NAVODIT CHANDRA

navoditc@andrew.cmu.edu ♦ 412-954-8627 ♦ linkedin.com/in/navoditchandra/ ♦ github.com/navoditc

EDUCATION

Carnegie Mellon University (CMU)

Pittsburgh, PA

Master of Science in Mechanical Engineering - Advanced Study GPA: 4.0/4.0

Dec 2022

Coursework: Machine Learning and Artificial Intelligence, Deep Learning, Computer Vision, Trustworthy Al Autonomy, Modern Control - Theory and Design, Robot Dynamics and Analysis, Numerical Methods

Indian Institute of Technology Kanpur (IIT Kanpur)

Kanpur, India

Bachelor of Technology in Mechanical Engineering (Graduated with Distinction) CPI: 9.1/10.0

May 2021

Coursework: Robot Motion Planning, Data Structures and Algorithms, Fundamentals of Computing

SKILLS

Programming Languages: Advanced: Python, Intermediate: C/C++, Familiar: SQL, Java, HTML

Libraries: PyTorch, OpenCV, Gym, NumPy, Pandas, Matplotlib, Scikit-learn

Software and Tools: Linux (Ubuntu), CARLA, MATLAB, MAPLE, Arduino, Git, AutoCAD, Latex

EXPERIENCE

Carnegie Mellon University

Pittsburgh, PA

Graduate Student Researcher, Mechanical and AI Lab (Prof. Amir Barati Farimani)

May 2022 - Present

- Achieved state of the art performance on tasks of shape classification, part segmentation and semantic segmentation by implementing Point Cloud Transformer framework
- Generated a dataset consisting of RGB images and LiDAR point cloud using autopilot mode on CARLA simulator
- Reduced number of trainable parameters in TransFuser model by modifying neural network architecture and introduced learning
 rate decay to improve training
- Augmenting neural network architecture with Convolutional Black Attention Module to navigate road intersections with improved performance

Indian Institute of Technology Kanpur

Kanpur, India

Students-Undergraduate Research Graduate Excellence (SURGE), Energy Conservation & Storage Lab (Prof. Malay Das)

May - July 2019

 Studied effects of gas velocity, operating current, surface wettability and capillary number on a PEM Fuel Cell operation by means of a parametric study using simulations

PROJECTS

End to End Learning for Self-Driving Cars, CMU

Feb 2022- Apr 2022

- Predicted steering angle of a self-driving car from images captured by it by developing an end-to-end learning pipeline
- Achieved reasonably good performance on training and testing tracks by implementing CNN and CNN-LSTM neural network topologies

Modeling and Study of Adversarial Attacks Arising from Deceiving Perception in Car Autopilot, CMU

Feb 2022 - Apr 2022

- Worked in a team of 3 and simulated a real-life incident of tricking a self-driving car to misidentify the moon as a yellow traffic light
 using a targeted adversarial attack algorithm
- Implemented PGD algorithm to trick the autopilot system and carried out adversarial training as an effective adversarial defensive technique to avert such safety-critical scenarios

Seven Segment Digit Recognition using Computer Vision, CMU

Mar 2022 - Apr 2022

- Collaborated with 2 colleagues and developed an algorithm to take readings from electronic devices depicting decimal numerals in a seven-segment display format
- Improved accuracy by 7.8% and speeded up process of taking readings by 10.4 times in comparison to average computer typists by utilizing image processing operations and computer vision techniques

Depth Estimation using Stereo Vision and Generation of 3D Point Cloud, CMU

Apr 2022

- Found depth of each pixel from a disparity map produced by a pair of parallel stereo images to calculate distance of
 objects present
- Generated a colored 3D point cloud for visualization and verification of correctness of scaling ratio used to find depth

Edge Detection, CMU

Feb 2022

 Detected edges in images by implementing a Sobel filter from scratch and using Canny edge detection with enhanced performance by adjusting parameters effectively

Identification of Abnormal Breasts as Potential Cancers using Machine Learning, CMU

Oct 2021 - Dec 2021

- Applied **feature engineering** leveraging **shallow machine learning** classification algorithms on Wisconsin Breast Cancer Data Set in a joint effort with two colleagues to predict whether tumors were malignant or benign
- Achieved an **implementation time** of **4.61 ms** and an **accuracy** of **100**% using a single feature with the K-Nearest Neighbor algorithm found to be best at making predictions