FAST DATAPATH & HYPER CONVERGED INFRASTRUCTURE IN RED HAT OPENSTACK PLATFORM

Won Young Choi Senior Solution Architect Red Hat, Inc.

component

component

Solution

component

NFV & NETWORK GUIDE

https://access.redhat.com/documentation/en/red-hat-openstack-platform/11/

Network Functions Virtualization

Network Functions Virtualization Product Guide

Overview of the Network Functions Virtualization (NFV)

Network Functions Virtualization Planning and Prerequisites Guide

Planning for NFV in Red Hat OpenStack Platform

Network Functions Virtualization Configuration Guide

Configuring the Network Functions Virtualization (NFV) OpenStack deployment

Networking

Networking Guide

An advanced guide to OpenStack Networking

Red Hat OpenDaylight Product Guide

Overview of Red Hat OpenDaylight

OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

NEUTRON NETWOKING

오픈스택 NEUTRON을 통해 네트워크 관리

VIRTIO

PCI-PASSTHROUGH

SRIOV

OVS-DPDK

Standard vSwitch	Hypervisor Bypass	DPDK accelerated vSwitch
virtio	PCI - Passthrough	OVS-DPDK
	SRIOV	

FAST DATAPATH

VNF 데이터플래인의 다양한 네트워크 연결 옵션

OSP DIRECTOR SUPPORTS

- OpenvSwitch, OVN, OVS-DPDK
- SRIOV
- Cisco n1kv, nexus-ucsm
- Fujitsu cfab, fossw
- Nokia Nuage
- BigSwitch
- OpenDaylight
- Midonet
- Contrail
- Plumgrid

TESTED NICS

SRIOV

- 10G Mellanox & Qlogic
- Intel
 82598, 82599, X520, X540, X550, X710, XL710, X722

OVS-DPDK

Intel
 82598, 82599, X520, X540, X550, X710, XL710, X722

OVS-DPDK

DPDK-16.11 + OPENVSWITCH-2.7.2

RHCDN channel: rhel-7-fast-datapath-rpms

```
penvswitch-ovn-host-2.7.2-1.git20170719.el7fdp.x86_64.rpm
```

RHOSP 11: openvswitch-2.6.1-13.git20161206.el7ost.x86_64.rpm

RHOSP10: openvswitch-2.6.1-15.git20161206.el7ost.x86_64.rpm

OVS-DPDK 구조

OVS-DPDK 브릿지 및 포트 구조


```
Bridge br-int
    fail mode: secure
    Port "vhual15043e-e2"
        tag: 1
       Interface "vhual15043e-e2"
            type: dpdkvhostuser
   Port "vhuc5079cb0-2c"
        tag: 1
        Interface "vhuc5079cb0-2c"
            type: dpdkyhostuser
   Port br-int
       Interface br-int
            type: internal
   Port "int-br-link2"
        Interface "int-br-link2"
            type: patch
           options: {peer="phy-br-link2"}
   Port "int-br-link4"
       Interface "int-br-link4"
            type: patch
            options: {peer="phy-br-link4"}
    Port "int-br-link1"
       Interface "int-br-link1"
            type: patch
            options: {peer="phy-br-link1"}
    Port "vhu9521d78e-f1"
        tag: 2
       Interface "vhu9521d78e-f1"
            type: dpdkvhostuser
   Port "int-br-link3"
        Interface "int-br-link3"
            type: patch
            options: {peer="phy-br-link3"}
   Port "vhue2fbbf4c-3a"
        tag: 3
        Interface "vhue2fbbf4c-3a"
            type: dpdkvhostuser
Bridge "br-link1"
   Port "br-link1"
        Interface "br-link1"
            type: internal
   Port "dpdk0"
```


VNF NUMA PARTITION 예시

OPENSTACK_ 436587_0217

OVS-DPDK CPU CORE 할당 예시

AllCores =

HostCpusList + NeutronDpdkCoreList + NovaVcpuPinSet

HostCpusList = Hypervisor OS + OVS processes (+ Ceph OSD)

HostIsolatedCoreList = NeutronDpdkCoreList + NovaVcpuPinSet

NIC1 FOR DPDK, 1 PHYSICAL CORE FOR PMD

NeutronDpdkCoreList: "2,3,10,11"

NovaVcpuPinSet: "4,5,6,7,12,13,14,15"

NIC2 FOR DPDK, 2 PHYSICAL CORES FOR PMD

NeutronDpdkCoreList: "2,3,10,11,12,13"

NovaVcpuPinSet: "4,5,6,7,14,15"

HYPER CONVERGED INFRASTRUCTURE

- Compute 노드 = Storage 노드
- NUMA 아키텍쳐 활용
 - ▶ 스토리지 전용 NUMA 노드 할당 및 NIC 맵핑
 - CPU 코어의 분산 배치 설계 고려(vcpu_pin_set & isolcpus)
- 비용효율적인 아키텍쳐
- 디렉터를 통해 구성

하드웨어 토폴로지 확인

```
[stack@c10-h01-r730xd ~]$ lstopo-no-graphics
Machine (128GB total)
 NUMANode L#0 (P#0 64GB)
   HostBridge L#0
      PCIBridge
        PCI 1000:005d
          Block(Disk) L#0 "sda"
          Block(Disk) L#1 "sdb"
      PCIBridge
        PCI 8086:1572
          Net L#17 "em1"
        PCI 8086:1572
          Net L#18 "em2"
 NUMANode L#1 (P#1 64GB)
   HostBridge L#11
      PCIBridge
        PCI 8086:1572
          Net L#23 "p4p1"
        PCI 8086:1572
          Net L#24 "p4p2"
[stack@c10-h01-r730xd ~]$
```

RED HAT OPENSTACK PLATFORM

2 sockets 기반의 서브스크립션 정책, RHEL7.x 호스트 OS 기본 포함

RED HAT CLOUDFORMS

RHOSP 관리 용도로만 외부 PostgreSQL 연결 가능

RED HAT OPENSTACK PLATFORM

controller

(director, object storage,compute without RHEL guest) compute

(unlimited RHEL guest)

RED HAT CEPH STORAGE 서브스크립션 소진없이 3 OSD nodes, raw 64TB

FD.io Integrations

