Testing goodness of fit of a distribution

Issue: Suppose we have data X_1, \ldots, X_n on a **continuous** Advide variable X. How to assess whether $X \sim F_0$, a given probability distribution?

Approach 1: Perform a chi-square test t_{NMM} .

Hypotheses: $H_0: / X \sim \cancel{(F_0)}$ versus $H_1:$ This is not the case. I Assumed middle is worth

• $O_i = \#$ of observations that fall in B_i , i = 1, ..., k. • Divide the support of F_0 into k bins, B_1, \ldots, B_k .

ralmy of X

(FIMIL / IMINE) • $p_{i,0} = P(X \in B_i | H_0 \text{ is true}), i = 1, ..., k. (i, i, o = i)$

 \bullet $E_i = \kappa h_{i,O}$

· Null distribution: Approximately Kk-1 when wis luge.

• Rule of thumb: Have 5 to 8 categories, each with $E_i \geq 5$.

- estimate them using maximum likelihood, and use the estimated values to get $\hat{p}_{i,0}$ estimated $p_{i,0}$. \Rightarrow $\hat{e}_{i,0}$
- The degrees of freedom in this case is k-1-# parameters estimated under H_0 . $\psi = \frac{1}{2} \left(\frac{k}{2} \frac{k}{2} \right) = \frac{1}{2} \left(\frac{k}{2} + \frac{k}{2} \right) = \frac{1}{2} \left(\frac{k}{2} +$

Approach 2: Use a test procedure designed specifically for a given distribution

- Anderson-Darling test (ad.test), Shapiro-Wilk test nortest library in R for testing normality — (shapiro.test), etc.
- pearson.test to perform the above chi-square test

(Q-Q) plot is a graphical technique to determine if two datasets Approach 3: Use a Q-Q plot. In general, a quantile-quantile quantiles of x data on x-axis and those of y data on y-axis. If the points approximately fall along a 45^{o} line, then the two (x and y) come from the same distribution. It plots sample datasets may have the same distribution.

• Use qqplot function in R for a general Q-Q plot

Most report in for the sample of the sample

To see whether a dataset (x) comes from a given distribution F_0 , use Q-Q plot with

- y simulated from F_0 , or
- \bullet directly compute quantiles of F_0 and use them on y-axis.
- Use qqnorm in R when F_0 is normal, and get the reference line using qqline

(thousands of people). The data are stored in a column in a file network provider investigates the load of its network. The 15 homelity reasonable? number of concurrent users is recorded at fifty locations Ex: Network load data in Exercise 8.2 on page 234. A called load.txt.

On page 310, the book performs a chi-square test with 6 bins and gets 1.07 as the test statistic. The p-value is 1-pchisq(1.07, 3) = 0.784.

Let's use R to analyze these data.

∞ ∑ # Network load data from Exercise load <- read.table(file="load.txt", header=T)

> head(load)

load

1 17.

2 24.

3 13.5

4 15.4

5 19.7

6 22.1

^

Histogram and boxplot

hist(load\$load) boxplot(load) par(mfrow=c(1,1))

Normal QQ plot

qqnorm(load\$load)
qqline(load\$load)

a uniform distribution? Do these data come from #

x <- load\$load

runif(100, min=min(x), max=max(x)) ۱ ۷

qqplot(x,y)

Testing normality

using First download and install "nortest" packages #

install.packages("nortest")

Load the package in R

library(nortest)

> shapiro.test(x)

Shapiro-Wilk normality test

data: x

W = 0.9782, p-value = 0.4787

> pearson.test (x)

Pearson chi-square normality test

data: x

P = 2.4, p-value = 0.9344

Λ

p-value of 0.78. Investigate what how pearson.test causes the difference by reading ಡ forms the bins The book got # # #

Normality assurable.

Normal Q-Q Plot

Set up: Count data on two categorical variables (or factors) A $j=1,\ldots,m$. The data are arranged in a $k\times m$ table. Let O_{ij} categories of A are $i = 1, \ldots, p'_{k}$, and the categories of B are and B obtained from a sample of n subjects. Suppose the = observed count in (i, j)-th cell. $_{\mathcal{B}}$

associated). If there is an association, the value one variable associated), vs., $H_1: A$ and B are not independent (i.e., are depends (at least to some extent) on the value of the other. **Hypotheses:** $H_0: A$ and B are independent (i.e., are not

Example: The table below shows 695 children under 15 years hemoglobin level. Is hemoglobin level associated (related) to of age are cross-classified according to ethnic group and ethnicity?

Ethnic Group A	Hemos	Hemoglobin Level (g/100 ml) $\geq 10 9.0 - 9.9 < 9.0$ $\leq 80 100 20$	(g/100 ml) < 9.0 20	Total 200	Proportion
C C Total Proportion	249	30	90 10 126	585 110 695	

proportion of subjects in population that fall a He group does not depend on ethnicity, i.e., it is the same for each • If He level is not associated to ethnicity, then the ethnicity group, and vice versa. categories of A and B in which a randomly selected subject from the population falls. When A and B are independent, assuming that H_0 is true. Let X and Y indicate respective To do a chi-square test, we need the expected counts E_{ij}

$$P(X = i, Y = j) = P(X = i)P(Y = j)$$
 for all i, j .

- P(X = i) is estimated as
- P(Y = j) is estimated as
- Assuming independence, P(X=i,Y=j) is estimated as
- Assuming independence, E_{ij} is estimated as

Test statistic:

Degrees of freedom: