Podstawy kryptografii

Andrzej M. Borzyszkowski

Instytut Informatyki Uniwersytet Gdański

sem. letni 2023/2024

inf.ug.edu.pl/~amb/

Organizacja

- literatura:
 - D. Stinson, M. Paterson, Kryptografia w teorii i w praktyce, PWN, 2021
 - J-P. Aumasson, Nowoczesna kryptografia, PWN, 2018
 - B. Schneier, Kryptografia dla praktyków, WNT, 2002
 - M. Kutyłowski, W-B. Strohmann, Kryptografia, Readme, 1999
- materialy sa/beda dostepne inf.ug.edu.pl/~amb
- obecność na wykładzie (oczywiście) nieobowiązkowa
- znajomość wykładu (oczywiście) obowiązkowa
- już na ćwiczeniach
- plus podstawowa umiejętność programowania
- program nie przewiduje egzaminu końcowego, wykład zakończy się testem zaliczeniowym

Andrzej Borzyszkowski (Instytut Informatyki I

Podstawy kryptografii

sem. letni 2023/2024

Działy

- kryptografia: nauka/sztuka szyfrowania (i odszyfrowywania)
- kryptoanaliza: nauka/sztuka łamania szyfrów
- kryptologia: suma powyższych plus całościowe spojrzenie (właściwa nazwa przedmiotu) jednak powszechne użycie: kryptografia

kodowanie też ma znaczenie

np. kody poprawiające błędy (error correction codes)

w dobrym szyfrze zmiana jednego bitu zaszyfrowanej wiadomości może uniemożliwić odszyfrowanie

kod też może być szyfrem jeśli zamiana alfabetów jest tajna

Cztery główne pojęcia

- informacja dane, możliwość kopiowania, kradzież?? tekst jawny – wiadomość tekst zaszyfrowany – kryptogram/szyfrogram
- uczestnik (entity)
 człowiek, komputer, urządzenie,...
 Alicja, Bolek, Celina, Tadeusz, Pelagia, Wiktor,...
 (Alice, Bob, Cindy, Trent, Peggy, Victor)
- przeciwnik, Ewa, Mariola,...(Eve, Mallory)
- klucz znany nie wszystkim, łatwo zaszyfrować/odszyfrować z kluczem, trudno bez klucza uwaga: inne znaczenie niż np. w teorii baz danych

Andrzej Borzyszkowski (Instytut Informatyki	Podstawy kryptografii	sem. letni 2023/2024	5 / 27

np. n^3 vs. $e^{2\cdot\sqrt{n}}$

n	n**3	2*sqrt(n)	exp(2*sqrt(n))
2	8	3	17
4	64	4	55
8	512	6	286
16	4096	8	2981
32	32768	11	81937
64	262144	16	8886111
128	2097152	23	6713706353
256	16777216	32	78962960182681
512	134217728	45	4.507385299E+0019
1024	1073741824	64	6.235149081E+0027
2048	8589934592	91	2.031652223E+0039
4096	68719476736	128	3.887708406E+0055
8192	549755813888	181	4.127610756E+0078
16384	4398046511104	256	1.511427665E+0111

Złożoność

- MMMCDLXXVII * MDCCCXLIV
 było trudne dla Rzymian
 ale nie dziś: 3477 * 1844 = 6411588
- złożoność asymptotyczna, zależy od wielkości zadania, parametr $n \to \infty$
 - liniowa: n, żadna złożoność
 - wielomianowa, np.: n^2 , n^3 , n^{100}
 - wykładnicza, np.: 2^n , n!, n^n
 - podwykładnicza, np.: $e^{\sqrt{n}}$, $e^{C \cdot \sqrt[3]{n \cdot \ln 2 \cdot \ln(n \cdot \ln 2)}}$
- stała też się liczy, np. n = 1024 bity i tylko ta wielkość nas interesuje

Andrzej Borzyszkowski (Instytut Informatyki I

Podstawy kryptografii

sem. letni 2023/2024

6 / 27

Założenia kryptografii

- przestrzeń tekstów jawnych M, kluczy K, kryptogramów C
 - algorytm generowania klucza $G: \to K$
 - algorytm szyfrowania $E: K \times M \rightarrow C$ (czy deterministyczny?)
 - algorytm odszyfrowywania $D: K \times C \rightarrow M$
- zasada Kerckhoffsa (1883): przeciwnik zna szyfr (tzn. protokół/algorytmy) przeciwnik ma duże zasoby obliczeniowe i duże umiejętności przeciwnik NIE ZNA klucza
- dlaczego?
 łatwiej utrzymać w tajemnicy klucz niż algorytm nie da się opracować wielu (tajnych) algorytmów
- JEDYNY BEZPIECZNY szyfr: jednorazowy w zasadzie nie ma dowodów, że inne szyfry są bezpieczne

Scenariusze ataków

- przeciwnik ma tylko tekst zaszyfrowany
- przeciwnik ma przykłady tekstów jawnych plus ich zaszyfrowane wersje
- przeciwnik może żądać zaszyfrowania wiadomości lub odszyfrowania (testowego) kryptogramu
- ataki pasywne vs. aktywne
- ilość: duża liczba tekstów lub par tekstów vs. pojedynczy tekst zaszyfrowany
- atak brutalny: przeszukiwanie całej przestrzeni kluczy K
 - aby zadziałał musi być metoda rozpoznania znalezienia klucza
 - dla obrony przestrzeń kluczy musi być duża, np. $> 2^{80}$ elementów

ndrzej Borzyszkowski (Instytut Informatyki I

Podstawy kryptografii

sem. letni 2023/2024

9 / 27

sem. letni 2023/2024

Kryptografia klasyczna vs. współczesna

- tekst jawny → tekst zaszyfrowany → tekst jawny $M \to E_K M \to D_K E_K M$ (zawsze przekształcenie z kluczem)
- klasyczna kryptografia (do lat '70): ten sam klucz
 - obie strony muszą wymienić klucz wspólny klucz
 - jak to zrobić?
- współczesna kryptografia: para kluczy (kryptografia asymetryczna, PKC),
 - idea: Diffie, Hellman (1976)
 - implementacja: RSA (Rivest, Shamir, Adleman) (1977)
 - wada: słaba wydajność
 - zaleta: nie trzeba przedtem przekazywać klucza

Cele kryptografii

11 / 27

sem. letni 2023/2024

poufność (tajność)

- tylko uprawnieni uczestnicy mają dostęp do informacji, szyfrowanie

- integralność danych
 - dane są niezmienione (wykrycie zmiany, również/głównie celowej)
- uwierzytelnianie
 - w czasie rzeczywistym: identyfikacja uczestnika
 - odłożone w czasie: identyfikacja źródła dokumentu
- niezaprzeczalność
 - podpis: nie można się wyprzeć
 - niemożliwa w kryptografii klucza symetrycznego

Andrzej Borzyszkowski (Instytut Informatyki I

Podstawy kryptografii

Kryptografia klucza asymetrycznego

przykład zastosowania

Andrzej Borzyszkowski (Instytut Informatyki l

- 4 Alicja prosi Bolka o przekazanie klucza publicznego, albo odczytuje z ogłoszenia, albo otrzymuje od wspólnego znajomego
- 2 szyfruje wiadomość kluczem publicznym Bolka
- \odot przekazuje wiadomość E_BM
- Bolek odszyfrowuje wiadomość swoim kluczem prywatnym $D_R E_R M = M$
- NIKT nie przesyła tajnego klucza
- problem: czy to naprawdę Bolek przekazał klucz publiczny?!

Kryptografia klasyczna

Andrzej Borzyszkowski (Instytut Informatyki I

Podstawy kryptografii

sem. letni 2023/2024

13 / 27

Szyfr podstawieniowy, książka kodowa

dwie książki z parami tekst jawny – tekst zaszyfrowany

Februar 13605 13722 fest finanzielle 13850 folgender 13918 Frieden 17142

- w jednej kolejność tekstu jawnego, w drugiej zaszyfrowanego
- kluczem jest para książek! niesłychanie trudno o wymianę
- wersja: dodatkowym kluczem jest przesunięcie
 - -E(M) = Książka(M) + przesunięcie mod 100.000
 - $-C(C) = \text{Ksiażka}^{-1}(M \text{przesuniecie} \mod 100.000)$

Kryptografia klasyczna

szyfr Cezara

Podstawy kryptografii

Andrzej Borzyszkowski (Instytut Informatyki l

- przesuniecie liter np. o 3 t.j. $y = x + 3 \mod 26$, $x = 0, 1, \dots, 25$ - kryptoanaliza: wypróbowanie 25 przesunięć

 jedna litera pary tekst jawny+zaszyfrowany wystarczy! $k = y - x \mod 26$

• szyfr afiniczny: $y = a \cdot x + b \mod 26$

- odszyfrowywanie: $x = (y - b)/a \mod 26$

– musi być określone dzielenie 1/a = a' t.ż. $a \cdot a' = 1 \mod 26$ istnieje w.t.w. gdy NWD(a, 26) = 1

– dla klucza (13,4) "input" i "alter" szyfrują się do "ERRER"

kryptoanaliza: przestrzeń kluczy ma 312 elementów

- dwie litery tekstu jawnego+zaszyfrowanego często wystarczą, kilka par prawie na pewno

Andrzej Borzyszkowski (Instytut Informatyki I

Andrzej Borzyszkowski (Instytut Informatyki l

Podstawy kryptografii

sem. letni 2023/2024

Szyfr monoalfabetyczny

szyfr monoalfabetyczny (kod), np.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z qwertyuiopasdfghjklzxcvbnm

- kryptoanaliza: analiza częstotliwości wystąpień liter
- ale można mieć kilka odpowiedników dla każdej litery (homofonia)
- np. E : {A..Z} → {00..99}, |E(e)| = 12, |E(z)| = 1
- można/trzeba też rozważać częstotliwości par liter, niektóre nie występują praktycznie wcale, inne b. często

Szyfr podstawieniowy, książka kodowa

• dwie książki z parami tekst jawny – tekst zaszyfrowany

Februar 13605 13722 fest finanzielle 13850 folgender 13918 Frieden 17142

- w jednej kolejność tekstu jawnego, w drugiej zaszyfrowanego
- kluczem jest para książek! niesłychanie trudno o wymianę
- wersja: dodatkowym kluczem jest przesunięcie
 - -E(M) = Książka(M) + przesunięcie mod 100.000
 - $-C(C) = \text{Ksiażka}^{-1}(M \text{przesuniecie} \mod 100.000)$

Andrzej Borzyszkowski (Instytut Informatyki I

Podstawy kryptografii

sem. letni 2023/2024

18 / 27

Szyfr Vigenere'a, c.d.

znalezienie długości klucza:

- niech $A_0 = (p_0, p_1, p_2, \dots, p_{25})$ oznacza prawdopodobieństwa występowania liter w tekście
- niech $A_i = (p_i, p_{i+1}, \dots, p_{25}, p_0, \dots, p_{i-1})$ oznacza ten sam wektor z przesuniętymi wielkościami
- testujemy prawdopodobieństwo powtórzenie się litery w szyfrogramie oraz szyfrogramie przesuniętym o n miejsc
- jeśli n = długość klucza, to litery były szyfrowane tym samym przesunięciem, prawd = $p_0 \cdot p_0 + p_1 \cdot p_1 + ... + p_{25} \cdot p_{25} = A_0 * A_0$
- jeśli $n \ll$ długość klucza, to koincydencje przypadają na różne przesunięcia, prawdopodobieństwo koincydencji jest uśrednione po różnych iloczynach $A_0 * A_1$, $A_0 * A_2$, itd
- iloczyn $A_0 * A_0$ jest znacząco większy od innych (w jęz. ang. $A_0*A_0\approx 0.066$, inne iloczyny są w granicach 0.032 do 0.045

Szyfr Vigenere'a

klucz: wektor liczb np. (k_1, k_2, \ldots, k_9)

- szyfrowanie: seria szyfrów Cezara: $y_1 = x_1 + k_1$, $y_2 = x_2 + k_2$, ... $y_9 = x_9 + k_9$, odszyfrowywanie analogicznie
- kryptoanaliza: przeszukiwanie wyczerpujące jest nierealne, liczba kluczy równa 26ⁿ, np. dla n = 9 jest ich $5 \cdot 10^{12}$
- para tekst jawny+zaszyfrowany długości klucza definiuje klucz
- gdy znany jest tylko szyfrogram oraz długość klucza, to można/należy przeprowadzić analizę częstotliwości dla fragmentów szyfrogramu, dla zestawów $\{y_1, y_{10}, y_{19}, ...\}$ itd.
- analiza częstotliwości oznacza przybliżenie wektora częstotliwości wystąpień liter w szyfrogramie z częstotliwościami języka naturalnego

C D E F G H I J K L M N O P Q R S T U V W X Y Z 82 15 28 43 127 22 20 61 70 2 8 40 24 67 75 19 1 60 63 91 28 1 24 2 20 1

w oparciu o: https://en.wikipedia.org/wiki/Letter_frequency

Andrzej Borzyszkowski (Instytut Informatyki l

Podstawy kryptografii

sem. letni 2023/2024

Enigma

szyfr polialfabetyczny:

- zmiana kodu na bieżąco
- Enigma rotory obracające się w miarę pisania (17576 kolejnych kodów)
- wielu wynalazców (Scherbius, Hebern, Koch)
- kryptoanaliza: M. Rejewski, Różycki, Zygalski, A. Turing

grafika: http://www.otr.com/ciphers.shtml http://home.ecn.ab.ca/~jsavard/crypto/intro.htm

http://encyclopedia.thefreedictionary.com

Andrzej Borzyszkowski (Instytut Informatyki I

Enigma, kryptoanaliza

- Protokół: wybrać klucz sesyjny (3 litery), powtórzyć go dwukrotnie i zaszyfrować kluczem dziennym
 - dane: setki szyfrogramów o powyższym początku
 - klucz dzienny wyznacza permutacje P_1,P_2,\ldots,P_6 (i pozostałych 17570), złożenia $P_4\circ P_1^{-1}$ i pozostałe dwa są podane implicite w danych
 - np. $ABCABC \rightarrow ENIGMA$, wiec $P_4 \circ P_1^{-1}(E) = G$ itd.
 - dodatkowe podstawienie λ unieważnia dokładną znajomość permutacji $\lambda\circ P_4\circ P_1^{-1}\circ \lambda^{-1}$
 - ale "kształt" (rozkład na cykle) permutacji jest ustalony
 - opracowano enumeratywną listę rozkładów dla 100.000 kluczy

Andrzej Borzyszkowski (Instytut Informatyki l

Podstawy kryptografii

sem. letni 2023/2024

21 / 27

Andrzej Borzyszkowski (Instytut Informatyki I

Podstawy kryptografii

sem. letni 2023/2024

22 / 27

Zasady nowoczesnej kryptografii

- Precyzyjne definicje
- Jawne założenia systemu
- Dowody poprawności
- (Kontr)przykład: definicja wymagań dla bezpiecznego systemu kryptograficznego
 - nie da się odtworzyć klucza kryptograficznego
 - nie da się odtworzyć tekstu jawnego
 - nie da się odtworzyć żadnego fragmentu tekstu jawnego
 - nie da się uzyskać żadnej sensownej informacji
 - nie da się obliczyć żadnej funkcji zależącej od tekstu jawnego
- dopiero ostatnia definicja w miarę precyzyjnie opisuje wymogi dla systemu kryptograficznego

Kryptografia nowoczesna

Założenia/dowody?

- Model matematyczny a świat fizyczny
 - przykład: złamanie szyfru implementowanego na karcie kryptograficznej w oparciu o analizę zużycia energii
- Jawne założenia + analiza spełnienia założeń
- Różnica pomiędzy oprogramowaniem ogólnego użytku a kryptografią
 - kto zauważa błędy systemu/implementacji?
 - kto celowo szuka błędów w systemie/implementacji?

Atak z wybranym tekstem jawnym

- Bezpieczeństwo przeciwko atakowi z kryptogramem
 - Ewa nie jest w stanie zgadnąć, która wiadomość jest zaszyfrowana na podstawie znajomości kryptogramu
- Bezpieczeństwo szyfrowania wielokrotnego
 - Ewa nie potrafi odgadnąć, który zestaw wiadomości jest szyfrowany
 - tw.: szyfrowanie musi być niedeterministyczne
- Bezpieczeństwo przeciwko atakowi z wybranym tekstem jawnym CPA
 - założenie: Ewa ma dostęp do maszyny szyfrującej (wyrocznia daje kryptogram dowolnej wiadomości)
 - Ewa nie potrafi odgadnąć, która wiadomość jest zaszyfrowana

Andrzej Borzyszkowski (Instytut Informatyki I

Podstawy kryptografii

sem. letni 2023/2024

25 / 27

Podstawy kryptografii

sem. letni 2023/2024

Własności ataku z wybranym tekstem jawnym c.d.

- Klasyczne szyfry są prawie zawsze nieodporne na atak z tekstem jawnym
 - szyfr Cezara, Vigenere'a, Hilla
 - wielokrotne przykłady łamania szyfrów w praktyce (atak na Midway, "żądanie" zaszyfrowania słowa 'Midway')
- Odporność na atak z wybranym tekstem jawnym jest ważna
 - serwery odpowiadają na żądania użytkowników
 - być może są to ataki
- Tw.: odporność na atak z wybranym tekstem jawnym = odporność CPA przy wielokrotnym szyfrowaniu

Własności ataku z wybranym testem jawnym

- Twierdzenie: szyfr bezpieczny przeciwko atakowi z wybranym tekstem jawnym musi być niedeterministyczny
 - dw.: Ewa żąda od wyroczni zaszyfrowania obu wiadomości i sprawdza, która została podana jej jako wyzwanie
- Twierdzenie: atak z wybranym tekstem jawnym jest łatwiejszy niż z zestawem tekstów jawnych wybranych z góry
- Tryb asynchroniczny vs. synchronizacja
 - szyfr może odwoływać się do stanu
 - zależność od stanu może zastąpić niedeterminizm, każde szyfrowanie tej samej wiadomości da inny wynik, bo jest inny stan
 - w zasadzie rozpatrujemy szyfry nie odwołujące się do pojęcia stanu

Andrzej Borzyszkowski (Instytut Informatyki l