RAPPORT SIMPLIFIÉ D'ANALYSE D'USURE

FREINS CARBONE

AIRBUS A320

Référence: RSAU-A320-FC-2025-068

Classification: STANDARD / USAGE MAINTENANCE

Date d'analyse: 23 mai 2025 **Catégorie:** Train d'atterrissage

Niveau d'urgence pour changement: Normal

1. PRÉSENTATION DE L'ANALYSE

1.1 Objectif

Ce rapport présente les résultats d'une analyse simplifiée de l'usure des freins carbone réalisée sur un Airbus A320-214 lors de sa maintenance programmée. L'analyse vise à évaluer l'état des disques de frein, à déterminer leur durée de vie résiduelle et à formuler des recommandations pour optimiser leur utilisation.

1.2 Aéronef concerné

• **Type:** Airbus A320-214

• Immatriculation: F-ABCD

Numéro de série (MSN): 4873
Heures de vol totales: 19,750

• Cycles totaux: 10,325

• Date de dernière maintenance lourde: 10 février 2025

1.3 Équipement analysé

• Type de freins: Freins carbone haute énergie

• Fabricant: Safran Landing Systems

• Référence: C20568-3

Numéros de série: Voir tableau section 2.1
Date d'installation: Voir tableau section 2.1

• Cycles depuis installation: Voir tableau section 2.1

2. MÉTHODOLOGIE ET RÉSULTATS

2.1 Identification des freins analysés

Position	Numéro de série	Date d'installation	Cycles depuis installation
Train gauche extérieur	FC-25-87654	15 octobre 2024	450
Train gauche intérieur	FC-25-87655	15 octobre 2024	450
Train droit extérieur	FC-25-87656	15 octobre 2024	450
Train droit intérieur	FC-25-87657	15 octobre 2024	450

2.2 Mesures d'épaisseur des disques

Position	Épaisseur initiale	Épaisseur minimale	Épaisseur mesurée	Usure (%)	Cycles restants estimés
Train gauche extérieur	36,0 mm	28,0 mm	33,2 mm	35%	830
Train gauche intérieur	36,0 mm	28,0 mm	33,5 mm	31%	990
Train droit extérieur	36,0 mm	28,0 mm	33,0 mm	38%	740
Train droit intérieur	36,0 mm	28,0 mm	33,4 mm	33%	920

2.3 Inspection visuelle

Position	État des disques	État des rotors	État des stators	État général
Train gauche extérieur	Usure uniforme	Bon	Bon	Satisfaisant
Train gauche intérieur	Usure uniforme	Bon	Bon	Satisfaisant

Position	État des disques	État des rotors	État des stators	État général
Train droit extérieur	Légère usure non uniforme	Bon	Bon	Acceptable
Train droit intérieur	Usure uniforme	Bon	Bon	Satisfaisant

2.4 Analyse thermique

Des mesures thermographiques ont été réalisées après un test de freinage statique.

Position	Température max	Température moyenne	Uniformité thermique	Conformité
Train gauche extérieur	345°C	310°C	±25°C	CONFORME
Train gauche intérieur	330°C	305°C	±20°C	CONFORME
Train droit extérieur	365°C	325°C	±35°C	SURVEILLANCE
Train droit intérieur	340°C	310°C	±25°C	CONFORME

2.5 Test fonctionnel

Test	Critère	Train gauche ext.	Train gauche int.	Train droit ext.	Train droit int.
Couple de freinage	>80% nominal	92%	94%	88%	93%
Temps de réponse	<250 ms	180 ms	175 ms	210 ms	185 ms
Relâchement	<500 ms	320 ms	310 ms	350 ms	315 ms
Vibration	<0,5g	0,2g	0,2g	0,4g	0,2g

3. ANALYSE ET INTERPRÉTATION

3.1 Synthèse des résultats

L'analyse de l'usure des freins carbone montre un comportement globalement conforme aux spécifications. L'usure est relativement uniforme entre les quatre positions, avec une légère asymétrie entre le côté gauche et droit.

Le frein droit extérieur présente une usure légèrement plus prononcée et moins uniforme que les autres positions, ainsi qu'une distribution thermique moins homogène. Bien que ces valeurs restent dans les limites acceptables, elles justifient une surveillance particulière.

3.2 Taux d'usure et projection

Le taux d'usure moyen observé est de 0,7% par 10 cycles, ce qui est conforme aux attentes pour ce type d'équipement et ce profil d'exploitation. Sur cette base, la durée de vie résiduelle estimée est d'environ 740 à 990 cycles selon la position.

La projection d'usure indique que le remplacement des freins devrait être envisagé lors de la prochaine visite C-check prévue dans 600 cycles, ce qui permettrait d'optimiser la maintenance sans compromettre la sécurité.

3.3 Facteurs influençant l'usure

L'analyse des données d'exploitation révèle plusieurs facteurs contribuant au profil d'usure observé: - Masse moyenne à l'atterrissage: 64,5 tonnes - Longueur moyenne des pistes: 2800 mètres - Utilisation fréquente de l'autobrake niveau 2-3 - Conditions météorologiques: 30% des atterrissages par temps humide

La légère asymétrie d'usure entre gauche et droit peut être attribuée à: - Vents traversiers prédominants sur les aéroports fréquentés - Légère différence de pression hydraulique entre les circuits gauche et droit (dans les tolérances)

4. RECOMMANDATIONS

4.1 Actions immédiates

- Frein droit extérieur: Inspection visuelle renforcée tous les 50 cycles
- Tous les freins: Vérification de la pression hydraulique des circuits de freinage
- Système anti-patinage: Test complet pour vérifier la symétrie de fonctionnement

4.2 Actions à court terme

- Planification du remplacement de tous les freins lors du prochain C-check
- Ajustement des pressions hydrauliques pour équilibrer l'usure gauche/droite
- Formation des équipages sur les techniques optimales de freinage

4.3 Actions préventives

- Analyse des données de vol (FDA) pour identifier les atterrissages avec freinage excessif
- Mise à jour du programme de surveillance de l'usure des freins
- Évaluation de l'impact des conditions météorologiques sur l'usure

5. CONCLUSION

L'analyse d'usure des freins carbone de l'Airbus A320 F-ABCD révèle un comportement globalement conforme aux spécifications. L'usure est progressive et prévisible, avec une légère asymétrie entre le côté gauche et droit qui reste dans les limites acceptables.

La durée de vie résiduelle estimée est suffisante pour poursuivre l'exploitation en toute sécurité jusqu'au prochain C-check, où un remplacement préventif est recommandé pour optimiser la maintenance.

Une surveillance renforcée du frein droit extérieur est conseillée en raison de son usure légèrement plus prononcée et moins uniforme, bien que toutes les valeurs restent dans les limites acceptables.

Analyse réalisée par:

[Signature]
Pierre Dubois
Ingénieur Systèmes de Freinage
Certification EASA Part-66 B1 #FR.66.1532

Approuvé par:

[Signature]
Jeanne Martin
Responsable Assurance Qualité
EASA Part-145 #FR.145.0824

Ce rapport est conforme aux exigences EASA Part-145.A.45 et FAA AC 43-210.

Note concernant le changement de pièce:

Niveau d'urgence: NORMAL

Le remplacement des freins carbone doit être planifié lors du prochain C-check (dans environ 600 cycles). Une inspection visuelle renforcée du frein droit extérieur est recommandée tous les 50 cycles jusqu'au remplacement.