Teorema de Kleene

Clase 06

IIC 2223

Prof. Cristian Riveros

Recordatorio: NFA con ϵ -transiciones

Definición

Un autómata finito no-determinista con ϵ -transiciones (ϵ -NFA) es:

$$A = (Q, \Sigma, \Delta, I, F)$$

- Q es un conjunto finito de estados.
- Σ es el alfabeto de input.
- $I \subseteq Q$ es un conjunto de estados iniciales.
- $F \subseteq Q$ es el conjunto de estados finales (o aceptación).

+

■ $\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ es la relación de transición.

Recordatorio: NFA con ϵ -transiciones

Mapa actual de nuestros modelos de computación

Todos definen el mismo conjunto de lenguajes

Outline

Desde Expresiones a Autómatas

Desde Autómatas a Expresiones

Outline

Desde Expresiones a Autómatas

Desde Autómatas a Expresiones

Para cada $R \in ExpReg$ construiremos un ϵ -NFA A_R inductivamente

Construcción inductiva

Para cada $R \in ExpReg$, construimos un ϵ -NFA A_R :

$$\mathcal{A}_{\textit{R}} \; = \; \left(\textit{Q}, \Sigma, \Delta, \{\textit{q}_{0}\}, \{\textit{q}_{\textit{f}}\}\right)$$

tal que
$$\mathcal{L}(R) = \mathcal{L}(\mathcal{A}_R)$$
.

1. si R = a, para alguna letra $a \in \Sigma$:

$$A_R: \longrightarrow \bigcirc \xrightarrow{a} \bigcirc$$

2. si $R = \epsilon$:

$$A_R: \rightarrow \bigcirc$$

3. si $R = \emptyset$:

$$A_R: \rightarrow \bigcirc$$

Construcción inductiva

Para cada $R \in \text{ExpReg}$, construimos un $\epsilon\text{-NFA}$ \mathcal{A}_R tal que $\mathcal{L}(R) = \mathcal{L}(\mathcal{A}_R)$:

4. si $R = (R_1 + R_2)$ donde R_1 y R_2 son expresiones regulares.

¿cómo construimos un autómata $A_{R_1+R_2}$ para la expresión R_1+R_2 ?

Construcción inductiva

Para cada $R \in \text{ExpReg}$, construimos un $\epsilon\text{-NFA}$ \mathcal{A}_R tal que $\mathcal{L}(R) = \mathcal{L}(\mathcal{A}_R)$:

4. si $R = (R_1 + R_2)$ donde R_1 y R_2 son expresiones regulares.

¿cómo construimos un autómata $A_{R_1+R_2}$ para la expresión $R_1 + R_2$?

Construcción inductiva: $R = (R_1 + R_2)$

Por inducción, sea A_{R_1} y A_{R_2} los ϵ -NFA para R_1 y R_2 resp., tal que:

$$\mathcal{A}_{R_1} = (Q_1, \Sigma, \Delta_1, \{q_0^1\}, \{q_f^1\})$$

Definimos el ϵ -NFA $\mathcal{A}_{R_1+R_2} = (Q, \Sigma, \Delta, \{q_0\}, \{q_f\})$ tal que:

$$Q = Q_1 \uplus Q_2 \uplus \{q_0, q_f\}$$

Proposición

Si
$$R = (R_1 + R_2)$$
, entonces $\mathcal{L}(R_1 + R_2) = \mathcal{L}(\mathcal{A}_{R_1 + R_2})$.

Construcción inductiva

Para cada $R \in \text{ExpReg}$, construimos un ϵ -NFA A_R tal que $\mathcal{L}(R) = \mathcal{L}(A_R)$:

5. Si $R = (R_1 \cdot R_2)$ donde R_1 y R_2 son expresiones regulares.

¿cómo construimos un autómata $A_{R_1 \cdot R_2}$ para la expresión $R_1 \cdot R_2$?

Construcción inductiva

Para cada $R \in \text{ExpReg}$, construimos un $\epsilon\text{-NFA}$ \mathcal{A}_R tal que $\mathcal{L}(R) = \mathcal{L}(\mathcal{A}_R)$:

5. Si $R = (R_1 \cdot R_2)$ donde R_1 y R_2 son expresiones regulares.

¿cómo construimos un autómata $A_{R_1 \cdot R_2}$ para la expresión $R_1 \cdot R_2$?

Construcción inductiva: $R = (R_1 \cdot R_2)$

Por inducción, sea \mathcal{A}_{R_1} y \mathcal{A}_{R_2} los ϵ -NFA para R_1 y R_2 resp., tal que:

$$\mathcal{A}_{R_1} = (Q_1, \Sigma, \Delta_1, \{q_0^1\}, \{q_f^1\})$$

$$\mathcal{A}_{R_2} = (Q_2, \Sigma, \Delta_2, \{q_0^2\}, \{q_f^2\})$$

Definimos el ϵ -NFA $\mathcal{A}_{R_1 \cdot R_2} = (Q, \Sigma, \Delta, \{q_0^1\}, \{q_f^2\})$ tal que:

$$Q = Q_1 \uplus Q_2$$

Proposición

Si
$$R = (R_1 \cdot R_2)$$
, entonces $\mathcal{L}(R_1 \cdot R_2) = \mathcal{L}(\mathcal{A}_{R_1 \cdot R_2})$.

Construcción inductiva

Para cada $R \in \text{ExpReg}$, construimos un $\epsilon\text{-NFA}$ \mathcal{A}_R tal que $\mathcal{L}(R) = \mathcal{L}(\mathcal{A}_R)$:

6. si $R = (R_1^*)$ donde R_1 es una expresión regular.

¿cómo construimos un autómata $\mathcal{A}_{(R_1)^*}$ para la expresión $(R_1)^*$?

Construcción inductiva

Para cada $R \in \text{ExpReg}$, construimos un $\epsilon\text{-NFA}$ \mathcal{A}_R tal que $\mathcal{L}(R) = \mathcal{L}(\mathcal{A}_R)$:

6. si $R = (R_1^*)$ donde R_1 es una expresión regular.

¿cómo construimos un autómata $\mathcal{A}_{(R_1)^*}$ para la expresión $(R_1)^*$?

Construcción inductiva: $R = (R_1)^*$

Por inducción, sea \mathcal{A}_{R_1} el ϵ -NFA para R_1 , tal que:

•
$$\mathcal{A}_{R_1} = (Q_1, \Sigma, \Delta_1, \{q_0^1\}, \{q_f^1\}).$$

Definimos el ϵ -NFA $\mathcal{A}_{(R_1)^*} = (Q, \Sigma, \Delta, \{q_0\}, \{q_0\})$ tal que:

- $Q = Q_1 \uplus \{q_0\}$
- $\Delta = \Delta_1 \uplus \{(q_0, \epsilon, q_0^1), (q_f^1, \epsilon, q_0)\}$

Proposición

Si
$$R = (R_1)^*$$
, entonces $\mathcal{L}((R_1)^*) = \mathcal{L}(\mathcal{A}_{(R_1)^*})$.

ExpReg $\subseteq \epsilon$ -NFA

Teorema

Para todo $R \in \mathsf{ExpReg}$, existe un $\epsilon\text{-NFA}\ \mathcal{A}_R$ tal que:

$$\mathcal{L}(R) = \mathcal{L}(\mathcal{A}_R)$$

En otras palabras, ExpReg $\subseteq \epsilon$ - NFA.

¿de qué tamaño es A_R con respecto a R?

ExpReg $\subseteq \epsilon$ -NFA

Ejemplo de la construcción

Construya un autómata desde la siguiente expresión regular:

$$(a^*b+a)^*$$

Outline

Desde Expresiones a Autómatas

Desde Autómatas a Expresiones

Todo autómata se puede transformar en un ExpReg

Dado un autómata finito no-determinista (spdg. con un estado inicial):

$$\mathcal{A} = (Q, \Sigma, \Delta, q_0, F)$$

Para $X \subseteq Q$ y $p, q \in Q$, considerar el conjunto:

$$\alpha_{p,q}^X \subseteq \Sigma^*$$

 $w = a_1 \dots a_n \in \alpha_{p,q}^X$ si, y solo si, existe una ejecución:

$$\rho: p_0 \stackrel{a_1}{\to} p_1 \stackrel{a_2}{\to} \dots \stackrel{a_n}{\to} p_n$$

- 1. $(p_i, a_{i+1}, p_{i+1}) \in \Delta$ para todo $i \in [0, n-1]$,
- 2. $p_0 = p$,
- 3. $p_n = q$, y
- 4. $p_i \in X$ para todo $i \in [1, n-1]$.

Dado un autómata finito no-determinista (spdg. con un estado inicial):

$$\mathcal{A} = (Q, \Sigma, \Delta, q_0, F)$$

Para $X \subseteq Q$ y $p, q \in Q$, considerar el conjunto:

$$\alpha_{p,q}^X \subseteq \Sigma^*$$

"el conjunto de todas las palabras w tal que existe un camino (i.e. ejecución) desde p a q etiquetado por w y todos los estados en este camino están en X, con la posible excepción de p y q."

 $\lambda \alpha_{p,q}^{X}$ es un lenguaje regular?

Dado un autómata finito no-determinista (spdg. con un estado inicial):

$$\mathcal{A} = (Q, \Sigma, \Delta, q_0, F)$$

Para $X \subseteq Q$ y $p, q \in Q$, considerar el conjunto:

$$\alpha_{p,q}^X \subseteq \Sigma^*$$

¿cómo podemos definir $\mathcal{L}(\mathcal{A})$ en términos de $\alpha_{p,q}^X$?

Lema

$$\mathcal{L}(\mathcal{A}) = \bigcup_{q \in F} \alpha_{q_0,q}^Q$$

Dado un autómata finito no-determinista (spdg. con un estado inicial):

$$A = (Q, \Sigma, \Delta, q_0, F)$$

Estrategia (algoritmo de McNaughton-Yamada)

1. Para cada $lpha_{p,q}^X$, definir inductivamente una expresión regular $R_{p,q}^X$:

$$\mathcal{L}(R_{p,q}^X) = \alpha_{p,q}^X$$

2. Para $F = \{p_1, \dots, p_k\}$ definir la expresión regular:

$$R_{\mathcal{A}} = R_{q_0,p_1}^Q + R_{q_0,p_2}^Q + \ldots + R_{q_0,p_k}^Q$$

3. Demostrar que:

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(R_{\mathcal{A}})$$

Definición inductiva de $R_{p,q}^X$

Caso base: $X = \emptyset$

Sea $a_1, \ldots, a_k \in \Sigma$ todos las letras tal que:

$$(p,a_i,q) \in \Delta$$

Si $p \neq q$, entonces:

$$R_{p,q}^{\varnothing} \stackrel{\text{def}}{\equiv} \left\{ \begin{array}{ll} a_1 + \dots + a_k & \text{ si } k \ge 1 \\ \varnothing & \text{ si } k = 0 \end{array} \right.$$

Si p = q, entonces:

$$R_{p,q}^{\varnothing} \stackrel{\text{def}}{\equiv} \left\{ \begin{array}{ll} a_1 + \dots + a_k + \epsilon & \text{ si } k \ge 1 \\ \epsilon & \text{ si } k = 0 \end{array} \right.$$

Definición inductiva de $R_{p,q}^X$

Caso general: $X \neq \emptyset$

Escoger un $r \in X$ cualquiera y construir:

$$R_{p,q}^{X} \stackrel{\mathsf{def}}{=} R_{p,q}^{X-\{r\}} + R_{p,r}^{X-\{r\}} \cdot \left(R_{r,r}^{X-\{r\}}\right)^* \cdot R_{r,q}^{X-\{r\}}$$

Proposición

Para todo $X \subseteq Q$ y $p, q \in Q$:

$$\mathcal{L}(R_{p,q}^X) = \alpha_{p,q}^X$$

Corolario

$$\mathcal{L}(\mathcal{A}) = \mathcal{L}(R_{\mathcal{A}})$$

Ejemplo de Algoritmo MNY

Considere el autómata:

Ejemplo de Algoritmo MNY

Considere el autómata:

$$\begin{array}{c|ccccc}
R^{\{1,2\}} & 1 & 2 \\
\hline
1 & a^* + a^* b (\epsilon + a^+ b)^* a^+ & a^* b + a^* b (\epsilon + a^+ b)^* (\epsilon + a^+ b) \\
2 & a^+ + (\epsilon + a^+ b)(\epsilon + a^+ b)^* a^+ & (\epsilon + a^+ b) + (\epsilon + a^+ b)(\epsilon + a^+ b)^* (\epsilon + a^+ b)
\end{array}$$

$$\begin{array}{c|cccc}
R^{\{1,2\}} & 1 & 2 \\
\hline
1 & a^*(ba^+)^* & (a^*b)(a^+b)^* \\
2 & (a^+b)^*a^+ & (a^+b)^*
\end{array}$$