本周主要阅读了 Liang Huang 的 Deep Reinforcement Learning for Online Computation Offlfloading in Wireless Powered Mobile-Edge Computing Networks ,这篇文章主要考虑一种采用二进制卸载策略的无线供电 MEC 网络,使得无线设备的每个计算任务要么在本地执行,要么完全卸载到 MEC 服务器。文章主要通过获得一个在线算法,最优地适应任务卸载决策和无线资源分配到时变的无线信道条件。文章中提出了一个基于深度强化学习的在线卸载 (DR00) 框架,该框架实现了一个深度神经网络,从经验中学习二进制卸载决策。它消除了求解组合优化问题的需要,从而大大降低了计算复杂度,为了进一步降低复杂度,提出了一种自适应的算法,自动调整 DR00 算法的参数。数值结果表明,与现有的优化方法相比,该算法可以获得接近最优的性能,并将计算时间显著减少一个数量级以上。例如,在 30 个用户的网络中,DR00 的 CPU 执行延迟不到 0.1 秒,即使在快速衰落的环境中,也可以实现实时优化卸载。

接下来考虑由一个边缘服务器和 N 个无线设备组成的 MEC 网络。符号表示:

Notation	Description
N	The number of WDs
T	The length of a time frame
i	Index of the <i>i</i> -th WD
h_i	The wireless channel gain between the <i>i</i> -th WD and the
162	AP
a	The fraction of time that the AP broadcasts RF energy
a a	for the WDs to harvest
E_i	The amount of energy harvested by the <i>i</i> -th WD
P	The AP transmit power when broadcasts RF energy
μ	The energy harvesting efficiency
w_i	The weight assigned to the <i>i</i> -th WD
x_i	An offloading indicator for the <i>i</i> -th WD
f_i	The processor's computing speed of the <i>i</i> -th WD
ϕ	The number of cycles needed to process one bit of task
Ψ	data
t_i	The computation time of the <i>i</i> -th WD
k_i	The computation energy efficiency coefficient
τ_i	The fraction of time allocated to the <i>i</i> -th WD for task
''	offloading
B	The communication bandwidth
N_0	The receiver noise power
h	The vector representation of wireless channel gains
111	$\{h_i i\in\mathcal{N}\}$
x	The vector representation of offloading indicators
1	$\{x_i i \in \mathcal{N}\}$
τ	The vector representation of $\{\tau_i i \in \mathcal{N}\}$
$Q(\cdot)$	The weighted sum computation rate function
π	Offloading policy function
θ	The parameters of the DNN
$\hat{\mathbf{x}}_t$	Relaxed computation offloading action
K	The number of quantized binary offloading actions
g_K	The quantization function
$L(\cdot)$	The training loss function of the DNN
δ	The training interval of the DNN
Δ	The updating interval for K
1 —	

$$\min_{\mathcal{F}} \max_{n \in \mathcal{N}_k} T_n^{Comm} + \frac{\gamma_n}{f_{nk}}$$

文中先将计算资源分配问题表示为

然后通过 KKT 条件进行求解,进行了拉格朗日求导获得了问题的最优解为

$$f_{nk} = \frac{\gamma_n}{Z - T_n^{Comm}}$$

。然后进行数据的训练,设计一个策略,可以有效地从每个系统状

态中产生一个卸载的操作,来最小化期望。其中为了最小化总延迟可以得到优化问题 P1 表 示为:

(P1):

 $min(s_t, a_t)$

约束条件:

$$f_{nk} > f_n, \forall n \in \mathcal{N}$$

$$a_t \in \{0,1\},\$$

 $\min_{\mathcal{F}} \max_{n \in \mathcal{N}_k} T_n^{Comm} + \frac{\gamma_n}{f_{nk}}$

一旦卸载方案给出,就可以求解资源计算分配问题 就可以得到问题 P2, 使得奖励最大化:

 $maxQ(s_t, a_t)$

受限于:

$$\sum_{n \in \mathcal{N}_k} f_{nk} \le f_k$$
$$f_{nk} > 0, \forall n \in \mathcal{N}_k$$

算法流程图:

Algorithm 1: An online DROO algorithm to solve the offloading decision problem.

input: Wireless channel gain h_t at each time frame t, the number of quantized actions K

output: Offloading action \mathbf{x}_{t}^{*} , and the corresponding optimal resource allocation for each time frame t;

- 1 Initialize the DNN with random parameters θ_1 and empty memory;
- ² Set iteration number M and the training interval δ ;
- $for t = 1, 2, \dots, M do$
- Generate a relaxed offloading action $\hat{\mathbf{x}}_t = f_{\theta_t}(\mathbf{h}_t)$;
- Quantize $\hat{\mathbf{x}}_t$ into K binary actions $\{\mathbf{x}_k\} = g_K(\hat{\mathbf{x}}_t)$;
- Compute $Q^*(\mathbf{h}_t, \mathbf{x}_k)$ for all $\{\mathbf{x}_k\}$ by solving (P2); Select the best action $\mathbf{x}_t^* = \arg\max_{\{\mathbf{x}_k\}} Q^*(\mathbf{h}_t, \mathbf{x}_k)$;
- Update the memory by adding $(\mathbf{h}_t, \mathbf{x}_t^*)$;
- if $t \mod \delta = 0$ then

Uniformly sample a batch of data set $\{(\mathbf{h}_{\tau}, \mathbf{x}_{\tau}^*) \mid \tau \in \mathcal{T}_t\}$ from the memory;

Train the DNN with $\{(\mathbf{h}_{\tau}, \mathbf{x}_{\tau}^*) \mid \tau \in \mathcal{T}_t\}$ and update θ_t using the Adam algorithm;

end

13 end

10

11

12

分析:获得的最佳卸载策略将会被用于更新 DNN。在 t 个时间帧时,一个新的训练数据样本 (st, at)被添加至内存,当内存满的时候将先前样本用于训练 DNN 并用新的样本替换它们。 采用 Adam 算法来对参数进行更新。因此随着时间的推移,卸载决策将会越来越准确,并不 断地改进它所产生的卸载决策。