

Mobile System Engineering, Dankook University

Basic Mobile Lab II

- 1. Search 'Arduino IDE' on Google
- 2. Click 'Software | Arduino'

3. Download and install it


```
3wk_Exp_PWM_ | Arduino IDE 2.0.0
                                                                                                                                                                                                         - o ×
File Edit Sketch Tools Help
      3wk_Exp_PWM_.ino
        1 void setup()
             pinMode(11, OUTPUT); //set output to Artuino pin 11 Select board in
                                                          our case
        6 void loop()
             for(int a=0; a<255; a=a+10)
{
analogWrite(11,a); //Writes an analog value(PWM va/Qe, rodpuino UNO'
              for(int a=0; a<255; a=a+10)
              delay(100); //delay for 100 milliseconds
       12
       13
                                                                                                                                                                                  Ln 14, Col 1 UTF-8 Arduino Uno on COM4 🚨 🗖
```


If there is no port to choose, call me.


```
GND -> LED ( - ) pin ~11 -> LED ( + ) pin
```

```
void setup()
  pinMode(11, OUTPUT); //set output to Arduino pin 11
void loop()
  for(int a=0; a<255; a=a+10)</pre>
    analogWrite(11,a); //Writes an analog value(PWM value) to a pin
    delay(100); //delay for 100 milliseconds
```

Arduino PWM range is 8 bit(0~255)

If you got an error while uploading, call me

GND -> Probe GND ~11 -> Probe hook

1 Arduino UNO Rev3 schematic

2 3 ways to power Arduino

- 1. USB port(5V)
- 2. DC jack(7~12V)
- 3. Vin pin(7~12V)

Arduino auto power supply schematic

GND

- 1. DC jack power
- 2. Power supply indicator LED

GND

- 3. Power source switching circuit —
- 4. DC 3.3V regulator

- 1) X1: DC power input 7~12V
- 2) D1: reverse voltage protection diode
 - Forward bias: Anode -> Cathode (Switch on)
 - Reverse bias: Cathode -> Anode (Switch off)
 - Voltage drop: 0.6-0.7V
- 3) PC1/PC2: Polarized condenser(=Capacitor)
- 4) U1: 5V regulator output constant voltage
- 5) C2: Non-polarized Capacitor

Uses of Capacitor

- 1) coupling only AC signals pass through a mixture of DC signal and AC signal. 🙌
- 2) energy storage
- 3) smoothing make a pulsating signal into a constant DC average voltage
- 4) bypass send the noise to ground.

pulsating
direct
variable
t
alternating

types of electric current

Uses of Capacitor

- 1) coupling only AC signals pass through a mixture of DC signal and AC signal. 🙌
- 2) energy storage
- 3) smoothing make a pulsating signal into a constant DC average voltage
- 4) bypass send the noise to ground.

types of electric current

Uses of Capacitor

- 1) coupling only AC signals pass through a mixture of DC signal and AC signal. 🙌
- 2) energy storage
- 3) smoothing make a pulsating signal into a constant DC average voltage
- 4) bypass send the noise to ground.

types of electric current

Uses of Capacitor

- 1) coupling only AC signals pass through a mixture of DC signal and AC signal. 🙌
- 2) energy storage
- 3) smoothing make a pulsating signal into a constant DC average voltage
- 4) bypass send the noise to ground.

types of electric current

9 Power supply indicator LED

When DC 5V comes from regulator, indicator LED blinks.

1) U5: Comparator

2) T1: P-channel MOSFET

Comparator

: A device that compares two voltages or currents and outputs a digital signal indicating which is larger.

$$V_{out} = \begin{cases} 1, & if \quad V_{in} > V_{REF} \\ 0, & if \quad V_{in} < V_{REF} \end{cases}$$

Comparator

: A device that compares two voltages or currents and outputs a digital signal indicating which is larger.

LMV358IDGKR Datasheet, PDF - Alldatasheet

MOSFET(Metal-Oxide-Semiconductor-Field-Effect Transistor) : electronic devices used to switch or amplify voltages in circuits.

- Source
- Gate
- Drain
- Body

FDN340P Datasheet, PDF - Alldatasheet

MOSFET types

Enhancement mode MOSFET

N-MOSFET

Enhancement mode MOSFET

N-channel MOSFET

$$V_{GS(th)} = V_G - V_S > 0$$

 $\Rightarrow V_D$, V_S Current flow

P-channel MOSFET

$$V_{GS(th)} = V_G - V_S < 0$$

 $\Rightarrow V_D$, V_S Current flow

1. V_{in}

$$V_{GS(th)} = V_G - V_S > 0$$

 $\Rightarrow V_D$, V_S Current flow X

2. USBVCC

$$V_{GS(th)} = V_G - V_S < 0$$

 $\Rightarrow V_D$, V_S Current flow

21 3.3V Regulator

SC662K Datasheet, PDF - Alldatasheet

