Max Freeman

max_freeman@berkeley.edu | (607) 327-7804 | linkedin.com/in/maxfreeman | Berkeley, CA

Education

University of California, Berkeley

May 2025

Master of Engineering in Mechanical Engineering, Concentration in Controls & Robotics

GPA: 3.98

Cornell University

May 2024

Bachelor of Science in Mechanical Engineering

GPA: 3.77 | Magna Cum Laude

Skills

Robotics: ROS2 | Feedback Control | State Estimation | Embedded Systems | Model Predictive Control | CAN Bus **Hardware:** Mechatronics | System Integration | Mechanical Design | Prototyping & 3D Printing | Root Cause Analysis

Programming Languages: Python | C++ | MATLAB

Software & Tools: SolidWorks | Fusion 360 | GitHub | Simulink | Asana | Pyomo

Leadership: Project Management | Cross-Functional Collaboration | Stakeholder Engagement | Agile Development

Highlighted Experience & Projects

Lead Robotics Engineer, Multimodal Autonomous Robot Design (MEng Capstone)

September 2024 - Present

- Lead a team of 4 engineers in a full-stack robotics development project, integrating mechanical design, embedded electronics, and real-time software to build a multimodal robot capable of both driving and flying.
- Design and deploy a custom ROS2-based flight controller for aerial mode, integrating motion capture feedback and validating stable hover and recovery behavior across 10+ tethered flight tests.
- Develop and tune real-time MPC algorithms in Python for trajectory tracking and obstacle avoidance, achieving under 5 cm lateral error in final position during hardware testing.
- Deploy ROS2 nodes on an NVIDIA Jetson to interface with a motion capture system and control four actuators via CAN Bus, enabling synchronized execution across perception and actuation layers.
- Conduct software- and hardware-in-the-loop testing to validate system reliability, identify failure points early, and implement safety-critical failsafes that mitigate risks and enable repeatable flight experiments.

Control of Autonomous Flight Project, *University of California*, *Berkeley*

September 2024 - December 2024

- Developed a quadcopter flight controller in C++, achieving precise attitude, altitude, and position control.
- Implemented sensor fusion models in C++, utilizing data from optical flow, IMU, and Time-of-Flight sensors to improve sensor data accuracy and provide precise feedback for control.
- Diagnosed and resolved stability issues through targeted subsystem testing, sensor debugging, and controller tuning to validate fixes and improve system response.

Mechanical Design Intern, Lit Motors

June 2024 - July 2024

- Collaborated with cross-functional teams in a fast-paced startup to develop a novel two-wheeled EV.
- Designed a custom dual-plane dynamic balancing rig for Control Moment Gyroscopes using SolidWorks, providing a crucial testing platform to reduce vibrations and improve the operational stability of the CMG.
- Iterated on designs for the vehicle steering system and CMG base-ring in SolidWorks, improving chassis integration and reducing manufacturing complexity.

Fast Robots Project, Cornell University

January 2024 - May 2024

- Owned end-to-end development of an embedded autonomous RC robot, integrating IMUs, sensors, and motor drivers on an Arduino Nano and implementing real-time control logic in C++ and Python.
- Integrated Time-of-Flight and IMU sensors using I2C, applying sensor fusion techniques and software-based filters in C++ to minimize sensor output noise by over 50%, enhancing system performance and reliability.
- Implemented and tuned distance-based PID controllers, reducing settling time by 40%.
- Diagnosed hardware issues with an oscilloscope and resolved control and sensing faults by analyzing telemetry and sensor data, improving reliability and reducing latency.

Rapid Prototyping Intern, Kullman Lab, UCL

July 2023 - August 2023

- Designed and iterated on custom 3D-printed mounts for a biomedical automation system, optimizing for volumetric constraints while enhancing modularity, ease of access, and user functionality.
- Conducted rapid iterative prototyping using 3D printing, refining designs based on continuous user feedback to enhance functionality and ease of use.