Precalculus Angles

Todor Milev

2019

Outline

- Angles
 - The Unit circle
 - Three Meanings of Angle
 - Two Meanings of Rotation
 - Angles and the Coordinate System
 - Radians and Degrees
 - Area cut off by an angle

Definition

The *unit circle* is the circle with radius 1 and center at the center of the coordinate system.

Three Meanings of the Term Angle

- the (geometric) angle formed by two rays,
- the angle-measure of such a geometric angle
- the angle-measure of a rotation.

 Except for a few introductory slides, we take full advantage of this convention.

Geometric angle definition

Definition (Geometric angle)

by two rays, called arms, sharing a common endpoint called the vertex of the angle. The rays are ordered.

A geometric angle (angle for short) is the figure formed

- The ray that comes first is called the initial arm (side) of the angle.
- The ray that comes second is called the terminal arm (side) of the angle.
- Angle measures are depicted as arcs pointing from the initial arm towards the terminal arm.
- By convention, the rays are allowed to coincide; the resulting angle is then called the zero angle.

Geometric angle definition

- A ray can be identified by its starting point and any other point on the ray.
- Therefore an angle can be identified by its vertex and one point on each of its arms.
- If A is pt. on the first ray and B on the second and O is the vertex, we denote the angle by ∠AOB.
- The choice A and B is not unique for example $\angle AOB$ and $\angle A'OB$ coincide.
- In ∠AOB the ray OA is the initial arm and the ray OB is the terminal arm.
- In ∠BOA the ray OB is the initial arm, the ray OA is the terminal arm, and the angle measure points in the opposite direction.
- In this way $\angle AOB \neq \angle BOA$.

Definition (Radian measure of geometric angle)

The measure of a geometric angle is a number determined as follows.

- Its magnitude is the length of the short arc cut off by the angle from a radius 1 circle centered at the vertex.
- Whenever traversing the arc from initial arm to terminal results in clockwise motion, take measure with negative sign, else with positive.
- The unit of this angle measure is called radians, denoted by rad.
- A circle of radius 1 has circumference 2π .
- Convention: half-turn angle is measured with π (rather than $-\pi$).
- Therefore a geometric angle is measured with a number between $(-\pi,\pi]$.
- Angle measures are frequently denoted by greek letters such as $\alpha, \beta, \gamma, \theta, \dots$

Arc-length of a circle arc

- There is a definition of arc-length of arbitrary smooth curve.
- The definition states that the arc-length of a smooth curve is the limit of the lengths of ever finer straight line approximations.
- The details of how this is done require integrals and we postpone this for later/another course.
- Until then we ask the reader to think of arc-length of a curve as the quantity obtained by "aligning a rope along the curve" and measuring the "length of this rope".

Arc-length of a circle arc

Proposition

Let two circles have common center and radii s and r.
Suppose an arbitrary geometric angle with vertex at the common center of the circles cuts off short arcs of length

$$M$$
 and L . Then $\frac{s}{r} = \frac{M}{L}$.

$$\frac{s}{r} = \frac{M}{L}$$
 | Choose $s = 1$, relabel $M = \alpha$
 $\frac{1}{r} = \frac{\alpha}{L}$
 $L = \alpha r$

The angle-measure of a geometric angle is the arc-length cut off from a radius 1 circle, therefore we get the following.

Corollary

The arc-length cut off by an angle with measure α from a circle of radius r equals αr .

Example

Find the length of an arc of a circle of radius 2 cut off by an angle of measure $\frac{7\pi}{6}$ (= 210°).

arc-length =
$$\alpha r = \frac{7\pi}{6} \cdot 2 = \frac{7\pi}{3} \approx 7.33038$$
 (units)

- The term rotation refers to two distinct objects:
 - continuous rotation (rotation for short) a gradual with respect to time transformation of space and
 - rotation an instantaneous transformation of space. All points transition from their initial to their final positions instantaneously.
- In mathematics, the term rotation usually refers to "instantaneous" rotation.
- In physics, the term rotation usually refers to continuous rotation (time is explicitly parametrized).
- Whether the term rotation refers to continuous rotation or to "instantaneous" rotation should be inferred from context.

0

Definition (Continuous rotation)

A continuous rotation about a point (center of rotation), is a continuous motion of points for which:

- All points move in a circular fashion around the center of rotation.
- The distance between each rotated point and the center of rotation does not change.
- The distance between each pair of rotated points is preserved.
- The position of a point under a continuous rotation is assumed to be a function of time.
- The trajectory of a point is an arc of a circle.
- A point can traverse a full circle more than once. In this case the moving point passes through the same positions more than once.

 We say that a continuous rotation is proper if points either move clockwise or counter-clockwise relative to the center, without "changing direction".

Definition (Radian measure of proper continuous rotation)

- The radian measure of rotation is a number whose magnitude equals the length of the arc traversed by a point divided by the distance of that point from the center of rotation.
- The sign of the radian measure is taken to be negative if the rotation is clockwise, else it is taken to be positive.
- The radian measure (radians for short) does not change when we change the point whose path length we are measuring.
- The radian measure of rotation equals the signed arc-length traveled by point at distance 1 form the center.
- A circle of radius 1 has circumference 2π , therefore a full counter-clockwise turn is measured by 2π radians.

Equivalence of angles

Definition (Congruent angles)

Two geometric angles are congruent (equivalent) if they one can be transformed onto the other with a sequence of translations and rotations.

Proposition

Two geometric angles are congruent if and only if they have equal angle measures.

- Recall "angle" refers to both geometric angle and angle measure (depending on context).
- The expression "the two angles are equal" is to be interpreted as "the angle measures are equal" and therefore "the geometric angles are congruent".

Angles and the coordinate system

- Given an angle measure α between $(-\pi, \pi]$, there is a conventional way to select a geometric angle with that measure.
 - Select geometric angle's vertex to be the origin.
 - Select the initial arm of the angle on the *x*-axis, pointing in the positive direction.
- Select the terminal arm by rotating the point (1,0) on the initial arm by $|\alpha|$ radians: go clockwise if $\alpha <$ 0, counter-clockwise if $\alpha >$ 0.
- \bullet To rotate the point, move it along the circle with radius 1 for α units of arc-length.
- The construction also works for angle measures greater than π rad/smaller than $-\pi$ rad.
- In this way to every real α we can assign a geometric angle.
- If α is in the interval $(-\pi,\pi]$ the so obtained geometric angle does have measure α , else the measure of the geometric angle differs from α by an even multiple of π .

Angles Radians and Degrees 15/24

Degrees and radians

- Degrees is a unit for measuring angles, denoted by °.
- The relationship between degrees and radians is:

$$\pi \text{ rad} = 180^{\circ}$$
 $1 \text{ rad} = \frac{180^{\circ}}{\frac{\pi}{180}} \approx 57.3^{\circ}$
 $1^{\circ} = \frac{\pi}{180} \text{ rad} \approx 0.017 \text{ rad.}$

- In other words, a half-turn is measured by π rad or 180°.
- Degrees are useful because the most frequently encountered fractions of a half turn are measured by a whole number of degrees.
- If a measurement unit is not specified, it is implied to be radians. For example, in sin 5, the number 5 stands for 5 radians.

$$t^{\circ} = \frac{t}{180}\pi$$
 (radians).

Example

Convert from degrees to radians.

contact nom adjicoo to radiano.									
Deg.	45°	36°	−20°	360°	−720°	−225°	2015°		
Rad.	$\frac{\pi}{-}$	$\frac{\pi}{-}$	$-\frac{\pi}{}$	2π	-4π	-5π	$\frac{403}{\pi}$		
	4	5	9			4	36 ^		

$$x=\frac{x}{\pi}180^{\circ}.$$

Example

Convert from radians to degrees.

Rad.	π	π	11π	7π	π	13π	5π	0	
hau.	3	10	6	4	7	6	<u>-</u> 4		
Deg.	60°	18°	330°	315°	$\frac{180}{7}^{\circ}\approx25.7^{\circ}$	390°	-225°	$\frac{2}{\pi}$ 180° \approx 114.6°	

Example

Find the length of an arc of a circle of radius 3 cut off by an angle of measure 230°.

$$\begin{array}{rcl} \alpha &=& 230^{\circ} \\ &=& 230^{\circ} \frac{\pi \ \text{rad}}{180^{\circ}} = \frac{23}{18} \pi \ \text{rad} \\ \text{arc-length} &=& \alpha r = \frac{23\pi}{18} \cdot 3 = \frac{23\pi}{6} \approx 12.043 \end{array} \quad \ \ \, \right| \text{ Convert to radians}$$

The most frequently encountered angles are given in the table below.

Deg.	0 °	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
Rad.	0	$\frac{\pi}{-}$	$\frac{\pi}{-}$	$\frac{\pi}{-}$	$\frac{\pi}{}$	$\frac{2\pi}{}$	3π	5π	π	3π	2π
		6	4	3	2	3	4	6	,,	2	

- Integer quantities of radians are not rational multiples of (the measure of) a half-turn and are not easy to compute with.
- For example to determine in which quadrant is an angle of k radians located one needs to know the numerical value of $\frac{k}{\pi}$, which requires knowledge of π with great numerical accuracy.

Angles Radians and Degrees 20/24

Definition (Coterminal Angles)

Two angles (angle measures) are called coterminal if the corresponding geometric angles have the same initial and terminal sides.

Observation

The set of angles coterminal with α consists of the angles $\alpha + 2k\pi$, where k runs over the set of integers. In other words, the angles coterminal with α are the angles:

$$\ldots, \alpha - 6\pi, \alpha - 4\pi, \alpha - 2\pi, \alpha, \alpha + 2\pi, \alpha + 4\pi, \alpha + 6\pi, \ldots$$

Example

- Find all angles that are coterminal to $\frac{\pi}{4}$.
- Find all angles in the interval $[-2\pi,\pi]$ that are coterminal to $\frac{\pi}{4}$.

By theory, the angles coterminal with $\frac{\pi}{4}$ are all angles of the form

$$\frac{\pi}{4} + 2k\pi$$
.

To find which among the angles $\frac{\pi}{4} + 2k\pi$ lie in the interval $[-2\pi, \pi]$, we write them as an infinite list (we indicate the unboundedness of the list by ellipsis dots) and cross out the angles that lie outside of the desired interval.

$$, , \frac{\pi}{4}$$
 $4\pi, \frac{\pi}{4}$ $-2\pi, \frac{\pi}{4}, \frac{\pi}{4}$ $+2\pi, \frac{\pi}{4}$ $+4\pi, ...$

Our final answer is $-\frac{7\pi}{4}, \frac{\pi}{4}$

Complementary angles

Definition

Two positive angles are called complementary when they sum to a right angle, i.e., an angle of measure $\frac{\pi}{2} = 90^{\circ}$.

Angles Radians and Degrees 23/24

Supplementary angles

Definition

Two positive angles are called supplementary when they sum to $\pi = 180^{\circ}$.

vertex is at the center of the circle.

Proposition (Area of a circle sector)

The area of a circle sector equals

$$\frac{1}{2}\alpha r^2$$

where α is the angle of the sector.