

Analysis of Homeownership Rate in US

Yueqiao Faith Zhang Ashutosh Kumar

Roadmap

Introduction

Research Question

Deciding Series to Work On

Model 1

Model 2

Model 3

Model 4

Conclusion

Introduction: Homeownership Rate

Definition:

The proportion of owner-occupied housing units out of all occupied units.

Data:

Non-seasonally adjusted
Quarterly, from Q1, 1965 to Q3, 2018
(215 time periods)

Source: US Census Bureau

Research Questions

How did the Homeownership Rate change across time in the US?

What was the impact of 2006 Housing Crisis on Homeownership Rate?

What model is the "best fit" for answering above question?

Can we forecast future Homeownership Rate?

ORIGINAL SERIES

Original series Y: Nonstationary

	Augmented Dickey-Fuller Unit Root Tests							
Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F	
Zero Mean	0	0.0202	0.6868	0.30	0.7731			
	1	0.0206	0.6869	0.36	0.7882			
	2	0.0207	0.6869	0.46	0.8119			
	3	0.0155	0.6857	0.35	0.7846			
	4	0.0111	0.6847	0.16	0.7331			
	5	0.0146	0.6855	0.19	0.7410			
Single Mean	0	-4.4487	0.4875	-1.68	0.4424	1.46	0.6977	
	1	-3.5643	0.5866	-1.54	0.5095	1.27	0.7463	
	2	-2.6164	0.7020	-1.41	0.5766	1.12	0.7860	
	3	-2.2766	0.7439	-1.24	0.6569	0.84	0.8560	
	4	-4.2352	0.5104	-1.50	0.5333	1.14	0.7797	
	5	-5.5682	0.3795	-1.70	0.4290	1.47	0.6949	
Trend	0	-3.6514	0.9048	-1.20	0.9068	1.55	0.8686	
	1	-2.4195	0.9576	-0.92	0.9507	1.58	0.8626	
	2	-1.0974	0.9867	-0.53	0.9815	2.04	0.7700	
	3	-0.8332	0.9899	-0.41	0.9866	1.70	0.8372	
	4	-3.8315	0.8948	-1.19	0.9096	1.14	0.9481	
	5	-5.6346	0.7697	-1.47	0.8351	1.44	0.8898	

FIRST DIFF (U): (Voila!) STATIONARY

FIRST DIFFERENCE

Wednesday,

The ARIMA Procedure

(5% Significance Level)

Augmented Dickey-Fuller Unit Root Tests									
Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F		
Zero Mean	0	-245.611	0.0001	-16.99	<.0001				
	1	-385.894	0.0001	-13.81	<.0001				
	2	-401.464	0.0001	-10.13	<.0001				
	3	-82.8041	<.0001	-5.44	<.0001				
	4	-58.6396	<.0001	-4.47	<.0001				
	5	-44.1120	<.0001	-3.84	0.0002				
Single Mean	0	-245.740	0.0001	-16.96	<.0001	143.76	0.0010		
	1	-386.748	0.0001	-13.80	<.0001	95.20	0.0010		
	2	-403.421	0.0001	-10.12	<.0001	51.21	0.0010		
	3	-83.0361	0.0014	-5.43	<.0001	14.74	0.0010		
	4	-58.8490	0.0014	-4.47	0.0004	9.97	0.0010		
	5	-44.2628	0.0014	-3.84	0.0031	7.37	0.0010		
Trend	0	-247.743	0.0001	-17.08	<.0001	145.80	0.0010		
	1	-402.121	0.0001	-14.03	<.0001	98.38	0.0010		
	2	-449.241	0.0001	-10.33	<.0001	53.39	0.0010		
	3	-88.9924	0.0006	-5.49	<.0001	15.16	0.0010		
	4	-63.9229	0.0006	-4.53	0.0018	10.31	0.0010		
	5	-48.1323	0.0006	-3.87	0.0150	7.58	0.0182		

Model 1: Identification and Fitting

Model for U	AIC	SBC	Variance Estimate	Note
MA(4)	51.83035	68.66023	0.072703	Insig coeff, residuals not white noise
MA((1,2,4))	51.91713	65.38104	0.073067	Residuals not white noise
ARMA(4,4)	41.66577	71.95955	0.067915	Insig coeff
ARMA((4),(1,4))	39.92582	53.38972	0.068934	Insig coeff
ARMA((4),1)	40.62527	50.7232	0.069524	

ARMA(p+d,q) Tentative Order Selection Tests						
	ESACF					
p+d	q	BIC				
0	4	-2.59434				
3	4	-2.5437				
4	4	-2.61296				
2	5	-2.5596				

Maximum Likelihood Estimation						
Standard Approx						
Parameter	Estimate	Error	t Value	Pr > t	Lag	
MU	0.01022	0.02273	0.45	0.6529	0	
MA1,1	0.26945	0.06648	4.05	<.0001	1	
AR1,1	0.42883	0.06249	6.86	<.0001	4	

Residual Diagnostics for U

MODEL 1: ARIMA((4),1,1) FORECAST

$$U_t = 0.010223 + \frac{1 - 0.26945 \,\mathrm{B}}{1 - 0.42883 \,\mathrm{B}^4} a_t$$

$$Y_t = Y_{t-1} + 0.010223 + \frac{1 - 0.26945 \,\mathrm{B}}{1 - 0.42883 \,\mathrm{B}^4} a_t$$

Q4-2018	64.5266
Q1-2019	64.5324
Q2-2019	64.5811
Q3-2019	64.6298
Q4-2019	64.6899
Q1-2020	64.6982
Q2-2020	64.7249
Q3-2020	64.7516
Q4-2020	64.7832
Q1-2021	64.7926
Q2-2021	64.8099
Q1-2019	64.8272

Model 2: Stochastic Seasonal

Differencing by 4, i.e. U(4) Why? Model

- Quarterly
- Suggested by CDF of U

Augmented Dickey-Fuller Unit Root Tests							
Туре	Lags	Rho	Pr < Rho	Tau	Pr < Tau	F	Pr > F
Zero Mean	0	-261.012	0.0001	-18.63	<.0001		
	1	-375.016	0.0001	-13.64	<.0001		
	2	-201.233	0.0001	-8.17	<.0001		
	3	-2069.2	0.0001	-9.67	<.0001		
	4	606.7969	0.9999	-9.33	<.0001		
	5	316.5372	0.9999	-8.56	<.0001		
Single Mean	0	-261.012	0.0001	-18.59	<.0001	172.76	0.00
	1	-375.022	0.0001	-13.6	<.0001	92.51	0.00
	2	-201.242	0.0001	-8.15	<.0001	33.23	0.00
	3	-2070.08	0.0001	-9.65	<.0001	46.52	0.00
	4	606.7453	0.9999	-9.3	<.0001	43.27	0.00
	5	316.5189	0.9999	-8.54	<.0001	36.48	0.00
Trend	0	-261.179	0.0001	-18.55	<.0001	172.13	0.00
	1	-376.223	0.0001	-13.59	<.0001	92.31	0.00
	2	-202.367	0.0001	-8.14	<.0001	33.17	0.00
	3	-2145.33	0.0001	-9.63	<.0001	46.37	0.00
	4	588.5768	0.9999	-9.32	<.0001	43.45	0.00
	5	309.9895	0.9999	-8.57	<.0001	36.7	0.00

Model 2: Identification and Fitting

ARMA(p+d,q	ARMA(p+d,q) Tentative Order Selection Tests					
	ESACF					
p+d	q	BIC				
0	4	-2.56656				
3	4	-2.52882				
4	4	-2.52207				
2	5	-2.51717				

Maximum Likelihood Estimation						
		Standard		Approx		
Parameter	Estimate	Error	t Value	Pr > t	Lag	
MU	-0.0013644	0.0053633	-0.25	0.7992	0	
MA1,1	0.1386	0.059	2.35	0.0188	1	
MA1,2	0.19274	0.05958	3.24	0.0012	2	
MA1,3	-0.15463	0.05955	-2.6	0.0094	3	
MA1,4	0.55743	0.06067	9.19	<.0001	4	
·						

Model 2: Diagnostics

Model 2: Forecast

```
(1 - B^4)U_t = -0.00136 + (1 - 0.1386 B - 0.19274 B^2 + 0.15463B^3 - 0.55743B^4)a_t
(1 - B^4)(Y_t - Y_{t-1})
= -0.00136 + (1 - 0.1386 B - 0.19274 B^2 + 0.15463B^3 - 0.55743B^4)a_t
```


Q4-2018	64.5184
Q1-2019	64.4329
Q2-2019	64.2934
Q3-2019	64.4277
Q4-2019	64.5448
Q1-2020	64.4579
Q2-2020	64.317
Q3-2020	64.4499
Q4-2020	64.5656
Q1-2021	64.4773
Q2-2021	64.335
Q1-2019	64.4665

Model identification on Original Series (Y)

ARMA(p+d,q) Tentative Order Selection Tests					
ESACF					
p+d	q	BIC			
1	4	-2.61104			
3	4	-2.56748			
4	4	-2.54265			
5	4	-2.63692			

Model for Y	AIC	SBC	Variance Estimate	Note
ARMA(1,4)	55.90339	76.12722	0.072441	Insig coeff, residuals not white noise
ARMA(1,(1,2,4)) INPUT=(T C1 S1 C2)	39.43369	69.76943	0.06631	Insig coeff
ARMA(1,(1,4)) INPUT=(T C1 S1 C2)	38.39846	65.36356	0.066292	Insig coeff of T
ARMA(1,(1,4)) INPUT=(C1 S1 C2)	37.17752	60.77199	0.066144	

		Maxim	um Likeliho	ood Estimatio	n	
		Standard		Approx		
Parameter	Estimate	Error	t Value	Pr > t	Lag Variable	Shift
MU	64.59498	1.0434	61.91	<.0001	0 Y	0
MA1,1	0.18178	0.06643	2.74	0.0062	1 Y	0
MA1,2	-0.27021	0.06685	-4.04	<.0001	4 Y	0
AR1,1	0.9859	0.01029	95.83	<.0001	1 Y	0
NUM1	0.04422	0.02243	1.97	0.0487	0 C1	0
NUM2	-0.10088	0.0224	-4.5	<.0001	0 S1	0
NUM 3	-0.02695	0.01268	-2.12	0.0336	0 C2	0

Model 3: Deterministic Seasonal Model

Model 3: Diagnostics

Model 3: Forecast

$$Y_t = 0.910619 + 0.044223 \cos(\frac{\pi}{2}t) - 0.10088 \sin(\frac{\pi}{2}t) - 0.02695 \cos(\pi t) + \frac{1 - 0.18178 \text{ B} + 0.27021 B^4}{1 - 0.9859 \text{ B}} a_t$$

Q4-2018	64.398
Q1-2019	64.3455
Q2-2019	64.3646
Q3-2019	64.5429
Q4-2019	64.4348
Q1-2020	64.3462
Q2-2020	64.3514
Q3-2020	64.5528
Q4-2020	64.4446
Q1-2021	64.3558
Q2-2021	64.3609
Q1-2019	64.5622

Model 4: Intervention Analysis

Intervention Analysis

- In 2000 (Before intervention)
 - Fed interest rates dropped to 1 percent to deal with dot com bust
 - Mortgage-based securities became more profitable than traditional bonds and Treasuries.
- In 2004 (Intervention)
 - Securities and Exchange Commission changed the leverage rules for five Wall Street banks, that allowed more risky lending
 - The Office of the Comptroller of the Currency federally overrode anti-predatory State laws

After Intervention

Between 2006 and 2014,

Fed interest rate raised again, unmanageable cost of ownership

Nearly 10 million homeowners in US experienced

- Foreclosure
- •Short-sell their property as quickly as possible.

Only 2 out of 5 Wall Street banks survived, that also due to bail out.

Homeownership Rate kept falling between this period

Model 4: Intervention Analysis

Analysis on Pre-intervention

ARMA(p+d,q) Tentative Order Selection Tests						
ESACF						
p+d	q	BIC				
4	3	-2.69814				
0	4	-2.68695				
3	4	-2.67608				
5	3	-2.67919				
2	5	-2.6673				

Model for U	AIC	SBC	Variance Estimate	Note
ARMA(4,3)	21.17691	45.62688	0.063258	Insig coeff
AR ((1,4))	24.34249	33.51123	0.066679	Residuals not good white noise
ARMA((1,3,4),(3))	23.28071	38.56194	0.065306	
ARMA((1,4),(3))	23.88535	36.11033	0.066034	Insig coeff
ARMA(4,(3))	17.35414	35.69162	0.062501	

Residual Diagnostics for Pre-intervention Model

Analysis on Full Series

Intervention model	AIC	SBC	Variance Estimate	Note
(/(1)S)	34.04859	60.9764	0.065904	Insig coeff
(/(2)S)	34.72146	61.6118	0.066147	Insig coeff
(/(3)S)	35.46509	62.31778	0.066416	Insig coeff
(/(4)S)	31.16093	57.9758	0.0651	
(1\$S)	32.45399	56.01582	0.06571	
(1\$/(4)S)	33.07999	59.85685	0.06573	
(S)	32.08129	55.64312	0.065595	

Maximum Likelihood Estimation							
		Standard		Approx			
Parameter	Estimate	Error	t Value	Pr > t	Lag	Variable	Shift
MU	0.04255	0.01909	2.23	0.0258	0	U	0
MA1,1	-0.30172	0.142	-2.12	0.0336	3	U	0
AR1,1	-0.2613	0.067	-3.9	<.0001	1	U	0
AR1,2	-0.1945	0.06667	-2.92	0.0035	2	U	0
AR1,3	-0.23945	0.13271	-1.8	0.0712	3	U	0
AR1,4	0.30919	0.07517	4.11	<.0001	4	U	0
NUM1	-0.12817	0.03664	-3.5	0.0005	0	S	24 0

Model 4: Intervention Analysis

$$U_{t} = 0.042546 - 0.12817S_{t}^{(216)}$$

$$+ \frac{1 + 0.30172 \text{ B}^{3}}{1 + 0.2613 \text{ B} + 0.1945 \text{ B}^{2} + 0.23945 \text{ B}^{3} - 0.30919 \text{ B}^{4}} a_{t}$$

$$Y_{t} = Y_{t-1} + 0.042546 - 0.12817S_{t}^{(216)}$$

$$+ \frac{1 + 0.30172 \text{ B}^{3}}{1 + 0.2613 \text{ B} + 0.1945 \text{ B}^{2} + 0.23945 \text{ B}^{3} - 0.30919 \text{ B}^{4}} a_{t}$$

- It tells us that there
 was significant
 impact of
 intervention that led
 to risky subprime
 lending, and
 homeownership fell.
- Rented accommodation or other housing options looked more promising.

Diagnostics for Full series

Q4-2018	64.3742
Q1-2019	64.2975
Q2-2019	64.2588
Q3-2019	64.2022
Q4-2019	64.1162
Q1-2020	64.0165
Q2-2020	63.9421
Q3-2020	63.8653
Q4-2020	63.7784
Q1-2021	63.6843
Q2-2021	63.6025
Q1-2019	63.5206

Model 4: Forecast

Conclusion

Let the "distance" between models *i* and *j* be

$$D_{ij} = \sum_{t=216}^{227} |Y_i(t) - Y_j(t)| \qquad (i = 1,2,3,4)$$

$$D_{23} = 1.1173$$
 and $D_{14} = 8.6888$

Model 2 and 3 are the "closest"

Model 1 and 4 are the "farthest"

However, they are all close enough, good models.

Comparison between models

<u> </u>			
Model 1	Model 2	Model 3	Model 4
64.5266	64.5184	64.398	64.3742
64.5324	64.4329	64.3455	64.2975
64.5811	64.2934	64.3646	64.2588
64.6298	64.4277	64.5429	64.2022
64.6899	64.5448	64.4348	64.1162
64.6982	64.4579	64.3462	64.0165
64.7249	64.317	64.3514	63.9421
64.7516	64.4499	64.5528	63.8653
64.7832	64.5656	64.4446	63.7784
64.7926	64.4773	64.3558	63.6843
64.8099	64.335	64.3609	63.6025

