Exercise Chapter 10 Part-A RC series circuit under constant and square signal

Charging of a capacitor:

Consider the adjacent circuit consist of:

- an ideal battery of electromotive force E;
- a resistor of resistance R;
- a capacitor of capacitance C, initially uncharged;
- a switch K.

Switch K is closed at $t_0 = 0$,

- 1) Name the phenomenon that takes place.
- 2) Redraw the circuit showing the direction of the current.
- 3) An oscilloscope displays the voltage uBD across the resistor on channel Y_1 , and the voltage uDA = uC across the capacitor on channel Y_2 , the « INV » button of channel Y_2 being pressed. Why did we push in the knob «Inv»?
- 4) Redraw the circuit showing the connections of the oscilloscope displaying the voltages u_C and u_R .
- 5) Write the expression of the current i in terms of q.
- 6) Deduce the expression of i in terms of the capacitance C and the voltage u_C.
- 7) Derive the differential equation that governs the variation of the voltage, $u_{DA}=u_{C}$, across the capacitor.
- 8) Verify that the solution of this differential equation is $u_C = E\left(1 e^{\frac{-t}{RC}}\right)$.

Or The solution of the obtained differential equation is of the form: $u_C = E (1 - e^{\frac{-\tau}{\tau}})$, where τ is constant. Determine the expression of τ in terms of R and C.

Or The solution of this differential equation is: $u_C = D\left(1 - e^{-\frac{t}{\tau}}\right)$. Determine the expressions of

the constants D and τ in terms of E, R and C.

Or The solution of this differential equation has the form of: $u_C = A + B e^{Dt}$. Determine the constants A, B and D in terms of E, R and C.

- 9) Determine, at the instant t = 0, the expression of the voltage u_C in terms of E.
- 10) Determine, at the instant $t = \tau$, the expression of the voltage u_C in terms of E.
- 11) Verify that the capacitor becomes practically fully charged at t = 5 RC.

- 12) Referring to the graph of $u_C = f(t)$ of the adjacent document: Determine the value of τ .
- 13) Deduce the value of the value of the capacitance if the resistance $R=200\ \Omega$.

Or from the solution $u_C = E(1-e^{-\frac{t}{\tau}})$.

Or Graphically

- 15) Determine the expression of the current i as a function of time t.
- 16) Determine, at the instant t = 0, the value of the current i.
- or Determine the maximum value of the current I.
- 17) Determine, at the instant $t = \tau$, the expression of the current i in terms of E and R. deduce its value.

u_C (V)

- 18) Deduce the value of the current i in steady state.
- 19) Sktetch i as function of t.
- 20) Determine $\frac{di}{dt}\Big|_{t=0}$

from the solution i

Or Graphically

21) Determine the expression of the voltage across the resistor u_R as a function of time t.

Or if $u_C = E\left(1 - e^{\frac{-t}{RC}}\right)$. Deduce the expression of the voltage across the resistor u_R as a function of time t.

- 22) Determine, at the instant t=0, the expression of the voltage across the resistor u_R .
- or Determine the maximum value of the current u_R.
- 23) Determine, at the instant $t=\tau$, the expression of $\,u_R$ in terms of E.
- 24) Deduce the value of the u_R in steady state.
- 25) Sktetch u_R as function of t.
- 26) Determine $\frac{duR}{dt}\Big|_{t=0}$

from the solution u_R

Or Graphically

- 27) If $u_C = E\left(1 e^{\frac{-t}{RC}}\right)$. Determine the expression of the charge q as a function of time t.
- 28) Determine, at the instant $t = \tau$, the expression of q in terms of E and C.
- 29) Deduce the value of the u_R in steady state.
- or Determine the maximum value of q.
- 30) Sktetch q as function of t.

10 11 12 13

31) Determine
$$\frac{dq}{dt}\Big|_{t=0}$$

from the solution q

Or Graphically

- 32) Derive the differential equation that governs the variation of the current i as function of time.
- 33) Derive the differential equation that governs the variation of the voltage u_R as function of time.
- 34) Derive the differential equation that governs the variation of the q as function of time.
- 35) A capacitor of capacitance $5000~\mu F$ is charged under a voltage of 12 V. Calculate the accumulated charge and the energy stored in this capacitor.

Discharging of a capacitor:

Consider the fully charged capacitor in the adjacent circuit, switch K is closed at new $t_0 = 0$,

At an instant t, the capacitor is charged by q and the circuit carries a current i.

- 36) Name the phenomenon that takes place.
- 37) Write the expression of the current i in terms of q.
- 38) Deduce the expression of i in terms of the capacitance C and the voltage u_C.

- 39) Derive the differential equation that governs the variation of the voltage, $u_{DA}=u_{C}$, across the capacitor.
- 40) Verify that the solution of this differential equation is $u_C = Ee^{-\frac{t}{RC}}$.

Or The solution of the obtained differential equation is of the form: $u_C = E \ e^{-\frac{t}{T}}$, where τ is constant. Determine the expression of τ in terms of R and C.

- 41) Determine, at the instant t = 0, the expression of the voltage u_C in terms of E.
- 42) Determine, at the instant $t = \tau$, the expression of the voltage u_C in terms of E.
- 43) Verify that the capacitor becomes practically fully discharged at t = 5 RC.
- 44) Sketch u_C
- 45) determine $\frac{du_c}{dt}\Big|_{t=0}$ Graphically
- 46) Determine the expression of the current i as a function of time t.
- 47) Determine, at the instant t = 0, the value of the current i.
- or Determine the maximum value of the current I.
- 48) Determine, at the instant $t = \tau$, the expression of the current i in terms of E and R.
- 49) Deduce the value of the current i in steady state.
- 50) Sktetch i as function of t.
- 51) Determine $\frac{di}{dt}\Big|_{t=0}$

from the solution i

Or Graphically

52) Determine the expression of the voltage across the resistor u_R as a function of time t.

Or if $u_C = E\left(1 - e^{\frac{-t}{RC}}\right)$. Deduce the expression of the voltage across the resistor u_R as a function of time t.

- 53) Determine, at the instant t = 0, the expression of the voltage across the resistor u_R .
- or Determine the maximum value of the current u_R.
- 54) Determine, at the instant $t = \tau$, the expression of u_R in terms of E.
- 55) Deduce the value of the u_R in steady state.
- 56) Sktetch u_R as function of t.
- 57) Determine $\frac{duR}{dt}\Big|_{t=0}$

from the solution u_R

Or Graphically

- 58) If $u_C = Ee^{-\frac{t}{RC}}$. Determine the expression of the charge q as a function of time t.
- 59) Determine, at the instant $t=\tau$, the expression of $\,q$ in terms of E and C.

- 61) Sktetch q as function of t.
- 62) Determine $\frac{dq}{dt}\Big|_{t=0}$ Graphically

- 64) Derive the differential equation that governs the variation of the voltage u_R as function of time.
- 65) Derive the differential equation that governs the variation of the q as function of time.

C

RC series circuit under square signal voltage

Consider the electric circuit, includes a resistor of resistance R, a capacitor of capacitance C, and a low frequency generator (LFG) delivering square signal voltage. Such that; Square signal: It is a periodic

signal which takes a constant maximum value during one half-period, and is zero in the second half.

- 66) The waveform of uAM represents the "image" of the current i. Why?
- 67) During discharging the curve u_R or i is negative. Why?

Charging of a capacitor:

Consider the adjacent circuit consist of:

- an ideal battery of electromotive force E;
- a resistor of resistance R;
- a capacitor of capacitance C, initially uncharged;
- a switch K.

Switch K is closed at $t_0 = 0$,

At an instant t, the capacitor is charged by q and the circuit carries a current i.

1) Name the phenomenon that takes place.

Ans: Charging of a capacitor

2) Redraw the circuit showing the direction of the current.

Ans: on the figure

3) An oscilloscope displays the voltage ubd across the resistor on channel Y_1 , and the voltage uba = uc across the capacitor on channel Y_2 , the « INV » button of channel Y_2 being pressed. Why did we push in the knob «Inv»?

Ans: To display uda and not uad

4) Redraw the circuit showing the connections of the oscilloscope displaying the voltages u_C and u_R .

Ans: on the figure

5) Write the expression of the current i in terms of q.

Ans:
$$i = \frac{dq}{dt}$$

Ans:
$$q = Cu_C$$
 so $i = C \frac{du_C}{dt}$

7) Derive the differential equation that governs the variation of the voltage, $u_{DA}=u_{C}$, across the capacitor.

Ans: Apply law of addition of voltage $u_{BA}=u_{BD}+u_{DA}$, then $E=Ri+u_C$ where $i=\frac{dq}{dt}=C\frac{du_C}{dt}$ Then , $E=RC\frac{du_C}{dt}+u_C$

8) Verify that the solution of this differential equation is $u_C = E\left(1 - e^{\frac{-t}{RC}}\right)$.

Ans:
$$u_C = E\left(1 - e^{\frac{-t}{RC}}\right)$$
, then $\frac{du_C}{dt} = \frac{E}{RC}e^{\frac{-t}{RC}}$

$$RC\frac{du_C}{dt} + u_C = RC\frac{E}{RC}e^{\frac{-t}{RC}} + E\left(1 - e^{\frac{-t}{RC}}\right) = E\left(e^{\frac{-t}{RC}}\right) + E - E\left(e^{\frac{-t}{RC}}\right) = E \text{ verified}$$

Or The solution of the obtained differential equation is of the form: $u_C = E (1 - e^{\frac{-t}{\tau}})$, where τ is constant. Determine the expression of τ in terms of R and C.

Ans:
$$u_C = E(1 - e^{\frac{-t}{\tau}}) = E - E e^{-\frac{t}{\tau}}$$
, then $\frac{du_C}{dt} = \frac{E}{\tau} e^{\frac{-t}{\tau}}$

Replacing u_C and $\frac{du_C}{dt}$ by their expressions in the differential equation, gives:

$$E \,=\, R\,C\,\,\frac{E}{\tau}\,\,e^{\frac{-t}{\tau}}\,+\,\,E\,\,-\,\,E\,\,e^{\frac{-t}{\tau}}\,,\, then\,\,\,E\,e^{\frac{-t}{\tau}}\,(\frac{RC}{\tau}\,\,-1) = 0$$

$$Ee^{\frac{-t}{\tau}} = 0$$
 is rejected Then, $(\frac{RC}{\tau} - 1) = 0$; therefore, $\tau = RC$

Or The solution of this differential equation is: $u_C = D \left(1 - e^{-\frac{t}{\tau}} \right)$. Determine the expressions of

the constants D and τ in terms of E, R and C

Ans:
$$u_C = D\left(1 - e^{-\frac{t}{\tau}}\right)$$
 then $\frac{du_C}{dt} = -D\left(-\frac{1}{\tau}\right)e^{-\frac{t}{\tau}} = \frac{D}{\tau}e^{-\frac{t}{\tau}}$

Replace u_C and $\frac{du_C}{dt}$ by their expressions in the differential equation.

We get:
$$RC \frac{D}{\tau} e^{-\frac{t}{\tau}} + D - De^{-\frac{t}{\tau}} = E$$
 Vt

$$D(\frac{RC}{\tau} - 1)e^{-\frac{t}{\tau}} + D - E = 0 \quad \forall t$$

Comparing, we get: D-E=0 then D=E

$$\left(\frac{RC}{\tau} - 1\right) = 0$$
 then $\tau = RC$

Or The solution of this differential equation has the form of: $u_C = A + B\,e^{Dt}$. Determine the constants A, B and D in terms of E, R and C.

Ans: $u_C = A + B e^{Dt}$, so $\frac{d u_c}{dt} = BD e^{Dt}$, substitute in the differential equation

BD
$$e^{Dt} + \frac{A + B e^{Dt}}{R C} = \frac{E}{R C}$$
, then RC B D $e^{Dt} + A + Be^{Dt} = E$
Be^{Dt} (RC D + 1) + A = E.

$$Be^{Dt} (RC D + 1) + A = E.$$

$$A = E$$
; and $Be^{Dt} (RCD + 1) = 0$. But $Be^{Dt} = 0$ is rejected,

then
$$(R C D + 1) = 0$$
, thus $D = -\frac{1}{RC}$

At
$$t_o=0$$
 , $u_C=0=\ A+B\ e^{D\ t}$, so $0=A+B$, then $B=-A$, therefore $B=-E$.

9) Determine, at the instant t = 0, the expression of the voltage u_C in terms of E.

Ans: At
$$t = 0$$
; $u_C = E(1 - e^0) = E(1 - 1) = 0$

10) Determine, at the instant $t = \tau$, the expression of the voltage u_C in terms of E.

Ans: At
$$t = \tau$$
; $u_C = E\left(1 - e^{-\frac{\tau}{\tau}}\right) = E\left(1 - e^{-1}\right) \approx 0,63E$

11) Verify that the capacitor becomes practically fully charged at t = 5 RC.

At t = 5 RC: $u_C = E(1 - e^{\frac{-5 \text{ RC}}{R \text{ C}}}) = E(1 - e^{-5})$, then $u_C = 0.99$ E. Therefore, the capacitor becomes practically fully charged at t = 5 R C.

12) Referring to the graph of $u_C = f(t)$ of the adjacent document: Determine the value of τ .

Ans: At
$$t = \tau$$
;

$$u_C = 0.63E = 0.63 \times 8 = 5.04 \text{ V} \approx 5 \text{ V}$$

from the graph we get :
$$\tau = 2 \text{ s}$$

13) Deduce the value of the value of the capacitance if the resistance $R = 200 \Omega$.

Ans:
$$\tau = RC$$
 then $C = \tau/R = \frac{2}{200} = 10^{-2} \, F$

14) determine $\frac{du_{\rm C}}{dt}\Big|_{t=0}$

From the differential equation of u_C

Ans:
$$\frac{du_C}{dt} + \frac{u_C}{RC} = \frac{E}{RC}$$
 at $t = 0$, $u_C = 0$ so $\frac{du_C}{dt}\Big|_{t=0} = \frac{E}{RC}$

Or from the solution $u_C = E(1-e^{-\frac{t}{\tau}})$

Ans:
$$u_C = E(1-e^{-\frac{t}{\tau}})$$
 then $\frac{du_C}{dt} = \frac{E}{\tau} e^{-\frac{t}{\tau}}$ So $\frac{du_C}{dt}\Big|_{t=0} = \frac{E}{\tau} e^0 = \frac{E}{RC}$

Or Graphically

Ans: $\frac{duc}{dt}\Big|_{t=0}$ = slope of the tangent to the curve at (t=0) = tan $\alpha = \frac{E}{\tau} = \frac{E}{RC}$

15) Determine the expression of the current i as a function of time t.

Ans:
$$i = C \frac{du_C}{dt} = C \frac{E}{\tau} e^{-\frac{t}{\tau}} = C \frac{E}{RC} e^{-\frac{t}{\tau}} = \frac{E}{R} e^{-\frac{t}{\tau}}$$

16) Determine, at the instant t = 0, the value of the current i.

or Determine the maximum value of the current I.

Ans: At
$$t = 0$$
; $i = \frac{E}{R}e^0 = \frac{E}{R} = \frac{8}{200} = 0.04$ A then $I = 0.04$ A

17) Determine, at the instant $t = \tau$, the expression of the current i in terms of E and R. deduce its

Ans: At
$$t = \tau$$
; $i = \frac{E}{R}e^{-\tau/\tau} = \frac{E}{R}e^{-1} = 0.367\frac{E}{R}$ then $i = 0.0147$ A 18) Deduce the value of the current i in steady state.

Ans: at steady state:
$$t = \infty$$
; $i = \frac{E}{R}e^{-\frac{\infty}{\tau}} = \frac{E}{R} \times 0 = 0$ A

19) Sktetch i as function of t.

Ans: figure

20) Determine
$$\frac{di}{dt}\Big|_{t=0}$$

from the solution

Ans:
$$i = I_m e^{-\frac{t}{\tau}}$$
 then $\frac{di}{dt} = -\frac{I_m}{\tau} e^{-\frac{t}{\tau}}$ So $\frac{di}{dt}\Big|_{t=0} = -\frac{I_m}{\tau} e^{0} = -\frac{I_m}{RC} = -\frac{E}{R^2C}$

Or Graphically

Ans:
$$\frac{di}{dt}\Big|_{t=0}$$
 = slope of the tangent to the curve at (t=0) = tan $\alpha = -\frac{E/R}{\tau} = -\frac{E}{R^2C}$

21) Determine the expression of the voltage across the resistor u_R as a function of time t.

Ans:
$$u_R = Ri = R\frac{E}{R}e^{-\frac{t}{RC}} = Ee^{-\frac{t}{RC}}$$

Or if $u_C = E\left(1 - e^{\frac{-\tau}{RC}}\right)$. Deduce the expression of the voltage across the resistor u_R as a function of time t.

Ans:
$$u_R + u_C = E$$
 then $u_R = E - u_C = E - E \left(1 - e^{\frac{-t}{RC}}\right) = Ee^{-\frac{t}{RC}}$

22) Determine, at the instant t = 0, the expression of the voltage across the resistor u_R . or Determine the maximum value of the current u_R.

Ans: At
$$t = 0$$
; $u_R = Ee^{-\frac{t}{RC}} = Ee^0 = E$

23) Determine, at the instant $t = \tau$, the expression of u_R in terms of E.

Ans: At
$$t = \tau$$
; $u_R = Ee^{-1} = 0.367 E$

24) Deduce the value of the u_R in steady state.

Ans: at steady state:
$$t = \infty$$
; $u_R = Ee^{-\frac{\infty}{RC}} = Ex0 = 0$ V

25) Sktetch u_R as function of t.

Ans: figure

26) Determine $\frac{duR}{dt}\Big|_{t=0}$

from the solution u_R

Ans:
$$u_R = Ee^{-\frac{t}{\tau}}$$
 then $\frac{du_R}{dt} = -\frac{E}{\tau}e^{-\frac{t}{\tau}}$ So $\frac{du_C}{dt}\Big|_{t=0} = -\frac{E}{\tau}e^0 = -\frac{E}{RC}$

Or Graphically

Ans:
$$\frac{du_R}{dt}\Big|_{t=0}$$
 = slope of the tangent to the curve at $(t=0)$ = $\tan \alpha = -\frac{E}{\tau} = -\frac{E}{RC}$

27) If $u_C = E\left(1 - e^{\frac{-t}{RC}}\right)$. Determine the expression of the charge q as a function of time t.

Ans:
$$q = Cu_C = CE(1-e^{-\frac{t}{RC}})$$

28) Determine, at the instant $t = \tau$, the expression of q in terms of E and C.

Ans: At $t = \tau$; $q = Cu_C = CE(1-e^{-1}) = 0.63$ CE

29) Deduce the value of the u_R in steady state.

or Determine the maximum value of q.

Ans: at steady state: $t = \infty$; $q = CE(1-e^{-\infty}) = CE(1-0) = CE$ then $Q_m = CE$.

30) Sktetch q as function of t.

Ans: figure

31) Determine
$$\frac{dq}{dt}\Big|_{t=0}$$
 from the solution q

Ans:
$$q = Q_m (1 - e^{-\frac{t}{\tau}})$$
 then $\frac{dq}{dt} = \frac{Q_m}{\tau} e^{-\frac{t}{\tau}}$ So $\frac{dq}{dt}\Big|_{t=0} = \frac{Q_m}{\tau} e^0 = \frac{Q_m}{RC} = \frac{E}{RC}$

Ans:
$$\frac{dq}{dt}\Big|_{t=0}$$
 = slope of the tangent to the curve at (t=0) = tan $\alpha = \frac{CE}{\tau} = \frac{E}{R}$

32) Derive the differential equation that governs the variation of the current i as function of time.

Ans: Apply Law of addition of voltages: $u_R + u_C = u_G$ where u_R =Ri and q=Cu_C

Ri
$$+\frac{q}{c} = E$$
 where $i = \frac{dq}{dt}$ Derive with respect to time $R\frac{di}{dt} + \frac{1}{c}\frac{dq}{dt} = 0$

$$R\frac{di}{dt} + \frac{i}{C} = 0 \text{ then } \frac{di}{dt} + \frac{i}{RC} = 0$$

33) Derive the differential equation that governs the variation of the voltage u_R as function of time.

Ans: Law of addition of voltages: $u_R + u_C = u_G$ where $q=Cu_C$

$$u_R + \frac{q}{c} = E$$
 where $i = \frac{dq}{dt}$ Derive with respect to time

$$u_R + \frac{q}{c} = E$$
 where $i = \frac{dq}{dt}$ Derive with respect to time
$$\frac{du_R}{dt} + \frac{1}{c}\frac{dq}{dt} = 0 \text{ then } \frac{du_R}{dt} + \frac{i}{c} = 0 \text{ then } \frac{du_R}{dt} + \frac{Ri}{RC} = 0 \text{ so } \frac{du_R}{dt} + \frac{u_R}{RC} = 0$$

34) Derive the differential equation that governs the variation of the q as function of time.

Ans: Law of addition of voltages: $u_R + u_C = u_G$

Ri + u_C = E Where i =
$$\frac{dq}{dt}$$
 and q=Cu_C then R $\frac{dq}{dt}$ + $\frac{q}{c}$ = E so $\frac{dq}{dt}$ + $\frac{q}{RC}$ = $\frac{E}{R}$

35) A capacitor of capacitance 5000 μF is charged under a voltage of 12 V. Calculate the accumulated charge and the energy stored in this capacitor.

Ans: Accumulated charge: $Q = CV = 5000 \times 0^{-6} \times 12 = 6 \times 10^{-2} \text{ C}$.

Stored energy: $W = 1/2 \text{ QV} = 1/2x(6x10^{-2})x12 = 36x10^{-2} \text{ J}.$

Discharging of a capacitor:

Consider the fully charged capacitor in the adjacent circuit, switch K is closed at new $t_0 = 0$,

At an instant t, the capacitor is charged by q and the circuit carries a current i.

36) Name the phenomenon that takes place.

Ans: discharging of a capacitor

37) Write the expression of the current i in terms of q.

Ans:
$$i = -\frac{dq}{dt}$$

38) Deduce the expression of i in terms of the capacitance C and the voltage u_C.

Ans:
$$q = Cu_C$$
 so $i = -C \frac{du_C}{dt}$

39) Derive the differential equation that governs the variation of the voltage, $u_{DA}=u_{C}$, across the capacitor.

Ans: Apply law of addition of voltage $u_{BA}=u_{BD}+u_{DA}$, then 0=- Ri + u_{C} where $i=-C\frac{du_{C}}{dt}$ Then , RC $\frac{du_{C}}{dt}+u_{C}=0$

40) Verify that the solution of this differential equation is $u_C = Ee^{-\frac{t}{RC}}$.

Ans:
$$u_C = Ee^{-\frac{t}{RC}}$$
 then $\frac{du_C}{dt} = -\frac{E}{RC}e^{\frac{-t}{RC}}$

$$RC\frac{du_C}{dt} + u_C = -RC\frac{E}{RC}e^{\frac{-t}{RC}} + Ee^{-\frac{t}{RC}} = -E\left(e^{\frac{-t}{RC}}\right) + E\left(e^{\frac{-t}{RC}}\right) = 0 \text{ verified}$$

Or The solution of the obtained differential equation is of the form: $u_C = E e^{-\frac{t}{T}}$, where τ is constant. Determine the expression of τ in terms of R and C.

Ans:
$$u_C = E e^{-\frac{t}{\tau}}$$
, then $\frac{du_C}{dt} = -\frac{E}{\tau} e^{\frac{-t}{\tau}}$

Replacing u_C and $\frac{du_C}{dt}$ by their expressions in the differential equation, gives:

- R C
$$\frac{E}{\tau}$$
 $e^{\frac{-t}{\tau}}$ + E $e^{\frac{-t}{\tau}}$ = 0 , then $Ee^{\frac{-t}{\tau}}(\frac{RC}{\tau}-1)$ = 0

$$\operatorname{Ee}^{\frac{-t}{\tau}} = 0$$
 is rejected Then, $(\frac{RC}{\tau} - 1) = 0$; therefore, $\tau = RC$

41) Determine, at the instant t = 0, the expression of the voltage u_C in terms of E.

Ans: At
$$t = 0$$
; $u_C = E(e^0) = E(1) = E$

42) Determine, at the instant $t = \tau$, the expression of the voltage u_C in terms of E.

Ans: At
$$t = \tau$$
; $u_C = E\left(e^{-\frac{\tau}{\tau}}\right) = E\left(e^{-1}\right) \approx 0.37E$

43) Verify that the capacitor becomes practically fully discharged at t = 5 RC.

At t = 5 RC: $u_C = E(e^{\frac{-5 RC}{RC}}) = E(e^{-5})$, then $u_C = 0.006$ E. Therefore, the capacitor becomes practically fully discharged at t = 5 RC.

44) Sketch u_C

Ans: the figure

45) determine $\frac{du_c}{dt}\Big|_{t=0}$ Graphically

Ans: $\frac{du_c}{dt}\Big|_{t=0}$ = slope of the tangent to the curve at (t=0) = tan $\alpha = -\frac{E}{\tau} = -\frac{E}{RC}$

46) Determine the expression of the current i as a function of time t.

Ans:
$$i = -C \frac{du_C}{dt} = -C \frac{E}{\tau} e^{-\frac{t}{\tau}} = -C \frac{E}{RC} e^{-\frac{t}{\tau}} = -\frac{E}{R} e^{-\frac{t}{\tau}}$$

47) Determine, at the instant t = 0, the value of the current i.

or Determine the maximum value of the current I.

Ans: At
$$t = 0$$
; $i = \frac{E}{R}e^0 = \frac{E}{R}$

48) Determine, at the instant $t = \tau$, the expression of the current i in terms of E and R. Ans: At $t = \tau$; $i = \frac{E}{R}e^{-\tau/\tau} = \frac{E}{R}e^{-1} = 0.367\frac{E}{R}$ 49) Deduce the value of the current i in steady state.

Ans: At
$$t = \tau$$
; $i = \frac{E}{R}e^{-\tau/\tau} = \frac{E}{R}e^{-1} = 0.367\frac{\bar{E}}{R}$

Ans: at steady state:
$$t = \infty$$
; $i = \frac{E}{R}e^{-\frac{\infty}{\tau}} = \frac{E}{R} \times 0 = 0$ A

50) Sktetch i as function of t.

Ans: figure

51) Determine $\frac{di}{dt}\Big|_{t=0}$

from the solution

Ans:
$$i = I_m e^{-\frac{t}{\tau}}$$
 then $\frac{di}{dt} = -\frac{I_m}{\tau} e^{-\frac{t}{\tau}}$ So $\frac{di}{dt}\Big|_{t=0} = -\frac{I_m}{\tau} e^0 = -\frac{I_m}{RC} = -\frac{E}{R^2C}$

Or Graphically

Ans:
$$\frac{di}{dt}\Big|_{t=0}$$
 = slope of the tangent to the curve at (t=0) = tan $\alpha = -\frac{E/R}{\tau} = -\frac{E}{R^2C}$

52) Determine the expression of the voltage across the resistor u_R as a function of time t.

Ans:
$$u_R = Ri = R\frac{E}{R}e^{-\frac{t}{RC}} = Ee^{-\frac{t}{RC}}$$

Or if $u_C = E\left(1 - e^{\frac{-t}{RC}}\right)$. Deduce the expression of the voltage across the resistor u_R as a function of time t.

Ans:
$$u_R + u_C = E$$
 then $u_R = E - u_C = E - E \left(1 - e^{\frac{-t}{RC}}\right) = Ee^{-\frac{t}{RC}}$

53) Determine, at the instant t = 0, the expression of the voltage across the resistor u_R . or Determine the maximum value of the current u_R.

Ans: At
$$t = 0$$
; $u_R = Ee^{-\frac{t}{RC}} = Ee^0 = E$

54) Determine, at the instant $t = \tau$, the expression of u_R in terms of E.

Ans: At
$$t = \tau$$
; $u_R = Ee^{-1} = 0.367 E$

55) Deduce the value of the u_R in steady state.

Ans: at steady state:
$$t = \infty$$
; $u_R = Ee^{-\frac{\infty}{RC}} = Ex0 = 0 \text{ V}$

56) Sktetch u_R as function of t.

Ans: figure

57) Determine
$$\frac{duR}{dt}\Big|_{t=0}$$

from the solution u_R

Ans:
$$u_R = Ee^{-\frac{t}{\tau}}$$
 then $\frac{du_R}{dt} = -\frac{E}{\tau}e^{-\frac{t}{\tau}}$ So $\frac{du_C}{dt}\Big|_{t=0} = -\frac{E}{\tau}e^0 = -\frac{E}{RC}$

Or Graphically

Ans:
$$\frac{du_R}{dt}\Big|_{t=0}$$
 = slope of the tangent to the curve at (t=0) = tan $\alpha = -\frac{E}{\tau} = -\frac{E}{RC}$

58) If $u_C = Ee^{-\frac{l}{RC}}$. Determine the expression of the charge q as a function of time t.

Ans:
$$q = Cu_C = CE(1-e^{-\frac{t}{RC}})$$

59) Determine, at the instant $t = \tau$, the expression of q in terms of E and C.

Ans: At
$$t = \tau$$
; $q = Cu_C = CE(e^{-1}) = 0.37$ CE

60) Deduce the value of the u_R in steady state.

Ans: at steady state: $t = \infty$; $q = CE(e^{-\infty}) = CE(0) = 0$ then Q_m

61) Sktetch q as function of t.

Ans: figure

62) Determine $\frac{dq}{dt}\Big|_{t=0}$ Graphically

Ans: $\frac{dq}{dt}\Big|_{t=0}$ = slope of the tangent to the curve at (t=0) = tan $\alpha = -\frac{CE}{\tau} = -\frac{E}{R}$

63) Derive the differential equation that governs the variation of the current i as function of time.

Ans: Law of addition of voltages: $u_{AB(R)} + u_{BA(C)} = 0$ where $u_{BA(C)} = -u_{C}$

$$u_R - u_C = 0$$
 where $u_R = Ri$ and $q = Cu_C$ then $Ri - \frac{q}{c} = 0$

Ris. Law of addition of voltages.
$$d_{AB(R)} + d_{BA(C)} = 0$$
 where $d_{AB(R)} + d_{BA(C)} = 0$ where $d_{AB(R)} + d_{AB(R)} = 0$

$$R\frac{di}{dt} + \frac{i}{c} = 0 \text{ so } \frac{di}{dt} + \frac{i}{RC} = 0$$

64) Derive the differential equation that governs the variation of the voltage u_R as function of time.

Ans: Law of addition of voltages: $u_{AB(R)} + u_{BA(C)} = 0$ where $u_{BA(C)} = -u_{C}$

$$u_R - u_C = 0$$
 where $q = Cu_C$ then $u_R - \frac{q}{c} = 0$

$$u_{R} - u_{C} = 0 \text{ where } q = Cu_{C} \text{ then } u_{R} - \frac{q}{c} = 0$$

$$u_{R} = \frac{q}{c} \text{ Derive with respect to time } \frac{du_{R}}{dt} = \frac{1}{c} \frac{dq}{dt} \text{ Where } i = -\frac{dq}{dt}$$

$$\frac{du_{R}}{dt} + \frac{i}{c} = 0 \text{ then } \frac{du_{R}}{dt} + \frac{Ri}{Rc} = 0 \text{ so } \frac{du_{R}}{dt} + \frac{u_{R}}{Rc} = 0$$

$$\frac{du_R}{dt} + \frac{i}{C} = 0$$
 then $\frac{du_R}{dt} + \frac{Ri}{RC} = 0$ so $\frac{du_R}{dt} + \frac{u_R}{RC} = 0$

65) Derive the differential equation that governs the variation of the q as function of time.

Ans: Law of addition of voltages:

$$u_{AB(R)} + u_{BA(C)} = 0$$
 where $u_R = Ri$ and $u_{BA(C)} = -u_C$ then $Ri - u_C = 0$ Where $i = -\frac{dq}{dt}$ and $q = Cu_C$

$$R\frac{dq}{dt} - \frac{q}{c} = 0$$
 so $R\frac{dq}{dt} + \frac{q}{c} = 0$

RC series circuit under square signal voltage

Consider the electric circuit, includes a resistor of resistance R, a capacitor of capacitance C, and a low frequency generator (LFG) delivering square signal voltage. Such that; Square signal: It is a periodic signal which takes a constant maximum value during one half-period, and is zero in the second half.

66) The waveform of uAM represents the "image" of the current i. Why?

Ans: u_{AM} = Ri then $i = u_{AM}$ /cte so the curve of u_{AM} represents the image of i.

67) During discharging the curve u_R or i is negative. Why?

Ans: During discharging:

$$u_{AM(R)} + u_{MB(C)} = 0$$

 $u_{AM(R)} = - u_{MB(C)}$

