北京交通大学考试试题(B卷)

	算法设计与	<u>分析</u> 学 ^纪	年学期: <u>2</u>	022—2023	学年第2学期
课程编号:	<u>M210004B</u>	开课学院:	软件学院	出题教师:	刘铎,李令昆
学生姓名:		学号:		任课教师	:
学生学院:		班级:			
② 必须	青楚 学号和姓名 回答在指定位置 诗殊说明,论证	内, 不在 指定值		* * * * = * * *	/////////////////////////////////////
第一部分	、单项选择是	返。请选择最	最适合的答	案,并填写	否在指定位置 。
(共 16 分)				
(1) 若f(n)	$= n2^n, g(n)$	= n!,则有(()。		
A. f=	O(g)	$B. f = \Omega$	(g)	C.f = C	O(g)
(2) 要求算	算法每一步都见	必须严格明确	、不能含混	指的是算法	的()。
A. 有	「效性	B. 有限性	C.	明确性	D. 正确性
	「效性 寸间复杂度里,				
	寸间复杂度里,			理论中被称	
(3) 以下即 A. n ¹⁰	寸间复杂度里,	() 在 B. nlgn	计算复杂性:	理论中被称 "	为是"慢"的? D. O(1)
(3) 以下即 A. n ¹⁰ (4) 以下乡	寸间复杂度里, 00	()在 B. nlgn 的说法中,(计算复杂性: C.2)目前确	理论中被称 "	为是"慢"的? D. O(1)
(3) 以下即 A. n ¹⁰ (4) 以下 A. NI	时间复杂度里, 500 长于 NP 问题的	()在 B. nlgn 的说法中,(可能解决的问	计算复杂性: C.2)目前确	理论中被称 "	为是"慢"的? D. O(1)
(3) 以下即 A. n ¹⁰ (4) 以下 A. NI B. P 2	时间复杂度里, 20 关于 NP 问题的 P 问题都是不可	()在 B. nlgn 的说法中,(可能解决的问 NP 问题中	计算复杂性: C.2)目前确 题	理论中被称 "	为是"慢"的? D. O(1)
(3) 以下即 A. n ¹⁰ (4) 以下争 A. NI B. P 毫 C. NI	时间复杂度里, 20 关于 NP 问题的 P 问题都是不可 类问题包含在	()在 B. nlgn 讨说法中,(可能解决的问 NP 问题中 P 类问题的子	计算复杂性: C.2)目前确 题	理论中被称 "	为是"慢"的? D. O(1)
(3) 以下即 A. n ¹⁰ (4) 以下争 A. NI B. P 毫 C. NI D. NI	时间复杂度里,200 关于 NP 问题的 户问题都是不可 类问题包含在 产完全问题是 1	()在 B. nlgn 讨说法中,(可能解决的问 NP问题中 P类问题的子 生 P类问题中	计算复杂性: C.2)目前确 题 ·集	理论中被称 "	为是"慢"的? D. O(1)
(3) 以下即 A. n ¹⁰ (4) 以下 A. NI B. P C. NI D. NI (5) 下列表	时间复杂度里, 200 关于 NP 问题的 2 问题都是不可 类问题包含在 2 完全问题是 D 类问题包含	()在 B. nlgn 可说法中,(可能解决的问 NP问题中 P类问题的子 生 P 类问题中	计算复杂性:	理论中被称 " 定是正确的	为是"慢"的? D. O(1) J。

(6) 假设 X 是判定性问题,则当()时, X 不一定存在多项式时间**验证** 器/证书(即对 X 的一个实例和该实例的一个"解",可以验证该解的正确性的一个算法)。

A. X 是 P 类问题

B. X 是 NP 类问题

C. X 是 NP 困难问题

D. X 是 NP 完全问题

(7) 对于下列 NP 完全性的表述中, () 目前确定是正确的。

A. 若存在一个 NP 类的问题可以被一个多项式时间复杂度的算法解决,则 P=NP。

- B. 所有 NP-hard (NP 困难)问题都是 NP-Complete (NP 完全)问题。
- C. 若一个判定问题 Q 可以多项式时间归约到某个 NP-Complete (NP 完全) 问题,则 Q 是一个 NP-Complete (NP 完全) 问题。
- D. 若一个判定问题 Q 是 NP-Complete (NP 完全) 问题,则 Q 可以被多项式时间归约到其它任何一个 NP-Complete (NP 完全) 问题。
- (8) 假定 X, Y, Z 都是判定性问题且 $X \leq_P Y$, $Y \leq_P Z$, 则以下说法中()是不正确的。($X \leq_P Y$ 意为 X 可多项式时间归约到 Y)
 - A. 若Y可以在多项式时间内求解,则X也可以在多项式时间内求解
 - B. 若X可以在多项式时间内求解,则Y也可以在多项式时间内求解
 - C. 若 X 不能在多项式时间内求解,则 Y 也不能在多项式时间内求解
 - $D. X \leq_{\mathbf{P}} Z$

回答:

1.	2.	3.	4.	5.	6.	7.	8.

第二部分、计算题。(共34分)

9. (共 12 分) 小明有 100 万元要投资,共有三个投资项目: A 项目(预期收益: 10%), B 项目(预期收益: 7%)和 C 项目(预期收益: 3%)。投资要求是:在 A 项目上的投资不超过在 B 项目上投资金额的 1/4,且在 C 项目上的投资额不能少于在 A 项目和 B 项目上总投资额的 35%。小明的目标是:使投资的预期收益达到最大。

针对以上问题,写出它的线性规划模型。

同梦(晦 6)

要求: 详细写出变量定义、优化目标、变量类型限制和不等式组。

四合(赵 97:		

10. (共10分)通过函数转换与主定理求解以下递推关系(c是某正的常数)。

$$T(n) = \begin{cases} 2T(\sqrt{n}) + \ln n & n > c \\ O(1) & n \le c \end{cases}$$

11. (共 12 分) 求下述长为 12 的序列的**最长单调严格降子序列:** 10, 9, 15, 4, 8, 7, 17, 6, 5, 14, 8, 12。

使用动态规划算法(而不是递归方法)求解该问题。

- (1) 请给出目标函数和标记函数的定义/表示、递推关系和初值。
- (2)请给出详细的计算过程,包括目标函数数组(备忘录)和标记函数数组的具体值。
 - (3) 请详细说明具体的最长单调严格降子序列。

回答(题 11 继续):	

第三部分、综合分析题。(共50分)

12. (共 12 分) **堆 (heap)** 是一种特殊的数据结构, 其基于二叉根树结构。除最后一层外, 堆的各层都是满的, 而如果最后一层不是满的, 那么最后一层的叶子顶点都尽可能地靠左, 右边的叶子有可能缺失 (参看图 1(a))。例如图 1(b)是有 10 个顶点的堆, 而图 1(c)是有 13 个顶点的堆。

图 1 题 12 用图

假设堆内部顶点的结构声明如下:

```
struct Node {
   struct Node* lch;
   struct Node* rch;
};
```

现在给你一个指向这个堆(顶点个数不超过n)的根顶点的非空指针 struct Node* root,请你设计一个时间复杂度为O(lgnlgn)的算法 COUNT (root)数 出这个堆的顶点个数。

- (1)给出一个针对以上任务的**分治**算法(必须使用**伪代码**描述,不得使用 具体程序语言的实际编码),要求该算法的运行时间为*O*(lgnlgn)。
 - (2) 论证你在(1)中所设计的算法的时间复杂度的确为O(lgnlgn)。

回答(题 12):			

13. (共 12 分)你有n个任务需要完成,每个任务有两个参数,分别为完成该任务需要消耗的能量和开启该任务所需要的能量阈值,记为(a_i , b_i)。假设对于第i个任务, $a_i = 6$, $b_i = 9$,则说明若你当前持有的能量为 8,那么你不可以开启这个任务,若你当前持有的能量为 10,那么你可以开启该任务,完成该任务以后你剩余的能量为 4。现在给你每个任务所需要消耗的能量 a_i ($1 \le i \le n$)和开启能量 b_i ($1 \le i \le n$),请你计算出要完成全部这n个任务所需要的最少初始能量。

例如,初始能量是 20,目前有两个任务是(a_1 =5, b_1 =14)和(a_2 =7, b_2 =11),如果先启动任务 1则还可以完成任务 2,而先启动任务 2则不能启动任务 1。

- (1) 请描述所用到的贪心选择性质。
- (2)请写出你的算法伪代码,不得使用具体程序设计语言的实际编码,不可以调用任何库函数,但可以直接使用排序函数并按照你所定义的排序方式进行排序。
 - (3) 请证明你所用到的贪心选择性质的正确性。

回欠	(题 13 继续):	
<u> </u>		1
\		<i></i>

14. (共13分)在计算机科学中**,编辑距离 (edit distance)**是一种通过计算 将一个字符串转换为另一个字符串所需的<u>最小操作次数</u>来度量两个字符 串相似程度的方法。

有许多对齐两个字符串的方法,其中可能会出现**错误匹配(mismatch)**或/和**缺漏(gap)**。例如图 2 给出了 ABC 和 DAC 的两个不同的对齐方法,方法 1 有两个缺漏,而方法 2 有 A/D 和 B/A 的两个错误匹配。

将缺漏的代价定义为 5, 而错误匹配的代价例如图 3 所定义(假定字符串中只会出现 A、B、C、D 四种字符)。

因此,ABC 和 DAC 的对齐方法 1 的总代价为 $5\times2=10$;而对齐方法 2 的总代价为 4+3=7。

将两个字符串的编辑距离定义为所有对齐方法的最小总代价。

(1)请为之设计一个**动态规划**算法,计算两个字符串 X (长为 m)和 Y (长为 n)的编辑距离。

要求:给出目标函数的定义表示和算法伪代码(需要给出最终的返回值)。

(2) 使用第(1) 部分中描述的算法计算 "CBAD"和 "ACDB"的编辑距 离。

要求:给出求解的详细计算过程(用清楚明确的表格表示即可),并给出编辑距离结果(仅有该结果者此部分不得分)。

回答()	题 14):			
				J

15. (共13分) 计算图 4 中从 a 到 f 的最短道路。

请为之设计一个分支限界算法。

- (1)请**详细**写出**具体**的估界函数和剪 枝依据。
- (2)请针对此输入实例详细画出剪枝 后的(部分)搜索树。**注意:必须**对界进 行估计;必须在图中标明剪枝依据。(当 有多个顶点可供选择时,请按照字母顺序 依次考虑。)
- (3)请针对此输入实例给出从 a 到 f 的最短道路(仅有该结果者此题目不得分)。

图 4 题 15 用图

回答 (题 15):

回答	(题 15 继续):	
/ 	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
\		<i>,</i>

