

UNIVERSITI TEKNOLOGI MALAYSIA SEMESTER 1 - SESSION 2024/2025

ASSIGNMENT 3

SECTION 08

SECI1013 - DISCRETE STRUCTURE

LECTURER'S NAME: Ts. Dr. Goh Eg Su

NAME	MATRIC NO
ADRIANA MAISARAH BINTI AZNAN	B21EC0004
NURUL ATHIRAH BINTI ZAKARIA	A24CS0175
SITI ATHIRAH BINTI ABD MALIK	A24CS0189
WARDINA SAFIAH BINTI HARUN	A24CS0209

Q1. Dijkstra's Shortest Path Algorithm

1. [3 Marks]

Describe Dijkstra's shortest-path algorithm.

2. [9 Marks]

Based on the graph above, find the length of a shortest path and a shortest path between each pair of vertices in the weighted graph as stated below:

- a) a,f
- b) b,j
- c) a,g

Answers Q1:-

```
1. - Initially, S := \emptyset

- N := V

- For all vertices, u \in V, u \neq a, L(u) := \infty

- L(a) := 0

- While z \notin S do,

- Let v \in N be such that L(v) = \min\{L(u) | u \in N\}

- S := S \{v\}

- N := N - \{v\}

- For all w \in N such that there is an edge from v to w

- If L(v) + W[v, w] < L(w) then L(w) = L(v) + W[v, w]
```

2.

I	S	N	L(a)	L(b)	L(c)	L(d)	L(e)	L(f)	L(g)	L(h)	L(i)	L(j)	L(z)
0	{}	{a, b, c, d, e, f, g, h, i, j, z}	0	œ	8	8	œ	8	8	8	8	8	8
1	{a}	{b, c, d, e, f, g, h, i, j, z}	0	3	8	8	5	8	8	4	8	8	8
2	{a, b}	{c, d, e, f, g, h, i, j, z}	0	3	5	8	5	10	8	4	8	8	8
3	{a, b, h}	{c, d, e, f, g, i, j, z}	0	3	5	8	5	9	8	4	6	8	8
4	{a, b, c, h}	{d, e, f, g, i, j, z}	0	3	5	8	5	7	11	4	6	8	8
5	{a, b, c, e, h}	{d, f, g, i, j, z}	0	3	5	8	5	7	11	4	6	8	∞
6	{a, b, c, e, h, i}	{d, f, g, j, z}	0	3	5	8	5	7	11	4	6	12	8
7	{a, b, c, e, f, h, i}	{d, g, j, z}	0	3	5	8	5	7	11	4	6	10	8
8	{a, b, c, d, e, f, h, i}	{g, j, z}	0	3	5	8	5	7	11	4	6	10	10
9	{a, b, c, d, e, f, h, i, j}	{g, z}	0	3	5	8	5	7	11	4	6	10	10
10	{a, b, c, d, e, f, h, i, j, z}	{g}	0	3	5	8	5	7	11	4	6	10	10

a) The shortest path from a to f is 7

$$a \rightarrow b \rightarrow c \rightarrow f$$

 $3+2+2=7$

b) The shortest path from b to j is (10-3 = 7)

$$b \rightarrow c \rightarrow f \rightarrow j$$

2+2+3 = 7

c) The shortest path from a to g is 11

$$a \rightarrow b \rightarrow c \rightarrow g$$

 $3+2+6 = 11$

Q2. Trees

1. [4 Marks]

Determine either each of the following binary tree is balance.

2. [3 Marks]

From the above tree, form the expression using inorder traversal.

3. [7 Marks]

Represent the expression below as a binary tree and write the prefix and postfix forms of the expression.

$$(((A + B) * C + D) * E) - ((A + B) * C - D)$$

[4 Marks] 4.

Answer Q2:

1. Tree a

Height difference = 2-1 = 1 (balanced)

Tree b
Height difference = 3-2 = 1 (balanced)

.. Both trees are balanced since the height difference does not exceed 1.

2.

A ⊕ B € C ⊖ D Ø E

A + B * C - D / E

3.

Pretix (Preorder)

(1))

(iv)

: Prefix form: -++ + + ABCDE - * + ABCD

PostAx (Postorder):

(i)

4

8

2+4+6+8+10+12+14+16 = 72

(iii)

: Postfix form : AB+C*D+E*AB+C*D--

Based on Krustal's Algorithm,

18 30

Q3. Deterministic Finite Automata

1. [8 Marks]

Design deterministic finite-state automata that accept the strings over {a, b} having the properties specified in:

a) Starting either abb or ba

Answer Q3:

1.

a)

Q4. Finite State Machines

1. [3 Marks]

Define finite-state machine.

2. [13 Marks]

Draw each of the transition diagram of the finite-state machine (I,O, S, f, g, σ_0) based on the following tables

a)
$$\mathcal{I} = \{a, b\}, \mathcal{O} = \{0, 1\}, \mathcal{S} = \{\sigma_0, \sigma_1\}$$

		g			
\mathcal{S} \mathcal{I}	а	b	а	b	
σ_0 σ_1	σ_1 σ_0	$\sigma_1 \\ \sigma_1$	1 0	1 1	

b)
$$\mathcal{I} = \{a, b, c\}, \mathcal{O} = \{0, 1\}, \mathcal{S} = \{\sigma_0, \sigma_1, \sigma_2\}$$

		f			g	
\mathcal{S} \mathcal{I}	а	b	С	а	<i>b</i>	С
σ_0 σ_1 σ_2	$egin{array}{c} \sigma_0 \ \sigma_1 \ \sigma_2 \end{array}$	$\sigma_1 \ \sigma_1 \ \sigma_1$	$\sigma_2 \ \sigma_0 \ \sigma_0$	0 1 1	1 1 0	0 1 0

3. [6 Marks]

Find the sets I, O, and S, the initial state, and the table defining the next-state and output functions for the finite-state machine below.

Answer Q4:-

1.

- automata with input as well as output
- every state has input and corresponding to the input the state also has an output
- A finite state machine is a sextuple M={S, I, O, q₀, f_s, f₀}

where,

S is a finite nonempty of states I is the input of alphabet O is the output of alphabet q_0 is the initial state f_s is the state transition function f_0 is the output function

2. a) and b)

3.

$$I = \{a, b\}$$

 $O = \{0, 1\}$
 $S = \{\sigma_0, \sigma_1, \sigma_2, \sigma_3\}$
Initial state= σ_0

	f	S	fg		
S	а	b	а	b	
O 0	O 1	<i>G</i> 2	0	0	
O1	0 0	<i>G</i> 2	1	0	
<i>O</i> 2	<i>O</i> 3	6 0	0	1	
<i>O</i> 3	<i>O</i> 1	<i>G</i> 3	0	0	