Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Science

End Sem (Odd) Examination Dec-2018 BC3EP04 Quantum Mechanics and Spectroscopy

Programme: B.Sc. (CS) Branch/Specialisation: Computer

Science

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1	i.	Which statement is correct:		1
		(a) Velocity of matter wave	is less than velocity of light	
		(b) Phase velocity represent	s the average velocity of all the	
		waves present inside the	wavepacket.	
		(c) Only moving particle have wave associated with them		
		(d) Both (b) and (c)		
	ii.	Uncertainty principle is appl	icable to:	1
		(a) Energy and time		
		(b) Position and momentum		
		(c) Angular momentum and angle		
		(d) All of these		
	iii.	The probability of finding th	e particle is given by:	1
		(a) Amplitude	(b) Wavefunction	
		(c) Frequency	(d) Oscillations	
	iv.	In the Schrödinger's equation $H\Psi = E\Psi$, H represents:		1
		(a) Hamiltonion Operator	(b) Hemesberg's Operator	
		(c) Hilton's Operator	(d) Hesenberg's Operator	
	v.	A particle with energy les	s than the barrier penetrates it, this	1
		phenomenon is termed as:		
		(a) Penetration	(b) Tunneling	
		(c) Crossing	(d) None of these	

P.T.O.

[2]

	vi.	Alpha particles have relative (a) Low kinetic energies	(b) High potential energy	1
	vii.	(c) High mechanical energyBohr postulated in his model(a) Energy		1
	viii.	(c) Angular momentum (d) Spin The effect of splitting a spectral line into several components in the presence of a static magnetic field is:		1
		(a) Zeeman effect (c) Raman effect	(b) Stark effect(d) Doppler's effect	
	ix.	Which device is called circul		1
	х.	In GM Counter GM stands for (a) General manager (c) Garry Morley		1
Q.2	i.	Calculate the de-Broglie way 1.0 x 10 ⁻¹⁵ kg moving at a spe	velength of a virus particle of mass eed of 2.00 mm/sec.	2
	ii.	• • •	the concept of wavepacket explain	3
	iii.		ment which proved the existence of	5
OR	iv.	What is Compton's effect? Derive an expression for Compton's shift.		5
Q.3	i.	Explain in brief: (a) Physical significance of Wavefunction (b) Normalization of Wavefunction		3
	ii.	Derive the Schrodinger's Ti- wave equation.	7	
OR	iii.	Calculate the energy value and wavefunction for a particle enclosed between an infinite potential well.		7
Q.4	i.	Explain the concept of alpha	particle decay.	3

[3]

	ii.	Explain mathematically the reflection of particle from a potential step.	7
OR	iii.	Obtain ground state wavefunction for hydrogen atom using Schrodinger equation.	7
Q.5	i. ii.	Briefly explain Emission spectra of Hydrogen atom. Write short note on (a) Stern-Gerlach experiment (b) L-S and J-J Coupling	3 7
OR	iii.	Explain Normal and Anamalous Zeeman Effect.	7
Q.6	i.	Attempt any two: Write short note on (a) Liquid drop model (b) Bainbridge mass spectrograph	5
	ii.		5
	iii.	Explain the working of G.M Counter.	5

Marking Scheme

BC3EP04 Quantum Mechanics and Spectroscopy

Q.1	i.	Which statement is correct:		1
	ii.	(d) Both (b) and (c) Uncertainty principle is applicable to:		1
	iii.	(d) All of theseThe probability of finding the particle is given by:(b) Wavefunction		1
	iv.	In the Schrodinger's equation $H\Psi = E\Psi$, H represent	nts:	1
	v.	(a) Hamiltonion OperatorA particle with energy less than the barrier per phenomenon is termed as:(b) Tunneling	netrates it, this	1
	vi.	Alpha particles have relatively (d) High kinetic energy		1
	vii.	Bohr postulated in his model quantisation of		1
	viii.	 (a) Energy The effect of splitting a spectral line into several components in the presence of a static magnetic field is: (a) Zeeman effect 		
	ix.	Which device is called circular accelerator? (c) Cyclotron		1
	х.	In GM Counter GM stands for: (b) Geiger Muller		1
Q.2	i.	Calculate the de-Broglie wavelength of a virus particle of mass 1.0×10^{-15} kg moving at a speed of 2.00 mm/sec .		
		Formula Ans 3.31 x 10 ⁻¹⁶ m	1 mark 1 mark	
	ii.	Define wavepacket. Using the concept of wave Heisenberg's Uncertainty principle.	epacket explain	3
		Define wave packet Explanation of Heisenberg's Uncertainity principle	1 mark 2 marks	
	iii.	Explain in detail the experiment which proved the matter wave.	he existence of	5
		Name of Experiment	1 mark	
		Diagram	1 mark	
		Proof	3 marks	

OR	R iv. What is Compton's effect? Derive an expression for Compton shift.		n's 5
		Compton's effect statement 1 mark	
		Formation of conservation equations 1.5 marks	
		Expression of compton's 0.5 mark	
		Derivation of equation 2 marks	
		2 marks	
Q.3	i.	Explain in brief:	3
		(a) Physical significance of Wavefunction 1.5 marks	
		(b) Normalization of Wavefunction 1.5 marks	
	ii.	Derive the Schrodinger's Time independent and Time depend wave equation.	ent 7
		Schrodinger's Time independent equation 4 marks	
		Time dependent wave equation 3 marks	
OR	iii.	Calculate the energy value and wavefunction for a particle enclo	sed 7
		between an infinite potential well.	
		Diagram and Explanation of problem 2 marks	
		Boundary Condition 1.5 marks	
		Energy values 2 marks	
		Wave function 1.5 marks	
Q.4	i.	Explain the concept of alpha particle decay.	3
		About alpha particle 1 mark	
		Rest concept 2 marks	
	ii.	Explain mathematically the reflection of particle from a poten	tial 7
		step.	
		Diagram 1 mark	
		Formation of equation 2 marks	
		Boundary condition 1 mark	
		Final Result 3 marks	
OR	iii.	Obtain ground state wavefunction for hydrogen atom us	ing 7
		Schrodinger equation.	C
		Diagram 1 mark	
		Formation of equation 2 marks	
		Boundary condition 1 mark	
		Final Result 3 marks	
Q.5	i.	Briefly explain Emission spectra of Hydrogen atom.	3

	ii.	Write short note on		7
		(a) Stern-Gerlach experiment	3.5 marks	
		(b) L-S and J-J Coupling	3.5 marks	
OR	iii.		7	
		Diagram	1 mark	
		Set-up; Statement	3 marks	
		Rest	3 marks	
Q.6		Attempt any two:		
	i.	Write short note on		5
		(a) Liquid drop model	2.5 marks	
		(b) Bainbridge mass spectrograph	2.5 marks	
	ii.	Explain the working of Linear particle accele advantages and disadvantages.	rator. Give its	5
		Diagram	1 mark	
		Working	2 marks	
		Advantage + disadvantage	2 marks	
	iii.	Explain the working of G.M Counter.		5
		Diagram	2 marks	
		Rest	3 marks	
