Trend	Trend
Hvilken type bindinger danner grundstofferne i 5. hovedgruppe?	Hvilken type bindinger danner grundstofferne i 2. periode?
Kapitel 9	Kapitel 9
Trend	Trend
Hvilken type bindinger danner grundstofferne i 3. periode?	Hvilken bindingstype er der tale om i de højeste flourider af grundstofferne i 2. periode?
Kapitel 9	Kapitel 9
Trend	Trend
Hvilken bindingstype er der tale om i de højeste flourider af grundstofferne i 3. periode?	Hvilken bindingstype er der tale om i de højeste oxider af grundstofferne i 2. periode?
Kapitel 9	Kapitel 9
Trend	Trend
Hvilken bindingstype er der tale om i de højeste oxider af grundstofferne i 3. periode?	Hvilken bindingstype er der tale om i hydriderne af grundstofferne i 2. periode?
Kapitel 9	Kapitel 9

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Nitrogen og fosfor laver covalente bindinger. Arsen laver netværk-covalente bindinger. Antimon og bismuth laver metalliske bindinger.
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Trend	Trend
Hvilken bindingstype er der tale om i hydriderne af grundstofferne i 3. periode?	Angiv syre/base egenskaberne af de højeste oxider af grundstofferne i 3. periode
Kapitel 9	Kapitel 9
Trend	Fremstilling
Angiv syre/base egenskaberne af de højeste oxider af grundstofferne i 5. hovedgruppe	Hvorledes kan H ₂ fremstilles industrielt og i laboratoriet?
Kapitel 9	Kapitel 10
Trend	Reaktion
Stiger eller falder reaktiviteten mellem H ₂ og halogenerne ned gennem 7. hovedgruppe?	Beskriv hvordan H ₂ kan anvendes som reduktionsmiddel
Kapitel 10	Kapitel 10
Trend	Egenskab
Hvorledes kan hydriderne af grundstofferne i det periodiske system karakteriseres som henholdsvis ioniske, kovalente eller metalliske?	Begrund hvorfor vands og flussyres kogepunkt er væsentligt højere end forventet
Kapitel 10	Kapitel 10

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Industrielt: $CH_4 + H_2O \longrightarrow CO + 3H_2$ $CO + H_2O \stackrel{\Delta}{\longrightarrow} CO_2 + H_2$ $K_2CO_3 + CO_2 + H_2O \longrightarrow 2 \text{ KHCO}_3$ I laboratoriet: $Zn(s) + 2 \text{ HCl} \longrightarrow ZnCl_2 + H_2$ samt ved elektrolyse i begge tilfælde: $2H_2O + 2 e^- \longrightarrow 2OH^- + H_2$ $6 H_2O \longrightarrow 4 H_3O^+ + O_2 + 4 e^-$	$ \frac{N_2O_5}{S} \begin{vmatrix} P_4O_{10} & As_2O_3 & Sb_2O_3 & Bi_2O_3 \\ \hline S & S & S & A & B \\ B = basisk, S = sur, A = amfoter $
H_2 kan anvendes på organiske forbindelser: oxidation $H_2\overset{-II}{C}=\overset{-II}{C}H_2+\overset{\circ}{H}_2\overset{-}{\longrightarrow}\overset{I}{H}_3\overset{-III}{C}-\overset{-III}{C}H_3$ samt uorganiske, herunder metaloxider! oxidation $\overset{II}{C}uO+\overset{\circ}{H}_2\overset{\circ}{\longrightarrow}\overset{\circ}{C}u+\overset{I}{H}_2\overset{\circ}{O}$ reduktion	Reaktiviteten mellem dihydrogen og halogenerne falder ned gennem 7. hovedgruppe.
Intermolekylære hydrogenbindinger.	Hydriderne af grundstofferne i 1. og 2. hovedgruppe kan karakteriseres som ioniske. Hydriderne af overgangsmetallerne kan karakteriseres som metalliske. Hydriderne af grundstofferne i 3. til 7. hovedgruppe kan karakteriseres som covalente.

Reaktion	Reaktion
Færdiggør og afstem $H_{2} + Na \longrightarrow NaH$ $H_{2} + F_{2} \longrightarrow HF$ $H_{2} + O_{2} \longrightarrow H_{2}O$ $H_{2} + N_{2} \longrightarrow NH_{3}$ $H_{2} + CuO \stackrel{\Delta}{\longrightarrow} Cu$	Beskriv henholdsvis lithiums reaktion med atmosfæren (oxygen og kuldioxid) samt alkalimetallernes reaktion med vand
Kapitel 10	Kapitel 11
Egenskab	Egenskab
Forklar hvorfor Li ⁺ er exceptionel god til at koordinere vand	Opskriv alkalimetallernes flammefarver
Kapitel 11	Kapitel 11
Egenskab	Reaktion
Hvilken sammenhæng er der mellem opløseligheden af et salt, kationens radius og anionens radius?	Opskriv reaktionen mellem nitrogen og et alkalimetal der har en rød flammefarve og høj ladningstæthed. Opskriv da produktets reaktion med vand.
Kapitel 11	Kapitel 11
Anvendelse	Anvendelse
Beskriv med ord og reaktionsskema hvorledes lithium indgår i genopladelige Lithium-Ion batterier	Beskriv med reaktionsskema hvorledes lithium indgår i ikke-genopladelige batterier
Kapitel 11	Kapitel 11

$\begin{array}{c} 4\operatorname{Li} + \operatorname{O_2} \longrightarrow 2\operatorname{Li_2O} \\ \operatorname{Li_2O} + \operatorname{CO_2} \longrightarrow \operatorname{Li_2CO_3} \end{array}$
$2 K + 2 H_2 O \longrightarrow 2 KOH + H_2$ ligeledes for de andre.

$$H_2 + 2 \text{ Na} \longrightarrow 2 \text{ NaH}$$

$$H_2 + F_2 \longrightarrow 2 \text{ HF}$$

$$2 H_2 + O_2 \longrightarrow 2 H_2 O$$

$$3 H_2 + N_2 \longrightarrow 2 \text{ NH}_3$$

$$H_2 + \text{CuO} \xrightarrow{\Delta} \text{Cu} + \text{H}_2 O$$

Lithium Rød
Natrium Gul
Kalium Lilla
Rubidium Rød-violet
Cesium Blå

Li⁺ har godt nok kun én positiv ladning. Til gengæld er Van der Walls radius af ionen relativt lille hvilket fører til en relativt høj ladningstæthed (ladning pr. volumen). Det er ladningstætheden der afgører ionens evne til at koordinere vand.

$$6 \operatorname{Li} + \operatorname{N}_2 \longrightarrow 2 \operatorname{Li}_3 \operatorname{N}$$

$$\operatorname{Li}_3 \operatorname{N} + 3 \operatorname{H}_2 \operatorname{O} \longrightarrow \operatorname{NH}_3 + 3 \operatorname{LiOH}$$

Kationer og anioner af nogenlunde samme størrelse vil have lettere ved at skabe et stabilt gitter (krystal, bundfald) end kationer og anioner med vidt forskellige størrelser. Derfor vil salte af ioner med stor størrelsesmæssig forskel ofte være let opløselige. Eksempelvis LiI.

De har alle lithiums ionisering (anodereaktionen) til fælles: Li —— Li $^+$ + e $^-$

Katodereaktionerne varierer batterityperne imellem. Her er tre forskellige batteritypers katodereaktion:

$$2 \operatorname{SOCl}_{2} + 4 \operatorname{e}^{-} \longrightarrow 4 \operatorname{Cl}^{-} + \operatorname{SO}_{2} + \operatorname{S}$$

$$\operatorname{SO}_{2} \operatorname{Cl}_{2} + 2 \operatorname{e}^{-} \longrightarrow 2 \operatorname{Cl}^{-} + \operatorname{SO}_{2}$$

$$2 \operatorname{SO}_{2} + 2 \operatorname{e}^{-} \longrightarrow \operatorname{S}_{2} \operatorname{O}_{4}^{-2}$$

Anoden består af LiCoO₂(s) og katoden af grafit. Ved opladning bevæger Li⁺ ioner sig fra anoden til katoden hvor de interkaleres i grafit katoden.

$$\begin{array}{c} \operatorname{LiCoO_2} \longrightarrow \operatorname{Li}_{(1-x)}\operatorname{CoO_2} + x\operatorname{Li}^+ + x\operatorname{e}^- \\ \operatorname{C} + x\operatorname{Li}^+ + x\operatorname{e}^- \longrightarrow \operatorname{Li}_x\operatorname{C} \end{array}$$

Den modsatte reaktion finder sted ved afladning.

Fremstilling	Fremstilling
Opskriv hvordan titanium fremstilles industrielt	Opskriv hvordan natrium og kalium fremstilles industrielt
Kapitel 11	Kapitel 11
Fremstilling	Reaktion
Opskriv hvordan natriumhydroxid fremstilles industrielt	Opskriv oxiderne af alkalimetallerne samt deres reaktion med vand
Kapitel 11	Kapitel 11
Anvendelse	Generelt
Beskriv med reaktionsligninger hvorledes KO ₂ kan bruges til at oplagre kuldioxid	Er dioxid(2-)ionen para- eller diamagnetisk? Begrund med MO teori.
Kapitel 11	Kapitel 11
Generelt	Reaktion
Er dioxid(1-)ionen para- eller diamagnetisk? Begrund med MO teori.	Opskriv reaktionen mellem aluminium metal og hydroxidionen
Kapitel 11	Kapitel 11

Natrium fremstilles ved elektrolyse af natriumchloridopløsning

$$Na^+ + e^- \longrightarrow Na$$

 $2 Cl^- \longrightarrow Cl_2 + 2 e^-$

Kalium fremstilles ved følgende reaktion ved 850 °C $Na(l) + KCl(l) \longrightarrow K(g) + NaCl(l)$

$$TiCl_4 + 4 Na \longrightarrow 4 NaCl + Ti$$

 $\begin{aligned} \text{Li}_2\text{OH, Na}_2\text{O}_2, \text{KO}_2. \\ \text{Li}_2\text{O} + \text{H}_2\text{O} &\longrightarrow 2 \text{ LiOH} \\ \text{Na}_2\text{O}_2 + 2 \text{ H}_2\text{O} &\longrightarrow 2 \text{ NaOH} + \text{H}_2\text{O}_2 \\ 2 \text{ KO}_2 + 2 \text{ H}_2\text{O} &\longrightarrow 2 \text{ KOH} + \text{H}_2\text{O}_2 + \text{O}_2 \end{aligned}$

Elektrolyse af natriumchloridopløsning

$$\begin{array}{c} 2 \ H_2 O + 2 \ e^- \longrightarrow H_2 + 2 \ OH^- \\ 2 \ Cl^- \longrightarrow Cl_2 + 2 \ e^- \end{array}$$

De dannede hydroxid ioner er forhindret i at kommer i kontakt med chlorgassen af et diaphragm hvor natriumchloridopløsningen kan passere.

2p elektronerne danner følgende molekylorbitaler

Diamagnetisk, ingen uparrede elektroner.

$$\begin{array}{l} 4~\text{KO}_2 + 2~\text{CO}_2 \longrightarrow 2~\text{K}_2\text{CO}_3 + 3~\text{O}_2 \\ \text{K}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2 \longrightarrow 2~\text{KHCO}_3 \end{array}$$

 $2\,\mathrm{Al} + 2\,\mathrm{OH}^- + 6\,\mathrm{H}_2\mathrm{O} \longrightarrow 2\,[\mathrm{Al}(\mathrm{OH})_4]^- + 3\,\mathrm{H}_2$

 ${\it 2p}$ elektronerne danner følgende molekylorbitaler

Paramagnetisk, uparrede elektroner i $2\pi^*$.

Reaktion	Reaktion
Hvad sker der med en natriumhydroxidopløsning uden låg?	Salte af alkalimetalionerne samt ammoniumionen er normalt letopløselige. Som de eneste er alkalimetalionerne f.eks. letopløselige som carbonater. Opskriv reaktioner hvorved Na ⁺ , K ⁺ og NH ₄ ⁺ kan bundfældes
Kapitel 11	Kapitel 11
Anvendelse	Reaktion
Beskriv med reaktionsskemaer hvorledes natriumbicarbonat anvendes i bagepulver	Hvad sker der med natriumbicarbonat når det opvarmes?
Kapitel 11	Kapitel 11
Egenskab	Fremstilling
Beskriv med ord og reaktionsskema hvad der sker når et alkalimetal, i dette tilfælde natrium, opløses i ammoniak	Hvordan findes kaliumchlorid i naturen og hvordan udvindes det?
Kapitel 11	Kapitel 11
Fremstilling	Fremstilling
Fra hvilket mineral og hvordan udvindes Na ₂ CO ₃ ?	Beskriv hvorledes Na ₂ CO ₃ kan fremstilles ud fra Solvay processen
Kapitel 11	Kapitel 11

$Natrium$ $Na^{+} + [Sb(OH)_{6}]^{-} \longrightarrow Na[Sb(OH)_{6}](s)$ $Kalium \ og \ ammonium$ $3 K^{+} + [Co(NO)_{6}]^{3^{-}} \longrightarrow K_{3}[Co(NO)_{6}](s)$ $3 NH_{4}^{+} + [Co(NO)_{6}]^{3^{-}} \longrightarrow (NH_{4})_{3}[Co(NO)_{6}](s)$	$OH^- + CO_2 \longrightarrow HCO_3^-$
$2 \text{ NaHCO}_3 \longrightarrow \text{Na}_2 \text{CO}_3 + \text{CO}_2 + \text{H}_2 \text{O}$	Bagepulver består af NaHCO ₃ samt Ca(H_2PO_4) ₂ . 2 NaHCO ₃ + Ca(H_2PO_4) ₂ $\xrightarrow{\Delta}$ NaHPO ₄ + CaHPO ₄ + 2 CO ₂ + 2 H ₂ O
 KCl findes bl.a. som KMgCl₃ · 6 H₂O samt MgSO₄ · H₂O.	$Na(s) \longrightarrow Na^+(ammoniak) + e^-(ammoniak)$ Opløsningen vil have en dyb blå farve når den er tynd og en bronze farve når det er koncentreret. Med tiden vil natrium reagere med ammoniak og danne natriumamid $2 Na^+ + 2 NH_3 + 2 e^- \longrightarrow 2 NaNH_2 + H_2$
$2 \operatorname{NaCl} + \operatorname{CaCO}_3 \Longrightarrow \operatorname{Na_2CO}_3 + \operatorname{CaCl}_2$	Trona: $Na_2CO_3 \cdot NaHCO_3 \cdot 2 H_2O$ Opvarmning, rekrystallisation, opvarmning $2 Na_2CO_3 \cdot NaHCO_3 \cdot 2 H_2O \xrightarrow{\Delta} 3 Na_2CO_3 + 5 H_2O + CO_2$ Natriumcarbonat genopløses hvorved faste urenheder filtreres fra. $Na_2CO_3 \cdot H_2O$ opnås ved tørring. $Na_2CO_3 \cdot H_2O \xrightarrow{\Delta} Na_2CO_3 + H_2O(g)$

Anvendelse	Teori
Beskriv med reaktionsskema hvorledes Na ₂ CO ₃ anvendes i produktionen af glas.	Begrund at magnesium(II) har en mindre ionradius end natrium(I)
Kapitel 11	Kapitel 12
Reaktion	Egenskab
Opskriv reaktionen mellem en (for det meste) intert gas og magnesium metal	Angiv hvilke af jordalkalimetallerne der er opløselige med CO ₃ ²⁻ , PO ₄ ³⁻ , SO ₄ ²⁻ og OH ⁻
Kapitel 12	Kapitel 12
Reaktion	Teori
Vis med reaktionsskema at berylliumoxid er amfotert	Begrund hvorfor beryllium har tendens til at danne covalente forbindelser
Kapitel 12	Kapitel 12
Struktur	Fremstilling
Optegn strukturen af $[Be(OH_2)_4]^{2+}$	Hvordan findes magnesium i naturen?
Kapitel 12	Kapitel 12

Begge ioner har den samme elektronkonfiguration 1s²2s²2p ⁶ Dog har magnesium én proton mere end natrium. Det betyder, at magnesium kan udøve en større tiltrækkende kraft på elektronerne således at de befinder sig tættere på kernen.	$Na_2CO_3 + xSiO_2 \xrightarrow{\Delta} Na_2O \cdot xSiO_2 + CO_2$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3 \text{ Mg} + \text{N}_2 \longrightarrow \text{Mg}_3 \text{N}_2$
Beryllium er relativt elektronegativ. Man kan forudsige bindingskarakter ud fra elektronegativitet. Et eksempel er BeCl ₂ . Forskellen mellem elektronegativitet for disse er 3.16 – 1.57 = 1.59 hvilket svarer til en polær kovalent binding.	$BeO + 2 H3O+ + H2O \longrightarrow [Be(OH2)4]2+$ $BeO + 2 OH- + H2O \longrightarrow [Be(OH)4]2-$
Magnesium findes i naturen som $KMgCl_3 \cdot 6 H_2O$, $CaMg(CO_3)_2$ og $MgSO_4 \cdot 7 H_2O$	$\begin{bmatrix} OH_2 \\ \\ \\ \\ \\ H_2O \\ OH_2 \end{bmatrix}^{2+}$

Т

Reaktion	Fremstilling
Opskriv reaktion for forbrænding af magnesium metal med oxygen henholdsvis carbondioxid	Beskriv den industrielle fremstilling af magnesium
Kapitel 12	Kapitel 12
Reaktion	Reaktion
Hvad sker der når CaCO ₃ opvarmes?	Opskriv hovedkomponenterne i klinker samt reaktionen hvorved cement hærder
Kapitel 12	Kapitel 12
Reaktion	Fremstilling
Opskriv den kemiske formel for gips og for det tilsvarende hemihydrat	Opskriv reaktionen for dannelse af calciumcarbid
Kapitel 12	Kapitel 12
Reaktion	Fremstilling
Opskriv calciumcarbids reaktion med vand henholdsvis nitrogen	Opskriv reaktionen for fremstilling af bor
Kapitel 12	Kapitel 13

$Ca(OH)_2 + Mg^{2+} \longrightarrow Mg(OH_2)(s) + Ca^{2+}$ $Mg(OH)_2 + 2 HCl \longrightarrow MgCl_2(aq) + 2 H_2O$ Elektrolyse af $MgCl_2$ giver Mg ved katoden og chlorgas ved anoden. Chlorgas kan genbruges til at danne saltsyre.	$2 Mg + O_2 \longrightarrow 2 MgO$ $2 Mg + CO_2 \longrightarrow 2 MgO + C$
Hovedkomponenterne i klinker er Ca_3SiO_5 , $Ca_3Al_2O_6$ og $Ca_4Al_2Fe_2O_{10}$. 2 $Ca_3SiO_5 + 7 H_2O \longrightarrow Ca_3Si_2O_7 \cdot 4 H_2O + 3 Ca(OH)_2$ $Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 + H_2O$	$CaCO_3 \longrightarrow CaO + CO_2$
$CaO + 3C \xrightarrow{\Delta} CaC_2 + CO$	Gips: CaSO₄ · 2 H₂O Tilsvarende hemihydrat: CaSO₄ · ½H₂O
$B_2O_3 + 3 Mg(l) \xrightarrow{\Delta} 2 B + 3 MgO$	$CaC_{2} + 2 H_{2}O \longrightarrow Ca(OH)_{2} + C_{2}H_{2}$ $CaC_{2} + N_{2} \longrightarrow CaCN_{2} + C$

Fremstilling	Struktur
Opskriv den kemiske formel for de to mest almindelige salte som bor findes i i naturen	Tegn strukturen af borationen i borax
Kapitel 13	Kapitel 13
Struktur	Fremstilling
Tegn strukturen af peroxoborationen	Opskriv reaktionen for fremstilling af peroxoborationen
Kapitel 13	Kapitel 13
Fremstilling	Struktur
Opskriv reaktionen for fremstilling af borcarbid samt reaktionen for fremstilling af titaniumborid	Tegn strukturen af diboran
Kapitel 13	Kapitel 13
Struktur	Struktur
Tegn strukturen af pentaboran(9)	Tegn strukturen af tetraboran(10)
Kapitel 13	Kapitel 13

Fremstilling	Fremstilling
Beskriv fremstillingen af diboran ved hjælp af et reaktionsskema	Beskriv fremstillingen af tetraboran og pentaboran med reaktionsskemaer
Kapitel 13	Kapitel 13
Reaktion	Fremstilling
Opskriv diborans reaktion med oxygen og vand	Opskriv reaktionen for fremstilling af natriumborhydrid
Kapitel 13	Kapitel 13
Egenskab	Egenskab
Aluminium metal er amfotert. Opskriv dets reaktion med syre henholdsvis base	Aluminium(III) i vandig opløsning er en svag syre på linje med eddikesyre. Opskriv reaktionen med vand
Kapitel 13	Kapitel 13
Fremstilling	Fremstilling
Beskriv den industrielle fremstilling af aluminium metal med reaktionsskemaer	Beskriv den industrielle fremstilling af cryolit med reaktionsskemaer
Kapitel 13	Kapitel 13

$2 B_2 H_6 \longrightarrow B_4 H_{10} + H_2$ $B_4 H_{10} + B_2 H_6 \longrightarrow 2 B_5 H_{11} + 2 H_2$	oxidation $ \begin{array}{ccc} & & & & & & \\ 2 \text{ BF}_3 + 6 \text{ NaH} & & & & & \\ & & & & & & \\ & & & & & \\ & & & & $
$B_2H_6 + 2 \text{ NaH} \longrightarrow 2 \text{ NaBH}_4$	$B_{2}H_{6} + 3 O_{2} \longrightarrow B_{2}O_{3} + 3 H_{2}O$ $B_{2}H_{6} + 6 H_{2}O \longrightarrow 2 H_{3}BO_{3} + 6 H_{2}$
$[Al(OH2)6]3+ + H2O \longrightarrow [Al(OH2)5(OH)]2+ + H3O+$	$2 \text{ Al} + 6 \text{ H}^+ + 6 \text{ H}_2\text{O} \longrightarrow 2 \left[\text{Al}(\text{OH}_2)_6 \right]^{3+} + 3 \text{ H}_2$ $2 \text{ Al} + 2 \text{ OH}^- + 6 \text{ H}_2\text{O} \longrightarrow 2 \left[\text{Al}(\text{OH})_4 \right]^- + 3 \text{ H}_2$
$3 \operatorname{SiF}_4 + 2 \operatorname{H}_2 \operatorname{O} \longrightarrow 2 \operatorname{H}_2 \operatorname{SiF}_6 + \operatorname{SiO}_2$ $\operatorname{H}_2 \operatorname{SiF}_6 + 6 \operatorname{NH}_3 + 2 \operatorname{H}_2 \operatorname{O} \longrightarrow 6 \operatorname{NH}_4 \operatorname{F} + \operatorname{SiO}_2$ $6 \operatorname{NH}_4 \operatorname{F} + \operatorname{Na}[\operatorname{Al}(\operatorname{OH})_4] + 2 \operatorname{NaOH} \longrightarrow \operatorname{Na}_3 \operatorname{AlF}_6 + 6 \operatorname{NH}_3 + 6 \operatorname{H}_2 \operatorname{O}$	$Al_2O_3 + 2 OH^- + 3 H_2O \longrightarrow 2 [Al(OH)_4]^-$ $2 [Al(OH)_4]^- \longrightarrow Al_2O_3 \cdot 3 H_2O(s) + 2 OH^-$ $Al_2O_3 \cdot 3 H_2O \stackrel{\Delta}{\longrightarrow} Al_2O_3 + 3 H_2O$ Herefter følger elektrolyse af smeltet aluminiumoxid i cryolit

Struktur	Egenskab
Hvilken struktur har MgAl ₂ O ₄ henholdsvis Fe ₃ O ₄ ?	Opskriv 3 ioniske, 2 covalente og 2 metalliske carbider
Kapitel 13	Kapitel 14
Anvendelse	Fremstilling
Angiv en anvendelse af Na ₂ C ₂	Angiv med reaktionsskema en metode til at fremstille carbonmonoxid i laboratoriet
Kapitel 14	Kapitel 14
Fremstilling	Anvendelse
Angiv med reaktionsskema hvordan man kan fremstille methanol og propanal ud fra bl.a. carbonmonoxid	Hvordan kan man undersøge om der er carbondioxid i en gasstrøm?
Kapitel 14	Kapitel 14
Reaktion	Fremstilling
Beskriv med reaktionsskema hvad der sker når man varmer følgende faste carbonater op: CaCO ₃ , Ag ₂ CO ₃ , (NH ₄) ₂ CO ₃ og NaHCO ₃	Beskriv med reaktionsskema hvordan man fremstiller carbondisulfid industrielt
Kapitel 14	Kapitel 14

Ioniske: Na_2C_2 , Be_2C og Al_4C_3 Covalente: SiC og B_4C Metalliske: WC og Fe_3C	${ m MgAl}_2{ m O}_4$ er en spinel mens ${ m Fe}_3{ m O}_4$ er en invers spinel
$HCOOH + H_2SO_4(1) \longrightarrow CO + H_2O + H_2SO_4(aq)$	$Na_2C_2 + 2H_2O \longrightarrow 2NaOH + C_2H_2$
Man kan lede strømmen gennem en opløsning af $Ba(OH)_2$ eller $Ca(OH)_2$. Testen er positiv hvis der opstår et bundfald.	$CO + 2 H_2 \longrightarrow CH_3OH$ $CO + C_2H_4 + H_2 \longrightarrow C_2H_5CHO$
$CH_4 + 4S(I) \xrightarrow{\Delta} CS_2 + 2H_2S$	$CaCO_{3} \xrightarrow{\Delta} CaO + CO_{2}$ $Ag_{2}CO_{3} \xrightarrow{\Delta} Ag_{2}O + CO_{2}$ $Ag_{2}O \xrightarrow{\Delta} 2 Ag + \frac{1}{2}O_{2}$ $(NH_{4})_{2}CO_{3} \xrightarrow{\Delta} 2 NH_{3} + H_{2}O + CO_{2}$ $2 NaHCO_{3} \xrightarrow{\Delta} Na_{2}CO_{3} + H_{2}O + CO_{2}$

Fremstilling	Fremstilling
Opskriv to metoder til at producere CCl ₄	Angiv to industrielle metoder til at fremstille blåsyre
Kapitel 14	Kapitel 14
Fremstilling	Fremstilling
Opskriv hvordan man fremstiller silicium industrielt	Opskriv to metoder til at oprense silicium industrielt
Kapitel 14	Kapitel 14
Reaktion	Egenskab
Opskriv den kemiske formel for to kemikalier som kan reagere med glas samt deres reaktion	Opskriv de fire typer glas der er omtalt i bogen og angiv fordele ved hver af dem
Kapitel 14	Kapitel 14
Fremstilling	Struktur
Angiv med reaktionsskema hvordan man kan fremstille natriumsilicat	Tegn strukturen af pyrosilicationen
Kapitel 14	Kapitel 14

$CH_4 + NH_3 \xrightarrow{Pt/1200 {}^{\circ}C} HCN +$	- 3 H ₂
$2 \text{ CH}_4 + 2 \text{ NH}_3 + 3 \text{ O}_2 \xrightarrow{\text{Pt/Rh/1100}^{\circ} \text{C}} 2 \text{ Ft}$	$HCN + 6 H_2O$

•
$$CS_2 + 3 Cl_2 \xrightarrow{FeCl_3/\Delta} CCl_4 + S_2Cl_2$$

 $CS_2 + 2 S_2Cl_2 \xrightarrow{\Delta} CCl_4 + 6 S$
• $CH_4 + 4 Cl_2 \longrightarrow CCl_4 + 4 HCl$

Følgende ligevægt kan bruges til at destillere silicium. Ligevægten er forskudt med højre ved ca 300 $^{\circ}$ C og mod venstre ved 1000 $^{\circ}$ C.

$$Si + 3 HCl \Longrightarrow SiHCl_3(g) + H_2$$

$$SiO_2 + 2C \xrightarrow{\Delta} Si(l) + 2CO$$

- Soda-lime Billigt
- Borosilicate
 Kan klare store temperaturudsving
- Lead Absorberer radioaktiv stråling
- Quartz Er også gennemsigtigt i UV området

Der er tale om HF og NaOH
$$SiO_2 + 6 \text{ HF} \longrightarrow SiF_6^{2-} + 2 \text{ H}^+ + 2 \text{ H}_2\text{O}$$

$$SiO_2 + 2 \text{ NaOH} \stackrel{\Delta}{\longrightarrow} \text{Na}_2 \text{SiO}_3 + \text{H}_2\text{O}$$

$$SiO_2 + 2 Na_2 CO_3(l) \xrightarrow{\Delta} Na_4 SiO_4 + 2 CO_2$$

Reaktion	Struktur
Angiv reaktionen mellem silicationen og syre	Angiv de kemiske formler for hvid og blå asbest og angiv hvilken der er farligst
Kapitel 14	Kapitel 14
Fremstilling	Reaktion
Angiv hvordan silikone laves ved hjælp af reaktionsskemaer samt strukturen af silikone	Angiv tin(II)oxids reaktion med syre henholdsvis base
Kapitel 14	Kapitel 14
Fremstilling	Reaktion
Angiv den primære kilde af bly i naturen samt hvordan man udvinder bly fra denne	Angiv med reaktionsskema hvorledes PbCl ₄ dekomponerer
Kapitel 14	Kapitel 14
Egensкав Hvordan fremstår grundstofferne i 5. hovedgruppe	Angiv de specier der har tendens til at disproportionere i sur opløsning HNO3 Acidic conditions Basic conditions
ved SATP? Kapitel 15	NH ₂ OH NH ₂ OH NH ₃ OH N ₃ H ₄ N ₅ N ₆ N ₇ N ₇ N ₇ N ₈

Hvid asbest: $Mg_3(Si_2O_5)(OH)_4$ Blå asbest: $Na_2Fe_5(Si_4O_{11})_2(OH)_2$ (farligst)	$2 \operatorname{SiO}_{4}^{4-} + 2 \operatorname{H}^{+} \longrightarrow \operatorname{Si}_{2} \operatorname{O}_{7}^{6-} + \operatorname{H}_{2} \operatorname{O}$
$SnO + 2 HCl \longrightarrow SnCl_2 + H_2O$ $SnO + NaOH + H_2O \longrightarrow Na^+ + [Sn(OH)_3]^-$	$ \begin{array}{c} 2 \operatorname{CH_3Cl} + \operatorname{Si} \xrightarrow{\Delta} (\operatorname{CH_3})_2 \operatorname{SiCl_2} \\ (\operatorname{CH_3})_2 \operatorname{SiCl_2} + 2 \operatorname{H_2O} \longrightarrow (\operatorname{CH_3})_2 (\operatorname{Si}(\operatorname{OH})_2 + 2 \operatorname{HCl} \\ n(\operatorname{CH_3})_2 \operatorname{Si}(\operatorname{OH})_2 \longrightarrow [-\operatorname{O-Si}(\operatorname{CH_3})_2 -]_n + \operatorname{H_2O} \end{array} $ $ \begin{array}{c} \operatorname{CH_3} & \operatorname{CH_3} \\ & \operatorname{CH_3} & \operatorname{CH_3} \\ & \operatorname{CH_3} & \operatorname{CH_3} \\ & \operatorname{CH_3} & \operatorname{CH_3} \end{array} $ $ \begin{array}{c} \operatorname{CH_3} \\ & \operatorname{CH_3} \\ & \operatorname{CH_3} \end{array} $
$ \begin{array}{c} \text{oxidation} \\ \overset{\text{IV}}{\text{PbCl}_4} \overset{\text{-I}}{} & \overset{\text{II}}{\text{PbCl}_2} + \overset{\text{o}}{\text{Cl}_2} \\ & \text{ } \\ \text{reduktion} \end{array} $	Den primære naturlige kilde er PbS $ 2 \text{ PbS} + 3 \text{ O}_{2} \xrightarrow{\Delta} 2 \text{ PbO} + 2 \text{ SO}_{2} $ $ \text{PbO} + C \xrightarrow{\Delta} \text{ Pb} + \text{CO} $
$\mathrm{HNO_2}$ samt $\mathrm{NH_3OH^+}$	Nitrogen er en farveløs gas. Fosfor er en hvis voks-agtig substans. De resterende er skrøblige metaller.

Fremstilling	Fremstilling
Angiv hvordan ammoniak kan fremstilles i laboratoriet	Opskriv hvordan ammoniak fremstilles industrielt
Kapitel 15	Kapitel 15
Egenskab	Egenskab
Reagerer hydrazin alkalisk eller neutralt?	Angiv hvordan hydrazin kan anvendes som reduktionsmiddel
Kapitel 15	Kapitel 15
Struktur	Reaktion
Tegn hydrazin	Angiv hvordan hydrogenazid dekomponerer
Kapitel 15	Kapitel 15
Anvendelse	Reaktion
Forklar hvordan en airbag virker ved hjælp af reaktionsligninger	Angiv hvordan følgende forbindelser dekomponerer ved opvarmning NH ₄ NO ₂ , NH ₄ NO ₃ samt (NH ₄) ₂ Cr ₂ O ₇
Kapitel 15	Kapitel 15

$CH_4 + H_2O \longrightarrow CO + 3 H_2$ $ZnO + H_2S \longrightarrow ZnS + 2 H_2O$ $Ch_4 + \frac{1}{2}O_2 + 2 N_2 \longrightarrow CO + 2 H_2 + 2 N_2$ $CO + H_2O \Longrightarrow CO + H_2$ $CO_2 + K_2CO_3 + H_2O \Longrightarrow 2 \text{ KHCO}_3$ $N_2 + 3 H_2 \Longrightarrow 2 \text{ NH}_3$ $\text{ved et tryk på 100-1000 atm og en temperatur på 400-500 °C}$	$NH_4Cl + NaOH \longrightarrow NH_3(g) + NaCl$
$N_{2}H_{4} + 2I_{2} \longrightarrow 4HI + N_{2}$ $N_{2}H_{4} + 2Cu^{2+} \longrightarrow 2Cu + N_{2} + 4H^{+}$	Alkalisk $N_2H_4 + H_3O^+ \longrightarrow N_2H_5^+ + H_2O$
$2 \text{HN}_3 \longrightarrow \text{H}_2 + 3 \text{N}_2$	H N——N—H H
$NH_4NO_2 \xrightarrow{\Delta} N_2 + 2H_2O$ $NH_4NO_3 \xrightarrow{\Delta} N_2O + 2H_2O$ $(NH_4)_2Cr_2O_7 \xrightarrow{\Delta} N_2 + Cr_2O_3 + 4H_2O$	$ 2 \text{ NaN}_{3} \xrightarrow{\Delta} 2 \text{ Na(l)} + 3 \text{ N}_{2} $ $ 10 \text{ Na(l)} + 2 \text{ KNO}_{3} \longrightarrow \text{K}_{2}\text{O} + 5 \text{ Na}_{2}\text{O} + \text{N}_{2} $ $ 2 \text{ K}_{2}\text{O} + \text{SiO}_{2} \longrightarrow \text{K}_{4}\text{SiO}_{4} $ $ 2 \text{ Na}_{2}\text{O} + \text{SiO}_{2} \longrightarrow \text{Na}_{4}\text{SiO}_{4} $

Reaktion	Reaktion
Angiv en metode til at producere lattergas	Angiv en metode til at producere nitrogenmonoxid
Kapitel 15	Kapitel 15
Reaktion	Reaktion
Angiv en metode til at producere N ₂ O ₃	Angiv reaktionen mellem N ₂ O ₃ og vand
Kapitel 15	Kapitel 15
Struktur	Reaktion
Tegn dinitrogentrioxid	Angiv to metoder til at producere nitrogendioxid
Kapitel 15	Kapitel 15
Reaktion	Struktur
Angiv reaktionen mellem nitrogendioxid og vand	Tegn nitrogendioxid
Kapitel 15	Kapitel 15

$3 \text{ Cu} + 8 \text{ HNO}_3 \longrightarrow 3 \text{ Cu(NO}_3)_2 + 4 \text{ H}_2 \text{O} + 2 \text{ NO}$	$NH_4NO_3 \xrightarrow{H^+} N_2O + 2H_2O$
$N_2O_3 + H_2O \longrightarrow 2 HNO_2$	$NO + NO_2 \longrightarrow N_2O_3(I)$
$Cu + 4 HNO_3 \longrightarrow Cu(NO_3)_2 + 2 H_2O + 2 NO_2$ $Cu(NO_3)_2 \xrightarrow{\Delta} CuO + 2 NO_2 + \frac{1}{2}O_2$	O O O O N N + N + N N O
O	$2 \text{ NO}_2 + \text{H}_2\text{O} \Longrightarrow \text{HNO}_3 + \text{HNO}_2$

Struktur	Struktur
Tegn dinitrogentetroxid	Tegn dinitrogenpentoxid
Kapitel 15	Kapitel 15
Struktur	Struktur
Tegn nitrat	Tegn nitrit
Kapitel 15	Kapitel 15
Fremstilling	Reaktion
Angiv med reaktionsligning hvordan man kan fremstille salpetersyrling i laboratoriet	Angiv med reaktionsligning hvordan salpetersyrling disproportionerer
Kapitel 15	Kapitel 15
Fremstilling	Anvendelse
Opskriv hvordan man producerer salpetersyre industrielt via. Ostwald-processen	Angiv den eksoterme reaktion der finder sted i en cold pack
Kapitel 15	Kapitel 15

Struktur	Reaktion
Tegn strukturen af hvid henholdsvis rød fosfor	Hvad sker der med hvid fosfor der udsættes for UV lys?
Kapitel 15	Kapitel 15
Reaktion	Fremstilling
Hvorfor skal hvid fosfor opbevares under vand?	Hvordan udvindes fosfor industrielt?
Kapitel 15	Kapitel 15
Fremstilling	Reaktion
Hvordan fremstilles phosphin?	Opskriv reaktionerne hvorved de to oxider af fosfor dannes
Kapitel 15	Kapitel 15
Struktur	Struktur
Tegn strukturen af P ₄ O ₆	Tegn strukturen af P ₄ O ₁₀
Kapitel 15	Kapitel 15

Det omdannes til dens allotrop, rød fosfor	Hvid: P P P Rød:
$2 \operatorname{Ca_3(PO_4)_2} + 10 \operatorname{CO} \xrightarrow{\Delta} 6 \operatorname{CaO} + 10 \operatorname{CO_2} + \operatorname{P_4(g)}$ $\operatorname{CO_2} + \operatorname{C} \longrightarrow 2 \operatorname{CO}$ $\operatorname{CaO} + \operatorname{SiO_2} \xrightarrow{\Delta} \operatorname{CaSiO_3(l)}$ Reaktionerne foregår ved 1500 °C.	Fordi det reagerer med atmosfærens oxygen $P_4 + 5 O_2 \longrightarrow P_4 O_{10}$
$P_4 + 3 O_2 \longrightarrow P_4 O_6$ $P_4 + 5 O_2 \longrightarrow P_4 O_{10}$	$Ca_3P_2 + 6H_2O(s) \longrightarrow 2PH_3 + 3Ca(OH)_2$
	P O P O P O

Reaktion	Reaktion
Angiv reaktionen mellem P_4O_{10} og vand	Opskriv reaktionligninger for hvordan man danner de to chlorider af fosfor
Kapitel 15	Kapitel 15
Reaktion	Fremstilling
Angiv phosphortrichlorids henholdsvis phosphorpentachlorids reaktion med vand	Angiv med reaktionsskema hvorledes POCl ₃ fremstilles
Kapitel 15	Kapitel 15
Struktur	Fremstilling
Tegn H ₃ PO ₄ , H ₃ PO ₃ samt H ₃ PO ₂	Angiv hvordan fosforsyre fremstilles ved vådprocessen
Kapitel 15	Kapitel 15
Struktur	Fremstilling
Angiv strukturen af kondensationsproduktet der fås ved opvarmning af fosforsyre	Angiv med reaktionsskema hvordan calciumfosfat kan bearbejdes så det kan bruges som gødning
Kapitel 15	Kapitel 15

$P_4 + 6 Cl_2 \longrightarrow 4 PCl_3$ $P_4 + 10 Cl_2 \longrightarrow 4 PCl_5$	$P_4O_{10} + 6 H_2O + 4 H_3PO_4$
$2 PCl_3 + O_2 \longrightarrow 2 POCl_3$	$PCl_{3} + H_{2}O \longrightarrow H_{3}PO_{3} + 3 HCl$ $PCl_{5} + H_{2}O \longrightarrow POCl_{3} + 2 HCl$ $POCl_{3} + 3 H_{2}O \longrightarrow H_{3}PO_{4} + 3 HCl$
$Ca_3(PO_4)_2 + 3 H_2SO_4 \longrightarrow 3 CaSO_4(s) + 2 H_3PO_4$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$Ca_3(PO_4)_2(s) + 2 H_2SO_4 \longrightarrow Ca(H_2PO_4)_2(s) + 2 CaSO_4(s)$	$H^{O} \xrightarrow{P} O_{H}$

Fremstilling	Fremstilling
Angiv 2 metoder til at fremstille oxygen i laboratoriet	Angiv hvordan man kan fremstille diamagnetisk O2
Kapitel 16	Kapitel 16
Fremstilling	Reaktion
Angiv hvordan man kan fremstille ozon	Angiv produktet af reaktion mellem følgende forbindelser og ozon: NO ₂ , CN ⁻ samt PbS
Kapitel 16	Kapitel 16
Egenskab	Egenskab
Kategoriser disse metaloxider som enten: meget basiske, basiske, amfotere eller sure Na ₂ O, CaO, MnO, Al ₂ O ₃ , Cr ₂ O ₃ , SnO ₂ , V ₂ O ₅ , CrO ₃ samt Mn ₂ O ₇	Kategoriser disse ikke-metaloxider som enten: neutrale, sure eller meget sure N ₂ O, CO, N ₂ O ₃ , NO ₂ , CO ₂ , SO ₂ , N ₂ O ₅ , SO ₃ samt Cl ₂ O ₇
Kapitel 16	Kapitel 16
Fremstilling	Egenskab
Angiv hvordan hydrogenperoxid kan fremstilles i laboratoriet	Hydrogenperoxid har tendens til at disproportionere. Opskriv reaktionen
Kapitel 16	Kapitel 16

$H_2O_2 + ClO^- \longrightarrow O_2 + H_2O + Cl^-$	$2 \text{ KClO}_{3} \xrightarrow{\text{MnO2/}\Delta} 2 \text{ KCl} + 3 \text{ O}_{2}$ $2 \text{ H}_{2} \text{ O}_{2} \xrightarrow{\text{MnO2}} 2 \text{ H}_{2} \text{ O} + \text{ O}_{2}$
$2 \text{ NO}_2 + \text{O}_3 \longrightarrow \text{N}_2 \text{O}_5 + \text{O}_2$ $\text{CN}^- + \text{O}_3 \longrightarrow \text{OCN}^- + \text{O}_2$ $\text{PbS} + 4 \text{O}_3 \longrightarrow \text{PbSO}_4 + 4 \text{O}_2$	3 $O_2 \longrightarrow 2 O_3$ ved påføring af en spænding på 10-20kV
Neutrale: N_2O og CO Sure: N_2O_3 , NO_2 , CO_2 og SO_2 Meget sure: N_2O_5 , SO_3 og Cl_2O_7	Meget basisk: Na ₂ O Basisk: CaO og MnO Amfoter: Al ₂ O ₃ , Cr ₂ O ₃ , SnO ₂ og V ₂ O ₅ Sure: CrO ₃ og Mn ₂ O ₇
$2 H_2 O_2 \longrightarrow 2 H_2 O + O_2$	$Na_2O_2 + 2H_2O \longrightarrow 2NaOH + H_2O_2$

Struktur	Struktur
Tegn strukturen af S ₆	Tegn strukturen af S ₈
Kapitel 16	Kapitel 16
Struktur	Fremstilling
Tegn strukturen af S ₁₂	Opskriv hvordan man kan fremstille S ₆
Kapitel 16	Kapitel 16
Fremstilling	Fremstilling
Opskriv hvordan man kan fremstille S ₁₂	Opskriv reaktionsligninger der beskriver Claus processen
Kapitel 16	Kapitel 16
Fremstilling	Reaktion
Angiv hvordan man kan udvinde svovl fra pyrit	Hvordan kan man påvise sulfid i en vandig opløsning?
Kapitel 16	Kapitel 16

$6 \text{ Na}_2\text{S}_2\text{O}_3 + 12 \text{ HCl} \longrightarrow \text{S}_6(\text{s}) + 6 \text{ SO}_2 + 12 \text{ NaCl} + 6 \text{ H}_2\text{O}$	
$2 H_2S + 3 O_2 \longrightarrow 2 SO_2 + 2 H_2O$ $4 H_2S + 2 SO_2 \longrightarrow 6 S(s) + 4 H_2O$	$H_2S_8 + S_4Cl_2 \longrightarrow S_{12}(s) + 2 HCl(g)$
$Pb(CH_3COO)_2 + H_2S(g) \longrightarrow PbS + 2 CH_3COOH$ Blyacetat er farveløst. Ved reaktion fremkommer sort bly(II)sulfid	$FeS_2 \xrightarrow{\Delta} FeS + S(s)$

Reaktion	Reaktion
Hvordan kan man påvise SO_2 i en vandig opløsning?	Hvordan kan kraftværker oplagre SO₂?
Kapitel 16	Kapitel 16
Fremstilling	Struktur
Opskriv reaktionsligninger der beskriver trinnene i den industrielle syntese af svovlsyre	Tegn strukturen af H₂SO₄
Kapitel 16	Kapitel 16
Struktur	Reaktion
Tegn strukturen af H₂S₂O ₇	Hvad sker der hvis man varmer svovlsyre?
Kapitel 16	Kapitel 16
Fremstilling	Struktur
Angiv hvordan man kan fremstille thiosulfationen	Tegn thiosulfationen
Kapitel 16	Kapitel 16

$2 \text{ CaO} + 2 \text{ SO}_2 + \text{O}_2 \xrightarrow{\Delta} 2 \text{ CaSO}_4$	$Cr_2O_7^{2^-} + 3SO_2 + 2H^+ \longrightarrow 2Cr^{3^+} + 3SO_4^{2^-} + H_2O$ Dichromat er orange/gult. Ved reaktion skifter opløsningen farve til grøn pga. chrom(III) ioner
S OH H	$S + O_{2} \xrightarrow{\Delta} SO_{2}$ $2 SO_{2} + O_{2} \xrightarrow{V_{2}O_{5}/\Delta} 2 SO_{3}$ $SO_{3} + H_{2}SO_{4} \longrightarrow H_{2}S_{2}O_{7}$ $H_{2}S_{2}O_{7} + H_{2}O \longrightarrow 2 H_{2}SO_{4}$
$2 H_2 SO_4 \xrightarrow{\Delta} 2 SO_2 + 2 H_2 O + O_2$	
	$SO_3^{2^-} + S \longrightarrow S_2O_3^{2^-}$

Struktur	Fremstilling
Tegn produktet af elektrolytisk oxidation af thiosulfationen	Angiv den simple reaktion for fremstilling af den inerte gas SF_6
Kapitel 16	Kapitel 16
Struktur	Egenskab
Tegn strukturen af S₂Cl₂	Hvordan fremstår halogenerne ved SATP?
Kapitel 16	Kapitel 17
Fremstilling	Fremstilling
Hvordan fremstilles F ₂ ?	Hvordan fremstilles UF ₆ industrielt?
Kapitel 17	Kapitel 17
Fremstilling	Fremstilling
Hvordan produceres flussyre industrielt?	Hvordan kan man fremstille chlorgas i laboratoriet og i industrien?
Kapitel 17	Kapitel 17

$S(1) + 3 F_2(g) \longrightarrow SF_6(g)$	
F_2 fremstår som en bleg gul gas og Cl_2 som en bleg grøn gas. Br_2 er en rødbrun viskøs væske. Iod fremstår som glimtende sort-violette krystaller.	S—S—Cl
$UO_{2} + 4 HF \longrightarrow UF_{4}(s) + 2 H_{2}O$ $UF_{4}(s) + F_{2} \longrightarrow UF_{6}(g)$	Elektrolyse af kaliumfluorid
I laboratoriet kan man nøjes med følgende 10 HCl + 2 MnO₄ + 6 H⁺ → 5 Cl₂ + 2 Mn²⁺ + 8 H₂O Industrielt produceres chlorgas som biprodukt ved elektrolyse af eksempelvis natriumchlorid opløsning med henblik på at producere natriummetal.	$CaF_2 + H_2SO_4 \longrightarrow 2 HF(g) + CaSO_4$

Reaktion	Fremstilling
Angiv reaktionen mellem Cl_2 og vand	Hvordan fremstilles saltsyre industrielt?
Kapitel 17	Kapitel 17
Reaktion	Reaktion
Hvordan fremstiller man jern(II)chlorid henholdsvis jern(III)chlorid?	Et af de 3 tungtopløselige sølvhalider går i opløsning ved tilsætning af ammoniak. Hvilket?
Kapitel 17	Kapitel 17
Struktur	Reaktion
Angiv struktueren af følgende forbindelser: Hypochlorsyrling, chlorsyrling, chlorsyre og perchlorsyre	Angiv den reaktion der finder sted når chlorgas opløses i vand
Kapitel 17	Kapitel 17
Fremstilling	Anvendelse
Hvordan fremstilles perchlorat?	Angiv reaktionen der finder sted når en faststof løfteraket affyres
Kapitel 17	Kapitel 17

Saltsyre produceres hovedsagligt som biprodukt af andre synteser. Eksempelvis: $CH_4 + 4 Cl_2 \longrightarrow CCl_4 + 4HCl$	$Cl_2 + H_2O \longrightarrow H^+ + Cl^- + HClO$
Chlorid $AgCl(s) + 2 NH_3 \longrightarrow [Ag(NH_3)_2]^+ + Cl^-$	$Fe + 2 HCl \longrightarrow FeCl_2 + H_2$ $2 Fe + 3 Cl_2 \longrightarrow 2 FeCl_3$
$Cl_2 + H_2O \Longrightarrow H^+ + Cl^- + HClO$.; O O O O O O O O O O O O O O O O O O O
$6 \text{ NH}_4 \text{ClO}_4 + 8 \text{ Al} \longrightarrow 4 \text{ Al}_2 \text{O}_3 + 3 \text{ N}_2 + 3 \text{ Cl}_2 + 12 \text{ H}_2 \text{O(g)}$	$3 \text{ Cl}_2 + 6 \text{ NaOH} \longrightarrow \text{NaClO}_3 + 5 \text{ NaCl(s)} + 3 \text{ H}_2\text{O}$ $4 \text{ KClO}_3(\text{I}) \stackrel{\Delta}{\longrightarrow} \text{ KCl(s)} + 3 \text{ KClO}_4(\text{s})$

Struktur	Struktur
Tegn XeF ₂ , XeF ₄ og XeF ₆	Teg n $\mathrm{XeO_3}$ og $\mathrm{XeO_4}$
Kapitel 18	Kapitel 18
Teori	Struktur
Hvad vil det sige at en ligang er mono-, bi-, etc. dentat?	Tegn strukturen af ethylendiamintetraacetat (edta) ^{4–} ionen
Kapitel 19	Kapitel 19
Teori	Teori
Vis med et eksempel hvad der forstås ved <i>linkage</i> isomerism	$Co(NH_3)_5Br(SO_4)$ optræder i flere former. En af disse indeholder $[CoBr(NH_3)_5]^{2+}$ ionen mens en anden indeholder $[CoSO_4(NH_3)_5]^+$ ionen. Hvilken slags isomeri er dette et eksempel på?
Kapitel 19	Kapitel 19
Teori	Teori
Forklar med et eksempel hvad der forstås ved hydratiseringsisomeri	Vis med et eksempel hvad der forstås ved koordinationsisomeri
Kapitel 19	Kapitel 19

Teori	Teori
Tegn de mulige stereoismere af et plankvadratisk kompleks	Tegn de mulige stereoismere af et oktaederisk kompleks
Kapitel 19	Kapitel 19
Teori	Teori
Giv et eksempel på hvordan et chiralt kompleks kan se ud	Hvad er den primære begrænsning ved valens bindings teori?
Kapitel 19	Kapitel 19
Teori	Teori
Hvilke antagelser gøres i krystalfeltteorien?	Hvad er drivkraften for kompleksdannelse ifølge CFT?
Kapitel 19	Kapitel 19
Teori	Teori
Hvad forstås ved CFSE?	Hvad er sammenhængene mellem spin, felt og CFSE?
Kapitel 19	Kapitel 19

Teori	Teori
Hvilke faktorer har indflydelse på CFSE?	Opskriv den spektrokemiske serie
Kapitel 19	Kapitel 19
Teori	Teori
Angiv hvorledes elektronerne fordeles i et oktaederiske kompleks	Angiv hvorledes elektronerne fordeles i et tetraederisk kompleks
Kapitel 19	Kapitel 19
Teori	Teori
Angiv hvorledes elektronerne fordeles i et plankvadratisk kompleks	Hvilken farve vil et kompleks have hvis det absorberer i den grønne del af det synlige spektrum?
Kapitel 19	Kapitel 19
Teori	Egenskab
Hvilken farve vil du forvente et kompleks har hvis det har en høj CFSE?	Hvilke struktur har MgAl ₂ O ₄ , Fe ₃ O ₄ , Mn ₃ O ₄ og MFe ₂ O ₄ hvor M er dipositive overgangsmetalioner?
Kapitel 19	Kapitel 19

Teori	Egenskab
Hvilke komplekser har oftest intense farver?	Forklar hvorfor permangernationen har en stærk farve
Kapitel 19	Kapitel 19
Teori	Egenskab
Hvad forstås ved spinforbudte henholdsvis laporte forbudte elektronovergange?	Hvorfor er Cr³+ og Co³+ komplekser ofte inerte?
Kapitel 19	Kapitel 19
Teori	Fremstilling
Nævn tre typer af reaktioner til syntese af koordinationskomplekser og giv eksempler på dem	Giv reaktionerne til fremstilling af bariumferrat(IV)
Kapitel 19	Kapitel 19
Teori	Teori
Hvad er grundprincippet i HSAB teori? Angiv også 7 hårde, 2 mellem og 3 bløde ligandatomer	Forklar begrebet <i>kemisk symbiose</i>
Kapitel 19	Kapitel 19

Selvom ionen har en d° konfiguration kan der stadig ske elektronovergange via charge transfer fra oxygenatomets p orbitaler til mangans ledige d orbitaler.	Tetraederiske komplekser da de ikke har et symmetripunkt.
De har 3 henholdsvis 6 d elektroner i grundtilstanden. Med en oktaederisk konfiguration er de halvfyldte henholdsvis fyldte laveste d energiniveauer så stabile at der ikke er aktiveringsenergien bliver høj.	Spin: Sandsynligheden for ændring af spin er meget lille. Laporte: Overgange mellem <i>d</i> orbitaler er forbudte når molekylet har et inversionscenter.
$2 \operatorname{Fe}^{3^{+}} + 3 \operatorname{ClO}^{-} + 10 \operatorname{OH}^{-} \longrightarrow 2 \operatorname{FeO}_{4}^{2^{-}} + 3 \operatorname{Cl}^{-} + 5 \operatorname{H}_{2} \operatorname{O}$ $\operatorname{FeO}_{4}^{2^{-}} + \operatorname{Ba}^{2^{+}} \longrightarrow \operatorname{BaFeO}_{4}(s)$	Ligandudskiftning: $[Ni(OH_2)_6]^{2^+} + 6 NH_3 \longrightarrow [Ni(NH_3)_6]^{2^+} + 6 H_2O$ $Redox:$ $Os + 3 F_2 \longrightarrow OsF_6$ $Partiel dekomponering:$ $[Co(NH_3)_5(OH_2)]Cl_3 \stackrel{\Delta}{\longrightarrow} [Co(NH_3)_5Cl]Cl_2 + H_2O$
Et kompleks med bløde ligander har større tendens til at binde til en blød ligand mere end til at binde til en hård ligand og dermed opnå en "blanding". Eksempelvis er $[Co(NH_3)_5F]^{2+}$ mere stabil end $[Co(NH_3)_5I]^{2+}$	Hårde ligander binder bedst til hårde overgangsmetaller. Alle overgangsmetalioner med en ladning over +2 samt Mn ⁺² er hårde, dem med +2 er mellem og alle med lavere ladning er bløde. Bløde: C, S, As, Se, Te, I. Mellem: Cl, Br. Hårde: N, O, F.

ı

Struktur	Struktur
Tegn strukturen af metalloporphyrinkomplekset	Nævn alle plankvadratiske komplekser
Kapitel 19	Kapitel 20
Struktur	Egenskab
Opskriv for hver af 3 <i>d</i> overgangsmetallerne de oxidationstrin hvor det danner forbindelser med oxygen	Hvilke tre overgangsmetaller danne alle stabile oxyanioner i sur opløsning?
Kapitel 20	Kapitel 20
Egenskab	Fremstilling
Hvilke tre overgangsmetaller danner alle tetrachloro komplekser?	Opskriv reaktionsligninger for hvordan rent titanium og titaniumdioxid fremstilles industrielt
Kapitel 20	Kapitel 20
Egenskab	Egenskab
Angiv den primære mineralkilde til chrom	Forklar hvorfor chromat- og dichromationen ikke er farveløse
Kapitel 20	Kapitel 20

$[\operatorname{PtCl}_4]^{2^-}, [\operatorname{Ni(CN)}_4]^{2^-}, [\operatorname{Pt(NH}_3)_2\operatorname{Cl}_2], [\operatorname{Ni(DMG)}_2], \\ [\operatorname{Cu(NH}_3)_4]^{2^+} \text{ samt øvrige platin og palladium komplekser.}$ Alle andre komplekser med fire ligander er tetraederiske.	
$VO_4^{3^-}$, $CrO_4^{2^-}$ og MnO_4^- triaden	Ox. Ti V Cr Mn Fe Co Ni Cu 1 X X X X X X X 2 X
$TiO_{2} + 2C + 2Cl_{2} \xrightarrow{\Delta} TiCl_{4} + 2CO$ $TiCl_{4} + 2Mg \xrightarrow{\Delta} Ti + 2MgCl_{2}$ eller $TiCl_{4} + O_{2} \xrightarrow{\Delta} TiO_{2} + 2Cl_{2}$	Fe, Co og Ni triaden
Charge transfer til oxygen.	${\it Chromit, FeCr}_2{\it O}_4$

Reaktion	Struktur
Angiv ammoniumdichromats spontane reaktion ved antændelse	Tegn strukturen af dichromationen
Kapitel 20	Kapitel 20
Fremstilling	Reaktion
Angiv hvordan dichromationen fremstilles industrielt	Angiv hvordan man kan undersøge om der er dichromat i en opløsning
Kapitel 20	Kapitel 20
Struktur	Fremstilling
Tegn strukturen af chromylchlorid	Angiv med en reaktionsligning hvordan man kan fremstille chromylchlorid
Kapitel 20	Kapitel 20
Reaktion	Fremstilling
Angiv chromylchlorids reaktion i basisk væske	Hvordan kan man fremstille chrom(VI)oxid?
Kapitel 20	Kapitel 20

$$(NH_4)_2Cr_2O_7 \longrightarrow Cr_2O_3 + N_2 + 4H_2O(g)$$

Dichromationen er orange men reagerer til en blå forbindelse ved tilsætning af hydrogenperoxid og ether.

$$\operatorname{Cr_2O_7^{2-}} + 4\operatorname{H_2O_2} + 2\operatorname{H}^+ \longrightarrow 2\operatorname{CrO(O_2)_2}(\operatorname{ether}) + 5\operatorname{H_2O}$$

$$4\operatorname{FeCr_2O_4} + 8\operatorname{Na_2CO_3} + 7\operatorname{O_2} \stackrel{\Delta}{\longrightarrow} 8\operatorname{Na_2CrO_4} + 2\operatorname{Fe_2O_3} + 8\operatorname{CO_2}$$

$$2\operatorname{Na_2CrO_4} + 2\operatorname{CO_2} + \operatorname{H_2O} \Longrightarrow \operatorname{Na_2Cr_2O_7} + 2\operatorname{NaHCO_3}$$

$$\begin{array}{c} \text{K}_2\text{Cr}_2\text{O}_7 + 4 \, \text{NaCl} + 6 \, \text{H}_2\text{SO}_4 \longrightarrow \\ \text{2} \, \text{CrO}_2\text{Cl}_2 + 2 \, \text{KHSO}_4 + 4 \, \text{NaHSO}_4 + 3 \, \text{H}_2\text{O} \end{array}$$

$$\begin{split} \text{K}_2\text{Cr}_2\text{O}_7 + \text{H}_2\text{SO}_4 + \text{H}_2\text{O} & \longrightarrow \text{K}_2\text{SO}_4 + \text{"H}_2\text{CrO}_4\text{"} \\ \\ \text{"H}_2\text{CrO}_4\text{"} & \longrightarrow \text{CrO}_3 + \text{H}_2\text{O} \end{split}$$

$$\mathrm{CrO_{2}Cl_{2}} + 4\,\mathrm{OH}^{-} \longrightarrow \mathrm{CrO_{4}^{2-}} + 2\,\mathrm{Cl}^{-} + 2\,\mathrm{H_{2}O}$$

Anvendelse	Egenskab
Angiv en karakteristisk anvendelse af chrom(III)oxid	Hvad er den primære mineralkilde til mangan?
Kapitel 20	Kapitel 20
Reaktion	Egenskab
Kaliumpermangernat kan oxidere saltsyre. Angiv reaktionsligningen	Hvorfor er Mn²+ næsten farveløs?
Kapitel 20	Kapitel 20
Reaktion	Reaktion
Mangan(II)hydroxid kan reagere med oxygen. Giv reaktionsligningen	Vis med reaktionsligninger hvorledes man kan undersøge om en opløsning indeholder Mn²+
Kapitel 20	Kapitel 20
Reaktion	Reaktion
Mn ₂ O ₇ dekomponerer eksplosivt. Giv reaktionsligningen	Ionisk mangan(IV)oxid kan bruges til at fremstille chlorgas. Giv reaktionsligningen
Kapitel 20	Kapitel 20

$\mathrm{Mn_7SiO_{12}}$	Chrom(III)oxid er et grønt fast stof som ikke er opløseligt i vand. Derfor anvendes det som pigment i amerikanske dollars.
I high spin konfigurationen kan der kun ske elektronovergange ved at vende spinnet af en elektron og parre den med en anden. Sandsynligheden for dette er ekstremt lav da det er en spin forbudt elektronovergang.	$2 \text{ KMnO}_4 + 16 \text{ HCl} \longrightarrow 2 \text{ KCl} + 2 \text{ MnCl}_2 + 8 \text{ H}_2 \text{O} + 5 \text{ Cl}_2$
$2 \text{ Mn}^{2^{+}} + 5 [\text{BiO}_{3}]^{-} + 14 \text{ H}^{+} \longrightarrow 2 \text{ MnO}_{4}^{-} + 5 \text{ Bi}^{3^{+}} + 7 \text{ H}_{2} \text{O}$	$4 \operatorname{Mn(OH)}_{2}(s) + \operatorname{O}_{2} \longrightarrow 4 \operatorname{MnO(OH)}(s) + 2 \operatorname{H}_{2}\operatorname{O}$
$MnO_2 + 4 HCl \longrightarrow MnCl_2 + Cl_2 + 2 H_2O$	$2 \operatorname{Mn}_2 \operatorname{O}_7(l) \longrightarrow 4 \operatorname{MnO}_2 + 3 \operatorname{O}_2$

Anvendelse	Fremstilling
Mangan kan anvendes i alkaliske batterier. Opskriv halvcellereaktionerne	Opskriv reaktionsligningerne til industriel fremstilling af jern ud fra jernmalm i en højovn
Kapitel 20	Kapitel 20
Fremstilling	Struktur
Opskriv reaktionsligningerne til industriel fremstilling af jern ud fra jernmalm af høj kvalitet ved DRI metoden	Tegn strukturen af Fe₂Cl ₆
Kapitel 20	Kapitel 20
Reaktion	Egenskab
Jern kan reagere med chlorgas. Giv reaktionen samt produktets reaktion med vand	Jern(III) salte regarer ofte surt når de opløses i vand. Hvorfor?
Kapitel 20	Kapitel 20
Reaktion	Fremstilling
Jern(III) og jern(II) giver bundfald i basisk væske. Opskriv reaktionsligningerne	Angiv reaktionsligningen for industriel fremstilling af jern(II)chlorid
Kapitel 20	Kapitel 20

$2 C + O_2 \longrightarrow 2 CO$
$3 \operatorname{Fe_2O_3} + \operatorname{CO} \longrightarrow 2 \operatorname{Fe_3O_4} + \operatorname{CO_2}$
$Fe_3O_4 + CO \longrightarrow 3 FeO + CO_2$
$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$
$FeO + CO \longrightarrow Fe + CO_2$
Slagger dannes CaO + SiO₂ → CaSiO₃

$$2 \operatorname{MnO}_2 + 2 \operatorname{H}_2\operatorname{O} + 2 \operatorname{e}^- \longrightarrow 2 \operatorname{MnO}(\operatorname{OH}) + 2 \operatorname{OH}^-$$

$$\operatorname{Zn} + 2 \operatorname{OH}^- \longrightarrow \operatorname{Zn}(\operatorname{OH})_2(s) + 2 \operatorname{e}^-$$

$$Cl$$
 Fe
 Cl
 Fe
 Cl
 Cl

$$\begin{aligned} \text{Fe}_3\text{O}_4 + \text{CO} &\longrightarrow 3 \, \text{FeO} + \text{CO}_2 \\ \text{Fe}_3\text{O}_4 + \text{H}_2 &\longrightarrow 3 \, \text{FeO} + \text{H}_2\text{O} \\ \text{FeO} + \text{CO} &\longrightarrow \text{Fe} + \text{CO}_2 \\ \text{FeO} + \text{H}_2 &\longrightarrow \text{Fe} + \text{H}_2\text{O} \end{aligned}$$
 Hydrogen til processen fremstilles via methan reforming
$$\text{CH}_4 + \text{CO}_2 &\longrightarrow 2 \, \text{CO} + 2 \, \text{H}_2 \\ \text{CH}_4 + \text{H}_2\text{O} &\longrightarrow \text{CO} + 3 \, \text{H}_2 \end{aligned}$$

Ligesom aluminium kan jern koordinere vandmolekyler. På grund af den høje ladningstæthed kan vandmolekylerne binde så stærkt at de kan reagere surt.

Eksempelvis:
$$[Fe(OH_2)_6]^{3^+} + H_2O \Longrightarrow H_3O^+ + [Fe(OH_2)_5OH]^{2^+}$$

$$2 \operatorname{Fe} + 3 \operatorname{Cl}_{2} \longrightarrow 2 \operatorname{FeCl}_{3}$$

$$\operatorname{FeCl}_{3} + 3 \operatorname{H}_{2} \operatorname{O} \longrightarrow \operatorname{Fe}(\operatorname{OH})_{3} + 3 \operatorname{HCl}(g)$$

$$Fe + 2 HCl(g) \longrightarrow FeCl_2 + H_2$$

$$\begin{aligned} Fe^{3^+} + 3 \, OH^- &\longrightarrow FeO(OH) + H_2O \\ Produktet & af ovenstående kaldes i daglig tale rust \\ Fe^{2^+} + 2 \, OH^- &\longrightarrow Fe(OH)_2 \end{aligned}$$

Reaktion	Reaktion
Jern(II) og jern(III) kan påvises ved to forskellige lignende metoder der begge giver berlinerblåt. Opskriv reaktionsligningerne	Opskriv reaktionsligningerne for dannelse af rust
Kapitel 20	Kapitel 20
Reaktion	Fremstilling
Kobolt(II) kan bundfældes med en svag opløsning af stærk base. Herefter går det i opløsning ved kontakt med luft. Giv reaktionsligningerne	Opskriv reaktionen for oprensning af nikkel ved Mond processen
Kapitel 20	Kapitel 20
Egenskab	Fremstilling
Nikkel(II) kan bundfældes med base. Opskriv reaktionen	Angiv den primære kilde til kobber og hvordan kobberet kan udvindes ved en pyrometallurgisk proces
Kapitel 20	Kapitel 20
Fremstilling	Egenskab
Opskriv reaktionsligningen for udvinding af kobber fra CuFeS ₂ ved en hydrometallurgisk proces	Forklar med udgangspunkt i kobber(II) hvad der forstås ved Jahn-Teller effekten
Kapitel 20	Kapitel 20

$2 \operatorname{Fe} + \operatorname{O}_{2} + 2 \operatorname{H}_{2}\operatorname{O} \longrightarrow 2 \operatorname{Fe}(\operatorname{OH})_{2}$ $4 \operatorname{Fe}(\operatorname{OH})_{2} + \operatorname{O}_{2} \longrightarrow 4 \operatorname{FeO}(\operatorname{OH}) + 2 \operatorname{H}_{2}\operatorname{O}$	$3 \operatorname{Fe}^{2+} + 4 \left[\operatorname{Fe}(\operatorname{CN})_{6} \right]^{3-} \longrightarrow \operatorname{Fe}_{4} \left[\operatorname{Fe}(\operatorname{CN})_{6} \right]_{3} + 6 \operatorname{CN}^{-}$ $4 \operatorname{Fe}^{3+} + 3 \left[\operatorname{Fe}(\operatorname{CN})_{6} \right]^{4-} \longrightarrow \operatorname{Fe}_{4} \left[\operatorname{Fe}(\operatorname{CN})_{6} \right]_{3}$
Ni + 4 CO ⇒ Ni(CO) ₄ Reaktionen er forskudt mod højre ved forholdsvis lave temperaturer	$Co^{2+} + 2 OH^{-} \longrightarrow Co(OH)_{2}$ $4 Co(OH)_{2} + O_{2} \longrightarrow 4 CoO(OH) + 2 H_{2}O$
$4 \operatorname{CuFeS}_{2} + 9 \operatorname{O}_{2} \longrightarrow 2 \operatorname{Cu}_{2} S + 6 \operatorname{SO}_{2} + 2 \operatorname{Fe}_{2} \operatorname{O}_{3}$ $\operatorname{Fe}_{2} \operatorname{O}_{3} + 3 \operatorname{SiO}_{2} \longrightarrow \operatorname{Fe}_{2} (\operatorname{SiO}_{2})_{3}$ $2 \operatorname{Cu}_{2} S + 3 \operatorname{O}_{2} \longrightarrow 2 \operatorname{Cu}_{2} \operatorname{O} + 2 \operatorname{SO}_{2}$ $\operatorname{Cu}_{2} S + 2 \operatorname{Cu}_{2} \operatorname{O} \longrightarrow 6 \operatorname{Cu} + \operatorname{SO}_{2}$	$Ni^{2+} + 2OH^{-} \longrightarrow Ni(OH)_{2}(s)$
$d_{x^2-y^2}$ og d_{z^2} opsplittes i energi fordi der er et ulige antal d elektroner (9) hvorved de to bindinger langs z -aksen forlænges.	2 CuFeS₂ + H₂SO₄ + 4 O₂ \longrightarrow 2 CuSO₄(aq) + 3 S + Fe₂O₃ + H₂O Kobberet oprenses ved elektrolyse

Fremstilling	Teori
Hvorledes kan man fremstille kobber(I)chlorid?	Forventes 4-6 periode overgangsmetallerne at være lav spin eller høj spin?
Kapitel 20	Kapitel 21
Teori	Fremstilling
Hvad forstås ved lanthanoid contraction?	Hvordan fremstilles sølv industrielt?
Kapitel 21	Kapitel 21
Reaktion	Struktur
Der tilføjes sølvioner til en opløsning der enten indeholder iodid, bromid eller chlorid ioner. Hvordan kan man de eneklte ioner?	Giv reaktionsligningen for forbrænding af zink i chlorgas
Kapitel 21	Kapitel 22
Fremstilling	Egenskab
Giv reaktionsligningerne for industriel fremstilling af zink	Forklar hvorfor zink kan beskytte fjern mod korrosion
Kapitel 22	Kapitel 22

Lav spin da CFSE vokser ned gennem perioderne.	$2 \operatorname{Cu} + 2 \operatorname{H}^{+} \longrightarrow 2 \operatorname{Cu}^{+} + \operatorname{H}_{2}$ $\operatorname{Cu}^{+} + 2 \operatorname{Cl}^{-} \Longrightarrow [\operatorname{CuCl}_{2}]^{-}$ $[\operatorname{CuCl}_{2}]^{-} \longrightarrow \operatorname{CuCl} + \operatorname{Cl}^{-}$
$2 \operatorname{AgS} + 8 \operatorname{CN}^{-} + \operatorname{O}_{2} + 2 \operatorname{H}_{2} \operatorname{O} \longrightarrow 4 \left[\operatorname{Ag(CN)}_{2} \right]^{-} + 2 \operatorname{S} + 4 \operatorname{OH}^{-}$ $2 \left[\operatorname{Ag(CN)}_{2} \right]^{-} + \operatorname{Zn} \longrightarrow 2 \operatorname{Ag} + \left[\operatorname{Zn(CN)}_{4} \right]^{2^{-}}$	Elektronerne i f orbitaler skærmer i meget ringe grad for de ydre elektroner som så oplever en stærkere tiltrækning fra kernen hvilket fører til en lavere ionradius. Derfor har overgangsmetallerne i 6. periode næsten samme radius og dermed ladningstæthed som dem i 5. periode.
$Zn + Cl_2(g) \longrightarrow ZnCl_2(g)$	Sølvchlorid er opløseligt i fortyndet ammoniak mens sølvbromid er opløseligt i koncentreret ammoniak. Sølviodid er ikke opløseligt i ammoniak. $AgCl + 2 NH_3 \longrightarrow [Ag(NH)_2]^+ + Cl^-$ $AgBr + 2 NH_3[konc] \longrightarrow [Ag(NH)_2]^+ + Br^-$
Reduktionspotentialet for zink er lavere end det er for jern. Derfor korroderer zink først hvilket efterlader jern intakt.	$2 \operatorname{ZnS} + 3 \operatorname{O}_{2} \xrightarrow{\Delta} 2 \operatorname{ZnO} + 2 \operatorname{SO}_{2}$ $\operatorname{ZnO} + \operatorname{C} \xrightarrow{\Delta} \operatorname{Zn} + \operatorname{CO}$

Egenskab	Fremstilling
Hvordan kan Zn(OH) ₂ bringes i opløsning?	Opskriv to metoder til fremstilling af zinkoxid
Kapitel 22	Kapitel 22
Anvendelse	Fremstilling
Opskriv halvcellereaktionerne i et NiCad batteri	Angiv med reaktionsligning hvordan kviksølv fremstilles industrielt
Kapitel 22	Kapitel 22
Fremstilling	Reaktion
Hvordan kan man fremstille kviksølv(II)chlorid og kviksølv(I)chlorid?	Hvilken reaktion finder sted når kviksølvoxid opvarmes kraftigt?
Kapitel 22	KAPITEL 22
Anvendelse	Egenskab
Giv halvcellereaktionerne der finder sted i et kviksølv batteri	Kobber(I), guld(I) og Hg ₂ ²⁺ ionen har tendens til at disproportionere. Giv reaktionsligningerne
Kapitel 22	Kapitel 22

$2 \operatorname{Zn} + \operatorname{O}_2 \longrightarrow 2 \operatorname{ZnO}$ $\operatorname{ZnCO}_3 \stackrel{\Delta}{\longrightarrow} \operatorname{ZnO} + \operatorname{CO}_2$	Ved tilsætning af base i form af hydroxidioner eller ammoniak. $ Zn(OH)_2 + 2 OH^- \longrightarrow [Zn(OH)_4]^{2^-} $ $ Zn(OH)_2 + 4 NH_3 \longrightarrow [Zn(NH_3)_4]^{2^+} + 2 OH^- $
$HgS + O_2 \xrightarrow{\Delta} Hg + SO_2$	$Cd + 2 OH^{-} \longrightarrow Cd(OH)_{2} + 2 e^{-}$ $2 NiO(OH) + 2 H_{2}O + 2 e^{-} \longrightarrow 2 Ni(OH)_{2} + 2 OH^{-}$
$2 \text{ HgO} \xrightarrow{\Delta} 2 \text{ Hg} + \text{O}_2$	$\begin{aligned} & \text{Hg} + \text{Cl}_2(\text{g}) \longrightarrow \text{HgCl}_2 \\ & \text{2 HgCl}_2 + \text{SnCl}_2 \longrightarrow \text{SnCl}_4 + \text{Hg}_2\text{Cl}_2 \\ & \text{Tilsættes overskud af tin(II)chlorid fås kviksølv} \\ & \text{Hg}_2\text{Cl}_2 + \text{SnCl}_2 \longrightarrow \text{SmCl}_4 + 2 \text{Hg} \end{aligned}$
$2 \operatorname{Cu}^+ \longrightarrow \operatorname{Cu}_2^+ + \operatorname{Cu}$ $3 \operatorname{Au}^+ \longrightarrow 2 \operatorname{Au} + \operatorname{Au}^{3+}$ $\operatorname{Hg}_2^{2+} \Longrightarrow \operatorname{Hg} + \operatorname{Hg}^{2+}$ Da ovenstående er en ligevægt kan den forskydes mod højre ved at fælde kviksølv(II) ionerne med sulfid.	$Zn + 2 OH^{-} \longrightarrow Zn(OH)_{2} + 2 e^{-}$ $HgO + H_{2}O + 2 e^{-} \longrightarrow Hg + 2 OH^{-}$

Egenskab	Teori
Opskriv de tungtopløselige hydroxider af <i>d</i> metallerne samt hvorvidt de er amfotere eller ej	Hvad forstås ved en organometallisk forbindelse?
Kapitel 22	Kapitel 23
Teori	Teori
Hvad betyder det hvis en metal-carbon binding er di-, tetra- eller hexahapto?	Hvad er forskellen mellem μ og η mht. hapticitet?
Kapitel 23	Kapitel 23
Teori	
Opskriv de fire forskellige typer elementarreaktioner	
Kapitel 23	

En forbindelse hvor der er mindst en covalent binding mellem et metal atom og et carbon atom.	Ikke amfotere: Mn(OH) ₂ , MnO(OH), Fe(OH) ₂ , FeO(OH), Ni(OH) ₂ , NiO(OH), Cd(OH) ₂ Amfotere: Co(OH) ₂ , Cu(OH) ₂ , Zn(OH) ₂ Der dannes tetraederiske komplekser når ovenstående reagerer med stærk base.
μ angiver antallet af carbonatomer der binder covalent til et metalatom. η angiver Antallet af metal atomer et carbon atom binder til.	At metallet binder til to, fire eller seks carbonatomer på én gang.
	 Oxidativ addition M går typisk 2 op i oxidationstrin, antal ligander vokser med 2 Reduktiv elimination M går typisk 2 ned i oxidationstrin, antal ligander aftager med 2 Insertion Ligand substitution