The Transconductance Amplifier Neuromorphic Engineering I

Giacomo Indiveri

Institute of Neuroinformatics
University of Zurich and ETH Zurich

Zurich, October 20, 2019

- Sigmoids
- 2 The Transconductance Amplifier
- Assumptions
- Voltage Amplifier

- Sigmoids
- 2 The Transconductance Amplifier
- Assumptions
- Voltage Amplifier

- Sigmoids
- 2 The Transconductance Amplifier
- 3 Assumptions
- Voltage Amplifier

- Sigmoids
- 2 The Transconductance Amplifier
- Assumptions
- Voltage Amplifier

- Sigmoids
- 2 The Transconductance Amplifier
- Assumptions
- Voltage Amplifier

The diff-pair

$$I_{1} = I_{0}e^{\frac{\kappa V_{1} - V_{s}}{U_{T}}}$$

$$I_{2} = I_{0}e^{\frac{\kappa V_{2} - V_{s}}{U_{T}}}$$

$$I_{b} = I_{1} + I_{2} = I_{0}e^{\frac{\kappa V_{b}}{U_{T}}}$$

$$\boxed{I_b = I_0 e^{-\frac{V_s}{U_T}} \left(e^{\frac{\kappa V_1}{U_T}} + e^{\frac{\kappa V_2}{U_T}} \right)}$$

The diff-pair

$$e^{-\frac{V_s}{U_T}} = \frac{I_b}{I_0} \quad \frac{1}{e^{\frac{\kappa V_1}{U_T}} + e^{\frac{\kappa V_2}{U_T}}}$$

$$I_1 = I_b \frac{e^{\frac{\kappa V_1}{U_T}}}{e^{\frac{\kappa V_1}{U_T}} + e^{\frac{\kappa V_2}{U_T}}}$$

$$I_2 = I_b \ \frac{e^{\frac{\kappa V_2}{U_T}}}{e^{\frac{\kappa V_1}{U_T}} + e^{\frac{\kappa V_2}{U_T}}}$$

Fermi Functions

5/32

The diff-pair (contd.)

Sigmoids

The term sigmoid means "S-shaped". Sigmoid functions are typically used in the (conventional) neural network research community. They are smooth, saturating, monotonic activation functions, that map the interval $(-\infty,\infty)$ onto (0,1). The canonical *logistic* sigmoid is defined as

$$f(x) = \frac{1}{1 + exp(-\alpha x)}$$

Sigmoids (contd)

Diff-pair output currents

The output currents of the diff-pair can be rewritten in the canonical sigmoid form:

$$I_1 = I_b \ \frac{1}{1 + e^{\frac{\kappa}{U_T}(V_2 - V_1)}} \qquad I_2 = I_b \ \frac{1}{1 + e^{\frac{\kappa}{U_T}(V_1 - V_2)}}$$

Difference of diff-pair currents

$$I_1 - I_2 = I_b \frac{e^{\frac{\kappa V_1}{U_T}} - e^{\frac{\kappa V_2}{U_T}}}{e^{\frac{\kappa V_1}{U_T}} + e^{\frac{\kappa V_2}{U_T}}} = I_b \tanh\left(\frac{\kappa}{2U_T}(V_1 - V_2)\right)$$

Difference of currents

To implement the difference of currents $(I_1 - I_2)$ we can use ...

- Sigmoids
- 2 The Transconductance Amplifier
- Assumptions
- Voltage Amplifier

For small differential voltages (e.g. $|V_1 - V_2| < 200 mV$), the tanh(·) relationship is approximately linear and the equation

$$I_{out} = I_{b} anhigg(rac{\kappa}{2U_{T}}(V_{1}-V_{2})igg)$$

can be reduce to:

$$I_{out} \approx g_m(V_1 - V_2)$$

where

$$g_m = \frac{I_b \kappa}{2U_T}$$

- The term $g_m = \frac{l_b \kappa}{2U_T}$ is the *transconductance* of the amplifier. It has the dimensions of a conductance, but the output current is meaured at a terminal that is different from the pair across which the input voltage difference is applied.
- The output conductance is of the amplifier is

$$g_d = -rac{\partial I_{out}}{\partial V_{out}} pprox rac{I_b}{V_E}$$

where V_E is the Early voltage of M_2 and M_5

- Sigmoids
- 2 The Transconductance Amplifier
- 3 Assumptions
- Voltage Amplifier

Assumptions

In order to obtain the nice $tanh(\cdot)$ equation, we implicitly made a few assumptions...

$$I_{1} = I_{0}e^{\frac{\kappa V_{1} - V}{U_{T}}}$$
 $I_{2} = I_{0}e^{\frac{\kappa V_{2} - V}{U_{T}}}$
 $I_{b} = I_{0}e^{\frac{\kappa V_{b}}{U_{T}}}$
 $I_{out} = I_{1} - I_{2}$

implies that all M_1 thorugh M_5 are in saturation.

Bias transistor (M3)

The equation for bias current flowing through M3 is:

$$I_b = I_0 e^{\frac{\kappa V_b}{U_T}} (1 - e^{-\frac{V_s}{U_T}})$$

From $I_b = I_1 + I_2$, and assuming that M_1 and M_2 are in saturation:

$$e^{\frac{\kappa V_b}{U_T}}(1-e^{-\frac{V_s}{U_T}})=e^{\frac{\kappa V_1-V_s}{U_T}}+e^{\frac{\kappa V_2-V_s}{U_T}}$$

And solving for $e^{-\frac{V_s}{U_T}}$:

$$e^{-\frac{V_s}{U_T}} = \frac{e^{\frac{\kappa V_b}{U_T}}}{e^{\frac{\kappa V_b}{U_T}} + e^{\frac{\kappa V_1}{U_T}} + e^{\frac{\kappa V_2}{U_T}}}$$

17/32

The saturation condition $V_{\mathcal{S}} > 4 U_{\mathcal{T}}$ imposes $e^{-\frac{V_{\mathcal{S}}}{U_{\mathcal{T}}}} \ll 1$.

$$e^{-\frac{V_{c}}{U_{T}}} = \frac{e^{\frac{\kappa V_{b}}{U_{T}}}}{e^{\frac{\kappa V_{b}}{U_{T}}} + e^{\frac{\kappa V_{1}}{U_{T}}} + e^{\frac{\kappa V_{2}}{U_{T}}}} \ll 1$$

$$e^{\frac{\kappa V_{b}}{U_{T}}} \ll e^{\frac{\kappa V_{b}}{U_{T}}} + e^{\frac{\kappa V_{1}}{U_{T}}} + e^{\frac{\kappa V_{2}}{U_{T}}}$$

$$1 + \frac{e^{\frac{\kappa V_{1}}{U_{T}}} + e^{\frac{\kappa V_{2}}{U_{T}}}}{e^{\frac{\kappa V_{b}}{U_{T}}}} \gg 1$$

$$\frac{e^{\frac{\kappa V_{1}}{U_{T}}} + e^{\frac{\kappa V_{2}}{U_{T}}}}{e^{\frac{\kappa V_{2}}{U_{T}}}} \gg 1$$

The saturation condition $V_{\rm S} > 4 U_T$ imposes $e^{-\frac{V_{\rm S}}{U_T}} \ll 1$.

$$e^{-\frac{V_s}{U_T}} = \frac{e^{\frac{\kappa V_b}{U_T}}}{e^{\frac{\kappa V_b}{U_T}} + e^{\frac{\kappa V_1}{U_T}} + e^{\frac{\kappa V_2}{U_T}}} \ll 1$$

$$e^{rac{\kappa V_b}{U_T}} \ll e^{rac{\kappa V_b}{U_T}} + e^{rac{\kappa V_1}{U_T}} + e^{rac{\kappa V_2}{U_T}}$$

$$1 + \frac{e^{\frac{\kappa V_1}{U_T}} + e^{\frac{\kappa V_2}{U_T}}}{e^{\frac{\kappa V_b}{U_T}}} \gg 1$$

$$\frac{e^{\frac{\kappa V_1}{U_T}} + e^{\frac{\kappa V_2}{U_T}}}{e^{\frac{\kappa V_b}{U_T}}} \gg 1$$

The saturation condition $V_{\rm S} > 4 U_T$ imposes $e^{-\frac{V_{\rm S}}{U_T}} \ll 1$.

$$e^{-\frac{V_s}{U_T}} = \frac{e^{\frac{\kappa V_b}{U_T}}}{e^{\frac{\kappa V_b}{U_T}} + e^{\frac{\kappa V_1}{U_T}} + e^{\frac{\kappa V_2}{U_T}}} \ll 1$$

$$e^{\frac{\kappa V_b}{U_T}} \ll e^{\frac{\kappa V_b}{U_T}} + e^{\frac{\kappa V_1}{U_T}} + e^{\frac{\kappa V_2}{U_T}}$$

$$1 + \frac{e^{\frac{\kappa V_1}{U_T}} + e^{\frac{\kappa V_2}{U_T}}}{e^{\frac{\kappa V_b}{U_T}}} \gg 1$$

$$\frac{e^{\frac{\kappa V_1}{U_T}} + e^{\frac{\kappa V_2}{U_T}}}{e^{\frac{\kappa V_b}{U_T}}} \gg 1$$

18/32

The saturation condition $V_{\rm S} > 4 U_T$ imposes $e^{-\frac{V_{\rm S}}{U_T}} \ll 1$.

$$e^{-\frac{V_s}{U_T}} = \frac{e^{\frac{\kappa V_b}{U_T}}}{e^{\frac{\kappa V_b}{U_T}} + e^{\frac{\kappa V_1}{U_T}} + e^{\frac{\kappa V_2}{U_T}}} \ll 1$$

$$e^{\frac{\kappa V_b}{U_T}} \ll e^{\frac{\kappa V_b}{U_T}} + e^{\frac{\kappa V_1}{U_T}} + e^{\frac{\kappa V_2}{U_T}}$$

$$1 + \frac{e^{\frac{\kappa V_1}{U_T}} + e^{\frac{\kappa V_2}{U_T}}}{e^{\frac{\kappa V_b}{U_T}}} \gg 1$$

$$\frac{e^{\frac{\kappa V_1}{U_T}} + e^{\frac{\kappa V_2}{U_T}}}{e^{\frac{\kappa V_2}{U_T}}} \gg 1$$

The saturation condition $V_{\mathcal{S}} > 4 U_{\mathcal{T}}$ imposes $e^{-\frac{V_{\mathcal{S}}}{U_{\mathcal{T}}}} \ll 1$.

$$e^{-\frac{V_S}{U_T}} = \frac{e^{\frac{\kappa V_D}{U_T}}}{e^{\frac{\kappa V_D}{U_T}} + e^{\frac{\kappa V_D}{U_T}} + e^{\frac{\kappa V_D}{U_T}}} \ll 1$$

$$e^{\frac{\kappa V_D}{U_T}} \ll e^{\frac{\kappa V_D}{U_T}} + e^{\frac{\kappa V_D}{U_T}} + e^{\frac{\kappa V_D}{U_T}}$$

$$1 + \frac{e^{\frac{\kappa V_D}{U_T}} + e^{\frac{\kappa V_D}{U_T}}}{e^{\frac{\kappa V_D}{U_T}}} \gg 1$$

$$\frac{e^{\frac{\kappa V_D}{U_T}} + e^{\frac{\kappa V_D}{U_T}}}{e^{\frac{\kappa V_D}{U_T}}} \gg 1$$

Now, from

$$e^{-\frac{V_s}{U_T}} = \frac{e^{\frac{\kappa V_b}{U_T}}}{e^{\frac{\kappa V_b}{U_T}} + e^{\frac{\kappa V_1}{U_T}} + e^{\frac{\kappa V_2}{U_T}}}$$

we can derive

$$V_{s} = -\kappa V_{b} + U_{T} \ln \left(e^{\frac{\kappa V_{b}}{U_{T}}} + e^{\frac{\kappa V_{1}}{U_{T}}} + e^{\frac{\kappa V_{2}}{U_{T}}} \right)$$

From the last slide we know that $e^{\frac{\kappa V_1}{U_T}} + e^{\frac{\kappa V_2}{U_T}} \gg e^{\frac{\kappa V_b}{U_T}}$. If we also assume $|V_1 - V_2| > 4U_T$, we can simplify the $\ln(\cdot)$.

19/32

The common node voltage V_s of the transconductance amplifier is

$$V_s pprox \kappa(\max(V_1,V_2)-V_b)$$

and the saturation condition for M_3 , $V_s > 4U_T$ is:

$$\max(V_1,V_2) > V_b + \frac{4U_T}{\kappa}$$

Complementary circuit

Output transistors

The output transistors M_2 and M_5 are the only other transistors that we have to worry about, because we can safely assume that M_1 and M_4 are always in saturation. The saturations conditions for M_2 and M_5 restrict the output voltage range:

- To keep M_5 in saturation $V_{dd} V_{out} > 4U_T$.
- To keep M_2 in saturation $V_{out} V_s > 4U_T$, which implies that

$$V_{out} > \kappa(\max(V_1, V_2) - V_b) + 4U_T$$

(the famous V_{min} problem).

$$\kappa(\max(V_1, V_2) - V_b) + 4U_T < V_{out} < V_{dd} - 4U_T$$

Output transistors

The output transistors M_2 and M_5 are the only other transistors that we have to worry about, because we can safely assume that M_1 and M_4 are always in saturation. The saturations conditions for M_2 and M_5 restrict the output voltage range:

- To keep M_5 in saturation $V_{dd} V_{out} > 4U_T$.
- To keep M_2 in saturation $V_{out} V_s > 4U_T$, which implies that

$$V_{out} > \kappa(\max(V_1, V_2) - V_b) + 4U_T$$

(the famous V_{min} problem).

$$\kappa(\max(V_1, V_2) - V_b) + 4U_T < V_{out} < V_{dd} - 4U_T$$

Output current vs output voltage

Above Threshold

If the differential pair is operated above threshold, it can be shown that

$$I_{out} = \frac{\beta}{2}(V_1 - V_2)\sqrt{\frac{4I_b}{\beta} - (V_1 - V_2)^2}$$

where $eta = \mu \, C_{ox} \, rac{W}{L}$

For $|V_1-V_2|<\sqrt{2I_b/\beta}$ the transconductance is given by

$$g_m = \sqrt{\beta I_b}$$

- Sigmoids
- 2 The Transconductance Amplifier
- Assumptions
- Voltage Amplifier

Voltage Amplifier

The transconductance amplifier circuit can also be used as a differential-votage amplifier:

$$V_{out} = A(V_1 - V_2)$$

where A is the open-circuit voltage gain.

$$A = \frac{dV_{out}}{d(V_1 - V_2)} = \frac{dI_{out}}{d(V_1 - V_2)} \frac{dV_{out}}{dI_{out}}$$

In subthreshold $A \approx \frac{\kappa V_E}{2U_T}$ and above threshold $A \approx \sqrt{\frac{\beta}{l_b}} \, V_E$.

Voltage amplifier uses

- The open-circuit voltage gain A increases with the Early voltage, and therefore with the length of the output transistors.
- Typical subthreshold values are between 100 and 1000.
- Due to the large gain and transistor mismatch effects this circuit is not normally used as an open-circuit voltage amplifier.
- In voltage mode, its mainly used as a *comparator*. V_{out} is "high" if $V_1 > V_2$ and "low" if $V_2 > V_1$.

Output voltage limits

We will now compute the limits of the output voltage swing.

$V_1 > V_2$

For $V_1 > V_2 + 4U_T$ the current through M_2 is much smaller than the one through M_1 , hence V_{out} goes almost all the way to V_{dd} to shut M_5 off. M_5 goes out of saturation.

$V_2 > V_2$

The forward current of M2 is \gg than that of M1. But the current mirror imposes $I_1 \approx I_2 \approx I_b/2$. If V_2 is significantly larger than V_1 , the voltage drop across M2 is close to zero and $V_{out} \approx V_s$. M2 goes out of saturation.

Output voltage limits

We will now compute the limits of the output voltage swing.

$V_1 > V_2$

For $V_1 > V_2 + 4U_T$ the current through M_2 is much smaller than the one through M_1 , hence V_{out} goes almost all the way to V_{dd} to shut M_5 off. M_5 goes out of saturation.

$V_2 > V_1$

M1. But the current mirror imposes $I_1 \approx I_2 \approx I_b/2$. If V_2 is significantly larger than V_1 , the voltage drop across M_2 is close to zero and $V_{out} \approx V_s$. M_2 goes out of saturation.

Output voltage limits

We will now compute the limits of the output voltage swing.

$V_1 > V_2$

For $V_1 > V_2 + 4U_T$ the current through M_2 is much smaller than the one through M_1 , hence V_{out} goes almost all the way to V_{dd} to shut M_5 off. M_5 goes out of saturation.

$V_2 > V_1$

The forward current of M2 is \gg than that of M1. But the current mirror imposes $I_1 \approx I_2 \approx I_b/2$. If V_2 is significantly larger than V_1 , the voltage drop across M2 is close to zero and $V_{out} \approx V_s$. M2 goes out of saturation.

If $V_2 > V_1$, $V_{out} \approx V_s$. But we don't know the value of V_s . We can't assume that M_3 is in saturation, so we have to write:

$$I_b = I_0 e^{\frac{\kappa V_b}{U_T}} (1 - e^{-\frac{V_s}{U_T}}) = I_1 + I_2$$

with $I_1 = I_0 e^{\frac{\kappa V_1 - V_S}{U_T}}$ (M₁ is in saturation), and $I_2 \approx I_1$. So

$$e^{-\frac{V_s}{U_T}} = \frac{e^{\frac{\kappa V_b}{U_T}}}{e^{\frac{\kappa V_b}{U_T}} + e^{\frac{\kappa V_1}{U_T}} + e^{\frac{\kappa V_1}{U_T}}}$$

$$e^{-\frac{V_{s}}{U_{T}}} = \frac{e^{\frac{\kappa V_{b}}{U_{T}}}}{e^{\frac{\kappa V_{b}}{U_{T}}} + 2e^{\frac{\kappa V_{1}}{U_{T}}}}$$

$$e^{-\frac{V_{s}}{U_{T}}} = \frac{\frac{1}{2}e^{\frac{\kappa V_{b}}{U_{T}}}}{\frac{1}{2}e^{\frac{\kappa V_{b}}{U_{T}}} + e^{\frac{\kappa V_{1}}{U_{T}}}}$$

If $V_2 > V_1$, $V_{out} \approx V_s$. But we don't know the value of V_s . We can't assume that M_3 is in saturation, so we have to write:

$$I_b = I_0 e^{\frac{\kappa V_b}{U_T}} (1 - e^{-\frac{V_s}{U_T}}) = I_1 + I_2$$

with $I_1 = I_0 e^{\frac{\kappa V_1 - V_s}{U_T}}$ (M₁ is in saturation), and $I_2 \approx I_1$. So

$$e^{-rac{V_{s}}{U_{T}}} = rac{e^{rac{\kappa V_{b}}{U_{T}}}}{e^{rac{\kappa V_{b}}{U_{T}}} + e^{rac{\kappa V_{1}}{U_{T}}} + e^{rac{\kappa V_{1}}{U_{T}}}}$$

$$e^{-\frac{V_s}{U_T}} = \frac{e^{\frac{\kappa V_b}{U_T}}}{e^{\frac{\kappa V_b}{U_T}} + 2e^{\frac{\kappa V_1}{U_T}}}$$

$$e^{-\frac{V_s}{U_T}} = \frac{\frac{1}{2}e^{\frac{\kappa V_b}{U_T}}}{\frac{1}{2}e^{\frac{\kappa V_b}{U_T}} + e^{\frac{\kappa V_1}{U_T}}}$$

If $V_2 > V_1$, $V_{out} \approx V_s$. But we don't know the value of V_s . We can't assume that M_3 is in saturation, so we have to write:

$$I_b = I_0 e^{\frac{\kappa V_b}{U_T}} (1 - e^{-\frac{V_s}{U_T}}) = I_1 + I_2$$

with $I_1 = I_0 e^{\frac{\kappa V_1 - V_s}{U_T}}$ (M₁ is in saturation), and $I_2 \approx I_1$. So

$$e^{-rac{V_{s}}{U_{T}}} = rac{e^{rac{\kappa V_{b}}{U_{T}}}}{e^{rac{\kappa V_{b}}{U_{T}}} + e^{rac{\kappa V_{1}}{U_{T}}} + e^{rac{\kappa V_{1}}{U_{T}}}}$$

$$e^{-\frac{V_s}{U_T}} = \frac{e^{\frac{\kappa V_b}{U_T}}}{e^{\frac{\kappa V_b}{U_T}} + 2e^{\frac{\kappa V_1}{U_T}}}$$

$$e^{-\frac{V_s}{U_T}} = \frac{\frac{1}{2}e^{\frac{\kappa V_b}{U_T}}}{\frac{1}{2}e^{\frac{\kappa V_b}{U_T}} + e^{\frac{\kappa V_1}{U_T}}}$$

If $V_2 > V_1$, $V_{out} \approx V_s$. But we don't know the value of V_s . We can't assume that M_3 is in saturation, so we have to write:

$$I_b = I_0 e^{\frac{\kappa V_b}{U_T}} (1 - e^{-\frac{V_s}{U_T}}) = I_1 + I_2$$

with $I_1 = I_0 e^{\frac{\kappa V_1 - V_s}{U_T}}$ (M₁ is in saturation), and $I_2 \approx I_1$. So

$$e^{-\frac{V_{\mathcal{S}}}{U_{T}}} = \frac{e^{\frac{\kappa V_{b}}{U_{T}}}}{e^{\frac{\kappa V_{b}}{U_{T}}} + e^{\frac{\kappa V_{1}}{U_{T}}} + e^{\frac{\kappa V_{1}}{U_{T}}}}$$

$$e^{-\frac{V_s}{U_T}} = \frac{e^{\frac{\kappa V_b}{U_T}}}{e^{\frac{\kappa V_b}{U_T}} + 2e^{\frac{\kappa V_1}{U_T}}}$$

$$e^{-\frac{V_s}{U_T}} = \frac{\frac{1}{2}e^{\frac{\kappa V_b}{U_T}}}{\frac{1}{2}e^{\frac{\kappa V_b}{U_T}} + e^{\frac{\kappa V_1}{U_T}}}$$

So, if

•
$$V_1 < V_b - (4 + \ln(2))U_T/\kappa$$
,

$$V_{out} \approx 0$$

• $V_1 > V_b - (4 + \ln(2))U_T/\kappa$,

$$V_{out} pprox \kappa V_1 - \kappa V_b + U_T \ln(2)$$

 V_{out} increases linearly with V_1 , with a slope of κ .

Output-circuit output voltage

