CS162 Operating Systems and Systems Programming Lecture 23

Filesystems 3: Buffer Cache, Reliability, Transactions (start)

November 21st, 2024
Prof. Ion Stoica
http://cs162.eecs.Berkeley.edu

THE BUFFER CACHE

Recall: From Storage to File Systems

Need for Cache Between FileSystem and Devices

11/21/2024 HDD CS162 © UCB Spring 2550 Lec 23.4

Buffer Cache: Motivation

- Kernel must copy disk blocks to memory (somewhere) to access their contents and write them back if modified
 - Could be data blocks, inodes, directory contents, etc.
 - Possibly dirty (modified and not yet written back)
- Key Idea: Exploit locality by caching disk data in memory
 - Name translations: Mapping from paths→inodes
 - Disk blocks: Mapping from block address→disk content
- Buffer Cache: Memory used to cache kernel resources, including disk blocks and name translations
 - Can contain "dirty" blocks (with modifications not on disk)

File System Buffer Cache

 OS implements a cache of disk blocks for efficient access to data, directories, inodes, freemap

File System Buffer Cache: open

- Directory lookup repeat as needed:
 - load block of directory
 - search for map

File System Buffer Cache: open

- Directory lookup repeat as needed:
 - load block of directory
 - search for map
- Create reference via open file descriptor

File System Buffer Cache: Read?

Read Process

- From inode,
 traverse index
 structure to find
 data block
- load data block
- copy all or part to read data buffer

File System Buffer Cache: Write?

 Process similar to read, but may allocate new blocks (update free map), blocks need to be written back to disk; inode?

File System Buffer Cache: Eviction?

 Blocks being written back to disc go through a transient state

Buffer Cache Discussion

- Implemented entirely in OS software
 - Unlike memory caches and TLB
- Blocks go through transitional states between free and in-use
 - Being read from disk, being written to disk
 - Other processes can run, etc.
- Blocks are used for a variety of purposes
 - inodes, data for dirs and files, freemap
 - OS maintains pointers into them
- Termination e.g., process exit open, read, write
- Replacement what to do when it fills up?

File System Caching

- Replacement policy? LRU
 - Can afford overhead full LRU implementation
 - Advantages:
 - » Works very well for name translation
 - » Works well in general as long as memory is big enough to accommodate a host's working set of files.
 - Disadvantages:
 - » Fails when some application scans through file system, thereby flushing the cache with data used only once
 - » Example: find . -exec grep foo {} \;
- Other Replacement Policies?
 - Some systems allow applications to request other policies
 - Example, 'Use Once':
 - » File system can discard blocks as soon as they are used

File System Caching (con't)

- Cache Size: How much memory should the OS allocate to the buffer cache vs virtual memory?
 - Too much memory to the file system cache \Rightarrow won't be able to run many applications
 - Too little memory to file system cache ⇒ many applications may run slowly (disk caching not effective)
 - Solution: adjust boundary dynamically so that the disk access rates for paging and file access are balanced

File System Prefetching

- Read Ahead Prefetching: fetch sequential blocks early
 - Key Idea: exploit fact that most common file access is sequential by prefetching subsequent disk blocks ahead of current read request
 - Elevator algorithm can efficiently interleave prefetches from concurrent applications
- How much to prefetch?
 - Too much prefetching imposes delays on requests by other applications
 - Too little prefetching causes many seeks (and rotational delays) among concurrent file requests

Delayed Writes

- Buffer cache is a writeback cache (writes are termed "Delayed Writes")
- write() copies data from user space to kernel buffer cache
 - Quick return to user space
- read() is fulfilled by the cache, so reads see the results of writes
 - Even if the data has not reached disk
- When does data from a write syscall finally reach disk?
 - When the buffer cache is full (e.g., we need to evict something)
 - When the buffer cache is flushed periodically (in case we crash)

Delayed Writes (Advantages)

- Performance advantage: return to user quickly without writing to disk!
- Disk scheduler can efficiently order lots of requests
 - Elevator Algorithm can rearrange writes to avoid random seeks
- Delay block allocation:
 - May be able to allocate multiple blocks at same time for file, keep them contiguous
- Some files never actually make it all the way to disk
 - Many short-lived files!

Buffer Caching vs. Demand Paging

- Replacement Policy?
 - Demand Paging: LRU is infeasible; use approximation (like NRU/Clock)
 - Buffer Cache: LRU is OK
- Eviction Policy?
 - Demand Paging: evict not-recently-used pages when memory is close to full
 - Buffer Cache: write back dirty blocks periodically, even if used recently
 - » Why? To minimize data loss in case of a crash

Dealing with Persistent State

- Buffer Cache: write back dirty blocks periodically, even if used recently
 - Why? To minimize data loss in case of a crash
 - Linux does periodic flush every 30 seconds
- Not foolproof! Can still crash with dirty blocks in the cache
 - What if the dirty block was for a directory?
 - » Lose pointer to file's inode (leak space)
 - » File system now in inconsistent state 🙁

Takeaway: File systems need recovery mechanisms

HOW TO MAKE FILE SYSTEMS MORE DURABLE?

Important "ilities"

- Availability: the probability that the system can accept and process requests
 - Measured in "nines" of probability: e.g. 99.9% probability is "3-nines of availability"
 - Key idea here is independence of failures
- Durability: the ability of a system to recover data despite faults
 - This idea is fault tolerance applied to data
 - Doesn't necessarily imply availability: information on pyramids was very durable, but could not be accessed until discovery of Rosetta Stone
- Reliability: the ability of a system or component to perform its required functions under stated conditions for a specified period of time (IEEE definition)
 - Usually stronger than simply availability: means that the system is not only "up", but also working correctly
 - Includes availability, security, fault tolerance/durability
 - Must make sure data survives system crashes, disk crashes, other problems

How to Make File Systems more Durable?

- Disk blocks contain Reed-Solomon error correcting codes (ECC) to deal with small defects in disk drive
 - Can allow recovery of data from small media defects
- Make sure writes survive in short term
 - Either abandon delayed writes or
 - Use special, battery-backed RAM (called non-volatile RAM or NVRAM) for dirty blocks in buffer cache
- Make sure that data survives in long term
 - Need to replicate! More than one copy of data!
 - Important element: independence of failure
 - » Could put copies on one disk, but if disk head fails...
 - » Could put copies on different disks, but if server fails...
 - » Could put copies on different servers, but if building is struck by lightning....
 - » Could put copies on servers in different continents...

RAID I: Disk Mirroring/Shadowing

- Each disk is fully duplicated onto its "shadow"
 - For high I/O rate, high availability environments
 - Most expensive solution: 100% capacity overhead
- Bandwidth sacrificed on write:
 - Logical write = two physical writes
 - Highest bandwidth when disk heads and rotation synchronized (challenging)
- Reads may be optimized
 - Can have two independent reads to same data
- Recovery:
 - Disk failure ⇒ replace disk and copy data to new disk
 - Hot Spare: idle disk attached to system for immediate replacement

RAID 5+: High I/O Rate Parity

- Data stripped across multiple disks
 - Successive blocks stored on successive (non-parity) disks
 - Increased bandwidth over single disk
- Parity block (in green) constructed by XORing data blocks in stripe
 - P0=D0⊕D1⊕D2⊕D3
 - Can destroy any one disk and still reconstruct data
- Suppose Disk 3 fails, then can reconstruct: D2=D0⊕DI⊕D3⊕P0

- Can spread information widely across internet for durability
 - RAID algorithms work over geographic scale

RAID 6 and other Erasure Codes

- In general: RAIDX is an "erasure code"
 - Must have ability to know which disks are bad
 - Treat missing disk as an "Erasure"
- Today, disks so big that: RAID 5 not sufficient!
 - Time to repair disk sooooo long, another disk might fail in process!
 - "RAID 6" allow 2 disks in replication stripe to fail
 - Requires more complex erasure code, such as EVENODD code (see readings)
- More general option for general erasure code: Reed-Solomon codes
 - -m data fragements
 - generate n m extra fragments
 - can tolerate n-m failures
- Erasure codes not just for disk arrays. For example, geographic replication
 - E.g., split data into m=4 fragments, generate n=16 fragments and distribute across Internet
 - Any 4 fragments can be used to recover the original data --- very durable!

Use of Erasure Coding for High Durability/overhead ratio!

- Exploit law of large numbers for durability!
- 6 month repair, FBLPY with 4x increase in total size of data:
 - Replication (4 copies): 0.03
 - Fragmentation (16 of 64 fragments needed): 10⁻³⁵

Higher Durability through Geographic Replication

- Highly durable hard to destroy all copies
- Highly available for reads
 - Simple replication: read any copy
 - Erasure coded: read m of n
- Low availability for writes
 - Can't write if any one replica is not up
 - Or need relaxed consistency model
- Reliability? availability, security, durability, fault-tolerance

File System Reliability: (Difference from Block-level reliability)

- What can happen if disk loses power or software crashes?
 - Some operations in progress may complete
 - Some operations in progress may be lost
 - Overwrite of a block may only partially complete
- Having RAID doesn't necessarily protect against all such failures
 - No protection against writing bad state
 - What if one disk of RAID group not written?
- File system needs durability (as a minimum!)
 - Data previously stored can be retrieved (maybe after some recovery step), regardless of failure
- But durability is not quite enough...!

Storage Reliability Problem

- Single logical file operation can involve updates to multiple physical disk blocks
 - inode, indirect block, data block, bitmap, ...
 - With sector remapping, single update to physical disk block can require multiple (even lower level) updates to sectors
- At a physical level, operations complete one at a time
 - Want concurrent operations for performance
- How do we guarantee consistency regardless of when crash occurs?

Threats to Reliability

Interrupted Operation

- Crash or power failure in the middle of a series of related updates may leave stored data in an inconsistent state
- Example: transfer funds from one bank account to another
- What if transfer is interrupted after withdrawal and before deposit?
- Loss of stored data
 - Failure of non-volatile storage media may cause previously stored data to disappear or be corrupted

Reliability Approach #1: Careful Ordering

- Sequence operations in a specific order
 - Careful design to allow sequence to be interrupted safely
 - Data block ← inode ← free ← directory
- Post-crash recovery
 - Read data structures to see if there were any operations in progress
 - Clean up/finish as needed
- Approach taken by
 - FAT and FFS (fsck) to protect filesystem structure/metadata
 - Many app-level recovery schemes (e.g., Word, emacs autosaves)

Berkeley FFS: Create a File

Normal operation:

- Allocate data block
- Write data block
- Allocate inode
- Write inode block
- Update bitmap of free blocks and inodes
- Update directory with file name → inode number
- Update modify time for directory

Recovery:

- Scan inode table
- If any unlinked files (not in any directory), delete or put in lost & found dir
- Compare free block bitmap against inode trees
- Scan directories for missing update/access times

Time proportional to disk size

Reliability Approach #2: Copy on Write File Layout

- Recall: multi-level index structure lets us find the data blocks of a file
- Instead of over-writing existing data blocks and updating the index structure:
 - Create a new version of the file with the updated data
 - Reuse blocks that don't change much of what is already in place
 - This is called: Copy On Write (COW)
- Seems expensive! But
 - Updates can be batched
 - Almost all disk writes can occur in parallel
- Approach taken in network file server appliances
 - NetApp's Write Anywhere File Layout (WAFL)
 - ZFS (Sun/Oracle) and OpenZFS

COW with Smaller-Radix Blocks

• If file represented as a tree of blocks, just need to update the leading fringe

Example: ZFS and OpenZFS

- Variable sized blocks: 512 B 128 KB
- Symmetric tree
 - Know if it is large or small when we make the copy
- Store version number with pointers
 - Can create new version by adding blocks and new pointers
- Buffers a collection of writes before creating a new version with them
- Free space represented as tree of extents in each block group
 - Delay updates to freespace (in log) and do them all when block group is activated

Announcements

- Project 3: Design doc due Sunday (11/24)
- Homework 5: Checkpoint deadline Tuesday (11/26)
- Midterm 3: Thursday, 12/05
 - Everything fair game with focus on last 1/3 of class
 - Three *hand-written* cheat-sheets, double sided

More General Reliability Solutions

- Use Transactions for atomic updates
 - Ensure that multiple related updates are performed atomically
 - i.e., if a crash occurs in the middle, the state of the systems reflects either all or none of the updates
 - Most modern file systems use transactions internally to update filesystem structures and metadata
 - Many applications implement their own transactions
- Provide Redundancy for media failures
 - Redundant representation on media (Error Correcting Codes)
 - Replication across media (e.g., RAID disk array)

Transactions

- Closely related to critical sections for manipulating shared data structures
- They extend concept of atomic update from memory to stable storage
 - Atomically update multiple persistent data structures
- Many ad-hoc approaches
 - FFS carefully ordered the sequence of updates so that if a crash occurred while manipulating directory or inodes the disk scan on reboot would detect and recover the error (fsck)
 - Applications use temporary files and rename

Key Concept: Transaction

• A *transaction* is an atomic sequence of reads and writes that takes the system from consistent state to another.

- Recall: Code in a critical section appears atomic to other threads
- Transactions extend the concept of atomic updates from *memory* to *persistent* storage

Typical Structure

- Begin a transaction get transaction id
- Do a bunch of updates
 - If any fail along the way, roll-back
 - Or, if any conflicts with other transactions, roll-back
- Commit the transaction

"Classic" Example: Transaction

```
BEGIN; --BEGIN TRANSACTION
 UPDATE accounts SET balance = balance - 100.00 WHERE
   name = 'Alice';
 UPDATE branches SET balance = balance - 100.00 WHERE
   name = (SELECT branch_name FROM accounts WHERE name
   = 'Alice');
 UPDATE accounts SET balance = balance + 100.00 WHERE
   name = 'Bob';
 UPDATE branches SET balance = balance + 100.00 WHERE
   name = (SELECT branch name FROM accounts WHERE name
   = 'Bob');
COMMIT; --COMMIT WORK
```

Transfer \$100 from Alice's account to Bob's account

Concept of a log

- One simple action is atomic write/append a basic item
- Use that to seal the commitment to a whole series of actions

Transactional File Systems

- Better reliability through use of log
 - Changes are treated as transactions
 - A transaction is committed once it is written to the log
 - » Data forced to disk for reliability
 - » Process can be accelerated with NVRAM
 - Although File system may not be updated immediately, data preserved in the log
- Difference between "Log Structured" and "Journaled"
 - In a Log Structured filesystem, data stays in log form
 - In a Journaled filesystem, Log used for recovery

Journaling File Systems

- Don't modify data structures on disk directly
- Write each update as transaction recorded in a log
 - Commonly called a journal or intention list
 - Also maintained on disk (allocate blocks for it when formatting)
- Once changes are in the log, they can be safely applied to file system
 - e.g. modify inode pointers and directory mapping
- Garbage collection: once a change is applied, remove its entry from the log
- Linux took original FFS-like file system (ext2) and added a journal to get ext3!
 - Some options: whether or not to write all data to journal or just metadata
- Other examples: NTFS, Apple HFS+/apfs, Linux XFS, JFS, ext4

Creating a File (No Journaling Yet)

- Find free data block(s)
- Find free inode entry
- Find dirent insertion point

- Write map (i.e., mark used)
- Write inode entry to point to block(s)
- Write dirent to point to inode

Creating a File (With Journaling)

After Commit, Eventually Replay Transaction

Crash Recovery: Discard Partial Transactions

Crash Recovery: Keep Complete Transactions

Journaling Summary

Why go through all this trouble?

- Updates atomic, even if we crash:
 - Update either gets fully applied or discarded
 - All physical operations treated as a logical unit

Isn't this expensive?

- Yes! We're now writing all data twice (once to log, once to actual data blocks in target file)
- Modern filesystems journal metadata updates only
 - Record modifications to file system data structures
 - But apply updates to a file's contents directly

DISTRIBUTED SYSTEMS

Centralized vs Distributed Systems

- Centralized System: major functions performed by a single physical computer
 - Originally, everything on single computer
 - Later: client/server model
- Distributed System: physically separate computers working together on task
 - Early model: multiple servers working together
 - » Probably in the same room or building
 - » Often called a "cluster"
 - Later models: peer-to-peer/wide-spread collaboration

Distributed Systems: Motivation/Issues/Promise

- Why do we want distributed systems?
 - Cheaper and easier to build lots of simple computers
 - More resources (such as cluster of GPUs for training)
 - Easier to add resources incrementally
 - Users can have complete control over some components
 - Collaboration: much easier for users to collaborate through network resources (such as network file systems)
- The *promise* of distributed systems:
 - Higher availability: one machine goes down, use another
 - Better durability: store data in multiple locations
 - More security: each piece easier to make secure

Distributed Systems: Reality

- Reality has been disappointing
 - Worse availability: depend on every machine being up
 - » Lamport: "A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable."
 - Worse reliability: can lose data if any machine crashes
 - Worse security: anyone in world can break into system
- Coordination is more difficult
 - Must coordinate multiple copies of shared state information
 - What would be easy in a centralized system becomes a lot more difficult
- Trust/Security/Privacy/Denial of Service
 - Many new variants of problems arise as a result of distribution
 - Can you trust the other members of a distributed application enough to even perform a protocol correctly?
 - Corollary of Lamport's quote: "A distributed system is one where you can't do work because some computer you didn't even know existed is successfully coordinating an attack on my system!"

Leslie Lamport

Distributed Systems: Goals/Requirements

- Transparency: the ability of the system to mask its complexity behind a simple interface
- Possible transparencies:
 - Location: Can't tell where resources are located
 - Migration: Resources may move without the user knowing
 - Replication: Can't tell how many copies of resource exist
 - Concurrency: Can't tell how many users there are
 - Parallelism: System may speed up large jobs by splitting them into smaller pieces
 - Fault Tolerance: System may hide various things that go wrong
- Transparency and collaboration require some way for different processors to communicate with one another

How do entities communicate? A Protocol!

- A protocol is an agreement on how to communicate, including:
 - Syntax: how a communication is specified & structured
 - » Format, order messages are sent and received
 - Semantics: what a communication means
 - » Actions taken when transmitting, receiving, or when a timer expires
- Described formally by a state machine
 - Often represented as a message transaction diagram
 - Can be a partitioned state machine: two parties synchronizing duplicate sub-state machines between them
 - Stability in the face of failures!

Examples of Protocols in Human Interactions

Telephone

- 1. (Pick up / open up the phone)
- 2. Listen for a dial tone / see that you have service
- 3. Dial
- 4. Should hear ringing ...
- 5. Callee: "Hello?"
- 6. Caller: "Hi, it's Anthony...."
 Or: "Hi, it's me" (← what's *that* about?)
- 7. Caller: "Hey, do you think ... blah blah blah ..." pause
- 8. Callee: "Yeah, blah blah blah ..." pause
- 9. Caller: Bye
- 10. Callee: Bye
- 11. Hang up

Distributed Applications

- How do you actually program a distributed application?
 - Need to synchronize multiple threads, running on different machines
 - » No shared memory, so cannot use test&set

- One Abstraction: send/receive messages
 - » Already atomic: no receiver gets portion of a message and two receivers cannot get same message
- Interface:
 - Mailbox (mbox): temporary holding area for messages
 - » Includes both destination location and queue
 - » Over Internet, destination specified by IP address and Port (Recall Web server example!)
 - Send(message,mbox)
 - » Send message to remote mailbox identified by mbox
 - Receive(buffer,mbox)
 - » Wait until mbox has message, copy into buffer, and return
 - » If threads sleeping on this mbox, wake up one of them

Using Messages: Send/Receive behavior

- When should send (message, mbox) return?
 - When receiver gets message? (i.e. ack received)
 - When message is safely buffered on destination?
 - Right away, if message is buffered on source node?
- Actually two questions here:
 - When can the sender be sure that receiver actually received the message?
 - When can sender reuse the memory containing message?
- Mailbox provides I-way communication from TI→T2
 - $-TI \rightarrow buffer \rightarrow T2$
 - Very similar to producer/consumer
 - » Send = V, Receive = P
 - » However, can't tell if sender/receiver is local or not!

Messaging for Producer-Consumer Style

• Using send/receive for producer-consumer style:

```
Producer:

int msg I [1000];

while (1) {

    prepare message;
    send(msg I,mbox);
}

Consumer:

int buffer [1000];

while (1) {

    receive(buffer,mbox);
    process message;
}

Receive

Message
```

- No need for producer/consumer to keep track of space in mailbox: handled by send/receive
 - This is one of the roles of the window in TCP: window is size of buffer on far end
 - Restricts sender to forward only what will fit in buffer

Messaging for Request/Response communication

- What about two-way communication?
 - Request/Response
 - » Read a file stored on a remote machine
 - » Request a web page from a remote web server
 - Also called: client-server
 - » Client ≡ requester, Server ≡ responder
 - » Server provides "service" (file storage) to the client

• Example: File service

```
Request
Client: (requesting the file)
   char response[1000];
                                             File
   send("read rutabaga", server mbox);
   receive (response, client mbo\overline{x});
                                               Get
                                               Response
Server: (responding with the file)
   char command[1000], answer[1000];
                                           Receive
   receive (command, server mbox);
   decode command;
                                           Request
   read file into answer;
   send(answer, client mbox);
                                          Send
                                          Response
```

Distributed Consensus Making

- Consensus problem
 - All nodes propose a value
 - Some nodes might crash and stop responding
 - Eventually, all remaining nodes decide on the same value from set of proposed values
- Distributed Decision Making
 - Choose between "true" and "false"
 - Or Choose between "commit" and "abort"
- Equally important (but often forgotten!): make it durable!
 - How do we make sure that decisions cannot be forgotten?
 - » This is the "D" of "ACID" in a regular database
 - In a global-scale system?
 - » What about erasure coding or massive replication?
 - » Like BlockChain applications!

General's Paradox

- General's paradox:
 - Constraints of problem:
 - » Two generals, on separate mountains
 - » Can only communicate via messengers
 - » Messengers can be captured
 - Problem: need to coordinate attack
 - » If they attack at different times, they all die
 - » If they attack at same time, they win
 - Named after Custer, who died at Little Big Horn because he arrived a couple of days too early

General's Paradox (con't)

- Can messages over an unreliable network be used to guarantee two entities do something simultaneously?
 - Remarkably, "no", even if all messages get through

- No way to be sure last message gets through!
- In real life, use radio for simultaneous (out of band) communication
- So, clearly, we need something other than simultaneity!

File System Summary

- Buffer Cache: Memory used to cache kernel resources, including disk blocks and name translations
 - Can contain "dirty" blocks (blocks yet on disk)
- RAID
 - User replication (mirroring) and parity bits to protect against disk failures
- Copy-on-write provides richer function (versions) with much simpler recovery
 - Little performance impact since sequential write to storage device is nearly free
- Transactions over a log provide a general solution
 - Journaled file systems such as ext3, NTFS
 - Commit sequence to durable log, then update the disk
 - Log takes precedence over disk
 - Replay committed transactions, discard partials