$$E_t$$
: $3t \cdot x + 4t \cdot y + 5 \cdot z = 15t$; $t \in \mathbb{R} \setminus \{0\}$

1.1 \blacktriangleright Berechnung des gesuchten Parameters t

(12BE)

Der Punkt (2|1|1) liegt in einer der Ebenen E_t , wenn seine Koordinaten die zugehörige Ebenengleichung erfüllen. Einsetzen ergibt:

$$(2 | 1 | 1)$$
 in E_t : $6t + 4t + 5 = 15t$
 $5t = 5$
 $t = 1$.

Der Punkt (2 | 1 | 1) liegt also in der Scharebene E_1 .

ightharpoonup Angabe der Spurpunkte der Scharebene E_1

Die Spurpunkte der Ebene E_1 : 3x + 4y + 5z = 15 ergeben sich, indem wir je zwei der drei Koordinaten x, y und z in der Ebenengleichung gleich Null setzen.

$$y = z = 0 \implies 3x = 15 \iff x = 5 \implies S_1(5 | 0 | 0);$$

 $x = z = 0 \implies 4y = 15 \iff y = 3,75 \implies S_2(0 | 3,75 | 0);$
 $x = y = 0 \implies 5z = 15 \iff z = 3 \implies S_3(0 | 0 | 3).$

▶ Zeichnung der Spurpunkte und deren Verbindungsstrecken

Hinweis: Der eingezeichnete Winkel φ gehört zur Teilaufgabe 1.2.

1.2 ▶ Berechnung des Innenwinkels des Spurdreiecks

Der Innenwinkel φ beim Eckpunkt S_3 wird von den Vektoren $\overrightarrow{S_1S_3}$ und $\overrightarrow{S_2S_3}$ eingeschlossen. Für ihn gilt also:

$$\cos \varphi = \frac{\overrightarrow{S_1S_3} \cdot \overrightarrow{S_2S_3}}{|\overrightarrow{S_1S_3}| \cdot |\overrightarrow{S_2S_3}|} = \frac{\begin{pmatrix} -5\\0\\3 \end{pmatrix} \cdot \begin{pmatrix} 0\\-3,75\\3 \end{pmatrix}}{\sqrt{(-5)^2 + 3^2} \cdot \sqrt{(-3,75)^2 + 3^2}} = \frac{9}{\sqrt{34} \cdot \sqrt{23,0625}} \approx 0,3214,$$

und damit $\varphi \approx 71.3^{\circ}$.

1.3 ► Nachweis, dass zwei Spurpunkte die Spurpunkte aller Ebenen sind

Setzen wir die Spurpunkte S_1 , S_2 und S_3 in die allgemeine Gleichung der Ebenen E_t ein, so ergibt sich:

$$S_1(5 | 0 | 0)$$
 in E_t : $15t + 0 + 0 = 15t$
 $15t = 15t$

$$S_2(0 \mid 3,75 \mid 0)$$
 in E_t : $0 + 14t + 0 = 15t$
 $15t = 15t$:

$$S_3(0 \mid 0 \mid 3)$$
 in E_t : $0 + 0 + 15 = 15t$
 $t = 1$.

Die Gleichungen für S_1 und S_2 sind für alle t-Werte erfüllt, die Gleichung für S_3 nur für t=1. Somit sind S_1 und S_2 Spurpunkte aller Scharebenen.

► Lagebeschreibung der Ebenenschar

Da S_1 und S_2 feste Spurpunkte der Ebenenschar sind, muss die Gerade $g=S_1S_2$ ebenfalls in allen Ebenen vorhanden sein. Die Schar bildet also ein Ebenenbüschel um diese Gerade g.

▶ Berechnung der t-Werte für einen Abstand von 1 LE

(6BE)

Sämtliche Abstandsprobleme bei Ebenen werden mit deren Hesse'scher Normalenform gelöst. Für diese gilt:

$$d = \vec{e}_n \cdot \vec{x}_0 = \frac{3tx + 4ty + 5z - 15t}{\sqrt{9t^2 + 16t^2 + 25}} = \frac{3tx + 4ty + 5z - 15t}{\sqrt{25t^2 + 25}} = d(P; E_t).$$

Für den Abstand des Koordinatenursprungs $O(0 \mid 0 \mid 0)$ von den Ebenen E_t gilt also allgemein:

$$d = \left| \frac{0 + 0 + 0 - 15t}{\sqrt{25t^2 + 25}} \right| = \left| \frac{-15t}{\sqrt{25(t^2 + 1)}} \right| = \left| \frac{-15t}{5\sqrt{t^2 + 1}} \right| = \left| \frac{-3t}{\sqrt{t^2 + 1}} \right|.$$

Da der Abstand d = 1 betragen soll, erhalten wir nun die Bedingung:

$$d = \left| \frac{-3t}{\sqrt{t^2 + 1}} \right| = 1$$
$$|-3t| = \sqrt{t^2 + 1}.$$

Diese Betragsgleichung kann durch Quadrieren gelöst werden, wobei praktischerweise auch gleich die Wurzel auf der rechten Seite wegfällt:

$$9t^2 = t^2 + 1 \quad \Leftrightarrow \quad 8t^2 = 1 \quad \Leftrightarrow \quad t_{1/2} = \pm \sqrt{\frac{1}{8}}.$$

Somit haben die Ebenen $E_{+\sqrt{\frac{1}{n}}}$ einen Abstand von 1 LE zum Koordinatenursprung.

3.1 ► Nachweis, dass alle Punkte auf g auf den Ursprung abgebildet werden

(12BE)

Die Punkte auf der Geraden g mit dem Ortsvektor \vec{x} werden durch M auf ihre Bildpunkte mit folgendem Ortsvektor abgebildet:

$$\vec{x}' = M \cdot \vec{x} = \frac{1}{12} \cdot \begin{pmatrix} 9 & -4 & -5 \\ -3 & 8 & -5 \\ -3 & -4 & 7 \end{pmatrix} \cdot r \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \frac{r}{12} \begin{pmatrix} 9 & -4 & -5 \\ -3 & +8 & +5 \\ -3 & -4 & +7 \end{pmatrix} = \frac{r}{12} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Daher werden alle Punkte auf g auf den Ursprung abgebildet, g ist Fixgerade.

▶ Nachweis, dass alle Punkte auf F auf sich selbst abgebildet werden

Um die Bildpunkte der Punkte auf der Ebene F zu bestimmen, brauchen wir zunächst eine Gleichung für die Ortsvektoren \vec{x} der Ausgangspunkte. Bei einer Ebene ist nur in der **Parametergleichung** der Ortsvektor \vec{x} durch eine Gleichung festgelegt, daher müssen wir die Gleichung von F erst in eine Parametergleichung umwandeln.

Hierzu setzen wir x = r und y = s als Parameter und lösen die Koordinatengleichung nach z auf:

$$F: z = -\frac{3}{5}r - \frac{4}{5}s.$$

Für die Ebene F gilt also:

$$F: \vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r \\ s \\ -\frac{3}{5}r - \frac{4}{5}s \end{pmatrix} = r \begin{pmatrix} 1 \\ 0 \\ -\frac{3}{5} \end{pmatrix} + s \begin{pmatrix} 0 \\ 1 \\ -\frac{4}{5} \end{pmatrix}.$$

Um die Brüche zu beseitigen, können die beiden Spannvektoren noch jeweils mit 5 erweitert werden:

$$F: \vec{x} = r \begin{pmatrix} 5 \\ 0 \\ -3 \end{pmatrix} + s \begin{pmatrix} 0 \\ 5 \\ -4 \end{pmatrix}.$$

Für die Ortsvektoren \vec{x}' gilt nun also:

$$\vec{x}' = M \cdot \vec{x} = \frac{1}{12} \begin{pmatrix} 9 & -4 & -5 \\ -3 & 8 & -5 \\ -3 & -4 & 7 \end{pmatrix} \cdot r \begin{pmatrix} 5 \\ 0 \\ -3 \end{pmatrix} + \frac{1}{12} \begin{pmatrix} 9 & -4 & -5 \\ -3 & 8 & -5 \\ -3 & -4 & 7 \end{pmatrix} \cdot s \begin{pmatrix} 0 \\ 5 \\ -4 \end{pmatrix}$$

$$= \frac{r}{12} \begin{pmatrix} 45 + 0 + 15 \\ -15 + 0 + 15 \\ -15 + 0 - 21 \end{pmatrix} + \frac{s}{12} \begin{pmatrix} 0 - 20 + 20 \\ 0 + 40 + 20 \\ 0 - 20 - 28 \end{pmatrix}$$

$$= \frac{r}{12} \begin{pmatrix} 60 \\ 0 \\ -36 \end{pmatrix} + \frac{s}{12} \begin{pmatrix} 0 \\ 60 \\ -48 \end{pmatrix} = r \begin{pmatrix} 5 \\ 0 \\ -3 \end{pmatrix} + s \begin{pmatrix} 0 \\ 5 \\ -4 \end{pmatrix}.$$

Die Ortsvektoren bleiben erhalten, alle Punkte auf F werden auf sich selbst abgebildet.

3.2 ▶ Beschreibung der geometrischen Bedeutung der einzelnen Zeilen

- (1) Die Gerade g, die parallel zu \vec{e} verläuft, sowie die Ebene F legen den gesamten dreidimensionalen Raum \mathbb{R}^3 fest. Dies ist insbesondere dadurch möglich, dass g nicht parallel zur Ebene F verläuft; ein Vergleich von \vec{e} und dem Normalenvektor von F zeigt dies. Jeder Vektor \vec{x} im \mathbb{R}^3 kann also durch eine Linearkombination aus den beiden Vektoren \vec{e} und \vec{p} dargestellt werden.
- (2) Dieser in (1) definierte Vektor wird nun durch die Matrix *M* abgebildet. Da sie linear ist, kann im zweiten Schritt ausmultipliziert werden.
- (3) Laut Teilaufgabe 3.1 werden die Punkte auf g auf den Ursprung abgebildet. Der zugehörige Vektor \vec{e} fällt dann entsprechend auf den Nullvektor. Der Ortsvektor von P als Punkt der Ebene F fällt auf sich selbst und bleibt erhalten.
- (4) Der Teil mit dem Nullvektor kann vernachlässigt werden, da er den Bildvektor nicht beeinflusst.

► Erklärung der Abbildungseigenschaften

Wie bereits in (1) erklärt, stellt die Gleichung (1) je nach Wahl der Parameter jeden beliebigen Vektor im dreidimensionalen Raum dar. Jeder beliebige Punkt im \mathbb{R}^3 wird also, wie durch die Umformung bewiesen, in die Ebene F abgebildet. Die lineare Abbildung, die die Matrix M beschreibt, ist also eine Projektion in diese Ebene.