

离散数学 (2023) 作业 17

周帛岑 221900309

2023年5月3日

1 Problem 1

解: A,B

2 Problem 2

证: 任取,m,n∈N(a),我们有 am = ma 且 an = na 对于 an = na, 在两式的左右两侧左右同时运算 n^{-1} ,我们有 $an^{-1}=n^{-1}a$ 对于 $mn^{-1}a$,我们在其左侧乘上 a 有 $mn^{-1}a=amn^{-1}nn^{-1}=amn^{-1}nn^{-1}=amn^{-1}$ 于是 N(a) 是 G 的子群.

3 Problem 3

证: 任取 xax^{-1} 和 $xb^{-1}x$ \in H 对于 $xax^{-1}(xb^{-1}x)^{-1}$,原式等于 $xax^{-1}x^{-1}b^{-1}x=xab^{-1}x$ 于是 H 为 G 的子群

4 Problem 4

证:由题可知, $H=\{x|x^r=e\}, K=\{x|x^s=e\}$ 又 s 与 r 互质,即不存在 r = ms,使 m 为整数 即对于任意 m,若 $x\neq e, (x^s)^m\neq x^r, k\in K, k\neq e,$ 这样的 k 均不在 H 中,故 $H\cap K=e.$

5 Problem 5

证:由题可知,不妨设这个数为 a,即 aa = e,a = a^{-1} ,任取 m \in G $mam^{-1}(mam^{-1})$ = e,故 mam^{-1} 为二阶或一阶元 又由于题设, mam^{-1} 为一个一阶元,即 mam^{-1} = a 故有 ma = am

6 Problem 6

证:

7 Problem 7

证: 任取 h \in H, 我们有 $ghg^{-1} \in$ H 即我们有 $gHg^{-1} =$ H 不妨假设 \exists g \in G, 有 $gH\neq$ Hg 此时有 $gHg^{-1}\neq$ H 与题意矛盾,故假设不成立,命题得证

8 Problem 8

证: 由题可知, 除 p 的非零余数关于同余乘法形成一个运算

显然,由于 p 为质数,故该集合中的元素相乘后仍不能被 p 整除,且结果仍落于集合中,满足封闭性

显然,由于运算为带余除法,故满足结合律

显然,单位元为1

对于逆元, 任取 a 在该集合中, 假设我们有 $a \circ b = 1$ 即 $ab = 1 \pmod{p}$

又 a 与 p 互质, gcd(a,p) = 1

即有 sa + tp = 1 取 b = s, k = p 即可

故我们总能找到这样的 b, 每一个元素均存在逆元

故其构成一个群

由群论的拉格朗日定理,群的阶数为 p-1 对于任意一个元素,其阶为 $\frac{p-1}{k}$,则 $a^{\frac{p-1}{k}}=1 \pmod{p}$ 即 $a^{p-1}=1 \pmod{p}$