Фазовая плоскость СтЛВУ. Классификация точек покоя.

Рассмотрим уравнение

$$DX = AX, (1)$$

где

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \ \mathbf{a} \ X(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$$

- неизвестная векторная функция.
- ullet Фазовым графиком решения X(t) называется график функции

$$\begin{cases} x_1 = x_1(t), \\ x_2 = x_2(t). \end{cases}$$

- Плоскость Ox_1x_2 , на которой располагаются фазовые графики решений, называется фазовой плоскостью уравнения.
- Фазовый график, состоящий из одной точки, называется точкой покоя.

Начало координат (точка (0; 0)) всегда является точкой покоя для уравнения (1). Рассмотрим классифицкации точек покоя.

I группа.

- 1. Пусть матрица $A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Тогда любая точка фазовой плоскости является фазовым графиком и других фазовых графиков нет.
- 2. Пусть A = aE, то есть $A = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$.
 - Точка покоя, в окрестности которой фазвоые графики имеют такое расположение, называется дикритическим узлом причем при a>0 устойчивым, а при a<0 неустойчивым.

II группа. Пусть $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, причем $A\neq aE$. Рассмотрим матрицу $B=\begin{pmatrix} 0 & 1 \\ -\det A & \operatorname{Sp} A \end{pmatrix}$, $\operatorname{Sp} A=a+d$. Матрицы A и B подобны, то есть $\exists S, \det S\neq 0: B=S^{-1}AS$.

Выполним замену в уравнении (1) неизвестной функции X = SY. Тогда

$$DY = BY. (2)$$

Координатная форма уравнения (2) имеет вид

$$\begin{cases} Dy_1 = y_2, \\ Dy_2 = -\det Ay_1 + \operatorname{Sp} ADy_1. \end{cases}$$

Исключим из второго уравнения y_1 и получим

$$D^{2}y_{1} - (\operatorname{Sp} A)Dy_{1} + (\det A)y_{1} = 0.$$

Тогда решение $y_1(t)$ имеет фазовую тракекторию, являющуюся графиком функции

$$\begin{cases} y_1 = y_1(t), \\ y_2 = Dy_1(t); \end{cases} \Rightarrow \begin{cases} y_1 = y_1(t), \\ y_2 = y_2(t). \end{cases}$$
 (3)

Типы точек покоя уравнения (1) будут совпадать с типами точек покоя уравнений (2) и (3). То есть все остальные классификации точек покоя мы можем перенести с СтЛУ на СтЛВУ.

Пусть λ_1 , λ_2 — корни характеристического уравнения $\lambda^2 + a_1\lambda + a_0 = 0$ для уравнения (1). Тогда тип точки покоя O при $a_0 \neq 0$ определяется следующим образом:

- 1. Если $\lambda_1, \lambda_2 \in \mathbb{R}$ и
 - (a) $\lambda_1 \cdot \lambda_2 < 0$, то точка покоя называется **седлом**;
 - (b) $\lambda_1 \cdot \lambda_2 > 0$, $\lambda_1 \neq \lambda_2$, то точка покоя называется **бикритическим узлом**, причем, при $\lambda_1 < \lambda_2 < 0$ устойчивым; при $\lambda_2 > \lambda_1 > 0$ неустойчивым;
 - (c) $\lambda_1 \cdot \lambda_2 > 0$, $\lambda_1 = \lambda_2$, то точка покоя называется **монокритическим узлом**, причем, при $\lambda_1 = \lambda_2 < 0$ **устойчивым**; при $\lambda_2 = \lambda_1 > 0$ **неустойчивым**;
- 2. Если $\lambda_{1,2} = \alpha \pm \beta i$ и
 - (a) $\alpha \neq 0, \beta \neq 0$, то точка покоя называется фокусом, причем, при $\alpha < 0$ устойчивым; при $\alpha > 0$ неустойчивым;
 - (b) $\alpha = 0, \, \beta \neq 0$, то точка покоя называется **центром**.

Если характеристическое уравнение имеет вид $\lambda^2 + a_1 \lambda = 0$, где $a_1 \geqslant 0$, то прямая $x_1 = x_2$ состоит из точек покоя и называется **прямой покоя**.

Исследование типа точки покоя проводится аналогично исследованию в СтЛУ.

Пример 1. Установить тип точки покоя для уравнения DX = AX, где

$$A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}.$$

Решение. Построим характеристическое уравнение и найдем его корни:

$$\det(A - \lambda E) = \begin{vmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{vmatrix} = \lambda^2 - 6\lambda + 8 = (\lambda - 2)(\lambda - 4) = 0.$$

Корни уравнения $\lambda_1=2,\ \lambda_2=4.$ Тогда точка O является неустойчивым бикритическим узлом.

Ответ: Точка O — неустойчивый бикритический узел.

Пример 2. Установить тип точки покоя для уравнения DX = AX, где

$$A = \begin{pmatrix} -5 & 0 \\ 0 & -5 \end{pmatrix}.$$

Решение. Матрица A = (-5)E, то есть ее вид совпадает с видом матрицы A для случая, когда точка O является дикритическим узлом, причем устойчивым, так как коэффициент

а отрицательный.

Ответ: Точка O — устойчивый дикритический узел.

Аналогичным образом рассматриваются и параметрические уравнения.

Пример 3. Определить тип точки покоя для уравнения DX = AX, где

$$A = \begin{pmatrix} -3\alpha & 1 \\ -3 & 0 \end{pmatrix}.$$

в зависимости от значений параметра α .

Решение. Построим характеристическое уравнение:

$$\det(A - \lambda E) = \begin{vmatrix} -3\alpha - \lambda & 1 \\ -3 & -\lambda \end{vmatrix} = \lambda^2 + 3\alpha\lambda + 3 = 0.$$

Тогда корни уравнения имеют вид

$$\lambda_1 = \frac{-3\alpha + \sqrt{9\alpha^2 - 12}}{2}, \quad \lambda_2 = \frac{-3\alpha - \sqrt{9\alpha^2 - 12}}{2}.$$

1. Пусть $9\alpha^2 - 12 > 0$. Тогда $|\alpha| > \frac{2}{\sqrt{3}}$. Подставим α в λ_1 и λ_2 и получим $\lambda_1, \lambda_2 \in \mathbb{R}$, $\lambda_1 \neq \lambda_2$,

$$\lambda_1 \cdot \lambda_2 = \frac{9\alpha^2 - 9\alpha^2 + 12}{4} = 3 > 0,$$

следовательно, точка O — бикритический узел. Причем при $\alpha > \frac{2}{\sqrt{3}}$ получаем устойчивый бикритический узел, а при $\alpha < -\frac{2}{\sqrt{3}}$ — неустойчивый.

- 2. Пусть $9\alpha^2 12 = 0$. Тогда $|\alpha| = \frac{2}{\sqrt{3}}$. Подставим α в λ_1 и λ_2 и получим $\lambda_1, \lambda_2 \in \mathbb{R}$, $\lambda_1 = \lambda_2 = -\frac{3}{2}$, $\lambda_1 \cdot \lambda_2 > 0$. Таким образом, точка O монокритический узел. Причем при $\alpha = \frac{2}{\sqrt{3}}$ получаем устойчивый бикритический узел, а при $\alpha = -\frac{2}{\sqrt{3}}$ неустойчивый.
- 3. Пусть $9\alpha^2 12 < 0$. Тогда получаем два случая:
 - (a) $0<|\alpha|<\frac{2}{\sqrt{3}}$. Таким образом, $\lambda_{1,2}=\alpha\pm\beta i$ и $\alpha\neq 0$. Тогда точка O фокус, причем при $0<\alpha<\frac{2}{\sqrt{3}}$ устойчивый, а при $0>\alpha>-\frac{2}{\sqrt{3}}$ неустойчивый.
 - (b) $\alpha=0.$ Таким образом, $\lambda_{1,2}=\pm \beta i,$ и точка O- центр.

Пример 4. Установить тип точки покоя и начертить фазовый портрет для уравнения DX = AX, где

$$A = \begin{pmatrix} -2 & -4 \\ -1 & 1 \end{pmatrix}.$$

Решение. Для начала необходимо установить тип точки покоя для данного уравнения. Построим характеристическое уравнение и найдем его корни:

$$\det(A - \lambda E) = \lambda^2 + \lambda - 6 = (\lambda + 3)(\lambda - 2) = 0.$$

То есть корни данного характеристического уравнения $\lambda_1 = -3$, $\lambda_2 = 2$. Таким образом, точка O — седло. То есть построенный в итоге график будет соответствовать виду фазового графика такой точки покоя. Теперь построим матрицу

$$B = \begin{pmatrix} 0 & 1 \\ -\det A & \operatorname{Sp} A \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 6 & -1 \end{pmatrix},$$

которая является подобной матрице A, то есть $\exists S, \det S \neq 0: B = S^{-1}AS$. Выполним замену X = SY для исходного уравнения и получим уравнение вида

$$DY = BY \iff \begin{cases} Dy_1 = y_2, \\ Dy_2 = 6y_1 - Dy_1. \end{cases}$$

Исключим y_1 из второго уравнения и получим Ст Π ОУ

$$D^2y_1 + Dy_1 - 6y_1 = 0.$$

Фазовый портрет такого уравнения мы уже умеем строить, и задается он параметрически заданной функцией

$$\begin{cases} y_1 = y_1(t), \\ y_2 = Dy_1(t). \end{cases}$$

Полученное СтЛОУ имеет корни $\lambda_1 = -3$, $\lambda_2 = 2$. Следовательно, $y_1(t) = C_1 e^{-3t} + C_2 e^{2t}$. Подставим $y_1(t)$ и $Dy_1(t)$ в параметрическое уравнение и получим, что фазовый портрет СтЛОУ задается системой

$$\begin{cases} y_1 = C_1 e^{-3t} + C_2 e^{2t}, \\ y_2 = -3C_1 e^{-3t} + 2C_2 e^{2t}. \end{cases}$$

Мы уже знаем, каким уравнением задается фазовый портрет и какой вид он имеет (седло). Остается выяснить асимптоты, к которым стремятся фазовые графики. Для этого найдем пределы

$$\lim_{t \to +\infty} \frac{y_2(t)}{y_1(t)} = \frac{-3C_1e^{-3t} + 2C_2e^{2t}}{C_1e^{-3t} + C_2e^{2t}} = 2.$$

$$\lim_{t \to -\infty} \frac{y_2(t)}{y_1(t)} = \frac{-3C_1e^{-3t} + 2C_2e^{2t}}{C_1e^{-3t} + C_2e^{2t}} = -3.$$

Таким образом, прямые $y_2 = 2y_1$ и $y_2 = -3y_1$ являются асимптотами фазовых графиков. А в точках, где $Dy_2 = 0$, то есть $-a_1y_2 - a_0y_1 = 0$, то есть на прямой $y_2 = 6y_1$ касатлельные к фазовым графикам параллельны оси Ox (т.е. на пересечении с этой прямой у верхних и нижних графиков находится точка перегиба). Построим фазовый портрет на основании полученной информации: (см. следующую страницу)

Однако полученный фазовый портрет соответствует лишь уравнению DY = BY, но не исходному. Для получения фазового портрета исходного уравнения сделаем обратное линейное преобразование X = SY, где S — матрица перехода от базиса A к базису B

