"sup" en "inf"

Definisie 8

- 1. 'n Versameling A van reële getalle is na bo begrens as daar 'n reële getal M bestaan sodat $x \leq M$ vir alle $x \in A$. Ons noem M 'n bogrens vir A.
- 2. 'n Versameling A van reële getalle is na onder begrens as daar 'n reële getal m bestaan sodat $x \ge m$ vir alle $x \in A$. Ons noem m 'n ondergrens vir A.
- 3. 'n Versameling $A \subset \mathbb{R}$ is *begrens* as A na bo sowel as na onder begrens is.
- 4. As $A \subset \mathbb{R}$ nie begrens is nie, dan sê ons dat A onbegrens is.

Definisie 9

As 'n versameling $A \subset \mathbb{R}$ 'n kleinste bogrens S het, dan noem ons S die supremum of sup van A en skryf $S = \sup A$. Dit beteken:

- 1. S is 'n bogrens vir A.
- 2. As T enige bogrens vir A is, dan is $S \leq T$.

Definisie 11

As 'n versameling $A \subset \mathbb{R}$ 'n grootste ondergrens I het, dan noem ons I die *infimum* of *inf* van A en skryf $I = \inf A$. Dit beteken:

- 1. I is 'n ondergrens vir A.
- 2. As J enige ondergrens vir A is, dan is $I \geq J$.

Definisie 9

As 'n versameling $A \subset \mathbb{R}$ 'n kleinste bogrens S het, dan noem ons S die *supremum* of *sup* van A en skryf $S = \sup A$. Dit beteken:

- 1. S is 'n bogrens vir A.
- 2. As T enige bogrens vir A is, dan is $S \leq T$.

Stelling 10

Laat $A \subset \mathbb{R}$ wees. Dan is $\sup A = S$ as en slegs as die volgende twee voorwaardes geld:

- 1. S is 'n bogrens vir A.
- 2. Vir elke $\epsilon > 0$ bestaan daar 'n $x \in A$ sodat $x > S \epsilon$.

Stelling 12

Laat $A \subset \mathbb{R}$ wees. Dan is $\inf A = I$ as en slegs as die volgende twee voorwaardes geld:

- 1. I is 'n ondergrens vir A.
- 2. Vir elke $\epsilon > 0$ bestaan daar 'n $x \in A$ sodat $x < I + \epsilon$.

Die Volledigheidseienskap van $\mathbb R$

Elke nie-leë versameling reële getalle wat na bo begrens is, het 'n kleinste bogrens.

Gevolg

Elke nie-leë versameling reële getalle wat na onder begrens is, het 'n grootste ondergrens.

Stelling 13

Gestel f is stygend op $[a, \infty)$. Dan bestaan $\lim_{x \to \infty} f(x)$ as en slegs as f na bo begrens is op $[a, \infty)$, in welke geval

$$\lim_{x \to \infty} f(x) = \sup\{f(x) : x \in [a, \infty)\}.$$

Stelling 10

Laat $A \subset \mathbb{R}$ wees. Dan is $\sup A = S$ as en slegs as die volgende twee voorwaardes geld:

- 1. S is 'n bogrens vir A.
- 2. Vir elke $\epsilon > 0$ bestaan daar 'n $x \in A$ sodat $x > S \epsilon$.

Die vergelykingstoets vir oneintlike integrale van die eerste soort

Gestel $a \in \mathbb{R}$ en f en g is kontinue funksies op $[a, \infty)$ sodat $0 \le g(x) \le f(x)$ vir alle $x \ge a$.

- 1. As $\int_a^\infty f(x) \, dx$ konvergent is, dan is $\int_a^\infty g(x) \, dx$ konvergent.
- 2. As $\int_a^\infty g(x) \, dx$ divergent is, dan is $\int_a^\infty f(x) \, dx$ divergent.

Stelling 13

Gestel f is stygend op $[a, \infty)$. Dan bestaan $\lim_{x \to \infty} f(x)$ as en slegs as f na bo begrens is op $[a, \infty)$, in welke geval

$$\lim_{x \to \infty} f(x) = \sup\{f(x) : x \in [a, \infty)\}.$$

Die vergelykingstoets vir oneintlike integrale van die tweede soort

Gestel a < b, f en g is kontinu maar onbegrens op (a,b] en $0 \le g(x) \le f(x)$ vir alle $x \in (a,b]$.

- 1. As $\int_a^b f(x) dx$ konvergent is, dan is $\int_a^b g(x) dx$ konvergent.
- 2. As $\int_a^b g(x) dx$ divergent is, dan is $\int_a^b f(x) dx$ divergent.

Die vergelykingstoets vir oneintlike integrale van die eerste soort

Gestel $a \in \mathbb{R}$ en f en g is kontinue funksies op $[a, \infty)$ sodat $0 \le g(x) \le f(x)$ vir alle $x \ge a$.

- 1. As $\int_a^\infty f(x)\,dx$ konvergent is, dan is $\int_a^\infty g(x)\,dx$ konvergent.
- 2. As $\int_a^\infty g(x) dx$ divergent is, dan is $\int_a^\infty f(x) dx$ divergent.

Huiswerk

Ex. 7.8 nr. 49, 53

Die kwosiënttoets vir oneintlike integrale van die eerste soort

Gestel $a \in \mathbb{R}$ en f en g is kontinue funksies op $[a,\infty)$ sodat $f(x) \geq 0$ en $g(x) \geq 0$ vir alle $x \geq a$.

- 1. As $\lim_{x\to\infty}\frac{f(x)}{g(x)}=0$ en $\int_a^\infty g(x)\,dx$ is konvergent, dan is $\int_a^\infty f(x)\,dx$ konvergent.
- 2. As $\lim_{x \to \infty} \frac{f(x)}{g(x)} = A > 0$, dan is $\int_a^{\infty} g(x) \, dx$ konvergent as en slegs as $\int_a^{\infty} f(x) \, dx$ konvergent is.
- 3. As $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$ en $\int_a^{\infty} g(x) \, dx$ is divergent, dan is $\int_a^{\infty} f(x) \, dx$ divergent.

Die kwosiënttoets vir oneintlike integrale van die tweede soort

Gestel a < b, f en g is kontinu maar onbegrens op (a,b] en $f(x) \ge 0$ en $g(x) \ge 0$ vir alle $x \in (a,b]$.

- 1. As $\lim_{x\to a+} \frac{f(x)}{g(x)} = 0$ en $\int_a^b g(x)\,dx$ is konvergent, dan is $\int_a^b f(x)\,dx$ konvergent.
- 2. As $\lim_{x\to a+} \frac{f(x)}{g(x)} = A > 0$, dan is $\int_a^b g(x)\,dx$ konvergent as en slegs as $\int_a^b f(x)\,dx$ konvergent is.
- 3. As $\lim_{x\to a+} \frac{f(x)}{g(x)} = \infty$ en $\int_a^b g(x)\,dx$ is divergent, dan is $\int_a^b f(x)\,dx$ divergent.

Huiswerk

Oefeninge 2 en 3 (Sunlearn)

Definisie 14

Gestel f is kontinu op $[a, \infty)$. Dan is $\int_a^\infty f(x) \, dx$ absoluut konvergent indien $\int_a^\infty |f(x)| \, dx$ konvergent is.

 $\int_a^\infty f(x)\,dx$ is voorwaardelik konvergent indien $\int_a^\infty f(x)\,dx$ konvergent is en $\int_a^\infty |f(x)|\,dx$ divergent is.

Stelling 15

As $\int_a^\infty f(x) dx$ absoluut konvergent is, dan is $\int_a^\infty f(x) dx$ konvergent.