Relasjonsdatabaseteori

Nøkler, funksjonelle avhengigheter og normalformer

Arash Khorram <u>arashk@ifi.uio.no</u> Lana Vu <u>anhlv@ifi.uio.no</u>

Hva kjennetegner god relasjonsdatabasedesign?

- Relasjonene samler beslektet informasjon
- Så lite dobbeltlagring som mulig
- Korrekt totalinformasjon kan gjenskapes nøyaktig ved join

Relasjonene samler beslektet informasjon

- Tekstlig nærhet gjenspeiler logisk nærhet (Med tekstlig nærhet menes her samlokalisering i en relasjon)
- Brudd på dette prinsippet har en tendens til å påtvinge duplisering av data og dermed forårsake oppdateringsanomalier

Oppdateringsanomalier

Innsettingsanomalier

- Opprettholde konsistente verdier
- Håndtere sekundær informasjon
- Håndtere nil i kandidat- og fremmednøkler

Slettingsanomalier

- Unngå tap av sekundær informasjon

Modifiseringsanomalier

- Opprettholde konsistente verdier
- Oppdatere sekundær informasjon

Så lite dobbeltlagring som mulig

- Plassbehovet minimaliseres
- Oppdatering forenkles

Hvordan unngå dobbeltlagring?

 Splitt (dekomponer) relasjonene slik at dobbeltlagring blir borte!

Integritetsregler

- Integritetsregler begrenser mengden av lovlige instanser for et databaseskjema.
- Primærnøkler uttrykker én type integritetsregler.
- Primærnøkler er spesialtilfeller av kandidatnøkler.
- Kandidatnøkler er spesialtilfeller av funksjonelle avhengigheter.
- (I tillegg finnes andre typer integritetsregler)

Nøkler

- X er en supernøkkel i R: X⊆R, og ingen instans av R får inneholde to forskjellige tupler t1 og t2 hvor t1[X] = t2[X].
- X er en kandidatnøkkel i R: X er en supernøkkel i R, og for alle A i X er X-A ikke en supernøkkel i R. (Dvs. X er en minimal supernøkkel.)
- X er en primærnøkkel i R: X er en spesielt utpekt kandidatnøkkel i R.

Nøkkelattributt

- Et nøkkelattributt er et attributt som er med i en kandidatnøkkel.
- Et ikke-nøkkelattributt er et attributt som ikke er med i noen kandidatnøkkel.

Student(fnr, id, navn, adresse)

Primærnøkkel: fnr

Kandidatnøkkler: id

Supernøkkler: 12 stk

{fnr, id}, {fnr, id}, {fnr, navn}, {fnr, adresse}, {fnr, navn, adresse}, {fnr, id, navn}, {fnr, id, adresse}, {fnr, id, navn, adresse}, {id}, {id, navn}, {id, adresse}, {id, navn, adresse}

Nøkkelattributter: fnr, id

Ikke-nøkkelattributter: navn, adresse

Filmgenre(filmid, genre, tittel)

Primærnøkkel: {filmid, genre}

Supernøkler: {filmid, genre},{filmid, genre, tittel}

Nøkkelattributter: filmid, genre

Ikke-nøkkelattributter: tittel

Funksjonelle avhengigheter

Funksjonelle avhengigheter

- Gitt en relasjon R og integritetsregler for R, og gitt X,Y⊆R.
 - Y er funksjonelt avhengig av X hvis vi for enhver lovlig instans av R har at hvis instansen inneholder to tupler t1 og t2 hvor t1[X] = t2[X], så må t1[Y] = t2[Y].
 - I så fall skriver vi X→Y.
- Ofte snakker vi for korthets skyld om «FDen X → Y» (der FD står for Functional Dependency)
- Vi sier at «Y følger av X», eller at «X bestemmer Y»
- Integritetsregelen $X \to A_1A_2...Ak$ kan alternativt representeres ved k FDer $X \to A_1, X \to A_2, ..., X \to A_k$ (hvor høyresidene består av bare ett attributt).

Funksjonell avhengighet og kandidatnøkler

- Merk at hvis X er en supernøkkel, så holder X → Y for enhver Y.
 - Så hvis X er en primærnøkkel, eller mer generelt en kandidatnøkkel, holder X → Y for enhver Y.
- Omvendt: Hvis $X \rightarrow Y$ for enhver Y, så er X en supernøkkel.
- Spesielt betyr dette at hvis vi angir at R(A₁,A₂,...,A_n) har en kandidatnøkkel X, betyr det at R har FDen X→ A₁A₂...A_n.
 - Hvis R(A₁,A₂,...,A_n) har en primærnøkkel X, betyr det at R har FDen X→ A₁A₂...A_n.

Funksjonelle avhengigheter oppsummert

Enkel def: Et attributt er «avhengig»/bestemmes av et annet attributt/-er

Eksempel:

Student(fnr, id, navn, adresse, postnr, poststed)

Funksjonelle avhengigheter (FDer):

Fnr -> id, navn, adresse, postnr, poststed Id -> fnr, navn, adresse, postnr, poststed

Kan skrives på denne måten:

Fnr -> navn

Fnr -> adresse

Fnr -> postnr

Fnr -> poststed

Fnr -> id

Id -> navn

Id -> adresse

Id -> postnr

Id -> poststed

Id -> fnr

FD oppsummering forts.

Merk: En FD trenger nødvendigvis ikke å være en nøkkel!

Eksempel 1:

Student(fnr, id, navn, adresse, postnr, poststed)

Ny FD:

Et postnr bestemmer ett poststed Postnr -> poststed.

Ordre(ordrenr, kundenr, kundenavn, antall, sum, mva)

- Ordrenr er unikt
- Sum bestemmer mva
- Kundenr bestemmer kundenavn

Finn de funksjonelle avhengighetene og nøklene for relasjonen Ordre.

Normalformer

Normalformer

- Problem: Hvordan vurdere objektivt om en samling relasjoner er god/dårlig?
- Normalformer er et uttrykk for hvor godt vi har lykkes i en dekomposisjon
- At et skjema er på en normalform, sikrer at visse typer dobbeltlagring ikke forekommer
- Jo høyere normalform, jo mindre dobbeltlagring
- Vi kan bruke funksjonelle avhengigheter (FDer) til å sjekke hvilken normalform en relasjon er på
- Settet med FDer kan ha forskjellige normalformer, og relasjonen vil totalt være på den laveste normalformen fra settet med FDer.

Hvilke normalformer har vi

Ulike normalformer

Gitt en relasjon R, med et sett av FDer på formen X -> A, der X og A er et sett av attributter.

1NF:

Bare atomære verdier/attributter

<u>2NF:</u>

- X er en supernøkkel i R
- A er et nøkkelattributt
- X er ikke en delmengde av noen nøkler i R

<u>3NF:</u>

- X er en supernøkkel i R
- A er et nøkkelattributt

BCNF(Boyce-Codd):

- X er en supernøkkel i R

Timeliste(ansattnr,uke, år, navn, timer)

FDer:

Ansattnr, uke, år -> navn, timer (BCNF) Ansattnr -> navn (1NF)

Hvilken normalform er relasjonen på?

Ordre(ordrenr, kundenr, kundenavn, antall, sum, mva)

FDer:

ordrenr -> kundenr, kundenavn, antall, sum, mva (BCNF)

Kundenr -> kundenavn (2NF)

Sum -> mvh (2NF)

Hvilken normalform er relasjonen på?

Student_Emne (id, emnekode, bnavn, karakter)

FDer:

Id, emnekode -> karakter (BCNF)
bnavn, emnekode -> karakter (BCNF)

Id -> bnavn (3NF)

Bnavn -> id (3NF)

Hvilken normalform er relasjonen på?

Student(fnr, id, navn, adresse)

FDer:

Fnr -> id, navn, adresse (BCNF)

Id -> fnr, navn, adresse (BCNF)

Hva gjør vi videre?

Dekomposisjon til høyere normalform

Eksempel:

Fra 3NF til BCNF

Student_Emne(id, emnekode, bnavn, karakter)

Student(bnavn, id)

StudentEmne(<u>bnavn</u>, <u>emnekode</u>, karakter)

Vil du lære mer relasjonsdatabaseteori?

Ta INF3100 -Databasesystemer til våren!