$\iiint \int (\frac{1}{3} \left(3t_{1} \mathcal{A}^{\alpha_{i}}_{\alpha} \mathcal{A}^{\theta}_{i} + 3 \mathcal{A}^{\alpha\beta\chi}_{\alpha} \sigma_{\alpha\beta\chi} + 3 f^{\alpha\beta}_{\alpha} \tau (\Delta + \mathcal{K})_{\alpha\beta} - 6t_{1} \mathcal{A}^{\theta}_{\alpha} \partial_{i} f^{\alpha_{i}} - 6r_{1} \partial_{\beta} \mathcal{A}^{\theta}_{i} \partial_{i} \mathcal{A}^{\alpha\beta}_{\alpha} + 6r_{1} \partial_{i} \mathcal{A}^{\theta}_{\beta} \partial_{i} \mathcal{A}^{\alpha\beta}_{\alpha} + 6t_{1} \mathcal{A}^{\theta}_{i} \partial_{i} f^{\alpha}_{\alpha} - 3t_{1} \partial_{i} f^{\theta}_{\theta} \partial_{i} \mathcal{A}^{\alpha\beta}_{\alpha} + 6r_{2} \partial_{\beta} \mathcal{A}^{\alpha\beta}_{\alpha} + 6r_{3} \partial_{\beta} \mathcal{A}^{\alpha\beta}_{\alpha} + 6r$ $\partial^{\prime}f^{\alpha}_{\alpha} + 6 \mathop{r.}\limits_{1} \partial_{\alpha}\mathcal{R}^{\alpha\beta\imath} \partial_{\theta}\mathcal{R}_{\beta\prime}^{\theta} - 12 \mathop{r.}\limits_{1} \partial^{\prime}\mathcal{R}^{\alpha\beta}_{\alpha} \partial_{\theta}\mathcal{R}_{\beta\prime}^{\theta} - 6 \mathop{r.}\limits_{1} \partial_{\alpha}\mathcal{R}^{\alpha\beta\imath} \partial_{\theta}\mathcal{R}_{\prime\beta}^{\theta} + 12 \mathop{r.}\limits_{1} \partial^{\prime}\mathcal{R}^{\alpha\beta}_{\alpha} \partial_{\theta}\mathcal{R}_{\prime\beta}^{\theta} - 3 \mathop{t.}\limits_{1} \partial_{\imath}f^{\alpha\imath} \partial_{\theta}f_{\alpha}^{\theta} +$ $6\,t_{.}\,\partial^{\prime}f^{\alpha}_{\alpha}\partial_{\theta}f^{\theta}_{}-4\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{l}\theta}\,\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}+4\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{l}\theta}\,\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}+2\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{.}\,\partial_{\beta}\mathcal{R}_{\alpha_{\theta_{l}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{.}\,\partial_{\beta}\mathcal{R}^{\alpha\beta_{l}}-2\,r_{$ $8r_{1}\partial_{\beta}\mathcal{A}_{_{l}\theta\alpha}\partial^{\theta}\mathcal{A}^{\alpha\beta\iota} + 2r_{2}\partial_{\beta}\mathcal{A}_{_{l}\theta\alpha}\partial^{\theta}\mathcal{A}^{\alpha\beta\iota} - 2r_{1}\partial_{\beta}\mathcal{A}_{_{\alpha\beta\theta}}\partial^{\theta}\mathcal{A}^{\alpha\beta\iota} - r_{2}\partial_{\iota}\mathcal{A}_{_{\alpha\beta\theta}}\partial^{\theta}\mathcal{A}^{\alpha\beta\iota} + 2r_{1}\partial_{\theta}\mathcal{A}_{_{\alpha\beta\iota}}\partial^{\theta}\mathcal{A}^{\alpha\beta\iota} + r_{2}\partial_{\theta}\mathcal{A}_{_{\alpha\beta\iota}}\partial^{\theta}\mathcal{A}^{\alpha\beta\iota} + r_{2}\partial_{\theta}\mathcal{A}^{\alpha\beta\iota} + r_{2}\partial_{\theta}\mathcal{A}^{\alpha\beta\iota}$ $2r_{1}\partial_{\theta}\mathcal{A}_{\alpha\iota\beta}\partial^{\theta}\mathcal{R}^{\alpha\beta\iota} - 2r_{2}\partial_{\theta}\mathcal{A}_{\alpha\iota\beta}\partial^{\theta}\mathcal{R}^{\alpha\beta\iota} + 2t_{1}\mathcal{A}_{\iota\theta\alpha}\partial^{\theta}f^{\alpha\iota} - 2t_{1}\partial_{\alpha}f_{\iota\theta}\partial^{\theta}f^{\alpha\iota} - 2t_{1}\partial_{\alpha}f_{\theta\iota}\partial^{\theta}f^{\alpha\iota} + t_{1}\partial_{\iota}f_{\alpha\theta}\partial^{\theta}f^{\alpha\iota} + t_{2}\partial_{\alpha}f_{\alpha\theta}\partial^{\theta}f^{\alpha\iota} + t_{3}\partial_{\alpha}f_{\alpha\theta}\partial^{\theta}f^{\alpha\iota} + t_{4}\partial_{\alpha}f_{\alpha\theta}\partial^{\theta}f^{\alpha\iota} + t_{5}\partial_{\alpha}f_{\alpha\theta}\partial^{\theta}f^{\alpha\iota} + t_{5}\partial_{\alpha}f^{\alpha}\partial^{\theta}f^{\alpha\iota} + t_{5}\partial_{\alpha}f^{\alpha}\partial^{\theta}f^{\alpha}\partial^{\theta}f^{\alpha\iota} + t_{5}\partial_{\alpha}f^{\alpha}\partial^{\theta}f^{\alpha}\partial^{\theta}f^{\alpha\iota} + t_{5}\partial_{\alpha}f^{\alpha}$ $2 t \underset{1}{\cdot} \partial_{\theta} f_{\alpha_{i}} \partial^{\theta} f^{\alpha_{i}} + t \underset{1}{\cdot} \partial_{\theta} f_{\alpha_{i}} \partial^{\theta} f^{\alpha_{i}} + t \underset{1}{\cdot} \mathcal{A}_{\alpha_{i}\theta} \left(\mathcal{A}^{\alpha_{i}\theta} + 2 \, \partial^{\theta} f^{\alpha_{i}} \right) + t \underset{1}{\cdot} \mathcal{A}_{\alpha_{\theta_{i}}} \left(\mathcal{A}^{\alpha_{i}\theta} + 4 \, \partial^{\theta} f^{\alpha_{i}} \right) \right) [t, \, x, \, y, \, z] \, dz \, dy \, dx \, dt$ **Wave operator**

^{0,+}*Я*[∥]† $0.+f^{\parallel} + -i \sqrt{2} kt_1 - 2k^2t_1 = 0$

 $0.^{+}f^{\perp}$ †

PSALTer results panel

$-\frac{i\sqrt{2}k}{(1+2k^2)^2t} - \frac{2k^2}{(1+2k^2)^2t}$

·				1										
⁰⁻ σ †	0	0	0	$\frac{1}{k^2 r}$	$\overset{1^+}{\cdot}\sigma^_{lphaeta}$	$\overset{1^+}{\cdot}\sigma^{\scriptscriptstyle\perp}{}_{lphaeta}$	$1.^{+}\tau^{\parallel}_{\alpha\beta}$	$^{1}\sigma^{\parallel}{}_{\alpha}$	$^{1}\sigma_{\alpha}^{}$	$\frac{1}{2} \tau^{\parallel}_{\alpha}$	$1 \tau_{\alpha}$			
				$1.^+\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{6}{(3+2k^2)^2t.}_{1}$	$-\frac{6\sqrt{2}}{(3+2k^2)^2t_{.1}^2}$	$-\frac{6i\sqrt{2}k}{(3+2k^2)^2t.}$	0	0	0	0			
				$\overset{1^+}{\cdot}\sigma^{\scriptscriptstyle\perp} \overset{\alpha\beta}{\uparrow}$	$-\frac{6\sqrt{2}}{(3+2k^2)^2t_1}$	$\frac{12}{(3+2k^2)^2t.}$	$\frac{12 i k}{(3+2 k^2)^2 t}$	0	0	0	0			
				$1.^{+}\tau^{\parallel} \uparrow^{\alpha\beta}$	$\frac{6i\sqrt{2}k}{(3+2k^2)^2t.}$	$-\frac{12 i k}{(3+2 k^2)^2 t}$	$\frac{12 k^2}{(3+2 k^2)^2 t}$	0	0	0	0			
				$\frac{1}{2}\sigma^{\parallel} + \alpha$	0	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	0	$\frac{2ik}{t + 2k^2t}$			
				$\frac{1}{2}\sigma^{\perp}\uparrow^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	$\frac{2 k^2 r_1 + t_1}{\left(t_1 + 2 k^2 t_1\right)^2}$	0	$\frac{i \sqrt{2} k (2 k^2 r_1 + t_1)}{(t_1 + 2 k^2 t_1)^2}$			
				$1^{-}\tau^{\parallel}$ †	0	0	0	0	0	0	0			
				$\frac{1}{2}\tau^{\perp} + \alpha$	0	0	0	$-\frac{2ik}{t+2k^2t}$	$-\frac{i \sqrt{2} k (2 k^2 r. + t.)}{(t. + 2 k^2 t.)^2}$	0	$\frac{2 k^2 (2 k^2 r_1 + t_1)}{(t_1 + 2 k^2 t_1)^2}$	$^{2^{+}}\sigma^{\parallel}{}_{\alpha\beta}$	$2^+ \tau^{\parallel}_{\alpha\beta}$	²⁻ σ αβχ
											$\overset{2^+}{\cdot}\sigma^{\parallel} \uparrow^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t.}_{1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t}.$	0
											$^{2^{+}}\tau^{\parallel}\uparrow^{\alpha\beta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t}$	$\frac{4 k^2}{(1+2 k^2)^2 t}$	0
											$2.\sigma^{\parallel} + \alpha^{\alpha\beta\chi}$	0	0	$\frac{2}{2 k^2 r. + t.}$
Sou	rce co	nstraiı	nts											
Spin	-parity for	m	Covar	iant form	l								Multi	plicities
0.+ T.	== 0	i	$\partial_{\beta}\partial_{\alpha}\tau$ ($(\Delta + \mathcal{K})^{\alpha\beta}$	== 0								1	

		/ · · · · · · · · · · · · · · · · · · ·			
0+ τ [±] == 0	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1			
$-2 i k^{0^+} \sigma^{\parallel} + {}^{0^+} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta} = 0$	1			
$2ik \ 1 \sigma^{\perp \alpha} + 1 \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3			
1. τ ^α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3			
$-2 i k 1^{+}_{.} \sigma^{\parallel^{\alpha \beta}} + 1^{+}_{.} \tau^{\parallel^{\alpha \beta}} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta}+2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi}==$	3			
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi}$				
$2 1^{+}_{\cdot} \sigma^{\parallel}{}^{\alpha\beta} + 1^{+}_{\cdot} \sigma^{\perp}{}^{\alpha\beta} == 0$	$\partial_{\chi}\sigma^{\alpha\beta\chi} + \partial_{\chi}\sigma^{\chi\alpha\beta} == \partial_{\chi}\sigma^{\beta\alpha\chi}$	3			
$-2 i k 2^{+}_{.} \sigma^{\parallel^{\alpha \beta}} + 2^{+}_{.} \tau^{\parallel^{\alpha \beta}} == 0$	$-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\chi}_{\chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\beta \chi} -$	5			
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+$				
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau \left(\Delta + \mathcal{K} \right)^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau \left(\Delta + \mathcal{K} \right)^{\beta \alpha} + 4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\delta}^{\epsilon} -$				
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \beta \delta} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} +$				
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi\delta} - 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta}) = 0$				
Total expected gauge generators: 19					
Massive spectrum					

Square mass	$6: \left -\frac{\frac{t_{\cdot}}{1}}{2r_{\cdot}} \right >$
Spin:	2
Parity:	Odd
Massless	spec

trum

(No particles)

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$