(13-10-2015) - 10:30

C1

SOLUCIONES

1. Estudia si la siguiente afirmación es verdadera o falsa. Justifica tu repuesta. (Recuerda que si la afirmación es verdadera hay que dar una demostración mientras que si la afirmación es falsa es suficiente con dar un contraejemplo):

El único homomorfismo de \mathbb{Z}_6 en S_3 es el trivial.

Solución: FALSO. En primer lugar recordar que \mathbb{Z}_6 es cíclico y podemos generarlo por $\overline{1}$. Por lo tanto cualquier homomorfismo de grupos $f: \mathbb{Z}_6 \longrightarrow S_3$ queda definido por la imagen de $\overline{1}$, esto es $f(\overline{1})$. Ahora basta con ver que si definimos $f_{\sigma}(\overline{1}) = \sigma$, para cualquier $\sigma \in S_3$, tendremos que f_{σ} es un homomorfismo de grupos. Basta ver que $f_{\sigma}(\overline{n}) = \sigma^n$ es homomorfismo.

2. Calcula el retículo de subgrupos de \mathbb{Z}_{12} .

Solución: Los elementos del grupo \mathbb{Z}_{12} son:

$$\mathbb{Z}_{12} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}, \overline{10}, \overline{11}\}.$$

En primer lugar calculamos los subgrupos cíclicos de \mathbb{Z}_{12} :

$$\begin{array}{ll} \langle \overline{0} \rangle = \{ \overline{0} \}, & \langle \overline{3} \rangle = \langle \overline{0} \rangle = \{ \overline{0}, \overline{3}, \overline{6}, \overline{9} \}, \\ \langle \overline{1} \rangle = \langle \overline{5} \rangle = \langle \overline{7} \rangle = \langle \overline{11} \rangle = \mathbb{Z}_{12}, & \langle \overline{4} \rangle = \langle \overline{8} \rangle = \{ \overline{0}, \overline{4}, \overline{8} \}, \\ \langle \overline{2} \rangle = \langle \overline{10} \rangle = \{ \overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10} \}, & \langle \overline{6} \rangle = \{ \overline{0}, \overline{6} \}. \end{array}$$

Ahora veamos que son los únicos subgrupos de \mathbb{Z}_{12} . Sean $\overline{n}, \overline{m} \in \mathbb{Z}_{12}$ tal que $\langle \overline{n} \rangle \not\subset \langle \overline{m} \rangle$ y $\langle \overline{m} \rangle \not\subset \langle \overline{n} \rangle$. Entonces $(n,m) \neq n,m$, por lo tanto (n,m) = d y se tendrá $\langle \overline{n}, \overline{m} \rangle = \langle \overline{d} \rangle$. Por lo tanto el retículo de subgrupos de \mathbb{Z}_{12} es:

3. Calcula todos los grupos abelianos de orden 4 (salvo isomorfismo).

Solución: Sea $G = \{e, a, b, c\}$ tal que e es el elemento neutro de G y ab = ba, ac = ca. Vamos a ver las posibilidades de completar la tabla de Cayley de G:

- Supongamos $a^2 = b$. Si ab = e, entonces ac = c. Pero entonces a = e, contradicción. Por lo tanto ab = c y ac = e. Es decir, $c = a^3$ y $a^4 = e$. Concluimos que $G = \langle a \rangle \simeq \mathbb{Z}_4$.
- El caso $a^2=c$ es completamente análogo al anterior.
- Supongamos $a^2=e$. El caso ab=b no es posible ya que si no a=e. Por lo tanto, ab=c y ac=b. Ahora:
 - si $b^2 = e$, entonces bc = a. Por lo tanto, $c^2 = e$. Concluimos que $G \simeq V_4$.
 - si $b^2=a$, entonces bc=e. Por lo tanto, $c^2=a$. Es decir, $c^4=e$ y $b=c^3$. Concluyendo $G=\langle c\rangle\simeq\mathbb{Z}_4.$