МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической кибернетики и компьютерных наук

СОЗДАНИЕ ФРЕЙМВОРКА ДЛЯ РАБОТЫ С АВТОМАТИЗИРОВАННЫМ ТЕСТИРОВАНИЕМ

КУРСОВАЯ РАБОТА

Студента 3 курса 351 группы направления 09.03.04 — Программная инженерия факультета КНиИТ Кондрашова Даниила Владиславовича

Научный руководитель	
зав.каф.техн.пр.,	
доцент, к.фм.н.	 С.В.Папшев
Заведующий кафедрой	
к. фм. н.	 С.В.Миронов

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

С ростом объёмов информации в наше время для её эффективного поиска и изучения стало необходимо уметь её классифицировать и структурировать. Сегодня физически невозможно найти нужные данные просто перебирая все ресурсы подряд, появилась острая потребность в поиске по темам, в классификации данных.

Данную проблему призвано решить тематическое моделирование. Оно способно бытро и эффективно автоматически разбить по темам огромные объёмы информации.

1 Математические основы тематического моделирования

1.1 Основная гипотеза тематического моделирования

Тематическое моделирование — это подход анализа текстовых данных, направленный на выявление семантических структур в коллекции документов.

Само тематическое моделирование основывается на предположении, что слова в тексте связаны не с документом, а с темой. Кроме того первично текст разбивается на темы, затем каждая из них порождает слово для соответствующих позиций в документе. Таким образом, сначала порождается тема, а потом термины.

Благодаря этой гипотезе можно по частоте и взаимовстречаемости слов производить тематическую классификацию текстов.

1.2 Аксиоматика тематического моделирования

Каждый текст можно количественно охарактеризовать. Вот основные количественные характеристики, использующиеся при тематическом моделировании:

- *W* конечное множество термов;
- *D* конечное множество текстовых документов;
- T конечное множество тем;
- $D \times W \times T$ дискретное вероятностное пространство;
- коллекция i.i.d выборка $(d_i, w_i, t_i)_{i=1}^n$;
- $n_{dwt} = \sum_{i=1}^{n} [d_i = d][w_i = w][t_i = t]$ частота (d, w, t) в коллекции;
- $n_{wt} = \sum_{d} n_{dwt}$ частота терма w в документе d;
- $n_{td} = \sum_{w} n_{dwt}$ частота термов темы t в документе d;
- $n_t = \sum_{d,w} n_{dwt}$ частота термов темы t в коллекции;
- $n_{dw} = \sum_t n_{dwt}$ частота терма w в документе d;
- $n_W = \sum_d n_{dw}$ частота терма w в коллекции;
- $n_d = \sum_w n_{dw}$ длина документа d;
- $n = \sum_{d,w} n_{dw}$ длина коллекции.

Также в тематическом моделировании используются следующие гипотезы и аксиомы:

- Независимость слов от порядка в документе: порядок слов в документе не важен;
- Независимость от порядка документов в коллекции: порядок документов

в коллекции не важен;

- Зависимость терма от темы: каждый терм связан с соответствующей темой и порождается ей;
- Гипотеза условной независимости: p(w|d,t) = p(w|t).

Вышеперечисленные характеристи, гипотезы и аксиомы являются основой тематического моделирования, являющейся достаточной для построения тематической модели.

1.3 Задача тематического моделирования

Как уже говорилось ранее, документ порождается следующим образом:

- 1. для каждой позиции в документе генерируется тема p(t|d);
- 2. для каждой сгенерированной темы в соответствующей позиции генерируем терм p(w|d,t).

Тогда вероятность появления слова в документе можно описать по формуле полной вероятности:

$$p(w|d) = \sum_{t \in T} p(w|d, t)p(t|d) = \sum_{t \in T} p(w|t)p(t|d)$$
 (1)

Такой алгоритм является прямой задачей порождения текста. Тематическое моделирование призвано решить обратную задачу:

- 1. для каждого терма w в тексте найти вероятность появления в теме t (найти $p(w|t)=\phi_{wt}$);
- 2. для каждой темы t найти вероятность появления в документе d (найти $p(t|d) = \theta_{td}$).

Обратную задачу можно представить в виде стохастического матричного разложения.

Таким образом, тематическое моделирование ищет величину p(w|d).

1.4 Решение обратной задачи

Для решения задачи тематического моделирования необходимо найти величину p(w|d), сделать это можно с помощью метода максимального правдоподобия.

1.4.1 Лемма о максимизации функции на единичных симплексах

Перед выведением решения обратной задачи выпишем лемму, позволяющую это решение найти.

Введём операцию нормировки вектора:

$$p_i = (x_i) = \frac{\max x_i, 0}{\sum_{k \in I} \max x_k, 0}$$
 (2)

Лемма о максимизации функции на единичных симплексах:

Пусть функция $f(\Omega)$ непрерывно дифференцируема по набору векторов $\Omega=(w_i)_{j\in J}, \quad w_j=(w_{ij})_{i\in I_j}$ различных размерностей $|I_j|$. Тогда векторы w_j локального экстремума задачи

$$\begin{cases} f(\Omega) \to \max_{\Omega} \\ \sum_{i \in I_j} w_{ij} = 1, & j \in J \\ w_{ij} \ge 0, & i \in I_j, j \in J \end{cases}$$

при условии $1^0: \ (\exists i \in I_j) w_{ij} \frac{\partial f}{\partial w_{ij}} > 0$ удовлетворяют уравнениям

$$w_{ij} = norm_{i \in I_j} \left(w_{ij} \frac{\partial f}{\partial w_{ij}} \right), \quad i \in I_j;$$
(3)

при условии 2^0 : $(\forall i\in I_j)w_{ij}\frac{\partial f}{\partial w_{ij}}\leq 0$ и $(\exists i\in I_j)w_{ij}\frac{\partial f}{\partial w_{ij}}<0$ удовлетворяют уравнениям

$$w_{ij} = norm_{i \in I_j} \left(-w_{ij} \frac{\partial f}{\partial w_{ij}} \right), \quad i \in I_j;$$
(4)

в противном случае (условие 3^0) — однородным уравнениям

$$w_{ij}\frac{\partial f}{\partial w_{ij}} = 0, \quad i \in I_j. \tag{5}$$

Данная лемма служит для оптимизации любых моделей, параметрами которых являются неотрицательные нормированные векторы.

1.4.2 Сведение обратной задачи к задаче максимизации функционала

Чтобы вычислить величину p(w|d) воспользуемся принципом максимума правдоподобия, согласно которому будут подобраны параметры $\Phi, \ \Theta$ такие,

что p(w|d) примет наибольшее значение.

$$\prod_{i=1}^{n} p(d_i, w_i) = \prod_{d \in D} \prod_{w \in d} p(d, w)^{n_{dw}}$$
(6)

Прологарифмировав правдоподобие, перейдём к задаче максимизации логарифма правдоподобия.

$$\sum_{d \in D} \sum_{w \in d} n_{dw} \ln p(w|d) p(d) = n_{dw} \to max$$
 (7)

Данная задача эквивалентна задаче максимизации функционала

$$L(\Phi, \Theta) = \sum_{d \in D} \sum_{w \in d} n_{dw} \ln \sum_{t \in T} \phi_{wt} \theta_{td} \to \max_{\Phi, \Theta}$$
 (8)

при ограничениях неотрицательности и нормировки

$$\phi_{wt} \ge 0; \quad \sum_{w \in W} \phi_{wt} = 1; \quad \theta_{td} \ge 0; \quad \sum_{t \in T} \theta_{td} = 1$$
 (9)

1.4.3 Аддитивная регуляризация тематических моделей

Задача не соответствует определению корректно поставленной задачи по Адамару, так как она в общем случае имеет бесконечно много решений, следовательно задачу нужно доопределить.

Для доопределения некорректно поставленных задач используют регуляризацию: к основному критерию добавляют дополнительный критерий — регуляризатор, соответствующий решаемой задаче.

АRTM: аддитивная регуляризация тематических моделей основана на максимизации линейной комбинации логарифма правдоподобия и регуляризаторов $R_i(\Phi,\Theta)$ с неотрицательными коэффициентами регуляризации $t\tau_i,\ i=1,\dots,k.$

Преобразуем задачу к ARTM виду:

$$\sum_{d \in D} \sum_{w \in d} n_{dw} \ln \sum_{t \in T} \phi_{wt} \theta_{td} + R(\Phi, \Theta) \to \max_{\Phi, \Theta}; \quad R(\Phi, \Theta) = \sum_{i=1}^{k} \tau_i R_i(\Phi, \Theta) \quad (10)$$

при ограничениях неотрицательности и нормировки.

1.4.4 Е-М алгоритм

Из ограничений видно, что столбцы матриц можно принять за неотрицательные единичные векторы, а, следовательно, задача является задачей максимизации функции на единичных симплексах.

Воспользуемся леммой о максимизации функции на единичных симплексах и перепишем задачу.

Пусть функция $R(\Phi,\Theta)$ непрерывно дифференцируема. Тогда точка (Φ,Θ) локального экстремума задачи с ограничениями, удовлетворяет системе уравнений сос вспомогательными переменными $p_{twd}=p(t|d,w)$, если из решения исключить нулевые столбцы матриц Φ и Θ :

$$\begin{cases} p_{tdw} = \underset{t \in T}{norm}(\phi_{wt}\theta_{td}) \\ \phi_{wt} = \underset{w \in W}{norm}\left(n_{wt} + \phi_{wt}\frac{\partial R}{\partial \phi_{wt}}\right); \\ \theta_{td} = \underset{t \in T}{norm}\left(n_{td} + \theta_{td}\frac{\partial R}{\partial \theta_{td}}\right) \end{cases}$$

$$(11)$$

Полученная модель соответствует Е-М алгоритму, где первая строка системы уравнений соответствует Е шагу, а вторая и третья строки — М шагу.

Решив полученную систему уравнений, методом простых итерации получим искомые матрицы Φ и Θ .

1.5 Регуляризаторы в тематическом моделировании

В этом разделе будут рассмотрены некоторые возможные вариантор регуляризаторов.

1.5.1 Дивергенция Кульбака-Лейблера

Чтобы оцень близость тем можно воспользователься дивергенцией Кульбака-Лейблера (КL или KL-дивергенция). КL-дивергенция позволяет оценить степень вложенности одного распределения в другое, в случае тематического моделирования будет оценитьваться вложенность матриц.

Определим KL-дивергенцию:

Пусть $P=(p_i)_{i=1}^n$ и $Q=(q_i)_{i=1}^n$ некоторые распределения. Тогда дивергенция Кульбака-Лейблера имеет следующий вид:

$$KL(P||Q) = KL_i(p_i||q_i) = \sum_{i=1}^{n} p_i \ln \frac{p_i}{q_i}.$$
 (12)

Свойства KL-дивергенции:

- 1. $KL(P||Q) \ge 0$;
- 2. $KL(P||Q) = 0 \Leftrightarrow P = Q;$
- 3. Минимизация KL эквивалентна максимизации правдоподобия:

$$KL(P||Q(\alpha)) = \sum_{i=1}^{n} p_i \ln \frac{p_i}{q_i(\alpha)} \to \min_{\alpha} \Leftrightarrow \sum_{i=1}^{n} p_i \ln q_i(\alpha) \to \max_{\alpha};$$

4. Если KL(P||Q) < KL(Q||P), то P сильнее вложено в Q, чем Q в P.

1.5.2 Регуляризатор сглаживания

Сглаживание предполагает сближение тем, это может быть полезно в следующих случаях:

- 1. Темы могут быть похожи между собой по терминологии, например, основы теории вероятностей и линейной алгебры обладают рядом одинаковых терминов;
- 2. При выделении фоновых тем важно максимально вобрать в них слова, следовательно, сглаживание поможет решить эту задачу.

Определим регуляризатор сглаживания:

Пусть распределения ϕ_{wt} близки к заданному распределению β_w и пусть распределения θ_{td} близки к заданному распределению α_t . Тогда в форме KL-дивергеннции выразим задачу сглаживания:

$$\sum_{t \in T} KL(\beta_w || \phi_{wt}) \to \min_{\Phi}; \quad \sum_{d \in D} KL(\alpha_t || \theta_{td}) \to \min_{\Theta}.$$
 (13)

Согласно свойству 3 KL-дивергенции перейдём к задаче максимизации правдоподобия:

$$R(\Phi, \Theta) = \beta_o \sum_{t \in T} \sum_{w \in W} \beta_w \ln \phi_w t + \alpha_0 \sum_{d \in D} \sum_{t \in T} \alpha_t \ln \theta_{td} \to \max.$$
 (14)

Перепишем ЕМ-флгоритм в соответствии с полученной формулой:

$$\begin{cases} p_{tdw} = \underset{t \in T}{norm}(\phi_{wt}\theta_{td}) \\ \phi_{wt} = \underset{w \in W}{norm}(n_{wt} + \beta_0\beta_w); \\ \theta_{td} = \underset{t \in T}{norm}(n_{td} + \alpha_0\alpha_t) \end{cases}$$

$$(15)$$

1.5.3 Регуляризатор разреживания

Разреживание предполагает разделение тем и документов, исключение из них общих слов. Данный тип регуляризации отталкивается от того, что в большинстве своём темы и документы специфичны и описываются относительно небольшим набором терминов, не встречающихся в других темах.

Определим регуялризатор разреживания:

Пусть распределения ϕ_{wt} далеки от заданного распределения β_w и пусть распределения θ_{td} далеки от заданного распределения α_t . Тогда в форме KL-дивергеннции выразим задачу сглаживания:

$$\sum_{t \in T} KL(\beta_w || \phi_{wt}) \to \max_{\Phi}; \quad \sum_{d \in D} KL(\alpha_t || \theta_{td}) \to \max_{\Theta}.$$
 (16)

Согласно свойству 3 KL-дивергенции перейдём к задаче максимизации правдоподобия:

$$R(\Phi, \Theta) = -\beta_o \sum_{t \in T} \sum_{w \in W} \beta_w \ln \phi_w t - \alpha_0 \sum_{d \in D} \sum_{t \in T} \alpha_t \ln \theta_{td} \to \max.$$
 (17)

Перепишем ЕМ-флгоритм в соответствии с полученной формулой:

$$\begin{cases} p_{tdw} = \underset{t \in T}{norm}(\phi_{wt}\theta_{td}) \\ \phi_{wt} = \underset{w \in W}{norm}(n_{wt} - \beta_0\beta_w); \\ \theta_{td} = \underset{t \in T}{norm}(n_{td} - \alpha_0\alpha_t) \end{cases}$$

$$(18)$$

1.5.4 Регуляризатор декоррелирования тем

Декоррелятор тем — это частный случай разреживания, призванный выделить для каждой темы лексическое ядро — набор термов, отличающий её от других тем:

Определим регуляризатор декоррелирования:

Минимизируем ковариации между вектор-столбцами ϕ_t :

$$R(\Phi) = -\frac{\tau}{2} \sum_{t \in T} \sum_{s \in T \setminus t} \sum_{w \in W} \phi_{wt} \phi_{ws} \to max.$$
 (19)

Перепишем ЕМ-флгоритм в соответствии с полученной формулой:

$$\begin{cases} p_{tdw} = \underset{t \in T}{norm}(\phi_{wt}\theta_{td}) \\ \phi_{wt} = \underset{w \in W}{norm}\left(n_{wt} - \tau\phi_{wt} \sum_{t \in T \setminus t} \phi_{ws}\right); \\ \theta_{td} = \underset{t \in T}{norm}\left(n_{td} + \theta_{td} \frac{\partial R}{\partial \theta_{td}}\right) \end{cases}$$
(20)

1.6 Оценка качества моделей тематического моделирования

После обучения модели, очевидно, нужно оценить её качество.

Перечислим основные критерии оценки качества тематических моделей:

- 1. Внешние критерии (оценка производится экспертами):
 - а) Полнота и точность тематического поиска;
 - δ) Качество ранжирования при тематическом поиске;
 - в) Качество классификации / категоризации документов;
 - г) Качество суммаризации / сегментации документов;
 - д) Экспертные оценки качества тем.
- 2. Внутренние критерии (оценка производится программно):
 - а) Правдоподобие и перплексия;
 - б) Средняя когерентность (согласованность тем);
 - e) Разреженность матриц Φ и Θ ;
 - *г*) Различность тем;
 - д) Статический тест условной независимости.

Так как оценка по внешним критериям не представляется возможной в рамках данной работы, то рассмотрим внутренние критерии оценки, так как их можно вычислять автоматически.

1.6.1 Правдоподобия и перплексия

Перплексия основывается на логарифме правдоподобия и является его некоторой модификацией.

$$P(D) = \exp\left(-\frac{1}{n}\sum_{d\in D}\sum_{w\in d}n_{dw}\ln p(w|d)\right), \quad n = \sum_{d\in D}\sum_{w\in d}n_{dw}$$
 (21)

Не трудно заметить, что, при равномерном распределении слов в тексте $p(w|d)=\frac{1}{|W|}$, значение преплексии равно мощности словаря P=|W|. Тогда можно сделать, вывод, что перплексия — это мера различности и неопределённости слов в тексте, то есть, чем меньше перплексия, тем различнее вероятности появления слов в тексте.

Таким образом, чем меньше перплексия, тем больше слов с большей вероятностью p(w|d), которые модель умеет лучше предсказывать, следовательно, чем меньше перплексия, тем лучше.

1.6.2 Когерентность

Когерентность является мерой, коррелирующей с экспертной оценкой интерпретируемости тем, которую можео вычислять автоматически.

Когерентность (согласованность) темы t по k топовым словам:

$$PNI_{t} = \frac{2}{k(k-1)} \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} PMI(w_{i}, w_{j}),$$
 (22)

где w_i — i-ое слово в порядке убывания ϕ_{wt} , $PMI(u,v) = \ln \frac{|D|N_{uv}}{N_uN_v}$ — поточечная взаимная информация, N_{uv} — число документов, в которых слова u,v хотя бы один раз встречаются рядом (расстояние опледеляется отдельно), N_u — число документов, в которых u встретился хотя бы один раз.

Гипотезу когерентности можно выразить так: когда человек говорит о какой-либо теме, то часто употребляет достаточно ограниченный набор слов, относящийся к этой теме, следовательно, чем чаще будут встречаться вместе слова этой темы, тем лучше её можно будет интерпретировать.

Сама когерентность берёт самые часто встречающиеся слова из тем, и вычисляет для каждой пары из них насколько они часто встречаются, соответственно, чем выше будет значение взаимовстречаемости, тем лучше.

1.6.3 Разреженность и различность

Разреженность — доля нулевых элементов в матрицах Φ и Θ . Разреженность служит для выявления различности тем, так как каждая тема состоит из небольшого набора слов, то и остальные слова в ней должны встречаться нечасто, что соответствует нулевым элементам в матрицах. Разреженность должна быть в рамках оптимальных значений, высокой, но не слишком, тогда темы будут хорошо различимы, в противном случае, они либо не будут различаться (разреженность слишком низкая), либо будут содержать слишком мало слов (разреженность слишком высокая).

- Чистота темы: $\sum_{w \in W_t} p(w|t)$, где W_t ядро темы: $W_t = \{w: p(w|t) > \alpha\}$, где α подбирается по разному, например $\alpha = 0.25$ или $\alpha = \frac{1}{|W|}$. Данная характеристика показывает как вероятностно относится ядро темы к фоновым словам темы, следовательно, чем больше вероятность ядра, тем лучше;
- Контрастность темы: $\frac{1}{|W_T|} \sum_{w \in W_t} p(t|w)$. Данная характеристика показывает насколько часто слова из ядра темы встречаются в других темах, очевидно, что чем меньше ядро будет встречаться в других темах, тем лучше.

2 Тематическое моделирование новостей ЗАКЛЮЧЕНИЕ СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ