Finite State Machines

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Rahmad Mahendra

Revised by:

Maya Retno Ayu S

Ekuivalensi DFSM dan NDFSM

Teorema
 Untuk setiap DFSM, terdapat NDFSM yang ekuivalen

• Pembuktian:

Misalkan *M* adalah sebuah DFSM yang menerima (*accept*) bahasa *L*.

M juga merupakan sebuah NDFSM yang tidak mengandung transisi ε dan seluruh relasi transisi merupakan fungsi.

Ekuivalensi NDFSM dan DFSM

Teorema

Diberikan sebuah NDFSM $M = (K, \Sigma, \Delta, s, A)$ yang menerima (*accept*) bahasa L, terdapat DFSM yang ekuivalen yang juga menerima L.

• Pembuktian dengan cara kontruksi DFSM M'

$$M' = (K', \Sigma, \delta', s', A')$$
 di mana:

K' mengandung sebuah status untuk setiap elemen $\wp(K)$

$$s' = eps(s)$$

$$A' = \{Q \subseteq K : Q \cap A \neq \emptyset\}$$

$$\delta'(Q, c) = \mathbf{U} \{eps(p) : \exists q \in Q((q, c, p) \in \Delta)\}\$$

Algoritma

Input: NDFSM $M = (K, \Sigma, \Delta, s, A)$

- 1. Untuk setiap *state q* pada *K*:
 - Tentukan eps(q)
- 2. s' = eps(s)
- 3. Tentukan δ '
 - (lihat halaman selanjutnya pada slide ini)
- 4. K' = state aktif
- 5. $A' = \{Q \subseteq K : Q \cap A \neq \emptyset\}$

Output: DFSM $M' = (K', \Sigma, \delta', s', A')$

Algoritma (lanjutan)

- 3. Tentukan δ '
 - State aktif = $\{s'\}$
 - \circ $\delta' = \emptyset$
 - While (ada sejumlah elemen Q dari *state* aktif untuk δ ' yang belum ditentukan)
 - For (setiap simbol c pada Σ) do:
 - State baru = Ø
 - For (setiap *state q* pada *Q*) do:
 - For (setiap *state* p sehingga $(q, c, p) \in \Delta$) do:
 - State baru = State baru U eps(p)
 - Tambahkan transisi (Q, c, state baru) ke δ
 - Jika *state* baru belum ada di *state* aktif, insert ke *state* aktif

• Tentukan *DFSM* yang ekuivalen dengan *NDFSM* di atas

- 1. Untuk setiap *state q* pada *K*:
 - Tentukan eps(q)

$$\circ eps(q_1) = \{q_1, q_2, q_7\}$$

$$\circ eps(q_2) = \{q_2, q_7\}$$

•
$$eps(q_3) = \{q_3\}$$

•
$$eps(q_4) = \{q_4\}$$

•
$$eps(q_5) = \{q_5\}$$

$$\circ eps(q_6) = \{q_2, q_6, q_7\}$$

$$\circ eps(q_7) = \{q_7\}$$

•
$$eps(q_8) = \{q_8\}$$

2. Tentukan start state

$$s' = eps(s) = eps(q_1) = \{q_1, q_2, q_7\}$$

Tentukan transisi δ ' State aktif = $\{\{q_1, q_2, q_7\}\}$ Tinjau transisi dari *state* $\{q_1, q_2, q_7\}$ $((\{q_1, q_2, q_7\}, a), \emptyset)$ $((\{q_1, q_2, q_7\}, b), \{q_1, q_2, q_3, q_5, q_7, q_8\})$ $((\{q_1, q_2, q_7\}, c), \emptyset)$ State aktif = $\{\{q_1, q_2, q_7\}, \emptyset, \{q_1, q_2, q_3, q_5, q_7, q_8\}\}$ Tinjau transisi dari *state* Ø $((\emptyset, a), \emptyset)$ $((\emptyset, b), \emptyset)$ $((\emptyset, c), \emptyset)$

Tentukan δ' (lanjutan) State aktif = $\{\{q_1, q_2, q_7\}, \emptyset, \{q_1, q_2, q_3, q_5, q_7, q_8\}\}$ Tinjau transisi dari *state* $\{q_1, q_2, q_3, q_5, q_7, q_8\}$ $((\{q_1, q_2, q_3, q_5, q_7, q_8\}, a), \{q_2, q_4, q_6, q_7\})$ $((\{q_1, q_2, q_3, q_5, q_7, q_8\}, b), \{q_1, q_2, q_3, q_5, q_6, q_7, q_8\})$ $((\{q_1, q_2, q_3, q_5, q_7, q_8\}, c), \{q_4\})$ State aktif = $\{\{q_1, q_2, q_7\}, \emptyset, \{q_1, q_2, q_3, q_5, q_7, q_8\}, \{q_2, q_4, q_6, q_7\},$ $\{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, \{q_4\}\}$ Tinjau transisi dari *state* Ø $((\{q_2, q_4, q_6, q_7\}, a), \emptyset)$ $((\{q_2, q_4, q_6, q_7\}, b), \{q_3, q_5, q_8\})$ $((\{q_2, q_4, q_6, q_7\}, c), \{q_2, q_7\})$

3. Tentukan δ' (lanjutan) State aktif = $\{\{q_1, q_2, q_7\}, \emptyset, \{q_1, q_2, q_3, q_5, q_7, q_8\}, \{q_2, q_4, q_6, q_7\},$ $\{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, \{q_4\}, \{q_3, q_5, q_8\}, \{q_2, q_7\}\}$ Tinjau transisi dari state $\{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}$ $((\{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, a), \{q_2, q_4, q_6, q_7\})$ $((\{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, b), \{q_1, q_2, q_3, q_5, q_6, q_7, q_8\})$ $((\{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, c), \{q_2, q_4, q_7\})$ State aktif = $\{\{q_1, q_2, q_7\}, \emptyset, \{q_1, q_2, q_3, q_5, q_7, q_8\}, \{q_2, q_4, q_6, q_7\}, \{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, \{q_4\}, \{q_3, q_5, q_8\}, \{q_2, q_7\}, \{q_2, q_4, q_7\}\}$ Tinjau transisi dari *state* $\{q_4\}$ $((\{q_{\Delta}\},a),\emptyset)$ $((\lbrace q_{4}\rbrace,b),\emptyset)$ $((\{q_4\},c),\{q_2,q_7\})$

3. Tentukan δ' (lanjutan) State aktif = $\{\{q_1, q_2, q_7\}, \emptyset, \{q_1, q_2, q_3, q_5, q_7, q_8\}, \{q_2, q_4, q_6, q_7\},$ $\{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, \{q_4\}, \{q_3, q_5, q_8\}, \{q_2, q_7\}, \{q_2, q_4, q_7\}\}$ Tinjau transisi dari *state* $\{q_3, q_5, q_8\}$ $((\{q_3, q_5, q_8\}, a), \{q_2, q_4, q_6, q_7\})$ $((\{q_3, q_5, q_8\}, b), \{q_2, q_6, q_7\})$ $((\{q_3, q_5, q_8\}, c), \{q_4\})$ State aktif = $\{\{q_1, q_2, q_7\}, \emptyset, \{q_1, q_2, q_3, q_5, q_7, q_8\}, \{q_2, q_4, q_6, q_7\},$ $\{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, \{q_4\}, \{q_3, q_5, q_8\}, \{q_2, q_7\}, \{q_2, q_4, q_7\},$ $\{q_2, q_6, q_7\}\}$ Tinjau transisi dari *state* $\{q_2, q_7\}$ $((\{q_2, q_7\}, a), \emptyset)$ $((\{q_2, q_7\}, b), \{q_3, q_5, q_8\})$ $((\{q_2, q_7\}, c), \emptyset)$

```
State aktif = \{\{q_1, q_2, q_7\}, \emptyset, \{q_1, q_2, q_3, q_5, q_7, q_8\}, \{q_2, q_4, q_6, q_7\},
  \{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, \{q_4\}, \{q_3, q_5, q_8\}, \{q_2, q_7\}, \{q_2, q_4, q_7\}, \{q_3, q_5, q_8\}, \{q_4\}, \{q_5, q_8\}, \{q_6, q_7, q_8\}, \{q_6, q_7, q_8\}, \{q_8\}, \{
   \{q_2, q_6, q_7\}\}
Tinjau transisi dari state \{q_2, q_4, q_7\}
                             ((\{q_2, q_4, q_7\}, a), \{\emptyset\})
                              ((\{q_2, q_4, q_7\}, b), \{q_3, q_5, q_8\})
                              ((\{q_2, q_4, q_7\}, c), \{q_2, q_7\})
State aktif = \{\{q_1, q_2, q_7\}, \emptyset, \{q_1, q_2, q_3, q_5, q_7, q_8\}, \{q_2, q_4, q_6, q_7\},
\{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, \{q_4\}, \{q_3, q_5, q_8\}, \{q_2, q_7\}, \{q_2, q_4, q_7\},
\{q_2, q_6, q_7\}\}
Tinjau transisi dari state \{q_2, q_6, q_7\}
                             ((\{q_2, q_6, q_7\}, a), \emptyset)
                              ((\{q_2, q_6, q_7\}, b), \{q_3, q_5, q_8\})
                              ((\{q_2, q_6, q_7\}, c), \{q_2, q_7\})
```

- 4. $K' = \{\{q_1, q_2, q_7\}, \emptyset, \{q_1, q_2, q_3, q_5, q_7, q_8\}, \{q_2, q_4, q_6, q_7\}, \{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, \{q_4\}, \{q_3, q_5, q_8\}, \{q_2, q_7\}, \{q_2, q_4, q_7\}, \{q_2, q_6, q_7\}\}$
- 5. $A' = \{\{q_1, q_2, q_3, q_5, q_7, q_8\}, \{q_1, q_2, q_3, q_5, q_6, q_7, q_8\}, \{q_3, q_5, q_8\}\}$

• Tentukan DFSM yang ekuivalen dengan NDFSM di bawah ini:

1. Untuk setiap state q pada K, tentukan eps(q)

\boldsymbol{q}	eps(q)
1	{1,2}
2	{2}
3	{3}
4	{4,5}
5	{5}

2. Tentukan start state

$$s' = eps(s) = eps(1) = \{1, 2\}$$

3. Tentukan transisi δ '

State aktif =
$$s' = \{1,2\}$$

Tinjau transisi dari state $\{1,2\}$
 $((\{1,2\}, a), \{1,2\})$
 $((\{1,2\}, b), \{1,2,3,5\})$

State aktif = (
$$\{1,2\}$$
, $\{1,2,3,5\}$)
Tinjau transisi dari state $\{1,2,3,5\}$
(($\{1,2,3,5\}$, a), $\{1,2,4,5\}$)
(($\{1,2,3,5\}$, b), $\{1,2,3,5\}$)

State aktif =
$$(\{1,2\}, \{1,2,3,5\}, \{1,2,4,5\})$$

Tinjau transisi dari state $\{1,2,45\}$
 $((\{1,2,4,5\}, a), \{1,2,4,5\})$
 $((\{1,2,3,5\}, b), \{1,2,3,5\})$

- 4. Tentukan *state* aktif *K' K'* = ({1,2}, {1,2,3,5}, {1,2,4,5})
- 5. Tentukan accepting state A' A' = ({1,2,3,5}, {1,2,4,5})

Ekuivalensi NDFSM dan DFSM

Diberikan sebuah NDFSM $M = (K, \Sigma, \Delta, s, A)$ dan terdapat DFSM ekuivalen $M' = (K', \Sigma, \delta', s', A')$

- Jika *M* memiliki jumlah *state* sebanyak *k*
 - Berapa maksimum jumlah *state* pada *M* '?
 Jawab: 2^k (Mengapa?)
 - Berapa minimum jumlah *state* pada *M*'?
- Karakteristik *M* seperti apa sehingga *M*'ekuivalen tidak memiliki *dead state*?

Coba Sendiri

• Tunjukkan bahwa NDFSM dan DFSM pada pasangan gambar di atas ekuivalen

Coba Sendiri

 Carilah DFSM yang ekuivalen dengan masing-masing NDFSM di bawah ini

(i)
$$\Sigma = \{a, b\}$$

(ii)
$$\Sigma = \{p, r\}$$

