

Recursão

Algoritmos

RECURSION

Here we go again

Recursividade

- É quando uma função envoca si mesmo para resolver um problema em uma instância menor!!!
- Programas recursivos são, em geral, mais simples de se escrever, analisar e entender!

- Para usar a recursividade temos que aprender como o computador se comporta durante a recursão!
- · Para isto entenderemos a recursão!!

- Exemplo:
 - Os pais de uma pessoa são seus ancestrais (caso base);
 - Os pais de qualquer ancestral são também ancestrais da pessoa inicialmente considerada (passo recursivo).

- Dividir: Divida o problema em subproblemas menores, até encontrar o caso base;
- Conquiste os subproblemas: resolva cada problema menor de forma isolada;
- Recombine a resolução dos subproblemas:por meio das resoluções dos problemas menores, resolva o maior.

- Os algoritmos recursivos chamam a si mesmos, porém passando parâmetros diferentes (que em tese são a "instância menor" do que algoritmo irá resolver).
- · Ao chamar a própria função com parâmetros diferentes podemos considerar que é um subproblema a ser resolvido.

EXEMPLO FATORIAL

- $4! = 4 \times (4-1) \times (4-2) \times (4-3)4 = 4 \times 3 \times 2 \times 1 = 24.$
- · Um fatorial de um número é o próprio número menos o fatorial do número menos um.
- $4! = 4 \times 3!$ (o fatorial de 4, é 4 vezes o fatorial de 3)
- \cdot 3! = 3 x 2! (o fatorial de 3 é 3 vezes o fatorial de 2)
- \cdot 2! = 2 x 1! (o fatorial de 2 é 2 vezes o fatorial de 1)
- $1! = 1 \times 0!$ (o fatorial de 1 é 1 vez o fatorial de 0)0! = o fatorial de zero é 1

COMO FICA NOSSA RECURSÃO?

Dividimos o problema em fatoriais menores até chegar no fatorial de zero.

Caso base

COMO FICA NOSSA RECURSÃO?

- E o que acontece quando chegarmos ao zero?
- Podemos retornar 1, pois 0! equivale a 1 e é o menor fatorial possível.

COMO FICA NOSSA RECURSÃO?

- Quebre o problema maior em subproblemas, até chegar ao caso base;
- · Identifique o caso base (o caso base nesse caso é o fatorial de 0 que é igual a 1)
- A partir do caso base, comece a resolver os subproblemas um a um;
- Por fim, resolva o problema maior.

- · Pilha de execução:
 - Toda vez que fazemos uma chamada de função dentro do programa, o SO reserva memória para as variáveis e parâmetros desta função.
 - · A função no topo da pilha é função sendo executada no momento.
 - · Quando uma função termina de ser executada ela é removida da pilha.
 - Quando ocorre uma nova chamada de função, a função chamada é colocada imediatamente no topo da pilha e começa a ser executada.

COMO O COMPUTADOR FAZ? (EXPONENCIAÇÃO)

pow(4,3)

STACK

STACK

64

STACK

- · Uma chamada recursiva nada mais é que uma simples chamada de função.
- Tudo que acontece é que várias instâncias da mesma função ficam empilhadas.
- Cada instância da função na pilha tem suas próprias variáveis locais, por isso o que acontece em uma instância de uma função recursiva não influencia o que acontece em outras instâncias.

EXEMPLO EXPONENCIAÇÃO

```
int pow_recursivo(int x, int n){
   if(n == 1)
      return x;

return x * pow_recursivo(x,n-1);
}
```

COMO FICA O FATORIAL?

```
1 #include <stdio.h>
 3 int F(int n) {
       if (n==0)
           return 1;
       else
           return F(n-1)*n;
 8
10
11 int main() {
       int num;
12
13
      scanf("%d", &num);
14
       printf("%d\n", F(num));
15
```

FIBONACCI

F ₀	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅	F ₁₆	F ₁₇	F ₁₈	F ₁₉	F ₂₀
0	1	1	2	3	5	8	13	21	34	55	89	144	233	377	610	987	1597	2584	4181	6765

FIBONACCI

- Os números de Fibonacci foram propostos por Leonardo di Pisa (Fibonacci), em 1202, como uma solução para o problema de determinaro tamanho da população de coelhos
 - · (*) fonte http://www.oxfordmathcenter.com/drupal7/node/487.

FIBONACCI

