

Kapitel 1 – Einleitung

Vorlesung Datenbanken

Dr. Kai Höfig

- 1.1 Motivation
- 1.2 Relationen
- 1.3 Schema Architektur
- 1.4 Anwendungs- und System-Architekturen
- 1.5 Datenmodelle

Was ist also eine Datenbank?

 Datenbank = Menge von logisch gruppierten, strukturierten Informationseinheiten

Flat File

Was ist die einfachste Art Daten zu speichern?

Vorteile der Datenbank gegenüber der "Speicherung auf Papier"

- Suchen/Filtern von Informationen
 - Überall oder nur in bestimmten Attributen
 - Beispiele
 - Alle Datensätze mit Vorname "Klaus"
 - Alle Personen, die im Oktober Geburtstag haben
- Sortieren nach verschiedenen Attributen
 - Beispiele
 - Sortiere nach Vornamen aufsteigen/ascending (A-Z)
 - Sortiere nach Namen absteigend/descending (Z-A)
- ...und viele weitere Operationen!
- Sicherheit vor Verlust der Daten
- Langfristige Aufbewahrung

Einige Begriffe am Beispiel einer einfachen Tabelle

Tabellenüberschriften einer Spalte (column) nennt man Attribute. Diese haben Datentypen z.B. Zahl, String oder Datum

Vorname	Name	Straße	PLZ	Ort	Geburtsdatum	Telefon
Hans	Huber	Hofstr. 4	83024	Rosenheim	10.10.1990	012-3456
Peter	Petersen	Parkweg 3	83024	Rosenheim	9.9.1965	9999-9999
Susi	Sorglos	Sandstr 2	80801	München	1.1.1991	0177-7777
Andrea	Ammer	Am Bach 1	88888	Ambach	21.12.1989	176462
Klaus	Klammer	Klarastr. 9	83646	Bad Tölz	4.4.1984	08041-4444
Mark	Markl	Marktstr. 2	83646	Bad Tölz	3.3.1983	08041-3333
Gabi	Genau	Giselastr. 5	81888	München	8.8.1988	089-8888

Den Inhalt einer Zelle (cell,field) nennt man Attributwert.

Eine Zeile (row) ist ein Datensatz (record) und wird Tupel genannt

Nachteile von Flat File Datenbanken

Inkonsistenz: für dasselbe Objekt in der Realität liegen unterschiedliche (redundante) Daten in der Datenbank vor.

Datenrendundanz: Dieselben Daten werden mehrfach gespeichert.

Vorname	Name	Straße	PLZ	Ort	Geby. (sdatum	Telefon
Hans	Huber	Hofstr. 4	83024	Rosenheim	10.10.1990	012-3456
Peter	Petersen	Hofstraße 4	83024	Rosenheim	9.9.1965	9999-9999
Susi	Sorglos	Sandstr 2	80801	München	1.1.1991	0177-7777
Andrea	Ammer	Am Bach 1	88883	Ambach	21.12.1989	176462
Klaus	Klammer	Klarastr. 9	83 <mark>646</mark>	Bad Tölz	4.4.1984	08041-4444
Mark	Markl	Marktstr. 2	83646	Bad Tölz	3.3.1983	08041-3333
Gabi	Genau	Giselastr. 5	81888	München	8.8.1988	089-8888

Einfügeanomalie: Nur eine neue Straße mit PLZ alleine zu speichern macht hier keinen Sinn.

Änderungsanomalie: Beim Ändern der Hofstraße können leicht Inkonsistenzen entstehen, da diese redundant vorliegt.

Löschanomalie: Wird Andrea gelöscht, verliere ich auch die PLZ zur Straße.

Relationen beheben diese Nachteile

Vorname	Name	Geburtsdatum	Telefon			
Hans	Huber	10.10.1990	012-3456	Straße	PLZ	Ort
Peter	Petersen	9.9.1965	9999-9999	Hofstraße 4	83024	Rosenheim
				Sandstr 2	80801	München
Susi	Sorglos	1.1.1991	0177-7777	Am Bach 1		
Andrea	Ammer	21 12 1989	176462			

Die Bezeichnung von Hofstraße ist immer einheitlich, da sie nur einmal gespeichert ist.

Die Stadt Rosenheim muss nur einmal gespeichert werden

Es können Straßen hinzugefügt werden ohne das dort jemand wohnen muss

Personen können gelöscht werden, ohne dass Informationen über PLZ verloren gehen

Aber:

Mehrere Telefonnummern zu einer Person lassen sich trotzdem nicht speichern. Der Erfolg von Systemen ist daher an den geschickten Entwurf solcher Datenbank-Relationen und an die jeweilige Domäne gebunden. Dazu später mehr.

Eine heile Flat File Welt?

Selbst eine mit hohem
Aufwand programmierte FlatFile Datenhaltung die
Redundanzen wirkungsvoll
verhindert, löst nicht das
Problem der Verteilung von
Prozessen auf
unterschiedliche Systeme.

Oder anders ausgedrückt:

Das kann man schon mit Excel machen, aber dann ist es halt Sch****.

Datenintegration durch Datenbanksysteme

Zusammenfassung: Herausforderungen (relationaler) Flat File Datenbanken

- Inkonsistenzen durch redundante Speicherung der gleichen Identität mit unterschiedlichen Attributwerten.
- Vergessen von Änderungen und dadurch hervorgerufene Inkonsistenzen (Änderungsanomalie).
- Keine zentrale, "genormte" Datenhaltung: Jede einzelne Anwendung muss die interne Darstellung der Daten und den Speicherort kennen
- Jede einzelne Anwendung muss für die effiziente Verarbeitung der Daten optimiert werden
- Daten häufig wertvoller und langlebiger als Anwendungen, leben aber "in" der Anwendung
- Mehrere Benutzer oder Anwendungen können nicht parallel auf den gleichen Daten arbeiten, ohne sich zu stören
- Datenschutz und Datensicherheit sind nicht gewährleistet
- Verschwendung von Speicherplatz
- Einfügeanomalie
- Änderungsanomalie
- Löschanomalie

Diese Idee kommt an!

 Datenbanksysteme sind Herzstück heutiger IT-Infrastrukturen

Datenbankspezialisten sind gefragt

Ziele und Herausforderungen von DBS

- Effiziente Verwaltung sehr großer Datenmengen
 - → Wie kann man riesige Datenmengen (Terabytes) effizient verarbeiten?
- Paralleler Zugriff mehrere Benutzer auf die Daten
 - → Wie können viele Nutzer (>10.000) gleichzeitig mit den Daten arbeiten?
- Gewährleistung von Datenunabhängigkeit
 - → Wie organisiert (modelliert und nutzt) man Daten?
- Gewährleistung von Datenschutz und Datensicherheit
 - → Wie werden Daten dauerhaft verlässlich gespeichert?
 - → Wie kontrolliert man den Zugriff?

Schema Architektur Einleitung

- Auf den unterschiedlichen Ebenen eines Datenbank-basierten Systems liegen die Daten in unterschiedlichen Darstellungen und Ausschnitten vor.
- Eine solche zweckbezogene Art der Ausprägung der Datendarstellung nennt man ein Schema, damit sind nicht die Daten selber gemeint (Instanz).
- Beispiel: Der Hersteller Xoco stellt viele Arten von Schokoladentafeln aus einzelnen Zutaten (Bohnen, Butter, Zucker, etc.) her.
- Wie sehen die Daten in den einzelnen Schemata aus?

Interne Externe Schemata

Konzeptionelle Schemata

Interne Schemata

Produktions-System

Bestell-System

Externe Schemata

 (Externes) Schema für das Produktions-System

Name	Zutaten	Temperatur	Rührdauer
Akapulko-Zartherb	30% Criollo Venezuela 20% Nacional Ecuador 48% Zucker 2% Vanille	76 Grad	90h
Criollo Venezuela 80%	80% Crillo Venezuela 20% Zucker	77 Grad	80h
Milch Zartschmelzend	35% Arriba Venezuela 65% Zucker	78 Grad	30h

 (Externes) Schema für das Bestell-System

Name	Kakao	Preis	Lieferzeit
Akapulko-Zartherb	50%	2,22 EUR	24h
Criollo Venezuela 80%	80%	5,30 EUR	48h
Milch Zartschmelzend	35%	1,50 EUR	12h

Konzeptionelles Schema – Darstellung in Tabellen (Relationen)

SNr	Name	Temperatur	Rührdauer	Preis	Lieferzeit
1001	Akapulko-Zartherb	76 Grad	90h	2,22 EUR	24h
1002	Criollo Venezuela 80%	77 Grad	80h	5,30 EUR	48h
1003	Milch Zartschmelzend	78 Grad	30h	1,50 EUR	12h

ZNr	Name	IstKakao
2001	Criollo Venezuela	True
2002	Nacional Ecuador	True
2003	Arriba Venezuela	True
2004	Vanille	False
2005	Zucker	False

SNr	ZNr	Anteil
1001	2001	30%
1001	2002	20%
1001	2005	48%
1001	2004	2%
1002	2001	80%
1002	2005	20%
1003	2003	35%
1003	2005	65%

Internes Schema – interne Organisation der Daten

Schema-Architektur - allgemein

Schema-Architektur – allgemein – mit Beispiel

Schema-Architektur

- Trennung Schema Instanz
 - Schema (Metadaten, Datenbeschreibungen)
 - Instanz (Anwenderdaten, Datenbankzustand oder -ausprägung)
- Schema-Architektur beschreibt den Zusammenhang zwischen
 - konzeptionellen Schema (Ergebnis der Datendefinition)
 - internen Schema (Festlegung der Dateiorganisationen und Zugriffspfade)
 - externen Schema (Ergebnis der Sichtdefinition)
 - Anwendungsprogrammen (Ergebnis der Anwendungsprogrammierung)
- Datenbankschema: internes + konzeptuelles + externe Schemata
- DBMS haben i.allg. zwei Arten von Befehlen ("Sprachen")
 - DDL (Data Definition Language) → Änderungen am Schema (Struktur)
 - DML (Data Manipulation Language) → Änderungen an der Inhalt (Datensätze)

Datenunabhängigkeit

- Stabilität der Benutzerschnittstelle gegen Änderungen
 - physisch: Änderungen der Dateiorganisationen und Zugriffspfade haben keinen Einfluss auf das konzeptionelle Schema (Zugriffs-, Orts-, Skalierungs- und Migrationstransparenz)
 - logisch: Änderungen am konzeptionellen und gewissen externen Schemata haben keine Auswirkungen auf andere externe Schemata und andere Anwendungsprogramme
- Mögliche Auswirkungen von Änderungen am konzeptionellen Schema:
 - eventuell externe Schemata betroffen (Ändern von Attributen)
 - eventuell Anwendungsprogramme betroffen (Rekompilieren der Anwendungsprogramme, eventuell Änderungen nötig)
 - Nötige Änderungen werden jedoch vom DBMS erkannt und überwacht

Philosoph/Übersetzer Metapher

- Niedrige Schichten sind transparent für höhere Schichten.
- Für den Sender einer Nachricht, ist es unsichtbar, dass die Nachricht in Englisch übersetzt wird. Es könnte auch Chinesisch sein. Die verwendete Sprache in der Übersetzungsschicht ist für den Sender transparent.
- Außerdem ist die Transportschicht für den Sender transparent. Die Nachricht könnte auch per Fax übermittelt werden.

Anwendungs-Architekturen (1)

 Architektur von Datenbankanwendungen typischerweise auf Basis des Client-Server-Modells: Server = Datenbanksystem

Anwendungs-Architekturen (2)

- Aufteilung der Funktionalitäten einer Anwendung
 - Präsentation: Präsentation und Benutzerinteraktion
 - Logik: Anwendungslogik ("Business"-Logik)
 - Datenbankschnittstelle: Speichern, Anfragen, ...

MVC - Ein Software Architekturmuster

Model View Controller

- Ähnlich zu der 3-Schichten Anwendungsarchitektur, macht es Sinn auch die Software einer Datenbankanwendung logisch zu unterteilen.
- Der Benutzer sieht nur das, was ihm die Komponenten die zum View gehören zur Verfügung stellen (externes Schema), zum Beispiel dargestellt durch eine Webseite.
- Der Controller nimmt Benutzeranfragen entgegen und verarbeitet diese. Dazu verwendet er die externen und internen Schemata (Model).

Beispiel SAP R3

System-Architekturen

- Beschreibung der Komponenten eines Datenbanksystems
- Standardisierung der Schnittstellen zwischen Komponenten
- Architekturvorschläge
 - ANSI-SPARC-Architektur → Drei-Ebenen-Architektur (1978)
 - ANSI: American National Standards Institute
 - SPARC: Standards Planning and Requirement Committee
 - Im Wesentlichen eine Verfeinerung der vorgestellten 3-Ebene Architektur
 - Interne Ebene / Betriebssystem verfeinert
 - Mehr Interaktive und Programmier-Komponenten
 - Schnittstellen bezeichnet und normiert
 - Fünf-Schichten-Architektur (1987)
 - Beschreibt Transformations-Schritt im Detail
 - Im Rahmes des DBMS-Prototypen "System R" von IBM vorgestellt
- Jedes DBMS hat seine eigene Architektur, häufig ähnlich zu den Architektur-Vorschlägen

Beispiel: Architektur von MySQL (vereinfacht)

Vereinfachte Darstellung basierend auf : R. Bannon et al.: MySQL Conceptual Architecture

Einige konkrete Systeme

- (Objekt-)Relationale DBMS
 - Oracle, IBM DB2, Microsoft SQL, MS Access
 - MySQL (www.mysql.org), PostgreSQL (www.postgresql.org),
 - Ingres (www.ingres.com), FireBird (www.firebirdsql.org)
 - CoreData (iOS), SQLite (Android)
- Objektorientierte DBMS
 - Poet, Versant, ObjectStore
- XML-DBMS
 - Tamino (Software AG), eXcelon

Begriff des Datenmodells

Ein Datenmodell (auch Datenbankmodell genannt) legt fest...

- 1) Statische Eigenschaften: Struktur der Daten
 - a) Objekte
 - b) Beziehungen

Beispiele: als Graph, in Relationen, als Objekte, als Schlüssel-Wert Paare, ...

- 2) Dynamische Eigenschaften: Operationen
 - a) Anfrage-Operationen (queries) und Änderungs-Operationen
 - b) Beziehungen zwischen Operationen

Beispiel: "gibt mir alle Kunden, die im letzten Quartal etwas bestellt haben"

- 3) Integritätsbedingungen (constraints): Bedingungen an
 - a) Objekte
 - b) Operationen

Beispiele: Werte des Attributs "Alter" muss zwischen 1 und 150 liegen

Beispiele für Datenmodelle

- Entwurfsmodelle: Datenmodelle für den Entwurf von DBs
 - ER-Modell (Entity-Relationship-Modell)
 - UML (Unified Modeling Language)
- Realisierungsmodelle: Datenmodelle für die Implementierung von DBs
 - Relationenmodell / Relationales Modell
 - Hierarchisches Modell → legacy Datenbanken
 - Netzwerkmodell → legacy Datenbanken
- Neuere Datenmodelle für spezielle Anwendungen
 - Objektorientiertes Modell
 - Key-Values-Stores
 - Graph-Datenbanken

- Was ist eine Datenbank und welche Motivation sie einzusetzen gibt es?
- Was sind die Vorteile der Datenspeicherung in Relationen?
- Was versteht man unter der Schema-Architektur?
- Welche Architekturmuster im Zusammenhang mit Datenbanken gibt es und wozu sind sie gut?
- Was versteht man unter einem Datenmodell?