

MACHINE LEARNING AVANZATO DA ZERO

ANTONIO DI CECCO - SCHOOL OF AI

Decision Tree, Random Forest ed Ensemble di modelli

Decision Tree per la classificazione

"Akinator" Idea: una serie di domande binarie

Costruire gli alberi

Feature continue:

- le "domande" sono i treshold su ogni feature
- Minimizzare l'impurità

Criteri (per la classificazione)

• Indice di Gini:

$$H_{ ext{gini}}(X_m) = \sum_{k \in \mathcal{Y}} p_{mk} (1 - p_{mk})$$

• Cross-Entropy:

$$H_{ ext{CE}}(X_m) = -\sum_{k \in \mathcal{Y}} p_{mk} \log(p_{mk})$$

 $X_m\,$ osservazioni nel nodo m

y classi

 p_m distribuzione sulle classi nel nodo m

Predizione

Alberi di regressione

La predizione è la media dei target nella foglia

Predizione

$$ar{y}_m = rac{1}{N_m} \sum_{i \in N_m} y_i$$

Il criteri di impurity invece

• Mean Squared Error:

$$H(X_m) = rac{1}{N_m} \sum_{i \in N_m} (y_i - ar{y}_m)^2$$

• Mean Absolute Error:

$$H(X_m) = rac{1}{N_m} \sum_{i \in N_m} |y_i - ar{y}_m|$$

Visualizzare gli alberi con sklearn

```
from sklearn.tree import plot_tree
tree_dot = plot_tree(tree, feature_names=cancer.feature_names)
```


Tuning dei parametri

Pre-pruning vs post-pruning

Pre-pruning: Limita la dimensione dell'albero

esempi

- max_depth
- max_leaf_nodes
- min_samples_split
- min_impurity_decrease

Nessun pruning

$max_depth = 4$

max_leaf_nodes = 8

min_samples_split = 50


```
param_grid = {'max_leaf_nodes':range(2, 20)}
```


Post pruning

Cost Complexity Pruning

$$R_{lpha}(T) = R(T) + lpha |T|$$

R(T) is total leaf impurity |T| is number of leaf nodes lpha is free parameter.

Pruning efficiente

```
clf = DecisionTreeClassifier(random_state=0)
path = clf.cost_complexity_pruning_path(X_train, y_train)
ccp_alphas, impurities = path.ccp_alphas, path.impurities
```


Confronto post-pruned vs pre-pruned

Cost-complexity pruning

Max leaf nodes search

Extrapolazione

Molti modelli in Machine Learning sono nati per interpolare e non sanno estrapolare estrapolare è estendere la predizione lontano dall "nuvola" dei dati

"gli alberi non sanno estrapolare"

I Decision Tree sono come il KNN effettuano medie dei valori vicini (quelli presenti nella stessa foglia)

non riescono a vedere il trend

come posso ovviare a questa situazione?

OSSERVAZIONE: C'è differenza tra estrapolazione e generalizzazione

Relatione con il Nearest Neighbors

- Predice la media dei vicini che siano k, una ϵ -palla o una foglia.
- Gli alberi sono molto più veloci in predizione.
- Entrambi non riescono ad estrapolare
- 1KK e Decision Tree non regolarizzati hanno un perfetto overfit

Instabilità

```
X_train, X_test, y_train, y_test = train_test_split(
    iris.data, iris.target, stratify=iris.target, random_state=0)
tree = DecisionTreeClassifier(max_leaf_nodes=6)
tree.fit(X_train, y_train)
```


cambio solo il seme

```
X_train, X_test, y_train, y_test = train_test_split(
    iris.data, iris.target, stratify=iris.target, random_state=1)
tree = DecisionTreeClassifier(max_leaf_nodes=6)
tree.fit(X_train, y_train)
```


Feature importance

```
X_train, X_test, y_train, y_test = train_test_split(
    iris.data, iris.target, stratify=iris.target, random_state=0)
tree = DecisionTreeClassifier(max_leaf_nodes=6)
tree.fit(X_train,y_train)
```


Ogni volta che una particolare feature è scelta nell'albero accumuli come viene diminuita la sua impurezza.

Se uso una feature più volte aggiungo le diminuzioni di purezza (gli aumenti di purezza)

Il problema principale è che l'instabilità del modello rende instabile anche la feature importance

(ci sono poi problemi che vanno oltre i limiti del modello la causalità, se diverse feature sono correlate sostituibili tra loro e trattare modelli con un numero enorme di feature).

Dati Categorici

- Trattano i dati categorici nativamente
- Gli split vengono fatti tra insiemi diversi
- 2^n valori molte possibilità di split
- Possible da fare in O(n_values . log(n_values)) esattamente per gini index e classificazione binaria
- Viene usata un'euristica in pratica per il multiclasse
- Non c'è ancora in sklearn

Predire le probabilità

- Frazione della classe nella foglia
- Senza il pruning sempre 100% certo
- Perfino con il pruning troppa sicurezza

Alberi di inferenza condizionale

- Scelgono il "best" split correggendo per diversi test di ipotesi
- Più "fair" verso le variabili categoriche
- c'è solo in R

I decision tree sono molto flessibili

(preso da Shotton et. al. Real-Time Human Pose Recognition ..)

Un'imagine di profondità per capuire sove sono le differenti parti del corpo

Mi chiedo la profondità di altri pixel rispetto a un pixel di riferimento

Quindi paragono pixel o regioni di pixel

Vantaggi

posso usare qualsiasi cosa come candidato allo split

- Computer vision: paragoni di pixel
- ad esempio alberi che hanno modelli lineari sulle foglie

Ensemble di modelli

- · Costruisco mopdelli differenti
- Medio i risultati
- Owen Zhang (primo su kaggle per molto tempo): modelli XGBoosting con diversi random seed
- Più modelli sono meglio se non sono correlati
- Funziona anche con le reti neurali
- Puoi fare la media di quanti modelli vuoi basta che diano buone probabilità (calibrate)
- Scikit-learn: VotingClassifier hard and soft voting

Soft voting vuol dire fare la media delle probabilità e prendere arg max.

Hard voting vuol dire ognuno fa una previsione e prendiamo quelllo più votato

VotingClassifier

```
voting = VotingClassifier(
    [('logreg', LogisticRegression(C=100)),
        ('tree', DecisionTreeClassifier(max_depth=3, random_state=0))],
        voting='soft')
voting.fit(X_train, y_train)
lr, tree = voting.estimators_
tree.score(X_test, y_test), lr.score(X_test, y_test), voting.score(X_test, y_test)
```

0.80 0.84 0.88

Logistic Regression acc=0.84

Decision Tree acc=0.80

Voting Classifier acc=0.88

Bagging (Bootstrap AGGregation)

- Modo generale per costruire modelli abbastanza differenti
- Bootstrap sollevandosi tirandosi per i lacci

• BaggingClassifier, BaggingRegressor

Bias and Varianza

http://scott.fortmann-roe.com/docs/BiasVariance.html

$$Err(x) = E[(Y - \hat{f}(x))^2]$$

$$Err(x) = \left(E[\hat{f}\left(x
ight)] - f(x)
ight)^2 + E\left[\left(\hat{f}\left(x
ight) - E[\hat{f}\left(x
ight)]
ight)^2
ight] + \sigma_e^2$$
 $Err(x) = ext{Bias}^2 + ext{Variance} + ext{Irreducible Error}$

- Breiman ha mostrato che la generalizzazione dipende dalla forza dei singoli classificatori e *inversamente* dalla loro correlazione
- Trovare modelli scorrelati potrebbe essere più importante che trovare modelli forti

Random Forest

Randomizzare in due modi

- Per ogni albero:
 - o campionamento bootstrap dei dati
- Per ogni split:
 - o campionamento random delle feature a caso
- Più alberi sono sempre meglio

Tuning Random Forest

- Il paramentro più importante: max_features
 - circa sqrt(n_features) per la classificazione
 - o circa n_features per la regressione
- n_estimators > 100
- Prepruning potrebbe aiutare sicuramente riduce la dimensione del modello
- max_depth, max_leaf_nodes, min_samples_split

Extremely Randomized Trees

- Ancora più a caso
- Il threshold è scelto a caso per ogni feature
- non usa il bootstrap
- più veloce non cerca e non mette in ordine

• ha boundary più smooth

Random forest e ERT funzionano senza preprocessing. Basta che metti gli estimatori abbastanza alti. Non sarà il modello migliore ma funzionano

Warm-Start

```
train_scores = []
test_scores = []

rf = RandomForestClassifier(warm_start=True)
estimator_range = range(1, 100, 5)
for n_estimators in estimator_range:
    rf.n_estimators = n_estimators
    rf.fit(X_train, y_train)
    train_scores.append(rf.score(X_train, y_train))
    test_scores.append(rf.score(X_test, y_test))
```


Stime Out-of-bag

- Ogni tree usa circa ~66% dei dati
- Possiamo valutarlo sul resto!
- Facciamo previsioni sull' out-of-bag, average, score.
- Ogni predizione è una media su differenti sottoinsiemi di alberi

E' molto carino e perbette di avere un risultato paragonabile alla cross validation (in pratica anche più pessimista)

Variable Importance

```
X_train, X_test, y_train, y_test = train_test_split(
    iris.data, iris.target, stratify=iris.target, random_state=1)
rf = RandomForestClassifier().fit(X_train, y_train)
rf.feature_importances_
plt.barh(range(4), rf.feature_importances_)
plt.yticks(range(4), iris.feature_names);
```

```
array([ 0.126, 0.033, 0.445, 0.396])
```


Com'è calcolata la feature importance?

Quando una particolare feature viene usata guardo alla diminuzione di impurità le aggrego e alla fine le normalizzo a somma 1