Eine Woche, ein Beispiel 1.23 Coxeter group

- 1 def & realizations
 - def
 - geometrical representation
 - -root system
 - polytopes
 - as subgp of Sn
 - as Weyl ap of some Tits system
- 2. combinatorical results
- 3. Bruhat order
- 4. geometrical realization (faithfulness)

Roodmap

gen & relations < characteristic properties -> realizations.

Ref: [Building] Buildings, by Peter Abramenko and Kenneth S. Brown

[Bourbaki] (Elements of Mathematics) Nicolas Bourbaki - Lie Groups and Lie Algebras_ Chapters 4-9-Springer (2002) [Comb] Combinatorics of Coxeter groups

[Flag] Flag Varieties An Interplay of Geometry, Combinatorics, and Representation Theory

1 def & realizations

def

Def (Coxeter system) (W.S) gp + gen, m(s.t) ∈ Z>0 U s+003, m(s.s)=1

$$W = \langle s \in S \rangle / (s^{L} = (st)^{M(s,t)} = 1, \forall s, t \in S)$$

W is a Coxeter gp if $\exists S \subseteq W$. (W,S) is a Coxeter system.

E.g.

 $S_n \cong \{s_i > (s_i s_j)^* = (s_i s_{i+1})^3 = 1\}$

li-j1 >2, and undefined relations (eg. (Sn-1Sn)3) should be removed.

Coxeter graph

$$m(s,t) \qquad \underbrace{\frac{m(s,t)}{s}}_{s} \underbrace{0}_{t}$$

$$2 \qquad 0 \qquad 0$$

$$4 \qquad 0 \qquad 0$$

$$6 \qquad 0 \qquad 0$$

$$+\infty \qquad 0 \qquad \infty$$

Notation

simple reflections/transpositions reflections /tvanspositions

geometrical representation $W \hookrightarrow GL(V_{geo})$ V We suppose $|S| < \infty$, which is not necessary (but helpful for concentrating mind)

$$(W, S) \sim (\rho_{geo}, V_{geo}, \langle -, - \rangle) \in Rep_{IR, ortho}(W)$$

$$\bigvee_{geo} := \bigoplus_{s \in S} |Rds$$

$$\langle -, - \rangle : \bigvee_{geo} \bigvee_{geo} \bigvee_{geo} \longrightarrow |R$$

$$(ds, dt) \longmapsto \begin{cases} -\cos \frac{\pi}{m(s,t)} & m(s,t) \neq +\infty \\ -1 & m(s,t) = +\infty \end{cases}$$

m(s.t)	1	2	3	4	5	6	 8
(ds. dt)	1	0	- 2	-5	-15+1	-52	 -1

$$\begin{array}{c|c} \rho_{\text{geo}}: W \longrightarrow GL(V_{\text{geo}}) & \text{For} \quad x, \nu \in V_{\text{geo}}, \, \langle x, x \rangle = 1 \,, \, \text{define} \\ & r_{\times}(\nu) = \nu - 2 < \nu, x > x \\ & \text{Check} \cdot r_{\times}(x) = -x \\ & r_{\times}(\nu) = \nu \iff \nu \in H_{\times}, \text{where} \\ & H_{\times} = \{\nu \in V_{\text{geo}} \mid \langle \nu, x \rangle = 0\} \end{array}$$

Ex Verify the well-definess. · Paeo (s) is linear & orthogonal; · Paeo (relations) = Id Also, <wv.wv'> = <v.v'>.

Thm. pgeo is faithful (sketch of proof later on)

E.g.
$$W = W(I_s)$$

$$p_{geo}(W) \cong D(s)$$
 Dihedral gp

$$\int_{\infty}^{\infty}$$

$$S(\partial_{s}, \partial_{t}) = (\partial_{s}, \partial_{t}) \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}$$

$$t(\partial_{s}, \partial_{t}) = (\partial_{s}, \partial_{t}) \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix}$$

$$\rho_{geo}(W) \cong \mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$$

$$\begin{pmatrix} 1 & -\frac{15+1}{4} \\ -\frac{15+1}{4} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ & -\frac{1}{2} & 1 \end{pmatrix}$$
 is pos-def

 A_n 0 - 0 - 0 - 0 - 0 $B_n \& C_n$ 0 = 0 - 0 - 0 D_n 0 = 0 - 0 - 0 E_6, E_7, E_8 0 = 0 - 0 E_7 E_8 0 = 0 - 0 E_8 E_8

Root system $W \sim Aut_R(V_{geo})$

V Not the same as in Lie alg! Ep here, every root has length 1 That's why we don't use & here.

R = [v & Vgeo | v = w. as for some weW,ses]

T Pgeo, for GL(Vgeo) | o = rx for some x \(Vgeo, <x x> = 1, \sigm(R) = R \) can be not surj when the irr root system is not simply laced. See 1084790 for more details.

∀ Here, W \(\pm\) Aut (R)! See example on $W(I_t)$.

Ex. Verify the following properties.

(RI) R spans Vgeo, does not contain

 $(R_2) - R = R$

(R3) roR = R VueR

Define $R^+ = \left(\sum_{s \in S} IR_{so} a_s\right) \cap R$ $R^- = \left(\sum_{s \in S} IR_{so} a_s\right) \cap R$

one can check $R = R^+ \sqcup R^-$ by hand.

Lemma. $V_{\omega,a_s} = \rho_{geo}(\omega s \omega^{-1})$ $\omega \in W$, $s \in S$ Proof. $V_{\omega,a_s}(x) = x - 2 < \omega \cdot a_s, x > \omega \cdot a_s$ $= \omega \cdot (\omega^{-1} \times - 2 < \lambda_s, \omega^{-1} \times > \lambda_s)$ = w · Od. (w'x) = ρ_{geo}(ω sω-1) x

Prop. We have bijection

R - X (±1) w.d. (wswi, yw;s))

R+ C Tx [+1] R- C> Tx 8-17

where $\eta(s;t) = \begin{cases} -1 & s=t \\ 1 & s \neq t \end{cases}$ $\eta(\omega'\omega;t) = \eta(\omega';\omega t \omega^{-1}) \eta(\omega;t)$ For the well-defines of η , we postpone to next section.

See https://math.stackexchange.com/questions/1084790/weyl-groups-correspondence-of-reflections-and-roots and [Building, Prop 1.113].

Ex draw roots in D. (Bad picture for D!)

as subgp of Sn strand description ∇ For type $A \sim D$, since they have "nice" shapes of polytopes.

as Weyl gp of some Tits system (later)

Ex for the section

1. Verify the gen & rel in each case.

2. Describe element, reflection, simple reflection,
length, roots, in each realization.
e.g. how to see |T| = ((w.))?

3. (Finite) group study.

·#G

· simple?

· subgp, quotient, central series, ...

- · conj class
- · Z(G), [GG]
- · char table (Rep theory)
- 4. Generalize everything to affine diagram.
 e.g. find a strand description of An.

```
Z combinatorical results
Lemma For (W,S) ∈ Cosqp, 3! gp homo
```

s.t.
$$sqn(\omega) = (-1)^{(\omega)}$$

Cor.
$$\forall w \in W$$
, $s \in S$, $((ws) \equiv l(sw) \equiv l(w)+1 \mod 2$
In ptc, $((ws) \neq l(w)$

$$l(\omega) = \min \{r \mid w = S, ..., S, \varepsilon S\}$$
 length of $\omega \in W$
 $T = \{\omega S \omega^{-1} \mid \omega \in W, S \in S\}$ reflections /transpositions

We have $((\omega^{-1}) = ((\omega))$, but it is possible that $((\omega s) = ((\omega))$ now

Rood map

A
$$\leftarrow$$
 C \leftarrow Coxeter \rightarrow D \rightarrow DP = Deletion property \rightarrow E \rightarrow D \rightarrow D \rightarrow E \rightarrow D \rightarrow D \rightarrow D \rightarrow E \rightarrow D \rightarrow D \rightarrow E \rightarrow D \rightarrow D \rightarrow D \rightarrow E \rightarrow D \rightarrow D

(SEP)
$$\omega = S_1 ... S_r$$
, $S_i \in S_i$, $t \in \mathcal{T}$, $l(t\omega) < l(\omega)$

$$\Rightarrow t\omega = s_1 \dots s_r \qquad \exists i$$
(EP) $\omega = s_1 \dots s_r, \quad s_i \in S, \quad t \in S, \quad ((t\omega) < ((\omega))$

(DP)
$$\omega = S_1 \dots S_r \quad S_i \in S$$
 ((\omega) < r

$$\Rightarrow \qquad \omega = s_1 \dots s_1^2 \dots s_r \qquad \exists i,j$$

(Folding) For
$$\omega \in W$$
 s.t. S s.t. $I(t\omega) = I(\omega) + 1$, $I(\omega s) = I(\omega) + 1$,

$$\Rightarrow$$
 $((tws) = ((w) + 2 \text{ or } tws = w)$

,
$$292V$$
 .t. $f113 \times T \odot W$. $g \in S$, $g \in S$. $g \in S$

In ptc,
$$\rho_{\omega}(t, \varepsilon) = (\omega t \omega^{-1}, \eta(\omega; t) \varepsilon)$$
 where

$$\eta(s;t) = \begin{cases} -1 & s=t \\ 1 & s\neq t \end{cases}$$

$$\eta(\omega'\omega;t) = \eta(\omega';\omega t \omega^{-1}) \eta(\omega;t)$$