Задача без смешанной производной второго шага. Постановка граничных условий в околополюсных точках.

Рассматривается уравнение, решаемое на втором шаге расщепления, без учёта смешанной производной:

$$\frac{\partial n}{\partial t} = \frac{1}{a\cos\varphi} \frac{\partial}{\partial\varphi} \left[\frac{D}{a} \cdot (\cos^2 I \cos\varphi) \cdot \frac{\partial n}{\partial\varphi} - u \cdot (\sin I \cos I \cos\varphi) \cdot n \right] = \frac{1}{\cos\varphi} \frac{\partial}{\partial\varphi} \left[\frac{D}{a^2} A(\varphi) \frac{\partial n}{\partial\varphi} - \frac{u}{2a} B(\varphi) n \right].$$

В этом уравнении $I=\mathrm{arctg}(2\lg\varphi),$ а функции $A(\varphi)$ и $B(\varphi)$ определены выражениями:

$$A(\varphi) = \cos\varphi \cdot \cos^2(\operatorname{arctg}(2\operatorname{tg}\varphi)) = \frac{\cos\varphi}{1 + 4\operatorname{tg}^2\varphi} \text{ if } B(\varphi) = \cos\varphi \cdot \sin(2\operatorname{arctg}(2\operatorname{tg}\varphi)) = \frac{4\sin\varphi}{1 + 4\operatorname{tg}^2\varphi}.$$

Необходимо аппроксимировать уравнение в околополюсных точках на сетке по переменной φ : узлы имеют номера от 1 до $N_{\varphi}=180,\ j=1$ соответствует $\varphi=-89.5^{\circ},\ a\ j=N_{\varphi}$ соответствует $\varphi=+89.5^{\circ}.$ Общая формула для узлов: $\varphi_{j}=-90^{\circ}+(j-0.5)\cdot 1^{\circ}.$

Графики функций A и B приведены ниже:

Имеют место следующие разложения при $\varphi \to \frac{\pi}{2}$:

$$A(\varphi) = -\frac{1}{4} \cdot \left(\varphi - \frac{\pi}{2}\right)^3 - \frac{1}{16} \cdot \left(\varphi - \frac{\pi}{2}\right)^5 + o\left(\left(\varphi - \frac{\pi}{2}\right)^6\right); B(\varphi) = 1 \cdot \left(\varphi - \frac{\pi}{2}\right)^2 - \frac{1}{12} \cdot \left(\varphi - \frac{\pi}{2}\right)^4 + o\left(\left(\varphi - \frac{\pi}{2}\right)^5\right)$$

Соответственно, при $x \to -\frac{\pi}{2}$:

$$A(\varphi) = \frac{1}{4} \cdot \left(\varphi + \frac{\pi}{2}\right)^3 + \frac{1}{16} \cdot \left(\varphi + \frac{\pi}{2}\right)^5 + o\left(\left(\varphi + \frac{\pi}{2}\right)^6\right); B(\varphi) = -1 \cdot \left(\varphi + \frac{\pi}{2}\right)^2 + \frac{1}{12} \cdot \left(\varphi + \frac{\pi}{2}\right)^4 + o\left(\left(\varphi + \frac{\pi}{2}\right)^5\right)$$

Для уравнения используем следующую схему:

$$\frac{n_{i,j}^{t+1} - n_{i,j}^t}{\tau} = \frac{1}{\cos \varphi_j} \left[\frac{D}{a^2} \left(A(\varphi_{j+1/2}) \frac{n_{i,j+1}^{t+1} - n_{i,j}^{t+1}}{\Delta \varphi^2} - A(\varphi_{j-1/2}) \frac{n_{i,j}^{t+1} - n_{i,j-1}^{t+1}}{\Delta \varphi^2} \right) - \frac{u}{2a} \left(\frac{B(\varphi_{j+1}) n_{i,j+1}^{t+1} - B(\varphi_{j-1}) n_{i,j-1}^{t+1}}{2\Delta \varphi} \right) \right]$$

Рассмотрим границу j=1, соответствующую южному полюсу и узлу $\varphi_j=-89,5^\circ$. В этой точке поставим следующее условие: полный поток в разностной схеме равен нулю. Это означает, что

$$\left[\frac{D}{a^2} \left(A(\varphi_{j-1/2}) \frac{n_{i,j}^{t+1} - n_{i,j-1}^{t+1}}{\Delta \varphi^2} \right) - \frac{u}{2a} \left(\frac{B(\varphi_{j-1}) n_{i,j-1}^{t+1} + B(\varphi_j) n_{i,j}^{t+1}}{2\Delta \varphi} \right) \right) \right] = 0$$

В этом случае решается уравнение

$$\frac{n_{i,j}^{t+1} - n_{i,j}^{t}}{\tau} = \frac{1}{\cos \varphi_{j}} \left[\frac{D}{a^{2}} \left(A(\varphi_{j+1/2}) \frac{n_{i,j+1}^{t+1} - n_{i,j}^{t+1}}{\Delta \varphi^{2}} \right) - \frac{u}{2a} \left(\frac{B(\varphi_{j+1}) n_{i,j+1}^{t+1} + B(\varphi_{j}) n_{i,j}^{t+1}}{2\Delta \varphi} \right) \right) \right]$$

Заметим, что в отличие от значения функции A в полуцелом узле, выражение $\frac{B(\varphi_{j-1})n_{i,j-1}^{t+1}+B(\varphi_j)n_{i,j}^{t+1}}{2\Delta\varphi}$ не равно нулю в точности: подстановка значений B с учётом приведенной выше асимптотики даёт

$$\frac{B(\varphi_{j-1})n_{i,j-1}^{t+1} + B(\varphi_j)n_{i,j}^{t+1}}{2\Delta\varphi\cos\varphi} \approx \frac{n}{2\Delta\varphi^2} \left[\left(\frac{\pi}{2} + \frac{\Delta\varphi}{2} - \frac{\pi}{2} \right)^2 + \left(\frac{\pi}{2} - \frac{\Delta\varphi}{2} - \frac{\pi}{2} \right)^2 \right] \approx \frac{n}{4}$$

Эта константа не зависит от $\Delta \varphi$, что приводит к «скачкам» в околополюсных точках, что иллюстрируется следующим графиком:

Заменим граничное условие: по-прежнему зануляем $A(\varphi_{j-1/2})$, но вместо обнуления компоненты потока, связанной с дивергентным членом, заметим, что точки -89.5° и -90.5° симметричны, поэтому можно положить требуемое $B(\varphi_{j-1})n_{j-1}$ равным $B(\varphi_j)n_j$. После такой замены получим следующую картину:

Аппроксимации смешанной производной и граничные условия.

Рассмотрим различные аппроксимации для смешанной производной, а также граничные условия в околополюсных точках в уравнении

$$\frac{\partial n}{\partial t} = \frac{1}{a\cos\varphi} \frac{\partial}{\partial\varphi} \left[\frac{D}{a} \cdot (\cos^2 I \cos\varphi) \cdot \frac{\partial n}{\partial\varphi} - D \cdot (\sin I \cos I \cos\varphi) \cdot \frac{\partial n}{\partial z} - u \cdot (\sin I \cos I \cos\varphi) \cdot n \right] =$$

$$= \frac{1}{\cos\varphi} \frac{\partial}{\partial\varphi} \left[\frac{D}{a^2} A(\varphi) \frac{\partial n}{\partial\varphi} - \frac{D}{2a} B(\varphi) \frac{\partial n}{\partial z} - \frac{u}{2a} B(\varphi) n \right].$$

I. Нелинейная схема. Вводим эффективную скорость $u_z = B(\varphi) \frac{1}{n} \frac{\partial n}{\partial z} = B(\varphi) \frac{\partial \ln n}{\partial z}$. При численном моделировании полагаем

$$u_{z(i,j)} \approx B(\varphi) \frac{2}{n_{i+1,j}^t + n_{i-1,j}^t} \begin{cases} \frac{n_{i+1,j}^t - n_{i,j}^t}{h}, B(\varphi) \geqslant 0\\ \frac{n_{i,j}^t - n_{i-1,j}^t}{h}, B(\varphi) \leqslant 0. \end{cases}$$

После вычисления $u_{z(i,j)}$ в узле (i,j) по значениям n^t с предыдущего временного шага t в зависимости от знака $u_{z(i,j)}$ аппроксимируется смешанная производная:

$$-\frac{D}{2a\cos\varphi}\frac{\partial}{\partial\varphi}[u_{z}n] \approx \begin{cases} -\frac{D}{2a\cos\varphi_{j}} \frac{u_{z(i,j+1)}n_{i,j+1}^{t+1} - u_{z(i,j)}n_{i,j}^{t+1}}{\Delta\varphi}, u_{z(i,j)} \geqslant 0\\ -\frac{D}{2a\cos\varphi_{j}} \frac{u_{z(i,j)}n_{i,j}^{t+1} - u_{z(i,j-1)}n_{i,j-1}^{t+1}}{\Delta\varphi}, u_{z(i,j)} \leqslant 0. \end{cases}$$

В околополюсных точках j=1 и $j=N_{\varphi}$ для исключения требуемых в расчете значений вне сетки используем свойства функций A и B:

j=1. В этом случае $A\left(\varphi-\frac{\Delta\varphi}{2}\right)=0$ в точности. Заметим далее, что значение $B(\varphi-\Delta\varphi)n_{i,j-1}$ совпадает с $B(\varphi)n_{i,j}$, эти точки симметричны относительно вертикальной оси. Такое замечание справедливо, когда рассматривается стационарная задача, отвечающая дневному значению фотоионизации и рекомбинации. Для смешанной производной используем тот же приём: в тех случаях, когда требуется вычислить $u_{z(i,j-1)}n_{i,j-1}$, это значение заменяется на равное ему $u_{z(i,j)}n_{i,j}$.

$$j=N_{arphi}$$
 Аналогично, $A\left(arphi+rac{\Deltaarphi}{2}
ight)=0$, а $B(arphi+\Deltaarphi)n_{i,j+1}$ и $u_{z(i,j+1)}n_{i,j+1}$ заменяются соответственно на $B(arphi)n_{i,j}$ и $u_{z(i,j)}n_{i,j}$.

Результаты расчетов показывают, что имеет место несогласованность такой аппроксимации: возникают ложные источники на границах, похожие на наблюдаемые в схеме без смешанной производной при попытке аппроксимировать полный поток в околополюсной точке нулём.

II. Линейные схемы первого порядка. Для смешанной производной $-\frac{D}{2a\cos\varphi}\frac{\partial}{\partial\varphi}\left(B(\varphi)\frac{\partial n}{\partial z}\right)$ можно рассмотреть следующие четыре аппроксимации (здесь $B_j\equiv B(\varphi_j)$:

$$-\frac{D}{2a\cos\varphi}\frac{\partial}{\partial\varphi}\left(B(\varphi)\frac{\partial n}{\partial z}\right)\approx$$

$$\approx -\frac{D}{2ah\Delta\varphi\cos\varphi_{j}} \begin{cases} B_{j+1}n_{i,j+1}^{t+1} - B_{j}n_{i,j}^{t+1} - B_{j+1}n_{i-1,j+1}^{t} + B_{j}n_{i-1,j}^{t}, \text{ справедливо при } B(\varphi_{j}) < 0, \text{ схема } (1); \\ B_{j+1}n_{i+1,j+1}^{t} - B_{j}n_{i+1,j}^{t} - B_{j+1}n_{i,j+1}^{t+1} + B_{j}n_{i,j}^{t+1}, \text{ справедливо при } B(\varphi_{j}) > 0, \text{ схема } (2); \\ B_{j}n_{i,j}^{t+1} - B_{j-1}n_{i,j-1}^{t+1} - B_{j}n_{i-1,j}^{t} + B_{j-1}n_{i-1,j-1}^{t}, \text{ справедливо при } B(\varphi_{j}) > 0, \text{ схема } (3); \\ B_{j+1}n_{i+1,j+1}^{t} - B_{j}n_{i+1,j}^{t} - B_{j+1}n_{i,j+1}^{t+1} + B_{j}n_{i,j}^{t+1}, \text{ справедливо при } B(\varphi_{j}) < 0, \text{ схема } (4). \end{cases}$$

Первый вариант схемы первого порядка: при $B(\varphi) \geqslant 0$ (т. е. в верхнем полушарии) вычисление ведется по формуле (3), а в нижнем полушарии, при $B(\varphi) \leqslant 0$, соответственно, по формуле (1).

При этом оказывается, что на полюсах разности направлены так, что для вычисления следующего временного слоя не требуется информации о точках вне расчетной области на предыдущем шаге. Поэтому граничные условия в околополюсных точках достаточно применить для слагаемых, отвечающих диффузии и переносу: используются те же условия, что и в предыдущей схеме: на южном полюсе $A\left(\varphi-\frac{\Delta\varphi}{2}\right)=0$, а $B(\varphi-\Delta\varphi)n_{i,j-1}$ заменяется на $B(\varphi)n_{i,j}$. На северном полюсе условия аналогичны.

Второй вариант схемы первого порядка: при $B(\varphi) \geqslant 0$ (т. е. в верхнем полушарии) вычисление ведется по формуле (2), а в нижнем полушарии, при $B(\varphi) \leqslant 0$, соответственно, по формуле (4).

Граничные условия в околополюсных точках для слагаемых, отвечающих диффузии и переносу те же условия, что и в предыдущей схеме. В этой схеме требуются также и значения вне расчетной области для вычисления смешанных производных. Применяем тот же метод: при необходимости вычислить $B_{j+1}n_{i,j+1}$ на северном полюсе заменяем это слагаемое на $B_{j}n_{i,j}$.

Оба варианта вновь показывают несогласованную аппроксимацию вблизи полюсов:

Результаты расчета по первому варианту схемы:

Результаты расчета по второму варианту схемы:

III. Линейная схема второго порядка. Для получения такой схемы используем аппроксимации, рассмотренные в предыдущем пункте: если $B(\varphi)\geqslant 0$, то аппроксимируем смешанную производную полусуммой аппроксимаций (2) и (3), иначе — полусуммой (1) и (4). Для вычисления в околополюсных точках вновь отождествляем необходимые точки вне расчетной области с симметричными им относительно полюсов. На этот раз такая аппроксимация согласо-

