ISTM 214 Homework 3 (Due day: 10/11)

Name:_		ID:				
its N-channel pull-down	(60%) Given that a (5-volt) CMOS gate's P-channel pull-up has an "on" resistance of 80 Ω and that its N-channel pull-down has an "on" resistance of 40 Ω : a) If the desired V_{OHmin} is 4.2 volts and the desired V_{OLmax} is 0.8 volts, what are the gate's I_{OHmax} and I_{OLmax} ratings?					
$I_{OHmax} = $				$\mathcal{F}_{ ext{ILmax}}$		
$V_{IHmin} = $	cifications for gates in t	$V_{\rm ILmax} =$ this family are +0.1 mA using these gates, base	and -0.1 mA, resp	•		
(d) Show how an LED (to obtain maximum braits with its power dissipation)	rightness, and calculate	$V_{LED} = 1.5 \text{ V}$) should be the value of the current				

2. (40%) Assume two logic families have the following D.C. characteristics:

Logic Family "A"

$V_{CC} = 5 \text{ V}$	$V_{OH} = 4.1 \text{ V}$	$V_{OL} = 0.4 \text{ V}$	$V_{IH} = 3.3 \text{ V}$	$V_{IL} = 1.3 \text{ V}$
$V_{TH} = (V_{OH} - V_{OL})/2$	$I_{OH} = -7.5 \text{ mA}$	$I_{OL} = 7.5 \text{ mA}$	$I_{IH} = 0.25 \ \mu A$	$I_{IL} = -0.25 \ \mu A$

Logic Family "B"

$V_{CC} = 5 \text{ V}$	$V_{OH} = 3.4 \text{ V}$	$V_{OL} = 0.33 \text{ V}$	$V_{IH} = 2.7 \text{ V}$	$V_{\rm IL}$ = 1.2 V
$V_{TH} = (V_{OH} - V_{OL})/2$	$I_{OH} = -900 \mu A$	$I_{\rm OL}$ = 8.8 mA	$I_{IH} = 13 \mu A$	$I_{IL} = -0.13 \text{ mA}$

- (a) Calculate the following: DCNM $_{A\rightarrow B}$, DCNM $_{B\rightarrow A}$, Practical Fanout $_{A\rightarrow B}$, Practical Fanout $_{B\rightarrow A}$
- (b) Draw the circuit and calculate the value of the current limiting resistor for a Type"A" gate driving an LED to the maximum brightness possible in a current sourcing configuration. Assume V_{LED} is 1.5V.
- (c) Draw the circuit and calculate the value of the current limiting resistor for a Type"B" gate driving an LED to the maximum brightness possible in a current sinking configuration. Assume V_{LED} is 1.5V