Dated 18-02-23

M.L. Syal's Helix Institute S.C.O. 343-345, Top Floor, Sector 34-A, Chandigarh. Ph : 2624337, 2623155

SUBJECTIVE TEST FOR XII

CHEMISTRY

SOLUTIONS

Section - A

All questions are compulsory. In case of internal choices, attempt any one of them.

(5 carbon + 1oxygen atom in a ring)

(pyranose)

Rate constant = $2.0 \times 10^{-4} \text{ sec}^{-1}$ 2.

So, n = 1

Rate ∞ [reactant]¹

If reactant is tripled then rate become three times.

- Only Ti⁺³ contain one unpaired electron in 3d orbital while Sc⁺³, La⁺³ and Lu⁺³ do not contain any 3. unpaired electron.
- 4. All aldehydes could not be prepared by Rosenmund reduction reaction as we could not prepare formaldehyde from this reaction becaues HOCl is unstable.
- 5. Sucrose is a disaccharide of α –D glucose and β –D fructose.

pH = 1, so $[H^+] = 10^{-1}$. 6.

For the reaction : $2H^+ + 2e^- \rightarrow H_2$,

 $E_{RP} = E_{RP}^{o} - \frac{0.0591}{2} log \frac{P_{H_2}}{\Gamma H^+ l^2}$

 $E_{RP}^{o} = 0$ (for hydrogen electrode), $P_{H_2} = 1$ (assumed), $[H^+] = 10^{-1}$

 $E_{RP} = 0 - \frac{0.0591}{2} \log \frac{1}{10^{-2}} = -0.059$

 $Cr_2O_7^{--}$ get reduce to Cr^{+3} (green) while SO_3^{--} get oxidise to SO_4^{--} . 7.

8 (i)
$$C_6H_{12}O_6 \xrightarrow{\text{HI/Red P}} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$$

n-Hexane

This reaction indicates the presence of straight chain of six carbon atoms in glucose.

(iii) CHO CHO
$$|$$
 (CHOH)₄ +5(CH₃CO)₂O \longrightarrow (CHOCOCH₃)₄ $|$ CH₂OCOCH₃ Glucose penta-acetate

Formation of penta acetate of glucose indicates the presence of five -OH groups in glucose.

- 9. (i) Formula of rust is Fe₂O₃.xH₂O.(Hydrated ferric oxide)
 - (ii) a. Barrier protection i.e by applying oil or grease on the surface of iron, or by painting iron surface or by coating with zinc(Galvanisation), Chromium, nickel etc.
 - b. Sacrificial protection -by coating iron surface with more active metal than iron

OF

At any given temperature the partial vapour pressure (p_A) of any component of a solution is directly proportional to its mole fraction (x_A) in the solution. Mathematically, $p_A = p_A^0 \times x_A$.

These are the mixtures formed by non-ideal solutions showing negative deviation. e.g. HNO_3 (68%) and H_2O (32%) by mass is a azeotropic mixture which boils at 393.5 K(b.pt. of pure $HNO_3 = 359.3$ K and of pure water is 373 K).

10. (i) Stronger the electron withdrawing group, more is the acidic strength.

$$\mathsf{CF_3CH_2OH} > \mathsf{CCl_3CH_2OH} > \mathsf{CH_3CH_2OH}$$

- (ii) More is the acidic strength, faster the reactivity with Na. butan-1-ol>butan-2-ol>2- methylpropan-2-ol
- (i) The sum of first four ionisation energies for Pt is less than nickel. So +4 oxidation state of Pt is stable & K₂ Pt Cl₆ is well known compound, whereas +4 oxidation state of Ni is not stable.
 - (ii) Transition elements can use their ns and (n-1)d orbital electrons for bond formation due to the very less energy difference between ns and (n-1)d subshells. Hence they show variable oxidation states.

Section - C

12. (i)
$$H_3CCH_2CHCH_3 + KOH(aq) \xrightarrow{\Delta} H_3CCH_2CHCH_3 + KCI$$
CI
OH
2-chlorobutane
2-butanol

(ii)
$$CH_3CH_2CI_2CI + NH_3 \xrightarrow{C_2H_5OH} CH_3CH_2CH_2NH_2 + HCI$$

n-propyl chloride n-propyl amine

(iii)
$$CH_3Br \xrightarrow{Alc.KCN} CH_3CN \xrightarrow{H^+/H_2O} CH_3COOH$$
Acetic acid

13. (i)
$$K = \frac{0.693}{t_{1/2}} = \frac{0.693}{10} = 0.0693 \text{ min}^{-1}$$

(ii) no. of half lives(n) in 1 hour =
$$\frac{60}{10}$$
 = 6

$$[A] = \frac{[A]}{2^n} = \left(\frac{1}{2}\right)^6 = \frac{1}{64}$$

14. (i) The reagents are sodium phenoxide and bromoethane

$$\begin{array}{c} \text{ONa} \\ \\ \text{OCH}_2\text{CH}_3 \\ \\ \text{+ CH}_3\text{CH}_2\text{-Br} \\ \\ \text{AB}_2\text{-Br} \\ \\ \text{Sod. phenoxide} \\ \end{array}$$

(ii) The reagents are sodium tertiary butoxide and bromomethane

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{CH_3} \\ \mathsf{-C} \\ \mathsf{-ONa}^+ + \mathsf{CH_3} \\ \mathsf{-Br} \\ & \mathsf{CH_3} \\ \mathsf{-CH_3} \\ \mathsf{-CH_3} \\ \mathsf{CH_3} \\ \mathsf{CH_3} \\ \mathsf{2-methyl-2-methoxy} \\ \mathsf{propane} \end{array}$$

(iii) The reagents are sodium propoxide and bromomethane

$$CH_3Br + CH_3CH_2CH_2ONa \rightarrow CH_3O - CH_2CH_2CH_3$$

OR

(i) I will attack the smaller alkyl group of protonated ether or less stearically hindered carbon

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{CH_3CH_2CH_2} - \mathsf{O} - \mathsf{CH} - \mathsf{CH_3} \\ & \qquad \qquad \\ \mathsf{HI} \\ \mathsf{CH_3} \\ \mathsf{CH_3CH_2CH_2I} \ + \ \mathsf{HO} - \mathsf{CH} - \mathsf{CH_3} \end{array}$$

(ii) Cleavage of protonated ether will occur in such a way that it will give more stable carbocation.

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

15. (i) a. Methylamine and dimethylamine can be distingusihed by **Carbylamine** test. Methylamine is a primary amine. So methylamine when heated with an alcoholic solution of KOH and CHCl₃, it gives an offensive smell of methylisocyanide

$$CH_3NH_2 + CHCl_3 + 3KOH \xrightarrow{\Delta} CH_3NC + 3KCl + 3H_2O$$

b. Methylamine and aniline can be distinguished by **Azodye** test. Aniline is an aromatic amine so when it is treated with NaNO $_2$ +dil. HCl at 273–278 K followed by treatment with an alkaline solution of β -naphthol, a brilliant orange or red coloured dye, is formed

$$NH_2 + HONO + HCI$$
 $O^{\circ}-5^{\circ}C$
 $β$ -naphthol
orange dve

Methylamine when treated with $NaNO_2$ -HCl evolves N_2 gas

(ii) Order of pK
$$_{\rm b}$$
 values $\rm C_6H_5NH_2\!>\!C_6H_5NHCH_3\!>C_2H_5NH_2\!>\!(C_2H_5)_2NH$ OR

(i) Nitration is carried out with a mixture of conc. HNO₃ + conc. H₂SO₄. In the presence of these acids, aniline gets protonated to form anilinium ion which is m-director, thus we get substantial amount of m-nitroaniline

(ii) Aniline being a Lewis base reacts with lewis acid ${\rm AICl_3}$ to form a salt.

$$C_6H_5NH_2 + AICI_3 \rightarrow C_6H_5NH_2AICI_3$$

Due to the presence of positive charge on N atom in this salt, it acts a strongly deactivating group. As a result it reduces the electron density in the benzene ring and hence aniline does not undergo Friedal Craft reaction.

(iii) Gabriel phthalimide synthesis is a S_{N^2} reaction in which phthalimide behave as an nucleophile and displaces halide ion from alkyl halids. Since aryl halides do not undergo S_N reaction easily thus aromatic amines can not be prepared by Gabriel phthalimide synthesis.

Section - D

- 16. (i) c. diethyl ether
 - (ii) a. S_{N1} mechanism
 - (iii) c. RNR'R"

OR

(iv) b. pent-2-ene

- 17. (i) $Cu_2[Fe(CN)_6]$ can act as a semipermeable membrane.
 - (ii) Given $\pi = 600 \text{mm} = \frac{600}{760} \text{ atm, i} = 1$

$$V_{ml} = 821 \text{ mI}, T = 127^{\circ}\text{C} = 400 \text{ K}$$

$$\frac{600}{760} = \frac{20 \times 1000 \times 0.0821 \times 400}{M \times 821}$$

$$M = 1013 g$$

OR

Since solvent move from low concentration to high concentration of solution, solvent move towards NaCl solution i.e. exo-osmosis will occur.

(iii) παT

$$\frac{\pi_1}{T_1} = \frac{\pi_2}{T_2}$$

(Given
$$\pi_1 = 1$$
atm, $T_1 = 300$ K, $T_2 = 600$ K)

$$\pi_2 = 2$$
 atm

- (iv) Since solvent move from low concentration to high concentration of solution, so water flows into red blood cells causing them to swell and burst
- 18. (i) Molar conductivity (\land_m) is the conductance of all the ions produced by 1 mole of eletrolyte dissolved in V cm³ of the solution $\land_m = \kappa \times V$

 $\wedge_{\rm m}$ increases with decrease in concentration both for strong and weak electrolyte. This is because decrese in κ on dilution is more than compensated by increase in volume

- (ii) a. $Ca^{2+} + 2e^{-} \rightarrow Ca$ 1 mole of Ca i.e. 40 g of Ca required = 2F 20 g of Ca require = 1F
- (ii) Al³⁺ + 3e⁻ → Al 1mol of Al i.e. 27 g of Al require = 3F 40 g of Al require = 4.44 F
- 19. (i) Hybridisation of Co in $[Co(C_2O_4)_3]^{3-}$ is d^2sp^3 .
 - (ii) IUPAC name of [Co (NH $_{\rm 3})]_{\rm 6}$ Cl $_{\rm 3}$ is hexaamminecobalt (III) chloride
 - (iii) Mn in +2 state has the configuration $3d^5$. In presence of H_2O as ligand, the distribution of these five electrons is t_{2g}^3 eg², i.e. all the electrons remain unpaired. In presence of CN^- as ligand, the distribution

of electrons is t_{2g}^5 eg°, two t_2g orbitals contain paired electrons while the third t_2g orbital contains one unpaired electron.

(iv) In both the complexes, Fe is in +3 oxidation state with the configuration 3d⁵. H₂O is a weak ligand, in its presence, electrons do not pair up. The hydridisation is sp³d² forming an outer orbital complex containing five unpaired electrons. Hence it is strongly paramagnetic. CN⁻ is a strong ligand in its presence, 3d electrons pair up leaving only one unpaired electron the hybridisation is d²sp³ forming inner orbital complex. So it is weakly paramagnetic.

Section - E

- 20. (i) a. 85% H₂SO₄ at 440 K
 - b. Acidified or alkaline KMnO₄
 - c. Ni/H₂ or NaBH₄ or LiAlH₄

(ii) a.
$$CH_3CH_2OH \xrightarrow{Cu/573K} CH_3CHO \xrightarrow{Dilute\ NaOH} CH_3-CH-CH_2CHO \xrightarrow{Sthanol} CH_3-CH-CH_2CHO \xrightarrow{Sthanol} 3-hydroxy\ butanal$$

b.
$$C_6H_5CHO$$
 $\xrightarrow{K_2Cr_2O_7}$ $\xrightarrow{H_2SO_4}$ $\xrightarrow{C_6H_5COOH}$ $\xrightarrow{CaCO_3}$ $\xrightarrow{C_6H_5COO)_2Ca}$ \xrightarrow{Dry} $\xrightarrow{C_6H_5COC_6H_5}$ $\xrightarrow{Benzophenone}$

OR

(i) a. Propanal and propanone can be distinguished by lodoform test

$$CH_3 - C - CH_3 \xrightarrow{I_2/NaOH} CH_3 - C - ONa + CHI_3 \downarrow$$
Yellow ppt.

$$CH_3CH_2CHO \xrightarrow{I_2/NaOH} No yellow precipitate$$

b. Acetophenone and Benzophenone can be distinguished by lodoform test

$$CH_{3} - C - O - Na + CHI_{3} \downarrow$$
Yellow ppt

- c. Phenol and benzoic acid can be distinguished by effervescence test. Benzoic acid on treatment with baking soda will lead to evolution of CO₂ (effervescence) but phenol does not.
- (ii) Due to strong electron withdrawing nature of $-NO_2$ groups, both 2,4-dinitrophenol and 2,4,6-trinitro phenol are more acidic than carbonic acid and hence dissolve in aq. Na_2CO_3 solution to form the corresponding sodium salts with the evolution of CO_2 .

* * * * *