Deep Learning on the Edge

This Photo by Unknown Author is licensed under CC BY-SA

Reference:

- TinyML and Efficient Deep Learning Computing (MIT)
- Machine Learning Hardware and Systems (Cornell Tech)
- tinyML Talks: A Practical Guide to Neural Network Quantization

Contents

- Strategies for DL on edge
- Pruning
- Quantization
- Weight Sharing
- Advanced Approaches

Deep Learning on the Edge

- Model Size
 - Over-the-air update is important
- Speed
 - Model's inference speed is critical
- Energy Efficiency
 - Should consume lower battery

What's Inside a DL and how to make it run on edge?

Pruning (in Humans)

Pruning – How?

Consider a set of training examples

$$D = \langle X = \{x_0, x_1, ..., x_N\} \mid Y = \{y_0, y_1, ..., y_N\} \rangle$$

- The network's parameters $W = \{(w_1^1, b_1^1), (w_2^2, b_2^2), \dots (w_L^{c_l}, b_L^{c_l})\}$ are optimized to minimize a cost value C(D|W).
- The most common choice for a cost function $C(\cdot)$ is a negative log-likelihood function.

$$\min_{W'} |C(D|W') - C(D|W)| \quad s.t. ||W'||_{l=0,1,2} \le B$$

Molchanov, P., S. Tyree, T. Karras, T. Aila, and J. Kautz. "Pruning convolutional neural networks for resource efficient inference." In 5th International Conference on Learning Representations, ICLR 2017. Han, Song, Jeff Pool, John Tran, and William Dally. "Learning both weights and connections for efficient neural network." Advances in neural information processing systems 28 (2015).

Pruning - Results

Figure 7: Generate sentence with pretrained model and 90% pruned model

Pretrained: a brown dog is running through a grassy **field**

Pruned: a brown dog is running through a grassy area

Figure 13: Generate sentence with pretrained model and 95% pruned model

Pretrained: a soccer player in red is running in the field

Pruned: a man in a red shirt and black and white black shirt is running through a field

Han, Song, Jeff Pool, John Tran, and William Dally. "Learning both weights and connections for efficient neural network." *Advances in neural information processing systems* 28 (2015). 8
Tang, Shijian, and Jiang Han. "A pruning based method to learn both weights and connections for LSTM." *Advances in Neural Information Processing Systems, NIPS, Montreal, QC, Canada* (2015): 7-12.

Pruning - Results

Figure 9: Compared with the original network, pruned network layer achieved $3 \times$ speedup on CPU, $3.5 \times$ on GPU and $4.2 \times$ on mobile GPU on average. Batch size = 1 targeting real time processing. Performance number normalized to CPU.

Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV

NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV

What, When and How often to prune?

Quantization - Significance

Operation	Precision	Energy (pJ)
	INT8	0.03
	INT16	0.05
Addition	INT32	0.1
	FP16	0.4
	FP32	0.9
	INT8	0.2
Multiplication	INT32	3.1
Multiplication	FP16	1.1
	FP32	3.7

Significant savings in energy when moving from FP32 (typical NNs) to INT8

Horowitz, Mark. "1.1 computing's energy problem (and what we can do about it)." In 2014 IEEE international solid-state circuits conference digest of technical papers (ISSCC), pp. 10-14. IEEE, 2014. 11 https://berkeley-deep-learning.github.io/cs294-dl-f16/slides/DL_HW_Berkeley_0916.pdf

Quantization – How?

Nagel, Markus, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen, and Tijmen Blankevoort. "A white paper on neural network quantization. arXiv 2021." https://github.com/hkproj/quantization-notes

Types of Quantization

$$Y' = (S_W S_X W_{int}) X_{int} + S_W S_X Z_W Z_X - S_W S_X Z_X W_{int} - (S_W S_X Z_W) X_{int}$$

Additional computational complexity for asymmetric quantization $_{_{13}}$

[Option 1] Post Training Quantization

Calculate the S, Z parameters

		Per-tensor		Per-channel	
Models	FP32	W8A8	W4A8	W8A8	W4A8
ResNet18	69.68	69.60	68.62	69.56	68.91
ResNet50	76.07	75.87	75.15	75.88	75.43
MobileNetV2	71.72	70.99	69.21	71.16	69.79
InceptionV3	77.40	77.68	76.48	77.71	76.82
EfficientNet lite	75.42	75.25	71.24	75.39	74.01
DeeplabV3	72.94	72.44	70.80	72.27	71.67
EfficientDet-D1	40.08	38.29	0.31	38.67	35.08
BERT-base [†]	83.06	82.43	81.76	82.77	82.02

W→ Weights, A→ Activations

[Option 2] Quantization Aware Training

		Per-tensor			Per-channel		
Models	FP32	W8A8	W4A8	W4A4	W8A8	W4A8	W4A4
ResNet18	69.68	70.38	69.76	68.32	70.43	70.01	68.83
ResNet50	76.07	76.21	75.89	75.10	76.58	76.52	75.53
InceptionV3	77.40	78.33	77.84	77.49	78.45	78.12	77.74
MobileNetV2	71.72	71.76	70.17	66.43	71.82	70.48	66.89
EfficientNet lite	75.42	75.17	71.55	70.22	74.75	73.92	71.55
DeeplabV3	72.94	73.99	70.90	66.78	72.87	73.01	68.90
EfficientDet-D1	40.08	38.94	35.34	24.70	38.97	36.75	28.68
BERT-base	83.06	83.26	82.64	78.83	82.44	82.39	77.63

W→ Weights, A→ Activations

Quantization gone extreme!

Ma, Shuming, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong, Ruiping Wang, Jilong Xue, and Furu Wei. "The Era of 1-bit LLMs: All Large Language Models are in 16 1.58 Bits." arXiv preprint arXiv:2402.17764 (2024).

Weight Sharing

Weight Sharing – How?

Weight Sharing - Results

Pruning + Quantization ♣ Pruning Only Quantization Only

Model	Size	Ratio	after	Com	pression

Network	Original Size	Compressed Size	Compression Ratio	Original Accuracy	Compressed Accuracy
LeNet-300	1070KB	27KB	40x	98.36%	98.42%
LeNet-5	1720KB	44KB	39x	99.20%	99.26%
AlexNet	240MB	6.9MB	35x	80.27%	80.30%
VGGNet	550MB	11.3MB	49x	88.68%	89.09%
GoogleNet	28MB	2.8MB	10x	88.90%	88.92%
ResNet-18	44.6MB	4.0MB	11x	89.24%	89.28%

[Other] Options – Knowledge Distillation

Summary – DL on Edge

Shuvo, Md Maruf Hossain, Syed Kamrul Islam, Jianlin Cheng, and Bashir I. Morshed. "Efficient acceleration of deep learning inference on resource-constrained edge devices: A review." Proceedings of the 21, no. 1 (2022): 42-91.

Summary

- Adapting deep neural networks on edge devices is important
- Pruning, Quantization and their combinations is a popular approach