Lab Manual: The Quantitative Marine Ecology Lab

General expectations, guidelines, and information for all lab members

Last updated: 01-August-2021

Table of Contents

- Welcome to the Quantitative Marine Ecology Lab!
- Mission statement
- Guiding principles
- General expectations
 - Big picture
 - Small picture
- Expectations of the Principal Investigator
- Communication
 - Weekly lab meetings
 - Weekly one-on-one meetings
 - Unscheduled communication
 - Click-up
 - Lab Slack team
 - Email
 - Texting and phone calls
- Science workflow
 - Programming (R, R markdown, and Github)
 - Working on papers
 - Reference manager
- Authorship
 - Authorship resources
- Funding
- Being a successful postdoc
- Being a successful graduate student
- Being a successful undergraduate researcher
- Lab website
- Inspiration for this lab manual

Welcome to the Quantitative Marine Ecology Lab!

Welcome to the Quantitative Marine Ecology Lab (QMEL) at UNH. You are joining a team of scientists dedicated to changing the world by tackling the most pressing problems in our oceans. We use a variety of quantitative approaches, coupled with big data and experiments, to investigate the natural world, with a focus on marine systems. The purpose of this document is to help ensure a more seamless transition into the lab. The document is a living document and is by no means exhaustive. The goal is simply to try and get members of the lab on the same page and to help you be successful. You are encouraged to make additions and edits to this document in order to help future lab members. In addition, to this lab manual, there is also a (lab wiki)[https://github.com/QuantMarineEcoLab/lab-onboarding/wiki]. The lab wiki is to provide more nitty gritty details on how the lab operates and how to be successful (e.g., how to get signed off to

operate UNH boats). The (wiki)[https://github.com/QuantMarineEcoLab/lab-onboarding/wiki] is in the same repository as this onboarding document.

As a new member of the lab, you will be expected to read through this manual. This lab manual is only a starting point for how the lab operates. Ultimately, the lab is made of people. We as a lab determine the environment in which we all work.

Wherever possible, this document includes links to other resources and documents on campus. This is to reduce overlap in effort and to keep everything up to date. Here are two of the most important:

UNH Graduate School: https://unh.app.box.com/s/za4ndpjqa9x0dzxi7yljnr8eqq4njbj2 DBS Grad Student Handbook: https://colsa.unh.edu/biological-sciences/key-documents

This lab manual is licensed under a Creative Commons Attribution - Non-Commercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/). If you're a PI or a trainee in a different lab and want to write your own lab manual, feel free to take inspiration from this one (and cite us!)

Mission statement

Work in progress with the lab

Guiding principles

There are several guiding principles that form the basis of my outlook as a scientist which also inform my approach to leading a lab. Throughout this lab manual, I will come back to these themes.

- 1. Work-life balance
- 2. Vulnerability and Openness
- 3. Transparency
- 4. Tracking progress
- 5. Antiracist principles
- 6. Embrace failure failing often is the key to success
- 7. Celebrate and support one another
- 8. Produce high quality science
- 9. Communicate early and often
- 10. Backwards design
- 11. Produce science that can be used (stakeholder engagement, popular press)

General expectations

Big picture

Science can be hard, frustrating, and even sometimes painful (like when my appendix ruptured in the field!). However, the process of science can also be filled with joy, discovery, and collaboration. As a lab, it is key that we work together to create an environment that is conducive to productive, honest, and healthy science. We do not buy into myths that one has to work 80 hours a week (https://dynamicecology.wordpress.com/2014/02/04/you-do-not-need-to-work-80-hours-a-week-to-succeed-in-academia/) or that you have to be cutthroat to succeed. With that in mind, there are a few big picture thoughts that are important for this lab (many of which are very different from other labs you may have been a part of):

• You should be working on problems that excite you. This doesn't mean every step of the process will be exciting, but following your curiosity is a tried-and-true path to creating interesting science.

- We have to be very careful and honest about the science we produce. I am not a famous PI at some fancy school. When we produce groundbreaking or novel work, people will not take our word for it (and nor should they!). We have to be sure of the work we produce and own up to mistakes when they happen.
- Some of science is done on an individual business, but it is also highly collaborative. This is especially true in QMEL. When someone in the lab succeeds, we all succeed. Be kind and help one another.
- If you are struggling professionally or personally, it is important to seek help. This can be from Easton, your fellow lab mates, friends, family, or professionals. Easton sees a therapist frequently as a check on his mental health.
- A research lab is similar to a small business. As the lab PI, I am the entrepreneur and CEO. One of my main responsibilities is to provide overall direction and to bring in work (via grants). However, because we are a small group, there should be a relatively flat hierarchy in the lab. This research lab will only be successful if we work together.
- Research funding and publications are two commonly used metrics of success in science. This is problematic in many ways, but it is how things are. This doesn't mean that we can't work on other things (e.g., science outreach), but funding and publications still have to happen.
- Each semester, we will reflect as a group and in one-on-one discussions on upcoming goals of the lab. This is meant as a way to track our progress towards goals and reduce ambiguity. We are not aiming to accomplish 100% of our goals. Ideally, we will only accomplish 70-80% of our goals each semester to ensure our goals are achievable, but lofty. We also keep the idea of backwards design in our planning process.

Small picture

- If you're sick, stay home and take care of yourself. Because you need it, and also because others don't need to get sick.
- You aren't expected to come into lab on weekends and holidays, and you aren't expected to stay late at night (Easton rarely works during these times). You are expected to get your work done (whatever time of day you like to do it).
- Show up and be on time for meetings.
- Keep the lab spaces clean and tidy

Expectations of the Principal Investigator

Including the expectations above and throughout this document, I promise to:

- Support you (scientifically, emotionally, financially)
- Give you feedback on a timely basis, including feedback on project ideas, conference posters, talks, manuscripts, figures, grants
- Be available in person and via online on a regular basis, including regular meetings to discuss your research (and anything else you'd like to discuss)
- Give my perspective on where the lab is going, where the field is going, and tips about surviving and thriving in academia
- Support your career development by introducing you to other researchers in the field, promoting your
 work at talks, writing recommendation letters for you, and letting you attend conferences as often as
 finances permit
- Help you prepare for the next step of your career, whether it's a post-doc, a faculty job, or a job outside of academia
- Care for your emotional and physical well-being, and prioritize that above all else

Communication

One of the most important aspects to being successful in this lab, UNH, and elsewhere is clear, early, and frequent communication. Early communication can save everyone a lot of headaches later on. We have several platforms for communication.

Weekly lab meetings

Each week, we will meet as an entire lab. At the beginning of each semester, we will decide on lab meeting objectives and goals. This can include topics like professional development, practice talks, reading and discussing papers, general check ins (including our mental health), or collaborative lab projects.

Weekly one-on-one meetings

I (Easton) will meet weekly with each member of the lab unless a different agreement has been reached. I expect these meetings to be led by the advisee, not me. These weekly meetings are a way for you to keep me updated on your progress and to get input. I expect agendas going into each meeting and notes written afterwards in order to make our time together effective.

Unscheduled communication

I am typically on campus from 9am-6pm Mon through Friday. However, my time is split between being in the office, in meetings, or teaching classes. When I am in my office, I may or not be available to chat. I often have "deep work" sessions where I am trying to concentrate and focus on thinking hard thoughts. During these times, or if I am on a call, my door will be closed. When my door is open, you are welcome to stop in for a quick chat. Anything longer than a few minutes may require setting up a formal time to chat.

Click-up

Will be introduced in January 2022.

Lab Slack team

Email

In progress

Texting and phone calls

I use texting and phone calls sparingly. They are best for quick one one-off messages (e.g., "For our meeting, let's meet at the coffee shop instead") or in case you really need something urgently (e.g., "I'm locked out of the building"). Conversations that require a lot of back and forth are often handled best in a quick in-person meeting.

Science workflow

Every scientist, lab, and field have its own set up favorite tools and technologies that allow them to actually do science. This ranges from what software to write papers to how statistical analyses are performed. Below is a brief description of how the scientific workflow currently operates in the QMEL. A shared set of tools and approaches helps us ultimately make more progress as a group.

Programming (R, R markdown, and Github)

Our lab is a leader in open and reproducible science. This means that every member of the lab will use tools such as R, R markdown, and Github. These tools allow us to reproducible workflows and make our work more accessible to others. Where possible, each paper should be written in R markdown (or LaTex) and tracked using version control in Github. Sometimes this workflow is not possible given outside collaborators that may not be comfortable with these tools. Google docs can work as a substitute in these cases.

Working on papers

The style of the lab is to share outlines and drafts of manuscripts early and often. This allows Easton or others to make comments early on in the process which might save a lot of headaches later. When you have a version, you would like Easton to read, simply let him know that you would like feedback and try to specify by when and for what you specifically want feedback with (e.g., structuring the introduction, figure design, etc.).

Reference manager

You are free to use whatever reference manager you prefer, but most people in the lab use Zotero. It is free, integrates with R markdown and Google docs, and allows collaborations among many people.

Authorship

For better or worse, publications are a key currency in science. They are one of the main ways we track scientific progress and individual production. Authorship on papers can be one of the most fraught topics and is therefore often ignored until the last minute. This is a bad strategy and only leads to resentment among co-authors. Therefore, authorship (in terms of composition and order) should be determined at the onset of the project. The specifics might change throughout the project, but it is key to have a starting point to work with from the start. The term "significant scientific contributions" is often used for defining who should be included as an author. In this lab, we use the definition from the International Committee of Medical Journal Editors (http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html): The ICMJE recommends that authorship be based on the following 4 criteria:

- Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND
- Drafting the work or revising it critically for important intellectual content; AND
- Final approval of the version to be published; AND
- Agreement to be accountable for all aspects of the work in ensuring that questions related to the
 accuracy or integrity of any part of the work are appropriately investigated and resolved. In addition,
 "the corresponding author is the one individual who takes primary responsibility for communication
 with the journal during the manuscript submission, peer review, and publication process".

Thus, simply providing some data or providing minor comments on a manuscript do not warrant authorship, but they should still be acknowledged. Just because I am your advisor, does not mean I warrant authorship on your publications. There will likely be publications that you are involved with that I have only a small part in. That being said, the most common order (but by no means the only) for authorship in the lab is Grad Student Lead, Other Contributors, with the PI as the last author. It is common for the grad student lead and the PI to both be corresponding authors.

Authorship resources

- $\bullet \ \, http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html \\$
- https://www.sciencemag.org/careers/2010/04/conventions-scientific-authorship
- https://www.sciencemag.org/careers/2021/05/how-navigate-authorship-scientific-manuscripts

Funding

Like publications, funding is an important metric in science. Applying for and receiving funding allows us to do interesting science, but it also will help you in your career. As a lab member, you are expected to apply for grants to support research and travel as well as fellowships that may advance your career. This helps both you and the lab as a whole. Although you'll lead these applications, you can also expect meaningful contributions from Easton throughout the process. This means enough lead time is critical. In addition, you may occasionally be asked to add comments or contribute a figure to a grant proposal that Easton is working on. In addition, you are always welcome to read grants that Easton has worked on or submitted. As a lab, we have compiled a database of funding opportunies that are the most relevant to members of this lab (). However, there are lots of other good databases of funding opportunies as well:

- Dajds
- daljkds

Being a successful postdoc

Postdocs (or postdoctoral fellows or postdoctoral trainees) are a strange position within academia. It is an awkward couple of years when you have lots of expertise, yet you are not in a permanent position. Unlike graduate school, you are expected to be more independent, although this depends on the lab and PI. The time as a postdoc can also feel lonely as you are not a graduate student and also not faculty. It is key to make connections with other postdocs or scientists on campus. During your time as a postdoc in the QEML, you will have several responsibilities:

- 1) Working on projects/papers related to your postdoc position
- 2) Finishing up old work
- 3) Developing independent work...
- 4) Mentoring students
- 5) Applying for funding and jobs

One of the most stressful parts of a postdoc position is the short-term and finite nature of the role. You only have a couple of years to find funding, find another postdoc position, or find a more permanent job. This means you should be applying for opportunities throughout your time as a postdoc.

My goal as an advisor with postdocs is to help them do good science and get the job they want.

Being a successful graduate student

Graduate school is designed to help make you a more independent scientist. In the QMEL, graduate students are expected to co-develop their projects with the lab PI as opposed to being handed a specific project. This freedom can be GREAT, but it can also make you feel adrift at times. That is okay and it is expected. Especially early in graduate school, you should be spending a significant portion of your time reading, taking classes, attending talks, and meeting others. The goal is to think broadly and come up with interesting questions.

The goal of graduate school is not to get a degree. The goal is to learn how to think critically, learn skills, and to get the job you want after graduation. My goal as an advisor is to help you accomplish these things. Early and often communication is key to a strong advisor-advisee relationship. I have to know when you need help in order for me to be a good advisor.

During your time as a grad student in the QEML, you will have several responsibilities: 1) Taking care of yourself 2) Taking classes 3) Attending conferences and giving presentations 4) Working on projects/papers related to your thesis 5) Working on projects/papers not related to your thesis 6) Serving as a teaching assistant or teaching courses 7) Mentoring students 8) Applying for funding and fellowships 9) Applying for jobs 10) Science communication and outreach 11) Staying up to date on the latest science

There is clearly a lot to being a graduate student. It can sometimes be difficult to know where to spend your time, which is your most precious resource. I use the term backwards design (which I've stolen from research on pedagogy) to overcome this problem. The key is to think about where you want to be after graduate school. Do you want to be a professor? Then it will be important to publish, get funding, and teach courses in graduate school. Do you want to work on science policy? Then it will be important to publish, work with local officials, and apply for opportunities related to policy. Meetings with Easton and others in the lab or on campus will help clarify some of these choices.

In order to be successful as a scientist, it is critical that you stay up to date on the latest research. This can be a formidable challenge but it can be facilitated by using RSS feeds or emails with journal table of contents. Setting up Google Scholar alerts can also be helpful for specific key words. You can also consider following scientists or scientific organizations on Twitter.

 $\label{lem:com/articles/d41586-021-01233-2?utm_source=Nature+Briefing\&utm_campaign=07eb2bdc6b-briefing-dy-20210510\&utm_medium=email\&utm_term=0_c9dfd39373-07eb2bdc6b-43934377$

Being a successful undergraduate researcher

In progress

Lab website

An updated lab website (https://quantmarineecolab.github.io/) is important for public engagement and sharing our work with others. As a member of the lab, you are expected to contribute to the lab website from time to time. This includes a biography of yourself, project updates (usually in the form of blog posts), and posting papers. Details of how to contribute to the website are on the website's Github page (https://github.com/quantmarineecolab).

Inspiration for this lab manual

I drew on a lot of different resources, including other lab manuals and websites, for the initial QMEL lab manual. Here is a brief list of some of those resources:

- https://github.com/alylab/labmanual
- https://www.nature.com/articles/d41586-018-06167-w
- https://github.com/memobc/memolab-manual
- https://www.sciencemag.org/careers/2019/08/three-keys-launching-your-own-lab
- https://www.sciencemag.org/careers/2019/04/want-become-better-mentor-ask-anonymous-feedback
- Mehr S. Lab handbooks tweet thread: Twitter. https://twitter.com/samuelmehr/status/113973329189 9080705. Accessed 8 Jul 2020
- Masters KS, Kreeger PK. Ten simple rules for developing a mentor-mentee expectations document. PLoS Comput Biol. 2017;13(9):e1005709. https://doi.org/10.1371/journal.pcbi.1005709.
- https://store.aamc.org/downloadable/download/sample/sample_id/99/