T.P. 2 Azar y Probabilidades

### T.P. 2. Azar y Probabilidades

Operaciones:

Regla del Producto / Intersección (y)

$$P(A \cap B) = P(A) \times P(B)$$

### Si los sucesos son INDEPENDIENTES



La ocurrencia de un suceso B no modifica la **probabilidad** de ocurrencia del suceso A

### Si los sucesos son dependientes:

$$P(A \cap B) = P(A) \times P(B/A)$$
 Probabilidad Condicional

Probabilidad de que ocurra el suceso B dado que ya ocurrió A



## Independencia

$$P(A/B) = P(A)$$
 o  $P(B/A) = P(B)$ 

$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \times P(B)}{P(B)}$$

Ver demostración en Batista (2018). Introducción a la inferencia estadística Aplicada

# Diagramas de Árbol



Tablas de Contingencia

| 101                                | olas ac cc |                                      | · G                     |                                                    | ı |
|------------------------------------|------------|--------------------------------------|-------------------------|----------------------------------------------------|---|
|                                    |            | Α                                    | Ā                       |                                                    |   |
|                                    | В          | P(A∩B)                               | P(Ā∩B)                  | P(B)                                               |   |
|                                    | B          | P(A∩B)                               | P(Ā∩B)                  | P(B)                                               |   |
|                                    |            | P(A)                                 | P(Ā)                    | 1                                                  |   |
| $P(A \cap B) = P(B/A) \times P(A)$ |            | P(B/A<br>Probabilidad<br>Condicional | $P(A) = \frac{1}{P(A)}$ | Probabilidad Conjunta  B  B  Probabilidad Marginal |   |

 $P(A \cap B) = P(A) \times P(B)$  independendientes

#### Problema 8.

En una laguna, el 92% de las algas pertenece al fitoplancton (algas que flotan libremente), mientras que el 8% restante corresponde al perifiton (algas que crecen sobre plantas acuáticas). Dentro de las algas fitoplanctónicas, el 56% son diatomeas. En el perifiton, las diatomeas componen el 40%.



| 8.2 Calcular la probabilidad de que un alga elegida al azar sea una diatomea.                              |
|------------------------------------------------------------------------------------------------------------|
| 3.3 Calcular la probabilidad de que un alga elegida al azar sea una diatomea o<br>pertenezca al perifiton. |
| 8.4 De las diatomeas, ¿qué porcentaje corresponde a perifiton?                                             |
| 8.5 ¿Qué proporción de las algas son diatomeas fitoplanctónicas?                                           |



$$P(D/F) = P(D \cap F) / P(F)$$
 $P(D \cap P) = P(D/P) * P(P)$  $P(D \cap F) = P(D/F) * P(F)$  $P(D \cap P) = 0.08 * 0.4$  $P(D \cap F) = 0.56 * 0.92$  $P(D \cap P) = 0.032$  $P(D \cap F) = 0.515$ 

8.1.- Habiéndose tomado una muestra al azar, asignar una probabilidad a cada uno de los resultados posibles.



8.2.- Calcular la probabilidad de que un alga elegida al azar sea una diatomea.

$$P(D) = 0.547$$

8.3.- Calcular la probabilidad de que un alga elegida al azar sea una diatomea o pertenezca al perifiton.

P(DUP)= P(D) + P(P) - P(D
$$\cap$$
P)  
P(DUP)= 0.547+ 0.08 - 0.032  
P(DUP)= 0.595



8.4.- De las diatomeas, ¿qué porcentaje corresponde a perifiton?

$$P(P/D) = P(D \cap P) / P(D)$$
  
 $P(P/D) = 0.032 / 0.547$   $P(P/D) = 0.0585$  5,8 %

8.5.- ¿Qué proporción de las algas son diatomeas fitoplanctónicas?

$$P(D \cap F) = 0.515$$