HAW Hamburg, Dept. IuE Prof. Dr. J. Missun

GRUPPE A

real and the second

09	E 4	G N	MESKI	ausur	Grundlagen	Nach	richtentechn	ik
· FSR		rensammi		-	estergruppe			

Name:

Matr.-Nr.

Hinweis: Formeln dürfen nur aus dem Umdruck des GN-Vorlesungsskriptums bzw. aus GN-Übungen oder mathematischen Formelsammlungen übernommen werden, aber immer mit Quellenangabe! In allen anderen Fällen muss der Lösungsweg (Rechengang) vollständig mit angegeben werden.

1. Aufgabe (15 Punkte)

Ein Verstärker mit 100kHz Bandbreite hat eine Verstärkung von 60dB und ein Rauschmaß von 5dB. Die Ein- und Ausgangswiderstände betragen 50Ω . (T=290K)

- a. Wie groß sind Eingangssignalleistung und Ausgangssignalleistung bei einem SNR am Eingang von 30dB (nur thermisches Rauschen am Eingang)?
- b. Bei welcher Eingangsspannung tritt am Ausgang ein Signal-Rauschabstand von OdB auf?

2. Aufgabe (30 Punkte)

Eine verlustlose Leitung von 100m Länge ist mit einem Widerstand von 150Ω abgeschlossen.

- a. Berechnen Sie die Reflexionsfaktoren am Eingang und Ausgang für eine Frequenz von 100kHz. Geben Sie komplexe Größen mit Realteil und Imaginärteil an!
- b. Wie groß ist die Eingangsimpedanz für f=100kHz?
- c. Bei welcher nächst höheren Frequenz f>100kHz wird die Eingangsimpedanz reell?

3. Aufgabe (10 Punkte)

Am Ausgang eines Leistungsverstärkers wurden bei einem sinusförmigen Eingangssignal mit f=1kHz an einem Lastwiderstand von 10Ω bei den angegebenen Frequenzen folgende Signalpegel gemessen:

fn	1kHz	2kHz	3kHz	ab 4kHz
Ln	16dBV	-24dbV	-40dBV	

- a. Wie groß ist der Klirrfaktor
- b. Welche Leistung wird im Lastwiderstand umgesetzt?

RÜCKSEITE!

SS WS Samester Foch this OS F4 GN MSS

FSR - Klausurensammlung

4. Aufgabe (25 Punkte)

Das dargestellte Tiefpaßfilter ist für folgende Eigenschaften zu dimensionieren: Butterworth-Charakteristik,

Grenzfrequenz: 2,5kHz,

Verstärkung bei f -> 0: 5fach

Koeffizienten Butterworth:

 $a_1 = 1,414$

 $b_1 = 1$

- a. Stellen Sie die Übertragungsfunktion in Normalform auf und geben Sie an, in welchen Teilen der Übertragungsfunktion Verstärkung, Filtercharakteristik und Grenzfrequenz stecken.
- b. Berechnen Sie Ray, C_1 und C_2 wenn $R_1=R_2=1,5k\Omega$ ist.

5. Aufgabe (20 Punkte)

Mit dem dargestellten Modulator soll ein AM-Signal mit 1MHz Trägerfrequenz und 2kHz Modulationsfrequenz erzeugt werden.

Multiplizierer: $u_a = u_x \cdot u_y \cdot 0.5V^{-1}$

G1: $u_1(t) \Rightarrow \hat{u}_1 \cdot \cos(\omega_1 t)$ G2: $u_2(t) = \hat{u}_2 \cdot \cos(\omega_2 t)$

- a. Berechnen Sie \hat{u}_1 für einen Modulationsgrad von 50% und $\hat{u}_2 = 1V!$
- b. Welche Leistung wird in $R_{\rm L}$ erzeugt?
- c. Welche Frequenzen müssen an G1 und G2 eingestellt worden?

Mss 01/09

Jame .

MatrNr.:

Semestergruppe: E4a

Datum: 26.07.09

G. M-planow:

ingreent: 5 Tellel + Artgalenblath

1. chifqule: B= 700KHz ; V= 60 dB ; Face) = 5dB ; R = 500

sn Rue (UB) = 30, dB = 1000

Forely 5.2-70 unls2-11

SURe = Pre

Pre= K.T. B = 7,38. 70-20 W/201 . 290K. 700Kth = 4002. 20-66 W

Pse = SNRe. Pre = 7000. 41002.7676 W = 41002-70-73W

FCOD) = SNReCUB) - SNRacuB)

SNRy = SNR e(dB) - F(dB) = 3018 - 5-413 = 25-113 = 376,23

SNRe = Ba

Proc = F. v. Pro = 3, 7622. 7.706. 4002. 70 76 W= 7,266. to-9 W

Psa = V. Psz = 7.706. 4,003.707 W= 4,002.704 W

le)

| F = \frac{\sum_{NR1}}{\sum_{NR2}} = 3,7623 = \frac{\text{Lie}}{\text{MMMMRR} \text{Pr}}

=> Ue2 = 3,7623. 2.50w. 4,002. 75 16W = 257,556V

FSR - Xlausurensammlung 3/2

lame:

MatrNr.:

Semestergruppe: E4a Datum: 26.0109

2) 2200m; Zu=50w; Rz=750w

e.) De Freques une revert estelle les eur e - j'01628318 qu'el - j'T' wind.

=) 2.
$$\beta \cdot \ell = \frac{2 \cdot T \cdot \ell}{k \cdot C_0} \cdot \ell = T$$

=) $\ell = \frac{k \cdot C_0}{4 \cdot \ell} = \frac{\frac{2}{3} \cdot 3 \cdot 70^8}{4 \cdot 700 m} = \frac{500 \text{ KHz}}{4 \cdot 700 m}$

09	E4	GN	MSS
----	----	----	-----

3.) R= 7000; fo= 7KHz

€=1KH #: TELBU = 6,37 V=40)

€= 2KHz : -24-184 = 9063-1 V=04

f=3kt : 401H = 0,01V=112

Lucusu) = 20 : leg (1171).

) => U= 70 (u(100)

a) $K = \frac{\sqrt{(0.01 \text{V})^2}}{\sqrt{(0.001 \text{V})^2 + (0.01 \text{V})^2}} = \frac{6.757}{2.5.776} = \frac{15.776}{1.5.776}$ 5.4-2

Pa = (Classe)2 = (6,37V)2 Re 70W = 3,88W

Unegg= \ \ \(\text{U0}^2 + \text{U1}^2 + \text{U2}^2 \\
= \frac{6.37 \text{ V}}{}

Jame:

MatrNr .:

Semestergruppe: E4a Datum: 26.01.09

4.)
$$f(\omega) = \frac{f(\omega)}{f(\omega)} = \frac$$

Seite Nr.

Datum: 26.01.03

from 1 MHz i My fund. = 2 KHz ; RL= 50 W

96 1 WS	Semester E 9	Foch GN	MSS
FSR	- Klausu	rensamm	lung 1

Un= Ux. Uy. 0,5 V-7 = Ux. Ux. K

MANY # W. 100 (1021/1)

(14m = (1x. Uy + Uy.) = \vec{u} \cdot \

Unfangen nuch Beatoch 5.383

$$m = \frac{\sqrt{2}m}{\sqrt{2}m} = 2 \cdot \frac{\sqrt{2}m}{\sqrt{2}m} \qquad (5.5-3)$$

$$= 2 \cdot \frac{\cancel{4} \cdot \cancel{k} \cdot \cancel{k} \cdot \cancel{k}}{\sqrt{2}m} = \frac{\cancel{k} \cdot \cancel{k} \cdot \cancel{k}}{\sqrt{2}m} = \frac{\cancel{k} \cdot \cancel{k}}{\sqrt{2}m} = \frac{\cancel{k}}{\sqrt{2}m} = \frac{\cancel{k}}{\sqrt{2}m}$$