Exercice 1. Soit f la fonction telle que $f(x) = x^2 - 3x + 1$.

Remplir le tableau suivant :

x	-1	-0.5	0	0.5	1	1.5	2	2.5	3	3.5	4
f(x)											

Placer ces points dans un repère orthonormé.

D'après la courbe obtenue, combien y-a-t'il d'antécédents de 0 par la fonction f? ...

Exercice 2. Soit q la fonction telle que $f(x) = x^3 - 3x^2 - x + 3.1$.

Remplir le tableau suivant :

x	-1	-0.5	0	0.5	1	1.5	2	2.5	3	3.5
f(x)										

Placer ces points dans un repère orthonormé.

D'après la courbe obtenue, combien y-a-t'il d'antécédents de 0 par la fonction g? ...

Exercice 3.

- 1. Vérifier que la fonction h telle que h(x) = 2x + 1 n'a qu'un seul antécédent de 0.
- 2. Faire une hypothèse sur le nombre d'antécédents de 0 par une fonction donnée, dépendant de la plus grande puissance de x apparaissant dans la fonction.
- 3. Trouver une fonction qui contredise cette hypothèse.

Exercice 1. Soit f la fonction telle que $f(x) = x^2 - 3x + 1$.

Remplir le tableau suivant :

x	-1	-0.5	0	0.5	1	1.5	2	2.5	3	3.5	4
f(x)											

Placer ces points dans un repère orthonormé.

D'après la courbe obtenue, combien y-a-t'il d'antécédents de 0 par la fonction f? ...

Exercice 2. Soit q la fonction telle que $f(x) = x^3 - 3x^2 - x + 3.1$.

Remplir le tableau suivant :

x	-1	-0.5	0	0.5	1	1.5	2	2.5	3	3.5
f(x)										

Placer ces points dans un repère orthonormé.

D'après la courbe obtenue, combien y-a-t'il d'antécédents de 0 par la fonction g? ...

Exercice 3.

- 1. Vérifier que la fonction h telle que h(x) = 2x + 1 n'a qu'un seul antécédent de 0.
- 2. Faire une hypothèse sur le nombre d'antécédents de 0 par une fonction donnée, dépendant de la plus grande puissance de x apparaissant dans la fonction.
- 3. Trouver une fonction qui contredise cette hypothèse.