Name: Gurik Manshahia Student ID: V00863509

Assignment 2

1. (a) (10 Marks) Using the state partitioning algorithm presented in class, find the minimal automaton equivalent to the following:

State table for the DFA:

	0	11
do	21	21
q_1	23	24
22	24	23
23	25	25
24	25	25
25	95	25

Applying state partitioning:

State 0: [q0,q3,q4][q1][q2][q5]

State 1: [q0][q3,q4][q1][q2][q5]

State 2:[q0][q3,q4][q1][q2][q5]

Minimized equivilant:

(b) (5 Marks) What is the language recognized by this automaton ($\Sigma = \{0, 1\}$)?

 $L = \{0,1,001,011,000,111,000,...\}$

 $L = \{w \mid w \in (0+1)*|w| > 0, |w| !=2\}$

2. Prove the each of the following languages are not regular. You may use the pumping lemma, or closure properties of the regular languages.

(a) (5 Marks)
$$\{0^n 1^m 0^n \mid m, n \ge 0\}$$

```
L = \{0^n 1^m 0^n \mid m, n \ge 0\}
```

Assume that L is a regular language and a string $S = 0^p10^p$. Divide string into three stections x,y,z. which results in $S = 0^p10^p = xyz$. P is the pumping length.

Assume $x = 0^(p-k)$, $y = 0^k$ and $z = 10^p$ where k>0

Therefore xy^0z = 0^p-k(0^k)^010^p = 0^(p-k)10^p ! \in L therefor y^0 = \in

Therefore xy^0z is not part of L since P-K < P

By using the pumping lemma it is proved that L is not regular.

$$L = \{0^m 1^n | m! = n\}$$

Assume L is a regular language.

(c) (5 Marks)
$$\{wuw \mid w, u \in \{0, 1\} + \}$$

(HINT: One way to do this is to use closure under intersection to get a simpler pumping lemma proof.)

- 3. (5 Marks) Is the language $\{wuw \mid w, u \in \{0, 1\} *\}$ regular? If it is, give a regular expression for the language, otherwise use the pumping lemma or closure properties of regular languages to prove that it is not.
- 4. Give CFGs for the following languages over $\sigma = \{0, 1\}$

(a)
$$(5 \text{ Marks}) \{ w \mid w = w R \}$$

CFG is: $S \rightarrow 0S0|1S1|0|1| \in$

(b) (5 Marks) {w | w contains the same number of 0's and 1's}

CFG is: S → SASBS|SBSAS|∈

 $A \rightarrow 0$

 $B \rightarrow 1$

(c) (5 Marks) $\{w \mid w = 0n1 n, n \ge 0\}$

CFG is: S → OS1

S **→**∈

5. (20 Marks) Give a CFG that generates the language

$$A = \{a^i b^j c^k \mid i = j \text{ or } j = k \text{ where } i, j, k \ge 0\}$$

Is your grammar ambiguous? Why or why not?

Grammar:

S -> X | Y

X -> AC

A -> aAb | ∈

Y -> aY | B

B -> bBc | ∈

C -> cC | ∈

The grammar is ambiguous as it is able to be derived in 2 serperate ways.

6. (10 Marks) Convert the following grammar into a grammar in Chomsky normal form:

 $A \rightarrow BAB \mid B \mid \epsilon$

 $B \rightarrow 00 \mid \epsilon$

(You are eligible for partial marks only if you show each step of the normalization procedure.)

Can be written as

As the start symbol is on the right creating 1 more Start symbol S

S-> A

A->BAB | B | ε

B -> 00 | ϵ remove the null productions S->A A-> BAB | B | 0000| 00 B -> 00 | ϵ Now removing unit production S->A S-> BAB | B | 0000| 00 B -> 00 | ϵ Check if more than 2 variable are on RHS S-> BX | B | 0000| 00 B -> 00 | ϵ

7. (15 Marks) Using the CNF version (given below) of the grammar

$$E \rightarrow E * E \mid E + E \mid (E) \mid id \mid num$$

show the result of running the CYK algorithm on the string w = (id + num) * num. Just show the entries of the resulting table.

Note: Use the following CNF grammar:

$$E \rightarrow EA \mid EB \mid LD \mid id \mid num$$

 $A \rightarrow ME$

X->AY

Y->B

 $B \rightarrow P E$

 $D \rightarrow ER$

 $\mathsf{M} \to *$

P → +

 $L \rightarrow ($

 $R \rightarrow)$

8. (5 Marks) Is every grammar in CNF unambiguous? If your answer is "yes", provide a proof. If your answer is "no", provide a counterexample.

$$S \rightarrow AS|SA|a$$

 $A \rightarrow a$

every grammar in CNG is not unambiguous above I have provided a counter example