# Week 10: Graphs and Graph Traversals

# Agenda:

- ► Graphs basic definitions
- ► Graphs Representation
- ► Graph Traversals: BFS, DFS, Classifying Types of Edges
- ► DFS applications

  - ► Topological Sorting
  - ► Strongly Connected Components (may postpone to the following week)

Reading:

► CLRS: 589-623

A Graph:

# **Basic Graph Definitions** G = (V, E)



- ightharpoonup V Nodes / Vertices: A set of n elements with unique identifiers; usually numbers from  $\{1,...,n\}$ .
- ightharpoonup E Edges
  - ▶ Undirected Graph: each edge is a set of exactly two nodes  $e = \{u, v\}$ 
    - ightharpoonup We say e connects u and v
    - lacktriangle We say u and v are adjacent, or neighbors
  - ▶ Directed Graph (digraph): each edge/arc an ordered pair  $e = \langle u, v \rangle$ .
    - $\blacktriangleright$  We say e leaves u and enters v; or e is from u to v.
    - We say u and v are adjacent; u is an in-neighbor of v; v is an out-neighbor of u.

### **Basic Graph Definitions**

- ▶ adjacent (vertex vertex, edge edge) e.g., 1 and 3 are adjacent; (1,3) and (3,5) are adjacent
- ▶ incident (vertex edge)
  e.g., 1 is incident with (1, 3)
- ▶ Loops / self-loops: if an edge is allowed to be of the form e = uu, i.e. connecting a node to itself.
  - Unless specified otherwise: assume no self loops, and no multiple edges
- **Degree** of v: # edges that touch v = # neighbors of v
  - In a digraph: separated into in-degree (#in-neighbors) and out-degree (#out-neighbors)
- A path: a sequence of nodes  $v_0, v_1, ..., v_k$  such there exists k edges  $e_1, ..., e_k$  where  $e_i$  connects  $v_{i-1}$  to  $v_i$ .
- ► A simple path: a path where all nodes are unique
  - k is the length of the path
  - We often assume a path is a simple path from  $v_0$  to  $v_k$
- ightharpoonup A cycle: a path where  $v_0 = v_k$ .
- A simple cycle: a cycle where all nodes but  $v_0$  and  $v_k$  are unique
  - ▶ k is the length of the cycle
  - We often assume a cycle is a simple cycle
- ightharpoonup Size of the graph |G| = |V| = n
- $\blacktriangleright$  We often use the notation V(G), E(G).

- lacktriangle "A n-nodes and m-edges graph" means |V(G)|=n and |E(G)|=m.
  - ▶ Undirected graph:  $m \leq \binom{n}{2}$ .
  - ▶ Directed graph:  $m \le n(n-1)$ .
  - ▶ The empty graph: no edge belongs to E
  - ightharpoonup The complete graph: all edges belong to E
- Degrees and edges:
  - $\blacktriangleright$  In an undirected graph  $\sum\limits_{v\in V}deg(v)=2m$
- ightharpoonup G'=(V',E') is a sub-graph of G=(V,E) if  $V'\subset V$  and  $E\subset E'$ .
  - Removing an edge e from G results in the subgraph  $(V, E \setminus \{e\})$
- ▶ The induced subgraph on  $V' \subset V$  is the graph  $G[V'] = G|_{V'} = (V', E')$  where  $e \in E'$  iff  $e \in E$  and both its vertices are in V'
  - **Removing a node** v from G results in the induced graph  $G[V \setminus \{v\}]$

## Connectivity in an Undirected Graph

- ightharpoonup u is connected to v ( $u \sim v$ ) if there exists a path from u to v.
- ightharpoonup G is a connected graph if for every  $u,v\in V,\ u\sim v$
- $ightharpoonup C\subset V$  is the connected component of u (CC(u)) if it is the maximal set C such that  $u\in C$  and G[C] is connected.
  - lacktriangle We often identify C with G[C]

- Connectivity is an *equivalence* relation
  - - Reflexivity: for every u we have  $u \sim u$  by a path of length 0
  - Symmetry: for every u and v,  $u \sim v$  iff  $v \sim u$ ▶ Transitivity: for every u, v, w, if  $u \sim v$  and  $v \sim w$  then  $u \sim w$
  - So C = CC(u) is unique  $CC(u) = \{v \in V : u \sim v\}$ . ightharpoonup So  $u \sim v$  iff CC(u) = CC(v).
  - ▶ Thus the different connected components of G form a partition of G where every edge  $e \in E$  belongs to a unique CC and no edge connects two components.

#### Forests and Trees

- A forest F is an acyclic graph. A tree T is a connected acyclic graph, and we say T spans the vertices
  - V(T).
  - The connected components of a forest are trees, each spanning all the vertices in its connected component
- ▶ All of the following definitions of a tree are equivalent:
- A maximal acyclic graph
  - Adding any edge to T results in a cycle
  - A minimal connected graph
    - Remove an edge from T and it is no longer connected
  - A connected and acyclic graph
  - An acyclic graph with n-1 edges
  - A connected graph with n-1 edges
- ▶ A graph *G* is connected iff it has a spanning tree: a subgraph T which is a tree with V(T) = V(G).

#### Biconnected component:

- Two paths connecting  $v_1$  and  $v_2$  are vertex-disjoint if share no common internal vertex (other than  $v_1$  and  $v_2$ ).
- ▶ Biconnected graph:  $|V| \ge 2$ , connected, and every pair of vertices are connected via two vertex-disjoint (simple) paths
- Notes:
  - connectivity does NOT implies biconnectivity
    - ightharpoonup articulation vertex cut vertex: its removal disconnects G
    - bridge cut edge: its removal disconnects G
- ► Biconnected component maximal biconnected subgraph
  - $\triangleright$  a partition of E (not necessarily a partition of V)

# Strong Connectivity in a Digraph

- ightharpoonup v is reachable from u ( $u \to v$ ) if there exists a path from u to v.
  - ▶ Defines distances:  $d(u,v) \stackrel{\text{def}}{=} \min$  length of path  $u \to v$ ; or  $\infty$  if no such path exists.
  - Not symmetric:  $d(u,v) \neq d(v,u)$  in general (so common to use  $d(u \rightarrow v)$ )
- ▶ u and v are strongly connected  $(u \sim v)$  if there exists a path from u to v and a path from v to u.
  - Exists a (directed) cycle containing both u and v.
- ightharpoonup G is a strongly connected graph if for every  $u,v\in V,\ u\sim v$
- $ightharpoonup C \subset V$  is the strongly-connected component of u (SCC(u)) if it is the maximal set C such that  $u \in C$  and G[C] is strongly-connected.

- Strong-connectivity is an equivalence relation
  - Reflexivity: for every u we have  $u \sim u$  by a path of length 0
  - Symmetry: for every u and v,  $u \sim v$  iff  $v \sim u$
  - ▶ Transitivity: for every u, v, w, if  $u \sim v$  and  $v \sim w$  then  $u \sim w$
- lacktriangle Thus the different SCCs of G form a partition of V(G)
- ► There could be an edge between two strongly-connected components, but no edge back

# Representing Graphs

- Representing the nodes
  - ▶ We will assume that all nodes are stored in an array
  - ▶ Nodes will have different attributes / fields as required
    - degree, color, parent, distance, etc...
       So the code "if (v.color = WHITE)" takes O(1)-time
    - Not the same as "if exists some v with v.color = WHITE" which takes
    - naively O(n)-times to check, unless we do something clever...
- Representing the edges
  - Edges are given in one of two representations:
  - Adjacency matrix: an  $n \times n$ -matrix where the i, j-entry contains e if such an edge exists or 0 o/w.
  - Adjacency lists: each node has an array / a list of all the edges that are adjacent to it
  - Some operations are more efficient in the adjacency-matrix model, some operations are more efficient in the adjacency-list model.
  - NOTE: Edges will have attributes too (color, weight, capacity, label, etc...)
    Regardless of the representation we use, we assume that once we reach an edge e we can access its attributes in O(1)-time

## An example:



0

0

# Comparison between the two representations

| •                                                                 | •                                     |                       |
|-------------------------------------------------------------------|---------------------------------------|-----------------------|
|                                                                   | Adjacency Lists                       | Adjacency Matrix      |
| Space<br>(so good for)                                            | O(m) sparse graphs                    | $O(n^2)$ dense graphs |
| Accessing a node $\boldsymbol{v}$<br>Traversing all nodes         | O(1) $O(n)$                           | O(1) $O(n)$           |
| Accessing an edge $e=(u,v)$ (finding if $e$ exists)               | $O( \Gamma(u) ) \\ \# \ neighbors(u)$ | O(1)                  |
| Finding some neighbor of $\emph{v}$                               | O(1)                                  | O(n)                  |
| Traversing all edges/vertices adjacent to a node $\boldsymbol{u}$ | $O( \Gamma(u) )$                      | O(n)                  |
| Traversing all edges                                              | O(m)                                  | $O(n^2)$              |

### **Comments about Graph Representations**

- ▶ If *G* is undirected, then the adjacency matrix is symmetric.
- Sometimes, in runtime analysis it is easier to use a max-degree bound  $\Delta = \max_v deg(v)$  (since all lists have length  $< \Delta$ )
- ▶ We do not assume the lists are sorted according to the neighbors' identifiers, the neighbors' attirbutes or the edges' attributes. We will be
- responsible to sort them or keep them in order (using Priority Queues) Example: find if u and v are of distance=2
- This means that exists some w s.t  $(u, w) \in E$  and  $(w, v) \in E$ .
  - O(n) in the matrix model
  - In the adjacency lists model (undirected graphs or if we keep incoming
    - edges for each node):

      Naïvely: for each neighbor x of u, check if x is in the adjacency list of v.
      - Runtime  $O(|\Gamma(u)| \times |\Gamma(v)|)$ .
      - Better runtime: Sort first the list for u and for v, then iterate both,  $O(|\Gamma(u)|\log(|\Gamma(u)|) + |\Gamma(v)|\log(|\Gamma(v)|))$
      - One more way: construct a  $\{0,1\}$  array for all the nodes, and see if they are connected to u and v (i.e., build the respective row from the adjacency matrix) in O(n) time.
      - Finally, you can use a hash-table: build a hash-table with the vertices adjacent to u, and try to Find() in it each vertex adjacent to v. This takes  $O((|\Gamma(u)| + |\Gamma(v)|) \cdot t)$  where t is the time it takes to hash.
- A bipartite graph is a graph where V can be partitioned into two disjoint sets  $V = R \cup L$ , such that all edges have one right- and one left-vertex.
- ▶ A bipartite graph can be represented also by a  $|R| \times |L|$ -matrix.

#### **Graph Traversal**

- ► The most elementary graph algorithm:
- ▶ Goal: visit all vertices, by following the edge structure of the graph
- ▶ Via graph traversals we find all vertices connected/reachable from a given vertex *u*, find distances, connected components, characterize edges, etc.
  - ▶ E.g., maze traversal is there a path "enter"  $\rightarrow$  "exit"?
- ► There are two main principled ways to traverse the graph
  - Breadth First Search (BFS)
    - We start at v, then first visit all of its neighbors, then visit all of its neighbors' neighbors, then neighbors' neighbors' neighbors and so on.
    - lacktriangle Think of a balloon sitting at v and inflating until it shadows the entire graph
  - Depth First Search (DFS)
    - We start at v, take a path for as far as it takes us, then go up the path and take any other branches we can, until we exhaust all paths from v.
    - Think of water being poured on v until the entire graph is flooded.
- ▶ Both use the notion of a node color representing its state

- All vertices start as WHITE and end as BLACK
- The order in which we make these 2n color changes is of importance! (the time in which a vertex turns gray and when it turns black)

## **Breadth First Search (BFS):**

- Assume for now all nodes are connected to s
- Pseudocode:

```
procedure BFS(G,s) ** G=(V,E), s \in V start vertex
foreach v \in V do
   v.color \leftarrow \mathtt{WHITE}
                                     **unknown yet
   v.dist \leftarrow \infty
                                     **distance from s
   v.predec \leftarrow \texttt{NIL}
                                    **predecessor
Initialize a queue Q
                                    **waiting vertex queue
s.color \leftarrow \texttt{GRAY}
                                     **in queue Q
s.dist \leftarrow 0
enqueue(Q, s)
while (Q \neq \emptyset) do
   u \leftarrow \mathtt{dequeue}(Q)
   foreach neighbor v of u do
```

 $\begin{array}{ll} \texttt{enqueue}(Q,v) \\ u.color \leftarrow \texttt{BLACK} & **\texttt{done with } u \end{array}$ 

 $v.color \leftarrow \texttt{GRAY}$  \*\*discovered v

if (v.color = WHITE) then

 $v.dist \leftarrow u.dist + 1$ 

 $v.predec \leftarrow u$ 

# BFS example:

 $V = \{1, 2, 3, 4, 5, 6\}$   $E = \{\{1, 3\}, \{1, 5\}, \{2, 4\}, \{2, 5\}, \{3, 4\}, \{3, 5\}, \{4, 6\}\}\}$  s = 2



# Adjacency lists

1: 3 5 2: 4 5 3: 1 4 5 4: 2 3 6 5: 1 2 3 6: 4

# BFS example:

|          |          |     |          |          |          |          | _         |
|----------|----------|-----|----------|----------|----------|----------|-----------|
|          | 1        | 2   | 3        | 4        | 5        | 6        | Q         |
| color    | W        | G   | W        | W        | W        | W        | {2}       |
| distance | $\infty$ | 0   | $\infty$ | $\infty$ | $\infty$ | $\infty$ |           |
| parent   | NIL      | NIL | NIL      | NIL      | NIL      | NIL      |           |
| color    | W        | В   | W        | G        | G        | W        | {4, 5}    |
| distance | $\infty$ | 0   | $\infty$ | 1        | 1        | $\infty$ |           |
| parent   | NIL      | NIL | NIL      | 2        | 2        | NIL      |           |
| color    | W        | В   | G        | В        | G        | G        | {5, 3, 6} |
| distance | $\infty$ | 0   | 2        | 1        | 1        | 2        |           |
| parent   | NIL      | NIL | 4        | 2        | 2        | 4        |           |
| color    | G        | В   | G        | В        | В        | G        | {3, 6, 1} |
| distance | 2        | 0   | 2        | 1        | 1        | 2        |           |
| parent   | 5        | NIL | 4        | 2        | 2        | 4        |           |
| color    | G        | В   | В        | В        | В        | G        | {6, 1}    |
| distance | 2        | 0   | 2        | 1        | 1        | 2        |           |
| parent   | 5        | NIL | 4        | 2        | 2        | 4        |           |
| color    | G        | В   | В        | В        | В        | В        | {1}       |
| distance | 2        | 0   | 2        | 1        | 1        | 2        |           |
| parent   | 5        | NIL | 4        | 2        | 2        | 4        |           |
| color    | В        | В   | В        | В        | В        | В        | Ø         |
| distance | 2        | 0   | 2        | 1        | 1        | 2        |           |
| parent   | 5        | NIL | 4        | 2        | 2        | 4        |           |

## **BFS** example:

L: 3

2: 4

- ► Adjacency lists:
- 4: 2 3 6
- 5: 1 2
- 5: 4

- ► BFS tree:
  - root is the start vertex s
  - ightharpoonup parent of u is predecessor u.predec
  - left-to-right child order *depends* on neighbor ordering (in *u*'s list)



#### **Properties of BFS**

- ► Each u that is reachable from s is visited, enqueued exactly once (turns GRAY) and dequeued exactly once (turns BLACK)
- For any u denote d(u,s) the true distance between s and u, and u.dist as the distance given by BFS. Claim: u.dist = d(u,s), and the path from u to s using the predecessors is a shortest path.
  - Prove by induction on d that all nodes u with d(u,s)=d are assigned u.dist=d.
  - ightharpoonup Base case d=0 and we only have s to consider.
  - Induction step. Let u be a node s.t. d(u,s)=d+1. On all shortest-paths from s to u the next-to-last node must be of distance d from s, so by IH it was assigned dist=d; and in particular it had to be turned gray and enqueued by the BFS. So, among all next-to-last-nodes let x be the first node to be enqueued. This means u is discovered by the edge (x,u), which means u. dist=x. dist+1=d+1.

#### **Properties of BFS**

- ► Each u that is reachable from s is visited, enqueued exactly once (turns GRAY) and dequeued exactly once (turns BLACK)
- For any u denote d(u,s) the true distance between s and u, and u.dist as the distance given by BFS.

Claim: u.dist = d(u, s), and the path from u to s using the predecessors is a shortest path.

- ▶ BFS creates layers  $L_i = \{u : u.dist = i\}$  such that for any edge (u, v) we have  $L(v) L(u) \le 1$ .
  - ► For an undirected graph all edges are between the same or adjacent layers.
- For any u, v, if L(u) < L(v), then u turns GRAY before v, enqueued before v and turns BLACK before v.
- At any moment, all vertices in the queue belong to the same or adjacent layers. (But never layers at distance  $\geq 2$ )

## **BFS** runtime analysis:

- ightharpoonup n = |V|, m = |E|
- ► Analysis:
  - ▶ each vertex enqueued exactly once: WHITE → GRAY
  - lacktriangle each vertex dequeued exactly once: GRAY ightarrow BLACK
  - running time:
    - 1. adjacency list representation:

$$\Theta(n+\sum_{v\in V} \mathsf{degree}(v)) = n+2m) = \Theta(n+m)$$
 2. adjacency matrix representation:

- - $\Theta(n + \sum_{v \in V} n = n + n^2) = \Theta(n^2)$
- space complexity: (in addition to the list / matrix representation)
  - 1. Each node has a color attribute  $\Omega(n)$
  - 2. Since each vertex is enqueued exactly once, the queue size never passed O(n)
  - 3. So  $\Theta(n)$ .
- ▶ Warning: vertices in other connected components wouldn't be discovered!!!

## Breadth First Search (BFS):

- ightharpoonup procedure BFS(G)
  - \*\* G = (V, E)

 $v.dist \leftarrow \infty$ 

- foreach  $v \in V$  do
  - $v.color \leftarrow \mathtt{WHITE}$

\*\*in queue Q

\*\*discovered v

\*\*done with u

\*\*unknown yet

\*\*waiting vertex queue

\*\* G = (V, E),  $s \in V$  start vertex

- \*\*distance from s
- \*\*predecessor
- $v.predec \leftarrow \texttt{NIL}$
- foreach  $v \in V$  do
- if (v.color = WHITE) then
- BFS-visit(G, v).
- **Procedure BFS-visit**(G,s)
- Initialize a queue Q
- $s.color \leftarrow \texttt{GRAY}$
- $s.dist \leftarrow 0$
- enqueue (Q, s)while  $(Q \neq \emptyset)$  do
- $u \leftarrow \text{dequeue}(Q)$ foreach neighbor v of u do
- if (v.color = WHITE) then  $v.color \leftarrow \texttt{GRAY}$ 
  - $v.predec \leftarrow u$ enqueue(Q, v)

 $v.dist \leftarrow u.dist + 1$ 

- $u.color \leftarrow \texttt{BLACK}$ Runtime?
- ▶ HW: In an undirected graph adjust BFS to assign each vertex a label such that the labels indicate the connected components of G.

## Depth First Search (DFS):

- ▶ Input: graph G = (V, E)
- ▶ Idea: search deeper in the graph whenever possible ...
- Pseudocode (recursive version):

```
procedure DFS(G)
                           **G = (V, E)
foreach v \in V do
                              **unknown yet
    v.color \leftarrow \mathtt{WHITE}
                               **predecessor
    v.predec \leftarrow \texttt{NIL}
time \leftarrow 0
foreach v \in V do
    if (v.color = WHITE) then
        \mathsf{DFS}\text{-}\mathsf{visit}(G,v)
procedure DFS-visit(G,s) **any s \in V
s.color \leftarrow \texttt{GRAY}
                                       **start discovering s
time \leftarrow time + 1
s.dtime \leftarrow \texttt{time}
foreach u neighbor of s do
    if (u.color = WHITE) then
        u.predec \leftarrow s
        DFS-visit(u)
                                       **finished discovering
s.color \leftarrow \texttt{BLACK}
time \leftarrow time + 1
s.ftime \leftarrow time
```

## **DFS** example:

 $V = \{1, 2, 3, 4, 5, 6\}$   $E = \{\{1, 3\}, \{1, 5\}, \{2, 4\}, \{2, 5\}, \{3, 4\}, \{3, 5\}, \{4, 6\}\}\}$  s = 1



Adjacency lists:

- 1: 3 5 2: 4 5
- 3: 1 4
- 4: 2 3
- 5: 1 2

|        | 1        | 2        | 3        | 4        | 5        | 6        | DFS-visit path       |
|--------|----------|----------|----------|----------|----------|----------|----------------------|
| color  | W        | W        | W        | W        | W        | W        |                      |
| parent | NIL      | NIL      | NIL      | NIL      | NIL      | NIL      |                      |
| dtime  | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | initialization       |
| ftime  | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |                      |
| color  | G        | W        | W        | W        | W        | W        |                      |
| parent | NIL      | NIL      | NIL      | NIL      | NIL      | NIL      |                      |
| dtime  | 1        | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | DFS-visit(1)         |
| ftime  | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |                      |
| color  | G        | W        | G        | W        | W        | W        |                      |
| parent | NIL      | NIL      | 1        | NIL      | NIL      | NIL      |                      |
| dtime  | 1        | $\infty$ | 2        | $\infty$ | $\infty$ | $\infty$ | DFS-visit(1-3)       |
| ftime  | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |                      |
| color  | G        | W        | G        | G        | W        | W        |                      |
| parent | NIL      | NIL      | 1        | 3        | NIL      | NIL      |                      |
| dtime  | 1        | $\infty$ | 2        | 3        | $\infty$ | $\infty$ | DFS-visit(1-3-4)     |
| ftime  | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |                      |
| color  | G        | G        | G        | G        | W        | W        |                      |
| parent | NIL      | 4        | 1        | 3        | NIL      | NIL      |                      |
| dtime  | 1        | 4        | 2        | 3        | $\infty$ | $\infty$ | DFS-visit(1-3-4-2)   |
| ftime  | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |                      |
| color  | G        | G        | G        | G        | G        | W        |                      |
| parent | NIL      | 4        | 1        | 3        | 2        | NIL      |                      |
| dtime  | 1        | 4        | 2        | 3        | 5        | $\infty$ | DFS-visit(1-3-4-2-5) |
| ftime  | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |                      |
| color  | G        | G        | G        | G        | В        | W        |                      |
| parent | NIL      | 4        | 1        | 3        | 2        | NIL      |                      |
| dtime  | 1        | 4        | 2        | 3        | 5        | $\infty$ | DFS-visit(1-3-4-2-5) |
| ftime  | $\infty$ | $\infty$ | $\infty$ | $\infty$ | 6        | $\infty$ |                      |
| color  | G        | В        | G        | G        | В        | W        |                      |
| parent | NIL      | 4        | 1        | 3        | 2        | NIL      |                      |
| dtime  | 1        | 4        | 2        | 3        | 5        | $\infty$ | DFS-visit(1-3-4-2)   |
| ftime  | $\infty$ | 7        | $\infty$ | $\infty$ | 6        | $\infty$ |                      |

|        | 1        | 2 | 3        | 4        | 5 | 6        | DFS-visit path     |
|--------|----------|---|----------|----------|---|----------|--------------------|
| color  | G        | В | G        | G        | В | G        |                    |
| parent | NIL      | 4 | 1        | 3        | 2 | 4        |                    |
| dtime  | 1        | 4 | 2        | 3        | 5 | 8        | DFS-visit(1-3-4-6) |
| ftime  | $\infty$ | 7 | $\infty$ | $\infty$ | 6 | $\infty$ |                    |
| color  | G        | В | G        | G        | В | В        |                    |
| parent | NIL      | 4 | 1        | 3        | 2 | 4        |                    |
| dtime  | 1        | 4 | 2        | 3        | 5 | 8        | DFS-visit(1-3-4-6) |
| ftime  | $\infty$ | 7 | $\infty$ | $\infty$ | 6 | 9        |                    |
| color  | G        | В | G        | В        | В | В        |                    |
| parent | NIL      | 4 | 1        | 3        | 2 | 4        |                    |
| dtime  | 1        | 4 | 2        | 3        | 5 | 8        | DFS-visit(1-3-4)   |
| ftime  | $\infty$ | 7 | $\infty$ | 10       | 6 | 9        |                    |
| color  | G        | В | В        | В        | В | В        |                    |
| parent | NIL      | 4 | 1        | 3        | 2 | 4        |                    |
| dtime  | 1        | 4 | 2        | 3        | 5 | 8        | DFS-visit(1-3)     |
| ftime  | $\infty$ | 7 | 11       | 10       | 6 | 9        |                    |
| color  | В        | В | В        | В        | В | В        |                    |
| parent | NIL      | 4 | 1        | 3        | 2 | 4        |                    |
| dtime  | 1        | 4 | 2        | 3        | 5 | 8        | DFS-visit(1)       |
| ftime  | 12       | 7 | 11       | 10       | 6 | 9        |                    |

### **DFS** example:

▶ DFS tree: [dtime, ftime]



- ► Notes:
  - the result would be a forest of rooted trees
  - the root of each tree is up to the selection (ordering of the vertices)
  - ightharpoonup parent of x is predecessor x.predec
  - different orderings of adjacency lists might result in different trees
  - ► Nested structure of [dtime, ftime]
    - u is a descendant of  $v \Rightarrow [u.\mathtt{dtime}, u.\mathtt{ftime}] \subset [v.\mathtt{dtime}, v.\mathtt{ftime}]$
    - u & v on different branches  $\Rightarrow [u.\mathtt{dtime}, u.\mathtt{ftime}]$  doesn't intersect  $[v.\mathtt{dtime}, v.\mathtt{ftime}]$

### **DFS** analysis:

- ightharpoonup n = |V|, m = |E|
- ▶ Handshaking Lemma:  $\sum_{v \in V} deg(v) = 2m$
- Analysis:
  - ightharpoonup each vertex is discovered exactly once (WHITE ightharpoonup GRAY ightharpoonup BLACK) in an undirected graph: each edge is examined exactly twice in a directed graph: each edge is examined once
  - running time:
    - 1. adjacency list representation:

$$\Theta(n+2m) = \Theta(n+m)$$

2. adjacency matrix representation:  $\Theta(n+n^2) = \Theta(n^2)$ 

$$\Theta(n+n^2) = \Theta(n^2)$$

- space complexity:
  - 1. adjacency list representation:

$$\Theta(n+m)$$

2. adjacency matrix representation:

 $\Theta(n^2)$ 

#### Properties of DFS:

► The Parentheses Theorem:

two vertex processing time intervals  $[\mathtt{dtime}[v], \mathtt{ftime}[v]]$  and  $[\mathtt{dtime}[w], \mathtt{ftime}[w]]$  can only have one of the following two applied to them: contained or disjoint.

I.e. we either have (i)  $[\mathtt{dtime}[v]$ ,  $\mathtt{ftime}[v]] \subset [\mathtt{dtime}[w]$ ,  $\mathtt{ftime}[w]] - v$  is a descendant of w in the DFS forest (or vice-versa) or we have (ii)  $[\mathtt{dtime}[v]$ ,  $\mathtt{ftime}[v]] \cap [\mathtt{dtime}[w]$ ,  $\mathtt{ftime}[w]] = \emptyset$  — no ancestor-descendant relationship between v and w



► The White-Path Theorem:

 $\overline{v}$  is a descendant of u iff at time u.dtime there was a path  $u \to v$  along which all vertices are white (except for u).

- $\blacktriangleright$  An all gray path at time v.dtime
- and all black path at time u.ftime.
- DFS vertex order: pre-order of each tree in the DFS forest
- ▶ (BFS vertex order: level-order of each tree in the BFS forest)

### Classifying graph edges with BFS/DFS:

- During the traversal, all vertices and edges are examined
- ► Given a BFS/DFS traversal forest:
  - tree root start vertex for that component
  - tree edge child discovered while processing the parent
  - (undirected) each edge in the original graph is examined twice (digraph) each edge in the original digraph is examined once
- lackbox With respect to the traversal forest, categorize edges into 4 types. An edge e=(u,v) is a
  - 1. Tree edge: the edge (u, v) is in the forest
  - 2. Forward edge: v is a descendant of u
  - 3. Back edge: v is an ancestor of uNote: in undirected graphs, "back" = "forward"
  - 4. Cross edge: v is a non-ancestor and non-descendant of u

## An example:

▶ DFS tree (start vertex 1):



(4,2) is a tree edge (1,5) is a forward edge no cross edges

BFS Tree (start vertex 2):



### Classifying graph edges with BFS/DFS:

- With respect to the traversal forest, categorize edges into 4 disjoint sets. An edge e=(u,v) is a
  - 1. Tree edge: the edge (u, v) is in the forest
  - 2. Forward edge: v is a descendant of u
  - 3. Back edge: v is an ancestor of uNote: in undirected graphs, "back" = "forward"
  - 4. Cross edge: v is a non-ancestor and non-descendant of u
- Mhenever we traverse an edge (u, v), u has to be gray (it was discovered and we are not done with u yet)
- ▶ In DFS the color of v classifies the edge:
  - ightharpoonup v is white  $\Rightarrow (u, v)$  is a tree edge
  - $\triangleright v$  is gray  $\Rightarrow (u, v)$  is a back edge
  - $\triangleright v$  is black  $\Rightarrow (u, v)$  is a cross edge / forward edge
- ▶ In DFS on an undirected graph there are only tree- and back-edges.
  - ightharpoonup ASOC that (u, v) is a cross-edge.
  - ightharpoonup A cross-edge means [v.dtime, v.ftime] comes before [u.dtime, u.ftime] .
  - ightharpoonup Therefore, at time v.ftime, u is white.
  - $\triangleright$  So we are done traversing all neighbors of v and ignored u. Contradiction.
- ▶ In BFS on an undirected graph there are only tree- and cross-edges.
  - For any edge (u,v) we have  $|L(u)-L(v)|\leq 1$  so a back-edge must be a tree edge.

#### Vertex order with respect to a binary rooted tree:

► Tree:



- Vertex orders:
  - level-order: level by level (each level: left to right) (2,4,5,3,6,1)
  - pre-order: parent child one child two ...- last child (2,4,3,6,5,1)
  - in-order: left child parent right child (3,4,6,2,1,5)
  - post-order: child one child two ...- last child parent (3,6,4,1,5,2)

#### **Comparing DFS and BFS:**

- ▶ BFS works well for finding shortest path
- ► All non-tree edges in
  - ► BFS are cross edges
  - ► DFS are back edges

#### Directed graphs:

- ► Recall that in a directed graph every edge is directed (i.e. it is an ordered pair)
- lacktriangle We say u reaches v if there is a directed path from u to v
- Strongly connected digraph: A digraph G is strongly connected if for every pair u, v of vertices, u is reachable from v and v is reachable from u
- ▶ The notion of a directed cycle is defined similarly.
- Directed Acyclic Graph (DAG): A digraph with no (di)cycles.

#### Traversing Directed graphs:

- ▶ DFS and BFS can be adapted to work on directed graphs.
- ▶ The only difference is that we travel edges according to their direction.
- ► Every edge that is discovered is a "tree-edge"
- ► In a DFS, back-edges may exist (from a node to one of its ancestors)
- ► We may also have a "forward-edge": a non-tree edge from a node to one of its descendant:
- Example:  $V = \{1, 2, 3, 4, 5, 6, 7\}$  $E = \{(1, 2), (1, 3), (3, 4), (3, 6), (4, 1), (4, 2), (4, 5), (6, 5), (6, 7), (7, 3)\}$



► Then calling DFS(3) gives:



- ightharpoonup edges (1,3) and (7,3) are back edges and (4,2) is a forward edge.
- If we call DFS(v) in a digraph, we visit all vertices that are reachable from
- $\boldsymbol{v}$  in  $\boldsymbol{G}$ . The DFS tree contains directed paths from  $\boldsymbol{v}$  to every such vertex.
- lacktriangle How to check if G is strongly connected?
- ightharpoonup Run DFS from every v. If every tree visit all the vertices then it is strongly connected.
- ightharpoonup Time:  $\Theta(n \times (n+m))$ .
- ▶ Do we really need that many calls to DFS? or can we do better?
- ▶ We can detect if *G* is a DAG with just one DFS call.

### **DFS Application 1: Directed Acyclic Graph (DAG)**

- ▶ Thm 1. DFS has a back edge iff G contains a cycle.
  - Proof: ( $\Rightarrow$ ) the back-edge (u,v) along with the tree edges connecting v to u is a cycle in G.

    ( $\Leftarrow$ ) If there's a cycle let  $v_1$  be the first node on the cycle that turns gray. So the cycle is  $(v_1,v_2,...,v_k,v_1)$ . At time  $v_1.dtime$  the  $v_1 \to v_k$  path is all

white, so  $v_k$  is a descendant of  $v_1$ . Thus when the edge  $(v_k, v_1)$  is

► Corollary: *G* is a DAG iff the DFS has no back-edges.

traversed, both vertices are gray, so it is a back-edge.

► An algorithm to determine if *G* is a DAG:

Run DFS; if DFS encounters a gray-gray edge, abort and output "found a cycle"; upon DFS conclusion output "DAG".

## Topological ordering in DAG's

- Suppose we have a set of tasks to be performed
- ► For each task we have a requirement that some of the other tasks must be done before we can perform this.
- This requirement is given as a directed graph G which is DAG (directed acyclic).
- If  $(u, v) \in E$  it means we must perform u before we can perform v.
- ► Goal: find an ordering of the tasks (vertices of *G*) such that for each task all its requirements appear earlier in that ordering,

- i.e. find an ordering  $v_1, \ldots, v_n$  of vertices of G such that for every edge  $(v_i, v_j)$ , i < j. This is called a "topological sorting"
- ▶ Theorem: A digraph has a topological sorting if and only if it is acyclic.
- ► Clearly if we have a cycle we cannot have a topological ordering (why?)
- ▶ Now suppose that *G* is a DAG.
- ▶ We prove the theorem by induction on n. Base case n = 1 is trivial (any ordering will do).
- ▶ So assume that  $n \ge 2$ . There is at least one vertex in G which has no incoming edges or else G has a cycle (why?)
- Say in-degree (u) = 0. Remove v from G, call the new graph G' (which has n-1 vertices).
- ightharpoonup G' is acyclic so by I.H. has a topological ordering  $v_2, \ldots, v_n$ .
- ▶ Since u has only outgoing edges,  $u, v_2, \ldots, v_n$  is a topological ordering of G.
- ► The above suggests the following algorithm:

- procedure Topological-Sort(G)
- $S \leftarrow \emptyset$

Remove vu (so decrease in-degree(u))

 $\blacktriangleright$  We can maintain (for each node) the value of in-degree(v); all of

ightharpoonup We have n iterations of the while loop; each time we remove a vertex v with out-degree  $d_{out}(v)$  we have to update in-degree

of all its neighbors (and if any of them becomes zero we insert that node into the queue); this update takes  $d_{out}(v)$ 

these can be computed in  $\Theta(n+m)$  by going through adjacency

if in-degree(u) = 0 then

S.enqueue(u)

return "G has a cycle"

S.enqueue(v)

 $v \leftarrow \mathsf{S.dequeue}()$ 

for each vu do

 $i \leftarrow 1$ 

While  $S \neq \emptyset$  do

output v $i \leftarrow i + 1$ 

if i < n then

list.

- for each  $v \in V$  do

Week 10: BFS and DFS

- if in-degree(v) = 0 then

- ▶ We can also use DFS to find a topological ordering (as in the textbook).
  - ightharpoonup G is a DAG  $\Rightarrow$  no back-edges, i.e., no gray-gray edges.
  - ightharpoonup (u,v) is a gray-white edge:

ightharpoonup (u,v) is a gray-black edge:

- ▶ dtime isn't consistent, but ftime is: we must have v.ftime < u.ftime for any edge (u, v)
- lacktriangle Sort the vertices by descending order of ftime and you got a topological sort.
- ▶ Doesn't have to take extra  $O(n\log(n))$ . Can be done as part of the DFS algorithm
  - ightharpoonup When a node turns black, insert it to the end of a TopSort array
  - Or Push() it into a TopSort stack
- ▶ After DFS, print the array / Pop() and print elements in the stack.
- Conclusion: A O(n+m)-time algorithm for topologically-sort a DAG or output a cycle.

## **DFS Application 2: Finding Strongly-Connected Components**

- ► A directed graph every edge is directed (i.e. it is an ordered pair)
- lacktriangle We say u reaches v if there is a directed path from u to v
- lacktriangle Strongly connected digraph: A digraph G is strongly connected if for every pair u,v of vertices u is reachable from v and v is reachable from u
- Recall: In a digraph G, SCC(u) is the set of all nodes v that are reachable from u and that u is reachable from them.
- Recall:  $v \in SCC(u)$  iff  $u \in SCC(v)$
- Recall: the SCCs of G form a partition of V into  $\{C_1, C_2, ..., C_k\}$ .

  Moreover, draw graph  $G_{SCC}$  on k nodes:  $v_1, ..., v_k$  (so that  $v_i$  represents  $C_i$ ).
- Moreover, draw graph  $G_{SCC}$  on k nodes:  $v_1,...,v_k$  (so that  $v_i$  represents  $C_i$ ). Put en edge  $(v_i,v_j)$  iff for some  $x\in C_i,y\in C_j$  such that (x,y) is an edge in G.

Then  $G_{SCC}$  is a DAG.

- Moreover, C is a SCC in G iff it is a SCC in the flipped graph  $G^T$ . ((u, v) is an edge in G iff (v, u) is an edge in  $G^T$ )
- ► To find the SCCs of *G* 
  - 1. Run DFS on G.
    - 2. Flip G's edges to create  $G^T$
    - 3. Run DFS on  ${\cal G}^T$  but the main DFS loop traverses nodes in a decreasing ftime order
    - 4. SCCs of G are the trees of the DFS-forest of  $G^T$
- ightharpoonup Runtime O(n+m).



graph representation

-adj. lists:

army rulj. of IVI

Linted lists

- for each vertex UEV,

Adj[U] stres its righters.

DFS
- 10 (VIE) times
- look at hodes pachable.

- visit all nodes knowble

from guenset

to awrid diplicates.

Adj [b] = {a, (} Adj [c] = {b} Adj [c] = {b} Adj [c] = {c} E={(a, c), (b, c), (b, n)}



shirtest path property:

V ← proutstv7

<-- garant [ parant [V]]

<u>ナ</u> ぐ~ (

is a shortest purth from 5 to V

DFS

-te unsiety of ble grath, bucktruking as heresson,

-hat believe t vertiles



the b (VTE)

- vish each vertex one

in bts along OCV)
-bts visit (12-->V) called once for notex V.

edge classification:

y - tree edge (prent pointer)

visit new vortex vin edge forward edge node-descondant thee buckward edge hade-ansester free (105) adje: between two hn-uniester-teleted thes V perst in unlikeral gruph yle detection a has a cycle <-> DTS has a book edge. Q-70->0-50 descondant unestek buckedye assume vo is tase variex in the orde visited by DFS. chim: (1/k - Vo) is buck edge