REAL ANALYSIS MIDTERM I FALL 2021 RAÚL CURTO

1. (12 points) First, recall that a function $f: \mathbb{R} \to \mathbb{R}$ is said to be Lipschitz if there exists a constant $C \ge 0$ such that $|f(x) - f(y)| \le C|x - y|$ for all $x, y \in \mathbb{R}$.

Now let E be a measurable subset of \mathbb{R} , and assume that $0 \leq m(E) < \infty$. Consider the function $f:[0,\infty)\to\mathbb{R}$ given by

$$f(x) := m(E \cap [0, x]).$$

- (a) (6 points) Prove that f is Lipschitz.
- (b) (6 points) Find the best possible constant C_0 ; that is, calculate

$$C_0 := \inf\{C \mid f \text{ is Lipschitz with constant } C\}.$$

- 2. (12 points) Define the following notions.
 - (a) (4 points) A Borel set in \mathbb{R} .
 - (b) (4 points) The outer measure m^* as a set function from the power set $2^{\mathbb{R}}$ to the extended reals. Concretely, what is the formal definition of $m^*(A)$, for $A \subseteq \mathbb{R}$?
 - (c) (4 points) A measurable set. That is, given a set $E \subseteq \mathbb{R}$, write down the formal definition of "E is measurable."
- 3. (12 points) First, observe that the interval [0,1] can be written as the disjoint union of $\{\frac{1}{n} \mid n \in \mathbb{N}\}$ and a set $A \subseteq [0,1]$. Consider now a half-open interval [0,1), which admits a similar disjoint union decomposition, using the same set A.
 - (a) (6 points) Find a simple description of $B := [0,1) \setminus A$, along the lines of what works for [0,1).
 - (b) (6 points) Use the description in (a) to establish a one-to-one map from [0,1] onto [0,1); in other words, prove that [0,1] and [0,1) are equipotent by writing down a function $f:[0,1] \to [0,1)$ which is one-to-one and onto.
- 4. (12 points) Consider the following collection of sets in \mathbb{R} :

$$\mathcal{A} \coloneqq \{ B \subseteq \mathbb{R} \mid B \text{ or } B^C \text{ is countable.} \}$$

- (a) (6 points) Prove that A is a σ -algebra.
- (b) (6 points) Prove that for $a, b \in \mathbb{R}$ with a < b, the interval [a, b] is not in \mathcal{A} . That is, \mathcal{A} provides an example of a σ -algebra that does not contain any nondegenerate intervals.
- 5. (24 points) Consider a nonmeasurable set $A \subseteq [0,1]$. Define functions $f,g:\mathbb{R} \to \mathbb{R}$ by

$$f(x) := \chi_A(x) - \chi_{A^C}(x)$$

and

$$g(x) := e^x \chi_A(x) - e^x \chi_{A^C}(x),$$

where for a set $B \subseteq \mathbb{R}$, χ_B denotes the characteristic function of B.

- (a) (6 points) Prove that f is not measurable.
- (b) (6 points) Prove that |f| is measurable.
- (c) (6 points) Prove that for any $c \in \mathbb{R}$, the set $\{x \in \mathbb{R} \mid g(x) = c\}$ is Borel.
- (d) (6 points) Prove that q is not measurable.

- 6. (16 points) Determine if each of the following statements is true or false. If true, provide a proof; if false, provide a counterexample or show in some fashion why the statement is false. In either case, you are free to cite the textbook, and provide a rationale along the lines of "...by a proposition in Section a.b of Royden-Fitzpatrick."
 - (a) (4 points) True or false? There exists a continuous function $f:[0,1] \to \mathbb{R}$ mapping the Cantor set \mathcal{C} onto a measurable set of measure 1.
 - (b) (4 points) True or false? The set of discontinuities of an increasing function defined on the interval [0, 1] is countable.
 - (c) (4 points) True or false? The proof of Lusin's theorem uses Egoroff's theorem.
 - (d) (4 points) True or false? For a set A of real numbers, let χ_A denote the characteristic function of A. Then, given two arbitrary sets $A, B \subseteq \mathbb{R}$, we always have

$$\chi_{A \cup B} = \chi_A + \chi_B - \chi_A \chi_B.$$

7. (12 points) Consider the set of natural numbers \mathbb{N} . On its power set $2^{\mathbb{N}}$ define the set function

$$\mu(A) := \begin{cases} \sum_{n \in A} 2^{-n} & A \text{ is finite} \\ \infty & A \text{ is infinite.} \end{cases}$$

- (a) (4 points) Prove that μ is monotone.
- (b) (4 points) Prove that μ is additive. (By induction, it suffices to prove that $\mu(A \cup B) = \mu(A) + \mu(B)$ for all $A, B \subseteq \mathbb{N}$ with $A \cap B = \emptyset$.)
- (c) (4 points) Prove that μ is not countably additive.