

- About this course
- Module 1: Introduction to Deep Learning
- Module 2: Deep Learning Models
- Module 3: Additional Deep Learning Models

Learning Objectives

Autoencoders (3:51)

Recursive Neural Tensor Nets (5:49)

Use Cases (9:33)

Graded Review Questions

Review Questions

 Module 4: Deep Learning Platforms & Libraries

Ø.

- ▶ Final Exam
- Course Survey and Feedback
- Completion Certificate

Graded Review Questions Instructions

- 1. Time allowed: Unlimited
 - We encourage you to go back and review the materials to find the right answer
 - Please remember that the Review Questions are worth 50% of your final mark.
- 2. Attempts per question:
 - One attempt For True/False questions
 - Two attempts For any question other than True/False
- 3. Clicking the "<u>Final Check</u>" button when it appears, means your submission is <u>FINAL</u>. You will <u>NOT</u> be able to resubmit your answer for that question ever again
- 4. Check your grades in the course at any time by clicking on the "Progress" tab

QUESTION 1 (1/1 point)

Which of the following are use cases of Deep nets?

- Sentiment Analysis of text data.
- Offering personalized ads based on user activity history.
- Flagging a transaction as fraudulent.
- Analyze and segment customers based on digital activity and footprint.
- Using satellite feeds and sensor data to detect changes in environmental conditions.
- All of the above.

You have used 1 of 2 submissions

$QUESTION \ 2 \ {\tiny (1/1\ point)}$

Which of the following are use cases of machine vision. Select all that apply.

- Image classification and tagging
- Sentiment Analysis

Face Detection

Cookie Preferences

□ Speech Recognition
You have used 2 of 2 submissions
QUESTION 3 (1/1 point) Which of the following is a good application of an RNTN?
If the patterns change through time
For general classification problems
If there is an unknown hierarchy inherent in the input features
For Supervised Fine-tuning
To determine the relative importance in the input features
You have used 1 of 2 submissions

Cookie Preferences