Metoda bisecției

Theorem

Fie a < b, $a, b \in \mathbb{R}$ $si\ f: [a, b] \to \mathbb{R}$ o funcție continuă cu f(a)f(b) < 0. Atunci există $z \in [a, b]$ astfel încât f(z) = 0.

Definim şirurile $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$, $(c_n)_{n\geq 0}$ astfel:

- $a_0 := a, b_0 := b, c_0 := (a + b) / 2$
- Pentru $n \geq 1$:
- $ightarrow \operatorname{dacreve{a}} f(c_{n-1}) = 0$, atunci

$$\left\{ egin{array}{ll} a_n := a_{n-1} \ b_n := b_{n-1} \ c_n := c_{n-1} \end{array}
ight.$$

 $ightarrow \operatorname{dac\check{a}} f(a_{n-1}) \cdot f(c_{n-1}) < 0$, atunci

$$a_n := a_{n-1}$$

 $b_n := c_{n-1}$
 $c_n := (a_n + b_n) / 2$

μij

28 Noiembrie 2016

$$a_n := c_{n-1}$$
 $b_n := b_{n-1}$
 $c_n := (a_n + b_n) / 2$

- Presupunem că funcția f are o singură rădăcină în intervalul [a,b].
- Atunci şirul $(c_n)_{n\geq 0}$ construit mai sus converge la unica soluție $z\in [a,b]$ a ecuației f(x)=0 și

$$|c_n-z|\leq \frac{b-a}{2^n}$$