Grupo Disciplinar de Controlo (ADEEEA) **EN – Exame Normal**Controlo de Sistemas

Data: 02-fevereiro-2021

Ref.a: LREN03

ENUNCIADO

1 – Considere que foi aplicado (em separado) na entrada de dois sistemas (sendo a FT_1 de 1ª ordem e a FT_2 de 2ª ordem), um escalão de posição e que as suas respostas temporais $y_1(t)$ e $y_2(t)$ estão apresentadas na seguinte Figura:

(4,0) Com base nas 2 respostas temporais apresentadas na Figura, escolha qual das seguintes opções está correta (uma única opção), em relação às suas Funções de Transferência (FT_1 e FT_2).

a)
$$FT_1 = \frac{4}{2s+1}$$
 $FT_2 = \frac{2}{2s^2+s+2}$ b) $FT_1 = \frac{2}{s+0.5}$ $FT_2 = \frac{2}{s^2+2s+1}$ c) $FT_1 = \frac{4}{s+1}$ $FT_2 = \frac{2}{2s^2+s+2}$ d) $FT_1 = \frac{8}{s+2}$ $FT_2 = \frac{1}{s^2+0.5+1}$

Grupo Disciplinar de Controlo (ADEEEA) **EN – Exame Normal**Controlo de Sistemas

Ref.^a: LREN03

Data: 02-fevereiro-2021

(4,0) 2 – a) Diga o que entende por Controladores Descontínuos?

b) Implemente a montagem física do controlador com a seguinte FT: $C(s) = K_P + \frac{K_I}{s} + K_D s$.

c) – Considere o diagrama de blocos apresentado na Figura 2:

Figura 2

Determine o erro forçado do sistema da Figura 2, para uma entrada do tipo rampa.

3 – Considere o diagrama de blocos da Figura 3, o qual representa um sistema de Controlo Automático (SCA):

Figura 3

(4,0) Determine a $FTFC = \frac{Y(s)}{R(s)}$, utilizando a álgebra dos diagramas de blocos.

Grupo Disciplinar de Controlo (ADEEEA) **EN – Exame Normal**Controlo de Sistemas

Ref.a: LREN03

Data: 02-fevereiro-2021

(3,0) 4 – Considere o modelo de estado de um sistema físico:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{L}{Z} & -\frac{E}{Z} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{Z} \end{bmatrix} u$$

$$y = \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Verifique qual das seguintes opções (da tabela abaixo), corresponde à função de transferência na forma numérica do modelo de estado, considerando:

Z=1 E=4 e L=4

1)
$$\frac{Y(s)}{U(s)} = \frac{2}{s^2 + 4s + 4}$$

2)
$$\frac{Y(s)}{U(s)} = \frac{4}{2s^2 + 4s + 8}$$

3)
$$\frac{Y(s)}{U(s)} = \frac{2}{2s^2 + 4s + 8}$$

4)
$$\frac{Y(s)}{U(s)} = \frac{4}{s^2 + 4s + 8}$$

(5,0) 5 – Analise a estabilidade da seguinte FTCA, $GH(s) = \frac{(s+4)}{(s+1)(s+2)(s+20)}$, a partir do critério do Diagrama do Lugar Geométrico das Raízes (*root-locus*).

NOTAS FINAIS - Para a resolução da prova atenda às seguintes notas:

- 1 Deverá apresentar \underline{todas} as justificações a cálculos realizados.
- 2 O enunciado é entregue juntamente com ou sem a folha de prova.

Nome _____ Aluno n° _____

Turma_____ Semestre ____ Classificação ____ (____) O Professor _____