ELECTRÓNICA DIGITAL III

2024-1

SMART ORCHARD

Valentina Restrepo Jaramillo

MONITOREO EN TIEMPO REAL DE UNA HUERTA DESCRIPCIÓN

El sistema embebido consta de:

- Microcontrolador ESP32
- Sensor de humedad y temperatura de aire DHT22
- Sensor de humedad de suelo YL-69
- Sensor de Intensidad de luz KY-018
- Display Nokia 5110
- Bomba de agua
- Ventilación con motor DC y hélice

MONITOREO EN TIEMPO REAL DE UNA HUERTA

MONITOREO EN TIEMPO REAL DE UNA HUERTA ESP32

Algunas características:

- Voltaje de operación de 2.2 3.6 V
- Los GPIO's entregan 3.3V
- Su arquitectura es la del Arduino UNO
- Su chip es ESP-Wroom-32 Wi-Fi Module
 - o Tiene Wi-Fi y Bluetooth integrado
 - MCU → Xtensa Dual-Core 32-bit LX6 600 DMIPS
 - Frecuencia típica de 160 MHz
 - SRAM de 512 kBytes
 - o 36 GPIO
 - Dos ADC's de 12 bits

MONITOREO EN TIEMPO REAL DE UNA HUERTA ESP32

MONITOREO EN TIEMPO REAL DE UNA HUERTA DHT22

- Sensor de temperatura y humedad.
- Rango de medición de temperatura: -40°C a 80°C.
- Precisión de temperatura: ±0.5°C.
- Rango de medición de humedad: 0% a 100% RH.
- Precisión de humedad: ±2% RH.
- Frecuencia de muestreo: 0.5 Hz (un dato cada 2 segundos).
- Voltaje de operación: 3.3V a 6V.
- Consumo de corriente: Máx. 2.5mA durante la medición.

MONITOREO EN TIEMPO REAL DE UNA H

- Sensor de luz (fotorresistor).
- Material: Sulfuro de cadmio (CdS).
- Resistencia en la oscuridad: $1M\Omega$.
- Resistencia en la luz: $10-20k\Omega$ (dependiendo de la intensidad de la luz).
- Interfaz: Analógica.
- Voltaje de operación: 3.3V a 5V.
- Consumo de corriente: Muy bajo, generalmente en el rango de microamperios.

MONITOREO EN TIEMPO REAL DE UNA HUERT.

- Sensor de humedad del suelo.
- Componentes: Sensor de humedad (YL-69) y módulo comparador (YL-38).
- Rango de detección: Determina la presencia de humedad en el suelo (valores relativos).
- Interfaz: Analógica (salida de voltaje proporcional a la humedad) y digital (ajustable por potenciómetro).
- Voltaje de operación: 3.3V a 5V.
- Consumo de corriente: Aproximadamente 20mA (puede variar).

MONITOREO EN TIEMPO REAL DE UNA HUERTA NOKIA 5110

- Pantalla gráfica LCD.
- Resolución: 84 x 48 píxeles.
- Controlador: PCD8544.
- Interfaz: SPI (Serial Peripheral Interface).
- Voltaje de operación: 2.7V a 3.3V (aunque puede trabajar con 5V con resistencias limitadoras de corriente).
- Consumo de corriente: Aproximadamente 6mA durante la operación.
- Retroiluminación: LED (en algunos modelos, opcional y no controlado por el PCD8544).

MONITOREO EN TIEMPO REAL DE UNA HUERTAAPLICACIONES

Las aplicaciones permiten abarcar el monitoreo de plantas de interiores y extenderse a pequeños jardines, es importante tener en cuenta el cambio del display Nokia5110 o de la pantalla para poder visualizar los datos de diferentes plantas.

Este sistema es bastante útil para personas que tienen plantas en casa y quieren optimizar su cuidado, previniendo el marchitamiento por exceso o falta de luz, sobrehidratación o falta de la misma.

Es importante tener en cuenta la necesidad de calibración del sistema para cada tipo de sustrato y planta, pues cada especie cuenta con requerimientos diferentes.

MONITOREO EN TIEMPO REAL DE UNA HUERTA DIAGRAMA DEBLOQUES DE HARDWARE

MONITOREO EN TIEMPO REAL DE UNA HUEF

ANÁLISIS DE COSTOS DEL SISTEMA

 MICROCONTROLADOR → 25.00 	•	MICRO	CONTRO	LADOR →	25.000
--	---	-------	--------	---------	--------

DHT22 $\rightarrow 5.000$

KY 018 $\rightarrow 7.000$

 $\rightarrow 10.000$ YL-69

Relays (2) $\rightarrow 12.000$

Motor DC con hélice \rightarrow 10.000

Display Nokia 5110 \rightarrow 15.000

Bomba de agua \rightarrow 10.000

Cables, soldadura, etc. → 10.000

Baterías $\rightarrow 20.000$

TOTAL $\rightarrow 124.000$

MONITOREO EN TIEMPO REAL DE UNA HUERTA ORGANIZACIÓN DEL TRABAJO EN EQUIPO

Al ser una sola persona, comencé a planear y desarrollar el proyecto, primero consiguiendo los materiales tras planear la idea principal, luego se probaron por separado los módulos para corregir librerías y asegurar su correcto funcionamiento.

Se integraron los módulos y se corrigieron errores de integración, debidos a la escogencia del ADC.

Se probó el sistema en conjunto y tras asegurar su funcionamiento, se soldó en conjunto.

MONITOREO EN TIEMPO REAL DE UNA HUERTA CUMPLIMIENTO DE REQUISITOS

Funcionales

- Se cumplió con el monitoreo de variables y su visualización en el display.
- No se cumplió con la adecuación en hardware de los dos actuadores.

No Funcionales

 No se cumplió con el envío de datos a través del protocolo Wi-Fi para su visualización en la nube, aunque sí se logró la conexión por este protocolo a internet.

MUCHAS GRACIAS

