- (1) Follow the JFLAP tutorial at http://www.jflap.org/tutorial/fa/createfa/fa. html. Then use JFLAP to draw and simulate some of the DFAs/NFAs discussed in the lecture.
- (2) Consider the following DFA:

Practice simulating the behaviour of the above DFA using the following strings

abba babb aaa bbabba

For each string, list the sequence of states visited by the DFA (e.g. $q_0, q_2, q_0, q_1, q_3, \ldots$).

Produce the formal definition of the above DFA. This should consist of: the alphabet Σ , the set of states Q, the transition function δ , in table form, the start state, and the set of final states F.

(3) Consider the following NFA:

Practice *simulating* the behaviour of the NFA using the following strings.

abbaa babb aaaba abbbbbbbaab

For each string, list the <u>sets of states</u> visited by the NFA (e.g. $\{q_0\}, \{q_1, q_2\}, \{q_2, q_3\}, \ldots$).

Produce the formal definition $(\Sigma, Q, \delta, q_{\text{start}}, F)$ of the above NFA.

(4) The formal description $(Q, \Sigma, \delta, q_{\text{start}}, F)$ of a DFA is given by

$$(\{q_1,q_2,q_3,q_4,q_5\},\{\mathtt{u},\mathtt{d}\},\delta,q_1,\{q_3\}),$$

where δ is given by the following table

	u	d
$\rightarrow q_1$	q_1	q_2
q_2	q_1	q_3
$*q_3$	q_2	q_4
q_4	q_3	q_5
q_5	q_4	q_5

Give the state diagram of this machine.

- (5) Use JFLAP to design simple DFAs which recognize the following languages over $\Sigma = \{a,b\}$
 - a) The language of strings which begin with a.
 - b) The language of strings which end with b.
 - c) The language of strings which either begin **or** end with *b*.
 - d) The language of strings which begin with *a* and end with *b*.
 - e) The language of strings which contain the substring ba.
 - f) The language of strings with all the a's on the left and b's on the right
 - g) The language strings consisting of alternating a's and b's.
- (6) Use JFLAP to produce NFAs to recognize the following languages over $\Sigma = \{0, 1\}$
 - a) The language of strings which begin and end with 01.
 - b) The language of strings which do not end with 01.
 - c) The language of strings which begin and end with different symbols.
 - d) The language of strings of odd length.
 - e) The language of strings which contain an even number of 0's.
 - f) The language of binary numbers which are divisible by 4.
- (7) If a is a *symbol* from an alphabet Σ then aⁿ denotes the string which consists of n successive copies of a.

Similarly, if x is a *string* of symbols then x^n denotes the string which consists of n successive copies of x. For example, $a^2 = aa$ and $(ab)^2 = abab$.

Let $\Sigma = \{0, 1\}$. Write $0^4, 1^4, (10)^3, 10^3$ explicitly as strings in the usual form.

- (8) If Σ is an alphabet then Σ^n denotes the set of all strings over Σ which have length exactly n symbols.
 - a) Let $\Sigma = \{a, b, c\}$. Find Σ^2 .
 - b) Let $\Sigma = \{a, b\}$. Find Σ^3 .
- (9) If Σ is an alphabet then the set of all finite-length strings over it is denoted by Σ^* .

Let $\Sigma_1 = \{a\}$ and $\Sigma_2 = \{a, b\}$. List the strings of length 0, 1, 2, 3, and 4 over these two alphabets. Write these in the form $\Sigma_1^* = \{...\}$ and $\Sigma_2^* = \{...\}$.

Note that

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \Sigma^4 \cup \cdots$$