法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

关注 小象学院

第六讲

图像数据挖掘

--Robin

目录

- 计算机视觉库OpenCV
- 图像数据基本概念及操作
- 常用的图像特征描述
- K-Means聚类
- 实战案例5: Fashion-MNIST图片分类

目录

- 计算机视觉库OpenCV
- 图像数据基本概念及操作
- 常用的图像特征描述
- K-Means聚类
- 实战案例5: Fashion-MNIST图片分类

计算机视觉

什么是计算机视觉

- 从图像和视频中提取数值或符号信息的计算系统
- 让计算机能够和人类一样"看到并理解"图像
- 主要应用

图像理解—高级视觉

识别 鉴别 监测

图像分析—中级视觉

运动 分割 跟踪 多视图几何

图像处理—低级视觉

线性滤波 边缘检测 纹理

图像获取—成像

相机模型 相机标定 辐射测定 颜色

计算机视觉

CV发展历史

计算机视觉库OpenCV

OpenCV

• 开源的跨平台计算机视觉库

C-U OpenCV

- 可运行在Linux、Windows、Android和MacOS操作系统上
- 轻量且高效,提供了Python、Ruby、Matlab等语言的接口
- 实现了图像处理和计算机视觉方面的很多通用算法

OpenCV-Python

- 面向Python的OpenCV接口/库
- 支持NumPy数据结构

安装

pip install opency-contrib-python

目录

- 计算机视觉库OpenCV
- 图像数据基本概念及操作
- 常用的图像特征描述
- K-Means聚类
- 实战案例5: Fashion-MNIST图片分类

RGB颜色空间

- 加法混色,彩色显示器
- 3通道
 - Red通道
 - Green通道
 - Blue通道
- 一个像素颜色值
 - (b, g, r)
- 取值范围
 - [0, 255]
 - [0.0, 1.0]

主流颜色空间

- RGB三通道彩色图
 - 图片→3维矩阵([0,255])

- 亮度信息([0,255])
- Gray=R*0.3+G*0.59+B*0.11

H

灰度化

W

opencv的图像数据

- 图像数据是由NumPy的<mark>多维数组(ndarray</mark>)表示的
- 由opencv加载的图像数据可以调用其他常用的包进行处理和计算,如 matplotlib, scipy等

数据类型和像素值

- CV中图像的像素值通常有以下两种处理范围
 - 1. 0-255,0: 黑色,255:白色
 - 2. 0 1, 0: 黑色, 1 : 白色
- OpenCV读取的图像像素值范围是0-255

lect06_eg01.ipynb

OpenCV图像IO

- 读取图像 cv2.imread()
 cv2.IMREAD_COLOR 读取彩色图像数据
 cv2.IMREAD_GRAYSCALE 读取灰度图像数据
- 显示图像 cv2.imshow(), cv2.waitKey(0), cv2.destroyAllWindows()
- 保存图像 cv2.imwrite()

lect06_eg01.ipynb

图像数据

- 图像数据是多维数组,前两维表示了图像的高、宽第三维表示图像的通道个数,比如RGB,第三个维度为3,因为有三个通道;灰度图像没有第三个维度
- 分割和索引
 - 像操作ndarray一样操作即可

色彩空间, RGB, HSV, Gray...

RGB转Gray, cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

颜色直方图

- 直方图是一种能快速描述图像整体像素值分布的统计信息, skimage.exposure.histogram
 - 如:可以根据直方图选定阈值用于调节图像对比度

直方图均衡化

- 增强图像数据的对比度有利于特征的提取,不论是从肉眼还是算法来看都有 帮助
- 自动调整图像的对比度 cv2.equalizeHist(image)

直方图均衡化

滤波/卷积

- 在每个图片位置(x,y)上进行基于邻域的函数计算
 - 滤波函数→权重相加

 $h[x, y] = \sum f[k, l] I[x+k, y+l]$

像素邻域值

- 滤波器、滤波模板
- 扫描窗
- 不同功能需要定义不同的函数
 - 图像增强
 - 平滑/去燥
 - 梯度/锐化
 - 信息提取、检测
 - 边缘、显著点、纹理
 - 模式

滤波/卷积

 $h[x, y] = \sum f[k, l] I[x+k, y+l]$

- 参数解释
 - x, y是像素在图片中的位置/坐标
 - k, l是卷积核中的位置/坐标
 - 中心点的坐标是(0,0)
 - f[k, l]是卷积核中在(k, l)上的<mark>权重</mark>参数
 - I[x+k, y+l]是与f[k, l]相对应的图片像素值
 - h[x, y]是图片中(x, y)像素的滤波/卷积结果

	图片								
4	1	6			卷	积本	亥		
7	2	3		•	1	1	1		结果
9	5	8		\otimes	1	1	1	=	45
					1	1	1		

(-1,-1)	(-1,0)	(-1,1)
(0,-1)	(0,0)	(0,1)
(1,-1)	(1,0)	(1,1)

滤波/卷积

- 边界补充(Padding)
 - 获得同尺寸输出的情况下
 - 卷积核越大,补充越多
- 补充类型
 - 补零(zero-padding)
 - 边界复制(replication)
 - 镜像 (reflection)
 - 块复制(wraparound)

5x5

滤波/卷积

- 补零(zero-padding)
- 边界复制(replication)
- 镜像(reflection)
- 块复制(wraparound)

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	1	2	3	0	0	0
0	0	0	4	5	6	0	0	0
0	0	0	7	8	9	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

滤波/卷积

• 7x7卷积: 3x3 → 9x9

补零 (zero-padding)

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	1	2	3	0	0	0
0	0	0	4	5	6	0	0	0
0	0	0	7	8	9	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

边界复制(replication)

1	1	1	1	2	3	3	3	3
1	1	1	1	2	3	3	3	3
1	1	1	1	2	3	3	3	3
1	1	1	1	2	3	3	3	3
4	4	4	4	5	6	6	6	6
7	7	7	7	8	9	9	9	9
7	7	7	7	8	9	9	9	9
7	7	7	7	8	9	9	9	9
7	7	7	7	8	9	9	9	9

滤波/卷积

7x7卷积: 3x3 → 9x9
 镜像(reflection)

9	8	7	7	8	9	9	8	7
6	5	4	4	5	6	6	5	4
3	2	1	1	2	3	3	2	1
3	2	1	1	2	3	3	2	1
6	5	4	4	5	6	6	5	4
9	8	7	7	8	9	9	8	7
9	8	7	7	8	9	9	8	7
6	5	4	4	5	6	6	5	4
3	2	1	1	2	3	3	2	1

块复制(wraparound)

1	2	3	1	2	3	1	2	3
4	5	6	4	5	6	4	5	6
7	8	9	7	8	9	7	8	9
1	2	3	1	2	3	1	2	3
4	5	6	4	5	6	4	5	6
7	8	9	7	8	9	7	8	9
1	2	3	1	2	3	1	2	3
4	5	6	4	5	6	4	5	6
7	8	9	7	8	9	7	8	9

图像滤波

- 滤波是处理图像数据的常用基础操作
- 滤波操作可以去除图像中的噪声点,由此增强图像的特征

中值滤波

cv2.medianBlur()

中值滤波

- 奇数尺寸
 - 3x3, 5x5, 7x7, 2n-1 x 2n-1
- 操作原理
 - 卷积域内的像素值从小到大排序
 - 取中间值作为卷积输出
- 有效去除椒盐噪声

高斯滤波 skimage.filters.gaussian()

- 奇数尺寸
 - 3x3, 5x5, 7x7, 2n-1 x 2n-1
- 模拟人眼,关注中心区域
- 有效去除高斯噪声
- 参数
 - x, y是卷积参数坐标
 - 标准差 σ

	1 _	(x^2+y^2)
G_{σ} =	$=\frac{1}{2}e^{-}$	$2\sigma^2$
	$2\pi\sigma^2$	

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

$$5 \times 5$$
, $\sigma = 1$

高斯滤波

- σ越小
- 关注区域越集中

 $\sigma=1$

 $\sigma = 4$

原图

高斯滤波

• 人眼特性: 离关注中心越远, 感受精度越模糊

摄像头

人类视觉

均值滤波 cv2.blur()

- 奇数尺寸
 - 3x3, 5x5, 7x7, 2n-1 x 2n-1
- 参数和为: 1

边缘检测

- 图像导数: 灰度图像I中亮度值的变化可以描述为x方向、y方向上的导数 I_x , I_y
- 图像梯度为向量 $\nabla I = [I_x \ I_y]^T$ 。图像梯度包含两个重要的属性:
 - 大小(magnitude) $|\nabla I| = \sqrt{I_x^2 + I_y^2}$,描述亮度值变化的强度
 - 梯度角(gradient angle) $\alpha = \arctan 2(I_y, I_x)$,描述每个像素点最大亮度变化的方向,可通过numpy.arctan2()计算。arctan2定义
- 图像导数的计算是通过离散估计得出的,即在x方向,y方向上进行以下的卷 积操作: $I_x = I * D_x$ and $I_y = I * D_y$

边缘检测

- 常用的D_x, D_y有:
 - Sobel算子

$$D_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \quad \text{and} \quad D_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Laplacian 算子

$$kernel = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

lect06_eg01.ipynb

目录

- 计算机视觉库OpenCV
- 图像数据基本概念及操作
- 常用的图像特征描述
- K-Means聚类
- 实战案例5: Fashion-MNIST图片分类

1. 颜色特征

2. 纹理特征

3. 形状特征

4. opencv中的特征方法

https://docs.opencv.org/3.0-

beta/doc/py_tutorials/py_feature2d/py_table_of_contents_feature2d/py_t able_of_contents_feature2d.html

颜色特征

• 图像检索中应用最为广泛的视觉特征

• 颜色直方图,如:

- 从512x512的灰度图像中提取维度为k的颜色直方图,就是讲256种灰度颜色分为k个区间,然后计算每个区间中像素点总数为多少。
- 如果k=20,则得到的20维直方图向量维 (0, 0, 750, 14613, 24233, 11126, 12943, 19345, 22012, 23122, 27978, 33309, 25312, 15992, 9563, 12967, 8045, 828, 6, 0)

图像形状特征

- 形状特征的表达必须以对图像中物体或区域的分割为基础
- SIFT (Scale-invariant feature transform),在尺度空间中所提取的图像局部特征点。SIFT特征点提取较为方便,提取速度较快,对于图像的缩放等变换比较 鲁棒,因此得到了广泛的应用。
- http://docs.opencv.org/trunk/da/df5/tutorial_py_sift_intro.html

图像形状特征

- SIFT (Scale-invariant feature transform)
- 构造尺度空间

$$L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)$$

$$G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} e^{-(x^2+y^2)/2\sigma^2}$$

图像形状特征

- SIFT (Scale-invariant feature transform)
- 搜索关键点

搜索3x3x3邻居的极值点

图像形状特征

- SIFT (Scale-invariant feature transform)
- 搜索关键点

二阶泰勒展开

$$D(\mathbf{x}) = D + \frac{\partial D}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 D}{\partial \mathbf{x}^2} \mathbf{x}$$

- SIFT (Scale-invariant feature transform)
- 去除噪声点
 - 1. 梯度值过小 (<0.03)
 - 2. 位于边缘的点

图像形状特征

Keypoint

SIFT (Scale-invariant feature transform)

JJL ヨレ コ FJG ChinaHadoop.cn

图像形状特征

SIFT

- (a) SIFT特征
- (b) SIFT特征对应的尺度
- (c) SIFT特征的关键点

- SIFT应用
 - 图像拼接

- SIFT应用
 - 图像识别

- HOG (Histogram of Oriented Gradient),用于检测物体的特征描述,通过计算和统计图像局部区域的梯度方向直方图来构建特征
- 由于HOG是在图像的局部方格单元上操作,所以它对图像几何的和光学的形变都能保持很好的不变性
- 在粗的空域抽样、精细的方向抽样以及较强的局部光学归一化等条件下,只要 行人大体上能够保持直立的姿势,可以容许行人有一些细微的肢体动作,这些 细微的动作可以被忽略而不影响检测效果
- HOG特征特别适合于做图像中的人体检测
 http://mccormickml.com/2013/05/09/hog-person-detector-tutorial/

图像形状特征

HOG

目录

- 计算机视觉库OpenCV
- 图像数据基本概念及操作
- 常用的图像特征描述
- K-Means聚类
- 实战案例5: Fashion-MNIST图片分类

K-Means聚类

- 聚类(clustering)属于无监督学习(unsupervised learning)
- 无类别标记
- 在线demo http://syskall.com/kmeans.js/
- 数据挖掘经典算法之一
- 算法接收参数k;然后将样本点划分为k个聚类;同一聚类中的样本相似度较高;不同聚类中的样本相似度较小
- 算法思想:

以空间中k个样本点为中心进行聚类,对最靠近它们的样本点归类。通过迭代的方法,逐步更新各聚类中心,直至达到最好的聚类效果

K-Means聚类

算法描述:

- 1. 选择k个聚类的初始中心
- 2. 在第n次迭代中,对任意一个样本点,求其到k个聚类中心的距离,将该样本点归类到距离最小的中心所在的聚类
- 3. 利用均值等方法更新各类的中心值
- 4. 对所有的k个聚类中心,如果利用2,3步的迭代更新后,达到稳定,则迭代结束。

优点	缺点
• 速度快,简单	• 最终结果和初始点的选择相关,容易陷入局部最优
	• 需要给定k值

K-Means聚类

算法演示:

目录

- 计算机视觉库OpenCV
- 图像数据基本概念及操作
- 常用的图像特征描述
- K-Means聚类
- 实战案例5: Fashion-MNIST图片分类

实战案例 5

项目名称: Fashion-MNIST图片分类

• 请参考相应的配套代码及案例讲解文档

问答互动

在所报课的课程页面,

- 1、点击"全部问题"显示本课程所有学员提问的问题。
- 2、点击"提问"即可向该课程的老师和助教提问问题。

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 小象学院

