

Figura 4.15

a) ${\bf v}$ y proy $_{\bf v}$ ${\bf u}$ tienen la misma dirección si ${\bf u}\cdot{\bf v}>0$, b) ${\bf v}$ y proy $_{\bf v}$ ${\bf u}$ tienen direcciones opuestas si ${\bf u}\cdot{\bf v}<0$.

Observación 2. Se puede pensar en la $proy_v u$ como la componente de v del vector u.

Observación 3. Si \mathbf{u} y \mathbf{v} son ortogonales, entonces $\mathbf{u} \cdot \mathbf{v} = 0$, de manera que proy $_{\mathbf{v}} \mathbf{u} = 0$.

Observación 4. Una definición alternativa de la proyección es: si **u** y **v** son vectores diferentes de cero, entonces proy_v **u** es el único vector con las siguientes propiedades:

- i) proy_v u es paralelo a v.
- ii) $\mathbf{u} \text{proy}_{\mathbf{v}} \mathbf{u}$ es ortogonal a \mathbf{v} .

EJEMPLO 4.2.4 Cálculo de una proyección

Sean $\mathbf{u} = 2\mathbf{i} + 3\mathbf{j} \mathbf{y} \mathbf{v} = \mathbf{i} + \mathbf{j}$. Calcule proy_v \mathbf{u} .

SOLUCIÓN
$$ightharpoonup \operatorname{Proy}_{\mathbf{v}} \mathbf{u} = \frac{(\mathbf{u} \cdot \mathbf{v})\mathbf{v}}{|\mathbf{v}|^2} = \left[\frac{5}{(\sqrt{2})^2}\right] \mathbf{v} = \left(\frac{5}{2}\right)\mathbf{i} + \left(\frac{5}{2}\right)\mathbf{j} \text{ (vea la figura 4.16)}.$$

Figura 4.16

La proyección de (2, 3) sobre (1, 1) es $\left(\frac{5}{2}, \frac{5}{2}\right)$.

EJEMPLO 4.2.5 Cálculo de una proyección

Sean $\mathbf{u} = 2\mathbf{i} - 3\mathbf{j} \ \mathbf{y} \ \mathbf{v} = \mathbf{i} + \mathbf{j}$. Calcule proy_v \mathbf{u} .