

Bursa Teknik Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Elektrik-Elektronik Mühendisliği Bölümü Devre Teorisi-II Dersi Ödev-2 Soruları

Adı:			2022-2023 Bahar Dönemi			Kopya çekmeyeceğime söz veriyorum.		
Soyadı:			17.04.2023					
No:	Şube:		Ödev Teslim Tarihi: 25.04.2023			İmza:		
1	2							Toplam

Q1.) (ÖÇ3&ÖÇ6) Aşağıda verilen devreye ilişkin:

- a) Durum denklemini zaman bölgesinde elde ediniz.
- b) $\phi(t) = e^{At}$ durum geçiş matrisini hesaplayınız.
- c) $v_1(t)$ ve $i_2(t)$ için öz ve zorlanmış çözümleri $\phi(t)$ durum geçiş matrisini kullanarak bulunuz.
- d) $v_6(t)$ için tam çözümü $\phi(t)$ durum geçiş matrisinden yararlanarak bulunuz.
- e) Devre asimptotik kararlı mıdır? Neden?

$$i_3(t) = 3u(t)$$

$$\begin{bmatrix} v_1(0^-) \\ i_2(0^-) \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Q2.) (ÖÇ4&ÖÇ5&ÖÇ6) Aşağıda verilen devreye ilişkin;

- a) Devrenin durum denklemlerini s-bölgesinde elde ediniz.
- b) $\phi(t) = e^{At}$ durum geçiş matrisini Ters Laplace Dönüşümünden yararlanarak bulunuz..
- c) Devrenin karakteristik ve minimal polinomlarını bulunuz. Minimal p olinom karakteristik polinoma eşit midir?
- d) Devre BIBO anlamında kararlı mıdır? Nedenini açıklayınız.
- e) Transfer matrisini ve birim dürtü yanıtı matrisini bulunuz.
- f) $i_6(t)$ ya ilişkin öz ve zorlanmış çözümü bulunuz.
- g) $i_6(t)$ ya ilişkin doğru bileşeni, endüktansların kısa devre, kapasitelerin açık devre olduğunu göz önünde bulundurup devreden hesaplayınız.
- h) Doğru bileşen sürekli hal cevabına eşit midir? Neden?

$$C_1 = C_2 = 1F,$$
 $R_6 = R_7 = 1\Omega,$ $L_3 = 0.5H,$ $r = 3$ $v_4(t) = u(t) V$ $i_5(t) = u(t) A$
$$\begin{bmatrix} v_1(0^-) \\ v_2(0^-) \\ i_3(0^-) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$