大数据算法-2025 春

Lecture 10: Local Sensitive Hash

2024.4.11

Lecturer: 丁虎 Scribe: 王浩宇, 莫官霖

这是一类近似近邻查询 (Approx-NN) 的方法,其主要思想是设计 Hash 函数,将点集 P 中的点放人不同的 Bucket 中,同时使得距离越近的点,其哈希值碰撞的概率越大。最后通过增加 hash 的次数来提升成功的概率。

1 近似近邻查询

Definition 1.1 ((r,R)-近似近邻查询)**.** 输入集合 $P \subset \mathbb{R}^d$ 和一个点 $q \in \mathbb{R}^d$,我们记 $dist(q,p) = min_{p \in P} \|q - p\|$ 。 (r,R)-近似近邻查询要求

- 1. 如果 $dist(q, P) \leq r$, 返回 $u \in P$ 使得 $||q u|| \leq R$.
- 2. 如果 dist(q, P) > R, 输出 "dist(q, P) > r".
- 3. 如果 $r < dist(q, P) \le R$, 返回上面两者中任意一种。

如果 R=r 那即为精确的 NS(r). 通常我们会考虑 $R=(1+\epsilon)r$ 的情况。这个时候我们可以称上面的问题为 $(1+\epsilon)$ -近似近邻查询。

在已知 dist(q,P) 的上下界为 [a,b] 的情况下,建立集合 $U=[a,(1+\epsilon)a,...,(1+\epsilon)^{\log_{1+\epsilon}\frac{b}{a}}a]$,然后对于 r 的选择,我们在 U 上作 Binary Search,这样我们可以对通过至多 $\log_{1+\epsilon}\frac{b}{a}$ 次 NS(近邻查询) 来实现 $(1+\epsilon)$ -近似近邻查询。

我们用 B(q,r) 表示以 q 为球心,r 为半径的欧几里得距离的球体。用 $N(\vec{0},I_d)$ 表示 d 维标准正态分布。U([a,b]) 表示区间 [a,b] 上的均匀随机分布。

Definition 1.2. (r, R, α, β) -Sensitive Hash 给定 $r < R, 1 > \alpha > \beta > 0$, 我们称 F 是一个 (r, R, α, β) -Sensitive Hash 映射集合,如果对于 $\forall u, q \in \mathbb{R}^d$, 随机取 $h \in F$ 满足

- 1. 如果 $u \in B(q, r)$, 那么 $\Pr[h(u) = h(q)] \ge \alpha$.
- 2. 如果 $u \notin B(q, R)$, 那么 $\Pr[h(u) = h(q)] \le \beta$.

下面我们给一个 F 的构造方法。考虑这样的 $F_T = \{h|h(u) = \lfloor \frac{\langle u, \vec{v_h} \rangle + t_h}{T} \rfloor \}$, 其中 T 是一个待确定的值, $\vec{v_h} \sim N(\vec{0}, I_d), t_h \sim U([0, T])$. 我们有如下定理

Theorem 1.3. 任给 $r, \epsilon > 0, 1 > \alpha > \beta > 0$, 且 $\frac{\log \frac{1}{\alpha}}{\log \frac{1}{\beta}} \leq \frac{1}{1+\epsilon}$, 则一定存在 T > 0, 使得 F_T 是 $(r, (1+\epsilon)r, \alpha, \beta)$ —Sensitive 的。

注意到上面的 h 是将 $\mathbf{R}^d \to \mathbf{Z}$,下面我们讨论如果将该 Hash 过程的成功率提高。为此我们考虑一个新的哈希函数 $g: \mathbf{R}^d \to \mathbf{Z}^k$,其中 $g = (h_1, h_2, ..., h_k)$, $h_i \in F$. 这样构成的函数族我们称为 $G(F, k) = g = (h_1, ..., h_k | h_i \in F)$.

那么我们有下面的结论

Theorem 1.4. 令 $\rho = \frac{\log \frac{1}{\alpha}}{\log \frac{1}{\beta}} \le \frac{1}{1+\epsilon}$, $k = \log_{\frac{1}{\beta}} n$, $\tau = 2n^{\rho} = o(n)$. 随机从 G(F,k) 中取出 $g_1, g_2, ..., g_{\tau}$ 其对应 τ 个哈希 bucket $H_1, ..., H_{\tau}$, 我们有对于 $\forall q \in \mathbb{R}^d$, 满足下列两个条件的概率 $\geq \frac{3}{5}$:

- 1. 如果 $\exists u \in P$, 使得 $||u q|| \le r$, 则 $\exists j$ 使得 $g_j(u) = g_j(q)$.
- 2. 如果 $\forall u \in P$, $||u q|| > (1 + \epsilon)r$, 则在 $H_1, H_2, ..., H_\tau$ 中与 q 发生冲突的点 $\leq 4\tau$.

Proof. 先证明 2。

$$\forall u \in P, \|u - q\| > (1 + \epsilon)r$$

$$\Rightarrow \forall g \in G(F, k), \Pr[g(u) = g(q)] \leq \beta^k = \frac{1}{n}$$

$$\Rightarrow \forall H_j, \operatorname{E}[发生冲突个数] \leq 1$$

$$\Rightarrow \operatorname{E}H_1 \sim H_\tau + \operatorname{E}H_\tau + \operatorname{E}H_\tau$$

再证明 1.

$$||u - q|| \le r$$

$$\Rightarrow \forall q, \Pr[g(u) = g(q)] \ge \alpha^k = n^{-\rho}$$

$$\Rightarrow H_1 \sim H_\tau$$
至少发生一次冲突的概率 $\geq 1 - (1 - n^{-\rho})^{\tau} = 1 - (1 - n^{-\rho})^{2n^{\rho}} \geq 1 - \frac{1}{\epsilon^2} > \frac{4}{5}$.

由该定理, 我们可以将 P 中的点分为 3 个类:

- 1. $||u-q|| \le r$, 此时发生冲突个数 ≥ 1
- 2. $||u q|| > (1 + \epsilon)r$, 此时发生冲突个数 $\leq 4\tau$
- 3. $r < \|u q\| \le (1 + \epsilon)r$,此时发生冲突个数可能很多也可能很少,所以返回任意情况 这样我们只需要检查前面 $\le 4\tau + 1$ 个冲突即可。

该算法复杂的分析:

- 1. Construction Time $O(\tau \cdot n \cdot k \cdot d) = O(n^{1 + \frac{1}{1 + \epsilon}} d \log n) \le O(n^2 d)$.
- 2. Space $O(nd + \tau \cdot k \cdot n) = O(nd + n^{1 + \frac{1}{1 + \epsilon}} \log n)$.
- 3. Query Time $O(\tau \cdot k \cdot d + (4\tau + 1)d) = O(n\frac{1}{1+\epsilon}\log n \cdot d) < nd$.

2 Product Quantization(PQ) 内积量化

利用 k-means 作近似近邻查询,可以使用 $\{c_1,...,c_k\}$ 来近似 P, 从 $\{c_1,...,c_k\}$ 中找到 u 的最近邻。其查询时间为 $\Theta(kd)$. 极限情况 k=n,此时查询时间为 $\Theta(nd)$ 不过可以返回精确解。

如果我们将 \mathbf{R}^d 分解为 $\mathbf{R}^{\frac{d}{m}} \times \mathbf{R}^{\frac{d}{m}} \times ... \mathbf{R}^{\frac{d}{m}}$ 对于每个 $\mathbf{R}^{\frac{d}{m}}$, 都存在 P 到其上的投影 $P_j, 1 \leq j \leq m$. 我们对于 P_j 做 k-means, 也即找到 $\{c_1^j, ..., c_k^j\} \subset \mathbf{R}^{\frac{d}{m}}$ 将所有的中心建立一个"codebook" 如下

$$CB = \begin{pmatrix} c_1^1 & \dots & c_k^1 \\ \dots & \dots & \dots \\ c_m^1 & \dots & c_m^k \end{pmatrix}$$
 (1)

该 codebook 需要空间 $k \times m \times \frac{d}{m} = kd$.

之后我们建立表 $A \in \mathbb{Z}^{m \times n}$, 其中第 (i,j) 个元素存储 P 中第 j 个点在第 i 个 $\mathbb{R}^{\frac{d}{m}}$ 子空间上的近似。如果 u 在这 m 个子空间中对应的中心分别为 $c_{t_1}^1,...,c_{t_m}^m$, 那么对于 u, 我们存储列向量 $(t_1,...,t_m)^\top$ 在 A 中。

之后建立表 $B \in \mathbb{R}^{m \times \binom{k}{2}}$, 其中第 i 行存储对应的子空间上 $c_1^i,...,c_k^i$ 中心两两之间的距离。我们用 $B_{i,(s_i,t_i)}$ 表示在第 i 个子空间上 $c_{s_i}^i$ 与 $c_{t_i}^i$ 的距离。

我们的算法每次询问一个 $q \in \mathbb{R}^d$,首先计算 q 与 CB 中类中心的距离,得到最近的中心对应的下标列向量 $S = (s_1, ..., s_m)^\top$,将其和 A 中每一列 $T = (t_1, ..., t_m)^\top$ 作比较,找到下标距离最近的列。这里的下标距离使用 B 中得到的对应距离。也即 $dist(S,T) = \sum_{i=1}^m B_{i,(s_i,t_i)}$.

这样的计算可以在 $\Theta(m)$ 时间完成。(这里我们简化了 A 和 B 的存储方式。) 输出下标距离最近的列对应的点。

这样操作的直觉在于 $\forall u, q \in P \ u = [u_1, ..., u_m]$ 以及 $q = [q_1, ..., q_m]$ 我们有

$$||u - q||^2 = \sum_{i=1}^{m} ||u_i - q_i||^2$$

$$\approx \sum_{i=1}^{m} ||c_{t_i}^i - c_{s_i}^i||^2$$

该算法复杂度分析

- 1. Construction Time $T(k-means)+\Theta(mn)+\Theta(k^2m)=\Theta(knd)+\Theta(mn)+\Theta(k^2m)$, 如果 $k.m\ll n,d$, 时间为 $\Theta(nd)$
- 2. Space $\Theta(mk\frac{d}{m}) + \Theta(mn) + \Theta(k^2m) = \Theta(n+d)$.
- 3. Query Time $\Theta(mk\frac{d}{m}) + \Theta(m \times n) = \Theta(n+d) \ll nd$

当然实际使用中还有很多其他的问题,如何存储 A, B 以及如何优化 Codebook? 感兴趣的同学对这些后续问题可以自行了解。