

Sumário

- 1. Bibliografia
- 2. Definição e Propriedades das Funções Quadráticas
- 3. Os Zeros de uma Função Quadrática
- 4. Exercícios

Bibliografia

Bibliografia da Aula 05

Fundamentos da Matemática Elementar: 1 (Click para baixar)

Definição e Propriedades das Funções Quadráticas

Definição

Uma **função quadrática** (ou **função do 2º grau**) é uma função **polinomial**, dada pela forma

$$f(x) = ax^2 + bx + c,$$

onde a, b e c são constantes reais e $a \neq 0$.

3

Propriedades

- ightharpoonup O gráfico de toda função quadrática, de \mathbb{R} em \mathbb{R} , é uma parábola.
- Se o gráfico possui concavidade para cima, isso significa que a função possui um valor mínimo. A função não tem um valor máximo.
- ▶ Já se o gráfico possui concavidade para baixo, isso significa que a função possui um valor máximo. A função não tem um valor mínimo.
- ▶ O ponto do gráfico no qual (x, f(x)) representa esse valor mínimo ou máximo é chamado de **vértice da parábola**.

Propriedades

(a) Concavidade para cima: mínimo

(b) Concavidade para baixo: máximo

Algumas observações sobre quadrados:

- ► Sabemos que $m^2 + 2mp + p^2 = (m + p)^2$.
- ▶ $m^2 > 0$, se $m \neq 0$.
 - O produto por um número positivo mantém o sinal. Logo, m * m mantém o mesmo sinal do número m.
 - O produto de m por um número negativo, resulta em um simétrico. Como m é negativo, m * m gera um número positivo, pois o simétrico de um número negativo é um número positivo.
- $m^2 = 0 \Leftrightarrow m = 0$ (pois o produto de dois números reais é zero se, e somente se, um deles é zero).

- a) Seja a função quadrática $f : \mathbb{R} \to \mathbb{R}$, dada por $f(x) = x^2$.
 - Como $x^2 = x * x \ge 0$, a função quadrática $f(x) = x^2$ possui um valor mínimo em x = 0.

Figura 2: A parábola deve ter concavidade para cima.

- b) Agora, considere a função quadrática $g: \mathbb{R} \to \mathbb{R}$, dada por $f(x) = -x^2$.
 - Como $x^2 = x * x \ge 0$, a função quadrática $f(x) = -x^2$ possui um valor máximo em x = 0:

$$x^2 \ge 0 \Leftrightarrow (-1) * x^2 \le (-1) * 0 \Leftrightarrow -x^2 \le 0.$$

Figura 3: A parábola deve ter concavidade para baixo.

- c) Seja $h : \mathbb{R} \to \mathbb{R}$, dada por $h(x) = x^2 + 3$.
 - Como $x^2 = x * x \ge 0$, a função quadrática $f(x) = x^2 + 3$ possui um valor mínimo y = 3:

$$x^2 \ge 0 \Leftrightarrow x^2 + 3 \ge 0 + 3$$
$$\Leftrightarrow x^2 + 3 \ge 3.$$

• O valor mínimo ocorre quando $x^2 = 0$; ou seja, quando x = 0.

4

O esboço do gráfico é o seguinte:

Figura 4: A parábola deve ter concavidade para cima.

- d) Considere a função quadrática $i : \mathbb{R} \to \mathbb{R}$, dada por $i(x) = 3x^2 + 12x + 13$.
 - Diferente do que fizemos anteriormente, não conseguimos apontar, de forma direta, se esta função possui valor máximo ou mínimo, determinando a sua concavidade.
 - Entretanto, podemos fazer algumas manipulações algébricas, a fim de determinar a concavidade do gráfico desta função.

Completando Quadrado

Colocamos o coeficiente de x^2 em evidência:

$$3x^2 + 12x + 13 = 3 * (x^2 + 4x) + 13. (1)$$

O monômio $x^2 + 4x$ pode ser reescrito como

$$x^2 + 4x = x^2 + 2 * 2 * x + 2^2 - 2^2$$
 (2)

$$= (x^2 + 2 * x * 2 + 2^2) - 4 (3)$$

$$= (x+2)^2 - 4. (4)$$

Completando Quadrado

Das equações (1) e (4), concluímos que

$$3x^{2} + 12x + 13 = 3 * (x^{2} + 4x) + 13$$

$$= 3 * [(x + 2)^{2} - 4] + 13$$

$$= 3 * (x + 2)^{2} - 12 + 13$$

$$= 3 * (x + 2)^{2} + 1.$$

$$(x+2)^2 \ge 0 \Leftrightarrow 3*(x+2)^2 \ge 3*0$$

 $\Leftrightarrow 3*(x+2)^2 + 1 \ge 0 + 1$
 $\Leftrightarrow 3*(x+2)^2 + 1 \ge 1$

Portanto, a parábola de $i(x) = 3 * (x + 2)^2 + 1$ possui um valor mínimo y = 1, que ocorre quando $3 * (x + 2)^2 = 0$ (ou seja, quando $(x + 2)^2 = 0$):

$$(x+2)^2 = 0 \Leftrightarrow (x+2)(x+2) = 0$$
$$\Leftrightarrow x+2 = 0$$
$$\Leftrightarrow x+2-2 = 0-2$$
$$\Leftrightarrow x = -2.$$

Assim, um esboço da parábola de i(x) é:

Figura 5: A parábola deve ter concavidade para cima.

Dada a função $f(x) = -x^2 + 6$, determine se a função quadrática possui um valor máximo ou um valor mínimo e esboce o seu gráfico.

Exercício 2

Dada a função $f(x) = -3x^2 + 6x - 10$, determine se a função quadrática possui um valor máximo ou um valor mínimo e esboce o seu gráfico.

Proposição 1

Teorema 1

Toda função quadrática $f(x) = ax^2 + bx + c$ pode ser escrita na forma canônica

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}.$$

Demonstração Teorema 1

Com efeito, como $a \neq 0$,

$$f(x) = ax^{2} + bx + c$$

$$= a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + \frac{2}{2} * \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + \frac{2}{2} * \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \frac{b^{2}}{4a^{2}} - \frac{b^{2}}{4a^{2}}\right) + c.$$

Demonstração Teorema 1

Assim,

$$f(x) = ax^{2} + bx + c$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \frac{b^{2}}{4a^{2}} - \frac{b^{2}}{4a^{2}}\right) + c$$

$$= a\left(x^{2} + 2\frac{b}{2a}x + \frac{b^{2}}{4a^{2}}\right) + c - a * \frac{b^{2}}{4a^{2}}$$

$$= a\left(x + \frac{b}{2a}\right)^{2} + \frac{4ac}{4a} - \frac{b^{2}}{4a}$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a}.$$

Corolário do Teorema 1

Corolário 1

A partir da forma canônica dada no Teorema 1, podemos afirmar que:

- i) Se a > 0, o gráfico de f possui concavidade voltada para cima.
- ii) Se a < 0, o gráfico de f possui concavidade voltada para cima.
- iii) O vértice da parábola é o ponto $\left(-\frac{b}{2a}, -\frac{b^2 4ac}{4a}\right)$.

Demonstração

Temos que
$$\left(x + \frac{b}{2a}\right)^2 \ge 0$$
. Assim:

i) Se a > 0, então

$$a * \left(x + \frac{b}{2a}\right)^2 \ge a * 0 \Rightarrow a \left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a} \ge 0 - \frac{b^2 - 4ac}{4a}$$
$$\Rightarrow a \left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a} \ge -\frac{b^2 - 4ac}{4a},$$

e a função quadrática possui um valor mínimo. A concavidade do seu gráfico é voltada para cima.

Demonstração

ii) Se a < 0, então

$$a * \left(x + \frac{b}{2a}\right)^2 \le a * 0 \Rightarrow a \left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a} \le 0 - \frac{b^2 - 4ac}{4a}$$
$$\Rightarrow a \left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a} \le -\frac{b^2 - 4ac}{4a},$$

e a função quadrática possui um valor máximo. A concavidade do seu gráfico é voltada para baixo.

Demonstração

iii) Os valores máximo ou mínimo são atingidos quando $a*\left(x+\frac{b}{2a}\right)^2=0$. Isso ocorre

quando
$$\left(x + \frac{b}{2a}\right)^2 = 0$$
. Ou seja, quando

$$x + \frac{b}{2a} = 0 \Leftrightarrow x + \frac{b}{2a} - \frac{b}{2a} = 0 - \frac{b}{2a}$$
$$\Leftrightarrow x = -\frac{b}{2a}.$$

Por sua vez,

$$f\left(-\frac{b}{2a}\right) = a\left(-\frac{b}{2a} + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a} = -\frac{b^2 - 4ac}{4a},$$

de onde segue que o vértice é o ponto $\left(-\frac{b}{2a}, -\frac{b^2-4ac}{4a}\right)$.

Os Zeros de uma Função Quadrática

A Raiz Quadrada

- Além das potências positivas de um número real (a^2 , a^3 , a^{100} , etc.), e das negativas (a^{-1} , a^{-34} ,etc., quando $a \neq 0$), podemos definir potências racionais.
- Porém, a depender do racional usado, nem todo número real gera um novo número real através de tal potência.
- Veremos mais na frente que o problema está nas potências com denominador par, a qual a raiz quadrada faz parte.

A Raiz Quadrada

A raiz quadrada de um número a nada mais é do que elevar tal número à potência $\frac{1}{2}$:

$$\sqrt{a}=a^{1/2}$$
.

Usando propriedades de potência de um número real, temos que

$$0 \le \left(a^{1/2}\right)^2 = a^{1/2} * a^{1/2} = a^{1/2+1/2} = a.$$

Ou seja, para que esteja vem definida, devemos ter $a \geq 0$ ao calcularmos a raiz quadrada.

A Raiz Quadrada

- Se queremos que \sqrt{a} seja um número real, devemos ter $a \ge 0$.
- Se a < 0, o resultado da operação \sqrt{a} é um novo tipo de número: um **número** imaginário.
- Como o interesse deste curso são as funções que geram números reais, a raiz quadrada deve ser aplicada em reais não-negativos (≥ 0).

Zeros da Função Quadrática

Lembrem-se que o zero de uma função é o elemento x do domínio tal que f(x) = 0.

Exercício 3

Seja a forma canônica de uma função quadrática é dada por

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}.$$

- a) Qual a relação entre os coeficientes a, b e c garante a existência de soluções reais da equação f(x) = 0?
- b) Quais as fórmulas para os zeros da função quadrática dada?

Esboço do Gráfico de uma Função Quadrática

- Calcule o vértice da parábola.
- Verifique a concavidade.
- ► Calcule os zeros da função e marque os pontos (x, 0) no plano cartesiano, onde o gráfico corta o eixo x.
- Se não houver zeros, o gráfico está todo acima (a > 0) do eixo x ou todo abaixo (a < 0) deste eixo.
- ▶ Verifique onde o gráfico intersecta o eixo y: (0, f(0)).

Exemplo

No gráfico da função

$$f(x)=x^2-4x+3,$$

temos:

- ► $f(x) = (x-2)^2 1$.
- ightharpoonup O vértice é o ponto (2, -1).
- Como a = 1 > 0, a concavidade é voltada para cima.

Exemplo

- Há duas raízes reais: x = 1 e x = 3.
- Logo, o gráfico corta o eixo x em (1,0) e (3,0).
- O gráfico corta o eixo y em (0, 3).

Exercício 4

Esboce os gráficos das funções abaixo:

a)
$$f(x) = -x^2 + 7x - 12$$

b)
$$f(x) = x^2 - 2x + 2$$

c)
$$f(x) = x^2 - 2x - 1$$

Uma empresa produz e vende determinado tipo de produto. A quantidade que ela consegue vender varia conforme o preço, da seguinte forma: a um preço y ela consegue vender x unidades do produto, de acordo com a equação $y=50-\frac{1}{2}x$. Sabendo que a receita (quantidade vendida vezes o preço de venda) obtida foi de R\$ 1250,00, qual foi a quantidade vendida?

Exercício 6

Determine os valores de m para que a função quadrática

$$f(x) = (m+2)x^2 + (3-2m)x + (m-1)$$
 tenha raízes reais.