

IGOR SAMUEL SILVA DE OLIVEIRA
VINICIUS AOKI EGUCHI
WILLIAN SALLES DA SILVA
IZAEL REIS DE OLIVEIRA JUNIOR
EDUARDO OHATA DOS REIS

TRABALHO EM GRUPO

Professor(a): Marise e Mateus

SÃO PAULO 01/08/24

OTEBOOK	3
OMPUTADOR DESKTOP	4
OMPUTADOR SERVIDOR	5
OMPARAÇÃO RESUMIDA E PREÇOS	6
UAIS AS CARACTERÍSTICAS TÉCNICAS DE UM PROCESSADOR 19 E UM RYZEN (últim eração)	
ROCESSADORES ATUAIS SUAS TECNOLOGIAS E VANTAGENS	8
FERENÇAS ENTRE UM PROCESSADOR ATUAL E ANTIGO	9
OMPARATIVO DE FUNCIONALIDADES ENTRE O CELULAR E O COMPUTADOR	. 11
EFERÊNCIAS	. 13

QUAL A DIFERENÇA DE UM NOTEBOOK, COMPUTADOR DESKTOP E UM COMPUTADOR SERVIDOR, COMPARE COM IMAGENS, CARACTERÍSTICAS E PREÇOS

NOTEBOOK

Características:

- Portabilidade: Leve e compacto, ideal para mobilidade.
- Componentes Integrados: Inclui monitor, teclado, touchpad e bateria.
- Desempenho: Pode variar de básico a avançado, mas geralmente menos poderoso que desktops e servidores.
- Conectividade: Geralmente possui Wi-Fi e Bluetooth integrados.
- Uso Típico: Ideal para trabalho, estudo e uso pessoal.

COMPUTADOR DESKTOP

Características:

- Portabilidade: Não portátil; fixo em uma mesa ou suporte.
- **Componentes Separados:** Monitor, teclado e mouse são periféricos separados.
- **Desempenho:** Geralmente mais poderoso e fácil de atualizar em comparação com notebooks.
- Armazenamento e Expansão: Mais espaço interno e opções de expansão (placas, discos rígidos adicionais).
- Uso Típico: Ideal para jogos, trabalho intenso, e aplicações que requerem maior poder de processamento.

COMPUTADOR SERVIDOR

Características:

- **Portabilidade:** Não portátil; projetado para ficar em rack ou gabinete de servidor.]
- Componentes de Alto Desempenho: Equipado com processadores de alto desempenho, grandes quantidades de RAM e opções de armazenamento expansivas.
- Redundância e Confiabilidade: Geralmente inclui sistemas de backup de energia, redundância de discos e outras características para garantir alta disponibilidade.
- **Uso Típico**: Hospedagem de websites, gerenciamento de redes, armazenamento de grandes volumes de dados, e aplicações empresariais.

COMPARAÇÃO RESUMIDA E PREÇOS

COMPARAÇÃO RESUMIDA				
CARACTERÍSTICA	Notebook	Computador Desktop	Computador Servidor	
PORTABILIDADE	Alta	Baixa	Nenhuma	
COMPONENTES INTEGRADOS	Sim	Não	Não	
DESEMPENHO	Variável, geralmente menor	Geralmente	Muito alto	
ARMAZENAMENTO	Limitado, geralmente interno	Expansivo, discos adicionais	Muito expansivo, RAID, etc.	
USO TÍPICO	Pessoal e profissional	Profissional e jogos	Empresarial e corporativo	
PREÇO	R\$2.000 a R\$8.000	R\$2.500 a R\$10.000	R\$5.000 a R\$50.000	

QUAIS AS CARACTERÍSTICAS TÉCNICAS DE UM PROCESSADOR 19 E UM RYZEN (última geração)

Intel Core i9-9900K

- Número de núcleos 8
- Total de threads 16
- Frequência turbo max 5.00 GHz
- Frequência da Tecnologia Intel® Turbo Boost 2.0‡ 5.00 GHz
- Frequência base do processador 3.60 GHz
- Cache 16 MB Intel® Smart Cache
- Velocidade do barramento 8 GT/s
- Potência de Design Térmico (TDP) 95 W

AMD Ryzen 9 7950X

- Número de núcleos 16
- Total de threads 32
- Aumento do clock max 5.70 GHz
- Clock básico 4.50 GHz
- Cache L1 1024 KB
- Cache L2 16 MB
- Cache L3 64 MB
- Potência de Design Térmico (TDP) 170 W

PROCESSADORES ATUAIS SUAS TECNOLOGIAS E VANTAGENS

Atualmente os processadores têm como objetivo em comum fornecer melhor desempenho, velocidade, mais quantidade de núcleos e outras tecnologias e funcionalidades que fornecem uma experiencia e um desempenho melhor em seus dispositivos.

Os dispositivos têm como inovação o uso de tecnologias novas e de grande impacto nas funcionalidades dos processadores trazendo com sigo muitas vantagens, exemplo de tecnologias e as vantagens oferecidas são:

- Número de núcleos e threads para aumentar a capacidade de executar várias tarefas simultaneamente;
- Arquiteturas mais desenvolvidas que garantem maior desempenho e eficiência. As arquiteturas mais recentes incluem tecnologia x86-64 e ARM;
- Múltiplos níveis de memória cache como L1, L2, L3 e L4
- Funcionalidades que oferecem recursos para o uso de overclocking e Boosting

DIFERENÇAS ENTRE UM PROCESSADOR ATUAL E ANTIGO

Diferenças Entre um Processador Atual e um Antigo

Os processadores evoluíram significativamente ao longo dos anos para oferecer melhor desempenho, eficiência e funcionalidade. A seguir, apresentamos uma comparação entre um processador de geração antiga, como o Intel Pentium, e um processador de última geração, como o Intel Core i9:

Intel Pentium (Geração Antiga)

- Arquitetura: Baseado na arquitetura NetBurst, introduzida no início dos anos 2000. Focada em altas frequências de clock.
- Tecnologia de Fabricação: Inicialmente 180 nm, posteriormente 130 nm e 90 nm.
- Número de Núcleos: 1 núcleo.
- Frequência: Variava de 1.3 GHz a 3.8 GHz em modelos mais avançados.
- Cache: 256 KB de L2 cache (algumas versões tinham até 1 MB).
- Barramento: Front-Side Bus (FSB) de até 800 MHz.
- Desempenho: Destacava-se pelo aumento de frequência, mas apresentava limitações em eficiência energética e desempenho em multitarefa.

Intel Core i9 (Geração Atual)

- Arquitetura: Baseado na arquitetura mais recente (como a Alder Lake ou Raptor Lake, dependendo do modelo), projetada para alto desempenho e eficiência.
- Tecnologia de Fabricação: 10 nm, 7 nm ou tecnologias ainda mais avançadas.
- Número de Núcleos: Varia de 8 a 24 núcleos (com suporte a Hyper-Threading).
- Frequência: Pode variar significativamente, com velocidades base e turbo de até 5 GHz ou mais.
- Cache: Cache L3 pode variar de 12 MB a 30 MB, dependendo do modelo.
- Barramento: Utiliza tecnologias de comunicação mais modernas, como PCIe 4.0/5.0 e suportes de memória DDR4/DDR5.
- Desempenho: Oferece melhorias significativas em termos de eficiência energética, multitarefa, e desempenho em aplicações que utilizam múltiplos núcleos.

Comparativo

- 1. Arquitetura: O Intel Core i9 utiliza uma arquitetura mais moderna e eficiente, com melhor gerenciamento de energia e suporte a mais núcleos, enquanto o Pentium era limitado a uma única arquitetura focada em alta frequência.
- 2. Tecnologia de Fabricação: Processadores atuais são fabricados com tecnologias de fabricação menores (10 nm ou 7 nm), permitindo maior densidade de transistores e menor consumo de energia, ao contrário dos antigos 180 nm ou 90 nm.
- 3. Número de Núcleos: Os processadores modernos, como o Intel Core i9, oferecem múltiplos núcleos e threads, aumentando significativamente o desempenho em multitarefa e aplicações paralelizadas. O Pentium, por outro lado, geralmente possui apenas um núcleo.
- 4. Desempenho e Eficiência: Com frequências de clock mais altas e tecnologias como Turbo Boost, o Core i9 oferece desempenho superior e maior eficiência energética em comparação com o Pentium, que é menos eficiente em termos de consumo de energia e desempenho em tarefas simultâneas.
- 5. Cache e Barramento: O Core i9 possui cache muito maior e utiliza barramentos e interfaces mais avançadas, como PCIe 4.0/5.0 e DDR5, que proporcionam maior largura de banda e melhor desempenho geral.

COMPARATIVO DE FUNCIONALIDADES ENTRE O CELULAR E O COMPUTADOR

CELULAR

A principal funcionalidade do celular quando foi criado, era enviar e receber chamadas de voz. A partir dos anos 2000, houve uma evolução e já era possível ouvir músicas, e tirar fotos. Atualmente, a evolução é tão grande que podemos dizer que o celular é um computador de fato, pois existem pouquíssimas funções que o celular ainda não executa como o PC. As funcionalidades que destacam nos celulares, certamente é a portabilidade, podendo ser facilmente transportado no bolso ou na bolsa e utilizado em praticamente qualquer lugar, também é ideal para tarefas rápidas, como redes sociais, mensagens, navegação na web, e jogos casuais.

COMPUTADOR

Os primeiros computadores foram criados para realizar cálculos melhores que um humano. A maior vantagem do computador em relação ao celular, é que possui um

software mais avançado, poderoso, e adequado para tarefas como, edição de vídeo, programação, design gráfico, e jogos complexos. Outras funcionalidades que o PC sai na frente é em relação a capacidade de armazenamento variando de 128GB a vários terabytes, com opções de SSDs e HDDs, multitarefas, pois permite abrir múltiplos programas e janelas simultaneamente, e o tamanho de tela, com os monitores maiores, são mais fáceis de gerenciar as atividades.

REFERÊNCIAS

KNUTH, Donald E. **The Art of Computer Programming, Volume 1: Fundamental Algorithms.** 3. ed. Addison-Wesley, 1997. ISBN 978-0201896831.

SIPSER, Michael. Introduction to the Theory of Computation. 3. ed. Cengage Learning, 2012. ISBN 978-1133187790.

SILBERSCHATZ, Abraham; KORTH, Henry K.; SUDARSHAN, S. Database System Concepts. 7. ed. McGraw-Hill Education, 2019. ISBN 978-1260243651.

LETAVEC, Craig J. Flowcharting: **A Simple Way to Map and Analyze Work Processes. International Society for Technology in Education, 2016.** ISBN 978-1565451693.

FORTA, Ben. **SQL in 10 Minutes, Sams Teach Yourself. 5. ed. Sams Publishing, 2019.** ISBN 978-0672338466.

WEISS, Mark Allen. **Data Structures and Algorithm Analysis in C++.** 4. ed. Pearson, 2013. ISBN 978-0132847377.