VE401 Probabilistic Methods in Eng. RC 2

CHEN Xiwen

UM-SJTU Joint Institute

March 14, 2020

Table of contents

Continuous Random Variables

Features of Continuous Random Variables Transformation of Random Variables

Common Distributions

Exponential Distribution
Gamma Distribution
Normal Distribution
Connections of Distributions

Exercises

Features of Continuous Random Variables

Transformation of Random Variables

Common Distributions

Exponential Distribution
Gamma Distribution
Normal Distribution
Connections of Distributions

Exercises

Definition. Let S be a sample space. A *continuous random variable* is a map $X:S\to\mathbb{R}$ together with a function $f_X:\mathbb{R}\to\mathbb{R}$ with the properties that

- (i). $f_X(x) \ge 0$ for all $x \in \mathbb{R}$ and
- (ii). $\int_{-\infty}^{\infty} f_X(x) dx = 1.$

The integral of f_X is interpreted as the probability that X assumes values x in a given range, i.e.,

$$P[a \le X \le b] = \int_a^b f_X(x) dx.$$

The function f_X is called the *probability density function* of random variable X.

Cumulative Distribution

Definition. Let (X, f_X) be a continuous random variable. The cumulative distribution function for X is defined by $F_X : \mathbb{R} \to \mathbb{R}$,

$$F_X(x) := P[X \le x] = \int_{-\infty}^x f_X(y) dy.$$

By the fundamental theorem of calculus, we can obtain the density function from F_X by

$$f_X(x) = F_X'(x).$$

Expectation, Variance, and M.G.F.

Expectation.

$$\mathsf{E}[X] := \int_{\mathbb{R}} x \cdot f_X(x) \mathsf{d} x.$$

Variance.

$$Var[X] := E[(X - E[X])^2] = E[X^2] - E[X]^2.$$

► Moment-generating function.

$$m_X(t) = \mathsf{E}[\mathsf{e}^{tX}] = \int_{-\infty}^{\infty} \mathsf{e}^{tx} f_X(x) \mathrm{d}x.$$

Note. All previous properties about expectation, variance and M.G.F. hold for continuous random variables.

Location of Continuous Distributions

Definitions.

- ▶ The *median* M_X is defined by $P[X \le M_X] = 0.5$.
- ▶ The *mean* is given by E[X].
- ▶ The *mode* x_0 , is the location of the maximum of f_X .

Features of Continuous Random Variables

Transformation of Random Variables

Common Distributions

Exponential Distribution Gamma Distribution Normal Distribution Connections of Distributions

Exercises

Theorem. Let X be a continuous random variable with density f_X . Let $Y = \varphi \circ X$, where $\varphi : \mathbb{R} \to \mathbb{R}$ is strictly monotonic and differentiable. The density for Y is then given by

$$f_Y(y) = f_X(\varphi^{-1}(y)) \cdot \left| \frac{d\varphi^{-1}(y)}{dy} \right|, \quad \text{for } y \in \text{ran } \varphi$$

and

$$f_Y(t) = 0$$
, for $y \notin \operatorname{ran} \varphi$.

Example 1. A model for populations of microscopic organisms is exponential growth. Initially, v organisms are introduced into a large tank of water, and let X be the rate of growth. After time t, the population becomes $Y = ve^{Xt}$. Suppose X is unknown and has a continuous distribution

$$f_X(x) = \left\{ egin{array}{ll} 3(1-x)^2 & ext{for } 0 < x < 1, \ 0, ext{otherwise.} \end{array}
ight.$$

What is the distribution of Y?

Example 1. A model for populations of microscopic organisms is exponential growth. Initially, v organisms are introduced into a large tank of water, and let X be the rate of growth. After time t, the population becomes $Y = ve^{Xt}$. Suppose X is unknown and has a continuous distribution

$$f_X(x) = \left\{ egin{array}{ll} 3(1-x)^2 & ext{for } 0 < x < 1, \\ 0, ext{otherwise.} \end{array}
ight.$$

What is the distribution of Y? Solution. We have $\varphi(x) = ve^{xt}$, and thus

$$\varphi^{-1}(y) = \frac{1}{t} \log \left(\frac{y}{v} \right), \qquad \frac{d\varphi^{-1}(y)}{dy} = \frac{1}{ty}.$$

Example 1. A model for populations of microscopic organisms is exponential growth. Initially, v organisms are introduced into a large tank of water, and let X be the rate of growth. After time t, the population becomes $Y = ve^{Xt}$. Suppose X is unknown and has a continuous distribution

$$f_X(x) = \begin{cases} 3(1-x)^2 & \text{for } 0 < x < 1, \\ 0, \text{otherwise.} \end{cases}$$

What is the distribution of *Y*? Solution (continued). Therefore,

$$f_Y(y) = \left\{ egin{array}{ll} 3\left(1-rac{1}{t}\log\left(rac{y}{v}
ight)
ight)^2 \cdot rac{1}{ty}, & v < y < ve^t, \ 0 & ext{otherwise.} \end{array}
ight.$$

Features of Continuous Random Variables Transformation of Random Variables

Common Distributions

Exponential Distribution

Gamma Distribution Normal Distribution Connections of Distributions

Exercises

Definition. A continuous random variable (X, f_{β}) a *exponential distribution* with parameter β if the probability density function is defined by

$$f_{\beta}(X) = \left\{ egin{array}{ll} eta e^{-eta x}, & x > 0, \ 0, & x \leq 0. \end{array}
ight.$$

Interpretation. The time between successive arrivals of a Poisson process with rate λ follows exponential distribution with parameter $\beta=\lambda$. (Recall $P[T>t]=e^{-\beta t}$.)

Note. Memoryless property:

$$P[X > x + s | X > x] = P[X > s].$$

Mean, variance and M.G.F.

► Mean.

$$\mathsf{E}[X] = \frac{1}{\beta}.$$

► Variance.

$$\mathsf{Var}[X] = \frac{1}{\beta^2}.$$

► M.G.F.

$$m_X: (-\infty, eta) o \mathbb{R}, \qquad m_X(t) = rac{1}{1 - t/eta}.$$

Plots.

 $m_{[^{\beta}]^{+}}$ Plot[Table[PDF[ExponentialDistribution[β], x], $\{\beta$, $\{0.1, 0.2, 0.3\}\}$] // Evaluate, $\{x, 0, 20\}$, Filling \rightarrow Axis]

Example 2. n light bulbs are burning simultaneously and independently, and the lifetime for each bulb follows the $Exp(\beta)$.

- (i). What is the distribution of the length of time Y_1 until the first failure in one of the n bulbs?
- (ii). What is the distribution of the length of time Y_2 after the first failure until a second bulb fails?

Example 2. n light bulbs are burning simultaneously and independently, and the lifetime for each bulb follows the $Exp(\beta)$.

- (i). What is the distribution of the length of time Y_1 until the first failure in one of the n bulbs?
- (ii). What is the distribution of the length of time Y_2 after the first failure until a second bulb fails?

Solution (i). Suppose random variables X_1, \ldots, X_n satisfies that $X_i \sim \text{Exp}(\beta)$, and $Y_1 = \min\{X_1, \ldots, X_n\}$. Then for any t > 0,

$$P[Y_1 > t] = P[X_1 > t, \dots, X_n > t]$$

$$= P[X_1 > t] \times \dots \times P[X_n > t]$$

$$= e^{-n\beta t},$$

indicating a binomial distribution with parameter $n\beta$. What about (ii)?

Features of Continuous Random Variables Transformation of Random Variables

Common Distributions

Exponential Distribution

Gamma Distribution

Normal Distribution

Connections of Distributions

Exercises

Gamma Distribution

Definition. Let $\alpha, \beta \in \mathbb{R}, \alpha, \beta > 0$. A continuous random variable $(X, f_{\alpha,\beta})$ follows a *gamma distribution* with parameters α and β if the probability density function is given by

$$f_{\alpha,\beta}(x) = \left\{ egin{array}{ll} rac{eta^{lpha}}{\Gamma(lpha)} x^{lpha-1} e^{-eta x}, & x > 0, \ 0, & x \leq 0. \end{array}
ight.$$

where $\Gamma(\alpha) = \int_0^\infty z^{\alpha-1} e^{-z} dz$, $\alpha > 0$ is the Euler gamma function.

Interpretation. The time needed for the next r arrivals in a Poisson process with rate λ follows a Gamma distribution with parameters $\alpha=r,\beta=\lambda$.

Gamma Distribution

Mean, variance and M.G.F.

Mean.

$$\mathsf{E}[X] = \frac{\alpha}{\beta}.$$

► <u>Variance</u>.

$$Var[X] = \frac{\alpha}{\beta^2}$$
.

M.G.F.

$$m_X: (-\infty, \beta) \to \mathbb{R}, \qquad m_X(t) = \frac{1}{(1-t/\beta)^{\alpha}}.$$

Gamma Distribution

Plots.

 $m_{\beta} \gg \text{Plot}[\text{Table}[\text{PDF}[\text{GammaDistribution}[\alpha, \beta], x], \{\alpha, \{1, 2\}\}, \{\beta, \{2, 4, 6\}\}] \text{ # Evaluate, } \{x, 0, 20\}, \text{Filling} \rightarrow \text{Axis}]$

Chi-Squared Distribution

Definition. Let $\gamma \in \mathbb{N}$. A continuous random variable (X_{γ}^2, f_X) follows a *chi-squared distribution* with γ degrees of freedom if the probability density function is given by

$$f_{\gamma}(x) = \left\{ egin{array}{ll} rac{1}{2^{lpha}\Gamma(\gamma/2)} x^{\gamma/2-1} \mathrm{e}^{-x/2}, & x>0, \ 0, & x\leq 0, \end{array}
ight.$$

which is a gamma distribution with $\alpha=\gamma/2, \beta=1/2.$ Therefore,

$$\mathsf{E}[X_\gamma^2] = \gamma, \qquad \mathsf{Var}[X_\gamma^2] = 2\gamma.$$

Chi-Squared Distribution

Plots.

 $M^* = Plot[Table[PDF[ChiSquareDistribution[\gamma], x], {\gamma, {3, 5, 7}}] \# Evaluate, {x, 0, 20}, Filling <math>\rightarrow$ Axis]

Features of Continuous Random Variables
Transformation of Random Variables

Common Distributions

Exponential Distribution

Normal Distribution

Connections of Distributions

Exercises

Normal Distribution

Definition. A continuous random variable (X, f_{μ,σ^2}) has the **normal distribution** with mean $\mu \in \mathbb{R}$ and variance $\sigma^2, \sigma > 0$ if the probability density function is given by

$$f_{\mu,\sigma^2} = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2
ight], \qquad x \in \mathbb{R}.$$

Normal Distribution

Mean, variance and M.G.F.

► Mean.

$$E[X] = \mu$$
.

► <u>Variance</u>.

$$Var[X] = \sigma^2.$$

► <u>M.G.F.</u>

$$m_X: \mathbb{R} o \mathbb{R}, \qquad m_X(t) = \exp\left(\mu t + rac{1}{2}\sigma^2 t^2
ight).$$

Normal Distribution

Plots.

 $m_{f^+} = \text{Plot[Table[PDF[NormalDistribution[}\mu, \sigma], x], {}\mu, {-1, 0, 1}}, {}\sigma, {1, 2}}] \text{ }\# \text{ Evaluate, }$ $\{x, -10, 10\}, \text{ Filling} \rightarrow \text{Axis}]$

Standardizing Normal Distribution

Suppose $X \sim \text{Normal}(\mu, \sigma^2)$. Then

$$Z = \frac{X - \mu}{\sigma} \sim \mathsf{Normal}(0, 1),$$

where the normal distribution with mean μ and variance σ^2 is the **standard normal distribution**. Furthermore, the cumulative distribution function of X is given by

$$F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right), \quad F^{-1}(p) = \mu + \sigma\Phi^{-1}(p),$$

where Φ is the cumulative distribution function for the standard normal distribution function.

Features of Continuous Random Variables
Transformation of Random Variables

Common Distributions

Exponential Distribution
Gamma Distribution
Normal Distribution

Connections of Distributions

Exercises

Distributions based on of Poisson Process

Figure: Connections of distributions based on Poisson process.

Application.

- ► To ensure stability of an aircraft, the broken components should be removed, replaced, and repaired immediately
- ▶ When the components are repaired, the replacing component is removed from the aircraft and restored to storage.
- Q: How many components should be stored in case of such usage?

Application (continued).

Application (continued).

► The demand is a random variable R that follows a Poisson distribution

$$f_R(r|t) = \frac{e^{-\lambda t}(\lambda t)^r}{\Gamma(r+1)},$$

where λ is the average number of demands per unit time, and t denotes the lead time.

 \triangleright The lead time t follows a gamma distribution

$$f_T(t) = \frac{\mu e^{-\mu t} (\mu t)^{k-1}}{\Gamma(k)}, \qquad k > 0,$$

which can be seen from $\alpha = k, \beta = \mu$.

Application (continued). Then the probability of r demands during the lead time with parameter k is

$$\begin{split} \rho_{rk} &= \int_0^\infty f_R(r|t) f_T(t) \mathrm{d}t \\ &= \int_0^\infty \frac{e^{-\lambda t} (\lambda t)^r}{\Gamma(r+1)} \times \frac{\mu e^{-\mu t} (\mu t)^{k-1}}{\Gamma(k)} \mathrm{d}t \\ &= \frac{\lambda^t \mu^k}{\Gamma(r+1) \Gamma(k)} \int_0^\infty t^{r+k-1} e^{-(\lambda+\mu)t} \mathrm{d}t \qquad (\text{let } z = (\lambda+\mu)t) \\ &= \frac{\lambda^r \mu^k}{(\lambda+\mu)^{r+k} \Gamma(r+1) \Gamma(k)} \int_0^\infty z^{r+k-1} e^{-z} \mathrm{d}z \\ &= \frac{\lambda^r \mu^k}{(\lambda+\mu)^{r+k}} \times \frac{\Gamma(r+k)}{\Gamma(r+1) \Gamma(k)} = \binom{r+k-1}{k-1} \frac{(\lambda/\mu)^r}{(1+\lambda/\mu)^{r+k}}, \end{split}$$

implying r follows a negative binomial distribution with mean $\lambda k/\mu$ and variance $\lambda k/\mu(1+\lambda/\mu)$.

Features of Continuous Random Variables Transformation of Random Variables

Common Distributions

Exponential Distribution Gamma Distribution Normal Distribution Connections of Distributions

Exercises

Exercises

Exercise 1. Suppose that a certain system contains three components C_1 , C_2 , C_3 that function independently of each other and are connected as series, so that the system fails as soon as one of the components fails. Suppose that the length of life of the C_1 , C_2 , C_3 has the exponential distribution with parameters

$$\beta_1 = 0.001, \qquad \beta_2 = 0.003, \qquad \beta_3 = 0.006,$$

respectively, all measured in hours. Determine the probability that the system will not fail before 100 hours.

Exercises

Exercise 2. Let X_1, X_2, X_3 be independent lifetimes of memory chips. Suppose each X_i follows the normal distribution with mean 300 hours and standard deviation 10 hours. Compute the probability that at least one of the three chips lasts at least 290 hours.

Thanks for your attention!