Uncertainty

Chapter 14

Outline

- ♦ Uncertainty
- ♦ Probability
- ♦ Syntax
- ♦ Semantics
- ♦ Inference rules

Uncertainty

Let action A_t = leave for airport t minutes before flight Will A_t get me there on time?

Problems:

- 1) partial observability (road state, other drivers' plans, etc.)
- 2) noisy sensors (KCBS traffic reports)
- 3) uncertainty in action outcomes (flat tire, etc.)
- 4) immense complexity of modelling and predicting traffic

Hence a purely logical approach either

- 1) risks falsehood: " A_{25} will get me there on time"
- or 2) leads to conclusions that are too weak for decision making: " A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

 (A_{1440}) might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)

Methods for handling uncertainty

<u>Default</u> or <u>nonmonotonic</u> logic:

Assume my car does not have a flat tire

Assume A_{25} works unless contradicted by evidence

Issues: What assumptions are reasonable? How to handle contradiction?

Rules with fudge factors:

 $A_{25} \mapsto_{0.3}$ get there on time

 $Sprinkler \mapsto_{0.99} WetGrass$

 $WetGrass \mapsto_{0.7} Rain$

Issues: Problems with combination, e.g., Sprinkler causes Rain??

Probability

Given the available evidence,

 A_{25} will get me there on time with probability 0.04 Mahaviracarya (9th C.), Cardamo (1565) theory of gambling

(Fuzzy logic handles $degree\ of\ truth\ \mathsf{NOT}$ uncertainty e.g., WetGrass is true to degree 0.2)

Probability

Probabilistic assertions *summarize* effects of

<u>laziness</u>: failure to enumerate exceptions, qualifications, etc.

ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:

Probabilities relate propositions to one's own state of knowledge e.g., $P(A_{25}|\text{no reported accidents}) = 0.06$

These are not assertions about the world

Probabilities of propositions change with new evidence:

e.g., $P(A_{25}|\text{no reported accidents}, 5 \text{ a.m.}) = 0.15$

(Analogous to logical entailment status $KB \models \alpha$, not truth.)

Making decisions under uncertainty

Suppose I believe the following:

```
P(A_{25} \text{ gets me there on time}|...) = 0.04
```

$$P(A_{90} \text{ gets me there on time}|...) = 0.70$$

$$P(A_{120} \text{ gets me there on time}|...) = 0.95$$

$$P(A_{1440} \text{ gets me there on time}|...) = 0.9999$$

Which action to choose?

Depends on my preferences for missing flight vs. airport cuisine, etc.

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory

Axioms of probability

For any propositions A, B

- 1. $0 \le P(A) \le 1$
- 2. P(True) = 1 and P(False) = 0
- 3. $P(A \lor B) = P(A) + P(B) P(A \land B)$

de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.

Syntax

Similar to propositional logic: possible worlds defined by assignment of values to <u>random variables</u>.

Propositional or **Boolean** random variables

e.g., Cavity (do I have a cavity?)

Include propositional logic expressions

e.g., $\neg Burglary \lor Earthquake$

Multivalued random variables

e.g., Weather is one of $\langle sunny, rain, cloudy, snow \rangle$

Values must be exhaustive and mutually exclusive

Proposition constructed by assignment of a value:

e.g., Weather = sunny; also Cavity = true for clarity

Syntax contd.

Prior or unconditional probabilities of propositions

e.g.,
$$P(Cavity) = 0.1$$
 and $P(Weather = sunny) = 0.72$ correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:

 $\mathbf{P}(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle \text{ (normalized, i.e., sums to 1)}$

Joint probability distribution for a set of variables gives values for each possible assignment to all the variables $\mathbf{P}(Weather, Cavity) = \mathsf{a}\ 4 \times 2$ matrix of values:

$$Weather = sunny rain cloudy snow \\ Cavity = true \\ Cavity = false$$

Syntax contd.

<u>Conditional</u> or posterior probabilities

e.g., P(Cavity|Toothache) = 0.8

i.e., given that Toothache is all I know

Notation for conditional distributions:

P(Weather|Earthquake) = 2-element vector of 4-element vectors

If we know more, e.g., Cavity is also given, then we have

P(Cavity|Toothache, Cavity) = 1

Note: the less specific belief $remains\ valid$ after more evidence arrives, but is not always useful

New evidence may be irrelevant, allowing simplification, e.g.,

P(Cavity|Toothache, 49ersWin) = P(Cavity|Toothache) = 0.8

This kind of inference, sanctioned by domain knowledge, is crucial

Conditional probability

Definition of conditional probability:

$$P(A|B) = \frac{P(A \land B)}{P(B)} \text{ if } P(B) \neq \emptyset$$

Product rule gives an alternative formulation:

$$P(A \wedge B) = P(A|B)P(B) = P(B|A)P(A)$$

A general version holds for whole distributions, e.g.,

$$\mathbf{P}(Weather, Cavity) = \mathbf{P}(Weather|Cavity)\mathbf{P}(Cavity)$$
 (View as a 4×2 set of equations, not matrix mult.)

Chain rule is derived by successive application of product rule:

$$\mathbf{P}(X_{1},...,X_{n}) = \mathbf{P}(X_{1},...,X_{n-1}) \ \mathbf{P}(X_{n}|X_{1},...,X_{n-1})
= \mathbf{P}(X_{1},...,X_{n-2}) \ \mathbf{P}(X_{n_{1}}|X_{1},...,X_{n-2}) \ \mathbf{P}(X_{n}|X_{1},...,X_{n-1})
= ...
= $\prod_{i=1}^{n} \mathbf{P}(X_{i}|X_{1},...,X_{i-1})$$$

Bayes' Rule

Product rule $P(A \wedge B) = P(A|B)P(B) = P(B|A)P(A)$

$$\Rightarrow \underline{\text{Bayes' rule}} P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Why is this useful???

For assessing diagnostic probability from causal probability:

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

E.g., let M be meningitis, S be stiff neck:

$$P(M|S) = \frac{P(S|M)P(M)}{P(S)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

Note: posterior probability of meningitis still very small!

Normalization

Suppose we wish to compute a posterior distribution over A given B = b, and suppose A has possible values $a_1 \dots a_m$

We can apply Bayes' rule for each value of A:

$$P(A = a_1|B = b) = P(B = b|A = a_1)P(A = a_1)/P(B = b)$$

. . .

$$P(A = a_m | B = b) = P(B = b | A = a_m) P(A = a_m) / P(B = b)$$

Adding these up, and noting that $\sum_{i} P(A = a_i | B = b) = 1$:

$$1/P(B=b) = 1/\sum_{i} P(B=b|A=a_i) P(A=a_i)$$

This is the <u>normalization factor</u>, constant w.r.t. i, denoted α :

$$\mathbf{P}(A|B=b) = \alpha \mathbf{P}(B=b|A)\mathbf{P}(A)$$

Typically compute an unnormalized distribution, normalize at end

e.g., suppose
$$\mathbf{P}(B=b|A)\mathbf{P}(A)=\langle 0.4,0.2,0.2\rangle$$
 then $\mathbf{P}(A|B=b)=\alpha\langle 0.4,0.2,0.2\rangle=\frac{\langle 0.4,0.2,0.2\rangle}{0.4+0.2+0.2}=\langle 0.5,0.25,0.25\rangle$

Conditioning

Introducing a variable as an extra condition:

$$P(X|Y) = \sum_{z} P(X|Y, Z=z) P(Z=z|Y)$$

Intuition: often easier to assess each specific circumstance, e.g., P(RunOver|Cross)

- = P(RunOver|Cross, Light = green)P(Light = green|Cross)
- + P(RunOver|Cross, Light = yellow)P(Light = yellow|Cross)
- + P(RunOver|Cross, Light = red)P(Light = red|Cross)

When Y is absent, we have summing out or marginalization:

$$P(X) = \sum_{z} P(X|Z=z) P(Z=z) = \sum_{z} P(X,Z=z)$$

In general, given a joint distribution over a set of variables, the distribution over any subset (called a <u>marginal</u> distribution for historical reasons) can be calculated by summing out the other variables.

Full joint distributions

A <u>complete probability model</u> specifies every entry in the joint distribution for all the variables $\mathbf{X} = X_1, \dots, X_n$

I.e., a probability for each possible world $X_1 = x_1, \dots, X_n = x_n$

(Cf. complete theories in logic.)

E.g., suppose Toothache and Cavity are the random variables:

	Toothache = true	Toothache = false
Cavity = true	0.04	0.06
Cavity = false	0.01	0.89

Possible worlds are mutually exclusive $\Rightarrow P(w_1 \land w_2) = 0$ Possible worlds are exhaustive $\Rightarrow w_1 \lor \cdots \lor w_n$ is Truehence $\sum_i P(w_i) = 1$

Full joint distributions contd.

- 1) For any proposition ϕ defined on the random variables $\phi(w_i)$ is true or false
- 2) ϕ is equivalent to the disjunction of w_i s where $\phi(w_i)$ is true

Hence
$$P(\phi) = \sum_{\{w_i: \phi(w_i)\}} P(w_i)$$

I.e., the unconditional probability of any proposition is computable as the sum of entries from the full joint distribution

Conditional probabilities can be computed in the same way as a ratio:

$$P(\phi|\xi) = \frac{P(\phi \land \xi)}{P(\xi)}$$

E.g.,

$$P(Cavity|Toothache) = \frac{P(Cavity \land Toothache)}{P(Toothache)} = \frac{0.04}{0.04 + 0.01} = 0.8$$

Inference from joint distributions

Typically, we are interested in the posterior joint distribution of the <u>query variables</u> ${\bf Y}$ given specific values e for the <u>evidence variables</u> ${\bf E}$

Let the <u>hidden variables</u> be $\mathbf{H} = \mathbf{X} - \mathbf{Y} - \mathbf{E}$

Then the required summation of joint entries is done by summing out the hidden variables:

$$P(Y|E=e) = \alpha P(Y, E=e) = \alpha \Sigma_h P(Y, E=e, H=h)$$

The terms in the summation are joint entries because Y, E, and H together exhaust the set of random variables

Obvious problems:

- 1) Worst-case time complexity $O(d^n)$ where d is the largest arity
- 2) Space complexity $O(d^n)$ to store the joint distribution
- 3) How to find the numbers for $O(d^n)$ entries???