CS5841/EE5841 Machine Learning

Lecture 3: Regression

Evan Lucas

Overview

- Course updates

Class updates

- Julia module created
 - Extra credit quiz
 - Contains download links for Julia and Pluto
- Discord and discussion threads made

Course survey results

What is your experience with Python?

Expert - I have contributed to multiple large Python projects.	8 respondents	10 %	-
Intermediate - somewhere between a beginner and an expert.	67 respondents	82 %	
Beginner - I know basic syntax.	7 respondents	9 %	
Why are you asking about snakes in a Machine Learning course?		0 %	

Course survey results

Expert - I have contributed to multiple large Julia projects.		0 %	~
Intermediate - somewhere between a beginner and an expert.	2 respondents	2 %	
Beginner - I know basic syntax.	17 respondents	21 %	
I have no idea who Julia is in the context of Machine Learning	63 respondents	77 %	

This is a great idea. Let's learn Julia!	68 respondents	83 %	<u>~</u>
This is a terrible idea. I only want to use Python.	12 respondents	15 %	
I don't care.	2 respondents	2 %	

Course survey results

Yes to Discord	26 respondents	32 %	V
Yes to Discussions forum on Canvas	11 respondents	13 %	
Yes to both	45 respondents	55 %	
Yes to something else (will email you at eglucas@mtu.edu)		0 %	
No. I only talk in person with people or on private channels that I control		0 %	

Bonus topic question

- Lots of interest in:
 - Ethics
 - Large language models
 - NLP in general
 - Object detection
- Lecture plan to come soon.
 - Do you prefer a high level survey of a few topics or one deeper topic?
 - Do you want an extra credit assignment?
- A couple answers were generated with ChatGPT or similar...
 - Please don't do that unless you attribute it

Related reading

- Strongly suggested
 - Bishop Chapter 3
- Additional
 - Chapter 11 in Murphy
 - Chapter 3 in ESLII

Where does linear regression fit in the world of ML?

- Supervised learning
 - We know the answer and are training the model to predict it
- Regression
 - We are predicting a numerical value

Supervised learning formal definition

 Labeled datasets are used to train an algorithm to predict an outcome

Given

Regression vs. Classification

- Regression
 - We are trying to predict a continuous value
- Classification
 - We are trying to predict a discrete value

Why linear regression?

- Simple models are useful
 - Always good to benchmark with a simple model!
 - Simple models are good placeholders in system backend prototyping
- Interpretable!
- A component of neural networks!
 - Called a linear, dense, or fully connected layer
- Introduction of concepts without a complicated model
 - Loss metrics
 - Probabilistic model training (gradient descent family)
 - Regularization

Linear regression

- $y = m^*x + b$
 - Given two points, can find an exact solution for a line
 - How do we handle multiple data points?
- ${y} = [w][x]$
 - Matrix definition
 - x_0 is 1

Some notes on notation

- Instead of algebraic standard form $(x^2+x+...)$, we typically list things in ascending order

 - ie: $w_0, w_1, ..., w_n$ This sets up the bias term as being the first column (or row in some references)

Solving linear regression

- Minimize difference between estimate and true value by adjusting weights
 - argmin_w(y-y_{est})² argmin_w(y-wx)²
- Why squared error?
 - Always positive
 - Easy to differentiate

Solving linear regression

$$rg \min_w \sum_w \left(y_i - w x_i
ight)^2$$

$$rac{\delta}{\delta w} \sum_i \left(y_i - w x_i
ight)^2 = 2 \sum_i -x_i (y_i - w x_i)$$

$$2\sum_i x_i(y_i-wx_i)=0$$

$$2\sum_i x_i y_i - 2\sum_i w x_i x_i = 0$$

$$w = rac{\sum_i x_i y_i}{\sum_i x_i^2}$$

Adding a bias term

$$E = \sum_i \left(y_i - w_0 - w_1 x_i
ight)^2$$

Adding a bias term

$$w_0\,=\,\bar{y}-w_1\bar{x}$$

$$w_1 \, = \, rac{\sum_i (x_i - ar{x})(y_i - ar{y})}{\sum_i \left(x_i - ar{x}
ight)^2}$$

Multiple linear regression

$$y = W_0 + W_1 X_1 + ... + W_k X_k$$

Basis functions

 We can use the concept of basis functions to map non-linear spaces into our linear model

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

- Φ_j is our basis function $\Phi_d(x) = x_d$ is the linear basis function $\Phi_0(x) = 1$, typically, to give us a bias term

Polynomial basis functions

- Global!
 - Small change in x affects all basis functions

$$\phi_j(x) = x^j$$

Example of polynomial curve fitting

Oth Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

Concept: Overfitting!

Gaussian basis functions

- Local!
 - Small changes in x only affect nearby basis functions
 - Parameters control location and scale (width)

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

Sigmoidal basis functions

- Local!
- Scale parameter affects slope

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$

$$\sigma(a) = \frac{1}{1 + \exp(-a)}.$$

Data splits

- We want a fair assessment of our model!
 - This requires testing on data we didn't use for training
- Different strategies for test/train split
 - Test/train
 - Test/train/validation
 - Cross validation with separate test split

Test/train/validation splits

- Many big datasets contain test/train/validation splits
 - Some are just test/train
 - Common test split ensures fair comparison
 - Long training time precludes cross validation
- Split uses
 - Test used to measure final model performance (usually 10-20%)
 - Train used to train model (usually 70-90%)
 - Validation used to evaluate model for model tuning (usually 10-20%)

Cross validation

- K-fold cross validation
 - Partition data X_{train} into K separate sets of equal size

•
$$X_{\text{train}} = (X_{\text{train},1}, X_{\text{train},2}, ... X_{\text{train},K})$$

- Common K are K=5 and K=10
- For each k=1,2,...,K
 - Fit the model $y(w,\lambda)$ to the training set excluding kth fold $X_{train,k}$
 - Compute values for X_{train,k} and compute error
 - Repeat for each

Special cases of cross validation

- What if we do n-fold cross validation, where n is the dataset size?
 - Leave one out cross validation (LOO CV)
 - Not very data efficient
 - Good for estimating model performance with all available data
 - Bad for estimating model generalization with unseen data

Data leakage

- Extra data is available during training that is not available during testing/inference
- Ex: this paper (Learning with Signatures [1]) scored
 100% on several common benchmark datasets
 - Why is this suspicious?
 - How did they do it?
 - They created different classifiers for each class and only used that classifier for that class!
- Simpler example: predicting yearly salary and including a monthly_salary variable

How does data leakage happen?

- Improper featurization
 - Data pre-processing that shares information is fit on test and train splits instead of just test split
- Duplicate datapoints
 - Easy to do when oversampling or augmenting
- Group leakage
 - Ex: dataset includes 1000 patients with 10 x-rays from each, not splitting by patient could cause model to learn patient instead of pathology
- Time leakage
 - Time series data is especially challenging!
 - Generally (not always), you split with older data in

training and new data in test

Following slides are directly from Bishop Ch 3

Derivation will be gone over in class, but extra slides are here for your reference. The Bishop ch. 3 should also be a good reference

 Assume observations from a deterministic function with added Gaussian noise:

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon$$
 where $p(\epsilon|\beta) = \mathcal{N}(\epsilon|0, \beta^{-1})$

which is the same as saying,

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}).$$

• Given observed inputs, $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, and targets, $\mathbf{t} = [t_1, \dots, t_N]^\mathrm{T}$, we obtain the likelihood function

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}).$$

Taking the logarithm, we get

$$\ln p(\mathbf{t}|\mathbf{w}, \beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1})$$
$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})$$

where

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

• is the sum-of-squares error.

Computing the gradient and setting it to zero yields

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t}|\mathbf{w}, \beta) = \beta \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} = \mathbf{0}.$$

• Solving for **w**, we get

$$\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$$

The Moore-Penrose

pseudo-inverse, Φ^{\dagger} .

where

$$\mathbf{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}.$$

• Maximizing with respect to the bias, \mathbf{w}_0 , alone, we see that

$$w_0 = \bar{t} - \sum_{j=1}^{M-1} w_j \overline{\phi_j}$$

We can also maximize with respect to the noise precision parameter, \Box

$$\frac{1}{\beta_{\mathrm{ML}}} = \frac{1}{N} \sum_{n=1}^{N} \{t_n - \mathbf{w}_{\mathrm{ML}}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

 Data items considered one at a time (a.k.a. online learning); use stochastic (sequential) gradient descent:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n$$

=
$$\mathbf{w}^{(\tau)} + \eta (t_n - \mathbf{w}^{(\tau)T} \boldsymbol{\phi}(\mathbf{x}_n)) \boldsymbol{\phi}(\mathbf{x}_n).$$

• This is known as the *least-mean-squares* (LMS) algorithm. Issue: how to choose η ?

Concept: Overfitting!

Consider the error function:

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

Data term + Regularization term

 With the sum-of-squares error function and a quadratic regularizer, we get

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

which is minimized by

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}.$$

λ is called the regularization coefficient.

With a more general regularizer, we have

$$\frac{1}{2}\sum_{n=1}^{N}\{t_n-\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n)\}^2+\frac{\lambda}{2}\sum_{j=1}^{M}|w_j|^q$$

$$q=0.5$$
 Lasso Quadratic Quadratic

Lasso tends to generate sparser solutions than a quadratic regularizer.

Recall the expected squared loss,

$$\mathbb{E}[L] = \int \{y(\mathbf{x}) - h(\mathbf{x})\}^2 p(\mathbf{x}) d\mathbf{x} + \iint \{h(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) d\mathbf{x} dt$$

where

$$h(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}] = \int tp(t|\mathbf{x}) dt.$$

- The second term of **E**[*L*] corresponds to the noise inherent in the random variable *t*.
- What about the first term?

 Suppose we were given multiple data sets, each of size N. Any particular data set, D, will give a particular function y(x;D). We then have

$$\begin{aligned} &\{y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})\}^2 \\ &= \{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] + \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^2 \\ &= \{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^2 + \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^2 \\ &+ 2\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}. \end{aligned}$$

Taking the expectation over D yields

$$\mathbb{E}_{\mathcal{D}} \left[\{ y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x}) \}^2 \right]$$

$$= \underbrace{\{ \mathbb{E}_{\mathcal{D}} [y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x}) \}^2 + \mathbb{E}_{\mathcal{D}} \left[\{ y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}} [y(\mathbf{x}; \mathcal{D})] \}^2 \right]}_{\text{variance}}.$$
(bias)² variance

Thus we can write

expected loss =
$$(bias)^2 + variance + noise$$

where

$$(\text{bias})^{2} = \int \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2} p(\mathbf{x}) d\mathbf{x}$$

$$\text{variance} = \int \mathbb{E}_{\mathcal{D}} \left[\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^{2} \right] p(\mathbf{x}) d\mathbf{x}$$

$$\text{noise} = \iint \{h(\mathbf{x}) - t\}^{2} p(\mathbf{x}, t) d\mathbf{x} dt$$

From these plots, we note that an overregularized model (large λ) will have a high bias, while an under-regularized model (small λ) will have a high variance.

Questions + Comments?