PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification C07K 7/20, A61K 37/38 A71K 37/43	on 4:	A1	11) International Publication Number: WO 89/0194 43) International Publication Date: 9 March 1989 (09.03.8)
(22) International Application Number: (22) International Filing Date: (31) Priority Application Number: (32) Priority Date: (33) Priority Country: (60) Parent Application or Grant (63) Related by Continuation US Filed on (71) Applicant (for all designated States REGENTS, THE UNIVERSITY [US/US]; 201 West Seventh Street, (72) Inventors; and (75) Inventors; and (75) Inventors; Applicants (for US only): E 6406 Mesa, Austin, TX 78731 (US) US]; 484 Audobon, New Orleans, QUIST, Anders [US/US]; 3203 WI (US). TANG, Pui-Fun, Louisa [G) Street, Shum Shui Po, Kowloon (JP/JP]; 5-12-4 Chiyoda, Yotsukaid	except US): BO OF TEXAS: Austin, TX 787 OLKERS, Karl BOWERS, Cyri LA 70118 (US). iteway, Austin, B/GBJ; 56, 6/F HK). KOBOTA	(24.08.4 088,4 (24.08.1 (24.08.1 ARD (24.08.1 EUS/U: ii, Y. [U LJUN: TX 787 Un Ch	ria, Austin, TX 78757 (US). (74) Agent: HODGINS, Daniel, S.; Arnold, White & Durkee, P. Box 4433, Houston, TX 77210 (US). (81) Designated States: AT, AT (European patent), AU, BB, E (European patent), BG, BJ (OAPI patent), BR, CF (OA patent), CG (OAPI patent), CH, CH (European patent), CG (OAPI patent), DE, DE (European patent), DK, FI, FR (E ropean patent), GA (OAPI patent), GB, GB (European patent), HU, IT (European patent), JP, KP, KR, LK, LU, L (European patent), MC, MG, ML (OAPI patent), MR (OAPI patent), MR, OAPI patent), MV, NL, NL (European patent), NO, RO, SI SE, SE (European patent), SN (OAPI patent), SU, TD (OAPI patent), TG (OAPI patent), US. Published With international search report. Before the expiration of the time limit for amending the claim and to be republished in the event of the receipt of amen ments.

(54) Title: EFFECTIVE ANTAGONISTS OF THE LUTEINIZING HORMONE RELEASING HORMONE WHICH RELEASE NEGLIGIBLE HISTAMINE

(57) Abstract

Antide is the decapeptide, N-Ac-D-S-Nal,D-pCIPhe, D-3-Pal, Ser,NicLys, D-NicLys, Leu, Ilys, Pro, D-Ala,NH₂ which is an antagonist of luteinizing hormone releasing hormone (LHRH). This decapeptide, like others of the present invention, has high antiovulatory activity (AOA) and releases negligible histamine. Antide is scheduled for scale-up, safety testing and evaluation in the experimental primate and in clinical medicine. Numerous other peptides having structures related to Antide were prepared and tested. These peptides had variations primarily in positions 5, 6, 7 and 8. Of these, N-Ac-D-2-Nal, D-pCIPhe,D-3-Pal,Ser,PicLys,cis-DPzACAla,Leu,ILys,Pro,D-Ala-NH₂ was one of the most potent.

FOR THE PURPOSES OF INFORMATION ONLY

 $Codes \ used \ to \ identify \ States \ party \ to \ the \ PCT \ on \ the \ front \ pages \ of \ pamphlets \ publishing \ international \ applications \ under \ the \ PCT.$

ΑT	Austria	GÁ	Gabon	MR	Mauritania
ΑU	Australia	GB	United Kingdom	MW	Malawi
BB	Barbados	HŲ	Hungary	NL	Netherlands
BE	Belgium	IT	Italy	NO	Norway
BG	Bulgaria	JP	Japan	RO	Romania
BR	Brazil	KP	Democratic People's Republic	ŞD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SN	Senegal .
CH	Switzerland	LI	Liechtenstein	SU	Soviet Union
CM	Cameroon	LK	Sri Lanka	TD	Chad
DE	Germany, Federal Republic of	LU	Luxembourg	TG	Togo
DK	Denmark	MC	Monaco	US	United States of America
FI	Finland	MG	Madagascar		
FR	France	MI.	Mali		

-1-

5

10

EFFECTIVE ANTAGONISTS OF THE LUTEINIZING HORMONE RELEASING HORMONE WHICH RELEASE NEGLIBLE HISTAMINE

15

This is a continuation-in-part of U.S. Patent Application Number 088,431 filed August 24, 1987 which is incorporated by reference herein.

20 Research related to the development of this invention was supported in part by the Contraceptive Branch of the National Institutes of Child Health and Human Development, contract no. NOI HD-6-2938 and to the Robert A. Welch Foundation.

25

The present invention involves the design, synthesis and use of synthetic analogs of the luteinizing hormone releasing hormone (LHRH). An important achievement involved synthesis of analogs which functioned as antagonists of LHRH, were adequately potent to inhibit ovulation and allowed the release of only negligible amounts of histamine. Since there was no way of reliably forecasting the structure of an antagonist having high potency and very low histamine release, it was necessary to explore diverse approaches to discover a combination of structural features which would yield an antagonist of

LHRH having high potency for ovulation inhibition and very low activity for histamine release.

Various peptides such as substance P, vasoactive 5 intestinal peptide, gastrin, somatostatin, as well as others, are well known to cause the release of histamine from mast cells. These cells are in many tissues, such as skin, lung and mesentery, gingiva, etc. Most cells have granules containing histamine and other mediators of 10 inflammation which can be released by peptides to cause capillary dilation and increased vascular permeability. When it was noted that an antagonist of LHRH, for example [Ac-D-2-Nal¹,D-4-F-Phe²,D-Trp³,D-Arg⁶]-LHRH, caused edema of the face and extremities when it was administered to 15 rats, it appeared likely that such antagonists, if administered to human subjects as a contraceptive agent, would cause serious edema of the face and elsewhere in the human body. Such side effects would likely prevent the administration of such antagonists to human subjects.

20

The histamine-containing leukocyte is a basophile which can also release histamine when stimulated by many of the same peptides mentioned above. Basophiles differ biochemically from mast cells and such differences may allow for both predictable and unpredictable histamine release in response to antagonists of LHRH. An antagonist of LHRH, to be used clinically to prevent ovulation, should not significantly release amounts of histamine from either mast cells or basophiles.

30

The discovery of the side effects such as the edematogenic and anaphylactoid actions of LHRH antagonists made desireable the discovery of new LHRH antagonists which prevented ovulation but did not release significant histamine. These undesireable side effects have been observed in rats, and it is likely that the Food and Drug

Administration would not allow the testing of such antagonists in human subjects.

Karten et al. (4), have reviewed available knowledge 5 on the structural characteristics for potent histamine release by antagonists of LHRH. Some of the most important findings are as follows. A most potent LHRH antagonist in triggering histamine release in vitro involved a combination of strongly basic D-amino acid side 10 chains (Arg or Lys) at position 6 and in close proximity to Arg⁸, and a cluster of hydrophobic aromatic amino acids at the N-terminus. Thus, there is no specific amino acid of the ten amino acids which is solely responsible for histamine release. On the contrary, structural features 15 ranging from the N-terminus (the amino acids in the first few positions, 1-4, etc.), and basic amino acids toward the C-terminus (positions 6 and 8) somehow participate in histamine release. Even D-Ala in position 10 has some influence on histamine release, the rationale for which is 20 unclear. By themselves, two basic side chains in close proximity, as in positions 6 and 8, are insufficient alone to impart high release of histamine. The cluster of hydrophobic amino acids at the N-terminus is insufficient alone for high histamine releasing activity. Even a 25 hexapeptide fragment has revealed moderate histamine releasing potency. There seems to be no correlation between antiovulatory potency and histamine release of these antagonists, in vitro.

In perspective, much of the entire chain of such decapeptide antagonists may have influence on histamine release. The same perspective appears to be true, but to different degrees, for high antiovulatory activity. These LHRH antagonists are usually decapeptides which indicates that there are ten variables to adjust for a desired anti-ovulatory activity and ten variables to adjust for

eliminating histamine releasing activity. There are even further variations for each of these twenty variables, the number of possible peptides to design, synthesize and assay becoming incalculable. Presumably, some of the ten variables may be independent for anti-ovulatory activity and histamine releasing activity while some variables may overlap for these two biological activities. This situation poses extraordinary difficulties to solve before an antagonist of high potency for anti-ovulation and very low potency for histamine release could be produced.

Diverse structural changes and combinations of the ten amino acids followed by assays of both anti-ovulation and histamine release activities should be performed in the hope that a potent antagonist essentially free of side effects would be discovered. The synthesis of new amino acids to introduce into the decapeptide chains should also be explored since the commonly available amino acids might not suffice.

20

In the antagonists prepared according to the present invention, arginine and its derivatives were not utilized. Lysine was converted into derivatives with acyl groups or with alkyl groups on the E-amino group. The amino acid ornithine was acylated or alkylated on the d-amino group. Both the L- and D- forms of lysine and the L-form of ornithine were used in synthesizing these acyl and alkyl derivatives. Structurally related intermediates were also synthesized. All together, many new peptides were synthesized by the basic and minimal concepts of ten variables for anti-ovulation activity and ten variables for histamine release, which may be independent or partially overlapping. On such a basis, the number of such peptides that can be designed becomes overwhelming, and every reasonable priority must be considered to reduce

the number of peptides to be synthesized in the hope that a discovery will be realized.

Certain peptides were synthesized, tested and found to demonstrate advantageous peptides. Among these desireable peptides were the following two.

[N-Ac-D-2-Nal¹,D-pClPhe²,D-3-Pal³,NicLys⁵,D-NicLys⁶,ILys⁸,D-Ala¹⁰]-LHRH was effective to prevent ovulation and released remarkably little histamine.

[N-Ac-D-2-Nal¹,D-pClPhe²,D-3-Pal³,PicLys⁵,D-PicLys⁶,ILys⁸,D-Ala¹⁰]-LHRH was twice as effective as the above peptide, and released no more histamine than do "super agonists" of LHRH, which are presently being marketed by several pharmaceutical companies.

These two new peptides, and yet additional related peptides described herein provide acceptable balances of high anti-ovulatory activity and low histamine release for full potential clinical utility.

The present invention involves the preparation and use of decapeptides having antiovulatory activity and with minimal histamine-releasing effects. These decapeptides includes those comprising:

Ser 4, PicLys 5 and D-PicLys 6;

- N-Ac-D-2-Nal¹, D-pClPhe², Ser⁴, D-PicLys⁵ and Pro⁹;

 N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, Ser⁴, D-PicLys⁶, Pro⁹
 and D-Ala¹⁰;
- 35 N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, Ser⁴, NicLys⁵, Pro⁹ and D-Ala¹⁰;

```
N-Ac-D-2-Nal<sup>1</sup>, D-pClPhe<sup>2</sup>, D-3-Pal<sup>3</sup>, Ser<sup>4</sup>, Leu<sup>7</sup>, Pro<sup>9</sup> and D-Ala<sup>10</sup>:
```

- N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, NicLys⁵, D-NicLys⁶, ILys⁸ and D-Ala¹⁰;
- N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, NicLys⁵, D-NicLys⁶, 15 ILys⁸ and D-Ala¹⁰;
 - N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, PicLys⁵, D-PicLys⁶, ILys⁸ and D-Ala¹⁰;
- 20 N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, NicLys⁵, D-NicLys⁶, IOrn⁸ and D-Ala¹⁰;
 - $N-Ac-D-2-Nal^1$, $D-pClPhe^2$, $D-3-Pal^3$, $PicLys^5$, $D-PicLys^6$, $IOrn^8$ and $D-Ala^{10}$;
- N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, MNicLys⁵, D-MNicLys⁶, IOrn⁸ and D-Ala¹⁰;
- N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, PzcLys⁵, D-PzcLys⁶, 30 IOrn⁸ and D-Ala¹⁰;

N-Ac-D-pClPhe¹, D-3-Pal³, Tyr⁵, D-NicLys⁶ and ILys⁸; N-Ac-D-Cl₂Phe¹, D-3-Pal³, Tyr⁵, D-NicLys⁶ and ILys⁸; 5 acylated Lys⁵, D-acylated Lys⁶ and N-alkylated diamino acid8: NicLys⁵, D-NicLys⁶ and ILys⁸; 10 PicLys⁵, D-PicLys⁶ and ILys⁸; NicLys⁵, D-NicLys⁶ and IOrn⁸; PicLys⁵, D-PicLys⁶ and IOrn⁸; 15 MNicLys⁵, D-MNicLys⁶ and IOrn⁸; PzcLys⁵, D-PzcLys⁶ and IOrn⁸; 20 Tyr⁵, D-NicLys⁶ and ILys⁸; Tyr⁵, D-NicLys⁶ and IOrn⁸; N-Ac-D-2-Na1¹, D-pClPhe², D-3-Pa1³, Ser⁴, NicLys⁵, D-25 NicLys⁶, Leu⁷, ILys⁸, Pro⁹ and D-Ala¹⁰NH₂; and N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, Ser⁴, PicLys⁵, cis D-PzACAla⁶, Leu⁷, ILys⁸, Pro⁹ and D-Ala¹⁰NH₂.

The present invention further involves use of the above decapeptides in a process for inhibiting ovulation in an animal. This process comprises administering to said animal a decapeptide preferably having the structure: N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, Ser⁴, NicLys⁵, D-35 NicLys⁶, Leu⁷. ILys⁸, Pro⁹ and D-Ala¹⁰NH₂. Likewise, the inventive process may be used to inhibit ovulation in an

animal; to inhibit the onset of puberty in an animal; to inhibit the sexual impetus of an animal; to alter the gonadal function of an animal; to inhibit the growth of hormone-dependent tumors in an animal; and to lower LH and 5 FSH levels in serum of post-menopausal women. These and other related uses will be apparent to those skilled in the art upon examination of this specification.

Abbreviations and formulas used herein include the 10 following:

alpha

			-
	BOC	=	t-butoxycarbonyl
	Br-Z	= .	o-bromobenzyloxycarbonyl
15	nBuOAc	=	n-butylacetate
	n-BuOH	=	n-butanol
	c .	=	<u>cis</u>
	CDC13	=	deuterochloroform
	CHC13	=	chloroform
20	CH ₂ Cl ₂	=	dichloromethane
	CH ₃ CN		acetonitril
	Cl-Z	=	o-chlorobenzyloxycarbonyl
	đ	=	delta
	DCC	=	dicyclohexylcarbodiimide
25	DIEA	=	diisopropylethylamine
	DMF	=	dimethylformamide
	E	=	eta
	Et	=	ethyl
	EtOAc	=	ethyl acetate
30	EtOH	=	ethanol
	Et ₂ O	=	diethyl ether
	HF	=	hydrogen fluoride
	HOAC	=	acetic acid
	KH ₂ PO ₄	=	potassium dihydrogen phosphate
35	MeOH	=	methanol
	${\tt MgSO}_{4}$	=	magnesium sulfate
	•		

	NH ₄ OAc	=	ammonium acetate
	iPrOH	=	2-propanol
	рy	=	pyridine
	t	=	<u>trans</u>
5	TFA	=	trifluoroacetic acid
	THF	=	tetrahydrofuran
	TOS	=	p-toluensulfonyl
	m	=	micro
	Z	=	benzyloxycarbonyl
10			•
	Abu	=	2-aminobutyric acid
	Aile	=	alloisoleucine
	AnGlu	=	4-(4-methoxyphenylcarbamoyl)-2-
			aminobutyric acid
15	BzLys	=	$\mathtt{N}^{\mathbf{E}}$ -benzoyllysine
	Cit	=	citrulline
	Cl ₂ Phe	=	3,4-dichlorophenylalanine
	CypLys	=	$\mathtt{N}^{\mathrm{E}}_{-}$ -cyclopentyllysine
	DMGLys	=	
20	Dpo .	=	$N^{\mathbf{C}}$ -(4,6-dimethyl-2-pyrimidyl)
	•		ornithine
	Et ₂ hArg	=	$\mathtt{N}^{\mathbf{G}}$, $\mathtt{N}^{\mathbf{G}}$ -diethylhomoarginine
	FPhe	=	A-fluorophenylalarine
	HOBLys	=	N ^E -(4-hydroxybenzoyl)lysine
25	Ilys	=	N ^E -isopropyllysine
	INicLys	=	N ^E -isonicotinoyllysine
	IOrn	= '	N ^d -isopropylornithine
	Me ₃ Arg	=	N^{G} , N^{G} , N^{G1} -trimethylarginine
	Me ₂ Lys	=	N ^E , N ^E -dimethyllysine
.30	MNicLys	=	N_{-}^{E} -(6-methylnicotinoyl)lysine
	MPicLys	= .	\mathtt{N}^{E} -(6-methylpicolinoyl)lysine
	NACAla	=	3(4-nicotinoylaminocyclohexyl)alanine
	2-Nal	=	3-(2-naphthyl)alanine
	NicLys	=	N ^E -nicotinoyllysine
35	NicOrn	=	N ^d -nicotinoylornithine
	Nle	=	norleucine, 2-aminonexanoic acid

	NMeLeu	=	N-methylleucine
	Nval	=	norvaline, 2-aminopentanoic acid
	3-Pal	=	<pre>3-(3-pyridyl)alanine</pre>
	pClPhe	=	3-(4-chloro)phenylalanine
5	PicLys	=	N^{E} -picoloyllysine
	Pip	=	piperidine-2-carboxylic acid
	PmcLys	=	N^{E} -(4-pyrimidinylcarbonyl)lysine
	PmACAla	=	3[4(4-
		pyr	imidinylcarbonyl)aminocyclohexyl]alanine
10			•
	PzACAla	=	3 (4-
		pyra	azinylcarbonylaminocyclohexyl)alanine
	3-PzAla	=	3-pyrazinylalanine
	PzcLys	=	N ^E -pyrazinylcarbonyllysine
15	Sar	=	N-methylglycine
	TinGly	=	3-thienylglycine

Laboratories, San Carlos, CA. The hydroxyl group of Ser

20 was protected as the benzyl ether, the phenolic hydroxyl
group of Tyr as the Br-Z derivative, and E-amino group of
Lys as the Cl-Z derivative, the guanidino group of Arg and
the imidazole group of His as the TOS derivatives. The
a-amino function was protected as the BOC derivative.

25 BOC-Orn(Z) was obtained from Sigma Chemical Co., St.
Louis, Mo. BOC-D-2-Nal, BOC-D-3-Pal, BOC-D-Cl2Phe, BOCpClPhe and BOC-ILys(Z) dicyclohexylamine salt were
provided by the Southwest Foundation for Biomedical
Research, San Antonio, TX. The benzhydrylamine

30 hydrochloride resin was obtained from Beckman Bioproducts,
Palo Alto, CA. The nitrogen content was about 0.65

Most natural amino acids were obtained from Peninsula

The present invention involves the design, synthesis and use of LHRH antagonists with high antiovulatory potency and diminished activity to release histamine (1).

mmoles/g. The CH2Cl2 was distilled before use.

These new antagonists feature, for example, D-N^Enicotinoyllsine (D-NicLys) in position 6 and N^Eisopropyllysine (ILys) in position 8. The solution of DArg⁶, particularly in combination with Arg⁸ and a cluster
of hydrophobic aromatic amino acid residues at the Nterminal, have been implicated in the release of histamine
(2-4).

Other reductions of anaphylactoid activity were obtained by increasing the distance between the positive charges in positions 6 and 8 by Arg⁵ and by inclusion of a neutral residue in position 6 as in [N-Ac-D-2-Nal¹,DpClPhe²,D-3-Pal³,Arg⁵,D-4(p-methoxybenzoyl)-2-aminobutyric acid⁶,D-Ala¹⁰]-LHRH (2-Nal represents 3-(2-15 naphthyl) alanine; PClPhe represents 3(4chlorophenyl)alanine; 3-Pal represents 3(3pyridyl)alanine) by Rivier et al. (5) and [N-Ac-D-2-Nal¹,D-aMepClPhe²,D-Trp³,Arg⁵,D-Tyr⁶,D-Ala¹⁰]-LHRH (aMepClPhe represents 2 methyl-3(4-chlorophenyl)alanine) 20 by Roeske et al. (6). Further modifications in position 6 are reductive alkylation of D-Lys⁶ by Hocart et al. (7), incorporation of N,N-diethylhomoarginine by Nestor et al. (9). The cyclic analogs recently synthesized by Rivier et al. did not show any lowering in histamine release 25 compared to the linear counterparts (10).

From the peptides of the present invention, two were initially selected as models for further design. The peptide [N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, NicLys⁵, D-NicLys⁶, ILys⁸, D-Ala¹⁰]-LHRH (named Antide) had an impressive combination of potency and low histamine release; antiovulatory activity (AOA) was 100% at lug and 36% at 0.5ug; ED₅₀ for histamine release, in vitro, was consistently above 300ug/ul as compared to about 0.17 for the standard analog [N-Ac-D-2-Nal¹,D-pFPhe²,D-Trp³,D-Arg⁶]-LHRH (pFPhe represents 3(4-fluorophenyl)alanine)

(5). Another analog was identical to Antide except for PicLys 5 and D-PicLys 6 (PicLys represents N-picoloyllysine); 100% AOA at 0.5ug and 40% at 0.25ug; ED $_{50}$, 93 \pm 11.

5

Included herein are results from LHRH analogs with acylated aminocyclohexylalanine residues in position 6, from analogs in which Leu⁷ has been substituted with other neutral residues, from a comparison of ILys⁸ vs. IOrn⁸, and from tests on oral activity and duration of antagonists activity when administered orally or parenterally (s.c.)

Melting points are uncorrected. NMR data are 15 reported as d-values downfield from TMS.

Before acylation, the Z and C1-Z groups of Lys and Orn were cleaved by hydrogenolysis in MeOH in the presence of 10% Pd/C.

20

<u>BOC-D-BzLys</u> was synthesized by acylation of BOC-D-Lys with benzoyl chloride as described for the L- isomer by Bernardi <u>et al.</u> (17).

BOC-DMG-Lys was prepared by acylation of BOC-Lys with chloracetyl chloride using the same method and the reacting the crude product from 10 mmoles BOC-Lys in 10 ul THF with 10 ul 40% aq. dimethylamine. The reaction mixture was stirred 15 minutes in ice bath and then 2.5

30 hours at room temperature. After evaporation in vacuo the crude product was dissolved in 10 ul H₂O and applied on a Bio-Rad AGI-X8 column, acetate form, 1 x 25 cm. The column was first washed with 200 ul water and then the product was eluted with 6% HOAc and lyophilized several

35 times to remove the HOAc. Yield 60-70%. Amorphous mass. R_E (n-BuOH:py:HOAc:H₂O = 30:10:3:12) = 0.27. Purity >

95%. NMR (CDCl₃):1.45,s,9H,t-butoxy group; 1.851.48,m,6H,B,y,d,CH₂ groups; 2.6,s,6H,N(CH₃)₂; 3.25,m,2H,
E-CH₂; 3.37,s,2H,N-CH₂-CO; 4.15,m,1H,a-CH.

The other acylated Lys derivatives in the tables were prepared from BOC-D or L-Lys and the corresponding p-nitrophenyl ester.

p-Nitrophenyl nicotinate. To 9.85 g, 80 mmoles,

nicotinic acid and 13.35 g, 96 mmoles p-nitrophenol in 250

ul DMF was added 16.5 g, 80 mmoles DCC with stirring in

ice-bath. After 1 hour at O'C and 3 hours at room

temperature the urea was filtered off and the product was

precipitated by the addition of an equal volume of water.

Filtration, drying in vacuo and recrystallization from i
PrOH gave 11.22 g, 57% of white needles, m.p. 172.5-173'C

(24)

p-nitrophenyl isonicotinate was prepared, in the same
20 manner 12 g, 61%, m.p. 139-141`C, m.p. 137-139`C. (18)

Also p-nitrophenyl 6-methylnicotinate was prepared in the same way. Yield from 70 mmoles 6-methylnicotinic acid: 6.0 g, 33% after recrystallization from MeOH. M.p. 156-157°C. R_f (2% MeOH in CHCl₃) = 0.57 NMR (CDCl₃): 2.7,s,3H,CH₃; 7.36,d,1H,py H⁵;7.45,m,2H,H adjacent to the oxygen in the phenyl ring; 8.34,m,3H,H adjacent to the NO₂ group in the phenyl ring overlapping with py H⁴; 9.27,d,1H,py H².

30

P-nitrophenyl picolinate. 4.92 g, 40 mmoles,
picolinic acid and 5.84 g, 42 mmoles p-nitrophenol were
suspended/dissolved in 200 ul CH₂Cl₂. Then 8.24 g 40
mmoles, DCC was added in 20 ul CH₂Cl₂ with vigorous
stirring. Stirring was continued in room temperature for
17 hours. Then the mixture was filtered and the filter

cake washed with 30-40 ul CH₂Cl₂. The raw product was first treated with 100 ul Et₂0 with stirring in ice-bath and filtered. Recrystallization from 250 ul iPrOH gave 6.24 g, 63% product. M.p. 154-6°C (dec.). M.p. 145-7°C (18).

Pyrazinecarboxylic acid p-nitrophenylester. This compound was prepared using the same method as the previous compound. From 40 mmoles pyrazinecarboxylic acid and 44 mmoles p-nitrophenol was obtained 35.2 mmoles, 88%, ester. M.p. 180-182°C (dec.). R_f (CHCl₃:MeOH = 49:1) = 0.72. NMR (CDCl₃): 7.5,m and 8.37m,2H each, hydrogens adjacent to the oxygen and nitro group respectively in the phenol ring; 8.84,m,1H,pyrazine H⁵; 8.9,d,1H,pyrazine H⁶; 9.48,d,1H,pyrazine H³.

BOC-NicLys. 2.5 g BOC-Lys (L or D) was suspended in 200 ul DMF with stirring. Then 1.1 equivalent of p-nitrophenyl nicotinate was added and the mixture stirred at room temperature for 36 hours. The mixture was then filtered and the filtrate evaporated to dryness at reduced pressure to yield a yellow oil. The residue was stirred with 2x50 ul Et₂0 in ice-bath. The first Et₂0 phase was decanted, the second was filtered off. Recrystallization from EtOAc/hexanes gave 2.05 g product, 58% (L-form).

M.p. 138°C, lit. (17) 138-141°C. L-form [a] 20 per -2.91° (MeOH), D-form [a] 20 per 3.35° (MeOH).

L- and D-BOC-INicLys were prepared similarly by

30 acylating 10 mmoles L or D BOC-Lys with p-nitrophenyl isonicotinate in 100 ul DMF, 40 hours, room temperature. The crude product was partitioned between 120 ul EtOAc and 50 ul H₂O. The EtOAc phase was extracted with 2 x 50 ul H₂O and 50 ul brine. The original aqueous phase was

35 back-extracted with 30 ul EtOAc. The combined EtOAc phases were then dried (MgSO_A) and evaporated and the

residue was treated with Et₂O and recrystallized as above to give 1.07 g, BOC- L-INicLys, 30.5%. The yield for the D compound was 1.26 g, 36%. NMR (Acetone d₆):
1.4,s,9H,t-butoxy group; 1.8-1.48,m,6H,B,y,d,-CH₂-;
3.44,t,2H,E-CH₂; 4.13,m,1H,a-CH; 7.77,m,2H,py H⁵ and H³;
8.70,m,2H,py H² and H⁶.

L- and D-BOC-PicLys. 1.23 g, 5 mmoles, of L- or D-BOC-Lys was stirred with 1.34 g, 5.5 mmoles, p-nitrophenyl picolinate in 60 ul DMF for 16 hours. After filtration and evaporation and product was purified by column chromatography on silica gel on a 4.5 x 32 cm column and the solvent system n-BuOH:py:HOAc:H₂O = 30:10:3:12. The product after chromatography was dissolved in EtOAc and washed with H₂O, brine, dried and evaporated in vacuo. The yields were usually 60-70%. NMR (CDCl₃):
1.43,s,9H,t-butoxy group; 1.73-1.45,m,6H,B,y,d-CH₂;
3.47,m,2H,E-CH₂; 4.32,m,1H,a-CH; 7.43,m,1H,py H⁵;
7.85,m,1H,py H⁴; 8.2,m,1H,py H³; 8.55,m,1H,py H⁶.

20

L- and D-BOC-MNicLys. 10 mmoles BOC-Lys and 10.5 mmoles p-nitrophenyl 6-methylnicotinate were allowed to react in 150 ul DMF in the usual manner. After 27 hours filtration and evaporation yielded a yellow oil. Et₂O treatment (2 x 50 ul) gave 3.3 g product which was recrystallized from 50 ul 20% MeOH in EtOAc/hexane. Yield 2.87 g, 78.6% (L-form). R_f(n-BuOH:py:HOAc:H₂O = 32:10:3:12) = 0.61. NMR(CDCl₃): 1.46,s,9H,t-butoxy group; 1.9-1.5,m,6H,B,y,d-CH₂; 2.57,s,3H,py CH₃; 3.36,m,2H,E-CH₂; 4.11,m,1H,a-CH; 7.22,d,1H,py H⁵; 8.08,m,1H,py H⁴; 8.95,broad s,1H,py H².

L- and D-BOC-PzcLys. Using the method above was obtained from 7.7 mmoles pyrazine carboxylic acid p35 nitrophenyl ester and 7 mmoles BOC-Lys, L or D, in 100 ul
DMF about 6 mmoles product after recrystallization from

iPrOH. $R_f(n-BuOH:py:HOAc:H_2O = 30:10:3:12) = 0.47.$ NMR (CDCl₃): 1.45,s,9H,t-butoxy group; 1.9-1.48,m,6H,B,y,d-CH₂-; 3.51,m,2H,E-CH₂; 4.29,m,1H,a-CH; 8.52,q,1H,pyrazine H⁵; 8.77,d,1H,pyrazine H⁶; 9.41,d,1H,pyrazine H³.

5

BOC-L-NicOrn. This compound was prepared the usual way by reacting 7 mmoles p-nitrophenyl nicotinate with 5 mmoles BOC-Orn in 75 ul DMF for 36 hours. Evaporation and recrystallization from EtOAc gave 3.5 mmoles, 70%, NicOrn, 10 m.p. 143-144°C. R_f(n-BuOH:HOAc:H₂O = 4:1:2) = 0.70.

NMR(CDCl₃): 1.45,s,9H,t-butoxy group; 7.46,m,1H,py H⁵; 8.27,m,1H,py H⁴; 8.69,m,1H,py H⁶; 9.05,m,1H,py H².

BOC-D-trans-NACAla. 1.43 g, 5 mmoles, BOC-D-trans3(4-aminocyclohexyl) alanine (provided by the Southwest Foundation for Biomedical Research) was stirred with 1.35 g, 5.5 mmoles, p-nitrophenyl nicotinate in 60 ul DMF for 120 hours in room temperature. The mixture was then filtered, evaporated, treated with Et₂O in ice bath and 20 filtered again. Recrystallization was done by heating in 12 ul EtOH and adding 18 ul hot H₂O. This produced a clear solution from which crystals separated on cooling. This procedure was repeated twice. Yield: 0.98 g, 50%. Purity >95%. M.p. >220°C. NMR(DMSO d₆): 1.46,s,9H,t25 butoxy group; 1.9-1.48,m,11H,ring CH₂, ring CH in position 1 and B-CH₂; 3.72,m,1H,ring CH in position 4; 3.95,m,1H, a-CH; 7.48,m,1H,py H⁵; 8.16,m,1H,py H⁴; 8.67,m,1H,py H⁶; 8.96,m,1H,py H².

30 <u>BOC-D-cis-NACAla</u>. 5 mmoles BOC-D-<u>cis</u>-3(4-aminocyclohexyl)alanine (source: as above) and 5.5 mmoles p-nitrophenyl nicotinate were allowed to react in DMF as above. Reaction time: 25 hours. Purification was achieved by Et₂O treatment as above and silica gel chromatography on a 4.5 x 32 cm column using the solvent system CHCl₃:MeOH:py:HOAc = 75:10:10:5. Yield 1.3 g, 61%,

amorphous powder. R_f (column system) = 0.58. NMR (CDCl₃): 1.44,s,9H,t-butoxy group; 1.95-1.45,m,1lH,ring CH₂, ring CH in position 1 and B-CH₂; 4.22,m,1H,a-CH; 4.35,m,1H,ring CH in position 4: 7.35, 8.24, 8.63 and 8.98, 1H each, assignments as previous compound.

BOC-IOrn(Z). This compound was prepared from BOC-Orn(Z) by reductive alkylation with acetone and H₂/Pd as described by Prasad et al. (23) followed by conversion to the Nd- Z derivative with benzyl chloroformate in aqueous alkali (Schotten-Baumann conditions). Purification was achieved by chromatography on silica gel with CHCl₃/MeOH 85:15. R_f (CHCl₃; MeOH:HOAc = 85:15:3) = 0.8. NMR(CHCl₃): 1.10,d,6H, isopropyl CH₃; 1.40,s,9H,t-butoxy group; 1.7-1.5,m,4H,B,y-CH₂; 3.09,m,2H, d-CH₂; 4.2,m,lH,a-CH; 5.10,s,2H,benzyl CH₂; 7.3,m,5H,aromatics.

BOC-CypLys(Z). 2.04 g BOC-Lys(Z) was dissolved in 8 ul of cyclopentanone and 32 ul H₂O containing 0.22 g NaOH. 20 Hydrogenation was performed in the presence of 0.4 g 10% Pd/C at 50-60 psi in a Parr apparatus. After 4 hours the hydrogenation was interrupted and 2 ul 0.5 M NaOH and 10 ul MeOH were added. The hydrogenation was then continued for 16 hours at 50-60 psi. Then filtration and 25 evaporation. The residue was dissolved in 75 ul ${\rm H}_2{\rm O}$ and the aqueous phase extracted with three times with Et,0 and once with hexane. The pH was then brought to 6-7 with HCl and the solution evaporated in rotary evaporator, bath temperature 40°C. The resulting product was then 30 converted to the Z-derivative using benzyl chloroformate in aqueous NaOH (Schotten-Baumann conditions). Yield: 1.3 g, 58% overall. R_f (n-BuOH:py:HOAc:H₂O - 30:10:3:12) = 0.69. Purity >95%. NMR (CDCl₃): 1.45,s,9H,t-butoxy group; 1.95-1.35,m,14H,ring CH₂ + B,y,d-CH₂; 3.13,broad 35 t,2H,E-CH₂; 4.34-4.05,m,2H,a-CH + ring CH; 5.13,s,2H,benzyl CH₂; 7.35,m,5H,aromatic protons.

BOC-Me₂Lys, D- and L-. These compounds were prepared by hydrogenolysis of the corresponding Z- or Cl-Z-derivatives in the presence of 37% formaldehyde essentially as described by L. Benoiton (22) for the N^a - acetyl analog. Purification was achieved by chromatography on silica gel with the solvent system n-BuOH:py:H₂O = 2:2:1. The yields are 40-65% and the products are amorphous. NMR (CDCl₃): 1.41,s,9H,t-butoxy group; 1.9-1.5,m,6H,B,y,d-CH₂; 2.6,s,6H,N(CH₃)₂; 2.8,m,2H,E-CH₂; 4.03,m,1H,a-CH.

BOC-D-AnGlu. 0.62 g, 3 mmoles, DCC was added to the ice-cooled solution of 1.10 g, 3 mmoles, BOC-D-glutamic acid a-benzylester and 0.39 g, 3 mmoles, p-anisidine in 25 15 ul CH2Cl2. The reaction mixture was stirred while warming up to room temperature and then another 17 hours. The dicyclohexylurea was then filtered off and CHCl2 added to a total volume of 125 ul. This solution was extracted with 2 x lN H_2SO_4 , H_2O , saturated NaHCO₃, 2 x H_2O and 20 dried $(MgSO_4)$. Evaporation and recrystallization from EtOH gave 0.99 g, 74% product, m.p. 129.5-131 C. R_f (4% MeOH in $CHCl_3$) = 0.53. This product was dissolved in 30 ul MeOH and 10 ul EtOH and hydrogenated in the presence of 0.3 g Pd/C at 50 psi for 2.5 hours. Filtration and 25 evaporation gave a quantitative yield of BOC-D-AnGlu. Not crystalline. Purity >98%. NMR (CDCl₃): 1.45,s,9H,tbutoxy group; 2.35-1.95,m,2H,B-CH₂; 2.6-2.4,m,2H,y-CH₂; 3.76,s,3H,OCH₃; 4.3,m,1H,a-CH; 6.82 and 7.42, broad d, 2H each, aromatic protons.

30

BOC-Me₃Arg. First, N,N,N',S-tetramethylisothiourea was prepared by the procedure of Lecher and Hardy (19).

B.p. (15 mm) = 74°C, lit(above) 68°C at 11 mm. BOC-Orn,9 mmoles, and teramethylisothiourea, 10 mmoles, were

dissolved in 15 ul DMF and 2 ul triethylamine and incubated at 100°C for 2 hours and at room temperature for

10 hours. Then the reaction mixture was evaporated to dryness and passed through a silica gel column eluted by iPrOH:triethylamine:H₂O = 42:6:13. The white solid so obtained was dissolved in H₂O and the solution was acidified with 6N HCl and lyophilized to give 5.5 mmoles product. R_f (column eluant) = 0.50. NMR (D₂O): 1.42,s,9H,t-butoxy group, 2.80,m,lH,a-CH; 2.89,s,3H, CH₃ on guanidino group; 2.96,s,6H, (CH₃)₂N; 3.25,t,2H,d-CH₂; 1.50,m,4H,B,y-CH₂.

10

BOC-Dpo. From 10 mmoles arginine hydrochloride and 1.72 g sodium hydrogen carbonate dissolved in 17 ul H₂O, 28.6 ul acetylacetone and 28.6 ul EtOH was obtained 7.5 mmoles Dpo following the procedure of F.-S. (20). The 15 product was then converted to the corresponding BOC-derivative using di-t-butyl dicarbonate in 50% aqueous dioxane in the presence of sodium hydroxide. This reaction proceeds in essentially quantitative yield. R_f(nBuOH:HOAc:H₂O = 4:1:2) = 0.63. NMR (CDCl₃): 1.45,s,9H,t-butoxy group; 1.9-1.5,4H,B,y-CH₂; 2.33,s,6H,CH₃; 3.46,m,2H,d-CH₂; 4.24,m,lH,a-CH; 6.35,s,lH, aromatic H. L- and D- forms react similarly.

BOC-D-Et₂hArg. This compound was prepared by the method of Nestor and Vickery, U.S. Pat. 4,530,920, July 23, 1985. $R_f(nBuOH:HOAc:H_2O = 4:1:2) = 0.52$.

The peptides of the present invention were synthesized by the solid phase method using a Beckman 30 Model 990 Peptide Synthesizer. (1, 11) The benzhydrylamine hydrochloride resin (BHA-resin) was used as a solid support. The program of the synthesizer was divided into subprograms.

1. Deprotection: 1. CH_2Cl_2 (2 x wash, 1 or 2 min); 2. 50% TFA in CH_2Cl_2 containing 0.1% indole (1 x

wash, 1 or 2 min); 3. 50% TFA in CH_2Cl_2 containing 0.1% indole (deprotection, 20 min); 4. CH_2Cl_2 (2 x wash).

- 2. Neutralization: 1. $\mathrm{CH_2Cl_2}$ (2 x wash, 1 or 2 5 min); 2. DIEA (10% in $\mathrm{CH_2Cl_2}$) (2 x wash, 1 or 2 min); 3. DIEA (10% in $\mathrm{CH_2Cl_2}$) (neutralization, 5 min); 4. $\mathrm{CH_2Cl_2}$ (2 x wash, 1 or 2 min).
- DCC Coupling: 1. CH₂Cl₂ (2 x wash, 1 or 2
 min); 2. amino acid solution in CH₂Cl₂ (delivery, transfer, mix, 5 min); 3. DCC (10% in CH₂Cl₂, (delivery and mix, 180 min); 4. CH₂Cl₂ (2 x wash, 1 or 2 min).
 - 4. Active Ester Coupling: not used.

15

- 5. Final Wash: 1. CH₂Cl₂ (2 x wash, 1 or 2 min); 2. i-PrOH (3 x wash, 1 or 2 min); 3. DMF (3 x wash, 1 or 2 min); 4. CH₂Cl₂ (3 x wash, 1 or 2 min).
- 20 6. Wash after TFA Treatment: 1. CH_2Cl_2 (2 x wash, 1 or 2 min); 2. i-PrOH (2 x wash, 1 or 2 min); CH_2Cl_2 (3 x wash, 1 or 2 min).
- 7. Acetylation: 1. CH_2Cl_2 (2 x wash, 1 or 2 min); 25 2. 25% Ac_2O and Py in CH_2Cl_2 (1 x wash, 1 or 2 min); 3. 25% Ac_2O and Py in CH_2Cl_2 (acetylation, 20 min); 4. CH_2Cl_2 (2 x wash, 1 or 2 min).
- The first amino acid was attached to the resin by the program sequence 2-3-5. Before placing the resin into the reaction vessel, the resin was washed in a separatory funnel with 25 ul CH₂Cl₂/g resin to remove the fine particles. In all couplings, usually a 3-4 fold excess of the Boc-amino acid over the nitrogen content of the resin was used. This procedure generally resulted in a complete coupling reaction. If a positive ninhydrin color reaction

was observed, a second coupling was performed (program sequence 3-5). Then, the resin was acetylated (program sequence 7-5).

5 The next amino acid was attached by the program sequence 1-6-2-3-5. For DCC coupling, all amino acids were dissolved in CH₂Cl₂. Acetylation of the amino acid residue in position 1 was performed using the program sequence 1-6-2-7-5. The volume of the solvents and the reagents used for the washing and the performing of the chemical reactions was about 10 ul/g resin.

After all of the amino acids had been coupled, the peptide resin was dried overnight, in vacuo. The resin was then treated with double-distilled liquid hydrogen fluoride (10 ul/g resin) containing 10-25% distilled anisole or p-cresol for 1 hour at 0°C. Then, the HF was evaporated under reduced pressure and the residue was dried overnight, in vacuo, by an oil pump. The mixture was then extracted several times with Et₂O (25 ul/g resin), then with aqueous. HOAC, 30%, 50%, 10%, and once with 25 ul distilled, deionized water. The combined aqueous solution was lyophilized to yield the crude peptide.

25

Most peptides were purified by silica gel chromatography (1 x 60 cm column) using one of the solvent systems nBuOH:HOAc:H2O = 4:1:2 or 4:1:5 upper phase or nBuOAc:nBuOH:HOAc:H2O = 2:8:2:3 followed by gel filtration over Sephadex G 25 with 6% HOAc as the eluant. In the case of unsatisfactory purity after this procedure the peptides were further purified by semipreparative HPLC using a Waters liquid chromatograph equipped with a 660 solvent programmer. A 1.2 x 25 cm m-Bondapak C18 column was used with the solvent system A = 0.1 M NH4OAc pH 5.0 and B = 20% A + 80% CH3CN. Different gradients of

increasing amounts of B in 15 - 25 minutes were employed to effect purification.

An alternate purification scheme has been gel

5 filtration over Sephadex G-25 with 6% HOAc followed by chromatography over Sephadex LH 20 (2.5 x 100 cm) with the solvent system H₂O:nBuOH:HOAc:MeOH = 90:10:10:8. If necessary, the latter procedure was repeated 1 - 2 times.

The purity of the peptides was assessed by thin layer chromatography on Merck silica gel plates in at least four different solvent systems as shown in Table II. The spots were developed with the chlorine/o-tolidine reagent. In Table II are also shown the conditions and results of analytical HPLC. The equipment was the one described above except that an analytical m-Bondapak C₁₈ column (3.9 mm x 30 cm) was used.

Amino acid analyses were performed on a Beckman model 118 CL amino acid analyzer. Samples of about 0.5 ug were hydrolyzed in 6N hydrochloric acid in sealed glass tubes for 24 hours at 110°C. The residue was then evaporated and dissolved in citrate buffer, pH 2.2 and applied to the analyzer. The results are in Table III.

25

The antiovulatory activity, AOA, in rats was determined as described by Humphries et al. (12). The wheal test was performed by intradermally injecting 10 ug of peptide in 100 ul of saline into anaesthesized rats, measuring the ideally circular wheal response and calculating the area. The in vitro histamine release test was done as described by Karten et al. (4).

The results of these bioassays are presented in Table 35 I and other Tables appended hereto.

Of the 57 peptides in Table I, 21 had an AOA of about 90% or more at a dosage of 1 ug in the present assay. Of the 37 peptides of Table 1 tested for histamine release in the rat mast cell assay, 10 had E_D50 values of 300 or more as compared to 0.17 for the standard compound [N-Ac-D-2-Na1¹,D-4-F-Phe²,D-Trp³,D-Arg⁶]-LHRH. Nine additional analogs had E_D50 values ranging from 86 to 288, i.e. they do not release more histamine than clinically used "superagonists".

10

Of the thirty-seven peptides of Table 1 tested in the rat mast cell assay, seven (numbers 4, 23, 24, 43 (Antide), 44, 53, 55) had both an AOA of about 90% or more at 1 ug and an E_D 50 value of about \geq 86 ug/ul. This included the potent analog, No. 53, which had 100% AOA at 0.5 ug and 40% AOA at 0.25 ug. The E_D 50 value for this analog was 93 ± 28 . It was thus demonstrated that high AOA with low histamine release could be found in the analogs of the present invention.

20

Structural features in common for these seven peptides are: 1) A D-Lys residue in position 6 which was acylated by the weakly basic nicotinic acid or analogs like picolinic and 6-methylnicotinic acid. 2) The corresponding acylated L-Lys residue or the natural Tyr in position 5. 3) The alkylated derivatives ILys or IOrn in position 8. 4) Arg is absent from the sequence.

Two examples of the influence of Arg on histamine release are the pairs 43,10 and 4,1. No. 43 (Antide) has the sequence N-Ac-D-2-Na 1 ,D-pClPhe 2 sub,D-3-Pal 3 ,Ser 4 ,NicLys 5 ,D-NicLys 6 ,Leu 7 ,ILys 8 ,Pro 9 ,D-Ala 10 -NH $_2$. Its E_D 50 value is >300. No. 10 is identical in sequence except that NicLys 5 is replaced by Arg 5 . This caused the E_D 50 value to decrease to 4.3±0.52. No. 4 has identical sequence as No. 43 except for Tyr in position 5. Its E_D 50

value is 133 ± 22 . In No. 1, ILys⁸ in this sequence is replaced by Arg⁸ which caused the E_D50 value to decrease to 39.2 ± 7 . It thus seems that position 5 is more sensitive than position 8 for Arg substitution.

5

In position 8, the alkylated ILys and IOrn residues are superior to Lys and Orn, respectively, both with respect to AOA and histamine release (pairs 3,4 and 6,7). Whether ILYs or IOrn is best seems to be sequence 10 dependent.

For the determination of duration of action, the antagonist was administered s.c. or orally to 26 days old female rats at a specific time before administration of the agonist, [D-Qal⁶]-LHRH. The serum levels of rat luteinizing hormone (LH) and rat follicle stimulating hormone (FSH) were then measured 2 hours after the agonist administration by RIA. The oral administration was done through force-feeding with feeding tubes.

20

Table IV shows data on AOA and histamine release for analogs containing acylated aminocyclohexylalanine residues. For the analogs with NicLys⁵, D-NACAla⁶, IV-1 and IV-2, (NACAla represents 3(4-nicotinoyl-25 aminocyclohexyl)alanine), analog 2 with cis-D-NACAla⁶ is somewhat more active, 100% vs. 70% AOA at lug. Analogs IV-7 and IV-8 with NicLys⁵, D-PzACAla⁶ (PzACAla represents 3(4-pyrazinylcarbonylaminocyclohexyl)alanine) show the opposite order of activity. The trans residue has the higher AOA, 88% vs. 25% at lug.

Analogs IV-3 and IV-4 with PicLys⁵, trans and cis PACAla (PACAla represents 3(4picolinoylaminocyclohexyl)alanine) are equipotent, 50 and 35 54% AOA at 0.5ug, respectively, whereas in the case of PicLys⁵, trans and cis PzACAla⁶ the cis compound is more than twice as active. The former, analog IV-5 is about as potent as analogs IV-3 and IV-4 (44% at 0.5ug) while the latter, analog 6, has 100%, 73%, and 29% AOA at 0.5, 0.25, and 0.125ug, respectively. The high potency analog IV-6 is unique in comparison with the low activity of the structurally similar analog IV-8.

Analog IV-9 has cis-PzACAla⁵, D-PicLys⁶ and, although residues 5 and 6 are reversed, retained the high potency of analog IV-6, 90% and 67% at 0.5 and 0.25ug, respectively.

As for histamine release, all analogs tested, in vitro, have lower ED₅₀ values than the parent compounds.

The ED₅₀ values range from about 30 to about 60 compared to >300 and 93±11 for Antide and analog V-10. The tests for wheal response show a range from 99.5 to 129.6, which is similar to Antide (132.7) and analog V-10 (123.0). The lack of correlation between the two tests may primarily reflect assay variation.

In summary, for the analogs with NicLys⁵, incorporation of aminocyclonexylalanine derivatives in position 6 resulted in substantial increase in, in vitro, histamine release and unchanged or lowered AOA. For the PicLys⁵ analogs with the same substitutions there was lowering of AOA potency in all cases except one, where a considerable increase was observed. The combination PicLys⁵ and cis-D-PzACAla⁶ evidently possesses some beneficial structure. Histamine release for the PicLys⁵ analogs was increased by 50-100%.

In Table V, are the results from substitutions in position 7 of analog V-10. This position allows some structural freedom although none of the peptides show higher AOA than analog V-10. Analogs V-12, V-14, and V-16

having Aile⁷ (alloisoleucine), Val⁷ and Abu⁷ (2-aminobutyric acid), are equipotent with analog V-<u>10</u>.

Analog V-<u>16</u> with the straight chain Abu⁷ is slightly more potent than analogs V-<u>13</u> and V-<u>15</u> with Nle⁷ (norleucine) and Nval⁷ (norvaline), respectively, which should more closely resemble the natural Leu⁷.

For compound V-17 with the small Ala⁷, the AOA decreased to 60% at 0.5ug. Incorporation of Trp⁷ which is the natural residue in chicken II, salmon and lamprey LHRH's (13-15), gave analog 18 with only 10% AOA at 0.5ug. Trp⁷ may be too large considering the size of the adjacent D-PicLys⁶ and Ilys⁸.

- The most interesting feature of Table V is the, in vitro, histamine release data. The three analogs with similar AOA potency as analog V-10 show markedly diminished histamine release. The ED₅₀ values for analogs V-12, V-14, and V-16 are >300, 213±30 and 273±27, respectively; i.e., a 2-3 fold decrease in histamine release is achieved by small changes in side chain structure. Also, the wheal response is diminished for all analogs compared to V-10.
- It was noted earlier (1) that whether ILys or IOrn is the best substituent in position 8 is sequence dependant. To further investigate this aspect, the IOrn⁸ analogs corresponding to some of the best peptides were synthesized and tested. The results in Table VI indicate that ILys⁸ may be better. For two of the pairs, analogs VI-10, VI-19 and VI-12, VI-21, ILys⁸ and IOrn⁸ were about equivalent. For the other three pairs, the analogs with ILys⁸ were more active, but the differences were not large. The largest difference was for the pair with Val⁷, where the ILys⁸-analog VI-14 showed 90% AOA at 0.5ug vs. 57% for the IOrn⁸-analog VI-20.

Analog VI-19 was tested, in vitro, for histamine release. The ED₅₀ value is 42±3.1; i.e., the histamine release is 2-fold that of the analog with one more CH₂ unit. The wheal response did not change conspicuously except for the Aile⁷ and IOrn⁸ analog 21 which had the low value of 78.6±4.5 compared to the ILys analog 12 which had 97.9±2.9.

Table VII shows the duration of action of Antide and two analogs. When Antide was injected 44 hours before 50 ng of [D-Qal⁶]-LHRH (Qal represents 3(3-quinolyl)alanine), a superagonist, at doses of 3, 10, and 30ug, significant reductions in serum LH were observed at the two higher doses. The LH decreased from 113±11 to 46±12 and 5±0.7 ng/ul. Serum FSH was also decreased, most significantly from about 300 to about 300 ng/ul at 30ug.

Analog VII-24, [Tyr⁵]-Antide, and analog IV-6 were similarly injected 24 hours before the agonist. Analog VII-24 showed high activity, reducing the LH level to 19±4, 3±0.4 and 0.3±0.03 ng/ul at doses of 3, 10, and 30ug, respectively. The corresponding figures for analog IV-6 are 42±7, 15±3, and 3.4±2 ng/ul. This is interesting since in the antiovulatory assay analog IV-6 is considerably more potent, 73% at 0.25 ug vs. 45% at 0.5 ug. Perhaps, analog IV-6 is enzymatically degraded faster than analog VII-24. The long duration of action of these analogs s.c. may also be due to "depot" effects at the site of injection.

30

Table VIII shows the duration of action of Antide after oral administration. Forty-eight hours after administration of 100 or 300ug dose levels of Antide, there were significantly reduced levels of LH which had been released by 5 ng of [D-Qal⁶]-LHRH s.c. Reductions from 21±3 to 4±0.8 and 8±2 ng/ul, respectively, were

observed. The results are about the same in the -24 hour experiment (9±2 and 6±0.3 ng/ul). Antide appears to possess considerable resistance towards degrading enzymes. When Antide was given 2 hours before the agonist, a strong decrease in LH levels was observed. At a dose of 30ug, a significant lowering of the LH level to 6±1 ng/ul was seen. At 100 and 300ug, the levels were 1±0.3 and 0.4±.4 ng/ul, i.e., very low levels. When 10 ng of agonist was used, the results are qualitatively very similar.

10

For comparison, the last three entries in Table VIII are from experiments with [N-Ac-D-pClPhe^{1,2},D-Trp³,D-Arg⁶,D-Ala¹⁰]-LHRH, VIII-25, an analog that has been reported to have oral activity, (16). These data show that Antide is more active than VIII-25, since a dose of 30ug given 2 hours before the agonist reduced the LH level from 44±4 to 22±4 ng/ul (p<0.01). The value for analog VIII-25 is 39±6 (NS). At 100 ug, the corresponding numbers are 7±3 (p<0.001) and 26±7 (p<0.05). The FSH levels were, in general, lowered when Antide was administered at -2 hours at 100 or 300ug dose levels.

The results in Table IX show that there is no significant difference between administration of Antide in water or in corn oil.

Antide has also been tested orally in the antiovulatory assay (Table X). The AOA values at 300, 600, and 1200ug dose levels are 18, 73, and 100% respectively. Expressed as rats ovulated/total rats, the numbers are 9/11, 3/11, and 0/11. For analog VIII-25, the numbers 9/11, 4/11, and 0/11 have been reported at dose levels of 500, 1000, and 2000ug, respectively, (16). Antide was about twice as active as analog VIII-25.

35

Table XI shows a comparison of the oral activities of Antide and four analogs. One was as active as Antide, one was considerably less active and two were less active at low doses (30 and 100ug) and about as active at 300ug.

5

After a 15 ng s.c. dose of [D-Qal⁶]-LHRH, the LH level rose to 91±4.6 ng/ul. At oral dose levels of 30, 100, and 300ug of Antide, reduced levels of LH of 75±3, 20±4, and 5±1 ng/ul, respectively, were recorded. Analog 4 with PicLys⁵, and D-PACAla⁶ showed no significant reduction of LH at 30 and 100ug levels, but there was a reduction to 51±6 ng/ul at a 300ug dose.

Analog V-12 with PicLys⁵, D-PicLys⁶, and Aile⁷ and 15 analog IV-6 with PicLys⁵, cis-D-PzACAla⁶ are less active than Antide at 30 and 100ug, but were equally active at 300 ug. Both of these peptides were substantially more active than Antide in the s.c. antiovulatory assay.

- Analog $\underline{26}$ was equipotent with Antide. This is not suprising since the only structural difference between these analogs is a pyrazine instead of a pyridine moiety in the N^E-acyl group of the D-Lys⁶ residue.
- 25 Table XI and XII also shows results with Antide, for example, when 50 ng of the agonist was used. Comparison of these results with the data from the experiments using 15 ng of agonist shows a dose-response relationship which is expected from competitive antagonism. Using 15 ng of agonist, 100 and 300ug of Antide reduced the LH level from 115±15 ng/ul to 20±4 and 5±1 ng/ul respectively, while in the experiments using 50 ng of agonist, 300 and 900ug of Antide reduced the LH to the same level (19±3 and 5.3±1.2 ng/ul).

35

Table XIII shows the biological effects of Antide in a dispersed pituitary cell culture system.

The structures and biological activites of certain preferred LHRH analogs inhibiting more than 50% of ovulatory activity at a dose of 0.25 ug are shown in Table XIV.

It is proposed that Antide and other antagonists of. 10 the present invention may be utilized to induce a state of reversible medical castration that will be of value in the treatment of a rather large number of diseased states such as endometriosis, uterine fibroids and hormonal dependent cancers (prostate, breast). In some patients temporary 15 inhibition of the function of the gonads with Antide, for example, while the patient is receiving chemotherapeutic agents and/or irradiation may prevent or minimize adverse effects of these agents on the gonads and thus help to preserve future fertility. Therapeutic examples would be 20 irradiation during bone marrow transplantation, cervical carcinoma, metastatic thyroid and uterine carcinoma, possibly thyrotoxicosis, etc. during chemotherapy for disseminated lupus erythematosus and certain stages of organ transplantation. More physiological usages of the 25 antagonists of the present invention such as Antide would be to inhibit fertility in both females and males.

More unique possible usages of Antide or other decapeptides of the present invention would be to modify sexual behavior during select disease states. Such disease states could involve patients with AIDS, the aggressive behavior of sex offenders in prisons or aggressive adolescents confined to corrective institutions. It is also possible is that high serum gonadotrophin levels of post-menopausal women may induce functional abnormalities in fat cells that cause weight

gain or in bone cells that play a role in accelerated osteoporosis. These functional abnormalities could potentially be reduced with administration of Antide by inhibiting the high LH and/or FSH level in serum of post menopausal women.

Selective LH-RH antagonists mainly with charged amino acid substitutions in position 6 and/or 8 of the decapeptides probably stimulate histamine release by a direct effect on mast cells to release histamine while other LH-RH antagonists like Antide do not. It is thus proposed that the mast cell-stimulating antagonists applied locally to wounds of the skin may accelerate healing while non-histamine stimulating antagonists may prevent some of the allergic reactions which occur in humans.

To delay the onset of puberty in short stature children by administration of Antide with and without concommitant administration of GH or GH-releasing peptides is proposed as a unique method to enhance body height. The presence of gonadal hormones fuse the epiphysis of long bone and prevent their further elongation. This approach should extend and augment the use and effectiveness of GH and GH-releasing peptides.

The administration of LH-RH antagonists of the present invention acutely inhibits the function of the gonads within 24 hours. Continuous administration of LH-RH superagonists also inhibits the function of the gonads but this is only after several days of stimulating the gonads to hyperfunction. Such superagonist administration introduces a number of potential undesirable clinical problems in patients with prostate cancer, endometriosis, uterine fibroids as well as with sex offenders and those subjected to a temporary induction of medical castration.

3

choice.

For these reasons it is proposed that LH-RH antagonists will be more desirable agents than LH-RH agonists for introducing a reversible state of medical castration. At the diagnostic level, such as differentiating the anatomic source of steroid secretion from the adrenal versus the ovary or to reveal the degree of calcium excretion dependency on gonadal steroid hormones, the rapid onset of inhibiting gonadal function with LH-RH antagonists makes them an unequivocally superior agent over LH-RH agonists.

10 It is proposed that, in every clinical situation where LH-RH superagonists have been utilized to inhibit gonadal function, the LH-RH antagonists will be the agents of

- The references in the following list are incorporated by reference herein.
- Ljungqvist, A., Feng, D.-M., Tang, P.-F.L., Kubota, M., Okamoto, T., Zhang, Y., Bowers, C.Y., Hook, W.A. &
 Folkers K. (1987) <u>Biochem</u>. <u>Biophys</u>. <u>Res. Commun</u>. <u>148</u> (2), 849-586.
 - 2. Karten, M.D. & Rivier, J.E. (1986) Endocr. Rev. 7, 44-56.
 - 3. Hook, W.A., Karten, M. & Siraganian, R. P. (1985)
 Fed. Proc. Fed. Am. Soc. Exptl. Biol. 44, 1323.
- Karten, M.D., Hook, W.A., Siraganian, R.P., Coy,
 D.H., Folkers, K., Rivier, J.E. & Roeske, R.W. (1987) in <u>LHRH and its Analogs</u>; Contraceptive and Therapeutic
 Applications Part 2, eds. Vickery, B.H. & Nestor, J.J., Jr., (MTP Press Ltd., Lancaster, England) pp. 179-190.

SUBSTITUTE SHEET

25

10

25

- 5. Rivier, J.E., Porter, J., Rivier, C.L., Perrin, M., Corrigan, A., Hook, W.A., Siraganian, R.P. & Vale, W.W. (1986) <u>J. Med. Chem.</u> 29, 1846-1851.
- 5 6. Roeske, R.W., Chaturvedi, N.C., Hrinyo-Pavlina, T., & Kowalczuk, M. (1987) in <u>LHRH and its Analogs</u>;
 <u>Contraceptive and Therapeutic Applications Part 2</u>, eds.
 Vickery, B.H. & Nestor, J.J., Jr., (MTP Press Ltd.,
 Lancaster, England) pp. 17-24.
- 7. Hocart, S.J., Nekola, M.V. & Coy, D.H. (1987) <u>J. Med.</u> Chem. <u>30</u>, 739-743.
- 8. Nestor, J.J., Tahilramani, R., Ho, T.L., McRae, G.I. 15 & Vickery, B.H. (1988) J. Med. Chem. 31, 65-72.
- 9. Bajusz, S., Kovacs, M., Gazdag, M., Bokser, L., Karashima, T., Csernus, V.J., Janaky, T., Guoth, J. & Schally, A.V. (1988) Proc. Natl. Acad. Sci. USA 85, 1637-20 1641.
 - 10. Rivier, J., Kupryszewski, G., Varga, J., Porter, J., Rivier, C., Perrin, M., Hagler, A., Struthers, S., corrigan, A. & Vale, W. (1988) J. Med. Chem. 31, 677-682.
- 11. Folkers, K., Bowers, C.Y., Shieh, H.-M., Liu, Y.-Z.,
 Xiao, S.-B., Tang, P.-F.L. & Chu, J.-Y. (1984) Biochem.
 Biophys. Res. Commun. 123 (3) 1221-1226.
- 30 12. Humphries, J., Wan, Y.-P., Folkers, K. & Bowers, C.Y. (1978) J. Med. Chem. 21(1), 120-123.
- Miyamoto, K., Hasegawa, Y., Nomura, M., Igarashi, M., Kanagawa, K. & Matsuo, H. (1984) Proc. Natl. Acad. Sci.
 USA 81, 3874-3878.

₹

- 14. Sherwood, N., Eiden, L., Brownstein, M., Spiess, J., Rivier, J., & Vale, W. (1983) Proc. Natl. Acad. Sci. USA 80, 2794-2798.
- 5 15. Sherwood, N.M., Sower, S.A., Marshak, D.R., Fraser, B.A. & Brownstein, M.J. (1986) J. <u>Biol. Chem.</u> 261, 4812-4819.
- Nekola, M.V., Horvath, A., Ge, L.-J., Coy, D.H. &
 Schally, A.V. (1982) <u>Science</u> <u>218</u>, 160-161.
 - 17. Bernardi, et al., <u>J. Pharm. Pharmacol.</u> 19, 95 (1967).
- 18. Fife, T.H. and Przystas, T.J., <u>J. Am. Chem. Soc. 107</u>, 15 1041 (1985).
 - 19. Lecher et al., U.S. 2,872,484, Feb. 3, 1959, Chem. Abstr. 53, 11238c.
- 20 20. Tjoeng et al., Chem. Ber. 108, 862 (1975).
 - 21. Humphries et al., <u>J</u>. <u>Med. Chem</u>. <u>21(1)</u>, 120 (1978).
 - 22. Benoiton, L., <u>Can. J., Chem. 42,</u> 2043 (1969).
 - 23. Prasad et al., <u>J. Med. Chem.</u> 19, 492 (1976).
 - 24. Zinner, H. and Fiedler, H., <u>Arch</u>. <u>Pharm</u>. <u>291(63)</u>, 330 (1958).

Changes may be made in the particular amino acid or derivatives and their assembly described herein or in the steps or the sequence of steps of the method described herein without departing from the concept and scope of the invention as defined in the following claims.

SUBSTITUTE SHEET

25

30

CLAIMS:

- 1. A decapeptide having antiovulatory activity 5 comprising Ser⁴, PicLys⁵ and D-PicLys⁶.
- 2. A decapeptide having antiovulatory activity comprising N-Ac-D-2-Nal¹, D-pClPhe², Ser⁴, D-PicLys⁵ and 10 Pro⁹.
- 3. A decapeptide having antiovulatory activity comprising N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, Ser⁴, D-15 PicLys⁶, Pro⁹ and D-Ala¹⁰.
- A decapeptide having antiovulatory activity comprising N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, Ser⁴,
 NicLys⁵, Pro⁹ and D-Ala¹⁰.
- 5. A decapeptide having antiovulatory activity comprising N-Ac-D-2-Na1¹, D-pClPhe², D-3-Pal³, Ser⁴, Leu⁷, 25 Pro⁹ and D-Ala¹⁰.
- 6. A decapeptide having antiovulatory activity comprising N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, Ser⁴, Leu⁷, 30 Pro⁹ and D-Ser¹⁰.
 - 7. A decapeptide having antiovulatory activity comprising $D-pClPhe^2$, Pro^9 and $D-Ala^{10}$.

35

- 8. A decapeptide having antiovulatory activity comprising D-pClPhe², Pro⁹ and Ser¹⁰.
- 5 9. A decapeptide having antiovulatory activity comprising N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, NicLys⁵, D-NicLys⁶, ILys⁸ and D-Ala¹⁰.
- 10 10. A decapeptide having antiovulatory activity comprising N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, NicLys⁵, D-NicLys⁶, ILys⁸ and D-Ala¹⁰.
- 15 ll. A decapeptide having antiovulatory activity comprising N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, PicLys⁵, D-PicLys⁶, ILys⁸ and D-Ala¹⁰.
- 20 12. A decapeptide having antiovulatory activity comprising N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, NicLys⁵, D-NicLys⁶, IOrn⁸ and D-Ala¹⁰.
- 25 13. A decapeptide having antiovulatory activity comprising N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, PicLys⁵, D-PicLys⁶, IOrn⁸ and D-Ala¹⁰.
- 30 14. A decapeptide having antiovulatory activity comprising N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, MNicLys⁵, D-MNicLys⁶, IOrn⁸ and D-Ala¹⁰.

- 15. A decapeptide having antiovulatory activity comprising N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, PzcLys⁵, D-PzcLys⁶, IOrn⁸ and D-Ala¹⁰.
- 16. A decapeptide having antiovulatory activity comprising N-Ac-D-pClPhe¹, D-3-Pal³, Tyr⁵, D-NicLys⁶ and ILys⁸.
- 17. A decapeptide having antiovulatory activity comprising N-Ac-D-Cl₂Phe¹, D-3-Pal³, Tyr⁵, D-NicLys⁶ and ILys⁸.
- 18. A decapeptide having antiovulatory activity comprising acylated Lys⁵, D-acylated Lys⁶ and N-alkylated diamino acid⁸.
- 20
 19. A decapeptide having antiovulatory activity comprising NicLys⁵, D-NicLys⁶ and ILys⁸.
- 25 20. A decapeptide having antiovulatory activity comprising PicLys⁵, D-PicLys⁶ and ILys⁸.
- 21. A decapeptide having antiovulatory activity 30 comprising NicLys⁵, D-NicLys⁶ and IOrn⁸.
 - 22. A decapeptide having antiovulatory activity comprising PicLys 5 , D-PicLys 6 and IOrn 8 .

- 23. A decapeptide having antiovulatory activity comprising MNicLys⁵, D-MNicLys⁶ and IOrn⁸.
- 5 24. A decapeptide having antiovulatory activity comprising PzcLys⁵, D-PzcLys⁶ and IOrn⁸.
- 25. A decapeptide having antiovulatory activity 10 comprising Tyr⁵, D-NicLys⁶ and ILys⁸.
 - 26. A decapeptide having antiovulatory activity comprising Tyr⁵, D-NicLys⁶ and IOrn⁸.

27. A decapeptide having antiovulatory activity comprising N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, Ser⁴, NicLys⁵, D-NicLys⁶, Leu⁷, ILys⁸, Pro⁹ and D-Ala¹⁰NH₂.

20

28. A decapeptide having antiovulatory activity comprising N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, Ser⁴, PicLys⁵, cis D-PzACAla⁶, Leu⁷, ILys⁸, Pro⁹ and D-Ala¹⁰NH₂.

25

- 29. A process for inhibiting ovulation in an animal comprising administering to said animal a decapeptide having the structure: N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, Ser⁴, NicLys⁵, D-NicLys⁶, Leu⁷, ILys⁸, Pro⁹ and D-Ala¹⁰NH₂.
- 30. A process for inhibiting ovulation in an animal comprising administering to said animal a decapeptide having the structure: N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³,

Ser⁴, PicLys⁵, cis D-PzACAla⁶, Leu⁷, ILys⁸, Pro⁹ and D-Ala¹⁰NH₂.

- 5 31. A process for inhibiting the onset of puberty in an animal comprising administering to said animal a decapeptide having the structure: N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, Ser⁴, NicLys⁵, D-NicLys⁶, Leu⁷, ILys⁸, Pro⁹ and D-Ala¹⁰NH₂.
- 32. A process for inhibiting the sexual impetus of an animal comprising administering to said animal a decapeptide having the structure: N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, Ser⁴, NicLys⁵, D-NicLys⁶, Leu⁷, ILys⁸, Pro⁹ and D-Ala¹⁰NH₂.
- 33. A process for altering the gonadal function of an 20 animal comprising administering to said animal a decapeptide having the structure: N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, Ser⁴, NicLys⁵, D-NicLys⁶, Leu⁷, ILys⁸, Pro⁹ and D-Ala¹⁰NH₂.
- 34. A process for inhibiting the growth of hormone-dependent tumors in an animal comprising administering to said animal a decapeptide having the structure: N-Ac-D-2-Nal¹, D-pClPhe², D-3-Pal³, Ser⁴, NicLys⁵, D-NicLys⁶, Leu⁷, ILys⁸, Pro⁹ and D-Ala¹⁰NH₂.
- 35. A process for lowering LH and FSH levels in serum of post-menopausal woman comprising administering to said woman a decapeptide having the structure: N-Ac-D-2-Nal¹,

D-pClPhe², D-3-Pal³, Ser⁴, NicLys⁵, D-NicLys⁶, Leu⁷, ILys⁸, Pro⁹ and D-Ala¹⁰NH₂.

TABLE I. ANTAGONISTS OF LHRH BASED UPON

)8,Pro⁹,D-Ala¹⁰]-NH₂ , 'Leu', ([()¹,D-pClPhe²,()³,Ser⁴,(

/																										
	E _D 50 μ9/m1		39.2+7	39.9±7	•	133±22	18.4	19.3	7300		1.73	4.3 ± 0.52			20.3			86±28*	55±13*	324 ± 20	151±75	57±13	34±1.1	39+1.0	198+33*	311±65*
	Whegl Area mm /10µg		85		119.5±3.2	79.0±9.2	122.7	129.4±3.3	92.242.9	146.8	113.2±5.6	196.944.2	140+7.0	110±3	132.7±0	139.7±0	146.4±3.6	132.8 ± 6.0	139.9+7.2	147.7±7.1	116.5±8.7	113.6±10.9	110±3	116±3.3	139.9±7.2	103.9 ± 5.3
	þ		ļ	!	1	100	100	67	!	!	!	1	44	1	!	1	!	!	!	1	1	1	1	1	1	;
	AOA %/µg 1.0 2.0		100	ì	27	83	90	!	7.1	42	!	17	;	ł	89	69	100	75	100	82	52	73	¦	100	100	83
	AOA 2	9 NO	09	:	1	45	;	1	22	0	33	43	ł	26	1	!	!	ŀ	1	1	i	!	20	64	ł	0
	()8 0.5	IN POSITI	Arg	Me,Arg	Lyš	ILys	Me, Lys	Orĥ	IOrn	Arg	=	ILys		=	=	Arg		ILys	IOrn	ILys	IOrn	=	ILys	=	3	=
) 9(D-NICLYS	D-NicLys	=		2	=	=	:	=	:	=	=	=	=	=	=	=		:	=	=	•	=	=	=
	Compound (ANALOGS WITH D-NICLYS IN POSITION 6	Tyr D		=	=	3	=	=	Arg	=	=	Me,Arg	ppo	ILys	His	3-Pal	=	=	Ile	=	Nicorn	DMGLys	PicLys	Tyr	=
	()		D-3-Pal	=	=	2	=	=	=	=	D-Tyr	D-3-Pal	=	=	2	=	=	=	·=	=	2	3	=	=	=	=
	()		N-Ac-D-2-Nal	=	=	2	=	=	=	=	=	=	=	=	=	5	=	=	=	=	=	=	=	=	N-Ac-D-pClPhe	$N-Ac-D-Cl_2$ Phe
	IBR #		22396	24753	24825	24315	24443	24748	24756	24199	24446	25335	24931	25506	24543	24545	24593	25383	25384	25144	25145	25333	25509	25510	25337	25338
	Oz		1.	2.	3.	4.	5.	.9	7.	8.	9.	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.	24.

																2]:	24												
		•		6.7+2.2	>300)	60+1.4	7. TTO 2		17+1	262423	77-70-7				7.61							6	<300	300	20070	171±49	300		
	112	146.7±3.6	196.944.1	165.2±6.7	119.6+6.7	123+5.8	120+7	113+7	119.5+3.2	113.6+10 9	111+2	122.2+5.1	•		136 346 0	0.010.00	23.0 <u>T</u> T0.3	122.8±5.8			9 8+6 961	150 0414 0	111111111111111111111111111111111111111	113.0±11.1	132./±0	136.0±3.4	147.0±7.1	82.642.8	136.3±6.8	132.845.9
	1	ŀ	73	ļ	ł	1	ł	!	ļ	ł	ł	!			œ	3 1		T 0.0		9,	!	001)		OOT	l	i	! ?	æ	
	1	100	26	100	20	29	!	67	70	100	82	92	1		!	ł		!		TONS 3,	001	}	9.	9 7 6	201	707	5 (-	6	2 0
S NO	0	1	}	40	ł	1	36	i	1	į	;	78		8 NC	!	_	> ;	:	LYS	6 OR IN POSITONS	22	1	;	20	2	3 .	ŀ		!	1 1
IN POSITIO	Arg	=	8	ILys		=	=			2	=	•		IN POSITIO	Niclus	7	=				Ara	Me Ard	m C	11.00	1078	70.7	Cyphys Ni or	NICLYS "	•	o a
ANALOGS WITH NICLYS IN POSITION 5	D-3-Pal	D-His	D-ILys	D-Dpo	D-BzLys	D-Et, hArg	D-PicLys	D-Anglu	trans-D-NACAla	Cis-D-NACAla	D-Me_Lys	D-PzcLys	•	ANALOGS WITH NICLYS IN POSITION 8	D-Arg	D-3-Pal	D-11		ANALOGS WITH NICLYS AND D-NICLYS	POSITIONS 5, 6 OR IN POSITION 8,	D-NicLvs		2	=	=	=	=	. =	=	=
ANALOGS	NicLys	=	=		8	•	=	=	" tra			-		ANALOGS	Tyr	Arg	114		ANALOGS	ONS 5, 6 OR	NicLys	ı	=	=	z	=	E	1 ½ t Hic	11.46	TVE
÷	D-3-Pal	=	•	=	=	=	=	=	=	:	=	=			D-3-Pal	=	=			IN POSITIO	D-3-Pal	=	=	=	:	=	I	=	=	D-NicLvs
	N-Ac-D-2-Nal	=	=	2	=	=	=	=	=	=	=	=	•		N-Ac-D-2-Nal		=				N-Ac-D-2-Nal	=	=	=	=	:	=	=	=	=
	249	454	24754	25334	25332	25507	25589	25588	25647	25648	25591	25649			24749	24771	24824	•		•	24594	24987	25143	24542	24933	25078	24540	24745	24746	24597
	25.	. P.	27.	28.	29.	30.	31.	32.	33.	34.	35.	36.			37.	38.	39.				40.	41.	42.	43.	44.	45.	46.	47.	48	49.

MISCELLANEOUS ANALOGS

/019	144								
E, 50	μg/ml		>300	15±8.2	93+28	8.7+3*	>300*	24 ± 0.3	288+30
Whgal Area	mm ² /10µg	122.8±5.7	123±5.9	140.3±13.9	123.0 ± 0	169.0+7.7	126.1±6.7	136.6.7	110.2+8.1
	10.0	l	œ	!	ŀ	i	1	t	1.
	2.0						!		
8/µ9	0.5 1.0	0	: i	16	0.6	63	100	100	!
AOA	0.5	1	1	63	100	ţ	26	Į 1	17
	0.25	!	:		40	1	1	1	!
c	•	licLys	llys	=	=	=	=	=	=
u	8() 8()	D-3-Pal, NicLys, D-NicLys, N	NicLys]	D-INicLys	D-PicLys	D-BzLys	D-MNicLys "	D-BzLys	D-PzcLys
spuno) () ₂ (l, NicLys,	=	INicLys	PicLys	Arg	MNicLys	DMGLys	PzcLys
Comp	· -	D-3-Pa	=	=	=	=	#	=	=
-	, · · ·	N-Ac-D-2-Nal	=	=	=	=	8	=	=
IBR #		24596	24934	25146	25147	25385	25386	25508	25650
NO.		50.	51.	52.	53.	54.	55.	56.	57.

*In this test series, the standard compound had an ${
m E}_{
m D}$ 50 value of 0.46 instead of the usual 0.1 -0.2.

4/24

TABLE II ANALOGS WITH PicLys⁵, D-PicLys⁶.

								4	1 2	4										
	D-Ala-NH2	=	3	=	=	=	=	=	=	=	=	=	=	=	=	=	=	Abu-NH,	" $D-AIa-NH_2$	ı
	Pro,	=	=	=	=	=	=	=	=	=	=	2	•	=	=	=	Pip	Pro, D-,	=	
	ILys,	IOrn	=	ILys	=	IOrn	ILys	IOrn	ILys	IOrn	ILys	=	=	=	=					
	Leu,	=	=	=	Val	=	Aile,	=	Abu	=	Trp	Nle	Nval	Ile	Ala	Abu	Leu	=	=	
	D-PicLys,	=	=	=	:	=	=	=	=	•	=	=	=		=	=	=	=	z	
	PicLys,	=	=	=	=	= .	=	=	=	=	=	=	=	:	=	=	=	=	:	
Sequence	Ser,	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	
Sec	D-3-Pal,	D-pC1Phe	D-3-PzAla	D-Trp	D-3-Pal	=	=	=	=		3	=	=	=	z	•	=	=	Ŧ	
	D-pClPhe,	D-3-Pal	D-pClPhe	s ,	=	=	:	3	•	=	=	=	=	=	=	=	=	2	=	
mb:	26100 N-Ac-D-Cl Phe,					: 81	936	26178 "	. 066	627	25935 "	25988 "	25989 "		26099 "	346	25937 "	26019 "	25933 "	
IBR	58. 261			62. 26177										•						

•
PicLys ⁵
with
Analogs

Ser PicLys	TLVS	Pro	7 " "	=	=	:	:	= :	D-Ser-NH
D-PzACAla Leu ILys " " " IOrn Val ILys " Leu Arg " ILys " ILys " " " " " " " " " " " " " " " " " " "	TLVS		=	=	:	=	_		
D-PzACAla Leu "" " " " " " " " " " " " " " " " " " "		Lγs						. .	=
D-PZACAla "" "" PicLys "" "" "" "" "" "" "" "" "" "" "" "" ""	en	-	=	=	1	Ara	11.0	TLYS.	:
c-D-PzACAla c-D-PmACAla cLys la D-PicLys " " t-D-PzACAla c-D-PzACAla c-D-PzACAla b-NicLys D-NicLys D-NicLys	ب	ren	=	=	:	=	=	: =	:
15 PH 25 PH	D-M-PicLvs		D-PmcLys			D-3-PzAla	-U-D-MAN 1 2	C-D-rzacala "	ŧ
Ser PicLys C """"	MPicLys	Mrichys	PmcLys	c-PzACAla	STUDIES IN	=	100	171 "	t
Ser "" Ser "" "" "" ""	Ser	ב מ	=	=	:	=	=	=	:
he D-TinGly D-3-Pxla D-3-Pal " An he D-3-Pal " " " " " " " An he D-3-Pal " " " An he D-3-Pal	D-3-Pal	במיינים	2	=		2	=	=	
D-pClPhe "" "" "" "" D-pClPhe "" "" ""	D-pC1Phe		=	=	;	=	=	=	
N-AC-D-2-Nal	N-Ac-D-2-Nal		:		=			=	
26349 26324 26325 26325 26325 26347 26348 26383 26381 26381 26381 26381 26381 26381 26381 26381 26381 26381 26381 26381 26381 26381 26381 26381 26381 26381	25808	26322	77597	26326	6 (1) 6	76417	26418	26365)))
78. 79. 80. 81. 83. 84. 86. 86. 97. 91. 92. 93.				98.			100.	101.	

Sar-NH ₂	. D-Ala-NH ₂
Arg	Arg ILys
ren	" Val
D-3-Pal	D-3-Pal D-PicLys
Arg PicLys	Arg C-PzACAla
Ser =	
D-3-Pal	D-Phe D-3-Pal
D-pClPhe "	3
N-AC-D-2-Nal	D-pGlu N-Ac-D-2-Nal
	D-pclPhe D-3-Pal Ser Arg D-3-Pal Leu Arg Pro " " PicLvs c-D-PzACAla " True "

											7	- 2	ય							
	In Vitro Histamine Release ED ₅₀ µg/ml ± SEM					213 + 30		300	0	773 + 27	1									
TABLE III Biological Data. Analogs with PicLys ⁵ ,D-PicLys ⁶	Whegl Area mm /10µg	116.2±3.7	116,245,5	103.9±3.4	71.0+4.3	97.9±2.9	119.6±6.6	97.9±2.9	78.6±4.5	91.0+5.4	101.5±9.3	78.5±0	107.0+6.0	95.3+6.0	110.7+2.3	103.9+3.7	113.2+5.4	95.0+0	109.9+3.0	113.0±0
NBLE III 1 logs with	-																			
T? Ana	1.0	1 6		ı	ı	100	ı	1	1	1	ı	ı	i	ı	ı	i	ı	100	1	100
	АОА/µg 0.5	38 64		. 75	20	90	22	89	82	100	80	10	11	100	1	09	88	0	78	06
	0.25	1 1	12	,	ı	43	ı	43	ı	36	1	ı	20	10	0	ı	50	ı	F	20
	IBR	26100 25807	26364	26119	26177	25934	26118	25936	26178	25990	26179	25935	25988	25989	26020	. 66092	26346	25937	26019	25933
	NO.	58. 59.	.09	61.	62.	63.	64.	65.	.99	67.	. 89	.69	70.	71.	72.	73.	74.	75.	.92	77.

PicLys ⁵
With
nalogs

28 ± 7				
84.6±3.9 127.8±4.9 122.8±5.7 101.6±2.2 127.8±4.9	119.6±8.5 122.8±5.7 119.6±6.6 120.4±4.7 Analogs With D-PicLys ⁶	99.5±4.5 95.1±5.0 89.5±5.5 113.2±5.5 Analogs With NicLys	129.6±8.8 101.7±5.0 110.5±11.4 104.3±10.5	Analogs With Miscellaneous Substituents in Positions 5 and 6. $\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 1 1 1 1 1	- - - Anale	Ana	1 1 25 88	h Miscellanec 91 - - -
100 100 100 100	1116	06 1 1 1	67 - - 44	67 67 100 -
0 22 73 50 73	22 25 -	67 11 11 0	110	Anal - 0 57 22 22 0
26349 26324 25897 26181 26325 26366	26347 26348 26383 26323	26180 26381 26382 26363	25805 25806 26345 25991	25808 26322 26326 26417 26418 26365
78. 79. 80. 81. 83.	84. 85. 87.	88. 89. 90.	99.9. 99.4.	96. 97. 98. 99. 100.

TABLE IV

7019 44	e 9 0	~	æ	0	0	<i>ૄ</i>	124	89	0	
	Whegl Area mm /10µg	119.5±3.2	101.8±4.3	101.0±3.0	123.0±5.0	106:3±4.3	122.8±5.7 €	129.648.8	101.7±5.0	99.5±4.5
[N-Ac-D-2-Nal ^l ,D-pClPhe ² ,D-3-Pal ³ ,X ⁵ ,Y ⁶ ,ILys ⁸ ,D-Ala ^{l0}]-LHRH Analogs	In Vitro Histamine Release ED ₅₀ µg/ml±SEM		37±1.1	64±5.4	41±5.4	39±4.4	28±7.5			
al ³ , X ⁵ , Y	1.0	70	100	t	i	ı	i	88	. 25	t
, D-3-P	0 2	I	50	20	54	44	100	67	•	06
, D-pClPhe	АОА %/µg 0.25	1	ı	ı	1	i	73	ı	1	67
c-D-2-Nal	0.125	ì	ı		ı	I	29	i	ì	ı
Biological Data for [N-Ac	X	<u>trans-</u> D-NACAla	<u>cis</u> -D-NACAla	trans-D-PACAla	cis-D-PACAla	trans-D-PzACAla	cis-D-PzACAla	<u>trans</u> -D-PzACAla	<u>cis</u> -D-PzACAla	D-PicLys
Biolo	×	NicLys	= .	PicLys	=	Ξ	=	NicLys	=	cis-PzACAla D-PicLys
	•ON	IV-1.	10-2.	10-3.	10-4.	10-5.	10-6.	10-7.	IV-8.	IV-9.

TABLE V

Biological Data for $\{N-Ac-D-2-Nal^1, D-pClPhe^2, D-3-Pal^3, PicLys^5, D-PicLys^6, x^7, ILys^8, D-Ala^{10}\}$ -LHRH Analogs.

					10	24			
Whegl Area mm /10µg	123±0	110.7±2.3	97.9±2.9	107.0±6.0	97.9±2.9	95.3±6.0	91.0±5.4	103.9±3.7	78.5±0
In Vitro Histamine Release ED ₅₀ µg/ml±SEM	93 <u>1</u> 11		>300		213±30		273±27		
1.0	06	1	í	i	100	į	i	1	;
АОА %/µ9 0,5	100	1	68	77	06	100	100	09	10
0.25	40	0	43	20	43	10	36	i	i
×	Leu	Ile	Aile	Nle	Val	NVal	Abu	Ala	Trp
NO.	V-10.*	V-11:	V-12.	V-13.	V-14.	V-15.	V-16.	V-17.	V-18.

* From Reference 1

TABLE VI

Biological Data for [N-Ac-D-2-Nall, D-pClPhe, D-3-Pal3, PicLys, K, Y, Z, D-Alal] - LHRH Analogs

e g			5 1	y	0.	11 2	կ 7	e	7	8
Wheal Area mm /10µg	123±0	113.0±0	97.9±2.9	119.6±6.6	97.9±2.9	78.6±4.5	91.0±5.4	101.5±9.3	122.8±5.7	101.6±2.2
In Vitro Histamine Release ED_{50} µg/ml $\pm \mathrm{SEM}$	93±11	42±3.1	213±30		>300		273±27		28±7.5	
1.0	90	100	100	·	i	1	i	ı	ı	·
АОА\$/µg 0.5	100	06	06	57	89	82	100	80	100	100
0.25	40	20	43	1	43	1	36	ı	73	50
83	ILys	IOrn	Ilys	IOrn	ILys	IOrn	ILys	IOrn	ILys	IOrn
×	Leu	:	Val		Aile	=	Abu	=	ren	=
×	D-PicLys		3	=	=	•	:	=	VI-6. <u>cis</u> -D-PzACAla	=
NO.	VI-10.*	VI-19.	VI-14.	VI-20.	VI-12.	VI-21	VI-16.	VI-22.	VI-6.	VI-23.

* From Reference 1

TABLE VII

Duration of Action of Antide and Two Analogs Subcutaneously* Administered.

			0 Time		+2 hrs		
I Analog	Injection Time	Dose µg	ng sc [D-3-Qal ⁶]- LHRH	LH ng/ml ±SEM	p value	FSH ng/ml ± SEM	p value
1	ı	ı	. 1	0.4±0.03	<.001	143±10	<.001
i	1	ı	20	113±11	1	2899±387	ı
Antide	-44hr	m	50	90±5	NS	2497±155	SN
=	=	10	20	46±12	<.001	1413±230	<.01
=	=	30 ·	50	5±0.7	<.001	311±34	<.001
VII-24†	-24hr	ю	. 05	19±4	<.001	719±123	<.001
=	=	10	20	3±0.4	<.001	289±30	<.001
=	-	30	50	0.3±0.03	<.001	147±10	<.001
IV-6(25897)	:	H	20	91 <u>+</u> 19	SN	2020±295	SN
=	=	т	50	42±7	<.001	1298±275	<.01
=	=	10	. 05	15±3		624+84	5

p value	<.001
FSH ng/ml + SEM	273±89
+2 hrs 1 p value	<.001
LH ng/ml ±SEM	3.4±2
O Time ng sc [D-3-Qal ⁶]- LHRH	50
Dose	30
Injection Time	=
Analog	=

* Mean of 6 ± SEM † [Tyr⁵]-Antide

TABLE VIII

Duration of Action of Orally Administered Antide and Comparison with [N-Ac-D-pclPhe 1,2 , D-Trp 3 , D-Arg 6 , D-Ala 10]-LHRH (25).*

			0 Time		+2 hours	urs	
	Time		Agonist†	Serum		FSH	
	, of		Dose (sc)	LH ng/ml		ng/m]	
•	adm.††	Dose	bu	+ SEW	p value	+ SEM	p value
Antagonist	hr	6rt ·				•	
			٠				
	ı	1	ı	3±1	<.001	298±20	<.001
	ı	1	ທີ	21±3	t	796±102	ı
Antide	-48	100	S	4+0.8	<.001	481±27	<.02
=	48	300	்	8+2	<.01	600±72	SN
=	-24	100	ທ	9±2	<.01	596450	SN
	-24	300	so	6±0.3	<.001	462±54	<.02
=	-2	10	S	19±4	SN	588±70	SN
=	-2	30	ស	6±1	<.001	573±67	NS
=	-2	100	S	1±0.3	<.001	320±48	<.01
3	-2	300	Ŋ	0.4 ± 0.4	<.001	327±63	<.01
1	1	ı	1	3±1	<.001	298±20	<.001
1	ı	ı	10	44+4	1	1488+168	ı
Antide	-48	100	10	18±2	<.001	792±110	<.01
=	-48	300	10	25±3	<.01	1021 ± 202	NS
=	-24	100	10	24±6	<.02	1008±285	SN
=	-24	100	. 10	. 25±3	<.01	1119±71	SN
	2	. 10	01	51±8	SS	1729 ± 243	NS
=	-5.	30	. 10	22±4	<.01	1051±141	NS
=	-2	. 001	10	7±3	<.001	548±83	<.001
=	-2	300	10	$0.5\pm.06$	<.001	251±24	<.001

		p value	NS	NS	NS
urs	FSH ng/ml	+ SEM	1794±329	1470±190	1161±277
+2 hours		p value	NS	NS	<.05
	Serum LH ng/ml	- SEM	59±11	9∓6€	26±7
O Time	Agonist† Dose (sc)	ច	10	10	10
		Dose	10	30	100
	Time of	adm.†† hr	-2	-5	?
		Antagonist	VIII-25		z

* Kindly provided by Dr. David Coy † [D-Qal]-LHRH †† Administered in water

TABLE IX

Oral Activity of Antide. Dependence on Vehicle.

	-2 hrs	0 Time		+2 hrs	ű		
Vehicle	Antagonist Dose µg oral	Agonist Dose ng sc	LH ng/nl ± SEM	p value	FSH ng/ml ± SEM	p value	
water	ı	1	1.1±0.1	<.001	243±35	<.001	
=	ı	5.0	148±9	1	3041±238	ı	
=	100	50	44±5	<.001	1372±84	<.001	
=	300	50	20±4	<.001	936±150	<.001	16
=	*006	50	6.3±3	<.001	374±80	<.001	124
corn oil	ı	ı	0.8±0.6	<.001	138±6	<.001	
=	1	90	115±8	ı	2935±133	ı	
=	. 001	20	72±12	<.01	2148+234	<.02	

	p value	<.001	<.001
	FSH ng/ml + SEM	792±137	599 <u>+</u> 59
+2 hrs	p value	<.001	<.001
	LH ng/bl ± SEM	20±4	7±2
O Time Agonist	nose ng sc	20	20
-2 hrs - Antagonist	pose pg oral	300	006
	Vehicle	=	2

26 day old female rates. Mean of 6 ± SEM

0 time - [D-3-Qal⁶]-LHRH

+2 hrs - Sacrifice

Design: -2 hrs - Antagonist

* Diluted 1:1 with 10 mM HOAC:Water (slightly cloudy) 0.1 ml orally, other concentration diluted with water

TABLE X

Oral Activity of Antide in the Antiovulatory Assay.*

AOA	% Inhibition	(# Ovulated / # Rats)	(9/9) 0	18 (9/11)	73 (3/11)	100 (0/11)	
Oral	Dose	61	\$ \$. 300	009	1200	

* in 10mM acetic acid:water (1:1)

19/24

TABLE XI Oral Activity of Antide and Some Analogs.

	-2 hrs	O Time		+2 brs	·	
		Agonist				
	Dose	Dose	LH ng/ml		FSH nq/ml	
Antagonist	µg oral .	ng sc	+ SEM	p value	+ SEW	p value
j.						
	1	ı	3.4±2.2	<.001	271±56	<.001
	ı	1.5	91±4.6	1	2491+146	. 1
Antide	30	15	75±3	<.02	1718+223	<.02
=	100	15	20±4	<.001	738±89	<.001
=	300	15	5±1	<.001	472+26	<.001
4	30	15	9±67	NS	1831+249	<.05
=	100	15	9∓9′	NS	2175±211	SN
=	300	15	51±6	<.001	1404±117	<,001
12	30	. 15	71+9	NS	1965+256	SN
=	100	15	54±10	<.01	1031 ± 195	<.001
=	300	. 15	6±1.1	<.001	514+54	<.001
76*	. 30	15	75±9	NS	2438±207	52.
=	100	15	19±3	<.001	845+149	<.001
2	300	15	6 ± 1.4	<.001	431+22	<.001
9	30	15	77±12	NS	1761+191	<.01
=	100	15	59±12	<.05	1782±388	SZ
=	300	15	6.3+1.4	<.001	467+43	<.001
	1	50	115±15	1	2372+126	1
Antide	30	50	93±7	NS	2262+55	S.
=	100	20	49+7	<.001	1345+199	<.001

	FSH ng/ml ± SEM p value	630±40 <.001 450±48 <.001
+2 hrs	F p value	<.001 <.001
	LH ng/ml ± SEM	19±3 5.3±1.2
0 Time	Agonist Dose ng sc	50
-2 hrs	Dose µg oral	300 006
	Antagonist	

* {D-N^E-pyrazinylcarbonyllysyl⁶}-Antide.

26 day old female rats. Mean of 6 \pm SEM Vehicle - 10 mM HOAC:Water (1:1) 0.1 ml

-2 hrs - Antagonist 0 Time - [D-3-Qal]-LHRH +2 hrs - Sacrifice

Design:

TABLE XII

ORAL ACTIVITY OF ANTIDE
At Various Time Schedules and Doses of a LH-RH Superagonist
[NAcD2Nal¹, Dpc1Phe², D3Pal³, NicLys⁵, DNicLys⁶, ILys⁸, DAla¹⁰] LHRH

p value	<.001		NS NS 20.7	NS NS <.01	001 - 01 NS
Ō.	\	0.0NS	20,	,	ÿ ' ÿ ¯
	20	120 27 72	50 54	70 67 48 63	20 168 110 202
FSH ng/ml ± SEM	298 ±	796 ± 481 ± 600 ±	596 ± 462 ±	588 ± 573 ± 320 ± 327 ±	298 ± 1488 ± 792 ± 1021 ±
p value +2 HOURS	<.001	 <.001 <.01	<.01 <.001	NS <.001 <.001 <.001 <.001	<.001 <.001 <.01
LH ng/ml ± SEM	9 +1 ·	21 ± 3 4 ± 0.8 8 ± 2	9 ± 2 6 ± 0.3	19 ± 4 6 ± 1 1 ± 0.3 0.4 ± 0.4	3 ± 1 44 ± 4 18 ± 2 25 ± 3
Agonist* Dose (sc) O TIME	!	5 ng 5 ng 6 ng	5 ng . 5 ng	5 ng 5 ng 5 ng	10 ng 10 ng 10 ng
Antagonist e adm. Dosage al) µg	;	 100 300	100 300	10 30 100 300	100
Antago Time adm. (oral) hr	1	48 48	-24	7 7 7 7	4 8 - 4 8

p value	SN SN	NS NS <.001	22/24 S S S
FSH ng/ml ± SEM	1008 ± 285 1119 ± 71	1729 ± 243 1051 ± 141 548 ± 83 251 ± 24	1794 ± 329 1470 ± 190 1161 ± 277
p value +2 HOURS	<.02 <.01	NS <.01 <.001 <.001	NS NS < . 0.5
LH ng/ml ± SEM	24 ± 6 25 ± 3	51 ± 8 22 ± 4 7 ± 3 0.5 ± .06	59 ± 11 39 ± · 6 26 ± 7
Agonist* Dose (sc) O TIME	10 ng 10 ng	10 ng 10 ng 10 ng 10 ng	10 ng 10 ng 10 ng
ist Dosage µg	100 300	10 30 100 300	100** 30 100
Antagonist Time adm. Do: (oral) hr	-24 -24	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -

24270 { D3Qal 6 }-LHRH * AH-195-3 NACDPC1Phe 1,2 , DTrp 3 , DAla 10 -LHRH (Dr. David Coy)

mean of 6 ± SEM

TABLE XIII

Effect of Antide in the Dispersed Pituitary Cell Culture Assay

IDR			ı	0.52:1	23/24
p value	i	NS ≅.02	NA NS C.01	. *SN *SN	NS N
FSH ng/ml ±SEM	196±23	221±18 562±48	802± 646±123 602±26 . 557+15	546±93 499±26	472±59 617±73 481±17 233±38 165±21
IDR50			ł	0.26:1	
p value	1 #	<.05 <.001	NA <.001 <.001 <.01	NS NS	NS <.001 <.001 <.001
RLH ng/ml ±SEM	10±0.4	40±7 80±1 118+	150 <u>+</u> 1 141 <u>+</u> 4 152 <u>+</u> 7	118±11 117±10 116+7	107±11 80±2 34±2 11±1
LHRH nM	#	0.1	3.0 10.0 30.0	3.0 3.0	0.000. 0.000.
Dose nM		1	111	0.01 0.03 0.1	0.3 1.0 3.0 10.0
Peptide	Control	Lикн		139-95- 20	

* p values vs 3 nM of LHRH

139-95-20 [NACD2Nal¹,DpClPhe²,D3Pal³,NiCLys⁵,DNiCLys⁶,ILys⁸,DAla¹⁰]LHRH

TABLE XIV

LHRH analogs with 50% or more AOA at 0.25 ug

ED	28 ⁵⁰ ± 7.					2	4 24
AOA/0.25 Wheal area	122.8 ± 5.7	127.8 ± 4.9	99.5 ± 4.5	115.5 ± 2.4	101.6 ± 2.2	113.0 ± 0	113.2 ± 5.4
OA/0.25	73	73	67	57	50	20	20
. Y	, D-Ala-NH	=	=	=	=	=	
	ILys, Pro	=	=	=	IOrn "	=	Arg "
	,Leu,	Val	Leu	=	=	=	Abu
4 1	2-D-PzACAla,	=	g-PzACAla, D-PicLys Leu	<u>c</u> -D-PzACAla	=	D-PicLys	=
Sequence	, PicLys, s		g-PzACAla,	9	PicLys	8	=
	Ser	=	=	2	=	=	=
	D-3-pa]	=	:	=	=	#	:
	l,DpClPhe,	=	=	z	:	:	=
	N-Ac-D-2-Nal, Dpc1Phe, D-3-Pal, Ser, PicLys, g-D-PzACAla, Leu, ILys, Pro, D-Ala-NH	=	2	=	=	=	=
IBR#	25897	26325	26180	26326	26181	*25933	26346

*Claimed in original

INTERNATIONAL SEARCH REPORT

	INTERNATIONAL	International Application No PCT	/US 88/02922
I. CLAS	SIFICATION OF SUBJECT MATTER (if several class		
According IPC4:	ng to International Patent Classification (IPC) or to both N. C 07 K 7/20, A 61 K 37/38,/43	ational Classification and IPC	
II. FIELD	DS SEARCHED		
	Minimum Docum	entation Searched 7	
Classificat	tion System	Classification Symbols	
IPC4	A 61 K, C 07 K		
		r than Minimum Documentation to are included in the Fields Searched ^a	
III. DOC	UMENTS CONSIDERED TO SE RELEVANT		
Category *			Relevant to Claim No. 13
	EP, A1, 81877 (COY, DAVID HOWA 22 June 1983, the examples	RD)	7
X	EP, A2, 97031 (SYNTEX) 28 Dece see page 15 - page 16	mber 1983,	5,7
X .	EP, A1, 0143573 (THE SALK INST STUDIES) 5 June 1985, see page 9	TITUTE FOR BIOLOGICAL	7
X	EP, A2, 0162575 (THE SALK INST STUDIES) 27 November 1985, see page 23		5,7
		•••/•••	
"A" do	ial categories of cited documents: 19 cument defining the general state of the art which is not naidered to be of particular relevance	"T" later document published after to priority date and not in conflicted to understand the principl invention	ct with the application but
fili "L" do: wh	riier document but published on or after the international ng date cument which may throw doubte on priority claim(s) or lich is cited to establish the publication date of another ation or other special reason (as specified)	"X" document of particular relevan cannot be considered novel or involve an inventive step "Y" document of particular relevan	cannot be considered to
"O" do: oti "P" do:	cument referring to an oral disclosure, use, exhibition or her means cument published prior to the international filing date but er than the priority date claimed	cannot be considered to involve i document is combined with one ments, such combination being in the art. "4" document member of the same is	or more other such docu- obvious to a person skilled
IV. CERT	TIFICATION	······································	
	ne Actual Completion of the International Search December 1988	Date of Mailing of this International Se	IAN 1989
Internatio	nal Searching Authority	Signature of Authorized Officer	
	EUROPEAN PATENT OFFICE		C VAN DED BITTEN

I. DOCU	OCCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)					
tegory *	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No				
X	EP, A2, 0175506 (THE SALKINSTITUTE FOR BIOLOGICAL STUDIES) 26 March 1986, see page 15	7				
X	EP, A2, 0197798 (ADMINISTRATORS OF THE TULANE EDUCATIONAL FUND) 15 October 1986, see page 5	7				
X	EP, A2, 0199302 (SYNTEX (U.S.A.) INC.) 29 October 1986,	5,7				
X .	EP, A2, 0225746 (THE ADMINISTRATORS OF THE TULANE EDUCATIONAL FUND) 16 June 1987, see page 7	7				
P,X	EP, A2, 0277829 (SYNTEX (U.S.A.) INC.) 10 August 1988, see page 7 - page 9	5,7				
X č	US, A, 4431635 (DAVID H. COY ET AL) 14 February 1984, EXAMPLES 16,19	. 7				
X :	US, A, 4444759 (RIVIER ET AL) 24 April 1984, the claims	7				
X	US, A, 4504414 (FOLKERS ET AL) 12 March 1985, table 1	5,7				
X	US, A, 4647653 (DAVID H. COY) 3 March 1987,	7				
X .	J. Med. Chem., Vol. 29, 1986 Jean E. Rivier et al: "New Effective Gonadotropin Releasing Hormone Antagonists with Minimal Potency for Histamine Release in Vitro ", pages 1846-51 see the whole document	7				
X	Endocrine Reviews, Vol. 7, No. 1, 1986 (USA) Marvin J. Karten and Jean E. Rivier: "Gonadotropin-Releasing Hormone Analog Design. Structure- Function Studies Toward the Development of Agonists and Antagonists:Rationale and Perspective ", pages 44-66, pages 54-57; page 60	7				
		1				

ategory *	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
P,X	Biochemical and biophysical research communications, Vol. 148, No. 2, 1987 Anders Ljungqvist et al: "Design, synthesis and bioassays of antagonists of LHRH which have antiovulatory activity and release negligible histamine", pages 849-56 see the whole document	1-5,7,9- 12,16-21, 25-27
P,X	Proc.Natl.Sci., Vol. 85, 1988 (USA) S. Bajusz et al: "Highly potent antagonists of luteinizing hormone- releasing hormone free of edematogenic effects", pages 1637-41 see the whole document	7
	·	
		-
	·	
	•	
	•	

Form PCT ISA:210 (extra sheet) (January 1985)

FURTHER IN	FORMATION CONTINUED FROM THE SECOND SHEET	
	·	
	•	
	VATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE 1	
	onal search report has not been established in respect of certain claims under Article 17(2) (a) for	
1. X Claim nu	imbers 29-35 because they relate to subject matter not required to be searched by this Author	rity, namely:
Method	for treatment of the human or animal body by therapy	(.Rule 39(iv).
	, , , , , , , , , , , , , , , , , , ,	
	umbers	ith the prescribed require-
2 Coin a	umbers, because they'are dependent claims and are not drafted in accordance with the sec	and and third sentences of
	ile 6.4(a).	
	THE PROPERTY OF THE PARTY OF TH	
	RVATIONS WHERE UNITY OF INVENTION IS LACKING ²	
This Internati	onal Searching Authority found multiple inventions in this international application as follows:	
İ		
	equired additional search fees were timely paid by the applicant, this international search report contentional application.	overs all searchable claims
2. As only	y some of the required additional search fees were timely paid by the applicant, this international	search report covers only
those c	laims of the international application for which fees were paid, specifically claims:	
3. No requ	uired additional search fees were timely paid by the applicant. Consequently, this international se	arch report is restricted to
	ention first mentioned in the claims; it is covered by claim numbers:	
1		-
4. As all	searchable claims could be searched without effort justifying an additional fee, the International S	Searching Authority did not
invite p	payment of any additional fee.	
Remark on P		
1 ==	ditional search fees were accompanied by applicant's protest. Itest accompanied the payment of additional search fees.	
I I RODRO	rest econspanies the believer of energons; seeign leas.	•

Form PCT/ISA/210 (supplemental sheet (2)) (January 1985)

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

PCT/US 88/02922.

SA

24550

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	· Publication date	Patent family member(s)	Publication date
EP-A1- 0081877	22/06/83	JP-A- 581268 AU-D- 91025/3	
EP-A2- 0097031	28/12/83	AU-D- 15674/3 JP-A- 5906253 AU-A- 56903 AU-D- 79418/3 US-A- 448113 US-A- 458113 US-A- 46984 US-A- 46670	10/04/84 36 21/01/88 87 21/01/88 90 06/11/84 69 08/04/86 42 06/10/87
EP-A1- 0143573	05/06/85	AU-D- 34724/ JP-A- 601365 US-A- 45473 US-A- 46893 AU-A- 5715	98 20/07/85 70 15/10/85 96 25/08/87
EP-A2- 0162575	27/11/85	JP-A- 602605 AU-D- 42447/ US-A- 45699 US-A- 46525 US-A- 47405	85 28/11/85 27 11/02/86 50 24/03/87
EP-A2- 0175506	26/03/86	US-A- 45658 AU-D- 46879/ JP-A- 610876	85 13/03/86
EP-A2- 0197798	15/10/86	JP-A- 612752	98 05/12/86
EP-A2- 0199302	29/10/86	AU-D- 56388/	786 23/10/86
EP-A2- 0225746	16/06/87	JP-A- 621552	26 10/07/87
EP-A2- 0277829	10/08/88	AU-D- 11265/ JP-A- 632011	
US-A- 4431635	14/02/84	GB-A-B- 20532 US-A- 43178 EP-A-B- 00412 JP-A- 570145 AU-D- 71253/ AT-E- 89	815 02/03/82 86 09/12/81 668 25/01/82
US-A- 4444759	24/04/84	EP-A-B- 01002	218 08/02/84

For more details about this annex : see Official Journal of the Furopean Patent Office, No. 12/82

PORM POR

ANNEX TO THE INTERNATIONAL SEARCH REPORT PCT/US88/02922 ON INTERNATIONAL PATENT APPLICATION NO. SA 24550

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office FIDP file on 02/11/88. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report		Patent document Publicati cited in search report date		Publication date	Patent family member(s)	Publication date	
US-A-	4504414	12/03/85	None				
US-A-	4647653	03/03/87	JP 61210098	18/09/86			
		·	- ·				
	•						
			•				
			·				
		•					
		•					
	•	•					
		•					
	•						
•	_						
				•			
. "							
			·	•			
•		•		,			