■ Multiclass Fish Image Classification - Project Documentation

This project focuses on classifying fish images into multiple categories using deep learning models. It includes building a Convolutional Neural Network (CNN) from scratch and leveraging transfer learning with pre-trained models to improve performance. The final solution is deployed as a Streamlit web application that allows users to upload fish images and receive predictions along with confidence scores.

Skills Acquired: Deep Learning, Python, TensorFlow/Keras, Data Preprocessing, Transfer Learning, Model Evaluation, Visualization, and Model Deployment with Streamlit.

Domain: Image Classification

Problem Statement: The objective is to accurately classify fish images into their respective categories using deep learning. The project also focuses on comparing CNN and multiple pre-trained models to determine the most effective approach and deploying the best-performing model.

Business Use Cases:

- 1 Enhanced Accuracy: Identify the best architecture for fish image classification.
- 2 Deployment Ready: User-friendly web application for real-time predictions.
- 3 Model Comparison: Evaluate metrics to choose the most effective model.

Approach:

- 1 Data Preprocessing and Augmentation: Rescale images and apply transformations like rotation, zoom, and flipping.
- 2 Model Training: Train CNN from scratch and fine-tune five pre-trained models (VGG16, ResNet50, MobileNet, InceptionV3, EfficientNetB0).
- 3 Model Evaluation: Compare accuracy, precision, recall, F1-score, and confusion matrix across models.
- 4 Deployment: Build a Streamlit app for image upload and prediction.
- 5 Documentation: Prepare detailed README, PDF documentation, and GitHub repository.

Dataset: The dataset contains images of various fish species, organized into folders by category. Loaded using TensorFlow's ImageDataGenerator for efficient preprocessing.

Project Deliverables:

- 1 Trained models in .h5 or .pkl format.
- 2 Streamlit web application for real-time classification.
- 3 Python scripts for training, evaluation, and deployment.
- 4 Comparison report with metrics and insights.
- 5 GitHub repository with detailed documentation.

Installation & Usage: 1. Clone the repository. 2. Install dependencies from requirements.txt. 3. Run the Streamlit app using: streamlit run app.py 4. Upload a fish image to get predictions.

This project demonstrates the application of deep learning and transfer learning in image classification. By comparing multiple architectures and deploying the best-performing model, it delivers a practical solution for automated fish species identification, which can be extended to other domains.