Devoir surveillé n° 06 - Version 1 -

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD : distance à la corde.

Soit $a, b \in \mathbb{R}$, avec a < b. Soit $f : [a, b] \to \mathbb{R}$ de classe \mathscr{C}^2 .

1) On suppose que f(a) = f(b) = 0. Soit $c \in [a, b[$. Montrer qu'il existe $d \in [a, b[$ tel que :

$$f(c) = -\frac{(c-a)(b-c)}{2}f''(d).$$

Indication : considérer $g: t \mapsto f(t) + \lambda(t-a)(b-t)$ où λ est choisi de sorte que g(c) = 0.

2) On traite maintenant le cas général. Soit $c \in [a, b[$, montrer qu'il existe $d \in [a, b[$ tel que :

$$f(c) = \frac{b-c}{b-a}f(a) + \frac{c-a}{b-a}f(b) - \frac{(c-a)(b-c)}{2}f''(d).$$

II. Interpolation polynomiale de Hermite (CCP MP 2016).

On note $\mathbb{R}[X]$ l'algèbre des polynômes à coefficients réels et, pour tout entier naturel n, $\mathbb{R}_n[X]$ le sous-espace vectoriel de $\mathbb{R}[X]$ constitué des polynômes de degré inférieur ou égal à n. On note $\mathbb{R}(X)$ le corps des fractions rationnelles à coefficients réels.

Pour tout polynôme $P \in \mathbb{R}[X]$, on note P' le polynôme dérivé de P et, pour tout entier naturel n, on note $P^{(n)}$ le n^{e} polynôme dérivé de P.

Partie I - Questions préliminaires.

Soit n un entier naturel non nul.

- 1) Soit P et Q deux polynômes non nuls à coefficients complexes.
 - a) Démontrer que si P et Q n'ont aucune racine complexe commune, alors P et Q sont premiers entre eux.

Indication: on pourra raisonner par l'absurde.

- b) On suppose que P et Q sont premiers entre eux. En utilisant le théorème de Gauss, démontrer que si P et Q divisent un troisième polynôme R à coefficients complexes, alors il en est de même pour le polynôme PQ.
- 2) Soit $(P_i)_{1 \le i \le n}$ une famille de polynômes non nuls de $\mathbb{R}[X]$. On considère le polynôme $P \in \mathbb{R}[X]$ et la fraction rationnelle $Q \in \mathbb{R}(X)$ définis par $P = \prod_{i=1}^n P_i$ et $Q = \frac{P'}{P}$.

Démontrer par récurrence que $Q = \sum_{i=1}^{n} \frac{P'_i}{P_i}$.

Partie II - Interpolation de Hermite.

Soit I un intervalle non vide de \mathbb{R} , p un entier naturel non nul, $(x_i)_{1 \leqslant i \leqslant p}$ une famille d'éléments de I distincts deux à deux et $(a_i)_{1 \leqslant i \leqslant p}$ et $(b_i)_{1 \leqslant i \leqslant p}$ deux familles de réels quelconques.

On considère l'application φ de $\mathbb{R}_{2p-1}[X]$ vers \mathbb{R}^{2p} qui, à $P \in \mathbb{R}_{2p-1}[X]$, associe

$$\varphi(P) = (P(x_1), P(x_2), \dots, P(x_p), P'(x_1), P'(x_2), \dots, P'(x_p)).$$

- 3) Définition du polynôme interpolateur de Hermite.
 - a) Soit $P \in \mathbb{R}[X]$ et $a \in \mathbb{R}$. En utilisant la formule de Taylor, démontrer que : si P(a) = P'(a) = 0, alors $(X a)^2$ divise P.
 - **b)** Montrer que φ est un morphisme du groupe $(\mathbb{R}_{2p-1}[X], +)$ dans le groupe $(\mathbb{R}^{2p}, +)$.
 - c) En utilisant la question préliminaire 1), démontrer que l'application φ est injective. On admet la surjectivité de φ (vous saurez bientôt la montrer simplement). Ainsi, φ réalise une bijection de $\mathbb{R}_{2p-1}[X]$ sur \mathbb{R}^{2p} .
 - d) Démontrer qu'il existe un unique polynôme $P_H \in \mathbb{R}_{2p-1}[X]$ tel que, pour tout entier i vérifiant $1 \leq i \leq p$, on a $P_H(x_i) = a_i$ et $P'_H(x_i) = b_i$. Le polynôme P_H est appelé polynôme interpolateur de Hermite.
- 4) Étude d'un exemple.

Déterminer le polynôme interpolateur de Hermite, défini à la question 3), lorsque p = 2, $x_1 = -1$, $x_2 = 1$, $a_1 = 1$, $a_2 = 0$, $b_1 = -1$ et $b_2 = 2$.

5) Le cas p=1.

Déterminer le polynôme interpolateur de Hermite dans le cas où p = 1, en fonction de x_1, a_1, b_1 . Indication: on pourra utiliser directement la formule de Taylor.

6) Une formule explicite dans le cas $p \ge 2$.

On suppose maintenant $p \geqslant 2$. Pour tout entier i tel que $1 \leqslant i \leqslant p$, on considère le polynôme $Q_i = \prod_{\substack{j=1\\i\neq j}}^p \left(\frac{X-x_j}{x_i-x_j}\right)^2$.

- a) Soit i un entier vérifiant $1 \le i \le p$. Calculer $Q_i(x_k)$ pour tout entier k tel que $1 \le k \le p$.
- b) Soit i un entier vérifiant $1 \le i \le p$. Démontrer que l'on a

$$Q'_i(x_k) = 0 \text{ si } k \neq i \text{ et } Q'_i(x_i) = \sum_{\substack{j=1 \ j \neq i}}^p \frac{2}{x_i - x_j}.$$

Indication: on pourra utiliser la question préliminaire 2).

c) Démontrer que le polynôme P défini par la formule

$$P = \sum_{i=1}^{p} \left[\left(1 - Q_i'(x_i)(X - x_i) \right) a_i + (X - x_i) b_i \right] Q_i$$

est le polynôme interpolateur de Hermite défini à la question 3).

d) Retrouver le polynôme de la question 4) en utilisant cette formule.

— FIN —

Devoir surveillé n° 06 - Version 2 -

Durée : 3 heures, calculatrices et documents interdits

Pour tout polynôme $P \in \mathbb{C}[X]$ non nul, on note :

- $\rho(P)$ l'ensemble des racines complexes de P, i.e. $\rho(P)=\{\ z\in\mathbb{C}\mid P(z)=0\ \}$;
- $n_0(P)$ le nombre de racines complexes distinctes de P, i.e. $n_0(P) = \operatorname{Card} \rho(P)$;
- N(P) le radical de P, i.e. $N(P) = \prod_{\alpha \in \rho(P)} (X \alpha)$. Par convention, si P est constant, N(P) = 1.

Partie I - Questions préliminaires.

Soit $P, Q \in \mathbb{C}[X]$ non nuls.

- 1) Comparer $n_0(P)$ et $\deg(P)$ et montrer que $n_0(P) = \deg(N(P))$.
- **2)** Montrer que $n_0(PQ) \le n_0(P) + n_0(Q)$.
- 3) Si P et Q sont premiers entre eux, montrer que $n_0(PQ) = n_0(P) + n_0(Q)$.
- 4) Soit $n \in \mathbb{N}^*$. Exprimer $n_0(P^n)$, $N(P^n)$ et $\deg(P^n)$ en fonction de $n_0(P)$, N(P), $\deg(P)$ et de n.

Partie II - Théorème de Mason.

On démontre ici un résultat découvert par Stothers en 1981, puis (indépendamment, et plus simplement) par Mason en 1984. Une preuve différente de celle proposée ici en a été donnée par Snyder en 2000. Pour plus de références, consulter par exemple le cours d'algèbre de Serge Lang (éd. Dunod pour la traduction française). Voici l'énoncé de ce théorème.

Théorème de Mason. Soit $P, Q, R \in \mathbb{C}[X]$ non tous constants et premiers entre eux dans leur ensemble, tels que P + Q = R. Alors

$$\max(\deg P; \deg Q; \deg R) \leq n_0(PQR) - 1.$$

On définit l'opération de dérivation logarithmique de fractions rationnelles par

$$L: \left\{ \begin{array}{ccc} \mathbb{C}(X) \setminus \{0\} & \longrightarrow & \mathbb{C}(X) \\ f & \longmapsto & \frac{f'}{f} \end{array} \right.$$

Soit donc $P,Q,R\in\mathbb{C}[X]$ trois polynômes non constants, premiers entre eux dans leur ensemble et vérifiant

$$P + Q = R$$
.

On pose

$$f = \frac{P}{R}$$
 et $g = \frac{Q}{R}$.

5) Montrer que P, Q, R sont premiers entre eux deux à deux.

6) Montrer qu'il existe des entiers naturels p,q,r, des nombres complexes $\alpha_1,\ldots,\alpha_p,\ \beta_1,\ldots,\beta_q,\ \gamma_1,\ldots,\gamma_r$ distincts deux à deux, des entiers naturels non nuls $\ell_1,\ldots,\ell_p,\ m_1,\ldots,m_q,\ n_1,\ldots,n_r$ et $\lambda,\mu,\nu\in\mathbb{C}^*$ tels que

$$P = \lambda \prod_{i=1}^{p} (X - \alpha_i)^{\ell_i},$$

$$Q = \mu \prod_{i=1}^{q} (X - \beta_i)^{m_i},$$

$$R = \nu \prod_{i=1}^{r} (X - \gamma_i)^{n_i}.$$

Exprimer p en fonction de $n_0(P)$.

7) Rappeler l'expression de L(P), en fonction des α_i notamment.

En déduire que
$$L(f) = \sum_{i=1}^{p} \frac{\ell_i}{X - \alpha_i} - \sum_{i=1}^{r} \frac{n_i}{X - \gamma_i}$$
.

8) Montrer que fL(f) + gL(g) = 0. En déduire que

$$\frac{Q}{P} = -\frac{L(f)}{L(g)} = -\frac{\sum_{i=1}^{p} \frac{\ell_i}{X - \alpha_i} - \sum_{i=1}^{r} \frac{n_i}{X - \gamma_i}}{\sum_{i=1}^{q} \frac{m_i}{X - \beta_i} - \sum_{i=1}^{r} \frac{n_i}{X - \gamma_i}}.$$

- **9)** Que vaut N(PQR)?
- 10) Montrer que N(PQR)L(f) est un polynôme. Que dire de son degré?
- 11) Montrer que Q divise N(PQR)L(f).
- 12) En déduire une majoration de deg(Q), puis conclure.
- 13) Ce résultat est-il toujours vrai si P, Q, R ne sont pas premiers entre eux?

Partie III - Application : version polynomiale du grand théorème de Fermat.

On cherche à montrer le résultat suivant.

Théorème de Fermat polynomial. Si n est un entier naturel supérieur ou égal à 3, alors l'équation $P^n + Q^n = R^n$ n'admet aucune solution parmi les triplets de polynômes à coefficients entiers relatifs non constants.

On raisonne par l'absurde : soit $n \in \mathbb{N}$ vérifiant $n \ge 3$, soit $P, Q, R \in \mathbb{Z}[X]$, non constants, vérifiant

$$P^n + Q^n = R^n.$$

On admettra bien entendu le grand théorème de Fermat.

14) Montrer que l'on peut supposer que P, Q, R sont premiers entre eux dans leur ensemble (quitte à se ramener à des polynômes à coefficients rationnels).

Dans la suite de cette partie, on suppose donc que P, Q, R sont premiers entre eux dans leur ensemble, et ne sont pas tous constants.

- 15) Proposer une majoration de $n \deg(P)$ en fonction de $\deg(P)$, $\deg(Q)$ et $\deg(R)$.
- 16) Conclure.

Partie IV - Application : théorème de Davenport.

On se propose finalement de montrer le résultat suivant.

Théorème de Davenport. Soit $P,Q\in\mathbb{C}[X]$ non constants tels que $P^3-Q^2\neq 0$. Alors

$$\deg(P^3 - Q^2) \geqslant \frac{1}{2}\deg(P) + 1.$$

Soit donc $P,Q\in\mathbb{C}[X]$ non constants tels que $P^3-Q^2\neq 0$.

17) Démontrer le résultat dans le cas où $deg(P^3) \neq deg(Q^2)$.

Dans la suite, on suppose donc que $deg(P^3) = deg(Q^2)$.

- 18) Démontrer le résultat dans le cas où P et Q sont premiers entre eux.
- 19) Montrer que, si $A, B, F, G \in \mathbb{C}[X]$ ne sont pas constants et si AF et BG sont premiers entre eux, avec $H = AF^3 + BG^2$, alors

$$\deg(F) \leqslant \deg(A) + \deg(B) + 2\deg(H) - 2.$$

20) Conclure.

- FIN -