R code PA-CR model

Marwan Naciri

2023-12-13

This code generates the results and the main figures presenter in the manuscript "Offspring number, size, and survival: state-dependent optimization of litter size in a long-lived capital breeder" *Ecological monographs*

Marwan Naciri, Marlène Gamelon, Jon Aars, Marie-Anne Blanchet, and Sarah Cubaynes

A. Run the model

1. Build the model

```
PA_CR <- nimbleCode({
 # Length
 for (i in 1:n_coef_mL) {
   alpha[i] ~ dnorm(0, sd = 5)
 sigma_tau ~ dunif(0, 10)
 # Cohort random effect
 for (i in 1:n_cohort) {
   zeta[i] ~ dnorm(0, sd = sigma_zeta)
 sigma_zeta ~ dunif(0, 10)
 # Litter size
 for (i in 1:n_coef_LS) {
   beta[i] ~ dnorm(0, sd = 1.5)
 }
 # Girth
 for (i in 1:n_coef_mG) {
   gamma[i] ~ dnorm(0, sd = 5)
 sigma_xi ~ dunif(0, 10)
 # Cub mass
 for (i in 1:n_coef_M) {
   delta[i] ~ dnorm(0, sd = 5)
 sigma_epsilon ~ dunif(0, 10)
 # Yearly random effects
 for (i in 1:n_year) {
```

```
eta[i] ~ dnorm(0, sd = sigma_eta)
 rho[i] ~ dnorm(0, sd = sigma_rho)
 nu[i] ~ dnorm(0, sd = sigma_nu)
sigma_eta ~ dunif(0, 10)
sigma_rho ~ dunif(0, 10)
sigma_nu ~ dunif(0, 10)
# Recapture
for (i in 1:n_coef_p) {
 lambda[i] ~ dnorm(0, sd = 1.5)
# Survival
theta[1] \sim dnorm(0, sd = 1.5)
theta[2] \sim dnorm(0, sd = 1)
for (i in 3:n_coef_phi) {
 theta[i] \sim dnorm(0, sd = 1.5)
}
# Yearly random effects on recapture
for (t in 1:(n_year-1)) {
 omega[t] ~ dnorm(0, sd = sigma_omega)
sigma_omega ~ dunif(0, 10)
# length, girth and litter size
for (k in 1:n_litters) {
  # Length
 mu_mL[k] <- alpha[1] * mAgeY[row_litter[k], col_litter[k]] +</pre>
   alpha[2] * mAgeM[row_litter[k], col_litter[k]] +
   alpha[3] * mAgeO[row_litter[k], col_litter[k]] +
   alpha[4] * mSpUnk[row_litter[k]] +
   alpha[5] * mSpPel[row_litter[k]] +
   zeta[cohort[k]]
 mL[row_litter[k], col_litter[k]] ~ dnorm(mu_mL[k], sd = sigma_tau)
  # Litter size
 log(q[k, 1]) \leftarrow 0
 log(q[k, 2]) <- beta[1] * mAgeY[row_litter[k], col_litter[k]] +</pre>
   beta[2] * mAgeM[row_litter[k], col_litter[k]] +
   beta[3] * mAgeO[row_litter[k], col_litter[k]] +
   beta[4] * mL[row_litter[k], col_litter[k]] +
   beta[5] * mL[row_litter[k], col_litter[k]]^2 +
   beta[6] * mAgeY[row_litter[k], col_litter[k]] * DOY[row_litter[k], col_litter[k]] +
   beta[7] * mSpUnk[row_litter[k]] +
   beta[8] * mSpPel[row_litter[k]] +
   eta[col_litter[k]]
```

```
log(q[k, 3]) <- beta[9] * mAgeY[row_litter[k], col_litter[k]] +</pre>
    beta[10] * mAgeM[row_litter[k], col_litter[k]] +
    beta[11] * mAgeO[row_litter[k], col_litter[k]] +
    beta[12] * mL[row_litter[k], col_litter[k]]
 LS[row_litter[k], col_litter[k]] ~ dcat(s[k, 1:3])
 for (i in 1:3) {
    s[k, i] \leftarrow q[k, i]/sum(q[k, 1:3])
 }
  # Girth
 mu_mG[k] <- gamma[1] * mAgeY[row_litter[k], col_litter[k]] +</pre>
    gamma[2] * mAgeM[row litter[k], col litter[k]] +
    gamma[3] * mAgeO[row_litter[k], col_litter[k]] +
    gamma[4] * mL[row_litter[k], col_litter[k]] +
   gamma[5] * DOY[row_litter[k], col_litter[k]] +
    gamma[6] * LS2[row_litter[k], col_litter[k]] +
    gamma[7] * LS3[row_litter[k], col_litter[k]] +
    gamma[8] * mSpUnk[row_litter[k]] +
   gamma[9] * mSpPel[row_litter[k]] +
    rho[col_litter[k]]
  mG[row_litter[k], col_litter[k]] ~ dnorm(mu_mG[k], sd = sigma_xi)
}
# Cub mass
for (k in 1:n_cubs) {
 mu_M[k] <- delta[1] * LS1[mother[k], col_cub[k]] * mAgeY[mother[k], col_cub[k]] +</pre>
    delta[2] * LS1[mother[k], col_cub[k]] * mAgeM[mother[k], col_cub[k]] +
    delta[3] * LS1[mother[k], col_cub[k]] * mAge0[mother[k], col_cub[k]] +
    delta[4] * LS1[mother[k], col_cub[k]] * mL[mother[k], col_cub[k]] +
    delta[5] * LS1[mother[k], col_cub[k]] * mG[mother[k], col_cub[k]] +
    delta[6] * LS1[mother[k], col_cub[k]] * DOY[mother[k], col_cub[k]] +
    delta[7] * LS1[mother[k], col_cub[k]] * Sex[k] +
    delta[8] * LS1[mother[k], col_cub[k]] * mSpUnk[mother[k]] +
    delta[9] * LS1[mother[k], col_cub[k]] * mSpPel[mother[k]] +
    delta[10] * LS2[mother[k], col_cub[k]] * mAgeY[mother[k], col_cub[k]] +
   delta[11] * LS2[mother[k], col_cub[k]] * mAgeM[mother[k], col_cub[k]] +
    delta[12] * LS2[mother[k], col_cub[k]] * mAgeO[mother[k], col_cub[k]] +
    delta[13] * LS3[mother[k], col_cub[k]] * mAgeY[mother[k], col_cub[k]] +
    delta[14] * LS3[mother[k], col_cub[k]] * mAgeM[mother[k], col_cub[k]] +
    delta[15] * LS3[mother[k], col_cub[k]] * mAge0[mother[k], col_cub[k]] +
    delta[16] * (LS2[mother[k], col_cub[k]] + LS3[mother[k], col_cub[k]]) * mL[mother[k], col_cub[k]]
    delta[17] * (LS2[mother[k], col_cub[k]] + LS3[mother[k], col_cub[k]]) * mG[mother[k], col_cub[k]]
    delta[18] * (LS2[mother[k], col_cub[k]] + LS3[mother[k], col_cub[k]]) * DOY[mother[k], col_cub[k]
    delta[19] * (LS2[mother[k], col_cub[k]] + LS3[mother[k], col_cub[k]]) * Sex[k] +
    delta[20] * (LS2[mother[k], col_cub[k]] + LS3[mother[k], col_cub[k]]) * mSpUnk[mother[k]] +
    delta[21] * (LS2[mother[k], col_cub[k]] + LS3[mother[k], col_cub[k]]) * mSpPel[mother[k]] +
```

```
nu[col_cub[k]]
  M[k] ~ dnorm(mu_M[k], sd = sigma_epsilon)
for (i in 1:n_ind) {
  for (t in f[i]:(n_year-1)) {
    # Survival
    logit(phi[i, t]) <-</pre>
      theta[1] * AgeO[i, t] * mAgeY[mother[i], t] +
      theta[2] * AgeO[i, t] * mAgeM[mother[i], t] +
      theta[3] * AgeO[i, t] * mAgeO[mother[i], t] +
      theta[4] * AgeO[i, t] * M[i] +
      theta[5] * AgeO[i, t] * (LS2[mother[i], t] + LS3[mother[i], t]) +
      theta[6] * AgeO[i, t] * mL[mother[i], t] +
      theta[7] * AgeO[i, t] * mG[mother[i], t] +
      theta[8] * AgeO[i, t] * DOY[mother[i], t] +
      theta[9] * AgeO[i, t] * Sex[i] +
      theta[10] * AgeO[i, t] * mSpUnk[mother[i]] +
      theta[11] * AgeO[i, t] * mSpPel[mother[i]] +
      theta[12] * Age1[i, t] +
      theta[13] * Age2[i, t] +
      theta[14] * Age3_4[i, t] +
      theta[15] * Age5_19[i, t] +
      theta[16] * Age20[i, t] +
      theta[17] * (1 - AgeO[i, t]) * Sex[i] +
                                                                              # Effect of sex = male f
      theta[18] * ((1 - AgeO[i, t]) * (1 - Sex[i]) * mSpUnk[i] +
                                                                           # Effect of space use = NA
                     Age1[i, t] * Sex[i] * mSpUnk[mother[i]]) +
                                                                             # Effect of maternal spac
      theta[19] * ((1 - AgeO[i, t]) * (1 - Sex[i]) * mSpPel[i] +
                                                                      # Effect of space use = pelagic
                     Age1[i, t] * Sex[i] * mSpPel[mother[i]])
                                                                       # Effect of maternal space use
    # Recapture
    logit(p[i, t]) <- lambda[1] +</pre>
      lambda[2] * (mSpUnk[i] * (1 - Sex[i]) +
                                                                                                # all N
                     mSpUnk[mother[i]] * Sex[i] * (Age0[i, t+1] + Age1[i, t+1] + Age2[i, t+1])) + # al
      lambda[3] * (mSpPel[i] * (1 - Sex[i]) +
                                                                                                # all p
                     mSpPel[mother[i]] * Sex[i] * (Age0[i, t+1] + Age1[i, t+1] + Age2[i, t+1])) + # a
      lambda[4] * Sex[i] * (Age3_4[i, t+1] + Age5_19[i, t+1] + Age20[i, t+1]) +
      omega[t]
  }
}
for (i in 1:n_ind) {
  # latent state at the first capture
  z[i, f[i]] <- 1
  for (t in (f[i]+1):n_year) {
    # State process
```

```
z[i, t] ~ dbern(phi[i, t-1] * z[i, t-1])

# Observation process
y[i, t] ~ dbern(p[i, t-1] * z[i, t])

} # t
} # i
})
```

Here, I use a relatively informative prior for theta[2] (survival of cubs of middle-aged females) because otherwise, I get unrealistically high survival (mean = 0.77). This informative prior is N(0, 1), to compare to the less informative N(0, 1.5):

2. Process the data

Using litter_size as value column: use value.var to override.

B. Inspect the results

1. Trace plots

2. Rhat

Calculate the Rhat value of each parameter, to make sure the chains have converged (Rhat< 1.1)

All Rhat are < 0.01

3. Caterpillar plots

C. Compute residuals and predictions

1. Predict number of surviving CoYs by litter size and maternal age

2. Compute residuals

The residuals computed here will be used to plot the observations corrected for other variables for the figures.

- a. Cub mass
- b. Cub mass for plot length
- c. Cub mass for plot girth

3. Plot random effects

Here I convert the random effects to the natural scale for continuous variables, and to the probability scale for probabilities.

- ## Warning: Removed 57600 rows containing non-finite values ('stat_summary()').
 ## Warning in max(f): aucun argument pour max ; -Inf est renvoyé
- ## Warning: Computation failed in 'stat_summary()'
- ## Caused by error in 'seq_len()':
- ## ! l'argument doit être convertible automatiquement en un entier non négatif
- ## Warning: Removed 57600 rows containing non-finite values ('stat_summary()').
- ## Warning in max(f): aucun argument pour max ; -Inf est renvoyé

```
## Warning: Computation failed in 'stat_summary()'
## Caused by error in 'seq_len()':
## ! l'argument doit être convertible automatiquement en un entier non négatif
## Warning: Removed 59400 rows containing non-finite values ('stat_summary()').
## Removed 59400 rows containing non-finite values ('stat_summary()').
```


D. Compute pd and other quantities

1. Pd and effect sizes

```
a. Maternal length
```

- ## [1] 178 213
- ## [1] 1.40679
- **##** 2.5% 97.5%
- ## -0.4167219 3.2173274
- ## [1] 0.9372778
- ## [1] 2.106713
- ## 2.5% 97.5%
- ## -0.1090095 4.3281067
- ## [1] 0.9692778
- ## [1] 3.513503
- ## 2.5% 97.5%
- ## 1.180246 5.859049
- ## [1] 0.9984444
- ## [1] -0.2922503
- ## 2.5% 97.5%
- ## -0.576971752 -0.006194798
- ## [1] 0.9774444
- ## [1] -0.09573022
- ## 2.5% 97.5%
- ## -0.4653858 0.2794673
- ## [1] 0.6937222
- ## [1] 0.1034846
- ## 2.5% 97.5%
- ## 0.003769299 0.266616013

b. Litter size

- ## [1] 1.683128
- ## [1] 0.5246046
- ## [1] 0.1238265
- ## 2.5% 97.5%
- ## -0.02789276 0.28134005
- ## [1] 0.9426667
- ## [1] 0.2311631
- **##** 2.5% 97.5%
- ## 0.04933139 0.40490237
- ## [1] 0.9928889

- ## [1] 0.1073366
- **##** 2.5% 97.5%
- ## -0.09022869 0.29710050
- ## [1] 0.9928889
- ## [1] -0.2233224
- ## 2.5% 97.5%
- ## -0.44226679 -0.01357876
- ## [1] 0.9802222
- ## [1] 0.9671667
- ## [1] 0.9968333
- ## [1] 0.9408889
- ## [1] 0.2435904
- ## 2.5% 97.5%
- ## 0.00506527 0.83786956

c. Maternal girth

- ## [1] 94 135
- ## [1] 1.75087
- **##** 2.5% 97.5%
- ## -0.1581915 3.6946741
- ## [1] 0.9627222
- ## [1] 0.5389617
- ## 2.5% 97.5%
- ## -1.867172 2.945123
- ## [1] 0.672
- ## [1] 1.211908
- ## 2.5% 97.5%
- ## -1.20585 3.62550
- ## [1] 0.8360556
- ## [1] 1.31124
- **##** 2.5% 97.5%
- ## -0.5003124 3.1149878
- ## [1] 0.9257222
- ## [1] -5.056817
- ## 2.5% 97.5%
- ## -10.1877712 0.1005879
- ## [1] 0.9735556
- ## [1] 0.9995
- ## [1] 0.9495

- ## [1] 0.7733889
- ## [1] 0.6990556
- ## [1] 0.2029323
- ## 2.5% 97.5%
- ## 0.06546549 0.43956391

d. Cub mass

- ## [1] 3.00 31.25
- ## [1] 15.03992
- ## [1] 12.61359
- ## [1] 10.27669
- ## [1] 1.193169
- ## 2.5% 97.5%
- ## 1.078368 1.316664
- ## [1] 0.9998889
- ## [1] 1.468266
- ## 2.5% 97.5%
- ## 1.270327 1.689124
- ## [1] 1
- ## [1] 1.231172
- ## 2.5% 97.5%
- ## 1.089171 1.383222
- ## [1] 0.9998889
- ## [1] 1.302466
- ## 2.5% 97.5%
- ## 1.139436 1.487960
- ## [1] 1
- ## [1] 1.196805
- ## 2.5% 97.5%
- ## 1.032235 1.379900
- ## [1] 0.9915556
- ## [1] 1.091756
- ## 2.5% 97.5%
- ## 0.9390356 1.2591582
- ## [1] 0.8769444
- ## [1] 1.098853
- ## 2.5% 97.5%
- ## 1.027109 1.174189
- ## [1] 0.9969444

- ## [1] 1.059594
- ## 2.5% 97.5%
- ## 0.9693416 1.1558857
- ## [1] 0.8985556
- ## [1] 1.038683
- **##** 2.5% 97.5%
- ## 0.9436946 1.1397700
- ## [1] 0.7757222
- ## [1] 0.1908134
- ## 2.5% 97.5%
- ## 0.02397041 0.36598753
- ## [1] 0.9868333
- ## [1] 0.1384435
- ## 2.5% 97.5%
- ## -0.05778246 0.33205612
- ## [1] 0.9195556
- ## [1] 0.05236989
- ## 2.5% 97.5%
- ## -0.1328365 0.2416246
- ## [1] 0.7080556
- ## [1] 0.9378889
- ## [1] 0.9995556
- ## [1] 0.9951667
- ## [1] 0.9997778
- ## [1] 1
- ## [1] 0.9973889
- ## [1] 1.173139
- ## 2.5% 97.5%
- ## 1.050121 1.307514
- ## [1] 1
- ## [1] 0.9931111
- ## [1] 0.9818889
- ## [1] 0.9964444
- ## [1] 0.9999444
- ## [1] 0.9978889
- ## [1] 0.5064444
- ## [1] 0.08095135

- ## 2.5% 97.5% ## 0.02033751 0.18476288
- e. Litter mass
- ## singleton twin triplet ## 15.03992 25.22717 30.83007
- ## [1] 1.68056
- ## 2.5% 97.5%
- ## 1.518991 1.854655
- ## [1] 1
- ## [1] 1.222878
- ## 2.5% 97.5%
- ## 1.084425 1.377194
- ## [1] 0.9992222

f. Cub survival

- ## [1] 0.9967778
- ## [1] 0.3487018
- ## 2.5% 97.5%
- ## 0.03995184 0.63904210
- ## [1] 0.9855556
- ## [1] 0.351673
- ## 2.5% 97.5%
- ## 0.000958976 0.681853722
- ## [1] 0.9755
- ## [1] 0.002971179
- ## 2.5% 97.5%
- ## -0.3504390 0.3507407
- ## [1] 0.5092222
- ## [1] 0.5208333
- ## [1] -0.02778369
- ## [1] 0.5378333
- ## [1] -0.03442667
- ## [1] 0.8321667
- ## [1] 0.7951667
- ## [1] 0.6773333
- ## [1] 0.7650556
- ## [1] 0.6895556

g. Recapture probability

- ## [1] 0.2234877
- **##** 2.5% 97.5%
- ## 0.1651372 0.2905332
- ## [1] 0.05424124
- ## 2.5% 97.5%
- ## 0.03151335 0.08687671
- ## [1] 0.05086043
- ## 2.5% 97.5%
- ## 0.02716686 0.08462128
- ## [1] 0.1269051
- ## 2.5% 97.5%
- ## 0.09006323 0.17069503
- ## [1] 0.8724887
- ## 2.5% 97.5%
- ## 0.619182 1.224541

h. Productivity by litter size

- ## [1] 0.1711728
- ## 2.5% 97.5%
- ## -0.2482271 0.6812235
- ## [1] 0.7722222
- ## [1] 0.599932
- ## 2.5% 97.5%
- ## 0.1520810 0.9442597
- ## [1] 0.9944444
- ## [1] 0.2095511
- ## 2.5% 97.5%
- ## -0.2878088 0.7940797
- ## [1] 0.7894444
- ## [1] 0.2071466
- ## 2.5% 97.5%
- ## -0.8836952 0.9143302
- ## [1] 0.8172222
- ## [1] -0.2158487
- ## 2.5% 97.5%
- ## -1.1130376 0.9472112
- ## [1] 0.6433333
- ## [1] -0.8712762

```
## 2.5% 97.5%
## -1.7891654 -0.1388365
## [1] 0.9944444
```

2. Variance explained by model

[1] 0.1249375 ## [1] 0.2066141 ## [1] 0.4091651

E. Plot main figures

1. Figure 2: Effects on litter size

'summarise()' has grouped output by 'var', 'litter_size'. You can override
using the '.groups' argument.

2. Figure 3: Determinants of cub mass

'summarise()' has grouped output by 'var'. You can override using the '.groups'
argument.
'summarise()' has grouped output by 'var'. You can override using the '.groups'
argument.
Warning: Removed 1 rows containing missing values ('geom_point()').

Removed 1 rows containing missing values ('geom_point()').

- ## Warning: Removed 1 rows containing missing values ('geom_point()').
- ## Removed 1 rows containing missing values ('geom_point()').

3. Figure 4: Determinants of cub survival

- ## 'summarise()' has grouped output by 'var'. You can override using the '.groups'
- ## argument.

4. Figure 6: Productivity by litter size

