Chapter 2: Portfolio Choice

Kerry Back BUSI 521/ECON 505 Spring 2024 Rice University

Simplest Problem

- Single risky asset, price p per share at date 0, price x per share at date 1.
- Risk-free asset with interest rate r_f .
- Investor has w₀ to invest. Allocates between risk-free and risky assets.
- Let $\theta =$ number of shares of risky asset. Then $w_0 p\theta$ is invested risk-free (this could be negative, meaning borrowing).
- \bullet θ is chosen to maximize

$$\mathsf{E}\big[u\big(\theta\tilde{x}+(w_0-p\theta)(1+r_f)\big)\big]$$

FOC is

$$\mathsf{E}\big[u'(\theta^*\tilde{x} + (w_0 - p\theta^*)(1 + r_f))\big\{\tilde{x} - p(1 + r_f)\big\}\big] = 0$$

More on the FOC

Date-1 wealth is

$$\tilde{w}^* := \theta^* \tilde{x} + (w_0 - p\theta^*)(1 + r_f)$$

- Divide the FOC by p. Set $\tilde{\mathbf{R}} = \tilde{x}/p$. This is the (gross) return on the risky asset, meaning 1 + rate of return.
- Set $R_f = 1 + r_f$. This is the (gross) risk-free return.
- The FOC is

$$\mathsf{E}[u'(\widetilde{w}^*)\{\widetilde{\mathbf{R}}-R_f\}]=0$$

More on the FOC

• Date-1 wealth is

$$\tilde{w}^* := \theta^* \tilde{x} + (w_0 - p\theta^*)(1 + r_f)$$

- Divide the FOC by p. Set $\tilde{\mathbf{R}} = \tilde{x}/p$. This is the (gross) return on the risky asset, meaning 1 + rate of return.
- Set $R_f = 1 + r_f$. This is the (gross) risk-free return.
- The FOC is

$$\mathsf{E}[u'(\widetilde{w}^*)\{\widetilde{\mathbf{R}}-R_f\}]=0$$

 In words, marginal utility at the optimum is orthogonal to the excess return.

Preview of Chapter 3

- Set $\widetilde{m} = u'(\widetilde{w}^*)$. The FOC is $E[\widetilde{m}(\widetilde{\mathbf{R}} R_f)] = 0$.
- By the definition of covariance,

$$\mathsf{E}[\widetilde{m}(\widetilde{\mathbf{R}}-R_f)] = \mathsf{E}[\widetilde{m}]\mathsf{E}[\widetilde{\mathbf{R}}-R_f] + \mathsf{cov}(\widetilde{m},\widetilde{\mathbf{R}}-R_f)$$

• So, the risk premium is

$$\mathsf{E}[\widetilde{\mathsf{R}} - R_f] = -rac{1}{\mathsf{E}[\widetilde{m}]}\operatorname{cov}(\widetilde{m},\widetilde{\mathsf{R}})$$

What sign should the covariance with marginal utility have?

Notation

- Single consumption good at each of two dates 0 and 1
- Date-0 wealth w_0 (in units of consumption good)
- Assets
 - Assets $i = 1, \ldots, n$
 - Date–0 prices p_i (in units of consumption good)
 - Date–1 payoffs \tilde{x}_i (in units of consumption good)
- Returns
 - Returns $\widetilde{R}_i = \widetilde{x}_i/p_i$ (assuming $p_i > 0$)
 - Rates of return $(\tilde{x} p_i)/p_i = \tilde{R}_i 1$
 - If there is a risk-free asset (\tilde{x} constant) then return is R_f
- Portfolios
 - ullet $\theta_i = \text{number of shares held in portfolio}$
 - $\phi_i = \theta_i p_i$ = units of consumption good invested
 - $\pi_i = \theta_i p_i / w_0 =$ fraction of wealth invested

Portfolio Choice Problem

• Choose $\theta_1, \ldots, \theta_n$ to

$$\max \ \mathsf{E}\left[u\left(\sum_{i=1}^n \theta_i \tilde{x}_i\right)\right] \quad \text{subject to} \quad \sum_{i=1}^n p_i \theta_i = w_0 \,.$$

• Choose ϕ_1, \ldots, ϕ_n to

$$\max \ \mathsf{E}\left[u\left(\sum_{i=1}^n \phi_i \widetilde{R}_i\right)\right] \quad \text{subject to} \quad \sum_{i=1}^n \phi_i = w_0 \,.$$

• Choose π_1, \ldots, π_n to

$$\max \ \mathsf{E}\left[u\left(w_0\sum_{i=1}^n \pi_i\widetilde{R}_i\right)\right] \quad \text{subject to} \quad \sum_{i=1}^n \pi_i = 1 \, .$$

Comments

- Short sales are allowed $(\theta_i < 0)$
- There are no margin requirements.
 - In the U.S. stock market, an investor with \$100 cash can only buy \$200 of stock (borrowing \$100).
 - In our formulation, there are no limits on borrowing, except that $\sum \theta_i \tilde{x_i}$ must be in the domain of $u(\cdot)$ —for example, positive if $u = \log$.
 - In real markets, collateral (margin) also has to be posted against short sales, but we do not require that in our formulation.
- Here, we take date-0 consumption and investment as given and optimize over the portfolio. We can also optimize over date-0 consumption and investment.
- We can sometimes allow for other non-portfolio income \tilde{y} at date-1 (for example, labor income).

First-Order Condition

• Lagrangean:

$$\mathsf{E}\left[u\left(\sum_{i=1}^n\theta_i\tilde{x}_i\right)\right] - \lambda\left(\sum_{i=1}^np_i\theta_i - w_0\right)$$

 Assume interior optimum and assume can interchange differentiation and expectation to obtain

$$(\forall i) \quad \mathsf{E}\left[u'\left(\sum_{i=1}^n \theta_i \tilde{x}_i\right) \tilde{x}_i\right] = \lambda p_i$$

• If $p_i > 0$,

$$\mathsf{E}\left[u'\left(\sum_{i=1}^n\theta_i\tilde{x}_i\right)\widetilde{R}_i\right]=\lambda$$

First-Order Condition cont.

• If $p_i > 0$ and $p_j > 0$,

$$\mathsf{E}\left[u'\left(\sum_{i=1}^n\theta_i\widetilde{x}_i\right)(\widetilde{R}_i-\widetilde{R}_j)\right]=0$$

- In words: marginal utility at the optimal wealth is orthogonal to excess returns.
 - A return is the payoff of a unit-cost portfolio.
 - An excess return is the payoff of a zero-cost portfolio (for example, a difference of returns).
- Why? Investing a little less in asset j and a little more in asset i (or the reverse) cannot increase expected utility at the optimum.

Some Results for One Risky

Asset

Go Long if Risk Premium is Positive

- Let $\phi =$ amount invested in risky asset, so $w_0 \phi$ is invested in risk-free asset. Let $\mu = \mathsf{E}[\widetilde{R}]$ and $\sigma^2 = \mathsf{var}(\widetilde{R})$.
- Date-1 wealth is

$$\widetilde{w} = (w_0 - \phi)R_f + \phi\widetilde{R} = w_0R_f + \phi(\widetilde{R} - R_f)$$

• We will show: $\mu > R_f \Rightarrow \phi^* > 0$ (by symmetry, $\mu < R_f \Rightarrow \phi^* < 0$).

Proof

We want to compare $E[u(w_0R_f + \phi(\widetilde{R} - R_f))]$ to $u(w_0R_f)$.

Define $\overline{w} = w_0 R_f + \phi(\mu - R_f)$ and $\tilde{\varepsilon} = \phi(\widetilde{R} - \mu)$, so

$$w_0 R_f + \phi(\widetilde{R} - R_f) = \overline{w} + \widetilde{\varepsilon}.$$

Define π by

$$u(\overline{w} - \pi) = \mathsf{E}[u(\overline{w} + \tilde{\varepsilon})].$$

The variance of $\tilde{\varepsilon}$ is $\phi^2\sigma^2$, so by second-order risk aversion,

$$\pi pprox rac{1}{2} \alpha(\overline{w}) \phi^2 \sigma^2 < (\mu - R_f) \phi$$

when $\phi > 0$ and small, so

$$u(\overline{w} - \pi) > u(\overline{w} - (\mu - R_f)\phi) = u(w_0R_f)$$

DARA Implies Risky Asset is a Normal Good

- Normal good: demand rises when income (wealth) rises. Inferior: demand falls when income (wealth) rises.
- A single risky asset with $\mu > R_f$ is a normal good if the investor has decreasing absolute risk aversion.
- Proof: The FOC is

$$\mathsf{E}[u'(\tilde{w})(\widetilde{R}-R_f)]=0$$

Differentiate it:

$$0 = \frac{\mathrm{d}}{\mathrm{d}w_0} \mathsf{E}[u'(w_0 R_f + \phi(\widetilde{R} - R_f))(\widetilde{R} - R_f)]$$

= $\mathsf{E}[u''(\widetilde{w})\{R_f + \phi'(w_0)(\widetilde{R} - R_f)\}(\widetilde{R} - R_f)]$

Rearrange as

$$\phi'(w_0) = -\frac{R_f \mathsf{E}[u''(\tilde{w})(R - R_f)]}{\mathsf{E}[u''(\tilde{w})(\tilde{R} - R_f)^2]}.$$

Can show: DARA $\Rightarrow \phi' > 0$.

CARA-Normal with Single Risky Asset

Assume CARA utility E[$-e^{-\alpha \tilde{w}}$]. Assume $\tilde{R} \sim \text{normal } (\mu, \sigma)$. Then \tilde{w} is normally distributed.

Recall: If \tilde{x} is normally distributed with mean μ_x and std dev σ_x , then

$$\mathsf{E}[\mathrm{e}^{\tilde{\mathsf{x}}}] = \mathrm{e}^{\mu_{\mathsf{x}} + \sigma_{\mathsf{x}}^2/2}$$

Given an investment ϕ in the risky asset, $-\alpha \tilde{w}$ is normal with mean $-\alpha w_0 R_f - \alpha \phi (\mu - R_f)$ and std dev $\alpha \phi \sigma$. Hence,

$$\mathsf{E}[-\mathrm{e}^{-\alpha\tilde{w}}] = -\mathrm{e}^{-\alpha[w_0R_f + \phi(\mu - R_f) - \alpha\phi^2\sigma^2/2]}$$

Thus,

$$w_0R_f + \phi(\mu - R_f) - \alpha\phi^2\sigma^2/2$$

is the certainty equivalent (mean minus one-half risk aversion times variance).

CARA-Normal cont.

Optimal portfolio maximizes the certainty equivalent. Therefore, the optimum is

$$\phi^* = \frac{\mu - R_f}{\alpha \sigma^2}$$

The optimal fraction of wealth to invest is

$$\pi^* = \frac{\mu - R_f}{(\alpha w_0)\sigma^2}$$

Usually assume αw_0 is between 1 and 10.

Multiple Risky Assets

Portfolio Mean and Variance

- $\widetilde{\mathbf{R}} = n$ -vector of risky asset returns
- $\mu = n$ -vector of expected returns
- $\phi = n$ -vector of investments in consumption good units
- $\pi = (1/w_0)\phi$
- $\iota = n$ -vector of 1's
- $\Sigma = n \times n$ covariance matrix, $\Sigma_{ij} = \text{cov}(\widetilde{R}_i, \widetilde{R}_j)$

$$\Sigma = \mathsf{E}[(\widetilde{R} - \mu)(\widetilde{R} - \mu)']$$

- date–1 wealth $\widetilde{w} = w_0 R_f + \phi'(\widetilde{\mathbf{R}} R_f \iota)$
- expected wealth $\overline{w} = w_0 R_f + \phi'(\mu R_f \iota)$
- variance of wealth $= \phi' \Sigma \phi$. Proof:

$$\mathsf{E}[(\widetilde{w} - \overline{w})^2] = \mathsf{E}[\{\phi'(\widetilde{\mathsf{R}} - \mu)\}^2] = \mathsf{E}[\phi'(\widetilde{R} - \mu)(\widetilde{R} - \mu)'\phi] = \phi'\Sigma\phi$$

Diversification

Portfolio variance is

$$\pi' \Sigma \pi = \sum_{i=1}^n \pi_i^2 \operatorname{var}(\widetilde{R}_i) + 2 \sum_{i=1}^n \sum_{j=i+1}^n \pi_i \pi_j \operatorname{cov}(\widetilde{R}_i, \widetilde{R}_j)$$

- We can generally make $\sum_{i=1}^{n} \pi_i^2 \operatorname{var}(\widetilde{R}_i)$ small by diversifying, if there are many assets.
- Suppose for example that the risky assets are uncorrelated and have the same variance σ^2 ($\Sigma = \sigma^2 I$). Then

$$\pi' \Sigma \pi = \sigma^2 \sum_{i=1}^n \pi_i^2$$

Among portfolios fully invested in risky assets (π_i sum to 1), this variance is minimized at $\pi_i = 1/n$ and

$$\pi' \Sigma \pi = \sigma^2 \sum_{i=1}^n \left(\frac{1}{n}\right)^2 = \frac{\sigma^2}{n} \to 0 \quad \text{as } n \to \infty$$

CARA-Normal with Multiple Risky Assets

 Certainty equivalent is mean minus one-half risk aversion times variance:

$$w_0R_f + \phi'(\mu - R_f\iota) - \frac{1}{2}\alpha\phi'\Sigma\phi$$

FOC is

$$\mu - R_f \iota - \alpha \Sigma \phi = 0.$$

• Optimum is

$$\phi^* = \frac{1}{\alpha} \Sigma^{-1} (\mu - R_f \iota)$$

Note no wealth effects.

ullet Similar form to single risky asset case. Optimum investment in each asset depends on its covariances with other assets unless Σ is diagonal.

Euler Equation

Time-Additive Utility and the Euler Equation

• Date-0 and date-1 consumption. Utility function $v(c_0, c_1)$. Assume time-additive utility

$$v(c_0,c_1)=u(c_0)+\delta u(c_1)$$

ullet Consumption/investment problem: choose c_0,ϕ_1,\ldots,ϕ_n to

$$\max \ u(c_0) + \mathsf{E}\left[\delta u\left(\sum_{i=1}^n \phi_i \widetilde{R}_i\right)\right] \quad \text{subject to} \quad c_0 + \sum_{i=1}^n \phi_i = w \ .$$

• FOC: $u'(c_0) = \lambda$ and

$$(\forall i) \quad \mathsf{E} \left| \delta u' \left(\sum_{i=1}^n \phi_i \widetilde{R}_i \right) \widetilde{R}_i \right| = \lambda$$

So

$$(\forall i) \quad \mathsf{E}\left[\frac{\delta u'\left(\sum_{i=1}^{n}\phi_{i}\widetilde{R}_{i}\right)}{u'(c_{0})}\widetilde{R}_{i}\right]=1$$

Exercise 2.6

With time-additive CRRA utility, the elasticity of intertemporal substitution is the reciprocal of relative risk aversion.

Definition of EIS: for a utility function $v(c_0, c_1)$.

$$MRS = \frac{\partial v/\partial c_0}{\partial v/\partial c_1}$$

$$EIS = \frac{d \log(c_1/c_0)}{d \log MRS}$$

Set $x = c_1/c_0$. Assume time-additive CRRA utility:

$$v(c_0,c_1)=rac{1}{1-
ho}c_0^{1-
ho}+rac{\delta}{1-
ho}c_1^{1-
ho}$$

Then MRS $= -\log \delta + \rho \log x$. So, $d \log MRS/d \log x = \rho$. This implies

$$\mathsf{EIS} = \frac{1}{\rho}$$