The System of Units

We define a new time unit T such that a wave number $\tilde{\nu}$ has the same numerical value as the corresponding angular wave frequency $\omega = \tilde{\nu} 2\pi c$ (c is the speed of light).

	SI	New
ν	$1\mathrm{cm}^{-1}$	$1 \mathrm{cm}^{-1}$
ω	$1.8836515673088531 \times 10^{10}\mathrm{s}^{-1}$	$1T^{-1}$
Time $Unit(SI)$	1 s	$1.8836515673088531 \times 10^{10}\mathrm{T}$
Time Unit(New)	$5.308837458876145\times10^{-12}\mathrm{s}$	1T

Table 1: The Defining Relationship: $\omega = 2\pi c\nu$. $c = 2.997\,924\,58 \times 10^{10}\,\mathrm{cm\,s^{-1}}$.

With the time unit defined, we further define a new energy unit E such that Planck's constant \hbar is 1ET. Planck's constant in SI is $1.054\,571\,817\times10^{-34}\,\mathrm{J}\,\mathrm{s}$. Once E is defined, for $\tilde{\nu}=1\,\mathrm{cm}$, we will have the corresponding angular frequency $\omega=1\,\mathrm{cm}^{-1}$ and the energy $\mathcal{E}=\hbar\omega=1\,\mathrm{ET}\times1\,\mathrm{T}^{-1}=1\,\mathrm{E}$.

	SI	New
\hbar	$1.054571817 \times 10^{-34}\mathrm{Js}$	$1\mathrm{E}\cdot\mathrm{T}$
Time $Unit(SI)$	$1\mathrm{s}$	$1.8836515673088531\times10^{10}\mathrm{T}$
$Time\ Unit(New)$	$5.308837458876145\times10^{-12}\mathrm{s}$	1T
Energy $Unit(SI)$	$1\mathrm{J}$	$5.0341165706272096\times10^{22}\mathrm{E}$
Energy $Unit(New)$	$1.986445855931795\times10^{-23}\mathrm{J}$	$1\mathrm{E}$

Table 2: The Defining Relationship: $\hbar = 1.054571817 \times 10^{-34} \,\mathrm{J}\,\mathrm{s} = 1\mathrm{ET}.$

With the two units defined, we calculate the value of Boltzmann's constant in this system of units.

	SI	New
Energy $Unit(SI)$	1 J	$5.0341165706272096\times10^{22}\mathrm{E}$
Energy $Unit(New)$	$1.986445855931795\times 10^{-23}\mathrm{J}$	1E
$k_{ m B}$	$1.380649 \times 10^{-23}\mathrm{JK^{-1}}$	$0.6950348009119888\mathrm{EK^{-1}}$

Table 3: The Defining Relationship: $k_{\rm B} = 1.380\,649\times10^{-23}\,{\rm J\,K^{-1}} = 1.380\,649\times10^{-23}\,{\rm J\,K^{-1}} \times 15.034\,116\,570\,627\,209\,6\times10^{22}\,\frac{{\rm E}}{{\rm J}} = 0.695\,034\,800\,911\,988\,8{\rm E\,K^{-1}}.$