Assignment 4: Collaborating Together Introduction to Applied Data Science 2022-2023

Derin Kabaagac d.kabaagac@students.uu.nl http://www.github.com/derinkabaagac

April 2023

Assignment 4: Collaborating Together

Part 1: Contributing to another student's Github repository

In this assignment, you will create a Github repository, containing this document and the .pdf output, which analyzes a dataset individually using some of the tools we have developed.

This time, make sure to not only put your name and student e-mail in your Rmarkdown header, but also your Github account, as I have done myself.

However, you will also pair up with a class mate and contribute to each others' Github repository. Each student is supposed to contribute to another student's work by writing a short interpretation of 1 or 2 sentences at the designated place (this place is marked with **designated place**) in the other student's assignment.

This interpretation will not be graded, but a Github shows the contributors to a certain repository. This way, we can see whether you have contributed to a repository of a class mate.

Question 1.1: Fill in the github username of the class mate to whose repository you have contributed. [SofijaSt]

Part 2: Analyzing various linear models

In this part, we will summarize a dataset and create a couple of customized tables. Then, we will compare a couple of linear models to each other, and see which linear model fits the data the best, and yields the most interesting results.

We will use a dataset called **GrowthSW** from the AER package. This is a dataset containing 65 observations on 6 variables and investigates the determinants of economic growth. First, we will try to summarize the data using the modelsummary package.

library(AER)
data(GrowthSW)

One of the variables in the dataset is **revolutions**, the number of revolutions, insurrections and coup d'etats in country i from 1965 to 1995.

factor(treat)		Mean	Median	SD	Min	Max
equal to 0	growth	2.46	2.29	1.28	0.42	6.65
	rgdp60	5283.32	5393.00	2439.39	1374.00	9895.00
greater than 0	growth	1.68	1.92	2.11	-2.81	7.16
	rgdp60	1988.67	1259.00	1698.18	367.00	6823.00

Question 2.1: Using the function datasummary, summarize the mean, median, sd, min, and max of the variables growth, and rgdp60 between two groups: countries with revolutions equal to 0, and countries with more than 0 revolutions. Call this variable treat. Make sure to also write the resulting data set to memory. Hint: you can check some examples here.

```
library(modelsummary); library(tidyverse)

# write your code here
GrowthSW <- GrowthSW |> mutate(treat = if_else(revolutions>0, "greater than 0", "equal to 0"))
datasummary(factor(treat)*(growth + rgdp60) ~ Mean + Median +SD + Min + Max,data = GrowthSW)
```

Designated place: type one or two sentences describing this table of a fellow student below. For example, comment on the mean and median growth of both groups. Then stage, commit and push it to their github repository.

Part 3: Make a table summarizing reressions using modelsummary and kable

write t test here

sample estimates:
mean of x mean of y
1.678066 2.459985

In question 2, we have seen that growth rates differ markedly between countries that experienced at least one revolution/episode of political stability and countries that did not.

Question 3.1: Try to make this more precise this by performing a t-test on the variable growth according to the group variable you have created in the previous question.

```
treatment_group <- GrowthSW$growth [GrowthSW$treat == "greater than 0"]
control_group <- GrowthSW$growth [GrowthSW$treat == "equal to 0"]

t.test(treatment_group, control_group)

##
## Welch Two Sample t-test
##
## data: treatment_group and control_group
## t = -1.8531, df = 61.015, p-value = 0.06871
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.62566475 0.06182741</pre>
```

Question 3.2: What is the p-value of the test, and what does that mean? Write down your answer below.

[The p-value of the test is 0.06871. Based on these results, it can be said that since the p-value is greater than the significance level of 5%. We fail to reject the null hypothesis H0. Therefore, we do not have empirical evidence to conclude that the growth of countries without revolutions is higher.]

	(1)	(2)	(3)	(4)	
(Intercept)	2.460***	2.854***	0.839	-0.050	
	(0.400)	(0.751)	(1.045)	(0.967)	
treatgreater than 0	-0.782	-1.028	-0.415	-0.069	
	(0.491)	(0.633)	(0.647)	(0.589)	
rgdp60		0.000	0.000	0.000*	
		(0.000)	(0.000)	(0.000)	
tradeshare			2.233*	1.813*	
			(0.842)	(0.765)	
education				0.564***	
				(0.144)	
Num.Obs.	65	65	65	65	
R2	0.039	0.045	0.143	0.318	
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001					

We can also control for other factors by including them in a linear model, for example:

```
\operatorname{growth}_{i} = \beta_{0} + \beta_{1} \cdot \operatorname{treat}_{i} + \beta_{2} \cdot \operatorname{rgdp} 60_{i} + \beta_{3} \cdot \operatorname{tradeshare}_{i} + \beta_{4} \cdot \operatorname{education}_{i} + \epsilon_{i}
```

Question 3.3: What do you think the purpose of including the variable rgdp60 is? Look at ?GrowthSW to find out what the variables mean.

[The variable rgdp60is equal to value of GDP per capita in 1960, converted to 1960 US dollars. GDP growth rate may have a relationship with per capita of the GDP (rich or poor country). Therefore, "rgdp60" is taken as a variable to estimate/explain the growth rate of GDP(growth)]

We now want to estimate a stepwise model. Stepwise means that we first estimate a univariate regression growth_i = $\beta_0 + \beta_1 \cdot \text{treat}_i + \epsilon_i$, and in each subsequent model, we add one control variable.

Question 3.4: Write four models, titled model1, model2, model3, model4 (using the lm function) to memory. Hint: you can also use the update function to add variables to an already existing specification.

```
model1 <- lm(growth ~ treat , data=GrowthSW)
model2 <- update(model1, ~ . + rgdp60, data = GrowthSW)
model3 <- update(model2, ~ . + tradeshare, data = GrowthSW)
model4 <- update(model3, ~ . + education, data = GrowthSW)</pre>
```

Now, we put the models in a list, and see what modelsummary gives us:

```
list(model1, model2, model3, model4) |>
  modelsummary(stars=T, gof_map = c("nobs", "r.squared")
# edit this to remove the statistics other than R-squared and N
)
```

Question 3.5: Edit the code chunk above to remove many statistics from the table, but keep only the number of observations N, and the R^2 statistic.

Question 3.6: According to this analysis, what is the main driver of economic growth? Why?

[According to this analysis, among the variables we have, the main driver of economic growth is "education" because R2 increases more than previous cases when we introduce education as variable.]

Question 3.7: In the code chunk below, edit the table such that the cells (including standard errors) corresponding to the variable treat have a red background and white text. Make sure to load the kableExtra library beforehand.

	(1)	(2)	(3)	(4)	
(Intercept)	2.460***	2.854***	0.839	-0.050	
	(0.400)	(0.751)	(1.045)	(0.967)	
treatgreater than 0	-0.782	-1.028	-0.415	-0.069	
	(0.491)	(0.633)	(0.647)	(0.589)	
rgdp60		0.000	0.000	0.000*	
		(0.000)	(0.000)	(0.000)	
tradeshare			2.233*	1.813*	
			(0.842)	(0.765)	
education				0.564***	
				(0.144)	
Num.Obs.	65	65	65	65	
R2	0.039	0.045	0.143	0.318	

```
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
```

```
library(kableExtra)
list(model1, model2, model3, model4) |>
  modelsummary(stars=T, gof_map = c("nobs", "r.squared"))|>
# use functions from modelsummary to edit this table
row_spec(c(3, 4), background = "red", color = "white")
```

Question 3.8: Write a piece of code that exports this table (without the formatting) to a Word document.

```
list(model1, model2, model3, model4) |>
modelsummary(stars=T, gof_map = c("nobs", "r.squared"), title = "Regression Table", output = 'table_1
```

r ## The End