Heaps

Data Structures and Algorithms

Nanjing University, Fall 2021 郑朝栋

"Heap" as a data structure

In dictionary:

```
heap¹/hi:p/ • noun [countable]
Word origin

1 a large untidy pile of things:
a rubbish heap
```

- In computer science, a *heap* is a data structure that is used to represent a collection of "*somewhat* organized" items.
 - In fact, the word has other meanings in computer science...

Data structure

Binary Heap

- A binary heap is a complete binary tree, in which each node represents an item.
 - A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible.
- Values in the nodes satisfy heap-property.

Data structure

Binary Heap

We can use an array to represent a binary heap.

Obtaining parent and children are easy: • Parent of node $u: [idx_u/2]$ • Left child of $u: 2 \cdot idx_{ij}$ • Right child of $u: 2 \cdot idx_{ij} + 1$ All in O(1) time!

Common operations of

Binary Max-Heap

- Consider max-heap as an example. (Min-heap is similar.)
- Most common operations:
 - **HeapInsert:** insert an element into the heap. Runtime is O(1)
 - **HeapGetMax:** return the item with maximum value.
 - **HeapExtractMax:** remove the item with maximum value from the heap and return it.
- Other operations (which we'll see later)...

HeapInsert

Insert an item into a binary max-heap represented by an array.

HeapInsert

Insert an item into a binary max-heap represented by an array.

HeapInsert

Insert an item into a binary max-heap represented by an array.

10

• Simply put the item to the end of the array. $1 \frac{1}{16}$

 We need to maintain heap property after insertion: along the path to root, compare and swap. (Why?)

• Runtime is $O(|\alpha|n)$.

HeapInsert(x):

```
heap_size++
data[heap_size] = x
idx = heap_size
while (idx>1 and data[Floor(idx/2)]<data[idx])
Swap(data[Floor(idx/2)], data[idx])
idx = Floor(idx/2)
```

HeapExtractMax

Remove the maximum item from the heap and return it.

8

14

10

 Remove and return root is simple, but then what to do?!

Move the last item to the root!

 Again, we need to maintain the heap property: compare with children, swap with bigger one; do this recursively.

6

10

2

HeapExtractMax

Remove the maximum item from the heap and return it.

8

 Remove and return root is simple, but then what to do?!

Move the last item to the root!

 Again, we need to maintain the heap property: compare with children, swap with bigger one; do this recursively.

1	2	3	4	5	6	7	8	9
1	14	10	8	7	9	3	2	4

HeapExtractMax

Remove the maximum item from the heap and return it.

8

 Remove and return root is simple, but then what to do?!

Move the last item to the root!

 Again, we need to maintain the heap property: compare with children, swap with bigger one; do this recursively.

1	2	3	4	5	6	7	8	9
14	1	10	8	7	9	3	2	4

HeapExtractMax

Remove the maximum item from the heap and return it.

8

 Remove and return root is simple, but then what to do?!

Move the last item to the root!

 Again, we need to maintain the heap property: compare with children, swap with bigger one; do this recursively.

1	2	3	4	5	6	7	8	9
14	8	10	1	7	9	3	2	4

HeapExtractMax

Remove the maximum item from the heap and return it.

```
<u>HeapExtractMax():</u>
                                                        Runtime is O(\lg r)
max item = data[1]
data[1] = data[heap size--]
MaxHeapify(1)
return max item
MaxHeapify(idx):
idx I = 2*i, idx r = 2*i+1
idx^{-}max = (idx^{-}l <= heap size && data[idx_{-}l] > data[idx_{-}l]?
       idx l:idx
idx max = (idx r < = heap size && data[idx r] > data[idx max])?
       idx r:idx max
if (idx max != idx)
 Swap(data[idx max], data[idx])
 MaxHeapify(id\bar{x} max)
```

Priority Queue

Recall the Queue ADT represents a collection of items to which we can **add** items and **remove** the next item.

- Add(item): add item to the queue.
- Remove(): remove the next item y from queue, return The queuing discipline decides which item to be removed.
- First-in-first-out queue (FIFO Queue)
- Last-in-first-out queue (LIFO Queue, Stack)
- **Priority queue**: each item associated with a priority, Remove always deletes the item with max (or min) priority.

Priority Queue

- Use binary heap to implement priority queue
 - Add(item): HeapInsert(item)
 - Remove(): HeapExtractMax()
 - Other operations: GetMax(), UpdatePriority(item,val)
 - All these operations finish within $O(\lg n)$ time
- Applications of priority queues
 - Event simulation, scheduling, ...
 - Used in more sophisticated algorithms (and we'll see some of them)

HeapSort

HeapSort(data[1...n]): heap = BuildMaxHeap(data[1...n]) for i=n down to 2 cur_max = heap.HeapExtractMax() data[i] = cur_max Take an array and make it a max-heap.

- 1. Keep a copy of the root item
- 2. Remove last item and put it to root
- 3. Maintain heap property
- 4. Return the copy of the root item

- Place one item in the array to its final position.
- Place max item in current heap to its final position.
- Place i^{th} biggest item to position n-i+1.

HeapSort

HeapSort(data[1...n]): heap = BuildMaxHeap(data[1...n]) for i=n down to 2 cur_max = heap.HeapExtractMax() data[i] = cur_max

- 1. Keep a copy of the root item
- 2. Remove last item and put it to root
- 3. Maintain heap property
- 4. Return the copy of the root item

- Place one item in the array to its final position.
- Place max item in current heap to its final position.
- Place i^{th} biggest item to position n i + 1.

$$i = 6$$

1	2	3	4	5	6
9	8	10	1	7	9

HeapSort

HeapSort(data[1...n]): heap = BuildMaxHeap(data[1...n]) for i=n down to 2 cur_max = heap.HeapExtractMax() data[i] = cur_max

- 2. Remove last item and put it to root
- 3. Maintain heap property
- 4. Return the copy of the root item

i = 6

- Place one item in the array to its final position.
- Place max item in current heap to its final position.
- Place i^{th} biggest item to position n i + 1.

HeapSort

HeapSort(data[1...n]): heap = BuildMaxHeap(data[1...n]) for i=n down to 2 cur_max = heap.HeapExtractMax() data[i] = cur_max

- 2. Remove last item and put it to root
- 3. Maintain heap property
- 4. Return the copy of the root item

- Place one item in the array to its final position.
- Place max item in current heap to its final position.
- Place i^{th} biggest item to position n-i+1.

HeapSort

HeapSort(data[1...n]): heap = BuildMaxHeap(data[1...n]) for i=n down to 2 cur_max = heap.HeapExtractMax() data[i] = cur_max

- 1. Keep a copy of the root item
- 2. Remove last item and put it to root
- 3. Maintain heap property
- 4. Return the copy of the root item

i = 5

- Place one item in the array to its final position.
- Place max item in current heap to its final position.
- Place i^{th} biggest item to position n-i+1.

HeapSort

HeapSort(data[1...n]): heap = BuildMaxHeap(data[1...n]) for i=n down to 2 cur_max = heap.HeapExtractMax() data[i] = cur_max

- 1. Keep a copy of the root item
- 2. Remove last item and put it to root
- 3. Maintain heap property
- 4. Return the copy of the root item

- Place one item in the array to its final position.
- Place max item in current heap to its final position.
- Place i^{th} biggest item to position n-i+1.

HeapSort

HeapSort(data[1...n]): heap = BuildMaxHeap(data[1...n]) for i=n down to 2 cur_max = heap.HeapExtractMax() data[i] = cur_max

- 1. Keep a copy of the root item
- 2. Remove last item and put it to root
- 3. Maintain heap property
- 4. Return the copy of the root item

i = 4

1	2	3	4	5	6
8	1	7	9	10	14

- Place one item in the array to its final position.
- Place max item in current heap to its final position.
- Place i^{th} biggest item to position n-i+1.

HeapSort

HeapSort(data[1...n]):

```
heap = BuildMaxHeap(data[1...n])
for i=n down to 2
  cur_max = heap.HeapExtractMax()
  data[i] = cur_max
```


- 1. Keep a copy of the root item
- 2. Remove last item and put it to root
- 3. Maintain heap property
- 4. Return the copy of the root item

i = 3

1	2	3	4	5	6
7	1	8	9	10	14

- Place one item in the array to its final position.
- Place max item in current heap to its final position.
- Place i^{th} biggest item to position n-i+1.

HeapSort

HeapSort(data[1...n]): heap = BuildMaxHeap(data[1...n]) for i=n down to 2 cur_max = heap.HeapExtractMax() data[i] = cur_max

- 1. Keep a copy of the root item
- 2. Remove last item and put it to root
- 3. Maintain heap property
- 4. Return the copy of the root item

- Place one item in the array to its final position.
- Place max item in current heap to its final position.
- Place i^{th} biggest item to position n-i+1.

HeapSort

HeapSort(data[1...n]):

```
heap = BuildMaxHeap(data[1...n])
for i=n down to 2
  cur_max = heap.HeapExtractMax()
  data[i] = cur_max
```

In each iteration:

- Place one item in the array to its final position.
- Place max item in current heap to its final position.
- Place i^{th} biggest item to position n-i+1.

Total runtime of these iterations:

$$\sum_{i=2}^{n} O(\lg i) = O(\lg (n!)) = O(n\lg n)$$

HeapSort

HeapSort(data[1...n]):

```
heap = BuildMaxHeap(data[1...n])
for i=n down to 2
  cur_max = heap.HeapExtractMax()
  data[i] = cur_max
```

Runtime of for-loop is $O(n \lg n)$.

Given an array data[1...n], how to build a max-heap?

- Start with an empty heap, then call HeapInsert n times.
- Cost is $\sum_{i=1}^{n} O(\lg i) = O(n \lg n)$.
- Not bad, but we can do better...

HeapSort

- Given an array data[1...n], how to build a max-heap?
- Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
- Each leaf node is a 1-item heap.
- Go through remaining nodes in index decreasing order: at each⁴ node, we are merging two heaps.

1	2	3	4	5	6	7
8	1	9	14	7	10	2

HeapSort

- Given an array data[1...n], how to build a max-heap?
- Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
- Each leaf node is a 1-item heap.
- Go through remaining nodes in index decreasing order: at each ⁴ node, we are merging two heaps.
- Maintain heap property during merging: use MaxHeapify.

HeapSort

- Given an array data[1...n], how to build a max-heap?
- Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
- Each leaf node is a 1-item heap.
- Go through remaining nodes in index decreasing order: at each ⁴ node, we are merging two heaps.
- Maintain heap property during merging: use MaxHeapify.

14

8

HeapSort

- Given an array data[1...n], how to build a max-heap?
- Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
- Each leaf node is a 1-item heap.
- Go through remaining nodes in index decreasing order: at each ⁴ node, we are merging two heaps.
- Maintain heap property during merging: use MaxHeapify.

8

10

Applications of heaps HeapSort

BuildMaxHeap(data[1...n]):

heap_size = n for i=Floor(n/2) down to 1 MaxHeapify(i)

- Given an array data[1...n], how to build a max-heap?
- Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
- Each leaf node is a 1-item heap.
- Go through remaining nodes in index decreasing order: at each ⁴ node, we are merging two heaps.
- Maintain heap property during merging: use MaxHeapify.

1	2	3	4	5	6	7
14	8	10	1	7	9	2

HeapSort

BuildMaxHeap(data[1...n]):

8

heap_size = n for i=Floor(n/2) down to 1 MaxHeapify(i)

- Given an array data[1...n], how to build a max-heap?
- Bottom-up approach: keep merging small heaps into larger ones, until a single heap remains.
- Time complexity of BuildMaxHeap?
 - $\Theta(n)$ calls to MaxHeapify, each costing $O(\lg n)$, so $O(n\lg n)$?
 - Correct but not tight...
- Height of n-items heap is $\lfloor \lg n \rfloor$.
- Any height h has $\leq \left\lceil \frac{n}{2^{h+1}} \right\rceil$ nodes.⁴ 14 ⁵ 7 ⁶ 10 ⁷ 2
- Cost of all MaxHeapify: $\sum_{h=0}^{\lfloor \lg n \rfloor} \left(\left\lceil \frac{n}{2^{h+1}} \right\rceil \cdot O(h) \right) = O\left(n \cdot \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h} \right) = O(n)$

HeapSort

BuildMaxHeap(data[1...n]):

heap_size = n for i=Floor(n/2) down to 1 MaxHeapify(i) Runtime of BuildMaxHeap is O(n).

HeapSort(data[1...n]):

heap = BuildMaxHeap(data[1...n])
for i=n down to 2
 cur_max = heap.HeapExtractMax()
 data[i] = cur_max

Runtime of for-loop is $O(n \lg n)$.

Time complexity of HeapSort is $O(n \lg n)$, extra space required during execution is O(1).

Reading

• [CLRS] Ch.6