Sección 3

Entendiendo y presentando datos con Gapminder Foundation

- Entender como Hans Rosling y Gapminder
 Foundation utilizan técnicas efectivas de visualización de datos para comunicar y transmitir tendencias.
- Poder aplicar las herramientas vistas en ggplot2 para responder preguntas con los datos
- Entender como escalas fijas en gráficos simplifican comparaciones
- Poder modificar gráficos para mejorar la visualización de los datos

En esta sección utilizaremos datos para responder a estas dos preguntas

- 1) ¿Es justa la caracterización del mundo diciendo que se encuentra dividido entre naciones ricas occidentales y otras en vías de desarrollo siendo estas África, Asia, y América latina?
- 2) ¿Se ha agravado en los últimos 40 años la desigualdad de ingresos a través de los diferentes países?

Análisis de datos utilizando dataset Gapminder

- Gapminder charlas Ted:
 - Las mejores estadísticas que has visto
 - Nuevos descubrimientos en la pobreza

La visualización de datos puede utilizarse para romper mitos y educar contradiciendo historias sensacionalistas o fuera de fechas

El proyecto que utilizaremos en la librería dslabs:

library(dslabs) data(gapminder)

Test de Hans Rosling

- 1- Sri Lanka o Turquía
- 2- Polonia o Corea del sur
- 3- Malasia o Rusia
- 4- Pakistán o Vietnam
- 5- Tailandia o Sudáfrica
- Para cada par de países en el 2015
 - ¿Que país piensas que tiene la tasa de mortalidad infantil más alta?
 - Cuales países piensas que son similares?

Test de Hans Rosling

```
1- Sri Lanka o Turquía
2- Polonia o Corea del sur
3- Malasia o Rusia
4- Pakistán o Vietnam
5- Tailandia o Sudáfrica
```

- Sin datos responderíamos que los países no europeos tienen una tasa de mortalidad infantil más alta
- Los países considerados como en vías de desarrollos pensaríamos que tienen una tasa alta de moralidad similar.

Utilizando los datos de Gapminder

gapminder %>% filter(year == 2015 & country %in% c("Sri Lanka",

"Turkey")) %>% select(country, infant_mortality)

country infant_mortality

1 Sri Lanka 2 Turkey	8.4 11.6	country	infant mortality	country	infant mortality
		Sri Lanka	8.4	Turkey	11.6
		Poland	4.5	South Korea	2.9
		Malavsia	6.0	Russia	8.2

65.8

10.5

Vietnam

South

Africa

17.3

33.6

Pakistan

Thailand

Expectativa de vida y fertilidad - Concepciones

1) Mundo occidental - Europa del Oeste y américa del norte

Larga esperanza de vida y familias pequeñas

1) Mundo en vías de desarrollo (África, Asia y América Latina)

Esperanza de vida menor y familias grandes

ds_theme_set()
filter(gapminder, year == 1962) %>%
ggplot(aes(fertility, life_expectancy, color = continent)) + geom_point()

Pulir, filtrar datos - Faceting

- Cuando queremos pulir o comparar gráficos de acuerdo a una variable
- La función facet_grid() nos permite manejar hasta
 2 variables, una en filas y otra en columnas.
- La función facet_wrap() permite manipular una variable para visualizar una serie de gráficos en una tabla con dimensiones legibles.
- Cuando pulimos datos las escalas quedan fijas para todos los gráficos.

filter(gapminder, year%in%c(1962, 2012)) %>%

ggplot(aes(fertility, life_expectancy, col = continent)) + geom_point() +
facet_grid(continent~year)


```
filter(gapminder, year%in%c(1962, 2012)) %>%
    ggplot(aes(fertility, life_expectancy, col = continent)) +
    geom_point() +
    facet_grid(. ~ year)
```



```
years <- c(1962, 1980, 1990, 2000, 2012)
continents <- c("Europe", "Asia")
gapminder %>% filter(year %in% years & continent %in% continents) %>%
    ggplot( aes(fertility, life_expectancy, col = continent)) + geom_point() +
    facet_wrap( vars(year) )
```


Ejes y escalas

- Cuando graficamos sin utilizar la función facet las escalas y rangos se determinan automáticamente por los datos del gráfico.
- Utilizando facet el rango y escalas de datos se determina por todos los gráficos a realizar y se fija en uno único para todos los elementos.

```
filter(gapminder, year%in%c(1962, 2012)) %>%
    ggplot(aes(fertility, life_expectancy, col = continent)) +
geom_point() + facet_wrap(. ~ year, scales = "free")
```


Gráficos de tiempo

 Tienen el tiempo en el eje x y una salida o medida en el eje y

```
gapminder %>%
```

filter(country == "United States") %>% ggplot(aes(year, fertility)) +

Comparamos índices en dos países

```
countries <- c("South Korea", "Germany")
gapminder %>% filter(country %in% countries) %>%

ggplot(aes(year, fertility, group = country)) +
geom_line()

col = country
```


Textos en gráficos - Labels

Definimos un data frame con textos y posiciones

```
> countries <- c("South Korea","Germany")</pre>
> labels <- data.frame(country = countries, x = c(1975,1965), y = c(60,72))
> gapminder %>% filter(country %in% countries) %>%
ggplot(aes(year, life expectancy, col = country)) +
+ geom line() + geom text(data = labels, aes(x, y, label = country), size = 5)
+ theme(legend.position = "none")
                                             Germany
                                       life_expectancy
                                                    South Korea
                                         60 -
                                                                          2000
                                            1960
                                                           1980
```

Tipos de datos

- En exploración y análisis de datos los ejes logarítmicos son muy utilizados:
 - Log (log base 2 y log base 10) son más visualizables:

 Logaritmo natural ln es menos intuitivo y más difícil de interpretar

Transformar datos o escalas

 Podemos realizar log de los valores antes de graficarlos e interpretar fácilmente:

Vemos los valores originales en los ejes

Podemos utilizar ejes logarítmicos.

```
scale_x_continuous(trans = "log2")
scale_x_log10()
```


Los valores originales se ven en el gráfico

Re ordenar datos -factores

Por defecto R ordena los factores alfabéticamente

nombres †	notas ‡	edades
Ana	D	19
Valeria	МВ	20
Cecilia	В	11
Maria	В	9

```
> class(alumnos$notas)
[1] "factor"
> alumnos$notas
[1] D MB B
Levels: B D MB
```

Podemos definir un orden específico

```
>alumnos$notas<-ordered(alumnos$notas,levels=c("D","B","MB"))
> alumnos$notas
[1] D MB B B
Levels: D < B < MB</pre>
```

Podemos ordenar de acuerdo a otro valor

```
> alumnos$notas <- reorder(alumnos$notas, alumnos$edades, FUN = mean)
> levels(alumnos$notas)
[1] "B" "D" "MB"
```

Datos categóricos

¿Existe económicamente una distinción entre el mundo oxidental y el resto?

Ingreso por dia en dólares (pib - gdp)

```
gapminder <- gapminder %>%
mutate(dollars_per_day = gdp/population/365)
```

Dividimos el mundo en regiones y ordenamos los datos

```
mutate(region = reorder(region, dollars_per_day, FUN =
median))
```

 Coloreamos gráfico por continente y movemos textos para evitar superposición

```
ggplot(aes(region, dollars_per_day, fill = continent)) +
geom_boxplot() + theme(axis.text.x = element_text(angle =
90, hjust = 1))+ xlab("")
```



```
gapminder <- gapminder %>% mutate(dollars per day = gdp/population/365)
p <- gapminder %>% filter(year == 1970 & !is.na(gdp)) %>%
       mutate(region = reorder(region, dollars per day, FUN = median)) %>%
       ggplot(aes(region, dollars per day, fill = continent)) +
       geom boxplot() +
       theme(axis.text.x = element text(angle = 90, hjust = 1)) + xlab("")
           50 -
p
           40 -
                                                                                                                                  continent
        dollars_per_day
                                                                                                                                       Africa
                                                                                                                                       Americas
                                                                                                                                       Asia
                                                                                                                                       Europe
                                                                                                                                       Oceania
           10 -
                  Southern Asia
                       Western Africa
                                                                 Central America
                                                                                 Western Asia
                                                                                                Southern Europe
                             Eastern Africa
                                  Middle Africa
                                       Southern Africa
                                                  South-Eastern Asia
                                                       Micronesia
                                                            Melanesia
                                                                            Eastern Europe
                                                                                           Eastern Asia
                                                                                                           Western Europe
                                            Northern Africa
                                                                      South America
                                                                                      Caribbean
                                                                                                      Polynesia
                                                                                                                Australia and New Zealand
                                                                                                                      Northern America
                                                                                                                           Northern Europe
```

```
> p + scale_y_continuous(trans = "log2") + geom_point(show.legend= FALSE)
```


Comparación de distribuciones

Clasificamos datos por grupo: Occidente-Subdesarrollados

```
past_year <- 1970
west <- c("Western Europe", "Northern Europe", "Southern Europe", "Northern
America", "Australia and New Zealand")
gapminder %>% filter(year == past_year & !is.na(gdp)) %>%
   mutate(group = ifelse(region %in% west, "Occidente", "Subdesarrollo")) %>%
   ggplot(aes(dollars_per_day)) + geom_histogram(binwidth = 1, color = "black")
+ scale_x_continuous(trans = "log2") + facet_grid(. ~ group)
```


Comparación de distribuciones

- Clasificamos datos por grupo y años
 - Definimos lista de países que se encuentren en ambos años

```
country_list_1 <- gapminder %>% filter(year == past_year &
!is.na(dollars_per_day)) %>% .$country
country_list_2 <- gapminder %>% filter(year == present_year &
!is.na(dollars_per_day)) %>% .$country
country_list <- intersect(country_list_1, country_list_2)</pre>
```

• Graficamos incluyendo solo países con datos disponibles en esos años

```
gapminder %>% filter(year %in% c(past_year, present_year) &
   (country %in% country_list) %>%
   mutate(group = ifelse(region %in% west, "Occidente", "Subdesarrollo")) %>%
   ggplot(aes(dollars_per_day)) +
   geom_histogram(binwidth = 1, color = "black") +
   scale_x_continuous(trans = "log2") +
   facet_grid(year ~ group)
```

¿Con el paso del tiempo los países ricos se hicieron más ricos y los pobres más pobres?

Otra comparación...

```
country_list) %>% filter(year %in% c(past_year, present_year) & country %in%
country_list) %>% mutate(region = reorder(region, dollars_per_day, FUN =
median)) %>% ggplot() + theme(axis.text.x = element_text(angle = 90, hjust =
median)) + xlab("") + scale_y_continuous(trans = "log2")
c + geom_boxplot(aes(region, dollars_per_day, fill = factor(year)))
```


Elegir gráficos implica seleccionar visualización y datos

 Eligiendo un gráfico de cajas que es un resumen de los datos podemos perder características de la distribución de los mismos

 Distribución bimodal: En este caso perdemos los 2 modos de la distribución

Gráfico de densidad

- Transmitir el mensaje anterior a través de un gráfico de densidad
- Distribución de ingresos de 1970 vs 2011

Gráfico de densidad - características en distribución de datos

Ponderar datos en gráficos de distribución

- A veces necesitamos que los gráficos de densidad preserven información de cuantos sujetos hay en cada grupo.
- Por defecto el área bajo la curva es 1 independientemente del tamaño de cada grupo
- En el ejemplo necesitamos saber cuantos paises hay en cada grupo

Subdesarrollo

Gráficos de distribución sin ponderar

```
gapminder %>% filter(year %in% c(past_year, present_year) &(country %in%
    country_list) )%>% mutate(group = ifelse(region %in% west,

"Occidente",
    "Subdesarrollo")) %>% ggplot(aes(dollars_per_day, fill = group)) +
    geom_density(alpha = 0.2) + scale_x_continuous(trans = "log2")+
    facet_grid(. ~ year)
```


Cantidad de datos en gráficos

- Podemos cambiar el eje y del gráfico para que sea la cantidad de sujetos utilizando el operador '...'
- En el ejemplo si mapeamos

```
aes(x=dollars_per_day,y= ..count..)
```

Distribución ponderada y suavizada

```
gapminder %>% filter(year %in% c(past_year, present_year) &
  (country %in% country_list) )%>%
  mutate(group = ifelse(region %in% west, "Occidente", "Subdesarrollo")) %>%
  ggplot(aes(dollars_per_day, fill = group, y = ..count..)) +
  geom_density(alpha = 0.2, bw = 0.75) +
  scale_x_continuous(trans = "log2") + facet_grid(. ~ year)
```


Función case when

- Generar nueva información a través de datos y condiciones lógicas if - else if - else
- Nos permite vectorizar las funciones 'if' y 'esle if'

- Condición:
 - Operadores comparativos ej >=
 - Expresiones lógicas y(&), o(|), not(!)

Ejemplo case-when

```
gapminder <- gapminder %>%
  mutate(group = case when(
 .$region %in% west ~ "Oeste",
.$region %in% c("Eastern Asia", "South-Eastern Asia") ~
"Este de Asia",
      .$region %in% c("Caribbean", "Central America",
"South America") ~ "América Latina",
      .$continent == "Africa" & .$region != "Northern
Africa" ~ "África Sub-Sahara",
      TRUE ~ "Otros"))
```



```
# re ordenamos - niveles del factor
gapminder <- gapminder %>%
  mutate(group = factor(group, levels = c("Otros", "América Latina",
"Este de Asia", "África Sub-Sahara", "Oeste")))
# Re definimos el objeto
p <- gapminder %>% filter(year %in% c(past_year, present_year) & country
%in% country list) %>% ggplot(aes(dollars_per_day, fill = group)) +
scale x continuous(trans = "log2")
p + geom density(alpha = 0.2, bw = 0.75, position = "stack") +
   facet grid(year ~ .)
                                                  0.8 -
 0.4 -
                                                  0.6 -
 0.3 -
 0.2 -
                                                  0.4 -
                                 group
 0.1-
                                                                                    group
                                                  0.2 -
                                    Otros
                                                                                       Otros
gensis 0.0 -
                                                 density
0.0 -
                                    América Latina
                                                                                       América Latina
                                    Este de Asia
                                                                                       Este de Asia
                                    África Sub-Sahara
                                                                                       África Sub-Sahara
 0.3 -
                                    Oeste
                                                  0.6 -
                                                                                       Oeste
 0.2 -
                                                  0.4 -
 0.1
                                                  0.2 -
           dollars per day
                                                             dollars per day
```

```
gapminder %>% filter(year %in% c(past_year, present_year) &
country %in% country_list) %>% group_by(year) %>% mutate(weight =
population/sum(population*2)) %>% ungroup() %>%
ggplot(aes(dollars_per_day, fill = group, weight = weight)) +
    scale_x_continuous(trans = "log2") +
    geom_density(alpha = 0.2, bw = 0.75, position = "stack") +
facet grid(year ~ .)
```


Comunicar erróneamente datos

 Muchas veces mostrar el promedio de datos es extraer conclusiones erróneas para los miembros involucrados.

