System Requirements Specification

Index

For

Polyp Segmentation Application

Version 1.0

POLYP SEGMENATION APPLICATION

System Requirement Specification

1 PROJECT ABSTRACT

The **Polyp Segmentation Application** is an ML code test for candidate for checking their coding skills.

Following are the requirement specifications:

File Name	Module Names	Functionality	Problem Statement for Candidate
dataloader.py	PolypDatasetLoader class and all its dataloader functionalities	It contains the class that loads the data from the folder and returns the image and mask as pytorch tensors.	You have the template for the class. Code all the functionalities mentioned in the class for loading the data, augmenting it and retuning the image and mask pytorch supported tensor
loss.py	DiceBCELoss class	It contains the class used to calculate the error between original mask and predicted mask.	You have to first flatten both the tensors then calculate dice loss and binary cross entropy loss between them. As a result, sum them and return them as final loss
metric.py	dice_cofficient function	It contains the dice_cofficient function that calculates the similarity between	You have to first flatten both the tensors then calculate dice coefficient between the mask tensors.

		original mask and	As the result, return
		predicted mask	the dice coefficient.
model.py	PolypModel class	It contains class for	You have to create a
		creating the model	model that takes
		which takes input	input image of the
		images of	given size and
		Bx3x512x512	returns a mask of
		where B is the	that of given size.
		number of batches.	Make it complex to
		It outputs the mask	understand the
		of shape	features and it
		Bx1x512x512	should return a
			jaccard coefficient
			value on the test
			samples be more
			that 80%.
train_helper.py	initialize_hyperparameters	It contains code for	You have to add
	function	initializing the	any type of
		optimizer, schedular	optimizer and
		and loss function	schedular of your
			choice.

2. TEMPLATE CODE STRUCTURE

2.1 Package: PolypSegmentationApplication

Resources

Names	Resource	Remarks	Status
Package Structure			
PolypDatasetLoader	dataloader file	Contains the PolypDatasetLoader class that loads the data and returns the image and mask as tensors	Not implemented
DiceBCELoss	loss file	Contains the DiceBCELoss class that is used to calculate the margin of error between original mask and predicted mask.	Not Implemented

dice_cofficient	metric file	Contains the dice_cofficient function that calculates the similarity between original mask and predicted mask	Not Implemented
initialize_hyperparameters function	train_helper file	It contains code for initializing the optimizer, schedular and loss function	Partially Implemented
PolypModel Class	model file	It contains class for creating the model which takes input images of Bx3x512x512 where B is the number of batches. It outputs the mask of shape Bx1x512x512	Not implemented

5.2 Package: PolySegmentationApp.Tests

Resources

All the tests file contains the testing code for evaluation. Don't change or edit it.

3. Commands for training and testing

After completing the code, you can use the commands given below for installing all the important packages, to train your model and to test your model:

1. To setup environment:

pip install -r requirements.txt

2. To launch application:

python3 main.py -d "data/PNG" -i "Original" -m "Ground Truth" -b 2 -e 100

3. To run Test cases:

python3 testing.py