Modal Logic Solutions to Exercise Set 04

- 1. Use the tableau proof system for ${\bf K}$ to prove the following.
 - (a) $(\Box P \land \Diamond Q) \rightarrow \Diamond (P \land Q)$

Solution:

$$\begin{array}{c|c} 1 \neg ((\Box P \land \Diamond Q) \rightarrow \Diamond (P \land Q)) \\ & | \\ 1 (\Box P \land \Diamond Q) \\ 1 \neg \Diamond (P \land Q) \\ & | \\ 1 \Box P \\ 1 \Diamond Q \\ & | \\ 1.1 Q \text{ [Poss.]} \\ & | \\ 1.1 \neg (Q \land P) \text{ [Nec.]} \\ & \\ & \times & | \\ 1.1 P \text{ [Nec.]} \\ & \times \\ \end{array}$$

(b)
$$(\Box \Diamond P \wedge \Box \Box Q) \rightarrow \Box \Diamond (P \wedge Q)$$

Solution:

$$\begin{array}{c|c} 1 \neg ((\Box \Diamond P \wedge \Box \Box Q) \rightarrow \Box \Diamond (P \wedge Q)) \\ & | \\ 1 (\Box \Diamond P \wedge \Box \Box Q) \\ 1 \neg \Box \Diamond (P \wedge Q) \\ & | \\ 1 \Box \Diamond P \\ 1 \Box \Box Q \\ & | \\ 1.1 \neg \Diamond (P \wedge Q) \text{ [Poss.]} \\ & | \\ 1.1 \Box Q \text{ [Nec.]} \\ & | \\ 1.1 D P \text{ [Nec.]} \\ & | \\ 1.1.1 P \text{ [Poss.]} \\ & | \\ 1.1.1 \neg (P \wedge Q) \text{ [Nec.]} \\ & \times \\ & | \\ 1.1.1 Q \text{ [Nec.]} \\ & \times \\ \end{array}$$

(c)
$$(\Box P \vee \Box Q) \rightarrow \Box (P \vee Q)$$

Solution:

$$\begin{array}{c|c} 1 \neg ((\Box P \lor \Box Q) \to \Box (P \lor Q)) \\ & | \\ 1 \ (\Box P \lor \Box Q) \\ 1 \neg \Box (P \lor Q)) \\ \hline \\ 1 \ \Box P & 1 \ \Box Q \\ & | \\ 1.1 \ \neg (P \lor Q) \ [\text{Poss.}] & 1.2 \ \neg (P \lor Q)) \ [\text{Poss.}] \\ & | \\ 1.1 \ \neg P & 1.2 \ \neg P \\ 1.1 \ \neg Q & 1.2 \ \neg Q \\ & | \\ 1.1 \ P \ [\text{Nec.}] & 1.2 \ Q \ [\text{Nec.}] \\ \times & \times \end{array}$$

2. (\triangle) Show that for any formula A, there is a tableau proof of $\square A$ if and only if there is a tableau proof of A.

Solution: Any tableau proof of $\Box A$ can be transformed into one of A simply by removing the root node. Conversely, any tableau proof of A can be transformed into one of $\Box A$ by adding a new root above the existing root node, with $1 \neg \Box A$ at it, and replacing every existing prefix σ with $1.\sigma$.

3. Use the tableau proof system for **T** to prove $\Diamond(P \to \Box P)$.

Solution:

$$\begin{array}{c|c} 1 \ \neg \Diamond (P \to \Box P) \\ & | \\ 1 \ \neg (P \to \Box P) \ \ [T] \\ & | \\ 1 \ P \\ 1 \ \neg \Box P \\ & | \\ 1.1 \ \neg P \ \ [Poss.] \\ & | \\ 1.1 \ \neg (P \to \Box P) \ \ [Nec.] \\ & | \\ 1.1 \ \neg \Box P \\ & \times \end{array}$$

4. Use the tableau proof system for **K4** to prove $(\Box P \wedge \Box Q) \rightarrow \Box (\Box P \wedge \Box Q)$. Solution:

$$1 \neg ((\Box P \land \Box Q) \rightarrow \Box (\Box P \land \Box Q))$$

$$| \\ 1 (\Box P \land \Box Q) \\ 1 \neg \Box (\Box P \land \Box Q)$$

$$| \\ 1 \Box P \\ 1 \Box Q \\ | \\ 1.1 \neg (\Box P \land \Box Q) \text{ [Poss.]}$$

$$| \\ 1.1 \neg \Box P \quad 1.1 \neg \Box Q \\ | \\ 1.1 \Box P \text{ [4]} \quad 1.1 \Box Q \text{ [4]}$$

5. Use the tableau proof system for **S4** to prove $(\Box \Diamond P \wedge \Box \Diamond Q) \rightarrow \Box \Diamond (\Box \Diamond P \wedge \Box \Diamond Q)$. **Solution:**

$$\begin{array}{c|c} 1 \neg ((\Box \Diamond P \wedge \Box \Diamond Q) \rightarrow \Box \Diamond (\Box \Diamond P \wedge \Box \Diamond Q)) \\ & | \\ 1 (\Box \Diamond P \wedge \Box \Diamond Q) \\ 1 \neg \Box \Diamond (\Box \Diamond P \wedge \Box \Diamond Q) \\ & | \\ 1 \Box \Diamond P \\ 1 \Box \Diamond Q \\ & | \\ 1.1 \neg \Diamond (\Box \Diamond P \wedge \Box \Diamond Q) \text{ [Poss.]} \\ & | \\ 1.1 \neg \Box \Diamond P & 1.1 \neg \Box \Diamond Q \\ & | \\ 1.1 \Box \Diamond P & [4] & 1.1 \Box \Diamond Q & [4] \\ \times & \times \end{array}$$

6. Use the tableau proof system for **S5** to prove $\Box P \lor \Box (\Box P \to Q)$.

Solution:

$$\begin{array}{c|c} 1 \neg (\Box P \lor \Box (\Box P \to Q)) \\ & | \\ 1 \neg \Box P \\ 1 \neg \Box (\Box P \to Q) \\ & | \\ 1.1 \neg (\Box P \to Q) \text{ [Poss.]} \\ & | \\ 1.1 \Box P \\ 1.1 \neg Q \\ & | \\ 1 \Box P \text{ [4r]} \\ & \times \end{array}$$

7. Use the tableau proof system for **S5** to prove $\Diamond(P \wedge \Box Q) \leftrightarrow (\Diamond P \wedge \Box Q)$. Solution:

$$1 \neg (\Diamond (P \land \Box Q) \leftrightarrow (\Diamond P \land \Box Q))$$

$$1 \neg (\Diamond (P \land \Box Q) \rightarrow (\Diamond P \land \Box Q)) \qquad 1 \neg ((\Diamond P \land \Box Q) \rightarrow \Diamond (P \land \Box Q))$$

$$1 \neg (\Diamond P \land \Box Q) \qquad 1 (\Diamond P \land \Box Q) \qquad 1 \neg \Diamond (P \land \Box Q)$$

$$1 \neg (\Diamond P \land \Box Q) \qquad 1 \neg \Diamond (P \land \Box Q) \qquad |$$

$$1 \neg \Diamond P \qquad 1 \neg \Box Q \qquad 1 \Diamond P \qquad 1 \Box Q$$

$$1.1 (P \land \Box Q) \text{ [Poss.]} \qquad 1.2 (P \land \Box Q) \text{ [Poss.]} \qquad |$$

$$1.1 P \qquad 1.2 P \qquad |$$

$$1.1 \Box Q \qquad 1.2 \Box Q \qquad 1.3 \neg (P \land \Box Q) \text{ [T]} \qquad |$$

$$1.1 \neg P \qquad 1 \Box Q \text{ [4r]} \qquad 1.3 \neg P \qquad 1.3 \neg \Box Q \qquad \times \qquad \times \qquad \qquad |$$

$$1.3 \Box Q \text{ [4]} \qquad \times$$

8. (\triangle) We define a new tableau system as follows. Take prefixes to just be natural numbers n, k. The rules for the truth-functional logical connectives are as usual. The only modal rules are the following. If the prefix k is new to the branch, the possibility rules

$$\frac{n \lozenge A}{k \ X}$$
 and $\frac{n \neg \Box A}{k \ \neg A}$

may be applied. If the prefix k already appears on the branch, the necessity rules

$$\frac{n \square A}{k X} \quad \text{and} \quad \frac{n \neg \lozenge A}{k \neg A}$$

may be applied.

Prove that the theorems of this tableau system are exactly those of the tableau system **S5** given by the standard modal rules together with the rules T, 4, and 4r.