Kpal descriere soluție

Prof. Dana Lica, Centrul Județean de Excelență Prahova

Notăm lungimea cuvântului egală cu L.

Vom începe prin a calcula CostMatch[i][j] = costul minim pentru a schimba a i-a și a j-a litera a alfabetului astfelîncât acestea să devină egale. Pentru o pereche (i,j) avem: CostMatch[i][j] = min(Cost[i][k] + Cost[j][k]), pentru 1≤k≤X.
Cu alte cuvinte, iteram prin orice literăîn care pot fi tranformate iși j. Aceasta matrice poate fi calculatăîn O(x^3).

Având matricea CostMatch, putem încerca toate modalitățilede a împărți cuvântul inițial în șiruri de lungimi egale. Aceste lungimi sunt divizorii lui L. Pentru o lungime fixată, fiecare secvență obținută prin tăieturi trebuie schimbată individual într-un palidrom. Costul de a schimba o astfel de secvență într-un palidrom poate fi calculat comparând toate pozițiile simetrice față de mijloc și adunând CostMatch-ul corespunzator acestora. De exemplu, pentru cuvântul aabbbc și lungimea 3, obținem secvențele aab și bbc. Costul lui aab este de fapt costul de a schimba atât primul a cât și b-ul în aceeasi literă. În acest caz, costul secvenței aab este CostMatch['a'] ['b']. Similar, costul secvenței bbc este CostMatch['b'] ['c'].

În continuare vom face următoarea observație. Presupunem că un cuvânt inițial poate fi împărțit în palindroame de lungime \mathbf{x} având un cost total egal cu $\mathbf{cost}(\mathbf{x})$ și în palidroame de lungime \mathbf{y} având cost total egal cu $\mathbf{cost}(\mathbf{y})$. Dacă $\mathbf{x} < \mathbf{y}$ și $\mathbf{cost}(\mathbf{x}) \ge \mathbf{cost}(\mathbf{y})$ atunci va fi mereu preferat să împărțim cuvantul în palindroame de lungime \mathbf{y} - Cu alte cuvinte, dacă o împărțire generează mai multe palindroame la un cost mai mare, atunci acea împărțire este neoptimă. Folosind această observație, vom itera prin toate modurile de a împărți cuvântul inițial în ordine crescătoare după lungimea palindroamelor obținute. Vom menține pe parcurs o stivă crescătoare $\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_k$ (\mathbf{x}_i reprezintă a \mathbf{i} -a lungime) astfel încât $\mathbf{x}_1 < \mathbf{x}_2 < \dots < \mathbf{x}_k$ și $\mathbf{cost}(\mathbf{x}_1) < \mathbf{cost}(\mathbf{x}_2) < \dots < \mathbf{cost}(\mathbf{x}_k)$. La fiecare pas al iterației \mathbf{x} ,dorim să adaugăm pe \mathbf{x} în stivă. Ne uităm la vârful stivei, verificând dacă $\mathbf{cost}(\mathbf{x}_k) \ge \mathbf{cost}(\mathbf{x})$.Într-o astfel de situație, \mathbf{x}_k -ul poate fi eliminată deoarece \mathbf{x} -ul este o împărțire mult mai bună. Se repeta procesul până când stiva devine goala sau până ce vârful nu oferă o împărțire neoptimă. Dupa aceea, \mathbf{x} -ul este adăugat ca vârf al stivei.

La final, vom avea stiva $\mathbf{x}_1, \mathbf{x}_2, \ldots \mathbf{x}_K$. Să presupunem că dorim să calculăm numărul minim de palindroame în care poate fi impărțit cuvântul inițial folosind schimbări de un cost total \leq c. Pentru aceasta, trebuie să gasim valoarea maximă din stivă \mathbf{x}_T , astfel încât $\cos(\mathbf{x}_T) \leq \mathbf{c}$. În acest fel, pentru \mathbf{c} considerat, numărul minim de palindroame este L/\mathbf{x}_T . Ultima observație este faptul că orice \mathbf{c} am alege între $\mathbf{cost}(\mathbf{x}_T)$ și $\mathbf{cost}(\mathbf{x}_{T+1})$ - 1 are răspunsul L/\mathbf{x}_T . Tot ce ne rămâne acum de făcut este să împărțim intervalul [0..Q] folosind intervalele $[\mathbf{cost}(\mathbf{x}_T)..\mathbf{cost}(\mathbf{x}_{T+1})-1]$ și să calculăm valoarea dorită.

De exemplu, să presupum că avem $\mathbf{L} = 12$, $\mathbf{Q} = 80$ și stiva (1, 0) (2, 10) (3, 20) (4, 100) (12, 101) - unde primul element al perechii reprezintă lungimea palindroamelor tăiate, iar al doilea reprezintă costul. Dacă suntem interesați de un cost maxim $\mathbf{c} = 21$, este evident că preferăm să împărțim în palindroame de lungime 3. Dacă suntem interesați de cost maxim $\mathbf{c} = 19$,

atunci nu putem împărți mai bine de palidroame având lungimea 2. Acum, ultima observație ne spune că orice limita **c** am avea între 20 și 99 (spre exemplu), atunci cel mai bine este să împărțim în 4 palindroame de lungime 3.

Împărțim intervalul 0..80 în intervalele următoare - în funcție de costurile din stivă:

- 1. [0..9] cu răspunsul pe orice element din interval:lungime=1
- 2. [10 ..19] cu răspunsul: lungime=2
- 3. [20..80] cu răspunsul: lungime=3

În total, răspunsul la exemplu este (9 - 0 + 1) * (12 / 1) + (19 - 10 + 1) * (12 / 2) + (80 - 20 + 1) * (12 / 3).