GPU Programming

Parallel Patterns

Miaoqing Huang University of Arkansas

Outline

Introduction

Reduction

All-Prefix-Sums

Applications
Avoiding Bank Conflicts

Segmented Scan

Sorting

Outline

Introduction

Reduction

All-Prefix-Sums

Applications
Avoiding Bank Conflicts

Segmented Scan

Sorting

Getting out of the trenches

- ► Focus on low-level details of kernel programming so far
 - Mapping of threads to work
 - Launch grid configuration
 - __shared__ memory management
 - ► Resource allocation
- Hard to see the forest for the trees

```
__global__ void foo(...)
{
    extern __shared__ smem[];
    int i = ???
    ......
}
.....
dim3 dim_grid = ???
dim3 dim_block = ???
foo<<<dim_grid, dim_block>>>();
```

Getting out of the trenches

- ► Focus on low-level details of kernel programming so far
 - Mapping of threads to work
 - Launch grid configuration
 - __shared__ memory management
 - ► Resource allocation
- Hard to see the forest for the trees

```
__global___ void foo(...)
{
    extern __shared__ smem[];
    int i = ???
    ......
}
.....
dim3 dim_grid = ???
dim3 dim_block = ???
foo<<<dim_grid, dim_block>>>();
```

▶ Now what?

Parallel Patterns

- ► Think at a higher level than individual CUDA kernels
- Specify what to compute, not how to compute it
- Let programmer worry about algorithm
 - Defer pattern implementation to someone else
- Common Parallel Computing Scenarios
 - lacktriangleright Many parallel threads need to generate a single result ightarrow
 - Reduce
 - lacktriangleright Many parallel threads need to partition data ightarrow
 - Split
 - lacktriangleright Many parallel threads produce variable output / thread ightarrow
 - Compact / Expand
 - Parallel prefix sum, a.k.a,
 - scan

Primordial CUDA Pattern: Blocking

- Partition data to operate in well-sized blocks
 - Small enough to be staged in shared memory
 - Assign each data partition to a thread block
 - No different from cache blocking!
- Provide several performance benefits
 - Have enough blocks to keep processors busy
 - Working in shared memory cuts memory latency dramatically
 - Likely to have coherent access patterns on load/store to shared memory
- All CUDA kernels are built this way
 - Blocking may not matter for a particular problem, but you're still forced to think about it
 - ▶ Not all kernels require __shared__ memory
 - All kernels do require registers
- All of the parallel patterns we'll discuss have CUDA implementations that exploit blocking in some fashion

A Common Programming Str	ategy – Demo
--------------------------	--------------

1. Partition data into subsets that fit into shared memory

2. Handle each data subset with one thread block

Load the subset from global memory to shared memory, using multiple threads to exploit memory-level parallelism

4. Perform the computation on the subset from shared memory

5. Copy the result from shared memory back to global memory

Outline

Introduction

Reduction

All-Prefix-Sums

Applications
Avoiding Bank Conflicts

Segmented Scan

Sorting

Reduction

- Reduce vector to a single value
 - ▶ Via an associative operator (+, ×, min/max, AND/OR, ...)
 - CPU: sequential implementation
 - ▶ for(int i = 0; i < n; ++i) ...
 - ► GPU: "tree"-based implementation

Serial Reduction

Reduction via serial iteration

```
float sum(float *data, int n)
{
  float result = 0;
  for(int i = 0; i < n; ++i) {
    result += data[i];
  }
  return result;
}</pre>
```

Parallel Reduction Interleaved

Parallel Reduction Contiguous

CUDA Reduction – Per-block

```
__global__ void block_sum(float *input, float *results, size_t n)
 extern shared float sdata[];
 int i = blockIdx.x * blockDim.x + threadIdx.x; int tx = threadIdx.x;
 // load input into shared memory
 float x = 0;
 if(tx < n)
   sdata[tx] = input[tx];
 syncthreads();
 // block-wide reduction in shared mem
 for(int offset = blockDim.x / 2; offset > 0; offset >>= 1) {
   if(tx < offset) {
    // add a partial sum upstream to our own
     sdata[tx] += sdata[tx + offset];
   syncthreads();
 // finally, thread 0 writes the result
 if(threadIdx.x == 0) {
   // note that the result is per-block, not per-thread
   results[blockIdx.x] = sdata[0];
```

CUDA Reduction – Per-block

Improved Version

```
__global__ void block_sum(float *input, float *results, size_t n)
 extern __shared__ float sdata[];
 int i = blockIdx.x * blockDim.x + threadIdx.x; int tx = threadIdx.x;
 // load input into shared memory
 float x = 0:
 if(i < n)
  x = input[i];
 sdata[tx] = x;
 syncthreads():
 // block-wide reduction in shared mem
 for(int offset = blockDim.x / 2; offset > 0; offset >>= 1) {
   if(tx < offset) {
     // add a partial sum upstream to our own
     sdata[tx] += sdata[tx + offset];
   syncthreads():
 // finally, thread 0 writes the result
 if(threadIdx.x == 0) {
   // note that the result is per-block, not per-thread
   results[blockIdx.x] = sdata[0];
```

Barrier Divergence

Is this barrier divergent?

```
for(int offset = blockDim.x / 2; offset > 0; offset >>= 1) {
    ...
    __syncthreads();
}
```

Barrier Divergence

Is this barrier divergent?

```
for(int offset = blockDim.x / 2; offset > 0; offset >>= 1) {
    ...
    __syncthreads();
}
```

▶ How about this one?

```
__global__ void do_i_halt(int *input)
{
    int i = .....
    if(input[i]) {
        .....
        __syncthreads();
    }
}
```

CUDA Reduction

The first option: launch the kernel twice

```
// global sum via per-block reductions
float sum(float *d input, size t n)
 size t block size = ...;
 size t num blocks = n/block size + (n%block size==0)?0:1;
 // allocate per-block partial sums plus a final total sum
 float *d sums = 0;
 cudaMalloc((void**)&d sums, sizeof(float) * (num blocks + 1));
 // reduce per-block partial sums
  int smem_sz = block_size*sizeof(float);
 block sum << num blocks, block size, smem sz>>> (d input, d sums, n);
  // reduce partial sums to a total sum
 block sum <<<1.block size.smem sz>>>
           (d sums, d sums + num blocks, num blocks);
  // copy result to host
  float result = 0:
 cudaMemcpy(&result, d_sums+num_blocks, ...);
 return result;
```

Discussion

What happens if there are too many partial sums to fit into __shared__ memory in the second stage?

Discussion

- What happens if there are too many partial sums to fit into __shared__ memory in the second stage?
- Give each thread more work in the kernel specification
 - Sum is associative & commutative
 - Order does not matter to the result
 - We can schedule the sum any way we want
 - ► E.g., serial accumulation before block-wide reduction

Discussion

- What happens if there are too many partial sums to fit into __shared__ memory in the second stage?
- Give each thread more work in the kernel specification
 - Sum is associative & commutative
 - Order does not matter to the result
 - We can schedule the sum any way we want
 - ► E.g., serial accumulation before block-wide reduction
- ▶ Or, launch the kernel ≥ 2 iterations

▶ $log_2 N$ parallel steps, each step S does $\frac{N}{2^S}$ independent operations

- ▶ $log_2 N$ parallel steps, each step S does $\frac{N}{2^S}$ independent operations
 - ► Step Complexity: $O(\log_2 N)$

- ▶ $log_2 N$ parallel steps, each step S does $\frac{N}{2^S}$ independent operations
 - ► Step Complexity: $O(\log_2 N)$
- ► For $N = 2^D$, performs $\sum_{S=1}^{D} 2^{D-S} = N 1$ operations

- ▶ $log_2 N$ parallel steps, each step S does $\frac{N}{2^S}$ independent operations
 - ► Step Complexity: $O(\log_2 N)$
- ► For $N = 2^D$, performs $\sum_{S=1}^{D} 2^{D-S} = N 1$ operations
 - ► Work Complexity: *O*(*N*)
 - It is work-efficient, i.e., it does not perform more operations than a sequential algorithm

- ▶ $log_2 N$ parallel steps, each step S does $\frac{N}{2^S}$ independent operations
 - ► Step Complexity: $O(\log_2 N)$
- ► For $N = 2^D$, performs $\sum_{S=1}^{D} 2^{D-S} = N 1$ operations
 - ► Work Complexity: *O*(*N*)
 - It is work-efficient, i.e., it does not perform more operations than a sequential algorithm
- ▶ With *P* threads physically in parallel (*P* processors)

- ▶ $log_2 N$ parallel steps, each step S does $\frac{N}{2^S}$ independent operations
 - ► Step Complexity: $O(\log_2 N)$
- ► For $N = 2^D$, performs $\sum_{S=1}^{D} 2^{D-S} = N 1$ operations
 - ► Work Complexity: *O*(*N*)
 - It is work-efficient, i.e., it does not perform more operations than a sequential algorithm
- With P threads physically in parallel (P processors)
 - ▶ Time complexity: $O(\frac{N}{P})$
 - Compared with O(N) for sequential reduction

The Second Option

Use atomic operator atomicAdd

```
global void block_sum(float *input, float *results, size_t n)
 extern shared float sdata[];
 int i = blockIdx.x * blockDim.x + threadIdx.x; int tx = threadIdx.x;
 // load input into shared memory
 float x = 0:
 if(i < n)
  x = input[i];
 sdata[tx] = x;
 syncthreads():
 // block-wide reduction in shared mem
 for(int offset = blockDim.x / 2; offset > 0; offset >>= 1) {
   if(tx < offset) {
     // add a partial sum upstream to our own
     sdata[tx] += sdata[tx + offset];
   syncthreads():
 // finally, thread 0 writes the result
 // NOTE: atomicAdd(float*, float) only work on Fermi above
 if(threadIdx.x == 0) {
   atomicAdd(&(results[0]), sdata[0]);
```

How about this kernel?

```
__qlobal__ void block_sum(float *input, float *results, size_t n, size_t num_blocks)
 extern shared float sdata[];
 int i = blockIdx.x * blockDim.x + threadIdx.x; int tx = threadIdx.x;
 // load input into shared memory
 float x = 0:
 if(i < n)
  x = input[i];
 sdata[tx] = x;
 syncthreads();
 // block-wide reduction in shared mem
 for(int offset = blockDim.x / 2; offset > 0; offset >>= 1) {
   if(tx < offset)
    sdata[tx] += sdata[tx + offset];
   syncthreads();
 if(threadTdx.x == 0)
   results[blockIdx.x] = sdata[0];
 // --> next slide
```

How about this kernel? (cont.)

```
__qlobal__ void block_sum(float *input, float *results, size_t n, size_t num_blocks)
 // <-- from previous slide
 // Let the first block to reduce the partial sums to the final sum.
 if(blockIdx.x == 0) {
   x=0:
   if (tx < num blocks)
     x=results[tx];
   sdata[tx] = x:
   syncthreads();
   for(int offset = blockDim.x / 2; offset > 0; offset >>= 1) {
     if(tx < offset)
       sdata[tx] += sdata[tx + offset];
     __syncthreads();
   if(threadTdx.x == 0)
     results[0] = sdata[0];
```

Outline

Introduction

Reduction

All-Prefix-Sums

Applications
Avoiding Bank Conflicts

Segmented Scar

Sorting

What is all-prefix-sums?

Definition

The all-prefix-sums operation takes a binary associative operator \oplus , and an array of n elements

$$[a_0, a_1, \ldots, a_{n-1}]$$

and returns the array

$$[a_0,(a_0\oplus a_1),\ldots,(a_0\oplus a_1\oplus a_2\oplus\cdots\oplus a_{n-2}\oplus a_{n-1})].$$

Example

If \oplus is addition, then the all-prefix-sums operation on the array [3,1,7,0,4,1,6,3],

would return

Pseudo code

```
out[0] = in[0];
for (j=1; j<n; j++) {
   out[j] = out[j-1] operator in[j];
}</pre>
```

Exclusive Scan (Prescan)

Definition

The exclusive scan operation takes a binary associative operator \oplus with identity I, and an array of n elements

$$[a_0, a_1, \ldots, a_{n-1}]$$

and returns the array

$$[I, a_0, (a_0 \oplus a_1), \dots, (a_0 \oplus a_1 \oplus a_2 \oplus \dots \oplus a_{n-2})].$$

Example

If \oplus is addition, then the prescan operation on the array

would return

Pseudo code

```
out[0] = I;
for (j=1; j<n; j++) {
   out[j] = out[j-1] operator in[j-1];
}</pre>
```

3 1 7 0 4 1 6 3

Assume array is already in shared memory

Iteration 0, n-1 threads

Each ⊕ corresponds to a single thread.

Iterate log(n) times. Each thread adds value \emph{stride} elements away to its own value

Iteration 1, n-2 threads

Each ⊕ corresponds to a single thread.

Iterate log(n) times. Each thread adds value offset elements away to its own value

Iteration *i*, *n-2ⁱ* threads

Each ⊕ corresponds to a single thread.

Iterate log(n) times. Each thread adds value offset elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Outline

Introduction

Reduction

All-Prefix-Sums

Applications

Avoiding Bank Conflicts

Segmented Scan

Sorting

Line-of-Sight

Problem

Given (1) a terrain map in the form of a grid of altitude and an observation point X on the grid, and (2) the distance between interesting points and the observation point, find which points are visible from X.

Altitude vector

Distance vector

	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	
--	---	-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	--

Solving Line-of-Sight Given

Altitude vector

 100
 150
 200
 300
 400
 350
 400
 500
 600
 700
 650
 600
 500

Distance vector

0 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | 1100 | 1200

Solving Line-of-Sight Given

Altitude vector

 100
 150
 200
 300
 400
 350
 400
 500
 600
 700
 650
 600
 500

Distance vector

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Steps

Vector of difference of altitude

 0
 50
 100
 200
 300
 250
 300
 400
 500
 600
 550
 500
 400

Vector of angle

0 0.5 0.5 0.67 0.75 0.5 0.5 0.57 0.625 0.67 0.55 0.45 0.33

Max-Scan of vector of angle

 0
 0.5
 0.5
 0.67
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75
 0.75

Compare

 0
 0.5
 0.5
 0.67
 0.75
 0.5
 0.5
 0.57
 0.625
 0.67
 0.55
 0.45
 0.33

Split Operation

► Given an array of true and false elements (and payloads)

Payload	5	7	3	1	4	2	7	2
Flag	1	1	1	1	0	0	1	0

Split Operation

- Given an array of true and false elements (and payloads)
- Return an array with all false (or true) elements at the beginning

A Similar Operation – Compact

- Given an array of true and false elements (and payloads)
- Remove all false elements

Payload 5 3 4 0 Flag

- ▶ Determine the new index for each element and then permute
 - ► False elements, i.e., elements with flag 0
 - Invert the flags and execute a prescan with integer addition
 - ▶ True elements, i.e., elements with flag 1
 - Execute a +-scan in reverse order (i.e., starting from the tail of the vector) and subtract the results from n (i.e., the length of the vector)

Payload Flag

5	7	3	1	4	2	7	2
1	1	1	1	0	0	1	0

- Determine the new index for each element and then permute
 - ► False elements, i.e., elements with flag 0
 - Invert the flags and execute a prescan with integer addition
 - ▶ True elements, i.e., elements with flag 1
 - Execute a +-scan in reverse order (i.e., starting from the tail of the vector) and subtract the results from n (i.e., the length of the vector)

Payload	5	7	3	1	4	2	7	2
Flag	1	1	1	1	0	0	1	0
I-down ——►	0	0	0	0	0	1	2	2

- Determine the new index for each element and then permute
 - ► False elements, i.e., elements with flag 0
 - Invert the flags and execute a prescan with integer addition
 - ► True elements, i.e., elements with flag 1
 - Execute a +-scan in reverse order (i.e., starting from the tail of the vector) and subtract the results from n (i.e., the length of the vector)

Payload	5	7	3	1	4	2	7	2
Flag	1	1	1	1	0	0	1	0
I-down —	0	0	0	0	0	1	2	2
I-up ◀	5	4	3	2	1	1	1	0

- Determine the new index for each element and then permute
 - ► False elements, i.e., elements with flag 0
 - Invert the flags and execute a prescan with integer addition
 - ► True elements, i.e., elements with flag 1
 - Execute a +-scan in reverse order (i.e., starting from the tail of the vector) and subtract the results from n (i.e., the length of the vector)

Payload	5	7	3	1	4	2	7	2
Flag	1	1	1	1	0	0	1	0
I-down ——►	0	0	0	0	0	1	2	2
I-up ◀	5	4	3	2	1	1	1	0
Subtract	3	4	5	6	7	7	7	8

- Determine the new index for each element and then permute
 - False elements, i.e., elements with flag 0
 - Invert the flags and execute a prescan with integer addition
 - ▶ True elements, i.e., elements with flag 1
 - Execute a +-scan in reverse order (i.e., starting from the tail of the vector) and subtract the results from n (i.e., the length of the vector)

Payload	5	7	3	1	4	2	7	2
Flag	1	1	1	1	0 0 1		0	
I-down —►	0	0	0	0	0	1	2	2
I-up ◀	5	4	3	2	1	1	1	0
Subtract	3	4	5	6	7	7	7	8
Index	3	4	5	6	0	1	7	2

- Determine the new index for each element and then permute
 - ► False elements, i.e., elements with flag 0
 - Invert the flags and execute a prescan with integer addition
 - ► True elements, i.e., elements with flag 1
 - Execute a +-scan in reverse order (i.e., starting from the tail of the vector) and subtract the results from n (i.e., the length of the vector)

Payload	5	7	3	1	4	2	7	2
Flag	1	1	1	1	0	0	1	0
I-down ——►	0	0	0	0	0	1	2	2
I-up ◀	5	4	3	2	1	1	1	0
Subtract	3	4	5	6	7	7	7	8
Index	3	4	5	6	0	1	7	2
Permute	4	2	2	5	7	3	1	7

Outline

Introduction

Reduction

All-Prefix-Sums

Applications

Avoiding Bank Conflicts

Segmented Scar

Sorting

Shared Memory Banks – Two Way Conflict Detail

Shared Memory Banks – Relocation of Data in Shared Memory

logical address												
core 0	0	Ť	63	94	Ť	Ť						Bank 0
core 1	1	32	П	95							Н	Bank 1
core 2	2	33	64							Г	Т	Bank 2
core 3	3	34	65							Т	Т	Bank 3
core 4	4	35	66									Bank 4
core 5	5	36	67									Bank 5
core 6	6	37	68									Bank 6
core 7	7	38	69									Bank 7
core 8	8	39	70									Bank 8
core 9	9	40	71									Bank 9
core 10	10	41	72								П	Bank 10
core 11	11	42	73									Bank 11
core 12	12	43	74				• • •			П	П	Bank 12
core 13	13	44	75				• • •					Bank 13
core 14	14	45	76									Bank 14
core 15	15	46	77				• • •					Bank 15
core 16	16	47	78				• • •					Bank 16
core 17	17	48	79				• • •					Bank 17
core 18	18	49	80				• • •					Bank 18
core 19	19	50	81				• • •					Bank 19
core 20	20	51	82				• • •					Bank 20
core 21	21	52	83				• • •					Bank 21
core 22	22	53	84				• • •					Bank 22
core 23	23	54	85				• • •					Bank 23
core 24	24	55	86				• • •					Bank 24
core 25	25	56	87				• • •				┖	Bank 25
core 26	26	57	88				• • •					Bank 26
core 27	27	58	89				• • •					Bank 27
core 28	28	59	90				• • •					Bank 28
core 29	29	60	91				• • •					Bank 29
core 30	30	61	92				• • •					Bank 30
core 31	31	62	93				• • •					Bank 31

Shared Memory Banks – Conflict Access Free!

Outline

Introduction

Reduction

All-Prefix-Sums

Applications
Avoiding Bank Conflicts

Segmented Scan

Sorting

What is segmented scan?

- Scan + Barriers/Flags associated with certain positions in the input arrays
- Operations do not propagate beyond barriers

What is segmented scan?

- Scan + Barriers/Flags associated with certain positions in the input arrays
- Operations do not propagate beyond barriers

How to deal with it?

What is segmented scan?

- Scan + Barriers/Flags associated with certain positions in the input arrays
- Operations do not propagate beyond barriers

- How to deal with it?
 - Deal with the segments one by one

What is segmented scan?

- Scan + Barriers/Flags associated with certain positions in the input arrays
- Operations do not propagate beyond barriers

- How to deal with it?
 - ► Deal with the segments one by one
 - Do many scans at once, no matter their sizes

Segme	Segmented Scan – Example (of the Naive Approach)															
Value	1	2	3	4	5	6	7	1	3	9	10	12	1	1	1	2
Flag	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

Segme	ente	d S	can	<u> – Е</u>	xam	ple	(of t	the	Naiv	<u>re A</u>	ppro	oacl	า)			
Value	1	2	3	4	5	6	7	1	3	9	10	12	1	1	1	2
Flag	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Value	1	3	5	7	9	11	13	1	4	12	19	22	13	2	2	3

Flag

Segmented Scan – Pseudo Code (of the Naive Approach)

```
//x[]: value; f[]: flag
for d = 0 to log(n) - 1 do
    forall k in parallel do
        if k \ge 2^d then
            if f[k] is NOT set then
                x[out][k] = x[in][k-2^d] + x[in][k]
                f[out][k] = f[in][k-2^d] | f[in][k]
            else
                x[out][k] = x[in][k]
                f[out][k] = f[in][k]
        else
            x[out][k] = x[in][k]
            f[out][k] = f[in][k]
    swap(in,out)
```

Segmented Scan – Pseudo Code (of the Naive Approach)

```
//x[]: value; f[]: flag
for d = 0 to log(n) - 1 do
    forall k in parallel do
        if k \ge 2^d then
            if f[k] is NOT set then
                x[out][k] = x[in][k-2^d] + x[in][k]
                f[out][k] = f[in][k-2^d] | f[in][k]
            else
                x[out][k] = x[in][k]
                f[out][k] = f[in][k]
        else
            x[out][k] = x[in][k]
            f[out][k] = f[in][k]
    swap (in, out)
```

- Work-efficient implementation
 - See "Scan Primitives for GPU Computing" by Sengupta, Harris, Zhang, and Owens

Outline

Introduction

Reduction

All-Prefix-Sums

Applications
Avoiding Bank Conflicts

Segmented Scan

Sorting

Sort

- Useful for almost everything
- Optimized versions for the GPU already exist
- Two examples
 - Radix sort
 - Quick sort

Radix Sort

Definition

- Sort integers by processing individual digits, by comparing individual digits sharing the same significant position
- Least Significant Digit (LSD) radix sort
 - Take the least significant digit (or group of bits, both being examples of radices) of each key
 - Group the keys based on that digit, but otherwise keep the original order of keys
 - 3. Repeat the grouping process with each more significant digit

Radix Sort - E	xampl	е						
original list			75	90	2	24	802	66

Radix Sort – E	xample	е						
	17 <u>0</u>		7 <u>5</u>	9 <u>0</u>	<u>2</u>	2 <u>4</u>	80 <u>2</u>	6 <u>6</u>

- Integers are represented in radix-2 format on computer
- Split can be used for radix sort

- Integers are represented in radix-2 format on computer
- Split can be used for radix sort

A = [57314272]

- Integers are represented in radix-2 format on computer
- Split can be used for radix sort

$$A = \begin{bmatrix} 5 & 7 & 3 & 1 & 4 & 2 & 7 & 2 \end{bmatrix}$$

$$A < 0 > = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

- Integers are represented in radix-2 format on computer
- Split can be used for radix sort

A =
$$\begin{bmatrix} 5 & 7 & 3 & 1 & 4 & 2 & 7 & 2 \end{bmatrix}$$

A<0> = $\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$
A \leftarrow split (A, A<0>) = $\begin{bmatrix} 4 & 2 & 2 & 5 & 7 & 3 & 1 & 7 \end{bmatrix}$

- Integers are represented in radix-2 format on computer
- Split can be used for radix sort

Α	=	[5	7	3	1	4	2	7	2]
A<0>	=	[1	1	1	1	0	0	1	0]
$A \leftarrow split (A, A<0>)$	=	[4	2	2	5	7	3	1	7]
A<1>	=	[0	1	1	0	1	1	0	1]

- Integers are represented in radix-2 format on computer
- Split can be used for radix sort

Α	=	[5	7	3	1	4	2	7	2]
A<0>	=	[1	1	1	1	0	0	1	0]
$A \leftarrow split (A, A<0>)$	=	[4	2	2	5	7	3	1	7]
A<1>	=	[0	1	1	0	1	1	0	1]
$A \leftarrow split (A, A<1>)$	=	[4	5	1	2	2	7	3	7]

- Integers are represented in radix-2 format on computer
- Split can be used for radix sort

Α	=	[5	7	3	1	4	2	7	2]
A<0>	=	[1	1	1	1	0	0	1	0]
$A \leftarrow split (A, A<0>)$	=	[4	2	2	5	7	3	1	7]
A<1>	=	[0	1	1	0	1	1	0	1]
$A \leftarrow split (A, A<1>)$	=	[4	5	1	2	2	7	3	7]
A<2>	=	[1	1	0	0	0	1	0	1]

- Integers are represented in radix-2 format on computer
- Split can be used for radix sort

Α	=	[5	7	3	1	4	2	7	2]
A<0>	=	[1	1	1	1	0	0	1	0]
$A \leftarrow split (A, A<0>)$	=	[4	2	2	5	7	3	1	7]
A<1>	=	[0	1	1	0	1	1	0	1]
$A \leftarrow split (A, A<1>)$	=	[4	5	1	2	2	7	3	7]
A<2>	=	[1	1	0	0	0	1	0	1]
$A \leftarrow split (A, A < 2 >)$	=	[1	2	2	3	4	5	7	7]

Quick Sort

- Quick sort sorts by employing a divide and conquer strategy to divide a list into two sub-lists
- Steps
 - 1. Pick an element, called a pivot, from the list
 - 2. Reorder the list so that all elements with values less than the pivot come before the pivot, while all elements with values greater than the pivot come after it (equal values can go either way)
 - After this partitioning, the pivot is in its final position
 - Recursively sort the sub-list of lesser elements and the sub-list of greater elements

Quick Sort

- Quick sort sorts by employing a divide and conquer strategy to divide a list into two sub-lists
- Steps
 - 1. Pick an element, called a pivot, from the list
 - 2. Reorder the list so that all elements with values less than the pivot come before the pivot, while all elements with values greater than the pivot come after it (equal values can go either way)
 - After this partitioning, the pivot is in its final position
 - Recursively sort the sub-list of lesser elements and the sub-list of greater elements
- Example is given at the chalkboard

Use segmented scan and split

Key = [6.4 9.2 3.4 1.6 8.7 4.1 9.2 3.4]

Use segmented scan and split

Use segmented scan and split

Use segmented scan and split

```
Key = \begin{bmatrix} 6.4 & 9.2 & 3.4 & 1.6 & 8.7 & 4.1 & 9.2 & 3.4 \end{bmatrix}

Seg-Flags = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}

Pivots = \begin{bmatrix} 6.4 & 6.4 & 6.4 & 6.4 & 6.4 & 6.4 & 6.4 \end{bmatrix}

F = \begin{bmatrix} = & > & < & > & < & > & < & > & < \end{bmatrix}

Key \leftarrow split (Key, F) = \begin{bmatrix} 3.4 & 1.6 & 4.1 & 3.4 & 6.4 & 9.2 & 8.7 & 9.2 \end{bmatrix}
```

Key	=	[6.4	9.2	3.4	1.6	8.7	4.1	9.2	3.4]
Seg-Flags	=	[1	0	0	0	0	0	0	0]
Pivots	=	[6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4]
F	=	[=	>	<	<	>	<	>	<]
Key ← split (Key, F)	=	[3.4	1.6	4.1	3.4	6.4	9.2	8.7	9.2]
Seg-Flags	=	[1	0	0	0	1	1	0	0]

Key	=	[6.4	9.2	3.4	1.6	8.7	4.1	9.2	3.4]
Seg-Flags	=	[1	0	0	0	0	0	0	0]
Pivots	=	[6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4]
F	=	[=	>	<	<	>	<	>	<]
$Key \leftarrow split \ (Key, \ F)$	=	[3.4	1.6	4.1	3.4	6.4	9.2	8.7	9.2]
Seg-Flags	=	[1	0	0	0	1	1	0	0]
Pivots	=	[3.4	3.4	3.4	3.4	6.4	9.2	9.2	9.2]

Key	=	[6.4	9.2	3.4	1.6	8.7	4.1	9.2	3.4]
Seg-Flags	=	[1	0	0	0	0	0	0	0]
Pivots	=	[6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4]
F	=	[=	>	<	<	>	<	>	<]
$Key \leftarrow split \ (Key, \ F)$	=	[3.4	1.6	4.1	3.4	6.4	9.2	8.7	9.2]
Seg-Flags	=	[1	0	0	0	1	1	0	0]
Pivots	=	[3.4	3.4	3.4	3.4	6.4	9.2	9.2	9.2]
F	=	[=	<	>	=	=	=	<	=]

```
Key
                       [ 6.4 9.2 3.4 1.6 8.7 4.1 9.2 3.4 ]
Seg-Flags
                             0 0 0 0 0
                       [ 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 ]
Pivots
F
                       [= > < < > < ]
Key \leftarrow split (Key, F) =
                       [3.4 1.6 4.1 3.4 6.4 9.2 8.7 9.2]
                             0 0 0 1 1 0
Seg-Flags
Pivots
                       [ 3.4 3.4 3.4 3.4 6.4 9.2 9.2 9.2 ]
F
                       [ = < > = = < = ]
Key \leftarrow split (Key, F) = [1.6 \ 3.4 \ 4.1 \ 3.4 \ 6.4 \ 8.7 \ 9.2 \ 9.2 \ ]
```

Key	=	[6.4	9.2	3.4	1.6	8.7	4.1	9.2	3.4]
Seg-Flags	=	[1	0	0	0	0	0	0	0]
Pivots	=	[6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4]
F	=	[=	>	<	<	>	<	>	<]
Key ← split (Key, F)	=	[3.4	1.6	4.1	3.4	6.4	9.2	8.7	9.2]
Seg-Flags	=	[1	0	0	0	1	1	0	0]
Pivots	=	[3.4	3.4	3.4	3.4	6.4	9.2	9.2	9.2]
F	=	[=	<	>	=	=	=	<	=]
$Key \leftarrow split \ (Key, \ F)$	=	[1.6	3.4	4.1	3.4	6.4	8.7	9.2	9.2]
Seg-Flags	=	[1	1	1	0	1	1	1	1]