COMO FUNCIONA A SIMULAÇÃO

Capítulo 2 - Aula 2

Transparências geradas da obra do Prof. Paulo J. Freitas, "Introdução à Modelagem e Simulação de Sistemas".

Tópicos

- **◆ Introdução**
- **◆ Um Exemplo Simples**
- **♦ Como Tratar e Analisar Problemas**
- Tratando a Variabilidade dos Sistemas
- Incorporando a Variabilidade aos Modelos Computacionais
- ◆ Terminologia Básica Utilizada em Modelagem e Simulação de Sistemas
- Funcionamento de um Programa de Simulação

◆ A idéia central deste capítulo é fornecer aos usuários da simulação a compreensão e o conhecimento mínimo necessário ao bom emprego desta técnica.

◆ Os tópicos aqui abordados, envolvem alguns conceitos que facilitam a execução de uma das tarefas mais penosas atribuídas aos usuários de programas de simulação: educar e fazer compreender a outras pessoas a metodologia e os benefícios advindos do uso deste técnica (Gogg e Mott, 1996).

- ◆ Um modelo computacional (programa de computador) para a simulação de um sistema executa, seqüencialmente e de maneira repetitiva, um conjunto de instruções.
- ◆ Na medida da execução das instruções, os valores que determinadas variáveis podem assumir são alterados, uma vez que se modificam as condições que influenciam o comportamento do modelo.
- ◆ As variáveis mudam na medida em que o tempo simulado progride. Além disso, como se tratam (na maioria das vezes) de sistemas estocásticos, tais variáveis não tem seus valores antecipadamente determinados.

Para que o modelo computacional evolua dinamicamente, uma das soluções encontradas pelos pesquisadores foi construir programas orientados a eventos.

◆ A medida da passagem do tempo, determinados acontecimentos (eventos) provocam alterações em alguns elementos do programa (variáveis de estado), os quais são responsáveis por informar a ocorrência de mudanças nas condições que envolvem o modelo.

- Modelos computacionais
 - ✓ Fábrica
 - ✓ Banco
 - ✓ Rede de computadores

- Acontecimentos (eventos)
 - uma peça chegando para ser processada por uma máquina;
 - um cliente chegando em um banco para realizar uma transação;
 - a chegada de uma requisição em um servidor de arquivos em uma rede local de computadores;

Um Exemplo Simples

- Sistemas de Fila Simples
 - ✓ Posto de lavação de automóveis (figura 2.1).
- Informações:
 - ✓ Dependendo do dia da semana e da hora escolhida, é possível que, ao chegar ao posto, um cliente encontre o mesmo ocupado.
 - ✓ Prevendo tal situação, o proprietário criou um área de espera na qual os clientes podem aguardar (por ordem de chegada) pelo momento de serem atendidos.

Algumas das dúvidas do proprietário:

- ✓ Será que a área de espera disponível (para no máximo quatro automóveis) é suficiente para acomodar a clientela do sábado pela manhã ou estou perdendo clientes por falta de espaço?
- ✓ Será que os serviços estão sendo prestados em tempo aceitável, de tal forma que os clientes não fiquem muito tempo no sistema?
- ✓ Será que é necessário contratar um operador auxiliar para este período de alta demanda?

- Para um modelo duas informações básicas são necessárias:
 - ✓ Com que freqüência ocorrem chegadas de carros para serem servidos?
 - ✓ Qual o tempo necessário para completar o serviço?

- ◆ Informações do proprietário sobre as manhãs de sábado:
 - ✓ "chegam mais ou menos a cada 10 min."
 - ✓ "tempo de atendimento é de "aproximadamente 15 min.".
 - ✓ "No entanto (segue afirmando) as vezes é ao contrário. O operador leva cerca de 10 min. para lavar e os carros demoram mais para chegar".

- Considerando as duas primeiras afirmações do proprietário:
 - ✓ A freqüência com que se observam chegadas de automóveis no sistema é maior do que a freqüência de observações de saídas de automóveis, uma vez que o tempo de atendimento (± 15 min.) é maior que o intervalo entre chegadas de carros (± 10 min.).
 - ✓ Observando-se um sistema com este comportamento por um período razoável, por duas horas por exemplo, com toda certeza a área de espera disponível não seria suficiente para a fila que seria formada.

◆ A última observação do proprietário ("às vezes é ao contrário"), levaria a uma situação totalmente diferente.

✓ Neste caso, o sistema apresentaria folgas, isto é, a área de espera não seria necessária.

- ◆ Sistema de fila simples, três alternativas de tratamento:
 - ✓ tratamento por emprego de bom senso e um pouco de adivinhação, o qual batizaremos de *achometria*;
 - ✓ tratamento analítico, empregando-se, por exemplo, teoria das filas;
 - ✓ tratamento por meio de *modelagem e simulação*.

- ◆ Bom senso + imaginação para "adivinhar" o futuro.
- ◆ Embora desaconselhável, esta é uma das técnicas de apoio a decisão mais utilizadas (*a mais econômica?*).
- Dados.
 - ✓ Freqüência com que os automóveis chegam ao posto (TEC);
 - ✓ Tempo necessário para efetuar os serviços (TS).

Situação	TEC - Tempo entre Chegadas	TS - Tempo de Serviço	
A	± 10 min	≅ 15 min	
В	≥ 10 min	± 10 min	

Na situação A:

- ✓ os automóveis chegam mais rápidos do que podem ser servidos;
- ✓ alta a possibilidade de ocorrerem congestionamentos.
- considerando este possível cenário, as decisões poderiam ser, por exemplo:
 - aumentar a área de espera (alugando um terreno vizinho, por exemplo);
 - contratar mais um empregado e comprar mais um elevador hidráulico;
 - ambas as medidas acima.

Situação B:

- ✓ O sistema apresenta uma certa folga (tempo de atendimento é menor do que os tempos decorridos entre as chegadas;
- ✓ Raramente ocorrerão filas de espera.
- ✓ Neste caso, a decisão do proprietário seria não tomar nenhuma medida.

- Poucas informações adicionais podem ser obtidas.
- O processo de *achometria*, poderá conduzir a resultados nada compensadores.
- ◆ A verdade neste caso deve, provavelmente, se encontrar entre estes dois extremos.
- ◆ Falta de elementos para o exercício da previsão e da avaliação.
- ◆ Técnicas mais apuradas permitem a análise de desempenho do sistema e de suas possíveis alternativas, diante de diversos cenários.

- Conjunto de fórmulas matemáticas, as quais permitem calcular a maioria das respostas desejadas pelo proprietário, tais como:
 - ✓ tempo médio dos serviços,
 - ✓ tamanho médio da fila na área de espera,
 - ✓ tempo médio de espera,
 - ✓ proporção de ocupação do operador, etc..

Teoria de Filas – uma visão geral

- é um ramo da probabilidade que estuda o fenômeno da formação de filas de solicitantes de serviços, fornecidos por um determinado recurso;
- ◆ Permite estimar importantes medidas de desempenho de um sistema a partir de propriedades mensuráveis das filas;

Teoria de filas - simbologia

Teoria de Filas - componentes

Caracterização de uma Fila

- Processo de chegada;
- Distribuição dos tempos de serviço;
- Número de servidores
- Capacidade do sistema
- Tamanho da população
 - ✓ Tamanho finito/infinito
- Disciplina de atendimento
 - ✓ FCFS (First-Come First-Served) ou FIFO
 - ✓ LCFS (Last-Come First-Served) ou LIFO
 - ✓ RR (Round Robin)

Teoria de Filas: notação de Kendall

- ◆ Para especificar um sistema de filas, é preciso conhecer as seis características anteriores:
- ◆ Notação de Kendall (1951)
 - \checkmark A/S/m/K/N/Q
 - ✓ A: distribuição dos tempos de chegadas
 - ✓ S: distribuição dos tempos de serviço
 - ✓ m: número de servidores
 - ✓ K: capacidade do sistema
 - ✓ N: tamanho da população
 - ✓ Q: disciplina de antendimento

Teoria de Filas: notação de Kendall

- Exemplos:
 - ✓ M/G/4/50/2000/LCFS
 - \checkmark D/M/1/ ∞ / ∞ /RR
 - ✓ M/M/1 ou M/M/1/ ∞ / ∞ /FCFS

Teoria de Filas: modelo M/M/1

1 – Nr. Médio de clientes na fila:

$$NF = \frac{\lambda^2}{\mu(\mu - \lambda)}$$

2 – Nr. Médio de clientes no sistema:

$$NS = \frac{\lambda}{(\mu - \lambda)}$$

3 – Tempo médio que o cliente fica na fila:

$$TF = \frac{\lambda}{\mu(\mu - \lambda)}$$

4 – Tempo médio que o cliente fica no sistema:

$$TS = \frac{1}{(\mu - \lambda)}$$

5 – Probabilidade de existirem n clientes no sistema:

$$Pn = (1 - \lambda/\mu)(\lambda/\mu)^n$$

- Obs.: população infinita
- μ taxa de serviço = 3 pessoas/hora
- λ taxa de chegada = 2 pessoas/hora

Dados:

✓ É preciso estimar valores para a o tempo médio entre duas chegadas de automóveis no sistema e para o tempo médio de uma lavação.

- ◆ Tais informações podem ser obtidas de duas possíveis fontes:
 - ✓ das estimativas do proprietário;
 - ✓ amostragem realizada no sistema.

◆ Um elemento importante na Teoria das Filas é o reconhecimento do tipo de sistema com o qual se está lidando, de tal forma que o formulário correto seja adotado.

 Existem inúmeras variações, as quais exigem o emprego de diferentes fórmulas.

- ◆ No caso do nosso exemplo, podemos considerar o sistema como sendo do tipo M/M/1.
- ◆ Adotaremos, portanto, o formulário referente a uma fila do tipo M/M/1.

As fórmulas que serão aqui adotadas são as seguintes:

Número Médio de Carros no Sistema
$$L = \frac{(\lambda)}{(\mu - \lambda)}$$

Tempo Médio Despendido no Sistema
$$W = \frac{1}{(\mu - \lambda)}$$

Taxa Média de Ocupação do Servidor $\rho = \frac{\lambda}{\mu}$

- \checkmark λ é a taxa de chegadas (carros/período de tempo). Por exemplo: 5 carros por hora.
- μ representa a taxa de serviço. (unidades servidas por unidade de tempo. Por exemplo: 6 carros por hora.
- As fórmulas são válidas apenas para situações em que $\lambda < \mu$ e longas observações

- Situação A da tabela 2.1.
 - ✓ Os dados informam que em média chegam ao sistema 6 carros a cada hora, isto é, $\lambda = 6$.
 - Quanto a taxa μ de atendimento, o valor adotado é de 4 a cada hora.
 - ✓ Este é tipicamente o caso em que $\lambda > \mu$. Isto é, a tendência neste caso é de uma instabilidade total do sistema, com a fila de carros crescendo sem parar.
 - ✓ A longo prazo, esta é a previsão teórica para o comportamento do posto de serviços.

- Situação B. Podemos aplicar as fórmulas acima realizando algumas projeções.
- A tabela 2.1 indica que o tempo entre chegadas na situação B
 é ≥ 10 min. e que o tempo de serviço é de ± 10 min.
- ◆ Vamos então analisar o comportamento do posto em outros cenários, assumindo diversos valores para o primeiro parâmetro (10, 12 e 15 min.) e fixando o segundo em 10 min..
 - \checkmark λ assume os valores 6 (60 mim/10 min), 5 e 4 carros por hora, respectivamente;
 - \checkmark μ = 6 carros por hora, teremos as seguintes respostas:

$\lambda \rightarrow$	6	5	4
L	\propto	5	2
W	\propto	1	0,5
ρ	1	0,833	0,666

Tabela 2.2: Respostas do Modelo de Filas

Número Médio de Carros no Sistema → L

Tempo Médio Despendido no Sistema → W

Taxa Média de Ocupação do Servidor $\rightarrow \rho$

Teoria das Filas - Exercício

- Os tempos entre chegadas e os tempos de serviço providos por um posto de atendimento de reclamações da prefeitura apresentam um comportamento típico das distribuições exponenciais. Durante o horário mais calmo observa-se, em média, a chegada de 2 pessoas por hora. Verifica-se também que o posto é capaz de atender, em média, 3 pessoas por hora.
 - ✓ Calcule a taxa média de utilização do posto (ρ) , o número médio de clientes no sistema (L) e o tempo médio para um cliente atendido deixar o sistema (W).
 - Considerando $P_n = (1 \lambda \mu) \cdot (\lambda \mu)^n$ a probabilidade de se encontrar n clientes no posto, calcule a probabilidade de termos zero, um, dois, três e quatro ou mais clientes num dado momento

Teoria das Filas - Exercício

Estatísticas de Desempenho

Taxa média de utilização do posto

$$\rho = \lambda/\mu = 2/3 = 0.67 = 67\%$$

Número médio de clientes no posto

L=
$$\lambda/\mu$$
 - λ = 2/3-2 = 2 clientes

Tempo médio despendido no posto

$$W = 1/\mu - \lambda = 1/1 = 1 \text{ hora}$$

Teoria das Filas - Exercício

Probabilidade do estado do sistema

$$P_0 = 1 - \lambda/\mu = 1 - 2/3 = 1/3$$

$$P_1 = (1/3).(2/3) = 2/9$$

$$P_2 = (1/3).(2/3)^2 = 4/27$$

$$P_3 = (1/3).(2/3)^3 = 8/81$$

$$P_{34} = 1 - \sum P_n = 1 - (1/3 + 2/9 + 4/27 + 8/81) = 16/81$$

- Empregada quando se quer observar diferenças mais "grosseiras" entre sistemas.
- Alguns problemas:
 - ✓ O emprego de valores médios (estimativas) podem levar a conclusões imprecisas, devido aos erros associados na obtenção das estimativas;
 - ✓ Uso de distribuição exponencial no processo de chegadas (o que é razoável) e no processo de atendimento ou serviços (o que pode ser totalmente inadequado).
 - ✓ As fórmulas são apropriadas quando se considera um grande período de observações.
 - ✓ Torna-se extremamente complexa a possibilidade de analisar a variabilidade do sistema, isto é, seu comportamento dinâmico

Emprego de Modelagem e Simulação

- Um programa executa uma série de instruções, as quais transmitem ao usuário a nítida sensação de que o modelo sendo executado possui um comportamento semelhante ao do sistema real do qual deriva.
- O controle da execução deste modelo, permite ao analista a realização de experimentos.
- Experimentos possibilitam estimar e concluir a respeito do comportamento do modelo e, por inferência, sobre a conduta e desempenho do sistema sob estudo.

Simulação sem o uso de Computadores

- ◆ As simulações manuais implicam na construção de tabelas, conhecidas como *tabelas de simulação*.
- Seu conteúdo dependerá do tipo de modelo empregado para tratar o sistema e, principalmente, do tipo de resposta que se está buscando a partir dos experimentos que serão efetuados na execução das simulações.
- As tabelas de simulação são um registro do comportamento dinâmico do sistema ao longo do tempo.

Tabelas de Simulação

◆ Construção da tabela (nosso modelo) de simulação vamos empregar valores semelhantes aos utilizados no modelo de Teoria das Filas para a situação B.

◆ As principais diferenças entre as duas abordagens, ficam por conta do uso valores não determinísticos, tanto para os tempos entre chegadas (TEC), quanto para os tempos de serviços (TS).

Simulação ...

- ◆ Na Teoria das Filas, diferentes valores para TEC e TS, mas em experimentos separados (valores médios fixos).
- ◆ No caso da simulação, faremos uma aproximação maior com a realidade.
 - ✓ TEC = 10, 12 ou 15 min. (aleatório).
 - ✓ Esta variável pode apresentar estes três possíveis valores com as mesmas probabilidades, isto é, 1/3 para cada alternativa.
 - ✓ TS = 9, 10 ou 11 min.. Também com probabilidade de 1/3 para cada um deles.

Valores de TEC e TS

	TEC				TS	
Tempos (min.)	10	12	15	9	10	11
Probabilidades	1/3	1/3	1/3	1/3	1/3	1/3

Tabela 2.3: Parâmetros para o Modelo de Simulação

Respostas Necessárias

◆ Ao final da simulação manual deve ser possível responder as questões básicas formuladas pelo proprietário do posto:

- ✓ Tamanho da área de espera disponível é suficiente?
- ✓ Como são os tempos de realização dos serviços?
- ✓ Há necessidade de contratar um operador auxiliar?

Estatísticas

◆ As respostas para tais indagações exigem que as seguintes estatísticas sejam calculadas:

- ✓ Número de carros esperando na fila;
- ✓ Tempo despendido pelos clientes no sistema;
- ✓ Taxa de ocupação do operador.

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)

1 15

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)

15 15

11

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)

15

15

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15				

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0			

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26		

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15
2	12							

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15
2	12	27						

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15
2	12	27	10					

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15
2	12	27	10	27				

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15
2	12	27	10	27	0			

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15
2	12	27	10	27	0	37		

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15
2	12	27	10	27	0	37	10	

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15
2	12	27	10	27	0	37	10	1

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15
2	12	27	10	27	0	37	10	1
3	10	37	9	37	0	46	9	0

	Tamana daa da	Tanana da		Tamanada	Tamana da	Танала	Tamana da	T
	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1	15	15	11	15	0	26	11	15
2	12	27	10	27	0	37	10	1
3	10	37	9	37	0	46	9	0
4	10	47	10	47	0	57	10	1
5	12	59	9	59	0	68	9	2
6	15	74	10	74	0	84	10	6
7	10	84	11	84	0	95	11	0
8	12	96	9	96	0	105	9	1
9	10	106	11	106	0	117	11	1
10	10	116	10	117	1	127	11	0
11	10	126	11	126	1	137	11	-1
12	12	138	9	138	0	147	9	1

Tabela 2.5: Simulação manual dos primeiros 15 clientes

Resultados

Tempo médio de espera na fila =
$$\frac{\sum \text{tempos de espera na fila}}{\text{Número total de clientes}} = \frac{2}{15} = 0,07 \text{ min }.$$

Probabilidade de um cliente esperar na fila= $\frac{\text{Número de clientes que esperaram}}{\text{Número total de clientes}} = \frac{2}{15} = 0,07$

Probabilidade do operador livre=
$$\frac{\sum \text{tempo livre do operador}}{\text{Tempo total de simulação}} = \frac{38}{180} = 0,202$$

◆ Como o operador pode se encontrar em duas possíveis situações, livre ou ocupado (outras situações não foram consideradas, como por exemplo de folga ou ausente), a probabilidade dele estar ocupado é dada pelo complemento de 20,2%, isto é, 79,8%.

Mais Resultados

Tempo médio de serviço =
$$\frac{\sum Tempo de serviço}{Número total de clientes} = \frac{150}{15} = 10,0 min$$

Tempo médio despendido no sistema =
$$\frac{\sum \text{ tempos no sistema}}{\text{Número de clientes}} = \frac{151}{15} = 10,07 \text{ min}.$$

Respostas ao Proprietário

- ◆ Em relação as dúvidas do proprietário, as questões dois e três foram respondidas considerando-se algumas das estatísticas acima apresentadas.
 - ✓ Em média um cliente permanece em torno de 10 min. no posto;
 - ✓ Em média, o operador estará ocupado cerca de 80% de seu tempo;
 - ✓ O tempo médio na fila, 0,07 min. e o tempo médio de serviço, 10,00 min..

Respostas ao Proprietário

- ◆ A revelação mais importante é possibilidade de se observar toda a dinâmica do sistema ao longo da simulação.
- ◆ A eventual formação de fila, a variabilidade associada aos tempos entre chegadas, as diferenças entre os tempos mínimo e máximo no sistema, etc..
- ◆ Tais possibilidades permitem ao proprietário testar novas estratégias para o funcionamento de seu negócio, incorporando ao modelo detalhes que possam ser considerados importantes, verificando o comportamento do sistema, antes de sua real implementação.

Tabela de Simulação - Exercício

	Tempo desde	Tempo de		Tempo de	Tempo do	Tempo	Tempo do	Tempo
	a última	chegada	Tempo do	início do	cliente	final do	cliente	livre do
	chegada	no relógio	Serviço	serviço no	na fila	serviço no	no sistema	operador
Cliente	(minutos)		(minutos)	relógio	(minutos)	relógio	(minutos)	(minutos)
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								

- Preencha a tabela acima a partir de sorteios para os valores de TEC e TS.
- Determine as mesmas estatísticas calculadas anteriormente

Atividades Sugeridas

- Leitura dos capítulo 2 da referência [1];
- Leitura dos capítulo 2 da referência [2];

Obs.: Transparências geradas da obra do Prof. Paulo J. Freitas, "Introdução à Modelagem e Simulação de Sistemas".