

一、 概述

TM1636 是一种带键盘扫描接口的LED(发光二极管显示器)驱动控制专用电路,内部集成有MCU 数字接口、数据锁存器、LED 高压驱动、键盘扫描等电路。本产品性能优良,质量可靠。主要应用于电磁炉、微波炉及小家电产品的显示屏驱动。采用DIP18的封装形式。

二、 特性说明

- 采用功率CMOS 工艺
- 显示模式(4字段×8 位),支持共阳数码管输出
- 键扫描 (2×8bit)
- 辉度调节电路(占空比 8 级可调)
- 串行接口 (CLK, DIO)
- 振荡方式: 内置RC 振荡 (450KHz+5%)
- 内置上电复位电路
- 内置自动消隐电路
- 封装形式: DIP18

三、管脚定义:

				Appen	AND .
	GND	1	18	3	K2
	SG1/KS1	2	17	['] 🗖	K1
	SG2/KS2	3	16	5 þ	SCLK
	SG3/KS3	4	15	5 <u> </u>	DIO
	SG4/KS4	5	14	ŀЫ	VDD
	SG5/KS5	6	13		DIG1
A.	SG6/KS6	7	12		DIG2
Ą	SG7/KS7	8	11	.	DIG3
	SG8/KS8	9	10		DIG4
	40000				

四、管脚功能定义:

符号	管脚名称	管脚	说明
		号	
DIO	数据输入/	15	串行数据输入/输出,输入数据在 SLCK 的低电平变化,
	输出		在 SCLK 的高电平被传输,每传输一个字节芯片内部都
			将在第九个时钟产生一个 ACK
SCLK	时钟输入	16	在上升沿输入/输出数据
K1~K2	键扫数据	17-18	输入该脚的数据在显示周期结束后被锁存
	输入		
SG1~SG8	输出(段)	2-9	段输出(也用作键扫描), N 管开漏输出
DIG4~DIG1	输出(位)	10-13	位输出,P 管开漏输出

©Titan Micro Electronics www.titanmec.com - 1 -

TM1636

_			11100	
	VDD	逻辑电源	14	5V±10%
	VSS	逻辑地	1	接系统地

五、 电气参数:

极限参数 (Ta = 25℃, Vss = 0 V)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ∼+7.0	V
逻辑输入电压	VI1	-0.5 \sim VDD + 0.5	V
LED Seg 驱动输出电流	I01	-50	mA
LED DIG 驱动输出电流	102	+200	mA
功率损耗	PD	400	mW
工作温度	Topt	−40 ~ +85	C
储存温度	Tstg	−65 ~+150	$^{\circ}$

正常工作范围 (Ta = -40~+85℃, Vss = 0 V)

参数	符号	最小	典型	最大	单位	测试 条件
逻辑电源电压	VDD		5		V	1
高电平输入电压	VIH	0.7 VDD	_	VDD	V	ı
低电平输入电压	VIL	0	_	0.3 VDD	V	_

电气特性 (Ta = -40~+85℃, VDD = 4.5 ~ 5.5 V, Vss = 0 V

参数	符号	最小	典型	最大	单位	测试条件
高电平输出电流	Ioh1	-20	-25	-40	mA	Seg1~Seg11, Vo = vdd-2V
	Ioh2	-20	-30	-50	mA	Seg1~Seg11, Vo = vdd-3V
低电平输出电流	IOL1	80	140	_	mA	DIG1~DIG4 Vo=0.3V
低电平输出电流	Idout	4	-	_	mA	VO = 0.4V, dout
高电平输出电流容	Itolsg	_	_	5	%	VO = VDD - 3V,

TM1636

	111011100					
许量						Seg1~Seg11
输出下拉电阻	RL		10		KΩ	K1~K2
输入电流	II	_	_	±1	μА	VI = VDD / VSS
高电平输入电压	VIH	0. 7 VDD	_		V	CLK, DIN
低电平输入电压	VIL	_	_	0.3 VDD	V	CLK, DIN
滞后电压	VH	_	0.35	-	V	CLK, DIN
动态电流损耗	IDDdyn	_	_	5	mA	无负载,显示关

开关特性 (Ta = -40~+85℃, VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测	试条件
振荡频率	fosc	ı	450	-	KHz		₩
	tPLZ	ı	ı	300	ns	CLK	→ DIO
传输延迟时间	tPZL	ı		100	ns	CL = 15p	oF, RL = $10K$
	TTZH 1		X	2	μs	CL =	Seg1~ Seg11
上升时间	TTZH 2	_		0. 5	μς	300p F	DIG1~ DIG4
下降时间	TTHZ	-	-	120	μs		OpF, Segn, Gridn
最大时钟频率	Fmax	1	-	_	MHz	占名	空比50%
输入电容	CI	=	_	15	рF		-

* 时序特性 (Ta = -40 ~+85℃, VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PWCLK	400	-	-	ns	-
选通脉冲宽度	PWSTB	1	-	-	μs	-
数据建立时间	tSETUP	100	-	-	ns	-

LED 驱动控制专用电路

TM1636

数据保持时间	tHOLD	100	_	-	ns	-
等待时间	tWAIT	1	_	-	μs	CLK ↑ → CLK ↓

六、 读键扫数据

键扫矩阵为8×2bit,如下所示:

在有按键按下时,读键数据如下:

	SG1	SG2	SG3	SG4	SG5	SG6	SG7	SG8
K	1110_1111	0110_1111	1010_1111	0010_1111	1100_1111	0100_1111	1000_1111	0000_1111
K2	1111_0111	0111_0111	1011_0111	0011_0111	1101_0111	0101_0111	1001_0111	0001_0111

在无按键按下时, 读键数据为: 1111 1111;

七、 接口说明

微处理器的数据通过两线总线接口和 TM1636 通信,在输入数据时当 SCLK 是高电平时,DIO 上的信号必须保持不变;只有 SCLK 上的时钟信号为低电平时,DIO 上的信号才能改变。数据输入的开始条件是 SCLK 为高电平时,DIO 由高变低;结束条件是 SCLK 为高时,DIO 由低电平变为高电平。

TM1636 的数据传输带有应答信号 ACK,在传输数据的过程中,在时钟线的第九个时钟芯片内部会产生一个应答信号 ACK 将 DIO 管脚拉低。

指令数据传输过程如下图 (读按键数据时序):

Command: 读按键指令

S0、S1、S2、K1、K2 组成按键信息编码,S0、S1、S2 为 SG 的编码,K1、K2 为 K1 和 K2 键的编码。

写 SRAM 数据地址自动加 1 模式:

©Titan Micro Electronics www.titanmec.com - 4 -

TM1636

Command1:设置数据 Command2:设置地址 Data1~N:传输显示数据 Command3:控制显示

写 SRAM 数据固定地址模式:

Command1:设置数据 Command2:设置地址 Data1~N: 传输显示数据 Command3:控制显示

八、 数据指令

数据指令用来设置 LED 驱动器的状态,在 SCLK 的高电平时 DIO 由高跳低后输入的第一个字节作为一条指令。

(1) 数据设置

(2) 地址设定

©Titan Micro Electronics www.titanmec.com - 5 -

如果地址设为110或更高,数据被忽略,直到有效地址被设定。

(3) 显示控制

九、读键扫数据

在输入读键扫指令数据之后,在 SCLK 的时钟下由 DIO 管脚输出键扫数据:

其中 KS0、KS1、KS2 组成的编码代表是按键矩阵的列信息,K1、K2 表示按键是否被按下及按键矩阵的行信息,0表示未按键,1表示按键被按下。

十、 显示和键扫周期

©Titan Micro Electronics www.titanmec.com - 6 -

十一、IC 封装示意图:

尺寸 标注	最小(==)	最大(==)	尺寸 标注	最小(m)	最 大(==)
A	21.90	22.10	C3	3.4	3.6
A1	1. 40	DTYP	C4	1.58TYP	
A2	0.43 0.57		D	8.10	8.60
A3	2. 5	4TYP	D1	0.20	0.35
A4	0. 59	9TYP	D2	7.62	7.87
A.5	0. 9	5TYP	ф1	3.0	TYP
В	6.3	6.5	0 1	8°	TYP
C1	3.4	3.6	0.2	5°	TYP
C2	0.6	0.8			

● All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。)

©Titan Micro Electronics www.titanmec.com - 7 -