

S
333.91
W31r175
1991

STATE DOCUMENTS COLLECTION

FEB 08 2000

MONTANA STATE LIBRARY
1515 E. 6th AVE.
HELENA, MONTANA 59620

Hydrogeologic Controls on
Salt Domes in Coal Strip Mine Spoils

Report No. 175

MONTANA
University System

WATER RESOURCES
C E N T E R

PLEASE RETURN

MONTANA STATE LIBRARY

3 0864 0016 2691 3

**Hydrogeologic Controls on
Salt Domes in Coal Strip Mine Spoils**

Report No. 175

by

John Metesh

Montana Bureau of Mines and Geology - Hydrogeology

Final Report Submitted to the
MONTANA University System WATER RESOURCES CENTER
Montana State University
Bozeman, Montana

1991

The project on which this report is based was financed in part by the Department of the Interior, U. S. Geological Survey, through the Montana University System Water Resources Center as authorized under the Water Resources Research Act of 1984 (PL98-242) as amended by Public Law 101-397.

The contents of this publication do not necessarily reflect the views and policies of the Department of the Interior, nor does mention of trade names or commercial products constitute their endorsement or recommendation for their use by the United States Government.

HYDROGEOLOGIC CONTROLS ON SALT LOADS
IN STRIP MINE SPOILS

By

John J. Metesh
Montana Bureau of Mines and Geology
Montana College of Mineral Science and Technology
Butte, Montana 59701

November 1991

Project No. 02 COWRR Category 04D

Hydrogeologic Controls on Salt Loads in Coal Strip Mine Spoils
by
John J. Metesh

ABSTRACT

Coal strip-mining is a process by which coal is removed and the spoils-material is deposited behind an advancing pit. As this coal, and subsequently the spoils-material, are often the principal aquifers for the area, the influence of the mine on ground-water flow and water-quality is of particular concern. The objective of this investigation was to compile existing data obtained by mining companies, the Montana Department of State Lands, and the Montana Bureau of Mines and Geology in order to address these concerns.

A common method of calculating the flow of ground water to an open pit is to use a series of equations based on a line-sink for the long side of the pit and a circular-sink for the ends of the pit. The first phase of the investigation was to find an alternative method. A method was developed that utilizes a single equation to predict the drawdown in a well at a given distance from a linear pit. In addition to distance, the equation is based on the hydraulic conductivity of the aquifer material, the discharge rate from the pit, and the length of the pit. A comparison was then made between calculated values using this equation and those calculated by a computer-generated, finite-element model.

The second phase of the investigation was to determine a statistical relationship between the ground water transmitting capacity of the spoils-materials and water-quality. Existing data were obtained for three mines in eastern Montana. A statistical analysis of the total dissolved solids and transmissivity data for each mine was conducted. After performing several data transformations, the available data indicated little or no correlation between the two parameters. Subsequent comparisons of data from all three mines indicated the same lack of correlation between transmissivity and TDS. The analyses suggest that while transport of salts may be controlled by such parameters as transmissivity, the loading rate is a function of the unsaturated zone parameters and the availability of salt.

Hydrogeologic Controls on Salt Loads
in Coal Strip Mine Spoils
John J. Metesh

INTRODUCTION

Coal strip-mining is a process by which coal is removed and the spoils-material is deposited behind an advancing pit. As this coal, and subsequently the spoils-material, is often the principal aquifer for the area, the influence of the mine on ground-water flow and water-quality is of particular concern. The objective of this investigation was to compile existing data obtained by mining companies, the Montana Department of State Lands, and the Montana Bureau of Mines and Geology in order to address these concerns.

Although the relationship between solute transport and ground-water flow can be established under most conditions, in the case of coal spoils, this is not always the case. As the mine pit progresses, water level, lowered by pumping and draining of the coal aquifer, immediately begins to be re-established in the new spoils. The physical and chemical characteristics of this new aquifer may be much different than that of the pre-existing coal and overburden. As saturation of the spoils occurs, ground water is in contact with material previously unsaturated and dissolved constituents are then available for transport. In order to address these issues, it becomes necessary to establish the effects of a long pit on ground-water flow. Subsequent to this, a relationship between the aquifer

characteristics and ground-water quality may also be established.

The most common method of calculating the flow of ground water to an open pit is to use a series of equations based on a line-sink for the long side of the pit and a point-sink for the ends of the pit. The calculation of hydraulic head distribution in the vicinity of a linear pit by these methods is generally not accurate. The two sets of equations fail to arrive at the same head value for common points in the aquifer. This is especially true for points located near the corner of the pit. In response to this, the first phase of the investigation was to find an alternative method. An equation was developed that utilizes a single equation to predict the draw-down in a well at a given distance from a linear pit. In addition to distance, the equation is based on the hydraulic conductivity of the aquifer material, the discharge rate out of the pit, and the length of the pit. A comparison was then made between calculated values using this equation and those calculated by a computer-generated, finite-element model.

The second phase of the investigation was to determine if a statistical relationship exists between the ground water transmitting capacity of the spoils-materials and water-quality. Existing water-quality and aquifer-test data were obtained for the Decker Mine, the Rosebud Mine, and the Big Sky Mine located in south-central Montana. A statistical analysis of the total dissolved solids (TDS) and transmissivity data for each mine was conducted.

FLOW TO OPEN PIT

Several methods have been used to predict the effects of pumping from long, narrow pits on ground water levels. One of the more common methods is to combine the equations for a line-sink (sides of the pit) and point sink (ends of the pit). However, the potentiometric surface generated by this method does not reflect realistic conditions near the pit.

In response to this, an alternative method was devised that would consider flow to both the sides and the ends of the pit in a single equation. The basis of this method lies in using an equation for a point sink and integrating the effects over the length of the pit. Although pit width is not taken into consideration, the effects of the pit on the sides and the ends are realistic.

This equation is thus derived:

The equation of an ellipse in standard position is used:

$$\frac{(X_1 - X_2)^2}{a^2} + \frac{(Y_1 - Y_2)^2}{b^2} = 1 \quad (1)$$

which can be further defined for this purpose as

$$\overline{F_1P} + \overline{F_2P} - 2a \quad (2)$$

where:

2a: length of major axis (pit)

P: a given point on the ellipse (outside the pit)

F: focal points of the ellipse

The equation by Polubarinova-Kochina (1962) defines the change in potential (draw-down) in a porous medium of hydraulic conductivity K, at a distance D in response to a point-sink of magnitude dQ such that:

$$d(\Delta\Phi) = \frac{dQ}{4\pi K D} \quad (3)$$

which assumes an infinitely small well radius (r_w)

$$r_w \rightarrow 0 \quad (4)$$

for this application, the distance D is defined as the length of the line from a point within the pit to a given point P outside the pit:

$$\bar{D} = ((X_2 - X_1)^2 + (Y_2 - Y_1)^2)^{1/2} \quad (5)$$

Equations 4 and 5 are combined to yield:

$$d(\Delta\Phi) = \frac{dQ}{4\pi K((X_2 - X_1)^2 + (Y_2 - Y_1)^2)^{1/2}} \quad (6)$$

with the coordinates of point P are given as

$$P = (X_2, Y_1) \quad (7)$$

In order to produce a line-sink, dQ is distributed along the length of the pit (2a) by dividing the pit into line elements:

$$dQ = \frac{Q}{2a} de \quad (8)$$

Thus equation 6 becomes

$$d(\Delta\Phi) = \frac{Q}{2a} \frac{1}{4\pi K((X_2 - X_1)^2 + Y^2)^{1/2}} de \quad (9)$$

which can be integrated over the length of the pit from -a to a:

Simplifying the right side of equation 9

$$\int_{-a}^a d(\Delta \Phi) = \int_{-a}^a \frac{Q}{2a} \frac{1}{4\pi K((X_2 - X_1)^2 + Y^2)^{1/2}} d\epsilon \quad (10)$$

$$= \frac{Q}{8aK\pi} \int_{-a}^a \frac{1}{((X_2 - X_1)^2 + Y^2)^{1/2}} d\epsilon \quad (11)$$

and using the form

$$\int_a^b \frac{1}{U} du = \ln U \Big|_a^b = \ln b - \ln a \quad (12)$$

yields

$$\Delta \Phi = \frac{Q}{8a\pi K} * \ln(a - X_2 + ((a - X_2)^2 + Y^2)^{1/2}) - \ln(-a - X_2 + ((a - X_2)^2 + Y^2)^{1/2}) \quad (13)$$

which simplifies to:

$$= \frac{Q}{8a\pi K} \ln \left(\frac{a - X_2 + ((a - X_2)^2 + Y^2)^{1/2}}{-a - X_2 + ((a + X_2)^2 + Y^2)^{1/2}} \right) \quad (14)$$

Since

$$D_1 = ((X + a)^2 - Y^2)^{1/2} \quad (15)$$

and

$$D_2 = ((X-a)^2 - Y^2)^{1/2} \quad (16)$$

this further simplifies to:

$$\Delta\Phi = \frac{Q}{8a\pi K} \ln \left(\frac{2a+D_1+D_2}{-2a+D_1+D_2} \right) \quad (17)$$

where:

$\Delta\Phi$: drawdown at point P

Q: total discharge from pit

a: $\frac{1}{2}$ length of pit

D_1 and D_2 : distances from end of pit to point P

Using the above equation, the drawdown caused by pumping of a long pit can be calculated at any point outside the pit given the relative X and Y coordinates, the hydraulic conductivity value of the effected aquifer, the discharge from the pit, and the length of the pit. Any set of consistent units may be used and the values calculated using a hand calculator or spreadsheet application program.

In order to verify the application of this equation, a computer generated flow model was constructed using a finite element model, TRAFFRAP (Huyakorn, 1987), which will simulate flow

in fractured or porous media. For the purposes of this investigation, a single discrete fracture in a homogeneous, isotropic, porous medium was used. The "fracture" was used to simulate a long pit of finite length. Values for hydraulic conductivity and pit discharge are typical of those estimated for aquifers in south-central Montana. A rectangular grid of equal spacing was used to facilitate comparison of model calculated values to values calculated using the proposed equation. The input file for the computer generated model is presented in Appendix I along with a partial output including drawdown values generated by the model. A full output file from this particular model is quite large and, thus, was not included.

The same input for pit length, discharge, and hydraulic conductivity were used in the equation to obtain drawdown values. In order to simulate conditions within the pit, values determined to undefined by the equation were defined as equal to the nearest real value in the spreadsheet.

Selected values from each method are presented in Table 1. As can be seen by comparison of values at each point, there is generally good agreement between the two methods. In addition to this, the actual values calculated are very reasonable for the values used as input and correspond well to observed drawdown in aquifers adjacent to mine pits in south-central Montana.

As further comparison, cross-sections through the drawdown

TABLE 1
Comparison of TRAFRAP Flow Model Output
To Pit Flow Equation Output

X-COORD	Y-COORD	TRAFRAP DRAWDOWN	EQUATION DRAWDOWN	X-COORD	Y-COORD	TRAFRAP DRAWDOWN	EQUATION DRAWDOWN
1000	1000	0.0010	0.0024	6000	1000	0.0024	0.0030
1000	2000	0.0018	0.0028	6000	2000	0.0039	0.0038
1000	3000	0.0023	0.0032	6000	3000	0.0058	0.0051
1000	4000	0.0029	0.0035	6000	4000	0.0081	0.0072
1000	5000	0.0029	0.0037	6000	5000	0.0089	0.0088
1000	6000	0.0030	0.0035	6000	6000	0.0081	0.0072
1000	7000	0.0024	0.0032	6000	7000	0.0058	0.0051
1000	8500	0.0014	0.0026	6000	8500	0.0028	0.0033
<hr/>							
2000							
2000	1000	0.0017	0.0027	7000	1000	0.0019	0.0027
2000	2000	0.0028	0.0033	7000	2000	0.0031	0.0033
2000	3000	0.0040	0.0040	7000	3000	0.0043	0.0040
2000	4000	0.0050	0.0048	7000	4000	0.0054	0.0048
2000	5000	0.0054	0.0052	7000	5000	0.0058	0.0052
2000	6000	0.0050	0.0048	7000	6000	0.0054	0.0048
2000	7000	0.0040	0.0040	7000	7000	0.0043	0.0040
2000	8500	0.0020	0.0030	7000	8500	0.0026	0.0030
2000	10000	0.0010	0.0023				
<hr/>							
3000							
3000	1000	0.0021	0.0030	8500	1000	0.0012	0.0023
3000	2000	0.0037	0.0038	8500	2000	0.0017	0.0026
3000	3000	0.0055	0.0051	8500	3000	0.0024	0.0029
3000	4000	0.0079	0.0072	8500	4000	0.0026	0.0031
3000	5000	0.0087	0.0088	8500	5000	0.0029	0.0032
3000	6000	0.0079	0.0072	8500	6000	0.0026	0.0031
3000	7000	0.0055	0.0051	8500	7000	0.0025	0.0029
3000	8500	0.0029	0.0033	8500	8500	0.0015	0.0024
<hr/>							
4000							
4000	1000	0.0025	0.0032	10000	1000	0.0000	0.001873831
4000	2000	0.0042	0.0042	10000	2000	0.0008	0.0020
4000	3000	0.0066	0.0061	10000	3000	0.0000	0.0022
4000	4000	0.0121	0.0112	10000	4000	0.0012	0.0023
4000	5000	0.0121	0.0112	10000	5000	0.0000	0.0023
4000	6000	0.0121	0.0112	10000	6000	0.0013	0.0023
4000	7000	0.0066	0.0061	10000	7000	0.0000	0.0022
4000	8500	0.0030	0.0036	10000	8500	0.0013	0.0020
<hr/>							
5000							
5000	1000	0.0024	0.0032				
5000	2000	0.0043	0.0042				
5000	3000	0.0067	0.0061				
5000	4000	0.0103	0.0112				
5000	5000	0.0103	0.0112				
5000	6000	0.0103	0.0112				
5000	7000	0.0066	0.0061				
5000	8500	0.0033	0.0036				

trough were constructed using values calculated from each method. These are presented in Figure 1. Once again, a reasonable comparison of values is evident. The largest difference in drawdown values occur at larger distances from the pit. As is inherent to computer generated approximations, those drawdown values near the default no-flow boundary of the model are likely to be higher.

The application of the equation is not limited to homogeneous media. In the case where the aquifer affected by the pit is not homogeneous, the equation can be especially useful. Values for drawdown can be calculated and will reflect the relative impact by the pit. This is particularly applicable in coal mine pits where the relative hydraulic conductivity of the undisturbed and the spoils material may be different.

Equations were not derived for isotropic conditions where hydraulic conductivity is not constant in two or three dimensions. As the equation and the application for which it is intended deals with the occurrence of drawdown on a large scale, anisotropy becomes less significant. This is particularly true in two dimensions.

A similar equation can be derived for confined flow by substitution of the appropriate equation for (3). The value calculated by the equation would represent the reduction of the potential caused by pumping from a long pit

CROSS - SECTION THROUGH X - COORDINATE 2000

CROSS - SECTION THROUGH X - COORDINATE 4000

Discussion

Examples of the behavior described by the equation are not readily available. In order to evaluate the application of the equation to large scale features, a small "bench scale" test should be performed. This would entail a long trench to be constructed in an area of shallow ground water and relatively homogeneous material. A significant number of observation wells would be required to record the effect of discharge from the pit on the surrounding aquifer. A single aquifer test should be required to evaluate the hydraulic conductivity of the material. The same data would be used to calculate the drawdown by the equation. A comparison of the results could then be made.

Mine Spoils Transmissivity and Water-quality

Existing water-quality and aquifer-test data were obtained for the Decker Mine, the Rosebud Mine, and the Big Sky Mine located in south-central Montana. Although a large number of wells have been installed in these areas, the number of well sites have both water-quality and aquifer transmissivity data was limited.

The intent was to evaluate the premise that salt loading by mine spoils was related to the ability of those spoils to

transmit ground water. The data for each mine area was transformed in a variety of ways and a statistical analysis of the total dissolved solids (TDS) and transmissivity data performed. These parameters were chosen as each represents a combined effect of a multitude of the respective factors involved.

The data for each site was plotted in arithmetic, semi-log, and log-log for each site. These plots are presented in Appendix II. Tables 2 through 5 are the listings of data used and the results of the statistical analyses for each mine site. The 'r' value, or correlation coefficient, for two best transformations are presented here. The degree of correlation indicates to what degree one population can attribute its variation to a second population. The theoretical value of 'r' ranges from +1 to -1 which indicate perfect fit with 0 representing no correlation. The Student's 't' statistic is also presented.

Table 2 is a listing of data and a summary of statistics for the Decker Mine spoils. The correlation coefficient for the arithmetic plot is the best at 0.442 with 12 observations. This is regarded as a relatively poor correlation.

In Table 3, data for the Rosebud Mine area, the best 'r' value obtained from the various transformations is 0.25 for the arithmetic plot. The number of observations for this analysis was only slightly more than that for the Decker Mine.

Table 4 is the data and analysis for the Big Sky Mine area. The correlation coefficient based on 10 observations was

calculated to be 0.36. As with the other sites, this was obtained with the arithmetic plot or no transformation.

Although not presented, other transformations of the data were performed as mentioned. However, for each set of data, the highest degree of correlation was obtained with no transformation of the data set.

Data from all three mine sites were combined and the same analysis performed (Table 5). In this case, the best correlation coefficient value, 0.32, was obtained with the plot of logarithmic transmissivity (T) and arithmetic Total Dissolved

TABLE 2
DECKER SPOILS DATA
STATISTICS SUMMARY

WELL	T (ft \wedge 2/d)	LOG T	LOG TDS	TDS (mg/l)
2039	0.39	-0.40894	3.525045	3350
2043	19	1.278754	3.485721	3060
2046	23.4	1.369216	3.445915	2792
2225	23	1.361728	3.38739	2440
2226	36	1.556303	3.401401	2520
2547	288	2.459392	3.324282	2110
DS1A	366	2.563481	3.319938	2089
DS3	87	1.939519	3.307924	2032
DS4	0.22	-0.65758	3.295567	1975
DS5B	0.2	-0.69897	3.348889	2233
DS7A	496	2.695482	3.305351	2020
DS7B	255	2.40654	3.436163	2730

LOG T / ARITHMETIC TDS
Regression Output:

Constant	2564.345
Std Err of Y Est	460.5861
R Squared	0.061547
No. of Observations	12
Degrees of Freedom	10
X Coefficient(s)	-89.5773
Std Err of Coef.	110.6121
R	0.248086
T	0.809833

ARITH T/ ARITH TDS
Regression Output:

Constant	2600.436
Std Err of Y Est	426.4853
R Squared	0.195364
No. of Observations	12
Degrees of Freedom	10
X Coefficient(s)	-1.1631
Std Err of Coef.	0.74644
R	0.442
T	1.558199

TABLE 3
ROSEBUD SPOILS DATA
STATISTICS SUMMARY

WELL	T (ft ² /d)	log T	TDS (MG/L)	log TDS
WS106	3.20832	0.506278	2930	3.466868
WS108	10.82808	1.034551	5090	3.706718
WS112	16.71	1.222976	2670	3.426511
WS113	35.02416	1.544368	3850	3.585461
WS114	272.7072	2.435697	4700	3.672098
WS115	118.4405	2.0735	3440	3.536558
WS184	34.62312	1.539366	1340	3.127105
WZ004	65.90424	1.818913	3350	3.525045
WZ002	162.8222	2.211714	1660	3.220108
S02	64.1664	1.807308	2080	3.318063
EPA3	20.052	1.302158	1044	3.0187
EPA5	2.13888	0.330186	4530	3.656098
EPA8	8.15448	0.911396	1522	3.182415
EPA10	24.0624	1.381339	2225	3.34733
EPA12	12.96696	1.112838	1097	3.040207

LOG T/ARITHMETIC TDS

Regression Output:

Constant	2802.13
Std Err of Y Est	1402.607
R Squared	0.00011
No. of Observations	15
Degrees of Freedom	13
X Coefficient(s)	-23.7346
Std Err of Coef.	627.1117
R	0.010496
T	0.037848

ARITH T/ ARITH TDS

Regression Output:

Constant	2512.365
Std Err of Y Est	1357.86
R Squared	0.062891
No. of Observations	15
Degrees of Freedom	13
X Coefficient(s)	4.511019
Std Err of Coef.	4.829529
R	0.25078
T	0.934049

TABLE 4
BIG SKY SPOILS DATA
STATISTICS SUMMARY

WELL	T	LOG T	TDS	LOG TDS
BS34	1302	3.114611	3470	3.540329
BS35	17	1.230449	3816	3.581608
BS36	0.03	-1.52288	4660	3.668386
BS19	0.94	-0.02687	4518	3.654946
BS22	0.11	-0.95861	15380	4.186956
BS37	0.07	-1.1549	4072	3.609808
BS47	147	2.167317	3644	3.561578
BS40	0.53	-0.27572	1768	3.247482
SPW1	725	2.860338	3890	3.58995
SPW2	407	2.609594	3767	3.575996

ARITH T/ ARITH TDS
Regression Output:

Constant	5386.962
Std Err of Y Est	3897.333
R Squared	0.047924
No. of Observations	10
Degrees of Freedom	8
X Coefficient(s)	-1.87893
Std Err of Coef.	2.960912
R	0.218916
T	0.634579

LOG T/ ARITH TDS
Regression Output:

Constant	5512.314
Std Err of Y Est	3719.764
R Squared	0.132704
No. of Observations	10
Degrees of Freedom	8
X Coefficient(s)	-763.134
Std Err of Coef.	689.7599
R	0.364285
T	1.106377

TABLE 5
DECKER ROSEBUD BIGSKY
SPOILS DATA

WELL	T (ft ^{2/d})	LOG T	LOG TDS	TDS (mg/l)	ARITH T / ARITH TDS Regression Output:	
2039	0.39	-0.41	3.53	3350	Constant	3275.702
2043	19.00	1.28	3.49	3060	Std Err of Y Est	2352.556
2046	23.40	1.37	3.45	2792	R Squared	0.000864
2225	23.00	1.36	3.39	2440	No. of Observations	37
2226	36.00	1.56	3.40	2520	Degrees of Freedom	35
2547	288.00	2.46	3.32	2110	X Coefficient(s)	-0.26497
DS1A	366.00	2.56	3.32	2089	Std Err of Coef.	1.52303
DS3	87.00	1.94	3.31	2032	R	0.029395
DS4	0.22	-0.66	3.30	1975		
DS5B	0.20	-0.70	3.35	2233	LOG T / ARITH TDS Regression Output:	
DS7A	496.00	2.70	3.31	2020	Constant	3989.82
DS7B	255.00	2.41	3.44	2730	Std Err of Y Est	2226.539
WS106	3.21	0.51	3.47	2930	R Squared	0.105037
WS108	10.83	1.03	3.71	5090	No. of Observations	37
WS112	16.71	1.22	3.43	2670	Degrees of Freedom	35
WS113	35.02	1.54	3.59	3850		
WS114	272.71	2.44	3.67	4700		
WS115	118.44	2.07	3.54	3440	X Coefficient(s)	-614.95
WS184	34.62	1.54	3.13	1340	Std Err of Coef.	303.4152
WZ004	65.90	1.82	3.53	3350	R	0.324094
WZ002	162.82	2.21	3.22	1660		
S02	64.17	1.81	3.32	2080	ARITH T / LOG TDS Regression Output:	
EPA3	20.05	1.30	3.02	1044	Constant	3.442282
EPA5	2.14	0.33	3.66	4530	Std Err of Y Est	0.219614
EPA8	8.15	0.91	3.18	1522	R Squared	0.003898
EPA10	24.06	1.38	3.35	2225	No. of Observations	37
EPA12	12.97	1.11	3.04	1097	Degrees of Freedom	35
BS34	1302.00	3.11	3.54	3470		
BS35	17.00	1.23	3.58	3816		
BS36	0.03	-1.52	3.67	4660	X Coefficient(s)	0.000053
BS19	0.94	-0.03	3.65	4518	Std Err of Coef.	0.000142
BS22	0.11	-0.96	4.19	15380	R	0.062433
BS37	0.07	-1.15	3.61	4072		
BS47	147.00	2.17	3.56	3644	LOG T / LOG TDS Regression Output:	
BS40	0.53	-0.28	3.25	1768	Constant	3.502084
SPW1	725.00	2.86	3.59	3890	Std Err of Y Est	0.213439
SPW2	407.00	2.61	3.58	3767	R Squared	0.059127
					No. of Observations	37
					Degrees of Freedom	35
					X Coefficient(s)	-0.04314
					Std Err of Coef.	0.029086
					R	0.243161

Solids (TDS). As with the analyses of the individual sites, however, this is indicative of a poor correlation. In other analyses, outlying data was eliminated from consideration. This only slightly improved the correlation.

In addition to the arithmetic and logarithmic transformation of data, natural logarithmic transformations were also applied but with little success.

Discussion

All regression analyses of the transmissivity and total dissolved solids data are consistent in indicating a positive correlation. That is, the value r is always greater than zero. This implies that TDS increases with increasing transmissivity. Whereas a poor correlation suggests that the two parameters are not related, this may not be the case.

It can be shown that solute transport through a porous medium is strongly dependent on the transmitting capacity of that medium. What this analysis may suggest then, is that other mechanisms have a greater control on salt loading to the aquifer. These may include unsaturated-flow characteristics of the spoils and availability of salt for transport.

The process of strip-mining is such that material unsaturated prior to disturbance are placed below the pre-mining potentiometric surface. Distribution of the spoils material is

not uniform nor are pre-existing characteristics such as stratification and deposition patterns preserved. Some re-stratification may take place depending on the method used for removal and replacement, but this usually occurs at the base of the spoils. Upon saturation of the spoils, dissolution and precipitation of salts becomes largely a function of these factors. These analyses would imply then that while transmissivity may control salt movement, the availability of salts and the unsaturated-flow characteristics of the spoils controls the rate of loading.

REFERENCES

Huyakorn, P.S., White, H.O., and Wadsworth, T.D., 1987, A Two-Dimensional Finite Element Code for Simulation Fluid Flow and Transport of Radionuclides in Fractured and Porous Media with Water Table Conditions, Hydrogeologic, Inc., Herndon, VA.

Polubarinova-Kochina, P.YA., 1962, Theory of Groundwater Movement, 334pp., University of Princeton Press, Princeton NJ.

APPENDIX I

TRAFRAP INPUT FILE

PARTIAL OUTPUT FILE

1
 FLOW TO A PIT OPENING SINGLE-POROSITY UNCONFINED AQUIFER JOHN METESH
 1 1 0 1 1 1
 1 1 10 1 100 81 0 1 1 1 2 0
 1 5 0.0
 0 0 0 1 0 0 0 0 0 0 1 1
 10. 00. 1.0 300.
 0.0
 0.25E+0 0.0E0 1.3E2 1.3E2 4.E-5
 1.E0 0.0 0.0 0.0 1.E20 0.0
 10 10 1000. 1000.0 0
 1000. 1000. 10000. 10000. 1.0 1.0 0.0
 1 46 56 1 250.
 2 56 66 1 250.
 19 3
 1 1 0 0.
 3 1 0 0.
 5 1 0 0.
 7 1 0 0.
 9 1 0 0.
 10 1 0 0.
 21 1 0 0.
 41 1 0 0.
 61 1 0 0.
 81 1 0 0.
 20 1 0 0.
 40 1 0 0.
 60 1 0 0.
 80 1 0 0.
 100 1 0 0.
 92 1 0 0.
 94 1 0 0.
 96 1 0 0.
 98 1 0 0.
 56 1 0 -80.0
 46 1 0 -80.0
 66 1 0 -80.0
 16 0
 56 66 46 47 45 54 55 65 67 57 76 36 37 35 77 75
 1 0.0 100. 1 100 1
 1 0.0 2 100 2 1

THIS OUTPUT GENERATED BY TRAFRAP-WT.F77

NUMBER OF PROBLEMS TO BE SOLVED = 1

PROBLEM NUMBER 1

FLOW TO A PIT OPENING SINGLE-POROSITY UNCONFINED AQUIFER JOHN METESH

PROBLEM CONTROL PARAMETERS

MODEL TYPE INDEX (1=FLOW, 0=TRANSPORT) . . (IMODL) = 1
MODEL ORIENTATION (1=AREAL, 0=X-SECTION). (IAREAL) = 1
PROBLEM GEOMETRY (1=AXISYM., 0=PLANAR) . (IAXSYM) = 0
MEDIUM TYPE (1=SINGLE, 2=DUAL POROSITY). . (MARK) = 1
BLOCK GEOMETRY INDEX (1=SPHERE,0=PRISM). (ISHPBL) = 0
AQUIFER TYPE (1=WATER TABLE,0=CONFINED). (IWATP) = 1
RECHARGE INDEX (1=RECHARGE,0=NO RECHARGE)(IVRECH) = 1

SIMULATION CONTROL PARAMETERS

TEMPORAL MODE INDEX(1=TRANSIENT,0=STEADY)(ITRANS) = 1
TIME VALUE GENERATION INDEX(1=YES, 0=NO). (ITSGN) = 1
NUMBER OF TIME STEPS (NTS) = 10
MESH GENERATION INDEX (1=YES, 0=NO) . . (NPCode) = 1
NUMBER OF NODES. (NP) = 100
NUMBER OF ELEMENTS (NE) = 81
TRIANGULAR ELEMENTS USED (1=YES, 0=NO) . (NTRIAN) = 0
NUMBER OF DEPENDENT VARIABLES. . . . (NSPECI) = 1
NUMBER OF POROUS MATRIX MATERIALS. . . . (NMAT) = 1
NUMBER OF FRACTURE-ZONE MATERIALS. . . . (NAMTJ) = 1
NUMBER OF 1-D DISCRETE FRACTURE ELEMENTS . (NLJNT) = 2
FLUX COMPUTATION INDEX (1=YES, 0=NO) . (IOUTLT) = 0

TIME STEPPING AND ITERATION CONTROL PARAMETERS

TIME STEPPING INDEX-- 0=CENTRAL,1=BACKWARD(IKALL) = 1
NO. NONLINEAR ITERATIONS PER TIME STEP . (NITMAX) = 5
ITERATION TOLERANCE FOR HYDRAULIC HEAD . . (HTOL) = .000E+00

INPUT/OUTPUT CONTROL PARAMETERS

NUMBER OF NODES WITH INPUT COORDINATES . . . (NNP) =	0
INITIAL CONDITION NON-UNIFORMITY INDEX . . (NONU) =	0
NUMBER OF NODES FOR WHICH I.C. TO BE READ. (NPIN) =	0
DEPENDENT VARIABLE PRINTOUT CONTROL. . . . (NSTEP) =	1
VELOCITY PRINTOUT CONTROL INDEX. (NVPR) =	10000
MESH AND I.C. DATA PRINTOUT CONTROL(3=NONE)(IPRD) =	0
MATRIX HEAD OR CONC. PRINT SUPPRESS(1=YES) (IPMD) =	0
UNIT 8 OUTPUT OF HEAD/CONC.(1=YES, 0=NO) (NOWRIT) =	0
ELEMENT VELOCITY INPUT (1=YES, 0=NO) . . (NVREAD) =	0
STEADY-STATE VELOCITY INPUT (1=YES, 0=NO) (IVSTED) =	0
WRITE VELOCITIES ON UNIT 9 (1=YES, 0=NO) . (NVTAP) =	0
PRINTCHECK CONTROL (1=PRINTCHECK, 0=NO) . (IPRCHK) =	1
PRINT VALUES AT OBSERVATION NODES (1=YES)(IOBSND) =	1

GENERATED TIME STEPPING DATA

VALUE OF FIRST TIME STEP (TIN) =	.100E+02
INITIAL TIME VALUE (TIMA) =	.000E+00
TIME STEP MULTIPLIER (TFAC) =	.100E+01
MAXIMUM ALLOWABLE VALUE OF TIME STEP . . . (TMAX) =	.300E+03

POROUS MATRIX MATERIAL PROPERTY LIST

MATERIAL NUMBER 1

SPECIFIC YIELD OF POROUS MATRIX (SY) =	.250E+00
HYDRAULIC CONDUCTIVITY COMPONENT (XY) =	.000E+00
HYDRAULIC CONDUCTIVITY COMPONENT (XX) =	.130E+03
HYDRAULIC CONDUCTIVITY COMPONENT (YY) =	.130E+03
SPECIFIC STORAGE OF MATRIX BLOCK (SS) =	.400E-04

FRACTURE MATERIAL PROPERTY LIST

MATERIAL NUMBER 1

FRACTURE POROSITY. =	.100E+01
FRACTURE HYDRAULIC CONDUCTIVITY COMPONENT (XY) . =	.000E+00
FRACTURE SPECIFIC STORAGE. =	.000E+00
FRACTURE SPECIFIC YIELD. =	.000E+00
FRACTURE HYDRAULIC CONDUCTIVITY COMPONENT (XX) . =	.100E+21
FRACTURE HYDRAULIC CONDUCTIVITY COMPONENT (YY) . =	.000E+00

MESH GENERATION PARAMETERS

NUMBER OF GRID LINES PARALLEL TO X-AXIS . . (NROWS) = 10
NUMBER OF GRID LINES PARALLEL TO Y-AXIS . . (NCOLS) = 10
MAXIMUM ALLOWABLE VALUE OF X-INCREMENT . . (DXMAX) = 1000.000
MAXIMUM ALLOWABLE VALUE OF Y-INCREMENT . . (DYMAX) = 1000.000
GRID LINE COORDINATE INPUT CODE. (IXYRED) = 0

X-INCREMENT OF FIRST GRID BLOCK. (DX) = 1000.000
Y-INCREMENT OF FIRST GRID BLOCK. (DY) = 1000.000
MAXIMUM VALUE OF X-COORDINATE. (XO) = 10000.000
MAXIMUM VALUE OF Y-COORDINATE. (YO) = 10000.000
X-INCREMENT MULTIPLIER (SCFX) = 1.000
Y-INCREMENT MULTIPLIER (SCFY) = 1.000
MINIMUM VALUE OF X-COORDINATE. (XSTART) = .000
MINIMUM VALUE OF Y-COORDINATE. (YSTART) = .000

LINE ELEMENT DATA

ELEM # NODE1 NODE2 MATL # APERTURE ELEM # NODE1 NODE2
MATL # APERTURE
1 46 56 1 .2500E+03 2 56 66
1 .2500E+03

BOUNDARY CONDITION SPECIFICATION DATA

TOTAL NUMBER OF DIRICHLET B.C. = 19

TOTAL NUMBER OF FLUX B.C. = 3

DIRICHLET BOUNDARY CONDITION DATA

NODE#	DEP.	VARIABLE#	B.C.	CODE	PRESCRIBED VALUE
1		1		0	.0000E+00
3		1		0	.0000E+00
5		1		0	.0000E+00
7		1		0	.0000E+00
<hr/>					
9		1		0	.0000E+00
10		1		0	.0000E+00
21		1		0	.0000E+00
41		1		0	.0000E+00
61		1		0	.0000E+00
<hr/>					
81		1		0	.0000E+00
20		1		0	.0000E+00
40		1		0	.0000E+00
60		1		0	.0000E+00
80		1		0	.0000E+00
<hr/>					
100		1		0	.0000E+00
92		1		0	.0000E+00
94		1		0	.0000E+00
96		1		0	.0000E+00
98		1		0	.0000E+00

FLUX BOUNDARY CONDITION DATA

NODE#	DEP. VARIABLE#	B.C. CODE	FLUID FLUX
56	1	0	- .8000E+02
46	1	0	- .8000E+02
66	1	0	- .8000E+02

OBSERVATION NODE DATA

NUMBER OF OBSERVATION NODES (NND OBS) = 16
NON-DIMENSIONAL CONVERSION INDEX. . . (1 = CONVERT) = 0

LIST OF OBSERVATION NODE NUMBERS

56 66 46 47 45 54 55 65 67 57 76 36 37

35 77 75

LIST OF NODE NUMBERS AND X AND Y COORDINATES

NODE	X-COORD.	Y-COORD.	NODE	X-COORD.	Y-COORD.	NODE	X-COORD.	Y-COORD.
1	.000	.000	2	.000	1000.000	3	.000	2000.000
4	.000	3000.000	5	.000	4000.000	6	.000	5000.000
7	.000	6000.000	8	.000	7000.000	9	.000	8500.000
10	.000	10000.000	11	1000.000	.000	12	1000.000	1000.000
13	1000.000	2000.000	14	1000.000	3000.000	15	1000.000	4000.000
16	1000.000	5000.000	17	1000.000	6000.000	18	1000.000	7000.000
19	1000.000	8500.000	20	1000.000	10000.000	21	2000.000	.000
22	2000.000	1000.000	23	2000.000	2000.000	24	2000.000	3000.000
25	2000.000	4000.000	26	2000.000	5000.000	27	2000.000	6000.000
28	2000.000	7000.000	29	2000.000	8500.000	30	2000.000	10000.000
31	3000.000	.000	32	3000.000	1000.000	33	3000.000	2000.000
34	3000.000	3000.000	35	3000.000	4000.000	36	3000.000	5000.000
37	3000.000	6000.000	38	3000.000	7000.000	39	3000.000	8500.000
40	3000.000	10000.000	41	4000.000	.000	42	4000.000	1000.000
43	4000.000	2000.000	44	4000.000	3000.000	45	4000.000	4000.000
46	4000.000	5000.000	47	4000.000	6000.000	48	4000.000	7000.000
49	4000.000	8500.000	50	4000.000	10000.000	51	5000.000	.000
52	5000.000	1000.000	53	5000.000	2000.000	54	5000.000	3000.000
55	5000.000	4000.000	56	5000.000	5000.000	57	5000.000	6000.000
58	5000.000	7000.000	59	5000.000	8500.000	60	5000.000	10000.000
61	6000.000	.000	62	6000.000	1000.000	63	6000.000	2000.000
64	6000.000	3000.000	65	6000.000	4000.000	66	6000.000	5000.000
67	6000.000	6000.000	68	6000.000	7000.000	69	6000.000	8500.000
70	6000.000	10000.000	71	7000.000	.000	72	7000.000	1000.000
73	7000.000	2000.000	74	7000.000	3000.000	75	7000.000	4000.000
76	7000.000	5000.000	77	7000.000	6000.000	78	7000.000	7000.000
79	7000.000	8500.000	80	7000.000	10000.000	81	8500.000	.000
82	8500.000	1000.000	83	8500.000	2000.000	84	8500.000	3000.000
85	8500.000	4000.000	86	8500.000	5000.000	87	8500.000	6000.000
88	8500.000	7000.000	89	8500.000	8500.000	90	8500.000	10000.000
91	10000.000	.000	92	10000.000	1000.000	93	10000.000	2000.000
94	10000.000	3000.000	95	10000.000	4000.000	96	10000.000	5000.000
97	10000.000	6000.000	98	10000.000	7000.000	99	10000.000	8500.000
100	10000.000	10000.000						

LIST OF NODE NUMBERS AND CORRESPONDING HEAD VALUES

1	.0000E+00	2	.9373E-03	3	.0000E+00	4	.1759E-02	5	.0000E+00
6	.2223E-02	7	.0000E+00	8	.2041E-02	9	.0000E+00	10	.0000E+00
11	.9209E-03	12	.1019E-02	13	.1809E-02	14	.2279E-02	15	.2948E-02
16	.2943E-02	17	.3002E-02	18	.2403E-02	19	.1381E-02	20	.0000E+00
21	.0000E+00	22	.1727E-02	23	.2762E-02	24	.3988E-02	25	.4968E-02
26	.5422E-02	27	.4983E-02	28	.3998E-02	29	.2038E-02	30	.9876E-03
31	.1571E-02	32	.2056E-02	33	.3674E-02	34	.5543E-02	35	.7925E-02
36	.8696E-02	37	.7912E-02	38	.5483E-02	39	.2883E-02	40	.0000E+00
41	.0000E+00	42	.2501E-02	43	.4215E-02	44	.6602E-02	45	.1021E-01
46	.1797E-01	47	.1018E-01	48	.6565E-02	49	.3031E-02	50	.1439E-02
51	.1814E-02	52	.2381E-02	53	.4295E-02	54	.6671E-02	55	.1028E-01
56	.1797E-01	57	.1026E-01	58	.6588E-02	59	.3341E-02	60	.0000E+00
61	.0000E+00	62	.2372E-02	63	.3853E-02	64	.5764E-02	65	.8146E-02
66	.8929E-02	67	.8135E-02	68	.5758E-02	69	.2822E-02	70	.1370E-02
71	.1632E-02	72	.1889E-02	73	.3114E-02	74	.4339E-02	75	.5410E-02
76	.5805E-02	77	.5420E-02	78	.4349E-02	79	.2573E-02	80	.0000E+00
81	.0000E+00	82	.1181E-02	83	.1661E-02	84	.2380E-02	85	.2574E-02
86	.2945E-02	87	.2596E-02	88	.2461E-02	89	.1508E-02	90	.1353E-02
91	.5907E-03	92	.0000E+00	93	.8263E-03	94	.0000E+00	95	.1232E-02
96	.0000E+00	97	.1252E-02	98	.0000E+00	99	.1331E-02	100	.0000E+00

^Z

TRAFRAP OUTPUT

X-COORD	Y-COORD	DRAWDOWN
0.000	0.000	0.0000E+00
0.000	1000.000	9.3730E-04
0.000	2000.000	0.0000E+00
0.000	3000.000	1.7590E-03
0.000	4000.000	0.0000E+00
0.000	5000.000	2.2230E-03
0.000	6000.000	0.0000E+00
0.000	7000.000	2.0410E-03
0.000	8500.000	0.0000E+00
0.000	10000.000	0.0000E+00
1000.000	0.000	9.2090E-04
1000.000	1000.000	1.0190E-03
1000.000	2000.000	1.8090E-03
1000.000	3000.000	2.2790E-03
1000.000	4000.000	2.9480E-03
1000.000	5000.000	2.9430E-03
1000.000	6000.000	3.0020E-03
1000.000	7000.000	2.4030E-03
1000.000	8500.000	1.3810E-03
1000.000	10000.000	0.0000E+00
2000.000	0.000	0.0000E+00
2000.000	1000.000	1.7270E-03
2000.000	2000.000	2.7620E-03
2000.000	3000.000	3.9880E-03
2000.000	4000.000	4.9680E-03
2000.000	5000.000	5.4220E-03
2000.000	6000.000	4.9830E-03
2000.000	7000.000	3.9980E-03
2000.000	8500.000	2.0380E-03
2000.000	10000.000	9.8760E-04
3000.000	0.000	1.5710E-03
3000.000	1000.000	2.0560E-03
3000.000	2000.000	3.6740E-03
3000.000	3000.000	5.5430E-03
3000.000	4000.000	7.9250E-03
3000.000	5000.000	8.6960E-03
3000.000	6000.000	7.9120E-03
3000.000	7000.000	5.4830E-03
3000.000	8500.000	2.8830E-03
3000.000	10000.000	0.0000E+00
4000.000	0.000	0.0000E+00
4000.000	1000.000	2.5010E-03
4000.000	2000.000	4.2150E-03
4000.000	3000.000	6.6020E-03
4000.000	4000.000	1.2100E-02
4000.000	5000.000	1.7970E-02
4000.000	6000.000	1.0180E-02
4000.000	7000.000	6.5650E-03
4000.000	8500.000	3.0310E-03
4000.000	10000.000	1.4390E-03
5000.000	0.000	1.8140E-03
5000.000	1000.000	2.3810E-03
5000.000	2000.000	4.2950E-03
5000.000	3000.000	6.6710E-03
5000.000	4000.000	1.0280E-02
5000.000	5000.000	1.7970E-02
5000.000	6000.000	1.0260E-02
5000.000	7000.000	6.5880E-03
5000.000	8500.000	3.3410E-03
5000.000	10000.000	0.0000E+00
6000.000	0.000	0.0000E+00
6000.000	1000.000	2.3720E-03
6000.000	2000.000	3.8530E-03
6000.000	3000.000	5.7640E-03
6000.000	4000.000	8.1460E-03
6000.000	5000.000	8.9290E-03
6000.000	6000.000	8.1350E-03
6000.000	7000.000	5.7580E-03

TRAFRAP OUTPUT (continued)

X-COORD	Y-COORD	DRAWDOWN
6000.000	8500.000	2.8220E-03
6000.000	10000.000	1.3700E-03
7000.000	0.000	1.6320E-03
7000.000	1000.000	1.8890E-03
7000.000	2000.000	3.1140E-03
7000.000	3000.000	4.3390E-03
7000.000	4000.000	5.4100E-03
7000.000	5000.000	5.8050E-03
7000.000	6000.000	5.4200E-03
7000.000	7000.000	4.3490E-03
7000.000	8500.000	2.5730E-03
7000.000	10000.000	0.0000E+00
8500.000	0.000	0.0000E+00
8500.000	1000.000	1.1810E-03
8500.000	2000.000	1.6610E-03
8500.000	3000.000	2.3800E-03
8500.000	4000.000	2.5740E-03
8500.000	5000.000	2.9450E-03
8500.000	6000.000	2.5960E-03
8500.000	7000.000	2.4610E-03
8500.000	8500.000	1.5080E-03
8500.000	10000.000	1.3530E-03
10000.000	0.000	5.9070E-04
10000.000	1000.000	0.0000E+00
10000.000	2000.000	8.2630E-04
10000.000	3000.000	0.0000E+00
10000.000	4000.000	1.2320E-03
10000.000	5000.000	0.0000E+00
10000.000	6000.000	1.2520E-03
10000.000	7000.000	0.0000E+00
10000.000	8500.000	1.3310E-03
10000.000	10000.000	0.0000E+00

FLOW TO OPEN PIT
ELLIPTICAL SOLUTION

INPUT: Q(ft^3/d) 80
K(ft/d) 0.5
2L(feet) 1000

PIT => X1 4000 Y1 5000 X2 5000 Y2 5000

X COORD Y COORD DRAWDOWN

0	0	0.001893
0	1000	0.002116
0	2000	0.002358
0	3000	0.002592
0	4000	0.002772
0	5000	0.002841
0	6000	0.002772
0	7000	0.002592
0	8000	0.002358
0	9000	0.002116
0	10000	0.001893
0	11000	0.001698
0	12000	0.00153
0	13000	0.001387
0	14000	0.001265
0	15000	0.001161
0	16000	0.001071
0	17000	0.000993
0	18000	0.000925
0	19000	0.000866
0	20000	0.000813
1000	0	0.002086
1000	1000	0.002397
1000	2000	0.002766
1000	3000	0.003169
1000	4000	0.003518
1000	5000	0.003663
1000	6000	0.003518
1000	7000	0.003169
1000	8000	0.002766
1000	9000	0.002397
1000	10000	0.002086
1000	11000	0.001833
1000	12000	0.001626
1000	13000	0.001458
1000	14000	0.001318
1000	15000	0.001201
1000	16000	0.001103
1000	17000	0.001018
1000	18000	0.000946
1000	19000	0.000882
1000	20000	0.000827
2000	0	0.002276
2000	1000	0.002698
2000	2000	0.003262
2000	3000	0.00399
2000	4000	0.004772
2000	5000	0.005163
2000	6000	0.004772
2000	7000	0.00399
2000	8000	0.003262
2000	9000	0.002698
2000	10000	0.002276
2000	11000	0.001958
2000	12000	0.001712
2000	13000	0.001518
2000	14000	0.001363
2000	15000	0.001235

X COORD Y COORD DRAWDOWN

6000	6000	0.007159
6000	6100	0.006922
6000	6200	0.006688
6000	6300	0.006461
6000	6400	0.006241
6000	6500	0.006028
6000	6600	0.005824
6000	6700	0.005629
6000	6800	0.005443
6000	6900	0.005265
6000	7000	0.005095
6000	7100	0.004934
6000	7200	0.00478
6000	7300	0.004634
6000	7400	0.004495
6000	7500	0.004363
6000	7600	0.004237
6000	7700	0.004117
6000	7800	0.004003
6000	7900	0.003894
6000	8000	0.00379
6000	8100	0.003692
6000	8200	0.003597
6000	8300	0.003507
6000	8400	0.003421
6000	8500	0.003339
6000	8600	0.00326
6000	8700	0.003184
6000	8800	0.003112
6000	8900	0.003043
6000	9000	0.002976
6000	9100	0.002912
6000	9200	0.002851
6000	9300	0.002792
6000	9400	0.002735
6000	9500	0.002681
6000	9600	0.002628
6000	9700	0.002578
6000	9800	0.002529
6000	9900	0.002482
6000	10000	0.002436
7000	6000	0.004772
7000	6100	0.004701
7000	6200	0.004627
7000	6300	0.004551
7000	6400	0.004473
7000	6500	0.004393
7000	6600	0.004312
7000	6700	0.004232
7000	6800	0.004151
7000	6900	0.00407
7000	7000	0.00399
7000	7100	0.003911
7000	7200	0.003833
7000	7300	0.003756
7000	7400	0.003681
7000	7500	0.003607
7000	7600	0.003535

X COORD Y COORD DRAWDOWN

2000	16000	0.001128
2000	17000	0.001038
2000	18000	0.000962
2000	19000	0.000895
2000	20000	0.000837
3000	0	0.002436
3000	1000	0.002976
3000	2000	0.00379
3000	3000	0.005095
3000	4000	0.007159
3000	5000	0.008825
3000	6000	0.007159
3000	7000	0.005095
3000	8000	0.00379
3000	9000	0.002976
3000	10000	0.002436
3000	11000	0.002057
3000	12000	0.001777
3000	13000	0.001563
3000	14000	0.001395
3000	15000	0.001259
3000	16000	0.001147
3000	17000	0.001053
3000	18000	0.000973
3000	19000	0.000904
3000	20000	0.000844
4000	0	0.00253
4000	1000	0.003151
4000	2000	0.004169
4000	3000	0.006127
4000	4000	0.011222
4000	5000	0.011222
4000	6000	0.011222
4000	7000	0.006127
4000	8000	0.004169
4000	9000	0.003151
4000	10000	0.00253
4000	11000	0.002112
4000	12000	0.001813
4000	13000	0.001587
4000	14000	0.001412
4000	15000	0.001271
4000	16000	0.001156
4000	17000	0.00106
4000	18000	0.000978
4000	19000	0.000909
4000	20000	0.000848
5000	0	0.00253
5000	1000	0.003151
5000	2000	0.004169
5000	3000	0.006127
5000	4000	0.011222
5000	5000	0.011222
5000	6000	0.011222
5000	7000	0.006127
5000	8000	0.004169
5000	9000	0.003151
5000	10000	0.00253
5000	11000	0.002112
5000	12000	0.001813
5000	13000	0.001587
5000	14000	0.001412
5000	15000	0.001271
5000	16000	0.001156
5000	17000	0.00106
5000	18000	0.000978
5000	19000	0.000909
5000	20000	0.000848
6000	0	0.002436
6000	1000	0.002976

X COORD Y COORD DRAWDOWN

7000	7700	0.003464
7000	7800	0.003395
7000	7900	0.003328
7000	8000	0.003262
7000	8100	0.003199
7000	8200	0.003136
7000	8300	0.003076
7000	8400	0.003017
7000	8500	0.00296
7000	8600	0.002905
7000	8700	0.002851
7000	8800	0.002799
7000	8900	0.002748
7000	9000	0.002698
7000	9100	0.002651
7000	9200	0.002604
7000	9300	0.002559
7000	9400	0.002515
7000	9500	0.002472
7000	9600	0.002431
7000	9700	0.002391
7000	9800	0.002351
7000	9900	0.002313
7000	10000	0.002276
8000	6000	0.003518
8000	6100	0.003489
8000	6200	0.003459
8000	6300	0.003427
8000	6400	0.003393
8000	6500	0.003359
8000	6600	0.003322
8000	6700	0.003285
8000	6800	0.003247
8000	6900	0.003208
8000	7000	0.003169
8000	7100	0.003129
8000	7200	0.003089
8000	7300	0.003048
8000	7400	0.003007
8000	7500	0.002967
8000	7600	0.002926
8000	7700	0.002886
8000	7800	0.002846
8000	7900	0.002806
8000	8000	0.002766
8000	8100	0.002727
8000	8200	0.002688
8000	8300	0.00265
8000	8400	0.002612
8000	8500	0.002575
8000	8600	0.002538
8000	8700	0.002502
8000	8800	0.002466
8000	8900	0.002431
8000	9000	0.002397
8000	9100	0.002363
8000	9200	0.00233
8000	9300	0.002297
8000	9400	0.002265
8000	9500	0.002234
8000	9600	0.002203
8000	9700	0.002173
8000	9800	0.002143
8000	9900	0.002114
8000	10000	0.002086
9000	6000	0.002772
9000	6100	0.002758
9000	6200	0.002743
9000	6300	0.002727
9000	6400	0.002711

X COORD	Y COORD	DRAWDOWN	X COORD	Y COORD	DRAWDOWN
6000	2000	0.00379	9000	6500	0.002693
6000	3000	0.005095	9000	6600	0.002674
6000	4000	0.007159	9000	6700	0.002655
6000	5000	0.008825	9000	6800	0.002634
6000	6000	0.007159	9000	6900	0.002614
6000	7000	0.005095	9000	7000	0.002592
6000	8000	0.00379	9000	7100	0.00257
6000	9000	0.002976	9000	7200	0.002548
6000	10000	0.002436	9000	7300	0.002525
6000	11000	0.002057	9000	7400	0.002502
6000	12000	0.001777	9000	7500	0.002478
6000	13000	0.001563	9000	7600	0.002455
6000	14000	0.001395	9000	7700	0.002431
6000	15000	0.001259	9000	7800	0.002406
6000	16000	0.001147	9000	7900	0.002382
6000	17000	0.001053	9000	8000	0.002358
6000	18000	0.000973	9000	8100	0.002333
6000	19000	0.000904	9000	8200	0.002309
6000	20000	0.000844	9000	8300	0.002285
7000	0	0.002276	9000	8400	0.00226
7000	1000	0.002698	9000	8500	0.002236
7000	2000	0.003262	9000	8600	0.002212
7000	3000	0.00399	9000	8700	0.002188
7000	4000	0.004772	9000	8800	0.002164
7000	5000	0.005163	9000	8900	0.00214
7000	6000	0.004772	9000	9000	0.002116
7000	7000	0.00399	9000	9100	0.002093
7000	8000	0.003262	9000	9200	0.00207
7000	9000	0.002698	9000	9300	0.002047
7000	10000	0.002276	9000	9400	0.002024
7000	11000	0.001958	9000	9500	0.002002
7000	12000	0.001712	9000	9600	0.00198
7000	13000	0.001518	9000	9700	0.001958
7000	14000	0.001363	9000	9800	0.001936
7000	15000	0.001235	9000	9900	0.001915
7000	16000	0.001128	9000	10000	0.001893
7000	17000	0.001038	10000	6000	0.002283
7000	18000	0.000962	10000	6100	0.002276
7000	19000	0.000895	10000	6200	0.002267
7000	20000	0.000837	10000	6300	0.002258
8000	0	0.002086	10000	6400	0.002249
8000	1000	0.002397	10000	6500	0.002239
8000	2000	0.002766	10000	6600	0.002228
8000	3000	0.003169	10000	6700	0.002217
8000	4000	0.003518	10000	6800	0.002205
8000	5000	0.003663	10000	6900	0.002193
8000	6000	0.003518	10000	7000	0.00218
8000	7000	0.003169	10000	7100	0.002167
8000	8000	0.002766	10000	7200	0.002153
8000	9000	0.002397	10000	7300	0.00214
8000	10000	0.002086	10000	7400	0.002126
8000	11000	0.001833	10000	7500	0.002111
8000	12000	0.001626	10000	7600	0.002096
8000	13000	0.001458	10000	7700	0.002081
8000	14000	0.001318	10000	7800	0.002066
8000	15000	0.001201	10000	7900	0.002051
8000	16000	0.001103	10000	8000	0.002035
8000	17000	0.001018	10000	8100	0.002019
8000	18000	0.000946	10000	8200	0.002004
8000	19000	0.000882	10000	8300	0.001988
8000	20000	0.000827	10000	8400	0.001971
9000	0	0.001893	10000	8500	0.001955
9000	1000	0.002116	10000	8600	0.001939
9000	2000	0.002358	10000	8700	0.001923
9000	3000	0.002592	10000	8800	0.001906
9000	4000	0.002772	10000	8900	0.00189
9000	5000	0.002841	10000	9000	0.001874
9000	6000	0.002772	10000	9100	0.001858
9000	7000	0.002592	10000	9200	0.001841
9000	8000	0.002358	10000	9300	0.001825

X COORD	Y COORD	DRAWDOWN	X COORD	Y COORD	DRAWDOWN
9000	9000	0.002116	10000	9400	0.001809
9000	10000	0.001893	10000	9500	0.001793
9000	11000	0.001698	10000	9600	0.001777
9000	12000	0.00153	10000	9700	0.001761
9000	13000	0.001387	10000	9800	0.001745
9000	14000	0.001265	10000	9900	0.001729
9000	15000	0.001161	10000	10000	0.001714
9000	16000	0.001071			
9000	17000	0.000993			
9000	18000	0.000925			
9000	19000	0.000866			
9000	20000	0.000813			
10000	0	0.001714			
10000	1000	0.001874			
10000	2000	0.002035			
10000	3000	0.00218			
10000	4000	0.002283			
10000	5000	0.002321			
10000	6000	0.002283			
10000	7000	0.00218			
10000	8000	0.002035			
10000	9000	0.001874			
10000	10000	0.001714			
10000	11000	0.001565			
10000	12000	0.00143			
10000	13000	0.001311			
10000	14000	0.001207			
10000	15000	0.001116			
10000	16000	0.001035			
10000	17000	0.000964			
10000	18000	0.000902			
10000	19000	0.000846			
10000	20000	0.000797			
11000	0	0.001553			
11000	1000	0.00167			
11000	2000	0.001781			
11000	3000	0.001875			
11000	4000	0.00194			
11000	5000	0.001963			
11000	6000	0.00194			
11000	7000	0.001875			
11000	8000	0.001781			
11000	9000	0.00167			
11000	10000	0.001553			
11000	11000	0.00144			
11000	12000	0.001333			
11000	13000	0.001235			
11000	14000	0.001147			
11000	15000	0.001068			
11000	16000	0.000996			
11000	17000	0.000933			
11000	18000	0.000876			
11000	19000	0.000825			
11000	20000	0.000779			
12000	0	0.001413			
12000	1000	0.001499			
12000	2000	0.001578			
12000	3000	0.001642			
12000	4000	0.001685			
12000	5000	0.0017			
12000	6000	0.001685			
12000	7000	0.001642			
12000	8000	0.001578			
12000	9000	0.001499			
12000	10000	0.001413			
12000	11000	0.001326			
12000	12000	0.001241			
12000	13000	0.001161			
12000	14000	0.001087			
12000	15000	0.001019			

X COORD Y COORD DRAWDOWN

12000	16000	0.000956
12000	17000	0.0009
12000	18000	0.000848
12000	19000	0.000802
12000	20000	0.000759

APPENDIX II

PLOTS OF DATA USED FOR REGRESSION ANALYSES

BIG SKY MINE SPOILS

DECKER MINE SPOILS

DECKER MINE SPOILS

DECKER MINE SPOILS

DECKER MINE SPOILS

ROSEBUD MINE SPOILS

ROSEBUD MINE SPOILS

ROSEBUD MINE SPOILS

ROSEBUD MINE SPOILS

