

Apprentissage pour l'aide au diagnostic en imagerie multi-modalités du cancer

Carole Lartizien carole.lartizien@creatis.insa-lyon.fr

CREATIS, Lyon, France

- Place de l'imagerie médicale dans le diagnostic du cancer
 - de plus en plus de données...
- Imagerie médicale et apprentissage pour l'aide au diagnostic
 - Principe des systèmes d'aide au diagnostic
 - Application en imagerie IRM du cancer de la prostate
- Quelques enjeux de l'apprentissage pour l'aide au diagnostic

- Place de l'imagerie médicale dans le diagnostic du cancer
 - de plus en plus de données...
- Imagerie médicale et apprentissage pour l'aide au diagnostic
 - Principe des systèmes d'aide au diagnostic
 - Application en imagerie IRM du cancer de la prostate
- Quelques enjeux de l'apprentissage pour l'aide au diagnostic

Imagerie corps entier en oncologie

Détection

normal

pathologique

APPRENDRE à partir de cas connus

- Place de l'imagerie médicale dans le diagnostic du cancer
 - de plus en plus de données...
- Imagerie médicale et apprentissage pour l'aide au diagnostic
 - Principe des systèmes d'aide au diagnostic
 - Application en imagerie IRM du cancer de la prostate
- Quelques enjeux de l'apprentissage pour l'aide au diagnostic

Les systèmes d'aide au diagnostic en imagerie du cancer

Les systèmes d'aide au diagnostic

- 1. Les ROI suspectes sont contourées sur l'image
- 2. Le médecin interroge le système
- 3. Le CAD retourne un score de malignité pour chaque ROI

Les systèmes d'aide à la détection

- 1. Le ou les images sont entrées sans annotation
- 2. Le médecin interroge le système

Le CAD renvoie une cartographie des zones pathologiques

Aide au diagnostic par apprentissage

Apprentissage supervisé

- basées sur l'image
- dérivées de l'expertise clinique
- métadonnées

- méthodes 'filtre': e.g. information mutuelle
- Méthodes 'enveloppantes' : e.g. algorithme génétique
- Modèles génératifs
- Modèles discriminants

 Optimisation des différentes étapes basée sur une métrique dérivées de l'analyse psychophysique (courbe ROC, sensibilité, spécificité)

Caractéristiques descriptives en imagerie médicale Creatis

Contourage manuelle de lésions pulmonaires en imagerie TDM

Contourage manuelle d'une lésion réalisé par 4 experts

[Biancardi, IJCARS 2010]

- Données hétérogènes, corrélées, bruitées
- Annotations difficilement accessibles: quelle vérité terrain?

- Place de l'imagerie médicale dans le diagnostic du cancer
 - de plus en plus de données...
- Imagerie médicale et apprentissage pour l'aide au diagnostic
 - Principe des systèmes d'aide au diagnostic
 - Application en imagerie IRM du cancer de la prostate
- Quelques enjeux de l'apprentissage pour l'aide au diagnostic

Contexte

- Gain de l'IRM multi-séquences démontré pour le diagnostic in vivo
- Analyse des données complexe
- grande variabilité inter- et intra-lecteur

Hyposignal T2?

Restriction de la diffusion?

Objectif:

Discriminer les lésions cancéreuses des lésions bénignes mais suspectes (adénome, inflammation..)

Collaboration Pr Olivier Rouvière, HCL, LabTau Projets INCa: Cartographix (2011-14) et LYRIC (2012-17) Base de données CLARA-P

Hyper-vascularité?

Méthode

- Extraction et sélection de caractéristiques discriminantes
- Analyse exhaustive de différents schémas de classification (algorithme de classification + série de caractéristiques)

Verrous: Apprentissage sur un faible nombre d'échantillons

Extraction de caractéristiques

Paramètres de texture

Paramètres cinétiques semi-quantitatifs

- 42 régions d'intérêt (ROI) cancer et 49 ROI bénignes mais suspectes
- Extraction de 117
 caractéristiques :
 statistique 1^{er} et 2nd ordre,
 gradient, paramètres
 pharmacocinétiques

[Niaf, PMB 2012]

Performances intrinsèques

	AUC	IC
SVM	0.72	[0.61-0.82]
LDA	0.56	[0.44-0.67]
KNN	0.66	[0.54-0.77]
NBC	0.63	[0.51-0.74]

	# caract.	AUC	IC
SVM	15	0.82	[0.73-0.90]
LDA	15	0.75	[0.64-0.84]
KNN	12	0.78	[0.68-0.87]
NBC	4	0.77	[0.66-0.85]

Aire sous la courbe ROC

[Niaf, PMB 2012]

- Performances intrinsèques > état de l'art
- Apport des différentes séquences IRM
- Apport de la sélection d'attributs (dans le contexte de l'apprentissage sur un faible nombre de cas)

Impact sur les performances diagnostiques

- Etude psychophysique sur 12 radiologues
- R1 et R2 : lectures sans CAD
- R3: lecture avec CAD

[Niaf, Radiology 2014]
Collaboration Service Biostatistiques, HCL, Lyon

Conclusion

- Bonne performance intrinsèque et diagnostique
- Plateau de performance intrinsèque (AUC~0.8)
 - → Aller au delà des schémas classiques de classification

Objectif: Fournir une carte probabiliste de la pathologie dans l'image

Méthode

- Extraction et sélection de caractéristiques discriminantes
- Analyse exhaustive de différents schémas de classification

Verrous: Apprentissage sur des masses de données (voxels) déséquilibrées

Collaboration Pr Olivier Rouvière, HCL, LabTau Projets INCa: Cartographix (2011-14) et LYRIC (2012-17) Base de données CLARA-P

Choix et contributions méthodologiques

- dérivées de l'expertise clinique
- Réduction de dimension par apprentissage de dictionnaire

Données

• 42 régions d'intérêt (ROI) cancer, 49 ROI bénignes mais suspectes (NS) et 124 ROIs normales (N)

	N	NS	GS6	GS7	GS8	GS9
voxels (x 10e3)	360	32	11	34	16	7

Extraction de caractéristiques

 Méthode d'apprentissage de dictionnaire non supervisé et semi-supervisé (Mairal et al, PAMI 2012)

$$\begin{split} \hat{\mathbf{x}}_{i} &= \sum_{k=1}^{K} \alpha_{i}^{k} \mathbf{d}_{k} = \mathbf{D} \boldsymbol{\alpha}_{i} \\ \min_{\mathbf{D} \in \mathbb{R}^{p \times k}, \boldsymbol{\alpha}_{i} \in \mathbb{R}^{K}} \frac{1}{n} \sum_{i=1}^{n} \left\| \mathbf{x}_{i} - \mathbf{D} \boldsymbol{\alpha}_{i} \right\|_{2}^{2} + \lambda \left\| \boldsymbol{\alpha}_{i} \right\|_{1} \\ \mathbf{x}_{i} &\in \mathbb{R}^{p} \end{split}$$

Résultats

Cartographie du cancer de prostate avec un SVM linéaire

[Lehaire et al, ICIP 2014] (Collab OCA Lagrange Nice)

Conclusion

- Bonnes performances intrinsèques
- Prédominance de l'influence non linéarité sur le déséquilibre des classes

Perspectives: Caractérisation in vivo de la pathologie (score d'agressivité..)

- Place de l'imagerie médicale dans le diagnostic du cancer
 - de plus en plus de données...
- Imagerie médicale et apprentissage pour l'aide au diagnostic
 - Principe des systèmes d'aide au diagnostic
 - Application en imagerie IRM du cancer de la prostate
- Quelques enjeux de l'apprentissage pour l'aide au diagnostic

Gestion de données hétérogènes

Position du problème

 Apprentissage sur des bases de données issues de différents systèmes d'acquisition ou différents protocoles d'imagerie

Données source Ds

Données cible Dt

Objectifs

- Ds et Dt ont un nombre suffisant d'exemples d'apprentissage :
 - →Améliorer les performances diagnostiques en fusionnant les bases
- Dt contient peu d'exemples d'apprentissage :
 - → Adapter le modèle appris sur Ds

Approche classique

Fusion de décision

Fusion de caractéristiques

[K. Gray, PhD thesis, UCL, London, 2012]

	AD vs. HC		MCI vs. HC	
	MRI	FDG-PET	MRI	FDG-PET
Acc. (%)	87.2 (2.0)	87.8 (2.6)	64.8 (3.0)	65.3 (1.9)
Bacc. (%)	87.2 (2.9)	87.8 (4.0)	65.2 (5.3)	65.3(3.4)
Sens. $(\%)$	87.5 (3.2)	91.8(2.9)	64.8 (3.9)	65.3(2.9)
Spec. (%)	86.9 (2.6)	83.8 (5.1)	65.5 (6.7)	65.2(3.8)

Avec réduction de dimension

	AD vs. HC		MCI vs. HC	
	Joint embedding	Concatenation	Joint embedding	Concatenation
Acc. (%)	90.0 (2.6)	87.9 (2.6)	75.5 (2.2)	64.3 (2.4)
Bacc. (%)	89.4 (3.6)	87.9 (4.3)	74.7 (3.0)	66.9 (3.9)
Sens. (%)	88.9 (3.4)	92.0 (3.9)	76.9 (3.2)	59.8 (3.2)
Spec. (%)	89.8 (3.8)	83.8 (4.7)	72.4 (4.5)	74.0 (4.6)

Fusion des modalités: concaténation avant réduction de dimension (Score_{concat}) ou après (Score_{combi})

AD = Alzheimer disease

HC = Healthy control

MCI =mild cognitive impairment

[K. Gray, PhD thesis, UCL, London, 2012]

Les enjeux

Explosion des temps de calcul → Accès à des ressources de calcul distribué
 Virtual Imaging Platform

http://www.creatis.insa-lyon.fr/vip

Exemple d'application

Infrastructure

Utilisateurs

Conclusion

- Place croissante de l'imagerie multimodale dans le diagnostic du cancer
- Apport des méthodes par apprentissage pour l'aide au diagnostic en imagerie du cancer
- Limites des systèmes d'aide au diagnostic basés sur un schéma classique
- Quelques pistes pour adapter les méthodes par apprentissage aux spécificités de l'imagerie médicale