V203

Verdampfungswärme und Dampfdruck-Kurve

Amelie Hater
amelie.hater@tu-dortmund.de ngoc.le@

Durchführung: 05.12.2023 A

 $\begin{array}{c} {\rm Ngoc~Le} \\ {\rm ngoc.le@tu\text{-}dortmund.de} \end{array}$

Abgabe: 12.12.2023

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	3
2	Theorie	3
3	Durchführung	5
4	Diskussion	5
Lit	iteratur	5
Αı	nhang	6
	Originaldaten	6

1 Zielsetzung

Das Ziel des Versuchs ist die Verdampfungswärme L von Wasser zu ermitteln. Hierfür wird Wasser erhitzt und die Temperatur sowie der Dampfdruck gemessen.

2 Theorie

Wasser kann in drei verschiedenen Phasen bzw. Aggregatzuständen fest, flüssig und gasförmig vorliegen. Diese Zustände sind von dem Druck p und der Temperatur T abhängig. In der Abbildung (1) ist die Temperatur- sowie die Druckabhängigkeit des Wasserzustands qualitativ abgebildet.

Abbildung 1: Qualitatives Zustandsdiagramm von Wasser. [1]

Innerhalb der drei abgeschlossenen Bereichen, welche den drei genannten Phasen von Wasser entsprechen, besitzt das System zwei Freiheitsgrade p und T. Dahingegen besitzt das System nur einen Freheitsgrad, wenn sich den Grenzlinien angenähert wird. An diesen Grenzlinien koexistieren zwei Phasen. Am Tripelpunkt (TP.) befindet sich das Wasser im festen, flüssigen als auch im gasförmigen Zustand. An dem kritischen Punkt koexisiteren die flüssige und gasförmige Phase. Die Grenzlinie, die den Tripelpunkt und den kritischen Punkt verbindet, wird Dampfdruckkurve genannt. Dabei wird die Dampfdruckkurve durch die molare Verdampfungswärme L charakterisiert. Diese Größe beschreibt die Energie, welche notwendig ist, um bestimmte Stoffmengen zu verdampfen. Im allgemeinen ist die Verdampfungswärme L stoff- und temperaturabhängig. Allerdings

ist L im Bereich der Messung bis zu 1 bar nahezu temperaturunabhängig und wird daher als konstant angenommen. Die Verdampfungswärme L ergibt sich aus der inneren Verdampfungswärme $L_{\rm i}$ und der äußeren Verdampfungswärme $L_{\rm a}$. Somit ergibt sich

$$L = L_{\rm i} + L_{\rm a} \,. \tag{1}$$

 $L_{\rm i}$ beschreibt die Arbeit zur Überwindung der molekularen Anziehungskräfte und $L_{\rm a}$ ist die Energie, die benötigt wird, um das Volumen eines Stoffes vor der Verdampfung $V_{\rm F}$ auf das Volumen eines Stoffes nach der Verdampfung $V_{\rm D}$ auszudehnen. Dieser Vorgang ist anschaulich in der Abbildung (2) dargestellt. Hier wird der Verdampfungs- und Kondensationsprozess eines Stoffes in Abhängigkeit vom Druck p und des Volumens V betrachtet.

Abbildung 2: Kreisprozess eines Stoffes in einem p-V-Diagramm. [1]

Mithilfe des Kreisprozesses in Abbildung (2) lässt sich die Clausius-Clapeyronsche Gleichung

$$(V_{\rm D} - V_{\rm F}) \,\mathrm{dp} = \frac{L}{T} \,\mathrm{d}T \tag{2}$$

bestimmen. Mit dieser Gleichung wird der Verlauf der Dampfdruckkurve eines Stoffes charakterisiert. Wird eine Temperatur betrachtet, welche deutlich kleiner als der kritische Temperatur $T_{\rm Kr}$ ist, werden mehrere Annahmen getroffen. Zunächst wird angenommen, dass $V_{\rm F}$ deutlich kleiner als $V_{\rm D}$ ist und somit $V_{\rm F}$ gegenüber $V_{\rm D}$ vernachlässigbar ist. Demnach gilt für $V_{\rm D}$ die ideale Gasgleichung

$$p \cdot V = R \cdot T. \tag{3}$$

Dabei ist p der Druck, V das Volumen, R die allgemeine Gaskonstante und T die Temperatur. Daher ergibt sich für die ideale Gasgleichung für V_D

$$V_{\rm D}\left(p,T\right) = R \cdot \frac{T}{p} \tag{4}$$

Wie bereits erwähnt, wird zudem L als konsant betrachtet. Somit hängt L nicht von dem Druck p und der Temperatur T ab. Daraus folgt durch Integration der Gleichung (2)

$$p = p_0 \cdot \exp\left(-\frac{L}{R} \cdot \frac{1}{T}\right). \tag{5}$$

Diese Gleichung beschreibt nun den Verlauf der Dampfdruckkurve.

3 Durchführung

_

4 Diskussion

_

Literatur

[1] Unknown. Verdampfungswärme und Dampfdruck-Kurve. TU Dortmund, Fakultät Physik. 2023.

Anhang

Originaldaten

v203 Verk	damplungs vie en	he und	Dampfdnick-Kurve		05.12.2023
umgebungsd	nucle: 985 n	nbar	. Umgebingstemp	22°C	
I[°C]	p [mbar]	TC°C.	[indm]q [T[°C	1 p (mbdar)
22		43	187	76	417
23		50	192	77	438
24		51	197	35	453
25	95	52	202	79	471
26	98	53	207	80	487
27	102	54	212	81	507
28	105	55	218	81	528
29	108	56	225	83	547
30	112	57	231	84	578
34	M6	58	237	85	592
32	119	55	245	86	612
33	122	60	252	F8	6 35
34	126	61	258	88	656
35	131	62	265	89	678
36	134	63	273	90	8700
37	138	64	281	91	724
38	лчЛ	65	250	92	753
39	145	66	299	93	775
40	149	67	308	94	809
41	153	68	3/17	35	8.35
42	157	69	327	96	867
43	162	70	337	57	899
44	166	71	348	98	938
45	176	72	360	99	989
416	174	73	373	100	999 Ruan
47	178	74	387		
48	183	75	401		

															-	-	
p (bai)	T[°C]					+	-		-								
0	20																
1									+						+		
	116																
2	132							1									
3	141							+	-	-	-			-			-
4	150								1						-		
5	156																
6	162							1				9				- 3	
7	168													+		H	
8																	1
	173																
9	176							+	-					-			
16	181																
и	185		7														
12	189																
13	192		200									\$					-
14	195																
15	198	Pur															-
												7		+	+	H	
								-									
	138 12		1						+								
													ħ.				
					H					-						-	
																	-
													18				-
				4.14								*		-	-	-	-
					H							22					1
										-	-	-			-	+	-