LC19: Application du premier principe de la thermodynamique à la réaction chimique

Etat standard

Etat physique	Etat standard	Exemple : état standard de l'eau à 25°c
Solide	Solide pur à $P^0 = 1 bar$	Glace pure à $P^0 = 1 bar$ Etat hypothétique
Liquide	Liquide pur à $P^0 = 1 bar$	Liquide pur à $P^0 = 1 bar$ Etat réel
Gaz	Gaz parfait pur à $P^0 = 1 \ bar$	Gaz parfait pur à $P^0 = 1 bar$ Etat hypothétique
Solvant	Liquide pur à $P^0 = 1 \ bar$	
Soluté	Soluté à la concentration $C^0 = 1 \mod L^{-1}$ à $P^0 = 1 \mod$	

Transformation isobare et isotherme

$$H_{(aq)}^+ + OH_{(aq)}^- = H_2O$$

Reaction **exothermique**:

$$\Delta_r H^0 < 0$$

$$2NaCO_3 = Na_2O + CO_2$$

Reaction **endothermique**:

$$\Delta_r H^0 < 0$$

Reaction athermique:

$$\Delta_r H^0 = 0$$

Mesure de l'enthalpie standard de réaction d'une réaction d'oxydo-réduction

 $V_0 = 100 \ mL$ de solution de sulfate de cuivre à $C_0 = 1,00. \ 10^{-1} \ mol. \ L^{-1}$

	$Cu_{(aq)}^{2+}$	Z n _(s) = excès	$=$ $Cu_{(s)}$	$Zn_{(aq)}^{2+}$
Etat initial	C_0V_0	$n_{Zn,i}$	0	0
Etat final	0	$n_{Zn,i}-C_0V_0$	C_0V_0	C_0V_0

Calcul d'une température de flamme grâce à la loi de Hess (1)

Adiabatique:

Produits à $T_f = ?$

Donnés

$$2C_{(gr)} + H_{2(g)} + \frac{5}{2}O_{2(g)}$$

Corps simple dans leur état standard de référence à $T_i = 298 \, K$

Produits à
$$T_i = 298 K$$

$$\Delta_{f}H_{C_{2}H_{2(g)}}^{0}(T_{i}) = 230 \text{ kJ.mol}^{-1}$$

$$\Delta_{f}H_{O_{2(g)}}^{0}(T_{i}) = 0 \text{ kJ.mol}^{-1}$$

$$\Delta_{f}H_{CO_{2(g)}}^{0}(T_{i}) = -390 \text{ kJ.mol}^{-1}$$

$$\Delta_{f}H_{H_{2}O_{(g)}}^{0}(T_{i}) = -240 \text{ kJ.mol}^{-1}$$

$$C_{p,m,H_{2}O_{(g)}}^{0} = 40 \text{ J.K}^{-1}.\text{mol}^{-1}$$

$$C_{p,m,CO_{2(g)}}^{0} = 40 \text{ J.K}^{-1}.\text{mol}^{-1}$$

$$C_{p,m,N_{2(g)}}^{0} = 30 \text{ J.K}^{-1}.\text{mol}^{-1}$$

Calcul d'une température de flamme grâce à la loi de Hess (2)

• On introduit l'enthalpie standard de la réaction de combustion à $T_i = 298 \, K$:

$$n \times \Delta_r H_{comb}^0(T_i) = \Delta H_1 + \Delta H_2$$

$$\Delta_r H^0_{comb}(T_i) = -\Delta_f H^0_{C_2 H_{2(g)}}(T_i) - \Delta_f H^0_{O_{2(g)}}(T_i) + 2\Delta_f H^0_{CO_{2(g)}}(T_i) + \Delta_f H^0_{H_2 O_{(g)}}(T_i)$$

$$AN : \Delta_r H_{comb}^0(T_i = 298 K) = -1250 \text{ kJ.} mol^{-1}$$

• Ceci est la **loi de Hess** reliant l'enthalpie standard de réaction à une température T aux enthalpies standards de formation des réactifs et produits :

$$\Delta_r H^0(T) = \sum_i \nu_i \Delta_f H_i^0(T)$$