Spotify Prediction Tool

AnalySis

AGENDA

1 BACKGROUND

PROBLEM, SOLUTION, & DATA

ONCLUSION

HUMAN-CENTERED APPROACH INSIGHTS & FUTURE RESEARCH SOURCES QUESTIONS

METHODOLOGY & FINDINGS

DATASET EXPLORATORY ANALYSIS LINEAR REGRESSION DEMO

01

Background

The problem?

Considering 10% of artists account for 98% of streams between 2014 and 2020, what tools can artists use to protect themselves among such tough competition?

Our Solution

A Linear Regression model that can predict the number of streams/success of a song.

The Dataset

The dataset is derived from the Spotify API, processed through Gigasheet, to analyze music trends and user preferences.

02

Methodology & Findings

Dataset

- Spotify data was collected from Gigasheet under a restricted license.
- Processing was minimal. Only rows with missing values were dropped.

Data after dropping null values

>Spotify_data_df.head()

Stream	Danceab	ility	Energy	Loudness
Speechiness Acousticness				
0 1040234854		0.818	0.705	-6.679
0.1770 0	.008360			
1 310083733		0.676	0.703	-5.815
0.0302 0	.086900			
2 63063467		0.695	0.923	-3.930
0.0522 0	.042500			
3 434663559		0.689	0.739	-5.810
0.0260 0	.000015			
4 617259738		0.663	0.694	-8.627
0.1710 0	.025300			

Exploratory Analysis

- Assess the correlation of attributes compared to number of streams.
 - Visualize as Scatter Plots
- Identify the most positively correlated attribute.
 - Correlation Matrix

```
# Compute the correlation matrix for the
selected attributes
correlation matrix = df.corr()
 Identify the attribute with the highest
absolute correlation to popularity
most correlated attribute =
popularity corr.abs().idxmax()
highest correlation =
popularity corr[most correlated attribute]
```

Scatter Plots of Correlations

- "Loudness" has the highest positive correlation.
- "Danceability" and "Energy" follow
 "loudness."
- All other attributes are negatively correlated or not correlated to streams.

Correlation Matrix

- "Loudness" is the attribute that most correlates with stream.
- It has a correlation coefficient of 0.12.

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

Linear Regression

- 3) Use most positively correlated attribute, "loudness," to predict song streams.
 - Linear Regression
 Model
- 4) Assess bias of model.
 - Residuals
 - Means squared Error
 - R-squared

```
# Initialize and train the linear regression
model = LinearRegression()
model.fit(X train, y train)
# Make predictions on the test set
y pred = model.predict(X test)
mse = mean squared error(y test, y pred)
r2 = r2_score(y_test, y_pred)
```



```
# Our model grossly underestimates actual stream values.

Residuals = .9381 ( 10**10 ) = Error = ( predicted - test )

# Our model's prediction is very distant from actual stream values.

Mean Squared Error = 5.575 ( 10**16 )

# Our model explains 20% of the variation in streams based on "loudness."

R-squared = 0.02
```

DEMO

03

Conclusion

Human Centered Approach

- The purpose of our project is to create a tool for musicians by analyzing music success
- Analyzing Bias
 - Our model has limited bias because it is simple.
- The licensing and usage of our data is ethical and socially responsible

LIMITATIONS & FUTURE RESEARCH

- Major limitation: low accuracy
 - High error + grossly underestimating test values
- In Future: develop a model with more features like "danceability" and "energy."
 - Improve predictions
- Explore K-Nearest Neighbor (KNN) as an alternative model.
 - Compare results to linear regression model
- Perform a LIME analysis on new models
 - Understand the individual influence of specific features

SOURCES

Pohl, N. (2022, August 16). Analysis of the competition and Markets Authority Report on music streaming. The Musicians' Union.

https://musiciansunion.org.uk/news/analysis-of-the-competition-and-markets-authority-report-on-music-

streaming#:~:text=It%20goes%20on%20to%20say,%5D%20cannot%20sustain%20a%20living.%22

Spotify Terms of Use: https://www.spotify.com/us/legal/end-user-agreement/;
License: https://developer.spotify.com/terms#section-iii-licenses-and-permissions

Thank You

Questions?