Multi-sensor rail track detection in automatic train operations

Master's thesis in Data Science

Student: Attila Kovacs

1st Advisor: Lukas Rohatsch (FH Technikum)

2nd Advisor: Daniele Capriotti (M2C Expert Control GmbH)

Interim presentation: 16.10.2023

Research questions

- Which modelling technique and which deep learning model can be applied to solve the rail detection problem?
- How can the efficiency of standard, high-resolution, and infrared cameras be compared against each other; does a higher resolution result in a higher accuracy?
- What is the trade-off between model accuracy and speed of providing predictions when applied to a video stream in real time?
- How do deep learning models perform compared to gradient-based thresholding approaches in terms of, e.g., accuracy (share of correctly identified objects) or F1-score (mean of precision and recall)

Data source

- Deutsch Bahn / Digitale Schiene Deutschland
 (https://digitale-schiene-deutschland.de/en/news/OSDaR23-multi-sensor-data-set-for-machine-learning).
- Images were generated between 09.09.2021 and 15.09.2021
- Total number of images: 13.952
- Sensors: 12MP RGB, 5MP RGB, IR cameras, lidar, radar, GPS, inertia sensor

Data source

- Deutsch Bahn / Digitale Schiene Deutschland
 (https://digitale-schiene-deutschland.de/en/news/OSDaR23-multi-sensor-data-set-for-machine-learning).
- Images were generated between 09.09.2021 and 15.09.2021
- Total number of images: 13.952
- Sensors: 12MP RGB, 5MP RGB, IR cameras, lidar, radar, GPS, inertia sensor

Relevant dataset (7.421 images, 27.386 labels)

- Most images are from forward facing cameras
- The number of labels in the image depends on sensor orientation and type

Aspect ratios (= width / height)

- All images are generated with one of three camera types
- Double check whether there are other images in the set

University of

Labels per image

- Most tracks are labelled in pairs
- However, there is also a small number of images with uneven number of tracks

Location of images

• All images/videos were taken around Hamburg

Time of images

All images were taken between 8 AM and 5 PM

Some examples of labeled images

Brightness of images

RGB images are darker thank high resolution images (not pixel related)

Occlusion

Most of the labels have a good visibility

Examples of occlusion = 100%

Most of the labels have a good visibility

Splitting into trail, validation and test set

Many images are very similar which needs to be taken into account

Splitting data set

- Given the large similarity between images, we split data by randomly assigning videos to either train, validation or test set
- Advantage: fair testing as we have a "data leakage" between the sets
- Disadvantage: validation batches might have low variety

Orientation of labels

Size of labels

Histogram of bounding box shapes and sizes

Bounding boxes format is related to the orientation of sensors

Aspect ratio of bounding boxes

Next steps

- Generate label masks for images
- Establish baseline
 - Research gradient thresholding approaches
 - Select and implement approach
 - Analyze results
- Select image segmentation model

Q&A

