Fahad Fiaz -(303141) - G2

System Info:

Processor	i7-5500U , 2.40GHz		
Cores	4		
Operating system	Windows 64 Bit		
Ram	8GB		
Programming Language	Python 3.7.7		

Q1:

Part A):

Common configuration for Spark:

```
In [1]: import findspark
        import matplotlib.pyplot as plt
        findspark.init()
        findspark.find()
        import pyspark
        findspark.find()
Out[1]: 'D:\\spark-2.4.6-bin-hadoop2.7'
In [2]: from pyspark import SparkContext, SparkConf
        import numpy as np
        import pandas as pd
        from pyspark.sql.functions import mean , stddev, col, to_date, date_format
        import pyspark.sql.functions as F
        from time import strptime
        import datetime
        from ast import literal_eval
        from pyspark.sql import SparkSession
        conf = pyspark.SparkConf().setAppName('SparkApp').setMaster('local')
        sc = pyspark.SparkContext(conf=conf)
        spark=SparkSession(sc)
```

1) Right outer joins return all the data from the right RDD and only matched ones of left RDD, whereas for full outer join it joins both the RDDs and returns data from both of them. Since we need pair RDD ((key, value) form) to apply join operation so for each pair I have taken key as word and added dummy value as index of word in list before applying join operation.

```
In [3]:
       #Part a : 1)
       a = ["spark", "rdd", "python", "context", "create", "class"]
       b = ["operation", "apache", "scala", "lambda", "parallel", "partition"]
       new_a=map(lambda x: (x[1],x[0]), enumerate(a))
       new_b=map(lambda x: (x[1],x[0]), enumerate(b))
       rdd_a=sc.parallelize(new_a)
       rdd b=sc.parallelize(new b)
       rightOuterJoin = rdd_a.leftOuterJoin(rdd_b).collect()
       fullOuterJoin = rdd_a.fullOuterJoin(rdd_b).collect()
In [4]: rightOuterJoin
Out[4]: [('python', (2, None)),
        ('class', (5, None)),
('spark', (0, None)),
        ('rdd', (1, None)),
        ('context', (3, None)),
        ('create', (4, None))]
  In [5]:
              fullOuterJoin
  Out[5]:
              [('python', (2, None)),
                 'class', (5, None)),
               ('scala', (None, 2)),
               ('parallel', (None, 4)),
               ('partition', (None, 5)),
               ('spark', (0, None)),
               ('rdd', (1, None)),
                 'context', (3, None)),
               ('create', (4, None)),
               ('operation', (None, 0)),
               ('apache', (None, 1)),
               ('lambda', (None, 3))]
```

2) First I concatenated two rdds, then apply flat map which convert each word into characters list and give use us flat list, then filtered character "s", and map it to count the number of times "s" appear, then used reduce function which return the total count of "s" in both rdds.

```
In [6]: #Part a : 2)
    rdd_a=sc.parallelize(a)
    rdd_b=sc.parallelize(b)
    rdd_a.union(rdd_b).flatMap(lambda x: x).filter(lambda x: x == 's').map(lambda x: (x,1)).reduceByKey(lambda x,y: x+y).collect()
Out[6]: [('s', 4)]
```

3) First I concatenated two rdds and then used aggregation function which iterates over entire concatenated RDD and increase the value of count by 1 if character "s" is found.

```
]: rdd_a.union(rdd_b).flatMap(lambda x: x).filter(lambda x: x == 's').aggregate(0,(lambda i, value: i + 1),(lambda i, j: (i + j)))
]: 4
```

Partb:

- 1,) First mean value is calculated using mean() function and then null values is replaced by using fillna() function.
- 2) The null values in dob column is replaced with "unknown" and null value in last_name is replaced with "--" by using fillna() function.

+	+					+
course		dob	first_name	last name	points	s id
·	+				·	+
Humanities and Art	October 14,	1983	Alan	Joe	10.0	1
Computer Science	September 26,	1980	Martin	Genberg	17.0	2
Graphic Design	June 12,	1982	Athur	Watson	16.0	3
Graphic Design	April 5,	1987	Anabelle	Sanberg	12.0	4
Psychology	November 1,	1978	Kira	Schommer	11.0	5
Business	17 February	1981	Christian	Kiriam	10.0	6
Machine Learning	1 January	1984	Barbara	Ballard	14.0	7
Deep Learning	January 13,	1978	John		10.0	8
Machine Learning	26 December	1989	Marcus	Carson	15.0	9
Physics	30 December	1987	Marta	Brooks	11.0	10
Data Analytics	June 12,	1975	Holly	Schwartz	12.0	11
Computer Science	July 2,	1985	April	Black	11.736842105263158	12
Computer Science					13.0	13
Psychology	7 February	1986	Mark	-		14
Informatics	May 18,	1987	Rosie	Norman	9.0	15
Business				Steele		
Machine Learning	16 December	1990	Colin	Martinez	9.0	17
Data Analytics	unl	known	Bridget	Twain	6.0	18
Business	7 March	1980	Darlene	Mills	19.0	19
Data Analytics	June 2,	1985	Zachary		10.0	20
+	+		· 			+

3) For this task I wrote user defined function which takes input each row of "dob" and calculate date according to task. First it split the date and get list with 3 indexes. Then for each index it checks if it month and convert month to specific format mentioned in task. Do this same for day and year. Finally it appends the find date and replaces it with previous row value.

4				L	+
course	dob	first_name 	last_name	points	s_id
Humanities and Art	14-10-1983	Alan	Joe	10.0	 1
Computer Science	26-09-1980	Martin	Genberg	17.0	2
Graphic Design	12-06-1982	Athur	Watson	16.0	3
Graphic Design	05-04-1987	Anabelle	Sanberg	12.0	4
Psychology	01-11-1978	Kira	Schommer	11.0	5
Business	17-02-1981	Christian	Kiriam	10.0	6
Machine Learning	01-01-1984	Barbara	Ballard	14.0	7
Deep Learning	13-01-1978	John		10.0	8
Machine Learning	26-12-1989	Marcus	Carson	15.0	9
Physics	30-12-1987	Marta	Brooks	11.0	10
Data Analytics	12-06-1975	Holly	Schwartz	12.0	11
Computer Science	02-07-1985	April	Black	11.736842105263158	12
Computer Science	22-07-1980	Irene	Bradley	13.0	13
Psychology	07-02-1986	Mark	Weber	12.0	14
Informatics	18-05-1987	Rosie	Norman	9.0	15
Business	10-08-1984	Martin	Steele	7.0	16
Machine Learning	16-12-1990	Colin	Martinez	9.0	17
Data Analytics	unknown	Bridget	Twain	6.0	18
Business	07-03-1980	Darlene	Mills	19.0	19
Data Analytics	02-06-1985	Zachary		10.0	20
+	+	+	+	+	++

4) Calculate_age calculate age by subtracting current date from dob column value

		•		•		'	
course	dob	first_name	last_name	points	s_id	age	
							<i>-</i>
Humanities and Art				10.0	: :		:
Computer Science	26-09-1980	Martin	Genberg	17.0	2	39	
Graphic Design	12-06-1982	Athur	Watson	16.0	3	37	
Graphic Design	05-04-1987	Anabelle	Sanberg	12.0	4	33	
Psychology	01-11-1978	Kira	Schommer	11.0	5	42	
Business	17-02-1981	Christian	Kiriam	10.0	6	39	
Machine Learning	01-01-1984	Barbara	Ballard	14.0	7	36	
Deep Learning	13-01-1978	John		10.0	8	42	
Machine Learning	26-12-1989	Marcus	Carson	15.0	9	30	
Physics	30-12-1987	Marta	Brooks	11.0	10	32	
Data Analytics	12-06-1975	Holly	Schwartz	12.0	11	44	
Computer Science	02-07-1985	April	Black	11.736842105263158	12	35	
Computer Science	22-07-1980	Irene	Bradley	13.0	13	39	
Psychology	07-02-1986	Mark	Weber	12.0	14	34	
Informatics	18-05-1987	Rosie	Norman	9.0	15	33	
Business	10-08-1984	Martin	Steele	7.0	16	35	
Machine Learning	16-12-1990	Colin	Martinez	9.0	17	29	
Data Analytics	unknown	Bridget	Twain	6.0	18	unknown	
Business	07-03-1980	Darlene	Mills	19.0	19	40	
Data Analytics	02-06-1985	Zachary		10.0	20	35	

5) First we find standard deviation of point's col. Then my user define function check if point value is greater than 1 standard deviation of all points, if yes it replaces point value to 20 else point value remains same

+	+	+				+
course	dob	first_name	last_name	points	s_id	age
Humanities and Art	14-10-1983	Alan	Joe	10.0	1	36
Computer Science	26-09-1980	Martin	Genberg	20	2	39
Graphic Design	12-06-1982	Athur	Watson	20	3	37
Graphic Design	05-04-1987	Anabelle	Sanberg	12.0	4	33
Psychology	01-11-1978	Kira	Schommer	11.0	5	42
Business	17-02-1981	Christian	Kiriam	10.0	6	39
Machine Learning	01-01-1984	Barbara	Ballard	14.0	7	36
Deep Learning	13-01-1978	John		10.0	8	42
Machine Learning	26-12-1989	Marcus	Carson	15.0	9	30
Physics	30-12-1987	Marta	Brooks	11.0	10	32
Data Analytics	12-06-1975	Holly	Schwartz	12.0	11	44
Computer Science	02-07-1985	April	Black	11.736842105263158	12	35
Computer Science	22-07-1980	Irene	Bradley	13.0	13	39
Psychology	07-02-1986	Mark	Weber	12.0	14	34
Informatics	18-05-1987	Rosie	Norman	9.0	15	33
Business	10-08-1984	Martin	Steele	7.0	16	35
Machine Learning	16-12-1990	Colin	Martinez	9.0	17	29
Data Analytics	unknown	Bridget	Twain	6.0	18	unknown
Business	07-03-1980	Darlene	Mills	20	19	40
Data Analytics	02-06-1985	Zachary		10.0	20	35
+	+					+

6) Histogram:

Q2:

For this task I have run my code by taking 1st 100 rows of dataset. Since, my code works fine for these rows, then it should work fine on all dataset.

1) For this task I have written 2 functions.

1ST function takes timestamp as input. Timestamp is key value pair as key = user_id and value = timestamp. This first check if user exist in user_duration list or not. If not then it add that user to this list along with time o as user is just starting his session. Then if user already exist in user_duration list, it check calculate total time of user session until new use session has started and save it as user_id,user_session_time.

2nd function takes user_id,session_time as input and check if user spent less than 30 minutes or not. If yes, then it considered as a termination of the tagging session. Then total tagging sessions of user is calculated and saved.

I have just attached part of ouput. Full output available in HTML files attached

```
[(15, 1),
 (20, 1),
 (20, 1),
 (20, 1),
 (20, 1),
 (20, 1),
 (20, 1),
 (20, 1),
 (20, 1),
 (20, 1),
 (20, 1),
 (20, 1),
 (20, 1),
 (21, 1),
 (21, 1),
 (25, 1),
 (25, 1),
 (31, 1),
 (31, 1),
 (31, 1),
 (31, 1),
 (31, 1),
 (32, 1),
 (39, 1),
 (39, 1),
```

2) Then frequency of tagging for each user session is calculated by checking it the user session exist in dictionary or not. If it exist then we increase the count.

3) Then each_and_across_user function perform the last 3 mentioned tasks. Output is as follows:

All running outputs in Exercise1.html and Exercise2.html