Raspberry Pi 5 Crypto Engine

Raspberry Pi 5 Crypto Engine

Processor: Broadcom BCM2712 2.4GHz quad-core 64-bit Arm Cortex-A76 CPU, with Cryptographic Extension

Features + Functions

- → Cryptographic Extensions
 - ◆ On chip crypto engine
- → Accessed through OpenSSL EVP / Kernel Crypto API

Importance

- → Instructions accelerate AES, GHASH, and SHA2 directly in CPU pipeline
- → CPU executes crypto opcodes directly; no separate crypto ASIC

Interface with Main Processor (OS Interaction)

User Space

OpenSSL Cryptography and SSL/TLS Toolk

- → Arm64 asm picks AES/SHA instructions automatically at runtime

Crypto API via sockets

Kernel Space

- → Drivers used on Pi 5
 - ◆ Aes-ce, ghash-ce, sha2-ce
 - These map to the Armv8Crypto Engine
- opcodes → Crypto API Classes
 - skcipher, aead, shash

Importance

- → Lower Latency
 - All in core, avoids, PCle and I/O overhead
- → Higher Throughput
- → Constant- time paths

Example Use Case: AES

Engine Path

- → Uses Armv8
 Cryptography
 Extensions for
 - aese, aesd, aesmc,

each AES Round:

- aesimc
- → Executed directly in CPU pipelines
 - overhead, very fast

Minimal

Software Path

- → Implements AES transformations manually:
 - SubBytes (S-box lookups)
 - ♦ Shift Rows
 - MixColumns
 - ♦ AddRoundKey
- → Uses standard ALU operations
 - Significantly slower

