

$\begin{array}{c} \textbf{Python calculation for heat pump} \\ \textbf{AWHP-LEXETA} \end{array}$

Parametric Heat Pump calculation

Dani Carbonell

dani.carbonell@solarenergy.ch

2019/02/26 at: 11:15:16 h

Table 1: Fitted coefficients for the heat pump.

Coefficient	Description	
		[kW]
PQ_1	1 st condenser polynomial coefficient	1.4130e + 01
PQ_2	2^{st} condenser polynomial coefficient	$5.6250e{+01}$
PQ_3	3^{st} condenser polynomial coefficient	-3.5630e+01
PQ_4	4^{st} condenser polynomial coefficient	2.9500e + 02
PQ_5	5^{st} condenser polynomial coefficient	-4.2000e+02
PQ_6	6^{st} condenser polynomial coefficient	0.0000e+00
$PCOP_1$	1 st COP polynomial coefficient	7.4000e+00
$PCOP_2$	2^{st} COP polynomial coefficient	3.7250e + 01
$PCOP_3$	3 st COP polynomial coefficient	-2.9000e+01
$PCOP_4$	4 st COP polynomial coefficient	-3.7500e+01
$PCOP_5$	5^{st} COP polynomial coefficient	-9.2500e+01
$PCOP_6$	6 st COP polynomial coefficient	0.0000e+00
\dot{m}_{cond}	$1800.00 \ [kg/h]$	
\dot{m}_{evap}	$2000.00 \; [kg/h]$	
COP_{nom} (B0W35)	3.35	
$Q_{c,nom}$ (B0W35)	$8.26~\mathrm{kW}$	
COP_{nom} (B2W35)	3.57	
$Q_{c,nom}$ (B2W35)	8.87 kW	
COP_{nom} (B10W35)	4.38	
$Q_{c,nom}$ (B10W35)	$11.05~\mathrm{kW}$	

Table 2: Predicting results of the heat pump.

$T_{evap,in}$	$T_{evap,out}$	$T_{cond,in}$	$T_{cond,out}$	COP	Q_{cond}	Q_{evap}	W_{comp}	\dot{m}_{cond}	\dot{m}_{evap}	ΔT_{evap}	ΔT_{cond}
^{o}C	^{o}C	^{o}C	^{o}C	[-]	[kW]	[kW]	[kW]	kg/h	kg/h	K	K
-7.00	-8.38	47.93	50.00	1.27	4.34	0.92	3.42	1800	2000	1.4	2.1
-7.00	-4.69	55.57	57.50	0.72	4.05	-1.54	5.59	1800	2000	-2.3	1.9
-7.00	-11.28	64.53	65.00	-0.53	0.99	2.86	-1.87	1800	2000	4.3	0.5
7.00	-1.31	45.72	50.00	2.63	8.97	5.56	3.41	1800	2000	8.3	4.3
7.00	0.92	53.45	57.50	1.92	8.49	4.07	4.42	1800	2000	6.1	4.1
7.00	4.39	61.03	65.00	1.27	8.32	1.75	6.57	1800	2000	2.6	4.0

Figure 1: COP Results for the heat pump at the selected points

Figure 2: Q_c Results for the heat pump at the selected points