Conditional Probability & Bayes' Theorem

9.11.17

- The probability of event A happening given that event B happened, is denoted by P(A |* B)
 - A: event of rolling two dice and the sum of each roll adds up to 2
 - P(A) = 1/36 (2.7%)
 - B: is one of the die landing on a 1
 - P(B) = 11/36 (30.5%)
 - Therefore:
 - $P(A \mid B) = 1/11 (9\%)$
 - $P(B \mid A) = 6/6 (100\%)$
 - C: one of the die lands on 5
 - P(A | C) = Ø (null-set or impossible event)
 - P(C | A) = Ø (null-set or impossible event)

- P(B) possible outcomes (is 11/36 OR 30.5%):
 - B: is one of the die landing on a 1

 If the sum of 2 dice must equal 4, then the only outcomes are:

1,3	2,2	3,1

The probability of a 1 appearing is 2/3 or 75%

$$P(A \mid B) = P(A \cap B)$$

$$P(B)$$

Because B is or 'given', it becomes the denominator

$$P(A \mid C) = P(A \cap C) = 0$$

$$P(C)$$

$$P(A \mid B) = P(A \cap B) = 1/36 = 1/11*$$

 $P(B) = 1/36$

P(B | D)

Is 2/3 but why?

- D is a given
- The intersection is of B & D = 3,1 and 1,3
- The total outcomes are 3
- So it's 2/3 (66%)

The remaining 24 (out of 36) outcomes occupy this space

$$P(B \mid D) = P(B \cap D)$$
$$P(D)$$

- A: The eldest child is a girl {GB, GG}
- B: Both of them are a girl {GG}
- C: one of the children is a girl {GB, GG, BG}

$$P(B | A) = P(A \cap B) = P(\{GG\}) = 1/4$$

 $P(A) = P(\{GB, GG\}) = 1/2 \text{ or } 50\%$

$$P(B \mid C) = P(B \cap C) = P(\{GG\}) = 1/4$$

 $P(C) P(\{GB, GG, BG\}) = 3/4$

The possibility of an event happening is the weighted sum of two theories:

$$P(A) = P(A \mid B) * P(B) + P(A \mid B^c)P(B^c)$$

For example: 80% * P(B) + 35% * P(B°)

Bayes' Theorem (explained)

$$P(A \mid B) = \underline{P(B \mid A) * P(A)}$$

$$P(B)$$

Example:

- 1% of the population has D (a disease)
- There is a medical test that returns a 'positive' for those who have D, 90% of the time
- However 5% of those who do not have D, also return a 'positive' test
 - · A: Person A has disease D
 - B: Person A returns a 'positive' test result for D

Step 1:
$$P(B) = P(B | A) * P(A) + P(B | A^c)P(A^c)$$

Step 2: $.9 * P(A) + .05 * P(A^c)$
Step 3: $.9 * .01 + .05 * .99 = .058 (5\%)$
Step 4: $\frac{.9 * .01}{.058} = .15 (15\%)$

In other words, if you tested positive for this test, there is only a 15% chance you have D. Given these odds, no medical professional or institution would sanction this test.