Московский физико-технический институт

Лабораторная работа

Характеристическое излучение атомов Закон Мозли

выполнила студентка 653 группы ФФКЭ Карпова Татьяна

1 Цель работы

- 1. Измерить спектры характеристического излучения атомов для набора химических элементов
- 2. Определить рентгеновские термы измеренных спектральных пиков излучения
- 3. Проверить закон Мозли
- 4. Определить элементный состав контрольного образца

2 В работе используются:

- рентгеновский спектрометр «Спектроскан Макс-G»
- рентгеновский источник излучения
- специально вогнутый кристалл LiF
- гониометр
- газовый детектор рентгеновских квантов
- компьютер
- образцы чистых химических элементов

3 Теоретические положения

В отличие от описания энергетического спектра атома водорода, для многоэлектронных систем необходимо учитывать такие факторы, как спин-орбитальное взаимодействие (которое приводит к тонкому расщеплению энергетических уровней), а также электростатическое взаимодействие между электронами - его учёт производится с помощью введения константы экранирования $\sigma_{n,l}$. Для электронов, находящихся близко к ядру, хорошо описывает основной вклад в энергию их взаимодействия с атомом следующая формула:

$$E_{n,l} = -R_y \frac{(Z - \sigma_{n,l})}{n^2} \tag{1}$$

Переход атома из одного энергетического состояния в другое может сопровождаться поглощением или испусканием фотона - такой переход называется излучательным. Для генерации рентгеновского излучения нужен переход с высокого уровня на глубокий - для этого место на глубоком уровне нужно предварительно освободить. Уровни энергии атома, у которого удалён один из электронов с глубокого уровня, называют рентгеновскими термами.

При переходе электрона с оболочки одного слоя на другой слой атом излучает рентгеновский квант, такое излучение называют характеристическим излучением. Энергия кванта такого излучения приближённо может быть записана в виде:

$$\hbar\omega_{1,2} = E_{n2} - E_{n1} = -R_y \left(\frac{(Z - \sigma n_2, l_2)^2}{n_2^2} - \frac{(Z - \sigma n_1, l_1)^2}{n_1^2}\right)$$
(2)

В упрощённом виде она представляет собой закон Мозли:

$$\hbar\omega = R_y (Z - \sigma)^2 (\frac{1}{n_1^2} - \frac{1}{n_2^2})$$
(3)

Излучение, возникающее при переходе электрона на K-слой с какого-либо другого электронно слоя, называют характеристическим излучением K-серии. Аналогично, переходам на L-слой будет соответствовать излучение L-серий, переходам на M-слой – M-серий и так далее. Из-за расщепления рентгеновских термов спектр излучения каждой такой серии будет состоять из нескольких близких компонент. Например, для K- и L-серий на рис. 1 показана подробная схема переходов, а также приведены соответствующие этим переходам обозначения. Толщина линий переходов условно обозначает интенсивность соответствующих спектральных линий.

Рис. 1: Схема основных переходов -серии и L-серии

4 Экспериментальная установка

Для регистрации рентгеновских спектров характеристического излучения в работе используется серийно выпускаемый рентгенофлуоресцентный спектрометр «Спектроскан Макс-G». В состав прибора входят следующие основные элементы: рентгеновская трубка, держатель образцов, вогнутая пластина кристалла LiF, гониометр, а также пропорциональный детектор. Схема прибора показана на рис. 2.

Рис. 2: Схема рентгеновского спектрометра

5 Выполнение работы

1. Снимем спектры характеристического излучения для различных элементов. Результаты измерений занесём в таблицу 1. Графики спектров представим на рис. 3 - 12 (пик слева отвечает переходу K_{β})

Рис. 3: Спектр характеристического излучения неодима $^{60}{\rm Nd}$

Рис. 4: Спектр характеристического излучения тулия $^{69}{\rm Tm}$

Рис. 5: Спектр характеристического излучения иттербия $^{70}{\rm Yb}$

Рис. 6: Спектр характеристического излучения лютеция $^{71}{
m Lu}$

Рис. 7: Спектр характеристического излучения тантала $^{73}{\rm Ta}$

Рис. 8: Спектр характеристического излучения вольфрама $^{74}{\rm W}$

Рис. 9: Спектр характеристического излучения платины $^{78}{\rm Pt}$

Рис. 10: Спектр характеристического излучения золота $^{79}\mathrm{Au}$

Рис. 11: Спектр характеристического излучения свинца $^{82}{\rm Pb}$

Рис. 12: Спектр характеристического излучения висмута $^{83}{\rm Bi}$

2. Энергии соответствующих переходов определим по формуле $E=\frac{hc}{\lambda}$ (переведя в эВ из эрг). Также определим значения $\sqrt{\frac{E_K}{R_y}}$. Все значения занесём в таблицу 1.

Таблица 1: Анализ характеристического излучения различных элементов

	Z	$\lambda_{K_{lpha}},\mathrm{m} \mathring{\mathrm{A}}$	$\lambda_{K_{eta}},\mathrm{m} \mathring{\mathrm{A}}$	$E_{K_{\alpha}}$, эВ	$E_{K_{\beta}}$, эВ	$\sqrt{\frac{E_{K_{\alpha}}}{R_{y}}}$	$\sqrt{\frac{E_{K_{eta}}}{R_{y}}}$
Nd	60	2369	2165	5247,5	5741,9	19,76	20,67
Tm	69	1724	1528	7210,7	8135,6	23,17	24,61
Yb	70	1669	1473	7448,3	8439,4	23,55	25,06
Lu	71	1617	1421	7687,8	8748,2	23,92	25,52
Ta	73	1518	1317	8189,2	9439,1	24,69	26,51
W	74	1475	1281	8428,0	9704,3	25,05	26,88
Pt	78	1311	1119	9482,3	11109	26,57	28,76
Au	79	1275	1083	9750,0	11479	26,94	29,23
Pb	82	1174	982	10589	12659	28,07	30,70
Bi	83	1143	951	10876	13072	28,45	31,19

3. Построим график зависимости $\sqrt{\frac{E_K}{R_y}}$ от атомного номера Z (рис. 13) и проверим выполнение закона Мозли

Рис. 13: График зависимости $\sqrt{\frac{E_K}{R_y}}$ от Z

4. Используя формулу (3) и полученные графики зависимости, определим постоянные σ и $(\frac{1}{n_1^2}-\frac{1}{n_2^2})$

$$\begin{split} \sqrt{\frac{E}{R_y}} &= (Z - \sigma) \sqrt{(\frac{1}{n_1^2} - \frac{1}{n_2^2})} = Z \sqrt{(\frac{1}{n_1^2} - \frac{1}{n_2^2})} - \sigma \sqrt{(\frac{1}{n_1^2} - \frac{1}{n_2^2})} = Zb + a \\ b &= \sqrt{(\frac{1}{n_1^2} - \frac{1}{n_2^2})} \\ \sigma &= -\frac{a}{b} \end{split}$$

Тогда для наших коэффициентов:

$$b_{L_{\alpha}} = 0,378$$
 $b_{L_{\beta}} = 0,459$ $\sigma_{L_{\alpha}} = 7.65$ $\sigma_{L_{\beta}} = 15.266$

Значения *b* совпадают с теоретическими:

$$b = \sqrt{\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)}$$

$$L_{\alpha} : n_1 = 2, n_2 = 3 \qquad L_{\beta} : n_1 = 2, n_2 = 4$$

$$b_{\alpha} = 0,373 \qquad b_{\beta} = 0,433$$

- 5. В спектре контрольных образцов обнаружились следующие металлы:
 - золотая цепочка: золото, медь
 - монета: цинк, медь

6 Вывод

В ходе работы был изучен принцип работы рентгеновского спектрографа, измерены спектры характеристического излучения для ряда химических элементов. С помощью программного обеспечения были определены рентгеновские термы измеренных спектральных пиков излучения (L_{α}, L_{β}) . Построив зависимость $\sqrt{\frac{E_K}{R_y}}$ от Z в ходе работы мы проверили справедливость выполнения закона Мозли (характер зависимости - квадратичный).

Были экспериментально определены коэффициенты экранировки для L_{α}, L_{β} , а также значения $(\frac{1}{n_1^2} - \frac{1}{n_2^2})$, полученные значения с хорошей точностью совпадают с теоретическими (для серии L_{α} константа экранирования принимается равной 7,4)