Introducing a New Group of Optimal Entanglement Witnesses

Arianna Meinking, Oscar Scholin, Eritas Yang, Becca Verghese, Ben Hartley, Laney Goldman, Paco Navarro, Theresa W. Lynn

Department of Physics

Acknowledgements

Ben Hartley W Characterization, W' Proposal

Oscar Scholin W' Choice Optimization

Paco Navarro Current lab

Eritas Yang W Characterization, W' Proposal

Becca Verghese W Characterization, W' Proposal

Theresa W. Lynn Advisor

Funding Sources: HMC Physics Summer Research Fund Donnelly Experimental Learning Fund Vandiver Summer Research Fund Work accompanied by experimental tests by:
Alec Roberson
Richard Cheng
Lev Gruber

Goal: high chance of witnessing two-qubit entanglement if present from a small fraction of measurements required for full state tomography

Quantum Communication via ... Entanglement!

Quantum Communication via ... Entanglement!

Quantum Communication via ... Entanglement!

Liu, X., Hu, J., Li, ZF, et al. *Nature* 10.1038 (2021)

A Solution: Entanglement Witnessing

Quantum Tomography

A Solution: Entanglement Witnessing

Entanglement Witnesses

A Solution: Entanglement Witnessing

Entanglement Witnesses
$$W = |\varphi_k\rangle\langle\varphi_k|^\Gamma$$
 How about...
$$|\varphi_k\rangle = \frac{|\phi_k\rangle\langle\varphi_k|^\Gamma}{\sqrt{2}}$$
 Then
$$|\varphi_k\rangle\langle\varphi_k| = \frac{1}{2}\begin{bmatrix} 0 & 0 & 0 & 0\\ 0 & 1 & -1 & 0\\ 0 & -1 & 1 & 0\\ 0 & 0 & 0 & -1\\ 0 & 0 & 1 & 0\\ 0 & 0 & 1 & 0\\ -1 & 0 & 0 & 0 \end{bmatrix}$$
 Eardi et al., PRA 101, 062319 (2020)

$$W = |\varphi_k\rangle\langle\varphi_k|^{\Gamma}$$

$$|\varphi_k\rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}}$$

$$|\varphi_k\rangle\langle\varphi_k| = \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 & 0\\ 0 & 1 & -1 & 0\\ 0 & -1 & 1 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\varphi_k\rangle\langle\varphi_k|^{\Gamma} = \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 & -1\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Riccardi et al., PRA 101, 062319 (2020)

The Ws

Measurements

$$W_1 = \frac{1}{4} \left[\mathbb{I} \otimes \mathbb{I} + \sigma_z \otimes \sigma_z + (a^2 - b^2) \sigma_x \otimes \sigma_x + (a^2 - b^2) \sigma_y \otimes \sigma_y + 2ab(\mathbb{I} \otimes \sigma_z + \sigma_z \otimes \mathbb{I}) \right]$$

- Minimize a and $b \rightarrow$ going from a family to just one W
- Riccardi et al. proposed 6 Ws
- Computationally generate random entangled mixed states*
- W_{1-6} detect 33% miss 67% of those states

Riccardi et al., PRAppl. 101, 062319 (2020)

^{*}Random state generation following method used in Roik et al., PRAppl. 15.054006(2021)

The W's

Measurements

$\sigma_x \otimes \sigma_x$	$\sigma_x \otimes \sigma_y$	$\sigma_x \otimes \sigma_z$
$\sigma_y \otimes \sigma_x$	$\sigma_y \otimes \sigma_y$	$\sigma_y \otimes \sigma_z$
$\sigma_z \otimes \sigma_x$	$\sigma_z \otimes \sigma_y$	$\sigma_z \otimes \sigma_z$

$$W'_{1} = \frac{1}{4} \Big[\mathbb{I} \otimes \mathbb{I} + \sigma_{z} \otimes \sigma_{z} + 2 \cos 2\theta \left(\sigma_{x} \otimes \sigma_{x} + \sigma_{y} \otimes \sigma_{y} \right) \\ + 2 \sin 2\theta \cos \alpha \left(\mathbb{I} \otimes \sigma_{z} + \sigma_{z} \otimes \mathbb{I} \right) \\ + 2 \sin 2\theta \sin \alpha \left(\sigma_{x} \otimes \sigma_{y} + \sigma_{y} \otimes \sigma_{x} \right) \Big]$$

- Now, minimize θ and α
- Mixed Pauli pairs!
- Subgroups

 - W'₁₋₃
 W'₄₋₆
 W'₇₋₉

Yang, Verghese, Hartley. HMC Quantum Optics unpublished, https://github.com/Lynn-Quantum-Optics/Summer-Spring-2022-3/blob/main/Summer2022/ summer-2022- QO write up.pdf

5/9 of the measurements witness 2/3 of the states!

5/9 of the measurements witness 2/3 of the states!

More work to be done...

Solving the Problem: Expand the W' Options? (In Progress)

- Another subgroup
 - W'_{1-3}
 - W'₄₋₆
 - W'₇₋₀
 - W'_{10-12}

Expanding the W' Options... Impossible!

- Another subgroup
 - W'_{1-3}
 - W'₄₋₆
 - W'₇₋₉
 - W'_{10-12} ?
- The $\sigma_i \otimes \sigma_j$ groups must come with a paired $\sigma_j \otimes \sigma_i$
- $W = |\varphi_k\rangle\langle\varphi_k|^{\Gamma}$

The Three-Step Process

- One subgroup
 - W'_{1-3}
 - W'_{4-6}
 - W'_{7-9}
- Now *W*", just one additional measurement!
 - $W'_{4-6} + W''_{10-12}$
 - One extra measurement, or 3 measurements together, may be useful

The Three-Step Process

Key Takeaways

Remember...

Our work!

Goal: high chance of witnessing two-qubit entanglement if present from a small fraction of measurements required for full state tomography

- W' witness 2/3 states with 5/9 measurements
- W' extension might improve this ratio

W" impossible (backup)

Experimental Apparatus (backup)

References

Alberto Riccardi, Dariusz Chruściński, and Chiara Macchiavello. "Optimal entanglement wit- nesses from limited local measurements". en. In: Physical Review A 101.6 (June 2020), p. 062319. ISSN: 2469-9926, 2469-9934. DOI: 10.1103/PhysRevA.101.062319. URL: https://link.aps.org/doi/10.1103/PhysRevA.101.062319 (visited on 05/24/2023).

Eritas Yang, Becca Verghese, and Ben Hartley. "Entanglement Witness Writeup". In: Unpublished (July 2022). URL: https://github.com/Lynn-Quantum-Optics/Summer-Spring-2022-3/blob/main/Summer2022/summer-2022-QO_write_up.pdf.

Jan Roik et al. "Accuracy of Entanglement Detection via Artificial Neural Networks and Human- Designed Entanglement Witnesses". In: Physical Review Applied 15 (May 2021). Publisher: American Physical Society, p. 054006. DOI: 10.1103/PhysRevApplied.15.054006. URL: https://link.aps. org/doi/10.1103/PhysRevApplied.15.054006 (visited on 05/30/2023).

Oscar Scholin, Richard Zheng, Alec Roberson, Theresa W. Lynn, "Entanglement Witnessing: Neural Network Optimization and Experimental Realization". Presented at SQUINT 2023.