Bölüm:2

BIR BOYUTTA HAREKET

- Konum, Yerdeğiştirme, Hız ve İvme
- Sabit İvmeli Hareket
- Serbest Düşme

2.1 KONUM, YERDEĞİŞTİRME, HIZ ve İVME

Konum (x) \Longrightarrow Cismin seçilen bir koordinat sistemindeki yeri.

- 3-boyutlu uzayda \implies x, y, z koordinatları.
- 1-boyutlu uzayda \implies sadece x koordinatı.

Yerdeğiştirme (Δx): Cismin t_1 anındaki konumu x_1 ve daha sonraki bir t_2 anındaki konumu x_2 ise,

 $\operatorname{Hiz}(v) \implies \operatorname{Cismin birim zamanda aldığı yol.}$

• Ortalama Hız (v_{ort}): Cismin t_1 anındaki konumu x_1 ve daha sonraki bir t_2 anındaki konumu x_2 ise,

$$v_{\rm ort} = \frac{{
m yerde} \ddot{
m gi} \ddot{
m stirme}}{{
m ge} \ddot{
m cen} {
m zaman}} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$

- Cisim pozitif yönde ilerliyorsa $(x_2 > x_1) \implies v_{\text{ort}}$ pozitif,
- Cisim negatif yönde ilerliyorsa ($x_2 < x_1$) \implies v_{ort} negatif.
- Ortalama hız kullanışlı değil (iki noktada ölçmek gerekir ve x₂ noktasına varmadan hızı bilemeyiz).

Ani Hız (v): Ortalama hızın limiti.

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \lim_{t_2 \to t_1} \frac{x_2 - x_1}{t_2 - t_1} = \frac{dx}{dt}$$

- Kısaca hız denir.
- Konumun zamana göre türevi. Kısaca v = x' olarak da yazılır.
- Birimi: metre/saniye (m/s).
- Yine, hareketin yönü v hızının işaretine bağlıdır.

Ani İvme (a): Ortalama ivmenin limiti.

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \lim_{t_2 \to t_1} \frac{v_2 - v_1}{t_2 - t_1} = \frac{dv}{dt}$$

- Kısaca **ivme** denir. Birimi: $metre/(saniye)^2 = m/s^2$.
- Hızın zamana göre 1. türevidir: a = v'
- Hız konumun 1. türevi, o halde ivme konumun 2. türevidir: a = x''
- İvmenin işareti, hareketin yönüne ve ν hızının değişimine bağlıdır.

Kısa Türev Bilgisi:

Bazı fonksiyonların türevleri				
fonksiyon (y)	$y' = \frac{dy}{dx}$ türevi	fonksiyon (y)	$y' = \frac{dy}{dx}$ türevi	
x	nvish 1	$\sin x$	cos x	
x^3	$3x^2$	cos x	$-\sin x$	
x^{-5}	$-5x^{-6}$	tan x	$1/\cos^2 x$	
\sqrt{x}	$\frac{1/\left(2\sqrt{x}\right)}{n x^{n-1}}$	e^x	e ^x	
χ^n	$n x^{n-1}$	$\ln x$	1/x	

2.2 SABİT İVMELİ HAREKET

Eşit zaman aralıklarında hız değişimi aynı ise $\implies a = \text{sabit}$

$$a_{\text{ort}} = \frac{v_2 - v_1}{t_2 - t_1}, \qquad v_{\text{ort}} = \frac{x_2 - x_1}{t_2 - t_1}$$

Notasyon değiştirme:

Cisim başlangıçta $t_1 = 0$ anında x_0 konumlu yerden v_0 ilk hızıyla harekete başlıyor olsun. $t_2 = t$ son anında x konumlu yerdeki son hızı v olsun.

$$a_{\text{ort}} = a = \frac{v - v_0}{t - 0},$$
 $v_{\text{ort}} = \frac{x - x_0}{t - 0}$
 $\rightarrow v = v_0 + at,$ $\rightarrow x = x_0 + v_{\text{ort}} t$

$$v_{\text{ort}} = \frac{v + v_0}{2} \qquad \Longrightarrow \qquad x = x_0 + v_0 t + \frac{1}{2} a t^2$$

İvme (a) \implies Hızın birim zamanda değişme miktarı.

Ortalama İvme (a_{ort})

Cismin t_1 anındaki hızı v_1 ve daha sonraki bir t_2 anındaki hızı v_2 ise,

$$a_{\rm ort} = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$

İvmenin işareti:

- Cisim pozitif yönde ilerlerken ($v_1, v_2 > 0$),
 - Hızı artıyorsa $(v_2 > v_1) \implies \text{Ivme pozitif}$,
 - Hızı azalıyorsa $(v_2 < v_1) \implies \text{İvme negatif.}$
- Cisim negatif yönde ilerlerken ($v_1, v_2 < 0$),
 - Hızı artıyorsa $(v_2 < v_1) \implies \text{İvme negatif!}$
 - Hızı azalıyorsa $(v_2 > v_1)$ \Longrightarrow İvme pozitif.

Zamansız hız formülü:

$$v = v_0 + at \longrightarrow t = \frac{v - v_0}{a} \longrightarrow x = x_0 + v_0 t + \frac{1}{2} a t^2$$

$$\Longrightarrow v^2 - v_0^2 = 2 a(x - x_0)$$

Özet:

$$v = v_0 + a t$$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$
 (sabit ivmeli hareket)
$$v^2 - v_0^2 = 2 a (x - x_0)$$

Özel durum: Düzgün doğrusal hareket

$$a = 0$$
 \rightarrow $v = v_0 = \text{sabit}$ ve $x = x_0 + v_0 t$

2.3 SERBEST DÜŞME

Deneysel gözlem (Galileo):

Dünya yüzeyi yakınında, dikey atılan veya serbest bırakılan tüm cisimler aynı bir sabit ivmeyle düşerler.

Buna **yerçekimi ivmesi** denir ve mutlak değeri g ile gösterilir.

$$g = 9.8 \text{ m/s}^2$$

- Hava sürtünmesi ihmal edilebildiği ölçüde doğrudur.
- Coğrafi konuma göre ufak değişiklikler gösterir.
- Yüzeyden yükseldikçe g değeri azalır.
- Problem çözümlerinde $g \approx 10 \text{ m/s}^2$ alınabilir (bağıl hata: % 2)

Şekil 2.4: Boşlukta tüm cisimler aynı ivmeyle düşerler.

Şekil 2.5: Düşen bir cismin eşit zamanlarda aldığı yollar.

Serbest düşme için sabit ivmeli hareket formülleri geçerlidir.

İvmenin işareti:

- g ivmesi Dünya merkezine doğru hızlandırır.
- y-ekseni keyfi olarak (yukarı veya aşağı) seçilebilir.
- Hızlanılan yön pozitif alınmışsa a = +g, negatif alınmışsa a = -g olur.

y-ekseni yukarı ise:	y-ekseni aşağı ise:	
a=-g	a = +g	(serbest düşme)
$v = v_0 - g t$	$v = v_0 + g t$	(scroest duşme)
$y = y_0 + v_0 t - \frac{1}{2} g t^2$	$y = y_0 + v_0 t - \frac{1}{2} g t^2$	

