Representations of vector spaces

Two important ways to represent a vector space:

As the solution set of homogeneous linear system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$

Equivalently, Null $\begin{bmatrix} \mathbf{a_1} \\ \vdots \\ \mathbf{a_m} \end{bmatrix}$

As Span $\{\mathbf{b}_1,\ldots,\mathbf{b}_k\}$

Equivalently, Row $\begin{bmatrix} & \mathbf{b}_1 \\ & \vdots \\ & \mathbf{b}_k \end{bmatrix}$

Conversions between the two representations

Conversions for affine spaces?

- ▶ From representation as solution set of linear system to representation as affine hull
- ▶ From representation as affine hull to representation as solution set of linear system

Conversions for affine spaces?

From representation as solution set of linear system to representation as affine hull

- ightharpoonup input: linear system $A\mathbf{x} = \mathbf{b}$
- output: vectors whose affine hull is the solution set of the linear system.

- Let **u** be one solution to the linear system.
- Consider the corresponding homogeneous system $A\mathbf{x}=\mathbf{0}$.
- - Its solution set, the null space of A, is a vector space \mathcal{V} . Let $\mathbf{b}_1, \dots, \mathbf{b}_k$ be generators for \mathcal{V} . Then the solution set of the original linear system is the affine hull of $\mathbf{u}, \mathbf{b}_1 + \mathbf{u}, \mathbf{b}_2 + \mathbf{u}, \dots, \mathbf{b}_k + \mathbf{u}$.

$$\begin{bmatrix} 1 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\mathbf{u} = \begin{bmatrix} -0.5, 0.75, 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\mathbf{b}_1 = [2, -3, 4]$$

$$[-0.5, -.75, 0] \text{ and }$$

$$[-0.5, -.75, 0] + [2, -3, 4]$$

From representation as solution set to representation as affine hull

One solution to equation $\begin{bmatrix} 1 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is $\mathbf{u} = [-0.5, 0.75, 0]$

ation
$$\begin{bmatrix} 1 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 is $\mathbf{u} = [-0.5, 0.75, 0.75]$

Null space of $\begin{bmatrix} 1 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix}$ is Span $\{\mathbf{b}_1\}$: Solution set of equation is $\mathbf{u} + \operatorname{Span} \{\mathbf{b}_1\},\$ i.e. the affine hull of \mathbf{u} and $\mathbf{u} + \mathbf{b}_1$

Representations of vector spaces

Two important ways to represent a vector space:

As the solution set of homogeneous linear system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$

Equivalently, Null $\begin{bmatrix} \mathbf{a_1} \\ \vdots \\ \mathbf{a_m} \end{bmatrix}$

As Span $\{\mathbf{b}_1,\ldots,\mathbf{b}_k\}$

Equivalently, Row $\begin{bmatrix} & \mathbf{b}_1 \\ & \vdots \\ & \mathbf{b}_k \end{bmatrix}$

Representations of vector spaces

Two important ways to represent a vector space:

As the solution set of homogeneous linear system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$

$$\cdot \mathbf{x} = 0$$

As Span $\{\mathbf{b}_1, \dots, \mathbf{b}_k\}$

Equivalently, Row $\begin{bmatrix} \mathbf{b_1} \\ \vdots \\ \mathbf{b_k} \end{bmatrix}$

How to transform between these two representations?

From left to right:

- ▶ input: homogeneous linear system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$, • output: generators $\mathbf{b}_1, \dots, \mathbf{b}_k$ for solution set
- From right to left:
 - input: generators $\mathbf{b}_1, \ldots, \mathbf{b}_{\nu}$.
 - ightharpoonup output: homogeneous linear system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$ whose solution set equals Span $\{\mathbf{b}_1, \dots, \mathbf{b}_k\}$

Annihilator of a vector space From left to right: • input system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$,

• output: generators $\mathbf{b}_1, \dots, \mathbf{b}_k$ for solution set

generators for Null A

Solution set is the set of vectors **u** such that $\mathbf{a}_1 \cdot \mathbf{u} = 0, \dots, \mathbf{a}_m \cdot \mathbf{u} = 0$

$$\underbrace{\begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_m \end{bmatrix}}_{A} \begin{bmatrix} \mathbf{x} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

Equivalent:

Given rows of a matrix

rows of a matrix AAlgorithm X A, find generators for Null A

If **u** is such a vector then

for any coefficients $\alpha_1, \ldots, \alpha_m$. **Definition:** The set of vectors **u** such that $\mathbf{u} \cdot \mathbf{v} = 0$ for every vector \mathbf{v} in \mathcal{V} is called the

 $\mathbf{u} \cdot (\alpha_1 \, \mathbf{a}_1 + \cdots + \alpha_m \, \mathbf{a}_m) = 0$

annihilator of \mathcal{V} . Written as \mathcal{V}^o . **Example:** The annihilator of

Span $\{a_1, \ldots, a_m\}$ is the solution set for

generators for annihilator \mathcal{V}^o

Annihilator of a vector space

 \triangleright For any scalar β .

Definition: For a subspace \mathcal{V} of \mathbb{F}^n , the annihilator of \mathcal{V} , written \mathcal{V}^o , is

$$\mathcal{V}^o = \{ \mathbf{u} \in \mathbb{F}^n : \mathbf{u} \cdot \mathbf{v} = 0 \text{ for every vector } \mathbf{v} \in \mathcal{V} \}$$

- **Example over** \mathbb{R} : Let $\mathcal{V} = \text{Span } \{[1, 0, 1], [0, 1, 0]\}$. Then $\mathcal{V}^o = \text{Span } \{[1, 0, -1]\}$: Note that $[1,0,-1] \cdot [1,0,1] = 0$ and $[1,0,-1] \cdot [0,1,0] = 0$.
- Therefore $[1, 0, -1] \cdot \mathbf{v} = 0$ for every vector \mathbf{v} in Span $\{[1, 0, 1], [0, 1, 0]\}$.
- $\beta[1,0,-1] \cdot \mathbf{v} = \beta([1,0,-1] \cdot \mathbf{v}) = 0$ for every vector \mathbf{v} in Span $\{[1, 0, 1], [0, 1, 0]\}$.
- ▶ Which vectors **u** satisfy $\mathbf{u} \cdot \mathbf{v} = 0$ for every vector **v** in Span {[1,0,1], [0,1,0]}? Only scalar multiples of [1, 0, -1].
- **Example over** GF(2): Let $\mathcal{V} = \text{Span } \{[1,0,1],[0,1,0]\}$. Then $\mathcal{V}^o = \text{Span } \{[1,0,1]\}$:
 - Note that $[1,0,1] \cdot [1,0,1] = 0$ (remember GF(2) addition) and $[1,0,1] \cdot [0,1,0] = 0$.
 - ▶ Therefore $[1,0,1] \cdot \mathbf{v} = 0$ for every vector \mathbf{v} in Span $\{[1,0,1],[0,1,0]\}$.
 - Of course $[0,0,0] \cdot \mathbf{v} = 0$ for every vector \mathbf{v} in Span $\{[1,0,1],[0,1,0]\}$.
 - \triangleright [1, 0, 1] and [0, 0, 0] are the only such vectors.

Annihilator of a vector space

Example over
$$\mathbb{R}$$
: Let $\mathcal{V} = \text{Span } \{[1,0,1],[0,1,0]\}$. Then $\mathcal{V}^o = \text{Span } \{[1,0,-1]\}$ dim $\mathcal{V} + \dim \mathcal{V}^o = 3$

Example over *GF*(2): Let
$$V = \text{Span } \{[1,0,1],[0,1,0]\}$$
. Then $V^o = \text{Span } \{[1,0,1]\}$. dim $V + \dim V^o = 3$

Example over
$$\mathbb{R}$$
: Let $\mathcal{V} = \text{Span } \{[1,0,1,0],[0,1,0,1]\}.$ Then $\mathcal{V}^o = \text{Span } \{[1,0,-1,0],[0,1,0,-1]\}.$

Annihilator Dimension Theorem: $\dim \mathcal{V} + \dim \mathcal{V}^o = n$

All militator Difficultion Theorem. diff V + diff V = I

Proof: Let $\mathbf{a}_1, \ldots, \mathbf{a}_m$ be generators for \mathcal{V} .

Let
$$A = \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_m \end{bmatrix}$$

 $\dim \mathcal{V} + \dim \mathcal{V}^o = 4$

Rank-Nullity Theorem states that rank
$$A + \text{nullity } A = n$$
 dim $\mathcal{V} + \text{dim } \mathcal{V}^o = n$

Then $V^o = \text{Null } A$.

QED

Annihilator of a vector space

Definition: For a subspace \mathcal{V} of \mathbb{F}^n , the *annihilator* of \mathcal{V} , written \mathcal{V}^o , is

$$\mathcal{V}^o = \{ \mathbf{u} \in \mathbb{F}^n : \mathbf{u} \cdot \mathbf{v} = 0 \text{ for every vector } \mathbf{v} \in \mathcal{V} \}$$

From left to right: Given system $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$, find generators $\mathbf{b}_1, \dots, \mathbf{b}_k$ for solution set

 $Algorithm\ X\ solves\ left-to-right\ problem....$

what about right-to-left problem?

Annihilator of a vector space From left to right: Given system

 $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0,$

find generators $\mathbf{b}_1, \dots, \mathbf{b}_k$ for solution set

generators for a vector space $\mathcal V$

 $\begin{array}{c} \boxed{\mathsf{Algorithm}\;\mathsf{X}} \\ \downarrow \\ \mathsf{generators}\;\mathsf{for\;annihilator}\;\mathcal{V}^o \end{array}$

What happens if we apply Algorithm X to generators for annihilator \mathcal{V}^o ?

generators for annihilator \mathcal{V}^o \downarrow $\boxed{\mathsf{Algorithm}\;\mathsf{X}}$

generators for annihilator of annihilator $(\mathcal{V}^o)^o$

 \mathcal{V}^o

 $\mathbf{a}_1 \cdot \mathbf{x} = 0, \dots, \mathbf{a}_m \cdot \mathbf{x} = 0$ whose solution set equals Span $\{\mathbf{b}_1, \dots, \mathbf{b}_k\}$

 $\mathbf{b}_1, \ldots, \mathbf{b}_k$, find system

From right to left: Given generators

generators for annihilator \mathcal{V}^o \downarrow

 $\begin{array}{c} \boxed{ \text{Algorithm Y} } \\ \downarrow \\ \text{generators for original space } \mathcal{V} \end{array}$

Theorem: $(\mathcal{V}^o)^o = \mathcal{V}$ (The annihilator of the annihilator is the original space.)

Theorem shows:

WS:

 $\mathsf{Algorithm}\;\mathsf{X}=\mathsf{Algorithm}\;\mathsf{Y}$

We still must prove the Theorem...

Annihilator

Theorem: $(\mathcal{V}^o)^o = \mathcal{V}$ (The annihilator of the annihilator is the original space.)

Proof: Let $\mathbf{a}_1, \dots, \mathbf{a}_m$ be a basis for \mathcal{V} . Let $\mathbf{b}_1, \dots, \mathbf{b}_k$ be a basis for \mathcal{V}^o .

$$\mathbf{b}_1 \cdot \mathbf{a}_1 = 0, \mathbf{b}_1 \cdot \mathbf{a}_2 = 0, \dots, \mathbf{b}_1 \cdot \mathbf{a}_m = 0$$

Similarly $\mathbf{b}_i \cdot \mathbf{a}_1 = 0$, $\mathbf{b}_i \cdot \mathbf{a}_2 = 0$, ..., $\mathbf{b}_i \cdot \mathbf{a}_m = 0$ for i = 1, 2, ..., k.

Reorganizing,
$$\mathbf{a_1}\cdot\mathbf{b_1}=0, \mathbf{a_1}\cdot\mathbf{b_2}=0, \dots, \mathbf{a_1}\cdot\mathbf{b_k}=0$$
 which implies that $\mathbf{a_1}\cdot\mathbf{u}=0$ for every vector \mathbf{u} in Span $\{\mathbf{b_1},\dots,\mathbf{b_k}\}$

This shows \mathbf{a}_1 is in $(\mathcal{V}^o)^o$. Similarly \mathbf{a}_2 is in $(\mathcal{V}^o)^o$, \mathbf{a}_3 is in $(\mathcal{V}^o)^o$, ..., \mathbf{a}_m is in $(\mathcal{V}^o)^o$.

Therefore every vector in Span $\{a_1, a_2, \dots, a_m\}$ is in $(V^o)^o$.

Thus $\underline{\mathsf{Span}\ \{\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_m\}}$ is a subspace of $(\mathcal{V}^o)^o$.

Since $\mathbf{b}_1 \cdot \mathbf{v} = 0$ for every vector \mathbf{v} in \mathcal{V} ,

To show that these are equal, we must show that dim $\mathcal{V} = \dim(\mathcal{V}^o)^o$.

Annihilator

Theorem: $(\mathcal{V}^o)^o = \mathcal{V}$ (The annihilator of the annihilator is the original space.)

Proof:

Reorganizing,

$$\mathbf{a}_1 \cdot \mathbf{b}_1 = 0, \mathbf{a}_1 \cdot \mathbf{b}_2 = 0, \dots, \mathbf{a}_1 \cdot \mathbf{b}_k = 0$$

which implies that $\mathbf{a}_1 \cdot \mathbf{u} = 0$ for every vector \mathbf{u} in $\underbrace{\mathsf{Span} \; \{\mathbf{b}_1, \dots, \mathbf{b}_k\}}_{\mathcal{Y}^o}$

This shows \mathbf{a}_1 is in $(\mathcal{V}^o)^o$. Similarly \mathbf{a}_2 is in $(\mathcal{V}^o)^o$, \mathbf{a}_3 is in $(\mathcal{V}^o)^o$, ..., \mathbf{a}_m is in $(\mathcal{V}^o)^o$.

Therefore every vector in Span $\{a_1, a_2, \dots, a_m\}$ is in $(V^o)^o$.

Thus
$$\underbrace{\mathsf{Span}\ \{\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_m\}}_{\mathcal{V}}$$
 is a subspace of $(\mathcal{V}^o)^o$.

To show that these are equal, we must show that $\dim \mathcal{V} = \dim(\mathcal{V}^o)^o$.

By Annihilator Dimension Theorem, $\dim V + \dim V^o = n$.

By Annihilator Dimension Theorem applied to \mathcal{V}^o , dim $\mathcal{V}^o + \dim(\mathcal{V}^o)^o = n$.

Together these equations show dim $\mathcal{V} = \dim(\mathcal{V}^o)^o$.

QED