ARIMA Modeling

Learning Objectives

- Describe the purpose of the autoregressive and moving average components.
- Define hyperparameters p, d, and q.
- Describe AIC.
- Find the right value of p and q using AIC.
- Find the right value of d using the augmented Dickey-Fuller test.
- Complete a manual GridSearch.
- Fit an ARIMA model.

We have multiple approaches to work with time series data.

Linear **Models**

ARIMA Models Exponential Smoothing Methods Recurrent Neural Networks (RNNs)

Note: This is not an exhaustive list of models, but lists the most common ones!

Why ARIMA?

- Among the most common approaches to time series modeling.
- Highly flexible; it can model time series with varying characteristics.
 - It takes information from both long-term trends and sudden shocks!
- Can easily be extended into more advanced models.

- Tends to perform well with moderate amounts of data.
 - It can be hard to get lots of time series data!

Downsides of ARIMA Models

- ARIMA models are best suited for short-term forecasts, but very quickly will start predicting the mean.
 - Some extensions to ARIMA models can handle this better.

What is an ARIMA model?

ARIMA

What is an ARIMA model?

ARIMA

Autoregressive Integrated Moving Average

What do you think the word "autoregressive" means?

What do you think the word "autoregressive" means?

- Autocorrelation is the correlation of one variable with itself.
- An autobiography is a book written by a person, about that same person.
- An autotransplant is a surgical procedure in which an organ is transplanted from a person to that same person.
- Autoregressive means we regress a variable on itself.
 - We'll regress newer values on older values.

AR(p): An autoregressive model of order p

$$Y_t = eta_0 + eta_1 Y_{t-1} + eta_2 Y_{t-2} + \dots + eta_p Y_{t-p}$$

$$= eta_0 + \sum_{k=1}^p eta_p Y_{t-p}$$

AR(p): An autoregressive model of order p

$$Y_t = eta_0 + eta_1 Y_{t-1} + eta_2 Y_{t-2} + \dots + eta_p Y_{t-p}$$

$$= eta_0 + \sum_{k=1}^p eta_p Y_{t-p}$$

Purpose: An autoregressive model explains long-term trends in our data.

Hyperparameter: *p*, the number of previous values of *Y* to put into our model.

We'll GridSearch to find this value!

What is an ARIMA model?

ARIMA

Autoregressive Integrated Moving Average

Moving Average Models

- A moving average model takes previous error terms as inputs.
- The goal is to predict future values based on recent forecasting errors.
 - This isn't identical to boosting, but is similar in that fitting is driven by errors.
- Annoying: this isn't the same thing as moving average smoothing.

MA(q): A moving average model of order q

$$Y_t = \mu + w_1 \varepsilon_{t-1} + w_2 \varepsilon_{t-2} + \dots + w_p \varepsilon_{t-q}$$

$$= \mu + \sum_{t-1}^q w_q \varepsilon_{t-q}$$

MA(q): A moving average model of order q

$$egin{aligned} Y_t &= \mu + w_1 arepsilon_{t-1} + w_2 arepsilon_{t-2} + \cdots + w_p arepsilon_{t-q} \ &= \mu + \sum_{k=1}^q w_q arepsilon_{t-q} \end{aligned}$$

Purpose: A moving average model explains sudden shocks in our data.

Hyperparameter: q, the number of previous errors ε to put into our model.

We'll **GridSearch** to find this value!

How do we GridSearch to find the best values of p and q?

- Because we're working in statsmodels, we will **manually GridSearch** values of p and q to see which gives us the **lowest AIC**.
- AIC, or Akaike Information Criterion, is a common way to evaluate time series models. (AIC is an attribute in statsmodels.)
- Remember that a model is a simplification of reality?
 - AIC attempts to measure how much information we lose when we simplify reality with a model.

$$AIC = 2 \times [\text{\# of model parameters}] - 2 \times \log(\text{likelihood})$$

What is an ARIMA model?

ARIMA

Autoregressive Integrated Moving Average

At this point, it's helpful to see what an ARIMA model is.

$$Y_{t}^{(d)} = eta_{0} + \sum_{k=1}^{p} eta_{k} Y_{t-k}^{(d)} + \sum_{i=1}^{q} w_{i} arepsilon_{t-i} + arepsilon_{t}$$

At this point, it's helpful to see what an ARIMA model is.

Autoregressive Integrated Moving Average

What is that $Y_t^{(d)}$?

Onto the notebook!

...but first!

ARIMA Cheat Sheet

	AR		MA
Stands for:	Autoregressive	Integrated	Moving Average
Summary:	Regress future values on past values .	Differences our Y variable.	Regress future values on past errors.
Looks Like:	$igg eta_0 + \sum_{k=1}^p eta_k Y_{t-k}^{(d)}$	$Y_t^{(d)}$	$egin{aligned} eta_0 + \sum_{i=1}^q w_i arepsilon_{t-i} + arepsilon_t \end{aligned}$
Purpose:	Long-term trends.	Ensure stationarity.	Sudden shocks.
Hyperparameter:	р	d	q
Find good value of hyperparameter by:	GridSearch	Augmented Dickey-Fuller Test	GridSearch