Introduction to Mathematical Logic, Spring 2018 Homework 1

B04902012 Han-Sheng Liu, CSIE, NTU

E-mail: b04902012@ntu.edu.tw

(1) (a)

p	q	$q \to p$	$p \to (q \to p)$
Т	Т	Т	Т
Τ	F	Γ	T
F	Т	F	T
F	F	Γ	T

(b)

<i>p</i>	q	r	$p \to (q \to r)$	$(p \to q) \to (p \to r)$	$(p \to (q \to r)) \to ((p \to q) \to (p \to r))$
Γ	T	Т	Т	Т	T
Γ	$\Gamma \mid \Gamma$	F	F	F	Т
Γ	F	Т	Т	${ m T}$	Т
Γ	F	F	Т	${ m T}$	Т
F	Γ	T	Т	${ m T}$	Т
F	$\Gamma \mid \Upsilon$	F	Т	$ box{T}$	Т
F	F	Т	Т	${ m T}$	Т
F	` F	F	Т	Т	T

(c)

p	q	$p \lor q$	$p \to (p \lor q)$
Τ	Т	Т	Т
Τ	F	Т	Т
F	Т	Т	Т
F	F	F	T

(d)

			1
p	q	$\neg p \to q$	$p \to (\neg p \to q)$
Τ	Т	Т	Т
Τ	F	${ m T}$	${ m T}$
F	Т	Т	T
F	F	F	Γ

All formulas are tautology.

(2) The formulas are constructed as following:

$$\alpha_k = \bigvee_{1 \le i \le n-1} p_{k,i}$$

$$\bigwedge_{1 \le i < j \le n-1} \neg (p_{k,i} \land p_{k,j})$$

$$\bigwedge_{1 \le l \le n} \bigwedge_{1 \le i \le n-1} \neg (p_{k,i} \land p_{l,i})$$

$$X = \{\alpha_k | 1 \le k \le n\}$$

X corresponds to (n-1)-colorability of an n-clique G. The construction is a generalized version of the formula set in the proof of Lemma 3.6.

X itself is trivially unsatisfiable, since an n-clique is not (n-1)-colorable. However, every proper subset of X is satisfiable. Intuitively, a proper subset corresponds to a proper induced subgraph of G, which is an m-clique with m < n and is thus (n-1)-colorable.

Here gives an truth assignment for a proper set Y of X. Let |Y| = m, m < n. W.L.O.G, assume that $Y = \{\alpha_k | 1 \le k \le m\}$. A satisfying assignment is

$$p_{k,i} = \begin{cases} \mathbf{T} & \text{, if } k \leq m \text{ and } k = i. \\ \mathbf{F} & \text{, otherwise.} \end{cases}$$

That is, color the vertex i with color i.

(3)

$$X \models \alpha \Rightarrow X \cup \{\neg \alpha\} \text{ is not satisfiable}$$

$$\Rightarrow X \cup \{\neg \alpha\} \text{ is not finitely satisfiable}$$

$$\Rightarrow \exists X' \subseteq X \cup \{\neg \alpha\} \text{ s.t. } X' \text{ is finite and non-satisfiable}$$

$$\Rightarrow X' \cup \{\neg \alpha\} \text{ is a finite subset of } X \text{ and non-satisfiable}$$

$$\Rightarrow X' \setminus \{\neg \alpha\} \models \alpha$$

i.e. the set $X' \setminus \{\neg \alpha\}$ is the desired X_0 .