Кольца и поля

Определение 1. Кольцом $K = < M, +, \times >$ называется непустое множество $M \neq \emptyset$ с заданными на нем бинарными операциями сложение и умножение, причем выполняется:

- 1) по сложению кольцо коммутативная группа;
- 2) по умножению полугруппа;
- 3) дистрибутивность:

$$a \times (b + c) = (a \times b) + (a \times c)$$

$$(b+c) \times a = (b \times a) + (c \times a).$$

Кольцо с единицей – если существует единичный элемент по умножению (e_{\times}) .

Если операция умножения коммутативна, то и кольцо называется коммутативным. В этом случае достаточно проверить выполнение одного закона дистрибутивности.

Подкольцом называется подмножество $K' \subseteq K$, являющееся подгруппой по сложению и замкнутое по умножению.

Определение 3. Подкольцо J кольца K называется **идеалом**, если $\forall j \in J$ и $\forall k \in K$ выполняется $jk \in J$ и $kj \in J$

$$JK \subseteq J, KJ \subseteq J.$$

Пример 1. $< \mathbb{Z}, +, \times > -$ коммутативное кольцо с $e_{\times} = 1$.

Подкольцо – $K' = \{3k\}, k \in \mathbb{Z}$. Подкольцо является идеалом.

Пример 2. $< M_{n \times n}, +, \times >$ кольцо матриц с элементами действительными числами – некоммутативное кольцо с единицей. Обратная матрица по умножению существует не всегда.

Для кольца матриц второго порядка

- подкольцо матриц второго порядка вида $\begin{pmatrix} a & b \\ 2b & a \end{pmatrix}$ идеалом не является, так как, например,

$$\begin{pmatrix} a & b \\ 2b & a \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} a+b & a+b \\ 2b+a & 2b+a \end{pmatrix} : 2b+a \neq 2(a+b)$$

– подкольцо матриц вида $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$ – левый идеал, но правым идеалом не является. Под определение идеала не подходит.

Пример 3. < F, +, $\times > -$ кольцо функций одной переменной с операциями поэлементного сложения и умножения

$$f: X \to Y$$
 $(f+g)(x) = f(x) + g(x)$ $(f \cdot g)(x) = f(x) \cdot g(x)$

Пример 4. < C, $+, \times > -$ кольцо классов вычетов по $mod\ 4$.

Напомним как определяются операции для классов вычетов по mod n.

$$C_k + C_l = C_{k+l} = C_r$$
 $r = (k+l) \mod n$
 $C_k \cdot C_l = C_{kl} = C_r$ $r = (kl) \mod n$

Рассмотрим кольцо классов вычетов по mod 4.

Для $n = 4 \Rightarrow 4$ класса:

$$C_0 = \{0; \pm 4; \pm 8; \dots\}$$

$$C_1 = \{1; 5; -3; 9; -7; \dots\}$$

$$C_2 = \{2; 6; -2; 10; -6; \dots\}$$

$$C_3 = \{3; 7; -1; 11; -5; \dots\}$$

1. По сложению получим коммутативную группу. $C_0 = e_+$, $C_1^{-1} = C_3$, $C_2^{-1} = C_2$

+	C_0	C_1	C_2	<i>C</i> ₃
<i>C</i> ₀	<i>C</i> ₀	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃
<i>C</i> ₁	C_1	C_2	<i>C</i> ₃	<i>C</i> ₀
<i>C</i> ₂	C_2	<i>C</i> ₃	C_0	C_1
<i>C</i> ₃	<i>C</i> ₃	C_0	C_1	<i>C</i> ₂

2. По умножению получим коммутативный моноид. $C_1 = e_{\times}$, $\not\equiv C_2^{-1}$.

×	C_0	C_1	<i>C</i> ₂	<i>C</i> ₃
C_0	C_0	C_0	C_0	C_0
C_1	C_0	C_1	C_2	C_3
C_2	<i>C</i> ₀	<i>C</i> ₂	<i>C</i> ₀	C_2
<i>C</i> ₃	<i>C</i> ₀	<i>C</i> ₃	<i>C</i> ₂	C_1

3. Дистрибутивность выполняется.

Вывод. Коммутативное кольцо с единицей.

Легко убедиться, что $J = \{C_0, C_2\}$ — подкольцо (без единицы). Подгруппа по сложению и замкнуто по умножению.

Является ли данное подкольцо идеалом?

В силу коммутативности умножения достаточно проверить одно включение: $JK \subseteq J$.

$$C_0 \times C_i = C_0, i = 1,2,3,4;$$
 $C_2 \times C_1 = C_2, \qquad C_2 \times C_2 = C_0, \qquad C_2 \times C_3 = C_2.$

Подкольцо $J = \{C_0, C_2\}$ является идеалом.

Кольцо с делителями нуля.

Определение 4. Пусть в кольце K $a \neq 0$ и $b \neq 0$, а ab = 0, тогда a – левый делитель нуля, b – правый делитель нуля, K – кольцо с делителями нуля.

Проанализируем, существуют ли делители нуля для колец, рассмотренных в примерах выше.

Пример 1. $K_{\mathbb{Z}}=<\mathbb{Z}$, +,×> — кольцо без делителей нуля.

Пример 2. Кольцо квадратных матриц порядка $n \ge 2$, $a_i \in \mathbb{R}$ – с делителями нуля.

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} a_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_n \end{pmatrix} = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}, \qquad a_1 \neq 0, a_n \neq 0.$$

Пример 3. Кольцо функций одной переменной с операциями поэлементного сложения и умножения имеет делители нуля.

$$f_1(x) = |x| + x$$
 $f_2(x) = |x| - x$

$$f_1(x) = \begin{cases} 2x, & \text{если } x \ge 0 \\ 0, & \text{если } x < 0 \end{cases}$$

$$f_2(x) = \begin{cases} -2x, & \text{если } x < 0 \\ 0, & \text{если } x \ge 0 \end{cases}$$

$$f_1(x) \cdot f_2(x) = 0$$
, Ho $f_1(x) \neq 0$, $f_2(x) \neq 0$.

Пример 4. Кольцо классов вычетов *mod n*

×	<i>C</i> ₀	C_1	C_2	<i>C</i> ₃
C_0	<i>C</i> ₀	C_0	C_0	C_0
C_1	C_0	C_1	C_2	C_3
<i>C</i> ₂	<i>C</i> ₀	C_2	C_0	C_2
\mathcal{C}_3	C_0	<i>C</i> ₃	<i>C</i> ₂	<i>C</i> ₁

 $C_2 \cdot C_2 = C_0$, следовательно C_2 – правый и левый делители нуля. $e_+ = C_0$.

Таким образом, структура, определенная в примере 4 – коммутативное кольцо с единицей и делителями 0.

Определение 5. Если в кольце K $a \in K$ и $\exists a^{-1} : a^{-1}a = aa^{-1} = e_{\times}$, то a — обратимый элемент кольца, a^{-1} — обратный элемент.

Утверждение 1. Обратимые элементы не могут быть делителями нуля.

Доказательство. От противного.

Пусть ab=0, но $a\neq 0$ и $b\neq 0$. И пусть a^{-1} обратный элемент для элемента a. Домножим равенство на a^{-1} , получим: $a^{-1}ab=a^{-1}0$. Откуда b=0, что противоречит предположению $b\neq 0$.

Утверждение 2. Все обратимые элементы кольца образуют группу по умножению.

Доказательство.

- 1) ассоциативность следует из того, что кольцо полугруппа по умножению;
- 2) $e \in G, e^{-1} = e$;
- 3) $a, a^{-1} \in G$, т. к. все элементы обратимы;
- 4) замкнутость: обратимы $a, a^{-1} \in G$ и $b, b^{-1} \in G$

Следовательно, обратим ab, $(ab)^{-1} \in G$.

Покажем, что
$$(ab)^{-1} = b^{-1}a^{-1}$$

$$(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aa^{-1} = e$$

Аналогично $(b^{-1}a^{-1})(ab) = e$.

Определение 6. Поле – коммутативное кольцо с единицей (по умножению), в котором каждый элемент, кроме нуля, обратим.

Поле и по сложению, и по умножению (без нулевого элемента) – коммутативная группа.

Поскольку обратимые элементы не могут быть делителями нуля, поле не может содержать делителей нуля.

	Кольцо	Поле
1. По сложению	Коммутативная группа	Коммутативная группа
2. По умножению	Полугруппа или моноид.	Коммутативная группа без
	Коммутативные или нет	e_+
3. Дистрибутивность	Два закона, т.к. умножение	Один закон
	может быть	
	некоммутативным	
4. Делители нуля	Могут быть	Отсутствуют

Примеры поля. $P = < \mathbb{R}, +, \times > -$ поле.

$$P = < \mathbb{Q}$$
, +,×> – поле.

$$P = <\mathbb{C}, +, \times > -$$
 поле.

Пример 5. Какую алгебраическую структуру получим для классов вычетов по *mod* 3.

1. По сложению коммутативная группа. $C_0 = e_+$, ${C_1}^{-1} = C_2$.

+	C_0	C_1	C_2
<i>C</i> ₀	<i>C</i> ₀	<i>C</i> ₁	<i>C</i> ₂
<i>C</i> ₁	C_1	<i>C</i> ₂	<i>C</i> ₃
C_2	C_2	<i>C</i> ₃	C_0

2. По умножению без класса C_0 (нуль) – коммутативная группа.

$$C_1 = e_{\times}, \qquad {C_2}^{-1} = C_2.$$

×	C_1	C_2
<i>C</i> ₁	C_1	C_2
<i>C</i> ₂	<i>C</i> ₂	C_1

3. Дистрибутивность выполняется.

Вывод. Поле.

Пример 6. Рассмотрим подробно комплексные числа.

Образуют ли поле комплексные числа $\mathbb{C}(c=a+bi)$?

Решение.

- 1. По сложению коммутативная группа.
 - 1.1. Коммутативность очевидна.
 - 1.2. Ассоциативность очевидна.

1.3.
$$\exists e_+$$
: $c + e_+ = c \Rightarrow e_+ = 0$

1.4. Обратные элементы. Для любого комплексного числа c:

6

$$c + c^{-1} = 0 \Rightarrow c^{-1} = -c$$

2. По умножению (без $e_+ = 0$) – коммутативная группа.

- 2.1. Коммутативность очевидна.
- 2.2. Ассоциативность очевидна.

2.3.
$$\exists e_{\times}$$
: $c \times e_{\times} = c \Rightarrow e_{\times} = 1$.

2.4. Обратные элементы существуют (кроме c=0, но мы этот элемент не рассматриваем)

$$c \times c^{-1} = 1 \implies$$

$$c^{-1} = \frac{1}{a+bi} \cdot \frac{(a-bi)}{(a-bi)} = \frac{a-bi}{a^2+b^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$$

3. Дистрибутивность очевидна.

Вывод: комплексные числа с операциями сложения и умножения образуют поле.