TD 1: Rappels: tribus, indépendance, conditionnement

Exercice 1:

Soit (Ω, \mathscr{F}) un espace mesurable et $(A_n)_{n\geqslant 1}$ une partition de Ω avec $A_n\in \mathscr{F}$. On note $\mathscr{A}=\sigma(A_n, n\geqslant 1)$. Montrer que $X:\Omega\to \mathbf{R}$ est une application \mathscr{A} -mesurable si et seulement si $X=\sum_{n\geqslant 1}a_n\mathbf{1}_{A_n}$ avec $a_n\in \mathbf{R}$.

Corrigé:

Si $X = \sum_{n\geqslant 1} a_n \mathbf{1}_{A_n}$ alors X est \mathscr{A} -mesurable car pour tout $n\geqslant 1$, $A_n\in\mathscr{A}$. La réciproque peut se montrer par l'absurde. Soit X une application \mathscr{A} -mesurable et supposons qu'il existe une partie $A_k\in (A_n)_{n\geqslant 1}$ sur laquelle X prenne deux valeurs distinctes x_1 et x_2 . Alors les deux parties $B_1=A_k\cap X^{-1}(\{x_1\})$ et $B_2=A_k\cap X^{-1}(\{x_2\})$ sont non-vides, disjointes $(B_1\cap B_2=\emptyset)$ et sont dans \mathscr{A} . Or tout élément de la tribu \mathscr{A} s'écrit comme union d'élément de \mathscr{A} . Donc B_1 et B_2 s'écrivent comme union (disjointe) de A_j , plus précisément,

$$\exists J_1 \subset \mathbf{N}, B_1 = \bigcup_{j \in J_1} A_j \quad \text{et} \quad \exists J_2 \subset \mathbf{N}, B_2 = \bigcup_{j \in J_2} A_j$$

Or B_1 est d'intersection non-vide avec A_k donc $k \in J_1$. De même on a $k \in J_2$ et donc $k \in J_1 \cap J_2$ c'est à dire $A_k \subset B_1 \cap B_2$. Absurde.

Exercice 2:

Soit $\Omega = \{1, \ldots, 5\}$ muni de la tribu $\mathscr{F} = \mathscr{P}(\Omega)$. Soit $X, Y : \Omega \to \mathbf{R}$ définies par

$$X(1) = X(2) = 0, X(3) = 1, X(4) = X(5) = 2,$$

 $Y(\omega) = \omega^2, \quad \forall \omega \in \Omega.$

- 1. Déterminer $\sigma(X)$, la tribu engendrée par X.
- 2. On munit Ω de la loi uniforme **P**. Déterminer $Z = \mathbf{E}_{\mathbf{P}}[Y \mid X]$.
- 3. On munit Ω de la loi $\mathbf{Q}=(q_1,q_2,q_3,q_4,q_5)$ avec $q_1=q_2=\frac{1}{4}$ et $q_3=q_4=q_5=\frac{1}{6}$. Déterminer $\tilde{Z}=\mathbf{E}_{\mathbf{Q}}[Y\mid X]$.

Corrigé:

- 1. La tribu engendrée par X est la plus petite tribu \mathcal{G} de Ω telle que $X:(\Omega,\mathcal{G})\to (\mathbf{R},\mathcal{B}(\mathbf{R}))$ soit mesurable. Soit \mathcal{G} une tribu de Ω telle que X soit \mathcal{G} -mesurable. On a pour tout $y\in\mathbf{R},\ X^{-1}(\{y\})\in\mathcal{G}$. Donc \mathcal{G} contient $\{1,2\},\{3\}$ et $\{4,5\}$ et $\mathcal{G}_0=\sigma(\{1,2\},\{3\},\{4,5\})\subset\mathcal{G}$. Par ailleurs X est \mathcal{G}_0 -mesurable donc $\sigma(X)\subset\mathcal{G}_0$.
- 2. Z est $\sigma(X)$ -mesurable donc constante sur chacun des ensembles $A_1 = \{1,2\}$, $A_2 = \{3\}$, $A_3 = \{4,5\}$ (formant une partition de Ω), i.e. $Z = a_1 \mathbf{1}_{\{1,2\}} + a_2 \mathbf{1}_{\{3\}} + a_3 \mathbf{1}_{\{4,5\}}$. Par définition de l'espérance conditionnelle, pour tout $i \in \{1,2,3\}$, $\mathbf{E}_P[Z\mathbf{1}_{A_i}] = \mathbf{E}_P[Y\mathbf{1}_{A_i}]$. En particulier

$$a_i \mathbf{P}[A_i] = \sum_{\omega \in A_i} Y(\omega) p_\omega,$$

donc sous la probabilité uniforme $p_{\omega} = 1/5$,

$$Z = \frac{5}{2} \mathbf{1}_{\{1,2\}} + 9 \mathbf{1}_{\{3\}} + \frac{41}{2} \mathbf{1}_{\{4,5\}}.$$

3. Par le même raisonnement, sous la probabilité Q, on a

$$\tilde{Z} = \mathbf{E}_{\mathbf{Q}}[Y \mid X] = \sum_{i=1}^{3} \tilde{a}_i \mathbf{1}_{A_i}$$

avec $a_i = \frac{1}{\mathbf{Q}[A_i]} \sum_{\omega \in A_i} Y(\omega) q_{\omega}$.

Exercice 3:

Soit $(\Omega, \mathcal{F}, \mathbf{P})$ un espace de probabilité.

1. Soit ε une v.a. de Bernoulli symétrique (vérifiant $\mathbf{P}\left[\varepsilon=1\right]=\mathbf{P}\left[\varepsilon=-1\right]=\frac{1}{2}$) et X une v.a. indépendante de ε .

Montrer que εX et ε sont indépendantes si et seulement si X est symétrique.

Soit $A, B \in \mathcal{F}$ indépendantes telles que $\mathbf{P}[A] = \mathbf{P}[B] = \frac{1}{2}$.

- 2. Déterminer deux tribus $\mathscr A$ et $\mathscr B$ indépendantes et Y une v.a. telles que
 - (i) Y est $\sigma(\mathcal{A} \cup \mathcal{B})$ -mesurable
 - (ii) Y est indépendante de \mathscr{B}
 - (iii) Y n'est pas mesurable par rapport à ${\mathscr A}$

(indication : considérer $X = \mathbf{1}_A - \mathbf{1}_{A^c}$ et $\varepsilon = \mathbf{1}_B - \mathbf{1}_{B^c}$).

- 3. Déterminer deux tribus $\mathscr A$ et $\mathscr B$ indépendantes et Z une v.a. non constante telles que
 - (i) Z est $\sigma(\mathcal{A} \cup \mathcal{B})$ -mesurable
 - (ii) Z est indépendante de \mathscr{B}
 - (iii) Z est indépendante de \mathscr{A}

Corrigé:

1. Soit f et g deux fonction mesurables bornées sur $(\Omega, \mathcal{F}, \mathbf{P})$, alors

$$\mathbf{E}\left[f(\varepsilon X)g(\varepsilon)\right] = \frac{1}{2}\left(\mathbf{E}\left[f(X)g(1)\right] + \mathbf{E}\left[f(-X)g(-1)\right]\right).$$

Donc les v.a. εX et ε sont indépendantes si et seulement si pour toutes f et g mesurables bornées

$$\mathbf{E}\left[f(X)g(1)\right] + \mathbf{E}\left[f(-X)g(-1)\right] = \mathbf{E}\left[f(X)\right]\left(g(1) + g(-1)\right).$$

- Si X est symétrique alors l'égalité précédente est toujours vraie. Réciproquement, on considère g une fonction telle que g(1) = 0 et g(-1) = 1. Dans ce cas, l'égalité précédente s'écrit $\mathbf{E}[f(-X)] = \mathbf{E}[f(X)]$ et est vraie pour toute f mesurable bornée, donc X est symétrique.
- 2. On définit X et ε comme indiqué et on note $\mathscr{A} = \sigma(X)$ et $\mathscr{B} = \sigma(\varepsilon)$. Alors $\mathscr{A} = \{\emptyset, A, A^c, \Omega\}$ et $\mathscr{B} = \{\emptyset, B, B^c, \Omega\}$ sont deux sous-tribus de \mathscr{F} et indépendantes entre elles. On définit $Y = \varepsilon X$ et on a
 - Y qui est $\sigma(\mathcal{A} \cup \mathcal{B})$ —mesurable par définition
 - Y indépendante de ${\mathscr B}$ car indépendante de ε d'après la question 1.
 - Y non mesurable par rapport à \mathscr{A} car $\sigma(Y) = \{\emptyset, (A \cap B^c) \cup (A^c \cap B), (A \cap B) \cup (A^c \cap B^c), \Omega\}.$
- 3. On définit toujours $Y=\varepsilon X$ et d'après la question 1. on a aussi que εX indépendante de X, i.e. Y indépendante de \mathscr{A} .

Exercice 4:

Soit $(\Omega, \mathscr{F}, \mathbf{P})$ un espace de probabilité et \mathscr{G} une sous-tribu de \mathscr{F} . Pour $A \in \mathscr{F}$, on considère $B = \{ \mathbf{E} [\mathbf{1}_A \mid \mathscr{G}] = 0 \}$. Montrer que $B \subset A^c$.

Corrigé:

Il est clair que $B \in \mathcal{G}$ donc par définition de l'espérance conditionnelle

$$\mathbf{E}\left[\mathbf{1}_{A}\mathbf{1}_{B}\right] = \mathbf{E}\left[\mathbf{E}\left[\mathbf{1}_{A} \mid \mathscr{G}\right]\mathbf{1}_{B}\right].$$

Or sur l'événement B on a $\mathbf{E}[\mathbf{1}_A \mid \mathcal{G}] = 0$ et donc $\mathbf{E}[\mathbf{1}_A \mathbf{1}_B] = 0$. Comme $\mathbf{1}_A \mathbf{1}_B$ est une v.a. positive on en déduit que $\mathbf{1}_{A \cap B} = 0$ p.s.

Exercice 5:

Soit X et Y deux v.a. indépendantes de Bernoulli de paramètres respectifs p et q (vérifiant $\mathbf{P}[X=1]=p$). On pose $Z=\mathbf{1}_{\{X+Y=0\}}$ et $\mathscr{G}=\sigma(Z)$.

- 1. Calculer $U = \mathbf{E}[X \mid \mathcal{G}]$ et $V = \mathbf{E}[Y \mid \mathcal{G}]$.
- 2. Les v.a. U et V sont-elles indépendantes?

Corrigé:

1. Les ensembles $\{Z=0\}$ et $\{Z=1\}$ forment une partition de Ω qui engendre \mathscr{G} . Ainsi,

$$\mathbf{E}\left[X\mid\mathcal{G}\right] = \mathbf{E}\left[X\mid Z=0\right]\mathbf{1}_{\{Z=0\}} + \mathbf{E}\left[X\mid Z=1\right]\mathbf{1}_{\{Z=1\}}.$$

Sur $\{Z=1\} = \{X=0\} \cap \{Y=0\}$, on a X=0 p.s. et donc $\mathbf{E}[X \mid Z=1] = 0$. De plus,

$$\mathbf{E}[X \mid Z = 0] = \frac{\mathbf{P}[X = 1]}{\mathbf{P}[Z = 0]},$$

$$= \frac{\mathbf{P}[X = 1]}{1 - \mathbf{P}[Z = 1]},$$

$$= \frac{p}{p + q - pq}.$$

Comme X et Y jouent des rôles symétriques on a

$$\mathbf{E}\left[X\mid\mathcal{G}\right] = \frac{p}{p+q-pq}\mathbf{1}_{\{Z=0\}}, \quad \text{et} \quad \mathbf{E}\left[Y\mid\mathcal{G}\right] = \frac{q}{p+q-pq}\mathbf{1}_{\{Z=0\}}.$$

2. Les v.a. $\mathbf{E}[X \mid \mathcal{G}]$ et $\mathbf{E}[Y \mid \mathcal{G}]$ sont proportionnelles p.s. et non constantes, elles ne sont donc pas indépendantes.

Exercice 6:

Soit $X \in \mathbf{L}^1(\Omega, \mathcal{F}, \mathbf{P})$ et \mathcal{G} une sous-tribu de \mathcal{F} . On note $Y = \mathbf{E}[X \mid \mathcal{G}]$ et on veut montrer le résultat suivant :

si
$$X$$
 et Y ont même loi alors $X = Y$ $p.s.$

- 1. Montrer le résultat dans le cas $X \in \mathbf{L}^2$.
- 2. Montrer que pour tout $K \in \mathbf{R}_+$,

$$\mathbf{E}\left[\left(X \wedge K\right) \vee \left(-K\right) \mid \mathcal{G}\right] = \left(Y \wedge K\right) \vee \left(-K\right) \quad p.s. \tag{*}$$

et en déduire le résultat.

Corrigé:

1. Si X est dans L^2 , alors (X - Y) aussi et on a

$$\mathbf{E}\left[(X-Y)^2\right] = \mathbf{E}\left[X^2\right] + \mathbf{E}\left[Y^2\right] - 2\mathbf{E}\left[XY\right].$$

Or $\mathbf{E}[XY] = \mathbf{E}[\mathbf{E}[XY \mid \mathcal{G}]] = \mathbf{E}[Y^2]$ donc $\mathbf{E}[(X-Y)^2] = \mathbf{E}[X^2] - \mathbf{E}[Y^2] = 0$ (car X et Y ont même loi). La v.a. $(X-Y)^2$ est positive d'espérance nulle donc nulle p.s.

2. Par croissance de l'espérance conditionnelle on a $\mathbf{E}[X \wedge K \mid \mathcal{G}] \leq Y \wedge K$ p.s. Donc la v.a. $U = Y \wedge K - \mathbf{E}[X \wedge K \mid \mathcal{G}]$ est positive et d'espérance $\mathbf{E}[U] = \mathbf{E}[Y \wedge K] - \mathbf{E}[X \wedge K] = 0$ (car les v.a. $X \wedge K$ et $Y \wedge K$ ont même loi). On a donc donc $\mathbf{E}[X \wedge K \mid \mathcal{G}] = Y \wedge K$ p.s.

De la même façon avec la fonction $(y \mapsto y \vee -K)$ on prouve le résultat (*).

La v.a. $(X \wedge K) \vee (-K)$ est bornée donc dans \mathbf{L}^2 et en appliquant la question 1. on a

$$(X\wedge K)\vee (-K)=(Y\wedge K)\vee (-K),\quad p.s.$$

On fait tendre $K \to +\infty$ et on obtient X = Y p.s.

Exercice 7:

Soit $(X_n)_{n\geqslant 1}$ et $(Y_n)_{n\geqslant 1}$ deux suites de Bernoulli indépendantes, définies sur un même espace de probabilité $(\Omega, \mathcal{F}, \mathbf{P})$, telles que

$$P[X_n = 1] = p \quad P[Y_n = 1] = q,$$

avec p, q fixés, 0 < p, q < 1.

- 1. Montrer que les variables aléatoires $Z_n = X_n Y_n$ sont indépendantes et identiquement distribuées. Déterminer leur loi.
- 2. Soit $S_n = \sum_{k=1}^n X_k$ et $T_n = \sum_{k=1}^n Z_k$. Déterminer la loi de S_n et celle de T_n .

- 3. Soit $\tau = \inf \{n \ge 1, T_n = 1\}$. Montrer que τ et S_{τ} sont des variables aléatoires. Déterminer la loi de τ .
- 4. Montrer que, pour tout $n \ge 2$ et $1 \le k < n$,

$$\mathbf{P}[X_k = 1 \mid \tau = n] = \mathbf{P}[X_k = 1 \mid Z_k = 0] = \frac{p(1-q)}{1-pq}.$$

5. Montrer que

$$\mathbf{P}\left[\bigcap_{i=1}^{n} \left\{X_i = x_i\right\} \middle| \tau = n\right] = \prod_{i=1}^{n} \mathbf{P}\left[X_i = x_i \middle| \tau = n\right],$$

- 6. En déduire l'expression de $\mathbf{P}[S_{\tau} = k \mid \tau = n]$ (pour $1 \leq k \leq n$) (indication : commencer par le cas k = 1, puis le cas k = n).
- 7. Calculer $\mathbf{E}[S_{\tau} \mid \tau = n]$ (en utilisant la formule du binome de Newton et sa dérivée) et $\mathbf{E}[S_{\tau}]$. Vérifier qu'on a bien les égalités suivantes (identité de Wald)

$$\mathbf{E}\left[S_{\tau}\right] = \mathbf{E}\left[\tau\right] \mathbf{E}\left[X_{1}\right],$$

$$\mathbf{E}\left[T_{\tau}\right] = \mathbf{E}\left[\tau\right] \mathbf{E}\left[Z_{1}\right].$$

Corrigé:

- 1. Soit $K_n = (X_n, Y_n)$ pour $n \ge 1$. L'indépendance des suites $(X_n)_{n \ge 1}$ et $(Y_n)_{n \ge 1}$ implique l'indépendance de la suite $(K_n)_{n \ge 1}$. Comme fonction de K_n on en déduit l'indépendance de la suite $(Z_n)_{n \ge 1}$. De plus, pour tout $n \ge 1$, $\mathbf{P}[Z_n = 1] = pq$ et $\mathbf{P}[Z_n = 0] = 1 pq$. Donc Z_n est une Bernoulli de paramètre pq.
- 2. Pour tout $n \ge 1$, on note L_{X_n} , L_{Z_n} , L_{S_n} , et L_{T_n} les transformées de Laplace de X_n , Z_n , S_n et T_n . On a donc

$$L_{X_n}(s) = (1-p) + pe^{-s}$$
 et $L_{Z_n}(s) = (1-pq) + pqe^{-s}$,

et par indépendance

$$L_{S_n}(s) = ((1-p) + pe^{-s})^n$$
 et $L_{T_n}(s) = ((1-pq) + pqe^{-s})^n$.

Donc S_n est une binomiale de paramètres (n,p) et T_n suit une loi binomiale de paramètres (n,pq). S_n (resp. T_n) correspond au nombre de succès dans l'épreuve de Bernoulli $(X_k)_{1 \le k \le n}$ (resp. $(Z_k)_{1 \le k \le n}$.

3. Pour n fixé, on a $\{\tau \geqslant n\} = \bigcap_{k=1}^{n-1} \{T_k = 0\} \in \mathscr{F}$, donc τ est une v.a. De même, on a $\{S_\tau = n\} = \bigcup_{k=1}^{\infty} \{S_k = n, \tau = k\} \in \mathscr{F}$ donc S_τ est une v.a. De plus, pour tout $n \geqslant 1$,

$$\mathbf{P}[\tau \geqslant n] = \mathbf{P}[\cap_{k=1}^{n} \{Z_k = 0\}] = (1 - pq)^{n-1}$$

La loi de τ est la loi géométrique de paramètre pq.

4. Par indépendance on a

$$\mathbf{P}[X_k = 1, \tau = n] = \mathbf{P}[Z_1 = 0, \dots, Z_{k-1} = 0, X_k = 1, Y_k = 0, Z_{k+1} = 0, \dots, Z_{n-1} = 0, Z_n = 1],$$

= $p(1 - q)(1 - pq)^{n-2}pq$.

Donc
$$\mathbf{P}[X_k = 1 \mid \tau = n] = \frac{p(1-q)(1-pq)^{n-2}pq}{(1-pq)^{n-1}-(1-pq)^n} = \frac{(1-q)p}{1-qp}.$$

D'autre part l'indépendance entre X_k et Y_k donne $\mathbf{P}\left[X_k=1\mid Z_k=0\right]=\frac{(1-q)p}{1-qp}$

5. Le résultat est vrai pour n = 1, et pour tout $n \ge 2$

$$\mathbf{P} \left[\bigcap_{i=1}^{n} \left\{ X_{i} = x_{i} \right\} \middle| \tau = n \right] \\
= \frac{\mathbf{P} \left[X_{1} = x_{1}, \dots, X_{n} = x_{n}, Z_{1} = 0, \dots, Z_{n-1} = 0, Z_{n} = 1 \right]}{(1 - pq)^{n-1}pq} \\
= \frac{\mathbf{P} \left[X_{1} = x_{1}, \dots, X_{n} = x_{n}, x_{1}Y_{1} = 0, \dots, x_{n-1}Y_{n-1} = 0, X_{n} = 1, Y_{n} = 1 \right]}{(1 - pq)^{n-1}pq} \\
= \frac{\mathbf{P} \left[X_{1} = x_{1} \right] \dots \mathbf{P} \left[X_{n} = x_{n} \right] \mathbf{P} \left[x_{1}Y_{1} = 0 \right] \dots \mathbf{P} \left[x_{n-1}Y_{n-1} = 0 \right] \mathbf{P} \left[X_{n} = 1 \right] \mathbf{P} \left[Y_{n} = 1 \right]}{(1 - pq)^{n-1}pq}$$

De la même façon on prouve que

$$\mathbf{P}\left[X_{i}=x_{i}\mid\tau=n\right]=\frac{\mathbf{P}\left[X_{i}=x_{i}\right]\mathbf{P}\left[x_{i}Y_{i}=0\right]}{1-an}$$

et on obtient

$$\mathbf{P}\left[\bigcap_{i=1}^{n} \left\{X_i = x_i\right\} \middle| \tau = n\right] = \prod_{i=1}^{n} \mathbf{P}\left[X_i = x_i \middle| \tau = n\right],$$

6. Tout d'abord $\mathbf{P}[S_{\tau} = k \mid \tau = n] = \mathbf{P}[S_n = k \mid \tau = n]$. On commence par les 2 cas extrêmes k = 1 et k = n pour un $n \ge 1$. Alors

$$\mathbf{P}[S_n = 1 \mid \tau = n] = \frac{\mathbf{P}\left[\bigcap_{i=1}^{n-1} \{X_i = 0\}, X_n = 1, Y_n = 1\right]}{(1 - pq)^{n-1}pq} = \left(\frac{1 - p}{1 - pq}\right)^{n-1}$$
$$\mathbf{P}[S_n = n \mid \tau = n] = \frac{\mathbf{P}\left[\bigcap_{i=1}^n \{X_i = 1\}, \bigcap_{i=1}^{n-1} \{Y_i = 0\}, Y_n = 1\right]}{p^n(1 - q)^{n-1}q} = \left(\frac{p(1 - q)}{1 - pq}\right)^{n-1}.$$

Dans le cas général, on note $E_{k,n}=\left\{(x_1,\ldots,x_n)\in\left\{0,1\right\}^n,\sum_{i=1}^nx_i=k\right\}$ et donc

$$\mathbf{P}\left[S_{\tau} = k \mid \tau = n\right] = \sum_{x \in E_{k,n}} \mathbf{P}\left[\bigcap_{i=1}^{n} \left\{X_{i} = x_{i}\right\} \mid \tau = n\right],$$

et d'après la question précédente

$$\mathbf{P}[S_{\tau} = k \mid \tau = n] = \sum_{x \in E_{k,n}} \prod_{i=1}^{n} \mathbf{P}[X_i = x_i \mid \tau = n], \qquad (**)$$

Or attention d'après 4. on a $\mathbf{P}[X_i = x_i \mid \tau = n] \in \{1-a,a\}$ avec $a = \frac{p(1-q)}{1-pq}$ pour tout i < n mais $\mathbf{P}[X_n = x_n \mid \tau = n] \in \{0,1\}$. Ainsi la somme dans le terme de droite (**) est nulle pour les $x = (x_1, \ldots, x_{n-1}, 0) \in E_{k,n}$ et

$$\mathbf{P}\left[S_{\tau} = k \mid \tau = n\right] = \sum_{x = (x_{1}, ..., x_{n-1}, 1) \in E_{k, n}} \prod_{i=1}^{n-1} \mathbf{P}\left[X_{i} = x_{i} \mid \tau = n\right],$$

De plus Card $\{x = (x_1, \dots, x_{n-1}, 1) \in E_{k,n}\} = C_{n-1}^{k-1}$ et donc

$$\mathbf{P}[S_{\tau} = k \mid \tau = n] = C_{n-1}^{k-1} a^{k-1} (1-a)^{n-k}.$$

7. On rappelle que

$$\mathbf{E}\left[S_{\tau} \mid \tau = n\right] = \sum_{k=1}^{n} k \mathbf{P}\left[S_{\tau} = k \mid \tau = n\right],$$

et donc d'après la question précédente on a $\mathbf{E}[S_{\tau} \mid \tau=n] = \sum_{k=1}^{n} k C_{n-1}^{k-1} a^{k-1} (1-a)^{n-k}$ d'où

$$\mathbf{E}\left[S_{\tau} \mid \tau = n\right] = \sum_{j=0}^{n-1} C_{n-1}^{j} a^{j} (1-a)^{n-1-j} + \sum_{j=0}^{n-1} j C_{n-1}^{j} a^{j} (1-a)^{n-1-j}$$
$$= 1 + a(n-1) \quad \text{(par la formule du binôme)}.$$

On en déduit alors

$$\mathbf{E}[S_{\tau}] = \sum_{n=1}^{\infty} \mathbf{P}[\tau = n] \mathbf{E}[S_{\tau} | \tau = n] = 1 + a \sum_{n \ge 1} (n-1) \mathbf{P}[\tau = n] = 1 + a (\mathbf{E}[\tau] - 1).$$

au suit une loi géométrique de paramètre pq donc $\mathbf{E}[\tau]=1/(pq)$ et $a=\frac{p(1-q)}{1-pq}$ donc $\mathbf{E}[S_{\tau}]=1/q=\mathbf{E}[\tau]\mathbf{E}[X_1]$.

D'autre part $T_{\tau} = 1$ p.s. donc $\mathbf{E}[T_{\tau}] = 1 = \mathbf{E}[\tau] \mathbf{E}[Z_1]$.

Exercice 8:

Soit X et Y deux v.a. indépendantes de loi géométrique de paramètres respectifs a et b, 0 < a, b < 1.

- 1. Déterminer la loi de X + Y, de $X \wedge Y$ et de $X \vee Y$.
- 2. Déterminer la loi du couple $(X \wedge Y, X \vee Y)$.
- 3. Déterminer la loi du couple $(X Y, X \wedge Y)$. Que remarque-t-on si a = b?

Corrigé:

On rappelle que si X suit une loi géométrique de paramètre a alors X correspond au rang du premier succès dans une épreuve de Bernoulli de paramètre $a \in]0,1[$, i.e. $\mathbf{P}[X=k]=(1-a)^{k-1}a$ pour tout $k \in \mathbf{N}^*$.

1. X + Y est à valeurs dans $\mathbb{N} \setminus \{0, 1\}$ donc pour tout $n \ge 2$, on a

$${X + Y = n} = \bigcup_{k=1}^{n-1} {X = k} \cap {Y = n - k},$$

donc

$$\mathbf{P}[X + Y = n] = \sum_{k=1}^{n-1} \mathbf{P}[\{X = k\} \cap \{Y = n - k\}],$$

et par indépendance de X et Y,

$$\mathbf{P}[X+Y=n] = \sum_{k=1}^{n-1} (1-a)^{k-1} a (1-b)^{n-k-1} b.$$

- Si a = b, alors $\mathbf{P}[X + Y = n] = a^2 \sum_{k=1}^{n-1} (1-a)^{n-2} = (n-1)a^2(1-a)^{n-2}$. Si a > b, alors $\mathbf{P}[X + Y = n] = ab(1-b)^n \sum_{k=0}^{n-2} (1-a)^k (1-b)^{-k} = ab(1-b)^n \frac{1-q^{n-1}}{1-q}$ avec $q = \frac{1-a}{1-b}$. Si a < b, par symétrie en échangeant X et Y, $\mathbf{P}[X + Y = n] = ab(1-a)^n \frac{1-q^{n-1}}{1-q}$ avec $q = \frac{1-b}{1-a}$.

La fonction de survie d'une loi géométrique de paramètre a est définie par $\mathbf{P}[X > k] = (1-a)^k, \forall k \ge 1$. Et par indépendance

$$\mathbf{P}[X \land Y > k] = \mathbf{P}[\{X > k\} \cap \{Y > k\}] = \mathbf{P}[X > k] \mathbf{P}[Y > k] = (1 - a)^k (1 - b)^k,$$

donc $X \wedge Y$ suit une loi géométrique de paramètre 1 - (1 - a)(1 - b).

Pour déterminer la loi de $X \vee Y$ on utilise la décomposition $\{X \vee Y = k\} = \{X = k, Y < k\} \cup \{X < k, Y = k$ $\{X = k, Y = k\}$ et $\mathbf{P}[X < k] = 1 - (1 - a)^{k-1}$ pour $k \ge 2$.

- 2. Déterminer la loi du couple $(X \wedge Y, X \vee Y)$ revient à calculer $\mathbf{P}[X \wedge Y = k, X \vee Y = l]$ pour tout couple $(k,l) \in (\mathbf{N}^*)^2$.
 - si k > l alors $\mathbf{P}[X \wedge Y = k, X \vee Y = l] = 0$
 - si k = l alors $\mathbf{P}[X \wedge Y = k, X \vee Y = k] = \mathbf{P}[X = k, Y = k] = ((1 a)(1 b))^{k-1} ab$ si k < l alors $\mathbf{P}[X \wedge Y = k, X \vee Y = l] = ab((1 a)^{k-1}(1 b)^{l-1} + (1 a)^{l-1}(1 b)^{k-1})$
- 3. Tout d'abord la v.a. X-Y est à valeurs dans ${\bf Z}$ donc on veut calculer ${\bf P}\left[X\wedge Y=k,X-Y=l\right]$ pour tout couple $(k, l) \in \mathbf{N}^* \times \mathbf{Z}$. Or pour tout $k \geqslant 1$,

$$\{X \land Y = k\} \cap \{X - Y = l\} = \begin{cases} \{Y = k\} \cap \{X = l + k\} & \text{si } l \geqslant 0 \\ \{X = k\} \cap \{Y = k - l\} & \text{si } l < 0 \end{cases}$$

donc $\mathbf{P}[X \wedge Y = k, X - Y = l] = a(1-a)^{l+k-1}b(1-b)^{k-1}$ si $l \ge 0$ et $\mathbf{P}[X \wedge Y = k, X - Y = l] = a(1-a)^{k-1}b(1-b)^{k-l-1}$ si l < 0.

Dans le cas a = b, on a $\mathbf{P}[X \wedge Y = k, X - Y = l] = a^2(1-a)^{2(k-1)}(1-a)^{|l|} = (1-a)^{2(k-1)}(1-(1-a)^{2(k-1)})$ $a)^{2}) \times \frac{a^{2}(1-a)^{|l|}}{1-(1-a)^{2}} = \mathbf{P}[X \wedge Y = k] \mathbf{P}[X - Y = l].$ Donc $X \wedge Y$ et X - Y sont indépendantes.

Exercice 9:

Soit X et Y deux v.a. indépendantes, de loi binomiale de paramètres respectifs (n, p) et (m, p).

- 1. Déterminer la loi de X sachant X + Y = l pour tout $0 \le l \le n + m$.
- 2. Calculer $\mathbf{E}[X \mid X+Y]$ et retrouver le résultat $\mathbf{E}[X] = np$ (en préconditionnant par rapport à X+Y).

Corrigé:

On rappelle que si X suit une loi binomiale de paramètre (n,p) alors X correspond au nombre de succès dans une épreuve de Bernoulli de paramètre $p \in]0,1[$ répétée $n \geqslant 0$ fois. La loi est donc donnée pour tout $k \in \{0,\ldots,n\}$ par

$$\mathbf{P}[X = k] = C_n^k p^k (1 - p)^{n-k}.$$

Comme X et Y sont indépendantes, on vérifie aisément que X+Y suit une loi binomiale de paramètres (n+m,p).

1. Soit $0 \le l \le n + m$ et $0 \le k \le l \land n$. Alors

$$\begin{split} \mathbf{P}\left[X=k \mid X+Y=l\right] &= \frac{\mathbf{P}\left[X=k,Y=l-k\right]}{\mathbf{P}\left[X+Y=l\right]} \\ &= \frac{C_n^k p^k (1-p)^{n-k} C_m^{l-k} p^{l-k} (1-p)^{m-(l-k)}}{C_{n+m}^l p^l (1-p)^{n+m-l}} = \frac{C_n^k C_m^{l-k}}{C_{n+m}^l}. \end{split}$$

La loi conditionnelle $X | \{X + Y = l\}$ est donc la loi hypergéométrique de paramètres n + m, n, l.

2. On a pour tout $0 \le l \le n+m$, $\mathbf{E}[X \mid X+Y=l] = n \frac{l}{n+m}$ et donc

$$\mathbf{E}\left[X\right] = \mathbf{E}\left[\mathbf{E}\left[X \mid X+Y\right]\right] = \sum_{l=0}^{n+m} n \frac{l}{n+m} \mathbf{P}\left[X+Y=l\right] = \frac{n}{n+m} \mathbf{E}\left[X+Y\right] = np.$$

Exercice 10:

Soit X une v.a. de loi exponentielle de paramètre λ .

- 1. Calculer $\mathbf{E}[X]$, $\mathrm{var}(X)$, $L(s) = \mathbf{E}\left[e^{sX}\right]$ (la transformée de Laplace), $\bar{F}(t) = \mathbf{P}[X > t]$ (la fonction de survie).
- 2. Soit Y = |X| (la partie entière de X). Déterminer la loi de Y.

Corrigé:

On rappelle qu'une v.a. X de loi exponentielle de paramètre λ a pour densité $\lambda e^{-\lambda x} \mathbf{1}_{\mathbf{R}_+}(x)$.

1. Des calculs classiques donnent

$$\mathbf{E}[X] = 1/\lambda, \quad \operatorname{var}(X) = 1/\lambda^2, \quad L(s) = \frac{1}{1 - s/\lambda} \mathbf{1}_{\{0 \le s < \lambda\}}, \quad \bar{F}(t) = e^{-\lambda x}.$$

2. Soit f une fonction borélienne bornée, alors

$$\mathbf{E}[f(Y)] = \int_0^{+\infty} f(\lfloor x \rfloor) \lambda e^{-\lambda x} dx$$
$$= \sum_{k=0}^{\infty} \int_k^{k+1} f(k) \lambda e^{-\lambda k} dx = \sum_{k=0}^{\infty} f(k) e^{-\lambda k} (1 - e^{-\lambda}).$$

La loi de $\lfloor X \rfloor$ de support $\mathbf N$ correspond la modélisation d'avoir k échecs suivit d'un succès dans une épreuve de Bernoulli de paramètre $p=1-e^{-\lambda} \in]0,1[$. C'est une loi géométrique décalée.

Exercice 11:

Soit X et Y deux v.a. indépendantes de loi exponentielle de paramètres respectifs λ_1 et λ_2 .

- 1. Calculer $\mathbf{E}[X \vee Y \mid X]$.
- 2. En déduire $\mathbf{E}[X \vee Y]$.

Corrigé:

1. On sait que $\mathbf{E}[X \vee Y \mid X] = \varphi(X)$ où φ est une fonction mesurable et pour toute fonction f borélienne bornée on a

$$\mathbf{E}\left[\varphi(X)f(X)\right] = \mathbf{E}\left[\left(X\vee Y\right)f(X)\right].$$

Or
$$X \vee Y = X \mathbf{1}_{\{X > Y\}} + Y \mathbf{1}_{\{X < Y\}}$$
 donc

$$\begin{split} \mathbf{E}\left[\left(X \vee Y\right) f(X)\right] &= \mathbf{E}\left[X f(X) \mathbf{1}_{\left\{X > Y\right\}}\right] + \mathbf{E}\left[Y f(X) \mathbf{1}_{\left\{X < Y\right\}}\right] \\ &= \mathbf{E}\left[X f(X) \mathbf{P}\left[X > Y \mid X\right]\right] \mathbf{E}\left[f(X) \mathbf{E}\left[Y \mathbf{1}_{\left\{Y > X\right\}} \mid X\right]\right]. \end{split}$$

On a d'une part $\mathbf{E}\left[Y\mathbf{1}_{\{Y>x\}}\right] = \int_x^\infty z\lambda_2 e^{-\lambda_2 z}\mathrm{d}z = xe^{-\lambda_2 x} + \frac{e^{-\lambda_2 x}}{\lambda_2}$ et d'autre part $\mathbf{P}\left[Y < x\right] = 1 - e^{-\lambda_2 x}$. Donc

$$\mathbf{E}\left[\left(X\vee Y\right)f(X)\right] = \mathbf{E}\left[f(X)\left(X+\frac{1}{\lambda_2}\right)e^{-\lambda_2X} + Xf(X)(1-e^{-\lambda_2Y})\right],$$

c'est à dire $\mathbf{E}\left[\varphi(X)f(X)\right] = \mathbf{E}\left[f(X)\left(X + e^{-\lambda_2 X}/\lambda_2\right)\right]$ et donc $\varphi(X) = X + e^{-\lambda_2 X}/\lambda_2$ p.s.

2. On a

$$\mathbf{E}\left[X\vee Y\right] = \mathbf{E}\left[\mathbf{E}\left[X\vee Y\mid X\right]\right] = \mathbf{E}\left[X + \frac{e^{-\lambda_2 X}}{\lambda_2}\right] = \frac{1}{\lambda_1} + \frac{1}{\lambda_2}\frac{\lambda_1}{\lambda_1 + \lambda_2}.$$