Project 1- EXPLORING WEATHER TRENDS

UDACITY - Data Analyst Nanodegree

Date-APRIL 29

Project by: Sagar Sahu

Delhi, India

Introduction:-

In this project, I Analyzed the Temperature of Delhi and Global Temperature and c ompared them.

I Extracted data from Udacity database and MAnipualte according to my goals.

Goals:-

- Extract data from the Udacity database(.csv file)
- Create a Chart Visualization(Line Chart)
- 3. Observation based on Chart

Tools Used:-

- -> SQL: To Extract data from database
- -> Microsoft Excel: To view Extracted data
- -> Python: To Manipulate data
- -> Anaconda-Jupyter Notebook: To Implement the Manipulated data(Python code)

STEP - 1(Extraction of Data from Database):

The Following steps are taken for the Extraction of data from database, the Tool used here is SQL.

1. Find the Cities available for 'INDIA' in the database:

```
select *
From city_list
where country = 'INDIA';
```

2. I got the list and I've chosen 'Delhi' for this Project; I have provided with the SCHEMA of the tables. The table of 'city' and 'global' have same column name(i.e.'avg_temp'). So I renamed the column and join the table using 'JOIN' function().

```
select c.year,c.avg_temp AS city_avg_temp,g.avg_temp AS global_avg_temp
from city_data c
Join global_data g on c.year = g.year
Where c.city = 'Delhi'
AND c.avg_temp is not Null;
```

3. After getting the Output, I have downloaded the data as "results.csv".

STEP - 2 (Visualization of Data):

The Following steps are taken for the Visualization of Data, The Tool used he re is Python and Jupyter Notebook.

In [1]:

```
1. #Importing Libraries
import pandas as pd  #for Importing the .csv files
import matplotlib.pyplot as plt  #For plotting Line Chart
```

In [2]:

```
2. #Importing Datasets
dataset=pd.read_csv('results.csv')
```

In [3]:

dataset

Out[3]:

	year	city_avg_temp	global_avg_temp
0	1796	25.03	8.27
1	1797	26.71	8.51
2	1798	24.29	8.67
3	1799	25.28	8.51
4	1800	25.21	8.48
196	2009	26.55	9.51
197	2010	26.52	9.70
198	2011	25.63	9.52
199	2012	25.89	9.51
200	2013	26.71	9.61

201 rows × 3 columns

3. For Calculating Moving Average and Rolling function, I have taken reference which I've mentioned below.

#Calculating Moving Average

In [4]:

```
moving_avg_global = dataset.rolling(window = 150,center = False,on='global_avg_temp').mean(
moving_avg_city = dataset.rolling(window = 150,center = False,on='city_avg_temp').mean()
```

In [5]:

```
4. #Visualizing the plot of Global and City Teperature
plt.figure(figsize =(10,5))
plt.grid(True)
plt.plot(moving_avg_global['year'],moving_avg_global['global_avg_temp'],label='Global')
plt.plot(moving_avg_city['year'],moving_avg_city['city_avg_temp'],label='Delhi')
plt.legend()
plt.xlabel('Years')
plt.ylabel('Temperature(°C)')
plt.show()
```


In [6]:

```
5.#Visualizing the plot of Global Temperature
plt.figure(figsize =(8,5))
plt.grid(True)
plt.plot(moving_avg_global['year'],moving_avg_global['global_avg_temp'],label='Global')
plt.legend()
plt.xlabel('Years')
plt.ylabel('Temperature(°C)')
plt.show()
```


In [7]:

```
6.#Visualizing the plot of City Temperature
plt.figure(figsize =(8,5))
plt.grid(True)
plt.plot(moving_avg_city['year'],moving_avg_city['city_avg_temp'],label='Delhi')
plt.legend()
plt.xlabel('Years')
plt.ylabel('Temperature(°C)')
plt.show()
```


Analysis and Conclusion:

- 1. The Global average temperature version from 8.4°C to 9.6°C While Delhi average temperature version from 24.75°C to 26.70°C Which is a big Difference.
- 2. From the Chart, I have also observed a very big Difference between the Aver eage temperature of Delhi and that of World.
- 3. I also Notice that the Global temperature is rising 0.1°C(approx.) every ye arwhich is Constant.
- 4. Due to Industrialization, the Global temperature has started increasing at a higher rate.
 - 5. As Delhi is Found near the Equator, Hence the Global average temperature is very less as compared to Equatorial region.

Considerations:

- --> X-Axis:Years
- --> Y-Axis:Temperature(°C)
- --> Different color lines for global and city average temperature.
- --> Used matplotlib.pyplot for plotting line Chart.
- --> Used pandas for importing the dataset.
- --> All the Codes are written in the PDF file for all reference.

Reference:

- 1.GITHUB-https://github.com/VELLALAKAVYA/Explore-Weather-Trends-Udacity
- 2.youtube-https://www.youtube.com/watch?v=4gaymR1vrEE