indipendenti.

7 Calcolo integrale per funzioni in più variabili

7.1 Insiemi misurabili

Sia Ω un qualunque sottoinsieme limitato di R^2 e sia $X_\Omega:R^2\to R$ la sua funzione caratteristica definita da

$$X_{\Omega}(\boldsymbol{x}) = \begin{cases} 1 & \text{se } \boldsymbol{x} \in \Omega \\ 0 & \text{se } \boldsymbol{x} \notin \Omega \end{cases}$$

Fissato un arbitrario rettangolo B contenente Ω :

-Definizione: Insieme misurabile

Un sottoinsieme limitato $\Omega \subset R^2$ si dice misurabile se, fissato arbitrariamente un rettangolo B contenente Ω , la funzione X_{Ω} risulta integrabile su B. In tal caso il numero non negativo

$$|\Omega| = \int_{\Omega} X_{\Omega}$$

viene detto **misura** di Ω .

esempio-

Non tutti gli insiemi limitati sono misurabili: i punti del quadrato $[0,1] \times [0,1]$ dove la funzione di Dirichlet è definita come

$$f(x,y) = \begin{cases} 1 & \text{se } x, y \in Q, & 0 \le x, y \le 1 \\ 0 & \text{altrimenti} \end{cases}$$

non è integrabile, pertanto l'insieme non è misurabile.

-Definizione: Insieme di misura nulla-

Si dice che un insieme Ω ha misura nulla se è misurabile e

$$|\Omega| = 0$$

Teorema: Condizione di miusurabilità

Un insieme limitato $\Omega \subset \mathbb{R}^2$ è misurabile se e solo se la sua frontiera ha misura nulla.

7.2 Funzioni integrabili

Fissato un insieme misurabile Ω introduciamo il concetto di integrabilità per funzioni limitate e definite in Ω . Presa una funzione limitata

$$f:\Omega\to R$$

consideriamo l'**estensione nulla** (o banale) di f su \mathbb{R}^2

$$\tilde{f}: \mathbb{R}^2 \to \mathbb{R}$$

ottenuta ponendo

$$\tilde{f}(\boldsymbol{x}) = \left\{ \begin{array}{ll} f(\boldsymbol{x}) & \text{se} & x \in \Omega \\ 0 & \text{se} & x \notin \Omega \end{array} \right.$$

-Definizione: Funzione integrabile

Si dice che f,funzione limitata, è integrabile in Ω secondo Riemann se \tilde{f} è integrabile su un qualunque rettangolo B contenente Ω . In tal caso, il valore dell'integrale

$$\int_B \tilde{f}$$

non dipende dalla scelta di B e si pone

$$\int_{\varOmega} f = \int_{B} \tilde{f}$$

Tale valore è detto **integrale doppio** di f su Ω .

Definizione: Funzione generalmente continua-

Una funzione $f:\Omega\to R$ definita e limitata su un insieme misurabile Ω dicesi generalmente continua in Ω se l'insieme dei suoi punti di discontinuità ha misura nulla.

Definizione: Insiemi y-semplici e x-semplici

Un insieme $\Omega \subset \mathbb{R}^2$ si dice semplice rispetto all'asse y se è della forma

$$\Omega = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

con $g_1, g_2: [a, b] \to R$ funzioni continue.

Un insieme $\Omega \subset \mathbb{R}^2$ si dice semplice rispetto all'asse x se è della forma

$$\Omega = \{(x, y) \in \mathbb{R}^2 : c \le y \le d, h_1(y) \le x \le h_2(y)\}$$

con $h_1, h_2 : [c, d] \to R$ funzioni continue.