

COMPUTER SCIENCE AND ENGINEERING

Indian Institute of Technology, Palakkad

CS2180: Artificial Intelligence Lab Lab 2 (Environment I)

11 Jan, 2019

Time: 3 hrs

1. The environment contains numbers from $1, 2, \ldots, n^2 - 1$ and an empty space E (see the diagram below for the case n = 4).

1	2	3	4
5	6	E	7
8	9	10	11
12	13	14	15

Now the empty space E can be moved up, down, left or right (and of course in the corners some of these moves are valid while some others are not). Implement a class which

(a) Can be initialized with a given start state i.e., position of the empty space.

[25]

(b) Takes the actions up, down, right, left as input and then updates the next state of the puzzle.

[15]

(c) Can display the state at any given time.

[10]

Note: This is an example of a dynamic deterministic control task.

- 2. Consider a road of length $3 \, kms$. The time (in minutes) at which vehicles enter the road, and their preferred speed (m/s) are given in the input file 'arrival'. Write a program which
 - (a) Outputs the times (in minutes) at which each vehicle leaves the road.

[20]

(b) Assume that the local governing body has enforced a rule which states that every vehicle on the road should reduce their preferred speed by a factor of $\max\left(0.001,1-\frac{(n-1)}{100}\right)$ when there are n vehicles on the road. Under this constraint, output the times (in minutes) at which each vehicle leaves the road.

[10]

Note: The vehicles are allowed to overtake. This is an example of a *dynamic event driven* system without any control.

3. Consider a top secret defense area modelled in the form of a $n \times n$ grid. Each cell in the grid is monitored by a sensor. Sensors that are turned ON can detect the presence of an intruder in their respective grid. Whereas, sensors that are OFF will not be able to detect intruders. Consider a scenario in which an intruder is moving at random from one grid to another grid every minute, i.e., with equal probability to adjacent positions. Also, consider a security agent that switches ON only k out of the n^2 sensors (sampled uniformly at random) at every minute. The remaining $n^2 - k$ sensors are turned OFF. Given the initial position of the intruder in the $n \times n$ grid, output his location when he is detected by a sensor.

[10]

Note: This is an example of partially observable dynamic system with control.