EV Charger Analysis Summary Report

1.Data Collection

Being explore the latest related data on the internet. However due to the information limitation provided by the Australian government. In this case, I would like to explore existing database.

https://github.com/Chameleon-

company/EVCFLO/blob/main/notebooks/T1_2023/EV%20density%20clustering%20model%20T1%20 2023/Cleaned Australian EV Charging Stations.csv

In this database only cover Victoria's EV Charger station. (391 rows x 24 columns).

2. Data Pre-processing

- Handling missing value (prediction for the missing value) As I can see there's quite a few missing values in the database.

Therefore, i would like to use KNN prediction model to handle the missing value in this case. The KNN algorithm can make high accurate predictions.

2. Correlation Analysis

From the overview, the "Charging station" and "Nearby EVStations" have wide distribution. "plugs_Type2", "Plugs_Three_Phase", "Plugs-CHAdeMO" are having low values, and some outliners. - "Hospitals", "Parks", "Restaurant", "Malls", "Supermarkets" are having high means, shows that many locations have these amenities.

2.1 Pearson's correlation matrix

		Power	Charging	Nearby	Hospitals	Parks	Restaurants	Malls	Supermarkets
		1	stations	EV					
				stations					
1	Plugs_Type2	-0.175 649	0.46964 3	0.12129 0	0.14849 6	0.122 54	0.095230	0.1427 60	0.116831
2	Plugs_Three_Phase	-0.007 964	0.00476 4	-0.0161 56	-0.02622 7	-0.022 585	0.035344	0.0061 54	0.061438
3	Plugs_CHAdeMO	0.5762 56	0.35983 0	-0.2037 50	-0.11315 7	-0.179 521	-0.059274	-0.209 457	-0.168542
4	Plugs_CCS/SAE	0.5503 39	0.36218 5	-0.2006 36	-0.12230 5	-0.188 770	-0.031902	-0.208 932	-0.167341
5	Plugs_Tesla	0.2721 11	0.14915 2	0.07160 0	0.02530 3	0.021 628	0.062412	0.0378 26	0.057626
6	Plugs_J-1772	-0.035 759	0.00579 8	0.07233 8	0.09854 9	0.110 906	0.087603	0.1415 37	0.090624
7	Plugs_Caravan_Main_Socket	-0.007 720	-0.01833 4	-0.0391 88	-0.02983 0	-0.013 574	-0.010198	-0.020 333	-0.037411
8	Plugs_wall_AU/NZ	0.0066 42	0.49434 4	0.17623 0	0.00163 4	0.169 834	0.065161	0.0650 89	0.178193

Summary for different types of EV plugs and various facilities

Power 1 shows a varied correlation ranging from strong positive with Plugs CHAdeMO to slight negative Plugs_Type2.

Other facilities like hospitals, parks, restaurants, malls, and supermarkets show moderate to slight correlation depending on the plug types.

2.2 Spearman's correlation matrix

		Power	Charging	Nearby	Hospitals	Parks	Restaurants	Malls	Supermarkets
		1	stations	EV					
				stations					
1	Plugs_Type2	-0.380 785	0.34869 5	0.12157 5	0.14417 1	0.074 491	0.044035	0.0359 45	0.062519
2	Plugs_Three_Phase	0.0598 89	0.03362 6	0.03576 8	-0.00891 0	-0.003 173	0.052484	0.0331 99	0.034789
3	Plugs_CHAdeMO	0.6618 19	0.42921 5	-0.1555 10	-0.13645 7	-0.226 141	-0.157935	-0.265 785	-0.215199
4	Plugs_CCS/SAE	0.6692 37	0.41285 5	-0.1535 67	-0.15020 9	-0.226 696	-0.143265	-0.269 395	-0.225689
5	Plugs_Tesla	-0.071 358	0.05870 1	0.08649 0	0.00198 7	0.007 982	0.051756	0.0863 79	0.045466
6	Plugs_J-1772	-0.120 482	-0.01782 0	0.07656 2	0.06301 5	0.091 717	0.069889	0.1063 75	0.099363
7	Plugs_Caravan_Main_Socket	0.0323 88	-0.01671 5	-0.0756 17	-0.04483 5	-0.012 131	-0.041858	0.0050 33	-0.032058
8	Plugs_wall_AU/NZ	0.1754 51	-0.13625 3	0.09073 0	0.10056 9	0.176 877	0.053684	0.1278 01	0.129121

Summary for different types of EV plugs and various facilities

Charging stations usually have moderate to strong positive correlations with most plug types. Power 1 has varied relationships with different plug types, ranging from strong positive to moderate negative correlations.

Other facilities like hospitals, parks, restaurants, malls, and supermarkets generally show low to moderate correlations depending on the plug type.

2.3 Heatmap

1:Plus_Type2

```
# Calculate the correlation matrix
correlation_matrix = df[numeric_columns].corr()
          # Plot the heatmap
plt.figure(figsize=(12, 9))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
                                                     Correlation Heatmap
                                                    0.12 0.15 0.12
                                                                                    0.14
                                            0.35
                                                    0.12
                          0.47
                                   0.35
                                                                            0.12
                                            0.12
                                                                            0.39
                                                            0.55
            Nearby EVStations
                                                                    0.44
                            0.15
                                                    0.55
                                                                            0.31
                                                                                     0.67
                                                                                             0.59
                                            0.11
                                                            0.44
                                                                             0.64
                                                    0.39
                                                                                     0.41
                                                            0.31
                            0.14
                                                                           0.41
                                            0.14
                                                                     Parks
                                                                                     Malls
```

2:Plugs_Three_Phase

3:Plugs_CHAdeMO

4:Plugs_CCS/SAE

5:Plugs_Tesla

6:Plugs_J-1772

7:Plugs_Caravan_Mains_Socket

8:Plugs_wall_AU/NZ

3. Regression analysis

In my analysis I would like to try different type of models (Linear Regression, Polynomial regression and Random forest) to compare the result.

3.1 Linear Regression

		R-squared	Mean Squared Error
1	Plugs_Type2	0.23172478143364983	3.4074144630450434
2	Plugs_Three_Phase	-4.014938265980382	0.0025070673593749052
3	Plugs_CHAdeMO	0.07925519868617648	0.45557762321055706
4	Plugs_CCS/SAE	0.18704101403464768	0.7060146937882084
5	Plugs_Tesla	0.09023160014988751	1.5787200401180443
6	Plugs_J-1772	-0.06555887217729217	0.09033945048012315
7	Plugs_Caravan_Main_Socket	0.0	2.661426631853063e-05
8	Plugs_wall_AU/NZ	0.3777445637420255	4.17203276314352

3.2 Linear Regression with MinMaxScaler

		R-squared	Intercept
1	Plugs_Type2	0.23172478143364938	0.6926061544530675
2	Plugs_Three_Phase	-4.01493826598038	0.02623513334681194
3	Plugs_CHAdeMO	0.07925519868617592	0.0845265340787062
4	Plugs_CCS/SAE	0.18704101403464757	0.07206487757079799
5	Plugs_Tesla	0.09023160014988763	0.1416160231212688
6	Plugs_J-1772	-0.06555887217729195	0.0406339305303009
7	Plugs_Caravan_Main_Socket	0.0	0.004514637420014581
8	Plugs_wall_AU/NZ	0.37774456374202536	-0.027022127158421116

R-squared values suggest that linear models may not be the best fit for predicting these types of electric vehicle plugs based on the available independent variables.

3.3 Polynomial regression

		R-squared	Mean Squared Error
1	Plugs_Type2	0.6014536389272575	1.7676121812797398
2	Plugs_Three_Phase	-54.535461532587135	0.027763281522459826
3	Plugs_CHAdeMO	-0.2625699433447506	0.6247101402096763
4	Plugs_CCS/SAE	0.07992574568464694	0.7990390095159771
5	Plugs_Tesla	-0.5990679876896285	2.7748608086330186
6	Plugs_J-1772	-0.1950110372261562	0.10131457138553174
7	Plugs_Caravan_Main_Socket	0.0	0.000162090101993577
8	Plugs_wall_AU/NZ	0.8578378303578298	0.9531539539347821

Polynomial regression improved the model for some plug types, like Plugs_Type2 and Plugs_wall_AU/NZ. Plugs_Type2 and Plugs_wall_AU/NZ show a decent R-squared value, suggesting the model fits well for these types.

Models for Plugs_Three_Phase, Plugs_CHAdeMO, Plugs_Tesla, and Plugs_J-1772 have negative R-squared values, suggesting poor fits and possibly, incorrect model specifications.

3.4 Random Forest

		R-squared	Mean Squared Error
1	Plugs_Type2	0.6469500030347084	1.5658290632911394
2	Plugs_Three_Phase	-5.112371794871798	0.0030556962025316456
3	Plugs_CHAdeMO	0.7736998950777202	0.11197159493670886
4	Plugs_CCS/SAE	0.8734544767527676	0.10989853164556962
5	Plugs_Tesla	0.31901600258541074	1.181710734177215
6	Plugs_J-1772	-0.4525411324463262	0.12314830379746834
7	Plugs_Caravan_Main_Socket	0.0	1.7721518987341772e-05
8	Plugs_wall_AU/NZ	0.7022940015294906	1.9960278481012663

	Feature importance	Power 1	Charging stations	Nearby EV stations	Hospitals	Parks	Restaurants	Malls	Supermarkets
1	Plugs_Type2	0.282143 19	0.554604 91	0.0237 1025	0.04749 269	0.036 5990 1	0.01652751	0.022 8173 1	0.01610513
2	Plugs_Three_Phase	0.372892 31	0.117738 88	0.0759 5182	0.03609 721	0.147 3879	0.05235517	0.072 9625 3	0.12461418
3	Plugs_CHAdeMO	0.550039 46	0.368497	0.0234 5293	0.01205 618	0.024 2688 9	0.00312927	0.012 3369 7	.00621909
4	Plugs_CCS/SAE	0.504796 96	0.403960 2	0.0155 8058	0.01681 263	0.041 1752 1	0.00367935	0.007 0532 4	0.00694183
5	Plugs_Tesla	0.655989 47	0.143872 07	0.0420 7457	0.02445 433	0.052 0006	0.01703172	0.030 0359 5	0.0345413
6	Plugs_J-1772	0.485656 24	0.081958 72	0.0443 5134	0.05677 675	0.081 9385 1	0.01647013	0.143 0271 7	0.08982114
7	Plugs_Caravan_Main_Socket	0.314100 27	0.081748 16	0.0309 0947	0.	0.151 6223 2	0.14756957	0.105 9222 4	0.16812797
8	Plugs_wall_AU/NZ	0.184604 03	0.531496 66	0.1092 5812	0.02770 226	0.064 8262 6	0.00895484	0.044 7229 8	0.02843486

Overall, the Random Forest model seems to offer the most consistently good fits across multiple types of plugs. Most plug types have positive R-squared values, with Plugs_CCS/SAE showing the best fit. Feature importance varies by plug type, but 'Charging Stations' and 'Power 1' are often the most significant features.

4.1 Cross-validation

	Feature importance	Power 1	Charging	Nearby	Hospitals	Parks	Restaurants	Malls	Supermarkets
			stations	EV					
				stations					
1	Plugs_Type2	26.67%	52.50%	2.65%	5.68%	7.13%	0.99%	2.20%	2.18%
2	Plugs_Three_Phase	43.06%	12.18%	5.57%	3.52%	12.45%	4.98%	7.28%	10.97%
3	Plugs_CHAdeMO	57.38%	31.00%	4.29%	0.60%	3.88%	0.61%	1.02%	1.22%
4	Plugs_CCS/SAE	53.96%	36.80%	3.54%	0.74%	3.03%	0.3%	0.87%	0.71%
5	Plugs_Tesla	54.95%	15.45%	4.05%	3.22%	7.74%	2.65%	4.75%	7.19%
6	Plugs_J-1772	55.07%	6.80%	3.74%	4.73%	5.64%	1.50%	7.23%	15.28%
7	Plugs_Caravan_Main_Socket	41.87%	4.65%	2.42%	0	9.92%	15.32%	9.02%	16.79%
8	Plugs_wall_AU/NZ	9.67%	75.29%	4.02%	2.05%	4.07%	0.61%	2.46%	1.82%

Based on the result, would recommend integrating more Plugs_Three_Phase and Plugs_Caravan_Main_Socket near supermarkets and other high-importance features to meet user demands for these plug types. Businesses could focus on placing high-speed chargers where users of Plugs like Type2, CHAdeMO, and Tesla are likely to need them. Also understand that the feature importance can help in resource allocation. Therefore, would recommend not to invest heavily in placing Plugs_Type2 near hospitals if that feature has low importance in the model.

4.2 Coefficient Analysis

		Power 1	Charging stations	Nearby EV stations	Hospitals	Parks	Restaurant s	Malls	Supermarkets
1	Plugs_Type2	-0.01847 4	0.533544	-0.0327 78	0.07135 9	0.003 829	0.012373	0.035 459	-0.032669
2	Plugs_Three_Phase	-0.00008 5	0.001018	-0.0028 13	-0.00577 0	-0.004 526	0.000119	-0.00 0363	0.008296
3	Plugs_CHAdeMO	0.009156	0.086694	-0.0135 69	0.00584 6	0.000 318	-0.003654	-0.01 1375	0.002494
4	Plugs_CCS/SAE	0.009072	0.098171	-0.0094 02	0.00354 7	-0.007 543	0.004411	-0.01 0690	-0.003069
5	Plugs_Tesla	0.005023	0.032624	0.0203 03	0.00979 6	-0.007 979	0.007092	-0.00 3426	-0.006271
6	Plugs_J-1772	-0.00034 3	0.008645	-0.0134 37	-0.00124 4	0.007 973	0.002126	0.022 306	-0.007793
7	Plugs_Caravan_Main_Socket	-0.00000 7	-0.000365	-0.0006 98	-0.00040 2	0.000 412	0.000082	0.000 682	-0.000559
8	Plugs_wall_AU/NZ	-0.00372 4	0.241092	0.0427 29	-0.05910 8	0.006 724	-0.021505	-0.03 4750	0.042084

Plugs_Type2: "Charging Stations" has the highest positive coefficient (0.533544), implying a strong positive relationship. However, "Power 1" and "Nearby EV Stations" have small negative coefficients.

Plugs_Three_Phase: All coefficients are near zero, indicating that the features have minimal linear impact on this plug type.

Plugs_CHAdeMO: A positive coefficient for "Charging Stations" and "Power 1" suggests that these factors encourage the use of CHAdeMO plugs. Negative coefficients for "Nearby EV Stations" and "Malls" suggest otherwise.

Plugs_CCS/SAE: Similar to CHAdeMO, but "Power 1" and "Charging Stations" have stronger positive coefficients.

Plugs_Tesla: "Charging Stations" and "Nearby EV Stations" both have positive coefficients, implying a positive relationship. Negative coefficients for features like "Parks" suggest these may not be as important.

Plugs_J-1772: "Malls" have the highest positive coefficient (0.022306), followed by "Parks" and "Charging Stations." Negative coefficients for "Nearby EV Stations" and "Supermarkets" suggest they might reduce the usage of J-1772 plugs.

Plugs_Caravan_Main_Socket: All coefficients are nearly zero, indicating negligible linear relationship with the dependent variable.

Plugs_wall_AU/NZ: "Charging Stations" have an extremely strong positive impact (0.241092). Negative coefficients for "Hospitals" and "Restaurants" suggest that these factors might not encourage the usage of these plug types.

5. Conclusion

Based on the result, would like to recommend the specific plug types near amenities like malls or parks, based on the feature importance and coefficient values. Also, would recommend to focus on increasing the number of charging stations, especially for Plugs_Type2 and Plugs_CCS/SAE.

This analysis provides valuable insights into the relationships between various features and the usage of different EV plug types. A deeper understanding of user behaviour can inform more effective strategies for increasing the adoption and utilization of EV charging facilities.