Análisis de señales Examen parcial de segundo corte Escuela de Ciencias evartas e Inconiera

Ingeniería Q02

Código: SA2018I TTC

Deadline: 26 de abril	Profesor: Marco Teran
Nombre:	Grupo:

•
iente señal

- Dibujar la señal x(t) (0.5 pts.)
 Encontrar la señal X(ω) (4.0 pts.)
 Encontrar la magnitud |X(ω)| (0.5 pts.)

$$x\left(t\right) = \left\{ \begin{array}{ll} 1, & \text{si } |t| \leqslant 2 \\ 0, & \text{si } |t| > 2 \end{array} \right.$$

Examen parcial de segundo corte Análisis de señales

Escuela de Ciencias exactas e Ingeniería

Código: SA2018I_TTQ02

Deadline: 26 de abril **Profesor:** Marco Teran Nombre: Grupo:

1. Encontrar la transformada de Fourier de tiempo continuo (CTFT) de la señal:

- Dibujar la señal x(t) (0.5 pts.)
 Encontrar la señal X(ω) (4.0 pts.)
 Encontrar la magnitud |X(ω)| (0.5 pts.)

$$x(t) = 2\cos(2\pi t + 4\pi)[u(t) - u(t-1)]$$

3)	UNIVERSIDAD	SERGIO ARBOLEDA
---	--------------	-------------	-----------------

Escuela de Ciencias exactas e Ingeniería

)	02
	C
	TTQ02
	_
	8
	Ξ
	A2018
	SA
	S
	ö
	.E
	P
	ŝ
	_

Deadline: 26 de abril	Profesor: Marco Teran
Vombre:	rupo:

señal
la
de
$\widehat{\mathbf{H}}$
Ŧ
Ε
Ď
$\overline{}$
continuo
0
tiemp
de
urier
F_0
$_{\mathrm{de}}$
ıada
transformada
la
Encontrar

- Dibujar la señal x(t) (0.5 pts.)
 Encontrar la señal X(ω) (4.0 pts.)
 Encontrar la magnitud |X(ω)| (0.5 pts.)

$$x\left(t\right) = e^{-|t|}$$

Examen parcial de segundo corte Análisis de señales

Escuela de Ciencias exactas e Ingeniería

Código: SA2018I_TTQ02

Deadline: 26 de abril **Profesor:** Marco Teran Nombre: Grupo: 1. Encontrar la transformada de Fourier de tiempo continuo (CTFT) de la señal:

- Dibujar la señal x(t) (0.5 pts.)
 Encontrar la señal X(ω) (4.0 pts.)
 Encontrar la magnitud |X(ω)| (0.5 pts.)

 $x(t) = e^{-\alpha t} \cos(\omega_0 t) u(t)$ donde a > 0

Escuela de Ciencias exactas e Ingeniería

Código: SA2018I_TTQ02

Deadline: 26 de abril	Profesor: Marco Teran
ombre:	rupo:

de:
urier
$_{\rm F0}$
$_{\mathrm{de}}$
mada
transform
la
ermine
dete
~
Э
\approx
(T)
$\frac{1}{2}$
C2
$S_{\mathbf{i}}$

(t)
\Box
x
(a)

(c)
$$x\left(\frac{t}{2}-2\right)$$

(b)
$$\frac{\mathrm{d}x(t)}{\mathrm{d}t}\cos t$$

(d)
$$\frac{\mathrm{d}[x(-2t)]}{\mathrm{d}t}$$

Análisis de señales Examen parcial de segundo corte Escuela de Ciencias exactas e Ingeniería

Código: SA2018I_TTQ02

Deadline: 26 de abril Profesor: Marco Teran Nombre: Grupo:

1. Si $x(t) = X(\omega)$, determine la transformada de Fourier de:

(a)
$$x(1-t)$$

(b) $\frac{\mathrm{d}x(t)}{\mathrm{d}t}\cos t$

(c)
$$x\left(\frac{t}{2}-2\right)$$

(d) $\frac{\mathrm{d}[x(-2t)]}{\mathrm{d}t}$

Ingeniería

TTO0	0181	SA2018I	Código:	C,
Ciencias exactas e mg	exact	ncias	de Cie	scnela

	Deadline: 26 de abri	Profesor: Marco Terar
SERVIC ARBOLEDA	Nombre:	Grupo:

1. Mediante las diversas propiedades de la transformada de Fourier de tiempo continuo, encuentre la transformada de Fourier de la siguiente señal a partir de la transformada original de $u\left(t\right) :$

$$x\left(t\right) = te^{-at}u\left(t\right)$$

Examen parcial de segundo corte Análisis de señales

Escuela de Ciencias exactas e Ingeniería

Código: SA2018I_TTQ02

Deadline: 26 de abril **Profesor:** Marco Teran Nombre: Grupo:

tinuo, encuentre la transformada de Fourier de la siguiente señal a partir de la 1. Mediante las diversas propiedades de la transformada de Fourier de tiempo contransformada original de u(t):

$$x(t) = e^{-5\pi t} \cos(\omega_0 t) u(t)$$

Escuela de Ciencias exactas e Ingeniería

Deadline: 26 de abril	Profesor: Marco Teran
Nombre:	Grupo:

 ${\bf 1.}\,$ Encontrar y dibujar la transformada inversa de Fourier (${\bf IFT})$ para la siguiente

$$X\left(\omega\right)=1-e^{-2\left|\omega\right|}$$

Análisis de señales Examen parcial de segundo corte

Escuela de Ciencias exactas e Ingeniería

Código: SA2018I_TTQ02

Deadline: 26 de abril Profesor: Marco Teran Nombre: Grupo: ${\bf 1.}$ Encontrar y dibujar la transformada inversa de Fourier (${\bf IFT})$ para la siguiente señal

 $X\left(\omega\right) = \omega \sin^2\left(2\omega\right)$

	UNIVERSIDAD	SERGIO ARBOLEDA
--	-------------	-----------------

Escuela de Ciencias exactas e Ingeniería

p	TTQ02
	SA2018I
	Código:

Deadline: 26 de abril	Profesor: Marco Teran
Nombre:	Grupo:

- 1. Encontrar la transformada de Fourier de tiempo discreto ($\mathbf{DTFT})$ para la siguiente señal

- Dibujar la señal x [n] (0.5 pts.)
 Encontrar la señal X(Ω) (4.0 pts.)
 Encontrar la magnitud |X(Ω)| (0.5 pts.)

$$x\left[n\right] =u\left[n\right] -u\left(n-N\right)$$

Examen parcial de segundo corte Análisis de señales

Escuela de Ciencias exactas e Ingeniería

as e mgeme	TTQ02
ilcias exactas	SA2018I
ueia de Oieilcias	Código:

Deadline: 26 de abril **Profesor:** Marco Teran Nombre: Grupo:

- 1. Encontrar la transformada de Fourier de tiempo discreto ($\mathbf{DTFT})$ para la siguiente señal

- Dibujar la señal x [n] (0.5 pts.)
 Encontrar la señal X(Ω) (4.0 pts.)
 Encontrar la magnitud |X(Ω)| (0.5 pts.)

$$x[n] = a^{|n|}$$
, para $|a| < 1$

到	7	SIDAD
#	7	NIVER
		ם ו

Escuela de Ciencias exactas e Ingeniería

0	TTO02
	SA2018I
	Código:

Deadline: 26 de abril	Profesor: Marco Teran
Vombre:	rupo:

- 1. Encontrar la transformada de Fourier de tiempo discreto ($\mathbf{DTFT})$ para la siguiente señal
- Dibujar la señal x[n] (0.5 pts.) Encontrar la señal $X(\Omega)$ (4.0 pts.) Encontrar la magnitud $|X(\Omega)|$ (0.5 pts.)

$$x[n] = \{\dots, 0, 1, 2, \overset{\downarrow}{3}, 2, 1, 0, \dots\}$$

Examen parcial de segundo corte Análisis de señales

Escuela de Ciencias exactas e Ingeniería

as c mgcm	TTQ02
iicias evace	SA2018I
acia de Ciclicias evacias e mgen	Código:

Nombre:

Deadline: 26 de abril

Profesor: Marco Teran Grupo:

- 1. Encontrar la transformada de Fourier de tiempo discreto ($\mathbf{DTFT})$ para la siguiente señal
- Dibujar la señal x [n] (0.5 pts.)
 Encontrar la señal X(Ω) (4.0 pts.)
 Encontrar la magnitud |X(Ω)| (0.5 pts.)

$$x\left[n\right] =\frac{1}{3}\cos \left(0.5\pi n\right)$$

Escuela de Ciencias exactas e Ingeniería

)	TTQ0
	$SA2018I_{_}$
	Código:

Dead
bre:

Deadline: 26 de abril	Profesor: Marco Teran
Nombre:	Grupo:

 ${\bf 1.}\,$ Encontrar la transformada inversa de Fourier de tiempo discreto (${\bf DTiFT})$ para la siguiente señal

$$X\left(\Omega\right) = \cos\left(2\Omega\right)$$

Examen parcial de segundo corte Análisis de señales

Escuela de Ciencias exactas e Ingeniería

Código: SA2018I_TTQ02

Deadline: 26 de abril Profesor: Marco Teran Nombre: Grupo: 1. Encontrar y dibujar la transformada inversa de Fourier de tiempo discreto (${\bf DTiFT})$ para la siguiente señal

$$X\left(\Omega\right) = \left\{ \begin{array}{ll} \beta, & \text{si } |\Omega| \leqslant W \\ 0, & W \leqslant |\Omega| \leqslant \pi \end{array} \right.$$

Escuela de Ciencias exactas e Ingeniería

Código: SA2018I_TTQ02

Deadline: 26 de abril	Profesor: Marco Teran
Vombre:	drupo:

Encontrar y dibujar la transformada inversa de Fourier de tiempo discreto (DTIFT) de la siguiente señal:

$$X\left(\Omega\right) = \left\{ \begin{array}{ll} 3\Omega, & \text{si } |\Omega| \leqslant W \\ 0, & W \leqslant |\Omega| \leqslant \pi \end{array} \right.$$

Examen parcial de segundo corte Análisis de señales

Escuela de Ciencias exactas e Ingeniería Código: SA2018I_TTQ02

Nombre:

Deadline: 26 de abril Profesor: Marco Teran Grupo: 1. Determinar la representación de la Serie de Fourier de tiempo continuo (CTFS) en la forma trigonométrica de la siguiente señal:

Grupo:

Análisis de señales Examen parcial de segundo corte

Escuela de Ciencias exactas e Ingeniería	Código: SA2018I_TTQ02	Deadline: 26 de abril	Profesor: Marco Teran
Esc	UNIVERSIDAD SERGIO ARBOLEDA	Nombre:	Grupo:

1. Determinar la representación de la Serie de Fourier de tiempo continuo (CTFS) en la forma exponencial de la siguiente señal:

Examen parcial de segundo corte Análisis de señales

Escuela de Ciencias exactas e Ingeniería Código: SA2018I_TTQ02

Deadline: 26 de abril Profesor: Marco Teran Nombre: Grupo: 1. Determinar la representación de la Serie de Fourier de tiempo continuo (CTFS) en la forma exponencial de la siguiente señal:

Nombre: Grupo:

Análisis de señales Examen parcial de segundo corte

Deadline: 26 de abril Profesor: Marco Teran

Análisis de señales Examen parcial de segundo corte

Escuela de Ciencias exactas e Ingeniería Código: SA2018I_TTQ02

)	UNIVERSIDAD	FRGIO ARROI FD
		ii.

Deadline: 26 de abril Profesor: Marco Teran Nombre: Grupo: ${\bf 1.}\,$ Determinar la representación de la Serie de Fourier de tiempo discreto (${\bf DTFS})$ para la siguiente secuencia:

$$x[n] = \frac{1}{8}\cos\left(\frac{2n\pi}{N}\right)$$
 para $N = 7$

Análisis de señales Examen parcial de segundo corte Escuela de Ciencias exactas e Ingeniería

Cicircias evacias e mige	TTC002
, con	Ė
2	SA2018I
TI CIGO	SA2
2	go:
caera ac	Código:
SC CE	_

Código: SA2018I_TTQ02	Deadline: 26 de abril	Profesor: Marco Teran
UNIVERSIDAD SERGIO ARBOLEDA	Nombre:	Grupo:

1. Determinar la representación de la Serie de Fourier de tiempo discreto (${\bf DTFS})$ para la siguiente secuencia:

$$x [n] = \sum_{k=-\infty}^{\infty} \delta [n - 4k]$$