04. Svalová buňka

Svalstvo obstarává veškerý pohyb a změny napětí orgánů uvnitř těla i pohyb organicjmu v prostředí. Pohyb je jedním ze základních projevů života.

Stavba svalu

šlacha → snopce → snopečky → svalové vlákno → myofibrila → sarkomera Svalová vlákna obsahují velký počet myofibril, jež jsou tvořeny kontraktilními proteiny - aktinem a myosinem.

Myofibrily jsou členěny na pravidelné úseky - sarkomery, což jsou základní strukturní a funkční jednotky. Sarkomera je vzdálenost mezi dvěma Z-liniemi (Z-destičkami).

Do Z-linií jsou zakotvena tenká filamenta aktinu, mezi nimi jsou tlustá filamenta myosinu. Aktinová a myosinová vlákna se částečně překrývají, tím vzniká typický mikroskopický obraz příčného pruhování, ve kterém se střídají Anizotropní a Izotropní části.

Triáda (T-tubulus)

= zprostředkovává rychlý přenos akčního potenciálu z buněčné membrány k myofibrilám

DHP – dihydropyridinový receptor RyR – ryanodinový receptor

struktura: terminální cisterna - T-tubulus - terminální cisterna

Tubuly tvoří síť kolem myofibril. Na rozhraní **A** a Iproužku myofibrily končí vústěním do široké terminální cisterny (obruč obepínající celou myofibrilu). Cisterna naléhá stranou odvrácenou od vústění tubulů retikula ke kolmo probíhajícímu T-tubulu sarkolemy. Ke každému T-tubulu naléhají 2 cisterny (z každé strany jedna) = komplexní struktura tvoří triádu.

Myofibrily

Základem každé myofibrily jsou částečně se překrývající světlejší isotropní aktinové a tmavší anisotropní myozinové myofilamenty. Aktinových je přibližně 3000, myozinových 1500. Podélné uspořádání aktinových a myozinových myofilament vytváří charakteristické příčné pruhování, viditelné v světelném mikroskopu. Důvodem je střídání jejich vzájemně se překrývajících a nepřekrývajících se úseků.

Jsou rozděleny do sarkomer = úsek myofibrily příčně pruhovaného svalu oddělený Z-liniemi

Aktinová a myozinová filamenta

Aktin - tenké filamentum

- dvoušroubovice vláknitého F-aktinu, tvořená kulovitými jednotkami G-aktinu
- po obou stranách jsou připojeny molekuly tropomyosinu a troponinu
 - tropomyosin za klidových podmínek kryje aktivní místa
 - troponin je bílkovina v určitých vzdálenostech umístěná na aktinu a má 3 podjednotky (pro nás nezajímavé snad)

Myosin II - tlusté filamentum

- každé vlákno tvoří dvě molekuly myosinu, které se kolem sebe obtáčejí (ocas) a na konci se rozšiřují (hlavička)
- část mezi hlavičkou a ocasem má schopnost ohybu (krček)
- hlavička má ATP-ázovou aktivitu a váže se na aktivní místa aktinu
- je tvořeno mnoha molekulamy myosinu
- ocasy vytváří osu filamenta, hlavičky ční do prostoru

Popis kontrakce kosterního svalu

V zakončení motoneuronu se nachází velké množství vezikul s neurotransmiterem acetycholinem. Při průchodu akčního potenciálu nervovým vláknem se váčky otevřou do synaptické štěrbiny. Acetylcholin se vyplaví a naváže se na postsynaptické receptory. Toto navázání mediátoru na receptor způsobí v postsynaptické membráně otevření kanálů pro

sodíkové ionty, a vyvolá tak vznik akčního potenciálu na svalové buňce. Tento potenciál se následně šíří po celé svalové buňce. T-tubuly jej odvádějí k hlubším strukturám svalové buňky tak, že cisterny sarkoplazmatického retikula jsou aktivovány v podstatě najednou. Po aktivaci sarkoplazmatického retikula se do sarkoplazmy uvolní ionty Ca2+, které se poté navážou na troponin, a tím zahájí proces svalové kontrakce. Pro posun filament ve svalovém vlákně, a tedy ke vzniku svalové kontrakce, je zapotřebí energie. Tato energie je ve svalech ukryta v podobě adenosintrifosfátu, neboli ATP. Molekuly ATP se vážou na hlavy myozinu, které mají ATPázovou aktivitu. V okamžiku napojení myozinové hlavice na aktinové vlákno se ATP rozštěpí na ADP + Pi a myozinové hlavice se připojí k aktinovému vláknu a sklopí o 40 °, což má za následek, že aktinová a myozinová vlákna se vůči sobě posunou. S vazbou a rozpadem další molekuly ATP se hlavice myozinu uvolní od aktinu a vrátí do původní polohy. Zhruba po jedné minutě se vápenaté ionty aktivně pumpují zpět do sarkoplazmatického retikula, zde jsou uskladněny do příchodu dalšího akčního potenciálu.

Molecular mechanism of muscle contraction

Nervosvalový přenos

= funkční spojení axonu motoneuronů a vlákna kosterního svalu pomocí chemické synapse

Motorická jednotka

= soubor svalových vláken, který patří k jednomu hybnému (motorickému) neuronu

Motorická destička (nervosvalová ploténka)

= má stavbu a vlastnosti jednoduché synapse

- zvláštností je velké profilování postsynaptické membrány tím zvětšení styčného povrchu
- mediátorem přenosu vzruchu je acetylcholin

Úloha acetylcholinu

- nervový vzruch přicházející po motorickém presynaptickém vlákně zvětší propustnost presynaptické membrány a uvolní acetylcholin v dostatečném počtu kvant do synaptické štěrbiny
- jeho vazbou na recepční místa pro acetylcholin na vnější straně postsynaptické membrány, se zvýší propustnost této membrány pro Na⁺ a K⁺, změní jeji polarizace a vznikne typický postsynaptický potenciál = ploténkový (synaptický) potenciál
- po dosažení prahové hodnoty, vybaví na svalovém vlákně akční potenciál, který se šíří jako vzruchová aktivita od ploténky k okrajům svalových vláken
- následuje kontrakce svalu
- acetylcholin, který prošel synaptickou štěrbinou a vyvolal elektrickou změnu je rychle odstraněn - jednak enzymem choliesterázy, jednak difúzí do okolí
- při nedostatečném odstraňování mediátoru dochází k blokádě přenosu

TODO odpoledne dodat obrázek akčního potenciálu ze strany 718

Organofosfáty

= látky, které blokují acetylcholinesterázu, čímž zvyšují ploténkové potenciály, což vede k inhibitaci acetylcholinesterázi

Poruchy činnosti nervosvalového spojení

- porucha uvolňování ACh acetylcholinu
- porucha AChR receptor yACh jsou poškozeny / je jich málo

Ovlivnění nervosvalového přenosu

- vznik akčního potenciálu
 - blokátory Na⁺ kanálů: tetrodotoxin
 - blokátory K⁺ kanálů: 3,4-diaminopyridin
- uvolňování ACh
 - botulotoxin, Mg²⁺
- ovlivnění AChR
 - depolarizující myorelaxancia: suxamethonium
 - kompetitivní myorelaxancia: kurare
- degradace ACh blokátory AChE
 - krátkodobé: fysostigmin, neostigmin
 - dlouhodobé: organofosfáty

Tetrodotoxin

= velice účinný jed, inhibičně působící na napěťově řízené sodíkové kanály, čímž znemožňuje vznik akčního potenciálu na membráních

- je rozpustný ve vodě
- viz ryba Fugu

Botulotoxin

- = otrava termolabilním botulotoxinem produkovaným grampozitivní bakterií Clostridium botulinum
 - podstatou otravy je snížené množství uvolněného acetylcholinu z neuronu na nervosvalové ploténce
 - klobásový jed (botulus = klobása)

Kurare

- = látka která blokuje nervosvalový přenos a tak ochromí činnost kosterní svaloviny
 - používá se jako myorelaxancia při operacích k odstranění svalového napětí
 - látka ze stromů jižní Ameriky