7 Conditioning

- Conditioning concerns how probabilities of events or distributions of random variables are influenced by information about the occurrence of events or the values of random variables.
- A probability is a measure of the likelihood or degree of uncertainty of an event. A conditional probability revises this measure to reflect any "new" information about the outcome of the underlying random phenomenon.

Example 7.1. The probability that a randomly selected American adult believes in human-driven climate change¹ is 0.54.

The probability² that a randomly selected American adult is a Democrat is 0.28.

- 1. Donny Don't says that the probability that a randomly selected American adult both (1) is a Democrat, and (2) believes in human-driven climate change is equal to 0.28×0.54 . Do you agree?
- 2. Suppose that the probability that a randomly selected American adult both is a Democrat and believes in human-driven climate change is 0.19. Construct an appropriate two-way table of probabilities.
- 3. Compute the probability that a randomly selected American adult *who is a Democrat* believes in human-driven climate change.

¹Probabilities are estimated based on this 2024 survey.

²Estimate based on Gallup poll

- 4. Compute the probability that a randomly selected American adult who believes in human-driven climate change is a Democrat.
- 5. How can the probability in the two previous parts be written in terms of the probabilities provided (0.54, 0.28, 0.19)?
- The conditional probability of event A given event B, denoted P(A|B), is defined as (provided P(B) > 0)

$$\mathrm{P}(A|B) = \frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$$

- The conditional probability P(A|B) represents how the likelihood or degree of uncertainty of event A should be updated to reflect information that event B has occurred.
- In general, knowing whether or not event B occurs influences the probability of event A. That is,

In general,
$$P(A|B) \neq P(A)$$

• Be careful: order is essential in conditioning. That is,

In general,
$$\mathrm{P}(A|B) \neq \mathrm{P}(B|A)$$

- Within the context of two events, we have joint, conditional, and marginal probabilities.
 - Joint: unconditional probability involving both events, $P(A \cap B)$.
 - Conditional: conditional probability of one event given the other, P(A|B), P(B|A).
 - Marginal: unconditional probability of a single event P(A), P(B).
- The relationship $P(A|B) = P(A \cap B)/P(B)$ can be stated generically as

$$conditional = \frac{joint}{marginal}$$

• In many problems conditional probabilities are provided or can be determined directly.

Example 7.2. Suppose that

- 67% of Democrats believe in human-driven climate
- 46% of Independents believe in human-driven climate
- 34% of Republicans believe in human-driven climate

Also suppose that

- 28% of American adults are Democrats
- 42% of American adults are Independents
- 30% of American adults are Republicans
- 1. Define the event A to represent "believes in human-driven climate change" and D, I, R to correspond to affiliation in each of the parties. If the probability measure P corresponds to selecting an American adult uniformly at random, write all the percentages above as probabilities using proper notation.

- 2. Construct an appropriate two-way table of probabilities.
- 3. Now suppose that the randomly selected American believes in human-driven climate change. How does this information change the probability that the selected American belongs to each political party? Answer by computing appropriate probabilities (and using proper notation).
- 4. How many times more likely is it for an American *adult* to believe in human-driven climate change and be Independent than to:
 - a. believe in human-driven climate change and be Democrat

	b. believe in human-driven climate change and be Republican
5.	How many times more likely is it for an American adult who believes in human-driven climate change to be Independent than to be: a. Democrat
	b. Republican
6.	What do you notice about the answers to the two previous parts?
•	 The process of conditioning can be thought of as "slicing and renormalizing". Extract the "slice" corresponding to the event being conditioned on (and discard the rest). For example, a slice might correspond to a particular row or column of a two-way table. "Renormalize" the values in the slice so that corresponding probabilities add up to

Example 7.3. Roll a fair four-sided die twice. Let X be the sum of the two dice, and let

• Slicing determines the *shape*; renormalizing determines the *scale*.

1.

1.

Y be the larger of the two rolls (or the common value if both rolls are the same). The table below represents the joint distribution of X and Y.

• Slicing determines relative probabilities; renormalizing just makes sure they add up to

$x \setminus y$	1	2	3	4
2	1/16	0	0	0
3	0	2/16	0	0
4	0	1/16	2/16	0
5	0	0	2/16	2/16
6	0	0	1/16	2/16
7	0	0	0	2/16
8	0	0	0	1/16

- 1. Compute and interpret in context P(X = 5|Y = 4).
- 2. Construct a table to represent the conditional distribution of X given Y=4 by "slicing and renormalizing".
- 3. Interpret the the conditional distribution of X given Y=4 as a long run relative frequency distribution.
- 4. Compute E(X|Y=4).
- 5. Interpret the value from the previous part as a long run average value in context.
- 6. Construct a table to represent the conditional distribution of X given Y = 3, and

compute E(X|Y=3)

- 7. Construct a table to represent the conditional distribution of X given Y=2, and compute $\mathrm{E}(X|Y=2)$
- 8. Construct a table to represent the conditional distribution of X given Y=1, and compute $\mathrm{E}(X|Y=1)$