ZZ2-F2 ISIMA "Simulation"

Subject:

- Introduction to Stochastic Discrete Event Simulation
- · From MC simulation to simple multi-agent simulators

Staff:

- Instructor: David Hill
- ISIMA/LIMOS UMR CNRS 6158
- David.Hill@uca.fr

Web Page:

• http://www.isima.fr/~hill/Simu-ZZ2/

Today

Introduction
Administrative stuff
Why A simulation project?
Overview of the course
Start of the course

About your teacher

David HILL (R.C.) (Aka "Benny")

"Relatively old" faculty Started teaching in 1989...

Ph.D 1993, Blaise Pascal Univ. ISIMA UCA & CNRS (50/50) Teaching & Research

Teaching:

I am still learning...

Aim: learn useful cool things and transmit what we have learned (both you and me!)

Research

High Performance Computing & Simulation

Bioinformatics, Nuclear Medicine, Reproducible Numerical Computing, Philosophy and Ethics and recently: security

Admin: IIA - ISIMA Deputy director,

Past VP - Blaise Pascal Universty, Past Director CRRI Comp. Center

Course Outline

Part I: Introduction to simulation and modelling

- · Notions of models, time and system
- Discrete and continuous simulations...
- · Monte Carlo simulations...

Part II: Randomness

- · Random numbers generators
- · Bad & good news

Part III: Bio-inspired simulations

- · The first life simulation model
- · 2D Cellular automata
- · Population growth

Part IV: Multi-Agents Simulations

- Different kinds of MAS (demo)
- · Design of your own spatialized MAS
- · Development of your design

Sign up for your lab participation from time to time

Course Organization

Integrated Course PPT, Formal training & Labs

Grade & Assessment requirements:

- 1. Lab participation (25%)
 - Writing codes, sending codes at then end of Labs (sometimes),
 - · Pace of your development
 - Discover coding & comment styles
- 2. Class Participation (25%) Being there enables:
 - · Asking questions and have debugging & explanations
 - · Debate and propose ideas, web sites of videos, etc.
 - · Attending labs is a way to show you are involved.
 - Quizz (sometimes)
- 3. A final written Lab reports (50%) Final Exam
 - · Analysis, Specifications, Design and development
 - · Printed report & email of the PDF & source code (no zip)

Class Participation

Keep a "Laboratory book":

Take notes of your understandings, design and coding progress (always a good idea and it saves your time for the writing of reports!).

The format is up to you. At least, you need to have:

- Summary of key points
- A few Interesting insights, "aha moments", keen observations, etc.
- Weaknesses of approach. Unanswered questions.
 Areas of further investigation, improvements.

Share your thoughts in the lab & code writings and in class if you think it's worth.

What will you learn...

- · The functioning of pseudo-random number generators
- · How to reproduce stochastic phenomena
- · How to build Monte Carlo models
- · How to estimate confidence intervals
- Understand the principles of discrete event simulation
- Understand the problems linked to the management of a huge number of objects

>

- Study the basics of multi-agents systems
- Development of a simple Multi-agent System
- Understand problems linked to simultaneous events
- Study some software engineering tools

Credits: D. Hill + Roger Crawfis, Fred Annexstain & Wikipedia