LE THÉORÈME DE BRUN-TITCHMARSH PAR LE CRIBLE DE SELBERG.

OLIVIER RAMARÉ

ABSTRACT. Exposé introductif au crible supérieur de Selberg. L'exemple choisi est bien sûr le théorème de Brun-Titchmarsh. Version du 17 Janvier 2000.

Théorème de Brun-Titchmarsh.

Si $2 \le y < q$, $x \ge 0$ et a est premier à q, nous avons

$$\pi(x+y;q,a) - \pi(x;q,a) \le \frac{2y}{\phi(q)\operatorname{Log}(y/q)}.$$

Rappelons que $\pi(x;q,a)$ désigne le nombre de nombres premiers inférieurs à x et congrus à a modulo q.

Titchmarsh a démontré un résultat plus faible que le précédent dans les années 30 en utilisant le crible de Brun. La dénomination "théorème de Brun-Titchmarsh" est dû à Linnik et date des années 40.

Nous allons montrer une version un peu plus faible de (\star) et utiliser ce problème pour illustrer la façon dont le crible de Selberg fonctionne. Ce crible date des années 47-50. Le lecteur en trouvera une présentation classique dans le livre de Halberstam & Richert cité ci-dessous.

Posons

(1)
$$S = \pi(x+y;q,a) - \pi(x;q,a) = \sum_{\substack{x$$

et considérons

(2)
$$\Sigma = \sum_{\substack{x < n \le x + y \\ n \equiv a[q]}} \left(\sum_{d|n} \lambda_d\right)^2$$

où les (λ_d) sont des nombres réels qui vérifient $\lambda_1=1$ et $\lambda_d=0$ si d>z où z est un paramètre. Si p est un nombre premier dans]x+z,x+y], p n'admet pas d'autres diviseurs inférieurs à z que 1 et par conséquent

$$\left(\sum_{d|p} \lambda_d\right)^2 = 1.$$

Il vient alors

$$(3) S \leq \Sigma + z.$$

Il nous reste à étudier Σ et en fait à obtenir le minimum de cette forme quadratique des (λ_d) . Pour cela nous développons le carré et obtenons

$$\Sigma = \sum_{\substack{d_1, d_2 \leq z \\ d_1, d_2 \mid |n \\ n \equiv a[q]}} \lambda_{d_1} \lambda_{d_2} \sum_{\substack{x < n \leq x + y \\ [d_1, d_2] \mid n \\ n \equiv a[q]}} 1,$$

où [r, s] désigne le ppcm de r et s et (r, s) leur pgcd. Comme (a, q) = 1, seuls les d tels que (d, q) = 1 interviennent, ce qui fait que nous pouvons imposer $\lambda_d = 0$ si $(d, q) \neq 1$. En utilisant maintenant

(4)
$$\sum_{\substack{x < n \le x + y \\ n \equiv b[q]}} 1 = \frac{y}{r} + \mathcal{O}^*(1),$$

nous obtenons

(5)
$$\Sigma = \frac{y}{r} \sum_{d_1, d_2 \leq z} \frac{\lambda_{d_1} \lambda_{d_2}}{[d_1, d_2]} + \mathcal{O}^* \left(\sum_{d_1, d_2} |\lambda_{d_1}| |\lambda_{d_2}| \right)$$
$$= \frac{y}{r} \Sigma_0 + \mathcal{O}^* \left(\left(\sum_{d} |\lambda_{d}| \right)^2 \right) \text{ disons.}$$

Nous diagonalisons alors Σ_0 par un procédé mis au point par Selberg. Écrivons

$$\Sigma_0 = \sum_{d_1, d_2 \le z} (d_1, d_2) \frac{\lambda_{d_1}}{d_1} \frac{\lambda_{d_2}}{d_2}.$$

Or $d = \sum_{\ell \mid d} \phi(\ell)$, d'où

(6)
$$\Sigma_0 = \sum_{\ell \le z} \phi(\ell) \left(\sum_{\ell \mid d \le z} \frac{\lambda_d}{d} \right)^2,$$

ce qui est la forme diagonale annoncée. Posons

(7)
$$y_{\ell} = \sum_{\ell \mid d \le z} \frac{\lambda_d}{d}.$$

La matrice de passage des (λ_d) aux (y_ℓ) est triangulaire avec des éléments non nuls sur la diagonale et est donc inversible. De façon explicite, nous avons

(8)
$$\lambda_d = d \sum_{d|\ell < z} \mu(\ell/d) y_{\ell}$$

ce que l'on vérifie en introduisant cette expression dans (7). Cela nous permet notamment de traduire la condition $\lambda_1 = 1$ en terme des (y_ℓ) . En définitive, notre problème devient :

(9)
$$\begin{cases} \text{minimiser } \sum_{\ell} \phi(\ell) y_{\ell}^{2}, \\ \\ \text{sous } \begin{cases} \sum_{\ell \leq z} \mu(\ell) y_{\ell} = 1, \\ \\ y_{\ell} = 0 \quad \text{si} \quad (\ell, q) \neq 1. \end{cases}$$

Nous utilisons un multiplicateur (θ) de Lagrange et obtenons

(10)
$$\begin{cases} 2\phi(\ell)y_{\ell} - \theta\mu(\ell) = 0 & (\ell, q) = 1, \\ \sum_{\ell \le z} \mu(\ell)y_{\ell} = 1, \end{cases}$$

ce qui donne

(11)
$$y_{\ell} = \frac{\theta}{2} \frac{\mu(\ell)}{\phi(\ell)} \quad , \quad \frac{\theta}{2} \sum_{\substack{\ell \leq z \\ (\ell,q)=1}} \frac{\mu^2(\ell)}{\phi(\ell)} = 1.$$

Remarquons, ce qui est évident sur (9), que $y_{\ell} = 0$ si ℓ est divisible par un carré, ce qui équivaut à la même propriété sur les (λ_d) .

Posons

(12)
$$G_f(z) = \sum_{\substack{\ell \le z \\ (\ell, f) = 1}} \frac{\mu^2(\ell)}{\phi(\ell)}.$$

Alors

(13)
$$\begin{cases} y_{\ell} = \frac{1}{G_{q}(z)} \frac{\mu(\ell)}{\phi(\ell)} & (\ell, q) = 1, \\ \lambda_{d} = \mu(d) \frac{d}{\phi(d)} \frac{G_{dq}(z/d)}{G_{q}(z)} & (d, q) = 1, \\ \Sigma_{0} = 1/G_{q}(z). \end{cases}$$

Il nous faut à présent évaluer $G_q(z)$ et nous commençons par un lemme de van Lint & Richert (voir les références) :

Lemme.

Soit f et h deux entiers tels que (f,h) = 1. Nous avons

$$\frac{f}{\phi(f)}G_{fh}(z/f) \le G_h(z) \le \frac{f}{\phi(f)}G_{fh}(z).$$

Preuve. Nous écrivons

$$G_h(z) = \sum_{r|f} \sum_{\substack{\ell \le z/r \\ (\ell \ne h) - 1}} \frac{\mu^2(\ell r)}{\phi(\ell r)} = \sum_{r|f} \frac{\mu^2(r)}{\phi(r)} G_{fh}(z/r)$$

et il nous suffit alors d'utiliser $G_{fh}(z/f) \leq G_{fh}(z/r) \leq G_{fh}(z)$ ainsi que

$$\sum_{r|f} \frac{\mu^2(r)}{\phi(r)} = \frac{f}{\phi(f)}$$

pour conclure. $\diamond \diamond \diamond$

Ce lemme nous donne notamment

$$|\lambda_d| \le 1,$$

et ramène l'évaluation de $G_q(z)$ à celle de $G_1(z)$. Il nous suffit d'ailleurs de minorer $G_1(z)$, ce qui se fait très facilement de la façon suivante :

(15)
$$G_{1}(z) = \sum_{\ell \leq z} \frac{\mu^{2}(\ell)}{\phi(\ell)} = \sum_{\ell \leq z} \frac{\mu^{2}(\ell)}{\ell} \prod_{p|\ell} \frac{1}{1 - 1/p}$$

$$= \sum_{\substack{\text{tel que le noyau sans} \\ \text{facteurs carrés de } k \text{ soit } \leq z}} \frac{1}{k}$$

où l'on obtient la dernière égalité à partir de

$$\frac{1}{1 - 1/p} = 1 + \frac{1}{p} + \frac{1}{p^2} + \dots$$

Il vient alors

(16)
$$G_1(z) \ge \sum_{k \le z} \frac{1}{k} \ge \text{Log } z.$$

Le lecteur pourra consulter l'article et/ou le livre de Halberstam & Richert cités ci-après pour une évaluation complète de $G_1(z)$.

Rassemblant (3), (5), (13) et (14), nous obtenons

(17)
$$S \le \frac{y}{\phi(q)} \frac{1}{G_1(z)} + z^2 + z$$

et avec (16):

(18)
$$S \le \frac{y}{\phi(q)} \frac{1}{\log z} + z^2 + z.$$

Il nous suffit à présent de choisir z. Nous prenons

(19)
$$z = \frac{y}{q} (\text{Log}(y/q))^{-1}$$

ce qui nous donne

(20)
$$S \le (2 + o(1)) \frac{y}{\phi(q)} \frac{1}{\operatorname{Log}(y/q)} \qquad (y/q \to \infty).$$

La démonstration que nous avons donnée est insuffisante pour établir (\star) puisque nous n'avons que (2 + o(1)) au lieu de (2). On trouvera une preuve de (\star) dans l'article de Montgomery & Vaughan cité ci-aprés.

REFERENCES

- H. Halberstam & H. E. Richert, Mean value theorems for a class of arithmetic functions, Acta Arith. 43 (1971), 243–256.
- H. Halberstam & H. E. Richert, Sieves methods, Academic Press (London) (1974), 364pp.
- J.E. van Lint & H.E. Richert, On primes in arithmetic progressions, Acta Arith. 11 (1965), 209–216.
- H. Montgomery & R. C. Vaughan, The large sieve, Mathematika 20 no 2 (1973), 119-133.