Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	18 October 2022
Team ID	PNT2022TMID00432
Project Name	University Admit Eligibility Predictor
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional User Story User Story / Task Requirement (Epic) Number		Story Points	Priority	Team Members	
Sprint-1	Data Collection	USN-1	Download the dataset for admission prediction from kaggle	3	Low	Arthi Charen SD
Sprint-1	Data pre-processing	USN-2	Converting the dataset into clean dataset, 4 Media making it suitable for ML model.		Medium	Dharani P
Sprint-1	Analysing the data	USN-3	Performing analysis on the dataset such as 5 High classification, clustering etc;		High	Himangi N
Sprint-1	Data Visualization	USN-4	Carry out graphical representation of 4 information and data by using data visualization tools		Medium	Arthi Charen SD
Sprint-2	Splitting the data into dependent and independent variable	USN-5	Mathematical model to divide the observations into dependent/ independent features in order to determine the causal effect.	3	Low	Himangi N
Sprint 2	Splitting the data into train and test data	USN-6	Splitting the cleaned data into two different sets for training and testing	4	Medium	Arthi Charen SD
Sprint 2	Train and test the model	USN-7	Training and testing the model using regression machine learning algorithms	4	High	Janani U
Sprint 2	Model Evaluation	USN-8	Evaluation of the model using performance 5 Medium metrics		Medium	Dharani P
Sprint 3	Prediction of the model	USN-9	Prediction and perform performance metrics to the model	· · · · · · · · · · · · · · · · · · ·		Arthi Charen SD
Sprint 3	Save the model	USN-10	Save the Machine Learning model to the local drive.	3	Medium	Dharani P

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint 3	Register for IBM Cloud	USN-11	Create an IBM account to deploy the model	4	Medium	Himangi N
Sprint 3	Train Machine Learning model on IBM Watson	USN-12	Training, testing and predicting the model using IBM Watson	predicting the model using 5 High		Janani U
Sprint 4	Build an HTML Code	USN-12	In order to build the UI for the web-based application	5	Medium	Arthi Charen SD
Sprint 4	Design with CSS Code	USN-13	Design the HTML code using CSS with the help of style tag.	4 Low		Himangi N
Sprint 4	Integrate it with Flask-Python	USN-14	Integrating the UI web pages with Flask using python to have a localhost			Dharani P
Sprint 4	Deployment in IBM cloud	USN-15	Deploying the final model created in the IBM Cloud	5	High	Janani U

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	6 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	8 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	15 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

https://www.visual-paradigm.com/scrum/scrum-burndown-chart/

https://www.atlassian.com/agile/tutorials/burndown-charts

Reference:

https://www.atlassian.com/agile/project-management

https://www.atlassian.com/agile/tutorials/how-to-do-scrum-with-jira-software

https://www.atlassian.com/agile/tutorials/epics

https://www.atlassian.com/agile/tutorials/sprints

https://www.atlassian.com/agile/project-management/estimation

https://www.atlassian.com/agile/tutorials/burndown-charts