OSNOVE UMETNE INTELIGENCE 2018/19

neinformirani preiskovalni algoritmi

Preiskovanje

- problem: velika kombinatorična eksplozija možnih stanj
- preiskovalni algoritmi:
 - neinformirani: razpolagajo samo z definicijo problema
 - iskanje v širino (breadth-first search)
 - iskanje v globino (depth-first search)
 - iterativno poglabljanje (iterative deepening)
 - cenovno-optimalno iskanje (uniform-cost search)
 - **informirani**: razpolagajo tudi z dodatno informacijo (domensko znanje, hevristične ocene), kako bolj učinkovito najti rešitev
 - algoritem A*
 - algoritem IDA*
 - prioritetno preiskovanje (best-first search)
 - algoritem RBFS (recursive best-first search)
 - plezanje na hrib (hill climbing)
 - iskanje v snopu (beam search)
 - ...

- strategija: vedno razvij najbolj plitvo še nerazvito vozlišče
 - implementacija: razvita vozlišča dodamo v vrsto (FIFO) za razvijanje

primer iz: Russell, Norvig, Artificial Intelligence: A Modern Approach, 3. izd., Pearson, 2010.

primer iz: Russell, Norvig, Artificial Intelligence: A Modern Approach, 3. izd., Pearson, 2010.

primer iz: Russell, Norvig, Artificial Intelligence: A Modern Approach, 3. izd., Pearson, 2010.

- strategija: vedno razvij najbolj plitvo še nerazvito vozlišče
- odločimo se hraniti kopije že obiskanih vozlišč

- pojmi:
 - razvijanje vozlišča generiranje naslednikov
 - fronta listi drevesa, ki so kandidati za razvijanje (FIFO vrsta)
- generira celoten nivo preden se premakne na naslednji nivo
- v spominu mora pomniti vse alternativne poti, ki so kandidati, da bodo podaljšane do ciljnega vozlišča
- zagotavlja, da najdemo najkrajšo rešitev (A-D-J-M)
 - pozor, v grafu so možni cikli (več poti vodi do ciljnega vozlišča M)
- možni implementaciji:
 - ciljno vozlišče zaznamo šele, ko ga želimo razviti
 - ciljno vozlišče zaznamo, že ko ga generiramo (bolj optimalno)

Programska implementacija

- vozlišča v drevesu hranijo:
 - STANJE: opis stanja v problemskem prostoru
 - PREDHODNIK: kazalec na predhodnika
 - AKCIJA: akcija, ki je iz predhodnika generirala vozlišče
 - CENA: cena poti od začetnega do trenutnega vozlišča


```
function iskanje(problem) {
    vozlišče <- problem.začetno stanje, cena=0
    if (cilj(vozlišče.stanje)) return rešitev=vozlišče
    fronta <- vozlišče
                                                                      način dela s fronto določa strategijo
                                                                          preiskovalnega algoritma
    obiskana <- Ø
    while(true) {
        if (fronta== \emptyset) return rešitev= \emptyset
                                                                         hranjenje obiskanih stanj, do
        vozlišče <- izberi(fronta)</pre>
                                                                       katerih lahko pridemo po različnih
                                                                         poteh, omogoča preprečitev
        fronta <- fronta - vozlišče
                                                                           ciklanja preiskovanja
        obiskana <- obiskana + vozlišče.stanje
        foreach naslednik in nasledniki(vozlišče) {
            if ((naslednik.stanje ∉ obiskana) && (naslednik ∉ fronta))
                     if (cilj(naslednik.stanje) return rešitev=naslednik
                     fronta <- fronta + naslednik
```

Učinkovitost iskanja v širino

- za potrebe analize predpostavimo, da je prostor stanj drevo višine d (depth) in stopnje vejanja b (branching factor)
 - na nivoju d imamo torej b^d vozlišč

popolnost (angl. completeness):

Ali algoritem zagotovo najde rešitev, če le-ta obstaja?

- DA! (če je le b končen)
- optimalnost (angl. optimality):

Ali iskanje najde optimalno (najboljšo možno rešitev)?

- V splošnem ne nujno (da, če je optimalna najkrajša pot cena povezav je 1).
- časovna zahtevnost:
 - generirano število vozlišč je $b + b^2 + b^3 + \cdots + b^d = O(b^d)$
 - torej: eksponentna časovna zahtevnost glede na d
- prostorska zahtevnost:
 - hraniti mora $O(b^{d-1})$ razvitih vozlišč in $O(b^d)$ v fronti skupaj $O(b^d)$

Zahtevnost iskanja v širino

• primer za faktor vejanja b=10, hitrost generiranja 10^6 vozlišč/sekundo, potreben prostor 1000 bajtov/vozlišče

Globina	Vozlišč	Čas	Spomin
2	110	0,11 ms	107 kB
4	11.110	11 ms	10,6 MB
6	10 ⁶	1,1 s	1 GB
8	108	2 minuti	103 GB
10	1010	3 ure	10 TB
12	1012	13 dni	1 PB
14	1014	3,5 let	99 PB
16	10 ¹⁶	350 let	10 EB

Iskanje v globino

- strategija: najprej razvij najglobje še nerazvito vozlišče
 - implementacija: naslednike dodaj v sklad (LIFO) za razvijanje

Iskanje v globino

- ne zagotavlja najkrajše rešitve
- lahko se zacikla (neskončna pot v drevesu)
- možna je preprosta implementacija z rekurzijo
- že raziskanih vej nam ni treba hraniti v spominu (hranimo le pot od začetnega do trenutnega vozlišča)

Učinkovitost iskanja v globino

- za potrebe analize predpostavimo, da je prostor stanj drevo:
 - globina (<u>depth</u>) optimalne rešitve naj bo d
 - stopnja vejanja (<u>b</u>ranching factor) naj bo **b** na nivoju d imamo torej b^d vozlišč
 - največja globina drevesa naj bo max
- popolnost (angl. completeness):
 - Ne. Neuspešen je v prostorih z neskončno globino (prostorih z zankami)
- optimalnost (angl. optimality):
 - Ne.
- časovna zahtevnost:
 - generirano število vozlišč $O(b^{max})$
- prostorska zahtevnost:
 - hraniti mora samo O(bm) razvitih vozlišč (linearna prostorska zahtevnost!)

Iskanje v globino - izboljšave

- iskanje s sestopanjem (backtracking search):
 - namesto vseh naslednikov generiramo samo enega po enega
 - → prostorska zahtevnost O(m)
- iskanje z omejitvijo globine (depth-limited search):
 - vnaprej definiramo mejo globine l
 - vozlišča na globini l obravnavamo, kot da nimajo naslednikov
 - če izberemo l < d, je algoritem nepopoln (ne najde rešitve)
 - če izberemo l > d, je algoritem popoln, a neoptimalen
 - ullet časovna zahtevnost je $Oig(b^lig)$, prostorska pa O(bl)
 - pri določitvi l pomaga domensko znanje
- iterativno poglabljanje (iterative deepening)

Iterativno poglabljanje

- problem globinsko omejenega iskanja v globino je nastavitev meje l
- rešitev: iterativno poglabljanje (*iterative deepening depth-first search*)
- strategija: začnimo z nizko mejo limit in jo povečujmo za 1, dokler ne najdemo rešitve. Na vsakem koraku poženimo iskanje v globino.

Iterativno poglabljanje

- problem globinsko omejenega iskanja v globino je nastavitev meje l
- rešitev: iterativno poglabljanje (iterative deepening depth-first search)
- strategija: začnimo z nizko mejo limit in jo povečujmo za 1, dokler ne najdemo rešitve. Na vsakem koraku poženimo iskanje v globino.

Učinkovitost iterativnega poglabljanja

- popolnost (angl. completeness):
 - Da.
- optimalnost (angl. optimality):
 - Da (v kolikor iščemo najkrajšo rešitev).
- časovna zahtevnost:
 - v iteracijah se ponavlja generiranje istih vozlišč znova
 - generirano število vozlišč je asimptotično enako kot pri iskanju v širino:

[b] +
$$[b + b^2] + \cdots [b + b^2 + \cdots + b^d]$$

= $db + (d-1)b^2 + \cdots + 2b^{d-1} + b^d = O(b^d)$

- kljub temu pa je cena še vedno sprejemljivo višja, ker se največ vozlišč generira na zadnjem nivoju (npr. za b=10, d=5, velja: N(IDS)=123.450, N(BFS)=111.110)
- prostorska zahtevnost:
 - hraniti mora samo O(bd) razvitih vozlišč (linearna prostorska zahtevnost!)
- metoda torej kombinira prednosti iskanja v širino (popolnost, optimalnost) in iskanja v globino (linearna prostorska zahtevnost)

Dvosmerno iskanje

- ideja: pognati vzporedni iskanji od začetnega vozlišča proti cilju in vzvratno od cilja proti začetnemu vozlišču z upanjem, da se iskanji "srečata" na polovici poti
- motivacija: zaradi znižanja globine iskanja želimo doseči časovno zahtevnost $b^{d/2} + b^{d/2} = O(b^{d/2})$, kar je manj kot $O(b^d)$

Implementacija dvosmernega iskanja

- za izvedbo vzvratnega iskanja morajo vozlišča imeti kazalec na predhodnika
- ciljno vozlišče mora biti znano
 - pri igri 8 ploščic je npr. znano, pri uganki Sudoku pa ne
- uporabimo lahko poljuben preiskovalni algoritem
 - če uporabimo iskanje v širino, najde algoritem optimalno rešitev
- cilj iskanja preverja, ali obstaja med frontama obeh iskanj presečišče
- problemski prostor lahko redefiniramo tako, da en korak iskanja v "dvosmernem" prostoru predstavlja dva koraka (od začetka proti cilju in od cilja proti začetku) v originalnem prostoru
 - če v originalnem prostoru velja

potem definiramo v novem prostoru novi vozlišči (S,E) in (S1, E1)

- v "dvosmernem" prostoru velja (S,E) → (S1, E1), če obstaja v "enosmernem" prostoru
 povezava med S → S1 in med E1 → E
- vozlišče (S,E) je v "dvosmernem" prostoru ciljno vozlišče, če velja E=S ali S → E

Primerjava časovnih zahtevnosti

Kriterij	lskanje v širino	lskanje v globino	Iskanje z omejitvijo globine	lterativno poglabljanje	Dvosmerno iskanje
Popolnost	Da (če je b končen)	Ne	Ne	Da (če je b končen)	Da
Optimalnost	Da (če so cene enake)	Ne	Ne	Da (če so cene enake)	Da
Čas. zahtevnost	$Oig(b^dig)$	$O(b^m)$	$O(b^l)$	$O(b^d)$	$O\!\left(b^{d/2}\right)$
Prost. zahtevnost	$O(b^d)$	O(bm)	O(bl)	O(bd)	$O\!\left(b^{d/2}\right)$

Cenovno-optimalno iskanje

- angl. uniform-cost search, (best-first search with no heuristic)
- posplošitev iskanja v širino
 - iskanje v širino je optimalno, če so cene vseh povezav enake 1
- če so cene povezav ≥ 1 , je optimalno **razviti vozlišče**, **ki ima** najmanjšo skupno ceno dosedanje poti -g(n)
- fronta je urejena kot prioritetna vrsta
- test, ali je vozlišče ciljno, opravimo šele, ko je vozlišče na vrsti za razvijanje in ne ob generiranju vozlišča
 - zakaj?
 - ciljno vozlišče morda ni optimalno (obstaja boljša rešitev)
 - morda do najdenega optimalnega cilja vodi krajša pot

Cenovno-optimalno iskanje

primer

SABD/7, SG/12

rešitev: najboljša pot: SACG/4

Učinkovitost iskanja

- za potrebe analize predpostavimo, da je prostor stanj drevo:
 - globina (<u>depth</u>) optimalne rešitve naj bo d
 - stopnja vejanja (\underline{b} ranching factor) naj bo b, na nivoju d imamo torej b^d vozlišč
 - največja globina drevesa naj bo max
 - C* naj bo cena optimalne rešitve
 - ϵ naj bo najmanjša cena povezave
- popolnost (angl. completeness):
 - Da, za cene povezav > 0.
- optimalnost (angl. optimality):
 - Da.
- časovna in prostorska zahtevnost:
 - odvisni sta od cen poti in ne od globine d in vejanja b
 - zahtevnost $O(b^{1+\lfloor C^*/\epsilon\rfloor})$, kar je lahko veliko več kot $O(b^d)$
 - če so vse cene poti enake, se zahtevnost poenostavi v $O(b^{1+d})$
 - zakaj $O(b^{d+1})$ in ne $O(b^d)$?

Pregled

neinformirani preiskovalni algoritmi

- iskanje v širino
- iskanje v globino
- iterativno poglabljanje
- cenovno-optimalno iskanje

informirani preiskovalni algoritmi

- hevristično preiskovanje (primer)
- požrešno preiskovanje
- A*
- IDA*
- kakovost hevrističnih funkcij

Povzetek

- ciljno-usmerjen agent potrebuje identifikacijo (abstrakcijo) problema in cilja
- problem definiramo z: začetnim stanjem, akcijami, prehodno funkcijo,
 ciljnim predikatom, ceno poti
- iskanje rešitve izvajamo s preiskovanjem prostora stanj
- preiskovalne algoritme ocenjujemo glede na popolnost, optimalnost, časovno in prostorsko zahtevnost
- preiskovalne algoritme delimo na neinformirane in informirane
- implementacija preiskovalnih algoritmov in preprečevanje ciklanja

