Collaborative Design:

Pro-functors, categorification, and Monoidal categories:

Takeaway: understanding Mathematical theory of co-design (collaborative design) and hence understanding constructs like profunctors, monordal categories and categorifying.

-> understanding collaborative design:

large-scale system is divided into sub-group (& turkher sub-sub-groups), each group working on the a sub project.

co-disign diagram:

- The small boxes can be considered as sub-projects (groups)
- The words wonnecting to the L.H.s of the boxes are requirements and the ones on the R.H.S are produces

And if box A produces requires a resource that box B produces, then A's requirements must be less-than-or-equal-to B's production.

. The box marked Σ correspond to summing inputs. Ex: 4.1

Formalizing:

Fach of the boxes in a co-disign diagram correspond to a feasibility relation (giving an idea about feasibility of a sub-project bound on produce & requirements)

P is the priorder of resources to produced be produced

P is the resources to be required."

Feasibility relation breace defines

The Box says " yes, I can provide p given r" (false)

CP, TE PXR

Feasibility relation hence define a function &: PXR -> Bool.
With two conditions (to make sense)

(a) If $\phi(p,r)$: true and $p' \leq p$, then $\phi(p',r)$ -true

(b) If $\phi(p,r)$ = true and $r \leq r'$, then $\phi(p,r')$ = true