Cleavage sites of endoproteases on the a-chain of GPIb

FIG. 2

FIG. 3

Characterization of Optimal Determinants for Binding of Y1 to It's Ligands

	Platelets/GC	KG1/RP-HPLC #4
Rec: GP1b 1-340		
GP1b 1-480	ı	
Glycanase: N	+	++++
O+N	+	† † †
Proteases: Mocarhagin	++ (~40kD)	
O-Sialo Peptidase	++ (~40kD)	•
Ficin	•	•
Trypsine	++ (~40kD)	•
Elastase	++ (~40kD)	+
Sulfatase (Aryl)		+/-

Cleavage of platelets GPIb by O-Sialoglycoprotein abolishes binding of both Y1 and Y17

YI and YI7 binds similar glycocalycin fragments after cleavage by 0-Sialoglycoprotein Endoprotease

Specific GPIb Proteolysis Abolishes Y1 Binding to **Platelets**

FIG. 7

Y1 binds N-terminal (His-1 - Glu 282) fragment of platelet GPIb after cleavage by mocarhagin

Binding of Y1 and Y17 to glycocalycin after cleavage by mocarhagin

Binding of Y1 and Y17 to platelets

Y1 and Y17 bind glycocalycin similar after cleavage by Ficin

P. C. F. P. C. C.

FIG. 11

Y1 and Y17 reacts with larger cathepsin G cleaved platelets GPIb fragment

Cleavage of washed platelets by mocarhagin and cathepsin G

Influence of Y1-scFv on platelets agglutination in washed platelets

Specificity of Binding of Y1 and α -CD42 (N1-19) to their Ligands

Y1-Ligand from KG1 membranes following Immuno-Precipitation with Y1: Purification on RP-HPLC

Effect of O-Sialo-Glycoprotein Endopeptidase on Y1 Binding

Effect of Aryl-Sulfatase on Binding of Y1: RP-HPLC(KG1) & H-B(Heparin-BSA)

Fr that the time then the standard that the time that the the

Analysis by Immune Precipitation Specificity of Y1 Binding: with Y1 and anti-PSGL-1

Gate

+KPL1

22/10/01-n-F J06 22/10/01 n-H 0/05

Les des fast des des last last les

Specificity of Y1 Binding: Analysis by FACS

competition with Y1-lgG

(aCD162/KPL1);

α PSGL1

Specificity of Y1 Binding: Analysis by FACS

**Ns were: 4 for DOX, 2 for Y1-DOX, 3 for MOLT and 3 for PBS.

***Ns were: 8 for PBS, 9 for KG1, 8 for CONY1, 11 for CONY1-DOX, 9 for DOX, 8 for 181 in vitro, 9 for Y1 in vitro and 9 for Mylotarg.

In vivo KG1 - Blood

****Ns were: 8 for PBS, 9 for KG1, 8 for CONY1, 9 for CONY1-DOX, 11 for DOX (including one mice injected with 5mg/kg DOX), 7 for 181 in vitro, 8 for Y1 in vitro and 7 for Mylotarg.

THE PROPERTY OF THE PROPERTY O

Distribution of Radioactivity in Body organs after Injection of ¹²⁵I-CONY1 to Mice

H CH F CH CH F

Epitopes of anti-GPIb α antibodies

FIG. 46

FIG. 47

FIG. 48A: The ORF and Amino Acid Sequence of Y1-HC

SEQ ID NO: 205 (nucleic acid sequence); SEQ ID NO: 206 (amino acid sequence)

1	ATGGCCTGGGCTCTGCTCCTOACCCTCCTCACTCAGGACACAGGGTCCTGGGCCGAT
1	MAWALLLTLTQDTGSWAD
61	$\tt ATCCAGCTGGTGGAGTCTGGGGGGGGTGCTGGGGGGGTCCCTGAGACTCTCCC$
21	IQLVESGGGVVRPGGSLRLS
121	TGTGCAGCCTCTGGATTCACCTTTGATGATTATGGCATGAGCTGGGTCCGCCAAGCTCCA
41	C A A S G F T F D D Y G M S W V R Q A P
181	GGGAAGGGGCTGGAGTGGGTCTCTGGTATTAATTGGAATGGTGGTAGCACAGGTTATGCA
61	G K G L E W V S G I N W N G G S T G Y A
241	
241 81	GACTCTGTGAAGGGCCGATTCACCATCTCTAGAGACCACGCCAAGAACTCCCTGTATCTG DSVKGRFTISRDNAKNSLYL
301	CAAATGAACAGTCTGAGAGCCGAGGACACGGCCGTGTATTACTGTGCAAGAATGAGGGCT O M N S L R A E D T A V Y Y C A R M R A
101	QMNSLRAEDTAVYYCARMRA
361	CCTGTGATTTGGGGCCAAGGTACCCTGGTCACCGTCTCGAGTGCTTCCACCAAGGGCCCA
121	PVIWGQGTLVTVSSASTKGP
421	TCGGTCTTCCCCCTGGCACCCTCCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGC
141	S V F P L A P S S K S T S G G T A A L G
481	$\tt TGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTG$
161	C L V K D Y F P E P V T V S W N S G A L
541	ACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGC
181	T S G V H T F P A V L Q S S G L Y S L S
601	AGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAAT
201	S V V T V P S S S L G T Q T Y I C N V N
661	CACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACT
221	H K P S N T K V D K R V E P K S C D K T
721	CACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACTGTCAGTCTTCOTCTTC
241	H T C P P C P A P E L L G G P S V F L F
701	CCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTG
781 261	P P K P K D T L M I S R T P E V T C V V
841 281	GTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAG V D V S H E D P E V K F N W Y V D G V E
901 301	GTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGTC V H N A K T K P R E E Q Y N S T Y R V V
	• • • • • • • • • • • • • • • • • • •
961	AGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTC S V L T V L H Q D W L N G K E Y K C K V
321	•
1021	TCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCC
341	SNKALPAPIEKTISKAKGQP
1081	OGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTC
361	REPQVYTLPPSREEMTKNQV
1141	${\tt AGCCTGACCTGCTGAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGC}$
381	SLTCLVKGFYPSDIAVEWES
1201	AATGGGCAGCCGGAGAACAACTACAAGACCACGTCTCCCGTGCTGGACTCCGACGGCTCC
401	N G Q P E N N Y K T T S P V L D S D G S
1261	TTCTTCCTCTATAGCAAGCTCACCGTGCACAAGAGCAGGTGGCAGCAGGGGAACGTCTTC
421	F F L Y S K L T V D K S R W Q Q G N V F
1321	TCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTG
441	S C S V M H E A L H N H Y T Q K S L S L
1381	TCTCTGGGTAAATGA
461	S L G K *

461 G K

FIG. 48B: The ORF and Amino Acid Sequnce of Y1-LC

SEQ ID NO: 207 (nucleic acid sequence); SEQ ID NO: 208 (amino acid sequence)

1	AT	GGC	CTG	GC.	CTC	GCT(GCT(CTC	CACC	CTC	CTC	ACI	CAC	GAC	ACA	.GGG	TCC	'TGG	GCC	GAT
1	_M	A	W	A	L	L	L	Ŀ	Т	L	L	T	Q	D	T	G	S	W	A	D
61	GC	AGA	GCTO	GACT	CAC	3GA(CCCI	GC1	GTO	TCI	GTO	GCC	TTC	GGA	CAC	ACA	GTC	'AGG	ATC	ACA
21	A	E	L	T	Q	D	P	A	v	S	v	A	L	G	Q	T	v	R	I	T
1212	TG	CCA	AGGA	AGAC	AGC	CTC	'AGA	AGC	TAT.	TAT	GCA	AGC	'TGG	TAC	CAG	CAG	AAG	CCA	.GGA	CAG
41	C	Q	G	D	S	L	R	S	Y	Y	A	S	W	Y	Q	Q	K	P	G	Q
181	GC	CCC	CGTA	CTI	GTC	'ATC	TAT:	'GGT	'AAA	AAC	AAC	'CGG	CCC	TCA	.GGG	ATC	CCA	GAC	CGA	TTC
161	A	P	v	L	V	I	Y	G	K	N	N	R	P	s	G	I	P	D	R	F
241	TCI	GGC	TCC	'AGC	TCA	.GGA	AAC	ACA	.GCT	TCC	TTG	ACC	ATC	ACT	GGG	GCT	CAG	GCG	GAA	GAT
81	s	G	S	s	S	G	N	T	A	S	L	T	I	T	G	A	Q	A	E	D
301	GAG	GCT	GAC	TAT	TAC	TGT	AAC	TCC	CGG	GAC	AGC	AGT	GGT	AAC	CAT	GTG	GTA	TTC	GGC	GGA
101	E	A	D	Y	Y	C	N	S	R	D	s	S	G	N	H	V	V	F	G	G
361	GGG	ACC	AAG	CTG	ACC	GTC	CTA	GGT	CAG	CCC	AAG	GCT	GCC	CCC	TCG	GTC.	ACT	CTG	TTC	CCG
121	G	T	K	L	T	V	L	G	Q	P	K	A	Α	P	S	V	T	L	F	P
421	CCC	TCC	TCT	GAG	GAG	CTT	CAA	GCC.	AAC	AAG	GCC	ACA	CTG	GTG	TGT	CTC.	ATA	AGT	GAC'	TTC
141	P	S	S	E	E	L	Q	A	N	K	A	T	L	V	С	Ļ	Ι	S	D	F
481	TAC	CCG	GGA	GCC	GTG.	ACA	GTG	GCC'	TGG.	AAG	GCA	GAT.	AGC.	AGC	CCC	GTC.	AAG	GCG	GGA	GTG
161	Y	P	G	A	V	T	V	A	W	K	Α	D	S	S	P	V	K	A	G	V
541	GAG	ACC.	ACC.	ACA	CCC'	TCC.	AAA	CAA	AGC.	AAC	AAC.	AAG	TAC	GCG	GCC.	AGC	AGC'	TAC	CTG	AGC
181	E	Т	Т	Т	P	S	K	Q	S	N	N	K	Y	A	A	S	S	Y	L	S
601	CTG.	ACG	CCT	GAG	CAG'	TGG.	AAG'	TCC(CAC	AAA	AGC'	TAC.	AGC'	TGC	CAG	GTC.	ACG	CAT	GAA	3GG
201	L	Т	P	E	Q	W	K	S	H	K	S	Y	S	С	Q	V	T	H	E	G
661	AGC	ACC	GTG	GAG	\AG	ACA(3TG(GCC	CCT	ACA	GAA'	TGT"	TCA'	ГGA						
221	`S	T	V	E	K	T	V	A	P	Т	E	С	S	*						

	1	11	21	31	41	51	
	1	1	1	1	1.	1	
1	EVQLVESGGG	LVQPGGSLRL	SCAASGFTFS	SYAMSWVRQA	PGKGLEWVSA	isgsggstyy	60
61	ADSVKGRFTI	SRDNSKNTLY	LOMNSLRAED	TAVYYCARYA	KTLMRQYSLW	GQGTLVTVSR	120
121	GGGGSGGGS	GGGGSSELTQ	DPAVSVALGQ	TVRITCQGDS	LRSYYASWYQ	OKPGOAPVLV	180
181	IYGKNNRPSG	IPDRFSGSSS	GNTASLTITG	AQAEDEADYY	CNSRDSSGNH	VVFGGGTKLT	240
241	VLGAAAEOKL	ISEEDLNGAA					

			10				0			30			1.				50			
1	AtTa	ATTA	cTc	gCG	GCC	CAG	C C	gGÇ(C.	CGA	GGTC	CAG	CIV	GT	GAG	TC	TGG	3GGZ	ĄC
3	1	I		A	W	X	- 1		U	•	ميت	V	¥	T	V	ᅩ	۵	9	G	
	1/2		70 L			8	o I			90	4		100	0		1	10			1
î.		GTA																		
3	1 -	V	ñ	P	Ģ	G	S	L	ĸ	H	25	C	A	A	Ş	G	F	Ţ	F	
			130)		14	0			150	ı		161	0		1	70	•		3
L.	CAGO																			
3	5	Y			S	W	V	R	Õ		P	G			'n	E	W	V	S	
			190			20	C			210	١		220)		2	30			2
	TATT	_																		
5	1 -	S	_	_	G	G	5	T			A	ט			K	G	R	F	T	
			250			1	0			270			280		_		90			3
	CTCC	_																		
	5	R			>	K					L							A	E	
			310			1	0		F	330			ı			6 3				3
	CACG	GCCG A	TG	TAT.	PAC	IGIG	CA	AGA	ACC	95-	GÇA(AGI	ATT!	ZZ	CG.	AST	r G	3GGC	CAZ	įĊ
•	1			1	ī			π.(_			a			R	_			Q	
·			370			38				390			400				10			4
	TACCO	CIGG; L '	TC: V	ACCC	3TG:	ICGA S	GA	GGT	GGA	GG G	CGG1 G	TCA	gGC	GGZ	gGI	GgC	T C	TGG(GG	C
	-		•	•	٧			J				2			Ġ			G	G	
			430			44				450			450				<u>}°</u>			4
	CGGAT	S S	CT (S	Sago E	TG/ L	T. T.	AG O	GAC(D	CCT P	GC A	TGTG V	TCT S	GIG V	GCC	TTG T.	GGA C	A, O	JACA T	GTC V	À
	}		490	_	_			_		510			- 520				30		•	
	CARGA		1_	22.20		1			_			× 2 00					1			5
	GATCA I	T C	5 (2	_AAG Q	icag G	D D	S	L	rua R	S S	Z.	X.	A A	AGC S	W W	YAC(L'AC	SCAG O	AAG K	iC
	}		550	-		560				570			580				- 90	~		5
	AGGAC			TOTAL S	mar.			A CT VOY		- (220			000		1	13.000		
		Q A									K							I.		
		6	510			620)			630			640			69	50			6
	CCGAT									_1										
	R	F S	;	G	S	S	S	G	N	Ť	A	S	L	T	I	Ţ,	G	A	Q	Ç,
	1	6	70			680	l			690			700			7:	LO			7
	GGAAG					L											L			
		D E																		
		7	30			740				750			760			7	70			7
	CGGCGC	GAGG	G A	CCA	AGC	TGA	CCC	TCC	TAC	-G	rgcg	GCC	CA	GAA	CAA	AAA	I C TC	ATC	TCA	G
	G	3 G		T I	K	L	T	V	L	G	A	A	A	E	Q	K	L	I	s	
			00			000				210			070				20		· _	_
			90			800	- 1													8
	AGAgGZ E I																T			
· ·	, E 1	נג י		τA ΄	<i>.</i>	F4.	<u>~ </u>	•-	7.4	•		٠.	£		٧	74				

FIG. 51

Sequence of Y1-Biotag (SEQ ID NO: 211)

1	MEVQLVESGG GVVRPGGSLR LSCAASGFTF DDYGMSWVRQ
41	APGKGLEWVS GINWNGGSTG YADSVKGRFT ISRDNAKNSL
81	YLQMNSLRAE DTAVYYCARM RAPVIWGQGT LVTVSRGGGG
121	SGGGGSGGG SSELTQDPAV SVALGQTVRI TCQGDSLRSY
161	YASWYQQKPG QAPVLVIYGK NNRPSGIPDR FSGSSSGNTA
201	SLTITGAQAE DEADYYCNSR DSSGNNVVFG GGTKLTVLGG
241	GGLNDIFEAO KIEWHE

FIG. 52

Y1-cys-kak scFv (SEQ ID NO. 212)

1 MEVQLVESGG GVVRPGGSLR LSCAASGFTF DDYGMSWVRQ APGKGLEWVS GINWNGGSTG 60

61 YADSVKGRFT ISRDNAKNSL YLQMNSLRAE DTAVYYCARM RAPVIWGQGT LVTVSRGGGG 120

121 SGGGGGGG SSELTQDPAV SVALGQTVRI TCQGDSLRSY YASWYQQKPG QAPVLVIYGK 180

181 NNRPSGIPDR FSGSSSGNTA SLTITGAQAE DEADYYCNSR DSSGNHVVFG GGTKLTVLGG 240

241 GGCKAK