

Optical and Infrared Study of the Obscured B[e]

Supergiant High-mass X-Ray Binary IGR J16318-4848

sgHMXBs revealed by INTEGRAL

Most Obscured System Since 2002TM

IGR J16318-4848: the first source detected by INTEGRAL Walter+2003

X-rays:
$$N_H = 0.9 - 2 \times 10^{24} \text{ cm}^{-2}$$

(ASCA, 2-10 keV, Revnivtsev+2003, XMM-Newton, 0.3 – 13 keV, Matt & Guainazzi 2003, INTEGRAL, 5-13 keV, Walter+2003)

Optical / IR: $A_V = 18.3 + /- 0.4 \text{ mag}$

(VISIR, Spitzer & SofI, Chaty & Rahoui 2012)

X-ray absorption = 100x optical \rightarrow opaque material near accretor?

A complex environment

IGR J16318-4848
Broadband spectrum

Chaty & Rahoui 2012

VLT/X-Shooter capabilities

Diversity of lines: illuminated stellar wind

Diversity of lines: evidence of inner rim

The strongest (and cleanest) HI lines

→ Associated toorbital motion ofthe inner rim :

$$V \sin(i) =$$
113 +/- 4 km.s⁻¹

Diversity of lines: peculiar disk wind

FeII & [FeII] : Flat-topped profiles

Bertout & Magnan 1987, Hynes+2002

Spherical expansion

$$V_{inf} = 250 \pm 20 \text{ km.s}^{-1}$$

Orbital motion?

$$V_{orb} = 80 \pm 20 \text{ km.s}^{-1}$$

Broadband spectral energy distribution

Star, Rim:

blackbodies

Disk: multi-T

blackbody

$$T_{disk}(r) = T_{in} \left(\frac{r}{R_{in}}\right)^{-q}$$

Lachaume+2007

Broadband spectral energy distribution

\(\) The central star contributes to (at most) 10 % of the visible flux

The final picture: IGR J16318's environment

- → confirmed by stellar atmosphere & wind modeling (PoWR)!
- wind velocity general geometry
- inclination inner & outer disk
- distance accretor's orbit

- circumbinary material: where does it come from?
- polar wind?
- accretor: NS?BH?

Extra: fast polar wind?

- depolarization across Halpha line in sgB[e] rms 82 (Seriacopi+2017)
- → produced in a large volume around the star

- no sign of narrow features in other HI (disk rim)

- if polar wind, assume v ~ 1000 km.s-1
- \rightarrow inclination angle is ~88°, otherwise we should see double-peaked line

Extra: distance to the binary

- Very absorbed → Gaia parallax poorly constrained (in all data releases)
- Bayesian inference to invert parallax from Bailer-Jones+2020: 5 +/- 3 kpc
- Two star forming regions nearby at 2.4 and 4.9 kpc (Russeil 2003)
- Recovered their position in Galactic spiral arms from Dame+2001 by matching radial velocities

- → radial velocity of IGR J16318 is compatible with the SFR at 4.9 kpc.
- → incorporate this in Bayesian scheme & Gaia data:

$$D = 4.9 (+1.9 -1.5) \text{ kpc}.$$

Extra: stellar atmosphere & wind modeling

- HI lines barely reproduced
- good agreement with HeI lines
- same wind velocity (~400 km.s⁻¹)
- → confirms HI mainly comes from rim
- → highly He-enhanced star?

PoWR code output compared to observed spectrum:

