Hashing

Map ADT

- A map is a collection of (key, value) pairs
- Keys are unique, values may not be
- Two operations:
 - get(key)
 - put(key, value)

Implementing Maps

- Store (key, value) pairs in a Set
 - For example, store them in an AVL Tree, with the comparator comparing keys
 - $O(\log(n))$ get and put
- Use an array of values
 - Only integer keys permitted, the array may need to be large
 - O(1) get and put
- Use hash tables
 - An extension of the array idea, but without needing very large arrays

Hash Tables

- Define a table (array) of length *TableSize*
- Define a function hash(key) that maps keys to integer indices in the range 0...TableSize-1

Hash Tables

• Assuming hash(key) takes constant time, get and put run in O(1)

Hash Tables Collisions

- Problem: there can be an infinite number of keys, but only TableSize entries in the array
 - Want to use a hash function that distributes items in the array evenly
 - Need to deal with collisions situations where a new item hashes to an already-occupied array cell

Choosing a Hash Function

- Need to
 - Spread out the keys as much as possible in the table
 - If the function maps a lot of the keys to the same area of the table, there will be collisions
 - Make use of all table cells
 - Otherwise we are wasting space

Choosing a Hash Function

- If we can assume that the possible integer keys x are distributed evenly, we can use
 hash(x) = x % TableSize
- For strings, can use the ASCII value of the characters
 - E.g. $(str[n-1] \times 37^{n-1} + str[n-2] \times 37^{n-1} + \dots + str[0])$ % TableSize

Choosing a Hash Function

- For a compound object (e.g., a string and an integer), can combine hash functions using $hash(s,x) = (hash_1(s) \times p_1 + hash_2(x) \times p_2)\%TableSize$
- p_1 , p_2 prime
 - Don't want to be able to factor the expression
 - $hash(s,x)=2\times (hash_1(s)\times p_1+hash_2(x)\times p_2)\%TableSize$ means we are skipping the odd cells in the table

Collisions: Separate Chaining

- Keep all items whose key hashes to the same value on a linked list
- Can think of each list as a bucket defined by the hash value

Runtime for Separate Chaining

- Runtime depends on the number of elements in a list on average
- Load factor $\lambda = N/TableSize$
- N is the total number of entries

- If lookup fails (key is not in the hash table), need to search all (on average) λ nodes in the list for the hash bucket
- If lookup succeeds (key is in the table), need to search (on average) $\lambda/2$ +1 nodes
- Keep $\lambda \approx 1$
 - Increase table size as needed

Probing

 When a collision occurs, put item in an empty cell of the had table

 To look up a key, search the table starting from the cell the key was hashed to

Probing: Collision Resolution Strategies (1)

- To insert an item, we probe other table cells systematically until an empty cell is found
- To look up a key, we probe until the key is found
- Different strategies to determine the next cell
 - In general, try (hash(x) + f(i))%TableSize after cell i
 - Linear probing: try the next cell, f(i) = i
 - Quadratic probing: $f(i) = i^2$
 - Double hashing: $f(i) = i \times hash_2(x)$

Linear probing

- If cell is occupied, try the next cell
- Problem: primary clustering
 - Full cells tend to cluster, with no free cells in between
 - Time required to find an empty cell can become very large if the table is almost full (λ is close to 1)

Cells 7-9 are occupied with keys that hash to 7. The entire block is unavailable to keys that hash to k < 7

Quadratic Problem

$$(hash(x) + f(i))$$
% $TableSize, f(i) = i^2$

Quadratic Probing

- Primary clustering is not a problem
- If the table gets too full ($\lambda > 0.5$), it is possible that empty cells become unreachable

Quadratic Problem Theorem

- If *TableSize* is prime, then the first *TableSize/2* cells visited by quadratic probing are distinct
 - So it's always possible to find an empty cell if the table is at most half-full
- Proof sketch Suppose there is a repetition. Then $(h+i^2)\%T=(h+j^2)\%T$, so $h+i^2=h+j^2+kT$ for some integer k, so kT=(i+j)(i-j) T is prime, so either (i+j) or (i-j) is divisible by T. But i < j < M, which means that both (i-j) or (i+j) are too small