Discrete Mathematics and Algorithms (CSE611)

Assignment-2: Relations, Functions, Cardinality, Computable Functions, Rates of Growth

Total Marks: 100

Deadline: September 03, 2019 (Tuesday), 5:00 pm

Submission Instructions:

Note: If found copying both, the copier and from whom it was copied, will be given ZERO!!

Please start each question at the top of a page.

Please submit the assignment in hard copy stating the following at the top:

Discrete Mathematics and Algorithms (CSE611)

Assignment-2: Relations, Functions, Cardinality, Computable Functions, Rates of Growth Submitted by XYZ, Roll No.

Submitted on

General Note: *Relations* is assigned as *self-study* assignment. Please look at slides for Relations of Prof. A. K. Das as additional resource on the portal.

- Q1. Let the relation R be defined by (a,b)R(c,d) if and only if ad = bc, $\forall a,b,c,d \in \mathcal{Z}$, where \mathcal{Z} is the set of all integers. Test whether R is an equivalence relation on the set $\mathcal{Z} \times \mathcal{Z}$.
- Q2. If R is a relation in the set of integers \mathcal{Z} defined by $_xR_y=\{(x,y)\in\mathcal{Z}\times\mathcal{Z}:(x-y)\text{is divisible by }7\}$, then find all the distinct equivalence classes of the relation R.
- Q3. Find the smallest relation containing the relation $R = \{(1,3), (1,4), (2,2), (4,1)\}$ on $\{1,2,3,4\}$ that is (a). reflexive on $\{1,2,3,4\}$ and symmetric (b). symmetric and transitive (c). reflexive on $\{1,2,3,4\}$ and transitive (d). an equivalence relation on $\{1,2,3,4\}$.
- Q4 Prove that power set of natural numbers, $\mathcal{P}(\mathcal{N})$, is not countable using *diagonalization* argument.

- Q5 Determine whether or not the following set is countable: the set $A = \{a^2 \mid a \in \mathcal{N}\}$ where \mathcal{N} is the set of natural numbers.
- Q6 Show that there are functions that are *not computable*, that is there exist *uncomputable functions*. Hint: Formally complete all the steps we gave in the class, starting from proving that there are countably infinite number of programs in any programming language and finally leading to a diagonal argument for showing that there exist uncomputable functions. See exercises 37, 38, 39 in Ch 2.5 in Rosen 7th Edition.
- Q7 (A). Let $f:A\to B$ and $g:B\to C$ be two functions. Prove that if the composite function $g\circ f:A\to C$ is injective, then f is injective.
 - Q7 (B). Find a function g such that $h = g \circ f$ and h(x) = 10x + 10, f(x) = 2x + 1, all the functions are defined over the set \mathcal{R} of real numbers, where $g \circ f$ is the composite function.
- Q8 A set S is said to be *infinite* if there is a one-to-one correspondence between S and a proper subset of S.

 Using this definition, prove that the set of real numbers \mathcal{R} is *infinite*.
- Q9 You know that if f(x) and g(x) are functions from the $\mathcal{R} \to \mathcal{R}$ (the set of real numbers), then f(x) is $\Theta(g(x))$ if and only if there are positive constants k, C_1 , and C_2 such that $C_1g(x) \leq f(x) \leq C_2g(x)$ whenever x > k. Now show that $3x^2 + x + 1$ is $\Theta(3x^2)$ by directly finding the constants k, C_1 , and C_2 . Express this Θ relationship using a picture showing the functions $3x^2 + x + 1$, $C_1 \cdot (3x^2)$, and $C_2 \cdot (3x^2)$, and the constant k on the x-axis, where C_1, C_2 , and k are the constants found earlier to show that $3x^2 + x + 1$ is $\Theta(3x^2)$.
- Q10 (A). Arrange the functions $(1.5)^n$, n^{100} , $(log n)^3$, $\sqrt{n} \ log n$, 10^n , $(n!)^2$, and $n^{99} + n^{98}$ in a list so that each function is big O of the next function. Give brief justification.
 - Q10(B). Give a big-O estimate of the product of the first n odd positive integers.