Population Sizes, Scale, and the Speed of History

Kevin Kuruc

Population Wellbeing Initiative, University of Texas at Austin Global Priorities Institute, Oxford University

December, 2022

Normative aspects of semi-endogenous growth models

Global fertility rates imply the world will experience exponentially declining populations beginning this century

- ► Jones (2022) argues that below-replacement fertility ⇒ economic stagnation
- Seems bad: fewer people living worse lives?

Normative aspects of semi-endogenous growth models

Global fertility rates imply the world will experience exponentially declining populations beginning this century

- ► Jones (2022) argues that below-replacement fertility ⇒ economic stagnation
- ► Seems bad: fewer people living worse lives?

But increasing population sizes stacks more people in the less mature state

▶ Does this offset the benefits of faster technological progress?

Endogenous growth models have a surprising implication based on two simple premises:

- 1. Knowledge production—like other goods—is increasing in inputs
- Knowledge—unlike other goods—is not diluted by larger populations

Endogenous growth models have a surprising implication based on two simple premises:

- 1. Knowledge production—like other goods—is increasing in inputs
- Knowledge—unlike other goods—is not diluted by larger populations

A larger population makes everyone better off, by increasing the stock of ideas/culture/innovations

A larger population makes everyone better off, by increasing the stock of ideas/culture/innovations

A larger population makes everyone better off, by increasing the stock of ideas/culture/innovations

Who's everyone? Cleopatra doesn't benefit from a larger 2050 population...

A larger population makes everyone better off, by increasing the stock of ideas/culture/innovations

Who's everyone? Cleopatra doesn't benefit from a larger 2050 population...

A larger population increases the rate of innovation, so that fewer people live without [antibiotics, etc.]

A larger population makes everyone better off, by increasing the stock of ideas/culture/innovations

A larger population increases the rate of innovation, so that fewer people live without [antibiotics, etc.]

Probably not? People have been brought forward in time to increase the rate of innovation, so this isn't obvious...

A larger population makes everyone better off, by increasing the stock of ideas/culture/innovations

A larger population increases the rate of innovation, so that fewer people live without [antibiotics, etc.]

Probably not? People have been brought forward in time to increase the rate of innovation, so this isn't obvious...

A larger population increases the rate of innovation, implying that more people get to live post-[antibiotics, etc.]

A larger population makes everyone better off, by increasing the stock of ideas/culture/innovations

A larger population increases the rate of innovation, so that fewer people live without [antibiotics, etc.]

A larger population increases the rate of innovation, implying that more people get to live post-[antibiotics, etc.]

Probably!

A larger population makes everyone better off, by increasing the stock of ideas/culture/innovations

A larger population increases the rate of innovation, so that fewer people live without [antibiotics, etc.]

A larger population increases the rate of innovation, implying that more people get to live post-[antibiotics, etc.]

Probably! It depends on how you specify the end of history (i.e, x-risk)

- 1. Show that in a simple model, **cumulative people-years exactly pin down innovation level**
 - ► The same number of people live before any given invention, regardless of contemporaneous sizes

- Show that in a simple model, cumulative people-years exactly pin down innovation level
 - ► The same number of people live before any given invention, regardless of contemporaneous sizes
- 2. Reinterpret the Jones (2022) model of depopulation
 - "End of Economic Growth" comes entirely from the "End of People"

- Show that in a simple model, cumulative people-years exactly pin down innovation level
 - ► The same number of people live before any given invention, regardless of contemporaneous sizes
- 2. Reinterpret the Jones (2022) model of depopulation
 - "End of Economic Growth" comes entirely from the "End of People"
- 3. Introduce existential-risk to close the model
 - Increasing population sizes is isomorphic to "speeding up history" (in this simple model)
 - ► How helpful that is depends on what fraction of x-risk is exogenous

- Show that in a simple model, cumulative people-years exactly pin down innovation level
 - ► The same number of people live before any given invention, regardless of contemporaneous sizes
- 2. Reinterpret the Jones (2022) model of depopulation
 - "End of Economic Growth" comes entirely from the "End of People"
- 3. Introduce existential-risk to close the model
 - Increasing population sizes is isomorphic to "speeding up history" (in this simple model)
 - ► How helpful that is depends on what fraction of x-risk is exogenous
- 4. Relax some simplifying assumptions in knowledge production
 - Diminishing returns to knowledge production gives rise to competing forces

Semi-Endogenous Growth Model

Percent growth in TFP (A) is **increasing** in N, but suffers from dynamic diminishing returns (β)

$$\frac{\dot{A}}{A} = \alpha N(t)^{\lambda} A(t)^{-\beta}$$

Semi-Endogenous Growth Model

Percent growth in TFP (A) is increasing in N, but suffers from dynamic diminishing returns (β)

$$\frac{\dot{A}}{A} = \alpha N(t)^{\lambda} A(t)^{-\beta}$$

"Simplified model" sets $\lambda = 1$

- λ < 1 (duplication) implies that to maximize innovation that M people create, spread them out into M non-overlapping lives
- $\lambda > 1$ (collaboration) implies that to maximize innovation that M people create, stack them all in one year

Neither seems plausible, so I'll assume that these offset ($\lambda = 1$)

Main Result: cumulative people-years by t pins down A_t

Integrate with respect to time:

$$A(t) = \left(\beta \alpha \underbrace{\int_{0}^{t} N(\tau) d\tau}_{\text{People-years by } t} + A_{0}^{\beta}\right)^{\frac{1}{\beta}}$$

Main Result: cumulative people-years by t pins down A_t

Integrate with respect to time:

$$A(t) = \left(\beta \alpha \underbrace{\int_{0}^{t} N(\tau) d\tau}_{\text{People-years by } t} + A_{0}^{\beta}\right)^{\frac{1}{\beta}}$$

Implication: by the time the *i*th person lives, the level of technology they experience is **invariant** to *when* they live

- ► Therefore, increasing population sizes makes no one's life better
- ► Alternatively, the same number of people will live before factory farming ends, regardless of population sizes
- So there's no "meat-eater problem," on the population margin (Of course, increasing or decreasing per capita intensity of these activities will still matter, this is all on the population-growth margin)

Larger populations speed up technological progress

All time periods have a higher average living standard

Larger populations speed up technological progress

All time periods have a higher average living standard

▶ But we care about living standards for **people**, not time periods

*i*th person has same technology available

ith person has same technology available

History has been **sped up**: people and innovations brought forward **proportionately**

Jones (2022) shows **economic growth ends with population decline**, but not under population growth

► But I've claimed "no ones life is improved by this living standards channel"

Jones (2022) shows **economic growth ends with population decline**, but not under population growth

► But I've claimed "no ones life is improved by this living standards channel"

Jones (2022) studies a constant growth rate: $N(t) = N_0 e^{rt}$

- ► This implies $\int_0^\infty N(\tau)d\tau = \bar{M}$ is **finite** in the depopulation case
 - $\blacktriangleright \ (\Rightarrow A_{\infty} \text{ is finite})$

Jones (2022) shows **economic growth ends with population decline**, but not under population growth

► But I've claimed "no ones life is improved by this living standards channel"

Jones (2022) studies a constant growth rate: $N(t) = N_0 e^{rt}$

► This implies $\int_0^\infty N(\tau)d\tau = \bar{M}$ is **finite** in the depopulation case ► ($\Rightarrow A_\infty$ is finite)

The first \overline{M} people in the depopulation world have same quality of life as counterparts in the growth case

▶ But, people $\{\bar{M}+1,...,\infty\}$ exist in the growth regime

Jones (2022) shows **economic growth ends with population decline**, but not under population growth

► But I've claimed "no ones life is improved by this living standards channel"

Jones (2022) studies a constant growth rate: $N(t) = N_0 e^{rt}$

► This implies $\int_0^\infty N(\tau)d\tau = \bar{M}$ is **finite** in the depopulation case ► ($\Rightarrow A_\infty$ is finite)

The first \overline{M} people in the depopulation world have same quality of life as counterparts in the growth case

▶ But, people $\{\bar{M}+1,...,\infty\}$ exist in the growth regime Population growth is good *because more people exist*

Again: ith person has same technology available

"Empty Planet" **cuts short** the same trajectory (by voluntary extinction)

How you close the model is crucial

Exponential decay ends history in Jones (2022)

► That's just one of many ways to "close the model"

Consider two alternative assumptions:

- (i.) Asteroid: Humanity ends at some date T, exogenously
 - ► Speeding up history is **very valuable**: we get more of it
 - ▶ Or, we're more mature when *T* arrives, increasing survival odds

How you close the model is crucial

Exponential decay ends history in Jones (2022)

► That's just one of many ways to "close the model"

Consider two alternative assumptions:

- (i.) Asteroid: Humanity ends at some date T, exogenously
 - ► Speeding up history is **very valuable**: we get more of it
 - Or, we're more mature when T arrives, increasing survival odds
- (ii.) AI: Humanity ends when we reach some A
 - Speeding up history is **neutral**, same number of people by \bar{A}

How you close the model is crucial

Exponential decay ends history in Jones (2022)

► That's just one of many ways to "close the model"

Consider two alternative assumptions:

- (i.) Asteroid: Humanity ends at some date T, exogenously
 - ► Speeding up history is **very valuable**: we get more of it
 - ightharpoonup Or, we're more mature when T arrives, increasing survival odds
- (ii.) AI: Humanity ends when we reach some \bar{A}
 - Speeding up history is **neutral**, same number of people by \bar{A}

If events in **chronological time** contribute to x-risk, speeding up history has value

Exactly how valuable will depend on the "share" of x-risk that's exogenous

What about stagnating in a time of perils?

McAskill (2022) worries about stagnating when x-risk is high

- Suggests that population growth can speed us through
- ► Supported by a two sector model in Aschenbrennar (2020)

What about stagnating in a time of perils?

McAskill (2022) worries about stagnating when x-risk is high

- Suggests that population growth can speed us through
- ► Supported by a two sector model in Aschenbrennar (2020)

Here I'll consider two simple versions of x-risk

$$P(survive(t)|alive) = \frac{1}{1 + \theta N(t) \times A(t)^{\phi}}$$

$$P(survive(t)|alive) = \frac{1}{1 + \theta N(t) \times e^{-\phi A(t)}}$$

Increasing in *N*: you need the technology *and the bad actor* for extinction

► If there are only 10 people alive, seems unlikely one will engineer a pandemic

What's the probability of getting to the *i*'th person in this framework?

Humanity survives longer with smaller populations Blue dotted population is half the size in each period

You guessed it: probability of getting to *i*th person is constant

In simple specifications, we can't use population to grow us to safety

ightharpoonup This of course relies on x-risk increasing proportionately with N

What if we relax linearity?

There are a few linearity restrictions which help generate the exact neutrality

► If doubling the number of people doubles economic growth ⇒ proportional results

Let's relax $\lambda < 1$

Population has diminshing returns to research productivity

What if we relax linearity?

There are a few linearity restrictions which help generate the exact neutrality

► If doubling the number of people doubles economic growth ⇒ proportional results

Let's relax $\lambda < 1$

▶ Population has diminshing returns to research productivity

It's **no longer true** that the timing of people doesn't matter

$\lambda < 1$ implies ambiguous effects of increasing populations

If there are diminishing returns, **less knowledge** is available to the *i*th person **if populations were large**

- ▶ 10 people in one year now generates less *A* than 1 person per year
- ► If you're the 11th person, you'd prefer the 1 per year history

λ < 1 implies ambiguous effects of increasing populations

If there are diminishing returns, **less knowledge** is available to the *i*th person **if populations were large**

- ▶ 10 people in one year now generates less *A* than 1 person per year
- ► If you're the 11th person, you'd prefer the 1 per year history

So—if *i* gets to exist—they do so with a **lower living standard**

$\lambda < 1$ implies ambiguous effects of increasing populations

If there are diminishing returns, **less knowledge** is available to the *i*th person **if populations were large**

- ▶ 10 people in one year now generates less *A* than 1 person per year
- ► If you're the 11th person, you'd prefer the 1 per year history

So—if *i* gets to exist—they do so with a **lower living standard**

- ► They still have a higher probability of existing for exogenous reasons
 - ► They come earlier in time
- ► They also may have a higher chance of existing for endogenous reasons
 - ► Technology is **less mature** before their existince

Whether this is ex-ante valuable depends on quantitative trade-offs between the chances of existing and the quality of life conditional on existing

Smaller populations increase average living standards...

...when returns to knowledge production diminish in population

Increasing the population size brings forward people and innovations

► Under plausible assumptions, proportionately

Increasing the population size brings forward people and innovations

► Under plausible assumptions, proportionately

Therefore, what's happening at the model's end matters a lot in assessing the value of increasing population sizes

► Special case of Ord (2022), I think!

Increasing the population size brings forward people and innovations

► Under plausible assumptions, proportionately

Therefore, what's happening at the model's end matters a lot in assessing the value of increasing population sizes

► Special case of Ord (2022), I think!

Speeding up history is valuable if there are exogenous risks

- ► If it's sure to kill us, more value is generated before the end
- ► Or we might think its important we're diversified from Earth by some time *T*

Of \approx neutral value if risks are fully endogenous

Increasing the population size brings forward people and innovations

► Under plausible assumptions, proportionately

Therefore, what's happening at the model's end matters a lot in assessing the value of increasing population sizes

► Special case of Ord (2022), I think!

Speeding up history is valuable if there are exogenous risks

- ► If it's sure to kill us, more value is generated before the end
- ► Or we might think its important we're diversified from Earth by some time *T*

Of \approx neutral value if risks are fully endogenous

Thanks!