الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2013

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

اختبار في مادة: الرياضيات المدة: 03 سا و 30 د

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأوّل: (04.5 نقاط)

نعتبر في الفضاء المنسوب إلى المعلم المتعامد المتجانس $\left(\overrightarrow{O}, \overrightarrow{I}, \overrightarrow{J}, \overrightarrow{k} \right)$ النقط:

. 2y+z+1=0 : المعادلة: P و المستوي D و المستوي D ، C (2;-1;1) ، D ، D (2;0;-1) ، D .

ليكن
$$eta$$
 المستقيم الذي تمثيل وسيطي له: $x=-1$ حيث eta وسيط حقيقي. (Δ) المستقيم الذي تمثيل وسيطي له: $z=1-2eta$

. (P) اكتب تمثيلا وسيطيا للمستقيم (BC)، ثمّ تحقّق أن المستقيم (BC) محتوى في المستوي (1

2) بيّن أن المستقيمين (Δ) و (BC) ليسا من نفس المستوي.

A المسافة بين النقطة A و المستوي (3) أ) احسب

بين أن D نقطة من (P)، و أن المثلث BCD قائم.

4) بيّن أن ABCD رباعي وجوه، ثمّ احسب حجمه.

التمرين الثاني: (04 نقاط)

$$V_n = \frac{5^{n+1}}{6^n}$$
 بالمنتالية (V_n) معرّفة على \mathbb{N} بالمنتالية الم

. بيّن أنّ (v_n) متتالية هندسية يطلب تحديد أساسها و حدّها الأول (1

 $\lim_{n\to+\infty} v_n$ (2)

 $u_{n+1} = \sqrt{5\,u_n + 6}\,$ ، n عدد طبیعي ، $u_0 = 1$ ، و من أجل كل عدد u_n ، معرّفة بـ (u_n

 $1 \le u_n \le 6$ ، n برهن بالتراجع أنّه، من أجل كل عدد طبيعي (1

 $\cdot (u_n)$ ادرس اتجاه تغیر المنتالیة (2

 $.6 - u_{n+1} \le \frac{5}{6} (6 - u_n)$ ، n عدد طبیعي أ أ برهن أنّه، من أجل كل عدد طبیعي (أ (3

. $\lim_{n\to +\infty} u_n$ ستنتج من أجل كل عدد طبيعي n ، n عدد طبيعي (ب أنّه ، من أجل كل عدد طبيعي و الم

التمرين الثالث: (05 نقاط)

التالية: Z مجموعة الأعداد المركبة، المعادلة Z ذات المجهول Z التالية:

. وسيط حقيقي
$$\alpha$$
 حيث $z^2 - (4\cos\alpha)z + 4 = 0$ (I)

.
$$\left(\frac{z_1}{z_2}\right)^{2013} = 1$$
 : نرمز إلى حلي المعادلة (I) بر z_2 و z_1 بين أن $\alpha = \frac{\pi}{3}$ من أجل $\alpha = \frac{\pi}{3}$

نعتبر في المستوي المركب المنسوب إلى المعلم المتعامد المتجانس $(O; \vec{u}, \vec{v})$ النقط B ، A و B التي

لاحقاتها:
$$z_C=4+i\sqrt{3}$$
 و $z_B=1-i\sqrt{3}$ ؛ $z_A=1+i\sqrt{3}$ على الترتيب.

.C و B ، A انشئ النقط النقط

ب) اكتب على الشكل الجبري العدد المركب $\frac{Z_C-Z_A}{Z_B-Z_A}$ ، ثمّ استتج أنّ C هي صورة C بالتشابه المباشر C الذي مركزه C ويطلب تعيين نسبته و زاويته.

. G مرجح الجملة $\{(A;1),(B;-1),(C;2)\}$ ، ثم أنشئ G مرجح الجملة أنشئ

د) احسب z_D لاحقة النقطة D ، بحيث يكون الرباعي ABDG متوازي أضلاع.

х	f(x)
0,20	0,037
0,21	0,016
0,22	-0,005
0,23	-0,026
0,24	-0,048
0,25	-0.070

$$f(x) = \frac{X}{X-1} + e^{\frac{1}{X-1}}$$
 بالدالة المعرفة على] $-\infty$;1[بي $f(I)$

. $\left(O, \overrightarrow{l}, \overrightarrow{f} \right)$ المياني في المستوي المنسوب إلى المعلم المتعامد المتجانس $\left(C \right)$

 $\frac{-0.070}{1}$. (C) احسب f(x) و $\lim_{x \to -\infty} f(x)$ ، ثمّ استنتج المستقيمين المقاربين للمنحنى $\lim_{x \to \infty} f(x)$

- 2) احسب f'(x) . بيّن أن الدالة f متناقصة تماما على المجال f(x)=-1 ، ثمّ شكّل جدول تغيراتها.
- lpha بيّن أن المعادلة f(x)=0 تقبل في $]-\infty;1[$ حلا وحيدا lpha . باستعمال جدول القيم أعلاه جِد حصرا للعدد (3
 - . f ارسم المستقيمين المقاربين و المنحنى (C)، ثمّ ارسم المنحنى الممثل للدالة (C')
- 5) عيّن بيانيا مجموعة قيم الأعداد الحقيقة m التي من أجلها يكون للمعادلة f(x) = m حلان مختلفان في الإشارة.
 - الدالة المعرفة على g(x) عير مطلوبة) g(x)=f(2x-1) الدالة المعرفة على g(x) عير مطلوبة)
 - ادرس تغيرات الدالة g على $]1;\infty-[$ ، ثمّ شكّل جدول تغيراتها.

$$g'\left(\frac{\alpha+1}{2}\right)=2$$
 $f'(\alpha)$: ثمّ بيّن أن $g\left(\frac{\alpha+1}{2}\right)=0$: ثمّ بيّن أن (2

 $rac{lpha+1}{2}$ با استنتج معادلة (T) المماس لمنحنى الدالة g في النقطة ذات الفاصلة

$$(T)$$
 معادلة للمستقيم $y = \frac{2}{(\alpha - 1)^3} x - \frac{\alpha + 1}{(\alpha - 1)^3}$ جن تحقق من أن:

الموضوع الثاني

التمرين الأول: (04.5 نقاط)

 $z^2+4z+13=0$ (E) نعتبر في مجموعة الأعداد المركبة $\mathbb C$ المعادلة (E) نات المجهول الآتية: . المحدد المركب 2-3i حل المعادلة (E)، ثمّ جد الحل الآخر (E)

ي التشابه المباشر S . و $Z_B=i$ و $Z_A=-2-3i$ و التشابه المباشر A (2

$$M'(z)$$
 الذي مركزه $M(z)$ من المستوي إلى النقطة $\frac{\pi}{2}$ والذي يحوّل كل نقطة $M(z)$ من المستوي إلى النقطة $\frac{\pi}{2}$

.
$$z' = \frac{1}{2}iz - \frac{7}{2} - 2i$$
) بین أن:

. S بالتشابه B معلما أن C هي صورة B بالتشابه C

$$.2\overrightarrow{AD} + \overrightarrow{AB} = \overrightarrow{0}$$
 :حيث (3

أ) بيّن أن D هي مرجح النقطتين A و B المرفقتين بمعاملين حقيقيين يطلب تعيينهما .

$$D$$
 احسب Z_D لاحقة النقطة

.
$$ACD$$
 بيّن أن: $\frac{z_D-z_A}{z_C-z_A}=i$ ، ثمّ استنتج طبيعة المثلث (ج

التمرين الثاني: (04 نقاط)

في الشكل المقابل، (C_f) هو التمثيل البياني للدّالة f المعرّفة على

$$f(x) = \frac{2x}{x+1}$$
 المجال [0;1] بالعلاقة

$$y = x$$
 و (d) المستقيم ذو المعادلة

$$u_0 = \frac{1}{2}$$
 المتتالية العددية المعرّفة على $\mathbb N$ بحدّها الأوّل، $(u_n)(1)$

.
$$u_{n+1} = f(u_n)$$
 ، من أجل كل عدد طبيعي

، u_1 ، u_0 هذا الشكل في ورقة الإجابة، ثمّ مثّل الحدود أ) أعد رسم هذا الشكل في المجابة الإجابة أ

. و u_3 على محور الفواصل دون حسابها، مبرزا خطوط التمثيل u_2

ب) ضع تخمينا حول اتجاه تغير المتتالية
$$(u_n)$$
 و تقاربها.

$$[0;1]$$
 أَنْبُت أَنَّ الدالة f متزايدة تماما على المجال أنْبُت أنَّ الدالة f

$$0 < u_n < 1$$
 ، n عدد طبیعی بالتراجع أنّه، من أجل كل عدد طبیعی

$$\cdot (u_n)$$
 ادرس اتجاه تغیّر المتتالیة

.
$$v_n = \frac{u_n - 1}{u_n}$$
: كما يلي: \mathbb{N} كما المتتالية العددية المعرّفة على المتالية العددية المعرّفة على (3

.
$$v_0$$
 أ) برهن أنّ $\left(v_n\right)$ متتالية هندسية أساسها $\frac{1}{2}$ ، يطلب حساب حدّها الأول

$$\cdot (u_n)$$
 احسب نهایة (ب

التمرين الثالث: (04.5 نقاط)

A(2;1;-1) النقط $(O;\vec{i},\vec{j},\vec{k})$ النقط المتعامد المتعامد المتجانس نعتبر في الفضاء المنسوب إلى المعلم المتعامد المتجانس

.
$$[AB]$$
 و القطعة I و التكن $D\left(\frac{7}{2};-3;0\right)$ و $C\left(-\frac{3}{2};-2;1\right)$ ، $B(1;-1;3)$

I أ) احسب إحداثيات النقطة I

$$(P)$$
 بين أنّ: $2x+4y-8z+5=0$ معادلة ديكارتية لـ (P) ؛ المستوي المحوري لـ

كتب تمثيلا وسيطيا للمستقيم
$$(\Delta)$$
 الذي يشمل النقطة C و $(1;2;-4)$ شعاع توجيه له.

 (Δ) و المستقيم (Δ) عقطة تقاطع المستوي (Δ) و المستقيم (Δ).

ب بين أنّ
$$(\Delta)$$
 و (AB) من نفس المستوى، ثمّ استنتج أن المثلث (AB) قائم.

$$(IE)$$
 بين أنّ المستقيم ((ID) عمودي على كل من المستقيم ((AB) و المستقيم ((IE)

ب) أحسب حجم رباعي الوجوه DIEC .

التمرين الرابع: (07 نقاط)

$$g(x) = x^2 + 2x + 4 - 2\ln(x+1)$$
 بادالة المعرّفة على المجال $g(x) = -1; +\infty$ الدالة المعرّفة على المجال $g(x) = -1; +\infty$

ادرس تغیرات الدالة g ، ثمّ شكّل جدول تغیراتها 1

$$g(x)>0$$
 ، $]-1;+\infty[$ استنتج أنه، من أجل كل X من المجال (2

$$f(x) = x - \frac{1 - 2\ln(x+1)}{x+1}$$
 :ب $f(II)$ بنا الدالة المعرّفة على المجال $f(X) = x - \frac{1 - 2\ln(x+1)}{x+1}$

 $(2\,cm$ وحدة الطول). $\left(\,O; \overrightarrow{i}\,, \overrightarrow{j}\,
ight)$ وحدة الطول). وحدة الطول ($\,C_{r}$

ا أي احسب
$$f(x)$$
 النتيجة بيانيا. $\lim_{x \to -1} f(x)$

 $\lim_{x\to +\infty} f(x)$ (ب

.
$$f$$
 هي مشتقة الدالة $f'(x) = \frac{g(x)}{(x+1)^2}$ ، $f(x) = 1; +\infty$ هي مشتقة الدالة $f(x) = 1; +\infty$

ب) ادرس اتجاه تغيّر الدالة f على المجال $] \infty + ;1-[$ ، ثمّ شكّل جدول تغيّراتها.

$$0<\alpha<0,5$$
 بين أنّ المعادلة $f(x)=0$ تقبل حلا وحيدا $lpha$ في المجال a المجال $f(x)=0$ ثمّ تحقق أن

 $+\infty$ عند (C_f) عند في مقارب مائل للمنحنى المعادلة y=x عند (Δ) عند (Δ)

 $\cdot(\Delta)$ بالنسبة إلى ادرس وضعية المنحنى (C_f)

.
$$X_0$$
 نقبل أن المستقيم (C_f) ذا المعادلة : $y=x+rac{2}{\sqrt{e^3}}$: المعادلة نقطة فاصلتها (4

أ) احسب (أ

.
$$(C_f)$$
 ثم المستقيمين المقاربين والمماس (T) ثم المنحنى (ب

ج) عين بيانيا قيم الوسيط الحقيقي m بحيث تقبل المعادلة f(x)=x+m حلّين متمايزين.

صفحة 4 من 4

حل بكالوريا :دورة جوان 2013

حل الموضوع الأول

التمرين الأول:

 $B \in (BC)$ و BC ومنه: BC شعاع توجيه للمستقيم $B \in (BC)$

$$(BC): \begin{cases} x = 1 + t \\ y = -t \\ z = -1 + 2t \end{cases}, t \in \mathbb{R}$$

(p)محتوى في المستقيم (BC) التحقق أن المستقيم

$$(BC) \cap (P)$$
 :
$$\begin{cases} x = l + t \\ y = -t \\ z = -l + 2t \\ 2y + z + l = 0 \end{cases}$$
 : $(p) \circ (BC)$ دراسة التقاطع بين

. (P) التحقق بتعويض احداثيات C ، B في معادلة

$$\frac{0}{1}\neq\frac{1}{-1}$$
 و $(0;1;-2)$ شعاع توجيه (Δ) غير مرتبطين خطيا لأن $\vec{u}(0;1;-2)$ و $(0;1;-2)$

ومنه (BC) و (Δ) إما متقاطعان وفق نقطة أو ليسا من نفس المستوي.

$$\begin{cases} t=-2 \\ \beta=0 \end{cases}$$
 دراسة التقاطع بين (BC) و (Δ) : $\begin{cases} -l=l+t \\ 2+\beta=-t \\ l-2\beta=-l+2t \end{cases}$

 $H_{eta}\left(-1;2;1
ight)$ بالتعويض: eta=0 نجد $H_{t}\left(-1;2;-5
ight)$ ، ومن أجل eta=0 نجد t=-2 نجد بما أن $H_{t}
eq H_{eta}$ فإن $H_{t}
eq H_{eta}$ ومنه H_{t} ومنه H_{t} فإن H_{t} في المستوي.

(p) والمسافة بين النقطة A والمستوي (p):

$$d(A;(P)) = \frac{|2(1)+3+1|}{\sqrt{2^2+1^2}} = \frac{6}{\sqrt{5}} = \frac{6\sqrt{5}}{5}$$

ب-بتعویض احداثیات D في معادلۃ (p) نجد: (p) نجد: (p) ومنه: (p) ومنه: (p).

اثبات أن المثلث BCD قائم:

 $\overrightarrow{DC}ig(0;-1;2ig)$ ، $\overrightarrow{BD}ig(1;0;0ig)$ ، $\overrightarrow{BC}ig(1;-1;2ig)$ ومنه:

.
$$\overrightarrow{BC} \perp \overrightarrow{DC}$$
 ومنه $\overrightarrow{BD}.\overrightarrow{DC} = (1) \times (0) + (0) \times (-1) + (0) \times (2) = 0$

إذن المثلث BCD قائم في D . و يمكن استعمال مبرهنة فيثاغورث.

جـ – اثبات أن ABCD رباعي وجوه:

لدينا: $D \, , \, C \, , \, B$ ومنه $D \, , \, C \, , \, B$ من نفس المستوي وليست في استقامية لانها لدينا: $D \in (P)$

. $A \notin (P)$ أي $d(A;(P)) = \frac{6\sqrt{5}}{5} \neq 0$ أي $d(A;(P)) = \frac{6\sqrt{5}}{5}$

إذن ABCD رباعي وجوه.

$$V_{ABCD} = \frac{1}{3} \times S_{BCD} \times h = \frac{1}{3} \times \left(\frac{1}{2} \times BD \times DC\right) \times d\left(A; (P)\right)$$
$$= \frac{1}{3} \times \left(\frac{1}{2} \times 1 \times \sqrt{5}\right) \times \frac{6}{\sqrt{5}} = 1$$

 $V_{ABCD} = 1$ uv :إذن

التمرين الثاني:

$$v_n = \frac{5^{n+1}}{6^n} (I$$

امتتالیت هندسیت: (v_n)

وحدها
$$\frac{5}{6}$$
 وحدها $\left(v_{n}\right)$ متتالیۃ هندسیۃ اُساسها $\frac{5}{6}$ وحدها $\left(v_{n}\right)$ وحدها $\left(v_{n}\right)$

$$v_0 = 5$$
 ، $v_0 = \frac{5^{0+1}}{6^0} = 5$ الأول

$$0 < q < 1$$
 لأن $\lim_{n \mapsto +\infty} v_n = 0$ (2

$$u_0 = 1$$
 (II

$$u_{n+1} = \sqrt{5u_n + 6}$$

 $1 \le u_n \le 6$: n اثبات بالتراجع أنه من أجل كل عدد طبيعي (1

 $1 \le u_n \le 6$: n من أجل كل عدد طبيعي ، p(n) نضع:

* المرحلة 1: من أجل n=0 لدينا n=0 المحققة . $1 \leq l \leq n$ أي: $1 \leq l \leq n$ محققة .

p(n+1) اي: $1 \leq u_n \leq 6$ اي p(n+1) اي: * المرحلة 2: نفرض صحة

$$1 \le u_{n+1} \le 6$$

: لدينا $16 \le 5u_n + 6 \le 36$ ومنه $5 \le 5u_n \le 30$ ومنه $1 \le u_n \le 6$

$$.1 \le u_{n+1} \le 6$$
 . أي $1 \le \sqrt{5u_n + 6} \le \sqrt{36}$. أي $1 \le 5u_n + 6 \le 36$

. $1 \le u_n \le 6$: n الخلاصة: من أجل كل عدد طبيعي *

 (u_n) اتجاه تغير المتتالية (2

$$u_{n+1} - u_n = \sqrt{5u_n + 6} - u_n = \left[\sqrt{5u_n + 6} - u_n\right] \times \frac{\sqrt{5u_n + 6} + u_n}{\sqrt{5u_n + 6} + u_n}$$
$$= \frac{-u_n^2 + 5u_n + 6}{\sqrt{5u_n + 6} + u_n} = \frac{-(u_n + 1)(u_n - 6)}{\sqrt{5u_n + 6} + u_n}$$

:اشارة $u_n \leq u_n \leq u_n \leq u_n$ ، ولكون $u_n \leq u_n \leq u_n \leq u_n$ اشارة $u_n \leq u_n \leq u_n$ ، ولكون $u_{n+1} = u_n$

. [1;6] ومنه (u_n) متزایدة تماما علی المجال $-(u_n+1)(u_n-6)\geq 0$

$$1.6 - u_{n+1} \le \frac{5}{6} (6 - u_n) : n$$
 عدد طبيعي $1.6 - u_{n+1} \le \frac{5}{6} (6 - u_n) : n$ اثبات أن ،من أجل كل عدد طبيعي

$$6-u_{n+1} \leq \left(6-\sqrt{5u_n+6}\right) imes rac{6+\sqrt{5u_n+6}}{6+\sqrt{5u_n+6}}$$
 لدينا $6-u_{n+1} \leq 6-\sqrt{5u_n+6}$ ومنه:

$$6 - u_{n+1} \le \frac{5(6 - u_n)}{6 + \sqrt{5u_n + 6}}$$
 : أي: $\frac{5 - u_{n+1}}{6 + \sqrt{5u_n + 6}} \le \frac{30 - 5u_n}{6 + \sqrt{5u_n + 6}}$

$$\frac{5(6-u_n)}{6+\sqrt{5u_n+6}} \le \frac{5}{6}(6-u_n)$$
 ومن جهۃ لدینا: $\frac{1}{6+\sqrt{5u_n+6}} \le \frac{1}{6}$

$$.6 - u_{n+1} \le \frac{5}{6} (6 - u_n)$$
 ومنه:

$$0 \le 6 - u_n \le v_n : n$$
ب اثبات أنه ،من أجل كل عدد طبيعي $v_n = 0$

:دينا
$$(6-u_{n+1}) \leq \frac{5}{6}$$
ناي لدينا

$$\begin{cases}
0 \le 6 - u_1 \le \frac{5}{6} (6 - u_0) \\
0 \le 6 - u_2 \le \frac{5}{6} (6 - u_1) \\
0 \le 6 - u_3 \le \frac{5}{6} (6 - u_2) \\
\dots \\
0 \le 6 - u_n \le \frac{5}{6} (6 - u_{n-1})
\end{cases}$$

بضرب أطراف المتباينات و بعد الاختزال نجد: $\left(\frac{5}{6}\right)^n\left(6-u_0\right)$ ، أي

$$0 \le 6 - u_{n+1} \le v_n$$
 وبالتالي $0 \le 6 - u_{n+1} \le \frac{5^{n+1}}{6^n}$ رُي ، $0 \le 6 - u_{n+1} \le \left(\frac{5}{6}\right)^n \times 5$

 $\lim_{n\mapsto +\infty}u_n$ استنتاج

 $\lim_{n\mapsto +\infty}\left(6-u_{n+1}\right)=0$ فإن: $0\leq 6-u_{n+1}\leq v_n$ فإن: $0\leq 6-u_{n+1}\leq v_n$ لدينا: لدينا

. $\lim_{n \to +\infty} u_n = 0$: أي: $\lim_{n \to +\infty} u_{n+I} = 0$

التمرين الثالث:

$$\Delta = (-4\cos\alpha)^2 - 4(1)(4) = 16(\cos^2\alpha - 1) = -16\sin^2\alpha < 0 \quad .1$$

$$z_{0}=rac{4\coslpha+4i\sinlpha}{2}=2\coslpha+2i\sinlpha$$
 ومنه: $\Delta=\left(i\sinlpha
ight)^{2}$ لدينا:

$$z_1 = \overline{z_0} = 2\cos\alpha - 2i\sin\alpha$$

:من أجل
$$\alpha = \frac{\pi}{3}$$
 نجد. 2

.
$$z_2=2\cos\frac{\pi}{3}-2i\sin\frac{\pi}{3}=1-i\sqrt{3}$$
 و $z_1=2\cos\frac{\pi}{3}+2i\sin\frac{\pi}{3}=1+i\sqrt{3}$
$$\left(\frac{z_1}{z_2}\right)^{20l3}=1$$
اثبات أن : $l=1$

$$\left(\frac{z_1}{z_2}\right)^{2013} = \left(\frac{2e^{i\frac{\pi}{3}}}{2e^{i\frac{\pi}{3}}}\right)^{2013} = \left(e^{i\frac{2\pi}{3}}\right)^{2013} = e^{i(1342\pi)} = e^{i(2\pi)} = 1$$
 لدينا: B ، A انشاء النقط B . C و B .

$$\frac{z_C - z_A}{z_B - z_A} = \frac{\left(4 + i\sqrt{3}\right) - \left(1 + i\sqrt{3}\right)}{\left(1 - i\sqrt{3}\right) - \left(1 + i\sqrt{3}\right)} = \frac{3}{-2i\sqrt{3}} = \frac{\sqrt{3}}{2}i$$
 بن) لدينا:

بما أن:
$$z_C - z_A = \frac{\sqrt{3}}{2}i\left(z_B - z_A\right)$$
 فإن $\frac{z_C - z_A}{z_B - z_A} = \frac{\sqrt{3}}{2}i$ بما أن:

 $\frac{\pi}{2}$ لتشابه مباشر مرکزه A و نسبته $\frac{\sqrt{3}}{2}$ وزاویته

جى G مرجح الجملة $\{ig(A;Iig),ig(B;-Iig),ig(C;2ig)\}$ ، ومنه G

$$z_G = \frac{z_A - z_B + 2z_C}{2} = 4 + 2i\sqrt{3}$$

$$z_B-z_A=z_D-z_G$$
 متوازي أضلاع معناه: $\overrightarrow{AB}=\overrightarrow{GD}$ ، ومنه $ABDG$ (د) $z_D=z_B-z_A+z_G$ متوازي أضلاع معناه: رومنه معناه: رومنه بالحساب نجد

التمرين الرابع:

$$f(x) = \frac{x}{x-1} + e^{\frac{1}{x-1}}$$
بـ: $\int -\infty; I[$ بـ: $f(x) = \frac{x}{x-1} + e^{\frac{1}{x-1}}$ الدالة المعرفة على

1 . لدينا :

$$\lim_{\substack{x \\ x \to 1}} f(x) = \lim_{\substack{x \\ x \to 1}} \left[\frac{x}{x-1} + e^{\frac{1}{x-1}} \right] = -\infty \quad \lim_{\substack{x \to -\infty}} f(x) = \lim_{\substack{x \to -\infty}} \left[\frac{x}{x-1} + e^{\frac{1}{x-1}} \right] = 2$$

لغني في الرياضيات (علوم تجريبيتي) __ ص102 ______ كتاب الحوليات

. y=2 و x=1 المستقيمين المقاربين للمنحنى (C) معادلتيهما

. الدالة f قابلة للاشتقاق على المجال $-\infty$; I ولدينا f

$$f'(x) = \frac{(x-1)-x}{(x-1)^2} + \left(\frac{-1}{(x-1)^2}\right)e^{\frac{1}{x-1}} = \frac{-1}{(x-1)^2} \times \left(1 + e^{\frac{1}{x-1}}\right) < 0$$

 $[-\infty; I]$ متناقصة تماما على المجال f

جدول التغيرات:

x	-∞	1
f'(x)	A /	
	2	
f(x)	-0	α

 $\lim_{x\to -\infty} f(x)=2>0$ الدلة f(x)=2>0 الجال $\int_{x\to -\infty}^{-\infty} I[$ مستمرة ومتناقصة تماما على المجال I المجال I ولدينا I ومنه حسب مبرهنة القيم المتوسطة المعادلة I ومنه حسب مبرهنة القيم المتوسطة المعادلة I ومنه حسب مبرهنة القيم أعلاه نجد حصرا للعدد I وحيدا I باستعمال جدول القيم أعلاه نجد حصرا للعدد I المثل للدالة I المثل للدالة I والمنحنى I والمنحنى I والمثل المثل ال

5. بيانيا ، حلول المعادلة m=|f(x)|=m هي فواصل نقاط تقاطع المنحنى C' مع المستقيم الذي معادلته y=m . وحتى يكون للمعادلة حلان مختلفان في الإشارة يجب أن يكون:

$$m \in \left[\frac{1}{e}; 2\right]$$

g(x) = f(2x-1): ب $g(x) = -\infty$ الدالة المعرفة على g(x)

. دراسة تغيرات الدالة g على $]-\infty$; I[، ثم تشكيل جدول تغيراتها:

$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} f(2x - 1) = \lim_{X \to -\infty} f(X) = 2$$

$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} f(2x - 1) = \lim_{x \to -\infty} f(X) = -\infty$$

$$\lim_{\substack{x \\ x \to 1}} g(x) = \lim_{\substack{x \\ x \to 1}} f(2x-1) = \lim_{\substack{x \\ x \to 1}} f(X) = -\infty$$

الدالة g هي مركب الدالة التآلفية : 1-2x-1 المتزايدة تماما على $-\infty$; I متبوعة بالدالة f المتناقصة تماما على $-\infty$; I ومنه الدالة g متناقصة تماما على $-\infty$; I . $-\infty$; I ومنه الدالة g متناقصة تماما على $-\infty$; I متناقصة تماما على متناقصة تماما على $-\infty$; I متناقصة تماما على متناقصة

x	-∞	1
g'(x)	-	
	2	
g(x)	→	$-\infty$

$$g'\left(\frac{\alpha+1}{2}\right)=2f'(\alpha):$$
 و أن: $g\left(\frac{\alpha+1}{2}\right)$: و أن: $g\left(\frac{\alpha+1}{2}\right)=f\left(2\left(\frac{\alpha+1}{2}\right)-1\right)=f\left(\alpha\right)=0:$ لدينا: $g\left(x\right)=f\left(2x-1\right)$ ، ومنه: $g'\left(\frac{\alpha+1}{2}\right)=2f'\left(2\left(\frac{\alpha+1}{2}\right)-1\right)=2f'(\alpha):$ ومنه: $g'\left(x\right)=2f'\left(2x-1\right):$ ومنه: $g'\left(\frac{\alpha+1}{2}\right)=2f'\left(\frac{\alpha+1}{2}\right)=2f'\left(\frac{\alpha+1}{2}\right):$ ب معادلة $g'\left(\frac{\alpha+1}{2}\right)=2f'\left(\frac{\alpha+1}{2}\right):$ لدينا: $g'\left(\frac{\alpha+1}{2}\right)=g'\left(\frac{\alpha+1}{2}\right)=g'\left(\frac{\alpha+1}{2}\right)$ $g'\left(\frac{\alpha+1}{2}\right)=g'\left(\frac{\alpha+1}{2}\right)$ ومنه: $g'\left(\frac{\alpha+1}{2}\right)=g'\left(\frac{\alpha+1}{2}\right)$ $g'\left(\frac{\alpha+1}{2}\right)=g'\left(\frac{\alpha+1}{2}\right)$

$$(T): y = \frac{-2}{\left(\alpha - 1\right)^2} \left(1 + e^{\frac{1}{\alpha - 1}}\right) x + \frac{\left(\alpha + 1\right)}{\left(\alpha - 1\right)^2} \left(1 + e^{\frac{1}{\alpha - 1}}\right) : \text{algo}$$

$$(T) = \frac{2}{\left(\alpha - 1\right)^3} x - \frac{\alpha + 1}{\left(\alpha - 1\right)^3} : \text{distance}$$

$$e^{\frac{1}{\alpha - 1}} = -\frac{\alpha}{\alpha - 1} : \text{dist} \frac{\alpha}{\alpha - 1} + e^{\frac{1}{\alpha - 1}} = 0 : \text{dist} f\left(\alpha\right) = 0 : \text{dist}$$

$$(T): y = \frac{-2}{\left(\alpha - 1\right)^2} \left(1 - \frac{\alpha}{\alpha - 1}\right) x + \frac{\left(\alpha + 1\right)}{\left(\alpha - 1\right)^2} \left(1 - \frac{\alpha}{\alpha - 1}\right) : \text{distance}$$

$$y = \frac{2}{\left(\alpha - 1\right)^3} x - \frac{\alpha + 1}{\left(\alpha - 1\right)^3} : \text{distance}$$

$$y = \frac{2}{\left(\alpha - 1\right)^3} x - \frac{\alpha + 1}{\left(\alpha - 1\right)^3} : \text{distance}$$

الموقع الأول للرياضيات www.mathbookdz.com

حل الموضوع الثاني

التمرين الأول:

بالتعويض في المعادلة (E) نجد: 1

$$(-2-3i)^2 + 4(-2-3i) + 13 = 4 + 12i - 9 - 8 - 12i + 13 = -13 + 13 = 0$$

 $-2 + 3i$. $-2 + 3i$. $-2 - 3i$

.
$$z' = \frac{1}{2}iz - \frac{7}{2} - 2i$$
 . أ – اثبات أن: 2

العبارة المركبة لـ S التشابه المباشر الذي مركزه A ، نسبته $\frac{1}{2}$ و زاويته $\frac{\pi}{2}$ و الذي يحول كل

نقطة $M\left(z\right)$ من المستوي إلى النقطة $M'\left(z'\right)$ هي من الشكل $M\left(z\right)$ حيث:

$$b = (1-a)z_A = \left(1 - \frac{1}{2}i\right)(-2 - 3i) = -\frac{7}{2} - 2i \text{ g } a = \frac{1}{2}e^{i\frac{\pi}{2}} = \frac{1}{2}i$$

$$z' = \frac{1}{2}iz - \frac{7}{2} - 2i$$
easie: $z' = \frac{1}{2}iz - \frac{7}{2} - 2i$

S بالتشابه B مي صورة B بالتشابه C علما أن C هي صورة C بالتشابه C

$$z_C = \frac{1}{2}iz_B - \frac{7}{2} - 2i = \frac{1}{2}i(i) - \frac{7}{2} - 2i = -4 - 2i$$
 axio: $C = S(B)$

$$z_C = -4 - 2i$$
 أي:

$$2\overrightarrow{AD}+\left(\overrightarrow{AD}+\overrightarrow{DB}
ight)=\overrightarrow{0}$$
 . ومنه $0=2\overrightarrow{AD}+\overrightarrow{AB}=\overrightarrow{0}$. ومنه $0=-3\overrightarrow{AD}$. ومنه: $0=-3\overrightarrow{AD}$

. أي D هي مرجح النقطتين A و B المرفقتين بالمعاملين B و D الترتيب D

$$z_D = -3 - 5i$$
 : ب $z_D = \frac{3 \times z_A + (-1) \times z_B}{3 + (-1)} = -3 - 5i$ ب $z_D = -3 - 5i$ ب

$$ACD$$
 جــ اثبات أن: $\frac{z_D-z_A}{z_C-z_A}=i$ ثم تحديد طبيعة المثلث

$$\frac{z_D - z_A}{z_C - z_A} = \frac{\left(-3 - 5i\right) - \left(-2 - 3i\right)}{\left(-4 - 2i\right) - \left(-2 - 3i\right)} = \frac{-1 - 2i}{-2 + i} = \frac{i\left(-2 + i\right)}{-2 + i} = i$$
 لدينا: 1

$$\left\{ egin{align*} \left| rac{z_D - z_A}{z_C - z_A}
ight| = |i| = 1 \ arg\left(rac{z_D - z_A}{z_C - z_A}
ight) = arg\left(i\right) = rac{\pi}{2} + 2\pi k, k \in \mathbb{Z} \end{aligned}
ight.$$
نجمانن: $i = \frac{z_D - z_A}{z_C - z_A} = i$

. A ومنه المثلث ACD قائم و متساوي الساقين في المراد ACD أي: $ACD \pm ACD$

التمرين الثاني: 1. أى الرسم:

 \cdot التخمين: المتتالية (u_n) متزايدة تماما و متقاربة نحو العدد

: [0;1] المالة أن الدالة f متزايدة تماما على المجال . 2

الدالة f قابلة للاشتقاق على المجال [0;I] و لدينا:

$$f'(x) = \frac{2 \times 1 - 1 \times 0}{(x+1)^2} = \frac{2}{(x+1)^2} > 0$$

 $0 < u_n < 1 : n$ ب)البرهان بالتراجع أنه من أجل كل عدد طبيعي $0 < u_n < 1 : n$ نضع: p(n) ، من أجل كل عدد طبيعي

* المرحلة 1: من أجل n=0 لدينا n=0 لدينا n=0 ، أي: 1>2 محققة .

p(n+1) المرحلة 2: نفرض صحة p(n+1) أي p(n+1) أي p(n+1) أي p(n+1)

المغني في الرياضيات (علوم تجريبيت) ــــ ص107 ـــــ كتاب الحوليات www.mathonec.com

 $0 < u_{n+1} < 1$

[0;1] لدينا : $u_n < 1$ وبما أن الدالة $u_n < 1$ متزايدة تماما على المجال

$$0 < u_{n+1} < 1$$
 فإن $f(0) < f(u_n) < f(1)$ ، أي

 $0 < u_n < 1: n$ الخلاصة: من أجل كل عدد طبيعي *

 $= (u_n)$ اتجاه تغیر المتتالیت

: لدينا
$$u_n < 1$$
 (وبما أن $u_n < 1$) فإن $u_{n+1} - u_n = \frac{2u_n}{u_n + 1} - u_n = \frac{-u_n \left(u_n - 1\right)}{u_n + 1}$

. ومنه (u_n) متزایدة تماما . $u_{n+1}-u_n>0$

$$v_n = \frac{u_n - 1}{u_n}$$
: المتتالية العددية المعرفة على \mathbb{N} كما يلي المتتالية العددية المعرفة على (v_n) . 3

 $\cdot v_0$ أ – اثبات أن $\left(v_n\right)$ متتالية هندسية أساسها أ $\frac{1}{2}$ ، يطلب حساب حدها الأول

$$.v_{n+1} = \frac{u_{n+1} - 1}{u_{n+1}} = \frac{\left(\frac{2u_n}{u_n + 1}\right) - 1}{\left(\frac{2u_n}{u_n + 1}\right)} = \frac{u_n - 1}{2u_n} = \frac{1}{2} \left(\frac{u_n - 1}{u_n}\right) = \frac{1}{2}v_n$$
 دينا:

$$v_0 = \frac{u_0 - 1}{u_0} = \frac{\frac{1}{2} - 1}{\frac{1}{2}} = -1$$
 ومنه: $v_0 = \frac{u_0 - 1}{u_0} = \frac{1}{2}$ ومنه: $v_0 = \frac{u_0 - 1}{u_0} = \frac{1}{2}$

 $\lim_{n\to+\infty}u_n$ ب – حساب

$$u_n=rac{-1}{v_n-1}$$
 :ومنه $u_n\left(v_n-1
ight)=-1$ ومنه $u_nv_n=u_n-1$:ومنه $v_n=rac{u_n-1}{u_n}$:لدينا $u_n=rac{u_n-1}{u_n}$:الدينا $u_n=rac{u_n-1}{u_n}$:الدينا $u_n=rac{u_n-1}{u_n}$

$$u_n = \frac{-1}{v_0 \times q^n - 1} = u_n = \frac{-1}{-1 \times \left(\frac{1}{2}\right)^n - 1} = \frac{1}{\left(\frac{1}{2}\right)^n + 1}$$
 ومنه:

$$\lim_{n\to +\infty} \left(\frac{1}{2}\right)^n = 0 \text{ فذه: } \lim_{n\to +\infty} u_n = \lim_{n\to +\infty} \frac{1}{\left(\frac{1}{2}\right)^n + 1} = 1 \text{ each}$$
 إذنه:
$$u_n = \frac{1}{\left(\frac{1}{2}\right)^n + 1}$$

التمرين الثالث:

$$I\left(\frac{3}{2};0;1\right)$$
 . $I\left(\frac{2+1}{2};\frac{1-1}{2};\frac{3-1}{2}\right)$. ومنه: $I\left(\frac{3}{2};0;1\right)$. أي: $I\left(\frac{2+1}{2};\frac{1-1}{2};\frac{3-1}{2}\right)$. ومنه: $I\left(\frac{3}{2};0;1\right)$. ومنه: $I\left(\frac{3}{2};0;1\right)$ ومنه:

$$(\Delta): \begin{cases} x = -\frac{3}{2} + t \\ y = -2 + 2t \\ z = 1 - 4t \end{cases}, t \in \mathbb{R}$$

E . أ (Δ) و المستقيم و (A) و المستقيم (Δ) و المستقيم (Δ)

$$(\Delta) \cap (P) : \begin{cases} x = -\frac{3}{2} + t \\ y = -2 + 2t \\ z = 1 - 4t \\ 2x + 4y - 8z + 5 = 0 \end{cases}$$

ومنه: $2\left(-\frac{3}{2}+t\right)+4\left(-2+2t\right)-8\left(1-4t\right)+5=0$ بالتعويض في $E\left(-\frac{7}{6};-\frac{4}{3};-\frac{1}{3}\right)$ التمثيل الوسيطي نجد: (AB) من نفس المستوي: ب) اثبات أن (AB) و

لدينا (1;2;-4) شعاع توجيه لـ (Δ) و (Δ) و (Δ) شعاع توجيه لـ (AB) مرتبطان خطيا لأن $\vec{u}=-\overline{AB}$ ومنه (Δ) و (AB) متوازيان أي من نفس المستوي.

$$E$$
. E ومنه المثلث E قائم في E ومنه المثلث E إذن: E إذن: E إذن

المغني في الرياضيات (علوم تجريبية) _____ ص109 _____ كتاب الحوليات www.mathonec.com

$$(IE)$$
 عمودي على كل من المستقيم على ((IB) عمودي على كل من المستقيم على ((IB) و المستقيم .4

ب) حساب حجم رباعي الوجوه DIEC ،

$$V = \frac{1}{3} \times S_{IEC} \times h = \frac{1}{3} \times \left(\frac{1}{2} \times IE \times EC\right) \times ID = \frac{1}{3} \times \left(\frac{1}{2} \times \frac{4\sqrt{6}}{3} \times \frac{\sqrt{21}}{3}\right) \times \sqrt{14} = \frac{84}{9}$$

$$V = \frac{84}{9} .uv$$
 اذن:

التمرين الرابع:

.
$$g(x) = x^2 + 2x + 4 - 2\ln(x+1)$$
 بـ : $]-1;+\infty[$ بـ المجال g (I

1. دراسة تغيرات الدالة g، وتشكل جدول تغيراتها:

$$\lim_{x \to -1} g(x) = \lim_{x \to -1} \left[x^2 + 2x + 4 - 2 \ln(x+1) \right] = +\infty$$

$$\lim_{x \to -1} \ln(x+1) = -\infty$$
 : لأن

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} (x+1) \left[\frac{x^2 + 2x + 4}{x+1} - 2 \frac{\ln(x+1)}{x+1} \right] = +\infty$$

$$\lim_{x \to +\infty} \frac{\ln(x+1)}{x+1} = 0$$
 يُن $\lim_{x \to +\infty} \frac{\ln(x+1)}{x+1} = +\infty$ و $\lim_{x \to +\infty} (x+1) = +\infty$ يُن $\lim_{x \to +\infty} (x+1) = +\infty$

$$g'(x) = \frac{2x(x+2)}{x+1}$$
 :الدالة g قابلة للاشتقاق على المجال $g'(x) = \frac{1}{x+1}$ ولدينا

$$x+2>0$$
 و $x+1>0$: $]-1;+\infty[$ اشارة $x+1>0$ و $x+1>0$ و $x+1>0$

$$\begin{array}{c|ccccc} x & -1 & 0 & +\infty \\ \hline g'(x) & - & 0 & + \end{array}$$

-1;0 متناقصة تماما على المجال g

الدالة
$$g$$
 متزايدة تماما تماما على المجال g متزايدة تماما تماما على المجال g جدول التغيرات:

x	-1		0		+∞
g'(x)		A <u>L 80</u>	0	+	
g(x)	+∞		4	/	+∞
			4	©:	

. $g(x) \ge 4 > 0$ ، $]-1;+\infty[$ من جدول التغيرات نستنتج أنه من أجل كل x من جدول التغيرات نستنتج أنه من أجل كل x

$$f(x) = x - \frac{1 - 2\ln(x + 1)}{x + 1}$$
 بـ: $-1; +\infty$ الدالة المعرفة على المجال $f(x) = x - \frac{1 - 2\ln(x + 1)}{x + 1}$ بالدالة المعرفة على المجال

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} \left(\frac{1}{x+1} \right) \left[x(x+1) - 1 + 2\ln(x+1) \right] = -\infty \, (1.1)$$

x = -1 ومنه یوجد مستقیم مقارب معادلته

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[x - \frac{1}{x+1} + 2 \frac{\ln(x+1)}{x+1} \right] = +\infty$$
 ب

. $f'(x) = \frac{g(x)}{(x+1)^2}$ فإن: $]-1;+\infty[$ فإن: x من عدد حقيقي x من أجل ڪل عدد حقيقي x من أجل ڪل عدد حقيقي

$$f'(x) = 1 - \frac{\left(\frac{-2}{x+1}\right)(x+1) - \left(1 - 2\ln(x+1)\right)}{\left(x+1\right)^2}$$

$$= \frac{x^2 + 2x + 4 - 2\ln(x+1)}{(x+1)^2} = \frac{g(x)}{(x+1)^2}$$

ب) بما أن g(x) من إشارة f'(x) فإن إشارة f'(x) فإن إشارة $f'(x) = \frac{g(x)}{\left(x+1\right)^2}$ ، ومنه g(x)

 $]-1;+\infty[$ علی

جدول التغيرات:

<u> </u>	<u> </u>	1500.337.77 15-07-30 1550.7
x	-1	$+\infty$
f'(x)	+	
		+∞
f(x)	$-\infty$	

 $]0;0,5[\subset]-1;+\infty[$ من جدول التغيرات الدالة f مستمرة ومتزايدة تماما ولكون f مستمرة ومتزايدة و f و التوسطة

 $0<\alpha<0,5$ المعادلة f(x)=0 تقبل تقبل حلا وحيدا α في المجال f(x)=0 ، بحيث f(x)=0 . أي

$$\lim_{x \to +\infty} [f(x) - y] = \lim_{x \to +\infty} \left[-\frac{1 - 2\ln(x + 1)}{x + 1} \right] = \lim_{x \to +\infty} \left[-\frac{1}{x + 1} + \frac{2\ln(x + 1)}{x + 1} \right] = 0$$

 (C_f) بجوار y=x مقارب مائل للمنحنى (Δ) ومنه المستقيم (Δ) ومنه المستقيم

 $\cdot(\Delta)$ بالنسبة إلى (C_f) بالنسبة إلى النحنى (ب

$$f(x)-y = -\frac{1-2\ln(x+1)}{x+1} = \frac{2\ln(x+1)-1}{x+1}$$

اشارة الفرق من إشارة $2 \ln(x+1) - 1$ ، لدينا:

$$x = e^{\frac{1}{2}} - 1$$
 تعني $2 \ln(x+1) = \frac{1}{2}$ ومنه: $2 \ln(x+1) - 1 = 0$

اي: $x = \sqrt{e} - 1$ نجد هڪذا:

.] $-1;\sqrt{e}-1$ [المنحنى (Δ) تحت المستقيم (C_f) نحت (C_f) المنحنى (C_f) المنحنى

.]
$$\sqrt{e}-1;+\infty$$
 فوق المستقيم $\left(\Delta\right)$ في المجال المنحنى $\left(C_{f}\right)$

. $A\Big(\sqrt{e}-1;\sqrt{e}-1\Big)$ يقطع المستقيم Δ في النقطة ذات الاحداثيين و المنحنى و المنحنى و المنحنى . Δ

$$(T): y = x + \frac{2}{\sqrt{e^3}} .4$$

: بعد التبسيط نجد ، $\frac{g(x_0)}{(x_0+1)^2} = 1$ أي $f'(x_0) = I$ ، بعد التبسيط نجد ، أي حساب

$$x_0=\sqrt{e^3}-1$$
 . ومنه: $x_0=e^{rac{3}{2}}-1$. أي: $x_0+1=e^{rac{3}{2}}$. أي: $2\ln\left(x_0+1
ight)=3$. $\left(C_f\right)$ ثم المستقيمين المقاربين و المماس T ثم المنحنى T

ج) بيانيا ،حلول المعادلة f(x)=x+m هي فواصل نقاط تقاطع المنحنى C_f مع المستقيم . D_f (D_f (D_f) و (D_f) بالموازي لكل من المستقيمين (D_f) و (D_f) بالمعادلة تقبل حلين متمايزين عندما يكون D_f أي D_f أي D_f أي المعادلة تقبل حلين متمايزين عندما يكون D_f أي المعادلة تقبل حلين متمايزين عندما يكون D_f أي المعادلة تقبل حلين متمايزين عندما يكون D_f أي المعادلة تقبل حلين متمايزين عندما يكون أو المعادلة المعادلة تقبل حلين متمايزين عندما يكون أو المعادلة ا