

Malaria Blood Smear Classifier

Content

1 Introduction

2 Preprocessing

- 3 Model
- 4 Evaluation

Malaria

Malaria is a mosquito-borne infectious disease that affects humans and other animals. Malaria causes symptoms that typically include fever, tiredness, vomiting, and headaches.

Project Purpose: Detect if a cell is infected with Malaria

Dataset

Malaria Cell Images

Include infected and uninfected pictures with Cells and Label folders

Description

96453 piece of data train data shape (77162, 50, 50, 3) eval data shape (9645, 50, 50, 3) test data shape (9646, 50, 50, 3)

Data Preview

How we deal with pictures...

cv2.blur(影像平滑模糊化)

平均濾波 Averaging: 簡單地計算內核區域下所有像素的平均值,並 用該平均值取代中心元素

Resize

將每張照片尺寸大小調為相同 width = 50 height = 50

Environment & Tools used

Google Colab

Python development environment that runs in the browser using Google Cloud

GPU

Tensorflow with GPU

Module

tensorflow matplotlib sklearn seaborn

First, find best parameters...

kernal size

Tentative (2, 2), (3, 3), (4, 4), (5, 5)

batch size
Tentative 32/64

filter: loss is stable

filter: the more filter, the better accuracy

0.88

0.15

5.0

10.0 12.5 15.0 17.5 20.0

Epochs

Training accuracy
 validation accuracy

10.0 12.5 15.0 17.5 20.0

Epochs

kernal size: (3, 3) (4, 4) better!

(2, 2)

(4, 4)

(5, 5)

batch size: 32 weird...

batch size: 64 with less validation

Epochs

Epochs

To improve accuracy, add more convolution layer!

good accuracy, but with strange line

0.9573

two convolution, two pool

0.9417

three convolution, three pool

This is how we add more convolution layer!

```
def create model():
         model = tf.keras.models.Sequential([tf.keras.layers.Conv2D(16,(3,3), activation = "relu", input_shape=(50,50,3)), #filter=16(filter有16個), kernal_size=(3,3)(每個filter的大小)
                                                                          tf. keras. layers. MaxPool2D((2,2)), #在(2,2)的格子裡挑出最大值
                                                                          tf.keras.layers.Conv2D(32, (3, 3), activation = "relu"),
                                                                          tf. keras. layers. MaxPool2D((2, 2)),
                                                                          tf. keras. layers. Dropout(0.25), #層層之間會drop掉一定比例的神經元,避免overfitting
                                                                          tf.keras.layers.Conv2D(64, (3, 3), activation = "relu"),
                                                                         tf.keras.layers.MaxPool2D((2,2)),
                                                                          tf. keras. layers. Dropout (0.25),
                                                                          tf.keras.layers.Conv2D(128, (3, 3), activation = "relu"),
                                                                          tf. keras. layers. Dropout (0.25),
                                                                          tf. keras. lavers. Flatten(),
                                                                          tf. keras. layers. Dense (256, activation = "relu"),
Conv20, MaxPool2D, Dropout
                                                                          tf. keras. layers. Dense (128, activation = "relu"),
                                                                          tf.keras.layers.Dense(1, activation = "sigmoid")
         model.compile(loss="binary_crossentropy",
                                   optimizer = "Adam",
                                   metrics =['accuracy'])
         return model
```

Add some activation function to improve

0.9584

0.9587

Confusion matrix @0.50 - 5000 4000 4044 0 Actual label 3000 2000 302 5204 1000 Predicted label

Parameters

Convolution: 16, (3, 3)/32, (3,3)/64, (3,3)

Activation: relu

Pooling: (2, 2)

L1-AF: relu L2-AF: relu L3-AF: sigmoid

Optimizer: Adam

epohs: 20

batch_size: 64

Accuracy: 0.9587

If you want to see our test progress, here is our test data excel.

https://reurl.cc/5olxLM

Thank You For Listening!