Polígonos e números construtíveis

Arthur Rezende Alves Neto

Universidade Federal do Paraná

13 de agosto de 2020

Polígonos e números construtíveis

- 1 Introdução.
- 2 Construções.
- 3 Números complexos.
- 4 Algebrização.

Construção euclidiana

Para os matemáticos gregos solucionar um problema, provar uma proposição ou teorema era equivalente a construir, geometricamente, uma solução. E a maneira de se escrever essas soluções podem ser dadas por construções utilizando régua e compasso.

Construção euclidiana

Para os matemáticos gregos solucionar um problema, provar uma proposição ou teorema era equivalente a construir, geometricamente, uma solução. E a maneira de se escrever essas soluções podem ser dadas por construções utilizando régua e compasso.

A régua utilizada não é graduada, apenas permite traçar uma reta passando por dois pontos ou estender uma reta dada. O compasso é utilizado para traçar circunferências dado um centro (ponta seca) e um raio (abertura do compasso), mas também pode ser utilizado para transportar segmentos.

Na prática estaremos utilizando os seguintes axiomas euclidianos:

Sejam A e B dois pontos distintos. Podemos traçar uma única reta que passa por A e B.

Na prática estaremos utilizando os seguintes axiomas euclidianos:

Sejam A e B dois pontos distintos. Podemos traçar uma única reta que passa por A e B.

Dado um segmento de medida r e um ponto C, traçamos uma circunferência de raio r e centro em C.

A partir desses axiomas podemos começar com algumas construções básicas.

1 Sejam r uma reta e A um ponto, podemos construir uma reta g, que contêm o ponto A e é perpendicular à reta r.

A partir desses axiomas podemos começar com algumas construções básicas.

- 1 Sejam r uma reta e A um ponto, podemos construir uma reta g, que contêm o ponto A e é perpendicular à reta r.
- 2 Sejam r uma reta e A um ponto exterior à r, podemos construir uma reta g, que contêm o ponto A e é paralela à reta r.

A partir desses axiomas podemos começar com algumas construções básicas.

- 1 Sejam r uma reta e A um ponto, podemos construir uma reta g, que contêm o ponto A e é perpendicular à reta r.
- 2 Sejam r uma reta e A um ponto exterior à r, podemos construir uma reta g, que contêm o ponto A e é paralela à reta r.
- 3 Seja α um ângulo, podemos dividir α em dois ângulos congruentes.

Um segmento é **construtível** se pode ser obtido a partir de um número finito de construções utilizando os dois axiomas mencionados.

Um segmento é **construtível** se pode ser obtido a partir de um número finito de construções utilizando os dois axiomas mencionados.

Definição

Um número real x é dito **construtível** se: x=0 ou se existe um segmento de medida |x| construtível. Tudo a partir de uma unidade pré-definida.

Um segmento é **construtível** se pode ser obtido a partir de um número finito de construções utilizando os dois axiomas mencionados.

Definição

Um número real x é dito **construtível** se: x=0 ou se existe um segmento de medida |x| construtível. Tudo a partir de uma unidade pré-definida.

• Seja $n \in \mathbb{Z}$, então é construtível e 1/n é construtível.

Um segmento é **construtível** se pode ser obtido a partir de um número finito de construções utilizando os dois axiomas mencionados.

Definição

Um número real x é dito **construtível** se: x=0 ou se existe um segmento de medida |x| construtível. Tudo a partir de uma unidade pré-definida.

- Seja $n \in \mathbb{Z}$, então é construtível e 1/n é construtível.
- Sejam a e b dois números construtíveis, então a+b, a-b e ab são números construtíveis.

Um segmento é **construtível** se pode ser obtido a partir de um número finito de construções utilizando os dois axiomas mencionados.

Definição

Um número real x é dito **construtível** se: x=0 ou se existe um segmento de medida |x| construtível. Tudo a partir de uma unidade pré-definida.

- Seja $n \in \mathbb{Z}$, então é construtível e 1/n é construtível.
- Sejam a e b dois números construtíveis, então a+b, a-b e ab são números construtíveis.
- Se a é um número construtível, então \sqrt{a} também é.

Seja $C = \{x \in \mathbb{R}; x \text{ \'e um n\'umero construt\'ivel}\}.$

Seja $\mathcal{C} = \{x \in \mathbb{R}; x \text{ \'e um n\'umero construt\'ivel}\}.$ Dado o fato de que

- $1 \in \mathcal{C}$;
- se $a,b\in\mathcal{C}$, então $a\pm b\in\mathcal{C}$, $ab\in\mathcal{C}$ e $\frac{a}{b}\in\mathcal{C}$.

Concluímos que $\mathcal C$ é um corpo, e mais ainda $\mathbb Q\subseteq\mathcal C.$

Seja $\mathcal{C} = \{x \in \mathbb{R}; x \text{ \'e um n\'umero construt\'ivel}\}.$ Dado o fato de que

- $1 \in \mathcal{C}$;
- se $a,b\in\mathcal{C}$, então $a\pm b\in\mathcal{C}$, $ab\in\mathcal{C}$ e $\frac{a}{b}\in\mathcal{C}$.

Concluímos que $\mathcal C$ é um corpo, e mais ainda $\mathbb Q\subseteq\mathcal C.$

O ambiente mais natural para considerar as construções que fazemos é o plano, mais ainda, podemos pensar $\mathcal{C}\subseteq\mathbb{C}$.

Seja $\mathcal{C} = \{x \in \mathbb{R}; x \text{ \'e um n\'umero construt\'ivel}\}.$ Dado o fato de que

- $1 \in \mathcal{C}$;
- se $a,b\in\mathcal{C}$, então $a\pm b\in\mathcal{C}$, $ab\in\mathcal{C}$ e $\frac{a}{b}\in\mathcal{C}$.

Concluímos que $\mathcal C$ é um corpo, e mais ainda $\mathbb Q\subseteq\mathcal C.$

O ambiente mais natural para considerar as construções que fazemos é o plano, mais ainda, podemos pensar $\mathcal{C}\subseteq\mathbb{C}$.

Definição

Seja $z \in \mathbb{C}$, dizemos que é um **número construtível** se z=0 ou se o segmento definido por z é construtível.

- z é um número construtível,
- a e b são números construtíveis,
- |z| é um número construtível e o argumento de z é um ângulo construtível.

- z é um número construtível,
- a e b são números construtíveis,
- |z| é um número construtível e o argumento de z é um ângulo construtível.

Tome z = a + ib e w = c + id dois números complexos:

- z é um número construtível,
- a e b são números construtíveis,
- |z| é um número construtível e o argumento de z é um ângulo construtível.

Tome z = a + ib e w = c + id dois números complexos:

• $z \pm w = (a \pm c) + i(b \pm d)$,

- z é um número construtível,
- a e b são números construtíveis,
- |z| é um número construtível e o argumento de z é um ângulo construtível.

Tome z = a + ib e w = c + id dois números complexos:

- $z \pm w = (a \pm c) + i(b \pm d)$,
- zw = (a+ib)(c+id) = (ac-bd) + i(ad+bc),

- z é um número construtível,
- a e b são números construtíveis,
- \bullet |z| é um número construtível e o argumento de z é um ângulo construtível.

Tome z = a + ib e w = c + id dois números complexos:

- $z \pm w = (a \pm c) + i(b \pm d)$,
- zw = (a+ib)(c+id) = (ac-bd) + i(ad+bc),
- $\bullet \ \frac{z}{w} = \frac{a+ib}{c+id} = \left(\frac{ac+bd}{c^2+d^2}\right) + i\left(\frac{bc-ad}{c^2+d^2}\right).$

- z é um número construtível,
- a e b são números construtíveis,
- \bullet |z| é um número construtível e o argumento de z é um ângulo construtível.

Tome z = a + ib e w = c + id dois números complexos:

- $z \pm w = (a \pm c) + i(b \pm d)$,
- zw = (a+ib)(c+id) = (ac-bd) + i(ad+bc),
- $\bullet \ \frac{z}{w} = \frac{a+ib}{c+id} = \left(\frac{ac+bd}{c^2+d^2}\right) + i\left(\frac{bc-ad}{c^2+d^2}\right).$

Se z e w são construtíveis, então $z\pm w$, zw e $\frac{z}{w}$ também são.

Sejam z e w números complexos, e suas formas polares $z=|z|\big(cos(\theta)+isen(\theta)\big)$ e $w=|w|\big(cos(\alpha)+isen(\alpha)\big)$

Sejam z e w números complexos, e suas formas polares $z=|z|\big(cos(\theta)+isen(\theta)\big)$ e $w=|w|\big(cos(\alpha)+isen(\alpha)\big)$ $zw=|z|\big(cos(\theta)+isen(\theta)\big)|w|\big(cos(\alpha)+isen(\alpha)\big)$

$$= |z||w|(\cos(\theta) + i\sin(\theta))(\cos(\alpha) + i\sin(\alpha))$$

Sejam z e w números complexos, e suas formas polares $z=|z|\big(cos(\theta)+isen(\theta)\big)$ e $w=|w|\big(cos(\alpha)+isen(\alpha)\big)$

$$zw = |z|(\cos(\theta) + isen(\theta))|w|(\cos(\alpha) + isen(\alpha))$$

$$= |z||w|(\cos(\theta) + isen(\theta))(\cos(\alpha) + isen(\alpha))$$

$$= |z||w|(\cos(\theta)\cos(\alpha) - sen(\theta)sen(\alpha))$$

$$+(sen(\theta)\cos(\alpha) + sen(\alpha)\cos(\theta))$$

$$= |z||w|(\cos(\theta + \alpha)) + i(sen(\theta + \alpha))$$

Sejam z e w números complexos, e suas formas polares

$$z = |z| (cos(\theta) + isen(\theta))$$
 e $w = |w| (cos(\alpha) + isen(\alpha))$

$$zw = |z|(\cos(\theta) + isen(\theta))|w|(\cos(\alpha) + isen(\alpha))$$

$$= |z||w|(\cos(\theta) + isen(\theta))(\cos(\alpha) + isen(\alpha))$$

$$= |z||w|(\cos(\theta)\cos(\alpha) - sen(\theta)sen(\alpha))$$

$$+(sen(\theta)\cos(\alpha) + sen(\alpha)\cos(\theta))$$

$$= |z||w|(\cos(\theta + \alpha)) + i(sen(\theta + \alpha))$$

Se $z = |z|(cos(\theta) + isen(\theta))$ é um número construtível, então

$$\sqrt{z} = \sqrt{|z|} \left(\cos\left(\frac{\theta}{2}\right) + i \sin\left(\frac{\theta}{2}\right) \right)$$

também é.

Polígonos e números construtíveis Algebrização

Dado a natureza dos processos de construções euclidianas, vemos que $\mathcal C$ é um subcorpo de $\mathbb C$ que contêm $\mathbb Q$, em outras palavras $\mathcal C\supseteq \mathbb Q$.

Definição

Sejam \mathbb{K} e \mathbb{F} dois corpos, se \mathbb{K} é um subcorpo de \mathbb{F} , dizemos que \mathbb{F} é uma **extensão** de \mathbb{K} e escrevemos $\mathbb{F}|\mathbb{K}$.

Definição

Sejam \mathbb{K} e \mathbb{F} dois corpos, se \mathbb{K} é um subcorpo de \mathbb{F} , dizemos que \mathbb{F} é uma **extensão** de \mathbb{K} e escrevemos $\mathbb{F}|\mathbb{K}$.

• $\mathbb{R}|\mathbb{Q}$, $\mathbb{C}|\mathbb{Q}$ e $\mathbb{C}|\mathbb{R}$.

Definição

Sejam \mathbb{K} e \mathbb{F} dois corpos, se \mathbb{K} é um subcorpo de \mathbb{F} , dizemos que \mathbb{F} é uma **extensão** de \mathbb{K} e escrevemos $\mathbb{F}|\mathbb{K}$.

- $\mathbb{R}|\mathbb{Q}$, $\mathbb{C}|\mathbb{Q}$ e $\mathbb{C}|\mathbb{R}$.
- $\begin{array}{l} \bullet \ \ \mathsf{Defina} \ \mathbb{Q}(\sqrt{2}) = \{a + \sqrt{2}b \mid a,b \in \mathbb{Q}\} \ \mathsf{e} \\ \mathbb{Q}(i) = \{a + ib \mid a,b \in \mathbb{Q}\}. \ \mathsf{Ent\~{ao}} \ \mathbb{Q}(\sqrt{2})|\mathbb{Q} \ \mathsf{e} \ \mathbb{Q}(i)|\mathbb{Q}. \end{array}$

Definição

Sejam \mathbb{K} e \mathbb{F} dois corpos, se \mathbb{K} é um subcorpo de \mathbb{F} , dizemos que \mathbb{F} é uma **extensão** de \mathbb{K} e escrevemos $\mathbb{F}|\mathbb{K}$.

- $\mathbb{R}|\mathbb{Q}$, $\mathbb{C}|\mathbb{Q}$ e $\mathbb{C}|\mathbb{R}$.
- $\begin{array}{l} \bullet \ \ \mathsf{Defina} \ \mathbb{Q}(\sqrt{2}) = \{a + \sqrt{2}b \mid a,b \in \mathbb{Q}\} \ \mathsf{e} \\ \mathbb{Q}(i) = \{a + ib \mid a,b \in \mathbb{Q}\}. \ \mathsf{Ent\~{ao}} \ \mathbb{Q}(\sqrt{2})|\mathbb{Q} \ \mathsf{e} \ \mathbb{Q}(i)|\mathbb{Q}. \end{array}$

Seja $\mathbb{F}|\mathbb{K}$, então podemos compreender \mathbb{F} como um \mathbb{K} -espaço vetorial e nessas circunstâncias definimos $[\mathbb{F}:\mathbb{K}]:=\dim_{\mathbb{K}}\mathbb{F}$.

Definição

Sejam \mathbb{K} e \mathbb{F} dois corpos, se \mathbb{K} é um subcorpo de \mathbb{F} , dizemos que \mathbb{F} é uma **extensão** de \mathbb{K} e escrevemos $\mathbb{F}|\mathbb{K}$.

- $\mathbb{R}|\mathbb{Q}$, $\mathbb{C}|\mathbb{Q}$ e $\mathbb{C}|\mathbb{R}$.
- $\begin{array}{l} \bullet \ \ \mathsf{Defina} \ \mathbb{Q}(\sqrt{2}) = \{a + \sqrt{2}b \mid a,b \in \mathbb{Q}\} \ \mathsf{e} \\ \mathbb{Q}(i) = \{a + ib \mid a,b \in \mathbb{Q}\}. \ \mathsf{Ent\~{ao}} \ \mathbb{Q}(\sqrt{2})|\mathbb{Q} \ \mathsf{e} \ \mathbb{Q}(i)|\mathbb{Q}. \end{array}$

Seja $\mathbb{F}|\mathbb{K}$, então podemos compreender \mathbb{F} como um \mathbb{K} -espaço vetorial e nessas circunstâncias definimos $[\mathbb{F}:\mathbb{K}]:=\dim_{\mathbb{K}}\mathbb{F}$.

• $[\mathbb{C}:\mathbb{R}]=2$ e $[\mathbb{Q}(i):\mathbb{Q}]=2$.

Suponha agora que $[\mathbb{F}:\mathbb{K}]<\infty$, tome $\alpha\in\mathbb{F}\setminus\mathbb{K}$, então $\{1,\alpha\}\subseteq\mathbb{F}$ é um conjunto LI em relação à \mathbb{K} .

Suponha agora que $[\mathbb{F}:\mathbb{K}]<\infty$, tome $\alpha\in\mathbb{F}\setminus\mathbb{K}$, então $\{1,\alpha\}\subseteq\mathbb{F}$ é um conjunto LI em relação à \mathbb{K} . Tome $\{1,\alpha,\alpha^2,...\}$, que é um conjunto LD,

$$a_0 + a_1 \alpha + a_2 \alpha^2 + \dots + a_n \alpha^n = 0,$$

$$a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_n\alpha^n = 0,$$

e com isso α é raiz do polinômio $a_0 + a_1x + ... + a_nx^n \in \mathbb{K}[x]$.

$$a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_n\alpha^n = 0,$$

e com isso α é raiz do polinômio $a_0 + a_1x + ... + a_nx^n \in \mathbb{K}[x]$.

• Dados $\mathbb{F}|\mathbb{K}$ e $\alpha \in \mathbb{F}$, dizemos que α é algébrico sobre \mathbb{K} se α é raiz de um polinômio não nulo em $\mathbb{K}[x]$.

$$a_0 + a_1 \alpha + a_2 \alpha^2 + \dots + a_n \alpha^n = 0,$$

e com isso α é raiz do polinômio $a_0 + a_1x + ... + a_nx^n \in \mathbb{K}[x]$.

- Dados $\mathbb{F}|\mathbb{K}$ e $\alpha \in \mathbb{F}$, dizemos que α é algébrico sobre \mathbb{K} se α é raiz de um polinômio não nulo em $\mathbb{K}[x]$.
- Se ainda todos os elementos $\alpha \in \mathbb{F}$ forem algébricos sobre \mathbb{K} , diremos que $\mathbb{F}|\mathbb{K}$ é uma **extensão algébrica**.

Se $z \in \mathcal{C}$ é algébrico sobre \mathbb{Q} , diremos apenas que z é algébrico.

• $\sqrt{2}$ e $\sqrt[3]{\sqrt{2}-\sqrt{5}}$, são algébricos, mas π não.

Seja α um número algébrico, então existe $m_{\alpha}(x) \in \mathbb{Q}$ um polinômio mônico (coeficiente líder é 1) de menor grau, tal que $m_{\alpha}(\alpha)=0$. Tal polinômio é chamado de **polinômio** minimal de α .

Seja α um número algébrico, então existe $m_{\alpha}(x) \in \mathbb{Q}$ um polinômio mônico (coeficiente líder é 1) de menor grau, tal que $m_{\alpha}(\alpha)=0$. Tal polinômio é chamado de **polinômio** minimal de α .

Proposição

Sejam $\mathbb{F}|\mathbb{K}$, $\alpha\in\mathbb{F}$ e $p(x)\in\mathbb{K}[x]$ mônico, tal que $p(\alpha)=0$. Então são equivalentes:

- p(x) é o polinômio minimal de α ,
- ullet se $q(x) \in \mathbb{K}[x]$, tal que $q(\alpha) = 0$, então p(x)|q(x),
- p(x) é irredutível.

Proposição

Sejam $\mathbb{F}|\mathbb{K}$ e $\alpha\in\mathbb{F}$ algébrico sobre \mathbb{K} . Se $n=\partial(m_{\alpha})$, então $[\mathbb{K}(\alpha):\mathbb{K}]=n$ e $\{1,\alpha,\alpha^2,...,\alpha^{n-1}\}$ é uma base de $\mathbb{K}(\alpha)$ sobre \mathbb{K} .

Exemplos: $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] = 3 \text{ e } [\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}] = 4.$

Proposição

Sejam $\mathbb{F}|\mathbb{K}$ e $\alpha\in\mathbb{F}$ algébrico sobre \mathbb{K} . Se $n=\partial(m_{\alpha})$, então $[\mathbb{K}(\alpha):\mathbb{K}]=n$ e $\{1,\alpha,\alpha^2,...,\alpha^{n-1}\}$ é uma base de $\mathbb{K}(\alpha)$ sobre \mathbb{K} .

Exemplos: $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$ e $[\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}]=4$. Vamos calcular $[\mathbb{Q}(\sqrt{2}-\sqrt{3}):\mathbb{Q}]$, primeiro tome

$$\sqrt{2} - \sqrt{3} = x$$

Proposição

Sejam $\mathbb{F}|\mathbb{K}$ e $\alpha\in\mathbb{F}$ algébrico sobre \mathbb{K} . Se $n=\partial(m_{\alpha})$, então $[\mathbb{K}(\alpha):\mathbb{K}]=n$ e $\{1,\alpha,\alpha^2,...,\alpha^{n-1}\}$ é uma base de $\mathbb{K}(\alpha)$ sobre \mathbb{K} .

Exemplos: $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$ e $[\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}]=4$. Vamos calcular $[\mathbb{Q}(\sqrt{2}-\sqrt{3}):\mathbb{Q}]$, primeiro tome

$$\sqrt{2} - \sqrt{3} = x \Rightarrow 5 - 2\sqrt{6} = x^2$$

Proposição

Sejam $\mathbb{F}|\mathbb{K}$ e $\alpha\in\mathbb{F}$ algébrico sobre \mathbb{K} . Se $n=\partial(m_{\alpha})$, então $[\mathbb{K}(\alpha):\mathbb{K}]=n$ e $\{1,\alpha,\alpha^2,...,\alpha^{n-1}\}$ é uma base de $\mathbb{K}(\alpha)$ sobre \mathbb{K} .

Exemplos: $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$ e $[\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}]=4$. Vamos calcular $[\mathbb{Q}(\sqrt{2}-\sqrt{3}):\mathbb{Q}]$, primeiro tome

$$\sqrt{2} - \sqrt{3} = x \Rightarrow 5 - 2\sqrt{6} = x^2 \Rightarrow -2\sqrt{6} = x^2 - 5$$

 $\Rightarrow 24 = x^4 - 10x^2 + 25$

Então $\sqrt{2} - \sqrt{3}$ é raiz de $x^4 - 10x^2 + 1$,

Proposição

Sejam $\mathbb{F}|\mathbb{K}$ e $\alpha\in\mathbb{F}$ algébrico sobre \mathbb{K} . Se $n=\partial(m_{\alpha})$, então $[\mathbb{K}(\alpha):\mathbb{K}]=n$ e $\{1,\alpha,\alpha^2,...,\alpha^{n-1}\}$ é uma base de $\mathbb{K}(\alpha)$ sobre \mathbb{K} .

Exemplos: $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$ e $[\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}]=4$. Vamos calcular $[\mathbb{Q}(\sqrt{2}-\sqrt{3}):\mathbb{Q}]$, primeiro tome

$$\sqrt{2} - \sqrt{3} = x \Rightarrow 5 - 2\sqrt{6} = x^2 \Rightarrow -2\sqrt{6} = x^2 - 5$$

 $\Rightarrow 24 = x^4 - 10x^2 + 25$

Então $\sqrt{2}-\sqrt{3}$ é raiz de x^4-10x^2+1 ,que é irredutível, e portanto $[\mathbb{Q}(\sqrt{2}-\sqrt{3}):\mathbb{Q}]=4$.

Sejam $\mathbb{F}|\mathbb{K}$ e $\mathbb{K}|\mathbb{L}$ duas extensões finitas, então a extensão $\mathbb{F}|\mathbb{L}$ é finita e

$$[\mathbb{F}:\mathbb{L}] = [\mathbb{L}:\mathbb{K}][\mathbb{K}:\mathbb{F}].$$

Sejam $\mathbb{F}|\mathbb{K}$ e $\mathbb{K}|\mathbb{L}$ duas extensões finitas, então a extensão $\mathbb{F}|\mathbb{L}$ é finita e

$$[\mathbb{F}:\mathbb{L}]=[\mathbb{L}:\mathbb{K}][\mathbb{K}:\mathbb{F}].$$

Sejam $\mathbb{F}|\mathbb{K}$ e $\alpha_1\in\mathbb{F}\setminus\mathbb{K}$, podemos então considerar a extensão $\mathbb{K}(\alpha_1)$.

Sejam $\mathbb{F}|\mathbb{K}$ e $\mathbb{K}|\mathbb{L}$ duas extensões finitas, então a extensão $\mathbb{F}|\mathbb{L}$ é finita e

$$[\mathbb{F}:\mathbb{L}]=[\mathbb{L}:\mathbb{K}][\mathbb{K}:\mathbb{F}].$$

Sejam $\mathbb{F}|\mathbb{K}$ e $\alpha_1\in\mathbb{F}\setminus\mathbb{K}$, podemos então considerar a extensão $\mathbb{K}(\alpha_1)$. Tome agora $\alpha_2\in\mathbb{F}\setminus\mathbb{K}(\alpha_1)$, então podemos fazer a extensão

$$\mathbb{K}(\alpha_1, \alpha_2) := \mathbb{K}(\alpha_1)(\alpha_2).$$

Sejam $\mathbb{F}|\mathbb{K}$ e $\mathbb{K}|\mathbb{L}$ duas extensões finitas, então a extensão $\mathbb{F}|\mathbb{L}$ é finita e

$$[\mathbb{F}:\mathbb{L}]=[\mathbb{L}:\mathbb{K}][\mathbb{K}:\mathbb{F}].$$

Sejam $\mathbb{F}|\mathbb{K}$ e $\alpha_1 \in \mathbb{F} \setminus \mathbb{K}$, podemos então considerar a extensão $\mathbb{K}(\alpha_1)$. Tome agora $\alpha_2 \in \mathbb{F} \setminus \mathbb{K}(\alpha_1)$, então podemos fazer a extensão

$$\mathbb{K}(\alpha_1, \alpha_2) := \mathbb{K}(\alpha_1)(\alpha_2).$$

Note que

$$\begin{array}{ll} [\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}] & = & [\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}):\mathbb{Q}] \\ & \leq & (2)(2) \end{array}$$

mas $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$, logo $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}]=2$.

Voltando ao problema de determinar se um número $z\in\mathbb{C}$ é construtível ou não.

Voltando ao problema de determinar se um número $z\in\mathbb{C}$ é construtível ou não. Podemos dizer que $z\in\mathbb{C}\setminus 0$ é um número construtível se existir uma sequência de pontos $1=z_0,z_1,...,z_s\in\mathbb{C}$, onde $z_s=z$ e cada $z_j,\,j\geq 1$, é obtido por meio de construções com régua e compasso envolvendo os pontos $z_1,...,z_{j-1}$.

Voltando ao problema de determinar se um número $z\in\mathbb{C}$ é construtível ou não. Podemos dizer que $z\in\mathbb{C}\setminus 0$ é um número construtível se existir uma sequência de pontos

 $1=z_0,z_1,...,z_s\in\mathbb{C}$, onde $z_s=z$ e cada $z_j,\,j\geq 1$, é obtido por meio de construções com régua e compasso envolvendo os pontos $z_1,...,z_{j-1}$.

Suponha que $z\in\mathcal{C}$, então temos a sequência de números construtíveis $1=z_0,z_1,...,z_{s-1}$ e $z_s=z$. Vamos avaliar os graus das extensões

$$\mathbb{Q}(z_1)|\mathbb{Q}, \mathbb{Q}(z_1, z_2)|\mathbb{Q}(z_1), ..., \mathbb{Q}(z_1, ..., z_s)|\mathbb{Q}(z_1, ..., z_{s-1}).$$

Para simplificar vamos denotar $\mathbb{K}_j := \mathbb{Q}(z_1,...,z_j)$, com $j \geq 2$.

Cada uma das extensões $\mathbb{K}_j|\mathbb{K}_{j-1}$, j=3,...,s, tem grau um, dois ou quatro.

Cada uma das extensões $\mathbb{K}_j|\mathbb{K}_{j-1}$, j=3,...,s, tem grau um, dois ou quatro.

Corolário

$$[\mathbb{K}_s:\mathbb{Q}]=2^k$$
, para algum $k=0,1,2,...$

Note que
$$[\mathbb{K}_s : \mathbb{Q}] = [\mathbb{K}_s : \mathbb{K}_{s-1}][\mathbb{K}_{s-1} : \mathbb{K}_{s-1}]...[\mathbb{K}_1 : \mathbb{Q}].$$

Cada uma das extensões $\mathbb{K}_j|\mathbb{K}_{j-1}$, j=3,...,s, tem grau um, dois ou quatro.

Corolário

$$[\mathbb{K}_s:\mathbb{Q}]=2^k$$
, para algum $k=0,1,2,...$

Note que $[\mathbb{K}_s : \mathbb{Q}] = [\mathbb{K}_s : \mathbb{K}_{s-1}][\mathbb{K}_{s-1} : \mathbb{K}_{s-1}]...[\mathbb{K}_1 : \mathbb{Q}].$

Teorema

Seja $z \in \mathcal{C}$, então z é um número algébrico e $\partial(m_z(x)) = 2^k$, para algum $k \geq 0$.

•
$$[\cos(\theta) + i\sin(\theta)][\cos(\alpha) + i\sin(\alpha)] = \cos(\theta + \alpha) + i(\theta + \alpha)$$
.

•
$$[\cos(\theta) + i\sin(\theta)][\cos(\alpha) + i\sin(\alpha)] = \cos(\theta + \alpha) + i(\theta + \alpha).$$

$$\Rightarrow [\cos(\theta) + i\sin(\theta)]^n = \cos(n\theta) + i\sin(n\theta).$$

•
$$[\cos(\theta) + i\sin(\theta)][\cos(\alpha) + i\sin(\alpha)] = \cos(\theta + \alpha) + i(\theta + \alpha).$$

$$\Rightarrow [\cos(\theta) + i\sin(\theta)]^n = \cos(n\theta) + i\sin(n\theta).$$

$$\begin{split} & \operatorname{Ent\tilde{ao}} \, \cos(\theta) + i sen(\theta) = \left(\cos\left(\frac{\theta}{3}\right) + i sen\left(\frac{\theta}{3}\right)\right)^3 \\ & \cos(\theta) + i sen(\theta) = \\ & \cos^3\left(\frac{\theta}{3}\right) + 2i cos^2\left(\frac{\theta}{3}\right) sen\left(\frac{\theta}{3}\right) - 3cos\left(\frac{\theta}{3}\right) sen\left(\frac{\theta}{3}\right) - i sen\left(\frac{\theta}{3}\right) \end{split}$$

•
$$[\cos(\theta) + i\sin(\theta)][\cos(\alpha) + i\sin(\alpha)] = \cos(\theta + \alpha) + i(\theta + \alpha).$$

$$\Rightarrow [\cos(\theta) + i\sin(\theta)]^n = \cos(n\theta) + i\sin(n\theta).$$

Então
$$cos(\theta) + isen(\theta) = \left(cos\left(\frac{\theta}{3}\right) + isen\left(\frac{\theta}{3}\right)\right)^3$$

$$cos(\theta) + isen(\theta) = cos^3\left(\frac{\theta}{3}\right) + 2icos^2\left(\frac{\theta}{3}\right)sen\left(\frac{\theta}{3}\right) - 3cos\left(\frac{\theta}{3}\right)sen\left(\frac{\theta}{3}\right) - isen\left(\frac{\theta}{3}\right)$$

Comparando as partes reais da equação, $cos(\theta/3)$ é raiz do polinômio $4x^3-3x-cos(\theta)$.

•
$$[\cos(\theta) + i\sin(\theta)][\cos(\alpha) + i\sin(\alpha)] = \cos(\theta + \alpha) + i(\theta + \alpha).$$

$$\Rightarrow [\cos(\theta) + i\sin(\theta)]^n = \cos(n\theta) + i\sin(n\theta).$$

$$\begin{split} & \operatorname{Ent\tilde{ao}} \, \cos(\theta) + i sen(\theta) = \left(\cos\left(\frac{\theta}{3}\right) + i sen\left(\frac{\theta}{3}\right)\right)^3 \\ & \cos(\theta) + i sen(\theta) = \\ & \cos^3\left(\frac{\theta}{3}\right) + 2i cos^2\left(\frac{\theta}{3}\right) sen\left(\frac{\theta}{3}\right) - 3cos\left(\frac{\theta}{3}\right) sen\left(\frac{\theta}{3}\right) - i sen\left(\frac{\theta}{3}\right) \end{split}$$

Comparando as partes reais da equação, $cos(\theta/3)$ é raiz do polinômio $4x^3-3x-cos(\theta)$.

Tome $\theta=\pi/3$. Então $\cos\left(\frac{\pi}{9}\right)$ é raiz do polinômio $4x^3-3x-1/2$, ou ainda de $8x^3-3x-1$, que é irredutível, logo é o polinômio minimal de $\cos\left(\frac{\pi}{9}\right)$.

•
$$[\cos(\theta) + i\sin(\theta)][\cos(\alpha) + i\sin(\alpha)] = \cos(\theta + \alpha) + i(\theta + \alpha).$$

$$\Rightarrow [\cos(\theta) + i\sin(\theta)]^n = \cos(n\theta) + i\sin(n\theta).$$

$$\begin{split} & \operatorname{Ent\tilde{ao}} \, \cos(\theta) + i sen(\theta) = \left(\cos\left(\frac{\theta}{3}\right) + i sen\left(\frac{\theta}{3}\right)\right)^3 \\ & \cos(\theta) + i sen(\theta) = \\ & \cos^3\left(\frac{\theta}{3}\right) + 2i cos^2\left(\frac{\theta}{3}\right) sen\left(\frac{\theta}{3}\right) - 3cos\left(\frac{\theta}{3}\right) sen\left(\frac{\theta}{3}\right) - i sen\left(\frac{\theta}{3}\right) \end{split}$$

Comparando as partes reais da equação, $cos(\theta/3)$ é raiz do polinômio $4x^3-3x-cos(\theta)$.

Tome $\theta=\pi/3$. Então $\cos\left(\frac{\pi}{9}\right)$ é raiz do polinômio $4x^3-3x-1/2$, ou ainda de $8x^3-3x-1$, que é irredutível, logo é o polinômio minimal de $\cos\left(\frac{\pi}{9}\right)$. E assim $\cos\left(\frac{\pi}{9}\right)$ não é construtível.

Polígonos e números construtíveis Construções de polígonos

Utilizando apenas régua e compasso, vamos construir um

• Triângulo, Quadrado e Hexágono regulares.

- Triângulo, Quadrado e Hexágono regulares.
- ullet Caso do pentágono, para isso, vamos calcular $cos\left(rac{2\pi}{5}
 ight)$.

- Triângulo, Quadrado e Hexágono regulares.
- ullet Caso do pentágono, para isso, vamos calcular $cos\left(rac{2\pi}{5}
 ight)$.

Note que

$$\cos\left(2\frac{2\pi}{5}\right) = \cos\left(2\pi - 2\frac{2\pi}{5}\right) = \cos\left(3\frac{2\pi}{5}\right)$$

- Triângulo, Quadrado e Hexágono regulares.
- ullet Caso do pentágono, para isso, vamos calcular $cos\left(rac{2\pi}{5}
 ight)$.

Note que

$$\cos\left(2\frac{2\pi}{5}\right) = \cos\left(2\pi - 2\frac{2\pi}{5}\right) = \cos\left(3\frac{2\pi}{5}\right)$$
$$\Rightarrow 2\cos^2\left(\frac{2\pi}{5}\right) - 1 = 4\cos^3\left(\frac{2\pi}{5}\right) - 3\cos\left(\frac{2\pi}{5}\right)$$

- Triângulo, Quadrado e Hexágono regulares.
- ullet Caso do pentágono, para isso, vamos calcular $cos\left(rac{2\pi}{5}
 ight)$.

Note que

$$\cos\left(2\frac{2\pi}{5}\right) = \cos\left(2\pi - 2\frac{2\pi}{5}\right) = \cos\left(3\frac{2\pi}{5}\right)$$

$$\Rightarrow 2\cos^2\left(\frac{2\pi}{5}\right) - 1 = 4\cos^3\left(\frac{2\pi}{5}\right) - 3\cos\left(\frac{2\pi}{5}\right)$$

Logo $cos\left(\frac{2\pi}{5}\right)$ é raiz do polinômio $4x^3-2x^2-3x+1$, mas $4x^3-2x^2-3x-1=(x-1)(4x^2+2x-1)$.

- Triângulo, Quadrado e Hexágono regulares.
- ullet Caso do pentágono, para isso, vamos calcular $cos\left(rac{2\pi}{5}
 ight)$.

Note que

$$\cos\left(2\frac{2\pi}{5}\right) = \cos\left(2\pi - 2\frac{2\pi}{5}\right) = \cos\left(3\frac{2\pi}{5}\right)$$

$$\Rightarrow 2\cos^2\left(\frac{2\pi}{5}\right) - 1 = 4\cos^3\left(\frac{2\pi}{5}\right) - 3\cos\left(\frac{2\pi}{5}\right)$$

Logo $cos\left(\frac{2\pi}{5}\right)$ é raiz do polinômio $4x^3-2x^2-3x+1$, mas $4x^3-2x^2-3x-1=(x-1)(4x^2+2x-1)$. Avaliando as raízes de $4x^2+2x-1$, concluímos que $cos\left(\frac{2\pi}{5}\right)=\frac{1}{4}\left(\sqrt{5}-1\right)$

- Triângulo, Quadrado e Hexágono regulares.
- ullet Caso do pentágono, para isso, vamos calcular $cos\left(rac{2\pi}{5}
 ight)$.

Note que

$$\cos\left(2\frac{2\pi}{5}\right) = \cos\left(2\pi - 2\frac{2\pi}{5}\right) = \cos\left(3\frac{2\pi}{5}\right)$$

$$\Rightarrow 2\cos^2\left(\frac{2\pi}{5}\right) - 1 = 4\cos^3\left(\frac{2\pi}{5}\right) - 3\cos\left(\frac{2\pi}{5}\right)$$

Logo $cos\left(\frac{2\pi}{5}\right)$ é raiz do polinômio $4x^3-2x^2-3x+1$, mas $4x^3-2x^2-3x-1=(x-1)(4x^2+2x-1)$. Avaliando as raízes de $4x^2+2x-1$, concluímos que $cos\left(\frac{2\pi}{5}\right)=\frac{1}{4}\left(\sqrt{5}-1\right)$

• Se $a, b, c \in \mathcal{C}$, então todas as raízes de $ax^2 + bx + c$ são construtíveis.

Como vimos, a construção de um polígono regular é equivalente a construir um número complexo, mais especificamente

• Para construir o polígono de n lados precisamos construir o número complexo $z = cos\left(\frac{2\pi}{n}\right) + isen\left(\frac{2\pi}{n}\right)$.

Como vimos, a construção de um polígono regular é equivalente a construir um número complexo, mais especificamente

- Para construir o polígono de n lados precisamos construir o número complexo $z = cos\left(\frac{2\pi}{n}\right) + isen\left(\frac{2\pi}{n}\right)$.
- Utilizando a fórmula de Euler: $e^{i\theta}=cos(\theta)+isen(\theta)$. Queremos estudar os seguintes números complexos

$$z = e^{\frac{2\pi}{n}i}$$

Como vimos, a construção de um polígono regular é equivalente a construir um número complexo, mais especificamente

- Para construir o polígono de n lados precisamos construir o número complexo $z = cos\left(\frac{2\pi}{n}\right) + isen\left(\frac{2\pi}{n}\right)$.
- Utilizando a fórmula de Euler: $e^{i\theta}=cos(\theta)+isen(\theta)$. Queremos estudar os seguintes números complexos

$$z = e^{\frac{2\pi}{n}i}$$

Note que $z^n=\left(e^{\frac{2\pi}{n}i}\right)^n=e^{2\pi i}=1$, logo z é raiz do polinômio x^n-1 ,

Como vimos, a construção de um polígono regular é equivalente a construir um número complexo, mais especificamente

- Para construir o polígono de n lados precisamos construir o número complexo $z = cos\left(\frac{2\pi}{n}\right) + isen\left(\frac{2\pi}{n}\right)$.
- Utilizando a fórmula de Euler: $e^{i\theta}=cos(\theta)+isen(\theta)$. Queremos estudar os seguintes números complexos

$$z = e^{\frac{2\pi}{n}i}$$

Note que $z^n=\left(e^{\frac{2\pi}{n}i}\right)^n=e^{2\pi i}=1$, logo z é raiz do polinômio x^n-1 , e

$$x^{n} - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1).$$

Como vimos, a construção de um polígono regular é equivalente a construir um número complexo, mais especificamente

- Para construir o polígono de n lados precisamos construir o número complexo $z = cos\left(\frac{2\pi}{n}\right) + isen\left(\frac{2\pi}{n}\right)$.
- Utilizando a fórmula de Euler: $e^{i\theta}=cos(\theta)+isen(\theta)$. Queremos estudar os seguintes números complexos

$$z = e^{\frac{2\pi}{n}i}$$

Note que $z^n=\left(e^{\frac{2\pi}{n}i}\right)^n=e^{2\pi i}=1$, logo z é raiz do polinômio x^n-1 , e

$$x^{n} - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1).$$

Se n > 1, então z é raiz de $x^{n-1} + x^{n-2} + ... + x + 1$.

• n=6. Denote $z=e^{\frac{2\pi}{6}i}$, então z é raiz de x^6-1 e também de $x^5+x^4+x^3+x^2+x+1$.

$$\Rightarrow x^6 - 1 = (x - 1)(x^3 + 1)(x^2 + x + 1) = (x - 1)(x + 1)(x^2 - x + 1)(x^2 + x + 1),$$

$$\Rightarrow x^6 - 1 = (x - 1)(x^3 + 1)(x^2 + x + 1) = (x - 1)(x + 1)(x^2 - x + 1)(x^2 + x + 1),$$

então z é raiz de x^2-x+1 , e este é irredutível. Portanto $z=e^{\frac{2\pi}{6}i}$ é construtível.

$$\Rightarrow x^6 - 1 = (x - 1)(x^3 + 1)(x^2 + x + 1)$$
$$= (x - 1)(x + 1)(x^2 - x + 1)(x^2 + x + 1),$$

então z é raiz de x^2-x+1 , e este é irredutível. Portanto $z=e^{\frac{2\pi}{6}i}$ é construtível.

• n=5. Denote $z=e^{rac{2\pi}{5}i}$, e z é raiz de x^5-1 , mas

$$x^5 - 1 = (x - 1)(x^4 + x^3 + x^2 + x + 1).$$

$$\Rightarrow x^6 - 1 = (x - 1)(x^3 + 1)(x^2 + x + 1) = (x - 1)(x + 1)(x^2 - x + 1)(x^2 + x + 1),$$

então z é raiz de x^2-x+1 , e este é irredutível. Portanto $z=e^{\frac{2\pi}{6}i}$ é construtível.

• n=5. Denote $z=e^{\frac{2\pi}{5}i}$, e z é raiz de x^5-1 , mas

$$x^5 - 1 = (x - 1)(x^4 + x^3 + x^2 + x + 1).$$

Logo z é raiz de $x^4 + x^3 + x^2 + x + 1$, esse é irredutível, e z é construtível.

Seja $p(x) = a_0 + a_1x + ... + a_nx^n \in \mathbb{Z}[x]$, suponha que exista um número primo p, tal que $p \mid a_0, a_1, ..., a_{n-1}$, $p \nmid a_n$ e $p^2 \nmid a_0$. Então p(x) é irredutível sobre $\mathbb{Q}[x]$.

Seja $p(x)=a_0+a_1x+...+a_nx^n\in\mathbb{Z}[x]$, suponha que exista um número primo p, tal que $p\mid a_0,a_1,...,a_{n-1}$, $p\nmid a_n$ e $p^2\nmid a_0$. Então p(x) é irredutível sobre $\mathbb{Q}[x]$.

• p(x) é irredutível se, e só se, p(x+1) é irredutível.

$$p(x) = g(x)h(x) \Rightarrow p(x+1) = g(x+1)h(x+1)$$

Seja $p(x)=a_0+a_1x+...+a_nx^n\in\mathbb{Z}[x]$, suponha que exista um número primo p, tal que $p\mid a_0,a_1,...,a_{n-1}$, $p\nmid a_n$ e $p^2\nmid a_0$. Então p(x) é irredutível sobre $\mathbb{Q}[x]$.

• p(x) é irredutível se, e só se, p(x+1) é irredutível.

$$p(x) = g(x)h(x) \Rightarrow p(x+1) = g(x+1)h(x+1)$$

 $p(x+1) = g(x)h(x) \Rightarrow p(x) = g(x-1)h(x-1).$

Tome $f(x) = \sum_{k=0}^{p-1} x^k$, com p primo. Note que

$$f(x+1) = \sum_{k=0}^{p-1} (x+1)^k$$

Seja $p(x)=a_0+a_1x+...+a_nx^n\in\mathbb{Z}[x]$, suponha que exista um número primo p, tal que $p\mid a_0,a_1,...,a_{n-1}$, $p\nmid a_n$ e $p^2\nmid a_0$. Então p(x) é irredutível sobre $\mathbb{Q}[x]$.

• p(x) é irredutível se, e só se, p(x+1) é irredutível.

$$p(x) = g(x)h(x) \Rightarrow p(x+1) = g(x+1)h(x+1)$$

 $p(x+1) = g(x)h(x) \Rightarrow p(x) = g(x-1)h(x-1).$

Tome $f(x) = \sum_{k=0}^{p-1} x^k$, com p primo. Note que

$$f(x+1) = \sum_{k=0}^{p-1} (x+1)^k$$

= $x^{p-1} + px^{p-2} + p(p-1)x^{p-3} + \dots + p$,

logo f(x+1) é irredutível e f(x) também.

Tome n=7. Considere $z=e^{\frac{2\pi}{7}i}$, sabemos que z é raiz de $x^6+x^5+x^4+x^3+x^2+x+1$, e esse é irredutível.

Tome n=7. Considere $z=e^{\frac{2\pi}{7}i}$, sabemos que z é raiz de $x^6+x^5+x^4+x^3+x^2+x+1$, e esse é irredutível. Logo z não é construtível e assim o heptágono regular não é construtível com régua e compasso.

Tome n=7. Considere $z=e^{\frac{2\pi}{7}i}$, sabemos que z é raiz de $x^6+x^5+x^4+x^3+x^2+x+1$, e esse é irredutível. Logo z não é construtível e assim o heptágono regular não é construtível com régua e compasso.

• Para que um polígono regular de p lados (com p primo) seja construtível, é necessário que $p-1=2^k$, para algum k.

Tome n=7. Considere $z=e^{\frac{2\pi}{7}i}$, sabemos que z é raiz de $x^6+x^5+x^4+x^3+x^2+x+1$, e esse é irredutível. Logo z não é construtível e assim o heptágono regular não é construtível com régua e compasso.

• Para que um polígono regular de p lados (com p primo) seja construtível, é necessário que $p-1=2^k$, para algum k.

Então os polígonos de 7, 11 e 13 lados não são construtíveis.

Tome n=7. Considere $z=e^{\frac{2\pi}{7}i}$, sabemos que z é raiz de $x^6+x^5+x^4+x^3+x^2+x+1$, e esse é irredutível. Logo z não é construtível e assim o heptágono regular não é construtível com régua e compasso.

• Para que um polígono regular de p lados (com p primo) seja construtível, é necessário que $p-1=2^k$, para algum k.

Então os polígonos de 7, 11 e 13 lados não são construtíveis. O polígono de 17 lados é construtível e foi em 1796 que, aos dezenove anos, Gauss mostrou esse fato.

Se $2^k + 1$ é um número primo, então $k = 2^n$ para algum $n \ge 0$.

Se $2^k + 1$ é um número primo, então $k = 2^n$ para algum $n \ge 0$. Suponha por absurdo que $k \ne 2^n$ para todo $n \ge 0$, então k deve ter algum fator ímpar s > 1 e n = ts para algum t > 1.

Se 2^k+1 é um número primo, então $k=2^n$ para algum $n\geq 0$. Suponha por absurdo que $k\neq 2^n$ para todo $n\geq 0$, então k deve ter algum fator ímpar s>1 e n=ts para algum $t\geq 1$. Note que

$$2^k + 1 = (2^t)^s + 1$$

Se 2^k+1 é um número primo, então $k=2^n$ para algum $n\geq 0$. Suponha por absurdo que $k\neq 2^n$ para todo $n\geq 0$, então k deve ter algum fator ímpar s>1 e n=ts para algum $t\geq 1$. Note que

$$2^k + 1 = (2^t)^s + 1 = (2^t + 1) \left[(2^t)^{s-1} - (2^t)^{s-2} + \dots - 2^t + 1 \right],$$

como 0 < t < k, então $2 < 2^t + 1 < 2^k + 1$. Com isso $2^k + 1$ tem um fator não trivial e portanto não é um número primo.

Se 2^k+1 é um número primo, então $k=2^n$ para algum $n\geq 0$. Suponha por absurdo que $k\neq 2^n$ para todo $n\geq 0$, então k deve ter algum fator ímpar s>1 e n=ts para algum $t\geq 1$. Note que

$$2^k + 1 = (2^t)^s + 1 = (2^t + 1) \left[(2^t)^{s-1} - (2^t)^{s-2} + \dots - 2^t + 1 \right],$$

como 0 < t < k, então $2 < 2^t + 1 < 2^k + 1$. Com isso $2^k + 1$ tem um fator não trivial e portanto não é um número primo.

Definição

Seja p um número primo da forma $2^{2^n}+1$, para algum $n\geq 0$, então p é dito **primo de Fermat**.

Se 2^k+1 é um número primo, então $k=2^n$ para algum $n\geq 0$. Suponha por absurdo que $k\neq 2^n$ para todo $n\geq 0$, então k deve ter algum fator ímpar s>1 e n=ts para algum $t\geq 1$. Note que

$$2^{k} + 1 = (2^{t})^{s} + 1 = (2^{t} + 1) \left[(2^{t})^{s-1} - (2^{t})^{s-2} + \dots - 2^{t} + 1 \right],$$

como 0 < t < k, então $2 < 2^t + 1 < 2^k + 1$. Com isso $2^k + 1$ tem um fator não trivial e portanto não é um número primo.

Definição

Seja p um número primo da forma $2^{2^n}+1$, para algum $n\geq 0$, então p é dito **primo de Fermat**.

Exemplos: 3, 5, 17, 257 e 65537.

Seja $n \ge 1$, então dizemos que z é uma **raiz** n-ésima da unidade se z é uma raiz de $x^n - 1$.

Denotemos $\mathbb{U}_n := \{z \mid z^n = 1\}.$

Seja $n \ge 1$, então dizemos que z é uma **raiz** n-ésima da unidade se z é uma raiz de $x^n - 1$.

Denotemos $\mathbb{U}_n := \{z \mid z^n = 1\}$. Note que $\mathbb{U}_4 := \{1, i, -1, -i\}$.

Seja $n \ge 1$, então dizemos que z é uma **raiz** n-ésima da unidade se z é uma raiz de $x^n - 1$.

Denotemos $\mathbb{U}_n := \{z \mid z^n = 1\}$. Note que $\mathbb{U}_4 := \{1, i, -1, -i\}$.

Seja $z \in \mathbb{U}_n$, então $1 = |z^n| = |z|^n$, logo |z| = 1.

Seja $n \ge 1$, então dizemos que z é uma **raiz** n-ésima da unidade se z é uma raiz de $x^n - 1$.

Denotemos $\mathbb{U}_n := \{z \mid z^n = 1\}$. Note que $\mathbb{U}_4 := \{1, i, -1, -i\}$.

Seja $z\in\mathbb{U}_n$, então $1=|z^n|=|z|^n$, logo |z|=1. Assim $z=cos(\theta)+isen(\theta)$, e ainda

$$1 = [\cos(\theta) + i sen(\theta)]^n = \cos(n\theta) + i sen(n\theta)$$

$$\text{disso } n\theta = 2\pi k \Rightarrow \theta = \frac{2\pi k}{n} \text{, com } k \in \mathbb{Z}.$$

Seja $n \ge 1$, então dizemos que z é uma **raiz** n-ésima da unidade se z é uma raiz de $x^n - 1$.

Denotemos $\mathbb{U}_n := \{z \mid z^n = 1\}$. Note que $\mathbb{U}_4 := \{1, i, -1, -i\}$.

Seja $z\in\mathbb{U}_n$, então $1=|z^n|=|z|^n$, logo |z|=1. Assim $z=cos(\theta)+isen(\theta)$, e ainda

$$1 = [\cos(\theta) + i\sin(\theta)]^n = \cos(n\theta) + i\sin(n\theta)$$

disso $n\theta=2\pi k\Rightarrow\theta=\frac{2\pi k}{n},$ com $k\in\mathbb{Z}.$ Como sen(x) e cos(x) são 2π periódicos:

$$z^{n} = 1 \Longleftrightarrow z = \cos\left(\frac{2\pi k}{n}\right) + i \operatorname{sen}\left(\frac{2\pi k}{n}\right) = e^{\frac{2\pi k}{n}i},$$

com k = 0, 1, ..., n - 1.

Raízes n-ésimas da unidade

Seja
$$z \in \mathbb{U}_n$$
, então $z = e^{\frac{2\pi k}{n}i}$

Seja
$$z\in\mathbb{U}_n$$
, então $z=e^{\frac{2\pi k}{n}i}=\left(e^{\frac{2\pi}{n}}\right)^k$. Assim $\mathbb{U}_n=\left\{(\omega_n)^k\mid \omega_n=e^{\frac{2\pi}{n}i}
ight\}.$

Seja
$$z\in\mathbb{U}_n$$
, então $z=e^{\frac{2\pi k}{n}i}=\left(e^{\frac{2\pi}{n}}\right)^k$. Assim
$$\mathbb{U}_n=\left\{(\omega_n)^k\mid \omega_n=e^{\frac{2\pi}{n}i}\right\}.$$
 \bullet Seja $z=e^{\theta i}=cos(\theta)+isen(\theta)$,

Seja
$$z\in\mathbb{U}_n$$
, então $z=e^{\frac{2\pi k}{n}i}=\left(e^{\frac{2\pi}{n}}\right)^k$. Assim $\mathbb{U}_n=\left\{(\omega_n)^k\mid \omega_n=e^{\frac{2\pi}{n}i}
ight\}.$

• Seja $z=e^{\theta i}=cos(\theta)+isen(\theta)$, então

$$\overline{z} = cos(\theta) - isen(\theta) = cos(-\theta) + isen(-\theta) = e^{-i\theta}.$$

Logo $z\overline{z}=1$.

Seja
$$z\in\mathbb{U}_n$$
, então $z=e^{\frac{2\pi k}{n}i}=\left(e^{\frac{2\pi}{n}}\right)^k$. Assim $\mathbb{U}_n=\left\{(\omega_n)^k\mid \omega_n=e^{\frac{2\pi}{n}i}\right\}$.

• Seja $z=e^{\theta i}=cos(\theta)+isen(\theta)$, então

$$\overline{z} = \cos(\theta) - i sen(\theta) = \cos(-\theta) + i sen(-\theta) = e^{-i\theta}.$$

Logo $z\overline{z}=1$.

Note que

$$\overline{e^{\frac{2\pi k}{n}i}} = e^{-\frac{2\pi k}{n}i} = e^{\frac{2\pi(n-k)}{n}i}.$$

Seja
$$z\in\mathbb{U}_n$$
, então $z=e^{\frac{2\pi k}{n}i}=\left(e^{\frac{2\pi}{n}}\right)^k$. Assim $\mathbb{U}_n=\left\{(\omega_n)^k\mid \omega_n=e^{\frac{2\pi}{n}i}\right\}$.

• Seja $z=e^{\theta i}=cos(\theta)+isen(\theta)$, então

$$\overline{z} = \cos(\theta) - i \operatorname{sen}(\theta) = \cos(-\theta) + i \operatorname{sen}(-\theta) = e^{-i\theta}.$$

Logo $z\overline{z}=1$.

Note que

$$\overline{e^{\frac{2\pi k}{n}i}} = e^{-\frac{2\pi k}{n}i} = e^{\frac{2\pi(n-k)}{n}i}.$$

• Seja $z \in \mathbb{U}_n$, dizemos que z é uma raiz n-ésima primitiva da unidade se $z^k \neq 1$, para todo 1 < k < n.

Seja γ uma raiz n-ésima primitiva da unidade, então $\mathbb{U}_n=\{\gamma^k\mid k=0,1,...,n-1\}.$

Tome
$$\mathbb{U}_6=\{1,e^{\frac{\pi}{3}i},e^{\frac{2\pi}{3}i},e^{\pi i},e^{\frac{4\pi}{3}i},e^{\frac{5\pi}{3}i}\}$$
, e $\mathbb{U}_3=\{1,e^{\frac{2\pi}{3}i},e^{\frac{4\pi}{3}i}\}$, logo $\mathbb{U}_3\subseteq\mathbb{U}_6$.

$$x^6 - 1 = (x^3 - 1)(x^3 + 1)$$

$$x^{6} - 1 = (x^{3} - 1)(x^{3} + 1) = (x^{3} - 1)(x + 1)(x^{2} - x + 1)$$

$$x^{6} - 1 = (x^{3} - 1)(x^{3} + 1) = (x^{3} - 1)(x + 1)(x^{2} - x + 1)$$

• $1, e^{\frac{2\pi}{3}i}$ e $e^{\frac{4\pi}{3}i}$ são as raízes de (x^3-1) ,

$$x^{6} - 1 = (x^{3} - 1)(x^{3} + 1) = (x^{3} - 1)(x + 1)(x^{2} - x + 1)$$

- $1, e^{\frac{2\pi}{3}i}$ e $e^{\frac{4\pi}{3}i}$ são as raízes de (x^3-1) ,
- $e^{\pi i} = -1$ é a raiz de x + 1 e

$$x^{6} - 1 = (x^{3} - 1)(x^{3} + 1) = (x^{3} - 1)(x + 1)(x^{2} - x + 1)$$

- $1, e^{\frac{2\pi}{3}i}$ e $e^{\frac{4\pi}{3}i}$ são as raízes de $(x^3 1)$,
- $e^{\pi i} = -1$ é a raiz de x + 1 e
- $e^{\frac{\pi}{3}i}$ e $e^{\frac{4\pi}{3}i}$ são as raízes de x^2-x+1 , e também são as primitivas.

$$x^{6} - 1 = (x^{3} - 1)(x^{3} + 1) = (x^{3} - 1)(x + 1)(x^{2} - x + 1)$$

- $1, e^{\frac{2\pi}{3}i}$ e $e^{\frac{4\pi}{3}i}$ são as raízes de (x^3-1) ,
- $e^{\pi i} = -1$ é a raiz de x + 1 e
- $e^{\frac{\pi}{3}i}$ e $e^{\frac{4\pi}{3}i}$ são as raízes de x^2-x+1 , e também são as primitivas.

Para o caso $\mathbb{U}_5 = \{1, e^{\frac{2\pi}{5}i}, e^{\frac{4\pi}{5}i}, e^{\frac{6\pi}{5}i}, e^{\frac{8\pi}{5}i}\}$, temos

$$x^5 - 1 = (x - 1)(x^4 + x^3 + x^2 + x + 1),$$

como $e^{\frac{2\pi}{5}i}, e^{\frac{4\pi}{5}i}, e^{\frac{6\pi}{5}i}, e^{\frac{8\pi}{5}i}$ são as raízes de $x^4+x^3+x^2+x^1$, e este é irredutível, segue que $e^{\frac{2\pi k}{5}i}$, com k=1,2,3,4 são as raízes primitivas.

Tome $z\in\mathbb{U}_n$, então $z=e^{\frac{2\pi k}{n}i}$, suponha ainda que k e n tenham um fator d>1 em comum. Então

$$\left\{ \begin{array}{ll} n = n'd, & \hbox{com } 1 \leq n' < n, \\ k = k'd, & \hbox{com } 1 \leq k' < k \end{array} \right.$$

Tome $z\in\mathbb{U}_n$, então $z=e^{\frac{2\pi k}{n}i}$, suponha ainda que k e n tenham um fator d>1 em comum. Então

$$\left\{ \begin{array}{ll} n = n'd, & \text{com } 1 \leq n' < n, \\ k = k'd, & \text{com } 1 \leq k' < k \end{array} \right.$$

logo $z^{\frac{2\pi k}{n}i}=e^{\frac{2\pi k'}{n'}i}$ e $z^{n'}=e^{n'\frac{2\pi k'}{n'}i}=1$. Por fim z não é uma raiz n-ésima primitiva da unidade.

Tome $z\in\mathbb{U}_n$, então $z=e^{\frac{2\pi k}{n}i}$, suponha ainda que k e n tenham um fator d>1 em comum. Então

$$\left\{ \begin{array}{ll} n = n'd, & \text{com } 1 \leq n' < n, \\ k = k'd, & \text{com } 1 \leq k' < k \end{array} \right.$$

logo $z^{\frac{2\pi k}{n}i}=e^{\frac{2\pi k'}{n'}i}$ e $z^{n'}=e^{n'\frac{2\pi k'}{n'}i}=1$. Por fim z não é uma raiz n-ésima primitiva da unidade.

Proposição

Seja $z=e^{\frac{2\pi k}{n}i}\in\mathbb{U}_n$, então z é uma raiz n-ésima primitiva da unidade se, e somente se, k e n não compartilharem fatores ≥ 1 , ou seja, mdc(k,n)=1.

$$\Phi_n(x) = \prod_{\substack{1 \le k < n \\ mdc(k,n)=1}} \left(x - e^{\frac{2\pi k}{n}i} \right)$$

$$\Phi_1(x) = x - 1$$
,

$$\Phi_n(x) = \prod_{\substack{1 \le k < n \\ mdc(k,n)=1}} \left(x - e^{\frac{2\pi k}{n}i} \right)$$

- $\Phi_1(x) = x 1$,
- $\Phi_2(x) = x + 1$,

$$\Phi_n(x) = \prod_{\substack{1 \le k < n \\ mdc(k,n)=1}} \left(x - e^{\frac{2\pi k}{n}i} \right)$$

- $\Phi_1(x) = x 1$,
- $\Phi_2(x) = x + 1$,
- $\Phi_3(x) = (x e^{\frac{2\pi}{3}i})(x e^{\frac{4\pi}{3}i}) = x^2 + x + 1$,

$$\Phi_n(x) = \prod_{\substack{1 \le k < n \\ mdc(k,n)=1}} \left(x - e^{\frac{2\pi k}{n}i} \right)$$

- $\Phi_1(x) = x 1$,
- $\Phi_2(x) = x + 1$,
- $\Phi_3(x) = (x e^{\frac{2\pi}{3}i})(x e^{\frac{4\pi}{3}i}) = x^2 + x + 1$,
- $\Phi_4(x) = (x e^{\frac{2\pi}{4}i})(x e^{\frac{6\pi}{4}i}) = x^2 + 1$,

$$\Phi_n(x) = \prod_{\substack{1 \le k < n \\ mdc(k,n)=1}} \left(x - e^{\frac{2\pi k}{n}i} \right)$$

- $\Phi_1(x) = x 1$,
- $\Phi_2(x) = x + 1$,
- $\Phi_3(x) = (x e^{\frac{2\pi}{3}i})(x e^{\frac{4\pi}{3}i}) = x^2 + x + 1$,
- $\Phi_4(x) = (x e^{\frac{2\pi}{4}i})(x e^{\frac{6\pi}{4}i}) = x^2 + 1$,
- se p é primo, então $\Phi_p(x) = x^{p-1} + x^{p-2} + ... + x + 1$.

$$x^{6} - 1 =$$

$$= (x - 1)(x - e^{\frac{\pi}{3}i})(x - e^{\frac{2\pi}{3}i})(x - e^{\frac{\pi}{3}i})(x - e^{\frac{4\pi}{3}i})(x - e^{\frac{5\pi}{3}i})$$

$$x^{6} - 1 =$$

$$= (x - 1)(x - e^{\frac{\pi}{3}i})(x - e^{\frac{2\pi}{3}i})(x - e^{\pi i})(x - e^{\frac{4\pi}{3}i})(x - e^{\frac{5\pi}{3}i})$$

$$= \Phi_{6}(x)(x - 1)(x - e^{\frac{2\pi}{3}i})(x - e^{\pi i})(x - e^{\frac{4\pi}{3}i})$$

$$x^{6} - 1 =$$

$$= (x - 1)(x - e^{\frac{\pi}{3}i})(x - e^{\frac{2\pi}{3}i})(x - e^{\pi i})(x - e^{\frac{4\pi}{3}i})(x - e^{\frac{5\pi}{3}i})$$

$$= \Phi_{6}(x)(x - 1)(x - e^{\frac{2\pi}{3}i})(x - e^{\pi i})(x - e^{\frac{4\pi}{3}i})$$

$$= \Phi_{6}(x)\Phi_{3}(x)(x - 1)(x + 1)$$

$$\begin{split} x^6 - 1 &= \\ &= (x-1)(x-e^{\frac{\pi}{3}i})(x-e^{\frac{2\pi}{3}i})(x-e^{\pi i})(x-e^{\frac{4\pi}{3}i})(x-e^{\frac{5\pi}{3}i}) \\ &= \Phi_6(x)(x-1)(x-e^{\frac{2\pi}{3}i})(x-e^{\pi i})(x-e^{\frac{4\pi}{3}i}) \\ &= \Phi_6(x)\Phi_3(x)(x-1)(x+1) \\ &= \Phi_6(x)\Phi_3(x)\Phi_2(x)\Phi_1(x). \end{split}$$

$$\begin{split} x^6 - 1 &= \\ &= (x-1)(x-e^{\frac{\pi}{3}i})(x-e^{\frac{2\pi}{3}i})(x-e^{\pi i})(x-e^{\frac{4\pi}{3}i})(x-e^{\frac{5\pi}{3}i}) \\ &= \Phi_6(x)(x-1)(x-e^{\frac{2\pi}{3}i})(x-e^{\pi i})(x-e^{\frac{4\pi}{3}i}) \\ &= \Phi_6(x)\Phi_3(x)(x-1)(x+1) \\ &= \Phi_6(x)\Phi_3(x)\Phi_2(x)\Phi_1(x). \end{split}$$

$$\bullet \ x^n - 1 = \prod_{0 < d \mid n} \Phi_d(x).$$

$$\begin{split} x^6 - 1 &= \\ &= (x-1)(x-e^{\frac{\pi}{3}i})(x-e^{\frac{2\pi}{3}i})(x-e^{\pi i})(x-e^{\frac{4\pi}{3}i})(x-e^{\frac{5\pi}{3}i}) \\ &= \Phi_6(x)(x-1)(x-e^{\frac{2\pi}{3}i})(x-e^{\pi i})(x-e^{\frac{4\pi}{3}i}) \\ &= \Phi_6(x)\Phi_3(x)(x-1)(x+1) \\ &= \Phi_6(x)\Phi_3(x)\Phi_2(x)\Phi_1(x). \end{split}$$

$$\bullet \ x^n - 1 = \prod_{0 < d|n} \Phi_d(x).$$

Segue por indução que $\Phi_n(x) \in \mathbb{Z}[x]$.

$$\begin{split} x^6 - 1 &= \\ &= (x - 1)(x - e^{\frac{\pi}{3}i})(x - e^{\frac{2\pi}{3}i})(x - e^{\pi i})(x - e^{\frac{4\pi}{3}i})(x - e^{\frac{5\pi}{3}i}) \\ &= \Phi_6(x)(x - 1)(x - e^{\frac{2\pi}{3}i})(x - e^{\pi i})(x - e^{\frac{4\pi}{3}i}) \\ &= \Phi_6(x)\Phi_3(x)(x - 1)(x + 1) \\ &= \Phi_6(x)\Phi_3(x)\Phi_2(x)\Phi_1(x). \end{split}$$

$$\bullet \ x^n - 1 = \prod_{0 < d|n} \Phi_d(x).$$

Segue por indução que $\Phi_n(x) \in \mathbb{Z}[x]$. $\Phi_1(x) = x - 1$,

$$\begin{split} x^6 - 1 &= \\ &= (x-1)(x-e^{\frac{\pi}{3}i})(x-e^{\frac{2\pi}{3}i})(x-e^{\pi i})(x-e^{\frac{4\pi}{3}i})(x-e^{\frac{5\pi}{3}i}) \\ &= \Phi_6(x)(x-1)(x-e^{\frac{2\pi}{3}i})(x-e^{\pi i})(x-e^{\frac{4\pi}{3}i}) \\ &= \Phi_6(x)\Phi_3(x)(x-1)(x+1) \\ &= \Phi_6(x)\Phi_3(x)\Phi_2(x)\Phi_1(x). \end{split}$$

$$\bullet \ x^n - 1 = \prod_{0 < d \mid n} \Phi_d(x).$$

Segue por indução que $\Phi_n(x) \in \mathbb{Z}[x].$ $\Phi_1(x) = x-1$,

$$x^{n} - 1 = \Phi_{n}(x) \prod_{\substack{0 < d < n-1 \ d|_{n}}} \Phi_{d}(x),$$

por hipótese de indução $\Phi_d(x) \in \mathbb{Z}[x]$ e $x^n - 1 \in \mathbb{Z}[x]$,

$$\begin{split} x^6 - 1 &= \\ &= (x-1)(x-e^{\frac{\pi}{3}i})(x-e^{\frac{2\pi}{3}i})(x-e^{\pi i})(x-e^{\frac{4\pi}{3}i})(x-e^{\frac{5\pi}{3}i}) \\ &= \Phi_6(x)(x-1)(x-e^{\frac{2\pi}{3}i})(x-e^{\pi i})(x-e^{\frac{4\pi}{3}i}) \\ &= \Phi_6(x)\Phi_3(x)(x-1)(x+1) \\ &= \Phi_6(x)\Phi_3(x)\Phi_2(x)\Phi_1(x). \end{split}$$

$$\bullet \ x^n - 1 = \prod_{0 < d \mid n} \Phi_d(x).$$

Segue por indução que $\Phi_n(x) \in \mathbb{Z}[x].$ $\Phi_1(x) = x-1$,

$$x^{n} - 1 = \Phi_{n}(x) \prod_{\substack{0 < d < n-1 \ d|_{n}}} \Phi_{d}(x),$$

por hipótese de indução $\Phi_d(x)\in\mathbb{Z}[x]$ e $x^n-1\in\mathbb{Z}[x]$, logo $\Phi_n(x)\in\mathbb{Z}[x]$.

Polinômio Ciclotômico

Teorema

Seja $n \geq 1$, então $\Phi_n(x)$ é um polinômio irredutível sobre $\mathbb{Q}[x]$.

Teorema

Seja $n \geq 1$, então $\Phi_n(x)$ é um polinômio irredutível sobre $\mathbb{Q}[x]$.

Sabemos que $\partial \left(\Phi_n(x)\right)=\#\{1\leq k\leq n\mid mdc(k,n)=1\}.$ Então vamos definir a seguinte função:

$$\varphi: \mathbb{N} \to \mathbb{N}, \varphi(n) = \#\{1 \le k \le n \mid mdc(k, n) = 1\}.$$

ullet $\varphi(p)=p-1$, para p um número primo.

Teorema

Seja $n \geq 1$, então $\Phi_n(x)$ é um polinômio irredutível sobre $\mathbb{Q}[x]$.

Sabemos que $\partial \left(\Phi_n(x)\right)=\#\{1\leq k\leq n\mid mdc(k,n)=1\}.$ Então vamos definir a seguinte função:

$$\varphi: \mathbb{N} \to \mathbb{N}, \varphi(n) = \#\{1 \leq k \leq n \mid mdc(k,n) = 1\}.$$

- $\varphi(p) = p 1$, para p um número primo.
- \bullet $\varphi(p^s)=p^{s-1}(p-1)$, para p primo.

Teorema

Seja $n \geq 1$, então $\Phi_n(x)$ é um polinômio irredutível sobre $\mathbb{Q}[x]$.

Sabemos que $\partial \left(\Phi_n(x)\right)=\#\{1\leq k\leq n\mid mdc(k,n)=1\}.$ Então vamos definir a seguinte função:

$$\varphi: \mathbb{N} \to \mathbb{N}, \varphi(n) = \#\{1 \leq k \leq n \mid mdc(k,n) = 1\}.$$

- $\varphi(p) = p 1$, para p um número primo.
- \bullet $\varphi(p^s)=p^{s-1}(p-1)$, para p primo.

• $n \in \mathbb{N}$, $\varphi(n)$ é uma potência de 2 se, e só se, $n = 2^k p_1 p_2 ... p_j$, onde $k \geq 0$ e p_l são primos distintos de Fermat, para l = 1, ..., j.

• $n \in \mathbb{N}$, $\varphi(n)$ é uma potência de 2 se, e só se, $n = 2^k p_1 p_2 ... p_j$, onde $k \geq 0$ e p_l são primos distintos de Fermat, para l = 1, ..., j.

Se $n=\prod_{s=1}^m p_s^{t_s}$, então $\varphi(n)=\prod_{s=1}^m \varphi(p_s^{t_s})$. Logo $\varphi(n)$ é uma potência de dois se, e só se, $\varphi(p^f)$ é uma potência de 2 para todo primo p e $f\in\mathbb{N}$, tal que $p^f|n$.

• $n\in\mathbb{N}$, $\varphi(n)$ é uma potência de 2 se, e só se, $n=2^kp_1p_2...p_j$, onde $k\geq 0$ e p_l são primos distintos de Fermat, para l=1,...,j.

Se $n=\prod_{s=1}^m p_s^{t_s}$, então $\varphi(n)=\prod_{s=1}^m \varphi(p_s^{t_s})$. Logo $\varphi(n)$ é uma potência de dois se, e só se, $\varphi(p^f)$ é uma potência de 2 para todo primo p e $f\in\mathbb{N}$, tal que $p^f|n$. Reescrevendo a afirmação

• Dados p um primo e $f\in\mathbb{N}$, então $\varphi(p^f)$ é uma potência de 2 se, e só se, p=2 ou p é um primo de Fermat e f=1.

• $n \in \mathbb{N}$, $\varphi(n)$ é uma potência de 2 se, e só se, $n = 2^k p_1 p_2 ... p_j$, onde $k \geq 0$ e p_l são primos distintos de Fermat, para l = 1, ..., j.

Se $n=\prod_{s=1}^m p_s^{t_s}$, então $\varphi(n)=\prod_{s=1}^m \varphi(p_s^{t_s})$. Logo $\varphi(n)$ é uma potência de dois se, e só se, $\varphi(p^f)$ é uma potência de 2 para todo primo p e $f\in\mathbb{N}$, tal que $p^f|n$. Reescrevendo a afirmação

• Dados p um primo e $f \in \mathbb{N}$, então $\varphi(p^f)$ é uma potência de 2 se, e só se, p=2 ou p é um primo de Fermat e f=1.

Assuma que $\varphi(p^f)$ é potência de 2.

• $n \in \mathbb{N}$, $\varphi(n)$ é uma potência de 2 se, e só se, $n = 2^k p_1 p_2 ... p_j$, onde $k \geq 0$ e p_l são primos distintos de Fermat, para l = 1, ..., j.

Se $n=\prod_{s=1}^m p_s^{t_s}$, então $\varphi(n)=\prod_{s=1}^m \varphi(p_s^{t_s})$. Logo $\varphi(n)$ é uma potência de dois se, e só se, $\varphi(p^f)$ é uma potência de 2 para todo primo p e $f\in\mathbb{N}$, tal que $p^f|n$. Reescrevendo a afirmação

• Dados p um primo e $f \in \mathbb{N}$, então $\varphi(p^f)$ é uma potência de 2 se, e só se, p=2 ou p é um primo de Fermat e f=1.

Assuma que $\varphi(p^f)$ é potência de 2. Se p=2, não há nada a fazer. Se p é ímpar, então $\varphi(p^f)=2^m$, mas $\varphi(p^f)=p^{f-1}(p-1)$, então é necessário que f=1.

• $n\in\mathbb{N}$, $\varphi(n)$ é uma potência de 2 se, e só se, $n=2^kp_1p_2...p_j$, onde $k\geq 0$ e p_l são primos distintos de Fermat, para l=1,...,j.

Se $n=\prod_{s=1}^m p_s^{t_s}$, então $\varphi(n)=\prod_{s=1}^m \varphi(p_s^{t_s})$. Logo $\varphi(n)$ é uma potência de dois se, e só se, $\varphi(p^f)$ é uma potência de 2 para todo primo p e $f\in\mathbb{N}$, tal que $p^f|n$. Reescrevendo a afirmação

• Dados p um primo e $f \in \mathbb{N}$, então $\varphi(p^f)$ é uma potência de 2 se, e só se, p=2 ou p é um primo de Fermat e f=1.

Assuma que $\varphi(p^f)$ é potência de 2. Se p=2, não há nada a fazer. Se p é ímpar, então $\varphi(p^f)=2^m$, mas $\varphi(p^f)=p^{f-1}(p-1)$, então é necessário que f=1. Logo $2^m=\varphi(p)=p-1$, assim p é um primo de Fermat.

Assuma que p=2 ou p é um primo de Fermat e f=1.

Assuma que p=2 ou p é um primo de Fermat e f=1. Se p=2, então $\varphi(2^f)=2^{f-1}$ que é uma potência de 2. Se p é um primo de Fermat, então $p=2^{2^j}+1$ e $\varphi(p)=p-1=2^{2^j}$ que é uma potência de 2.

Assuma que p=2 ou p é um primo de Fermat e f=1. Se p=2, então $\varphi(2^f)=2^{f-1}$ que é uma potência de 2. Se p é um primo de Fermat, então $p=2^{2^j}+1$ e $\varphi(p)=p-1=2^{2^j}$ que é uma potência de 2.

Concluímos dessa forma que se $\varphi(n)$ é uma potência de 2, então $n=2^kp_1p_2...p_j$, onde $k\geq 0$ e p_l são primos distintos de Fermat, para l=1,...,j.

Assuma que p=2 ou p é um primo de Fermat e f=1. Se p=2, então $\varphi(2^f)=2^{f-1}$ que é uma potência de 2. Se p é um primo de Fermat, então $p=2^{2^j}+1$ e $\varphi(p)=p-1=2^{2^j}$ que é uma potência de 2.

Concluímos dessa forma que se $\varphi(n)$ é uma potência de 2, então $n=2^kp_1p_2...p_j$, onde $k\geq 0$ e p_l são primos distintos de Fermat, para l = 1, ..., j.

- O polígono regular de n lados é construtível
- $\bullet \Rightarrow e^{\frac{2\pi}{n}i}$ é construtível

Assuma que p=2 ou p é um primo de Fermat e f=1. Se p=2, então $\varphi(2^f)=2^{f-1}$ que é uma potência de 2. Se p é um primo de Fermat, então $p=2^{2^j}+1$ e $\varphi(p)=p-1=2^{2^j}$ que é uma potência de 2.

Concluímos dessa forma que se $\varphi(n)$ é uma potência de 2, então $n=2^kp_1p_2...p_j$, onde $k\geq 0$ e p_l são primos distintos de Fermat, para l=1,...,j.

- O polígono regular de n lados é construtível
- $\Rightarrow e^{\frac{2\pi}{n}i}$ é construtível
- ullet \Rightarrow $\partial(\Phi_n(x))=arphi(n)$ é uma potência de 2

Assuma que p=2 ou p é um primo de Fermat e f=1. Se p=2, então $\varphi(2^f)=2^{f-1}$ que é uma potência de 2. Se p é um primo de Fermat, então $p=2^{2^j}+1$ e $\varphi(p)=p-1=2^{2^j}$ que é uma potência de 2.

Concluímos dessa forma que se $\varphi(n)$ é uma potência de 2, então $n=2^kp_1p_2...p_j$, onde $k\geq 0$ e p_l são primos distintos de Fermat, para l=1,...,j.

- O polígono regular de n lados é construtível
- $\Rightarrow e^{\frac{2\pi}{n}i}$ é construtível
- ullet \Rightarrow $\partial(\Phi_n(x))=\varphi(n)$ é uma potência de 2
- $\bullet \Rightarrow n = 2^k p_1 p_2 ... p_j$, onde $k \ge 0$ e p_l são primos distintos de Fermat, para l = 1, ..., j.

Teorema (Teorema de Gauss-Wantzel)

O polígono regular de n lados é construtível se, e somente se, $n=2^kp_1p_2\cdot\ldots\cdot p_j$, onde $k\geq 0$ e p_l são primos distintos de Fermat, para $l=1,\ldots,j$

Exemplos

O polígono regular de n lados é construtível para:

Exemplos

O polígono regular de n lados é construtível para:

- n = 3,
- $n=4=2^4$.
- n = 5,
- $n = 6 = 2 \cdot 3$,
- $n = 8 = 2^3$,
- $n = 10 = 2 \cdot 5$,
- $n = 12 = 2^2 \cdot 3$,
- $n = 15 = 3 \cdot 5$
- $n = 16 = 2^4$.
- n = 17.
- $n = 20 = 2^2 \cdot 5$,

Como sabemos para construir o polígono regular de 17 lados precisamos construir $\omega=e^{\frac{2\pi}{17}i}.$

Como sabemos para construir o polígono regular de 17 lados precisamos construir $\omega=e^{\frac{2\pi}{17}i}.$ Sabemos que $\mathbb{U}_{17}=\{\omega^k\mid 0\leq k<17\},$ mais ainda $\{\omega^k\}_{k\geq 1}$ são as raízes primitivas e têm por polinômio minimal $\Phi_{17}(x)=x^{16}+x^{15}+...+x+1.$

Como sabemos para construir o polígono regular de 17 lados precisamos construir $\omega=e^{\frac{2\pi}{17}i}.$ Sabemos que $\mathbb{U}_{17}=\{\omega^k\mid 0\leq k<17\},$ mais ainda $\{\omega^k\}_{k\geq 1}$ são as raízes primitivas e têm por polinômio minimal $\Phi_{17}(x)=x^{16}+x^{15}+...+x+1.$ Ordene as raízes primitivas dessa forma:

$$\omega, \omega^3, \omega^9, \omega^{10}, \omega^{13}, \omega^5, \omega^{15}, \omega^{11}, \omega^{16}, \omega^{14}, \omega^8, \omega^7, \omega^4, \omega^{12}, \omega^2, \omega^6.$$

Como sabemos para construir o polígono regular de 17 lados precisamos construir $\omega=e^{\frac{2\pi}{17}i}.$ Sabemos que $\mathbb{U}_{17}=\{\omega^k\mid 0\leq k<17\},$ mais ainda $\{\omega^k\}_{k\geq 1}$ são as raízes primitivas e têm por polinômio minimal $\Phi_{17}(x)=x^{16}+x^{15}+...+x+1.$ Ordene as raízes primitivas dessa forma:

$$\omega, \omega^3, \omega^9, \omega^{10}, \omega^{13}, \omega^5, \omega^{15}, \omega^{11}, \omega^{16}, \omega^{14}, \omega^8, \omega^7, \omega^4, \omega^{12}, \omega^2, \omega^6.$$

Tome os número complexos

$$y_1 = \omega + \omega^9 + \omega^{13} + \omega^{15} + \omega^{16} + \omega^8 + \omega^4 + \omega^2,$$

$$y_2 = \omega^3 + \omega^{10} + \omega^5 + \omega^{11} + \omega^{14} + \omega^7 + \omega^{12} + \omega^6.$$

É possível mostrar que $y_1 + y_2 = -1$ e $y_1y_2 = 4(y_1 + y_2) = -4$.

É possível mostrar que $y_1+y_2=-1$ e $y_1y_2=4(y_1+y_2)=-4$. Logo y_1 e y_2 são raízes do polinômio

$$y^2 + y - 4 = 0$$

É possível mostrar que $y_1+y_2=-1$ e $y_1y_2=4(y_1+y_2)=-4$. Logo y_1 e y_2 são raízes do polinômio

$$y^2 + y - 4 = 0$$

Avaliando suas raízes, podemos concluir que

$$y_1 = \frac{-1 + \sqrt{17}}{2}$$
 e $y_2 = \frac{-1 - \sqrt{17}}{2}$.

Tome os números complexos:

$$\begin{array}{rclcrcl} x_1 & = & \omega + \omega^{13} + \omega^{16} + \omega^4 & = & 2\left(\cos\left(2\pi/17\right) + \cos\left(4(2\pi/17)\right)\right) \\ x_2 & = & \omega^9 + \omega^{15} + \omega^8 + \omega^2 & = & 2\left(\cos\left(2(2\pi/17)\right) + \cos\left(8(2\pi/17)\right)\right) \\ x_3 & = & \omega^3 + \omega^5 + \omega^{14} + \omega^{12} & = & 2\left(\cos\left(3(2\pi/17)\right) + \cos\left(5(2\pi/17)\right)\right) \\ x_4 & = & \omega^{10} + \omega^{11} + \omega^7 + \omega^6 & = & 2\left(\cos\left(6(2\pi/17)\right) + \cos\left(7(2\pi/17)\right)\right) \end{array}$$

Verifica-se que $x_1 > x_2$ e são raízes de $x^2 - y_1x - 1 = 0$; enquanto $x_3 > x_4$ e são raízes de $x^2 - y_2x - 1$.

Verifica-se que $x_1>x_2$ e são raízes de $x^2-y_1x-1=0$; enquanto $x_3>x_4$ e são raízes de x^2-y_2x-1 . Assim, concluímos

$$x_1 = \frac{-1 + \sqrt{17}}{4} + \frac{\sqrt{34 - 2\sqrt{17}}}{4}, \quad x_2 = \frac{-1 + \sqrt{17}}{4} - \frac{\sqrt{34 - 2\sqrt{17}}}{4}$$

$$x_3 = \frac{-1 - \sqrt{17}}{4} + \frac{\sqrt{34 + 2\sqrt{17}}}{4}, \quad x_4 = \frac{-1 - \sqrt{17}}{4} - \frac{\sqrt{34 + 2\sqrt{17}}}{4}.$$

Tomando agora os números complexos

$$z_1 = \omega + \omega^{16} = 2\cos\left(\frac{2\pi}{17}\right)$$

$$z_2 = \omega^{13} + \omega^4 = 2\cos\left(4\frac{2\pi}{17}\right)$$

Como $z_1 > z_2$ e ambos são raízes de $z^2 - x_1 z + x_3 = 0$.

Como $z_1>z_2$ e ambos são raízes de $z^2-x_1z+x_3=0$. Então

$$\cos\left(\frac{2\pi}{17}\right) = \frac{x_1}{2} = \frac{x_1 + \sqrt{x_1^2 - 4x_3}}{4}.$$

Como $z_1>z_2$ e ambos são raízes de $z^2-x_1z+x_3=0$. Então

$$\cos\left(\frac{2\pi}{17}\right) = \frac{x_1}{2} = \frac{x_1 + \sqrt{x_1^2 - 4x_3}}{4}.$$

Logo

$$\cos\left(\frac{2\pi}{17}\right) = \frac{-1 + \sqrt{17} + \sqrt{34 - 2\sqrt{17}}}{16} + \frac{\sqrt{17 + 3\sqrt{17} - \sqrt{34 - 2\sqrt{17}} - 2\sqrt{34 + 2\sqrt{17}}}}{8}$$

A ideia da recíproca do teorema de Gauss-Wantzel, segue de outro teorema de Gauss

Teorema (Gauss, Disquistiones Arithmeticae-1821)

Seja p um primo de Fermat, então o polígono regular de p lados é construtível com régua e compasso.

A ideia da recíproca do teorema de Gauss-Wantzel, segue de outro teorema de Gauss

Teorema (Gauss, Disquistiones Arithmeticae-1821)

Seja p um primo de Fermat, então o polígono regular de p lados é construtível com régua e compasso.

Sejam p_1 e p_2 dois primos distintos de Fermat, tome os números complexos $z_1=e^{\frac{2\pi}{p_1}i}$ e $z_2=e^{\frac{2\pi}{p_2}i}.$ Note que

$$z_1 z_2 = e^{(p_1 + p_2) \frac{2\pi}{p_1 p_2} i},$$

mas $mdc(p_1p_2, p_1 + p_2) = 1$,

A ideia da recíproca do teorema de Gauss-Wantzel, segue de outro teorema de Gauss

Teorema (Gauss, Disquistiones Arithmeticae-1821)

Seja p um primo de Fermat, então o polígono regular de p lados é construtível com régua e compasso.

Sejam p_1 e p_2 dois primos distintos de Fermat, tome os números complexos $z_1=e^{\frac{2\pi}{p_1}i}$ e $z_2=e^{\frac{2\pi}{p_2}i}.$ Note que

$$z_1 z_2 = e^{(p_1 + p_2) \frac{2\pi}{p_1 p_2} i},$$

mas $mdc(p_1p_2,p_1+p_2)=1$, logo z_1z_2 é uma raiz p_1p_2 -ésima primitiva da unidade e $\mathbb{U}_{p_1p_2}=\{(z_1z_2)^k\mid 0\leq k< p_1p_2\}.$

Axiomas

 (O_1) Dados dois pontos P_1 e P_2 , podemos dobrar uma linha que passa pelos dois pontos.

 (O_2) Dados dois pontos P_1 e P_2 , podemos dobrar P_1 em P_2 .

Axiomas

 (O_3) Dadas duas linhas l_1 e l_2 podemos dobrar a linha l_1 na linha l_2

 (O_4) Dados um ponto P_1 e uma linha l_1 , podemos fazer uma dobra perpendicular à l_1 que passa por P_1 .

Axiomas

 (O_5) Dados dois pontos P_1 e P_2 e uma linha l_1 , podemos fazer uma dobra que coloca P_1 em l_1 e que passa pelo ponto P_2 .

 (O_6) Dados dois pontos P_1 e P_2 e duas linhas l_1 e l_2 , podemos fazer uma dobra que coloca P_1 em l_1 e P_2 em l_2 .

• $\mathbb{Z}[i] = \{n + im \mid n, m \in \mathbb{Z}\}$ são construtíveis via origami.

- $\mathbb{Z}[i] = \{n + im \mid n, m \in \mathbb{Z}\}$ são construtíveis via origami.
- 1/n, para $n \in \mathbb{Z}$ são construtíveis via origami.

- $\mathbb{Z}[i] = \{n + im \mid n, m \in \mathbb{Z}\}$ são construtíveis via origami.
- 1/n, para $n \in \mathbb{Z}$ são construtíveis via origami.
- Se $a, b \in \mathbb{R}$ são construtíveis via origami, então ab e abi também são.

- $\mathbb{Z}[i] = \{n + im \mid n, m \in \mathbb{Z}\}$ são construtíveis via origami.
- 1/n, para $n \in \mathbb{Z}$ são construtíveis via origami.
- Se $a, b \in \mathbb{R}$ são construtíveis via origami, então ab e abi também são.
- Denotemos ∅ os números complexos construtíveis via origami, vimos que ∅ é um subcorpo dos complexos e ∅|ℚ.

- $\mathbb{Z}[i] = \{n + im \mid n, m \in \mathbb{Z}\}$ são construtíveis via origami.
- 1/n, para $n \in \mathbb{Z}$ são construtíveis via origami.
- Se $a, b \in \mathbb{R}$ são construtíveis via origami, então ab e abi também são.
- Denotemos
 © os números complexos construtíveis via origami, vimos que
 © é um subcorpo dos complexos e © |ℚ.
- Da mesma forma que para \mathcal{C} , temos que se um número real $a \in \mathbb{O}$, então $\sqrt{r} \in \mathbb{O}$.

Considere os pontos $F_1=(a,1)$ e $F_2=(b,c)$, com $c\neq 0$. Tome ainda as retas $r_1:y=-1$ e $r_2:x=-c$. Quando aplicamos o sexto axioma (O_6) , sabemos que estamos construindo uma reta l que é tangente simultaneamente as seguintes parábolas:

$$\begin{cases} \pi_1 : (x-a)^2 = 4y, \\ \pi_2 : (y-b)^2 = 4cx \end{cases}$$

Considere os pontos $F_1=(a,1)$ e $F_2=(b,c)$, com $c\neq 0$. Tome ainda as retas $r_1:y=-1$ e $r_2:x=-c$. Quando aplicamos o sexto axioma (O_6) , sabemos que estamos construindo uma reta l que é tangente simultaneamente as seguintes parábolas:

$$\begin{cases} \pi_1 : (x-a)^2 = 4y, \\ \pi_2 : (y-b)^2 = 4cx \end{cases}$$

Se l é tangente à π_1 , no ponto (x_1,y_1) , então o coeficiente angular de l é $m=\frac{x_1-a}{2}$. Por outro lado, se l é tangente à π_2 , no ponto (x_2,y_2) , então $m=\frac{2c}{y_2-b}$.

Considere os pontos $F_1 = (a, 1)$ e $F_2 = (b, c)$, com $c \neq 0$. Tome ainda as retas $r_1: y=-1$ e $r_2: x=-c$. Quando aplicamos o sexto axioma (O_6) , sabemos que estamos construindo uma reta l que é tangente simultaneamente as seguintes parábolas:

$$\begin{cases} \pi_1 : (x-a)^2 = 4y, \\ \pi_2 : (y-b)^2 = 4cx \end{cases}$$

Se l é tangente à π_1 , no ponto (x_1, y_1) , então o coeficiente angular de l é $m = \frac{x_1 - a}{2}$. Por outro lado, se l é tangente à π_2 , no ponto (x_2, y_2) , ent \tilde{a} o $m = \frac{2c}{w_2 - h}$. Entretanto l passa por (x_1, y_1) e (x_2, y_2) ,

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Considere os pontos $F_1=(a,1)$ e $F_2=(b,c)$, com $c\neq 0$. Tome ainda as retas $r_1:y=-1$ e $r_2:x=-c$. Quando aplicamos o sexto axioma (O_6) , sabemos que estamos construindo uma

$$\begin{cases} \pi_1 : (x-a)^2 = 4y, \\ \pi_2 : (y-b)^2 = 4cx \end{cases}$$

reta l que é tangente simultaneamente as seguintes parábolas:

Se l é tangente à π_1 , no ponto (x_1,y_1) , então o coeficiente angular de l é $m=\frac{x_1-a}{2}$. Por outro lado, se l é tangente à π_2 , no ponto (x_2,y_2) , então $m=\frac{2c}{y_2-b}$. Entretanto l passa por (x_1,y_1) e (x_2,y_2) ,

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\frac{2c}{m} + b - m^2}{\frac{c}{m^2} - 2m - a} = \frac{2cm + bm^2 - m^4}{c - 2m^3 - am^2}$$

Considere os pontos $F_1=(a,1)$ e $F_2=(b,c)$, com $c\neq 0$. Tome ainda as retas $r_1:y=-1$ e $r_2:x=-c$. Quando aplicamos o sexto axioma (O_6) , sabemos que estamos construindo uma reta l que é tangente simultaneamente as seguintes parábolas:

$$\begin{cases} \pi_1 : (x-a)^2 = 4y, \\ \pi_2 : (y-b)^2 = 4cx \end{cases}$$

Se l é tangente à π_1 , no ponto (x_1,y_1) , então o coeficiente angular de l é $m=\frac{x_1-a}{2}$. Por outro lado, se l é tangente à π_2 , no ponto (x_2,y_2) , então $m=\frac{2c}{y_2-b}$. Entretanto l passa por (x_1,y_1) e (x_2,y_2) ,

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\frac{2c}{m} + b - m^2}{\frac{c}{m^2} - 2m - a} = \frac{2cm + bm^2 - m^4}{c - 2m^3 - am^2}$$

$$\Rightarrow m^3 + am^2 + bm + c = 0.$$

• Logo se $x \in \mathbb{O} \cap \mathbb{R}$, então $\sqrt[3]{x} \in \mathbb{O}$.

- Logo se $x \in \mathbb{O} \cap \mathbb{R}$, então $\sqrt[3]{x} \in \mathbb{O}$.
- Seja $z = |z|(cos(\theta) + isen(\theta)) \in \mathbb{O}$, então

$$\sqrt[3]{z} = \sqrt[3]{|z|} \left(\cos\left(\frac{\theta}{3}\right) + i \sin\left(\frac{\theta}{3}\right) \right) \in \mathbb{O}.$$

- Logo se $x \in \mathbb{O} \cap \mathbb{R}$, então $\sqrt[3]{x} \in \mathbb{O}$.
- Seja $z = |z|(cos(\theta) + isen(\theta)) \in \mathbb{O}$, então

$$\sqrt[3]{z} = \sqrt[3]{|z|} \left(\cos\left(\frac{\theta}{3}\right) + i \sin\left(\frac{\theta}{3}\right) \right) \in \mathbb{O}.$$

Teorema

Um número complexo α pertence à $\mathbb O$ se, e somente se, existe uma sequência de subcorpos

$$\mathbb{Q} = \mathbb{K}_0 \subset \mathbb{K}_1 \subset ... \subset \mathbb{K}_{n-1} \subset \mathbb{K}_n \subseteq \mathbb{C}.$$

tal que $\alpha \in \mathbb{K}_n$ e $[\mathbb{K}_i : \mathbb{K}_{i-1}] = 2$ ou 3, para $1 \leq i \leq n$.

Teorema

O polígono regular de n lados é construtível via origami se, e somente se, $n=2^a3^bp_1p_2...p_j$, onde $a,b\geq 0$ e p_l são primos da forma 2^c3^d+1 .

Teorema

O polígono regular de n lados é construtível via origami se, e somente se, $n=2^a3^bp_1p_2...p_j$, onde $a,b\geq 0$ e p_l são primos da forma 2^c3^d+1 .

Por exemplo o heptágono regular pode ser construído via origami

Obrigado =D