Теория компактных операторов в гильбертовом пространстве.

Напоминание. Пусть H — гильбертово пространство, $A: H \mapsto H$ линейный непрерывный оператор. A называется компактным, если $\forall \{f_n\} \subset H$ такой, что $\|f_n\| \leq R \ \forall n$ следует $\exists A f_{n_k} - \varphi$ ундаментальная в H подпоследовательность или, что равносильно $\forall \varepsilon > 0 \ \exists A_\varepsilon : H \mapsto H$ линейный и непрерывный и $\dim \operatorname{Im} A_\varepsilon < +\infty$, тогда $\|A - A_\varepsilon\| \leq \varepsilon$.

Для прикладных целей пусть A — компактный оператор и $\lambda \in \mathbb{C}$, и $f \in H$.

$$(I - \lambda A)u = f$$

где $u \in H$ и нужно найти u.

Из компактности $\forall \varepsilon>0\colon \varepsilon |\lambda|<1$ $\exists A_\varepsilon: H\mapsto H$ — линейный и непрерывный оператор, $\dim\operatorname{Im} A_\varepsilon<+\infty$ и $\|A_\varepsilon-A\|<\varepsilon$. Тогда

$$(I - \lambda A) = (I - \lambda A \pm \lambda A_{\varepsilon}) = (I - \lambda (A - A_{\varepsilon}) - \lambda A_{\varepsilon})$$

Обозначим $\lambda(A-A_{\varepsilon})$ как $T_{\varepsilon}(\lambda)$.

$$||T_{\varepsilon}(\lambda)|| = ||\lambda|| ||A - A_{\varepsilon}|| < |\lambda| \varepsilon < 1$$

А значит по теореме Неймана $\exists (I-T_{\varepsilon}(\lambda))^{-1}: H\mapsto H$ линейный и непрерывный и

$$(I - T_{\varepsilon}(\lambda))^{-1} = \sum_{n=0}^{\infty} (T_{\varepsilon}(\lambda))^n$$

ряд сходящийся по операторной норме. Уравнение

$$(I - \lambda A)u = f$$

называется уравнением Фредгольма 2-го рода. Оно равносильно выражению

$$(I - T_{\varepsilon}(\lambda) - \lambda A_{\varepsilon})u = f$$

Разобьём полученное выражение

$$(I - T_{\varepsilon}(\lambda))(I - \lambda(I - T_{\varepsilon}(\lambda))^{-1}A_{\varepsilon}))u = f$$

Обозначим $(I - T_{\varepsilon}(\lambda))^{-1}$ как $L_{\varepsilon}(\lambda)$ Получаем

$$(I - \lambda L_{\varepsilon}(\lambda)A_{\varepsilon})u = f_{\varepsilon}(\lambda) = L_{\varepsilon}(\lambda)f$$

Обозначим $C_{\varepsilon}(\lambda) = L_{\varepsilon}(\lambda)A_{\varepsilon}$. Этот оператор линейно непрерывный и его образ изоморфен образу A_{ε} . Отсюда dim C_{ε} = dim A_{ε} .

Утверждение 1. A — компактный оператор в H, тогда A^* также компактный оператор в H.

Доказательство. Рассмотрим оператор такой, что

$$\forall \varepsilon \; \exists A_{\varepsilon} \colon A_{\varepsilon} f = \sum_{k=1}^{N} (f, h_k) g_k \quad h_k, g_k \in H$$

Тогда $||A - A_{\varepsilon}|| < \varepsilon$.

$$||A^* - A_{\varepsilon}^*|| = ||(A - A_{\varepsilon})^*|| = ||A - A_{\varepsilon}|| < \varepsilon$$

Надо показать, что A_{ε}^* — компактный оператор. Покажем, что

$$A_{\varepsilon}^* g = \sum_{k=1}^N (g, g_k) h_k$$

так как

$$(f, A_{\varepsilon}^* g) = (A_{\varepsilon} f, g) = \sum_{k=1}^{N} (f, h_k)(g_k, g) =$$

$$= \sum_{k=1}^{N} (f, (g, g_k) h_k) = (f, \sum_{k=1}^{N} (g, g_k) h_k) = (f, A_{\varepsilon}^* g)$$

Получаем, что $\dim A_{\varepsilon}^* \leq N \subset \operatorname{Lin}(h_1, \ldots, h_N)$. Следовательно A_{ε}^* — компактный оператор.

Теорема 1 (первая теорема Фредгольма). Пусть A — компактный оператор в H и $\lambda \neq 0$, тогда $\dim \ker A_{\lambda} < +\infty$, rде $A_{\lambda} = A - \lambda I$)

Доказательство. Заметим, что, во-первых, если $L \subset H$ подпространство и dim ker $L < +\infty$, то это равносильно тому, что для любой ограниченной последовательность из L имеет фундаментальную подпоследовательность. В прямую сторону это следует из теоремы Больцано-Вейерштрасса. Покажем справедливость в обратную сторону. Если вдруг dim $L = +\infty$, то $\exists \{f_n\}_{n=1}^{\infty}$ последовательность линейно независимых векторов. Подвергнем её процедуре ортогонализации Грама-Шмитда и получим $\{g_n\}_{n=1}^{\infty}$ subset L, и $g_m \perp g_m$ $n \neq m$, и $g_n = \text{Lin}\{f_1, \ldots, f_n\}$ так как

$$0 \neq g_1 = f_1$$

$$0 \neq g_2 = f_2 + \alpha g_1 \perp g_1$$

$$\vdots$$

$$0 \neq g_n = f_n + p_1 g_1 + \dots + p_{n-1} g_{n-1} \perp g_1, \dots, g_{n-1}$$

Строим $h_n = \frac{g_n}{\|g_n\|}$. Тогда $\{h_n\}_{n=1}^{\infty}$ — ортонормированная последовательность в L, а значит не имеет фундаментальной подпоследовательности, так как

$$||h_n - h_m||^2 = ||h_n|| + ||h_m||^2 = \sqrt{2}$$
 $n \neq m$

получили противоречие с условием, что $\forall \{f_n\} \subset \ker A_\lambda$ — ограниченная последовательность. Af_{n_k} — фундаментальная последовательность образов в силу компактности A.

$$A_{\lambda}f_{n_k} = Af_{n_k} - \lambda f_{n_k} \equiv 0$$

Следовательно $f_{n_k} = \frac{1}{\lambda} A f_{n_k}$ — автоматически фундаментальная