CS550 - Machine Learning and Business Intelligence

Project : Design XOR Gate

Prince Rajasekaran 19658 Instructor: Dr. Chang, Henry

Table of Content

- Introduction
- Theory
- Implementation
- Conclusion
- References

Introduction

A logical gate that exclusively ORs two input signals is known as an XOR gate (Exclusive OR gate).

Only when the two input signals are different does it output a value of 1.

In other words, the XOR gate will produce 1 if either one input is high (1) and the other is low (0), otherwise, it will produce 0.

The truth table for an XOR gate with inputs A and B and output Y can be represented as

Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	0

They are mainly used in circuit design for error detection and data processing and in encryption algorithms

A particular kind of machine learning model called a neural network is motivated by the structure and operation of the human brain.

It is made up of many interconnected processing nodes or neurons that cooperate to address a particular issue.

Each neuron's output from a neural network is subjected to a mathematical function known as an activation function. It gives the network non-linearity, enabling it to simulate intricate, non-linear relationships between inputs and outputs.

Let's see how to train the gates:

Forward Pass training algorithm

```
Z := (W0 * C + W1 * X + W2 * Y >= T)

where T := 1.0

if (W0 * C + W1 * X + W2 * Y >= T)

then output is 1

else output = 0
```

Training the gates:

Set the input (X,Y) to some possible value such as (0,0), (0,1), (1,0), or (1,1).

Forward process:

Calculate the output Z for the given input (X,Y).

Backward process:

- 1. Adjust the weight
- 2. If the output Z is too low, increase the weights that had inputs that were "1"
- 3. If the output Z is too high, decrease the weights that had inputs that were "1"
- 4. Continue looping this process till each possible input combination gives the right output

Project: Design XOR Gate

Step 1: design your own AND gate, OR gate and NAND gate using these rules

<u>Using the forward/backward process:</u>

- Forward process Calculate the output Z for the given input (X,Y).
- Backward process Adjust weights
 - + If the output Z is too low, increase the weights by 0.5 which had inputs that were "1".
 - + If the output Z is too high, decrease the weights by 0.5

<u>Using the step activation function:</u>

$$Z := (W1 * X + W2 * Y >= T)$$

where $T := 1.0$

1. AND Desired "And"	Loop 1 W1=W2=0	Loop 2 W1=W2=0.5
Function XY Z	Function XY Z	Function XY Z
0 0 0 0 1 0 1 0 0 1 1 1	0 0 0 0 1 0 1 0 0 1 1 0	0 0 0 0 1 0 1 0 0 1 1 1

We got the desired result here in the loop 1

Hence the formula will be:

$$Z := (0.5 * X + 0.5 * Y >= 1)$$

1.	OR
Desired "OR"	
Funct XY	
00	0
01	1
10	1
11	1

Loop 2

W1=W2=0.5

Loop 3

We got the desired result here in the loop 3

Hence the formula will be:

$$Z := (1.0 * X + 1.0 * Y >= 1)$$

Desired "NAND"	Loop 1 W0 =0.0 W1=W2=0.5	Loop 2 W0 =0.5 W1=W2=0.5	Loop 3 W0 =1.0 W1=W2=0.5
Function			
CXY Z	Function	Function	Function
	$\mathbf{C} \mathbf{X} \mathbf{Y} \mathbf{Z}$	CXY Z	$\mathbf{C} \mathbf{X} \mathbf{Y} \mathbf{Z}$
100 1			
101 1	100 0	100 0	100 1
110 1	101 0	101 1	101 1
111 0	110 0	110 1	110 1
	111 1	111 1	111 1

Loop 4	Loop 5	Loop 6	Loop 7
$\mathbf{W0} = 1.0$	$\mathbf{W0} = 1.0$	$\mathbf{W0} = 1.0$	$\mathbf{W0} = 1.0$
W1=W2=0.0	W1 = -0.5,	W1 = 0.0,	W1=0.0, W2=-0.5
Function	$\mathbf{W2} = 0.0$	W2=0.0	
			Function
CXY Z	Function	Function	$\mathbf{C} \mathbf{X} \mathbf{Y} \mathbf{Z}$
	$\mathbf{C} \mathbf{X} \mathbf{Y} \mathbf{Z}$	$\mathbf{C} \mathbf{X} \mathbf{Y} \mathbf{Z}$	
100 1			100 1
101 1	100 1	100 1	101 0
110 1	101 1	101 1	110 1
111 1	110 0	110 1	111 0
	111 + 0	111 1	

Loop 8	Loop 9
W0 = 1.5	$\mathbf{W0} = 1.5$
W1= 0.0, W2=	W1=-0.5,
-0.5	W2=-0.5
Function	
	Function
CXY Z	CXY Z
	
100 1	100 1
101 1	101 1
110 1	110 1
111 1	111 0

The formula for

```
"AND"

Z := ( 0.5 * X + 0.5 * Y >= 1 )

"OR"

Z := ( 1.0 * X + 1.0 * Y >= 1 )

"NAND"

Z := ( 1.5 * C -0.5 * X -0.5* Y >= 1 )
```

Proving that the designed XOR Gate works:

- X=1, Y=1
- X=1, Y=0
- $\bullet \quad X=0, Y=1$
- X=0, Y=0

Test 1 , X=1, Y=1	Desired Result
Z1: = (1.5 * 1.0 + -0.5 * X + -0.5 * Y >= 1.0)	XOR
= 1.5-0.5-0.5 := 0	X Y Z
Z2: = (1* X + 1* Y >= 1.0)	0 0 0
= 1 + 1 := 1	$egin{array}{cccccccccccccccccccccccccccccccccccc$
Z3: = (0.5* Z1 + 0.5* Z2 >= 1.0)	1 1 0
= 0.5*0 + 0.5*1 := 0	

Test 2:	Desired Result
X=1, Y=0	
Z1: = (1.5 * 1.0 + -0.5 * X + -0.5 * Y >= 1.0) = 1.5-0.5*1-0.5*0 := 1	XOR
Z2: = (1* X + 1* Y >= 1.0) = 1*1 + 1*0 := 1	0 0 0 0 1 1 1 0 1 1 1 0
Z3: = (0.5*Z1 + 0.5*Z2 >= 1.0) = 0.5*1 + 0.5*1 := 1	

Test 3:	Desired Result
X=0, Y=1	
Z1: = (1.5 * 1.0 + -0.5 * X + -0.5 * Y >= 1.0)	XOR
= 1.5*1.0-0.5*0-0.5*1 := 1	X Y Z
Z2: = (1* X + 1* Y >= 1.0)	0 0 0
= 1*0 + 1*1 := 1	0 1 1 1 1 1
Z3: = (0.5* Z1 + 0.5* Z2 >= 1.0)	1 1 0
= 0.5*1 + 0.5*1 := 1	

Test 4:	Desired Result
X=0, Y=0	
Z1: = (1.5 * 1.0 + -0.5 * X + -0.5 * Y >= 1.0)	XOR
= 1.5-0.5*0-0.5*0 := 1	X Y Z
Z2: = (1*X + 1*Y >= 1.0)	0 0 0
= 1*0 + 1*0 := 0	0 1 1 1 1 1
Z3: = (0.5* Z1 + 0.5* Z2 >= 1.0)	1 1 0
= 0.5*1 + 0.5*0 := 0	

Conclusion:

Conclusion

The overall goal of the project is to implement the Forward and Backward Pass Algorithm and design an XOR gate using a neural network. As a result, we now have the fundamental procedures for carrying out the Forward and Backward process with the activation function.

Along with designing logic gateways with neural networks, we also have a variety of other applications, such as robotics, natural language processing, image and speech recognition, and more.

References

DeepAl. (2019, May 17). *Feed Forward Neural Network*. DeepAl. Retrieved April 3, 2023, from https://deepai.org/machine-learning-glossary-and-terms/feed-forward-neural-network

Wright, L. G., Onodera, T., Stein, M. M., Wang, T., Schachter, D. T., Hu, Z., & McMahon, P. L. (2022, January 26). *Deep physical neural networks trained with backpropagation*. Nature News. Retrieved April 3, 2023, from https://www.nature.com/articles/s41586-021-04223-6

What is an artificial neural network? here's everything you need to know. Digital Trends. (2019, January 6). Retrieved April 3, 2023, from https://www.digitaltrends.com/computing/what-is-an-artificial-neural-network/