

LAB 3: THIẾT KẾ HỆ TỔ HỢP THIẾT KẾ HỆ TUẦN THI

Họ và tên: Lâm Thành Phát	Lớp TN: L21	
MSSV: 2111974	Ngày: 29/10/2022	

A. PRELAB

<u>Câu 1:</u> Thiết kế mạch cộng toàn phần Full Adder:

Mạch bao gồm 3 ngõ vào và 2 ngõ ra, thực hiện phép cộng 3 bit nhị phân ngõ vào. Hai ngõ vào A và B là 2 bit nhị phân cùng trọng số của 2 số cần thực hiện phép cộng, ngõ vào thứ 3, Ci, là số nhớ của phép cộng 2 bit có trọng số nhỏ hơn trước đó. Hai ngõ ra của mạch cộng toàn phần là tổng S và bit nhớ C_o .

Bảng chân trị:

A	В	Ci	S	Co
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Sơ đồ logic:

Sử dụng các IC cổng logic, lắp mạch cộng toàn phần trên Breadboard.

Xác định các IC cần thiết:

IC74HC86 (XOR): 1 cái
IC74HC08 (AND): 1 cái
IC74HC32 (OR): 1 cái

Sơ đồ kết nối các IC:

<u>Câu 2:</u> Sử dụng IC cộng 74LS283 để thiết kế mạch cộng/trừ hai số nhị phân. Mạch có các ngõ vào S (1bit), A (4bit) và B (4bit) thực hiện chức năng:

- Khi S = 0, mạch thực hiện A + B
- Khi S = 1, mạch thực hiện A B

74LS283 là IC thực hiện phép cộng song song 4 bit, nhận ngõ vào là 2 số A (A3A2A1A0) va2 B (B3B2B1B0) cùng số nhớ Cin. Mạch cộng 4 bit song song bao gồm 4 mạch cộng toàn phần. Mỗi bộ cộng toàn phần thực hiện phép cộng 2 bit tương ứng của số A và số B, tạo ra tổng S và số nhớ Co; số nhớ Co này được đưa vào ngõ Ci của bộ toàn phần tiếp theo. Kết quả của mạch cộng song song gồm tổng S (S4S3S2S1) và 1 bit nhớ Cout.

Hình 3.1: Mạch cộng song song 4 bit

Hình 3.2: Sơ đồ chân của IC 74LS283

Sơ đồ logic của mạch cộng song 4 bit – Giải thích cách thiết kế?

Thực hiện thiết kế mạch cộng/trừ nhị phân như hình trên.

Nguyên tắc: $A_i - B_i = A_i + 2$'s complement (B_i)

Khi $S=0, S_0=0, C_{_{in}}=0, Y_0=B_{_0}$, FA0 thực hiện chức năng cộng hai bit nhị phân $A_0+B_{_0}$, tương tự cho các FA kế tiếp.

Khi $S=1, S_0=1, C_{in}=1, Y_0=2$'s $complement(B_0)$, FA0 thực hiện chức năng trừ hai bit nhị phân, tương tự cho các FA kế tiếp.

S	Phép toán	A_{i}	B_{i}	C_{i}
0	A+B			0
0	A+B			0
1	A+(-B)			1
1	A+(-B)			1

Lắp mạch cộng toàn phần trên Breadboard, xác định các IC cần thiết:

IC74LS283: 1 cái

Sơ đồ kết nối IC:

Câu 3: Thiết kế mạch đếm lên từ 0 7 sử dụng IC D-FF 74LS74

Bộ đếm nối tiếp thực hiện việc đếm lên hoặc đếm xuống, các trạng thái của bộ đếm hơn/kém nhau 1 đơn vị. Bộ đếm nối tiếp được xây dựng dựa trên các flip-flop, ngõ ra của flip-flop trước là tín hiệu clock của flip-flop tiếp theo.

Hình 3.3: Sơ đồ chân và bảng hoạt động của IC 74LS74

Sơ đồ mạch đếm nối tiếp từ 0-7:

Sơ đồ kết nối IC:

<u>Câu 4:</u> Thiết kế hệ tuần tự có giản đồ trạng thái như hình 3.4:

Bảng chuyển trạng thái:

TT hiện tại		Ngõ vào	TT kế tiếp		p	
	S1	S0	X		S1+	S0+
A	0	0	0		0	0
	0	0	1		0	1
	0	1	0		0	0
	0	1	1		1	1
	1	0	0		0	0
	1	0	1		0	1

Bảng 3.2: Bảng chuyển trạng thái

Sơ đồ mạch của máy trạng thái:

$$S1+=$$
 ; $S0+=$

Các IC cần sử dụng:

Sơ đồ kết nối IC:

