

Model Optimization and Tuning Phase Template

Date	03 October 2024
Team ID	LTVIP2024TMID24974
Project Title	Analysis Of Amazon Cell Phone Reviews
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. Although various models were considered, the primary focus was on **Random Forest**, as it is well-suited for text classification tasks due to its simplicity and effectiveness. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values				
Random Forest	<pre># Step 1: Convert text data into numerical features using TF-IDF # You can adjust ngram_range and max_features as per your requirement vectorizer = TfidfVectorizer(ngram_range=(1, 2), max_features=3000) X = vectorizer.fit_transform(merged_df['cleaned_review']) # Convert ratings to sentiment categories for Random Forest model def convert_rating_to_sentiment(rating): if rating >= 4: return 'positive' elif rating == 3: return 'neutral' else: return 'negative' y = merged_df['rating_x'].apply(convert_rating_to_sentiment)</pre>	Classification negative neutral positive accuracy macro avg weighted avg	Report: precision 0.80 0.91 0.87	recall 0.77 0.07 0.97 0.60 0.86	f1-score 0.79 0.14 0.92 0.86 0.61 0.83	support 3350 926 9322 13598 13598


```
[ ] rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42

# Step 4: Train the Random Forest Classifier on the training data
rf_classifier.fit(X_train, y_train)

# Step 5: Predict sentiment on the test set
y_pred = rf_classifier.predict(X_test)

# Step 6: Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
classification_report_output = classification_report(y_test, y_pred)

print("Random Forest Accuracy: ", (accuracy * 100))
print(f"classification Report:\n{classification_report_output}")
```

Performance Metrics Comparison Report (2 Marks):

Model		Optimiz	zed Metric		
	⇒ Random	Forest Conf	usion Ma	atrix	
		2 768] 69 530] 5 9002]]			
Model-1	Classificatio	n Report: precision	recall	f1-score	support
Dandom Forest		precision	recarr	11-30016	Support
Random Forest	negative	0.80	0.77	0.79	3350
	neutral	0.91	0.07	0.14	926
	positive	0.87	0.97	0.92	9322
	accuracy			0.86	13598
	macro avg	0.86	0.60	0.61	13598
	weighted avg	0.86	0.86	0.83	13598

NOTE: Although various models were considered, the primary focus was on Random Forest, as it is well-suited for text classification tasks due to its simplicity and effectiveness and ability to handle complex datasets without overfitting.

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Random Forest	Random Forest was chosen over other models because of its ability to handle complex, nonlinear relationships in the text data, which can improve sentiment prediction accuracy. It aggregates multiple decision trees, reducing the risk of overfitting and providing more robust, generalizable results compared to models like Logistic Regression or SVM.