题目 1: 已知数列 $\{a_n\}$ 前 n 项和为 S_n , $4S_{n+1}=3a_{n+1}+9a_n$, $a_1=3$,

- (1) 证明数列 $\{a_{n+1} 3a_n\}$ 为等比数列;
- (2) 设 $b_n = \frac{a_n}{(n+1)(n+2)}$, 求数列 $\{b_n\}$ 的前 n 项和 T_n 。

题目 1: 已知数列 $\{a_n\}$ 前 n 项和为 S_n , $4S_{n+1} = 3a_{n+1} + 9a_n$, $a_1 = 3$,

- (1) 证明数列 $\{a_{n+1} 3a_n\}$ 为等比数列;
- (2) 设 $b_n = \frac{a_n}{(n+1)(n+2)}$, 求数列 $\{b_n\}$ 的前 n 项和 T_n 。

证明:

(1)
$$4a_{n+1} = 4S_{n+1} - 4S_n = 3a_{n+1} + 9a_n - (3a_n + 9a_{n-1}) = 3a_{n+1} + 6a_n - 9a_{n-1}$$
,

题目 1: 已知数列 $\{a_n\}$ 前 n 项和为 S_n , $4S_{n+1} = 3a_{n+1} + 9a_n$, $a_1 = 3$,

- (1) 证明数列 $\{a_{n+1} 3a_n\}$ 为等比数列;
- (2) 设 $b_n = \frac{a_n}{(n+1)(n+2)}$, 求数列 $\{b_n\}$ 的前 n 项和 T_n 。

证明:

(1)
$$4a_{n+1}=4S_{n+1}-4S_n=3a_{n+1}+9a_n-(3a_n+9a_{n-1})=3a_{n+1}+6a_n-9a_{n-1},$$
 Fig. $a_{n+1}=6a_n-9a_{n-1} \quad (n\geq 2)$

题目 1: 已知数列 $\{a_n\}$ 前 n 项和为 S_n , $4S_{n+1} = 3a_{n+1} + 9a_n$, $a_1 = 3$,

- (1) 证明数列 $\{a_{n+1} 3a_n\}$ 为等比数列;
- (2) 设 $b_n = \frac{a_n}{(n+1)(n+2)}$, 求数列 $\{b_n\}$ 的前 n 项和 T_n 。

证明:

(1)
$$4a_{n+1} = 4S_{n+1} - 4S_n = 3a_{n+1} + 9a_n - (3a_n + 9a_{n-1}) = 3a_{n+1} + 6a_n - 9a_{n-1}$$
, Fig. $4a_{n+1} = 6a_n - 9a_{n-1}$ $n \ge 2$

令
$$c_n = a_{n+1} - 3a_n$$
,则

$$C_{n+1} = a_{n+2} - 3a_{n+1} = 6a_{n+1} - 9a_n - 3a_{n+1} = 3(a_{n+1} - 3a_n) = 3C_n$$
,

所以
$$\frac{c_{n+1}}{c_n} = 3$$
, 因此数列 $\{a_{n+1} - 3a_n\}$ 是公比为 3 的等比数列。

题目 1: 已知数列 $\{a_n\}$ 前 n 项和为 S_n , $4S_{n+1} = 3a_{n+1} + 9a_n$, $a_1 = 3$,

- (1) 证明数列 $\{a_{n+1} 3a_n\}$ 为等比数列;
- (2) 设 $b_n = \frac{a_n}{(n+1)(n+2)}$, 求数列 $\{b_n\}$ 的前 n 项和 T_n 。

证明:

(1)
$$4a_{n+1}=4S_{n+1}-4S_n=3a_{n+1}+9a_n-(3a_n+9a_{n-1})=3a_{n+1}+6a_n-9a_{n-1}$$
, Fig. $a_{n+1}=6a_n-9a_{n-1}$ $(n\geq 2)$

令
$$c_n = a_{n+1} - 3a_n$$
,则

$$C_{n+1} = a_{n+2} - 3a_{n+1} = 6a_{n+1} - 9a_n - 3a_{n+1} = 3(a_{n+1} - 3a_n) = 3C_n$$
,

所以
$$\frac{c_{n+1}}{c_n} = 3$$
,因此数列 $\{a_{n+1} - 3a_n\}$ 是公比为 3 的等比数列。

曲
$$4S_{n+1} = 3a_{n+1} + 9a_n$$
 得 $4S_2 = 4a_2 + 4a_1 = 3a_2 + 9a_1$ $\Rightarrow a_2 = 5a_1 = 15$

丁保华(致慧星空工作室)

题目 1: 已知数列 $\{a_n\}$ 前 n 项和为 S_n , $4S_{n+1} = 3a_{n+1} + 9a_n$, $a_1 = 3$,

- (1) 证明数列 $\{a_{n+1} 3a_n\}$ 为等比数列;
- (2) 设 $b_n = \frac{a_n}{(n+1)(n+2)}$, 求数列 $\{b_n\}$ 的前 n 项和 T_n 。

证明:

(1)
$$4a_{n+1} = 4S_{n+1} - 4S_n = 3a_{n+1} + 9a_n - (3a_n + 9a_{n-1}) = 3a_{n+1} + 6a_n - 9a_{n-1},$$

Fig. $a_{n+1} = 6a_n - 9a_{n-1} \quad (n \ge 2)$

令
$$c_n = a_{n+1} - 3a_n$$
,则

$$C_{n+1} = a_{n+2} - 3a_{n+1} = 6a_{n+1} - 9a_n - 3a_{n+1} = 3(a_{n+1} - 3a_n) = 3C_n,$$

所以
$$\frac{c_{n+1}}{c_n} = 3$$
, 因此数列 $\{a_{n+1} - 3a_n\}$ 是公比为 3 的等比数列。

由
$$4S_{n+1}=3a_{n+1}+9a_n$$
 得 $4S_2=4a_2+4a_1=3a_2+9a_1$ $\Rightarrow a_2=5a_1=15$ $c_1=a_2-3a_1=15-9=6$,因此数列 $\{a_{n+1}-3a_n\}$ 是首项为 6、公比为 3 的等比数列。

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 9000

题目 1: 已知数列 $\{a_n\}$ 前 n 项和为 S_n , $4S_{n+1}=3a_{n+1}+9a_n$, $a_1=3$, (2) 设 $b_n=\frac{a_n}{(n+1)(n+2)}$, 求数列 $\{b_n\}$ 的前 n 项和 T_n 。

题目 1: 已知数列 $\{a_n\}$ 前 n 项和为 S_n , $4S_{n+1}=3a_{n+1}+9a_n$, $a_1=3$, (2) 设 $b_n=\frac{a_n}{(n+1)(n+2)}$, 求数列 $\{b_n\}$ 的前 n 项和 T_n 。

(2) 设
$$b_n=rac{a_n}{(n+1)(n+2)}$$
,求数列 $\{b_n\}$ 的前 n 项和 T_n 。

解:

