Constraint Programming Systems

Christian Schulte

cschulte@kth.se

Electronic, Computer and Software Systems School of Information and Communication Technology KTH – Royal Institute of Technology Stockholm, Sweden

KTH Information and Communication Technology

Focus

- What are the key concepts in a
 - constraint-propagation based
 - tree-search based

constraint programming system

- Focus: constraint propagation
 - basic model
 - properties and guarantees
- No complete story, see background material

Material

Slides

will be available online (?)

Background material

Efficient Constraint Propagation Engines.
 Christian Schulte, Peter J. Stuckey.

Transactions on Programming Languages and Systems, pages 2:1-2:43. ACM Press, December, 2008.

Finite Domain Constraint Programming Systems.
 Christian Schulte, Mats Carlsson.

Handbook of Constraint Programming, Foundations of Artificial Intelligence, pages 495-526. Elsevier Science Publishers, 2006.

Outline

- Model for propagator-based propagation
 - propagators and propagation loops
 - dependency directed propagation
 - what is computed
- Efficient propagation: a menu to choose from
 - fixpoint reasoning
 - event sets: static, monotonic, fully dynamic
 - which propagator to run next
 - combining propagation
 - variable-centered propagation

Constraint Satisfaction Problems

Specifications versus Implementations

Specification

- constraint satisfaction problem (CSP)
- variables, values, constraints
- semantics defined by its set of solutions

Implementation

- constraint model
- variables, values, propagators
- also defines set of solutions
- constraint propagation and search for computing solutions

Essential Questions

- When does model implement CSP?
 - same set of solutions
- What are properties of propagators?
 - contract variable domains
 - can identify solutions
 - are monotonic

Constraint Propagation

- Given propagators with right properties
 - how to perform constraint propagation
 - what is computed
 - solutions are maintained
 - important invariant: order of execution irrelevant

Constraint Satisfaction Problems

- Here: constraint satisfaction problem (CSP) as problem specification
 - variables
 - which values do variables take
 - which constraints

- Specification: what are the solutions, not how to compute them
 - declarative specification

Parts of CSP

- Variables
 Variables
 V={x₀, x₁, ...}
- Universe U
 finite set of values U
 - simplicity: all variables take values from same set
- Constraints C
 - which variables involved
 - what are the solutions

Constraints

 A constraint c is defined by its variables

$$var(c) = (x_1, ..., x_n) \in V^n$$

its solutions

$$sol(c) \subseteq U^n = U \times ... \times U$$

n times

Assignments

Assignment a defines which values variables take

$$a \in V \rightarrow U$$

Assignment a solution of constraint c (written a∈c), iff

$$var(c) = (x_1, ..., x_n) \text{ and}$$

 $(a(x_1), ..., a(x_n)) \in sol(c)$

Example: Assignments

- Suppose *V*={*x*, *y*, *z*} and *U*={1, 2, 3}
- Then $a \in V \rightarrow U$ defined by a(x) = 2, a(y) = 3, a(z) = 1 is assignment
- We will write

$$a=\{x \to 2, y \to 3, z \to 1\}$$

Solutions of a CSP

■ Assignment $a \in V \rightarrow U$ solution of CSP P=(V,U,C) if $a \in C$ for all $c \in C$

Solutions sol(P) of P defined
 {a ∈ V → U | a solution of P }

Example: CSP

- PWD := (V,U,C) with
 - $V := \{x, y, z\}$
 - *U* := {1, 2, 3}
 - $C := \{c_1, c_2, c_3\}$ where $var(c_1) = (x, y)$ $sol(c_1) = \{(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)\}$

$$var(c_2)=(x,z), sol(c_2):=sol(c_1)$$

$$var(c_3)=(y,z), sol(c_3):=sol(c_1)$$

Example: CSP Solutions

sol(
$$PWD$$
) = {
 $\{x \rightarrow 1, y \rightarrow 2, z \rightarrow 3\},\$
 $\{x \rightarrow 1, y \rightarrow 3, z \rightarrow 2\},\$
 $\{x \rightarrow 2, y \rightarrow 1, z \rightarrow 3\},\$
 $\{x \rightarrow 2, y \rightarrow 3, z \rightarrow 1\},\$
 $\{x \rightarrow 3, y \rightarrow 1, z \rightarrow 2\},\$
 $\{x \rightarrow 3, y \rightarrow 2, z \rightarrow 1\}\}$

Constraint Models

Constraint Model

- Gives an implementation of a CSP P
 - when is it really an implementation?
- Instead of constraints, we have propagators
 - what is a propagator?
 - propagators compute over a constraint store
 - what is a constraint store?

Constraint Stores

 Constraint store s maps variables to sets of values, that is

$$s \in V \rightarrow 2^U$$

- also store instead of constraint store
- also known as domain
- we refer to set of stores by $S = V \rightarrow 2^U$

Strength of Stores

- Store s_1 stronger than store s_2 , iff $s_1(x) \subseteq s_2(x)$ for all $x \in V$
 - written $s_1 \le s_2$
- Store s_1 strictly stronger than s_2 , iff $s_1 \le s_2$ and $s_1 \ne s_2$
 - written $s_1 < s_2$
 - equivalent: $s_1 \le s_2$ and there exists $x \in V$ such that $s_1(x) \subset s_2(x)$

Example: Stores

- Suppose V={x, y} and U={1, 2, 3}
- Consider

$$s_1 = \{x \to \{1,2\}, y \to \{2,3\}\}\$$

 $s_2 = \{x \to \{2\}, y \to \{2,3\}\}\$
 $s_3 = \{x \to \{2,3\}, y \to \{1,2,3\}\}\$

Then

$$s_2 < s_1$$
 and $s_2 < s_3$

but neither

$$s_3 \le s_1$$
 nor $s_1 \le s_3$

Stores

- (S,<) is well-founded order!</p>
 - only finitely many variables
 - only finitely many values

Propagator Properties

- Clearly a propagator must compute stronger stores
 - sometimes will fail to make it strictly stronger

- Propagator p is function from stores to stores (p ∈ S→S) which is contracting
 - p(s) ≤ s for all stores s

Intuition: Propagators Implement Constraints

Assume constraint c and propagator p

- Require: if p "implements" c, p never removes solution of c
 - this is not sufficient as we will see
 - we need connection between assignments and stores
 - propagators compute with stores
 - solutions are assignments

Assignments and Stores

We write a∈s for an assignment a and a store s, if

$$a(x) \in s(x)$$
 for all $x \in V$

 Propagators are defined on stores, for assignment a, define

$$store(a)(x) = \{a(x)\}$$
 for all $x \in V$

- store(a) is a store
- a ∈ s ⇔ store(a) ≤s

Example: Assignments and Stores

Suppose V={x, y, z} and U={1, 2, 3} and

$$a = \{x \to 2, y \to 3, z \to 1\}$$

Then

$$store(a) = \{x \rightarrow \{2\}, y \rightarrow \{3\}, z \rightarrow \{1\}\}\$$

Example: Propagator

Assume V={x,y} and U={0, ..., 5}

■ Propagator $p_{<}$ for $x \le y$

```
p_{\leq}(s) = \{ x \rightarrow \{ n \in s(x) \mid n \leq \max(s(y)) \}, \\ y \rightarrow \{ n \in s(y) \mid n \geq \min(s(x)) \} \}
```

Example: Propagator

For store

$$s = \{x \to \{3,4,5\}, y \to \{0,1,2,3\}\}\}$$

propagator p_{\leq} returns
 $p_{\leq}(s) = \{x \to \{n \in s(x) \mid n \leq 3\},$
 $y \to \{n \in s(y) \mid n \geq 3\}\}$
 $= \{x \to \{3\}, y \to \{3\}\}$

Implementing a Constraint

- p implements c, if $a \in c$, then p(store(a)) = store(a)
 - p respects the solutions of c
 - with other words: solutions are fixpoints
- Is this sufficient?
 No!

Keeping Solutions: Sketch...

- Assume p implements c, and a∈c
- Required: if $a \in s$, then $a \in p(s)$

```
a∈s ⇔ store(a)≤s
```

⇒ ????

 \Leftrightarrow store(a) $\leq p(s)$

 $\Leftrightarrow a \in p(s)$

Example: No Propagator

Assume propagator

$$p_{?}(s) = \text{if } s(x) = \{1,2,3\} \text{ then } \{x \rightarrow \{1\}\}\}$$
else s

and

$$s_1 = \{x \rightarrow \{1,2,3\}\}\ s_2 = \{x \rightarrow \{1,2\}\}\$$

Then

$$s_1 > s_2$$
 but $p_2(s_1) < p_2(s_2)$

- makes propagation order dependent
- must be ruled out!

Propagators Are Monotonic!

- Propagator $p \in S \rightarrow S$ is
 - contracting

$$p(s) \leq s$$

monotonic

$$s_1 \le s_2 \Rightarrow p(s_1) \le p(s_2)$$

Keeping Solutions: Again...

- Assume p implements c, and a∈c p(store(a)) = store(a)
- Required: if a∈s, then a∈p(s)

$$a \in s \Leftrightarrow store(a) \leq s$$

$$\Rightarrow p(\text{store}(a)) \leq p(s)$$

monotonicity

$$\Leftrightarrow$$
 store(a) $\leq p(s)$

$$\Leftrightarrow a \in p(s)$$

Handling Failure...

Store s is *failed*, if exists $x \in V$ $s(x) = \emptyset$

Propagator p fails on store s, if p(s) failed

Non-Solution Assignments

Assume p implements c, a∉c then p fails on store(a)=s

a∉c
$$\Leftrightarrow p(s) \neq s$$

 $\Rightarrow p(s) < s$

Remember: p is contracting!

$$\Rightarrow$$
 ex. $x \in V$ $p(s)(x) \subset s(x)$

$$\Rightarrow$$
 ex. $x \in V$ $p(s)(x) = \emptyset$

 \Rightarrow p fails on s

Order Does Not Matter

Assume propagation done

$$p(s_2) = q(s_2) = s_2$$
 and $p(s_4) = q(s_4) = s_4$

• Then
$$s_2 = s_4$$

■
$$s_0 \le p(s_0) = s_1$$
 $\Rightarrow s_3 = q(s_0) \le q(s_1) = s_2$
 $\Rightarrow s_4 = p(s_3) \le p(s_2) = s_2$ $\Rightarrow s_4 \le s_2$
■ $s_0 \le q(s_0) = s_3$ $\Rightarrow s_1 = p(s_0) \le p(s_3) = s_4$
 $\Rightarrow s_2 = q(s_1) \le q(s_4) = s_4$ $\Rightarrow s_2 \le s_4$

Constraint Model

A constraint model M=(V,U,P) is defined by

set of variables

set of values

set of propagators

Solutions

Solutions sol(p) of propagator p is defined as { a∈ V→U | store(a)=p(store(a)) }

Solutions sol(M) of constraint model
 M=(P, V, U) is defined as
 { a∈ V→U | a∈sol(p) for all p∈P }

Model Implementation

A constraint model M=(V,U,P) implements
the CSP C, if
sol(M) = sol(C)

Solutions Refined

We will be interested in solutions starting propagation from some store

$$sol(M,s)$$
 for model $M=(V,U,P)$
store s

defined as

```
\{ a \in sol(M) \mid store(a) \leq s \}
```

Soundness of Propagation

- Given model M=(V,U,P) and store s for all p∈P sol(M,s) = sol(M,p(s))
 - follows from previous discussion of monotonicity as propagator property

Slogan: propagation is solution preserving

Naïve Constraint Propagation

Naïve Constraint Propagation

■ Looking for propagate : M × S → S performing constraint propagation

- start from some initial store
- return store on which all propagation has been performed
- ignore efficiency, focus on principle idea

Naïve Propagation Function

```
propagate ((V, U, P), s)

while p \in P and p(s) \neq s do

s := p(s);

return s;
```

- What is returned as result?
- Does it terminate?

Result Computed

Assume propagate ((V,U,P),s)=s'

$$sol((V,U,P),s) = sol((V,U,P),s')$$

no solutions removed

for all
$$p \in P$$
: $p(s') = s'$
no further propagation possible
largest simultaneous fixpoint

Termination

Consider store s_i at i-th iteration of loop with s_o initial store

$$S_{i+1} < S_i$$

- That is, s_i form strictly decreasing sequence: cannot be infinite
 - remember: (S,<) is well-founded!</p>
- Loop terminates!

Weakest Simultaneous Fixpoint

Assume propagate ((V, U, P), s) = s'Then

s' weakest sim. fixpoint with s'≤ s that is

for all
$$p \in P$$
 $p(s') = s'$

- clear, follows from termination of loop weakest fixpoint?
- any other fixpoint is stronger

Weakest Fixpoint

Let p_i be propagator of i-th iteration

$$s_i := p_i(s_{i-1}) \qquad i > 0$$

where $s_0 := s$

Termination: there is n such that

$$s' = s_n$$

Assume t is ssim. fp. with $t \le s$, show

$$t \leq s'$$

that is, t is indeed stronger and hence s' is weakest

Proof: Base Case

Show by induction over i $t \le s_i \qquad \text{for all } i \ge 0$ from this: $t \le s_n = s'$

- Base case i = 0holds, as we assume $t \le s_0$
- Induction step i ⇒ i + 1

. . .

Proof: Induction Step

Induction step $i \Rightarrow i + 1$ $t \leq s_i$ $\Rightarrow p_{i+1}(t) \leq p_{i+1}(s_i)$ p_{i+1} monotonic $\Rightarrow t = p_{i+1}(t) \leq p_{i+1}(s_i)$ t is fixpoint of p_{i+1} $\Rightarrow t \leq p_{i+1}(s_i) = s_{i+1}$ definition of s_i $\Rightarrow t \leq s_{i+1}$

Why Naïve?

- Always searches all propagators for propagator which can contract
 - maintain propagators which are known to have fixpoint computed
 - might have to find out by having propagators which do no contraction
 - take variables into account which connect two propagators

Realistic Propagation

Improving Propagation

- Idea: propagator narrows domain of some (few) variables
 - re-propagate only propagators sharing variables
- Maintain a set of "dirty" propagators
 - not known whether fixpoint
 - all other propagators have fixpoint computed

Propagator Variables

- Variables var(p) of propagator p
 - variables of interest
- No input considered on other variables
- No output computed on other variables

Variable Dependencies

- No output on other variables for all s∈S, for all x∈(V-var(p)) p(s)(x)=s(x)
- No input from other variables for all s₁, s₂ ∈ S if (for all x∈var(p): s₁(x)=s₂(x)), then (for all x∈var(p): p(s₁)(x)=p(s₂)(x))

Propagation Loop

```
propagate ((V,U,P), s_0)
     s := s_0; N := P;
     while N \neq \emptyset do
          choose p \in N;
          s' := p(s); N := N - \{p\};
          MV := \{ x \in V \mid s(x) \neq s'(x) \};
          DP := \{ q \in P \mid \text{exists } x \in \text{var}(q) : x \in MV \};
          N := N \cup DP;
          S := S':
     return S;
```

Questions

- What does it compute
 - does it compute simultaneous fixpoint?
 - the largest?
 - important: loop invariant

- Termination?
 - stores are not any longer strictly stronger

Loop Invariant

Loop maintains

for all
$$p \in P-N \Rightarrow p(s) = s$$

after termination $(N = \emptyset)$:
for all $p \in P \Rightarrow p(s) = s$

- Obligations
 - holds initially
 - is actually invariant

Invariant Obligations

- Holds initially
 - trivially, as $P-N=\emptyset$ (N initialized to P)
- Is invariant

$$I := \text{for all } p \in P-N \Rightarrow p(s) = s$$

- if $s' = p(s) \Rightarrow$ okay to remove from N
- otherwise
 - □ no guarantee that *s* is fixpoint for $p \in DP \Rightarrow$ move them to *N*
 - \square if $p \in P$ -DP, no need move to N (def of var(p))

What Is Computed

Fixpoint follows from loop invariant

- Largest simultaneous fixpoint as for naïve propagation
 - proofs works exactly as before
 - sequence of stores not strictly decreasing
 - sufficient: store sequence and decreasing and finite (to prove next)

Termination

- Insight:
 - if $MV=\emptyset$, then p removed from N
 - if $MV \neq \emptyset$, then p(s) < s

- Consider pairs (s_i, N_i) with
 - s_i the value of s at i-th iteration
 - N_i the value of N at i-th iteration

strictly decreasing wrt well-founded lexicographic order of (S,<) and $(2^P,\subset)$

Fixpoint Reasoning

General Idea

- Essential: knowledge on fixpoint for a propagator
- So far: only implicit knowledge
- Here: make knowledge explicit
 - propagators provide information

We Are Done! What Now?

Suppose the following propagator

$$p(s) = \{x \rightarrow (s(x) \cap \{1,2,3\})\}\$$

- implements domain constraint x∈{1,2,3}
- After executing p once, no further execution needed:

if
$$s' \le p(s)$$
 then $p(s')=s'$

- We can safely delete p from model
 - otherwise, pointless re-execution!

Subsumed Propagators

- Propagator p subsumed by store s, iff for all $s' \le s$: p(s')=s'
 - all stronger stores are fixpoints
 - p entailed by s
 - s subsumes p (s entails p)

Reminder: Propagator for ≤

■ Propagator p_{\leq} for $x \leq y$

$$p_{\leq}(s) = \{ x \rightarrow \{ n \in s(x) \mid n \leq \max(s(y)) \}, \\ y \rightarrow \{ n \in s(y) \mid n \geq \min(s(x)) \} \}$$

We Are Done! What Next?

■ After executing p_{\leq} on store s we have

$$p_{\leq}(p_{\leq}(s))=p_{\leq}(s)$$

- max(s(y)) does not change!
- min(s(x)) does not change!
- What happens: as var(p_≤)={x,y}, p_≤ is added to DP
 - but: s' is fixpoint for p_{\leq}
 - no need to include in DP

First Attempt: Idempotent Functions

■ A function $f \in X \rightarrow X$ is *idempotent*, if for all $x \in X$: f(f(x)) = f(x)

Very strong property for a propagator: required for all stores!

Falling Into Domain Holes

Consider propagator p for x = y + 1p(s) =

$$\{x \to \{n \in s(x) \mid \min s(y) + 1 \le n \le \max s(y) + 1\},\ y \to \{n \in s(y) \mid \min s(x) - 1 \le n \le \max s(x) - 1\}\}\$$

Not idempotent, consider

$$s = \{x \rightarrow \{0,4,5,6\}, y \rightarrow \{2,3,4,5\}\}\$$

But idempotent if s(x) and s(y) are ranges (have no holes)

Second Attempt: Dynamic Idempotence

■ A function $f \in X \rightarrow X$ is *idempotent on* $x \in X$ if

$$f(f(x)) = f(x)$$

- statement on just one element
- For a propagator: if p is idempotent on s, it does not mean that p is idempotent on s' with s' ≤ s

How to Find Out?

Given store s and propagator p

- Does s subsume p?
 - try all s' < s: way to costly</p>
- Is p idempotent on s?
 - apply p to s: that is what we tried
 to avoid in the 1st place

Status Messages

Solution: propagator returns status and tells result

```
propagator p is function
```

$$p \in S \rightarrow SM \times S$$

with

 $SM := \{fix, nofix, subsumed\}$

Propagator with Status

Assume propagator p and store s if p(s) = (fix, s'), then s' is fixpoint for p if p(s) = (subsumed, s'), then s' subsumes p if p(s) = (nofix, s'), then no further knowledge always safe (as before)

Propagator for ≤ with Subsumption

Propagator $p_{<}$ for $x \le y$ $p_{<}(s) =$ if $max(s(x)) \leq min(s(y))$ then (subsumed, s) else (fix, $\{x \rightarrow \{n \in s(x) \mid n \leq \max(s(y))\},\$ $v \rightarrow \{ n \in s(v) \mid n \geq \min(s(x)) \} \}$

What to Return?

- Propagation function now also needs to return the set of propagators
 - in case of subsumption, propagators are removed

Improved Propagation

```
propagate ((V,U,P), s_0)
    s := s_0; N := P;
    while N \neq \emptyset do
         choose p \in N;
         (ms,s'):=p(s); N:=N-\{p\};
         if ms=subsumed then P := P - \{p\}; end
         MV := \{ x \in V \mid s(x) \neq s'(x) \};
         DP := \{ q \in P \mid \text{exists } x \in \text{var}(q) : x \in MV \};
         if ms=fix then DP := DP - \{p\}; end
         N := N \cup DP;
         S := S';
     return (P, s);
```

Correctness

- Are the optimizations correct?
- How to prove:
 - invariant is still invariant
 - solutions remain the same
 - still computes the same

argument: fixpoints!

Fixpoint Reasoning Experiments

Relative to no fixpoint reasoning

	time	steps
static	-2.9%	-12.7%
dynamic	-6.1%	-15.9%

- Reduction in steps does not directly translate to time:
 - steps avoided are cheap (perform no propagation)

Propagation Events

Propagation Events

- Many propagators
 - simple to decide whether still at fixpoint for changed domain
 - based on how domain has changed
- How domain changes described by *propagation event* or just event

Propagator for ≤

■ Propagator p_{\leq} for $x \leq y$

$$p_{\leq}(s) = \{ x \rightarrow \{ n \in s(x) \mid n \leq \max(s(y)) \}, \\ y \rightarrow \{ n \in s(y) \mid n \geq \min(s(x)) \} \}$$

must be propagated only if max(s(y)) or min(s(x)) changes

Propagator for \(\neq \)

■ Propagator p_{\neq} for $x \neq y$

```
p_{\neq}(s) =
\{ x \rightarrow s(x) - \text{single}(s(y)), \\ y \rightarrow s(y) - \text{single}(s(x)) \}
• where: \text{single}(n) = n
\text{single}(N) = \emptyset \text{ (otherwise)}
```

must be propagated only if x or y become assigned

Events

Typical events

```
fix(x) x becomes assigned
```

= min(x) minimum of x changes

max(x) maximum of x changes

any(x) domain of x changes

Clearly overlap

• fix(x) occurs: min(x) or max(x) occur

any(x) occurs

min(x) or max(x) occur: any(x) occurs

Events on Store Change

```
events(s,s') = { any(x) | s'(x) \subset s(x) } \cup { min(x) | min s'(x) > min s(x) } \cup { max(x) | max s'(x) < max s(x) } \cup { fix(x) | |s'(x)|=1 and |s(x)|>1 }
```

• where $s' \leq s$

Events: Example

Given stores

■
$$s = \{ x_1 \rightarrow \{1,2,3\}, x_2 \rightarrow \{3,4,5,6\}, x_3 \rightarrow \{0,1\}, x_4 \rightarrow \{7,8,10\} \}$$

■ $s' = \{ x_1 \rightarrow \{1,2\}, x_2 \rightarrow \{3,5,6\}, x_3 \rightarrow \{1\}, x_4 \rightarrow \{7,8,10\} \}$

Then events(s, s') =

```
{ max(x_1), any(x_1),
any(x_2),
fix(x_3), min(x_3), any(x_3)}
```

Events are Monotonic

• If $s'' \le s'$ and $s' \le s$ then events(s,s'') =events $(s,s') \cup$ events(s',s'')

- Event occurs on change from s to s"
 - occurs on change from s to s', or
 - occurs on change from s' to s"

Event Sets: First Requirement

- Event set for propagator p: es(p)
 - for all stores s with $p(p(s)) \neq p(s)$: $es(p) \cap events(s, p(s)) \neq \emptyset$
 - captures propagation by p
 - if propagator does not compute fixpoint on store s, then events from s to p(s) must be included in es(p)
 - does not occur for idempotent propagators

Event Sets: Second Requirement

- Event set for propagator p: es(p)
 - for all stores s_1 and s_2 with $s_2 \le s_1$ if $p(s_1)=s_1$ and $p(s_2)\neq s_2$ then $es(p)\cap events(s_1,s_2)\neq \emptyset$
 - captures propagation by other propagators
 - if store s_1 is fixpoint and changes to non-fixpoint s_2 , then events from s_1 to s_2 must be included in es(p)

Propagator for ≤

■ Propagator p_{\leq} for $x \leq y$

$$p_{\leq}(s) = \{ x \rightarrow \{ n \in s(x) \mid n \leq \max(s(y)) \}, \\ y \rightarrow \{ n \in s(y) \mid n \geq \min(s(x)) \} \}$$

- good one: $es(p_{\leq}) = \{ max(y), min(x) \}$
- but also: $es(p_{\leq}) = \{ any(y), any(x) \}$

Propagator for \(\neq \)

■ Propagator p_{\neq} for $x \neq y$

```
p_{\neq}(s) =
\{x \rightarrow s(x) - \text{single}(s(y)), \\ y \rightarrow s(y) - \text{single}(s(x))\}
• where: \text{single}(n) = n
\text{single}(N) = \emptyset \text{ (otherwise)}
```

- good one: $es(p_{\neq}) = \{ fix(y), fix(x) \}$
- but also: es(p_≠) = { any(y), any(x)}

Taking Advantage from Event Sets

 Base decision of propagators to re-propagate on event sets rather than on modified variables

$$DP := \{ q \in P \mid \text{events}(s,s') \cap \text{es}(q) \neq \emptyset \};$$

Event Granularity

- Not all event types must be supported
- Many systems collapse min and max to bnd
- Tradeoff between time and space
 - per event type: memory for each variable needed

Event Set Experiments: Time & Steps

Relative to no events

	time	steps
fix, any	-7.8%	-24.1%
with bnd	-7.8%	-27.8%
with min, max	-6.3%	-27.7%

Depends on overhead of propagator execution

Event Set Experiments: Memory

Relative to no events

memory

fix, any +3.9%

with bnd +9.9%

with min, max +15.5%

Monotonic and Dynamic Event Sets

Changing Event Sets

- Like dynamic fixpoint reasoning, also have changing event sets
 - monotonic: event sets become smaller for stronger stores
 - fully dynamic: event sets change arbitrarily
- How to guarantee that propagation still works?

Minimum Propagator

Propagate such that

```
\{x \rightarrow \{n \in s(x) \mid \min(\min s(y), \min s(z)) \leq n \leq \max(\max s(y), \max s(z)) \leq n \leq x\}

y \rightarrow \{n \in s(y) \mid \min s(x) \leq n \},

z \rightarrow \{n \in s(z) \mid \min s(x) \leq n \}\}
```

Static event set

```
{ min(x), min(y), max(y), min(z), max(z)}
```

Minimum Propagator

• Assume store *s* with $s(x) = \{1,2,3\}$ and $s(z) = \{5,6,7\}$

- Idea: make es dependent on the store
- For minimum: $es(min,s) = \{ min(x), min(y), max(y) \}$

Monotonic Event Sets: First Requirement

- Event set for propagator p in context of store s: es(p,s)
 - for all stores s' with $s' \le s$ and $p(p(s')) \ne p(s')$: $es(p,s) \cap events(s',p(s')) \ne \emptyset$
 - if propagator does not compute fixpoint on store s' (stronger than s), then events from s' to p(s') must be included in es(p,s)

Monotonic Event Sets: Second Requirement

- Event set for propagator p in context of store s: es(p,s)
 - for all stores s_1 and s_2 with $s_2 \le s_1$ and $s_1 \le s$ if $p(s_1) = s_1$ and $p(s_2) \ne s_2$ then $es(p,s) \cap events(s_1,s_2) \ne \emptyset$
 - captures propagation by other propagators
 - if store s_1 is fixpoint and changes to non-fixpoint s_2 , then events from s_1 to s_2 must be included in es(p)

Full Dynamic Event Sets

- Event set can be made fully dynamic
 - prevents any form of idempotence

Fully Dynamic Event Sets for Minimum

- Assume store s_1

- $s_1(x) = \{0 ... 10\}, s_1(y) = \{0 ... 15\}, s_1(z) = \{5 ... 10\}$
- is fixpoint of minimum propagator
- $\operatorname{es}(\min, s_1) = \{ \min(x), \min(y), \max(y), \max(z) \}$
- Assume store s_2 with $s_2 \le s_1$
 - $s_2(x) = \{5 ... 9\}, s_2(y) = \{6 ... 9\}, s_1(z) = \{5 ... 10\}$
 - also fixpoint
 - $\operatorname{es}(\min, s_2) = \{ \min(x), \max(y), \min(z), \max(z) \}$

Watched Literals

- Fully dynamic event sets are related to watched literals
- Watched literals for unit propagation in SAT
 - consider clause for propagation only if one of two watched literals becomes false
- Introduced to CP by Minion [Gent ea, 2006]

Dynamic Event Set Experiments

Relative to static event sets for examples using dynamic event sets

	time	steps	memory
monotonic	-39.5%	-31.8%	-19.1%
fully dynamic	-41.1%	-39.3%	-19.7%

Propagator Selection

Which one to run next

Pending Propagators

How to implement choose

Possibilities

immediately: stack

as late as possible: queue

decide on cost: priorities (cost)

Queue Stack

- Stack shows pathological behavior in some cases
 - can increase runtime by 3 orders
 - in average: almost twice the runtime

- Pathological behavior
 - cheap, expensive global, cheap, expensive global, ...
 - can that fixed by cost: no (jumping ahead)

Propagator Costs/Priorities

Define cost metric

- unary, binary, ternary, linear, quadratic, cubic, crazy
- fine metric: low and high variants
- coarse metric: collapse some cost values

Organize according to cost

- one queue for each cost category
- pick always from cheapest queue first

Using Costs

Impact of cost metric on runtime

■ fine -7.4%

medium -6.3%

coarse -5.6%

Variations

fine + stack +23.9%

inverted +107.5%

Using Costs

- Number of propagators executed increases
 - from 3.8% to 7.0%

- Reason: iterated fixpoints
 - cheap fixpoint
 - single more expensive propagator
 - cheap fixpoint
 - **...**

Importance

- Protection from pathological behavior
- Efficiency (to a lesser extent)
- Quite complicated: minimize number of cost computations (due to dynamic cost)
- Enables more optimizations (later)

Combining Propagators

Combining Filter Algorithms

Consider alldifferent(x)

naïve variable becomes assigned

remove value from other variables

cheap

domain find and prune Hall sets [Régin, 1994]

expensive

Common approach

- first naïve, then domain
- applicable to many global constraints
- but how?

Possible Decisions

Nothing

- only do expensive but strong
- Immediate
 - do cheap immediately followed by expensive
- Multiple propagators
 - create propagators for cheap and expensive
 - with according costs
 - other cheap propagators before expensive

Better: Staging

Single propagator [Schulte & Stuckey, 2004, 2008]

idle and must be run: set stage one

stage one: do cheap

set stage two

stage two: do expensive

set idle

Optimizations

- stage one finds stage two not needed: idle
- more stages (possibly)

Comparison

Relative to nothing: time memory

immediate

-1.6%

0.0%

multiple

-4.8%

+3.0%

staging

-6.5%

0.0%

Examples with costly global constraints

- immediate just around -2%
- staging often -16% up to -40% time

Summary

Constraint Programming Systems

- It is not about how they are implemented in detail...
 - varies with each individual system
- It is about what model they implement
 - models capture most common aspects in systems

- Focus on model here
 - efficient, propagator-centered constraint propagation