FICHE DE COURS 2

EVALUATION DES INCERTITUDES EXPÉRIMENTALES

Ce que je dois être capable de faire après avoir appris mon cours

Maîtriser le vocabulaire usuel simple de métrologie.
Inventorier les différentes sources d'erreur d'un mesurage.
Mener une évaluation de type A de l'incertitude-type sur une grandeur physique par l'exploitation d'une série de mesures obtenues dans des conditions de répétabilité données.
Mener une évaluation de type B de l'incertitude-type sur une grandeur physique par l'exploitation des mesures obtenues à l'aide d'appareils de classe connue et en postulant la loi de distribution de probabilité du mesurage.
Donner et exploiter les formules classiques d'évaluation de l'incertitude-type composée pour fournir l'incertitude-type associée à un mesurage.
Utiliser le logiciel GUM pour effectuer un calcul de propagation des incertitudes dans des cas complexes.
Appliquer le facteur d'élargissement nécessaire pour attribuer au mesurage un niveau de confiance dans le cas d'une loi de distribution de probabilité gaussienne.
Établir la relation entre l'écart-type d'une distribution rectangulaire et la largeur de la distribution.
Exprimer un résultat expérimental par l'association d'une valeur, d'une incertitude-type, d'un niveau de confiance et d'une unité.
Utiliser le logiciel RÉGRESSI pour vérifier expérimentalement, au moyen d'une régression linéaire, une loi physique en tenant compte des incertitudes de mesure sur les grandeurs d'entrée

Les relations sur lesquelles je m'appuie pour développer mes calculs

- ☐ Évaluation de type A de l'incertitude-type :
 - \star Moyenne arithmétique :

$$\overline{m} = \frac{1}{N} \sum_{i=1}^{N} m_i$$

 \star Écart-type expérimental :

$$s_{\text{exp}} = \sqrt{\frac{1}{(N-1)} \sum_{i=1}^{N} (m_i - \overline{m})^2}$$

 \star Incertitude-type :

$$s = \sqrt{\frac{1}{N}} \, s_{\rm exp}$$

☐ Évaluation de type B de l'incertitude-type :

$$s(c) = \frac{\Delta c}{\sqrt{3}}$$

où Δc représente toute information, en matière d'incertitude, concernant l'instrument utilisé pour mesurer une grandeur c.

☐ Incertitude-type composée cas général :

$$s_y = \sqrt{\sum_{k=1}^{N} \left(\frac{\partial f}{\partial x_k} s_k\right)^2}$$

 $\hfill \square$ Incertitude-type composée dans quelques cas simples :

Loi mathématique	Incertitude-type composée
c = a + b ou c = a - b	$s_c = \sqrt{\left(s_a\right)^2 + \left(s_b\right)^2}$
$c = ab \text{ ou } c = \frac{a}{b}$	$\frac{s_c}{c} = \sqrt{\left(\frac{s_a}{a}\right)^2 + \left(\frac{s_b}{b}\right)^2}$
$c = ka \ (k \ \text{constante})$	$s_c = ks_a$
$c = a^p b^q$ ou $c = \frac{a^p}{b^q}$	$\frac{s_c}{c} = \sqrt{\left(p\frac{s_a}{a}\right)^2 + \left(q\frac{s_b}{b}\right)^2}$