

Planning, Learning and Decision Making

Lecture 11. POMDPs (conc.)

Representing $J^{(k)}$

- The cost-to-go at each iteration of VI is always PWLC
 - Can always be written in the form

$$J^{(k)}(\boldsymbol{b}) = \min_{\alpha \in \Gamma} \boldsymbol{b} \cdot \boldsymbol{\alpha}$$

$$= \min_{\alpha \in \Gamma} \sum_{x \in \mathcal{X}} \boldsymbol{b}(x) \boldsymbol{\alpha}(x)$$

Set of vectors used in the representation

Representing $J^{(k)}$

Representing $J^{(k)}$

- Compute, at each iteration k+1, the set $I^{(k+1)}$ from $I^{(k)}$
 - For each $\alpha \in \Gamma^{(k)}$, compute

$$\alpha_{a,z}^{(k)} = \frac{1}{|\mathcal{Z}|} C_{:,a} + \gamma P_a \operatorname{diag}(O_{z,a}) \alpha$$

- Compute all possible combinations of $\alpha_{a,z}^{(k)}$ for each z
- For each combination, let

$$oldsymbol{lpha}_a^{(k)} = \sum_{z \in \mathcal{Z}} oldsymbol{lpha}_{z,a}^{(k)}$$

- Two approaches to build $\Gamma^{(k+1)}$ from $\Gamma^{(k)}$:
 - **Region based methods:** Start with empty $I^{(k+1)}$ and only add vectors that are necessary

A vector is necessary if it represents J in a non empty belief region (witness region)

- Two approaches to build $\Gamma^{(k+1)}$ from $\Gamma^{(k)}$:
 - **Region based methods:** Start with empty $I^{(k+1)}$ and only add vectors that are necessary

Example: Witness algorithm

Pruning-based methods: Start with complete $\Gamma^{(k+1)}$ and remove vectors that are unnecessary

Example: Incremental pruning

Computation time

Non-exact solutions

Idea n. 1 - Use the MDP

MLS heuristic:

$$\pi_{\text{MLS}}(\boldsymbol{b}) = \pi_{\text{MDP}}(\operatorname*{argmax} \boldsymbol{b}(x))$$

AV heuristic:

$$\pi_{\text{AV}}(\boldsymbol{b}) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \sum_{x \in \mathcal{X}} \boldsymbol{b}(x) \mathbb{I}(a = \pi_{\text{MDP}}(x))$$

Q-MDP heuristic:

$$\pi_{\text{Q-MDP}}(\boldsymbol{b}) = \underset{a \in \mathcal{A}}{\operatorname{argmin}} \sum_{x \in \mathcal{X}} \boldsymbol{b}(x) Q_{\text{MDP}}(x, a)$$

FIB heuristic:

$$\pi_{\text{FIB}}(\boldsymbol{b}) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \sum_{x \in \mathcal{X}} \boldsymbol{b}(x) Q_{\text{FIB}}(x, a)$$

Idea n. 1 - Use the MDP

MLS heuristic:

$$\pi_{\mathrm{MLS}}(\boldsymbol{b}) = \pi_{\mathrm{MDP}}(\operatorname*{argmax}_{x \in \mathcal{X}} \boldsymbol{b}(x))$$

AV heuristic:

$$\pi_{\text{AV}}(\boldsymbol{b}) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \sum_{x \in \mathcal{X}} \boldsymbol{b}(x) = \pi_{\text{MDP}}(x)$$

Q-MDP heuristic:

$$\pi_{\mathrm{Q-MDP}}(\boldsymbol{b}) \in \operatorname*{sgmin}_{x \in \mathcal{X}} \sum_{x \in \mathcal{X}} \boldsymbol{b}(x) Q_{\mathrm{MDP}}(x, a)$$

• FIB heuristic:

$$\pi_{\text{FIB}}(\boldsymbol{b}) = \operatorname*{argmax}_{a \in \mathcal{A}} \sum_{x \in \mathcal{X}} \boldsymbol{b}(x) Q_{\text{FIB}}(x, a)$$

ldea n. 2

ldea n. 2

- Most a-vectors play little role in representing J
- What if we only compute the vectors that "truly matter"?

Which ones?

ldea n. 2

ldea n. 2

We only care about the vectors in these

- Select a finite set $\mathcal{B}_{\text{sample}}$ of beliefs to perform update
 - For each belief, compute the corresponding a-vector

$$m{lpha}(m{b}) = \min_{a \in \mathcal{A}} \left[m{C}_{:,a} + \gamma \sum_{z \in \mathcal{Z}} \mathsf{P}_a \mathrm{diag}(m{O}_{z,a}) \min_{m{lpha} \in \Gamma} m{lpha} \cdot m{b}_{za}'
ight]$$
 Updated belief

- Select a finite set $\mathcal{B}_{\text{sample}}$ of beliefs to perform update
 - For each belief, compute the corresponding a-vector

$$\alpha(b) = \min_{a \in \mathcal{A}} \left[C_{:,a} + \gamma \sum_{z \in \mathcal{Z}} \mathsf{P}_a \mathrm{diag}(O_{z,a}) \min_{\alpha \in \Gamma} \alpha \cdot b'_{za} \right]$$

If necessary, rebuild \$\mathbb{B}_{sample}\$

- Many point-based methods:
 - PBVI (Pineau et al., 2003)
 - Perseus (Spaan & Vlassis, 2005)
 - HSVI (Smith & Simmons, 2005)
 - FSVI (Shani et al., 2007)
 - SARSOP (Kurniawati et al., 2008)
 - GapMin (Poupart et al., 2011)
- Much code available

VI:

- 318 vectors
- ~4 minutes

PERSEUS:

- 5 vectors
- 226 ms

What about policy iteration?

Policy iteration?

- Value iteration for POMDPs
 - How do we represent a cost-to-go function?
 - At each iteration of VI, the cost-to-go is PWLC

- Policy iteration for POMDPs
 - How do we represent a policy?

- How can we represent a POMDP policy?
 - Compute it in runtime from J
 - Alternatively, we can consider policies as mapping histories to actions

- We can represent the possible histories in a policy tree
 - Each node contains the **action** for that history
 - Branches correspond to **observations** from the node

- There is a lot of redundancy in policy trees
 - Histories leading to the same belief will have equivalent subtrees

- Policy graphs provide convenient representations for POMDP policies
- Close relation between policy graphs and a-vector
 - Each node in the graph corresponds to an a-vector and vice-versa

Example:

Key points about POMDPs

- Very general model for decision making under uncertainty
- Very hard to solve
- Beliefs provide a **summary** of the history
- POMDP ←→ Belief MDP
 - We can use VI → Cost-to-go is PWLC (finite representation)
 - We can use Pl → Policy graphs w/ finite number of nodes
- Approximate methods:
 - MDP heuristics
 - Point-based methods

Comments on complexity

- MDPs can be solved by a linear program
 - LP is known to be **polynomial-time (P)**
 - MDPs are solvable in **polynomial-time (P)**

Infinite horizon POMDPs are undecidable

- Finite-horizon POMDPs are **PSPACE-complete**
 - ... little hope for exact solution methods

- POMDPs are non-approximable
 - ... in the worst case, you can't even guarantee a good approximation!

However, point-based methods work quite well!

Need 5 balls or radius δ to "cover" reachable points

- Complexity of POMDP planning better captured by the covering number of the reachable belief space
- Some point-based methods are built on such argument (they sample beliefs to cover reachable space)
 - Ex: SARSOP (Kurniawati et al., 2008)