Tarea 11: Más pruebas de hipótesis

Rodrigo Alan García Pérez

2024-11-21

Más pruebas de hipótesis

1. (Chihara) Los niveles de calcio en adultos saludables se distribuyen de acuerdo a una Normal con media 9.5 mg/dl y desviación estándar desconocida. Un médico sospecha que la media de los niveles de calcio para mujeres en su comunidad es distinta. Colecta mediciones de 20 mujeres saludables y encuentra que la media es de 9.2 y la desviación estándar muestral de 1.1. Escribe la hipótesis nula, realiza una prueba de hipótesis e interpreta los resultados.

Hipótesis nula: $\mu = 9.5$ contra hipótesis alternativa: $\mu \neq 9.5$

```
n <- 20
                        # Tamaño de la muestra
x_bar <- 9.2</pre>
                        # Media muestral
s <- 1.1
                        # Desviación estándar muestral
mu_0 <- 9.5
                        # Media poblacional de hipotesis nula
t_stat <- (x_bar - mu_0) / (s / sqrt(n))</pre>
# Grados de libertad
df \leftarrow n - 1
# Valor p para prueba bilateral
p_value <- 2 * pt(-abs(t_stat), df)</pre>
cat("Estadístico t:", t_stat, "\n")
## Estadístico t: -1.219673
cat("Grados de libertad:", df, "\n")
## Grados de libertad: 19
cat("p-valor:", p_value, "\n")
## p-valor: 0.2375132
```

No podemos rechazar HO: no hay evidencia suficiente para
concluir que la media es diferente de 9.5 mg/dl.

2. (Wasserman) Mendel criaba chícharos de semillas lisas amarillas y de semillas corrugadas verdes. Éstas daban lugar a 4 tipos de descendientes: amarrillas lisas, amarillas corrugadas, verdes lisas y verdes corrugadas. El número de cada una es multinomial con parámetro $p = (p_1, p_2, p_3, p_4)$. De acuerdo a su teoría de herencia este vector de probabilidades es:

$$p = (9/16, 3/16, 3/16, 1/16)$$

A lo largo de n=556 experimentos observó x=(315,101,108,32). Utiliza la prueba de cociente de verosimilitudes para probar $H_0: p=p_0$ contra $H_0: p\neq p_0$.

La fórmula de G^2 es:

$$G^2 = -2\ln(\lambda),$$

donde:

$$\ln(\lambda) = \ln(L(H_0)) - \ln(L(H_a)).$$

1. Log-verosimilitud bajo H_0 :

$$\ln(L(H_0)) = \sum_{i=1}^{k} x_i \cdot \ln(p_{0i}).$$

2. Log-verosimilitud bajo H_a :

$$\ln(L(H_a)) = \sum_{i=1}^{k} x_i \cdot \ln\left(\frac{x_i}{n}\right).$$

3. Estadístico G^2 : Combina ambos:

$$G^{2} = 2\sum_{i=1}^{k} x_{i} \cdot \left[\ln \left(\frac{x_{i}}{n} \right) - \ln(p_{0i}) \right].$$

```
# Datos observados
x <- c(315, 101, 108, 32)  # Frecuencias observadas
n <- sum(x)  # Tamaño total de la muestra

# Probabilidades esperadas bajo HO
p0 <- c(9/16, 3/16, 3/16, 1/16)

# Cálculo de G^2 usando logaritmos
G2 <- 2 * sum(x * (log(x / n) - log(p0)))

# Grados de libertad
df <- length(p0) - 1</pre>
```

```
# p-valor
p_value <- 1 - pchisq(G2, df)</pre>
# Resultados
cat("Estadístico G^2:", G2, "\n")
## Estadístico G^2: 0.4754452
cat("Grados de libertad:", df, "\n")
## Grados de libertad: 3
cat("p-valor:", p_value, "\n")
## p-valor: 0.9242519
# Interpretación
alpha <- 0.05
if (p_value < alpha) {</pre>
  cat("Rechazamos HO: Las proporciones observadas son significativamente
      diferentes de las esperadas. \n")
} else {
  cat("No podemos rechazar HO: Las proporciones observadas no son
      significativamente diferentes de las esperadas.\n")
}
```

No podemos rechazar HO: Las proporciones observadas no son
significativamente diferentes de las esperadas.

- 3. (Wasserman) Sean $X_1, ... X_n \sim Poisson(\lambda)$,
- Sea $\lambda_0>0.$ ¿Cuál es la prueba Wald para $H_0:\lambda=\lambda_0,H_1:\lambda\neq\lambda_0$

La prueba de Wald evalúa si el estimador de λ (es decir, $\hat{\lambda}$) difiere significativamente del valor hipotético λ_0 . El estadístico de Wald se define como:

$$W = \frac{(\hat{\lambda} - \lambda_0)^2}{\frac{\hat{\lambda}}{n}},$$

donde: $\hat{\lambda} = \bar{X}$: Es el estimador de máxima verosimilitud para λ en una distribución de Poisson, que corresponde a la media muestral. n: Tamaño de la muestra.

 H_0 : Bajo la hipótesis nula $H_0: \lambda = \lambda_0$, el estadístico W sigue una distribución χ^2 con 1 grado de libertad.

Calculamos el **p-valor** como:

$$p = 1 - P(\chi^2 < W \mid df = 1),$$

donde df = 1 son los grados de libertad. Si $p < \alpha$, rechazamos H_0 , indicando que λ es significativamente diferente de λ_0 .

Fórmula completa para W:

$$W = \frac{\left(\bar{X} - \lambda_0\right)^2}{\frac{\bar{X}}{n}}.$$

Este estadístico mide la discrepancia entre la media muestral (\bar{X}) y el valor esperado bajo H_0 , ajustado por la variabilidad de la media muestral.

• Si $\lambda_0 = 1$, n = 20 y $\alpha = 0.05$. Simula $X_1, ... X_n \sim Poisson(\lambda_0)$ y realiza la prueba Wald, repite 1000 veces y registra el porcentaje de veces que rechazas H_0 , qué tan cerca te queda el error del tipo 1 de 0.05?

```
lambda_0 <- 1 # Valor bajo HO</pre>
n <- 20
                 # Tamaño de la muestra
alpha <- 0.05 # Nivel de significancia
num_sim <- 1000 # Número de simulaciones
# Inicializar contador para rechazos
rechazos <- 0
# Simulación de 1000 pruebas
set.seed(123)
for (i in 1:num_sim) {
  # Generar muestra de Poisson
 x <- rpois(n, lambda_0)
  # Estimador de lambda (media muestral)
  lambda_hat <- mean(x)</pre>
  # Estadístico de Wald
  W <- (lambda_hat - lambda_0)^2 / (lambda_hat / n)</pre>
  # p-valor
  p_value \leftarrow 1 - pchisq(W, df = 1)
  # Verificar si rechazamos HO
  if (p_value < alpha) {</pre>
    rechazos <- rechazos + 1
  }
}
# Calcular proporción de rechazos
error_tipo1 <- rechazos / num_sim
# Resultados
cat("Proporción de rechazos de HO (Error tipo I):", error_tipo1, "\n")
## Proporción de rechazos de HO (Error tipo I): 0.048
```

Esperado (nivel de significancia): 0.05

cat("Esperado (nivel de significancia):", alpha, "\n")

Con un $\alpha = 0.05$ entonces la prueba de Wald está funcionando correctamente para este nivel de significancia.