(a) Optimal substructure

For any i, $0 \le i < n$, consider the first part of an optimal solution: the travel up to city i. Let j be the number of times the train is used up to city i. Then, under the restriction that the train is used j times and the plane i - j times, the first part of the optimal solution gives an optimal (minimal cost) way to travel from train station 0 to

- train station i, if the optimal solution uses the train from city i to i + 1.
- airport i, if the optimal solution uses the plane from city i to i + 1.

(b) Subproblem definition

Define $T_{i,j}$ $(0 \le j \le i \le n)$ to be the minimum cost of travelling from train station 0 to train station i using the train j times and the plane i-j times: similarly, let $A_{i,j}$ be the minimum cost of travelling to airport i.

(c) Recurrence relation

For $0 \le j \le i \le n$ we have

$$T_{i,j} := \begin{cases} 0 & \text{if } i = 0 \\ A_{i-1,0} + p_{i-1} + b_i & \text{if } i > 1 \text{ and } j = 0 \\ T_{i-1,j-1} + t_{i-1} & \text{if } i > 1 \text{ and } j = i \\ \min(A_{i-1,j} + p_{i-1} + b_i, \ T_{i-1,j-1} + t_{i-1}) & \text{if } i > 1 \text{ and } 0 < j < i \end{cases}$$

and

$$A_{i,j} := \begin{cases} b_0 & \text{if } i = 0 \\ A_{i-1,0} + p_{i-1} & \text{if } i > 1 \text{ and } j = 0 \\ T_{i-1,j-1} + t_{i-1} + b_i & \text{if } i > 1 \text{ and } j = i \\ \min(T_{i-1,j-1} + t_{i-1} + b_i, \ A_{i-1,j} + p_{i-1}) & \text{if } i > 1 \text{ and } 0 < j < i \end{cases}$$

(d) Compute optimal solutions

For i > 0, the recurrence expresses $T_{i,*}$ in terms of $T_{i-1,*}$ and $A_{i-1,*}$. Thus, we can initialize $T_{0,0}$ and $A_{0,0}$ and then compute $T_{i,*}$ and $A_{i,*}$ for i = 1, 2, ..., n in succession. The solution is given by $A_{n,n/2}$. Note that for i > n/2 if suffices to compute $T_{i,j}$ and $A_{i,j}$ for $j \le n/2$ instead of $j \le i$, but this optimization will not improve the asymptotic running time of the algorithm.

We begin by noting that SUBSET-GCD-DEC \in NP. The certificate is a set C of positive indices. Given an instance $[\{a_1,\ldots,a_n\},k]$ of SUBSET-GCD-DEC, the certificate verification algorithm checks that $C \subseteq \{1,\ldots,n\}$ with |C|=k, say $C=\{i_1,\ldots,i_k\}$, and that $\gcd(a_1,\ldots,a_n)=\gcd(a_{i_1},\ldots,a_{i_k})$. The size required to encode the problem instance is $\Omega(n+\log a_1+\cdots+\log a_n)$ bits since the encoding of a_i uses $\Theta(\log a_i)$ bits and there are n distinct a_* , each one requiring at least one bit. The certificate has size bounded by $O(n\log n)$ bits, which is polynomial in the input size, and the verification algorithm also runs in polynomial time, for example in $O(n(\max_i \log a_i)^2)$ bit operations if we use the standard Euclidean algorithm to compute the gcds. (Note that the gcd of n numbers can be computed by computing the gcd of n-1 pairs of numbers: $\gcd(a_1,a_2,\ldots,a_n)=\gcd(a_1,\ldots,\gcd(a_{n-2},\gcd(a_{n-1},a_n))\ldots)$.)

Next we now show that VERTEX-COVER-DEC \leq_P SUBSET-GCD-DEC. Let [G = (V, E), k] be an instance of vertex cover, $V = \{1, \ldots, n\}$ and $E = \{e_1, \ldots, e_m\}$. Let p_j denote the jth prime: $p_1, p_2, p_3, \ldots = 2, 3, 5, \ldots$ Let P be the product of the first m primes: $P = p_1 p_2 \cdots p_m$. We will associate prime p_j to edge e_j , $1 \leq j \leq m$. For $1 \leq i \leq n$, compute a_i to be the divisor of P equal to the product of all p_j such that e_j is not adjacent to vertex i. Then $V' = \{i_1, \ldots, i_k\}$ is a vertex cover of $G \iff$ for all $p_i \in \{p_1, \ldots, p_m\}$ there exists at least on $j \in V'$ such that p_i does not divide $a_j \iff$ the gcd of the elements in $\{a_{i_1}, \ldots, a_{i_k}\}$ is one. This shows that G has a vertex cover of size at most k if and only if $\{a_1, \ldots, a_n\}$ has a subset of size at most k with gcd equal to one.

Concerning the cost of the construction of $\{a_1, \ldots, a_n\}$, we note that the *m*th prime has magnitude $O(m \log m)$, so the size of the constructed instance of SUBSET-GCD-DEC will be $O(nm \log(m \log m))$, which is polynomial in the size of [G, k]. The first *m* primes can be found in time polynomial in *m* by using a naive approach: for $j = 2, 3, 4, \ldots, p_m$ test if *j* is composite by assaying if *j* can be expressed as the product of two numbers in the rank [2, j - 1].

3. a)

Answer: For a certificate, we can use any convenient representation of the function f. For example, the list $Cert = [f(P_1), f(P_2), \dots, f(P_t)]$ would work well. Suppose we are given $Cert = [g_1, \dots, g_t]$. To verify Cert, we would perform the following checks:

- i. Verify that $1 \leq g_j \leq K$ for $1 \leq j \leq t$.
- ii. For each $i, 1 \le i \le s$, verify that there exist $P_j, P_{j'} \in Q_i$ such that $g_j \ne g_{j'}$.

The Reduction. We are given an instance of 3-CNF-SATISFIABILITY, i.e., a 3-CNF Boolean formula F in n variables x_1, \ldots, x_n , having m clauses C_1, \ldots, C_m . We want to construct an instance of Gallery Allocation, which is defined by a set \mathcal{P} , a collection of subsets of \mathcal{P} , and an integer $K \geq 2$. Define $\mathcal{P} = \{x_1, \overline{x_1}, \ldots, x_n, \overline{x_n}, z\}$ where z is a new element. For each clause C_i , create a subset Q_i consisting of the three literals in C_i , along with z. In addition, for each $i = 1, \ldots, n$, we create a subset $Q_{m+i} = \{x_i, \overline{x_i}\}$. Finally, we choose K = 2.

Answer: Suppose I is a yes-instance of 3-CNF-Satisfiability. Denote the constructed instance of Gallery Allocation by g(I). It is straightforward to show that the construction of g(I) can be done in polynomial time.

We show that g(I) is a yes-instance whenever I is a yes-instance. If I is a yes-instance, then there is a satisfying truth assignment $a:\{x_1,\ldots,x_n\}\to\{T,F\}$ for the instance I. Define $f:\mathcal{P}\to\{1,2\}$ as follows: for every literal $y\in\{x_1,\overline{x_1},\ldots,x_n,\overline{x_n}\}$, define f(y)=1 if a(y)=T and define f(y)=2 if a(y)=F. Also, define f(z)=2. Since a is a satisfying truth assignment, every clause C_i contains 1, 2 or 3 true literals. The corresponding subset \mathcal{Q}_i therefore contains 1, 2, or 3 paintings that are assigned to gallery 1. Further, $z\in\mathcal{Q}_i$ is assigned to gallery 2, so \mathcal{Q}_i contains paintings assigned to both galleries. Finally, each set $\mathcal{Q}_{m+i}=\{x_i,\overline{x_i}\}$ contains one painting assigned to gallery 1 and one painting assigned to gallery 2.

Now, assume that g(I) is a yes-instance. Suppose first that f(z) = 2. Then define $a: \{x_1, \ldots, x_n\} \to \{T, F\}$ as follows: for every literal $y \in \{x_1, \overline{x_1}, \ldots, x_n, \overline{x_n}\}$, define a(y) = T if f(y) = 1 and define a(y) = F if f(y) = 2. Since each set $\mathcal{Q}_{m+i} = \{x_i, \overline{x_i}\}$ contains one painting assigned to gallery 1 and one painting assigned to gallery 2, it follows that $a(x_i) = \text{not } a(\overline{x_i})$, so this truth assignment is "consistent". We claim that a is a satisfying truth assignment for the m clauses C_1, \ldots, C_m . Let C_i be a clause. The corresponding set \mathcal{Q}_i contains a painting (which is not the painting z) that is assigned to gallery 1; the corresponding literal is a true literal in C_i .

If f(z) = 1, then we instead define define a(y) = F if f(y) = 2 and define a(y) = T if f(y) = 1. The remainder of the proof is similar to the previous case.