Sip or Savour?

Uncorking the Secrets of Wine Quality Prediction with Machine Learning

- Problem definition
- Data analysis
- Data preparation
- Methods
- Results
- Summary

- Which features are most important while predicting wine quality?
- ▶ What is the best model for this task?
- ► How good is the best model?

Data analysis

Figure 1: Wine quality distribution

Variable	Min	Avg	Sd	Max	# miss.	# dist.
alcohol	8.40	10.45	1.09	15.00	0	73
chlorides	0.00	0.09	0.05	0.61	0	184
citric.acid	0.00	0.27	0.19	1.00	0	75
density	0.98	1.00	0.01	1.01	0	676
feat01	0.00	0.51	0.29	1.00	0	1400
feat02	0.00	0.50	0.29	1.00	0	1400
feat03	0.00	0.50	0.29	1.00	0	1400
feat04	0.00	0.57	0.15	1.00	0	1400
feat05	0.00	0.50	0.29	1.00	0	1400
feat06	0.00	0.49	0.29	1.00	0	1400
feat07	0.00	0.53	0.16	1.00	0	1400
feat08	0.00	0.50	0.29	1.00	0	1400
feat09	0.00	0.48	0.28	1.00	0	1400
feat10	0.00	0.51	0.29	1.00	0	1400
fixed.acidity	4.80	8.47	1.70	16.10	0	92
free.sulfur.dioxide	3.00	17.68	10.18	74.00	0	56
pН	2.77	3.34	0.16	4.04	0	85
residual.sugar	0.80	2.48	1.50	15.40	0	84
sulphates	4.33	4.66	0.18	6.00	0	90
total.sulfur.dioxide	4.00	46.02	33.12	287.00	0	147
volatile.acidity	0.10	0.53	0.18	1.33	0	173

or Savour?

Figure 2: Correlation matrix between continous variables

- ▶ split training/testing in 70/30 proportion
- normalize continuous variables
- 5-fold cross-validation as sampling method

Methods

Single models:

- Decision tree
- Random forest
- Generalized Boosted Regression Modeling (GBM)
- eXtreme Gradient Boosting (XGBoost)
- Linear regression (as benchmark)

Ensemble model: weighted combination of single models

Stacked models:

- Linear Regression as top layer model
- XGBoost as top layer model

Assessment metric: RMSE

► *cp* - threshold for improving tree complexity

Random forest:

realidoin forcs

Decision tree:

mtry - number of predictors to use

ntree - number of trees

GBM:

- ntree number of trees
- interaction.depth depth of a tree
- shrinkage learning rate parameter
- ▶ *n.minobsinnode* min. number of obs. in split

XGBoost:

- min_child_weight min. number of obs. in terminal node
- nrounds number of trees
 - eta learning parameter

Figure 3: Model comparison - train data

Figure 4: Model comparison - test data

Model	RMSE (Train)	RMSE (Test)
Linear	1.039	1.147
Decision tree	1.097	1.243
GBM	0.965	1.136
Ensembled	0.670	<u>1.135</u>
Stacked (LR)	<u>0.670</u>	<u>1.135</u>
Stacked (XGB)	0.677	1.161
XGBoost	0.611	1.177
Random forest	0.437	1.141

Figure 5: Variable importance - ensemble model

- Which features are most important while predicting wine quality?
 - alcohol, volatile acidity, sulphates
 - feat04 and feat 07
- What is the best model for this task?
 - ▶ Random Forest
- ► How good is the best model?
 - ► RMSE: 1.13
- What could be done differently?
 - binning continuous variables