Prob. 1	Prob. 2	Prob. 3	Prob. 4

Problem 1.

Problem 2.

Problem 3.

Problem 4.

This problem is a simplification of *Convex Hull* problem because here we just need to traverse the points, no need to check if traversing is going clockwise or not. Algorithm is the following for *n* points:

- Find the initial point p_i which has *minimum* y, finding minimum of n points is bound by O(n)
- Sort the remaining points in ascending order according to polar angle that they made with p where it is bound by $O(n \log n)$ because we only spend O(1) time for each polar angle calculation, in total, that results in O(n) which is dominated by sorting n points.
- Traverse the points in the order and put an edge between the current point p_c and the following point p_f . Since we are traversing all points, this is O(n).
- At the end, put one more edge between p_c and p_i to close the loop and create a polygon. This operation is just a constant time operation, O(1).

In short, we have:

Total Cost = Find
$$p_i$$
 + Calculate polar angles with p_i + Sort points + Close loop
= $O(n) + O(n) + O(n \log n) + O(1) \le O(n \log n)$