Trabajo Práctico Nro. 1 Introducción

Introducción: Alfabetos y lenguajes.

- 1. Sea $\Sigma = \{a,b\}$ un alfabeto donde #x indica la cantidad de elementos del conjunto x.
 - a) Hallar: $\Sigma^0, \Sigma^1, \Sigma^+, \Sigma^*$
 - b) Hallar: $\#\Sigma^0, \#\Sigma^2$
 - c) ¿cuántas palabras de longitud 3 hay en Σ^* ? y de longitud k?
 - d) si Σ tuviera p símbolos, ¿cuántas palabras de longitud k habría en Σ^* ?
- 2. Dado $\Sigma = \{a, b\}$, ¿cuál de las siguientes afirmaciones es verdadera y cuál falsa?
 - a) $\lambda \in \Sigma$
 - b) $\lambda \in \Sigma^*$
 - c) $\lambda \in \Sigma^+$
 - $d) \{\lambda\} = \Sigma^0$
 - $e) \{\lambda, a\} \subseteq \Sigma^1$
 - $f) \{a,b\} \subseteq \Sigma^1$
- 3. Considerando $\Sigma_1 = \{a, b\}$ y $\Sigma_2 = \{b, c\}$, calcular:
 - a) $\Sigma_1 \cup \Sigma_2 =$
 - b) $\Sigma_1 \cdot \Sigma_2 =$
 - c) $\Sigma_1 \cdot \Sigma_2^+ =$
 - $d) (\Sigma_1 \cdot \Sigma_2)^* =$
- 4. Escribir por lo menos 3 cadenas que pertenezcan a cada uno de los siguientes lenguajes:
 - a) $L_1 = \{0^n 1^n / n > 0\}$
 - b) $L_2 = \{0^i 1^j / 0 \le i \le j\}$
 - c) $L_3 = \{x/x \in \Sigma^*, x \text{ contiene la subcadena } ab \text{ y no contiene la subcadena } bc\}$, donde $\Sigma = \{a, b, c, d\}$
 - d) $L_4 = \{a^n b^m d^{m+n}/n, m \ge 0\}$
- 5. Describir formalmente los siguientes lenguajes:
 - a) el lenguaje formado por 0's y 1's en el que hay el doble de 0's que de 1's y todos los 0's van delante de los 1's
 - b) el lenguaje formado por palabras que comienzan y terminan en a, teniendo entre medio 3 o más b's seguidas, sobre el alfabeto $\Sigma = \{a, b\}$
- 6. Sea $L = \{ab, aa, baa\}$, ¿cuáles de las siguientes palabras pertenecen a L^+ ?
 - a) abaa
 - b) abab
 - c) abaabaaabaa
 - d) baaaaabaaaab

7. Dados los siguientes lenguajes definidos sobre $A = \{a, b, c\}$:

$$L_1 = \{\lambda, a, ab\}$$

$$L_2 = \{x/x \in \{a, b, c\}^* \text{ y } x \text{ termina en } a\}$$

$$L_3 = \{x/x \in \{a, b, c\}^* \text{ y } x \text{ termina en } b\}$$

Calcule el lenguaje resultante de las siguientes operaciones:

- a) $L_1^2 \cap L_3 =$
- b) $L_2 \cup L_1 =$
- c) $L_1^R L_2 =$

 $\begin{array}{l} d) \ L_1 \cdot L_1^R = \\ {\bf Demostraciones \ por \ Inducción.} \end{array}$

- 8. Demostrar que el número máximo de nodos que puede haber en un árbol binario de altura nes $2^{n+1} - 1$
- 9. Dar una definición recursiva del inverso de una cadena. Demostrar usando inducción estructural que $(w_1 \cdot w_2)^r = w_2^r \cdot w_1^r$
- 10. El alfabeto L del sistema axiomático de la lógica proposicional consta de:
 - una cantidad finita de variables proposicionales: p, q, r, s, ... que representan proposiciones simples
 - un conjunto de conectivos lógicos: $\{\neg, \land, \lor, \Rightarrow, \Leftrightarrow\}$
 - \bullet dos signos de puntuación: $\{(,)\}$

Es decir que $L = \{p, q, r, s, ..., \neg, \land, \lor, \Rightarrow, \Leftrightarrow, (,)\}$

La fórmulas proposicionales se construyen de la siguiente manera:

- a) Las variables proposicionales del alfabeto de L son fórmulas bien formadas.
- b) Si ϕ , es una fórmula bien formada de L, entonces $(\neg \phi)$ también lo es.
- c) Si ϕ , y ψ , son fórmulas bien formadas de L, entonces $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \Rightarrow \psi)$ y $(\phi \Leftrightarrow \psi)$ también lo son.

Demostrar que en una fórmula proposicional bien formada la cantidad de paréntesis izquierdos es igual a la cantidad de paréntesis derechos.

- 11. Un conjunto de conectivos lógicos C es completo si para toda proposición ϕ existe una proposición ϕ' equivalente que sólo contiene conectivos de C. Demostrar, teniendo en cuenta las reglas conocidas de lógica, que $\{\neg, \land, \lor\}$ forman un conjunto completo de conectivos respecto de las fórmulas proposicionales que se construyen mediante las reglas del ejercicio??.
- 12. El conjunto $S \subseteq \{a, b\}^*$ se define de la siguiente manera:
 - $\lambda \in S$
 - \bullet si $x \in S \Rightarrow axb \in S$
 - \bullet si $x \in S \Rightarrow bxa \in S$
 - $\operatorname{si} x \in S, y \in S \Rightarrow xy \in S$

Demostrar que S = L, siendo $L = \{\omega \in \{a,b\}^* / \#_a(\omega) = \#_b(\omega)\}$, es decir en las palabras de L, la cantidad de letras 'a' es igual a la cantidad de letras 'b'.

Nota 1: Se requiere demostrar que $S \subset L$ y que $L \subset S$

Nota 2: Para demostrar $L \subset S$ usar inducción completa sobre la cantidad de letras 'a' que hay en la palabra.