Searching for Alignment in Face Recognition

Xiaqing Xu¹, Qiang Meng¹, Yunxiao Qin², Jianzhu Guo^{3,4}, Chenxu Zhao⁵, Feng Zhou¹, Zhen Lei^{3,4}

¹AIBEE, Beijing, China, ²Northwestern Polytechnical University, Xian, China ³ CBSR & NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China School of Artificial Intelligence, University of Chinese Academy of Sciences

⁵ Academy of Sciences, Mininglamp Technology, Beijing, China

Introduction

Significant differences between matching scores are observed.

• Goal: Search for the optimal template for face recognition.

Face Alignment

Re-formulate conventional alignment process (red path) with template i to blue path:

- Align face I with a base landmarks R_0 to \mathbf{I}_0^a .
- Crop the corresponding area based on transformation A_i .
- Resize the cropped image.

Let $m_i = w_b \cdot s_i$, $\delta_i = y_i/s_i$ and define alignment policy $\boldsymbol{p} = \{m, \delta\}$.

 \Longrightarrow Goal now is to search for the optimal policy p*.

Proposed Method

• Search Space

• Search Strategy

$$p^* = \operatorname{argmax}_{p \in \mathcal{P}} ACC_{val}(f(w^*|p))$$
s.t. $w^* = \operatorname{argmin}_{w} \mathcal{L}_{train} f(w|p)$

Face Alignment Policy Search

Require: Current policy search space \mathcal{P} , SuperROI $\mathbf{p}_0 = \{m_{max}, 0\}$, population size of models N. 1: Initialize N models $f(w|\boldsymbol{p}_0)$ 2: for each model $f(w|\mathbf{p}_0)$ while not end of training $w \leftarrow \text{step}(w|p) \triangleright \text{train current model with}$ policy **p** $v \leftarrow ACC_{val}(f(w|\boldsymbol{p}))$ > evaluation if ready(f, v) then check v's performance among all models if v meets requirement1 then generate w', p' via Intersection based CrossoverIf p' doesn't exist currently then 10: $w, oldsymbol{p} \leftarrow w', oldsymbol{p}'$ 11: else $w, \boldsymbol{p} \leftarrow explore(w', \boldsymbol{p}')$ 13: elif v meets requirement2 then 14: get w', p' through exploit15: $w, \boldsymbol{p} \leftarrow explore(w', \boldsymbol{p}')$ 16:

Other Terminologies

- SuperROI. An initialized Region of Interest (ROI) containing all internal features (eyes, nose and mouth) and external features (jaw-line, ears, part of the hair).
- Intersection based Crossover.

$$p' \leftarrow \operatorname{argmax}_{p \in \mathcal{P}} \mathbf{iou}(A(p), A_{1,2})$$
 $i^* = \operatorname{argmax}_{i \in \{1,2\}} \mathbf{iou}(A(p'), A_i)$
 $w' \leftarrow w_{i^*}$

$$p_{i \rightarrow A_i, w_i}$$

$$iou \rightarrow i^*$$

$$iou \rightarrow i^*$$

FAPS Benchmark

Benchmark	CASIA	MS-Celeb-1M-v1c	
Searching Set	CASIA	Reduced MS-Celeb-1M-v1c	
Training Set	CASIA	MS-Celeb-1M-v1c	
Validation Set	CCW	CCW	
	LFW	LFW	
Test Set	AgeDB-30	AgeDB-30	
	CPLFW	CPLFW	
	CALFW	CALFW	
	MultiPIE	$\operatorname{MultiPIE}$	
		IJB-A	

Expriments

• Verification performance at different alignment policies.

Training Set	Method	LFW	AgeDB-30	CALFW	CPLFW
CASIA	ReST	99.03	-	-	-
	ArcFace (190,-7)	99.43	94.42	90.92	85.15
	MFR (198,-15)	99.43	94.47	91.15	84.75
CASIA	TigthROI~(160,0)	99.17	94.23	91.15	85.07
	SuperROI~(232,0)	99.43	94.47	90.48	83.97
	baseline (184,4)	99.45	95.03	91.07	85.88
	$FAPS_C (192,4)$	99.48	$\boldsymbol{95.25}$	$\boldsymbol{92.07}$	85.43
MS1M	GridFace	99.70	-	-	-
	ArcFace (190,-7)	99.72	98.02	95.23	87.98
	MFR (198,-15)	99.77	97.78	95.47	87.28
	<i>TigthROI</i> (160,0)	99.73	97.95	95.47	88.13
	SuperROI~(232,0)	99.77	$\boldsymbol{98.25}$	95.47	88.05
	$FAPS_{C} (192,4)$	99.78	98.10	95.78	88.12
	$FAPS_{M}$ (200,4)	99.82	98.08	95.65	88.95

• Rank-1 recognition rates for different poses on MultiPIE.

7.7 9 7.6 9 7.1 9 7.5 9	99.3 99.7 99.7 99.3 99.6
7.6 9 7.1 9 7.5 9	99.7 99.3
7.1 9 7.5 9	99.3
7.5 9	
	99.6
0 0	
5.3 9	9.7
.7 9	99.2
.8 10	00.0
.9 10	0.00
.4 10	00.0
0.0	99.9
.0 10	00.0
.8 10	0.00
3 3	8.8 10 8.9 10 8.4 10 8.0 9 9.0 10

• Results on IJB-A with searched policies $FAPS_C$ and $FAPS_M$.

$\mathrm{Method} \downarrow$	Verification		Identification	
$\mathrm{Metric} \rightarrow$	@FAR = 0.01	@FAR = 0.001	@Rank-1	@Rank-5
GridFace	92.1 ± 0.8	83.9 ± 1.4	92.9 ± 1.0	96.2 ± 0.5
ArcFace (190,-7)	94.5 ± 0.6	87.1 ± 1.4	93.1 ± 0.8	95.5 ± 0.4
MFR (198,-15)	94.7 ± 0.6	88.6 ± 1.0	93.7 ± 0.7	96.0 ± 0.6
TigthROI (160,0)	93.6 ± 0.8	82.1 ± 2.8	92.4 ± 0.7	95.0 ± 0.6
SuperROI~(232,0)	95.1 ± 0.7	87.4 ± 1.9	93.7 ± 0.8	95.8 ± 0.5
$\overline{\text{FAPS}_{C} (192,4)}$	94.8 ± 0.6	89.7 ± 1.4	93.8 ± 0.8	95.9 ± 0.5
FAPS _M (200,4)	95.1 ± 0.6	91.2 ± 0.6	94.1 ± 0.7	$\textbf{96.4}\pm\textbf{0.4}$

• Verification of searched policies' generalization

Alignment Policy	LFW	AgeDB-30	CALFW	CPLFW
ArcFace (190,-7)	99.10	93.18	89.05	78.43
MFR $(198,-15)$	99.12	93.30	89.45	79.22
$\overline{TigthROI~(160,0)}$	99.02	93.73	88.78	79.30
SuperROI~(232,0)	99.18	93.38	88.80	79.22
FAPS _C (192,4)	99.20	94.02	89.47	80.28

Explore function

Require: current alignment policy $p = \{m, \delta\}$, SuperROI, magnitude parameters $\mathbf{s} = \{s_m, s_\delta\}$

18: return p with highest v among training

update model populations with new $f(w|\mathbf{p})$

- 1: for param in p
- if random(0, 1) < 0.2 then
- sample param uniformly from search space else
- level = [0,1,2,3] with probability [0,1, 0.3,[0.3, 0.3]
- if random(0,1) < 0.5 then
- $param = param level \times s_{param}$ else
- $param = param + level \times s_{param}$
- Clip param to stay within SuperROI 10:
- Visulization