

Université Internationale de Casablanca

LAUREATE INTERNATIONAL UNIVERSITIES

Test sur un paramètre d'un

modèle

Pr. BOUAMAINE A.

Plan

- 1. Test relatif à une moyenne
- 2. Test relatif à l'écart-type
- 3. Test relatif à une proportion

1. Test relatif à une moyenne

Soit une population possédant un caractère X.

On suppose que X a une distribution de

Gauss de moyenne θ et d'écart type σ .

Test unilatéral

On suppose qu'on hésite entre deux valeurs $\theta 0$

et
$$\theta 1$$
 pour θ . ($\theta 0 < \theta 1$)

$$\begin{cases} H_0 & \theta = \theta_0 \\ H_1 & \theta = \theta_1 \end{cases}$$

Définition

• H0 est appelé hypothèse nulle et H1 est appelé hypothèse alternative.

Principe

 On extrait un échantillon au hasard et on étudie la conformité de notre hypothèse avec les résultats d'expériences.

Principe

• Soit $\vec{x} = (x_1, x_2, \dots, x_n)$ réalisation d'un échantillon aléatoire non exhaustif \vec{X} du caractère X

Estimateur de la moyenne

• $\overline{\mathbf{X}}$ est un estimateur non biais convergent de θ

• Sous H0,
$$L(\overline{X}) = N(\theta_0, \frac{\sigma}{\sqrt{n}})$$

Principe

Cas 1: Ecart-type connu

• Soit
$$U = \frac{\overline{X} - \theta_0}{\frac{\sigma}{\sqrt{n}}}$$

• Sous H0, L(U) = N(0, 1)

Propriété

On a:

$$L\left(\frac{\overline{X} - \theta_0}{\sigma}\right) = N(0, 1)$$

Zone d'acceptabilité et de rejet

On a:

$$P[U < u_{1-\alpha}] = P \left[\overline{X} < \theta_0 + u_{1-\alpha} \frac{\sigma}{\sqrt{n}} \right] = 1 - \alpha$$

Règle de décision

$$\begin{cases} Si & \overline{x} < \theta_0 + u_{1-\alpha} \frac{\sigma}{\sqrt{n}} \\ Si & \overline{x} \ge \theta_0 + u_{1-\alpha} \frac{\sigma}{\sqrt{n}} \end{cases}$$

on accepte H_0 au seuil α

on accpte H_1 au seuil α

- n est la taille de l'échantillon
- σ est l'écart-type de la population supposée
 connu
- $\bar{\chi}$ est la moyenne de l'échantillon

• α seuil de confiance

• u_{1-α} Lu sur la table de Gauss centrée réduite

Vérité	θ0	θ1
Décision		
θ0	Bien	Erreur du 2ème espèce
$\theta 1$	Erreur du 1ère espèce	Bien

Erreur du premier espèce

P ["accepter θ 1 lorsque θ 0 est vrai "]

$$P \left[\begin{array}{c} \frac{\overline{X} - \theta}{\overline{S}} \ge u_{1-\alpha} & lorsque \theta_0 \text{ est vrai} \\ \frac{\overline{S}}{\sqrt{n}} \end{array} \right] = \alpha$$

Erreur du deuxième espèce

P ["accepter $\theta 0$ lorsque $\theta 1$ est vrai "] =

$$P\left[\begin{array}{c} \overline{X} - \theta \\ \overline{\sigma} \end{array} \le u_{1-\alpha} \quad / \quad \theta = \theta_1 \end{array}\right] = \beta$$

P["accepter θ 1 lorsque θ 1 est vrai "]
=1- β

 $\Pi = P[$ "accepter $\theta 1$ lorsque $\theta 1$ est vrai "] =1- β

Soit
$$\lambda = \frac{\theta_0 - \theta_1}{\sigma}$$
On a:
$$\Pi = 1 - \phi \left(\lambda + u_{1-\alpha} \right)$$

 Φ : Fonction de répartition de la loi de gauss centrée réduite

Test bilatéral

$$\begin{cases} H_0 & \theta = \theta_0 \\ H_1 & \theta \neq \theta_0 \end{cases}$$

- α seuil de confiance
- $u_{\alpha/2}$ lu sur la table de N(0,1)

Règle de décision

Si

$$\frac{\left| \overline{x} - \theta_0 \right|}{\frac{\sigma}{\sqrt{p}}} < u_{\frac{\alpha}{2}}$$

on $accepteH_0$ au seuil α

Sinon

on rejette H_0 au seuil α

 $\Pi = P[$ "accepter $\theta 1$ lorsque $\theta 1$ est vrai "] =1- β

 $\Pi = P[$ "accepter $\theta 1$ lorsque $\theta 1$ est vrai "] =1- β

Soit
$$\lambda = \frac{\theta_0 - \theta_1}{\sigma}$$
On a:
$$\Pi = \phi \left(-\lambda - u_{\frac{\alpha}{2}} \right) = \phi \left(\lambda - u_{\frac{\alpha}{2}} \right)$$

 Φ : Fonction de répartition de la loi de gauss centrée réduite

Cas 2: écart-type inconnu

$$\begin{cases} H_0 & \theta = \theta_0 \\ H_1 & \theta \neq \theta_0 \end{cases}$$

Remarque

Comme o est inconnu, il est raisonnable de

remplacer
$$\frac{\sigma}{\sqrt{n}}$$

par un estimateur non biaisé:

Propriété

$$\frac{S}{\sqrt{n-1}}$$
 est un estimateur non biaisé convergent de $\frac{S}{\sqrt{n}}$

Posons

$$T_n = \frac{\overline{X} - \theta_0}{S}$$

$$\sqrt{n-1}$$

Propriété

T_n suit une loi de Student de degré de libertés n-1

• Densité de probabilité de T_{n-1}

On a:

$$P\left[\left|\overline{X} - \theta\right| < t_{\alpha/2} \frac{S}{\sqrt{n-1}}\right] = 1 - \alpha$$

Règle de décision

Si

$$\frac{\left|\overline{x}-\theta_{0}\right|}{\frac{S}{\sqrt{n-1}}} < t_{\frac{\alpha}{2}}$$

on accepte H_0 au seuil α

Si non

on rejette H₀ au seuil α

- n est la taille de l'échantillon
- s est l'écart-type de l'échantillon
- $\bar{\chi}$ est la moyenne de l'échantillon

• α seuil de confiance

• $t_{\alpha/2}$ lu sur la table de Student de degré de liberté n-1

Approximation de la loi de Student

Pour n > 30, la loi de Student peut être par une loi de Gauss centrée réduite

2. Test relatif à un écart type

Soit une population possédant un caractère X. On suppose que X a une distribution de Gauss de m et d'écart type σ .

Test bilatéral

$$\begin{cases} H_0 & \sigma = \sigma_0 \\ H_1 & \sigma \neq \sigma_0 \end{cases}$$

Statistique

Soit
$$T_n = \frac{n S^2}{\sigma_0^2}$$

Sous Ho,
$$L(T_n) = \chi_{n-1}^2$$

Zone d'acceptabilité

On a:

$$P \left| a < \frac{nS^2}{\sigma_0^2} < b \right| = 1 - \alpha$$

Règle de décision

$$\mathbf{Si} \qquad \mathbf{s}^2 \in \left] \frac{\mathbf{a}\sigma_0^2}{\mathbf{n}}, \frac{\mathbf{b}\sigma_0^2}{\mathbf{n}} \right[$$

on accpte H_0 au seuil α

Si non

on rejette H₀ au seuil α

- n : taille de l'échantillon
- α seuil de confiance
- s² : variance de l'échantillon
- a, b lus sur la table de khi-deux de degrés de liberté n-1

Approximation de la loi de khideux

• Pour n suffisamment grand,

$$L\left(\sqrt{2\chi_{n-1}^2}\right) = N\left(\sqrt{2n-1},1\right)$$

3. Test relatif à une proportion

 Soit p la proportion des individus d'une population ayant une propriété A donnée

Hypothèses

$$egin{cases} H_0 \ H_1 \end{cases}$$

$$p = p_0$$

$$p \neq p_0$$

Echantillonnage

On extrait un échantillon au hasard non exhaustif de taille n, k individus de cet échantillon possèdent la propriété A.

Propriété

• k est une réalisation d'une var Kn.

On a: L(K) = B(n, p)

Statistique

• Posons:
$$T_n = \frac{\frac{R}{n} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$

• Sous Ho, L (Tn) = N (0, 1)

Densité de probabilité de N (0, 1)

Propriété

• On a:

$$\left[P \mid T_n \mid < u_{\alpha/2} \right] = 1 - \alpha$$

Zone d'acceptabilité

$$P\left[\left|T_{n}\right| < u_{\alpha/2}\right] = P \qquad \left[\begin{array}{c} \frac{K}{n} - p_{0} \\ \frac{N}{n} - p_{0} \\ \sqrt{\frac{p_{0}(1 - p_{0})}{n}} < u_{\frac{\alpha}{2}} \end{array}\right] = 1 - \alpha$$

Règle de décision

$$\frac{\left|\frac{\mathbf{k}}{\mathbf{n}} p_0\right|}{\sqrt{\frac{\mathbf{p}(1-\mathbf{p})}{\mathbf{n}}}} < \mathbf{u}_{\frac{\mathbf{p}}{2}}$$

on accpteHo au seuila

Sinon

on rejetteH₀ au seuilα

- n: taille de l'échantillon
- k le nombre d'individus de l'échantillon ayant la propriété A
- α seuil de confiance
- p0 : paramètre à tester
- u_{α/2} Lu sur la table de Gauss centré-réduite