

ข้อสอบแข่งขันคอมพิวเตอร์โอลิมปิกระดับชาติ ครั้งที่ 14 ณ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

ข้อสอบข้อที่ 1 จากทั้งหมด 3 ข้อ วันพฤหัสบดีที่ 21 มิถุนายน 2561 เวลา 9.00-12.00น.

โลจิสติกส์ (LOGISTICS)

การสั่งซื้อสินค้าออนไลน์เป็นที่นิยมอย่างสูงในปัจจุบัน ทำให้ธุรกิจจัดส่งของมีการแข่งขันกันมาก เพื่อให้การ พัฒนาธุรกิจของบริษัทขนส่ง NBK Logistic International Cooperation Limited (มหาชน) เป็นไปได้อย่าง มีประสิทธิภาพ จึงมีการระดมความคิดจากหลากหลายภาคส่วนเพื่อเพิ่มกำไรในธุรกิจดังกล่าว ทั้งนี้จากข้อมูลที่ ได้รับพบว่าการลดค่าใช้จ่ายทางด้านเชื้อเพลิงจะช่วยให้กำไรเพิ่มขึ้นอย่างมหาศาล โดยเงื่อนไขของรถขนส่ง ภายใต้การดูแลของบริษัท มีดังนี้

- บริษัทมีสาขาอยู่ทุกเมืองในประเทศไทย เมืองละ 1 สาขา
- รถขนส่งมีความจุเชื้อเพลิงตามที่กำหนดโดยความจุเป็นจำนวนเต็มหน่วย
- ก่อนรถขนส่งจะออกจากเมืองต้นทาง ถังความจุเชื้อเพลิงจะ<u>ว่**าง**</u>เสมอ
- เมื่อสิ้นสุดภารกิจ รถขนส่งจะต้องเติมเชื้อเพลิงให้<u>เต**็มถัง**</u>
- การเติมเชื้อเพลิงทำได้เฉพาะ ณ เมืองที่ผ่านเท่านั้น โดยไม่จำเป็นต้องเติมให้เต็มถังทุกครั้ง
- สามารถหาเส้นทางการเดินทางจากเมืองหนึ่ง ไปยังอีกเมืองหนึ่งได้เสมอ
- หากเมืองทั้งสองมีเส้นเชื่อมต่อโดยตรงระหว่างกัน เส้นเชื่อมดังกล่าวจะมีเพียงเส้นเดียวเท่านั้น
- ข้อมูลปริมาณการใช้เชื้อเพลิงของรถขนส่งในการเดินทางระหว่างเมืองบนเส้นเชื่อมที่กำหนดให้ เป็นจำนวนเต็มหน่วย
- ราคาเชื้อเพลิงของแต่ละเมืองไม่เท่ากัน โดยมีหน่วยเป็นบาท
- บริษัทขนส่งให้บัตรกำนัลเติมน้ำมันฟรี 1 ใบ ซึ่งสามารถใช้ในการเติมเชื้อเพลิงในปริมาณเท่าไรก็
 ได้ ที่เมืองใดก็ได้ และบัตรกำนัลจะใช้ได้เพียงครั้งเดียวเท่านั้น โดยผู้ขับอาจจะใช้หรือไม่ใช้บัตร กำนัลนี้ก็ได้

เพื่อให้ค่าใช้จ่ายในการเติมเชื้อเพลิงรถขนส่งของบริษัทต่ำที่สุด จึงต้องพัฒนาโปรแกรมคอมพิวเตอร์ที่มี ประสิทธิภาพเพื่อคำนวณหาวิธีเดินทางที่เหมาะสม

ตัวอย่าง 1

รูปที่ 1 ประกอบตัวอย่าง 1

จากรูปที่ 1 มีเมืองทั้งหมด 4 เมือง แต่ละเมืองมีราคาเชื้อเพลิงดังนี้

เมือง 1 มีราคาเชื้อเพลิงหน่วยละ 7 บาท

เมือง 3 มีราคาเชื้อเพลิงหน่วยละ 8 บาท

เมือง 2 มีราคาเชื้อเพลิงหน่วยละ 1 บาท เมือง 4 มีราคาเชื้อเพลิงหน่วยละ 10 บาท

ตัวเลขบนเส้นแสดงปริมาณการใช้เชื้อเพลิงที่รถขนส่งต้องใช้เดินทางระหว่างเมือง โดย

การเดินทางจากเมือง 1 ไปยังเมือง 2 (หรือเดินทางจากเมือง 2 ไปยังเมือง 1) รถขนส่งใช้เชื้อเพลิง 60 หน่วย การเดินทางจากเมือง 1 ไปยังเมือง 3 (หรือเดินทางจากเมือง 3 ไปยังเมือง 1) รถขนส่งใช้เชื้อเพลิง 50 หน่วย การเดินทางจากเมือง 1 ไปยังเมือง 4 (หรือเดินทางจากเมือง 4 ไปยังเมือง 1) รถขนส่งใช้เชื้อเพลิง 90 หน่วย การเดินทางจากเมือง 2 ไปยังเมือง 4 (หรือเดินทางจากเมือง 4 ไปยังเมือง 2) รถขนส่งใช้เชื้อเพลิง 30 หน่วย การเดินทางจากเมือง 3 ไปยังเมือง 4 (หรือเดินทางจากเมือง 4 ไปยังเมือง 3) รถขนส่งใช้เชื้อเพลิง 20 หน่วย และไม่มีเส้นทางเชื่อมต่อโดยตรงจากเมือง 2 ไปยังเมือง 3

หากรถขนส่งต้องเดินทางจากเมือง 1 ไปยังเมือง 4 และรถขนส่งมีความจุเชื้อเพลิง 100 หน่วย อาจเดินทางโดย

- เติมเชื้อเพลิงจากเมือง 1 จำนวน 70 หน่วยเพื่อเดินทางไปยังเมือง 3 จากนั้นเติมเชื้อเพลิงจากเมือง 3 จำนวน 50 หน่วย เพื่อเดินทางไปยังเมือง 4 เมื่อถึงปลายทางเติมเชื้อเพลิงอีกจำนวน 50 หน่วยโดยใช้บัตร กำนัล ดังนั้นค่าใช้จ่ายสำหรับค่าเชื้อเพลิงในการเดินทางคิดเป็นเงินทั้งสิ้น (70x7)+(50x8)=890 บาท
- สำหรับวิธีเดินทางโดยมีค่าใช้จ่ายน้อยที่สุดคือ เติมเชื้อเพลิงจากเมือง 1 จำนวน 100 หน่วยโดยใช้บัตร กำนัล เพื่อเดินทางไปยังเมือง 2 จากนั้นเติมเชื้อเพลิงจากเมือง 2 จำนวน 60 หน่วย เพื่อเดินทางไปยัง เมือง 4 เมื่อถึงปลายทางเติมเชื้อเพลิงอีก 30 หน่วย ดังนั้นค่าใช้จ่ายสำหรับค่าเชื้อเพลิงในการเดินทางคิด เป็นเงินทั้งสิ้น (60x1)+(30x10)=360 บาท

จากรูปที่ 2 มีเมืองทั้งหมด 4 เมือง แต่ละเมืองมีราคาเชื้อเพลิงดังนี้

เมือง 1 มีราคาเชื้อเพลิงหน่วยละ 10 บาท

เมือง 2 มีราคาเชื้อเพลิงหน่วยละ 1 บาท

เมือง 3 มีราคาเชื้อเพลิงหน่วยละ 3 บาท

เมือง 4 มีราคาเชื้อเพลิงหน่วยละ 10 บาท

เมือง 5 มีราคาเชื้อเพลิงหน่วยละ 30 บาท

ปริมาณการใช้เชื้อเพลิงที่รถขนส่งต้องใช้เดินทางระหว่างเมือง โดย

การเดินทางจากเมือง 1 ไปยังเมือง 2 (หรือเดินทางจากเมือง 2 ไปยังเมือง 1) รถขนส่งใช้เชื้อเพลิง 1 หน่วย การเดินทางจากเมือง 1 ไปยังเมือง 5 (หรือเดินทางจากเมือง 5 ไปยังเมือง 1) รถขนส่งใช้เชื้อเพลิง 5 หน่วย การเดินทางจากเมือง 4 ไปยังเมือง 5 (หรือเดินทางจากเมือง 5 ไปยังเมือง 4) รถขนส่งใช้เชื้อเพลิง 20 หน่วย การเดินทางจากเมือง 3 ไปยังเมือง 4 (หรือเดินทางจากเมือง 4 ไปยังเมือง 3) รถขนส่งใช้เชื้อเพลิง 2 หน่วย

หากรถขนส่งต้องเดินทางจากเมือง 1 ไปยังเมือง 4 และรถขนส่งมีความจุ เชื้อเพลิง 20 หน่วย วิธีเดินทางโดยมี ค่าใช้จ่ายน้อยที่สุดคือ เติมเชื้อเพลิงจากเมือง 1 จำนวน 1 หน่วย เพื่อเดินทางไปยังเมือง 2 จากนั้นเติม เชื้อเพลิงอีก 6 หน่วย และเดินทางกลับมายังเมือง 1 ไม่เติมเชื้อเพลิงที่เมืองที่ 1 จากนั้นเดินทางจากเมือง 1 ไป ยังเมือง 5 แล้วเติมเชื้อเพลิงอีกจำนวน 20 หน่วยที่เมือง 5 โดยใช้บัตรกำนัล จากนั้นเดินทางจากเมือง 5 ไปยัง เมือง 4 และเติมเชื้อเพลิงอีก 2 หน่วยที่เมือง 4 จากนั้นเดินทางจากเมือง 4 ไปยังเมือง 3 และเติมเชื้อเพลิงอีก 20 หน่วยที่เมือง 3 จากนั้นเดินทางจากเมือง 4 และมาเติมเชื้อเพลิงอีก 2 หน่วยที่เมือง 4

ดังนั้นค่าใช้จ่ายสำหรับค่าเชื้อเพลิงในการเดินทางคิดเป็นเงินทั้งสิ้น (1x10)+(6x1)+ (2x10))+(3x20)+(2x10)=116 บาท

งานของคุณ

จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อหาค่าใช้จ่ายที่น้อยที่สุด ที่ใช้ในการเติมเชื้อเพลิงรถขนส่งของบริษัท สำหรับการเดินทางจากเมืองต้นทางไปยังเมืองปลายทางตามเงื่อนไขที่กำหนด

ข้อมูลนำเข้า

มีจำนวน M+4 บรรทัด ดังนี้

บรรทัดที่ 1	จำนวนเต็ม N แทนจำนวนของเมือง		
	กำหนดให้ $4 \leq N \leq 100$		
บรรทัดที่ 2	จำนวนเต็ม N จำนวน คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง ระบุราคาเชื้อเพ		
	เป็นจำนวน p_i บาทต่อหน่วย สำหรับเมืองที่ i		
	กำหนดให้ $1 \leq p_i \leq 100$ เมื่อ $1 \leq i \leq N$		
บรรทัดที่ 3	จำนวนเต็ม 3 จำนวน S,D และ F โดยคั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง		
	S ระบุเมืองต้นทางของรถขนส่ง กำหนดให้ $1 \leq S \leq N$		
	D ระบุเมืองปลายทาง กำหนดให้ $1 \leq D \leq N$		
	F ระบุความจุเชื้อเพลิงของรถขนส่ง กำหนดให้ $1 \leq F \leq 100$		
	หมายเหตุ มีโอกาสที่ $S=D$		
บรรทัดที่ 4	จำนวนเต็ม M แทนจำนวนเส้นเชื่อมต่อระหว่างเมือง		
	กำหนดให้ $4 \leq M \leq 4,950$		
<i>M</i> บรรทัดต่อมา	แต่ละบรรทัดเป็นจำนวนเต็ม 3 จำนวน A,B และ W ตามลำดับ		
	คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง เพื่อแสดงปริมาณเชื้อเพลิง $oldsymbol{W}$ ที่รถขนส่ง		
	ใช้ในการเดินทางระหว่างเมือง A และเมือง B		
	โดย $1 \leq A \leq N$, $1 \leq B \leq N$, $A \neq B$ และ $1 \leq W \leq F$		

ข้อมูลส่งออก

มีจำนวน 1 บรรทัด คือ

บรรทัดที่ 1	แสดงจำนวนเต็มเพื่อบอกค่าใช้จ่ายที่น้อยที่สุดในการเดินทางของรถขนส่งจาก
	เมืองต้นทางไปยังเมืองปลายทางตามเงื่อนไขที่กำหนด

ตัวอย่างที่ 1

ข้อมูลนำเข้า	ข้อมูลส่งออก	
4	360	
7 1 8 10		
1 4 100		
5		
1 2 60		
1 3 50		
1 4 90		
2 4 30		
3 4 20		

ตัวอย่างที่ 2

ข้อมูลนำเข้า	ข้อมูลส่งออก
5	116
10 1 3 10 30	
1 4 20	
4	
1 2 1	
1 5 5	
4 5 20	
3 4 2	

หมายเหตุ ตัวอย่างข้อมูลนำเข้าในตัวอย่างที่ 1 มาจากรูปที่ 1 และตัวอย่างข้อมูลนำเข้าในตัวอย่างที่ 2 มาจาก รูปที่ 2

ข้อกำหนด

หัวข้อ	เงื่อนไข
ข้อมูลนำเข้า	Standard Input (คีย์บอร์ด)
ข้อมูลส่งออก	Standard Output (จอภาพ)
ระยะเวลาสูงสุดที่ใช้ในการประมวลผล	1 วินาที
หน่วยความจำสูงสุดที่ใช้ในการประมวลผล	512 MB
คะแนนสูงสุดของโจทย์	100 คะแนน
เงื่อนไขการรันโปรแกรม	โปรแกรมจะต้องคอมไพล์ผ่าน

ข้อกำหนดอื่น ๆ

ผู้เข้าแข่งขันต้องระบุชื่อแฟ้มข้อมูลและส่วนหัวของโปรแกรมให้สอดคล้องกับภาษาและคอมไพเลอร์ที่ใช้ ดังนี้

υ <u>ι</u>	
ภาษา C	ภาษา C++
/*	/*
TASK: logistics.c	TASK: logistics.cpp
LANG: C	LANG: C++
AUTHOR: YourName YourLastName	AUTHOR: YourName YourLastName
CENTER: YourCenter	CENTER: YourCenter
*/	*/

ข้อมูลเพิ่มเติมเกี่ยวกับชุดทดสอบ ข้อมูลแนะนำที่เกี่ยวข้องกับชุดทดสอบ มีดังนี้

รูปแบบ	จำนวน	คะแนนสูงสุดที่	ลักษณะ
ข้อมูล	เมือง	เป็นไปได้	
ทดสอบ		โดยประมาณ	
1	10	10	มีเมืองจำนวนสองเมืองที่มีเส้นเชื่อมจำนวนหนึ่งเส้นและเมืองที่เหลือ
			มีเส้นเชื่อมเป็นจำนวนสองเส้น
			และราคาเชื้อเพลิงในแต่ละเมืองเท่ากัน
2	50	20	มีจำนวนเส้นเชื่อมน้อยกว่าจำนวนเมือง
			และราคาเชื้อเพลิงในแต่ละเมืองเท่ากัน
3	50	20	มีเมืองจำนวนสองเมืองที่มีเส้นเชื่อมจำนวนหนึ่งเส้นและเมืองที่เหลือ
			มีเส้นเชื่อมเป็นจำนวนสองเส้น
			แต่ราคาเชื้อเพลิงในแต่ละเมืองอาจจะไม่เท่ากัน
4	100	50	มีจำนวนเส้นเชื่อมมากกว่าจำนวนเมือง
			และราคาเชื้อเพลิงในแต่ละเมืองอาจจะไม่เท่ากัน