1.	Which of these best describes unsupervised learning?	1 / 1 punto				
	A form of machine learning that finds patterns without using a cost function.					
	A form of machine learning that finds patterns using labeled data (x, y)					
	A form of machine learning that finds patterns in data using only labels (y) but without any inputs (x) .					
	A form of machine learning that finds patterns using unlabeled data (x).					
	Correcto Unsupervised learning uses unlabeled data. The training examples do not have targets or labels "y". Recall the T-shirt example. The data was height and weight but no target size.					
2.		1 / 1 punto				
	Which of these statements are true about K-means? Check all that apply.					
	If you are running K-means with $K=3$ clusters, then each $c^{(i)}$ should be 1, 2, or 3.					
	Correcto $c^{(i)}$ describes which centroid example(i) is assigned to. If $K=3$, then $c^{(i)}$ would be one of 1,2 or 3 assuming counting starts at 1.					
	If each example x is a vector of 5 numbers, then each cluster centroid μ_k is also going to be a vector of 5 numbers.					
	\bigcirc Correcto The dimension of μ_k matches the dimension of the examples.					
	\square The number of cluster centroids μ_k is equal to the number of examples.					
	$lacksquare$ The number of cluster assignment variables $c^{(i)}$ is equal to the number of training examples.					
	\bigcirc Correcto $c^{(i)}$ describes which centroid example(i) is assigned to.					
3.		1 / 1 punto				
	You run K-means 100 times with different initializations. How should you pick from the 100 resulting solutions?					
	Pick the last one (i.e., the 100th random initialization) because K-means always improves over time					
	Average all 100 solutions together.					
	Pick randomly that was the point of random initialization.					
	lacksquare Pick the one with the lowest cost J					
	 Correcto K-means can arrive at different solutions depending on initialization. After running repeated trials, choose the solution with the lowest cost. 					
4.	You run K-means and compute the value of the cost function $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$ después de cada iteración. ¿Cuál de estas afirmaciones debería ser cierta?	1 / 1 punto				
	El costo puede ser mayor o menor que el costo de la iteración anterior, pero disminuye a largo plazo.					
	El costo disminuirá o permanecerá igual después de cada iteración					
	No existe una función de costo para el algoritmo de K-medias.					
	O Debido a que K-means intenta maximizar el costo, el costo siempre es mayor o igual que el costo de la iteración anterior.					

\sim		
(\checkmark)	Cor	recto

El costo nunca aumenta. K-medias siempre converge.

5.	En K-medias.	. el	método	del	codo	es un	método	para

1 / 1 punto

- Elija el número de grupos K
- O Elija la mejor cantidad de muestras en el conjunto de datos
- O Elija el número máximo de ejemplos para cada grupo
- O Elija la mejor inicialización aleatoria

✓ Correcto

El método del codo traza un gráfico entre el número de grupos K y la función de costo. La 'curva' en la curva de costo puede sugerir un valor natural para K. Tenga en cuenta que esta característica puede no existir o ser significativa en la algunos conjuntos de datos.