Aszimptotika

Dr. Ásványi Tibor jegyzetéből October 10, 2024

Tartalom

1 Függvények aszimptotikus viselkedése

 $\mathbf{2}$

1 Függvények aszimptotikus viselkedése

E fejezet célja, hogy tisztázza a programok hatékonyságának nagyságrendjeivel kapcsolatok alapvető fogalmakat, és az ezekhez kepcsolódó függvényosztályok legfontosabb tulajdonságait.

1. Definíció. Valamely P(n) tulajdonság elég nagy n-ekre pontosan akkor teljesül, ha

 $\exists N \in \mathbb{N}, \ hogy \ \forall n \in \mathbb{N}, \ n \geq N : P(n) \ igaz.$

2. Definíció. $Az \ f \in \mathbb{R} \to \mathbb{R}$ függvény AP (aszimptotikusan pozitív), ha elég nagy n-ekre f(n) > 0.

Azaz egy $f \in \mathbb{R} \to \mathbb{R}$ függvény AP pontosan akkor, ha

$$\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N : f(n) > 0.$$

Egy tetszőleges helyes program futási ideje és tárigénye is nyilvánvalóan, tetszőleges megfelelő mértékegységben (másodperc, perc Mbyte stb.) mérve pozitív számérték. Amikor (alsó és / vagy felső) becsléseket végzünk a futási időre vagy a tárigényre, legtöbbször az input adatszerkezetek méretének függvényében végezzük a becsléseket. Így a becsléseket leíró függvények természetesen $\mathbb{N} \to \mathbb{R}$ típusúak. Megkövetelhetnénk, hogy $\mathbb{N} \to \mathbb{P}$ típusúak legyenek, de annak érdekében, hogy képleteink minél egyszerűbbek legyenek, általában megelégszünk azzal, hogy a becsléseket leíró függvények aszimptotikusan pozitívak (AP) legyenek. Legyen

 $\mathbf{P} := \{f: \mathbb{N} \to \mathbb{R}: f \text{ aszimptotikusan pozitív függvény}\}.$

3. Definíció. Legyen $g \in P$. Ekkor legyen O(g) egy függvényhalmaz ami olyan $f \in P$ függvényekből áll, amiket elég nagy n helyettesítési értékekre, megfelelő $d \in \mathbb{R}^+$ szorzóval felülről becsül a g függvény, azaz

 $O(g) := \{ f \in \mathbb{P} : \exists d \in \mathbb{R}^+, \text{ hogy elég nagy } n\text{-ekre } d \cdot g(n) \geq f(n) \}.$

4. Definíció. Legyen $g \in P$. Ekkor legyen $\Omega(g)$ egy függvényhalmaz ami olyan $f \in P$ függvényekből áll, amiket elég nagy n helyettesítési értékekre, megfelelő $d \in \mathbb{R}^+$ szorzóval alulról becsül a g függvény, azaz

 $\Omega(g) := \{ f \in \mathcal{P} : \exists d \in \mathbb{R}^+, \text{ hogy elég nagy } n\text{-ekre } d \cdot g(n) \leq f(n) \}.$

5. Definíció. Legyen $g \in P$. Ekkor legyen

$$\Theta(g) := O(g) \cap \Omega(g).$$

Következmény. Egy $g \in P$ esetén a $\Theta(g)$ függvényhalmaz olyan $f \in P$ függvényekből áll, amiket elég nagy n helyettesítési értékekre, megfelelő pozitív konstans szorzókkal alulról és felülről is becsül a g függvény

 $\Theta(g) = \{ f \in P : \exists c, \, d > 0, \text{ hogy elég nagy } n\text{-ekre} c \cdot g(n) \leq f(n) \leq d \cdot g(n). \}$