Politechnika Wrocławska

Katedra Teorii Pola, Układów Elektronicznych i Optoelektroniki

Zespół Układów Elektronicznych

LABORATORIUM UKŁADÓW ELEKTRONICZNYCH

Data: 17.05.2021	Dzień : Poniedziałek
Grupa : E12-93l	Godzina : 13:15-15:30

TEMAT ĆWICZENIA:

Przerzutnik monostabilny 555

DANE PROJEKTOWE:

 $t_{ON} = 47 \mu s$

Lp.	Nazwisko i Imię	Oceny
1.	Kuboń Piotr 252871	

1. Część praktyczna

1.1. Dane projektowe

$$t = 100 \mu s$$

Przyjmujemy:

$$C = 10nF$$

$$t=1,1*R_A*C$$

$$R_A = \frac{T}{1,1 \ C} = \frac{100}{1,1 * 10} = 9090 \Omega$$

Przyjmujemy zgodnie z szeregiem E24 $R_A=9.1k\Omega$

1.1.1. Pomiar wartości elementów układu:

$$R_A=9111\varOmega$$

$$C=9,552nF$$

1.2. Przebieg pomiarów

1.2.1. Obserwacja przebiegu sygnału wyjściowego

Obserwacji dokonano, podłączając pierwszy kanał oscyloskopu do wyjścia układu, natomiast drugi do kondensator. Układ zasilono napięciem 10V.

Rys. 1: Ekran oscyloskopu z oznaczonym przebiegiem sygnału na bazie tranzystora i napięcia na wyjściu

Rys. 2: Ekran oscyloskopu z oznaczonym czasem trwania impulsu wyzwalającego, który wynosi 8,89µs

Rys. 3: Ekran oscyloskopu z zaznaczonym przebiegiem impulsów wejściowych i wyjściowych

Można zaobserwować, że szerokość impulsu nieznacznie odbiega od wartości wyliczonej która powinna wynosić 100μs. Rzeczywista szerokość impulsu wynosi 87μs.

1.2.2. Obserwacja zmian napięcia na kondensatorze

Zmiana napięcia następuje od 0 do wartości 2/3 napięcia zasilania, w naszym przypadku odpowiada to wartości 10V.

Rys. 4: Ekran oscyloskopu z oznaczonym przebiegiem napięcia na kondensatorze

Można zaobserwować iż przebieg napięcia jest poprawny, ponieważ mieści się w przedziale od 0 do $\frac{2}{3}U_{Zasilania}$. Napięcie peak-peak wynosi 7,04V

1.2.3. Pomiar długości generowanego impulsu

Pomiary zanotowano od napięcia 2,5V. Wynika to z faktu iż od tej wartości napięcia układ zaczął pracować poprawnie.

Tabela zmierzonych wartości:

Lp	V_{cc}	U _{wy} (ampl)	T[us]
1	2,5	1,7	100,1
2	3	2,66	89,3
3	4	3,72	82,56
4	5	4,8	82,37
5	6	5,92	83,2
6	7	6,96	84,27
7	8	8,08	85,2
8	9	9,12	86,18
9	10	10,1	87
10	11	11,2	87,8
11	12	12,3	88,4
12	13	13,6	89
13	14	14,6	89,5
14	15	15,6	90

Rys. 5: Charakterystyka długości impulsu w funkcji napięcia zasilania

Rys. 6: Charakterystyka wartości amplitudy impulsu w funkcji napięcia zasilania

1.2.4. Obserwacja zmian napięcia na kondensatorze po podaniu na wejście MOD AC sygnału trójkątnego

Rys. 7: Ekran oscyloskopu z oznaczonymi zmianami napięcia na kondensatorze po podaniu na wejście MOD_AC sygnału trójkątnego

1.2.5. Pomiar zakresu napięć sygnału modulującego

Pomiary wykonano dla częstotliwości sygnału wyjściowego bez modulacji, równej 5kHz oraz częstotliwości sygnału modulującego 10 razy mniejszej, a więc wynoszącej 500Hz.

Oznacza to, iż zakres poprawnej pracy, nastąpi gdy w jednym okresie przebiegu sygnału modulującego znajdzie się 10 impulsów wyjściowych.

Pomiaru dokonano zwiększając wartość napięcia $V_{MOD\ DC}$ aż do zaniki pierwszego impulsu.

Rys. 8: Ekran oscyloskopu z oznaczonym sygnałem wyjściowym bez modulacji oraz sygnałem modulującym

Na podstawie przebiegu ustalono, że graniczna wartość napięcia Peak-Peak wynosi 8V.

Dla podanej wartości napięcia, stanowiącej 2/3 napięcia zasilania, komparator nie jest już w stanie się przełączyć, co powoduje "sklejanie" się impulsów ze sobą.

Rys. 9: Ekran oscyloskopu z oznaczonym sygnałem modulującym oraz sygnałem na kondensatorze

Rys. 10: Ekran oscyloskopu z oznaczonym niepoprawnym sygnałem wyjściowym bez modulacji oraz sygnałem modulującym

Z zaobserwowanych przebiegów można wyciągnąć wniosek iż chwilowa wartość napięcia nie może być większa od napięcia zasilania.

1.2.6. Pomiar czasu trwania impulsów w funkcji napięcia stałego

Pomiary wykonano dla napięcia zasilania wynoszącego 10V.

Tabela pomiarów charakterystyki $tig(U_{MOD_DC}ig)$

V_{MOD_DC} [V]	Τ [μs]
2	20,2
2,5	25,2
3	32,1
3,5	37,1
4	43,9
4,5	51,25
5	59,32
5,5	68,2
6	78,26
6,5	89,6
7	102,5
7,5	117,5
8	136,2

Rys. 11: Charakterystyka długości impulsów w funkcji napięcia stałego

2. Część symulacyjna

2.1. Dane projektowe

$$t = 47\mu s$$
$$C = 10nF$$

$$t=1,1*R_A*C$$

$$R_A = \frac{T}{1.1 C} = \frac{47 * 10^{-6}}{1.1 * 10 * 10^{-9}} = 4273 \Omega$$

Przyjmujemy zgodnie z szeregiem E24 $R_{\!\scriptscriptstyle A}=4300 \varOmega$

2.2. Schemat badanego układu

2.3. Przebieg pomiarów

2.3.1. Obserwacja przebiegu sygnału wyjściowego

Rys. 12: Ekran programu z oznaczonym przebiegiem sygnału na bazie tranzystora i napięcia na wyjściu

Rys. 13: Ekran programu z oznaczonym czasem trwania impulsu wyzwalającego, który wynosi 3,25µs oraz sygnałem wyjściowym

Rys. 14: Ekran programu z oznaczonym czasem trwania impulsu wyjściowego

Można zaobserwować, że szerokość impulsu zgadza się z wartością wyliczoną i wynosi 47μs.

2.3.2. Obserwacja zmian napięcia na kondensatorze

Rys. 14: Ekran programu z oznaczonym przebiegiem napięcia na kondensatorze

Można zaobserwować iż przebiegi napięcia są poprawne.

2.3.3. Pomiar długości generowanego impulsu

Tabela zmierzonych wartości:

Lp	V _{cc}	U _{wy} (ampl)	T[us]
1	1	1	47
2	2	2	47
3	3	3	47,02
4	4	4	47,02
5	5	5	47,02
6	6	6	47
7	7	7	47,02
8	8	8	47,02
9	9	9	47,02
10	10	10	47,02
11	11	11	47,02
12	12	12	47,02
13	13	13	47,02
14	14	14	47,03

Napięcie wyjściowe w funkcji napięcia zasilania

Rys. 15: Charakterystyka wartości amplitudy impulsu w funkcji napięcia zasilania

Długość impulsu w funkcji napięcia zasilania

Rys. 16: Charakterystyka długości impulsu w funkcji napięcia zasilania

2.3.4. Obserwacja zmian napięcia na kondensatorze po podaniu na wejście MOD_AC sygnału trójkątnego

Rys. 17: Ekran programu z oznaczonymi zmianami napięcia na kondensatorze po podaniu na wejście MOD_AC sygnału trójkątnego, jak również oznaczonym sygnałem na wejściu CV i wyjściu układu

2.3.5. Pomiar zakresu napięć sygnału modulującego

Pomiary wykonano dla częstotliwości sygnału wyjściowego bez modulacji, równej 10kHz oraz częstotliwości sygnału modulującego 10 razy mniejszej, a więc wynoszącej 1kHz.

Oznacza to, iż zakres poprawnej pracy, nastąpi gdy w jednym okresie przebiegu sygnału modulującego znajdzie się 10 impulsów wyjściowych.

Pomiaru dokonano zwiększając wartość napięcia $V_{MOD\ DC}$ aż do zaniki pierwszego impulsu.

Rys. 18: Ekran programu z oznaczonym sygnałem wyjściowym bez modulacji oraz sygnałem modulującym

Na podstawie przebiegu ustalono, że graniczna wartość amplitudy wynosi 4V, co za tym idzie wartość granicznego napięcia Peak-Peak wynosi 8V.

Rys. 19: Ekran programu z oznaczonym zniekształconym sygnałem modulującym oraz sygnałem na kondensatorze

Z zaobserwowanych przebiegów można wyciągnąć wniosek iż chwilowa wartość napięcia nie może być większa od napięcia zasilania.

Rys. 20: Ekran oscyloskopu z oznaczonym niepoprawnym sygnałem wyjściowym bez modulacji oraz sygnałem modulującym

2.3.6. Pomiar czasu trwania impulsów w funkcji napięcia stałego

Pomiary wykonano dla napięcia zasilania wynoszącego 10V.

Tabela pomiarów charakterystyki $t(V_{MOD\ DC})$

V_{MOD_DC} [V]	<i>T</i> [μs]
2	9,3
2,5	12,1
3	15
3,5	18,2
4	21,8
4,5	25,3
5	29,4
5,5	34,2
6	39
6,5	44,6
7	51,7
7,5	59,5

Długość impulsu w funkcji napięcia V мор_ос

Rys. 21: Charakterystyka długości impulsów w funkcji napięcia stałego

3. Wnioski

3.1. Część praktyczna

- różnica między oczekiwanym czasem trwania impulsu, a czasem uzyskany wynosi 13μs. Może to być spowodowane zużyciem przerzutnika
- zmierzone napięcie progowe jest zgodne z wartością oczekiwaną i stanowi 2/3 napięcia zasilania
- napięcie zasilania znacząco wpływa na wartość napięcia uzyskiwanego impulsu, jak również na jego długość, im napięcie wyższe, tym lepiej działa przerzutnik
- podając sygnał sinusoidalny na wejście CV jesteśmy w stanie modulować uzyskiwane na wyjściu impulsy. Po przekroczeniu wartości 8V napięcia międzyszczytowego sygnał wyjściowy zostaje zniekształcony.
- długość impulsu rośnie w sposób ekspotencjalny w stosunku do napięcia stałego dołączonego do wejścia CV

3.2. Część symulacyjna

- czasem trwania impulsu jest zgodny z wartością oczekiwaną
- zmierzone napięcie progowe jest zgodne z wartością oczekiwaną i stanowi 2/3 napięcia zasilania
- amplituda uzyskiwanych impulsów odpowiada napięciu zasilania, czas trwania impulsów nie zależy od napięcia zasilania
- podając sygnał sinusoidalny na wejście CV jesteśmy w stanie modulować uzyskiwane na wyjściu impulsy. Po przekroczeniu wartości 8V napięcia międzyszczytowego sygnał wyjściowy zostaje zniekształcony.
- długość impulsu rośnie w sposób ekspotencjalny w stosunku do napięcia stałego dołączonego do wejścia CV