1 Abstract

2 Introduction

3 Photometric Data

- Data are taken from Hicken et al. and Bianco et al. (Table 1)
- Paritel J,H,K bands created and registered in SNCOSMO for IR extrapolation
- Used SNCOSMO bessell bandpasses for UBVR, sdss for u',g',r'

SNID	Type	$\operatorname{Color}(\mathbf{s})$	MW E(B-V)	Redshift	Peak (Measured)	Reference
$\overline{SN2002bx}$	II	U - B	0.0106	0.007539	52368.27 ± 0.25	Hicken
SN2005kd	IIn	U - V	0.2142	0.015040	53698.41 ± 0.21	Hicken
SN2006ca	II	U - B	0.1990	0.008903	53866.30 ± 0.16	Hicken
SN2006cd	IIP	U - B	0.0407	0.037116	53852.51 ± 0.56	Hicken
SN2007rt	IIn	V - J, V - H, V - K	0.0138	0.022365	54443.33 ± 0.24	Hicken
SN2008aj	IIn	U - B	0.0128	0.024963	54484.47 ± 0.01	Hicken
SN2008bj	II	U-r	0.0233	0.018965	54553.23 ± 0.36	Hicken
SN2008bn	II	U - V	0.0154	0.024220	54555.05 ± 0.47	Hicken
SN2008in	II	V - J, V - H, V - K	0.0193	0.005224	54828.26 ± 0.23	Hicken
SN2008ip	IIn	V - J, V - H, V - K	0.0136	0.015124	54812.33 ± 0.51	Hicken
SN2009ay	II	B-J, B-H, B-K	0.0342	0.022182	54901.63 ± 0.84	Hicken
SN2009kn	IIn	u - B	0.0964	0.015798	55147.00 ± 2.60	Hicken
SN2010bq	IIn	B-J, B-H, B-K	0.0191	0.030988	55295.10 ± 0.34	Hicken
SN2004aw	Ic	U - R	0.0180	0.015911	53089.79 ± 0.08	Bianco
SN2004gq	Ib	U - V	0.0627	0.006401	53357.59 ± 0.21	Bianco
SN2005az	Ic	r-J, r-H, r-K	0.0097	0.008395	53477.72 ± 0.20	Bianco
SN2005hg	Ib	U-r, r-J, r-H, r-K	0.0901	0.021308	53667.10 ± 0.05	Bianco
SN2005kl	Ic	V - J, V - H, V - K	0.0219	0.003389	53701.42 ± 0.16	Bianco
SN2005mf	Ic	U-r, r-J, r-H, r-K	0.0153	0.026761	53733.88 ± 0.63	Bianco
SN2006aj	Ic	U - B, B - J, B - H, B - K	0.1267	0.033529	53792.94 ± 0.14	Bianco
SN2006F	Ib	U - V	0.1635	0.013999	53749.72 ± 0.52	Bianco
SN2006T	IIb	U - V	0.0647	0.007992	53765.11 ± 0.05	Bianco
SN2007C	Ib	V - J, V - H, V - K	0.0363	0.005894	54114.10 ± 0.20	Bianco
SN2007ce	Ic	V - J, V - H, V - K	0.0200	0.046332	54211.76 ± 0.00	Bianco
SN2007gr	Ic	U - B, B - J, B - H, B - K	0.0535	0.001727	54339.81 ± 0.06	Bianco
SN2007I	Ic	r - J, r - H, r - K	0.0250	0.021638	54118.57 ± 0.73	Bianco
SN2007uy	Ib	B - J, B - H, B - K	0.0194	0.007004	54463.93 ± 0.05	Bianco
SN2008aq	IIb	U-r	0.0383	0.007968	54538.22 ± 0.67	Bianco
SN2008D	Ib	B-J, B-H, B-K	0.0194	0.007004	54474.28 ± 0.03	Bianco
SN2009er	Ib	V - J, V - H, V - K	0.0389	0.035024	54966.59 ± 0.11	Bianco
SN2009iz	Ib	u - B, B - J, B - H, B - K	0.0729	0.014199	55105.50 ± 0.16	Bianco
SN2009jf	Ib	u - B, B - J, B - H, B - K	0.0971	0.008148	55121.97 ± 0.08	Bianco

Table 1: Summary of the SNe used in this analysis from Bianco et al. and Hicken et al. The colors listed for each SN are used in the extrapolations, and the peaks were measured in the course of this work.

4 Methodology

- SNe without U, u', J, H, and K data are removed from the dataset, then SNe are separated into II+IIP,IIn,Ib,Ic
- Run initial SNCOSMO fit to get initial time of peak, using bounds on t_0 of ± 20 days from first point
- Clip points more than 50 days from peak, repeat process and tighten clipping range if necessary for each SN until all time of peaks are reasonable to within ± 5 days
- Select best color to use for extrapolation based on number of points, quality of fit, etc.

- Run snsed extend program to get color tables after selecting color for each SN (set peak and have ± 3 days)
- Calculate and minimize Bayesian Information Criterion (BIC) to determine best fit polynomial order
- Create posterior predictive fits showing best fit to color curve measured data

4.1 Color Table Generation

- A list of SNe with U,u',J,H, or K and optical data are provided to the snsedextend package with the following dictionaries used for fitting:
 - SN:Redshift
 - SN:Color to use for extrapolation
 - SN:E(B-V)
 - SN:Type
 - SNCosmo Model:Type
- redshift, host r_v , milky way r_v , and milky way E(B-V) are set as constants for SNCOSMO fitting
- Host E(B-V) is given bounds of ± 1 , t_0 is given a bound of ± 3 days
- Magnitude data are translated to flux for SNCOSMO fitting
- All Optical (BVRg'r') data are fit using each model in SNCOSMO corresponding to the SN Type given, best model is taken
- Best fit model is translated to time and magnitude vectors for band in color chosen for extrapolation (i.e. B for U-B), which are interpolated using a 1D interpolation
- The time grid for the extrapolation band (i.e. U,u',J,H or K) is used to define magnitude values for the second color (i.e. B for U-B) so that we have UV or IR and optical data (i.e. U,B or r,J) values at the same epochs. They are then subtracted to get colors
- Colors are de-reddened using coefficients from O'Donnell 94
- Color table is generated (See table 2) from these data points

Days After Peak	U-B	U-B Error	U-V	U-V Error	V-J	V-J Error	V-H	V-H Error	V-K	V-K Error	B-J	B-J Error	В-Н	B-H Error	В-К	B-K Error
-2.7134			-0.80	0.05												
-2.7097			-0.84	0.05												
1.2693			-0.45	0.06												
1.2730			-0.54	0.06												
1.3150	-0.56	0.06														
1.9837									1.97	0.19						
1.9837							1.98	0.10								
1.9837					1.39	0.08										
2.3312	-0.54	0.06														
2.4487											0.63	0.04				

53.8437									2.25	0.03						
53.8437							2.12	0.06								
54.8337							2.05	0.04								
54.8337					1.68	0.04										
56.8337									2.19	0.03						
56.8337							2.03	0.03								
56.8337					1.70	0.02										
64.8237							1.88	0.07								
64.8237					1.63	0.02										
64.8237									2.01	0.26						

Table 2: Example of Type II color table (abbreviated) generated by the snsedextend package. A similar table is created for each SN type, which is then read and binned before being fit with a polynomial. For more information on how these color tables are used, see sections 4.2 and 5.1.

4.2 Polynomial Fits to Measured Color Curves

- Description of BIC calculation and minimization
- Description of Posterior Predictive Fitting

4.3 SED Extrapolation

- Color curve(s) created/described in sections 4.1 and 4.2 is sent to SED extrapolation function
- Color is calculated from color curve best fit polynomial for each epoch in SED
- Color at each epoch is used to define a linear extrapolation into the UV or IR
 - Iterative process is used to define the endpoints/slope of the extrapolation so that area under line is equal to the color at that epoch
 - This process was tested and verified by Rick Kessler
- Endpoints were chosen based on UV and IR range that will be used (These are variables in the package that can be changed by a user):
 - UVrightBound=4000
 - UVleftBound=1200
 - IRleftBound=9000

- IRrightBound=55000
- SED is extrapolated linearly such that it reaches zero at these endpoints

5 Results and Discussion

5.1 Supernova Fitting

Figure 1: Example SNCOSMO fitting results of optical colors (B,V,r') for a SN Type Ib (SN 2005hg, see Table 1). For all SN fits see the appendix (I'll add them after tweaking).

5.2 Color Curve Fitting

Figure 2: Example Posterior Predictive fitting results for U-Optical colors measured from Type IIand Type IIP templates. The blue points represent binned data, while the red points represent the whole of the dataset (see section 3). The best fit model was chosen by minimizing the Bayesian Information Criterion. All fits to Optical-J,H,K for all SN types are shown in the appendix.

5.3 SED Extrapolation

Figure 3: Example of extrapolated SED into the UV using the color curve generated by the snsedextend package (This was just an example, I'll run all of them once we decide all of the tweaks, etc.)

Appendix

Type Ib

Color (Magnitude)

Days After Peak

Type Ic

Figure 4: My fig

Type II+ IIP

Figure 5: My fig

Type IIn

Figure 6: My fig

