

SEQUENCE LISTING

<110> Cashman, Neil
Paramithiotis, Eustache
Slon-Usakiewicz, Jacek
Haghighat, Ashkan
Pinard, Marc
Lawton, Trebor

<120> PRION PROTEIN PEPTIDES AND USES THEREOF

<130> 50111/002002

<140> US 09/602,775
<141> 2000-06-23

<150> 60/140,634
<151> 1999-06-23

<160> 34

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(4)
<223> Xaa = Any Amino Acid

<400> 1
Xaa Tyr Tyr Xaa
1

<210> 2
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(7)
<223> Xaa = Any Amino Acid

<400> 2

RECEIVED

APR 22 2002

TECH CENTER 1600/2900

a

Xaa Tyr Tyr Xaa Tyr Tyr Xaa
1 5

<210> 3
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(10)
<223> Xaa = Any Amino Acid

<400> 3
Xaa Tyr Tyr Xaa Tyr Tyr Xaa Tyr Tyr Xaa
1 5 10

<210> 4
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(13)
<223> Xaa = Any Amino Acid

<400> 4
Xaa Tyr Tyr Xaa Tyr Tyr Xaa Tyr Tyr Xaa
1 5 10

1
Cont
<210> 5
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(16)
<223> Xaa = Any Amino Acid

<400> 5
Xaa Tyr Tyr Xaa Tyr Tyr Xaa Tyr Tyr Xaa
1 5 10 15

<210> 6
<211> 19
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(19)
<223> Xaa = Any Amino Acid

<400> 6
Xaa Tyr Tyr Xaa
1 5 10 15
Tyr Tyr Xaa

<210> 7
<211> 22
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(22)
<223> Xaa = Any Amino Acid

<400> 7
Xaa Tyr Tyr Xaa
1 5 10 15
Tyr Tyr Xaa Tyr Tyr Xaa
20

Ans.
<210> 8
<211> 25
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(25)
<223> Xaa = Any Amino Acid

<400> 8
Xaa Tyr Tyr Xaa
1 5 10 15
Tyr Tyr Xaa Tyr Tyr Xaa Tyr Tyr Xaa
20 25

<210> 9
<211> 28
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(28)
<223> Xaa = Any Amino Acid

<400> 9
Xaa Tyr Tyr Xaa
1 5 10 15
20 25

<210> 10
<211> 31
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(31)
<223> Xaa = Any Amino Acid

<400> 10
Xaa Tyr Tyr Xaa
1 5 10 15
20 25 30

A
Cont.
<210> 11
<211> 34
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(34)
<223> Xaa = Any Amino Acid

<400> 11
Xaa Tyr Tyr Xaa
1 5 10 15
Tyr Tyr Xaa Tyr

Tyr Xaa

20

25

30

<210> 12
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(4)
<223> Xaa = Any Amino Acid

<400> 12
Xaa Tyr Tyr Arg
1

<210> 13
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(4)
<223> Xaa = Any Amino Acid

<400> 13
Xaa Tyr Tyr Gln
1

<210> 14
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(4)
<223> Xaa = Any Amino Acid

<400> 14
Xaa Tyr Tyr Asp
1

<210> 15
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(13)
<223> Xaa = Any Amino Acid

<400> 15
Xaa Tyr Tyr Xaa Xaa Tyr Tyr Xaa Tyr Tyr Tyr Tyr Xaa
1 5 10

<210> 16
<211> 16
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(16)
<223> Xaa = Any Amino Acid

<400> 16
Xaa Tyr Tyr Xaa Xaa Tyr Tyr Xaa Tyr Tyr Tyr Xaa Tyr Tyr Xaa
1 5 10 15

<210> 17
<211> 19
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(19)
<223> Xaa = Any Amino Acid

<400> 17
Xaa Tyr Tyr Xaa Xaa Tyr Tyr Xaa Tyr Tyr Tyr Xaa Tyr Tyr Xaa
1 5 10 15
Tyr Tyr Xaa

<210> 18
<211> 22

<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(22)
<223> Xaa = Any Amino Acid

<400> 18
Xaa Tyr Tyr Xaa Xaa Tyr Tyr Xaa Tyr Tyr Tyr Tyr Xaa Tyr Tyr Xaa
1 5 10 15
Tyr Tyr Xaa Tyr Tyr Xaa
20

<210> 19
<211> 25
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(25)
<223> Xaa = Any Amino Acid

<400> 19
Xaa Tyr Tyr Xaa Xaa Tyr Tyr Xaa Tyr Tyr Tyr Tyr Xaa Tyr Tyr Xaa
1 5 10 15
Tyr Tyr Xaa Tyr Tyr Xaa Tyr Tyr Xaa
20 25

1
Cont.
<210> 20
<211> 28
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(28)
<223> Xaa = Any Amino Acid

<400> 20
Xaa Tyr Tyr Xaa Xaa Tyr Tyr Xaa Tyr Tyr Tyr Tyr Xaa Tyr Tyr Xaa
1 5 10 15
Tyr Tyr Xaa Tyr Tyr Xaa Tyr Tyr Xaa Tyr Tyr Xaa
20 25

<210> 21
<211> 31
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(31)
<223> Xaa = Any Amino Acid

<400> 21
Xaa Tyr Tyr Xaa Xaa Tyr Tyr Xaa Tyr Tyr Tyr Xaa Tyr Tyr Xaa
1 5 10 15
Tyr Tyr Xaa
20 25 30

<210> 22
<211> 34
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(34)
<223> Xaa = Any Amino Acid

<400> 22
Xaa Tyr Tyr Xaa Xaa Tyr Tyr Xaa Tyr Tyr Tyr Xaa Tyr Tyr Xaa
1 5 10 15
Tyr Tyr Xaa Tyr
20 25 30
Tyr Xaa

1
Cont'
<210> 23
<211> 37
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(37)
<223> Xaa = Any Amino Acid

<400> 23
Xaa Tyr Tyr Xaa Xaa Tyr Tyr Xaa Tyr Tyr Tyr Xaa Tyr Tyr Xaa
1 5 10 15

Tyr Tyr Xaa Tyr
20 25 30
Tyr Xaa Tyr Tyr Xaa
35

<210> 24
<211> 40
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(40)
<223> Xaa = Any Amino Acid

<400> 24
Xaa Tyr Tyr Xaa Xaa Tyr Tyr Xaa Tyr Tyr Tyr Xaa Tyr Tyr Xaa
1 5 10 15
Tyr Tyr Xaa Tyr Tyr Xaa Tyr Xaa Tyr Tyr Xaa Tyr Tyr Xaa Tyr
20 25 30
Tyr Xaa Tyr Tyr Xaa Tyr Tyr Xaa
35 40

<210> 25
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<221> VARIANT
<222> (1)...(10)
<223> Xaa = Any Amino Acid

<400> 25
Xaa Tyr Tyr Arg Arg Tyr Tyr Arg Tyr Tyr
1 5 10

<210> 26
<211> 264
<212> PRT
<213> Bos taurus

<400> 26
Met Val Lys Ser His Ile Gly Ser Trp Ile Leu Val Leu Phe Val Ala
1 5 10 15
Met Trp Ser Asp Val Gly Leu Cys Lys Lys Arg Pro Lys Pro Gly Gly
20 25 30
Gly Trp Asn Thr Gly Gly Ser Arg Tyr Pro Gly Gln Gly Ser Pro Gly
35 40 45

Gly Asn Arg Tyr Pro Pro Gln Gly Gly Gly Trp Gly Gln Pro His
 50 55 60
 Gly Gly Gly Trp Gly Gln Pro His Gly Gly Gly Trp Gly Gln Pro His
 65 70 75 80
 Gly Gly Gly Trp Gly Gln Pro His Gly Gly Gly Trp Gly Gln Pro His
 85 90 95
 Gly Gly Gly Trp Gly Gln Gly Gly Thr His Gly Gln Trp Asn Lys
 100 105 110
 Pro Ser Lys Pro Lys Thr Asn Met Lys His Val Ala Gly Ala Ala Ala
 115 120 125
 Ala Gly Ala Val Val Gly Gly Leu Gly Gly Tyr Met Leu Gly Ser Ala
 130 135 140
 Met Ser Arg Pro Leu Ile His Phe Gly Ser Asp Tyr Glu Asp Arg Tyr
 145 150 155 160
 Tyr Arg Glu Asn Met His Arg Tyr Pro Asn Gln Val Tyr Tyr Arg Pro
 165 170 175
 Val Asp Gln Tyr Ser Asn Gln Asn Asn Phe Val His Asp Cys Val Asn
 180 185 190
 Ile Thr Val Lys Glu His Thr Val Thr Thr Thr Lys Gly Glu Asn
 195 200 205
 Phe Thr Glu Thr Asp Ile Lys Met Met Glu Arg Val Val Glu Gln Met
 210 215 220
 Cys Ile Thr Gln Tyr Gln Arg Glu Ser Gln Ala Tyr Tyr Gln Arg Gly
 225 230 235 240
 Ala Ser Val Ile Leu Phe Ser Ser Pro Pro Val Ile Leu Leu Ile Ser
 245 250 255
 Phe Leu Ile Phe Leu Ile Val Gly
 260

<210> 27
 <211> 253
 <212> PRT
 <213> Homo sapiens

<400> 27

Met Ala Asn Leu Gly Cys Trp Met Leu Val Leu Phe Val Ala Thr Trp
 1 5 10 15
 Ser Asp Leu Gly Leu Cys Lys Lys Arg Pro Lys Pro Gly Gly Trp Asn
 20 25 30
 Thr Gly Gly Ser Arg Tyr Pro Gly Gln Gly Ser Pro Gly Gly Asn Arg
 35 40 45
 Tyr Pro Pro Gln Gly Gly Trp Gly Gln Pro His Gly Gly Gly
 50 55 60
 Trp Gly Gln Pro His Gly Gly Trp Gly Gln Pro His Gly Gly Gly
 65 70 75 80
 Trp Gly Gln Pro His Gly Gly Trp Gly Gln Gly Gly Thr His
 85 90 95
 Ser Gln Trp Asn Lys Pro Ser Lys Pro Lys Thr Asn Met Lys His Met
 100 105 110
 Ala Gly Ala Ala Ala Ala Gly Ala Val Val Gly Gly Leu Gly Gly Tyr
 115 120 125
 Met Leu Gly Ser Ala Met Ser Arg Pro Ile Ile His Phe Gly Ser Asp
 130 135 140
 Tyr Glu Asp Arg Tyr Tyr Arg Glu Asn Met His Arg Tyr Pro Asn Gln
 145 150 155 160
 Val Tyr Tyr Arg Pro Met Asp Glu Tyr Ser Asn Gln Asn Asn Phe Val
 165 170 175

1
a
cont

His Asp Cys Val Asn Ile Thr Ile Lys Gln His Thr Val Thr Thr Thr
180 185 190
Thr Lys Gly Glu Asn Phe Thr Glu Thr Asp Val Lys Met Met Glu Arg
195 200 205
Val Val Glu Gln Met Cys Ile Thr Gln Tyr Glu Arg Glu Ser Gln Ala
210 215 220
Tyr Tyr Gln Arg Gly Ser Ser Met Val Leu Phe Ser Ser Pro Pro Val
225 230 235 240
Ile Leu Leu Ile Ser Phe Leu Ile Phe Leu Ile Val Gly
245 250

<210> 28
<211> 256
<212> PRT
<213> Ovis aries

<400> 28

Met Val Lys Ser His Ile Gly Ser Trp Ile Leu Val Leu Phe Val Ala
1 5 10 15
Met Trp Ser Asp Val Gly Leu Cys Lys Lys Arg Pro Lys Pro Gly Gly
20 25 30
Gly Trp Asn Thr Gly Gly Ser Arg Tyr Pro Gly Gln Gly Ser Pro Gly
35 40 45
Gly Asn Arg Tyr Pro Pro Gln Gly Gly Gly Trp Gly Gln Pro His
50 55 60
Gly Gly Gly Trp Gly Gln Pro His Gly Gly Gly Trp Gly Gln Pro His
65 70 75 80
Gly Gly Gly Trp Gly Gln Pro His Gly Gly Gly Trp Gly Gln Gly
85 90 95
Gly Ser His Ser Gln Trp Asn Lys Pro Ser Lys Pro Lys Thr Asn Met
100 105 110
Lys His Val Ala Gly Ala Ala Ala Gly Ala Val Val Gly Gly Leu
115 120 125
Gly Gly Tyr Met Leu Gly Ser Ala Met Ser Arg Pro Leu Ile His Phe
130 135 140
Gly Asn Asp Tyr Glu Asp Arg Tyr Tyr Arg Glu Asn Met Tyr Arg Tyr
145 150 155 160
Pro Asn Gln Val Tyr Tyr Arg Pro Val Asp Arg Tyr Ser Asn Gln Asn
165 170 175
Asn Phe Val His Asp Cys Val Asn Ile Thr Val Lys Gln His Thr Val
180 185 190
Thr Thr Thr Lys Gly Glu Asn Phe Thr Glu Thr Asp Ile Lys Ile
195 200 205
Met Glu Arg Val Val Glu Gln Met Cys Ile Thr Gln Tyr Gln Arg Glu
210 215 220
Ser Gln Ala Tyr Tyr Gln Arg Gly Ala Ser Val Ile Leu Phe Ser Ser
225 230 235 240
Pro Pro Val Ile Leu Leu Ile Ser Phe Leu Ile Phe Leu Ile Val Gly
245 250 255

*A
cont*

<210> 29
<211> 254
<212> PRT
<213> Mus musculus

<400> 29

Met Ala Asn Leu Gly Tyr Trp Leu Leu Ala Leu Phe Val Thr Met Trp
1 5 10 15
Thr Asp Val Gly Leu Cys Lys Lys Arg Pro Lys Pro Gly Gly Trp Asn
20 25 30
Thr Gly Gly Ser Arg Tyr Pro Gly Gln Gly Ser Pro Gly Gly Asn Arg
35 40 45
Tyr Pro Pro Gln Gly Gly Thr Trp Gly Gln Pro His Gly Gly Trp
50 55 60
Gly Gln Pro His Gly Gly Ser Trp Gly Gln Pro His Gly Gly Ser Trp
65 70 75 80
Gly Gln Pro His Gly Gly Trp Gly Gln Gly Gly Thr His Asn
85 90 95
Gln Trp Asn Lys Pro Ser Lys Pro Lys Thr Asn Leu Lys His Val Ala
100 105 110
Gly Ala Ala Ala Ala Gly Ala Val Val Gly Gly Leu Gly Tyr Met
115 120 125
Leu Gly Ser Ala Met Ser Arg Pro Met Ile His Phe Gly Asn Asp Trp
130 135 140
Glu Asp Arg Tyr Tyr Arg Glu Asn Met Tyr Arg Tyr Pro Asn Gln Val
145 150 155 160
Tyr Tyr Arg Pro Val Asp Gln Tyr Ser Asn Gln Asn Asn Phe Val His
165 170 175
Asp Cys Val Asn Ile Thr Ile Lys Gln His Thr Val Thr Thr Thr
180 185 190
Lys Gly Glu Asn Phe Thr Glu Thr Asp Val Lys Met Met Glu Arg Val
195 200 205
Val Glu Gln Met Cys Val Thr Gln Tyr Gln Lys Glu Ser Gln Ala Tyr
210 215 220
Tyr Asp Gly Arg Arg Ser Ser Ser Thr Val Leu Phe Ser Ser Pro Pro
225 230 235 240
Val Ile Leu Leu Ile Ser Phe Leu Ile Phe Leu Ile Val Gly
245 250

A
Cont
<210> 30
<211> 254
<212> PRT
<213> Mesocricetus auratus

<400> 30
Met Ala Asn Leu Ser Tyr Trp Leu Leu Ala Leu Phe Val Ala Met Trp
1 5 10 15
Thr Asp Val Gly Leu Cys Lys Lys Arg Pro Lys Pro Gly Gly Trp Asn
20 25 30
Thr Gly Gly Ser Arg Tyr Pro Gly Gln Gly Ser Pro Gly Gly Asn Arg
35 40 45
Tyr Pro Pro Gln Gly Gly Thr Trp Gly Gln Pro His Gly Gly Gly
50 55 60
Trp Gly Gln Pro His Gly Gly Trp Gly Gln Pro His Gly Gly Gly
65 70 75 80
Trp Gly Gln Pro His Gly Gly Trp Gly Gln Gly Gly Thr His
85 90 95
Asn Gln Trp Asn Lys Pro Ser Lys Pro Lys Thr Asn Met Lys His Met
100 105 110
Ala Gly Ala Ala Ala Ala Gly Ala Val Val Gly Gly Leu Gly Gly Tyr
115 120 125
Met Leu Gly Ser Ala Met Ser Arg Pro Met Met His Phe Gly Asn Asp
130 135 140

Trp Glu Asp Arg Tyr Tyr Arg Glu Asn Met Asn Arg Tyr Pro Asn Gln
145 150 155 160
Val Tyr Tyr Arg Pro Val Asp Gln Tyr Asn Asn Gln Asn Asn Phe Val
165 170 175
His Asp Cys Val Asn Ile Thr Ile Lys Gln His Thr Val Thr Thr Thr
180 185 190
Thr Lys Gly Glu Asn Phe Thr Glu Thr Asp Ile Lys Ile Met Glu Arg
195 200 205
Val Val Glu Gln Met Cys Thr Thr Gln Tyr Gln Lys Glu Ser Gln Ala
210 215 220
Tyr Tyr Asp Gly Arg Arg Ser Ser Ala Val Leu Phe Ser Ser Pro Pro
225 230 235 240
Val Ile Leu Leu Ile Ser Phe Leu Ile Phe Leu Met Val Gly
245 250

<210> 31
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<400> 31
Tyr Tyr Arg Arg Tyr Tyr Arg Tyr Tyr
1 5

<210> 32
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

a
<400> 32
Cys Tyr Tyr Arg
1

cont
<210> 33
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide

<400> 33
Cys Tyr Tyr Arg Arg Tyr Tyr Arg Tyr Tyr
1 5 10

<210> 34
<211> 10
<212> PRT
<213> Artificial Sequence

a
<220>
<223> Synthetic peptide

ant
<400> 34
Cys Lys Tyr Glu Asp Arg Tyr Tyr Arg Glu
1 5 10
