SISTEMAS OPERACIONAIS

AULA 18 – GERENCIAMENTO DE ENTRADA/SAÍDA, PARTE I

Prof.^a Sandra Cossul, Ma.

- A função do sistema operacional no contexto de entrada e saída de dados é:
 - controlar as operações de E/S
 - controlar os dispositivos de E/S

• Os dispositivos de E/S permitem a <u>interação do computador com o</u> <u>mundo exterior</u> de várias formas.

EXEMPLOS DE DISPOSITIVOS DE E/S

 Hoje, dispositivos de E/S dos mais diversos tipos podem estar conectados a um computador

• A grande diversidade de dispositivos periféricos é um dos maiores desafios presentes na construção e manutenção de um sistema operacional, pois cada um deles tem especificidades e exige mecanismos de acesso específicos.

Um *smartphone* com seus dispositivos de E/S:

- Funções específicas do SO:
 - Enviar sinais para os dispositivos
 - Atender interrupções
 - Gerenciar comandos aceitos e funcionalidades (serviços prestados)
 - Tratar possíveis erros
 - Prover interface entre os dispositivos e o sistema (que seja simples e fácil de usar)

DISPOSITIVOS DE E/S - CLASSIFICAÇÃO

• Interface humana: utilizados para se comunicar com o usuário do computador (ex.: impressoras, monitores, teclado, fone de ouvido, mouse, etc.)

- Armazenamento: utilizados para armazenamento de dados (ex.: HD, SSD, pen-drives, etc.)
- Comunicação: utilizados para transmissão de dados (ex.: conexões de rede – modems, bluetooth, etc.)

E/S - CARACTERÍSTICAS

- Taxa de transferência dispositivos tem diferentes taxas de transferência de dados
- Aplicação o uso para o qual o dispositivo será utilizado
- Complexidade de controle complexidade da interface de controle (impressora mais simples que HD)
- Unidade de transferência dados podem ser transferidos como uma sequência de bytes ou caracteres ou em blocos
- Representação dos dados diferentes métodos de codificação podem ser utilizados pelos dispositivos
- Condições de erro tipos de erros, forma como os erros são reportados

E/S - VISÃO GERAL

 Como os dispositivos de E/S variam muito em sua função e velocidade, são necessários diferentes métodos fornecidos pelo SO para realizar o controle destes dispositivos

- Padronização das interfaces de hardware e software (o que ajuda a incorporar versões mais modernas dos dispositivos)
- Aumento da variedade de dispositivos de E/S (desafio de incorporar novos dispositivos ao computador e ao SO)

E/S - HARDWARE

- Portas são pontos de conexão do dispositivo ao computador
 - porta USB, porta HDMI, porta Ethernet, etc
- Barramentos é um conjunto de linhas de comunicação que permitem a interligação entre dispositivos, como a CPU, a memória e outros periféricos
 - PCI express, SATA, USB, SAS, etc.
- Controladores hardware que opera uma porta, um barramento ou um dispositivo
- O SO sempre trata com o controlador, não com os dispositivos.

DISPOSITIVOS DE E/S

COMPONENTES DE UM DISPOSITIVO DE E/S

- Entrada de dados sensor capaz de converter uma informação externa em um sinal elétrico analógico
- Conversor analógico-digital transforma a informação analógica recebida em informação digital (sequencia de bits)
- Buffer armazena a informação digital que pode ser acessada pelo CPU através de um controlador de entrada
- Saída de dados envio de dados do CPU a um controlador de saída, através do barramento
- Conversor digital-analógico transforma a informação em um sinal elétrico analógico que será aplicado a um atuador

COMPONENTES DE UM DISPOSITIVO DE E/S

Estrutura básica da E/S de áudio:

COMPONENTES DE UM DISPOSITIVO DE E/S

• Alguns dispositivos possuem um processador ou microcontrolador interno para gerenciamento da operação.

• Esse processador embutido no dispositivo executa um código criado pelo fabricante do mesmo, denominado **firmware**.

• O **código do firmware** é independente do SO do computador e contém as <u>instruções necessárias para operar o restante do hardware do dispositivo</u>, permitindo realizar as operações solicitadas pelo SO.

BARRAMENTOS DE ACESSO

 O acoplamento dos dispositivos de entrada/saída ao computador é feito através de barramentos

• É um conjunto de linhas de comunicação que permitem a interligação entre dispositivos, como a CPU, a memória e outros periféricos

• Controle dos barramentos em um sistema desktop é feito pelos controladores de hardware, parte do chipset da placa-mãe: north-bridge e south-bridge.

BARRAMENTOS DE ACESSO

DISPOSITIVOS E SUAS VELOCIDADES TÍPICAS DE TRANSMISSÃO

Dispositivo	velocidade
Teclado	10 B/s
Mouse ótico	100 B/s
Interface infravermelho (IrDA-SIR)	14 KB/s
Interface paralela padrão	125 KB/s
Interface de áudio digital S/PDIF	384 KB/s
Interface de rede Fast Ethernet	11.6 MB/s
Pendrive ou disco USB 2.0	60 MB/s
Interface de rede Gigabit Ethernet	116 MB/s
Disco rígido SATA 2	300 MB/s
Interface gráfica high-end	4.2 GB/s

INTERFACE DE ACESSO

- Aspecto mais relevante de um dispositivo de E/S, do ponto de vista do SO
- Abordagem usada para acessar, configurar e enviar dados

- **Portas de entrada/saída –** conjunto de registradores acessíveis através do barramento usadas para a comunicação entre o dispositivo e o CPU
 - saída enviar dados
 - entrada receber dados
 - status estado interno do dispositivo, verificação de erros
 - controle envio de comandos ou configurações do CPU para o dispositivo

INTERFACE DE ACESSO

INTERFACE DE ACESSO

Endereçamento de portas

- Mapeada em portas as portas que compõem a interface são acessadas pelo processador através de instruções específicas para operações de E/S.
- Mapeada em memória uma parte não ocupada do espaço de endereços de memória é reservado para mapear as portas de acesso aos dispositivos. As portas são vistas como se fossem parte da memória principal e acessadas com as mesmas instruções de acesso à memória.
- Canais de E/S uso de um hardware independente com processador dedicado que comunica com o processador principal, através de um barramento específico. Ex.: interfaces de vídeo de alto desempenho (GPU).

INTERRUPÇÕES

- Forma do controlador notificar o processador sobre um evento interno (clique de mouse, chegada de um pacote de rede, conclusão de uma operação de disco)
 - Requisição de interrupção (IRq)
 - Sinais enviados através do barramento de controle do computador

 Ao receber uma determinada requisição de interrupção, o processador suspende seu fluxo de instruções corrente e desvia a execução para um endereço predefinido, onde se encontra uma rotina de tratamento de interrupção.

INTERRUPÇÕES

INTERRUPÇÕES

• Nas arquiteturas de hardware atuais, as interrupções geradas pelos dispositivos de E/S não são transmitidas diretamente ao processador, mas a um controlador de interrupções programável, que faz parte do chipset

do computador.

E/S - SOFTWARE

• O SO deve prover acesso eficiente, rápido e confiável a um conjunto de periféricos com características diversas de comportamento, velocidade de transferência, volume de dados produzidos/consumidos e diferentes interfaces de hardware.

- O código do SO é estruturado em camadas
 - Camada inferior interação direta com o hardware
 - Camada superior interfaces de acesso às aplicações

E/S - SOFTWARE

E/S - SOFTWARE

- Camada inferior controladores de dispositivos e aos controladores de DMA e de interrupções, implementados no *chipset* do computador
- Primeira camada de software drivers de dispositivos
- Segunda camada de software generic device interface, cuja finalidade é construir uma visão genérica de dispositivos similares de forma que o SO possa tratar os dispositivos por famílias ou classes
- Terceira camada de software implementação de abstrações mais complexas, como sistemas de arquivos e protocolos de rede.
- Topo da arquitetura de software implementação das chamadas de sistemas

CLASSES DE DISPOSITIVOS

 Para simplificar a construção de aplicações e das camadas mais elevadas do próprio SO, os dispositivos de E/S são geralmente agrupados em classes ou famílias com características similares, para os quais uma interface genérica pode ser definida

Famílias:

- Dispositivos orientados a caracteres fluxo contínuo e sequencial de E/S byte a byte. Não é possível alterar o valor de um byte que já foi enviado.
 - Ex.: <u>Interfaces paralelas do computador</u>: mouse, teclado

CLASSES DE DISPOSITIVOS

Famílias:

- **Dispositivos orientados a blocos –** operações de E/S são feitas usando blocos de bytes de tamanho fixo. Os blocos são endereçáveis.
 - Ex.: discos rígidos e outros dispositivos de armazenamento
- **Dispositivos de rede** permitem enviar e receber mensagens entre processos e computadores distintos. Mensagens são blocos de dados de tamanho variável, com envio e recepção sequencial.
 - Ex.: Ethernet, Wifi, Bluetooth, GPRS
- **Dispositivos gráficos** permitem a renderização de texto e gráficos em terminais de vídeo. Exigem um alto desempenho, sobretudo para jogos e filmes, na transferência de dados. Uso de bibliotecas específicas como DirectX em ambientes Windows.

DRIVERS

• Componentes de código que **interagem diretamente com cada controlador**, para realizar as operações de entrada/saída, receber as requisições de interrupção e fazer o gerenciamento do dispositivo correspondente.

 Cada dispositivo de E/S tem um controlador de dispositivo e um driver de dispositivo específico para se comunicar com o sistema operacional.

DRIVERS

- Grupos de funções implementadas por um driver:
 - Funções de E/S responsável pela transferência de dados entre o dispositivo e o SO, de acordo com a classe do dispositivo
 - Funções de gerência gestão do dispositivo e do próprio driver (configuração, desligar, colocar em espera, tratar erros)
 - Funções de tratamento de eventos funções ativadas quando uma requisição de interrupção é gerada pelo dispositivo
- Um driver mantém estruturas de dados locais, para armazenar informações sobre o dispositivo e as operações em andamento.

DRIVERS

Drivers normalmente executam dentro do núcleo do SO, em modo privilegiado

• Por ser código de terceiros executando com acesso total ao hardware, eles constituem um dos maiores riscos à estabilidade e segurança do SO

• Drivers mal construídos ou mal configurados são fontes frequentes de problemas como travamentos ou reinicializações inesperadas.

METODOLOGIAS DE COMUNICAÇÃO

 Cada driver deve interagir com seu respectivos dispositivo de entrada/saída para realizar as operações desejadas, através das portas de seu controlador

METODOLOGIAS DE COMUNICAÇÃO

- I. Entrada e saída programada (ou polling)
- 2. Entrada e saída por interrupção
- 3. Acesso direto à memória (DMA)

- O que distingue as três formas?
 - participação da CPU
 - utilização das interrupções

I. ENTRADA E SAÍDA PROGRAMADA (OU POLLING)

- Forma mais simples de E/S
- O driver solicita uma operação ao controlador do dispositivo e aguarda a conclusão da operação solicitada, monitorando continuamente os bits da respectiva porta de status.
- Os dados são trocados entre o processador e o controlador

- O CPU tem controle direto da operação de E/S
 - Verificação do estado de dispositivo
 - Envio de um comando de leitura ou escrita
 - Transferência de dados

I. ENTRADA E SAÍDA PROGRAMADA (OU POLLING)

I. ENTRADA E SAÍDA PROGRAMADA (OU POLLING)

• **Desvantagem**: processo demorado que mantém o CPU ocupado desnecessariamente; CPU é continuamente verificada para testar se o dispositivo está pronto para aceitar outro caractere – <u>espera ocupada</u>.

- Estratégia pouco usada em SOs de propósito geral
- Seu uso se concentra em sistemas embarcados dedicados, nos quais o CPU só tem uma tarefa (ou poucas tarefas) a realizar

2. ENTRADA E SAÍDA POR INTERRUPÇÃO

- O CPU emite um comando de E/S, continua a executar outras instruções e é interrompido pelo módulo de E/S (controlador) quando este estiver pronto para trocar dados com o CPU.
- O CPU, então, executará a transferência de dados, como antes, e depois retomará seu processamento anterior.
- Ainda consome tempo do CPU, pois cada palavra de dados que vem da memória para o módulo de E/S ou do módulo de E/S para a memória deve passar pelo CPU.

2. ENTRADA E SAÍDA POR INTERRUPÇÃO

2. ENTRADA E SAÍDA POR INTERRUPÇÃO

• O maior problema no uso de interrupções: geralmente se dispõe de poucas linhas de interrupção ligadas diretamente ao processador

- SOs modernos utilizam um sistema de interrupções por prioridade
 - usualmente, são assinalados números para as interrupções, onde o menor número tem prioridade sobre o maior.

TAXA DE TRANSFERÊNCIA DE E/S

- Na E/S programada e na E/S por interrupção, temos duas desvantagens:
 - A taxa de transferência de E/S é limitada pela velocidade com a qual o processador pode testar e atender a um dispositivo.
 - O processador fica ocupado no gerenciamento de uma transferência de E/S; diversas instruções precisam ser executadas para cada transferência de E/S.

• Técnica mais eficiente: acesso direto à memória (DMA)

 Envolve um <u>módulo adicional</u> no barramento do sistema (**módulo de DMA**)

 Módulo de DMA realiza por si só a transferência de dados entre a memória principal e os controladores de E/S e o <u>CPU fica liberado</u> para realizar outras atividades.

• Quando o controlador DMA termina a transferência, ele avisa o CPU através de uma interrupção.

DMA é independente do processador!

Fonte: https://www.embarcados.com.br/dma-direct-memory-access/

Vantagens:

- Transferir dados sem o envolvimento do processador vai acelerar a tarefa de E/S
- A implementação de DMA também reduz a sobrecarga do processador
- O controlador de DMA pode suportar, tipicamente, o trabalho com vários periféricos diferentes, cada um utilizando um canal de DMA (DMA channel)
- Pode ser implementada em hardware de diversas formas diferentes, conforme a quantidade de dispositivos e o desempenho pretendido

Desvantagens:

- Por se tratar de uma unidade de hardware, existe um custo de implementação de um controlador DMA no sistema
- DMA é mais lenta que o CPU

BIBLIOGRAFIA

- Tanenbaum, A. S. **Sistemas Operacionais Modernos.** Pearson Prentice Hall. 3rd Ed., 2009.
- Silberschatz, A; Galvin, P. B.; Gagne G.; Fundamentos de Sistemas Operacionais. LTC. 9th Ed., 2015.
- Stallings, W.; Operating Systems: Internals and Design Principles. Prentice Hall. 5th Ed., 2005.
- Oliveira, Rômulo, S. et al. **Sistemas Operacionais** VII UFRGS. Disponível em: Minha Biblioteca, Grupo A, 2010.