BMWG – Containerized Infrastructure Benchmarking

November 05-06, 2022
Remote

Hackathon Plan

- Our draft main goal is to figure out container networking performance impacts by various resource options.
 - Draft:
 Considerations for Benchmarking Network Performance in Containerized Infrastructures
 https://tools.ietf.org/html/draft-dcn-bmwg-containerized-infra
 - Two main features
 - Discuss various network acceleration models consideration that affect container network performance
 - Discuss **different deployment configuration settings** consideration that affect container network performance

Hackathon Plan

Previous Hackathon

Verify different eBPF Acceleration Models performances

- ✓ Initial test with OVS-AFXDP supported vSwitch
- vhost interface between vswitch and container

In this hackathon

- > VPP vSwitch with memif interface
- Cloud Native Data Plane (CNDP) with K8s AFXDP plugin
- > Cilium

. Net	working Models in Containerized Infrastructure <u>8</u>	
<u>4.2</u> .	User-space vSwitch Model	
<u>4.3</u> .	eBPF Acceleration Model	
<u>4.4</u> .	Smart-NIC Acceleration Model	
<u>4.5</u> .	Model Combination	
. Per	Formance Impacts	
<u>5.1</u> .	CPU Isolation / NUMA Affinity	
<u>5.2</u> .	Hugepages	
<u>5.3</u> .	Service Function Chaining	
	4.1. 4.2. 4.3. 4.4. 4.5. Perf 5.1. 5.2.	Networking Models in Containerized Infrastructure 8 4.1. Kernel-space vSwitch Model 9 4.2. User-space vSwitch Model 10 4.3. eBPF Acceleration Model 10 4.4. Smart-NIC Acceleration Model 12 4.5. Model Combination 13 Performance Impacts 14 5.1. CPU Isolation / NUMA Affinity 14 5.2. Hugepages 15 5.3. Service Function Chaining 15

VPP-AFXDP vSwitch with memif interface

 $NIC \leftrightarrow Userspace \ vSwitch$

VPP-AF-XDP supported

- The AF-XDP socket receive packet directly from NIC rx queue, bypassing kernel
- AF-XDP PMD at VPP vSwitch to poll the packets from the socket

$Userspace vSwitch \leftrightarrow Container$

Memif interface

- Shared memory packet interface provides high performance packet transmit between user application and VPP vSwitch
- Perform better than vhost (which packets go through kernel space)

Cloud Native Data Plane with AFXDP K8s Plugin

 $NIC \leftrightarrow Userspace$

AF-XDP

 The AF-XDP socket receive packet directly from NIC rx queue, bypassing kernel

$Userspace \leftrightarrow Container$

CNDP AFXDP K8s CNI Plugin

- CNDP's AFXDP CNI Plugin move NIC netdev from host network namespace to pod network namespace
- Attached netdevs at Pod create AFXDP socket
- CNDP's AFXDP CNI Plugin configure busy polling on the socket to transmit packets to application

Cilium CNI Plugin

NIC ← Userspace
eBPF at driver layer and socket layer

- eBPF at NIC driver layer handles North-South traffic
 - accelerated via XDP
- eBPF at socket layer handles East-West traffic
 - accelerated by eliminating per-packet costs for service translation (memory allocation for packet metadata,...)

 $\textit{Userspace} \longleftrightarrow \textit{Container}$

vEth Pairs created by Cilium CNI

Benchmarking Testbed – same with previous hackathons

Single node scenario
Multi nodes scenario

- eBPF Supported NIC: Intel X710
- AF-XDP supported kernel: Ubuntu 22.04 (kernel v5.15)
- · Pod multi-interfaces: Multus
- vSwitch supported CNI: Userspace CNI
- CNDP-AFXDP k8S CNI
- Cilium CNI

Benchmarking Configuration

Hardware – Worker Node

CPU	Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz
CFU	48 CPU cores * 2 NUMA nodes
Memory	256GB: 32GB x 4DIMMs x 2 NUMA nodes @ 2400MHz
NIC	Intel Corporation Ethernet Network Adapter X71-
INIC	40Gbps
Microcode	0x5003102
Intel NIC	0x1572
Device ID	UX1572
Intel NIC	
Firmware	6.01 0x800035cf 1.1747.0
version	
BIOS setting	CPU Power and Performance Policy < Performance >
	CPU C-state Disabled
	CPU P-state Disabled
	Intel(R) Hyper-Threading Tech Enabled
	Turbo Boost Disabled

Traffic Generator : T-Rex (v2.92)

Name	T-Rex
Version	2.92
Benchmark	T-Rex Non Drop Rate application (accepted
method	percentage of drop rate is less than 0.1%)

Software

Operating System	Ubuntu 22.04			
Linux Kernel Version	5.15			
GCC version	gcc version 4.8.5 20150623 (Red Hat 4.8.5-44)			
DPDK version	21.11.1			
Hugepages	1Gi			

What we learned

- eBPF/AFXDP Benchmarking Performance Results (OVS-vhost vs VPP-memif vs CNDP)
 - VPP-memif outperforms OVS-vhost as expected
 - CNDP catchs up similar performance as VPP with higher size packets (>512)

- The reason of OVS-vhost < VPP-memif is at the limitation of vhostuser-virtioPMD path between container and vSwitch
- VPP uses memif PMD (shared memory packet interface) which is a better performance method
- CNDP attachs NIC network devices to pod and poll packets directly from the AFXDP socket (no vSwitch) can also achieve high packet transmission performance as memif

What we learned

Cilium

- Cilium acceleration performance has already been benchmarked by Cilium, and can be referred to
- Cilium 1.8 Release Blog (https://cilium.io/blog/2020/06/22/cilium-18/)
 - (XDP acceleration performance NorthSouth traffic)
- Istio 1.0: How Cilium enhances Istio with socket-aware BPF programs (https://cilium.io/blog/2018/08/07/istio-10-cilium/)
 - (eBPF Socket Layer acceleration performance EastWest traffic)

3,500,000

2,500,000

2,500,000

1,500,000

1,000,000

500,000

PERSISTENT CONNECTIONS

iptables redirect loopback Cilium + Sockmap

North-South XDP acceleration vs kernel kube-proxy

East-West eBPF socket layer acceleration vs kernel kube-proxy

Future Works

- Finalize the draft and ask for reviews
- We would like to welcome any questions, comments and contributions to the draft to start the WG adoption process

Wrap Up

Team members:

Younghan Kim (SSU)

Minh Ngoc Tran(SSU)

Thanh Nguyen Nguyen (SSU)

Jangwon Lee (SSU)

Hokeun Lim (SSU)

Git repo:

https://github.com/SSU-DCN/bmwg-container-networking

Remote Hackathon from Seoul

Internet Infra System Technology Research Center – Soongsil University (IISTRC- SSU)