

This lecture....

- Vector features
- · Assembly basics
- BioBrick™ Standard

Design fundamentally rooted in DNA

How do we deliver our constructs?

- 1. Plasmids circular replicating DNA
- 2. Host genome
 - Integrated in natural chromosome
 - Synthetic chromosomes

DNA must be replicated for it to be useful

4

Selection markers

Plasmids cost resources to maintain

· selection gives the cell reason to propagate your construct

Bacteria: Selection is typically with an antibiotic that inhibits or prevents growth

ampicillin – bacteriostatic, inhibits cell wall synthesis (bla)
chloramphenicol – inhibits protein synthesis/23s rRNA (cat)
kanamycin – inhibits protein synthesis/30s subunit (neo)

- tetracycline inhibits protein synthesis/tRNA::ribosome (tetA)

Eukaryotes (yeast): Selection is typically with a nutrient auxotrophy

- Uracii URA3 needed for RNA synthesis
 Leucine LEU2 needed for protein synthesis
 Histidine HIS3 needed for protein synthesis

can also be used for counterselection – e.g. 5-FOA is assimilated by URA3 to make a toxic compound

Origins of replication

Allows replication and sets plasmid copy number in the cells

How does plasmid copy number affect gene expression?

- CEN ~ 1 copy per cell (centromeric)
- 2 micron ~ 50 copies per cell

*Yeast integrating plasmids have no ORI as they must be linearized and integrated into host for replication

Different yeast plasmids may be combined as long as each have a distinct selectable marker

Origins of replication

Bacteria

Common Vectors	Copy Number+	ORI	Incompatibility Group
pUC	~500-700	pMB1 (derivative)	А
pBR322	~15-20	pMB1	Α
pET	~15-20	pBR322	Α
pGEX	~15-20	pBR322	Α
pCoIE1	~15-20	ColE1	Α
pR6K	~15-20	R6K*	С
pACYC	~10	p15A	В
pSC101	~5	pSC101	С
pBluescript	~300-500	ColE1 (derivative) and F1**	Α
pGEM	~300-500	pUC and F1**	Α

Only plasmids from different incompatibility groups with unique selection

Plasmid types

Expression plasmids will typically include:

- promoters: P_{T7}, P_{Tet}, P_{lac}, P_{BAD}, GALP
 Regulatory proteins: *lacl*, *tetR*, *araC*
- Terminators: T7_{term}, rrnB

Shuttle vectors will have features for multiple species to "shuttle" DNA between them (e.g. ori and selecton)

• E.g pRS314 - bacterial features for cloning, yeast features for expression

Methods for DNA assembly How do we put together our circuits? 1) Chemical addition (oligonucleotide/primer synthesis) Protected 2'deoxynucleoside phosphoramidite

Digestion + Ligation

DNA cut with the same RE have the same overhang and anneal through complementary H-bonds (palindromic!)

H-bond immobilizes fragments long enough for permanent ligation by *ligase*

How do we standardize this?

BioBrickTM Standard

Standardizing on a single RE doesn't allow you to add assemble parts into devices and other higher order structures

Why?

Biobricks use 4 REs:

EcoRl 5...GAATTC...3 5...ACTAGT...3 Spel
Pstl 5...CTGCAG...3 5...TCTAGA...3 Spel
Pstl 5...CTGCAG...3 5...TCTAGA...3 Xbal

Spel and Xbal have complementary overhangs that destroy the restriction site after ligation

Next time....

More advanced high-throughput assembly techniques

21