- 1. (10 points) Suppose you have a computer which carries only 4 decimal digits and rounds.
 - (a) Find a number ϵ which is about as large as possible such that on this computer $\cos x = 1$ for $|x| < \epsilon$.
 - (b) For values of x with $0 < |x| < \epsilon$ what is a good way of computing $f(x) = \frac{1 \cos x}{x^2}$ on this computer?
- 2. (15 points) Let

$$A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}.$$

- (a) Solve $A\mathbf{x} = \mathbf{b}$, using the LU factorization, forward elimination and back substitution.
- (b) Find an approximate solution to $A\mathbf{x} = \mathbf{b}$ by doing three Jacobi iterations starting at $\mathbf{x}^{(0)} = (0,0)^T$.
- (c) Find an approximate solution to $A\mathbf{x} = \mathbf{b}$ by doing three Gauss-Seidel iterations starting at $\mathbf{x}^{(0)} = (0,0)^T$.
- 3. (15 points) Let

$$I = \int_0^1 \sqrt{x+2} \, dx = 1.578483532$$

- (a) Compute T_2 , the 2-panel trapezoid rule approximation to I. Compare your answer with the exact value of I.
- (b) Compute S_2 , the 2-panel Simpson's rule appoximation to I. Compare your answer with the exact value of I.
- (c) Compute CT_2 , the 2-panel corrected trapeziod rule approximation to I. Compare your answer with the exact value of I.
- (d) Which method gives the best result?
- 4. (12 points) Let

$$Q = \frac{1}{7} \begin{pmatrix} -6 & 2 & 3 \\ 2 & -3 & 6 \\ 3 & 6 & 2 \end{pmatrix}, \quad R = \begin{pmatrix} 1 & 2 \\ 0 & 3 \\ 0 & 0 \end{pmatrix}, \quad \mathbf{b} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$$

(a) Complete the following definition:

An $n \times n$ matrix Q is orthogonal if _____

- (b) Show that Q is an orthogonal matrix.
- (c) Let A = QR. Find the least squares solution to $A\mathbf{x} = \mathbf{b}$ as efficiently as possible. (Recall that an orthogonal matrix preserves lengths: $||Q\mathbf{x}||_2 = ||\mathbf{x}||_2$ for all \mathbf{x} .)
- 5. (15 points) The equation $4x^2 e^x = 0$ has a root in the interval [4, 5].
 - (a) Show that we cannot find this root by using the iteration scheme

$$x_{n+1} = \frac{1}{2}e^{x_n/2}.$$

- (b) Find an iteration scheme which will converge to the root. Prove that your scheme converges.
- 6. (15 points) Consider the nonlinear system

$$x^2 + y^2 = 1, \quad y = x^3.$$

- (a) How many solutions does this system have? (It might help to draw a picture.)
- (b) We wish to find a solution to the system by Newton's method. If $(x_0, y_0) = (1, 1)$ what is (x_1, y_1) ? Do not reduce to a single equation.
- 7. (5 points) Consider the initial value problem for the second order differential equation

$$\frac{d^2u}{dt^2} + 2\frac{du}{dt} + u^2 - 3u = 0, \quad u(0) = 1, \quad \frac{du}{dt}(0) = -1.$$
 (1)

Write (1) as an equivalent first order system.

8. (15 points) Let Y(t) be the solution of the initial value problem

$$\frac{dy}{dx} = x + y + 1 \qquad y(0) = 0.$$

Find approximations to Y(0.2) by using

- (a) two steps of the Euler method with h = .1.
- (b) one step of the Improved Euler method with h = .2.

For comparison, the exact value is Y(0.2) = .24281. Which method gives the best results?