MS614

PROVA I

1s12

- 1 Obter P[e], P[f] com $P[e \cup f] = 3/4$, P[f|e] = 1/2 nos casos abaixo:
- a) f ⊂ e
- b) e, f independentes
- 2 Seja $F_X(x) = \alpha \sqrt[n]{x}, x \in (0,1)$
- a) Determinar α para que F_X(x) seja uma função de distribuição acumulada e calcular a esperança E[X].
- b) Obter a densidade $f_Z(z)$ de $Z = h(X) = \sqrt[n]{x}$

 $f_X = |h'| f_Z$

- c) Mostrar como gerar valores de X.
- 3 Classificar os estados da cadeia de Markov com matriz P. Obter as probabilidades de estado em equilíbrio π para as classes de comunicação aperiódicas. Calcular a diagonal P_{ii}^k da matriz de transição em k>>1 passos.

4 A demanda de um produto é constante com taxa μ . Produzir Q unidades com taxa λ custa $a+bQ-dQ\ln Q$. Estocar \bar{Q} unidades durante um tempo T custa $c\bar{Q}T$. Obter o lote econômico Q^* e o tempo do ciclo T^* que minimizam o custo médio h(Q)=H(Q)/Q. Utilize a segunda derivada de h(Q) para mostrar que é realmente um ponto de mínimo

$$H(Q) = a + bQ - dQ \ln Q + cQ^2/(2\mu)$$

produção: $Q = \mu T = \lambda s$,

lote máximo: $Q = (\lambda - \mu)s = \mu(T - s)$

s: tempo de produção no ciclo de tamanho T

0 1 [0 0 0] - [0 0 0 0] -