School of Computing and Information Systems The University of Melbourne

COMP90049 Knowledge Technologies (Semester 2, 2018)

Workshop exercises: Week 10

- 1. Revise Support Vector Machines, paying particular attention to the terms "linear separability" and "maximum margin".
 - (a) What are "soft margins", and when are they desirable?
 - (b) Why are we interested in "kernel functions" here?
 - (c) Why are SVMs "binary classifiers", and how can we extend them to "multi-class classifiers"?
- 2. For the following dataset:

_	apple	ibm	lemon	sun	CLASS			
	Training Instances							
	Y	N	Y	Y	FRUIT			
	Y	N	Y	Y	FRUIT			
	Y	Y	Y N		COMPUTER			
	Y	Y	Y	Y	COMPUTER			

Build a contingency table for each of the four attributes on the data collection above.

- (a) According to "Pointwise Mutual Information", which attribute has the best correlation with the class COMPUTER?
- (b) Use the method of "Mutual Information" to rank the "goodness" of the four features in predicting this two-class problem, according to the following formula:

$$MI(A,C) = \sum_{i \in \{a,\bar{a}\}} \sum_{j \in \{c,\bar{c}\}} P(i,j) \log_2 \frac{P(i,j)}{P(i)P(j)}$$

3. For the following dataset:

_ID	Outl	Temp	Humi	Wind	PLAY				
Training Instances									
A	s	h	h	F	N				
В	s	h	h	T	N				
C	0	h	h	F	Y				
D	r	m	h	F	Y				
E	r	С	n	F	Y				
F	r	С	n	T	N				
Test Instances									
G	0	С	n	Т	?				
Н	s	m	h	F	?				

- (a) Classify the test instances using the method of 0-R.
- (b) Classify the test instances using the method of 1-R.