Exercise Sheet 5

due: 01.12.2022 at 23:55

Validation & Regularization

Exercise T5.1: Validation

(tutorial)

- (a) What is validation and why is it needed?
- (b) What is the difference between overfitting and underfitting?
- (c) Discuss the techniques test set method and cross validation to perform validation.
- (d) How can hyperparameters (e.g. number of layers/neurons, regularization strength) of a model be selected using these techniques, and how can the resulting model be validated?

Exercise T5.2: Regularization

(tutorial)

(a) What is the effect of the following alternative regularization terms, when minimizing the total training cost function ("risk"), $R_{[\underline{\mathbf{w}}]} = E_{[\mathbf{w}]}^T + \lambda E_{[\mathbf{w}]}^R$ for d-dim. parameters $\underline{\mathbf{w}}$?

$$\begin{array}{lcl} E_{[\underline{\mathbf{w}}]}^R & = & \frac{1}{2p} \, ||\underline{\mathbf{w}}||_2^2 = \frac{1}{2p} \sum_{i=1}^d w_i^2 & (L_2 \text{ norm regularization: "weight decay"}) \\ E_{[\underline{\mathbf{w}}]}^R & = & \frac{1}{p} \, ||\underline{\mathbf{w}}||_1 = \frac{1}{p} \sum_{i=1}^d |w_i| & (L_1 \text{ norm regularization: "sparsify" / "Lasso"}) \end{array}$$

(b) What is the optimal weight parameter vector $\underline{\mathbf{w}}^*$ with minimal risk $R_{[\underline{\mathbf{w}}]}$ for a linear neuron with a quadratic training cost function and weight decay regularization?

Exercise T5.3: Nonlinear basis functions

(tutorial)

In order to fit highly non-linear functions, many machine learning approaches use a linear neuron on an alternate representation of the input samples $\underline{\mathbf{x}}$. This representation is an "expansion" of $\underline{\mathbf{x}}$ by non-linear basis functions $\phi_i(\underline{\mathbf{x}})$, i.e., $y(\underline{\mathbf{x}}) = \sum_{i=1}^d w_i \, \phi_i(\underline{\mathbf{x}})$. Here we want to discuss the set of all monomials up to some order.

- (a) What are monomials and how is a linear combination of monomials called?
- (b) Monomials can grow very large in magnitude for large input values. To standardize the input space, one often *spheres* the data before performing the expansion. How is "sphering" or "whitening" performed?
- (c) Monomial basis functions can be regularized by weight decay.
- (d) What is the optimal weight parameter vector $\underline{\mathbf{w}}^*$ with minimal risk $R_{[\underline{\mathbf{w}}]}$ for a linear neuron with basis functions ϕ_i with a quadratic training cost function and weight decay regularization?

Exercise H5.1: Cross-validation

(homework, 10 points)

This exercise asks you to assess the impact of a regularization penalty on the parameters of a linear connectionist neuron to solve a regression task with a quadratic cost function. We will only consider a quadratic regularization term for this exercise.

The Data:

The file <code>TrainingRidge.csv</code> contains the *training set*, with 200 observations and corresponding target values (ground truth/labels) $\{(\underline{\mathbf{x}}^{(\alpha)}, y_T^{(\alpha)})\}$. The two input variables for each observation $\underline{\mathbf{x}}^{(\alpha)} = (x_1^{(\alpha)}, x_2^{(\alpha)})^{\mathsf{T}}$ appear in the first 2 columns. The target values $y_T^{(\alpha)}$ appear in the last column.

The data contained in the second file ValidationRidge.csv serves as the *validation set*. It follows the same format as above. The *validation set* contains 1476 pairs $\{(\underline{\mathbf{x}}^{(\beta)}, y_T^{(\beta)})\}$. The values of $\underline{\mathbf{x}}^{(\beta)} = (x_1^{(\beta)}, x_2^{(\beta)})^{\top}$ form a 36×41 grid in input space.

(a) (3 point) **Preprocessing**: Monomials (see details below in (b)) can grow very large in magnitude for bigger input values. Perform *sphering* of the training data, such that the resulting input samples are decorrelated, have zero mean and unit variance. The sphered data is given by

$$\{\underline{\mathbf{x}}_{\mathrm{sphered}}^{(\alpha)}\}_{\alpha=1}^{p} \quad \mathrm{with} \quad \underline{\mathbf{x}}_{\mathrm{sphered}}^{(\alpha)} = \underbrace{\underline{\mathbf{\Lambda}}^{-\frac{1}{2}}\underline{\mathbf{E}}^{\top}}_{\substack{\mathrm{sphering} \\ \mathrm{transformation}}} \underline{\mathbf{x}}_{\mathrm{centered}}^{(\alpha)}.$$

Here

 $\underline{\mathbf{x}}_{\mathrm{centered}}^{(\alpha)} = \underline{\mathbf{x}}^{(\alpha)} - \langle \underline{\mathbf{x}} \rangle$ denotes the centered data point α w.r.t. the center of the training data $\langle \underline{\mathbf{x}} \rangle = \frac{1}{p} \sum_{\alpha=1}^{p} \underline{\mathbf{x}}^{(\alpha)}$,

 $\underline{\mathbf{E}} = (\underline{\mathbf{e}}_1, \dots, \underline{\mathbf{e}}_N)$ is the eigenvector matrix and $\underline{\mathbf{\Lambda}} = \operatorname{diag}(\lambda_1, \dots, \lambda_N)$ is the eigenvalue matrix for the eigendecomposition

$$\underline{\mathbf{C}}\,\underline{\mathbf{e}}_i = \lambda_i\underline{\mathbf{e}}_i$$

of the covariance matrix $\underline{\mathbf{C}}$ with $C_{ij} = \frac{1}{p} \sum_{\alpha=1}^{p} x_{\text{centered},i}^{(\alpha)} x_{\text{centered},j}^{(\alpha)}$.

<u>Deliverables</u>: Plot the sphered training and validation sets using two separate scatter-plots. Color the points according to their label.

Important:

- Use the same $\langle \underline{\mathbf{x}} \rangle$ computed from the training data for centering the validation data.
- Use the same sphering transformation obtained from the eigendecomposition of the centered *training* data's covariance matrix to sphere the validation set (i.e., do not compute a separate sphering transformation for the validation set).

(b) (2 points) Feature Expansion: A single linear neuron is not able to predict the target labels very well. To increase the representational power of the model class, *expand* the sphered 2D input to all possible monomials up to degree 9.

Here, a monomial of order k corresponds to a term $x_1^l x_2^m$ with l + m = k.

The model should contain all 55 terms $x_1^l x_2^m$ with l+m=k for k=0,1,...,9. These monomials can be enumerated by $i=1,\ldots,d=55$ defining $\phi_i(\underline{\mathbf{x}})$. The prediction function which feeds into the quadratic cost measure $E_{[\mathbf{w}]}^T$ is given by

$$y(\underline{\mathbf{x}};\underline{\mathbf{w}}) = \underline{\mathbf{w}}^{\top} \underline{\phi}(\underline{\mathbf{x}}), \quad \text{with} \quad \underline{\mathbf{w}}^* = (\underline{\Phi} \underline{\Phi}^{\top})^{-1} \underline{\Phi} \underline{\mathbf{y}}_T^{\top}$$

with input matrix $\underline{\Phi} \in \mathbb{R}^{d,p}$ [having components $\Phi_{i,\alpha} = \phi_i(\underline{\mathbf{x}}^{(\alpha)})$] and a label vector $\underline{\mathbf{y}}_T \in \mathbb{R}^{1,p}$ (with components $y_T^{(\alpha)}$).

Deliverables: Using the validation set, produce the following plots:

- (i) The first 10 monomials $\phi_i(\mathbf{x})$ ($i \in [0, 9]$) as a function of x_1, x_2 . Visalize each monomial separately. You can visualize each monomial by using either a scatter plot or a 36×41 "heatmap"¹.
- (ii) The predicted function $y(\mathbf{x}; \mathbf{w})$ as a function of x_1, x_2 , also as a scatter plot or "heatmap" where the colors indicate the prediction value.
- (c) (3 points) To avoid over-fitting when using the polynomial expansion above, we apply regularization using a weight-decay term, i.e., the risk $R_{[\underline{\mathbf{w}}]} = E_{[\underline{\mathbf{w}}]}^T + \lambda_{\frac{1}{2}} ||\underline{\mathbf{w}}||_2^2$ has to be minimized. For a regularization strength $\lambda > 0$, an input matrix $\underline{\Phi} \in \mathbb{R}^{d,p}$ and a label vector $\mathbf{y}_T \in \mathbb{R}^{1,p}$ (as above), the prediction function is

$$y(\underline{\mathbf{x}};\underline{\mathbf{w}}) = \underline{\mathbf{w}}^{\top} \phi(\underline{\mathbf{x}}), \quad \text{with} \quad \underline{\mathbf{w}}^* = (\underline{\mathbf{\Phi}} \underline{\mathbf{\Phi}}^{\top} + \lambda \underline{\mathbf{I}})^{-1} \underline{\mathbf{\Phi}} \underline{\mathbf{y}}_T^{\top},$$

where **I** denotes the identity matrix.

To find the best value for the regularization coefficient, perform a 10-fold cross-validation with the training set for all $\lambda \in \{10^z \mid z \in \{-4, -3.9, -3.8, \dots, 3.9, 4\}\}$. Each fold splits the original training set into a smaller training set and a test set.

Deliverables:

- (i) Plot the average and standard deviation of the MSE (mean squared error, i.e., average quadratic cost of the predictions) over the *test* set for all folds against λ (as an error-bar plot with a logarithmic x-axis for λ).
- (ii) Idenitfy the value of the best regularization coefficient λ_T^* , which has the minimal average MSE over all test folds.
- (iii) Train the model using the entire original training set regularized by λ_T^* . Plot the true labels of the validation set alongside your model's predictions. What is the MSE of the model on the validation set?
- (d) (2 points) To compare these empirical estimates of bias and variance with the true generalization error, repeat (c) with the same polynomial expansion of the validation set. That is:
 - (i) Replace your original training set with the validation set and treat this as your new training set.

 $^{^{1}36 \}times 41 = 1476$ is the number of observations in the validation set.

- (ii) Keep the same sphering transformation as before. Reuse the same matrix of eigenvectors $\underline{\mathbf{E}}$ and matrix of eigenvalues $\underline{\boldsymbol{\Lambda}}$ that you used to preprocess the data in (a).
- (iii) Perform the same expansion as in (b) nd cross validation in order to identify the best regularization coefficient $\leadsto \lambda_G^*$ using this data.
- (iv) What is the MSE of the model on the entire original *validation set*? Keep in mind that this is data you actually used for training the model.
- (e) Is λ_G^* different from λ_T^* ? Compare by plotting the function learned in (c) using λ_T^* with the function that is learned in (d) using λ_G^* on
 - (i) the original training set and
 - (ii) the original validation set.