

Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Level in Physics (WPH16) Paper 01 Practical Skills in Physics II

Question Number	Answer		Mark
1(a)	The screw will get hot		
	Or Risk of burns	(1)	
	(So) use tongs whilst heating	(1)	2
	(50) use tongs withist heating	(1)	2
1(b)(i)	Any TWO from:		
	No repeats recorded		
	Or Not enough sets of data Do not accept reference to range	(1)	
	Inconsistent number of significant figures Or		
	Inconsistent number of decimal places		
	Or Not all values recorded to resolution of instrument	(1)	
	No units for temperature (increase)	(1)	
	Actual temperatures (of water) not recorded	(1)	2
1(b)(ii)	Any ONE from		
	Time for heating the screw	(1)	
	Position of screw in flame	(1)	
	Flame setting	(1)	1
	Do not accept mass or volume		
1(b)(iii)	Use of $\Delta E = mc\Delta\theta$ using pair of values from table of results	(1)	
	Use of energy lost by screw in cooling down = energy gained by water in heating up	(1)	
	Correct value of $\Delta\theta$ to 3 sig figs	(1)	3
	Example of calculation		
	For water $\Delta E = mc\Delta\theta = 9.9 \times 10^{-3} \times 4180 \times 62 = 2570 \text{ J}$		
	For screw $\Delta \theta = \frac{\Delta E}{mc} = \frac{2570}{4.11 \times 10^{-3} \times 420} = 1490 (^{\circ}\text{C})$		
	2^{nd} data line: $\Delta \theta = 1510 (^{\circ}\text{C})$ 3^{rd} data line $\Delta \theta = 1500 (^{\circ}\text{C})$		
	Reverse working can score 2 marks		
	Total for question 1		8

Question Number	Answer		Mark
2(a)(i)	Substitution using $T = \frac{2\pi}{\omega}$	(1)	
	ω Clear algebra leading to relationship	(1)	2
	Cical algebra leading to relationship		
	Example of derivation		
	_		
	$T = \frac{2\pi}{\omega} \implies \omega = \frac{2\pi}{T} \implies \omega^2 = \frac{4\pi^2}{T^2}$		
	$Mg = mx\omega^2 = mx\frac{4\pi^2}{T^2}$		
	$\therefore T^2 = \frac{4\pi^2 mx}{Mg}$		
2(a)(ii)	1 Use a timing marker (to mark the start and end of a rotation)	(1)	
()()	2 Start timing after a few rotations	(1)	
	3 Time a number of rotations and divide by the number of rotations		
	Or	(1)	
	Repeat the measurement of T and calculate a mean	(1)	
	4 (Vary M to) obtain at least 5 sets of measurements	(1)	
	5 Keep x constant (for each value of M)	(1)	
	6 Plot a graph of T^2 against $\frac{1}{M}$ to check it is a straight line		
	Or Plot a graph of T^2 against $\frac{1}{M}$ to check the gradient is constant	(4)	
	1 for a graph of 1 against M to check the gradient is constant	(1)	6
	$\frac{1}{1}$		
	Accept alternative graphs: T against $\sqrt{\frac{1}{M}}$ or $\log T$ against $\log M$ or		
24)	variations with correct use of constants		
2 (b)	Any TWO from	245	
	The video recording will help to judge when a rotation is complete	(1)	
	The video recording can be used to view the motion more slowly	(1)	
	The time for a rotation will be long so any improvement will be small	(1)	2
	Total for question 2		10

Question Number	Answer		Mark
3(a)	Any PAIR from		
	$\ln \theta = \ln \theta_0 - \lambda n$	(1)	
	Is in the form $y = c + mx$ where $-\lambda$ is the gradient	(1)	
	Or		
	$\ln \theta = -\lambda n + \ln \theta_0$	(1)	
	Is in the form $y = mx + c$ where $-\lambda$ is the gradient	(1)	2
	MP2 dependent on MP1		
3(b)(i)	Values of $\ln \theta$ correct to 2 d.p. Accept 3 d.p.	(1)	
	Axes labelled: y as $\ln (\theta / \circ)$ and x as n Accept degrees for \circ	(1)	
	Appropriate scales chosen	(1)	
	Values plotted accurately	(1)	
	Best fit line drawn	(1)	5
3(b)(ii)	Calculation of gradient using large triangle shown	(1)	
	Value of λ in range (-)0.038 to (-)0.042	(1)	
	Value of λ given to 2 or 3 s.f, positive, no unit	(1)	3
	Example of calculation		
	$-\lambda = (4.82 - 3.20) / (1050) = -1.62 / 40 = -0.0405$		
	$-\lambda = -0.0405$		
	$\lambda = 0.041$		
3(b)(iii)	Correct value of $\ln \theta_0$ obtained using value of λ and data point from		
	best fit line Or		
	Correct value of $\ln \theta_0$ obtained using y-intercept	(1)	
	Conversion of $\ln \theta_0$ to θ_0	(1)	
	Valid conclusion based on calculated value of θ_0	(1)	3
	Example of calculation		
	$\ln \theta = \ln \theta_0 - \lambda n$		
	$\ln \theta_0 = \ln \theta + \lambda n = 3.2 + (0.041 \times 50) = 5.25$		
	$\theta_0 = e^{5.25} = 191^{\circ}$		
	As this is greater than 180° the claim is correct		
	Total for question 3		13

n	<i>θ</i> /°	ln (θ/°)
10	124	4.82
20	82	4.41
30	55	4.01
40	37	3.61
50	25	3.22
60	16	2.77

Question Number	Answer		Mark
4(a)(i)	Any PAIR from:		
	Repeat at different orientations and calculate a mean	(1)	
	To reduce (the effect of) random error	(1)	
	Or		
	Check and correct for zero error Accept suitable method	(1)	
	To eliminate systematic error	(1)	2
	MP2 dependent MP1		
4(a)(ii)	Mean $d = 8.54$ (mm)	(1)	
	Calculation using half range shown Or		
	Calculation of furthest from mean	(1)	
	Uncertainty in $d = 0.02$ (mm) d.p. consistent with mean	(1)	3
	Example of calculation		
	Mean $d = (8.53 + 8.56 + 8.55 + 8.53) / 4 = 34.17 / 4 = 8.54 (mm)$		
	Uncertainty = $(8.56 - 8.53) / 2 = 0.03 / 2 = 0.015 = 0.02$ (mm)		
4(b)(i)	Use of $2 \times \%$ U in d shown		
	Or Use of $2 \times \frac{\Delta d}{d}$ shown	(1)	
	Calculation of U in d^2 shown	(1)	
	U in d^2 = 1.3 (mm ²) Accept 3 sig figs	(1)	
	7 Tecept 3 Sig Figs		
	Example of calculation		
	%U in $d^2 = 2 \times \frac{0.06}{10.70} \times 100 = 1.1 \%$		
	U in $d^2 = (10.70)^2 \text{ mm}^2 \times 1.1 \% = 1.26 \text{ (mm}^2)$		
	(151,76) IIII		
	Or		
	Uses uncertainty in d to calculate minimum or maximum d^2		
	Calculation of U in d ² using half range shown	(1)	
	U in d^2 = 1.3 (mm ²) Accept 3 sig figs	(1)	
		(1)	3
	Example of calculation	(-)	-
	Maximum $d^2 = (10.70 + 0.06)^2 = 10.76^2 = 115.8 \text{ (mm}^2)$		
	Minimum $d^2 = (10.70 - 0.06)^2 = 10.64^2 = 113.2 \text{ (mm}^2)$		
	U in $d^2 = \frac{115.8 - 113.2}{2} = \frac{2.6}{2} = 1.3 \text{ (mm}^2\text{)}$		

4(b)(ii)	Use of $A = \frac{\pi}{4}(s^2 - d^2)$	(1)	
	Addition of uncertainties in s^2 and d^2 e.c.f. 4(b)(i)	(1)	
	Calculation of U in A using factor of $\frac{\pi}{4}$ shown	(1)	
	%U in $A = 0.43$ % Accept 3 sig figs	(1)	
	Accept use of U in d^2 of 1mm ² to give 0.39%		
	Example of calculation		
	$A = \frac{\pi}{4}(s^2 - d^2) = \frac{\pi}{4}(881 - 114) = \frac{\pi}{4} \times 766 = 602 \text{ mm}^2$		
	U in $A = \frac{\pi}{4}(2 + 1.3) = \frac{\pi}{4} \times 3.3 = 2.6 \text{ mm}^2$		
	%U in $A = \frac{2.6}{602} \times 100 = 0.43 \%$		
	Or		
	Use of $A = \frac{\pi}{4}(s^2 - d^2)$	(1)	
	Correct use of uncertainties to calculate maximum or minimum A e.c.f.	(1)	
	4(b)(i) Calculation of U in A from half range shown	(1)	
	%U in $A = 0.42$ % Accept 3 sig figs	(1)	4
	Example of calculation		
	$A = \frac{\pi}{4}(s^2 - d^2) = \frac{\pi}{4}(881 - 114) = \frac{\pi}{4} \times 767 = 602 \text{ mm}^2$		
	Max $A = \frac{\pi}{4}(s^2 - d^2) = \frac{\pi}{4}((881 + 2) - (114 - 1)) = \frac{\pi}{4} \times 770 = 605 \text{ mm}^2$		
	$\min A = \frac{\pi}{4}(s^2 - d^2) = \frac{\pi}{4}((881 - 2) - (114 + 1)) = \frac{\pi}{4} \times 763 = 600 \text{ mm}^2$		
	U in $A = \frac{605 - 600}{2} = 2.5 \text{ mm}^2$		
	%U in $A = \frac{2.5}{602} \times 100 = 0.42 \%$		
4(c)	Both readings would have the same uncertainty	(1)	
	(So) the percentage uncertainty (in the mass) is reduced		
	Or %U for mass of 10 rings = 0.8% and %U for mass of one ring = 8%	(1)	2
4(4)(3)	W. C. m	(1)	
4(d)(i)	Use of $\rho = \frac{m}{xA}$	(1) (1)	2
	$\rho = 7.46 (\text{g cm}^{-3})$	(1)	4
	Example of calculation		
	$\rho = \frac{63}{1.403 \times 6.02} = 7.46 (\text{g cm}^{-3})$		

