

RUHR-UNIVERSITÄT BOCHUM

The Subset-Sum Problem

cryptanalysis employing a probabilistic approach

© KU Leuven, 22.09.2016 – 13.30

Matthias Minihold

ECRYPT-NET Early Stage Researcher Cryptology and IT-Security, Ruhr-Universität Bochum

- 1 The Subset-Sum problem
 - Motivation
 - Historical Remarks
 - Easy and Hard Instances
 - Evolution of Algorithms
 - Technique 1 Meet in the Middle
 - Technique 2 Enlarge Number Set
 - Applications

Outline

- 1 The Subset-Sum problem
 - Motivation
 - Historical Remarks
 - Easy and Hard Instances
 - Evolution of Algorithms
 - Technique 1 Meet in the Middle
 - Technique 2 Enlarge Number Set
 - Applications

Informally: Pack a knapsack with items to meet a weight constraint.

Informally: Pack a knapsack with items to meet a weight constraint. Suppose you are at the airport:

▶ The luggage may weight $\leq S$ [kg] at check-in.

Informally. Pack a knapsack with items to meet a weight constr

Informally: Pack a knapsack with items to meet a weight constraint. Suppose you are at the airport:

- ▶ The luggage may weight $\leq S$ [kg] at check-in.
- ▶ Not squandering, the bag WILL weight S [kg].

Informally: Pack a knapsack with items to meet a weight constraint. Suppose you are at the airport:

- ▶ The luggage may weight $\leq S$ [kg] at check-in.
- ▶ Not squandering, the bag WILL weight *S* [kg].
- ▶ *n* equally beautiful items with weights $a_1, a_2, ... a_n$.

Informally: Pack a knapsack with items to meet a weight constraint. Suppose you are at the airport:

- ▶ The luggage may weight $\leq S$ [kg] at check-in.
- ▶ Not squandering, the bag WILL weight *S* [kg].
- ▶ *n* equally beautiful items with weights $a_1, a_2, ... a_n$.

Informally: Pack a knapsack with items to meet a weight constraint. Suppose you are at the airport:

- ▶ The luggage may weight $\leq S$ [kg] at check-in.
- \blacktriangleright Not squandering, the bag WILL weight S [kg].
- ▶ n equally beautiful items with weights $a_1, a_2, \ldots a_n$.

Definition 1 (Subset-Sum)

Given
$$n, S, a_1, a_2, \dots a_n \in \mathbb{N}$$
, find $I \subseteq [n] : \sum_{i \in I} a_i = S$. (1)

Outline

- 1 The Subset-Sum problem
 - Motivation
 - Historical Remarks
 - Easy and Hard Instances
 - Evolution of Algorithms
 - Technique 1 Meet in the Middle
 - Technique 2 Enlarge Number Set
 - Applications

▶ Names: (0-1-)Knapsack, Subset-Sum problem

- ► Names: (0-1-)Knapsack, Subset-Sum problem
- ► First studied in 1897

- ▶ Names: (0-1-)Knapsack, Subset-Sum problem
- ► First studied in 1897
- \blacktriangleright Early recognized to be $\mathcal{NP}\text{--complete}$ by reduction to 3-SAT:

- ▶ Names: (0-1-)Knapsack, Subset-Sum problem
- First studied in 1897
- \blacktriangleright Early recognized to be \mathcal{NP} -complete by reduction to 3-SAT:
 - \circ Satisfiability with at most 3 literals per clause ($\hat{=}$ 3-SAT)

- ► Names: (0-1-)Knapsack, Subset-Sum problem
- First studied in 1897
- ▶ Early recognized to be NP-complete by reduction to 3-SAT:
 - ∘ Satisfiability with at most 3 literals per clause (≜ 3-SAT)
 - $\circ \Rightarrow_R$ Chromatic number (= Graph Coloring)

- ► Names: (0-1-)Knapsack, Subset-Sum problem
- First studied in 1897
- ▶ Early recognized to be \mathcal{NP} -complete by reduction to 3-SAT:
 - Satisfiability with at most 3 literals per clause (= 3-SAT)
 - $\circ \Rightarrow_R$ Chromatic number (= Graph Coloring)
 - $\circ \Rightarrow_R \mathsf{Exact} \mathsf{cover}$

- ► Names: (0-1-)Knapsack, Subset-Sum problem
- First studied in 1897
- ▶ Early recognized to be \mathcal{NP} -complete by reduction to 3-SAT:
 - Satisfiability with at most 3 literals per clause (\(\hat{=}\) 3-SAT)
 - $\circ \Rightarrow_R$ Chromatic number (= Graph Coloring)
 - $\circ \Rightarrow_R \mathsf{Exact} \mathsf{cover}$
 - $\circ \Rightarrow_R \mathsf{Knapsack}$

- ► Names: (0-1-)Knapsack, Subset-Sum problem
- First studied in 1897
- ▶ Early recognized to be \mathcal{NP} -complete by reduction to 3-SAT:
 - Satisfiability with at most 3 literals per clause (≜ 3-SAT)
 - $\circ \Rightarrow_R$ Chromatic number (= Graph Coloring)
 - $\circ \Rightarrow_R \mathsf{Exact} \mathsf{cover}$
 - $\circ \Rightarrow_R \mathsf{Knapsack}$
 - worst-case instances are computationally intractable

Outline

- 1 The Subset-Sum problem
 - Motivation
 - Historical Remarks
 - Easy and Hard Instances
 - Evolution of Algorithms
 - Technique 1 Meet in the Middle
 - Technique 2 Enlarge Number Set
 - Applications

Given an instance by $n, S, a_1, a_2, \dots a_n \in \mathbb{N}$ with density $d := \frac{n}{\log(\max_i a_i)}$.

Given an instance by
$$n, S, a_1, a_2, \dots a_n \in \mathbb{N}$$
 with density $d := \frac{n}{\log(\max_i a_i)}$. Easy instances:

▶ (d<0.9408) Solve Shortest Vector Problem in $\mathcal{L}(B)$.

Given an instance by
$$n, S, a_1, a_2, \ldots a_n \in \mathbb{N}$$
 with density $d := \frac{n}{\log(\max_i a_i)}$. Easy instances:

- ▶ (d<0.9408) Solve Shortest Vector Problem in $\mathcal{L}(B)$.
- ▶ (d>1) Solve Dynamic Programming Problem

Given an instance by
$$n, S, a_1, a_2, \ldots a_n \in \mathbb{N}$$
 with density $d := \frac{n}{\log(\max_i a_i)}$. Easy instances:

- ▶ (d<0.9408) Solve Shortest Vector Problem in $\mathcal{L}(B)$.
- ▶ (d>1) Solve Dynamic Programming Problem

Given an instance by $n, S, a_1, a_2, \dots a_n \in \mathbb{N}$ with density $d := \frac{n}{\log(\max_i a_i)}$. Easy instances:

- ▶ (d<0.9408) Solve Shortest Vector Problem in $\mathcal{L}(B)$.
- ▶ (d>1) Solve Dynamic Programming Problem

 a_i

Hard instances:

▶ Element size: $\log_2 a_i \approx n$ for i = 1, 2, ..., n

- ▶ Element size: $\log_2 a_i \approx n$ for i = 1, 2, ..., n
- ▶ Characterized by $0.9408 < d = \frac{n}{\log(\max_i a_i)} < 1$

- ▶ Element size: $\log_2 a_i \approx n$ for i = 1, 2, ..., n
- ▶ Characterized by $0.9408 < d = \frac{n}{\log(\max_i a_i)} < 1$
- ▶ Balanced solution: $|I| \approx \frac{n}{2}$

- ▶ Element size: $\log_2 a_i \approx n$ for i = 1, 2, ..., n
- ► Characterized by $0.9408 < d = \frac{n}{\log(\max_i a_i)} < 1$
- ▶ Balanced solution: $|I| \approx \frac{n}{2}$
- ▶ How to generate hard instances parametrized by n:

- ▶ Element size: $\log_2 a_i \approx n$ for i = 1, 2, ..., n
- ► Characterized by $0.9408 < d = \frac{n}{\log(\max_i a_i)} < 1$
- ▶ Balanced solution: $|I| \approx \frac{n}{2}$
- ▶ How to generate hard instances parametrized by *n*:
 - 1. Choose $a \in_R \{0, 1, \dots, 2^n 1\}^n, x \in_R \{0, 1\}^n$ uniformly.

- ▶ Element size: $\log_2 a_i \approx n$ for i = 1, 2, ..., n
- ► Characterized by $0.9408 < d = \frac{n}{\log(\max_i a_i)} < 1$
- ▶ Balanced solution: $|I| \approx \frac{n}{2}$
- ▶ How to generate hard instances parametrized by *n*:
 - 1. Choose $a \in_R \{0, 1, \dots, 2^n 1\}^n, x \in_R \{0, 1\}^n$ uniformly.
 - 2. Output $(a = (a_1, a_2, ..., a_n), S = a \cdot x = \sum_{i=1}^n x_i a_i)$.

- ▶ Element size: $\log_2 a_i \approx n$ for i = 1, 2, ..., n
- ► Characterized by $0.9408 < d = \frac{n}{\log(\max_i a_i)} < 1$
- ▶ Balanced solution: $|I| \approx \frac{n}{2}$
- ▶ How to generate hard instances parametrized by *n*:
 - 1. Choose $a \in_R \{0, 1, \dots, 2^n 1\}^n, x \in_R \{0, 1\}^n$ uniformly.
 - 2. Output $(a = (a_1, a_2, \dots a_n), S = a \cdot x = \sum_{i=1}^n x_i a_i)$.
 - 3. Finding x given (a, S) is (assumed to be) computationally hard.

Outline

- 1 The Subset-Sum problem
 - Motivation
 - Historical Remarks
 - Easy and Hard Instances
 - Evolution of Algorithms
 - Technique 1 Meet in the Middle
 - Technique 2 Enlarge Number Set
 - Applications

Evolution of Algorithms (giving exact solutions)

Horst Görtz Institut ■ für IT-Sicherheit ■

Algorithm (year)	Time	Space

Table: Expected time and space requirements of algorithms solving Eq. (1).

Evolution of Algorithms (giving exact solutions)

Algorithm (year)	Time	Space
Exhaustive Search	$2^{1.000n} \approx (2.000)^n$	$2^{0.000n} \approx (1.000)^n$

Table: Expected time and space requirements of algorithms solving Eq. (1).

Evolution of Algorithms (giving exact solutions)

Algorithm (year)	Time	Space
Exhaustive Search	$2^{1.000n} \approx (2.000)^n$	$2^{0.000n} \approx (1.000)^n$

> Idea: 'meet-in-the-middle'

Table: Expected time and space requirements of algorithms solving Eq. (1).

Algorithm (year)	Time	Space
Exhaustive Search	$2^{1.000n} \approx (2.000)^n$	$2^{0.000n} \approx (1.000)^n$
> Idea: <i>'meet-in-the-middle'</i> Horowitz-Sahni (1974)	$2^{0.500n} \approx (1.414)^n$	$2^{0.500n} \approx (1.414)^n$

Algorithm (year)	Time	Space
Exhaustive Search	$2^{1.000n} \approx (2.000)^n$	$2^{0.000n} \approx (1.000)^n$
> Idea: <i>'meet-in-the-middle'</i> Horowitz-Sahni (1974)	$2^{0.500n} \approx (1.414)^n$	$2^{0.500n} \approx (1.414)^n$
> Idea: '4-list approach'	·	

hgi
Horst Görtz Institut ■
für IT-Sicherheit ■

Algorithm (year)	Time	Space
Exhaustive Search	$2^{1.000n} \approx (2.000)^n$	$2^{0.000n} \approx (1.000)^n$
> Idea: 'meet-in-the-middle' Horowitz-Sahni (1974) > Idea: '4-list approach'	$2^{0.500n} \approx (1.414)^n$ $2^{0.500n} \approx (1.414)^n$,
Schroeppel-Shamir (1979)	2000000 ≈ (1.414)00	$2^{0.233.0} \approx (1.189)^{0.0}$

Algorithm (year)	Time	Space
Exhaustive Search	$2^{1.000n} \approx (2.000)^n$	$2^{0.000n} \approx (1.000)^n$
> Idea: 'meet-in-the-middle'		
Horowitz-Sahni (1974)	$2^{0.500n} \approx (1.414)^n$	$2^{0.500n} \approx (1.414)^n$
> Idea: '4-list approach'		
Schroeppel-Shamir (1979)	$2^{0.500n} \approx (1.414)^n$	$2^{0.250n} \approx (1.189)^n$
> Idea: 'multiple representations'		· · ·

Algorithm (year)	Time	Space
Exhaustive Search	$2^{1.000n} \approx (2.000)^n$	$2^{0.000n} \approx (1.000)^n$
> Idea: 'meet-in-the-middle'		
Horowitz-Sahni (1974)	$2^{0.500n} \approx (1.414)^n$	$2^{0.500n} \approx (1.414)^n$
> Idea: '4-list approach'		
Schroeppel-Shamir (1979)	$2^{0.500n} \approx (1.414)^n$	$2^{0.250n} \approx (1.189)^n$
> Idea: 'multiple representations'		
Howgrave-Graham-Joux (2010)	$2^{0.337n} \approx (1.263)^n$	$2^{0.311n} \approx (1.241)^n$
> Idea: 'enlarged number-set' {-1 0 1}		

Algorithm (year)	Time	Space
Exhaustive Search	$2^{1.000n} \approx (2.000)^n$	$2^{0.000n} \approx (1.000)^n$
> Idea: 'meet-in-the-middle'		
Horowitz-Sahni (1974)	$2^{0.500n} \approx (1.414)^n$	$2^{0.500n} \approx (1.414)^n$
> Idea: '4-list approach'		
Schroeppel-Shamir (1979)	$2^{0.500n} \approx (1.414)^n$	$2^{0.250n} \approx (1.189)^n$
> Idea: 'multiple representations'		
Howgrave-Graham-Joux (2010)	$2^{0.337n} \approx (1.263)^n$	$2^{0.311n} \approx (1.241)^n$
$>$ Idea: 'enlarged number-set' $\{-1,0,1\}$		
Becker-Coron-Joux (2011)	$2^{0.291n} \approx (1.223)^n$	$2^{0.291n} \approx (1.223)^n$
` '	,	,

Algorithm (year)	Time	Space
Exhaustive Search	$2^{1.000n} \approx (2.000)^n$	$2^{0.000n} \approx (1.000)^n$
> Idea: 'meet-in-the-middle'		
Horowitz-Sahni (1974)	$2^{0.500n} \approx (1.414)^n$	$2^{0.500n} \approx (1.414)^n$
> Idea: '4-list approach'		
Schroeppel-Shamir (1979)	$2^{0.500n} \approx (1.414)^n$	$2^{0.250n} \approx (1.189)^n$
> Idea: 'multiple representations'		
Howgrave-Graham-Joux (2010)	$2^{0.337n} \approx (1.263)^n$	$2^{0.311n} \approx (1.241)^n$
$>$ Idea: 'enlarged number-set' $\{-1,0,1\}$		
Becker-Coron-Joux (2011)	$2^{0.291n} \approx (1.223)^n$	$2^{0.291n} \approx (1.223)^n$
> Idea: 'quantum algorithm'		

Algorithm (year)	Time	Space
Exhaustive Search	$2^{1.000n} \approx (2.000)^n$	$2^{0.000n} \approx (1.000)^n$
> Idea: 'meet-in-the-middle'		
Horowitz-Sahni (1974)	$2^{0.500n} \approx (1.414)^n$	$2^{0.500n} \approx (1.414)^n$
> Idea: '4-list approach'		
Schroeppel-Shamir (1979)	$2^{0.500n} \approx (1.414)^n$	$2^{0.250n} \approx (1.189)^n$
> Idea: 'multiple representations'		
Howgrave-Graham-Joux (2010)	$2^{0.337n} \approx (1.263)^n$	$2^{0.311n} \approx (1.241)^n$
$>$ Idea: 'enlarged number-set' $\{-1,0,1\}$		
Becker-Coron-Joux (2011)	$2^{0.291n} \approx (1.223)^n$	$2^{0.291n} \approx (1.223)^n$
> Idea: 'quantum algorithm'		
Bernstein-Jeffery-Lange-Meurer (2013)	$2^{0.241n} \approx (1.182)^n$	$2^{0.241n} \approx (1.182)^n$

Table: Expected time and space requirements of algorithms solving Eq. (1).

Asymptotically best exact algorithm is a quantum algorithm

hgı	
Horst Görtz Institut ■	
für IT-Sicherheit	

Algorithm (year)	Time	Space
Exhaustive Search	$2^{1.000n} \approx (2.000)^n$	$2^{0.000n} \approx (1.000)^n$
> Idea: 'meet-in-the-middle'		
Horowitz-Sahni (1974)	$2^{0.500n} \approx (1.414)^n$	$2^{0.500n} \approx (1.414)^n$
> Idea: '4-list approach'		
Schroeppel-Shamir (1979)	$2^{0.500n} \approx (1.414)^n$	$2^{0.250n} \approx (1.189)^n$
> Idea: 'multiple representations'		
Howgrave-Graham-Joux (2010)	$2^{0.337n} \approx (1.263)^n$	$2^{0.311n} \approx (1.241)^n$
$>$ Idea: 'enlarged number-set' $\{-1,0,1\}$		
Becker-Coron-Joux (2011)	$2^{0.291n} \approx (1.223)^n$	$2^{0.291n} \approx (1.223)^n$
> Idea: 'quantum algorithm'		
Bernstein-Jeffery-Lange-Meurer (2013)	$2^{0.241n} \approx (1.182)^n$	$2^{0.241n} \approx (1.182)^n$

- Asymptotically best exact algorithm is a quantum algorithm
- ► Lower bound on running time is unkown

Outline

- 1 The Subset-Sum problem
 - Motivation
 - Historical Remarks
 - Easy and Hard Instances
 - Evolution of Algorithms
 - Technique 1 Meet in the Middle
 - Technique 2 Enlarge Number Set
 - Applications

Figure: Schröppel-Shamir: Combining disjoint sub-problems of smaller weight.

▶ Identify subsets $I \subseteq [n]$ with vectors $x \in \{0,1\}^n : i \in I \Leftrightarrow x[i] = 1$

- ▶ Identify subsets $I \subseteq [n]$ with vectors $x \in \{0,1\}^n : i \in I \Leftrightarrow x[i] = 1$
- Construct collisions based on the birthday-paradox

- ▶ Identify subsets $I \subseteq [n]$ with vectors $x \in \{0,1\}^n : i \in I \Leftrightarrow x[i] = 1$
- Construct collisions based on the birthday-paradox
- \blacktriangleright Construct lists L_1, L_2 of (vector, sum)-pairs in smaller dimension

- ▶ Identify subsets $I \subseteq [n]$ with vectors $x \in \{0,1\}^n : i \in I \Leftrightarrow x[i] = 1$
- Construct collisions based on the birthday-paradox
- ightharpoonup Construct lists L_1, L_2 of (vector, sum)-pairs in smaller dimension
- Subset-Sum Merge U_{2} to solutions $(x_0,S)\in L_0$ of the Subset-Sum problem $U_{3/18}$

Outline

- 1 The Subset-Sum problem
 - Motivation
 - Historical Remarks
 - Easy and Hard Instances
 - Evolution of Algorithms
 - Technique 1 Meet in the Middle
 - Technique 2 Enlarge Number Set
 - Applications

$$L_0 = \{(x_0, \sum_i x_0[i]a_i = S_1 + S_2 = S)\}, wt(x_0) = \frac{n}{2}\}$$

$$=$$

$$L_1 = \{(x_1, \sum_i x_1[i]a_i)\}, wt(x_1) = \frac{n}{4}$$

$$+$$

$$L_2 = \{(x_2, S - \sum_i x_2[i]a_i)\}, wt(x_2) = \frac{n}{4}$$

Figure: Adding length n solutions of sub-problems enlarges the number-set.

$$L_0 = \{(x_0, \sum_i x_0[i]a_i = S_1 + S_2 = S)\}, wt(x_0) = \frac{n}{2}$$

$$=$$

$$L_1 = \{(x_1, \sum_i x_1[i]a_i)\}, wt(x_1) = \frac{n}{4}$$
 +

$$L_2 = \{(x_2, S - \sum_i x_2[i]a_i)\}, wt(x_2) = \frac{n}{4}$$

Figure: Adding length n solutions of sub-problems enlarges the number-set.

▶ Merge non-disjoint partial solutions in L_1, L_2 filtering 'inconsistent'

Figure: Adding length n solutions of sub-problems enlarges the number-set.

- \blacktriangleright Merge non-disjoint partial solutions in L_1, L_2 filtering 'inconsistent'
- ▶ Enlarge intermediate 'number-set': $x_{11}[i] + x_{12}[i] =: x_1[i] \notin \{0, 1\}.$

Figure: Adding length *n* solutions of sub-problems enlarges the number-set.

- lacktriangle Merge non-disjoint partial solutions in L_1, L_2 filtering 'inconsistent'
- ▶ Enlarge intermediate 'number-set': $x_{11}[i] + x_{12}[i] =: x_1[i] \notin \{0,1\}.$

Subset Supple described in Speed of the supple of the sup

Outline

- 1 The Subset-Sum problem
 - Motivation
 - Historical Remarks
 - Easy and Hard Instances
 - Evolution of Algorithms
 - Technique 1 Meet in the Middle
 - Technique 2 Enlarge Number Set
 - Applications

Applications

▶ These cryptanalytic methods are meta-techniques

Applications

- ▶ These cryptanalytic methods are meta-techniques
- lacktriangle Applicable to lattice- or code-based $\mathcal{NP} ext{-complete}$ problems

- ▶ These cryptanalytic methods are meta-techniques
- \blacktriangleright Applicable to lattice- or code-based \mathcal{NP} -complete problems

- ▶ These cryptanalytic methods are meta-techniques
- lacktriangle Applicable to lattice- or code-based $\mathcal{NP} ext{-complete}$ problems

Setup: A preprocessed length n text T is stored in the cloud.

- ▶ These cryptanalytic methods are meta-techniques
- lacktriangle Applicable to lattice- or code-based $\mathcal{NP} ext{-complete}$ problems

Setup: A preprocessed length n text T is stored in the cloud.

Given: A pattern P of length $m \le n$, find all locations of P in T.

- ► These cryptanalytic methods are meta-techniques
- \blacktriangleright Applicable to lattice- or code-based \mathcal{NP} -complete problems

Setup: A preprocessed length n text T is stored in the cloud.

Given: A pattern P of length $m \le n$, find all locations of P in T.

Goal: Cloud learns no information about text T and pattern P.

S. Faust, C. Hazay, and D. Venturi.

Outsourced pattern matching.

Cryptology ePrint Archive, Report 2014/662, 2014.

http://eprint.iacr.org/2014/662.

RUHR-UNIVERSITÄT BOCHUM

QUESTIONS?

Thank you for your attention!

