Import Libraries

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
import itertools
from collections import Counter
import sklearn.metrics as metrics
from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay
```

Import Data

```
In [2]:
```

```
df = pd.read_csv('Fraud.csv')
df
```

Out[2]:

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDe	
0	1	PAYMENT	9839.64	C1231006815	170136.00	160296.36	M19797871	
1	1	PAYMENT	1864.28	C1666544295	21249.00	19384.72	M204428222	
2	1	TRANSFER	181.00	C1305486145	181.00	0.00	C5532640(
3	1	CASH_OUT	181.00	C840083671	181.00	0.00	C389970	
4	1	PAYMENT	11668.14	C2048537720	41554.00	29885.86	M12307017(
					•••			
6362615	743	CASH_OUT	339682.13	C786484425	339682.13	0.00	C77691929	
6362616	743	TRANSFER	6311409.28	C1529008245	6311409.28	0.00	C18818418	
6362617	743	CASH_OUT	6311409.28	C1162922333	6311409.28	0.00	C136512589	
6362618	743	TRANSFER	850002.52	C1685995037	850002.52	0.00	C20803885	
6362619	743	CASH_OUT	850002.52	C1280323807	850002.52	0.00	C87322118	
6362620 rows × 11 columns								
\prec								

Data Understanding

```
In [3]:
```

```
df.shape
```

Out[3]:

(6362620, 11)

In [4]:

```
df.isnull().sum()
```

Out[4]:

step	0
type	0
amount	0
nameOrig	0
oldbalanceOrg	0
newbalanceOrig	0
nameDest	0
oldbalanceDest	0
newbalanceDest	0
isFraud	0
isFlaggedFraud	0
dtype: int64	

In [5]:

df.dtypes

Out[5]:

step	int64
type	object
amount	float64
nameOrig	object
oldbalanceOrg	float64
newbalanceOrig	float64
nameDest	object
oldbalanceDest	float64
newbalanceDest	float64
isFraud	int64
isFlaggedFraud	int64
dtype: object	

In [6]:

df.head(100)

Out[6]:

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	old
0	1	PAYMENT	9839.64	C1231006815	170136.0	160296.36	M1979787155	
1	1	PAYMENT	1864.28	C1666544295	21249.0	19384.72	M2044282225	
2	1	TRANSFER	181.00	C1305486145	181.0	0.00	C553264065	
3	1	CASH_OUT	181.00	C840083671	181.0	0.00	C38997010	
4	1	PAYMENT	11668.14	C2048537720	41554.0	29885.86	M1230701703	
95	1	TRANSFER	710544.77	C835773569	0.0	0.00	C1359044626	
96	1	TRANSFER	581294.26	C843299092	0.0	0.00	C1590550415	
97	1	TRANSFER	11996.58	C605982374	0.0	0.00	C1225616405	
98	1	PAYMENT	2875.10	C1412322831	15443.0	12567.90	M1651262695	
99	1	PAYMENT	8586.98	C1305004711	3763.0	0.00	M494077446	

100 rows × 11 columns

In [7]:

df.tail(100)

Out[7]:

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDe	
6362520	735	TRANSFER	417103.68	C336307904	417103.68	0.0	C115591528	
6362521	735	CASH_OUT	417103.68	C1450763584	417103.68	0.0	C137783051	
6362522	735	TRANSFER	92735.71	C1351323617	92735.71	0.0	C41372255	
6362523	735	CASH_OUT	92735.71	C786761311	92735.71	0.0	C57018881	
6362524	735	TRANSFER	123146.28	C1625883009	123146.28	0.0	C91815439	
6362615	743	CASH_OUT	339682.13	C786484425	339682.13	0.0	C77691929	
6362616	743	TRANSFER	6311409.28	C1529008245	6311409.28	0.0	C188184183	
6362617	743	CASH_OUT	6311409.28	C1162922333	6311409.28	0.0	C136512589	
6362618	743	TRANSFER	850002.52	C1685995037	850002.52	0.0	C208038851	
6362619	743	CASH_OUT	850002.52	C1280323807	850002.52	0.0	C87322118	
100 rows × 11 columns								

Data Preparation

```
In [8]:
df.isnull().values.any()
Out[8]:
False
In [9]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6362620 entries, 0 to 6362619
Data columns (total 11 columns):
 #
     Column
                     Dtype
    ----
0
                     int64
     step
 1
     type
                     obiect
 2
                     float64
     amount
 3
     nameOrig
                     object
 4
                     float64
     oldbalanceOrg
 5
     newbalanceOrig float64
 6
     nameDest
                     object
 7
     oldbalanceDest float64
 8
     newbalanceDest float64
 9
     isFraud
                     int64
10 isFlaggedFraud int64
dtypes: float64(5), int64(3), object(3)
memory usage: 534.0+ MB
In [10]:
legit = len(df[df.isFraud == 0])
fraud = len(df[df.isFraud == 1])
legit_percent = (legit / (fraud + legit)) * 100
fraud percent = (fraud / (fraud + legit)) * 100
print("Number of Legit transactions: ", legit)
print("Number of Fraud transactions: ", fraud)
print("Percentage of Legit transactions: {:.4f} %".format(legit percent))
print("Percentage of Fraud transactions: {:.4f} %".format(fraud percent))
Number of Legit transactions: 6354407
Number of Fraud transactions:
Percentage of Legit transactions: 99.8709 %
Percentage of Fraud transactions: 0.1291 %
```

Here percentage of legit transactions are 99.8% where as percentage of fraud transactions are 0.13%

So, methods for imbalanced data are decision tree and random forest

In [11]:

```
X = df[df['nameDest'].str.contains('M')]
X.head()
```

Out[11]:

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbala
0	1	PAYMENT	9839.64	C1231006815	170136.0	160296.36	M1979787155	_
1	1	PAYMENT	1864.28	C1666544295	21249.0	19384.72	M2044282225	
4	1	PAYMENT	11668.14	C2048537720	41554.0	29885.86	M1230701703	
5	1	PAYMENT	7817.71	C90045638	53860.0	46042.29	M573487274	
6	1	PAYMENT	7107.77	C154988899	183195.0	176087.23	M408069119	
4								•

Data Visualization

Correlation Heatmap

In [12]:

```
corr = df.corr()

plt.figure(figsize=(10,6))
sns.heatmap(corr,annot=True)
plt.show()
```


Number of legit and Fraud Transactions

In [13]:

```
plt.figure(figsize=(5,10))
labels = ["Legit", "Fraud"]
count_classes = df.value_counts(df['isFraud'], sort= True)
count_classes.plot(kind = "bar", rot = 0)
plt.title("Transaction Visualization")
plt.ylabel("Count")
plt.xticks(range(2), labels)
plt.show()
```


In [14]:

```
new_df = df.copy()
new_df.head()
```

Out[14]:

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldba
0	1	PAYMENT	9839.64	C1231006815	170136.0	160296.36	M1979787155	
1	1	PAYMENT	1864.28	C1666544295	21249.0	19384.72	M2044282225	
2	1	TRANSFER	181.00	C1305486145	181.0	0.00	C553264065	
3	1	CASH_OUT	181.00	C840083671	181.0	0.00	C38997010	
4	1	PAYMENT	11668.14	C2048537720	41554.0	29885.86	M1230701703	

Label Encoding

In [15]:

```
objList = new_df.select_dtypes(include = "object").columns
print (objList)
```

Index(['type', 'nameOrig', 'nameDest'], dtype='object')

In [16]:

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

for feat in objList:
    new_df[feat] = le.fit_transform(new_df[feat].astype(str))

print (new_df.info())
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6362620 entries, 0 to 6362619
Data columns (total 11 columns):
```

Column Dtype -----0 step int64 1 int32 type 2 amount float64 int32 3 nameOrig oldbalanceOrg 4 float64 5 newbalanceOrig float64

6 nameDest int32 7 oldbalanceDest float64 8 newbalanceDest float64

9 isFraud int64 10 isFlaggedFraud int64

dtypes: float64(5), int32(3), int64(3)

memory usage: 461.2 MB

None

In [17]:

```
new_df.head()
```

Out[17]:

	step	type	amount	nameOrig	oldbalanceOrg	newbalanceOrig	nameDest	oldbalanceDest	nev
0	1	3	9839.64	757869	170136.0	160296.36	1662094	0.0	
1	1	3	1864.28	2188998	21249.0	19384.72	1733924	0.0	
2	1	4	181.00	1002156	181.0	0.00	439685	0.0	
3	1	1	181.00	5828262	181.0	0.00	391696	21182.0	
4	1	3	11668.14	3445981	41554.0	29885.86	828919	0.0	
4									•

MultiColinearity

In [18]:

```
from statsmodels.stats.outliers_influence import variance_inflation_factor

def calc_vif(df):
    # Calculating VIF
    vif = pd.DataFrame()
    vif["variables"] = df.columns
    vif["VIF"] = [variance_inflation_factor(df.values, i) for i in range(df.shape[1])]
    return(vif)

calc_vif(new_df)
```

Out[18]:

	variables	VIF
0	step	2.791610
1	type	4.467405
2	amount	4.149312
3	nameOrig	2.764234
4	oldbalanceOrg	576.803777
5	newbalanceOrig	582.709128
6	nameDest	3.300975
7	oldbalanceDest	73.349937
8	newbalanceDest	85.005614
9	isFraud	1.195305
10	isFlaggedFraud	1.002587

In [19]:

```
new_df['Actual_amount_orig'] = new_df.apply(lambda x: x['oldbalanceOrg'] - x['newbalanceOri
new_df['Actual_amount_dest'] = new_df.apply(lambda x: x['oldbalanceDest'] - x['newbalanceDe
new_df['TransactionPath'] = new_df.apply(lambda x: x['nameOrig'] + x['nameDest'],axis=1)

new_df = new_df.drop(['oldbalanceOrg','newbalanceOrig','oldbalanceDest','newbalanceDest','s
calc_vif(new_df)
```

Out[19]:

	variables	VIF
0	type	2.687803
1	amount	3.818902
2	isFraud	1.184479
3	isFlaggedFraud	1.002546
4	Actual_amount_orig	1.307910
5	Actual_amount_dest	3.754335
6	TransactionPath	2.677167

In [20]:

```
corr=new_df.corr()

plt.figure(figsize=(10,6))
sns.heatmap(corr,annot=True)
plt.show()
```


How did you select variables to be included in the model? Using the VIF values and correlation heatmap. We

just need to check if there are any two attributes highly correlated to each other and then drop the one which is less correlated to the isFraud Attribute.

Model Buidling

In [21]:

```
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
import itertools
from collections import Counter
import sklearn.metrics as metrics
from sklearn.metrics import classification_report, confusion_matrix, ConfusionMatrixDisplay
```

Normalizing Amount

```
In [22]:
```

```
scaler = StandardScaler()
new_df["NormalizedAmount"] = scaler.fit_transform(new_df["amount"].values.reshape(-1, 1))
new_df.drop(["amount"], inplace= True, axis= 1)

Y = new_df["isFraud"]
X = new_df.drop(["isFraud"], axis= 1)
```

Train-test Split

```
In [23]:
```

```
(X_train, X_test, Y_train, Y_test) = train_test_split(X, Y, test_size= 0.3, random_state= 4
print("Shape of X_train: ", X_train.shape)
print("Shape of X_test: ", X_test.shape)
Shape of X_train: (4453834, 6)
```

```
Shape of X_train: (4453834, 6)
Shape of X_test: (1908786, 6)
```

Model Training

Decison Tree

```
In [24]:
```

```
decision_tree = DecisionTreeClassifier()
decision_tree.fit(X_train, Y_train)

Y_pred_dt = decision_tree.predict(X_test)
decision_tree_score = decision_tree.score(X_test, Y_test) * 100
```

Random Forest

```
In [ ]:
```

```
random_forest = RandomForestClassifier(n_estimators= 100)
random_forest.fit(X_train, Y_train)

Y_pred_rf = random_forest.predict(X_test)
random_forest_score = random_forest.score(X_test, Y_test) * 100
```

Model Evaluation

```
In [26]:
```

```
print("Decision Tree Score: ", decision_tree_score)
print("Random Forest Score: ", random_forest_score)
```

Decision Tree Score: 99.92319725731433 Random Forest Score: 99.95871721607347

In [27]:

False Positives: 64
True Negatives: 1906287
False Negatives: 724

TP(Decision Tree) ~ TP(Random Forest) so no competetion here.

FP(Decision Tree) >> FP(Random Forest) - Random Forest has an edge

TN(Decision Tree) < TN(Random Forest) - Random Forest is better here too

FN(Decision Tree) ~ FN(Random Forest)

In [28]:

```
# confusion matrix - DT
confusion_matrix_dt = confusion_matrix(Y_test, Y_pred_dt.round())
print("Confusion Matrix - Decision Tree")
print(confusion_matrix_dt,)
print("-----
# confusion matrix - RF
confusion_matrix_rf = confusion_matrix(Y_test, Y_pred_rf.round())
print("Confusion Matrix - Random Forest")
print(confusion_matrix_rf)
Confusion Matrix - Decision Tree
[[1905602
           749]
    717
           1718]]
Confusion Matrix - Random Forest
[[1906287
           64]
     724
           1711]]
```

In [29]:

```
# classification report - DT
classification_report_dt = classification_report(Y_test, Y_pred_dt)
print("Classification Report - Decision Tree")
print(classification_report_dt)
print("-----
# classification report - RF
classification_report_rf = classification_report(Y_test, Y_pred_rf)
print("Classification Report - Random Forest")
print(classification_report_rf)
Classification Report - Decision Tree
            precision
                      recall f1-score
                                        support
                1.00
                         1.00
                                  1.00
                                        1906351
         1
                0.70
                         0.71
                                  0.70
                                          2435
   accuracy
                                  1.00
                                        1908786
  macro avg
                0.85
                         0.85
                                  0.85
                                        1908786
weighted avg
                1.00
                         1.00
                                  1.00
                                        1908786
______
Classification Report - Random Forest
            precision
                      recall f1-score
                                        support
         0
                1.00
                         1.00
                                  1.00
                                        1906351
                0.96
                         0.70
                                  0.81
                                          2435
   accuracy
                                  1.00
                                        1908786
```

0.91

1.00

1908786

1908786

0.98

1.00

macro avg

weighted avg

0.85

1.00

In [30]:

```
disp = ConfusionMatrixDisplay(confusion_matrix=confusion_matrix_dt)
disp.plot()
plt.title('Confusion Matrix - DT')
plt.show()

# visualising confusion matrix - RF
disp = ConfusionMatrixDisplay(confusion_matrix=confusion_matrix_rf)
disp.plot()
plt.title('Confusion Matrix - RF')
plt.show()
```


In [31]:

```
# AUC ROC - DT
# calculate the fpr and tpr for all thresholds of the classification
fpr, tpr, threshold = metrics.roc_curve(Y_test, Y_pred_dt)
roc auc = metrics.auc(fpr, tpr)
plt.title('ROC - DT')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
# AUC ROC - RF
# calculate the fpr and tpr for all thresholds of the classification
fpr, tpr, threshold = metrics.roc_curve(Y_test, Y_pred_rf)
roc_auc = metrics.auc(fpr, tpr)
plt.title('ROC - RF')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
```


Conclusion

We have seen that Accuracy of both Random Forest and Decision Tree is equal, although teh precision of Random Forest is more. In a fraud detection model, Precision is highly important because rather than predicting normal transactions correctly we want Fraud transactions to be predicted correctly and Legit to be left off. If either of the 2 reasons are not fulfiiled we may catch the innocent and leave the culprit. This is also one of the reason why Random Forest and Decision Tree are used unstead of other algorithms.

Also the reason I have chosen this model is because of highly unbalanced dataset (Legit: Fraud :: 99.87:0.13). Random forest makes multiple decision trees which makes it easier (although time taking) for model to understand the data in a simpler way since Decision Tree makes decisions in a boolean way.

Models like XGBoost, Bagging, ANN, and Logistic Regression may give good accuracy but they won't give good precision and recall values.

Q-What are the key factors that predict fraudulent customer?

The source of request is secured or not? Is the name of organisation asking for money is legit or not? Transaction history of vendors.

- 1.Use smart vertified apps only.
- 2.Browse through secured websites.
- 3.Use secured internet connections (USE VPN).
- 4. Keep your mobile and laptop security updated.
- 5.Don't respond to unsolicited calls/SMS(s/E-mails.
- 6.If you feel like you have been tricked or security compromised, contact your bank immidiately.

Q-Assuming these actions have been implemented, how would you determine if they work?

- 1.Bank sending E-statements.
- 2. Customers keeping a check of their account activity.
- 3. Always keep a log of your payments.