#### STAD29: Statistics for the Life and Social Sciences

Lecture notes

#### Section 1

#### Principal components

## **Principal Components**

- Have measurements on (possibly large) number of variables on some individuals.
- Question: can we describe data using fewer variables (because original variables correlated in some way)?
- Look for direction (linear combination of original variables) in which values most spread out. This is first principal component.
- Second principal component then direction uncorrelated with this in which values then most spread out. And so on.

#### Principal components

- See whether small number of principal components captures most of variation in data.
- Might try to interpret principal components.
- If 2 components good, can make plot of data.
- (Like discriminant analysis, but no groups.)
- "What are important ways that these data vary?"

#### **Packages**

You might not have installed the first of these. See over for instructions.

```
library(ggbiplot) # see over
library(tidyverse)
library(ggrepel)
```

#### Installing ggbiplot

- ggbiplot not on CRAN, so usual install.packages will not work. This is same procedure you used for smmr in C32:
- Install package devtools first (once):

```
install.packages("devtools")
```

• Then install ggbiplot (once):

```
library(devtools)
install_github("vqv/ggbiplot")
```

# Small example: 2 test scores for 8 people

```
my url <- "http://www.utsc.utoronto.ca/~butler/d29/test12.txt"
test12 <- read table2(my url)
test12
## # A tibble: 8 x 3
## first second id
##
    <dbl> <dbl> <chr>
    2
## 1
             9 A
## 2 16 40 B
## 3 8 17 C
    18 43 D
## 4
    10 25 E
## 5
    4 10 F
## 6
```

g <- ggplot(test12, aes(x = first, y = second, label = id)) + geom\_point() + geom\_text\_repel()

10 27 G 12

30 H

## 7

## 8

#### The plot



## Principal component analysis

Grab just the numeric columns:

```
test12 %>% select_if(is.numeric) -> test12_numbers
```

Strongly correlated, so data nearly 1-dimensional:

```
cor(test12_numbers)
```

```
## first second
## first 1.000000 0.989078
## second 0.989078 1.000000
```

# Finding principal components

• Make a score summarizing this one dimension. Like this:

```
test12.pc <- princomp(test12_numbers, cor = T)
summary(test12.pc)</pre>
```

```
## Importance of components:

## Comp.1 Comp.2

## Standard deviation 1.410347 0.104508582

## Proportion of Variance 0.994539 0.005461022

## Cumulative Proportion 0.994539 1.000000000
```

#### Comments

- "Standard deviation" shows relative importance of components (as for LDs in discriminant analysis)
- Here, first one explains almost all (99.4%) of variability.
- That is, look only at first component and ignore second.
- cor=T standardizes all variables first. Usually wanted, because variables measured on different scales. (Only omit if variables measured on same scale and expect similar variability.)

#### Scree plot

#### ggscreeplot(test12.pc)



# Component loadings

explain how each principal component depends on (standardized) original variables (test scores):

```
test12.pc$loadings
```

##

```
Loadings:
         Comp.1 Comp.2
##
## first 0.707 0.707
  second 0.707 -0.707
##
##
                 Comp.1 Comp.2
  SS loadings
                   1.0
                          1.0
## Proportion Var
                0.5
                          0.5
## Cumulative Var
                 0.5
                          1.0
```

First component basically sum of (standardized) test scores. That is, person tends to score similarly on two tests, and a composite score would summarize performance.

# Component scores

```
d <- data.frame(test12, test12.pc$scores)
d</pre>
```

```
##
    first second id
                         Comp.1
                                     Comp.2
                 A -2.071819003 -0.146981782
## 1
        2
    16
                    1.719862811 -0.055762223
## 2
             40
## 3
        8
             17 C -0.762289708 0.207589512
## 4
     18
             43 D 2.176267535 0.042533250
## 5
     10
             25 E -0.007460609 0.007460609
## 6
    4
             10 F -1.734784030 0.070683441
                    0.111909141 -0.111909141
     10
             27 G
## 7
       12
             30
                    0.568313864 -0.013613668
## 8
```

- Person A is a low scorer, very negative comp.1 score.
- Person D is high scorer, high positive comp.1 score.
- Person E average scorer, near-zero comp.1 score.
- comp.2 says basically nothing.

#### Plot of scores

```
ggplot(d, aes(x = Comp.1, y = Comp.2, label = id)) +
geom_point() + geom_text_repel()
```



#### Comments

- Vertical scale exaggerates importance of comp.2.
- Fix up to get axes on same scale:

```
g <- ggplot(d, aes(x = Comp.1, y = Comp.2, label = id)) +
  geom_point() + geom_text_repel() +
  coord_fixed()</pre>
```

• Shows how exam scores really spread out along one dimension:

g



#### The biplot

- Plotting variables and individuals on one plot.
- Shows how components and original variables related.
- Shows how individuals score on each component, and therefore suggests how they score on each variable.
- Add labels option to identify individuals:

```
g <- ggbiplot(test12.pc, labels = test12$id)
```

## The biplot



#### Comments

- Variables point almost same direction (left). Thus very negative value on comp.1 goes with high scores on both tests, and test scores highly correlated.
- Position of individuals on plot according to scores on principal components, implies values on original variables. Eg.:
- D very negative on comp.1, high scorer on both tests.
- A and F very positive on comp.1, poor scorers on both tests.
- C positive on comp.2, high score on first test relative to second.
- A negative on comp.2, high score on second test relative to first.

## Track running data

track <- read\_table(my\_url)
track %>% sample\_n(10)

Track running records (1984) for distances 100m to marathon, arranged by country. Countries labelled by (mostly) Internet domain names (ISO 2-letter codes):

```
## # A tibble: 10 x 9
##
                              m100
                                                                                    m400
                                                                                                               m800 m1500 m5000 m10000 marathon country
                                                         m200
                          <dbl> <dbl > <db > <
                                                                                                                                                                                                                                         <dbl> <chr>
##
                                                                                                                                                                                                <dbl>
                              10.6
                                                         21.5
                                                                                    47.8
                                                                                                               1.84
                                                                                                                                                                    14.7
                                                                                                                                                                                                   30.8
                                                                                                                                                                                                                                             149. id
##
                                                                                                                                          3.92
##
                              10.3 20.8
                                                                               46.2
                                                                                                           1.79
                                                                                                                                          3.71
                                                                                                                                                                 13.6 29.3
                                                                                                                                                                                                                                             134. cl
                            10.4
                                                         20.7 45.5
                                                                                                               1.74
                                                                                                                                                                                                   27.5
                                                                                                                                                                                                                                             131. fi
##
                                                                                                                                          3.61
                                                                                                                                                                    13.3
##
                              10.9
                                                         21.9 47.3
                                                                                                               1.85
                                                                                                                                          3.77
                                                                                                                                                                 14.1
                                                                                                                                                                                               29.7
                                                                                                                                                                                                                                             131. kp
##
                              10.8
                                                         21.9
                                                                                    49
                                                                                                               2.02 4.24
                                                                                                                                                                 16.3
                                                                                                                                                                                               34.7
                                                                                                                                                                                                                                             162. ws
##
                              10.6
                                                         20.5
                                                                                    45.9
                                                                                                               1.78
                                                                                                                                          3.61
                                                                                                                                                                 13.5
                                                                                                                                                                                                   28.1
                                                                                                                                                                                                                                             131. dk
##
                              10.4
                                                         20.8 46.8
                                                                                                            1.81
                                                                                                                                          3.7
                                                                                                                                                                 14.0
                                                                                                                                                                                                   29.4
                                                                                                                                                                                                                                             138. ar
##
                              10.2
                                                         20.6 45.6
                                                                                                               1.77
                                                                                                                                          3.61
                                                                                                                                                                 13.3
                                                                                                                                                                                               27.9
                                                                                                                                                                                                                                             131. se
                                                                                                               1.73
##
                              10.1
                                                         20.4
                                                                                    45.3
                                                                                                                                          3.57
                                                                                                                                                                    13.3
                                                                                                                                                                                                   28.0
                                                                                                                                                                                                                                             132. fr
```

3.62

my\_url <- "http://www.utsc.utoronto.ca/~butler/d29/men\_track\_field.txt"

21.0

45.1

1.74

10.5

10

27.6

129. nl

13.4

## Country names

Also read in a table to look country names up in later:

```
my_url <- "http://www.utsc.utoronto.ca/~butler/d29/isocodes.csv"
iso <- read_csv(my_url)
iso</pre>
```

```
## # A tibble: 250 \times 4
##
      Country
                           IS02
                                 IS03
                                          M49
##
      <chr>>
                           <chr> <chr> <dbl>
##
    1 Afghanistan
                           af
                                  afg
    2 Aland Islands
                                          248
##
                           ax
                                 ala
##
    3 Albania
                           al
                                 alb
                                            8
##
    4 Algeria
                           dz
                                 dza
                                           12
##
    5 American Samoa
                                           16
                           as
                                 asm
##
    6 Andorra
                           ad
                                 and
                                           20
                                           24
##
    7 Angola
                           ao
                                  ago
    8 Anguilla
                                          660
##
                           ai
                                 aia
    9 Antarctica
##
                                  ata
                                           10
                           aq
   10 Antigua and Barbuda ag
                                           28
                                  atg
   # ... with 240 more rows
```

#### Data and aims

- Times in seconds 100m-400m, in minutes for rest (800m up).
- This taken care of by standardization.
- 8 variables; can we summarize by fewer and gain some insight?
- In particular, if 2 components tell most of story, what do we see in a plot?

# Fit and examine principal components

track %>% select\_if(is.numeric) -> track\_num

```
track.pc <- princomp(track_num, cor = T)</pre>
summary(track.pc)
  Importance of components:
##
                              Comp.1
                                        Comp.2
   Standard deviation
                          2.5733531 0.9368128
  Proportion of Variance 0.8277683 0.1097023
  Cumulative Proportion 0.8277683 0.9374706
##
                               Comp.3
                                          Comp.4
  Standard deviation
                          0.39915052 0.35220645
## Proportion of Variance 0.01991514 0.01550617
  Cumulative Proportion
                          0.95738570 0.97289187
##
                                Comp.5
                                            Comp.6
  Standard deviation
                          0.282630981 0.260701267
## Proportion of Variance 0.009985034 0.008495644
                          0.982876903 0.991372547
  Cumulative Proportion
##
                                Comp.7
                                            Comp.8
  Standard deviation
                          0.215451919 0.150333291
## Proportion of Variance 0.005802441 0.002825012
                        STAD29: Statistics for the Life and Social Sc.
```

## Scree plot

#### ggscreeplot(track.pc)



## How many components?

- As for discriminant analysis, look for "elbow" in scree plot.
- See one here at 3 components; everything 3 and beyond is "scree".
- So take 2 components.
- Note difference from discriminant analysis: want "large" rather than "small", so go 1 step left of elbow.
- Another criterion: any component with eigenvalue bigger than about 1 is worth including. 2nd one here has eigenvalue just less than 1.
- Refer back to summary: cumulative proportion of variance explained for 2 components is 93.7%, pleasantly high. 2 components tell almost whole story.

# How do components depend on original variables?

#### Loadings:

##

.. ..

Lecture notes

```
track.pc$loadings
```

```
## Loadings:
##
            Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
## m100
             0.318
                    0.567
                           0.332 0.128
                                         0.263
                                                0.594
                                                       0.136
                                                              0.106
## m200
             0.337
                    0.462
                           0.361 - 0.259 - 0.154 - 0.656 - 0.113
## m400
             0.356 0.248 - 0.560
                                 0.652 -0.218 -0.157
## m800
             0.369
                          -0.532 - 0.480
                                         0.540
                                                      -0.238
            0.373 -0.140 -0.153 -0.405 -0.488 0.158 0.610
## m1500
                                                              0.139
## m5000
            0.364 -0.312 0.190
                                        -0.254 0.141 -0.591
                                                              0.547
## m10000
          0.367 -0.307 0.182
                                        -0.133
                                                0.219 - 0.177 - 0.797
             0.342 - 0.439
                           0.263
                                  0.300
                                         0.498 - 0.315
                                                       0.399
##
  marathon
                                                              0.158
##
##
                  Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
                   1.000
                          1.000
                                 1.000 1.000
                                               1.000
                                                      1.000
                                                             1.000
   SS loadings
   Proportion Var
                   0.125
                          0.125
                                 0.125
                                        0.125
                                               0.125
                                                      0.125
                                                             0.125
  Cumulative Var
                   0.125
                          0.250
                                 0.375
                                        0.500
                                               0.625
                                                      0.750
                                                             0.875
```

STAD29: Statistics for the Life and Social Sc.

#### Comments

- comp.1 loads about equally (has equal weight) on times over all distances.
- comp.2 has large positive loading for short distances, large negative for long ones.
- comp.3: large negative for middle distance, large positive especially for short distances.
- Country overall good at running will have lower than average record times at all distances, so comp.1 small. Conversely, for countries bad at running, comp.1 very positive.
- Countries relatively better at sprinting (low times) will be negative on comp.2; countries relatively better at distance running positive on comp.2.

## Commands for plots

• Principal component scores (first two). Also need country IDs.

```
d <- data.frame(track.pc$scores,
   country = track$country
)
names(d)</pre>
```

```
## [7] "Comp.7" "Comp.8" "country"
g1 <- ggplot(d, aes(x = Comp.1, y = Comp.2,
    label = country)) +</pre>
```

## [1] "Comp.1" "Comp.2" "Comp.3" "Comp.4" "Comp.5"

Biplot:

```
g2 <- ggbiplot(track.pc, labels = track$country)</pre>
```

geom point() + geom\_text\_repel() + coord\_fixed()

"Com

## Principal components plot

g1



#### Comments on principal components plot

- Good running countries at left of plot: US, UK, Italy, Russia, East and West Germany.
- Bad running countries at right: Western Samoa, Cook Islands.
- Better sprinting countries at bottom: US, Italy, Russia, Brazil, Greece.
   do is Dominican Republic, where sprinting records relatively good,
   distance records very bad.
- Better distance-running countries at top: Portugal, Norway, Turkey, Ireland, New Zealand, Mexico. ke is Kenya.

#### **Biplot**

g2



standardized PC1 (82.8% explained var.)

#### Comments on biplot

- Had to do some pre-work to interpret PC plot. Biplot more self-contained.
- All variable arrows point right; countries on right have large (bad) record times overall, countries on left good overall.
- Imagine that variable arrows extend negatively as well. Bottom right = bad at distance running, top left = good at distance running.
- Top right = bad at sprinting, bottom left = good at sprinting.
- Doesn't require so much pre-interpretation of components.

## Best 8 running countries

Need to look up two-letter abbreviations in ISO table:

```
d %>%
  arrange(Comp.1) %>%
  left_join(iso, by = c("country" = "ISO2")) %>%
  select(Comp.1, country, Country) %>%
  slice(1:8)
```

```
Comp.1 country
##
                                          Country
## 1 -3.462175
                    us United States of America
## 2 -3.052104
                    uk
                                  United Kingdom
## 3 -2.752084
                    it.
                                            Italy
## 4 -2.651062
                              Russian Federation
                    ru
## 5 -2.613964
                   dee
                                    East Germany
## 6 -2.576272
                   dew
                                    West Germany
## 7 -2.468919
                                        Australia
                    au
## 8 -2.191917
                    fr
                                           France
```

# Worst 8 running countries

```
d %>%
  arrange(desc(Comp.1)) %>%
  left_join(iso, by = c("country" = "ISO2")) %>%
  select(Comp.1, country, Country) %>%
  slice(1:8)
```

```
Comp.1 country
                                 Country
##
     10.652914
                     ck
                            Cook Islands
      7.297865
                     WS
                                    Samoa
      4.297909
                                    Malta
                     mt
      3.945224
                     pg
                        Papua New Guinea
      3.150886
                               Singapore
                     sg
      2.787273
                                Thailand
                     th
      2.773125
                     id
                               Indonesia
## 8
      2.697066
                                     Guam
                     gu
```

## Better at distance running

```
d %>%
arrange(desc(Comp.2)) %>%
left_join(iso, by = c("country" = "ISO2")) %>%
select(Comp.2, country, Country) %>%
slice(1:10)
```

```
##
         Comp.2 country
                                             Country
      1.6860391
                      cr
                                         Costa Rica
      1.5791490
                                      Korea (North)
## 2
                      kp
      1.5226742
                      ck
                                       Cook Islands
      1.3957839
## 4
                      tr
                                              Turkey
      1.3167578
##
  5
                                            Portugal
                      pt
## 6
      1.2829272
                                                Guam
                      gu
      1.0663756
## 7
                                              Norway
                      no
      0.9547437
                      ir Iran, Islamic Republic of
##
  8
                                        New Zealand
##
   9
      0.9318729
                      nz.
  10 0.8495104
                                              Mexico
                      mx
```

## Better at sprinting

```
d %>%
arrange(Comp.2) %>%
left_join(iso, by = c("country" = "ISO2")) %>%
select(Comp.2, country, Country) %>%
slice(1:10)
```

```
##
          Comp.2 country
                                           Country
      -2.4715736
## 1
                      dο
                                Dominican Republic
  2 -1.9196130
                                             Samoa
##
                      WS
  3 -1.8055052
##
                                         Singapore
                      sg
  4 -1.7832229
                                           Bermuda
##
                      bm
  5 -1.7386063
##
                                          Malaysia
                      mγ
                                          Thailand
##
  6 -1.6851772
                      t.h
## 7 -1.1204235
                         United States of America
                      us
  8 -0.9989821
                                             Italv
##
                      it.
      -0.7639385
                                Russian Federation
##
  9
                      ru
## 10 -0.6470634
                      br
                                            Brazil
```

# Plot with country names

```
g <- d %>%
  left_join(iso, by = c("country" = "ISO2")) %>%
  select(Comp.1, Comp.2, Country) %>%
  ggplot(aes(x = Comp.1, y = Comp.2, label = Country)) +
  geom_point() + geom_text_repel(size = 1) +
  coord_fixed()
```

## Warning: Column `country`/`ISO2` joining factor and charact
## vector, coercing into character vector

# The plot

g



## Principal components from correlation matrix

```
Create data file like this:
```

```
1 0.9705 -0.9600
0.9705 1 -0.9980
-0.9600 -0.9980 1
```

#### and read in like this:

```
my_url <- "http://www.utsc.utoronto.ca/~butler/d29/cov.txt"
mat <- read_table(my_url, col_names = F)
mat</pre>
```

```
## # A tibble: 3 x 3
## X1 X2 X3
## <dbl> <dbl> <dbl> <dbl> ## 1 1 0.970 -0.96
## 2 0.970 1 -0.998
## 3 -0.96 -0.998 1
```

# Pre-processing

#### A little pre-processing required:

- Turn into matrix (from data frame)
- Feed into princomp as covmat=

```
mat.pc <- mat %>%
  as.matrix() %>%
  princomp(covmat = .)
```

# Scree plot: one component fine

#### ggscreeplot(mat.pc)



# Component loadings

#### Compare correlation matrix:

```
## X1 X2 X3
## <dbl> <dbl> <dbl> = 4b1> <dbl> = 4b1> = 4b1
```

```
## 2 0.970 1 -0.998
```

## 3 -0.96 -0.998 1

#### with component loadings

```
mat.pc$loadings
```

##

```
## Loadings:

## Comp.1 Comp.2 Comp.3

## X1 0.573 0.812 0.112

## X2 0.581 -0.306 -0.755

## X3 -0.578 0.498 -0.646
```

#### Comments

- When X1 large, X2 also large, X3 small.
  - Then comp.1 positive.
- When X1 small, X2 small, X3 large.
  - Then comp.1 negative.

#### No scores

- With correlation matrix rather than data, no component scores
  - So no principal component plot
  - and no biplot.

#### Section 2

# Exploratory factor analysis

# Principal components and factor analysis

- Principal components:
  - Purely mathematical.
  - Find eigenvalues, eigenvectors of correlation matrix.
  - No testing whether observed components reproducible, or even probability model behind it.
- Factor analysis:
  - some way towards fixing this (get test of appropriateness)
  - In factor analysis, each variable modelled as: "common factor" (eg. verbal ability) and "specific factor" (left over).
  - Choose the common factors to "best" reproduce pattern seen in correlation matrix.
  - Iterative procedure, different answer from principal components.

## **Packages**

```
library(lavaan) # for confirmatory, later
library(ggbiplot)
library(tidyverse)
```

#### Example

- 145 children given 5 tests, called PARA, SENT, WORD, ADD and DOTS. 3 linguistic tasks (paragraph comprehension, sentence completion and word meaning), 2 mathematical ones (addition and counting dots).
- Correlation matrix of scores on the tests:

```
para 1 0.722 0.714 0.203 0.095 sent 0.722 1 0.685 0.246 0.181 word 0.714 0.685 1 0.170 0.113 add 0.203 0.246 0.170 1 0.585 dots 0.095 0.181 0.113 0.585 1
```

• Is there small number of underlying "constructs" (unobservable) that explains this pattern of correlations?

### To start: principal components

Using correlation matrix. Read that first:

```
my_url <- "http://www.utsc.utoronto.ca/~butler/d29/rex2.txt"
kids <- read_delim(my_url, " ")
kids</pre>
```

### Principal components on correlation matrix

```
kids %>%
  select_if(is.numeric) %>%
  as.matrix() %>%
  princomp(covmat = .) -> kids.pc
```

## Scree plot

#### ggscreeplot(kids.pc)



### Principal component results

Need 2 components. Loadings:

```
kids.pc$loadings
```

```
##
## Loadings:
##
       Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
## para 0.534 0.245 0.114
                                0.795
## sent 0.542 0.164 0.660 -0.489
## word 0.523 0.247 -0.144 -0.738 -0.316
## add 0.297 -0.627 0.707
## dots 0.241 -0.678 -0.680
                                0.143
##
##
               Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
  SS loadings
                  1.0
                        1.0
                              1.0 1.0
                                           1.0
  Proportion Var 0.2 0.2 0.2 0.2 0.2
  Cumulative Var 0.2 0.4
                              0.6 0.8
                                          1.0
```

#### Comments

- First component has a bit of everything, though especially the first three tests.
- Second component rather more clearly add and dots.
- No scores, plots since no actual data.

## Factor analysis

- Specify number of factors first, get solution with exactly that many factors.
- Includes hypothesis test, need to specify how many children wrote the tests.
- Works from correlation matrix via covmat or actual data, like princomp.
- Introduces extra feature, *rotation*, to make interpretation of loadings (factor-variable relation) easier.

## Factor analysis for the kids data

- Create "covariance list" to include number of children who wrote the tests.
- Feed this into factanal, specifying how many factors (2).

```
km <- kids %>%
  select_if(is.numeric) %>%
  as.matrix()
km2 <- list(cov = km, n.obs = 145)
kids.f2 <- factanal(factors = 2, covmat = km2)</pre>
```

#### Uniquenesses

#### kids.f2\$uniquenesses

```
## para sent word add dots
## 0.2424457 0.2997349 0.3272312 0.5743568 0.1554076
```

- Uniquenesses say how "unique" a variable is (size of specific factor).
   Small uniqueness means that the variable is summarized by a factor (good).
- Very large uniquenesses are bad; add's uniqueness is largest but not large enough to be worried about.
- Also see "communality" for this idea, where large is good and small is bad.

## Loadings

#### kids.f2\$loadings

```
##
## Loadings:
##
       Factor1 Factor2
  [1,] 0.867
## [2,] 0.820
             0.166
## [3,] 0.816
## [4,] 0.167 0.631
## [5.]
               0.918
##
                 Factor1 Factor2
##
  SS loadings
               2.119 1.282
## Proportion Var 0.424 0.256
## Cumulative Var 0.424 0.680
```

• Loadings show how each factor depends on variables. Blanks indicate "small", less than 0.1.

#### Comments xxx

- Factor 1 clearly the "linguistic" tasks, factor 2 clearly the "mathematical" ones.
- Two factors together explain 68% of variability (like regression R-squared).
- Which variables belong to which factor is much clearer than with principal components.

## Are 2 factors enough? xxx

```
kids.f2$STATISTIC

## objective
## 0.5810578
kids.f2$dof

## [1] 1
kids.f2$PVAL
## objective
```

P-value not small, so 2 factors OK.

0.445898

#### 1 factor

##

```
kids.f1 <- factanal(factors = 1, covmat = km2)
kids.f1$STATISTIC

## objective
## 58.16534
kids.f1$dof

## [1] 5
kids.f1$PVAL</pre>
```

1 factor rejected (P-value small). Definitely need more than 1.

## 2.907856e-11

objective

## Track running records revisited

Read the data, run principal components, get biplot:

```
my_url <- "http://www.utsc.utoronto.ca/~butler/d29/men_track:
track <- read_table(my_url)
track %>% select_if(is.numeric) -> track_num
track.pc <- princomp(track_num, cor = T)
g2 <- ggbiplot(track.pc, labels = track$country)</pre>
```

## The biplot

g2



standardized PC1 (82.8% explained var.)

#### Benefit of rotation

- 100m and marathon arrows almost perpendicular, but components don't match anything much:
- sprinting: bottom left and top right
- distance running: top left and bottom right.
- Can we arrange things so that components (factors) correspond to something meaningful?

#### xxx Track records by factor analysis

Obtain factor scores (have actual data): xxx

```
track %>%
  select_if(is.numeric) %>%
  factanal(2, scores = "r") -> track.f
```

### Track data biplot

Not so nice-looking:

```
biplot(track.f$scores, track.f$loadings,
    xlabs = track$country
)
```



#### Comments

- This time 100m "up" (factor 2), marathon "right" (factor 1).
- Countries most negative on factor 2 good at sprinting.
- Countries most negative on factor 1 good at distance running.

## Rotated factor loadings

track.f\$loadings

```
##
## Loadings:
           Factor1 Factor2
##
## m100
           0.291
                   0.914
## m200
           0.382
                   0.882
## m400
           0.543
                   0.744
## m800
           0.691
                   0.622
## m1500
           0.799
                   0.530
## m5000
           0.901
                   0.394
## m10000
         0.907
                   0.399
## marathon 0.915
                   0.278
##
                 Factor1 Factor2
##
  SS loadings
                   4.112
                           3.225
## Proportion Var 0.514
                           0.403
  Cumulative Var
                 0.514
                           0.917
```

# Which countries are good at sprinting or distance running?

Make a data frame with the countries and scores in:

```
scores <- data.frame(
  country = track$country,
  track.f$scores
)
scores %>% slice(1:6)
```

```
## country Factor1 Factor2
## 1 ar 0.33633782 -0.2651512
## 2 au -0.49395787 -0.8121335
## 3 at -0.74199914 0.1764151
## 4 be -0.79602754 -0.2388525
## 5 bm 1.46541593 -1.1704466
## 6 br 0.07780163 -0.8871291
```

## The best sprinting countries

#### Most negative on factor 2:

```
scores %>%
  arrange(Factor2) %>%
  left_join(iso, by = c("country" = "ISO2")) %>%
  select(Country, Factor1, Factor2) %>%
  slice(1:10)
```

```
##
                       Country Factor1 Factor2
     United States of America -0.21942697 -1.7251036
## 1
## 2
                         Italy -0.18436705 -1.4990521
## 3
            Dominican Republic 2.12906546 -1.4666402
            Russian Federation -0.32473110 -1.2236590
## 4
                       Bermuda 1.46541593 -1.1704466
## 5
                United Kingdom -0.58969058 -1.0139983
                        France -0.25301846 -0.9519162
## 7
                  West Germany -0.46748876 -0.9079005
## 8
                        Canada -0.13690160 -0.8920777
## 9
                        Brazil 0.07780163 -0.8871291
## 10
```

## The best distance-running countries

#### Most negative on factor 1:

```
scores %>%
  arrange(Factor1) %>%
  left_join(iso, by = c("country" = "ISO2")) %>%
  select(Country, Factor1, Factor2) %>%
  slice(1:10)
```

```
##
                       Country Factor1
                                              Factor2
## 1
                      Portugal -1.2509805 0.78366889
                         Norway -0.9920727 0.62299560
## 2
                   New Zealand -0.9813348 0.26603491
## 3
## 4
                         Kenya -0.9749696 -0.07099477
      Iran, Islamic Republic of -0.9231505 0.50271208
## 5
                   Netherlands -0.9078661 0.23948200
## 6
                       Romania -0.8178386 0.18555001
## 7
                        Mexico -0.8096291 0.51446762
                       Finland -0.8094725 -0.05705220
## 10
                        Belgium -0.7960275 -0.23885253
```

## A bigger example: BEM sex role inventory

- 369 women asked to rate themselves on 60 traits, like "self-reliant" or "shy".
- Rating 1 "never or almost never true of me" to 7 "always or almost always true of me".
- 60 personality traits is a lot. Can we find a smaller number of factors that capture aspects of personality?
- The whole BEM sex role inventory on next page.

## xxx The whole inventory

mv url <- "http://www.utsc.utoronto.ca/~butler/d29/factor.txt"

### Some of the data

Lecture notes

```
bem <- read tsv(my url)
bem
## # A tibble: 369 x 45
##
      subno helpful reliant defbel yielding cheerful indpt athlet
##
      <dbl>
              <dbl>
                       <dbl> <dbl>
                                       <dbl>
                                                 <dbl> <dbl>
                                                              <dbl>
##
                                  5
                                            5
                                                                   7
##
                   5
                           6
                                                            3
                                  6
##
    3
                                            4
                                                     6
##
          4
                  6
                           6
                                            4
                                                            6
##
          5
                  6
                                                            6
##
                           6
##
          8
                  6
                                                            3
##
   8
          9
                           6
                                            5
                                                     6
         10
##
##
  10
         11
    ... with 359 more rows. and 37 more variables: shy <dbl>...
## #
       assert <dbl>, strpers <dbl>, forceful <dbl>, affect <dbl>,
## #
       flatter <dbl>, loyal <dbl>, analyt <dbl>, feminine <dbl>,
## #
       sympathy <dbl>, moody <dbl>, sensitiv <dbl>, undstand <dbl>,
## #
       compass <dbl>, leaderab <dbl>, soothe <dbl>, risk <dbl>,
       decide <dbl>, selfsuff <dbl>, conscien <dbl>,
       dominant <dh1>
```

STAD29: Statistics for the Life and Social Sc

# Principal components first

...to decide on number of factors:

```
bem.pc <- bem %>%
  select(-subno) %>%
  princomp(cor = T)
```

## xxx The scree plot

(g <- ggscreeplot(bem.pc))</pre>



### Zoom in to search for elbow xxx

Possible elbows at 3 (2 factors) and 6 (5):



## but is 2 really good?

summary(bem.pc)

```
## Importance of components:
##
                             Comp.1
                                        Comp.2
                                                   Comp.3
                                                              Comp.4
## Standard deviation
                          2.7444993 2.2405789 1.55049106 1.43886350
## Proportion of Variance 0.1711881 0.1140953 0.05463688 0.04705291
## Cumulative Proportion 0.1711881 0.2852834 0.33992029 0.38697320
##
                              Comp.5
                                          Comp.6
                                                     Comp.7
## Standard deviation
                          1.30318840 1.18837867 1.15919129
## Proportion of Variance 0.03859773 0.03209645 0.03053919
## Cumulative Proportion 0.42557093 0.45766738 0.48820657
##
                              Comp.8
                                          Comp.9
                                                    Comp. 10
## Standard deviation
                          1.07838912 1.07120568 1.04901318
## Proportion of Variance 0.02643007 0.02607913 0.02500974
                          0.51463664 0.54071577 0.56572551
## Cumulative Proportion
##
                             Comp.11
                                         Comp.12
                                                    Comp.13
                          1.03848656 1.00152287 0.97753974
## Standard deviation
## Proportion of Variance 0.02451033 0.02279655 0.02171782
## Cumulative Proportion
                          0.59023584 0.61303238 0.63475020
##
                             Comp.14
                                        Comp.15
                                                   Comp. 16
## Standard deviation
                          0.95697572 0.9287543 0.92262649
## Proportion of Variance 0.02081369 0.0196042 0.01934636
## Cumulative Proportion 0.65556390 0.6751681 0.69451445
44
                          STAD29: Statistics for the Life and Social Sc
       Lecture notes
```

#### Comments

- Want overall fraction of variance explained ("cumulative proportion") to be reasonably high.
- 2 factors, 28.5%. Terrible!
- Even 56% (10 factors) not that good!
- Have to live with that.

## **Biplot**

ggbiplot(bem.pc, alpha = 0.3)



#### Comments

- Ignore individuals for now.
- Most variables point to 10 o'clock or 7 o'clock.
- Suggests factor analysis with rotation will get interpretable factors (rotate to 6 o'clock and 9 o'clock, for example).
- Try for 2-factor solution (rough interpretation, will be bad):

```
bem.2 <- bem %>%
select(-subno) %>%
factanal(factors = 2)
```

Show output in pieces (just print bem.2 to see all of it).

# Uniquenesses, sorted

#### sort(bem.2\$uniquenesses)

```
leaderab
              leadact
                           warm
                                   tender
                                           dominant
                                                       gentle
## 0.4091894 0.4166153 0.4764762 0.4928919 0.4942909 0.5064551
   forceful
              strpers
                        compass
                                    stand
                                           undstand
                                                       assert.
## 0.5631857 0.5679398 0.5937073 0.6024001 0.6194392 0.6329347
                         decide selfsuff
##
     soothe
               affect
                                         sympathy
                                                        indpt
## 0.6596103 0.6616625 0.6938578 0.7210246 0.7231450 0.7282742
##
    helpful
               defbel
                                  reliant
                                            individ
                           risk
                                                      compete
## 0.7598223 0.7748448 0.7789761 0.7808058 0.7941998 0.7942910
                       sensitiv
                                           ambitiou
    conscien
                happy
                                    loval
                                                          shy
## 0.7974820 0.8008966 0.8018851 0.8035264 0.8101599 0.8239496
    softspok cheerful masculin yielding feminine truthful
## 0.8339058 0.8394916 0.8453368 0.8688473 0.8829927 0.8889983
               analyt athlet
##
    lovchil
                                  flatter gullible
                                                        moodv
## 0.8924392 0.8968744 0.9229702 0.9409500 0.9583435 0.9730607
   childlik foullang
## 0.9800360 0.9821662
```

#### Comments xxx

- Mostly high or very high (bad).
- Some smaller, eg.: Leadership ability (0.409), Acts like leader (0.417), Warm (0.476), Tender (0.493).
- Smaller uniquenesses captured by one of our two factors.
- Larger uniquenesses are not: need more factors to capture them.

# Factor loadings, some

bem.2\$loadings

```
##
## Loadings:
##
           Factor1 Factor2
## helpful
          0.314
                   0.376
## reliant
          0.453
                   0.117
## defbel
            0.434 0.193
## yielding -0.131 0.338
## cheerful
            0.152
                    0.371
## indpt
            0.521
## athlet 0.267
## shy
          -0.414
## assert 0.605
## strpers 0.657
## forceful 0.649
                   -0.126
## affect
            0.178
                    0.554
## flatter
                    0.223
                   0.417
## loyal 0.151
## analyt
         0.295
                    0.127
## feminine 0.113
                   0.323
                    0.526
## sympathy
## moody
                   -0.162
```

# Making a data frame

There are too many to read easily, so make a data frame. A bit tricky:

```
loadings <- as.data.frame(unclass(bem.2$loadings)) %>%
  mutate(trait = rownames(bem.2$loadings))
loadings %>% slice(1:12)
```

```
##
        Factor1
                      Factor2
                                 trait
      0.3137466 0.376484908
## 1
                               helpful
      0.4532904
                  0.117140647
                               reliant
## 2
##
  3
      0.4336574 0.192602996
                                defbel
                  0.337629288 yielding
##
      -0.1309965
      0.1523718
                  0.370530549 cheerful
## 5
## 6
      0.5212403 0.005870336
                                 indpt
## 7
      0.2670788 0.075542858
                                athlet
##
  8
      -0.4144579 -0.065372760
                                   shy
## 9
      0.6049588 0.033004846
                                assert
## 10
      0.6569855
                  0.020777649
                               strpers
## 11
      0.6487190 -0.126405816 forceful
      0.1778911
## 12
                  0.553799444
                                affect
```

# Pick out the big ones on factor 1

loadings %>% filter(abs(Factor1) > 0.4)

```
Arbitrarily defining > 0.4 or < -0.4 as "big":
```

```
Factor1
##
                      Factor2
                                 trait
## 1
       0.4532904
                  0.117140647
                               reliant
## 2
       0.4336574
                                defbel
                 0.192602996
## 3
       0.5212403
                  0.005870336
                                 indpt
## 4
      -0.4144579 -0.065372760
                                   shy
## 5
       0.6049588 0.033004846
                                assert.
## 6
       0.6569855
                  0.020777649
                               strpers
## 7
       0.6487190 -0.126405816 forceful
## 8
       0.7654924 0.069513572 leaderab
## 9
       0.4416176 0.161238425
                                  risk
## 10
       0.5416796 0.112807957
                                decide
## 11
       0.5109964
                  0.133626767 selfsuff
## 12
       0.6676490 -0.244855780 dominant
                 0.171848896
## 13
       0.6066864
                                 stand
## 14
       0.7627129 -0.040667202
                               leadact
## 15
       0.4448064 0.089146147 individ
## 16
       0.4504188
                 0.053207281
                               compete
## 17
       0.4136498 0.136869589 ambitiou
```

# Factor 2, the big ones

```
loadings %>% filter(abs(Factor2) > 0.4)
```

```
##
          Factor1
                    Factor2
                                trait
## 1
       0.17789112 0.5537994
                               affect
## 2
       0.15121266 0.4166622
                                loyal
       0.02301456 0.5256654 sympathy
##
  3
       0.13476970 0.4242037 sensitiv
## 4
## 5
       0.09111299 0.6101294 undstand
## 6
       0.11350643 0.6272223
                              compass
## 7
       0.06061755 0.5802714
                               soothe
## 8
       0.11893011 0.4300698
                                happy
##
  9
       0.07956978 0.7191610
                                 warm
## 10
       0.05113807 0.7102763
                               tender
## 11 -0.01873224 0.7022768
                               gentle
```

## xxx Plotting the two factors

- A bi-plot, this time with the variables reduced in size. Looking for unusual individuals.
- Have to run factanal again to get factor scores for plotting.

```
bem %>% select(-subno) %>% factanal(,. factors=2, scores="r")
biplot(bem.2a$scores, bem.2a$loadings, cex = c(0.5, 0.5))
```

Numbers on plot are row numbers of bem data frame.

# The (awful) biplot



#### Comments

- Variables mostly up ("feminine") and right ("masculine"), accomplished by rotation.
- Some unusual individuals: 311, 214 (low on factor 2), 366 (high on factor 2), 359, 258 (low on factor 1), 230 (high on factor 1).

### Individual 366

bem %>% slice(366) %>% glimpse()

```
## Observations: 1
## Variables: 45
## $ subno
            <db1> 755
## $ helpful <dbl> 7
## $ reliant <dbl> 7
## $ defbel
             <db1> 5
## $ yielding <dbl> 7
## $ cheerful <dbl> 7
## $ indpt
            <dbl> 7
## $ athlet <dbl> 7
## $ shy
            <dbl> 2
             <dbl> 1
## $ assert
## $ strpers <dbl> 3
## $ forceful <dbl> 1
## $ affect <dbl> 7
## $ flatter <dbl> 9
## $ loyal
           <dbl> 7
## $ analyt
           <dbl> 7
## $ feminine <dbl> 7
## $ sympathy <dbl> 7
## $ moody
             <dbl> 1
## $ sensitiv <dbl> 7
## $ undstand <dbl> 7
## $ compass <dbl> 6
## $ leaderab <dbl> 3
           <db1> 7
## $ soothe
## $ risk
            <dbl> 7
## $ decide
            <dbl> 7
## $ selfsuff <dbl> 7
## $ conscien <dbl> 7
          Lecture notes
```

#### Comments xxx

- Individual 366 high on factor 2, but hard to see which traits should have high scores (unless we remember).
- Idea: tidy original data frame to make easier to look things up.

# Tidying original data

```
bem_tidy <- bem %>%
  mutate(row = row_number()) %>%
  gather(trait, score, c(-subno, -row))
bem_tidy
```

```
## # A tibble: 16,236 x 4
##
      subno
              row trait
                           score
##
      <dbl> <int> <chr> <dbl>
                1 helpful
##
                2 helpful
                3 helpful
##
                4 helpful
##
                5 helpful
                6 helpful
                7 helpful
##
                8 helpful
                               7
         10
##
                9 helpful
## 10
         11
               10 helpful
  # ... with 16,226 more rows
```

# Recall data frame of loadings

#### loadings %>% slice(1:10)

```
##
         Factor1
                      Factor2
                                 trait
## 1
      0.3137466
                  0.376484908
                               helpful
      0.4532904
                  0.117140647
                               reliant
## 2
      0.4336574
                 0.192602996
                                defhel
##
##
      -0.1309965
                  0.337629288 yielding
      0.1523718
                  0.370530549 cheerful
## 5
## 6
      0.5212403
                  0.005870336
                                 indpt
      0.2670788
##
                  0.075542858
                                athlet
      -0.4144579 -0.065372760
##
                                   shy
## 9
      0.6049588
                  0.033004846
                                assert
## 10
      0.6569855
                  0.020777649
                               strpers
```

Want to add the factor scores for each trait to our tidy data frame bem\_tidy. This is a left-join (over), matching on the column trait that is in both data frames (thus, the default):

# Looking up loadings

```
bem_tidy %>% left_join(loadings) -> bem_tidy
## Joining, by = "trait"
bem tidy %>% sample n(12)
## # A tibble: 12 x 6
##
     subno
             row trait
                         score
                                Factor1
                                         Factor2
##
     <dbl> <int> <chr>
                         <dbl>
                                  db1>
                                           <dbl>
        99
              61 dominant
                                0.668
                                        -0.245
##
       101
           62 selfsuff
                                0.511
                                         0.134
##
##
       569
             331 soothe
                                0.0606 0.580
       461
             260 tender
                                0.0511
                                         0.710
##
##
       123
            78 affect
                                0.178 0.554
##
       469
             266 soothe
                                0.0606
                                         0.580
##
       301
             175 indpt
                                0.521
                                         0.00587
##
       397
             223 soothe
                             5 0.0606
                                         0.580
##
       149
              97 leaderab
                                0.765
                                         0.0695
       192
                             6 0.0230 0.526
## 10
             113 sympathy
## 11
       572
             334 helpful
                             5
                                0.314
                                         0.376
             340 foullang
## 12
       581
                             4 -0.00493
                                         0.133
```

## Individual 366, high on Factor 2

So now pick out the rows of the tidy data frame that belong to individual 366 (row=366) and for which the Factor2 score exceeds 0.4 in absolute value (our "big" from before):

```
bem_tidy %>% filter(row == 366, abs(Factor2) > 0.4)
```

```
## # A tibble: 11 x 6
##
     subno
             row trait
                          score Factor1 Factor2
     <dbl> <int> <chr>
##
                          <dbl>
                                  <dbl>
                                          <dbl>
##
       755
             366 affect
                                 0.178
                                         0.554
   1
       755
             366 loyal
                                 0.151 0.417
##
##
       755
             366 sympathy 7
                                 0.0230 0.526
       755
             366 sensitiv
##
                                 0.135
                                          0.424
       755
##
             366 undstand
                                 0.0911
                                          0.610
##
       755
                              6 0.114
                                       0.627
             366 compass
       755
             366 soothe
##
                                 0.0606
                                          0.580
##
       755
                             7 0.119
                                         0.430
   8
             366 happy
##
       755
             366 warm
                                 0.0796
                                         0.719
       755
                                 0.0511
                                          0.710
## 10
             366 tender
## 11
       755
             366 gentle
                              7 -0.0187
                                          0.702
```

As expected, high scorer on these.

### Several individuals

Rows 311 and 214 were *low* on Factor 2, so their scores should be low. Can we do them all at once?

```
bem_tidy %>% filter(
  row %in% c(366, 311, 214),
  abs(Factor2) > 0.4
)
## # A tibble: 33 x 6
```

```
##
      subno
              row trait
                           score Factor1 Factor2
      <dbl> <int> <chr>
                            <dbl>
                                    <dbl>
                                            <dbl>
##
##
   1
        369
              214 affect
                                1 0.178
                                            0.554
##
        534
              311 affect
                                5 0.178
                                            0.554
##
        755
              366 affect
                                7 0.178
                                            0.554
        369
                                7 0.151
                                            0.417
##
    4
              214 loval
##
        534
              311 loyal
                                4 0.151
                                            0.417
        755
              366 loval
                                7 0.151
##
                                            0.417
##
   7
        369
              214 sympathy
                                4 0.0230
                                            0.526
   8
        534
              311 sympathy
                                4 0.0230
                                            0.526
##
                                7
##
   9
        755
              366 sympathy
                                   0.0230
                                            0.526
       Lecture notes
                        STAD29: Statistics for the Life and Social Sc.
```

## Individual by column

#### Un-tidy, that is, spread:

```
bem_tidy %>%
 filter(
   row %in% c(366, 311, 214).
   abs(Factor2) > 0.4
 ) %>%
 select(-subno, -Factor1, -Factor2) %>%
 spread(row. score)
## # A tibble: 11 x 4
              `214` `311` `366`
     trait
     <chr> <dbl> <dbl> <dbl>
  1 affect
   2 compass
   3 gentle
  4 happy
   5 loyal
   6 sensitiv
  7 soothe
   8 sympathy
```

366 high, 311 middling, 214 (sometimes) low.

## 9 tender ## 10 undstand ## 11 warm

## Individuals 230, 258, 359

#### These were high, low, low on factor 1. Adapt code:

```
bem_tidy %>%
 filter(row %in% c(359, 258, 230), abs(Factor1) > 0.4) %>%
 select(-subno, -Factor1, -Factor2) %>%
 spread(row, score)
## # A tibble: 17 x 4
      trait
               12301 12581 13591
      <chr>>
               <dbl> <dbl> <dbl>
    1 ambition
   2 assert
    3 compete
   4 decide
   5 defbel
   6 dominant
  7 forceful
   8 individ
   9 indpt
## 10 leadact
## 11 leaderab
## 12 reliant
## 13 risk
## 14 selfsuff
## 15 shy
## 16 stand
## 17 strpers
```

## Is 2 factors enough?

```
Suspect not: bem.2$PVAL
```

```
## objective
## 1.458183e-150
```

 $2\ \mbox{factors}$  resoundingly rejected. Need more. Have to go all the way to  $15\ \mbox{factors}$  to not reject:

```
bem.15 <- bem %>%
  select(-subno) %>%
  factanal(factors = 15)
bem.15$PVAL
```

```
## objective
## 0.132617
```

Even then, only just over 50% of variability explained.

Lecture notes STAD29: Statistics for the Life and Social Sc

# Get 15-factor loadings

into a data frame, as before:

```
loadings <- as.data.frame(unclass(bem.15$loadings)) %>%
mutate(trait = rownames(bem.15$loadings))
```

then show the highest few loadings on each factor.

# Factor 1 (of 15)

```
loadings %>%
  arrange(desc(abs(Factor1))) %>%
  select(Factor1, trait) %>%
  slice(1:10)
```

```
##
        Factor1
                   trait
      0.8127595
                 compass
      0.6756043 undstand
      0.6611293 sympathy
##
      0.6408327 sensitiv
## 5
      0.5971006
                  soothe
## 6
      0.3481290
                    warm
      0.2797159 gentle
      0.2788627
                  tender
## 8
      0.2501505
                 helpful
   10 0.2340594 conscien
```

Compassionate, understanding, sympathetic, soothing: thoughtful of others.

##

```
loadings %>%
  arrange(desc(abs(Factor2))) %>%
  select(Factor2, trait) %>%
  slice(1:10)
```

```
## 1
      0.7615492
                  strpers
       0.7160312 forceful
## 2
      0.6981500
## 3
                   assert
## 4
      0.5041921 dominant.
     0.3929344 leaderab
## 5
## 6
      0.3669560
                    stand
    0.3507080 leadact
## 7
## 8
      -0.3131682 softspok
## 9
      -0.2866862
                      shy
## 10
       0.2602525
                   analyt
```

Factor2

trait

Strong personality, forceful, assertive, dominant: getting ahead.

##

## 10

```
loadings %>%
  arrange(desc(abs(Factor3))) %>%
  select(Factor3, trait) %>%
  slice(1:10)
```

```
0.6697542 reliant
       0.6475496 selfsuff
## 2
## 3
      0.6204018
                    indpt
       0.3899607
                  helpful
## 4
      -0.3393605 gullible
## 5
## 6
       0.3333813
                  individ
## 7
      0.3319003
                   decide
      0.3294806 conscien
## 8
## 9
      0.2877396 leaderab
```

Factor3

trait

defbel

Self-reliant, self-sufficient, independent: going it alone.

0.2804170

##

```
loadings %>%
  arrange(desc(abs(Factor4))) %>%
  select(Factor4, trait) %>%
  slice(1:10)
```

```
0.6956206
                   gentle
      0.6920303
                   tender
      0.5992467
   3
                     warm
      0.4465546
                   affect
      0.3942568 softspok
## 5
      0.2779793
                  lovchil
##
      0.2444249 undstand
## 8
      0.2442119
                    happy
   9
      0.2125905
                    loyal
## 10 0.2022861
                   soothe
```

Factor4

trait

Gentle, tender, warm (affectionate): caring for others.

```
loadings %>%
  arrange(desc(abs(Factor5))) %>%
  select(Factor5, trait) %>%
  slice(1:10)
```

```
##
        Factor5
                    trait
      0.6956846
                  compete
      0.6743459 ambitiou
##
      0.3453425
                    risk
##
      0.3423456
                individ
      0.2808623
                  athlet
##
      0.2695570 leaderab
##
      0.2449656
                   decide
##
      0.2064415 dominant
      0.1928159
                 leadact.
## 10 0.1854989
                 strpers
```

Ambitious, competitive (with a bit of risk-taking and individualism): Being the best.

## 10

```
loadings %>%
  arrange(desc(abs(Factor6))) %>%
  select(Factor6, trait) %>%
  slice(1:10)
```

```
Factor6
                     trait
##
## 1
       0.8675651
                  leadact.
       0.6078869 leaderab
##
##
       0.3378645 dominant.
##
       0.2014835 forceful
##
      -0.1915632
                       shy
## 6
       0.1789256
                      risk
       0.1703440 masculin
## 7
   8
       0.1639190
                    decide
##
##
  9
       0.1594585
                   compete
       0.1466037
                    athlet
```

Acts like a leader, leadership ability (with a bit of Dominant): Taking charge.

```
loadings %>%
  arrange(desc(abs(Factor7))) %>%
  select(Factor7, trait) %>%
  slice(1:10)
```

```
Factor7
                     trait
##
## 1
       0.6698996
                     happy
       0.6667105 cheerful
##
      -0.5219125
                     moody
## 4
       0.2191425
                    athlet
## 5
       0.2126626
                      warm
##
       0.1719953
                    gentle
      -0.1640302 masculin
##
##
  8
       0.1601472
                   reliant
   9
       0.1472926 yielding
##
```

0.1410481

## 10

lovchil

Acts like a leader, leadership ability (with a bit of Dominant): Taking charge.

```
loadings %>%
  arrange(desc(abs(Factor8))) %>%
  select(Factor8, trait) %>%
  slice(1:10)
```

```
##
         Factor8
                     trait
       0.6296764
                    affect
       0.5158355
## 2
                   flatter
      -0.2512066 softspok
##
## 4
       0.2214623
                      warm
       0.1878549
                    tender
## 5
## 6
       0.1846225
                   strpers
##
      -0.1804838
                       shy
       0.1801992
## 8
                   compete
## 9
       0.1658105
                     loyal
       0.1548617
                   helpful
```

Affectionate, flattering: Making others feel good.

## 10

```
loadings %>%
  arrange(desc(abs(Factor9))) %>%
  select(Factor9, trait) %>%
  slice(1:10)
```

```
Factor9
##
                    trait
       0.8633171
## 1
                     stand
## 2
       0.3403294
                   defbel
## 3
      0.2446971
                   individ
## 4
       0.1941110
                      risk
## 5
      -0.1715481
                       shy
       0.1710978
                   decide
## 6
      0.1197126
## 7
                    assert.
     0.1157729 conscien
## 8
## 9
       0.1120308
                    analyt
```

## 10 -0.1115140 gullible

Taking a stand.

##

```
loadings %>%
  arrange(desc(abs(Factor10))) %>%
  select(Factor10, trait) %>%
  slice(1:10)
```

```
0.80751267 feminine
     -0.26378513 masculin
## 2
     0.24507184 softspok
## 3
     0.23175597 conscien
## 4
     0.20192035 selfsuff
## 5
## 6
      0.17584233 yielding
      0.14127067 gentle
## 7
## 8
      0.11282028 flatter
## 9
      0.10934531 decide
## 10 -0.09407978 lovchil
```

Factor10

Feminine. (A little bit of not-masculine!)

trait

```
loadings %>%
    arrange(desc(abs(Factor11))) %>%
    select(Factor11, trait) %>%
    slice(1:10)

## Factor11 trait
## 1 0.91622589 loyal
## 2 0.18949077 affect
## 3 0.15883857 truthful
```

```
## 10 0.08207596 conscien
```

0.09635223 gullible

0.09350623 cheerful

0.12464529

0.10440664

0.10076794

0.09720457

helpful

analyt

tender

lovchil

Loyal.

## 5

##

## 7

##

trait

### Factor 12

##

```
loadings %>%
  arrange(desc(abs(Factor12))) %>%
  select(Factor12, trait) %>%
  slice(1:10)
```

```
0.6106933 childlik
     -0.2845004 selfsuff
##
##
     -0.2786751 conscien
## 4
     0.2588843
                   moody
## 5 0.2013245
                     shy
## 6
     -0.1669301 decide
## 7
     0.1542031 masculin
## 8 0.1455526 dominant.
## 9
      0.1379163 compass
```

## 10 -0.1297408 leaderab

Factor12

Childlike. (With a bit of moody, shy, not-self-sufficient, not-conscientious.)

```
loadings %>%
  arrange(desc(abs(Factor13))) %>%
  select(Factor13, trait) %>%
  slice(1:10)
```

```
Factor13
##
                    trait
## 1
      0.5729242 truthful
      -0.2776490 gullible
##
      0.2631046
## 3
                    happy
     0.1885152
## 4
                     warm
## 5
      -0.1671924
                      shy
## 6
     0.1646031
                    loyal
      -0.1438127 yielding
## 7
## 8
      -0.1302900
                   assert.
## 9
       0.1137074
                   defbel
```

Truthful. (With a bit of happy and not-gullible.)

lovchil

## 10 -0.1105583

##

## 10

```
loadings %>%
  arrange(desc(abs(Factor14))) %>%
  select(Factor14, trait) %>%
  slice(1:10)
```

```
0.4429926
                   decide
      0.2369714 selfsuff
## 2
## 3
    0.1945034 forceful
      -0.1862756 softspok
##
## 5
     0.1604175
                     risk
##
  6
      -0.1484606
                  strpers
      0.1461972 dominant
## 7
## 8
      0.1279456
                    happy
## 9
      0.1154479
                  compass
      0.1054078 masculin
```

Factor14

trait

Decisive. (With a bit of self-sufficient and not-soft-spoken.)

## 3

## 4

```
loadings %>%
  arrange(desc(abs(Factor15))) %>%
  select(Factor15, trait) %>%
  slice(1:10)

## Factor15 trait
## 1 -0.3244092 compass
## 2 0.2471884 athlet
```

```
-0.1638296 affect
## 5
## 6
       0.1632164
                    moody
      -0.1118135
## 7
                  individ
## 8
      0.1100678
                     warm
## 9
      0.1047347 cheerful
## 10
      0.1012342
                  reliant
```

0.1986878

0.2292980 sensitiv

risk

Not-compassionate, athletic, sensitive: A mixed bag. ("Cares about self"?)

# Anything left out? Uniquenesses

```
enframe(bem.15$uniquenesses, name="quality", value="uniq") %>%
    arrange(desc(uniq)) %>%
    slice(1:10)

## # A tibble: 10 x 2

## quality uniq
## <chr> <dbl>
## 1 foullang 0.914
## 2 loychil 0.824
```

Uses foul language especially, also loves children and analytical. So could use even more factors.

3 analyt 0.812 4 yielding 0.791

5 masculin 0.723 6 athlet 0.722

8 gullible 0.700

9 flatter 0.663

10 helpful 0.652

0.703

##

## ##

##

##

##

##

7 shy

Confirmatory factor analysis}

### Section 3

Confirmatory factor analysis}

## Confirmatory factor analysis

- Exploratory: what do data suggest as hidden underlying factors (in terms of variables observed)?
- Confirmatory: have theory about how underlying factors depend on observed variables; test whether theory supported by data:
- does theory provide some explanation (better than nothing)
- can we do better?
- Also can compare two theories about factors: is more complicated one significantly better than simpler one?

### Children and tests again

Previously had this correlation matrix of test scores (based on 145 children):

```
km
```

```
## para sent word add dots
## [1,] 1.000 0.722 0.714 0.203 0.095
## [2,] 0.722 1.000 0.685 0.246 0.181
## [3,] 0.714 0.685 1.000 0.170 0.113
## [4,] 0.203 0.246 0.170 1.000 0.585
## [5,] 0.095 0.181 0.113 0.585 1.000
```

- Will use package lavaan for confirmatory analysis.
- Can use actual data or correlation matrix.
- Latter (a bit) more work, as we see.

## Two or three steps

- Make sure correlation matrix (if needed) is handy.
- Specify factor model (from theory)
- Fit factor model: does it fit acceptably?

### xxx Specifying a factor model

- Jargon: thing you cannot observe called **latent variable**.
- Thing you can observe called manifest variable.
- Model predicts latent variables from manifest variables.
- Model with one factor including all the tests:

```
test.model.1 <- "ability=~para+sent+word+add+dots"</pre>
```

 and a model that we really believe, that there are two factors, a verbal and a mathematical:

test.model.2 <- "\nverbal=~para+sent+word\nmath=~add+dots"</pre>

- Note the format: really all one line between single quotes, but putting it on several lines makes the layout clearer.
- Also note special notation =textasciitilde for "this latent variable depends on these observed variables".
   Lecture notes
   STAD29: Statistics for the Life and Social Sc
   121/127

### Fitting a 1-factor model

Lecture notes

ullet Need to specify model, correlation matrix, n like this:

```
fit1 <- cfa(test.model.1,
    sample.cov = km,
    sample.nobs = 145
)

• Has summary, or briefer version like this:
fit1</pre>
```

```
## lavaan 0.6-3 ended normally after 16 iterations
##
                                                      NI.MTNB
##
     Optimization method
##
     Number of free parameters
                                                          10
##
     Number of observations
##
                                                         145
##
##
     Estimator
                                                          MT.
##
     Model Fit Test Statistic
                                                      59.886
##
     Degrees of freedom
##
     P-value (Chi-square)
                                                       0.000
```

### Two-factor model

```
fit2 <- cfa(test.model.2, sample.cov = km, sample.nobs = 145)
fit2
## lavaan 0.6-3 ended normally after 25 iterations
##
##
     Optimization method
                                                     NI.MTNB
     Number of free parameters
                                                         11
##
##
##
     Number of observations
                                                        145
##
     Estimator
##
                                                         MT.
##
     Model Fit Test Statistic
                                                      2.951
##
     Degrees of freedom
     P-value (Chi-square)
##
                                                      0.566
```

- This fits OK: 2-factor model supported by the data.
- 1-factor model did not fit. We really need 2 factors.
- Same conclusion as from factanal earlier.

## Comparing models

Use anova as if this were a regression:

```
anova(fit1, fit2)
```

```
## Chi Square Difference Test
##
## Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## fit2 4 1776.7 1809.4 2.9509
## fit1 5 1831.6 1861.4 59.8862 56.935 1 4.504e-14
##
##
## fit2
## fit1 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

- 2-factor model fits significantly better than 1-factor.
- No surprise!

### xxx Track and field data, yet again

• cfa works easier on actual data, such as the running records:

```
## # A tibble: 55 \times 9
##
     m100
          m200
                m400
                     m800 m1500 m5000 m10000 marathon
    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                                      <dbl>
                                              <dbl>
##
## 1 10.4 20.8 46.8 1.81 3.7
                               14.0
                                      29.4
                                               138.
## 2 10.3 20.1 44.8 1.74 3.57 13.3
                                      27.7 128.
## 3 10.4 20.8 46.8 1.79 3.6 13.3 27.7 136.
## 4 10.3 20.7 45.0 1.73 3.6 13.2 27.4 130.
## 5 10.3 20.6 45.9 1.8 3.75 14.7 30.6 147.
## 6
     10.2
          20.4 45.2 1.73 3.66 13.6
                                       28.6
                                               133.
## # ... with 49 more rows, and 1 more variable: country <chr>
```

 Specify factor model. Factors seemed to be "sprinting" (up to 800m) and "distance running" (beyond):

track.model <- "\nsprint=~m100+m200+m400+m800\ndistance=~m1500+m5000+m10000

track %>% print(n = 6)

### Fit and examine the model

• Fit the model. The observed variables are on different scales, so we should standardize them first via std.ov:

```
track.1 <- track %>%
  select(-country) %>%
  cfa(track.model, data = ., std.ov = T)
track.1
## lavaan 0.6-3 ended normally after 59 iterations
##
##
     Optimization method
                                                      NI.MTNB
##
     Number of free parameters
                                                          17
##
     Number of observations
##
                                                          55
##
     Estimator
                                                          MT.
##
     Model Fit Test Statistic
                                                     87.608
##
##
     Degrees of freedom
                                                          19
                                                      0.000
##
     P-value (Chi-square)
```

- This fits badly. Can we do better?
- Idea: move middle distance races (800m. 1500m) into a third factor.

  STAD29: Statistics for the Life and Social Sc. 126/127

### xxx Factor model 2

Define factor model:

```
track.model.2 <- "\nsprint=~m100+m200+m400\nmiddle=~m800+m1500</pre>
```

• Fit and examine:

```
track.2 <- track %>%
  select(-country) %>%
  cfa(track.model.2, data = ., std.ov = T)
track.2
## lavaan 0.6-3 ended normally after 72 iterations
```

```
##
## Optimization method NLMINB
```

## Number of free parameters 19
##
## Number of observations 55

##
## Estimator ML
## Model Fit Test Statistic 40.089

## Degrees of freedom 17
## P-value (Chi-square) 0.001

## Comparing the two models

anova(track.1, track.2)

Second model doesn't fit well, but is it better than first?

```
## Chi Square Difference Test

##

## Df AIC BIC Chisq Chisq diff Df diff

## track.2 17 535.49 573.63 40.089

## track.1 19 579.01 613.13 87.608 47.519 2

## Pr(>Chisq)

## track.2

## track.1 4.802e-11 ***

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Oh yes, a lot better.