學號:R05921016 系級: 電機碩二 姓名:傅鈞笙

1.請比較你實作的generative model、logistic regression的準確率,何者較佳?答:

	training acc.	testing public acc.	testing private acc.
generative model	0.844595	0.84508	0.84227
logistic regression	0.808872	0.79815	0.79019

結果上來說是generative model 的準確率比較高。

推測原因是, training data 總共只有32561 筆,其實並沒有很充足。因此, generative model 對於機率分佈的額外假設可以幫助提升預測的準確率。

2.請說明你實作的best model,其訓練方式和準確率為何? 答:

我使用keras 套件來實作我的best model,下圖是我的model架構。

我在中間加了兩層hidden layer , size = 30 ,並且第二層hidden layer 的drop out rate = 0.85 (用以防止over fitting)。

將batch size 取為128,使用keras 的'binary_crossentropy' 計算我1一維output 的 loss function,總共train 了100 個epoch,結果如下表。

	testing public acc.	testing private acc.
NN model	0.85933	0.84977

3.請實作輸入特徵標準化(feature normalization),並討論其對於你的模型準確率的影響。

答:

	testing public acc.	testing private acc.
w/o normalization	0.79619	0.79290
with normalization	0.79815	0.79019

如上表所示,加入normalization 對準確度並沒有影響。Normalization 的作用只是幫助training process 的收斂,因此若是model 已經收斂,normalization 就不會影像預測的準確率。

4. 請實作logistic regression的正規化(regularization),並討論其對於你的模型準確率的影響。

答:

	testing public acc.	testing private acc.
w/o regularization	0.81228	0.81341
with regularization	0.79815	0.79019

加入regulariziton 後,model 預測的準確率提高了。推測原因是加入 regularization 後對複雜的model 進行了懲罰,使得原本overfitting 的情況可以緩解。

5.請討論你認為哪個attribute對結果影響最大?

從結果來看, regularization 的影響應該最大。

由於使用logistic regression 的model 過於複雜,容易導致overfitting,因此這次可以得到兩個解決方法。一是,對model 的複雜程度進行punishment,例如加入 regularization。使得原本logistic tegression model 可以走到一個相對簡單的model 。 二是,一開始對model 的假設加入限制,例如generative model。在一個比較間單的 function set 中去找最小誤差值。