Thursday, 27/11/2008 2:37:42 PM

Julie Dawson

#### **Process Sheet**

Customer

: CU-DAR001 Dart Helicopters Services

**Drawing Name** 

: BEARPAW INSTALLATION

Job Number

: 43831

**Estimate Number** 

: 10098

P.O. Number

: 27/11/2008

Part Number

: D30761

This Issue

**Drawing Number** 

: D3076 REV A1

Prsht Rev. : NC

: // Type Project Number

: N/A

First Issue : 25749A Previous Run

**Drawing Revision** 

Written By

Material **Due Date** 

: 04/12/2008

Qty:

Each 2 Um:

**Checked & Approved By** 

Comment

: Est Rev:C 04.02.19

S.O. No. :

Added tolerance and ref to DSK086-12 to

Step 3 KJ/JLM

Est Rev:D 08-11-10 New Manufacturing Method JLM

: MACHINED PARTS

Verified By:EC

**Additional Product** 

Job Number:



Seq. #:

**Machine Or Operation:** 

Description:

1.0

MUHMWB10

UHMW 1" Black

Comment: Qty.:

1.0000 sf(s)/Unit Total:

2.0000 sf(s)

Pick:

blank: 10.50" x 13.00" x 1.00" thick (+0.030/-0.000) per DSK086-12

Material: Black UHMW 1"(MUHMWB10)

Batch: 109 186

2.0

MFG ENGINEERING

MFG ENGINEERING



**Comment: MFG ENGINEERING** 

Program Batch Number

3.0

WATER JET

FLOW WATER JET



IR 8-12-2



**Comment: FLOW WATER JET** 

Cut Blank as per file D3076-1\_BLANK

4.0

HAAS1

HAAS CNC VERTICAL MACHINING #1





Note: (2) Bearpaw for (1) Kit

1-Inspect material for defects or damage prior to machining

2-Machine as per Folio FA186 and Dwg D3076

3-Identify as D3076-1



# Dart Aerospace Ltd

|      | WORK ORDER CHANGES |  |  |     |                               |                                               |  |  |  |
|------|--------------------|--|--|-----|-------------------------------|-----------------------------------------------|--|--|--|
| STEP | PROCEDURE CHANGE   |  |  | Qty | Approval Chief Eng / Prod Mgr | Approval<br>QC Inspector                      |  |  |  |
|      |                    |  |  |     |                               |                                               |  |  |  |
|      |                    |  |  |     |                               |                                               |  |  |  |
|      |                    |  |  |     |                               |                                               |  |  |  |
|      | •                  |  |  |     |                               |                                               |  |  |  |
|      | STEP               |  |  |     |                               | STEP PROCEDURE CHANGE By Date Qty Chief Eng / |  |  |  |

| Part No:    | PAR #: Fault Category: | NCR: Yes No DQA: | Date: |
|-------------|------------------------|------------------|-------|
| Resolution: | Disposition:           | QA: N/C Closed:  | Date: |

| NCR: |      |                   | WORK ORD             | ER NON-CONFORMAN             | CE (NCR)       |                                           |          |                          |
|------|------|-------------------|----------------------|------------------------------|----------------|-------------------------------------------|----------|--------------------------|
|      |      | Description of NC |                      | Corrective Action Section B  | 3              | Verification Section C Approval Chief Eng | Approval | A                        |
| DATE | STEP | Section A         | Initial<br>Chief Eng | Action Description Chief Eng | Sign &<br>Date |                                           |          | Approval<br>QC Inspector |
|      |      |                   |                      |                              |                |                                           |          |                          |
|      |      |                   |                      |                              |                |                                           |          |                          |
| ***  |      |                   |                      |                              |                |                                           |          |                          |
|      |      |                   |                      |                              |                |                                           |          |                          |
|      |      |                   |                      |                              |                |                                           |          |                          |
|      |      |                   |                      |                              |                |                                           |          |                          |
|      |      |                   |                      |                              |                |                                           |          |                          |
|      |      | ·                 |                      |                              |                |                                           |          |                          |
|      |      |                   |                      |                              |                |                                           |          |                          |

NOTE: Date & initial all entries

Date: Thursday, 27/11/2008 2:37:42 PM User: Julie Dawson **Process Sheet** Customer: CU-DAR001 Dart Helicopters Services Drawing Name: BEARPAW INSTALLATION Job Number: 43831 Part Number: D30761 Job Number: Seq. #: **Machine Or Operation: Description:** 4-Deburr QC2 INSPECT PARTS AS THEY COME OFF MACHINE 5.0 Comment: INSPECT PARTS AS THEY COME OFF MACHINE 09/01/11 6.0 QC8 SECOND CHECK 09/01 Comment: SECOND CHECK 7.0 PACKAGING 1 PACKAGING RESOURCE #1 Comment: PACKAGING RESOURCE #1 Identify and Stock Location: # 44705 8.0 FINAL INSPECTION/W/O RELEASE Comment: FINAL INSPECTION/W/O RELEASE Job Completion

## **Dart Aerospace Ltd**

| W/O:    |                            | WORK ORDER CHANGES      |       |        |                                     |                          |  |  |  |  |
|---------|----------------------------|-------------------------|-------|--------|-------------------------------------|--------------------------|--|--|--|--|
| DATE    | STEP PROCEDURE CHANGE By C | By Date                 |       | Qty    | Approval<br>Chief Eng /<br>Prod Mgr | Approval<br>QC Inspector |  |  |  |  |
|         |                            |                         |       |        |                                     |                          |  |  |  |  |
|         |                            |                         |       |        |                                     |                          |  |  |  |  |
|         |                            |                         |       |        |                                     |                          |  |  |  |  |
|         | -                          |                         |       |        |                                     |                          |  |  |  |  |
| Dort No |                            | DAD # . Fault Oats warm | NOD V | N - 50 |                                     | Data                     |  |  |  |  |

| Part No:    | PAR #: Fault Categor | ry: NCR: Yes No | DQA: Date: |
|-------------|----------------------|-----------------|------------|
| Resolution: | Disposition:         | QA: N/C Closed  | d: Date:   |

| NCR: |      | WORK ORDER NON-CONFORMANCE (NCR) |                      |                              |                |              |                       |                          |  |  |
|------|------|----------------------------------|----------------------|------------------------------|----------------|--------------|-----------------------|--------------------------|--|--|
|      | T    | Description of NC                |                      | Corrective Action Section B  | <b>,</b>       | Verification | Approval<br>Chief Eng | Approval<br>QC Inspector |  |  |
| DATE | STEP | Section A                        | Initial<br>Chief Eng | Action Description Chief Eng | Sign &<br>Date | Section C    |                       |                          |  |  |
|      |      |                                  |                      |                              |                |              |                       |                          |  |  |
|      |      |                                  |                      |                              |                |              |                       |                          |  |  |
|      |      |                                  |                      |                              |                | 1            |                       |                          |  |  |
|      |      |                                  |                      |                              |                |              |                       |                          |  |  |
|      |      |                                  |                      |                              |                |              |                       |                          |  |  |
|      |      |                                  |                      |                              |                |              |                       |                          |  |  |
|      |      |                                  |                      |                              |                |              |                       |                          |  |  |
|      |      |                                  |                      |                              |                |              |                       |                          |  |  |
|      |      |                                  |                      |                              |                |              | 1                     |                          |  |  |
|      |      |                                  |                      |                              |                |              |                       |                          |  |  |

NOTE: Date & initial all entries

| DART AEROSPACE LTD            | Work Order:  | 4383        |
|-------------------------------|--------------|-------------|
| Description: R22 Bearpaw      | Part Number: | D3076-1     |
| Inspection Dwg: D3076 Rev: A1 |              | Page 1 of 1 |

### FIRST ARTICLE INSPECTION CHECKLIST

| X | First Article | , |  | Prototype |
|---|---------------|---|--|-----------|
|---|---------------|---|--|-----------|

|   | pection Sheet<br>ving Dimension | Tolerance     | Actual<br>Dimension | Accept | Reject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Method of<br>Inspection | Comments |
|---|---------------------------------|---------------|---------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|
| Α | 0.07 x 45°                      | +0.030/-0.010 | .075x45°            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |
| В | 0.63                            | +/-0.030      | .631                | ,      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |
| С | 0.250                           | +/-0.010      | . <i>a</i> sa       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |
| D | 0.950                           | +0.030/-0.010 | -953                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |
| E | 5.50                            | +/-0.030      | 5,502               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |
| F | 0.25 x 45°                      | +/-0.030      | -270x45°            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |
| G | 0.375                           | +/-0.010      | 377                 | ,      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ,        |
| Н | 0.475                           | +/-0.010      | .477                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |
| 1 | 5.83                            | +/-0.030      | 5.833               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |
| J | 3.80                            | +/-0.030      | 3.800               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |
| K | 3.046                           | +/-0.010      | 3.046               | /      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |
| L | 3.638                           | +/-0.010      | 3.638               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                       |          |
| М | 0.260                           | +0.005/-0.000 | .260                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |
| N | 0.93                            | +/-0.030      | .925                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |
| 0 | 0.30                            | +0.030/-0.000 | .306                |        | , and the second |                         |          |
| Р | 7.000                           | +/-0.010      | 7-000               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |
| Q | 10.14                           | +/-0.030      | 10.140              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |
|   |                                 |               |                     |        | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |          |
|   |                                 |               |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |
|   |                                 |               |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |
|   |                                 |               |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |
|   |                                 |               |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |
|   |                                 |               |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |
|   |                                 |               |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |

| Measured by: | JL       | Audited by: J.F. | Prototype Approval: | N/A |
|--------------|----------|------------------|---------------------|-----|
| Date:        | 09/01/11 | Date: 09/0/      | Date:               |     |

| Rev | Date     | Change    |                  | Revised by | Approved |
|-----|----------|-----------|------------------|------------|----------|
| Α   | 04.01.13 | New Issue | P/O D022-661-011 | KJ/RF      | #        |



| DESIGN DRAWN |       | DRAWN BY | DART AEROSPACE LTE HAWKESBURY, ONTARIO, CANADA | )        |
|--------------|-------|----------|------------------------------------------------|----------|
| CHECI        | KED   | APPROVED | DRAWING NO.                                    | REV. A   |
|              | ₩.    | 1        | D3076 SHEE                                     | T 1 OF 2 |
| DATE         |       |          | TITLE                                          | SCALE    |
| 02.0         | 01.08 |          | R22 BEARPAW                                    | 1:5      |
| Α            |       | 02.01.08 | NEW ISSUE                                      |          |
| Αl           | A A   | 03.01.06 | \$ 0.93 WAS \$ 0.75                            |          |





#### D3076-1 BEARPAW (FLAT PATTERN)

SHOP COPY **RETURN TO** 

ENGINEERING UNCONTROLLED COPY

NOTES:

1) BEARPAW IS SYMMETRIC ABOUT CENTER LINE
2) MATERIAL: UHMW BLACK PER SPEC CONTROL DRAWING D2689, 1.00" THICK (MACHINE TO 0.950)
3) TOLERANCES ARE PER DART QSI 018 UNLESS OTHERWISE NOTED
4) ALL DIMENSIONS ARE IN INCHES

SUBJECT TO AMENDMENT

WITHOUT NOTICE

NO.L

Copyright © 2002 by DART AEROSPACE LTD

THIS DOCUMENT IS PRIVATE AND CONFIDENTIAL AND IS SUPPLIED ON THE EXPRESS CONDITION THAT IT IS NOT TO BE USED FOR ANY PURPOSE OR COPIED OR COMMUNICATED TO ANY OTHER PERSON WITHOUT WRITTEN PERMISSION FROM DART AEROSPACE LTD.



| DESIGN DRAWN BY |          | DART AEROSPACE LTD HAWKESBURY, ONTARIO, CANADA |              |
|-----------------|----------|------------------------------------------------|--------------|
| CHECKED         | APPROVED | DRAWING NO.                                    | REV. A       |
| #               | 1        | D3076                                          | SHEET 2 OF 2 |
| DATE            |          | TITLE                                          | SCALE        |
| 02.01.08        |          | R22 BEARPAW                                    | 1:4          |





SECTION B-B





Copyright © 2002 by DART AEROSPACE LTD

THIS DOCUMENT IS PRIVATE AND CONFIDENTIAL AND IS SUPPLIED ON THE EXPRESS CONDITION THAT IT IS NOT TO BE USED FOR ANY PURPOSE OR COPIED OR COMMUNICATED TO ANY OTHER PERSON WITHOUT WRITTEN PERMISSION FROM DART AEROSPACE LTD.