POMDP Basics

Lecture 8

MDP vs. POMDPs

- MDP: Agent's percept in any given state identify the state that it is in, e.g., state (4,3) vs (3,3)
 - Given observations, uniquely determine the state
 - Hence, we will not explicitly consider observations, only states
- **POMDP:** Agent's percepts in any given state **DO NOT** identify the state that it is in, e.g., may be (4,3) or (3,3)
 - Given observations, not uniquely determine the state
 - POMDP: Partially observable MDP for inaccessible environments

POMDP: Partially Observable Markov Decision Process

- Set of states, **S**
- Set of actions, A
- P is the table of transition probabilities
- R(s,a) reward received for taking action "a" in state "s"
- Policy π maps a state "s" to an action "a"

PLUS

- Finite set Ω of observations
- Table O of observation probabilities where O(o|a,s') is the probability that "o" is observed given that action "a" taken leads to state s'
- Policy maps histories of observations to actions

MDP vs POMDP

POMDP

SE: State estimator

b: Belief state

SE updates the beliefs based on last observation, previous belief state and previous action

P: Policy is no longer a function of the state, But of the agent's belief state

POMDP:<**S**, **A**, **P**, **R**, Ω , **O**>

- **S,** Set of states
- A, finite set of actions
- P is the table of transition probabilities
- R(s,a) reward received for taking action "a" in state "s"
- Finite set Ω of observations, e.g., {red, green} in example below
 - Observations hint at state, e.g., Observe Red room, but not S3
- Table O of observation probabilities
 - O(o | a,s') prob "o" observed given action "a" leads to state s'
 - $P(red \mid LEFT, S3) = 0.4$

POMDP: Partially Observable Markov Decision Process

- Agent has initial beliefs
- Agent takes an action
- Gets an observation
- Interprets the observation
- Updates beliefs
- Decides on an action
- Repeats

Agent takes optimal action considering world/other agents

Elements: {States, Actions, Transitions, Rewards, Observations }

POMDP: Partially Observable Markov Decision Process

- Underlying dynamics are still Markovian: World has NOT changed its characteristics, agents sensors have changed
- Observations only hint at what state we are in, but not exactly identify state
- So, somehow agent may need to remember what it observed in the past and what action it took:
 - If I observed feature "green" in the past, then took action "left" and then observed "red", it must mean that I am either in state S3 (probability of 0.9) or S2 (Prob 0.1) now
- Need to maintain beliefs

Tiger Problem

- Standing in front of two closed doors
- World is in one of two states: tiger is behind left door or right door
- Three actions: Open left door, open right door, listen
 - Listening is not free, and not accurate (may get wrong info)
- Reward: Open the wrong door and get eaten by the tiger (large –ve)
 Open the right door and get a prize (small +ve)

Tiger Problem: POMDP Formulation

Two states: SL and SR

Three actions: LEFT, RIGHT, LISTEN

Transition probabilities:

Listen	SL	SR	
SL	1.0	0.0	
SR	0.0	1.0	

Left	SL	SR
SL	0.5	0.5
SR	0.5	0.5

Right	SL	SR
SL	0.5	0.5
SR	0.5	0.5

Tiger Problem: POMDP formulation

- Observations: TL (tiger left) or TR (tiger right)
- Observation probabilities:

Listen	TL	TR	
SL	0.85	0.15	
SR	0.15	0.85	

Left	TL	TR
SL	0.5	0.5
SR	0.5	0.5

Right	TL	TR
SL	0.5	0.5
SR	0.5	0.5

Rewards:

$$-R(SL, Listen) = R(SR, Listen) = -1$$

$$-R(SL, Left) = R(SR, Right) = -100$$

$$-R(SL, Right) = R(SR, Left) = +10$$

How to Find the Optimal Policy?

Now lets find an optimal policy for this problem

Why not use value iteration directly?

$$-U_{t+1}(I) = R(I) + \max_{A} \sum_{J} P(J|I,A) * U_{t}(J)$$

- Could we compute the utilities in this manner?
- Could such utilities be actually used?
- Need mapping from belief states to actions!

Sample POMDP Policy Tree

POMDP Policy Tree

How Many POMDP policies possible

How many policy trees, if |A| actions, |O| observations, T horizon:

• How many nodes in a tree:

$$\sum_{i=0}^{T-1} o_i^i = (|o|^{T_{-1}}) / (|o|-1)$$

$$|A|^{N}$$

POMDP Belief State

- Computing belief state important, since policy maps belief state to action
 - Not just the most probable state of the world
- Probability distributions over the states of the world
 - Sufficient statistic for the past history and initial belief state:
 - No additional data about past actions & observations supplies any further information
 - That is, process over belief states is a markov process (why?)
 - As if maintained a complete history of actions & observations

Evolution of Belief State: 1

- Set of states, S1, S2 S3, S4
- For each $s \in S$, A_s set of actions: Down or Up
- Transition Prob T: 0.9 (direction of move), 0.1 opp
- R(s,a) reward received
- -Finite set Ω of observations
 - O observation probabilities:
 - $-\Pr(o1|s1) = \Pr(o1|s2) = \Pr(o1|s4) = 1$
 - $-\Pr(o2|s3) = 1$

Initial belief state: [0.333, 0.333, 0, 0.333]

S1 S2 S3 S4

Evolution of Belief State: 2

Suppose agent moves down and observes o1:

• What should the agent believe about its state? Does it now know more about where it is more likely to be?

• [0.100, 0.450, 0, 0.450]

Belief State

- b → probability distribution over our set of states,
 e.g., over s1, s2, s3, s4
- b(s) denotes the probability assigned to world state s by belief state b
- In [0.333, 0.333, 0, 0.333], what is b(s1)?
- 0 <= b(s) <= 1

$$\sum$$
 b(s) = 1

Computing Belief States

- s = old state
- b = old belief state, and b(s) probability of s given belief state b
- a = action
- b' = new belief state
- b'(s') = probability of s' given b'
- o = observation

Computing Belief States

Will not repeat Pr(o | a, b) in the next slide, but it is there!

Treated as a normalizing factor, so that b' sums to 1

Computing Belief States: Numerator

$$= Pr(o | s' a) Pr (s' | a, b) = O(s', a, o) Pr (s' | a, b)$$

$$= O(s', a, o) \sum Pr(s' | a, b, s) Pr(s | a, b)$$

$$= O(s', a, o) \sum Pr(s' | a, b, s) b(s)$$
; $Pr(s | a, b) = Pr(s | b) = b(s)$

$$= O(s', a, o) \sum T(s, a, s') b(s)$$

(Please work out some of the details later)

Belief State

Overall formula

=
$$O(s', a, o)$$
 $\sum_{i=1}^{n} (s, a, s') b(s)$
Pr (o | a, b)

Example

Moves down and does not observe s3

- $b \rightarrow b'$
- i.e., $[0.333, 0.333, 0, 0.333] \rightarrow [0.1, 0.45, 0, 0.45]$

```
b'(s1) = probability of s1 in our new belief state b'

Numerator = Pr ( o1 | s1, down)) *

[Pr(s1 | s1, down) * b(s1) + Pr (s1 | s2, down) * b(s2) +

Pr (s1 | s3, down) * b(s3) + Pr (s1 | s4, down) * b(s4)]

= 1 * [ 0.1 * 0.333 + 0.1 * 0.333 + 0 + 0 ] = 0.0666
```

Why is this not 0.1?

Example

Moves down and observes o1 (I.e., not observe s3)

- $b \rightarrow b'$
- i.e., $[0.333, 0.333, 0, 0.333] \rightarrow [0.1, 0.45, 0, 0.45]$

In b'(s1), Numerator = 0.0666The above is unnormalized probability, hence not 0.1!Denote unnormalized b'(s1) as Ub'(s1)

- Similarly calculate unnormalized Ub'(s2), Ub'(s3), Ub'(s4)
- [Ub'(s1) + Ub'(s2) + Ub'(s3) + Ub'(s4)]/denominator = 1
- Denominator = 0.666 (please check at home)
- b(s1) = 0.0666/0.666 = 0.1

Policy: Map Belief State to Action

Convert POMDP → "Belief MDP"

- Recall, process over belief states is markov
- B, the set of belief states, is the set of MDP states
- A, the set of actions, is the same
- R'(b,a) is the reward function on the belief states:

$$R'(b, a) = \sum_{s \in S} b(s) R(s, a)$$

Transition function:

T(b, a, b') = Pr(b' | a, b) =
$$\sum_{o \in \Omega} Pr(b' | a, b, o) * Pr (o | a, b)$$

Where
$$Pr(b' | b, a, o) = 1$$
 if $SE(b, a, o) = b'$
= 0 otherwise

Transition Function

Note: observe-s3 = o2, not(observe-s3) = o1

```
E.g., T([0.330, 0.330, 0, 0.330], down, [0.1, 0.45, 0, 0.45])
= Pr (b' | down, b, observe-s3) * pr (observe-s3 | down, b)
+ Pr (b' | down, b, Not(observe-s3)) * pr (Not (observe-s3)| down, b)

= 0 * pr (observe-s3 | down, b) + 1 * pr (Not(observe-s3) | down, b)

= Pr ( Not(observe-s3) | down, b) = 0.666
```

T(b, a, b') = Pr (o | a, b) where when action "a" taken in beliefstate "b" and we observed "o", we ended up in belief-state b'

Try Value Iteration

- Given belief MDP, if we can generate an optimal policy, it will give rise to optimal behavior for the original POMDP
- How about trying value iteration in this belief MDP?

$$V'(b) = max [r(b,a) + \Sigma P(b' | b,a) V(b')]$$

= $max [r(b,a) + \Sigma P(o | b,a) V(b^a_o)]$

- Where $r(b, a) = \sum r(s,a)b(s)$ is the expected immediate reward for taking action a in belief state b
- o is the observation, P(o|b, a) implies the probability of observing o given action a in belief state b
- $V(b^a_{\ o})$ denotes the value for belief state at the next point in time given that action a was taken in belief state b, with observation o

Problem in Value Iteration

- Infinite possible belief states:
 - Assume: we don't have a fixed start belief state
 - MDP has a continuous state space
 - No longer a table of states where we can maintain a value per state
- Also, how to back up values of future belief states --- there are too many (infinite) future belief states as well

Learning from examples Chapter 18 from the book by Russell and Norvig Decision Tree Learning

Lecture 9

What is a Decision Tree?

- Input: A vector of attribute values
- Output: Decision (e.g., Yes/No, Win/Tie/Loss)
 - Each leaf node provides an output
- Decision tree reaches its decision by performing a sequence of tests
 - No chance nodes
 - Instead, test attributes and provide a response
- DT Learning: One of the simplest, yet most successful forms of ML
 - Each internal node represents test of attribute
 - Branches represent possible values of the attribute
- Natural representation for humans e.g. many "How To" manuals written as single DT over 100s of pages

Example Problem

- Predicting the outcome of a RoboCup Soccer game
 - After first few minutes of play, predict the outcome
 - Assume no goals scored yet...
- Aim: Learn a function that will tell us if a team will:
 - Win Big: > 5 goals difference with the opponent
 - Win: 1-5 goal difference
 - Tie: No goal difference
 - Lose: Opponent outscores by 1 to 5 goals
 - Lose big: Opponent outscores by more than 5 goals

Relevant Attributes

- What attributes would you consider relevant for this prediction?
 - Possession time: What percent of time ball with team?
 - % time ball in opponent half
 - Placement of opponent's defenders
 - Opponent playing along sidelines or the center
 - One-on-one with opposition goal keeper

— ...

Possible Decision Tree

Attribute tests expressed as rules

Tests from root to leaf

• If OH > 80%, then Win Big

Possible Decision Tree

Tree could be of different shapes

EXAMPLE INPUT FOR DECISION TREE LEARNING

Number	Outlook	Temp	Humid	Windy	Class
1	Sunny	hot	high	false	N
2	Sunny	hot	high	true	N
3	overcast	hot	high	false	P
4	rain	mild	high	false	P
5	rain	cool	normal	false	P
6	rain	cool	normal	true	N
7	overcast	cool	normal	true	P
8	sunny	mild	high	false	N
9	sunny	cool	normal	false	P
10	rain	mild	normal	false	P
11	sunny	mild	normal	true	P
12	overcast	mild	high	true	P
13	overcast	hot	normal	false	P
1/1	rain	mild	high	tmia	N

Selecting Order of Tests

- Intuition is that if we could cleanly separate the sets into positive and negative that would be the best
- What if we get two sets where 100% positive in one set and 90% negative in 2nd set? What if 50% negative in 2nd set?
- How do you formalize this idea?
 - Need a function that differentiates between cleanly separated sets (P & N examples are separated out completely) and mixed sets (where 50% P & 50% N)
 - Based on "information gain" idea
 - Information gain in turn based on information necessary to classify an example

Expected Information

 Expected information needed to classify an example instance is given by the following formula:

$$I(p,n) = -\frac{p}{(p+n)} Log_2 \frac{p}{(p+n)}$$

$$-\frac{n}{(p+n)} Log_2 \frac{n}{(p+n)}$$

Can be generalized to more than 2 classes: p, n For instance, if we had k such classes...

How does this work

- Out of 14 objects in our example, 7 are P and 7 are N
- Information required for classification is therefore:

$$I(p,n) = -\frac{7}{14} \log_2 \frac{7}{14}$$

$$-\frac{7}{14} \log_2 \frac{7}{14} = 1 \text{ bit}$$

- What if out of 14 objects, 14 are P? What if 14 are N?
- Does I(p,n) have the properties we might be looking for?
- when is it highest? When is it lowest?

Another Example

- Out of 14 objects in our example, 9 are P and 5 are N
- Information required for classification is therefore:

$$I(p,n) = \frac{9}{14} + \frac{1}{14} + \frac{1}{14} = \frac{9}{14}$$

$$= \frac{5}{14} + \frac{5}{14} + \frac{5}{14} = \frac{5}{14}$$

The overall situation...

Proportion
In each branch

$$(p1 + n1)$$
 $(p2 + n2)$ \cdots $(p + n)$ $(p + n)$

Information requirement for each branch

Several Attribute Tests Possible

- Lets look through these tests case by case
- outlook attribute:
 - Divides the set with values {sunny, overcast, rain}
 - Division is {5 (sunny), 4 (overcast), 5 (rain)}
 - Further we have the following:
 - 5 (Sunny) \rightarrow 2 P, 3 N \rightarrow I(p1,n1) = 0.971
 - 4 (overcast) \rightarrow 4 P, 0 N \rightarrow I(p2, n2) = 0
 - 5 (rain) \rightarrow 3 P, 2 N \rightarrow I(p3, n3) = 0.971
- E(outlook) = 5/14 * I(p1,n1) + 4/14 * I(p2,n2) + 5/14 * I(p3, n3)= 0.346 + 0 + 0.346 = 0.694 bits
- Gain (outlook) = 0.940 E(outlook) = 0.246 bits
- As computed earlier I(p,n) = .940 with 9 positive and 5 negative

Next Attribute Test

- Temperature attribute:
 - Divides the set with values {hot, mild, cool}
 - Division is {4 (hot), 6 (mild), 4 (cool)}
 - Further we have the following:
 - 4 (hot) \rightarrow 2 P, 2 N \rightarrow I(p1,n1) = 1
 - 6 (mild) \rightarrow 4 P, 2 N \rightarrow I(p2, n2) = ...
 - 4 (cool) \rightarrow 3 P, 1 N \rightarrow I(p3, n3) = .8075
- E(temperature) = 4/14*I(p1,n1) + 6/14*I(p2,n2) + 4/14*I(p3,n3)= 0.285 + 0.396 + 0.230 = 0.911 bits
- Gain (temp) = 0.940 E(temp) = 0.029 bits

Which Test First?

- Gain(outlook) = 0.246 bits
- Gain (temperature) = 0.029 bits
- Gain (humidity) = 0.151 bits
- Gain (windy) = 0.048 bits
- So choose outlook as the attribute for root of decision tree
- Objects divided into subsets according to values of outlook attribute
- Decision tree for each subset induced in a similar fashion
- Smaller decision tree generated by this procedure