BIOSTAT 653 Homework #2 Solutions

Fall 2017

Problem 1

$$\hat{\beta}_W = (X^T W X)^{-1} X^T W y$$

$$V(c^T \hat{\beta}_W) = c^T (X^T W X)^{-1} X^T W \Sigma W X (X^T W X)^{-1} c$$

$$V(c^T \hat{\beta}_{\Sigma^{-1}}) = c^T (X^T \Sigma^{-1} X)^{-1} c$$

Let $q=c^T(X^TWX)^{-1}X^TW$, $k=c^T(X^T\Sigma^{-1}X)^{-1}X^T\Sigma^{-1}$, and define r such that q=k+r. Note that $kX=qX\Rightarrow rX=\mathbf{0}$.

$$V(c^{T}\hat{\beta}_{W}) = q\Sigma q^{T}$$

$$= (k+r)\Sigma(k+r)^{T}$$

$$= k\Sigma k^{T} + 2r\Sigma k^{T} + r\Sigma r^{T}$$

$$= c^{T}(X^{T}\Sigma^{-1}X)^{-1}c + 2rX(X^{T}\Sigma^{-1}X)^{-1}c + r\Sigma r^{T}$$

$$= V(c^{T}\hat{\beta}_{\Sigma^{-1}}) + r\Sigma r^{T}$$

And since Σ is positive definite, $r\Sigma r^T \geq 0$ and $V(c^T\hat{\beta}_{\Sigma^{-1}})$ is the smallest possible variance

Note: the hint directly jumps you to the last line, with $r = c^T ((X^T W X)^{-1} X^T W - (X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1})$. If you skipped directly to the hint, you should go see the beauty of things canceling out when you expand the hint. Also, I bet a bunch of you thought $(A - B)C(A - B)^T = ACA^T - BCB^T$ but this is generally not true.

Problem 2

a. Example:

library(mvtnorm)

Y=rmvnorm(1000, c(0, 0), matrix(c(2, 0.5, 0.5, 1), 2, 2))

b.

Find the likelihood and take derivatives w.r.t. μ and Σ and set score to 0, you find:

$$\begin{split} \hat{\mu} &= (\sum_{i=1}^{1000} \mathbf{1}_{2}^{T} \mathcal{E}^{-1} Y_{i}) / (1000 (\mathbf{1}_{2}^{T} \mathcal{E}^{-1} \mathbf{1}_{2})) \\ \hat{\mathcal{\Sigma}} &= \frac{1}{1000} (Y - \mathbf{1}_{1000 \times 2} \mu)^{T} (Y - \mathbf{1}_{1000 \times 2} \mu) \ \ [\text{Remember Y is } 1000 \times 2] \end{split}$$

Differentiate score w.r.t. μ once more to find information for μ :

$$\hat{V}(\hat{\mu}) = \left(1000(1_2^T \Sigma^{-1} 1_2)\right)^{-1}$$

```
# MLE Algorithm:
Si=diag(2); nidv=1000
for (i in 1:10) {
mu=sum(apply(Si%*%t(Y), 1, sum)/(nidv*sum(Si)))
S=t(Y-mu)%*%(Y-mu)/nidv
Si=solve(S)
se_mu=sqrt(1/(sum(Si)*nidv))
Hopefully you got something where \mu is close to 0 and your \Sigma is close to \begin{bmatrix} 2 & 0.5 \\ 0.5 & 1 \end{bmatrix}
d.
\frac{\widehat{\mu}^2}{\widehat{V}(\widehat{\mu})} \sim X_1^2
Plug in whatever you got.
e.
Similar to part b, but you use a W matrix instead of \Sigma to estimate \mu, and you average the diagonal of \Sigma to
find \sigma^2. General pseudocode is:
1. Initialize W
2. Estimate \mu with W
3. Estimate \Sigma with \mu
4. Estimate W with ∑
5. Repeat 2-4 until convergence or some iteration limit
# WLS Algorithm:
Si=diag(2); nidv=1000
for (i in 1:10) {
mu=sum(apply(Si%*%t(Y), 1, sum)/(nidv*sum(Si)))
S=t(Y-mu)%*%(Y-mu)/nidv
sigma2=mean(diag(S))
rho=S[1,2]
S=matrix(rho, 2, 2)
diag(S)=sigma2
Si=solve(S)
```

```
\label{eq:sqrt} $$ se_model=sqrt(1/(sum(Si)*nidv))$ $$ se_robust=sqrt(sum(Si%*%t(Y-mu)%*%(Y-mu)%*%Si)/(sum(Si)*nidv)^2).$ $$ f.$$ Hopefully you got $\mu$ is still close to 0 and your $\Sigma$ close to $$ $$ $$ [$ $ 1.5 $ $ 0.5 $ $ 1.5 $ ].$ $$ g.$$ You should get $V(\hat{\mu}_{WLS})$ is slightly larger than $V(\hat{\mu}_{MLE})$, depending on rounding and simulation luck. $$$ h.
```

Subjective. Do you believe the variance structure? Do you think your sample is large enough? Personally,

I'd keep a robust variance with this large of a sample size, but there are other numerical values to

Problem 3

Solution

compare your different models if you wanted more justification.

group	N Obs	Variable	Mean	Std Dev	Variance
1	62	Y1	226.0161290	39.6643673	1573.26
		Y2	245.5322581	39.4522819	1556.48
		Y3	252.0181818	38.3292224	1469.13
		Y4	256.7954545	34.4893509	1189.52
		Y5	254.5526316	49.9619841	2496.20
2	41	Y1	235.9268293	55.8745874	3121.97
		Y2	243.1707317	49.2396702	2424.55
		Y3	244.7631579	46.1105805	2126.19
		Y4	257.6000000	51.1417868	2615.48
		Y5	257.4838710	49.3881706	2439.19

5.1.3 Group 1 increases fast at the beginning, slows down gradually and eventually decreases. Group 2 has a linear increasing trend.

```
DATA cholesterol long;
     SET cholesterol;
     month=0;
     Y=Y1;
     output;
     month=6;
     Y=Y2;
     output;
     month=12;
     Y=Y3;
     output;
     month=20;
     Y=Y4;
     output;
     month=24;
     Y=Y5;
      output;
      DROP Y1 Y2 Y3 Y4 Y5;
RUN;
PROC SORT DATA=cholesterol long;
      BY group month;
RUN;
PROC MEANS DATA=cholesterol_long NOPRINT;
      BY group month;
      VAR Y;
      OUTPUT OUT=cholesterol mean mean=mean;
RUN:
```

PROC GPLOT DATA=cholesterol_mean;
 PLOT mean*month=group;

RUN;

5.1.4 See the code in 5.1.3.

5.1.5 Because for the interaction term p=0.0904, we fail to reject the null hypothesis that the two patterns of change are the same. Notice that you may get a slight different results if you use REML.

```
PROC MIXED DATA=cholesterol_long METHOD=ML;
    CLASS group month id;
    MODEL Y=month group month*group /S CHISQ;
    REPEATED month/TYPE=un SUBJECT=id R RCORR;
```

RUN;

Type 3 Tests of Fixed Effects

Effect	Num DF	Den DF	Chi-Square	F Value	Pr > ChiSq	Pr > F
month	4	101	61.28	15.32	<.0001	<.0001
group	1	101	0.05	0.05	0.8181	0.8185
group*month	4	101	8.03	2.01	0.0904	0.0990

5.1.6

Estimated R Matrix for id 1

Row	Col1	Col2	Col3	Col4	Col5
1	2144.15	1539.56	1380.17	1416.49	1300.45

Estimated R Matrix for id 1

Row	Col1	Col2	Col3	Col4	Col5
2	1539.56	1863.37	1363.52	1426.72	1378.73
3	1380.17	1363.52	1658.63	1225.65	1321.06
4	1416.49	1426.72	1225.65	1718.87	1239.06
5	1300.45	1378.73	1321.06	1239.06	2265.33

Estimated R Correlation Matrix for id 1

Row	Col1	Col2	Col3	Col4	Col5
1	1.0000	0.7702	0.7319	0.7378	0.5901
2	0.7702	1.0000	0.7756	0.7972	0.6711
3	0.7319	0.7756	1.0000	0.7259	0.6815
4	0.7378	0.7972	0.7259	1.0000	0.6279
5	0.5901	0.6711	0.6815	0.6279	1.0000

5.1.7 Before, we have

$$\begin{split} Y_{ij} &= \beta_0 I(g=0) I(m=0) + \beta_1 I(g=0) I(m=6) + \beta_2 I(g=0) I(m=12) + \beta_3 I(g=0) I(m=20) \\ &+ \beta_4 I(g=0) I(m=24) + \beta_5 I(g=1) I(m=0) + \beta_6 I(g=1) I(m=6) \\ &+ \beta_7 I(g=1) I(m=12) + \beta_8 I(g=1) I(m=20) + \beta_9 I(g=1) I(m=24) \end{split}$$

Now, we have

$$\begin{split} Y_{ij} &= \beta_0 + \beta_1 I(m=6) + \beta_2 I(m=12) + \beta_3 I(m=20) + \beta_4 I(m=24) + \beta_5 I(g=1) I(m=0) + \beta_6 I(g=1) I(m=6) + \beta_7 I(g=1) I(m=12) + \beta_8 I(g=1) I(m=24) \\ &= 20) + \beta_9 I(g=1) I(m=24) \end{split}$$

5.1.8 To test $\beta_6=\beta_7=\beta_8=\beta_9=0$, we use the following contrast matrix L

5.1.9 The estimates are for the time-specific means are

group	Variable	Mear
1	Y 1	226.0156
	Y2	245.5318
	Y3	251.2805
	Y4	254.0949

group	Variable	Mean
	Y5	254.0431
2	Y1	235.9263
	Y2	243.1702
	Y3	244.7746
	Y4	259.0291
	Y5	257.05

which are computed based on the following table:

Solution for Fixed Effects

Effect	group	month	Estimate	Standard Error	DF	t Value	Pr > t
Intercept			257.05	8.0030	101	32.12	<.0001
month		0	-21.1237	7.2738	101	-2.90	0.0045
month		6	-13.8798	6.4993	101	-2.14	0.0351
month		12	-12.2754	6.3380	101	-1.94	0.0556
month		20	1.9791	6.8479	101	0.29	0.7732
month		24	0				
group	1		-3.0069	10.5770	101	-0.28	0.7768
group	2		0				
group*month	1	0	-6.9038	9.6626	101	-0.71	0.4766
group*month	1	6	5.3685	8.6974	101	0.62	0.5385
group*month	1	12	9.5128	8.5260	101	1.12	0.2672
group*month	1	20	-1.9273	9.2123	101	-0.21	0.8347
group*month	1	24	0				
group*month	2	0	0				
group*month	2	6	0				
group*month	2	12	0				
group*month	2	20	0				
group*month	2	24	0			•	

The values are almost identical to the sample means. The small difference is due to the fact that we obtained the mean estimates via a model based approach here, and our model accounts for correlation among repeated measurements.

5.1.10

Interpretations are generally very flexible depending on what model you chose, but whatever you say as your interpretation, you should make sure the numbers match up. Don't say that time 6 group 1 and time 0 group 2 differ by 5 when 245 and 235 do not differ by 5.

Make sure you know when you're using cell means and when you're not.