Міністерство освіти і науки України Національний авіаційний університет Навчально-науковий інститут комп'ютерних інформаційних технологій Кафедра комп'ютеризованих систем управління

Лабораторна робота № з дисципліни «Телекомунікаційні технології комп'ютерних мереж» на тему «Формування коду Хемінга» Варіант №6

> Виконав: студент ННІКІТ групи СП-325 Клокун В. Д. Перевірив: Пушкін Ю. О.

Київ 2018

1 МЕТА РОБОТИ

Ознайомитись з методиками формування простого і посиленого кодів Хемінга. Здобути практичні навички побудови кодів.

2 ХІД РОБОТИ

Відповідно до варіанта для виконання роботи дано число $N=164_{\rm dec}$.

2.1 Формування простого коду Хемінга

Нехай слово A — результат кодування заданого числа N кодом Хемінга. Для формування слова A перетворюємо задане число N в двійкову систему числення:

$$N = 164_{\rm dec} = 10100100_{\rm bin}$$
.

Як бачимо, кількість біт передаваної інформації m=8. Простий код Хемінга розрахований на коригування 1 помилки в даних, тому кількість контрольних розрядів k має задовольняти нерівність:

$$k \geqslant \log_2(k+m+1),$$
$$\geqslant \log_2(k+9).$$

Найменшим числом, яке задовольняє нерівність, є $k_{\min}=4$, що і буде кількістю контрольних розрядів. Позначимо загальну кількість розрядів, тобто довжину слова A як |A| та обчислимо її:

$$|A| = m + k_{\min} = 8 + 4 = 12.$$

Код Хемінга передбачає, що контрольні розряди розташовуються на позиціях слова a_i , де $i=2^b,b\in\{0,1,2,...\}$. Тому запишемо слово A, залишаючи ще невідомі контрольні розряди a_1,a_2,a_4,a_8 пустими:

Щоб знайти значення контрольного розряду, необхідно обчислити суму по модулю 2 (позначається \oplus) усіх розрядів, які він покриває. Щоб визначити розряди, які покриває контрольний розряд, зобразимо порядкові номери i розрядів слова A у десятковій та двійковій системах числення (табл. 1). До контрольної групи C_j ввійдуть ті розряди, в яких біт $i_j = 1$.

Табл. 1: Номер розряду i слова A у двійковій та десятковій системах числення

				$i_{ m bin}$
$i_{ m dec}$	i_4	i_3	i_2	i_1
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
Контрольна група (якщо $i_j = 1$)	C ₄	C_3	C_2	C_1

Розглянувши двійкове представлення індексів розрядів (табл. 1), визначили приналежність розрядів до кожної контрольної групи:

$$C_1 = \{a_1, a_3, a_5, a_7, a_9, a_{11}\},$$

$$C_2 = \{a_2, a_3, a_6, a_7, a_{10}, a_{11}\},$$

$$C_3 = \{a_4, a_5, a_6, a_7, a_{12}\},$$

$$C_4 = \{a_8, a_9, a_{10}, a_{11}, a_{12}\}.$$

Обчислимо контрольні розряди кожної контрольної групи, вважаючи значення пустих контрольних розрядів за 0:

$$\begin{split} C_1 &\mapsto a_1 = a_1 \oplus a_3 \oplus a_5 \oplus a_7 \oplus a_9 \oplus a_{11} = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 = 1, \\ C_2 &\mapsto a_2 = a_2 \oplus a_3 \oplus a_6 \oplus a_7 \oplus a_{10} \oplus a_{11} = 0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 0 = 1, \\ C_3 &\mapsto a_4 = a_4 \oplus a_5 \oplus a_6 \oplus a_7 \oplus a_{12} = 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 1, \\ C_4 &\mapsto a_8 = a_8 \oplus a_9 \oplus a_{10} \oplus a_{11} \oplus a_{12} = 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 1. \end{split}$$

Впишемо знайдені контрольні розряди:

$$a_1$$
 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_{10} a_{11} a_{12}

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Таким чином ми отримали слово $A=111101001100_{\rm bin}$, закодувавши задане число N кодом Хемінга.

Для перевірки правильності кодування необхідно обчислити суму по модулю 2 для кожної контрольної групи. Якщо кодування виконано правильно, кожна сума s_i повинна дорівнювати 0. Виконуємо обчислення:

$$\begin{split} s_1 &= a_1 \oplus a_3 \oplus a_5 \oplus a_7 \oplus a_9 \oplus a_{11} = 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 = 0, \\ s_2 &= a_2 \oplus a_3 \oplus a_6 \oplus a_7 \oplus a_{10} \oplus a_{11} = 1 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 0 = 0, \\ s_3 &= a_4 \oplus a_5 \oplus a_6 \oplus a_7 \oplus a_{12} = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 0, \\ s_4 &= a_8 \oplus a_9 \oplus a_{10} \oplus a_{11} \oplus a_{12} = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 0. \end{split}$$

Як бачимо, усі суми дорівнюють 0, тому кодування виконано правильно.

2.2 Формування посиленого коду Хемінга

Нехай слово B — результат кодування заданого числа N посиленим кодом Хемінга. Оскільки принцип посиленого кодування Хемінга аналогічний простому, щоб сформувати слово B для заданого числа N, до слова A (пп. 2.1) додаємо розряд b_{13} , який міститиме загальний біт парності p. Значення p буде сумою по модулю 2 усіх розрядів слова:

$$b_{13} = p = \bigoplus_{i=1}^{12} b_i = 1.$$

Вписуємо отримане значення b_{13} :

$$b_1$$
 b_2 b_3 b_4 b_5 b_6 b_7 b_8 b_9 b_{10} b_{11} b_{12} b_{13} $B = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$

Таким чином ми сформували слово B, яке містить задане число N, закодоване посиленим кодом Хемінга. Таке кодування дозволяє коригувати 1 помилку та виявляти 2.

2.3 Декодування та емуляція передачі

При передачі даних приймається слово, закодоване одним з кодів Хемінга, його контрольні розряди відкидаються та обчислюються заново за тим же алгоритмом, яким проводилось кодування (описані в пп. 2.1, 2.2). В залежності від результату обчислення та його відповідності отриманим контрольним розрядам робиться висновок, чи були дані передані правильно.

2.3.1 Для простого коду Хемінга

Припустимо, що передавач відправив слово C, а приймач отримав слово C'. Число S' складається з контрольних розрядів слова C', як вони і були отримані; число S'' — з контрольних розрядів, заново обчислених приймачем з розрядів даних. Для виявлення помилки обчислюється синдром E:

$$E = S' \oplus S''$$
.

Якщо E=0, тобто всі контрольні розряди співпадають, помилки при передачі не виявлені і відсутні, якщо відбулось не більше 1 помилки. Якщо E містить лише один розряд $e_i=1$, тобто контрольні розряди відрізняються лише одним бітом, то при передачі виникла помилка лише в цьому контрольному розряді. В інших випадках значення синдрому E буде вказувати на індекс розряду, в якому відбулась помилка.

Наприклад: нехай при передачі передавач відправив слово A (пп. 2.1):

$$a_1$$
 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_{10} a_{11} a_{12}

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Приймач отримав слово A', і відбулась 1 помилка у розряді a'_5 (тут і далі помилкові розряди позначаються колом). Тоді отримане слово A' виглядатиме так:

$$a_1'$$
 a_2' a_3' a_4' a_5' a_6' a_7' a_8' a_9' a_{10}' a_{11}' a_{12}'
 $A' = \boxed{1}$ $\boxed{1}$ $\boxed{1}$ $\boxed{1}$ $\boxed{1}$ $\boxed{1}$ $\boxed{0}$ $\boxed{1}$ $\boxed{0}$ $\boxed{1}$ $\boxed{0}$ $\boxed{0}$

Запишемо заново обчислюване слово A'', відкинувши отримані контрольні розряди:

Обчислюємо контрольні розряди слова A'' за отриманими розрядами даних:

$$a_{1}'' = a_{1}'' \oplus a_{3}'' \oplus a_{5}'' \oplus a_{7}'' \oplus a_{9}'' \oplus a_{11}'' = 0,$$

$$a_{2}'' = a_{2}'' \oplus a_{3}'' \oplus a_{6}'' \oplus a_{7}'' \oplus a_{10}'' \oplus a_{11}'' = 1,$$

$$a_{4}'' = a_{4}'' \oplus a_{5}'' \oplus a_{6}'' \oplus a_{7}'' \oplus a_{12}'' = 0,$$

$$a_{8}'' = a_{8}'' \oplus a_{9}'' \oplus a_{10}'' \oplus a_{11}'' \oplus a_{12}'' = 1.$$

Вписуємо обчислені контрольні розряди слова A'':

$$a_1'' \quad a_2'' \quad a_3'' \quad a_4'' \quad a_5'' \quad a_6'' \quad a_7'' \quad a_8'' \quad a_9'' \quad a_{10}'' \quad a_{11}'' \quad a_{12}''$$

$$A'' = \boxed{0} \boxed{1} \quad 1 \quad \boxed{0} \boxed{1} \quad 1 \quad 0 \quad \boxed{1} \quad 0 \quad 1 \quad 0 \quad 0$$

Таким чином отримані числа S'=1111 та S''=0101, з їх допомогою обчислюємо розряди синдрому e_1,e_2,e_3,e_4 :

$$e_1 = a_8'' \oplus a_8' = 1 \oplus 1 = 0,$$

 $e_2 = a_4'' \oplus a_4' = 0 \oplus 1 = 1,$
 $e_3 = a_2'' \oplus a_2' = 1 \oplus 1 = 0,$
 $e_4 = a_1'' \oplus a_1' = 0 \oplus 1 = 1.$

З обчислених значень розрядів синдрому складаємо його значення $E=0101_{\rm bin}=5_{\rm dec}$, що вказує на помилку у розряді a_5' . Для її виправлення достатньо змінити значення помилкового розряду a_5' .

2.3.2 Для посиленого коду Хемінга

Алгоритм декодування та перевірки помилок для посиленого коду Хемінга аналогічний простому (ппп. 2.3.1), але внесення додаткового загального розряду парності p вносить особливості інтерпретації контрольних розрядів (табл. 2).

Табл. 2: Виявлення помилок у посиленому коді Хемінга; E — синдром, p — загальний біт парності

E	p	Тип помилки	Опис
0	0	Немає	При передачі помилки не відбулось
≠ 0	1	Одиночна	Помилку можна виправити: у синдромі зберігається позиція помилкового розряду
≠ 0	0	Подвійна	Помилку неможливо виправити
0	1	Парність	Помилка виникла лише у загальному біті парності p , її можна виправити

Наприклад: нехай при передачі передавач відправив слово B (пп. 2.2):

$$b_1$$
 b_2 b_3 b_4 b_5 b_6 b_7 b_8 b_9 b_{10} b_{11} b_{12} b_{13}

$$B = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Приймач отримав слово B', і виникло 2 помилки: у розрядах b_5' і b_{10}' . Тоді отримане слово B' виглядатиме так:

$$b'_{1} \quad b'_{2} \quad b'_{3} \quad b'_{4} \quad b'_{5} \quad b'_{6} \quad b'_{7} \quad b'_{8} \quad b'_{9} \quad b'_{10} \quad b'_{11} \quad b'_{12} \quad b'_{13}$$

$$B' = \boxed{1} \quad \boxed{1} \quad \boxed{1} \quad \boxed{1} \quad \boxed{1} \quad \boxed{0} \quad \boxed{0} \quad \boxed{0} \quad \boxed{0} \quad \boxed{1}$$

Запишемо заново обчислюване слово B'', відкинувши отримані контрольні розряди:

Обчислюємо контрольні розряди $b_1'', b_2'', b_3'', b_4''$ слова B'' за отриманими розрядами даних (загальний біт парності $p = b_{13}$ при розрахунках контрольних розрядів не враховується):

$$\begin{aligned} b_1'' &= b_1'' \oplus b_3'' \oplus b_5'' \oplus b_7'' \oplus b_9'' \oplus b_{11}'' = 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 = 0, \\ b_2'' &= b_2'' \oplus b_3'' \oplus b_6'' \oplus b_7'' \oplus b_{10}'' \oplus b_{11}'' = 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 = 0, \\ b_4'' &= b_4'' \oplus b_5'' \oplus b_6'' \oplus b_7'' \oplus b_{12}'' = 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 = 0, \\ b_8'' &= b_8'' \oplus b_9'' \oplus b_{10}'' \oplus b_{11}'' \oplus b_{12}'' = 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 = 0. \end{aligned}$$

Вписуємо обчислені контрольні розряди $b_1'', b_2'', b_3'', b_4''$:

$$b_1'' \quad b_2'' \quad b_3'' \quad b_4'' \quad b_5'' \quad b_6'' \quad b_7'' \quad b_8'' \quad b_9'' \quad b_{10}'' \quad b_{11}'' \quad b_{12}'' \quad b_{13}''$$

$$B'' = \boxed{0} \quad \boxed{0} \quad 1 \quad \boxed{0} \quad \boxed{1} \quad 1 \quad 0 \quad \boxed{0} \quad 0 \quad \boxed{0} \quad 0 \quad \boxed{0} \quad \boxed{0}$$

Обчислюємо загальний біт парності $p = b_{13}'' = \bigoplus_{i=1}^{12} b_i'' = 0$ та вписуємо його в обчислене слово B'':

$$b_1'' \quad b_2'' \quad b_3'' \quad b_4'' \quad b_5'' \quad b_6'' \quad b_7'' \quad b_8'' \quad b_9'' \quad b_{10}'' \quad b_{11}'' \quad b_{12}'' \quad b_{13}''$$

$$B'' = \boxed{0} \quad \boxed{0} \quad 1 \quad \boxed{0} \quad \boxed{1} \quad 1 \quad 0 \quad \boxed{0} \quad 0 \quad \boxed{0} \quad 0 \quad \boxed{0}$$

Таким чином отримані числа S'=1111 та S''=0000, з їх допомогою обчислюємо розряди синдрому e_1,e_2,e_3,e_4 :

$$e_1 = b_8'' \oplus b_8' = 0 \oplus 1 = 1,$$

 $e_2 = b_4'' \oplus b_4' = 0 \oplus 1 = 1,$
 $e_3 = b_2'' \oplus b_2' = 0 \oplus 1 = 1,$
 $e_4 = b_1'' \oplus b_1' = 0 \oplus 1 = 1.$

Як бачимо, синдром $E \neq 0$, і біт парності p = 0, тому робимо висновок, що під час передачі сталась подвійна помилка, яку неможливо виправити.

3 Висновок

Виконуючи дану лабораторну роботу, ми ознайомились з методиками формування простого і посиленого кодів Хемінга, а також здобули практичні навички побудови кодів.