Math 300 NTI Lesson 11

Simple Linear Regression - Continuous Predictor

Professor Bradley Warner

June, 2022

Contents

Objectives	
Reading	
Lesson	
Documenting software	(

Objectives

- 1. Use the skimr package to summarize multiple numerical variables in a data frame.
- 2. Build a scatterplot to describe the relationship between two continuous, numerical variables; use geom_smooth() to visualize the best fit line.
- 3. Fit a linear regression model between two variables using the lm() function and interpret the output. This includes the interpretation of slope and the use of association and not causation.
- 4. Generate a table of observations, fitted values, and residuals from a linear regression object.

Reading

Chapter 5 - 5.1

Lesson

Remember that you will be running this more like a lab than a lecture. You want them using R and answering questions. Have them open the notes rmd and work through it together.

Work through the learning checks LC5.1 - LC5.3.

• Regression can be used for explanatory and predictive purposes. It falls on that line between traditional statistics/econometrics and machine learning. In this course we focus on its more traditional use to interpret the relationship between predictors and a response. Math 378 is our machine learning course and expands on linear regression in this framework.

- Note the many different terms for x and y in regression. These names come from different fields. For example, y is called the response, dependent variable, outcome, and output. Meanwhile, x is called input, predictor, independent variable, and explanatory variable. Also point out that in linear regression, y is numerical while x can be numerical or categorical.
- We are using new packages. The tidyverse package is a wrapper and actually loads readr, dplyr, ggplot2, and tidyr.
- In the reading, the authors setup the problem with instructor teaching score as the response and beauty score as the explanatory variable. What is the research question?
- The reading introduces tilde \sim as a formula. You might want to talk about this as we use it in LC 5.1.
- The interpretation of the slope has the key phrase **average**. For a one unit change in **x**, the average value of **y** changes by the value of the slope.

Setup

```
library(tidyverse)
library(moderndive)
library(skimr)
library(gapminder)
```

Create the data needed for the exercises.

```
evals_ch5 <- evals %>%
select(ID, score, bty_avg, age)
```

Let's look at 5 random rows of data.

```
set.seed(1234)
evals_ch5 %>%
  sample_n(size = 5)
```

```
## # A tibble: 5 x 4
##
        ID score bty_avg
                             age
##
     <int> <dbl>
                     <dbl> <int>
## 1
       284
              4
                      1.67
## 2
       336
              3.1
                      1.67
                              60
       406
              5
                      2.83
                              57
## 4
       101
                      4.33
              4.4
                              48
## 5
       111
              3.5
                      4.33
                              57
```

LC 5.1 (Objective 1)

(LC5.1) Refer to the example in section 5.1.1. Conduct a new exploratory data analysis with the same outcome variable y being score but with age as the new explanatory variable x. Remember, this involves three things:

- Looking at the raw data values.
- Computing summary statistics.

• Creating data visualizations.

What can you say about the relationship between age and teaching scores based on this exploration? Solution:

• Looking at the raw data values:

```
glimpse(evals_ch5)
```

• Computing summary statistics:

```
my_skim<-skim_with(numeric = sfl(hist = NULL))

evals_ch5 %>%
   select(score, age) %>%
   my_skim() %>%
   print()
```

```
## -- Data Summary -----
##
                       Values
## Name
                       Piped data
## Number of rows
                       463
## Number of columns
## Column type frequency:
##
  numeric
##
## Group variables
                       None
## -- Variable type: numeric ------
##
    skim_variable n_missing complete_rate mean
                                         sd p0 p25 p50 p75 p100
## 1 score
                     0
                         1 4.17 0.544 2.3 3.8 4.3 4.6
                     0
                                1 48.4 9.80 29
## 2 age
                                              42
                                                   48
## $numeric
##
## -- Variable type: numeric -------
    skim_variable n_missing complete_rate mean
                                         sd
                                             p0 p25 p50 p75 p100
## 1 score
                     0
                               1 4.17 0.544 2.3 3.8 4.3 4.6
                                                              5
                     0
                                1 48.4 9.80 29
                                               42
                                                             73
## 2 age
                                                   48
                                                       57
```

(Note that for formatting purposes, the inline histogram that is usually printed with skim() has been removed.)

• Bivariate summary:

```
evals_ch5 %>%
  get_correlation(formula = score ~ age)
```

```
## # A tibble: 1 x 1
## cor
## <dbl>
## 1 -0.107
```

• Creating data visualizations:

```
ggplot(evals_ch5, aes(x = age, y = score)) +
  geom_jitter(alpha=0.5) +
  labs(
    x = "Age", y = "Teaching Score",
    title = "Scatterplot of relationship of teaching score and age") +
  geom_smooth(method = "lm", se = FALSE) +
  theme_classic()
```

Scatterplot of relationship of teaching score and age

Based on the scatterplot, there does not appear to be a relationship between age and teaching score. If anything, there might be a slight negative linear trend. That is, as age increases, the **average** teaching score decreases slightly. Even thought the correlation coefficient is negative, it is small in absolute value and thus there may be no relationship between the variables.

LC 5.2 (Objective 2)

(LC5.2) Fit a new simple linear regression using lm(score ~ age, data = evals_ch5) where age is the new explanatory variable x. Get information about the "best-fitting" line from the regression table by applying the get_regression_table() function. How do the regression results match up with the results from your earlier exploratory data analysis?

Solution:

```
# Fit regression model:
score_age_model <- lm(score ~ age, data = evals_ch5)</pre>
```

```
# Get regression table:
get_regression_table(score_age_model)
```

```
## # A tibble: 2 x 7
##
               estimate std_error statistic p_value lower_ci upper_ci
     term
                             <dbl>
##
                                       <dbl>
                                               <dbl>
                                                         <dbl>
                                                                  <dbl>
     <chr>>
                  <dbl>
## 1 intercept
                  4.46
                             0.127
                                       35.2
                                               0
                                                         4.21
                                                                  4.71
                                                        -0.011
                 -0.006
                             0.003
                                       -2.31
                                                                 -0.001
## 2 age
                                               0.021
```

$$\widehat{y} = b_0 + b_1 \cdot x$$

$$\widehat{\text{score}} = b_0 + b_{\text{age}} \cdot \text{age}$$

$$= 4.462 - 0.006 \cdot \text{age}$$

For every increase of 1 year in age, there is an associated decrease of 0.006 units of the average teaching score. It matches with the results from our earlier exploratory data analysis.

LC 5.3 (Objective 3)

(LC5.3) Generate a data frame of the residuals of the model where you used age as the explanatory x variable.

Solution:

```
score_age_regression_points <- get_regression_points(score_age_model)</pre>
```

head(score_age_regression_points)

```
## # A tibble: 6 x 5
        ID score
                    age score_hat residual
     <int> <dbl> <int>
                            <dbl>
                                      <dbl>
##
                             4.25
## 1
         1
             4.7
                     36
                                      0.452
         2
                             4.25
## 2
             4.1
                     36
                                    -0.148
                             4.25
                                    -0.348
## 3
         3
             3.9
                     36
                             4.25
## 4
         4
             4.8
                     36
                                      0.552
## 5
         5
             4.6
                    59
                             4.11
                                      0.488
         6
             4.3
                             4.11
                                      0.188
## 6
                     59
```

Documenting software

File creation date: 2022-06-21R version 4.1.3 (2022-03-10)

• tidyverse package version: 1.3.1

• skimr package version: 2.1.4

• gapminder package version: 0.3.0

• moderndive package version: 0.5.4