Ecuaciones diferenciales ordinarias 3 Curso de Física Computacional

M. en C. Gustavo Contreras Mayén

23 de octubre de 2012

Contenido

RK4 para sistemas de ecuaciones

EDO con valores en las fronteras

Contenido

RK4 para sistemas de ecuaciones

2 EDO con valores en las fronteras

RK4 para sistemas de ecuaciones

La aplicación del RK4 a un conjunto de EDO es análoga a la aplicación del método RK2.

Sea un conjunto de dos ecuaciones:

$$y' = f(y, z, t)$$
$$z' = g(y, z, t)$$

El método RK4 para el conjunto de ecuaciones, es:

$$k_{1} = hf(y_{n}, z_{n}, t_{n})$$

$$l_{1} = hg(y_{n}, z_{n}, t_{n})$$

$$k_{2} = hf\left(y_{n} + \frac{k_{1}}{2}, z_{n} + \frac{l_{1}}{2}, t_{n} + \frac{h}{2}\right)$$

$$l_{2} = hg\left(y_{n} + \frac{k_{1}}{2}, z_{n} + \frac{l_{1}}{2}, t_{n} + \frac{h}{2}\right)$$

$$k_{3} = hf\left(y_{n} + \frac{k_{2}}{2}, z_{n} + \frac{l_{2}}{2}, t_{n} + \frac{h}{2}\right)$$

$$l_{3} = hg\left(y_{n} + \frac{k_{2}}{2}, z_{n} + \frac{l_{2}}{2}, t_{n} + \frac{h}{2}\right)$$

$$k_{4} = hf(y_{n} + k_{3}, z_{n} + l_{3}, t_{n} + h)$$

$$l_{4} = hg(y_{n} + k_{3}, z_{n} + l_{3}, t_{n} + h)$$

$$y_{n+1} = y_n + \frac{1}{6}[k_1 + 2k_2 + 2k_3 + k_4]$$

$$z_{n+1} = z_n + \frac{1}{6}[l_1 + 2l_2 + 2l_3 + l_4]$$

Ejecicio

La corriente eléctrica de un circuito *RLC* en serie, satisface la ecuación

$$L\frac{di}{dt} + Ri + \frac{1}{C} \int_0^t i(t')dt' + \frac{1}{C}q(0) = E(t), \qquad t > 0$$
(1)

cuando el circuito se cierra en el instante t=0, se tiene que i=i(t) es la corriente, R es la resistencia, L,C,E vienen dadas por: $L=200H,\ C=0.001F,\ E(t)=1V$ para t>0.

Las condiciones iniciales son q(0) = 0 (carga inicial del condensador), i(0) = 0.

Calcular la corriente para $0 \le t \le 5$ segundos y el factor de amortiguamiento y la frecuencia de oscilación del circuito RLC para los siguientes valores de R:

- $\mathbf{O} R = \mathbf{O} \Omega$
- $P R = 50 \Omega$
- $R = 100 \Omega$
- $P = 300 \Omega$

Si definimos

$$q(t) = \int_0^{t'} i(t')dt' \tag{2}$$

derivando la expresión anterior

$$\frac{d}{dt}q(t) = i(t), \qquad q(0) = 0 \tag{3}$$

Sustituimos en la ecuació inicial, para re-escribir

$$\frac{d}{dt}i(t) = -\frac{R}{L}i(t) - \frac{1}{LC}q(t) + \frac{1}{LC}q(0) + \frac{E(t)}{L}, i(0) = 0$$
 (4)

La ecuación (1) se transformó en un sistema de dos EDO de primer orden: las ecuaciones (3) y (4).

Solución gráfica con $R = 0\Omega$

Solución gráfica con $R = 50\Omega$

Solución gráfica con $R=100\Omega$

Solución gráfica con $R=300\Omega$

Solución gráfica con valores de R superpuestos

Ejercicio a cuenta de examen

En la figura se muestra un sistema de tres masas. Los desplazamientos de estas tres masas satisfacen las ecuaciones dadas por:

$$M_1y_1'' + B_1y_1' + K_1y_1 - B_1y_2' - K_2y_2 = F_1(t)$$

$$-B_1y_1' - K_1y_1 + M_2y_2'' + B_1y_2' + (K_1 + K_2)y_2 - K_2y_3 = 0$$

$$-K_2y_2 + M_3y_3'' + B_2y_3' + (K_2 + K_3)y_3 = F_3(t)$$

Las constantes y condiciones iniciales son

$$\begin{array}{ll} \textit{K}_1 = \textit{K}_2 = \textit{K}_3 = 1 & \text{(constantes de los resortes, kgm/}s^2\text{)} \\ \textit{M}_1 = \textit{M}_2 = \textit{M}_3 = 1 & \text{(masa, kg)} \\ \textit{F}_1(t) = 1, \textit{F}_3(t) = 0 & \text{(fuerza, N)} \\ \textit{B}_1 = \textit{B}_2 = 0.1 & \text{(coeficientes de amortiguamiento, kg/s)} \end{array}$$

$$y_1(0) = y_1'(0) = y_2(0) = y_2'(0) = y_3(0) = y_3'(0) = 0$$
 (condiciones iniciales)

Resuelve y grafica las ecuaciones anteriores mediante RK4, para $0 \le t \le 30$ segundos y h = 0.1

Hint: Definiendo

$$y_4 = y_1', \qquad y_5 = y_2', \qquad y_6 = y_3'$$

La ecuación inicial se escribe como un conjunto de seis EDO de primer orden, de la siguiente manera:

$$y'_1 = y_4$$

 $y'_2 = y_5$
 $y'_3 = y_6$
 $y'_4 = [-B_1y_4 - K_1y_1 + B_1y_5 + K_2y_2 + F_1]/M_1$
 $y'_5 = [B_1y_4 + K_1y_1 - B_1y_5 - (K_1 + K_2)y_2 + K_2y_3]/M_2$
 $y'_6 = [K_2y_2 - B_2y_6 - (K_2 + K_3)y_3 + F_3]/M_3$