线性代数-13

主讲: 吴利苏

wulisu@sdust.edu.cn

2025年10月14日

向量组 $A: \boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m, B: \boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_l;$

矩阵 $A = (\boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m), B = (\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_l),$

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R(A, \beta) = R(A)$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R(A) = R(A, B)$.

向量组 $A: \boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m, B: \boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_l;$ 矩阵 $A=(\boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m), B=(\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_l),$

• 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R(A, \beta) = R(A)$.

- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R(A) = R(A, B)$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R(B) \leq R(A)$.

向量组 $A: \boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m, B: \boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_l;$ 矩阵 $A=(\boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m), B=(\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_l),$

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R(A, \beta) = R(A)$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R(A) = R(A, B)$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R(B) \leq R(A)$.
- 向量组 B 和向量组 A 等价 $\Leftrightarrow R(A) = R(B) = R(A, B)$.

向量组 $A: \boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m, B: \boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_l;$ 矩阵 $A=(\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m), B=(\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_l),$

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R(A, \beta) = R(A)$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R(A) = R(A, B)$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R(B) \leq R(A)$.
- 向量组 B 和向量组 A 等价 $\Leftrightarrow R(A) = R(B) = R(A, B)$.
- 向量组 A 线性相关 $\Leftrightarrow R(A) < m$.

向量组 $A: \boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m, B: \boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_l;$ 矩阵 $A=(\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m), B=(\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_l),$

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R(A, \beta) = R(A)$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R(A) = R(A, B)$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R(B) \leq R(A)$.
- 向量组 B 和向量组 A 等价 $\Leftrightarrow R(A) = R(B) = R(A, B)$.
- 向量组 A 线性相关 $\Leftrightarrow R(A) < m$.
- 向量组 A 线性无关 $\Leftrightarrow R(A) = m$, 列满秩.

向量组 $A: \boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m, B: \boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_l;$ 矩阵 $A=(\boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m), B=(\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_l),$

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R(A, \beta) = R(A)$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R(A) = R(A, B)$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R(B) \leq R(A)$.
- 向量组 B 和向量组 A 等价 $\Leftrightarrow R(A) = R(B) = R(A, B)$.
- 向量组 A 线性相关 $\Leftrightarrow R(A) < m$.
- 向量组 A 线性无关 ⇔ R(A) = m, 列满秩.
- 部分向量组线性相关 ⇒ 整体向量组线性相关.

向量组 $A: \boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m, B: \boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_l;$ 矩阵 $A = (\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m), B = (\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_l),$

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R(A, \beta) = R(A)$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R(A) = R(A, B)$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R(B) \leq R(A)$.
- 向量组 B 和向量组 A 等价 $\Leftrightarrow R(A) = R(B) = R(A, B)$.
- 向量组 A 线性相关 $\Leftrightarrow R(A) < m$.
- 向量组 A 线性无关 $\Leftrightarrow R(A) = m$, 列满秩.
- 部分向量组线性相关 ⇒ 整体向量组线性相关.
- 整体向量组线性无关 ⇒ 部分向量组线性无关.

向量组 $A: \boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m, B: \boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_l;$ 矩阵 $A = (\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m), B = (\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_l),$

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R(A, \beta) = R(A)$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R(A) = R(A, B)$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R(B) \leq R(A)$.
- 向量组 B 和向量组 A 等价 $\Leftrightarrow R(A) = R(B) = R(A, B)$.
- 向量组 A 线性相关 $\Leftrightarrow R(A) < m$.
- 向量组 A 线性无关 $\Leftrightarrow R(A) = m$, 列满秩.
- 部分向量组线性相关 ⇒ 整体向量组线性相关.
- 整体向量组线性无关 ⇒ 部分向量组线性无关.
- 个数大于维数向量组必线性相关.

向量组 $A: \boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m, B: \boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_l;$

矩阵 $A = (\boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m)$, $B = (\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_l)$,

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R(A, \beta) = R(A)$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R(A) = R(A, B)$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R(B) \leq R(A)$.
- 向量组 B 和向量组 A 等价 $\Leftrightarrow R(A) = R(B) = R(A, B)$.
- 向量组 A 线性相关 $\Leftrightarrow R(A) < m$.
- 向量组 A 线性无关 $\Leftrightarrow R(A) = m$, 列满秩.
- 部分向量组线性相关 ⇒ 整体向量组线性相关.
- 整体向量组线性无关 ⇒ 部分向量组线性无关.
- 个数大于维数向量组必线性相关.
- 向量组 A 线性无关,再加向量 β 线性相关 \Rightarrow β 可由向量组 A 线性表示,且表示唯一. (\Leftrightarrow $R(A, \beta) = R(A) = m$.)

向量组 $A: \boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m, B: \boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_l$; 矩阵 $A=(\boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m), B=(\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_l)$.

• 同型矩阵 $A \sim B \Leftrightarrow A \xrightarrow{f\mathbb{R}^{k} \wedge n \circledast f/J)$ 要 $B \Leftrightarrow$ 存在可逆阵 P, Q, 使得 $PAQ = B \Leftrightarrow R(A) = R(B)$.

向量组 $A: \boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m, B: \boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_l$; 矩阵 $A=(\boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m), B=(\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_l)$.

- 同型矩阵 $A \sim B \Leftrightarrow A \xrightarrow{\text{有限次初等行/列变换}} B$ \Leftrightarrow 存在可逆阵 P, Q, 使得 PAQ = B $\Leftrightarrow R(A) = R(B)$.
- 同维数列向量组 A, B 等价 \Leftrightarrow 向量组 A, B 可以相互线性表示 \Leftrightarrow 矩阵方程 AX = B 和 BY = A 都有解 \Leftrightarrow R(A) = R(B) = R(A, B). \Leftrightarrow $(A, O) \stackrel{c}{\sim} (O, B)$.

向量组 $A: \boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m, B: \boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_l$ 矩阵 $A=(\boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m), B=(\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_l)$.

- 同型矩阵 $A \sim B \Leftrightarrow A \xrightarrow{f(R) \wedge n \in \{f/\}} B$ \Leftrightarrow 存在可逆阵 P, Q, 使得 PAQ = B $\Leftrightarrow R(A) = R(B).$
- 同维数列向量组 A, B 等价 \Leftrightarrow 向量组 A, B 可以相互线性表示 \Leftrightarrow 矩阵方程 AX = B 和 BY = A 都有解 $\Leftrightarrow R(A) = R(B) = R(A, B)$. $\Leftrightarrow (A, O) \stackrel{c}{\sim} (O, B)$.
- 初等变换的角度看向量组等价:

向量组 $A: \boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m, B: \boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_l$ 矩阵 $A=(\boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m), B=(\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_l)$.

- 同型矩阵 $A \sim B \Leftrightarrow A \xrightarrow{f(R) \wedge n \in \{f/\} / \text{列变} \notin B} B$ \Leftrightarrow 存在可逆阵 P, Q, 使得 PAQ = B $\Leftrightarrow R(A) = R(B).$
- 同维数列向量组 A, B 等价 \Leftrightarrow 向量组 A, B 可以相互线性表示 \Leftrightarrow 矩阵方程 AX = B 和 BY = A 都有解 \Leftrightarrow R(A) = R(B) = R(A, B). \Leftrightarrow $(A, O) \sim (O, B)$.
- 初等变换的角度看向量组等价:

$$(A, O) \xrightarrow{\text{instance}} (A, B) \xrightarrow{\text{instance}} (O, B).$$

• 如果 m=n, 则列向量组 A,B 等价 \Leftrightarrow 矩阵 $A \stackrel{c}{\sim} B$.

向量组 $A: \boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m, B: \boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_l$; 矩阵 $A = (\boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_m), B = (\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_l).$

- 同型矩阵 $A \sim B \Leftrightarrow A \xrightarrow{f(R) \wedge n \in \{f/\} / \text{列变} \notin B} B$ \Leftrightarrow 存在可逆阵 P, Q, 使得 PAQ = B $\Leftrightarrow R(A) = R(B).$
- 同维数列向量组 A, B 等价 \Leftrightarrow 向量组 A, B 可以相互线性表示 \Leftrightarrow 矩阵方程 AX = B 和 BY = A 都有解 \Leftrightarrow R(A) = R(B) = R(A, B). \Leftrightarrow $(A, O) \stackrel{\sim}{\sim} (O, B)$.
- 初等变换的角度看向量组等价:

$$(A, O) \xrightarrow{\text{in } \notin \text{Mos } (A, B)} \xrightarrow{\text{in } \notin \text{Mos } (O, B).$$

- 如果 m = n, 则列向量组 A, B 等价 \Leftrightarrow 矩阵 $A \stackrel{c}{\sim} B$.
- 如果向量组 B 是向量组 A 的部分向量组,则向量组 A,B 等价 $\Leftrightarrow R(A) = R(B)$.

本次课内容

1. 最大无关组和向量组的秩

2. 向量组的秩和矩阵的秩

最大无关组的两种定义

设向量组 $A_0: \boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_r$ 是向量组 $A: \boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_m$ 的一个部分组, 定义 1:

- 向量组 $A_0: \boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_r$ 线性无关;
- 向量组 A 中任意 r+1 个向量 (若存在的话) 都线性相关,

则称向量组 A_0 为向量组 A 的一个最大线性无关组 (最大无关组).

最大无关组的两种定义

设向量组 $A_0: \alpha_1, \dots, \alpha_r$ 是向量组 $A: \alpha_1, \dots, \alpha_m$ 的一个部分组, 定义 1:

- 向量组 A₀: α₁,···, α_r 线性无关;
- 向量组 A 中任意 r+1 个向量 (若存在的话) 都线性相关,

则称向量组 A_0 为向量组 A 的一个最大线性无关组 (最大无关组).

定义 2:

- 向量组 $A_0: \alpha_1, \cdots, \alpha_r$ 线性无关;
- \circ 向量组 A 中任意一个向量都可由向量组 A_0 线性表示,

此时 A_0 也为向量组 A 的一个最大无关组. (也称为极大无关组) $_{1/11}$

向量组的秩

由定义 2 知

向量组的秩

由定义 2 知

○ 最大无关组 A₀ 和向量组 A 等价.

定义

最大无关组 A_0 所含向量的个数 r 称为向量组 A 的秩, 记为 R_A 或 $R(\alpha_1, \dots, \alpha_m)$.

向量组的秩

由定义 2 知

• 最大无关组 A₀ 和向量组 A 等价.

定义

最大无关组 A_0 所含向量的个数 r 称为向量组 A 的秩, 记为 R_A 或 $R(\alpha_1, \dots, \alpha_m)$.

注:

- 只含零向量的向量组的秩规定为 0.
- 向量组 A, B 等价, 则 $R_A = R_B$. (定理 5) 但反之, 当 $R_A = R_B = R_{(A,B)}$ 时, 维数相同的向量组 A, B 等价.

例 (例 8)

全体 n 维向量构成的向量组记为 \mathbb{R}^n . e_1, \dots, e_n 为 \mathbb{R}^n 的一个最大无关组, 故 \mathbb{R}^n 的秩为 n.

例 (例 8)

全体 n 维向量构成的向量组记为 \mathbb{R}^n . e_1, \dots, e_n 为 \mathbb{R}^n 的一个最大无关组, 故 \mathbb{R}^n 的秩为 n.

最大无关组的意义—少表示多,有限表示无限:即可以用有限个向量(最大无关组)来表示无穷多个向量.

例

设

$$\begin{cases} x_1 + 2x_2 + x_3 - 2x_4 &= 0\\ 2x_1 + 3x_2 - x_4 &= 0\\ x_1 - x_2 - 5x_3 + 7x_4 &= 0 \end{cases}$$

的全体解向量构成的向量组为 S, 求 R_S .

定理 (定理 6)

矩阵的秩 = 它的列向量组的秩 = 它的行向量组的秩.

定理 (定理 6)

矩阵的秩 = 它的列向量组的秩 = 它的行向量组的秩.

定理 (定理 6)

矩阵的秩 = 它的列向量组的秩 = 它的行向量组的秩.

所以, 上次课中矩阵的秩可以换为向量组的秩:

• 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R_{(A,\beta)} = R_A$.

定理 (定理 6)

矩阵的秩 = 它的列向量组的秩 = 它的行向量组的秩.

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R_{(A,\beta)} = R_A$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R_A = R_{(A,B)}$.

定理 (定理 6)

矩阵的秩 = 它的列向量组的秩 = 它的行向量组的秩.

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R_{(A,\beta)} = R_A$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R_A = R_{(A,B)}$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R_B \leq R_A$.

定理 (定理 6)

矩阵的秩 = 它的列向量组的秩 = 它的行向量组的秩.

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R_{(A,\beta)} = R_A$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R_A = R_{(A,B)}$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R_B \leq R_A$.
- 向量组 B 和向量组 A 等价 $\Leftrightarrow R_A = R_B = R_{(A,B)}$.

定理 (定理 6)

矩阵的秩 = 它的列向量组的秩 = 它的行向量组的秩.

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R_{(A,\beta)} = R_A$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R_A = R_{(A,B)}$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R_B \leq R_A$.
- 向量组 B 和向量组 A 等价 $\Leftrightarrow R_A = R_B = R_{(A,B)}$.
- 向量组 A 线性相关 ⇔ $R_A < m$.

定理 (定理 6)

矩阵的秩 = 它的列向量组的秩 = 它的行向量组的秩.

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R_{(A,\beta)} = R_A$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R_A = R_{(A,B)}$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R_B \leq R_A$.
- 向量组 B 和向量组 A 等价 $\Leftrightarrow R_A = R_B = R_{(A,B)}$.
- 向量组 A 线性相关 ⇔ $R_A < m$.
- 向量组 A 线性无关 $\Leftrightarrow R_A = m$.

定理 (定理 6)

矩阵的秩 = 它的列向量组的秩 = 它的行向量组的秩.

所以, 上次课中矩阵的秩可以换为向量组的秩:

- 向量 β 可由向量组 A 线性表示 $\Leftrightarrow R_{(A,B)} = R_A$.
- 向量组 B 可由向量组 A 线性表示 $\Leftrightarrow R_A = R_{(A,B)}$.
- 向量组 B 可由向量组 A 线性表示 $\Rightarrow R_B < R_A$.
- 向量组 B 和向量组 A 等价 $\Leftrightarrow R_A = R_B = R_{(A,B)}$.
- 向量组 A 线性相关 $\Leftrightarrow R_A < m$.
- 向量组 A 线性无关 $\Leftrightarrow R_A = m$.

因此, 我们可以不用在意 R(A) 中的大写字母 A 是表示向量组, 还是表示矩阵.

性质

性质 (初等行变换不改变矩阵列向量组的线性相关性)

- 向量组 $A: \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n$ 线性无关 \Leftrightarrow 向量组 $B: \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_n$ 线性无关;
- 向量组 $A: \alpha_1, \alpha_2, \cdots, \alpha_n$ 线性相关 \Leftrightarrow 向量组 $B: \beta_1, \beta_2, \cdots, \beta_n$ 线性相关;

性质

性质 (初等行变换不改变矩阵列向量组的线性相关性)

- 向量组 $A: \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n$ 线性无关 \Leftrightarrow 向量组 $B: \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_n$ 线性无关;
- 向量组 $A: \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n$ 线性相关 \Leftrightarrow 向量组 $B: \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_n$ 线性相关;

证明:
$$A \stackrel{r}{\sim} B$$
, 则 $AX = 0$ 与 $BX = 0$ 同解, 即: $x_1 \boldsymbol{\alpha}_1 + x_2 \boldsymbol{\alpha}_2 + \cdots + x_n \boldsymbol{\alpha}_n = 0$ 成立 $\Leftrightarrow x_1 \boldsymbol{\beta}_1 + x_2 \boldsymbol{\beta}_2 + \cdots + x_n \boldsymbol{\beta}_n = 0$ 成立.

145 页例题 6★★★

例 (例 6)

求向量组

$$oldsymbol{lpha}_1 = egin{pmatrix} 1 \ 4 \ 2 \ 1 \end{pmatrix}, oldsymbol{lpha}_2 = egin{pmatrix} -2 \ 1 \ 5 \ 1 \end{pmatrix}, oldsymbol{lpha}_3 = egin{pmatrix} -1 \ 2 \ 4 \ 1 \end{pmatrix}, oldsymbol{lpha}_4 = egin{pmatrix} -2 \ 1 \ -1 \ 1 \end{pmatrix}, oldsymbol{lpha}_5 = egin{pmatrix} 2 \ 3 \ 0 \ rac{1}{3} \end{pmatrix},$$

的一个最大无关组,并用最大无关组线性表示其余向量.

例 (例 7)

设矩阵

$$A = \begin{pmatrix} 1 & -1 & 3 & -2 \\ 1 & 3 & 2 & -6 \\ 1 & 5 & -1 & 10 \\ 3 & 1 & a+2 & a \end{pmatrix},$$

问

- a 取何值时, 矩阵 A 的列向量组线性无关;
- a 取何值时, 矩阵 A 的列向量组线性相关, 求秩和一个最大无关组.

性质

- 向量组 B 可由向量组 A 线性表示,且 R_A = R_B,则向量组等价.
 (提示:考虑合并向量组 (A, B).)
- $R(A+B) \le R(A) + R(B).$
- $R(AB) \le \min\{R(A), R(B)\}.$

例 (P148: 17)

设向量组 $B: \boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_r$ 可由向量组 $A: \boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_s$ 线性表示为

$$(\boldsymbol{\beta}_1,\cdots,\boldsymbol{\beta}_r)=(\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_s)K_{s\times r},$$

向量组 A 线性无关. 证明: $R_B = R(K)$.

几点注释:

- 向量组 B 线性无关 $\Leftrightarrow R_B = r \Leftrightarrow R(K) = r$.
- 若 s=r, 则 K 为方阵. 此时, 向量组 B 线性无关 $\Leftrightarrow K$ 可逆.
- 矩阵描述: $B = AK_{s \times r}$, A 列满秩, 则 R(B) = R(K); 特别地, B 列满秩当且仅当 K 列满秩; s = r 时. B 列满秩当且仅当 K 可逆.

例 (P148: 17)

设向量组 $B: \boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_r$ 可由向量组 $A: \boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_s$ 线性表示为

$$(\boldsymbol{\beta}_1,\cdots,\boldsymbol{\beta}_r)=(\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_s)K_{s\times r},$$

向量组 A 线性无关. 证明: $R_B = R(K)$.

几点注释:

- 向量组 B 线性无关 $\Leftrightarrow R_B = r \Leftrightarrow R(K) = r$.
- 若 s=r, 则 K 为方阵. 此时, 向量组 B 线性无关 $\Leftrightarrow K$ 可逆.
- 矩阵描述: $B = AK_{s \times r}$, A 列满秩, 则 R(B) = R(K); 特别地, B 列满秩当且仅当 K 列满秩; s = r 时, B 列满秩当且仅当 K 可逆.

例 (P148: 17)

设向量组 $B: \boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_r$ 可由向量组 $A: \boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_s$ 线性表示为

$$(\boldsymbol{\beta}_1,\cdots,\boldsymbol{\beta}_r)=(\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_s)K_{s\times r},$$

向量组 A 线性无关. 证明: $R_B = R(K)$.

几点注释:

- 向量组 B 线性无关 $\Leftrightarrow R_B = r \Leftrightarrow R(K) = r$.
- 若 s=r,则 K 为方阵. 此时,向量组 B 线性无关 $\Leftrightarrow K$ 可逆.
- 矩阵描述: $B = AK_{s \times r}$, A 列满秩, 则 R(B) = R(K); 特别地, B 列满秩当且仅当 K 列满秩;

s=r时, B列满秩当且仅当 K可逆.

例 (P148: 17)

设向量组 $B: \boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_r$ 可由向量组 $A: \boldsymbol{\alpha}_1, \cdots, \boldsymbol{\alpha}_s$ 线性表示为

$$(\boldsymbol{\beta}_1,\cdots,\boldsymbol{\beta}_r)=(\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_s)K_{s\times r},$$

向量组 A 线性无关. 证明: $R_B = R(K)$.

几点注释:

- 向量组 B 线性无关 $\Leftrightarrow R_B = r \Leftrightarrow R(K) = r$.
- 若 s=r, 则 K 为方阵. 此时, 向量组 B 线性无关 $\Leftrightarrow K$ 可逆.
- 矩阵描述: $B = AK_{s \times r}$, A 列满秩, 则 R(B) = R(K); 特别地, B 列满秩当且仅当 K 列满秩; s = r 时, B 列满秩当且仅当 K 可逆.

小结

- 向量组的秩、最大无关组.
- 求向量组的秩和最大无关组,用最大无关组表示其他向量.
- 向量组的秩和矩阵的秩的关系.

欢迎提问和讨论

吴利苏 (http://wulisu.cn)

Email: wulisu@sdust.edu.cn

2025年10月14日