

Roll No.

JSS MAHAVIDYAPEETHA JSS ACADEMY OF TECHNICAL EDUCATION, NOIDA

DEPARTMENT OF MATHEMATICS

CIA-1 AY 2024-25

Course

: B.Tech

Semester

: IV

Subject Time

: Mathematics-IV

: 1 hrs.=60 min

Date

: 01-05-25

Subject Code

: BAS-403

Max. Marks

: 20

COURSE OUTCOMES						
C230.1	Classify partial differential equations and transform into canonical form and solve linear and nonlinear partial differential equations of first order.					
C230.2	Apply the knowledge of partial differential equations to Engineering, sciences & technology					
C230.3	Introduce measures of central tendency and various forecasting techniques.					
C230.4	To develop an understanding of the theory of probability, rules of probability and Probability distributions.					
C230.5	Understand the meaning and process of hypothesis testing including T-test, Z-test, Chi-Square test, Quality					
	Control chart.					

	Section-A					
Atter	mpt a	all the questions of this section		(1 X5=	:5)	
Q. No.		Question	Marks	CO	BL/ KC*	
	a	Solve the following Partial Differential Equation $(D'^2 + DD'^2)z = 0$	1	COI		
	b	Solve the Partial Differential Equation $yz p - xz q = xy$	1	CO1		
	c	Write the auxiliary equation of Charpit method?	1	CO1		
1.	d	Classify the following operator		CO2		
		$4\frac{\partial^2 u}{\partial x^2} - 4\frac{\partial^2 u}{\partial x \partial t} + 4\frac{\partial^2 u}{\partial t^2}$	i			
	e	Write the solution of one-dimensional Heat equation.	1	CO2		

Section-B					
ttemp	t all the questions of this Section		(3X3=9)		
Ž	Solve the Partial Differential Equation $pz - qz = z^2 + (x + y)^2$ OR Solve $r + 2s + t = 2(y - x) + \sin(x - y)$.	3	COI		
3	Solve $(D^2 + DD' - 2D'^2)z = (y - 1)e^x$ OR Solve $(mz - ny) p + (nx - lz) q = ly - mx$, where $p = \frac{\partial z}{\partial x} & q = \frac{\partial z}{\partial y}$.	3	COI		
4	By Charpit's method, find the complete solution of PDE $(p^2 + q^2)y = qz$. Solve The Partial Differential Equation $\left(x^2 \frac{\partial^2 z}{\partial x^2} - 4xy \frac{\partial^2 z}{\partial x \partial y} + 4y^2 \frac{\partial^2 z}{\partial y^2} + 6y \frac{\partial z}{\partial y}\right) = x^3y^4$	3	COI		

ISS MAHAVIDYAPEETHA

JSS ACADEMY OF TECHNICAL EDUCATION, NOIDA
DEPARTMENT OF MATHEMATICS

Section C

ttemp	all the questions of this Section		(6X1=6)
5	A tightly stretched string with fixed end points $x = 0$ and $x = l$ is initially in a position given by $y = y_0 \sin^3 \frac{\pi x}{l}$. If it is released from rest from this position, find the displacement $y(x,t)$.	6	con
	Solve the following partial differential equation by method of separation of variables $4\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} - 3u = 0$, $u(x,0) = 3e^{-x} - e^{-5x}$.		CO2

M24 (25)