T2 – Systèmes Temps-Réel et Sûreté de Fonctionnement Questionnaires à Choix Multiples

$Dylan\ MOLINIE$

13 novembre 2019

QCM 1
1. Un système est compliqué lorsque :
— Environnement dynamique;
— Exécution concurrente;
— Compilation hétérogène.
2. Des critères de confiance en un système sont :
— Déterminisme ;
— Partitionnements temporel et spatial;
— Certifiable.
3. La notion de $D\acute{e}terminisme$ implique (entre autres) :
— Résultats uniques et invariants;
— Chaîne causale entre cause et conséquence;
— Différentes implémentations donnent les mêmes résultats.
4. Le partitionnement spatial est le regroupement des composants dans un même espace mémoire pour assurer de manière sûre qu'un composant impacte un autre composant.
ightarrow NON
5. Le partitionnement temporel est le partage du processeur pendant un temps prédéfini. L'objectif est d'assurer qu'un composant ne perturbe pas temporellement un autre composant.
$\rightarrow OUI$
6. Dans la réglementation avionique , la validation est l'activité pour répondre à la question « Est-ce que le logiciel est bien réalisé? »
ightarrow NON
7. C'est le développeur qui analyse et définit le niveau de criticité d'un composant.
ightarrow NON

NON

8. La certification DO-178C explique comment développer un système.

9. La certification DO-178C impose les méthodes de développement.

- 10. Dans une approche de développement sous DO-178C, des exemples d'éléments à produire sont :
 - Un ou plusieurs documents Software Requirement Specification (SRS) contenant les exigences de haut niveau;
 - Les plans de développement qui décrivent comment je travaille;
 - Un ou plusieurs documents Software Application Design (SAD) contenant l'architecture de mon système;
 - Les codes sources avec la traçabilité vers les exigences;
 - Les cas de tests et les scénarios de tests;
 - Un ou plusieurs documents Software Detail Design (SDD) contenant les exigences de bas niveau.
- 11. Le Configuration Management Plan est le document qui permet de définir l'ensemble des paramètres de mon logiciel.

 $\rightarrow NON$

12. L'exigence suivante est testable : « MonDij doit couper le courant s'il dépasse 16 Ampères. »

 \rightarrow NON

QCM 2

1. Pour réaliser une partition mémoire, le système d'exploitation peut utiliser une MPU (Memory Protection Unit) ou une MMU (Memory Management Unit) pour protéger les accès.

 $\rightarrow OUI$

2. Dans une approche *Event-Triggered*, le sémaphore est un exemple d'évènement déclenchant une exécution.

 \rightarrow OUI

3. Dans une approche *Event-Triggered*, nous pouvons faire des hypothèses sur l'ordonnancement pour concevoir notre système.

 \rightarrow NON

4. Dans une approche de conception *Time-Triggered*, les données sont visibles dès qu'elles sont produites.

 \rightarrow NON

5. Dans une approche *Time-Triggered*, je connais dès la conception le nombre de données disponibles à chaque cycle d'exécution lorsque ces données échangées entre deux tâches; je connais donc par construction les temps de traitements de bout en bout.

 $\rightarrow OUI$

6. Une approche *Time-Triggered* nécessite l'utilisation de sémaphores et de mutex pour échanger des données entre tâches.

 $\rightarrow NON$

7. Dans une approche *Time-Triggered*, des *deadlocks* peuvent survenir à l'exécution.

 \rightarrow NON

8. Pour faire des systèmes réactifs, nous ne pouvons utiliser que l'approche Event-Triggered.

 \rightarrow NON

- 9. Pour concevoir mon système, j'utilise :
 - UML car les représentations graphiques sont normées;
 - Des diagrammes de séquences pour représenter les *threads*, les sémaphores et les appels de fonctions (dans le cas d'une approche *Event-Triggered*);
 - Des diagrammes temporels pour représenter les *threads*, les sémaphores et les appels de fonctions (dans le cas d'une approche *Time-Triggered*).
- 10. AADL est un langage pour décrire l'architecture statique multi-tâches d'un programme (tâches, propriétés temporelles).

 $\rightarrow OUI$

11. AADL permet de décrire l'utilisation des sémaphores.

 \rightarrow NON

12. SCADE est un langage pour décrire des applications multi-tâches.

 \rightarrow NON

13. Il n'est pas nécessaire de borner les boucles dans une conception temps réel multi-tâches sûre de fonctionnement.

 $\rightarrow NON$

14. Dans une approche *Event-Triggered*, nous pouvons faire des hypothèses sur l'ordonnancement pour concevoir notre système.

 \rightarrow NON

- 15. Pas d'assertion.
 - Un Système d'Exploitation s'exécute en mode privilégié;
 - Pour passer d'un mode *user* à un mode *privilégié*, des appels systèmes sont mis en place dans les API du Système d'Exploitation.