

Abstract

This is a documentation for the SLAC2016 data analysis.

Contents

Al	bstract	ii
Co	ontents	iii
Li	ist of Figures	v
Li	ist of Tables	vii
A	cronyms	ix
1	Introduction (to be updated)	1
2	T-536 program	3
3	Data period and logs3.1 Data period3.2 Runlog3.3 Elog	5 5 6 7
4	Data analysis framework 4.1 Offline framework for the SLAC test beam 4.1.1 Data Acquisition 4.1.2 Data Unpacking 4.1.3 Reconstruction	9 10 11 11
5	Getting started 5.1 Installation	13 13 13 14 16

CONTENTS

6	Standalone C++ Analysis framework 6.1 Data format and structure for the ROOT tree			
7	6.1 Data format and structure for the ROOT tree			
		25		
8 Napoli DAQ				
9	Fiber harp	27		
	9.1 Overview	27		
	9.2 Installation	28		
	9.3 Unpacking the data	28		
A	T-536 program	31		
\mathbf{B}	Data location	41		
	B.1 Data samples	41		
	B.1.1 File naming	41		
	B.1.2 Location of the files (During SLAC test runs)	41		
	B.1.3 Location of the files (Fermilab storage)	42		
\mathbf{C}	Daq information	43		
	C.1 DAQ	43		
	C.1.1 Header information	43		
	C.1.2 Header and trailer formats	43		
	C.2 Slow control data	44		
D	Job submission in Fermigrid	47		
Bi	ibliography	51		

List of Figures

1.1	Illustration of the electromagnetic shower of an electron injected from the	
	left to the right, in a 9×6 array PbF ₂ calorimeter. Cherenkov lights created	
	by the charged shower particles are collected by the Silicon Photomultipliers	
	(SiPMs) glued to the end of the PbF_2 crystals	1
4.1	An overview of the Muon g-2 offline framework	Ĝ
		10
7.1	SLAC Offline analysis GUI. This is a very preminary prototype	23
C.1	AMC13 to DAQ data format.	43
C.2	Rider to AMC13 data format	44
C.3	Rider Channel data format.	44
C4	Per event data format	4.5

List of Tables

3.1	Summary of the data period. Included are the range of the run numbers and the date-time.	5
B.1	Data samples and descriptions. The ROOT full data includes raw waveforms, chopped islands and processed data like fit results and crystal hits. The ROOT analysis data has only processed data	41
C.1	Locations of the temperature sensors of SCS-3000	44

Acronyms

MIDAS Maximum Integrated Data Acquisition System

TRUIMF Canada's national laboratory for particle and nuclear physics and

accelerator-based science

PSI Paul Scherrer Institute

Introduction (to be updated)

Prerequisites for this tutorial are a basic understanding of what the Muon g-2 experiment and PbF₂ calorimeters [1] are, some knowledge about the electromagnetic (EM) shower and the ROOT data analysis framework [2]. You can follow the exercise sheet step by step which guides you to the data analysis using the reconstructed electron EM shower clusters. Some analyses may require the use of reconstructed crystal hit, which is the basic object of forming a cluster. Advanced users are encouraged to use the FNAL's *art* framework for the data analysis.

Figure 1.1: Illustration of the electromagnetic shower of an electron injected from the left to the right, in a 9×6 array PbF_2 calorimeter. Cherenkov lights created by the charged shower particles are collected by the Silicon Photomultipliers (SiPMs) glued to the end of the PbF_2 crystals.

Data analysis of this test beam has several components that are common with the Muon g-2 experiment data analysis framework [3]. The physics objects that will be used for most of the analyses are the crystal hits and the hit clusters. These objects are reconstructed from the digitized waveform, after going through steps like pulsing fitting, energy calibration, gain correction, time correction and hit clustering. During the first week of the test beam, all these reconstruction steps will be refined based on the data taken and these will be taken care of by those who are familiar with the art framework. The main focus of this documentation is on the physics analysis using high level physics objects like the crystal hit and the cluster, using a C++/ROOT standalone framework. The user can proceed to more sophisticated analysis once he/she is familiar with the tools. The standalone framework can also be used as a stepping stone to develop analysis algorithm before migrating it to the art framework.

Several studies that will be covered for the data analysis (non-exhaustive list) are

- energy resolution of the calorimeter
- position and angular resolution of the calorimeter
- degeneracy of the position and angular information of the calorimeter
- stability of gain monitoring system
- pile up separation for multi-electron events

T-536 program

This chapter summarizes the program we have planned during the SLAC run. For full program, please refer to Appendix A.

- Vertical Sweep
- Calibration Sequnce
- Template xtal 24
- Test PIX image of beam
- crystal centers in the cluster of 4x4 crystals
- high statistics seg 24
- Fine position scan of segment 24
- Cross of 4 segments
- Edge scan outward of segment 26
- Crack scan
- Energy scan at 3 points for each 2.5, 3.5, 4.0, 4.5, 5.0 GeV
- Edge scan outward of segment 26
- Angle Scan at 5, 10, 15 and 25 degrees
- Moving Flight Simulator Tests
- Fine vertical scan seg 24

- Horizontal scan seg 24
- Front face scan
- Undo wide islands for templates back to 8 pre-trigger, and 24 post-trigger
- Flight sim test, FW#1, 96 shots per fill
- Low QE run
- Long run
- Horizontal scan of fiber harp
- Horizontal scan of fiber harp in calibration position, vertically centered in beam
- Scan of intensity and bias voltage
- Horizontal scan of fiber harp in calibration position with narrow beam
- Bias voltage scan
- Horizontal scan of fiber harp in calibration position, new beam width
- Scan of intensity and bias voltage at ideal position along fibers
- Long run at ideal position along fibers
- Long run with white paint on fiber ends
- Horizontal scan of fiber harp in calibration position with white paint
- Vertical scan of T0 counter
- Laser before beam at different time separations

Data period and logs

Data period is defined according to the filter wheel calibration period. We have mainly 7 periods and they are labeled from A to G. The number might changed once we get more insights from the data analysis. This chapter also summarizes the run log in the mysql database written out by the Maximum Integrated Data Acquisition System (MIDAS) DAQ and the ELOG for the SLAC run.

3.1 Data period

Table 3.1: Summary of the data period. Included are the range of the run numbers and the date-time.

Data period	Run numbers	Datetime range
A	3-1450	2016/05/31 23:38:30 - 2016/06/02 19:10:56
В	1451-1750	2016/06/02 19:11:43 - 2016/06/03 18:39:08
С	1751-2083	2016/06/03 18:39:40 - 2016/06/05 10:23:53
D	2084-2100	2016/06/05 10:29:14 - 2016/06/05 12:23:57
E	2101-2132	2016/06/05 12:24:05 - 2016/06/05 15:15:11
F	2133-2893	2016/06/05 15:15:38 - 2016/06/09 16:28:16
G	2894-3634	2016/06/09 16:28:29 - 2016/06/15 02:32:28

Each of these data periods has its own calibration constants and SiPM and PIN laser response baselines. (See Chapter 4 for more details.)

3.2 Runlog

The full runlog is documented in the docdb under http://gm2-docdb.fnal.gov:8080/cgi-bin/ShowDocument?docid=3964. A better organized runlog can be found under http://gm2-docdb.fnal.gov:8080/cgi-bin/RetrieveFile?docid=3964&filename=CondensedRunLog.xlsx&version=5.

Variables defined for each run are

- runNum : number of this run
- startTime : start time of the run
- comment : comment about this run
- quality : quality of this run (N, T, Y, C)
- crew: crew(s) on shift
- beamE : electron beam energy
- tableX : table x-coordinate
- table y-coordinate
- angle: angle of the calorimeter w.r.t. the normal placement
- filterWheel: filter wheel setting
- bv1 : bias voltage 1
- bv2 : bias voltage 2
- bv3: bias voltage 3
- bv4 : bias voltage 4
- stopTime : stop time of the run
- nEvents: number of events in this run
- fileSize: midas file size
- rate: event rate

3.3 Elog

The full elog is hosted at https://muon.npl.washington.edu/elog/g2/SLAC+Test+Beam+2016/. Some of the milestones achieved during the SLAC run and interesting plots are summarized here.

Elog	Comments	Run number
number		(if applicable)
16	first filter wheel calibration	
17	p.e vs xtalNum, gain vs xtalNum and p.e. vs gain	900
26	calibration results after trying to equalize gains	1451-
27	xtal hit map (E-weighted)	1398
34	rider odd-even sample difference	
35	laser template variation	
37	first double pulse spotted	1676 (xtal24, event 898, islandNum 4)
38	black wrapping e^- beam template vs laser template	1673-1680
45	number of p.e. versus position	
56	deltaT from laser pulses	
58	intrinsic noise of the whole calo chain and pedestal	1800
59	xtal14 temperature over 30 hours	
82	laser calibration at 100 kHz	2133-
87	timing resolution versus laser pulse amplitude	2133-2139
88	Napoli DAQ analysis	3-5 Jun
97	trends for Jun 5 position and edge scan	2122-2171
	cluster energy, laser energy, avg. SiPM temp.	
99	exponential plot of the flight simulator, 64 laser per fill	2187
101	linearity of the calorimeter (p.e. versus beam energy)	2352,2270,2282,
		2308,2320,2344
103	fine scan in x position	
104	odd/even pedestal vs run number	
105	laser monitor stability (PMT, pin1/pin2 vs FC7 time)	
110	accelerator in 2-bunch mode ($\Delta T = 4.55 \text{ ns}$)	2411-2425
111	template fit 2-bunch mode pulses ($\Delta T = 4.55 \text{ ns}$)	2412
112	template fit 2-bunch mode pulses ($\Delta T = 9.8 \text{ ns}$)	2436
117	deltaT from electron beam and laser pulses	
119	comparison of calibration constants (Jun 5 vs Jun 9)	
130	fitting 15 deg pulse with 0 deg pulse template	3034 and 3036

131	flight simulator runs, pedestal versus time	3109 and 3111
136	position reconstruction (logarithmic weight, $W = 3.5$)	1930-1936
137	laser response (loaded vs unloaded), $FW = 5$	3175-3191
140	laser response (loaded vs unloaded), $FW = 1$	3202
150	beam template overlay xtal14 and xtal24	
163	beam energy versus time (decreases at calo sides)	
166	energy spread across crystals	
169	low QE mode (electron comb)	3379-3380
172	per fill gain correction	
187	hit time distribution of neighboring xtals	1929-1936
217	laser energy versus pulse number	3003-3014 and 2401-
		2412
240	laser energy versus pin1+pin2	
244	applying gain corrections to runs from which the gain	3308 and 3315
	correction baselines are extracted	

Data analysis framework

4.1 Offline framework for the SLAC test beam

MIDAS DAQ system is developed at Paul Scherrer Institute (PSI) and Canada's national laboratory for particle and nuclear physics and accelerator-based science (TRUIMF).

Figure 4.1: An overview of the Muon g-2 offline framework.

As shown in Figure 4.1, data analysis for this test beam has several components. First we need to convert the raw data stored in a MIDAS file (.mid or .mid.gz) to art data products stored in an art file. This is handled using art framework's modules and is doing nothing more than storing 16-bit or 32-bit word into vectors. Next we unpack these vectors

and give them contexts based on the header information stored within the vectors. At this step, all the information are stored as data products you are probably familiar with: RiderArtRecord, IslandArtRecord, etc. Then reconstruction algorithms are ran through these data products and at the end of the chain each physics objects are reconstructed as clusters.

Figure 4.2: Offline framework for the SLAC experimental data.

4.1.1 Data Acquisition

Explain the DAQ flow here roughly (from machine trigger to FC7, from FC7 fanout to AMC13 of all the crates, then from AMC13 to AMCs in a crate).

4.1.2 Data Unpacking

The task of unpacking the raw midas data is divided into several *art* modules. First, the Midas banks are converted into TBranches as vectors in the source input module under the repository gm2midastoart. Then the header information stored in the CB banks is unpacked by the module HeaderUnpacker, the raw waveforms stored in the CR banks in the calorimeter (fc7, laser) crate is unpacked by the RawUnpacker (LaserRawUnpacker, FC7Unpacker), the chopped islands stored in the CT banks is unpacked by the IslandUnpacker (LaserUnpacker) and so on. Fhicl file configuration will be explained in the next section.

Unpacking the slow control data like the temperature readout from SCS3000 requires some modification to the gm2midastoart's MidasBankInput module. The event id for the fast control events is assigned as 1 by the MIDAS DAQ whereas for the slow control it is 11 (0x000b in hex representation). The bank name for the SLAC2016 setup is INPT and the bank data type is float.

4.1.3 Reconstruction

The data reconstruction chain is consisted of 5 modules in series: pulse fitter, energy calibrator, gain corrector, time corrector and hit cluster. Fhicl file configuration will be explained in the next section.

Getting started

5.1 Installation

This section is based on the official Offline Computing and Software Manual http://gm2-docdb.fnal.gov:8080/cgi-bin/ShowDocument?docid=1825. Only important steps are reproduced here.

5.1.1 Setting up the environment

First of all you need to login to the Fermilab virtual machine (gm2gpvm02-04). Once you have logged in, you need to choose a release for the Muon g-2 softwares (libraries, executables) every time you login or you can put it in your .profile on gm2gpvm. Do the following:

```
source /grid/fermiapp/gm2/setup
```

Alternatively if you want to run codes on your laptop, you can use cymfs as mentioned in the documentation.

```
source /cvmfs/gm2.opensciencegrid.org/prod/g-2/setup
```

If successful, you will get

```
Using g-2 release repository at /cvmfs/gm2.opensciencegrid.org
g-2 software
--> To list gm2 releases, type
ups list -aK+ gm2
```

```
--> To use the latest release, do setup gm2 v6_04_00 -q prof

For more information, see https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/ReleaseInformation.
```

Then follow the instruction and use the latest release of gm2 (v6_04_00 at the moment of writing this user guide). Next to do is to go to a folder of your choice (usually ~/work) and then create a new development place.

```
cd ~/work
mkdir SLACDev
```

Now go into the newly created folder SLACDev and initialize it as a new development area

```
cd SLACDev/
mrb newDev
```

Follow the instruction to source the local products settings

```
source localProducts_gm2_v6_04_00_prof/setup
```

Now we are ready to install new packages.

5.1.2 Checking out unpacking and reconstruction packages

First we need to go into the srcs/ folder to checkout the unpacking and reconstruction packages. Packages related to the data unpacking are gm2midas, gm2midastoart and gm2unpackers whereas those related to the reconstruction are gmcalo. gm2dataproducts holds all the data structures for both.

Checkout (git) gm2calo package using simplified command mrb g.

```
cd srcs/
mrb g gm2midas; mrb g gm2midastoart; mrb g gm2unpackers;
mrb g gm2calo; mrb g gm2dataproducts
```

For the package gm2midas, you need to use the master branch,

```
cd gm2midas
git checkout master
```

and build both midas and rome:

```
cd midas
export MIDASSYS='pwd'
echo "export MIDASSYS='pwd'" >> ~/.bash_profile
make NO_MYSQL=1
cd ../rome
export ROMESYS='pwd'
echo "export ROMESYS='pwd'" >> ~/.bash_profile
make clean; make
```

Please refer to https://cdcvs.fnal.gov/redmine/projects/gm2midas/wiki for more detail. Upon installing midas and rome, go to gm2midastoart to build the midas file library provided by ROME,

```
cd ../../gm2midastoart
git flow feature track SLAC2016
cd rome
make
```

For the packages gm2unpackers, gm2calo and gm2dataproducts you need to use the SLAC2016 feature branch (you will be checking out develop branch if you do nothing)

```
cd ../../gm2calo (gm2unpackers, gm2dataproducts)
git flow feature track SLAC2016
cd ..
```

Execute 'mrb uc' to update the CMakeLists to include all the packages:

```
mrb uc
```

Setup ninja (a small build system with focus on speed) with

```
setup ninja v1_5_3a
```

Read more about it at https://ninja-build.org/. Then start to build the packages with

```
. mrb s
mrb b --generator ninja
```

If the build was successful (it takes about 5 minutes), you will see the following:

```
INFO: Stage build successful.
```

Now set an alias for the ninja (because it is fast! except the first build though) build and put it in your .bash_profile

```
alias ninja='pushd $MRB_BUILDDIR; ninja; popd'
```

Now you are ready to unpack the data, reconstruct the data and analyze the data.

5.1.3 Data unpacking and reconstruction

The fcl files for the data unpacking are location in the gm2unpackers/fcl/ folder, whereas the fcl files for the data reconstruction are location in the gm2calo/fcl/ folder. The script running both data unpacking and reconstruction are combined into a main fcl file named unpackFitConstants.fcl. Since we have several run periods based on their own calibration constants, choose the nearest constant file which is below the run number of the file you want to analyze. For example, for run 1800, the nearest constant file is constants1751.fcl. However, unpackFitConstants1751.fcl is available so you do not have to worry about creating one yourself. To analyze any midas file you like, simply

```
gm2 -c unpackFitConstants1751.fcl -s run01800.mid -o gm2slac_run01800.art
-T gm2slac_run01800.root
```

where -o is followed by the location of the *art* file and -T is followed by the location of the root file you want store. Even better, an automation script, auto_unpack_fit.sh, where the calibration period is taken care of, is also available. Simply run this script with the following command:

```
./auto_unpack_fit.sh startRunNum endRunNum
```

provided you have set the paths in the bash script like midas_dir, art_dir and root_dir correctly.

Standalone C++ Analysis framework

The package SLAC2016Ana contains an example C++ framework to help you getting started. You can get it from the github.com by using the following command:

git clone https://github.com/kimsiang/SLAC2016+.

You can build your additional analysis code on top of this example or write a new one based on it. The example is already running but it's not doing much yet. You can compile the analysis code by first sourcing your ROOT environment

source thisroot.sh

and then followed by executing the command

make

This will read the necessary ingredients for compilation from the Makefile in the same directory. Don't have to worry much about this file at the moment unless you want to add in more classes to the analysis code. The point is that it creates an executable named ana. You can then execute the program by the command

./ana input.script

where input.script includes a path to the root file that you want to analyze (e.g. ./test.root).

A description of the individual components of the example are given in the following list. Indicated are also the places where you should start adding your own code:

- main.cxx: This is the first starting point. It contains the main() function which is necessary for any C++ program. The first step is to create instances of MyAna() class which is implemented in the files MyAna.h and MyAna.C (explained in the next items). The TChain represents the ROOT tree discussed in section 3. The files which should be read from disk are specified in the function Add(filename). The tree is then read and processed by the MyAna() class which takes the TChain as argument. The real work is then done in the Loop() function of the MyAna() class which is discussed in the next two items.
- MyAna.h: Definition of the class MyAna, which inherits from the TTree::MakeClass. It declares variables and ROOT objects that will be used or stored in your analysis. Several basic functions that are common among event-based particle physics analysis like initialize(), clear(), execute() andfinalize() are declared here.
- MyAna.C: The main function which is called automatically which processing the ROOT trees are Loop(). The Loop() function is called only once per run. In the Loop() function, initialize() is called at the beginning of the analysis run, clear() and execute() is called every event, and finalize() at the end of the analysis run.
- t1.h: Header file for the class t1 created using TTree::MakeClass.
- t1.C: Source file for the class t1 created using TTree::MakeClass. The class Loop() is used by MyAna to loop through each TBranch.
- PlotAll.C: A ROOT macro which can be used for automatic plotting of a set of histograms which are stored in a ROOT file. Please read the header of the file on how to use it.

6.1 Data format and structure for the ROOT tree

The data samples for this tutorial are stored in ROOT trees. The tree contains a collection of variables (called branches) which are filled once per event (could be 1 or more electrons). The list of variables along with their data type and further explanations are given in the following.

For studies using higher level objects

- FitResult_EventNum (vector<int>): event number of this fit result
- FitResult_CaloNum (vector<int>): calorimeter number of this fit result

- FitResult_XtalNum (vector<int>): crystal number of this fit result
- FitResult_IslandNum (vector<int>): island number of this fit result
- FitResult_UtcaSlotNum (vector<int>): utca slot number of this fit result
- FitResult_ChannelNum (vector<int>): rider channel number of this fit result
- FitResult_Energy (vector<double>): energy (number of photons) of this fit result
- FitResult_Time (vector<double>): time (clock tick of 800 MHz) of this fit result within the fill/event
- FitResult_Pedestal (vector<double>): pedestal of this fit result
- FitResult_Chi2 (vector<double>): Chi squared of this fit result
- FitResult_ClockCounter (vector<long long>): time stamp (clock tick of 40 MHz) of this fit result from Rider header information
- XtalHit_EventNum (vector<int>): event number of this crystal hit
- XtalHit_CaloNum (vector<int>): calorimeter number of this crystal hit
- XtalHit_XtalNum (vector<int>): crystal number of this crystal hit
- XtalHit_IslandNum (vector<int>): island number of this crystal hit
- XtalHit_UtcaSlotNum (vector<int>): utca slot number of this crystal hit
- XtalHit_ChannelNum (vector<int>): rider channel number of this crystal hit
- XtalHit_Energy (vector<double>): energy (number of photons) of this crystal hit
- XtalHit_Time (vector<double>): time (clock tick of 800 MHz) of this crystal hit within the fill/event
- XtalHit_ClockCounter (vector<long long>): time stamp (clock tick of 40 MHz) of this crystal hit from Rider header information
- Cluster_EventNum (vector<int>): event number of this cluster
- Cluster_CaloNum (vector<int>): calorimeter number of this cluster
- Cluster_IslandNum (vector<int>): island number of this cluster
- Cluster_Energy (vector<double>): energy (number of photons) of this cluster

- Cluster_Time (vector<double>): time (clock tick) of this cluster
- Cluster_X (vector<double>): local x-position of this cluster (logarithmic-weighted)
- Cluster_Y (vector<double>): local x-position of this cluster (logarithmic-weighted)
- Italiano_EventNum (vector<int>): event number of this analyzed laser crate waveform
- Italiano_CaloNum (vector<int>): calorimeter number of this analyzed laser crate waveform
- Italiano_XtalNum (vector<int>): crystal number of this analyzed laser crate waveform
- Italiano_IslandNum (vector<int>): island number of this analyzed laser crate waveform
- Italiano_UtcaSlotNum (vector<int>): utca slot number of this analyzed laser crate waveform
- Italiano_ChannelNum (vector<int>): rider channel number of this analyzed laser crate waveform
- Italiano_Amplitude (vector<double>): amplitude (ADC samples) of this analyzed laser crate waveform
- Italiano_Time (vector<double>): time (clock tick of 800 MHz) of this analyzed laser crate waveform within the fill/event
- Italiano_Pedestal (vector<double>): pedestal of this analyzed laser crate waveform
- Italiano_Area (vector<double>): Area of this analyzed laser crate waveform
- Italiano_ClockCounter (vector<long long>): time stamp (clock tick of 40 MHz) of this analyzed laser crate waveform from Rider header information

For studies using lower level objects

Blow are the Tleaves of the islandTree.

- RunNum (int): run number of this island
- EventNum (int): event number of this island

- FillType (int): fill type of this island (1 is muon fill, 2 is laser fill)
- TriggerNum (int): trigger number of this island
- CaloNum (int): calorimeter number of this island
- XtalNum (int): crystal number of this island
- IslandNum (int): island number of this island
- UtcaSlotNum (int): utca slot number of this island
- ChannelNum (int): rider channel number of this island
- Length (int): number of sample of this island
- Time (int): time (clock tick of 800 MHz) of the first sample of this island within the fill/event
- ClockCounter (long): time stamp (clock tick of 40 MHz) of this island from Rider header information
- Trace (vector<short>): ADC samples of this island

ROOT-based offline event display

A ROOT-based offline event display is also developed to increase the user friendliness of the data analysis. As shown in Figure 7.1, this GUI interface allows the user to inspect the fit results of the template fit algorithm by overlaying it with the island samples. More functionality will be added in the coming days.

Figure 7.1: SLAC Offline analysis GUI. This is a very preminary prototype.

Napoli DAQ

In this chapter, the Napoli DAQ will be explained. The codes for the plots are in https://github.com/gm2-it/test-beam-slac-jun16/tree/master/NapoliDaq/analyzer.

Chapter 9

Fiber harp

This chapter covers the fiber harp unpacking and analysis software used during the 2016 SLAC test beam.

9.1 Overview

In addition to the calorimeter, the scintillating fiber harp detector was also tested during the SLAC 2016 test beam. A single fiber harp with 7 fibers was used, and data runs were taken with the harp orientated in both the in standard (transverse to beam) and calibrate (longitudinal in beam) positions.

As well as testing the fiber harp, a t0 counter scintllator detector was also installed for later runs and tested simultaneously with the fiber harp.

A laser sync pulse from the calorimeter laser calibration system was used in one rider channel for synchronisation purposes.

Two support detectors from SLAC were also used simultaneously; a downstream SciFi detector and an upstream ePix silicon detector.

The offline code described below includes data from the fiber harp, to counter, sync pulse and SciFi. The ePix detector was stored separately in a different data stream, and is not considered here.

The fiber harp readout was performed using a modified version of the calorimeter DAQ. This used a single AMC13 with 3 Riders. GPU island chopping was used, but with the GPUs only triggering from the sync pulse and SciFi waveforms. A trigger in either of these channels results in a waveform being recorded in all channels. Since the SciFi detects all primary beam particles, waveforms triggered by the SciFi are beam events, meaning that signals above pedestal may be expected in the fiber harp and t0 counter. Waveforms triggered by the sync pulse are outside of the beam window, and hence the waveforms in the fiber harp and t0 counter for these islands should be consistent with pedestal.

9.2 Installation

The fiber harp unpacking and reconstruction software overlaps heavily with the calorimeter, but with one additional package gm2aux.

Follow the guide in section 5.1.1 to set up the environment.

Follow the guide in section 5.1.2 to check out all required unpacking and reconstruction packages, but in addition checkout the package gm2aux.

```
cd $MRB_SOURCE
mrb g -b feature/SLAC2016 gm2aux
```

After check out this additional package, re-build the code using mrb b (not ninja):

```
mrb b --generator ninja
```

9.3 Unpacking the data

The fiber harp data is unpacked directly from MIDAS files. Run the unpacker as follows:

```
gm2 -c $MRB_SOURCE/gm2aux/fcl/unpackFiberHarp.fcl -s <.mid file(s)>
```

The output will be the file gm2slac2016_unpackFiberHarp.art, which contains the data product

```
gm2aux::FredinoArtRecordCollection
```

with module label fiberHarpProcessor and instance name harp which contains the unpacked data. This data product is filled once per island per fill. There are typically two islands per fill, one triggered by the sync pulse and the other by the beam. The fill and island numbers in each entry are given by the fillNum and islandNum variables in the data product. Also within the data product are containers of "hits" in the island for each detector type in the system, where a "hit" is the waveform in a given channel in the island, including some processed information usch as time of peak, pedestal, waveform area, etc.

- harpHits: Fiber harp island waveforms
- syncLineHits: Sync pulse island waveforms
- sciFiHits: SciFi island waveforms

• t0CounterHits: t0 counter island waveforms

Each "hit" in the container contains member date. The most commonly used members are listed below:

- fiberNum: Fiber harp only. Fiber number in range 1-7. Sync line, t0 counter and SciFi each have one channel only.
- time: Time of waveform peak from start of fill [samples]
- pedestal: Pedestal ADC value [ADC]
- amplitude: Height of peak above pedestal in ADC samples [ADC]
- area: Total size area under waveform above pedestal $[ADC \times samples]$

An example art analyzer for plotting fiber harp data can be found in:

```
gm2aux/analyses/FiberHarpSanityPlots_module.cc+
```

Run it using:

```
gm2 -c $MRB_SOURCE/gm2aux/fcl/fiberHarpSanityPlots.fcl
-s <unpacked art file>
```

e.g.

```
gm2 -c $MRB_SOURCE/gm2aux/fcl/fiberHarpSanityPlots.fcl
-s gm2slac2016_unpackFiberHarp.art
```

Appendix A

T-536 program

This chapter contains the full program we have planned and executed during the SLAC run. A better organized runlog can be found under http://gm2-docdb.fnal.gov:8080/cgi-bin/RetrieveFile?docid=3964&filename=CondensedRunLog.xlsx&version=5.

1-5
36 p
rog
ran

Energy scan at 3 points for each	4 X,Y Locations at each energy	3: 2269-2274; 3.5:
3.5 GeV	(277,105) (291.8,105) (304.4,105) (291.8,92.4)	2283-2286, 2288-2290;
4.0 GeV	(279.2,105) $(291.8,105)$ $(304.4,105)$ $(291.8,92.4)$	4: 2302-2308; 4.5:
4.5 GeV	(279.2105) (291.8,105) (304.4,105) (291.8,92.4)	2317-2326; 5: 2344-
5.0 GeV	(279.2,105) $(291.8,105)$ $(304.4,105)$ $(291.8,92.4)$	2348
2.5 GeV	(279.2,105) (291.8,105) (304.4,105) (291.8,92.4)	
	(279.2,105)	
Edge scan outward of segment 26	For y=95, x=347.45 (outside); 344.95 (outside);	2428-2438
	342.45; 339.95; 337.45; 334.95; 332.45; 329.95	
	Repeat for y=105, x=347.45 (outside); 344.95 (outside);	
	342.45; 339.95; 337.45; 334.95; 332.45; 329.95	
Angle Scan at 5 degrees	3000 events per step Y = 105 ; X =	2839-2864, 2902-2923
	[284, 288, 292, 296, 300, 304, 308, 312, 316, 320,	
	324, 328, 332, 336, 340, 344, 348, 352, 356, 360]	
	3000 events per step Y = 95; X =	
	[284, 288, 292, 296, 300, 304, 308, 312, 316, 320,	
	324, 328, 332, 336, 340, 344, 348, 352, 356, 360]	
Angle Scan at 10 degrees	3000 events per step Y = 105 ; X =	2948-2951, 2960-2982,
	[286, 290, 294, 298, 302, 306, 310, 314, 318, 322,	2984, 2989-2992,
	326, 330, 334, 338, 342, 346, 350, 354, 358, 362]	2994-3002
	3000 events per step Y = 95; X =	
	[286, 290, 294, 298, 302, 306, 310, 314, 318, 322,	
	326, 330, 334, 338, 342, 346, 350, 354, 358, 362]	
	then a long run at $Y = 95$, $X = 306$ till 9AM	

Angle Scan at 15 degrees	3000 events per step Y = 105; X =	3034, 3036-3038,
	[294, 298, 302, 306, 310, 314, 318, 322, 326, 330,	3040-3043, 3045,
	334, 338, 342, 346, 350, 354, 358, 362, 366, 370]	3047-3048, 3057-3067,
	3000 events per step Y = 95; X =	3080-3097, 3099-3100
	[294, 298, 302, 306, 310, 314, 318, 322, 326, 330,	
	334, 338, 342, 346, 350, 354, 358, 362, 366, 370]	
	then a long run at $Y = 95$, $X = 310$ till 9PM	
	with filter wheel calibration in parallel	
Moving Flight Simulator Tests	FSrate=32; FWstate=6; 1/2 mode;	3153-3203
(1)	T0 = -110950 (start of exp sequence)	
	scan the first 20 usec, 3000 events per run	
	trigger delay -120950, -118950, -116950,	
	-114950, -112950, -110950, -120950, -122950,	
	-124950, -126950, -128950, -130950,	
	scan the first 100 usec, 3000 events per run	
	trigger delay -130950, -140950, -150950,	
	-160950, -170950, -190950, -210950	
	60 min runs	
	Delay = 15 us , 30 us , 60 us , 120 us , 240 us ,	
	480 us; Check statistics along way for run	
	length precision in ratio of on/off	

7	
\ddot{z}	
9	
Id	
20	
ran	
\Box	

Moving Flight Simulator Tests	FSrate=32; FWstate=5; 1/2 mode;	
(2)	T0 = -110950 (start of exp sequence)	
	scan the first 20 usec, 3000 events per run	
	trigger delay -120950, -118950, -116950,	
	-114950, -112950, -110950, -120950, -122950,	
	-124950, -126950, -128950, -130950,	
	scan the first 100 usec, 3000 events per run	
	trigger delay -130950, -140950, -150950,	
	-160950, -170950, -190950, -210950	
Moving Flight Simulator Tests	FSrate=32; FWstate=1; 1/2 mode;	
(3)	T0 = -110950 (start of exp sequence)	
	scan the first 20 usec, 6000 events per run	
	trigger delay -120950, -116950, -112950 (stopped),	
	-124950, -130950, -140950, -160950	
Fine vertical scan seg 24	3000 events per run at $X = 284$, and $Y =$	3220-3231
	[85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125]	
Horizontal scan seg 24	3000 events per run at Y = 105 and X = 280, 284, 288	
Front face scan	widen island for template gen (100 pre, 200 post)	3232-3239, 3245-3254,
	4500 events per segment	3256-3258, 3263,
	26, 25, 24, 23, 22, 21, 20, 19, 18,	3265-3269, 3271-3278,
	9, 10, 11, 12, 13, 14, 15, 16, 17,	3281-3289, 3291-3298,
	35, 34, 33, 32, 31, 30, 29, 28, 27,	3300-3304
	36, 37, 38, 39, 40, 41, 42, 43, 44,	
	53, 52, 51, 50, 49, 48, 47, 46, 45,	
	0, 1, 2, 3, 4, 5, 6, 7, 8	
undo wide islands for templates		3305-3307
back to 8 pre-trigger, and 24 post-		
trigger		

Flight sim test, FW#1, 96 shots	FSrate=96; FWstate=1; 1/2 mode;	3320-3322, 3358-3367
per fill	9000 events per run	
	trigger delay -120950, -118950, -116950,	
	-114950, -112950, -122950, -124950,	
	-126950, -128950, -130950	
redo ping seg 8, 3	switch laser to 100kHz fixed	3368-3369
	widen islands for template generation	
	collect 4500 events	
	undo wide islands	
low QE run	be creative	3371, 3373, 3375,
		3377, 3379-3388,
		3396-3398
long run	25 deg, two diff positions, same beam,	3413-3415, 3424-3429,
	6 hours each, filter wheel calibration before, after and	3431-3513, 3522-3556
	during	
position scan for 25 deg	9000 events per point $Y = 105, X =$	3580-3619
	284.0, 288.0, 292.0, 296.0, 300.0,	
	304.0, 308.0, 312.0, 316.0, 320.0,	
	324.0, 328.0, 332.0, 336.0, 340.0,	
	344.0, 348.0, 352.0, 356.0, 360.0,	
	364.0, 368.0, 372.0, 376.0, 380.0	
	9000 events per point $Y = 95$, $X =$	
	284.0, 288.0, 292.0, 296.0, 300.0,	
	304.0, 308.0, 312.0, 316.0, 320.0,	
	324.0, 328.0, 332.0, 336.0, 340.0,	
	344.0, 348.0, 352.0, 356.0, 360.0,	
	364.0, 368.0, 372.0, 376.0, 380.0	

T-536
) prog
ram

1 1	2000	2001 2072 2000 2000
horizontal scan of fiber harp	3000 events per run	3961-3973, 3986-3990,
	Y = 114, 110, 106, 102, 98	3999-4084, 4091-4129
	X = 240, 244, 248, 252, 256,	
	260, 264, 268, 272, 276,	
	280, 284, 288, 292, 296	
	300, 304, 308, 312, 316,	
	320, 324, 328, 332, 336,	
	340, 344, 348, 352, 356, 360	
horizontal scan of fiber harp	3000 events per run	4148-4178
in calibration position, vertically	Y = 105 X = 240, 244, 248, 252, 256,	
centered in beam	260, 264, 268, 272, 276,	
	280, 284, 288, 292, 296,	
	300, 304, 308, 312, 316,	
	320, 324, 328, 332, 336,	
	340, 344, 348, 352, 356, 360	
scan of intensity and bias voltage	at $Y = 105$, $X = 260 \text{ mm}$	4181-4195, 4198-4253,
	bias voltages = 65.5 , 66.0 , 66.5 , 67.0 , 67.5 , 68.0 , 68.5	4256-4269
	VSL10 = 20, 15, 10, 5 mm	
	$C24_H = 1, 2, 4 \text{ mm}$	
	6000 events if SL10*C24_H <= 10 mm^2; otherwise	
	3000 events	

horizontal scan of fiber harp in	3000 events per run	4270-4286, 4289-4291,
calibration position with narrow	Y = 105, X =	4294-4334
beam	240, 244, 248, 252, 256,	
	260, 264, 268, 272, 276,	
	280, 284, 288, 292, 296,	
	300, 304, 308, 312, 316,	
	320, 324, 328, 332, 336,	
	340, 344, 348, 352, 356, 360, X =	
	242, 246, 250, 254, 258,	
	262, 266, 270, 274, 278,	
	282, 286, 290, 294, 298,	
	302, 306, 310, 314, 318,	
	322, 326, 330, 334, 338,	
	342, 346, 350, 354, 358	
long run	1 hour = 36,000 events total	4337 - 4343
	6 runs of 6000 events each (10 min)	
	Y = 105, X = 260	
	SL10 = 20, C24 = 1.5	
bias voltage scan	3000 events,	4344 - 4350
	Y = 105, X = 260,	
	SL10 = 20, C24 = 1.5,	
	bias voltages = 65.5 , 66.0 , 66.5 ,	
	67.0, 67.5, 68.0, 68.5 V	

T-536	
program	

horizontal scan of fiber harp in	3000 events per run	4351 - 4357
calibration position, new beam	SL10 = 20 mm, C24 = 1.5 mm,	
width	Y = 105, X =	
	240, 244, 248, 252, 256,	
	260, 264, 268, 272, 276,	
	280, 284, 288, 292, 296,	
	300, 304, 308, 312, 316,	
	320, 324, 328, 332, 336,	
	340, 344, 348, 352, 356, 360	
scan of intensity and bias voltage	at $Y = 105, X = 276 \text{ mm}$	4358 - 4397
at ideal position along fibers	bias voltages = 65.5 , 66.5 , 67.5 , 68.5 V,	
	C24.H = 1.5, 2, 4 mm	
	SL10 = 20, 10, 5 mm,	
	3000 events	
scan of intensity and bias voltage	at $Y = 105$, $X = 276 \text{ mm}$	4458 - 4492
at ideal position along fibers	bias voltages = 66 , 67 , 68 V	
	$\cot C24 = 2$, $SL10 = 20$,	
	do more points: 65.5, 66,	
	66.5, 67, 67.5, 68, 68.5 V)	
	$C24_H = 1.5, 2, 4 \text{ mm}$	
	SL10 = 20, 10, 5 mm	
	3000 events	
long run at ideal position along	1 hour = 36,000 events total	4493-4495, 4503-4505
fibers	6 runs of 6000 events each (10 min)	
	Y = 105, X = 276	
	SL10 = 20, C24 = 2	

long run with white paint on fiber	1 hour = 36,000 events total	4512, 4514-4516
ends	6 runs of 6000 events each (10 min)	1012, 1011 1010
onds	Y = 105, X = 276	
	SL10 = 20, C24 = 2	
horizontal scan of fiber harp in		4517-4518, 4520-4541
•	_	4517-4516, 4520-4541
calibration position with white	, ,	
paint	Y = 105, X =	
	264, 268, 272, 276, 280,	
	284, 288, 292, 296, 300,	
	304, 308, 312, 316, 320,	
	324, 328, 332, 336, 340,	
	344, 348, 352, 356	
vertical scan of T0 counter	3000 events per run	4542-4545, 4547-4551
	SL10 = 20 mm, C24 = 2 mm	
	X = 288	
	Y = 65, 75, 85, 95, (105),	
	115, 125, 135, 145	
laser before beam at different	3000 events,	4585, 4602-4603,
time separations	Y = 105, X = 276,	4605-4608, 4610-4614
	SL10 = 20, C24 = 2,	
	deltaT = 10, 20, 30, 40, 50, 75, 100, 150, 300 ns	

Appendix B

Data location

This chapter summarizes the location of the files.

B.1 Data samples

This section explains the naming and the locations of the data files (Local location will be obsolete once we move everything to the PNFS disk at FNAL).

B.1.1 File naming

All the created art/ROOT and ROOT files will have the same run number as the MIDAS they are extracted from.

Table B.1: Data samples and descriptions. The ROOT full data includes raw waveforms, chopped islands and processed data like fit results and crystal hits. The ROOT analysis data has only processed data.

filename	type
gm2slac_run0xxxx.art	data ready for art-based analysis
gm2slac_run0xxxx_raw.root	full data for standalone C++ analysis
gm2slac_run0xxxx.root	analysis data for standalone C++ analysis

B.1.2 Location of the files (During SLAC test runs)

For the following steps, you have to be connected to the local Wifi network T536-local. All the art/ROOT and ROOT files are stored in the 2×3 TB HDD in the g2analysis machine. Use the following command to copy over the data files that you want to analyze:

B.1 Data samples

```
scp -r g2muon@g2analysis:/data1/slac2016/analysis/gm2slac_run0xxxx.root .
scp -r g2muon@g2analysis:/data2/slac2016/art/gm2slac_run0xxxx.art .
```

Or you can use rsync if you have enough space in your hard drive:

```
rsync -avurt g2muon@g2analysis:/data1/slac2016/analysis/ YOUR_LOCAL_DISK/
rsync -avurt g2muon@g2analysis:/data2/slac2016/art/ YOUR_LOCAL_DISK/
```

Or a better way is to use sshfs to mount the disk onto your laptop:

```
sshfs g2muon@g2analysis:/data1/slac2016/analysis YOUR_LOCAL_DISK sshfs g2muon@g2analysis:/data2/slac2016/art YOUR_LOCAL_DISK
```

B.1.3 Location of the files (Fermilab storage)

The final locations of the files are as the following:

```
RAW = /pnfs/GM2/slac2016/midas
ART = /pnfs/GM2/scratch/users/kkhaw/slac2016_grid/art
ROOT = /pnfs/GM2/scratch/users/kkhaw/slac2016_grid/root
```

Appendix C

Daq information

This chapter summarizes the minimum information from the DAQ needed for the analysis.

C.1 DAQ

C.1.1 Header information

This section provides the information regarding user interface to the event, AMC13 and rider header information. All the information are stored in the art/ROOT files and standalone ROOT files with the TBranch structures in the following sections.

C.1.2 Header and trailer formats

This section compiles all the available header data formats. Please refer to http://gm2-docdb.fnal.gov:8080/cgi-bin/ShowDocument?docid=3409 for more details.

Figure C.1: AMC13 to DAQ data format.

Figure C.2: Rider to AMC13 data format.

Figure C.3: Rider Channel data format.

C.2 Slow control data

The only slow control data recorded by the MIDAS DAQ is the temperature sensor SCS-3000. It was initially installed in the control room and was moved into the experimental hall on Jun 8 2016 in the night. It has 6 channels and the corresponding locations are summarized in Table C.1.

Table C.1: Locations of the temperature sensors of SCS-3000.

ID	Location
1	Air in
2	Loose on table in front of calorimeter
3	Loose on table in front of calorimeter
4	Loose on table in front of calorimeter
5	Air out
6	Tunnel entrance

Figure C.4: Per event data format

Appendix D

Job submission in Fermigrid

To submit a job to the grid, the following two files are needed.

```
#!/bin/sh
# Usage: gridSetupAndSubmit-local.sh [FCL filename] [RUNNUM]
#[! -r $PWD/submit-localrelease.sh] \
        && echo "Unable to access submit-localrelease.sh at $PWD !" \
        && exit
setup jobsub_client
NOW=\$(date + "\%F-\%H-\%M-\%S")
SCRATCH_DIR=/pnfs/GM2/scratch/users/${USER}/slac2016_grid
echo "Scratch directory: ${SCRATCH_DIR}"
# only needed for the first time
mkdir ${SCRATCH_DIR}
mkdir ${SCRATCH_DIR}/logs
mkdir ${SCRATCH_DIR}/art
mkdir ${SCRATCH_DIR}/root
chmod -R g+w ${SCRATCH_DIR}
#enter the FHiCL file you want to use for the submission
MAINFCLNAME=${1:-ProductionMuPlusMuonGasGun}
echo "Main FCL: ${MAINFCLNAME}.fcl"
```

```
RUN=$2
#This submits the job to the grid using local release:
jobsub_submit -G gm2 -M --OS=SL6 \
        --resource-provides=usage_model=DEDICATED,OPPORTUNISTIC \
        --role=Analysis file://$PWD/submit-localrelease.sh \
        ${MAINFCLNAME} ${RUN} ${SCRATCH DIR}
#!/bin/sh
# Usage: submit-localrelease.sh [FCL filename] [RUNNUM] [OUTPUTDIR]
MYDIR=/gm2/app/users/kkhaw/Work/slac2016/dev
localsetup=${MYDIR}/localProducts_gm2_v6_04_00_prof/setup
[!-f $localsetup -o!-r $localsetup] \
    && echo -e "\nUnable to access local setup file $localsetup\n" \
    && exit
source /cvmfs/fermilab.opensciencegrid.org/products/common/etc/setups
source /cvmfs/fermilab.opensciencegrid.org/products/larsoft/setup
setup ifdhc v1_6_2 -z /cvmfs/fermilab.opensciencegrid.org/products/common/db
#Set MIDAS and ROME environments
export MIDASSYS="${MYDIR}/srcs/gm2midas/midas"
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${MYDIR}/srcs/gm2midas/midas/linux/lib
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${MYDIR}/srcs/gm2midas/rome/
export ROMESYS="/${MYDIR}/srcs/gm2midas/rome"
#Set MIDAS event size (must match size the MIDAS file was created with)
export MIDAS_MAX_EVENT_SIZE=0x10000000
echo "Your environment in this job: " > job_output_${CLUSTER}.${PROCESS}.log
env >> job_output_${CLUSTER}.${PROCESS}.log
if [ "${PROCESS}" == "0" ]; then
    echo ${JOBSUBJOBID} > ${JOBSUBJOBID}
    ifdh cp -D ${JOBSUBJOBID} $3
fi
source /cvmfs/gm2.opensciencegrid.org/prod/g-2/setup
source $localsetup
```

Bibliography

- [1] A. Fienberg et. al., Studies of an array of PbF₂ Cherenkvo crystals with large-area SiPM readout, Nuclear Instruments and Methods in Physics Research Section A, Vol. 783, 12-21 (2015)
- [2] Rene Brun and Fons Rademakers, *ROOT An Object Oriented Data Analysis Framework*, Proceedings ALHENP'96 Workshop, Lausanne, Sep. 1996, Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81-86. See also http://root.cern.ch.
- [3] K. S. Khaw, Offline structure group report, FNAL E989 g-2 Experiment Document, FM2-doc-3781-v3 (2016). http://gm2-docdb-fnal.gov:8080/cgi-bin/ShowDocument?docid=3781
- [4] TRIUMF MIDAS homepage, accessed May 13, 2016. https://midas.triumf.ca/MidasWiki/index.php/Main_Page