In-class exercise: Logistic regression

Names: (signatures only please, printed names will not be counted)

1.)		4.)
-----	--	-----

$$3.) 6.)$$

Overview

In this exercise we suppose we model the number of days with measurable rainfall in a month at the Amherst Massachusetts weather station using monthly records from 1900 through 1992 in logistic1.csv

We model the number of days with measurable rainfall in a month using a bionomial distribution with the number of trials n equal to the number of days in the month, and probability of success p that depends on time through a regression model.

$$y \sim \text{binomial(n,p)}$$

The probability of measurable rainfall is represented using a *logit* transform, which greatly improves the numerical stability of the regression model. The logit transform is:

$$logit(p) = ln\left(\frac{p}{1-p}\right)$$

This function maps values in the interval (0,1) to the interval $(-\infty,\infty)$, and its inverse

$$logit^{-1}(z) = \frac{1}{1 + e^{-z}}$$

maps $(-\infty, \infty)$ into (0,1). Our regression model is written in terms of z,

$$z_i = \beta_0 + \beta_1 x_i$$

STAN has a built-in likelihood function called $binomial_logit$ that automatically does the transform from z to p for the binomial likelihood. The line that specifies this in the model statement would look like this:

$$y[i] \sim binomial_logit(n[i],beta0+beta1*x[i]);$$

It is generally a good idea to center the values of the independent variable x so that they has a mean of zero, and scale them so that the range is fairly compact.

A reasonable choice in this case is, for year y and month m,

$$x = \frac{12(y - 1947) + m}{279}$$

For this data, this formula produces values between -2 and +2. The x column contains values computed from the year and month column using this formula.

Instructions

As usual, start by bringing your copy of the MTH225_Fall2016 archive up to date.

Open a command prompt or terminal window, and use the cd command to change to the MTH225_Fall2016 subdirectory. Then type the command:

git pull origin master

The pull operation should download the following files:

• The R-knitr code: MTH225-11_logistic_regression.Rnw

• The data in Rdata format: logistic1.csv

• The STAN model file: logistic1.stan

Questions

Use the $Compile\ PDF$ button to run the model, and use the output to answer the following questions:

1) What is the point estimate and 95% confidence interval for the slope parameter?

2) What is the point estimate and 95% confidence interval for the intercept for the month of April?

3)	What i	s the	point	${\it estimate}$	and 9	95%	confidenc	e inter	val	for	the	probabil	lity
of	rainfall	on a	day in	January,	1900	? In	January	1947?	In .	Janu	iary	1990?	

- 4) What is the median of, and 95% confidence interval for, the number of rainy days in January, 1900? In January, 1990?
- 5) What probability does the model give that the number of rainy days in January, 1990 is greater than or equal to the number of rainy days in 1900?