## CLUSTERING OF COUNTRIES ASSIGNMENT

By:

Mamatha E

### **Problem Statement**

Categorizing the countries using socio-economic and health factors that determine the overall development of the country and identifying the top5 countries that are of immediate aid.

## Methodology & Analysis

- Initially loading the data set and understanding it.
- Data cleaning was carried out, certain attribute values need to be updated.
- **EDA**:

### UNIVARIATE ANALYSIS (CONTINUOUS):

• From the plots shown below, all the columns are skewed towards left except for the column 'life\_expec' which is right skewed.



#### **BIVARIATE ANALYSIS (CONTINUOUS-CONTINUOUS):**

• Some of the variables are having correlation with other variables as follows:

#### Positive Correlation:

- *child\_mort & total\_fer*: As the death of infants are increasing, the infants are born at the same rate.
- exports & imports: Exports and imports are also increasing at the same rate.



health & income, health & gdpp: As the net income or gdpp increases, it implies that there is increase in health expense.

- income & gdpp: As the net income of a person are increasing so does the gdpp.





exports & income, exports & gdpp, imports & gdpp: As exports/imports are increasing in small amount, the income and gdpp are increasing in large amount.







### Negative Correlation:

- *child\_mort & life\_expec*: As the child mortality is increasing the life expectancy of infants decreasing drastically.
- *life\_expec & total\_fer*: As life expectancy of an infant is more, the infants born are less.



### Handling Outliers:

The box plot shows the outliers at the higher fence except for the column 'life\_expec', which is having the outlier at the lower fence.

This outlier of life\_expec at the lower fence will not be treated as it might be important for analysis.



- To over come outliers, data are capped instead of deleting as the there are less data in the data set.
- For variables 'child\_mort' and 'inflation' soft-range capping (1-99) is used as a single data point is way out of range.
- For remaining variables, mid-range capping (5-95) was the better option.
- Outliers after data being capped are as shown in the next slide.
- After employing the capping method, some of the data points which were way out of range are within range.
- But yet some of the data points are at the upper fence and remaining analysis will be carried without further capping of outliers.



### **Clustering Model**

- The hopkin's test was conducted to check the cluster tendency.
- Scaling of data using Standard Scaler so that all data are in same range.

#### K-Means Clustering Algorithm:

- To find the optimal number of clusters two methods were employed: *Sihouette Score* and *Elbow-Curve*.
- The number of clusters was decided as **3** and the model was fitted.
- The clusters formed were as follows and they were analyzed with respect to the variables ['child\_mort', 'income', 'gdpp'].
  - 1. C1  $\rightarrow$  high child mortality, low income and gdpp.
  - 2.  $C2 \rightarrow low child mortality, high income and gdpp.$
  - 3.  $C3 \rightarrow slightly better than C1.$

Visualizing clusters with respect to child\_mort, income & gdpp

140

120

Cluster 2: Includes countries with high child mortality, low income & low gdpp.

Cluster 1: Includes countries with low child mortality, high income & high gdpp.

Cluster 0: Includes countries with child mortality slightly more than cluster 1, income and gdpp slightly more than cluster 2.



12



## Relationship between the variables, child\_mort, income & gdpp.

Cluster 1: high 'income' but low 'child\_mort',

Cluster 2: low 'income' but high 'child\_mort' and

**Cluster 0:** slightly higher 'income' and lower 'child\_mort' when compared to cluster 2.





Cluster 1: high 'gdpp' but low 'child\_mort',

Cluster 2: low 'gdpp' but high 'child\_mort' and

Cluster 0: slightly higher 'gdpp' & lower 'child\_mort' compared to cluster 2.

Cluster 1: high 'gdpp'and 'income'.

Cluster 2: low 'gdpp'and 'income'.

Cluster 0: slightly higher 'gdpp' and 'income' when compared to cluster 2.



### Cluster Profiling:

From the below two bar plots it can be clearly seen that cluster 2 is having low 'income' and 'gdpp and high 'child\_mort' when compared to other two clusters.



Results:

Top 5 countries which need immediate aid are listed below:

|   | index | country                  | child_mort | exports | health | imports | income | inflation | life_expec | total_fer | gdpp | cluster_id |
|---|-------|--------------------------|------------|---------|--------|---------|--------|-----------|------------|-----------|------|------------|
| 0 | 132   | Sierra Leone             | 153.4      | 67.03   | 52.27  | 137.66  | 1220.0 | 17.20     | 55.0       | 5.200     | 399  | 2          |
| 1 | 66    | Haiti                    | 153.4      | 101.29  | 45.74  | 428.31  | 1500.0 | 5.45      | 32.1       | 3.330     | 662  | 2          |
| 2 | 32    | Chad                     | 150.0      | 330.10  | 40.63  | 390.20  | 1930.0 | 6.39      | 56.5       | 5.861     | 897  | 2          |
| 3 | 31    | Central African Republic | 149.0      | 52.63   | 17.75  | 118.19  | 888.0  | 2.01      | 47.5       | 5.210     | 446  | 2          |
| 4 | 97    | Mali                     | 137.0      | 161.42  | 35.26  | 248.51  | 1870.0 | 4.37      | 59.5       | 5.861     | 708  | 2          |

### • Hierarchical Clustering Algorithm:

- Dendrogram was created using complete linkage instead of single linkage as single linkage did not create clear dendrogram.
- The number of clusters was decided to be 3 though from the dendrogram it looks like 4.
- As the clusters formed for 3 was better than the clusters formed for 4.

# Visualizing clusters with respect to child\_mort, income & gdpp

Cluster 0: Includes countries with high child mortality, low income and low gdp.

Cluster 2: Includes countries with low child mortality, high income and high gdp.

Cluster 1: Includes countries with child mortality slightly more than cluster 2, income and gdp is more than cluster 0.







# Relationship between the variables, child\_mort, income & gdpp

Cluster 2: high 'income' but low 'child\_mort',

Cluster 0: low 'income' but high 'child\_mort' and

Cluster 1: slightly higher 'income' and lower 'child\_mort' when compared to cluster 0.





Cluster 2: high 'gdpp' but low 'child\_mort',

Cluster 0: low 'gdpp' but high 'child\_mort' and

*Cluster 1:* slightly higher 'gdpp' & lower 'child\_mort' compared to cluster 0.

Cluster 2: high 'gdpp'and 'income'.

Cluster 0: low 'gdpp'and 'income'.

Cluster 1: slightly higher 'gdpp' and 'income' when compared to cluster 2.



### Cluster Profiling:

From the above two bar plots it can be clearly seen that cluster 0 is having low 'income' and 'gdpp and high 'child\_mort' when compared to other two clusters.



### Results:

Top 5 countries which need immediate aid are listed below:

|   | index | country                  | child_mort | exports | health | imports | income | inflation | life_expec | total_fer | gdpp | cluster_id | cluster_labels |
|---|-------|--------------------------|------------|---------|--------|---------|--------|-----------|------------|-----------|------|------------|----------------|
| 0 | 132   | Sierra Leone             | 153.4      | 67.03   | 52.27  | 137.66  | 1220.0 | 17.20     | 55.0       | 5.200     | 399  | 2          | 0              |
| 1 | 66    | Haiti                    | 153.4      | 101.29  | 45.74  | 428.31  | 1500.0 | 5.45      | 32.1       | 3.330     | 662  | 2          | 0              |
| 2 | 32    | Chad                     | 150.0      | 330.10  | 40.63  | 390.20  | 1930.0 | 6.39      | 56.5       | 5.861     | 897  | 2          | 0              |
| 3 | 31    | Central African Republic | 149.0      | 52.63   | 17.75  | 118.19  | 888.0  | 2.01      | 47.5       | 5.210     | 446  | 2          | 0              |
| 4 | 97    | Mali                     | 137.0      | 161.42  | 35.26  | 248.51  | 1870.0 | 4.37      | 59.5       | 5.861     | 708  | 2          | 0              |

### **Conclusion**

- The 3 clusters formed in both clustering algorithm are:
  - 1. C1 High Child Mortality, Low Income & GDPP.
  - 2. C2 Low Child Mortality, High Income & GDPP.
  - 3. C3 Better cluster when compared to C1.
- The segmentation of data was better in K-Means when compared to Hierarchical for number of clusters = 3.
- Both K-Means and Hierarchical Clustering Algorithms are producing the same results for number of clusters = 3.
- Hence, the top-5 countries which need immediate aid are:
  - 1. Sierra Leone (child\_mort = 153.4, income = 1220, gdpp= 399)
  - 2. Haiti (child\_mort = 153.4, income = 1500, gdpp= 662)
  - 3. Chad (child\_mort = 150.0, income = 1930.0, gdpp= 897)
  - 4. Central African Republic (child\_mort=149.0,income=888,gdpp=446)
  - 5. Mali (child\_mort = 137.0, income = 1870.0, gdpp= 708)

## THANKYOU