

Machine Learning

Problem motivation

Anomaly detection example

Aircraft engine features:

 x_1 = heat generated

 x_2 = vibration intensity

...

Dataset: $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$

New engine: x_{test}

Density estimation

Dataset: $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$

Is x_{test} anomalous?

Anomaly detection example

Fraud detection:

 $x^{(i)}$ = features of user i's activities

Model p(x) from data.

Identify unusual users by checking which have $p(x) < \varepsilon$

Manufacturing

Monitoring computers in a data center.

 $x^{(i)}$ = features of machine i

 x_1 = memory use, x_2 = number of disk accesses/sec,

 $x_3 = \text{CPU load}, \quad x_4 = \text{CPU load/network traffic}.$

...

Machine Learning

Gaussian distribution

Gaussian (Normal) distribution

Say $x \in \mathbb{R}$. If x is a distributed Gaussian with mean μ , variance σ^2 .

Gaussian distribution example

$$\mu = 0, \sigma = 2$$

$$\mu = 0, \sigma = 0.5$$

$$\mu = 3, \sigma = 0.5$$

Parameter estimation

Dataset: $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ $x^{(i)} \in \mathbb{R}$

Machine Learning

Anomaly detection

Algorithm

Density estimation

Training set: $\{x^{(1)}, \dots, x^{(m)}\}$ Each example is $x \in \mathbb{R}^n$

Anomaly detection algorithm

- Choose features x_i that you think might be indicative of anomalous examples.
- Fit parameters $\mu_1, \ldots, \mu_n, \sigma_1^2, \ldots, \sigma_n^2$

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

$$\sigma_j^2 = \frac{1}{m} \sum_{i=1}^{m} (x_j^{(i)} - \mu_j)^2$$

$$\sigma_{j}^{2} = \frac{1}{m} \sum_{i=1}^{m} (x_{j}^{(i)} - \mu_{j})^{2}$$
3. Given new example x , compute $p(x)$:
$$p(x) = \prod_{j=1}^{n} p(x_{j}; \mu_{j}, \sigma_{j}^{2}) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_{j}} \exp\left(-\frac{(x_{j} - \mu_{j})^{2}}{2\sigma_{j}^{2}}\right)$$

Anomaly if $p(x) < \varepsilon$

Anomaly detection example

 x_2

$$\mu_1 = 5, \sigma_1 = 2$$
 $\mu_2 = 3, \sigma_2 = 1$

$$\mu_2 = 3, \sigma_2 = 1$$

$$p(x_1; \mu_1, \sigma_1^2)$$

$$p(x_2; \mu_2, \sigma_2^2)$$

$$\varepsilon = 0.02$$

$$p(x_{test}^{(1)}) = 0.0426$$
$$p(x_{test}^{(2)}) = 0.0021$$

$$p(x_{test}^{(2)}) = 0.0021$$

Machine Learning

Developing and evaluating an anomaly detection system

The importance of real-number evaluation

When developing a learning algorithm (choosing features, etc.), making decisions is much easier if we have a way of evaluating our learning algorithm.

Assume we have some labeled data, of anomalous and non-anomalous examples. (y = 0 if normal, y = 1 if anomalous).

Training set: $x^{(1)}, x^{(2)}, \ldots, x^{(m)}$ (assume normal examples/not anomalous)

Cross validation set:
$$(x_{cv}^{(1)}, y_{cv}^{(1)}), \dots, (x_{cv}^{(m_{cv})}, y_{cv}^{(m_{cv})})$$

Test set: $(x_{test}^{(1)}, y_{test}^{(1)}), \dots, (x_{test}^{(m_{test})}, y_{test}^{(m_{test})})$

Aircraft engines motivating example

10000 good (normal) engines20 flawed engines (anomalous)

Training set: 6000 good engines

CV: 2000 good engines (y = 0), 10 anomalous (y = 1)

Test: 2000 good engines (y = 0), 10 anomalous (y = 1)

Alternative:

Training set: 6000 good engines

CV: 4000 good engines (y = 0), 10 anomalous (y = 1)

Test: 4000 good engines (y = 0), 10 anomalous (y = 1)

Algorithm evaluation

Fit model p(x) on training set $\{x^{(1)}, \dots, x^{(m)}\}$ On a cross validation/test example x, predict

$$y = \begin{cases} 1 & \text{if } p(x) < \varepsilon \text{ (anomaly)} \\ 0 & \text{if } p(x) \ge \varepsilon \text{ (normal)} \end{cases}$$

Possible evaluation metrics:

- True positive, false positive, false negative, true negative
- Precision/Recall
- F₁-score

Can also use cross validation set to choose parameter arepsilon

Machine Learning

Anomaly detection vs. supervised learning

Very small number of positive examples (y = 1). (0-20 is common).

Large number of negative (y = 0) examples.

Many different "types" of anomalies. Hard for any algorithm to learn from positive examples what the anomalies look like; future anomalies may look nothing like any of the anomalous examples we've seen so far.

vs. Supervised learning

Large number of positive and negative examples.

Enough positive examples for algorithm to get a sense of what positive examples are like, future positive examples likely to be similar to ones in training set.

- Fraud detection
- Manufacturing (e.g. aircraft engines)
- Monitoring machines in a data center

•

vs. Supervised learning

- Email spam classification
- Weather prediction (sunny/rainy/etc).
- Cancer classification

•

Machine Learning

Choosing what features to use

Non-gaussian features

Error analysis for anomaly detection

Want p(x) large for normal examples x. p(x) small for anomalous examples x.

Most common problem:

p(x) is comparable (say, both large) for normal and anomalous examples

Monitoring computers in a data center

Choose features that might take on unusually large or small values in the event of an anomaly.

```
x_1 = memory use of computer
```

 x_2 = number of disk accesses/sec

 x_3 = CPU load

 x_4 = network traffic

Machine Learning

Multivariate
Gaussian distribution

Motivating example: Monitoring machines in a data center

Multivariate Gaussian (Normal) distribution

 $x \in \mathbb{R}^n$. Don't model $p(x_1), p(x_2), \ldots$, etc. separately. Model p(x) all in one go.

Parameters: $\mu \in \mathbb{R}^n, \Sigma \in \mathbb{R}^{n \times n}$ (covariance matrix)

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$x_2$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 0.6 & 0 \\ 0 & 0.6 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$x_2$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 0.6 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$x_{2^0}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 0.6 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$x_{2^0}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$x_{2^0}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & -0.5 \\ -0.5 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & -0.8 \\ -0.8 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & -0.8 \\ -0.8 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$x_{2}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0.5 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 1.5 \\ -0.5 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 1.5 \\ -0.5 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Machine Learning

Anomaly detection using the multivariate
Gaussian distribution

Multivariate Gaussian (Normal) distribution

Parameters μ, Σ

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Parameter fitting:

Given training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)} \qquad \Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)(x^{(i)} - \mu)^{T}$$

Anomaly detection with the multivariate Gaussian

1. Fit model p(x) by setting

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)(x^{(i)} - \mu)^{T}$$

2. Given a new example x, compute

$$p(x) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Flag an anomaly if $p(x) < \varepsilon$

Relationship to original model

Original model: $p(x) = p(x_1; \mu_1, \sigma_1^2) \times p(x_2; \mu_2, \sigma_2^2) \times \cdots \times p(x_n; \mu_n, \sigma_n^2)$

Corresponds to multivariate Gaussian

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

where

Original model

vs. Multivariate Gaussian

$$p(x_1; \mu_1, \sigma_1^2) \times \cdots \times p(x_n; \mu_n, \sigma_n^2)$$

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Manually create features to capture anomalies where x_1, x_2 take unusual combinations of values.

Automatically captures correlations between features

Computationally cheaper (alternatively, scales better to large n)

Computationally more expensive

OK even if m (training set size) is small

Must have m > n, or else Σ is non-invertible.