

Faculté de médecine de Batna Département de médecine

Module Physiologie: 2ème année médecine

Année universitaire 2024/2025

Dr. B.Kermiche

Echanges gazeux alvéolocapillaires

Plan:

- I. Introduction
- II. Composition des gaz alvéolaire et notion de pressions partielles
- III. Ventilation alvéolaire Espace mort anatomique Espace mort physiologique
- IV. Rappel anatomique de la membrane alvéolo_capillaire
- V. Etapes de transfert alvéolo-capillaire
 - 1- Diffusion de l'O2
 - 2- Diffusion du CO₂

Introduction

- Les poumons permettent l'oxygénation du sang veineux et d'en retirer le CO2, grâce à des échanges gazeux.
- En conditions physiologiques de repos la totalité du volume d'air inspiré à chaque cycle ventilatoire ne participe pas aux échanges alvéolo-capillaires.
- La présence d'un système ramifier de conduction où séjourne une portion d'air qui correspond à l'espace mort et n'arrive pas aux zones d'échange.
- La diffusion de l'O₂ des alvéoles vers le sang et du CO₂ en sens inverse se fait selon un gradient de pression= Hématose.

II. Notion de pressions partielles

• Loi de DALTON: «dans un mélange gazeux la pression totale est égale à la somme des pressions partielles des gaz constituants le mélange». PT= PN2+P02+ Pc02

la pression partielle exercée par un gaz dans un mélange donné est:

Pp=PT x F (PT: pression totale , F: concentration fractionnelle de chaque gaz du mélange).

> Notion de pression partielle

• Air atmosphérique

Fraction ou concentration en O2: FO2: 21%

F CO2: 0.03%

F N2: 79%

> Patm = PN2 + PO2 + PCO2 = 760 mmHg

• Dans l'air atmosphérique :

 $P_B = 760 \text{ mmHg}$

 $FiO_2 = 21\% = 0.21$

= 210 mL d 'O2 par litre d 'air

 $PO_2 = 760 \times 0.21 = 160 \text{ mmHg}$

• Dans les bronches :

P vapeur d'eau: 47 mmHg

 PO_2 (bronches) = $(760 - 47) \times 0.2 = 150 \text{ mmHg}$

III. Ventilation alvéolaire

• Ventilation globale = ventilation minute = volume d'air qui pénètre par minute au niveau du poumon E = VT . FR VT : volume courant(ml)

FR: fréquence respiratoire (c/min)

• ventilation alvéolaire = quantité d'air qui, par minute arrive effectivement au niveau des alvéoles.

$$A = (VT - VD) \cdot FR$$
 $VD : espace mort$

Ventilation minute

Espace mort et ventilation alvéolaire

- Espace mort physiologique: volume d'air qui ne participez pas aux échanges = VD + VDA
- VD = Espace mort anatomique : air contenu dans les voies aériennes de conduction
- VDA = Espace mort alvéolaire: air contenu dans les alvéoles bien ventilées et mal perfusées.

Espace mort anatomique

- Chez un sujet sain au repos:
- Toutes les alvéoles ventilées sont perfusées
- VDA alvéolaire = 0
- VD= VD anatomique = 150ml
- En pathologie (embolie pulmonaire)
- Territoires alvéolaires ventilées mais non perfusés
- VDA alvéolaire ≠ 0
- VD par rapport à un sujet sain
- VD ≈ 2ml/kg du poids corporel pour une personne de 70 kg = 140 à 150 ml avec un rapport:

$$VD / VT = 0.2 à 0.35$$

témoigne de l'efficacité de la ventilation

- Fonction physiologique: réchauffe
 - Humidifie l'air
- VD ≠ VR (volume résiduel)

LEGENDE : Air Oxygéné, Air Vicie Physiologie 2ème AM

IV. Rappel anatomique de la membrane alvéolo-capillaire

Principe physique de la diffusion alvéolocapillaire

- Les échanges gazeux pulmonaire intéressent donc l'O2 et le CO2.
- Ces échanges ce font par diffusion et obéissent au lois de celle ci.
 - Différences de pression partielles (P1-P2).
 - La tailles des molécules.
 - Solubilité des gaz dans l'eau.

L'équation de la vitesse de diffusion peut s'écrire

$$VD = \frac{\Delta P \times S \times E}{D \times \sqrt{PM}}$$

ΔP: différence de pression(P₁-P₁) S: Solubilité (SO₂=1, SCO₂=20,3, SH_e=0,93)

E: Surface d'échange D: Epaisseur P: poids moléculaire

V. Etapes de transfert alvéolo-capillaire

Echange gazeux pulmonaires

- > Diffusion membranaire alvéolocapillaire
- 1- Diffusion de l'O2: Temps de transit du sang

2. Diffusion du CO2

QCM

01) La courbe de Barcroft (CDO) est déviée en bas et à droite, pour quelle situation parmi les situations suivantes ? (↑=augmenter et ↓= diminuer)

A. ↑PCO2 ↑T° ↓PH ↑2,3DPG.

B. \forall PCO2 \forall T° \forall PH \forall 2,3DPG.

C. ↑PCO2 ↑T° ↑PH ↑2,3DPG.

- **D**. ↓PCO2 ↓T° ↑PH ↓2,3DPG.
- 02) Au sommet de Mont Everest (=8890m) la pression atmosphérique Pat=248mm Hg, a cette hauteur quelle est la valeur de la pression partielle d'O2 en mm Hg?

A. 59. **B**. 52. **C**. 49. **D**. 61.

03) Quelle est la quantité de CO2 dissoute dans 100ml de sang artériel?

A. 2ml. **B.** 4ml. **C.** 3ml. **D.** 5ml.

- 04) Concernant les échanges gazeux alvéolo-capillaire, parmi les propositions suivantes quelle est la réponse fausse ?
- A. Commencent à partir des bronchioles respiratoires.
- B. Se font à travers une membrane alvéolo-capillaire d'environ (MAC) 100 m² de surface.
- **C**. Se font uniquement au cours de l'inspiration.
- **D**. Se font à travers une MAC d'environ 0,4µm d'épaisseur.
- 05) La diffusion alvéolo-capillaire sera perturbée par certaines facteur sous cités sauf un, lequel ?
- A. Diminution du gradient de pression au niveau alvéolaire.
- B. Remaniement de la MAC par la fibrose.
- C. Présence d'un exsudat dans l'alvéole.
- D. Lors d'un effort physique d'intensité faible ou modéré.
- 06) La capacité de diffusion de l'02 en ml/min/mmHg à travers la membrane alvéolocapillaire, au repos, pour un poumon sain, représentatif des poumons de la population générale, avoisine l'une des valeurs suivantes, laquelle

A. 5 B. 20 C. 35 D.45 E. 70

07) Une gazométrie artérielle faite chez un sujet grand fumeur, hospitalisé pour exacerbation d'une broncho-pneumopathie chronique obstructive au stade IV de GOLD retrouve une PaO2=86 mm Hg. Quelle est d'après vous la quantité d'O2 dissoute dans 80 ml de son sang artériel ?

aO2=0,023

A. 0,31 ml **B.** 0,24 ml **C.** 0,27 ml **D.** 0,20 ml **E.** 0,33 ml

08) Chez le même patient de la question précédente, il présente 13g

d'Hb par décilitre de sang, sachant que le pouvoir oxyphorique de

l'Hb=1,39 ml d'O2, quelle est approximativement sa capacité en O2 et en STPD exprimé en ml d'O2/ 100 ml de sang, parmi les valeurs proposées suivantes?

A. 16,68 **B** 21,29 **C**. 12,5 **D**. 18,07 **E**. 24,2

Correction

Question	réponse	commentaire
1	Α	Une augmentation de PCO2, de température et de 2,3 DPG
		déplace la courbe vers la droite, indiquant une diminution de
		l'affinité de l'hémoglobine pour l'oxygène.
2	В	La pression partielle d'O2 se calcule par P(O2) = 0,21 x Pat,
		d'où 0,21 x 248 = 52 mm Hg (fractions d'air)
3	С	En moyenne, la concentration de CO2 dissoute dans le sang
		artériel est souvent estimée entre 2 à 3 ml pour 100 ml de
		sang
4	С	Les échanges gazeux se font à la fois lors de l'inspiration et
		de l'expiration, pas uniquement en inspiration
5	D	Un effort modéré n'affecte pas significativement la diffusion
		des gaz, contrairement à d'autres facteurs précités.
6	В	La capacité de diffusion au repos pour un poumon sain est
		souvent autour de 20 à 30 ml/min/mmHg, donc 20 est une
		bonne estimation
7	D	
8	D	1g Hb1.39ml de O2
		13 Hbx
		X=13 x 1.39=18,07 ml de O2