Graph-Based Molecule Classification using Graph Edit Distance and KNN

May 26, 2025

Objective

The goal of this work was to build a machine learning model that classifies molecules as either active or inactive against HIV, based on their structural graph representation.

Each molecule is represented as a graph, where:

- Nodes represent atoms (with chemical symbols as labels)
- Edges represent undirected covalent bonds between atoms

Methodology

We approached the problem as a graph classification task using the following steps:

1. Graph Construction

GXL files were parsed using xml.etree.ElementTree. Graphs were constructed using the NetworkX library, where each node stored its atom type (e.g., 'C', 'O', etc.).

2. Similarity Computation

For each pair of graphs, we computed the **Graph Edit Distance** (**GED**). GED was approximated using bipartite graph matching based on mismatches in node symbols.

3. Feature Extraction

Each molecule was represented as a feature vector of GEDs to all training molecules.

4. Classification

We used **K-Nearest Neighbors (KNN)** with k = 5, training the model using the GED-based feature vectors.

Validation Results

The model achieved the following performance:

• Validation Accuracy: 0.98 (98%)

This high accuracy shows the model's strong ability to generalize on unseen molecules in the validation set.

Test Predictions

The test set contained 1,500 molecules without known labels. After running predictions, we saved the output in a file named test.tsv with the following format:

inactive
inactive
inactive
inactive
active
active
active
active

Tools and Libraries

- Python 3.10 (compatible with GraKeL)
- NetworkX
- Scikit-learn
- NumPy, SciPy
- xml.etree.ElementTree

Conclusion

Our graph-based KNN model using GED achieved a validation accuracy of 0.98, demonstrating that structural similarity is a powerful feature for classifying molecular activity. The approach is transparent, explainable, and effective for small to medium-sized molecular graphs.