AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (Currently Amended) A method for executing a commit instruction
2	to facilitate transactional execution on a processor, comprising:
3	executing a block of instructions transactionally, wherein executing the
4	block of instructions transactionally involves placing load-marks on cache lines
5	from which data is loaded, placing store-marks on cache lines to which data is
6	stored, and placing transactional stores in a store buffer in the processor during
7	the transaction, wherein the transactional stores are gated and not committed to
8	memory from the store buffer during the transaction, and wherein the store buffer
9	is a hardware structure separate from a register file;
10	encountering the commit instruction during execution of a program,
11	wherein the commit instruction marks the end of a block of instructions to be
12	executed transactionally; and
13	upon encountering the commit instruction, successfully completing
14	transactional execution of the block of instructions preceding the commit
15	instruction, wherein successfully completing the transactional execution involves
16	atomically committing changes made during the transactional execution by:
17	treating store-marked cache lines as locked, thereby causing other
18	processes to wait to access the store-marked cache lines;
19	committing store buffer entries generated during transactional
20	execution to memory, wherein committing each store buffer entry

21	involves removing the store-mark from, and thereby unlocking, a
22	corresponding store-marked cache line;
23	clearing load-marks from cache lines; and
24	committing register file changes made during transactional
25	execution;
26	wherein changes made during the transactional execution are not
27	committed to the architectural state of the processor until the transactional
28	execution successfully completes.
1	2. (Previously Presented) The method of claim 1, wherein
2	successfully completing the transactional execution involves:
3	resuming normal non-transactional execution.
1	3. (Cancelled)
1	4. (Original) The method of claim 1, wherein if an interfering data
2	access from another process is encountered during the transactional execution and
3	prior to encountering the commit instruction, the method further comprises:
4	discarding changes made during the transactional execution; and
5	attempting to re-execute the block of instructions.
1	5. (Previously Presented) The method of claim 1, wherein for a
2	variation of the commit instruction, successfully completing the transactional
3	execution involves:
4	commencing transactional execution of the block of instructions following
5	the commit instruction

1	6. (Original) The method of claim 1, wherein potentially interfering
2	data accesses from other processes are allowed to proceed during the transactional
3	execution of the block of instructions.
1	7. (Original) The method of claim 1, wherein the block of
2	instructions to be executed transactionally comprises a critical section.
1	8. (Original) The method of claim 1, wherein the commit instruction
2	is a native machine code instruction of the processor.
1	9. (Original) The method of claim 1, wherein the commit instruction
2	is defined in a platform-independent programming language.
1	10. (Currently Amended) A computer system that supports a commit
2	instruction to facilitate transactional execution, wherein the commit instruction
3	marks the end of a block of instructions to be executed transactionally,
4	comprising:
5	a processor;
6	a store buffer in the processor, wherein the store buffer is a hardware
7	structure separate from a register file; and
8	an execution mechanism within the processor, wherein the execution
9	mechanism is configured to place load-marks on cache lines from which data is
10	loaded, place store-marks on cache lines to which data is stored, and place
11	transactional stores in the store buffer during the transaction, wherein the
12	transactional stores are gated and not committed to memory from the store buffer
13	during the transaction;
14	wherein upon encountering the commit instruction, the execution
15	mechanism is configured to successfully complete transactional execution of the

16	block of instructions preceding the commit instruction, wherein successfully
17	completing the transactional execution involves atomically committing changes
18	made during the transactional execution by:
19	treating store-marked cache lines as locked, thereby causing other
20	processes to wait to access the store-marked cache lines;
21	committing store buffer entries generated during transactional
22	execution to memory, wherein committing each store buffer entry
23	involves removing the store-mark from, and thereby unlocking, a
24	corresponding store-marked cache line;
25	clearing load-marks from cache lines; and
26	committing register file changes made during transactional
27	execution;
28	wherein changes made during the transactional execution are not
29	committed to the architectural state of the processor until the transactional
	1
30	execution successfully completes.
	<u>-</u>
	<u>-</u>
30	execution successfully completes.
30	execution successfully completes. 11. (Previously Presented) The computer system of claim 10, wherein
30 1 2	execution successfully completes. 11. (Previously Presented) The computer system of claim 10, wherein while successfully completing transactional execution, the execution mechanism
30 1 2 3	execution successfully completes. 11. (Previously Presented) The computer system of claim 10, wherein while successfully completing transactional execution, the execution mechanism is configured to:
30 1 2 3	execution successfully completes. 11. (Previously Presented) The computer system of claim 10, wherein while successfully completing transactional execution, the execution mechanism is configured to:
1 2 3 4	execution successfully completes. 11. (Previously Presented) The computer system of claim 10, wherein while successfully completing transactional execution, the execution mechanism is configured to: resume normal non-transactional execution.
1 2 3 4	execution successfully completes. 11. (Previously Presented) The computer system of claim 10, wherein while successfully completing transactional execution, the execution mechanism is configured to: resume normal non-transactional execution.
1 2 3 4	execution successfully completes. 11. (Previously Presented) The computer system of claim 10, wherein while successfully completing transactional execution, the execution mechanism is configured to: resume normal non-transactional execution. 12. (Cancelled)
1 2 3 4 1	execution successfully completes. 11. (Previously Presented) The computer system of claim 10, wherein while successfully completing transactional execution, the execution mechanism is configured to: resume normal non-transactional execution. 12. (Cancelled) 13. (Original) The computer system of claim 10, wherein if an
30 1 2 3 4 1 1 2	execution successfully completes. 11. (Previously Presented) The computer system of claim 10, wherein while successfully completing transactional execution, the execution mechanism is configured to: resume normal non-transactional execution. 12. (Cancelled) 13. (Original) The computer system of claim 10, wherein if an interfering data access from another process is encountered during the

- attempt to re-execute the block of instructions.
- 14 (Previously Presented) The computer system of claim 10, wherein
- 2 if a variation of the commit instruction is encountered, the execution mechanism
 - is configured to:

6

3

- 4 commence transactional execution of the block of instructions following
- 5 the commit instruction.
- 15 (Original) The computer system of claim 10, wherein the computer
- 2 system is configured to allow potentially interfering data accesses from other
- 3 processes to proceed during the transactional execution of the block of
- instructions 4
- 1 16. (Original) The computer system of claim 10, wherein the block of 2 instructions to be executed transactionally comprises a critical section.
- 1 17 (Original) The computer system of claim 10, wherein the commit 2
 - instruction is a native machine code instruction of the processor.
- 18 (Original) The computer system of claim 10, wherein the commit
- 2 instruction is defined in a platform-independent programming language.
- 19 (Currently Amended) A computer-readable storage medium
- 2 storing instructions that when executed by a computer cause the computer to
 - perform a method for executing a commit instruction to facilitate transactional
- 4 execution, comprising:

3

- 5 executing a block of instructions transactionally, wherein executing the
- block of instructions transactionally involves placing load-marks on cache lines

7	from which data is loaded, placing store-marks on cache lines to which data is
8	stored, and placing transactional stores in a store buffer in the processor during
9	the transaction, wherein the transactional stores are gated and not committed to
10	memory from the store buffer during the transaction, and wherein the store buffer
11	is a hardware structure separate from a register file;
12	encountering the commit instruction during execution of a program,
13	wherein the commit instruction marks the end of a block of instructions to be
14	executed transactionally; and
15	upon encountering the commit instruction, successfully completing
16	transactional execution of the block of instructions preceding the commit
17	instruction, wherein successfully completing the transactional execution involves
18	atomically committing changes made during the transactional execution by:
19	treating store-marked cache lines as locked, thereby causing other
20	processes to wait to access the store-marked cache lines;
21	committing store buffer entries generated during transactional
22	execution to memory, wherein committing each store buffer entry
23	involves removing the store-mark from, and thereby unlocking, a
24	corresponding store-marked cache line;
25	clearing load-marks from cache lines; and
26	committing register file changes made during transactional
27	execution;
28	wherein changes made during the transactional execution are not
29	committed to the architectural state of the processor until the transactional
30	execution successfully completes.

(Previously Presented) The computer-readable storage medium of claim 19, wherein successfully completing transactional execution involves: 3 resuming normal non-transactional execution.

1 2