Math 211 Quiz 21Z

M 05 Aug 2019

Your name:	

Exercise

(5 pt) Consider the homogeneous 1st-order 2 × 2 linear system of ODEs

$$\mathbf{x}' = \begin{bmatrix} -1 & -4 \\ 4 & 1 \end{bmatrix} \mathbf{x}.\tag{1}$$

(a) (2 pt) Diagonalize the coefficient matrix (i.e. compute the eigenvalues and corresponding eigenvectors of the given matrix \mathbf{A} , and write it in the form $\mathbf{A} = \mathbf{PDP}^{-1}$).

Solution: Denote the coefficient matrix in (1) by

$$\mathbf{A} = \begin{bmatrix} -1 & -4 \\ 4 & 1 \end{bmatrix}.$$

Eigenvalues. We compute

$$\lambda_{\pm} = \pm i\sqrt{15}$$
.

Eigenvectors. We compute

$$\mathbf{v}_+ = \begin{bmatrix} -1 + \mathfrak{i}\sqrt{15} \\ 4 \end{bmatrix}, \qquad \qquad \mathbf{v}_- = \begin{bmatrix} -1 - \mathfrak{i}\sqrt{15} \\ 4 \end{bmatrix}.$$

Any nonzero (complex) scalar multiples of these vectors will also be eigenvectors. Note that once we compute one of the two eigenvectors \mathbf{v}_+ , \mathbf{v}_- , we can obtain the other immediately by taking the complex conjugate of the first.

Diagonalization. Using these results, we conclude

$$\begin{bmatrix} -1 & -4 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} -1 + i\sqrt{15} & -1 - i\sqrt{15} \\ 4 & 4 \end{bmatrix} \begin{bmatrix} i\sqrt{15} & 0 \\ 0 & -i\sqrt{15} \end{bmatrix} \begin{bmatrix} -1 + i\sqrt{15} & -1 - i\sqrt{15} \\ 4 & 4 \end{bmatrix}^{-1}.$$
 (2)

Call the matrices in this equation as follows:

$$A = PDP^{-1}$$
.

(b) (2 pt) Use this information to write the general real solution $\mathbf{x}(t)$ to (1). *Hint:* Recall that when the eigenvalues of a homogeneous 2×2 linear system are complex, we can compute one solution $e^{\lambda t}v$, just as we did with real eigenvalues; decompose it into real and imaginary parts; then use these parts as our basis for the solution space. The formulas

$$e^{a+ib} = e^a e^{ib},$$
 $e^{ib} = \cos b + i \sin b,$

will be useful.

Solution: Call columns 1 and 2 of $P v_+$ and v_- , respectively. (They are eigenvectors corresponding to the eigenvalues $\lambda_+ = i\sqrt{15}i$ and $\lambda_- = -i\sqrt{15}$, respectively. Hence our choice of subscripts + and -.) Our diagonalization (2) gives one basis for the vector space of complex (!) solutions to (1), namely, the vectors

$$\mathbf{x}_+(t) = e^{\lambda_+ t} \mathbf{v}_+ = e^{i\sqrt{15}t} \begin{bmatrix} -1 + i\sqrt{15} \\ 4 \end{bmatrix}, \qquad \mathbf{x}_-(t) = e^{\lambda_- t} \mathbf{v}_- = e^{-i\sqrt{15}t} \begin{bmatrix} -1 - i\sqrt{15} \\ 4 \end{bmatrix}.$$

To describe the real (!) solutions to (1), we can decompose either one of these complex basis vectors into real and imaginary parts, \mathbf{x}_{Re} and \mathbf{x}_{Im} , and take these as our basis vectors. Decomposing $\mathbf{x}_{+}(t)$, using the formulas in the hint, we find

$$\begin{split} \boldsymbol{x}_{+}(t) &= e^{i\sqrt{15}t} \begin{bmatrix} -1 + i\sqrt{15} \\ 4 \end{bmatrix} = e^{0t}e^{i\sqrt{15}t} \begin{bmatrix} -1 + i\sqrt{15} \\ 4 \end{bmatrix} = (\cos(\sqrt{15}t) + i\sin(\sqrt{15}t)) \begin{bmatrix} -1 + i\sqrt{15} \\ 4 \end{bmatrix} \\ &= \begin{bmatrix} \left(-\cos(\sqrt{15}t) - \sqrt{15}\sin(\sqrt{15}t) \right) & +i & \left(\sqrt{15}\cos(\sqrt{15}t) - \sin(\sqrt{15}t) \right) \\ 4\cos(\sqrt{15}t) & +i & \sin(\sqrt{15}t) \end{bmatrix} \\ &= \underbrace{\begin{bmatrix} -\cos(\sqrt{15}t) - \sqrt{15}\sin(\sqrt{15}t) \\ 4\cos(\sqrt{15}t) \end{bmatrix}}_{\boldsymbol{x}_{Re}} + i\underbrace{\begin{bmatrix} \sqrt{15}\cos(\sqrt{15}t) - \sin(\sqrt{15}t) \\ \sin(\sqrt{15}t) \end{bmatrix}}_{\boldsymbol{x}_{Im}}. \end{split}$$

(Note that our definition of x_{Im} does not include the coefficient i.) The general real solution to (1) is the real linear combination of x_{Re} and x_{Im} , i.e.

$$\begin{split} \textbf{x}(t) &= c_1 \textbf{x}_{Re}(t) + c_2 \textbf{x}_{Im}(t) \\ &= c_1 \begin{bmatrix} -\cos(\sqrt{15}t) - \sqrt{15}\sin(\sqrt{15}t) \\ 4\cos(\sqrt{15}t) \end{bmatrix} + c_2 \begin{bmatrix} \sqrt{15}\cos(\sqrt{15}t) - \sin(\sqrt{15}t) \\ \sin(\sqrt{15}t) \end{bmatrix} \text{,} \end{split}$$

where $c_1, c_2 \in \mathbf{R}$.

(c) (1 pt) Quickly sketch the phase plane. Your sketch need not be exact; focus on whether trajectories move toward or away from the origin, and the direction of rotation.

Solution: The real part of both eigenvalues λ_{\pm} is 0; thus trajectories are closed ellipses. To determine the direction of rotation, we can use the original ODE (1) to compute the tangent vectors \mathbf{x}' at a few points (x_1, x_2) :

$$\mathbf{x}' = \begin{bmatrix} -1 & -4 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -5 \\ 5 \end{bmatrix}, \qquad \qquad \mathbf{x}' = \begin{bmatrix} -1 & -4 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ -3 \end{bmatrix}.$$

This shows that, at $(x_1, x_2) = (1, 1)$, tangent vectors point left $(x'_1 = -5 < 0)$ and up $(x'_2 = 5 > 0)$; at $(x_1, x_2) = (-1, 1)$, tangent vectors point left $(x'_1 = -3 < 0)$ and down $(x'_2 = -3 < 0)$. Thus trajectories rotate counterclockwise.

A phase plane for the linear system (1) is shown in Figure 1.

Figure 1: Phase plane, in the (x_1, x_2) plane, for the homogeneous 1st-order linear system (1). Arrows point in the direction of increasing t.