

Leonardo Errati, Roberto La Scala, Mauro Patano Cifris25 – Sept. 12th, 2025

UNIVERSITÀ DEGLI STUDI DI BARI ALDO MORO

Why randomness?

 $x \leftarrow S$

*«Fully Adaptive Schnorr Threshold Signatures»*Crites, Komlo, Maller

```
\mathsf{Setup}(1^{\kappa})
                                                                                            \operatorname{Sign}_{3}(k,\operatorname{st}_{k,2},\{(R_{i},\hat{\sigma}_{i})\}_{i\in\mathcal{S}})
(\mathbb{G}, p, g) \leftarrow \mathsf{GrGen}(1^{\kappa})
                                                                                            parse
                                                                                           (R'_k, r_k, \mathsf{cm}_k, \hat{\sigma}'_k, \mathcal{S}', m, \{\mathsf{cm}_i\}_{i \in \mathcal{S}'}, \mathsf{sk}_k)
     # select two hash functions
\mathsf{H}_{\mathsf{cm}}, \mathsf{H}_{\mathsf{sig}} : \{0,1\}^* \to \mathbb{Z}_p
                                                                                                      \leftarrow \mathsf{st}_{k,2}
\mathsf{par}_\mathsf{DS} \leftarrow \mathsf{DS}.\mathsf{Setup}(1^\kappa)
                                                                                            return \perp if
                                                                                                (R'_k, \hat{\sigma}'_k, \mathcal{S}') \neq (R_k, \hat{\sigma}_k, \mathcal{S})
par \leftarrow ((\mathbb{G}, p, g), H_{cm}, H_{sig}, par_{DS})
return par
                                                                                                 // checks inputs against records in state
                                                                                            for i \in \mathcal{S} do
\mathsf{KeyGen}(n,t+1)
                                                                                                return \perp if cm_i \neq H_{cm}(i, R_i)
x \leftarrow \mathbb{Z}_p; \mathsf{pk} \leftarrow q^x
                                                                                                \mathsf{msg}_i \leftarrow (i, \mathsf{cm}_i, R_i, \mathcal{S}, m, \{\mathsf{cm}_i\}_{i \in \mathcal{S}})
\{(i,x_i)\}_{i\in[n]} \leftarrow s IssueShares(x,n,t+1)
                                                                                                if DS. Verify(\hat{X}_i, \mathsf{msg}_i, \hat{\sigma}_i) \neq 1
     // Shamir secret sharing of x
                                                                                                     return |
for i \in [n] do
                                                                                           R \leftarrow \prod_{i \in \mathcal{S}} R_i
    X_i \leftarrow g^{x_i}; \ (\hat{X}_i, \hat{x}_i) \leftarrow \text{SDS.KeyGen}()
                                                                                           c \leftarrow \mathsf{H}_{\mathsf{sig}}(\mathsf{pk}, m, R)
    \mathsf{pk}_i \leftarrow (X_i, \hat{X}_i)
    \mathsf{sk}_i \leftarrow (x_i, \hat{x}_i, \mathsf{pk}, \{\mathsf{pk}_i\}_{i \in [n]})
                                                                                           z_k \leftarrow r_k + c\lambda_k x_k
                                                                                                /\!\!/ \lambda_k is the Lagrange coefficient for k
return (pk, \{(pk_i, sk_i)\}_{i \in [n]})
                                                                                            return z_k
```

*«Fully Adaptive Schnorr Threshold Signatures»*Crites, Komlo, Maller

RBG: A device or algorithm that outputs a sequence of binary bits that appears to be statistically independent and unbiased.

Non-deterministic RBG: always has access to fresh entropy, its output bitstrings that have full entropy.

NIST Special Publication 800-90A Revision 1

Recommendation for Random Number Generation Using Deterministic Random Bit Generators **NIST Special Publication 800-90B**

Recommendation for the Entropy Sources Used for Random Bit Generation NIST Special Publication 800 NIST SP 800-90C 4pd

Recommendation for Random Bit Generator (RBG) Constructions

Fourth Public Draft

The NIST SP 800-90 framework

Finite-state machine with interfaces:

- instantiate / uninstantiate
- generate
- reseed

Finite-state machine with interfaces:

- instantiate / uninstantiate
- generate
- reseed

DRBGs are based on cryptographic primitives:

- HMAC
- Hash functions
- CTR-mode block ciphers
- Dual_EC_DRGB

Finite-state machine with interfaces:

- instantiate / uninstantiate
- generate
- reseed

DRBGs are based on cryptographic primitives:

- HMAC
- Hash functions
- CTR-mode block ciphers
- Dual_EC_DRGB

Dual EC: A Standardized Back Door

Daniel J. Bernstein^{1,2}, Tanja Lange¹, and Ruben Niederhagen¹

 Department of Mathematics and Computer Science Technische Universiteit Eindhoven
 P.O. Box 513, 5600 MB Eindhoven, The Netherlands tanja@hyperelliptic.org, ruben@polycephaly.org

> Department of Computer Science University of Illinois at Chicago Chicago, IL 60607-7045, USA djb@cr.yp.to

Finite-state machine with interfaces:

- instantiate / uninstantiate
- generate
- reseed

DRBGs are based on cryptographic primitives:

- HMAC
- Hash functions
- CTR-mode block ciphers

(Opt.)

Finite-state machine with interfaces:

- instantiate / uninstantiate
- generate
- reseed

DRBGs are based on cryptographic primitives:

- HMAC
- Hash functions
- CTR-mode block ciphers

Security goals:

- backtracking resistance
- prediction resistance

Noise source:

- physical / non-physical
- protected
- stationary distribution, ideally IID
- entropy estimate

Noise source:

- physical / non-physical
- protected
- stationary distribution, ideally IID
- entropy estimate

Health tests:

- startup, restart, ...
- continuous monitoring for catastrophic failures
- statistical tests

Noise source:

- physical / non-physical
- protected
- stationary distribution, ideally IID
- entropy estimate

Must be validated by accredited laboratories.

Health tests:

- startup, restart, ...
- continuous monitoring for catastrophic failures
- statistical tests

Construction	Internal Entropy Source	Available randomness source for reseeding	Prediction Resistance	Full Entropy	Type of Randomness Source
RBG1	No	No	No	No	RBG2(P) or RBG3 construction
RBG2(P)	Yes	Yes	Optional	No	Physical entropy source
RBG2(NP)	Yes	Yes	Optional	No	Non-physical entropy source
RBG3(XOR) or RBG3(RS)	Yes	Yes	Yes	Yes	Physical entropy source
(Root) RBGC	Yes	Yes	Optional	No	RBG2 or RBG3 construction or Full-entropy source
(Non-root) RBGC	No	Yes	No	No	Parent RBGC construction

Construction	Internal Entropy Source	Available randomness source for reseeding	Prediction Resistance	Full Entropy	Type of Randomness Source
RBG1	No	No	No	No	RBG2(P) or RBG3 construction
RBG2(P)	Yes	Yes	Optional	No	Physical entropy source
RBG2(NP)	Yes	Yes	Optional	No	Non-physical entropy source
RBG3(XOR) or RBG3(RS)	Yes	Yes	Yes	Yes	Physical entropy source
(Root) RBGC	Yes	Yes	Optional	No	RBG2 or RBG3 construction or Full-entropy source
(Non-root) RBGC	No	Yes	No	No	Parent RBGC construction

Construction	Internal Entropy Source	Available randomness source for reseeding	Prediction Resistance	Full Entropy	Type of Randomness Source
RBG1	No	No	No	No	RBG2(P) or RBG3 construction
RBG2(P)	Yes	Yes	Optional	No	Physical entropy source
RBG2(NP)	Yes	Yes	Optional	No	Non-physical entropy source
RBG3(XOR) or RBG3(RS)	Yes	Yes	Yes	Yes	Physical entropy source
(Root) RBGC	Yes	Yes	Optional	No	RBG2 or RBG3 construction or Full-entropy source
(Non-root) RBGC	No	Yes	No	No	Parent RBGC construction

Construction	Internal Entropy Source	Available randomness source for reseeding	Prediction Resistance	Full Entropy	Type of Randomness Source
RBG1	No	No	No	No	RBG2(P) or RBG3 construction
RBG2(P)	Yes	Yes	Optional	No	Physical entropy source
RBG2(NP)	Yes	Yes	Optional	No	Non-physical entropy source
RBG3(XOR) or RBG3(RS)	Yes	Yes	Yes	Yes	Physical entropy source
(Root) RBGC	Yes	Yes	Optional	No	RBG2 or RBG3 construction or Full-entropy source
(Non-root) RBGC	No	Yes	No	No	Parent RBGC construction

Construction	Internal Entropy Source	Available randomness source for reseeding	Prediction Resistance	Full Entropy	Type of Randomness Source
RBG1	No	No	No	No	RBG2(P) or RBG3 construction
RBG2(P)	Yes	Yes	Optional	No	Physical entropy source
RBG2(NP)	Yes	Yes	Optional	No	Non-physical entropy source
RBG3(XOR) or RBG3(RS)	Yes	Yes	Yes	Yes	Physical entropy source
(Root) RBGC	Yes	Yes	Optional	No	RBG2 or RBG3 construction or Full-entropy source
(Non-root) RBGC	No	Yes	No	No	Parent RBGC construction

Interlude: statistical tests

```
10010111 01011011 01100111...
```


Statistical tests:

 H_0 : the successive outputs u_0,u_1,u_2,\dots,u_k are IID random variables $U\{0,1\}$ and H_1 : H_0 is false

Statistical tests:

 $\Big\{H_0\colon$ the successive outputs u_0 , u_1 , u_2 , ... , u_k are IID random variables $U\{0,1\}$ $H_1\colon H_0$ is false

We build a test statistics Y and study its distribution.

$$p = P[Y \ge y \mid H_0]$$

NIST suite: 15 tests for different kinds of bias

NIST suite: 15 tests for different kinds of bias

- Frequency test

Under H_0 , CLT-approximation of $Y = \sum_i u_i$

NIST suite: 15 tests for different kinds of bias

- Frequency test Under H_0 , CLT-approximation of $Y = \sum_i u_i$
- Random excursion test

Transform $u_0, u_1, u_2, \dots, u_k$ into a random walk on a graph Under H_0 , the total visits to each state follow the discrete Markov distribution

Randomness in the Wild

Physics:

- harness high-level entropy
- ensuring stability & avoiding bias

Cryptography:

- primitives for extraction & expansion
- security claims

Mathematics:

- statistical validation
- min-entropy estimation

(the case of INFN)

Physics:

- harness high-level quantum entropy
- ensuring stability & avoiding bias

Cryptography:

- primitives for extraction & expansion
- security claims

Mathematics:

- statistical validation
- min-entropy estimation

(the case of INFN)

Physics:

- harness high-level quantum entropy
- ensuring stability & avoiding bias

Cryptography:

- primitives for extraction & expansion
- security claims

Mathematics:

- statistical validation
- min-entropy estimation

- secure distribution in large scale infrastructures
- high availability

Thanks!

