Advanced Macroeconomics II RBC and Numerical Method

Linlin Niu

WISE, Xiamen University

Spring 2014, Lecture 3-6

The environment

1) Preference:

$$U = E\left[\sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-\eta}}{1-\eta}\right]$$

2) Technology:

$$C_t + K_t = Z_t K_{t-1}^{\rho} + (1 - \delta) K_{t-1}$$

How to define " Z_t ": $\log Z_t = (1-\varphi)\log \bar{Z} + \varphi \log Z_{t-1} + \epsilon_t$, where $\epsilon_t \overset{i.i.d.}{\sim} N(0,\sigma^2)$, $\varphi < 1$. As a parameter, usually \bar{Z} is normalized to 1.

3) Endowment:

$$N_t = 1$$
, $K_{-1} > 0$

4) Information: decision made based on all information I_t up to time t.

The social planner's problem

$$\max_{(C_t, K_t)_{t=0}^{\infty}} E_0 \left[\sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-\eta}}{1-\eta} \right]$$

$$s.t. K_{-1}, Z_0$$

$$C_t + K_t = Z_t K_{t-1}^{\rho} + (1-\delta) K_{t-1}$$

$$\log Z_t = (1-\varphi) \log \bar{Z} + \varphi \log Z_{t-1} + \epsilon_t$$

$$\varepsilon_t \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$$

To solve:

The Lagrangian: L =

$$\max_{(C_t, K_t)_{t=0}^{\infty}} E_0 \sum_{t=0}^{\infty} \left[\beta^t \left(\frac{C_t^{1-\eta} - 1}{1-\eta} - \lambda_t (C_t + K_t - Z_t K_{t-1}^{\rho} - (1-\delta)K_{t-1}) \right) \right]$$

The necessary FOCs:

$$\frac{\partial L}{\partial C_t} : 0 \stackrel{!}{=} C_t^{-\eta} - \lambda_t$$

$$\frac{\partial L}{\partial K_t} : 0 \stackrel{!}{=} \beta^t [-\lambda_t] + \beta^{t+1} E_t \left[(-\lambda_{t+1}) [-\rho Z_{t+1} K_t^{\rho-1} - (1-\delta)] \right]$$

$$\implies 0 \stackrel{!}{=} -\lambda_t + \beta E_t \left[\lambda_{t+1} \left(\rho Z_{t+1} K_t^{\rho-1} + (1-\delta) \right) \right]$$

$$\frac{\partial L}{\partial \lambda_t} : 0 \stackrel{!}{=} C_t + K_t - Z_t K_{t-1}^{\rho} - (1-\delta) K_{t-1}$$

To solve:

Transversality condition:

For uniqueness and non-explosive solution

 \Rightarrow The expected marginal utility of consuming the left-over capital discounted as of today converges to zero (when $T \to \infty$).

$$0 = \underset{T \to \infty}{E_0} \left[\beta^T C_T^{-\eta} K_T \right]$$

To solve for state states:

Collect all the necessary coditions and exogenous process:

$$C_{t} = Z_{t}K_{t-1}^{\rho} + (1-\delta)K_{t-1} - K_{t}$$

$$R_{t} = \rho Z_{t}K_{t-1}^{\rho-1} + (1-\delta)$$

$$1 = E_{t} \left[\beta \left(\frac{C_{t+1}}{C_{t}}\right)^{-\eta}R_{t+1}\right]$$

$$logZ_{t} = (1-\phi)log\bar{Z} + \phi logZ_{t+1} + \varepsilon_{t}, \varepsilon_{t} \sim iid\ N(0, \sigma^{2})$$

Note: we have defined the gross return of capital; we substitute out λ_t with marginal utility of consumption. The number of variables does not change.

Important: #(equation) = #(variable)

To solve for state states:

To find the S.S of the economy, drop time indices:

$$egin{array}{lll} ar{\mathcal{C}} &=& ar{\mathcal{Z}}ar{\mathcal{K}}^
ho + (1-\delta)ar{\mathcal{K}} - ar{\mathcal{K}} \ ar{\mathcal{R}} &=&
hoar{\mathcal{Z}}ar{\mathcal{K}}^{
ho-1} + (1-\delta) \ 1 &=& eta\cdotar{\mathcal{R}} \end{array}$$

Three variables/equations need to be solved for $(\bar{C}, \bar{K}, \bar{R})$ given the parameters $(\bar{Z}, \beta, \rho, \delta)$.

The sequence of solutions

$$\begin{split} \bar{R} &= 1/\beta \\ \bar{K} &= \left(\frac{\rho \bar{Z}}{\bar{R} - 1 + \delta}\right)^{1/(1 - \rho)} \\ hence &: \bar{Y} = \bar{Z} \bar{K}^{\rho} \quad \bar{C} = \bar{Y} - \delta \bar{K} \\ \bar{C}/\bar{K} &= \bar{Y}/\bar{K} - \delta = \bar{Z} \bar{K}^{\rho - 1} - \delta \\ &= \frac{\bar{R} - 1 + \delta}{\rho} - \delta = \frac{1 - \beta + \delta \beta}{\rho \beta} - \delta \end{split}$$

Same model environment, but competitive equilibrium

$$(C_t, N_t, K_t, R_t, W_t)_{t=0}^{\infty}$$

Household: given $K_{-1}^{(s)}$, W_t , and R_t , decide on providing how much $N_t^{(s)}$, $K_t^{(s)}$, and consuming C_t .

$$\max_{(C_t, K_t^{(s)}, N_t^{(s)})_{t=0}^{\infty}} E_0 \left[\sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-\eta}}{1-\eta} \right]$$

$$S.t.K_{-1},$$
 $C_t + K_t^{(s)} = W_t N_t^{(s)} + R_t K_{t-1}^{(s)}$

plus no-Ponzi-game condition (similar to the transversality condition),

$$0 = \underset{t o \infty}{\mathit{lim}} \mathsf{E}_0 \left[\left(\Pi_{s=1}^t \mathsf{R}_s^{-1} \right) \mathsf{K}_t
ight]$$
 ,

to ensure the discounted present value of capital left-over, when time approaches infinity, is zero.

Same model environment, but competitive equilibrium

Firm: given W_t , and R_t , decide on how much capital to rent and labor to hire, $N_t^{(d)}$, $K_t^{(d)}$, hence how much to produce $Y_t(N_t^{(d)}, K_t^{(d)})$.

$$\max_{K_{t-1}^{(d)}, N_t^{(d)}} Z_t \left(K_{t-1}^{(d)}\right)^{\rho} \left(N_t^{(d)}\right)^{1-\rho} + (1-\delta)K_{t-1}^{(d)} - W_t N_t^{(d)} - R_t K_{t-1}^{(d)}$$

where

$$log Z_t = (1 - \phi)log \bar{Z} + \phi log Z_{t+1} + \varepsilon_t, \varepsilon_t \sim iid N(0, \sigma^2)$$

Same model environment, but competitive equilibrium

Market Clearing Conditions:

Capital Market:

$$K_{t-1}^{(d)} = K_{t-1}^{(s)}$$

Labor Market:

$$N_t^{(d)} = N_s^{(s)} = 1$$

Goods Market:

$$C_t + K_t = Z_t K_{t-1}^{\rho} N_t^{1-\rho} + (1-\delta) K_{t-1}$$

By Walras' law, we only need two out of these three conditions.

To solve competitive equilibrium: solve every party's FOCs

Household:

$$L = \max_{(C_t, \mathcal{K}_t)_{t=0}^{\infty}} E\left[\sum_{t=0}^{\infty} \beta^t \left(\frac{C_t^{1-\eta} - 1}{1-\eta} - \lambda_t (C_t + \mathcal{K}_t - R_t \mathcal{K}_{t-1} - \mathcal{W}_t \mathcal{N}_t)\right)\right]$$

⇒ Household FONCs:

$$\frac{\partial L}{\partial C_t} : 0 \stackrel{!}{=} C_t^{-\eta} - \lambda_t$$

$$\frac{\partial L}{\partial K_t} : 0 \stackrel{!}{=} -\lambda_t + \beta E_t [\lambda_{t+1} R_{t+1}]$$

$$\frac{\partial L}{\partial \lambda_t} : 0 \stackrel{!}{=} C_t + K_t - W_t - R_t K_{t-1}$$

To solve competitive equilibrium: solve every party's FOCs

Firm:

Firm's FONCs:

$$\begin{aligned} W_t &= (1-\rho)Z_t \left(K_{t-1}^{(d)}\right)^{\rho} \left(N_t^{(d)}\right)^{-\rho} \\ R_t &= \rho Z_t \left(K_{t-1}^{(d)}\right)^{\rho-1} \left(N_t^{(d)}\right)^{1-\rho} + (1-\delta) \end{aligned}$$

Dropping (d) and using

$$Y_t = Z_t K_{t-1}^{\rho} N_t^{1-\rho}$$

The FONCs amount to

$$W_t N_t = (1 - \rho) Y_t$$

 $R_t K_{t-1} = \rho Y_t + (1 - \delta) K_{t-1}$
or $r_t K_{t-1} - \delta K_{t-1} = \rho Y_t$

To solve competitive equilibrium: market clearing

Market clearing by dropping $^{(d)}$ and $^{(s)}$, as we have done. Combining the FONCs and the exogoneous process, we reduce to the same system of equations (after deleting W_t , Y_t , λ_t):

$$C_{t} = Z_{t}K_{t-1}^{\rho} + (1-\delta)K_{t-1} - K_{t}$$

$$R_{t} = \rho Z_{t}K_{t-1}^{\rho-1} + (1-\delta)$$

$$1 = E_{t} \left[\beta \left(\frac{C_{t+1}}{C_{t}}\right)^{-\eta}R_{t+1}\right]$$

$$logZ_{t} = (1-\phi)log\bar{Z} + \phi logZ_{t+1} + \varepsilon_{t}, \varepsilon_{t} \sim iid\ N(0, \sigma^{2})$$

Both ways work. You can opt to the simpler one.

Log-linearization

$$C_t = \bar{C}e^{\hat{c}_t}$$
 $K_t = \bar{K}e^{\hat{k}_t}$

Budget constraint:

$$\begin{array}{rcl} \bar{C} \, e^{\hat{c}_t} & = & \bar{Z} \bar{K}^{\rho} \, e^{\hat{z}_t} \, e^{\rho \hat{k}_{t-1}} + (1-\delta) \bar{K} e^{\hat{k}_{t-1}} - \bar{K} e^{\hat{k}_t} \\ \bar{C} + \bar{C} \cdot \hat{c}_t & \approx & \bar{Z} \bar{K}^{\rho} + \bar{Z} \bar{K}^{\rho} (z_t + \rho \hat{k}_{t-1}) + (1-\delta) \bar{K} \hat{k}_{t-1} - \delta \bar{K} - \bar{K} \hat{k}_t \end{array}$$

Using the steady state relationship $\bar{C}=\bar{Z}\bar{K}^{\rho}+(1-\delta)\bar{K}-\bar{K}$, $\bar{Y}=\bar{Z}\bar{K}^{\rho}$, and $\bar{C}=\bar{Y}-\delta\bar{K}$

$$\begin{split} \bar{C}\hat{c}_t &\approx & \bar{Z}\bar{K}^\rho(\hat{z}_t + \rho\hat{k}_{t-1}) + (1-\delta)\bar{K}\hat{k}_{t-1} - \bar{K}\hat{k}_t \\ \hat{c}_t &\approx & \frac{\bar{Y}}{\bar{C}}\hat{z}_t + \frac{\bar{K}}{\bar{C}}\bar{R}\hat{k}_{t-1} - \frac{\bar{K}}{\bar{C}}\hat{k}_t \end{split}$$

Log-linearization

Interest rate definition

$$\begin{array}{rcl} R_t & = & \rho Z_t K_{t-1}^{\rho-1} + (1-\delta) \\ \bar{R} e^{\hat{r}_t} & = & \rho \bar{Z} \bar{K}^{\rho-1} e^{\hat{z}_t + (\rho-1)\hat{k}_{t-1}} + (1-\delta) \\ \bar{R} + \bar{R} \hat{r}_t & \approx & \rho \bar{Z} \bar{K}^{\rho-1} + (1-\delta) + \rho \bar{Z} \bar{K}^{\rho-1} \left[\hat{z}_t + (\rho-1)\hat{k}_{t-1} \right] \end{array}$$

Using the steady state relationship

$$rac{1}{eta} = ar{R} =
ho ar{Z} ar{K}^{
ho-1} + (1-\delta)$$

$$\begin{split} \bar{R}\hat{r}_t &\approx \rho \bar{Z}\bar{K}^{\rho-1} \left[\hat{z}_t + (\rho-1)\hat{k}_{t-1} \right] \\ \hat{r}_t &\approx \beta \left[\frac{1}{\beta} - (1-\delta) \right] \left[\hat{z}_t - (1-\rho)\hat{k}_{t-1} \right] \\ \hat{r}_t &\approx \left[1 - \beta(1-\delta) \right] \left[\hat{z}_t - (1-\rho)\hat{k}_{t-1} \right] \end{split}$$

Log-linearization

Euler equation

$$1 = E_t \left[\beta \left(\frac{C_{t+1}}{C_t} \right)^{-\eta} R_{t+1} \right]$$

$$1 = E_t \left[\beta \left(\frac{\bar{C}}{\bar{C}} e^{\hat{c}_{t+1} - \hat{c}_t} \right)^{-\eta} \bar{R} e^{\hat{r}_{t+1}} \right]$$

$$1 \approx E_t \left[\beta \bar{R} e^{\eta (\hat{c}_t - \hat{c}_{t+1}) + \hat{r}_{t+1}} \right]$$

Use the steady state relationship

$$1 = eta ar{R}$$
 $0 pprox E_t \left[\eta (\hat{c}_t - \hat{c}_{t+1}) + \hat{r}_{t+1}
ight]$

Log-linearization

Technology process

$$\begin{array}{lcl} \log \left(\bar{Z} e^{\hat{z}_t} \right) & = & (1 - \psi) \log \bar{Z} + \psi \log \left(\bar{Z} e^{\hat{z}_{t-1}} \right) + \varepsilon_t \\ \hat{z}_t & = & \psi \hat{z}_{t-1} + \varepsilon_t \end{array}$$

which holds exactly.

Log-linearization: results

Collect all the four L.L. equations, which form a system of linear and homogeneous equations.

②
$$\hat{r}_t \approx [1 - \beta(1 - \delta)] [\hat{z}_t - (1 - \rho)\hat{k}_{t-1}]$$

3
$$0 \approx E_t \left[\eta(\hat{c}_t - \hat{c}_{t+1}) + \hat{r}_{t+1} \right]$$

 \Longrightarrow Four equations, four variables! $(\hat{c}_t, \hat{z}_t, \hat{k}_{t-1}, \hat{r}_t)$, but some variables appear in different time periods. for example, equation 1 is a second order difference equation in \hat{k}_t .

Our next task is to solve for this linear system in terms of the exogenous variable and predetermined variable $(\hat{z}_t, \hat{k}_{t-1})$.

Summary on the procedure of log-linearization

- Determine and collect all equilibrium conditions, i.e. FOCs, constraints, exogenous variable processes. #(equation)=#(variable).
- 2 Determine steady states.
- **3** Multiplying out variables, i.e. if $X_t(1-Q_t)$ then multiply out to get $X_t-X_tQ_t$, then replace X_t with $\bar{X}e^{\hat{x}_t}$.
- Ocllect all exponential terms wherever possible. E.g. $\bar{X}e^{\hat{x}_t}\bar{Y}e^{\hat{y}_t}=\bar{X}\bar{Y}e^{\hat{x}_t+\hat{y}_t}$.
- **1** Approximate $e^{\hat{x}_t}$ with first order expansion $e^{\hat{x}_t} \approx 1 + \hat{x}_t$ (only when it's necessary).
- Collect all constant terms and verify that they cancel out by using the steady state relationship. Further, delete any higher order terms such as to impose $\hat{x}_t\hat{y}_t\approx 0$.
- Collect all variables to form a system of linear and homogeneous equations.

Solve for the recursive law of motion with method of undetermined coefficients.

State variables: \hat{k}_{t-1} , \hat{z}_t

The dynamics of the model should be described by **recursive laws of motion** in terms of the state variables,

$$egin{array}{lll} \hat{k}_t &=& v_{kk}\hat{k}_{t-1} + v_{kz}\hat{z}_t \ \hat{r}_t &=& v_{rk}\hat{k}_{t-1} + v_{rz}\hat{z}_t \ (ext{It's done!}) \ \hat{c}_t &=& v_{ck}\hat{k}_{t-1} + v_{cz}\hat{z}_t \end{array}$$

We need to solve for v_{kk} , v_{kz} , v_{ck} and v_{cz} the "undetermined" coefficients. Coefficient interpretation: elasticities.

• Substitute the postulated linear recursive law of motion into the I.I. equations until only \hat{k}_{t-1} and \hat{z}_t remain. E.g.

$$E_t \hat{z}_{t+1} = \psi \hat{z}_t$$

$$E_{t}\hat{c}_{t+1} = E_{t}(v_{ck}\hat{k}_{t} + v_{cz}\hat{z}_{t+1})$$

$$= v_{ck}(v_{kk}\hat{k}_{t-1} + v_{kz}\hat{z}_{t}) + v_{cz}\psi\hat{z}_{t}$$

$$= v_{ck}v_{kk}\hat{k}_{t-1} + (v_{ck}v_{kz} + v_{cz}\psi)\hat{z}_{t}$$

• Substitute the postulated linear recursive law of motion into the I.I. equations until only \hat{k}_{t-1} and \hat{z}_t remain. E.g.

$$E_t \hat{z}_{t+1} = \psi \hat{z}_t$$

$$E_{t}\hat{c}_{t+1} = E_{t}(v_{ck}\hat{k}_{t} + v_{cz}\hat{z}_{t+1})$$

$$= v_{ck}(v_{kk}\hat{k}_{t-1} + v_{kz}\hat{z}_{t}) + v_{cz}\psi\hat{z}_{t}$$

$$= v_{ck}v_{kk}\hat{k}_{t-1} + (v_{ck}v_{kz} + v_{cz}\psi)\hat{z}_{t}$$

Compare coefficients.

For the first equation (budget constraint)

$$\begin{split} \hat{c}_t &= \frac{\bar{Y}}{\bar{C}} \hat{z}_t + \frac{\bar{K}}{\bar{C}} \bar{R} \hat{k}_{t-1} - \frac{\bar{K}}{\bar{C}} \hat{k}_t \\ v_{ck} \hat{k}_{t-1} + v_{cz} \hat{z}_t &= \frac{\bar{Y}}{\bar{C}} \hat{z}_t + \frac{\bar{K}}{\bar{C}} \bar{R} \hat{k}_{t-1} - \frac{\bar{K}}{\bar{C}} (v_{kk} \hat{k}_{t-1} + v_{kz} \hat{z}_t) \\ v_{ck} \hat{k}_{t-1} + v_{cz} \hat{z}_t &= \frac{\bar{K}}{\bar{C}} (\frac{1}{\beta} - v_{kk}) \hat{k}_{t-1} + (\frac{\bar{Y}}{\bar{C}} - \frac{\bar{K}}{\bar{C}} v_{kz}) \hat{z}_t \end{split}$$

Comparing coefficients: since the equation has to be satisfied for any value for \hat{k}_{t-1} and \hat{z}_t , we have

$$v_{ck} = \frac{\bar{K}}{\bar{C}}(\frac{1}{\beta} - v_{kk})$$

$$v_{cz} = \frac{\bar{Y}}{\bar{C}} - \frac{\bar{K}}{\bar{C}}v_{kz}$$

For the second equation (return)

$$\hat{r}_{t} = [1 - \beta(1 - \delta)] [\hat{z}_{t} - (1 - \rho)\hat{k}_{t-1}]
v_{rk} \hat{k}_{t-1} + v_{rz} \hat{z}_{t} = -[1 - \beta(1 - \delta)] (1 - \rho)\hat{k}_{t-1} + [1 - \beta(1 - \delta)] \hat{z}_{t}$$

Comparing coefficients, we have

$$egin{array}{lll} \mathbf{v}_{\mathit{rk}} &=& -\left[1-eta(1-\delta)\right](1-
ho) \ \mathbf{v}_{\mathit{rz}} &=& \left[1-eta(1-\delta)\right] \end{array}$$

For the third equation (Euler equation/asset pricing)

$$\begin{array}{lll} 0 & = & E_{t} \left[\eta (\hat{c}_{t} - \hat{c}_{t+1}) + \hat{r}_{t+1} \right] \\ 0 & = & E_{t} \left[\eta (v_{ck} \hat{k}_{t-1} + v_{cz} \hat{z}_{t} - v_{ck} \hat{k}_{t} - v_{cz} \hat{z}_{t+1}) + v_{rk} \hat{k}_{t} + v_{rz} \hat{z}_{t+1} \right] \\ 0 & = & E_{t} \left\{ \eta \left[v_{ck} \hat{k}_{t-1} + v_{cz} \hat{z}_{t} - v_{ck} (v_{kk} \hat{k}_{t-1} + v_{kz} \hat{z}_{t}) \right] \right. \\ & \left. + v_{rk} (v_{kk} \hat{k}_{t-1} + v_{kz} \hat{z}_{t}) + (v_{rz} - \eta v_{cz}) \hat{z}_{t+1} \right\} \\ 0 & = & \left. (\eta v_{ck} - \eta v_{ck} v_{kk} + v_{rk} v_{kk}) \hat{k}_{t-1} + \left. \left[\eta v_{cz} - \eta v_{ck} v_{kz} + v_{rk} v_{kz} + (v_{rz} - \eta v_{cz}) \psi \right] \hat{z}_{t} \end{array}$$

Comparing coefficients, we have

$$0 = \eta v_{ck} - \eta v_{ck} v_{kk} + v_{rk} v_{kk}
0 = \eta v_{cz} - \eta v_{ck} v_{kz} + v_{rk} v_{kz} + (v_{rz} - \eta v_{cz}) \psi$$

Comparing coefficients...

Collecting the results, and comparing coefficients on \hat{k}_{t-1} ,

$$v_{ck} = \frac{\bar{K}}{\bar{C}} (\frac{1}{\beta} - v_{kk})$$

$$v_{rk} = -[1 - \beta(1 - \delta)] (1 - \rho)$$

$$0 = \eta v_{ck} - \eta v_{ck} v_{kk} + v_{rk} v_{kk}$$

and comparing coefficients on \hat{z}_t

$$\begin{array}{rcl} v_{cz} & = & \frac{\bar{Y}}{\bar{C}} - \frac{\bar{K}}{\bar{C}} v_{kz} \\ v_{rz} & = & [1 - \beta(1 - \delta)] \\ 0 & = & \eta v_{cz} - \eta v_{ck} v_{kz} + v_{rk} v_{kz} + (v_{rz} - \eta v_{cz}) \psi \end{array}$$

Comparing coefficients on

 \hat{k}_{t-1}

$$v_{ck} = \frac{\bar{K}}{\bar{C}}(\frac{1}{\beta} - v_{kk}) \tag{1}$$

$$v_{rk} = -[1 - \beta(1 - \delta)] (1 - \rho)$$
 (2)

$$0 = \eta v_{ck} - \eta v_{ck} v_{kk} + v_{rk} v_{kk} \tag{3}$$

To solve for v_{kk} , plug v_{ck} into equation (3). We get a **characteristic quadratic equation**

$$\begin{array}{lcl} \mathbf{0} & = & \eta \frac{\bar{K}}{\bar{C}} (\frac{1}{\beta} - v_{kk}) - \eta \frac{\bar{K}}{\bar{C}} (\frac{1}{\beta} - v_{kk}) v_{kk} - \left[1 - \beta (1 - \delta) \right] (1 - \rho) v_{kk} \\ \\ \mathbf{0} & = & \eta \frac{\bar{K}}{\bar{C}} \frac{1}{\beta} - \left\{ \eta \frac{\bar{K}}{\bar{C}} + \eta \frac{\bar{K}}{\bar{C}} \frac{1}{\beta} + \left[1 - \beta (1 - \delta) \right] (1 - \rho) \right\} v_{kk} + \eta \frac{\bar{K}}{\bar{C}} v_{kk}^2 \end{array}$$

To simplify, divide both sides by $\eta \bar{K}/\bar{C}$

$$0=v_{kk}^2-\left\{1+rac{1}{eta}+\left[1-eta(1-\delta)
ight](1-
ho)rac{ar{\mathcal{C}}}{\etaar{\mathcal{K}}}
ight\}v_{kk}+rac{1}{eta}$$

$$0 = v_{kk}^2 - \gamma v_{kk} + \frac{1}{\beta}$$

where

$$\gamma = 1 + rac{1}{eta} + \left[1 - eta(1 - \delta)
ight](1 -
ho)rac{ar{\mathcal{C}}}{\eta\,ar{\mathcal{K}}}$$

Using the s.s. solutions to get,

$$\bar{C}/\bar{K} = \frac{1-\beta+\delta\beta}{\rho\beta} - \delta$$

$$= \frac{1-\beta+\delta\beta(1-\rho)}{\rho\beta}$$

then

$$\gamma = 1 + \frac{1}{\beta} + \frac{\left[1 - \beta(1 - \delta)\right]\left(1 - \rho\right)\left[1 - \beta + \delta\beta(1 - \rho)\right]}{\eta\rho\beta}$$

The solution is a high school math problem:

$$v_{kk} = rac{\gamma}{2} - \sqrt{\left(rac{\gamma}{2}
ight)^2 - rac{1}{eta}}$$

Why we delete the root

$$\frac{\gamma}{2} + \sqrt{\left(\frac{\gamma}{2}\right)^2 - \frac{1}{\beta}}$$
?

$$(v_{kk} - \lambda_1) (v_{kk} - \lambda_2) = 0$$
 $v_{kk}^2 - (\lambda_1 + \lambda_2) v_{kk} + \lambda_1 \lambda_1 = 0$
 $\lambda_1 \lambda_1 = \frac{1}{\beta} > 1$

 $\lambda_1 + \lambda_2 = \gamma > 0$

so λ_1 and λ_2 both positive, one >1, and one <1.

The other root must be bigger than 1. We need to delete the explosive solution!

Once v_{kk} is solved, the others can be solved easily. Plugging it into equation (1),

$$v_{ck} = \frac{\bar{K}}{\bar{C}}(\frac{1}{\beta} - v_{kk})$$

we get v_{ck} .

Then for coefficients on \hat{z}_t

$$v_{cz} = \frac{\bar{Y}}{\bar{C}} - \frac{\bar{K}}{\bar{C}} v_{kz} \tag{4}$$

$$v_{rz} = [1 - \beta(1 - \delta)] \tag{5}$$

$$0 = \eta v_{cz} - \eta v_{ck} v_{kz} + v_{rk} v_{kz} + (v_{rz} - \eta v_{cz}) \psi$$
 (6)

Insert equation (4) and (5) into (6), we can solve for v_{kz}

$$v_{kz} = \frac{v_{rz}\psi + \eta(1-\psi)\frac{\bar{Y}}{\bar{C}}}{-v_{rk} + \eta v_{ck} + \eta(1-\psi)\frac{\bar{K}}{\bar{C}}}$$

Plug it back to equation (4), we solve for v_{cz} .

Now we are done!

Calibration and simulation

Assuming quarterly data with

$$egin{array}{ll} eta = 0.99 &
ho = 0.36 \\ \eta = 1.0 & \delta = 0.025 \\ ar{Z} = 1 & \psi = 0.95 \end{array}$$

Then we get...

Calibration and simulation

Baseline model vs.

$$\eta = 100$$

Does not change steady states.

- 1) $v_{kk} \uparrow$ due to risk aversion, consumption smoothing, lower intertemporal elasticity of substitution
- 2) $v_{kz} \downarrow$ less sensitive to technology shock to better smooth consumption

Calibration and simulation

Baseline model vs.

$$\delta = 0.1$$

Reduce steady state size of the economy dramatically due to higher depreciation rate.

	K	Ϋ́	Č
$\delta = 0.025$	38	3.7	2.75
$\delta = 0.1$	6.4	1.95	1.3

- 1) $v_{kk} \downarrow$ due to higher depreciation rate
- 2) $v_{kz}\uparrow$ due to less stock of capital and higher MPK. So return and output both respond more proportionally.

Eliminate the interest rate equation, and set $\hat{z}_t \equiv 0$, we get

$$\begin{array}{lcl} \hat{c}_t & = & \dfrac{\bar{K}}{\beta \bar{C}} \hat{k}_{t-1} - \dfrac{\bar{K}}{\bar{C}} \hat{k}_t \\ 0 & = & \eta (\hat{c}_t - \hat{c}_{t+1}) - \left[1 - \beta (1 - \delta)\right] (1 - \rho) \hat{k}_t \end{array}$$

Rearrange, we get

$$\begin{split} \hat{k}_{t} - \hat{k}_{t-1} &= (\frac{1}{\beta} - 1)\hat{k}_{t-1} - \frac{\overline{C}}{\overline{K}}\hat{c}_{t} \\ \hat{c}_{t+1} - \hat{c}_{t} &= \frac{1}{\eta} \left[1 - \beta(1 - \delta) \right] (1 - \rho) (\frac{\overline{C}}{\overline{K}}\hat{c}_{t} - \frac{1}{\beta}\hat{k}_{t-1}) \end{split}$$

Steady state for each variable:

$$\hat{k}_t - \hat{k}_{t-1} = 0:$$

$$\hat{c}_t = (rac{1}{eta} - 1) rac{ar{K}}{ar{C}} \hat{k}_{t-1}$$

$$\hat{c}_{t+1} - \hat{c}_t = 0$$
:

$$\hat{c}_t = rac{ar{K}}{eta ar{C}} \hat{k}_{t-1}$$

The stable arm is the function:

$$\hat{c}_t = v_{ck} \hat{k}_{t-1}$$

The speed of convergence:

$$\begin{array}{rcl} \hat{k}_t & = & v_{kk} \hat{k}_{t-1} \\ \hat{k}_{t+h} & = & v_{kk}^h \hat{k}_t \end{array}$$

Question: how long does it take to close half of the gap in \hat{k}_t (for the effect of the shock to die out 50%)?

Original nonlinear system

Set $Z_t \equiv \bar{Z}$, and suppress expectation by assuming certainty

$$\begin{array}{rcl} C_t & = & \bar{Z}K_{t-1}^{\rho} + (1-\delta)K_{t-1} - K_t \\ 1 & = & \beta(\frac{C_{t+1}}{C_t})^{-\eta}\left(\rho\bar{Z}K_{t-1}^{\rho-1} + 1 - \delta\right) \end{array}$$

Rearrange, we get

$$\begin{array}{rcl} \mathcal{K}_{t} - \mathcal{K}_{t-1} & = & \bar{Z} \mathcal{K}_{t-1}^{\rho} - \delta \mathcal{K}_{t-1} - \mathcal{C}_{t} \\ & \frac{\mathcal{C}_{t+1}}{\mathcal{C}_{t}} & = & \left\{ \beta \left[\rho \bar{Z} \left(\bar{Z} \mathcal{K}_{t-1}^{\rho} + (1 - \delta) \mathcal{K}_{t-1} - \mathcal{C}_{t} \right)^{\rho - 1} + 1 - \delta \right] \right\}^{\frac{1}{\eta}} \end{array}$$

Original nonlinear system

When
$$\Delta K_t = 0$$

$$C_t = \bar{Z} K_{t-1}^{\rho} - \delta K_{t-1}$$
 If $C_t > \bar{Z} K_{t-1}^{\rho} - \delta K_{t-1}$, $K_t - K_{t-1} < 0$; If $C_t < \bar{Z} K_{t-1}^{\rho} - \delta K_{t-1}$, $K_t - K_{t-1} > 0$.

Original nonlinear system

When
$$\Delta C_{t+1} = 0$$
, $\frac{C_{t+1}}{C_t} = 1$,
$$1 = \left\{\beta \left[\rho \bar{Z} \left(\bar{Z} K_{t-1}^{\rho} + (1-\delta) K_{t-1} - C_t\right)^{\rho-1} + 1 - \delta\right]\right\}^{\frac{1}{\eta}}$$

$$\frac{\rho \bar{Z}}{1/\beta - 1 + \delta} = \left(\bar{Z} K_{t-1}^{\rho} + (1-\delta) K_{t-1} - C_t\right)^{1-\rho}$$

$$C_t = -\left(\frac{\rho \bar{Z}}{1/\beta - 1 + \delta}\right)^{\frac{1}{1-\rho}} + \bar{Z} K_{t-1}^{\rho} + (1-\delta) K_{t-1}$$

$$= \bar{Z} K_{t-1}^{\rho} + (1-\delta) K_{t-1} - \bar{K}$$
 If $C_t > -\bar{K} + \bar{Z} K_{t-1}^{\rho} + (1-\delta) K_{t-1}$, $\frac{C_{t+1}}{C_t} > 1$; If $C_t < -\bar{K} + \bar{Z} K_{t-1}^{\rho} + (1-\delta) K_{t-1}$, $\frac{C_{t+1}}{C_t} < 1$.

The structure of the problem.

There is an $m \times 1$ endogenous state vector x_t , an $n \times 1$ vector of other endogenous variables y_t , and a $k \times 1$ vector of exogenous stochastic processes z_t . The equilibrium relationships between these variables are fully characterized by the list of equations we just collected after log-linearization. We can cast these equations into three blocks:

$$0 = Ax_{t} + Bx_{t-1} + Cy_{t} + Dz_{t}$$

$$0 = E_{t}[Fx_{t+1} + Gx_{t} + Hx_{t-1} + Jy_{t+1} + Ky_{t} + Lz_{t+1} + Mz_{t}]$$

$$z_{t} = Nz_{t-1} + \epsilon_{t+1}; \quad E_{t}[\epsilon_{t+1}] = 0$$

where C is of size $l \times n$, $l \ge n$ and of rank n, F is of size $(m+n-l) \times n$, and N has only stable eigenvalues. In total there are m+n+k equations.

Recursive law of motion

$$x_t = Px_{t-1} + Qz_t$$

$$y_t = Rx_{t-1} + Sz_t$$

$$z_t = Nz_{t-1} + \epsilon_t$$

Solutions: matrix quadratic equation.

Execute with Toolkit 4.1.

Cast the log-linearized equations into the system.

An m imes 1 endogenous state vector x_t , $\left\{\hat{k}_t
ight\}$.

An n imes 1 vector of other endogenous variables $y_t, \; \{\hat{c}_t, \hat{r}_t, \hat{y}_t\}$.

A k imes 1 vector of exogenous stochastic processes z_t : $\{\hat{z}_t\}$.

$$\hat{c}_t = \frac{\bar{Y}}{\bar{C}}\hat{z}_t + \frac{\bar{K}}{\bar{C}}\bar{R}\hat{k}_{t-1} - \frac{\bar{K}}{\bar{C}}\hat{k}_t$$

$$\mathbf{0} \ \hat{y}_t = \hat{z}_t + \rho \hat{k}_{t-1}$$

$$0 = E_t \left[\eta (\hat{c}_t - \hat{c}_{t+1}) + \hat{r}_{t+1} \right]$$

Cast these equations into three blocks

1) The first block
$$0 = Ax_t + Bx_{t-1} + Cy_t + Dz_t$$

$$\begin{array}{lll} 0 & = & \left[1 - \beta(1 - \delta)\right] \hat{z}_t - \left[1 - \beta(1 - \delta)\right] (1 - \rho) \hat{k}_{t-1} - \hat{r}_t \\ \\ 0 & = & \frac{\bar{Y}}{\bar{C}} \hat{z}_t + \frac{\bar{K}}{\bar{C}} \bar{R} \hat{k}_{t-1} - \frac{\bar{K}}{\bar{C}} \hat{k}_t - \hat{c}_t \\ \\ 0 & = & \hat{z}_t + \rho \hat{k}_{t-1} - \hat{y}_t \end{array}$$

2) The second block

$$0 = E_t[Fx_{t+1} + Gx_t + Hx_{t-1} + Jy_{t+1} + Ky_t + Lz_{t+1} + Mz_t]$$

$$0 = E_t \left[\eta (\hat{c}_t - \hat{c}_{t+1}) + \hat{r}_{t+1} \right]$$

3) The third block
$$z_t = Nz_{t-1} + \epsilon_{t+1}$$
; $E_t[\epsilon_{t+1}] = 0$

$$\hat{z}_t = \psi \hat{z}_{t-1} + \varepsilon_t$$

Hansen, G. D., 1985, Indivisible labor and the business cycle. *Journal of Monetary Economics* 16, 309-327.

$$U_t = \ln c_t - A n_t$$

A: marginal disutility of labor.

Important labor market phenomena

- Existence of unemployed workers.
- Fluctuations in the rate of unemployment.
- Fluctuations in hours worked are large relative to productivity flucturations.
- Micro studies do not support the strong willingness of individuals to substitute leisure across time.

The Motivation

Problem

How to reconcile the micro and macro evidence, such that large aggregate fluctuations in hours worked are consistent with individuals who have little intertemporal substitution of labor.

Solution

Indivisible labor supply \tilde{n}_t .

Individual utility function

$$U(c_t) + v(\tilde{n}_t)$$

where labor is inelastic.

The Mechanism

- Labor is indivisible: agents either have a job or not, $\tilde{n}_t = 0$ or $\tilde{n}_t = n^*$.
- \bullet Agents are assigned to jobs according to a lottery with probability $\pi_t.$
- Unemployment insurance is complete, so that individual consumption c_t is independent of job status.
- Total labor supply

Total :
$$H_t = \bar{L}\pi_t n^*$$

Average : $n_t = \frac{H_t}{\bar{L}} = \pi_t n^*$

 H_t : total hours worked; \bar{L} : total labor force.

The Mechanism

- Normalization:
 - v(0) = 0, if labor supply is 0, such that the (dis)utility from work at this point is also 0.
 - $\frac{v(n^*)}{n^*} = -A < 0.$
- Expected utility from a representative agent

$$E[U(c_t) + v(\tilde{n}_t)] = U(c_t) + \pi_t v(n_t^*) + (1 - \pi_t) v(0)$$

$$= U(c_t) + \pi_t (-An^*)$$

$$= U(c_t) - An_t$$

Consistency with the empirical facts

$$n_{t} = \frac{H_{t}}{\overline{L}}$$

$$= \frac{H_{t}}{L_{t}} \cdot \frac{L_{t}}{\overline{L}}$$

$$\approx n^{*} \cdot \underbrace{(1 - u_{t})}_{\pi_{t}}$$

 u_t , unemployment rate.

 $rac{H_t}{L_t} = ar{n}_t pprox n^*$, empirically the ratio is very stable.

A recent use of the model

Shu-Hua Chen and Jang-Ting Guo:

Progressive Taxation and Macroeconomic——(In)stability with Productive Government Spending.

Explain the cause of "Great Moderation" with policy changes in taxation.

$$Y_t = AK_t^{\alpha}H_t^{1-\alpha}G_t^{\chi}$$

$$au_t = 1 - \eta (rac{Y^*}{Y_t})^{\phi}$$