Review of trigonometry Inverse functions The number e and natural logarithm Inverse trigonometric functions

# Lecture 3: Review of trigonometry and inverse *functions*

Jonathan Holland

Rochester Institute of Technology\*

September 7, 2018

What is triangular and lives in a cave? A triglodyte

<sup>\*</sup>These slides may incorporate material from Hughes-Hallet, et al, "Calculus", Wiley

# Review of trigonometry

- Terms: Radian, amplitude, period, sine, cosine, tangent, secant
- Concepts. You should know...
  - Soh-Cah-Toa
  - On the unit circle,  $\cos \theta$  is the x value and  $\sin \theta$  is the y value
  - $\tan \theta$  is the slope of the line making an angle  $\theta$  with the x axis
  - How to graph the sine, cosine, and tangent, including intercepts and (in the case of tangent) vertical asymptotes
- Skills:
  - Convert degrees to and from radians
  - Identify the period and aplitude of a function from an equation, description, or graph
  - Design a periodic function with a specific amplitude and period

### Radians

The formulas of calculus are simpler in radians.

### Definition

A radian is defined to be the angle at the center of a unit circle which cuts off an arc of length 1, measured counterclockwise.

- $360^{\circ} = 2\pi \text{radians}$
- Application: computing arc lengths of sectors. What is the arc length of a sector of a circle of radius r, measuring  $\theta$  radians?
- What is the area of a pizza slice, if the angle at the vertex is  $\pi/6$  radians, and the diameter of the pizza is 24"?

### Sine and Cosine

- The two basic trig functions are the sine and cosine, defined via the unit circle.
- For a point (x, y) that is  $\theta$  radians on the unit circle measured in a counterclockwise sense from the x-axis, the cosine and sine are defined by  $\cos \theta = x$  and  $\sin \theta = y$ . (https://www.geogebra.org/m/dngh2vcg)
- Since the unit circle is defined by  $x^2 + y^2 = 1$ , we have  $\cos^2 \theta + \sin^2 \theta = 1$ .
- As  $\theta$  increases and P moves around the circle, the values of  $\sin \theta$  and  $\cos \theta$  oscillate between 1 and -1, and eventually repeat as P cycles back to a point it has already visited.
- If  $\theta$  is negative, the angle is measures clockwise around the circle.

## Amplitude, period, phase

- Graphs of sine and cosine: oscillate between a minimum of -1 and maximum of +1. (Amplitude=1)
- Periodic functions, period  $2\pi$ .
- What are the x-intercepts? Note, sine and cosine are horizontal translations (called phase shifts) of each other.

#### Definition

For any periodic function of time, the

- Amplitude is half the distance between the maximum and minimum values (if it exists)
- Period is the smallest time needed for the function to execute one complete cycle.

# Sinusoidal functions

- A function of the form  $f(t) = A\sin(Bt)$  or  $g(t) = A\cos(Bt)$ has amplitude |A| and period  $2\pi/|B|$ .
- A function of the form  $f(t) = A\sin(Bt) + C$  or  $g(t) = A\cos(Bt) + C$  has a graph shifted vertically by C, and oscillates around this value.
- Examples:  $y = 5\sin(2t)$ ,  $y = -5\sin(t/2)$ ,  $y = 1 + 2\sin t$ .
- Find possible functions from graphs.

# Modeling example

- High tide in Boston at midnight. Water level was 9.9 ft.
- Low tide was at about noon. The water level was 0.1 ft.
- Find a formula for the water level.
- More precisely, the difference between high and low tide is 12 hours, 24 minutes. Give a more accurate model.

## Activity 1

Suppose the curve  $y = \cos(2x)$  depicts a wave at time t = 0, much as if you could take a photograph that shows the oscillation in air pressure that is a sound wave. Graph this curve, then answer the following questions.

- If length is measured in millimeters, and the number 2 has units of  $\frac{\text{radians}}{\text{mm}}$ , what is the wavelength of this wave?
- Suppose the wave is traveling to the right at 340,290 mm per second. Answer the following questions with an equation,  $v = \cdots$ 
  - What curve depicts the wave after  $t = 10^{-6}$  seconds?
  - What curve depicts the wave after  $t = 2 \times 10^{-6}$  seconds?
  - What curve depicts the wave after  $t = 3 \times 10^{-6}$  seconds?
  - What curve depicts the wave after t seconds?

# Activity 2

In this exercise you'll use the graph of a cosine function to mathematically describe a wave. Suppose *x* and *y* are measured in meters.

- ② Suppose we take a photograph of the wave and find that it has a wavelength is 0.002 centimeters, and an amplitude of 0.07 cm. Determine numbers A and k so that the curve  $y = A\cos(kx)$  depicts the wave.
- Suppose the wave is traveling toward a detector at 100 meters per second. How many wave crests arrive at the detector per second?
- What's the period of the wave as experienced by the detector?

# Tangent function

• If t is any number with  $\cos t \neq 0$ , then the tangent of t is defined by

$$\tan t = \frac{\sin t}{\cos t}.$$

- This is the slope of the line from the origin to the point  $(\cos t, \sin t)$  of the unit circle.
- So, the tangent function  $\tan \theta$  gives the slope of the line making an angle  $\theta$  with the x axis!
- The tangent function is undefined at the *t*-intercepts of the cosine, where  $\cos t = 0$ , so at  $t = \pm \pi/2, \pm 3\pi/2, \ldots$  It has vertical asymptotes at these points.
- The tangent function is periodic. What is the period?
- Does it make sense to talk about the amplitude of the tangent function?

### Soh-Cah-Toa, and all that

0

 A useful mnemonic for remembering how sine, cosine, tangent are related to the sides of a right triangle

$$\sin\theta = \frac{\text{opposite}}{\text{hypotenuse}}, \qquad \cos\theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$
 
$$\tan\theta = \frac{\text{opposite}}{\text{adjacent}}$$

Other trig functions are defined by

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
  $\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{1}{\tan \theta}$   $\sec \theta = \frac{1}{\cos \theta}$   $\csc \theta = \frac{1}{\sin \theta}$ 

 Note: Everything can be written in terms of sine and cosine. So these are the most fundamental.

### Relation to the unit circle

Label each of the lengths on the following diagrams. The circle has a radius of 1 unit.



# Inverse functions: preview

- Terms: inverse function, one-to-one function, horizontal line test, arcsine, arctangent, natural logarithm
- Skills:
  - Recognize when a function is one-to-one from an equation or graph;
  - Find an inverse function algebraically, from a table of values, or from a graph;
  - Use the arcsine to solve an equation for an unknown angle;
  - Use the natural logarithm, and the rules for natural logarithms, to solve an equation where the unknown variable appears in the exponent.

# Inverse functions

• Bekele's running time, 2005 10k world record t = f(d)

| d (meters) | t = f(d) (second |
|------------|------------------|
| 0          | 0.00             |
| 2000       | 315.63           |
| 4000       | 629.98           |
| 6000       | 944.66           |
| 8000       | 1264.63          |
| 10000      | 1577.53          |

- We could ask for distance as function of time  $d = f^{-1}(t)$ . For example, if we ask how far Bekele ran in the first 629.98 seconds, the answer is 4000 m, so  $f^{-1}(629.98) = 4000m$ .
- Going backwards in this way from numbers of seconds to numbers of meters gives  $f^{-1}$ , the *inverse function* of f. So  $f^{-1}(t)$  is the number of meters Bekele ran during the first t

## Which functions have inverses?

- A function y = f(x) is called *one-to-one* if every output value y comes from one and only one input value x.
- Graphically, this leads to the horizontal line test: a function is one-to-one if every horizontal line intersects the graph in at most a single point.

#### Definition

If the function f is one-to-one, then its inverse is defined as follows:

$$f^{-1}(y) = x$$
 means  $y = f(x)$ .

# Graphs of inverse functions

- The function  $f(x) = x^3$  is invertible. Why?
- To find the inverse, solve  $y = x^3$  for x:  $x = y^{1/3}$ .
- So  $f^{-1}(y) = y^{1/3}$ . Or, if we want to call the independent variable x,  $f^{-1}(x) = x^{1/3}$ .
- The graphs  $y = x^3$  and  $y = x^{1/3}$  are reflections of each other about the line y = x.

#### **Fact**

The graph of the inverse function  $y = f^{-1}(x)$  comes from the graph of the function y = f(x) by switching the x and y coordinates of every point.

## Formulas for inverse functions

### Example

Let 
$$f(x) = \frac{x+1}{x-2}$$
. Find  $f^{-1}(x)$ .

#### Solution

- Start with  $y = \frac{x+1}{x-2}$ . The inverse function comes by exchanging the x and y variables, so for the inverse function we have  $x = \frac{y+1}{y-2}$ .
- Now solve this equation for y.

$$x(y-2) = y+1 \Longrightarrow xy-2x = y+1 \times xy - y = 2x+1 \Longrightarrow y = \frac{2x+1}{x-1}$$

• So 
$$f^{-1}(x) = \frac{2x+1}{x-1}$$

## Domain and range

#### Theorem

If f is a one-to-one function, then the domain of  $f^{-1}$  is the range fo f and the range of  $f^{-1}$  is the domain of f>

#### Example

Find the range of 
$$f(x) = \frac{x+1}{x-2}$$
.

#### Solution

We have  $f^{-1}(x) = \frac{2x+1}{x-1}$ . The domain of  $f^{-1}$  is  $(-\infty, 1) \cup (1, \infty)$ , which is the same as the range of f.

### The number e

- The most frequently used base for an exponential function is the number  $e \approx 2.71828...$
- This turns out to be the most convenient base for many applications. e<sup>x</sup> appears on most scientific calculators.
- Any exponential growth function can be written

$$P = P_0 e^{kt}$$

where k > 0. Any exponential decay function can be written

$$P = P_0 e^{-kt}$$

- k is called the continuous rate of growth (or decay)
- The amount P grows during a small time dt is  $dP \approx kP dt$

## Compound interest

- Suppose we compound an investment n times throughout the year, with a nominal rate of r.
- Then the effective annual rate is

$$e_n(r) = -1 + \left(1 + \frac{r}{n}\right)^n.$$

• Suppose we invest at a nominal rate of 3% (r = 0.03), then effective rate, compounding monthly times is

$$e_{12}(0.03) = -1 + \left(1 + \frac{0.03}{12}\right)^{12} \approx 0.0304$$

- So the effective rate is slightly higher, 3.04%.
- The functions  $e_n(r)$  are a family of polynomials in r.
- Note graphically that  $e_n(r) \le -1 + e^r$  for all n and r.
- $\bullet \lim_{n\to\infty} e_n(r) = -1 + e^r$

# The natural logarithm

• The natural logarithm of x, written  $\ln x$ , is the power of e needed to get x. That is,  $\ln x = c$  means  $e^c = x$ .

#### Fact

- To convert from  $P = P_0 a^t$  to  $P = P_0 e^{kt}$ , set  $k = \ln a$ .
- To convert from  $P = P_0 e^{kt}$  to  $P = P_0 a^t$ , set  $a = e^k$ .

# Properties of natural logarithms

• 
$$ln(ab) = ln a + ln b$$

• 
$$ln(a^p) = p ln a$$

• 
$$\ln e^x = x$$

• 
$$e^{\ln x} = x$$

Review of trigonometry Inverse functions The number e and natural logarithm Inverse trigonometric functions

#### Example

If 
$$2^{x^2} = 4 \cdot 3^x$$
, solve for  $x$ .

#### Solution

Note: By the order of operations,  $2^{x^2} = 2^{(x^2)} \neq (2^x)^2$  and  $4 \cdot 3^x = (4)(3^x) \neq 12^x$ . Taking natural logarithms,

$$\ln(2^{x^2}) = \ln(4 \cdot 3^x)$$

$$x^2 \ln(2) = \ln(4) + \ln(3^x)$$

$$x^2 \ln(2) = \ln(4) + x \ln(3)$$

$$\ln(2)x^2 - \ln(3)x - \ln(4) = 0$$

So, by the quadratic formula, 
$$x = \frac{\ln(3) \pm \sqrt{(\ln 3)^2 + 4 \ln(2) \ln(4)}}{2 \ln(2)}$$

## Solving trigonometric equations

- Sometimes we need to find the angle corresponding to a given sine. (Draw a picture.)
- For example, find  $\theta$  such that  $\sin \theta = 0$ . Or  $\theta$  such that  $\sin \theta = 0.3$ .
- Answers to second  $\theta \approx 0.305, 2.84, 0.305 \pm 2\pi, 2.84 \pm 2\pi, \dots$
- For each equation we pick out the solution between  $-\pi/2$  and  $\pi/2$  as the preferred solution.
- Preferred solution of  $\sin \theta = 0$ ?  $\sin \theta = 0.3$ ?

### Arcsine

### Definition

For 
$$-1 \le y \le 1$$
,  $\arcsin y = x$  means  $\sin x = y$  with  $-\pi/2 \le x \le \pi/2$ .

$$\begin{array}{c|cc} x & \sin x \\ \hline -\frac{\pi}{2} & -1. \\ -1 & -0.841471 \\ -\frac{1}{2} & -0.479426 \\ 0 & 0. \\ \frac{1}{2} & 0.479426 \\ 1 & 0.841471 \\ \frac{\pi}{2} & 1. \\ \end{array}$$

$$\begin{array}{c|c} X & \sin^{-1} X \\ \hline -1 & -\frac{\pi}{2} \end{array}$$

## Visualizing the arcsine



- Draw a right triangle with one angle  $\sin^{-1} x$ . Indicate the lengths of the various sides.
- Compute  $tan(sin^{-1} x)$  using this triangle.

### Arctangent

• The inverse tangent is the inverse function for the piece of the tangent function having the domain  $-\pi/2 < x < \pi/2$ .

#### Definition

For any y,  $\arctan y = x$  means that  $\tan x = y$  with  $-\pi/2 < x < \pi/2$ .

- Graphs. Note horizontal asymptotes.
- An "application": Experience levels in Halo series
- Geometrical interpretation.