Materials 5c - Evening forecasts

Laura Gáti

October 19, 2019

Define some objects: (I usually let t denote the time in which the variable is formed.)

$$f_t = \hat{\mathbb{E}}_t(z_{t+1})$$
 one-period-ahead forecast formed at time t (1)

$$FE_t = z_{t+1} - f_t$$
 one-period-ahead forecast error realized at time $t+1$ (2)

$$= ALM(t+1) - PLM(t) \tag{3}$$

$$\theta_t = \hat{\mathbb{E}}_{t-1}(z_t) - \mathbb{E}_{t-1}(z_t)$$
 CEMP's criterion (4)

$$= PLM(t-1) - \mathbb{E}_{t-1} ALM(t) \tag{5}$$

$$PLM(t): \hat{\mathbb{E}}_t z_{t+1} = \bar{z}_{t-1} + bs_t$$

Morning: morning of time t available: $\mathcal{I}_t^m = \{\bar{z}_{t-1}, s_t, k_{t-1}, FE_{t-2}\}$

- 1. Form all future expectations using $PLM(t) \rightarrow z_t$ realized, $\rightarrow FE_{t-1}$ realized
- 2. Form $\theta_t \to k_t$ realized
- 3. **Evening**: Update $\bar{z}_t = \bar{z}_{t-1} + k_t^{-1}(FE_{t-1})$

where
$$FE_{t-1} = z_t - f_{t-1} = z_t - (\bar{z}_{t-2} + bs_{t-1})$$
, so:

$$\bar{z}_t = \bar{z}_{t-1} + k_t^{-1}(z_t - (\bar{z}_{t-2} + bs_{t-1}))$$

 \rightarrow evening of time t available: $\mathcal{I}^e_t = \{\bar{z}_t, s_t, k_t, FE_{t-1}\}$

Issue # 1: Updating of \bar{z} is a function of last period's \bar{z} , \bar{z}_{t-2} , (i.e. not the one available to use this morning). The formulation I've had so far, updating based on $\bar{z}_{t-1} + bs_{t-1}$ is what I've called an "assessment forecast": it's yesterday evening's forecast that is distinct from yesterday morning's forecast. Is that legitimate?

The second issue will be about the criterion. Recall:

$$\theta_t = \hat{\mathbb{E}}_{t-1}(z_t) - \mathbb{E}_{t-1}(z_t)$$
$$= PLM(t-1) - \mathbb{E}_{t-1}ALM(t)$$

Recall: PLM(t) : $\hat{\mathbb{E}}_t z_{t+1} = \bar{z}_{t-1} + bs_t$

$$ALM_t = \operatorname{stuff} \times \bar{z}_{t-1} + \operatorname{stuff} \times s_t$$

$$\theta_t = \bar{z}_{t-2} + bs_{t-1} - \mathbb{E}_{t-1}(\operatorname{stuff} \times \bar{z}_{t-1} + \operatorname{stuff} \times s_t)$$

Issue #2: I had this issue before, but it's not clear what the RE of \bar{z} is. In particular, I don't know what the index of \mathbb{E}_{t-1} refers to: the morning of t-1 or the evening?

- If it's the morning, then $\mathbb{E}_{t-1}(\bar{z}_{t-1}) = \bar{z}_{t-2}$
 - $\rightarrow \theta_t = \mathcal{F}(\bar{z}_{t-2}, s_{t-1})$ where \mathcal{F} denotes "function"
- If it's the evening, then $\mathbb{E}_{t-1}(\bar{z}_{t-1}) = \bar{z}_{t-1}$

$$\rightarrow \theta_t = \mathcal{F}(\bar{z}_{t-2}, \bar{z}_{t-1}, s_{t-1})$$

The "evening" assumption isn't cool because the criterion depends on the intercept at several time periods, the "morning" assumption isn't cool because just like in Issue #1, we need access to yesterday morning's estimate of the intercept.

What I'm doing right now is $\theta_t = \mathcal{F}(\bar{z}_{t-1}, s_{t-1})$ which amounts to assuming that both expectations, $\hat{\mathbb{E}}_{t-1}, \mathbb{E}_{t-1}$, are taken with respect to the information set of t-1 evening, $\mathcal{I}_{t-1}^e = \{\bar{z}_{t-1}, s_{t-1}, \dots\}$. Again: legitimate?

And actually, going back to CEMP reveals that they aren't consequent either:

$$\pi_t = \gamma \pi_{t-1} + (1 - \gamma) \bar{\pi}_t + \rho \varphi_{t-1}$$
 PLM, i.e. $\hat{\mathbb{E}}_{t-1} \pi_t$

- \to Clearly $\bar{\pi}_t$ is formed at time t-1 morning, before evaluation of the PLM, or t-2 evening $\bar{\pi}_t = \bar{\pi}_{t-1} + k_t^{-1}(f_{t-1})$
- \to This means k_t too is formed at t-1 morning, or t-2 evening $k_t = \mathbb{I}_{\theta_t < \bar{\theta}}(k_{t-1}+1) + (1 \mathbb{I}_{\theta_t < \bar{\theta}})\bar{g}^{-1}$
- \to This means θ_t too is formed at t-1 morning, or t-2 evening $\theta_t = |\hat{\mathbb{E}}_{t-1}\pi_t \mathbb{E}_{t-1}\pi_t|$

But θ_t is a function of $\hat{\mathbb{E}}_{t-1}\pi_t$, which we haven't evaluated yet!

$$f_{t-1} = \pi_{t-1} - \hat{\mathbb{E}}_{t-2} \pi_{t-1}$$

Note also that this FE corresponds to my FE_{t-2} .

An alternative timing for the CEMP world is that all of the above takes place at time t, not t-1 (so agents are forming $\hat{\mathbb{E}}_t \pi_t$ - which is weird...)

$$\pi_t = \gamma \pi_{t-1} + (1 - \gamma) \bar{\pi}_t + \rho \varphi_{t-1}$$
 PLM, i.e. $\hat{\mathbb{E}}_{t-1} \pi_t$

- Now $\bar{\pi}_t$ is formed at time t morning, before evaluation of the PLM, or t-1 evening $\bar{\pi}_t = \bar{\pi}_{t-1} + k_t^{-1}(f_{t-1})$
- \rightarrow This means k_t too is formed at t morning, or t-1 evening

$$k_t = \mathbb{I}_{\theta_t \le \bar{\theta}}(k_{t-1} + 1) + (1 - \mathbb{I}_{\theta_t \le \bar{\theta}})\bar{g}^{-1}$$

 \to This means θ_t too is formed at t morning, or t-1 , after PLM $\hat{\mathbb{E}}_{t-1}\pi_t$ was formed

$$\theta_t = |\hat{\mathbb{E}}_{t-1}\pi_t - \mathbb{E}_{t-1}\pi_t|$$

$$f_{t-1} = \pi_{t-1} - \hat{\mathbb{E}}_{t-2} \pi_{t-1}$$

In this case f_{t-1} makes sense, it just raises Issue #1.