Logika obliczeniowa

Algebra Boolea i minimalizacja funkcji logicznych

Przygotował:

Dr inż. Jacek Tkacz

Agenda

- Wprowadzenie
- Warunki zaliczenia
- Projekty
- Algebra Boole'a
- Minimalizacja funkcji logicznych

Warunki zaliczenia

- Wykład
 - Uzyskanie pozytywnej oceny z kolokwium sprawdzającego
- Laboratorium
 - Warunkiem zaliczenia ćwiczenia jest uzyskanie pozytywnej oceny z wykonania zadań polecanych na zajęciach oraz pisemnego sprawdzenia wiadomości (tzw. "wejściówki").
 - Obecność na zajęciach jest obowiązkowa. Student ma prawo do jednej nieobecności

UWAGA: W nieustalonych przypadkach obowiązuje regulamin studiów

Plan przedmiotu?

- Minimalizacja funkcji logicznych
- Diagramy Binarnych Decyzji
 - **BDD**
 - **OBDD**
- Badanie spełnialności funkcji
- Rachunek sekwentów Gentzena (logika

symboliczna)

Literatura przedmiotu

- Huzar Z.: Elementy logiki i teorii mnogości dla informatyków, Wydawnictwa Politechniki Wrocławskiej, Wrocław, 2007.
- Ross K.A., Wright Ch.R.B.: Matematyka dyskretna, Wydawnictwo Naukowe PWN, Warszawa, 2006.
- Ławrow I. A, Maksimowa Ł.R: Zadania z teorii mnogości, logiki matematycznej i teorii algorytmów, Wydawnictwo Naukowe PWN, Warszawa, 2004.
- Ben Ari M.: Logika matematyczna w informatyce, WNT, Warszawa, 2005.
- Papadimitriou H.: Złożoność obliczeniowa, WNT, Warszawa, 2002.
- Tiuryn J.: Wstęp do teorii mnogości i logiki, Wydział Matematyki, Informatyki i Mechaniki, Uniwersytet Warszawski, 1998 (podręcznik internetowy).
- Majewski W.: Układy logiczne, Wydawnictwa Komunikacji i Łączności, 2000.
- Indrzejczak A.: Wprowadzenie do rachunku sekwentów zagadnienia metodologiczne, zastosowania. Publikacja internetowa: http://www.filozof.uni.lodz.pl/prac/ai/Gentzen.pdf

UWAGA: Podany zestaw literatury nie jest obowiązujący na zajęciach. Literaturą przedmiotu może być każda książka omawiająca zagadnienia poruszane na zajęciach.

Algebra Boole'a

Algebra Boole'a jest to struktura matematyczna złożona z trzech działań binarnych:

```
– ∨ (lub, or, alternatywa,+,||)
```

```
– ∧ (i, and, koniunkcja,*)
```

– (nie, not, przeczenie logiczne,~,!)

oraz wyróżnionych elementów 0 (fałsz), 1 (prawda).

Własności algebry Boole'a

W algebrze Boole'a zmienne przyjmują jedną z dwóch możliwych wartości: 0 lub 1. Alternatywa i koniunkcja są przemienne i łączne oraz posiadają takie oto własności:

•
$$a \lor 0 = a$$

• a
$$\vee$$
 1 = 1

•
$$a \wedge 0 = 0$$

•
$$a \wedge \neg a = 0$$

Prawa algebry Boole'a

Podwójne zaprzeczenie

$$\neg(\neg a) = a$$

De Morgana

$$\neg$$
(a \lor b) = \neg a \land \neg b
 \neg (a \land b) = \neg a \lor \neg b

Rozdzielność

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$

 $a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$

Absorbcja

$$a \wedge (a \vee b) = a$$

 $a \vee (a \wedge b) = a$

Wartości logiczne spójników

а	b	¬a	¬b	a∨b	a ∧ b
0	0	1	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	1	0	0	1	1

Dodatkowe operatory logiczne

Równoważność (↔, ≡,
 <->, XNOR, ⊗)

$$a \leftrightarrow b = (a \land b) \lor (\neg a \land \neg b)$$

 Suma wyłączająca (XOR, <+>, ⊕)

$$a \oplus b = (\neg a \land b) \lor (a \land \neg b)$$

 $a \oplus b = \neg (a \leftrightarrow b)$

Implikacja (→, ->)

$$a \rightarrow b = (\neg a \lor b)$$

а	b	a ↔ b	a⊕b	$a \to b$	
0	0	1	0	1	
0	1	0	1	1	
1	0	0	1	0	
1	1	1	0	1	

Dwójkowy system liczbowy

Pozycyjny system liczbowy, w którym podstawą pozycji są kolejne potęgi liczby 2

 Reprezentacja binarna
 Przykład liczb

$$+ 2^4 + 2^3 + 2^2 + 2^1 + 2^0$$
0 1 0 1

$$= 0*23 + 1*22 + 0*21 + 1*20$$
$$= 4 + 1 = 5$$

Naturalny kod binarny (NKB)

 W NKB kolejne liczby binarne odpowiadają kolejnym liczbom naturalnym (0, 1, 2, 3, 4, 5, ...)

Liczba naturalna	Reprezentacja binarna		
0	0		
1	1		
2	10		
3	11		
4	100		
5	101		
6	110		
7	111		
8	1000		
9	1001		
10	1010		

Kod Gray'a (refleksyjny)

- Jest dwójkowym kodem bezwagowym niepozycyjnym
- Charakteryzuje się tym, że dwa kolejne słowa kodowe różnią się tylko stanem jednego bitu
- Jest również kodem cyklicznym, bowiem ostatni i pierwszy wyraz tego kodu także spełniają w/w zasadę

Konstruowanie kodu Graya

Reprezentacja tablicowa funkcji (tabela prawdy)

- Funkcję logiczną można przedstawić w postaci tabeli prawdy
- Przykładowa funkcja trzech zmiennych
 - kanoniczna postać sumy

$$y_{(a,b,c)} = (\neg a \land b \land \neg c) \lor (\neg a \land b \land c) \lor (a \land \neg b \land c) \lor (a \land b \land c)$$

$$(a \land b \land c)$$

kanoniczna postać iloczynu

$$y_{(a,b,c)} = (a \lor b \lor c) \land (a \lor b \lor \neg c) \land (\neg a \lor b \lor c) \land (\neg a \lor \neg b \lor c)$$

	а	b	С	у
0	0	0	0	0
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

2^N kombinacji N – liczba zmiennych logicznych

Minimalizacja funkcji logicznych

- Polega na znalezieniu dla danej funkcji formuły minimalnej, która jest jak najmniej skomplikowana
- Współczynnikiem skomplikowania funkcji nazywamy sumę liczby wyrażeń (pojedynczych liter lub ich kombinacji) podlegających mnożeniu i liczby wyrażeń podlegających dodawaniu
- Może istnieć więcej niż jedna postać minimalna funkcji boolowskiej.

Minimalizacja funkcji z wykorzystaniem przekształceń algebraicznych

Zastosowane prawo rozdzielności

Własność algebry Boole'a: $a \lor \neg a = 1$

Własność algebry Boole'a Jeśli $\neg a \land b = \Phi$ to: $\Phi \land 1 = \Phi$ więc: $\neg a \land b \land 1 = \neg a \land b$

Metoda mało przydatna w praktyce

Algorytmiczne metody minimalizacji

- Bazują na generowaniu pokryć przy pomocy jak najmniejszej liczby implikantów prostych
- Przykładowe metody: Karnaugha, Quine'a-McCluskeya, iteracyjnego konsensusu, Espresso (oparta na algorytmie ekspansji)

Siatki Karnauha

- Sposób wynaleziony w 1950 roku przez Maurice Karnaugha
- Jeśli funkcja posiada do sześciu zmiennych i zostanie zapisana w specjalnej tablicy zwanej tablicą lub siatką Karnaugh, wówczas znalezienie minimalnej formuły odbywa się na drodze intuicyjnej
- W celu minimalizacji funkcji o większej liczbie wejść stosuje się z powodzeniem metody komputerowe, np. metodę Quine'a-McCluskeya

Indeksy w siatce Karnaugha

- W siatce Karnaugha część zmiennych binarnych przypisana jest wierszom, a część kolumnom. Wiersze i kolumny numerowane są przy pomocy kodu Graya.
- Wektorem odpowiadającym danej kratce jest wektor powstały po "sklejeniu" binarnego numeru wiersza z binarnym numerem kolumny.

Y_(A,B,C,D)

AB	00	01	11	10	
00	F(0,0,0,0)	F(0,0,0,1)	F(0,0,1,1)	F(0,0,1,0)	
01	F(0,1,0,0)	F(0,1,0,1)	F(0,1,1,1)	F(0,1,1,0)	
11	F(1,1,0,0)	F(1,1,0,1)	F(1,1,1,1)	F(1,1,1,0)	
10	F(1,0,0,0)	F(1,0,0,1)	F(1,0,1,1)	F(1,0,1,0)	

Minimalizacja z wykorzystaniem siatki Karnaugha - grupowanie

- W celu minimalizacji funkcji logicznych należy wypełnić siatkę Karnaugha wartościami (1 lub 0) odpowiadającymi wartościom funkcji
- Następnie grupuje się pola o wybranej wartości (1 aby uzyskać funkcję minimalną w postaci sumy, 0 dla postaci iloczynu)
- Grupy muszą mieć kształt prostokąta o długościach boków będących potęgami dwójki (mogą przechodzić przez krawędzie siatki)
- W celu uzyskania postaci minimalnej, grupy powinny być możliwe największe
- Jedno pole może należeć do wielu grup

Minimalizacja z wykorzystaniem siatki Karnaugha - wypisywanie

- W przypadku wypisywania zgrupowanych jedynek wypisywane są iloczyny zmiennych nie zmieniających swojej wartości w grupie
- Postać minimalna będzie sumą iloczynów poszczególnych grup
- W przypadku wypisywania zgrupowanych zer wypisywane są sumy zanegowanych zmiennych nie zmieniających swojej wartości w grupie
- Postać minimalna będzie iloczynem sum poszczególnych grup

Przykłady minimalizacji

Przykład 1

$$X = \overline{A} \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

$$X = A + \overline{B} \cdot \overline{C}$$

• Przykład 2

$$Y = (\overline{A} + \overline{B} + \overline{C}) \cdot (A + \overline{B} + \overline{C}) \cdot (A + \overline{B} + C) \cdot (A + B + \overline{C}) \cdot (A + B + C)$$

$$Y = A \cdot \left(\overline{B} + \overline{C}\right)$$

Relacje pomiędzy kolumnami przy więcej niż 4 zmiennych

Dzięki zastosowaniu kodu Graya, możliwe jest znalezienie w wizualny sposób pól sąsiednich logicznie, czyli różniących się wartością dokładnie jednej zmiennej. Przy większej liczbie zmiennych staje się to jednak trudniejsze.

∠ CDE AB ∖	000	100	110	010	011	111	101	100
00								
01								
11								
10								
•				3				

Przykładowe zadanie

 Opracować tablicę prawdy dla systemu decyzyjnego wykrywającego 4-bitową liczbę pierwszą. Wyprowadzić funkcję logiczną w KPS a następnie ją zminimalizować wykorzystując siatkę Karnaugha

Koniec

http://willow.iie.uz.zgora.pl/~jtkacz

Dziękuję za uwagę!