Answers to exercises in How To Prove It

Son To <son.trung.to@gmail.com>

StaffPoint Oy

July 11, 2019

This is to answer all the questions in the books "How to prove it" by Velleman. Comments are appreciated!

Contents

1 Introduction 3

1 Introduction

Exercise 1.1.

- (a) a=3, b=5 \Rightarrow $x=2^5-1=31$, $y=1+2^5+2^{10}=1057$
- (b) Since 32,767 is not a prime, $2^{32,767}-1$ is not a prime either. Therefore, there exists a positive integer $0 < x < 2^{32,767}-1$ such that $2^{32,767}-1$ is divisible by x. Hence, by (a), $x=2^{31}-1$ satisfies this.

Exercise 1.2.

LACICIDO 1.2.		
n	$3^n - 1$	$3^n - 2^n$
2, prime	8, not prime	5, prime
3, prime	26, not prime	19, prime
4	80, not prime	65, not prime
5, prime	242, not prime	211, prime
6	728, not prime	665, not prime
7, prime	2,186, not prime	2,059, prime
8	$6,560\mathrm{,}$ not prime	6,305, not prime
9	19,682, not prime	$19,171 = 19 \cdot 1,009$, not prime
10	59,048, not prime	58,025, not prime

Conjecture 1.1. 3^n-1 is even for all n.

Conjecture 1.2. If n is prime, 3^n-2^n is prime.

Conjecture 1.3. If n is not prime, 3^n-2^n is not prime.

Exercise 1.3.

We have the following theorem.

Theorem 1.1 (Theorem 3). There are infinitely many prime numbers.

Its proof gives a method of finding a prime number n different from the ones in a given list. However, one needs to be careful of prime numbers not in the list and smaller than n, since the proof assumes that primes are finite. Example, $n=3\cdot 5+1=15+1=16$ is not a prime number. Hence,

Remark 1.1 (Method). To find a prime different from the list, check if it is divisible by other primes missing from the list.

- (a) Let $n=2\cdot 5+1=11$. n is not divisible by 3,7, a new prime number.
- (b) Let $n=2\cdot 3+1=7$. n is not divisible by 5,11, a new prime number.

Exercise 1.4.

24, 25, 26, 27, 28

Exercise 1.5.

$$2^4 \cdot (2^5 - 1) = 496$$

$$2^4 \cdot (2^5 - 1) = 496$$

 $2^6 \cdot (2^7 - 1) = 127$.

Exercise 1.6.

 $\textit{Conjecture } \ 1.4. \ 3, 5, 7$ is the unique triplet prime.

I do not know now to prove it.