

Universidad Autónoma de San Luis Potosí Facultad de ingeniería Inteligencia Artificial Aplicada Practica 6 Implementación de una red neuronal en sistemas embebidos

Ana Sofía Medina Martínez

Fecha 3/10/2024

Objetivo

El estudiante aprenderá a construir, compilar y entrenar una red neuronal utilizando la librería Keras para resolver problemas de clasificación y regresión y que aprenda a importar modelos de redes neuronales en sistemas embebidos.

Procedimiento

- 6.1.- Sigue las instrucciones del archivo "practica_6_training" para desarrollar y entrenar un modelo de red neuronal de clasificación.
- 6.2.- Sigue las instrucciones del archivo "practica_6_inferencia" para implementar una red neuronal en un microcontrolador.

Resultados


```
[ ] #TODO: Convertir los datos de entrenamiento y prueba a un arreglo de numpy usando .values X_train = X_train.values X_test = X_test.values y_test = y_test.values y_test = y_test.values
```

2. Crear el modelo

Ya que hemos preprocesado los datos, vamos a crear el modelo de la red neuronal.

El modelo que vamos a crear es un modelo secuencial, que consta de las siguientes capas:

- Capa de entrada.
- Capa densa con 8 neuronas y función de activación ReLU.
- Capa de salida con 5 neuronas y función de activación softmax.

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

model = Sequential()

model.add(Input(shape=(3,)))
model.add(Dense(8, activation='relu'))
```

- Input : Capa de entrada.
- Dense : Capa densa.
- shape: Forma de los datos de entrada.
- activation: Función de activación.

```
[ ] from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Input
#TODO: Crear un modelo secuencial
model = Sequential()
```

```
[ ] 8TODO: Crear un modelo secuencial model - Sequential()

8TODO: Agregar una capa de entrada con 3 neuronas, una para cada columna de X model.add([nput(shape=(3,)))

8TODO: Agregar una capa densa con 8 neuronas y activación relu model.add([Dense(8, activation="relu"))

8TODO: Agregar una capa densa con 5 neuronas y activación softmax, 5 neuronas porque tenemos 5 clases en la salida model.add([Dense(8, activation="softmax"))

model.summary()
```

⊕ Model: "sequential_4"

Layer (type)	Output Shape	Param #
dense_9 (Dense)	(None, 8)	32
dense_10 (Dense)	(None, 5)	45

Total params: 77 (308.00 B) Trainable params: 77 (308.00 B) Non-trainable params: 0 (0.00 B)

Después de definir la arquitectura de la red, vamos a compilar el modelo.

```
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
```

- optimizer: Optimizador.
- loss: Función de pérdida, en este caso, utilizamos la entropía cruzada categórica porque estamos realizando una clasificación multiclase.
- metrics: Métricas que se utilizarán para evaluar el modelo.

[] model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

Por último, vamos a entrenar el modelo.

```
history = model.fit(X_train, y_train, epochs=20, validation_data=(X_test, y_test))
 Epoch 1/20
51/51
                                              4s 23ms/step - accuracy: 0.1585 - loss: 1.7272 - val accuracy: 0.3812 - val loss: 1.5329
         51/51
Epoch 2/20
51/51
Epoch 3/20
51/51
Epoch 4/20
                                           1s 8ms/step - accuracy: 0.3956 - loss: 1.5063 - val_accuracy: 0.6485 - val_loss: 1.3359
                                         ______ 2s 33ms/step - accuracy: 0.6186 - loss: 1.3153 - val_accuracy: 0.7005 - val_loss: 1.1424
         51/51 ·
                                           Epoch 5/20
51/51
                                        _______ 1s 18ms/step - accuracy: 0.8988 - loss: 0.9177 - val_accuracy: 0.9505 - val_loss: 0.7792
          Epoch
51/51
                                            ______ 1s 5ms/step - accuracy: 0.9602 - loss: 0.7553 - val_accuracy: 0.9678 - val_loss: 0.6341
         51/51
Epoch 7/20
51/51
Epoch 8/20
51/51
Epoch 9/20
                                           1s 24ms/step - accuracy: 0.9778 - loss: 0.6097 - val_accuracy: 0.9802 - val_loss: 0.5174
                                        _______ 1s 2ms/step - accuracy: 0.9904 - loss: 0.5000 - val_accuracy: 0.9926 - val_loss: 0.4227
         51/51
                                           ----- 0s 2ms/step - accuracy: 0.9935 - loss: 0.4077 - val_accuracy: 0.9975 - val_loss: 0.3463
         Epoch 10/20
51/51
                                           ------θs 3ms/step - accuracy: 0.9968 - loss: 0.3362 - val_accuracy: 0.9975 - val_loss: 0.2851
         Epoch 11/20
51/51
                                              _____ 1s 18ms/step - accuracy: 0.9975 - loss: 0.2706 - val accuracy: 0.9975 - val loss: 0.2364
         51/51
Epoch 12/20
51/51
Epoch 13/20
51/51
Epoch 14/20
                                         1s 22ms/step - accuracy: 0.9980 - loss: 0.2244 - val_accuracy: 0.9975 - val_loss: 0.1978
                                        ______ 1s 10ms/step - accuracy: 0.9981 - loss: 0.1863 - val_accuracy: 0.9975 - val_loss: 0.1676
                                            2s 20ms/step - accuracy: 0.9992 - loss: 0.1549 - val accuracy: 1.0000 - val loss: 0.1432
          51/51
         Epoch 15/20
51/51
                                         Epoch 16/20
51/51 —
         51/51 Epoch 17/20
51/51 Epoch 18/20
51/51 Epoch 18/20
51/51 Epoch 19/20
51/51 20/20
                                           ______ is 20ms/step - accuracy: 0.9982 - loss: 0.1191 - val accuracy: 1.0000 - val loss: 0.1076
                                            ______ 1s 21ms/step - accuracy: 0.9985 - loss: 0.1030 - val_accuracy: 1.0000 - val_loss: 0.0945
                                         ______ 1s 15ms/step - accuracy: 0.9997 - loss: 0.0887 - val_accuracy: 1.0000 - val_loss: 0.0838
                                           ______ 1s 2ms/step - accuracy: 1.0000 - loss: 0.0774 - val_accuracy: 1.0000 - val_loss: 0.0746
         Epoch 20/20
51/51
                                                  —— 0s 2ms/step - accuracy: 1.0000 - loss: 0.0704 - val_accuracy: 1.0000 - val_loss: 0.0669
[ ] from tensorflow import lite as tflite
         model_name = "mpu6050_model" #Nombre del archivo donde se guardará el modelo
         converter = tflite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert() #Convertimos el modelo a un modelo tflite
               h open(f"(model_name).tflite", 'wb') as f: #Abrimos un archivo en modo escritura binaria
f.write(tflite_model) #Guardamos el modelo en un archivo llamado model.tflite
 Saved artifact at '/tmp/tmp7ofzr28f'. The following endpoints are available:
       * Endpoint 'serve'
args_0 (POSITIONAL_ONLY): TensorSpec(shape=(None, 3), dtype=tf.flost32, name='keras_tensor_19')
Output Type:
TensorSpec(shape=(None, 5), dtype=tf.float32, name=None)
Captures:
1353662291031: TensorSpec(shape=(), dtype=tf.resource, name=None)
13536629103168: TensorSpec(shape=(), dtype=tf.resource, name=None)
135366529103168: TensorSpec(shape=(), dtype=tf.resource, name=None)
135366529103168: TensorSpec(shape=(), dtype=tf.resource, name=None)
Muchas plataformas de microcontroladores no tienen soporte para TensorFlow Lite. La forma más sencilla de ejecutar un modelo de
 TensorFlow Lite en un microcontrolador es convertirlo a una matriz de bytes y ejecutarlo en el microcontrolador
 def tflite_to_array(model_data, model_name):
    c_str = ""
                #Creamos las cabeceras del archivo
c_str += f"#ifndef (model_name.upper())_H\n"
c_str += f"#define (model_name.upper())_H\n\n"
                \label{lem:mapping} $$ $  \Arrowsell $$  \Arrowsell $$  \Arrowsell $$ $  \Arrowsell $$  \Arrow
                #Agregamos el modelo como un arreglo de bytes
c_str += f"const unsigned char {model_name}[] = {{\n^*
               for i, byte in enumerate(model_data):
    c_str += f"0x{byte:02X},"
    if (i + 1) % 12 == 0:
                        for i, byte in enumerate(model_data):
                                 c_str += f"0x{byte:02X},
if (i + 1) % 12 == 0:
                                           c_str += "\n"
```

c str += "};\n\n"

#Cerramos las cabeceras del archivo
c_str += f"#endif // {model_name.upper()}_H\n"

[] model_array = tflite_to_array(tflite_model, model_name)
with open(f"{model_name}.h", 'w') as f:
 f.write(model_array)

Resultados en Arduino

Comprensión

- 1. ¿Qué pasos se deben seguir para entrenar una red neuronal con Keras?
 - Definir el modelo.
 - Compilar el modelo especificando optimizador, función de pérdida y métricas.
 - Preparar los datos.
 - Entrenar el modelo con el conjunto de entrenamiento
 - Evaluar el rendimiento con el conjunto de prueba
- 2. ¿Cuál es la función del conjunto de entrenamiento y del conjunto de prueba en el proceso de entrenamiento?
 - El conjunto de entrenamiento se usa para ajustar los pesos del modelo.
 - El conjunto de prueba evalúa el rendimiento generalizado del modelo, comprobando que no haya sobreajuste.

3. ¿Qué se entiende por función de pérdida, optimizador y métricas en el contexto del entrenamiento de una red neuronal?

- Función de pérdida: mide qué tan bien o mal está funcionando el modelo.
- Optimizador: ajusta los pesos para minimizar la pérdida.
- Métricas: evaluan el rendimiento del modelo durante el entrenamiento.

4. ¿Qué tipo de problemas se pueden resolver utilizando una red neuronal entrenada con Keras?

Clasificación, regresión, reconocimiento de imágenes, procesamiento de lenguaje natural, predicción de series temporales, entre otros.

5. 5.- ¿Qué es IA on the Edge?

Es el uso de inteligencia artificial directamente en dispositivos locales, sin necesidad de depender de servidores o la nube para realizar cálculos.

6. 6.- ¿Qué ventajas tiene IA on the Edge en los sistemas embebidos?

Menor latencia, mayor seguridad de datos, menor consumo de ancho de banda y operación en tiempo real, incluso sin conexión a internet.

7. 7.- ¿Qué es TensorFlow Lite?

Es una versión optimizada de TensorFlow diseñada para ejecutar modelos de machine learning en dispositivos móviles y sistemas embebidos.

Conclusiones

En conclusión, entrenar una red neuronal con Keras implica seguir un proceso que incluye la preparación de datos, la definición del modelo y su evaluación. La importancia de usar conjuntos de entrenamiento y prueba asegura que el modelo generalice correctamente, evitando el sobreajuste. Además, herramientas como TensorFlow Lite permiten llevar la inteligencia artificial a dispositivos embebidos, impulsando el desarrollo de soluciones de IA, que ofrecen ventajas como mayor eficiencia, menor latencia y mejor privacidad de los datos.

El reto en esta práctica fue la falta de espacio de almacenamiento en mi computadora y la falta de conocimiento de microcontroladores y de Arduino, sin embargo, fui muy interesante desarrollar la práctica.