THE ASYMPTOTIC BEHAVIOR OF THE TOTAL NUMBER OF PARTICLES IN A CRITICAL BRANCHING PROCESS WITH IMMIGRATION

UDC 519.21

YA. M. KHUSANBAEV

ABSTRACT. A sequence of branching processes with immigration is considered in the case where the mean number of descendents of a particle tends to unity. The rate of growth and asymptotic behavior of the total number of particles in the population are found.

1. Introduction

Assume that $\{\xi_{k,j}^{(n)}, k, j \in \mathbb{N}\}$ and $\{\varepsilon_k^{(n)}, k \in \mathbb{N}\}$ are two independent families of independent nonnegative integer valued and identically distributed random variables for all $n \in \mathbb{N}$. Let $\{X_k^{(n)}, k = 0, 1, \dots\}$, $n \in \mathbb{N}$, be a sequence of branching processes with immigration defined by the following recurrence relations:

(1)
$$X_0^{(n)} = 0, \qquad X_k^{(n)} = \sum_{j=1}^{X_{k-1}^{(n)}} \xi_{k,j}^{(n)} + \varepsilon_k^{(n)}, \qquad k, n \in \mathbb{N}.$$

If the random variables $\xi_{k,j}^{(n)}$ and $\varepsilon_k^{(n)}$, $n \geq 1$, are treated as the number of descendents of a jth particle in a (k-1)th generation of a certain population of particles and the number of particles immigrating into the k^{th} generation, respectively, then $X_k^{(n)}$ is the total number of particles in the kth generation of the population.

A sequence of branching processes with immigration (1) is called almost critical if $\mathsf{E}\xi_{1,1}^{(n)} \to 1$ as $n \to \infty$. Consider random stepwise processes $Z_n, n \in \mathbb{N}$, defined by

$$Z_n(t) = \sum_{k=1}^{[nt]} X_k^{(n)}, \qquad t \ge 0, \quad n \in \mathbb{N}.$$

It is clear that the trajectories of the processes Z_n , $n \in \mathbb{N}$, belong to the Skorokhod space $D[0,\infty)$. The variable $Z_n(t)$ is the total number of particles (counted up to the moment [nt]) in the branching process with immigration $X_k^{(n)}$, $k \geq 0$.

Pakes [1] studies the rate of growth and asymptotic behavior (as $n \to \infty$) of the fluctuation of the total number of descendents of a particle in a branching Galton–Watson process up to the moment n under the assumption that the process does not vanish. Karpenko and Nagaev [2] investigate the limit behavior of the conditional distribution of the total number of descendents of a particle in the Galton–Watson process under the condition that the process vanishes at the moment n and in the case where the

²⁰¹⁰ Mathematics Subject Classification. Primary 60J80; Secondary 60F17.

Key words and phrases. Branching processes with immigration, total number of particles, weak convergence.

expectation of the number of particles generated by a single particle tends to unity as $n \to \infty$. A number of papers, say [3,4,8,9], are devoted to functional limit theorems for a sequence of branching processes with immigration. On the other hand, the asymptotic behavior of the total number of particles Z_n has been studied quite a bit.

The aim of this paper is to study the asymptotic behavior of the process Z_n as well as that of its deviation from the mean value, $Z_n - \mathsf{E} Z_n$, for the case where the mean value of the number of descendants of a single particle tends to unity from the left with a rate being slower than n^{-1} as $n \to \infty$.

2. Mainstream

We assume that

$$m_n = \mathsf{E}\xi_{1,1}^{(n)}, \qquad \sigma_n^2 = \mathrm{Var}\,\xi_{1,1}^{(n)}, \qquad \lambda_n = \mathsf{E}\varepsilon_1^{(n)}, \qquad b_n^2 = \mathrm{Var}\,\varepsilon_1^{(n)}$$

are finite for all $n \in \mathbb{N}$. Throughout below d_n , $n \in \mathbb{N}$, denotes a certain sequence of positive numbers such that $d_n \to \infty$ and $n^{-1}d_n \to 0$ as $n \to \infty$; $W(t), t \ge 0$, is a standard Wiener process in the space $D[0,\infty); I(A)$ is the indicator of an event A; and the symbol $\stackrel{\mathsf{P}}{\longrightarrow}$ denotes the convergence in probability of random variables.

Theorem 1 provides some information on the rate of growth of the process Z_n .

Theorem 1. Assume that

- (1) $m_n = 1 + \alpha d_n^{-1} + o\left(d_n^{-1}\right)$ as $n \to \infty$ for some fixed $\alpha < 0$; (2) the limit $\lim_{n \to \infty} \sigma_n^2 = \sigma^2 \ge 0$ exists and is finite;
- (3) the limits $\lim_{n\to\infty} = \lambda \ge 0$ and $\lim_{n\to\infty} b_n^2 = b^2 \ge 0$ exist and are finite.

Then

$$\frac{Z_n}{nd_n} \to Z$$
 as $n \to \infty$

in the space $D[0,\infty)$ equipped with the Skorokhod J-topology, where the limit process Z is defined by

$$Z(t) = |\alpha|^{-1} \lambda t, \qquad t \ge 0.$$

Theorem 2 describes the asymptotic behavior of the deviation of the process Z_n from its mean value.

Theorem 2. Assume that

- (1) $m_n = 1 + \alpha d_n^{-1} + o\left(d_n^{-1}\right)$ as $n \to \infty$ for some fixed $\alpha < 0$;
- (2) the limit $\lim_{n\to\infty} d_n \sigma_n^2 = \sigma^2 \ge 0$ exists and is finite;
- (3) the limits $\lim_{n\to\infty} \lambda_n = \lambda \ge 0$ and $\lim_{n\to\infty} b_n^2 = b^2 \ge 0$ exist and are finite;
- (4) for all $\varepsilon > 0$.

$$d_n \mathsf{E}(\xi_{1,1}^{(n)} - m_n)^2 I(|\xi_{1,1}^{(n)} - m_n| > \varepsilon \sqrt{n}) \to 0, \qquad n \to \infty;$$

(5) for all $\varepsilon > 0$,

$$\mathsf{E}(\varepsilon_1^{(n)} - \lambda_n)^2 I(|\varepsilon_1^{(n)} - \lambda_n| > \varepsilon \sqrt{n}) \to 0, \qquad n \to \infty.$$

Then

$$(d_n\sqrt{n})^{-1}(Z_n-\mathsf{E}Z_n)\to Y\quad as\ n\to\infty$$

in the space $D[0,\infty)$ equipped with the Skorokhod J-topology, where the limit process Y is defined by

$$Y(t) = |\alpha|^{-1} (|\alpha|^{-1} \lambda \sigma^2 + b^2)^{1/2} W(t), \qquad t \ge 0.$$

Remark 1. The asymptotic behavior of the process Z_n and that of its deviation are easy to extract from the results of papers [3,4,8] and Theorem 5.1 of [5] in the case where $m_n = 1 + \alpha n^{-1} + o(n^{-1}).$

Remark 2. Theorems 1 and 2 show that the rate of convergence of m_n to unity influences essentially the rate of growth and asymptotic behavior of the deviation of the process Z_n .

Remark 3. In general, the conditions $b_n^2 \to b^2 > 0$ and $d_n \sigma^2 \to \sigma^2 > 0$ do not imply assumptions (4) and (5) of Theorem 2, respectively. For example, let $\varepsilon_k^{(n)}$ assume values 0, 1, and n with probabilities n^{-2} , $1-2n^{-2}$, and n^{-2} , respectively. Then $\lambda_n = 1+n^{-1}+o\left(n^{-1}\right)$ and $b_n^2 = 1-2n^{-1}+o\left(n^{-1}\right)$ as $n \to \infty$. For every $\varepsilon > 0$,

$$\mathsf{E}\left(\varepsilon_1^{(n)} - \lambda_n\right)^2 I\left(\left|\varepsilon_1^{(n)} - \lambda_n\right| > \varepsilon\sqrt{n}\right) \approx \frac{(n-1)^2}{n^2} \to 1 \quad \text{as } n \to \infty.$$

Thus $b_n^2 \to 1$ as $n \to \infty$ in this case, but assumption 5 does not hold.

3. Proofs

Proof of Theorem 1. It is easy to see that

(2)
$$\mathsf{E}X_k^{(n)} = \frac{1 - m_n^k}{1 - m_n} \lambda_n, \qquad k = 0, 1, 2, \dots.$$

Put $G_n(t) = (nd_n)^{-1} Z_n(t)$. The assumptions of Theorem 1 imply that

(3)
$$\mathsf{E}G_n(t) \to |\alpha|^{-1} \lambda t \quad \text{as } n \to \infty.$$

We are going to estimate $\operatorname{Var} G_n(t)$. Equality (2.13) of the paper [4] yields

$$\operatorname{Var} G_n(t) = (nd_n)^{-2} \left(U_n(t) b_n^2 + V_n(t) \lambda_n \sigma_n^2 \right),$$

where

$$U_n(t) = \sum_{k=1}^{[nt]+1} \frac{1 - m_n^{2(k-1)}}{1 - m_n^2} \left(2 \frac{1 - m_n^{[nt]-k+2}}{1 - m_n} - 1 \right),$$

$$V_n(t) = \sum_{k=1}^{[nt]+1} \frac{\left(1 - m_n^{k-1} \right) \left(1 - m_n^{k-2} \right)}{\left(1 - m_n \right) \left(1 - m_n^2 \right)} \left(2 \frac{1 - m_n^{[nt]-k+2}}{1 - m_n} - 1 \right).$$

It is easy to see that

$$U_n(t) \le \frac{2(1+nt)}{(1-m_n)^2}, \qquad V_n(t) \le \frac{2(1+nt)}{(1-m_n)^3}.$$

Then

(4)
$$\operatorname{Var} G_n(t) \le 2\alpha^{-2} \left(\frac{b_n^2}{n} + \frac{\lambda_n \sigma_n^2 d_n}{\alpha n} \right) t \to 0 \quad \text{as } n \to \infty$$

for all $t \geq 0$. Applying the Chebyshev inequality we conclude from here that $G_n(t) \xrightarrow{\mathsf{P}} Z(t)$ as $n \to \infty$ for all $t \geq 0$ in view of relation (3). Since the limit process Z is continuous and nonrandom, it remains to show that the sequence of processes $\{G_n(t), t \geq 0\}, n \in \mathbb{N}$, is dense (see Theorem 15.1 of [5]). Indeed, relations (3) and (4) imply that

$$\mathsf{E}\big(G_n(t) - G_n(s)\big)^2 \le 3\left(\mathsf{Var}\,G_n(s) + \mathsf{Var}\,G_n(t) + \left(\mathsf{E}G_n(t) - \mathsf{E}G_n(s)\right)^2\right)$$

$$< 4\alpha^{-2}\lambda^2(t-s)^2$$

for all $t, s \ge 0$ and all sufficiently large n. Hence the sequence of processes $\{G_n(t), t \ge 0\}$, $n \in \mathbb{N}$, is dense by the density criteria 15.5 and 12.3 of [5].

Now we are going to prove the following three auxiliary results and then use them to derive the statement of Theorem 2. Put

$$M_k^{(n)} = \sum_{j=1}^{X_{k-1}^{(n)}} \left(\xi_{k,j}^{(n)} - m_n\right) + \varepsilon_k^{(n)} - \lambda_k, \qquad k = 1, 2, \dots$$

Denote by $F_k^{(n)}$ the σ -algebra generated by random variables $\{X_0^{(n)}, X_1^{(n)}, \dots, X_k^{(n)}\}$. It is clear that $\{M_k^{(n)}, k \geq 0\}$ is a martingale-difference with respect to the flow of σ -algebras $F_k^{(n)}, k \geq 0$.

Lemma 1. The representation

$$W_n(t) = \left[d_n (1 - m_n)\right]^{-1} \left(\widetilde{M}_n^{(1)}(t) - m_n \widetilde{M}_n^{(2)}(t)\right)$$

holds, where

$$\begin{split} W_n(t) &= \left(d_n \sqrt{n}\,\right)^{-1} \left(Z_n(t) - \mathsf{E} Z_n(t)\right), \\ \widetilde{M}_n^{(1)}(t) &= n^{-1/2} \sum_{j=1}^{[nt]} M_j^{(n)}, \qquad \widetilde{M}_n^{(2)}(t) = n^{-1/2} \sum_{j=1}^{[nt]} m_n^{[nt]-j} M_j^{(n)}. \end{split}$$

Proof of Lemma 1. The variable $X_k^{(n)}$ is represented as

$$X_k^{(n)} = m_n X_{k-1}^{(n)} + \lambda_n + M_k^{(n)}, \qquad k = 1, 2, \dots,$$

in view of equality (1), whence $\mathsf{E} X_k^{(n)} = m_n \mathsf{E} X_{k-1}^{(n)} + \lambda_n, \ k = 1, 2, \dots$. Therefore the random variables $X_k^{(n)} - \mathsf{E} X_k^{(n)}, \ k \geq 0$, satisfy the recurrence equation

$$X_k^{(n)} - \mathsf{E} X_k^{(n)} = m_n \left(X_{k-1}^{(n)} - \mathsf{E} X_{k-1}^{(n)} \right) + M_k^{(n)}, \qquad k = 1, 2, \dots$$

The solution of the latter recurrence equation is given by

$$X_k^{(n)} - \mathsf{E} X_k^{(n)} = \sum_{i=1}^k m_n^{k-j} M_j^{(n)}, \qquad k = 1, 2, \dots$$

Summing up the latter equalities with respect to k from 1 to [nt] and normalizing the result appropriately, we complete the proof of the lemma.

Lemma 2. If assumptions (1)–(3) of Theorem 2 hold, then

$$\widetilde{M}_n^{(2)}(t) \to 0 \quad as \ n \to \infty$$

in the Skorokhod space $D[0, \infty)$.

Proof of Lemma 2. It is easy to see that

(5)
$$n^{-1} \sum_{j=1}^{[nt]} m_n^{2([nt]-1)} \mathsf{E}\left(\left(M_k^{(n)}\right)^2 / F_{j-1}^{(n)}\right) \\ = \frac{\sigma_n^2}{n} \sum_{i=1}^{[nt]} m_n^{2([nt]-1)} X_{j-1}^{(n)} + \frac{b_n^2}{n} \cdot \frac{1 - m_n^{2[nt]}}{1 - m_n^2}.$$

By assumptions (1)–(3) of Theorem 2 and by using relation (2) we get

$$\frac{b_n^2}{n} \cdot \frac{1-m_n^{2[nt]}}{1-m_n^2} \sim \frac{b^2}{2|\alpha|} \cdot \frac{d_n}{n} \to 0, \qquad \frac{\sigma_n^2}{n} \sum_{j=1}^{[nt]} m_n^{2([nt]-j)} \mathsf{E} X_{j-1}^{(n)} \sim \frac{\lambda \sigma^2}{2\alpha^2} \cdot \frac{d_n}{n} \to 0$$

as $n \to \infty$. This together with (5) implies that

$$n^{-1}\sum_{j=1}^{[nt]} m_n^{2([nt]-j)} \mathsf{E}\left(\left(M_j^{(n)}\right)^2/F_{j-1}^{(n)}\right) \stackrel{\mathsf{P}}{\longrightarrow} 0 \quad \text{as } n \to \infty.$$

Then

$$n^{-1}\sum_{j=1}^{[nt]}m_n^{2([nt]-j)}\mathsf{E}\left(\left(M_j^{(n)}\right)^2I\left(m_n^{[nt]-j}\left|M_j^{(n)}\right|>\varepsilon\sqrt{n}\right)/F_{j-1}^{(n)}\right)\overset{\mathsf{P}}{\longrightarrow}0$$

as $n \to \infty$. Therefore all the assumptions of Theorem 7.1.11 of [6] hold, and we complete the proof of Lemma 2.

Lemma 3. Assume that all the assumptions of Theorem 2 hold. Then the weak convergence

(6)
$$\widetilde{M}_n^{(1)} \to \left(|\alpha|^{-1} \lambda \sigma^2 + b^2 \right)^{1/2} W \quad as \ n \to \infty$$

holds in the Skorokhod space $D[0, \infty)$.

Proof of Lemma 3. Since the sequence $(M_k^{(n)}, F_k^{(n)})$, $k \ge 1$, is a martingale-difference, Theorem 7.1.11 of [6] implies that we only need to show that

(7)
$$n^{-1} \sum_{j=1}^{[nt]} \mathsf{E}\left(\left(M_j^{(n)}\right)^2 / F_{j-1}^{(n)}\right) \stackrel{\mathsf{P}}{\longrightarrow} \left(|\alpha|^{-1} \lambda \sigma^2 + b^2\right) t$$

and that, for all $\varepsilon > 0$,

(8)
$$R_n(\varepsilon,t) = n^{-1} \sum_{j=1}^{[nt]} \mathsf{E}\left(\left(M_j^{(n)}\right)^2 I\left(\left|M_j^{(n)}\right| > \varepsilon\sqrt{n}\right) / F_{j-1}^{(n)}\right) \stackrel{\mathsf{P}}{\longrightarrow} 0$$

as $n \to \infty$. Relation (7) follows in view of

$$\mathsf{E}\left(\left(M_{j}^{(n)}\right)^{2}/F_{k}^{(n)}\right) = \sigma_{n}^{2}X_{k-1}^{(n)} + b_{n}^{2},$$

Theorem 1, and assumptions (1)–(3) of Theorem 2.

Now we pass to the proof of relation (8). Put

$$N_{n,k}^{(1)} = \sum_{i=1}^{X_{k-1}^{(n)}} (\xi_{k,j} - m_n), \qquad N_{n,k}^{(2)} = \varepsilon_k^{(n)} - \lambda_n.$$

Note that

(9)
$$I(|X+Y| > 2\varepsilon) \le I(|X| > \varepsilon) + I(|Y| > \varepsilon)$$

for all random variables X and Y and for every $\varepsilon > 0$. This together with the elementary inequality $(a+b)^2 \le 2(a^2+b^2)$ implies that

$$R_n(2\varepsilon, t) \le 2\sum_{i,j=1}^2 R_{i,j}^{(n)}(\varepsilon, t)$$

with probability one, since $M_k^{(n)} = N_{n,k}^{(1)} + N_{n,k}^{(2)}$, where

$$R_{i,j}^{(n)}(\varepsilon,t) = n^{-1} \sum_{k=1}^{\lfloor nt \rfloor} \mathsf{E}\left(\left(N_{n,k}^{(i)}\right)^2 I\left(\left|N_{n,k}^{(j)}\right| > \varepsilon \sqrt{n}\right) / F_{k-1}^{(n)}\right), \qquad i,j=1,2.$$

Therefore relation (8) follows if

(10)
$$R_{i,j}^{(n)}(\varepsilon,t) \stackrel{\mathsf{P}}{\longrightarrow} 0 \quad \text{as } n \to \infty$$

for i, j = 1, 2 and for all t > 0, $\varepsilon > 0$.

First we treat the case of i = j = 1 in (10). We have $\left(N_{n,k}^{(1)}\right)^2 = J_k^{(n)} + L_k^{(n)}$, where

$$J_k^{(n)} = \sum_{j=1}^{X_{k-1}^{(n)}} \left(\xi_{k,j}^{(n)} - m_n \right)^2, \qquad L_k^{(n)} = 2 \sum_{i=1}^{X_{k-1}^{(n)}} \sum_{j=i+1}^{X_{k-1}^{(n)}} \left(\xi_{k,i}^{(n)} - m_n \right) \left(\xi_{k,j}^{(n)} - m_n \right).$$

Now we introduce the random variables

$$S_{k,j}^{(n)} = N_{n,k}^{(1)} - \left(\xi_{k,j}^{(n)} - m_n\right), \qquad j = 1, 2, \dots, X_{k-1}^{(n)}.$$

Using inequality (9) we get

$$n^{-1} \sum_{k=1}^{[nt]} \mathsf{E} \left(J_{k}^{(n)} I\left(\left| N_{n,k}^{(1)} \right| > 2\varepsilon\sqrt{n} \right) / F_{k-1}^{(n)} \right)$$

$$\leq n^{-1} \sum_{k=1}^{[nt]} \mathsf{E} \left(\sum_{j=1}^{X_{k-1}^{(n)}} \left(\xi_{k,j}^{(n)} - m_{n} \right)^{2} I\left(\left| \xi_{k,j}^{(n)} - m_{n} \right| > \varepsilon\sqrt{n} \right) / F_{k-1}^{(n)} \right)$$

$$+ n^{-1} \sum_{k=1}^{[nt]} \mathsf{E} \left(\sum_{j=1}^{X_{k-1}^{(n)}} \left(\xi_{k,j}^{(n)} - m_{n} \right)^{2} I\left(\left| S_{k,j}^{(n)} \right| > \varepsilon\sqrt{n} \right) / F_{k-1}^{(n)} \right)$$

$$= A_{n} + B_{n}.$$

Since the random variables $\xi_{k,j}^{(n)}$, $k,j \in \mathbb{N}$, are independent and identically distributed, assumptions (3) in Theorem 2 and in Theorem 1 yield,

$$(12) \qquad A_n \overset{\mathsf{P}}{\sim} |\alpha|^{-1} \lambda t d_n \mathsf{E} \left(\left(\xi_{1,1}^{(n)} - m_n \right)^2 I \left(\left| \xi_{1,1}^{(n)} - m_n \right| > \varepsilon \sqrt{n} \right) \right) \to 0 \quad \text{as } n \to \infty$$

for all t > 0, where $\varphi \stackrel{\mathsf{P}}{\sim} \psi$ means that $\varphi \psi^{-1} \stackrel{\mathsf{P}}{\longrightarrow} 1$ as $n \to \infty$. Next we consider B_n . Since the random variables $\xi_{k,j}^{(n)} - m_n$ and $S_{k,j}^{(n)}$ are independent, we apply the Chebyshev inequality for conditional probabilities to make sure that

(13)
$$B_n \le \frac{4}{\varepsilon^2 n^2} \sigma_n^4 \sum_{k=1}^{[nt]} \left(X_k^{(n)} \right)^2$$

with probability one. Applying Lemma 2.1 of [2] we obtain

(14)
$$\sigma_n^4 n^{-2} \sum_{k=1}^{[nt]} \mathsf{E}\left(X_k^{(n)}\right)^2 \le 2\alpha^{-2} \left(d_n \sigma_n^2\right)^2 \left(|\alpha| b_n^2 + \lambda_n^2\right) [nt] n^{-2} \to 0$$

as $n \to \infty$. This together with (13) and Markov's inequality implies that

$$B_n \stackrel{\mathsf{P}}{\longrightarrow} 0 \quad \text{as } n \to \infty.$$

The latter relation together with (12) leads to

(15)
$$n^{-1} \sum_{k=1}^{\lfloor nt \rfloor} \mathsf{E}\left(J_k^{(n)} I\left(\left|N_{n,k}^{(1)}\right| > \varepsilon \sqrt{n}\right) / F_{k-1}^{(n)}\right) \stackrel{\mathsf{P}}{\longrightarrow} 0 \quad \text{as } n \to \infty$$

in view of (11). Next, we apply the Cauchy–Bunyakovskii and Chebyshev inequalities for conditional probabilities and conclude that

$$(16) \qquad n^{-1} \sum_{k=1}^{[nt]} \mathsf{E}\left(\left|L_k^{(n)}\right| I\left(\left|N_{n,k}^{(1)}\right| > \varepsilon\sqrt{n}\right) / F_{k-1}^{(n)}\right) \leq 2^{1/2} \varepsilon^{-1} n^{-3/2} \sigma_n^3 \sum_{k=1}^{[nt]} \left(X_{k-1}^{(n)}\right)^2$$

with probability one. Similarly to inequality (14),

$$(nd_n)^{-3/2} \sum_{k=1}^{[nt]} \mathsf{E}\left(X_{k-1}^{(n)}\right)^2 \le 2 \left(n^{-1}d_n\right)^{1/2} \alpha^{-2} \left(|\alpha|b_n^2 + \lambda_n^2\right) t \to 0 \quad \text{as } n \to \infty.$$

This together with (16) and (15) implies (10) for the case of i = j = 1.

Next we consider the case of i = 1, j = 2. Since $N_{n,k}^{(1)}$ and $N_{n,k}^{(2)}$ are independent, the Chebyshev inequality for conditional probabilities and Theorem 1 imply that

$$R_{1,2}^{(n)}(\varepsilon,t) \leq \frac{b_n^2 \sigma_n^2}{\varepsilon^2 n^2} \sum_{l=1}^{[nt]} X_{k-1}^{(n)} \stackrel{\mathsf{P}}{\sim} \frac{\lambda \sigma^2 b^2}{\varepsilon^2 |\alpha|} t \cdot \frac{1}{n} \to 0 \quad \text{as } n \to \infty.$$

Similarly we have

$$R_{2,1}^{(n)}(\varepsilon,t) \stackrel{\mathsf{P}}{\longrightarrow} 0 \quad \text{as } n \to \infty.$$

Relation (10) follows directly from assumption (4) in the case of i = j = 2, since the random variables $\varepsilon_k^{(n)}$, $k \in \mathbb{N}$, are independent and identically distributed. The proof of Lemma 3 is completed.

The proof of Theorem 2 follows directly from Lemmas 1–3 and Theorem 4.1 of [5].

4. Examples

Below are two examples of sequences of branching processes with immigration for which assumptions of Theorems 1 and 2 hold.

Example 1. Let $\xi_{1,1}^{(n)}$ have the Bernoulli distribution with success probability p_n such that $p_n = 1 + \alpha d_n^{-1} + o\left(d_n^{-1}\right)$ as $n \to \infty$, where $\alpha < 0$ is a fixed number, the immigration process is governed by a Poisson law with parameter $\lambda_n \geq 0$, and there exists a finite nonnegative number λ such that $\lambda_n \to \lambda$ as $n \to \infty$. It is easy to check that all the assumptions of Theorems 1 and 2 hold. In this case,

$$Z(t) = |\alpha|^{-1} \lambda t, \qquad Y(t) = |\alpha|^{-1} (2\lambda)^{1/2} W(t).$$

If both $\xi_{1,1}^{(n)}$ and $\varepsilon_1^{(n)}$ have the Bernoulli distribution with the same success probability $p_n = 1 + \alpha d_n^{-1}$, $\alpha < 0$, then

$$Z(t) = |\alpha|^{-1}t, \qquad Y(t) = |\alpha|^{-1}W(t).$$

Example 2. Let $\xi_{1,1}^{(n)}$ assume three values 0, 1, and 2 with probabilities $2d_n^{-1}$, $1-3d_n^{-1}$, and d_n^{-1} , respectively, and let the random variable $\varepsilon_1^{(n)}$ have the geometric distribution with success probability p_n , that is,

$$P\left(\varepsilon_1^{(n)} = k\right) = p_n(1 - p_n)^{k-1}, \qquad k = 1, 2, \dots$$

We have

$$m_n = 1 - d_n^{-1}, \qquad \sigma_n^2 = d_n^{-1}(3 - d_n^{-1}), \qquad \lambda_n = p_n^{-1}, \qquad b_n^2 = (1 - p_n)p_n^{-2}.$$

Let $p_n \to p > 0$. It is clear that assumptions (1), (2), and (3) of Theorems 1 and 2 hold and moreover that

$$\alpha = -1,$$
 $\sigma^2 = 3,$ $\lambda = p^{-1},$ $b^2 = (1-p)p^{-2}.$

Assumptions (4) and (5) of Theorem 2 can also be easily checked. In the case under consideration,

$$Z(t) = p^{-1}t,$$
 $Y(t) = (p^{-1}(2+p^{-1}))^{1/2}W(t).$

Acknowledgment

The author expresses his appreciation to a referee who pointed out some shortcomings in the manuscript. The comments made by the referee improved the style of this paper.

BIBLIOGRAPHY

- [1] A. G. Pakes, Some limit theorems for the total progeny of a branching process, Adv. Appl. Probab. 3 (1971), no. 1, 176–192. MR0283892
- [2] A. V. Karpenko and S. V. Nagaev, Limit theorems for the complete number of descendants in a Galton-Watson branching process, Teor. Veroyatnost. Primenen. 38 (1993), no. 3, 503-528; English transl. in Theory Probab. Appl. 38 (1993), no. 3, 433-455; MR1404661
- [3] T. N. Sriram, Invalidity of bootstrap for critical branching process with immigration, Ann. Statist. 22 (1994), 1013–1023. MR1292554
- [4] M. Ispany, G. Pap, and M. C. A. Van Zuijlen, Fluctuation limit of branching processes with immigration and estimation of the mean, Adv. Appl. Probab. 37 (2005), 523–528. MR2144565
- [5] P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR0233396
- [6] R. Sh. Liptser and A. N. Shiryayev, Theory of Martingales, "Nauka", Moscow, 1986; English transl. Kluwer Academic Publishers Group, Mathematics and its Applications (Soviet Series), vol. 49, Dordrecht, 1989. MR1022664
- [7] D. S. Silvestrov, Limit Theorems for Composite Random Functions, "Vyshcha Shkola", Kiev, 1974.(Russian) MR0415731
- [8] C. Z. Wei and J. Winicki, Some asymptotic results for the branching process with immigration, Stochastic Process. Appl. 31 (1989), 261–282. MR998117
- [9] Ya. M. Khusanbaev, On the rate of convergence in a limit theorem for branching processes with immigration, Sibirsk. Matem. Zh. 55 (2014), no. 1, 221–227. English transl. in Sib. Math. J. 55 (2014), no. 1, 178–184. MR3220599
- V. I. Romanovskiy Institute of Mathematics, 81, Mirzo Ulugbek street, Tashkent, 100041, Uzbekistan

Email address: yakubjank@mail.ru

Received 16/JAN/2017 Translated by S. V. KVASKO