Cours d'Éléments de Statistique

Jean Christophe Meunier

MODULE 5 Analyses combinatoires & Calculs de probabilités

1ère Bac, Commerce Extérieur Année Académique 2015-2016

A. Introduction

I. De la fréquence à la probabilité

- Intérêt de la probabilité
 - Inférence : pouvoir tirer des conclusions sur la population à partir de l'échantillon
 - Echantillon : N >> voire ∞
 - Récoltes de données impraticables (couteux et fastidieux)
- Ex: proportion de bilingues à BXL
 - Proportions de l'échantillon et de la population :
 - Différentes mais raisonnablement proches
- Probabilité
 - aide à préciser le 'raisonnablement proche'

3

I. De la fréquence à la probabilité

- Fréquence :
 - Sur échantillon N=100, 2 sujets ont cette valeur
 - Fréquence = 2%
- Probabilité
 - Si distribution de la population connue/estimée
 - Loi de distribution
 - Probabilité d'obtenir cette valeur = 2%

I. De la fréquence...

On lance un dé équilibré 10 fois (expérience) et on note la face du dé obtenue (résultat élémentaire).

On continue à lancer le dé jusqu'à un total de 50 lancés.

Le tableau ci-dessous donne la fréquence f₁ obtenue pour 10 (n = 10) et 50 (n = 50) lancés, respectivement.

	Fréqu		
X Face du dé obtenue	(a) n = 10	(b) n = 50	(c) n = ∞
1	.10	.22	1/6 = .167
2	0	.12	1/6 = .167
3	.10	.14	1/6 = .167
4	.20	.14	1/6 = .167
5	.30	.14	1/6 = .167
6	.30	.24	1/6 = .167
	1.00 √	1.00 √	1.00

I. ...à la probabilité

Les distributions correspondantes des fréquences peuvent être représentées graphiquement de la manière suivante:

Après un grand nombre de lancés, la fréquence d'apparition de chaque face tend à s'uniformiser.

Par définition, la probabilité P (X=1) est la limite de la fréquence f; lorsqu'on répète l'expérience un grand nombre (n) de fois.

Pour l'événement face = 1,

$$P(X=1) = \lim_{n \to \infty} f(X=1) = 1/6$$
 que l'on note également $P(1) = 1/6$

II. Lois de distribution

- Donne la probabilité d'occurrence de toutes les valeurs d'une variable théorique
- Distribution caractérisée par :
 - Fonction : équation qui donne la forme
 - Paramètres : habituellement tendance centrale et dispersion n(x) ↑
 - Ex. loi normale

II. Lois de distribution

- Préalable à la compréhension des lois de distribution
 - Analyse combinatoire
 - Probabilité
- Notion essentielle : Variables aléatoires (v.a.)
 - Résultat d'une épreuve dans un phénomène aléatoire
 - Se traduit par une « grandeur » mathématique
 - Peut être discrète (nombre entier) ou continue (nombre réel)

B. Analyse combinatoire

9

Introduction

- Permutations (P)
 - Sans répétition
 - Avec répétition
- Arrangements (A)
 - Sans répétition
 - Avec répétition
- Combinaisons (C)
 - Sans répétition
 - Avec répétition

I. Permutation SANS répétition

- **<u>Déf</u>**. Soit E un ensemble à n éléments.
 - Une permutation de E est une bijection de E sur lui-même
 - Le nombre de permutations de E est :

$$P_n = n(n-1)(n-2)\dots 2 \times 1 = n!$$

- ! : factoriel (ex. 3! = 3 * 2 * 1 = 6)
- Par convention 0! = 1
- Ex : combien de mots peut on former à partir des lettres {a,b,c,d,e,f,g} → n = 7 lettres
 - $-P_7 = 7! = 5040$ mots possible

11

II. Permutation AVEC répétition

- <u>Déf</u>. Soit E un ensemble à n éléments comportant :
 - n₁ éléments d'un premier type, indiscernables entre eux,
 n₂ éléments d'un second type, indiscernables entre eux,
 ... n_k élément d'un k-ième type, indiscernables entre eux.
 - Le nombre de permutations avec répétition de E est

$$P_{n,n_1,...,n_k} = \frac{n!}{n_1! \ n_2! \dots n_k!}$$

- Ex : combien de mots peut on former à partir des lettres {a,a,a,b,b,c,c}
 - $n = 7 lettres ; n_a = 3 ; n_b = 2 ; n_c = 2$
 - II y a (7!)/(3! * 2! * 2!) = 210 mots possibles

III. Arrangement SANS répétition

- **<u>Déf</u>**. Soit E un ensemble à n éléments. Soit $p \le n$.
 - un arrangement de p éléments choisis parmi n est un sousensemble ordonné de E ayant p éléments
 - Le nombre d'arrangements de p objets pris parmi n est

$$A_n^p = n(n-1)(n-2)\dots(n-p+1) = \frac{n!}{(n-p)!}$$

- Pour p = n, on retrouve le cas de la permutation sans répétition $(\mathsf{P_n})$ $A^n_n = n!$.
- Ex : Dans une course opposant 8 athlètes, le nombre de podiums possibles est
 - $A_8^3 = (8!)/((8-3)!) = (8!)/(5!) = 8 * 7 * 6 = 336$ arrangements possibles

IV. Arrangement AVEC répétition

 <u>Déf.</u> Le nombre d'arrangements avec répétition de p objets pris parmi n (tirages avec remise) est

 n^p

- Ex : on tire (tirage avec remise) 3 boules numérotées (en tenant compte de l'ordre de tirage) parmi 9
 - $-9^3 = 729$ arrangements possibles

V. Combinaison SANS répétition

- **<u>Déf</u>**. Soit E un ensemble à n éléments. Soit $p \le n$.
 - une combinaison de p éléments choisis parmi n est un sous-ensemble non-ordonné de E ayant p éléments.
 - Chaque élément de *n* n'apparait qu'une fois (tirage sans remise)
 - Le nombre de combinaisons de *p* objets pris parmi *n* est

$$C_n^p = \frac{n!}{p!(n-p)!}$$

- Pour une même combinaison, plusieurs arrangements possibles
 - Exemples
 - 1 combinaison de 3 chiffres (2,3,4), 6 arrangements possibles :
 2,3,4 2,4,3 3,2,4 3,4,2 4,2,3 4,3,2
 - Tiercé dans le désordre (combinaison) vs. dans l'ordre (arrangement)

15

V. Combinaison SANS répétition

- Ex : On tire simultanément 3 (p) boules numérotées prises parmi 8 (n), sans remise
 - $-C_{8}^{3} = (8!)/(3!)((8-3)!) = (8!)/(3!)(5!) = 8*7*6/2*3 = 56$ combinaisons (où l'ordre n'a pas d'importance)
- Propriétés

$$C_n^n = C_n^0 = 1$$
, pour tout entier n

$$C_n^1 = C_n^{n-1} = n$$
, pour $n \ge 1$

VI. Combinaison AVEC répétition

- **<u>Déf</u>**. Soit E un ensemble à n éléments. Soit $p \le n$.
 - une combinaison de p éléments choisis parmi n est un sous-ensemble $non-ordonn\acute{e}$ de E ayant p éléments.
 - Chaque élément de n peut apparaître plusieurs fois (tirage avec remise)
 - Le nombre de combinaisons de p objets pris parmi n
 est

$$C_{n+p-1}^{p} = \frac{(n+p-1)!}{p!(n-1)!}$$

17

En bref

- Permutations (P) : tous les éléments de n
 - Sans répétition (e.g. permuter a,b,c,d,e)
 - Avec répétition (e.g. permuter lettre de 'bébé')
- Arrangements (A) : p éléments de n, ordre
 - Sans répétition (sans remise)
 - Avec répétition (avec remise)
- Combinaisons (C) : p éléments de n, désordre
 - Sans répétition (sans remise)
 - Avec répétition (avec remise)

Exercices

- 1. Combien de manières de placer 8 convives autour d'une table ?
- Combien de mots (avec ou sans signification) est-il possible de former avec les lettres du mot «CELLULE» ?
- 3. Nombre de mains de poker (tirage au hasard de 5 cartes) dans un jeu de 10 cartes ?
- 4. Nombre de tiercés dans l'ordre avec 8 chevaux ?
- 5. Tirage (avec remise) de 3 lettres dans un set de 7 lettres du scrabble, combien de mots ?
- 6. On jette trois fois successivement un dé et on tient compte de l'ordre. Combien de possibilités ?

C. Probabilités

I. Événements

- Problème :
 - On peut prévoir quels sont les résultats possibles d'une expérience mais non, parmi ces possibles, celui qui se réalisera
 - Jet d'un dé : 6 résultats possibles mais lequel sortira ?
- Espace fondamental Ω
 - Ensemble des résultats possibles
 - $\Omega = \{1,2,3,4,5,6\}$
- Événement A (ou B, C, D,...si plusieurs)
 - Le résultat du jet est un chiffre impair,
 - $A = \{1,3,5\}$

I. Événements

- Événement élémentaire e_i
 - Partie de Ω qui ne contient qu'une seule possibilité
 - Ex. $\{1\}$ est un événement élémentaire de Ω
- Événement impossible
 - Événement qui ne contient aucun des éléments de Ω
 - Ex. 7 ou 8 correspond à la partie vide \emptyset de Ω
- Événement certain
 - L'ensemble de toutes les possibilités de Ω
 - Ex. {1,2,3,4,5,6}

22

Ω

I. Événements

- Deux (ou plusieurs) événements incompatibles
 - Deux parties disjointes de Ω
 - $A = \{pairs\}$ et $B = \{impairs\}$

- Deux (ou plusieurs) événements composés
 - Deux parties jointes de Ω
 - $A = \{1,2,3,4\} \text{ et B} = \{\text{impairs}\}\$

23

II. Axiome de Kolmogorov

- Faire correspondre une probabilité à chaque événement A ⊂ Ω → 3 conditions :
 - Positivité:
 - probabilité de A est positive ou nulle $\forall A \in \Omega, \ p(X) \ge 0,$
 - Echelle:
 - Probabilité d'un événement impossible est nulle
 - Probabilité d'un événement certain est égale à 1 $p(\phi) = 0, p(\Omega) = 1,$
 - Additivité:
 - L'union de deux événements incompatibles a pour probabilité la $p(A \cup B) = p(A) + p(B)$ é

Supposons que l'expérience consiste pour une famille à avoir 3 enfants. Un résultat possible serait: d'abord un garçon, ensuite une fille, puis un garçon: (GFG) Comment obtenir la probabilité d'un tel résultat (= événement élémentaire e) ?

- > Répéter l'expérience 1 million de fois: impossible
- Alternative: considérer 1 million de familles ayant 3 enfants et calculer la proportion de familles qui ont (GFG)

Créer un modèle mathématique = expérience imaginaire

Modèle de l'arbre

 $Pr(G) = Pr(F) = \frac{1}{2}$ de la population

 $Pr(GFG) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$

L'arbre donne tous les résultats élémentaires possibles e_i et leur probabilité $Pr(e_i)$

25

III. e_i et A ? Modèle de l'arbre

Supposons que le couple prévoit d'avoir 3 enfants et espère au moins 2 filles.

Cet événement E comprend les 4 résultats élémentaires e, suivants:

 $\mathbf{A} = \{e_4, \ e_6, \ e_7, \ e_8, \}$ (E est un sous-ensemble de S)

• e

Ensemble échantillon S des résultats possibles, les événements élémentaires e_i, et probabilités des événements élémentaires Pr(e_i).

Dr(brancheN)

© €4 © €5 © €6 © €7 © €8

Espace

échantillon S

 $Pr(e) = Pr(branche1) \times Pr(branche2) \times ... \times Pr(brancheN)$

 $\Pr(e) = \prod^{N} \Pr(branche)_{j}$

III. e_i et A ? Modèle de l'arbre

Sur base du *diagramme de Venn* de la diapositive précédente, on peut définir un **événement E** comme le sous-ensemble E de l'espace S des résultats possibles e_i.

Quelle est la probabilité de E (e₄, e₆, e₇, e₈) ?

Chaque résultat e_i se réalise une fois sur 8 si on réalise l'expérience un grand nombre de fois, soit:

 $Pr(e_4) = 1/8$

 $Pr(e_6) = 1/8$ Par conséquent, E se réalisera 1/8 + 1/8 + 1/8 + 1/8 = 4/8

 $Pr(e_7) = 1/8$

 $Pr(e_8) = 1/8$

De manière générale,

 $Pr(A) = \Sigma Pr(e_i)$

La probabilité d'un événement est la somme des probabilités des résultats élémentaires inclus dans cet événement

où on ne fait entrer que les résultats élémentaires e, inclus dans E

27

IV. Algèbre des événements

- Relation d'inclusion
 - Lorsque tout élément de A appartient à B : A ⊂ B
 - A implique B : si A se réalise B aussi
 - $Ex. A = \{1,3\}, B=\{1,3,5\}$
- Complémentarité
 - $A \{1,2,3\}$; non $A = \bar{A} = \{4,5,6\}$
- Relations de correspondance
 - Réunion A U B : A ou B se réalise
 - Intersection A ∩ B : A et B se réalise

B

IV. Algèbre des événements

- U et ∩ dans événements composés
 - $-Pr(A \cup B)$

$$p(A \cup B) = p(A \cap \overline{B}) + p(A \cap B) + p(\overline{A} \cap B)$$

Avec,
$$p(A) = p(A \cap \overline{B}) + p(A \cap B)$$

$$p(B) = p(\overline{A} \cap B) + p(A \cap B)$$

D'où,
$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

 $-Pr(A \cap B) = Pr(A) \cdot Pr(B) \neq \emptyset \text{ (non nul)}$

29

IV. Algèbre des événements

- U et ∩ dans événements incompatibles
 - $-Pr(A \cup B)$

$$p(A \cup B) = p(A) + p(B)$$

- Principe d'additivité (Kolmogorov)
- $-Pr(A \cap B) = \emptyset$

IV. Algèbre des événements

- U et ∩ dans événements complémentaires
 - $Pr(A \cup \bar{A}) = Pr(A) + Pr(\bar{A}) = \Omega = 1$
 - D'où, Pr(A) = 1 Pr(Ā)
 - $Pr(A \cap \bar{A}) = \emptyset$

31

Exercice 1

Ensemble des résultats possibles « S »			Probabilités
(GGG)	0	e ₁	1/8
(GGF)	•	e ₂	1/8
(GFG)	0	e ₃	1/8
(GFF)		e ₄	1/8
(FGG)		e ₅	1/8
(FGF)		e ₆	1/8
(FFG)	0	e ₇	1/8
(FFF)		e ₈	1/8

Reprendre l'exemple du planning de 3 enfants.

- 1. Montrer sur un diagramme de Venn l'événement F= « le $2^{i\hat{e}me}$ enfant est une fille et le $3^{i\hat{e}me}$ un garçon »
- 2. Calculer la probabilité de F
- 3. Calculer la probabilité des événements suivants:

G= moins de 2 filles

H= tous les enfants du même sexe

K= moins de 2 garçons

I= aucune fille

I₁= exactement 1 fille

I₂= exactement 2 filles

I₃= exactement 3 filles

	u ci-dessous, donner la liste d éduire la probabilité: a) G ou H			
Solution				
Reprenons le tab	leau des événements			
(1) Symbole arbitraire d'un événement	(2) Description littéraire	(3) Liste des résultats élémentaires	(4) Probabilité	
Е	Au moins deux filles	$\{e_4, e_6, e_7, e_8\}$	4/8	
F	2ème enfant F, 3ème enfant G	$\{e_3, e_7\}$		
G	Moins de 2 filles	$\{e_1, e_2, e_3, e_5\}$	4/8	
H	Les 3 enfants du même sexe	$\{e_1, e_8\}$	2/8	
K	Moins de 2 garçons	$\{e_4, e_6, e_7, e_8\}$	4/8	
I	Aucune fille	$\{e_i\}$	1/8	
I_1	Exactement une fille	$\{e_2, e_3, e_5\}$	3/8	
I_2	Exactement 2 filles	$\{e_4, e_6, e_7\}$	3/8	
I ₂	Exactement 3 filles	$\{e_8\}$	1/8	

Pour être sûr d'obtenir *au moins* un garçon, un couple décide d'avoir 5 enfants. Quelles sont ses chances de succès ? Première Deuxième Troisième Résultat naissance naissance élémentaire. *e*

Exercice 3

Exercice 3

Pour être sûr d'obtenir *au moins* un garçon, un couple décide d'avoir 5 enfants. Quelles sont ses chances de succès ?

Solution

Plutôt que d'expliciter tout l'espace - échantillon et de compter les événements correspondant à au moins 1 garçon, nous utilisons l'événement complémentaire.

Si E est l'événement: « au moins 1 garçon », alors \overline{E} = « aucun garçon » c'est-à-dire, « rien que des filles ».

 $\Pr(\overline{E})$ est plus facile à calculer car il n'y a qu'un seul point dans l'espace échantillon. La probabilité d'obtenir une fille 5 fois de suite est:

$$Pr(\overline{E}) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{32}$$

On en déduit que:

$$Pr(E) = 1 - Pr(\overline{E})$$

$$=1-\frac{1}{32}$$

3

V. Probabilité conditionnelle : Pr(B/A)

- Probabilité d'un événement B sachant que l'événement A s'est déjà réalisé
 - Pr (B/A)
 - Si A se réalise, les événements possibles deviennent l'ensemble des parties de A, et non plus l'ensemble des parties de Ω

V. Probabilité conditionnelle : Pr(B/A)

• D'où, Pr(B/A) est

$$p(B/A) = \frac{p(B \cap A)}{p(A)}$$

- Si $Pr(A) = \emptyset$, $Pr(B) = \emptyset$ aussi
- Théorème des probabilités composées
 - Définir Pr (A \cap B) à partir de Pr(B/A)

$$p(A \cap B) = p(A) \times p(B/A)$$
, et $p(A \cap B) = p(B) \times p(A/B)$

39

V. Probabilité conditionnelle : Pr(B/A)

• Exemple:

Soit, par exemple, à calculer la probabilité pour que, tirant successivement deux cartes d'un jeu de 32 cartes, ces deux cartes soient des valets. Appelons A et B les deux événements suivants :

- A: la première carte est un valet,
- B: la deuxième carte est un valet.

La probabilité cherchée est $p(A \cap B)$ avec $p(A \cap B) = p(A) \times p(B/A)$.

Lors du premier tirage, il y a 32 cartes et 4 valets dans le jeu, d'où $p(A) = \frac{4}{32}$.

Lors du second tirage, il reste 31 cartes et seulement 3 valets, puisque l'événement A est réalisé, d'où $p(B/A) = \frac{3}{31}$.

Le résultat est donc : $p(A \cap B) = \frac{4}{32} \times \frac{3}{31} = \frac{3}{248} \approx 0.012$.

V. Probabilité conditionnelle : Pr(B/A)

- Cas particulier : événements indépendants
 - deux événements sont indépendants si la probabilité de l'un n'est pas modifiée lorsque l'autre est réalisé

$$p(A/B) = p(A)$$

- Il en résulte,

$$p(A \cap B) = p(A) \times p(B)$$

- Dans l'exemple des cartes, A et B dépendants
 - Mais si remise de la première carte, les résultats des deux tirages deviennent indépendants

$$p(A \cap B) = p(A) \times p(B) = \frac{4}{32} \times \frac{4}{32} = \frac{1}{64} \approx 0.0156$$

4.