INCIDENCE NUMBERS IN CELLULAR HOMOLOGY

COLTON GRAINGER (SCRIBE) AND SHEN LU (PRESENTER)

This problem is set from Bredon [1, No. IV.11.12]. It demonstrates

- for a CW-complex K, the differential β of the chain complex $C_*^{\text{CW}}(K)$ satisfies $\beta^2=0$, and thus for an n+1 cell σ and an n-1 cell ω , we've $\sum_{\tau} [\omega:\tau][\tau:\sigma]=0$ with τ ranging over all n-cells.

Given. Let K be a CW-complex, with n-skeleton $K^{(n)}$ for $n \geq 0$. Because $K^{(n)}$ contains an open neighborhood around the closed subset $K^{(n-1)}$ that deform retracts onto $K^{(n-1)}$, we know:

- The relative homology $H_*(K^{(n)}, K^{(n-1)})$ is isomorphic to the reduced homology $\tilde{H}_*(K^{(n)}/K^{(n-1)})$.
- The quotient space $K^{(n)}/K^{(n-1)}$ is homeomorphic to the wedge $\vee (I^n/\partial I^{n-1}) \approx \vee S^n$, and thus

$$(1) \qquad H_*(K^{(n)}, K^{(n-1)}) \xrightarrow{\cong} \tilde{H}_*(K^{(n)}/K^{(n-1)}) \xrightarrow{\cong} \tilde{H}_*(\vee(I^n/\partial I^{n-1})) \xrightarrow{\cong} \bigoplus_{n \text{ cells of } K^{(n)}} \tilde{H}_*(S^n).$$

We may define a chain complex $C_*^{\text{CW}}(K)$ associated to K as follows:

- Let the chain group $C_n^{\text{CW}}(K)$ be $H_n(K^{(n)}, K^{(n-1)})$. This is the free abelian group (in the *n*th degree of the graded group) at the end of (1) whose basis is the set of n-cells attached to $K^{(n-1)}$.
- Let the differential $\beta_n \colon C_n^{\mathrm{CW}}(K) \to C_{n-1}^{\mathrm{CW}}(K)$ be the composite

(2)
$$C_n^{\text{CW}}(K) = H_n(K^{(n)}, K^{(n-1)}) \xrightarrow{\delta_n} H_{n-1}(K^{(n-1)}) \xrightarrow{j_{n-1}} H_{n-1}(K^{(n-1)}, K^{(n-2)}) = C_{n-1}^{\text{CW}}(K).$$

In (2), the boundary map δ_n arises from the long exact sequence for the pair $(K^{(n)}, K^{(n-1)})$, and the map of relative homology groups $j_{n-1}: H_{n-1}(K^{(n-1)}) \to H_{n-1}(K^{(n-1)}, K^{(n-2)})$ is induced by the inclusion of skeleta $j: (K^{(n-1)}, \varnothing) \hookrightarrow (K^{(n-1)}, K^{(n-2)}).$

From lecture [2, No. 1.11.3], we know δ_n respects the attaching maps; for an n-cell σ with attaching map $f_{\partial\sigma}$,

$$\delta_n[I_{\sigma}^n] = [f_{\partial\sigma}(\partial I_{\sigma}^n)].$$

And so, the differential β_n can be described with "incidence numbers" [3, No. 8.5]. For an n-cell σ and an n-1 cell τ , define

$$(3) \qquad [\tau:\sigma] := \deg \left(\begin{array}{c} S^{n-1} \xrightarrow{f_{\partial \sigma}} K^{(n-1)} \xrightarrow{\longrightarrow} K^{(n-1)}/K^{(n-2)} \xrightarrow{\approx} \vee S^{n-1} \xrightarrow{\text{find } \tau} S^{n-1} \\ \partial I^n_{\sigma} & I^{n-1}/\partial I^{n-1}_{\sigma} \end{array} \right).$$

To make three comments. First, we take for granted the rule $\sigma \mapsto \sum_{\tau} [\tau : \sigma] \tau$ on generators σ in $C_n^{\text{CW}}(K)$ extends linearly and is the differential β_n in (2). See [1, p. 203]. So write $\beta_n(\sigma) := \sum_{\tau} [\tau : \sigma] \tau$. Second, all but finitely many terms in the sum $\sum_{\tau} [\tau : \sigma] \tau$ must be zero. This is because the compact set ∂I_{σ}^n is

Date: 2019-03-01.

attached by $f_{\partial \sigma}$ to a *compact* subset of $K^{(n-1)}$. Third, the projection p_{τ} that "finds" τ in (3) is the unique map $p_{\tau} \colon K^{(n-1)} \to S^{n-1}$ satisfying:

i. $p_{\tau} \circ f_{\tau} = \gamma_{n-1} = \text{smash product } \gamma \wedge \cdots \wedge \gamma \text{ of } n-1 \text{ copies of the quotient map } \gamma \colon I^1 \to S^1$ ii. $p_{\tau} \circ f_{\tau'} = \text{constant map to base point, for } \tau' \neq \tau.$

Now, we almost done setting up results and rehashing definitions needed to make $C_*^{\text{CW}}(K)$ a chain complex. It remains to argue that the differential β is of order 2, i.e., that $\beta^2 = 0$. So consider the following three long exact sequences in relative homology. (This is Ulrike Tillmann's argument [3, No. 8.6].)

$$(4) \qquad \cdots \longrightarrow H_{n+1}(K^{(n+1)}, K^{(n)}) \xrightarrow{\delta_{n+1}} H_n(K^{(n)}) \longrightarrow H_n(K^{(n+1)}) \longrightarrow \cdots$$

$$\cdots \longrightarrow H_n(K^{(n)}) \xrightarrow{j_n} H_n(K^{(n)}, K^{(n-1)}) \xrightarrow{\delta_n} H_{n-1}(K^{(n-1)}) \longrightarrow \cdots$$

$$\cdots \longrightarrow H_{n-1}(K^{(n-1)}) \xrightarrow{j_{n-1}} H_{n-1}(K^{(n-1)}, K^{(n-2)}) \longrightarrow \cdots$$

Notice $\beta_n \beta_{n+1} = (j_{n-1}\delta_n)(j_n \delta_{n+1}) = j_{n-1}(\delta_n j_n)\delta_{n+1} = 0$, as $\delta_n j_n = 0$ by exactness of the middle row.

To prove. Let K be a CW-complex. For all n+1 cells σ and n-1 cells ω ,

(5)
$$\sum_{\tau} [\omega : \tau][\tau : \sigma] = 0,$$

where τ ranges over all n-cells.

Proof. We require $\beta^2 = 0$, as in (4). We also require $\beta(\sigma) = \sum_{\tau} [\tau : \sigma] \tau$, as discussed after (3). Whence

$$\beta^{2}(\sigma) = \sum_{\tau} [\tau : \sigma] \beta(\tau) \qquad (\beta \text{ is linear})$$

$$= \sum_{\tau} [\tau : \sigma] \sum_{\omega} [\omega : \tau] \omega \qquad (\text{evaluate})$$

$$= \sum_{\tau} [\omega : \tau] [\tau : \sigma] \omega. \qquad (\mathbf{Z} \text{ is a commutative ring})$$

 $C_{n-1}^{\text{CW}}(K)$ is the free abelian group whose basis is the set of n-1 cells in K. So if $\beta^2(\sigma)=0$, then the coefficient $[\omega:\tau][\tau:\sigma]$ of each n-1 cell ω had better be zero. Thus, fixing ω , we conclude $\sum_{\tau}[\omega:\tau][\tau:\sigma]\omega=0$. \square

Remarks.

- i. Here's another way to remember (5) in the case that K is finite. Take the matrices $[\beta_{n+1}]$ and $[\beta_n]$ representing β_{n+1} and β_n with respect to the *finite* bases for $C_{n+1}^{\text{CW}}(K)$ and $C_n^{\text{CW}}(K)$. Because β is order two, $[\beta_n][\beta_{n+1}] = 0$ and (5) follows from matrix multiplication.
- ii. If the coefficient $[\tau : \sigma]$ is the "incidence" of σ to τ , then the matrix $[\beta_n]$ suggests itself as the "incidence matrix" of the differential β_n .
- iii. But the term "incidence matrix" is typically reserved for the following situation: Take the differential $\beta_1 \colon C_1^{\text{CW}}(K) \to C_0^{\text{CW}}(K)$. How does the matrix $[\beta_1]$ describe the directed graph whose vertices are 0-cells in $K^{(0)}$ and whose directed edges are oriented 1-cells in $K^{(1)}$?

References

- [1] G. E. Bredon, $\it Topology~and~Geometry.$ New York: Springer-Verlag, 1993.
- [2] A. Beaudry, "Math 6220 Class Notes." 2019.
- [3] U. Tillmann, "Algebraic Topology Lecture Notes." 2013.