Corrigé et barème de l'IE5 de Physique du 10 avril 2015

Ne pas hésiter à mettre des bonus (0,25pt) pour tout commentaire intelligent ou des malus (-0,25pt) pour tout résultat manifestement aberrant sans commentaire (valeur littérale non homogène, ou valeur numérique irréaliste). *Pénaliser les présentations irrespectueuses (-> -1pt max)*

Les rédactions floues ou inexistantes doivent être sanctionnées à chaque question.

Exercice 1 sur 11,5 points	
1)	
Référentiel terrestre supposé galiléen	0.25
Système : {Bouée}	0.25
à l'équilibre : PFS : $\vec{P} + \vec{\Pi}_A = \vec{0}$	0.25
Choix du repère	0.25
Projection selon l'axe z (choisi par ex. vers le haut): $-\rho_a Vg + \rho_e V_{immerg\acute{e}}g = 0$	0.25
4 -3	0.23
avec $V = \frac{4}{3}\pi \left(R_e^3 - R_i^3\right)$ et $V_{immerg\acute{e}} = \frac{\frac{4}{3}\pi R_e^3}{2}$	
$d'où: R_i = \sqrt[3]{R_e^3 \left(1 - \frac{\rho_e}{2\rho_a}\right)}$	0.5
<u>A.N.</u> : $R_i = 48.9$ cm (d'après les données de l'énoncé => résultats avec 3 chiffres significatifs)	0.5
$m_{bou\acute{e}} = \rho_a V = \rho_a \frac{4}{3} \pi (R_e^3 - R_i^3) = \frac{2}{3} \pi \rho_e R_e^3$	0.25
$\underline{A.N.}: m_{\text{bou\'e}} = 262 \text{ kg}$	0.25
2)	
Système : {Bouée + deux cordes}	0.25
Schéma avec les forces représentées	0.5
à l'équilibre : PFS : $\vec{P} + \vec{\Pi}'_{A} + \vec{T}_{1} + \vec{T}_{2} = \vec{0}$	0.25
avec $\ \vec{T}_1\ = \ \vec{T}_2\ = \ \vec{T}\ $ par symétrie	0.25
Choix du repère	0.25
Projection selon l'axe z (choisi par ex. vers le haut):	
$-m_{bou\acute{e}g} + \frac{4}{3}\pi R_e^3 \rho_e g - 2 \ \vec{T}\ \cos \alpha = 0 \qquad \text{(ici l'angle } \alpha \text{ est l'angle entre la verticale}$	0.25
et la corde mais on peut choisir l'angle adjacent complémentaire)	
$\int L^2 - \left(\frac{d}{a}\right)$	0.25
avec $m_{bou\acute{e}e} = \frac{2}{3}\pi\rho_e R_e^3$ (cf. 1) et $\cos\alpha = \frac{\sqrt{L^2 - \left(\frac{d}{2}\right)^2}}{L}$	0.25
d'où après simplification : $\ \vec{T}\ = \frac{1}{3} \frac{\pi \rho_e R_e^3 gL}{\sqrt{L^2 - \left(\frac{d}{2}\right)^2}}$	0.5
A.N.: (avec g=9,81 m.s ⁻²) $\ \vec{T}\ = 1,35 \text{ kN}$	0.5

3) Système : {un bloc de béton}	0.25
Schéma avec les forces représentées	0.25
à l'équilibre : PFS : $\vec{P}_b + \vec{\Pi}_{Ab} + \vec{T}'_1 + \vec{R}_b = \vec{0}$	0.25
avec $\vec{T}'_1 = -\vec{T}_1$	0.25
Projection selon l'axe z (choisi par ex. vers le haut):	0.20
$-\rho_b V_b g + \rho_e V_b g + \ \vec{T}\ \cos \alpha + R_{bz} = 0$	0.25
Or, lorsque $V_b = V_{min}$ alors $R_{bz} = 0$ (limite du contact du bloc sur le sol)	0.25
$d'où: -\rho_b V_{\min} g + \rho_e V_{\min} g + \ \vec{T}\ \cos \alpha = 0$	0.25
$\parallel = \parallel \frac{1}{\pi^2} \mathbb{R}^3$	
$d'où: V_{\min} = \frac{\ \vec{T}\ \cos\alpha}{(\rho_b - \rho_e)g} = \frac{\frac{1}{3}\pi\rho_e R_e^3}{\rho_b - \rho_e}$	0.5
$(\rho_b - \rho_e)g \qquad \rho_b - \rho_e$	0.5
<u>A.N.</u> : $V_{\min} = 93.5 \text{ dm}^3$	0.5
4) Système : {perche}	0.25
Schéma avec les forces représentées (tension du fil BC+ poids de la perche)	0.25
(+ le couple Γ'_{Ay} en A : ne pas pénaliser s'il manque)	
Choix du repère (orientation de l'axe de rotation, par exemple ici Ay vers le fond)	0.25
Equilibre de la perche : $-\Gamma'_{Ay} = \Gamma_{Ay} (\vec{P}_{AB}) + \Gamma_{Ay} (\vec{T})$	0,25
Equilibre de la bouée+blocs+BC (nouveau schéma ou éventuellement schéma	
complété): $\overrightarrow{T_{fil \rightarrow perche}} = -\overrightarrow{T_{perche \rightarrow fil}} = \overrightarrow{P_{bou\acute{e}e}} + 2(\overrightarrow{P_{b\acute{e}ton}} + \overrightarrow{\Pi_{Ab\acute{e}ton}})$	0,25
Calcul du moment des forces ext par rapport à l'axe (Ay), vers le fond:	
$\Gamma_{Ay}(\vec{P}_{AB}) + \Gamma_{Ay}(\vec{T}) = m_{AB}g \frac{l_{AB}}{2} \cos \theta + \left[mg + 2 \times (V_b \rho_b g - V_b \rho_e g) \right] l_{AB} \cos \theta$	0.25
$-\Gamma'_{Ay} = l_{AB}g\cos\theta\left(\frac{m_{AB}}{2} + m + 2V_b\left(\rho_b - \rho_e\right)\right)$	0.5
<u>A.N.</u> : $\Gamma'_{Ay} = -34338$ N.m (pas utile, ne pas mettre de points sur cette AN)	
Plusieurs méthodes (suivant le système choisi) sont possibles ici, ce qu'il est	
important de noter est la rigueur (1pt) et la qualité de la rédaction (1 pt). Par	
exemple on peut choisir un seul système : l'ensemble {perche+bouée+blocs}, mais	
dans ce cas l'étudiant doit discuter le problème du point d'application des poids des blocs de béton	
blocs de beton	
Calcul incertitude par encadrement par exemple :	0.5
$\left \Gamma'_{Ay\max}\right = l_{AB\max}g\cos\theta\left(\frac{m_{AB\max}}{2} + m_{\max} + 2V_{b\max}\left(\rho_b - \rho_e\right)\right)$	0.5
$\underline{A.N.}: \left \Gamma'_{Aymax} \right = 34898 \text{ N.m}$	
$\left \Gamma'_{Ay\min}\right = l_{AB\min}g\cos\theta\left(\frac{m_{AB\min}}{2} + m_{\min} + 2V_{b\min}\left(\rho_b - \rho_e\right)\right)$	
$\underline{A.N.}$: $\left \Gamma'_{Aymin}\right = 33782 \text{ N.m}$	
Finalement, on peut écrire : $ \Gamma'_{Ay} = 34,34 \pm 0,56 \text{ kN.m ou } \Gamma'_{Ay} = 34,3 \pm 0,6 \text{ kN.m}$	0.5
Bien vérifier la concordance du nombre de décimales entre la valeur et l'incertitude	0.5

Exercice 2 sur 6 points

Exercice 2 sur 6 points	
1) La force est donnée par $\vec{F} = \int_{S} P(x) \cdot \vec{n} dS = P(x) S(-\vec{e_x})$. Les forces pressantes	0.5
sont dirigées vers l'extérieur de la paroi (vers –e _x)	
Avec $P(x) = \frac{NRT}{V} = \frac{P_o V_o}{(l_o - x)S} = \frac{P_o l_o}{(l_o - x)}$ (Attention NRT =cst=P _o V _o)	
D'où le résultat $\vec{F} = \frac{P_o l_o S}{(l_o - x)} (-\vec{e_x})$	1
2) $\delta W = \overrightarrow{F}.\overrightarrow{dl} = \frac{P_o l_o S}{(l_o - x)} (\overrightarrow{-e_x}).dx \overrightarrow{e_x} = -\frac{P_o l_o S}{(l_o - x)} dx$	0.5
Remarque: la pression atmosphérique Patm appuyant de l'autre coté, il faut a priori	
en tenir compte, et on a donc en fait: $\delta W = \left(P_{atm} - \frac{P_o l_o S}{(l_o - x)}\right) dx$, mais l'AN montre	(0.5 bonus)
que Po< <patm, commet="" donc="" en="" erreur="" importante="" l'oubliant.<="" ne="" on="" pas="" td="" trop="" une=""><td></td></patm,>	
3) $Ep = -\int -\frac{P_o l_o S}{(l_o - x)} dx = -P_o l_o S \ln(l_o - x) + ct$	0.5
On identifie la constante d'où : $Ep = -P_o l_o S \ln(l_o - x) + P_o l_o S \ln(l_o) = P_o l_o S \ln\left(\frac{l_o}{l_o - x}\right)$	0.5
4) L'énergie cinétique est convertie en énergie potentielle.	
Tout est conservatif donc $\Delta Ep + \Delta Ec = 0$	1
$0 - \frac{1}{2}mv^{2} = -\Delta Ep = -(Ep(fin) - Ep(x = 0)) = -Ep(fin) = -P_{o}l_{o}S \ln(l_{o} / (l_{o} - x))$	
D'où $P_o = \frac{mv^2}{2l_o S \ln\left(\frac{l_o}{l_o - x}\right)}$	1
A.N. $P_o \approx 1.17 MPa \approx 12 bars$	1

Exercice 3 : Question de cours sur la « Dynamique du solide » sur 2,5 pt

1) Quantité de mouvement : $\vec{P} = M \vec{v}_G$ où \vec{v}_G est la vitesse du barycentre = 0 ici	0.5
D'où $\vec{P} = \vec{0}$. Accepter aussi $\vec{P} = \overrightarrow{p_A} + \overrightarrow{p_B} = \vec{0}$ car $\overrightarrow{v_A} = -\overrightarrow{v_B}$	0.3
2) Moment d'inertie par rapport à l'axe (Oz) : $J_{Oz} = 2 \times ML^2$	0.5
3) Moment cinétique par rapport à l'axe (Oz) : $\sigma_{Oz} = J_{Oz}\omega = 2ML^2\omega$	0.5
4)Dans cette partie, les forces extérieures se limitent aux forces de frottement	
Th. du moment cinétique : $\frac{d\sigma_{Oz}}{dt} = J_{Oz}\ddot{\theta} = \Gamma_{\vec{F}orcesFrotement}(Oz)$	0.5
$\ddot{\theta} = cste = \frac{0 - \omega}{\tau} = -\frac{\omega}{\tau}$	0.25
D'où $\Gamma_{\bar{F}orcesFrotement}(Oz) = -2ML^2 \frac{\omega}{\tau}$	0.25