Poglavje: Racionalna števila
Tema:
Oblika:
Pripomočki:

1 Racionalna števila

Pregled vsebine poglavja in predvidenega števila ur:

Tema	Predvideno število ur
Racionalna števila	1
Razširjanje in krajšanje ulomkov	2
Računanje z ulomki	3
Urejenost racionalnih števil	1
Potence s celimi eksponenti	3
Decimalni zapis	1
Skupaj	11

Poglavje: Racionalna števila Oblika: frontalna

Tema: Ulomki in racionalna števila Pripomočki: drsnice, projekcija, tabla

1.1 Ulomki in racionalna števila

Ulomek $\frac{x}{y}$ je zapis, ki predstavlja zapis deljenja

$$x: y = \frac{x}{y}; \quad y \neq 0 \land x, y \in \mathbb{Z}.$$

Število/izraz x imenujemo **števec**, y pa **imenovalec**, med njima je **ulomkova črta**.

Ulomek $\frac{x}{0}$ ni definiran (nima pomena), saj z0 ne moremo deliti.

Algebrski ulomek je ulomek, v katerem v števcu in/ali imenovalcu nastopajo algebrski izrazi.

Vsako celo število $x \in \mathbb{Z}$ lahko zapišemo z ulomkom: $x = \frac{x}{1}$.

Ničelni ulomek je ulomek oblike $\frac{0}{y} = 0; y \neq 0.$

V ulomku, kjer v števcu ali imenovalcu nastopa negativno število, upoštevamo enakost

$$-\frac{x}{y} = \frac{-x}{y} = \frac{x}{-y}.$$

Vsakemu neničelnemu ulomku $\frac{x}{y}$ lahko priredimo njegovo **obratno vrednost**:

$$\left(\frac{x}{y}\right)^{-1} = \frac{y}{x}; \quad x, y \in \mathbb{Z} \setminus \{0\}.$$

Racionalna števila

Množica racionalnih števil \mathbb{Q} je sestavljena iz vseh ulomkov (kar pomeni, da vsebuje tudi vsa naravna in cela števila).

$$\mathbb{Q} = \left\{ \frac{x}{y}; \ x \in \mathbb{Z}, y \in \mathbb{Z} \setminus \{0\} \right\}$$

$$\mathbb{Q}$$
 $\mathbb{Q}^ \mathbb{Q}^+$

Glede na predznak razdelimo racionalna števila v tri množice:

- množico negativnih racionalnih števil Q⁻,
- množico z elementom nič: {0} in
- množico pozitivnih racionalnih števil: Q⁺.

$$\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$$

Ulomka $\frac{x}{y}$ in $\frac{w}{z}$ sta enaka/enakovredna natanko takrat, ko je $xz=wy;\,y,z\neq 0.$

$$\frac{x}{y} = \frac{w}{z} \Leftrightarrow xz = wy; \quad y, z \neq 0$$

Enaka/enakovredna ulomka sta različna zapisa za isto racionalno število.

Naloga 1.1. Za katere vrednosti x ulomek ni definiran?

- $\frac{x-2}{x+1}$ $\frac{2}{x-5}$ $\frac{x+2}{3}$ $\frac{13}{2x-5}$

Naloga 1.2. Za katere vrednosti x ima ulomek vrednost enako 0?

Naloga 1.3. Ali imata ulomka isto vrednost?

- $\frac{2}{3}$ in $\frac{10}{15}$ $\frac{-1}{2}$ in $\frac{1}{-2}$ $\frac{4}{5}$ in $\frac{-8}{-10}$ $\frac{5}{8}$ in $\frac{8}{5}$

Naloga 1.4. Za kateri x imata ulomka isto vrednost?

Naloga 1.5. Ali ulomka predstavljata isto vrednost?

- $\left(\frac{1}{2}\right)^{-1} in \frac{1}{2}$ $\left(\frac{2}{3}\right)^{-1} in \frac{3}{2}$ $1\frac{3}{7} in \left(\frac{7}{10}\right)^{-1}$

Naloga 1.6. Ali ulomka predstavljata isto vrednost?

- $2 \cdot \frac{3}{4} \text{ in } \frac{3}{2}$ $2\frac{3}{4} \text{ in } \frac{3}{2}$ $(1\frac{2}{5})^{-1} \text{ in } 1\frac{5}{2}$ $(1\frac{2}{5})^{-1} \text{ in } \frac{5}{7}$

Naloga 1.7. Zapišite s celim delom oziroma z ulomkom.

Poglavje: Racionalna števila Oblika: frontalna

Tema: Razširjanje in krajšanje ulomkov Pripomočki: drsnice, projekcija, tabla

1.2 Razširjanje in krajšanje ulomkov

Razširjanje ulomka

Ulomek ohrani svojo vrednost, če števec in imenovalec pomnožimo z istim neničelnim številom oziroma izrazom. Temu postopku pravimo razširjanje ulomka.

$$\frac{x}{y} = \frac{x \cdot z}{y \cdot z}; \quad x \in \mathbb{Z} \land y, z \in \mathbb{Z} \backslash \{0\}$$

Ko ulomke seštevamo ali odštevamo, jih razširimo na najmanjši skupni imenovalec, ki je najmanjši skupni večkratnik vseh imenovalcev.

Krajšanje ulomka

Vrednost ulomka se ne spremeni, če števec in imenovalec delimo z istim neničelnim številom oziroma izrazom. Temu postopku rečemo krajšanje ulomka.

$$\frac{x \cdot z}{y \cdot z} = \frac{x}{y}; \quad x \in \mathbb{Z} \land y, z \in \mathbb{Z} \backslash \{0\}$$

Ulomek $\frac{x}{y}$ je **okrajšan**, če je (x,y)=1, torej če sta števec in imenovalec tuji števili.

Naloga 1.8. Razširite ulomke na najmanjši skupni imenovalec.

- aloga 1.8. Razsu $\frac{1}{3}$, $\frac{3}{5}$ in $\frac{5}{6}$ $\frac{2}{7}$, 1 in $\frac{1}{2}$ $\frac{5}{6}$, $\frac{1}{2}$ in $-\frac{2}{3}$ $\frac{1}{5}$, $-\frac{1}{2}$ in $\frac{-1}{3}$ $\frac{2}{-1}$, $\frac{3}{2}$ in $\frac{1}{-3}$ $\frac{3}{-4}$, $\frac{-1}{2}$ in $-\frac{2}{5}$

Naloga 1.9. Razširite ulomke na najmanjši skupni imenovalec.

- aloga 1.9. Razsutte uto

 $\frac{1}{x-1}$, $\frac{1}{x+1}$ in 1

 $\frac{2}{x}$, $\frac{1}{x-3}$ in $\frac{1}{(x-3)^2}$ $\frac{3}{x^2-4x}$, $\frac{1}{x}$ in $\frac{2}{x-4}$ $\frac{4}{x-4}$, $\frac{2}{x-2}$ in $\frac{1}{x^2-6x+8}$ $\frac{2}{x-1}$ in $\frac{3}{1-x}$ $\frac{1}{2-x}$, $\frac{2}{x+2}$ in $\frac{3}{x^2-4}$

Naloga 1.10. Okrajšajte ulomek.

- $\overline{\frac{51}{121}}$

Naloga 1.11. Okrajšajte ulomek.

Poglavje: Racionalna števila

Tema: Računanje z ulomki Pripomočki: drsnice, projekcija, tabla

Seštevanje in odštevanje ulomkov

Seštevanje ulomkov

Ulomke seštevamo tako, da jih razširimo na skupni imenovalec, nato seštejemo števce, imenovalce pa prepišemo.

Oblika: frontalna

$$\frac{x}{y} + \frac{z}{w} = \frac{xw}{yw} + \frac{yz}{yw} = \frac{xw + yz}{yw}; \quad x, z \in \mathbb{Z} \land y, w \in \mathbb{Z} \backslash \{0\}$$

Odštevanje ulomkov

Ulomke odštevamo tako, da prištejemo nasprotni ulomek.

$$\frac{x}{y}-\frac{z}{w}=\frac{x}{y}+\left(-\frac{z}{w}\right)=\frac{xw}{yw}+\frac{-yz}{yw}=\frac{xw-yz}{yw};\quad x,z\in\mathbb{Z}\,\wedge\,y,w\in\mathbb{Z}\backslash\{0\}$$

Naloga 1.12. Izračunajte.

Naloga 1.13. Izračunajte.

- $\left(\frac{2}{3} 2\frac{1}{4}\right) + \frac{1}{12}$ $\frac{2}{7} \frac{3}{4} + \left(\frac{1}{2} 2\right)$ $\left(\frac{2}{3} \left(\frac{1}{3} 3\right) + \frac{1}{4}\right) \frac{1}{2}$ $1 \left(2 \left(3 4 \left(5 \frac{1}{2}\right)\right) + \frac{1}{3}\right)$

Naloga 1.14. Poenostavite.

- $\begin{array}{ll}
 \bullet & \frac{x}{x-1} \frac{x}{x+1} \\
 \bullet & \frac{3}{x^2} + \frac{4}{x^3} \frac{1}{x}
 \end{array}$
- $\frac{3}{x^2-4x} \left(\frac{x}{1} + \frac{2}{x^2-5x+4}\right)$ $\frac{2}{xy} + \frac{3}{x} \frac{2}{y}$

- Naloga 1.15. Poenostavite. $\frac{(x-3)^2 + (x+3)^2}{x^2 + 9} \frac{3x^2}{2x^2 x^2}$ $\frac{(a-3)^3 (a-1)^3 + 26}{6a} + \left(-\frac{1}{2}\right)^{-1}$ $\frac{x^3 2x^2 x + 2}{-x(1-x)-2} \left(\frac{x-1}{x} 1\right)^{-1}$

 - $\left(\frac{x}{2} \left(\frac{x}{3} \left(\frac{x}{4} \frac{x}{5}\right)\right)\right) \left(\frac{60}{x}\right)^{-1}$

Množenje ulomkov

Ulomka **množimo** tako, da števce množimo s števci, imenovalce pa množimo z imenovalci.

$$\frac{x}{y} \cdot \frac{z}{w} = \frac{xz}{yw}; \quad x,z \in \mathbb{Z} \wedge y, w \in \mathbb{Z} \backslash \{0\}$$

Produkt danega in njemu obratnega ulomka je enak 1.

$$\frac{x}{y} \cdot \left(\frac{x}{y}\right)^{-1} = \frac{x}{y} \cdot \frac{y}{x} = 1$$

Naloga 1.16. Izračunajte.

•
$$\frac{1}{3} \cdot \frac{3}{7}$$

•
$$\frac{2}{5}$$
 $\frac{4}{9}$

•
$$2\frac{1}{3}$$
 $3\frac{3}{4}$
• $\frac{-2}{4}$ $4\frac{2}{3}$

•
$$3^{3} \cdot \frac{2}{3}$$

Naloga 1.17. Poenostavite.

$$\bullet \quad \frac{x^2 + 5x}{-x + 2} \quad \frac{2x^2 - 8}{x^2 + 7x + 10}$$

$$\bullet \quad 2 \cdot \frac{x}{x-1} \cdot \frac{x^2-1}{x^2+x}$$

Naloga 1.18. Poenostavite.
•
$$\frac{x^2-4}{x^2-1} \cdot \frac{x^3-1}{x^3+x^2+x} \cdot \frac{x^2+x}{2-x}$$

•
$$\left(\frac{6-x}{x^2+6x} - \frac{x}{36-x^2}\right) \cdot \left(\frac{2x-6}{x^2+6x}\right)^{-1} + \frac{x}{6-x}$$

•
$$\left(\frac{6-x}{x^2+6x} - \frac{x}{36-x^2}\right) \cdot \left(\frac{2x-6}{x^2+6x}\right)^{-1} + \frac{x}{6-x}$$

• $\left(\left(x-y+\left(\frac{x+y}{2xy}\right)^{-1}\right) \cdot \left(\frac{1}{x+y}\right)^{-1} - 2xy\right) \cdot (x-y)^{-1}$

•
$$\left(xy + y^2 - \frac{xy + y^2}{3xy - 3x^2}\right) \cdot \left(\frac{x + y}{3x}\right)^{-1} - \left(-\frac{y - x}{y}\right)^{-1}$$

Deljenje ulomkov 1.5

Ulomek delimo z neničelnim ulomkom tako, da prvi ulomek množimo z obratno vrednostjo drugega ulomka.

$$\frac{x}{y}:\frac{z}{w}=\frac{x}{y}\cdot\left(\frac{z}{w}\right)^{-1}=\frac{x}{y}\cdot\frac{w}{z}=\frac{xw}{yz};\quad x\in\mathbb{Z}\wedge y, z, w\in\mathbb{Z}\backslash\{0\}$$

Deljenje ulomkov lahko zapišemo kot dvojni ulomek.

$$\frac{x}{y}:\frac{z}{w}=\frac{\frac{x}{y}}{\frac{z}{w}};\quad x\in\mathbb{Z}\,\wedge y,z,w\in\mathbb{Z}\backslash\{0\}$$

Naloga 1.19. Izračunajte.

- $2:\frac{4}{5}$
- $1\frac{2}{3}:2\frac{5}{6}$ $\frac{7}{12}:14$ $\frac{3}{8}:\frac{9}{32}$

Naloga 1.20. Izračunajte.

Naloga 1.21. Poenostavite.

•
$$\frac{x^2+x-6}{x+2}$$
 : $(x-2)$

- $\frac{x-1}{2x^2-4x}$: $\frac{x^2}{x-2}$ x: $\frac{x^2+x}{x^3+1}$

- Naloga 1.22. Poenostavite. $\frac{x-1}{x^2-4}: \frac{1-x^2}{x-2}$ $\frac{x-2}{(x+2)^{-1}}: \left(\frac{1}{x^2-1}\right)^{-1}$ $\frac{3-x}{2-x}: \frac{x-3}{x-2}$

Poglavje: Racionalna števila Oblika: frontalna

Pripomočki: drsnice, projekcija, tabla **Tema:** Urejenost racionalnih števil

Urejenost racionalnih števil

Za ulomka $\frac{x}{y}$ in $\frac{z}{w}$ $(y, w \notin \{0\})$ velja natanko ena izmed treh možnosti:

- 1. prvi ulomek je večji od drugega $\frac{x}{y} \geqslant \frac{z}{w}$ natanko tedaj, ko je $xw \geqslant yz$;
 2. drugi ulomek je večji od prvega $\frac{x}{y} \leqslant \frac{z}{w}$ natanko tedaj, ko je $xw \leqslant yz$;
- 3. ulomka sta enaka $\frac{x}{y} = \frac{z}{w}$ natanko tedaj, ko je xw = yz oziroma $\frac{x}{y} \leqslant \frac{z}{w} \wedge \frac{x}{y} \geqslant \frac{z}{w}$. Enaka ulomka predstavljata isto racionalno število.

Slika večjega racionalnega števila $\frac{x}{u}$ je na številski premici desno od slike manjšega racionalnega števila

Slike pozitivnih racionalnih števil ležijo desno, slike negativnih racionalnih števil pa levo od koordinatnega izhodišča.

$$\begin{array}{c|c} \mathbb{Q}^{-} & \mathbb{Q}^{+} \\ \hline negativna \ števila & pozitivna \ števila \end{array}$$

V množici ulomkov velja, da je vsak negativen ulomek manjši od vsakega pozitivnega ulomka.

Množica racionalnih števil je **linearno urejena** z relacijo biti manjši ali enak (≤) oziroma biti večji ali $enak (\geq).$

- Za to relacijo linearne urejenosti veljajo naslednje lastnosti: refleksivnost: $\forall \frac{x}{y} \in \mathbb{Q} : \frac{x}{y} \leqslant \frac{x}{y};$

• Interestivitosi: $\forall \frac{x}{y} \in \mathbb{Q}$: $\frac{x}{y} \leqslant \frac{z}{y}$, $\frac{z}{w} \in \mathbb{Q}$: $\frac{x}{y} \leqslant \frac{z}{w} \wedge \frac{z}{w} \leqslant \frac{x}{y} \Rightarrow \frac{x}{y} = \frac{z}{w}$;
• tranzitivnost: $\forall \frac{x}{y}, \frac{z}{w}, \frac{r}{q} \in \mathbb{Q}$: $\frac{x}{y} \leqslant \frac{z}{w} \wedge \frac{z}{w} \leqslant \frac{r}{q} \Rightarrow \frac{x}{y} \leqslant \frac{r}{q}$ in
• stroga sovisnost: $\forall \frac{x}{y}, \frac{z}{w} \in \mathbb{Q}$: $\frac{x}{y} \leqslant \frac{z}{w} \vee \frac{z}{w} \leqslant \frac{x}{y}$.

Množica racionalnih števil pa je tudi **delno urejena**, in sicer z relacijo *biti manjši* (<) oziroma *biti večji*

Tedaj veljajo le lastnosti: refleksivnost, antisimetričnost in tranzitivnost.

Pri množenju neenakosti s pozitivnim številom se znak neenakosti ohrani.

$$\frac{x}{y} < \frac{z}{w} \quad \land \quad \frac{r}{q} > 0 \quad \Rightarrow \quad \frac{x}{y} \cdot \frac{r}{q} < \frac{z}{w} \cdot \frac{r}{q}$$

Pri množenju neenakosti s negativnim številom se znak neenakosti obrne.

$$\frac{x}{y} < \frac{z}{w} \quad \land \quad \frac{r}{q} < 0 \quad \Rightarrow \quad \frac{x}{y} \cdot \frac{r}{q} > \frac{z}{w} \cdot \frac{r}{q}$$

Monotonost vsote

Če na obeh straneh neenakosti prištejemo isto število, se neenakost ohrani.

$$\frac{x}{y} < \frac{z}{w} \quad \Rightarrow \quad \frac{x}{y} + \frac{r}{q} < \frac{z}{w} + \frac{r}{q}$$

Naloga 1.23. Kateri od ulomkov je večji?

Naloga 1.24. Katero število je za $\frac{3}{5}$ večje od $\frac{2}{3}$?

Naloga 1.25. Katero število je za $\frac{1}{3}$ manjše od $\frac{7}{9}$?

Naloga 1.26. Ulomke uredite po velikosti od večjega k manjšemu. • $\frac{2}{5}$, $\frac{3}{10}$, $\frac{8}{9}$ in $\frac{7}{8}$ • $-\frac{1}{2}$, $\frac{-1}{3}$, $\frac{-3}{4}$ in $\frac{2}{-5}$

Naloga 1.27. Ali obstajajo ulomki z imenovalcem 25, ki so med $\frac{4}{9}$ in $\frac{5}{9}$? Če obstajajo, jih zapišite.

Naloga 1.28. Ali obstajajo ulomki z imenovalcem 100, ki so med $\frac{13}{53}$ in $\frac{14}{53}$? Če obstajajo, jih zapišite.

Poglavje: Racionalna števila Oblika: frontalna

Tema: Potence s celimi eksponenti Pripomočki: drsnice, projekcija, tabla

1.7 Potence s celimi eksponenti

Naravna števila so enaka pozitivnim celim številom, torej so potence s pozitivnimi celimi eksponenti enake potencam z naravnimi eksponenti.

Potenca z eksponentom enakim 0 je definirana kot:

$$x^0 = \begin{cases} 1 & x \neq 0; \\ 1 \text{ ali } ND & x = 0. \end{cases}$$

Potenca z negativnim celim eksponentom pa je definirana kot:

$$x^{-n} = \frac{1}{x^n}; \quad x \notin \{0\}, n \in \mathbb{N}.$$

Pravila za računanje s potencami s celimi eksponenti

V spodaj zapisanih pravilih upoštevamo realni osnovi $x,y\in\mathbb{R}$ in cele eksponente $m,n\in\mathbb{Z}$.

- $x^n \cdot x^m = x^{n+m}$
- $x^n \cdot y^n = (xy)^n$ $(x^n)^m = x^{nm}$

- $x^n: x^m = \frac{x^n}{x^m} = x^{n-m}$ $x^n: y^n = \frac{x^n}{y^n} = \left(\frac{x}{y}\right)^n; \quad y \neq 0$

Naloga 1.29. Poenostavite.

- $x^{10}: x^5$
- $b^4:b^{-11}$
- $y^{-3}: y^2$

Naloga 1.30. Poenostavite.

 $\frac{2^{10}a^4b^{-4}}{2^{-2}a^{-2}b} \\
\frac{3^{10}x^{-12}y^{-20}}{6^{10}x^2y^{-3}}$

Naloga 1.31. Poenostavite.

- $\bullet \quad -\frac{5^5 a^4 b^{-3}}{a^{-3} b^2} : \left(-\frac{5^2 a^{-2} b}{a^2}\right)^2$

Naloga 1.32. Poenostavite.

Naloga 1.33. Poenostavite.

$$\begin{array}{l} \bullet \quad \frac{7^{3n-3}+3\cdot7^{3n-2}-7^{3n-4}}{7^{3n-2}-7^{3n-1}} \\ \bullet \quad \frac{2^{n-1}+3\cdot2^n}{4^n+5\cdot2^{2n-1}} \end{array}$$

$$\frac{2^{n-1}+3\cdot 2^n}{4^n+5\cdot 2^{2n-1}}$$

Naloga 1.34. Napišite brez negativnih eksponentov.

• $x^{-1} + 2x^{-2}$ • $1 - x^{-1} - x^{-2}$ • $\frac{1}{x^{-1}} + x^{-1}$

•
$$x^{-1} + 2x^{-2}$$

•
$$1-x^{-1}-x^{-2}$$

•
$$\frac{1}{x^{-1}} + x^{-1}$$

$$\bullet \quad \left(\frac{\frac{2}{x-2}}{(x^{-2})^{-1}}\right)^{-\frac{1}{2}}$$

Naloga 1.35. Poenostavite.

•
$$(x-x^{-1})\cdot(x^2-1)^{-1}$$

•
$$\frac{x^{-2}+x^{-1}}{x^{-2}-x^{-1}}-(1-x)^{-1}$$

•
$$\left(\frac{x^{-3}-x^{-1}}{1-x^{-2}}\right)^{-1}+\left(\frac{1}{x}\right)^{-1}$$

•
$$(x-x^{-1}) \cdot (x^2-1)^{-1}$$

• $\frac{x^{-2}+x^{-1}}{x^{-2}-x^{-1}} - (1-x)^{-1}$
• $\left(\frac{x^{-3}-x^{-1}}{1-x^{-2}}\right)^{-1} + \left(\frac{1}{x}\right)^{-1}$
• $(x^{-2}-2x^{-1}+1)^{-1} - (x-1)^{-2}$

Poglavje: Racionalna števila

Tema: Decimalni zapis Pripomočki: drsnice, projekcija, tabla

Oblika: frontalna

1.8 Decimalni zapis

Vsako racionalno število lahko zapišemo na dva načina:

- z ulomkom in
- z decimalnim zapisom.

Decimalni zapis sestavljajo tri komponente:

- celi del.
- decimalna pika oziroma decimalna vejica in
- ulomljeni del.

Decimalni zapis racionalnega števila (zapisanega z ulomkom) dobimo tako, da števec ulomka delimo z njegovim imenovalcem.

Končen decimalni zapis

Končen decimalni zapis dobimo pri desetiških/decimalnih ulomkih.

To so ulomki, katerih imenovalec se lahko razširi na potenco števila 10, takšni imenovalci so oblike $2^n \cdot 5^m$.

Neskončen periodičen decimalni zapis

Neskončen periodičen decimalni zapis dobimo pri nedesetiških/nedecimalnih ulomkih.

To so ulomki, katerih imenovalca ne moremo razširiti na potenco števila 10.

Najmanjšo skupino števk, ki se pri neskončnem periodičnem decimalnem zapisu ponavlja, imenujemo **perioda**. Označujemo jo s črtico nad to skupino števk.

Glede na število števk, ki v njej nastopajo, določimo njen red.

Naloga 1.36. Zapišite z decimalnim zapisom.

- $\frac{3}{8}$
- $\frac{2}{125}$
- $\frac{6}{25}$
- $\frac{5}{6}$
- $\overline{9}_{4}$
- $\frac{4}{15}$
- $\frac{1}{7}$
- Naloga 1.37. Periodično decimalno število zapišite z okrajšanim ulomkom.
 - $0.\overline{24}$
 - $0.\overline{9}$
 - 1.2
 - 1.03
 - $1.00\overline{12}$

- Naloga 1.38. Izračunajte.
 - 2.3 + 4.8
 - 11.3 + 2.35
 - 0.94 + 0.24
 - 5.6 2.9
 - 0.2 1.25
 - 12.5 20.61

Naloga 1.39. Izračunajte.

- 0.1 · 2.44
- 1.2 · 0.4
- 11 · 0.002
- 0.5 · 0.04
- 0.3:5
- 12.5:0.05
- 2:0.02
- 0.15:0.3

Naloga 1.40. Izračunajte.

- (0.24 + 0.06) : 5 1.2
- $12:(1.2-0.2\cdot 3)+1.2$
- $(2-0.3:(0.025+0.035))\cdot 0.11$
- $(1-0.2:(0.03+0.02))\cdot 1.5$
- $0.3 \cdot (1.2 0.6 \cdot (0.04 + 0.06))$

Poglavje: Realna števila

Tema:

Oblika:

Pripomočki:

2 Realna števila

Pregled vsebine poglavja in predvidenega števila ur:

Tema	Predvideno število ur
Realna števila	1
Kvadratni koren	3
Kubični koren	1
Interval	3
Reševanje enačb	3
Reševanje neenačb	2
Reševanje sistemov enačb	3
Obravnava enačb in neenačb	1
Sklepni račun	1
Odstotni račun	3
Absolutna vrednost	4
Zaokroževanje, približki, napake	1
Skupaj	26

Poglavje: Realna števila Oblika: frontalna

Tema: Realna števila Pripomočki: drsnice, projekcija, tabla

2.1 Realna števila

Med poljubnima dvema racionalnima številoma $\frac{x}{y}, \frac{z}{w} \in \mathbb{Q}$ je vsaj še eno racionalno število – aritmetična sredina teh dveh števil $\frac{1}{2}\left(\frac{x}{y} + \frac{z}{w}\right)$.

Med poljubnima racionalnima številoma je neskončno mnogo racionalnih števil in pravimo, da je množica $\mathbb Q$ povsod gosta.

Množici \mathbb{Q} in \mathbb{Z} imata enako moč – sta števno neskončni $(m(\mathbb{Q}) = m(\mathbb{Z}) = \aleph_0)$.

Iracionalna števila \mathbb{I} so vsi kvadratni koreni števil, ki niso popolni kvadrati, tretji koreni, ki niso popolni kubi, ..., število π , Eulerjevo število e ...

Množici racionalnih in iracionalnih števil sta disjunktni: $\mathbb{Q} \cap \mathbb{I} = \emptyset$.

Realna števila so množica števil, ki jo dobimo kot unijo racionalnih in iracionalnih števil: $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$. Množica realnih števil je močnejša od množice racionalnih števil. Pravimo, da je (neštevno) neskončna.

Množico realnih števil lahko, glede na predznak števil, razdelimo na tri množice:

- množico negativnih realnih števil \mathbb{R}^- ,
- množico z elementom nič: $\{0\}$ in
- množico pozitivnih realnih števil: R⁺.

$$\mathbb{R} = \mathbb{R}^- \cup \{0\} \cup \mathbb{R}^+$$

 \mathbb{R} \mathbb{R}^- 0 \mathbb{R}^+

Vsaki točki na številski premici ustreza natanko eno realno število in obratno, vsakemu realnemu številu ustreza natanko ena točka na številski premici.

Številsko premico, ki upodablja realna števila, imenujemo tudi **realna os**.

Z relacijo biti manjši ali enak je množica \mathbb{R} linearno urejena, to pomeni, da veljajo:

- refleksivnost: $\forall x \in \mathbb{R} : x \leq x$;
- antisimetričnost: $\forall x, y \in \mathbb{R} : x \leqslant y \land y \leqslant x \Rightarrow x = y;$
- tranzitivnost: $\forall x, y, z \in \mathbb{R} : x \leq y \land y \leq z \Rightarrow x \leq z$;
- stroga sovisnost: $\forall x, y \in \mathbb{R} : x \leq y \lor y \leq x$.

Za realcijo urejenosti na množici $\mathbb R$ veljajo še naslednje lastnosti:

- monotonost vsote: $x < y \Rightarrow x + z < y + z$ oziroma $x \le y \Rightarrow x + z \le y + z$;
- $x < y \land z > 0 \Rightarrow xz < yz \text{ in } x \leqslant y \land z > 0 \Rightarrow xz \leqslant yz;$
- $x < y \land z < 0 \Rightarrow xz > yz \text{ in } x \leqslant y \land z < 0 \Rightarrow xz \geqslant yz.$

Poglavje: Realna števila

Tema: Kvadratni koren Pripomočki: drsnice, projekcija, tabla

2.2 Kvadratni koren

Kvadratni koren \sqrt{a} realnega števila $a \ge 0$ je tisto nenegativno realno število x, katerega kvadrat je enak a.

Oblika: frontalna

$$\sqrt{a} = x \Leftrightarrow a = x^2; \quad a, x \in \mathbb{R}^+$$

Število a imenujemo korenjenec, simbol $\sqrt{}$ pa korenski znak.

Pravila za računanje s kvadratnimi koreni

- $(\sqrt{a})^2 = a; \ a \geqslant 0$

- $(\sqrt{a}) = a; \ a \geqslant 0$ $\sqrt{a^2} = \begin{cases} a, & a \geqslant 0 \\ -a, & a < 0 \end{cases}$ $\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}; \ a, b \geqslant 0$ $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}; \ a \geqslant 0, b > 0$

Delno korenjenje poteka tako, da korenjenec zapišemo kot produkt dveh ali več faktorjev, od katerih je vsaj en popoln kvadrat (ga lahko korenimo).

Nato koren zapišemo kot produkt korenov in korenimo kar lahko.

$$\sqrt{a^2b} = \sqrt{a^2}\sqrt{b} = a\sqrt{b}$$

Racionalizacija imenovalca pomeni, da ulomek zapišemo z enakovrednim ulomkom, ki v imenovalcu nima korena. To naredimo z razširjanjem ulomka.

Izraze s kvadratnimi koreni poenostavimo tako, da uporabimo že znane obrazce, delno korenimo in racionaliziramo imenovalce.

Naloga 2.1. Izračunajte.

- $\sqrt{49 \cdot 64}$
- $\sqrt{4 \cdot 324}$
- $\sqrt{361 \cdot 16}$
- $\sqrt{-16\cdot 25}$
- $\sqrt{3\cdot 12}$

Naloga 2.2. Izračunajte.

- $\sqrt{\sqrt{16}}$
- $\sqrt{\sqrt{81}}$
- $\sqrt{\sqrt{256}}$

Naloga 2.3. Izračunajte.

- $\sqrt{x^4y^8}$
- $\sqrt{e^{10}f^{26}}$
- $\sqrt{a^{20}b^4}$

Naloga 2.4. Izračunajte.

- $\sqrt{16+36+12}$
- $\sqrt{121} + \sqrt{81}$
- $\sqrt{10+21+69}$
- $\sqrt{10+11-21}$
- $\sqrt{9+4-4}$
- $\sqrt{3\cdot 4+2\cdot 2}$
- $\sqrt{5\cdot 7+1}$
- $\sqrt{8\cdot7-5\cdot4}$
- $\sqrt{10 \cdot 8 4 \cdot 4}$
- $\sqrt{11 \cdot 5 + 2 \cdot 7 + 3 \cdot 4}$

Naloga 2.5. Izračunajte.

- $\sqrt{20}$
- $\sqrt{98}$
- $\sqrt{300}$
- $\sqrt{125}$
- $\sqrt{x^4y^5z^6}$
- $\sqrt{128a^{13}b^9}$
- $\begin{array}{ll} \bullet & \sqrt{100x^2y^5 + 62x^2y^5}; & x,y \geqslant 0 \\ \bullet & \sqrt{8a^6b^5 12a^4b^6}; & a,b \geqslant 0 \end{array}$

Naloga 2.6. Izračunajte.

- $\sqrt{44} + \sqrt{99}$
- $\sqrt{192} + \sqrt{147}$
- $\sqrt{180} \sqrt{245} + 2\sqrt{500}$
- $\sqrt{243a^3b} + 2a\sqrt{48ab} \sqrt{363a^2} \cdot \sqrt{ab}; \quad a, b \ge 0$
- $\sqrt{3a^6 + a^6}$

${\bf Naloga~2.7.}~Racionaliziraj te~imenovalec.$

Naloga 2.8. Izračunajte.

- $\frac{2}{\sqrt{3}} + \frac{3}{\sqrt{2}}$ $\frac{1-\sqrt{2}}{\sqrt{3}} \frac{\sqrt{2}}{\sqrt{5}}$ $(1+\sqrt{5})^2$ $(3-\sqrt{2})^2$

- $(2-\sqrt{3})^3$

Naloga 2.9. Izračunajte.

- $(2 \sqrt{5})^3 (1 + 2\sqrt{5})^2$ $(2 \sqrt{3})^2 + (2 + \sqrt{3})^3$
- $(1+\sqrt{5})\sqrt{6-2\sqrt{5}}$
- $(3-\sqrt{5})\sqrt{14+6\sqrt{5}}$
- $(\sqrt{3} + \sqrt{5}) \sqrt{8 2\sqrt{15}}$

Oblika: frontalna Poglavje: Realna števila

Tema: Kubični koren Pripomočki: drsnice, projekcija, tabla

2.3 Kubični koren

Kubični koren $\sqrt[3]{a}$ realnega števila a je tisto realno število x, katerega kub je enak a.

$$\sqrt[3]{a} = x \Leftrightarrow a = x^3; \quad a, x \in \mathbb{R}$$

Število a imenujemo korenjenec, simbol $\sqrt{}$ korenski znak, število 3 pa korenski eksponent.

Pravila za računanje s kubičnimi koreni

- $(\sqrt[3]{a})^3 = a$ $\sqrt[3]{a^3} = a$ $\sqrt[3]{a \cdot b} = \sqrt[3]{a} \cdot \sqrt[3]{b}$ $\sqrt[3]{\frac{a}{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}}; \ b \neq 0$

Naloga 2.10. Izračunajte.

- ³√-1
 ³√216

Naloga 2.11. Izračunajte.

- aloga 2.11. Izracunajte. $\sqrt{\sqrt{256}} \frac{3 \sqrt{2}}{\sqrt{2} 1} + \sqrt[3]{-8} + (2 \sqrt{2})^2$ $\frac{\sqrt{3} + 1}{\sqrt{3}} \frac{\sqrt{3} 1}{\sqrt{3} + 1} + \sqrt{0.16} + \sqrt{0.64} \sqrt[3]{-27} + \sqrt{48} \sqrt{27}$ $(1 \sqrt{5})^2 (1 + \sqrt{5})^2 + \frac{\sqrt{5} 2}{\sqrt{5} + 2} \sqrt{125} + \sqrt{245}$

Poglavje: Realna števila

Tema: Interval Pripomočki: drsnice, projekcija, tabla

Oblika: frontalna

2.4 Interval

Interval je množica vseh realnih števil, ki ležijo med dvema danima številoma a in b, kjer je a < b. Števili a in b imenujemo **krajišči intervala**.

Vključenost krajišč

• Simbola "[" in "]" označujeta krajišče, ki spada k intervalu.

• Simbola "(" in ")" označujeta krajišče, ki ne spada k intervalu.

Pri zapisu intervalov moramo biti pozorni na zapis vrstnega reda števil, ki določata krajišči.

$$[a,b]\neq [b,a]$$

2.4.1 Vrste intervalov

Zaprti interval

Vsebuje vsa realna števila med a in b, vključno s krajiščema a in b.

$$[\mathbf{a}, \mathbf{b}] = \{ \mathbf{x} \in \mathbb{R}; \mathbf{a} \leqslant \mathbf{x} \leqslant \mathbf{b} \}$$

Odprti interval

Vsebuje vsa realna števila med a in b, vendar ne vsebuje krajišč a in b.

$$(\mathbf{a}, \mathbf{b}) = {\mathbf{x} \in \mathbb{R}; \mathbf{a} < \mathbf{x} < \mathbf{b}}$$

Polodprti/polzaprti interval

• Vsebuje vsa realna števila med a in b, vključno s krajiščem a, vendar ne vsebuje krajišča b.

$$[\mathbf{a}, \mathbf{b}) = \{ \mathbf{x} \in \mathbb{R}; \mathbf{a} \leqslant \mathbf{x} < \mathbf{b} \}$$

• Vsebuje vsa realna števila med a in b, vključno s krajiščem b, vendar ne vsebuje krajišča a.

$$(\mathbf{a}, \mathbf{b}] = {\mathbf{x} \in \mathbb{R}; \mathbf{a} < \mathbf{x} \leqslant \mathbf{b}}$$

Neomejeni/neskončni intervali

•
$$[\mathbf{a}, \infty) = {\mathbf{x} \in \mathbb{R}; \mathbf{x} \geqslant \mathbf{a}}$$

• a

• $(\mathbf{a}, \infty) = {\mathbf{x} \in \mathbb{R}; \mathbf{x} > \mathbf{a}}$

a

• $(-\infty, \mathbf{b}] = {\mathbf{x} \in \mathbb{R}; \mathbf{x} \leq \mathbf{b}}$

• $(-\infty, \mathbf{b}) = {\mathbf{x} \in \mathbb{R}; \mathbf{x} < \mathbf{b}}$

• $(-\infty, \infty) = \{\mathbf{x}; \mathbf{x} \in \mathbb{R}\} = \mathbb{R}$

Naloga 2.12. Zapišite kot interval.

•
$$\{x \in \mathbb{R}; -2 < x < 2\}$$

•
$$\{x \in \mathbb{R}; 4 \leqslant x \leqslant 2\}$$

•
$$\{x \in \mathbb{R}; -14 < x \le -9\}$$

Naloga 2.13. Zapišite interval, ki je narisan na sliki.

•

Naloga 2.14. Zapišite presek intervalov.

•
$$[0,2) \cap (-1,1]$$

•
$$[-3,5] \cap (-3,5)$$

•
$$[2,5) \cap [5,7)$$

•
$$[-1,3) \cap (-4,-1]$$

•
$$[4,6] \cap [-1,4]$$

•
$$(-1,3) \cap [1,2)$$

Naloga 2.15. Zapišite unijo intervalov.

•
$$[0,2) \cup (-1,1]$$

•
$$[-3,5] \cup (-3,5)$$

•
$$[2,5) \cup [5,7)$$

•
$$[-1,3) \cup (-4,1]$$

Naloga 2.16. Zapišite razliko intervalov.

•
$$[2,3]\setminus[3,4)$$

•
$$(1,3)\backslash(3,4)$$

•
$$[2,5)\setminus(-1,2]$$

•
$$(2,8)\setminus[5,6)$$

Naloga 2.17. Izračunajte.

•
$$([1,3)\setminus(1,4])\cup(1,2)$$

•
$$[-2,4]\setminus((-1,2]\cap[0,3))$$

•
$$((-2,3]\setminus[-3,2))\cap[3,5)$$

Poglavje: Realna števila Oblika: frontalna

Pripomočki: drsnice, projekcija, tabla Tema: Reševanje enačb

2.5 Reševanje enačb

Enačba je enakost dveh izrazov, pri čemer vsaj v enem nastopa neznanka, ki je ponavadi označena s črko x.

Rešitev enačbe je vsaka vrednost neznanke, za katero sta vrednosti leve in desne strani enačbe enaki.

Enačbo rešujemo tako, da jo preoblikujemo v ekvivalentno enačbo, iz katere preberemo rešitve. Ekvivalentno enačbo dobimo, če:

- na obeh straneh enačbe prištejemo isto število ali izraz;
- obe strani enačbe množimo z istim neničelnim številom ali izrazom.

Linearna enačba je enačba oblike ax + b = 0; $a, b \in \mathbb{R}$.

Rešujemo jo tako, da jo preoblikujemo v ekvivalentno enačbo, ki ima na eni strani samo neznanko.

Razcepna enačba je enačba, v kateri nastopajo potence neznanke (na primer x^2 , x^3) in jo je mogoče zapisati kot produkt (linearnih) faktorjev.

Preoblikujemo jo v ekvivalentno enačbo, ki ima vse člene na eni strani neenačaja, na drugi pa 0. Izraz (neničelna stran) razstavimo, kolikor je mogoče, in preberemo rešitve.

Racionalna enačba je enačba, v kateri nastopajo neznake (tudi) v imenovalcu, pri tem smo pozorni na obstoj ulomkov. Nato enačbo preoblikujemo v ekvivalentno enačbo.

Naloga 2.18. Rešite enačbe.

•
$$3(2a-1)-5(a-2)=9$$

•
$$2(y-2) + 3(1-y) = 7$$

•
$$3(3-2(t-1)) = 3(5-t)$$

•
$$-(2-x) + 3(x+1) = x-5$$

Naloga 2.19. Rešite enačbe.

•
$$\frac{1}{5} - \frac{x-1}{2} = \frac{7}{10}$$

•
$$\frac{a-1}{3} + \frac{a+2}{6} = \frac{1}{2}$$

•
$$2\frac{2}{3} - \frac{3t+1}{6} = 0$$

Aloga 2.19. Resite enaction.
•
$$\frac{1}{5} - \frac{x-1}{2} = \frac{7}{10}$$

• $\frac{a-1}{3} + \frac{a+2}{6} = \frac{1}{2}$
• $2\frac{2}{3} - \frac{3t+1}{6} = 0$
• $\left(\frac{2}{b+1}\right)^{-1} + \frac{b-1}{4} = b+3$

Naloga 2.20. Rešite razcepne enačbe.

•
$$x^2 - 3x = -2$$

•
$$(x+2)^3 - (x-1)^3 = 8x^2 + x + 2$$

•
$$x^4 = 16x^2$$

•
$$(x^2 - 4x + 5)^2 - (x^2 + 4x + 1)^2 - 78 = 2x^2(x + 30) - 18(x + 1)^3$$

•
$$x^3 - 4x^2 + 4 = x$$

•
$$x^5 = 3x^4 - 2x^3$$

Naloga 2.21. Rešite enačbe.

•
$$\frac{x-1}{x+2} = \frac{x+1}{x-3}$$

•
$$\frac{x-1}{x+2} = \frac{x+1}{x-3}$$

• $\frac{1}{a-1} - \frac{3}{a} = \frac{2}{a-1}$

•
$$\frac{x-3}{x-2} + \frac{x+4}{x+1} = \frac{2x}{x^2 - x - 2}$$

•
$$\frac{1}{3a-1} + \frac{1}{3a+1} = \frac{a-1}{9a^2-1}$$

Naloga 2.22. Neznano število smo delili s 4 in dobljenemu količniku prišteli 1. Dobili smo enako, kot če bi istemu številu prišteli 10. Izračunajte neznano število.

Naloga 2.23. Kvadrat neznanega števila je za 4 manjši od njegovega štirikratnika. Izračunajte neznano število.

Naloga 2.24. Avtomobil vozi s povprečno hitrostjo 50 $\frac{km}{h}$, kolesar s povprečno hitrostjo 20 $\frac{km}{h}$. Avtomobil gre iz Lendave v Ormož (približno 50 km), kolesar vozi v obratno smer. Koliko časa pred avtomobilom mora na pot kolesar, da se bosta srečala na polovici poti?

Naloga 2.25. Vsota števk dvomestnega števila je 3. Če zamenjamo njegovi števki, dobimo za 9 manjše število. Katero število je to?

Naloga 2.26. Andreja je bila ob rojstvu hčere Eve stara 38 let. Čez koliko let bo Andreja stara trikrat toliko kot Eva?

Naloga 2.27. Prvi delavec sam pozida steno v 10 urah, drugi v 12 urah, tretji v 8 urah. Delavci skupaj začnejo zidati steno. Po dveh urah tretji delavec odide, pridruži pa se četrti delavec. Skupaj s prvim in drugim delavcem nato končajo steno v eni uri. V kolikšnem času četrti delavec pozida steno?

Oblika: frontalna Poglavje: Realna števila

Tema: Reševanje neenačb Pripomočki: drsnice, projekcija, tabla

2.6 Reševanje neenačb

Neenačba je neenakost dveh izrazov, pri čemer vsaj v enem nastopa neznanka. Med levo in desno stranjo je postavljen eden od neenačajev: $<,>,\leqslant$ ali \geqslant .

Neenačbo rešujemo tako, da jo preoblikujemo v ekvivalentno neenačbo. To dobimo, če:

- prištejemo isto število ali izraz na obeh straneh neenačbe;
- množimo obe strani neenačbe z istim pozitivnim številom ali izrazom;
- množimo obe strani neenačbe z istim negativnim številom ali izrazom in se pri tem neenačaj obrne.

Linearna neenačba je oblike ax + b < 0, ali pa nastopa drug neenačaj: $>, \leq, \geq$.

Naloga 2.28. Poiščite vsa realna števila, ki ustrezajo pogoju.

- 3a + 2 < 2a 1
- $7t + 8 \ge 8(t 2)$
- 5x 2 > 2(x + 1) 3
- $x-1 \le 2(x-3)-x$

Naloga 2.29. Rešite neenačbe.

- * $\frac{x}{2} + \frac{2}{3} < \frac{8}{3}$ * $\frac{4+5a}{34} \frac{4}{51} \ge 2 + \frac{2-a}{51}$ * $\frac{x+\frac{x-2}{3}}{3} < \frac{x-3}{4} + \frac{x-1}{2}$ * $\frac{2x-2}{15} + \frac{x}{3} < \frac{4x-2}{5} + \frac{3x+9}{10}$

Naloga 2.30. Rešite sisteme neenačb.

- -2 < y 2 < 1
- $-4 \le 5a 9 \le 1$
- $(x+1>3) \land (2x \le 3(x-1))$
- $(3x 5 < x + 3) \lor (2x \ge x + 6)$

Poglavje: Realna števila Oblika: frontalna

Pripomočki: drsnice, projekcija, tabla **Tema:** Reševanje sistemov enačb

2.7 Reševanje sistemov enačb

2.7.1Sistem dveh linearnih enačb z dvema neznankama

Sistem dveh linearnih enačb z dvema neznankama ali sistem 2×2 je v splošnem oblike:

$$a_1x + b_1y = c_1$$

$$a_2x + b_2y = c_2$$

x in y sta neznanki, $a_i, b_i, c_i \in \mathbb{R}$ so koeficienti.

Rešitev sistema je urejen par števil (x, y), ki zadoščajo obema enačbama.

Sistem 2×2 ima lahko eno rešitev, nima rešitve ali ima neskončno rešitev.

Sistem lahko rešujemo s primerjalnim načinom, zamenjalnim načinom ali z metodo nasprotnih koeficientov.

Primerjalni način

Iz obeh enačb izrazimo isto neznanko, nato njuni vrednosti enačimo.

Zamenjalni način

Iz ene enačbe izrazimo eno izmed neznank (preverimo, če je kateri od koeficientov pri neznankah enak 1 - takšno neznanko hitro izrazimo) in izraženo vrednost vstavimo v drugo enačbo.

Metoda nasprotnih koeficientov

Eno ali obe enačbi pomnožimo s takimi števili, da bosta pri eni izmed neznank koeficienta nasprotni števili, nato enačbi seštejemo. Ostane ena enačba z eno neznanko.

Naloga 2.31. Rešite sisteme enačb.

$$2x + y = 9$$

$$x - 3y = 8$$

$$x - y = 5$$

$$y - x = 3$$

$$2x - 3y = 5$$

$$-4x + 6y = -10$$

$$3x - y = 5$$

$$6x - 10 = 2y$$

Naloga 2.32. Z zamenjalnim načinom rešite sisteme enačb.

$$2x + 5y = -2$$

$$x - 3y = -1$$

$$\frac{x}{2} - y = 3$$

$$y + x = -2$$

$$3x - 2y = 1$$

$$x + y = \frac{7}{6}$$
$$0.5x + 0.2y = 2$$

$$0.5x + 0.2y = 2$$

$$\frac{3}{2}x - \frac{2}{5}y = 1$$

Naloga 2.33. Z metodo nasprotnih koeficientov rešite sisteme enačb.

$$2x + 3y = 3$$

$$-4x + 3y = 0$$

$$4x - 3y = -2$$

$$-8x + y = -1$$

$$3x - 2y = 2$$

$$2x - 3y = -2$$

$$x - y = -5$$

$$0.6x + 0.4y = 7$$

Naloga 2.34. V bloku je 26 stanovanj. Vsako stanovanje ima 2 ali 3 sobe. Koliko je posameznih vrst stanovanj, če je v bloku 61 sob?

Naloga 2.35. Kmet ima v ogradi 20 živali. Če so v ogradi le race in koze, koliko je posameznih živali, če smo našteli 50 nog?

Naloga 2.36. Razredničarka na sladoled pelje svojih 30 dijakov. Naročili so lahko 2 ali 3 kepice sladoleda. Koliko dijakov je naročilo dve in koliko tri kepice sladoleda, če razredničarka ni jedla sladoleda, plačala pa je 79 kepic sladoleda?

Naloga 2.37. Babica ima dvakrat toliko vnukinj kot vnukov. Vnukinjam je podarila po tri bombone, vnukom pa po štiri bombone. Koliko vnukinj in vnukov ima, če je podarila 70 bombonov?

2.7.2 Sistem treh linearnih enačb s tremi neznankami

Sistem treh linearnih enačb z tremi neznankami ali sistem 3×3 je v splošnem oblike:

$$a_1 x + b_1 y + c_1 z = d_1$$

$$a_2x + b_2y + c_2z = d_2$$

$$a_3x + b_3y + c_3z = d_3$$

x, y in z so **neznanke**, $a_i, b_i, c_i \in \mathbb{R}$ so **koeficienti**.

Rešitev sistema je urejena trojka števil (x, y, z), ki zadoščajo vsem trem enačbam. Sistem 3×3 rečujemo z istimi postopki kot sisteme 2×2 , le da postopek ponovimo večkrat.

Naloga 2.38. Z metodo nasprotnih koeficientov rešite sisteme enačb.

$$2x + y - 3z = 5$$

•
$$x + 2y + 2z = 1$$

$$-x + y + z = -4$$

$$x - 2y + 6z = 5$$

$$-x + 3z = -1$$

$$4y - 3z = -3$$

$$x + y - z = 0$$

$$\bullet \quad x - y - 3z = 2$$

$$2x + y - 3z = 1$$

$$2x - 4y + z = 3$$

$$\bullet \qquad 4x - y + 2z = 4$$

$$-8x + 2y - 4z = 7$$

Oblika: frontalna Poglavje: Realna števila

Tema: Obravnava enačb in neenačb Pripomočki: drsnice, projekcija, tabla

2.8 Obravnava enačb in neenačb

Kadar v enačbi oziroma neenačbi poleg neznake x nastopajo tudi druge črke, na primer a, b, c, k, l..., le-te označujejo števila, ki imajo poljubno realno vrednost. Imenujemo jih parametri.

Vrednost parametrov vpliva na rešitev enačbe oziroma neenačbe, zato moramo enačbo reševati glede na vrednosti parametrov. Temu postopku rečemo obravnava enačbe oziroma obravnava neenačbe.

Naloga 2.39. Obravnavajte enačbe.

- 2(ax-3)+3=ax
- $-4x b(x-2)^2 = 3 bx^2 7b$ $3(a-2)(x-2) = a^2(x-1) 4x + 7$
- $(b-3)^2x-3=4x-3b$

Naloga 2.40. Obravnavajte neenačbe.

- $a(x-2) \leqslant 4$
- $mx + 4 > m^2 2x$
- $a(a-3x+1) \ge a(x-4) + a^2x$
- $(k-1)^2 x \le kx + 2(k+1) + 5x$

Poglavje: Realna števila Oblika: frontalna

Tema: Sklepni račun Pripomočki: drsnice, projekcija, tabla

2.9 Sklepni račun

Pri sklepnem računu obravnavamo situacije, v katerih nastopata dve količini, ki sta premo sorazmerni ali obratno sorazmerni.

Premo sorazmerje

Količini x in y sta **premo sorazmerni**, če obstaja takšno neničelno število $k \in \mathbb{R}^*$, da je $x = k \cdot y$.

Obratno sorazmerje

Količini x in y sta **obratno sorazmerni**, če obstaja takšno neničelno število $k \in \mathbb{R}^*$, da je $x = \frac{k}{y}$.

Naloga 2.41. Delavec v štirih urah zasluži 10 £. Koliko zasluži v dvanajstih urah?

Naloga 2.42. Tiskalnik v sedmih minutah natisne 42 strani. Koliko časa potrebuje za 108 strani?

Naloga 2.43. Tri čebele v treh dneh oprašijo devetsto cvetov. Koliko cvetov v šestih dneh opraši šest čebel?

Naloga 2.44. Kolesar od Ljubljane do Geometrijskega središča Slovenije potuje dve uri s hitrostjo 20 km/h. Kako hitro bi moral peljati, da bi pot prevozil v eni uri in petnajstih minutah?

Naloga 2.45. En računalnik za pripravo posebnih efektov filma potrebuje 14 ur. Koliko časa bi potrebovali trije taki računalniki, za pripravo posebnih efektov za šest filmov?

Naloga 2.46. Sedem pleskarjev pleska hišo 15 dni. Po petih dneh dva delavca premestijo na drugo delovišče. Koliko časa bodo preostali delavci pleskali hišo?

Poglavje: Realna števila Oblika: frontalna

Pripomočki: drsnice, projekcija, tabla Tema: Odstotni račun

2.10Odstotni račun

Količine pri odstotnem računu so povezane s sklepnim računim, in sicer so v premem sorazmerju.

Odstotek (ali procent) % celote definiramo kot stotino celote, odtisoček (ali promil) % kot tisočino celote.

$$1 \% = \frac{1}{100}$$
 $1 \% = \frac{1}{1000}$

Relativni delež je kvocient med deležem in osnovo: $r = \frac{d}{dt}$

Naloga 2.47. Zapišite z okrajšanim ulomkom oziroma odstotkom.

- 12 %
- 20 % a
- 250 %
- 0.5 % b
- 12 %₀

- $\frac{\frac{3}{4}a}{\frac{7}{20}x}$ $\frac{\frac{31}{10}y}{\frac{31}{10}y}$
- 0.8z
- $\frac{25}{8}m$

Naloga 2.48. Izračunajte.

- Koliko je 20 % od 10 kg?
- Koliko je 25 % od 20 £?
- Koliko je 10 % od 1 l?
- Koliko je 250 % od 12 g?
- Koliko je 1 ‰ od 2350 kg?
- Koliko je 17 ‰ od 100 m?

Naloga 2.49. Pri ekološki pridelavi kmet pridela 3 tone pšenice na hektar. Zaradi toče je bil letošnji pridelek le 2450 kg pšenice. Za koliko odstotkov se je zmanjšala količina pridelka zaradi toče?

Naloga 2.50. V 5 kg raztopine je 120 g soli. Koliko odstotna je ta raztopina?

Naloga 2.51. V tovarni čevljev so povečali proizvodnjo s 1250 parov tedensko na 1700 parov. Koliko odstotno je to povečanje?

Naloga 2.52. Kokoši nesnice znesejo 270 jajc letno. Koliko odstotna je njihova nesnost?

Naloga 2.53. V trgovini stane izdelek 120 £. Koliko stane po:

- 5 % podražitvi,
- 20 % pocenitvi?

Naloga 2.54. Jošt je natipkal besedilo na list A4 formata v pisava Arial, velikosti 12, in ugotovil, da je bilo na strani 3150 znakov s presledki. Če bi pisavo zmanjšal na velikost 10, bi na stran prišlo 28 % več znakov. Koliko?

Naloga 2.55. Dizelsko gorivo je stalo v Sloveniji 1.421 £, v Italijo 1.748 £, v Avstriji pa 1.751 £. Za koliko odstotkov je bilo gorivo v Italiji dražje od goriva v naši državi in za koliko odstotkov je bilo naše gorivo cenejše od goriva v Avstriji?

Naloga 2.56. Prenočitvene zmogljivosti na Bledu so 8880 ležišč. Pred prvomajskimi prazniki so se turistični delavci pohvalili, da je zasedenost kapacitet 90 %. Koliko turistov še lahko sprejmejo na nočitev? Naloga 2.57. Maksov avto porabi 5.6 l goriva na prevoženih 100 km. Z varčno vožnjo lahko zniža porabo za 15 %. Koliko kilometrov bo tako prevozil s polnim rezervoarjem, ki drži 55 l.

Naloga 2.58. Kavču, ki je stal 652 £, so ceno znižali za 10 %, na sejmu pa so ponudili na to ceno še 12 % sejemskega popusta. Koliko bomo odšteli za kavč na sejmu? Za koliko odstotkov je cena na sejmu nižja od prvotne cene kavča?

Naloga 2.59. Servis so najprej podražili za 10 %, potem pa se je ena skodelica okrušila in so ga pocenili za 30 %. Koliko je servis stal na začetku, če ga danes lahko kupimo za 115.5 £?

Naloga 2.60. Izdelek je imel napako, zato so ga pocenili za 20 %. Ko so napako skoraj v celoti odpravili, so ga podražili za 20 %. Kolikšna je bila začetna cena izdelka, če po popravilu stane 192 £?

Naloga 2.61. Koliko vode moramo priliti 3 kg 45 % raztopine, da bomo koncentracijo znižali na 20 %?

Naloga 2.62. Kolikšno koncentracijo raztopine dobimo, če zmešamo 2 kg 60 % raztopine in 3 kg 40 % raztopine?

Naloga 2.63. Koliko kg 12 % raztopine moramo priliti k 30 kg 24 % raztopine, da bomo dobili raztopino z 20 % koncentracijo?

Oblika: frontalna Poglavje: Realna števila

Tema: Absolutna vrednost Pripomočki: drsnice, projekcija, tabla

2.11 Absolutna vrednost

Absolutna vrednost |x| števila x geometrijsko predstavlja oddaljenost točke, ki predstavlja število x, od izhodišča na številski premici.

$$|x| = \begin{cases} x & x \geqslant 0; \\ -x & x < 0. \end{cases}$$

Lastnosti absolutne vrednosti

- $|x| \geqslant 0$
- $|x| = 0 \Leftrightarrow x = 0$
- |-x| = |x|
- $|x \cdot y| = |x| \cdot |y|$
- $|x+y| \le |x| + |y|$ trikotniška neenakost

Z absolutno vrednostjo izračunamo tudi razdaljo med x in y kot |x-y| ali |y-x|.

Naloga 2.64. Izračunajte.

- 13
- | − 5|
- $|-2| \cdot |4|$
- |-3|-|5|
- $|-1| \cdot |-6|$
- -|3|+|-9|

Naloga 2.65. Izračunajte.

- $\left| \frac{1}{5} 5 \right|$ $\left| -\frac{3}{4} \frac{2}{3} \right|$
- $|\sqrt{5} 3|$
- $|-1 + \sqrt{2}|$
- $|1 |\sqrt{6} 3||$
- $||\sqrt{2}-2|-|1-\sqrt{2}||$

Naloga 2.66. Odpravite absolutno vrednost.

- |a-2|
- \bullet |x+1|
- |4-b|
- |2 + e|
- -|1-y|
- -|3+6y|

Naloga 2.67. Poenostavite izraze.

- x-2+|x|
- $3 \cdot |x-2| + x 1$
- |a-2|+|a|
- $3 \cdot |b-2| + |b-1|$
- ||x-2|+x||
- $3 \cdot ||y-2| + |y-1||$

Naloga 2.68. Rešite enačbe.

- |x-2|=3
- |3 x| = 5
- 1 + |x 7| = -6
- |a+3| = 7 |a+2|
- |b-1| = 2 + |b+3|
- |x-1| + |x+2| = 3

Naloga 2.69. Rešite neenačbe.

- $|x-2| \ge 3$
- |3-x| < 5
- $1 + |x 7| \le -6$
- |a+3| < 7 |a+2|
- $|b-1| \ge 2 + |b+3|$
- ||x-3|+2|<1
- $|x |x 3|| \ge 1$
- $|x |2x 1| \ge 2$

Poglavje: Realna števila Oblika: frontalna

Tema: Zaokroževanje, približki, napake Pripomočki: drsnice, projekcija, tabla

2.12 Zaokroževanje, približki, napake

Pravila zaokroževanja

• Zadnjo števko pustimo enako, če je prva izbrisana števka manjša od 5;

• zadnjo števko povečamo za 1, če je prva izbrisana števka 5 ali več.

Zaokroževanje na n decimalnih mest pomeni: opustiti vse decimalke od n-tega mesta dalje in zaokrožiti. Primer: $\sqrt{2} \doteq 1.41$ (na 2 decimalni mesti).

Zaokroževanje na n mest pomeni, da ima število v svojem zapisu n števk, pri pogoju, da ne štejemo ničel na začetku in na koncu. Primer: $\sqrt{2} \doteq 1.41$ (na 3 mesta).

Pri zapisu uporabimo \doteq , kar označuje, da smo rezultat zapisali približno in ne natančno.

Absolutna in relativna napaka

Naj bo x točna vrednost in X njen **približek**.

Absolutna napaka približka je |X - x|; relativna napaka je $\frac{|X - x|}{x}$.

Absolutno napako zapišemo tudi $X=x\pm\epsilon$, kar pomeni, da se absolutna napaka približka X razlikuje od točne vrednosti x kvečjemu za ϵ .

Naloga 2.70. Na kartonski škatli je oznaka velikosti 50 ± 3 cm. Koliko je največja in koliko najmanjša velikost škatle, ki ustreza tej oznaki? Ali je lahko relativna napaka velikosti 8 %?

Naloga 2.71. Pri 200 m vrvi smemo narediti 7 % napako. Ali je lahko takšna vrv dolga 230 m? Kako dolgi bosta najkrajša in najdaljša vrv, ki še ustrezata?

Naloga 2.72. V EU morajo biti banane za prodajo dolge najmanj 14 cm. V trgovino dobijo novo pošiljko banan, ki jih izmerijo, da so dolžine 13.7 cm. Njihov meter ima 5 % odstopanje. Ali lahko prodajajo takšne banane?

Poglavje: Osnove statistike
Tema:
Oblika:
Pripomočki:

3 Osnove statistike

Pregled vsebine poglavja in predvidenega števila ur:

Tema	Predvideno število ur
Osnovni pojmi statistike	1
Urejanje in grupiranje podatkov	2
Mere osredinjenosti	2
Mere razpršenosti	2
Grafično prikazovanje podatkov	2
Skupaj	9

Poglavje: Osnove statistike Oblika: frontalna

Tema: Osnovni pojmi statistike Pripomočki: drsnice, projekcija

3.1 Osnovni pojmi statistike

Populacija je množica, ki jo statistično proučujemo. Element populacije imenujemo statistična enota.

Vzorec je podmnožica populacije, katere elementi predstavljajo največjo možno mero značilnosti celotne množice. Vzorec izberemo, kadar je celotna populacija prevelika množica, da bi analizirali vse njene elemente.

- Reprezentativen vzorec je vzorec, ki je izbran tako, da predstavlja značilnosti celotne populacije.
- Slučajni vzorec je vzorec, ki je izbran naključno vsi elementi populacije imajo enako možnost, da bodo izbrani.

Numerus je število elementov vzorca. Oznaka N.

Statistična spremenljivka/podatek/znak je vrednost ali lastnost, ki jo proučujemo.

Vrste statističnih spremenljivk:

- opisne/kvalitativne statistične spremenljivke
- vrstne/ordinalne statistične spremenljivke
- številske/kvantitivne statistične spremenljivke

Številske statistične spremenljivke:

- diskretne številske spremenljivke zavzamejo lahko posamezne vrednosti
- zvezne številske spremenljivke zavzamejo lahko vsako vrednost z nekega intervala

Naloga 3.1. Zapišite, kaj je v danem primeru populacija, vzorec, statistična enota, spremenljivka in ugotovite ali je spremenljivka opisna ali numerična in, če je numerična, ugotovite, ali je zvezna ali diskretna.

- Na spletni strani je anketa z vprašanjem "Ali imate doma pomivalni stroj?". Nanjo je odgovorilo 254 ljudi.
- V televizijski oddaji gledalci glasujejo za dva kandidata.
- Razrednik svojih 28 dijakov vpraša, kolikšna je oddaljenost njihovega doma do šole.
- Maturant piše seminarsko nalogo z naslovom "Uporaba TikTok-a med srednješolci". Pridobil je odgovore 369 srednješolcev, ki so odgovarjali na vprašanje "Ali uporabljaš TikTok?"
- Znanstveniki pri raziskavi spremljajo, koliko jajc znesejo kokoši na slovenskih farmah na mesec.

Naloga 3.2. Slovenija ima več kot 6000 naselij. Statistični urad Republike Slovenije je januarja 2024 naredil analizo naselij glede na število prebivalcev. Rezultati so prikazani v tabeli.

velikostni razred naselja	število naselij
0	57
1 - 24	719
25 - 49	851
50 - 99	1256
100 - 199	1444
200 - 499	1109
500 - 999	359
1000 - 4999	199
5000 - 9999	23
10000 - 49999	16
50000+	2

Zapišite, kaj je v danem primeru populacija, statistična enota, spremenljivka in ugotovite ali je spremenljivka opisna ali numerična in, če je numerična, ugotovite ali je zvezna ali diskretna.

Poglavje: Osnove statistike

Tema: Urejanje in grupiranje podatkov

Oblika: frontalna, delo v dvojicah/individualno Pripomočki: drsnice, projekcija, računalniki

3.2 Urejanje in grupiranje podatkov

Podatke, pridobljene v posamezni raziskavi, moramo najprej urediti.

Če podatkov ni veliko, jih uredimo po velikosti v **ranžirno vrsto**, sicer jih združujemo v skupine, **frekvenčne razrede**.

Podatek z največjo vrednostjo označimo z x_{max} , podatek z najnižjo vrednostjo pa x_{min} .

Frekvenca f statističnega znaka je posamezno število diskretnih statističnih enot iste vrednosti.

Frekvenčni razred je skupina podatkov iz vzorca. Frekvenčni razredi so navadno enako široki, in skupaj zajamejo celoten razpon podatkov. Za zvezen nabor podatkov za frekvenčne razrede izberemo intervale (navadno oblike [a,b)).

Širina frekvenčnega razreda d_k je razlika med zgornjo (z_k) in spodnjo (s_k) mejo frekvenčnega razreda:

$$d_k = z_k - s_k.$$

Če so razredi enako široki, določimo njihovo širino kot kvocient med celotnim razponom podatkov $x_{max}-x_{min}$ in številom razredov.

Sredina frekvenčnega razred x_k je aritmetična sredina zogrnje in spodnje meje razreda:

$$x_k = \frac{z_k + s_k}{2}.$$

Grupirane podatke predstavimo s frekvenčno preglednico/porazdelitvijo.

Za podatke v frekvenčnih preglednicah računamo:

- (absolutno) frekvenco f_k število podatkov z vrednostmi v danem frekvenčnem razredu;
- relativno frekvenco f'_k delež celote, ki ga predstavlja število podatkov v danem frekvenčnem razredu;
- (absolutno) kumulativno frekvenco F_k število podatkov, katerih vrednosti zavzemajo manjšo vrednost od zgornje meje danega frekvenčnega razreda;
- relativno kumulativno frekvenco F'_k delež celote, ki ga predstavlja število podatkov v danem in vseh manjših frekvenčnih razredih.

Naloga 3.3. Na šoli analizirajo količino prevzetih obrokov v jedilnici. Rezultati so zbrani v tabeli.

Oddelek	Število prevzetih obrokov
1.a	12
1.b	14
1.c	20
2.a	17
2.b	16
2.c	9
3.a	13
3.b	16
3.c	14
4.a	21
4.b	8
4.c	12

Analizirajte podatke s frekvenčno preglednico. Podatke razdelite v razrede 5-9, 10-14, 15-19, 20 in več.

Naloga 3.4. Dijaki 3. a oddelka so zapisovali svoje pribljubljene barve.

 $Zapisali\ so\ jih:\ modra,\ rdeča,\ rdeča,\ redeča,\ rumena,\ rdeča,\ modra,\ rumena,\ rdeča,\ rumena,\ rumena,\ rumena,\ redeča,\ redeča,\ redeča,\ rumena,\ rumena,\ rumena,\ redeča,\ redeč$

Analizirajte rezultate s frekvenčno preglednico.

Naloga 3.5. Lokostrelec si beleži rezultate treningov.

Vrednosti so bile: 10.3, 10.4, 9.9, 9.7, 10.2, 8.9, 9.4, 10.1, 9.0, 10.3, 9.5, 10.6.

 $Analiziraj te\ rezultate\ s\ frekven\'eno\ preglednico.$

Naloga 3.6. V frekvenčni preglednici so zbrani podatki o številu sorojencev dijakov 2. b oddelka. Dopolnite preglednico.

Število sorojencev	f_k	f_k'	F_k	F'_k
0	5			
1		25~%		
2				
3		10 %		
skupaj	20	100 %	/	/

Poglavje: Osnove statistikeOblika: frontalna, delo v dvojicah/individualnoTema: Mere osredinjenostiPripomočki: drsnice, projekcija, računalniki

3.3 Mere osredinjenosti

Aritmetična sredina

Aritmetična sredina ali povprečje je količnik vsote vseh vrednosti statistične spremenljivke in števila teh vrednosti.

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{N} = \frac{1}{N} \sum_{i=1}^{n} x_i.$$

Če se vrednosti statistične spremenljivke ponavljajo $(k_i \text{ vrednosti } x_i)$, je formula sledeča:

$$\overline{x} = \frac{k_1 x_1 + k_2 x_2 + \dots + k_m x_m}{k_1 + k_2 + \dots + k_m} = \frac{\sum_{i=1}^m k_i x_i}{\sum_{i=1}^m k_i}; \quad \sum_{i=1}^m k_i = N$$

Pri grupiranih podatkih za vrednosti vzamemo sredine frekvenčnih razredov.

Modus

Modus ali **gostiščnica** *Mo* je vrednost statistične spremenljivke, ki se v množici vseh vrednosti najpogosteje ponavlja.

Če se v neki množici dve vrednosti pojavita enako mnogokrat najpogosteje, rečemo, da je porazdelitev vrednosti **bimodalna**.

Za grupirane podatke določamo modalni razred, to je tisti razred, ki ima največjo frekvenčno gostoto.

Mediana

Mediana ali središčnica Me je tista vrednost statistične spremenljivke, pri kateri je polovica vrednosti večjih ali enakih, druga polovica vrednosti pa manjših ali enakih od te vrednosti.

Če imamo liho število vrednosti statistične spremenljivke, za mediano vzamemo vrednost, ki stoji na mestu $\frac{n+1}{2}$ po velikosti urejenih podatkov.

Če je število vrednosti sodo, za vrednost mediane vzamemo aritmetično sredino srednjih dveh podatkov.

Kvartili

Mediana razdeli podatke na dve polovici. Ti dve polovici lahko spet razdelimo na dve polovici in dobimo štiri enako močne množice podatkov. Meje teh skupin imenujemo **kvartili**.

Prvi kvartil Q_1 je mediana prve (spodnje) polovice podatkov, **drugi kvartil** Q_2 je mediana Me vseh podatkov, **tretji kvartil** Q_3 pa je mediana druge (zgornje) polovice podatkov.

Vrednosti kvartilov, minimalno vrednost in maksimalno vrednost množice podatkov grafično predstavimo z diagramom kvartilov oziroma šktalo z brki.

Naloga 3.7. Izračunajte aritmetično sredino količin.

- 1.5 s, 3.5 s, 1 s
- 4 km, 2000 m, 3 km
- 4 £, 2 £, 3 £, 1 £, 5 £

Naloga 3.8. Izračunajte aritmetično sredino danim podatkom.

- 2, 3, 1, 8, 19, 2, 7
- 13, 39, 12
- 0.3, 0.4, 0.5, 0.7, 0.6

Naloga 3.9. Določite modus danim številskim podatkom.

- 1, 4, 2, 4, 1, 6, 3, 4, 1, 4, 6, 4, 4, 8

- $\bar{\frac{3}{1}}, \bar{\frac{4}{2}}, \bar{\frac{2}{1}}, \bar{\frac{8}{5}}, \bar{\frac{9}{9}}_{8}$
- $\bar{2}, \bar{4}, \bar{4}, \bar{10}, \bar{9}$

Naloga 3.10. V porodnišnici so izmerili dolžine dojenčkov, ki so se rodili v enem dnevu. 50, 51, 51, 44, 47, 48, 53, 49, 52, 55, 46, 50, 50, 49, 47, 47

Določite mediano podatkov.

Naloga 3.11. Otroci v vrtcu so metali žogo na koš in si zapisovali dosežke. Podatki so prikazani v preglednici.

Otrok	Jaka	Jure	Miha	Polona	Valerija	Tina	Mojca	Cene	Darja
Št. košev	5	7	10	8	5	6	9	9	4

Izračunajte, koliko košev je otrok zadel v povprečju. Podatke uredite po vrsti in določite Mo, Me ter narišite škatlo z brki.

Poglavje: Osnove statistike

Oblika: frontalna, delo v dvojicah/individualno

Tema: Mere razpršenosti

Pripomočki: drsnice, projekcija, računalniki

3.4 Mere razpršenosti

Informacijo o **porazdelitvi** oziroma **razpršenosti** podatkov lahko izračunamo s pomočjo: variacijskega razmika, interkvartilnega ranga, variance in standarnega odklona.

Variacijski razmik

Variacijski razmik R je razlika med maksimalno in minimalno vrednostjo statistične spremenljivke:

$$R = x_{max} - x_{min}.$$

Variacijski razmik je zelo odvisen od ekstremnih vrednosti, posebno osamelcev, zato ga uporabljamo le v kombinaciji z drugimi merami razpršenosti.

Interkvartilni rang

Interkvartilni rang oziroma medčetrtinski razmik IR je razlika med vrednostjo prvega in tretjega kvartila:

$$IR = Q_3 - Q_1.$$

Osamelec je podatek, katerega vrednost je za več kot 3-kratnik interkvartilnega ranga IR nad tretjim kvartilom Q_3 ali pod prvim kvartilom Q_1 .

Podatek je "pogojno osamelec", če je njegova vrednosz za več kot 1.5-kratnik interkvartilnega ranga IR nad tretjim kvartilom Q_3 ali pod prvim kvartilom Q_1 .

Interkvartilni rang je mera razpršenosti, ki ni občutljiva na osamelce.

Varianca

Varianca σ^2 predstavlja aritmetično sredino kvadratov odmikov vrednosti statistične spremenljivke od aritmetične sredine:

$$\sigma^{2} = \frac{(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2}}{N} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}.$$

Standardni odklon

Standardni odklon σ izračunamo kot koren variance:

$$\sigma = \sqrt{\frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{N}} = \sqrt{\frac{1}{N} \sum_{i=1}^n (x_i - \overline{x})^2}.$$

Predstavlja povprečje odmikov vrednosti statistične spremenljivke od aritmetične sredine.

Naloga 3.12. V preglednici so predstavljene cene treh izdelkov v trgovini po posameznih mesecih leta 2019.

Izdelek	Jan	Feb	Mar	Apr	Maj	Jun	Jul	Avg	Sep	Okt	Nov
Kruh	3.35	3.29	3.34	3.38	3.38	3.37	3.38	3.55	3.53	3.54	3.49
Jagode	8.73	7.18	5.52	4.48	5.72	5.64	6.49	6.58	7.15	7.58	8.34
Cvetača	2.04	2.17	1.58	1.75	2.13	1.85	1.93	1.87	1.81	1.99	1.80

Izračunajte povprečno ceno in standardni odklon cene vsakega izdelka.

Naloga 3.13. V preglednici je prikazano število rojstev v Sloveniji po letih.

Leto	2013	2014	2015	2016	2017	2018	2019	2020	2021
Število	21111	21165	20641	20345	20241	19585	19328	18767	18989

Izračunajte povprečno število rojstev in standardni odklon.

Naloga 3.14. Pridobili smo podatke (urejene po velikosti): 1, 13, 14, 15, 15, 15, 17, 18, 18, 19, 19, 19, 20 in 40.

- Opišite razpršenost podatkov R, IR, Q_1 , Q_3 , σ , \overline{x} .
- Največjo in najmanjšo vrednost (v tem primeru sta to osamelca) odstranimo. Kako se spremeni razpršenost podatkov?

Poglavje: Osnove statistike

Tema: Grafično prikazovanje podatkov

Oblika: frontalna, delo v dvojicah/individualno **Pripomočki:** drsnice, projekcija, računalniki

3.5 Grafično prikazovanje podatkov

Strukturni krog

Strukturni krog ali **krožni diagram** uporabljamo, kadar so podatki razvrščeni v malo frekvenčnih razredov ali ne dosežejo veliko različnih diskretnih vrednosti.

Celoto predstavlja 360°, za ostale deleže središčne kote izračunamo s sklepnim računom.

Stolpčni diagram

Stolpčni diagram uporabljamo, ko so podatki razvrščeni v veliko frekvenčnih razredov ali lahko dosežejo veliko diskretnih vrednosti.

Stolpčni diagrami so lahko **pokončni** ali **ležeči**. Če želimo prikazati več podatkov naenkrat, uporabimo **sestavljeni** ali **strukturni** stolpčni diagram.

Histogram

Histogram uporabljamo za prikaz grupiranih podatkov.

Širine frekvenčnih razredov niso nujno enake. Meje razredov narišemo na vodoravni osi, frekvence posameznih razredov pa na navpični osi.

Linijski diagram

Linijski diagram/poligon uporabljamo, ko želimo prikazati postopno spreminjanje vrednosti nekega podatka skozi daljše časovno obdobje. Frekvenčne porazdelitve ponazorimo s frekvenčnim poligonom, podatki so lahko zvezni ali grupirani.

Naloga 3.15. Na matematičnem testu je bilo mogoče doseči 50 točk. Dosežki so bili: 35, 22, 41, 47, 36, 30, 27, 19, 31, 43, 48, 44, 23, 26, 36, 10, 33, 14, 9.

Razdelite jih v pet enako velikih razredov ter predstavite s histogramom.

Naloga 3.16. Otroci v vrtcu so metali žogo na koš in si zapisovali dosežke. Podatki so prikazani v preglednici.

Otrok	Jaka	Jure	Miha	Polona	Valerija	Tina	Mojca	Cene	Darja
Št. košev	5	7	10	8	5	6	9	9	4

Izračunajte, koliko košev je otrok zadel v povprečju. Podatke uredite po vrsti in določite Mo, Me ter narišite škatlo z brki.

Naloga 3.17. Bojana beleži, koliko časa potrebuje za pot do šole. Podatke je zapisala v preglednico.

Dan	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
Čas [min]	9	11	10	8	11	10	9	12	9	11

Sstolpčnim diagramom predstavite, kako pogosto v šolo potuje 8 minut, 9 minut \dots

Naloga 3.18. V domu ostarelih občanov je 500 oskrbovancev. Od 50 do 60 let jih je 15 %, med 60 in 70 leti je 160 oskrbovancev, med 70 in 80 leti pa 200 starostnikov. Drugi so stari med 80 in 90 let.

- Iz grupiranih podatkov izračunajte povprečno starost oskrbovancev tega doma.
- Grafično ponazorite starost oskrbovancev.