

架构近接未来变化 IAS 2018

分布式机器学习平台二三事

南京天数智芯科技有限公司-倪岭

机器学习平台

架构电接未来变化

1 Overview of the Architecture

2 Distributed Storage

3 Distributed Computing

4 Orchestration and Scheduling

5 Summarize, Q&A

机器学习平台设计目标

At large companies, machine learning is 80 percent infrastructure.

by a machine learning engineer

- Goal
 - Simplify the workflow, lower the complexity
 - Provide generic, standard, reusable tool and solutions
 - Enable easy and secure sharing and collaboration for data and models
 - Reduce time and effort for data scientists and analysts
 - Optimized for scalability and performance

天数智芯

Make it easy to do right, and hard to go wrong!

几器学习平台架构 — 四阶段工作流架构

IAS 2018

© 2017 Gartner, Inc.

机器学习平台架构设计 - 分层架构

Data Acquire

Data & Feature
Prepare

Analytics & Modeling

Refine & Optimize

Deploy & Monitoring

Analytic Platform

Job Scheduling Model Management

Jupyter IDE

Data Visualization

Deployment

Monitoring

Multitenancy

Data Platform

Data Integration

DL Frameworks

TSDB

Workflow Engine

ML Libraries

Data Warehouse

Distributed Comp

Maintenance

Infrastructure

Orchestration & Docker Management

Distributed File System (HDFS, Ceph)

Hardware (CPU, GPU, Memory, Disk, Network etc.) and OS

机器学习平台 - 关键技术选择

- Configurable and elastic resource management, consistent and reproducible environment
 - Use Kubernetes and Docker
- Easy to scale, customize, function extension and data/model sharing
 - Use modular design/components, reuse mature frameworks as building blocks
- Support common workflow and popular analytics and ML frameworks
 - Integration of popular libraries and frameworks such as Spark, TF, XGBoost, scikit-learn, PyTorch etc.
- High performance
 - Comprehensive optimization and tuning across the whole stack
- Easy to use
- Intuitive use

机器学习平台中的分布式设计原则

Multiple computers that interact with each other over a network to achieve a common goal.

- Incremental scalability scale for performance and availability
- Symmetry all nodes are equal
- Decentralization No central control, avoid single point of failure
- Be Redundant Use replicas for both reliability and performance
- Asynchronous rather than synchronous
- Strive for statelessness
 It depends...

And, there is always tradeoff...

分布式存储 - 存储与计算分离

- Storage + Compute together for Big Data
 - HPC->Hadoop : Move Compute to Data
- Decoupling Storage And Compute (Disaggregated) for ML
 - Elastic, Scalability
 - Manageability
 - Flexibility
 - Hardware requirement
 - Hadoop → HPC

分布式文件系统

- HDFS vs Ceph
- File vs Block vs Object
- Ceph in practice
 - Ceph RBD and Cephfs
 - Erasure coding
 - Ceph with InfiniBand
 - Kubernetes Persistent Volume

分布式数据库

- CAP Theorem
- Choose your data store based on real use cases
 - SQL on Hadoop/NewSQL
 - NoSQL
 - Specialized Database

IAS 2018

分布式计算 – 加速

■ Amdahl's Law

$$S(N) = \frac{1}{(1-P) + \frac{P}{N}}$$

- What else
 - CPU <-> GPU cost
 - Network Communication cost and latency
 - Multi level parallelism

分布式计算 - 深度学习

Partitioned

Model

States

- What distributed machine learning is meant to resolve
 - Computation Complexity
 - Data volume & Model size
 - Not always the best option
- Challenges
 - Sometimes algorithms specific
 - Data Parallel vs Model Parallel
- Credit: Petuum: A New Platform for Distributed Machine Learning on Big Data by Eric Xing et al.
- Efficient Communications, Consistency Protocol, User

分布式计算 - ImageNet 刷刷刷

Training time and top-1 validation accuracy with ImageNet/ResNet-50

	Batch Size	Processor	DL Library	Time	Accuracy
He et al.	256	Tesla P100 x8	Caffe	29 hours	75.30%
Facebook	8K	Tesla P100 x256	Caffe2	1 hour	76.30%
IBM	8K	Tesla P100 x256	Caffe	50 mins	75.01%
Preferred Networks	32K	Tesla P100 x1024	Chainer	15 mins	74.90%
Tencent	64K	Tesla P40 x2048	TensorFlow	6.6 mins	75.80%
Sony	34K→68K	Tesla V100 x2176	NNL	224 secs	75.03%
Google	32k	TPU V3 x1024	TensorFlow	2.2min	76.30%

架构近接未来变化

分布式计算 - 分布式训练技巧

- Keep It Simple, Stupid.
- Ensure correctness/convergence,use synchronous SGD
- Large Batch size
 - Learning rate hacks
 - LARS (Layer-wise Adaptive Rate Scaling) Optimizer

#GPUs	Images per Second	GPU Scaling Efficiency
4	1608	
1088	400778	91.62%
2176	579040	66.19%
2720	729051	66.67%
3264	688504	52.47%

分布式计算 - DNN的网络传输

- Efficient communication protocol
 - MPI Ring All reduce and all kinds of variants
 - Parameter Server
 - P2P with SFB, Mixed/hybrid protocols
- Reduce communication overhead
 - Gradient compression, quantization
 - Mixed precision training

Parameter Server $w' = w - \eta \Delta w$

分布式计算 - 深度学习工程实践

- Horovod library by Uber
 - Implemented Data Parallelism and Ring All Reduce
 - Easy to use with wrapped distributed optimizer
 - Non invasive to deep learning frameworks

■ What else

- How to achieve full user transparency
- Parameter server still shines
- Data distribution, pipeline and caching

分布式计算 - 传统数据分析与机器学习

架构 电接 未来 变 化

- Spark, H20 distributed engine
- Classic Python
 - Start from single node parallelism
 - Mixed distributed-parallel paradigm
 - Distributed memory vs shared memory
 - Dask and Dask-ML
 - Celery distributed task queue for inference application

分布式调度 – Kubernetes

- Cloud Native challenge
- Resource scheduling
 - Flexible vs templated
 - Overcommit vs exclusive resource usage
- CPU/GPU topology awareness and label management
- Kubernetes networking performance tuning with Calico
- Workflow engine optimization

分布式设计误区

架杓包接击来变化 LAS 2018

- The network is reliable.
- Latency is zero.
- Bandwidth is infinite.
- The network is secure.
- Topology doesn't change.
- There is one administrator.
- Transport cost is zero.
- The network is homogeneous.

8 fallacies of Distributed Systems

By Peter Deutsch & James Gosling

Thanks!

