Introduction to Machine Learning Introduction to Bayesian Classification

Andres Mendez-Vazquez

January 26, 2023

Outline

- 1 Introduction
 - Supervised Learning
 - Handling Noise in Classification
 - Models of Classification
 - Naive Bayes
 - ExamplesThe Naive Bayes Model
 - The Multi-Class Case
- 2

Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution
- $\begin{tabular}{ll} \bullet & \mbox{Influence of the Covariance } \Sigma \\ \bullet & \mbox{Example} \\ \end{tabular}$
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks
- 3
 - Introduction
 - A first solution for the Maximum A Posteriori (MAP)
 - Maximum Likelihood Vs Maximum A Posteriori
 - Properties of the MAP
 - 4 Exercises
 - Some Stuff you can try

Outline

- Introduction
 - Supervised Learning
 - Handling Noise in Classification
 - Models of Classification
 - Naive Bayes
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case
- 2
 - Discriminant Functions and Decision Surfaces
 - Introduction
 - Gaussian Distribution
 - $\buildrel \blacksquare$ Influence of the Covariance Σ
 - Example
 - Maximum Likelihood Principle
 - Maximum Likelihood on a Gaussian
 - Some Remarks
- 3
 - Introduction
 - A first solution for the Maximum A Posteriori (MAP)
 - Maximum Likelihood Vs Maximum A Posteriori
 - Properties of the MAP
 - 4 Exercises
 - Some Stuff you can try

Classification Problem

Goal

Given $oldsymbol{x}_{new}$, provide $f(oldsymbol{x}_{new})$

Outline

- Introduction
 - Supervised Learning
 - Handling Noise in Classification
 - Models of Classification
 - Naive Bayes Examples
 - The Naive Bayes Model
 - The Multi-Class Case
- - Introduction

 - Gaussian Distribution
 - lacksquare Influence of the Covariance Σ Example

 - Maximum Likelihood Principle
 - Maximum Likelihood on a Gaussian
 - Some Remarks
 - - A first solution for the Maximum A Posteriori (MAP)
 - Maximum Likelihood Vs Maximum A Posteriori
 - Properties of the MAP
 - - Some Stuff you can try

How do we handle Noise?

What if we know the noise?

Given a series of observed samples $\{\hat{x}_1,\hat{x}_2,...,\hat{x}_N\}$ with noise $\epsilon \sim N\left(0,1\right)$

We could use our knowledge on the noise, for example additive:

$$\widehat{\boldsymbol{x}}_i = \boldsymbol{x}_i + \epsilon$$

What if we know the noise?

Given a series of observed samples $\{\hat{x}_1,\hat{x}_2,...,\hat{x}_N\}$ with noise $\epsilon \sim N\left(0,1\right)$

We could use our knowledge on the noise, for example additive:

$$\widehat{\boldsymbol{x}}_i = \boldsymbol{x}_i + \epsilon$$

We can use our knowledge of probability to remove such noise

$$E\left[\widehat{\boldsymbol{x}}_{i}\right] = E\left[\boldsymbol{x}_{i} + \epsilon\right] = E\left[\boldsymbol{x}_{i}\right] + E\left[\epsilon\right]$$

What if we know the noise?

Given a series of observed samples $\{\hat{x}_1,\hat{x}_2,...,\hat{x}_N\}$ with noise $\epsilon \sim N\left(0,1\right)$

We could use our knowledge on the noise, for example additive:

$$\widehat{\boldsymbol{x}}_i = \boldsymbol{x}_i + \epsilon$$

We can use our knowledge of probability to remove such noise

$$E\left[\widehat{\boldsymbol{x}}_{i}\right] = E\left[\boldsymbol{x}_{i} + \epsilon\right] = E\left[\boldsymbol{x}_{i}\right] + E\left[\epsilon\right]$$

Then, because $E[\epsilon] = 0$

$$E[\boldsymbol{x}_i] = E[\widehat{\boldsymbol{x}}_i] \approx \frac{1}{N} \sum_{i=1}^{N} \widehat{\boldsymbol{x}}_i$$

In our example

Therefore, we have

The Bayesian Models

• They allow to deal with noise from the samples

Therefore, we have

The Bayesian Models

• They allow to deal with noise from the samples

Quite different from the deterministic models so far

• Unless Samples are Preprocessed to Reduce the Noise

Therefore, we have

The Bayesian Models

• They allow to deal with noise from the samples

Quite different from the deterministic models so far

• Unless Samples are Preprocessed to Reduce the Noise

Something that people in area as Control tend to do

• The importance of Filters as Kalman Filters

Outline

- Introduction
 - Supervised LearningHandling Noise in Classification
 - Models of Classification
 - Naive Bayes
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case
 - Discriminant Functions and Decision Surfaces
 - Introduction
 - Gaussian Distribution
 - $\buildrel \blacksquare$ Influence of the Covariance Σ
 - Example
 - Maximum Likelihood Principle
 - Maximum Likelihood on a Gaussian
 - Some Remarks
- 3 Introduction
 - A first solution for the Maximum A Posteriori (MAP)
 - Maximum Likelihood Vs Maximum A Posteriori
 - Properties of the MAP
- Exercises
 - Some Stuff you can try

Given a Spoken Language

The task is to determine the language that someone is speaking

Given a Spoken Language

The task is to determine the language that someone is speaking

Generative Models

• They try to learn each language.

Given a Spoken Language

The task is to determine the language that someone is speaking

Generative Models

- They try to learn each language.
- Therefore, they try to determine the spoken language based in such learning.

Given a Spoken Language

The task is to determine the language that someone is speaking

Generative Models

- They try to learn each language.
- Therefore, they try to determine the spoken language based in such learning.

Discriminative Models

 They try to determine the linguistic differences without learning any language!!!

Given a Spoken Language

The task is to determine the language that someone is speaking

Generative Models

- They try to learn each language.
- Therefore, they try to determine the spoken language based in such learning.

Discriminative Models

- They try to determine the linguistic differences without learning any language!!!
- Quite easier!!!

Generative Methods

Model class-conditional pdfs and prior probabilities.

Generative Methods

- Model class-conditional pdfs and prior probabilities.
- 2 "Generative" since sampling can generate synthetic data points.

Generative Methods

- Model class-conditional pdfs and prior probabilities.
- "Generative" since sampling can generate synthetic data points.

Examples

• Gaussians, Naïve Bayes, Mixtures of Multinomials.

Generative Methods

- Model class-conditional pdfs and prior probabilities.
- Generative since sampling can generate synthetic data points.

Examples

- Gaussians, Naïve Bayes, Mixtures of Multinomials.
- Mixtures of Gaussians, Mixtures of Experts, Hidden Markov Models (HMM).

Generative Methods

- Model class-conditional pdfs and prior probabilities.
- Generative since sampling can generate synthetic data points.

Examples

- Gaussians, Naïve Bayes, Mixtures of Multinomials.
- Mixtures of Gaussians, Mixtures of Experts, Hidden Markov Models (HMM).
- Sigmoidal Belief Networks, Bayesian Networks, Markov Random Fields.

Discriminative Methods

Directly estimate posterior probabilities.

Discriminative Methods

- Directly estimate posterior probabilities.
- 2 No attempt to model underlying probability distributions.

Discriminative Methods

- Directly estimate posterior probabilities.
- No attempt to model underlying probability distributions.
- Secure of the security of t

Discriminative Methods

- Directly estimate posterior probabilities.
- ② No attempt to model underlying probability distributions.
- Secure of the security of t

Popular models

Logistic regression, SVMs.

Discriminative Methods

- Directly estimate posterior probabilities.
- ② No attempt to model underlying probability distributions.
- Focus computational resources on given task for better performance.

Popular models

- Logistic regression, SVMs.
- Traditional neural networks, Nearest neighbor.

Discriminative Methods

- Directly estimate posterior probabilities.
- ② No attempt to model underlying probability distributions.
- Socus computational resources on given task for better performance.

Popular models

- Logistic regression, SVMs.
- Traditional neural networks, Nearest neighbor.
- Conditional Random Fields (CRF).

Outline

- Introduction
 - Supervised Learning
 - Handling Noise in Classification
 - Models of Classification
 - Naive Bayes Examples
 - The Naive Bayes Model
 - The Multi-Class Case
- Introduction
 - Gaussian Distribution

 - \bigcirc Influence of the Covariance Σ Example

 - Maximum Likelihood Principle
 - Maximum Likelihood on a Gaussian
 - Some Remarks
 - - A first solution for the Maximum A Posteriori (MAP)
 - Maximum Likelihood Vs Maximum A Posteriori
 - Properties of the MAP
 - - Some Stuff you can try

Task for two classes

Let ω_1,ω_2 be the two classes in which our samples belong.

Task for two classes

Let ω_1,ω_2 be the two classes in which our samples belong.

There is a prior probability of belonging to that class

• $P(\omega_1)$ for Class 1.

Task for two classes

Let ω_1,ω_2 be the two classes in which our samples belong.

There is a prior probability of belonging to that class

- $P(\omega_1)$ for Class 1.
- $P(\omega_2)$ for Class 2.

Task for two classes

Let ω_1, ω_2 be the two classes in which our samples belong.

There is a prior probability of belonging to that class

- $P(\omega_1)$ for Class 1.
- $P(\omega_2)$ for Class 2.

The Rule for classification is the following one

$$P(\omega_i|\boldsymbol{x}) = \frac{P(\boldsymbol{x}|\omega_i) P(\omega_i)}{P(\boldsymbol{x})}$$
(1)

Remark: Bayes to the next level.

In Informal English

$$posterior = \frac{likelihood \times prior-information}{evidence}$$
 (2)

In Informal English

We have that

$$posterior = \frac{likelihood \times prior\text{-}information}{evidence}$$

Basically

One: If we can observe x.

In Informal English

We have that

$$posterior = \frac{likelihood \times prior-information}{evidence}$$
 (2)

Basically

One: If we can observe x.

Two: we can convert the prior-information into the posterior information.

Likelihood

We call $p(\boldsymbol{x}|\omega_i)$ the likelihood of ω_i given \boldsymbol{x} :

Likelihood

We call $p(x|\omega_i)$ the likelihood of ω_i given x:

• This indicates that given a category ω_i : If $p\left(\boldsymbol{x}|\omega_i\right)$ is "large", then ω_i is the "likely" class of \boldsymbol{x} .

Likelihood

We call $p(x|\omega_i)$ the likelihood of ω_i given x:

• This indicates that given a category ω_i : If $p\left(\boldsymbol{x}|\omega_i\right)$ is "large", then ω_i is the "likely" class of \boldsymbol{x} .

Prior Probability

It is the known probability of a given class.

Likelihood

We call $p(x|\omega_i)$ the likelihood of ω_i given x:

• This indicates that given a category ω_i : If $p(x|\omega_i)$ is "large", then ω_i is the "likely" class of x.

Prior Probability

It is the known probability of a given class.

Remark: Because, we lack information about this class, we tend to use the uniform distribution.

Likelihood

We call $p(x|\omega_i)$ the likelihood of ω_i given x:

• This indicates that given a category ω_i : If $p(x|\omega_i)$ is "large", then ω_i is the "likely" class of x.

Prior Probability

It is the known probability of a given class.

Remark: Because, we lack information about this class, we tend to use the uniform distribution.

However: We can use other tricks for it.

Likelihood

We call $p(x|\omega_i)$ the likelihood of ω_i given x:

• This indicates that given a category ω_i : If $p(x|\omega_i)$ is "large", then ω_i is the "likely" class of x.

Prior Probability

It is the known probability of a given class.

Remark: Because, we lack information about this class, we tend to use the uniform distribution.

However: We can use other tricks for it.

Evidence

The evidence factor can be seen as a scale factor that guarantees that the posterior probability sum to one.

The most important term in all this

The factor

 $likelihood \times prior-information$

Outline

- Introduction
 - Supervised Learning
 - Handling Noise in Classification
 - Models of Classification
 - Naive BayesExamples
 - The Naive Bayes Model
 - The Multi-Class Case
 - Discriminant Functions and Decision Surfaces
 - Introduction
 - Gaussian Distribution
 - $\begin{tabular}{ll} \blacksquare & \label{eq:lnfluence} & \label{eq:lnfluenc$
 - Example
 - Maximum Likelihood Principle
 - Maximum Likelihood on a Gaussian
 - Some Remarks
- 3 Introduction
 - A first solution for the Maximum A Posteriori (MAP)
 - Maximum Likelihood Vs Maximum A Posteriori
 - Properties of the MAP
 - Evercises
 - Some Stuff you can try

Example

Example

We have the posterior of two classes when $P\left(\omega_1\right)=\frac{2}{3}$ and $P\left(\omega_2\right)=\frac{1}{3}$

Example of key distribution

Example with 10 keys

Example with 50 keys

Example with 100 keys

Example with 200 keys

Outline

- 1 Introduction
 - Supervised Learning
 - Handling Noise in Classification
 - Models of Classification
 - Naive BayesExamples
 - The Naive Bayes Model
 - The Multi-Class Case
 - Discriminant Functions and Decision Surfaces
 - Introduction
 - Gaussian Distribution
 - $\buildrel \blacksquare$ Influence of the Covariance Σ
 - Example
 - Maximum Likelihood Principle
 - Maximum Likelihood on a Gaussian
 - Some Remarks
 - Introduction
 - A first solution for the Maximum A Posteriori (MAP)
 - Maximum Likelihood Vs Maximum A Posteriori
 - Properties of the MAP
 - Exercises
 - Some Stuff you can try

Naive Bayes Model

In the case of two classes, we can use demarginalization

$$P(\mathbf{x}) = \sum_{i=1}^{2} p(\mathbf{x}, \omega_i) = \sum_{i=1}^{2} p(\mathbf{x}|\omega_i) P(\omega_i)$$
(4)

Error in this rule

We have that

$$P(error|\mathbf{x}) = \begin{cases} P(\omega_1|\mathbf{x}) & \text{if we decide } \omega_2 \\ P(\omega_2|\mathbf{x}) & \text{if we decide } \omega_1 \end{cases}$$
 (5)

Error in this rule

We have that

$$P\left(error|\mathbf{x}\right) = \begin{cases} P\left(\omega_1|\mathbf{x}\right) & \text{if we decide } \omega_2\\ P\left(\omega_2|\mathbf{x}\right) & \text{if we decide } \omega_1 \end{cases}$$
 (5)

Thus, we have that

$$P\left(error\right) = \int_{-\infty}^{\infty} P\left(error, \boldsymbol{x}\right) d\boldsymbol{x} = \int_{-\infty}^{\infty} P\left(error|\boldsymbol{x}\right) p\left(\boldsymbol{x}\right) d\boldsymbol{x}$$
 (6)

Graphically

Classification Rule

Thus, we have the Bayes Classification Rule

1 If $P(\omega_1|x) > P(\omega_2|x) x$ is classified to ω_1

Classification Rule

Thus, we have the Bayes Classification Rule

- **1** If $P(\omega_1|\boldsymbol{x}) > P(\omega_2|\boldsymbol{x}) \ \boldsymbol{x}$ is classified to ω_1
- 2 If $P(\omega_1|\mathbf{x}) < P(\omega_2|\mathbf{x}) \mathbf{x}$ is classified to ω_2

What if we remove the normalization factor?

$$P(\omega_1|\mathbf{x}) + P(\omega_2|\mathbf{x}) = 1$$
 (7)

What if we remove the normalization factor?

Remember

$$P(\omega_1|\boldsymbol{x}) + P(\omega_2|\boldsymbol{x}) = 1$$
 (7)

We are able to obtain the new Bayes Classification Rule

• If $P(x|\omega_1) p(\omega_1) > P(x|\omega_2) P(\omega_2) x$ is classified to ω_1

What if we remove the normalization factor?

Remember

$$P(\omega_1|\boldsymbol{x}) + P(\omega_2|\boldsymbol{x}) = 1$$
 (7)

We are able to obtain the new Bayes Classification Rule

- If $P(x|\omega_1) p(\omega_1) > P(x|\omega_2) P(\omega_2) x$ is classified to ω_1
- 2 If $P(x|\omega_1) p(\omega_1) < P(x|\omega_2) P(\omega_2) x$ is classified to ω_2

We have several cases

If for some \boldsymbol{x} we have $P(\boldsymbol{x}|\omega_1) = P(\boldsymbol{x}|\omega_2)$

The final decision relies completely from the prior probability.

We have several cases

If for some \boldsymbol{x} we have $P(\boldsymbol{x}|\omega_1) = P(\boldsymbol{x}|\omega_2)$

The final decision relies completely from the prior probability.

On the Other hand if $P(\omega_1) = P(\omega_2)$, the "state" is equally probable

In this case the decision is based entirely on the likelihoods $P(x|\omega_i)$.

How the Rule looks like

Error in Naive Bayes

Error in equiprobable classes $p(\omega_1) = p(\omega_2) = \frac{1}{2}$

$$P_{e} = \int_{-\infty}^{\infty} P(\mathbf{x}, error) d\mathbf{x}$$

$$= \int_{-\infty}^{x_{0}} p(x, \omega_{2}) dx + \int_{x_{0}}^{\infty} p(x, \omega_{1}) dx$$

$$= \int_{-\infty}^{x_{0}} p(x|\omega_{2}) P(\omega_{2}) dx + \int_{x_{1}}^{\infty} p(x|\omega_{1}) P(\omega_{1}) dx = *$$

Error in Naive Bayes

Error in equiprobable classes $p\left(\omega_{1}\right)=p\left(\omega_{2}\right)=\frac{1}{2}$

$$* = P(\omega_2) \int_{-\infty}^{x_0} p(x|\omega_2) dx + P(\omega_1) \int_{x_0}^{\infty} p(x|\omega_1) dx$$
$$= \frac{1}{2} \int_{-\infty}^{x_0} p(x|\omega_2) dx + \frac{1}{2} \int_{-\infty}^{\infty} p(x|\omega_1) dx$$

Error in Naive Bayes

Something Notable

Bayesian classifier is optimal with respect to minimizing the classification error probability.

Proof

Step 1

 \bullet R_1 be the region of the feature space in which we decide in favor of ω_1

Proof

Step 1

- \bullet R_1 be the region of the feature space in which we decide in favor of ω_1
- \bullet R_2 be the region of the feature space in which we decide in favor of ω_2

Proof

Step 1

- ullet R_1 be the region of the feature space in which we decide in favor of ω_1
- ullet R_2 be the region of the feature space in which we decide in favor of ω_2

Step 2

$$P_e = P(x \in R_2, \omega_1) + P(x \in R_1, \omega_2)$$
 (8)

Step 1

- ullet R_1 be the region of the feature space in which we decide in favor of ω_1
- ullet R_2 be the region of the feature space in which we decide in favor of ω_2

Step 2

$$P_e = P(x \in R_2, \omega_1) + P(x \in R_1, \omega_2)$$
 (8)

Thus

$$P_e = P(x \in R_2|\omega_1) P(\omega_1) + P(x \in R_1|\omega_2) P(\omega_2)$$

Step 1

- ullet R_1 be the region of the feature space in which we decide in favor of ω_1
- ullet R_2 be the region of the feature space in which we decide in favor of ω_2

Step 2

$$P_e = P(x \in R_2, \omega_1) + P(x \in R_1, \omega_2)$$
 (8)

Thus

$$P_{e} = P(x \in R_{2}|\omega_{1}) P(\omega_{1}) + P(x \in R_{1}|\omega_{2}) P(\omega_{2})$$
$$= P(\omega_{1}) \int_{R_{2}} p(x|\omega_{1}) dx + P(\omega_{2}) \int_{R_{1}} p(x|\omega_{2}) dx$$

It is more

$$P_{e} = P(\omega_{1}) \int_{R_{2}} \frac{p(\omega_{1}, x)}{P(\omega_{1})} dx + P(\omega_{2}) \int_{R_{1}} \frac{p(\omega_{2}, x)}{P(\omega_{2})} dx$$
(9)

It is more

$$P_{e} = P(\omega_{1}) \int_{R_{2}} \frac{p(\omega_{1}, x)}{P(\omega_{1})} dx + P(\omega_{2}) \int_{R_{1}} \frac{p(\omega_{2}, x)}{P(\omega_{2})} dx$$
 (9)

Finally

$$P_{e} = \int_{R_{2}} p(\omega_{1}|x) p(x) dx + \int_{R_{1}} p(\omega_{2}|x) p(x) dx$$
(10)

It is more

$$P_{e} = P(\omega_{1}) \int_{R_{2}} \frac{p(\omega_{1}, x)}{P(\omega_{1})} dx + P(\omega_{2}) \int_{R_{1}} \frac{p(\omega_{2}, x)}{P(\omega_{2})} dx$$
(9)

Finally

$$P_{e} = \int_{R_{2}} p(\omega_{1}|x) p(x) dx + \int_{R_{1}} p(\omega_{2}|x) p(x) dx$$
(10)

Now, we choose the Bayes Classification Rule

$$R_1$$
: $P(\omega_1|x) > P(\omega_2|x)$

$$R_2$$
: $P(\omega_2|x) > P(\omega_1|x)$

Thus

$$P(\omega_1) = \int_{R_1} p(\omega_1|x) p(x) dx + \int_{R_2} p(\omega_1|x) p(x) dx$$
 (11)

Thus

$$P(\omega_1) = \int_{R_1} p(\omega_1|x) p(x) dx + \int_{R_2} p(\omega_1|x) p(x) dx$$
 (11)

Now, we have...

$$P(\omega_1) - \int_{R_1} p(\omega_1|x) p(x) dx = \int_{R_2} p(\omega_1|x) p(x) dx$$
 (12)

Thus

$$P(\omega_1) = \int_{R_1} p(\omega_1|x) p(x) dx + \int_{R_2} p(\omega_1|x) p(x) dx$$
 (11)

Now, we have...

$$P(\omega_1) - \int_{R_1} p(\omega_1|x) p(x) dx = \int_{R_2} p(\omega_1|x) p(x) dx$$
 (12)

Then

$$P_{e} = P(\omega_{1}) - \int_{\mathcal{D}} p(\omega_{1}|x) p(x) dx + \int_{\mathcal{D}} p(\omega_{2}|x) p(x) dx \qquad (13)$$

Graphically $P(\omega_1)$: Thanks Edith 2013 Class!!!

Thus we have

$$\int_{R_{1}} p(\omega_{1}|x) p(x) dx = \int_{R_{1}} p(\omega_{1}, x) dx = P_{R_{1}}(\omega_{1})$$

Finally P_e

Thus

Finally

$$P_{e} = P(\omega_{1}) - \int_{R_{1}} \left[p(\omega_{1}|x) - p(\omega_{2}|x) \right] p(x) dx$$
(14)

Thus

Finally

$$P_{e} = P(\omega_{1}) - \int_{R_{1}} \left[p(\omega_{1}|x) - p(\omega_{2}|x) \right] p(x) dx$$
(14)

Thus

The probability of error is minimized at the region of space in which $R_1: P(\omega_1|x) > P(\omega_2|x)$.

Finally

Similarly

$$P_{e} = P(\omega_{2}) - \int_{\mathbb{R}} \left[p(\omega_{2}|x) - p(\omega_{1}|x) \right] p(x) dx$$
 (15)

Finally

Similarly

$$P_e = P(\omega_2) - \int_{R_2} \left[p(\omega_2 | x) - p(\omega_1 | x) \right] p(x) dx$$
 (15)

Thus

The probability of error is minimized at the region of space in which $R_2: P(\omega_2|x) > P(\omega_1|x)$.

Finally

Similarly

$$P_e = P(\omega_2) - \int_{R_2} \left[p(\omega_2 | x) - p(\omega_1 | x) \right] p(x) dx$$
 (15)

Thus

The probability of error is minimized at the region of space in which $R_2: P(\omega_2|x) > P(\omega_1|x)$.

Thus

The Naive Bayes Rule minimizes the error.

After all!!!

Outline

- 1 Introduction
 - Supervised Learning
 - Handling Noise in Classification
 - Models of Classification
 - Naive Bayes
 - ExamplesThe Naive Bayes Model
 - The Multi-Class Case
 - Discriminant Functions and Decision Surfaces
 - Introduction
 - Gaussian Distribution
 - $\buildrel \blacksquare$ Influence of the Covariance Σ
 - Example
 - Maximum Likelihood Principle
 - Maximum Likelihood on a Gaussian
 - Some Remarks
 - Introduction
 - A first solution for the Maximum A Posteriori (MAP)
 - Maximum Likelihood Vs Maximum A Posteriori
 - Properties of the MAP
 - Exercises
 - Some Stuff you can try

For M classes $\omega_1, \omega_2, ..., \omega_M$

We have that vector $oldsymbol{x}$ is in ω_i

$$P(\omega_i|\boldsymbol{x}) > P(\omega_j|\boldsymbol{x}) \ \forall j \neq i$$
 (16)

For M classes $\omega_1, \omega_2, ..., \omega_M$

We have that vector $oldsymbol{x}$ is in ω_i

$$P(\omega_i|\boldsymbol{x}) > P(\omega_j|\boldsymbol{x}) \ \forall j \neq i$$
 (16)

Something Notable

It turns out that such a choice also minimizes the classification error probability.

Outline

- 1 Introduct
 - Supervised Learning
 - Handling Noise in Classification
 - Models of Classification
 - Naive Bayes
 - Examples
 The Nation Brown
 - The Naive Bayes Model
 - The Multi-Class Case
- Discriminant Functions and Decision Surfaces
 - Gaussian Distribution
 - lacksquare Influence of the Covariance Σ
 - Example
 - Maximum Likelihood Principle
 - Maximum Likelihood on a Gaussian
 - Some Remarks
 - Introduction
 - A first solution for the Maximum A Posteriori (MAP)
 - Maximum Likelihood Vs Maximum A Posteriori
 - Properties of the MAP
 - Exercises
 - Some Stuff you can try

Decision Surface

Because the R_1 and R_2 are contiguous

The separating surface between both of them is described by

$$P(\omega_1|x) - P(\omega_2|x) = 0$$
(17)

Decision Surface

Because the R_1 and R_2 are contiguous

The separating surface between both of them is described by

$$P(\omega_1|x) - P(\omega_2|x) = 0$$
(17)

Thus, we define the decision function as

$$g_{12}(x) = P(\omega_1|x) - P(\omega_2|x) = 0$$
 (18)

Which decision function for the Naive Bayes

First

Instead of working with probabilities, we work with an equivalent function of them $g_i(x) = f(P(\omega_i|x))$.

First

Instead of working with probabilities, we work with an equivalent function of them $g_i(x) = f(P(\omega_i|x))$.

• Classic Example the Monotonically increasing $f(P(\omega_i|\boldsymbol{x})) = \ln P(\omega_i|\boldsymbol{x}).$

First

Instead of working with probabilities, we work with an equivalent function of them $g_i(\boldsymbol{x}) = f(P(\omega_i|\boldsymbol{x}))$.

• Classic Example the Monotonically increasing $f(P(\omega_i|x)) = \ln P(\omega_i|x)$.

The decision test is now

classify \boldsymbol{x} in ω_i if $g_i(\boldsymbol{x}) > g_j(\boldsymbol{x}) \ \forall j \neq i$.

First

Instead of working with probabilities, we work with an equivalent function of them $g_i(\boldsymbol{x}) = f\left(P\left(\omega_i|\boldsymbol{x}\right)\right)$.

• Classic Example the Monotonically increasing $f(P(\omega_i|x)) = \ln P(\omega_i|x)$.

The decision test is now

classify \boldsymbol{x} in ω_i if $g_i(\boldsymbol{x}) > g_j(\boldsymbol{x}) \ \forall j \neq i$.

The decision surfaces, separating contiguous regions, are described by

$$g_{ij}(\mathbf{x}) = g_i(\mathbf{x}) - g_j(\mathbf{x}) \ i, j = 1, 2, ..., M \ i \neq j$$

Outline

- 1 Introd
 - IntroductionSupervised Learning
 - Handling Noise in Classification
 - Models of Classification
 - Naive Bayes
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case
- 2

Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks
- Introduction
 - A first solution for the Maximum A Posteriori (MAP)
 - Maximum Likelihood Vs Maximum A Posteriori
 - Properties of the MAP
- Exercises
 - Some Stuff you can try

Gaussian Distribution

We can use the Gaussian distribution

$$p\left(\boldsymbol{x}|\boldsymbol{\omega_i}\right) = \frac{1}{\left(2\pi\right)^{l/2} \left|\boldsymbol{\Sigma_i}\right|^{1/2}} \exp\left\{-\frac{1}{2} \left(\boldsymbol{x} - \boldsymbol{\mu_i}\right)^T \boldsymbol{\Sigma_i}^{-1} \left(\boldsymbol{x} - \boldsymbol{\mu_i}\right)\right\}$$
(19)

Gaussian Distribution

We can use the Gaussian distribution

$$p\left(\boldsymbol{x}|\boldsymbol{\omega_i}\right) = \frac{1}{\left(2\pi\right)^{l/2} \left|\boldsymbol{\Sigma_i}\right|^{1/2}} \exp\left\{-\frac{1}{2} \left(\boldsymbol{x} - \boldsymbol{\mu_i}\right)^T \boldsymbol{\Sigma_i^{-1}} \left(\boldsymbol{x} - \boldsymbol{\mu_i}\right)\right\}$$
(19)

Example

$$\Sigma = \left[\begin{array}{cc} 3 & 0 \\ 0 & 3 \end{array} \right]$$

Some Properties

About Σ

It is the covariance matrix between variables.

Some Properties

About $\overline{\Sigma}$

It is the covariance matrix between variables.

Thus

- It is positive semi-definite.
- Symmetric.
- The inverse exists.

Outline

- 1 Introdu
 - Supervised Learning
 - Handling Noise in Classification
 - Models of Classification
 - Naive Bayes
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case
- 2

Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks
- - Introduction
 - A first solution for the Maximum A Posteriori (MAP)
 - Maximum Likelihood Vs Maximum A Posteriori
 - Properties of the MAP
- 4 Exercise
 - Some Stuff you can try

Influence of the Covariance Σ

Look at the following Covariance

$$\Sigma = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

Influence of the Covariance Σ

Look at the following Covariance

$$\Sigma = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

It simple the unit Gaussian with mean $\boldsymbol{\mu}$

The Covariance Σ as a Rotation

Look at the following Covariance

$$\Sigma = \left[\begin{array}{cc} 16 & 0 \\ 0 & 1 \end{array} \right]$$

The Covariance Σ as a Rotation

Look at the following Covariance

$$\Sigma = \left[\begin{array}{cc} 16 & 0 \\ 0 & 1 \end{array} \right]$$

Actually, it flatten the circle through the x-axis

Influence of the Covariance Σ

Look at the following Covariance

$$\Sigma_a = R\Sigma_b R^T$$
 with $R = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

Influence of the Covariance Σ

Look at the following Covariance

$$\Sigma_a = R\Sigma_b R^T$$
 with $R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

It allows to rotate the axises

Now For Two Classes

Then, we use the following trick for two Classes i = 1, 2

We know that the pdf of correct classification is $p\left(x,\omega_{1}\right)=p\left(x|\omega_{i}\right)P\left(\omega_{i}\right)!!!$

Now For Two Classes

Then, we use the following trick for two Classes i = 1, 2

We know that the pdf of correct classification is $p(x, \omega_1) = p(x|\omega_i) P(\omega_i)!!!$

Thus

It is possible to generate the following decision function:

$$g_i(\mathbf{x}) = \ln\left[p(x|\omega_i)P(\omega_i)\right] = \ln p(x|\omega_i) + \ln P(\omega_i)$$
 (20)

Now For Two Classes

Then, we use the following trick for two Classes i = 1, 2

We know that the pdf of correct classification is $p(x, \omega_1) = p(x|\omega_i) P(\omega_i)!!!$

Thus

It is possible to generate the following decision function:

$$g_i(\mathbf{x}) = \ln\left[p(x|\omega_i)P(\omega_i)\right] = \ln p(x|\omega_i) + \ln P(\omega_i)$$
 (20)

Thus

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu_i})^T \Sigma_i^{-1} (\mathbf{x} - \boldsymbol{\mu_i}) + \ln P(\omega_i) + c_i$$
 (21)

Outline

- 1 Int
 - Introduction
 - Supervised Learning
 - Handling Noise in Classification
 - Models of Classification
 - Naive Bayes
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case

Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution
- lacksquare Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks

- Introduction
- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood Vs Maximum A Posteriori
- Properties of the MAP

- Exercises
 - Some Stuff you can try

Assume first that $\Sigma_i = \sigma^2 I$

• The features are statistically independent

Assume first that $\Sigma_i = \sigma^2 I$

- The features are statistically independent
- Each feature has the same variance

Assume first that $\Sigma_i = \sigma^2 I$

- The features are statistically independent
- Each feature has the same variance

Therefore

The samples fall in equal size spherical clusters!!!

Assume first that $\Sigma_i = \sigma^2 I$

- The features are statistically independent
- Each feature has the same variance

Therefore

- The samples fall in equal size spherical clusters!!!
- Each Cluster centered at mean vector μ_i .

For Example

We have that

$$|\Sigma_i| = \sigma^{2d}$$
 and $\Sigma_i^{-1} = \left(\frac{1}{\sigma^2}\right)I$

We have that

$$|\Sigma_i| = \sigma^{2d}$$
 and $\Sigma_i^{-1} = \left(\frac{1}{\sigma^2}\right)I$

Something Notable

• Gaussian Multivariate function after the log

$$g_i(\boldsymbol{x}) = -\frac{1}{2} \left(\boldsymbol{x} - \boldsymbol{\mu}_i \right)^T \Sigma_i^{-1} \left(\boldsymbol{x} - \boldsymbol{\mu}_i \right) + \ln P\left(\omega_i \right) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i|$$

We have that

$$|\Sigma_i| = \sigma^{2d}$$
 and $\Sigma_i^{-1} = \left(\frac{1}{\sigma^2}\right)I$

Something Notable

• Gaussian Multivariate function after the log

$$g_{i}\left(\boldsymbol{x}\right)=-\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{\mu_{i}}\right)^{T}\Sigma_{i}^{-1}\left(\boldsymbol{x}-\boldsymbol{\mu_{i}}\right)+\ln P\left(\omega_{i}\right)-\frac{d}{2}\ln 2\pi-\frac{1}{2}\ln \left|\Sigma_{i}\right|$$

The term $-\frac{d}{2}\ln 2\pi - \frac{1}{2}\ln |\Sigma_i|$

It is unimportant therefore it can be ignored!!!

Then

We have the following discriminant functions

$$g_{i}(\mathbf{x}) = -\frac{\left(\mathbf{x} - \boldsymbol{\mu}_{i}\right)^{T} \left(\mathbf{x} - \boldsymbol{\mu}_{i}\right)}{2\sigma^{2}} + \ln P\left(\omega_{i}\right)$$
(22)

Then

We have the following discriminant functions

$$g_{i}(\boldsymbol{x}) = -\frac{\left(\boldsymbol{x} - \boldsymbol{\mu}_{i}\right)^{T} \left(\boldsymbol{x} - \boldsymbol{\mu}_{i}\right)}{2\sigma^{2}} + \ln P\left(\omega_{i}\right)$$
(22)

Then, we have that

$$g_{i}(\boldsymbol{x}) = -\frac{1}{2\sigma^{2}} \left[\boldsymbol{x}^{T} \boldsymbol{x} - 2\boldsymbol{\mu}_{i}^{T} \boldsymbol{x} + \boldsymbol{\mu}_{i}^{T} \boldsymbol{\mu}_{i} \right] + \ln P(\omega_{i})$$

We can then...

Do you notice that x^Tx is actually the same for all g_i ?

Then, we can ignore that term thus, we get

$$g_{i}\left(\boldsymbol{x}\right) = \frac{1}{\sigma^{2}} \boldsymbol{\mu_{i}}^{T} \boldsymbol{x} - \frac{1}{2\sigma^{2}} \boldsymbol{\mu_{i}}^{T} \boldsymbol{\mu_{i}} + \ln P\left(\omega_{i}\right)$$

$$\widehat{\boldsymbol{w}_{i}^{T}}$$

We can then...

Do you notice that x^Tx is actually the same for all g_i ?

Then, we can ignore that term thus, we get

$$g_{i}\left(\boldsymbol{x}\right) = \frac{1}{\sigma^{2}} \boldsymbol{\mu_{i}}^{T} \boldsymbol{x} - \frac{1}{2\sigma^{2}} \boldsymbol{\mu_{i}}^{T} \boldsymbol{\mu_{i}} + \ln P\left(\omega_{i}\right)$$

$$\widehat{\boldsymbol{w}_{i}^{T}}$$

Or if you want

$$g_i(\boldsymbol{x}) = \boldsymbol{w}_i^T \boldsymbol{x} + w_{i0}$$

Outline

- 1 Introducti
 - Supervised LearningHandling Noise in Classification
 - Models of Classification
 - Naive Bayes
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case
- 2 Discriminant Functions and Decision Surfaces
 - Gaussian Distribution
 - Gaussian Distribution
 - Influence of the Covariance Σ Example
 - Maximum Likelihood Principle
 - Maximum Likelihood on a Gaussian
 - Some Remarks
 - Introduction
 - A first solution for the Maximum A Posteriori (MAP)
 - Maximum Likelihood Vs Maximum A Posteriori
 - Properties of the MAP
 - Exercises
 - Some Stuff you can try

We assume for each class ω_j

The samples are drawn independently according to the probability law $p\left({m{x}|\omega_j} \right)$

We assume for each class ω_j

The samples are drawn independently according to the probability law $p\left({m{x}|\omega_j} \right)$

We call those samples as

i.i.d. — independent identically distributed random variables.

We assume for each class ω_j

The samples are drawn independently according to the probability law $p\left(\boldsymbol{x}|\omega_{j}\right)$

We call those samples as

i.i.d. — independent identically distributed random variables.

We assume in addition

 $p\left(m{x}|\omega_{j}
ight)$ has a known parametric form with vector $m{ heta}_{j}$ of parameters.

For example

$$p\left(\boldsymbol{x}|\omega_{j}\right) \sim N\left(\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)$$

(23)

For example

$$p(\boldsymbol{x}|\omega_j) \sim N(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$$
 (23)

In our case

We will assume that there is no dependence between classes!!!

Suppose that ω_j contains n samples $oldsymbol{x}_1, oldsymbol{x}_2, ..., oldsymbol{x}_n$

$$p(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_n | \boldsymbol{\theta}_j) = \prod_{j=1}^n p(\boldsymbol{x}_j | \boldsymbol{\theta}_j)$$
 (24)

Suppose that ω_i contains n samples ${m x}_1, {m x}_2, ..., {m x}_n$

$$p\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, ..., \boldsymbol{x}_{n} | \boldsymbol{\theta}_{j}\right) = \prod_{j=1}^{n} p\left(\boldsymbol{x}_{j} | \boldsymbol{\theta}_{j}\right)$$
(24)

We can see then the function $p(\boldsymbol{x}_1, \boldsymbol{x}_2, ..., \boldsymbol{x}_n | \boldsymbol{\theta}_j)$ as a function of

$$L(\boldsymbol{\theta}_j) = \prod_{i=1}^n p(\boldsymbol{x}_j | \boldsymbol{\theta}_j)$$
 (25)

Example

Outline

- Introduct
 - Supervised Learning
 - Handling Noise in Classification
 - Models of Classification
 - Naive Bayes
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case
- 2

Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution
- Influence of the Covariance Σ Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks
- Introduction
- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood Vs Maximum A Posteriori
- Properties of the MAP
- 4 Exercise
 - Some Stuff you can try

Maximum Likelihood on a Gaussian

Then, using the log!!!

$$\ln L\left(\omega_{i}\right) = -\frac{n}{2}\ln\left|\Sigma_{i}\right| - \frac{1}{2}\left|\sum_{i=1}^{n}\left(\boldsymbol{x_{j}} - \boldsymbol{\mu_{i}}\right)^{T}\Sigma_{i}^{-1}\left(\boldsymbol{x_{j}} - \boldsymbol{\mu_{i}}\right)\right| + c_{2} \quad (26)$$

Maximum Likelihood on a Gaussian

Then, using the log!!!

$$\ln L(\omega_i) = -\frac{n}{2} \ln |\Sigma_i| - \frac{1}{2} \left[\sum_{j=1}^n (\boldsymbol{x_j} - \boldsymbol{\mu_i})^T \Sigma_i^{-1} (\boldsymbol{x_j} - \boldsymbol{\mu_i}) \right] + c_2 \quad (26)$$

We know that

$$\frac{d\mathbf{x}^T A \mathbf{x}}{d\mathbf{x}} = A x + A^T x, \ \frac{dA \mathbf{x}}{d\mathbf{x}} = A \tag{27}$$

Maximum Likelihood on a Gaussian

Then, using the log!!!

$$\ln L\left(\omega_{i}\right) = -\frac{n}{2}\ln\left|\Sigma_{i}\right| - \frac{1}{2}\left[\sum_{i=1}^{n}\left(\boldsymbol{x_{j}} - \boldsymbol{\mu_{i}}\right)^{T}\Sigma_{i}^{-1}\left(\boldsymbol{x_{j}} - \boldsymbol{\mu_{i}}\right)\right] + c_{2} \quad (26)$$

We know that

$$\frac{d\mathbf{x}^T A \mathbf{x}}{d\mathbf{x}} = Ax + A^T x, \ \frac{dA\mathbf{x}}{d\mathbf{x}} = A$$
 (27)

Thus, we expand equation26

$$-\frac{n}{2}\ln|\Sigma_{i}| - \frac{1}{2}\sum_{i=1}^{n} \left[\boldsymbol{x_{j}}^{T} \Sigma_{i}^{-1} \boldsymbol{x_{j}} - 2\boldsymbol{x_{j}}^{T} \Sigma_{i}^{-1} \boldsymbol{\mu_{i}} + \boldsymbol{\mu_{i}}^{T} \Sigma_{i}^{-1} \boldsymbol{\mu_{i}} \right] + c_{2} \quad (28)$$

Maximum Likelihood

$$\frac{\partial \ln L(\omega_i)}{\partial \boldsymbol{\mu}_i} = \sum_{j=1}^n \Sigma_i^{-1} (\boldsymbol{x}_j - \boldsymbol{\mu}_i) = 0$$

Maximum Likelihood

$$\frac{\partial \ln L(\omega_i)}{\partial \boldsymbol{\mu}_i} = \sum_{j=1}^n \Sigma_i^{-1} (\boldsymbol{x}_j - \boldsymbol{\mu}_i) = 0$$

$$n\Sigma_i^{-1} \left[-\boldsymbol{\mu}_i + \frac{1}{n} \sum_{j=1}^n \boldsymbol{x}_j \right] = 0$$

Maximum Likelihood

Then

$$\frac{\partial \ln L(\omega_i)}{\partial \boldsymbol{\mu}_i} = \sum_{j=1}^n \Sigma_i^{-1} (\boldsymbol{x}_j - \boldsymbol{\mu}_i) = 0$$

$$n\Sigma_i^{-1} \left[-\boldsymbol{\mu}_i + \frac{1}{n} \sum_{j=1}^n \boldsymbol{x}_j \right] = 0$$

$$\hat{\boldsymbol{\mu}}_i = \frac{1}{n} \sum_{j=1}^n \boldsymbol{x}_j$$

Then, we derive with respect to Σ_i

For this we use the following tricks:

$$\bullet \frac{\partial \log |\Sigma|}{\partial \Sigma^{-1}} = -\frac{1}{|\Sigma|} \cdot |\Sigma| (\Sigma)^T = -\Sigma$$

- Trace(of a number)=the number
- $Tr(A^T B) = Tr(BA^T)$

Thus

$$f\left(\Sigma_{i}\right) = -\frac{n}{2}\ln\left|\Sigma_{I}\right| - \frac{1}{2}\sum_{i=1}^{n}\left[\left(\boldsymbol{x_{j}} - \boldsymbol{\mu_{i}}\right)^{T}\Sigma_{i}^{-1}\left(\boldsymbol{x_{j}} - \boldsymbol{\mu_{i}}\right)\right] + c_{1}$$
 (29)

Thus

$$f(\Sigma_i) = -\frac{n}{2} \ln |\Sigma_i| - \frac{1}{2} \sum_{j=1}^n \left[Trace \left\{ (\boldsymbol{x_j} - \boldsymbol{\mu_i})^T \Sigma_i^{-1} (\boldsymbol{x_j} - \boldsymbol{\mu_i}) \right\} \right] + c_1$$
(30)

Thus

$$f(\Sigma_i) = -\frac{n}{2} \ln |\Sigma_i| - \frac{1}{2} \sum_{j=1}^n \left[Trace \left\{ (\boldsymbol{x}_j - \boldsymbol{\mu}_i)^T \Sigma_i^{-1} (\boldsymbol{x}_j - \boldsymbol{\mu}_i) \right\} \right] + c_1$$
(30)

Tricks!!!

$$f(\Sigma_{i}) = -\frac{n}{2} \ln |\Sigma_{i}| - \frac{1}{2} \sum_{j=1}^{n} \left[Trace \left\{ \Sigma_{i}^{-1} \left(\boldsymbol{x}_{j} - \boldsymbol{\mu}_{i} \right) \left(\boldsymbol{x}_{j} - \boldsymbol{\mu}_{i} \right)^{T} \right\} \right] + c_{1}$$
(31)

Derivative with respect to Σ

$$\frac{\partial f\left(\Sigma_{i}\right)}{\partial \Sigma_{i}} = \frac{n}{2} \Sigma_{i} - \frac{1}{2} \sum_{j=1}^{n} \left[\left(\boldsymbol{x_{j}} - \boldsymbol{\mu_{i}}\right) \left(\boldsymbol{x_{j}} - \boldsymbol{\mu_{i}}\right)^{T} \right]^{T}$$
(32)

Derivative with respect to Σ

$$\frac{\partial f(\Sigma_i)}{\partial \Sigma_i} = \frac{n}{2} \Sigma_i - \frac{1}{2} \sum_{j=1}^n \left[(\boldsymbol{x_j} - \boldsymbol{\mu_i}) (\boldsymbol{x_j} - \boldsymbol{\mu_i})^T \right]^T$$
(32)

Thus, when making it equal to zero

$$\hat{\Sigma}_i = \frac{1}{n} \sum_{i=1}^n (\boldsymbol{x_j} - \boldsymbol{\mu_i}) (\boldsymbol{x_j} - \boldsymbol{\mu_i})^T$$
(33)

Step 1 - Assume a Gaussian Distribution over each class

• The So Called Model Selection

Step 1 - Assume a Gaussian Distribution over each class

The So Called Model Selection

Step 2

 Adjust the Gaussian Distribution, for each class, using the previous Maximum Likelihood

Step 1 - Assume a Gaussian Distribution over each class

The So Called Model Selection

Step 2

 Adjust the Gaussian Distribution, for each class, using the previous Maximum Likelihood

Step 3

$$R_1$$
: $P(\omega_1|x) > P(\omega_2|x)$

$$R_2$$
: $P(\omega_2|x) > P(\omega_1|x)$

Outline

- Introduction
 - Supervised Learning
 - Handling Noise in Classification
 - Models of Classification
 - Naive Bayes
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case
- 2 Discriminant Functions and Decision Surfaces
 - Gaussian Distribution
 - igcup Influence of the Covariance Σ
 - Example
 - Maximum Likelihood Principle
 - Maximum Likelihood on a Gaussian
 - Some Remarks
 - Introduction
 - A first solution for the Maximum A Posteriori (MAP)
 - Maximum Likelihood Vs Maximum A Posteriori
 - Properties of the MAP
 - Evercices
 - Some Stuff you can try

In the case of Bayesian Model

We have

$$P\left(Y_{n}=i|\boldsymbol{x}_{n}\right)=\frac{P\left(\boldsymbol{x}_{n}|Y_{n}=i\right)P\left(Y_{n}=i\right)}{P\left(\boldsymbol{x}_{n}\right)}$$

In the case of Bayesian Model

We have

$$P(Y_n = i | \boldsymbol{x}_n) = \frac{P(\boldsymbol{x}_n | Y_n = i) P(Y_n = i)}{P(\boldsymbol{x}_n)}$$

In the Generative Model

• We model two distribution $P(\boldsymbol{x}_n|Y_n=1)$ and $P(Y_n=i)$

In the case of Bayesian Model

We have

$$P(Y_n = i | \boldsymbol{x}_n) = \frac{P(\boldsymbol{x}_n | Y_n = i) P(Y_n = i)}{P(\boldsymbol{x}_n)}$$

In the Generative Model

• We model two distribution $P(x_n|Y_n=1)$ and $P(Y_n=i)$

In the Discriminative Model

• We model a single distribution $P(Y_n = i)$

We have

 \bullet In the Generative Model, we discover the distribution from X and Y

We have

 \bullet In the Generative Model, we discover the distribution from X and Y

Therefore

Although discriminative models tend to be faster and less complex, they cannot model the joint P(X,Y).

We have

ullet In the Generative Model, we discover the distribution from X and Y

Therefore

Although discriminative models tend to be faster and less complex, they cannot model the joint P(X,Y).

Thus

- We have a decision problem
 - ▶ Do we want to know the joint distribution?

Outline

- 1 Introduct
 - Supervised Learning
 - Handling Noise in Classification
 - Models of Classification
 - Naive BayesExamples
 - The Naive Bayes Model
 - The Multi-Class Case
- me man
 - Discriminant Functions and Decision Surfaces
 - Introduction
 - Gaussian Distribution
 - $\ \ \, \underline{ \ \ } \ \, \underline{$
 - Example
 - Maximum Likelihood Principle
 - Maximum Likelihood on a Gaussian
 - Some Remarks
 - Introduction
 - A first solution for the Maximum A Posteriori (MAP)
 - Maximum Likelihood Vs Maximum A Posteriori
 - Properties of the MAP
 - Exercises
 - Some Stuff you can try

Introduction

We go back to the Bayesian Rule

$$p(\Theta|\mathcal{X}) = \frac{p(\mathcal{X}|\Theta)p(\Theta)}{p(\mathcal{X})}$$
(34)

Introduction

We go back to the Bayesian Rule

$$p(\Theta|\mathcal{X}) = \frac{p(\mathcal{X}|\Theta)p(\Theta)}{p(\mathcal{X})}$$
(34)

We now seek that value for Θ , called $\widehat{\Theta}_{MAP}$

It allows to maximize the posterior $p(\Theta|\mathcal{X})$

We look to maximize $\widehat{\Theta}_{MAP}$

$$\begin{split} \widehat{\Theta}_{MAP} &= \underset{\Theta}{\operatorname{argmax}} p\left(\Theta|\mathcal{X}\right) \\ &= \underset{\Theta}{\operatorname{argmax}} \frac{p\left(\mathcal{X}|\Theta\right) p\left(\Theta\right)}{P\left(\mathcal{X}\right)} \approx * \\ &\approx \underset{\Theta}{\operatorname{argmax}} p\left(\mathcal{X}|\Theta\right) p\left(\Theta\right) \\ &= \underset{\Theta}{\operatorname{argmax}} \prod_{x_i \in \mathcal{X}} p\left(x_i|\Theta\right) p\left(\Theta\right) \end{split}$$

We look to maximize $\widehat{\Theta}_{MAP}$

$$\begin{split} \widehat{\Theta}_{MAP} &= \underset{\Theta}{\operatorname{argmax}} p\left(\Theta|\mathcal{X}\right) \\ &= \underset{\Theta}{\operatorname{argmax}} \frac{p\left(\mathcal{X}|\Theta\right) p\left(\Theta\right)}{P\left(\mathcal{X}\right)} \approx * \\ &\approx \underset{\Theta}{\operatorname{argmax}} p\left(\mathcal{X}|\Theta\right) p\left(\Theta\right) \\ &= \underset{\Theta}{\operatorname{argmax}} \prod_{x_i \in \mathcal{X}} p\left(x_i|\Theta\right) p\left(\Theta\right) \end{split}$$

We look to maximize $\widehat{\Theta}_{MAP}$

$$\begin{split} \widehat{\Theta}_{MAP} &= \underset{\Theta}{\operatorname{argmax}} p\left(\Theta|\mathcal{X}\right) \\ &= \underset{\Theta}{\operatorname{argmax}} \frac{p\left(\mathcal{X}|\Theta\right) p\left(\Theta\right)}{P\left(\mathcal{X}\right)} \approx * \\ &= \underset{\Theta}{\operatorname{argmax}} \prod_{x_i \in \mathcal{X}} p\left(x_i|\Theta\right) p\left(\Theta\right) \end{split}$$

We look to maximize $\widehat{\Theta}_{MAP}$

$$\begin{split} \widehat{\Theta}_{MAP} &= \underset{\Theta}{\operatorname{argmax}} p\left(\Theta|\mathcal{X}\right) \\ &= \underset{\Theta}{\operatorname{argmax}} \frac{p\left(\mathcal{X}|\Theta\right) p\left(\Theta\right)}{P\left(\mathcal{X}\right)} \approx * \\ &\approx \underset{\Theta}{\operatorname{argmax}} p\left(\mathcal{X}|\Theta\right) p\left(\Theta\right) \\ &= \underset{\Theta}{\operatorname{argmax}} \prod_{x_i \in \mathcal{X}} p\left(x_i|\Theta\right) p\left(\Theta\right) \end{split}$$

We can make this easier

Use logarithms

$$\widehat{\Theta}_{MAP} = \underset{\Theta}{\operatorname{argmax}} \left[\sum_{x_i \in \mathcal{X}} \log p\left(x_i | \Theta\right) + \log p\left(\Theta\right) \right]$$
 (35)

Outline

- - Supervised Learning
 - Handling Noise in Classification
 - Models of Classification
 - Naive Bayes
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case

- Introduction
- Gaussian Distribution
- \bigcirc Influence of the Covariance Σ Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks

- Introduction
- A first solution for the Maximum A Posteriori (MAP)
- Maximum Likelihood Vs Maximum A Posteriori
- Properties of the MAP

- Some Stuff you can try

What can we do?

We can specify a distribution

Then, learn the parameters

What can we do?

We can specify a distribution

Then, learn the parameters

Remember the Bayesian Rule

$$p(\Theta|\mathcal{X}) = \frac{p(\mathcal{X}|\Theta)p(\Theta)}{p(\mathcal{X})}$$
(36)

What can we do?

We can specify a distribution

Then, learn the parameters

Remember the Bayesian Rule

$$p(\Theta|\mathcal{X}) = \frac{p(\mathcal{X}|\Theta) p(\Theta)}{p(\mathcal{X})}$$

We seek that value for Θ , called $\widehat{\Theta}_{MAP}$

It allows to maximize the posterior $p(\Theta|\mathcal{X})$

(36)

We can use this idea of maximizing the posterior

To obtain the distribution through the Maximum a Posteriori

We look to maximize $\widehat{\Theta}_{MAP}$

$$\begin{split} &= \underset{\Theta}{\operatorname{argmax}} \frac{p\left(\mathcal{X}|\Theta\right)p\left(\Theta\right)}{P\left(\mathcal{X}\right)} \\ &\approx \underset{\Theta}{\operatorname{argmax}} p\left(\mathcal{X}|\Theta\right)p\left(\Theta\right) \\ &= \underset{\Theta}{\operatorname{argmax}} \prod_{x_i \in \mathcal{X}} p\left(x_i|\Theta\right)p\left(\Theta\right) \end{split}$$

We look to maximize $\widehat{\Theta}_{MAP}$

$$\begin{split} &\approx \underset{\Theta}{\operatorname{argmax}} p\left(\mathcal{X}|\Theta\right) p\left(\Theta\right) \\ &= \underset{\Theta}{\operatorname{argmax}} \prod_{x_i \in \mathcal{X}} p\left(x_i|\Theta\right) p\left(\Theta\right) \end{split}$$

We look to maximize $\widehat{\Theta}_{MAP}$

$$=\mathop{\mathrm{argmax}}_{\Theta}\prod_{x_{i}\in\mathcal{X}}p\left(x_{i}|\Theta\right)p\left(\Theta\right)$$

We look to maximize $\widehat{\Theta}_{MAP}$

$$\begin{split} \widehat{\Theta}_{MAP} &= \underset{\Theta}{\operatorname{argmax}} p\left(\Theta|\mathcal{X}\right) \\ &= \underset{\Theta}{\operatorname{argmax}} \frac{p\left(\mathcal{X}|\Theta\right) p\left(\Theta\right)}{P\left(\mathcal{X}\right)} \\ &\approx \underset{\Theta}{\operatorname{argmax}} p\left(\mathcal{X}|\Theta\right) p\left(\Theta\right) \\ &= \underset{\Theta}{\operatorname{argmax}} \prod_{x_i \in \mathcal{X}} p\left(x_i|\Theta\right) p\left(\Theta\right) \end{split}$$

We look to maximize $\widehat{\Theta}_{MAP}$

$$\begin{split} \widehat{\Theta}_{MAP} &= \underset{\Theta}{\operatorname{argmax}} p\left(\Theta|\mathcal{X}\right) \\ &= \underset{\Theta}{\operatorname{argmax}} \frac{p\left(\mathcal{X}|\Theta\right) p\left(\Theta\right)}{P\left(\mathcal{X}\right)} \\ &\approx \underset{\Theta}{\operatorname{argmax}} p\left(\mathcal{X}|\Theta\right) p\left(\Theta\right) \\ &= \underset{\Theta}{\operatorname{argmax}} \prod_{x_i \in \mathcal{X}} p\left(x_i|\Theta\right) p\left(\Theta\right) \end{split}$$

We can make this easier

Use logarithms

$$\widehat{\Theta}_{MAP} = \operatorname*{argmax}_{\Theta} \left[\sum_{x_i \in \mathcal{X}} \log p\left(x_i | \Theta\right) + \log p\left(\Theta\right) \right]$$

What Does the MAP Estimate Get?

Something Notable

The MAP estimate allows us to inject into the estimation calculation our prior beliefs regarding the parameters values in Θ .

What Does the MAP Estimate Get?

Something Notable

The MAP estimate allows us to inject into the estimation calculation our prior beliefs regarding the parameters values in Θ .

For example

Let's conduct N independent trials of the following Bernoulli experiment with q parameter:

What Does the MAP Estimate Get?

Something Notable

The MAP estimate allows us to inject into the estimation calculation our prior beliefs regarding the parameters values in Θ .

For example

Let's conduct N independent trials of the following Bernoulli experiment with q parameter:

• We will ask each individual we run into in the hallway whether they will vote PRI or PAN in the next presidential election.

What Does the MAP Estimate Get?

Something Notable

The MAP estimate allows us to inject into the estimation calculation our prior beliefs regarding the parameters values in Θ .

For example

Let's conduct N independent trials of the following Bernoulli experiment with q parameter:

• We will ask each individual we run into in the hallway whether they will vote PRI or PAN in the next presidential election.

With probability q to vote PRI

Where the values of x_i is either PRI or PAN.

Samples

$$\mathcal{X} = \left\{ x_i = \begin{cases} PAN \\ PRI \end{cases} & i = 1, ..., N \right\}$$
 (38)

Samples

$$\mathcal{X} = \left\{ x_i = \begin{cases} PAN \\ PRI \end{cases} & i = 1, ..., N \right\}$$

The log likelihood function

$$= \sum_{i} \log p(x_i = PRI|q) + \dots$$
$$\sum_{i} \log p(x_i = PAN|1 - q)$$

 $=n_{PRI}\log(q) + (N - n_{PRI})\log(1 - q)$

(38)

Where n_{PRI} are the numbers of individuals who are planning to vote PRI this fall

Samples

$$\mathcal{X} = \left\{ x_i = \begin{cases} PAN \\ PRI \end{cases} & i = 1, ..., N \right\}$$

(38)

The log likelihood function

Where n_{PRI} are the numbers of individuals who are planning to vote PRI this fall

 $=n_{PRI}\log(q) + (N - n_{PRI})\log(1 - q)$

Samples

$$\mathcal{X} = \left\{ x_i = \begin{cases} PAN \\ PRI \end{cases} & i = 1, ..., N \right\}$$
 (38)

The log likelihood function

$$\log p(\mathcal{X}|q) = \sum_{i=1}^{N} \log p(x_i|q)$$

$$= \sum_{i} \log p(x_i = PRI|q) + \dots$$

$$\sum_{i} \log p(x_i = PAN|1 - q)$$

$$= n_{PRI} \log (q) + (N - n_{PRI}) \log (1 - q)$$

Samples

$$\mathcal{X} = \left\{ x_i = \begin{cases} PAN \\ PRI \end{cases} & i = 1, ..., N \right\}$$
 (38)

 $=n_{PRI}\log(q) + (N - n_{PRI})\log(1 - q)$

The log likelihood function

$$\log p(\mathcal{X}|q) = \sum_{i=1}^{N} \log p(x_i|q)$$

$$= \sum_{i} \log p(x_i = PRI|q) + \dots$$

$$\sum_{i} \log p(x_i = PAN|1 - q)$$

Where n_{PRI} are the numbers of individuals who are planning to vote PRI this fall

We use our classic tricks

By setting

$$\mathcal{L} = \log \ p\left(\mathcal{X}|q\right) \tag{39}$$

We use our classic tricks

By setting

$$\mathcal{L} = \log p(\mathcal{X}|q) \tag{39}$$

We have that

$$\frac{\partial \mathcal{L}}{\partial q} = 0$$

(40)

We use our classic tricks

By setting

$$\mathcal{L} = \log p(\mathcal{X}|q) \tag{39}$$

We have that

$$\frac{\partial \mathcal{L}}{\partial q} = 0$$

(40)

Thus

$$\frac{n_{PRI}}{q} - \frac{(N - n_{PRI})}{(1 - q)} = 0$$

(41)

Final Solution of ML

$$\widehat{q}_{PRI} = \frac{n_{PRI}}{N}$$

(42)

Final Solution of ML

We get

$$\widehat{q}_{PRI} = \frac{n_{PRI}}{N} \tag{42}$$

Thus

If we say that N=20 and if 12 are going to vote PRI, we get $\widehat{q}_{PRI}=0.6.$

Obviously we need a prior belief distribution

We have the following constraints:

Obviously we need a prior belief distribution

We have the following constraints:

ullet The prior for q must be zero outside the [0,1] interval.

Obviously we need a prior belief distribution

We have the following constraints:

- ullet The prior for q must be zero outside the [0,1] interval.
- \bullet Within the [0,1] interval, we are free to specify our beliefs in any way we wish.

Obviously we need a prior belief distribution

We have the following constraints:

- ullet The prior for q must be zero outside the [0,1] interval.
- \bullet Within the [0,1] interval, we are free to specify our beliefs in any way we wish.
- ullet In most cases, we would want to choose a distribution for the prior beliefs that peaks somewhere in the [0,1] interval.

Obviously we need a prior belief distribution

We have the following constraints:

- ullet The prior for q must be zero outside the [0,1] interval.
- ullet Within the [0,1] interval, we are free to specify our beliefs in any way we wish.
- ullet In most cases, we would want to choose a distribution for the prior beliefs that peaks somewhere in the [0,1] interval.

We assume the following

- The state of Colima has traditionally voted PRI in presidential elections.
- However, on account of the prevailing economic conditions, the voters are more likely to vote PAN in the election in question.

What prior distribution can we use?

We could use a Beta distribution being parametrized by two values α and β

$$p(q) = \frac{1}{B(\alpha, \beta)} q^{\alpha - 1} (1 - q)^{\beta - 1}.$$
 (43)

What prior distribution can we use?

We could use a Beta distribution being parametrized by two values α and β

$$p(q) = \frac{1}{B(\alpha, \beta)} q^{\alpha - 1} (1 - q)^{\beta - 1}.$$
 (43)

Where

We have $B\left(\alpha,\beta\right)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$ is the beta function where Γ is the generalization of the notion of factorial in the case of the real numbers.

What prior distribution can we use?

We could use a Beta distribution being parametrized by two values α and β

$$p(q) = \frac{1}{B(\alpha, \beta)} q^{\alpha - 1} (1 - q)^{\beta - 1}.$$
 (43)

Where

We have $B\left(\alpha,\beta\right)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$ is the beta function where Γ is the generalization of the notion of factorial in the case of the real numbers.

Properties

When both the $\alpha,\beta>0$ then the beta distribution has its mode (Maximum value) at

$$\frac{\alpha-1}{\alpha+\beta-2}$$
.

(44)

We then do the following

We do the following

We can choose $\alpha=\beta$ so the beta prior peaks at 0.5.

We then do the following

We do the following

We can choose $\alpha = \beta$ so the beta prior peaks at 0.5.

As a further expression of our belief

We make the following choice $\alpha = \beta = 5$.

We then do the following

We do the following

We can choose $\alpha = \beta$ so the beta prior peaks at 0.5.

As a further expression of our belief

We make the following choice $\alpha = \beta = 5$.

Why? Look at the variance of the beta distribution

$$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}.$$

(45)

Thus, we have the following nice properties

We have a variance with $\alpha=\beta=5$

 $Var(q) \approx 0.025$

Thus, we have the following nice properties

We have a variance with $\alpha = \beta = 5$

 $Var(q) \approx 0.025$

Thus, the standard deviation

 $sd \approx 0.16$ which is a nice dispersion at the peak point!!!

Now, our MAP estimate for \hat{p}_{MAP} ...

We have then

$$\widehat{p}_{MAP} = \underset{\Theta}{\operatorname{argmax}} \left[\sum_{x_i \in \mathcal{X}} \log p\left(x_i | q\right) + \log p\left(q\right) \right]$$
(46)

Now, our MAP estimate for \hat{p}_{MAP} ...

We have then

$$\widehat{p}_{MAP} = \underset{\Theta}{\operatorname{argmax}} \left[\sum_{x_i \in \mathcal{X}} \log p\left(x_i | q\right) + \log p\left(q\right) \right] \tag{46}$$

Plugging back the ML

$$\widehat{p}_{MAP} = \underset{\triangle}{\operatorname{argmax}} \left[n_{PRI} \log q + (N - n_{PRI}) \log (1 - q) + \log p(q) \right] \quad \text{(47)}$$

Now, our MAP estimate for $\widehat{p}_{MAP}...$

We have then

$$\widehat{p}_{MAP} = \underset{\Theta}{\operatorname{argmax}} \left[\sum_{x_i \in \mathcal{X}} \log p(x_i|q) + \log p(q) \right]$$
(46)

Plugging back the ML

$$\widehat{p}_{MAP} = \operatorname*{argmax}_{\Theta} \left[n_{PRI} \log q + (N - n_{PRI}) \log \left(1 - q \right) + \log p \left(q \right) \right] \quad \text{(47)}$$

Where

$$\log p(q) = \log \left(\frac{1}{B(\alpha, \beta)} q^{\alpha - 1} (1 - q)^{\beta - 1}\right) \tag{48}$$

The log of p(q)

We have that

$$\log p(q) = (\alpha - 1)\log q + (\beta - 1)\log (1 - q) - \log B(\alpha, \beta)$$
 (49)

The log of p(q)

We have that

$$\log p(q) = (\alpha - 1)\log q + (\beta - 1)\log (1 - q) - \log B(\alpha, \beta)$$
 (49)

Now taking the derivative with respect to p, we get

$$\frac{n_{PRI}}{q} - \frac{(N - n_{PRI})}{(1 - q)} - \frac{\beta - 1}{1 - q} + \frac{\alpha - 1}{q} = 0$$
 (50)

The log of p(q)

We have that

$$\log p(q) = (\alpha - 1)\log q + (\beta - 1)\log (1 - q) - \log B(\alpha, \beta)$$
 (49)

Now taking the derivative with respect to p, we get

$$\frac{n_{PRI}}{q} - \frac{(N - n_{PRI})}{(1 - q)} - \frac{\beta - 1}{1 - q} + \frac{\alpha - 1}{q} = 0$$

Thus

$$\widehat{q}_{MAP} = \frac{n_{PRI} + \alpha - 1}{N + \alpha + \beta - 2}$$

(51)

(50)

Now

With
$$N=20$$
 with $n_{PRI}=12$ and $lpha=eta=5$

$$\widehat{q}_{MAP} = 0.571$$

Outline

- 1 Intro
 - Introduction
 - Supervised Learning
 - Handling Noise in Classification
 - Models of Classification
 - Naive Bayes
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case
- 2
- Discriminant Functions and Decision Surfaces
- Introduction
- Gaussian Distribution
- $\buildrel \blacksquare$ Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks
- 3
 - Introduction
 - A first solution for the Maximum A Posteriori (MAP)
 - Maximum Likelihood Vs Maximum A Posteriori
 - Properties of the MAP

 - Some Stuff you can try

First

MAP estimation "pulls" the estimate toward the prior.

First

MAP estimation "pulls" the estimate toward the prior.

Second

The more focused our prior belief, the larger the pull toward the prior.

First

MAP estimation "pulls" the estimate toward the prior.

Second

The more focused our prior belief, the larger the pull toward the prior.

Example

If $\alpha = \beta$ =equal to large value

• It will make the MAP estimate to move closer to the prior.

Third

In the expression we derived for \widehat{q}_{MAP} , the parameters α and β play a "smoothing" role vis-a-vis the measurement n_{PRI} .

Third

In the expression we derived for \widehat{q}_{MAP} , the parameters α and β play a "smoothing" role vis-a-vis the measurement n_{PRI} .

Fourth

Since we referred to q as the parameter to be estimated, we can refer to α and β as the hyper-parameters in the estimation calculations.

Basically the MAP

It is using the power of Likelihood \times Prior to obtain more information from the data

Beyond simple derivation

In the previous technique

We took an logarithm of the **likelihood** \times **the prior** to obtain a function that can be derived in order to obtain each of the parameters to be estimated.

Beyond simple derivation

In the previous technique

We took an logarithm of the **likelihood** \times **the prior** to obtain a function that can be derived in order to obtain each of the parameters to be estimated.

What if we cannot derive the **likelihood** \times **the prior**?

For example when we have something like $|\theta_i|$.

Beyond simple derivation

In the previous technique

We took an logarithm of the **likelihood** \times **the prior** to obtain a function that can be derived in order to obtain each of the parameters to be estimated.

What if we cannot derive the **likelihood** \times **the prior**?

For example when we have something like $|\theta_i|$.

We can try the following

EM + MAP to be able to estimate the sought parameters.

Outline

- 1 lr
 - Introduction
 - Supervised Learning
 - Handling Noise in Classification
 - Models of Classification
 - Naive Bayes
 - Examples
 - The Naive Bayes Model
 - The Multi-Class Case
- 2

Discriminant Functions and Decision Surfaces

- Introduction
- Gaussian Distribution
- $\buildrel \blacksquare$ Influence of the Covariance Σ
- Example
- Maximum Likelihood Principle
- Maximum Likelihood on a Gaussian
- Some Remarks
- 3
 - Introduction
 - A first solution for the Maximum A Posteriori (MAP)
 - Maximum Likelihood Vs Maximum A Posteriori
 - Properties of the MAP
 - 4 Exercises
 - Some Stuff you can try

Exercises

Duda and Hart

Chapter 3

• 3.1, 3.2, 3.3, 3.13

Exercises

Duda and Hart

Chapter 3

• 3.1, 3.2, 3.3, 3.13

Theodoridis

Chapter 2

2.5, 2.7, 2.10, 2.12, 2.14, 2.17