Week 13: Estimation

Armenak Petrosyan

▶ Data in general: just a collection of numbers

$$\{x_1,\ldots,x_n\}$$

► Sample data:

$$\begin{cases} x_1 = X_1(s) \\ \vdots \\ x_n = X_n(s) \end{cases} \quad s \in S$$

where X_1, \ldots, X_n are i.i.d. random variables.

Discrete-type data

Discrete-type data:

- ▶ Data can only take values from a given set $R = \{r_1, r_2, \dots\}$: $x_i \in R$.
- **Relative frequency** of r_j :

$$f_j = rac{\mathsf{number\ of\ data}\ = r_j}{n}\,.$$

- If data is a sample from a distribution, we use it as an estimate for the pmf (empirical pmf).
- Can be checked that

$$ar{\mu} = \sum_j r_j f_j$$
 (mean) $ar{\sigma}^2 = \sum_j (r_j - ar{\mu})^2 f_j$ (variance)

Continuous-type data

Continuous-type data:

- ightharpoonup Data can take any values from an interval in \mathbb{R} .
- **Relative frequency** of being in interval [a, b]:

$$\frac{\text{number of data in } [a,b]}{n}.$$

- ▶ If data is a sample from a distribution, relative frequency is used to estimate $P(X \in [a,b])$.
- Density:

$$\frac{\text{number of data in } [a,b]}{n(b-a)}.$$

Compare to

$$f(x) = F'(x) = \lim_{\delta \to 0} \frac{P(X \in (x, x + \delta])}{\delta}$$

To plot the density histogram:

- 1. Compute the minimum and the maximum of data: y_1, y_n .
- 2. Divide the interval $[y_1,y_n]$ into m (often we take equally spaced) subintervals

$$(c_0, c_1], (c_1, c_2], \ldots, (c_{m-1}, c_m].$$

- 3. Compute densities d_i on each subinterval $(c_{j-1}, c_j]$.
- 4. Plot histogram with bases $(c_{j-1}, c_j]$ and height d_j .
- ▶ The intervals $(c_{j-1}, c_j]$ are called **class intervals** or **bins**.
- ▶ The midpoint $u_j = \frac{c_{j-1} + c_j}{2}$ of the class interval is called class mark $(c_{j-1}, c_j]$.
- ► Note that

$$ar{\mu}pprox \sum_j u_j d_j \ (c_j-c_{j-1})$$
 (empirical approximation)
$$ar{\sigma}^2pprox \sum_j (u_j-ar{\mu})^2 d_j \ (c_j-c_{j-1})$$
 (variance approximation)

Estimation

Definition

 X_1,\ldots,X_n be a random sample of size n. For any function $u:\mathbb{R}^n \to \mathbb{R}$, the random variable

$$Y = u(X_1, \dots, X_n)$$

is called a sample statistic.

- ▶ If a statistic is designed to estimate a quantity (parameter) associated with the underlying distribution (mean, variance, moments, etc) then it is called the **estimator** of that quantity.
- ▶ The sample mean is an estimator for the population mean.
- Let $\theta \in \mathbb{R}$ be a quantity associated with the population distribution. If $u : \mathbb{R}^n \to \mathbb{R}$ provides an estimator for θ then, for random sample X_1, \ldots, X_n , we denote

$$\bar{\theta} = u(X_1, \dots, X_n).$$

Definition

Let $\theta\in\mathbb{R}$ be a quantity associated with the population distribution. An estimator $\bar{\theta}$ is called **unbiased** if

$$E[\bar{\theta}] = \theta.$$

▶ The sample mean (empirical mean) is an unbiased estimator:

$$E[\bar{X}] = \mu.$$

Theorem

$$\bar{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$

is not an unbiased estimator of the population variance.

Proof

$$E\left[\sum_{i=1}^{n} \frac{1}{n} (X_i - \bar{X})^2\right] = E\left[\sum_{i=1}^{n} \frac{1}{n} (X_i - \mu - (\bar{X} - \mu))^2\right]$$

$$= E\left[\sum_{i=1}^{n} \frac{1}{n} \left((X_i - \mu)^2 - 2(X_i - \mu)(\bar{X} - \mu) + (\bar{X} - \mu)^2 \right)\right]$$

$$= E\left[\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2 - 2\sum_{i=1}^{n} \frac{1}{n} (X_i - \mu)(\bar{X} - \mu) + \frac{1}{n} \sum_{i=1}^{n} (\bar{X} - \mu)^2\right]$$

Proof.

$$= \sum_{i=1}^{n} \frac{1}{n} E[(X_i - \mu)^2] - 2E[(\bar{X} - \mu)^2] + \frac{1}{n} n E[(\bar{X} - \mu)^2]$$

$$= \sum_{i=1}^{n} \frac{1}{n} E[(X_i - \mu)^2] - E[(\bar{X} - \mu)^2]$$

$$= \sum_{i=1}^{n} \frac{1}{n} \sigma^2 - \frac{\sigma^2}{n} = \sigma^2 - \frac{\sigma^2}{n} = \boxed{\frac{n-1}{n} \sigma^2}$$

Sample variance

To remove the bias, we define

Definition

Let X_1,\ldots,X_n be a random sample (i.i.d. random variables) with mean μ and variance $\sigma.$ The random variable

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}.$$

is called the sample variance.

- ▶ Sample variance is an unbiased estimator due to previous theorem.
- lacktriangle The data variance $ar{s}igma^2$ measures the dispersion of a standalone data set.
- lacktriangle The sample variance S^2 estimates the variance of the population using the sample data.

Parametric estimation

- ▶ In practice, we usually assume or model the underlying distribution from which data is sampled to have a certain function that depends on a parameter $\theta = (\theta_1, \dots, \theta_m) \in \Omega$.
- $ightharpoonup \Omega \subset \mathbb{R}^m$ is called the parameter space.
- ▶ The parameter is unknown but we have sampled data.
- ▶ Any estimator of θ is called **point estimator**.

Example

- ▶ If the model distribution is normal, then $(\mu, \sigma) \in (-\infty, \infty) \times (0, \infty)$ are parameters.
- ▶ For exponential distribution $\lambda \in (0, \infty)$ is a parameter.

Example

- Assume the random variable X has Bernoulli distribution (X = 1 or 0).
- ▶ The P(X = 1) = p is the unknown parameter.
- ▶ We can also write

$$P(X = x) = p^{x}(1-p)^{1-x}, \quad x = 0, 1.$$

We have sample data

$$\{x_1,\ldots,x_n\}.$$

We want to estimate the $p \in [0, 1]$.

Note that

$$P(X_1 = x_1, \dots, X_n = x_n)P(X_1 = x_1) \cdots P(X_n = x_n)$$

$$= p^{x_1}(1-p)^{1-x_1} \cdots p^{x_n}(1-p)^{1-x_n}$$

$$= p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i}.$$

Find p as the value for which the probability is the largest. It is called maximum likelihood estimator.

Example (cont.)

Let

$$L(p) = p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i}.$$

- ightharpoonup We want to maximize L(p).
- ► It is equivalent to maximizing

$$\ln L(p) = \sum_{i=1}^{n} x_i \cdot \ln p + (n - \sum_{i=1}^{n} x_i) \cdot \ln(1-p).$$

► To do that:

$$(\ln L(p))' = \sum_{i=1}^{n} x_i \cdot \frac{1}{p} - (n - \sum_{i=1}^{n} x_i) \cdot \frac{1}{1-p} = 0.$$

Solving from here:

$$p = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

ightharpoonup The maximum likelihood estimator for p in Bernoulli distribution is given by

$$\bar{X} = \sum_{i=1}^{n} \frac{1}{n} X_i.$$

Maximum likelihood estimator

- Let X_1,\ldots,X_n be a random sample from a distribution with pmf or pdf $f(x,\theta)$ where $\theta\in\Omega\subseteq\mathbb{R}^m.$
- ▶ We have sample data

$$\{x_1,\ldots,x_n\}.$$

Definition

The function

$$L(\theta) = f(x_1, \theta) \cdots f(x_n, \theta)$$

is called likelihood function.

Definition

The value $\hat{\theta}=(\hat{\theta}_1,\dots,\hat{\theta}_m)\in\Omega$ at which the likelihood function takes its maximum value in Ω is called the **maximum likelihood estimator** or **MLE** of θ .

- For many distributions, the maximum likelihood estimator exists and is unique.
- ▶ Often it cannot be computed exactly but only approximately.
- ▶ In practice, we often instead minimize

$$-\ln L(\theta) = \sum_{i=1}^{n} f(x_{i}, \theta)$$

Example

▶ Suppose the parametric family of distribution is the family of normal distributions

$$f(x, \theta_1, \theta_2) = \frac{1}{\sqrt{2\pi\theta_2}} e^{-\frac{(x-\theta_1)^2}{2\theta_2}}.$$

- \bullet $\theta_1 = \mu \in (-\infty, \infty)$ and $\theta_1 = \sigma^2 \in (0, \infty)$.
- $L(\theta_1, \theta_2) = \left(\frac{1}{\sqrt{2\pi\theta_2}}\right)^n \prod_{i=1}^n e^{-\frac{(x_i \theta_1)^2}{2\theta_2}}.$
- ► It is equivalent to maximizing

$$\ln L(\theta_1, \theta_2) = -\frac{n}{2} \ln(2\pi\theta_2) - \frac{1}{2\theta_2} \sum_{i=1}^{n} (x_i - \theta_1)^2.$$

$$\frac{\partial L(\theta_1, \theta_2)}{\partial \theta_1} = \frac{1}{\theta_2} \sum_{i=1}^n (x_i - \theta_1) = \frac{1}{\theta_2} \left[\sum_{i=1}^n x_i - n\theta_1 \right]$$
$$\frac{\partial L(\theta_1, \theta_2)}{\partial \theta_2} = -\frac{n}{2\theta_2} + \frac{1}{2\theta_2^2} \sum_{i=1}^n (x_i - \theta_1)^2$$

A. Petrosvan — Math 3215-C — Probability & Statistics

► The maximum likelihood estimators are

$$\theta_1 = \frac{1}{n} \sum_{i=1}^n x_i = \bar{\mu}$$

$$\theta_2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{\mu})^2 = \bar{\sigma}^2.$$

▶ The maximum likelihood estimator does not have to be unbiased.

Distributions with a random parameter

▶ Sometimes, the parameters in the distribution can be random variables themselves.

Example

From year to year the height X of Georgia Tech students may be distributed differently: have different mean, variance, etc.

Example

The salaries of employees at various companies are distributed differently.

- ▶ Let Θ be a random variable representing the unknown parameter. It has range $\Omega \subseteq \mathbb{R}$ and pdf $h(\theta)$ called **prior**.
- Let $g(x|\theta)$ be the conditional pdf of X given $\Theta = \theta$.
- ▶ Let $X_1 = x_1, ..., X_n = x_n$ be conditionally sampled data from $g(x|\theta)$ (i.e. this can be salaries of n employees at Georgia Tech).
- ightharpoonup We want to estimate the value of θ from these samples.

Bayes estimator for a single data sample

- Assume we have a single data point for now: X = x.
- Let $k(\theta|x)$ be the conditional distribution of Θ given X=x ($k(\theta|x)$ provides the likelihood of θ being our unknown parameter if we know the sampled data had the value X=x).
- Given X=x, the "best" guess for the value of θ is the conditional mean $\theta_B=E[\Theta|x]$.
- It is the value that minimizes

$$g(z) = E[(z - \Theta)^2 | X = x]$$

and is the center of the conditional distribution (we have discussed this before).

Definition

 $\theta_B = E[\Theta|x]$ is called the **Bayes estimator** of θ .

▶ If, to find the center, we minimized

$$g(z) = E(|z - \Theta| |x)$$

instead then the median of $q(x|\theta)$ would have been the best guess.

If we took the best guess value to be the value where the likelihood is the largest, i.e. the maximum of $k(\theta|x)$, this would correspond to the maximum likelihood estimator.

- ▶ Let $h(\theta)$ be the marginal pdf of Θ .
- Let $g(x|\theta)$ be the conditional pdf given $\Theta = \theta$.
- ► The joint pdf:

$$f(x,\theta) = g(x|\theta)h(\theta).$$

► The marginal pdf:

$$f_X(x) = \int_{\Omega} f(x, \theta) d\theta = \int_{\Omega} g(x|\theta)h(\theta) d\theta$$

► The conditional pdf is also called **posterior**:

$$k(\theta|x) = \frac{f(\theta, x)}{f_X(x)} = \frac{g(x|\theta)h(\theta)}{\int_{\Omega} g(x|\theta)h(\theta) d\theta}.$$

► The formula for the Bayes estimator:

$$\theta_B = E[\Theta|x] = \int\limits_{\Omega} \theta \, k(\theta|x) \, \mathrm{d}\theta = \frac{\int\limits_{\Omega} \theta \, g(x|\theta) h(\theta) \, \mathrm{d}\theta}{\int\limits_{\Omega} g(x|\theta) h(\theta) \, \mathrm{d}\theta}$$

Bayes estimator for multiple samples

- Let X_1, \ldots, X_n be random variables which, given $\Theta = \theta$, are i.i.d. with pdf $g(x|\theta)$ for any $\theta \in \Omega$.
- We have n sampled values $X = x_1, \ldots, X_n = x_n$, given $\Theta = \theta$.
- ► The Bayes estimator is given by

$$\theta_B = E[\Theta|X_1 = x_1, \dots, X_n = x_n].$$

► The joint pdf:

$$f(x_1, \dots, x_n, \theta) = g(x_1, \dots, x_n | \theta) h(\theta) = g(x_1 | \theta) \dots g(x_n | \theta) h(\theta) = L(\theta) h(\theta)$$

where $L(\theta)$ is the **likelihood function**. We used the fact that X_1, \ldots, X_n are independent, given $\Theta = \theta$, to write the $g(x_1, \ldots, x_n | \theta)$ as a product of $g(x_i | \theta)$.

$$f_X(x_1,\ldots,x_n) = \int_{\Omega} f(x_1,\ldots,x_n,\theta) d\theta = \int_{\Omega} L(\theta) h(\theta) d\theta$$

Posterior

$$k(\theta|x_1,\ldots,x_n) = \frac{L(\theta) h(\theta)}{\int L(\theta) h(\theta) d\theta}$$

$$\theta_B = E[\Theta|x_1, \dots, x_n] = \int\limits_{\Omega} \theta \, k(\theta|x_1, \dots, x_n) \, \mathrm{d}\theta = \frac{\int\limits_{\Omega} \theta \, L(\theta) \, h(\theta) \, \mathrm{d}\theta}{\int\limits_{\Omega} L(\theta) \, h(\theta) \, \mathrm{d}\theta}$$

- If we know the prior and the conditional probabilities, we can compute the posterior and find the Bayes estimator.
- ▶ The conditional pdf-s are modeled (assumed to have a certain parametric form).
- ▶ The prior is typically very hard to know exactly. In Bayesian statistics, the prior is typically guessed or estimated based on prior information about the distribution of Θ .
- ▶ If no prior information is known, it is taken to be the uniform distribution (noninformative prior).
- The advantage of the Bayesian method is that it uses past knowledge to make a more accurate guess.
- ► As new data arrives, the Bayesian estimator can be updated to get a better estimator (called recursive Bayesian estimation or Bayesian filter).
- Drawbacks are
 - 1. The performance depends on how well the prior is chosen.
 - The integrals in the formula are expensive to compute numerically (see Markov chain Monet Carlo methods).

Example

- Assume salaries are distributed uniformly in $[0, \theta]$ in companies.
- \blacktriangleright An investigative reporter is trying to guess θ in a given company (CEO's salary).
- ▶ He asks n-employees their salaries x_1, \ldots, x_n .
- ▶ If he used MLE, his guess for the salary would have been

$$\bar{\theta} = \max\{x_1, \dots, x_n\}.$$

- But this maybe a wrong estimate with high probability if he sampled low-payed employees.
- But other investigating journalists before him found that salaries of CEO-s have a distribution

$$P(\Theta \le x) = \begin{cases} 1 - \left(\frac{\theta_0}{\theta}\right)^{\alpha} & \theta \ge \theta_0 \\ 0 & \theta < \theta_0 \end{cases} \implies \boxed{h(\theta) = \frac{\alpha(\theta_0)^{\alpha}}{\theta_0^{\alpha+1}}, \quad \theta_0 > 0, \alpha > 0}.$$

- ▶ This is called **Pareto distribution** based on the Pareto principle, which states that a large portion of wealth of CEOs is held by a small fraction of them. θ_0 is the minimum salary.
- ▶ Using Bayesian distribution he will find a more accurate estimate of the CEO salary.
- It can be checked that

$$\theta_B = \frac{\alpha + n}{\alpha + n - 1} \max\{\theta_0, x_1, \dots, x_n\}.$$

A. Petrosvan — Math 3215-C — Probability & Statistics

Example

- ▶ The data is sampled from some distribution with known variance and unknown mean.
- ▶ The mean $Y = \bar{X}$ is approximately $N(\theta, \frac{\sigma^2}{n})$ due to CLT so we will use it as the conditional probability $g(y|\theta)$.
- ► Let

$$\bar{\mu} = \frac{x_1 + \dots + x_n}{n}.$$

- We want to find the Bayes estimator of the mean θ given $Y=\bar{\mu}$ (i.e. finding a Bayes estimator with a single sample).
- ▶ Take the prior on θ to be $N(\mu_0, \sigma_0^2)$ where μ_0 and θ_0 are some values we have picked.

$$h(\theta) = \frac{1}{\sigma_0 \sqrt{2\pi}} e^{-\frac{(\theta - \mu_0)^2}{2\sigma_0^2}}$$

$$g(y|\theta) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{-n(y-\theta)^2}{2\sigma^2}}.$$

▶ ∞ means two functions are proportional to each other (equal up to a constant multiple independent of θ).

 $-\theta^2 \frac{1}{2\tau_n^2} + 2\theta \frac{\mu_n}{2\tau_n^2}$

► Notice that, ignoring the constants,

$$\begin{split} k(\theta|Y = \bar{\mu}) &\propto g(y|\theta) \, h(\theta) \\ &\propto e^{-\frac{(\theta - \mu_0)^2}{2\sigma_0^2}} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{-n(\bar{\mu} - \theta)^2}{2\sigma^2}} \\ &= e^{-\frac{(\theta - \mu_0)^2}{2\sigma_0^2} - \frac{n(\bar{\mu} - \theta)^2}{2\sigma^2}} \\ &\propto e^{-\frac{\theta^2 - 2\theta\mu_0}{2\sigma_0^2} - \frac{n\theta^2 - 2n\theta\bar{\mu}}{2\sigma^2}} \\ &= e^{-\theta^2 \left[\frac{1}{2\sigma_0^2} + \frac{n}{2\sigma^2}\right] + 2\theta \left[\frac{\mu_0}{2\sigma_0^2} + \frac{n}{2\sigma^2}\bar{\mu}\right]} \end{split}$$

$$\propto \frac{1}{\tau_n \sqrt{2\pi}} e^{-\frac{(\theta - \mu_n)^2}{2\tau_n^2}}$$

where

$$au_n^2 = \left[\frac{1}{\sigma_n^2} + \frac{n}{\sigma^2}\right]^{-1}, \quad \mu_n = \tau_n^2 \left[\frac{1}{\sigma_n^2} \cdot \mu_0 + \frac{n}{\sigma^2} \cdot \bar{\mu}\right].$$

A. Petrosvan - Math 3215-C - Probability & Statistics

- $k(\theta|Y=\bar{\mu})$ is the $N(\mu_n, \tau_n^2)$.
- ► Therefore, the Bayes estimator of the mean is

$$E[\Theta|Y=\bar{\mu}]=\mu_n.$$

ightharpoonup When n is large, it is close to the MLE.

- ▶ Data with 300 points sampled from a normal distribution.
- $ightharpoonup \sigma = 3$ and $\mu = 2$ in the original distribution.
- Prior is taken to be N(0,1).
- ▶ The density histogram plotted with 10 class intervals.