Cognome
Informatica Teorica I – Informatica Teorica primo modulo Esame del 27 settembre 2004
Tempo a disposizione: 100 minuti
Regole del gioco: Libri e quaderni chiusi, vietato scambiare informazioni con altri; indicare su tutti i fogli, con chiarezza, nome e numero di matricola; consegnare solo i fogli con le domande (questi).
Esercizio 1 (20%) Considera il linguaggio L sull'alfabeto $\Sigma = \{0,1\}$ definito dalla seguente espressione regolare: $1^*01^*01^*$
1.1 Quali sono le stringhe appartenenti al linguaggio L? Forniscine una descrizione informale.
1.2 Costruisci un AFS deterministico o non deterministico che riconosca L.
1.3 Determina un'espressione regolare che definisca il linguaggio \underline{L} (complemento del linguaggio \underline{L}).

Cognome
1.4 Costruisci un AFS deterministico che riconosca il linguaggio \underline{L} (complemento del linguaggio L).
1.5 Data un'espressione regolare exp_1 e considerato il linguaggio $L(exp_1)$, esiste sempre un'espressione regolare exp_2 tale che $L(exp_2)$ sia il complemento di $L(exp_1)$? Motiva la risposta.
Esercizio 2 (20%) Ricava una espressione regolare per il linguaggio generato dalla seguente grammatica (mostra anche il procedimento usato) $S \rightarrow aA \mid aB$
$A \rightarrow bC \mid a$
$B \to \mathbf{c}B \mid \mathbf{c}$ $C \to \mathbf{b}A$

Cognome	Nome	Matricola
Esercizio 3 (20%) Ni il linguaggio d(a+b)	Iostra una grammatica reg	olare priva di ε-produzioni che generi

Esercizio 4 (20%) Descrivi un algoritmo in grado di de regolare L(A), riconosciuto cioè dall'ASF A, è vuoto, finito d	ecidere se il linguaggio infinito.

Cognome
Esercizio 5 (20%) Considera l'insieme $A = B \cup C$, in cui C è un insieme finito. Dimostra che A è non numerabile se e solo se B è non numerabile.