Introduction to Bayesian Analysis

CS 6190: Probabilistic Modeling

January 16, 2018

All models are wrong, but some are useful.

— George Box

Frequentist vs. Bayesian Statistics

Frequentist: θ is a parameter

$$L(\theta; x_1, \ldots, x_n) = \prod_{i=1}^n p(x_i; \theta)$$

Bayesian: θ is a random variable

$$p(\theta \mid x_1, \dots, x_n) = \frac{p(x_1, \dots, x_n \mid \theta)p(\theta)}{p(x_1, \dots, x_n)}$$

Why is Random θ Important?

- The prior, $p(\theta)$, let's us use our **beliefs**, **previous** experience, or desires in the model.
- We can make **probabilistic statements** about θ (e.g., mean, variance, quantiles, etc.).
- If θ is one of several competing **hypotheses**, we can assign it a probability.
- We can make **probabilistic predictions** of the next data point, \hat{x} , using

$$p(\hat{x} | x_1, \ldots, x_n) = \int p(\hat{x} | \theta) p(\theta | x_1, \ldots, x_n) d\theta$$

But Bayesian Analysis is *Subjective*, Right?

- Not necessarily (we'll cover noninformative priors)
- Frequentist models make assumptions, too!
- Whether using frequentist or Bayesian models, always check the assumptions you make.
- Sometimes prior knowledge is a good thing.

Deductive Logic

Remember modus ponens?

$A \Rightarrow B$	If it's raining, then the sidewalk is wet.
A is true	It's raining.
B is true	The sidewalk is wet.

Deductive Logic

How about *modus tollens*?

$A \Rightarrow B$	If it's raining, then the sidewalk is wet.
B is false	The sidewalk is not wet.
A is false	It is not raining.

Conditional Probability as Logic

Logic	Probability
A,B are propositions	A, B are events
$A \Rightarrow B$	$P(B \mid A) > P(B)$

Weak form of *modus ponens*:

If A is true, B becomes more likely.

A is true.

B is more likely.

Bayesian Logic

Unlike Boolean logic, we can flip the implication!

$$\frac{P(B\,|\,A)>P(B)}{P(B)} \qquad \qquad \text{given}$$

$$\frac{P(A)P(B\,|\,A)}{P(B)}>P(A) \qquad \qquad \text{multiply by } \frac{P(A)}{P(B)}$$

$$P(A\,|\,B)>P(A) \qquad \qquad \text{Bayes' Rule}$$

Flipping the implication: P(B | A) > P(B)

If *A* is true, *B* becomes more likely.

B is true.

A is more likely.

If it's raining, then the sidewalk is more likely to be wet.

The sidewalk is wet.

It's more likely to be raining.

Exercise for You

Given that P(B|A) > P(B), show that:

- If B happens, A becomes less likely. (weak form of modus tollens)
- 2. If \bar{A} happens, B becomes less likely.

Final Bayesian Logic Rules

Given that P(B|A) > P(B), analogous to $A \Rightarrow B$, we have four rules:

- 1. If A, then B is more likely (weak *modus ponens*)
- 2. If \overline{B} , then A is less likely (weak *modus tollens*)
- 3. If *B*, then *A* is more likely (no logical equivalent)
- 4. If *A*, then *B* is less likely (no logical equivalent)

Cold Example

What if I didn't give you the full table, but just:

$$P(R \mid C) = 0.83 > P(R) = 0.45$$

What can you say about the increase P(C | R) > P(C)?

Cold Example

Notice, having a cold *increases* my chance for a runny nose by the factor,

$$\frac{P(R \mid C)}{P(R)} = \frac{0.83}{0.45} = 1.85$$

How does such a ratio increase if I flip the conditional?

$$\frac{P(C \mid R)}{P(C)} = \frac{P(C \cap R)}{P(R)P(C)}$$
$$= \frac{P(R \mid C)}{P(R)}$$
$$= 1.85$$

MLE of Bernoulli Proportion

$$X \sim \text{Ber}(\theta)$$

$$L(\theta \mid x_1, \dots, x_n) = \theta^k (1 - \theta)^{n-k}, \text{ where } k = \sum_i x_i$$

$$\begin{split} \frac{dL}{d\theta} &= k\theta^{k-1}(1-\theta)^{n-k} - (n-k)\theta^k(1-\theta)^{n-k-1} \\ &= (k(1-\theta) - (n-k)\theta) \, \theta^{k-1}(1-\theta)^{n-k-1} \\ &= (k-n\theta) \, \theta^{k-1}(1-\theta)^{n-k-1} \end{split}$$

$$\frac{dL}{d\theta}\left(\hat{\theta}\right) = 0 \quad \Rightarrow \quad \hat{\theta} = \frac{k}{n}$$

Bayesian Inference of a Bernoulli Proportion

Let's give θ a uniform prior: $\theta \sim \mathrm{Unif}(0,1)$ Posterior:

$$p(\theta \mid x_1, \dots, x_n) = \frac{p(x_1, \dots, x_n \mid \theta) p(\theta)}{p(x_1, \dots, x_n)}$$
$$= \frac{p(x_1, \dots, x_n \mid \theta)}{p(x_1, \dots, x_n)}$$

Bayesian Inference of a Bernoulli Proportion

Just need the denominator (normalizing constant):

$$p(x_1, \dots, x_n) = \int_0^1 p(x_1, \dots, x_n \mid \theta) p(\theta) d\theta$$
$$= \int_0^1 \theta^k (1 - \theta)^{n-k} d\theta$$
$$= \frac{\Gamma(k+1)\Gamma(n-k+1)}{\Gamma(n+2)}$$

Resulting posterior is:

$$p(\theta \mid x_1, \dots, x_n) = \frac{\Gamma(n+2)}{\Gamma(k+1)\Gamma(n-k+1)} \theta^k (1-\theta)^{n-k}$$

Beta Distribution

 $X \sim \text{Beta}(\alpha, \beta)$ PDF:

$$p(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

So, posterior of Bernoulli with Uniform prior is $\theta \sim \mathrm{Beta}(k+1,n-k+1).$