ЯHДекс

CatBoost — gradient boosting library

Vasily Ershov, Software Developer

Машинное обучение = AI?

Машинное обучение ≠ АІ

Нейронные сети

Факторизация матриц

Обучение с учителем

$$x \in \mathbb{X}, y \in \mathbb{Y}$$

Предположения

$$f: \mathbb{X} \to \mathbb{Y}$$

$$lack \psi$$
 Данные для обучения $(x_1,y_1),\dots,(x_n,y_n)$

$$\hat{f}: X \rightarrow Y$$

Входные данные

Неструктурированные данные

Neural networks

DNA

Текст

Изображения

Музыка

«Числовые» признаки

Категориальные признаки

Жанр песни

Длина песни	Год выпуска	Рейтинг	
2	1990	3	
3	1950	5	
15	1970	4	

Жанр	Исполнитель	
Rock	Scorpions	
Jazz	Louis Armstrong	
Blues	B.B.King	6

Деревья решений

Boosting на деревьях решений

- State-of-the-art quality на структурированных данных
- Прост в использовании
- Работает на небольших объемах данных, а также легко масштабируется на «Big data problems»

8

Main Boosting libraries

CatBoost

Поддержка категориальных данных

Классический препроцессинг (one-hot-encoding)

Значение признака	value=jazz	value=rock	value=blues
Jazz	1	0	0
Blues	0	0	1
Rock	0	1	0

Поддержка категориальных данных

- Классический препроцессинг (one-hot-encoding)
- Подход к работе с категориальными признаками на основе автоматического вычисления статистик по категориальным признакам

Genre

Поддержка категориальных данных

Высокое качество

- > Новая схема boosting'a, позволяющая избегать переобучения (ordered boosting)
- > Полезные эвристики, основанные на богатом опыте применения boosting'a: мы обучали ансамбли из деревьев решения до того, как это стало модным:)

Поддержка категориальных данных

1

Регрессия

Высокое качество

Music and video

recommendations

Широкий спектр решаемых задач

2

Классификация и мультиклассификация

Research

Industry

Medicine

3

Ранжирование

4

Специализированные режимы

Поддержка категориальных данных

1

Регрессия

Высокое качество

Широкий спектр решаемых задач

2

Классификация и мультиклассификация

Ищем вещественно-значную функцию

3

Ранжирование

 $f: \mathbb{X} \to \mathbb{R}$

4

Специализированные режимы

Использование в Яндексе: погода

Что хотим?

- > Предсказать температуру
- Тип задачи: регрессия
- Данные для обучения
- > Физические модели погоды
- > Online-данные с датчиков
- Данные об температуре за последние n лет

Поддержка категориальных данных

1

Регрессия

Высокое качество

Широкий спектр решаемых задач

2

Классификация и мультиклассификация

Пытаемся предсказать один из m классов объекта

 $f: \mathbb{X} \rightarrow \{0, 1, \ldots, m\}$

3

Ранжирование

4

Специализированные режимы

Использование в Яндексе: погода

Что хотим?

- Предсказать тип погоды (осадки, ветер, etc)
- Тип задачи: мультиклассификация
- Данные для обучения
- > Физические модели погоды
- > Online-данные с датчиков
- Данные об облачности за последние n лет

Особенности CatBoost'a

Поддержка категориальных данных

1

Регрессия

Высокое качество

Широкий спектр решаемых задач

2

Классификация и мультиклассификация

Функция, по значению которой можно сортировать объекты некоторым оптимальным образом

3

Ранжирование

 $f: \mathbb{X} \to \mathbb{R}$

4

Специализированные режимы

Использование в Яндексе: поиск

Тип задачи: ранжирование

Данные для обучения

- > Запрос
- > Признаки на основе документов
- Ручная разметка документов на релевантные и не релевантные

habrahabr.ru > Яндекс > Блог компании Яндекс > 333522 ▼

CatBoost – это новый метод машинного обучения, основанный на градиентном

Использование в Яндексе: поиск

Обработка текста

Обработка картинок

Признаки, разработанные людьми (PageRank, BM25, etc)

Boosting эффективно комбинирует нейронные сети и «человеческий интеллект»

Поддержка категориальных данных

1

Регрессия

Высокое качество

Широкий спектр решаемых задач

2

Классификация и мультиклассификация

Более сложные специализированные режимы

3

Ранжирование

4

Специализированные режимы

Использование в Яндексе: реклама

Что хотим?

- Показать баннер, который понравится пользователю
- Тип задачи: смесь ранжирование и классификации
- Данные для обучения
 - > История поиска пользователей
 - > История кликов пользователей

ИЛИ

Использование в Яндексе

- Алиса: ранжирование
- Дзен: ранжирование, рекомендации
- Музыка: рекомендации
- И многие другие

- Поддержка категориальных данных
- Высокое качество
- Широкий спектр решаемых задач
- Удобно пользоваться
- > Встроенная аналитика

Графики ошибок + интеграция с tensorboard, jupyter

Поиск важны примеров

Влияние признаков

Поддержка категориальных данных

Высокое качество

Широкий спектр решаемых задач

Удобно пользоваться

- > Встроенная аналитика
- Хорошие гиперпараметры алгоритмов

Подбор параметров? Можно, но работаем и без него хорошо

Поддержка категориальных данных

Высокое качество

- Удобно пользоваться
- > Встроенная аналитика
- > Хорошие гиперпараметры алгоритмов
- > Удобные библиотеки и документация к ним

Пример использования

Пример использования: обучение

```
from catboost import Pool
from catboost import CatBoostRegressor
train_pool = Pool('/home/noxoomo/ranking_pool/features.txt',
                  column_description='/home/noxoomo/ranking_pool/pool.cd')
test pool = Pool('/home/noxoomo/ranking pool/featuresTest.txt',
                 column_description='/home/noxoomo/ranking_pool/pool.cd')
model = CatBoostRegressor(
    thread_count=16,
    iterations=1000,
    learning rate=0.2,
    logging_level="Silent",
    border_count=32,
    loss function="YetiRankPairwise")
model.fit(train_pool, eval_set=test_pool,plot=True)
```


Поддержка категориальных данных

Высокое качество

Удобно пользоваться

Широкий спектр решаемых задач

Производительность и масштабируемость

- > Обучение
- > Применение (deploy)

GPU and MultiGPU

Distributed CPU

CatBoost: решаем прикладные задачи в индустрии

Gradient Boosting в индустрии

Больше данных => выше качество больше денег

Больше деревьев => выше качество больше денег

Быстрее обучение => больше экспериментов больше денег

Быстро применять?

Симметричные деревья, CatBoost

Классические деревья, Все остальные библиотеки

Быстро применять?

Симметричные деревья, CatBoost

- Несколько сравнений + look-up в таблицу
- Можно использовать SSE
- За счет наших деревьев: в 20 раз быстрее конкурентов

CPU vs GPU

Peak GFLOPS

Peak memory bandwidth

— GPU — CPU (Intel E5-2690)

Производительность для CatBoost'a

80x Intel Xeon E5-2660v4

NVIDIA Titan V

Цена

2xIntel Xeon E5-2660v4 ≈3000\$ (amazon.com) Titan V ≈3000 (nvidia.com)

Использование в Яндексе: поиск

Время обучения CPU

- 75 часов, 100 машин, 16-ядерный сервер
- Время обучения GPU
- > 7-9 часов, один сервер с 8 Tesla P40

CatBoost – это новый метод машинного обучения, основанный на градиентном

Сравнение с конкурентами

Скорость обучения

- Сравнимая с конкурентами скорость обучения на CPU
- GPU версия в 3-20 раз быстрее конкурентов в зависимости от объема данных и режима обучения

Скорость применение

В десятки раз быстрее при одинаковом количестве деревьев

Качество

- > State-of-the-art на категориальных признаках
- > Сравнимое для вещественных

Спасибо за внимание!

Подробнее:

https://catboost.ai

Vasily Ershov
Software developer

noxoomo@yandex-team.ru

+7 921 332 45 71

