Sipser 4.2 (pages 173-182)

Taking stock

Are there problems a computer can't solve?!

But they seem so powerful...

- What about software verification?
 - Given a program and a specification of what it should do, can we check if it is correct?

What about deciding TMs?

- $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$
- Theorem 4.11: A_{TM} is undecidable!
- Is it even recognizable?

What about deciding TMs?

- $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$
- Theorem 4.11: A_{TM} is undecidable!
- Is it even recognizable?
- Let U = "On input $\langle M, w \rangle$, where M is a TM:
 - 1. Simulate M on input w.
 - 2. If *M* ever enters its accept state, *accept*; if *M* ever enters its reject state, *reject*."

Towards proving undecidability

- Cantor 1873: How can we tell whether one infinite set is "larger" than another?
- A function f from A to B is
 - One-to-one if $f(x) \neq f(y)$ if $x\neq y$
 - (f never maps two elements to the same value)
 - Onto if every element of B is hit
- A correspondence is a function that is both one-to-one and onto

Countable sets

- Sets A and B have the same size if:
 - A and B are finite with the same number of elements
 - A and B are infinite with a correspondence between them
- A set is countable if it is finite or has the same size as N
 - (natural numbers 1, 2, 3,...)

For example...

E = { even natural numbers } is countable

• Define $f: \mathbb{N} \to E$ as f(n) = 2n

n	f(n)
1	2
2	4
3	6

Diagonalization

- Theorem 4.17: R is uncountable.
- Proof:

By contradiction. Assume there is a correspondence. We find a real number $x \neq f(n)$ for any natural number n.

n	f(n)
1	3. 1 4159
2	55.5 5 555
3	0.12 3 45
4	0.500 0 0

Put your thinking caps on!

How do we show that:

- $-\Sigma^*$ is countable
 - assume $\Sigma = \{0, 1\}$
- B = { all infinite binary sequences } is uncountable

- Theorem 4.18: Some languages are not Turing-recognizable.
- Proof:

- Theorem 4.18: Some languages are not Turing-recognizable.
- Proof:

$$\Sigma^* = \{ \epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots \}$$

- Theorem 4.18: Some languages are not Turing-recognizable.
- Proof:

$$\Sigma^* = \{ \ \varepsilon, \ 0, \ 1, \ 00, \ 01, \ 10, \ 11, \ 000, \ 001, \ldots \}$$

$$X_{\mathcal{A}} = \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ \ldots$$

- Theorem 4.18: Some languages are not Turing-recognizable.
- Proof:

$$\Sigma^* = \{ \ \varepsilon, \ 0, \ 1, \ 00, \ 01, \ 10, \ 11, \ 000, \ 001, \dots \}$$
 $A = \{ \ 0, \ 00, \ 01, \ 000, \ 001, \dots \}$
 $X_A = \{ \ 0, \ 1, \ 0, \ 1, \ 1, \ 0, \ 0, \ 1, \dots \}$

- $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$
- Theorem 4.11: A_{TM} is undecidable.

- $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$
- Theorem 4.11: A_{TM} is undecidable.
- Proof:

By contradiction. Assume H is a decider for A_{TM}

- $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$
- Theorem 4.11: A_{TM} is undecidable.
- Proof:

By contradiction. Assume H is a decider for A_{TM} . We construct a TM

D = "On input < M >, where M is a TM:

- 1. Run H in input $\langle M, \langle M \rangle \rangle$
- 2. If H accepts, reject; if H rejects, accept."

$$D(< M>) = \begin{cases} accept & if M does not accept < M> \\ reject & if M accepts < M> \end{cases}$$

$$D(< M>) = \begin{cases} accept & if M does not accept < M> \\ reject & if M accepts < M> \end{cases}$$

• What if we run D on <D>?

$$D(<\!M\!>) = \left\{ \begin{array}{ll} accept & if M \ does \ not \ accept < M\!> \\ reject & if M \ accepts < M\!> \end{array} \right.$$

- What if we run D on $\langle D \rangle$?
- Then

$$D(\langle D \rangle) = \begin{cases} accept & if D \ does \ not \ accept \langle D \rangle \\ reject & if D \ accepts \langle D \rangle \end{cases}$$

$$D(< M>) = \begin{cases} accept & if M does not accept < M> \\ reject & if M accepts < M> \end{cases}$$

- What if we run D on <D>?
- Then

$$D(\langle D \rangle) = \begin{cases} accept & if D \ does \ not \ accept < D \rangle \\ reject & if D \ accepts < D \rangle \end{cases}$$

• Contradiction! Then H cannot exist and A_{TM} is undecidable.

Where is the diagonalization?

Running a machine on its description

	< <i>M</i> ₁ >	<m<sub>2></m<sub>	<m<sub>3></m<sub>	<m<sub>4></m<sub>	
M_{l}	accept		accept		
M_2	accept	accept	accept	accept	
M_{3}					
$M_{_{4}}$	accept	accept			

Where is the diagonalization?

Running H on a machine and its description

	< <i>M</i> ₁ >	<m<sub>2></m<sub>	<m<sub>3></m<sub>	<m<sub>4></m<sub>	
$M_{_{I}}$	accept	reject	accept	reject	
M_2	accept	accept	accept	accept	
M_3	reject	reject	reject	reject	
$M^{}_4$	accept	accept	reject	reject	

Where is the diagonalization?

Adding D to the picture

	< <i>M</i> ₁ >	<m<sub>2></m<sub>	<m<sub>3></m<sub>	<m<sub>4></m<sub>	 < D >	
$M^{}_{l}$	accept	reject	accept	reject		
$M_2^{}$	accept	accept	accept	accept		
M_3	reject	reject	<u>reject</u>	reject		
$M^{}_4$	accept	accept	reject	<u>reject</u>		
D	<u>reject</u>	<u>reject</u>	<u>accept</u>	<u>accept</u>	?	

So have we found a language that is not

Turing-recognizable?

• Theorem 4.22: A language is decidable iff it and its complement are recognizable

So have we found a language that is not

Turing-recognizable?

 Theorem 4.22: A language is decidable iff it and its complement are recognizable

• Then $\overline{A_{TM}}$ is not Turing-recognizable!

Updating the picture

