Module 3, Lecture 9

Structure and Reactions of Organic Molecules

Introduction to reaction mechanisms Addition Reactions to Alkenes

James Crowley

jcrowley@chemistry.otago.ac.nz

Dr. Bill Hawkins bhawkins@chemistry.otago.ac.nz

References to Brown et al text shown in BLUE

1

Learning Objectives:

- to have an understanding of addition reactions to alkenes
- · to be able to draw the mechanism of an addition to an alkene
- to be able to determine the major and minor products generated from the addition of acids to unsymmetrical alkenes
- · to be able to identify a bromonium ion

Textbook: Chapter 24, sections 24.4-23.6, Brown

Reactions of multiply bonded functional groups

Addition Reactions of Alkenes (24.4)

electrophile

eg.
$$H_2C=CH_2 + HBr \longrightarrow H_3C-CH_2Br$$

$$H^+ Br^-$$

3

Mechanism

$$+Br$$
 $+ Br$

First step: *Slow* addition of an electrophile (H⁺) to the electron rich double bond perpendicular to the atom plane:

Second step: Fast attack by a nucleophile at the carbocation intermediate:

Mechanism

Rate determining step involves the electrophile (electron seeking)

- electrophilic addition.

rate =
$$k[H^+][H_2C=CH_2]$$

The carbocation intermediate will react with the most abundant nucleophile.

5

Mechanism

н — сі:

Addition to Unsymmetrical C=C

eg.

Two possible pathways:

 2° carbocation is more stable (alkyl groups are electron donating – stabilise +ve charge, refer to $S_{N}\mathbf{1})$

Addition of Cl₂ and Br₂

Nonpolar Cl₂ and Br₂ react readily with alkenes:

$$H_2C=CH_2 + Br_2 \longrightarrow H_2C-CH_2$$

Br

Approach to electron-rich double bond induces dipole character in Br₂ bond:

$$\begin{array}{ccc}
& & & & & & \\
& & & & & \\
& & & & \\
\delta^{+} B r & & & & \\
& & & & \\
H_{2} C = C H_{2} & & & B r
\end{array}$$

9

Addition of Cl₂ and Br₂

Nature of the carbocation

Bromine can share the positive charge

$$H_2C-CH_2 \longleftrightarrow H_2C-CH_2 \longleftrightarrow H_2C-CH_2$$
Early carbocation bromonium ion carbocation

Bromonium ion is significant for symmetrical alkenes

Bromination of Cyclohexene

• Evidence for the bromonium ion

you will learn how to draw cyclohexane in a chair conformation in Module 4

11

Past Exam Q

• Past exam papers are always a good idea!

3. (a) For the following nucleophilic substitution reaction:

(i) Classify (+)-butan-2-ol as primary, secondary or tertiary.

[1 mark]

(ii) What do the symbols (+) and (±) in the reactant and product names

[1 mark]

(iii) With consideration of your answer in part (a)(ii) give a mechanism for the reaction. Show all intermediates and identify the rate determining step.

[3 marks]

(iv) Draw a transition state for the rate determining step and briefly discuss factors that stabilise it.

[2 marks]

(v) Assign the absolute configuration of (+)-butan-2-ol as (R) or (S).

[1 mark]

13

3. (a) For the following nucleophilic substitution reaction:

(i) Classify alcohol (1) as primary, secondary or tertiary.

[1 mark]

(ii) Give a mechanism for the reaction using mechanistic arrows as appropriate. Show all intermediates and identify the rate determining step.

[3 marks]

(iii) Draw a transition state for the rate determining step and briefly discuss the factors that stabilise it.

[3 marks]

(iv) What is the alternative mechanism by which nucleophilic substitution can occur? Explain why would this be unlikely to be operating in the reaction of 1?

[2 marks]

56. Which compound is most likely to be the major product in the following reaction?

14. Which one of these structures is an *E*-isomer?

- 15. Which one of the following statements about nucleophilic substitution reactions is CORRECT?
 - (A) The rate of nucleophilic substitution reactions is not affected by the solvent.
 - $\begin{array}{ll} (B) & \text{An S_N1 reaction proceeds with complete inversion at the reaction centre.} \\ (C) & \text{An S_N2 reaction will be fast at a tertiary carbon due to steric hindrance.} \end{array}$

 - (D) A good leaving group is required for nucleophilic substitution reactions.

16. Which is the most stable carbocation?

15

* Homework *

Chemistry – the central science 3rd Ed Brown et al.

Problems 26.18, 26.19, 26.26

Answers on Blackboard