Project — Part I (Analytical Option Formulae)

Consider the following European options:

- Vanilla call/put
- Digital cash-or-nothing call/put
- Digital asset-or-nothing call/put

Derive and implement the following models to value these options in Python:

1 Black-Scholes model $S_{1} = S_{0} e^{(r-\frac{R^{2}}{2})T} + \hbar f_{1} \pi$

1 Black-Scholes model

- Bachelier model
- Black76 model
- 4 Displaced-diffusion model

Vornilla call
$$V_c = e^{-rT} E[S_7 - K)^+]$$

put $V_p = e^{-rT} E[K - S_7)^+]$
 $P_j g_j + coll cash - or - nothing call $V_c = e^{-rT} E[A_{S_7 \times K}]$
 $P_j g_j + coll cash - or - nothing call $V_c = e^{-rT} E[A_{S_7 \times K}]$
 $V_p = e^{-rT} E[A_{S_7 \times K} \cdot S_7]$
 $V_p = e^{-rT} E[A_{S_7 \times K} \cdot S_$$$

Bachelier

Bachelier Model

Cyan:
$$e^{-rT} [(S_0-k) Q(-x^k) + 6\pi \phi(-x^k)] \quad x^{\alpha} = \frac{k-S_0}{6\sqrt{7}}$$
 $P_{Van} = e^{-rT} [(K-S_0) Q(x^k) + 6\pi \phi(-x^k)]$
 $C_{DCN} = e^{-rT} Q(-x^k) \times cash$
 $P_{DCN} = e^{-rT} Q(x^k) \times cash$
 $C_{DAN} = e^{-rT} [S_0 Q(-x^k) + 6\pi \phi(-x^k)]$
 $P_{DAN} = e^{-rT} [S_0 Q(x^k) - 6\pi \phi(x^k)]$

$$= \frac{e^{17}}{F_{0}} \int_{x^{+}}^{x^{+}} F_{0} e^{-\frac{(N_{0} - N_{0})^{2}}{2}} dN - 6F_{1} - ke^{-\Gamma T} \Phi + x^{R}$$

$$= F_{0}e^{-\Gamma T} \Phi (6F_{1} - N_{0}) - ke^{-\Gamma T} \Phi + x^{R}_{1}$$

$$= e^{-\Gamma T} [F_{0} \Phi + dz] - k\Phi + dz]$$

Te" [fo 4 + 12 | - K至 + 11]]

Vp= e->T [K] R1) - Fo] [102)]

Bob (Fo, K, b, r, T) = BS [Foe+T, K, b, r, T]

$$V_{0} = e^{-r\tau} \mathbf{\hat{Q}} [-d_{1}]$$
 $V_{p} = e^{-r\tau} \mathbf{\hat{Q}} [0d_{1}]$

DAN: Vo= e^{-F7} Fo & td2) Vp= e^{-F7} F. D (d2) DD

Displaced - Diffusion (F., K, r, o, T, e) = Black 76 (Fo, K+ -BFo, r, 60, T)

Project — Part II (Model Calibration)

On 1-Dec-2020, the S&P500 (SPX) index value was 3662.45, while the SPDR S&P500 Exchange Traded Fund (SPY) stock price was 366.02. The call and put option prices (bid & offer) over 3 maturities are provided in the spreadsheet:

- SPX_options.csv
- SPY_options.csv

The discount rate on this day is in the file: zero_rates_20201201.csv.

Calibrate the following models to match the option prices:

- 1 Displaced-diffusion model
- **2** SABR model (fix $\beta = 0.7$)

Plot the fitted implied volatility smile against the market data.

Report the model parameters:

- $\mathbf{0}$ σ , β
- **2** α, ρ, ν

And discuss how does change β in the displaced-diffusion model and ρ , ν in the SABR model affect the shape of the implied volatility smile.

2/6

Project — Part III (Static Replication)

Suppose on 1-Dec-2020, we need to evaluate an exotic European derivative expiring on 15-Jan-2021 which pays:

1 Payoff function:

$$S_T^{1/3} + 1.5 \times \log(S_T) + 10.0$$

2 "Model-free" integrated variance:

$$\sigma_{\mathsf{MF}}^2 T = \mathbb{E}\left[\int_0^T \sigma_t^2 \ dt\right]$$

Determine the price of these 2 derivative contracts if we use:

- **1** Black-Scholes model (what σ should we use?)
- **2** Bachelier model (what σ should we use?)
- Static-replication of European payoff (using the SABR model calibrated in the previous question)

Project — Part IV (Dynamic Hedging)

Suppose $S_0=\$100$, $\sigma=0.2$, r=5%, $T=\frac{1}{12}$ year, i.e. 1 month, and K=\$100. Use a Black-Scholes model to simulate the stock price. Suppose we sell this at-the-money call option, and we hedge N times during the life of the call option. Assume there are 21 trading days over the month.

The dynamic hedging strategy for an option is

$$C_t = \phi_t S_t - \psi_t B_t,$$

where

$$\phi_t = \frac{\partial C}{\partial S} = \Phi\left(\frac{\log\left(\frac{S_t}{K}\right) + \left(r + \frac{1}{2}\sigma^2\right)(T - t)}{\sigma\sqrt{T - t}}\right),\,$$

and

$$\psi_t B_t = -K e^{-r(T-t)} \Phi\left(\frac{\log\left(\frac{S_t}{K}\right) + \left(r - \frac{1}{2}\sigma^2\right)(T-t)}{\sigma\sqrt{T-t}}\right).$$

Project — Part IV (Dynamic Hedging)

Work out the hedging error of the dynamic delta hedging strategy by comparing the replicated position based on ϕ and ψ with the final call option payoff at maturity.

Use 50,000 paths in your simulation, and plot the histogram of the hedging error for N=21 and N=84.

Reference: http://pricing.free.fr/docs/when_you_cannot_hedge.pdf

Project Report

Deadline: 15-Nov-23 (Wednesday) noon.

Please submit

- Project report (no more than 10 pages, including title page and appendix)
- Python codes (1 file for each part, 4 files overall)