Methoden der Ökonometrie - Übung 12

Aufgabe 1:

Betrachten Sie das Regressionsmodell

$$y = X\beta + u$$

mit deterministischer $(n \times k)$ -Matrix X, die vollen Spaltenrang besitzt und $Var(u) = \Omega$.

- a) Berechnen Sie $Var(\widehat{\beta}_{GLS})$, sowie $Var(\widehat{\beta}_{OLS})$ und vergleichen Sie.
- b) Zeigen Sie, dass $\hat{\boldsymbol{\beta}}_{OLS} = \hat{\boldsymbol{\beta}}_{GLS}$ genau dann, wenn $\boldsymbol{X}^T \boldsymbol{\Omega}^{-1} \boldsymbol{M}_{\boldsymbol{X}} = \boldsymbol{O}$.

Aufgabe 2:

Sei u_t ein stationärer AR(1)-Prozess, d.h.

$$u_t = \rho u_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim IID\left(0, \sigma_{\varepsilon}^2\right), \quad |\rho| < 1,$$

welcher in $u_0 \sim \left(0, \frac{\sigma_{\varepsilon}^2}{1-\rho^2}\right)$ startet.

- a) Zeigen Sie, dass $Cov(u_t, u_{t-j}) = Cov(u_{t-j}, u_t) = \rho^j \sigma_{\varepsilon}^2 / (1 \rho^2)$ und $Corr(u_t, u_{t-j}) = \rho^j$.
- b) Bestimmen Sie den OLS-Schätzer $\hat{\rho}$ für ρ .
- c) Zeigen Sie, dass $\hat{\rho}$ nicht erwartungstreu ist.

Aufgabe 3:

Testen Sie den Datensatz auf Heteroskedastie. Führen Sie dazu den White-Test durch, fällen Sie die Testentscheidung zu einem Niveau von 5% mit Hilfe folgendem Outputs: