

Delivering Data Science In Resources & Energy

Data Analysis I:
Data munging and
exploratory data analysis

DAY 4

15-Day Data Science Springboard

Dr Jeremy Mitchell & Dr Ying Yap, Data Mettle

Program Timeline

DAY 4, 5 & 6: Data Analysis

Q&A, Issues & Announcements

Before we Get Started

- Resources & Tasks in notebooks.
- Where practical we'll be working with your data.
- You'll be doing some guided exploration this is a good time to get in some practise & find some new features of pandas, matplotlib and seaborn.
- Make notes about any ideas, perspectives or issues you encounter throughout the day.
- If you have aspects you'd like to go over throughout the day, feel free to post them to the general channel and we'll try to address the straightforward ones as we break.
- We'll come together to discuss before we close out this afternoon.

Schedule

DAY 4

Aims & Learning Outcomes

CORE Skills

DAY 4

Aims

- Create and interpret statistics and visualisations after completing appropriate QA/QC.
- Implement exploratory data analysis and apply pattern recognition principles while avoiding pitfalls.

Learning Outcomes

- Understand the pitfalls of different data types.
- Appreciate the importance of choosing i.e. 'clean data' and be aware of some QA/QC approaches for enforcing this.
- Perform basic data visualisations given tabular data.
- Construct reasoning to explain links between data and statistical distributions including pattern recognition.
- Critique basic summary statistics after implementing exploratory data analysis.

Getting to Know the Tools

- Weeks to come will be about building models
- Today is about getting comfortable with the tools we'll continue to use
- The pace is still relatively slow today to get everyone on the same page
- If you finish exercises take the opportunity to dive into the docs and find something new

GitHub Content for Today

github.com / core-skills / 04-getting-to-know-the-tools

GitHub – Program Notes

github.com / core-skills / 04-getting-to-know-the-tools / program / 00_overview.md

∂ Overview

Overview | Munging | Grouping & Reshaping | Explaining Data | How Might We... | Closeout

Aim

- 1. Create and interpret statistics and visualisations after completing appropriate QA/QC.
- 2. Implement exploratory data analysis and apply pattern recognition principles while avoiding pitfalls.

Learning Outcomes

- 1. Understand the pitfalls of different data types.
- $2. \ Appreciate the importance of choosing i.e. \ 'clean \ data' \ and \ be \ aware \ of some \ QA/QC \ approaches for enforcing this.$
- 3. Perform basic data visualisations given tabular data.
- 4. Construct reasoning to explain links between data and statistical distributions including pattern recognition.
- 5. Critique basic summary statistics after implementing an EDA.

Schedule

AWST	AEST	Agenda
07:30 - 07:45	09:30 - 09:45	Q&A, Issues & Announcements
07:45 - 09:15	09:45 - 11:15	Munging Tabular Data

Environment

- Open an Anaconda Prompt
- Navigate to where you have the unzipped repository material

conda env create -f environment.yml

conda activate core04

python -m ipykernel install --user --name=core04

jupyter lab

Binder Backup

Scientific Python Ecosystem

Package	Description
numpy	Numeric Python. Working with numbers, lists of numbers, linear algebra & more.
matplotlib	"2D plotting library which produces publication quality figures in a variety of formats."
pandas	"A fast, powerful, flexible and easy to use (tabular) data analysis and manipulation tool"
<u>sklearn</u>	"Machine Learning in Python- Simple and effective tools for predictive data analysis"
scipy	Optimisation, interpolation, signal processing & stats.
statsmodels	"for the estimation of statistical models, statistical tests, statistical data exploration"
<u>seaborn</u>	"High-level interface for drawing attractive and informative statistical graphics."

Pair Programming

Suggestion for the Non-Virtual World, or 1-on-1 Video Collaborations:

- Two people work on one computer
- One person writing code, the other reviewing & making suggestions
- This shouldn't be a quiet exercise it's closer to 'coding out loud'
- A good way to share and consolidate knowledge
- In a development scenario it's ≈ 15% slower than two people coding, but you
 end up with significantly better results in terms of code quality

Exercise

First Exercise – Step 1: Reading Data

We'll run through most of this together.

notebooks/am1-munging-tabular-data.ipynb

Status

Checkpoint

Exercise

First Exercise – Step 2: What's in my Data?

notebooks/am1-munging-tabular-data.ipynb

Status

Checkpoint

Tidy Data

The Checklist:

- Each variable you measure should be in one column.
- Each different observation of that variable should be in a different row.
- There should be one table for each "kind" of variable.
- If you have multiple tables in a given dataset, they should include a column in the table that allows them to be linked

Exercise

First Exercise – Step 3

Use the Tidy Data Checklist to Check Your Own Data

notebooks/am1-munging-tabular-data.ipynb

Status

Checkpoint

What do you do with code & data when it's 'clean'?

Optional:Extract These Steps out to a Separate Function

Schedule

AWST	AEST	Agenda	Facilitator
07:30	09:30	Q&A, Issues & Announcements	
07:45	09:45	Munging Tabular Data	Jeremy
09:15	11:15	Morning Tea	
09:30	11:30	Grouping & Reshaping	Jeremy
11:00	13:00	Lunch	
11:45	13:45	Explaining Data	Jeremy
13:15	15:15	Afternoon Tea	
13:30	15:30	Practice Explaining Your Own Data	Jeremy
14:45	16:45	<u>Closeout</u> – Reflections, Takeaways & Project Update	Tamryn
14:55	16:55	<u>Menti</u>	Tamryn
17:00	17:00	Close	

df.groupby()

Group-by is one way of mapping through a for loop within a DataFrame.

- Split part of split-apply-combine
- Especially when you use the aggregation functions
- You can group by multiple columns, but it can get complicated quickly

df.pivot() /pd.pivot_table()

In some cases, pivots can provide similar functionality.

They're useful for **tidying tables** where variables are in rows, but we can also use **aggregation functions** here!

df

They can be a bit difficult t get your head around to start with.	0

	foo	bar	baz	Z00
0	one	А	1	Х
1	one	В	2	у
2	one	С	3	Z
3	two	Α	4	q
4	two	В	5	W
5	two	С	6	t

Pivot

bar	A	В	С
foo			
one	1	2	3
two	4	5	6

Diagram from Pandas docs.

df.pivot() /pd.pivot_table()

df.pivot() /pd.pivot_table()

When you're using aggregation functions, group-by and pivot can both facilitate the split-apply-combine approach.

Diagram by Jake VanderPlas.

Exercise

Second Exercise – Step 1: Grouping, Pivoting, Resampling and Aggregating

notebooks/am2-data-qaqc.ipynb

Status

Checkpoint

Exercise

Second Exercise – Step 2: Statistical Distributions from Regrouped Data

notebooks/am2-data-qaqc.ipynb

Status

Checkpoint

Exercise

Optional: Extract These Steps out to a Separate Function

Schedule

AWST	AEST	Agenda	Facilitator
07:30	09:30	Q&A, Issues & Announcements	
07:45	09:45	Munging Tabular Data	Jeremy
09:15	11:15	Morning Tea	
09:30	11:30	Grouping & Reshaping	Jeremy
11:00	13:00	Lunch	
11:45	13:45	Explaining Data	Jeremy
13:15	15:15	Afternoon Tea	
13:30	15:30	Practice Explaining Your Own Data	Jeremy
14:45	16:45	<u>Closeout</u> – Reflections, Takeaways & Project Update	Tamryn
14:55	16:55	<u>Menti</u>	Tamryn
17:00	17:00	Close	

Exploring and Explaining Datasets

Develop an Overview of Your Datasets and Explain Some of the Concepts

- The next exercise is about documenting and communicating the features of your dataset in a slightly more structured way
- We'll load in some of your data, complete some basic munging, put together a basic graphical overview of your dataset, and add some data documentation
- We'll take the opportunity to run through each person's notebook
- Read the docs if you get stuck or want to find something new!

Exercise

Data Reporting Example (~20mins run-through)

pm2_1-datareport-lithogeochemistry.ipynb

Status

Checkpoint

Template for your Reporting (until break): pm1-datareport-template.ipynb

Fill in what's relevant and do some exploration of your own. Feel free to edit, add and remove sections as suits!

Status

Checkpoint

Schedule

AWST	AEST	Agenda	Facilitator
07:30	09:30	Q&A, Issues & Announcements	
07:45	09:45	Munging Tabular Data	Jeremy
09:15	11:15	Morning Tea	
09:30	11:30	Grouping & Reshaping	Jeremy
11:00	13:00	Lunch	
11:45	13:45	Explaining Data	Jeremy
13:15	15:15	Afternoon Tea	
13:30	15:30	Practice Explaining Your Own Data	Jeremy
14:45	16:45	<u>Closeout</u> – Reflections, Takeaways & Project Update	Tamryn
14:55	16:55	<u>Menti</u>	Tamryn
17:00	17:00	Close	

Share

 Run through the key aspects of your data report with the group (5 mins).

 Make notes on dataset features, data issues and snippets of code which could be relevant or useful for you.

Discussion

Did you come up with any interesting ideas, questions, issues and any cool features you've found in the docs?

- Is documenting this process a useful exercise?
- Would your documentation be sufficient to restart after a break?
 Or for someone else to pick up where you left off?

Schedule

AWST	AEST	Agenda	Facilitator
07:30	09:30	Q&A, Issues & Announcements	
07:45	09:45	Munging Tabular Data	Jeremy
09:15	11:15	Morning Tea	
09:30	11:30	Grouping & Reshaping	Jeremy
11:00	13:00	Lunch	
11:45	13:45	Explaining Data	Jeremy
13:15	15:15	Afternoon Tea	
13:30	15:30	Practice Explaining Your Own Data	Jeremy
14:45	16:45	<u>Closeout</u> – Reflections, Takeaways & Project Update	Tamryn
14:55	16:55	<u>Menti</u>	Tamryn
17:00	17:00	Close	

Takeaways From Today

- Covered reading data and exploring its properties in pandas
- Covered data types and plotting to visualize relationships
- Reshaping data into new shapes to show other relationships
- Discussed managing data and code once we've done the cleaning process
- Practised telling others about what we've learnt

Next week: Simple Predictions

- Getting into making some models
- Ins and outs of regression
- Choosing between different models
- Dealing with missing data

Capstone Projects

Update

Your first Project Update (have a go!), how are you scoping your project?

Action

- Milestone #1 → L0 in Momentum
- Update your Working Project Title & Short Project Statement (Problem/Solution/Plan) <u>here</u>.
- Update your Leader

Menti

COREHUB.COM.AU/**SKILLS**

