The	las limptos 2591 AZKHEH 3
a	Sweliza 11 organos = proposeds perasympuración $A(cx) = C(Ax)$ $A(cx+dy) = C(Ax) + d(Ay) \qquad A(x+y) = Ax+Ay$
	$\frac{\sum_{i} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^$
β)	Alaxing Metad mulacional Fourier $\times (e^{jw}) = \stackrel{\text{Loo}}{\Sigma} \times (u) \cdot e^{-jwn}$ Temphilyother Av $\times 1(u)$ $\stackrel{\text{DTFI}}{\Longrightarrow} \times 1(e^{jw})$ $\times_{2}(u)$ $\stackrel{\text{Loo}}{\Longrightarrow} \times_{2}(e^{jw})$ Complication Av $\times 1(u)$ $\stackrel{\text{DTFI}}{\Longrightarrow} \times_{1}(e^{jw})$ $\times_{2}(u)$ $\stackrel{\text{Loo}}{\Longrightarrow} \times_{2}(e^{jw})$
	Av $y(n) = C1 \times (n) + C_2(x_n)$; too $ Y(e^{jw}) = \int_{n=-\infty}^{+\infty} y(n)e^{-jw} = \int_{n=-\infty}^{+\infty} [C_1 \times x_1(n) + C_2 \times y(n)] \cdot e^{-jw} = \int_{n=-\infty}^{+\infty} [C_1 \times x_1(n)e^{-jw}] + \int_{n=-\infty}^{+\infty} [C_2 \times y(n)] \cdot e^{-jw} = \int_{n=-\infty}^{+\infty} [C_1 \times x_1(n)e^{-jw}] + \int_{n=-\infty}^{+\infty} [C_2 \times y(n)] \cdot e^{-jw} = \int_{n=-\infty}^{+\infty} [C_1 \times x_1(n)e^{-jw}] + \int_{n=-\infty}^{+\infty} [C_2 \times y(n)] \cdot e^{-jw} = \int_{n=-\infty}^{+\infty} [C_1 \times x_1(n)e^{-jw}] + \int_{n=-\infty}^{+\infty} [C_2 \times y(n)] \cdot e^{-jw} = \int_{n=-\infty}^{+\infty} [C_1 \times x_1(n)e^{-jw}] + \int_{n=-\infty}^{+\infty} [C_2 \times y(n)] \cdot e^{-jw} = \int_{n=-\infty}^{+\infty} [C_1 \times x_1(n)e^{-jw}] + \int_{n=-\infty}^{+\infty} [C_2 \times y(n)] \cdot e^{-jw} = \int_{n=-\infty}^{+\infty} [C_1 \times x_1(n)e^{-jw}] + \int_{n=-\infty}^{+\infty} [C_2 \times y(n)] \cdot e^{-jw} = \int_{n=-\infty}^{+\infty} [C_1 \times x_1(n)e^{-jw}] + \int_{n=-\infty}^{+\infty} [C_2 \times y(n)] \cdot e^{-jw} = \int_{n=-\infty}^{+\infty} [C_1 \times x_1(n)e^{-jw}] + \int_{n=-\infty}^{+\infty} [C_2 \times y(n)] \cdot e^{-jw} = \int_{n=-\infty}^{+\infty} [C_1 \times x_1(n)e^{-jw}] + \int_{n=-\infty}^{+\infty} [C_2 \times y(n)] \cdot e^{-jw} = \int_{n=-\infty}^{+\infty} [C_1 \times x_1(n)e^{-jw}] + \int_{n=-\infty}^{+\infty} [C_2 \times y(n)] \cdot e^{-jw} = \int_{n=-\infty}^{+\infty$
	$= C_1 \sum_{N=-\infty}^{+\infty} \times_1(N) e^{-jN} + C_2 \sum_{N=-\infty}^{+\infty} \times_2(N) e^{-jN} = C_1 \times_1(e^{jN}) + C_2 \times_2(e^{jN})$ = C_1 \(\frac{\pi}{N=-\impti} \) \(\text{var} \) \(\frac{\pi}{N=-\impti} \) \(\text{var} \) \(\text{var} \) \(\frac{\pi}{N} \) \(\text{var} \)
	La Eiven Jough herang mor mor man