

Page: 1 of 22

FCC COMPLIANCE REPORT

Test report No

: EMC-2013/066

Type of Equipment

: Remote Keyless Entry System (Receiver)

Model Name

: SVI-KORX433

Applicant

: Continental Automotive Systems Corporation

29, Siemens-Road, Icheon-City,

Gyeonggi-Do, 467-080, Korea

Manufacturer

: Continental Automotive Systems Corporation

29, Siemens-Road, Icheon-City,

Gyeonggi-Do, 467-080, Korea

Test standards

: FCC part 15 subpart B, Class B

RSS-Gen Issue 3: 2010

FCC ID

: **SY5KORX433**

Test Procedure and Items

- Radiated Emissions Measurement : ANSI C63.4-2009

Testing Laboratory

: EMC Compliance Ltd.

Test result

Complied

The above equipment was tested by EMC compliance Testing Laboratory for compliance with the requirements of FCC Rules and Regulations. The results of testing in this report apply to the product/system which was tested only. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

These results are deemed satisfactory evidence of compliance with ICES-003 of the Canadian Interference-Causing Equipment Regulations.

Date of receipt: 2012. 12. 17

Date of testing: 2013. 01. 04

Tested by:

AHN, BYUNG-WOO

Issued date: 2013. 01. 10

Approved by:

YEOM, HAN-SEOK

Page: 2 of 22

Contents

1.	Applicant information
2.	Laboratory information
3.	Test system configuration
	3.1 Operation environment5
	3.2 Measurement Uncertainty6
4.	Description of E.U.T
	4.1 General information
	4.2 Product description
	4.3 Auxiliary equipments
	4.4 Test configuration
	4.5 Operating conditions
5.	Summary of test results9
	5.1 Summary of EMI emission test results
6.	Test results
	6.1 Radiated Emission
7.	E.U.T. photographs

Page: 3 of 22

1. Applicant information

Applicant: Continental Automotive Systems Corporation

Address: 29, Siemens-Road, Icheon-City,

Gyeonggi-Do, 467-080, Korea

Telephone: +82-31-645-4864 **Fax:** +82-31-637-0371

E-mail: Sungmin.Jang@continental-corporation.com

Contact name: Jang Sung Min

Manufacturer: Continental Automotive Systems Corporation

Address: 29, Siemens-Road, Icheon-City,

Gyeonggi-Do, 467-080, Korea

Telephone: +82-31-645-4864 **Fax:** +82-31-637-0371

E-mail: Sungmin.Jang@continental-corporation.com

Contact name: Jang Sung Min

Page: 4 of 22

2. Laboratory information

Address

EMC compliance Ltd.

480-5 Sin-dong, Yeongtong-gu, Suwon-city, Gyeonggi-do, 443-390, Korea

Telephone Number: 82 31 336 9919 Facsimile Number: 82 505 299 8311

FCC CAB.: KR0040

VCCI Registration No.: R-3327, G-198, C-3706, T-1849

Industry Canada Registration No.: 8035A

KOLAS NO.: 231

SITE MAP

Page: 5 of 22

3. Test system configuration

3.1 Operation environment

		Temperature	Humidity	Pressure
Chamber(10 m)	:	22 °C	30 % R.H.	_

Test site

These testing items were performed following locations;

Test item	Test site
Conducted Emission	Shielded Room
Radiated Emission	10 m Chamber

Page: 6 of 22

3.2 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC.

The factors contributing to uncertainties are test receiver, cable loss, antenna factor calibration, Antenna directivity, antenna factor variation with height, antenna phase center variation, antenna frequency interpolation, measurement distance variation, site imperfection, mismatch, and system repeatability. Based on CISPR 16-4-2, the measurement uncertainty level with a 95 % confidence level was applied.

Conducted emission measurement (C.L: Approx 95 %, k = 2)				
Shielded Room (CE#1)	9 kHz ~ 150 kHz: ± 3.82 dB			
	150 kHz ~ 30 MHz: ± 3.			
Shielded Room (CE#2)	9 kHz ~ 150 kHz: ± 3.8	2 dB		
Sincided Room (CLii2)	150 kHz ~ 30 MHz: ± 3.	43 dB		
Shielded Room (CE#3)	9 kHz ~ 150 kHz: ± 4.0	0 dB		
Silicided Roolii (CE#3)	150 kHz ~ 30 MHz: ± 3.	63 dB		
Radiated Emission measurement	t (C.L: Approx 95 %, k =	= 2)		
	30 MHz ~ 300 MHz	3 m: + 4.56 dB, - 4.58 dB		
		10 m: + 4.56 dB, - 4.56 dB		
10 61 1 (1171)	300 MHz ~ 1 000 MHz	3 m: + 4.84 dB, - 4.85 dB		
10 m Chamber (#F4)		10 m: + 4.71 dB, - 4.72 dB		
	1 GHz ~ 6 GHz	3 m: + 6.19 dB, - 6.20 dB		
	6 GHz ~ 18 GHz	3 m: + 6.41 dB, - 6.53 dB		
	30 MHz ~ 300 MHz	3 m: + 4.86 dB, - 4.88 dB		
	30 MIL ~ 300 MIL	10 m: + 4.86 dB, - 4.86 dB		
	300 MHz ~ 1 000 MHz	3 m: + 4.98 dB, - 4.99 dB		
10 m Chamber (#F2)	JOO MILE 1 OOO MILE	10 m: + 4.85 dB, - 4.87 dB		
	1 GHz ~ 6 GHz	3 m: + 6.19 dB, - 6.20 dB		
	6 GHz ~ 18 GHz	3 m: + 6.41 dB, - 6.53 dB		

Page: 7 of 22

4. Description of E.U.T.

4.1 General information

433.92 MHz Rx -20~+50 ° C FSK

4.2 Product description

Type of product	Remote Keyless Entry System (Receiver)
Model name (Basic)	SVI-KORX433
Model name (Variant)	-
Difference	-
Trade name	-
Serial no	Engineering Sample
Testing voltage	DC 12 V
Product rating	DC 12 V
Internal clock frequency	433.92 Mb
Note	-

4.3 Auxiliary equipments

Туре	Model / Part #	Serial number	Manufacturer
DC Power Supply	E3632A	KR01009281	Agilent
Smart Key	-	-	-

Page: 8 of 22

4.4 Test configuration

Note	Start Name I/O port		End		Cable	
*			Name	I/O port	Length (m)	Spec.
1	EUT (Remote Keyless Entry System	Power	DC Power Supply	Power	1.5	Non-Shield
2	(Receiver))	ANT	ANT	ANT	0.2	Non-Shield

4.5 Operating conditions

The EUT was configured as normal intended use.

This test was done at worst case.

Test mode	Normal operating
1	Check the RF Receiver Module Operating status.

Page: 9 of 22

5. Summary of test results

In the above configuration tested, The EUT complied with the requirement of the specification

5.1 Summary of EMI emission test results

FCC Part 15 Subpart B (Class B)

ANSI C63.4 - 2009

RSS-Gen Issue 3: 2010

Applied	Test items	Test method	Result
	Conducted Emission	ANSI C63.4 – 2009 RSS-Gen Issue 3: 2010	N/A
\boxtimes	Radiated Emission	ANSI C63.4 – 2009 RSS-Gen Issue 3: 2010	Complied

Page: 10 of 22

6. Test results

6.1 Radiated Emission

Test specification	FCC Part 15, Section 15.109(g), Class B, RSS-Gen Issue 3: 2010				
Testing voltage	DC 12 V	DC 12 V			
Test facility	10 m Chamber (#F2)	10 m Chamber (#F2)			
Test distance	3 m				
Date	2013. 01. 04				
Temperature (°C)	22 °C Humidity (% R.H.) 30 % R.H.				
Remarks	Complied				

6.1.1 Limits of radiated emission measurement

Frequency [Mz]	Class A (dB(µV/m)) @ 10 m	Class B (dB(μV/m)) @ 3 m
30-88	39	40
88-216	43.5	43.5
216-960	46.4	46
Above 960	49.5	54

^{*} Note- Alternative standard: CISPR, Pub. 22 *

6.1.2 Measurement procedure

The test was done at a 10 m chamber with a quasi-peak detector. EUT was placed on a non-metallic table height of 0.8 m above the reference ground plane. Cables were folded back and forth forming a bundle 0.3 m to 0.4 m long and were hanged at a 0.4 m height to the ground plane. Cables connected to EUT were fixed to cause maximum emission. Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength.

Page: 11 of 22

6.1.3 Used equipments

Equipment	Model no.	Serial no.	Makers	Next Cal. Date	Used
Test Receiver	ESCI	100710	R&S	2013.11.06	
Bi-Log Antenna	VULB 9168	9168-440	SCHWARZBECK	2013.10.04	
Amplifier	310N	293004	SONOMA INSTRUMENT	2013.11.06	\boxtimes
3 dB Attenuator	8491A	27444	HP	2013.11.06	
Antenna Mast	MA4000-EP	303	Innco Systems	-	\boxtimes
Turn Table	DT2000S-1t	079	Innco Systems	-	\boxtimes
Horn ANT	3115	00086706	ETS	2013.11.21	
Amplifier	8449B	3008A01802	AGILENT	2013.05.04	
Amplifier	8449B	3008A02343	AGILENT	2013.11.06	
Spectrum Analyzer	FSP7	100289	R&S	2013.12.14	

6.1.4 Sample calculation

The field strength is calculated adding the antenna Factor, cable loss and, Antenna pad adding, subtracting the amplifier gain from the measured reading.

The sample calculation is as follow:

Result = M.R + C.F(A.F + C.L + 3 dB Att - A.G)

M.R = Meter Reading

C.F = Correction Factor

A.F = Antenna Factor

C.L = Cable Loss

A.G= Amplifier Gain

3 dB Att = 3 dB Attenuator

If M.R is 30 dB, A.F 12 dB, C.L 5 dB, 3 dB, A.G 35 dB

The result is 30 + 12 + 5 + 3 - 35 = 15 dB($\mu V/m$)

Page: 12 of 22

6.1.5 Photographs of test setup

* 30 MHz ~ 1 GHz

Page: 13 of 22

6.1.6 Radiated emission measurement result

* Graph and Data

* 30 Mb ~ 1 Gb(SVI-KORX433)

Final Result

No.	Frequency	(P)	Reading	c.f	Result QP	Limit QP	Margin QP	Height	Angle
	[MHz]		[dB(uV)]	[dB(1/m)]	[dB(uV/m)]	[dB(uV/m)]	[dB]	[cm]	[deg]
1	85.788	V	42.4	-19.0	23.4	40.0	16.6	201.0	64.8
2	130.759	Н	32.6	-14.8	17.8	43.5	25.7	201.0	142.1
3	156.221	V	36.7	-13.4	23.3	43.5	20.2	100.0	66.2
4	180.350	V	39.6	-14.7	24.9	43.5	18.6	201.0	33.3
5	195.628	V	39.7	-16.1	23.6	43.5	19.9	100.0	147.4
6	317.848	V	32.8	-11.5	21.3	46.0	24.7	100.0	294.4
7	846.498	Н	27.3	-0.1	27.2	46.0	18.8	100.0	105.2