^	$/\$ or $\$ land	and		\sqsupset	
V	\/ or \lor	or	\Box	\sqsupseteq	
	\sim or \lnot or \neg	not	\dashv	-	
\in	\in	in		=	
	\notin	not in	←	<-	bind module instance variable?
∉ ⟨	<<	begin a set	U	\cup or \union	union
)	>>	end a set	Ш	\sqcup	
<	<	less than	₩	\uplus	
\leq	$\leq c$	less than or equal	×	\X or \times	$\operatorname{multiply}$
«	\11	much less?	}	$\backslash \mathrm{wr}$	
=	<=> or \equiv	is equivalent to	\propto	\propto	propositional something?
>	>	greater	\forall	$\setminus A$	for all
\geq	$\gcd or >=$	greater or equal	A	$\backslash AA$	
≥ ≫	\gg	much greater?	\rangle_v	>>_v	
\prec	\prec	precedes	\Rightarrow	=>	implies
	\preceq	precedes or equals	$\stackrel{\Delta}{=}$	==	
>	\succ	succeeds	\neq	$\backslash { m div}$	not equal?
	\succeq	succeeds or equals			always in the future/henceforth
N N Y IL	\subset	subset	\Diamond	<>	sometime(s) in the future/eventually
\subseteq	\subseteq	subset or equal	\sim	~>	leads to
	\sqsubset		+	-+->	leads to in one step?
	\sqsubseteq		\mapsto	->	struct field maps to
 	-		÷	\div	divide?
=	=	satisfies (a temporal formula)		$\backslash \mathrm{cdot}$	
\rightarrow	->		0	\o or \circ	
\cap	\cap or \intersect	intersection	•	\dot{eq}	
П	\sqcap		*	$\operatorname{\backslash} \operatorname{star}$	
\oplus	$(+)$ or \setminus oplus			\bigcirc	
Θ	(-) or \ominus		\sim	\sim	
\odot	$(.)$ or \setminus odot		\simeq	\simeq	
\otimes	(\X) \otimes		\times	\asymp	
\oslash	$(/)$ or \setminus oslash		\approx	\arrowvert	
3	$\setminus \mathrm{E}$	for each	\cong	\setminus cong	
3	\EE		Ė	$\backslash doteq$	
$]_v$]_v		x^y	$\hat{x}y$	
WF_v	WF_{-v}	weak fairness variables	x^+	x^+	
SF_v	SF_v	strong fairness variables	x^*	x^*	
⊇	\supseteq	superset	x#	x^#	
	\supset	superset or equals	′	,	prime