Universidad de la República - Facultad de Ingeniería - IMERL: Matemática Discreta 2

SEGUNDO PARCIAL - 27 DE JUNIO DE 2019. DURACIÓN: 3:30 HORAS

N° de parcial	Apellido y Nombre	Cédula

Ejercicio 1.

- a. Sean G un grupo y dos elementos $x, y \in G$ de orden finito. Probar que si xy = yx y mcd(o(x), o(y)) = 1, entonces o(xy) = o(x)o(y).
- **b**. Sean G un grupo y $g \in G$. Probar que $|\langle g \rangle| = o(g)$.

Ejercicio 2.

- a. Probar que 98 es raíz primitiva módulo 101.
- **b**. Hallar un elemento de U(101) de orden 25.
- c. Alicia y Beatriz quieren acordar una clave común utilizando el protocolo Diffie-Hellman. Para ello acuerdan públicamente el uso de p=101 y g=98 como raíz primitiva. Alicia elige en secreto un número n y le envía $g^n\equiv 11\pmod{101}$ a Beatriz. Beatriz elige en secreto m=31 y le envía $g^m\equiv 83\pmod{101}$ a Alicia. ¿Cuál es la clave común k acordada?

Ejercicio 3. Para los siguientes grupos G, K, determinar si existen homomorfismos $f: G \to K$ no triviales. En caso afirmativo dar un ejemplo, justificando que es un homomorfismo.

- a. Para un primo impar p, $G = \mathbb{Z}_p$ el grupo de enteros módulo p y $K = S_{p-1}$ el grupo de permuataciones de p-1 elementos.
- b. $G = \mathbb{Z}_{100}$ el grupo de enteros módulo 100, y $K = \mathrm{U}(101)$ el grupo de invertibles módulo 101.
- c. G = U(12) el grupo de invertibles módulo 12 y \mathbb{Z}_4 el grupo de enteros módulo 4.

Ejercicio 4.

- a. Describir el criptosistema RSA.
- b. Probar que la función de descifrado del criptosistema RSA descifra correctamente.