Problem Statement

1) Let the measurements of the rotation angle $\Theta(t_k)$ be made at moments in time $t_k = \Delta k, \ k = 1, 2, ..., N$, over the time interval [0, T], where $T = \Delta N$, i.e.

$$\Theta(t_k) = \Theta(\Delta k) = A_0 \sin(\omega_0 \underbrace{\Delta k}^{t_k}) + \varepsilon_k \tag{1}$$

where ε_k is a random variable with mean zero and variance σ^2 , and $\varepsilon_k \sim N(0, \sigma^2)$.

Our goal is to estimate (A_0, ω_0) , which are the parameters that exactly define the system on the rotational axis powered by $a_0 \sin(\omega_0 t)$.

2) Consider the sequential estimate of ξ_N , N=1,2,..., given by the rule:

$$\xi_N = \frac{1}{\Delta N} \left(\sum_{k=1}^N (\theta^2(\Delta k) \cdot \Delta) \right) = \frac{1}{N} \sum_{k=1}^N (A_0 \sin(\omega_0 \Delta k) + \varepsilon_k)^2$$
 (2)

Computational Tasks

Task 1: Compute $E[\xi_N]$ and find $\lim_{N\to\infty} E[\xi_N] = ?$.

Task 2: Compute $E[(\xi_N - E[\xi_N])^2]$ and $\lim_{N\to\infty} E[(\xi_N - E[\xi_N])^2] =?$.