УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ

Геометрија И-смер део 2: Центар масе

Тијана Шукиловић

8. октобар 2023.

Архимедов закон полуге

Центар маса тачака

$$|AT|: |TB| = m_2: m_1 \iff m_1 \overrightarrow{TA} + m_2 \overrightarrow{TB} = \overrightarrow{0}$$

$$A(m_1) \qquad T \qquad B(m_2)$$

Центар маса тачака

$$|AT|:|TB| = m_2: m_1 \iff m_1 \overrightarrow{TA} + m_2 \overrightarrow{TB} = \overrightarrow{0}$$

$$A(m_1) \qquad T \qquad B(m_2)$$

O – произвољна тачка Центар маса тачака $A(m_1)$ и $B(m_2)$:

$$\overrightarrow{OT} = \frac{1}{m_1 + m_2} \left(m_1 \overrightarrow{OA} + m_2 \overrightarrow{OB} \right)$$

Saturday Morning Breakfast Cereal (smbc-comic.com)¹

http://smbc-comics.com/comic/rapunzel-2

Saturday Morning Breakfast Cereal (smbc-comic.com)¹

FREE BODY DIAGRAM:

= RAPUNZEL'S CENTER OF MASS

 $^{^{1}\,\}rm http://smbc\text{-}comics.com/comic/rapunzel-2$

Saturday Morning Breakfast Cereal (smbc-comic.com)¹

smbc-comic.com

 $^{^{1} \}rm http://smbc\text{-}comics.com/comic/rapunzel-2$

Проблем клацкалице

Пример игрице са клацкалицом²

Проблем клацкалице

Пример игрице са клацкалицом²

Пример 1

На једном крају полуге дужине 3m седи дете масе 12kg, а на другом крају је џак са играчкама масе 4kg.

а) На ком растојању од детета треба поставити ослонац да би полуга била у равнотежи?

Проблем клацкалице

Пример игрице са клацкалицом²

Пример 1

На једном крају полуге дужине 3m седи дете масе 12kg, а на другом крају је џак са играчкама масе 4kg.

- а) На ком растојању од детета треба поставити ослонац да би полуга била у равнотежи?
- б) Ако се један крај полуге постави на земљу, а џак са играчкама помери на средину, колику масу подиже дете држећи други крај полуге?

• $A(m_1), B(m_2), C(m_3)$

- $A(m_1), B(m_2), C(m_3)$
- A_1 центар маса тачака B, C: AA_1 тежишна дуж (из A)

- $A(m_1), B(m_2), C(m_3)$
- A_1 центар маса тачака B, C: AA_1 тежишна дуж (из A)
- T центар маса тачака A, B, C:

$$\overrightarrow{OT} = \frac{1}{m_1 + m_2 + m_3} \left(m_1 \overrightarrow{OA} + m_2 \overrightarrow{OB} + m_3 \overrightarrow{OC} \right)$$

- $A(m_1), B(m_2), C(m_3)$
- A_1 центар маса тачака B, C: AA_1 тежишна дуж (из A)
- T центар маса тачака A, B, C:

$$\overrightarrow{OT} = \frac{1}{m_1 + m_2 + m_3} \left(m_1 \overrightarrow{OA} + m_2 \overrightarrow{OB} + m_3 \overrightarrow{OC} \right)$$

Теорема 1.1

Тежишне дужи се секу у центру маса.

- $A(m_1), B(m_2), C(m_3)$
- A_1 центар маса тачака B, C: AA_1 тежишна дуж (из A)
- T центар маса тачака A, B, C:

$$\overrightarrow{OT} = \frac{1}{m_1 + m_2 + m_3} \left(m_1 \overrightarrow{OA} + m_2 \overrightarrow{OB} + m_3 \overrightarrow{OC} \right)$$

Теорема 1.1

Тежишне дужи се секу у центру маса.

 $3a\ m_1=m_2=m_3=m$: центар маса = тежиште троугла!

Домаћи: Тежиште и центар масе тетраедра

Пример 2

Нека је \overrightarrow{ABCD} тетраедар и T тачка таква да важи $\overrightarrow{OT} = \frac{1}{4}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD})$. Тежишном дужи тетраедра се назива дуж која спаја теме тетраедра са тежиштем напсрамне пљосни. Доказати да се тежишне дужи тетраедра секу у тачки T и да их она дели у односу 3:1. Тачка T се назива тежиште тетраедра.

Пример 3

Дате су тачке са масама A(2), B(3), C(7). Одредити у ком односу центар масе дели тежишне дужи $\triangle ABC$.

Пример 3

Дате су тачке са масама A(2), B(3), C(7). Одредити у ком односу центар масе дели тежишне дужи $\triangle ABC$.

Пример 3

Дате су тачке са масама A(2), B(3), C(7). Одредити у ком односу центар масе дели тежишне дужи $\triangle ABC$.

Пример 4

Дат је $\triangle ABC$ и на његовим ивицама тачке A_1 и B_1 такве да $|AB_1|:|B_1C|=3:4,\,|BA_1|:|A_1C|=2:5.$

- а) Ако је $\{P\}=AA_1\cap BB_1$, у ком односу P дели AA_1 и BB_1 ?
- б) Ако је $\{C_1\} = CP \cap AB$, у ком односу C_1 дели AB?

Барицентричке координате

Слика 1: Хомогене барицентричке координате

Барицентричке координате

Слика 1: Нехомогене барицентричке координате

Смисао барицентричких координата

Одредити барицентричке координате тачке M значи одредити масе које треба ставити у темена $\triangle A_1A_2A_3$ да би центар масе тог система била тачка M.

Пример 5

За $\triangle ABC$ барицентричке координате тежишта су T(1:1:1) (хомогене), тј. $T\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)$ (нехомогене).

Пример 6

У равни је дат троугао ABC, A(6,8), B(6,0), C(0,8).

- а) Одредити хомогене барицентричке координате тачке M(3,4).
- б) Одредити нехомогенте барицентричке координате тачке N(2,4).
- в) Да ли се тачке M и N налазе унутар троугла ABC?

Пример - центар уписаног круга

Пример 7

Одредити координате центра уписаног круга у $\triangle ABC$.

Пример - "превртљиви лаптоп"

Пример 8

Претпоставимо да је лаптоп направљен од хомогеног материјала и да је основа лаптопа дупло тежа од поклопца. Како год отворили поклопац лаптопа он ће стабилно стајати на столу. С друге стране, ако лаптоп ослонимо поклопцем на сто и подижемо основу лаптопа у једном моменту лаптоп ће се "претурити". Колики је угао између основе и поклопца у том моменту? (Занемарити дебљину основе и поклопца)

