BRAC UNIVERSITY

Department of Computer Science & Engineering Practice Problem sheet

CSE 350: Digital Electronics and Pulse Technique

• Use activation voltage $V_{\gamma}(diode) = 0.6V, V_{\gamma}(transistor) = 0.5V, V_{BE}(forward\ active) = 0.7V, V_{D} = 0.7V \ and \ V_{BE}(sat) = 0.8V \ for\ all\ the\ questions.$

Week 2(DL and RTL)

Ouestion No. 1

For the given RTL inverter circuit assume $VOH = 10\ V$ and VOL = 0.2V. Also assume common emitter current gain, $\beta_F = 30$. Assume for saturation mode VBE = 0.8V, VCE = 0.2V and cut in voltage for transistor $V\gamma = 0.5V$.

(a)	Find the Maximum possible Fanout.
(b)	Find the value of Vo if Fanout, N=2 (2 Load gates are connected) and input of Driver is Low.
(c)	If Vin = High, find the power dissipation in the Driver circuit. (assume No Loads are connected)
(d)	If Vin = High, find the power dissipation in the Driver circuit. (assume 50 Loads are connected)
(e)	If Vin = Low and Fanout is 2, find the power dissipation in the Driver circuit.

Question No. 2

For the given RTL inverter circuit assume $VOH = 1.3\ V$ and VOL = 0.2V. Also assume common emitter current gain, $\beta F = 30$. Assume for saturation mode VBE = 0.8V, VCE = 0.2V and cut in voltage for transistor $V\gamma = 0.5V$.

(a)	Find the value of maximum fanout.	
(b)	Find the value of <i>Vo (output of Driver)</i> , if Fanout(N)= 5 and Inputs A, B are Low.	

(c) Find the value of β min (for Load Gates), and Power dissipation in the Driver circuit for	
	conditions in (b).
(4)	Find the Power dissination in the Driver circuit when both inputs (A and R) are High

Question No. 3 For the given RTL inverter circuit assume $VOH = 11.5\ V$ and $VOL = 0.2\ V$. Also assume common emitter current gain, $\beta_F = 30$. Assume for saturation mode $VBE = 0.8\ V$, $VCE = 0.2\ V$ and cut in voltage for transistor $V\gamma_T = 0.5\ V$.

(a)	Find the value of VIL in V.
(b)	Find the value of <i>VIH</i> in <i>V</i> .
(c)	Find the value of Noise margin, VN in V.

Question No. 4

For the given AND, if $V(\theta) = 0V$ and V(1) = 5V. And $R_s = 0.25 \text{ k}\Omega$, $R = 100 \text{ k}\Omega$. Fan In=2

ı	(a)	Find out the output voltage levels.
---	-----	-------------------------------------

(b) Find the maximum power dissipation

