Université Pierre et Marie Curie 2007–2008

LM110 – Fonctions

Feuille 2

Exercice 1. Donner l'ensemble de définition des fonctions suivantes et dire pourquoi elles y sont continues.

$$f_1(x) = \frac{1}{1+x+x^2}, \quad f_2(x) = \frac{\sqrt{1+x} - \sqrt{1-x}}{2x}, \quad f_3(x) = \frac{1}{\ln(1+\sin(x))},$$
$$f_4(x) = \ln(x) + \frac{1}{\cos(x)}, \quad f_5(x) = \sqrt{\sin(2x)}.$$

Exercice 2. Soit $A \subset \mathbf{R}$. On appelle fonction indicatrice de A, la fonction $\mathbf{1}_A : \mathbf{R} \to \mathbf{R}$ définie par

$$\mathbf{1}_A(x) = \left\{ \begin{array}{ll} 1 & \text{si } x \in A, \\ 0 & \text{si } x \notin A. \end{array} \right.$$

Représenter le graphe de la fonction $\mathbf{1}_{[0;2]}$ en précisant les points où elle n'est pas continue. Faire de même avec la fonction définie par $f = \mathbf{1}_{[0;+\infty[} - \mathbf{1}_{[-1;+1]}$.

Exercice 3.

1. Soient f et g deux fonctions réelles définies par

$$f(x) = 1 + \ln(x^2 - x - 2)$$
 et $g(x) = e^x$.

Donner l'ensemble de définition de la fonction $g \circ f$ et déterminer son expression.

2. Pour les fonctions f et g définies par

$$f(x) = \sqrt{x^2 - x} \quad \text{et} \quad g(x) = x^2,$$

donner l'ensemble de définition des fonctions $f \circ g$ et $g \circ f$ et déterminer leur expression.

Exercice 4.

- 1. Démontrer qu'une fonction dérivable est continue.
- 2. Une fonction continue est-elle dérivable? Justifier votre réponse.
- 3. Une fonction continue sur $\mathbb{R} \setminus \{0\}$ est-elle prolongeable par continuité en 0?
- 4. Une fonction constante (resp. constante par morceaux) est-elle dérivable sur R?

Exercice 5. Répondez par vrai ou faux aux questions suivantes, en justifiant, par exemple, par une petite démonstration, un résultat de cours ou un contre-exemple.

1. Les fonctions $f, g: \mathbf{R} \to \mathbf{R}$ définies par

$$f(x) = x$$
 et $g(x) = \sqrt{x^2}$

sont égales.

- 2. Une fonction injective est toujours strictement croissante ou strictement décroissante
- 3. Il existe une fonction bijective de $\mathbf{R}_{+}^{*} = [0; +\infty[$ dans \mathbf{R} .
- 4. Il existe une fonction bijective de] $-\frac{\pi}{2}$; $+\frac{\pi}{2}$ [dans **R**. Il en existe une de] -1; +1[dans **R**.
- 5. Pour tout $x \in \mathbf{R}$, on a $\arccos(\cos(x)) = x$.
- 6. Pour tout $x \in [-1; +1]$, on a $\cos(\arccos(x)) = x$.
- 7. Soit f une fonction croissante admettant une réciproque. Alors, f^{-1} est croissante.
- 8. Pour tout $x \in [0; \pi]$, on a $\arccos\left(\sqrt{1-\sin^2(x)}\right) = x$.
- 9. La fonction $f: \mathbf{R}_+^* \to \mathbf{R}; x \mapsto x \ln(x)$ est prolongeable par continuité en 0.
- 10. La fonction $x \mapsto \frac{1}{x}$ est décroissante sur $\mathbb{R} \setminus \{0\}$.

Exercice 6. La fonction réelle f définie par $f(x) = \sqrt{x(x-1)} - \sqrt{x(x+1)}$ est-elle continue en 0?