1.	在自由空间传播的均匀平面波的电场强度 $\overline{E} = (\hat{x} + j\hat{y})e^{-jkz}$,则波的传播方向为
	<u>+z 方向</u> , 波的极化方式为 左旋圆极化。
2.	在自由空间传播的均匀平面波的电场强度为 $\overline{E}=\hat{e}_{x}100\cos(\omega t-20\pi z)V/m$,则波
	传播方向为
3.	两个同频率、同传播方向、极化方向相互垂直的线极化波,其合成波为圆极化
	波,则它们的振幅 <u>相同</u> ,相位差为 <u>π/2</u> 。
4.	均匀平面波由介质 1 垂直入射到理想导体表面时,发生全部电磁能量被反
	射。入射波与反射波叠加将形成驻波,两个相邻电场波节点之间
	的距离为。
5.	当圆极化波以布诺斯特角入射于两种理想介质平面分界面时,反射波为线极
	化波 极化波。在上述过程中,平面波发生了 平行极化波的全折射 现象。
6.	平面波斜入射在介质分界面时($\mu_1 = \mu_2 = \mu_0$),若 $\epsilon_1 > \epsilon_2$,当入射角满足
	等于或大于临界角 条件时发生全反射。