Nome: Gabriel Henrique Vieira de Oliveira

Data: 02/03/2025

Matéria: Laboratório de Introdução à Engenharia da Computação

RELATÓRIO 1

1)

CIRCUITO 1: EM SÉRIE

- a) 200Ω
- b) 250Ω
- c) 4800Ω
- d) $1,1 \Omega$
- e) 0,3 Ω

CIRCUITO 2: EM PARALELO

- a) 50Ω
- b) 60 Ω
- c) $1031,25 \Omega$
- d) 0,0909 Ω
- e) 0.067Ω

2)

CIRCUITO 1: EM SÉRIE

- a) 300Ω
- b) 6500 Ω

CIRCUITO 2: EM PARALELO

- a) $33,3 \Omega$
- b) 568,96 Ω

3) a) A corrente medida pelo amperímetro A colocado no circuito é de: I = 0,015 A

b)

4) A corrente medida pelo amperímetro A colocado no circuito é de: I = 0,0115 A

5)

NA QUESTÃO 3 DESTE PDF:

Queda de tensão (voltagem) sobre R1, R2 e R3:

• Vr1 = 7,5 V Vr2 e Vr3 = 3 V (1,5V para cada um)

Potência total dissipada pelo circuito:

• P = 0.135 W

NA QUESTÃO 4 DESTE PDF:

Queda de tensão (voltagem) sobre R1, R2 e R3:

• Vr1 = 1,725 V Vr2 e Vr3 = 10,275 V (5,1375 V para cada um)

Potência total dissipada pelo circuito:

• P = 0.138 W

6) O valor do resistor a ser conectado para proteger o Arduino e o sensor é de 333,3 Ω

7)

1° RESISTOR: marrom, preto, marrom (100 Ω);

2° RESISTOR: marrom, verde, marrom (150 Ω);

3° RESISTOR: verde, preto, marrom (500 Ω);

4° RESISTOR: **vermelho**, **vermelho**, **vermelho** (2200 Ω);

5° RESISTOR: laranja, laranja, vermelho (3300 Ω).

