

1.
$$(a+n)^n = \sum_{k=0}^n C_k^n a^{n-k} b^k$$

 $\forall \alpha \in \mathcal{F}: \quad p\alpha = 0 \Longrightarrow C_\alpha^{p^n} = \frac{p^n!}{(p^n - \alpha)! \alpha!}, \quad 0 < \alpha < p^n.$
 $(a+n)^{p^n} = \sum_{k=0}^{p^n} C_k^{p^n} a^{p^n-k} b^k = a^{p^n} + \sum_{k=1}^{p^n-1} C_k^{p^n-1} a^{p^n-1-k} b^k + b^{p^n} = a^{p^n} + b^{p^n}$

2.

•	0	1	2	x	x+1	x+2	2x	2x+1	2x+2
0	0	0	0	0	0	0	0	0	0
1	0	1	2	x	x+1	x+2	2x	2x+1	2x+2
2	0	2	1	2x	2x+2	2x+1	x	x+2	x+1
x	0	x	2x	2x+1	1	x+1	x+2	2x+2	2
x+1	0	x+1	2x+2	1	x+2	2x	2	x	2x+1
x+2	0	x+2	2x+1	x+1	2x	2	2x+2	1	x
2x	0	2x	x	x+2	2	2x+2	2x+1	x+1	1
2x+1	0	2x+1	x+2	2x+2	x	1	x+1	2	2x
2x+2	0	2x+2	x+1	2	2x+1	x	1	2x	x+2

3.
$$\frac{1}{12} \sum_{\substack{m \mid 12 \\ = 335}} \frac{12}{m} \mu(m) = \frac{1}{12} 2^{12} \mu(1) + \frac{1}{12} 2^{6} \mu(2) + \frac{1}{12} 2^{4} \mu(3) + \frac{1}{12} 2^{2} \mu(6) = \frac{2^{12} - 2^{6} - 2^{4} + 2^{2}}{12} = \frac{1}{12} 2^{12} \mu(1) + \frac{$$

4.

