Inteligência Artificial Tópico 03 - Parte 05 Resolução de Problemas por Buscas Algoritmos Genéticos

Profa. Dra. \mathcal{P} riscila \mathcal{T} iemi \mathbb{M} aeda \mathcal{S} aito \mathbb{P} priscilasaito \mathbb{P} ufscar.br

Roteiro

- Resolução de Problemas por Buscas
 - Busca Local Além da Busca Clássica
 - Hill-Climbing
 - Simulated Annealing
 - Local Beam
 - Algoritmos Genéticos

- Engloba métodos e técnicas computacionais inspirados
 - ▶ na teoria da evolução das espécies, de seleção natural (Darwin)
 - na Genética iniciada por Mendel
- Bases da evolução:
 - seres mais adaptados aos seus ambientes sobrevivem
 - características genéticas de tais seres são herdadas pelas próximas gerações
 - diversidade é gerada por cruzamento e mutações

• 1859 - Charles Darwin publica o livro "A Origem das Espécies"

As espécies evoluem pelo princípio da seleção natural e sobrevivência do mais apto

 1865 - Gregor Mendel, pai da genética, apresenta experimentos do cruzamento genético de ervilhas

 Nos anos 1960, John Holland e seus alunos propuseram a construção de um algoritmo de busca e otimização: os algoritmos genéticos

- Algoritmos genéticos usam como base e procuram combinar:
 - ▶ teoria da evolução das espécies a sobrevivência das estruturas/soluções mais adaptadas a um ambiente/problema
 - estruturas genéticas utiliza conceitos de hereditariedade e variabilidade genética para troca de informações entre as estruturas, visando a melhoria das mesmas

Algoritmos Genéticos - População

 A população de um algoritmo genético é o conjunto de indivíduos que estão sendo cogitados como solução

Cada indivíduo é uma possível solução do problema

- Um indivíduo no AG é um cromossomo
- Ou seja, um indivíduo é um conjunto de <u>atributos</u> da solução
- Geralmente é uma <u>cadeia de bits</u> que representa uma solução possível para o problema

Exemplo

```
População de tamanho n=4
```

Geração de indivíduos, com seus cromossomos

Cada elemento do vetor é um gene, um atributo da solução

```
Indivíduo 1 = [1 \ 1 \ 1 \ 0 \ 1]
Indivíduo 2 = [0 \ 1 \ 1 \ 0 \ 1]
Indivíduo 3 = [0 \ 0 \ 1 \ 1 \ 0]
Indivíduo 4 = [1 \ 0 \ 0 \ 1 \ 1]
```

- Outras representações são possíveis
- Boa representação depende do problema

Exemplo - Problema da Mochila

- Dada uma lista de coisas com preços e tamanhos
- É fornecido o valor da capacidade da mochila
- Escolha as coisas de forma a maximizar o valor daquilo que cabe dentro da mochila, sem ultrapassar sua capacidade

Cada bit é usado para dizer se a coisa correspondente está ou não na mochila

- \bullet Crom: A = 1 0 1 1 0 0 1 0 1 1
- Crom: B = 1 1 1 1 1 1 1 0 0 0 0

Codificação Binária

Cada cromossomo é uma string de bits - 0 ou 1

10 / 59

- Outras representações são possíveis
- Boa representação depende do problema

Exemplo - Problema do caixeiro viajante

- São dadas cidades e as distâncias entre elas
- O caixeiro viajante tem que visitar todas as cidades
- Encontrar a sequência de cidades em que as viagens devem ser feitas de forma que a distância percorrida seja a mínima possível

Cromossomos descrevem ordem de visita das cidades

- Crom: A = 1 5 3 2 6 4 7 9 8
- Crom: B = 8 5 6 7 2 3 1 4 9

Codificação por Permutação

Cada cromossomo é uma string de números que representa uma posição em uma sequência

11/59

- Outras representações são possíveis
- Boa representação depende do problema

Exemplo - encontrar pesos para uma rede neural dada uma estrutura

- É dada uma rede neural com arquitetura definida
- Encontre os pesos entre os neurônios da rede de forma a obter a resposta desejada da rede

Valores reais representam pesos em uma rede neural

- Crom: A = 1.2324 5.3243 0.4556 2.3293 2.4545
- Crom: B = ABDJEI FJDHDI ERJFDL DFLFEGT
- Crom: C = (back), (back), (right), (forward), (left)

Codificação por Valor

Cada cromossomo é uma sequência de valores

12 / 59

- Função de fitness, função de custo → determina uma nota a cada indivíduo
- Nota avalia quão boa é a solução que este indivíduo representa

Se indivíduo I_1 representa uma solução melhor do que $I_2 o$ avaliação de I_1 deve ser maior do que de I_2

O objetivo de um AG pode ser maximizar o número de 1s

Indivíduos	Função de aptidão (fitness)
[11101]	4
[01101]	3
[00110]	2
[10011]	3
Aptidão média	3

- Função de avaliação deve ser escolhida cuidadosamente
- Cada problema tem sua própria função de aptidão
 - embutir todo o conhecimento que se possui sobre o problema a ser resolvido
- Pode envolver uma (otimização de função) ou mais medidas (otimização multi-objetivo)
 - ex.: projeto de ponte → custo, tempo de construção, capacidade máxima
- Métodos para calcular índice de aptidão
 - padrão
 - baseada em ranking

- Função de Aptidão Padrão
 - utiliza apenas informação sobre "qualidade do cromossomo"

$$f_i = rac{q_i}{\sum_j q_j}$$
 $q = \operatorname{aptid ilde{ao}}$ do cromossomo

• Função de Aptidão Padrão

Cromossomo	Grau	Aptidão Padrão
1 4	4	0.4
3 1	3	0.3
1 2	2	0.2
1 1	1	0.1

- Função de Aptidão baseada em Ranking
 - ▶ aptidão padrão → escolha da escala do índice de aptidão pode prejudicar reprodução
 - ▶ ex.: 1, 10, 100
 - utilizar ranking de cromossomos por aptidão
 - utiliza medida de qualidade apenas para definir um "ranking" de cromossomos por aptidão
 - ★ seleção baseada apenas nos ranks

Cromossomo	Valor de Aptidão	Aptidão Padrão	Rank	Aptidão Rank
1 4	4	0.4	1	0.667
3 1	3	0.3	2	0.222
1 2	2	0.2	3	0.074
1 1	1	0.1	4	0.025

Algoritmos Genéticos - Seleção

- De acordo com a teoria de Darwin, o melhor sobrevivente para criar a descendência é selecionado
- Privilegiar indivíduos com função de avaliação alta
 - não desprezar completamente indivíduos com função de avaliação extremamente baixa
 - indivíduos com péssima avaliação podem ter características genéticas favoráveis à criação de um indivíduo ótimo
 - características podem não estar presentes em nenhum outro cromossomo

Algoritmos Genéticos - Seleção

- Há muitos métodos para selecionar o melhor cromossomo
 - seleção por roleta
 - seleção por torneio
 - seleção por amostragem universal estocástica

...

A seleção dirige o AG para as melhores regiões do espaço de busca

Algoritmos Genéticos - Seleção por Roleta

- Para visualizar este método considere um círculo dividido em N regiões (tamanho da população)
 - onde a área de cada região é proporcional à aptidão do indivíduo

Algoritmos Genéticos - Seleção por Roleta

- Coloca-se sobre este círculo uma "roleta"
- A roleta é girada um determinado número de vezes, dependendo do tamanho da população
- São escolhidos como indivíduos que participarão da próxima geração, aqueles sorteados na roleta

Algoritmos Genéticos - Seleção por Roleta

Exemplo

Indivíduo	Avaliação
0001	1
0011	9
0100	16
0110	36
Total	62

Aptidão Relativa (parte da roleta)			
1.61			
14.51			
25.81			
58.07			
100.0			

Roleta Viciada para População Exemplo

□ "0001" □ "0011" □ "0100" □ "1100"

Algoritmos Genéticos - Seleção por Torneio

- Escolhe n indivíduos (e.g., n=3) aleatoriamente, com mesma probabilidade
- Cromossomo com maior aptidão é selecionado para a população intermediária
- Processo se repete até que a população intermediária seja preenchida
- Parâmetro n, tamanho do torneio, define pressão seletiva
 - ↑ número de indivíduos que participam do torneio →↑ pressão seletiva
 - indivíduo tem que ser melhor do que uma quantidade maior de competidores

Indivíduo	Aptidão	Candidatos o Vencedor
10110	2.23	$S_1, S_2, S_5 ightarrow S_2$
11000	7.27	$S_2, S_4, S_5 \rightarrow S_2$
11110	1.05	$S_5, S_1, S_3 \rightarrow S_1$
01001	3.35	$S_4, S_5, S_3 \rightarrow S_4$
00110	1.69	$S_3, S_1, S_5 ightarrow S_1$

Algoritmos Genéticos - Seleção por Amostragem Universal Estocástica

- Conhecido como SUS (Stochastic Universal Sampling)
- Variação do método da roleta
 - utiliza n agulhas igualmente espaçadas ao invés de uma
 - ★ n é o número de indivíduos a serem selecionados
 - ★ ao invés de *n* vezes, a roleta é girada uma única vez
 - exibe menos variância do que as repetidas chamadas do método da roleta

Algoritmos Genéticos - Operadores Genéticos

- Um conjunto de operações é necessário para que, dada uma população, seja possível gerar populações sucessivas que (espera-se) melhorem sua aptidão com o tempo
- Estas operações são os operadores genéticos
 - cruzamento
 - mutação
 - elitismo

Os operadores genéticos permitem explorar áreas desconhecidas do espaço de busca

Algoritmos Genéticos - Cruzamento

- O operador cruzamento (crossover ou recombinação) cria novos indivíduos, misturando características de dois indivíduos pais
- O resultado desta operação é um indivíduo que potencialmente combine as melhores características dos indivíduos usados como base
- Alguns tipos de cruzamento são:
 - cruzamento em um ponto
 - cruzamento em dois pontos
 - cruzamento multi-pontos
 - uniforme

Algoritmos Genéticos - Cruzamento

- Um ponto de corte deve ser selecionado
- Constitui uma posição entre dois genes de um cromossomo
- ullet Cada indivíduo de n genes contém n-1 pontos de corte possíveis

- Separação do pai em duas partes: esquerda e direita do ponto de corte
 - partes não necessariamente têm o mesmo tamanho
- Primeiro filho: concatenação da parte esquerda do primeiro pai + parte direita do segundo pai
- Segundo filho: concatenação da parte esquerda do segundo pai + parte direita do primeiro pai

Algoritmos Genéticos - Cruzamento de um Ponto

 No cruzamento de um ponto, divide-se cada progenitor em duas partes, em uma localidade k (escolhida aleatoriamente)

Algoritmos Genéticos - Cruzamento de um Ponto

- O descendente 1 consiste em genes 1 a k do progenitor 1, e genes k+1 a n-1 do progenitor 2
- O descendente 2 é "reverso"

Algoritmos Genéticos - Cruzamento de Dois Pontos

Algoritmos Genéticos - Cruzamento de n Pontos

Algoritmos Genéticos - Cruzamento Uniforme

- Para cada gene é sorteado um número zero ou um
- Se o sorteado for 1, um filho recebe o gene do primeiro pai e o segundo filho o gene do segundo pai
- Se o sorteado for 0, o primeiro filho recebe o gene do segundo pai e o segundo filho recebe o gene do primeiro pai

Algoritmos Genéticos - Mutação

 A mutação modifica aleatoriamente alguma característica do indivíduo, sobre o qual é aplicada

- O operador de mutação é necessário para a introdução e manutenção da diversidade genética da população
- Desta forma, a mutação assegura que a probabilidade de se chegar a qualquer ponto do espaço de busca, possivelmente, não será zero
 - reduz chance de ficar preso em mínimos locais
 - lacktriangle taxa de mutação pequena ightarrow 0.5% ou 1%

Algoritmos Genéticos - Elitismo

- Conjunto de indivíduos mais adaptados é automaticamente selecionado para a próxima geração
- Evita modificações deste(s) indivíduo(s) pelos operadores genéticos
 - utilizado para que os melhores indivíduos não desapareçam da população

Algoritmos Genéticos - Gerações

- Algoritmo é iterado até algum critério de parada
 - tempo de execução, número de gerações, valores de aptidão mínimo ou médio
- A cada passo, um novo conjunto de indivíduos é gerado a partir da população anterior
- A este novo conjunto dá-se o nome de geração
- Com a criação de uma grande quantidade de gerações que é possível obter resultados dos AGs

Algoritmos Genéticos - Algoritmo

Algoritmo_Genetico

- p = tamanho da população
- r = taxa de cruzamento
- m = taxa de mutação
- **1** P \leftarrow gerar aleatoriamente p indivíduos
- Para cada i em P, computar Aptidão(i)
- Enquanto critério_parada não é atingido
 - selecionar p membros de P para reprodução
 - aplicar cruzamento a pares de indivíduos selecionados segundo taxa r, adicionando filhos em PS
 - 3 realizar mutação em membros PS, segundo taxa m
 - P ← PS
 - Para cada i em P, computar Aptidão(i)
- Retornar o indivíduo de P com maior aptidão

Codificação e avaliação de aptidão são pontos chave

Algoritmos Genéticos - Parâmetros

 O desempenho dos algoritmos genéticos é fortemente influenciado pela definição dos seus parâmetros

Tamanho da população

- populações pequenas: cobrem pouco o espaço de busca
- populações grandes: apesar de evitar mínimos locais, requer mais recursos computacionais e tempo

Intervalo de geração:

- porcentagem da população que será substituída
 - ★ grande (comum): filhos substituem pais
 - ★ pequena: "pais e filhos convivem"

Algoritmos Genéticos - Parâmetros

- O desempenho dos algoritmos genéticos é fortemente influenciado pela definição dos seus parâmetros
- Taxa de cruzamento
 - se for muito baixa: busca pode estagnar
 - se for muito alta: boas estruturas podem ser perdidas
- Taxa de mutação:
 - possibilita que qualquer ponto de espaço de busca seja atingido
 - se for muito alta: busca aleatória

Algoritmos Genéticos - Interpolando Operadores

- É possível aumentar ou diminuir a incidência de cada um dos operadores sobre a população e assim ter mais controle sobre o desenvolvimento dos cromossomos
- Cada operador pode receber uma avaliação
- Normalmente o operador de cruzamento recebe um fitness bem maior que o operador de mutação
- A porcentagem de aplicação de cada operador não precisa ser fixa

Algoritmos Genéticos - Interpolando Operadores

- No início, deseja-se executar muita reprodução e pouca mutação
 - há muita diversidade genética e deseja-se explorar o máximo possível o espaço de soluções
- Após um grande número de gerações, há pouca diversidade genética na população
 - extremamente interessante que o operador de mutação fosse escolhido mais frequentemente

Algoritmos Genéticos

Questões Importantes

- Como criar cromossomos?
- Qual tipo de codificação usar?
 - primeiras perguntas que devem ser feitas ao resolver um problema com AG
 - codificação dependerá fortemente do problema
- Como escolher os pais para a realização do crossover?
- A geração de uma população a partir de duas soluções pode causar a perda da melhor solução. O que fazer?

- Codificando o problema
- Exemplo: problema 8 rainhas
 - cada estado deve especificar posição de 8 rainhas, em coluna com 8 quadrados
 - ★ $8x \log_2 8 = 24$ bits se codificação binária

- Binário = 111 101 011 001 110 100 010 000
- Inteiro = 8 6 4 2 7 5 3 1

- (a) Gerando população inicial
- 8 dígitos, com valores de 1 a 8
 - exemplo: população com 4 cadeias de 8 dígitos
 - ★ representam estados de 8 rainhas

24748552

32752411

24415124

32543213

24	24748552
23	32752411
20	24415124
11	32543213

- (b) Avaliação
- Função de avaliação (aptidão)
 - deve retornar valores maiores para estados melhores
 - ex.: 8 rainhas: número de pares de rainhas não-atacantes
 - ★ valor 28 para uma solução
 - * min = 0, max = $8 \times 7/2 = 28$

- (c) Seleção
- Proporcional à aptidão do indivíduo
 - vários métodos
 - todos tendem a privilegiar indivíduos mais aptos
 - \star 24/(24+23+20+11) = 31%
 - \star 23/(24+23+20+11) = 29%

- (d) Cruzamento
- Indivíduos selecionados formam pares
- Operador de cruzamento combina pares
 - ponto de cruzamento gerado ao acaso

- Cruzamento
 - ► 327|52411 + 247|48552 = 327|48552

- (e) Mutação
- Mudança aleatória do valor de um gene
 - com pequena probabilidade
- Introduz variações aleatórias
 - permitindo soluções pularem para diferentes partes do espaço de busca

- Problema: Caixeiro Viajante
- Deve-se encontrar o caminho mais curto para percorrer *n* cidades sem repetição
- Como representar os indivíduos?
 - cada indivíduo pode ser representado por uma lista ordenada de cidades
 - indica a ordem em que cada uma será visitada

Exemplo

35721648

- Cada cromossomo tem que conter todas as cidades do percurso, apenas uma vez
- Considerando 8 cidades:

Exemplo - Cromossomos válidos

```
12345678
```

87654321

13572468

...

Exemplo - Cromossomos inválidos

 $1578236 \rightarrow Falta a cidade 4$

1~5~7~8~2~3~6~5
ightarrow Falta a cidade 4 e a cidade 5 está representada 2 vezes

- Qual a função de avaliação?
- A função de avaliação consiste em somar todas as distâncias entre cidades consecutivas

Exemplo

O cromossomo 1 3 5 4 2 tem avaliação igual a

$$35 + 80 + 50 + 65 = 230$$

Exemplo - Recombinação (uniforme)

- Pai $1 \rightarrow 35721648$
- Pai $2 \rightarrow 25768431$
- Gera-se uma string de bits aleatória do mesmo tamanho que os pais
 - ► 10010101
- Copia-se para o filho 1 os elementos do pai 1 referentes àquelas posições onde a string de bits possui um 1
 - 3 _ 2 _ 6 _ 8
- Elementos não copiados do pai 1
 - ▶ 5714
- Permuta-se essa lista de forma que os elementos apareçam na mesma ordem que no pai 2 e copia-se eles para dentro do filho 1
 - ▶ 35724618

Exemplo - Mutação

Indivíduo 3 5 7 2 1 6 4 8

- Escolhem-se dois elementos aleatórios dentro do cromossomo e trocam-se as suas posições
 - ▶ 35721648
- Novo indivíduo mutante:
 - 3 1 7 2 5 6 4 8

Algoritmos Genéticos

- Questões importantes na definição de um problema em algoritmos genéticos
 - representação dos indivíduos
 - parâmetros do sistema (tamanho da população, taxa de mutação, ...)
 - políticas de seleção e eliminação de indivíduos
 - operadores genéticos (cruzamento e mutação)
 - critérios de parada
 - função de avaliação (a mais importante e mais complicada de ser definida)

Observações

- Se o AG estiver corretamente implementado, a população evolui em gerações sucessivas
- Aptidão do melhor indivíduo e do indivíduo médio aumentam em direção a um ótimo global

Exemplos

- Problema: CBIR
- Descrição da imagem:
 - Cor: (1, 20, 50, 50, 30, 25)
 - Forma: (0, 1, 1, 0, 1, 1)
 - Textura: (234, 50, 45, 11, 13, 14)

Resultado

Combinação

Programação Genética

Exemplos

• Problema: Classificação de Imagens

Algoritmos Genéticos

Referências e Leituras Complementares

- ullet Cap. 04 o livro Russel e Norvig
- ullet Cap. 14 o livro Ben Coppin
- ullet Algoritmos Genéticos o livro Ricardo Linden