EC Examen de Problemes (SOLUCIONS)

Exercici 1 (Examen Final gener de 2013)

Un processador disposa de 4 tipus d'instruccions diferents: A, B, C i D. La següent taula mostra quin és el número d'instruccions executades per a un programa sota consideració i el CPI de cada tipus d'instrucció. El processador té un rellotge a 2GHz.

Tipus d'instrucció	CPI	# instruccions
A	1	$8*10^9$
В	2	$6*10^9$
С	1	$4*10^9$
D	3	$2*10^9$

Indica:

- 1. Calcula el CPI mitjà del programa sota consideració.
- 2. Indica quin és el temps d'execució (en segons) del programa sota consideració.
- 3. Indica quin seria el guany (speed-up) obtingut si s'aconseguís reduir el CPI de les instruccions de tipus B a 1 cicle.

SOLUCIÓ:

- 1. 1,5
- 2. 15 segons
- $3. \ 30/24 = 1.25$

Exercici 2 (problema 1.4 de la col.lecció)

Tenim dos processadors diferents P1 i P2 que executen una seqüencia de 10^6 instruccions. Cadas processador té les següents característiques.

Processador	Freqüència	CPI
P1	4 Ghz	1.25
P2	3 Ghz	0.75

Contesta les següents preguntes raonant les respostes:

- 1. Quins dels dos processadors té el millor rendiment?
- 2. Quantes instruccions pot executar el processador P2 en el temps que triga P1 en fer les 10^6 instruccions?

SOLUCIÓ:

- 1. $Texec_{P1} = 10^6 * 1.25 * 1/(4 * 10^9) = 1.25 * 1/(4 * 10^3) = 0.3125 * 10^{-3}$ $Texec_{P2} = 10^6 * 0.75 * 1/(3 * 10^9) = 0.75 * 1/(3 * 10^3) = 0.25 * 10^{-3}$ P2 és més ràpid.
- 2. $MIPS_{P2} = (3*10^9*(1/0.75))/10^6 = 4*10^3 = 4000$ En $0.3125*10^{-3}$ segons P2 és capaç d'executar $0.3125*10^{-3}*4000*10^6 = 1,250*10^6$ instruccions.

Exercici 3 (Examen Parcial novembre de 2011)

Un processador disposa de 5 tipus d'instruccions diferents: Aritmètico-lògiques, Moviment de dades, Comparació, Memòria i Salt. La següent taula mostra quin és el percentatge d'instruccions executades de cada tipus en base a l'execució d'un conjunt representatiu de programes i el CPI de cada tipus d'instrucció.

Tipus d'instrucció	%	CPI
Aritmètico-lògiques	25%	2
Moviment de dades	20%	1
Comparació	15%	2
Memòria	25%	20
Salt	15%	4

Indica:

- 1. Quin és el CPI mitjà d'aquest processador per l'esmentat conjunt de programes?
- 2. Es pot aconseguir un guany (speed-up) d'1.10 en el temps d'execució del conjunt representatiu de programes a partir de la millora de les instruccions aritmètico-lògiques? Raona la resposta. En cas afirmatiu, indica quin ha de ser el nou CPI d'aquest tipus d'instrucció.

SOLUCIÓ:

1.
$$CPI = 0.25 * 2 + 0.20 * 1 + 0.15 * 2 + 0.25 * 20 + 0.15 * 4 = 6.6$$

2. És impossible reduir aquest CPI en0.6 cicles (de 6.6 a 6.0) en base a millorar únicament les instruccions aritmètico-lòquiques.

Exercici 4 (problema 1.8 de la col.lecció)

Considera dos processadors que executen un programa de la forma que mostra la taula següent.

	Coma flotant	Enters	Load/Store	Branch	Total
a	35 s	85 s	50 s	30 s	$200 \mathrm{\ s}$
b	50 s	80 s	50 s	30 s	210 s

Per cadascuna de les execucions, contesta les preguntes següents

- 1. Com és redueix el temps total d'execució, si reduïm el temps de les operacions de punt flotant en un 20%?
- 2. Suposem que reduïm l'execució en un 20%, degut a la millora en les operacions sobre enters. Quina reducció hauria de tenir per aconseguir aquesta millora?
- 3. Podem reduïr l'execució total en un 20%, millorant únicament les operacions branch?

SOLUCIÓ:

```
1. Texec'_a = 35 * 0, 8 + 85 + 50 + 30 = 193

(200 - 193)/200 = 0,035 \ Texec_a es redueix un 3,5%

Texec'_b = 50 * 0, 8 + 80 + 50 + 30 = 200

(210 - 200)/200 = 0,05 \ Texec_b es redueix un 5%
```

2.
$$Texec'_a = 200 * 0, 8 = 160 = 35 + 85 * x + 50 + 30$$

 $x = 85/(160 - 115) = 85/45 = 1.89$ vegades
 $Texec'_b = 210 * 0, 8 = 168 = 50 + 80 * x + 50 + 30$
 $x = 80/(168 - 130) = 85/38 = 2.1$ vegades

3. Impossible ja que la part no afectada ja suma més de 160 en a i més de 168 en b

Exercici 5 (problema 1.9 de la col.lecció)

La següent taula mostra la freqüència de rellotge (F), voltatge (V) i potència dinàmica (P) de dos processadors.

Processador	F	Voltatge (V)	Potència dinàmica (P)	Càrrega capacitiva (C)
A	10 MHz	5V	2W	
В	$3 \mathrm{GHz}$	1V	100W	

- 1. Calcula la càrrega capacitiva dels processadors A i B.
- 2. Quina seria la potència del processador A si, sense canviar-ne el voltatge ni la capacitància, volguèssim aconseguir la mateixa freqüencia de rellotge que el processador B?

SOLUCIÓ:

1.
$$C_A = \frac{2}{25*10} * \frac{1}{10*10^6} = 8*10^{-9}F$$

 $C_B = \frac{100}{3} * \frac{1}{10^9} = 33.3*10^{-9}F$

2.
$$P_A = 8 * 10^{-9} * 25 * 3 * 10^9 = 600W$$