Control Systems

G V V Sharma*

CONTENTS

1 Mason's Gain Formula

1	Mason	's Gain Formula	1	2 BODE PLOT
2	Bode P	Plot	1	2.1 Introduction
	2.1 2.2	Introduction	1 1	2.2 Example
				3 Second order System
3	Second order System		1	
	3.1	Damping	1	3.1 Damping
	3.2	Example	1	3.2 Example
	3.3	Example 2	1	3.2 Example
				3.3 Example 2
4	Routh Hurwitz Criterion		2	3.1. A second-order real system has the following
	4.1	Routh Array	2	properties:
	4.2	Marginal Stability	2	a) the damping ratio $\zeta = 0.5$ and undamped
	4.3	Stability	2	natural frequency $\omega_n = 10 rad/s$ b) the steady state value of the output, to a uni
5	State-Space Model		2	step input, is 1.02.
	5.1	Controllability and Observability	2	The transfer function of the system is
	5.2	Second Order System	2	(A) $\frac{1.02}{s^2 + 5s + 100}$ (B) $\frac{102}{s^2 + 10s + 100}$ (C) $\frac{100}{s^2 + 10s + 100}$ (D) $\frac{102}{s^2 + 5s + 100}$
6	Nyquis	t Plot	2	Solution: Characteristic equation of second order system is as follows
7	Compe	nsators	2	$s^2 + 2\zeta\omega_n s + \omega_n^2 = 0 \tag{3.1.1}$
8	Phase I	Margin	2	Given
9	Gain M	Jargin	2	$\zeta = 0.5 \tag{3.1.2}$
,	Gain IV	101 8111	_	10 1/ (2.1.2

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

 $\omega_n = 10 rad/s$ (3.1.3)

The damping coefficient is between 0 and 1. Thus, the system is Underdamped. and the Characteristic equation becomes

$$s^2 + 10s + 100 = 0 (3.1.4)$$

Denominator of the Transfer Function is characteristic equation. Considering this, we can eliminate A and D options.

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

We know that output of the system in s domain is

$$C(s) = T(s)R(s)$$
 (3.1.6)

$$R(s) = \frac{1}{s}$$
 (3.1.7)

as it is unit step input.

Steady state output is given by

$$C(\infty) = \lim_{s \to 0} sC(s) \tag{3.1.8}$$

Given, steady state output is 1.02 and is the same for only option B

Therefore, transfer function of the system is

$$\frac{102}{s^2 + 10s + 100} \tag{3.1.9}$$

The step response of the transfer function

$$C(t) = \mathcal{L}^{-1} \left\{ \frac{102}{s(s^2 + 10s + 100)} \right\}$$
 (3.1.10)

Dividing into partial fractions

$$C(t)=L^{-1}\left\{\frac{51}{50s}\right\}-\mathcal{L}^{-1}\left\{\frac{-51s-510}{50(s^2+10s+100)}\right\}$$

$$C(t) = \left(\frac{-51}{50}\right) L^{-1} \left\{ \frac{s+5}{(s+5)^2 + 75} \right\} + \left(\frac{-51}{10}\right) \mathcal{L}^{-1} \left\{ \frac{1}{(s+5)^2 + 75} \right\} + \mathcal{L}^{-1} \left\{ \frac{51}{50s} \right\}$$

Applying Inverse Laplace Transform, we get

$$L^{-1} \left\{ \frac{s+5}{(s+5)^2+75} \right\} = \exp^{-5t} \cos(5\sqrt{3}t)$$

$$L^{-1} \left\{ \frac{1}{(s+5)^2+75} \right\} = \frac{1}{5\sqrt{3}} \exp^{-5t} \cos(5\sqrt{3}t)$$

Therefore,

$$C(t) = -\frac{51}{50} \exp^{-5t} \cos(5\sqrt{3}t) - \frac{17\sqrt{3}}{50} \exp^{-5t} \sin(5\sqrt{3}t) + \frac{51}{50}u(t)$$
(3.1.11)

The following code is used to get the step response plot

Fig. 3.1

- 4 ROUTH HURWITZ CRITERION
- 4.1 Routh Array
- 4.2 Marginal Stability
- 4.3 Stability
- 5 STATE-SPACE MODEL
- 5.1 Controllability and Observability
- 5.2 Second Order System
 - 6 Nyquist Plot
 - 7 Compensators
 - 8 Phase Margin
 - 9 Gain Margin

stepresponseplot.py