CMPT 383 Comparative Programming Languages

Homework 6

This homework is due by 11:59pm PT on Tuesday Mar 18, 2025. No late submission is accepted. Please save your answers in a single file called H6_SFUID.pdf and submit it to Canvas. You may also write on paper and scan it (or take a picture) into a PDF. Please make sure the text is readable.

Requirements:

- Please include an environment in the judgments even if it is not used.
- 1. (20 points) Consider the FUN language that we learned, provide a big-step operational semantics to expression $e_1 \le e_2$. The expression evaluates to true if the value of e_1 is less than or equal to the value of e_2 . Otherwise, it evaluates to false.
- 2. (20 points) Consider the FUN language, prove the following expression evaluates to 3 with respect to the big-step operational semantics that can handle recursion.

let
$$x = 2$$
 in $(1 + x)$

Note that the parentheses are just used to show the precedence. You do not need to show the steps for parentheses in the proof.

3. (30 points) Suppose we add a program construct called testSign to the FUN language with the following syntax

The evaluation result of testSign e_1 e_2 e_3 e_4 is

- the result of e_2 , if e_1 evaluates to a negative number
- the result of e_3 , if e_1 evaluates to zero
- the result of e_4 , if e_1 evaluates to a positive number

Provide a big-step operational semantics for testSign.

4. (30 points) Consider the testSign in Quesiton 3, provide a small-step operational semantics for testSign. Note that for expression testSign e_1 e_2 e_3 e_4 , the expression e_1 should be evaluated first. You can assume the small-step operational semantics for other FUN constructs already exists.