深圳市思坦德科技有限公司

Tel: 0755-8526371 Web: www.istd.com.cn

	SPECI	FICATION						
Customer: Model Name: SPEC NO.: Date: Version: O1 Preliminary Specification Final Specification								
Designed by	Ch	necked by	Approved by					
Final App	coval by Cust	tomer						
LCM M	Iachinery OK	LCM OK	<u> </u>					
Checked By		NG , Pro	blem survey:					
LCM D	isplay OK							
Checked By		Approved By						

*The specification of "TBD" should refer to the measured value of sample . If there is difference between the design specification and measured value, we naturally shall negotiate and agree to solution with customer.

Revision History

Version	Contents	Date	Note
A	Original	2013.3.15	
<u> </u>			
<u> </u>			
<u> </u>			
\vdash			

Contents

1.	General Specifications	1
2.	Pin Assignment	2
	Operation Specifications	
_	3.1. Absolute Maximum Ratings	
	3.1.1. Typical Operation Conditions	
	3.1.2. Backlight Driving Conditions	5
	3.2. Power Sequence	
	3.3. Timing Characteristics	
	3.3.1. Sync Mode	
	3.3.2. De Mode	
	3.3.3. Input Setup Timing Requirement	
4.	Optical Specifications	9
	Reliability Test Items	
	General Precautions	
•	6.1. Safety	
	6.2. Handling	
	6.3. Static Electricity	
	6.4. Storage	
	6.5. Cleaning	14
7.	Mechanical Drawing	

1. General Specifications

No.	Item	Specification	Remark
1	LCD size	5.0 inch(Diagonal)	
2	Driver element	a-Si TFT active matrix	
3	Resolution	800×3(RGB) × 480	
4	Display mode	Normally White, Transmissive	
5	Dot pitch	0.135(W) ×0.135(H) mm	
6	Active area	108(W) ×64.8 (H) mm	
7	Module size	120.7(W) ×75.8(H) ×3.1(D) mm	Note 1
8	Surface treatment	Anti-Glare	
9	Color arrangement	RGB-stripe	
10	Interface	Digital	
11	Backlight power consumption	TBD	
12	Panel power consumption	TBD	
13	Weight	TBD	

Note 1: Refer to Mechanical Drawing.

2. Pin Assignment

1	GLED	GND for LED
2	VLED	Power for LED
3	GND	Ground
4	VDD	Digital power supply(+3.3V)
5	R0	Red data(LSB)
6	R1	Red data
7	R2	Red data
8	R3	Red data
9	R4	Red data
10	R5	Red data
11	R6	Red data
12	R7	Red data(MSB)
13	G0	Green data(LSB)
14	G1	Green data
15	G2	Green data
16	G3	Green data
17	G4	Green data
18	G5	Green data
19	G6	Green data
20	G7	Green data(MSB)
21	B0	Blue data(LSB)
22	B1	Blue data
23	B2	Blue data
24	В3	Blue data
25	B4	Blue data
26	B5	Blue data
27	B6	Blue data
28	B7	Blue data(MSB)
29	GND	Ground
30	DCLK	Data clk

Page:3/15

31	DISP	Display ON/OFF control. Internally pulled high
32	HS	Horizontal sync input in RGB mode
33	VS	Vertical sync input in RGB mode
34	DE	Data Enable
35	NC	No connection
36	GND	Ground
37	XR	T/p X-Right(No connection)
38	YD	T/p Y-Bottom(No connection)
39	XL	T/p X-Left(No connection)
40	YU	T/p Y-Up(No connection)

3. Operation Specifications

3.1. Absolute Maximum Ratings

(Note 1)

(1,000 1)							
Itom	Crowbal	Val	ues	Unit	Remark		
Item	Symbol	Min.	Max.	Omt			
Supply voltage	V_{DD}	-0.3	4.5	V			
Operation Temperature	T_{OP}	-20	60	$^{\circ}\!\mathbb{C}$			
Storage Temperature	T_{ST}	-30	70	$^{\circ}\!\mathbb{C}$			
LED Reverse Voltage	VR	-	5	V	Each LED Note 2		
LED Forward Current	IF	-	25	mA	Each LED		

Note 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

Note 2: VR Conditions: Zener Diode 20mA

3.1.1. Typical Operation Conditions

Itom	Crymbal		Values		Unit	Remark	
Item	Symbol	Min.	Тур	Max.	UIII	Kemark	
Power voltage	V_{DD}	3.0	3.3	3.6	V	Note 2	
Current for Driver	IV_{DD}	-	17	25	mA		
Input logic high voltage	V _{IH}	$0.8~\mathrm{V_{DD}}$	-	V_{DD}	V	Note 3	
Input logic low voltage	V _{IL}	0	-	$0.2~\mathrm{V_{DD}}$	V	Note 3	

3.1.2. Backlight Driving Conditions

Item	Crombol	Values			Unit	Remark
nem	Symbol	Min.	Тур.	Max.	Cint	Kemark
Voltage for LED backlight	$V_{\rm L}$		19.8		V	Note 1
Current for LED backlight	I_{L}		40		mA	
LED life time	-	1	20,000	1	Hr	Note 2

Note 1: The LED Supply Voltage is defined by the number of LED at Ta=25 $^{\circ}\text{C}\,$ and I_L =40mA.

Note 2: The "LED life time" is defined as the module brightness decrease to 50% original brightness at $Ta=25^{\circ}C$ and $I_L=40mA$. The LED lifetime could be decreased if operating I_L is lager than 40mA.

LED CIRCUIT

3.2. Power Sequence

Power on sequence

Note: For prevent anormal operation, t_{RST} must be longer than 10us during Power ON sequence.

3.3. Timing Characteristics

3.3.1. Sync Mode

Horizontal Input Timing

Timing Table

Davamatan	Cumala a l	Spec		I India	Conditions		
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
VDD Power ON slew rate	t_{POR}	!		20	ms	0V ~ 0.9VDD	
RSTB pulse width	t _{RST}	10		-	us	CLKIN=50MHz	
CLKIN cycle time	t_{CPH}	20	-	1	ns		
CLKIN pulse duty	t _{cwh}	40	50	60	%		
VSD setup time	t _{VST}	8		-	ns		
VSD hold time	t_{VHD}	8			ns		
HSD setup time	t _{HST}	8		1	ns		
HSD hold time	t _{HHD}	8		-	ns		
Data setup time	t _{DST}	8			ns	D0[7:0], D1[7:0], D2[7:0] to CLKIN	
Data hold time	t _{DHD}	8		-	ns	D0[7:0], D1[7:0], D2[7:0] to CLKIN	
DE setup time	t _{EST}	8		-	ns		
DE hold time	t_{EHD}	8			ns		
Output stable time	+			6	us	10% to 90% target voltage.	
Output stable time	t _{sst}			0		CL=120pF, R=10KΩ	
CLKIN frequency	f_{CLK}		40	50	MHz	VDD=3.0 ~ 3.6V	
CLKIN cycle time	t_{CLK}	20	25	-	ns		
CLKIN pulse duty	t _{cwh}	40	50	60	%	T _{CLK}	
Time from HSD to Source output	t _{HSO}		20	-	CLKIN		
Time from HSD to LD	t_{HLD}		20	i	CLKIN	Note (2)	
Time from HSD to STV	t _{HSTV}		2	1	CLKIN		
Time from HSD to CKV	t _{HCKV}		20	1	CLKIN		
Time from HSD to OEV	t _{HOEV}		4	1	CLKIN		
LD pulse width	t_{WLD}	-	10	-	CLKIN	Note (2)	
CKV pulse width	twckv		66	-	CLKIN		
OEV pulse width	t_{WOEV}		74		CLKIN		

Note: (1) VDD=3.0 \sim 3.6V, VDDA=6.5 \sim 13.5V, DGND=AGND=0V, Ta=-20 \sim +85 $^{\circ}$ C

- (2) The contents of the data register are transferred to the latch circuit at the rising edge of LD. Then the gray scale voltage is output from the device at the falling edge of LD.
 - (3) Output loading condition:

3.3.2. De Mode

4. Optical Specifications

Item	Symbol	Condition		Values		Unit	Remark	
item	Symbol Condition		Min.	Тур.	Max.	Onit	Komark	
	θ_{L}	Ф=180°(9 o'clock)	-	70	-			
Viewing angle	θ_{R}	Φ=0°(3 o'clock)	-	70	-	dograd	Note 1	
(CR≥ 10)	θτ	Φ=90°(12 o'clock)	-	50	-	degree	Note 1	
θв		Φ=270°(6 o'clock)	-	70	70 -			
Dognana tima	T _{ON}		-	10	20	msec	Note 3	
Response time	T _{OFF}		-	10	20	msec	Note 3	
Contrast ratio	CR		500	700	-	-	Note 4	
	W _X	Normal θ=Φ=0°	0.26	0.31	0.36	-	Note 2	
Color chromaticity	W _Y		0.28	0.33	0.38	-	Note 5 Note 6	
Luminance	L		200	250	-	cd/m²	Note 6	
Luminance uniformity	Yu		70	75	-	%	Note 7	

Test Conditions:

- 1. V_{DD} =3.3V, I_L =40mA (Backlight current), the ambient temperature is 25 $^{\circ}$ C.
- 2. The test systems refer to Note 2.

Note 1: Definition of viewing angle range

Note 2: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/Field of view: 1° /Height: 500mm.)

Fig. 4-2 Optical measurement system setup

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Fig. 4-3 Definition of response time

Note 4: Definition of contrast ratio

Contrast ratio (CR) = $\frac{\text{Luminance measured when LCD on the "White" state}}{\text{Luminance measured when LCD on the "Black" state}}$

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: All input terminals LCD panel must be ground while measuring the center area of the panel. The LED driving condition is I_L =40mA.

Note 7: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer to Fig. 4-4). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (Yu) =
$$\frac{B_{min}}{B_{max}}$$

L-----Active area length W----- Active area width

Fig. 4-4 Definition of measuring points

 \mathbf{B}_{max} : The measured maximum luminance of all measurement position. \mathbf{B}_{min} : The measured minimum luminance of all measurement position.

5. Reliability Test Items

(Note3)

Item	Te	st Conditions	Remark
High Temperature Storage	Ta = 70°C	240hrs	Note 1, Note 4
Low Temperature Storage	Ta = -30°C	240hrs	Note 1, Note 4
High Temperature Operation	Ts = 60°C	240hrs	Note 2, Note 4
Low Temperature Operation	Ta = -20°C	240hrs	Note 1, Note 4
Operate at High Temperature and Humidity	+40°C, 90%RH	240hrs	Note 4
Thermal Shock	_	70°ℂ/30 min for a total 100 cold temperature and end ature.	Note 4
Vibration Test	Frequency range Stroke:1.5mm Sweep:10Hz~55 2 hours for each (6 hours for total	Hz~10Hz direction of X. Y. Z.	
Mechanical Shock	100G 6ms,±X, ±	Y, ±Z 3 times for each	
Package Vibration Test	from 200-500HZ	m 5-200HZ, -6dB/Octave direction of X. Y. Z.	
Package Drop Test	Height:60 cm 1 corner, 3 edges		
Electro Static Discharge	± 2KV, Human	Body Mode, 100pF/1500 Ω	

- Note 1: Ta is the ambient temperature of samples.
- Note 2: Ts is the temperature of panel's surface.
- Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.
- Note 4: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

6. General Precautions

6.1. Safety

Liquid crystal is poisonous. Do not put it in your mouth. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water.

6.2. Handling

- 1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.
- 2. The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.
- 3. To avoid contamination on the display surface, do not touch the module surface with bare hands.
 - 4. Keep a space so that the LCD panels do not touch other components.
- 5. Put cover board such as acrylic board on the surface of LCD panel to protect panel from damages.
- 6. Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.
 - 7. Do not leave module in direct sunlight to avoid malfunction of the ICs.

6.3. Static Electricity

- 1. Be sure to ground module before turning on power or operating module.
- 2. Do not apply voltage which exceeds the absolute maximum rating value.

6.4. Storage

- 2. Do not store the module in surroundings containing organic solvent or corrosive gas.
 - 3. Store the module in an anti-electrostatic container or bag.

6.5. Cleaning

- 1. Do not wipe the polarizer with dry cloth. It might cause scratch.
- 2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.

7. Mechanical Drawing

