LUNDS TEKNISKA HÖGSKOLA MATEMATIK

TENTAMENSSKRIVNING Tredimensionell vektoranalys 2014–01–07 kl 14–16

INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar.

1. a) Är

$$\mathbf{u} = \left(2xz - x^2 + y^2, 2xy - y^2 + z^2, 2yz - z^2 + x^2\right)$$
 ett potentialfält i $\mathbb{R}^3 \setminus \{\mathbf{0}\}$? (0.3)

Svar: Ja, ty rot u = 0 och $\mathbb{R}^3 \setminus \{0\}$ är enkelt sammanhängande.

b) Beräkna kurvintegralen

$$\int_{\gamma} (x - yz)dx + (y - xz)dy + (z - xy)dz,$$

där γ är kurvan som ges av $\mathbf{r}(t) = (\sqrt{t}\cos t, e^t \sin t, \sqrt{t}), t \in [0, 2\pi].$ (0.3) Svar: $2\pi \left[U(x, y, z) = \frac{1}{2}(x^2 + y^2 + z^2) - xyz \text{ är en potential } \right]$

c) Beräkna arbetet som fältet $\boldsymbol{u}=(4z,x,2y)$ uträttar längs skärningskurvan mellan ytan $x^2+y^2+z^2=2$ och planet y=1. Kurvan är orienterad medurs sedd från origo. (0.4)

<u>Svar</u>: 4π [skärningskurvan ges av $x^2 + z^2 = 1$, använda t.ex. Stokes' sats]

- **2.** Sätt $F = \text{grad}(zy^2x^2)$.
 - a) Beräkna divergensen och rotationen av \mathbf{F} . (0.2) Svar: div $\mathbf{F} = 2z(x^2 + y^2)$ och rot $\mathbf{F} = \mathbf{0}$.
 - b) Låt K vara den kropp som beskrivas av $x^2 + y^2 + z^2 \le 4$, $z \ge 0$. Beräkna flödet av F ut genom den totala begränsningsytan till kroppen K. (0.4) Svar: $32\pi/3$.
 - c) Beräkna flödet av ${\pmb F}$ upp genom ytan $x^2+y^2+z^2=4,\,z\geq 0.$ (0.4) <u>Svar</u>: $40\pi/3$.