

ELEKTRO- UND MEDIENTECHNIK

Mathematik für Infotronik Aufgabenblatt 4 (14.11.2010)

- Untersuchen Sie, ob folgende Funktionen injektiv, surjektiv, bijektiv sind.
 (Achtung: die angegebenen Definitions- und Zielmengen D bzw. B sind nicht immer die größtmöglichen!)
 - a) $f(x) = x^2$ mit $D = \mathbb{R}_{<0}$ und $B = \mathbb{R}$
 - b) f(x) = |x| + 1 mit $|D| = |\mathbb{R}|$ und $|B| = |\mathbb{R}|_{\geq 0}$
 - c) f(x) = 1 x mit D = [-2;2] und B = [-1,3]
 - d) $f(x) = \frac{1}{1+x^2}$ mit $|D| = |\mathbb{R}|$ und $|B| = |\mathbb{R}| \ge 0$
 - e) $f(x) = \sqrt{x+1}$ mit $|D| = |\mathbb{R}_{\geq 0}$ und $|B| = |\mathbb{R}$
 - f) $f(x) = \frac{1}{x} + 1$ mit $|D| = |\mathbb{R}|$ und $|B| = |\mathbb{R}|$
- Bestimmen sie für die untenstehenden reellen Funktionen den größtmöglichen Definitionsbereich und geben Sie den Wertebereich an:
 - a) $f(x) = \sqrt{\frac{x^2 4}{x 2}}$
 - b) $f(x) = \frac{1}{x^2 1}$
 - c) $f(x) = \frac{x}{x^2 + 1}$
 - d) $f(x) = \frac{1}{\sqrt{|x|-x}}$
 - e) $f(x) = \frac{\sqrt{x}}{x-1}$
- Berechnen Sie für ein Rechteck mit dem Flächeninhalt 12 die Länge der Diagonalen d abhängig von der Seitenlänge a. Schreiben Sie die entstehende Funktion d(a) in der vollständigen Form auf und bestimmen Sie die größtmöglich Definitions- und Wertemenge.
- 4. Ein kugelförmiger Luftballon mit dem Radius r besitzt das Volumen $V(r) = \frac{4}{3}\pi * r^3$. Um den Radius des Ballons um 1 zu erhöhen, benötigt man ein zusätzliches Volumen Z(r). Bestimmen Sie abhängig von r die analytische Form dieser Funktion Z(r) und bestimmen Sie den die größtmögliche Definitions- und die Wertemenge.
- 5. Berechnen Sie den natürlichen Logarithmus der komplexen Zahlen:
 - a) z = -8 + 6j
 - b) z = -5

Bestimmen Sie jeweils den Hauptwert und die Nebenwerte des Logarithmus.

Viel Erfolg bei der Lösung der Aufgaben!

Hochschule Deggendorf

ELEKTRO- UND MEDIENTECHNIK

Lösungen:

- 1a) injektiv, nicht surjektiv, also nicht bijektiv
- 1b) weder injektiv noch surjektiv, also nicht bijektiv
- 1c) sowohl injektiv also auch surjektiv, also auch bijektiv
- 1d) weder injektiv noch surjektiv, also nicht bijektiv
- 1e) injektiv, nicht surjektiv, also nicht bijekitv
- 1f) injektiv, nicht surjektiv, also nicht bijektiv

2a)
$$D = [-2, \infty) \setminus \{2\}; |W = [0, \infty) \setminus \{2\}$$

2b)
$$|D| = |R \setminus \{-1,1\}; |W| = |R \setminus \{-1,0\}$$

2c)
$$|D| = R$$
; $|W| = [-0.5;0.5]$

2d)
$$|D| = R_{<0} : |W| = |R_{>0}|$$

2e)
$$|D| = R_{>0} \setminus \{1\}; |W| = |R|$$

3) d(a)=
$$\sqrt{a^2 + \frac{144}{a^2}}$$
; |D max= |R ≥ 0 ; |W max= [4,8989; ∞)

4)
$$Z(r) = \frac{4}{3}\pi(3r^2+3r+1); |D|_{max} = |R_{\geq 0}; |W|_{max} = [\frac{4}{3}*\pi; \infty)$$

5a) In z = 2,3 + j·(2,5 + k·2
$$\pi$$
)
Ln z = 2,3 + 2,5 j

5b) In z = 1,609 +
$$j \cdot (\pi + k \cdot 2\pi)$$

Ln z = 1,609 + $j \cdot 2\pi$