Discrete Mathematics for Computing

Basic Terminology

Goal: Introduce graph terminology in order to further classify graphs

- Definition 1: Two vertices u and v in an undirected graph G
 - are called adjacent (or neighbors) in G
 - if {u,v} is an edge of G
 - If e = {u,v}, the edge e is called incident with the vertices u
 and v
 - The edge e is also said to connect u and v
 - The vertices u and v are called endpoints of the edge {u,v}

- Degree of a vertex in an undirected graph
- Number of edges incident with it
- Loop at a vertex contributes twice to the degree of that vertex
- Degree of vertex 'v' deg(v)

Example: What are the degrees of acquaintance graph?

Example: What are the degrees of the vertices in the graphs G and H?

Solution:

$$In G \begin{cases} deg(a) = 2 \\ deg(b) = deg(c) = deg(f) = 4 \\ deg(d) = 1 \end{cases} \qquad In H \begin{cases} deg(a) = 4 \\ deg(b) = deg(e) = 6 \\ deg(c) = 1 \\ deg(d) = 5 \end{cases}$$

Theorem 1: The handshaking theorem

Let G = (V,E) be an undirected graph with e edges. Then

$$2e = \sum_{v \in V} \deg(v).$$

Sum of the degrees of the vertices is twice the number of edges

Corollary: An undirected graph has an even number of vertices of odd degree.

$$2e = \sum_{v \in V} \deg(v) = \sum_{v \in V_1} \deg(v) + \sum_{v \in V_2} \deg(v).$$

Example: How many edges are there in a graph with ten vertices each of degree 6 ?

Solution:

Since the sum of the degrees of the vertices is

$$6*10 = 60$$

$$\Rightarrow$$
 2e = 60

Therefore, e = 30

deg (Mary) = 3, deg(John) = 1, deg(Charles)=2, deg(Doug)= 2 and deg(Helen) = 2.

The sum of all degrees is 10

There are 5 edges.

There are two vertices with odd degree.

- Definition 3: When (u,v) is an edge of the graph G with directed edges
- u is said to be adjacent to v
- and v is said to be adjacent from u
- The vertex u is called the initial vertex of (u,v)
- and v is called the terminal or end vertex of (u,v)
- The initial vertex and terminal vertex of a loop are the same

Adjacent Vertices in Directed Graphs

Degree of a Vertex

- *In-degree* of a vertex v
 - The number of vertices *adjacent to v* (the number of edges with *v* as their <u>terminal</u> vertex
 - Denoted by $deg^-(v)$
- Out-degree of a vertex v
 - The number of vertices *adjacent from v* (the number of edges with *v* as their <u>initial</u> vertex)
 - Denoted by $deg^+(v)$
- A loop at a vertex contributes 1 to both the indegree and out-degree.

Example: Find the in-degree and the out-degree of each vertex in the graph G.

The in-degree of G are: $deg^{-}(a) = 2$, $deg^{-}(b) = 2$, $deg^{-}(c) = 2$, $deg^{-}(c) = 3$, and $deg^{-}(f) = 0$ The out-degree of G are: $deg^{+}(a) = 4$, $deg^{+}(b) = 1$, $deg^{+}(c) = 2$, $deg^{+}(d) = 1$, $deg^{+}(e) = 3$, and $deg^{+}(f) = 0$

Theorem 3

- The sum of the in-degrees of all vertices in a digraph = the sum of the out-degrees = the number of edges.
- Let G = (V, E) be a graph with directed edges. Then:

$$\sum_{v \in V} \operatorname{deg}^{-}(v) = \sum_{v \in V} \operatorname{deg}^{+}(v) = |E|$$

Some special simple graphs

Complete graph - They are denoted by K_n

They contain exactly one edge

between each pair of distinct vertices

Cycles

They are denoted by $C_n (n \ge 3)$

- they consist of 'n' vertices v₁, v₂, ..., v_n
- and edges $\{v_1, v_2\}, \{v_2, v_3\}, ..., \{v_n, v_{n-1}\}$ and $\{v_n, v_1\}$

Wheels

They are denoted by W_n

- -obtained by adding a vertex to the graphs C_n
- and connect this vertex to all vertices

The Wheels W₃, W₄, W₅ & W₆

n-cubes

- -They are denoted by Q_n
- they are graphs that have vertices
- representing the 2ⁿ bit strings of length n

Two vertices are adjacent if and only if

- the bits strings that they represent differ
- in exactly one bit position

The n-cube Q_n for n = 1, 2, and 3.

Bipartite graph

Definition 5: A simple graph is called bipartite

- if its vertex set V can be partitioned
- into 2 disjoint sets V₁ and V₂
- such that every edge in the graph
- connects a vertex in V₁ and a vertex in V₂
- so that no edge in G connects either 2 vertices in $\rm V_1$ or 2 vertices in $\rm V_2$

 $K_{3, 4}$

• Is the following graph bipartite?

If a is in V1, then, b, d, e must be in V2 Then, c is in V1 and there is no inconsistency

So we can rearrange the graph as follows, bipartite

•Example: Is C₃ bipartite?

No, because there is no way to partition the vertices into two sets so that there are no edges with both endpoints in the same set.

•Example: Is C₆ bipartite?

Yes, because we can display C₆ like this:

- Complete bipartite graphs
- they are denoted by K_{m,n}
- Their vertices set is partitioned into 2 subsets of m and n vertices, respectively
- every vertex of the first set is connected to every vertex of the second set

Subgraph

• A *subgraph* of a graph G = (V,E) is a graph H = (W,F) where $W \subseteq V$ and $F \subseteq E$.

Is C_5 a subgraph of K_5 ?

Union

• The *union* of 2 simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the simple graph with vertex set $V = V_1 \cup V_2$ and edge set $E = E_1 \cup E_2$. The union is denoted by $G_1 \cup G_2$.

$$S_5 \cup C_5 = W_5$$

- Some applications of special types of graphs
- Local area network

Goal:

- Connecting computers as well as peripheral devices in a building using a local area network topology
- Some of these networks are based on a star topology, where all devices are connected to a central control device
- The star topology is equivalent to a K_{1,n} complete bipartite graph

- Other local area networks use a ring topology
- \Leftrightarrow C_n graphs
- Finally, the hybrid topology which is equivalent to a W_n graph is also used

Star, ring, and hybrid topologies for local area networks

