# Politechnika Warszawska

# Wspomaganie decyzji w warunkach ryzyka

# **RAPORT**

Wykonał:

Dominik Giżyński

### 1. Temat projektu – WDWR 16207

Celem projektu było rozważenie zagadnienia planowania produkcji, gdzie realizacja umowy wymagała dostawy 1100 sztuk komponentu A oraz 1200 sztuk komponentu B po upływie okresu 3 miesięcy.

Koszty produkcji komponentów (zł/szt.) określają składowe wektora losowego  $R=(R_1,\dots,R_6)^T$ 

Koszt składowania komponentów z miesiąca na miesiąc jest stały i wynosi 2500 zł, o ile liczba składowanych komponentów nie przekroczy 300. Po przekroczeniu tej liczby koszt składowania komponentów wynosi 15 % miesięcznych kosztów wytwarzania. W celu wytworzenia komponentów firma potrzebuje zasobów pozyskiwanych z zewnątrz z ograniczoną możliwością dostaw w miesiącu.

# 2. Model kosztu realizacji umowy i ryzyka

# 2.1. Parametry i zmienne

#### 2.1.1. Parametry zewnętrzne

| Months                                           | miesiące, $Months \in \{1,2,3\}$ komponenty, $Components \in \{\text{ A, B}\}$                |  |  |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|
| Components                                       |                                                                                               |  |  |
| Resources                                        | zasoby produkcyjne, $Resources \in \{ Z1, Z2 \}$                                              |  |  |
| CostProd <sub>Scenarios</sub> ,Components,Months | składowe wektora losowego, prezentujące koszt produkcji komponentu (zł/szt.) w danym miesiącu |  |  |
| Request <sub>Resources</sub> ,Components         | zapotrzebowanie na sztukę danego komponentu wybranego zasobu produkcyjnego                    |  |  |
| Supply <sub>Resources</sub> , Months             | maksymalne, możliwe dostawy zasobu produkcyjnego w<br>danym miesiącu                          |  |  |
| N                                                | N – liczba rozpatrywanych scenariuszy (N = 100)                                               |  |  |

W treści zadania zadana jest wartość oczekiwana μ wektora losowego R (CostProd) oraz macierz kowariancji Σ niezawężonego rozkładu normalnego. Na potrzeby wyznaczenia ryzyka w modelu liniowym należało wygenerować scenariusze na podstawie powyższych parametrów rozkładu. Scenariusze (realizacje wektora losowego) wygenerowano przy użyciu funkcji *mvrnorm* z pakietu *MASS* w środowisku R-Studio. Następnie otrzymane składowe wygenerowanych wektorów zawężono do przedziału [20; 60]. Przyjęto, że prawdopodobieństwo każdego scenariusza jest jednakowe (1/N)

#### 2.1.2. Zmienne decyzyjne

| Production <sub>Components</sub> , Months   | Ilość wyprodukowanych komponentów wybranego typu w<br>danym miesiącu                            |  |
|---------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| Use <sub>Resources</sub> ,Components,Months | Ilość wykorzystanego zasobu produkcyjnego do produkcji<br>wybranego komponentu w danym miesiącu |  |
| Storage <sub>Months</sub>                   | Ilość magazynowanego komponentu (A lub B) w danym<br>miesiącu                                   |  |
| StState <sub>Months</sub>                   | Zmienna binarna, informująca o stanie magazynu w danym<br>miesiącu (>300)                       |  |

#### 2.2. Ograniczenia

- (1)  $\sum_{m=1}^{Months} Production_{A,m} = 1100$
- (2)  $\sum_{m=1}^{Months} Production_{B,m} = 1200$
- (3)  $Request_{r,c} * Production_{c,m} = Use_{r,c,m}$ ,

 $\forall r \in Resources, \forall c \in Components, \forall m \in Months$ 

- (4)  $Use_{r,A,m} + Use_{r,B,m} \leq Supply_{r,m}, \forall r \in Resources, \forall m \in Months$
- (5)  $Storage_m = \sum_{n=1}^m (Production_{A,n} + Production_{B,n}), \forall m \in Months$
- (6)  $Storage_m \leq 300 + M * StState_m$ ,  $\forall m \in Months$
- (7)  $Storage_m \ge 300 * StState_m$ ,  $\forall m \in Months$
- (1) Ograniczenie na ilość wyprodukowanych komponentów A po okresie realizacji umowy
- (2) Ograniczenie na ilość wyprodukowanych komponentów B po okresie 3 miesięcy (realizacja umowy)
- (3) Warunek na produkcję danego komponentu z uwzględnieniem zapotrzebowania zasobów produkcyjnych do produkcji tego komponentu (w wybranym miesiącu)
- (4) Ilość wykorzystywanego danego zasobu produkcyjnego do produkcji komponentów w danym miesiącu nie może przekraczać możliwych dostaw tego zasobu
- (5) Stan magazynu jest sumą wyprodukowanych komponentów w miesiącu bieżącym i poprzednich
- (6) i (7) Ograniczenia, które ustawiają jednoznacznie wartość zmiennej binarnej zależnej od aktualnego stanu magazynu w danym miesiącu

#### 2.3. Kryteria

#### 2.3.1. Koszt realizacji umowy

W pierwszej kolejności modelowano fragment zadania związany z opisem problemu oraz wyliczeniem kosztu realizacji umowy. Na potrzeby zadania przyjęto, że miarą kosztu jest średnia. Kryterium zdefiniowano w następujący sposób:

$$AvgCost = \frac{1}{N} * \sum_{t=1}^{N} Cost_t$$
 (1)

, gdzie Costt oznacza realizację kosztu dla scenariusza t.

$$\begin{aligned} Cost_t &= \sum_{m=1}^{Months} \left( \sum_{c=1}^{Components} (CostProd_{t,c,m} * Production_{c,m}) + (1 - StState_m) * \\ 2500 &+ StState_m * 0.15 * \left( \sum_{c=1}^{Components} (CostProd_{t,c,m} * Production_{c,m}) \right) \end{aligned}$$

Optymalizacja jednokryterialna (minimalizacja) kosztu pozwoliła na wyznaczenie wartości utopii kosztu i nadiru ryzyka.

#### 2.3.2. Minimalizacja ryzyka

Miarą ryzyka w danym zadaniu jest średnia różnica Giniego wyrażająca się wzorem:

$$\Gamma(x) = \frac{1}{2} * \sum_{t'=1}^{N} \sum_{t''=1}^{N} |r_{t'}(x) - r_{t''}(x)| p_{t'} p_{t''}$$
 (2)

, gdzie:

 $r_t$  - oznacza realizację dla scenariusza t (w naszym przypadku jest to realizacja kosztu dla scenariusza – Cost $_t$ )

p<sub>t</sub> – oznacza prawdopodobieństwo scenariusza (na początku rozważań przyjęto, że wszystkie scenariusze są jednakowo prawdopodobne

Kryterium ryzyka zdefiniowano zatem w następujący sposób:

$$Risk = \frac{1}{2} * \frac{1}{N^2} * \sum_{t'=1}^{N} \sum_{t''=1}^{N} |Cost_{t'} - Cost_{t''}|$$
 (3)

#### 2.4. Model preferencji

Celem zadania jest zaproponowanie dwukryterialnego modelu kosztu realizacji umowy i ryzyka, a następnie wyznaczenie obrazu zbioru rozwiązań efektywnych w przestrzeni ryzyko – koszt. Jest to zadanie optymalizacji wielokryterialnej, zatem istotne jest przyjęcie odpowiedniej skalaryzacji. Metoda ważenia ocen nie jest najlepszym rozwiązaniem, ponieważ może nie pozwolić na wyszukanie wszystkich możliwych punktów rozwiązań w przypadku zbiorów niewypukłych. Zdecydowano się więc wykorzystać metodę punktu odniesienia.

#### 2.4.1. Metoda punktu odniesienia

Metoda ta została zlinearyzowana z uwzględnieniem minimalizacji indywidualnych funkcji celu. Ogólna metoda punktu odniesienia zakłada maksymalizacje funkcji skalaryzującej:

$$s(y) = \min(s_i(y_i, a_i)) + \varepsilon \sum s_i(y_i, a_i)$$
 (4)

, gdzie:

a – wektor aspiracji

s<sub>i</sub> – indywidualna funkcja osiągnięcia i

$$s_i(y_i) = \begin{cases} \beta \lambda_i (y_i - a_i) & dla \ y_i \ge a_i \\ \lambda_i (y_i - a_i) & dla \ y_i < a_i \end{cases}$$
 (5)

ε – parametr regularyzacji

λ<sub>i</sub> – mnożnik skalujący

β – czynnik, o który pomniejszane są nadmiary wartości ocen ponad poziom aspiracji

Parametr ε określany jest jako  $\varepsilon = \rho/liczbaKryteriow$ , gdzie  $\rho = 10^{-4}$ . Dodatkowo w zadaniu czynnik β przyjęto jako równy 0,001

Natomiast wartość mnożnika skalującego przejmuje się jako  $\lambda_i = \frac{1}{yUi-yNi'}$ , gdzie  $y_i^U$  jest wartością utopii dla kryterium, a  $y_i^N$  jest wartością nadiru dla tego kryterium. Mnożnik ten jest wprowadzany w celu zapewnienia takiego samego wpływu każdej z funkcji osiągnięcia

Aby uwzględnić minimalizację (zamiast maksymalizacji) we wzorze (5) należy zmienić znaki parametrów  $a_i$ ,  $y_i$  oraz  $\lambda_i$ , gdyż preferowane przez nas są wartości niższe.

$$s_i(y_i) = \begin{cases} \beta \lambda_i (a_i - y_i) & dla \ y_i \le a_i \\ \lambda_i (a_i - y_i) & dla \ y_i > a_i \end{cases}$$
 (6)

Człon  $\min(s_i(y_i, a_i))$  ze wzoru (4) oznacza, że wartość musi być mniejsza lub równa wszystkim wartościom indywiduwalnych funkcji osiągnięcia:

$$\min(s_i(y_i, a_i)) : z \le s_i(y_i, a_i) \tag{7}$$

Możemy wprowadzić pomocniczą zmienną v<sub>i</sub>, którą należy zastąpić f. osiągnięcia we wzorze (4) wraz z następującymi ograniczeniami:

$$v_i \le \beta \lambda_i (a_i - y_i)$$
 (8)

$$v_i \le \lambda_i (a_i - y_i) \tag{9}$$

#### 2.5. Zależność nieliniowa

W analizowanym modelu wystąpiła zależność liniowa ze zmienną dyskretną, która przekształcała zadanie w zadanie programowania nieliniowego.

$$z = \textit{StState}_{\textit{m}} * 0.15 * \left( \sum_{c=1}^{\textit{Components}} (\textit{CostProd}_{t,c,m} * \textit{Production}_{c,m}) \right)$$

W celu rozwiązywania zadania liniowego niezbędne było przekształcenie powyższej zależności i modelowanie jej za pomocą warunków liniowych:

$$0 \le z \le M * zmienna_{binarna}$$
 (10) 
$$z \le zmienna_{ciagla}$$
 (11)

 $zmienna_{ciagla} - z + M * zmienna_{binarna} \le M$  (12)

gdzie M – duża liczba całkowita (ograniczająca zmienną ciągłą)

# 3. Rozwiązania efektywne minimalnego ryzyka i minimalnego kosztu

Przy minimalizacji jednego z kryteriów wyznaczono rozwiązania minimalnego kosztu oraz oddzielnie minimalnego ryzyka:

| KRYTERIUM | MINIMALIZACJA KOSZTU | MINIMALIZACJA RYZYKA |
|-----------|----------------------|----------------------|
| KOSZT     | 94 415,4             | 114 387              |
| RYZYKO    | 4241,56              | 840,459              |

Powyższe wartości pozwoliły na wyznaczenie parametru λ dla metody punktu odniesienia

|        | UTOPIA   | NADIR   | LAMBDA     |
|--------|----------|---------|------------|
| KOSZT  | 94 415,4 | 114 287 | 0,00005007 |
| RYZYKO | 840,459  | 4241,56 | 0,000294   |

Ze względu na ograniczone moce obliczeniowe komputera, wygenerowane jedynie 100 scenariuszy (wektorów losowych) i dla nich wyznaczono rozwiązania efektywne. Zastosowanie średniej różnicy Giniego jako miary ryzyka, gdzie dwa razy iterujemy po wszystkich scenariuszach nie pozwoliła nam na wygenerowanie większej liczby scenariuszy.

# 4. Obraz zbioru rozwiązań efektywnych

Rozwiązania efektywne wygenerowano poprzez krokowe zwiększanie wartości punktu aspiracji dla obu indywidualnych funkcji osiągnięcia. Zakres kosztu i ryzyka podzielono na 8 przedziałów, co pozwoliło na otrzymanie 81 rozwiązań efektywnych. Na potrzeby tej części zadania napisano specjalny skrypt.

Na poniższym wykresie zaprezentowano zbiór rozwiązań efektywnych oraz zaznaczono punkty utopii średniego kosztu i utopii ryzyka.



Rysunek 1 Zbiór rozwigzań w przestrzeni ryzyko – koszt

Można zauważyć, że zależność pomiędzy miarą kosztu, a miarą ryzyka jest zbliżona do funkcji liniowej.

# 5. Dominacja stochastyczna pierwszego rzędu

W celu sprawdzenia, czy zachodzi dominacja stochastyczna pierwszego rzędu wyznaczono odwrotną dystrybuantę:

$$\bar{F}_Y(v) = P \{Y \ge v\} = \frac{1}{m} * \bar{h}_v(y)$$
 (13)

A zatem:

$$Y' \geqslant_{IFSD} Y'' \Leftrightarrow \bar{F}_{Y'} \le \bar{F}_{Y''}$$
 (14)

Przy czym odwrotna dominacja stochastyczna jest równoznaczna z dominacją stochastyczną

$$Y' \geqslant_{IFSD} Y'' \Leftrightarrow -Y' \geqslant_{FSD} - Y''$$
 (15)

Wybrane trzy rozwiązania efektywne zostały przedstawione w poniższej tabeli:

|         | <b>ASPIRACJA</b> | <b>ASPIRACJA</b> | KOSZT    | RYZYKO   |
|---------|------------------|------------------|----------|----------|
|         | KOSZT            | RYZYKO           |          |          |
| PUNKT 1 | 99 000           | 3 200            | 98 995,8 | 2 944,12 |
| PUNKT 2 | 106 000          | 2 100            | 105 029  | 1932,08  |
| PUNKT 3 | 102 000          | 2 900            | 101 427  | 2 900,64 |

#### **5.1.** Koszt

Sprawdzenie dominacji stochastycznej pierwszego rzędu przy minimalizacji kosztu. Odwrotne dystrybuanty przecinają się na samym skraju wykresu.



Rysunek 2 Wykres odwrotnych dystrybuant dla wybranych 3-ech rozwiązań efektywnych dla kosztu



Rysunek 3 Wykres odwrotnych dystrybuant dla kosztu (dla skrajnych wartości)

Na podstawie rysunku 3 można zauważyć, że nie zachodzi "ścisła" dominacja stochastyczna pierwszego rzędu przy minimalizacji kosztu. Rozwiązanie efektywne nr 3 nie dominuje rozwiązania dla punktu nr 2 w sensie IFSD. Jednak uproszczenie wymagań, co do dokładności rozpatrywanych przypadków może pozwolić na podjęcie decyzji o dominacji pewnych wektorów nad innymi. Warto również zauważyć, że wykresy dystrybuant przecięły się dopiero w ostatniej fazie, dla skrajnych wartości.

#### 5.2. Ryzyko

Ryzyko dla scenariusza t zostało wyznaczone jako:

$$RiskPerSc_t = \frac{1}{2} * \frac{1}{N} * \sum_{t'}^{N} |Cost_t - Cost_{t'}|$$
 (16)



Rysunek 4 Wykres odwrotnych dystrybuant dla 3ech wybranych rozwiązań efektywnych przy minimalizacji ryzyka

Na rysunku 4 widać, że dla ryzyka rozwiązanie efektywne nr 2 dominuje pozostałe rozwiązania w sensie IFSD, natomiast odwrotne dystrybuanty dla punktów 1 i 3 przecinają na całej długości wykresu. Związane jest to z niewielką różnicą miary ryzyka dla tych punktów.

$$Risk_1 \succ_{IFSD} Risk_2$$
  
 $Risk_1 \succ_{IFSD} Risk_3$ 

#### 6. Wnioski

W trakcie analizy i testowania modelu zauważono, że ilość scenariuszy ma wpływ na rozwiązania zadania. Zwiększenie liczby scenariuszy sprawia, że obraz zbioru rozwiązań efektywnych w przestrzeni ryzyko – koszt jest "bardziej zwarty" i pozwala na lepsze dopasowanie krzywą. Jednak należało wygenerować niezbyt wiele scenariuszy, ze względu na złożoność zadania i wpływ średniej różnicy Giniego na jej zwiększenie.

Ponadto zaobserwowano, że kształt obrazu zbioru rozwiązań jest także zależny od przyjętych parametrów skalaryzacji (parametr  $\beta$ )

Porównując wykresy dystrybuant przy minimalizacji kosztu i ryzyka wyraźnie widać "odwrotną kolejność dominacji" między modelem minimalizacji ryzyka, a modelem minimalizacji kosztu, co również możemy wywnioskować z obrazu rozwiązań w przestrzeni ryzyko – koszt.