Binomial simulation

Binomial simulation

Number of successes

Number of successes

Binomial simulation

Histogram of Bootstrap sample statistics alpha=0.05 iter=1000

Histogram of sample mean sample size= 5 iter=1000 lambda=10

Histogram of sample mean sample size= 10 iter=5000 lambda=20

Histogram of sample mean sample size= 5 iter=100 lambda=5

Objective Vs. n to find optimal tickets sold (205) gamma = 0.02 N = 200 (Discrete)

n

Objective Vs. n to find optimal tickets sold (204.31783912743) gamma = 0.02 N = 200 (Continuous)

Objective Vs. n to find optimal tickets sold (205) gamma = 0.02 N = 200 (Discrete)

n

Objective Vs. n to find optimal tickets sold (204.31783912743) gamma = 0.02 N = 200 (Continuous)

