COMPSCI/SFWRENG 2FA3

Discrete Mathematics with Applications II Winter 2020

Week 03 Exercises

Dr. William M. Farmer McMaster University

Revised: January 17, 2020

Exercises

- 1. Let $\mathsf{FinSeq}_{\mathbb{N}}$ be the set of finite sequences whose members are in \mathbb{N} .
 - a. Define $\mathsf{FinSeq}_{\mathbb{N}}$ as an inductive set.
 - b. Use an auxiliary function, recursion, and pattern matching to define the function

$$\mathsf{reverse} : \mathsf{FinSeq}_{\mathbb{N}} \to \mathsf{FinSeq}_{\mathbb{N}}$$

such that reverse(s) is the reverse of s for all $s \in FinSeq_{\mathbb{N}}$.

- c. Write the structural induction principle for $\mathsf{FinSeq}_{\mathbb{N}}$.
- 2. Let Nat be the natural numbers defined as an inductive set in the lecture notes, $\mathbb B$ be the set of boolean values true and false, odd: Nat \to $\mathbb B$ be the function that maps the odd natural numbers to true and the even natural numbers to false, and even: Nat \to $\mathbb B$ be the function that maps the even natural numbers to true and the odd natural numbers to false. Define odd and even simultaneously by pattern matching using "mutual recursion".
- 3. Let BinTree be the inductive set and nodes and ht be the functions defined in the lecture notes. Let leaves: BinTree $\to \mathbb{N}$ be the function that maps a binary to the number of leaf nodes in it.
 - a. Define leaves by pattern matching and recursion.
 - b. Prove that, for all $t \in \mathsf{BinTree}$,

$$leaves(t) \le 2^{ht(t)}$$

by structural induction.

- 4. Let BinTree be the inductive set defined in the lecture notes. Let mirror: BinTree → BinTree be the function that maps a binary tree to its "mirror image".
 - a. Define mirror by pattern matching and recursion.
 - b. Prove that, for all $t \in \mathsf{BinTree}$,

$$mirror(mirror(t)) = t$$

by structural induction.

- 5. Let BinTree be the inductive set defined in the lectures. A *subtree* of $t \in BinTree$ is t itself or a subcomponent of t that is a member of BinTree.
 - a. Define a function subtrees : BinTree \rightarrow set(BinTree) that maps each $t \in BinTree$ to the set of subtrees of t.
 - b. Prove by structural induction that, if $t \in BinTree$ contains n Branch nodes, then t has at most 2n + 1 subtrees.
- 6. Let S be the set of bit strings defined inductively by:
 - a. "0" $\in S$.
 - b. If $s \in S$, then "0" + $s \in S$ and s + "0" $\in S$.
 - c. If $s \in S$, then, "0" + s + "1" $\in S$ and "1" + s + "0" $\in S$.
 - s+t denotes the concatenation of s and t. Prove by structural induction that, for all strings $s \in S$, the number of 1s in s is less than or equal to the number of 0s in s.
- 7. Suppose (S_1, \leq_1) and (S_2, \leq_2) are weak partial orders. Prove that $(S_1 \times S_2, \leq)$ is a weak partial order where $(s_1, s_2) \leq (s'_1, s'_2)$ iff $s_1 \leq_1 s'_1$ and $s_2 \leq_2 s'_2$.
- 8. Let $<_{\text{lex}} \subseteq (\mathbb{N} \times \mathbb{N}) \times (\mathbb{N} \times \mathbb{N})$ be lexicographical order, i.e.,

$$(x_1, y_1) <_{\text{lex}} (x_2, y_2)$$

iff $x_1 < x_2$ or $(x_1 = x_2 \text{ and } y_1 < y_2)$.

- a. Prove that $(\mathbb{N} \times \mathbb{N}, <_{lex})$ is a well-order.
- b. Write the ordinal induction principle for $(\mathbb{N} \times \mathbb{N}, <_{\text{lex}})$.
- c. Prove by the ordinal induction principle for $(\mathbb{N} \times \mathbb{N}, <_{\text{lex}})$ that A, the version of the Ackermann function presented in the lecture notes, is defined on all members of $\mathbb{N} \times \mathbb{N}$.

- 9. Let (S, <) be a partial order such that S is finite. Prove that (S, <) is well-founded.
- 10. Let $(\mathbb{N}, R_{\mathsf{suc}})$ be the mathematical structure where

$$m R_{\mathsf{suc}} n \text{ iff } n = m + 1.$$

Prove that $(\mathbb{N}, R_{\sf suc})$ is well-founded.

- 11. The Ackermann function was originally defined as the ternary function $B: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that:
 - a. B(m, n, 0) = m + n.
 - b. B(m, 0, 1) = 0.
 - c. B(m, 0, 2) = 1.
 - d. B(m, 0, p) = m for p > 2.
 - e. B(m, n, p) = B(m, B(m, n 1, p), p 1) for n > 0 and p > 0.

Prove that B is defined on all members of $\mathbb{N}\times\mathbb{N}\times\mathbb{N}$ using well-founded induction.