Ayudantía 7

Dividir y Conquistar

Universidad Técnico Federico Santa Maria

Carlos Lagos carlos.lagosc@usm.cl Nangel Coello nangel.coello@usm.cl

6 de junio de 2024

Recordatorio

2 Ejercicios

Contenidos

Recordatorio

2 Ejercicios

Dividir y Conquistar

Descripción

Dividir y conquistar es una técnica de diseño de algoritmos que implica dividir un problema en subproblemas más pequeños y más manejables, resolver cada uno de estos subproblemas de forma recursiva, y luego combinar las soluciones de los subproblemas para obtener la solución del problema original.

Teorema de maestro

Descripción

$$T(n) = aT\left(\frac{n}{b}\right) + O(n^d)$$

$$T(n) = \begin{cases} O(n^d), & \text{si } d > \log_b a; \\ O(n^d \log n), & \text{si } d = \log_b a; \\ O(n^{\log_b a}), & \text{si } d < \log_b a. \end{cases}$$

Teorema de maestro

Recurrencia	Casos	C. Asintótica
$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$	$d = \log_b a \implies 1 = \log_2 2$	$O(n \log n)$
$T(n) = 3T\left(\frac{n}{4}\right) + O(n^2)$	$d > \log_b a \implies 2 > \log_4 3$	$O(n^2)$
$T(n) = 4T\left(\frac{n}{2}\right) + O(n)$	$d < \log_b a \implies 1 < \log_2 4$	$O(n^2)$
$T(n) = T\left(\frac{n}{2}\right) + O(1)$	$d > \log_b a \implies 0 > \log_2 1$	$O(\log n)$
$T(n) = 8T\left(\frac{n}{2}\right) + O(n^3)$	$d = \log_b a \implies 3 = \log_2 8$	$O(n^3 \log n)$

Contenidos

Recordatorio

2 Ejercicios

Cantidad de inversiones

Enunciado

Sea A[1..n] un arreglo de n números enteros. Un par (A[i], A[j]), con $1 \leq i, j \leq n$, es una inversión si i < j y A[i] > A[j]. Use la técnica dividir y conquistar para diseñar un algoritmo que cuente el número de inversiones en un arreglo en tiempo $\Theta(n \log n)$. Escriba la solución usando pseudo-código (o algún lenguaje de programación).

Conteo de Arreglos

Enunciado

Dado un arreglo de n números enteros, su tarea es encontrar la suma máxima de los valores en un subarreglo contiguo y no vacío. Es decir, debe identificar el subarreglo que, sumando sus elementos, dé como resultado la mayor suma posible. Diseñe un algoritmo que resuelva este problema en tiempo $O(n\log n)$ utilizando la técnica de dividir y conquistar.