Math 653 Henry Woodburn

Homework 3

14. We first show the conjugation map is a bijection. If $gag^{-1} = gbg^{-1}$, multiplication on the left and right by g gives a = b, which proves injectivity. For surjectivity, the element $g^{-1}ag$ is mapped to $a \in G$.

The map is a homomorphism: $geg^{-1} = e$, and $gag^{-1}gbg^{-1} = g(ab)g^{-1}$.

Now we show that the set A of inner automorphisms form a normal subgroup of $\operatorname{Aut}(G)$. Let C_g be conjugation by some $g \in G$ and let $\varphi \in \operatorname{Aut}(G)$. Then for $x \in G$, we have

$$(\varphi \circ C_q \circ \varphi^{-1})(x) = \varphi(C_q(\varphi^{-1}(x))) = \varphi(g)x\varphi(g)^{-1} = C_{\varphi(g)}(x).$$

Moreover, $C_g = \varphi \circ C_{\varphi^{-1}(g)} \circ \varphi^{-1}$, and so $\varphi A \varphi^{-1} = A$ for any $\varphi \in \operatorname{Aut}(G)$ and A is normal.

15. Let $\varphi: G \to H$ be a bijective group homomorphism. Then

$$\varphi^{-1}(ab) = \varphi^{-1}(\varphi(\varphi^{-1}(a))\varphi(\varphi^{-1}(b))) = \varphi^{-1}(\varphi(\varphi^{-1}(a)\varphi^{-1}(b))) = \varphi^{-1}(a)\varphi^{-1}(b),$$

and $\varphi^{-1}(e_H) = e_G$ since $\varphi(e_G) = e_H$ and φ is a bijection. Then φ^{-1} is a homomorphism.

16. Let S be a subset of a group G, and define $a \sim b$ if and only if $ab^{-1} \in S$. We will start by supposing S is a subgroup and showing \sim is an equivalence relation. Because $e \in S$, we have $e = aa^{-1} \in S$ and thus $a \sim a$. If $a \sim b$, then $ab^{-1} \in S$, and so S contains the inverse ba^{-1} and we have $b \sim a$ as well. Finally if $a \sim b$ and $b \sim c$, this means ab^{-1} , $bc^{-1} \in S$. Then the product $ab^{-1}bc^{-1} = ac^{-1}$ is contained in S, so that $a \sim c$ and \sim is indeed an equivalence relation on G.

Conversely suppose \sim is an equivalence relation. Since $a \sim a$ for $a \in G$, this means $aa^{-1} = e \in S$. Next let $a \in S$. Then $ae^{-1} \in S$ so that $a \sim e$ and $e \sim a$, which gives $ea^{-1} = a^{-1} \in S$. Finally let $a, b \in S$. Then $a \sim e$ and $e \sim b^{-1}$, so $a \sim b^{-1}$ and $ab \in S$. Then S is a subgroup.

- 17. (a.) Clearly $N_G(H)$ contains H by problem 14. If $g, k \in N_G(H)$, then $(gk)H(gk)^{-1} = g(kHk^{-1})g^{-1} = gHg^{-1} = H$, so $gk \in N_G(H)$. We obviously have $e \in N_G(H)$, as well as inverses, since $aHa^{-1} = H$ implies $H = a^{-1}Ha$.
 - (b.) If H is normal in K, we have $kHk^{-1} = H$ for any $k \in K$, and thus $K \subset N_G(H)$.
 - (c.) Since both H and K contain identity, we have $e \in HK$. For inverses, if $kh \in KH$, we have $h^{-1}k^{-1} = k^{-1}h' \in KH$ for some $h' \in H$ since $K \subset N_G(H)$ and K is a subgroup. Finally if $kh, k'h' \in KH$, then $khk'h' = kk'h^*h' \subset KH$ for some $h^* \in H$.

To show H is normal in KH, let $kh \in KH$. We have $khH(kh)^{-1} = khHh^{-1}k^{-1} = kHk^{-1} = H$.

18. We will construct a homomorphism from G into the permutation group on p elements. First we will show that right multiplication by elements of G induces a permutation on the set G/H. For $g \in G$, let $\pi_g : G \to G$ be the map $a \mapsto ga$. Then π_g is a bijection $G \to G$, so we only must show that if $a, b \in G$ belong to the same coset, they will be mapped to the same coset under π_g . We let aH = bH, so that $b^{-1}a = h$ for $h \in H$, and thus $b^{-1}g^{-1}ga = h$. Then ga and gb differ by an element of H, so gaH = gbH. Then we have shown that π_g permutes the cosets of H, of which there are p.

Let $\varphi: g \mapsto \pi_g$ be the map above. It maps $G \to \operatorname{Sym}(G/H)$, the symmetric group on the p cosets. Note $|\operatorname{Sym}(G/H)| = p!$, so that the subgroup $\operatorname{im}(\varphi) \subset \operatorname{Sym}(G/H)$ must have order dividing p!. However the order of the image of φ must also divide the order of G by lagrange's theorem. Since p is the smallest prime dividing |G|, we must have $|\operatorname{im}(\varphi)| = p$. Then since every prime order group is cyclic, $\operatorname{im}(\varphi)$ must be a cycle of all p cosets.

Finally we want to show that $\ker \varphi = H$. We note that if $h \in H$, π_h fixes the coset H, and since π_h cycles each of the p cosets, it must be the trivial permutation fixing each of them. Then $\varphi(H) = e \in \operatorname{Sym}(G/H)$, so $H \subset \ker \varphi$. Since $|G| = |\ker \varphi| \cdot [G : \ker \varphi] = |\ker \varphi| \cdot |\operatorname{im}(\varphi)| = |\ker \varphi| \cdot p$, we must have $|H| = |\ker \varphi|$, so that in fact $H = \ker \varphi$.

- 19. We will represent nonzero complex numbers as $ae^{i\theta}$ for a>0 and $\theta\in[0,2\pi)$. We have $|1|=|1e^0|=1$, and $|ae^{i\theta}be^{i\varphi}|=|abe^{i(\theta+\varphi)}|=|ab|=|a||b|$, so $|\cdot|$ is a homomorphism.
 - Its image is the multiplicative group of positive real numbers. The kernel contains all elements of unit norm, which are the elements of $S_1 \subset \mathbb{C}$.
- 20. By one of the isomorphism theorems from class, since φ is a surjective homomorphism with kernel N, we have $G/N \simeq H$. Then every subgroup L of H is a subgroup of G/N. Then the problem amounts to showing there is a bijective correspondence between subgroup K of G which contain N and subgroups L of G/N, and the same for normal subgroups.

Let π be the canonical surjection $G \to G/N$. We will show π is the desired bijection, first in the non-normal case. Let $K \neq K'$ be two subgroups of G containing N. Then WLOG choose some $k \in K \setminus K'$. Suppose KN = K'N. Then k = k'n for $k' \in K'$, $n \in N$. Since $N \subset K'$ and K' is a subgroup, this implies $k \in K'$, a contradiction. Then $\pi(K) \neq \pi(K')$, and π is injective.

Let $L \subset G/N$ be a subgroup. Then $\pi^{-1}(A)$ is a subgroup in G, proving surjectivity. Thus we have the desired bijection between subgroups of G containing N and subgroups of G/N, and canonically from subgroups of G/N to subgroups of H.

For the normal case, note that π preserves normality. The injectivity condition still holds. Finally if $A \subset G/N$ is a normal subgroup, we must show that $\pi^{-1}(A)$ is normal in G. For $g \in G$, we have

$$g\pi^{-1}(A)g^{-1} = \pi^{-1}(\pi(g)A\pi(g)^{-1}) = \pi^{-1}(A),$$

and we are done.