Compact forms for MARSS models with covariates

Mark Scheuerell

Standard MARSS model

There is growing interest in the use of first-order vector autoregressive, or VAR(1), models in ecology where they are often referred to as multivariate autoregressive, or MAR(1), models¹.

Process equation

The underlying process in a MAR(1) model is a discrete time version of a multivariate Gompterz equation for n "species", which is typically written as

$$\mathbf{x}_t = \mathbf{B}\mathbf{x}_{t-1} + \mathbf{C}\mathbf{c}_{t-h} + \mathbf{w}_t,$$

where \mathbf{x}_t is an $n \times 1$ vector of state variates at time t, \mathbf{B} is an $n \times n$ matrix of interaction strengths, \mathbf{C} is an $n \times p$ matrix of covariate effects, and \mathbf{c}_t is a $p \times 1$ vector of covariates at time t - h where $0 \le h < T$, and \mathbf{w}_t is an $n \times 1$ vector of multivariate normal process errors; $\mathbf{w}_t \sim \text{MVN}(\mathbf{0}, \mathbf{Q})$.

Observation equation

This process model can be used within a state-space framework wherein we add a second model for the observed data \mathbf{y} , such that

$$\mathbf{y}_t = \mathbf{Z}\mathbf{x}_t + \mathbf{a} + \mathbf{v}_t,$$

 \mathbf{a} is an $n \times 1$ vector of offsets, and \mathbf{v}_t is an $n \times 1$ vector of observation errors; $\mathbf{v}_t \sim \text{MVN}(\mathbf{0}, \mathbf{R})$. Note that if the variates in \mathbf{y} have been scaled to have zero mean, then \mathbf{a} can be dropped from the equation.

Compact MARSS model

Process equation

The above MARSS model can be rewritten in a more compact form. Beginning with the process equation, we can redefine the MAR(1) model as

$$\mathbf{x}_{t}^{*} = \mathbf{B}^{*}\mathbf{x}_{t-1}^{*} + \mathbf{w}_{t}^{*} \text{ with } \mathbf{w}_{t}^{*} \sim \text{MVN}(\mathbf{0}, \mathbf{Q}^{*}),$$

given

¹For an extended treatment, see Ives et al. (2003) Ecol Monogr 73:301–330

$$\mathbf{x}_t^* = egin{bmatrix} \mathbf{x}_t \ \mathbf{c}_{t-h} \end{bmatrix}$$

and

$$\mathbf{B}^* = egin{bmatrix} \mathbf{B} & \mathbf{C} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

Here \mathbf{I}_p is a $p \times p$ identity matrix. Thus, these vectors and matrices will have new dimensions, such that \mathbf{x}_t^* is $(n+p) \times 1$, \mathbf{B}_t^* is $(n+p) \times (n+p)$, and \mathbf{Q}_t^* is also $(n+p) \times (n+p)$.

Option 1

If all of the covariates have been scaled to have zero mean and unit variance, then

$$\mathbf{Q}^* = egin{bmatrix} \mathbf{Q} & \mathbf{0} \ \mathbf{0} & \mathbf{I}_p \end{bmatrix}.$$

Option 2

If, however, the covariates have not been scaled, then Q must be modified, such that

$$\mathbf{Q}^* = \begin{bmatrix} \mathbf{Q} & \mathbf{0} \\ \mathbf{0} & \mathbf{S} \end{bmatrix},$$

and the $p \times p$ matrix **S** contains the variances of each of the p covariates along the diagonal (i.e., they are specified $a \ priori$) and 0's elsewhere. Specifically,

$$\mathbf{S} = \begin{bmatrix} \operatorname{Var}(c_1) & 0 & \cdots & 0 \\ 0 & \operatorname{Var}(c_2) & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \operatorname{Var}(c_p) \end{bmatrix} . \tag{1}$$

Observation equation

The observation equation is rewritten as

$$\mathbf{y}_t^* = \mathbf{Z}^* \mathbf{x}_t^* + \mathbf{a}^* + \mathbf{v}_t^* \text{ with } \mathbf{v}_t^* \sim \text{MVN}(\mathbf{0}, \mathbf{R}^*),$$

with

$$\mathbf{y}_t^* = egin{bmatrix} \mathbf{y}_t \ \mathbf{c}_t \end{bmatrix},$$

$$\mathbf{Z}^* = \begin{bmatrix} \mathbf{Z_y} & \mathbf{0} \\ \mathbf{0} & \mathbf{Z_C} \end{bmatrix},$$

and

$$\mathbf{R}^* = \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}.$$

These new vectors and matrices will have dimensions where \mathbf{y}_t^* is an $(n+p) \times 1$ column vector, \mathbf{Z}^* is an $(n+p) \times (n-k+p-l)$ matrix, and \mathbf{R}_t^* is an $(n+p) \times (n+p)$ matrix. Note that $0 \le k < n$ and $0 \le l < p$, such that either $\mathbf{Z}_{\mathbf{y}}$ or $\mathbf{Z}_{\mathbf{C}}$ could range from a column vector of 1's if k = n-1 or l = p-1, respectively, to identity matrices if k = 0 or l = 0.

Option 1

If all of the covariates have been scaled to have zero mean and unit variance, then

$$\mathbf{a}^* = \mathbf{0}$$
.

Option 2

If the covariates have not been scaled, then a $p \times 1$ vector **a** containing covariate means must be included in the $(n+p) \times 1$ column vector \mathbf{a}^* , such that

$$\mathbf{a}^* = \begin{bmatrix} \mathbf{0} \\ \mathbf{a} \end{bmatrix}$$
.

As with S above, the covariate-specific means are specified in a rather than estimated.