安徽大学 2018—2019 学年第二学期 《线性代数 B》期末考试试卷(A卷)

(闭卷 时间120分钟)

考场登记表序号

题 号	 = -	Ξ	四	总分
得 分				
阅卷人				

-、填空题(本题共五小题,每小题3分,共15分)

得 分

- 1. 设A是3阶矩阵,且行列式|A|=-2,则A的伴随矩阵 A^* 的行列式 $|A^*|=$
- 2. 设矩阵 $A = \begin{pmatrix} 1 & -1 & 0 & -1 \\ 2 & -2 & -3 & 1 \\ -1 & 1 & 3 & -2 \end{pmatrix}$ 的等价标准形为_
- 3. 设矩阵 $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & -3 & a & -1 \\ 4 & 9 & a^2 & 1 \end{pmatrix}$. 若A的秩小于 4,且|a| > 2,则a =______
- 4. 设 A 是实对称阵, 且 $\alpha = (1,t,-1,0)^T$, $\beta = (4,1,2t,1)^T$ 是 A 的分别属于特征值 $\lambda_1 = 2$, $\lambda_2 = -3$ 的特征向量. 则t=
- 5. 向量 $\alpha = (1,1,1,1)^T$, $\beta = (-1,0,-1,0)^T$ 的夹角 $\langle \alpha,\beta \rangle =$
- 二、选择题(本题共五小题,每小题2分,共10分)

得 分

则分块矩阵 $\begin{pmatrix} A & 0 \\ C & B \end{pmatrix}$ 的逆为 (6. 设A, B分别是m阶和n阶可逆矩阵.

A.
$$\begin{pmatrix} A^{-1} & 0 \\ -B^{-1}CA^{-1} & B^{-1} \end{pmatrix}$$
. B. $\begin{pmatrix} A^{-1} & 0 \\ -A^{-1}CB^{-1} & B^{-1} \end{pmatrix}$.

B.
$$\begin{pmatrix} A^{-1} & 0 \\ -A^{-1}CB^{-1} & B^{-1} \end{pmatrix}$$
.

C.
$$\begin{pmatrix} A^{-1} & -B^{-1}CA^{-1} \\ 0 & B^{-1} \end{pmatrix}$$
.

C.
$$\begin{pmatrix} A^{-1} & -B^{-1}CA^{-1} \\ 0 & B^{-1} \end{pmatrix}$$
. D. $\begin{pmatrix} A^{-1} & -A^{-1}CB^{-1} \\ 0 & B^{-1} \end{pmatrix}$.

《线性代数 B》 第 1 页 共 6 页

拉

如

7.	设向	量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 与	可向]量约	β_1	β_2	β ,, β	,等价.	则下列证	说法一定.	正确的是	란 (()
	A.	若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线付	性材	目关,	则	$t \ge$	≥ S .	В.	若 $\alpha_1, \alpha_2, \cdot$	··, a, 线性	性相关 ,	则 s ≥	$\geq t$.	
	C.	若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线	生ラ	6关,	则	$t \ge$	S .	D.	若 $\alpha_1, \alpha_2, \cdot$	··, a, 线性	 走无关,	则s≥	$\geq t$.	
8.	设	IA是数域 F上n阶	矩	阵,	$1 \le k$	<	n.	若A的	快 $r(A) \leq k$,则		()
	A.	A的所有 k 阶子式	代不	不等于零.				В.	B. A 的所有 $k+1$ 阶子式等					
	C. A 至少有一个 k 阶非零子式.						D.,	D. A 至少有一个 $k+1$ 阶非零						
9.	设A	是n阶非零矩阵,	I	是 n	介单	位	矩阵.	若A	3 = 0,则				()
	Α.	I+A不可逆, $I-$	- A	不可	逆.			В.	I+A可逆	I-A	不可逆.			
	C.	I+A不可逆, $I-$	- A	可逆	į.			D.	I+A可逆	I - A	可逆.			
10.	设在	1,B都是n阶实对积	尔阵	.,且	$A \stackrel{\wedge}{\in}$	司行]于B.	. 则下	列说法一;	定正确 的	是		()
		A与 B 有相同的特		E值;					A 与 B 有 t A 与 B 有 t					
	、计 70 分	算题(本題共 六小) ~)	题,	第	11-	15	题每,	小题 10	分,第16	题 20 分	, 得	分		
				1										
11	2.1	営 -	-	3	-		_							
11	. 11		:	:	4 .	••	1							
			1	1	1 .	••	n+1							

R

闡

如

本名

13. 讨论a取何值时,线性方程组 $\begin{cases} x_1-2x_2 & +3x_4=-3\\ -x_1+2x_2+x_3+x_4=-5 & 有解,并在有解时求出该方程 \\ 2x_1-4x_2-x_3+2x_4=a \end{cases}$ 的一般解.

14. 设矩阵
$$A = \begin{pmatrix} 0 & 0 & 1 \\ x & 1 & -2 \\ 1 & 0 & 0 \end{pmatrix}$$
可以相似对角化. 求 x 的值.

15. 已知矩阵
$$A = \begin{pmatrix} x & 0 & y \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & a \\ \frac{\sqrt{3}}{2} & b & c \end{pmatrix}$$
 是正交阵. 求 a, b, c, x, y 的值.

- (1) 写出该二次型的矩阵 A,并求 A 的特征值与特征向量.
- (2) 求正交线性替换 X = QY, 将该二次型化为标准形.
- (3) 求该二次型的正、负惯性指数与规范形.

ry de

答 題 勿 超

狱

江

装

四、证明题(本题共5分)

得 分

17. 设向量组 α_1 , α_2 , α_3 , α_4 线性无关, $\beta_1 = \alpha_1 - \alpha_2 + \alpha_3 - \alpha_4$, $\beta_2 = \alpha_2 - \alpha_3$, $\beta_3 = 2\alpha_3 - 3\alpha_4$, $\beta_4 = \alpha_1 + \alpha_2 + \alpha_3 - 4\alpha_4$. 证明: β_1 , β_2 , β_3 是向量组 β_1 , β_2 , β_3 , β_4 的一个极大线性无关组.