第6章一元函数微分学的应用(二) 一中值定理、微分等式与微分不等式

- 1. 设函数 $f(x) = xe^{\frac{1}{1-x^2}}$, -1 < x < 1,则(
- (A) f(x) 在 (-1,1) 内有一个零点
- (B) f(x) 在(-1,1) 内有两个零点
- (C) f'(x) 在(-1,1) 内有一个零点
- (D) f'(x) 在(-1,1) 内有两个零点
- **2.** 设 f(x) 在[0,4] 上一阶可导且 $f'(x) \ge \frac{1}{4}$, $f(2) \ge 0$,则在下列区间上必有 $f(x) \ge \frac{1}{4}$ 成立

的是(

(A)[0,1]

(B)[1,2]

(C)[2,3]

- (D)[3,4]
- 3. 若可导函数 f(x) 满足 f'(x) < 2f(x),则当 b > a > 0 时,必有(
- $(A)b^2 f(a) > a^2 f(b)$

(B) $b^2 f(a) < a^2 f(b)$

 $(C)b^2 f(\ln a) > a^2 f(\ln b)$

- $(D)b^2 f(\ln a) < a^2 f(\ln b)$
- 4. 设 f(x) 为可导函数,a < b. 若 f(a) = f(b) = 0, $f'(a) \cdot f'(b) > 0$, 则方程 f'(x) = 0 在 (a,b)内(
 - (A) 至少有一个实根

(B) 至多有一个实根

(C) 至少有两个实根

- (D) 至多有两个实根
- 5. 若方程 $3x^4 + 4x^3 12x^2 + k = 0$ 有四个不同的实根,则常数 k 的取值范围为
- 6. 设函数 f(x) 在[0,2] 上连续,在(0,2) 内可导,且 f(0) = f(2) = 1, f(1) = -1.证明:
- (1) 存在一点 $\xi \in (0,2)$, 使得 $f'(\xi) = 2 024 f(\xi)$;
- (2) 存在两个不同的点 $\xi_1,\xi_2 \in (0,2)$, 使得 $f'(\xi_1) + f'(\xi_2) = 0$.
- 7. 设函数 f(x) 在[a,b] 上连续,在(a,b) 内可导,且 f(a) = a, f(b) = b.证明:
- (2) 至少存在一点 $\eta \in (a,b)$, 使得 $f'(\eta) = 1$;
- (3) 存在两个不同的点 $\eta_1, \eta_2 \in (a,b)$, 使得 $f'(\eta_1)f'(\eta_2) = 1$;
- (4) 至少存在一点 $\xi_1 \in (a,b)$,使得 $f'(\xi_1) + f(\xi_1) \xi_1 = 1$.
- 8. 设 ξ_a 为函数 $f(x) = \arctan x$ 在区间[0,a]上使用拉格朗日中值定理时的中值,求 $\lim \frac{\xi_a}{x}$.

微信公众号: 神灯考研 客服微信: KYFT104 QQ群: 118105451

9. 设 f(x) 在[a,b] 上连续,在(a,b) 内可导,且 $f'(x) \neq 0$,证明:∃ $\xi,\eta \in (a,b)$,使

$$\frac{f'(\xi)}{f'(\eta)} = \frac{e^b - e^a}{b - a} \cdot e^{-\eta}.$$

- 10. 设 k 是常数,讨论函数 $f(x) = (2x-3)\ln(2-x) x + k$ 在它的定义域内的零点个数.
- 11. 讨论常数 a 的值,确定曲线 $y = ae^x$ 与 y = 1 + x 的公共点的个数.
- 12. 设 x > -2,证明: $(x-2)e^{\frac{x-2}{2}} xe^x + 2e^{-2} < 0$.
- 13. 证明: 当 $x \in \left(0, \frac{\pi}{2}\right)$ 时, $\frac{\sin x}{x} > \sqrt[3]{\cos x}$ 成立.

- 1. 已知 f(x) 在[a,b] 上二阶可导,且 f(a) = f(b) = 0,又 f(x) 满足方程 $f''(x) + \cos f'(x) = 0$ $e^{f(x)}$,则在(a,b)内 f(x)
 - (A) 不小于 0

(B) 不大于 0

(C) 恒为 0

- (D) 恒不为 0
- 2. 设 $f(x) = xe^{2x} 2x \cos x$,则它的零点的个数(
- (A) 为零
- (B) 恰好 1 个 (C) 恰好 2 个
- (D) 多于 2 个
- 3. 设函数 $f(x) = \begin{vmatrix} x-2 & 2 & 0 \\ 2 & x-1 & 2 \\ 0 & 2 & x \end{vmatrix}$,则存在 $\xi \in (-2,4)$,使得 f'(x) 在 $x = \xi$ 处的切线平行

于直线(

$$(A)y + 2 = 0$$

$$(B)x-4=0$$

$$(C)2y+40x-7=0$$

(D)
$$2y - 40x + 7 = 0$$

- 4. 设函数 f(x) 在[0,2]上连续,在(0,2) 内二阶可导,且 $\lim_{x \to \frac{1}{2}} \frac{f(x)}{\cos \pi x} = 0,2 \int_{\frac{1}{2}}^{1} f(x) dx = f(2)$. 证 明:存在 $\xi \in (0,2)$,使得 $f''(\xi) = 0$.
- 5. 设函数 f(x) 在[0,2] 上二阶可导,且 f(0) = f(2).证明:
 - (1) 存在一点 $\xi \in (0,2)$, 使得 $f'(\xi) = \xi 1$;
 - (2) 存在一点 $\eta \in (0,2)$, 使得 $\eta f''(\eta) + f'(\eta) 2\eta + 1 = 0$.
- 6. 设函数 f(x) 在[a,b] 上二阶可导,且 f'(x) 在[a,b] 上恒大于零或恒小于零, f(a) = f(b) = 0. 证明:存在两个不同的点 $\xi_1,\xi_2 \in (a,b)$,使得 $2[f'(\xi_i)]^2 + f(\xi_i)f''(\xi_i) = 0$ (i = 1,2).
 - 7. 设 f(x) 在[a,b] 上二阶可导,且 f'(a) = f'(b) = 0,证明存在 $\xi \in (a,b)$,使

$$|f''(\xi)| \ge \frac{4}{(b-a)^2} |f(b)-f(a)|.$$

- 8. 讨论方程 $axe^x + b = 0 (a > 0)$ 实根的情况.
- 9. 设函数 f(x) 在区间 I 上有定义,若实数 $x_0 \in I$,且满足 $f(x_0) = x_0$,则称 x_0 为 f(x) 在区间 I上的一个不动点. 设函数 $f(x) = 3x^2 + \frac{1}{r^2} - \frac{18}{25}$,则 f(x) 在区间 $(0, +\infty)$ 上是否有不动点?若有, 求出所有不动点;若没有,说明理由.

一元函数微分学的应用(二)——中值定理、微分等式与微分不等式

- 10. 设函数 $\varphi(x)$ 可导,且 $\varphi(0) = 0, \varphi'(x)$ 单调减少,证明: $\forall x \in (0,1), \varphi(1)x < \varphi(x) < 0$ $\varphi'(0)x$ 成立.
 - 11. 当 $0 < x < \frac{\pi}{2}$ 时,比较 $(\sin x)^{\cos x}$ 与 $(\cos x)^{\sin x}$ 的大小.
 - **12.** 设实数 $\rho \ge 1$,证明:不等式 $\frac{\rho-1}{\rho}a + \frac{1}{\rho}a^{1-\rho}b^{\rho} \ge b$ 对一切正实数 a ,b 都成立.
- 13. 设函数 f(x) 在闭区间[1,3] 上具有三阶导数,且 $\int_{1}^{2} f(x) dx = \int_{1}^{2} f(x+1) dx$,f'(2) = 0. 证 明:存在 $\xi \in (1,3)$,使得 $f''(\xi) = 0$.
- 14. 设 f(x) 在[a,b] 上二阶可导, $|f'(x)| \leq \frac{1}{2}, f'(x_0) = 0, f''(x_0) = c \neq 0, x_0 \in (a,b)$,且满 足 $x_0 = f(x_0)$.
 - (1) $\forall x_1 \in [a,b], x_{n+1} = f(x_n) (n = 1,2,\dots),$ 证明 $\lim x_n$ 存在,且 $\lim x_n = x_0$;
 - (2) $\Re \lim_{n\to\infty} \frac{x_{n+1}-x_0}{(x_n-x_0)^2}$.

- 1. 设 f(x) 在[0, +∞) 上可导, f(0) = 0, 且存在常数 k > 0, 使得 | f'(x) | ≤ k | f(x) | 在 $[0,+\infty)$ 上成立,则在 $(0,+\infty)$ 内(
 - (A) 仅当 0 < k < 1 时, f(x) 恒为零
 - (B) 仅当 k > 1 时, f(x) 恒不为零
 - (C) 当 k = 1 时, f(x) 不恒为零
 - (D)k 为任意正常数时, f(x) 均恒为零
 - 2. 设 f(x) 在 $(-\infty, +\infty)$ 上存在二阶导数, f(0) < 0, f'(0) = a, f''(x) > 0. 证明:
 - (1) 无论 a > 0, a < 0 还是 a = 0, f(x) 至多有两个零点, 至少有一个零点;
 - (2) 若 f(x) 恰有两个零点,则此两零点必反号.
 - 3. 证明: $\cos \sqrt{2}x < -x^2 + \sqrt{1+x^4}$,其中 $x \in \left(0, \frac{\sqrt{2}\pi}{4}\right)$.
 - **4.** 证明:当0 < a < b < 1或1 < a < b时, $\frac{b^a}{a^b} < \frac{b}{a}$.
- 5. 设函数 f(x) 在[-2,2] 上二阶可导,且 | f(x) | \leq 1,又 $f^2(0)$ + [f'(0)] = 4. 证明:在 (-2,2) 内至少存在一点 ξ ,使得 $f(\xi) + f''(\xi) = 0$.
- 6. 设 f(x) 在区间[0, +∞) 内具有二阶导数,且| f(x) |≤1,0<| f''(x) |≤2(0≤x<+∞). 证明: 微信公众号【神灯考研】
 - (1) $\forall h > 0, \mid f'(x) \mid \leq \frac{2}{h} + h;$

考研人的精神家园

- (2) $| f'(x) | \leq 2\sqrt{2}$.
- 7. 设 f(x) 在($-\infty$, $+\infty$) 上有界,且存在二阶导数.证明:至少存在一点 ξ ∈ ($-\infty$, $+\infty$) 使得 $f''(\xi)=0.$

- 8. 若用 $\frac{2(x-1)}{x+1}$ 来近似 $\ln x$,证明: 当 $x \in [1,2]$ 时,其误差不超过 $\frac{1}{12}(x-1)^3$.
- 9. 设 $f(x_0+h) = f(x_0) + hf'(x_0) + \frac{h^2}{2!}f''(x_0) + \frac{h^3}{3!}f'''(x_0+\theta h)$,其中 $0 < \theta < 1$, $f^{(4)}(x)$ 连续 且 $f^{(4)}(x_0) \neq 0$,求 $\lim_{h\to 0} \theta$.

微信公众号【神灯考研】 考研人的精神家园

4