Mamdani Controllers

- Rules contain membership functions for both antecedents and consequent
 - IF e(k) is positive(e) **AND** $\Delta e(k)$ is positive(Δe) **THEN** $\Delta u(k)$ is positive(Δu)

Takagi-Sugeno Controllers

- Rules contain membership functions for antecedents and linear functions for consequent
 - IF e(k) is positive(e) AND $\Delta e(k)$ is positive(Δe) THEN $\Delta u(k) = \alpha e(k) + \beta \Delta e(k) + \delta$
 - Where α , β , and δ are obtained from empirical observations by relating the behaviour of the errors, and change in errors over a fixed range of changes in control
 - A zero order TSK model is given as:
 - $R: IF (x_1 \text{ is } \mu_A(x_1), ..., x_k \text{ is } \mu_A(x_k)) THEN y = k$
 - So considering the Air-Con system:
 - IF TEMP is COLD THEN SPEED is MINIMAL
 - Becomes...
 - IF TEMP is COLD THEN SPEED is k_1
 - A first order TSK model becomes
 - IF TEMP is COLD THEN SPEED = $j_1 + k_1 * T$
- TS fuzzy model uses a local linear model for various fuzzy regions. The overall output is obtained using the COG method.
- Basis for TS systems:
 - Complex processes can be described by simpler, interacting sub processes (akin to fitting piece-wise linear equations to a complex curve)
 - The output of a complex system can be linearly related back to the input provided the output space can be subdivided into distinct regions
- TS captures expert knowledge, but is an expensive, integration computation
- For each rule:
 - Have to find the membership functions for the linguistic variables in the antecedents and the consequents
 - Have to compute, during the inference, composition, and the defuzzification process the membership functions of the consequents
 - Not easy to identify the membership functions for a non-linear relationship
- TS describe fuzzy implication R as:
 - $R: IF (x_1 \text{ is } \mu_A(x_1), ..., x_k \text{ is } \mu_A(x_k)) THEN y = g(x_1, ..., x_k)$
- The coefficients of the consequent in TSK systems is:
 - Rule: $x ext{ is } \mu_1(x) ext{ } THEN ext{ } y = p_0 + p_1 x$
 - Composition: $y = \frac{\mu_1(x)*[p_0+p_1x]}{\mu_1(x)}$
 - Solve using simultaneous equations: 2 inputs, x_1 , x_2 and 2 outputs y_1 , y_2
 - For a 2 rules system we have 4 unknowns to solve for

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} \hat{\mu}_1(x_1) & \hat{\mu}_2(x_1) & \hat{\mu}_1(x_1) * x_1 & \hat{\mu}_2(x_1) * x_1 \\ \hat{\mu}_1(x_2) & \hat{\mu}_2(x_2) & \hat{\mu}_1(x_2) * x_1 & \hat{\mu}_2(x_2) * x_2 \\ \hat{\mu}_1(x_3) & \hat{\mu}_2(x_3) & \hat{\mu}_1(x_3) * x_3 & \hat{\mu}_2(x_3) * x_3 \\ \hat{\mu}_1(x_4) & \hat{\mu}_2(x_4) & \hat{\mu}_1(x_4) * x_4 & \hat{\mu}_2(x_4) * x_4 \end{bmatrix} \begin{bmatrix} p_{01} \\ p_{02} \\ p_{11} \\ p_{21} \end{bmatrix}$$
$$[Y] = [X]^T [P]$$
$$[P] = [X^T X]^{-1} [X]^T [Y]$$

- Gives us:
 - Generalised method for n-rule, m-parameter systems
 - Enables us to capture the correct parameters given noiseless output data for identification
- Aim is to minimise: $[Y] [X]^T [P] \le \varepsilon$ (difference between true output and predicted)
- Defuzzification of a zero order TSK system:
 - Two rules firing, giving output of SPEED = k_1 , SPEED = k_2
 - Output speed is: $\frac{\mu_1*k_1+\mu_2*k_2}{\mu_1+\mu_2} = E.g. \frac{0.5*0+0.5*30}{0.5+0.5} = 15RPM$
 - The given formula is the COA calculation with singleton values
 - Contrast this to the COA of Mamdani calculation with every value in the interval

Argument that the consequent membership function can be simplified - operators in a control environment divide the variable space into partitions (error, change in error, change in control)

- Within each partition the output variable is a simple, linear function of the input variables and not membership functions

Comparison of Defuzzification in TSK vs Mamdani

Controller	Takagi- Sugeno (RPM)	Mamdani (RPM)
Centre of Area	41.43	36.91
Mean of Maxima	50.00	50.00

best result	Error	
Controller	Takagi-Sugeno (RPM)	Mamdani (RPM)
Centre of Area	12%	0%
Mean of Maxima	35%	35%

System	Proposition	Commentary
Conventional	Y is a function of X	Typically using differential equations
Classical KB systems	If X then Y	Propositional Logic
Classical KB systems using Bayesian formalism	If X then (CF) Y	$CF = \frac{MB - MD}{1 - min[MB, MD]}$
Mamdani FCS	If X is $x(X)$ then Y is $\Psi(Y)$	x(X) and Ψ(Y) are membership functions of terms X and Y
TSK FCS	If X is $x(X)$ then Y = $f(X)$	x(X) is a membership function of term X and Y is a (linear) function of X

Conditioned vs Unconditioned parameters

- Conditioned: a conditioned parameter is one that is mentioned in the premise
- Unconditioned: an unconditioned parameter is one not mentioned in the premise
- E.g. **if** x1 is small and x2 is big **then** y = x1 + x2 + 2x3
 - X1 and x2 are conditioned, x3 is unconditioned

Typically we write an implication for TSK controller as:

R: if x1 is μ 1 and ... and xk is μ k then y = p0 + p1x1 + ... + pkxk

- Assumption here is that only 'and' connectives are used in the antecedants or premises of the rules. And that the relationship between output and inputs is strictly a LINEAR weighted average relationship. Where the weights are p0...pk

TSK System outline

- Given n implications (rules), the variable of consequence, y, will have to be notated for each of these implications leading to i variables of consequence.
- Three stages of computations
 - Fuzzification
 - Fuzzify the input for all variables, compute the implication for each rule
 - Inference/Consequences
 - For each implication compute the consequence for a rule which fires.
 - Compute output, y, for the rule by using the linear relationship between inputs and output
 - For a multi-premise rule i.e. if a & b, we use the minimum truth of a and b as the truth of the rule
 - Aggregate (and Defuzzification)
 - Final output y is inferred from n-implications and given as an average of all individual implications with the truth value of the proposition given as the weights

$$- \mathbf{Y} = \frac{\sum truth*y_i}{\sum truth}$$

Key difference between Mamdani and TSK

- Can view zero-order TSK as a special case Mamdani, where each rule is specified by a fuzzy singleton or a pre-defuzzified consequent
- In sugeno, each rule has a crisp output, the overall output is calculated using weighted average
- Mamdani requires defuzzification which is time consuming
- The weighted average is replaced by the weighted sum to reduce computation time further

TSK is an approximation of a Mamdani controller - TSK ignores the fuzziness of linguistic variables in the consequent but accounts for the fuzziness in the antecedents

Mamdani controller accounts for the fuzziness at each stage in the computation