Основания алгебры и геометрии

Чижов Андрей Дмитриевич

Экзамен.

Задача 1.

Верно ли, что формула

$$(a \to (b \to c)) \to ((a \to b) \to (a \to c))$$

истинна при любых значениях переменных?

Решение:

$$F = (a \to (b \to c)) \to ((a \to b) \to (a \to c))$$

Пусть F ложно при каких-то a,b,c. Тогда ложно и следствие: $(a \to b) \to (a \to c) = 0$ $=> a \to c = 0 => a = 1, c = 0.$

Пусть b=0. Тогда посылка: $1\to (0\to 0)=1$, а следствие: $(a\to b)\to (a\to c)=1$, т.к. $a\to b=0$. $=>F=1\to 1=1$.

b=1, тогда посылка: $1 \to (1 \to 0) = 0 = > F = 1$.

=>F - истина при любых a,b,c, т.е. является тавтологией.

Задача 2.

Решите в комплиексных числах уравнение $z^{2022} - \overline{z} = 0$.

Решение:

$$z^{2022} = \overline{z}$$
$$|z|^{2022} = |\overline{z}| = |z|$$

Получаем, что |z|=1 или |z|=0. z=0 - решение, рассмотрим случай |z|=1. Пусть $z=e^{i\theta}$:

$$e^{i2022\theta} = e^{-i\theta}$$

$$2022\theta \equiv -\theta \mod 2\pi$$

$$2023\theta \equiv 0 \mod 2\pi$$

$$=> \theta = \frac{2k\pi}{2023} \quad k \in \mathbb{Z}$$

Задача 3.

Последовательность чисел Фибоначчи рекурсивно определяется следующим образом: $F_0 = F_1 = 1$ и, для $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$. Чему равен наибольший общий делитель двух подряд идущих членов данной последовательности?

Решение:

Рассмотрим НОД (F_{n+1}, F_n) .

$$(F_n, F_{n+1}) = (F_{n+1} - F_n, F_n) = (F_{n-1}, F_n) = (F_{n-2}, F_{n-1}) = \dots = (F_1, F_0) = (1, 1) = 1$$

=> два подряд идущих числа Фибоначчи взаимно просты.

Задача 4.

Сколько различных отношений эквивалентности существуют на множестве {1,2,3,4,5}?

Решение:

Пусть E_k - количество отношений эквивалентности на мн-ве $\{1,2,\dots k\}$. Выразим E_{k+1} через E_0,E_1,\dots,E_k .

Разобъем семейство всех отношений экв-ти на мн-ве \underline{k} на группы в зависимости от того, сколько элементов из $\underline{k+1}\setminus\{1\}$ экв-ны 1. Обозначим последнее число через l. Для заданного l на мн-ве k+1 имеем $C_k^lE_{k-l}$ отношений экв-ти.

Действительно, отношение экв-ти на мн-ве \underline{k} однозначно задается выбором l элементов из мн-ва $\underline{k+1}\setminus\{1\}$, которые эквивалентны 1 (C_k^l способами), и определением отн-я экв-ти на оставшихся $\overline{k-l}$ элементах (E_{k-l} способами).

Получаем, что

$$E_{k+1} = \sum_{l=0}^{k} C_k^l E_{k-l}$$

, где $E_0 = E_1 = 1$.

$$E_2 = E_1 + E_0 = 1 + 1 = 2$$

$$E_3 = E_2 + 2E_1 + E_0 = 2 + 2 \cdot 1 + 1 = 5$$

$$E_4 = E_3 + 3E_2 + 3E_1 + E_0 = 5 + 3 \cdot 2 + 3 \cdot 1 + 1 = 15$$

$$E_5 = E_4 + 4E_3 + 6E_2 + 4E_1 + E_0 = 15 + 4 \cdot 5 + 6 \cdot 2 + 4 \cdot 1 + 1 = 52$$

Ответ: 52.

Задача 5.

Для многоугольника с центром симметрии найдите точку, сумма расстояний от которой до вершин минимальна.

Решение:

Пусть O - центр симметрии.

Рассмотрим вершину X и симметричную ей относительно O вершину X' и отрезок XX'.

Тогда для любых двух точек $A, A' \in XX'$: XA + AX' = XA' + A'X'.

И если $A'' \notin XX'$, то XA'' + A''X > XA + AX' = XA' + A'X'.

При этом точка O принадлежит всем таким отрезкам, соединяющим симметричные вершины. =>O и есть искомая точка.

Задача 6.

Докажите, что множество всех биекций из \mathbb{N} в \mathbb{N} равномощно множеству всех последовательностей из 0 и 1 (т.е. имеет мощность континуума).

Решение:

Пусть X - мн-во всех биекций из \mathbb{N} в \mathbb{N} .

Разобьем натуральный ряд на пары: 1,2, 3,4, 5,6, ..., 2k-1,2k,...

Рассмотрим некоторую последовательность из 0 и 1 и определим биекцию $F:\mathbb{N}\to\mathbb{N}$ следующим образом: если на k-ом месте стоит 1, то 2k-1, 2k остаются по порядку, иначе меняются местами. Данная функция является биекцией для любой последовательности из 0 и 1. При этом разным последовательностям соответствуют разные биекции.

Значит $\{0,1\}^{\mathbb{N}} \lesssim X$. (построили инъекцию)

Вспомним, что $\mathbb{N} \lesssim \{0,1\}^{\mathbb{N}}$

$$X \subset \mathbb{N}^{\mathbb{N}} \lesssim (\{0,1\}^{\mathbb{N}})^{\mathbb{N}} \sim \{0,1\}^{\mathbb{N} \times \mathbb{N}} \sim \{0,1\}^{\mathbb{N}}$$

$$=>X\lesssim\{0,1\}^{\mathbb{N}}.$$

По теореме Кантора-Бернштейна получаем, что $X \sim \{0,1\}^{\mathbb{N}}.$