Redes Neuronales

Adaptive-Network-Based
Fuzzy Inference Systems
(redes ANFIS)

Profe: Pancho Tamarit

Alumno: Carlos Budde

- "Esta goma es blanca"

- "Esta goma es blanca"

- "Mmm... más o menos"

color_{blanco} (Faber-Castell) = 0.65

color_{gris} (Faber-Castell) = 0.35

Caso "crisp":

Caso "difuso":

Funciones membresía de tipo bell:

$$\tau_{i}(\vec{x}) = \prod_{j=1}^{N} MF_{j}^{i}(\vec{x})$$

$$\overline{\tau_i}(\vec{x}) = \frac{\tau_i(\vec{x})}{\sum_{j=1}^T \tau_j(\vec{x})}$$

Mackey-Glass differential delay equation:

$$\dot{\mathbf{x}}(t) = \frac{0.2 \ \mathbf{x}(t-\tau)}{1+\mathbf{x}^{10}(t-\tau)} - 0.1 \,\mathbf{x}(t)$$

Parameters:

$$\tau = 17$$
$$x(0) = 1.2$$

N.Bruno

$$T = 2$$
 $N = 4$

error ~ [-0.4, 0.2]

N.Bruno

N.Bruno

T=2

N = 4

random

error ~ horrible

N.Bruno

random

T=2 N=4

R.Jang

$$T = 2$$
 $N = 4$

error ~ [-0.8, 0.7]

R.Jang

T=2 N=4

R.Jang

T=2 N=4

R.Jang

T=2

N = 4

random

error ~ horrible

N.Bruno

R.Jang

Mostrar parte del código, con fuente chica y apretujado en todo el slide para hacer de cuenta que es largo y complejo