Solution Book of Mathematic

Ssnior 2 Part I

MELVIN CHIA

Written on 9 October 2022

Contents

	11.0.1	Exercise 14.4		 	 		 	 		 							2
11.1	Determ	inants		 	 		 	 		 							3
	11.1.1	Practice 4		 	 		 	 		 							3
	11.1.2	Practice 5		 	 	•	 	 		 							3
	11.1.3	Practice 6		 	 		 	 		 							4
	11.1.4	Exercise 14.5	a	 	 		 	 		 							5
	11.1.5	Practice 7		 	 		 	 		 							7
	11.1.6	Practice 8		 	 		 	 		 							7
	11.1.7	Practice 9		 	 		 	 		 							7
	11.1.8	Practice 10		 	 		 	 		 							7

11.0.1 Exercise 14.4

Calculate the following products (Question 1 to 8):

1.
$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Sol.

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
$$= \begin{bmatrix} 1(1) + 2(2) + 3(3) \end{bmatrix}$$
$$= \begin{bmatrix} 14 \end{bmatrix}$$

$$2. \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$

$$3. \begin{bmatrix} 2 & -3 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Sol.

$$\begin{bmatrix} 2 & -3 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2(1) + (-3)(0) & 2(0) + (-3)(1) \\ 1(1) + 5(0) & 1(0) + 5(1) \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -3 \\ 1 & 5 \end{bmatrix}$$

4.
$$\begin{bmatrix} -6 & -4 & 2 \\ 7 & 8 & -5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$
Sol.

$$\begin{bmatrix} -6 & -4 & 2 \\ 7 & 8 & -5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} -6(1) + (-4)(2) + 2(3) \\ 7(1) + 8(2) + (-5)(3) \end{bmatrix}$$

$$= \begin{bmatrix} -8 \\ 8 \end{bmatrix}$$

5.
$$\begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 3 & 1 \\ 4 & 2 \end{bmatrix}$$

Sol.

$$\begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 3 & 1 \\ 4 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 2(2) + 3(3) + 4(4) & 2(0) + 3(1) + 4(2) \\ 0(2) + 1(3) + 2(4) & 0(0) + 1(1) + 2(2) \end{bmatrix}$$

$$= \begin{bmatrix} 27 & 11 \\ 11 & 5 \end{bmatrix}$$

$$6. \begin{bmatrix} 6 & 4 & 2 \\ 5 & -2 & 0 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix}$$

Sol.

$$\begin{bmatrix} 6 & 4 & 2 \\ 5 & -2 & 0 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} 6(5) + 4(2) + 2(3) \\ 5(5) + (-2)(2) + 0(3) \\ 0(5) + 3(2) + 1(3) \end{bmatrix}$$

$$= \begin{bmatrix} 44 \\ 21 \\ 9 \end{bmatrix}$$

7.
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Sol.

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0(0)+1(1)+0(0) & 0(1)+1(0)+0(0) & 0(0)+1(0)+0(1) \\ 1(0)+0(1)+0(0) & 1(1)+0(0)+0(0) & 1(0)+0(0)+0(1) \\ 0(0)+0(1)+1(0) & 0(1)+0(0)+1(0) & 0(0)+0(0)+1(1) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$8. \begin{bmatrix} 1 & -1 & 1 \\ -3 & 2 & -1 \\ -2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 2 & 3 \end{bmatrix}$$

Sol.

11.1 Determinants

The determinant of an n-order matrix $A = (a_{ij})_{n \times n}$ is denoted as $\det(A)$. When $n \le 2$, the determinant can also be denoted as |A|. The determinant is a value.

When n = 1, the determinant is the value of the only element in the matrix.

Determinant of a 2x2 matrix

For a 2x2 matrix, the determinant is defined as:

$$\det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

11.1.1 Practice 4

Find the value of the following determinants.

1.
$$\begin{vmatrix} 2 & -3 \\ 5 & 7 \end{vmatrix}$$

Sol. $\begin{vmatrix} 2 & -3 \\ 5 & 7 \end{vmatrix}$
 $= 2(7) - (-3)(5)$
 $= 14 + 15$
 $= 29$

2.
$$\begin{vmatrix} -6 & -7 \\ -8 & -9 \end{vmatrix}$$

Sol. $\begin{vmatrix} -6 & -7 \\ -8 & -9 \end{vmatrix}$
 $= (-6)(-9) - (-7)(-8)$
 $= 54 - 56$
 $= -2$

3.
$$\begin{vmatrix} 12 & -20 \\ -21 & 35 \end{vmatrix}$$

Sol.

$$\begin{vmatrix} 12 & -20 \\ -21 & 35 \end{vmatrix}$$
= 12(35) - (-20)(-21)
= 420 - 420
= 0

Determinant of a 3x3 matrix

For a 3x3 matrix, the determinant is defined as:

$$\det(A) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$= a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$$

$$= a_1 b_2 c_3 + b_1 c_2 a_3 + c_1 a_2 b_3 - a_3 b_2 c_1 - b_3 c_2 a_1$$

$$- c_3 a_2 b_1$$

A 3x3 matrix can be expanded using the Sarrus method. The Sarrus method is defined as:

Note that the Sarrus method is only applicable to 3x3 matrices.

11.1.2 Practice 5

Calculate the value of the following determinants.

1.
$$\begin{vmatrix} 1 & 5 & 1 \\ 1 & 6 & 3 \\ 9 & 8 & 9 \end{vmatrix}$$
Sol.

$$\begin{vmatrix} 1 & 5 & 1 \\ 1 & 6 & 3 \\ 9 & 8 & 9 \end{vmatrix} = 54 + 135 + 8 - 54 - 24 - 45$$
$$= 74$$

$$\begin{array}{c|cccc}
3 & 1 & -2 \\
0 & -1 & 1 \\
4 & 2 & 5
\end{array}$$

$$\begin{vmatrix} 3 & 1 & -2 \\ 0 & -1 & 1 \\ 4 & 2 & 5 \end{vmatrix} = -15 + 4 - 0 - 8 - 6 - 0$$
$$= -25$$

Minor and Cofactor

The minor of an element in a matrix is the determinant of the matrix obtained by deleting the row and column containing

the element. Take $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$ as an example. The minor of a_1 is $\begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix}$, the minor of c_2 is $\begin{vmatrix} a_1 & b_1 \\ a_3 & b_3 \end{vmatrix}$, and so on.

of
$$a_1$$
 is $\begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix}$, the minor of c_2 is $\begin{vmatrix} a_1 & b_1 \\ a_3 & b_3 \end{vmatrix}$, and so on.

The cofactor of an element in a matrix is the minor of the element multiplied by $(-1)^{i+j}$, where i and j are the row and column indices of the element. The cofactor of a_1 is $(-1)^{1+1}\begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix}$, the cofactor of c_2 is $(-1)^{3+2}\begin{vmatrix} a_1 & b_1 \\ a_3 & b_3 \end{vmatrix}$, and

Let A_1, B_1, C_1 are the cofactors of a_1, b_1, c_1 respectively. Then

$$A_{1} = (-1)^{1+1} \begin{vmatrix} b_{2} & c_{2} \\ b_{3} & c_{3} \end{vmatrix} = \begin{vmatrix} b_{2} & c_{2} \\ b_{3} & c_{3} \end{vmatrix}$$

$$B_{1} = (-1)^{1+2} \begin{vmatrix} a_{2} & c_{2} \\ a_{3} & c_{3} \end{vmatrix} = - \begin{vmatrix} a_{2} & c_{2} \\ a_{3} & c_{3} \end{vmatrix}$$

$$C_{1} = (-1)^{1+3} \begin{vmatrix} a_{2} & b_{2} \\ a_{3} & b_{3} \end{vmatrix} = \begin{vmatrix} a_{2} & b_{2} \\ a_{3} & b_{3} \end{vmatrix}$$

Thus,

$$|A| = a_1 A_1 + a_2 B_1 + a_3 C_1$$

That is, the value of the determinant is the elements of the first row multiplied by the cofactors of the elements of the first row.

The sign of the cofactor is determined by the sum of the row and column indices of the element. If the sum is even, the cofactor is positive; if the sum is odd, the cofactor is negative.

Generally, a 3x3 determinant has the following theorem:

Theorem 1. The determinant of a 3x3 matrix is the sum of the elements of any row or column multiplied by the cofactors of the elements of that row or column.

That is, we can use the cofactor expansion to calculate the determinant of a 3x3 matrix.

$$|A| = a_1A_1 + b_1B_1 + c_1C_1$$

$$= a_2B_2 + b_2B_2 + c_2C_2$$

$$= a_3C_3 + b_3C_3 + c_3C_3$$

$$= a_1A_1 + a_2A_2 + a_3A_3$$

$$= b_1B_1 + b_2B_2 + b_3B_3$$

$$= c_1C_1 + c_2C_2 + c_3C_3$$

The determinant of any order matrix can also be calculated by the cofactor expansion.

Theorem 2. The product of the elements of any row or column and the cofactor of corresponding elements of another row or column of a determinant is 0.

For example, the product of the elements of the second row and the corresponding element of the cofactor of first row of the determinant is 0. That is,

$$\begin{aligned} a_2B_1 + b_2B_1 + c_2C_1 \\ &= a_2 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_2 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_2 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix} \\ &= a_2b_2c_3 + a_2b_3c_2 - a_2b_2c_3 + a_3b_2c_2 + a_2b_3c_2 - a_3b_2c_2 \\ &= 0 \end{aligned}$$

11.1.3 **Practice 6**

Find the value of the following 3x3 determinants.

1.
$$\begin{vmatrix} 4 & -2 & 1 \\ 1 & -3 & 0 \\ 2 & 7 & -1 \end{vmatrix}$$

Sol.

$$\begin{vmatrix} 4 & -2 & 1 \\ 1 & -3 & 0 \\ 2 & 7 & -1 \end{vmatrix}$$

$$= 4 \begin{vmatrix} -3 & 0 \\ 7 & -1 \end{vmatrix} - \begin{vmatrix} -2 & 1 \\ 7 & -1 \end{vmatrix} + 2 \begin{vmatrix} -2 & 1 \\ -3 & 0 \end{vmatrix}$$

$$= 4(3 - 0) - (2 - 7) + 2(0 + 3)$$

$$= 12 + 5 + 6$$

$$= 23$$

$$\begin{array}{c|cccc}
2. & 5 & -4 & 2 \\
1 & 0 & -3 \\
1 & -1 & 2
\end{array}$$

Sol.

$$\begin{vmatrix} 5 & -4 & 2 \\ 1 & 0 & -3 \\ 1 & -1 & 2 \end{vmatrix}$$

$$= 5 \begin{vmatrix} 0 & -3 \\ -1 & 2 \end{vmatrix} - \begin{vmatrix} -4 & 2 \\ -1 & 2 \end{vmatrix} + \begin{vmatrix} -4 & 2 \\ 0 & -3 \end{vmatrix}$$

$$= 5(0-3) - (-8+2) + (12+0)$$

$$= -15 + 6 + 12$$

$$= 3$$

$$\begin{array}{c|cccc}
3. & \begin{vmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 2 & 0 & -1 \end{vmatrix}$$

Sol.

$$\begin{vmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 2 & 0 & -1 \end{vmatrix}$$

$$= 2 \begin{vmatrix} 2 & 0 \\ 0 & -1 \end{vmatrix} - 0 \begin{vmatrix} 0 & 1 \\ 0 & -1 \end{vmatrix} + 2 \begin{vmatrix} 0 & 1 \\ 2 & 0 \end{vmatrix}$$

$$= 2(-2 - 0) + 2(-2)$$

$$= -4 - 4$$

$$= -8$$

11.1.4 Exercise 14.5a

Find the value of the following determinants.

1.
$$\begin{vmatrix} 3 & 2 \\ 1 & -4 \end{vmatrix}$$

Sol.

$$\begin{vmatrix} 3 & 2 \\ 1 & -4 \end{vmatrix}$$
= 3(-4) - 2(1)
= -12 - 2
= -14

2.
$$\begin{vmatrix} 35 & -2 \\ -11 & 5 \end{vmatrix}$$

Sol.

$$\begin{vmatrix} 35 & -2 \\ -11 & 5 \end{vmatrix}$$
= 35(5) - (-2)(-11)
= 175 - 22
= 153

3.
$$\begin{vmatrix} 1 & a \\ -a & 1 \end{vmatrix}$$

Sol.

$$\begin{vmatrix} 1 & a \\ -a & 1 \end{vmatrix}$$
$$= 1(1) - a(-a)$$
$$= 1 + a^2$$

4.
$$\begin{vmatrix} \sin x & -\cos x \\ \cos x & \sin x \end{vmatrix}$$

Sol.

$$\begin{vmatrix} \sin x & -\cos x \\ \cos x & \sin x \end{vmatrix}$$

$$= \sin x \sin x - (-\cos x)(\cos x)$$

$$= \sin^2 x + \cos^2 x$$

$$= 1$$

5.
$$\begin{vmatrix} 1 & -2 & 3 \\ 2 & 3 & -4 \\ 3 & -2 & 5 \end{vmatrix}$$

Sol.

$$\begin{vmatrix} 1 & -2 & 3 \\ 2 & 3 & -4 \\ 3 & -2 & 5 \end{vmatrix}$$

$$= 1 \begin{vmatrix} 3 & -4 \\ -2 & 5 \end{vmatrix} - 2 \begin{vmatrix} -2 & 3 \\ -2 & 5 \end{vmatrix} + 3 \begin{vmatrix} -2 & 3 \\ 3 & -4 \end{vmatrix}$$

$$= 1(15 - 8) - 2(-10 + 6) + 3(8 - 9)$$

$$= 7 + 8 - 3$$

$$= 12$$

$$6. \begin{vmatrix} 1 & -3 & 4 \\ 2 & 0 & -5 \\ 3 & -1 & 7 \end{vmatrix}$$

Sol.

$$\begin{vmatrix} 1 & -3 & 4 \\ 2 & 0 & -5 \\ 3 & -1 & 7 \end{vmatrix}$$

$$= \begin{vmatrix} 0 & -5 \\ -1 & 7 \end{vmatrix} - 2 \begin{vmatrix} -3 & 4 \\ -1 & 7 \end{vmatrix} + 3 \begin{vmatrix} -3 & 4 \\ 0 & -5 \end{vmatrix}$$

$$= (0 - 5) - 2(-21 + 4) + 3(15 - 0)$$

$$= -5 + 34 + 45$$

$$= 74$$

7.
$$\begin{vmatrix} -1 & 3 & -2 \\ -3 & 2 & 0 \\ 4 & 0 & 5 \end{vmatrix}$$

Sol.

$$\begin{vmatrix}
-1 & 3 & -2 \\
-3 & 2 & 0 \\
4 & 0 & 5
\end{vmatrix}$$

$$= -1 \begin{vmatrix} 2 & 0 \\ 0 & 5 \end{vmatrix} + 3 \begin{vmatrix} 3 & -2 \\ 0 & 5 \end{vmatrix} + 4 \begin{vmatrix} 3 & -2 \\ 2 & 0 \end{vmatrix}$$

$$= -1(10) + 3(-15 + 0) + 4(0 + 4)$$

$$= -10 + 45 + 16$$

$$= 51$$

$$8. \begin{vmatrix} 0 & -q & -r \\ q & 0 & -s \\ r & s & 0 \end{vmatrix}$$

Sol.

$$\begin{vmatrix} 0 & -q & -r \\ q & 0 & -s \\ r & s & 0 \end{vmatrix}$$

$$= 0 \begin{vmatrix} 0 & -s \\ s & 0 \end{vmatrix} - q \begin{vmatrix} -q & -r \\ s & 0 \end{vmatrix} + r \begin{vmatrix} -q & -r \\ 0 & -s \end{vmatrix}$$

$$= 0 - q(0 + sr) + r(0 + qs)$$

$$= 0$$

$$9. \begin{vmatrix} p & -q & r \\ q & r & -s \\ -r & s & p \end{vmatrix}$$

Sol.

$$\begin{vmatrix} p & -q & r \\ q & r & -s \\ -r & s & p \end{vmatrix} = p \begin{vmatrix} r & -s \\ s & p \end{vmatrix} - q \begin{vmatrix} -q & r \\ s & p \end{vmatrix} + r \begin{vmatrix} -q & r \\ r & -s \end{vmatrix} = p(rp + s^2) - q(-qp - sr) - r(qs - r^2) = rp^2 + ps^2 + q^2p + qsr - qsr + r^3 = rp^2 + s^2p + q^2p - r^3$$

10.
$$\begin{vmatrix} 1 & x & a \\ 1 & y & b \\ 1 & z & c \end{vmatrix}$$

Sol.

$$\begin{vmatrix} 1 & x & a \\ 1 & y & b \\ 1 & z & c \end{vmatrix}$$

$$= \begin{vmatrix} y & b \\ z & c \end{vmatrix} - \begin{vmatrix} x & a \\ z & c \end{vmatrix} + \begin{vmatrix} x & a \\ y & b \end{vmatrix}$$

$$= (yc - bz) - (xc - az) + (xb - ay)$$

$$= bx + cy + az - cx - ay - bz$$

Properties of Determinants

Theorem 1. The value of a determinant is the same as the value of its transpose, aka |A| = |A'|.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & c \\ b & d \end{vmatrix}$$

Theorem 2. Switching any two rows or columns of a determinants results in the opposite value.

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = - \begin{vmatrix} a_1 & b_1 & c_1 \\ a_3 & b_3 & c_3 \\ a_2 & b_2 & c_2 \end{vmatrix}$$

11.1.5 Practice 7

Given
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 10$$
, find $\begin{vmatrix} b & c & a \\ e & f & d \\ h & i & g \end{vmatrix}$.

Sol.

$$\begin{vmatrix} b & c & a \\ e & f & d \\ h & i & g \end{vmatrix} = - \begin{vmatrix} a & c & b \\ d & f & e \\ g & i & h \end{vmatrix}$$
$$= \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$$
$$= 10$$

Theorem 3. If two rows or cols of a determinant are identical, the value of the determinant is zero.

$$\begin{vmatrix} a & b & c \\ a & b & c \\ d & e & f \end{vmatrix} = 0$$

Theorem 4. If all elements of a row (or column) of a determinant are multiplied by some scalar number k, the value of the new determinant is k times of the given determinant.

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ ka_2 & kb_2 & kc_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = k \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

11.1.6 Practice 8

Using the properties of determinants, prove that $\begin{vmatrix} 10 & -12 & 2 \\ -15 & 18 & 3 \\ 5 & 6 & -1 \end{vmatrix} = 180 \begin{vmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \end{vmatrix}$.

Sol.

$$\begin{vmatrix} 10 & -12 & 2 \\ -15 & 18 & 3 \\ 5 & 6 & -1 \end{vmatrix}$$

$$= 5 \times 6 \begin{vmatrix} 2 & -2 & 2 \\ -3 & 3 & 3 \\ 1 & 1 & -1 \end{vmatrix}$$

$$= 5 \times 6 \times 2 \times 3 \times \begin{vmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \end{vmatrix}$$

$$= 180 \begin{vmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \end{vmatrix}$$

Theorem 5. In a determinant each element in any row (or

column) consists of the sum of two terms, then the determinant can be expressed as sum of two determinants of same order.

$$\begin{vmatrix} a_1+d_1 & b_1 & c_1 \\ a_2+d_2 & b_2 & c_2 \\ a_3+d_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} + \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}$$

Theorem 6. If a determinant is obtained by adding a row or column multiplied by a some scalar number k to a different row or column, then the value of the new determinant is the same as the original determinant.

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 + ka_2 & b_1 + kb_2 & c_1 + kc_2 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

11.1.7 Practice 9

Prove that
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 0.$$

Sol.

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 2 & 3 \\ 3 & 3 & 3 \\ 6 & 6 & 6 \end{vmatrix}$$
 (Adding row 1 multiplied by -1 to row 2 and 3)
$$= 2 \begin{vmatrix} 1 & 2 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{vmatrix}$$
 (Theorem 4)
$$= 0$$
 (Theorem 3)

Theorem 7. The determinant of product of two matrices of equal size is equal to the product of determinants of each matrix, aka |AB| = |A||B|.

11.1.8 Practice 10

Let
$$A = \begin{vmatrix} -2 & 1 \\ 4 & 3 \end{vmatrix}$$
 and $B = \begin{vmatrix} 1 & x \\ 2 & 3 \end{vmatrix}$. Given that $|AB| = -18$, find x .

$$|AB| = |A||B| = -18$$

$$|AB| = |A||B| = -18$$

$$|AB| = |A||B| = -18$$

$$-2(3 - 2x) = -18$$

$$3 - 2x = 9$$

$$-2x = 6$$

$$x = -3$$