Modeling Cache Sharing on Chip Multiprocessor Architectures

Pavlos Petoumenos¹, Georgios Keramidas¹, Håkan Zeffer², Stefanos Kaxiras¹, Erik Hagersten²

¹University of Patras, Greece ²Uppsala University, Sweden

Introduction

- CMPs: the new dominant architecture
- Need to understand and manage CMP cache sharing
 - Performance
 - Fairness
 - > QoS
 - > DoS
- Contributions:
 - Accurate, online, statistical model describing sharing behavior
 - A control mechanism driven by the model

Our inspiration: Statcache

- Measure reuse distances of cache lines in accesses
- Simple model FA-RR cache:
 - Miss and hit probability for reuse distance i as a function of miss rate
- Solve iteratively for miss rate given a cache size
 - Miss rate for any cache
 - Only offline

Statcache output (motivation)

StatShare

- Like StatCache a statistical FA-RR cache model
- But models cache sharing of a single (Set Associative) cache
- In CAT-time
 - Time measured in Cache Allocation Ticks, i.e., replacements
 - ➤ Greatly simplifies equations ⇒ online model

StatShare model

i: reuse distance

h(i): reuse distance histogram in CAT

f(i): miss probability function

I(i): life expectancy function

L: size of the cache in cachelines

S: Spacetime

$$misses = \sum_{i=0}^{\infty} h(i) f(i)$$

$$hits = \sum_{i=0}^{\infty} h(i) \overline{f}(i)$$

$$S = \sum_{i=0}^{\infty} L \times h(i) \times f(i) = L \times misses$$

$$S_{hit} = \sum_{i=0}^{\infty} i \times h(i) \times \overline{f}(i)$$

$$S_{miss} = \sum_{i=0}^{\infty} ((L+i) \times f(i) - i) \times h(i)$$

StatShare model - Histograms

i: reuse distance

h(i): reuse distance histogram in CAT

f(i): miss probability function

I(i): life expectancy function

L: size of the cache in cachelines

S: Spacetime

$$misses = \sum_{i=0}^{\infty} h(i) \ f(i)$$

$$hits = \sum_{i=0}^{\infty} h(i) \ \overline{f}(i)$$

$$S = \sum_{i=0}^{\infty} L \times h(i) \times f(i) = L \times misses$$

$$S_{hit} = \sum_{i=0}^{\infty} i \times h(i) \times \overline{f}(i)$$

$$S_{miss} = \sum_{i=0}^{\infty} ((L+i) \times f(i) - i) \times h(i)$$

CAT reuse distance histograms

- h(i): #accesses of a CAT reuse distance i
- Characterize the behavior of an app in a shared cache

StatShare model – f-functions

i: reuse distance

h(i): reuse distance histogram in CAT

f(i): miss probability function

I(i): life expectancy function

L: size of the cache in cachelines

S: Spacetime

$$misses = \sum_{i=0}^{\infty} h(i) \ f(i)$$

$$hits = \sum_{i=0}^{\infty} h(i) \ \overline{f}(i)$$

$$S = \sum_{i=0}^{\infty} L \times h(i) \times f(i) = L \times misses$$

$$S_{hit} = \sum_{i=0}^{\infty} i \times h(i) \times \overline{f}(i)$$

$$S_{miss} = \sum_{i=0}^{\infty} ((L+i) \times f(i) - i) \times h(i)$$

- Probability functions of a miss or a hit for a histogram sample
 - with reuse distance i
 - in a L-line FA-RR cache

- Probability functions of a miss or a hit for a histogram sample
 - with reuse distance i
 - in a L-line FA-RR cache

Probability of:

Being selected for replacement: 1/L

- Probability functions of a miss or a hit for a histogram sample
 - with reuse distance i
 - in a L-line FA-RR cache

Probability of:

Being selected for replacement: 1/L

Not being selected for replacement: 1-1/L

- Probability functions of a miss or a hit for a histogram sample
 - with reuse distance i
 - ▶ in a L-line FA-RR cache

Probability of:

Being selected for replacement: 1/L

Not being selected for replacement: 1-1/L

Remaining in the cache after *i* CAT: $(1-1/L)^i = f-bar$

- Probability functions of a miss or a hit for a histogram sample
 - with reuse distance i
 - ▶ in a L-line FA-RR cache

Probability of:

Being selected for replacement: 1/L

Not being selected for replacement: 1-1/L

Remaining in the cache after i CAT: $(1-1/L)^i = f-bar$

Having been replaced after i CAT: $1-(1-1/L)^i = f$

- Probability functions of a miss or a hit for a histogram sample
 - with reuse distance i
 - in a L-line FA-RR cache

StatShare model – hits & misses

i: reuse distance

h(i): reuse distance histogram in CAT

f(i): miss probability function

I(i): life expectancy function

L: size of the cache in cachelines

S: Spacetime

$$misses = \sum_{i=0}^{\infty} h(i) f(i)$$

$$hits = \sum_{i=0}^{\infty} h(i) \overline{f}(i)$$

$$S = \sum_{i=0}^{\infty} L \times h(i) \times f(i) = L \times misses$$

$$S_{hit} = \sum_{i=0}^{\infty} i \times h(i) \times \overline{f}(i)$$

$$S_{miss} = \sum_{i=0}^{\infty} ((L+i) \times f(i) - i) \times h(i)$$

misses

h multiplied by f gives us misses

hits

h multiplied by f-bar gives us hits

StatShare model – Space time

i: reuse distance

h(i): reuse distance histogram in CAT

f(i): miss probability function

I(i): life expectancy function

L: size of the cache in cachelines

S: Spacetime

$$misses = \sum_{i=0}^{\infty} h(i) \ f(i)$$

$$hits = \sum_{i=0}^{\infty} h(i) \ \overline{f}(i)$$

$$S = \sum_{i=0}^{\infty} L \times h(i) \times f(i) = L \times misses$$

$$S_{hit} = \sum_{i=0}^{\infty} i \times h(i) \times \overline{f}(i)$$

$$S_{miss} = \sum_{i=0}^{\infty} ((L+i) \times f(i) - i) \times h(i)$$

Space time

 Spacetime: "mean active ratio" (footprint) over a period of time

Spacetime: cachelines x lifetime

Relates occupied space to misses

Spacetime

• Lifetime expectancy: $l(i) = L \times f(i)$

Arguing for management

- Cachelines with long reuse distances
 - Have very low probability of producing a hit
 - Occupy most of the cache space

Arguing for management

- Cachelines with long reuse distances
 - Should be constrained

Original Cache Decay

- Leakage reduction in uniprocessor caches
- Lines not accessed over a period of time (Decay Interval) are turned off (decayed)
- Restricting the application to a small footprint
 - With minimal performance loss

Management via (a new form of) Decay

- CAT decay
- Decay intervals measured in CAT not cycles
 - Same notion of time allows integration into our model
- Not leakage reduction, but replacement policy
 - Decayed lines not really turned off, just available for replacement
 - Random replacement only when no decayed line is available

Management via (a new form of) Decay

- Active ratio control via CAT decay interval
 - > Flexible, fine grain management
 - Not a strict policy: allows spikes and dips
 - Superior to strict partitioning (fine or coarse-grained)

Decayed f-functions: introducing decay in the model

- Decay changes f-functions
 - Existence of decayed lines changes replacement policy
 - Not random anymore!
- Many different approximations possible ...
- MURPHY vs. managed replacements
 - Managed: finding a decayed line to replace
 - Murphy: using the underlying replacement policy (RR)

• Probability Murphy:
$$\mu = \frac{Murphy_replacements}{Total_replacements}$$

Decayed f-functions: introducing decay in the model

- How the f-functions change?
- For reuse-distances less than the Decay Interval:
 - \rightarrow L is replaced by L/μ
 - Non-decayed applications "think" they share a much larger cache!
- For reuse-distances larger than the Decay Interval:

f-bar: Size = 256KB - Decay Interval = Inf

f-bar: Size = 256KB – Decay Interval = 8K CAT

f-bar: Size = 256KB – Decay Interval = 4K CAT

f-bar: Size = 256KB – Decay Interval = 2K CAT

f-bar: Size = 256KB – Decay Interval = 1K CAT

f-bar: Size = 256KB – Decay Interval = 512 CAT

Model validation: mcf-parser – Miss Rates

Model validation: mcf-parser – Miss Rates

Model validation: mcf-parser – Active Ratios

Model validation: mcf-parser – Active Ratios

Reasoning about cache management: art-gzip – Miss Rates

Miss Rates vs. Decay Interval

Reasoning about cache management: art-gzip – Active Ratios

More results in the paper...

- Model Validation with most memory intensive SPEC2000
 - > 2 threads
 - > 4 threads
- Cache Management:
 - > 2 threads
 - 1 thread decayed
 - > 4 threads
 - 1 4 threads decayed

Conclusions

- Model:
 - > Hits, misses, active ratios...
 - Can be computed @ runtime
- Control Mechanisms
 - CAT Decay
 - Other cache partitioning approaches...
- Use such info to implement high-level policies

Questions

Hits Spacetime

Hits occupy ST for their reuse distance

Misses Spacetime

Misses occupy ST until their replacement

