What is claimed is

5

10

15

- 1. A method of covalently joining a DNA strand to an RNA strand comprising:
 - (a) forming a topoisomerase-DNA intermediate by incubating a DNA cleavage substrate comprising a topoisomerase cleavage site with a topoisomerase specific for that site, wherein the topoisomerase-DNA intermediate has one or more 5' single-strand tails; and
 - (b) adding to the topoisomerase-DNA intermediate an acceptor RNA strand complementary to the 5' single-strand tail under conditions permitting a ligation of the covalently bound DNA strand of the topoisomerase-DNA intermediate to the RNA acceptor strand and dissociation of the topoisomerase, thereby covalently joining the DNA strand to the RNA strand.
- 2. A method of claim 1, wherein the DNA cleavage substrate is created by hybridizing a DNA strand having a topoisomerase cleavage site to a complementary DNA strand, thereby forming a DNA cleavage substrate having a topoisomerase cleavage site and a oligonucleotide leaving group located 3' of a scissile bond.
- 25 3. A method of claim 1, wherein the DNA cleavage substrate is a plasmid vector comprising a topoisomerase cleavage site.
 - 4. The method of claim 1, wherein the topoisomerase

cleavage site is a sequence comprising CCCTT.

- 5. The method of claim 1, wherein the topoisomerase is a vaccinia topoisomerase enzyme.
- 6. The method of claim 1, wherein the DNA strand comprising a topoisomerase cleavage site is radiolabelled.
 - 7. The method of claim 6, wherein the radiolabel is ^{32}P or a radiohalogen.
- 8. The method of claim 1, wherein the DNA strand having a topoisomerase cleavage site is labeled with a biotin moiety.
 - 9. The method of claim 1, wherein the topoisomerase-bound DNA intermediate and the acceptor RNA strand are ligated in vitro.
- 15 10. A topoisomerase-DNA intermediate molecule comprising one or more 5' single-strand tails.
 - 11. The topoisomerase-DNA intermediate molecule of claim 10, wherein the 5' single-strand tail comprises a specific sequence.
- 20 12. A topoisomerase-DNA intermediate molecule comprising a 5' single-strand tail generated by step (a) of the method of claim 1.
 - 13. A topoisomerase-DNA intermediate molecule comprising

- a 5' single-strand tail generated by steps (a) of the method of claim 1, wherein the 5' single-strand tail comprises a specific sequence.
- 14. A topoisomerase-DNA intermediate molecule comprising
 a 5' single-strand tail generated by steps (a) of the
 method of claim 1, wherein the DNA strand is
 radiolabelled.
 - 15. The topoisomerase-DNA intermediate molecule of claim 13, wherein the radiolabel is ³²P or a radiohalogen.
- 16. A topoisomerase-DNA intermediate molecule comprising a 5' single-strand tail generated by steps (a) of the method of claim 1, wherein the DNA strand is affinity labeled.
- 17. The topoisomerase-DNA intermediate molecule of claim
 16, wherein the affinity label is a biotin moiety, a chitin binding domain or a glutathione-S-transferase moiety.
 - 18. A DNA-RNA molecule covalently joined by topoisomerase catalysis.
- 20 19. A DNA-RNA molecule covalently joined by the method of claim 1.
 - 20. The covalently joined DNA-RNA molecule of claim 19, having a 5' end label.
- 21. The covalently joined DNA-RNA molecule of claim 20, wherein the 5' end label is 32P or a radiohalogen.

- 22. The covalently joined DNA-RNA molecule of claim 20, wherein the 5' end label is a biotin moiety, a chitin binding domain, or a glutathione-S-transferase moiety.
- 23. A covalently joined DNA-RNA molecule having a labeled 5' end.

5.

10

15

20

25

.

- 24. The covalently joined DNA-RNA molecule of claim 23, wherein the 5' end label is ³²P or a radiohalogen.
- 25. The covalently joined DNA-RNA molecule of claim 23, wherein the 5' end label is a biotin moiety, a chitin binding domain, or a glutathione-S-transferase moiety.
- 26. A method of tagging a 5' end of an RNA molecule comprising:
 - (a) forming a topoisomerase-DNA intermediate by incubating a DNA cleavage substrate comprising a topoisomerase cleavage site with a topoisomerase specific for that site, wherein the topoisomerase-DNA intermediate has one or more 5' single-strand tails; and
 - (b) adding to the topoisomerase-DNA intermediate a 5'-hydroxyl terminated RNA molecule complementary to the 5' single-strand tail under conditions permitting a ligation of the covalently bound DNA strand of the topoisomerase-DNA intermediate to the RNA molecule and dissociation of the topoisomerase, thereby forming a 5' end tagged DNA-RNA ligation product.
- 27. A method of claim 26, wherein the 5'-hydroxyl

terminated RNA molecule is the product of $\underline{\text{in }}$ $\underline{\text{vitro}}$ synthesis or isolation from cells or tissues.

- 28. The method of claim 27, wherein the RNA molecule is dephosphorylated after synthesis or isolation.
- 5 29. The method of claim 28, wherein the dephosphorylation is achieved by treatment of the RNA molecule with alkaline phosphatase.

- 30. A method of claim 26, wherein the DNA cleavage substrate is created by hybridizing a DNA strand having a topoisomerase cleavage site to a complementary DNA strand, thereby forming a DNA cleavage substrate having a topoisomerase cleavage site and a oligonucleotide leaving group located 3' of a scissile bond.
- 15 31. The method of claim 26, wherein the topoisomerase is a vaccinia topoisomerase enzyme.
 - 32. The method of claim 26, wherein the cleavage site comprises CCCTT.
- 33. The method of claim 26, wherein the DNA comprises a 5' end label.
 - 34. The method of claim 33, wherein the 5' end label is a biotin moiety, a chitin binding domain, or a glutathione-S-transferase moiety.
- 35. The method of claim 33, further comprising immobilizing the 5' end labeled DNA on a solid support prior to the addition of the 5'-hydroxyl terminated RNA molecule.
 - 36. The method of claim 35, wherein the solid support comprises streptavidin, avidin, chitin or glutathione.

- 37. The method of claim 35, further comprising, purifying a biotinylated 5' end tagged DNA-RNA ligation product by separating the solid support to which the 5' end labeled DNA-RNA ligation product is immobilized from a liquid phase comprising unmodified RNA.
- 38. A 5' end tagged RNA molecule.

5

10

- 39. The 5' end tagged RNA molecule of claim 38, wherein the tag is a DNA sequence.
- 40. The 5' end tagged RNA molecule of claim 39, further comprising a 5' end label.
 - 41. The 5' end tagged RNA molecule of claim 41, wherein the label is $^{32}\mathrm{P}$ or a radiohalogen.
 - 42. The 5' end tagged RNA molecule of claim 43, wherein the label is a biotin moiety, a chitin binding domain, or a glutathione-S-transferase moiety.
 - 43. A 5' end tagged RNA molecule generated by the method of claim 26.
 - 44. A DNA-RNA molecule which has been joined $\underline{\text{in }}$ $\underline{\text{vitro}}$ by the use of a topoisomerase.
- 20 45. A method of obtaining full-length gene sequences comprising:
 - (a) isolating full-length mRNA;
 - (b) attaching a DNA tag sequence to the isolated mRNA; and
- 25 (c) synthesizing cDNA using the tagged mRNA as a template.
 - 46. A method of claim 45, wherein the mRNA is isolated by employing an affinity purification material.
 - 47. A method of claim 46, wherein the mRNA to be isolated

comprises an affinity purification tagged cap structure.

- 48. A method of claim 46, wherein the affinity purification tag is a biotin moiety, a chitin binding domain or a glutathione-S-transferase moiety.
- 49. Α method οf claim 46, wherein the affinity purification material comprises a solid support complexed with phenylboronic acid, streptavidin, avidin, chitin or glutathione.
- 10 50. A method of claim 49, wherein the solid support is magnetic beads or sepharose.

5

- 51. A method of claim 45 wherein the mRNA is isolated from plant cells or animal cells.
- 52. A method of claim 51 wherein the animal cells are mammalian cells or insect cells.
- 53. A method of claim 45, wherein the mRNA is decapped and dephosphorylated after isolation.
- 54. A method of claim 53 wherein the mRNA is decapped enzymatically or by chemical treatment.
- 55. A method of claim 54 wherein the enzyme is a pyrophosphatase.
 - 56. A method of claim 54 wherein the chemical treatment is periodate oxidation and beta elimination.
- 57. A method of claim 53 wherein the mRNA is dephosphorylated using alkaline phosphatase.
 - 58. A method of claim 45, wherein the DNA tag sequence comprises a recognition site for a type I topoisomerase.

- 59. A method of claim 58 wherein the DNA tag sequence further comprises a recognition site for a site-specific restriction endonuclease.
- 60. A method of claim 58 wherein the type I topoisomerase is vaccinia DNA topoisomerase.

5

10

15

- 61. A method of claim 58 wherein the DNA tag sequence comprises the double stranded sequence shown in Figure 11 wherein N represents an adenosine moiety, a guanosine moiety, a cytosine moiety or a thymidine moiety.
- 62. A method of claim 61 wherein N is 1 to 4 nucleotide bases.
- 63. A method of claim 61 wherein vaccinia DNA topoisomerase is covalently bound to the double stranded tag sequence.
- 64. A method of claim 45 further comprising amplifying the synthesized cDNA wherein the amplification primers comprise an anti-coding sequence of the tag sequence (5') and a gene specific sequence (3').
- 20 65. A method of claim 64 further comprising inserting the amplified cDNA into an expression vector.
 - 66. A method of claim 45 wherein the DNA tag sequence is a linearized expression vector.
 - 67. An isolated full-length gene sequence prepared by the method of claim 45.
 - 68. A nucleic acid construct comprising an isolated fulllength gene sequence prepared of the method of claim 45 and an expression vector.
 - 69. A nucleic acid construct of claim 68 wherein the

expression vector comprises one or more elements selected from: a promoter-enhancer sequence, a selection marker sequence, an origin of replication, an epitope-tag encoding sequence or an affinity purification-tag encoding sequence.

- 70. A nucleic acid construct of claim 69 wherein the promoter-enhancer sequence is the T7 promoter, gall promoter, metallothionein promoter, AraC promoter, or CMV promoter-enhancer.
- 10 71. A nucleic acid construct of claim 69 wherein the selection marker sequence encodes an antibiotic resistance gene.

5

- 72. A nucleic acid construct of claim 69 wherein the epitope-tag sequence encodes V5, the peptide Phe-His-His-Thr-Thr, hemaglutinin, or glutathione-S-transferase.
 - 73. A nucleic acid construct of claim 69 wherein the affinity purification-tag sequence encodes a polyamino acid sequence or a polypeptide.
- 74. A nucleic acid construct of claim 73 wherein said polyamino acid sequence is polyhistidine.
 - 75. A nucleic acid construct of claim 73 wherein said polypeptide is chitin binding domain or glutathione-Stransferase.
- 76. A nucleic acid construct of claim 73 wherein said polypeptide encoding sequence includes an intein encoding sequence.
- 77. A nucleic acid construct of claim 68 wherein the expression vector is a eukaryotic expression vector or a prokaryotic expression vector.

- 78. A nucleic acid construct of claim 77 wherein the eukaryotic expression vector is pYES2, pMT, pIND, or pcDNA3.1.
- 79. A method of obtaining full-length gene sequences comprising:

5

- (a) isolating full-length mRNA by employing an affinity purification material;
- (b) decapping and dephosphorylating the isolated mRNA;
- 10 (c) attaching a DNA tag sequence to the decapped, dephosphorylated mRNA, wherein the tag sequence comprises the sequence shown in Figure 11 and is attached by vaccinia DNA topoisomerase;
 - (d) synthesizing cDNA using the tagged mRNA as a template;
 - (e) amplifying the synthesized cDNA, wherein the amplification primers comprise an anti-coding sequence of the tag sequence (5') and a gene specific sequence (3'); and
- 20 (f) inserting the amplified cDNA into an expression vector.