SBML Model Report

Model name: "Csikasz-Nagy2006_Cell_Cycle"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following twelve authors: Lukas Endler¹, Vijayalakshmi Chelliah², Attila Csikasz-Nagy³, Lukas Endler⁴, Vijayalakshmi Chelliah⁵, Attila Csikasz-Nagy⁶, Lukas Endler⁷, Vijayalakshmi Chelliah⁸, Attila Csikasz-Nagy⁹, Lukas Endler¹⁰, Vijayalakshmi Chelliah¹¹ and Attila Csikasz-Nagy¹² at November 28th 2008 at 3:31 p. m. and last time modified at July 20th 2012 at 11:39 a. m. Table 1 gives an overview of the quantities of all components of this model.

Model Notes

This model originates from the Cell Cycle Database . It is described in:

Analysis of a generic model of eukaryotic cell-cycle regulation. Csiksz-Nagy A, Battogtokh D, Chen KC, Novk B, Tyson JJ Biophys. J. [2006 Jun], 90(12):4361-79

PMID: 16581849

Abstract:

¹EMBL-EBI, lukas@ebi.ac.uk

²EMBL-EBI, viji@ebi.ac.uk

³University of Trento Centre for Computational and Systems Biology, csikasz@cosbi.eu

⁴EMBL-EBI, lukas@ebi.ac.uk

⁵EMBL-EBI, viji@ebi.ac.uk

⁶University of Trento Centre for Computational and Systems Biology, csikasz@cosbi.eu

⁷EMBL-EBI, lukas@ebi.ac.uk

 $^{^8\}mathrm{EMBL} ext{-EBI}$, viji@ebi.ac.uk

 $^{^9}$ University of Trento Centre for Computational and Systems Biology, csikasz@cosbi.eu

¹⁰EMBL-EBI, lukas@ebi.ac.uk

¹¹EMBL-EBI, viji@ebi.ac.uk

¹²University of Trento Centre for Computational and Systems Biology, csikasz@cosbi.eu

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	30
events	1	constraints	0
reactions	39	function definitions	6
global parameters	106	unit definitions	3
rules	30	initial assignments	0

We propose a protein interaction network for the regulation of DNA synthesis and mitosis that emphasizes the universality of the regulatory system among eukaryotic cells. The idiosyncrasies of cell cycle regulation in particular organisms can be attributed, we claim, to specific settings of rate constants in the dynamic network of chemical reactions. The values of these rate constants are determined ultimately by the genetic makeup of an organism. To support these claims, we convert the reaction mechanism into a set of governing kinetic equations and provide parameter values (specific to budding yeast, fission yeast, frog eggs, and mammalian cells) that account for many curious features of cell cycle regulation in these organisms. Using one-parameter bifurcation diagrams, we show how overall cell growth drives progression through the cell cycle, how cell-size homeostasis can be achieved by two different strategies, and how mutations remodel bifurcation diagrams and create unusual cell-division phenotypes. The relation between gene dosage and phenotype can be summarized compactly in two-parameter bifurcation diagrams. Our approach provides a theoretical framework in which to understand both the universality and particularity of cell cycle regulation, and to construct, in modular fashion, increasingly complex models of the networks controlling cell growth and division.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of six unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name normalized subst

Notes both substance and and volume are normalized and actually should be dimensionless. Due to restrictions in SBML level2 version1 They are set to items and litres.

Definition item

2.2 Unit volume

Name normalized volume

Definition 1

2.3 Unit per6minute

Name per6min

Definition $(360 \text{ s})^{-1}$

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m^2

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.6 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cell	cell		3	1	litre		

3.1 Compartment cell

This is a three dimensional compartment with a constant size of one litre.

Name cell

4 Species

This model contains 30 species. The boundary condition of two of these species is set to true so that these species' amount cannot be changed by any reaction. Section 10 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

	~ ~	~		~	
Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
APC	APC	cell	item $\cdot 1^{-1}$		
APCP	APCP	cell	item $\cdot 1^{-1}$		
BCKI	BCKI	cell	item \cdot l ⁻¹		\Box
Cdc14	Cdc14	cell	item $\cdot 1^{-1}$		
Cdc20A	Cdc20A	cell	item \cdot l ⁻¹		
Cdc20i	Cdc20i	cell	item \cdot l ⁻¹		
Cdc20T	Cdc20T	cell	item $\cdot 1^{-1}$		
Cdc25P	Cdc25P	cell	item $\cdot 1^{-1}$		
Cdh1	Cdh1	cell	item \cdot l ⁻¹		
Cdh1i	Cdh1i	cell	item \cdot l ⁻¹		
CKI	CKI	cell	item $\cdot 1^{-1}$		\Box
CKIT	CKIT	cell	item $\cdot 1^{-1}$		
CycA	CycA	cell	item $\cdot 1^{-1}$		
CycAT	CycAT	cell	item $\cdot 1^{-1}$		
СусВ	CycB	cell	item $\cdot 1^{-1}$		
СусВТ	CycBT	cell	item \cdot l ⁻¹		
CycD	CycD	cell	item $\cdot 1^{-1}$		
CycE	CycE	cell	item $\cdot 1^{-1}$		
CycET	CycET	cell	item $\cdot 1^{-1}$		
Mass	Mass	cell	item $\cdot 1^{-1}$		
рВ	pB	cell	item $\cdot 1^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
pBCKI	pBCKI	cell	item $\cdot 1^{-1}$		\Box
${\tt preMPF}$	preMPF	cell	item $\cdot 1^{-1}$		
TFB	TFB	cell	item $\cdot 1^{-1}$		
TFE	TFE	cell	item $\cdot 1^{-1}$	\Box	
TFI	TFI	cell	item $\cdot 1^{-1}$	\Box	
TriA	TriA	cell	item $\cdot 1^{-1}$	\Box	
TriB	TriB	cell	item $\cdot 1^{-1}$	\Box	
TriE	TriE	cell	item $\cdot 1^{-1}$	\Box	
Wee1	Wee1	cell	item $\cdot 1^{-1}$	\Box	

5 Parameters

This model contains 106 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
V25	V25	0.000	
Vah1	Vah1	0.000	
Vatf	Vatf	0.000	
Vda	Vda	0.000	
Vdb	Vdb	0.000	
Vde	Vde	0.000	
Vdi	Vdi	0.000	
Vih1	Vih1	0.000	
Vitf	Vitf	0.000	
Vsa	Vsa	0.000	
Vsb	Vsb	0.000	
Vse	Vse	0.000	
Vsi	Vsi	0.000	
Vwee	Vwee	0.000	
APCT	APCT	1.000	
Cdh1T	Cdh1T	1.000	$\overline{\mathbf{Z}}$
CycD0	CycD0	0.050	\checkmark
J20	J20	1.000	
Ja20	Ja20	0.005	
Ja25	Ja25	0.100	
Jafb	Jafb	0.100	
Jafi	Jafi	88.000	\square
Jah1	Jah1	0.010	
Jaie	Jaie	0.010	\square
Jatf	Jatf	0.010	\square
Jawee	Jawee	0.050	\square
Ji20	Ji20	0.005	\square
Ji25	Ji25	0.100	\square
Jifb	Jifb	0.100	\square
Jifi	Jifi	88.000	\square
Jih1	Jih1	0.010	\square
Jiie	Jiie	0.010	\square
Jitf	Jitf	0.010	
Jiwee	Jiwee	0.050	\checkmark
k14di	k14di	0.000	\checkmark
k25b	k25b	5.000	\checkmark
k25a	k25a	0.010	

Id	Name	SBO Value Uni	it Constant
ka20	ka20	0.500	
ka25b	ka25b	1.000	\mathbf{Z}
ka25a	ka25a	0.000	
kafb	kafb	1.000	
kafi	kafi	88.000	\mathbf{Z}
kah1b	kah1b	3.500	
kah1a	kah1a	0.180	\mathbf{Z}
kaie	kaie	0.070	\square
kassa	kassa	25.000	
kassb	kassb	0.000	
kasse	kasse	50.000	$\overline{\mathbf{Z}}$
katf	katf	0.000	$\overline{\mathbf{Z}}$
katfa	katfa	0.300	$\overline{\mathbf{Z}}$
katfd	katfd	3.000	$\overline{\mathbf{Z}}$
katfe	katfe	0.500	$\overline{\mathbf{Z}}$
kaweeb	kaweeb	0.000	$\overline{\mathbf{Z}}$
kaweea	kaweea	0.300	$\overline{\mathbf{Z}}$
kd20	kd20	0.150	$\overline{\mathbf{Z}}$
kdab	kdab	2.000	$\overline{\mathbf{Z}}$
kdaa	kdaa	0.020	$\overline{\mathbf{Z}}$
kdac	kdac	0.000	$\overline{\mathbf{Z}}$
kdb	kdb	0.005	$\overline{\mathbf{Z}}$
kdbc	kdbc	0.100	$\overline{\mathscr{A}}$
kdbh	kdbh	2.000	$\overline{\mathbf{Z}}$
kde	kde	0.010	$\overline{\mathbf{Z}}$
kdea	kdea	0.500	$\overline{\mathbf{Z}}$
kdeb	kdeb	0.500	$\overline{\mathbf{Z}}$
kdee	kdee	0.100	$\overline{\mathbf{Z}}$
kdi	kdi	0.800	$\overline{\mathbf{Z}}$
kdia	kdia	5.000	$\overline{\mathbf{Z}}$
kdib	kdib	5.000	$\overline{\mathbf{Z}}$
kdid	kdid	0.000	$\overline{\mathscr{A}}$
kdie	kdie	5.000	$\overline{\mathbf{Z}}$
kdissa	kdissa	1.000	$\overline{\mathbf{Z}}$
kdissb	kdissb	0.000	\mathbf{Z}
kdisse	kdisse	1.000	\mathbf{Z}
KEZ	KEZ	0.200	$\overline{\mathscr{A}}$
ki20	ki20	0.250	\mathbf{Z}
ki25b	ki25b	0.000	\mathbf{Z}
ki25a	ki25a	0.300	\mathbf{Z}
kifb	kifb	0.100	\mathbf{Z}
kifi	kifi	88.000	\mathbf{Z}

Id	Name	SBO Value	e Unit	Constant
kifib	kifib	88.0	000	\overline{Z}
kih1	kih1	0.0	000	\overline{Z}
kih1a	kih1a	0.3	200	$ \overline{\mathbf{Z}} $
kih1b	kih1b	1.0	000	$\overline{\mathbf{Z}}$
kih1d	kih1d	0.0	000	$\overline{\mathbf{Z}}$
kih1e	kih1e	0.	100	$\overline{\mathbf{Z}}$
kiie	kiie	0.	180	$\overline{\mathbf{Z}}$
kitf	kitf	0.2	250	$\overline{\mathbf{Z}}$
kitfa	kitfa	0.	100	$ \overline{Z} $
kitfb	kitfb	0.	100	\overline{Z}
kiweeb	kiweeb	1.0	000	\overline{Z}
kiweea	kiweea	0.0	000	$\overline{\mathbf{Z}}$
ks20b	ks20b	0.	150	$ \overline{\mathscr{A}} $
ks20a	ks20a	0.0	000	$ \overline{\mathscr{A}} $
ksab	ksab	0.0	025	$\overline{\mathbf{Z}}$
ksaa	ksaa	0.0	000	
ksbb	ksbb	0.0	030	$\overline{\mathbf{Z}}$
ksba	ksba	0.0	010	$\overline{\mathbf{Z}}$
kseb	kseb	0.	180	$\overline{\mathbf{Z}}$
ksea	ksea	0.0	010	$\overline{\mathbf{Z}}$
ksib	ksib	0.0	000	$\overline{\mathbf{Z}}$
ksia	ksia	1.3	800	
kweeb	kweeb	0.2	200	
kweea	kweea	0.0	020	$\overline{\mathbb{Z}}$
MaxMass	MaxMass	10000.0	000	$\overline{\mathbf{Z}}$
mu	mu	0.0	005	\overline{Z}
n20	n20	1.0	000	$\overline{\checkmark}$

6 Function definitions

This is an overview of six function definitions.

6.1 Function definition BB

Name BB

 $\textbf{Arguments}\ A1,\,A2,\,A3,\,A4$

Mathematical Expression

$$A2 - A1 + A3 \cdot A2 + A4 \cdot A1$$
 (1)

6.2 Function definition GK

Name GK

Arguments A1, A2, A3, A4

Mathematical Expression

$$\frac{2 \cdot A4 \cdot A1}{A2 - A1 + A3 \cdot A2 + A4 \cdot A1 + \sqrt{{{{\left({A2 - A1 + A3 \cdot A2 + A4 \cdot A1} \right)}^2} - 4 \cdot {{{\left({A2 - A1} \right)} \cdot A4 \cdot A1}}}}$$

6.3 Function definition MichaelisMenten

Name Michaelis-Menten

Arguments M1, J1, k1, S1

Mathematical Expression

$$\frac{k1 \cdot S1 \cdot M1}{J1 + S1} \tag{3}$$

6.4 Function definition Mass_Action_2

Name Mass_Action_2

Arguments k1, S1, S2

Mathematical Expression

$$k1 \cdot S1 \cdot S2$$
 (4)

6.5 Function definition Mass_Action_1

Name Mass_Action_1

Arguments k1, S1

Mathematical Expression

$$k1 \cdot S1$$
 (5)

6.6 Function definition Mass_Action_0

Name $Mass_Action_0$

Argument k1

Mathematical Expression

k1 (6)

7 Rules

This is an overview of 30 rules.

7.1 Rule preMPF

Rule preMPF is an assignment rule for species preMPF:

$$preMPF = [pB] + [pBCKI]$$
 (7)

Derived unit item $\cdot 1^{-1}$

7.2 Rule TriB

Rule TriB is an assignment rule for species TriB:

$$TriB = [BCKI] + [pBCKI]$$
 (8)

Derived unit item $\cdot 1^{-1}$

7.3 Rule CycBT

Rule CycBT is an assignment rule for species CycBT:

$$CycBT = [CycB] + [pB] + [BCKI] + [pBCKI]$$
(9)

Derived unit item $\cdot 1^{-1}$

7.4 Rule CycAT

Rule CycAT is an assignment rule for species CycAT:

$$CycAT = [CycA] + [TriA]$$
 (10)

Derived unit item $\cdot 1^{-1}$

7.5 Rule CycET

Rule CycET is an assignment rule for species CycET:

$$CycET = [CycE] + [TriE]$$
 (11)

Derived unit item $\cdot l^{-1}$

7.6 Rule CycD

Rule CycD is an assignment rule for species CycD:

$$CycD = CycD0 \cdot [Mass]$$
 (12)

7.7 Rule CKIT

Rule CKIT is an assignment rule for species CKIT:

$$CKIT = [CKI] + [BCKI] + [pBCKI] + [TriA] + [TriE]$$
(13)

Derived unit item $\cdot 1^{-1}$

7.8 Rule Cdc20T

Rule Cdc20T is an assignment rule for species Cdc20T:

$$Cdc20T = [Cdc20i] + [Cdc20A]$$
 (14)

Derived unit item $\cdot 1^{-1}$

7.9 Rule Cdc14

Rule Cdc14 is an assignment rule for species Cdc14:

$$Cdc14 = [Cdc20A] \tag{15}$$

Derived unit item $\cdot 1^{-1}$

7.10 Rule Wee1

Rule Wee1 is an assignment rule for species Wee1:

Wee1 =
$$GK$$
 (kaweea + kaweeb · $[Cdc14]$, kiweea + kiweeb · $[CycB]$, Jawee, Jiwee) (16)

7.11 Rule Vwee

Rule Vwee is an assignment rule for parameter Vwee:

$$Vwee = kweea + kweeb \cdot [Wee1]$$
 (17)

7.12 Rule Cdc25P

Rule Cdc25P is an assignment rule for species Cdc25P:

$$Cdc25P = GK(ka25a + ka25b \cdot [CycB], ki25a + ki25b \cdot [Cdc14], Ja25, Ji25)$$
(18)

7.13 Rule V25

Rule V25 is an assignment rule for parameter V25:

$$V25 = k25a + k25b \cdot [Cdc25P]$$
 (19)

7.14 Rule TFB

Rule TFB is an assignment rule for species TFB:

$$TFB = GK (kafb \cdot [CycB], kifb, Jafb, Jifb)$$
 (20)

7.15 Rule Vatf

Rule Vatf is an assignment rule for parameter Vatf:

$$Vatf = katf + katfa \cdot [CycA] + katfe \cdot [CycE] + katfd \cdot [CycD]$$
 (21)

7.16 Rule Vitf

Rule Vitf is an assignment rule for parameter Vitf:

$$Vitf = kitf + kitfa \cdot [CycA] + kitfb \cdot [CycB]$$
 (22)

7.17 Rule TFE

Rule TFE is an assignment rule for species TFE:

$$TFE = GK (Vatf, Vitf, Jatf, Jitf)$$
(23)

7.18 Rule Vsb

Rule Vsb is an assignment rule for parameter Vsb:

$$Vsb = (ksba + ksbb \cdot [TFB]) \cdot [Mass]$$
 (24)

7.19 Rule Vsa

Rule Vsa is an assignment rule for parameter Vsa:

$$Vsa = (ksaa + ksab \cdot [TFE]) \cdot [Mass]$$
 (25)

7.20 Rule Vse

Rule Vse is an assignment rule for parameter Vse:

$$Vse = (ksea + kseb \cdot [TFE]) \cdot [Mass]$$
 (26)

7.21 Rule Vah1

Rule Vah1 is an assignment rule for parameter Vah1:

$$Vah1 = kah1a + kah1b \cdot [Cdc14]$$
 (27)

7.22 Rule Vih1

Rule Vih1 is an assignment rule for parameter Vih1:

$$Vih1 = kih1 + kih1a \cdot [CycA] + kih1b \cdot [CycB] + kih1e \cdot [CycE] + kih1d \cdot [CycD] \quad (28)$$

7.23 Rule Vdb

Rule Vdb is an assignment rule for parameter Vdb:

$$Vdb = kdb + kdbh \cdot [Cdh1] + kdbc \cdot [Cdc20A]$$
 (29)

7.24 Rule Vda

Rule Vda is an assignment rule for parameter Vda:

$$Vda = kdaa + (kdab + kdac) \cdot [Cdc20A] + kdac \cdot [Cdc20i]$$
(30)

7.25 Rule Vde

Rule Vde is an assignment rule for parameter Vde:

$$Vde = kde + kdee \cdot [CycE] + kdea \cdot [CycA] + kdeb \cdot [CycB]$$
(31)

7.26 Rule TFI

Rule TFI is an assignment rule for species TFI:

$$TFI = GK(kafi \cdot [Cdc14], kifi + kifib \cdot [CycB], Jafi, Jifi)$$
(32)

7.27 Rule Vsi

Rule Vsi is an assignment rule for parameter Vsi:

$$Vsi = ksia + ksib \cdot [TFI]$$
 (33)

7.28 Rule Vdi

Rule Vdi is an assignment rule for parameter Vdi:

$$Vdi = \frac{kdi + kdia \cdot [CycA] + kdib \cdot [CycB] + kdie \cdot [CycE] + kdid \cdot [CycD]}{1 + k14di \cdot [Cdc14]}$$
 (34)

7.29 Rule APC

Rule APC is an assignment rule for species APC:

$$APC = APCT - [APCP] \tag{35}$$

7.30 Rule Cdh1i

Rule Cdh1i is an assignment rule for species Cdh1i:

$$Cdh1i = Cdh1T - [Cdh1]$$
 (36)

8 Event

This is an overview of one event. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

8.1 Event event_0

Trigger condition

$$[CycB] - KEZ < 0 \tag{37}$$

Delay

$$0 \tag{38}$$

Assignment

$$Mass = 0.5 \cdot [Mass] \tag{39}$$

9 Reactions

This model contains 39 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

No	Id	Name	Reaction Equation	SBO
1	Mass-	Mass accumulation	$\emptyset \longrightarrow Mass$	
	$_{ extsf{a}}$ ccumulation			
2	Synthesis_of- _MPF	Synthesis of MPF	$\emptyset \longrightarrow \mathrm{CycB}$	
3	Deg_of_MPF	Deg. of MPF	$CycB \longrightarrow \emptyset$	
4	<pre>activation_ofMPF_from_pB_byCdc25</pre>	activation of MPF from pB by Cdc25	$pB \longrightarrow CycB$	
5	inactivation- _of_MPFby_Wee1	inactivation of MPFby Wee1	$CycB \longrightarrow pB$	
6	assoc_of_MPF- _with_CKI	assoc. of MPF with CKI	$CycB + CKI \longrightarrow BCKI$	
7	$dissoc_1$	dissoc1	$BCKI \longrightarrow CycB + CKI$	
8	deg_of_pB	deg. of pB	$\mathrm{pB} \longrightarrow \emptyset$	
9	assoc_of_pB- _with_CKI	assoc. of pB with CKI	$pB + CKI \longrightarrow pBCKI$	
10	dissoc_2	dissoc2	$pBCKI \longrightarrow pB + CKI$	
11	${\tt Cdc25_action}$	Cdc25 action	$pBCKI \longrightarrow BCKI$	
12	${\tt Wee1_action}$	Wee1 action	$BCKI \longrightarrow pBCKI$	
13	<pre>Deg_of_CycBmoeityin_BCKI</pre>	Deg. of CycB moeity in BCKI	$BCKI \longrightarrow CKI$	
14	<pre>Deg_of_CKImoeity_in_BCKI</pre>	Deg. of CKI moeity in BCKI	$BCKI \longrightarrow CycB$	

N₀	Id	Name	Reaction Equation	SBO
15	Deg_of_pB- _moeity_in- _pBCKI	Deg. of pB moeity in pBCKI	pBCKI —→ CKI	
16	Deg_of_CKI- _moeity_in- _pBCKI	Deg. of CKI moeity in pBCKI	$pBCKI \longrightarrow pB$	
17	Synthesis_of- _CKI	Synthesis of CKI	$\emptyset \longrightarrow CKI$	
18	${\tt Deg_of_CKI}$	Deg. of CKI	$\mathrm{CKI} \longrightarrow \emptyset$	
19	Assoc_of_CKI- _with_CycA	Assoc. of CKI with CycA	$CKI + CycA \longrightarrow TriA$	
20	dissoc_3	dissoc3	$TriA \longrightarrow CKI + CycA$	
21	<pre>Deg_of_CKImoeity_in_TriA</pre>	Deg. of CKI moeity in TriA	$TriA \longrightarrow CycA$	
22	<pre>Deg_of_CycAmoeity_in_TriA</pre>	Deg. of CycA moeity in TriA	$TriA \longrightarrow CKI$	
23	Assoc_of_CKI- _with_CycE	Assoc. of CKI with CycE	$CKI + CycE \longrightarrow TriE$	
24	dissoc_4	dissoc4	$TriE \longrightarrow CKI + CycE$	
25	<pre>Deg_of_CKImoeity_in_TriE</pre>	Deg. of CKI moeity in TriE	$TriE \longrightarrow CycE$	
26	<pre>Deg_of_CycEmoeity_in_TriE</pre>	Deg. of CycE moeity in TriE	$TriE \longrightarrow CKI$	
27	Synthesis_of- _CycA_by_TFE	Synthesis of CycA by TFE	$\emptyset \longrightarrow CycA$	
28	Deg_of_CycA	Deg. of CycA	$CycA \longrightarrow \emptyset$	
29	Synthesis_of- _CycE_by_TFE	Synthesis of CycE by TFE	$\emptyset \longrightarrow CycE$	
30	Deg_of_CycE	Deg. of CycE	$CycE \longrightarrow \emptyset$	

N⁰	Id	Name	Reaction Equation	SBO
31	activation_of- _APCP	activation of APCP	$APC \xrightarrow{CycB} APCP$	
32	${\tt inactivation_1}$	inactivation1	$APCP \longrightarrow APC$	
33	Synthesis_of- _Cdc20i	Synthesis of Cdc20i	$\emptyset \xrightarrow{\text{CycB}} \text{Cdc20i}$	
34	Deg_of_Cdc20i	Deg. of Cdc20i	$Cdc20i \longrightarrow \emptyset$	
35	activation_of- _Cdc20i	activation of Cdc20i	Cdc20i ^{APCP} Cdc20A	
36	inactivation_2	inactivation2	Cdc20A → Cdc20i	
37	degradation	degradation	$Cdc20A \longrightarrow \emptyset$	
38	activation_of- _Cdh1	activation of Cdh1	$Cdh1i \longrightarrow Cdh1$	
39	inactivation _of_Cdh1	inactivation of Cdh1	$Cdh1 \longrightarrow Cdh1i$	

9.1 Reaction Mass_accumulation

This is an irreversible reaction of no reactant forming one product.

Name Mass accumulation

Reaction equation

$$\emptyset \longrightarrow Mass$$
 (40)

Product

Table 6: Properties of each product.

Id	Name	SBO
Mass	Mass	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{Mass_Action_0}\left(\text{mu} \cdot [\text{Mass}] \cdot \left(1 - \frac{[\text{Mass}]}{\text{MaxMass}}\right)\right)$$
 (41)

$$Mass_Action_0(k1) = k1$$
 (42)

9.2 Reaction Synthesis_of_MPF

This is an irreversible reaction of no reactant forming one product.

Name Synthesis of MPF

Reaction equation

$$\emptyset \longrightarrow CycB$$
 (43)

Product

Table 7: Properties of each product.

Id	Name	SBO
СусВ	CycB	

Kinetic Law

Derived unit not available

$$v_2 = Vsb \tag{44}$$

9.3 Reaction Deg_of_MPF

This is an irreversible reaction of one reactant forming no product.

Name Deg. of MPF

Reaction equation

$$CycB \longrightarrow \emptyset \tag{45}$$

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
СусВ	CycB	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{Mass_Action_1} (\text{Vdb}, [\text{CycB}])$$
 (46)

$$Mass_Action_1(k1,S1) = k1 \cdot S1 \tag{47}$$

9.4 Reaction activation_of_MPF_from_pB_by_Cdc25

This is an irreversible reaction of one reactant forming one product.

Name activation of MPF from pB by Cdc25

Reaction equation

$$pB \longrightarrow CycB \tag{48}$$

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
рВ	pB	

Product

Table 10: Properties of each product.

Id	Name	SBO
СусВ	CycB	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{Mass_Action_1} (V25, [pB])$$
 (49)

$$Mass_Action_1 (k1, S1) = k1 \cdot S1$$
 (50)

9.5 Reaction inactivation_of_MPFby_Wee1

This is an irreversible reaction of one reactant forming one product.

Name inactivation of MPFby Wee1

Reaction equation

$$CycB \longrightarrow pB \tag{51}$$

Reactant

Table 11: Properties of each reactant.

Id	Name	SBO
СусВ	CycB	

Product

Table 12: Properties of each product.

Id	Name	SBO
рВ	pB	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{Mass_Action_1} (\text{Vwee}, [\text{CycB}])$$
 (52)

$$Mass_Action_1 (k1,S1) = k1 \cdot S1$$
 (53)

9.6 Reaction assoc_of_MPF_with_CKI

This is an irreversible reaction of two reactants forming one product.

Name assoc. of MPF with CKI

Reaction equation

$$CycB + CKI \longrightarrow BCKI \tag{54}$$

Reactants

Table 13: Properties of each reactant.

Id	Name	SBO
CycB CKI	CycB CKI	

Product

Table 14: Properties of each product.

Id	Name	SBO
BCKI	BCKI	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{Mass_Action_2}(\text{kassb}, [\text{CycB}], [\text{CKI}])$$
 (55)

$$Mass_Action_2(k1, S1, S2) = k1 \cdot S1 \cdot S2$$
 (56)

9.7 Reaction dissoc_1

This is an irreversible reaction of one reactant forming two products.

Name dissoc1

Reaction equation

$$BCKI \longrightarrow CycB + CKI \tag{57}$$

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
BCKI	BCKI	

Products

Table 16: Properties of each product.

Id	Name	SBO
CycB CKI	CycB CKI	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{Mass_Action_1} (\text{kdissb}, [\text{BCKI}])$$
 (58)

$$Mass_Action_1(k1,S1) = k1 \cdot S1$$
 (59)

9.8 Reaction deg_of_pB

This is an irreversible reaction of one reactant forming no product.

Name deg. of pB

Reaction equation

$$pB \longrightarrow \emptyset \tag{60}$$

Reactant

Table 17: Properties of each reactant.

Id	Name	SBO
рВ	pB	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{Mass_Action_1} (\text{Vdb}, [\text{pB}])$$
 (61)

$$Mass_Action_1 (k1, S1) = k1 \cdot S1$$
 (62)

9.9 Reaction assoc_of_pB_with_CKI

This is an irreversible reaction of two reactants forming one product.

Name assoc. of pB with CKI

Reaction equation

$$pB + CKI \longrightarrow pBCKI$$
 (63)

Reactants

Table 18: Properties of each reactant.

Id	Name	SBO
pB CKI	pB CKI	

Product

Table 19: Properties of each product.

Id	Name	SBO
pBCKI	pBCKI	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{Mass_Action_2} (\text{kassb}, [\text{pB}], [\text{CKI}])$$
 (64)

$$Mass_Action_2(k1, S1, S2) = k1 \cdot S1 \cdot S2$$
 (65)

9.10 Reaction dissoc_2

This is an irreversible reaction of one reactant forming two products.

Name dissoc2

Reaction equation

$$pBCKI \longrightarrow pB + CKI \tag{66}$$

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
pBCKI	pBCKI	

Products

Table 21: Properties of each product.

Id	Name	SBO
pB CKI	pB CKI	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{Mass_Action_1} (\text{kdissb}, [\text{pBCKI}])$$
 (67)

$$Mass_Action_1 (k1, S1) = k1 \cdot S1$$
(68)

9.11 Reaction Cdc25_action

This is an irreversible reaction of one reactant forming one product.

Name Cdc25 action

Reaction equation

$$pBCKI \longrightarrow BCKI \tag{69}$$

Reactant

Table 22: Properties of each reactant.

Id	Name	SBO
pBCKI	pBCKI	

Product

Table 23: Properties of each product.

Id	Name	SBO
BCKI	BCKI	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{Mass_Action_1} (\text{V25}, [\text{pBCKI}]) \tag{70}$$

$$Mass_Action_1 (k1, S1) = k1 \cdot S1$$
 (71)

9.12 Reaction Weel_action

This is an irreversible reaction of one reactant forming one product.

Name Weel action

Reaction equation

$$BCKI \longrightarrow pBCKI \tag{72}$$

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
BCKI	BCKI	

Product

Table 25: Properties of each product.

Id	Name	SBO
pBCKI	pBCKI	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{Mass_Action_1} (\text{Vwee}, [\text{BCKI}])$$
 (73)

$$Mass_Action_1 (k1, S1) = k1 \cdot S1$$
 (74)

9.13 Reaction Deg_of_CycB_moeity__in_BCKI

This is an irreversible reaction of one reactant forming one product.

Name Deg. of CycB moeity in BCKI

Reaction equation

$$BCKI \longrightarrow CKI$$
 (75)

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
BCKI	BCKI	

Product

Table 27: Properties of each product.

Id	Name	SBO
CKI	CKI	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{Mass_Action_1} (\text{Vdb}, [\text{BCKI}])$$
 (76)

$$Mass_Action_1 (k1, S1) = k1 \cdot S1$$
(77)

9.14 Reaction Deg_of_CKI_moeity_in_BCKI

This is an irreversible reaction of one reactant forming one product.

Name Deg. of CKI moeity in BCKI

Reaction equation

$$BCKI \longrightarrow CycB$$
 (78)

Reactant

Table 28: Properties of each reactant.

Id	Name	SBO
BCKI	BCKI	

Product

Table 29: Properties of each product.

Id	Name	SBO
СусВ	CycB	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{Mass_Action_1} (\text{Vdi}, [\text{BCKI}])$$
 (79)

$$Mass_Action_1 (k1, S1) = k1 \cdot S1$$
 (80)

9.15 Reaction Deg_of_pB_moeity_in_pBCKI

This is an irreversible reaction of one reactant forming one product.

Name Deg. of pB moeity in pBCKI

Reaction equation

$$pBCKI \longrightarrow CKI$$
 (81)

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
pBCKI	pBCKI	

Product

Table 31: Properties of each product.

	_	
Id	Name	SBO
CKI	CKI	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{Mass_Action_1} (\text{Vdb}, [\text{pBCKI}])$$
 (82)

$$Mass_Action_1(k1,S1) = k1 \cdot S1$$
 (83)

9.16 Reaction Deg_of_CKI_moeity_in_pBCKI

This is an irreversible reaction of one reactant forming one product.

Name Deg. of CKI moeity in pBCKI

Reaction equation

$$pBCKI \longrightarrow pB$$
 (84)

Reactant

Table 32: Properties of each reactant.

Id	Name	SBO
pBCKI	pBCKI	

Product

Table 33: Properties of each product.

Id	Name	SBO
рВ	pВ	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{Mass_Action_1} (\text{Vdi}, [\text{pBCKI}])$$
 (85)

$$Mass_Action_1 (k1, S1) = k1 \cdot S1$$
 (86)

9.17 Reaction Synthesis_of_CKI

This is an irreversible reaction of no reactant forming one product.

Name Synthesis of CKI

Reaction equation

$$\emptyset \longrightarrow CKI$$
 (87)

Product

Table 34: Properties of each product.

Id	Name	SBO
CKI	CKI	

Kinetic Law

Derived unit not available

$$v_{17} = Vsi \tag{88}$$

9.18 Reaction Deg_of_CKI

This is an irreversible reaction of one reactant forming no product.

Name Deg. of CKI

Reaction equation

$$CKI \longrightarrow \emptyset \tag{89}$$

Reactant

Table 35: Properties of each reactant.

Id	Name	SBO
CKI	CKI	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{Mass_Action_1} (\text{Vdi}, [\text{CKI}])$$
 (90)

$$Mass_Action_1 (k1, S1) = k1 \cdot S1$$
 (91)

9.19 Reaction Assoc_of_CKI_with_CycA

This is an irreversible reaction of two reactants forming one product.

Name Assoc. of CKI with CycA

Reaction equation

$$CKI + CycA \longrightarrow TriA$$
 (92)

Reactants

Table 36: Properties of each reactant.

Id	Name	SBO
CKI	CKI	
CycA	CycA	

Product

Table 37: Properties of each product.

Id	Name	SBO
TriA	TriA	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \text{Mass_Action_2}(\text{kassa}, [\text{CKI}], [\text{CycA}])$$
 (93)

$$Mass_Action_2(k1,S1,S2) = k1 \cdot S1 \cdot S2 \tag{94}$$

9.20 Reaction dissoc_3

This is an irreversible reaction of one reactant forming two products.

Name dissoc3

Reaction equation

$$TriA \longrightarrow CKI + CycA$$
 (95)

Reactant

Table 38: Properties of each reactant.

Id	Name	SBO
TriA	TriA	

Products

Table 39: Properties of each product.

Id	Name	SBO
CKI	CKI	
CycA	CycA	

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \text{Mass_Action_1} (\text{kdissa}, [\text{TriA}])$$
 (96)

$$Mass_Action_1 (k1, S1) = k1 \cdot S1$$
(97)

9.21 Reaction Deg_of_CKI_moeity_in_TriA

This is an irreversible reaction of one reactant forming one product.

Name Deg. of CKI moeity in TriA

Reaction equation

$$TriA \longrightarrow CycA$$
 (98)

Reactant

Table 40: Properties of each reactant.

Id	Name	SBO
TriA	TriA	

Product

Table 41: Properties of each product.

Id	Name	SBO
CycA	CycA	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{Mass_Action_1} (\text{Vdi}, [\text{TriA}])$$
 (99)

$$Mass_Action_1 (k1, S1) = k1 \cdot S1$$
 (100)

9.22 Reaction Deg_of_CycA_moeity_in_TriA

This is an irreversible reaction of one reactant forming one product.

Name Deg. of CycA moeity in TriA

Reaction equation

$$TriA \longrightarrow CKI$$
 (101)

Reactant

Table 42: Properties of each reactant.

Id	Name	SBO
TriA	TriA	

Product

Table 43: Properties of each product.

Id	Name	SBO
CKI	CKI	

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \text{Mass_Action_1} (\text{Vda}, [\text{TriA}])$$
 (102)

$$Mass_Action_1 (k1, S1) = k1 \cdot S1$$
 (103)

9.23 Reaction Assoc_of_CKI_with_CycE

This is an irreversible reaction of two reactants forming one product.

Name Assoc. of CKI with CycE

Reaction equation

$$CKI + CycE \longrightarrow TriE \tag{104}$$

Reactants

Table 44: Properties of each reactant.

Id	Name	SBO
CKI	CKI	
CycE	CycE	

Product

Table 45: Properties of each product.

Id	Name	SBO
TriE	TriE	

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{Mass_Action_2}(\text{kasse}, [\text{CKI}], [\text{CycE}])$$
 (105)

$$Mass_Action_2(k1, S1, S2) = k1 \cdot S1 \cdot S2$$
 (106)

9.24 Reaction dissoc_4

This is an irreversible reaction of one reactant forming two products.

Name dissoc4

Reaction equation

$$TriE \longrightarrow CKI + CycE \tag{107}$$

Reactant

Table 46: Properties of each reactant.

Id	Name	SBO
TriE	TriE	

Products

Table 47: Properties of each product.

Id	Name	SBO
CKI	CKI	
CycE	CycE	

Derived unit contains undeclared units

$$v_{24} = \text{Mass_Action_1} (\text{kdisse}, [\text{TriE}])$$
 (108)

$$Mass_Action_1 (k1, S1) = k1 \cdot S1$$
 (109)

9.25 Reaction Deg_of_CKI_moeity_in_TriE

This is an irreversible reaction of one reactant forming one product.

Name Deg. of CKI moeity in TriE

Reaction equation

$$TriE \longrightarrow CycE$$
 (110)

Reactant

Table 48: Properties of each reactant.

Id	Name	SBO
TriE	TriE	

Product

Table 49: Properties of each product.

Id	Name	SBO
СусЕ	CycE	

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \text{Mass_Action_1} (\text{Vdi}, [\text{TriE}])$$
 (111)

$$Mass_Action_1 (k1, S1) = k1 \cdot S1$$
 (112)

9.26 Reaction Deg_of_CycE_moeity_in_TriE

This is an irreversible reaction of one reactant forming one product.

Name Deg. of CycE moeity in TriE

Reaction equation

$$TriE \longrightarrow CKI$$
 (113)

Reactant

Table 50: Properties of each reactant.

Id	Name	SBO
TriE	TriE	

Product

Table 51: Properties of each product.

Id	Name	SBO
CKI	CKI	

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \text{Mass_Action_1} (\text{Vde}, [\text{TriE}])$$
 (114)

Mass_Action_1
$$(k1, S1) = k1 \cdot S1$$
 (115)

9.27 Reaction Synthesis_of_CycA_by_TFE

This is an irreversible reaction of no reactant forming one product.

Name Synthesis of CycA by TFE

Reaction equation

$$\emptyset \longrightarrow CycA$$
 (116)

Product

Table 52: Properties of each product.

Id	Name	SBO
СусА	CycA	

Derived unit not available

$$v_{27} = Vsa \tag{117}$$

9.28 Reaction Deg_of_CycA

This is an irreversible reaction of one reactant forming no product.

Name Deg. of CycA

Reaction equation

$$CycA \longrightarrow \emptyset \tag{118}$$

Reactant

Table 53: Properties of each reactant.

Id	Name	SBO
CycA	CycA	

Kinetic Law

Derived unit contains undeclared units

$$v_{28} = \text{Mass_Action_1} (\text{Vda}, [\text{CycA}])$$
 (119)

$$Mass_Action_1 (k1, S1) = k1 \cdot S1$$
 (120)

9.29 Reaction Synthesis_of_CycE_by_TFE

This is an irreversible reaction of no reactant forming one product.

Name Synthesis of CycE by TFE

Reaction equation

$$\emptyset \longrightarrow CycE$$
 (121)

Product

Table 54: Properties of each product.

Id	Name	SBO
СусЕ	CycE	

Derived unit not available

$$v_{29} = Vse \tag{122}$$

9.30 Reaction Deg_of_CycE

This is an irreversible reaction of one reactant forming no product.

Name Deg. of CycE

Reaction equation

$$CycE \longrightarrow \emptyset \tag{123}$$

Reactant

Table 55: Properties of each reactant.

Id	Name	SBO
СусЕ	CycE	

Kinetic Law

Derived unit contains undeclared units

$$v_{30} = \text{Mass_Action_1} (\text{Vde}, [\text{CycE}])$$
 (124)

Mass_Action_1
$$(k1, S1) = k1 \cdot S1$$
 (125)

9.31 Reaction activation_of_APCP

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name activation of APCP

Reaction equation

$$APC \xrightarrow{CycB} APCP \tag{126}$$

Reactant

Table 56: Properties of each reactant.

Id	Name	SBO
APC	APC	

Modifier

Table 57: Properties of each modifier.

Id	Name	SBO
СусВ	CycB	

Product

Table 58: Properties of each product.

Id	Name	SBO
APCP	APCP	

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = \text{MichaelisMenten}([\text{CycB}], \text{Jaie}, \text{kaie}, [\text{APC}])$$
 (127)

$$\mbox{MichaelisMenten}\left(M1,J1,k1,S1\right) = \frac{k1\cdot S1\cdot M1}{J1+S1} \eqno(128)$$

9.32 Reaction inactivation_1

This is an irreversible reaction of one reactant forming one product.

Name inactivation1

Reaction equation

$$APCP \longrightarrow APC \tag{129}$$

Reactant

Table 59: Properties of each reactant.

Id	Name	SBO
APCP	APCP	

Product

Table 60: Properties of each product.

Id	Name	SBO
APC	APC	

Kinetic Law

Derived unit contains undeclared units

$$v_{32} = \text{MichaelisMenten}(1, \text{Jiie}, \text{kiie}, [APCP])$$
 (130)

$$\label{eq:MichaelisMenten} \mbox{MichaelisMenten}\left(M1,J1,k1,S1\right) = \frac{k1 \cdot S1 \cdot M1}{J1 + S1} \tag{131}$$

9.33 Reaction Synthesis_of_Cdc20i

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name Synthesis of Cdc20i

Reaction equation

$$\emptyset \xrightarrow{\text{CycB}} \text{Cdc20i} \tag{132}$$

Modifier

Table 61: Properties of each modifier.

Id	Name	SBO
СусВ	CycB	

Product

Table 62: Properties of each product.

Id	Name	SBO
Cdc20i	Cdc20i	

Derived unit contains undeclared units

$$v_{33} = \text{Mass_Action_0} \left(\text{ks20a} + \frac{\text{ks20b} \cdot [\text{CycB}]^{n20}}{\text{J20}^{n20} + [\text{CycB}]^{n20}} \right)$$
 (133)

$$Mass_Action_0(k1) = k1$$
 (134)

9.34 Reaction Deg_of_Cdc20i

This is an irreversible reaction of one reactant forming no product.

Name Deg. of Cdc20i

Reaction equation

$$Cdc20i \longrightarrow \emptyset \tag{135}$$

Reactant

Table 63: Properties of each reactant.

Id	Name	SBO
Cdc20i	Cdc20i	

Kinetic Law

Derived unit contains undeclared units

$$v_{34} = \text{Mass_Action_1} (\text{kd20}, [\text{Cdc20i}]) \tag{136}$$

$$Mass_Action_1 (k1, S1) = k1 \cdot S1$$
 (137)

9.35 Reaction activation_of_Cdc20i

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name activation of Cdc20i

Reaction equation

$$Cdc20i \xrightarrow{APCP} Cdc20A \tag{138}$$

Reactant

Table 64: Properties of each reactant.

Id	Name	SBO
Cdc20i	Cdc20i	

Modifier

Table 65: Properties of each modifier.

Id	Name	SBO
APCP	APCP	

Product

Table 66: Properties of each product.

Id	Name	SBO
Cdc20A	Cdc20A	

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = MichaelisMenten([APCP], Ja20, ka20, [Cdc20i])$$
 (139)

$$\mbox{MichaelisMenten}\left(M1,J1,k1,S1\right) = \frac{k1 \cdot S1 \cdot M1}{J1 + S1} \eqno(140)$$

9.36 Reaction inactivation_2

This is an irreversible reaction of one reactant forming one product.

Name inactivation2

Reaction equation

$$Cdc20A \longrightarrow Cdc20i$$
 (141)

Reactant

Table 67: Properties of each reactant.

Id	Name	SBO
Cdc20A	Cdc20A	

Product

Table 68: Properties of each product.

Id	Name	SBO
Cdc20i	Cdc20i	

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \text{MichaelisMenten} (1, \text{Ji}20, \text{ki}20, [\text{Cdc}20\text{A}])$$
(142)

$$\mbox{MichaelisMenten}\left(M1,J1,k1,S1\right) = \frac{k1 \cdot S1 \cdot M1}{J1 + S1} \eqno(143)$$

9.37 Reaction degradation

This is an irreversible reaction of one reactant forming no product.

Name degradation

Reaction equation

$$Cdc20A \longrightarrow \emptyset$$
 (144)

Reactant

Table 69: Properties of each reactant.

Id	Name	SBO
Cdc20A	Cdc20A	

Derived unit contains undeclared units

$$v_{37} = \text{Mass_Action_1} (\text{kd20}, [\text{Cdc20A}])$$
 (145)

$$Mass_Action_1 (k1, S1) = k1 \cdot S1$$
 (146)

9.38 Reaction activation_of_Cdh1

This is an irreversible reaction of one reactant forming one product.

Name activation of Cdh1

Reaction equation

$$Cdh1i \longrightarrow Cdh1$$
 (147)

Reactant

Table 70: Properties of each reactant.

Id	Name	SBO
Cdh1i	Cdh1i	

Product

Table 71: Properties of each product.

Id	Name	SBO
Cdh1	Cdh1	

Kinetic Law

Derived unit contains undeclared units

$$v_{38} = \text{MichaelisMenten}(\text{Vah1}, \text{Jah1}, 1, [\text{Cdh1i}])$$
 (148)

$$\mbox{MichaelisMenten}\left(M1,J1,k1,S1\right) = \frac{k1\cdot S1\cdot M1}{J1+S1} \eqno(149)$$

9.39 Reaction inactivation_of_Cdh1

This is an irreversible reaction of one reactant forming one product.

Name inactivation of Cdh1

Reaction equation

$$Cdh1 \longrightarrow Cdh1i$$
 (150)

Reactant

Table 72: Properties of each reactant.

Id	Name	SBO
Cdh1	Cdh1	

Product

Table 73: Properties of each product.

Id	Name	SBO
Cdh1i	Cdh1i	

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = \text{MichaelisMenten}(\text{Vih1}, \text{Jih1}, 1, [\text{Cdh1}])$$
 (151)

$$MichaelisMenten(M1,J1,k1,S1) = \frac{k1 \cdot S1 \cdot M1}{J1 + S1}$$
 (152)

10 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

10.1 Species APC

Name APC

Involved in rule APC

This species takes part in two reactions (as a reactant in activation_of_APCP and as a product in inactivation_1). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

10.2 Species APCP

Name APCP

Initial amount 0.671626567840576 item

This species takes part in three reactions (as a reactant in inactivation_1 and as a product in activation_of_APCP and as a modifier in activation_of_Cdc20i).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{APCP} = |v_{31}| - |v_{32}| \tag{153}$$

10.3 Species BCKI

Name BCKI

Initial amount 0 item

This species takes part in six reactions (as a reactant in dissoc_1, Weel_action, Deg_of_CycB_moeity_in_BCKI, Deg_of_CKI_moeity_in_BCKI and as a product in assoc_of_MPF_with_CKI, Cdc25_action).

$$\frac{d}{dt}BCKI = |v_6| + |v_{11}| - |v_7| - |v_{12}| - |v_{13}| - |v_{14}|$$
(154)

10.4 Species Cdc14

Name Cdc14

Involved in rule Cdc14

One rule which determines this species' quantity.

10.5 Species Cdc20A

Name Cdc20A

Initial amount 0.660586714744568 item

This species takes part in three reactions (as a reactant in inactivation_2, degradation and as a product in activation_of_Cdc20i).

$$\frac{d}{dt}Cdc20A = |v_{35}| - |v_{36}| - |v_{37}|$$
 (155)

10.6 Species Cdc20i

Name Cdc20i

Initial amount 0.018553527072072 item

This species takes part in four reactions (as a reactant in Deg_of_Cdc20i, activation_of_Cdc20i and as a product in Synthesis_of_Cdc20i, inactivation_2).

$$\frac{d}{dt}Cdc20i = |v_{33}| + |v_{36}| - |v_{34}| - |v_{35}|$$
 (156)

10.7 Species Cdc20T

Name Cdc20T

Involved in rule Cdc20T

One rule which determines this species' quantity.

10.8 Species Cdc25P

Name Cdc25P

Involved in rule Cdc25P

One rule which determines this species' quantity.

10.9 Species Cdh1

Name Cdh1

Initial amount 0.99923574924469 item

This species takes part in two reactions (as a reactant in inactivation_of_Cdh1 and as a product in activation_of_Cdh1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Cdh1} = |v_{38}| - |v_{39}| \tag{157}$$

10.10 Species Cdh1i

Name Cdh1i

Involved in rule Cdh1i

This species takes part in two reactions (as a reactant in activation_of_Cdh1 and as a product in inactivation_of_Cdh1). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

10.11 Species CKI

Name CKI

Initial amount 0.295407682657242 item

This species takes part in 14 reactions (as a reactant in assoc_of_MPF_with_CKI, assoc_of_pB_with_CKI, Deg_of_CKI_with_CycA, Assoc_of_CKI_with_CycE and as a product in dissoc_1, dissoc_2, Deg_of_CycB_moeity_in_BCKI, Deg_of_pB_moeity_in_pBCKI, Synthesis_of_CKI, dissoc_3, Deg_of_CycA_moeity_in_TriA, dissoc_4, Deg_of_CycE_moeity_in_TriE).

$$\frac{d}{dt}CKI = v_7 + v_{10} + v_{13} + v_{15} + v_{17} + v_{20} + v_{22}
+ v_{24} + v_{26} - v_6 - v_9 - v_{18} - v_{19} - v_{23}$$
(158)

10.12 Species CKIT

Name CKIT

Involved in rule CKIT

One rule which determines this species' quantity.

10.13 Species CycA

Name CycA

Initial amount 0.00994044542312622 item

This species takes part in five reactions (as a reactant in Assoc_of_CKI_with_CycA, Deg_of_CycA and as a product in dissoc_3, Deg_of_CKI_moeity_in_TriA, Synthesis_of_CycA_by_TFE).

$$\frac{d}{dt}CycA = |v_{20}| + |v_{21}| + |v_{27}| - |v_{19}| - |v_{28}|$$
(159)

10.14 Species CycAT

Name CycAT

Involved in rule CycAT

One rule which determines this species' quantity.

10.15 Species CycB

Name CycB

Initial amount 0.166841372847557 item

This species takes part in nine reactions (as a reactant in Deg_of_MPF, inactivation_of_MPFby_Wee1, assoc_of_MPF_with_CKI and as a product in Synthesis_of_MPF, activation_of_MPF_from_pB_by_Cdc25, dissoc_1, Deg_of_CKI_moeity_in_BCKI and as a modifier in activation_of_APCP, Synthesis_of_Cdc20i).

$$\frac{d}{dt}CycB = |v_2| + |v_4| + |v_7| + |v_{14}| - |v_3| - |v_5| - |v_6|$$
(160)

10.16 Species CycBT

Name CycBT

Involved in rule CycBT

One rule which determines this species' quantity.

10.17 Species CycD

Name CycD

Involved in rule CycD

One rule which determines this species' quantity.

10.18 Species CycE

Name CycE

Initial amount 0.077605128288269 item

This species takes part in five reactions (as a reactant in Assoc_of_CKI_with_CycE, Deg_of_CycE and as a product in dissoc_4, Deg_of_CKI_moeity_in_TriE, Synthesis_of_CycE_by_TFE).

$$\frac{d}{dt}CycE = |v_{24}| + |v_{25}| + |v_{29}| - |v_{23}| - |v_{30}|$$
(161)

10.19 Species CycET

Name CycET

Involved in rule CycET

One rule which determines this species' quantity.

10.20 Species Mass

Name Mass

Initial amount 1.17421686649323 item

Involved in event event_0

This species takes part in one reaction (as a product in Mass_accumulation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mass} = v_1 \tag{162}$$

Furthermore, one event influences this species' rate of change.

10.21 Species pB

Name pB

Initial amount 0.00981487054377794 item

This species takes part in six reactions (as a reactant in activation_of_MPF_from_pB_by-_Cdc25, deg_of_pB, assoc_of_pB_with_CKI and as a product in inactivation_of_MPFby-_Wee1, dissoc_2, Deg_of_CKI_moeity_in_pBCKI).

$$\frac{d}{dt}pB = v_5 + v_{10} + v_{16} - v_4 - v_8 - v_9$$
 (163)

10.22 Species pBCKI

Name pBCKI

Initial amount 0 item

This species takes part in six reactions (as a reactant in dissoc_2, Cdc25_action, Deg_of_pB_moeity_in_pBCKI, Deg_of_CKI_moeity_in_pBCKI and as a product in assoc_of_pB_with_CKI, Wee1_action).

$$\frac{d}{dt}pBCKI = |v_9| + |v_{12}| - |v_{10}| - |v_{11}| - |v_{15}| - |v_{16}|$$
(164)

10.23 Species preMPF

Name preMPF

Involved in rule preMPF

One rule which determines this species' quantity.

10.24 Species TFB

Name TFB

Involved in rule TFB

One rule which determines this species' quantity.

10.25 Species TFE

Name TFE

Involved in rule TFE

One rule which determines this species' quantity.

10.26 Species TFI

Name TFI

Involved in rule TFI

One rule which determines this species' quantity.

10.27 Species TriA

Name TriA

Initial amount 0.017153799533844 item

This species takes part in four reactions (as a reactant in dissoc_3, Deg_of_CKI_moeity_in_TriA, Deg_of_CycA_moeity_in_TriA and as a product in Assoc_of_CKI_with_CycA).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TriA} = |v_{19} - v_{20}| - |v_{21}| - |v_{22}| \tag{165}$$

10.28 Species TriB

Name TriB

Involved in rule TriB

One rule which determines this species' quantity.

10.29 Species TriE

Name TriE

Initial amount 0.311726331710815 item

This species takes part in four reactions (as a reactant in dissoc_4, Deg_of_CKI_moeity_in_TriE, Deg_of_CycE_moeity_in_TriE and as a product in Assoc_of_CKI_with_CycE).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TriE} = |v_{23}| - |v_{24}| - |v_{25}| - |v_{26}| \tag{166}$$

10.30 Species Wee1

Name Wee1

Involved in rule Wee1

One rule which determines this species' quantity.

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany