CLAIMS

What is claimed is:

1	1. A method comprising:
2	re-compiling a function when a field watch for a field is activated, the
3	function including a byte code sequence having a field byte code that accesses or
4	modifies the field, the recompiled function providing a native code and occupying
5	a code space;
6	generating an instrumentation code corresponding to the field watch of the
7	field; and
8	inserting the instrumentation code to the native code.
	mosting the instrumentation code to the hative code.
1	2. The method of claim 1 further comprising:
2	guarding execution of the instrumentation code if the field watch is not
3	activated.
1	3. The method of claim 1 wherein generating the instrumentation
2	code comprises:
	•
3	executing a field watch sequence if the field watch is activated.
1	4. The method of claim 1 wherein executing the field watch sequence
2	comprises:

	4	register;
	5 6	executing an event hook function for an event corresponding to the field watch; and
	7	restoring the live global state.
	1 2	5. The method of claim 4 wherein saving the live global state comprises:
	3	pushing the live global state onto a stack.
	1 2	6. The method of claim 4 wherein executing the event hook function comprises:
	3	passing an argument corresponding to the field; and
	4	calling a run-time library function related to the event.
	1 2	7. The method of claim 5 wherein restoring the live global state comprises:
;	3	retrieving the live global state from the stack.
	1 2	8. The method of claim 1 wherein inserting the instrumentation code comprises:
3	3	inserting the instrumentation code in a stub at end of the code space.

saving live global state, the live global state corresponding to an active

042390.P10798

1	9.	The method of claim 2 wherein guarding execution of the
2	instrumentation	code comprises:
3	updating	g an offset of a jump instruction to the stub when the field watch is
4	activated.	
1	10.	The method of claim 1 wherein guarding execution of the
2	instrumentation	code comprises:
3	replacin	g a no-op sequence with a jump instruction to the stub.
1	11.	The method of claim 9 further comprising:
2	clearing	the field watch by replacing the offset with a zero offset.
1	12.	The method of claim 10 further comprising:
2	clearing	the field watch by replacing the jump instruction with the no-op
3	sequence.	
1	13.	The method of claim 1 wherein the function is a Java method.
1	14.	The method of claim 1 wherein the field is a Java field in a Java
2	virtual machine	e.
1	15.	The method of claim 4 wherein the event hook function is
2	compatible wit	h a Java Virtual Machine Debug Interface (JVMDI).

-23-

ım produc	duct co	ompr	ising:				
n having c	ıg com	npute	r prog	ram c	ode (embed	lded
oduct havi							
program o	ım cod	le to r	re-con	npile a	a fun	ction v	when a
ctivated, th	i, the f	functi	ion inc	cludin	g a b	yte co	de
te code th	e that a	acces	ses or	modi	fies t	he fie	ld, the
ding a nati	native	code	and c	ccupy	ying	a code	space,
program o	m code	le to g	genera	te an	instr	ument	ation
field watc	atch o	of the	field,	and			
program c	m code	e to i	nsert t	he ins	strun	nentati	ion code
computer readable program code to insert the instrumentation code to the native code.							
ram produ	oduct o	of cla	aim 16	furth	er co	mpris	sing:
n code to g	to guar	ırd ex	ecutio	n of t	he ir	strum	entation
computer readable program code to guard execution of the instrumentation code if the field watch is not activated.							
ram produ	oduct c	of cla	im 16	wher	ein t	he cor	nputer
the instru							•
n code to e	to exec	cute a	a field	watcl	h sea	uence	if the
computer readable program code to execute a field watch sequence if the field watch is activated.							
am produ	oduct o	of cla	im 16	wher	ein tl	ne con	nputer
a field wat							•
							ein the con

3	computer readable program code to save live global state, the live global					
4	state corresponding to an active register;					
5	computer readable program code to execute an event hook function for an					
6						
7	computer readable program code to restore the live global state.					
1	20. The computer program product of claim 19 wherein the computer					
2	readable program code to save the live global state comprises:					
3	computer readable program code to push the live global state onto a stack.					
1	21. The computer program product of claim 19 wherein the computer					
2	readable program code to execute the event hook function comprises:					
3	computer readable program code to pass an argument corresponding to the					
4	field; and					
5	computer readable program code to call a run-time library function related					
6	to the event.					
٠.						
1	22. The computer program product of claim 20 wherein the computer					
2	readable program code to restore the live global state comprises:					
3	computer readable program code to retrieve the live global state from the					
4	stack.					
1	23. The computer program product of claim 16 wherein the computer					
2	readable program code to insert the instrumentation code comprises:					

3 computer readable program code to insert the instrumentation code in a 4 stub at end of the code space. 1 24. The computer program product of claim 16 wherein the computer 2 readable program code to guard execution of the instrumentation code comprises: 3 computer readable program code to update an offset of a jump instruction 4 to the stub when the field watch is activated. 1 25. The computer program product of claim 16 wherein the computer 2 readable program code to guard execution of the instrumentation code comprises: 3 computer readable program code to replace a no-op sequence with a jump 4 instruction to the stub. 1 26. The computer program product of claim 24 further comprising: 2 computer readable program code to clear the field watch by replacing the 3 offset with a zero offset. 1 27. The computer program product of claim 25 further comprising: 2 computer readable program code to clear the field watch by replacing the 3 jump instruction with the no-op sequence.

28.

a Java method.

1

The computer program product of claim 16 wherein the function is

1	29.	The computer program product of claim 16 wherein the field is a
2	Java field in a	a Java virtual machine.
_		
1	30.	The computer program product of claim 19 wherein the event hook
2	function is co	mpatible with a Java Virtual Machine Debug Interface (JVMDI).
1	31.	A system comprising:
_		
2	a proc	essor;
3		now, coupled to the muccoggoute stane instruction and a the
		nory coupled to the processor to store instruction code, the
4	instruction co	de, when executed by the processor, causing the processor to:
5		re-compile a function when a field watch for a field is activated,
6		the function including a byte code sequence having a field byte
7		code that accesses or modifies the field, the re-compiled function
8		providing a native code and occupying a code space,
9		generate an instrumentation code corresponding to the field watch
10		of the field, and
11		insert the instrumentation code to the native code.
1	32.	The system of claim 31 the instruction code further causing the
2	processor to:	
•	٠	
3	guard	execution of the instrumentation code if the field watch is not

activated.

4

1	33. The system of claim 31 wherein the instruction code causing the
2	processor to generate the instrumentation code causes the processor to:
3	execute a field watch sequence if the field watch is activated.
1	34. The system of claim 31 wherein the instruction code causing the
2	processor to execute a field watch sequence causes the processor to:
3 4	save live global state, the live global state corresponding to an active register;
5 6	execute an event hook function for an event corresponding to the field watch; and
7	restore the live global state.
1	35. The system of claim 32 wherein the instruction code causing the
2	processor to guard execution of the instrumentation code causes the processor to:
3 4	update an offset of a jump instruction to the stub when the field watch is activated.
1 2	36. The system of claim 32 wherein the instruction code causing the processor to guard execution of the instrumentation code causes the processor to:
3	replace a no-op sequence with a jump instruction to the stub.
1	37. The system of claim 31 wherein the function is a Java method.

- 1 38. The system of claim 31 wherein the field is a Java field in a Java
- 2 virtual machine.
- 1 39. The system of claim 34 wherein the event hook function is
- 2 compatible with a Java Virtual Machine Debug Interface (JVMDI).