Lean Six Sigma Green Belt Certification Course

DIGITAL

Control Plan

Learning Objectives

By the end of this lesson, you will be able to:

- Explain control plan
- List different control plan tools
- Demonstrate transactional control plan

Do You Know

Team 1
Developing a Control Plan

Team 2
Celebrating Project Success

DIGITAL PERATIONS

Control Plan to Monitor and Maintain Improvements

Control Plan

Control plan is a written summary description of the system for controlling a process.

Describes actions required to maintain the desired state of the process

Describes actions required to minimize process and product variation

Evolves and changes with the process

Is considered a knowledge-transfer document;

Can be created for a process or a step or equipment in a process

Provides a single point of reference

Enables assignment of responsibility

Control Plan

Elements of Control Plan

Project purpose and objectives

Risk management plan

Resource requirements documents

Process ownership identification

Communication plan recommendation

Process stewardship

Financial analysis and results

Response Plan

Response Plan

Response Plan: Countermeasures

Cost-Benefit Analysis

Cost-Benefit = All identified costs are subtracted from the expected benefits

What to Control: KPIV and KPOV

It is important to define what needs to be controlled to define a strong control

Process =
$$f(x1, x2, x3...) = Y$$

Key Performance Input Variable (KPIV)

- The x factors are called KPIV.
- A control plan controls the KPIV.
- A control plan controls the inputs.

Key Performance Output Variable (KPOV)

- The output Y is called KPOV.
- A control plan ensures the desired state for the KPOV.
- A control plan monitors the output.

KPIV

The KPIVs, or the inputs, of the process can be identified using various sources, such as:

- Failure Mode and Effects Analysis (FMEA)
- Cause-and-Effect Matrix or Diagram and Cause
 Verification Matrix
- Multi-Vari Studies
- Regression Analysis
- Design of Experiments (DOE)

Control Plan Tools

Control Charts

 Useful to track process statistics over time and detect the presence of special causes

MSA

 A technique that identifies measurement error (variation) and sources of that error to reduce the variation

Error-proofing

- Also known as Poka-Yoke
 Refers to implementation
- implementation of fail-safe mechanisms within a process to prevent it from creating defects

SOP

- Also known as Standard Operating Procedures
- Is a set of written instructions that details all the steps and activities of a process or procedure

PM

- Also known as Preventive Maintenance
- Refers to inclusion of Preventive Maintenance as part of the documented scheduled process or equipment maintenance

Developing a Control Plan

After understanding the process, a multi-functional team must be formed that will be responsible for controlling the process.

Following are the multiple tools that can be used:

FMEA

Special characteristics (critical and significant)

Control plans or lessons learned from similar parts or processes

Technical documentation

Validation plan results

Optimization methods

Team knowledge of the process

Developing a Control Plan

- What do you want to control?
- How often do you need to measure the process?
- Do you have an effective measurement system?
- What is the cost of sampling?
- How much shift can you tolerate?
- Who needs to see the data?
- What type of tool or chart is necessary?
- Who will generate the data?
- Who will control the process?
- What are the system requirements for auditing and maintenance?

Level of Control

Amount of Reactive Effort Expended

Transactional Control Plan

TRANSACTIONAL CONTROL PLAN										
Prepared By :				Business Unit: Nutri Worldwide Inc. Location: Department: Prototype/Purchase				Page : 1 of 1 Document No.: 4 Revision Date : 06-18-2014 Supersedes :		
Process Step	Characteristic/ Parameter	сто/сь	Specification/ Requirement	Measurement Method	Sample Size	Frequency	Who Measures	Where Recorded	Decision Rules/ Corrective Action	Reference Number
Purchase Order	Time of entry	CTD	Customer order entry to PO less than 3 days	Access database server Time stamp	All entered	Weekly	Admin.	Access database	1. Review reason for length (Ex: Weekend error) and determine need to solve problem	

Manufacturing Control Plan

Part Name/Family: Part No.: Plant/Area:		Prepared by: Approved by:			Page: Document No.: Revision Date:					
Process Step	Characteristic/ Parameter	CTS	Specification/ Requirement	Measurement Method	Sample Size	Frequency	Who Measures	Where Recorded	Decision Rules/ Corrective Action	
Injection Molding (Machine #16)	Y : Part Dimension	CT Q	3.250 + 0.005 in Cpk = 2	Gage # 042	5	Each hour	Operator	X and R Chart	If out-of-control condition appears, 100% inspect all parts since last check. If X is out-of-control, adjust injection pressure. If R is out-of-control, adjust coolant flows.	
и	X : Cavity Pressure	СТQ	1200 + 15 psi Cpk = 2	Pressure transducer in cavity	5	(automatic, continuous reading)		X and R Chart	If out-of-control condition appears, check: Injection pressure settings; Temperature controller.	
И	X : Coolant Flow	СТQ	5 gal/minute	Flow meter on machine	1	Each hour	Operator	Check Sheet by Machine	If flow is in yellow zone, then adjust it to green zone. If flow is in red zone, 100% inspect all parts since last check and adjust flow to green zone.	

©Simplilearn. All rights reserved.

IT/ITES Control Plan

Process Step	What's Controlled		Spec. Limits/ Requirement	Measurement Method		Sample Size	'	Who/What Measures	Where is it Recorded	Decision Rule/ Corrective Action
Plan review for critical code	Critical code details in project plan	Input	100% Critical Code		Weekly project management reviews	100%		Project Manager/ Automated workflow for project management	Project database	Escalation to the Account Manager and update project plan
Conduct review for Critical Code	Critical code	Input	100% Critical Code		Weekly project management reviews	100%		Project Lead/ Automated workflow for project management	Project database	First-level escalation to project manager and second-level escalation to account manager
Conduct review for Critical Code	Critical code	Output		and Code	Project manager signs off code review reports		plan	Project Lead / Code control database	Project database/ source code database	First-level escalation to project manager and second- level escalation to account manager

Key Takeaways

- Ontrol plan is a written summary description of the system for controlling a process.
- There are two different types of countermeasures: corrective actions and preventive actions.
- Cost-benefit analysis is used to evaluate the total anticipated cost compared to the total expected benefits.
- Some popular tools to develop and execute control plans include Control charts, MSA, Error-proofing, SOP, and PM.

DIGITAL

Knowledge Check

1

Which of the following is NOT a correct use of control plans?

- A. Monitoring key output variables
- B. Monitoring key input variables
- C. Controlling the process
- D. Identifying key input variables

Which of the following is NOT a correct use of control plans?

- A. Monitoring key output variables
- B. Monitoring key input variables
- C. Controlling the process
- D. Identifying key input variables

The correct answer is **D**

The purpose of control charts is to monitor key process input and output variables to ensure stability and minimize defects. Key variables are not determined using control charts.

2

Which method provides the most control?

- A. Written Instructions
- B. Poka-Yoke
- C. Verbal Instructions
- D. PDFSS

2

Which method provides the most control?

- A. Written Instructions
- B. Poka-Yoke
- C. Verbal Instructions
- D. PDFSS

The correct answer is **D**

PDFSS ensures a process is designed to perform as desired and is therefore the strongest form of control.

2

The most recent observations indicate a process step is not meeting performance metrics per control plan. What should happen next?

- A. Use a different performance metric
- B. Go to 100% inspection since last sample
- C. Refer to the response plan
- D. Notify management

3

The most recent observations indicate a process step is not meeting performance metrics per control plan. What should happen next?

- A. Use a different performance metric
- B. Go to 100% inspection since last sample
- C. Refer to the response plan
- D. Notify management

The correct answer is **C**

The response plan contains the activities the operator should perform if an out of control condition is realized; therefore, the operator should refer to the response plan.

1

A team discovers an issue in its coding operation and has put a temporary solution in place. The temporary solution is an example of _____.

- A. Containment
- B. Preventative Action
- C. Correction
- D. None of the above

1

A team discovers an issue in its coding operation and has put a temporary solution in place. The temporary solution is an example of _____.

- A. Containment
- B. Preventative Action
- C. Correction
- D. None of the above

The correct answer is A

Containment acts as a band aid or temporary solution until the root cause is identified.

