

DUAL N-CHANNEL AND DUAL P-CHANNEL MATCHED PAIR MOSFET

GENERAL DESCRIPTION

The ALD1105 is a monolithic dual N-channel and dual P-channel complementary matched transistor pair intended for a broad range of analog applications. These enhancement-mode transistors are manufactured with Advanced Linear Devices' enhanced ACMOS silicon gate CMOS process. It consists of an ALD1116 N-channel MOSFET pair and an ALD1117 P-channel MOSFET pair in one package. The ALD1105 is a low drain current, low leakage current version of the ALD1103.

The ALD1105 offers high input impedance and negative current temperature coefficient. The transistor pair is matched for minimum offset voltage and differential thermal response, and it is designed for precision signal switching and amplifying applications in +1V to +12V systems where low input bias current, low input capacitance and fast switching speed are desired. Since these are MOSFET devices, they feature very large (almost infinite) current gain in a low frequency, or near DC, operating environment. When used in complementary pairs, a dual CMOS analog switch can be constructed. In addition, the ALD1105 is intended as a building block for differential amplifier input stages, transmission gates, and multiplexer applications.

The ALD1105 is suitable for use in precision applications which require very high current gain, beta, such as current mirrors and current sources. The high input impedance and the high DC current gain of the field effect transistors result in extremely low current loss through the control gate. The DC current gain is limited by the gate input leakage current, which is specified at 30pA at room temperature. For example, DC beta of the device at a drain current of 3mA at 25°C is = 3mA/30pA = 100.000.000.

FEATURES

- Thermal tracking between N-channel and P-channel pairs
- Low threshold voltage of 0.7V for both N-channel & P-channel MOSFETs
- Low input capacitance
- Low Vos -- 10mV
- High input impedance -- 10¹³Ω typical
- Low input and output leakage currents
- Negative current (IDS) temperature coefficient
- Enhancement mode (normally off)
- DC current gain 10⁹
- Matched N-channel pair and matched P-channel pair in one package

ORDERING INFORMATION

Operating Temperature Range*									
-55°C to +125°C	0°C to +70°C	0°C to +70°C							
14-Pin CERDIP Package	14-Pin Plastic Dip Package	14-Pin SOIC Package							
ALD1105 DB	ALD1105 PB	ALD1105 SB							

^{*} Contact factory for industrial temperature range.

APPLICATIONS

- Precision current mirrors
- Complementary push-pull linear drives
- Discrete Analog switches
- Analog signal Choppers
- Differential amplifier input stage
- Voltage comparator
- Data converters
- · Sample and Hold
- Analog current inverter
- Precision matched current sources

PIN CONFIGURATION

BLOCK DIAGRAM

^{© 2005} Advanced Linear Devices, Inc. 415 Tasman Drive, Sunnyvale, California 94089 -1706 Tel: (408) 747-1155 Fax: (408) 747-1286 http://www.aldinc.com

ABSOLUTE MAXIMUM RATINGS

Drain-source voltage, V _{DS} _		13.2V
Gate-source voltage, V _{GS}		13.2V
Power dissipation		500 mW
Operating temperature range	PB, SB package	0°C to +70°C
	DB package	55°C to +125°C
Storage temperature range —		65°C to +150°C
Lead temperature, 10 seconds		+260°C

OPERATING ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ unless otherwise specified

		N - Channel			Test	P - Channel				Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions	Min	Тур	Max	Unit	Conditions
Gate Threshold Voltage	VT	0.4	0.7	1.0	V	$I_{DS} = 1\mu A V_{GS} = V_{DS}$	-0.4	-0.7	-1.0	V	$I_{DS} = -1\mu A V_{GS} = V_{DS}$
Offset Voltage V _{GS1} - V _{GS2}	V _{OS}		2	10	mV	$I_{DS} = 10\mu A V_{GS} = V_{DS}$		2	10	mV	$I_{DS} = -10\mu A$ $V_{GS} = V_{DS}$
Gate Threshold Temperature Drift	TC _{VT}		-1.2		mV/°C			-1.3		mV/°C	
On Drain Current	IDS (ON)	3	4.8		mA	$V_{GS} = V_{DS} = 5V$	-1.3	-2		mA	$V_{GS} = V_{DS} = -5V$
Trans conductance	Gfs	1	1.8		mmho	V _{DS} = 5V I _{DS} = 10mA	0.25	0.67		mmho	V _{DS} = -5V I _{DS} = -10mA
Mismatch	ΔGfs		0.5		%			0.5		%	
Output Conductance	G _{OS}		200		μmho	V _{DS} = 5V I _{DS} = 10mA		40		μmho	V _{DS} = -5V I _{DS} = -10mA
Drain Source ON Resistance	R _{DS(ON)}		350	500	Ω	V _{DS} = 0.1V V _{GS} = 5V		1200	1800	Ω	$V_{DS} = -0.1V \ V_{GS} = -5V$
Drain Source ON Resistance Mismatch	ΔR _{DS(ON)}		0.5		%	V _{DS} = 0.1V V _{GS} = 5V		0.5		%	V _{DS} = -0.1V V _{GS} = -5V
Drain Source Breakdown Voltage	BV _{DSS}	12			V	I _{DS} = 1μΑ V _{GS} =0V	-12			V	I _{DS} = -1μΑ V _{GS} =0V
Off Drain Current	I _{DS(OFF)}		10	400 4	pA nA	V _{DS} =12V I _{GS} = 0V T _A = 125°C		10	400 4	pA nA	V _{DS} = -12V V _{GS} = 0V T _A = 125°C
Gate Leakage Current	I _{GSS}		0.1	30 1	pA nA	V _{DS} = 0V V _{GS} =12V T _A = 125°C		1	30 1	pA nA	V _{DS} = 0V V _{GS} =-12V T _A = 125°C
Input Capacitance	C _{ISS}		1	3	pF			1	3	pF	

P- CHANNEL TYPICAL PERFORMANCE CHARACTERISTICS

OUTPUT CHARACTERISTICS

FORWARD TRANSCONDUCTANCE vs. DRAIN SOURCE VOLTAGE

DRAIN SOURCE ON RESISTANCE

OFF DRAIN SOURCE CURRENT

DRAIN SOURCE ON RESISTANCE

FORWARD TRANSCONDUCTANCE

N- CHANNEL TYPICAL PERFORMANCE CHARACTERISTICS

OUTPUT CHARACTERISTICS

FORWARD TRANSCONDUCTANCE vs. DRAIN SOURCE VOLTAGE

FORWARD TRANSCONDUCTANCE

DRAIN SOURCE ON RESISTANCE

DRAIN SOURCE ON RESISTANCE

OFF DRAIN CURRENT vs. AMBIENT TEMPERATURE

TYPICAL APPLICATIONS

CURRENT SOURCE MIRROR

$V^{+} = +5V$ $V^{+} = +5V$ Q_{3} Q_{4} Q_{5} Q_{1} Q_{2} Q_{2} Q_{3} Q_{4} Q_{2} Q_{3} Q_{4} Q_{5} Q_{7} Q_{1} Q_{2} Q_{2} Q_{3} Q_{4} Q_{5} Q_{7} Q_{7} Q_{8} Q_{7} Q_{8} Q_{7} Q_{8} Q_{7} Q_{8} Q_{7} Q_{8} Q_{8} Q_{8} Q_{8} Q_{9} Q_{9}

CURRENT SOURCE WITH GATE CONTROL

DIFFERENTIAL AMPLIFIER

PMOS PAIR Q1 NMOS PAIR Current Source

Q₁, Q₂: N - Channel MOSFET Q₃, Q₄: P - Channel MOSFET

CURRENT SOURCE MULTIPLICATION

5

QSET, Q1..QN: ALD 1106 or ALD 1105 N - Channel MOSFET

TYPICAL APPLICATIONS

BASIC CURRENT SOURCES

N- CHANNEL CURRENT SOURCE

P- CHANNEL CURRENT SOURCE

 $Q_{1,}\,Q_{2}\,:N$ - Channel MOSFET

Q₃, Q₄: P - Channel MOSFET

CASCODE CURRENT SOURCES

$$I_{SOURCE} = I_{SET} = \frac{V^+ - 2Vt}{R_{SET}} \cong \frac{3}{R_{SET}}$$

Q₁, Q₂, Q₃, Q₄: N - Channel MOSFET (1/2 ALD1105 + ALD1116)

Q1, Q2, Q3, Q4: P - Channel MOSFET (1/2 ALD1105 + ALD1117)