```
In [52]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
In [53]: data=pd.read_csv('tips2.csv')
        data.head()
Out[53]:
                  tip gender smoker day time size
        0 16.99 1.01 Female
                                    No Sun Dinner
                                                       2
        1 10.34 1.66
                                    No Sun Dinner
                          Male
                                                       3
         2 21.01 3.50
                          Male
                                    No Sun Dinner
                                                       3
         3 23.68 3.31
                          Male
                                    No Sun Dinner
                                                       2
        4 24.59 3.61 Female
                                    No Sun Dinner
                                                       4
In [54]: # Univariate analysis
        data.describe(include="all")
```

Out[54]:		bill	tip	gender	smoker	day	time	size
со	unt	244.000000	244.000000	244	244	244	244	244.000000
uni	que	NaN	NaN	2	2	4	2	NaN
	top	NaN	NaN	Male	No	Sat	Dinner	NaN
f	req	NaN	NaN	157	151	87	176	NaN
m	ean	19.785943	2.998279	NaN	NaN	NaN	NaN	2.569672
	std	8.902412	1.383638	NaN	NaN	NaN	NaN	0.951100
1	min	3.070000	1.000000	NaN	NaN	NaN	NaN	1.000000
2	25%	13.347500	2.000000	NaN	NaN	NaN	NaN	2.000000
5	50%	17.795000	2.900000	NaN	NaN	NaN	NaN	2.000000
7	75%	24.127500	3.562500	NaN	NaN	NaN	NaN	3.000000
r	nax	50.810000	10.000000	NaN	NaN	NaN	NaN	6.000000

```
In [55]: # Outlier analysis
fig,axes = plt.subplots(ncols=3, nrows=1, figsize=(10,8))
idx =0
axes=axes.flatten()
for k,v in data.items():
    if(v.dtype == "object"):
        continue
    sns.boxplot(data=data,y=k,ax=axes[idx])
    idx+=1
plt.tight_layout(pad=0.4, w_pad=0.4, h_pad=2.0)
```


Practical_8_Uni_Bi_Multi_Analysis

```
In [56]: # skewness and kurtosis
         fig,axes =plt.subplots(ncols=3, nrows=1, figsize=(20,16))
         idx=0
         axes=axes.flatten()
         cols=["Column", "Skewness", "Kurtosis"]
         values = []
         for k, v in data.items():
             if(v.dtype =="object"):
                 continue
             skew = v.skew()
             kurt = v.kurtosis()
             if int(skew)>=1:
                 skew_val = "Right/Positively skewed"
             elif int(skew) <=-1:</pre>
                 skew_val ="Left/Negatively skewed"
             else:
                 skew_val="Normal"
             if round(kurt,0) >3:
                 kurt_val = "Leptokurtic"
             elif round(kurt,0) ==3 :
                 kurt_val ="mesokurtic"
             elif round(kurt,0) <3 and round(kurt,0)!=0:</pre>
                 kurt_val="platykurtic"
             else:
                 kurt_val = "Normal"
             kurt_val += ":"+ str(kurt)
             skew_val += ":"+ str(skew)
             values.append([k,skew_val, kurt_val])
             sns.histplot(kde=True,data=v, ax=axes[idx])
             idx+=1
```

Practical_8_Uni_Bi_Multi_Analysis

```
plt.tight_layout(pad=0.4, w_pad=0.4, h_pad=2.0)

df = pd.DataFrame(columns =cols, data=values)
df
```

Out[56]:	(Column	Skewness	Kurtosis
	0	bill	Right/Positively skewed:1.1332130376158205	platykurtic:1.2184840156638854
	1	tip	Right/Positively skewed:1.4654510370979401	Leptokurtic:3.648375873352852
	2	size	Right/Positively skewed:1.4478815386834785	platykurtic:1.7317000657641097

In [104... # correlation matrix

In []:

```
#corr=data.select_dtypes(include="number").corr()
           corr= corr[(corr>0.5)| (corr<-0.5)]</pre>
           #print(corr)
           sns.heatmap(corr)
Out[104...
           <Axes: >
                                                                                    - 1.00
          li q
                                                                                   - 0.95
                                                                                    - 0.90
          smoker gender
                                                                                    - 0.85
                                                                                    - 0.80
                                                                                    - 0.75
          day
-
                                                                                    - 0.70
          time
                                                                                    - 0.65
                                                                                   - 0.60
                          tip
                                 gender smoker
                 bill
                                                    day
                                                             time
                                                                      size
```