Lecture 2 — Boolean Logic

11/10/2024 Dr. Libin HONG

Preamble

- We should all be able to run the Nand2Tetris hardware simulator
- We should all now be able to edit and test .hdl files

https://www.nand2tetris.org/

CS <> EE

A few common mistakes

- HDL files need simple characters (% \$ _ etc not allowed)
- Save as xor1.hdl
 - Not xor1.hdl.txt (.txt is sometimes be added a default by notepad)
- Software has inbuilt versions of basic (eg. And) chips but...
- ..will use your version of the chip if it exists...
- ..if your version is wrong then higher level chips wont work)

Lecture 2 - Boolean Logic

- Boolean logic
 - basics, truth tables, laws, function compression
- Boolean function synthesis
- Hardware description language (HDL)
 - gate design, code generation
- Hardware simulation
 - usage, test scripts, logic gates
- Multi-bit buses
 - arrays, sub-buses

Boolean Colouring picture for lazy people.

Boolean Values

False True

N '

0 1

Black White

https://chriskohlhepp.wordpress.com/economics-robotics/experimenting-with-quantum-lisp-lambda-calculus-and-quantum-physics/

Boolean Logic

All chips constructed from elementary logic gates

- Every chip can be built from a combination of:
 - AND (eg. If x and y are true then z is true, otherwise false)
 - OR (eg. If x or y are true then z is true, otherwise false)
 - NOT (eg. If x is true the z is false)
 - No integration, division, differentiation...
 - "canonical representation".....We will prove this later
- AND, OR and NOT can be built from NAND
 - NAND (eg. If x and y are true then z is false, otherwise true)
 - We will prove this later
- Therefore every possible chip can be built from just the NAND gate!!!!
- (reductive and elegant but seldom optimal)
- [more later....]

George Boole, 1815-1864 ("A Calculus of Logic")

Electronics

- We don't use physical logic gates, just simulations
- But always remember the intention
- Power will or will not flow through a circuit

https://upload.wikimedia.org/wikipedia/commons/2/2a/LogicGatesWorking.png

Not gates

- NOT gate inverter if 0 then 1
- (important, only uses one entry)
- The "bubble" (o) at the end of the NOT gate symbol denotes a signal inversion (complementation) of the output signal.
- This bubble can also be present at the gates input to indicate an active-LOW input. (usually active high by default)

- A Boolean function of the form f(v₁,.....v_n) where v and f can only take the values of 1 or 0
- Several different ways to represent this

$$x \text{ And } y$$
 $x \text{ Or } y$ $\text{Not}(x)$
 $x \wedge x$ $x \vee y$ $\neg x$ x'
 $- \text{Not}(x) : \overline{x}$
 $- \text{And}(x, y) : x \cdot y \text{ or } xy$
 $- \text{or } (x, y) : x + y$

Truth Tables

x, y f(x,y)	x, y f(x,y)	x f(x)	x, y f(x,y)
• 0, 0 0	0,0 0	0 1	0,0 1
• 0, 1 1	0, 1 0	1 0	0, 1 1
• 1, 0 1	1,0 0		1,0 1
• 1, 1 1	1, 1 1		1, 1 0
• ?			
• OR	AND	NOT	NAND

- Truth table is every possible function evaluation of the input variables
- [note 0 and 1 used to define false and true]

Truth Tables

X	у	And
0	0	0
0	1	0
1	0	0
1	1	1

X	у	Or
0	0	0
0	1	1
1	0	1
1	1	1

X	Not	
0	1	
1	0	

All possible Boolean functions of 2 variables

Function	х	0	0	1	1
	у	0	1	0	1
Constant 0		0	0	0	0
And		0	0	0	1
x And Not(y)		0	0	1	0
x		0	0	1	1
Not(x) And y		0	1	0	0
у		0	1	0	1
Xor		0	1	1	0
Or		0	1	1	1
Nor		1	0	0	0
Equivalence		1	0	0	1
Not y		1	0	1	0
if y then x		1	0	1	1
Not x		1	1	0	0
If x then y		1	1	0	1
Nand		1	1	1	0
Constant 1		1	1	1	1

Boolean Expressions

```
Not(0 \text{ Or } (1 \text{ And } 1)) =
Not(0 \text{ Or } 1) =
Not(1) =
Not(0) Or (1 And 1) =
Not(0) Or (1) =
1 \text{ Or } 1 =
```

(Brackets Matter)

PRECEDENCE

PRECEDENCE

Parentheses evaluated first

Not binds most tightly

Then And

Then Or

Mathematicians may argue that precedence is for the lazy

Boolean Expression – using precendence

```
f(x,y,z) = Not(a) Or(b) And(c)
```

What is f(x,y,z) when a=1, b=1, c=0?

```
= (Not(a)) Or (b) And (c)
```

- = 0 Or ((b) And (c))
- **= 0** Or 0

$$x = 0$$

f(x, y, z) = (x And y) Or (Not(x) And z)

f(x, y, z) = (x And y) Or (Not(x) And z)

X	y	z	f
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

f(x, y, z) = (x And y) Or (Not(x) And z)

X	у	Z	f
0	0	0	
0	0	1	1
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

(0 And 0) Or (Not(0) And 1) =
0 Or (1 And 1) =
0 Or 1 = 1

```
(1 \text{ And } 1) \text{ Or } (\text{Not}(1) \text{ And } 0) =
1 \text{ Or } (0 \text{ And } 0) =
1 \text{ Or } 0 = \dots
```

f(x, y, z) = (x And y) Or (Not(x) And z)

X	у	z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$(0 \text{ And } 0) \text{ Or } (\text{Not}(0) \text{ And } 0) =$$

$$0 \text{ Or } (1 \text{ And } 0) =$$

$$0 \text{ Or } 0 = 0$$

```
(1 And 0) Or (Not(1) And 1) = 0 Or (0 And 1) = 0 Or 0 = 0
```

$$f(x, y, z) = (x \text{ And } y) \text{ Or } (\text{Not}(x) \text{ And } z)$$
 formula

X	у	Z	f	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	1	truth table
1	0	0	0	
1	0	1	0	
1	1	0	1	
1	1	1	1	

Boolean function simplification rules

- Idempotent Law: x Or x=x x And x=x x Or x Or x Or x = x
 - Operation can be applied multiple times without changing the result beyond the initial application
- Associative Law: (x Or y)Or z = x Or(y Or z) (x And y)z = x(y And z)
 - Terms may be associated in any way desired if same logical operations
- Commutative Law: x And y = y And x x Or y=y Or x
 - Function outcome is unaltered by reordering its terms
- Distributive law: x and (y or z) = (x and y) or (x and z)
 x or (y and z) = (x or y) and (x or z)

Boolean function simplification rules

- Complement Law: x And (Not(x))=0 x Or (Not(x))=1
 - A term And ed with its complement equals 0 and a term Or ed with its complement equals "1"
- Involution Law: (NOT(NOT(x)))=x
 - A function that, when applied twice, brings one back to the starting point.
 (double negation)
- De Morgans Law:
 - Not(x And y) = Not(x) Or Not(y) [1]
 - Not(x Or y) = Not(x) And Not(y) [2]

X	у
0	0
0	1
1	0
1	1

[1]	[2]
1	1
1	0
1	0
0	0

Not(Not(x) And Not(x Or y)) =

De Morgan law

Not(Not(x) And Not(x Or y)) =

Not(Not(x) And (Not(x) And Not(y))) =

Not(Not(x) And Not(x Or y)) =

Not(Not(x) And (Not(x) And Not(y))) =

Not((Not(x) And Not(x)) And Not(y)) =

associative law (it doesn't matter what order we do our Ands in)

Not(Not(x) And Not(x Or y)) =

Not(Not(x) And (Not(x) And Not(y))) =

Not((Not(x) And Not(x)) And Not(y)) =

Not(Not(x) And Not(y)) =

Idempotence – doesn't matter how many times we And the Not(x)

```
Not(Not(x) And Not(x Or y)) =
```

$$Not(Not(x) And (Not(x) And Not(y))) =$$

$$Not((Not(x) And Not(x)) And Not(y)) =$$

$$Not(Not(x) And Not(y)) =$$

De Morgan law (can use both ways around)

```
Not(Not(x) And Not(x Or y)) =
Not(Not(x) And (Not(x) And Not(y))) =
Not((Not(x) And Not(x)) And Not(y)) =
Not(Not(x) And Not(y)) =
Not(Not(x Or y))=
                           double negation
x Or y
```

Boolean function synthesis

- We know how to convert a Boolean expression into a truth table...
- ..but how to convert truth table to a Boolean expression?

X	y	z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

From truth table to a Boolean expression

X	у	z	f
0	0	0	1 1
0	0	1	0 0
0	1	0	1 0
0	1	1	0 0
1	0	0	1 0
1	0	1	0 0
1	1	0	0 0
1	1	1	0 0

(Not(x) And Not(y) And Not(z))

X	у	z	f
0	0	0	1 0
0	0	1	0 0
0	1	0	1 1
0	1	1	0 0
1	0	0	1 0
1	0	1	0 0
1	1	0	0 0
1	1	1	0 0

(Not(x) And y And Not(z))

X	у	z	f
0	0	0	1 0
0	0	1	0 0
0	1	0	1 0
0	1	1	0 0
1	0	0	1 1
1	0	1	0 0
1	1	0	0 0
1	1	1	0 0

(x And Not(y) And Not(z))

X	у	z	f
0	0	0	1 1
0	0	1	0
0	1	0	1 1
0	1	1	0
1	0	0	1 1
1	0	1	0
1	1	0	0
1	1	1	0

(Not(x) And Not(y) And Not(z))

(Not(x) And y And Not(z))

(x And Not(y) And Not(z))

X	у	Z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

X	у	z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Why simplify?

- (Not(x) And Not(y) And Not(z)) Or
 (Not(x) And y And Not(z)) Or
 (x And Not(y) And Not(z))
- (Not(x) Or Not(y)) And Not(z)
 - Both correct
- 1. Simplicity / Transparency
- 2. Les chips in silicon (cheaper, faster, less energy, less cycles, more robust)
- 3. Impact on assignments...

Every chip can be built with NAND gates

- All Boolean logic can be built from And, Or and Not
 - Because....
 - 'Truth table to Boolean expression' method just uses these three operations
- All Boolean logic can be built from And and Not
 - Because...
 - x Or y = Not(Not(x) And Not(y))
- All Boolean logic can be built using Nand gates
 - Because....
 - Not(x) = Nand(x,x)
 - And(x,y) = Not(Nand(x,y))

х	у
0	0
0	1
1	0
1	1

Gate Logic

- Gate is a physical device to implement Boolean logic
- Elementary gates only have 1 or 2 inputs
- Gates with 3 or more inputs require composing a structure with multiple gates (hence called composite gates)

Figure 1.4 Composite implementation of a three-way And gate. The rectangle on the right defines the conceptual boundaries of the gate interface.

Logic Gates

Building a logic gate

outputs 1 if one, and only one, of its inputs, is 1.

The Process:

- Design the gate architecture
- ✓ Specify the architecture in HDL
- ✓ Test the chip in a hardware simulator
- Optimize the design
- Realize the optimized design in silicon.

Multiplexers and Demultiplexers

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.nand2tetris.org, Chapter 1: Boolean Logic

XOR -aside

- XOR Truth table
- x, y | f(x,y)
- 0, 0 | 0
- 0, 1 | 1
- 1, 0 | 1
- 1, 1 | 0
- Non-linear

https://tex.stackexchange.com/questions/140741/draw-graph-of-xor-problem-neural-network?rq=1

• Roadknight, Chris, et al. "Supervised learning and anti-learning of colorectal cancer classes and survival rates from cellular biology parameters." *Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on*. IEEE, 2012.

Requirements to interface

Outputs 1 if one, and only one, of its inputs, is 1.

а	b	out	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Requirement:

Build a gate that delivers this functionality

```
/** Xor gate: out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {
    IN a, b;
    OUT out;

PARTS:
    // Implementation missing
}
```

Gate interface

Expressed as an HDL stub file

Requirements to gate diagram

!Precendence

Gate Diagram to HDL Code


```
interface

/** Xor gate: out = (a And Not(b)) Or (Not(a) And b)) */

CHIP Xor {
    IN a, b;
    OUT out;

PARTS:
    Not (in=a, out=nota);
    Not (in=b, out=notb);
    And (a=a, b=notb, out=aAndNotb);
    And (a=nota, b=b, out=notaAndb);
    Or (a=aAndNotb, b=notaAndb, out=out);
}
```

Hardware Simulator

2 Options

- Load Chip loads HDL code
- Load Script loads testing script

Simulation options:

- Interactive
- Script-based
- With / without output and compare files

Multi-Bit Buses

- Arrays of Bits
- Sometimes we wish to manipulate an array of bits as one group
- It's convenient to think about such a group of bits as a single entity, sometime termed "bus"
- HDL usually provide notation and means for handling buses.

Example – Adding two or three 16 bit integers

```
* Adds two 16-bit values.
                                                  16-bit
                                                  adder
CHIP Add16 {
   IN a[16], b[16];
   OUT out[16];
   PARTS:
   . . .
                    /*
                     * Adds three 16-bit inputs.
                     */
                    CHIP Add3Way16 {
                       IN first[16], second[16], third[16];
                       OUT out[16];
                       PARTS:
                       Add16(a=first, b=second, out=temp);
                       Add16(a=temp, b=third, out=out);
```

Working with single bits within an array

a[4] = 0100

```
/*
 * 4-way And: Ands 4 bits.
 */
CHIP And4Way {
   IN a[4]; / beware, element no a[4]
   OUT out;
   PARTS:
  And(a=a[0], temp=a[1], out=t01);
   And(a=t01, temp=a[2], out=t012);
  And(a=t012, temp=a[3], out=out);
```

a[4] = 0100 b[4] = 1101

```
* Bit-wise And of two 4-bit inputs
CHIP And4 {
  IN a[4], b[4];
  OUT out[4];
  PARTS:
  And(a=a[0], b=b[0], out=out[0]);
  And(a=a[1], b=b[1], out=out[1]);
  And(a=a[2], b=b[2], out=out[2]);
  And(a=a[3], b=b[3], out=out[3]);
```

out = 0

out = 0100

Sub-Buses

Buses can be composed from (and decomposed into) sub-buses

```
...
IN lsb[8], msb[8], ...
...
Add16(a[0..7]=lsb, a[8..15]=msb, b=..., out=...);
Add16(..., out[0..3]=t1, out[4..15]=t2);
```

Some syntactic choices of the Nand2Testris HDL

- buses are indexed right to left: if a[16] is a 16-bit bus, then a[0] the right-most bit, and a[15] is the left-most bit
- overlaps of sub-buses are allowed in output buses of parts
- width of internal pin buses is deduced automatically
- The false and true constants may be used as buses of any width.

Questions?????

