Notes on the Structure C^k Functions

[Drew Remmenga]

June 27, 2025

Abstract

C^k Smooth Functions

A function with k continuous derivatives on a domain X is denoted by $C^k(X)$ [4] There is an ordering:

$$C^0 \supset C^1 \supset \cdots \supset C^\omega \supset C^\infty$$

Each C^k satisfies the axioms of a ring.

Proof. We take: $f, g, h \in C^k$. Closure under addition: $(f+g) \in C^k$ because differentiation is linear:

$$\partial^{\alpha}(f+q) = \partial^{\alpha}f + \partial^{\alpha}q$$

Closure under multiplication: $f \cdot g \in C^k$ by Leibniz rule we know:

$$\partial^{\alpha} = \sum_{\beta < \alpha} {\alpha \choose \beta} (\partial^{\beta} f) (\partial^{\alpha - \beta} g)$$

which remains C^k continuous. Associativity under Addition and Multiplication:

$$(f+q)+h=f+(q+h), (f \cdot q) \cdot h=f \cdot (q \cdot h)$$

Commutativity of Addition and Multiplication:

$$f + g = g + f, f \cdot g = g \cdot h$$

Additive identity: given by the zero function 0(X) = 0, $0 \in \mathbb{C}^k$ and satisfies:

$$f + 0 = f, \forall f \in C^k$$

Additive inverses: $\forall f \in C^k$ the function $\exists -f \in C^k$ and satisfies:

$$f + (-f) = 0$$

Multiplicative identity: the constant function $\exists 1(X) = 1 \in C^k$ and satisfies:

$$1 \cdot f = f, \forall f \in C^k$$

Distributivity of Multiplication over Addition:

$$f \cdot (g+h) = f \cdot g + f \cdot h$$

There is an additional structure of C^k functions. Namely we can compose them with each other. Denote \circ composition of functions f(g(X)) for $f,g \in C^k$ when the domain $X = \mathbb{R}^d$ then this is a semigroup under this operation.

Proof. Take $f, g \in C^k$ as before. The space is closed under the operation: follows from the chain rule and the fact that derivatives of f and g up to k are continuous. Associativity: inherited from function composition.

$$(f \circ q) \circ h = f \circ (q \circ h)$$

An identity element $\exists id(x) = x \in C^k$ and satisfies $f \circ id = id \circ f = f$.

Invertible C^k Functions

If we restrict C^k to the set of invertible functions we can satisfy all the group axioms under \circ . Take Diff^k as the set of invertible C^k functions. Then there is an ordering:

Then the only missing property to satisfy the group axioms was the existence of inverses and by construction now for a function f we have the necessary inverse f^{-1} such that:

$$f \circ f^{-1} = \mathrm{id}$$

Indeed $Diff^k$ is an infinite dimensional Lie Algebra and it is perfect. [1]

Res and Ind

We can imagine a forgetful functor inspired by representation theory and the $\operatorname{Res}_H^G(V)$ or the restriction from a group G to a subgroup H over a representation V. Define the functor $\operatorname{Res}:C^k\to\operatorname{Diff}^k$. We can imagine a left adjoint functor to rebuild C^k from Diff^k through the operations $(+,\cdot,\circ)$ on elements $f_1,\cdots,f_n\in\operatorname{Diff}^k$. Specify the functor $\operatorname{Ind}:\operatorname{Diff}^k\to C^k$. Take an arbitrary element $h\in C^k$ we would like to construct h with a looser countable Schauder basis [3] using the ring and semi-group operations of 0 elements in Diff^k . Let $A:=\operatorname{span}_{+,\cdot,\circ}\{f_1,\cdots,f_n|f_i\in\operatorname{Diff}^k\}^1$. Then by Stone-Weierstrass A is dense in C^k at least for $X=\mathbb{R}^d$ [2]. So we can generate h with the topological closure of A given by \overline{A} . However this may not be true for an arbitrary smooth manifold X (harry ball theorem?) [2].

References

- [1] Augustin Banyaga. The Structure of Classical Diffeomorphism Groups, volume 400 of Mathematics and Its Applications. Springer, Dordrecht, 1997. First systematic treatment of the algebraic structure of diffeomorphism groups.
- [2] Jean Dieudonné. Foundations of Modern Analysis, volume 1 of Treatise on Analysis. Academic Press, 1969. Covers both Stone-Weierstrass (§7.3) and Hairy Ball Theorem via Poincaré-Hopf.
- [3] Christopher Heil. Basis Theory in Banach Spaces. Springer, 2018.
- [4] Serge Lang. Fundamentals of Differential Geometry. Graduate Texts in Mathematics. Springer, 1999.

¹Often it is necessary in a Schauder basis our functions given by f_i be orthonormal by an inner-product $\langle f_i, f_j \rangle = \delta_{i,j}$ and we don't specify that same condition here.