# THRESHOLD-BASED GRAPH RECONSTRUCTION USING DISCRETE MORSE THEORY

Brittany Terese Fasy<sup>1,2</sup> **Sushovan Majhi**<sup>3</sup> Carola Wenk<sup>4</sup>

Department of Computer Science, Montana State University

<sup>2</sup>Department of Mathematics, Montana State University

<sup>3</sup>Department of Mathematics, Tulane University

<sup>4</sup>Department of Computer Science, Tulane University

FWCG, 2018

## Introduction

#### PROBLEM STATEMENT

Given a (noisy) sample S taken around a (hidden) embedded graph G, how one can "reconstruct" the topology and geometry of G from S.



FIGURE: Sample around an embedded graph

# APPLICATION: MAP RECONSTRUCTION FROM GPS TRACES



FIGURE: GPS traces of Berlin (mapconstruction.org)

# APPLICATION: MAP RECONSTRUCTION FROM GPS TRACES



FIGURE: GPS traces of Berlin (mapconstruction.org)



FIGURE: A reconstruction

# Noise Models

# Noise Models

- Hausdorff noise
- Non-Hausdorff noise

# Noise Models

# Noise Models

- 4 Hausdorff noise
- Non-Hausdorff noise

## WHAT TO RECONSTRUCT?

- Topology (same homotopy type)
- ② Geometry (small Hausdorff-distance)

# DENSITY-BASED MAP CONSTRUCTION

## GENERIC DENSITY-BASED ALGORITHM

Given a discretized domain  $\tilde{D}$  and a sample S around G.

• Compute density f of S over  $\tilde{D}$ .

# DENSITY-BASED MAP CONSTRUCTION

#### GENERIC DENSITY-BASED ALGORITHM

Given a discretized domain  $\tilde{D}$  and a sample S around G.

- ① Compute density f of S over  $\tilde{D}$ .
  - Histogram Computation
  - Kernel Density Estimate

$$K(x, y; b) := \exp\left(\frac{-\|x - y\|^2}{2b^2}\right)$$

$$f(x) = \frac{1}{2\pi |S|b^2} \sum_{X_i \in S} K(x, X_i; b)$$

# DENSITY-BASED MAP CONSTRUCTION

## GENERIC DENSITY-BASED ALGORITHM

Given a discretized domain  $\tilde{D}$  and a sample S around G.

- **1** Compute density f of S over  $\tilde{D}$ .
  - Histogram Computation
  - Kernel Density Estimate

$$K(x, y; b) := \exp\left(\frac{-\|x - y\|^2}{2b^2}\right)$$

$$f(x) = \frac{1}{2\pi |S|b^2} \sum_{X_i \in S} K(x, X_i; b)$$

② for an appropriate threshold t,  $f^{-1}[t,\infty)$  is considered.

#### GENERIC DENSITY-BASED ALGORITHM

Given a discretized domain  $\tilde{D}$  and a sample S around G.

- **1** Compute density f of S over  $\tilde{D}$ .
  - Histogram Computation
  - Kernel Density Estimate

$$K(x, y; b) := \exp\left(\frac{-\|x - y\|^2}{2b^2}\right)$$

$$f(x) = \frac{1}{2\pi |S|b^2} \sum_{X_i \in S} K(x, X_i; b)$$

- ② for an appropriate threshold t,  $f^{-1}[t,\infty)$  is considered.
- 1 heuristic pruning methods are applied this super-level set to approximate G.

## RELATED WORK

## RECENT WORKS

• Choosing thresholds systematically using Persistent Homology. (AFGW15)

## RELATED WORK

## RECENT WORKS

- Ochoosing thresholds systematically using Persistent Homology. (AFGW15)
- @ Graph reconstruction by Discrete Morse theory. (DWW18)

## RELATED WORK

#### RECENT WORKS

- Ochoosing thresholds systematically using Persistent Homology. (AFGW15)
- @ Graph reconstruction by Discrete Morse theory. (DWW18)

#### LIMITATIONS

- Thresholds are chosen heuristically.
- Theoretical guarantees on the topological/geometric correctness is not proved.
- The output is often a thick region around the hidden graph.

# ASSUMPTION ON THE DENSITY FUNCTION

# $(\omega, \beta_1, \beta_2, \nu)$ -APPROXIMATION OF G

Let  $\omega > 0$  such that  $G^{\omega}$  has a deformation retract onto G.

$$f(x) \in \begin{cases} [\beta_1, \beta_1 + \nu], & x \in V^{\omega} \\ [\beta_2, \beta_2 + \nu], & x \in G - V^{\omega} \\ [0, \nu], & \text{otherwise} \end{cases}$$

V denotes the set of vertices of G.



FIGURE: KDE

If the samples are concentrated around a graph, then the mountain ridges on the graph of the density function are expected to capture it.

8/19

# BACKGROUND: DISCRETE MORSE THEORY



FIGURE: Simplicial Complex K and discrete vector

#### DISCRETE VECTOR

 $(\sigma, \tau)$  is a discrete vector in K if  $\sigma < \tau$  i.e.  $\sigma$  is a boundary of  $\tau$ .  $(v, e_1)$  and  $(e_2, t)$  are two discrete vectors on K.

9/19

# BACKGROUND: DISCRETE MORSE THEORY



FIGURE: Simplicial Complex K and discrete vector

## DISCRETE VECTOR FIELD

A discrete vector field V is a collection of discrete vectors such that every simplex of K is head/tail of at most one vector.

# BACKGROUND: DISCRETE MORSE THEORY



FIGURE: V-path

## V-PATH

$$\sigma_0, \tau_0, \sigma_1, \tau_1, \ldots, \sigma_{l+1}$$

where  $(\sigma_i, \tau_i)$  is a vector and  $\tau_i < \sigma_{i+1}$ .

# BACKGROUND: MORSE CANCELLATION



FIGURE: Morse Cancellation

Morse cancellation cancels critical points.

12/19

# BACKGROUND: STABLE MANIFOLD



FIGURE: Morse Cancellation

#### STABLE MANIFOLD

For a critical edge *e*, its stable manifold is the set of all V-paths ending at the boundary of *e*.

Input: The discretized domain K, the density function f, the threshold  $\delta$  Output: The reconstructed graph  $\hat{G}$ 

1 Initialize V as the trivial vector field on K and  $\hat{G} = \emptyset$ .

- 1 Initialize V as the trivial vector field on K and  $\hat{G} = \emptyset$ .
- ② Run persistence on the super-level set filtration of f to get the persistence pairs P(K).

- Initialize V as the trivial vector field on K and  $\hat{G} = \emptyset$ .
- ② Run persistence on the super-level set filtration of f to get the persistence pairs P(K).
- **3** For each  $(\sigma, \tau) \in P(K)$  with  $Pers(\sigma, \tau) < \delta$  Try to perform a Morse cancellation for the pair and update V.

- **1** Initialize V as the trivial vector field on K and  $\hat{G} = \emptyset$ .
- ② Run persistence on the super-level set filtration of f to get the persistence pairs P(K).
- **3** For each  $(\sigma, \tau) \in P(K)$  with  $Pers(\sigma, \tau) < \delta$  Try to perform a Morse cancellation for the pair and update V.
- For each  $(v, e) \in P(K)$  and  $(e, t) \in P(K)$  with  $Pers(v) \ge \delta$ ,  $\hat{G} = \hat{G} \cup \{ \text{ stable manifold of } e \}$ .

- **1** Initialize V as the trivial vector field on K and  $\hat{G} = \emptyset$ .
- ② Run persistence on the super-level set filtration of f to get the persistence pairs P(K).
- **3** For each  $(\sigma, \tau) \in P(K)$  with  $Pers(\sigma, \tau) < \delta$  Try to perform a Morse cancellation for the pair and update V.
- For each  $(v, e) \in P(K)$  and  $(e, t) \in P(K)$  with  $Pers(v) \ge \delta$ ,  $\hat{G} = \hat{G} \cup \{ \text{ stable manifold of } e \}$ .
- output Ĝ



FIGURE: Algorithm in Picture

# OUR RESULT

#### **THEOREM**

If G is a connected, embedded planar graph in a cubical complex K and f is an  $(\omega, \beta_1, \beta_2, \nu)$ -approximation then the output  $\hat{G}$  has the same homotopy type as G. Moreover,  $d_H(G, \hat{G}) < \omega$ .

## **FUTURE WORK**

- Extend the result to higher dimensions.
- What condition on the density function gives up a small Fréchet distance between the edges of the output and the edges of the graph.
- Output Description of the Heavy persistence computation for all nodes.

Thanks and Questions?

## REFERENCES I



Mahmuda Ahmed, Brittany Terese Fasy, Matt Gibson, and Carola Wenk, Choosing thresholds for density-based map construction algorithms, Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems (New York, NY, USA), SIGSPATIAL '15, ACM, 2015, pp. 24:1–24:10.



Tamal K. Dey, Jiayuan Wang, and Yusu Wang, *Graph reconstruction by discrete Morse theory*, 34th International Symposium on Computational Geometry, 2018, pp. 31:1–31:15.