

Statistical linear regression models

Brian Caffo, Jeff Leek, Roger Peng Johns Hopkins Bloomberg School of Public Health

Basic regression model with additive Gaussian errors.

- · Least squares is an estimation tool, how do we do inference?
- · Consider developing a probabilistic model for linear regression

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- · Here the ϵ_i are assumed iid $N(0, \sigma^2)$.
- · Note, $E[Y_i \mid X_i = x_i] = \mu_i = \beta_0 + \beta_1 x_i$
- · Note, $Var(Y_i | X_i = x_i) = \sigma^2$.
- · Likelihood equivalent model specification is that the Y_i are independent $N(\mu_i,\sigma^2).$

Likelihood

$$>(\beta, \sigma) = \prod_{i=1}^{n} \left\{ (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{1}{2\sigma^2} (y_i - \mu_i)^2\right) \right\}$$

so that the twice the negative log (base e) likelihood is

$$-2\log\{>(\beta,\sigma)\} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \mu_i)^2 + n\log(\sigma^2)$$

Discussion

- · Maximizing the likelihood is the same as minimizing -2 log likelihood
- · The least squares estimate for $\mu_i = \beta_0 + \beta_1 x_i$ is exactly the maximimum likelihood estimate (regardless of σ)

Recap

- · Model $Y_i = \mu_i + \varepsilon_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ where ε_i are iid $N(0, \sigma^2)$
- · ML estimates of β_0 and β_1 are the least squares estimates

$$\hat{\beta}_1 = \text{Cor}(Y, X) \frac{\text{Sd}(Y)}{\text{Sd}(X)}$$
 $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$

- $E[Y | X = x] = \beta_0 + \beta_1 x$
- $\cdot \quad Var(Y \mid X = x) = \sigma^2$

Interpretting regression coefficients, the itc

 \cdot β_0 is the expected value of the response when the predictor is 0

$$E[Y|X = 0] = \beta_0 + \beta_1 \times 0 = \beta_0$$

- Note, this isn't always of interest, for example when X=0 is impossible or far outside of the range of data. (X is blood pressure, or height etc.)
- Consider that

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i = \beta_0 + a\beta_1 + \beta_1 (X_i - a) + \epsilon_i = \tilde{\beta}_0 + \beta_1 (X_i - a) + \epsilon_i$$

So, shifting you X values by value a changes the intercept, but not the slope.

· Often a is set to \bar{X} so that the intercept is interpretted as the expected response at the average X value.

Interpretting regression coefficients, the slope

 \cdot β_1 is the expected change in response for a 1 unit change in the predictor

$$E[Y \mid X = x + 1] - E[Y \mid X = x] = \beta_0 + \beta_1(x + 1) - (\beta_0 + \beta_1 x) = \beta_1$$

· Consider the impact of changing the units of X.

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i = \beta_0 + \frac{\beta_1}{a} (X_i a) + \epsilon_i = \beta_0 + \tilde{\beta}_1 (X_i a) + \epsilon_i$$

- \cdot Therefore, multiplication of X by a factor a results in dividing the coefficient by a factor of a.
- Example: X is height in m and Y is weight in kg. Then β_1 is kg/m. Converting X to cm implies multiplying X by 100cm/m. To get β_1 in the right units, we have to divide by 100cm/m to get it to have the right units.

$$Xm \times \frac{100cm}{m} = (100X)cm$$
 and $\beta_1 \frac{kg}{m} \times \frac{1m}{100cm} = \left(\frac{\beta_1}{100}\right) \frac{kg}{cm}$

Using regression coeficients for prediction

 \cdot If we would like to guess the outcome at a particular value of the predictor, say X, the regression model guesses

$$\hat{\beta}_0 + \hat{\beta}_1 X$$

· Note that at the observed value of Xs, we obtain the predictions

$$\hat{\mu}_i = \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

· Remember that least squares minimizes

$$\sum_{i=1}^n (Y_i - \mu_i)$$

for μ_i expressed as points on a line

Example

diamond data set from UsingR

Data is diamond prices (Signapore dollars) and diamond weight in carats (standard measure of diamond mass, 0.2 g). To get the data use library(UsingR); data(diamond)

Plotting the fitted regression line and data

The plot

Fitting the linear regression model

```
fit <- lm(price ~ carat, data = diamond)
coef(fit)</pre>
```

```
(Intercept) carat
-259.6 3721.0
```

- · We estimate an expected 3721.02 (SIN) dollar increase in price for every carat increase in mass of diamond.
- The intercept -259.63 is the expected price of a 0 carat diamond.

Getting a more interpretable intercept

```
fit2 <- lm(price ~ I(carat - mean(carat)), data = diamond)
coef(fit2)</pre>
```

```
(Intercept) I(carat - mean(carat))
500.1 3721.0
```

Thus \$500.1 is the expected price for the average sized diamond of the data (0.2042 carats).

Changing scale

- · A one carat increase in a diamond is pretty big, what about changing units to 1/10th of a carat?
- · We can just do this by just dividing the coeficient by 10.
 - We expect a 372.102 (SIN) dollar change in price for every 1/10th of a carat increase in mass of diamond.
- · Showing that it's the same if we rescale the Xs and refit

```
fit3 <- lm(price ~ I(carat * 10), data = diamond)
coef(fit3)</pre>
```

```
(Intercept) I(carat * 10)
-259.6 372.1
```

Predicting the price of a diamond

```
newx <- c(0.16, 0.27, 0.34)
coef(fit)[1] + coef(fit)[2] * newx
```

```
[1] 335.7 745.1 1005.5
```

```
predict(fit, newdata = data.frame(carat = newx))
```

```
1 2 3
335.7 745.1 1005.5
```

Predicted values at the observed Xs (red) and at the new Xs (lines)

