Tecnología Electrónica Ingeniería en Electrónica

Universidad Tecnológica Nacional Facultad Regional Córdoba

Materiales Eléctricos

- Materiales CONDUCTORES
 - Alta Conductividad
 - Alta Resistividad
 - Carbones
 - Contactos Eléctricos
 - Fusibles

TIPOS de Materiales Conductores

- Materiales de Alta Conductividad
 - Plata
 - 10% mas conductor que el Cobre
 - Elevado costo
 - Temperatura Fusión: 960°C
 - Uso
 - Fusibles
 - Contactos de Baja Corriente
 - En instrumentos médicos eléctricos
 - Cobre
 - · Elevada resistencia a la tracción.
 - Estable ante corrosión.
 - Fácil de estañar y soldar.
 - Aleaciones
 - Bronce (Cobre + Estaño)
 - Mayor dureza
 - Latón (Cobre + Zinc)
 - Facilidad de estirado y estampado.

- Materiales de Alta Conductividad
 - Aluminio
 - 63% de conducción en relación al cobre
 - Difícil de soldar
 - Se usa en aleaciones para aumentar resistencia mecánica.
 - · Ardival, Aldrey, Almenec

TIPOS de Materiales Conductores

- Materiales de Alta Resistividad
 - Se usan Aleaciones
 - Cobre + níquel → Constantán
 - Cobre + níquel + zinc → Argentan
 - Cobre + níquel + manganeso → Niquelina
 - Níquel + Cromo
 - Hierro + aluminio + cromo + cobalto → Kanthal
 - Bajo Coeficiente Térmico de Resistividad
 - Resistencia a la Corrosión
 - Constancia en el Tiempo
 - Bajo FEM termoelectromotriz en relación al Cu
 - Alto punto de Fusión
 - Ductibilidad, maleabilidad, soldabilidad

Clases - Alta Resistividad

Clase A

- Manganita (84%Cu +12%Mg + 4%Ni)
- Coeficiente de resistividad próximo a cero
- Resistencias de Precisión.

Clase B

- Constantán (Cu-Ni)
- Niquelina (Cu–Ni–Mg)
- Resistores Comunes

Clase C

- Nicromo (Ni–Cr)
- Ferronicromo (Fe-Cr-Al)
- Cromal (Cr–Al)
- Kanthal (Fe-Cr-Al-Co)
- Para elementos Electrotérmicos
- Elevado Punto de Fusión
- Alta Resistividad
 - C1 → máx. 350°C
 - C2 → máx. 500°C
 - C3 → máx. 700°C
 - C4 → máx. 900°C
 - C5 → máx. 1100°C
 - C6 → máx. 1300°C

Carbones

- Carbones de Semiconductores
- Uso
 - Resistores
 - Electrodos para Hornos Eléctricos
 - ▶ Elementos Calefactores → 1000°C a 2000 °C
 - Micrófonos
 - Escobillas para Motores
 - Formas en la Naturaleza
 - Forma Amorfa
 - Carbón de Leña
 - Coque
 - Forma Cristalina
 - Grafito
 - Diamante
 - Coque Pulverizado, grafito natural
 - Polvo + aglutinante → Estirado → Cocción entre 800°C y 3000°C

Contactos Eléctricos

- Unión de conductores.
- No debe introducir capacidad, inductancia o resistencia.
- Características Generales
 - Elevada Conductividad Eléctrica
 - Elevada Conductividad Térmica
 - Elevada resistencia a la Corrosión
 - Baja resistencia superficial
 - Alto punto de Fusión
 - Resistencia al Arco
 - Resistencia a Pegarse o Soldarse
 - Resistencia Mecánica
 - Bajo Costo

Contactos Eléctricos

- Clasificación
 - A Materiales de Alta Conductividad
 - Plata + Aleaciones
 - B Materiales de Alta Resistencia a la Corrosión
 - Oro, Platino y Paladio + Aleaciones
 - C Materiales duros, refractarios o resistentes al Arco
 - Molibdeno y Tungsteno
 - D Materiales de alta Conductividad y Resistencia al Arco
 - Aleaciones de Molibdeno y Tungsteno

Contactos Eléctricos

Grupo D

Material	Observaciones
10% a 30% de Ag o Cu	Regímenes SEVEROS de trabajo
50% Refractarios + 50% Alta conductividad	Regímenes SEVEROS + Largos períodos de trabajo
10% a 30% de tungsteno o molibdeno	Regímenes LIVIANOS de Trabajo

Ejemplo

Ejemplo

Fusibles Eléctricos

- Punto de Fusión no muy Elevado
- Materiales Usuales:
 - Aleaciones de Pb + Sn
 - Plata
 - Aluminio
- Corriente en régimen continuo No debe llegar a la zona de fusión.
 - In → Corriente Normal
- Corriente de protección
 - If → Corriente de Fusión
- In → 30% al 50% de If (pequeñas intensidades)
- In → 70% al 80% de If (Elevadas intensidades)
- Constante de tiempo para llegar a que se funda el metal.

Fusibles Eléctricos

Dimensionamiento

$$I = a * \sqrt[3]{d^2} [A]$$

d = diametro

a = dependedel material

Material	Punto de Fusión	Valor de la cte. a.
Cobre	1054	80
Plata	954	70
Aluminio	600	60
Plomo	325	11
Estaño	230	13
Aleación Pb-Sn	135	10

Fusibles Eléctricos – Tipos

- Cartuchos Cilíndricos
 - ▶ 1 a 100A

- Tipo D
 - 2 a 100A
- Tipo D0
 - 2 a 100A

- De cuchilla NH
 - > 50 a 1250A

Fusibles Eléctricos - Tipos

A) De uso general ó "tipo G" gL. Para protección de cables y conductores (neozed, diazed, NH).

GM Para protección de aparatos de maniobra, y mando de motores

gR Para protección de semiconductores = equipos electrónicos.

gG Para protección de sobrecargas.

gB Para equipos de minas.

B) De acompañamiento ó "tipo a" **aM** Para protección de aparatos de maniobra. Son de acompañamiento por utilizarse asociados a magnetotérmicos, ya que sólo protegen a cortocircuitos y no a sobrecargas, que lo hará el magnetotérmico.

aR Para protección de semiconductores = equipos electrónicos.

C) Fusibles limitadores

Llamados extrarápidos, porque funden en menos de 5ms, consiguiendo con ello limitar las corrientes de cortocircuitos

Fusibles Eléctricos – Tipos

Especificaciones Técnicas

Tiempo de Respuesta

Tiempo de Respuesta

- General
- Lentos
- Rápidos

Ejemplo

Fusibles Eléctricos - Uso

- Porque USAR fusibles Si existen otros métodos de protección.
 - CONTRA: Difícil Calibración.
 - Cuando se corta un fusible en una línea en donde hay mas de uno. Cambiar ambos.
 - PROS: si un dispositivo mecánico falla el fusible NO.
 - Verificar los mecánicos siempre cada un cierto tiempo.
 - Usar el tipo más conveniente.
 - Lentos
 - Rápidos