II - Intégrale sur un segment

Révisions

• Dérivées des fonctions usuelles :

Fonction $f(x)$	Dérivée $f'(x)$
$c, c \in \mathbb{R}$	0
$x^a, a \in \mathbb{R}$	ax^{a-1}
ln(x)	$\frac{1}{x}$
e^{ax}	$a e^{ax}$

• Règles de dérivation :

Fonction $f(x)$	Dérivée $f'(x)$
$c \cdot u(x), c \in \mathbb{R}$	$c \cdot u'(x)$
u(x) + v(x)	u'(x) + v'(x)
u(x)v(x)	u'(x)v(x) + u(x)v'(x)
$rac{u(x)}{v(x)}$	$\frac{u'(x)v(x)-u(x)v'(x)}{v^2(x)}$
$u^n(x)$	$nu'(x)u^{n-1}(x)$
u(v(x))	v'(x)u'(v(x))
$\ln(u(x))$	$rac{u'(x)}{u(x)}$
$e^{u(x)}$	$u'(x) e^{u(x)}$

• Interprétation de l'intégrale des fonctions positives comme aire entre la courbe et l'axe des abscisses..

I - Primitives

Définition 1 - Primitive

Soit f une fonction continue sur un intervalle I. Une *primitive* de f est une fonction dérivable F sur I telle que, pour tout $x \in [a, b]$, F'(x) = f(x).

Exemple 1

Soit $F(x) = x \ln(x) - x$ définie sur $]0, +\infty[$. Comme la fonction logarithme népérien est dérivable sur $]0, +\infty[$, alors F est dérivable et pour tout $x \in]0, +\infty[$,

$$F'(x) = \ln(x) + x \cdot \frac{1}{x} - 1 = \ln(x).$$

Ainsi, F est une primitive de ln sur $]0, +\infty[$.

Exercice 1. Déterminer la fonction dont $F(x) = \frac{x^3}{12} + 4x^2 + 1$ est une primitive.

Théorème 1 - Primitives de fonctions continues 🛩

Toute fonction continue sur un intervalle I admet des primitives. Si F et G sont des primitives d'une fonction f continue sur I, alors il existe un réel c tel que $\forall x \in I$, F(x) = G(x) + c.

Proposition 1 - Primitives des fonctions usuelles 😋

Fonction f	Primitive F
$c, c \in \mathbb{R}$	cx
$x^a, a \neq -1$	$\frac{1}{a+1}x^{a+1}$
$\frac{1}{x}$	$\ln(x)$
$e^{ax}, a \neq 0$	$\frac{1}{a} e^{ax}$

Exercice 2. Déterminer une primitive des fonctions suivantes :

1. x^5 .

2. $\frac{3}{x}$.

3. e^{3x} .

4. $\frac{1}{x^5}$

Proposition 2 - Primitive de fonctions composées 🖏

Soit u une fonction dérivable telle que u' soit continue.

Fonction f	Primitive F
$\lambda u'(x)$	u(x)
u'(x) + v'(x)	u(x) + v(x)
$u'(x)u^a(x), a \neq -1$	$\frac{1}{a+1}u^{a+1}(x)$
$\frac{u'(x)}{u(x)}$	$\ln u(x) $
$u'(x) e^{u(x)}$	$e^{u(x)}$

Exercice 3. Déterminer une primitive des fonctions suivantes :

1. $\frac{1}{3x}$.

5. $\frac{1}{x} \ln^4(x)$.

2. $e^{2x} + \sqrt{x}$.

6. $\frac{2x+1}{x^2+x}$

3. $3e^{2x} + 5\sqrt{x}$.

7. $\frac{x+1}{x^2+2x}$

4. $\frac{1}{x} \ln(x)$.

8. $(3x^2+4)e^{x^3+4x}$

II - Intégrale d'une fonction continue

Définition 2 - Intégrale d'une fonction continue 🗱

Soit f une fonction continue sur [a,b] et F une primitive de f. L'intégrale de f sur [a,b] est le réel défini par

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

Exemple 2

En utilisant les primitives usuelles,

- $\int_1^2 x^4 dx = \left[\frac{x^5}{5}\right]_1^2 = \frac{2^5}{5} \frac{1}{5} = \frac{31}{5}$.
- $\int_0^1 (3x^2 + 4) e^{x^3 + 4x} dx = \left[e^{x^3 + 4x} \right]_0^1 = e^5 1.$

Exercice 4. Exprimer simplement les intégrales suivantes :

1. $\int_0^1 x^3 dx$.

3. $\int_{1}^{2} \frac{1}{x} dx$.

2. $\int_{3}^{4} e^{2x} dx$.

4. $\int_{-2}^{-1} \frac{1}{x^4} dx$

Théorème 2 - Intégrale et Primitive

Soit f une fonction continue sur I et $a \in I$. La fonction $F(x) = \int_a^x f(t) dt$ est l'unique primitive de f qui s'annule en a. En particulier, pour tout réel x > a, F'(x) = f(x).

Exemple 3

Soit F la fonction définie sur $[0, +\infty[$ par $F(x) = \int_0^x e^t dt$. La fonction F est dérivable et $F'(x) = e^x$. Ainsi, F' est positive et F est croissante.

III - Propriétés de l'intégrale

Proposition 3 - Relation de Chasles

Soit f une fonction continue sur un intervalle I et a, b et c des réels de I. Alors,

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

Exemple 4

Soit f la fonction définie par f(x) = 0 si $x \le 1$ et f(x) = x - 1 sinon. Alors,

$$\int_{-1}^{2} f(x) dx = \int_{-1}^{1} f(x) dx + \int_{1}^{2} f(x) dx$$
$$= \int_{-1}^{1} 0 dx + \int_{1}^{2} (x - 1) dx$$
$$= 0 + \left[\frac{(x - 1)^{2}}{2} \right]_{1}^{2}$$
$$= 0 + \frac{1}{2} - 0$$
$$= \frac{1}{2}.$$

Proposition 4 - Linéarité de l'intégrale

Soit f, g des fonctions continues sur [a,b] et α , β des réels. Alors,

$$\int_a^b (\alpha f(x) + \beta g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx.$$

Exemple 5

En utilisant les primitives usuelles.

$$\int_{1}^{2} \left(\frac{12}{x} + 5x^{3}\right) dx = 12 \int_{1}^{2} \frac{1}{x} dx + 5 \int_{1}^{2} x^{3} dx$$

$$= 12 \left[\ln(x)\right]_{1}^{2} + 5 \left[\frac{x^{4}}{4}\right]_{1}^{2}$$

$$= 12 \left(\ln(2) - \ln(1)\right) + 5 \left(\frac{2^{4}}{4} - \frac{1}{4}\right)$$

$$= 12 \ln(2) + \frac{5}{4} \cdot 15.$$

Exercice 5. Calculer $\int_0^1 2 e^x + 3x^2 dx$.

Proposition 5 - Positivité de l'intégrale (I)

Soit f une fonction continue sur [a, b]. Si $a \leq b$ et, pour tout $x \in [a, b], f(x) \geq 0$, alors $\int_a^b f(x) dx \geq 0$.

Exemple 6

Soit $F(x) = \int_0^x e^t dt$ et $0 \le x \le y$. D'après la relation de Chasles,

$$F(y) = \int_0^y e^t dt = \int_0^x e^t dt + \int_x^y e^t dt$$
$$= F(x) + \int_x^y e^t dt$$

Or, $e^t \ge 0$ pour tout $t \in [x, y]$ et $x \le y$, donc $\int_x^y e^t dt \ge 0$. Ainsi, $F(x) \le F(y)$ et F est croissante.

Exercice 6. Montrer que $F(x) = \int_3^x (t^2 - 2t + 1) dt$ est croissante.

Proposition 6 - Positivité de l'intégrale (II)

Soit f et g deux fonctions continues sur [a,b]. Si, pour tout $x \in [a,b], f(x) \leq g(x),$ alors $\int_a^b f(x) dx \leq \int_a^b g(x) dx.$

Exemple 7

Pour tout n entier naturel, on pose $I_n = \int_0^1 \frac{x^n}{1+x} \, \mathrm{d}x$. Pour tout $x \in [0,1], \ x^{n+1} \leqslant x^n$. Ainsi, $\frac{x^{n+1}}{1+x} \leqslant \frac{x^n}{1+x}$ et $\int_0^1 x^{n+1} \, \mathrm{d}x \leqslant \int_0^1 x^n \, \mathrm{d}x$. La suite (I_n) est donc décroissante.

Proposition 7 - Intégration par parties

Soit u et v deux fonctions dérivables sur [a, b] telles que u' et v' soient continues sur [a, b]. Alors,

$$\int_{a}^{b} u(x)v'(x) dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x) dx.$$

Exemple 8 - 🚓

• Calculons $\int_0^1 x e^{2x} dx$. Posons u(x) = x et $v'(x) = e^{2x}$. Alors, u'(x) = 1 et $v(x) = \frac{e^{2x}}{2}$. Comme u, v sont dérivables et u', v' sont continues sur [0, 1], d'après la formule d'intégration par parties,

$$\int_0^1 x e^{2x} dx = \left[x \frac{e^{2x}}{2} \right]_1^2 - \int_1^2 \frac{e^{2x}}{2} dx$$
$$= \frac{2e^4}{2} - \frac{e^2}{2} - \left[\frac{e^{2x}}{4} \right]_1^2$$
$$= e^4 - \frac{e^2}{2} - \frac{e^4}{4} + \frac{e^2}{4}$$
$$= \frac{3e^4}{4} - \frac{e^2}{4}.$$

• Calculons $\int_1^2 \ln(x) dx$. Posons $u(x) = \ln(x)$ et v'(x) = 1. Alors, $u'(x) = \frac{1}{x}$ et v(x) = x. Comme u, v sont dérivables et u', v' sont continues sur [1, 2], d'après la formule d'intégration par parties,

$$\int_{1}^{2} \ln(x) dx = [\ln(x)x]_{1}^{2} - \int_{1}^{2} \frac{1}{x} \cdot x dx$$

$$= 2\ln(2) - 1\ln(1) - \int_{1}^{2} 1 dx$$

$$= 2\ln(2) - [x]_{1}^{2}$$

$$= 2\ln(2) - 2 + 1$$

$$= 2\ln(2) - 1.$$

Exercice 7. Calculer $\int_0^1 x e^x dx$.