TD cours : algèbre linéaire

29 novembre 2018

1 Systèmes libres, bases

1,1

Soit A une partie génératrice de l'espace vectoriel de dimension finie E. Montrer que A contient une partie-base.

1.2

[(i)] Soit $(P_k)_{k\in\mathbb{N}}$ une famille de polynômes. Si la suite $(\deg P_k)$ est strictement croissante, montrer que la suite (P_k) est libre, et que c'est une base si pour tout $k\in\mathbb{N}$, $\deg P_k=k$.

[(ii)] Déterminer une base de $K[X_1, \dots, X_n]$.

 $[(iii)](X^n)$ est-elle une base de K[[X]]?

[(iv)] Déterminer une base de R(X).

1.3

Soit E un sev de $\mathbf{R}_n[X]$. Montrer que E possède une base dont tous les éléments sont de même degré (resp. de degrés différents).

1.4

Soit $f: x \to \ln(1+x)$, montrer que la famille f^{op} , $p \in \mathbb{N}^*$ est libre dans $F(\mathbb{R}^+, \mathbb{R}^+)$.

1.5

Soient $n \in \mathbb{N}^*$ et D une matrice diagonale de $M_n(\mathbb{K})$ ayant n valeurs propres distinctes. Montrer que (I, D, \dots, D^{n-1}) est une base de $D'_n(\mathbb{K})$.

1.6

Montrer que $X^k(1-X)^{n-k}$), $k=0,\ldots,n$ est une base de $C_n[X]$.

Sous-espaces vectoriels, sommes

2.1

Soit F un sev strict de l'espace vectoriel E. Déterminer les $u \in L(E)$ qui sont nuls sur $E \setminus F$.

2.2

Soient F et G deux sous-espace vectoriels d'un espace vectoriel E. Montrer que si $F \cup G$ est un sous-espace vectoriel, alors $F \subset G$ ou $G \subset F.$

2.3

Soit E l'espace vectoriel de fonctions continues $2-\pi$ périodiques de ${\bf R}$ vers ${\bf C}.$ a) Montrer que l'espace vectoriel F des fonctions de E possédant une primitive est un hyperplan.

b) Donner un supplémentaire du sev de ${\cal F}$ formé par les fonctions qui s'annule

2.4

Soit K un corps infini. On suppose que F est un sous-espace vectoriel strict de ${\cal E}$ non trivial. Montrer qu'il admet une infinité de supplémentaires.

2.5 Utile

Soient F et G deux sous-espaces vectoriels de E, espace vectoriel de dimension finie, avec $\dim F = \dim G.$ Montrer que F et G possèdent un supplémentaire

2.6

On suppose K fini:

 $|\mathbf{K}| = q = p^r$ avec p premier.

(Justifier)

Soit E un K-espace vectoriel de dimension finie. Dénombrer :

[(i)] |E|.

[(ii)] m étant donné, le nombre de systèmes libres de E de taille m.

[(iii)] Le nombre de bases de E.

[(iv)] Le nombre d'hyperplans de E.

Applications linéaires, Théorème du rang 3

3.1

A un n-uple $x=(x_1,...,x_n)$ d'éléments du K-espace vectoriel E on attache le sous-espace vectoriel L_x de \mathbf{K}^n formé des $(\lambda_1,...,\lambda_n)$ tels que $\sum \lambda_i x_i = 0$. Soit $y = (y_1, ...y_n) \in E^n$. Montrer qu'il existe une application linéaire u de E dans E telle que $u(x_i) = y_i$ pour tout i ssi $L_x \subset L_y$.

3.2

Rappeler et démontrer le théorème du rang.

3.3

Soit E un espace vectoriel de dimension finie. Soient $u,v\in\mathcal{L}(E)$. Montrer l'inégalité :

$$|rgu - rgv| \le rg(u - v)$$

3.4 Utile

Soit A une K-algèbre intègre unitaire (en rappeler la définition). Est-elle un corps? Qu'en est-il si A est de dimension finie?

3.5

Soit E un K-espace vectoriel de dimension finie sur un corps fini F_q . Calculer $|\mathcal{GL}(\mathcal{E})|$.

3.6

Soit $u \in \mathcal{L}(E)$. Montrer:

$$Ker(v \circ u) = Keru \iff Imu \cap Kerv = \{0\}$$

$$Im(v \circ u) = Imv \iff Imu + Kerv = E$$

3.7

Soit E un espace vectoriel de dimension finie. Soit $u \in \mathcal{L}(E)$. Montrer:

$$Keru = Keru^2 \iff Imu = Imu^2$$

3.8

Soient E et F deux espaces vectoriels de dimension finie et $u, v \in \mathcal{L}(E, F)$. Montrer que dim $\mathrm{Ker}(u+v) \leq \dim(\mathrm{Ker}u \cap \mathrm{Ker}v) + \dim(\mathrm{Im}u \cap \mathrm{Im}v)$.

3.9

Soit E un espace vectoriel de dimension finie. Soit $u \in \mathcal{L}(E)$. CNS pour que

$$\forall v \in L(\mathbf{R}), u \circ v = 0 \Rightarrow v \circ u = 0.$$

3.10 uov et u+v

Soit E un K-espace vectoriel de dimension finie et $u \in L(E)$. Trouver une condition nécessaire et suffisante sur u pour qu'il existe $v \in L(E)$ tel que $u \circ v = 0$ et u + v inversible.

Kene I my t

Interpolation polynomiale

4.1

4.1

(Interpolation de Lagrange) Soit $(x_i)_{i=1}^n \in \mathbf{K}^n$ deux à deux distincts. Montrer : $\forall (y_i)_{i=1}^n \in \mathbf{K}^n, \ \exists ! P \in \mathbf{K}_{n-1}[X], \ \forall i \in \{1; \cdots; n\}, \ P(x_i) = y_i$ introduction de lauthy

$$\forall (y_i)_{i=1}^n \in \mathbf{K}^n, \ \exists ! P \in \mathbf{K}_{n-1}[X], \ \forall i \in \{1, \dots, n\}, \ P(x_i) = y_i$$

4.2

(Inverse de la matrice de Vandermonde) Déterminer l'inverse d'une matrice de Vandermonde de paramètres $(x_i)_{i=1}^n$.

Homothéties, projecteurs, involutions

5.1

(Lemme de Schur) Soit $u \in \mathcal{L}(E)$. Montrer l'équivalence :

$$\exists \lambda \in \mathbf{K}, \ u = \lambda Id_E \iff \forall x \in E, \ (x, u(x))$$
 est liée.

5.2

(Caractérisation des homothéties) Soit E un K-espace vectoriel de dimension $n \geq 3$. Soit $p \in \{2, \cdots, n-1\}$. Soit $u \in \mathcal{L}(E)$. On suppose que pour tout sous-espace F de E:

Procomby p

 $\dim F = p \implies F$ stable par u

Que dire de u?

5.3

(Caractérisation des projecteurs) Soient E un espace vectoriel et $p \in \mathcal{L}(E)$. Montrer que si $p \circ p = p$, alors $\operatorname{Ker} p \oplus \operatorname{Im} p = E$ et p est la projection de E sur ImP parallèlement à Kerp.

5.4

Soit $v \in \mathcal{L}(E)$ et soit p un projecteur. Montrer l'équivalence :

$$p \circ v = v \circ p \iff v(\operatorname{Kerp}) \subset \operatorname{Kerp} \text{ et } v(\operatorname{Imp}) \subset \operatorname{Imp}$$

E(S) collection find

5.5

Soient $(p,q)\in\mathcal{L}(E)^2$ un couple de projecteur sur un K-espace vectoriel avec la caractéristique de K différente de 2. Montrer l'équivalence :

$$p+q$$
 projection $\iff p \circ q = q \circ p = 0$

5.6

. Soit E un espace vectoriel de dimension n, f et g deux endomorphismes de E tels que f+g=Id et rg f+ rg $g\leq n$. Montrer que f et g sont deux projecteurs associés.

Familles de projecteurs

exos Soít E un K-espace vectoriel de de dimension finie, et p_1,\dots,p_k des endomophismes de E, Montrer l'équivalence des deux propositions suivantes :

- 1) Il existe une famille $(F_i)_{1 \le i \le k}$ de sev supplémentaires de E telle que, pour tout indice i, p_i soit le projecteur sur F_i parallélement à $\bigoplus_{i \ne j} F_j$;
- 2) $p_1 + \cdots + p_k = Id_E$, et pour tout indices $i \neq j$ on a $p_i \circ p_j = 0$.

5.7

(Symétries) Soit E un K-espace vectoriel avec la caractéristique de K différente de 2. Soit $u \in \mathcal{L}(E)$. Montrer l'équivalence :

 $u^2 = Id_E \iff uest$ une symétrie par rapport à $Ker(u-Id_E)$ de direction $Ker(u+Id_E)$

Donner un contre-exemple lorsque la caractéristique de ${f K}$ est égale à 2.

5.8

On suppose K de caractéristique différente de 2. Soit $u \in \mathcal{L}(E)$ une involution. Montrer que pour tout $v \in \mathcal{L}(E)$:

 $u \circ v = v \circ u \iff v \text{ laisse } \operatorname{Ker}(u - Id_E) \text{ et } \operatorname{Ker}u + Id_E) \text{ stables.}$

5.9 Bicommutant.

Soient T et T' deux involutions d'un R-ev de dimension finie n. Déterminer le commutant de T. On suppose que T et T' commutent. Déterminer le bicommutant de (T,T').

6 Nilpotents

6.1

(Noyaux itérés) Soit $u \in \mathcal{L}(E)$. Pour $k \in \mathbb{N}$ on note, avec la convention $u^0 = Id_E$:

$$F_k = \operatorname{Ker} u^k$$

 $G_k = \operatorname{Im} u^k$

Montrer:

i) $F_{k+1} = F_k \iff G_{k+1} = G_k$ et dans ce cas :

$$\forall l \geq k, \ F_l = F_k \ \text{et} \ G_l = G_k$$

ii) Il existe $p \in \mathbb{N}$ tel que :

$$F_0 \subset \neq F_1 \subset \neq \cdots \subset \neq F_p = F_{p+1}$$

$$G_0 \supset \neq G_1 \supset \neq \cdots \supset \neq G_p = G_{p+1}$$

et $F_p \oplus G_p = E$.

6.2

Soit $u \in \mathcal{L}(\mathcal{E})$ un endomorphisme nilpotent d'indice p de E, où E est un \mathbf{K} espace vectoriel de dimension $n \geq 1$.

Ved (#+ Imlw + Immu2 " a) Soit $x \in E$ tel que $u^{p-1}(x) \neq 0$. Montrer que $(x \dots, u^{p-1}(x))$ est libre.

b) On suppose que p=n. Montrer que $Com(u)=\mathbf{K}[u].$

6.3

Soient E un ${\bf C}$ -espace vectoriel de dimension finie, u un endomorphisme nilpotent de E, S un sev de E stable par u. Si E = S + Im(u) montrer que S=E.

Structures réelles et complexes

7.0.1

Montrer que toute application R-linéaire de C dans C se met sous la forme $z \rightarrow az + b\overline{z}, a, b \in \mathbb{C}.$

7.1

Soit E un ${\bf R}$ espace vectoriel de dimension finie $n\geq 1.$ Montrer que E peut être muni d'une structure complexe compatible avec sa structure réelle ssi sa dimension est paire.

7.2

Soit E un \mathbf{R} espace vectoriel de dimension finie $n \geq 1$, et soit $u \in L(E)$. a) On suppose ici que $u^2 = -Id_E$. Montrer qu'il existe une base de E dans laquelle la matrice de u est formée de blocs diagonaux égaux à

$$\begin{pmatrix} 0 & 1 \\ -1 & \end{pmatrix}$$

Immes > Immens

Folking

of The Time I was

b) On suppose ici que $u^2 + au + bId_E = 0$ avec $a^2 - 4b < 0$. Montrer qu'il existe des réels α et β et une base de E dans laquelle la matrice de u est formée de blocs diagonaux égaux à $\begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$.

7.3

Soient $n \in \mathbb{N}^*$, $E = \mathbb{C}^n$ que l'on identifie naturellement à \mathbb{R}^{2n} . Montrer que, pour tout hyperplan réel H de E il existe et de façon unique un hyperplan L de \mathbb{C}^n qui est inclus dans H.

7.4

Soient $n \in \mathbb{N}^*$, $E = \mathbb{C}^n$ que l'on identifie naturellement à \mathbb{R}^{2n} . Soit $u \in L(E)$, \mathbb{C} - linéaire. Comparer le déterminant de u pour les structures réelle et complexe de E.

8 Extensions de corps, éléments algébriques

8.1

Soient K un corps commutatif et A une K-algèbre associative et unitaire. Pour $a \in A$, on définit l'application (où $a^0 = 1_A$):

$$\Phi: \sum_{k=0}^{n} \lambda_k X^k \in \mathbf{K}[X] \longmapsto \sum_{k=0}^{n} \lambda_k a^k$$

Montrer:

- (i) Φ est un morphisme de K-algèbre. On note I_a son noyau, c'est un idéal de K[X]. $K[a] = Im\Phi$ est une (la plus petite contenant a) sous-algèbre de A.
- (ii) I_a est non nul \iff K[a] est de dimension finie. Dans cas, si μ_a est le générateur normalisé de I_a :

$$\dim \mathbf{K}[a] = \deg \mu_a$$

8.2

Soient $\mathcal A$ une K-algèbre intègre, unitaire, associative et $a\in \mathcal A$. Montrer l'équivalence :

$$I_a = \text{Ker}\Phi \neq \{0\} \iff \mu_a \text{ est irréductible et } K[a] \text{ est un corps.}$$

8,3

Montrer que $P = X^3 + X - 1$ est irréductible sur \mathbb{Q} , et qu'il possède une et une seule racine β réelle. Déterminer alors $\dim_{\mathbb{Q}} \mathbb{Q}[\beta]$.

8.4

Soit $\alpha \in \mathbf{C}$ algébrique sur \mathbf{Q} . Soit P son polynôme minimal. On note β une racine de P. Montrer que $\mathbf{Q}[\alpha]$ et $\mathbf{Q}[\beta]$ sont isomorphes.

8.5

Base télescopique Soient $K \subset L \subset M$ trois sous-corps de C. On suppose que L est un K-espace vectoriel de dimension finie n et M un L-espace vectoriel de dimension finie p. Montrer que L est un K-espace vectoriel de dimension finie np.

8.6

Soit \mathcal{A} une K-algèbre unitaire, associative, intègre, commutative. Pour $a \in \mathcal{A}$, si $I_a \neq \{0\}$, a est dit algébrique. Montrer que les éléments algébriques de \mathcal{A} constituent un sous-corps de \mathcal{A} .