# Machine Learning for Inverse Problems in Computational Engineering

### Kailai Xu and Eric Darve https://github.com/kailaix/ADCME.jl



#### Outline

Inverse Modeling

2 Automatic Differentiation

3 Physics Constrained Learning

#### Inverse Modeling

#### **Forward Problem**



#### **Inverse Problem**



#### Inverse Modeling

- Inverse modeling identifies a certain set of parameters or functions with which the outputs of the forward analysis matches the desired result or measurement.
- Many real life engineering problems can be formulated as inverse modeling problems: shape optimization for improving the performance of structures, optimal control of fluid dynamic systems, etc.



#### Inverse Modeling

We can formulate inverse modeling as a PDE-constrained optimization problem

$$\min_{\theta} L_h(u_h)$$
 s.t.  $F_h(\theta, u_h) = 0$ 

- The loss function  $L_h$  measures the discrepancy between the prediction  $u_h$  and the observation  $u_{\text{obs}}$ , e.g.,  $L_h(u_h) = \|u_h u_{\text{obs}}\|_2^2$ .
- $\bullet$   $\theta$  is the model parameter to be calibrated.
- The physics constraints  $F_h(\theta, u_h) = 0$  are described by a system of partial differential equations or differential algebraic equations (DAEs); e.g.,

$$F_h(\theta, u_h) = A(\theta)u_h - f_h = 0$$



#### Function Inverse Problem

$$\min_{\mathbf{f}} L_h(u_h) \quad \text{s.t. } F_h(\mathbf{f}, u_h) = 0$$

What if the unknown is a function instead of a set of parameters?

- Koopman operator in dynamical systems.
- Constitutive relations in solid mechanics.
- Turbulent closure relations in fluid mechanics.
- ...

The candidate solution space is infinite dimensional.

#### Penalty Methods

• Parametrize f with  $f_{\theta}$  and incorporate the physical constraint as a penalty term (regularization, prior, ...) in the loss function.

$$\min_{\theta, u_h} L_h(u_h) + \lambda \|F_h(f_{\theta}, u_h)\|_2^2$$

- May not satisfying physical constraint  $F_h(f_\theta, u_h) = 0$  accurately;
- Slow convergence for stiff problems;



• High dimensional optimization problem; both  $\theta$  and  $u_h$  are variables.

#### Machine Learning for Computational Engineering

$$\min_{\theta} L_h(u_h)$$
 s.t.  $\boxed{F_h(NN_{\theta}, u_h) = 0} \leftarrow \text{Solved numerically}$ 

- Deep neural networks exhibit capability of approximating high dimensional and complicated functions.
- Machine Learning for Computational Engineering: the unknown function is approximated by a deep neural network, and the physical constraints are enforced by numerical schemes.
- Satisfy the physics to the largest extent.



Inverse Modeling

**Neural Networks** 

#### **Gradient Based Optimization**

$$\min_{\theta} L_h(u_h) \quad \text{s.t. } F_h(\theta, u_h) = 0 \tag{1}$$

- We can now apply a gradient-based optimization method to (1).
- The key is to calculate the gradient descent direction  $g^k$

$$\theta^{k+1} \leftarrow \theta^k - \alpha g^k$$



#### Outline

Inverse Modeling

2 Automatic Differentiation

3 Physics Constrained Learning

#### Automatic Differentiation

The fact that bridges the technical gap between machine learning and inverse modeling:

 Deep learning (and many other machine learning techniques) and numerical schemes share the same computational model: composition of individual operators.

# Mathematical Fact Back-propagation || Reverse-mode Automatic Differentiation || Discrete Adjoint-State Method



#### Computational Graph for Numerical Schemes

- To leverage automatic differentiation for inverse modeling, we need to express the numerical schemes in the "AD language": computational graph.
- No matter how complicated a numerical scheme is, it can be decomposed into a collection of operators that are interlinked via state variable dependencies.



## ADCME: Computational-Graph-based Numerical Simulation



#### How ADCME works

 ADCME translates your numerical simulation codes to computational graph and then the computations are delegated to a heterogeneous task-based parallel computing environment through TensorFlow runtime.

```
\operatorname{div} \sigma(u) = f(x)
                                           x \in \Omega
               \sigma(u) = C\varepsilon(u)
               u(x) = u_0(x) x \in \Gamma_u
        \sigma(x)n(x) = t(x)  x \in \Gamma_n
mmesh = Mesh(50, 50, 1/50, degree=2)
left = bcnode((x,v)->x<1e-5, mmesh)
right = bcedge((x1,y1,x2,y2)->(x1>0.049-1e-5) 88 (x2>0.049-1e-5), mmesh)
t1 = eval f on boundary edge((x,v)->1.0e-4, right, mmesh)
t2 - eval_f_on_boundary_edge((x,y)->0.0, right, mmesh)
rhs - compute fem traction term(t1, t2, right, mmesh)
x = gauss_nodes(mmesh)
E = abs(fc(x, [20, 20, 20, 1])|>squeeze)
# E = constant(eval f on gauss pts(f, mmesh))
D = compute_plane_stress_matrix(E, nu*ones(get_ngauss(mmesh)))
K = compute fem stiffness matrix(D, mmesh)
bdval = [eval_f_on_boundary_node((x,y)->0.0, left, mmesh);
       eval f on boundary node((x,y)->0.0, left, mmesh)]
por - [left:left .+ mmesh.ndof]
K. rhs = impose Dirichlet boundary conditions(K. rhs. DOF, bdyal)
```



#### Outline

Inverse Modeling

2 Automatic Differentiation

Physics Constrained Learning

#### Challenges in AD

- Most AD frameworks only deal with explicit operators, i.e., the functions that has analytical derivatives, or composition of these functions.
- Many scientific computing algorithms are iterative or implicit in nature.

| Linear/Nonlinear | Explicit/Implicit | Expression |
|------------------|-------------------|------------|
| Linear           | Explicit          | y = Ax     |
| Nonlinear        | Explicit          | y = F(x)   |
| Linear           | Implicit          | Ay = x     |
| Nonlinear        | Implicit          | F(x,y)=0   |



#### Numerical Schemes: Implicit, Iterative



#### Example

• Consider a function  $f: x \to y$ , which is implicitly defined by

$$F(x,y) = x^3 - (y^3 + y) = 0$$

If not using the cubic formula for finding the roots, the forward computation consists of iterative algorithms, such as the Newton's method and bisection method

$$\begin{array}{l} y^0 \leftarrow 0 \\ k \leftarrow 0 \\ \text{while } |F(x,y^k)| > \epsilon \text{ do} \\ \delta^k \leftarrow F(x,y^k)/F_y'(x,y^k) \\ y^{k+1} \leftarrow y^k - \delta^k \\ k \leftarrow k+1 \\ \text{end while} \\ \text{Return } y^k \end{array}$$

$$I \leftarrow -M, r \leftarrow M, m \leftarrow 0$$
while  $|F(x,m)| > \epsilon$  do
 $c \leftarrow \frac{a+b}{2}$ 
if  $F(x,m) > 0$  then
 $a \leftarrow m$ 
else
 $b \leftarrow m$ 
end if
end while
Return  $c = b + \delta = 0$ 

#### Example

• An efficient way to do automatic differentiation is to apply the implicit function theorem. For our example,  $F(x,y) = x^3 - (y^3 + y) = 0$ ; treat y as a function of x and take the derivative on both sides

$$3x^2 - 3y(x)^2y'(x) - y'(x) = 0 \Rightarrow y'(x) = \frac{3x^2}{3y^2 + 1}$$

The above gradient is exact.

Can we apply the same idea to inverse modeling?

#### Example

• An efficient way is to apply the implicit function theorem. For our example,  $F(x,y) = x^3 - (y^3 + y) = 0$ , treat y as a function of x and take the derivative on both sides

$$3x^2 - 3y(x)^2y'(x) - 1 = 0 \Rightarrow y'(x) = \frac{3x^2 - 1}{3y(x)^2}$$

The above gradient is exact.

Can we apply the same idea to inverse modeling?

#### Physics Constrained Learning (PCL)

$$\min_{\theta} L_h(u_h)$$
 s.t.  $F_h(\theta, u_h) = 0$ 

• Assume that we solve for  $u_h = G_h(\theta)$  with  $F_h(\theta, u_h) = 0$ , and then

$$\tilde{L}_h(\theta) = L_h(G_h(\theta))$$

Applying the implicit function theorem

$$\frac{\partial F_h(\theta, u_h)}{\partial \theta} + \frac{\partial F_h(\theta, u_h)}{\partial u_h} \frac{\partial G_h(\theta)}{\partial \theta} = 0 \Rightarrow \frac{\partial G_h(\theta)}{\partial \theta} = -\left(\frac{\partial F_h(\theta, u_h)}{\partial u_h}\right)^{-1} \frac{\partial F_h(\theta, u_h)}{\partial \theta}$$

Finally we have

$$\boxed{\frac{\partial \tilde{L}_h(\theta)}{\partial \theta} = \frac{\partial L_h(u_h)}{\partial u_h} \frac{\partial G_h(\theta)}{\partial \theta} = -\frac{\frac{\partial L_h(u_h)}{\partial u_h}}{\frac{\partial u_h}{\partial u_h}} \left( \frac{\partial F_h(\theta, u_h)}{\partial u_h} \Big|_{u_h = G_h(\theta)} \right)^{-1} \frac{\partial F_h(\theta, u_h)}{\partial \theta} \Big|_{u_h = G_h(\theta)}}$$



#### Physics Constrained Learning for Stiff Problems

- For stiff problems, better to resolve physics using PCL.
- Consider a model problem

$$\min_{\theta} \|u - u_0\|_2^2 \qquad \text{s.t. } Au = \theta y$$

PCL: 
$$\min_{\theta} \tilde{L}_h(\theta) = \|\theta A^{-1} y - u_0\|_2^2 = (\theta - 1)^2 \|u_0\|_2^2$$

Penalty Method :  $\min_{\theta, u_h} \tilde{L}_h(\theta, u_h) = \|u_h - u_0\|_2^2 + \lambda \|Au_h - \theta y\|_2^2$ 

#### Theorem

The condition number of  $A_{\lambda}$  is

$$\liminf_{\lambda \to \infty} \kappa(A_{\lambda}) \ge \kappa(A)^2, \qquad A_{\lambda} = \begin{bmatrix} I & 0 \\ \sqrt{\lambda}A & -\sqrt{\lambda}y \end{bmatrix}, \qquad y = \begin{bmatrix} u_0 \\ 0 \end{bmatrix}$$

and therefore, the condition number of the unconstrained optimization problem from the penalty method is equal to the square of the condition number of the PCL asymptotically.

#### Physics Constrained Learning for Stiff Problems

#### Parameter Inverse Problem

$$\Delta u + k^2 g(x)u = 0$$
  
$$g(x) = 5x^2 + 2y^2$$

$$g_{\theta}(x) = \frac{\theta_1 x^2 + \theta_2 y^2 + \theta_3 xy}{\theta_4 x + \theta_5 y + \theta_6}$$

# 10<sup>-1</sup> 10<sup>-1</sup> 10<sup>-3</sup> 10<sup>-5</sup> — PM, freq=0.5 — PM, freq=0.75 — PM, freq=0.70 — PM, freq=0.10 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Rerations



#### Approximate Unknown Functions using DNNs

$$-\nabla\cdot(\boldsymbol{f(u)}\nabla u)=h(\boldsymbol{x})$$

$$\mathbf{f}(u) = \begin{bmatrix} f_1(u) & 0 \\ 0 & f_2(u) \end{bmatrix}$$





#### PCL: Backbone of the ADCME Infrastructure



#### A General Approach to Inverse Modeling

