TAUTOLOGIAS, CONTRADIÇÕES E CONTINGÊNCIAS

Usando tabelas-verdade pudemos ver que proposições podem ser V ou F dependendo dos valores das proposições simples. Agora vamos discutir o que significa se uma proposição composta for sempre verdadeira, sempre falsa ou se tiver as duas situações.

Fala Professor

4.1 Tautologia

Tautologia – é toda proposição composta que resulta sempre em valores lógicos Verdadeiros (V) (ALENCAR FILHO, 2003).

Conceitos

Ou seja, para se ter uma **tautologia**, a última coluna da tabela verdade de uma proposição composta terá apenas **V**.

Exemplos de tautologias:

- (1) Princípio da identidade: $p \rightarrow p e p \leftrightarrow p$.
- (2) Princípio da não contradição: ~(p ∧ ~p)

p	~p	p ∧ ~ p	$\sim (p \land \sim p)$
V	F	F	V
F	V	F	V

(3) Princípio do terceiro excluído: p ∨ ~p

p	~p	p ∨ ~p
V	F	V
F	V	V

(4)
$$p \lor \sim (p \land q)$$

p	q	$p \wedge q$	~(p ∧ ~q	$p \lor \sim (p \land q)$
V	V	V	F	V
V	F	F	V	V
F	V	F	V	V
F	F	F	V	V

$(5) p \land q \rightarrow (p \leftrightarrow q)$

p	q	$p \wedge q$	$p \leftrightarrow q$	$p \land q \rightarrow (p \leftrightarrow q)$
V	V	V	V	V
V	F	F	F	V
F	V	F	F	V
F	F	F	V	V

Uma vez que o fato de uma proposição ser uma tautologia significa que o seu valor lógico é sempre verdade (V), independente dos valores das proposições simples que a compõem, então vale o seguinte princípio:

Conceitos

Principio da substituição - Se P(p, q, r,...) é uma tautologia, então P(P0, Q0, R0, ...) também é uma tautologia, para quaisquer que sejam P0, Q0, R0,...

4.2 Contradição

Conceitos

Contradição – é toda proposição composta que resulta sempre em valores lógicos Falsos (F) (ALENCAR FILHO, 2003).

Em outros termos, **contradição** é toda proposição composta em que a última coluna da sua tabela-verdade possui apenas a letra F (falsidade).

Atenção

Observe que como uma tautologia é sempre verdadeira (V), a negação de uma tautologia é sempre falsa (F), ou seja, é uma contradição, e vice-versa.

Exemplos:

(1) Dadas as proposições:

p: Eu gosto de Lógica

~p: Eu não gosto de Lógica

Vemos que existe uma contradição ao dizermos: **Eu gosto de Lógica e eu não gosto de Lógica**, conforma mostra a tabela-verdade a seguir:

p	~p	p ∧ ~ p
V	F	F
F	V	F

(2) Dadas as proposições:

p: Eu vou ao cinema

~p: eu não vou ao cinema

Vemos que existe uma contradição ao dizermos: **Eu vou ao cinema se e somente se eu não for ao cinema**, conforme mostra a tabela-verdade a seguir:

p	~p	$p \leftrightarrow \sim p$
V	F	F
F	V	F

Semelhante ao que ocorre as com tautologias, o fato de uma proposição ser uma contradição significa que o seu valor lógico é sempre falsidade (F), independente dos valores das proposições simples que a compõem, então vale o seguinte princípio:

Princípio da substituição - Se P(p, q, r,...) é uma contradição, então P(P0, Q0, R0, ...) também é uma contradição, para quaisquer que sejam P0, Q0, R0,...

4.3 Contingência

Contingência – é toda proposição composta que não é tautologia nem contradição (ALENCAR FILHO, 2003).

Em outras palavras, **contingência** é toda a proposição composta em cuja última coluna de sua tabela-verdade figuram as letras V e F cada uma pelo menos uma vez.

Exemplo:

p	~p	$p \rightarrow \sim p$
V	F	F
F	V	V

Atividades

ATIVIDADE 5 - Para exercitar, vamos realizar algumas das atividades propostas por (PINHO, 1999, p. 48):

1. Verificar se as proposições abaixo são **tautologias**:

(a)
$$(p \rightarrow p) \lor (p \rightarrow \sim p)$$

(b)
$$(p \leftrightarrow p \land \sim p) \leftrightarrow \sim p$$

$$(c) (p \rightarrow q) \land \sim q \rightarrow \sim p$$

(d)
$$p \lor (p \land q) \longleftrightarrow p$$

2. Verificar se as proposições abaixo são contradições:

(a)
$$(p \land q) \land (\sim p \lor \sim q)$$

(b)
$$\sim p \land (p \lor \sim q)$$

3. Verificar se as proposições abaixo são contingências:

(a)
$$p \lor q \longrightarrow p$$

(b)
$$x = 3 \land (x \neq y \longrightarrow x \neq 3)$$

4. Determinar quais proposições são tautologias, contradições ou contingências:

(a)
$$p \rightarrow (\sim p \rightarrow q)$$

(b)
$$\sim p \lor q \longrightarrow (p \longrightarrow q)$$

$$(c)((p \rightarrow q) \leftrightarrow q) \rightarrow p$$

$$(d) \sim p \vee \sim q \longrightarrow (p \longrightarrow q)$$

Indicações

Para maior compreensão, ler o capítulo 4 – Tautologias, Contradições e Contingências do livro Alencar Filho, Edgard de. Iniciação à lógica matemática. São Paulo: Nobel, 2003.