Практическая работа №12 РАСЧЕТ МОЛОТКОВОЙ ДРОБИЛКИ

Цель работы: изучение теоретических основ процесса измельчения твердых материалов; знакомство с классификацией дробилок, их конструкциями и принципом работы; выполнение расчета молотковой дробилки.

Задание: выполнить расчет молотковой дробилки, если заданы: D - диаметр ротора дробилки, м; v - минимальная окружная скорость молотков, м/c; конструктивные размеры молотка прямо угольной формы с одним отверстием (рис. 11.3): a - длина, м; b - ширина, м; δ - высота, м; c - расстояние от центра тяжести молотка до оси подвеса, м; l - расстояние от оси подвеса до конца молотка, м; I - I, II - II, III - III - сечения молотка.

Теоретическая часть

Процессы измельчения (рис. 11.1) условно подразделяют на дробление (крупное, среднее и мелкое) и измельчение (тонкое и сверхтонкое).

Рис. 11.1. Способы измельчения материалов: а - раздавливание; б - раскалывание; в - удар; г - истирание

В большинстве случаев эти виды воздействия на материал используют комбинированно; при этом обычно основное значение имеет один из них, что обусловлено конструкцией машины, применяемой для измельчения. Так, дробление твердых и хрупких материалов производят раздавливанием, раскалыванием и ударом, твердых и вязких - раздавливанием и истиранием.

Результат измельчения характеризуется степенью измельчения, равной отношению среднего характерного размера D куска материала до измельчения к среднему характерному размеру d куска после измельчения

$$i = D / d \tag{11.1}$$

					Практическая работа №12					
Изм.	Лист	№ докум.	Подпись	Дата						
Разр	Разраδ.			Расчет молотковой		m.	Лист	Листов		
Прове	≘р.	Шишков			дробилки		1			
Реце	Реценз.									
Н. Контр.						ГГТУ,гр С-31				
Утве	рд.									

Измельчение осуществляется под действием внешних сил, преодолевающих силы взаимного сцепления частиц материала. При дроблении куски твердого материала сначала подвергаются объемной деформации, а затем разрушаются по ослабленным дефектами (макро- и микротрещинами) сечениям с образованием новых поверхностей.

Работа, полезно затрачиваемая на дробление, расходуется на объемную деформацию разрушаемых кусков и на образование новых поверхностей. Полная работа А, Дж, внешних сил при дроблении выразится уравнением Ребиндера

$$A = K + \frac{\sigma_p^2 V}{2E} m_y + k_R \Delta S \alpha \tag{11.2}$$

где К - энергия, расходуемая на процессы деформации и образования продуктов износа рабочих органов измельчаемией машины, Дж; ар - разрушающее напряжение измельчаемого материала, Н/м ; V - объем измельчаемого материала, м ; E - модуль упругости измельчаемого материала, Н/м2; мУ - число циклов деформаций частиц измельчаемого материала; kR энергия, расходуемая на образование 1 м^2 новой поверхности для данного материала, Дж; $\Delta S = Sk$ - Sh - вновь образованная поверхность (Эк, Эн - соответственно общая поверхность материала до и после измельчения), м^2 ; а - без размерный коэффициент, характеризующий процесс образования новой поверхности

$$\alpha = (S_k / S_H)^n \tag{11.3}$$

здесь n - показатель степени, зависящий от условий измельчения.

По своему назначению измельчающие машины условно делятся на дробилки крупного, среднего и мелкого дробления и мельницы тонкого и сверхтонкого измельчения.

По основному способу механического воздействия на материал измельчающие машины можно разделить на раскалывающие, раздавливающие, истирающе-раздавливающие, ударные, ударно-истирающие и коллоидные измельчители.

В зависимости от конструкции различают щековые, конусные, валковые и молотковые дробилки, дезинтеграторы и дисмембраторы, барабанные, кольцевые (ролико-маятниковые), шаровые вибрационные и струйные мельницы.

На пищевых предприятиях большое распространение получили молотковые дробилки - машины ударного действия, используемые для полу-

						Лист
					Практическая работа №12	
Изм.	Лист	№ докум.	Подпись	Дата		

чения высокодисперсной смеси измельченных частиц. Они эффективны при разрушении хрупких (сахара-песка, материалов соли, зерна и др.) и менее эффективны при измельчении влажных продуктов с высоким содержанием жира. В таких разрушение ' машинах продукта происходит в результате уда ров по нему стальных молотков, ударов частиц продукта о кожух дробилки и истирания их о штампованное сито, являющееся основ ной частью корпуса дробилки.

Молотковая дробилка высокодисперсной измельченных устроена образом.

(рис. 11.2) для получения Рис. 8.2. Молотковая дробилка: 1 - корпус; 2 - шкив; 3 смеси камера для вентиляторного колеса; 4 - вентиляторное колесо; 5 - неподвижная дека; 6 - коробке для магнитов; частиц 7 - постоянные магниты; 8 - приемный бункер; 9 -СЛЕДУЮЩИМ крышка; 10 - ротор; 11 - сито; 12 - планка; 13 - щель подачи воздуха

В корпусе 1 смонтированы ротор 10 с молотками и на одном валу с ним вентиляторное колесо 4; сменное сито 11 и неподвижная дека 5. Вентиляторное колесо вращается в камере 3 корпуса дробилки. На корпусе расположен приемный бункер 8, а в бункере - задвижка для регулирования поступающего продукта.

Для очистки исходного продукта от металлопримесей в латунной коробке 6 установлены постоянные магниты 7. В передней стенке корпуса предусмотрены щели 13 для добавочной подачи воздуха в дробилку. Величина этих щелей регулируется специальной планкой 12. Ротор 10 дробилки приводится во вращение от электродвигателя через клиноременную передачу и шкив 2. Наличие крышки 9 в корпусе и консольное расположение ротора позволяют легко заменять молотки и сита при износе.

Изм.	Лист	№ докум.	Подпись	Дата

Расчетная часть

Чтобы на вал и подшипники не передавались импульсы от молотков, квадрат радиуса инерции молотка r_c относительно точки его подвеса к диску должен быть равен расстоянию с от центра тяжести молотка до оси подвеса, умноженному на расстояние l от той же оси подвеса до конца молотка, т.е.

$$r_c^2 = c \cdot l = \tag{11.4}$$

где с - расстояние от центра тяжести молотка до оси подвеса, м; 1 - расстояние от оси подвеса до конца молотка, м.

Таблица 11.1 - Варианты индивидуальных заданий

Номер	D	b,	a,	v,	δ,	Марка				
варианта	M	M	M	м/с	M	дробилки				
1	0,031	0,035	0,080	78	0,008	А1-КДО				
2	0,032	0,035	0,080	78	0,008					
3	0,033	0,035	0,080	79	0,008					
4	0,034	0,035	0,080	79	0,008					
5	0,035	0,035	0,081	80	0,008					
6	0,035	0,036	0,081	80	0,008					
7	0,034	0,036	0,081	81	0,008	ДДК				
8	0,034	0,036	0,081	81	0,009					
9	0,033	0,036	0,081	82	0,009					
10	0,033	0,036	0,082	82	0,009					
11	0,032	0,036	0,082	83	0,009					
12	0,032	0,037	0,082	83	0,009					
13	0,031	0,037	0,082	84	0,009	А1-КДП				
14	0,031	0,037	0,082	84	0,009					
15	0,031	0,037	0,083	83	0,009					
16	0,032	0,037	0,083	83	0,009					
17	0,032	0,037	0,083	82	0,008					
18	0,032	0,038	0,083	82	0,008					
19	0,033	0,038	0,083	81	0,008	ДДМ				
20	0,033	0,038	0,084	81	0,008					
21	0,034	0,038	0,084	80	0,008					
22	0,034	0,038	0,084	80	0,008					
23	0,035	0,039	0,085	79	0,009					
24	0,035	0,039	0,085	79	0,009					
25	0,036	0,039	0,085	78	0,009					

Для соблюдения этого условия координаты точки подвеса пластинчатого молотка прямоугольной формы с одним отверстием (рис. 11.3) определяем по уравнению

					Практическая работа №12	
١.	Лист	№ докум.	Подпись	Дата	1	İ

$$c = (a^2 + b^2) / 6a = \tag{11.5}$$

Где а и b – соответственно длина и ширина молотка, м (рис. 11.3)

Рис. 11.3. Молоток прямоугольной формы с одним отверстием

Квадрат радиуса инерции молотка относительно его центра тяжести,

$$r_{u,m}^2 = (a^2 + b^2)/12 = \tag{11.6}$$

Квадрат радиуса инерции молотка относительно его оси подвеса,

$$r_o^2 = r_{u,m}^2 + c^2 = \tag{11.7}$$

Расстояние от конца молотка до его оси подвеса

$$l_1 = c + 0.5a = \tag{11.8}$$

Проверка обеспечения безударной работы молотка

$$r_c^2 = c \cdot l_1 = \tag{11.9}$$

Конструктивное назначение расстояния от оси подвеса молотка до оси ротора (во избежание нарушения устойчивой работы молотковой дробилки это расстояние должно быть больше расстояния от конца молотка до его оси подвеса)

$$l_0 > l_1$$
 _{или} $l_0 = l_1 + (3...6) \cdot 10^{-3}$ (11.10)

Радиус наиболее удаленной от оси ротора точки молотка R1, м

$$R_1 = l_0 + l_1 = \tag{11.11}$$

Частота вращения ротора, с⁻¹

$$\omega \ge v / R_1 = \tag{11.12}$$

Центробежная сила инерции молотков F, H

$$F = G_M \cdot \omega^2 \cdot R_c = \tag{11.13}$$

где $G_m = V_m \rho_m$ - масса молотка, кг; V_M - объем молотка, м 3 ; $p_M = 7800$

ı							Лист
						Практическая работа №12	
ı	Изм.	Лист	№ докум.	Подпись	Дата		

 $\kappa \Gamma/M^3$ - плотность стали; $Rc = l_0 + c$ - радиус окружности расположения центров тяжести молотков, м.

Диаметр оси подвеса молотка d, м,

$$d = 1.36\sqrt[3]{F \cdot \delta / [\sigma]_u} = \tag{11.14}$$

где $[\sigma]_u = 10^8$ Па - допускаемое напряжение при изгибе. Толщина ротора H, м

$$H \ge \frac{F}{d[\sigma]_{c_{M}}} = \tag{11.15}$$

где $[\sigma]_{CM} = 8.10^7 \, \text{Па}$ - допускаемое напряжение при смятии.

Минимальный размер перемычки между отверстиями под оси под оси подвеса и наружной кромкой диска h_{min} , м

$$h_{\min} \ge \frac{0.5F}{\delta \cdot [\sigma]_{co}} = \tag{11.16}$$

где $[\sigma]_{C_{\pi}} = 175 \cdot 10^6 \, \text{Па}$ - допускаемое напряжение на сдвиг.

Наружный радиус диска R_d

$$R_{\delta} = l_0 + 0.5d + h_{\min} = \tag{11.17}$$

Диаметр вала в опасном сечении у шкива $d_{\rm o}$, м

$$d_0 = 0.052\sqrt[3]{N/\omega} = \tag{11.18}$$

Производительность молотковой дробилки Q, кг/с

$$Q = K_1 \rho_n D^2 L \omega = \tag{11.19}$$

где K_1 - эмпирический коэффициент, который зависит от типа и размеров ячеек ситовой поверхности, физико-механических свойств сырья (вид, прочность крупность и др.); $K_1 = (1,3...1,7) \ 10^{-4}$ для сит с размером отверстий до 3 мм; K_1 = $(2,2...5,2) \ 10^{-4}$ для чешуйчатых сит с размером отверстий от 3 до 10 мм (меньшие размеры K_1 принимают для сит с меньшими размерами отверстий); ρ_n =900 (сахар-песок)- плотность измельчаемого продукта, кг/м³; L - длина ротора дробилки, м; L = (0,32...0,64)D.

Мощность электродвигателя молотковой дробилки N, кВт

$$N = K_1 K_2 \rho_n D^2 L \omega = \tag{11.20}$$

где $K_2 = (6,4...10,5)$ - эмпирический коэффициент, учитывающий степень измельчения продукта (меньшее значение K_2 принимают при грубом измельчении, а большее - при тонком).

						Лист
					Практическая работа №12	
Изм.	Лист	№ докум.	Подпись	Дата		

Определим напряжения, возникающие в молотке от центробежной силы. Напряжение при одноосном растяжении, возникающее в сечении I-I (см. рис. 11.3), Па

$$\sigma_{1-1} = \frac{F}{(b-d)\delta} = \tag{11.21}$$

Допускаемое напряжение при этом определяется по формуле

$$\left|\sigma\right| = \frac{\sigma_T}{n} = \tag{11.22}$$

где n - запас прочности (n = 5 - для молотка), $\sigma_T = 950 \ 10^6 \ \Pi a$. Напряжение сдвига τ , Πa , в сечениях II-II и III III (см. рис. 11.3)

$$\tau = \frac{F}{\delta(a - c - d)} = \tag{11.23}$$

Напряжение смятия σ_{cm} , Πa , возникающее в молотке

$$\sigma_{\rm CM} = \frac{F}{\delta d} = \tag{11.24}$$

Расчетные значения напряжений на растяжение, сдвиг и смятие сравнивают с предельно допустимыми значениями напряжений для стали $30 \text{X}\Gamma\text{C}$.

Вывод: изучили теоретические основы процесса измельчения твердых материалов; знакомство с классификацией дробилок, их конструкциями и принципом работы; выполнение расчета молотковой дробилки.

Изм.	Лист	№ докум.	Подпись	Дата