LECTURE 1

CONSTRAINT SATISFACTION PROBLEMS

i) 3-SAT

En: (avyvz) / (avyvw) / (wvývz)

Variables: 1, y, z, w

Domain: 90,19

Constraints: Clauses

2) 3-COLORING

Ex:

Variables: yertices

Domain: dR,B,G5

Constraints: Y edge (u,v)
color(u) # color(v).

2+y-2=9 (mod 17) Ex; 20-W+Y=10 (mod 17) 2+2y+32 = 3 (mad 17) Variables: 1, y, 2, w

Domain: Z17

Generally,

A CSP instance consists of 1) Set of vorsables. V taking values in a constant sized domain D

2) A set of LOCAL constraints on constant # of voriables. TYPE OF CONSTRAINTS

defines the KIND OF CSP.

COMPUTATION A L PROBLEMS

Satisfiability ?

INPUT: CSP Instance I

Output: Does there I a satisfying assignment?

APPROXIMABILITY.

INPUT: CSP INSTANCE I

OUIPUI: An assignment satisfying
the moximum # of constraints

- a) STATISFIABLE CSPS
- 6) PROMISE CSPS

COUNTING:

INPUT: CSP Instance I

OUIPUT. How many satisfying

ansignments are there?

RANDOM CSPS:

-> Criven random instances] is

Pr[I is satisfiable] = 1 or = 0?

-> Solution Space

> How big is it?

-> What is its geometry?

- -> ALGORITHMIC QUESTIONS:
 - a) Find satisfying amignments for rondom CSPx?

QUANTUM CSPX:

(Quantum Local Hamiltonians)

-> How well can we approximate ground state?

Mhy is 2-SAT easy but 3-SAT NF-complete?

Why is 2-SAT easy but 3-SAT NF-complete?

Complexity

X LINEQ

X 2 SAT

- 1) Criven the description of a CSP To is it in P or NP-complete?
- 2) Given a CSP T what is the best approximation ratio for it?

Logistics =

- -) Course webpage:
- -) a) Scribe / Hecture
 - b) Review scribing lecture.
- -> Clans Participation: ASK QUESTIONS and INTERRUPT!

LECTURE PLAN: -> Polymorphisms & Dichotomy Conjecture -2 lectures PCP Theorem: Statement & Proof - 3 lectures. CONSTRAINT SATISFACTION PROBLEMS (CSP) Def: A CSP T is specified by 1) A constant sised alphabet D 2) A finite set of relations Ri, Ri, Ri on D Ex: D = 90,19 $R_1 = 90,00$ $R_2 = 90,00$ $R_3 = 90,00$ $R_4 = 90,00$ $R_5 = 90,00$

- 1) A set of voriables over alphabet D V= dv,...vn
- 2) Local constraints C,... Cm on V where each constraint C:= R; applied on a set of variables.

2SAT:

Example:
(Special Care) Thas only one binory
symmetric relation (=) graph H

Schaefer's Theorem;
Among all booken CSPs the following
ore in P
1) 2- SAT -> (xvy) / (x V=) / (x V=
2) Horn SAT -> (alb=)c) (dla=)b)
2) Horn SAT -> (alb =>c) (dla =>b) (cls =>d) 3) Dual Horn SAT-> (alb =>c) (Ila => 5)
4) Linear Equations.
5) Trivial (Sf
the rest are NP-complete.
What makes these CSPs easy??
THEY ALL HAVE POLYMORPHISMS
1,
Operation combining
solutions

Polymorphism: (by example)

Linear Systems over Zz

Az=b

XEFZ AEZ₂^{NXM}

Suppose

2, y, 2 are solutions

Az=b Ay=b Ay=b Ay=b Ay=b Az=b Az=b

More concretely:

 $h: \mathbb{Z}_2 \to \mathbb{Z}_2$

h(a,b,c) = a - b + c

such that

Given	ANY instance of LINEQ	Azzb
ANY	3 solutions 2, y, z	
then	ス = ス ₁ ス ₂	Nn
	Y = Y1 Y2	Y 2
	Z = 'Z ₁ Z ₂	Z_{N}
W	det h(21,4,21), h(21,42,32)	h(201/2
then	Wis a Solution to sa	nl
	linear system	
=) 3	bit function $h(a,b,c)=0$	2-6+0
is.	a polymorphism for LINE	EQ.

Polymorphism Maj (x1,2,23) 2SAT: AND(2, 7,2) Horn SAT: OR (2,4,2) Dual Horn SAT: 77-250

Polymorphiam: Given a CSP T= (0, dR,...Rxy) a function $h: D^{2} \rightarrow D$ is a polymorphism for Tif 4 relation Rj C Dt Ha, ... a l E R; $\left(\begin{array}{cc} O_{1}^{(1)} & O_{1}^{(2)} \end{array}\right)$ $(a, a, b) \in R_j$ $\left(\begin{array}{ccc} \alpha_2^{(1)} & \alpha_2^{(2)} \end{array}\right)$ $a_{z}^{(t)}) \in R_{j}$ $\left(\alpha_{\varrho}^{(1)} \alpha_{\varrho}^{(2)} \right)$ $a_{2}^{(\epsilon)} \in R_{1}$ $h(a_{1}^{(\dagger)},a_{2}^{(\dagger)}..a_{L}^{(\dagger)})$ $\in R_{j}$ $h(a_1^{(1)}, a_2^{(1)} \cdots a_1^{(1)})$

TRIVIAL POLYMORPHISMS (Dictators !!)

$$h(x^{(i)}...x^{(t)}) = x^{(i)} \text{ for some } i.$$

[Algebraic Dichotomy]

$$A CSP T \text{ is in } P \text{ if it admixts}$$

Non trivial polymorphisms

Otherwise it is NP-complete!

[Hordren]

No non-trivial polymorphisms

$$\implies CSP T \text{ is NP-complete}$$

[Algorithm]

Inen-trivial polymorphisms

$$\implies CSP T \text{ is in } P$$