## TRƯỜNG THPT TÔN ĐỰC THẮNG

## <u>TÔ TOÁN – TIN</u>

## Mã đề thi 895

## ĐỂ KIỂM TRA MỘT TIẾT CHƯƠNG GIÁI TÍCH 12 BAN CƠ BÁN

Thời gian làm bài: phút; (25 câu trắc nghiệm)

(Thí sinh không được sử dụng tài liệu)

Họ, tên học sinh: Lớp: ...... Lớp:

Học sinh tô đen ( ) đáp án chọn và bảng đáp án.

**Câu 1:** Kết quả tích phân  $I = \int_{0}^{1} xe^{3x} dx$  được viết dưới dạng  $I = ae^3 + b$  với a,b là các số hữu tỉ. Tìm khẳng định đúng.

**A.** 
$$a-b=\frac{1}{9}$$
.

**B.** 
$$9a + b = 3$$
. **C.**  $ab = 3$ .

**C.** 
$$ab = 3$$
.

**D.** 
$$a^3 + b^3 = 28$$
.

**Câu 2:** Để tìm diện tích của hình phẳng giới hạn bởi (C):  $y = x^3 - 1$ ; y = 0; x = -1; x = 2 một học sinh thực hiện theo các bước như sau:

Bước I. 
$$S = \int_{-1}^{2} |x^3 - 1| dx$$
 Bước II.  $S = \left| \left( \frac{x^4}{4} - x \right) \right|_{-1}^{2} \right|$ 

Burớc III. 
$$S = \left| 4 - 2 - \frac{1}{4} - 1 \right| = \frac{3}{4}$$

Cách làm trên sai từ bước nào?

A. Bước II

**B.** Bước III

C. Không có bước nào sai.

D. Bước I

**Câu 3:** Cho hàm số y = f(x) liên tục trên [a;b]. Chọn khẳng định **sai**.

**A.** 
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx, (c \in [a;b])$$

$$\mathbf{B.} \int_{0}^{a} f(x) dx = 0$$

C. 
$$\int_{a}^{b} f(x)dx + \int_{a}^{c} f(x)dx = \int_{a}^{c} f(x)dx, (c \in [a;b])$$

$$\mathbf{D.} \int_{a}^{b} f(\mathbf{x}) \, d\mathbf{x} = -\int_{b}^{a} f(x) dx$$

Câu 4: Công thức nguyên hàm nào sau đây không đúng?

**A.** 
$$\int a^x dx = \frac{a^x}{\ln a} + C \ (0 < a \ne 1)$$

**B.** 
$$\int \frac{1}{x} dx = \ln x + C$$

C. 
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C \quad (\alpha \neq -1)$$

$$\mathbf{D.} \int \frac{1}{\cos^2 x} dx = \tan x + C$$

**Câu 5:** Tìm một nguyên hàm của hàm số  $f(x) = \frac{3}{\cos^2 x}$ 

**A.** 
$$P(x) = -3 \tan x + 4$$

**B.** 
$$G(x) = 3 \tan x + 3x$$

**C.** 
$$H(x) = 3co t x$$

**D.** 
$$F(x) = 3 \tan x + 4$$

**Câu 6:** Cho hình phẳng (H) giới hạn bởi  $y = 2x - x^2$ , y = 0. Tính thể tích của khối tròn xoay thu được khi quay (H) xung quanh trục Ox ta được  $V = \pi \left(\frac{a}{b} + 1\right)$ . Khi đó

**A.** 
$$a+b = 16$$

**C.** 
$$a+b=1$$

Câu 7: Cho  $\int_{0}^{6} \sin^{n} x \cos x dx = \frac{1}{128(n+1)}$ . Tìm giá trị của n

$$A$$
  $n-5$ 

$$\mathbf{R} \, \mathbf{n} - \mathbf{\Delta}$$

*C.* 
$$n = 3$$

**D.** 
$$n = 6$$

**Câu 8:** Cho hình (H) giới hạn bởi (P)  $y = x^2 - 4x + 3$  và trục Ox. Tính thể tích vật thể tròn xoay khi quay hình (H) quanh truc Ox.

| A. | 16 |
|----|----|
|    | 15 |

**B.** 
$$\frac{15}{16}\pi$$

C. 
$$\frac{15}{16}\pi$$

**D.** 
$$\frac{16}{15}\pi$$

**Câu 9:** Cho  $I = \int_{1}^{e} x \ln x dx = ae^2 + b$ . Khi đó  $\sqrt{a} + \sqrt{b}$  có giá trị:

**A.** 
$$\frac{1}{2}$$

**B.** 2

**C.** 1

**D.**  $\frac{1}{4}$ 

**Câu 10:** Biết  $I = \int_{1}^{a} \frac{x^{3} - 2 \ln x}{x^{2}} dx = \frac{1}{2} + \ln 2$ . Giá trị của *a* là:

**A.** ln 3

**B.** 3

**C.** 2

**D.** ln2

**Câu 11:** Tìm nguyên hàm của hàm số  $f(x) = \frac{e^x}{10 + e^x}$ 

$$\mathbf{A.} \, \ln \frac{e^x}{e^x + 10} + C$$

**A.** 
$$\ln \frac{e^x}{e^x + 10} + C$$
 **B.**  $\frac{\ln (e^x + 10)}{e} + C$  **C.**  $e^x \ln (e^x + 10) + C$  **D.**  $\ln (e^x + 10) + C$ 

$$\mathbf{C.} \ e^{x} \ln \left( e^{x} + 10 \right) + C$$

**D.** 
$$\ln(e^x + 10) + C$$

**Câu 12:** Biết F(x) là một nguyên hàm của hàm số  $f(x) = 3x^2 + 2x - 4$  và F(-1) = 3. Trong các khẳng định sau, đâu là khẳng định đúng?

**A.** 
$$F(x) = 6x^2 + 2x^2 - 5$$
 **B.**  $F(x) = 6x + 2$ 

**B.** 
$$F(x) = 6x + 2$$

**C.** 
$$F(x) = x^3 + x^2 - 4x + 1$$
 **D.**  $F(x) = x^3 + x^2 - 4x - 1$ 

**D.** 
$$F(x) = x^3 + x^2 - 4x - 1$$

**Câu 13:** Tính diện tích hình phẳng giới hạn bởi  $y = x^2$ ; x = 1; x = 2 và y = 0.

**A.** 
$$\frac{4}{3}$$

**B.** 
$$\frac{7}{3}$$

**D.** 
$$\frac{8}{3}$$

Câu 14: Chọn khẳng định đúng.

**A.** Hàm số  $y = 5^x$  có một nguyên hàm là hàm số  $y = 5^x . \ln 5$ .

**B.** Hàm số  $y = 5^x$  có một nguyên hàm là hàm số  $y = 5^x$ .

C. Hàm số  $y = 5^x$  có một nguyên hàm là hàm số  $y = \frac{5^x}{\ln 5}$ .

**D.** Hàm số  $y = \frac{5^x}{\ln 5}$  có một nguyên hàm là hàm số  $y = 5^x$ .

**Câu 15:** Cho S là diện tích hình phẳng giới hạn bởi đồ thị hàm số  $y = x^3 - 6x^2 + 9x$  và trục Ox. Số nguyên nhỏ nhất lớn hơn S là:

**A.** 10

**B.** 6

**D.** 12

**Câu 16:** Hình phẳng  $S_1$  giới hạn bởi y = f(x), y = 0, x = a, x = b (a < b) quay quanh Ox, tạo ra vật thể có thể tích  $V_1$ . Hình phẳng  $S_2$  giới hạn bởi y = -2f(x), y = 0, x = a, x = b (a < b) quay quanh Ox, tạo ra vật thể có thể tích  $V_2$ . Lựa chọn phương án **đúng**:

**A.** 
$$V_1 = 4V_2$$
.

**B.**  $V_2 = 4V_1$ .

**C.**  $V_1 = 2V_2$ .

**D.**  $2V_1 = V_2$ .

**Câu 17:** Tính diện tích hình phẳng giới hạn bởi các đồ thị hàm số  $y = -3x^2 + 1$  và  $y = x^2 - 3$ 

**A.**  $\frac{8}{3}$ 

**B.**  $\frac{16}{3}$ 

 $C. -\frac{16}{2}$ 

**D.**  $\frac{-8}{2}$ 

**Câu 18:** Tính tích phân  $I = \int_0^{\pi} x \sin x dx$  **A.**  $I = -\pi$  **B.**  $I = \pi$ 

$$\mathbf{A.} \ I = -\pi$$

**C.**  $I = -\pi - 1$ 

**D.**  $I = \pi + 1$ 

**Câu 19:** Tìm a thỏa mãn:  $\int_{0}^{x} \frac{dx}{25 - x^2} = 0$ 

$$\mathbf{C}$$
.  $a=1$ 

**D.** a=0

**Câu 20:** Cho hàm số y = f(x) liên tục trên [a;b]. Chọn mệnh đề **sai**.

**A.** 
$$\int_{a}^{b} f(2x)dx = 2\int_{a}^{b} f(x)dx$$

**B.** 
$$\int_{0}^{\frac{\pi}{2}} f(\sin x) dx = \int_{0}^{\frac{\pi}{2}} f(\cos x) dx$$

C. 
$$\int_{a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx \text{ n\tilde{e}u } f(x) \text{ l\tilde{a} h\tilde{a}m s\tilde{o} ch\tilde{a}n}. \qquad D. \int_{a}^{a} f(x) dx = 0 \text{ n\tilde{e}u } f(x) \text{ l\tilde{a} h\tilde{a}m s\tilde{o} l\tilde{e}.}$$

**D.** 
$$\int_{a}^{a} f(x)dx = 0 \text{ n\'eu } f(x) \text{ là hàm s\'o l\'e.}$$

**Câu 21:** Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số  $y = \frac{x+1}{x+2}$  và các trục tọa độ?

**A.** 
$$\frac{1}{2} - \ln \frac{6}{5}$$

**B.** 
$$\frac{1}{2} + \ln \frac{5}{6}$$

C. 
$$\frac{1}{2} - \ln \frac{5}{6}$$
 D.  $\ln \frac{5}{6} - \frac{1}{2}$ 

**D.** 
$$\ln \frac{5}{6} - \frac{1}{2}$$

**Câu 22:** Cho  $I = \int_{0}^{9} x \sqrt[3]{1 - x} dx$ . Đặt  $t = \sqrt[3]{1 - x}$ , ta có:

**A.** 
$$I = 3 \int_{-2}^{1} (1 - t^3) t^3 dt$$
 **B.**  $I = \int_{-2}^{1} (1 - t^3) t^3 dt$  **C.**  $I = 3 \int_{1}^{2} (1 - t^3) t^3 dt$  **D.**  $I = \int_{1}^{-2} (1 - t^3) 2t^2 dt$ 

**B.** 
$$I = \int_{1}^{1} (1-t^3)t^3 dt$$

C. 
$$I = 3 \int_{1}^{2} (1 - t^3) t^3 dt$$

**D.** 
$$I = \int_{1}^{-2} (1-t^3)2t^2 dt$$

Câu 23: Tính tích phân  $\int_{-\pi}^{\frac{\pi}{2}} \sin 2x dx$ .

**A.** 
$$-\frac{\sqrt{3}}{2}$$
.

**B.** 
$$\frac{3}{4}$$
.

**C.** 
$$-\frac{3}{4}$$

**D.** 
$$\frac{\sqrt{3}}{2}$$
.



**Câu 24:** Cho đồ thị hàm số y = f(x).

Diện tích S của hình phẳng (phần bôi đen trong hình) được tính theo công thức:

$$\mathbf{A.} \ S = \int_{a}^{c} f(x) dx$$

**B.** 
$$S = \left| \int_{a}^{b} f(x) dx \right| + \left| \int_{b}^{c} f(x) dx \right|$$

C. 
$$S = \int_{a}^{c} f(x)dx$$

**D.** 
$$S = \left| \int_{b}^{c} f(x) dx \right| - \left| \int_{a}^{b} f(x) dx \right|$$

**Câu 25:** Diện tích hình phẳng được giới hạn bởi các đồ thị hàm số  $y=2x-x^2$  và x+y=2 là :

A. 
$$\frac{1}{6} \left( dvdt \right)$$

**B.** 
$$\frac{6}{5}$$
  $\left(dvdt\right)$ 

**B.** 
$$\frac{6}{5} \left( dvdt \right)$$
 **C.**  $\frac{1}{2} \left( dvdt \right)$  **D.**  $\frac{5}{2} \left( dvdt \right)$ 

**D.** 
$$\frac{5}{2}$$
  $\left(dvdt\right)$ 

----- HÉT -----