Data Privacy Homework 1

傅申 PB20000051

1. (15') Laplace Mechanism

- (a) (5') Given the function $f(x) = \frac{1}{6} \sum_{i=1}^{6} x_i$, where $x_i \in \{1, 2, ..., 10\}$ for $i \in \{1, 2, ..., 6\}$, compute the global sensitivity and local sensitivity when $x = \{3, 5, 4, 5, 6, 7\}$.
- **(b) (10')** Given a database x where each element is in $\{1, 2, 3, 4, 5, 6\}$, design ε -differentially private Laplace mechanisms corresponding to the following queries, where $\varepsilon = 0.1$:
 - 1. $q_1(x) = \sum_{i=1}^6 x_i$
 - 2. $q_2(x) = \max_{i \in \{1, 2, \dots, 6\}} x_i$

2. (15') Exponential mechanism

ID	sex	Chinese	Mathematics	English	Physics	Chemistry	Biology
1	Male	96	58	80	53	56	100
2	Male	60	63	77	50	59	75
3	Female	83	86	98	69	80	100
							
4000	Female	86	83	98	87	82	92

Table 1: Scores of students in School A

Table 1 records the scores of students in School A in the final exam. We need to help the teacher query the database while protecting the privacy of students' scores. The domain of this database is $\{\text{Male}, \text{Female}\} \times \{0, 1, 2, ..., 100\}^6$. Answer the following questions.

- (a) (5') What is the sensitivity of the following queries:
 - 1. $q_1(x) = \frac{1}{4000} \sum_{\text{ID}=1}^{4000} \text{Physics}_{\text{ID}}$
 - 2. $q_2(x) = \max_{\text{ID} \in \{1, 2, \dots, 4000\}} \text{Biology}_{\text{ID}}$
- **(b) (10')** Design ε -differentially privacy mechanisms corresponding to the two queries in (a), where $\varepsilon = 0.1$. (Using Laplace mechanism for q_1 and exponential mechanism for q_2)

3. (20') Composition

Theorem 3.16. Let $\mathcal{M}_i : \mathbb{N}^{|\mathcal{X}|} \to \mathcal{R}_i$ be an $(\varepsilon_i, \delta_i)$ -differentially private algorithm for $i \in [k]$. Then if $\mathcal{M}_{[k]}(x) = (\mathcal{M}_1(x), ..., \mathcal{M}_{k(x)})$, then \mathcal{M}_k is $(\sum_{i=1}^k \varepsilon_i, \sum_{i=1}^k \delta_i)$ -differentially private.

Theorem 3.20 (Advanced Composition). For all ε , δ , δ \geq 0, the class of (ε, δ) -differentially private mechanisms satisfies $(\varepsilon, k\delta + \delta)$ -differential privacy under k-fold adaptive composition for:

$$\varepsilon' = \varepsilon \sqrt{2k \ln\left(\frac{1}{\delta'}\right)} + k\varepsilon(\varepsilon^{\varepsilon} - 1)$$

- (a) (10') Given a database $x = \{x_1, x_2, ..., x_{2000}\}$ where $x_i \in \{0, 1, 2, ..., 100\}$ for each i and privacy parameters $(\varepsilon, \delta) = (1.25, 10^{-5})$, apply the Gaussian mechanism to protect 100 calls to the query $q_1(x) = \frac{1}{2000} \sum_{i=1}^{2000} x_i$. Determine the noise variances σ^2 of the Gaussian mechanism to ensure (ε, δ) -DP based on the composition and advanced composition theorems, respectively.
- **(b) (10')** Determine the noise variances σ^2 of the Gaussian mechanism to protect 100 calls to the query $q_2(x) = \max_{i \in \{1,2,\dots,2000\}} x_i$ to ensure (1.25, 10^{-5})-DP based on the composition and advanced composition theorems, respectively, where x is the database in (a).

1

Data Privacy Homework 1 傳申 PB20000051

4. (25') Randomized Response for Local DP

Consider a population of n users, where the true proportion of males is denoted as π . Our objective is to gather statistics on the proportion of males, prompting a sensitive question: "Are you male?" Each user responds with either a yes or no, but due to privacy concerns, they refrain from directly disclosing their true gender. Instead, they employ a biased coin with a probability of landing heads denoted as p, and tails as 1-p. When the coin is tossed, a truthful response is given if heads appear, while the opposite response is provided if tails come up.

- (a) (10') Demonstrate that the aforementioned randomized response adheres to local differential privacy and determine the corresponding privacy parameter, ε .
- (b) (15') Employing the perturbation method outlined above to aggregate responses from the n users yields a statistical estimate for the number of males. Assuming the count of "yes" responses is n_1 , construct an unbiased estimate π for based on n, n_1 , p. Calculate the variance associated with this estimate.

5. (10') Accuracy Guarantee of DP

Consider the application of an (ε, δ) -differentially private Gaussian mechanism denoted by \mathcal{M} to protect the mean estimator $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$ of a d-dimensional input database x, where $x_i \in \{0, 1, ..., 100\}^d$ for each i. Let $\mathcal{M}(x)$ represent the output of this Gaussian mechanism. Utilize both the tail bound and the union bound to derive the L_{∞} -norm error bound of \mathcal{M} , denoted by $\|\mathcal{M}(x) - \bar{x}\|_{\infty}$, ensuring a probability of at least $1 - \beta$. Specifically, solve for the bound \mathcal{B} such that

$$\Pr[\|\mathcal{M}(x) - \bar{x}\|_{\infty} \le \mathcal{B}] \ge 1 - \beta$$

Hint: Refer to Zhihu link for descriptions of statistical inequalities.

6. (15') Personalized Differential Privacy

Consider an n-element dataset D where the i-th element is owned by a user $i \in [n]$, where $[n] = \{1, 2, ..., n\}$ and the privacy requirement of user i is ε_i -DP. A randomized mechanism \mathcal{M} satisfies $\{\varepsilon_i\}_{i\in[n]}$ -personalized differential privacy (or $\{\varepsilon_i\}_{i\in[n]}$ -PDP) if, for every pair of neighboring datasets D, D differing at the j-th element for an arbitrary $j \in [n]$, and for all sets S of possible outputs,

$$\Pr[\mathcal{M}(D) \in S] \le \exp(\varepsilon_j) \Pr[\mathcal{M}(D') \in S].$$

- (a) (5') Prove the composition theorem of PDP: if a mechanism is $\left\{\varepsilon_{i}^{(1)}\right\}_{i\in[n]}$ -PDP and another is $\left\{\varepsilon_{i}^{(2)}\right\}_{i\in[n]}$ -PDP, then publishing the result of both is $\left\{\varepsilon_{i}^{(1)}+\varepsilon_{i}^{(2)}\right\}_{i\in[n]}$ -PDP.
- **(b) (10')** Given a dataset D and a privacy requirement set $\{\varepsilon_i\}_{i\in[n]}$, the *Sample mechanism* works as follows:
 - 1) We pick an arbitrary threshold value t > 0;
 - 2) We sample a subset $D_S \subset D$ where the probability that the *i*-th element of D is contained in D_S equals $\frac{\exp(\varepsilon_i)-1}{\exp(t)-1}$ if $\varepsilon_i < t$ and 1 otherwise;
 - 3) We output $\mathcal{M}(D_S)$, where \mathcal{M} is a *t*-differentially private mechanism.

Prove that the Sample mechanism with any t > 0 is $\{\varepsilon_i\}(i \in [n])$ -PDP.

Hint: Use the Bayes formula.