In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: df = pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\
df

Out[2]:

_		date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
_	0	2007- 12-01 01:00:00	NaN	2.86	NaN	NaN	NaN	282.200012	1054.000000	NaN	4.030000	156.1
	1	2007- 12-01 01:00:00	NaN	1.82	NaN	NaN	NaN	86.419998	354.600006	NaN	3.260000	80.8
	2	2007- 12-01 01:00:00	NaN	1.47	NaN	NaN	NaN	94.639999	319.000000	NaN	5.310000	53.0
	3	2007- 12-01 01:00:00	NaN	1.64	NaN	NaN	NaN	127.900002	476.700012	NaN	4.500000	105.3
	4	2007- 12-01 01:00:00	4.64	1.86	4.26	7.98	0.57	145.100006	573.900024	3.49	52.689999	106.5
											•••	
	225115	2007- 03-01 00:00:00	0.30	0.45	1.00	0.30	0.26	8.690000	11.690000	1.00	42.209999	6.7
	225116	2007- 03-01 00:00:00	NaN	0.16	NaN	NaN	NaN	46.820000	51.480000	NaN	22.150000	5.7
	225117	2007- 03-01 00:00:00	0.24	NaN	0.20	NaN	0.09	51.259998	66.809998	NaN	18.540001	13.0
	225118	2007- 03-01 00:00:00	0.11	NaN	1.00	NaN	0.05	24.240000	36.930000	NaN	NaN	6.6
	225119	2007- 03-01 00:00:00	0.53	0.40	1.00	1.70	0.12	32.360001	47.860001	1.37	24.150000	10.2

225120 rows × 17 columns

In [3]: df1 = df.fillna(0)
 df1

Out[3]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2007- 12-01 01:00:00	0.00	2.86	0.00	0.00	0.00	282.200012	1054.000000	0.00	4.030000	156.1
1	2007- 12-01 01:00:00	0.00	1.82	0.00	0.00	0.00	86.419998	354.600006	0.00	3.260000	80.8
2	2007- 12-01 01:00:00	0.00	1.47	0.00	0.00	0.00	94.639999	319.000000	0.00	5.310000	53.0
3	2007- 12-01 01:00:00	0.00	1.64	0.00	0.00	0.00	127.900002	476.700012	0.00	4.500000	105.3
4	2007- 12-01 01:00:00	4.64	1.86	4.26	7.98	0.57	145.100006	573.900024	3.49	52.689999	106.5
225115	2007- 03-01 00:00:00	0.30	0.45	1.00	0.30	0.26	8.690000	11.690000	1.00	42.209999	6.7
225116	2007- 03-01 00:00:00	0.00	0.16	0.00	0.00	0.00	46.820000	51.480000	0.00	22.150000	5.7
225117	2007- 03-01 00:00:00	0.24	0.00	0.20	0.00	0.09	51.259998	66.809998	0.00	18.540001	13.0
225118	2007- 03-01 00:00:00	0.11	0.00	1.00	0.00	0.05	24.240000	36.930000	0.00	0.000000	6.6
225119	2007- 03-01 00:00:00	0.53	0.40	1.00	1.70	0.12	32.360001	47.860001	1.37	24.150000	10.2

225120 rows × 17 columns

```
In [4]: df1.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 225120 entries, 0 to 225119
        Data columns (total 17 columns):
             Column
                      Non-Null Count
                                       Dtype
         0
                      225120 non-null
                                       object
             date
             BEN
         1
                      225120 non-null float64
         2
             CO
                      225120 non-null float64
         3
             EBE
                      225120 non-null float64
         4
                      225120 non-null float64
             MXY
         5
             NMHC
                      225120 non-null float64
         6
                      225120 non-null float64
             NO 2
         7
             NOx
                      225120 non-null float64
         8
                      225120 non-null float64
             OXY
         9
             0_3
                      225120 non-null float64
         10 PM10
                      225120 non-null float64
         11 PM25
                      225120 non-null float64
         12 PXY
                      225120 non-null float64
                      225120 non-null float64
         13 SO_2
         14 TCH
                      225120 non-null float64
         15 TOL
                      225120 non-null float64
         16 station 225120 non-null int64
        dtypes: float64(15), int64(1), object(1)
        memory usage: 29.2+ MB
In [5]: |df1.columns
Out[5]: Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_
        3',
               'PM10', 'PM25', 'PXY', 'SO 2', 'TCH', 'TOL', 'station'],
              dtype='object')
In [6]: df2 = df1[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
               'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
```

In [7]: sns.pairplot(df2)

Out[7]: <seaborn.axisgrid.PairGrid at 0x238032f7340>

In [8]: sns.distplot(df2['0_3'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='0_3', ylabel='Density'>

In [9]: sns.heatmap(df2.corr())

Out[9]: <AxesSubplot:>

Linear Regression

Out[14]:

coeff

	Co-efficient
BEN	2.774757
со	-1.896856
EBE	0.914089
MXY	0.358328
NMHC	5.912057
NO_2	0.000512
NOx	0.006967
OXY	-0.865775
O_3	-0.001003
PM10	0.001280
SO_2	0.003489
PXY	0.088023
тсн	-0.382367

```
In [15]: prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[15]: <matplotlib.collections.PathCollection at 0x2381fcdeaf0>


```
In [16]: print(lr.score(x_test,y_test))
```

0.7029680841987095

```
In [17]: lr.score(x_train,y_train)
```

Out[17]: 0.6997230429619776

Ridge and Lasso

```
In [18]: from sklearn.linear_model import Ridge,Lasso
```

```
In [19]: rr = Ridge(alpha=10)
    rr.fit(x_train,y_train)
    rr.score(x_train,y_train)
```

Out[19]: 0.6997214702742314

```
In [20]: rr.score(x_test,y_test)
```

Out[20]: 0.7029800822222487

Lasso Regression

```
In [21]: ls = Lasso(alpha=10)
    ls.fit(x_train,y_train)
    ls.score(x_train,y_train)
```

Out[21]: 0.11491515415927389

```
In [22]: ls.score(x_test,y_test)
Out[22]: 0.09695612637041073
```

ElacticNET regression

```
In [23]: | from sklearn.linear_model import ElasticNet
         es = ElasticNet()
         es.fit(x_train,y_train)
Out[23]: ElasticNet()
In [24]: print(es.coef_)
         [ 9.96608222e-01 -0.00000000e+00
                                           1.07555157e+00 2.56888091e-01
           0.00000000e+00 0.00000000e+00 7.35919829e-03 0.00000000e+00
          -3.43432023e-04 0.00000000e+00 -0.00000000e+00 0.00000000e+00
           2.13947761e-01]
In [25]: |print(es.intercept )
         -0.2429278308475067
In [26]: |print(es.score(x_test,y_test))
         0.5897212219107215
In [27]: print(es.score(x train,y train))
         0.5891546718974117
```

LogisticRegression

```
In [28]: from sklearn.linear_model import LogisticRegression
In [29]: feature_matrix = df2.iloc[:,0:15]
    target_vector = df2.iloc[:,-1]
In [30]: feature_matrix.shape
Out[30]: (225120, 15)
In [31]: from sklearn.preprocessing import StandardScaler
In [32]: fs = StandardScaler().fit_transform(feature_matrix)
```

```
In [33]: logs = LogisticRegression()
         logs.fit(fs,target vector)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:
         763: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
         t-learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regres
         sion (https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
           n iter i = check optimize result(
Out[33]: LogisticRegression()
In [34]: observation = [[1.4,1.5,1.6,2.7,2.3,3.3,2.3,4.1,2.3,4.2,1.2,2.1,4.3,6,2.2]]
         prediction = logs.predict(observation)
In [35]: |print(prediction)
         [28079099]
In [36]: logs.classes
Out[36]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
                28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
                28079018, 28079019, 28079021, 28079022, 28079023, 28079024,
                28079025, 28079026, 28079027, 28079036, 28079038, 28079039,
                28079040, 28079099], dtype=int64)
In [37]: from sklearn.model selection import train test split
         x_train,x_test,y_train,y_test = train_test_split(feature_matrix,target_vector,t
In [38]: |print(logs.score(x_test,y_test))
         0.03879412461502014
In [39]: |print(logs.score(x_train,y_train))
         0.038963346532642905
```

Conclusion

Ridge regression is bestfit model

Ridge regression is best fit model for dataset madrid_2001. The score of x_train,y_train is 0.6997214702742314 and x_test and y_test score is 0.7029800822222487.