Supporting Data-Driven Mathematics

Online databases made easy (for simple datasets)

Katja Berčič FAU Erlangen-Nürnberg

Some Famous Online Combinatorial Math Databases

findstat.org

The Other 80% (or more)

[NJ]	V	E	Tr	W?	В?	IAGI
C4[5.1]	5	10	DT	W	NB	120
C4[6.1]	6	12	DT	U	NB	48 113 113
C4[8,1]	8	16	DT	U	Bip	(2^7)(3^2)
C4[9,1]	9	18	DT	W	NB	72 1305 130
C4[10.1]	10	20	DT	U	NB	320
C4[10.2]	10	20	DT	W	Bip	240
C4[12,1]	12	24	DT	U	Bip	768
C4[12, 2]	12	24	DT	W	NB	48 200 20
C4[13.1]	13	26	DT	W	NB	52
C4[14.1]	14	28	DT	U	NB	(2^8)(7^1)
C4[14.2]	14	28	DT	W	Bip	336
C4[15.1]	15	30	DT	W	NB	60
C4[15,2]	15	30	DT	W	NB	120
C4[16.1]	16	32	DT	U	Bip	(2^12)
C4[16.2]	16	32	DT	W	Bip	384
C4[17.1]	17	34	DT	W	NB	68
C4[_18L_]	18	36	DT	U	NB	(2^10)(3^2)
C4[18, 2]	18	36	DT	W	Bip	144
C4[20.1]	20	40	DT	U	Bip	(2^12)(5^1)
C4[20.2]	20	40	DT	W	Bip	80
C4[20.3]	20	40	DT	W	NB	320
C4[20.4]	20	40	SS	U	Bip	(2^8)(3^1)(5^1)
C4[21.1]	21	42	DT	W	NB	84 - 200 - 20
C4F 21, 2 1	21	42	DT	w	NB	336

Wilson, Potočnik; A Census of edge-transitive tetravalent graphs

Potočnik, Spiga, Verret; A census of small connected cubic vertex-transitive graphs

Chainff([0,1] := Crophvile | {(4,6), {3,5}, {2,6}, {4,6}, {5,6}, {3,4}, {1,5}, {1,10}, {2,10}, {7,9}, {2,7}, {2,0}, {4,0}, {6,9})>;

Beginnings

Janoš's SageMath package

Compare objects (both ways!)

sage: G = CVTGraph(10, 3)
sage: G.is_isomorphic(graphs.PetersenGraph())

Use the object info to query the database

sage: gen = info.all(is_partial_cube, orderby=order) # sort by num. of vcs. sage: next(gen) # first matching graph 3-Cube: cubic vertex-transitive graph on 8 vertices, number 2

sage: next(gen) # second matching graph
6-Prism: cubic vertex-transitive graph on 12 vertices, number 3

sage: info.count(cvt_index) # number of graphs in the CVT census 111360

sage: info.count(cvt_index, groupby=girth) # break down by girth
{3: 160, 4: 5754, 5: 100, 6: 58674, 7: 192, 8: 13529, 9: 219,
10: 25806, 11: 80, 12: 5423, 13: 37, 14: 1365, 15: 12, 16: 9}

<u>discretezoo.xyz</u>

Michael Kohlhase

Florian Rabe

Tom Wiesing

Anatomy of a schema theory

```
theory Matrix: ?MDDL = property name,
... mathematical type
orthogonal: bool I
meta ?Codecs?codec BoolIdent I
...
how it is stored in the database
```

Take-away points

If you would like to use this project for your data, please contact me!

katja.bercic@fau.de

You can also help with gathering information about math datasets:

mathdb.mathhub.info

A big thanks goes to OpenDreamKit. It made the existence of this project possible and gave it a big boost.

namespace http://data.mathhub.info/schemas ■

```
theory MatrixS : ?MDDL =
  meta ?MDDL?schemaGroup "Joe" |

mat: matrix int 2 2 |
  meta ?Codecs?codec MatrixAsArray IntIdent |
  tag ?MDDL?opaque |

trace: int |
  meta ?Codecs?codec IntIdent |

orthogonal: bool |
  meta ?Codecs?codec BoolIdent |

eigenvalues: list int |
  meta ?Codecs?codec ListAsArray IntIdent |
  tag ?MDDL?opaque |
```