$$\begin{aligned} & \operatorname{Succ}_1\left((v_1,d_1,T_1,F_1)\right) = \left\{ (v_2,d_2,T_2,F_2) \in S : \begin{array}{c} v_2 \in \operatorname{Ord} \\ d_2 = d_1 - \operatorname{Dist}(v_1,v_2) \ \land \ d_1 - \operatorname{Dist}(v_1,v_2) \geq 0 \\ \exists i \in [k] \colon \ i \in T_1 \ \land \ T_2 = T_1 \backslash \{i\} \ \land \ F_2 = F_1 \cup \{i\} \\ \text{There exists a directed path } v_1 \to \cdots \to v_2 \text{ on the map} \end{array} \right\} \\ & \operatorname{Succ}_2\left((v_1,d_1,T_1,F_1)\right) = \left\{ (v_2,d_2,T_2,F_2) \in S : \begin{array}{c} v_2 \in \operatorname{GasStations} \\ d_2 = d_{\operatorname{refuel}} \ \land \ d_1 - \operatorname{Dist}(v_1,v_2) \geq 0 \\ T_1 = T_2 \ \land \ F_1 = F_2 \\ \text{There exists a directed path } v_1 \to \cdots \to v_2 \text{ on the map} \end{array} \right\} \\ & \operatorname{Succ}((v_1,d_1,T_1,F_1)) = \operatorname{Succ}_1\left((v_1,d_1,T_1,F_1)\right) \ \cup \ \operatorname{Succ}_2\left((v_1,d_1,T_1,F_1)\right) \end{aligned}$$

$$\forall x_i \in x^t: \quad \Pr\left(x_i\right) = \frac{\left(\frac{x_i}{\alpha}\right)^{-1/T}}{\sum_{j} \left(\frac{x_j}{\alpha}\right)^{-1/T}} = \frac{x_i^{-1/T} \cdot \alpha^{1/T}}{\sum_{j} \left(x_j^{-1/T} \cdot \alpha^{1/T}\right)} = \frac{x_i^{-1/T} \cdot \alpha^{1/T}}{\alpha^{1/T}} = \frac{x_i^{-1/T}}{\sum_{j} x_j^{-1/T}} = \frac{x_j^{-1/T}}{\sum_{j} x_j^{-1/T}} = \frac{x_j^{-1/T}}{\sum_{j} x_j^{-1/T}} = \frac$$

First let us notice that the expression can be rewritten in the form

$$\forall x_i \in x: \Pr(x_i) = \frac{x_i^{-1/T}}{\sum_{j \in [N]} x_j^{-1/T}} = \dots = \frac{1}{1 + \sum_{i \neq j} \left(\frac{x_i}{x_j}\right)^{1/T}}$$

And by taking the limit $T \to 0$, we have two options:

- 1. if $x_i < x_j$ for every $i \neq j$ then $\sum_{i \neq j} \left(\frac{x_i}{x_j}\right)^{1/T} \xrightarrow[T \to 0]{} 0$ and $\lim_{T \to 0} \Pr(x_i) = \frac{1}{1+0} = 1$. This is the case where $x_i = \min_j \left\{x_j\right\}_{j=1}^N = \alpha$.
- 2. if there exists at least one j such that $x_i \geq x_j$ then we get:
 - (a) $\left(\frac{x_i}{x_j}\right)^{1/T} \xrightarrow[T \to 0]{} \infty$ if $x_i > x_j$, which leads to $\lim_{T \to 0} \Pr\left(x_i\right) = \infty$. This is the case where x_i is not the minimal element of $\{x_j\}_{j=1}^N$.
 - (b) $\left(\frac{x_i}{x_j}\right)^{1/T} = (1)^{1/T} = 1 \xrightarrow[T \to 0]{} 1$, if there is exactly one j that satisfies the equality $x_i = x_j$.
 - (c) If there are $\{x_k\}_{k\in K}$ where $K\subseteq N$ and $2\leq |K|\leq |N|$ that satisfy $x_i=x_k$ for all $k\in K$, and all other coordinates satisfy $x_i< x_j$ (such that their summands vanish), we get $\lim_{T\to 0}\Pr\left(x_i\right)=\frac{1}{1+|K|\cdot 1+(0+\cdots+0)}=\frac{1}{1+K}$.

By using the equivalent expression of the probability function from question 21 and taking the limit $T \to \infty$ while assuming $x_j \neq 0$ for all j, we get

$$\lim_{T \to \infty} \Pr(x_i) = \lim_{T \to \infty} \frac{1}{1 + \sum_{i \neq j} \left(\underbrace{\frac{x_i}{x_j}}_{\neq 0}\right)^{1/T}} = \frac{1}{1 + \underbrace{(1 + \dots + 1)}_{N-1 \text{ times}}} = \frac{1}{N}$$

and since in our case N=5, we get that indeed the limit is 0.2, as can be seen in the plot.

$$h'\left(v\right) = \begin{cases} h\left(v\right) & \text{if Applicable}_{h}\left(v\right) \text{ is true} \\ 0 & \text{if Applicable}_{h}\left(v\right) \text{ is false } \wedge \text{ isGoal}\left(v\right) \text{ is true} \\ \min_{u \in \text{Succ}\left(v\right)}\left(\text{cost}\left(v,u\right)\right) \end{cases}$$