

G4B. TERMOQUÍMICA

Ejercicio N°33 Resuelto

Dadas las siguientes reacciones a 25°C y 1 atm y sus respectivos valores de ΔH° (25°C):

$$Cu_2O(s) + \frac{1}{2}O_2(g) \rightarrow 2 CuO(s)$$

$$\Delta H^{\circ}_{R1} = -143,8 \text{ kJ/mol}$$

$$CuO(s) + Cu(s) \rightarrow Cu_2O(s)$$

$$\Delta H^{\circ}_{R2}$$
 = -11,3 kJ/mol

- a) Calcular el ΔH_f° (25°C) y ΔU_f° (25°C) para la formación del óxido cúprico (s).
- **b**) Teniendo en cuenta que S° (25°C) O_2 (g) = 205,0 J/mol·K, S° (25°C) CuO (s) = 43,5 J/mol·K y S° (25°C) Cu (s) = 33,4 J/mol·K, indicar si la oxidación del cobre se produce espontáneamente a 25°C.

Rta: a) ΔH_f° : -155,1 kJ/mol; ΔU_f° : -153,9 kJ/mol; b) sí, es espontánea.

a) Cálculo de ΔH°_{f} (25°C) y ΔU_{f}° (25°C) para la formación de CuO (s)

DATOS: T y P de trabajo / Ecuaciones químicas / ΔH_R° (25°C)

INCOGNITAS: ΔH_f° (25°C) y ΔU_f° (25°C)

Podemos considerar la formación de CuO (s) como la suma de dos etapas de reacción (ecuaciones dato). Luego, mediante aplicación de la LEY DE HESS obtenemos el ΔH°_f (25°C) para el CuO:

Los valores de las funciones termodinámicas de reacción son por mol de reacción

 ΔH_{f}° (25°C) = -155,1 kJ/mol

Tener en cuenta que el estado estándar de una sustancia es su forma pura a presión atmosférica (1 atm) y a la temperatura de interés, que en general se elige como 25°C. El cambio de entalpía estándar de una reacción es el cambio de entalpía cuando todos los reactivos y productos se encuentran en sus estados estándar. La entalpía estándar de formación de un compuesto (ΔH°_f) es el cambio de entalpia de una reacción que forma un mol del compuesto a partir de sus elementos, con todas las sustancias en sus estados estándar.

Por su parte,

$$\Delta H = \Delta U + \Delta (P V)$$
 $\Delta U = \Delta H - \Delta (n R T)$ $\Delta U = \Delta H - R T \Delta n$

$$\Delta U_{f}^{\circ} = -155,1 \text{ kJ/mol} - (0,0083145 \text{ kJ/mol K} \times 298 \text{ K} \times (-1/2))$$

$$\Delta U_{f}^{\circ}$$
 (25°C) = -153,9 kJ/mol

b) Determinación de espontaneidad

DATOS: $S^{\circ}O_{2}(g) / S^{\circ} CuO(s) / S^{\circ} Cu(s)$

INCÓGNITAS: ¿Oxidación del cobre es espontánea a 25°C?

Oxidación del Cu:

Cu (s) +
$$\frac{1}{2}$$
 O₂ (g) \rightarrow CuO (s) ΔH_{f}° (25°C) = -155,1 kJ/mol

Si reacción espontánea
$$\longrightarrow$$
 $\Delta G < 0$

$$\Delta G = \Delta H - T \Delta S$$
 $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$

$$\Delta G_{f}^{\circ}$$
 (25°C) = -155,1 kJ/mol – 298 K x (S_{CuO}° – (S_{CuO}° + $S_{O_{2}}^{\circ}$ x 1/2)) = -155,1 kJ/mol – 298 K x (-0,0924) kJ/mol K

$$\Delta G_f^{\circ}(25^{\circ}C) = -127,6 \text{ kJ/mol}$$
 Reacción espontánea a 25°C