CONTRIBUTEURS

ACT-2000 Analyse statistique des risques actuarielles

aut., cre. Alec James van Rassel.

src. Tse, Y., Nonlife Actuarial Models, Theory Methods and Evaluation, Cambridge University Press, 2009.

src. Hogg, R.V.; McKean, J.W.; and Craig, A.T., Introduction to Mathematical Statistics, 7th Edition, Prentice Hall, 2013.

src. Andrew Luong.

src. Marie-Pier Côté.

pfr. Sharon van Rassel.

ctb. Philippe Morin.

Motivation

Inspiré par la chaîne de vidéos YouTube StatQuest et mon étude pour MAS-I, je crée cette feuille dans le but de simplifier tous les obstacles que j'ai encourus dans mon apprentissage des statistiques et ainsi simplifier la vie des étudiants en actuariat.

L'objectif est d'expliquer les concepts statistiques de façon claire et concise. Je vous prie de me faire part de tous commentaires et de me signaler toute erreur que vous trouvez!

Première partie

Analyse statistique des risques actuariels

Vraisemblance

Notation

 $\mathcal{L}(\theta; x)$ Fonction de vraisemblance de θ en fonction des observations x; $\{X_1, \dots, X_n\}$ Échantillon de n observations.

- > Si les *n* observations sont indépendantes entres-elles et proviennent de la même distribution paramétrique (identiquement distribué) c'est un **échantillon aléatoire (iid)**;
- \rightarrow On peut le dénoter comme $\{X_n\}$.

On peut voir la fonction de densité $f(x;\theta)$ comme étant une fonction du paramètre inconnu θ avec x fixé; ceci est la fonction de vraisemblance $\mathcal{L}(\theta;x)$. Pour bien saisir ce que représente la fonction de vraisemblance $\mathcal{L}(\theta;x)$, il faut songer à ce que représente $f(x;\theta)$.

 $f(x;\theta)$ est une fonction qui fait varier x pour un (ou plusieurs) paramètre θ fixe. Alors, $\mathcal{L}(\theta;x)$ est une fonction qui fait varier θ pour un "paramètre" x fixé; ce que l'on considère habituellement comme étant "x" est en fait θ pour la fonction de vraisemblance!

Qualité de l'estimateur

La première section traite de «**estimateurs ponctuels** ». C'est-à-dire, on produit une seule valeur comme notre meilleur essai pour déterminer la valeur de la population inconnue. Intrinsèquement, on ne s'attend pas à ce que cette valeur (même si c'en est une bonne) soit la vraie valeur exacte.

Une hypothèse plus utile à des fins d'interprétation est plutôt un **estimateur par intervalle**; au lieu d'une seule valeur, il retourne un intervalle de valeurs plausibles qui peuvent toutes être la vraie valeur. Le type principal d'*estimateur par intervalle* est *l'intervalle de confiance* traité dans la deuxième sous-section.

En bref:

Estimateur ponctuel L'estimateur $\hat{\theta}_n$ assigne une valeur précise à θ selon l'échantillon.

Estimateur par intervalle Un *intervalle aléatoire*, construit avec l'échantillon aléatoire, ayant une certaine probabilité de contenir la vraie valeur θ .

Estimation ponctuelle

Biais

Notation

- θ Paramètre inconnu à estimer;
- > Dans le cas multivarié, on a un vecteur θ et on défini un ensemble des valeurs possibles Θ ;
- > Par exemple, pour une loi Gamma $\theta = \{\alpha, \beta\}$ et puisque ces paramètres sont strictement positif $\Theta = \{\mathbb{R}^+, \mathbb{R}^+\}$.
- $\hat{\theta}_n$ Estimateur de θ basé sur n observations;
- > Souvent, on simplifie et écrit $\hat{\theta}$.
- $B(\hat{\theta}_n)$ Biais d'un estimateur θ_n .

Lorsque nous avons un estimateur $\hat{\theta}_n$ pour un paramètre inconnu θ on espère que, **en moyenne**, ses erreurs de prévision seront nulles. On peut alors trouver $E[\hat{\theta}_n|\theta]$; soit, l'espérance de l'estimateur lorsque θ est la vraie valeur du paramètre. Par la suite, on calcule son **biais** $B(\hat{\theta}_n)$ dans la prévision de cette vraie valeur du paramètre :

Biais d'un estimateur

$$B(\hat{\theta}_n) = E[\hat{\theta}_n | \theta] - \theta$$

Estimateur sans biais lorsque le biais d'un estimateur est nul :

$$B(\hat{\theta}_n) = 0$$

Estimateur asymptotiquement sans biais lorsque le biais d'un estimateur tends vers 0 alors que le nombre d'observations sur lequel il est basé tends vers l'infini :

$$\lim_{n\to\infty} \mathbf{B}(\hat{\theta}_n) = 0$$

Cependant, le biais n'indique pas la variabilité des prévisions de l'estimateur $\hat{\theta}_n$. Une bonne analogie pour comprendre ce qui nous manque est d'imaginer une personne ayant ses pieds dans de l'eau bouillante et sa tête dans un congélateur; **en moyenne**, il est correct, mais **en réalité** il est très inconfortable. Des estimateurs non biaisés seront toujours proches de la vraie valeur, mais ce n'est pas suffisant

qu'ils soient bons *en moyenne*. On évalue donc la variabilité d'un estimateur avec sa variance $Var(\hat{\theta}_n)$.

Borne Cramér-Rao

Notation

 $I_n(\theta)$ Matrice d'information de Fisher d'un échantillon aléatoire X;

> La matrice d'information Fisher pour un seule observation sera donc dénotée $I(\theta)$.

 $\hat{\theta}^{EMV}$ Estimateur du maximum de vraisemblance de θ .

Lorsque l'on analyse la variance d'un estimateur <u>sans biais</u>, on débute par définir la **borne inférieure de Cramér-Rao** de sa variance $Var(\hat{\theta}_n)$. Cette borne utilise **la matrice d'information de Fisher** $I_n(\theta)$:

Borne inférieure Cramér-Rao

Sous certaines conditions de régularité,

$$\operatorname{Var}(\hat{\theta}_n) \geq \frac{1}{I_n(\theta)}$$

où

$$I(\theta) = \mathbf{E}\left[\left(\frac{\partial}{\partial \theta} \ln f(\theta; x)\right)^{2}\right] \stackrel{\text{iid}}{=} \mathbf{E}\left[-\frac{\partial^{2} \ln f(\theta; x)}{\partial \theta^{2}}\right]$$

$$I(\theta) = \mathbf{E}\left[\left(\frac{\partial}{\partial \theta} \ln f(\theta; x)\right)^{2}\right] \stackrel{\text{iid}}{=} \mathbf{E}\left[-\frac{\partial^{2} \ln f(\theta; x)}{\partial \theta^{2}}\right]$$

$$I_n(\theta) = \mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \ln \mathcal{L}(\theta; x)\right)^2\right] \stackrel{\text{iid}}{=} \mathbb{E}\left[-\frac{\partial^2 \ln \mathcal{L}(\theta; x)}{\partial \theta^2}\right]$$

Note Dans le cas d'un échantillon aléatoire (alias, les données sont iid) on obtient la deuxième équation et $I_n(\theta) = nI(\theta)$.

Détails sur la borne Cramér-Rao

Cette borne est rarement comprise et sur la base de ce vidéo et ce vidéo je me lance dans l'explication de son intuition. Si vous ne comprenez pas à partir de mes explications, je vous suggère fortement d'allez regarder les vidéos puisque c'est un concept qui va réapparaître plus tard dans le bac.

Premièrement, on définit l'utilité des deux premières dérivées :

 $\frac{\partial}{\partial \theta} \mathcal{L}(\theta)$: Représente le « *rate of change* » de la fonction;

 $\frac{\partial^2}{\partial \theta^2} \mathcal{L}(\theta)$: Représente la concavité de la fonction; on peut y penser comme sa forme.

L'estimateur $\hat{\theta}^{\text{EMV}}$ du paramètre θ d'une distribution est obtenu en posant la première dérivée de sa fonction de vraisemblance $\mathcal{L}(\theta;x)$ égale à 0. Alors, la première dérivée de $\mathcal{L}(\theta;x)$ est nulle au point $\theta=\hat{\theta}^{\text{EMV}}$.

Puisque ce point maximise la fonction, la dérivée va augmenter avant et diminuer après. Cependant, plusieurs fonctions peuvent avoir le même **point** où elles sont maximisées tout en étant complètement différentes :

Clairement, la courbe en mauve aura plus de points près de $\hat{\theta}^{\text{EMV}}$ que la courbe en orange. Afin de comparer les différents estimateurs, on cherche à quantifier l'étendu, ou la variance, de leurs formes. La deuxième dérivée sert donc à mesurer la *forme*, ou **concavité**, de la fonction de vraisemblance et comparer des estimateurs plus adéquatement.

Ce faisant, la deuxième dérivée permet d'être plus certain d'avoir le bon estimateur. Il s'ensuit que la variance ne peut pas être moins que l'estimateur du maximum de vraisemblance évalué au point où la concavité est maximisée. Alors on peut penser à la forme à ce point comme $I(\theta)=$ « courbe ».

Finalement, on veut comprendre pourquoi 1/« curve » et non juste « courbe ». On déduit de la fraction que plus la concavité « courbe » est élevée, alors plus la variance sera faible. Si la concavité de la fonction est très large, et donc il y a un grand étendue, il y a moins de points près de $\hat{\theta}^{\rm EMV}$. Donc :

$$\operatorname{Var}(\hat{ heta}^{\operatorname{EMV}}) \overset{\operatorname{dépend}}{\sim} \frac{1}{\operatorname{«courbe} »}$$

On observe alors que la limite lorsque la « courbe » tend vers l'infini implique une variance nulle. On dit donc que la distribution de l'estimateur est "asymptotiquement normale" tel que $\hat{\theta}^{\text{EMV}} \stackrel{a.s.}{\to} \mathcal{N} \Big(\mu = \theta, \sigma^2 = \frac{1}{I(\theta)} \Big)$ où a.s. veut dire asymptotiquement.

Efficacité

Notation

eff $(\hat{\theta}_n)$ Efficacité d'un estimateur $\hat{\theta}_n$; eff $(\hat{\theta}_n, \tilde{\theta}_n)$ Efficacité de l'estimateur $\hat{\theta}_n$ relatif à l'estimateur $\tilde{\theta}_n$.

Avec le concept de l'information de Fisher, on défini **l'efficacité d'un estimateur** comme le ratio de la borne Cramér-Rao sur la variance de l'estimateur :

Efficacité d'un estimateur

$$\operatorname{eff}(\hat{\theta}_n) = \frac{\operatorname{Var}(\hat{\theta}_n)^{\operatorname{Rao}}}{\operatorname{Var}(\hat{\theta})} = \frac{1}{I(\theta)\operatorname{Var}(\hat{\theta})}$$

Estimateur « *efficient* » Lorsque la variance de l'estimateur $Var(\hat{\theta}_n)$ est égale à la borne de Cramér-Rao.

$$\operatorname{eff}(\hat{\theta}_n) = 1$$

> Étant égale à la borne, il *doit* être l'estimateur avec la plus petite de tous les estimateurs sans biais.

On dit qu'il est le « *Minimum Variance Unbiased Estimator (MVUE)* ».

De plus, on peut généraliser cette formulation pour obtenir l'efficacité relative d'un estimateur à un autre :

Efficacité relative

$$\operatorname{eff}(\hat{\theta}_n, \tilde{\theta}_n) = \frac{\operatorname{Var}(\hat{\theta}_n)}{\operatorname{Var}(\tilde{\theta}_n)}$$

où les estimateurs $\hat{\theta}_n$ et $\tilde{\theta}_n$ sont sans biais.

Lorsque:

eff $(\hat{\theta}_n, \tilde{\theta}_n) < 1$: L'estimateur $\hat{\theta}_n$ est plus efficace que l'estimateur $\tilde{\theta}_n$, et vice-versa si eff $(\hat{\theta}_n, \tilde{\theta}_n) > 1$.

Convergence

Nous pouvons également évaluer si un estimateur converge avec des très grands échantillons; ceci évalue si un estimateur est cohérent. Un estimateur $\hat{\theta}_n$ est dit d'être « consistent » si la probabilité que sa prévision $\hat{\theta}$ du paramètre θ diffère de la vraie valeur par une erreur, près de 0, ϵ tend vers 0 alors que la taille de l'échantillon n tend vers l'infini :

Convergence (consistency) d'un estimateur

$$\lim_{n\to\infty} \Pr(\left|\hat{\theta}_n - \theta\right| > \epsilon) = 0, \quad \epsilon > 0$$

Ce critère pour qu'un estimateur $\hat{\theta}_n$ soit « *consistent* » peut être satisfait lorsque :

1. l'estimateur est asymptotiquement sans biais;

$$\lim_{n\to\infty} \mathbf{B}(\hat{\theta}_n) = 0$$

2. la variance de l'estimateur tend vers 0.

$$\lim_{n\to\infty} \operatorname{Var}(\hat{\theta}_n) = 0$$

D'ailleurs, nous avons déjà raisonné ceci avec la borne inférieure Cramér-Rao. Cependant, l'inverse n'est pas vrai—qu'un estimateur soit « *consistent* » n'implique pas que sa variance ni que son biais tendent vers 0.

Malgré la nature plaisante de la convergence d'un estimateur, beaucoup d'estimateurs ont cette propriété. Nous voulons alors une mesure qui n'indique pas seulement qu'un estimateur arrive près de la bonne valeur souvent (alias, une très petite variance), mais qu'il est mieux que d'autres estimateurs. De plus, dût à la sélection arbitraire de l'erreur ϵ pour la consistency d'un estimateur, il est possible de la choisir malicieusement afin de faire parler les données comme on le souhaite.

Détails sur la convergence

On reprend les résultats de la section précédente en expliquant plus en détails la mathématique sous-jacente.

≡ Convergence en probabilité

Notation

 $\{Y_n\}$ Séquence de variables aléatoires;

Y Variable aléatoire comprise dans $\{Y_n\}$.

```
On dit que Y_n converge en probabilité à Y si \forall \varepsilon > 0, \lim_{n \to \infty} \Pr\left[|Y_n - Y| \ge \varepsilon\right] = 0 ou de façon équivalente, \lim_{n \to \infty} \Pr\left[|Y_n - Y| < \varepsilon\right] = 1 On dénote la convergence en probabilité par : Y_n \xrightarrow{P} Y.
```

Note : La convergence en probabilité est d'ailleurs le théorème sous-jacent à la loi faible des grands nombres vue en prob.

Erreur quadratique moyenne

Notation

 $MSE_{\hat{\theta}_n}(\theta)$ Erreur quadratique moyenne d'un estimateur $\hat{\theta}_n$

On défini alors l'Erreur Quadratique Moyenne (EQM), ou Mean Squared Error (MSE), permettant de comparer les différents estimateurs ayant tous une bonne *consistency* en assurant une cohérence d'interprétation. Cette mesure permet de quantifier l'écart entre un estimateur $\hat{\theta}_n$ et le vrai paramètre θ .

Erreur Quadratique Moyenne (Mean Squared Error)

$$MSE_{\hat{\theta}}(\theta) = E[(\hat{\theta}_n - \theta)^2] \Leftrightarrow Var(\hat{\theta}_n) + [B(\hat{\theta}_n)]^2$$

En combinant tous ces critères, le meilleur estimateur est alors l'estimateur **sans biais** ayant la **plus petite variance** possible parmi tous les estimateurs *sans biais*. C'est-à-dire, le **Uniformly Minimum Variance Unbiased Estimator** (*UMVUE*).

Estimation par intervalles

Notation

 $\hat{\theta}_L$ **et** $\hat{\theta}_U$ Fonctions de l'échantillon aléatoire $\{X_1, \dots, X_n\}$ où $\boxed{\hat{\theta}_L < \hat{\theta}_U}$; $(\hat{\theta}_L, \hat{\theta}_U)$ Intervalle de confiance de $100(1-\alpha)\%$ de θ si $\Pr(\hat{\theta}_L \leq \theta \leq \hat{\theta}_U) = 1-\alpha$.

Un type d'estimateur par intervalle est l'intervalle de confiance :

Intervalle de confiance

Nous sommes confiants à un niveau de $100(1-\alpha)\%$ que le paramètre inconnu θ est entre $(\hat{\theta}_L,\hat{\theta}_U)$.

De façon équivalente, nous sommes confiant à un seuil de $\alpha\%$ que θ est entre $(\hat{\theta}_L,\hat{\theta}_U)$.

Donc, $\theta \in (\hat{\theta}_L, \hat{\theta}_U)$ et nous pouvons dire que $\Pr(\hat{\theta}_L \leq \theta \leq \hat{\theta}_U) \geq (1 - \alpha)$ pour tout θ .

Par exemple, dans le cas d'une population avec distribution normale et moyenne $\mu=\theta$ inconnue, on a comme estimateur (MVUE) la moyenne échantillonnale $\bar{x}=\hat{\theta}$.

Intervalle de confiance sur la moyenne (distribution normale)

Nous sommes confiants à un niveau de $100(1-\alpha)\%$ que :

$$\mu \in \left[\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right].$$

Construction d'estimateurs

Dans la section précédente, on évalue les méthodes pour évaluer la **qualité** de l'estimateur. Cependant, comment obtenons-nous des estimateurs pour les évaluer? Plusieurs méthodes existent pour établir des estimateurs, de plus plusieurs méthodes existent pour estimer des paramètres. La méthode vu dans le cadre du cours de statistique est la **méthode fréquentiste**, le cours de mathématiques IARD 1 (ACT-2005) présente **l'estimation bayésienne**.

Avant de le faire, nous présentons quelques concepts :

Terminologie

 $\mu_k'(\hat{\theta})$ k^{e} moment centré à 0, $\mu_k' = \mathrm{E}[X^k]$;

 $\pi_g(\theta)$ 100 g^e pourcentile, $\pi_g(\theta) = F_{\theta}^{-1}(g)$, $g \in [0,1]$;

 $F_e(x)$ Fonction de répartition empirique;

Les deux premiers estimateurs ci-dessous sont les plus faciles à obtenir, mais sont aussi les moins performants puisqu'ils n'utilisent que quelques traits des données au lieu de l'entièreté des données comme la troisième méthode.

Cette distinction devient particulièrement importante dans le cas d'une distribution avec une queue lourde à la droite (Pareto, Weibull, etc.) où il devient plus essentiel de connaître les valeurs extrêmes pour bien estimer le paramètre de forme (α pour une Pareto).

Un autre désavantage est que les deux premières méthodes nécessitent que les données proviennent toutes de la même distribution. Sinon, les moments et quantiles ne seraient pas clairs.

Finalement, sous les deux premières méthodes la décision de quels moments et percentiles à utiliser est arbitraire.

Méthode des moments (MoM)

Estimation de θ par la méthode des moments

Pour ajuster une distribution de p paramètres, on pose égale les p premiers moments empiriques $\hat{\mu}'_k$ au p premiers moments de la distribution μ'_k . L'estimation de θ est alors toute solution des p équations :

$$\hat{\mu}'_k \equiv \frac{1}{n} \sum_{i=1}^n x_i^k \stackrel{\triangle}{=} \mathrm{E}\left[X^k\right] \equiv \mu'_k(\theta), \quad k = 1, 2, \dots, p$$

La raison pour cet estimateur est que la distribution empirique aura les mêmes p premiers moments centrés à 0 que la distribution paramétrique.

Méthode du «Percentile Matching »

Estimation de θ par la méthode du « Percentile Matching »

Pour ajuster une distribution de p paramètres, on pose égale p pourcentiles $\hat{\pi}_g(\hat{\theta})$ de l'échantillon à ceux de la distribution $\pi_g(\theta)$.

L'estimation de θ est alors toute solution des p équations :

$$F_e(\hat{\pi}_{g_k}|\theta)=g_k, \quad k=1,2,\ldots,p$$

La raison pour cet estimateur est que le modèle produit aura p percentiles qui vont « matcher » les données.

Il peut arriver que les percentiles de distributions ne soient pas uniques, par exemple dans le cas de données discrètes lorsque le quantile recherché peut tomber entre 2 *marches* de la fonction empirique, ou mal-définis. Il est alors utile de définir une méthode d'interpolation des quantiles (bien qu'il n'en existe pas une d'officielle).

Soit le « *smoothed empirical estimate* » d'un pourcentile :

Smoothed empirical estimate

On utilise les statistiques d'ordre de l'échantillon $x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)}$ pour l'**interpolation** suivant :

$$\hat{\pi}_g = (1-h)x_{(j)} + hx_{(j+1)}, \quad \text{où}$$

$$j = \lfloor (n+1)g \rfloor \quad \text{et} \quad h = (n+1)g - j$$

Méthode du maximum de vraisemblance

Nous cherchons à maximiser la probabilité d'observer les données. Ceci est fait par la vraisemblance $\mathcal{L}(\theta;x)$ ou, puisque le logarithme ne change pas le maximum, la log-vraisemblance $\ell(\theta;x)$ où :

Maximum de vraisemblance

$$\mathcal{L}(\theta; x) = \prod_{i=1}^{n} f(x_i; \theta)$$
 et $\ell(\theta; x) = \sum_{i=1}^{n} \ln f(x_i; \theta)$

et l'**estimateur du maximum de vraisemblance** de θ est celui qui maximise la fonction de vraisemblance.

De façon formelle, on dit que $\hat{\theta}^{\mathrm{EMV}} = \max_{\theta} \{\mathcal{L}(\theta; x)\} \equiv \max_{\theta} \{\ln \mathcal{L}(\theta; x)\}.$

Propriétés

Propriété d'invariance

Soit une fonction bijective $g(\cdot)$ et l'EMV $\hat{\theta}^{\text{EMV}}$ de θ .

Alors, selon le principe d'invariance $g(\hat{\theta}^{\text{EMV}})$ est l'EMV de $g(\theta)$.

L'EMV satisfait cette propriété.

Convergence en distribution de l'EMV

Théorème : $\hat{\theta}^{EMV} \approx \mathcal{N}\left(0, \frac{1}{I_n(\theta)}\right)$.

Sous certaines conditions de régularité, la distribution de $\sqrt{n} (\hat{\theta} - \theta)$ converge en distribution vers une distribution normale avec une moyenne nulle et une variance égale à la borne de Cramér-Rao.

$$\sqrt{n}\left(\hat{ heta} - heta
ight) \overset{D}{
ightarrow} \mathcal{N}\left(0, \frac{1}{I_n(heta)}
ight)$$

Ce qui implique:

- 1. $\hat{\theta}$ est asymptotiquement sans biais.
- 2. $\hat{\theta}$ est « consistent ».
- 3. $\hat{\theta}$ est approximativement normalement distribué avec moyenne θ et variance $1/I_n(\theta)$ pour des grands échantillons.
- 4. $\hat{\theta}$ est asymptotiquement efficace puisque sa variance tend vers la borne

Cramér-Rao.

Souvent les professeurs ne montrent pas ces conditions puisqu'elles sont compliquées. Alors, ne vous en faites pas si vous ne les comprenez pas complètement.

■ Conditions de régularité

- **R0** Les variables X_i sont iid avec densité $f(x_i; \theta)$ pour i = 1, 2, ...
- **R1** Les fonctions de densité ont tous le même support pour tout θ .
- \rightarrow C'est-à-dire que le support de X_i ne dépend pas de θ ;
- > C'est une condition restrictive que certains modèles ne respectent pas.
- **R2** La "vraie valeur" de θ est contenue dans l'ensemble des valeurs possibles Θ .

La version multivariée de l'inégalité Cramér-Rao stipule que $Var(\tilde{\theta}) - I_n^{-1}(\theta)$ est

une matrice « nonnegative definite ».

> Puisque les éléments de la diagonale doivent être positifs, la borne inférieure de $Var(\tilde{\theta}_i)$ est le i^e élément de la diagonale de $I_n^{-1}(\theta)$.

En bref, on trouve que sous certaines conditions de régularité, la distribution de $\sqrt{n} \left(\hat{\theta} - \theta \right)$ converge en distribution vers une distribution normale multivariée (de k dimensions) avec une moyenne nulle et une variance égale à la borne de Cramér-Rao.

$$\sqrt{n}\left(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\right) \stackrel{D}{\rightarrow} \mathcal{N}_k\left(0, \boldsymbol{I}_n^{-1}(\boldsymbol{\theta})\right)$$

Cas multivarié

On généralise du cas où θ est un scalaire (un seul paramètre) au cas multivarié avec k paramètres et le vecteur $\boldsymbol{\theta} = (\theta_1, \cdots, \theta_k)^{\top}$.

Notation

En notation matricielle, on multiple le vecteur θ par la transposée θ^{\top} au lieu de mettre θ au carré.

> La matrice d'information Fisher <u>d'une observation</u> est donc une matrice $k \times k$:

$$I(\theta) = \mathbb{E}\left[\frac{\partial \ln f(X;\theta)}{\partial \theta} \frac{\partial \ln f(X;\theta)}{\partial \theta^{\top}}\right] \stackrel{iid}{=} \mathbb{E}\left[\frac{\partial^2 \ln f(X;\theta)}{\partial \theta \theta^{\top}}\right]$$

- > Pour la matrice d'information Fisher d'un échantillon aléatoire de n observation, on utilise la relation $I_n(\theta) = nI(\theta)$.
- $I_n^{-1}(\theta)$ Inverse de la matrice d'information Fisher $I_n(\theta)$.

Soit $\tilde{\theta}$ un estimateur sans bais de θ .

Notation

 $Var(\tilde{\theta})$ Matrice de variance de $\tilde{\theta}$.

 \rightarrow Le $(i,j)^e$ élément est donc Cov $(\tilde{\theta}_i,\tilde{\theta}_j)$.

Statistiques d'ordre

Soit un échantillon aléatoire de taille n. Nous définissons la k^e statistique d'ordre $X_{(k)}$ comme étant la k^e plus petite valeur d'un échantillon.

Les crochets sont utilisés pour différencier la k^e statistique d'ordre $X_{(k)}$ de la k^e observation X_k .

Nous sommes habituellement intéressés au minimum $X_{(1)}$ et le maximum $X_{(n)}$.

Minimum

$$X_{(1)} = \min(X_1, ..., X_n)$$
 $f_{X_{(1)}}(x) = nf_X(x)(S_X(x))^{n-1}$
 $S_{X_{(1)}}(x) = \prod_{i=1}^n \Pr(X_i > x)$

Maximum

 $X_{(n)} = \max(X_1, ..., X_n)$
 $f_{X_{(n)}}(x) = \inf_X(x)(F_X(x))^{n-1}$
 $F_{X_{(n)}}(x) = \prod_{i=1}^n \Pr(X_i \le x)$

De façon plus générale, on défini :

$$f_{X_{(k)}}(x) = \frac{n!}{(k-1)!1!(n-k)!} \underbrace{\left[F_{X}(x)\right]^{k-1}}_{\text{observation} < k} \underbrace{\left[S_{X}(x)\right]^{n-k}}_{\text{observations} > k}$$

$$F_{X_{(k)}}(x) = \underbrace{\sum_{i=r}^{n} \binom{n}{i} [F_{X}(x)]^{j} [1 - F_{X}(x)]^{n-j}}_{\text{Probabilité qu'au moins } k \text{ des } n \text{ observations } X_{k} \text{ sont } \leq x$$

Nous pouvons également définir quelques autres statistiques d'intérêt :

 $R = X_{(n)} - X_{(1)}$: **L'étendu**e (range) est la différence entre le minimum et le maximum d'un échantillon.

- > L'utilité de l'étendue est limitée puisqu'elle est très sensible aux données extrêmes.
- > Par exemple, supposons qu'on observe des données historiques de température pour le 1er septembre.

En moyenne, la température est de $16^{\circ}C$, mais nous avons un cas extrême de $-60^{\circ}C$ en 1745.

L'étendue sera de 86°C ce qui n'est très représentatif des données.

Donc, dans ce contexte, la mesure n'est pas d'une très grande utilité.

 $M = \frac{X_{(n)} + X_{(1)}}{2}$: **mi-étendue** (Midrange), est la moyenne entre le minimum et le maximum d'un échantillon.

- > Pour comprendre ce que représente la mi-étendue, on la compare à la moyenne arithmétique.
- > La moyenne arithmétique considère les données observées et calcule leur moyenne.
 - Il s'ensuit qu'elle ne considère pas les chiffres qui ne sont pas observés.
- > La mi-étendue considère **tous** les chiffres, observés ou non, entre la plus grande et la plus petite valeur d'un échantillon et en prend la moyenne.

Exemple sur les statistiques d'ordre

Soit un échantillon de données météorologiques $\{-30^{\circ}, -24^{\circ}, -7^{\circ}, -23^{\circ}, +5^{\circ}\}$ (celsius).

Je suppose que ce sont des températures du 4 février observées lors des dernières années.

- ➤ La moyenne arithmétique (-22.25°C) m'intéresse, car je peux savoir, en moyenne, ce qu'est la température le 4 février.
- > La mi-étendue $(-12.5^{\circ}C)$, tout comme l'étendue $(-35^{\circ}C)$, ne m'intéresse pas puisqu'elle ne prend pas en considération la vraisemblance des différentes températures.

Maintenant, je suppose que ces données sont des températures observées tout au long de l'hiver passé.

- > La moyenne arithmétique ne m'intéresse pas puisqu'elle est beaucoup trop biaisée par les températures de cette même journée.
- > Cependant, la mi-étendue et l'étendue me donnent maintenant une meilleure idée de la température de l'hiver.

L'important à retenir est que l'utilité des mesures dépend de la situation. Également, ceci est un exemple **très** simpliste et dans tous les cas on ne peut pas tirer de conclusions sur les températures de l'hiver à partir d'une seule journée.

Nous pouvons définir la **médiane** en termes de statistiques d'ordre :

$$Med = \begin{cases} X_{((n+1)/2)}, & \text{si n est impair} \\ \frac{X_{(n/2)} + X_{(n/2+1)}}{2}, & \text{si n est pair} \end{cases}$$

Finalement, on définit la distribution conjointe du minimum et du maximum $\forall x < y$:

$$f_{X_{(1)},X_{(n)}}(x,y) = n(n-1)[F_X(y) - F_X(x)]^{n-2} f_X(x) f_X(y)$$

Deuxième partie

Modèles linéaires en actuariat

Régression linéaire simple

Modèle de régression linéaire simple

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Exemple de compréhension

On illustre le concept et la signification des paramètres de régression avec cet exemple illustratif

Objectif On veut deviner le coût d'une télévision (télé) selon la taille de son écran.

L'idée de la "régression" est de deviner, ou "prédire" du mieux qu'on peut le coût d'une télé en fonction de la taille de son écran.

Deviner le coût *exact* d'une télé *seulement* en fonction de la taille de son écran est impossible. Il y a de nombreuses raisons qui déterminent le prix d'une télé et un bon exercice est de réfléchir à ce qu'elles pourraient être. J'inclus ci-dessous une liste de quelques raisons, ou "facteurs", qui me sont survenus :

- > La compagnie qui la produit (Sony vs LG, etc.).
- > La résolution (4K vs 360p).
- > L'année de fabrication (1990 vs 2020).
- > L'endroit de l'achat (Amazon vs BestBuy, Mexique vs Canada, etc.).
- > Le temps de l'année (été vs hiver, Boxing Day, etc.).

Maintenant supposons que tu joues à un jeu avec tes amis où qu'ils doivent deviner le coût d'une télé en fonction de sa taille. Ils vont probablement tous te donner des différentes réponses.

Si tu crées un modèle de prévision, il doit être systématique et toujours deviner le même prix pour la même taille d'écran—même si la prévision est erronée.

Alors, supposons que tu changes le jeu un peu et stipules que la personne qui devine le prix le plus éloigné doit prendre une gorgée de sa bière. Les réponses de tes amis vont probablement se ressembler un peu plus, mais il y a un problème qui demeure—tu veux que les prévisions soient proportionnelles à la taille de l'écran.

C'est-à-dire, si ton ami devine qu'une télé de 25" coûte 100\$, tu t'attends à ce qu'il devine qu'une télé de 50" coûte 200\$.

La raison est qu'une régression **linéaire** *simple* est simplement une ligne droite :

L'intuition est que ton ami se base uniquement sur la taille de l'écran comme information pour deviner le coût. Une régression **linéaire** simple applique un facteur **multiplicatif**. Il ne peut pas se dire que plus grand l'écran est grand, plus le prix va augmenter—ceci serait plutôt une régression avec un paramètre **exponentiel**.

On crée donc un facteur surnommé "paramètre". Dans le cas d'une régression linéaire simple, on a deux paramètres d'intérêts : un "niveau de base" pour le coût β_0 et un "multiplicateur" de la taille d'écran β_1 :

On suppose qu'une télé doit coûter au moins un certain prix. Ce "niveau de base" est l'intercepte sur le graphique ci-dessus surnommé l'ordonnée β_0 . De ton gré, tu supposes au moins $\beta_0 = 200\$$ pour cet exemple.

Ensuite, le multiplicateur va multiplier la taille de l'écran pour obtenir un prix. Ce paramètre représente donc la pente β_1 . De ton gré, tu suppose une pente de $\beta_1=2$ \$ pour cet exemple.

Le coût (l'axe des Y) est la variable qui dépend de la taille—c'est la variable "dépendante" Y. La taille (l'axe des x) est la variable que l'on connaît indépendamment du coût—c'est la variable "indépendante" x.

Finalement la droite elle-même est le coût que le modèle devine \hat{Y} . Le chapeau signifie que c'est une estimation, ou "prévision".

Par exemple, le modèle devine que le prix d'une télé de 50" est de 300\$; soit, Intervalles de confiance $\hat{Y} = \beta_0 + \beta_1 x = 200 + (2) \cdot (50) = 300$. Selon le modèle, on estime que le coût de la télé est de 300\$.

Supposons que tu connais le *vrai* coût Y, alors tu peux mesurer à quel point tu est dans le champ. Supposons que le vrai coût est de Y = 400\$. Alors, l'erreur dans ta prédiction est de $\varepsilon = 400 - 300 = 100$ \$.

Graphiquement:

On voit donc que $Y = \beta_0 + \beta_1 x + \varepsilon$ est un "modèle" théorique pour obtenir une variable dépendante Y en fonction de :

- > Une variable indépendante x multipliée par un facteur β_1 .
- > Un niveau de base l'intercepte β_0 .
- > Une erreur aléatoire ε inconnue.

Erreur

Écart-type Mesure la variation entre les observations d'un ensemble de données.

> « standard deviation ».

Erreur type Mesure la variation entre les moyennes de plusieurs ensembles de données.

> « standard error ».

Troisième partie

Mathématiques IARD I

Estimations et types de données

Distributions empiriques

Notation

- X Variable aléatoire de perte;
- θ Paramètre de la distribution de X;
- > Le paramètre peut être un scalaire θ ou un vecteur θ ;
- \rightarrow Par exemple, pour une loi Gamma $\theta = \{\alpha, \beta\}$;
- \rightarrow Pour simplifier la notation, on le traite comme un scalaire θ .

 $F_X(x;\theta)$ Fonction de répartition de X avec paramètre θ ;

> Pour simplifier la notation, on écrit $F(x;\theta)$ sauf s'il faut être plus spécifique.

 $f_X(x;\theta)$ Fonction de densité de X avec paramètre θ ;

> Pour simplifier la notation, on écrit $f(x;\theta)$ sauf s'il faut être plus spécifique.

 $\{X_1,\ldots,X_n\}$ Échantillon aléatoire de n observations de X;

 $\hat{\theta}$ Estimateur de θ établit avec l'échantillon aléatoire $\{X_1, \dots, X_n\}$;

 $F(x; \hat{\theta})$ Estimation *paramétrique* de la fonction de répartition de X;

 $f(x; \hat{\theta})$ Estimation paramétrique de la fonction de densité de X;

- \rightarrow Si θ est connu, la distribution de X est complètement spécifiée; En pratique, θ est inconnu et doit être estimé avec les données observées.
- > On peut estimer $F_X(x)$ et $f_X(x)$ directement pour toute valeur x sans présumer une forme paramétrique;

Par exemple, un histogramme est une estimation non-paramétrique.

Données complètes

Notation

X Variable d'intérêt (e.g., la durée de vie ou la perte);

 $\{X_1, \ldots, X_n\}$ Valeurs de X pour n individus;

 $\{x_1, \ldots, x_n\}$ *n* valeurs observées de l'échantillon;

> Il peut y avoir des valeurs dupliquées dans les valeurs observées.

 $0 < y_1 < \ldots < y_m \ m$ valeurs distincts où $m \le n$;

 w_j Nombre de fois que la valeur y_j apparaît dans l'échantillon pour j = 1, ..., m;

 \rightarrow Il s'ensuit que $\sum_{j=1}^{m} w_j = n$;

- > Pour des données de mortalité, w_i individus décèdent à l'âge y_i ;
- > Si tous les individus sont observés de la naissance jusqu'à la mort c'est un « *complete individual data set* ».

 r_i « risk set » au temps y_i ;

- \rightarrow Le nombre d'individus exposés à la possibilité de mourir au temps y_i ;
- > Par exemple, $r_1 = n$ car tous les individus sont exposés à la risque de décéder juste avant le temps y_1 ;
- > On déduit que $r_j = \sum_{i=j}^m w_i$, alias le nombre d'individus qui survivent juste avant le temps y_j .

Données incomplètes

Exemple

Soit une étude sur le nombre d'années nécessaire pour obtenir un diplôme universitaire. L'étude commence cette année et tient compte de tous les étudiants présentement inscrits, ainsi que ceux qui vont s'inscrire au courant de l'étude. Tous les étudiants sont observés jusqu'à la fin de l'étude et on note le nombre d'années nécessaire pour ceux qui complètent leurs diplômes.

Si un étudiant a commencé son cursus scolaire avant l'étude et suit présentement des cours, le chercheur a de l'information sur le nombre d'années qu'il a déjà investi. Cependant, d'autres étudiants qui se sont inscrits en même temps, mais ont cessé leurs études ne seront pas observés dans cet échantillon. Alors, l'individu est observé d'une population **tronquée à la gauche** puisque l'information sur les étudiants qui ont quitté l'université avant le début de l'étude n'est *pas disponible*.

Si un étudiant n'est pas encore diplômé lorsque l'étude prend fin, le chercheur ne peut pas savoir combien d'années supplémentaire seront nécessaires. Cet individu fait donc partie d'une population censurée à la droite puisque le chercheur a de l'information *partielle* (le nombre d'années minimale) sans savoir le nombre exact.

Notation

- d_i État de troncature de l'individu i de l'échantillon;
- $\rightarrow d_i = 0$ s'il n'y a pas de troncature;
- \rightarrow Par exemple, un étudiant à commencé son programme universitaire d_i années avant le début de l'étude.
- x_i Temps de "survie" de l'individu i;
- > Par exemple, le nombre d'années avant d'obtenir son diplôme;
- > Si l'étude prend fin avant que x_i soit observé, on dénote le temps de survie jusqu'à ce moment u_i ;
- \rightarrow Donc chaque individu a *soit* une valeur x_i ou u_i mais *pas les deux*.

Données groupées

Notation

 $(c_0, c_1], (c_1, c_2], \dots, (c_{k-1}, c_k]$ k intervalles regroupant les observations;

 $0 \le c_0 < c_1 < \ldots < c_k$ Extrémités des k intervalles;

n Nombre d'observations de x_i dans l'échantillon;

 n_i Nombre d'observations de x_i dans l'intervalle $(c_{i-1}, c_i]$;

 $\Rightarrow \text{ Il s'ensuit que } \sum_{j=1}^k n_j = n.$

 r_i « risk set » de l'intervalle $(c_{i-1}, c_i]$ lorsque les données sont complètes ;

 \rightarrow Il s'ensuit que $r_j = \sum_{i=j}^k n_i$

Estimation de modèles non paramétriques

Distribution empirique

Notation

 g_h Somme partielle du nombre d'observations inférieur, ou égale, à y_i ;

$$\Rightarrow$$
 Il s'ensuit que $g_j = \sum_{h=1}^j w_h$.

Distribution empirique Distribution discrète prenant comme valeurs y_1, \ldots, y_m avec probabilités $\frac{w_1}{n}, \ldots, \frac{w_m}{n}$;

- > On peut également la définir comme la distribution discrète équiprobable des valeurs x_1, \ldots, x_n .

$$\hat{f}() \ \ \text{Fonction de densit\'e empirique;} \\ \hat{f}(y) = \begin{cases} \frac{w_j}{n}, & \text{si } y = y_j \, \forall j \\ 0, \text{sinon} \end{cases}$$

 $\hat{F}()$ Fonction de répartition empirique;

$$\hat{F}(y) = \begin{cases} 0, & y < y_1, \\ \frac{g_j}{n}, & y_j \le y < y_{j+1}, j = 1, \dots, m-1 \\ 1, & y_m \le y \end{cases}$$

- $\tilde{F}()$ Fonction de répartition lissée;
- > En anglais, « *smoothed empirical distribution function* »;
- > Estimation de la fonction de répartition *lissée* pour une valeur de y pas dans l'ensemble y_1, \ldots, y_m ;
- > Lorsque $y_j \le y < y_{j+1}$ et $j \in \{1, 2, ..., m-1\}$, $\tilde{F}(y)$ est une interpolation linéaire de $\hat{F}(y_{i+1})$ et $\hat{F}(y_i)$:

$$\tilde{F}(y) = \frac{y - y_j}{y_{j+1} - y_j} \hat{F}(y_{j+1}) + \frac{y_{j+1} - y_j}{y_{j+1} - y_j} \hat{F}(y_j)$$

Estimation par noyaux

La fonction de répartition empirique résume les données d'une distribution discrète. Cependant, lorsque la variable d'intérêt X est continue on souhaite estimer une fonction de densité.

Pour une observation x_i de l'échantillon, la fonction de répartition empirique assigne une masse de probabilité de 1/n au point x_i . Puisque X est continue, il est normal que l'on souhaite distribuer cette masse autour de x_i .

Si l'on souhaite distribuer cette masse de façon égale, on le fait sur l'intervalle $[x_i - b, x_i + b]$ avec la fonction de x_i $f_i(x)$:

$$f_i(x) = \begin{cases} \frac{0.5}{b}, & x_i - b \le x \le x_i + b, \\ 0, & \text{sinon} \end{cases}$$

- > Cette fonction est rectangulaire avec une base de longueur 2*b* et une hauteur de 0.5/b pour avoir une aire de 1.
- > On peut l'interpréter comme la fonction de densité contribué par l'observation x_i ;
- > On note que ceci correspond à la fonction de densité d'une distribution uniforme $U(x_i-b,x_i+b)$;
- \rightarrow Alors, seulement les valeurs de x contenues dans l'intervalle (x_i-b,x_i+b) recoivent une "contribution" de x_i ;
- > La fonction de densité de X est donc la somme des masses de probabilité contri-

buées
$$\tilde{f}(x) = \frac{1}{n} \sum_{i=1}^{n} (x)$$
.

On défini
$$\phi_i = \frac{x - x_i}{b}$$
 et $K_R(\phi)$:
$$K_R(\phi) = \begin{cases} \frac{1}{2}, & -1 \le \phi \le 1, \\ 0, & \text{sinon} \end{cases}$$

> On trouve donc que $f_i(x) = \frac{1}{b}K_R(\phi_i)$ et $\tilde{f}(x) = \frac{1}{nb}\sum_{i=1}^n K_R(\phi_i)$

Notation

 $b \ll b$ and with \Rightarrow où b > 0;

 $K_R(\phi)$ « rectangular (box, uniform) kernel function »;

 $\tilde{f}(x)$ Estimation de la fonction de densité selon le noyaux rectangulaire;

 $K_T(\phi)$ « triangular kernel »;

$$K_R(\phi) = \begin{cases} 1 - |\phi|, & -1 \le \phi \le 1, \\ 0, & \text{sinon} \end{cases}$$

$$K_G(\phi)$$
 « Gaussian kernel »; $K_G(\phi)=rac{1}{\sqrt{2\pi}}\mathrm{e}^{-rac{\phi^2}{2}}, -\infty<\phi<\infty$

Estimation de modèles paramétriques

Estimation par maximum de vraisemblance pour des données incomplètes et groupées

Lorsque les données sont groupées et/ou incomplètes, les observations ne sont plus iid mais on peut quand même formuler la fonction de vraisemblance et trouver l'EMV.

1ère étape est d'écrire la fonction de (log) vraisemblance adéquate pouur la méthode d'échantillonnage des données.

On trouve avec la fonction de répartition $F(\cdot;\theta)$ que la probabilité d'être dans l'intervalle $(c_{i-1},c_i]$ est $F(c_i;\theta)-F(c_{i-1};\theta)$.

On pose que les observations individuelles sont iid et donc la vraisemblance de d'avoir n_j observations dans l'intervalle $(c_{j-1}, c_j]$,

pour
$$j = 1, ..., k$$
 et $n = (n_1, ..., n_k)$ est :

$$\mathcal{L}(\theta; \mathbf{n}) = \prod_{j=1}^{k} \left[F(c_j; \theta) - F(c_{j-1}; \theta) \right]^{n_j}$$

Fonction de vraisemblance

$$\mathcal{L}(\theta; \mathbf{x}) = \prod_{j=1}^k \underbrace{f(x_j; \theta)}_{\text{probabilit\'e de chaque}} \text{donn\'es compl\`etes}$$
 données complètes observation à la valeur observée

Données groupées en *k* intervalles :

$$\mathcal{L}(\theta; \textbf{\textit{n}}) = \prod_{j=1}^{k} \underbrace{\left[F(c_j; \theta) - F(c_{j-1}; \theta)\right]^{n_j}}_{\text{probabilité d'une}} \qquad \text{données groupées}$$
 observation dans l'intervalle

Données censurées vers la droite avec n_1 observations complètes et n_2 observations censurées à la limite de u:

$$\mathcal{L}(\theta; x, n_2) = \underbrace{\left[\prod_{i=1}^{n_1} f(x_i; \theta)\right]}_{\text{probabilité de chaque}} \underbrace{\left[1 - F(u; \theta)\right]^{n_2}}_{\text{observation à la valeur observée}}$$

données censurées vers la droite

Données tronquées vers la gauche avec un déductible de d:

$$\mathcal{L}(\theta; \mathbf{x}) = \underbrace{\frac{1}{[1 - F(d; \theta)]^n}}_{\text{pondère par la}} \underbrace{\prod_{i=1}^n f(x_i; \theta)}_{\text{i=1}} \text{dontre par la}$$
probabilité d'être
supérieur au déductible

données censurées vers la droite