

in which

R¹ is hydrogen, or branched and unbranched C₁-C₆-alkyl, it also being possible for one C atom of the alkyl radical to carry OR¹¹ or a group R⁵, where R¹¹ is hydrogen or C₁-C₄-alkyl, and

R² is hydrogen, chlorine, bromine, iodine, fluorine, CF₃, nitro, NHCOR²¹, NR²²R²³, OH, O-C₁-C₄-alkyl, O-C₁-C₄-alkylphenyl, NH₂, CN, a straight or branched C₁ - C₆-alkyl, OR²¹ or phenyl, it also being possible for the phenyl rings to be substituted by at most two radicals R²⁴, and R²¹ and R²²

independently of one another are hydrogen or C₁-C₄-alkyl and R²³ is hydrogen, C₁-C₄-alkyl or phenyl, and R²⁴ is OH, C₁-C₆-alkyl, O-C₁-C₄-alkyl, chlorine, bromine, iodine, fluorine, CF₃, nitro or NH₂, and

x may be 0, 1 or 2 and

F. M. S.

R³ is -D-(F¹)_p-(E)_q-(F²)_r-G, where p, q and r may not simultaneously be 0, or is -

E-(D)_u-(F²)_s-(G)_v, it also being possible for the radical E to be substituted by one or two radicals A, and if v = 0, E is imidazole, pyrrole, pyridine, pyrimidine, piperazine, pyrazine, pyrrolidine or piperidine, or R³ is B and

R⁴ is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched

C₁-C₆-alkyl, OH, nitro, CF₃, CN, NR⁴¹R⁴², NH-CO-R⁴³, or O-C₁-C₄-alkyl,

where R⁴¹ and R⁴² independently of one another are hydrogen or C₁-C₄-alkyl

and R⁴³ is hydrogen, C₁-C₄-alkyl, C₁-C₄-alkylphenyl or phenyl, and

D is S or O

E is phenyl, imidazole, pyrrole, thiophene, pyridine, pyrimidine, piperazine, pyrazine, furan, thiazole, isoxazole, pyrrolidine, piperidine, or trihydroazepine and

F¹ is a chain of 1 to 8 carbon atoms, it also being possible for one carbon atom of the chain to carry an OH or O-C₁-C₄-alkyl group and

F² is a chain of 1 to 8 carbon atoms, it also being possible for one carbon atom of the chain to carry an OH or O-C₁-C₄-alkyl group and

p may be 0 or 1

q may be 0 or 1, and

r may be 0 or 1 and

s may be 0 or 1

u may be 0 or 1

v may be 0 or 1

G may be NR⁵¹R⁵² or

and

R⁵¹ is hydrogen or branched and unbranched C₁-C₆-alkyl, or (CH₂)_t-K and

R⁵² is hydrogen, branched and unbranched C₁-C₆-alkyl, phenyl,

in which

R⁵³ may be branched or unbranched O-C₁-C₆-alkyl, phenyl, or branched or unbranched C₁-C₄-alkylphenyl, where in the case of R⁵² and R⁵³, independently of one another, one hydrogen of the C₁-C₆-alkyl radical may be substituted by one of the following radicals: OH, O-C₁-C₄-alkyl, cyclohexyl, cyclopentyl, tetrahydronaphthyl, cyclopropyl, cyclobutyl, cycloheptyl, naphthyl and phenyl, it also being possible for the carbocycles of the radicals R⁵² and R⁵³ independently of one another to carry one or two of the following radicals: branched or unbranched C₁-C₆-alkyl, branched or unbranched O-C₁-C₄-alkyl,

OH, F, Cl, Br, I, CF₃, NO₂, NH₂, CN, COOH, COOC₁-C₄-alkyl, C₁-C₄-alkylamino, CCl₃, C₁-C₄-dialkylamino, SO₂-C₁-C₄-alkyl, SO₂phenyl, CONH₂, CONH-C₁-C₄-alkyl, CONHphenyl, CONH-C₁-C₄-alkylphenyl, NSO₂-C₁-C₄-alkyl, NSO₂phenyl, S-C₁-C₄-alkyl,

CHO, CH₂-O-C₁-C₄-alkyl, -CH₂O-C₁-C₄-alkylphenyl, -CH₂OH, -SO-C₁-C₄-alkyl, -SO-C₁-C₄-alkylphenyl, -SO₂NH₂, -SO₂NH-C₁-C₄-alkyl

or two radicals form a bridge -O-(CH₂)_{1,2}-O-,

B may be

and

A may be hydrogen, chlorine, bromine, iodine, fluorine, CF₃, nitro, OH, O-C₁-C₄-alkyl, O-C₁-C₄-alkylphenyl, NH₂, branched and unbranched C₁-C₆-alkyl, CN, or NH-CO-R³³, where R³³ is hydrogen, C₁-C₄-alkyl or phenyl and

t is 0,1,2,3, or 4 and

K is a phenyl which may carry at most two radicals R, is NR^{k1}R^{k2} where R^{k1} and R^{k2} are as defined for R⁴¹ and R⁴² respectively, NH-C₁-C₄-alkylphenyl, pyrrolidine, piperidine, 1, 2, 5, 6-tetrahydropyridine, morpholine, trihydroazepine, piperazine, which may also be substituted by an alkyl radical C₁-C₆-alkyl, or homopiperazine, which may also be substituted by an alkyl radical C₁-C₆-alkyl, and

C₄-alkylphenyl, pyrrolidine, piperidine, 1,2, 5, 6-tetrahydropyridine, morpholine, trihydroazepine, piperazine, which may also be substituted by an alkyl radical C₁-C₆-alkyl, or homopiperazine, which may also be substituted by an alkyl radical C₁-C₆-alkyl, and

R⁵ may be hydrogen, C₁-C₆-alkyl, or NR⁷R⁹ and

and

R⁷ is hydrogen, C₁-C₆-alkyl, C₁-C₄-alkylphenyl, or phenyl, it also being possible for the rings to be substituted by up to two radicals R⁷¹, and

R⁷¹ is OH, C₁-C₆-alkyl, O-C₁-C₄-alkyl, chlorine, bromine, iodine, fluorine, CF₃, nitro, or NH₂, and

R⁸ is hydrogen, C₁-C₆-alkyl, phenyl, or C₁-C₄-alkylphenyl, it also being possible for the ring to be substituted by up to two radicals R⁸¹, and

R⁸¹ is OH, C₁-C₆-alkyl, O-C₁-C₄-alkyl, chlorine, bromine, iodine, fluorine, CF₃,

nitro, or NH_2 and

R^9 is hydrogen, COCH_3 , $\text{CO-O-C}_1\text{-C}_4\text{-alkyl}$, COCF_3 , branched and unbranched $\text{C}_1\text{-C}_6\text{-alkyl}$, it being possible for one or two hydrogens of the $\text{C}_1\text{-C}_6\text{-alkyl}$ radical to be substituted in each case by one of the following radicals: OH, $\text{O-C}_1\text{-C}_4\text{-alkyl}$ and phenyl, and for the phenyl ring also to carry one or two of the following radicals: iodine, chlorine, bromine, fluorine, branched and unbranched $\text{C}_1\text{-C}_6\text{-alkyl}$, nitro, amino, $\text{C}_1\text{-C}_4\text{-alkylamino}$, $\text{C}_1\text{-C}_4\text{-dialkylamino}$, OH, $\text{O-C}_1\text{-C}_4\text{-alkyl}$, CN, CF_3 , or $\text{SO}_2\text{-C}_1\text{-C}_4\text{-alkyl}$, or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

Please amend claim 2 as follows:

2. (amended). A compound of the formula I or II as claimed in claim 1 in which

R^1 is hydrogen, branched and unbranched $\text{C}_1\text{-C}_6\text{-alkyl}$, it also being possible for one C atom of the alkyl radical to carry OR^{11} or a group R^5 , where

R^{11} is hydrogen or $\text{C}_1\text{-C}_4\text{-alkyl}$, and

R^2 is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched $\text{C}_1\text{-C}_6\text{-alkyl}$, nitro, CF_3 , CN, $\text{NR}^{22}\text{R}^{23}$, NH-CO-R^{21} , OR^{21} , where

R^{21} and R^{22} are, independently of one another, hydrogen or $\text{C}_1\text{-C}_4\text{-alkyl}$, and

R^{23} is hydrogen, $\text{C}_1\text{-C}_4\text{-alkyl}$ or phenyl, and

R^3 is $-\text{O-(CH}_2\text{)}_o\text{-(CHR}^{31}\text{)}_m\text{-(CH}_2\text{)}_n\text{-G}$, where *max # of carbon*
 $O=2, m=2, n=4$

R^{31} is hydrogen, OH and $\text{O-C}_1\text{-C}_4\text{-alkyl}$,

m, o are, independently of one another, 0, 1 or 2, and

Final
Copy

n is 1, 2, 3 or 4 and

R⁴ is hydrogen, branched and unbranched C₁-C₆-alkyl, chlorine, bromine,

fluorine, nitro, cyano, NR⁴¹R⁴², NH-CO-R⁴³, OR⁴¹ where

R⁴¹ and R⁴² are, independently of one another, hydrogen or C₁-C₄-alkyl, and

R⁴³ is C₁-C₄-alkyl or phenyl, and

G is NR⁵¹R⁵² or one of the following radicals

where

R⁵¹ is hydrogen and branched and unbranched C₁-C₆-alkyl, and

R⁵² is hydrogen, branched and unbranched C₁-C₆-alkyl phenyl,

-SO₂R⁵³, in which

R⁵³ is branched or unbranched O-C₁-C₆-alkyl, phenyl, branched or unbranched

C₁-C₄-alkyl-phenyl, where one hydrogen in the C₁-C₆-alkyl radical in R⁵² and

R⁵³ are, independently of one another, optionally substituted by one of the

following radicals: OH, O-C₁-C₄-alkyl, cyclohexyl, cyclopentyl,

tetrahydronaphthyl, cyclopropyl, cyclobutyl, cycloheptyl, naphthyl and phenyl,

where the carbocycles of the R⁵² and R⁵³ radicals may also, independently of one another, carry one or two of the following radicals: branched or unbranched C₁-C₆-alkyl, branched or unbranched O-C₁-C₄-alkyl, OH, F, Cl, Br, I, CF₃, NO₂, NH₂, CN, COOH, COOC₁-C₄-alkyl, C₁-C₄-alkylamino, CCl₃, C₁-C₄-dialkylamino, SO₂-C₁-C₄-alkyl, SO₂phenyl, CONH₂, CONH-C₁-C₄-alkyl, CONHphenyl, CONH-C₁-C₄-alkyl-phenyl, NSO₂-C₁-C₄-alkyl, NSO₂phenyl, S-C₁-C₄-alkyl,

CHO, CH₂-O-C₁-C₄-alkyl, -CH₂O-C₁-C₄-alkyl-phenyl, -CH₂OH, -SO-C₁-C₄-alkyl, -SO-C₁-C₄-alkyl-phenyl, SO₂NH₂, -SO₂NH-C₁-C₄-alkyl and two radicals form a bridge -O-(CH₂)_{1,2}-O-,

or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

Please amend claim 3 as follows:

3. (amended). A compound of the formula I or II as claimed in claim 1 in which

R¹ is hydrogen, branched and unbranched C₁-C₆-alkyl, it also being possible for one C atom of the alkyl radical to carry OR¹¹ or a group R⁵, where

R¹¹ is hydrogen or C₁-C₄-alkyl, and

R² is hydrogen, chlorine, fluorine, bromine, iodine, branched and unbranched C₁-C₆-alkyl, nitro, CF₃, CN, NR²²R²³, NH-CO-R²¹, OR²¹, where

R²¹ and R²² independently of one another are hydrogen or

C₁-C₄-alkyl and

R²³ is hydrogen, C₁-C₄ alkyl or phenyl

R³ is

and

R³² is hydrogen and -(CH₂)_o-(CHR³¹)_m-(CH₂)_n-G where R³¹ is hydrogen, C₁-C₄-alkyl, OH and O-C₁-C₄-alkyl, m,o independently of one another are 0, 1 or 2 and n is 1, 2, 3 or 4, and

R⁴ is hydrogen, branched and unbranched C₁-C₆-alkyl, chlorine, bromine, fluorine, nitro, cyano, NR⁴¹R⁴², NH-CO-R⁴³, OR⁴¹, where

R⁴¹ and R⁴² independently of one another are hydrogen or C₁-C₄-alkyl and

R⁴³ is C₁-C₄-alkyl or phenyl, and

G is NR⁵¹R⁵² or one of the radicals below

where

R⁵¹ is hydrogen and branched and unbranched and C₁-C₆-alkyl and

F. Smith

R^{52} is hydrogen, COCH_3 , $\text{CO-O-C}_1\text{-C}_4\text{-alkyl}$, COCF_3 , branched and unbranched $\text{C}_1\text{-C}_6\text{-alkyl}$, it being possible for one hydrogen of the $\text{C}_1\text{-C}_6\text{-alkyl}$ radical to be substituted by one of the following radicals: OH, $\text{O-C}_1\text{-C}_4\text{-alkyl}$ and phenyl and for the phenyl ring also to carry one or two of the following radicals: chlorine, bromine, fluorine, branched and unbranched $\text{C}_1\text{-C}_4\text{-alkyl}$, nitro, amino, $\text{C}_1\text{-C}_4\text{-alkylamino}$, $\text{C}_1\text{-C}_4\text{-dialkylamino}$, OH, $\text{O-C}_1\text{-C}_4\text{-alkyl}$, CN, SO_2^- , $\text{C}_1\text{-C}_4\text{-alkyl}$, or a tautomeric form, a possible enantiomeric or disasteriomeric form, a prodrug or pharmacologically tolerated salt thereof.

Please amend claim 7 as follows:

7. (amended). A compound as claimed in claim 1 where

F.2
(i) for R^3 being

R^{31} is hydrogen or $-(\text{CH}_2)_w\text{-G}$, where

w is 1 or 2 and

(ii) for R³ being

*X N
Complex*
R³¹ is hydrogen or -(CH₂)_p-G, where

p is 1 or 2 and

and (iii) for R³ being

where R⁵² is hydrogen, branched and unbranched C₁-C₆-alkyl, where one hydrogen of the C₁-C₆-alkyl radical may be substituted by one of the following radicals: OH, O-C₁-C₄-alkyl and phenyl, and where the phenyl ring may also carry one or two of the following radicals: chlorine, bromine, fluorine, branched and unbranched C₁-C₄-alkyl, nitro, amino, C₁-C₄-alkylamino, C₁-C₄-dialkylamino, OH, O-C₁-C₄-alkyl, CN, SO₂-C₁-C₄-alkyl.

Please amend claim 8 as follows:

8. (amended). A compound as claimed in claim 1, where R³ is -D-(F¹)_p-(E)_q-(F²)_r-G where D is 0, F¹ is a C₁-C₄ carbon chain, p is 1, q is 0 and r is 0.