# 海上降水量预测

主讲人: 颜丙齐

# 问题分析

#### 问题定义:

- 1、根据已有数据, 预测海上降水量
- 2、要预测15-20天后的降水量
- 3、预测6月-9月的降水量
- 4、现有数据CIO数据和降水量数据

### 问题分析:

- 1、根据经验,降水量应该有很强的时序上的规律,所以我们利用lstm模型来捕获该规律,预测降水量。
- 2、降水量应该也有空间上的一些规律,既降水是呈现区域性的,正在考虑如何使用。

# 输入输出

#### 现有数据:

- 1、5D的cio数据,该数据的组成为每天一个5D的数据,该数据和降水量有着高度的相关关系。
- 2、降水量数据,该数据为,每天每个空间点上各一个数据。该数据是有关降水量的数据。说一下有多少空间点,年份。

#### 存在问题:

- 1、有很多点的降水量数据为零
- 2、降水量数据较小

# 模型

- 1、根据经验,降水量有很强的时序关系,即,去年的这个月份多雨,今年同样的月份下雨的可能性会很大。
- 2、现有的数据为每天一个数据,即有很强的时序性数据,很方便我们的使用。
- 3、我们选用LSTM模型来捕获时序关系,预测降水量。
- 4、输入为cio数据,输出为降水量数据



# 评价指标

• 使用单一指标, 皮尔森系数, 其公式表达为:

$$r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

- 皮尔森系数常用于度量两个变量X和Y之间的相关(线性相关),其值介于-1与1之间。
- 其值越接近与1说明X与Y正相关程度越高;其值越接近-1说明X与Y负相关程度越高;其值越接近0说明X与Y相关程度很低。

# 实验设置

- •实验说明:
- 在之前的工作中,做了很多实验,因为是一个探索的过程,所以有些实验的价值没有那么大,这里,我只讲述相对重要的一些实验。
- 在实验过程中,模型是一步一步完善的,所以,刚开始的模型简单,参数设置的也存在一定问题,我会探索性的对模型展开讲解。
- 对于实验的参数, 在很多实验的基础上, 确定了一个效果较好的参数范围, 再在其中选择合适的参数, 最终一步步确定所有的参数。
- 在实验的过程中,也发现了一些问题,将在后面部分,展开讨论。

# 实验进行时

### 第一部分实验:

运行环境: python3, pytorch

实验模型:双层的LSTM模型

模型输入: 1Dcio数据

模型输出: 降水量数据

思想: 用降水量数据去匹配 各个点进而预测出所有点的降水量

实验简述:

- 1、使用模型训练850次的一个效果图
- 2、隐藏层使用不同数量的神经元的效果对比
- 3、输入数据使用不同的batch和不同的训练次数对比

# 实验一

- LSTM网络配置:两层LSTM叠加,隐藏层15个神经元,训练850次。
- LSTM(input\_size=15, hidden\_size=15, num\_layers=2)
- input(seq\_len, batch=1, input\_size=15)
- 皮尔森系数:
- 0.10604126137238266



### 实验二

- ▶随机取了10个连续点进行预测。
- ▶LSTM网络配置:两层LSTM叠加,训练850次。
- ➤LSTM(input\_size=15, hidden\_size=\*, num\_layers=2)
- ▶预测15天后的降水量。
- ▶这次用了40%的数据以提高算法的运行效率
- ▶hidden\_size分别取15、25、30、60、365.对比其不同的值对结果的影响。
- ▶实验发现hidden\_size取30时,效果较好。

# 实验二

| 点\数据      | 隐藏层15个神经元    | 25个神经元   | 30个神经元       | 60个神经元   | 365个神经元        |
|-----------|--------------|----------|--------------|----------|----------------|
| <b>S1</b> | 0.314405598  | -0.04051 | -0.12698162  | 0.291851 | 0.022357664436 |
| S2        | -0.008880479 | -0.00961 | 0.363939418  | 0.526753 | 0.253566361100 |
| S3        | 0.285273037  | 0.41503  | 0.513305358  | -0.05184 | 0.153702819612 |
| S4        | 0.276011928  | 0.192823 | -0.090521737 | -0.03795 |                |
| S5        | 0.21797024   | 0.073908 | -0.36217402  | -0.18668 |                |
| S6        | 0.018863612  | 0.042437 | 0.194706082  | -0.18261 |                |
| S7        | -0.188002019 | 0.182807 | -0.2073635   | 0.019703 |                |
| S8        | 0.344841686  | -0.21563 | 0.171127667  | 0.113001 |                |
| S9        | 0.083092507  | 0.174363 | 0.42483937   | 0.212219 |                |
| S10       | 0.37221211   | 0.014209 | -0.243015977 | -0.4155  |                |

### 实验三

- ➤ 利用LSTM网络,用第一模态的CIO数据作为输入,用降水量数据作为输出,进行训练。
- ▶ 随机取了10个连续点进行预测。
- ➤ LSTM网络配置: 两层LSTM叠加, 隐藏层个神经元, 训练850次。 LSTM(input\_size=1, hidden\_size=120, num\_layers=2)
- input(seq\_len, batch=\*, input\_size=1)
- ▶ 预测15天后的降水量。
- ▶ 使用用了40%的数据以提高算法的运行效率
- ➤ batch分别取2倍的hidden\_size和4倍的hidden\_size;train\_time分别取750和1750。对比不同值对实验结果的影响。
- ➤ 最终发现batch取4倍的hidden\_size且train\_time取750效果较好。

# 实验三

| batch=2/train_time=750 | batch=4/train_time=750 | batch=4/train_time=1750 |
|------------------------|------------------------|-------------------------|
| 0.14232                | 0.201466               | 0.141595                |
| 0.221423               | 0.243427               | 0.196129                |
| 0.520444               | 0.539235               | -0.08953                |
| 0.214156               | -0.23808               | -0.39813                |
| -0.43049               | -0.33                  | -0.33841                |
| -0.22521               | -0.51565               | -0.42828                |
| 0.074463               | -0.32501               | -0.29419                |
| -0.67843               | -0.67056               | -0.71885                |
| -0.46857               | -0.17331               | -0.12893                |
| -0.00956               | -0.02108               | -0.02996                |

# 实验进行时

第二部分实验:

运行环境: python3, pytorch

实验模型:双层的LSTM模型

模型输入: 5Dcio数据

模型输出: 降水量数据

思想: 用降水量数据去匹配 各个点进而预测出所有点的降水量

区别:这里与第一部分实验的主要区别是,引入了5D的cio数据

实验详情:

- 4、使用1D数据和5D数据效果对比
- 5、使用5D数据探究合适的隐藏层神经元数量

# 实验四

- ▶随机取了10个连续点进行预测。
- ➤ LSTM网络配置: 两层LSTM叠加, 隐藏层个神经元, 训练850次。 LSTM(input\_size=1, hidden\_size=30, num\_layers=2)
- input(seq\_len, batch=4\*hidden\_size, input\_size=1)
- ▶预测15天后的降水量。
- ▶ 使用用了40%的数据以提高算法的运行效率
- ➤输入1Dcio数据和5Dcio数据,对比不同的结果

# 实验五

- ▶随机取了10个连续点进行预测。
- ➤ LSTM网络配置: 两层LSTM叠加, 隐藏层个神经元, 训练850次。 LSTM(input\_size=1, hidden\_size=30, num\_layers=2)
- input(seq\_len, batch=4\*hidden\_size, input\_size=1)
- ▶预测15天后的降水量。
- ▶ 使用用了40%的数据以提高算法的运行效率
- •对比不同的hidden\_size对实验结果的影响。

# 实验进行时

### 第三部分实验:

▶运行环境: python3, pytorch

▶实验模型:双层的LSTM模型+MLP

▶模型输入: 5Dcio数据

▶模型输出: 降水量数据

▶思想: 用降水量数据去匹配 各个点进而预测出所有点的降水量

➤区别:在第二部分实验的基础上更新了实验模型,在LSTM模型的基础上,增加了MLP

### 实验详情:

6、比较增加MLP对实验的影响。

# 实验六

| 随机挑选的数据      | 减少了MLP的层数    | 去掉MLP        | 使用F.ReLU    | 使用nn.ReLU    | 使用两层MLP 加一个ReLU |
|--------------|--------------|--------------|-------------|--------------|-----------------|
| -0.031017232 | -0.043647039 | 0.059231474  | 0           | 0.01806153   | -0.091418138    |
| 0.561641137  | 0.376482169  | 0.547938262  | 0           | 0            | 0.526045486     |
| 0.060910631  | 0.047256675  | 0.152843556  | 0.12020982  | 0.070583539  | 0.061452651     |
| -0.28099276  | -0.243177304 | -0.30932793  | 0           | -0.167639988 | -0.186375574    |
| 0.462993227  | 0.481162378  | -0.570021547 | -0.0719338  | 0.087909451  | 0.44313683      |
| -0.132382501 | 0.034744109  | 0.100922031  | 0           | 0            | 0.101180658     |
| -0.444772807 | -0.063819075 | -0.514586078 | -0.48854349 | 0            | 0.182614332     |
| 0.173859569  | 0.178517801  | -0.056168684 | 0.027932172 | -0.221841602 | -0.277144312    |
| -0.639868569 | -0.034987819 | -0.299233029 | -0.00588903 | 0.164430535  | 0.072940234     |
| -0.125619953 | -0.146169406 | 0.52809173   | 0           | 0            | -0.099296477    |
| -0.241968089 | -0.222368442 | -0.234972077 | -0.11194214 | -0.185439562 | -0.241486094    |
| -0.753481837 | -0.762179558 | -0.585303753 | 0           | -0.564301183 | -0.700849934    |
| 0.055920507  | -0.054607482 | 0.179833541  | 0           | 0.014338427  | -0.164891459    |
| 0            | 0            | 0            | 0           | 0            | 0               |
| -0.391979714 | -0.388675889 | -0.212797221 | 0.160200798 | 0            | 0.072405119     |
| -0.135655822 | -0.156773689 | -0.118485487 | -0.13271361 | 0.127996738  | -0.002245619    |
| 0.536030116  | 0.490159079  | 0.470347874  | 0.431310904 | -0.084327797 | 0.446780429     |
| 0            | 0            | 0            | 0           | 0            | 0               |
| -0.42850496  | -0.435782411 | 0.063007989  | -0.33986047 | 0            | 0.600146427     |
| -0.264852954 | -0.37391918  | 0.152340728  | -0.24651414 | -0.422109386 | -0.28049425     |

# 存在疑问

- ▶对于每天一个的cio数据,是否能和所有空间点上的降水量都相关, 或者相关度很高。
- ▶因为第一个问题,所以,我认为有些点是不可预测的。
- ▶降水量数据过小, 我认为会影响预测
- ▶在空间点中,存在很多点,连续几十天,甚至几年都没有降水,我认为这种点没有预测的必要
- ▶对于数据,和模型,请问老师们有什么好的建议吗?

# 实验中的疑问

- ▶很多点预测出来是高的负相关
- ▶输入输出都是[0,1]归一化的值,为什么预测出来有负值

# Thank you