SENTIMENT MODELING USING NLP

By Patrick Anastasio

BUSINESS PROBLEM

An investment firm would like a model that can gauge sentiment in emerging technologies to better analyze where to make strategic investments

DATA:

 Tweets regarding new Google and Apple products @ SXSW

Exhibit either a positive or negative opinion

METHOD:

- Used Natural Language Processing methods to pre-process data and evaluate models
- Analyze & score several models to predict the sentiment of emerging technology

MODEL SELECTION & SCORING

- Heavily Imbalanced Dataset
 - Trained on a synthetically balanced dataset using the SMOTE process to balance the classes
- Trained models using different text processing and vectorization methods
 - stem words, lemmatization, removing mutual words
 - Count and TF-IDF vectorization
- False Positive Negative sentiment predicted as Positive
- False Negative Positive Sentiment predicted as Negative

MUTUALLY EXCLUSIVE WORDS

- Eliminated words that appear in both classes
- Random Forest scored best Cross Validation Score = 0.826

Predicted Class

Overall Prediction Accuracy of 69%

- Positive prediction accuracy of 70%
- Negative prediction accuracy of 65%

	precision	recall	f1-score	support
0 1	0.32 0.90	0.65 0.70	0.43 0.79	121 562
accuracy macro avg weighted avg	0.61 0.80	0.67 0.69	0.69 0.61 0.72	683 683

MUTUALLY EXCLUSIVE NEGATIVE WORD FREQUENCY

MUTUALLY EXCLUSIVE POSITIVE WORD FREQUENCY

ULTIMATELY WE DID NOT EXCLUDE MUTUAL WORDS

- The models using the lemmatized text before removing mutual words scored a little better on test data.
- Surprisingly the model that predicted the best was our baseline using a default **Multinomial Naive Bayes** model

	precision	recall	f1-score	support
0	0.53	0.64	0.58	121
1	0.92	0.88	0.90	562
accuracy			0.84	683
macro avg	0.72	0.76	0.74	683
weighted avg	0.85	0.84	0.84	683

MULTINOMIAL NAIVE BAYES

Lemmatized text, Count Vectorization

Cross Validation Score: 0.80 Overall Test Accuracy: 0.84

- Positive prediction accuracy of 88%
- Negative prediction accuracy of 64%

Predicted Class

INTERPRETATION

- Imbalanced data posed problems when testing the model
 - Predicted the true positive class much better than the true negative class leading to a higher false positive rate
- Words expressing positive sentiment like "great", and "awesome" appeared in both classes
 - Could lead to false negatives
 - Did not appear in the mutually exclusive word models

RESULTS

- Based on a general sense of the dataset the overwhelming sentiment was positive.
- This positive sentiment can be used in an overall investment strategy of emerging technologies
- This was a small dataset and more data is needed to improve the model
 - The use of synthetically produced data was used to balance the dataset
 - With more data a downsampling technique could be employed instead

FURTHER RESEARCH

- Gather more data to provide more balance for testing
- Explore Neural Networking techniques and Word2Vec for modeling
- Explore techniques for weighting specific words
- Look at sentiment on an individual product level

THANK YOU

PATRICK ANASTASIO

- SUDOMAKECOFFEE1@GMAIL.COM
- LINKEDIN: /PATRICKANASTASIO
- GITHUB: PATRICK-ANASTASIO
- MEDIUM: @PATRICKANASTASIO