Al Assignment: Footfall Counter using Computer Vision

Objective

Develop a computer vision-based system that counts the number of people entering and exiting through a specific area (such as a doorway, corridor, or gate) in a video. The goal is to demonstrate your understanding of Al model integration, tracking logic, and end-to-end problem-solving.

Assignment Description

You are required to create a **footfall counter** that:

- 1. Detects humans in a video stream.
- 2. Tracks their movements frame by frame.
- 3. Defines a virtual line or region of interest (ROI).
- 4. Counts how many people **enter** and **exit** by crossing the ROI.

You are not provided with any dataset. You may:

- Use any publicly available video (e.g., YouTube videos of crowds, offices, malls, or streets).
- Or record/simulate your own test video using a phone or webcam.
- Optionally use datasets like **MOT**, **COCO**, or **Open Images** for experimentation.

Core Requirements

Your solution should:

- Detect people in the video.
- Track individuals across frames.
- Define a line or zone for counting.
- Correctly count entries and exits.
- Display the count in real-time or after video processing.

Tools and Libraries (You may choose any)

- **Programming Language:** Python
- Detection Models: YOLO (any version), OpenCV DNN, or MediaPipe
- Tracking: SORT, DeepSORT, or custom logic using centroid tracking
- Visualization: OpenCV or Matplotlib

Expected Deliverables

1. Code:

- A single Python script or Jupyter notebook containing the complete solution.
- Use clear comments and modular code structure.

2. **README File:**

Include:

- A brief description of your approach
- Video source used (link or description)

- Explanation of counting logic
- Dependencies and setup instructions

3. Output:

- Display a processed video or screenshots with bounding boxes and entry/exit counts overlaid.
- Print or display the final total count.
- 4. (Optional but encouraged)
 - Provide a short demo video or GIF showing your solution in action.

Evaluation Criteria

Criteria	Weight	Description
Model Implementation	25%	Use of detection/tracking methods and correctness
Counting Logic	25%	Accurate entry/exit count based on ROI crossing
Code Quality	20%	Clean, modular, readable, and well-commented code
Performance & Robustness	15%	Handles multiple people, occlusions, or noise
Documentation & Presentation	15%	Clarity of README and visual output

Bonus Points

- Real-time processing using webcam or RTSP stream
- Handling occlusions or overlapping people
- Visualizing heatmaps or trajectory paths
- Deploying a small API (Flask/FastAPI) that accepts a video and returns counts

Submission Guidelines

- Submit a compressed .zip or .rar file containing:
 - Code
 - o README file
 - Example output (image/video or link)
- Do **not** include large datasets or pretrained model weights instead, mention installation or download instructions.
- Ensure the code can run on a local machine with Python ≥ 3.8.

Time Limit

Submission Window: 7 working days from the time you receive this assignment.
If you need additional time for setup or data sourcing, mention it in your submission email.

Submission Format

Email Subject: AI Assignment - Footfall Counter - [Your Name] Create a github repo.