TÖL203G Tölvunarfræði 2

Lokapróf	7. maí 2021
Kennari: Páll Melsted	kl. $13^{30} - 16^{30}$

Nafn og kennitala

- Leyfileg hjálpargögn eru eitt A4 blað, skrifað báðu megin. Önnur skrifleg hjálpargögn eru óheimil.
- Prófið er 110 stig, 100 stig gefa 10 í einkunn.
- Skráið öll svör í prófið sjálft innan reita, ef svar er fyrir utan reitinn þarf að merkja það sérstaklega.
- Athugið að rökstyðja öll svör og að kannski er ekki best leysa dæmin í vaxandi röð.
- Kennari mætir ekki í prófstofu á meðan prófi stendur. Komi fram galli í spurningu verður tekið tillit til þess við yfirferð prófsins.
- Prófið er 9 tölusettar síður. Á síðustu blaðsíðu er yfirlit yfir API fyrir klasa úr bókinni, það þarf ekki að skila þessari síðu með prófinu og ekki skrifa neitt á þá síðu sem þið viljið að farið verði yfir.
- 1. (35 stig) Fjölvalsspurningar. Hvert rétt svar gefur 5 stig. Aðeins er eitt rétt svar fyrir hverja spurningu. Ekki er dregið niður fyrir röng svör. **Dragið hring** utan um rétt svar.
 - (a) Tölurnar 1-10 eru geymdar í tvíleitartré. Leitað er að tölunni 3 og gildi þeirra hnúta sem eru skoðaðir við leitina eru prentaðir út. Hvaða runa getur ekki verið prentuð út?
 - (A) 10, 9, 8, 6, 3
 - (B) 1, 7, 2, 5, 4, 3
 - (C) 4, 10, 3
 - (D) 1, 2, 10, 6, 4, 3
 - (b) Tölurnar 1 til 9 eru settar á stafla og teknar af með blöndu af push og pop. Hver af eftirfarandi röðum getur komið fyrir þegar talan er prentuð út í hvert skipti sem kallað er á pop.
 - (A) 2 1 4 3 5 9 8 6 7
 - **(B)** 1 2 9 8 6 7 5 4 3
 - (C) 2 1 9 8 7 5 6 4 3
 - (D) 2 3 1 5 4 7 6 8 9

(c) Fylkið a er búið til með eftirfarandi skipun

```
int[] a = new String[N];
```

Hvert af eftirfarandi er á við hérna.

- (A) Minni fyrir fylkið er tekið frá í Kös (e. Heap) þegar gildi eru sett inn í það
- (B) Minni fyrir fylkið er tekið frá í Kös (e. Heap) þegar new skipunin er keyrð og minni fyrir strengina er tekið frá í Kös (e. Heap) um leið.
- (C) Minni fyrir fylkið er tekið frá á Stafla (e. Stack) þegar new skipunin er keyrð og minni fyrir strengina er tekið frá í Kös (e. Heap) um leið.
- (D) Minni fyrir fylkið er tekið frá í Kös (e. Heap)
- (d) Hvert af eftirfarandi reikniritum gæti skilað StackOverflow villu, miðað við þær útfærslur sem var farið yfir í námskeiðinu.
 - (A) Mergesort þegar fylkið er raðað
 - (B) Helmingunarleit þegar stakið sem leitað er að er ekki í fylkinu
 - (C) Innsetning á gildi í tvíleitartré
 - (D) Sink aðferðin í Heapsort.
- (e) Hvert af eftirfarandi röðunaraðferðum er stöðug (e. stable) og keyrir á tíma O(N) þegar inntakið er raðað í vaxandi röð.
 - (A) Quicksort
 - (B) Insertionsort
 - (C) Mergesort
 - (D) Heapsort
- (f) Gefið er samanhangandi net G með n hnúta og allir hnútar hafa gráðuna d, þar sem $d \sim \sqrt{n}$ og jákvæðar lengdir w á leggjunum. Hver af eftirfarandi staðhæfingum gildir um stystu leiðar verkefni með s sem upphafshnút.
 - (A) Fyrir hvern hnút v er til nákvæmlega ein stysta leið fá s.
 - (B) Keyrslutíminn á reikniriti Dijkstra er $n^{1.5} \log(n)$ fyrir betta net.
 - (C) BFS getur fundið stystu leið í netinu á línulegum tíma.
 - (D) Það eru ekki nægar upplýsingar til að svara þessari spurningu.
- (g) Reiknirit hefur tímaflækjuna $T(n) = O(n \log(n))$. Hver af eftirfarandi staðhæfingum er röng
 - (A) Tímaflækjan er minni en n^2 fyrir öll n.
 - (B) Tímaflækjan er minni en $C \cdot n \log(n)$ fyrir eitthvert gildi á C
 - (C) Tímaflækjan er minni en n^2 fyrir n nógu stórt
 - (D) Tvöföldunarhlutfallið stefnir á 1.

2.	(5 stig) Skrifið reglulega segð sem passar við "tvíundarstrengi með a.m.k. þrjú 0, en ekki tvö 0 hlið vi
	hlið" og eingöngu þá strengi.

Vantar meira pláss?	Svarið er að finna

3. (5 stig)Gefið er eftirfarandi fall tekur inn streng s og tölu N.

```
public static String f(String s, int N) {
   String r = s;
   for (int i = 0; i < N; i++)
     r += s;
   return r;
}</pre>
```

Hver er tímaflækjan sem fall af N og lengdinni á strengnum s. Rökstyðjið svarið vandlega og sýnið útreikninga.

Vantar meira pláss?	Svarið er að finna

4. (5 stig) Forrit var tímamælt með eftirfarandi stærðum á inntaki N.

N	tími (sekúndur)
500	0.1
1000	0.2
2000	0.9
4000	4.1
8000	15.5
16000	63.1
32000	121.9

Hvaða tímaflækju hefur forritið sem fall af N?

Vantar meira pláss?	Svarið er að finna

5. (15 stig) Teiknið eftirfarandi gagnagrindur þegar búið er að setja stökin 5,3,8,1,6,9,4,7,2 inn í þessari röð.

(a) (6 stig) Lágmarkshrúgu (e. Min Heap). Hér þarf bara að teikna lokaniðurstöðu. Teiknið bæði tréð og samsvarandi fylki.

Vantar meira pláss? Svarið er að finna						

(b) (4 stig) Vinstri hallandi rautt-svart-tvíleitartré (Left Leaning Red Black Binary Search Tree). Þetta er sú útgáfa sem við fórum yfir í námskeiðinu. Teiknið gagnagrindina eins og þegar 4 er sett inn og sýnið skrefin sem tekin eru. Táknið rauða leggi með **r**. Til einföldunar er tréð gefið eftir að búið er að setja inn 5,3,8,1,6,9.

Vantar meira pláss?	Svarið er að finna

(c)	(5 stig) Hakkatafla af stærð 15 með hakkafallinu $h(k) = k^2 + 3k$ og árekstrar eru leystir með Linear Probing og taflan er aldrei stækkuð eða minnkuð. Hér þarf bara að teikna lokaniðurstöðu. (Stökin eru $5,3,8,1,6,9,4,7,2$)
	Vantar meira pláss? Svarið er að finna
	Vantar meira pláss? Svarið er að finna Svarið er að
6. (7 st	tig) Í tvíleitartré er eftirfarandi Node klasi notaður
_	rivate class Node { private Key key; private Value val; private Node left, right;
T se	fið fall findVal sem tekur inn tvíleitartré T með rót x , gildi (e. Value) p og skilar minnsta lyklinum í em hefur gildi jafnt og p . ar meira pláss? Svarið er að finna

Vantar meira pláss?	Svarið er að finna		
spurningu 6 að ofar BST klasanm. Ef kla	víleitartré (e. Binary Search Tree, n. Útskýrið í stuttu máli af hverju v sinn væri public, af hverju væri ek	við viljum að klasinn sé bæði pr	rivate og partui
spurningu 6 að ofar 3ST klasanm. Ef kla Node hluti?	ı. Útskýrið í stuttu máli af hverju v	við viljum að klasinn sé bæði pr	rivate og partu
spurningu 6 að ofar 3ST klasanm. Ef kla Node hluti?	n. Útskýrið í stuttu máli af hverju v sinn væri public, af hverju væri ek	við viljum að klasinn sé bæði pr	rivate og partu
spurningu 6 að ofar 3ST klasanm. Ef kla Node hluti?	n. Útskýrið í stuttu máli af hverju v sinn væri public, af hverju væri ek	við viljum að klasinn sé bæði pr	rivate og partu
spurningu 6 að ofar 3ST klasanm. Ef kla Node hluti?	n. Útskýrið í stuttu máli af hverju v sinn væri public, af hverju væri ek	við viljum að klasinn sé bæði pr	rivate og partu
spurningu 6 að ofar 3ST klasanm. Ef kla Node hluti?	n. Útskýrið í stuttu máli af hverju v sinn væri public, af hverju væri ek	við viljum að klasinn sé bæði pr	rivate og partu
spurningu 6 að ofar 3ST klasanm. Ef kla Node hluti?	n. Útskýrið í stuttu máli af hverju v sinn væri public, af hverju væri ek	við viljum að klasinn sé bæði pr	rivate og partu
spurningu 6 að ofar 3ST klasanm. Ef kla Node hluti?	n. Útskýrið í stuttu máli af hverju v sinn væri public, af hverju væri ek	við viljum að klasinn sé bæði pr	rivate og partu
spurningu 6 að ofar SST klasanm. Ef kla Vode hluti?	n. Útskýrið í stuttu máli af hverju v sinn væri public, af hverju væri ek	við viljum að klasinn sé bæði pr	rivate og partu
spurningu 6 að ofar SST klasanm. Ef kla Vode hluti?	n. Útskýrið í stuttu máli af hverju v sinn væri public, af hverju væri ek	við viljum að klasinn sé bæði pr	rivate og partu
spurningu 6 að ofar 3ST klasanm. Ef kla Node hluti?	n. Útskýrið í stuttu máli af hverju v sinn væri public, af hverju væri ek	við viljum að klasinn sé bæði pr	rivate og partu
spurningu 6 að ofar 3ST klasanm. Ef kla Node hluti?	n. Útskýrið í stuttu máli af hverju v sinn væri public, af hverju væri ek	við viljum að klasinn sé bæði pr	rivate og partu
spurningu 6 að ofar 3ST klasanm. Ef kla Node hluti?	n. Útskýrið í stuttu máli af hverju v sinn væri public, af hverju væri ek	við viljum að klasinn sé bæði pr	rivate og partu
spurningu 6 að ofar 3ST klasanm. Ef kla Node hluti?	n. Útskýrið í stuttu máli af hverju v sinn væri public, af hverju væri ek	við viljum að klasinn sé bæði pr	rivate og partu
spurningu 6 að ofar 3ST klasanm. Ef kla Node hluti?	n. Útskýrið í stuttu máli af hverju v sinn væri public, af hverju væri ek	við viljum að klasinn sé bæði pr	rivate og partu
spurningu 6 að ofar BST klasanm. Ef kla Node hluti?	n. Útskýrið í stuttu máli af hverju v sinn væri public, af hverju væri ek	við viljum að klasinn sé bæði pr	rivate og partu
spurningu 6 að ofar BST klasanm. Ef kla Node hluti?	n. Útskýrið í stuttu máli af hverju v sinn væri public, af hverju væri ek	við viljum að klasinn sé bæði pr	rivate og partu
spurningu 6 að ofar 3ST klasanm. Ef kla Node hluti?	n. Útskýrið í stuttu máli af hverju v sinn væri public, af hverju væri ek	við viljum að klasinn sé bæði pr	rivate og partu
í spurningu 6 að ofar	n. Útskýrið í stuttu máli af hverju v sinn væri public, af hverju væri ek	við viljum að klasinn sé bæði pr	rivate og partu

9.	(15 stig) Klasinn StudentCourse er gefinn sem heldur utan um skráningar nemenda í námskeið. Hér
	gerum við ráð fyrir nöfn nemenda séu ólík. Gefið er fylki a af StudentCourse hlutum og engir hlutir
	endurteknir í fylkinu.

endurteknir i Tylkinu.	
<pre>public class StudentCourse implements Comparable<studentcourse> { public String name; public String course; }</studentcourse></pre>	
(a) (4 stig) Útfærið compareTo aðferðina sem raðar í stafrófsröð eftir nafni fyrst og námskeiði síðan.	
Vantar meira pláss? Svarið er að finna	
(b) (6 stig) Skrifið kóða til að finna hve margir nemendur eru skráðir í a.m.k. fjögur námskeið.Hér má	
ekki nota neinar aðrar gagnagrindur, eingöngu fylkið a . Tíminn á aðferðinni má ekki vera $O(N^2)$ þar sem N er fjöldi staka.	
Vantar meira pláss? Svarið er að finna	

Va	ntar meira pláss?	Svarið er að finna
.ýsið re	eikniriti sem finnu	hringað net (e. Directed Acyclic Graph, DAG) G með vigtir w á leggjun pá leið á milli s og t sem hefur stystu meðaltalslengd. (Vísbending: gey
zýsið re pplýsir	eikniriti sem finnu ngar í hver <u>jum</u> hn	ır þá leið á milli s og t sem hefur stystu meðaltalslengd. (Vísbending: gey úti um stystu leið eftir fjölda leggja).
zýsið re ipplýsir	eikniriti sem finnu ngar í hver <u>jum</u> hn	ar þá leið á milli s og t sem hefur stystu meðaltalslengd. (Vísbending: gey
zýsið re ipplýsir	eikniriti sem finnu ngar í hver <u>jum</u> hn	ır þá leið á milli s og t sem hefur stystu meðaltalslengd. (Vísbending: gey úti um stystu leið eftir fjölda leggja).
Lýsið re ipplýsir	eikniriti sem finnu ngar í hver <u>jum</u> hn	ır þá leið á milli s og t sem hefur stystu meðaltalslengd. (Vísbending: gey úti um stystu leið eftir fjölda leggja).
zýsið re ipplýsir	eikniriti sem finnu ngar í hver <u>jum</u> hn	ır þá leið á milli s og t sem hefur stystu meðaltalslengd. (Vísbending: gey úti um stystu leið eftir fjölda leggja).
Lýsið re ipplýsir	eikniriti sem finnu ngar í hver <u>jum</u> hn	ır þá leið á milli s og t sem hefur stystu meðaltalslengd. (Vísbending: gey úti um stystu leið eftir fjölda leggja).
Lýsið re ipplýsir	eikniriti sem finnu ngar í hver <u>jum</u> hn	ır þá leið á milli s og t sem hefur stystu meðaltalslengd. (Vísbending: gey úti um stystu leið eftir fjölda leggja).
Lýsið re ipplýsir	eikniriti sem finnu ngar í hver <u>jum</u> hn	ır þá leið á milli s og t sem hefur stystu meðaltalslengd. (Vísbending: gey úti um stystu leið eftir fjölda leggja).
zýsið re ipplýsir	eikniriti sem finnu ngar í hver <u>jum</u> hn	ır þá leið á milli s og t sem hefur stystu meðaltalslengd. (Vísbending: gey úti um stystu leið eftir fjölda leggja).
Lýsið re ipplýsir	eikniriti sem finnu ngar í hver <u>jum</u> hn	ır þá leið á milli s og t sem hefur stystu meðaltalslengd. (Vísbending: gey úti um stystu leið eftir fjölda leggja).
Lýsið re ipplýsir	eikniriti sem finnu ngar í hver <u>jum</u> hn	ır þá leið á milli s og t sem hefur stystu meðaltalslengd. (Vísbending: gey úti um stystu leið eftir fjölda leggja).
Lýsið re ipplýsir	eikniriti sem finnu ngar í hver <u>jum</u> hn	ır þá leið á milli s og t sem hefur stystu meðaltalslengd. (Vísbending: gey úti um stystu leið eftir fjölda leggja).
Lýsið re ipplýsir	eikniriti sem finnu ngar í hver <u>jum</u> hn	ır þá leið á milli s og t sem hefur stystu meðaltalslengd. (Vísbending: gey úti um stystu leið eftir fjölda leggja).
Lýsið re ipplýsir	eikniriti sem finnu ngar í hver <u>jum</u> hn	ır þá leið á milli s og t sem hefur stystu meðaltalslengd. (Vísbending: gey úti um stystu leið eftir fjölda leggja).
Lýsið re ipplýsir	eikniriti sem finnu ngar í hver <u>jum</u> hn	ır þá leið á milli s og t sem hefur stystu meðaltalslengd. (Vísbending: gey úti um stystu leið eftir fjölda leggja).
zýsið re ipplýsir	eikniriti sem finnu ngar í hver <u>jum</u> hn	ır þá leið á milli s og t sem hefur stystu meðaltalslengd. (Vísbending: gey úti um stystu leið eftir fjölda leggja).
Lýsið re ipplýsir	eikniriti sem finnu ngar í hver <u>jum</u> hn	ır þá leið á milli s og t sem hefur stystu meðaltalslengd. (Vísbending: gey úti um stystu leið eftir fjölda leggja).
Lýsið re ipplýsir	eikniriti sem finnu ngar í hver <u>jum</u> hn	ır þá leið á milli s og t sem hefur stystu meðaltalslengd. (Vísbending: gey úti um stystu leið eftir fjölda leggja).
Lýsið re ipplýsir	eikniriti sem finnu ngar í hver <u>jum</u> hn	ır þá leið á milli s og t sem hefur stystu meðaltalslengd. (Vísbending: gey úti um stystu leið eftir fjölda leggja).
zýsið re ipplýsir	eikniriti sem finnu ngar í hver <u>jum</u> hn	ır þá leið á milli s og t sem hefur stystu meðaltalslengd. (Vísbending: gey úti um stystu leið eftir fjölda leggja).

(Auð síða ef aukapláss vantar)

<pre>public class Stack<item> implements Iterable<item></item></item></pre>					public class UF					
	sEmpty()	m) a re is	the stack em	st recently added item	int boolean	UF(int N) union(int find(int p connected(count()	p, int q)) int p, int q)	add connection component iden		
public class Max	«PQ <key exten<="" td=""><td>ds Comparat</td><td>ole<key>></key></td><td></td><td>public cla</td><td>ss <mark>ST</mark><key,< td=""><td>Value></td><td></td><td></td><td></td></key,<></td></key>	ds Comparat	ole <key>></key>		public cla	ss <mark>ST</mark> <key,< td=""><td>Value></td><td></td><td></td><td></td></key,<>	Value>			
Max	(PQ()	create a prior	ity queue			ST()		create a	symbol table	
Max	PQ(int max)	create a prior	ity queue of in	itial capacity max	voi	id put(Key	key, Value v		-value pair into	
Max	(PQ(Key[] a)	create a prior	ity queue fron	the keys in a[]				(remove	e key from tabl aired with key	e if value is null
void ins	sert(Key v)	insert a key ir	ito the priority	queue	Valı	ue get(Key	key)		f key is absent)	
Key max	()	return the lar	gest key			id delete(llue) from table
Key del	Max()	return and re	move the large	st key		an contair an isEmpty	s(Key key)		a value paired ible empty?	with key?
boolean isE	Empty()	is the priority	queue empty:			nt size()				airs in the table
int siz	re()	number of ke	ys in the prior	ty queue	Iterable <key< td=""><td></td><td></td><td></td><td>keys in the table</td><td></td></key<>				keys in the table	
public class	s Graph Graph(int V)) (create a V-verte:	graph with no edges	public	class Pat	hs			
	Graph(In in)) .	read a graph fro	m input stream in			hs(Graph G, i	-	paths in G from	source s
	t V()		number of verti				PathTo(int v)		ere a path from	
	t E() d addEdge(int		number of edges add edge v-w to		Iterable <int< td=""><td>eger> pat</td><td>hTo(int v)</td><td>path</td><td>from s to v; ni</td><td>ıll if no such patl</td></int<>	eger> pat	hTo(int v)	path	from s to v; ni	ıll if no such patl
Iterable <integer> adj(int v)</integer>					public class DirectedDFS					
String	g toString()	2	string representa	ition					find ve	ertices in G that a
public class Digraph					DirectedDFS(Digraph G, int s) DirectedDFS(Digraph G, find vertices in G that Iterable <integer> sources) Teachable from sources</integer>					
in	Digraph(in Digraph(In at V()			ertex digraph with no edges ph from input stream in vertices	boolean	marked(i	nt v)		is v rea	achable?
in	t E()		number of e	dges	public	class Dir	ectedCycle			
voi	void addEdge(int v, int w) add edge v->w to this digrap			DirectedCycle(Digraph G) cycle-finding constructor boolean hasCycle() does G have a directed cycle?						
Iterable <integer> adj(int v</integer>		vertices connected to v by edges pointing from v								
	h reverse() g toString()		reverse of th string repre		Iterable <int< td=""><td>eger> cyc</td><td>le()</td><td></td><td>vertices on a c</td><td>ycle (if one exists</td></int<>	eger> cyc	le()		vertices on a c	ycle (if one exists
public class	s Topological	1			public class	Directed	lEdge			
Topological (Digraph G) topological-sorting constructor					DirectedEdge(int v, int w, double weight)					
boolea	n isDAG()		-	DAG?		weight())		weight of th	
Iterable <integer< td=""><td>> order()</td><td></td><td>vertic</td><td>es in topological order</td><td></td><td>from()</td><td></td><td></td><td></td><td>edge points from edge points to</td></integer<>	> order()		vertic	es in topological order		from()				edge points from edge points to
						to() toString	1()		string repre	edge points to esentation
					5 5. This	,			and septe	
public	class EdgeWe	ightedDigra	aph		nul	blic class	SP			
	EdgeWe	ightedDigra	aph(int V)	empty V-vertex digraph	pui		SP(EdgeWeig	htedDigraph	G, int s)	constructor
	_	ghtedDigra		construct from in		double	distTo(int			distance from
	int V()			number of vertices						to v, ∞ if no pa
	int E() void addEdg	na (Directed)	Edge e)	number of edges add e to this digraph			hasPathTo(i			path from s to
Iterable <directed< td=""><td>-</td><td></td><td>uge e)</td><td>edges pointing from v</td><td>Iterable<dir< td=""><td>ectedEdge></td><td>pathTo(int</td><td>v)</td><td></td><td>null if none</td></dir<></td></directed<>	-		uge e)	edges pointing from v	Iterable <dir< td=""><td>ectedEdge></td><td>pathTo(int</td><td>v)</td><td></td><td>null if none</td></dir<>	ectedEdge>	pathTo(int	v)		null if none

string representation

all edges in this digraph

String toString()

Iterable<DirectedEdge> edges()