Channel Coding ARQ and Reliability

November 22, 2021

Recall

The Open Systems Interconnection model (OSI)

Application Presentation Session Transport Network Data Link **Physical**

Recall

The Open Systems Interconnection model (OSI)

Application Presentation Session **Transport** Network Data Link **Physical**

Web-Browser TCP/UDP IP MAC RJ45, 802.11PHY, 1000BASE-T

Recall

The Open Systems Interconnection model (OSI)

Sockets

Network stack from users perspective

ARQ Why do we need ARQ?

29

ARQ Acknowledgement

ARQ Timeout problem

$\begin{array}{l} \mathsf{ARQ} \\ \mathsf{Sequence} \ \mathsf{number}. \ \mathsf{Stop}\text{-}\mathsf{and}\text{-}\mathsf{wait}. \end{array}$

ARQ Frame Timing

$$t_0 = 2t_{prop} + t_f + 2t_{proc} + t_{ack} \approx RTT + 2t_{proc} + \frac{n_f + n_{ack}}{Rate}$$

ARQ Timing

- Which timeout should we choose?
 - Not too big
 - Not too small
- Easy to define for specific LAN. Little variation.
- Difficult over the Internet. High variation.

ARQ Adaptive Timeout

Simple Timeout calculation scheme 1 . Smoothed RTT + variance.

- $SRTT_{N+1} = 0.9 \cdot SRTT_N + 0.1 \cdot RTT_{N+1}$
- $Svar_{N+1} = 0.9 \cdot Svar_N = 0.1 \cdot |RTT_{N+1} SRTT_{N+1}|$
- $Timeout_N = SRTT_N + 4 \cdot Svar_N$

ARQ Adaptive Timeout

Stop And Wait Efficiency

Probability of Failure¹:

$$P_f = 1 - (1 - plr)^2$$

Average total time to transmit a packet [1]:

$$E[t_{packet}] = t_0 + \frac{t_{out}P_f}{1 - P_f}$$

- Effective information transmission rate: $R_{eff} = \frac{n_f n_{headers}}{F[t_{resolve}]}$
- Associated transmission efficiency: $\eta = \frac{R_{eff}}{Rate}$

¹plr stands for Packet Loss Rate

Stop And Wait Efficiency

Sliding Window Go Back N. Principle

16 / 29

Sliding Window Go Back N. Principle

Sliding Window Go Back N. Principle

¹Demo: 1, 2

Sliding Window Efficiency of GoBack-N

- Probability of Failure: $P_f = plr$
- Average total time to transmit a packet [1]. Windows size W_s should be selected so that the channel will be busy all the time.

$$E[t_{packet}] = t_f \frac{1 + (W_s - 1)P_f}{1 - P_f}$$

- Effective information transmission rate: $R_{eff} = \frac{n_f n_{headers}}{E[t_{nocleat}]}$
- Associated transmission efficiency: $\eta = \frac{R_{eff}}{Rate}$

Sliding Window Efficiency of GoBack-N

Sliding Window Selective Repeat. Principle

21 / 29

Sliding Window Selective Repeat. Principle

Sliding Window Selective Repeat. Principle

23 / 29

Sliding Window Efficiency of Selective Repeat

- Probability of Failure: $P_f = plr$
- Average total time to transmit a packet [1]. Windows size W_s should be selected so that the channel will be busy all the time.

$$E[t_{packet}] = t_f \frac{1}{1 - P_f}$$

- Effective information transmission rate: $R_{eff} = \frac{n_f n_{headers}}{E[t_{packet}]}$
- Associated transmission efficiency: $\eta = \frac{R_{\text{eff}}}{Rate}$

Sliding Window Efficiency of Selective Repeat

Task 1 Echo Server


```
user@pcl:~$./echo-server -p 8888 --proto udp
Server is listenning on UDP port 8888....
Connection from 192.168.0.6...
(Lient message: Your mouth is deep as a cave!
(client message: Your mouth is deep as a cave!
(client message: That was an echo))))

client message: That was an echo))))

client message: That was an echo))))

cho: That was an echo))))
```

Task 2 Network condition simulation

tc qdisc add dev eth0 root netem delay 10ms loss 1.0% tc qdisc add dev eth0 root netem delay 10ms loss 10.0% tc qdisc add dev eth0 root netem delay 100ms loss 10.0% tc qdisc add dev eth0 root netem delay 100ms loss 10.0% tc qdisc del dev eth0 root netem delay 100ms loss 1.0% tc qdisc del dev eth0 root netem delay 100ms loss 10.0%

References and further readings

- [1] Leon-Garcia, A., & Widjaja, I. (2000). Communication networks: fundamental concepts and key architectures (Vol. 2). New York: McGraw-Hill.
- [2] Computer Networking: A Top-Down Approach. / Interactive Animations
- [3] TU Berlin. Computer Networks An Animated Approach

Thanks for your attention