LOGIC AND THEORETICAL FOUNDATION OF COMPUTER SCIENCE

LATFOCS

Pamela Fleischmann

fpa@informatik.uni-kiel.de

Winter Semester 2019

Kiel University Dependable Systems Group

RESOLUTION

Recap

Definition

- A formula φ ∈ Φ is in Conjunctive Normal Form (CNF) iff φ is a conjuction of disjunctions of literals.
- A clause is a disjunction of literals.
- A unit clause has exactly one literal.
- \bigcirc The empty clause \square is the clause without literals.

Recap

Definition

- A formula φ ∈ Φ is in Conjunctive Normal Form (CNF) iff φ is a conjunction of disjunctions of literals.
- A clause is a disjunction of literals.
- A unit clause has exactly one literal.
- \bigcirc The empty clause \square is the clause without literals.

Every formula in propositional logic can be transformed into an equivalent formula in CNF.

 \bigcirc Clauses have only $\lor \leadsto$ consider it to be a set of literals

- \bigcirc Clauses have only $\lor \leadsto$ consider it to be a set of literals
- \bigcirc Formula in CNF have only $\land \leadsto$ consider it to be a set of clauses

- \bigcirc Clauses have only $\lor \sim$ consider it to be a set of literals
- \bigcirc Formula in CNF have only $\land \leadsto$ consider it to be a set of clauses

Definition

The Clausal Form of a formula $\varphi \in \Phi$ is the set $C_{\varphi} = \{C_1, \ldots, C_m\}$ such that C_1, \ldots, C_m are exactly φ 's clauses.

- \bigcirc Clauses have only $\lor \rightarrow$ consider it to be a set of literals
- \bigcirc Formula in CNF have only $\land \leadsto$ consider it to be a set of clauses

Definition

The Clausal Form of a formula $\varphi \in \Phi$ is the set $C_{\varphi} = \{C_1, \ldots, C_m\}$ such that C_1, \ldots, C_m are exactly φ 's clauses.

What are the advantages of the the clausal form?

Definition

A clause *C* is called trivial iff there exists $p \in A$ with $p, \neg p \in C$.

Definition

A clause *C* is called trivial iff there exists $p \in A$ with $p, \neg p \in C$.

Lemma

If S clausal form, $C \in S$ trivial then $S \setminus C \equiv S$.

Definition

A clause *C* is called trivial iff there exists $p \in A$ with $p, \neg p \in C$.

Lemma

If S clausal form, $C \in S$ trivial then $S \setminus C \equiv S$.

Proof. Etudes ;-)

Definition

A clause *C* is called trivial iff there exists $p \in A$ with $p, \neg p \in C$.

Lemma

If S clausal form, $C \in S$ trivial then $S \setminus C \equiv S$.

Proof. Etudes ;-)

We assume that formula are trivial-clause-free!

Lemma

 \square *is unsatisfiable and* \emptyset *is valid.*

Lemma

 \square *is unsatisfiable and* \emptyset *is valid.*

Lemma

 \square *is unsatisfiable and* \emptyset *is valid.*

Proof.

O satisfiable: there exists valuation such that formula true

Lemma

 \square *is unsatisfiable and* \emptyset *is valid.*

- o satisfiable: there exists valuation such that formula true
- valuation: mapping from atoms to truth values

Lemma

 \square *is unsatisfiable and* \emptyset *is valid.*

- \odot satisfiable: there exists valuation such that formula true
- valuation: mapping from atoms to truth values
- \bigcirc \square has no literals \rightsquigarrow no literals that are true

Lemma

 \square *is unsatisfiable and* \emptyset *is valid.*

- o satisfiable: there exists valuation such that formula true
- O valuation: mapping from atoms to truth values
- \cap \square has no literals \rightsquigarrow no literals that are true
- □ unsatisfiable

Lemma

 \square *is unsatisfiable and* \emptyset *is valid.*

- o satisfiable: there exists valuation such that formula true
- valuation: mapping from atoms to truth values
- \bigcirc \square has no literals \rightsquigarrow no literals that are true
- □ unsatisfiable
- validity: true under all valuations

Lemma

 \square *is unsatisfiable and* \emptyset *is valid.*

- o satisfiable: there exists valuation such that formula true
- valuation: mapping from atoms to truth values
- \bigcirc \square has no literals \rightsquigarrow no literals that are true
- ☐ unsatisfiable
- validity: true under all valuations
- \bigcirc \emptyset has no clauses which can be false \rightarrow valid

O Refutation procedure for the unsatisfiability problem

 $\, \bigcirc \,$ Refutation procedure for the unsatisfiability problem

Resolution Rule

 C_1 , C_2 clauses with $\ell \in C_1$ and $\neg \ell \in C_2$

 \bigcirc C_1 , C_2 clashing clauses

O Refutation procedure for the unsatisfiability problem

Resolution Rule

 C_1 , C_2 clauses with $\ell \in C_1$ and $\neg \ell \in C_2$

- \bigcirc C_1 , C_2 clashing clauses
- \bigcirc *C* resolvent of C_1 , C_2 w.r.t. ℓ : $C = (C_1 \setminus \{\ell\}) \cup (C_2 \setminus \{\neg \ell\})$

O Refutation procedure for the unsatisfiability problem

Resolution Rule

 C_1 , C_2 clauses with $\ell \in C_1$ and $\neg \ell \in C_2$

- \bigcirc C_1 , C_2 clashing clauses
- \bigcirc *C* resolvent of C_1 , C_2 w.r.t. ℓ : $C = (C_1 \setminus \{\ell\}) \cup (C_2 \setminus \{\neg \ell\})$
- \bigcirc C_1 , C_2 parent clauses of C

O Refutation procedure for the unsatisfiability problem

Resolution Rule

 C_1 , C_2 clauses with $\ell \in C_1$ and $\neg \ell \in C_2$

- \bigcirc C_1 , C_2 clashing clauses
- \bigcirc *C* resolvent of C_1 , C_2 w.r.t. ℓ : $C = (C_1 \setminus \{\ell\}) \cup (C_2 \setminus \{\neg \ell\})$
- \bigcirc C_1 , C_2 parent clauses of C
- \bigcirc resolution is performed if C_1 and C_2 are substituted by C

Lemma

The resolvant of two clauses sharing more than one literal is trivial.

Lemma

The resolvant of two clauses sharing more than one literal is trivial.

Proof.

 \bigcirc C_1, C_2 clauses, ℓ_1, ℓ_2 literals with $\ell_1, \ell_2 \in C_1, \neg \ell_1, \neg \ell_2 \in C_2$

Lemma

The resolvant of two clauses sharing more than one literal is trivial.

- \bigcirc C_1, C_2 clauses, ℓ_1, ℓ_2 literals with $\ell_1, \ell_2 \in C_1, \neg \ell_1, \neg \ell_2 \in C_2$
- \bigcirc resolvent w.r.t. ℓ_1 :

$$C = (C_1 \setminus \{\ell_1\}) \cup (C_2 \setminus \{\neg \ell_1\})$$

$$= (C_1 \setminus \{\ell_1, \ell_2\} \cup \{\ell_2\}) \cup (C_2 \setminus \{\neg \ell_1, \neg \ell_2\} \cup \{\neg \ell_2\})$$

$$= (C_1 \setminus \{\ell_1, \ell_2\}) \cup (C_2 \setminus \{\neg \ell_1, \neg \ell_2\}) \cup \{\ell_2, \neg \ell_2\} \quad \Box$$

Lemma

The resolvant of two clauses sharing more than one literal is trivial.

Proof.

- \bigcirc C_1, C_2 clauses, ℓ_1, ℓ_2 literals with $\ell_1, \ell_2 \in C_1, \neg \ell_1, \neg \ell_2 \in C_2$
- \bigcirc resolvent w.r.t. ℓ_1 :

$$C = (C_1 \setminus \{\ell_1\}) \cup (C_2 \setminus \{\neg \ell_1\})$$

$$= (C_1 \setminus \{\ell_1, \ell_2\} \cup \{\ell_2\}) \cup (C_2 \setminus \{\neg \ell_1, \neg \ell_2\} \cup \{\neg \ell_2\})$$

$$= (C_1 \setminus \{\ell_1, \ell_2\}) \cup (C_2 \setminus \{\neg \ell_1, \neg \ell_2\}) \cup \{\ell_2, \neg \ell_2\} \quad \Box$$

Delete clauses sharing more than one literal straight away.

Theorem

 $\label{thm:continuous} A \ resolvant \ is \ satisfiable \ iff \ the \ parent \ clauses \ are \ both \ satisfiable.$

Theorem

A resolvant is satisfiable iff the parent clauses are both satisfiable.

Theorem 1

A resolvant is satisfiable iff the parent clauses are both satisfiable.

Proof.

 \bigcirc C_1 , C_2 clauses, C resolvent of C_1 , C_2 sharing the literal ℓ

Theorem

A resolvant is satisfiable iff the parent clauses are both satisfiable.

- \bigcirc C_1, C_2 clauses, C resolvent of C_1, C_2 sharing the literal ℓ
- for " \rightarrow ": *C* satisfiable by valuation β

Theorem

A resolvant is satisfiable iff the parent clauses are both satisfiable.

- \bigcirc C_1, C_2 clauses, C resolvent of C_1, C_2 sharing the literal ℓ
- for " \rightarrow ": *C* satisfiable by valuation β
- there exists literal $\ell' \in C$ with $\beta(\ell')$ = true

Theorem

A resolvant is satisfiable iff the parent clauses are both satisfiable.

- \bigcirc C_1, C_2 clauses, C resolvent of C_1, C_2 sharing the literal ℓ
- for " \rightarrow ": *C* satisfiable by valuation β
- \bigcirc there exists literal $\ell' \in C$ with $\beta(\ell') = \text{true}$
- $0 \ell' \in C \leadsto \ell' \in C_1 \text{ or } \ell' \in C_2 \leadsto \text{ one clause is satisfied}$

Theorem

A resolvant is satisfiable iff the parent clauses are both satisfiable.

- \bigcirc C_1, C_2 clauses, C resolvent of C_1, C_2 sharing the literal ℓ
- for " \rightarrow ": *C* satisfiable by valuation β
- there exists literal $\ell' \in C$ with $\beta(\ell')$ = true
- $0 \in \mathcal{C} \hookrightarrow \ell' \in \mathcal{C}_1 \text{ or } \ell' \in \mathcal{C}_2 \hookrightarrow \text{ one clause is satisfied}$
- \bigcirc β undefined on ℓ (since ℓ not in C)

We are on the correct path

Theorem

A resolvant is satisfiable iff the parent clauses are both satisfiable.

- \bigcirc C_1, C_2 clauses, C resolvent of C_1, C_2 sharing the literal ℓ
- for " \rightarrow ": *C* satisfiable by valuation β
- there exists literal $\ell' \in C$ with $\beta(\ell') = \text{true}$
- $0 \in \mathcal{C} \hookrightarrow \ell' \in \mathcal{C}_1 \text{ or } \ell' \in \mathcal{C}_2 \hookrightarrow \text{ one clause is satisfied}$
- \bigcirc β undefined on ℓ (since ℓ not in C)
- \bigcirc choose $\beta(\ell)$ such that the other clause is satisfied

Theorem

A resolvant is satisfiable iff the parent clauses are both satisfiable.

Theorem

A resolvant is satisfiable iff the parent clauses are both satisfiable.

Proof.

 \bigcirc C_1, C_2 clauses, C resolvent of C_1, C_2 sharing the literal ℓ

Theorem

A resolvant is satisfiable iff the parent clauses are both satisfiable.

Proof.

 \bigcirc C_1, C_2 clauses, C resolvent of C_1, C_2 sharing the literal ℓ

Theorem

A resolvant is satisfiable iff the parent clauses are both satisfiable.

- \bigcirc C_1, C_2 clauses, C resolvent of C_1, C_2 sharing the literal ℓ
- "→": √

Theorem

A resolvant is satisfiable iff the parent clauses are both satisfiable.

- \bigcirc C_1, C_2 clauses, C resolvent of C_1, C_2 sharing the literal ℓ
- "→": √
- \bigcirc " \leftarrow " β valuation satisfying C_1 and C_2

Theorem

A resolvant is satisfiable iff the parent clauses are both satisfiable.

- \bigcirc C_1, C_2 clauses, C resolvent of C_1, C_2 sharing the literal ℓ
- "→": √
- "←" β valuation satisfying C_1 and C_2
- \bigcirc w.l.o.g. $\beta(\ell) = \text{true}, \ell \in C_1$

Theorem

A resolvant is satisfiable iff the parent clauses are both satisfiable.

- \bigcirc C_1, C_2 clauses, C resolvent of C_1, C_2 sharing the literal ℓ
- \bigcirc " \rightarrow ": $\sqrt{}$
- \bigcirc " \leftarrow " β valuation satisfying C_1 and C_2
- \bigcirc w.l.o.g. $\beta(\ell)$ = true, $\ell \in C_1$
- \bigcirc C_1 satisfied and C_2 not satisfied through ℓ

Theorem

A resolvant is satisfiable iff the parent clauses are both satisfiable.

- \bigcirc C_1, C_2 clauses, C resolvent of C_1, C_2 sharing the literal ℓ
- \bigcirc " \rightarrow ": $\sqrt{}$
- \bigcirc " \leftarrow " β valuation satisfying C_1 and C_2
- \bigcirc w.l.o.g. $\beta(\ell) = \text{true}, \ell \in C_1$
- \bigcirc C_1 satisfied and C_2 not satisfied through ℓ
- \bigcirc exists $\ell' \in C_2$ with $\beta(\ell') = \text{true}$ and $\ell' \neq \ell$

Theorem

A resolvant is satisfiable iff the parent clauses are both satisfiable.

- \bigcirc C_1, C_2 clauses, C resolvent of C_1, C_2 sharing the literal ℓ
- \bigcirc " \rightarrow ": $\sqrt{}$
- \bigcirc " \leftarrow " β valuation satisfying C_1 and C_2
- \bigcirc w.l.o.g. $\beta(\ell) = \text{true}, \ell \in C_1$
- \bigcirc C_1 satisfied and C_2 not satisfied through ℓ
- \bigcirc exists $\ell' \in C_2$ with $\beta(\ell') = \text{true}$ and $\ell' \neq \ell$
- \bigcirc $\ell' \in C$ by definition

Algorithm

```
Input: clausal form S
  S_0 := S, flag = true
  while flag do
      Choose clashing C_1, C_2 \in S
       Determine resolvent C of C_1, C_2
      S_{i+1} := S_i \setminus \{C_1, C_2\} \cup \{C\}
      if C = \square or S_{i+1} = \emptyset then
           flag = false
       end if
  end while
  if C = \square then
       return UNSAT
  end if
  if S_n = \emptyset then
       return SAT
```


Resolution as Trees

Definition

Let *S* be a clausal form with conjuncts C_1, \ldots, C_m for $m \in \mathbb{N}$. Define the resolution tree *T* of *S* by

- *T* is a binary tree
- \bigcirc C_1, \ldots, C_m are T's leaves
- \bigcirc *C* is the parent node of C_i and C_j iff *C* is the resolvent of C_i and C_j

Refutation by Resolution

Definition

Derivation of \square from clausal form S is a refutation by resolution of S.

Theorem

If the clauses representing the leaves of the resolution tree are satisfiable then so is the root.

Theorem

If the clauses representing the leaves of the resolution tree are satisfiable then so is the root.

Proof. follows directly with Theorem about satisfiability of resolvent

Theorem

If the clauses representing the leaves of the resolution tree are satisfiable then so is the root.

Proof. follows directly with Theorem about satisfiability of resolvent

Corollary (Soundness)

If there is a refutation by resolution for a clausal form S then S is unsatisfiable.

Theorem

If the clauses representing the leaves of the resolution tree are satisfiable then so is the root.

Proof. follows directly with Theorem about satisfiability of resolvent

Corollary (Soundness)

If there is a refutation by resolution for a clausal form S then S is unsatisfiable.

Notice: the other direction of the Theorem is not true!

harder to prove

- harder to prove
- \bigcirc to prove: if *S* is unsatisfiably then the procedure halts eventually with \square

- harder to prove
- \bigcirc to prove: if *S* is unsatisfiably then the procedure halts eventually with \square
- termination done: finite set of clauses, no pair of clauses is taken twice

- harder to prove
- \bigcirc to prove: if *S* is unsatisfiably then the procedure halts eventually with \square
- termination done: finite set of clauses, no pair of clauses is taken twice
- for proving that □ is the output we need semantic trees

Semantic Trees

Definition

S clausal form with atoms $A_S = \{p_1, \dots, p_n\}$ for $n \in \mathbb{N}$ T_S is semantic tree (tableau) for *S* iff

- \bigcirc T_S complete binary tree of depth n
- \bigcirc for a node in depth i: left child is p_{i+1} , right child is $\neg p_{i+1}$

Semantic Trees

Definition

S clausal form with atoms $A_S = \{p_1, \dots, p_n\}$ for $n \in \mathbb{N}$ T_S is semantic tree (tableau) for *S* iff

- \bigcirc T_S complete binary tree of depth n
- for a node in depth i: left child is p_{i+1} , right child is $\neg p_{i+1}$

natural evalutation w.r.t. branch b: assign true if the literal of an edge is positiv and false otherwise

Semantic Trees Cont.

Definition

Given a branch b of T and a clausal form S: evaluate S by the evaluation w.r.t b

- \bigcirc *b* is closed iff *S* is evaluated to false
- \bigcirc *b* is open iff *S* is evaluated to true
- *T* is closed (open) iff all branches are closed (open)

Theorem

 T_S is closed iff S is unsatisfiable

Theorem

 T_S is closed iff S is unsatisfiable

Proof.

 \bigcirc T_S closed, β evaluation of S

Theorem

 T_S is closed iff S is unsatisfiable

- \bigcirc T_S closed, β evaluation of S
- \bigcirc β equates to some branch b

Theorem

 T_S is closed iff S is unsatisfiable

- \bigcirc T_S closed, β evaluation of S
- \bigcirc β equates to some branch b
- \bigcirc T_S closed $\leadsto b$ closed $\leadsto \beta(S) = false <math>\sqrt{}$

Theorem

 T_S is closed iff S is unsatisfiable

- \bigcirc T_S closed, β evaluation of S
- \bigcirc β equates to some branch *b*
- \bigcirc T_S closed $\leadsto b$ closed $\leadsto \beta(S) = false <math>\sqrt{}$
- \bigcirc *S* unsatisfiable \rightsquigarrow all valuation lead to false

Theorem

 T_S is closed iff S is unsatisfiable

Proof.

- \bigcirc T_S closed, β evaluation of S
- \bigcirc β equates to some branch b
- T_S closed $\rightsquigarrow b$ closed $\rightsquigarrow \beta(S) = \text{false } \sqrt{}$
- S unsatisfiable \rightarrow all valuation lead to false
- branches equates the valuations \sim all branches closed \sim

T closed

Failure Nodes

Definition

A node n in the semantic tree T_S of a clausal form S is a failure node if the partial evaluation from the root to n falsifies S and n is closest to the root in this branch.

Failure Nodes

Definition

A node n in the semantic tree T_S of a clausal form S is a failure node if the partial evaluation from the root to n falsifies S and n is closest to the root in this branch.

O In a closed semantic tree each branch has a failure node.

Failure Nodes

Definition

A node n in the semantic tree T_S of a clausal form S is a failure node if the partial evaluation from the root to n falsifies S and n is closest to the root in this branch.

- In a closed semantic tree each branch has a failure node.
- The clauses falsified by a failure node are called associated to this node.

Failure Nodes and the Formula

Lemma

A clause C associated with a failure node n is a subset of the complements of the literals appearing on the branch from the root to n.

Failure Nodes and the Formula

Lemma

A clause C associated with a failure node n is a subset of the complements of the literals appearing on the branch from the root to n.

Proof.

 \bigcirc ℓ_1, \ldots, ℓ_k literals of C for $k \in \mathbb{N}$

Failure Nodes and the Formula

Lemma

A clause C associated with a failure node n is a subset of the complements of the literals appearing on the branch from the root to n.

- $0 \ell_1, \dots, \ell_k$ literals of C for $k \in \mathbb{N}$
- \bigcirc $E = \{e_1, \dots, e_m\}$ literals on the edges from the root to n

Failure Nodes and the Formula

Lemma

A clause C associated with a failure node n is a subset of the complements of the literals appearing on the branch from the root to n.

- \bigcirc ℓ_1, \ldots, ℓ_k literals of C for $k \in \mathbb{N}$
- \bigcirc $E = \{e_1, \dots, e_m\}$ literals on the edges from the root to n
- \bigcirc *n* failure node for $C \rightsquigarrow$ all ℓ_i valuates to false

Failure Nodes and the Formula

Lemma

A clause C associated with a failure node n is a subset of the complements of the literals appearing on the branch from the root to n.

- \bigcirc ℓ_1, \ldots, ℓ_k literals of C for $k \in \mathbb{N}$
- \bigcirc $E = \{e_1, \dots, e_m\}$ literals on the edges from the root to n
- \bigcirc *n* failure node for $C \rightsquigarrow$ all ℓ_i valuates to false
- \bigcirc \rightsquigarrow for all ℓ_i exists e_j with $\ell_i = \neg e_j$

Inference Nodes

Definition

A node n is an inference node iff its children are failure nodes.

Lemma

 T_S clsoed semantic tree for clausal form S. If T_S has at least two failure nodes then T has at least one inference node.

Lemma

 T_S clsoed semantic tree for clausal form S. If T_S has at least two failure nodes then T has at least one inference node.

Proof.

 \circ n_1 failure node and sibling n_2 as well $\rightsquigarrow \sqrt{}$

Lemma

 T_S clsoed semantic tree for clausal form S. If T_S has at least two failure nodes then T has at least one inference node.

- \cap n_1 failure node and sibling n_2 as well $\rightsquigarrow \sqrt{}$
- n_1 failure node and sibling n_2 not \sim no ancestor can be a failure node (minimality of n_1)

Lemma

 T_S clsoed semantic tree for clausal form S. If T_S has at least two failure nodes then T has at least one inference node.

- \bigcirc n_1 failure node and sibling n_2 as well \rightsquigarrow $\sqrt{}$
- n_1 failure node and sibling n_2 not \sim no ancestor can be a failure node (minimality of n_1)
- \bigcirc T_S closed \rightsquigarrow all branches containing n_2 have a failure node

Lemma

 T_S clsoed semantic tree for clausal form S. If T_S has at least two failure nodes then T has at least one inference node.

- \bigcirc n_1 failure node and sibling n_2 as well \rightsquigarrow $\sqrt{}$
- \cap n_1 failure node and sibling n_2 not \sim no ancestor can be a failure node (minimality of n_1)
- \bigcirc T_S closed \rightsquigarrow all branches containing n_2 have a failure node
- \bigcirc this failure node needs to be below n_2

Lemma

 T_S clsoed semantic tree for clausal form S. If T_S has at least two failure nodes then T has at least one inference node.

- \bigcirc n_1 failure node and sibling n_2 as well \rightsquigarrow $\sqrt{}$
- \cap n_1 failure node and sibling n_2 not \leadsto no ancestor can be a failure node (minimality of n_1)
- T_S closed \rightsquigarrow all branches containing n_2 have a failure node
- \bigcirc this failure node needs to be below n_2
- \bigcirc no inference node there $\rightsquigarrow T_S$ infinite.

Lemma

 T_S closed semantic tree for clausal form S; n inference node with failure nodes n_1 , n_2 ; C_1 , C_2 associated with n_1 , n_2 : C_1 , C_2 clash and partial valuation to n falsifies the resolvant

Lemma

 T_S closed semantic tree for clausal form S; n inference node with failure nodes n_1 , n_2 ; C_1 , C_2 associated with n_1 , n_2 : C_1 , C_2 clash and partial valuation to n falsifies the resolvant

Proof.

 \bigcirc C_1 , C_2 are not falisfied by any ancestor of n

Lemma

 T_S closed semantic tree for clausal form S; n inference node with failure nodes n_1 , n_2 ; C_1 , C_2 associated with n_1 , n_2 : C_1 , C_2 clash and partial valuation to n falsifies the resolvant

- \bigcirc C_1 , C_2 are not falisfied by any ancestor of n
- \bigcirc C_1 , C_2 are subsets of the complements of the branches to n_1 , n_2 resp.

Lemma

 T_S closed semantic tree for clausal form S; n inference node with failure nodes n_1 , n_2 ; C_1 , C_2 associated with n_1 , n_2 : C_1 , C_2 clash and partial valuation to n falsifies the resolvant

- \bigcirc C_1 , C_2 are not falisfied by any ancestor of n
- \bigcirc C_1 , C_2 are subsets of the complements of the branches to n_1 , n_2 resp.
- branches to n_1, n_2 identical except of literal $\sim \ell \in C_1$, $\neg \ell \in C_2$

Lemma

 T_S closed semantic tree for clausal form S; n inference node with failure nodes n_1 , n_2 ; C_1 , C_2 associated with n_1 , n_2 : C_1 , C_2 clash and partial valuation to n falsifies the resolvant

- \bigcirc C_1 , C_2 are not falisfied by any ancestor of n
- \bigcirc C_1 , C_2 are subsets of the complements of the branches to n_1 , n_2 resp.
- branches to n_1 , n_2 identical except of literal $\sim \ell \in C_1$, $\neg \ell \in C_2$
- \bigcirc resolvent of C_1 , C_2 does not have ℓ , $\neg \ell$

Lemma

 T_S closed semantic tree for clausal form S; n inference node with failure nodes n_1 , n_2 ; C_1 , C_2 associated with n_1 , n_2 : C_1 , C_2 clash and partial valuation to n falsifies the resolvant

- \bigcirc C_1 , C_2 are not falisfied by any ancestor of n
- \bigcirc C_1 , C_2 are subsets of the complements of the branches to n_1 , n_2 resp.
- branches to n_1 , n_2 identical except of literal $\rightsquigarrow \ell \in C_1$, $\neg \ell \in C_2$
- \bigcirc resolvent of C_1 , C_2 does not have ℓ , $\neg \ell$
- branch to resolvent falsifies it

Lemma

n inference node of n_1 , n_2 , C_1 , C_2 associated clauses, C resolvent of C_1 , C_2 :

 $S \cup \{C\}$ has failure node which is either n or ancestor of n

Lemma

n inference node of n_1 , n_2 , C_1 , C_2 associated clauses, C resolvent of C_1 , C_2 :

 $S \cup \{C\}$ has failure node which is either n or ancestor of n

Proof. Etudes.

Theorem

If the clausal form S is unsatisfiable then the procedure halts with $\square.$

Theorem

If the clausal form S is unsatisfiable then the procedure halts with \square .

Proof.

 \bigcirc *S* unsatisfiable \rightsquigarrow *T*_S closed semantic tree

Theorem

If the clausal form S is unsatisfiable then the procedure halts with $\square.$

- \bigcirc *S* unsatisfiable \rightsquigarrow *T*_S closed semantic tree
- \bigcirc if *S* contains $\square \sqrt{}$

Theorem

If the clausal form S is unsatisfiable then the procedure halts with \square .

- \bigcirc *S* unsatisfiable \rightsquigarrow *T*_S closed semantic tree
- \bigcirc if S contains $\square \sqrt{}$
- \bigcirc if *S* does not contain $\square \rightsquigarrow$ there exist two failure nodes (not proven here)

Theorem

If the clausal form S is unsatisfiable then the procedure halts with \square .

- \bigcirc *S* unsatisfiable \rightsquigarrow *T*_S closed semantic tree
- \bigcirc if *S* contains $\square \sqrt{}$
- \bigcirc if *S* does not contain $\square \rightsquigarrow$ there exist two failure nodes (not proven here)
- there exists inference node

Theorem

If the clausal form S is unsatisfiable then the procedure halts with \square .

- \bigcirc *S* unsatisfiable \rightsquigarrow *T*_S closed semantic tree
- \bigcirc if *S* contains $\square \sqrt{}$
- \bigcirc if *S* does not contain $\square \rightsquigarrow$ there exist two failure nodes (not proven here)
- there exists inference node
- applying resolution: inference node is failure node, two failure nodes deleted

Theorem

If the clausal form S is unsatisfiable then the procedure halts with \square .

- \bigcirc *S* unsatisfiable \rightsquigarrow *T*_S closed semantic tree
- \bigcirc if *S* contains $\square \sqrt{}$
- \bigcirc if *S* does not contain $\square \rightarrow$ there exist two failure nodes (not proven here)
- there exists inference node
- applying resolution: inference node is failure node, two failure nodes deleted
- successively decereasing failure nodes ~ reaching root

Theorem

If the clausal form S is unsatisfiable then the procedure halts with \Box *.*

- \bigcirc *S* unsatisfiable \rightsquigarrow *T*_S closed semantic tree
- \bigcirc if *S* contains $\square \sqrt{}$
- \bigcirc if *S* does not contain $\square \rightsquigarrow$ there exist two failure nodes (not proven here)
- there exists inference node
- applying resolution: inference node is failure node, two failure nodes deleted
- successively decereasing failure nodes → reaching root
- o empty clause needs to be associated with root