Московский Авиационный Институт

(Национальный Исследовательский Университет)

Факультет информационных технологий и прикладной математики Кафедра вычислительной математики и программирования

> Лабораторная работа №0 по курсу «Машинное обучение»

> > Сбор и анализ данных

Студент: Гаптулхаков Руслан Рамилевич Группа: М80 - 308Б -19 Дата: 09.05.2022 Оценка: _____ Подпись: _____

1. Постановка задачи

Собрать или найти готовые данные и провести исследовательский анализ. Написать отчёт по результатам исследования.

2. Описание датасета

Представим, что спустя несколько сотен лет мы сможем премещаться в паралельные изме рения. Нам нужно предсказать смог ли успешно пассажир переместиться в другое измерен ие во время столкновения космического корабля с пространственновременной аномалией. Чтобы помочь вам сделать эти прогнозы, вам дается набор личных записей, извлеченных из поврежденной компьютерной системы корабля. Этот датасет по хож на классический обучающий датасет "Титаник", но в новой тематике.

train.csv — личные записи примерно двух третей (~8700) пассажиров, которые будут использоваться в качестве обучающих данных.

- PassengerId уникальный идентификатор для каждого пассажира. Каждый идентификатор принимает форму gggg_pp, где gggg указывает группу, с которой путешествует пассажир, а pp его номер в группе. Люди в группе часто являются членами семьи, но не всегда.
- HomePlanet планета, с которой вылетел пассажир, обычно планета его постоянного проживания.
- CryoSleep указывает, решил ли пассажир быть переведен в режим анабиоза на время рейса. Пассажиры, находящиеся в криосонном состоянии, находятся в своих каютах.
- Cabin номер каюты, в которой находится пассажир. Принимает форму палуба/число/сторона, где сторона может быть либо Р для левого борта, либо S для правого борта.
- Destination планета, на которую будет высаживаться пассажир.
- Аде возраст пассажира.
- VIP оплатил ли пассажир специальное VIP-обслуживание во время рейса.
- RoomService, FoodCourt, ShoppingMall, Spa, VRDeck сумма, которую пассажир выставил в счет за каждое из многочисленных роскошных удобств космического корабля «Титаник».
- Name имя и фамилия пассажира.
- Transported был ли пассажир перенесен в другое измерение. Это цель, столбец, который вы пытаетесь предсказать.

test.csv — личные записи оставшейся трети (~ 4300) пассажиров, которые будут использоваться в качестве тестовых данных. Ваша задача состоит в том, чтобы предсказать значение Перевезено для пассажиров в этом наборе.

Ссылка на датасет: https://www.kaggle.com/competitions/spaceship-titanic/overview

3. Описание признаков

Первое, что стоит сделать нужно посмотреть на колличество данных и форму их представления.

Таблица с данными:

	PassengerId	HomePlanet	CryoSleep	Cabin	Destination	Age	VIP	RoomService	FoodCourt	ShoppingMall	Spa	VRDeck	Name	Transported
0	0001_01	Europa	False	B/0/P	TRAPPIST-1e	39.0	False	0.0	0.0	0.0	0.0	0.0	Maham Ofracculy	False
1	0002_01	Earth	False	F/0/S	TRAPPIST-1e	24.0	False	109.0	9.0	25.0	549.0	44.0	Juanna Vines	True
2	0003_01	Europa	False	A/0/S	TRAPPIST-1e	58.0	True	43.0	3576.0	0.0	6715.0	49.0	Altark Susent	False
3	0003_02	Europa	False	A/0/S	TRAPPIST-1e	33.0	False	0.0	1283.0	371.0	3329.0	193.0	Solam Susent	False
4	0004_01	Earth	False	F/1/S	TRAPPIST-1e	16.0	False	303.0	70.0	151.0	565.0	2.0	Willy Santantines	True

Колличество данных:

Данных достаточно много.

Провери есть ли незаполненные поля в таблице и заполнил их ближайшими значениями.

Разделим наши данные по целевому признаку и посмотрим на их сбалансированность. Распределение целевой пременной:

Из ріе-диаграмммы видно, целевые признаки сбалансированные. Этот факт нам наруку.

Посмотрим откуда наши пассажиры и в каком количестве.

На каких планетах живут наши пассажиры:

Больше всего людей живут на Земле.

Распределение по возрасту:

В среднем пассажиры корабля имели 20-30 лет.

Минимальный, средний, наибольший возраста пассажиров:

(0.0, 28.847003336017487, 79.0)

Распределение по возрасту пассажиров успешно добравшихся:

Минимальный, средний, наибольший возраста пассажиров успешно добравшихся: (0.0, 27.813841936957516, 78.0)

Тут мы видим пропорциональное соотношение по планетам отправки между группами целевого признака. То есть сколько всего отправились с данной планеты, сколько успешно перебралось, сколько не перебралось.

Посмотрим на распределение пассажиров по конечным пунктам назначения: Total passenger by destination place

Разобьём номер каюты на составляющие, чтобы больше извлечь оттуда информации. Затем переведём категориальные признаки.

Посмотрим на корреляционную матрицу с целевой переменной:

Посмотрим на корреляционную матрицу без целевой переменной:

Выкинеем столбец encoded_Cabin, так как он сильно коррелирует с encoded_HomePlanet.

4. Основные выводы

- Средний возраст "выживших" чуть меньше, чем средний возраст всех пассажиров.
- Самое большое число пассажиров отправились с Earth. С самым большим процентом успешно перебравшихся оказались пассажиры, отправлявшиеся с Europa.

	total Passenger	Transported	not_Transported	%_Transported
HomePlanet				
Earth	4697	1993	2704	0.424313
Europa	2184	1436	863	0.657509
Mars	1812	949	748	0.523731

• Самое большое число пассажиров добирались до *TRAPPIST-1e*. С самым большим процентом успешно перебравшихся оказались пассажиры, добиравшиеся до *55 Cancri e*.

	total Passenger	Transported	not_Transported	%_Transported
Destination				
TRAPPIST-1e	5915	2787	3128	0.471175
55 Cancri e	1800	1098	702	0.610000
PSO J318.5-22	978	493	485	0.504090

• У пасажиров находящихся в криосонном состоянии было меньше шансов на успех, чем у бодрствующих.

	total Passenger	Transported	not_Transported	%_Transported
CryoSleep				
True	5656	2483	3761	0.439003
False	3037	1895	554	0.623971

5. Вывод

В данной лабораторной работе я исследовал выбранный датасет. В процессе работы были интуитивно заполнены недостающие данные, проанализированны распределения признаков с визуализацией, извлечены дополнительные признаки из уже имеющихся, переведены все признаки в числа. Посморели зависимсть признаков от целевой переменной и зависимость признаков между собой. Мы удалили один из признаков, так как он достаточно сильно зависил от другого. А также убедились в том, что наши признаки зависят от целевой переменной - это повышает шансы получить хорошую классификационную модель.