Experimental Reading

Pitch (least count of main scale) of spherometer = 1 mm

Least count of vernier (circular) scale of spherometer = 0.01mm

Average distance between any two legs of the spherometer (l) = 4.152 cm measured using Vernier scale

Measurement of curvature of Convex lens:

Using Spherometer radius of curvature (R) can be measured. For this following formula is used.

$$R = \frac{l^2}{6h} + \frac{h}{2}$$

To measure (h) use the following set of readings taken using spherometer:

Serial	Spherometer	Spherometer	Difference of	Number of	$h = n \times (pitch) + m \times$
No.	Circular scale	Circular scale	the two circular	complete	(least count of
	reading on	reading on	scale readings	rotations	circular scale)
	lens	plate	(<i>m</i>)	moved (n)	(in mm)
1	35	8	27	0	0.27
2	38	6	32	0	0.32
3	39	6	33	0	0.33

Average value of h = 0.31mm

$$R = \frac{l^2}{6h} + \frac{h}{2} = \frac{(4.152)^2}{6*0.031} + \frac{0.031}{2} \approx 92.698cm$$

Measurement of the diameter of the fringes

Least count of micrometer on microscope (Vernier scale) = 0.01 mm

Serial	No. of	Microscope Reading			Diameter = D_n = left	
No	Ring	Left hand side		Right hand side		hand side - right
	(n)	Main Scale	Vernier	Main Scale	Vernier	hand side
		reading (in	scale	reading (in	scale	(in cm)
		cm)	divisions	cm)	divisions	
1	22	4.65	10	3.95	11	0.699
2	20	4.60	40	3.95	35	0.655
3	18	4.60	18	4.00	01	0.617
4	16	4.60	0	4.00	14	0.586
5	14	4.55	25	4.00	39	0.536
6	12	4.50	45	4.05	03	0.492
7	10	4.50	30	4.05	35	0.445
8	8	4.50	09	4.10	02	0.407
9	6	4.45	30	4.10	34	0.346
10	4	4.40	45	4.15	09	0.286
11	2	4.40	01	4.20	15	0.186

Calculations:

Serial No	No. of Ring (n)	D_{n+10}^{2} (For $m=10$)	D_n^2	$\lambda = \frac{D_{n+m}^2 - D_n^2}{4mR}$ (approx. in nm)
1	12	0.489	0.242	664.893
2	10	0.429	0.198	622.991
3	8	0.381	0.166	579.948
4	6	0.343	0.120	601.415
5	4	0.287	0.082	554.219
6	2	0.242	0.035	559.527

Average wavelength \cong 597.471 nm

Error Analysis:

Error in curvature of Convex lens:

$$R = \frac{l^2}{6h} + \frac{h}{2}$$

$$\Delta h = 2\Delta l = 0.002cm$$

$$\Delta R = \Delta u + \Delta v$$
 where $u = \frac{l^2}{6h}$ and $v = \frac{h}{2}$

$$\Delta v = \Delta h = 0.002 cm$$

$$\Delta u = u(2\frac{\Delta l}{l} + \frac{\Delta h}{h}) \approx 3.031 \text{ cm}$$

$$\Delta R = \Delta u + \Delta v \approx 3.031 + 0.002 \approx 3.033$$
 cm

Error in wavelength:

$$\lambda = \frac{D_{n+m}^2 - D_n^2}{4mR}$$

$$\Delta \lambda = \lambda (\frac{\Delta a}{a} + \frac{\Delta b}{b})$$
 where, $a = D_{n+m}^2 - D_n^2$ and $b = 4mR$

$$\frac{\Delta b}{b} = \frac{\Delta R}{R} = 3.27 * 10^{-2}$$

where $\Delta D_{n+m} = \Delta D_n = 2*least$ count of vernier scale reading of microscope = 2*0.001 = 0.002cm

$$\frac{\Delta a}{a} = \frac{0.004(D_{n+m} - D_n)}{D_{n+m}^2 - D_n^2} = \frac{0.004}{(D_{n+m} + D_n)}$$

$$\Delta \lambda = \lambda \left(\frac{0.004}{(D_{n+m} + D_n)} + 3.27 * 10^{-2} \right)$$

n	Wavelength (nm)	Error in wavelength (in nm)
12	660	<u>±</u> 40
10	620	± 40
8	580	<u>±</u> 40
6	600	± 40
4	550	± 40
2	560	<u>±</u> 40