Sistemas de Representación

Organización del Computador 1 1er Cuatrimestre 2018

0s y 1s

- Los computadores comprenden el lenguaje de los números
- La organización de un computador depende (entre otros factores) del sistema de representación numérica adoptado
- Se trabaja con el sistema binario, de donde proviene el término bit como contracción de "binary digit"

Sistemas de Numeración

 Un sistema de numeración es un conjunto de símbolos y un conjunto de reglas de combinación de dichos símbolos que permiten representar los números enteros y/o fraccionarios.

Sistemas posicionales

 Dentro de los sistemas de numeración posibles un conjunto importante, destacado, es el constituido por los sistemas de numeración posicionales.

 <u>Numeración posicional</u>: cada dígito posee un valor diferente que depende de su posición relativa

Un poco de historia

En muchas culturas se adoptó la base 10. Sin embargo, existen otras bases utilizadas

- Los Egipcios (4000-3000 B.C.)
 - No posicional
 - Base 12
 - Base 10:
 - 1 al 9: palitos
 - 10: U invertida
 - 100: soga enrollada
 - 1000: una flor (lottus blossom)

Ancient Egyptian Numbers

Un poco de historia

- Los Babilonios (1800-1900 B.C.)
 - Primer sistema posicional
 - Base 60!!!
 - No tenían cero.
- Los Romanos (100 B.C. 400 A.D.)
 - No posicional
 - Base 10
 - Sin cero

Un poco de historia

- Sistema Arábigo (India y Arabia, 1500 B.C.)
 - Sistema posicional
 - Base 10!!!
 - Tenían cero!

Brahmi		_		=	+	μ	6	7	5	7
Hindu	0	8	२	३	४	५	w	9	2	९
Arabic	•	١	۲	٣	٤	0	٦	٧	٨	٩
Medieval	0	I	2	3	ደ	ç	6	Λ	8	9
Modern	0	1	2	3	4	5	6	7	8	9

Cruzando el charco

- Cruzando el charco:
 - Los Aztecas (1200 A.D.)

Muchos sistemas, un soporte

Sistemas de numeración en humanos

Exact and Approximate Arithmetic in an Amazonian Indigene Group Pierre Pica et al.

Science 306, 499 (2004); DOI: 10.1126/science.1102085

Formalizando

- Queremos estudiar los sistemas de representación y su soporte
 - Un número: una cantidad
 - Un numeral: una representación de un número
 - Un dígito: símbolos del numeral

Formalizando

• En un sistema de numeración posicional de base **b**, la representación de un número se define a partir de la regla:

```
(...a_3 a_2 a_1 a_0 ...a_{-1} a_{-2} a_{-3} ...)_b =

...+ a_2b^2 + a_1b^1 + a_0b^0 + a_{-1}b^{-1} + a_{-2}b^{-2} + a_{-3}b^{-3} + ...
```

- Donde b es un entero no negativo mayor a 1 y cuando los ai pertenecen al conjunto de enteros en el rango 0 ≤ai< b
- El punto que aparece entre los dígitos a₀ y a₋₁ se denomina "*punto fraccionario*".
- Cuando b = 10 se lo llama punto decimal
- Cuando b = 2, se lo llama *punto binario*.

Ejemplos de sistemas de numeración

- **Sistema Decimal**: Es el sistema de numeración utilizado en la vida cotidiana, cuya base es diez, utilizando los símbolos 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9.
- Sistema Binario: los dos símbolos utilizados son el 0 y el 1, los que reciben el nombre de bit (binary digit).
- **Sistema Octal**: de base 8, los símbolos utilizados son 0, 1, 2, 3, 4, 5, 6,7.
- **Sistema Hexadecimal**: de base 16, los símbolos utilizados son 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Ejemplos

• $(243.51)_{10} =$

$$2 * 10^{2} + 4 * 10^{1} + 3 * 10^{0} + 5 * 10^{-1} + 1 * 10^{-2}$$

• $(212)_3 =$

$$2 * 3^2 + 1 * 3^1 + 2 * 3^0 = 23_{10}$$

• $(10110)_2 =$

$$1 * 2^4 + 0 * 2^3 + 1 * 2^2 + 1 * 2^1 + 0 * 2^0 = (22)_{10}$$

Cambio de Base

Representemos (104)₁₀ en base 3

Método de restas sucesivas

$$\frac{104}{-81} = 3^{4} \times 1$$

$$\frac{-0}{23} = 3^{3} \times 0$$

$$\frac{-18}{5} = 3^{2} \times 2$$

$$\frac{-3}{2} = 3^{1} \times 1$$

$$\frac{-2}{0} = 3^{0} \times 2$$
(104)₁₀=(10212)₃

Cambio de Base

Representemos (104)₁₀ en base 3

Método del resto de los cocientes

$$(104)_{10} = (10212)_3$$

Bajando a la compu..

- Stallings: "...máquina digital..."
 - Sistema Binario
- Precisión fija:
 - La computadora opera con sistemas de numeración de tamaño fijo
 - No podemos representar todos los números
 - El orden de las operaciones altera el resultado

Enteros en la compu...

- Tenemos que elegir cuáles números queremos representar y con qué sistema
 - Sin signo (sólo positivos y cero)
 - Magnitud con Signo (signed magnitude)
 - Complemento a 2
 - Exceso a M

Magnitud con signo

- **Signed magnitude**: El bit más a la izquierda es usado como indicador de signo.
 - 1 implica que el número es negativo,
 - 0 que es positivo.
- Si usamos **8 bits**, podemos representar el intervalo cerrado [-(2⁷-1), 2⁷-1].
 - En general, con **n bits** podremos representar el intervalo cerrado [-(2⁽ⁿ⁻¹⁾-1), 2⁽ⁿ⁻¹⁾-1].

Magnitud con signo

- La suma es igual que en el sistema decimal, incluyendo el concepto de acarreo.
- En caso de llegar con un acarreo al bit 8, nos encontramos en una situación de overflow.

```
Last carry 1 \leftarrow 1 1 1 1 1 \Leftarrow carries overflows and is 0 1 0 0 1 1 1 1 1 (79) discarded. 0 + \frac{1}{0} \frac{1}{0} \frac{1}{0} 0 0 1 0 \frac{1}{0} \frac{1}{0} (50)
```

Sistemas de Complemento

- Sistemas de complemento: El complemento de un número se obtiene restando dicho número al número más grande que puede representarse con el tamaño de numeral con que contamos.
- La idea es usar los números "más altos" como números negativos.
- ¿Cuál es el complemento de (-52)₁₀ si tenemos 3 dígitos base
 10?
 - Máximo numeral = (999)₁₀
 - Complemento = $(999)_{10} + (-52)_{10} = (947)_{10}$

Complemento a 2

- "Complemento a 2" es por "radix complement" en base 2.
 - Dado M numerales
 - M/2 se utilizan para representar números negativos
 - M/2 se utilizan para representar números positivos y el número cero

Complemento a 2

- Con n-bits,
 - ¿cuántos numerales distintos tengo?
 - ¿cuántos números positivos puedo representar?
 - ¿cuántos números negativos puedo representar?

Complemento a 2

- Con n-bits,
 - ¿cuántos numerales distintos tengo?
 - Rta: 2ⁿ
 - ¿cuántos números positivos puedo representar?
 - Rta: 2⁽ⁿ⁻¹⁾-1
 - ¿cuántos números negativos puedo representar?
 - Rta: 2⁽ⁿ⁻¹⁾

- ¿Puedo representar al número 0? ¿Cuál es el numeral binario que lo representa?
- ¿Cuál es el número más grande que puedo representar?
 - ¿Cuál es el numeral binario que lo representa?
- ¿Cuál es el número más negativo que puedo representar?
 - ¿Cuál es el numeral binario que lo representa?

- ¿Puedo representar al número 0? **Rta**: Sí
 - ¿Cuál es el numeral binario que lo representa? Rta: (00000000)2
- ¿Cuál es el número más grande que puedo representar?
 - **Rta**: 2^{7} -1 = $(128)_{10}$ -1 = $(127)_{10}$
 - ¿Cuál es el numeral binario que lo representa? **Rta**: (0111 1111)₂
- ¿Cuál es el número más negativo que puedo representar?
 - **Rta**: $-2^7 = -(128)_{10}$
 - ¿Cuál es el numeral binario que lo representa? Rta: (1000 0000)2

- ¿Puedo representar el (-1)₁₀?
 - ¿Qué numeral lo representa?

- ¿Puedo representar el (-1)₁₀?
- **Rta**: dado que el menor número es -(128)₁₀ y el mayor (127)₁₀, el (-1)₁₀ se puede representar.
 - ¿Qué numeral binario lo representa? Para calcular el complemento a 2 de un número negativo debo restarlo al mayor número representable y sumarle 1.
 - **Rta**: $(255)_{10} 1_{10} + 1 = (255)_{10}$
 - El numeral binario de (255)₁₀ es (1111 1111)₂

Notación exceso

- Dado un número N, en notación exceso a M se representa como N+M
- Por ejemplo, en notación exceso a 64 de 8 bits,
 - El número $(35)_{10}$ se representa como $(64)_{10}+(35)_{10}=(99)_{10}$
 - El número (-35)₁₀ se representa como (64)₁₀-(35)₁₀=(29)₁₀

Representaciones

- En gral., podemos pensar a cada representación de n-bits como una función matemática **parcial**
 - Dominio: Números Enteros
 - Imagen: Números positivos y el cero

Representaciones de n-bits

- $sin_signo(x) = x si 0 \le x \le 2^{n}-1$
- complemento_a_2(x) =
 - $x \sin 0 \le x \le 2^{(n-1)}-1$
 - $2^n |x| \text{ si } -2^{(n-1)} \le x < 0$
- exceso_M(x) = x+M si -M \leq x \leq 2ⁿ M
- signo_magnitud(x) = ... Ejercicio

Suma/Resta Complemento a 2

- La suma se opera exactamente igual a la suma de números sin signo.
- La resta, al igual que vimos antes se reduce a la suma del complemento del sustraendo.
- Detectando overflow: Si el acarreo sobre el bit de signo es igual al acarreo fuera de dicho bit, no hay overflow. En caso que sean distintos sí lo hay.

```
0← 1 1 1 1 0 ← carries

Discard last 0 1 1 1 1 1 1 0 (126)

carry. + 0 0 0 0 1 0 0 0 +(8)

1 0 0 0 0 1 1 0 (-122???)
```

Ejercicios

- Realizar la suma binaria de los números (5)₁₀ y
 (-1)₁₀ representados en complemento a 2 de 4 bits.
 - ¿El resultado es representable?
- Realizar la suma binaria de los números (5)₁₀ y
 (3)₁₀ representados en complemento a 2 de 4 bits.
 - ¿El resultado es representable?

Ejercicios

- Realizar la suma binaria de los números (5)₁₀ y (-1)₁₀ representados en complemento a 2 de 4 bits.
 - (5)₁₀ se representa con el numeral binario (0101)₂ en notación complemento a 2 de 4 bits.
 - (-1)₁₀ se representa con el numeral binario (1111)₂ en notación complemento a 2 de 4 bits.
 - La suma binaria es $(0101)_2 + (1111)_2 = (10100)_2$
 - Como el sistema tiene 4 bits, el bit más significativo se descarta, quedando el numeral $(0100)_2 = (4)_{10}$
 - ¿El resultado es representable? Rta: Sí

Ejercicios

- Realizar la suma binaria de los números (5)₁₀ y
 (3)₁₀ representados en complemento a 2 de 4 bits.
 - ¿El resultado es representable?
 - TAREA!

¿Qué vimos?

- Arquitectura vs. Organización
- ¿Por qué esta materia?
- Funciones principales (almacenamiento, transferencia, procesamiento, control)
- Estructura de una computadora
- Representación de enteros
 - Número, numeral, dígito, base
 - Sistema binario de precisión fija
 - Representaciones: sin signo, complemento a 2, con signo y exceso

Bibliografía

 Null, L. and J. Lobur. The Essentials of Computer Organization and Architecture, Jones and Bartlett Publishers, Feb. 2003

