DS02

9 Novembre 2022

Algorithmique et programmation

Consignes

Vos réponses dépendent d'un paramètre α , unique pour chaque étudiant, qui vous est donné sur le site de la classe. On considère la suite u à valeurs dans [0,64007], définie comme suit.

$$u_0 = \alpha$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = (15091 \times u_n) [64007]$.

Nous vous en proposons l'implémentation suivante.

```
def u(alpha,n):
"""u_n, u_0 = alpha"""
x = alpha
for i in range(n):
    x = (15091 * x) % 64007
return x
```

Cette fonction sera déjà implémentée dans le notebook et est importé depuis le module lissage_initialisation. Vous pouvez donc directement utiliser le fonction u(alpha,n) avec alpha correspondant à votre numéro d'anonymat.

Dans ce devoir, on notera a%b le reste de la division euclidienne de a par b.

Lorsque vous donnerez un résultat flottant, vous écrirez juste ses huit premières décimales.

Vous trouverez en annexe les réponses pour le paramètre $\alpha = 1$, utilisez-les pour vérifier la correction de vos algorithmes.

Exercice 1 - Manipulation sur des tableaux

Question 1 Calculer le quotient et le reste de la division euclidienne de $u_2 - u_3^2$ par u_4 .

Question 2 Calculer $\sqrt[4]{u_5}$.

Question 3 Calculer $\sin(u_6)$ (On pourra utiliser la fonction sin du module numpy).

Dans toute la suite du devoir, on appelle L le tableau $[u_k, k \in [0, 10\ 000[]], c'est-à-dire$

$$L = [u_0, u_1, \dots, u_{9.999}].$$

Si $0 \le k \le 99$, on note a_k le nombre d'éléments de L dont le reste dans la division euclidienne par 100 vaut k. On aura intérêt à calculer une fois pour toutes le tableau L. Le tableau L est sauvegardées dans la variable \mathtt{tab}_L définie ci-dessous. Les valeurs de a_k sont sauvegardé dans la variable \mathtt{tab}_a définie ci-dessous.

Question 4 *Calculer* a_{42} .

Question 5 *Calculer la moyenne du tableau* $[a_0,...,a_{99}]$.

On rappelle les définitions de la variance v:

$$v = \frac{1}{n} \sum_{i=0}^{n-1} (a_i - m)^2.$$

Question 6 *Calculer la variance du tableau* $[a_0,...,a_{99}]$.

Dans un tableau de nombres $t = [t_0, ..., t_{n-1}]$, on appelle *dénivelé* la valeur

$$\sum_{0 \leq i < n-1 \atop t_i < t_{i+1}} t_{i+1} - t_i.$$

Question 7 Calculer le dénivelé du tableau L.

Une opération de lissage d'un tableau de nombres $t = [t_0, \dots, t_{n-1}]$ renvoie un nouveau tableau $t' = [t'_0, \dots, t'_{n-1}]$ où :

- le premier et le dernier coefficient de t' sont ceux de t;
- pour chaque autre coefficient de t, on place dans t' la moyenne des coefficients de t qui l'entourent. Par exemple, le lissage du tableau

$$t = [1, 3, -2, 0, 4]$$

donne le tableau

$$t' = [1, -0.5, 1.5, 1, 4].$$

Question 8 On note $L' = [\ell'_0, ..., \ell'_{9 \ 999}]$ le tableau obtenu après avoir effectué 42 lissages successifs sur le tableau L. Calculer ℓ'_{1515} .

Question 9 Calculer le plus petit nombre de lissages successifs à effectuer sur le tableau L pour obtenir un tableau dont la valeur absolue de la différence entre deux coefficients successifs ne dépasse pas 10⁴ (strictement).

On dit que la position $1 \le i < 9$ 999 est sous l'eau dans le tableau L s'il existe $k \in [0, i]$ et $\ell \in [i+1, 10^4]$ tels que

$$u_k > u_i$$
 et $u_\ell > u_i$.

Question 10 Calculer le nombre de positions sous l'eau dans le tableau L.

Indications

Exemples de réponse pour $\alpha = 99$

Question	Réponse
Q1 reste	3699
Q1 quotient	-30611
Q2	13.540
Q3	-0.998
Q4	95
Q5	100.0
Q6	102.760
Q7	106038842
Q8	38519.708
Q9	758
Q10	9971