

[Accredited by NAAC & NBA, Approved by AICTE New Delhi & Permanently Affiliated to JNTUH]

Department of Physics B.Tech First Year I Semester-2022-23 QUESTION BANK

Subject/Course: Applied Physics

ubject/Course: Applied Physics	
2	What is interference of light?
3	Write the conditions for constructive and destructive interference.
4	Two interfering beams have amplitude ratios of 2:1, calculate the intensity ratio of bright and dark fringes.
5	Write the conditions to produce sustained interference.
6	Two waves having their intensities in the ratio of 9:1 produce interference. Determine the ratio of maxima to minima in the interference pattern.
7	Define phase difference and write its relation with path difference.
8	What are coherent sources and how they are realized in practice.
9	If phase difference between two waves is $2 n\pi$, then find out path difference between them.
10	Define resolving power of a plane grating.
11	What is grating element?
12	Define Diffraction.
13	Write the conditions required to observe diffraction pattern.
14	Differentiate interference and diffraction.
	Differentiate Fresnel and Fraunhofer diffraction.
16	On what factors do the width of central fringe depends in a single slit diffraction pattern?
17	For a grating of grating element 2µm, calculate the maximum number of orders of diffraction pattern that can be seen for the wavelength 5890 Å.
18	Define plane of polarization and plane of vibration.
19	Explain double refraction in calcite crystal.
	Why do we get dark ring at the center of the Newton's rings?
21	Define polarization and write any two applications of polarization.
	LONG ANSWER QUESTIONS
1	Write about superposition principle, interference and discuss the conditions for sustained
	interference.
2	a) Explain interference in thin film on reflection with a neat diagram and derive the condition for dark and bright fringe.
	b) A soap film of thickness 5×10^{-5} cm is viewed at an angle of 35^0 to the normal.

	Find the wavelengths of visible light that will be absent from the reflected light(μ =1.33)
3	What is the thickness of the thinnest film of 1.33 refractive index in which destructive interference of yellow light (6000 Å) of a normally incident beam in air can take place by reflection?
4	 a) Explain the formation of Newton's rings with suitable theory. b) A convex lens on a plane glass plate is exposed to monochromatic light. The diameter of the 10th dark ring is 0.433 cm. Find the wavelength of light used if the curvature of the lens is 70 cm.
5	 a) Derive the formula \(\lambda = \frac{D_m^2 - D_n^2}{4R(m-n)} \) where \(D_m \) and \(D_n \), the diameters of mth and nth Newtonrings. b) In case of Newton's rings experiment, wavelength of light source is 5400 Å and the radius of the 8th dark ring is 3.6x10⁻³m. Find the radius of curvature of the lens.
6	 a) Discuss in detail about Fraunhofer diffraction due to single slit. b) The first diffraction minima due to a single slit is at θ = 30° for a light of wavelength 5000 Å Find the width of the slit.
7	 a) Write the theory of diffraction due to N-slits (Grating). b) For a grating, the angle of diffraction for the second order principal maximum for the wave length 5 x 10⁻⁵ cm is 30°. Find the number of lines per cm of the grating.
8	Derive the equation to determine the wavelength of light source using diffraction grating Theory.
9	Describe the construction and working of a Nicol's prism.
10	What is polarization? Write some applications of Polarization.

UN	UNIT-II (Introduction to Quantum Mechanics and band theory of solids)	
	SHORT ANSWER QUESTIONS	
1	Write the postulates of Planck's radiation law.	
2	Write the Planck's expression for spectral distribution of black body radiation and its	
	importance.	
3	Discuss the de-Broglie hypothesis of matter particles.	
4	Write the different forms of de-Broglie's equation for wavelength of matter wave.	
5	Determine the wavelength of matter wave associated with electron accelerated by a	
	potential of 100V.	
6	Determine the wavelength of matter wave associated with a ball of mass 200gm. and	
	moving with a velocity of 120 km/sec.	
7	Write the properties of matter waves.	
8	Write time independent Schrodinger wave equation for a free particle.	
9	Calculate the minimum energy of a particle of mass $6x10^{-34}$ Kg enclosed in a 1-D box of width 1.2 Å.	
10	Calculate the wavelength associated with an electron with energy 2000 eV.	
11	An electron is bound in 1 dimensional box of size 4 X 10 ⁻¹⁰ m., what will be its minimum	
	energy?	
12	Write the expression for Fermi-distribution function. Show that at all temperatures (T>0K)	
	probability of occupancy of Fermi level is 50%	
13	Write the postulates of Lorentz-Drude free electron theory.	

14	Write the merits of classical free electron theory.
15	Write the limitations of classical free electron theory.
16	Discuss the motion of electrons in a periodic potential.
17	Write the conclusions of Kronig-Penny model.
18	Draw E-K diagram for semiconductor.
19	Define effective mass of an electron and write the expression for effective mass of
	electron.
20	Write the values of energy gap of semiconductors and insulators with examples.
21	Draw the energy band diagrams of metals, semiconductors and insulators.
	LONG ANSWER QUESTIONS
1	Describe the concept of de-Broglie hypothesis of matter waves and derive the expressions
	Derive the following equations
	$\lambda = \frac{h}{v}, \lambda = \frac{h}{\sqrt{2mE}}, \ \lambda = \frac{12.26}{\sqrt{V}}.$
2	
	Derive Schrodinger time independent wave equation.
3	Explain the physical significance of wave function.
4	Show that the energies of a particle in a1-D box are quantized.
5	Derive wave function for the particle which is moving in one- dimensional potential box
6	Explain the Fermi-Dirac distribution function for electrons in a metal and discuss it's
	variation with temperature.
7	Explain classical free electron theory and discuss merits and demerits.
8	Discuss the Kronig-Penny model for the motion of an electron in a periodic potential.
9	a) Draw E-K diagram for a semiconductor and identify various Brillouin zones
	b) Explain the conclusions of Kronig-Penny model.
10	Derive an expression for effective mass of an electron.
11	Explain the origin of energy bands formation in solids and classify metals, semiconductors
	and insulators based on band theory.

	UNIT-III (Semiconductors and semiconductor devices)
	SHORT ANSWER QUESTIONS
1	Write a note on doping of semiconductors, its need and outcome.
2	Distinguish between intrinsic and extrinsic semiconductors
3	Differentiate N-type and P-type semiconductors.
4	Explain the effect of temperature on the conductivity of conductors and semiconductors.
5	Draw the energy band diagrams for
	i) intrinsic semiconductor
	ii) n-type semiconductor
	iii) p-type semiconductor
6	What are direct and indirect band gap semiconductors?
7	Draw the E-k graph of direct and indirect band gap semiconductors.
8	Draw the energy level diagram of PN junction.
9	What are minority carriers in a PN junction diode and how they are related to reverse current?
10	Write the basic principle of photodiode.
11	Write any two applications of Photo diode.

12	Draw the I-V Characteristics of photodiode.	
13	Write the applications of solar cell	
14	Define efficiency of solar cell.	
15	Mention the factors responsible for efficiency of solar cell.	
16	Discuss the basic principle of LED.	
17	List out the advantages of LED and specific applications of LED.	
18	Calculate the wavelength of radiation emitted by LED made up of GaAs with band gap energy 1.43 eV	
19	What is Hall Effect?	
20	Write some applications of Hall Effect.	
21	A silicon plate of thickness 1mm, breadth 10mm and length 100mm is placed in perpendicular magnetic field of 0.5 Wb/m ² . If 10 ⁻² A current flow along its length, calculate the Hall voltage developed if the Hall coefficient is 3.66x10 ⁻⁴ m ³ /coulomb.	
	LONG ANSWER QUESTIONS	
1	Explain Intrinsic and Extrinsic semiconductors in detail with band diagram and position of fermi level.	
2	Explain direct and indirect band gap semiconductors with the E-k graphs.	
3	Explain the formation of PN junction.	
4	Draw the energy level diagram of PN junction and explain.	
5	Draw the V-I characteristic curve of a PN junction diode and explain.	
6	Explain the construction, working and characteristics of Photo diode.	
7	Explain the construction, working and characteristics of Solar cell.	
8	Explain the construction, working and characteristics of LED.	
9	Explain Hall Effect and derive the expression for Hall coefficient.	
10	Write about various applications of Hall effect.	

	UNIT-IV (Nanotechnology)
	SHORT ANSWER QUESTIONS
1	Define NANOMETER and NANOSCALE.
2	What is quantum confinement?
3	Write about the relation between surface to volume ratio and the radius of the material.
4	When the radius of a sphere is doubled what happens to surface to volume ratio?
5	If the radius of the sphere is 6nm, then find out the surface to volume ratio.
6	What will happen to the surface to volume ratio of the cylinder if the radius is tripled and
	its height is halved?
7	What are the basic approaches used to prepare nanomaterials?
8	What is top- down approach? Give some example methods.
9	Write briefly about bottom-up method of synthesis of nanomaterials.
10	List the advantages and disadvantages of PVD process.
11	What are the major drawbacks of Ball milling technique?
12	Differentiate top-down and bottom-up methods
13	What is mean by Characterization of the material? List any two material characterization
	techniques?
14	What is the main difference between SEM and TEM?

15	What is the importance of Bragg's law in XRD characterization?
16	Write the advantages of XRD technique in the material characterization
17	Write the advantages of SEM.
18	What are the drawbacks of TEM?
19	What are the applications of CVD.
20	Write some applications of nanotechnology.
	LONG ANSWER QUESTIONS
1	Why [surface area/volume] ratio is very large for nanoparticles compared to bulk materials?
	Highlight any two examples associated with increase in surface area
2	What is the impact of quantum confinement on the nanomaterials? Explain with some
	examples
3	Explain bottom up & top-down approaches in nanotechnology.
4	Explain synthesis of nanomaterials by using Ball milling method.
5	Explain SOL-GEL synthesis for producing nanomaterials? Explain with the help of a neat
	sketch.
6	Explain CVD technique for producing nanomaterials with the help of a neat diagram?
7	Describe briefly about preparation of nanomaterials by using physical vapor deposition
	(PVD) method
8	Explain in detail how XRD analysis is important in nanomaterial characterization.
9	Explain the principle of TEM analysis of nanomaterials.
10	How is SEM used for nanomaterial characterization?

	UNIT-V (Lasers and Fiber Optics)	
	SHORT ANSWER QUESTIONS	
1	Write the characteristics of laser.	
2	Define spontaneous emission and stimulated emission of radiation.	
3	Define population inversion.	
4	Write various methods to achieve population inversion.	
5	List out some applications of laser.	
6	What are the important components of lasers?	
7	What are the necessary conditions for lasing action?	
8	Write relations between Einstein's coefficients	
9	Energy gap of the semiconductor is 3eV, find out the wavelength of emitted photon.	
10	A semiconductor diode laser has a peak emission wavelength of 1.55μm. Find its band gap.	
11	What is the principle behind the functioning of an optical fiber?	
12	Mention the applications of optical fibers.	
13	Define acceptance angle of an optical fiber and write an expression for acceptance angle	
14	Draw the structure of optical fiber.	
15	Define numerical aperture of an optical fiber and also write the equation for Numerical aperture	
16	Write the relation between numerical aperture and acceptance angle	
17	Write the advantages of optical fibers over the conventional coaxial cables in communication	

18	Draw the refractive index profile of step index and graded index optical fibers.
19	Calculate the acceptance angle of a given optical fiber, if the Numerical aperture of the fiber is 0.41
20	For an optical fiber, fractional index change is 0.14 and refractive index of cladding is 1.3. calculate
	refractive index of core
	LONG ANSWER QUESTIONS
1	Obtain the relation between Einstein's coefficients
2	a) Differentiate spontaneous and stimulated emission of radiation.
	b) Explain briefly about the characteristics of laser
3	With a neat diagram, describe the construction and working of Ruby laser.
4	Explain the construction and working of He – Ne laser.
5	With the help of neat diagram, describe the construction and working of a semiconductor laser.
6	a) Explain the components which are used to produce the laser.
	b) Write some important applications of lasers.
7	Derive an expression for the numerical aperture of optical fibers.
8	a) Differentiate the multimode step index and multimode graded index fibers.
	b) Calculate the numerical aperture and acceptance angle of an optical fiber with core
	and cladding refractive indices being 1.48 and 1.45 respectively.
9	a) Explain the optical fiber communication system with the help of block diagram
	b) Discuss various advantages of optical fibers in communication over the conventional
	ones
10	Describe the different types of fibers by giving the refractive index profiles and propagation details.