## 11 octobre - Exploration Benchmark

Cas tests présents à cette adresse :

https://www.b-tu.de/fg-akustik/lehre/aktuelles/arraybenchmark

| Cas expérimentaux                                                            | Cas analytiques                                                                                                        |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| DLR1 : demi-avion en<br>veine fermée                                         | b0:1 monopole                                                                                                          |
| NASA2 : profil d'aile<br>en veine ouverte<br>NASA4 : Jet<br>ONERA1 : 2 HP en | b1 : ligne de monopoles incohérents + écoulement + SNR=-20dB b7 : 4 monopoles incohérents b8 : 3 monopoles dans un jet |
| veine ouverte                                                                | b11 : source tournante                                                                                                 |

## I. Beamforming: Correction d'effet de l'coulement

Test de la fonction de Green pour un monopole soumis à un écoulement laminaire uniforme :

$$g(\mathbf{r}, f) = \frac{e^{j\frac{k}{\beta^2}(\mathbf{M}.\mathbf{r} + \sqrt{(\mathbf{M}.\mathbf{r})^2 + \beta^2|\mathbf{r}|^2})}}{4\pi\sqrt{(\mathbf{M}.\mathbf{r})^2 + \beta^2|\mathbf{r}|^2}}$$
(1)

Application beamforming (avec suppression de la diagonale de la CSM) aux tests b1 (??) : permet de corriger l'effet de l'écoulement uniforme en phase et en amplitude (la ligne de sources est replacée en x=0).

Note : pour des cas type b8, la vitesse n'est pas uniforme dans le jet et une correction de vitesse devra être appliquée.

## II. Reconstruction de diagonale

Hald (2016) propose de résoudre le problème d'optimisation convexe : Trouver les éléments diagonaux d :

minimiser(somme(d)), sous contrainte que CSM + diag(d) reste hermitienne seni-définie positive.

Remplacer ensuite CSM par CSM + diag(d). Ce qui se résoud sous Matlab (solver SDPT3) :

```
cvx_begin
variable d(M)
CSM + diag(d) == hermitian_semidefinite(num_mic)
minimize( sum(d) )
cvx_end
CSM = CSM+diag(d)
```

Figure 1 – Exemple de code pour la reconstruction de diagonale

Ce problème est strictement équivalent à celui de Dougherty (2016) qui propose :

maximiser(trace(d)), sous contrainte que CSM - diag(d) reste hermitienne semi-définie positive.

Remplacer CSM par CSM - diag(d).

Comparaison CSM brute vs CSM à diagonale annulée vs CSM à diagonale reconstituée.



(a) Fonction de Green: monopole

Beamforming, with diagonal removal averaged over 100 frequencies from 50 to 10 000 Hz
Flow taken into account in Green functions

-2

-1.5

-0.5

0

0.5

1

1.5

2

-1 0 1 2

48

47

46

(b) Fonction de Green : monopole dans un écoulement uniforme

Figure 2 – Comparaison des fonctions de Green sur le cas b1

## III. Perspectives

- Correction d'amplitude à appliquer aux points sources en fonction de leur distance par rapport à la position moyenne des microphones
- Débruitage de CSM :
  - lire et tester NOVEM Leclère 2015 et Fan Finez 2015
  - étudier l'impact sur la fft2D de la CSM (lire Petigny 2015)
- réfléchir à des critères de validité débruitage/imagerie
- Étudier le cas NASA4 (jet) et comparer avec les résultats de C. Bahr
- Comparer l'optimisation de diagonale : CVX vs linprog



Figure 3 – Valeurs propres de la CSM



Figure 4 – Cartes de beamforming moyennée en fréquences.