Supplementary Material for "Instability in Generative Adversarial Imitation Learning with Deterministic Policy"

A Analysis of Exploding Gradients in DE-GAIL

A.1 Proof of Theorem 1

Theorem 1 Let $\pi_h(\cdot|s)$ be the Gaussian stochastic policy with mean h(s) and covariance Σ . When the discriminator achieves its optimum $D^*(s,a)$ in Eq. (6), the gradient estimator of the policy loss with respect to the policy's parameter h satisfies $\|\hat{\nabla}_h D_{JS}(\rho^{\pi_h}, \rho^{\pi_E})\|_2 \to \infty$ with a probability of $\Pr(\|\Sigma^{-1}(a_t - h(s_t))\|_2 \ge C$ for any C > 0) as $\Sigma \to 0$, where

$$\hat{\nabla}_h D_{\text{JS}}(\rho^{\pi_h}, \rho^{\pi_E}) = \frac{d^{\pi_h}(s_t) \nabla_h \pi_h(a_t|s_t)}{2d^{\pi_E}(s_t) \pi_E(a_t|s_t)} \log \frac{2d^{\pi_h}(s_t) \pi_h(a_t|s_t)}{d^{\pi_h}(s_t) \pi_h(a_t|s_t) + d^{\pi_E}(s_t) \pi_E(a_t|s_t)},$$

and $\nabla_h \pi_h(a|s) = \pi_h(a|s) \kappa(s,\cdot) \Sigma^{-1}(a-h(s)).$

Proof. Through importance sampling which transfers the learned state-action distribution to the expert demonstration distribution, the JS divergence can be rewritten from the definition in Eq. (4) as

$$\begin{split} &D_{\mathrm{JS}}(\rho^{\pi_{h}}, \rho^{\pi_{\mathrm{E}}}) \\ &= \frac{1}{2} D_{\mathrm{KL}}(\rho^{\pi_{h}}, \frac{\rho^{\pi_{h}} + \rho^{\pi_{\mathrm{E}}}}{2}) + \frac{1}{2} D_{\mathrm{KL}}(\rho^{\pi_{\mathrm{E}}}, \frac{\rho^{\pi_{h}} + \rho^{\pi_{\mathrm{E}}}}{2}) \\ &= \frac{1}{2} \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[\log \frac{2\rho^{\pi_{h}}(s,a)}{\rho^{\pi_{h}}(s,a) + \rho^{\pi_{\mathrm{E}}}(s,a)} \right] + \frac{1}{2} \mathbb{E}_{(s,a) \sim \mathcal{D}^{\star}} \left[\log \frac{2\rho^{\pi_{\mathrm{E}}}(s,a)}{\rho^{\pi_{h}}(s,a) + \rho^{\pi_{\mathrm{E}}}(s,a)} \right] \\ &= \frac{1}{2} \mathbb{E}_{(s,a) \sim \mathcal{D}^{\star}} \left[\frac{\rho^{\pi_{h}}(s,a)}{\rho^{\pi_{\mathrm{E}}}(s,a)} \log \frac{2\rho^{\pi_{h}}(s,a)}{\rho^{\pi_{h}}(s,a) + \rho^{\pi_{\mathrm{E}}}(s,a)} + \log \frac{2\rho^{\pi_{\mathrm{E}}}(s,a)}{\rho^{\pi_{h}}(s,a) + \rho^{\pi_{\mathrm{E}}}(s,a)} \right], \end{split} \tag{9}$$

where \mathcal{D}^* and \mathcal{D} denote the expert demonstration and the replay buffer of π_h respectively. Then we can approximate the gradient of Eq. (9) with respect to h with

$$\frac{\hat{\nabla}_{h} D_{JS}(\rho^{\pi_{h}}, \rho^{\pi_{E}})}{\frac{1}{2} \nabla_{h} \left(\frac{\rho^{\pi_{h}}(s_{t}, a_{t})}{\rho^{\pi_{E}}(s_{t}, a_{t})} \log \frac{2\rho^{\pi_{h}}(s_{t}, a_{t})}{\rho^{\pi_{h}}(s_{t}, a_{t}) + \rho^{\pi_{E}}(s_{t}, a_{t})} + \log \frac{2\rho^{\pi_{E}}(s_{t}, a_{t})}{\rho^{\pi_{h}}(s_{t}, a_{t}) + \rho^{\pi_{E}}(s_{t}, a_{t})} \right)} \\
\frac{(ii)}{2} \frac{1}{2} \left(\frac{d^{\pi_{h}}(s_{t}) \nabla_{h} \pi_{h}(a_{t}|s_{t})}{d^{\pi_{E}}(s_{t}) \pi_{E}(a_{t}|s_{t})} \log \frac{2d^{\pi_{h}}(s_{t}) \pi_{h}(a_{t}|s_{t})}{d^{\pi_{h}}(s_{t}) \pi_{h}(a_{t}|s_{t}) + d^{\pi_{E}}(s_{t}) \pi_{E}(a_{t}|s_{t})} \right) \\
+ \frac{\rho^{\pi_{h}}(s_{t}, a_{t})}{\rho^{\pi_{E}}(s_{t}, a_{t})} \cdot \frac{\rho^{\pi_{h}}(s_{t}, a_{t}) + \rho^{\pi_{E}}(s_{t}, a_{t})}{2\rho^{\pi_{h}}(s_{t}, a_{t})} \\
- \frac{2d^{\pi_{h}}(s_{t}) \nabla_{h} \pi_{h}(a_{t}|s_{t}) \left(\rho^{\pi_{h}}(s_{t}, a_{t}) + \rho^{\pi_{E}}(s_{t}, a_{t}) \right)^{2}}{\left(\rho^{\pi_{h}}(s_{t}, a_{t}) + \rho^{\pi_{E}}(s_{t}, a_{t}) \right)^{2}} \\
- \frac{\rho^{\pi_{h}}(s_{t}, a_{t}) + \rho^{\pi_{E}}(s_{t}, a_{t})}{2\rho^{\pi_{E}}(s_{t}, a_{t})} \cdot \frac{2\rho^{\pi_{E}}(s_{t}, a_{t}) d^{\pi_{h}}(s_{t}) \nabla_{h} \pi_{h}(a_{t}|s_{t})}{\left(\rho^{\pi_{h}}(s_{t}, a_{t}) + \rho^{\pi_{E}}(s_{t}, a_{t}) \right)^{2}} \\
\frac{(iii)}{2} \frac{1}{2} \left(\frac{d^{\pi_{h}}(s_{t}) \nabla_{h} \pi_{h}(a_{t}|s_{t})}{d^{\pi_{E}}(s_{t}) \pi_{E}(a_{t}|s_{t})} \log \frac{2d^{\pi_{h}}(s_{t}) \nabla_{h} \pi_{h}(a_{t}|s_{t})}{d^{\pi_{h}}(s_{t}) \nabla_{h} \pi_{h}(a_{t}|s_{t})} + \frac{d^{\pi_{h}}(s_{t}) \nabla_{h} \pi_{h}(a_{t}|s_{t})}{\rho^{\pi_{h}}(s_{t}, a_{t}) + \rho^{\pi_{E}}(s_{t}, a_{t})} - \frac{d^{\pi_{h}}(s_{t}) \nabla_{h} \pi_{h}(a_{t}|s_{t})}{\rho^{\pi_{h}}(s_{t}, a_{t}) + \rho^{\pi_{E}}(s_{t}, a_{t})} \right) \\
\frac{(iii)}{2d^{\pi_{h}}(s_{t}) \nabla_{h} \pi_{h}(a_{t}|s_{t})}{d^{\pi_{h}}(s_{t}) \pi_{h}(a_{t}|s_{t})} \log \frac{2d^{\pi_{h}}(s_{t}) \pi_{h}(a_{t}|s_{t})}{\rho^{\pi_{h}}(s_{t}, a_{t}) + \rho^{\pi_{E}}(s_{t}, a_{t})} \right) \\
\frac{(iii)}{2d^{\pi_{h}}(s_{t}) \nabla_{h} \pi_{h}(a_{t}|s_{t})}{d^{\pi_{h}}(s_{t}) \pi_{h}(a_{t}|s_{t}) + \rho^{\pi_{E}}(s_{t}, a_{t})} \right) \\
\frac{(iii)}{2d^{\pi_{h}}(s_{t}) \nabla_{h} \pi_{h}(a_{t}|s_{t})}{d^{\pi_{h}}(s_{t}) \pi_{h}(a_{t}|s_{t}) + \rho^{\pi_{E}}(s_{t}) \pi_{h}(a_{t}|s_{t})}$$

$$(10)$$

where (ii) comes from Eq. (1). By the fact that

$$\nabla_h \pi_h(a|s) = \pi_h(a|s) \nabla_h \log \pi_h(a|s) = \pi_h(a|s) \kappa(s,\cdot) \Sigma^{-1}(a - h(s)), \tag{11}$$

Eq. (10) can be shown that

$$\|\hat{\nabla}_{h}D_{JS}(\rho^{\pi_{h}}, \rho^{\pi_{E}})\|_{2} = \left\| \frac{d^{\pi_{h}}(s_{t})\pi_{h}(a_{t}|s_{t})\kappa(s_{t}, \cdot)\boldsymbol{\Sigma}^{-1}(a_{t} - h(s_{t}))}{2d^{\pi_{E}}(s_{t})\pi_{E}(a_{t}|s_{t})} \log \frac{2d^{\pi_{h}}(s_{t})\pi_{h}(a_{t}|s_{t})}{d^{\pi_{h}}(s_{t})\pi_{h}(a_{t}|s_{t}) + d^{\pi_{E}}(s_{t})\pi_{E}(a_{t}|s_{t})} \right\|_{2}.$$

Then it follows that $\|\hat{\nabla}_h D_{\mathrm{JS}}(\rho^{\pi_h}, \rho^{\pi_{\mathrm{E}}})\|_2 \to \infty$ with a probability of $\Pr(\|\mathbf{\Sigma}^{-1}(a_t - h(s_t))\|_2 \geq C$ for any C > 0) as $\mathbf{\Sigma} \to \mathbf{0}$.

A.2 Proof of Corollary 1

Corollary 1 Let $\pi_h(\cdot|s)$ be the Gaussian stochastic policy with mean h(s) and covariance Σ . When the discriminator achieves its regularity $\tilde{D}(s,a)$ in Eq. (7), i.e., $\tilde{D}(s,a) \in (0,1)$, the gradient estimator of the policy loss with respect to the policy's parameter h satisfies

$$\left\| \hat{\nabla}_h \left(\mathbb{E}_{\mathcal{D}^*} [\log \tilde{D}(s, a)] + \mathbb{E}_{\mathcal{D}} [\log (1 - \tilde{D}(s, a))] \right) \right\|_2 \to \infty$$

with a probability of $\Pr(\|\mathbf{\Sigma}^{-1}(a_t - h(s_t))\|_2 \ge C$ for any C > 0) as $\mathbf{\Sigma} \to \mathbf{0}$, where \mathcal{D}^* and \mathcal{D} denote the expert demonstration and the replay buffer of π_h respectively,

$$\begin{split} \hat{\nabla}_{h} \left(\mathbb{E}_{\mathcal{D}^{\star}} [\log(\tilde{D}(s, a))] + \mathbb{E}_{\mathcal{D}} [\log(1 - \tilde{D}(s, a))] \right) \\ &= \frac{d^{\pi_{h}}(s_{t}) \nabla_{h} \pi_{h}(a_{t}|s_{t})}{d^{\pi_{E}}(s_{t}) \pi_{E}(a_{t}|s_{t})} \log \frac{(1 - \epsilon_{2}) d^{\pi_{h}}(s_{t}) \pi_{h}(a_{t}|s_{t})}{(1 + \epsilon_{1}) d^{\pi_{E}}(s_{t}) \pi_{E}(a_{t}|s_{t}) + (1 - \epsilon_{2}) d^{\pi_{h}}(s_{t}) \pi_{h}(a_{t}|s_{t})} \\ &+ \frac{(\epsilon_{1} + \epsilon_{2}) d^{\pi_{h}}(s_{t}) \nabla_{h} \pi_{h}(a_{t}|s_{t})}{(1 + \epsilon_{1}) \rho^{\pi_{E}}(s_{t}, a_{t}) + (1 - \epsilon_{2}) \rho^{\pi_{h}}(s_{t}, a_{t})}, \end{split}$$

and $\nabla_h \pi_h(a|s) = \pi_h(a|s) \kappa(s,\cdot) \Sigma^{-1}(a-h(s)).$

Proof. Referring to the proof strategy of Theorem 1, the learned state-action distribution can be transferred to the expert demonstration distribution by importance sampling. Thus when the discriminator achieves its regularity $\tilde{D}(s,a)$, we can write the policy objective from the optimization problem in Eq. (2) as

$$\mathbb{E}_{(s,a) \sim \mathcal{D}^{\star}} [\log(\tilde{D}(s,a))] + \mathbb{E}_{(s,a) \sim \mathcal{D}} [\log(1 - \tilde{D}(s,a))] \\
= \mathbb{E}_{(s,a) \sim \mathcal{D}^{\star}} \left[\log \frac{(1 + \epsilon_{1}) \rho^{\pi_{E}}(s_{t}, a_{t})}{(1 + \epsilon_{1}) \rho^{\pi_{E}}(s_{t}, a_{t}) + (1 - \epsilon_{2}) \rho^{\pi}(s_{t}, a_{t})} \right] \\
+ \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[\log \frac{(1 - \epsilon_{2}) \rho^{\pi}(s_{t}, a_{t})}{(1 + \epsilon_{1}) \rho^{\pi_{E}}(s_{t}, a_{t}) + (1 - \epsilon_{2}) \rho^{\pi}(s_{t}, a_{t})} \right] \\
= \mathbb{E}_{(s,a) \sim \mathcal{D}^{\star}} \left[\log \frac{(1 + \epsilon_{1}) \rho^{\pi_{E}}(s, a)}{(1 + \epsilon_{1}) \rho^{\pi_{E}}(s, a) + (1 - \epsilon_{2}) \rho^{\pi_{h}}(s, a)} \\
+ \frac{\rho^{\pi_{h}}(s, a)}{\rho^{\pi_{E}}(s, a)} \log \frac{(1 - \epsilon_{2}) \rho^{\pi_{h}}(s, a)}{(1 + \epsilon_{1}) \rho^{\pi_{E}}(s, a) + (1 - \epsilon_{2}) \rho^{\pi_{h}}(s, a)} \right]. \tag{12}$$

Then the gradient of Eq. (12) can be approximated with

$$\begin{split} \hat{\nabla}_{h} \left(\mathbb{E}_{(s,a) \sim \mathcal{D}^{*}} [\log(\tilde{D}(s,a))] + \mathbb{E}_{\mathcal{D}} [\log(1 - \tilde{D}(s,a))] \right) \\ &= \nabla_{h} \left(\log \frac{(1 + \epsilon_{1}) \rho^{\pi_{E}}(s,a)}{(1 + \epsilon_{1}) \rho^{\pi_{E}}(s,a) + (1 - \epsilon_{2}) \rho^{\pi_{h}}(s,a)} \right. \\ &+ \frac{\rho^{\pi_{h}}(s,a)}{\rho^{\pi_{E}}(s,a)} \log \frac{(1 - \epsilon_{2}) \rho^{\pi_{h}}(s,a)}{(1 + \epsilon_{1}) \rho^{\pi_{E}}(s,a) + (1 - \epsilon_{2}) \rho^{\pi_{h}}(s,a)} \right) \\ &= -\frac{(1 + \epsilon_{1}) \rho^{\pi_{E}}(s,a) + (1 - \epsilon_{2}) \rho^{\pi_{h}}(s,a)}{(1 + \epsilon_{1}) \rho^{\pi_{E}}(s,a,a)} \cdot \frac{(1 + \epsilon_{1}) (1 - \epsilon_{2}) \rho^{\pi_{E}}(s_{t},a_{t}) d^{\pi_{h}}(s_{t}) \nabla_{h} \pi_{h}(a_{t} | s_{t})}{((1 + \epsilon_{1}) \rho^{\pi_{E}}(s,a) + (1 - \epsilon_{2}) \rho^{\pi_{h}}(s,a))^{2}} \\ &+ \frac{d^{\pi_{h}}(s_{t}) \nabla_{h} \pi_{h}(a_{t} | s_{t})}{d^{\pi_{E}}(s_{t}) \pi_{E}(a_{t} | s_{t})} \log \frac{(1 - \epsilon_{2}) d^{\pi_{h}}(s_{t}) \pi_{h}(a_{t} | s_{t})}{((1 + \epsilon_{1}) \rho^{\pi_{E}}(s_{t}) \pi_{E}(a_{t} | s_{t}) + (1 - \epsilon_{2}) \rho^{\pi_{h}}(s_{t},a_{t})} \\ &+ \frac{\rho^{\pi_{h}}(s_{t},a_{t})}{\rho^{\pi_{E}}(s_{t},a_{t})} \cdot \frac{(1 + \epsilon_{1}) \rho^{\pi_{E}}(s_{t},a_{t}) + (1 - \epsilon_{2}) \rho^{\pi_{h}}(s_{t},a_{t})}{((1 + \epsilon_{1}) \rho^{\pi_{E}}(s_{t},a_{t}) + (1 - \epsilon_{2}) \rho^{\pi_{h}}(s_{t},a_{t})} \\ &+ \frac{(1 - \epsilon_{2}) (1 + \epsilon_{1}) \rho^{\pi_{E}}(s_{t},a_{t}) + (1 - \epsilon_{2}) \rho^{\pi_{h}}(s_{t},a_{t})}{((1 + \epsilon_{1}) \rho^{\pi_{E}}(s_{t},a_{t}) + (1 - \epsilon_{2}) \rho^{\pi_{h}}(s_{t},a_{t})} \\ &= \frac{d^{\pi_{h}}(s_{t}) \nabla_{h} \pi_{h}(a_{t} | s_{t})}{d^{\pi_{E}}(s_{t}) \pi_{E}(a_{t} | s_{t})} \log \frac{(1 - \epsilon_{2}) d^{\pi_{h}}(s_{t}) \pi_{h}(a_{t} | s_{t})}{((1 + \epsilon_{1}) \rho^{\pi_{E}}(s_{t},a_{t}) + (1 - \epsilon_{2}) \rho^{\pi_{h}}(s_{t}) \pi_{h}(a_{t} | s_{t})} \\ &- \frac{(1 - \epsilon_{2}) d^{\pi_{h}}(s_{t}) \nabla_{h} \pi_{h}(a_{t} | s_{t})}{(1 + \epsilon_{1}) \rho^{\pi_{E}}(s_{t},a_{t}) + (1 - \epsilon_{2}) \rho^{\pi_{h}}(s_{t},a_{t}) + (1 - \epsilon_{2}) \rho^{\pi_{h}}(s_{t}) \pi_{h}(a_{t} | s_{t})}} \log \frac{(1 - \epsilon_{2}) d^{\pi_{h}}(s_{t}) \pi_{h}(a_{t} | s_{t})}{(1 + \epsilon_{1}) \rho^{\pi_{E}}(s_{t},a_{t}) + (1 - \epsilon_{2}) \rho^{\pi_{h}}(s_{t},a_{t})}} \\ &= \frac{d^{\pi_{h}}(s_{t}) \nabla_{h} \pi_{h}(a_{t} | s_{t})}{d^{\pi_{E}}(s_{t}) \pi_{h}(a_{t} | s_{t})} \log \frac{(1 - \epsilon_{2}) d^{\pi_{h}}(s_{t}) \pi_{h}(a_{t} | s_{t})}{(1 + \epsilon_{1}) \rho^{\pi_{E}}(s_{t},a_{t}) + (1 - \epsilon_{2}) \rho^{\pi_{h}}(s_{t},a_{t})}} \\ &= \frac{d^{\pi_{h}}(s_{t}) \nabla_{h} \pi_{h}(a_{t} | s_{t})}{d^{\pi_{E}}(s_{t})} \log \frac{(1 - \epsilon_{2$$

Plugging Eq. (11) into Eq. (13), when $\|\Sigma^{-1}(a_t - h(s_t))\|_2 \ge C$ for any C > 0, we have

$$\left\| \hat{\nabla}_h \left(\mathbb{E}_{(s,a) \sim \mathcal{D}^*} [\log(\tilde{D}(s,a))] + \mathbb{E}_{\mathcal{D}} [\log(1 - \tilde{D}(s,a))] \right) \right\|_2 \to \infty.$$

B Analysis of Relieving Exploding Gradients

B.1 Proof of Proposition 1

Proposition 1 When the discriminator achieves its optimum $D^*(s, a)$ in Eq. (6), we have $D^*(s_t, a_t) \approx 1 \Leftrightarrow h(s_t)$ mismatches a_t .

Proof. The optimal discriminator of (s_t, a_t) can be denoted by

$$D^*(s_t, a_t) = \frac{\rho^{\pi_{\rm E}}(s_t, a_t)}{\rho^{\pi_{\rm E}}(s_t, a_t) + \rho^{\pi_h}(s_t, a_t)}.$$

We can derive that the necessary and sufficient condition of $D^*(s_t, a_t) \approx 1$ is that $\rho^{\pi_h}(s_t, a_t) \approx 0$, i.e., $(s_t, h(s_t))$ mismatches (s_t, a_t) .

B.2 Proof of Proposition 2

Proposition 2 When the discriminator achieves its optimum $D^*(s,a)$ in Eq. (6), we have $\beta \geq \alpha$.

Proof. When $r_i(s_t, a_t) = c$, i = 1, 2, we obtain $\log \beta - \log(1 - \beta) = -\log(1 - \alpha)$, which is followed by

$$\beta - \alpha = \frac{\alpha^2 - 2\alpha + 1}{2 - \alpha} \ge 0.$$

C Representative Reward Functions

Table 2: Representative Reward Functions.

Reward	Function Shape
$r_1(s,a)$	$-\log(1-D(s,a))$
$r_2(s,a)$ $r_3(s,a)$	$\log D(s, a) - \log(1 - D(s, a))$ $\log D(s, a)$
$r_4(s,a)$	D(s,a)
$r_5(s,a)$ $r_6(s,a)$	$e^{D(s,a)} -1/D(s,a)$
$r_6(s,a)$ $r_7(s,a)$	$D(s,a)^2$
$r_8(s,a)$	$\sqrt{D(s,a)}$