Heuristic Analysis

```
CENTER SQUARES = [(x, y) \text{ for } x \text{ in } [2, 3, 4] \text{ for } y \text{ in } [2, 3, 4]]
def moves with centers and blanks (game, player):
   player center moves = float(len([m for m in player moves
opponent center moves = float(len([m for m in opponent moves
if m in CENTER SQUARES]))
    return ((num player moves + player center moves) -
(num opponent moves + opponent center moves) - blank moves) \
          / (1 + blank moves + num player moves -
num opponent moves)
def custom score(game, player):
   if game.is loser(player):
       return float("-inf")
    if game.is winner(player):
       return float("inf")
    return moves with centers and blanks (game, player)
def custom score 2(game, player):
   if game.is loser(player):
       return float("-inf")
   if game.is winner(player):
       return float("inf")
                  = game.get opponent(player)
   opponent
                     = game.get_legal_moves(opponent)
   opponent moves
   player_moves = game.get_legal_moves(player)
   num opponent moves = float(len(opponent moves))
   num player moves = float(len(player moves))
   return 4.0*num player moves - num opponent moves
def custom score 3(game, player):
   if game.is loser(player):
       return float("-inf")
   if game.is winner(player):
       return float("inf")
                  = game.get_opponent(player)
   opponent
   opponent moves
                     = game.get legal moves(opponent)
   player_moves = game.get_legal_moves(player)
   num opponent moves = float(len(opponent moves))
   num player moves = float(len(player moves))
    return num player moves - 4.0*num opponent moves
```

custom_score is sums (both the difference between the number of player's moves and number of opponent's moves and the difference between the number of player's moves in the centre and number of opponent's moves in the centre minus the number of unvisited squares) divided by (the difference between the number of player's moves and number of opponent's moves plus the number of unvisited squares).

Scaling by the number of unvisited squares and subtracting the number of unvisited squares increases the importance of the heuristic towards the end game.

custom_score_2 which gives more weight to num_player_moves leads to more defensive play where the player would try to increase its own moves more than it tries to decrease the opponent's moves.

custom_score_3 which gives more weight to num_opponent_moves leads to more aggressive play where the player would try to decrease the opponent's moves more than it tries to increase its own moves.

Results

Match #	Opponent	AB Improved	AB Custom	AB Custom 2	AB Custom 3	
		Won Lost	Won Lost	Won Lost	Won Lost	
1	Random	178 22	179 21	178 22	175 25	
2	MM_Open	170 30	175 25	170 30	167 33	
3	MM_Center	160 40	179 21	175 25	174 26	
4	$\mathtt{MM}_\mathtt{Improved}$	167 33	172 28	177 23	179 21	
5	AB_Open	98 102	94 106	99 101	102 98	
6	AB_Center	90 110	98 102	97 103	103 97	
7	AB_Improved	100 100	105 95	113 87	105 95	
	Win Rate:	68.8%	71.6%	72.1%	71.8%	

All the custom heuristics seem to outperform the Improved heuristic (num_player_moves-num_opponent_moves; neutral play) by a small margin of about 2-3%. When the alpha-beta algorithm is pitted against the minimax algorithm, the alpha-beta algorithm prevails 80-90% of the time. When the alpha-beta algorithm is pitted against itself, AB_Improved, AB_Custom, AB_Custom_2, and AB_Custom_3 does not seem to show any advantages against AB_Open, AB_Center, and AB_Improved.

AB_Custom_2 seem to have a slight edge over the other heuristic for this run. But since it is only better by less than 1%, I still believe that AB_Custom may be a better heuristic as it takes into account the position of the player and opponent as opposed to just the number of legal moves left.