Math 493 Lecture 9

Thomas Cohn

10/2/19

Group Actions

Defn: Let $P = \mathbb{R}^2$, a plane. A **rigid motion** or **isometry** of P is a distance-preserving bijective map $m: P \to P$ where d(m(x), m(y)) = d(x, y).

The set of rigid motions forms a group M under composition.

Ex: Some elements of M:

- Identity
- Rotation about a point by some amount
- Translation
- Reflection about any line
- Glide, i.e., translation along a line, then reflect over it

Translation: $a \in \mathbb{R}^2$, $t_a \in M$ be translation by a. $t_a(x) = x + a$.

Rotation: $\theta \in \mathbb{R}$, $\rho_{\theta} \in M$ be rotation by θ around 0.

$$\rho_{\theta} \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Reflection: $r \in M$ is a reflection about the x-axis.

$$r\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 \\ -x_2 \end{bmatrix}$$

Prop: Every element of M can be written uniquely in the form $t_a \circ \rho_\theta \circ r^i$, where $a \in \mathbb{R}^2$, $\theta \in [0, 2\pi)$, and

Proof: Let $m \in M$ Suppose m(0) = 0, but m does not preserve orientation. Then mr fixes 0 and preserves orientation. So $mr = \rho_{\theta}$, for some θ , so we can write $m = \rho_{\theta} \circ r$.

Let $m \in M$ be arbitrary. $a = m(\theta) \Rightarrow t_{-a} \circ m$ fixes 0. So $m = t_a \circ \rho_\theta \circ r^i$.

Now, we must show uniqueness. Suppose $t_a \rho_{\theta} r^i = t_b \rho_{\psi} r^j$. Evaluate at 0. Then a = b, so $\rho_{\theta} r^i =$ $\rho_{\psi}r^{j}$. Both maps are orientation preserving or orientation reversing, so i=j. Thus, we have $\rho_{\theta} = \rho_{\psi}$, so $\theta = \psi$. \square

Identities

- $\bullet \ t_a t_b = t_{a+b}$
- $\bullet \ \rho_{\theta}\rho_{\psi} = \rho\theta + \psi$
- $\rho_{\theta} = \rho_{\theta \mod 2\pi}$ $(\rho_{\theta}t_{a}\rho_{\theta}^{-1})(x) = (\rho_{\theta}t_{a})(\rho_{\theta}^{-1}(x)) = \rho_{\theta}(\rho_{\theta}^{-1}(x) + a) = x + \rho_{\theta}(a) = t_{\rho_{\theta}(a)}(x)$ Similarly, $rt_{a}r^{-1} = t_{r(a)}$

$$\bullet \ r\rho_{\theta}r^{-1} = \rho_{-\theta}$$

This is a complete list of identities

$$\begin{split} (t_{a}\rho_{\theta}r^{i})(t_{b}\rho_{\psi}r^{j}) &= t_{a}\rho_{\theta}(r^{i}t_{b}r^{-i})r^{i}\rho_{\psi}r^{j} \\ &= t_{a}\rho_{\theta}t_{r^{i}(b)}r^{i}\rho_{\psi}r^{j} \\ &= t_{a}(\rho_{\theta}t_{r^{i}(b)}\rho_{-\theta})\rho_{\theta}r^{i}\rho_{\psi}r^{j} \\ &= t_{a}t_{\rho_{\theta}(r^{i}b)}\rho_{\theta}r^{i}\rho_{\psi}r^{j} \\ &= t_{a+\rho_{\theta}(r^{i}b)}\rho_{\theta}r^{i}\rho_{\psi}r^{j} \\ &= t_{a+\rho_{\theta}(r^{i}b)}\rho_{\theta}(r^{i}\rho_{\psi}r^{-i})r^{i+j} \\ &= t_{a+\rho_{\theta}(r^{i}b)}\rho_{\theta}\rho_{(-1)^{i}\psi}r^{i+j} \\ &= t_{a+\rho_{\theta}(r^{i}b)}\rho_{\theta+(-1)^{i}\psi}r^{i+j} \end{split}$$

Some consequences of what we've learned:

- The map $M \stackrel{f}{\to} \{\pm 1\}$ detecting orientation is a group homomorphism. $f(t_a \rho_\theta r^i) = (-1)^i$. By the above computation, f(xy) = f(x)f(y).
- $T \subset M$ is the subgroup consisting of translations. Then we have the group isomorphism $\mathbb{R}^2 \to T$ where $A \mapsto t_a$. By the identities we have above, T is a normal subgroup of M.
- $O(2) \subset M$ is the subgroup consisting of $m \in M$ s.t. m(0) = 0. We have a surjective group homomorphism $f: M \to O(2)$ where $t_a \mapsto 1$, $\rho_\theta \mapsto \rho_\theta$, $r \mapsto r$. Thus, $\ker(f) = T$, so $M/T \cong O(2)$.