Introduction to Dask: Scalable Analytics in Python

DoD High Performance Computing and Modernization Program (HPCMP) Productivity Enhancement and Training (PET)

Zachary Lamb, PET Computational Scientist November 12 2020

GENERAL DYNAMICS

Information Technology

Overview

- What is Dask?
- Installation and setup
- The task graph
- Delayed and futures
- Bag, Array, Dataframe
- Distributed
- Machine Learning
- Dask Dashboard
- Jupyter Notebook demo

What is Dask?

- Dask is defined as a parallel computing library that scales the existing Python ecosystem
- Operates by constructing and executing a task graph
- Very good at scaling to different hardware
- It provides multi-core and distributed parallel execution on larger-thanmemory datasets

Installation

- Dask is easily installed via conda or pip and can be built from source
- Included in the default Anaconda distribution
- More details: https://docs.dask.org/en/latest/install.
 https://docs.dask.org/en/latest/install.
 https://docs.dask.org/en/latest/
 <a href="https://docs.dask.org/en/latest/"
- Single machine and distributed schedulers

Dependency	Version	Description	
bokeh	>=1.0.0	Visualizing dask diagnostics	
cloudpickle	>=0.2.2	Pickling support for Python objects	
cityhash		Faster hashing of arrays	
distributed	>=2.0	Distributed computing in Python	
fastparquet		Storing and reading data from parquet files	
fsspec	>=0.6.0	Used for local, cluster and remote data IO	
gcsfs	>=0.4.0	File-system interface to Google Cloud Storage	
murmurhash		Faster hashing of arrays	
numpy	>=1.13.0	Required for dask.array	
pandas	>=0.23.0	Required for dask.dataframe	
partd	>=0.3.10	Concurrent appendable key-value storage	
psutil		Enables a more accurate CPU count	
pyarrow	>=0.14.0	Python library for Apache Arrow	
s3fs	>=0.4.0	Reading from Amazon S3	
sqlalchemy		Writing and reading from SQL databases	
cytoolz/toolz	>=0.8.2	Utility functions for iterators, functions, and dictionaries	
xxhash		Faster hashing of arrays	

Task Graph

 Dask encodes algorithms in a simple format involving Python dicts, tuples, and functions

```
{'x': 1,
  'y': 2,
  'z': (add, 'x', 'y'),
  'w': (sum, ['x', 'y', 'z']),
  'v': [(sum, ['w', 'z']), 2]}
```

- Task scheduling is often used as a means to parallelize a program by breaking the work into smaller tasks
- Dask represents these tasks as nodes in a graph with edges between nodes if one task depends on data produced by another
- A task scheduler executes this graph in a way that respects data dependencies and leverages parallelism where possible

Delayed

- Delayed allows developers to parallelize their own algorithms
- Decorating functions with delayed will allow Dask to parallelize any portion of your problem that can be run in parallel
- Decorated (wrapped) functions will return a Delayed object and perform no computations

```
from dask import delayed

@delayed
def inc(x):
    return x + 1

import dask

def inc(x):
    return x + 1

inc_delayed = dask.delayed(inc)
```


Delayed

Questions?

Dask Futures

- Futures extends the concurrent.futures interface of Python and is very similar to the ThreadPoolExecutor (or ProcessPoolExecutor) that is in the standard library
- The major difference from Delayed is that futures starts the computation immediately

```
from dask.distributed import Client
client = Client() # by default workers are processes - pass processes=False for threads

def inc(x):
    return x + 1

futures = client.map(inc, range(1000))

results = [future.result() for future in futures]
results = client.gather(futures) # may be faster
```


Dask Array

- Dask arrays use Numpy under the hood and many of the numpy functionalities are supported
- Dask arrays are simply chunked numpy arrays

Dask Array

Dask provides some nice visualization of arrays in Jupyter Notebooks

```
import dask.array as da
arr = da.random.random((10000, 10000), chunks=(1000, 1000))
arr
```

	Array	Chunk	
Bytes	800.00 MB	8.00 MB	10000
Shape	(10000, 10000)	(1000, 1000)	
Count	100 Tasks	100 Chunks	
Туре	float64	numpy.ndarray	10000

import dask.array as da	
<pre>arr = da.random.random((10000, arr</pre>	10000, 3), chunks=(1000, 1000, 3))

	Array	Chunk	
Bytes	2.40 GB	24.00 MB	
Shape	(10000, 10000, 3)	(1000, 1000, 3)	
Count	100 Tasks	100 Chunks	
Туре	float64	numpy.ndarray	1000
			3

Dask Dataframe

- Dask DataFrames coordinate many Pandas DataFrames/Series arranged along the index
- A Dask DataFrame is partitioned row-wise, grouping rows by index value for efficiency

```
import pandas as pd
df = pd.read_csv('some data')
import dask.dataframe as dd
df = dd.read_csv('some data')
```


Dask Bag

- Dask Bag implements operations like map, filter, fold, and groupby on collections of generic Python objects
- Typically used to parallelize simple computations on unstructured or semistructured data like text data, log files, JSON records, or user defined Python objects

```
In [7]: import dask.bag as db
    bag = db.from_sequence([0,1,2,3,4,5,6,7,8,9], npartitions=4)
    bag.map(lambda x: x**2)

Out[7]: dask.bag<lambda, npartitions=4>
In [8]: bag.compute()
Out[8]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
```


Questions?

Dask Distributed

- Up to this point we have seen that Dask handles the computations for us
- Dask has two families of task schedulers:
 - Single machine scheduler: This scheduler provides basic features on a local process or thread pool.
 This is the default scheduler
 - Distributed scheduler: This scheduler is more sophisticated, offers more features, but also requires a
 bit more effort to set up

Dask comes with four available schedulers:

- Threaded: a scheduler backed by a thread pool
- Processes: a scheduler backed by a process pool
- Single-threaded (aka "sync"): a synchronous scheduler, good for debugging
- Distributed: a distributed scheduler for executing graphs on multiple machines

Dask for Machine Learning

- Dask-ML provides scalable machine learning in Python using Dask alongside popular machine learning libraries like scikit-learn
- Dask extends the parallelism in scikit-learn from a single machine to distributed resources
- Allows you to use some scikit-learn algorithms with larger-than-memory datasets
- Tips from Dask documentation:
 - For in-memory problems, use scikit-learn (or your favorite ML library).
 - For large models, use dask_ml.joblib and your favorite scikit-learn estimator
 - For large datasets, use dask_ml estimators

```
from dask.distributed import Client
import joblib
client = Client() # Connect to a Dask Cluster
with joblib.parallel_backend('dask'):
   # Your normal scikit-learn code here
```


Dask Dashboard

- The Dashboard provides live information in the form of plots and tables
- Information on memory and CPU usage, task execution (progress, distribution), and detailed profiling information

Questions?

Contact

Questions and Information https://training.hpc.mil/pet@hpc.mil

References/Sources

1. Figures (Array, DataFrame, distributed, logo): https://docs.dask.org/en/latest/

