Лабораторная работа 3.

«Преобразование аналогового сигнала в цифровой вид. Дискретное преобразование Фурье».

Задан аналоговый сигнал (параметры сигнала даны в табл.1,2).

Необходимо разработать программное обеспечение, которые будет обладать следующим функционалом:

- 1. Построение графика аналогового сигнала.
- 2. Определение граничной частоты (верхней частоты) аналогового сигнала.
- 3. Определение частоты дискретизации аналогового сигнала.
- 4. Генерирование дискретного сигнала в виде массива чисел и построение его графика.
- 5. Выполнение квантование дискретного сигнала с шагом, соответствующим представлению отсчетов 4-битным числом.
- 6. Построение графика квантованного сигнала с изображением уровней квантования в виде шестнадцатиричного кода.
- 7. Вычисление погрешности квантования. Построение графика погрешности.
- 8. Определение коэффициентов ДПФ.
- 9. Восстановление аналогового сигнала по значениям цифрового сигнала.
- 10. Построение и сравнение графиков исходного аналогового сигнала с восстановленным.

Таблица 1. Параметры сигналов.

Вариант	Номер функции, описывающей	a, (1/c)	b, B	f, Гц	ф, рад	Т, мкс
	сигнал					
1	1	1	0	-	-	0.8
2	1	1	-0.5	-	-	0.5
3	1	-2	1	-	-	0.7
4	2	1	0	-	-	0.8
5	2	1	-0.5	-	-	0.6
6	2	-2	1	-	-	0.5
7	3	1	0	-	-	0.25
8	3	1	-0.5	-	-	0.8
9	3	-2	1	-	-	0.5
10	4	1	0	-	-	0.8
11	4	1	-0.5	-	-	0.6
12	4	-2	1	-	-	0.75
13	5	-	-	1/2T	0	0.5
14	5	-	-	1/T	0	0.3
15	5	-	-	1/2T	П	0.8
16	6	-	-	1/2T	0	0.5
17	6	-	-	1/T	0	0.8
18	6	-	-	1/2T	π	0.3
19	7	-	-	1/2T	0	0.5
20	7	-	-	1/T	0	0.8
21	7	-	-	1/2T	π	0.3
22	8	-	-	1/2T	0	0.5
23	8	-	-	1/T	0	0.8

24	8	-	1	1/2T	π	0.3
25	9	1/T	0	-	1	0.5
26	9	1/(2T)	0	-	1	0.8
27	9	1/(0.5T)	0	-	1	0.3
28	10	1/T	0	-	1	0.5
29	10	1/(2T)	0	-	ı	0.8
30	10	1/(0.5T)	0	-	1	0.3
31	1	2	-1	-	1	0.6
32	2	-1	0	-	-	0.8
33	3	-2	1	-	-	0.5

Таблица 2. Функции, описывающие сигнал.

Номер функции	Описание
1.	$s(t) = at + b, 0 \le t \le T$
2.	$s(t) = at^2 + b, 0 \le t \le T$
3.	$s(t) = at^3 + b, 0 \le t \le T$
4.	$s(t) = at^4 + b, 0 \le t \le T$
5.	$s(t) = \sin^2(2\pi f t + \varphi)t + b, 0 \le t \le T$
6.	$s(t) = \cos^2(2\pi f t + \varphi) + b, 0 \le t \le T$
7.	$s(t) = \sin(2\pi f t + \varphi) + b, 0 \le t \le T$
8.	$s(t) = \cos(2\pi f t + \varphi) + b, 0 \le t \le T$
9.	$s(t) = e^{-at} + b, 0 \le t \le T$
10.	$s(t) = (1 - e^{-at}) + b, 0 \le t \le T$

Методические указания:

Разработать программное обеспечение для решения поставленной задачи. В методическом указание приводится пример решения варианта 1.

График аналогового сигнала представлен на рис.1.

Рис.1. График аналогового сигнала.

Энергия сигнала $E_c = \int_0^T s^2(t) \cdot dt$

Спектральная плотность сигнала (преобразование Фурье) $S(j\omega) = \int_{0}^{T} s(t) \cdot e^{-j \cdot \omega \cdot t} \cdot dt$

Энергия сигнала, сосредоточенная в полосе частот $[0\div\omega_{\mathbf{k}}]$ (теорема Парсеваля) $E_{\Delta\omega} = \frac{1}{\pi} \cdot \int\limits_0^{\omega_k} (S(j\omega))^2 \cdot dt \, .$

Граничная частота сигнала (практическая ширина спектра - $\omega_{\rm k}$) $\frac{E_{\Delta\omega}}{E_c} \ge 0.98$ (потеря не более 2 % энергии).

Частота дискретизации аналогового сигнала $f_{\partial} = 2 \cdot f_{zp} = .153596456710^8$

Шаг дискретизации $T_{\partial} = \frac{1}{f_{\partial}} = .651056685510^{-7}$

Количество отсчетных значений $N=1+T/T_{\partial}=13,29$. Выбирается ближайшее четное целое значение – N=14.

Шаг дискретизации (по выбранному значению отсчетов) - $T_o = T/(N-1)$ = $.615384615410^{-7}$

Дискретный сигнал в виде массива чисел:

t, c	sd, B
0,000E+00	0,000E+00
6,154E-08	6,154E-08
1,231E-07	1,231E-07
1,846E-07	1,846E-07
2,462E-07	2,462E-07
3,077E-07	3,077E-07
3,692E-07	3,692E-07
4,308E-07	4,308E-07
4,923E-07	4,923E-07
5,538E-07	5,538E-07
6,154E-07	6,154E-07

6,769E-07	6,769E-07
7,385E-07	7,385E-07
8,000E-07	8,000E-07

График дискретного сигнала представлен на рис.2.

Рис.2. График дискретного сигнала.

Количество уровней квантования для 4-битного числа — $M=2^4=16$.

Шаг квантования -
$$\Delta = \frac{S_{\text{max}} - S_{\text{min}}}{M - 1} = .5333333333310^{-7}$$
.

График квантованного (цифрового) сигнала представлен на рис.3.

Рис.3. График цифрового сигнала.

Погрешности квантования:

среднее значение -
$$\overline{x} = \int_{-\infty}^{\infty} xp(x)dx = \frac{1}{\Delta} \int_{-\infty}^{\Delta} xdx = 0$$
;

дисперсия и средний квадрат :
$$D_x = \int_{-\infty}^{\infty} (x - \bar{x})^2 p(x) dx = \frac{1}{\Delta} \int_{-\frac{\Delta}{2}}^{\frac{\Delta}{2}} x^2 dx = \bar{x}^2 = \frac{\Delta^2}{3} = 0.94814810^{-15}$$

График зависимости погрешности квантования представлен на рис.4.

Рис.4. График погрешности квантования.

Коэффициенты дискретное преобразование Фурье дискретное преобразование Фурье (ДПФ) $C_n = \frac{1}{N} \cdot \sum_{k=0}^{N-1} S_{\kappa e k} \cdot e^{-j \cdot 2 \cdot \pi \cdot n \cdot k / N}$. $xf_0 \coloneqq .400002142910^{-6} \quad xf_1 \coloneqq -.313209458710^{-7} + .137233558210^{-6}I$ $xf_2 \coloneqq -.339082346410^{-7} + .704122737510^{-7}I \quad xf_3 \coloneqq -.281063619110^{-7} + .352427718210^{-7}I$ $xf_4 \coloneqq -.281001726510^{-7} + .224066705110^{-7}I \quad xf_5 \coloneqq -.339180496410^{-7} + .163317530210^{-7}I$ $xf_6 \coloneqq -.313176641310^{-7} + .71466820810^{-8}I \quad xf_7 \coloneqq -.266592857110^{-7}$ $xf_8 \coloneqq -.313176641310^{-7} - .71466820810^{-8}I \quad xf_9 \coloneqq -.339180496410^{-7} - .163317530210^{-7}I$ $xf_{10} \coloneqq -.281001726510^{-7} - .224066705110^{-7}I \quad xf_{11} \coloneqq -.281063619110^{-7} - .352427718210^{-7}I$ $xf_{12} \coloneqq -.339082346410^{-7} - .704122737510^{-7}I \quad xf_{13} \coloneqq -.313209458710^{-7} - .137233558210^{-6}I$

Восстановление аналогового сигнала S(t) по значениям коэффициентов ДПФ

$$\begin{split} x(t) = C_0 + 2 \cdot \left| C_1 \right| \cdot \cos(2 \cdot \pi \cdot t / T + \phi_1) + 2 \cdot \left| C_2 \right| \cdot \cos(4 \cdot \pi \cdot t / T + \phi_2) + \\ + ... + \left| C_{N/2} \right| \cdot \cos(N \cdot \pi \cdot t / T + \phi_{N/2}) \end{split}$$

где ϕ_i =arg C_i – фазовый угол коэффициента ДПФ.