ECBM E4040 Neural Networks and Deep Learning

Introduction to Computing Resources

Zoran Kostić

Columbia University
Electrical Engineering Department &
Data Sciences Institute

Key Course Sites

- 2019: https://courseworks2.columbia.edu/courses/85261
- Webpage with instructions https://ecbm4040.bitbucket.io/
- Google drive
 https://drive.google.com/drive/folders/1y3b9Wk7dSHH5t0V9rrxjGrJ2l
 9Rg-O1e

Deep Learning Deep Learning Tools, Software, Platforms

Deep Learning Frameworks and tools

- Google TensorFlow (https://www.tensorflow.org/)
- PyTorch (<u>http://pytorch.org/</u>)
- Keras (<u>https://keras.io/</u>)
- cuDNN (<u>https://developer.nvidia.com/cudnn</u>)
- •
- Torch (<u>http://torch.ch/</u>)
- Theano (<u>http://deeplearning.net/software/theano/</u>)
- Lasagne (http://lasagne.readthedocs.io/en/latest/index.html)
- Caffee (http://caffe.berkeleyvision.org/)
- •

Tools TensorFlow Framework

An open-source software library for Machine Intelligence

- for numerical computation using data flow graphs.
- Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them.
- The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.
- Major changes in TF2.0: eager execution, keras, "pythonic behavior"
- https://www.tensorflow.org/

Tools (Python) Jupyter Notebook

- The Jupyter Notebook is an open-source web application that allows you to create and share documents
- that contain live code, equations, visualizations and explanatory text.
- Uses include: data cleaning and transformation, numerical simulation, statistical modeling, machine learning and much more.

http://jupyter.org/

Tools -Google Cloud - https://console.cloud.google.com/home/dashboard

Tools Laptop Execution

TensorFlow

https://www.tensorflow.org/install/

Tools

Git: Github (or Bitbucket)

Github/Bitbucket: Source code control, assignment distribution and collection

- https://bitbucket.org/product, https://guides.github.com/
- Server side
- Client side (options: command line, GitKraken, SourceTree, ...)

Course-related:

- https://ecbm4040.bitbucket.io/ for web pages
- assignments distributed through courseworks, or through Github Classroom (2019)

Tools Google (Lion) Drive: docs, sheets, slides

• see syllabus

Tools Courseworks, Piazza and Zoom

Courseworks:

- 2019: https://courseworks2.columbia.edu/courses/85261
- 2018 https://courseworks2.columbia.edu/courses/61441
- 2017: https://courseworks2.columbia.edu/courses/39486

Piazza:

2019 - https://piazza.com/class/jzvkkbkmfny2el

© ZK

Backup Slides

Various

