Project Specifications

WiMax PHY—Channel Coding

1. Introduction

In this project, you are required to implement part of the PHY layer of a WiMax system; namely "Channel Coding" (QPSK only) as described in section 8.4.9 in WiMax Standard (IEEE Std 802.16-2007). This part of the standard is explained in this document with some numeric examples. WiMax PHY including "Channel Coding" has different parameters that are set by the MAC layer. There are five different blocks within the "Chanel Coding", each has different parameters that might require several implementations. In this project you are only required to implement one implementation per block.

Figure 3: Overview of PHY Layer functions in a typical WiMAX base station

2. Channel Coding¹

- Channel coding procedures include:
 - 1. Randomization (see 8.4.9.1).
 - 2. FEC encoding (see 8.4.9.2).
 - 3. Bit interleaving (see 8.4.9.3).
 - 4. Repetition (see 8.4.9.5), only applied to QPSK modulation.
 - 5. Modulation (see 8.4.9.4).
 - 6. Orthogonal Frequency Division Multiple Access (OFDMA); Inverse Fast Fourier Transform (iFFT)

¹ See section (8.4.9)

Randomizer²

A. Initializing Randomization

- The randomization is initialized on each FEC block.
- If the amount of data to transmit does not fit exactly the amount of data allocated, padding of 0xFF ("1" only) shall be added to the end of the transmission block, up to the amount of data allocated.
 - \circ Here, the amount of data allocated means the amount of data that corresponds to the amount of $\lfloor N_s / R \rfloor$ slots, where N_s is the number of the slots allocated for the data burst and R is the repetition factor used.

B. RTL Requirements

- The PRBS generator shall be $1 + X^{14} + X^{15}$ as shown in Figure 253.
- Each data byte to be transmitted shall enter sequentially into the randomizer, MSB first.
- The seed value shall be used to calculate the randomization bits, which are combined in an XOR operation with the serialized bit stream of each FEC block.

Figure 253—PRBS generator for data randomization

- The randomizer is initialized with the vector:
 - o [LSB] 0 1 1 0 1 1 1 0 0 0 1 0 1 0 1 [MSB].
- The bit issued from the randomizer shall be applied to the encoder.
- The randomizer block should be implemented using the block diagram below. The block has a 50 MHz clock and an asynchronous reset. The input "rand_in_ready" is asserted when there is a valid input data "rand_in". The output "rand_out_valid" is asserted when there a valid data

_

² Section 8.4.9.1 in the standard

C. Testbench Gold Data:

- Number of symbols Ns = 2 symbols
- Symbol size = 48 bits
- Block size = Ns * 48 = 96 bits
- Input Data (Hex):
 - o AC BC D2 11 4D AE 15 77 C6 DB F4 C9
- Randomized Data (Hex):
 - o 55 8A C4 A5 3A 17 24 E1 63 AC 2B F9

802.16 e

Ns = 2 slots 96 bits Initialized vector 011 0111 0001 0101

N	Shi	ft Re	gister													ХО	Data	a in	Data out	a
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	R #1	0x	0b	0b	0x
1	0	1	1	0	1	1	1	0	0	0	1	0	1	0	1	1		1	0	
2	1	0	1	1	0	1	1	1	0	0	0	1	0	1	0	1	A	0	1	5
3	1	1	0	1	1	0	1	1	1	0	0	0	1	0	1	1	Α	1	0	3
4	1	1	1	0	1	1	0	1	1	1	0	0	0	1	0	1		0	1	
5	1	1	1	1	0	1	1	0	1	1	1	0	0	0	1	1		1	0	
6	1	1	1	1	1	0	1	1	0	1	1	1	0	0	0	0	С	1	1	5
7	0	1	1	1	1	1	0	1	1	0	1	1	1	0	0	0		0	0	3
8	0	0	1	1	1	1	1	0	1	1	0	1	1	1	0	1		0	1	
9	1	0	0	1	1	1	1	1	0	1	1	0	1	1	1	0		1	1	
10	0	1	0	0	1	1	1	1	1	0	1	1	0	1	1	0	В	0	0	8
11	0	0	1	0	0	1	1	1	1	1	0	1	1	0	1	1	D	1	0	0
12	1	0	0	1	0	0	1	1	1	1	1	0	1	1	0	1		1	0	
13	1	1	0	0	1	0	0	1	1	1	1	1	0	1	1	0		1	1	
14	0	1	1	0	0	1	0	0	1	1	1	1	1	0	1	1	С	1	0	Α
15	1	0	1	1	0	0	1	0	0	1	1	1	1	1	0	1		0	1	1.
16	1	1	0	1	1	0	0	1	0	0	1	1	1	1	1	0		0	0	
17	0	1	1	0	1	1	0	0	1	0	0	1	1	1	1	0		1	1	
18	0	0	1	1	0	1	1	0	0	1	0	0	1	1	1	0	D	1	1	С
19	0	0	0	1	1	0	1	1	0	0	1	0	0	1	1	0		0	0	
20	0	0	0	0	1	1	0	1	1	0	0	1	0	0	1	1		1	0	
21	1	0	0	0	0	1	1	0	1	1	0	0	1	0	0	0	2	0	0	4

22	0	1	0	0	0	0	1	1	0	1	1	0	0	1	0	1		0	1	
23 24	1 1	0	1	0	0	0	0	1	1 1	0 1	1	1 1	0 1	0	1	1 0		1 0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	
25	0	1 1	1	$\frac{1}{0}$	0	$\frac{0}{0}$	0	$\frac{0}{0}$	0	1	0	0	1	1	$\frac{0}{0}$	1		0	1	
26	1	0	1	1	0	1	0	0	0	0	1	1	0	1	1	0	1	0	0	A
27 28	0	1 0	0 1	1 0	1 1	0 1	1 0	0 1	0	0	0	1	1	0 1	1 0	1 1		0	1 0	71
29	1	1	0	1	0	1	1	0	1	0	0	0	0	1	1	0		0	0	
30	0	1	1	0	1	0	1	1	0	1	0	0	0	0	1	1	1	0	1	5
31	1	0	1	1	0	1	0	1	1	0	1	0	0	0	0	0	1	0	0	
32	0	$\frac{1}{0}$	0	$\frac{1}{0}$	1	<u>0</u> 1	$\frac{1}{0}$	$\frac{0}{1}$	$\frac{1}{0}$	1	0	$\frac{1}{0}$	<u>0</u> 1	$\frac{0}{0}$	$\frac{0}{0}$	0		0	0	
34	0	0	0	1	0	1	1	0	1	0	1	1	0	1	0	1		1	0	
35	1	0	0	0	1	0	1	1	0	1	0	1	1	0	1	1	4	0	1	3
36	1	1	0	0	0	1	0	1	1	0	1	0	1	1	0	1		0	1	
37	1	1	1	0	0	0	1	0	1	1	0	1	0	1	1	0		1	1	
38 39	0	1 0	1 1	1 1	0 1	0	0	1 0	0 1	1 0	1 1	0 1	1 0	0 1	1 0	1 1	D	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	0	A
40	1	1	0	1	1	1	0	0	0	1	0	1	1	0	1	1		1	0	
41	1	1	1	0	1	1	1	0	0	0	1	0	1	1	0	1		1	0	
42	1	1	1	1	0	1	1	1	0	0	0	1	0	1	1	0	Α	0	0	1
43 44	0	1 0	1 1	1	1 1	0 1	1 0	1 1	1 1	0 1	0	0	1 0	0 1	1	1 1		1 0	0	
45	1	1	0	1	1	1	1	0	1	1	1	0	0	0	1	1		1	0	
46	1	1	1	0	1	1	1	1	0	1	1	1	0	0	0	0	Е	1	1	7
47	0	1	1	1	0	1	1	1	1	0	1	1	1	0	0	0	L	1	1	
48	0	0	$\frac{1}{0}$	1	1 1	0	0	1	1	1	0	$\frac{1}{0}$	1	1	0	1		0	0	
50	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 1	0	1 0	1	1	1	0	1	1	1 1	1	0	1	1	0		0	0	
51	0	0	1	0	0	1	1	1	0	1	1	1	1	0	1	1	1	0	1	2
52	1	0	0	1	0	0	1	1	1	0	1	1	1	1	0	1		1	0	
53	1	1	0	0	1	0	0	1	1	1	0	1	1	1	1	0		0	0	
54 55	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1 0	1 1	0 1	0	1 0	0 1	0	1 0	1	1 1	0 1	1 0	1 1	1 1	0	5	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	4
56	0	0	0	1	1	0	0	1	0	0	1	1	1	0	1	1		1	0	
57	1	0	0	0	1	1	0	0	1	0	0	1	1	1	0	1		0	1	
58	1	1	0	0	0	1	1	0	0	1	0	0	1	1	1	0	7	1	1	Е
59 60	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1 0	1 1	0 1	0	0	1 0	1 1	0 1	0	1 0	0 1	0	1 0	1 1	0		1 1	1 0	
61	1	0	0	1	1	0	0	0	1	1	0	0	1	0	0	0		0	0	
62	0	1	0	0	1	1	0	0	0	1	1	0	0	1	0	1	7	1	0	1
63	1	0	1	0	0	1	1	0	0	0	1	1	0	0	1	1	/	1	0	1
64	1	1	0	1	0	0	1	1	0	0	0	1	1	0	0	0		1	1	
65 66	0	1 0	1 1	0 1	1 0	0 1	0	1 0	1 1	0 1	0	0	1 0	1 1	0 1	1 0		1 1	0	
67	0	1	0	1	1	0	1	0	0	1	1	0	0	0	1	1	С	0	1	6
68	1	0	1	0	1	1	0	1	0	0	1	1	0	0	0	0		0	0	

69	0	1	0	1	0	1	1	0	1	0	0	1	1	0	0	0		0	0	
70	0	0	1	0	1	0	1	1	0	1	0	0	1	1	0	1	_	1	0	2
71	1	0	0	1	0	1	0	1	1	0	1	0	0	1	1	0	6	1	1	3
72	0	1	0	0	1	0	1	0	1	1	0	1	0	0	1	1		0	1	
73	1	0	1	0	0	1	0	1	0	1	1	0	1	0	0	0		1	1	
74	0	1	0	1	0	0	1	0	1	0	1	1	0	1	0	1		1	0	
75	1	0	1	0	1	0	0	1	0	1	0	1	1	0	1	1	D	0	1	Α
76	1	1	0	1	0	1	0	0	1	0	1	0	1	1	0	1		1	0	
77	1	1	1	0	1	0	1	0	0	1	0	1	0	1	1	0		1	1	
78	0	1	1	1	0	1	0	1	0	0	1	0	1	0	1	1	D	0	1	
79	1	0	1	1	1	0	1	0	1	0	0	1	0	1	0	1	В	1	0	С
80	1	1	0	1	1	1	0	1	0	1	0	0	1	0	1	1		1	0	
81	1	1	1	0	1	1	1	0	1	0	1	0	0	1	0	1		1	0	
82	1	1	1	1	0	1	1	1	0	1	0	1	0	0	1	1	Г	1	0	
83	1	1	1	1	1	0	1	1	1	0	1	0	1	0	0	0	F	1	1	2
84	0	1	1	1	1	1	0	1	1	1	0	1	0	1	0	1		1	0	
85	1	0	1	1	1	1	1	0	1	1	1	0	1	0	1	1		0	1	
86	1	1	0	1	1	1	1	1	0	1	1	1	0	1	0	1	1	1	0	D
87	1	1	1	0	1	1	1	1	1	0	1	1	1	0	1	1	4	0	1	В
88	1	1	1	1	0	1	1	1	1	1	0	1	1	1	0	1		0	1	
89	1	1	1	1	1	0	1	1	1	1	1	0	1	1	1	0		1	1	
90	0	1	1	1	1	1	0	1	1	1	1	1	0	1	1	0		1	1	E
91	0	0	1	1	1	1	1	0	1	1	1	1	1	0	1	1	С	0	1	F
92	1	0	0	1	1	1	1	1	0	1	1	1	1	1	0	1		0	1	
93	1	1	0	0	1	1	1	1	1	0	1	1	1	1	1	0		1	1	
94	0	1	1	0	0	1	1	1	1	1	0	1	1	1	1	0		0	0	9
95	0	0	1	1	0	0	1	1	1	1	1	0	1	1	1	0	9	0	0	9
96	0	0	0	1	1	0	0	1	1	1	1	1	0	1	1	0		1	1	
																	•	•		

FEC Encoder³

A. Tail-Biting Convolutional Coding

- The coding method used as the mandatory scheme will be the tail-biting convolutional encoding specified in 8.4.9.2.1.
- The encoding block size shall depend on the number of slot allocated and the modulation specified for the current transmission.
- Concatenation of a number of slots shall be performed in order to make larger blocks of coding where it is possible, with the limitation of not exceeding the largest supported block size for the applied modulation and coding.
- Table 318 specifies the concatenation of slots for different allocations and modulations.
- The parameters in Table 317 and Table 318 shall apply to the CC encoding scheme (see 8.4.9.2.1).

B. Definitions

- For any modulation and FEC rate, given an allocation of *n* slots, the following parameters are defined:
 - o j: parameter dependent on the modulation and FEC rate
 - o *n*: floor(number of allocated slots * STC rate/(repetition factor * number of STC layers))

$$k: \left\lfloor \frac{n}{j} \right\rfloor$$

- o m: n modulo j
- Table 317 shows the rules used for slot concatenation.

Table 317—Slots concatenation rule

Number of slots	Slots concatenated
$n \le j$	1 block of <i>n</i> slots
n > j	If $(n \mod j = 0)$ $k \text{ blocks of } j \text{ slots}$ else $(k-1) \text{ blocks of } j \text{ slots}$ $1 \text{ block of } \left[\frac{m+j}{2}\right] \text{ slots}$ $1 \text{ block of } \left[\frac{m+j}{2}\right] \text{ slots}$

-

³ 8.4.9.2

Table 318—Encoding slot concatenation for different allocations and modulations

Modulation and rate	j
QPSK 1/2	<i>j</i> = 6
QPSK 3/4	j = 4
16-QAM 1/2	j = 3
16-QAM 3/4	j=2
64-QAM 1/2	j=2
64-QAM 2/3	j = 1
64-QAM 3/4	j = 1

Example 2a:

• From Example 1, we have QPSK with rate ½.

$$j = 6,$$
 $n = \left\lfloor \frac{N_s}{R} \right\rfloor = \left\lfloor \frac{2}{1} \right\rfloor = 2$ \Rightarrow $n \le j$

- o 1 block of 2 slots:
 - A block of $48 \times 2 = 96$ bits (12 bytes).

Example 2b:

• If we have $N_s = 12$, R = 1, and we use QPSK.

$$j = 6, n = \left\lfloor \frac{N_s}{R} \right\rfloor = \left\lfloor \frac{12}{1} \right\rfloor = 12$$
 \Rightarrow $n > j, k = \left\lfloor \frac{n}{j} \right\rfloor = \left\lfloor \frac{12}{6} \right\rfloor = 2, m = 0$

- o 2 block of 6 slots:
 - 2 blocks of $48 \times 6 = 288$ bits (36 bytes).

C.

Convolutional Coding⁴

• Each FEC block is encoded by the binary convolutional encoder, which shall have native rate of 1/2, a constraint length equal to K = 7, and shall use the following generator polynomials codes to derive its two code bits:

$$G_1 = 171_{OCT};$$
 For X
 $G_2 = 133_{OCT};$ For Y (125)

• The generator is depicted in Figure 255.

Figure 255—Convolutional encoder of rate 1/2

Puncturing

- The puncturing patterns and serialization order that shall be used to realize different code rates are defined in Table 319.
- In the table, "1" means a transmitted bit and "0" denotes a removed bit, whereas *X* and *Y* are in reference to Figure 255.

-

^{4 8.4.9.2.1}

Table 319—The convolutional code with

ion

		Code Rat	tes
Rate	1/2	2/3	3/4
d_{free}	10	6	5
X	1	10	101
Y	1	11	110
XY	X_1Y_1	$X_1Y_1Y_2$	$X_1Y_1Y_2X_3$

Example 3:

• The figure below shows a puncturing encoder of rate 2/3.

Figure 255b—Convolutional encoder of rate 2/3. The blocks inside are same as in Figure 255.

Tail-Biting Convolutional Coding

• Each FEC block is encoded by a tail-biting convolutional encoder, which is achieved by initializing the encoders' memory with the last data bits of the FEC block being encoded (the packet data bits numbered $b_{n-5}...b_n$).

Example:

- For example, assume that the last data bits in an FEC block are ... 0100 0110.
 - o Then the shift register is initialized as shown in Figure 255c.

Figure 255c—Initialization example.

- The idea behind this is to make it as if the data are wrapped around itself.
- Table 320 defines the basic sizes of the useful data payloads to be encoded in relation with the selected modulation type and encoding rate and concatenation rule.

Table 320—Useful data payload for a FEC block

	QP	SK	16 Ç	QAM		64 QAM	-
Encoding rate	R=1/ 2	R=3/ 4	R=1/ 2	R=3/ 4	R=1/ 2	R=2/	R=3/4
Data	6						
payload (bytes)		9					
(bytes)	12		12				
	18	18		18	18		
	24		24			24	
		27					27
	30						
	36	36	36	36	36		

• Notice from Table 318:

- O QPSK $\frac{1}{2}$ has a j = 6, that is why there are 6 different payloads for this modulation and rate in Table 320.
- O QPSK $\frac{3}{4}$ has a j = 4, that is why there are 4 different payloads for this modulation and rate in Table 320.

• Notice from Table 320:

- OPSK $\frac{1}{2}$ with 6 bytes data payload will be encoded to 12 bytes and modulated to 12/2 = 6 pairs (1 slot).
- OPSK $\frac{1}{2}$ with 12 bytes data payload will be encoded to 24 bytes and modulated to 24/2 = 12 pairs (2 slots).
- O QPSK $\frac{1}{2}$ with 36 bytes data payload will be encoded to 72 bytes and modulated to $\frac{72}{2} = 36$ pairs (6 slots).
- OPSK $\frac{3}{4}$ with 9 bytes data payload will be encoded to $9 \times \frac{4}{3} = 12$ bytes and modulated to 6 pairs (1 slot).
- O QPSK $\frac{3}{4}$ with 36 bytes data payload will be encoded to $\frac{36 \times \frac{4}{3} = 48}{3}$ bytes and modulated to 24 pairs (4 slots).

D. RTL Implementation Requirements

- Using randomized data from Example 1 with coding rate = $\frac{1}{2}$ and block size of 12 bytes (96 bits):
- For every input bit there is a corresponding 2 output bits, X and Y coming out sequentially. For a block of a sequential 96 bits there is a corresponding 192 sequential output bits at double the input data rate.
- This block require two input clocks
 - o A 50 MHz clock for the incoming data are serial data at 50 MHz
 - o A 100 MHz output data has double the data rate and they will be at 100 MHz
 - O Use a PLL to generate a 100 MHz clock from a 50 MHz reference clock.
- Use finite state machine to implement the required tail-biting.

• The code should be designed for a multiple input blocks each of 96 bits.

E. Testbench gold data

- Randomized Data (Hex):
 - o 55 8A C4 A5 3A 17 24 E1 63 AC 2B F9
- Convolutional Encoded Data (Hex):
 - O 28 33 E4 8D 39 20 26 D5 B6 DC 5E 4A F4 7A DD 29 49 4B 6C 89 15 13 48 CA

802.	802.16 e Convolutional Coding, Tail-Biting														
Conv	volution	al Codin	g, Ta	ail-B	iting	5									
No	Data	Data	Sh	ift R	egist	er			Y	X	D	.4	4		HEX
NO	in HEX	in	1	2	3	4	5	6	Y	Λ	Da	ata c	out		нел
1		0	1	0	0	1	1	1	0	0	0	0	1	0	2
2	5	1	0	1	0	0	1	1	0	1	U	U	1	U	2
3]	0	1	0	1	0	0	1	0	1	1	0	0	0	8
4		1	0	1	0	1	0	0	0	0	1	U	U	U	o
5		0	1	0	1	0	1	0	0	0	0	0	1	1	3
6	5	1	0	1	0	1	0	1	1	1	U	U	1	1	3
7]	0	1	0	1	0	1	0	0	0	0	0	1	1	3
8		1	0	1	0	1	0	1	1	1	U	U	1	1	3
9		1	1	0	1	0	1	0	1	1	1	1	1	0	Е
10	8	0	1	1	0	1	0	1	0	1	1	1	1	U	L
11	0	0	0	1	1	0	1	0	1	0	0	1	0	0	4
12		0	0	0	1	1	0	1	0	0	U	1	U	U	4
13		1	0	0	0	1	1	0	0	1	1	0	0	0	8
14	A	0	1	0	0	0	1	1	0	0	1	U	U	U	8
15	Λ	1	0	1	0	0	0	1	1	1	1	1	0	1	D
16		0	1	0	1	0	0	0	1	0	1		U	1	D
17		1	0	1	0	1	0	0	0	0	0	0	1	1	3
18	С	1	1	0	1	0	1	0	1	1		U	1	1	3
19		0	1	1	0	1	0	1	0	1	1	0	0	1	9
20		0	0	1	1	0	1	0	1	0	•				,
21		0	0	0	1	1	0	1	0	0	0	0	1	0	2
22	4	1	0	0	0	1	1	0	0	1		Ü	•	Ü	_
23		0	1	0	0	0	1	1	0	0	0	0	0	0	0
24		0	0	1	0	0	0	1	0	0		J	J	J	
25		1	0	0	1	0	0	0	0	0	0	0	1	0	2
26	A	0	1	0	0	1	0	0	0	1		Ü	•	Ü	_
27		1	0	1	0	0	1	0	1	0	0	1	1	0	6

28		0	1	0	1	0	0	1	0	1					
29		0	0	1	0	1	0	0	1	1	1	1		1	D
30	_	1	0	0	1	0	1	0	1	0	1	1	0	1	D
31	5	0	1	0	0	1	0	1	1	0		1	0	1	-
32		1	0	1	0	0	1	0	1	0	0	1	0	1	5
33		0	1	0	1	0	0	1	0	1	1	0	1	1	D
34	2	0	0	1	0	1	0	0	1	1	1	0	1	1	В
35	3	1	0	0	1	0	1	0	1	0	_	1	1	Λ	6
36		1	1	0	0	1	0	1	0	1	0	1	1	0	6
37		1	1	1	0	0	1	0	1	1	1	1	0	1	D
38	_	0	1	1	1	0	0	1	1	0	1	1	U	1	ט
39	A	1	0	1	1	1	0	0	1	1	1	1	0	0	C
40		0	1	0	1	1	1	0	0	0	1	1	U	U	C
41		0	0	1	0	1	1	1	1	0	0	1	0	1	5
42	1	0	0	0	1	0	1	1	1	0		1	U	1	3
43	1	0	0	0	0	1	0	1	1	1	1	1	1	0	Е
44		1	0	0	0	0	1	0	0	1	•				L
45		0	1	0	0	0	0	1	1	0	0	1	0	0	4
46	7	1	0	1	0	0	0	0	0	0		•	Ů	Ü	•
47	,	1	1	0	1	0	0	0	0	1	1	0	1	0	A
48		1	1	1	0	1	0	0	0	1					
49		0	1	1	1	0	1	0	1	1	1	1	1	1	F
50	2	0	0	1	1	1	0	1	1	1					
51		1	0	0	1	1	1	0	1	0	0	1	0	0	4
52		0	1	0	0	1	1	1	0	0					
53		0	0		0	0			1	0	0	1	1	1	7
54 55	4	1 0	0	0	1	0 1	0	1	1 0	1 1					
56		0	0	1	0	0	1	0	0	1	1	0	1	0	A
57		1	0	0	1	0	0	1	1	1					
58		1	1	0	0	1	0	0	1	0	1	1	0	1	D
59	Е	1	1	1	0	0	1	0	1	1					
60		0	1	1	1	0	0	1	1	0	1	1	0	1	D
61		0	0	1	1	1	0	0	0	0					
62	_	0	0	0	1	1	1	0	0	1	0	0	1	0	2
63	1	0	0	0	0	1	1	1	0	1	_	•			
64		1	0	0	0	0	1	1	1	0	1	0	0	1	9
65		0	1	0	0	0	0	1	1	0	_	1	^	^	4
66		1	0	1	0	0	0	0	0	0	0	1	0	0	4
67	6	1	1	0	1	0	0	0	0	1	1	0	Ω	1	0
68		0	1	1	0	1	0	0	1	0	1	0	0	1	9
69		0	0	1	1	0	1	0	1	0	0	1	0	0	4
70	3	0	0	0	1	1	0	1	0	0	U	1	U	U	4
71		1	0	0	0	1	1	0	0	1	1	0	1	1	В
72		1	1	0	0	0	1	1	1	1	1	U	1	1	ע
73	A	1	1	1	0	0	0	1	1	0	0	1	1	0	6
74	<i>1</i> 1	0	1	1	1	0	0	0	0	1		1	1	J	

1															
75		1	0	1	1	1	0	0	1	1	1	1	0	0	С
76		0	1	0	1	1	1	0	0	0	1	1	0	U	C
77		1	0	1	0	1	1	1	0	1	1	0	0	0	8
78	С	1	1	0	1	0	1	1	0	0	1	U	U	U	o
79		0	1	1	0	1	0	1	0	1	1	0	0	1	9
80		0	0	1	1	0	1	0	1	0	1	U	U	1	9
81		0	0	0	1	1	0	1	0	0	0	0	0	1	1
82	2	0	0	0	0	1	1	0	1	0	U	U	U	1	1
83	2	1	0	0	0	0	1	1	1	0	0	1	0	1	5
84		0	1	0	0	0	0	1	1	0	U	1	U	1	3
85		1	0	1	0	0	0	0	0	0	0	0	Λ	1	1
86	D	0	1	0	1	0	0	0	1	0	U	U	0	1	1
87	В	1	0	1	0	1	0	0	0	0	0	0	1	1	3
88		1	1	0	1	0	1	0	1	1	U	U	1	1	3
89		1	1	1	0	1	0	1	1	0	0	1	Λ	0	4
90	Е	1	1	1	1	0	1	0	0	0	0	1	0	0	4
91	F	1	1	1	1	1	0	1	0	1	1	Λ	Λ	0	O
92		1	1	1	1	1	1	0	0	0	1	0	0	U	8
93		1	1	1	1	1	1	1	1	1	1	1	Λ	Λ	C
94	0	0	1	1	1	1	1	1	0	0	1	1	0	0	С
95	9	0	0	1	1	1	1	1	0	1	1	0	1	0	
96		1	0	0	1	1	1	1	0	1	1	0	1	0	A

Interleaving⁵

- All encoded data bits shall be interleaved by a block interleaver with a block size corresponding to the number of coded bits per the encoded block size $N_{\rm chos}$.
- The interleaver is defined by a two step permutation.
 - o The first ensures that adjacent coded bits are mapped onto nonadjacent subcarriers.
 - The second permutation insures that adjacent coded bits are mapped alternately onto less or more significant bits of the constellation, thus avoiding long runs of lowly reliable bits.
- Let N_{cpc} be the number of coded bits per subcarrier.
 - That is: 2, 4, or 6 for QPSK, 16-QAM or 64-QAM, respectively.
- Let $s = N_{\rm cpc}/2$.
- Within a block of N_{cbbs} bits at transmission, let:
 - o k be the index of the coded bit before the first permutation,
 - o m_k be the index of that coded bit after the first and before the second permutation,
 - o j_k be the index after the second permutation, just prior to modulation mapping, and
 - o d be the modulo used for the permutation.
- The first permutation is defined by Equation (130):

$$m_k = \frac{N_{\text{cbps}}}{d} \cdot k_{\text{mod}(d)} + \left\lfloor \frac{k}{d} \right\rfloor; \quad k = 0, 1, ..., N_{\text{cbps}} - 1, \quad d = 16$$
 (130)

• The second permutation is defined by Equation (131):

$$j_k = s \cdot \left\lfloor \frac{m_k}{s} \right\rfloor + \left(m_k + N_{\text{cbps}} - \left\lfloor \frac{d \cdot m_k}{N_{\text{cbps}}} \right\rfloor \right)_{\text{mod}(s)}; \quad k = 0, 1, \dots, N_{\text{cbps}} - 1, \quad d = 16$$

(131)

A. RTL Implementation

• Refer to Example 1.

$$\begin{aligned} \mathbf{o} & N_{\text{cbps}} = 192 \text{ bits, } N_{\text{cpc}} = 2 \text{ bits, } s = 1. \\ m_k &= \frac{192}{16} \cdot k_{\text{mod}(16)} + \left\lfloor \frac{k}{16} \right\rfloor = 12 \cdot k_{\text{mod}(16)} + \left\lfloor \frac{k}{16} \right\rfloor; \qquad k = 0,1,...,191. \\ j_k &= \left\lfloor m_k \right\rfloor + \left(m_k + 192 - \left\lfloor \frac{16 \cdot m_k}{192} \right\rfloor \right)_{\text{mod}(1)} = m_k; \qquad k = 0,1,...,191. \end{aligned}$$

• Notice that here $j_k = m_k$. That is only one permutation.

_

^{5 8.4.9.3}

B. Testbench Gold data

802.	16 e							
Bit I	nterleav	ing, s =	1					
No	Data in HE X	Data in DE C	Dat a in	kmod1	mk	mk	Data out	HEX
0 1 2 3	2	2	0 0 1 0	0 1 2 3	0 12 24 36	0 1 2 3	0 1 0 0	4
4 5 6 7	8	8	1 0 0 0	4 5 6 7	48 60 72 84	4 5 6 7	1 0 1 1	В
8 9 10 11	3	3	0 0 1 1	8 9 10 11	96 108 120 132	8 9 10 11	0 0 0	0
12 13 14 15	3	3	0 0 1 1	12 13 14 15	144 156 168 180	12 13 14 15	0 1 0 0	4
16 17 18 19	Е	14	1 1 1 0	0 1 2 3	1 13 25 37	16 17 18 19	0 1 1 1	7
20 21 22 23	4	4	0 1 0 0	4 5 6 7	49 61 73 85	20 21 22 23	1 1 0 1	D
24 25 26 27	8	8	1 0 0 0	8 9 10 11	97 109 121 133	24 25 26 27	1 1 1	F
28 29 30 31	D	13	1 1 0 1	12 13 14 15	145 157 169 181	28 29 30 31	1 0 1 0	A
32 33 34	3	3	0 0 1	0 1 2	2 14 26	32 33 34	0 1 0	4

35			1	3	38	35	0	
36			1	4	50	36	0	
37			0	5	62	37	0	
38	9	9	0	6	74	38	1	2
39			1	7	86	39	0	
40			0	8	98	40	1	
41			0	9	110	41	1	Г
42	2	2	1	10	122	42	1	F
43			0	11	134	43	1	
44			0	12	146	44	0	
45			0	13	158	45	0	
46	0	0	0	14	170	46	1	2
47			0	15	182	47	0	
48			0	0	3	48	1	
49	2	1	0	1	15	49	0	
50	2	2	1	2	27	50	1	A
51			0	3	39	51	0	
52			0	4	51	52	0	
53			1	5	63	53	1	_
54	6	6	1	6	75	54	0	5
55			0	7	87	55	1	
56			1	8	99	56	1	
57	Ъ	12	1	9	111	57	1	D
58	D	13	0	10	123	58	0	D
59			1	11	135	59	1	
60			0	12	147	60	0	
61	_	_	1	13	159	61	1	_
62	5	5	0	14	171	62	0	5
63			1	15	183	63	1	
64			1	0	4	64	1	
65	D	11	0	1	16	65	1	Б
66	В	11	1	2	28	66	1	F
67			1	3	40	67	1	
68			0	4	52	68	0	
69	6	6	1	5	64	69	1	6
70	0	0	1	6	76	70	1	0
71			0	7	88	71	0	
72			1	8	100	72	0	
73	D	13	1	9	112	73	0	1
74	D	13	0	10	124	74	0	1
75			1	11	136	75	1	
76			1	12	148	76	1	
77	С	12	1	13	160	77	1	С
78		14	0	14	172	78	0	
79			0	15	184	79	0	
80			0	0	5	80	0	
81	5	5	1	1	17	81	0	0

82			0	2	29	82	0	
83			1	3	41	83	0	
84			1	4	53	84	0	
85			1	5	65	85	0	
86	Е	14	1	6	77	86	1	2
87			0	7	89	87	0	
88			0	8	101	88	0	
89			1	9	113	89	0	
90	4	4	0	10	125	90	0	1
91			0	11	137	91	1	
92			1	12	149	92	1	
93			0	13	161	93	0	
94	Α	10	1	14	173	94	1	A
95			0	15	185	95	0	
96			1	0	6	96	0	
97	_		1	1	18	97	1	_
98	F	15	1	2	30	98	0	5
99			1	3	42	99	1	
10								
0			0	4	54	100	1	
10								
1			1	5	66	101	0	0
10	4	4						8
2			0	6	78	102	0	
10								
3			0	7	90	103	0	
10								
4			0	8	102	104	0	
10								
5	7	7	1	9	114	105	1	5
10	/	,						3
6			1	10	126	106	0	
10								
7			1	11	138	107	1	
10						40-		
8			1	12	150	108	0	
10				1.0	4.55	400		
9	A	10	0	13	162	109	0	1
11				1.4	15.	110		
0			1	14	174	110	0	
11				1.5	106	111	1	
1			0	15	186	111	1	
11			1		_	112	1	
2		12	1	0	7	112	1	Б
11	D	13	1	1	10	112	1	E
3			1	1	19	113	1	

i		1	1	1	1	ı	i	i	
11 4			0	2	31		114	1	
11 5			1	3	43		115	0	
11 6			1	4	55		116	1	
11 7	D	13	1	5	67		117	0	9
11 8 11			0	6	79		118	0	
9			1	7	91		119	1	
12 0 12			0	8	103		120	1	
1	2	2	0	9	115		121	0	A
12 2 12			1	10	127		122	1	
3			0	11	139		123	0	
12 4 12			1	12	151		124	0	
5	9	9	0	13	163		125	0	3
12 6 12			0	14	175		126	1	
7			1	15	187		127	1	
12 8 12			0	0	8		128	0	
9	4	4	1	1	20		129	0	0
13 0 13			0	2	32		130	0	
1			0	3	44		131	0	
13 2 13			1	4	56		132	1	
3 13	9	9	0	5	68		133	0	9
13 4 13			0	6	80		134	0	
5			1	7	92		135	1	
13 6	4	4	0	8	104		136	1	A

1		ı	1	i	l i	l	Ī	İ	
13 7			1	9	116		137	0	
13 8			0	10	128		138	1	
13 9			0	11	140		139	0	
14 0			1	12	152		140	0	
14									
1 14	В	11	0	13	164		141	0	2
2 14			1	14	176		142	1	
3			1	15	188		143	0	
14			0	0	9		144	0	
14 5	6	6	1	1	21		145	1	4
14 6			1	2	33		146	0	
14 7			0	3	45		147	0	
14 8			1	4	57		148	1	
14 9	С	12	1	5	69		149	1	F
15 0			0	6	81		150	1	
15 1			0	7	93		151	1	
15 2			1	8	105		152	1	
15	8	8	0	9	117		153	1	D
15 4			0	10	129		154	0	
15 5			0	11	141		155	1	
15 6			1	12	153		156	0	
15 7	9	9	0	13	165		157	1	5
15 8			0	14	177		158	0	
15 9			1	15	189		159	1	

16 0			0	0	10	160	1	
16	1	1	0	1	22	161	0	8
16 2			0	2	34	162	0	
16			1	3	46	163	0	
16 4			0	4	58	164	0	
16 5	5	5	1	5	70	165	0	0
16 6			0	6	82	166	0	· ·
16 7			1	7	94	167	0	
16 8			0	8	106	168	1	
16 9	1	1	0	9	118	169	0	8
17 0	1	1	0	10	130	170	0	O
17 1			1	11	142	171	0	
17 2			0	12	154	172	0	
17 3	3	3	0	13	166	173	1	6
17 4	3	3	1	14	178	174	1	· ·
17 5			1	15	190	175	0	
17 6			0	0	11	176	1	
17 7	4	4	1	1	23	177	0	В
17 8			0	2	35	178	1	
17 9			0	3	47	179	1	
18 0			1	4	59	180	1	
18	8	8	0	5	71	181	1	D
18 2			0	6	83	182	0	

18								
3			0	7	95	183	1	
18								
4			1	8	107	184	0	
18								
5	С	12	1	9	119	185	0	1
18		12						1
6			0	10	131	186	0	
18								
7			0	11	143	187	1	
18								
8			1	12	155	188	1	
18								
9	Α	10	0	13	167	189	1	Е
19	A	10						L
0			1	14	179	190	1	
19								
1			0	15	191	191	0	

Modulation⁶

A. Data modulation⁷

- After the repetition block, the data bits are entered serially to the constellation mapper.
- Gray-mapped QPSK and 16-QAM (as shown in Figure 263) shall be supported.
- The constellations (as shown in Figure 263) shall be normalized by multiplying the constellation point with the indicated factor *c* to achieve equal average power.

Figure 263a—QPSK constellations

B. RTL Implementation of QPSK

The I and Q points of the QPSK constellation is in Q15 format (16-bit fixed point, MSB as sign bit, 15 fractional bits, and two's complement.)

C. Tesbench Gold Data

• Refer to Example 1 and 6.

802.16 e										
Constellation Mapping										
No	Int. Data in	Consta n Map		Normalized Constellation Mapping						
0	0	1	-1	0.707	-0.707					
2 3	0 0	1	1	0.707	0.707					
4 5	1 0	-1	1	-0.707	0.707					
6 7	1 1	-1	-1	-0.707	-0.707					
8 9	0 0	1	1	0.707	0.707					

⁶ 8.4.9.4

⁷ 8.4.9.4.2

10	0	1	1	0.707	0.707
11	0	1	1	0.707	0.707
12	0	1	-1	0.707	-0.707
13	1				
14	0	1	1	0.707	0.707
15	0				
16	0 1	1	-1	0.707	-0.707
17 18	1				
19	1	-1	-1	-0.707	-0.707
20	1				
21	1	-1	-1	-0.707	-0.707
22	0				
23	1	1	-1	0.707	-0.707
24	1	1	1	0.707	0.707
25	1	-1	-1	-0.707	-0.707
26	1	-1	-1	-0.707	-0.707
27	1	-1	-1	-0.707	-0.707
28	1	-1	1	-0.707	0.707
29	0	-1	1	-0.707	0.707
30	1	-1	1	-0.707	0.707
31	0	•	-	0.707	0.707
32	0	1	-1	0.707	-0.707
33	1				
34	0	1	1	0.707	0.707
35	0				
36 37	0	1	1	0.707	0.707
38	1				
39	0	-1	1	-0.707	0.707
40	1				
41	1	-1	-1	-0.707	-0.707
42	1	1	1	0.707	0.707
43	1	-1	-1	-0.707	-0.707
44	0	1	1	0.707	0.707
45	0	1	1	0.707	0.707
46	1	-1	1	-0.707	0.707
47	0	1	1	0.707	0.707
48	1	-1	1	-0.707	0.707
49	0	_	_		,
50	1	-1	1	-0.707	0.707
51	0				
52 53	0 1	1	-1	0.707	-0.707
54	0				
55	1	1	-1	0.707	-0.707
56	1	-1	-1	-0.707	-0.707
1		-1	-1	-0.707	-0.707

57 1 58 0 59 1 60 0 61 1 62 0 63 1 64 1 65 1 66 1 67 1 70 1 71 0 72 0 73 0 1 1 1 0.707 0.707 0.707
59 1 1 -1 0.707 -0.707 60 0 1 -1 0.707 -0.707 62 0 1 -1 0.707 -0.707 63 1 -1 -1 -0.707 -0.707 64 1 -1 -1 -0.707 -0.707 66 1 -1 -1 -0.707 -0.707 68 0 1 -1 0.707 -0.707 70 1 -1 1 -0.707 0.707 72 0 1 1 0.707 0.707
60 0 1 -1 0.707 -0.707 62 0 1 -1 0.707 -0.707 63 1 -1 -1 0.707 -0.707 64 1 -1 -1 -0.707 -0.707 66 1 -1 -1 -0.707 -0.707 68 0 1 -1 0.707 -0.707 70 1 -1 1 -0.707 0.707 72 0 1 1 0.707 0.707
61 1 62 0 63 1 64 1 65 1 66 1 67 1 68 0 69 1 70 1 71 0 72 0 1 1 1 0.707 0.707 0.707 0.707 0.707
63 1 -1 -0.707 -0.707 64 1 -1 -1 -0.707 -0.707 65 1 -1 -1 -0.707 -0.707 66 1 -1 -1 -0.707 -0.707 68 0 1 -1 0.707 -0.707 70 1 -1 1 -0.707 0.707 72 0 1 1 0.707 0.707
63 1 64 1 65 1 66 1 67 1 -1 -1 -0.707 -0.707 68 0 69 1 70 1 71 0 72 0 1 1 1 0.707 0.707 0.707
65 1 -1 -1 -0.707 -0.707 66 1 -1 -1 -1 -0.707 -0.707 68 0 1 -1 -1 0.707 -0.707 70 1 -1 1 -0.707 0.707 72 0 1 1 0 707 0.707
65 1 66 1 67 1 -1 -1 -0.707 -0.707 68 0 69 1 70 1 71 0 72 0 1 1 1 0.707 0.707 0.707
67 1 -1 -1 -0.707 -0.707 68 0 1 -1 0.707 -0.707 70 1 -1 1 -0.707 0.707 71 0 -1 1 -0.707 0.707 72 0 1 1 0.707 0.707
68 0 1 -1 0.707 -0.707 70 1 -1 1 -0.707 0.707 71 0 -1 1 -0.707 0.707 72 0 1 1 0.707 0.707
69 1 -1 0.707 -0.707 70 1 -1 1 -0.707 0.707 71 0 1 1 0.707 0.707 72 0 1 1 0.707 0.707
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
71 0 -1 1 -0.707 0.707 72 0 1 1 0.707 0.707
72 0 1 1 0 707 0 707
74 0 1 1 0 707
$\begin{bmatrix} 74 \\ 75 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0.707 \\ -0.707 \end{bmatrix}$
76 1 -1 -1 -0.707 -0.707
77 1 -1 -0.707 -0.707
$\begin{bmatrix} 78 & 0 & 1 & 1 & 0.707 & 0.707 \end{bmatrix}$
79 0
$\begin{bmatrix} 80 & 0 & 1 & 1 & 0.707 & 0.707 \end{bmatrix}$
81 0
$\begin{bmatrix} 82 & 0 & 1 & 1 & 0.707 & 0.707 \end{bmatrix}$
83 0
$\begin{bmatrix} 84 & 0 \\ 85 & 0 \end{bmatrix}$ 1 1 0.707 0.707
86 1
$\begin{bmatrix} 30 \\ 87 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ -1 $\begin{bmatrix} 1 \\ -0.707 \end{bmatrix}$ 0.707
88 0
$\begin{bmatrix} 0.00 & 0.0$
$\begin{bmatrix} 90 & 0 & 1 & -1 & 0.707 & -0.707 \end{bmatrix}$
91 1 1 -1 0.707 -0.707
$\begin{vmatrix} 92 & 1 & \\ 02 & 0 & \\ 0 & 0 & \end{vmatrix}$ -1 1 -0.707 0.707
93 0
$\begin{vmatrix} 94 & 1 \\ 0.5 & 0 \end{vmatrix}$ -1 1 -0.707 0.707
95 0
$\begin{vmatrix} 96 & 0 \\ 07 & 1 \end{vmatrix}$ 1 -1 0.707 -0.707
97 1 0.707 -0.707 98 0 1 1 0.707 0.707
$\begin{vmatrix} 98 \\ 99 \end{vmatrix} \begin{vmatrix} 0 \\ 1 \end{vmatrix} $ 1 -1 0.707 -0.707
100 1
$\begin{vmatrix} 100 & 1 \\ 101 & 0 \end{vmatrix}$ -1 $\begin{vmatrix} 1 & -0.707 0.707 \end{vmatrix}$
102 0
$\begin{bmatrix} 102 & 0 \\ 103 & 0 \end{bmatrix}$ 1 $\begin{bmatrix} 1 & 0.707 \\ 0.707 \end{bmatrix}$ 0.707

104 105	0	1	-1	0.707	-0.707
103	0				
107	1	1	-1	0.707	-0.707
108	0	1	1	0.707	0.707
109	0	1	1	0.707	0.707
110	0	1	-1	0.707	-0.707
111	1	1	1	0.707	0.707
112	1	-1	-1	-0.707	-0.707
113	1				
114 115	1 0	-1	1	-0.707	0.707
116	1				
117	0	-1	1	-0.707	0.707
118	0				
119	1	1	-1	0.707	-0.707
120	1	1	1	0.707	0.707
121	0	-1	1	-0.707	0.707
122	1	-1	1	-0.707	0.707
123	0	-1	1	-0.707	0.707
124	0	1	1	0.707	0.707
125	0				
126	1 1	-1	-1	-0.707	-0.707
127 128	0				
129	0	1	1	0.707	0.707
130	0				
131	0	1	1	0.707	0.707
132	1	1	1	0.707	0.707
133	0	-1	1	-0.707	0.707
134	0	1	-1	0.707	-0.707
135	1	1	-1	0.707	-0.707
136	1	-1	1	-0.707	0.707
137	0				
138 139	1 0	-1	1	-0.707	0.707
140	0				
140	0	1	1	0.707	0.707
142	1				
143	0	-1	1	-0.707	0.707
144	0	1	1	0.707	0.707
145	1	1	-1	0.707	-0.707
146	0	1	1	0.707	0.707
147	0	1	1	0.707	0.707
148	1	-1	-1	-0.707	-0.707
149	1	_	_	0.707	0.,0,
150	1	-1	-1	-0.707	-0.707

151	1				
152	1	-1	-1	0.707	0.707
153	1	-1	-1	-0.707	-0.707
154	0	1	-1	0.707	-0.707
155	1	1	-1	0.707	-0.707
156	0	1	-1	0.707	-0.707
157	1	1	-1	0.707	-0.707
158	0	1	-1	0.707	-0.707
159	1	-	-	0.707	01,01
160	1	-1	1	-0.707	0.707
161	0				
162	0	1	1	0.707	0.707
163	0				
164	0	1	1	0.707	0.707
165	0				
166 167	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	1	0.707	0.707
168	1				
169	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	-1	1	-0.707	0.707
170	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$				
171	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	1	0.707	0.707
172	0				
173	1	1	-1	0.707	-0.707
174	1				
175	0	-1	1	-0.707	0.707
176	1	1	1	0.707	0.707
177	0	-1	1	-0.707	0.707
178	1	1	1	0.707	0.707
179	1	-1	-1	-0.707	-0.707
180	1	-1	-1	-0.707	-0.707
181	1	-1	-1	-0.707	-0.707
182	0	1	-1	0.707	-0.707
183	1	1	1	0.707	0.707
184	0	1	1	0.707	0.707
185	0	1	1	0.707	3.707
186	0	1	-1	0.707	-0.707
187	1				
188	1	-1	-1	-0.707	-0.707
189	1				
190	1	-1	1	-0.707	0.707
191	0				

7. Project Requirements

- 1. The "Randomizer" block has already been implemented in Lab 2. Each student within a group will be responsible for the implementation of all blocks, the top level that integrates all four including the randomizer, end-to-end testbench verification, and hardware validation.
- 2. Before RTL coding, design each block and provide a design document that include the following:
 - a. A table describing the pin list of every block
 - b. State diagrams for the cases that requires finite state machines
 - c. Timing diagram to explain the interrelationships between signals
- 3. Implement each block separately and write the corresponding testbench that verifies the functionality of each block. You may want to check the output of every block against the tables provided in the description of each block. Each block has an input data line (data_in) and input data ready line (ready). The ready line is asserted when there is a valid data presented on the input data. Each block has an output data line (data_out) and a valid output signal (valid). The block will assert the valid output signal when there is a valid data at the output of the block.

4. When all blocks verified, instantiate all RTL and end-to-end

5. The whole system implemented and validated

are designed and blocks in a top level testbench.

has to be on the DE0-CV

Board.

8. Evaluation Plan

- 1. Each student will be evaluated individually for the progress of the project. The following deliverables will be evaluated:
 - a. Phase I: Block Design and RTL Implementation
 - i. Design document
 - ii. RTL code of the individual blocks
 - iii. Testbench of the individual blocks
 - iv. Simulation results
 - v. Demo and first evaluation
 - b. Phase II: Integration of all blocks and Testbench Verification
 - i. End-to-end testbench of the whole system
 - ii. Top level RTL code that encompasses all blocks
 - iii. End-to-end Simulation results
 - iv. Demo and second evaluation
 - c. Phase II: Hardware Verification

- i. Successful Synthesis
- ii. Successful place and route
- iii. End-to-end hardware validation using DE0-CV Board.
- iv. Demo and third evaluation