Mestrado em Engenharia Informática Reconhecimento de Padrões 2022/2023

Relatório Music Genre Classification

Miguel Faria | 2019216809

Índice

Introdução	3
1. Pré-Processamento	4
1.1 Tratamento de dados	4
1.2 Seleção de Features	4
1.2.1 Teste de Kruskal-Wallis	5
1.2.2 Indicadores de Correlação	5
1.3 Redução de Features	6
1.3.1 Principal Component Analysis (PCA)	6
1.3.2 Linear Discriminant Analysis (LDA)	7
2. Classificadores	7
2.1 Minimum Distance Classifier	8
Conclusão	9

Introdução

Este trabalho foi realizado no âmbito da cadeira de Reconhecimento de Padrões, enquadrada no Mestrado em Engenharia Informática da Universidade de Coimbra, e tem como principal objetivo desenvolver e analisar métodos que permitam classificar músicas consoante o seu estilo musical. Para isso, foi utilizado um *dataset* com 1000 músicas e mais de 190 *features*, que serve de base para a elaboração do projeto.

Nesta meta, foram considerados 2 cenários. No cenário A pretende-se realizar uma classificação binária, ou seja, adotando uma postura "um-contra-todos". Assim, será feita a classificação das músicas de teste tendo em conta cada um dos gêneros musicais, determinando se elas pertencem ou não a esse estilo. No cenário B, é necessário classificar todas as diferentes categorias musicais em conjunto, o que torna o problema mais complexo.

De modo a realizar a classificação recorreu-se a vários métodos, nomeadamente, Minimum Distance Classifier, Fisher LDA Classifier, Bayesian Classifier e k-NN Classifier. No entanto, para poder aplicá-los, foi necessário realizar previamente algum processamento dos dados: divisão dos dados para treino e para testagem, normalização/estandardização dos dados e redução/seleção de features, com recurso a testes Kruskal-Wallis, indicadores de correlação e PCA

1. Pré-Processamento

1.1 Tratamento de dados

Os dados utilizados na resolução deste trabalho encontram-se no ficheiro "dados.csv", presente no link fornecido no enunciado. Para facilitar o seu manuseamento, algumas das colunas foram alteradas de modo a poderem ser tratadas numericamente, nomeadamente as que envolvem as *labels* de classificação dos áudios (colunas "filename" e "label"). Deste modo, foi estabelecida a seguinte relação:

- Blues 1
- Classical 2
- Country 3
- Disco 4
- Hip-Hop 5
- Jazz 6
- Metal 7
- Pop 8
- Reggae 9
- Rock 10

Estes dados foram divididos de maneira a gerar diferentes *datasets* para a fase de treino e de teste, adotando uma separação de 80% e 20%, respetivamente. Para isso, foi tido em consideração que os *datasets* deveriam possuir um mesmo número de músicas referentes aos diversos gêneros. Os dados foram então colocados numa estrutura de dados igual à usada pelo STPRTool e estandardizados/normalizados, após remover as *features* sem variância. A separação dos dados foi feita antes de realizar qualquer tipo de alteração, pois assim é garantido que nenhuma característica dos dados que irão ser usados na testagem influência as modificações que irão ser aplicadas; desta maneira, as técnicas de seleção e redução de *features* que melhor se adaptaram ao *dataset* de treino vão ser replicadas no *dataset* de testagem.

Nesta fase inicial, foram realizados alguns testes para analisar características das *features* (matriz de correlação e histogramas de distribuição), no entanto, devido ao seu número bastante elevado, não foi possível retirar conclusões.

1.2 Seleção de Features

Como referido, os dados possuem demasiadas *features*, o que torna inviável a sua utilização nos classificadores, devido à sua redundância e irrelevância. Por essa razão, é

necessário aplicar técnicas de seleção, como o teste Kruskal-Wallis ou indicador de correlação, que ajudam a reduzir a dimensionalidade dos dados e a melhorar a eficiência computacional do modelo.

1.2.1 Teste de Kruskal-Wallis

O teste de Kruskal-Wallis é um teste não paramétrico, utilizado para verificar se há diferenças significativas entre as medianas de três ou mais grupos independentes de dados amostrais. A hipótese nula considerada neste teste é que as medianas dos grupos são iguais, enquanto a hipótese alternativa é que pelo menos uma das medianas é diferente das demais, usando como nível de significância o valor 0.05. Se o *p-value* obtido para uma determinada *feature* for menor do que o nível de significância, a hipótese nula é rejeitada; caso contrário, é aceite.

Para a análise das *features*, foram calculados os *ranks* do teste *KW*, apresentando também os respetivos valores de *chi-squared* e *p-value*. A tabela seguinte apresenta apenas alguns dos valores obtidos, devido ao elevado número de características:

rank	feature_ID	feature	chi_sq	p_value	
1	7	chroma_stft_qt2	523.98	4.1932e-107	
2	2	chroma_stft_mean	504.66	5.7658e-103	
3	17	spectral_centroid_mean_max	495.9	4.337e-101	
194	43	harmony_mean_mean	41.735	3.6741e-06	
195	130	mfcc_mean_10_min	41.356	4.309e-06	
196	47	harmony_mean_median	39.081	1.1139e-05	

Tabela 1 - Ranks obtidos com o teste KW

Uma vez que todos os *p-values* são baixos e que os valores *chi squared* não são bem separáveis, foi implementada uma técnica que seleciona apenas uma determinada percentagem das *features* com maior valor *chi squared* e *p-value* abaixo de 0.05; neste caso, essa percentagem definiu-se a 0.9, tendo selecionado 176 *features*.

1.2.2 Indicadores de Correlação

Com os dados selecionados com o teste KW, foram calculados os coeficientes de correlação, que permitem medir a relação entre as *features*. Bastantes valores eram elevados, pelo que se optou por selecionar as *features* que possuem coeficientes de correlação abaixo de 0.75, ficando com apenas 42 das 176 anteriores. Embora ainda seja um número alto, está ilustrada de seguida a matriz de correlação, onde se pode ver através da coloração que já não existe valores tão elevados:

Figura 1 - Matriz de correlação entre as features selecionadas

1.3 Redução de Features

Para além das técnicas de seleção de *features*, também foram aplicados métodos de redução, particularmente PCA e LDA, de modo a descartar as características menos importantes, mantendo a estrutura essencial dos dados.

1.3.1 Principal Component Analysis (PCA)

O PCA (Principal Component Analysis) é uma técnica usada para reduzir a dimensão de um conjunto de dados de alta dimensionalidade, mantendo as informações mais relevantes. Após gerar o PCA Model, foram representados os Eigenvalues e a percentagem de variância relativas a cada uma das componentes principais, como ilustrado de seguida:

Figura 2 - Representação dos Eigen Values associados a cada uma das componentes principais

Figura 3 - Representação da percentagem de variância associada a cada uma das componentes principais

Após os testes, decidiu-se escolher as componentes principais que explicam pelo menos 0.95 da variância dos dados, que revelaram ser 29.

1.3.2 Linear Discriminant Analysis (LDA)

O LDA (Linear Discriminant Analysis) é também um método de redução de dimensionalidade, que visa encontrar uma transformação linear que maximize a separação entre classes num *dataset*. Este processo foi aplicado após o PCA, usando as mesmas componentes principais, 29.

2. Classificadores

Os classificadores têm como objetivo determinar a que classe cada um dos dados de teste pertence, com base nos seus atributos. Neste estudo, serão utilizados cinco classificadores diferentes: Minimum Distance Classifier, Fisher LDA Classifier, Bayesian Classifier, k-NN Classifier, com o objetivo de comparar e avaliar a eficiência de cada um na classificação de gêneros musicais.

O seu desempenho irá ser medido através de métricas, tais como:

•
$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

• Sensitivity =
$$\frac{TP}{TP + FN}$$

• Specificity =
$$\frac{TN}{TN+FP}$$

•
$$F-measure = 2 \times \frac{Accuracy \times Sensitivity}{Accuracy + Sensitivity}$$

2.1 Minimum Distance Classifier

Este classificador baseia-se na distância euclidiana para determinar a classe de uma amostra, atribuindo, para cada caso de teste, a classe que se encontra a menor distância do vetor médio de características. Os resultados obtidos encontram-se nas tabelas seguintes:

Minimum Distance Classifier – Cenário A					
Género	Accuracy	Sensitivity	Specificity	F-measure	
Blues	0,61089	0,81667	0,5	0,785	
Classical	0,98477	0,96667	1	0,97	
Country	0,83571	0,76667	0,9	0,78	
Disco	0,67675	0,65	0,7	0,655	
Hip-Hop	0,68014	0,80556	0,6	0,785	
Jazz	0,7	0,86667	0,6	0,84	
Metal	0,83582	0,88333	0,8	0,875	
Pop	0,96907	0,93333	1	0,94	
Reggae	0,6965	0,85556	0,6	0,83	
Rock	0,71053	0,66667	0,75	0,675	

Tabela 2 - Métricas de desempenho usando Minimum Distance Classifier para o cenário A

Minimum Distance Classifier – Cenário B					
Género	Accuracy	Sensitivity	Specificity	F-measure	
Blues	0,88	0,25	0,95	0,38938	
Classical	0,86087	0,57143	0,91282	0,6869	
Country	0,82569	0,48276	0,87831	0,60928	
Disco	0,82843	0,31818	0,89011	0,45977	
Нір-Нор	0,89583	0,0625	0,97159	0,11685	
Jazz	0,88679	0,42308	0,95161	0,57285	
Metal	0,85922	0,34783	0,9235	0,49519	
Рор	0,86486	0,51613	0,92147	0,64646	
Reggae	0,85922	0,34783	0,9235	0,49519	
Rock	0,80882	0,31818	0,86813	0,4567	

Tabela 3 - Métricas de desempenho usando Minimum Distance Classifier para o cenário B

Conclusão

Para o classificador usado, os resultados foram razoáveis. Os processos de seleção e redução de *features* permitiram melhorar a sua *performance*, mesmo com dimensionalidade mais baixa.

O objetivo do trabalho não foi atingido, uma vez que deveriam ter sido testados diversos outros classificadores. Pessoalmente, a falta de destreza com MatLab e a documentação de difícil compreensão tornaram o processo de resolução de problemas mais demorado, nomeadamente na correção de erros da primeira meta, o que contribuiu para a incompletude do trabalho.