CSE-350 Lab-02

Experiment name:

Implementing a DTL logic gate

Group-01

Circuit diagrams

Talde-1:

Input A	Input B	VDA	10B	Vρ	TRI	IR2	Vo	Octput Y
0	0	0.605V	0.607V	0.618 V	2.191 mA	0.025 mA	44.8 mV	4.95 V
0	5	0.644 v	-4.342 V	0.665 V	2.167 mA	0.025 mA	72.1 mv	4.95 V
5	0	-4.36 V	0.62.6 V	0.623	2.1835 mA	0.025 mA	50.7 mV	4.95 V
5	5	-2.902 ~	-3.01	1.96 V	1.52 mA	2.425 mA	0.746	150.5 mV

Table-2°

Input A	Input B	Vp	Vb	Output Y
5	0	0.623	50.7mV	4.95 V
- 5	5	1.96 V	0.7467	150.5 mV

Report:

Ques-01%

NAND operation is performed such that?

- 1) For both inputs low, diode = ON in all cases and Q1 will be in cutoff mode
- (ii) For one low and one high input, the lower input diade will be turned off, i.e if A=0 and B=5, $D_A=OFF$ and $D_B=ON$ and if A=5, B=0 then $D_A=ON$ and $D_B=0FF$ and Q_A will be in cutoff mode.
- (11) When both inputs are high, output will be low or close to 0 and both junctions will be forward, biased.

Ques-02%

For A=5V and B=0V, $V_P=0.623 V$ $D_A=0N$ and $D_B=0FF$ $\therefore Q_1$ in cutoff made.

For A=OV and B=5V, $V_P = 0.665V$ $O_A = OFF$ and $O_B = ON$.: O_A in eatoff made.

so for both cases, Q1 will be in endoff mode for one high and one low.

Ques-03%

For output = LOW, active component circuit:

Ques-04%

For table -2, the gate has been turned into inverten and it works as NOT gate.

For VA = 5V and VB = OV, Output = 4.95 V (High)

For VA = 5V and VB = 5V, Output = 150.5 mV

So logie operations are performed as NOT gate.

Ques-05%

Theoritically, For NAND gote operation,

		0_		
1	I_{n_1}	In2	Output	
	Low	Low	High	
	Low	High	High	L
The state of	High	Low	High	-
	High	High	Low	

So, output will be high for all cases except when both inputs are high, then output will be low.

so we get from our experiment that output is high or 4.95 V for all cases except for when both inputs were high, output = 150.5 mV.

Max = 4.95 V Min = 150.5 V.