Midterm Reviews (CS 229/ STATS 229)

Stanford University slides adapted from previous iterations of the course

23rd October, 2020

Reviews

- Supervised Learning
 - Discriminative Algorithms
 - Generative Algorithms
 - Kernel and SVM
- Neural Networks
- Unsupervised Learning

- Supervised Learning
 - Discriminative Algorithms
 - Generative Algorithms
 - Kernel and SVM
- Neural Networks
- Unsupervised Learning

Optimization Methods

Gradient and Hessian (differentiable function $f: \mathbb{R}^d \mapsto \mathbb{R}$)

$$\nabla_{x} f = \begin{bmatrix} \frac{\partial f}{\partial x_{1}} & \dots & \frac{\partial f}{\partial x_{d}} \end{bmatrix}^{I} \in \mathbb{R}^{d}$$

$$\begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \dots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{d}} \end{bmatrix}$$
(Gradient)

$$\nabla_{\mathbf{x}}^{2} f = \begin{bmatrix} \frac{\partial^{2} f}{\partial \mathbf{x}_{1}^{2}} & \cdots & \frac{\partial^{2} f}{\partial \mathbf{x}_{1} \partial \mathbf{x}_{d}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial \mathbf{x}_{d} \partial \mathbf{x}_{1}} & \cdots & \frac{\partial^{2} f}{\partial \mathbf{x}_{d}^{2}} \end{bmatrix} \in \mathbb{R}^{d \times d}$$

Gradient Descent and Newton's Method (objective function $J(\theta)$)

$$\theta^{(t+1)} = \theta^{(t)} - \alpha \nabla_{\theta} J(\theta^{(t)})$$

$$\theta^{(t+1)} = \theta^{(t)} - \left[\nabla_{\theta}^{2} J(\theta^{(t)}) \right]^{-1} \nabla_{\theta} J(\theta^{(t)})$$

(Gradient descent)

(Hessian)

4 / 25

(Newton's method)

Least Square—Gradient Descent

- Model: $h_{\theta}(x) = \theta^T x$
- Training data: $\{(x^{(i)}, y^{(i)})\}_{i=1}^n$, $x^{(i)} \in \mathbb{R}^d$
- Loss: $J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) y^{(i)})^2$
- Update rule:

$$\theta^{(t+1)} = \theta^{(t)} - \alpha \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

Stochastic Gradient Descent (SGD)

Pick one data point $x^{(i)}$ and then update:

$$\theta^{(t+1)} = \theta^{(t)} - \alpha \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

Least Square—Closed Form

- Loss in matrix form: $J(\theta) = \frac{1}{2} \|X\theta y\|_2^2$, where $X \in \mathbb{R}^{n \times d}$, $y \in \mathbb{R}^n$
- Normal Equation (set gradient to 0):

$$X^{T}\left(X\theta^{\star}-y\right)=0$$

• Closed form solution:

$$\theta^* = \left(X^T X\right)^{-1} X^T y$$

Logistic Regression

A binary classification model and $y^{(i)} \in \{0, 1\}$

Assumed model:

$$p(y \mid x; \theta) = \begin{cases} g_{\theta}(x) & \text{if } y = 1 \\ 1 - g_{\theta}(x) & \text{if } y = 0 \end{cases}, \text{ where } g_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T}x}}$$

Log-likelihood function:

$$\ell(\theta) = \sum_{i=1}^{n} \log p(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \sum_{i=1}^{n} \left[y^{(i)} \log g_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - g_{\theta}(x^{(i)})) \right]$$

• Find parameters through **maximizing log-likelihood**, $\max_{\theta} \ell(\theta)$ (in Pset1).

The Exponential Family

Definition

Probability distribution (with natural parameter η) whose density (or mass function) can be written into the following form

$$p(y; \eta) = b(y) \exp \left(\eta^T T(y) - a(\eta)\right)$$

Example

Bernoulli distribution:

$$p(y;\phi) = \phi^{y} (1-\phi)^{1-y} = \exp\left(\left(\log\left(\frac{\phi}{1-\phi}\right)\right)y + \log(1-\phi)\right)$$

$$\implies b(y) = 1, \quad T(y) = y, \quad \eta = \log\left(\frac{\phi}{1-\phi}\right), \quad a(\eta) = \log\left(1+e^{\eta}\right)$$

The Exponential Family

More Examples

Categorical distribution, Poisson distribution, (Multivariate) normal distribution, etc.

Properties (In Pset1)

- $\mathbb{E}\left[T(Y);\eta\right] = \nabla_{\eta}a(\eta)$
- $Var(T(Y); \eta) = \nabla^2_{\eta} a(\eta)$

Non-exponential Family Distribution

Uniform distribution over interval [a, b]:

$$p(y; a, b) = \frac{1}{b-a} \cdot \mathbb{1}_{\{a \le y \le b\}}$$

Reason: b(y) cannot depend on parameter η .

The Generalized Linear Model (GLM)

Components

- Assumed model: $p(y \mid x; \theta) \sim \text{ExponentialFamily}(\eta)$ with $\eta = \theta^T x$
- Predictor: $h(x) = \mathbb{E}[T(Y); \eta] = \nabla_n a(\eta)$.
- Fitting through maximum likelihood:

$$\max_{\theta} \ell(\theta) = \max_{\theta} \sum_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \eta)$$

Examples

- GLM under Bernoulli distribution: Logistic regression
- GLM under Poisson distribution: Poisson regression (in Pset1)
- GLM under Normal distribution: Linear regression
- GLM under Categorical distribution: Softmax regression

Reviews

- Supervised Learning
 - Discriminative Algorithms
 - Generative Algorithms
 - Kernel and SVM
- 2 Neural Networks
- 3 Unsupervised Learning

Gaussian Discriminant Analysis (GDA)

Generative Algorithm for Classification

- Learn p(x | y) and p(y)
- Classify through Bayes rule: $\operatorname{argmax}_{v} p(y \mid x) = \operatorname{argmax}_{v} p(x \mid y) p(y)$

GDA Formulation

- Assume $p(x \mid y) \sim \mathcal{N}(\mu_v, \Sigma)$ for some $\mu_v \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$
- Estimate μ_{v} , Σ and p(y) through maximum likelihood, which is

$$\max \sum_{i=1}^{n} \left[\log p(x^{(i)} \mid y^{(i)}) + \log p(y^{(i)}) \right]$$

$$p(y) = \frac{\sum_{i=1}^{n} \mathbb{1}_{\{y^{(i)} = y\}}}{n}, \mu_{y} = \frac{\sum_{i=1}^{n} \mathbb{1}_{\{y^{(i)} = y\}} x^{(i)}}{\sum_{i=1}^{n} \mathbb{1}_{\{y^{(i)} = y\}}}, \Sigma = \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \mu_{y^{(i)}}) (x^{(i)} - \mu_{y^{(i)}})^{T}$$

23rd October, 2020 12 / 25

Naive Bayes

Formulation

- Assume $p(x \mid y) = \prod_{i=1}^{d} p(x_i \mid y)$
- Estimate $p(x_j | y)$ and p(y) through maximum likelihood, which gives

$$p(x_j \mid y) = \frac{\sum_{i=1}^{n} \mathbb{1}_{\left\{x_j^{(i)} = x_j, y^{(i)} = y\right\}}}{\sum_{i=1}^{n} \mathbb{1}_{\left\{y^{(i)} = y\right\}}}, \quad p(y) = \frac{\sum_{i=1}^{n} \mathbb{1}_{\left\{y^{(i)} = y\right\}}}{n}$$

Laplace Smoothing

Assume x_j takes value in $\{1, 2, \dots, k\}$, the corresponding modified estimator is

$$p(x_j \mid y) = \frac{1 + \sum_{i=1}^{n} \mathbb{1}_{\left\{x_j^{(i)} = x_j, y^{(i)} = y\right\}}}{k + \sum_{i=1}^{n} \mathbb{1}_{\left\{y^{(i)} = y\right\}}}$$

ロト・イラト・イラト ラ りくぐ

- Supervised Learning
 - Discriminative Algorithms
 - Generative Algorithms
 - Kernel and SVM
- Neural Networks
- 3 Unsupervised Learning

Kernel

Motivation

- Feature map: $\phi : \mathbb{R}^d \mapsto \mathbb{R}^p$
- Fitting linear model with gradient descent gives us $\theta = \sum_{i=1}^{n} \beta_i \phi(x^{(i)})$
- Predict a new example z: $h_{\theta}(z) = \sum_{i=1}^{n} \beta_{i} \phi(x^{(i)})^{T} \phi(z) = \sum_{i=1}^{n} \beta_{i} K(x^{(i)}, z)$

It brings nonlinearity without much sacrifice in efficiency as long as $K(\cdot, \cdot)$ can be computed efficiently.

Definition

 $K(x,z): \mathbb{R}^d \times \mathbb{R}^d \mapsto \mathbb{R}$ is a valid kernel if there exists $\phi: \mathbb{R}^d \mapsto \mathbb{R}^p$ for some $p \geq 1$ such that $K(x,z) = \phi(x)^T \phi(z)$

Reviews

Kernel (Continued)

Examples

- Polynomial kernels: $K(x,z) = (x^Tz + c)^d$, $\forall c \ge 0$ and $d \in \mathbb{N}$
- Gaussian kernels: $K(x,z) = \exp\left(-\frac{\|x-z\|_2^2}{2\sigma^2}\right)$, $\forall \sigma^2 > 0$
- More in Pset2...

Theorem

K(x,z) is a valid kernel if and only if for any set of $\{x^{(1)},\ldots,x^{(n)}\}$, its Gram matrix, defined as

$$G = \begin{bmatrix} K(x^{(1)}, x^{(1)}) & \dots & K(x^{(1)}, x^{(n)}) \\ \vdots & \ddots & \vdots \\ K(x^{(n)}, x^{(1)}) & \dots & K(x^{(n)}, x^{(n)}) \end{bmatrix} \in \mathbb{R}^{n \times n}$$

is positive semi-definite.

Support Vector Machine (SVM)

Formulation $(y \in \{-1, 1\})$

$$\begin{aligned} & \min_{\{w,b\}} & \frac{1}{2} \|w\|_2^2 \\ & \text{subject to} & y^{(i)} (w^T x^{(i)} + b) \geq 1, \quad \forall \ i \in \{1, \dots, n\} \end{aligned} \tag{Hard-SVM} \\ & \min_{\{w,b,\xi\}} & \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n \xi_i \\ & \text{subject to} & y^{(i)} (w^T x^{(i)} + b) \geq 1 - \xi_i, \quad \forall \ i \in \{1, \dots, n\} \\ & \quad \in_i > 0, \quad \forall \ i \in \{1, \dots, n\} \end{aligned} \tag{Soft-SVM}$$

Properties

• The optimal solution has the form $w^* = \sum_{i=1}^n \alpha_i y^{(i)} x^{(i)}$ and thus can be kernelized.

17 / 25

Reviews 23rd October, 2020

- Supervised Learning
 - Discriminative Algorithms
 - Generative Algorithms
 - Kernel and SVM
- 2 Neural Networks
- 3 Unsupervised Learning

Model Formulation

Multi-layer Fully-connected Neural Networks (with Activation Function f)

$$a^{[1]} = f\left(W^{[1]}x + b^{[1]}\right)$$

$$a^{[2]} = f\left(W^{[2]}a^{[1]} + b^{[2]}\right)$$

$$...$$

$$a^{[r-1]} = f\left(W^{[r-1]}a^{[r-2]} + b^{[r-1]}\right)$$

$$h_{\theta}(x) = a^{[r]} = W^{[r]}a^{[r-1]} + b^{[r]}$$

Possible Activation Functions

- ReLU: $f(z) = \text{ReLU}(z) := \max\{z, 0\}$
- Sigmoid: $f(z) = \frac{1}{1+e^{-z}}$
- Hyperbolic Tangent: $f(z) = \tanh(z) := \frac{e^z e^{-z}}{e^z + e^{-z}}$

Backpropogation

Let J be the loss function and $z^{[k]} = W^{[k]}a^{[k-1]} + b^{[k]}$. By chain rule, we have

$$\frac{\partial J}{\partial W_{ij}^{[r]}} = \frac{\partial J}{\partial z_{i}^{[r]}} \frac{\partial z_{i}^{[r]}}{\partial W_{ij}^{[r]}} = \frac{\partial J}{\partial z_{i}^{[r]}} a_{j}^{[r-1]} \implies \frac{\partial J}{\partial W^{[r]}} = \frac{\partial J}{\partial z^{[r]}} a^{[r-1]T}, \quad \frac{\partial J}{\partial b^{[r]}} = \frac{\partial J}{\partial z^{[r]}}$$

$$\frac{\partial J}{\partial a_{i}^{[r-1]}} = \sum_{j=1}^{d_{r}} \frac{\partial J}{\partial z_{j}^{[r]}} \frac{\partial z_{j}^{[r]}}{\partial a_{i}^{[r-1]}} = \sum_{j=1}^{d_{r}} \frac{\partial J}{\partial z_{j}^{[r]}} W_{ji}^{[r]} \implies \frac{\partial J}{\partial a^{[r-1]}} = W^{[r]T} \frac{\partial J}{\partial z^{[r]}}$$

$$\frac{\partial J}{\partial z^{[r]}} := \delta^{[r]} \implies \frac{\partial J}{\partial z^{[r-1]}} = \left(W^{[r]T} \delta^{[r]}\right) \odot f'\left(z^{[r-1]}\right) := \delta^{[r-1]}$$

$$\implies \frac{\partial J}{\partial W^{[r-1]}} = \delta^{[r-1]} a^{[r-2]T}, \quad \frac{\partial J}{\partial z^{[r-1]}} = \delta^{[r-1]}$$

Continue for layers $r - 2, \ldots, 1$.

20 / 25

Reviews 23rd October, 2020

- Supervised Learning
 - Discriminative Algorithms
 - Generative Algorithms
 - Kernel and SVM
- Neural Networks
- Unsupervised Learning

k-means

Algorithm 1: *k*-means

Input: Training data $\{x^{(1)}, \dots, x^{(n)}\}$; number of clusters k

- 1 Initialize $c^{(1)}, \ldots, c^{(k)} \in \mathbb{R}^d$ as clustering centers
- 2 while not converge do
- 3 Assign each $x^{(i)}$ to its closest clustering centers $c^{(j)}$
- 4 Take the mean of each cluster as new clustering center
- 5 end

Property

k-means tries to minimize the following loss function approximately:

$$\min_{\left\{c^{(1)}, \dots, c^{(k)}\right\}} \sum_{j=1}^{n} \left\| x^{(i)} - c^{(j(i))} \right\|_{2}^{2}, \quad \text{where } j\left(i\right) = \operatorname*{argmin}_{j' \in \left\{1, \dots, k\right\}} \left\| x^{(i)} - c^{(j')} \right\|_{2}^{2}$$

However, it does not guarantee to find the global minimum.

Gaussian Mixture Model (GMM)

Formulation

Assume each data point $x^{(i)}$ is generated independently through the following procedure:

- **3** Sample $z^{(i)} \sim \operatorname{Multinomial}(\phi)$, where $\sum_{j=1}^k \phi_j = 1$
- $\textbf{ Sample } x^{(i)} \sim \mathcal{N}\left(\mu_{z^{(i)}}, \Sigma_{z^{(i)}}\right)$

How to estimate parameters ϕ , $\{\mu_1, \dots, \mu_k\}$ and $\{\Sigma_1, \dots, \Sigma_k\}$ if $z^{(i)}$ cannot be observed?

Maximum Likelihood

$$\begin{split} \ell\left(\theta\right) &= \sum_{i=1}^{n} \log \left(\sum_{j=1}^{k} \phi_{j} p(x^{(i)}; \mu_{j}, \Sigma_{j}) \right), \\ \text{where } p(x^{(i)}; \mu_{j}, \Sigma_{j}) &= \frac{1}{\sqrt{\left(2\pi\right)^{d} |\Sigma_{j}|}} \exp \left(-\frac{1}{2} (x^{(i)} - \mu_{j})^{T} \Sigma_{j}^{-1} (x^{(i)} - \mu_{j}) \right) \end{split}$$

This is too complicated to optimize directly!

Expectation-Maximization (EM)

Jensen's Inequality

By Jensen's inequality, for any distribution Q_i over $\{1,\ldots,k\}$, we have

$$\sum_{i=1}^{n} \log \left(\sum_{j=1}^{m} Q_{i}\left(j\right) \frac{p(x^{(i)}, z^{(i)} = j; \theta)}{Q_{i}\left(j\right)} \right) \geq \sum_{i=1}^{n} \sum_{j=1}^{m} Q_{i}\left(j\right) \log \frac{p(x^{(i)}, z^{(i)} = j; \theta)}{Q_{i}\left(j\right)} := \text{ELBO}\left(\theta\right)$$

Theorem

If we take

$$Q_i(j) = p(z^{(i)} = j \mid x^{(i)}; \theta^{(t)})$$
 and let $\theta^{(t+1)} := \operatorname{argmax}_{\theta} \operatorname{ELBO}(\theta)$, we then have $\ell(\theta^{(t+1)}) \ge \ell(\theta^{(t)})$ (proved in lecture).

Algorithm 2: EM Algorithm

Input: Training data $\{x^{(1)}, \dots, x^{(n)}\}$

- 1 Initialize $\theta^{(0)}$ by some random guess
- 2 for t = 0, 1, 2, ... do
- 3 Set $Q_i(j) = p(z^{(i)} = j \mid x^{(i)}; \theta^{(t)})$ for each i, j; // E-ste
- 4 Set $\theta^{(t+1)} = \operatorname{argmax}_{\theta} \operatorname{ELBO}(\theta)$; // M-step
- 5 end

EM in GMM

Posterior of $z^{(i)}$

$$p(z^{(i)} = j \mid x^{(i)}; \theta^{(t)}) = \frac{\phi_j^{(t)} p(x^{(i)}; \mu_j^{(t)}, \Sigma_j^{(t)})}{\sum_{j'=1}^k \phi_{j'}^{(t)} p(x^{(i)}; \mu_{j'}^{(t)}, \Sigma_{j'}^{(t)})}$$

GMM Update Rules

By defining $w_i^{(i)} = p(z^{(i)} = j \mid x^{(i)}; \theta^{(t)})$, we have

$$\phi_j^{(t+1)} = \frac{\sum_{i=1}^n w_j^{(i)}}{n}, \quad \mu_j^{(t+1)} = \frac{\sum_{i=1}^n w_j^{(i)} x^{(i)}}{\sum_{i=1}^n w_j^{(i)}}, \quad \forall \ j \in \{1, \dots, k\}$$

$$\Sigma_{j}^{(t+1)} = \frac{\sum_{i=1}^{n} w_{j}^{(i)} (x^{(i)} - \mu_{j}^{(t+1)}) (x^{(i)} - \mu_{j}^{(t+1)})^{T}}{\sum_{i=1}^{n} w_{j}^{(i)}}, \quad \forall j \in \{1, \dots, k\}$$