Progress in Higher-Order Automated Ontology Reasoning

Christoph Benzmüller and Adam Pease

Articulate Software, Angwin, CA, USA

PAAR 2010, Edinburgh, UK, July 14, 2010

Research funded by DFG grant BE 2501/6-1

Ontology Reasoning
— SUMO and Sigma —

SUMO and Sigma

- ➤ SUMO Suggested Upper Merged Ontology (NilesPease, FOIS, 2001)
 - open source, formal ontology: www.ontologyportal.org
 - ▶ has been extended for a number of domain specific ontologies
 - altogether approx. 20,000 terms and 70,000 axioms
 - employs the SUO-KIF representation language, a simplification of Genesereth's original Knowledge Interchange Format (KIF)
- ► Sigma (Pease, CEUR-71, 2003)
 - browsing and inference system for ontology development
 - integrates KIF-Vampire and SystemOnTPTP

SUMO (and similarly Cyc) contains higher-order representations, but there is only very limited automation support so far

⇒ better automation support is goal of DFG project

SUMO and Sigma

- SUMO Suggested Upper Merged Ontology (NilesPease, FOIS, 2001)
 - open source, formal ontology: www.ontologyportal.org
 - has been extended for a number of domain specific ontologies
 - altogether approx. 20,000 terms and 70,000 axioms
 - employs the SUO-KIF representation language, a simplification of Genesereth's original Knowledge Interchange Format (KIF)
- ► Sigma (Pease, CEUR-71, 2003)
 - browsing and inference system for ontology development
 - integrates KIF-Vampire and SystemOnTPTP

SUMO (and similarly Cyc) contains higher-order representations, but there is only very limited automation support so far

⇒ better automation support is goal of DFG project

Embedded formulas

```
term ::= variable|word|string|funterm|number|sentence
```

```
(holdsDuring (YearFn 2009) (likes Mary Bill))
```

- ...often in combination with modal operators such as holdsDuring, knows, believes, etc.
- Predicate variables, function variables, propositional variables
- ► Lambda-Abstraction with KappaFN

- Embedded formulas
- ...often in combination with modal operators such as holdsDuring, knows, believes, etc.
- Predicate variables, function variables, propositional variables
- ► Lambda-Abstraction with KappaFN

- Embedded formulas
- ...often in combination with modal operators such as holdsDuring, knows, believes, etc.
- ► Predicate variables, function variables, propositional variables

```
funterm ::= (funword arg+) relsent ::= (relword arg+)
funword, relword ::= initialchar wordchar* | variable
```

► Lambda-Abstraction with KappaFN

- Embedded formulas
- ...often in combination with modal operators such as holdsDuring, knows, believes, etc.
- Predicate variables, function variables, propositional variables
- Lambda-Abstraction with KappaFN

First-order reasoning on a large ontology

(PeaseSutcliffe, CEUR 257, 2007)

Quoting of embedded formulas

```
A: (holdsDuring (YearFn 2009) (likes Mary Bill))

Q: (holdsDuring (YearFn ?Y) (likes ?X Bill))
```

Current project focus:

First-order reasoning on a large ontology (PeaseSutcliffe, CEUR 257, 2007)

Quoting of embedded formulas

```
A: (holdsDuring (YearFn 2009) '(likes Mary Bill))
Q: (holdsDuring (YearFn ?Y) '(likes ?X Bill))

Answer with FO-ATPs (?Y ← 2009, ?X ← Mary)
```

Current project focus

First-order reasoning on a large ontology (PeaseSutcliffe, CEUR 257, 2007)

Quoting of embedded formulas

```
A: (holdsDuring (YearFn 2009)
'(and (likes Mary Bill) (likes Sue Bill)))

Q: (holdsDuring (YearFn ?Y) '(likes ?X Bill))
```

Failure with FO-ATP

Current project focus:

First-order reasoning on a large ontology

(PeaseSutcliffe, CEUR 257, 2007)

- Quoting of embedded formulas
- Expansion of predicate variables

Current project focus

First-order reasoning on a large ontology

(PeaseSutcliffe, CEUR 257, 2007)

- Quoting of embedded formulas
- Expansion of predicate variables

Why not trying higher-order automated theorem proving directly?

Current project focus:

The SUO-KIF to TPTP THF0 Translation

The SUO-KIF to TPTP THF0 Translation

- ➤ THF0: new TPTP format for simple type theory
 (SutcliffeBenzmüller, J.Formalized Reasoning, 2010)
- ► THF0 ATPs: LEO-II, TPS, IsabelleP, Satallax THF0 (counter-)model finders: IsabelleM, IsabelleN, Satallax
- ► achieved:

translation mechanism for SUMO as part of Sigma

- ▶ so far only exploits base type ι and o in THF0 (\rightarrow improvable)
- generally applicable to SUO-KIF representations
- ▶ translation example (for SUMO) available at:

http://www.ags.uni-sb.de/~chris/papers/SUMO.thf

The SUO-KIF to TPTP THF0 Translation

- ► THF0: new TPTP format for simple type theory (SutcliffeBenzmüller, J.Formalized Reasoning, 2010)
- ► THF0 ATPs: LEO-II, TPS, IsabelleP, Satallax THF0 (counter-)model finders: IsabelleM, IsabelleN, Satallax
- achieved:

SUO-KIF \longrightarrow TPTP THF0

translation mechanism for SUMO as part of Sigma

- ▶ so far only exploits base type ι and o in THF0 (\rightarrow improvable)
- generally applicable to SUO-KIF representations
- translation example (for SUMO) available at:

http://www.ags.uni-sb.de/~chris/papers/SUMO.thf

The SUO-KIF to TPTP THF Translation

Main challenge: find consistent typing for untyped SUO-KIF

(instance instance BinaryPredicate)

 \longrightarrow ...and so on ...

The SUO-KIF to TPTP THF Translation

Main challenge: find consistent typing for untyped SUO-KIF

(instance instance BinaryPredicate)

 \longrightarrow ...and so on ...

The SUO-KIF to TPTP THF Translation

Main challenge: find consistent typing for untyped SUO-KIF

(instance instance BinaryPredicate)

```
\longrightarrow ...and so on ...
```


Higher-Order Automated Theorem Proving in Ontology Reasoning

```
Example (1: Embedded Formulas)
```

During 2009 Mary liked Bill and Sue liked Bill. Who liked Bill in 2009?

```
A: (holdsDuring (YearFn 2009)
(and (likes Mary Bill) (likes Sue Bill)))
```

Q: (holdsDuring (YearFn 2009) (likes ?X Bill))

Proof by LEO-II(+E) in 0.19s

Example (2: Embedded Formulas (1 modified))

During 2009 Mary liked Bill and Sue liked Bill. Who liked Bill in 2009?

Proof by LEO-II(+E) in 0.19s

Example (3: Embedded Formulas)

At all times Mary likes Bill. During 2009 Sue liked whomever Mary liked. Is there a year in which Sue has liked somebody?

Proof by LEO-II(+E) in 0.13s

Example (4/5: Embedded Formulas (3 modified))

What holds that holds at all times. Mary likes Bill. During 2009 Sue liked whoever Mary liked. Is there a year in which Sue has liked somebody?

Proof by LEO-II(+E) in 0.16s

Example (4/5: Embedded Formulas (3 modified))

What holds that holds at all times. Mary likes Bill. During 2009 Sue liked whoever Mary liked. Is there a year in which Sue has liked somebody?

Example (4/5: Embedded Formulas (3 modified))

What holds that holds at all times. Mary likes Bill. During 2009 Sue liked whoever Mary liked. Is there a year in which Sue has liked somebody?

Example (4/5: Embedded Formulas (3 modified))

What holds that holds at all times. Mary likes Bill. During 2009 Sue liked whoever Mary liked. Is there a year in which Sue has liked somebody?

Example (4/5: Embedded Formulas (3 modified))

What holds that holds at all times. Mary likes Bill. During 2009 Sue liked whoever Mary liked. Is there a year in which Sue has liked somebody?

Boolean extensionality: $(P \Leftrightarrow Q) \Leftrightarrow (P = Q)$

Example (4/5: Embedded Formulas (3 modified))
What holds that holds at all times. Mary likes Bill. During 2009
Sue liked whoever Mary liked. Is there a year in which Sue has liked

Proof by LEO-II(+E) in 0.08s

somebody?

Example (6: Embedded Formulas and KappaFn)

The number of people John is grandparent of is less than or equal to three. How many grandchildren does John at most have?

```
A: (<=> (grandchild ?X ?Y)
        (exists (?Z) (and (parent ?Z ?X) (parent ?Y ?Z))))
B: (<=> (grandparent ?X ?Y)
        (exists (?Z) (and (parent ?X ?Z) (parent ?Z ?Y))))
C: (lessThanOrEqualTo
        (CardinalityFn (KappaFn ?X (grandparent John ?X)))
        3)
Q: (lessThanOrEqualTo
        (CardinalityFn (KappaFn ?X (grandchild ?X John)))
        ?Y)
```


Significant Improvements since Paper Submission

Significant Improvements since Paper Submission

LEO-II(+E) version v1.1

Ex.	1	2	3	4	5	6	7	8	9
local version	.19	.19	.13	.16	.08	.34	.18	.04	2642.55
SInE version	_	_	_	_	_	_	_	_	_
global version	_	_	_	_	_	_	_	_	_

One reviewer: ...only local versions ...this is not impressive ...

LEO-II(+E) version v1.2.1 (with relevance filtering)

	1								
local version	.19	.18	.11		.10		.32	.14	.18
SInE version	.43	.40	.21	.54	.37	.12	.70		.26
global version	2.8	2.7	1.6	4.9	1.4	0.9	4.7	1.3	0.9

Significant Improvements since Paper Submission

LEO-II(+E) version v1.1

Ex.	1	2	3	4	5	6	7	8	9
local version	.19	.19	.13	.16	.08	.34	.18	.04	2642.55
SInE version	_	_	_	_	_	_	_	_	_
global version	_	_	_	_	_	_	_	_	_

One reviewer: ...only local versions ...this is not impressive ...

LEO-II(+E) version v1.2.1 (with relevance filtering

	1								
local version	.19	.18	.11		.10		.32	.14	.18
SInE version	.43	.40	.21	.54	.37	.12	.70		.26
global version	2.8	2.7	1.6	4.9	1.4	0.9	4.7	1.3	0.9

Significant Improvements since Paper Submission

LEO-II(+E) version v1.1

Ex.	1	2	3	4	5	6	7	8	9
local version	.19	.19	.13	.16	.08	.34	.18	.04	2642.55
SInE version	_	_	_	_	_	_	_	_	_
global version	_	_	_	_	_	_	_	_	_

One reviewer: ...only local versions ...this is not impressive ...

LEO-II(+E) version v1.2.1 (with relevance filtering)

Ex.	1	2	3	4	5	6	7	8	9
local version	.19	.18	.11	.08	.10	.38	.32	.14	.18
SInE version global version	.43	.40	.21	.54	.37	.12	.70	.06	.26
global version	2.8	2.7	1.6	4.9	1.4	0.9	4.7	1.3	0.9

Problem for SUO-KIF Semantics: Boolean Extensionality versus Modal Operators

Problem: Boolean Extensionality versus Modal Operators

```
Example (5: Embedded Formulas – Temporal Contexts)
```

Proof by LEO-II(
$$+E$$
) in $< 0.16s$

Boolean extensionality is in conflict with (epistemic) modalities! (Has Boolean extensionality ever been questioned for KIF?)

Problem relevant not only for HO-ATPs!

Proof by LEO-II(+E) in 0.04s

Boolean extensionality is in conflict with (epistemic) modalities! (Has Boolean extensionality ever been questioned for KIF?)

Proof by LEO-II(+E) in 0.04s

Boolean extensionality is in conflict with (epistemic) modalities! (Has Boolean extensionality ever been questioned for KIF?)

Proof by LEO-II(+E) in 0.04s

Boolean extensionality is in conflict with (epistemic) modalities! (Has Boolean extensionality ever been questioned for KIF?)

Proof by LEO-II(+E) in 0.04s

Boolean extensionality is in conflict with (epistemic) modalities! (Has Boolean extensionality ever been questioned for KIF?)

Proposed Solution: Possible World Semantics for SUMO

```
SUMO → Quantified Multimodal Logic (QML) → TPTP THF (QML is fragment of HOL (BenzmüllerPaulson, SR-2009-02, 2009))
```

► T-Box like information in SUMO:

```
(instance holdsDuring AsymmetricRelation) \longrightarrow \forall W_{\iota^{\bullet}} (\text{instance holdsDuring AsymmetricRelation})_{\iota \to o} W
```

 \triangleright A-Box like information as in query problem: current world cw_{ι}

```
(likes Mary Bill) \longrightarrow (likes Mary Bill)_{t \to o} cw (knows Chris (likes Sue Bill)) \longrightarrow (\square_{Chris} (likes Sue Bill)), \downarrow_{cw} cw
```

Proposed Solution: Possible World Semantics for SUMO

```
SUMO → Quantified Multimodal Logic (QML) → TPTP THF (QML is fragment of HOL (BenzmüllerPaulson, SR-2009-02, 2009))
```

► T-Box like information in SUMO:

```
(instance holdsDuring AsymmetricRelation) \longrightarrow \forall W_{\iota^{\bullet}} (\text{instance holdsDuring AsymmetricRelation})_{\iota \to o} W
```

ightharpoonup A-Box like information as in query problem: current world cw_{ι}

```
(likes Mary Bill) \longrightarrow (likes Mary Bill)_{\iota \to o} cw (knows Chris (likes Sue Bill)) \longrightarrow (\square_{\text{Chris}} (likes Sue Bill))_{\iota \to o} cw
```

```
Example (8: Embedded Formulas – Epistemic Contexts)
```

A": $\forall Y_{\iota \to \iota \to o} (\Box_Y \top) cw$ **B**: (likes Mary Bill) cw

 $\mathbf{C}': (\square_{Chris} (\forall^i X_{\mu^{\bullet}} ((likes\ Mary\ X) \supset (likes\ Sue\ X)))) cw$

Q': (□_{Chris} (likes Sue Bill)) cw

Axioms for \square_{Chris} can be added:

 $M: \forall W_{\iota^{\blacksquare}}(\forall^p \phi_{\iota \to o^{\blacksquare}} \Box_{Chris} \phi \supset \phi) W$

4: $\forall W_{\iota^{\bullet}}(\forall^p \phi_{\iota \to o^{\bullet}} \square_{Chris} \phi \supset \square_{Chris} \square_{Chris} \phi) W$

5: $\forall W_{\iota^{\blacksquare}}(\forall^{p}\phi_{\iota \to o^{\blacksquare}} \square_{Chris} \neg \phi \supset \square_{Chris} \neg \square_{Chris} \phi) W$

Example (8: Embedded Formulas – Epistemic Contexts)

A": $\forall Y_{\iota \to \iota \to o} (\square_Y \top) cw$

B: (likes Mary Bill) cw

C': $(\Box_{Chris}(\forall^i X_{\mu^{\blacksquare}}((likes\ Mary\ X)\supset (likes\ Sue\ X))))$ cw

Q': (□_{Chris} (likes Sue Bill)) cw

Axioms for \square_{Chris} can be added:

M:
$$\forall W_{\iota^{\bullet}}(\forall^p \phi_{\iota \to o^{\bullet}} \Box_{Chris} \phi \supset \phi) W$$

4:
$$\forall W_{\iota^{\bullet}}(\forall^{p}\phi_{\iota \to o^{\bullet}} \square_{Chris} \phi \supset \square_{Chris} \square_{Chris} \phi) W$$

5:
$$\forall W_{\iota \bullet} (\forall^p \phi_{\iota \to o \bullet} \Box_{Chris} \neg \phi \supset \Box_{Chris} \neg \Box_{Chris} \phi) W$$

Example (8: Embedded Formulas – Epistemic Contexts)

 $\mathbf{A}":\forall Y_{\iota \to \iota \to o^{\blacksquare}}(\square_Y \top) \ cw$

B: (likes Mary Bill) cw

C': $(\Box_{Chris}(\forall^i X_{\mu^{\blacksquare}}((likes\ Mary\ X)\supset (likes\ Sue\ X))))$ cw

 \mathbf{Q}' : (\square_{Chris} (likes Sue Bill)) cw

Axioms for \square_{Chris} can be added:

M:
$$\forall W_{\iota} (\forall^p \phi_{\iota \to o} \Box_{Chris} \phi \supset \phi) W$$

4: $\forall W_{\iota^{\bullet}}(\forall^{p}\phi_{\iota \to o^{\bullet}} \Box_{Chris} \phi \supset \Box_{Chris} \Box_{Chris} \phi) W$

5: $\forall W_{\iota^*}(\forall^p \phi_{\iota \to o^*} \Box_{Chris} \neg \phi \supset \Box_{Chris} \neg \Box_{Chris} \phi) W$

LEO-II(+E) cannot solve this problem anymore!

Example (8: Embedded Formulas – Epistemic Contexts)

 $A'': \forall Y_{\iota \to \iota \to o} (\Box_Y \top) cw$

B: (□_{Chris} (likes Mary Bill)) cw

C': $(\Box_{Chris}(\forall^i X_{u^{\bullet}}((likes\ Mary\ X)))) \subset (likes\ Sue\ X)))) \subset w$

 \mathbf{Q}' : (\square_{Chris} (likes Sue Bill)) cw

Axioms for \square_{Chris} can be added:

M:
$$\forall W_{\iota \bullet} (\forall^p \phi_{\iota \to o \bullet} \Box_{Chris} \phi \supset \phi) W$$

4: $\forall W_{\iota^{\bullet}}(\forall^{p}\phi_{\iota \to o^{\bullet}}\Box_{Chris}\phi \supset \Box_{Chris}\Box_{Chris}\phi) W$

5: $\forall W_{\iota^{\bullet}}(\forall^{p}\phi_{\iota \to o^{\bullet}} \square_{Chris} \neg \phi \supset \square_{Chris} \neg \square_{Chris} \phi) W$

But LEO-II(+E) can solve this problem in 0.15s!


```
Example (8: Embedded Formulas – Epistemic Contexts)
A'': \forall Y_{\iota \to \iota \to o} (\Box_{Y} \top) cw
B: (\Box_{fool}(likes\ Mary\ Bill)) cw
C': (\Box_{Chris}(\forall^i X_{u})((likes Mary X)))) \subset (likes Sue X)))) \subset (u)
\mathbf{Q}': (\square_{Chris}(likes Sue Bill)) cw
Axioms for \square_{Chris} can be added:
M: \forall W_{\iota \bullet} (\forall^p \phi_{\iota \to o \bullet} \Box_{Chris} \phi \supset \phi) W
4: \forall W_{\iota} (\forall^p \phi_{\iota \to o} \Box_{Chris} \phi \supset \Box_{Chris} \Box_{Chris} \phi) W
5: \forall W_{\bullet\bullet}(\forall^p \phi_{\bullet \to o\bullet} \Box_{Chris} \neg \phi \supset \Box_{Chris} \neg \Box_{Chris} \phi) W
Axioms for \square_{fool} can be added ...
\forall W_{\iota} (\forall^p \phi_{\iota \to o} \Box_{fool} \phi \supset \Box_{Chris} \phi) W
```

Example (8: Embedded Formulas – Epistemic Contexts)

 $A'': \forall Y_{\iota \to \iota \to o} (\Box_Y \top) cw$

B: (□_{fool} (likes Mary Bill)) cw

C': $(\Box_{Chris}(\forall^i X_{\mu^{\blacksquare}}((likes\ Mary\ X)\supset (likes\ Sue\ X))))$ cw

 \mathbf{Q}' : (\square_{Chris} (likes Sue Bill)) cw

Axioms for \square_{Chris} can be added:

$$M: \forall W_{\iota} (\forall^p \phi_{\iota \to o} \square_{Chris} \phi \supset \phi) W$$

4: $\forall W_{\iota^{\bullet}}(\forall^{p}\phi_{\iota\to o^{\bullet}}\Box_{Chris}\phi\supset\Box_{Chris}\Box_{Chris}\phi)W$

5: $\forall W_{\iota^*} (\forall^p \phi_{\iota \to o^*} \Box_{Chris} \neg \phi \supset \Box_{Chris} \neg \Box_{Chris} \phi) W$

More information: (BenzmüllerPease, ECAI-ARCOE-10, 2010)

Conclusion

- ► SUMO (similarly Cyc) employs higher-order representations
- support with first-order ATPs good but not perfect
- additional support with higher-order ATPs seems feasible

 - example problems solved effectively (in large theory context!)by LEO-II(+E)
 - simple relevance filtering mechanism implemented for LEO-II(+E)
- various problems in SUMO detected, including:

Boolean extensionality versus modal operators

solution

- (BenzmüllerPease, ECAI-ARCOE-10, 2010)
- possible world semantics for SUO-KIF resp. SUMO
- exploitation of embedding of quantified multimodal logic in THF for automation with higher-order ATPs
- supports combinations with further logic embeddings in THF0

