PHYSICS WALLAH

Charae

Quantization of charge

Q=+ne Q=Total charge n=1,2,3.... e=1.6 x 10-19C

Additivity of charge

 $Q^I = Q_1 + Q_2$

Redistribution of charge

Q'=Charge on each shell after redistribution

Charge Density

Linear Charge density, $\lambda = \frac{Q}{L}$ Surface Charge density, $\sigma = \frac{Q}{5}$ Volume Charge density, $\rho = \frac{Q}{V}$

Q=Total charge V=Volume L=Lenath S=Aren

If a charge on the body is 1 nC, then how many electrons are present on the body? a) 1.6 × 10¹⁹ b) 6.25 × 10⁹

c) 6.25 × 10²⁷

d) 6.25×10^{28}

Coulomb's Law

$$Q_{1F} \underset{\leftarrow}{\longleftrightarrow} \stackrel{F}{\longleftrightarrow} Q_{2} F = \frac{1}{4\pi \epsilon_{0}} \frac{Q_{1}Q_{2}}{r^{2}}$$

E_=Permitivity of free space

$$[\epsilon_0] = \frac{[Q_1][Q_2]}{[r^2][F]} = \frac{[AT][AT]}{[L^2][MLT^{-2}]} = M^{-1}L^{-3}T^4A^2$$

k=dielectric constant of the medium Superposition

Direction:

a) Like- Towards the point at which force has to be evaluated (repulsion)

b) Unlike- Away from the point at which force has to be evaluated (attraction)

 $F_{net} = \sqrt{3}F$

Equillibrium of Charges

Calculation of Charge

g in equillibrium

$$q = -\left(\frac{r_1}{r_1 + r_2}\right)^2 Q_2$$
 Q_1 in equillibrium

A charge is placed at the centre of the line joining two equal charges Q. The system of the three charges will be in equilibrium if q is eaual to

Electric flux

Gauss Law: - $\Phi = \frac{q}{E_0} = \oint E_0 ds \cos\theta$

Zero flux: - $\oplus = \frac{q_{\text{net}}}{s_{\text{c}}} = 0$, where $q_{\text{net}} = 0$

Electric flux for Cube

1) No charge inside the cube

a) -Q/2 b) -Q/4

c) +Q/4 d) + Q/2

Flux is proportional to total no. of field lines

<u>q</u> =0

Φ=∫E.ds cosθ Φ=\\(\vec{E} \, ds

Charge on pendulum

if θ is very small tan⊕≈Sin⊕

$$\frac{r}{2l} = \frac{qE}{mg}$$

$$\frac{r}{2l} = \frac{k q^2/r^2}{mg} , r^3 \propto c$$

it θ does not change on submerging in liquid Dielectric constant of liquid,

Electric Field

point charge E = Kq

Superposition

 $E_{Net} = \sqrt{E_1^2 + E_2^2 + 2E_1E_2\cos\theta}$

Direction

1) Positive charge:-Towards the point at which electric field has to be evaluated

2) Negative charge:-Away from the point at which electric field has to be evaluated

Neutral Point

Like Charges

$$\mathbf{x}_{1} = \frac{\mathbf{x}_{1}}{\sqrt{\mathbf{Q}_{1}} + \sqrt{\mathbf{Q}_{1}}}$$

$$\mathbf{Q}_{1} \circ \frac{\mathbf{x}_{1}}{\sqrt{\mathbf{Q}_{1}}} \times \sqrt{\mathbf{Q}_{2}}$$

Unlike Charges

Outside closer to smaller charge

|Q,|**<**|Q₁|

$$x = \frac{\sqrt{Q_2 P}}{\sqrt{Q_1} - \sqrt{Q_2}}$$

Distance from Q,=x+r

a) 8L

b) 4L c) 2L

d) L/4

 $\frac{M_p}{M_e} = 1837$, $\frac{e}{m} = 1.7 \times 10^{-11}$ $\frac{1}{2}$ at²=h=Constant $\frac{1}{2}\frac{qE}{m}t^2 = h$ t²∝m

accelerated in the direction of field and perpendicular to initial velocity

Charged particle released in an electric field

1) Force, F=aE

3) Velocity, $V = \frac{qE}{m}$

accelerated in the

direction of electric

2) Acceleration, $a = \frac{qE}{m}$

4) Velocity, V= 2qE

5) Kinetic energy, K.E = $\frac{q^2E^2+^2}{2}$

E →

accelerated opposite

to the direction of electric field

 $V = \sqrt{V_x^2 + V_y^2}$

⇒†۵>†و

 $\frac{\mathbf{t}_{p}}{\mathbf{t}_{e}} = \left[\frac{\mathbf{m}_{p}}{\mathbf{m}_{e}}\right]^{1/2}$

Time period of Charged Pendulum in an electric filed

Electric field inside a dielectric medium

γ→ QE T=2π | _____

 $\sqrt{(g^2+(\frac{QE}{m})^2)}$ Time period will decrease

 $E_{\text{net}} = E - E_{\text{induced}}, E_{\text{induced}} = E - E_{\text{net}} = E \left(1 - \frac{1}{K}\right)$

Properties of field lines

- 1) Start from positive charge and end on negative charge (+) ----
- 2) Never intersect each other. If they intersect there will be 2 directions for electric field

6)
$$\mathbf{q} \propto \text{no. of field lines}$$

$$|\mathbf{q}_{2}| > |\mathbf{q}_{1}|$$

$$q_{1}$$

$$q_{2}$$

Electric lines of force about negative point charge are:

- a) circular, anticlockwise b) circular clockwise
- c) radial inward
- d) radial, outward

2) Charge placed at the center

3) Charge placed at the face

4) Charge placed at the corner

5) Charge placed at the edge

6) Flux through curved surface

Application of Gauss's Theorem

4) Conducting sheet

5) Non-conducting sheet

7) Electric field due to a finite linear charge distribution

8) Electric field due to a infinite linear charge distribution

 $E = \frac{2k\lambda}{n}$

9) Electric field due to circular arc at its

10) Electric field at the center of a circular ring

E₀=0

11) Electric field due to a circular ring of charge

