

Discrete POWER & Signal **Technologies**

MMBD1701/A / 1703/A / 1704/A / 1705/A

MMBD1701 85 MMBD1701A 85A MMBD1703 87 MMBD1703A 87A MMBD1704 88 MMBD1704A 88A MMBD1705 89 MMBD1705A 89A

High Conductance Low Leakage Diode

Sourced from Process 1T.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
W _{IV}	Working Inverse Voltage	20	V
Io	Average Rectified Current	50	mA
I _F	DC Forward Current	150	mA
i _f	Recurrent Peak Forward Current	150	mA
İf(surge)	Peak Forward Surge Current Pulse width = 1.0 second	250	mA
T _{stg}	Storage Temperature Range	-55 to +150	°C
TJ	Operating Junction Temperature	150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	Max	Units	
		MMBD1701/A /1703/A-1705/A*		
P _D	Total Device Dissipation	350	mW	
	Derate above 25°C	2.8	mW/°C	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357	°C/W	

^{*}Device mounted on glass epoxy PCB 1.6" X 1.6" X 0.06"; mounting pad for the collector lead min. 0.93 in2

High Conductance Low Leakage Diode

(continued)

Electrical Characteristics

TA = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Max	Units
B _V	Breakdown Voltage	$I_R = 5.0 \mu\text{A}$	30		V
I _R	Reverse Current	V _R = 20 V		50	nA
V _F	Forward Voltage	$I_F = 10 \mu A$ $I_F = 100 \mu A$ $I_F = 1.0 mA$ $I_F = 1.0 mA$ $I_F = 20 mA$ $I_F = 50 mA$	420 520 640 760 810 0.89	500 610 740 880 950 1.1	mV mV mV mV V
Co	Diode Capacitance	V _R = 0, f = 1.0 MHz		1.0	pF
T _{RR}	Reverse Recovery Time MMBD1701-1705	$I_F = I_R = 10 \text{ mA } I_{RR} = 1.0 \text{ mA},$ $R_L = 100\Omega$		700	pS
	MMBD1701A-1705A	$I_F = I_R = 10 \text{ mA } I_{RR} = 1.0 \text{ mA},$ $R_L = 100\Omega$		1.0	nS

Typical Characteristics

REVERSE VOLTAGE vs REVERSE CURRENT BV - 1.0 to 100 uA

REVERSE CURRENT vs REVERSE VOLTAGE IR - 1 to 22 V

GENERAL RULE: The Reverse Current of a diode will approximately double for every ten (10) Degree C increase in Temperature

FORWARD VOLTAGE vs FORWARD CURRENT VF - 1.0 to 100 uA

FORWARD VOLTAGE vs FORWARD CURRENT VF - 0.1 to 10 mA

High Conductance Low Leakage Diode

(continued)

Typical Characteristics (continued)

FORWARD VOLTAGE vs FORWARD CURRENT VF - 10 - 200 mA

CAPACITANCE vs REVERSE CURRENT VR - 0 to 15 V

Power Dissipation,
Average Rectified Current (Io),
Forward Current (I r) & Ambient Temperature (T_A)

Power Derating Curve

