Лабораторная работа "Гироскоп"

Можаров А.Р.

29 марта 2023 г.

Оборудование:

Гироскоп; блок питания; секундомер; стержень; груз; линейка.

Аппаратные погрешности:

$$\Delta t = 0, 2 \text{ c}; \ \Delta l = 0, 5 \text{ cm}; \ \Delta m = 0, 1 \text{ r}; \ \Delta AO = \Delta a = \Delta b = 0, 1 \text{ cm}.$$

Теоретическая часть

Общие сведения

 Γ ироскоп — устройство, способное реагировать на изменение углов ориентации тела, на котором оно установлено, относительно инерциальной системы отсчёта.

На данный момент, гироскопы делятся по степеням свободы: с двумя и тремя степенями свободы, а также по принципу действия: механические, оптические (лазерные - активные оптические, пассивные оптические, волоконно-оптические, интегрально-оптические) и ядерные. В данном эксперименте использовался механический гироскоп с переменным количеством степеней свободы.

Чтобы ось гироскопа могла свободно поворачиваться в пространстве, гироскоп укрепляют в кардановом подвесе.

При таком креплении тело гироскопа может свободно поворачиваться вокруг трёх осей, пересекающихся в одной точке (центре подвеса), и ось тела гироскопа может иметь любую ориентацию в пространстве. Движение его, как движение твёрдого тела, описывается уравнением моментов:

$$\frac{d\vec{N}}{dt} = \vec{M} = \frac{d(I\vec{\omega})}{dt}$$

Поведение свободного гироскопа

Если центр масс тела гироскопа совмещён с центром карданова подвеса, то момент сил тяготения относительно этой точки будет равен нулю. Такой гироскоп называется **свободным**. Согласно уравнению моментов, его момент импульса не изменяется, а, соответственно, ось тела гироскопа не будет изменять своей ориентации в пространстве в инерциальной системе отсчёта.

Свободный гироскоп является «непослушным», т.е. не реагирует на кратковременные воздействия, а при давлении на ось гироскопа, она перемещается в направлении, перпендикулярном силе давления.

При закреплении наружного кольца гироскоп лишается третьей степени свободы и становиться «послушным».

Прецессия гироскопа

Медленное, по сравнению с собственным вращением, движение оси гироскопа называется **прецес**сией.

Запишем уравнение моментов относительно центра масс гироскопа:

$$\frac{d\vec{N}}{dt} = \vec{M} = [\vec{AO} \times m\vec{g}]$$

Момент силы тяготения ортогонален моменту импульса и вызывает только изменение направления последнего. Разложим момент импульса на две составляющие: продольную $\vec{N}_{||}$ и перпендикулярную \vec{N}_{\perp} . За малый промежуток времени dt вектор \vec{N}_{\perp} вернётся на угол:

$$d\varphi = \frac{dN}{N_{\perp}} = \frac{Mdt}{Nsin\alpha}$$

Угловая скорость поворота этого вектора, а, следовательно, и угловая скорость прецессии гироскопа будет равна:

$$\Omega = \frac{d\varphi}{dt} = \frac{M}{Nsin\alpha} = \frac{mg \cdot AO}{I\omega}$$

Представляет интерес исследование зависимости периода прецессии от положения груза на стержне:

$$\frac{2\pi}{T_{\text{пр.}}} = \frac{mgl + mg(a+b)}{I\omega}$$

или

$$\frac{1}{T_{\text{np.}}} = Al + B$$

где

$$A = \frac{mg}{2\pi I \omega} \qquad B = \frac{mg(a+b)}{2\pi I \omega}$$

Практическая часть

Ход работы:

- 1). Исследовать поведение свободного гироскопа
- 2). Исследовать поведение гироскопа с двумя степенями свободы
- 3). Измерить частоту собственного вращения тела гироскопа

$$\omega = \frac{mg \cdot AO}{I \cdot \Omega} = \frac{mg \cdot AO \cdot T_{\text{np.}}}{I \cdot 2\pi}$$

m, Γ	l_{max} , см	a, cm	b, cm	AO, cm	I , $\Gamma \cdot \text{cm}^2$	U, B	$T_{\rm np.}, c$	ω, c^{-1}
208	7	6	1	1./	16295	15	7,53	211
200	'	U	1	14	10299	18	8,53	238

4). Измерение периода прецессии при различных положениях груза

m , Γ	n, об	U, B	L, см	t_1 , c	t_2 , c	t_3 , c	$t_{\rm cp.},{ m c}$	$T_{\rm np.}$, c	$ u_{\rm пр.}, \Gamma$ ц	
208	3	15	4	26,83	26,88	26,75	26,82	8,94	0,11	
			4,5	25,81	26,19	25,86	25,95	8,65	0,12	
			5	24,91	24,87	24,98	24,92	8,31		
			5,5	24,20	23,97	24,34	24,17	8,06		
			6	23,26	23,28	23,36	23,3	7,77	0,13	
			6,5	23,36	22,68	22,83	22,62	7,54		
			7	22,65	22,45	22,10	22,40	7,47		
		18	4	33,47	33,07	33,22	33,25	11,08	0,09	
			4,5	32,04	32,37	32,24	32,22	10,74		
			5	31,38	32,31	32,06	31,92	10,64		
			5,5	30,46	30,74	31,09	30,76	10,25	0,10	
			6	28,31	28,22	28,37	28,30	9,43] 0,10	
			6,5	27,34	27,04	26,81	27,06	9,02	0,11	
			7	25,37	25,41	26,04	25,60	8,53	0,12	

5). Построить графики:

Рис. 1: $U=15~{\rm B}$ слева и $U=18~{\rm B}$ справа

6). Уточнить значения коэффициентов A и B и найти графически момент инерции тела гироскопа

m, г	U, B	ω, c^{-1}	$A, c^{-1} \cdot cm^{-1}$	B, c^{-1}	$I, \Gamma \cdot \text{cm}^2$	$I_{\rm cp.}, {\scriptstyle \Gamma} \cdot {\rm cm}^2$	
208	15	211	0,00737	0,0825	20976	18074	
	18	238	0,009	0,0543	15172	10074	

Выводы

- Исследованы особенности поведения гироскопа с двумя и тремя степенями свободы
- Через определение периода прецессии вычислено экспериментальное значение момента инерции