PROJET 5

Catégorisez automatiquement des questions

Marie-France LAROCHE-BARTHET

10/02/2022

INTRODUCTION

PROBLÉMATIQUE

- ➤ Site web Stack Overflow
 - Créé en 2008
 - Questions-réponses liées au développement informatique
 - Site de référence
- ➤ CONTEXTE du projet :
 - Entrer plusieurs tags
 - → Facile pour utilisateur expérimenté
 - → Plus difficile pour nouvel utilisateur
- ➤ BUT du projet :
 - Système de suggestion de tags
 - → Algorithme de Machine Learning
 - → Approche non supervisée et supervisée

NETTOYAGE/ EXPLORATION DES DONNÉES

RÉCUPÉRATION DES DONNÉES

- Base de donnéesStackExchange Explorer
 - Requêtes SQL
 - Limitées à 50000 lignes
- Récupération (164535 x 9)
 - Questions posées entre 2019 et 2021
 - Score, ViewCount,
 AnswerCount,
 CommentCount et
 FavoriteCount >= 1
- ➤ Choix d'un filtre
 - Evolution du nombre de questions créées au cours du temps
 - **→** Diminution
 - → Favorise les anciens posts
 - → Autre critère de choix

```
SELECT Id, Title, Body, Tags, CreationDate, Score, ViewCount, AnswerCount, CommentCount, FavoriteCount
From Posts
WHERE PostTypeId = 1
AND CreationDate BETWEEN '2020-01-01T00:00:00.00' AND '2020-06-30T23:59:59.999'
AND Score >= 1
AND ViewCount >=1
AND AnswerCount >=1
AND CommentCount >=1
AND FavoriteCount >=1
ORDER BY CreationDate
```


EXPLORATION DES DONNÉES – CHOIX D'UN FILTRE

- > Distribution bivariée des variables
- ➤ Matrice des corrélations
 - Variables liées
 - → CommentCount peu liée mais peu pertinente

- ➤ Filtrage
 - ViewCountPerDay >=3 (47032 x 11)
 - → 29% des données gardées
 - Export au format .csv

PRÉ-TRAITEMENTS EFFECTUÉES

PRÉ TRAITEMENTS

- ➤ Colonnes gardées (47032 x 3)
 - Title, Body, Tags
- ➤ Traitement Title+Body
 - Fusion Title+Body
 - Suppression balises HTML
 - Récupération des mots avec des lettres (au moins 3 lettres)
 - Mots mis en minuscule
 - Normalisation des données
 - → lemmatisation
 - **→** stemmatisation
- Distribution des stems et des lems :
 - 13 premiers mots identiques
 - Ordre changé par la suite mais mêmes 50 premiers mots

PRÉ TRAITEMENTS

- ➤ Traitement identique pour Tags
- ➤ Suppression de lignes avec listes vides (46806 x 3) 0.5%
 - Tags nettoyés vides
- ➤ Conservation des lems
 - Sémantique plus riche
- ➤ Filtrage sur les 200 premiers lems tags (44498 x 11) 4.9%
 - Fréquence d'au moins 150 (environ)
 - Ne pas surcharger l'apprentissage supervisé
 - Apparition de lignes sans tags
 - Suppression de ces lignes
 - Sauvegarde du dataset
- ➤ Récupération des lems ayant une occurence d'au moins 1400
 - 514 mots
 - Ne pas surcharger la vectorisation
 - Sauvegarde de la liste

MODÉLISATIONS EFFECTUÉES

TRONC COMMUN APPROCHES NON-SUPERVISÉE / SUPERVISÉE

APPROCHE NON SUPERVISÉE – LDA

- > Choix du nombre de topics
- ➤ Nombre de topics testés
 - 4,5,6,7,8,9,10,15,20,30
- Métrique utilisée
 - Maximum de vraisemblance log likelihood

APPROCHE NON SUPERVISÉE – LDA

> Distribution des topics

Représentation en 3D du jeu de données train selon le

numéro du topic via t-SNE

- 2 dictionnaires pour stocker premiers mots de chaque topic
 - 20 mots
 - 50 mots
- Pour analyse avec approche supervisée

APPROCHE SUPERVISÉE

- ➤ Modèles testés
 - DummyClassifier (Dummy)
 - KNeighborsClassifier (KNN)
 - LinearSVC couplé à OneVsRestClassifier (SVM)
 - RandomForestClassifier (Random Forest)
- ➤ Valeurs par défaut des hyperparamètres
- ➤ Métriques utilisées
 - Accuracy
 - Precision
 - Recall
 - F1

APPROCHE SUPERVISÉE

> Résultats

	Modèle	Accuracy	Precision micro	Recall micro	f1 micro	Temps d'entrainement
	Dummy	0.0	0.013115	0.498786	0.025558	37.1s
	KNN	0.100483	0.688424	0.273560	0.391530	3min 58s
	SVM	0.147256	0.800425	0.367456	0.503668	3min 48s
Random Forest		0.048851	0.888180	0.115611	0.204583	48min 35s

➤ Modèle retenu

• SVM

APPROCHE SUPERVISÉE

Optimisation du SVM

Hyperparamètre à tester = C

С	Accuracy	Precision micro	Recall micro	f1 micro
0.001	0.003849	0.947473	0.006432	0.012777
0.01	0.063318	0.873285	0.154423	0.262435
0.1	0.122957	0.823625	0.304882	0.445006
1	0.147256	0.800425	0.367456	0.503668
10	0.149812	0.768308	0.393184	0.520163

- ➤ Deux modèles conservés pour comparaison finale
 - C = 1
 - C = 10

COMPARAISON DES APPROCHES

Qualitativement

	Tags	Approche	non supervisée	Approche supervisée		
	utilisateurs	LDA 20 mots	LDA 50 mots	SVM C=1	SVM C=10	
	(lems tags)					
	github action	project test	project test job way run	server action	server action	
	reactjs react		contoxxt	hoole	hools	
	hook		context	hook	hook	
	android	value data class	value data class button			
	viewmodel	button view	view return name type	-	type	
	mvvm	return name type	page			
	docker	docker container	docker container	المعامدة عندا	المعالمة مناط	
	compose		image build test	json github	json github	
	codespaces	image	volume	docker image	docker image	
			error http app server			
p	hp laravel vue	error http app	use com php post route	server laravel	server laravel	
	pusher	server	option name config	php image	php http image	
			login console			

COMPARAISON DES APPROCHES

« Quantitativement »

➤ Pour chaque texte, si modèle prédit :

- Aucun tag, score = -1 (« empty tags »)
- Aucun tag dans liste lems tags, score = 0 (« false tags »)
- Au moins un tag dans liste lems tags, score = 1 (« true tags »)

→ Modèle retenu SVM C = 10

MODELE FINAL

MODÈLE SÉLECTIONNÉ

> SVM

- Intégré dans pipeline contenant
 - → Vectorisation Corpus : TfidfVectorizer
 - → Réduction de dimension : TruncatedSVD
 - → Classifieur : LinearSVC(C = 10) couplé à OneVsRestClassifier
- Sauvegardé au format .joblib

➤ Encodage des tags

- MultiLabelBinarizer
- Sauvegardé au format .joblib
- ➤ Mis dans API
 - FastApi

CONCLUSION

CONCLUSION

- Modèle retenu pour prédiction de tags
 - LinearSVC, supervisé
- ➤ Difficulté de comparaison des approches non-supervisée et supervisée
 - Absence de métriques communes

> Pistes d'amélioration :

- Traitement du texte
 - → Création d'un dictionnaire spécifique pour les mots à conserver (langages de programmation, caractères spéciaux)
- Plus d'échantillons (ici ~50 000)
- Plus de variables (ici 514 premiers mots, 200 premiers tags)
- Autres librairies que scikit-learn
 - → Gensim pour LDA

MERCI

QUESTIONS