Costi di esecuzione

Luca Tagliavini

February 25 - March 1, 2021

Contents

0.1	Def: Consto di esecuzione
0.2	Def: Complessita'
0.3	Selezione del caso peggiore
0.4	Analisi per casi
0.5	Analisi algoritmi ricorsivi (Teorema dell'esperto)
0.6	Esempio di algoritmo ricorsivo

0.1 Def: Consto di esecuzione

Un algoritmo \mathcal{A} ha consto di esecuzione O(f(n)) su instanze di ingresos di dimensione n rispetto a una certa risorsa di calcolo se la quantita' r(n) di risorsa sufficiente per eseguire \mathcal{A} su una qualunque istanza di dimensione n verificata dalla relazione r(n) = O(f(n)).

Per noi risorsa di calcolo significa tempo di esecuzione o occupazione di memoria.

0.2 Def: Complessita'

Un problema \mathcal{P} ha una compessita' O(f(n)) rispetto a una data risorsa di calcolo se esiste un algoritmo che risolve \mathcal{P} il cui costo di esecuzione rispetto a quella risorsa e' O(f(n)).

0.3 Selezione del caso peggiore

Prendendo ad esmepio un codice formato da operazioni *non elementari*, come if condizionali o cicli for/while, dobbiamo sempre metterci nel caso di considerare l'input peggiore. Ad esempio in quest codice:

```
algoritmo k() {
  if cond then
    caso_true
  else
    caso_false
}
```

Avremo:

- cond = O(f(n))
- caso_true = O(g(n))
- caso_false = O(h(n))

E sceglieremo dunque come costo computazionale dell'algoritmo k:

$$O(\max\{f(n),g(n),h(n)\})$$

0.4 Analisi per casi

Sia \mathcal{I}_n l'insieme di tutte le possibili istanze di input di lunghezza n. Sia T(I) il tempo di esecuzione dell'agoritmo sull'istanza $I \in \mathcal{I}_n$

- worst case: $T_{worst}(n) = \max_{I \in \mathcal{I}_n} T(I)$
- best case: $T_{best}(n) = \min_{I \in \mathcal{I}_n} T(I)$
- average case: $T_{avg}(n) = \sum_{I \in \mathcal{I}_n} T(I) P(I)$ dove P(I) e' un peso in percentuale che varia in base alla probabilita' che un determinato input venga dato in pasto all'agoritmo.

0.5 Analisi algoritmi ricorsivi (Teorema dell'esperto)

$$T(n) = \begin{cases} c_1 & \text{se } n = 0\\ a \cdot T(n/b) + c_2 \cdot n^{\beta} & \text{se } n = 0, c_2 > 0 \end{cases}$$

Siano

- \bullet c_1 il costo del caso base e c_2 il costo del caso ricorsivo
- a il numero di chiamate ricorsive
- b il numero di partizioni dell'input ovvero, grandezza dei dati passati alle sottochiamate ricorsive
- $\alpha = \frac{\log_2 a}{\log_2 b}$
- \bullet β e' l'esponente della complessita' aggiuntiva per ogni sottochiamata ricorisva. $\beta = 0$ se la complessita' e' costante.

A questo punto confronto i valori di α e β per vedere il caso in cui sono:

- 1. $T(n) = \Theta(n^{\alpha})$ se $\alpha > \beta$
- 2. $T(n) = \Theta(n^{\alpha} \log_2 n)$ se $\alpha = \beta$
- 3. $T(n) = \Theta(n^{\beta})$ se $\alpha < \beta$

ATTENZIONE: il teorema non e' applicabile ad algoritmi ricorisvi che non effettuano partizioni bilanciate (ossia quando avendo due o piu' sottochiamate ricorsive effettuano chiamate con n della stessa grandezza). Ad esempio fibonacci che chiama fib(n-1) e fib(n-2) non effettua partizioni bilanciate.

Esempio di algoritmo ricorsivo

Analizziamo l'algoritmo di ricerca binaria tramite il master theorem:

Abbiamo T(n) = T(n/2) + O(1). Da cui a = 1, b = 2.

Vogliamo che n^{β} sia costante, dunque $\beta=0$. Dunque $a=\frac{\log_2 1}{\log_2 2}=0$. Siamo nel caso $\alpha=\beta$: Ne segue $T(n)=\Theta(n^0\cdot\log_2 n)=\Theta(n\log_2 n)$.