CÁLCULO DIFERENCIAL E INTEGRAL III

SISTEMAS DE EQUAÇÕES LINEARES DE PRIMEIRA ORDEM

1 Introdução

Os sistemas que estudaremos em seguida são da forma

$$\begin{cases} \frac{dx_1}{dt} = a_{11}(t) x_1 + \dots + a_{1n}(t) x_n + g_1(t) \\ \dots \\ \frac{dx_n}{dt} = a_{n1}(t) x_1 + \dots + a_{nn}(t) x_n + g_n(t) \end{cases}$$

Temos n equações e n variáveis x_1, \dots, x_n .

O sistema pode ser posto na forma matricial:

$$\begin{pmatrix} x_1' \\ \cdots \\ x_n' \end{pmatrix} = \begin{pmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \cdots & \cdots & \cdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{pmatrix} \begin{pmatrix} x_1 \\ \cdots \\ x_n \end{pmatrix} + \begin{pmatrix} g_1(t) \\ \cdots \\ g_n(t) \end{pmatrix}$$

ou

$$\frac{d\vec{x}}{dt} = A\,\vec{x} + \vec{g}$$

onde
$$\vec{x} = \begin{pmatrix} x_1 \\ \cdots \\ x_n \end{pmatrix}$$
 e $\vec{g} = \begin{pmatrix} g_1(t) \\ \cdots \\ g_n(t) \end{pmatrix}$.

Vamos lidar só com o caso de coeficientes constantes, e primeiro apenas com o caso homogéneo:

$$\frac{d\vec{x}}{dt} = A\,\vec{x}.$$

2 Caso Homogéneo

O espaço de soluções do sistema tem dimensão n, e por isso precisamos de n soluções (vectoriais) linearmente independentes.

Procuramos, como anteriormente, soluções de tipo exponencial

 $\vec{x} = e^{\lambda t} \vec{v}$, com \vec{v} constante.

Para que um \vec{x} deste tipo seja solução, devemos ter

$$\frac{d\vec{x}}{dt} = \lambda e^{\lambda t} \vec{v} = A e^{\lambda t} \vec{v}$$

$$\Rightarrow A \vec{v} = \lambda \vec{v},$$

donde λ é valor próprio de A e \vec{v} é vector próprio associado a λ .

Exemplo:

$$\frac{d\vec{x}}{dt} = \begin{pmatrix} 1 & -1 & 4\\ 3 & 2 & -1\\ 2 & 1 & -1 \end{pmatrix} \vec{x}$$

Procuremos os valores próprios e os vectores próprios desta matriz A:

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & -1 & 4 \\ 3 & 2 - \lambda & -1 \\ 2 & 1 & -1 - \lambda \end{vmatrix}$$
$$= (1 - \lambda) \begin{vmatrix} 2 - \lambda & -1 \\ 1 & -1 - \lambda \end{vmatrix} + \begin{vmatrix} 3 & -1 \\ 2 & -1 - \lambda \end{vmatrix} + 4 \begin{vmatrix} 3 & 2 - \lambda \\ 2 & 1 \end{vmatrix}$$
$$= \dots = (1 - \lambda) (\lambda - 3) (\lambda + 2)$$

Os valores próprios são portanto $\lambda_1=1,\,\lambda_2=3$ e $\lambda_3=-2.$

Para descobrir os vectores próprios associados a $\lambda_1=1$, resolvemos o sistema

$$\left(\begin{array}{ccc} 0 & -1 & 4 \\ 3 & 1 & -1 \\ 2 & 1 & -2 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right)$$

Por eliminação de Gauss, obtemos

$$\left(\begin{array}{ccc} 0 & -1 & 4 \\ 3 & 1 & -1 \\ 2 & 1 & -2 \end{array}\right) \rightarrow \left(\begin{array}{ccc} 2 & 1 & -2 \\ 0 & -1 & 4 \\ 0 & 1/3 & -4/3 \end{array}\right) \rightarrow \left(\begin{array}{ccc} 2 & 1 & -2 \\ 0 & 1 & -4 \\ 0 & 0 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc} 2 & 0 & 2 \\ 0 & 1 & -4 \\ 0 & 0 & 0 \end{array}\right)$$

O sistema original é portanto equivalente a

$$\begin{cases} 2x + 2z = 0\\ y - 4z = 0 \end{cases}$$

As soluções deste sistema são da forma $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -z \\ 4z \\ z \end{pmatrix}$, e um gerador para este espaço de soluções é o vector próprio $\vec{v_1} = \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix}$.

Uma solução para o sistema de equações diferenciais original é portanto

$$\vec{x_1} = e^{\lambda_1 t} \vec{v_1} = e^t \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix}$$

Para $\lambda_2 = 3$, obtemos o sistema

$$\begin{pmatrix} -2 & -1 & 4 \\ 3 & -1 & -1 \\ 2 & 1 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Ao qual aplicamos eliminação de Gauss:

$$\begin{pmatrix} -2 & -1 & 4 \\ 3 & -1 & -1 \\ 2 & 1 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & -1 & 4 \\ 0 & -5/3 & 10/3 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & -1 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & 0 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

O sistema original é equivalente a

$$\begin{cases} -2x + 2z = 0\\ y - 2z = 0 \end{cases}$$

As soluções deste sistema são da forma $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z \\ 2z \\ z \end{pmatrix}$, e um gerador para este espaço de soluções é o vector próprio $\vec{v_2} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$.

Uma segunda solução para o sistema de equações diferenciais é

$$\vec{x_2} = e^{\lambda_2 t} \, \vec{v_2} = e^{3t} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Para $\lambda_3 = -2$, temos

$$\left(\begin{array}{ccc} 3 & -1 & 4 \\ 3 & 4 & -1 \\ 2 & 1 & 1 \end{array} \right) \rightarrow \left(\begin{array}{ccc} 3 & -1 & 4 \\ 0 & -5 & 5 \\ 0 & -5/2 & 5/2 \end{array} \right) \rightarrow \left(\begin{array}{ccc} 3 & -1 & 4 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array} \right) \rightarrow \left(\begin{array}{ccc} 3 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array} \right)$$

As soluções deste sistema são da forma $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -z \\ z \\ z \end{pmatrix}$, e um gerador para este espaço de soluções é o vector próprio $\vec{v_3} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$.

Uma terceira solução para o sistema de equações diferenciais é

$$\vec{x_3} = e^{\lambda_3 t} \vec{v_3} = e^{-2t} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

A solução geral do sistema de equações diferenciais é dada pela combinação linear das três soluções obtidas:

$$\vec{x} = c_1 \vec{x_1} + c_2 \vec{x_2} + c_3 \vec{x_3}$$

$$= c_1 e^t \begin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix} + c_2 e^{3t} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + c_3 e^{-2t} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \quad (c_1, c_2, c_3 \in \mathbb{R})$$

Se houver valores próprios complexos $\lambda = \alpha \pm \beta i$ com vectores próprios dados por $\vec{v} = \vec{v_1} \pm i\vec{v_2}$, obtemos duas soluções tirando a parte real e a parte imaginária de $e^{\lambda t}$ \vec{v} :

$$e^{\lambda t} \vec{v} = e^{(\alpha + \beta i)t} [\vec{v_1} + i\vec{v_2}]$$

$$= (e^{\alpha t} \cos(\beta t) + i e^{\alpha t} \sin(\beta t)) (\vec{v_1} + i\vec{v_2})$$

$$= [e^{\alpha t} \cos(\beta t) \vec{v_1} - e^{\alpha t} \sin(\beta t) \vec{v_2}] + i [e^{\alpha t} \cos(\beta t) \vec{v_2} + e^{\alpha t} \sin(\beta t) \vec{v_1}]$$

⇒ Há duas soluções

$$\vec{x_1} = e^{\alpha t} \cos(\beta t) \vec{v_1} - e^{\alpha t} \sin(\beta t) \vec{v_2}$$

e
$$\vec{x_2} = e^{\alpha t} \cos(\beta t) \vec{v_2} + e^{\alpha t} \sin(\beta t) \vec{v_1}$$

Se houver raízes múltiplas, podemos não conseguir arranjar n vectores próprios linearmente independentes (ou seja, a matriz original pode não ser diagonalizável), e podemos portanto também não conseguir arranjar n soluções linearmente independentes que sejam da forma exponencial anterior.

Exemplo:

$$\frac{d\vec{x}}{dt} = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array} \right) \, \vec{x}$$

O polinómio característico é dado por

$$\begin{vmatrix} 1 - \lambda & 1 & 0 \\ 0 & 1 - \lambda & 0 \\ 0 & 0 & 2 - \lambda \end{vmatrix} = (1 - \lambda)^2 (2 - \lambda)$$

Para $\lambda = 2$, obtemos

$$A - 2I = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

e os vectores próprios são da forma $\left(\begin{array}{c} 0 \\ 0 \\ z \end{array}\right),$ com $z \in \mathbb{R}.$

Um exemplo é
$$\vec{v_1}=\begin{pmatrix}0\\0\\1\end{pmatrix}$$
, e uma solução para o sistema é então
$$\vec{x_1}=e^{2t}\begin{pmatrix}0\\0\\1\end{pmatrix}.$$

Para $\lambda = 1$ (que é raiz dupla do polinómio característico), obtemos

$$A - I = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

Os vectores próprios são da forma $\begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix}$ e um exemplo é $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

Uma segunda solução para o sistema é dada por $\vec{x_2} = e^t \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

Não pode haver mais soluções da forma exponencial anterior que sejam linearmente independentes de $\vec{x_1}$ e $\vec{x_2}$. Isto acontece porque não existe neste caso uma base para \mathbb{R}^3 formada só por vectores próprios.

A multiplicidade algébrica de $\lambda=2$ é 1, porque 2 é uma raiz simples do polinómio característico. A sua multiplicidade geométrica (que é o número de vectores próprios linearmente independentes associados a eesa raiz, ou seja, a dimensão do espaço próprio para esse λ) é 1.

Para $\lambda=1$, a multiplicidade algébrica é 2 (porque 1 é raiz dupla do polinómio), mas a multiplicidade geométrica é 1, já que apenas obtivemos um vector próprio (linearmente independente) associado a $\lambda=1$.

Para qualquer valor próprio λ temos sempre

$$1 \leq \text{mult.geom.}(\lambda) \leq \text{mult.alg.}(\lambda)$$

A soma das multiplicidades geométricas (para todos os valores próprios) vai dar o máximo número de vectores próprios linearmente independentes que é possível encontrar, e também o número de soluções linearmente independentes do sistema de equações diferenciais. Cada valor próprio produz garantidamente uma destas soluções.

Se, para cada λ , a multiplicidade geométrica for máxima (ou seja, igual à correspondente multiplicidade algébrica), então existe uma base de \mathbb{R}^n formada só por vectores próprios (aqui, n é o grau do polinómio característico), e n soluções linearmente independentes. Diz-se neste caso que a matriz é diagonalizável. Note-se que, se todos os valores próprios de uma matriz forem raízes simples do seu polinómio característico, ela é necessariamente diagonalizável.

Neste exemplo, a multiplicidade geométrica de $\lambda=1$ é 1, por isso precisamos de descobrir uma terceira solução, linearmente independente de $\vec{x_1}$ e $\vec{x_2}$, para podermos completar a solução geral do sistema.

Esta solução não pode pois ser da forma $e^{\lambda t} \vec{v}$.

Como para as equações anteriormente vistas, tentamos uma terceira solução \vec{y} da forma $\vec{y} = t \ \vec{x_2} = t \ e^t \ \vec{v_2}$. Isto implica:

$$\frac{d\vec{y}}{dt} = e^t \, \vec{v_2} + t \, e^t \, \vec{v_2}$$

e
$$A\vec{y} = A t e^t \vec{v_2} = t e^t \vec{v_2}$$
.

Concluimos que não pode haver solução desta forma.

Tentemos $\vec{y} = t\vec{x_2} + e^t\vec{w}$, para algum \vec{w} . Fica:

$$\frac{d\vec{y}}{dt} = \vec{x_2} + t e^t \vec{v_2} + e^t \vec{w} = e^t \vec{v_2} + t e^t \vec{v_2} + e^t \vec{w}$$

e
$$A\vec{y} = At\vec{x_2} + Ae^t\vec{w} = t\vec{x_2} + e^tA\vec{w} = te^t\vec{v_2} + e^tA\vec{w}$$
.

Ou seja, para termos uma solução \vec{y} da forma dada, \vec{w} deve satisfazer

$$A\vec{w} - \vec{w} = \vec{v_2}$$
 ou, equivalentemente, $(A - I)\vec{w} = \vec{v_2}$.

Resolvemos

$$\left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right).$$

As soluções deste sistema são da forma $\begin{pmatrix} x \\ 1 \\ 0 \end{pmatrix}$, com $x \in \mathbb{R}$.

Uma possibilidade para \vec{w} é portanto $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

Este \vec{w} é chamado vector próprio generalizado.

Uma terceira solução para o sistema é
$$\vec{x_3} = t\vec{x_2} + e^t\vec{w} = te^t \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + e^t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

e a solução geral é $\vec{x} = c_1 \vec{x_1} + c_2 \vec{x_2} + c_3 \vec{x_3}, \ (c_1, c_2, c_3 \in \mathbb{R}.)$

Em geral:

Se λ é valor próprio de multiplicidade algébrica 2 e multiplicidade geométrica 1, temos um vector próprio \vec{v} (obtido a partir de $(A - \lambda I) \vec{v} = \vec{0}$), e uma solução $\vec{x_1} = e^{\lambda t} \vec{v}$ e um vector próprio generalizado \vec{w} (obtido a partir de $(A - \lambda I) \vec{w} = \vec{v}$), com solução associada $\vec{x_2} = te^{\lambda t} \vec{v} + e^{\lambda t} \vec{w}$.

Equivalentemente, devemos resolver

$$\begin{cases} (A - \lambda I) \vec{v} = \vec{0} \\ (A - \lambda I)^2 \vec{w} = \vec{0} \quad (\text{com } (A - \lambda I) \vec{w} \neq \vec{0}) \end{cases}$$

No exemplo anterior:

$$(A-I) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ produz } \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix}, \text{ e retiramos } \vec{v} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

$$(A-I)^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ produz } \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$

e tomamos por exemplo $\vec{w}=\begin{pmatrix}0\\1\\0\end{pmatrix}$. Note-se que, aqui, não podemos escolher y=0 (porque senão \vec{w} seria um vector próprio, e não um vector próprio generalizado.)

Com maior generalidade:

Se λ tiver multiplicidade algébrica 3 e multiplicidade geométrica 1, começamos por obter um vector próprio \vec{v} (resolvendo $(A-\lambda I)$ $\vec{v}=\vec{0}$) e uma primeira solução $\vec{x_1}=e^{\lambda t}\vec{v}$.

A seguir resolvemos $(A - \lambda I)^2 \vec{w} = \vec{0} \pmod{(A - \lambda I)} \vec{w} \neq \vec{0}$. Isto pode dar dois vectores $\vec{w_1}$ e $\vec{w_2}$, ou apenas um.

Se der dois vectores, obtemos mais duas soluções:

$$\vec{x_2} = te^{\lambda t}\vec{v} + e^{\lambda t}\vec{w_1}$$
 e $\vec{x_3} = te^{\lambda t}\vec{v} + e^{\lambda t}\vec{w_2}$.

Se der apenas um (\vec{w}) , resolvemos $(A-\lambda I)^3\vec{z}=\vec{0}~({\rm com}~(A-\lambda I)^2~\vec{z}\neq\vec{0}.)$ As duas soluções adicionais são neste caso

$$\vec{x_2} = te^{\lambda t}\vec{v} + e^{\lambda t}\vec{w} \quad \text{e} \quad \vec{x_3} = \frac{t^2}{2}e^{\lambda t}\vec{v} + te^{\lambda t}\vec{w} + e^{\lambda t}\vec{z}.$$

Isto pode ser generalizado a multiplicidades algébricas e geométricas de ordem superior.

3 Exponencial de Matrizes

Há uma outra maneira de descobrir a solução para os sistemas de equações diferenciais lineares como os anteriores: usando a *exponencial de matrizes*.

Para números reais (ou complexos) definimos $e^x = \sum_{k=0}^{+\infty} \frac{x^k}{k!}$, e esta série converge sempre.

Por analogia, definimos $e^A = \sum_{k=0}^{+\infty} \frac{A^k}{k!}$ para qualquer matriz quadrada A. Esta série converge sempre, tal como a série exponencial para escalares.

Se A for uma matriz n por n, e^A também será uma matriz n por n.

Exemplos:

Se A for a matriz nula (0), obtemos
$$e^A = e^{(0)} = \sum_{k=0}^{+\infty} \frac{(0)^k}{k!} = I$$

Pode ver-se que isto implica que, para qualquer matriz quadrada A, se tem

$$\left[e^A\right]^{-1} = e^{-A}.$$

Se A = I, a matriz identidade, obtemos

$$e^{A} = \sum_{k=0}^{+\infty} \frac{I^{k}}{k!} = \sum_{k=0}^{+\infty} \frac{I}{k!} = \begin{pmatrix} \sum_{k=0}^{+\infty} \frac{1}{k!} & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & \cdots & \sum_{k=0}^{+\infty} \frac{1}{k!} \end{pmatrix} = \begin{pmatrix} e & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & \cdots & e \end{pmatrix} = eI$$

Para $t \in \mathbb{R}$ e uma matriz quadrada A, definimos

$$e^{At} = \sum_{k=0}^{+\infty} \frac{(At)^k}{k!}$$

Exemplos:

Se
$$A = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$$
, com todos os λ_i diferentes, temos

$$e^{At} = \sum_{k=0}^{+\infty} \frac{1}{k!} \begin{pmatrix} (\lambda_1 t)^k & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & \cdots & (\lambda_n t)^k \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{k=0}^{+\infty} \frac{(\lambda_1 t)^k}{k!} & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & \cdots & \sum_{k=0}^{+\infty} \frac{(\lambda_n t)^k}{k!} \end{pmatrix} = \begin{pmatrix} e^{\lambda_1 t} & \cdots & 0 \\ \cdots & \cdots & \cdots \\ 0 & \cdots & e^{\lambda_n t} \end{pmatrix}$$

Se
$$A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$
,

$$e^{At} = \sum_{k=0}^{+\infty} \frac{1}{k!} \begin{pmatrix} \lambda t & t \\ 0 & \lambda t \end{pmatrix}^k = *$$

$$\begin{pmatrix} \lambda t & t \\ 0 & \lambda t \end{pmatrix}^2 = \begin{pmatrix} \lambda t & t \\ 0 & \lambda t \end{pmatrix} \begin{pmatrix} \lambda t & t \\ 0 & \lambda t \end{pmatrix} = \begin{pmatrix} (\lambda t)^2 & 2t(\lambda t) \\ 0 & (\lambda t)^2 \end{pmatrix}$$

$$\begin{pmatrix} \lambda t & t \\ 0 & \lambda t \end{pmatrix}^3 = \begin{pmatrix} (\lambda t)^2 & 2t(\lambda t) \\ 0 & (\lambda t)^2 \end{pmatrix} \begin{pmatrix} \lambda t & t \\ 0 & \lambda t \end{pmatrix} = \begin{pmatrix} (\lambda t)^3 & 3t(\lambda t)^2 \\ 0 & (\lambda t)^3 \end{pmatrix}$$

Podemos ver (por exemplo, por indução) que, para $n \ge 0$,

$$\begin{pmatrix} \lambda t & t \\ 0 & \lambda t \end{pmatrix}^n = \begin{pmatrix} (\lambda t)^n & nt(\lambda t)^{n-1} \\ 0 & (\lambda t)^n \end{pmatrix}.$$

Assim,

$$* = \begin{pmatrix} \sum_{k=0}^{+\infty} \frac{(\lambda t)^k}{k!} & \sum_{k=0}^{+\infty} kt \frac{(\lambda t)^{k-1}}{k!} \\ 0 & \sum_{k=0}^{+\infty} \frac{(\lambda t)^k}{k!} \end{pmatrix} = \begin{pmatrix} e^{\lambda t} & t e^{\lambda t} \\ 0 & e^{\lambda t} \end{pmatrix}$$

Para
$$A = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$$
, temos $e^{At} = \begin{pmatrix} e^{\lambda t} & t e^{\lambda t} & \frac{t^2}{2} e^{\lambda t} \\ 0 & e^{\lambda t} & t e^{\lambda t} \\ 0 & 0 & e^{\lambda t} \end{pmatrix}$

e, em geral,
$$A=\left(\begin{array}{ccccc} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ 0 & 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & \lambda \end{array}\right)$$
 tem associada a exponencial

$$e^{At} = \begin{pmatrix} e^{\lambda t} & t e^{\lambda t} & \frac{t^2}{2} e^{\lambda t} & \cdots & \cdots & \frac{t^{n-1}}{(n-1)!} e^{\lambda t} \\ 0 & e^{\lambda t} & t e^{\lambda t} & \cdots & \cdots & \frac{t^{n-2}}{(n-2)!} e^{\lambda t} \\ 0 & 0 & e^{\lambda t} & \cdots & \cdots & \frac{t^{n-3}}{(n-3)!} e^{\lambda t} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & \cdots & t e^t \\ 0 & 0 & 0 & \cdots & \cdots & e^{\lambda t} \end{pmatrix}$$

Se A for uma matriz quadrada, a exponencial de At verifica

$$\frac{d\,e^{At}}{dt} = \frac{d}{dt} \left[\sum_{k=0}^{+\infty} \frac{(At)^k}{k!} \right] = \sum_{k=1}^{+\infty} \frac{k\,A^k\,t^{k-1}}{k!} = A\,\sum_{k=1}^{+\infty} \frac{A^{k-1}\,t^{k-1}}{(k-1)!} = A\,e^{At}$$

(Podemos derivar a série termo a termo porque o seu raio de convergência em torno de 0 é infinito).

Donde, $\frac{d\vec{x}}{dt} = A\vec{x}$ tem solução $\vec{x} = e^{At} \vec{v}$, para \vec{v} constante.

(Podemos comparar com o caso real: $\frac{dx}{dt} = ax$ tem solução real $x = ce^{at}$, para c constante).

Nota: As colunas de e^{At} dão soluções (linearmente independentes) do sistema.

Por exemplo, a primeira coluna é dada por e^{At} $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, que é solução do sistema.

Se tivermos uma condição inicial $\vec{x}(t_0) = \vec{x_0}$, podemos retirar o valor da constante \vec{v} :

$$\vec{x} = e^{At} \vec{v} \implies \vec{x_0} = e^{At_0} \vec{v} \implies \vec{v} = e^{-At_0} \vec{x_0}$$

e portanto $\vec{x} = e^{A(t-t_0)} \vec{x_0}$.

Esta solução pode também ser comparada ao que acontece para o caso real.

Se S for uma matriz invertível,

$$e^{S^{-1}AS} = \sum_{k=0}^{+\infty} \frac{1}{k!} \left[S^{-1}AS \right]^k = \sum_{k=0}^{+\infty} \frac{1}{k!} \left[S^{-1}A^kS \right] = S^{-1} \left[\sum_{k=0}^{+\infty} \frac{1}{k!} A^k \right] S = S^{-1}e^AS$$

Se A é diagonalizável, então existe uma matriz Λ tal que $S^{-1}AS=\Lambda$ para certa matriz S.

Donde,
$$A = S\Lambda S^{-1}$$
 e $e^{At} = Se^{\Lambda t}S^{-1}$.

A matriz S é uma matriz de mudança de base, cujas colunas são vectores próprios.

Exemplo:

$$A = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right)$$

O polinómio característico é $(2-\lambda)((2-\lambda)^2-1)$, que tem como raízes $\lambda_1=1,\,\lambda_2=2$ e $\lambda_3=3.$

Para
$$\lambda_1=1$$
, obtemos $A-\lambda I=\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, que corresponde ao sistema

$$\begin{cases} x + y = 0 \\ z = 0 \end{cases}$$

Os vectores próprios são da forma $\begin{pmatrix} x \\ -x \\ 0 \end{pmatrix}$, e obtemos $\vec{v_1} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$.

Para
$$\lambda_2 = 2$$
, obtemos $A - \lambda I = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, que corresponde ao sistema

$$\begin{cases} y = 0 \\ x = 0 \end{cases}$$

Os vectores próprios são da forma $\begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}$, e obtemos $\vec{v_2} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Para
$$\lambda_3 = 3$$
, temos $A - \lambda I = \begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, que corresponde ao sistema

$$\begin{cases} x = y \\ z = 0 \end{cases}$$

Os vectores próprios são da forma
$$\begin{pmatrix} x \\ x \\ 0 \end{pmatrix}$$
, e obtemos $\vec{v_3} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

Há três vectores próprios linearmente independentes, logo a matriz é diagonalizável. Note-se que, como há três valores próprios diferentes, poderíamos ter concluído logo de início que a matriz seria diagonalizável.

Portanto, existem Λ diagonal e S invertível tal que $A = S\Lambda S^{-1}$. A matriz Λ tem na diagonal principal os valores próprios de A, e S tem em colunas os seus vectores próprios (dados pela mesma ordem em que aparecem em Λ .) Ou seja,

$$A = S\Lambda S^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}^{-1}$$

e portanto

$$e^{At} = Se^{\Lambda t}S^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} e^t & 0 & 0 \\ 0 & e^{2t} & 0 \\ 0 & 0 & e^{3t} \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} \frac{e^{3t} + e^t}{2} & \frac{e^{3t} - e^t}{2} & 0 \\ \frac{e^{3t} - e^t}{2} & \frac{e^{3t} + e^t}{2} & 0 \\ 0 & 0 & e^{2t} \end{pmatrix}$$

A solução do sistema $\frac{d\vec{x}}{dt}=A\vec{x}$ é $\vec{x}=e^{At}\vec{v}$, com \vec{v} constante. As colunas de e^{At} dão três soluções linearmente independentes para o sistema.

Note-se que os blocos da matriz original A correspondem a blocos na matriz exponencial (e esses novos blocos são a exponencial dos blocos originais.)

Pode haver valores próprios múltiplos e, mesmo assim, a matriz ser diagonalizável.

Exemplo:

$$A = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{array}\right)$$

O polinómio característico é $(2-\lambda)[(\lambda-1)^2-1]$, que tem como raízes $\lambda=0$ (simples) e $\lambda=2$ (dupla).

Para $\lambda=0$, obtemos x+y=0 e z=0, e portanto os vectores próprios são da forma $\begin{pmatrix} x \\ -x \\ 0 \end{pmatrix}$. Tomamos $\vec{v_1}=\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$.

Para $\lambda=2$, obtemos $A-2I=\begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Isto corresponde apenas à equação x=y. Os vectores próprios são pois da forma $\begin{pmatrix} x \\ x \\ z \end{pmatrix}$. Como há nesta expressão dois graus de liberdade, podemos escolher dois vectores próprios linearmente independentes associados a $\lambda=2$: por exemplo, $\vec{v_2}=\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ e $\vec{v_3}=\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Como há três vectores próprios linearmente independentes, a matriz é diagonalizável, e temos assim

$$A = S\Lambda S^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1}$$

donde

$$e^{At} = Se^{\Lambda t}S^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{2t} & 0 \\ 0 & 0 & e^{2t} \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} \frac{e^{2t} + 1}{2} & \frac{e^{2t} - 1}{2} & 0 \\ \frac{e^{2t} - 1}{2} & \frac{e^{2t} + 1}{2} & 0 \\ 0 & 0 & e^{2t} \end{pmatrix}$$

E se a matriz não for diagonalizável?

Exemplo:

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{array}\right)$$

Os valores próprios são $\lambda_1=2$ (simples) e $\lambda_2=1$ (duplo).

Para $\lambda_1 = 2$:

$$A - 2I = \left(\begin{array}{rrr} -1 & 0 & 1\\ 1 & -1 & 1\\ 0 & 0 & 0 \end{array}\right)$$

$$\Rightarrow \begin{cases} -x + z = 0 \\ x - y + z = 0 \end{cases} \Rightarrow \vec{v_1} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Para $\lambda_2 = 1$:

$$A - I = \left(\begin{array}{ccc} 0 & 0 & 1\\ 1 & 0 & 1\\ 0 & 0 & 1 \end{array}\right)$$

$$\Rightarrow \begin{cases} z = 0 \\ x + z = 0 \end{cases} \Rightarrow \vec{v_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Como só há dois vectores próprios linearmente independentes, a matriz não é diagonalizável. Podemos tentar fazê-la "o mais diagonal possível", ou seja, tentar arranjar S de modo a que $S^{-1}AS$ seja "quase diagonal".

Procuramos os vectores próprios generalizados:

$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} z = 0 \\ x + z = 1 \end{cases}$$

Os vectores próprios generalizados são da forma $\begin{pmatrix} 1 \\ y \\ 0 \end{pmatrix}$, e tomamos $\vec{w} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

Na base $\{\vec{v_1}, \vec{v_2}, \vec{w}\}$, a transformação associada a A é representada por

$$J = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)$$

Isto sucede porque

$$\begin{cases} A \, \vec{v_1} = 2 \, \vec{v_1} \\ A \, \vec{v_2} = \vec{v_2} \\ A \, \vec{w} = \vec{v_2} + \vec{w} \end{cases}$$

Donde,

$$A = SJS^{-1} = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}^{-1}$$

$$\Rightarrow e^{At} = S e^{Jt} S^{-1} \Rightarrow \vec{x}(t) = e^{At} \vec{v}$$

Para calcular a exponencial de Jt, trabalhamos bloco a bloco:

$$e^{Jt} = e^{\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^t} = \begin{pmatrix} e^{2t} & 0 & 0 \\ 0 & e^t & t e^t \\ 0 & 0 & e^t \end{pmatrix}$$

Usámos aqui o cálculo feito anteriormente para matrizes da forma $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$.

A matriz A é semelhante à matriz J. J é a forma canónica de Jordan para A. Quando A é diagonalizável, $J = \Lambda$ é uma matriz diagonal.

Exemplo:

$$A = \left(\begin{array}{ccc} 2 & 1 & 1\\ 0 & 2 & 1\\ 0 & 0 & 2 \end{array}\right)$$

A matriz tem como valor próprio $\lambda = 2$ (triplo).

Para os vectores próprios:

$$\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \begin{cases} z = 0 \\ y + z = 0 \end{cases} \Rightarrow \vec{v} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

A matriz não é diagonalizável, e precisamos de dois vectores adicionais para completar uma base para \mathbb{R}^3 .

Resolvemos primeiro $(A - 2I) \vec{w} = \vec{v}$, e obtemos $\vec{w_1}$:

$$\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} y+z=1 \\ z=0 \end{cases} \Rightarrow \vec{w_1} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Resolvemos depois $(A - 2I) \vec{w} = \vec{w_1}$, e obtemos $\vec{w_2}$:

$$\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \implies \begin{cases} y+z=0 \\ z=1 \end{cases} \implies \vec{w_2} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

Como

$$\begin{cases} A \vec{v} = 2 \vec{v} \\ A \vec{w_1} = \vec{v} + 2 \vec{w_1} \\ A \vec{w_2} = \vec{w_1} + 2 \vec{w_2} \end{cases}$$

na base $\{\vec{v},\vec{w_1},\vec{w_2}\}$ a transformação associada a Atem representação

$$J = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{array}\right)$$

e então

$$A = SJS^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}^{-1}$$

$$\Rightarrow e^{At} = S \, e^{Jt} \, S^{-1} = S \, e^{ \left(\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{array} \right)^t} \\ S^{-1} = S \, \left(\begin{array}{ccc} e^{2t} & te^{2t} & \frac{t^2}{2} e^{2t} \\ 0 & e^{2t} & te^{2t} \\ 0 & 0 & e^{2t} \end{array} \right) \, S^{-1}$$

$$\Rightarrow \ \vec{x} = e^{At} \, \vec{v}$$

e as colunas de e^{At} dão soluções (linearmente independentes) do sistema.

Se os valores próprios de A forem complexos, $e^{At} = S e^{Jt} S^{-1}$ vai ter entradas reais (note-se que S tem também entradas complexas).

Para escrever a forma canónica de Jordan J para uma dada matriz A:

- Pomos na diagonal principal de J os valores próprios de A (tomando em consideração as suas multiplicidades algébricas).
- Na diagonal imediatamente acima da principal, as entradas só podem ser 0 ou 1. Formam-se dessa maneira *blocos de Jordan*, em número igual à soma das multiplicidades geométricas de todos os valores próprios de A.
 - As outras entradas da matriz J são todas nulas.

Exemplo:

Suponhamos que A tem como valores próprios

 $\lambda_1,$ com multiplicidade algébrica 1

 $\lambda_2,$ com multiplicidade algébrica 2 e multiplicidade geométrica 2

 $\lambda_3,$ com multiplicidade algébrica 2 e multiplicidade geométrica 1

A forma canónica de Jordan para A fica então

$$\begin{pmatrix}
\lambda_1 & 0 & 0 & 0 & 0 \\
0 & \lambda_2 & 0 & 0 & 0 \\
0 & 0 & \lambda_2 & 0 & 0 \\
0 & 0 & 0 & \lambda_3 & 1 \\
0 & 0 & 0 & 0 & \lambda_3
\end{pmatrix}$$

O número de blocos de Jordan para cada λ é igual à sua multiplicidade geométrica.

Jé a representação de Anuma base $\{\vec{v_1},\vec{v_2},\vec{v_3},\vec{v_4},\vec{w}\}$

Exemplo:

 $\lambda_1,$ com multiplicidade algébrica 2 e multiplicidade geométrica 1

 $\lambda_2,$ com multiplicidade algébrica 3 e multiplicidade geométrica 2

A forma canónica de Jordan fica

$$\left(\begin{array}{c|cccc}
\lambda_1 & 1 & 0 & 0 & 0 \\
0 & \lambda_1 & 0 & 0 & 0 \\
0 & 0 & \lambda_2 & 0 & 0 \\
0 & 0 & 0 & \lambda_2 & 1 \\
0 & 0 & 0 & 0 & \lambda_2
\end{array}\right)$$

e há uma base $\{\vec{v_1}, \vec{w_1}, \vec{v_2}, \vec{v_3}, \vec{w_2}\}$.

Podemos também fazer, equivalentemente:

que corresponde a uma base $\{\vec{v_1},\vec{w_1},\vec{v_2},\vec{w_2},\vec{v_3}\}.$

A ordem dos blocos de Jordan deve ser consistente com a ordem das colunas na matriz de mudança de base S.

4 Sistemas Lineares Não Homogéneos

São da forma

$$\begin{cases} \frac{d\vec{x}}{dt} = A \vec{x} + g(\vec{t}) \\ \vec{x}(t_0) = \vec{x_0} \end{cases}$$

Para resolver:

$$\frac{d\vec{x}}{dt} - A\vec{x} = \vec{g}$$

$$\Rightarrow e^{-At} \frac{d\vec{x}}{dt} - Ae^{-At} \vec{x} = e^{-At} \vec{g}$$

$$\Rightarrow \frac{d}{dt} \left[e^{-At} \vec{x} \right] = e^{-At} \vec{g}$$

$$\Rightarrow \int_{t_0}^t \frac{d}{ds} \left[e^{-As} \vec{x}(s) \right] ds = \int_{t_0}^t e^{-As} \vec{g}(s) ds$$

$$\Rightarrow e^{-At} \vec{x}(t) - e^{-At_0} \vec{x}(t_0) = \int_{t_0}^t e^{-As} \vec{g}(s) ds$$

(Note-se que A comuta com e^{At}).

Obtemos deste modo a Fórmula de Variação dos Parâmetros:

$$\vec{x}(t) = e^{A(t-t_0)} \vec{x_0} + \int_{t_0}^t e^{A(t-s)} \vec{g}(s) ds$$

Esta fórmula mostra que a solução geral de um sistema não homogéneo é dada pela soma da solução do sistema homogéneo associado com uma solução particular do sistema não homogéneo.

Exemplo:

$$\begin{cases} \frac{d\vec{x}}{dt} = \begin{pmatrix} 1 & 1\\ 0 & 2 \end{pmatrix} \vec{x} + \begin{pmatrix} 2\\ 1 \end{pmatrix} \\ \vec{x}(0) = \begin{pmatrix} 1\\ 0 \end{pmatrix} \end{cases}$$

A matriz $A=\left(\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array}\right)$ tem como valores próprios $\lambda_1=1$ e $\lambda_2=2.$

Vectores próprios:

Para
$$\lambda_1 = 1$$
, obtemos $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \Rightarrow y = 0 \Rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}$
 $\Rightarrow \vec{v_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Para
$$\lambda_2 = 2$$
, obtemos $\begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} \Rightarrow -x + y = 0 \Rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ x \end{pmatrix}$ $\Rightarrow \vec{v_2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$\Rightarrow S = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

e portanto

$$e^{At} = S e^{Jt} S^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} e^t & 0 \\ 0 & e^{2t} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{-1}$$
$$= \dots = \begin{pmatrix} e^t & e^{2t} - e^t \\ 0 & e^{2t} \end{pmatrix}$$

o que implica

$$\vec{x}(t) = e^{At} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \int_0^t e^{A(t-s)} \begin{pmatrix} 2 \\ 1 \end{pmatrix} ds$$

$$= \begin{pmatrix} e^t \\ 0 \end{pmatrix} + \int_0^t \begin{pmatrix} e^{t-s} & e^{2(t-s)} - e^{t-s} \\ 0 & e^{2(t-s)} \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} ds$$

$$= \begin{pmatrix} e^t \\ 0 \end{pmatrix} + \begin{pmatrix} -e^{t-s} - \frac{1}{2}e^{2(t-s)} \\ -\frac{1}{2}e^{2(t-s)} \end{pmatrix} \Big|_{s=0}^{s=t}$$

$$= \begin{pmatrix} -\frac{3}{2} + 2e^t + \frac{1}{2}e^{2t} \\ -\frac{1}{2} + \frac{1}{2}e^{2t} \end{pmatrix}$$

5 Sistemas Genéricos de Equações Diferenciais

Os sistemas lineares anteriores foram escritos na forma

$$\frac{d\vec{x}}{dt} = A\,\vec{x} + \vec{g}$$

onde
$$\vec{x}(t) = \begin{pmatrix} x_1(t) \\ \cdots \\ x_n(t) \end{pmatrix}$$
 e $\vec{g} = \begin{pmatrix} g_1(t) \\ \cdots \\ g_n(t) \end{pmatrix}$

e t pertencia a um intervalo aberto I (de \mathbb{R}).

Um sistema mais geral, não necessariamente linear, pode aparecer sob a forma

$$\frac{d\vec{x}}{dt} = f(\vec{x}, t)$$

com $\vec{x}:I\to\mathbb{R}^n$ e $f:U\to\mathbb{R}^n$ (onde U é um aberto de $\mathbb{R}\times\mathbb{R}^n$.)

Por analogia com as equações de primeira ordem, podemos também escrevê-lo como

$$\frac{dy}{dt} = f(y, t)$$

tendo em atenção que agora consideramos y como uma função vectorial (de variável escalar) e f como função vectorial (de variável vectorial.)

Exemplo:

$$\begin{cases} \frac{dy_1}{dt} = t e^{y_2} \\ \\ \frac{dy_2}{dt} = y_1 e^t - y_2^2 \end{cases}$$

Neste caso, $y = (y_1, y_2) : I \to \mathbb{R}^2$

$$e f: U \to \mathbb{R}^2$$
, com $f(t, y_1, y_2) = (t e^{y_2}, y_1 e^t - y_2^2)$.

I deve ser um intervalo aberto de \mathbb{R} , e para este exemplo o domínio U de f é \mathbb{R}^3 .

O Teorema de Existência e Unicidade de Picard que vimos para as equações de primeira ordem pode também ser adaptado a este caso:

Teorema de Existência e Unicidade de Picard para Sistemas de Equações

Seja dado o problema

$$\begin{cases} \frac{dy}{dt} = f(t, y) \\ y(t_0) = y_0 \end{cases}$$

onde $f: U \to \mathbb{R}^n$, com $U \subset \mathbb{R}^{n+1}$ aberto e limitado contendo (t_0, y_0) (com $t \in \mathbb{R}$ e $y \in \mathbb{R}^n$).

Se f é de classe C^1 em U, então o problema anterior tem solução única num intervalo $[t_0, t_0 + \alpha]$ (para certo $\alpha > 0$.)

A solução é o limite de uma sucessão de iteradas de Picard, e depende continuamente da condição inicial do problema.

Nota:

Recorde-se que a função f é dita de classe C^1 em U se for contínua em U e se $\frac{\partial f}{\partial y_i}$ forem contínuas em U para todo o i entre 1 e n.

Exemplo Anterior:

Acrescentando uma condição inicial, podemos escrever o sistema anterior como

$$\begin{cases} \frac{dy}{dt} = (t e^{y_2}, y_1 e^t - y_2^2) \\ y(0) = (0, 0) \end{cases}$$

 $f: \mathbb{R}^3 \to \mathbb{R}^2$ é contínua em todos os pontos do seu domínio, e temos

$$\frac{\partial f}{\partial y_1}(t,y) = (0,\,e^t) \,\,{\rm e} \,\, \frac{\partial f}{\partial y_2}(t,y) = (t\,e^{y_2},\,-2\,y_2)$$

para qualquer $(t, y) \in \mathbb{R}^3$.

Como estas derivadas parciais são contínuas em \mathbb{R}^3 , e portanto também em vizinhanças do ponto inicial (0,0,0), o teorema garante solução local única para o problema.