Desenvolvimento Econômico

Meio Ambiente

Ricardo Dahis

Desenvolvimento e meio ambiente

- ▶ Países em desenvolvimento são contexto importante para estudar questões ambientais.
 - Degradação ambiental é um problema grande
 - Altos níveis de dano ambiental.
 - Serão especialmente atingidos por mudanças climáticas.
 - Pessoas são mais vulneráveis aos danos.
 - Trade-offs duros entre qualidade ambiental e bem-estar econômico.
 - Opções baratas de redução de emissões globais.
 - Low-hanging fruits por não estarem na fronteira tecnológica.
 - Custo de oportunidade menor para mudanças de comportamento.
- Oportunidade para pesquisa
 - 1. Problemas importantes
 - 2. Perguntas intelectualmente estimulantes
 - 3. Novas ferramentas para pesquisa: dados de satélite, administrativos, RCTs
 - 4. Potencial para impacto em policy

Emissões de CO2e no mundo

Emissões de CO2e no Brasil (Observatório do Clima, 2020)

Figura 1 – Emissões de gases de efeito estufa do Brasil de 1990 a 2019 (MtCO₂e)

Poluição no ar: PM 2.5 ($\mu g/m^3$) - Air Quality Life Index (AQLI)

Desenvolvimento econômico e meio ambiente

- ▶ Meio ambiente ⇒ Desenvolvimento
 - Efeito de recursos naturais em bem-estar
 - ► Efeito de mudanças climáticas em renda, saúde, educação, conflito, etc.
- ▶ Desenvolvimento ⇒ Meio ambiente
 - Curva de Kuznets ambiental
 - Demanda por recursos, crescimento populacional
 - Ambiente regulatório fraco e corrupção
- Avaliação de políticas para proteger o meio ambiente
 - Regulação
 - Imposto sobre carbono
 - Comando e controle
 - Pagamento por serviços ambientais

Hoje

Meio ambiente \implies Desenvolvimento

Desenvolvimento \implies Meio ambiente

Vasta literatura sobre efeitos de clima

- ► Temperatura e precipitação
 - ► Efeitos em renda e política (Deschênes and Greenstone, 2012; Dell et al., 2012, 2014).
 - Efeitos em conflito e violência (Burke et al., 2015).
- Poluição
 - ► Efeitos em saúde (Sekhri, 2014; Rocha and Soares, 2015) e mortalidade infantil (Chay and Greenstone, 2003; Greenstone and Hanna, 2011).
 - ► Efeitos em produtividade do trabalho (Zivin and Neidell, 2012).
- Água
 - ► Efeitos em pobreza e conflito (Sekhri, 2014; Rocha and Soares, 2015).
- Desastres naturais (Kahn, 2005)
 - Queimadas (Deryugina et al., 2019; Rangel and Vogl, 2019)
 - ► Furacões (Deryugina et al., 2018)

Dell, Jones and Olken (2012)

- Usam variação histórica intra-países de clima para estimar efeitos em renda per capita.
 - Usam variação entre anos e entre décadas. (Por quê?)
- Principais resultados
 - Aumento de temperatura tem efeitos negativos grandes em renda per capita, mas só em países pobres.
 - Temperatura alta reduz taxa de crescimento, além de nível de renda.
 - ► Temperatura alta afeta um número surpreendentemente alto de *outcomes*, incluindo produção industrial, investimento, estabilidade política.

Dados

- ► Temperatura e precipitação: painel mensal de grid entre 1900-2006 com resolução de 0.5 grau (aproximadamente 56km² no Equador)
- Usam software geoespacial para agregar pixels em médias anuais de países (fazem para subregião e depois pesam por população para agregar)
- ▶ Variáveis de interesse: World Development Indicators, Penn World Tables, Polity IV, etc.

Efeitos em renda e crescimento

- ► Clima tem efeito em níveis: In $y_{it} = \beta T_{it} + \ln A_{it}$
- E efeito em crescimento (interfere com inovação e estabilidade política): $\Delta A_{it} = \bar{g}_i + \gamma T_{it}$
- ▶ Modelo mais geral com L lags: $g_{it} = \bar{g}_i + g_{rt} + \sum_{j=0}^{L} \rho_j T_{it-j} + \varepsilon_{it}$
 - Efeitos fixos de país, região-ano, país pobre-ano.
 - ightharpoonup Clima afeta produto? ($\rho_0 \neq 0$)
 - ► Choques temporários são revertidos? $(\sum_{j=0}^{L} \rho_j = 0)$

Efeitos sobre nível de renda

TABLE 2—MAIN PANEL RESULTS

Dependent variable is the	(1)	(2)	(2)	(4)	(5)
annual growth rate	(1)	(2)	(3)	(4)	(5)
Temperature	-0.325	0.261	0.262	0.172	0.561*
	(0.285)	(0.312)	(0.311)	(0.294)	(0.319)
Temperature interacted with					
Poor country dummy		-1.655*** (0.485)	-1.610*** (0.485)	-1.645*** (0.483)	-1.806*** (0.456)
Hot country dummy				0.237 (0.568)	
Agricultural country dummy					-0.371 (0.409)
Precipitation			-0.083*	-0.228***	-0.105**
			(0.050)	(0.074)	(0.053)
Precipitation interacted with					
Poor country dummy			0.153*	0.160**	0.145*
			(0.078)	(0.075)	(0.087)
Hot country dummy				0.185** (0.078)	
Agricultural country dummy					0.010 (0.085)
Observations	4,924	4,924	4,924	4,924	4,577
Within R ²	0.00	0.00	0.00	0.01	0.01
R^2	0.22	0.22	0.22	0.22	0.24
Temperature effect in poor countries		-1.394*** (0.408)	-1.347*** (0.408)	-1.473*** (0.440)	-1.245*** (0.463)
Precipitation effect in poor countries			0.069 (0.058)	-0.0677 (0.073)	0.0401 (0.089)

Efeitos sobre estabilidade política

TABLE 6—POLITICAL ECONOMY EFFECTS

	Any change in POLITY score (1)	Leader transition (2)	Regular leader transition (3)	Irregular leader transition (4)	Start of conflicts (conditional on conflict = 0 in $t-1$) (5)	End of conflicts (conditional or conflict > 0 in $t-1$)
Temperature	-0.013 (0.009)	-0.002 (0.015)	0.004 (0.015)	-0.005 (0.004)	-0.006 (0.006)	0.005 (0.060)
Temperature × Poor	0.040** (0.016)	0.033 (0.023)	-0.017 (0.017)	0.050*** (0.013)	0.012 (0.013)	0.003 (0.068)
Precipitation	0.001 (0.003)	0.003 (0.002)	0.003 (0.003)	$0.000 \\ (0.001)$	0.000 (0.001)	0.023 (0.019)
Precipitation × Poor	$0.008 \\ (0.005)$	$-0.008* \\ (0.004)$	-0.008** (0.004)	$0.000 \\ (0.002)$	0.000 (0.002)	-0.031 (0.020)
Observations R^2 Within R^2	5,388 0.14 0.003	6,624 0.18 0.001	6,624 0.2 0.001	6,624 0.11 0.004	5,702 0.09 0.000	852 0.43 0.004
Temperature effect in poor countries	0.027* (0.015)	0.031* (0.017)	-0.013 (0.010)	0.044*** (0.013)	0.007 (0.011)	0.008 (0.037)
Precipitation effect in poor countries	-0.009** (0.004)	-0.005 (0.004)	$-0.005* \\ (0.003)$	0.000 (0.002)	0.000 (0.002)	-0.009 (0.007)

Medindo mudanças climáticas

- O impacto de mudanças ano-a-ano não captura adaptação.
- Por isso também examinam impactos entre décadas.
- Como a temperatura média em uma década afeta renda em nível e em crescimento?

Efeitos de médio prazo

Table 7—Changes in Growth and Temperature in the Medium Run

		Dep	endent varia	ble: change in	mean growth	rate	
		Baseline	e sample		Africa only	Excluding Africa	PWT data
	(1)	LS (2)	Median r	egression (4)	(5)	(6)	(7)
Change in temperature	0.952 (1.021)	1.325 (0.980)	0.004 (0.584)	0.440 (0.747)	-1.654 (2.250)	1.318 (1.004)	1.576 (1.135)
Change in temp. × poor country	-2.886** (1.420)	-3.010** (1.456)	-2.261** (0.932)	-2.540** (1.177)		-2.980** (1.435)	-3.917** (1.532)
Change in precipitation	-0.070 (0.097)	-0.047 (0.123)	0.028 (0.113)	0.038 (0.111)	0.034 (0.565)	-0.020 (0.121)	0.025 (0.111)
Change in precip. × poor country	0.060 (0.191)	0.050 (0.214)	0.120 (0.182)	0.315 (0.208)		0.009 (0.212)	0.010 (0.238)
Region FE Poor country dummy Early period Late period	No Yes 1970–1985 1986–2000	Yes Yes 1970–1985 1986–2000	No Yes 1970–1985 1986–2000	Yes Yes 1970–1985 1986–2000	No No 1970–1985 1986–2000	Yes Yes 1970–1985 1986–2000	Yes Yes 1970–1985 1986–2000
Observations R^2 Within R^2	125 0.04 0.03	125 0.11 0.04	125	125	35 0.06 0.04	87 0.19 0.04	120 0.12 0.06
Temp. effect on poor countries Precip. effect on poor countries	-1.934* (0.986) -0.010 (0.164)	-1.684 (1.088) 0.003 (0.167)	-2.257*** (0.726) 0.148 (0.143)	-2.100** (0.919) 0.354** (0.175)	-1.654 (2.250) 0.034 (0.565)	$-1.661 \\ (1.047) \\ -0.012 \\ (0.153)$	-2.341** (1.029) 0.035 (0.211)

Escassez de água \implies pobreza e conflito na Índia

- Sekhri (2014) estuda os efeitos de acesso a água na Índia.
- Usa RDD em profundidade de poço de 8m, onde bomba não funciona.
- Escassez causa menos produção agrícola, mais pobreza e conflito.

Efeito em conflito local

TABLE 8—Nonparametric RDD Estimates of the Impact on Disputes over Irrigation Water

	Dependent variable: percentage of farmers in a dispute over irrigation water Survey sample							
	Bandwi		Optimal bandwid					
	(1)	(2)	(3)	(4)				
Indicator for depth to groundwater > 8	29.1*** (5.4)	23.5*** (6.5)	25.22*** (6.19)	24.6*** (7.2)				
Covariates	No	Yes	No	Yes				

Hoje

Meio ambiente

Desenvolvimento

Desenvolvimento \implies Meio ambiente

Curva de Kuznets ambiental

- A curva de Kuznets é uma previsão teórica que desigualdade sobe e desce com desenvolvimento.
 - Argumento é que primeiro alguns, e depois todos, saem de agricultura de subsistência para setores de renda maior.
- Mesma ideia para dano ambiental: "U" invertido em renda (Grossman and Krueger, 1995).
 - Crescimento econômico gera demanda por consumo de recursos e energia.
 - Com renda crescendo, surge demanda por menos poluição.
 - Junto com novas tecnologias, e.g. combustíveis menos poluentes.
 - (debate na literatura sobre validade empírica (Dasgupta et al., 2002; Stern, 2004))

Evidência da curva de Kuznets ambiental (Nriagu, 1990)

Alguns motivos para degradação ambiental rápida (Jayachandran, 2022)

- ▶ Demanda por produtos que degradam o meio ambiente (Alix-Garcia et al., 2013)
- Crescimento populacional
- Distorções e imperfeições de mercado (e.g. subsídios em preços, restrições a crédito)
- Infraestrutura pior (e.g. perda em grids elétricos)
- ► Governança ambiental fraca e corrupção (Oliva, 2015)

Governança fraca e degradação ambiental

- Um motivo pelo qual há mais degradação ambiental em países pobres é que regras e regulações não são enforçadas.
- Funcionários públicos não agem ou recebem propina.
 - ▶ Duflo et al. (2018): auditores em plantas industriais sistematicamente sub-reportam poluição, provavelmente por propina.
 - Oliva (2015) documenta irregularidades em smog checks no México.
- Falta de competição também pode levar a ineficiências
 - ► Ryan (2020): restrições sobre transmissão elétrica implica que eletricidade é gerada em lugares ineficientes na Índia.

Politização de regulação de firmas e poluição na China

- ► He et al. (2020) estudam regulação de polução de rios na China.
- Como leituras de poluição importam para promoções políticas, e como monitoramento só bate em firmas upstream, oficiais apertam regulação em firmas acima da estação.
- Resultados só depois que governo explicitamente ligou promoções a monitoramento, e principalmente em cidades com career-driven leaders.

Estratégia empírica

 $\label{eq:figure II}$ Illustrating the Identification Strategy

Indústrias poluidoras

Indústrias não-poluidoras

Resultados: TFP

 $\begin{tabular}{ll} TABLE\ I \\ THE\ UPSTREAM-DOWNSTREAM\ TFP\ GAP \\ \end{tabular}$

	Pollu	ting indu	luting ind	lustries		
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: No control						
RD in TFP (log)	0.34	0.37	0.32	-0.03	0.04	0.01
(downstream – upstream)	(0.57)	(0.59)	(0.56)	(0.15)	(0.18)	(0.18)
Bandwidth (km)	4.203	3.889	3.622	5.887	5.168	4.522
Panel B: Station FE + industry	FE abso	orbed				
RD in TFP (log)	0.36**	0.38**	0.34**	0.03	0.04	-0.02
(downstream – upstream)	(0.17)	(0.17)	(0.15)	(0.09)	(0.09)	(0.09)
Bandwidth (km)	5.723	5.523	5.144	5.890	5.479	6.091
Panel C: Station by industry F.	E absorbe	ed				
RD in TFP (log)	0.27^{*}	0.29**	0.29**	0.02	0.04	0.03
(downstream – upstream)	(0.15)	(0.15)	(0.14)	(0.06)	(0.06)	(0.07)
Bandwidth (km)	4.496	4.333	4.689	5.692	5.204	4.430
Obs.	6,224	6,224	6,224	11,502	11,502	11,502
Kernel	Triangle	Epanech.	Uniform	Triangle	Epanech.	Uniforn

Resultados: emissões

 $\label{table V} TABLE\ V$ The Upstream–Downstream Gap in Emissions

	(1)	(2)	(3)
Panel A: COD emissions (downstream minus u	nstream)		
RD in COD emissions (log)	0.84**	0.75*	0.73**
The fire constraint (log)	(0.43)	(0.39)	(0.35)
RD in COD emission intensity (log)	0.77***	0.70***	0.84**
The first control in the control of	(0.29)	(0.27)	(0.33)
Obs.	9,797	9,797	9,797
Panel B: NH ₃ -N emissions (downstream minus	upstream)		
RD in NH ₃ -N emissions (log)	0.87	0.76	0.46
	(0.90)	(0.76)	(0.62)
RD in NH ₃ -N emission intensity (log)	1.23***	1.01**	0.73*
	(0.45)	(0.44)	(0.44)
Obs.	4,772	4,772	4,772
Panel C: Wastewater discharge (downstream n	ninus upstre	am)	
RD in waste water discharge (log)	0.34	0.33	0.06
	(0.31)	(0.33)	(0.26)
RD in waste water discharge intensity (log)	0.43**	0.38*	0.56**
	(0.21)	(0.20)	(0.26)
Obs.	9,797	9,797	9,796
Panel D: Air pollutants for placebo tests (down	stream min	us upstream)	
RD in SO ₂ emissions (log)	0.03	0.06	-0.16
	(0.29)	(0.30)	(0.25)
RD in NO _x emissions (log)	0.09	0.14	-0.05
	(0.28)	(0.29)	(0.20)
Obs.	4,740	4,740	4,740
Station FE absorbed	Y	Y	Y
Industry FE absorbed	Y	Y	Y
Kernel	Triangle	Epanech.	Uniform

Economia política

 $\begin{tabular}{l} TABLE\ VI \\ Political\ Economy\ of\ Water\ Quality\ Monitoring \\ \end{tabular}$

	Pollu	iting indus	stries	Nonpol	luting ind	lustries
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: "Double standard"						
Waste discharge fee (log)	-0.91**	-1.12**	-0.91°			
(downstream minus upstream)	(0.44)	(0.45)	(0.48)			
Obs.	3,050	3,050	3,050			
Panel B: Strong versus weak politic	al incenti	ves				
TFP (log) - strong incentive	0.56***	0.58***	0.59^{***}	0.12	0.09	0.07
(downstream minus upstream)	(0.20)	(0.20)	(0.20)	(0.13)	(0.14)	(0.10)
Obs.	5,305	5,305	5,305	9,382	9,382	9,382
TFP (log) - weak incentive	0.13	0.19	0.18	0.04	0.01	0.26
(downstream minus upstream)	(0.19)	(0.25)	(0.27)	(0.19)	(0.19)	(0.22)
Obs.	2,450	2,450	2,450	4,738	4,738	4,738
Panel C: Automatic versus manual	monitorir	g stations				
TFP (log) - automatic stations	1.18**	1.22**	1.21**	-1.07	-0.48	-0.43
(downstream minus upstream)	(0.55)	(0.55)	(0.47)	(1.44)	(0.76)	(0.32)
Obs.	932	932	932	1,815	1,815	1,815
TFP (log) - manual stations	0.30**	0.35**	0.41**	0.10	0.11	0.10
(downstream minus upstream)	(0.15)	(0.17)	(0.20)	(0.08)	(0.08)	(0.08)
Obs.	4,953	4,953	4,953	9,523	9,523	9,523
Station FE absorbed	Y	Y	Y	Y	Y	Y
Industry FE absorbed	Y	Y	Y	Y	Y	Y
Kernel	Triangle	Epanech.	Uniform	Triangle	Epanech.	Uniform

Verificação de poluição no México

- ▶ Oliva (2015) estuda corrupção ligada à poluição no México.
- ► Teste estatístico "forínsico" para corrupção.
- Estima um modelo estrutural para projetar emissões se, por exemplo, a lei fosse mais cumprida.

Carros "doadores"

- ➤ O México introduziu testes verificadores de poluição em carros duas vezes ao ano em 1990.
- ► Certificação é dada por centros de testes, que entregam um adesivo para o carro.
- ► Emissões são lidas automaticamente por computadores, e não podem ser inseridas automaticamente por técnicos.
- Como driblar: paga propina e o centro usa um carro "doador" que acabou de ser testado.

Teste estatístico para fraude

- Dados: informações de veículos e resultados de testes conduzidos em 2003, por centro de teste e por linha.
- ▶ Variância baixa em leituras especialmente correlação serial é um sinal de fraude.
- Estima um SUR com modelo auto-regressivo para cada um dos 4 poluentes: coeficiente positivo no teste anterior na linha é evidência de fraude.
- Encontra evidência de fraude para 63 dos 80 centros.

Centros com menores p-valor

						χ^2 Statistic,			
Center Order by	Lagged HC (Lhc)	Lagged NO (Lno)	Lagged CO (Lco)	Lagged O_2 (Lo2)	N	Lhc = Lco = Lno = Lo2 = 0	Prob $> \chi^2$	Cutoff Value	Test under Holm
χ^2	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
			A. Cer	nters with Lowes	t p-Value fo	or the Joint Significan	ce Test		
1	.0173	.0065	.0033	.2248	4,500	297.789	.000	.0006	Reject
	[.011]	[.012]	[.011]	[.013]					
2	.0294	.1238	.0273	.1795	4,500	275.616	.000	.0006	Reject
	[.013]	[.014]	[.013]	[.012]					
3	.0331	.0954	.1800	.0585	4,500	262.939	.000	.0006	Reject
	[.009]	[.012]	[.013]	[.014]					
4	.0156	.1975	.0199	.0129	4,500	240.057	.000	.0006	Reject
	[.016]	[.013]	[.013]	[.013]					
5	.0123	.0478	.0025	.1949	4,500	236.284	.000	.0007	Reject
	[.009]	[.013]	[.012]	[.013]					-
6	.0235	.0889	.0669	.1670	4,500	213.567	.000	.0007	Reject
	[.012]	[.014]	[.012]	[.014]					-
7	.0148	.0218	0082	.1955	4,500	210.071	.000	.0007	Reject
	[.016]	[.012]	[.013]	[.014]					
8	.0643	.1754	.0163	.0531	4,500	200.390	.000	.0007	Reject
	[.013]	[.014]	[.013]	[.013]					3
9	.0055	.2011	0019	.0311	4,500	182.237	.000	.0007	Reject
	[.013]	[.015]	[.012]	[.013]					3
10	.0215	.1387	.0311	.0065	4,500	166.351	.000	.0007	Reject
	[.012]	[.011]	[.012]	[.011]					,

Centros com maiores p-valor

			B. Center	s with the Hig	hest <i>p</i> -Value fo	r the Joint Signific	cance Test		
70	0049	.0311	.0142	.0140	4,500	8.875	.064	.0045	Cannot reject
	[.014]	[.013]	[.013]	[.012]					
71	.0193	.0167	.0162	.0173	4,500	6.764	.149	.0050	Cannot reject
m.o.	[.011]	[.013]	[.013]	[.013]					
72	.0018	.0166	.0001	.0206	4,500	5.055	.282	.0056	Cannot reject
73	[.013]	[.012]	[.012]	[.012]	4 500	4.044	909	0069	Common malant
73	.0027 [.015]	.0001 [.013]	0207	.0165 [.013]	4,500	4.944	.293	.0063	Cannot reject
74	.0015	.0140	[.012] .0203	.0085	4,500	4.317	.365	.0071	Cannot reject
74	[.008]	[.012]	[.013]	[.012]	4,500	4.317	.303	.0071	Cannot reject
75	0153	0090	0130	.0012	4,500	3.989	.408	.0083	Cannot reject
	[.009]	[.012]	[.010]	[.012]	-,				
76	0128	.0045	.0121	.0122	4,500	3.289	.511	.0100	Cannot reject
	[.020]	[.012]	[.010]	[.013]					
77	.0444	.0077	.0342	.0059	1,070	3.208	.524	.0125	Cannot reject
	[.037]	[.025]	[.024]	[.024]					
78	0022	.0081	.0088	.0144	4,500	2.301	.681	.0167	Cannot reject
79	[.011] 0304	[.012] .0078	[.011]	[.014]	956	1 540	010	0050	Comment mailers
79	[.049]	[.049]	.0345 [.045]	.0235 [.040]	356	1.548	.818	.0250	Cannot reject
80	.0024	0045	.0111	0038	4,500	1.280	.865	.0500	Cannot reject
00	[.010]	[.011]	[.011]	[.014]	1,500	1.400	.005	.0300	Cannot reject

Outros testes para fraude

- Características do carro (como idade) são menos preditivas de emissões em centros fraudulentos.
 - Isso captura outras formas de fraude também.
- Vai usar o mapa de características para emissões em centros honestos para estimar a "taxa de aprovação" predita de cada carro.

Modelando e estimando estruturalmente o problema

- Dijetivo: estimar implicações de bem-estar, projetar impactos de outras políticas.
- ▶ Problema de escolha discreta para dono do carro.
- Faz teste justo. Se falha, paga propina ou atrasa e paga multa.
- Sabe o custo do teste (com re-teste sendo grátis) e da multa.
- Parâmetros desconhecidos: custo de tempo de cada visita, desvio-padrão de choques aleatórios de utilidade, valor da propina, fator de desconto na multa.

Identificação e estimação

- Não observamos se uma multa foi paga ou não.
- ▶ Identificação vem da probabilidade de passar teste justo, por tipo de carro, vindo de centros honestos.
- ► Falhar no teste, condicional na probabilidade de passar justamente, é decrescente no custo do tempo do teste e crescente no tamanho da multa.
- Problema da decisão um pouco diferente para testes em rodadas-par por não haver taxa oficial (há re-teste grátis), o que ajuda identificação.
- Assume não-discriminação de preço. Observa escolhas para carros com taxas de aprovação honestas diferentes.
- Máxima verossimilhança: encontra parâmetros que maximizam probabilidade de sequências de re-testes e resultados de testes observados.

Resultados e contrafactuais

- Propina estimada de \$18, alinhado com evidência anedótica.
- Estima que 9.6% de testados pagam propina.
 - Limite inferior por causa de *sorting*: quem tem probabilidade alta de falhar no teste vai para centros desonestos, então centros justos recebem carros mais limpos.
- Pode extender modelo para permitir opção de manutenção do carro para consertar problema de poluição. Mas baixo incentivo dado a opção de propina.
- Contrafactuais que aumentam incentivos para manutenção: menos poluição, mas custos de utilidade para donos é alto pois há mais opções para re-teste.
- Smog checks são uma ferramenta crua para reduzir emissões: custo de tempo para muitos onde só poucos reagem com manutenção.

Contrafactuais de política

TABLE 6
DEMAND FOR BRIBES: FITTED PROBABILITIES FOR EACH OBSERVED OUTCOME
AND PREDICTED PROBABILITIES FOR EACH DECISION SEQUENCE

Observed Outcome	Actual (1)	Fitted (2)	Decision Sequence	Predicted (3)
Postpone	.025	.025	Postpone	.025
Bribe/no bribe-pass	.763	.747	Bribe	.067
			No bribe-pass	.680
No bribe-fail-postpone	.000	.001	No bribe-fail-postpone	.001
No bribe-fail-bribe/no			No bribe-fail-bribe	.029
bribe-fail-no bribe-pass	.150	.175		
1			No bribe-fail-no bribe-pass	.146
No bribe-fail-no bribe-fail	.062	.052	No bribe-fail-no bribe-fail	.052
			Total bribing in first and	
			second tests	.096

Contrafactuais de política

 ${\it TABLE~7} \\ {\it Maintenance~Decisions~and~Summary~of~Benefits~for~Different~Policy~Regimes}$

	Actual (1)	Policy 1 (2)	Policy 2 (3)	Policy 3 (4)	Policy 4 (5)	Policy 5 (6)
1. Bribe (pesos)	193	300	475	193	193	400
2. Fine (pesos)	875	875	1,850	1,750	875	2,000
3. Retest (pesos)	0	0	0	0	0	175
4. Percentage bribing in 1st						
and 2nd attempts	9.6	<.2	<.2	14.1	7.9	<.2
5. Percentage postponing in 1st	0.0	FO 7	- 0	- 0	- 4	- 0
and 2nd attempts	2.6	59.7	<.2	<.2	5.4	<.2
6. Percentage going to a 3rd	0.1	0.1	C 4	4 7	F 1	C 1
attempt	2.1	2.1	6.4	4.7	5.1	6.1
7. Percentage with maintenance	.1	.1	1.6	.9	.3	4.2
8. Sum of emission differences						
(total)		191	1,595	902	384	3,708
9. Change in number of lives						
saved		.18	1.55	.87	.37	3.57
Change in benefits from						
reduced emissions (US\$1,000)		119	1,005	568	243	2,321
11. Change in private costs						
(US\$1,000)	10,600 +	91.6	2,091	1,752	-4,447	3,593

Conclusão

- Desenvolvimento e meio ambiente é uma área relevante para o mundo e fértil para pesquisa.
- Muitas questões ainda em aberto e novos dados disponíveis.
- Aula que vem: desmatamento

Referências I

- Alix-Garcia, Jennifer, Craig Mcintosh, Katharine R. E. Sims, and Jarrod R. Welch, "The Ecological Footprint of Poverty Alleviation: Evidence from Mexico's Oportunidades Program," *Review of Economics and Statistics*, 2013, *95* (2), 417–435.
- Burke, Marshall, Solomon M. Hsiang, and Edward Miguel, "Climate and Conflict," *Annual Review of Economics*, 2015, 7 (1), 577–617.
- Chay, Kenneth Y. and Michael Greenstone, "The Impact of Air Pollution on Infant Mortality: Evidence from Geographic Variation in Pollution Shocks Induced by a Recession," *Quarterly Journal of Economics*, 2003, (August), 1121–1168.
- Dasgupta, Susmita, Benoit Laplante, Hua Wang, and David Wheeler, "Confronting the Environmental Kuznets Curve," *Journal of Economic Perspectives*, 2002, *16* (1), 147–168.
- **Dell, Melissa, Benjamin F. Jones, and Benjamin A. Olken**, "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," *American Economic Journal: Macroeconomics*, 2012, 4 (3), 66–95.
- __, __, and __, "What Do We Learn from the Weather? The New Climate-Economy Literature," *Journal of Economic Literature*, 2014, *52* (3), 740–798.

Referências II

- Deryugina, Tatyana, Garth Heutel, Nolan H. Miller, David Molitor, and Julian Reif, "The Mortality and Medical Costs of Air Pollution: Evidence from Changes in Wind Direction," *American Economic Review*, 2019, 109 (12), 4178–4219.
- __, Laura Kawano, and Steven Levitt, "The Economic Impact of Hurricane Katrina on Its Victims: Evidence from Individual Tax Returns," *American Economic Journal: Applied Economics*, 2018, 10 (2), 202–233.
- Deschênes, Olivier and Michael Greenstone, "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," *American Economic Review*, 2012, 102 (7), 3761–3773.
- **Duflo, Esther, Michael Greenstone, Rohini Pande, and Nicholas Ryan**, "The Value of Regulatory Discretion: Estimates from Environmental Inspections in India," *Econometrica*, 2018, *86* (6), 2123–2160.
- **Greenstone, Michael and Rema Hanna**, "Environmental Regulations, Air and Water Pollution, and Infant Mortality in India," *American Economic Review*, 2011, 104 (10), 48.
- Grossman, Gene M. and Alan B. Krueger, "Economic Growth and the Environment," *Quarterly Journal of Economics*, 1995, 110 (2), 353–377.

Referências III

- **He, Guojun, Shaoda Wang, and Bing Zhang**, "Watering Down Environmental Regulation in China," *Quarterly Journal of Economics*, 2020, *135* (4), 2135–2185.
- **Jayachandran, Seema**, "How Economic Development Influences the Environment," *Annual Review of Economics*, 2022, *14*, 1–30.
- Kahn, Matthew E., "The Death Toll from Natural Disasters: The Role of Income, Geography, and Institutions," *Review of Economics and Statistics*, 2005, 87 (2), 271–284.
- Observatório do Clima, "SEEG 8: Análise das Emissões Brasileiras de Gases de Efeito Estufa e suas Implicações para as Metas de Clima do Brasil 1970-2019," Technical Report 2020.
- Oliva, Paulina, "Environmental Regulations and Corruption: Automobile Emissions in Mexico City," *Journal of Political Economy*, 2015, 123 (3), 686–724.
- Rangel, Marcos A. and Tom S. Vogl, "Agricultural Fires and Health at Birth," *Review of Economics and Statistics*, 2019, 101 (4), 616–630.
- **Rocha, Rudi and Rodrigo R. Soares**, "Water scarcity and birth outcomes in the Brazilian semiarid," *Journal of Development Economics*, 2015, *112*, 72–91.

Referências IV

- Ryan, Nicholas, "Contract Enforcement and Productive Efficiency: Evidence From the Bidding and Renegotiation of Power Contracts in India," *Econometrica*, 2020, 88 (2), 383–424.
- **Sekhri, Sheetal**, "Wells, Water, and Welfare: The Impact of Access to Groundwater on Rural Poverty and Conflict," *American Economic Journal: Applied Economics*, 2014, 6 (3), 76–102.
- **Stern, David I.**, "The Rise and Fall of the Environmental Kuznets Curve," *World Development*, 2004, *32* (8), 1419–1439.
- **Zivin, Joshua Graff and Matthew Neidell**, "The impact of pollution on worker productivity," *American Economic Review*, 2012, *102* (7), 3652–3673.