Selection on within-individual variation in flowering time in Lathyrus vernus

Data preparation

Alicia Valdés

31 January, 2023

Contents

Read data for individuals from Excel file	2
Read data for individual flowers from Excel files	2
Error in 1989	2
Rename columns	3
Calculate number of seeds per fruit and proportion of seeds preyed in 1989	4
Change column types	4
Recalculate moments with individual flower data	4
Data prep individual flower data	4
Recalculate moments	6
Merge Johan's data for individuals for the 3 years	7
Merge with my calculated moments	7
Compare values of moments between Johan's calculations and mine	7
Plots of skewness and kurtosis	9
Keep only my calculated moments	14
Transform dates	14
Standardize traits and relativize fitness within years	16
Save clean data as .csv	16

Session info

Read data for individuals from Excel file

Read data for individual flowers from Excel files

```
data_id_flowers_87 <- read_excel("data/edited/individual_flower_characteristics.xlsx",</pre>
                        sheet = "1987")
data_id_flowers_88 <- read_excel("data/edited/individual_flower_characteristics.xlsx",</pre>
                        sheet = "1988")
data_id_flowers_89 <- read_excel("data/edited/individual_flower_characteristics.xlsx",</pre>
                        sheet = "1989")
data_Ind2_33_1989 <- read_excel("data/edited/individual_characteristics_Ind2_33_1989.xlsx",
                                 sheet = "to_R")
nrow(data_ids_87)
## [1] 231
# 231 rows
nrow(data_ids_88)
## [1] 169
# 169 rows
nrow(data_ids_89)
## [1] 96
# 96 rows
```

Error in 1989

Ind = 2:33 appears twice, there was a problem with this Ind, I will remove those two records and add a new record for Ind 2:33 with all moments that were recalculated in Excel.

```
subset(data_ids_89,Ind=="2:33")
## # A tibble: 2 x 17
##
        ID Subplot Ind
                          'Mean (MFD)'
                                          SD
                                                Skew Kurtosis 'Max (LFD)' 'Min (FFD)'
            <dbl> <chr>
##
     <dbl>
                                 <dbl> <dbl>
                                              <dbl>
                                                        <dbl>
                                                                     <dbl>
                                                                                  <dbl>
## 1
        42
                 2 2:33
                                  1.60 1.08 0.900
                                                       -0.170
                                                                      3.84
                                                                                  0.518
        52
## 2
                 2 2:33
                                  3.84 NA
                                              NA
                                                       NA
                                                                      3.84
                                                                                  3.84
##
     'Range (Duration)' 'Flower N' Fruits 'Fruit init (fr/fl)' 'Total seeds'
##
                  <dbl>
                              <dbl> <dbl>
                                                            <dbl>
                                                                          <dbl>
## 1
                   3.32
                                 17
                                                           0.471
                                                                             27
                                         8
## 2
                                  1
                                         0
                                                                              0
     'Preyed seeds' 'Intact seeds (fitness)' Imputed
##
              <dbl>
                                         <dbl>
## 1
               6.36
                                          20.6
## 2
               0
                                          0
                                                     0
data_ids_89 <- data_ids_89 %>% filter(!(Ind=="2:33"))
data_ids_89 <- bind_rows(data_ids_89,data_Ind2_33_1989)</pre>
```

Rename columns

```
data_ids_87 <- data_ids_87 %>%
  rename(number = ID, subplot = Subplot, id = Ind, avFD = `Mean (MFD)`,
         skew = Skew, kurt = Kurtosis,LFD = `Max (LFD)`, FFD = `Min (FFD)`,
         dur = `Range (Duration)`, n_fl = `Flower N`, n_fr = Fruits,
         fr_init = `Fruit init (fr/fl)`, n_seed = `Total seeds`,
         n_preyed_seed = `Preyed seeds`,
         fitness = `Intact seeds (fitness)`,
         imp_seed_preyed = Imputed,
         n_seed_per_fr = `Seeds per fruit`,
         prop_seed_preyed = `Proportion preyed`)
data_ids_88 <- data_ids_88 %>%
  rename(number = ID, subplot = Subplot, id = Ind, avFD = `Mean (MFD)`,
         skew = Skew, kurt = Kurtosis,LFD = `Max (LFD)`, FFD = `Min (FFD)`,
         dur = `Range (Duration)`, n fl = `Flower N`, n fr = Fruits,
         fr_init = `Fruit init (fr/fl)`, n_seed = `Total seeds`,
         n_preyed_seed = `Preyed seeds`,
         fitness = `Intact seeds (fitness)`,
         imp_seed_preyed = Imputed,
         n_seed_per_fr = `Seeds per fruit`,
         prop_seed_preyed = `Proportion preyed`)
data_ids_89 <- data_ids_89 %>%
  rename(number = ID, subplot = Subplot, id = Ind, avFD = `Mean (MFD)`,
         skew = Skew, kurt = Kurtosis,LFD = `Max (LFD)`, FFD = `Min (FFD)`,
         dur = `Range (Duration)`, n_fl = `Flower N`, n_fr = Fruits,
         fr_init = `Fruit init (fr/fl)`, n_seed = `Total seeds`,
         n preyed seed = `Preyed seeds`,
         fitness = `Intact seeds (fitness)`,
         imp_seed_preyed = Imputed)
```

Calculate number of seeds per fruit and proportion of seeds preyed in 1989

Change column types

```
data_ids_87 <- data_ids_87 %>%
  mutate(imp_seed_preyed = as.factor(imp_seed_preyed))
data_ids_88 <- data_ids_88 %>%
  mutate(imp_seed_preyed = as.factor(imp_seed_preyed))
data_ids_89 <- data_ids_89 %>%
  mutate(imp_seed_preyed = as.factor(imp_seed_preyed))
# See if I keep integer values as "double"!
```

Recalculate moments with individual flower data

Data prep individual flower data

```
data_id_flowers_87 <- data_id_flowers_87 %>%
  select(RUTA,GENET...2, New Phenoad; based on intervals) %>%
  mutate(id = paste(RUTA,GENET...2,sep=":"),
         opening_date = `New Phenoadj based on intervals`) %>%
  rename(subplot = RUTA, number = GENET...2) %>%
  select(-`New Phenoadj based on intervals`)
data_id_flowers_88 <- data_id_flowers_88 %>%
  select(RUTA...1,GENET...2, `New Phenoadj based on intervals`) %>%
  mutate(id = paste(RUTA...1,GENET...2,sep=":"),
         opening_date = `New Phenoadj based on intervals`) %>%
  rename(subplot = RUTA...1, number = GENET...2) %>%
  select(-`New Phenoadj based on intervals`) %>%
  filter(!(subplot==8|subplot==9))
data_id_flowers_89 <- data_id_flowers_89 %>%
  select(RUTA,GENET, `Corrected pheno`) %>%
  mutate(id = paste(RUTA,GENET,sep=":"),
         opening_date = `Corrected pheno`) %>%
  rename(subplot = RUTA, number = GENET) %>%
  select(-`Corrected pheno`)
```

See if the number of individuals in each subplot matches betwen individual data and individual flower data.

```
data_ids_87%>%group_by(subplot)%>%summarise(n_indiv=n())
```

```
## # A tibble: 6 x 2
##
     subplot n_indiv
       <dbl>
               <int>
##
## 1
           1
                  76
## 2
           2
                  25
## 3
           3
                  60
## 4
           4
                  23
## 5
           5
                  28
## 6
           6
                  19
data_id_flowers_87%>%group_by(subplot)%>%summarise(n_indiv=n_distinct(id))
## # A tibble: 6 x 2
##
     subplot n_indiv
##
       <dbl>
             <int>
## 1
           1
                  76
## 2
           2
                  25
           3
                  60
## 3
## 4
           4
                  23
                  28
## 5
           5
## 6
           6
                  19
data_ids_88%>%group_by(subplot)%>%summarise(n_indiv=n())
## # A tibble: 6 x 2
##
     subplot n_indiv
##
       <dbl>
              <int>
## 1
           1
                  33
## 2
           2
                  23
## 3
           3
                  32
## 4
           4
                  28
## 5
           5
                  21
## 6
           6
data_id_flowers_88%>%group_by(subplot)%>%summarise(n_indiv=n_distinct(id))
## # A tibble: 6 x 2
     subplot n_indiv
##
       <dbl>
              <int>
## 1
                  33
           1
                  23
## 2
           2
## 3
                  32
           3
## 4
           4
                  28
           5
## 5
                  21
## 6
           6
                  32
data_ids_89%>%group_by(subplot)%>%summarise(n_indiv=n())
## # A tibble: 3 x 2
     subplot n_indiv
       <dbl> <int>
##
```

```
## 1
           1
                  38
## 2
           2
                   15
## 3
           3
                   42
data_id_flowers_89%>%group_by(subplot)%>%summarise(n_indiv=n_distinct(id))
## # A tibble: 3 x 2
##
     subplot n_indiv
       <dbl>
               <int>
##
## 1
           1
                   38
           2
## 2
                   15
## 3
           3
                   42
Yes, it matches.
See if the id values match between individual data and individual flower data.
unique(anti_join(data_id_flowers_87, data_ids_87, by = "id")$id)
## character(0)
# Show values of id from data_id_flowers_87 that are not in data_ids_87
unique(anti_join(data_id_flowers_88, data_ids_88, by = "id")$id)
## character(0)
# Show values of id from data_id_flowers_88 that are not in data_ids_88
unique(anti_join(data_id_flowers_89, data_ids_89, by = "id")$id)
## character(0)
```

Show values of id from data_id_flowers_89 that are not in data_ids_89

Yes, they match.

Recalculate moments

I have recalculated all moments to check that everything matches with Johan's data for individuals (I might remove other moments later and keep only new versions of skewness and kurtosis).

```
mutate(year=as.factor(1987))
moments_88 <- data_id_flowers_88 %>%
  group_by(id) %>%
  summarise(avFD_a=mean(opening_date),FFD_a=min(opening_date),
            MFD_a=median(opening_date), # Calculate also median
            LFD_a=max(opening_date),SD_a=sd(opening_date),
            var_a=var(opening_date), # Calculate also variance
            skew a=ifelse(n()>2,skewness(opening date),NA),
            kurt a=ifelse(n()>2,kurtosis(opening date),NA),
            # Calculate skewness and kurtosis when n fl>2
            dur_a=LFD_a-FFD_a) %>%
  mutate(year=as.factor(1988))
moments_89 <- data_id_flowers_89 %>%
  group_by(id) %>%
  summarise(avFD_a=mean(opening_date),FFD_a=min(opening_date),
            MFD_a=median(opening_date), # Calculate also median
            LFD_a=max(opening_date),SD_a=sd(opening_date),
            var_a=var(opening_date), # Calculate also variance
            skew_a=ifelse(n()>2,skewness(opening_date),NA),
            kurt_a=ifelse(n()>2,kurtosis(opening_date),NA),
            # Calculate skewness and kurtosis when n_fl>2
            dur_a=LFD_a-FFD_a) %>%
  mutate(year=as.factor(1989))
moments <- full_join(full_join(moments_87,moments_88),moments_89)</pre>
```

Merge Johan's data for individuals for the 3 years

```
data_ids_87 <- data_ids_87 %>%
  mutate(year = as.integer(1987))
data_ids_88 <- data_ids_88 %>%
  mutate(year = as.integer(1988))
data_ids_89 <- data_ids_89 %>%
  mutate(year = as.integer(1989))
data_ids <- full_join(full_join(data_ids_87,data_ids_88),data_ids_89)
data_ids <- data_ids %>% mutate(year = as.factor(year))
```

Merge with my calculated moments

```
data_ids <- full_join(data_ids, moments)</pre>
```

Compare values of moments between Johan's calculations and mine

In how many ids are my calculations different from Johan's?

```
nrow(data_ids %>% filter(!near(avFD_a,avFD)) %>%
       # Using near() to avoid small differences in decimals
       select(year,number,subplot,id,avFD,avFD_a))
## [1] 0
# None after editing data
nrow(data_ids %>% filter(!near(FFD_a,FFD))%>%
       select(year,number,subplot,id,FFD,FFD_a))
## [1] 0
# None after editing data
nrow(data_ids %>% filter(!near(LFD_a,LFD))%>%
       select(year,number,subplot,id,LFD,LFD_a))
## [1] 0
# None after editing data
nrow(data_ids %>% filter(!near(SD_a,SD))%>%
       select(year,number,subplot,id,SD,SD_a))
## [1] 0
# None after editing data
nrow(data_ids %>% filter(!near(skew_a,skew))%>%
       select(year,number,subplot,id,skew,skew_a))
## [1] 415
# 415 rows are different
nrow(data_ids %>% filter(!near(kurt_a,kurt))%>%
       select(year,number,subplot,id,kurt,kurt_a))
## [1] 377
# 377 rows are different
nrow(data_ids %>% filter(!near(dur_a,dur))%>%
       select(year,number,subplot,id,dur,dur_a))
## [1] 0
# None after editing data
```

All moments have the same values except for skewness and kurtosis.

The skewness function that I used (from the moments package) calculates g1, the skewness of a sample based on the third moment of the data divided by the cube root of the second moment of the data, using the formula:

```
g1=(sum((X - mean(X))^3)/n)/(sum((X - mean(X))^2)/n)(3/2)
```

This is the formula for sample skewness, also known as Pearson's moment coefficient of skewness.

Excel uses the adjusted Fisher–Pearson standardized moment coefficient G1:

```
G1 = (sqrt(n()(n()-1))/(n()-2))g1
```

The kurtosis function that I used (from the moments package) calculates Pearson's measure of kurtosis: $n*(sum((X-mean(X))^4))/((sum((X-mean(X))^2)^2)))$

Excel uses:

```
((n(n+1))/((n-1)(n-2)(n-3))sum(((X-mean(X))/sd(X))^4))-((3((n-1)^2))/((n-2)(n-3)))
```

Plots of skewness and kurtosis

```
ggplot(data_ids,aes(x=skew,y=skew_a))+
geom_vline(xintercept=0,linetype=2)+geom_hline(yintercept=0,linetype=2)+
geom_point(shape=20,size=3,alpha=0.25,color="darkred")+
xlab("Skewness (Excel)")+ylab("Skewness (R)")
```



```
ggplot(data_ids,aes(x=kurt,y=kurt_a))+
geom_point(shape=20,size=3,alpha=0.25,color="darkred")+
xlab("Kurtosis (Excel)")+ylab("Kurtosis (R)")
```


So far I will keep only my calculated moments

Keep only my calculated moments

Transform dates

The dates are given in terms of four- or five-day intervals after the first recording. Convert them to calendar dates, then to julian dates, and then to number of days after the vernal equinox.

First create a table with information on each date for each year.

```
by = 4, length.out = 10),
                         # 1987: Start 18 May, 4-day intervals
                         ifelse(year==1988, seq(as.Date("1988-05-15"),
                                                by = 5, length.out = 10),
                                # 1988: Start 15 May, 5-day intervals
                                seq(as.Date("1989-05-07"),
                                    by = 5, length.out = 10))),
                  # 1989: Start 7 May, 5-day intervals
                  # Calendar date
                  origin = "1970-01-01"),
 date_julian = yday(date_calendar), # Julian date
 date_vernal = ifelse(year==1987,date_calendar-as.Date("1987-03-21"),
                       ifelse(year==1988,date_calendar-as.Date("1988-03-20"),
                              date calendar-as.Date("1989-03-20"))))
# Days after vernal equinox
# Data on vernal equinox dates from https://data.giss.nasa.gov/ar5/srvernal.html
```

Calculate, for each year, the intercept and slope of the relationship among date_num (x) and date_vernal or date_calendar (y).

Transform avFD, FFD, MFD and LFD to calendar dates (avFFD_c, FFD_c, MFD_c, LFD_c) and to days after vernal equinox (avFFD_v, FFD_v, MFD_v, LFD_v).

Standardize traits and relativize fitness within years

```
data_ids<-data_ids%>%
  group_by(year)%>%
  mutate(across(c(n_fl,avFD:dur), scale, .names = "{col}_std"))%>%
  mutate(across(c(n_fl_std:dur_std),as.vector))%>%
  mutate(fitness_rel = fitness / mean(fitness))%>%
  ungroup()
# When standardizing, we get the same result for FFD, MFD and LFD
# than for FFD_v, MFD_v and LFD_v, so I used the first
```

Save clean data as .csv

```
write_csv(data_ids,"data/clean/data_ids.csv")
```

Session info

```
sessionInfo()
```

```
## R version 4.2.2 (2022-10-31 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 22621)
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.utf8
## [2] LC_CTYPE=English_United States.utf8
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United States.utf8
## attached base packages:
## [1] stats
                graphics grDevices utils
                                               datasets methods
                                                                   base
## other attached packages:
## [1] ggridges_0.5.4
                           ggthemes_4.2.4
                                              RColorBrewer_1.1-3 moments_0.14.1
## [5] lubridate_1.9.0
                           timechange_0.2.0
                                              readxl_1.4.1
                                                                 forcats_0.5.2
## [9] stringr_1.5.0
                           dplyr_1.0.10
                                              purrr_1.0.1
                                                                 readr_2.1.3
## [13] tidyr_1.2.1
                           tibble_3.1.8
                                              ggplot2_3.4.0
                                                                 tidyverse_1.3.2
## loaded via a namespace (and not attached):
## [1] assertthat_0.2.1
                            digest_0.6.31
                                                utf8_1.2.2
## [4] R6_2.5.1
                            cellranger_1.1.0
                                                backports_1.4.1
## [7] reprex_2.0.2
                            evaluate_0.20
                                                highr_0.10
## [10] httr_1.4.4
                            pillar_1.8.1
                                                rlang_1.0.6
```

##	[13]	googlesheets4_1.0.1	rstudioapi_0.14	rmarkdown_2.19
##	[16]	labeling_0.4.2	<pre>googledrive_2.0.0</pre>	bit_4.0.5
##	[19]	munsell_0.5.0	broom_1.0.2	compiler_4.2.2
##	[22]	modelr_0.1.10	xfun_0.36	pkgconfig_2.0.3
##	[25]	htmltools_0.5.4	tidyselect_1.2.0	fansi_1.0.3
##	[28]	crayon_1.5.2	tzdb_0.3.0	dbplyr_2.3.0
##	[31]	withr_2.5.0	grid_4.2.2	jsonlite_1.8.4
##	[34]	gtable_0.3.1	lifecycle_1.0.3	DBI_1.1.3
##	[37]	magrittr_2.0.3	scales_1.2.1	vroom_1.6.0
##	[40]	cli_3.6.0	stringi_1.7.12	farver_2.1.1
##	[43]	fs_1.5.2	xm12_1.3.3	ellipsis_0.3.2
##	[46]	generics_0.1.3	vctrs_0.5.1	tools_4.2.2
##	[49]	bit64_4.0.5	glue_1.6.2	hms_1.1.2
##	[52]	parallel_4.2.2	fastmap_1.1.0	yaml_2.3.6
##	[55]	colorspace_2.0-3	gargle_1.2.1	rvest_1.0.3
##	[58]	knitr_1.41	haven_2.5.1	