Introduction

Oh hey, it's another one of those textbook notes that I never complete. I've decided to try something different in order to develop my understanding of measure theory. One of the primary for understanding measure theory is Gerald B. Folland's *Real Analysis and Applications* — and one of the benefits it has over a lot of other texts is that it has a significant number of exercises. I'm going to try to do them all — I'll start with Chapters 1–3, and if that goes well enough, continue up through whatever chapter I end up having to tap out at. Interspersed, I will include various notes. I figure that in order to make a subject like measure theory really stick, I need to deal with it consistently.

Contents

Introduction																													1
Chapter 1																	1												
Section 1.2																					 							 	1
Section 1.3																													
Section 1.4																												 	5
Chapter 3																													7
Section 3.5																								 				 	7

Chapter 1

Section 1.2

Definition (σ -Algebra). An algebra of sets on X is a nonempty collection \mathcal{A} of X that is closed under finite unions and complements.

A σ -algebra is an algebra that is closed under countable unions.

Exercise (Exercise 1): A family of sets $\mathcal{R} \subseteq P(X)$ is called a ring if it is closed under finite unions and differences. A ring that is closed under countable unions is called a σ -ring.

- (a) Rings (σ -rings) are closed under finite (countable) intersections.
- (b) If \Re is a ring (σ -ring), then \Re is an algebra (σ -algebra) if and only if $X \in \Re$.
- (c) If \mathcal{R} is a σ -ring, then $\{E \subseteq X \mid E \in \mathcal{R} \text{ or } E^c \in \mathcal{R}\}$ is a σ -algebra.
- (d) If \mathcal{R} is a σ -ring, then $\{E \subseteq X \mid E \cap F \in \mathcal{R} \text{ for all } F \in \mathcal{R}\}$ is a σ -algebra.

Solution:

- (a) Note that for any $E, F \in \mathcal{R}$, that $E \cap F = E \cup F \setminus ((E \setminus F) \cup (F \setminus E))$.
- (b) Let \mathcal{R} be a σ -ring. Then, \mathcal{R} is a σ -algebra if for some $E \in \mathcal{R}$, $E^c \in \mathcal{R}$. Since $E^c = X \setminus E \in \mathcal{R}$, we have $X \setminus E \cup E \in \mathcal{R}$ as \mathcal{R} is closed under (countable) unions. Hence, $X \in \mathcal{R}$.

If $X \in \mathcal{R}$, then for any $E \in \mathcal{R}$, $E^c = X \setminus E \in \mathcal{R}$. Thus, \mathcal{R} is closed under intersections.

- (c) Since \mathcal{R} is a σ -ring, we only need show that the set $\mathcal{A} = \{E \subseteq X \mid E \in \mathcal{R} \text{ or } E^c \in \mathcal{R}\}$ is closed under complements. We see that for any $E \in \mathcal{A}$, it is the case that either $E \in \mathcal{R}$ or $E^c \in \mathcal{R}$, so $E^c \in \mathcal{A}$ if and only if $E^c \in \mathcal{R}$ or $E^c \in \mathcal{R}$, so $E^c \in \mathcal{A}$ if and only if $E^c \in \mathcal{R}$ or $E^c \in \mathcal{R}$, so $E^c \in \mathcal{R}$ is closed under complements.
- (d) Let \mathcal{R} be a σ -ring, and let $\mathcal{A} = \{E \subseteq X \mid E \cap F \in \mathcal{R} \text{ for all } F \in \mathcal{R}\}$. We will show that \mathcal{A} is closed under unions and complements.

Let $E, F \in \mathcal{A}$. Then, for all $S \in \mathcal{R}$, we have $E \cap S \in \mathcal{R}$ and $F \cap S \in \mathcal{R}$. Since \mathcal{R} is closed under unions, we must have $(E \cup F) \cap S = (E \cap S) \cup (F \cap S) \in \mathcal{R}$, so $E \cup F \in \mathcal{A}$.

П

Let $E \in A$.

Proposition (Proposition 1.2): The Borel σ -algebra, $\mathcal{B}_{\mathbb{R}}$, is generated by each of the following:

- (a) the open intervals, $\mathcal{E}_1 = \{(a, b) \mid a < b\}$;
- (b) the closed intervals, $\mathcal{E}_2 = \{[a, b] \mid a < b\};$
- (c) the half-open intervals, $\mathcal{E}_3 = \{(a, b) \mid a < b\}$ or $\mathcal{E}_4 = \{[a, b) \mid a < b\}$;
- (d) the open rays, $\mathcal{E}_5 = \{(\alpha, \infty) \mid \alpha \in \mathbb{R}\}\$ or $\mathcal{E}_6 = \{(-\infty, \alpha) \mid \alpha \in \mathbb{R}\};$
- (e) the closed rays, $\mathcal{E}_7 = \{ [\alpha, \infty) \mid \alpha \in \mathbb{R} \} \text{ or } \mathcal{E}_8 = \{ (-\infty, \alpha] \mid \alpha \in \mathbb{R} \}.$

Proof. The elements for \mathcal{E}_j for $j \neq 3,4$ are open or closed, and the elements of \mathcal{E}_3 , \mathcal{E}_4 are G_δ sets — for instance,

$$(a,b] = \bigcap_{n=1}^{\infty} \left(a,b + \frac{1}{n}\right).$$

Thus, $\sigma(\mathcal{E}_j) \subseteq \mathcal{B}_{\mathbb{R}}$ for each j. On the other hand, every open set in \mathbb{R} is a countable union of open intervals, so $\mathcal{B}_{\mathbb{R}} \subseteq \sigma(\mathcal{E}_1)$. Thus, $\mathcal{B}_{\mathbb{R}} = \sigma(\mathcal{E}_1)$.

Section 1.3

Theorem (Theorem 1.9): Let (X, \mathcal{M}, μ) be a measure space. Let $\mathcal{N} = \{ N \in \mathcal{M} \mid \mu(N) = 0 \}$, and let $\overline{\mathcal{M}} = \{ E \cup F \mid E \in \mathcal{M} \text{ and } F \subseteq N \text{ for some } N \in \mathcal{N} \}$. Then, \mathcal{M} is a σ -algebra, and there is a unique extension $\overline{\mu}$ of μ to a complete measure on $\overline{\mathcal{M}}$.

Proof. Since M and N are closed under countable unions, so is \overline{M} . If $E \cup F \in \overline{M}$, with $E \in M$ and $F \subseteq N \in N$, we may assume $E \cap N = \emptyset$ — else, we replace F with $F \setminus E$ and N with $N \setminus E$. Then, $E \cup F = (E \cup N) \cap (N^c \cup F)$, so $(E \cup F)^c = (E \cup N)^c \cup (N \setminus F)$. Since $(E \cup N)^c \in M$ and $N \setminus F \subseteq N$, we have $(E \cup F)^c \in \overline{M}$, so \overline{M} is a σ-algebra.

If $E \cup F \in \overline{\mathbb{M}}$ as above, we set $\overline{\mu}(E \cup F) = \mu(E)$. This is well-defined, since if $E_1 \cup F_1 = E_2 \cup F_2$, with $F_j \subseteq N_j \in \mathbb{N}$, then $E_1 \subseteq E_2 \cup N_2$, so $\mu(E_1) \leq \mu(E_2) + \mu(N_2) = \mu(E_2)$. Similarly, $\mu(E_2) \subseteq \mu(E_1)$.

Exercise (Exercise 6): Complete the proof of Theorem 1.9.

Solution: We now wish to show that every subset of a null set in \mathbb{M} is an element of $\overline{\mathbb{M}}$. This can be seen by the fact that for some $F \subseteq \mathbb{N} \in \mathbb{N}$, we have $F = \emptyset \cup F \in \overline{\mathbb{M}}$.

To show uniqueness, we suppose there is some other measure $\nu \colon \overline{\mathbb{M}} \to [0, \infty)$ such that ν agrees with μ on \mathbb{M} . For some $E \in \mathbb{M}$ and $F \subseteq N \in \mathbb{N}$, we have

$$\nu(E \cup F) = \mu(E)$$
$$= \overline{\mu}(E \cup F).$$

Exercise (Exercise 7): If μ_1, \ldots, μ_n are measures on (X, \mathcal{M}) , and $\alpha_1, \ldots, \alpha_n \in [0, \infty)$, then $\mu = \sum_{j=1}^n \alpha_j \mu_j$ is a measure on (X, \mathcal{M}) .

Solution: It is clear that $\mu(\varnothing)=\varnothing$. If we have a sequence of disjoint sets $\{E_i\}_{i=1}^\infty\subseteq \mathcal{M}$, then

$$\mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{j=1}^{n} a_j \mu_j \left(\bigcup_{i=1}^{\infty} E_i\right)$$
$$= \sum_{j=1}^{n} a_j \sum_{i=1}^{\infty} \mu_j(E_i)$$

$$= \sum_{i=1}^{\infty} \left(\sum_{j=1}^{n} \alpha_{j} \mu_{j} \right) (E_{i})$$
$$= \sum_{i=1}^{\infty} \mu(E_{i}).$$

Exercise (Exercise 8): If (X, \mathcal{M}, μ) is a measure space, and $\{E_j\}_{j=1}^{\infty} \subseteq \mathcal{M}$, then $\mu(\liminf E_j) \leqslant \liminf \mu(E_j)$. Additionally, if $\mu(\bigcup_{j\geqslant 1} E_j) < \infty$, then $\mu(\limsup E_j) \geqslant \limsup \mu(E_j)$.

Solution: Note that

$$\lim\inf E_j = \bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} E_j.$$

Labeling

$$F_n = \bigcap_{j=n}^{\infty} E_j,$$

we have a sequence of inclusions

$$F_1 \subseteq F_2 \subseteq \cdots$$
,

meaning that

$$\mu\bigl(\limsup E_{j}\bigr)=\inf_{n\geqslant 1}\mu(F_{n}).$$

Note that we have

$$\mu(\mathsf{F}_n) = \mu \left(\bigcup_{n=j}^{\infty} \mathsf{E}_j\right).$$

Exercise (Exercise 9): If (X, \mathcal{M}, μ) is a measure space, and $E, F \in \mathcal{M}$, then $\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)$.

Solution: We have

$$\begin{split} \mu(E) &= \mu(((E \cup F) \setminus F) \sqcup E \cap F) \\ \mu(E) &= \mu(E \cup F) - \mu(F) + \mu(E \cap F) \\ \mu(E) + \mu(F) &= \mu(E \cup F) + \mu(E \cap F). \end{split}$$

Exercise (Exercise 12): Let (X, \mathcal{M}, μ) be a finite measure space.

- (a) If $E, F \in M$ with $\mu(E \triangle M) = 0$, then $\mu(E) = \mu(F)$.
- (b) Let $E \sim F$ if $\mu(E \triangle F) = 0$. Then, \sim is an equivalence relation on \mathcal{M} .
- (c) For $E, F \in \mathcal{M}$, define $\rho(E, F) = \mu(E \triangle F)$. Then, $\rho(E, G) \le \rho(E, F) + \rho(F, G)$, hence ρ defines a metric on the space \mathcal{M}/\sim of equivalence classes.

Solution:

(a) Note that $E = (E \setminus F) \sqcup (E \cap F)$, and $F = (F \setminus E) \sqcup (F \cap E)$. We also have $\mu(E \triangle F) = \mu(E \setminus F) + \mu(F \setminus E) = 0$, so $\mu(F \setminus E) = \mu(E \setminus F) = 0$. Thus,

$$\mu(F) = \mu(F \cap E)$$
$$= \mu(E \cap F)$$
$$= \mu(E).$$

Definition. Let (X, \mathcal{M}, μ) be a measure space.

- If $\mu(X) < \infty$, then μ is called finite.
- If $X = \bigcup_{i \ge 1} E_i$, where $E_i \in \mathcal{M}$ for each j and $\mu(E_i) < \infty$, then μ is called σ -finite.
- If for each $E \in \mathcal{M}$ with $\mu(E) = \infty$, there exists $F \in \mathcal{M}$ with $F \subseteq E$ and $0 < \mu(F) < \infty$, then we say μ is semifinite.

Exercise (Exercise 13): Every σ -finite measure is semifinite.

Solution: Let (X, \mathcal{M}, μ) be a measure space such that $X = \bigcup_{j \geqslant 1} E_j$, where $\left\{E_j\right\}_{j \geqslant 1} \subseteq \mathcal{M}$ and $\mu(E_j) < \infty$ for each j.

Suppose $\mu(E) = \infty$. Then, we may find $F \subseteq E$ by finding j such that $\mu(E_j) > 0$, and taking $F = E_j \cap E$. Then, it must be the case that $0 < \mu(F) \le \mu(E_j) < \infty$.

Exercise (Exercise 14): If μ is a semifinite measure and $\mu(E) = \infty$, then for any C > 0 there exists $F \subseteq E$ such that $C < \mu(F) < \infty$.

Solution: By the definition of a semifinite measure, there exists $F_1 \subseteq E$ such that $0 < \mu(F_1) < \infty$. We let $\delta_1 = \mu(F_1)$.

Now, it must be the case that $\mu(E \setminus F_1) = \infty$, else $\infty = \mu(E) = \mu(E \setminus F_1) + \mu(F_1) < \infty$, a contradiction.

Hence, there exists $F_2 \subseteq E \setminus F_1$ with $0 < \mu(F_2) < \infty$. We let $\delta_2 = \mu(F_2)$. Similarly, we find $\delta_n = \mu(F_n)$, where $F_n \subseteq E \setminus (F_1 \cup \cdots \cup F_{n-1})$.

Now, consider the series $\sum_{n\geqslant 1} \delta_n = \sum_{n\geqslant 1} \mu(F_n) = \mu(\bigsqcup_{n\geqslant 1} F_n)$. This series must diverge, as otherwise we would have $\mu(E) = \mu(\bigsqcup_{n\geqslant 1} F_n) < \infty$, which is yet again a contradiction.

Thus, for a given C > 0, we find N so large such that $\sum_{n=1}^{N} \delta_n > C$. Then, $F = \bigsqcup_{n=1}^{N} F_n$ is our desired set.

Exercise (Exercise 15): Let μ be a measure on (X, \mathcal{M}) . Define μ_0 on \mathcal{M} by $\mu_0(E) = \sup\{\mu(F) \mid F \subseteq E \text{ and } \mu(F) < \infty\}$.

- (a) μ_0 is a semifinite measure It is called the semifinite part of μ .
- (b) If μ is semifinite, then $\mu = \mu_0$.
- (c) There is a measure ν on $\mathbb M$ which only assumes the values 0 and ∞ such that $\mu = \mu_0 + \nu$.

Solution:

- (a) Let $E \in \mathcal{M}$ be such that $\mu_0(E) = \infty$. Suppose toward contradiction that μ_0 is not semifinite. Then, for any $F \subseteq E$, it is the case that $\mu(F) = 0$ or $\mu(F) = \infty$, so it would then be the case that $\mu_0(E) = 0$, a contradiction.
- (b) If $\mu(E) < \infty$, then $\mu_0(E) = \mu(E)$, as $E \subseteq E$ and $\mu(E) < \infty$.

If $\mu(E) = \infty$, then it is clear that $\mu_0(E) = \infty$, as for each C > 0 there is some $F \subseteq E$ such that $C < \mu(F) < \infty$.

Thus, $\mu = \mu_0$.

(c) We define the measure ν on $\mathcal M$ by taking $\nu(E)=0$ whenever $\mu(E)<\infty$ and $\nu(E)=\infty$ whenever $\mu(E)=\infty$.

Exercise: Let (X, \mathcal{M}, μ) be a measure space. A set $E \subseteq X$ is called locally measurable if $E \cap A \in \mathcal{M}$ for all $A \in \mathcal{M}$ such that $\mu(A) < \infty$. Let $\widetilde{\mathcal{M}}$ be the collection of all locally measurable sets.

It is obvious that $\mathfrak{M}\subseteq\widetilde{\mathfrak{M}}.$ If $\mathfrak{M}=\widetilde{\mathfrak{M}},$ then μ is called saturated.

- (a) If μ is $\sigma\text{-finite, then }\mu$ is saturated.
- (b) \widetilde{M} is a σ -algebra.
- (c) Define $\widetilde{\mu}$ on $\widetilde{\mathbb{M}}$ by $\widetilde{\mu}(E) = \mu(E)$ if $E \in \mathbb{M}$ and $\widetilde{\mu}(E) = \infty$ otherwise. Then, $\widetilde{\mu}$ is a saturated measure on $\widetilde{\mathbb{M}}$ called the saturation of μ .
- (d) If μ is complete, so is $\widetilde{\mu}$.
- (e) Suppose that μ is semifinite. For $E \in \widetilde{\mathcal{M}}$, define $\underline{\mu}(E) = \sup\{\mu(A) \mid A \in \mathcal{M} \text{ and } A \subseteq E\}$. Then, $\underline{\mu}$ is a saturated measure on $\widetilde{\mathcal{M}}$ that extends μ .

- (f) Let X_1 and X_2 be disjoint uncountable sets, $X = X_1 \sqcup X_2$, and $\mathfrak M$ the σ -algebra of countable and cocountable sets in X. Let μ_0 be the counting measure on $P(X_1)$ and define μ on $\mathfrak M$ by $\mu(E) = \mu_0(E \cap X_1)$. Then,
 - μ is a measure on \mathcal{M} ;
 - $\widetilde{\mathcal{M}} = P(X)$;
 - and $\widetilde{\mu} \neq \mu$.

Solution:

(a) Let μ be σ -finite, and let $E \in \overline{\mathbb{M}}$. We know that $E \cap A \in \mathbb{M}$ for all $A \in \mathbb{M}$ with $\mu(A) < \infty$. In particular, we can select a disjoint collection $\left\{A_j\right\}_{j=1}^\infty$ such that $\mu(A_j) < \infty$ and $\bigsqcup_{j \geqslant 1} A_j = X$. Thus, since $E = X \cap E$, we must have $E \in \mathbb{M}$ as $E = X \cap E$ is locally measurable.

Section 1.4

Definition. An outer measure on a nonempty set X is a function $\mu^* \colon P(X) \to [0, \infty]$ such that

- $\mu^*(\emptyset) = 0$;
- $\mu^*(A) \leq \mu^*(B)$ if $A \subseteq B$;
- $\mu^*(\bigcup_{j\geqslant 1} A_j) \leqslant \sum_{j=1}^{\infty} \mu^*(A_j)$.

Proposition: Let $\mathcal{E} \subseteq P(X)$, and $\rho \colon \mathcal{E} \to [0, \infty]$ be such that $\emptyset \in \mathcal{E}$, $X \in \mathcal{E}$, and $\rho(\emptyset) = 0$. For any $A \subseteq X$, define

$$\mu^*(A) = \inf \left\{ \sum_{j \ge 1} \rho(E_j) \mid E_j \in \mathcal{E} \text{ and } A \subseteq \bigcup_{j \ge 1} E_j \right\}.$$

Then, μ^* is an outer measure.

Proof. For any $A \subseteq X$, there exists $\{E_j\}_{j \ge 1} \subseteq \mathcal{E}$ such that $A \subseteq \bigcup_{j \ge 1} E_j$ (taking $E_j = X$). Clearly, $\mu^*(\emptyset) = \emptyset$.

Additionally, since $A \subseteq B$, we the infimum taken to define $\mu^*(A)$ includes the corresponding set in the definition of $\mu^*(B)$, so $\mu^*(A) \le \mu^*(B)$.

Suppose $\left\{A_{j}\right\}_{j\geqslant 1}\subseteq P(X)$, and let $\epsilon>0$. For each j, there exists $\left\{E_{j,k}\right\}_{k\geqslant 1}\subseteq \mathcal{E}$ such that $A_{j}\subseteq\bigcup_{k\geqslant 1}E_{j,k}$ and $\sum_{k\geqslant 1}\rho(E_{j,k})\leqslant\mu^{*}(A_{j})+\epsilon 2^{-j}$. Thus, if $A=\bigcup_{j\geqslant 1}A_{j}$, we have $A\subseteq\bigcup_{j,k\geqslant 1}E_{j,k}$, and $\sum_{j,k\geqslant 1}\rho(E_{j,k})\leqslant\sum_{j\geqslant 1}\mu^{*}(A_{j})+\epsilon$, meaning $\mu^{*}(A)\leqslant\sum_{j\geqslant 1}\mu^{*}(A_{j})+\epsilon$. Sine this holds for all $\epsilon>0$, we must have $\mu^{*}(\bigcup_{j\geqslant 1}A_{j})\leqslant\sum_{j\geqslant 1}\mu^{*}(A_{j})$.

Definition. If μ^* is an outer measure, a set $A \subseteq X$ is called μ^* -measurable if

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$$

for all $E \subseteq X$. In other words, A is measurable if it serves as a well-behaved "cookie cutter" for any subset of X.

Note that it suffices to show that

$$\mu^*(E) \geqslant \mu^*(E \cap A) + \mu^*(E \cap A^c).$$

Definition. If $\mathcal{A} \subseteq P(X)$ is an algebra, a function $\mu_0 \colon \mathcal{A} \to [0, \infty]$ is called a premeasure if $\mu_0(\emptyset) = 0$ and, for any sequence of disjoint sets $\left\{A_j\right\}_{j=1}^{\infty}$ in \mathcal{A} such that $\bigsqcup_{j=1}^{\infty} A_j \in \mathcal{A}$, we have

$$\mu_0\left(\bigcup_{j=1}^{\infty}A_j\right)=\sum_{j=1}^{\infty}\mu_0(A_j).$$

A premeasure induces an outer measure on X by

$$\mu^*(E) = \inf \Biggl\{ \sum_{j=1}^\infty \mu_0\bigl(A_j\bigr) \; \middle|\; A_j \in \mathcal{A}, E \subseteq \bigcup_{j=1}^\infty A_j \Biggr\}.$$

Exercise (Exercise 17): If μ^* is an outer measure on X and $\left\{A_j\right\}_{j=1}^{\infty}$ is a sequence of disjoint μ^* -measurable sets, then $\mu^*\left(E\cap\left(\bigsqcup_{j=1}^nA_j\right)\right)=\sum_{j=1}^\infty\mu^*\left(E\cap A_j\right)$.

Solution: By the definition of measurability, we have

$$\mu\left(E \cap \left(\bigsqcup_{j=1}^{\infty} A_{j}\right)\right) = \mu\left(\left(E \cap \left(\bigsqcup_{j=1}^{\infty} A_{j}\right)\right) \cap A_{1}\right) + \mu\left(\left(E \cap \left(\bigsqcup_{j=1}^{\infty} A_{j}\right)\right) \cap A_{1}^{c}\right)$$

$$= \mu(E \cap A_{1}) + \mu\left(E \cap \left(\bigsqcup_{j=2}^{\infty} A_{j}\right)\right).$$

Continuing in this pattern, we get

$$\mu\left(\mathsf{E}\cap\left(\bigsqcup_{j=1}^{\infty}\mathsf{A}_{j}\right)\right)=\sum_{j=1}^{\infty}\mu(\mathsf{E}\cap\mathsf{A}_{j}).$$

Exercise (Exercise 18): Let $A \subseteq P(X)$ be an algebra, A_{σ} the collection of countable unions of sets in A, and $A_{\sigma\delta}$ the collection of countable intersections in A_{σ} . Let μ_0 be a premeasure on A, and let μ^* be the induced outer measure.

- (a) For any $E \subseteq X$ and $\varepsilon > 0$, there exists $A \in \mathcal{A}_{\sigma}$ with $E \subseteq A$, $\mu^*(A) \leqslant \mu^*(E) + \varepsilon$.
- (b) If $\mu^*(E) < \infty$, then E is μ^* -measurable if and only if there exists $B \in \mathcal{A}_{\sigma\delta}$ with $E \subseteq B$ and $\mu^*(B \setminus E) = 0$.
- (c) If μ_0 is σ -finite, then the restriction $\mu^*(E) < \infty$ in (b) is superfluous.

Solution:

(a) We know that

$$\mu^*(\mathsf{E}) = \inf \left\{ \left. \sum_{j=1}^{\infty} \mu_0(\mathsf{A}_j) \, \right| \, \mathsf{A}_j \in \mathcal{A}, \mathsf{E} \subseteq \bigcup_{j=1}^{\infty} \mathsf{A}_j \, \right\},$$

meaning that, by the definition of infimum, for any $\epsilon > 0$, there exists some sequence $\left\{A_j\right\}_{j=1}^\infty$ in $\mathcal A$ such that

$$\mu_0\left(\bigcup_{j=1}^{\infty}A_j\right)\leqslant \mu^*(\mathsf{E})+\varepsilon.$$

Defining $A = \bigcup_{j=1}^{\infty} A_j$, we have $A \in \mathcal{A}_{\sigma}$.

(b) Let $\mu^*(E) < \infty$.

Suppose E is measurable. Then, for any $T \subseteq X$, we have

$$\mu^*(T) = \mu^*(E \cap T) + \mu^*(E^c \cap T).$$

Chapter 3

Section 3.5

Definition. A function $F: \mathbb{R} \to \mathbb{C}$ is called *absolutely continuous* if, for any $\varepsilon > 0$, there is $\delta > 0$ such that for any finite set of disjoint open intervals $\left\{ \left(\alpha_j, b_j \right) \right\}_{j=1}^N$ with

$$\sum_{j=1}^{N} (b_j - a_j) < \delta,$$

we have

$$\sum_{j=1}^{N} \left| F(b_j) - F(\alpha_j) \right| < \epsilon.$$

Remark: All absolutely continuous functions are uniformly continuous.

Exercise (Exercise 36): Let G be a continuous, increasing function on [a, b], and let G(a) = c, G(b) = d.

- (a) If $E \subseteq [c, d]$ is a Borel set, then $\mathfrak{m}(E) = \mu_G \Big(G^{-1}(E) \Big)$.
- (b) If f is a Borel-measurable and integrable function on [c, d], then

$$\int_{c}^{d} f(y) dy = \int_{a}^{b} f(G(x)) dG(x).$$

If G is absolutely continuous, then

$$\int_a^b f(y) dy = \int_a^b f(G(x))G'(x) dx$$

(c) The validity of (b) may fail if G is merely right-continuous.

Solution:

(a) We may start by assuming that E is a closed subinterval of [c, d], which we call $[\alpha, \beta]$, with $\alpha \ge c$ and $\beta \le d$. Then, $\mathfrak{m}(E) = \beta - \alpha$, and

$$\begin{split} \mu_G\Big(G^{-1}[\alpha,\beta]\Big) &= G\Big(G^{-1}(\beta)\Big) - G\Big(G^{-1}(\alpha)\Big) \\ &= \beta - \alpha. \end{split}$$

Using countability, we may apply this to all Borel sets.

(b) We start with the borel set $E \subseteq [c, d]$, and its corresponding indicator function, giving

$$\int_{c}^{d} \mathbb{1}_{E}(y) dy = m(E)$$

$$= \mu_{G} \left(G^{-1}(E)\right)$$

$$= \int_{0}^{b} \mathbb{1}_{E}(G(x)) dG(x).$$

By linearity, this applies to simple functions, and by Monotone Convergence, to all integrable $f: [c, d] \to \mathbb{C}$.

Furthermore, by Lebesgue differentiation and the Lebesgue-Radon-Nikodym theorem, we also have

$$\int_{0}^{b} f(G(x)) dG(x) = \int_{0}^{b} f(G(x)) \frac{dG}{dx} dx.$$

Exercise (Exercise 37): Let $F: \mathbb{R} \to \mathbb{C}$. There is a constant M such that $|F(x) - F(y)| \le M|x - y|$ for all $x, y \in \mathbb{R}$ (i.e., F is Lipschitz) if and only if F is absolutely continuous and $|F'| \le M$ almost everywhere.

Solution: Let F be Lipschitz. Then, setting $\delta = \varepsilon/M$, we see that F is absolutely continuous, and since

$$\sup_{x,y\in\mathbb{R}}\frac{|F(y)-F(x)|}{|y-x|}\leq M,$$

with the left-hand side including |F'(x)|, we have that $|F'| \le M$ almost everywhere.

Meanwhile, if F is absolutely continuous with bounded derivative, we see that for almost every x < y, there is $c \in (x,y)$ such that $F'(c) = \frac{F(y) - F(x)}{y - x}$, and

$$|F'(c)| = \frac{|F(y) - F(x)|}{|y - x|}$$

$$\leq M,$$

so by taking suprema, we have

$$\sup_{x,y\in\mathbb{R}}\frac{\left|F(y)-F(x)\right|}{y-x}\leq M.$$