DEPARTMENT OF MATHEMATICS, IIT GUWAHATI

Mid Semester Exam (Maximum Marks: 30)

Time: 2 pm - 4 pm

2

3

MA101: Mathematics I

Date: September 20, 2011

or find a counterexample.

1.	(a)	Prove or disprove: If A and B are two matrices of the same size such that the linear syst of equations $A\mathbf{x} = \mathbf{a}$ and $B\mathbf{x} = \mathbf{b}$ have the same set of solutions then the matrices $[A \mid \mathbf{a}]$ and $[B \mid \mathbf{b}]$ must be row-equivalent.	
	(b)	Find all real values of k for which the following system of equations has (i) no solution, unique solution, and (iii) infinitely many solutions:	(ii) 3
		kx + y + z = 1, $x + ky + z = 1$, $x + y + kz = 1$.	
2.		Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be three linearly independent vectors in \mathbb{R}^n , where $n \geq 3$. For what real values k , are the vectors $\mathbf{v} - \mathbf{u}, k\mathbf{w} - \mathbf{v}$ and $\mathbf{u} - \mathbf{w}$ linearly independent? Find a basis for the subspace V , where $V = \{[x_1, x_2, \dots, x_6]^t \in \mathbb{R}^6 : x_i = 0 \text{ if } i \text{ is even}\}.$	s of 2
3.	, ,	Prove or disprove: There exist 2×2 matrices A and B such that $AB - BA = I_2$. Let A be an invertible matrix with integer entries. Show that A^{-1} has all entries integer if a only if $\det(A) = \pm 1$.	2 and 3
4.		A be an $n \times n$ real matrix and let $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ be a basis for \mathbb{R}^n . Show that $\operatorname{rank}(A) = $ only if $\{A\mathbf{u}_1, A\mathbf{u}_2, \dots, A\mathbf{u}_n\}$ is a basis for \mathbb{R}^n .	n if 5
5.	(a)	Let A be a diagonalizable matrix such that every eigenvalue of A is either 0 or 1. Show that $A^2 = A$.	that
	(b)	Let λ_1 and λ_2 be two distinct eigenvalues of a matrix A and let \mathbf{u}_1 and \mathbf{u}_2 be eigenvectors of corresponding to λ_1 and λ_2 , respectively. Show that $\mathbf{u}_1 + \mathbf{u}_2$ is not an eigenvector of A .	of <i>A</i>
6.	(a)	Let W be a subspace of \mathbb{R}^5 and $\mathbf{v} \in \mathbb{R}^5$. Suppose that \mathbf{w} and \mathbf{w}' are orthogonal vectors $\mathbf{w} \in W$ and that $\mathbf{v} = \mathbf{w} + \mathbf{w}'$. Is it necessarily true that $\mathbf{w}' \in W^{\perp}$? Either prove that it is t	

(b) Find a basis for M^{\perp} , where $M = \{[x, y, z]^t : x = s, y = -s, z = 3s, s \in \mathbb{R}\}.$

——— End ———