Nearly Optimal Robust Matrix Completion

Yeshwanth Cherapanamjeri, Kartik Gupta and Prateek Jain
Microsoft Research India

Outline

- Robust Matrix Completion
 - Problem Definition
 - Motivating Applications
- Algorithm
- Theoretical Results
- Empirical Results
- Summary & Future Work

Robust Matrix Completion

$$P_{\Omega}(M)$$

$$P_{\Omega}(M)$$

$$P_{\Omega}(M)$$

$$P_{\Omega}(M)$$

$$P_{\Omega}(M)$$

$$P_{\Omega}(M)$$

GOAL: Decompose M as a sum of a low-rank (L^*) and a sparse matrix (S^*)

Motivating Application 1: Robust Recommender System

- Random aberrations
- Adversarial outliers: merchant tries to bias ratings towards his products

Motivating Application 2: Background Extraction

Robust Matrix Completion

•
$$(P_{\Omega}(M))_{ij} = M_{ij}, (i,j) \in \Omega$$

•
$$(P_{\Omega}(M))_{ij} = 0$$
, $(i,j) \notin \Omega$

• Naturally, $S^* = P_{\Omega}(S^*)$

$$\min_{L,S} ||P_{\Omega}(M) - P_{\Omega}(L+S)||_F^2$$
s.t. $rank(L) \le r, |supp(S)| \le s$

Non-convex Sets

Existing Method

$$\min_{L,S} ||P_{\Omega}(M) - P_{\Omega}(L+S)||_F^2$$
s.t. $rank(L) \le r, |supp(S)| \le s$

•
$$||L||_* = \sum_i \sigma_i(L)$$
, $||S||_1 = \sum_i S_{i,i}$

- Assumption ().

 - $||S^*||_0$
- Issues:
 - Convex progra

Robust Matrix Completion in:

- a) nearly linear time (in n)?
- b) With nearly weakest assumptions?

$$n^{\circ}$$

• Requirement c $|S^*|_0$ significantly worse than "optimal" (info. theoretically)

Our Contribution

- Simple algorithm that runs in nearly optimal time
 - Based on simple proj. grad. method with projection on non-convex set
 - Scales well to very large problems

- Provable convergence to Global Optima in Linear time
 - Requires:
 - No. of observed entries is "large" enough
 - No. of corruptions is "small" enough
 - Randomness in observations
 - But allows adversarial corruptions

Our Approach: Projected Gradient Descent

$$\min_{L,S} ||P_{\Omega}(M - L - S)||_F^2$$

s.t. $rank(L) \le r, ||S||_0 \le s$

- Block projected gradient (L, S)
- Gradient: $G = -P_{\Omega}(M L_t S_{t-1})$
 - Given: L_t , S_{t-1}

Low-rank Matrices

Sparse Matrices

Non-convex RMC

Time Complexity

•
$$L_0 \rightarrow 0$$

•
$$\zeta = \mu^2 r/n$$

• For t=1, 2, ... T

•
$$\zeta = \frac{1}{4} \cdot \zeta$$

•
$$S_t = HT_{\zeta}(P_{\Omega}(M) - P_{\Omega}(L_t))$$

•
$$L_{t+1} = P_r(L_t + P_{\Omega}(M - L_t - S_t))$$

• Output, L_T , S_T

Linear in the number of observations!

 $+nr^2$

Main Result

Assumptions

- *L**: low-rank matrix
 - $rank(L^*) \le r, L^* \in R^{n \times n}$
 - L^* is μ -incoherent, $\kappa = \sigma_{max}(L^*)/\sigma_{min}(L^*)$
- Ω : set of known entries, random entries
 - $|\Omega| \ge n\mu^4 r^2 \log^3 \frac{n}{\epsilon}$ (optimal: $|\Omega| \ge n\mu^2 r \log n$)
- S^* : corruption matrix
 - $||S_i^*||_0 \le \frac{n}{u^2 r}$ (optimal $||S_i^*||_0 \le \frac{n}{u^2 r}$)

Independent result [Yi et al'2016]:

$$|\Omega| \ge c \cdot n \kappa^4 \mu^2 r^2 \log n \,,$$

Result [CGJ-ICML'17]

•
$$T = \log\left(\frac{1}{\epsilon}\right)$$

$$||L_T - L^*||_{\infty} \le \epsilon$$

• Total running time:
$$O((|\Omega| \cdot r + nr^2) \cdot \log \frac{1}{\epsilon} \cdot \log \kappa)$$

$$||S_i^*||_0 \le n \cdot \min\left\{\frac{1}{\mu\sqrt{\kappa r^3}}, \frac{1}{\mu\kappa^2 r}\right\}$$

Empirical Results (Synthetic Datasets)

Empirical Results

Convex Method Runtime: 1700 sec

Non-Convex Method [NUSAJ-NIPS'14] Runtime: 28 sec

Empirical Results

New Non-Convex Method. Runtime: 8 sec

Foreground Extraction methods from Open CV Runtime: 6 sec, 4 sec

Summary

- Robust Matrix Completion
 - Low-rank+Sparse Decomposition with Missing Entries
- Projected Gradient Based Method to solve Robust Matrix Completion
- Almost linear convergence rate under standard assumption
- Near optimal run-time, sample complexity, number of corruptions

Future Directions

- Exploit more information about the corruption
 - Corruptions are zero mean with random support?
- General Problem: learning in high-dimensions
 - Design algorithms that are robust to outliers/corruptions
 - General theory of provable non-convex optimization

Questions?

Projection onto Low-rank Matrices

- Non-convex projections: NP-hard in general
- But $P_r(Z)$ can be computed efficiently:

•
$$P_r(Z) = U_r \Sigma_r V_r^T$$

$$P_1(Z) = \begin{bmatrix} U_1 & \Sigma_1 & V^T & V_1^T & V^T &$$

- Time complexity: $O(n^2r)$
 - Using special structure in our updates: $O(|\Omega|r + nr^2)$

Projection onto Sparse Matrices

- Non-convex projection
- $HT_{\zeta}(Z)$: removes all elements with magnitude smaller than ζ

