



# STARC 23 BI-WEEKLY REVIEW



# PROJECT NAME

| SPORT:    | Football                                              |
|-----------|-------------------------------------------------------|
| LEADER:   | Sukruthi Sanampudi                                    |
| MEMBER S: | Avani Dhagam<br>Divyansh Vinayak<br>Siddharth Prakash |



# WEEK #4



## BACKGROUND



Monte Carlo simulation is a powerful technique that can be applied to football to model and analyze complex parameters that involve uncertainty and randomness. It involves generating multiple simulations using random inputs to generate a range of possible outcomes.



# DELIVERABLES

#### Data Collection:

Gathering the football dataset from various sources, ensuring data completeness and accuracy

## Data Processing:

Cleaning and preprocessing the dataset

## Feature Engineering

Selecting relevant features to develop predictive models and optimize strategies.

# User Interface Development:

Creating an interface that will provide actionable insights for decision-making

## PROGRESS MADE

#### **WEEK 1:**

- Explored research
   areas, simulation
   frameworks, and
   libraries.
- Explored datasets, focusing on key features relevant to the research.

### **WEEK 2:**

- A total of 10 Papers were
   reviewed with various
   abstracts in connection with
   our topic to increase the
   overall understanding of the
   technologies that can be
   used.
- Cleaning and Filtering of the dataset was using SQLlite queries

#### **WEEK 3:**

- Data review and analysis:
   understanding the dataset, its
   structure, and identifying any data
   quality issues or anomalies
  - Analyzed the database and created CSVs of players based on their football positions.
  - Utilized heatmap and correlation matrix to identify attribute effects on the overall rating.

## GOALS, OBJECTIVES AND SCOPE



Our major objective for next week is to come with an end to end naive bayes classifier machine learning algorithm which can give us the most accurate and the most optimal top 11 for a specific team based on the various integral parameters that we calculated in the past weeks for each and every position in football

## POTENTIAL OBSTACLES

Limited data quality or availability, requiring careful data preprocessing and feature selection.

Complex interactions between variables require advanced modeling techniques and interpretability.

The need for expert domain knowledge to appropriately interpret and validate the results.

Computational complexity and time constraints for large-scale simulations and model

training.

Addressing these obstacles will be crucial to ensure the accuracy and reliability of the

analysis results.

## PROJECT APPROVAL

Suggestions

**ННННН** 

**APPROVED APPROVED** BY BY: POSITION POSITION DD/MM/YYYY DD/MM/YYYY

Add suggestions