Perpendicularidade, Ortogonalidade, Medida Angular e Distância

Matheus Pimenta

Universidade Tecnológica Federal do Paraná Câmpus Cornélio Procópio

Abril de 2019

Retas

- Duas retas ortogonais podem ser concorrentes ou reversas e duas retas perpendiculares são obrigatoriamente concorrentes.
- Duas retas são ortogonais se, e somente se, cada vetor diretor de uma é ortogonal a qualquer vetor diretor da outra.

• Verifique se as retas $r: X = (1,1,1) + \lambda(2,1,-3)$ e $s: X = (0,1,0) + \lambda(-1,2,0)$ são ortogonais. Caso sejam, verifique se são perpendiculares.

Vetor Normal a um Plano

Definição: Dado um plano π , qualquer vetor não-nulo ortogonal a π é um **vetor normal** a π .

Vetor Normal a um Plano

Definição: Dado um plano π , qualquer vetor não-nulo ortogonal a π é um **vetor normal** a π .

Um vetor \overrightarrow{n} não-nulo é perpendicular ao plano π se, e somente se, \overrightarrow{n} é ortogonal a qualquer vetor diretor de π .

Vetor Normal a um Plano

Definição: Dado um plano π , qualquer vetor não-nulo ortogonal a π é um **vetor normal** a π .

Um vetor \overrightarrow{n} não-nulo é perpendicular ao plano π se, e somente se, \overrightarrow{n} é ortogonal a qualquer vetor diretor de π .

Assim, se $(\overrightarrow{u}, \overrightarrow{v})$ é um par de vetores diretores de π , então $\overrightarrow{u} \wedge \overrightarrow{v}$ (ou qualquer um de seus múltiplos escalares) é vetor normal a π .

Proposição

Proposição: Se o sistema de coordenadas é ortogonal, então $\overrightarrow{n}=(a,b,c)$ é um vetor normal ao plano π se, e somente se, π tem uma equação geral da forma ax+by+cz+d=0.

Obtenha a equação geral do plano π que contém o ponto A=(1,0,2) sabendo que $\overrightarrow{n}=(1,1,4)$ é um vetor normal a π .

Plano e Reta

Se \overrightarrow{n} é um vetor normal ao plano π e \overrightarrow{r} é um vetor diretor da reta r, então r e π são perpendiculares se, e somente se, \overrightarrow{r} e \overrightarrow{n} são paralelos.

Planos

Se \overrightarrow{n}_1 e \overrightarrow{n}_2 são vetores normais aos planos π_1 e π_2 , então os planos são perpendiculares se, e somente se, \overrightarrow{n}_1 e \overrightarrow{n}_2 são ortogonais, isto é, $\overrightarrow{n}_1 \cdot \overrightarrow{n}_2 = 0$

Verifique se
$$\pi_1: X = (0,0,1) + \lambda(1,0,1) + \mu(-1,1,1)$$
 e $\pi_2: 2x - 7y + 16z - 40 = 0$ são perpendiculares.

Definição

Definição: Sejam r e s duas retas, \overrightarrow{r} e \overrightarrow{s} vetores diretores. A **medida angular entre** r **e** s é a medida angular entre os vetores \overrightarrow{r} e \overrightarrow{s} , se esta pertence ao intervalo $[0,\pi/2]$ rad ou [0,90] (graus) e é a medida angular entre \overrightarrow{r} e $-\overrightarrow{s}$, se pertence a $[\pi/2,\pi]$ ou a [90,180]. Notação: ang(r,s) **OBS:** Se $\theta=0$, então r e s são paralelas e se $\theta=90$, então r e s são ortogonais.

Definição

Definição: Sejam r e s duas retas, \overrightarrow{r} e \overrightarrow{s} vetores diretores. A **medida angular entre** r **e** s é a medida angular entre os vetores \overrightarrow{r} e \overrightarrow{s} , se esta pertence ao intervalo $[0,\pi/2]$ rad ou [0,90] (graus) e é a medida angular entre \overrightarrow{r} e $-\overrightarrow{s}$, se pertence a $[\pi/2,\pi]$ ou a [90,180]. Notação: ang(r,s) **OBS:** Se $\theta=0$, então r e s são paralelas e se $\theta=90$, então r e s são ortogonais.

$$\cos(\theta) = \frac{|\overrightarrow{r} \cdot \overrightarrow{s}|}{||\overrightarrow{r}||||\overrightarrow{s}||}$$

Calcule a medida angular θ entre as retas $r: X = (1,1,9) + \lambda(0,-1,1)$ e $s: (1,3,2) + \mu(1,1,0)$

Plano e Reta

Definição: Sejam r uma reta e π um plano. A **medida angular** entre r e π é 90 — ang(r,s), sendo s uma reta qualquer perpendicular a π . Notação: $ang(r,\pi)$

Plano e Reta

Definição: Sejam r uma reta e π um plano. A **medida angular** entre r e π é 90 — ang(r,s), sendo s uma reta qualquer perpendicular a π . Notação: $ang(r,\pi)$

$$\sin(\theta) = \frac{|\overrightarrow{n} \cdot \overrightarrow{r}|}{||\overrightarrow{n}||||\overrightarrow{r}||}$$

Obtenha a medida angular em radianos entre a reta

$$r: X = (0,1,0) + \lambda(-1,-1,0)$$
 e o plano $\pi: y+z-10=0$

Planos

Exemplo: Sendo
$$\pi_1 : x - y + z = 20$$
 e $\pi_2 : X = (1, 1 - 2) + \lambda(0, -1, 1) + \mu(1, -3, 2)$

Entre Pontos

Sejam $A=(x_1,y_1,z_1)$ e $B=(x_2,y_2,z_2)$. A distância d(A,B) entre A e B é $||\overrightarrow{BA}||$, ou seja,

$$d(A,B) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

Entre Ponto e Reta

Uma forma é através da projeção ortogonal do ponto a reta.

Entre Ponto e Reta

Uma forma é através da projeção ortogonal do ponto a reta.

Outra forma é: sejam \overrightarrow{A} e \overrightarrow{B} dois pontos quaisquer de r, distintos. A área do triângulo \overrightarrow{ABP} é $||\overrightarrow{AP} \wedge \overrightarrow{AB}||/2$, logo se h é a altura relativa ao vértice P, segue que:

$$d(P,r) = \frac{||\overrightarrow{AP} \wedge \overrightarrow{AB}||}{||\overrightarrow{AB}||}$$

Entre Ponto e Reta

Uma forma é através da projeção ortogonal do ponto a reta.

Outra forma é: sejam \overrightarrow{A} e \overrightarrow{B} dois pontos quaisquer de r, distintos. A área do triângulo \overrightarrow{ABP} é $||\overrightarrow{AP} \wedge \overrightarrow{AB}||/2$, logo se h é a altura relativa ao vértice P, segue que:

$$d(P,r) = \frac{||\overrightarrow{AP} \wedge \overrightarrow{AB}||}{||\overrightarrow{AB}||}$$

Indicando por \overrightarrow{r} o vetor \overrightarrow{AB} , que é vetor diretor de r, obtemos

$$d(P,r) = \frac{||\overrightarrow{AP} \wedge \overrightarrow{r}||}{||\overrightarrow{r}||}$$

onde \overrightarrow{r} é um vetor diretor de r e A é um ponto qualquer de r.

Calcule a distância de
$$P=(1,1,-1)$$
 à interseção de $\pi_1: x-y=1$ e $\pi_2: x+y-z=0$

Entre Ponto e Plano

Através da projeção do ponto no plano, ou através da projeção ortogonal de \overrightarrow{AP} sobre \overrightarrow{n} , onde \overrightarrow{n} é um vetor normal de π .

Entre Ponto e Plano

Através da projeção do ponto no plano, ou através da projeção ortogonal de \overrightarrow{AP} sobre \overrightarrow{n} , onde \overrightarrow{n} é um vetor normal de π .

$$d(P,\pi) = \frac{|\overrightarrow{AP} \cdot \overrightarrow{n}|}{||\overrightarrow{n}||}$$

A versão com coordenadas será:

$$d(P,\pi) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Onde $P = (x_0, y_0, z_0)$, $A = (x_1, y_1, z_1)$ e $\pi = ax + by + cz + d = 0$

Calcule a distância do ponto
$$P = (1, 2, -1)$$
 ao plano $\pi : 3x - 4y - 5z + 1 = 0$

Distância entre Retas

Outra forma de se calcular a distância entre retas é utilizando:

$$d(r,s) = \frac{|\overrightarrow{AB} \cdot \overrightarrow{r} \wedge \overrightarrow{s}|}{||\overrightarrow{r} \wedge \overrightarrow{s}||}$$

Onde B é ponto qualquer de s e A é ponto qualquer de r.

Distância entre Retas

Outra forma de se calcular a distância entre retas é utilizando:

$$d(r,s) = \frac{|\overrightarrow{AB} \cdot \overrightarrow{r} \wedge \overrightarrow{s}|}{||\overrightarrow{r} \wedge \overrightarrow{s}||}$$

Onde B é ponto qualquer de s e A é ponto qualquer de r.

OBS: Se r e s são concorrentes a distância é zero

Se r e s são paralelas não podemos utilizar a fórmula acima, temos que selecionar pontos quaisquer entre elas e calcular a distância entre eles.

Distância entre Reta e Plano

Utilizamos um vetor diretor da reta r e um vetor normal \overrightarrow{n} ao plano π e calculamos $\overrightarrow{r} \cdot \overrightarrow{n}$, se:

- $\overrightarrow{r} \cdot \overrightarrow{n} \neq 0$, r é transversal a π , logo, a distância é zero;
- $\overrightarrow{r} \cdot \overrightarrow{n} = 0$, r está contida em π e neste caso a distância é zero, **pode também** a reta ser paralela ao plano π , neste caso a distância é a distância de um ponto qualquer de r ao plano π .

Distância entre Planos

Analisaremos os vetores normais, assim se:

- $(\overrightarrow{n_1}, \overrightarrow{n_2})$ é LI, então π_1 e π_2 são transversais e a distância é zero;
- $(\overrightarrow{n_1}, \overrightarrow{n_2})$ é LD, então π_1 e π_2 são paralelos e a distância entre eles é dada através da distância entre dois pontos quaisquer deles.

