Reciprocal Space

Motivation:

- intersted in physical phenomena in crystals -> often involve naves (& naves, vibrations, electromagnetic waves)

Space of waves is recripprocal space

plane name: e vite name vector $k = \frac{2\pi}{2}$

-> convenient to this? of aystal structures in reciprocal space

Literature: vittel, Chap 2

11) direct latice Rn=àn

 $G_{m} = \left(\frac{2\pi}{a}\right)_{m}$ reciprocal latice

R -> 12 + Gm reproduces some wave! ibrn i (b+Gm)Rn ibrn ichrn ibrn i (2007)an e -> e e -> e e in any dimension define reciprocal lattice as points à such trat e = 1 for all Rn in direct lattice R= N1 a1 + N2 a2 + N3 a3 "suess" tre reciprocal lattice vectors b; b; · aj = 277 di; with $\vec{a}_i = 2\pi \frac{\vec{a}_i \times \vec{a}_k}{\vec{a}_i \cdot (\vec{a}_2 \times \vec{a}_3)}$ For ij, h = 1,2,3 3 $\vec{\delta}_{1} \cdot \vec{\alpha}_{1} = \left(2\pi \frac{\vec{\alpha}_{2} \times \vec{\alpha}_{3}}{\vec{\alpha}_{1} \cdot (\vec{\alpha}_{2} \times \vec{\alpha}_{3})}\right) \cdot \vec{\alpha}_{1} = 2\pi$ 312

bi = primitive reciprocal lattice vectors (PRLVs) $\vec{G}_{m} = m_{1}\vec{b}_{1} + m_{2}\vec{b}_{2} + m_{3}\vec{b}_{3}$ Proof that this defines a lattice

i GPR i (m_1b_1 + m_2 b_2 + m_3 b_3)(n_1a_1 + n_2a_2 + n_3a_3)

e = e

i 277 (m_1n_1 + m_2n_2 + m_3n_3)

= 2

-7 only for n_1 m e Z

facts:

- reciporocal lattice is Fourier troms fan of real lattice

- in 20, same rules apply

- reciprocal lattice of fcc is bcc and vice versa