# Design and Analysis of Algorithms

Lecture-3

Dharmendra Kumar (Associate Professor)

Department of Computer Science and Engineering

United College of Engineering and Research,

Prayagraj

- The notations we use to describe the asymptotic running time of an algorithm are defined in terms of functions whose domains are the set of natural numbers  $N=\{0,1,2,\ldots\}$ .
- We will use asymptotic notations to describe the running times of algorithms.
- Following notations are used to define the running time of algorithms.
  - 1.  $\Theta$ -notation
  - 2. O-notation
  - 3.  $\Omega$ -notation
  - 4. o-notation
  - 5.  $\omega$ -notation

#### <u>Θ</u>-notation (Theta notation)

- For a given function g(n), it is denoted by  $\Theta(g(n))$ .
- It is defined as following:-
- $\Theta(g(n)) = \{ f(n) \mid \exists positive constants c_1, c_2 \text{ and } n_0 \text{ such that } \}$

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0$$

- This notation is said to be tight bound.
- If  $f(n) \in \Theta(g(n))$  then  $f(n) = \Theta(g(n))$



#### O-notation (Big-oh notation)

- For a given function g(n), it is denoted by O(g(n)).
- It is defined as following:-
- $O(g(n)) = \{ f(n) \mid \exists \text{ positive constants c and } n_0 \text{ such that }$

$$0 \le f(n) \le cg(n), \forall n \ge n_0$$

- This notation is said to be upper bound.
- If  $f(n) \in O(g(n))$  then f(n) = O(g(n))
- If  $f(n) = \Theta(g(n))$  then f(n) = O(g(n))



#### $\Omega$ -notation (Big-omega notation)

- For a given function g(n), it is denoted by  $\Omega(g(n))$ .
- It is defined as following:-

$$\Omega(g(n)) = \{ f(n) \mid \exists \text{ positive constants c and } n_0 \text{ such } \}$$

that

$$0 \le cg(n) \le f(n), \forall n \ge n_0$$

- This notation is said to be lower bound.
- If  $f(n) \in \Omega(g(n))$  then  $f(n) = \Omega(g(n))$
- If  $f(n) = \Theta(g(n))$  then  $f(n) = \Omega(g(n))$
- $f(n) = \Theta(g(n))$  iff  $f(n) = \Omega(g(n))$  and f(n) = O(g(n))



#### o-notation (little-oh notation)

- The asymptotic upper bound provided by Onotation may or may not be asymptotically tight.
- o-notation denotes an upper bound that is not asymptotically tight.
- For a given function g(n), it is denoted by o(g(n)).
- It is defined as following:-
- $o(g(n)) = \{ f(n) \mid \text{ for any positive constants c, there exists a constant } n_0 \text{ such that}$

$$0 \le f(n) < cg(n), \forall n \ge n_0$$

#### <u>ω</u>-notation (little-omega notation)

- The asymptotic lower bound provided by  $\Omega$ notation may or may not be asymptotically tight.
- $\omega$ -notation denotes an upper bound that is not asymptotically tight.
- For a given function g(n), it is denoted by  $\omega(g(n))$ .
- It is defined as following:-
- $\omega(g(n)) = \{ f(n) \mid \text{ for any positive constants c, there exists a constant } n_0 \text{ such that}$

$$0 \le cg(n) < f(n), \forall n \ge n_0$$

**Example:** Show that  $(1/2)n^2 - 3n = \theta(n^2)$ .

**Solution:** Using definition of  $\theta$ -notation,

$$c_1g(n) \le f(n) \le c_2g(n), \quad \forall n \ge n_0$$

In this question,  $f(n) = (1/2)n^2 - 3n$  and  $g(n) = n^2$ , therefore

$$c_1 n^2 \le (1/2)n^2 - 3n \le c_2 n^2, \quad \forall n \ge n_0$$

We divide above by n<sup>2</sup>, we get

$$c_1 \le (1/2) - (3/n) \le c_2$$
,  $\forall n \ge n_0$  .....(1)

Now, we have to find  $c_1$ ,  $c_2$  and  $n_0$ , such that equation (1) is satisfied.

The value of  $c_1$  will be positive value less than or equal to the minimum value of (1/2)-(3/n). Minimum value of (1/2)-(3/n) = 1/14. Therefore,  $c_1$  = 1/14. This value of  $c_1$  will satisfy equation (2) for  $n \ge 7$ .

Here,  $c_1 = 1/14$  and  $n \ge 7$  which satisfy (2).

Consider, right part of (1), (1/2)- $(3/n) \le c_2$ , .....(3)

The value of  $c_2$  will be positive value greater than or equal to the maximum value of (1/2)-(3/n). Maximum value of (1/2)-(3/n) = 1/2. Therefore,  $c_2$  = 1/2. This value of  $c_2$  will satisfy equation (3) for  $n \ge 1$ .

Here,  $c_2 = 1/2$  and  $n \ge 1$  which satisfy (3).

Therefore, for  $c_1 = 1/14$ ,  $c_2 = 1/2$  and  $n_0 = 7$ , equation (1) is satisfied.

Hence by using definition of  $\theta$ -notation,

$$(1/2)n^2 - 3n = \theta(n^2).$$

It is proved.

**Example:** Show that  $2n+5 = O(n^2)$ .

Solution: Using definition of O-notation,

$$f(n) \le cg(n), \forall n \ge n_0$$

In this question, f(n) = 2n+5 and  $g(n) = n^2$ , therefore

$$2n+5 \le c n^2 \quad \forall n \ge n_0$$

We divide above by n<sup>2</sup>, we get

$$(2/n)+(5/n^2) \le c$$
,  $\forall n \ge n_0$  .....(1)

Now, we have to find c and  $n_0$ , such that equation (1) is satisfied.

The value of c will be positive value greater than or equal to the maximum value of  $(2/n)+(5/n^2)$ .

Maximum value of  $(2/n)+(5/n^2) = 7$ .

Therefore, c = 7.

Clearly equation (1) is satisfied for c = 7 and  $n \ge 1$ .

Hence by using definition of O-notation,

$$2n+5 = O(n^2)$$
.

It is proved.

**Example:** Show that  $2n^2+5n+6 = \Omega(n)$ .

**Solution:** Using definition of  $\Omega$  -notation,

$$cg(n) \le f(n)$$
,  $\forall n \ge n_0$ 

In this question,  $f(n) = 2n^2 + 5n + 6$  and g(n) = n, therefore

$$cn \le 2n^2 + 5n + 6$$
,  $\forall n \ge n_0$ 

We divide above by n, we get

$$c \le 2n + 5 + (6/n), \forall n \ge n_0 \dots (1)$$

Now, we have to find c and  $n_0$ , such that equation (1) is always satisfied.

The value of c will be positive value less than or equal to the minimum value of 2n + 5 + (6/n).

Minimum value of 2n + 5 + (6/n) = 12.

Therefore, c = 12.

Clearly equation (1) is satisfied for c = 12 and  $n \ge 2$ .

Hence by using definition of  $\Omega$  -notation,

$$2n^2 + 5n + 6 = \mathbf{\Omega} (n).$$

It is proved.

**Example:** Show that  $2n^2 = o(n^3)$ .

Solution: Using definition of o-notation,

$$f(n) < cg(n)$$
,  $\forall n \ge n_0$ 

Here,  $f(n) = 2n^2$ , and  $g(n) = n^3$ . Therefore,

$$2n^2 < cn^3$$
,  $\forall n \ge n_0$ 

We divide above by n³, we get

$$(2/n) < c$$
,  $\forall n \ge n_0 \dots (1)$ 

for c = 1, there will be  $n_0 = 3$ , which satisfy (1).

for c = 0.5, there will be  $n_0 = 7$ , which satisfy (1).

Therefore, for every c, there exists  $n_0$  which satisfy (1).

Hence  $2n^2 = o(n^3)$ .

**Example:** Show that  $2n^2 \neq o(n^2)$ .

Solution: Using definition of o-notation,

$$f(n) < cg(n)$$
,  $\forall n \ge n_0$ 

Here,  $f(n) = 2n^2$ , and  $g(n) = n^2$ . Therefore,

$$2n^2 < cn^2$$
,  $\forall n \ge n_0$ 

We divide above by n<sup>2</sup>, we get

$$2 < c, \forall n \ge n_0 \dots (1)$$

Clearly for c = 1, inequality (1) does not satisfy.

Therefore, for every c, there does not exist  $n_0$  which satisfy (1). Hence  $2n^2 \neq o(n^2)$ .

**Example:** Show that  $2n^2 = \omega(n)$ .

**Solution:** Using definition of  $\omega$  -notation,

$$cg(n) < f(n), \forall n \ge n_0$$

Here,  $f(n) = 2n^2$ , and g(n) = n. Therefore,

$$cn < 2n^2$$
,  $\forall n \ge n_0$ 

We divide above by n, we get

$$c < 2n, \forall n \ge n_0 \dots (1)$$

for c = 1, there will be  $n_0 = 1$ , which satisfy (1).

for c = 10, there will be  $n_0 = 6$ , which satisfy (1).

Therefore, for every c, there exists  $n_0$  which satisfy (1).

Hence 
$$2n^2 = \boldsymbol{\omega}(n)$$
.

**Example:** Show that  $2n^2 \neq \omega(n^2)$ .

**Solution:** Using definition of  $\omega$  -notation,

$$cg(n) < f(n), \forall n \ge n_0$$

Here,  $f(n) = 2n^2$ , and  $g(n) = n^2$ . Therefore,

$$cn^2 < 2n^2$$
,  $\forall n \ge n_0$ 

We divide above by n<sup>2</sup>, we get

$$c < 2, \forall n \ge n_0 \dots (1)$$

Clearly for c = 3, there does not exists  $n_0$ , which satisfy (1).

Therefore, for every c, there does not exist  $n_0$  which satisfy (1). Hence  $2n^2 \neq \omega(n^2)$ .