					MA	E	158	3 L	ec	tur	e	12					
						/	Jou.	7	H	20	e 24						
					1				,	•							
Α	tnn	0 WY	rce	mе	nts	·k)ee	K	6	Qui	之		11		21 ~	Λ	
									F	ci	1Zai	m –	(VI	5/1	11:5	9pm	
						ło	pic	S:	Le	ctu	re	9 -	- []		powe	X I	
											d Hu	_		(1	Lequ	irco	
														C	.l;m	bing	1
														0	lesce fli	ndini iaht)	7
	T_0	dan	, 5	06:6	z.hv	es:	T	, an	ae							J. ,	
	. •			Obje	0	_	E	ind	1110	2 A (e						
	R	01 A 01			d.' (1	A C .0	4	~	Cl.		P	\sim		one Ov1		
	1,20	wa	<u>K</u>			26-	1-6	^	ماء	1 00	}	11.) 00				
						v Ca	170	<i>,</i>	, TO) 9	NO	100	4		01		
						On	e	u	ΛιŤ	– <i>C</i>	5r	en	LN (fy			
						,											
							ح ر	ne	~gi	1	C	n	Co	me	f	ronc	,
									1			_					
								X H	M	7	Fry	X	4	-			
									Y								
								Ba	He	r've	5						

 $= \frac{1}{1 \cdot C_{T}} = \frac{1}{1 \cdot$ CT = thrust specific fuel consumption > property of an engine units: [lbs ful] = lbs ful I

Lb-hr hr lbs Thrust For a jet

Specific Rauge: CT D W

1 1 weight

Property aerodynamic

of Engine efficiency weight will vary in cruise to get Raige, integrate specific Raige

with weight $R_{jet} = \int_{\omega_0}^{\omega_1} \frac{U}{CT} \frac{U}{D} \frac{U}{W} = \frac{U}{CT} \frac{L}{D} \frac{L}{L} \frac{L}{L}$ Wo = Starting weight es = hr W, = ending weight We is bigger than W, Brequet Raige Equation how do I increase Rjet? 1) increase V & 5 to gether
1) decrease CT > increase Wo-W, carry a

$$= -\frac{1}{2} \frac{C_{Dp}}{C_{3k}} + \frac{3}{2} C_{k}^{1/2} \cdot K = 0$$

$$C_{Dp} = 3 K C_{k}^{2}$$

$$C_{k} = \sqrt{\frac{C_{Dp}}{3K}} \quad C_{k} \quad \text{where}$$

$$C_{k}^{2} = \sqrt{\frac{C_{Dp}}{3K}} \quad C_{k}^{2} \cdot C_{k}^{2} \cdot C_{k} \quad \text{is now}$$

$$\frac{1}{2} \frac{C_{Dp}}{C_{Dp}} = \sqrt{\frac{2}{2} \frac{W}{2}} \cdot \frac{\sqrt{3}K}{\sqrt{2}C_{Dp}} \cdot C_{k}^{2} \cdot C$$

· Prop A/C				Mat	pressure
					pefficient!
inst	ead of	CT,	define	C_{D}	
	CD =	Specific	to he	Consun	notion
	F	Reference	d to he	orse por	ver
		(lbs o	f fuel pe	r hp	-hr)
				,	
	init:	- BHP-	vel 7		
		- BHP -	hr_		
		Bra	ke horsep	swer,	out putted
		•	g Propu	lsoc sh	raft
		C	, , ,		
Specific	Rarge		distance,	hr	
•	8		l's fuel /	hr	
			V [knots		
Hu	5.	V			
	C	P BHP			

BHP = T.V compare to jet 1 550 n [hp] 1 properficiency 550 is conversion for hp

AKA SSO FILL = Ihp Plug BHP into Specific Range equation... V[knots] = V[knots] · 550 · n

Cp · BHP

Cp · V[f+/s] · T $T = D \cdot \frac{\omega}{L}$ Note V[knots] 1.69 property of propeller Si. Specific Range = property of Engine

integrate $R_{prop} = 325 + 1 dW$ = 325. 4. L. ln (Wo)
(nmi) want to increase Rprop, what to I do? - increase D (or max & for max Rprop) - Jecrease Cp - increase n - carry more fael Endurance (E): time to fly on I unit of Energy

· Prop Endurance: Specific Endwace = BHP. Cp relate to T $E_{\text{prop}} = \int_{\omega_0}^{\omega_1} \frac{1}{C_P} \left(\frac{\rho S}{z} \right)^{\frac{1}{2}} \frac{C_1^{3/2}}{C_D} \frac{1}{\omega^{3/2}} d\omega$ $= \frac{1}{CP} \left(\frac{2\rho S}{2\rho S} \right)^{\frac{1}{2}} \frac{C_L^{\frac{3}{2}}}{CD} \left(\frac{1}{U_1^{\frac{1}{2}}} - \frac{1}{U_0^{\frac{1}{2}}} \right)$ to maximize prop Endurance $C_L^{3/2}/C_D$ max · P1 fly@ 1 h

· cp J · carry a lot of fuel for Ex, if I want to laiter for I day, what is the min Gal I need to carry? Prop. assume engine properties are given, Allfrane & alfitude given, W, Summary Jet Prop Rrange: C1/2/CD CL/CD

Endurance: C1/CD C 3/2/C, ROC Ynax Climb descent there is a tradeoff between carrying full & carrying payload W/ payload
Rarge chart example this

max takeoff weight

2 - max fuel

capacity Payload Rarge 1. Carry max payload, increase Rarge by carrying more ful 2. @ Max takeoff weight, but you can exteend Range furthur by dropping payload 3. @ max fuel capacity, decrease payload to exend the Range further 2 decrease W,