DDX MANUAL

Lucas Rodrigues Estorck Pinto Edição 2024

SUMÁRIO

SUMÁRIO	2
INTRODUÇÃO	
INTERFACE	
USABILIDADE	
ENTRADAS E SAÍDAS	
NOTAÇÕES	

INTRODUÇÃO

A ferramenta DDX é uma ferramenta que tem como objetivo auxiliar iniciantes na disciplina de cálculo diferencial e integral I, em que suas telas são de fácil navegação e possuem explicações e exemplos de todos os principais conceitos trabalhados na disciplina. Portanto, este documento tem como objetivo tirar qualquer possível dúvida na usabilidade do software. Qualquer erro de digitação, conceitual ou, caso o leitor tenha sugestões acerca do desenvolvimento do software ou do manual, por favor entre em contato por um dos meios a seguir:

- Lucas Rodrigues Estorck Pinto (Autor) lucas.pinto@grad.iprj.uerj.br
- Silvia Mara da Costa Campos (Orientadora) silviacampos@iprj.uerj.br
- Germano Amaral Monerat (Orientador) monerat@iprj.uerj.br

Gostaria de agradecer aos meus orientadores, que estão guiando de maneira magistral este projeto nobre e também, dedicar este algoritmo a minha irmã, que um dia ela possa usufruir dessa ferramenta.

INTERFACE

Ao abrir o programa, o usuário irá se deparar com a seguinte tela:

DDX	o x
Selecione uma opção:	
Domínio e Imagem de Funções	
Raiz	
Limites	
Derivadas	
Gráficos	
Integrais	
Manual do programa	

Figura 1 - Aba principal do programa Fonte - O autor

Nesta tela, o usuário poderá escolher qual seção irá explorar, como por exemplo, a seção de derivadas. Veja a seguir a aba das derivadas:

Figura 2 - Aba das derivadas

Fonte - O autor

No geral, toda a interface do DDX segue este mesmo padrão, focando sempre na simplicidade e na clareza do que é mostrado na imagem. Tudo isso, tem como objetivo ajudar o usuário a ter o melhor desempenho possível em usabilidade, diferentemente de alguns outros algoritmos, em que, em alguns casos, o usuário precisa acessar o terminal para fazer alterações diretamente no código. Curiosidade: O primeiro algoritmo do DDX, era inteiramente manual e exigia conhecimentos não só de programação, mas das bibliotecas usadas.

USABILIDADE

Nesta seção, irei demonstrar um exemplo de utilização do programa, e, ao final, disponibilizarei um vídeo no "YouTube", para caso haja dúvidas após a leitura desta seção.

Vamos supor, que o usuário precisa realizar um exercício de integrais definidas, e gostaria de verificar o resultado de uma questão em que ele ficou com dúvidas, normalmente, ele teria que utilizar softwares como Maxima e Maple, em que de primeira mão, a curva de aprendizado pode ser grande.

A função dada foi: $\int\limits_{1}^{\circ}\sqrt[3]{x}\,dx$, observe, que em estudantes mais atentos, por se tratar de uma raíz cúbica, mesmo que simples, alguns alunos possuem dificuldades em assimilar que, se trata de uma integral de potência, veja a solução analítica:

Figura 3 Fonte - O autor

Agora, veja o resultado que o usuário iria conferir caso usasse o DDX.

Figura 4 - Resultado integral

Fonte - O autor

Dito isso, podemos conferir a precisão do programa. Caso haja algum tipo de dúvida, será anexado um vídeo de usabilidade do programa ao fim do documento.

ENTRADAS E SAÍDAS

Aqui, teremos alguns exemplos de entradas e resultados esperados do programa:

1- Integral indefinida de sen(x):

Figura 5 - Resultado integral indefinida Fonte - O autor

Agora, caso queiramos que seja definida, precisamos apenas inserir os limites inferior e superior:

Figura 6 - Resultado integral definida Fonte - O autor

2- Cálculo da Derivada de $e^sen(x)$ no ponto x = 2:

Figura 7 - Resultado da derivada Fonte - O autor

Caso o usuário deseje ver o gráfico da função e da reta tangente ao ponto escolhido, ele pode clicar no último botão:

Figura 8 - Resultado do gráfico Fonte - O autor

NOTAÇÕES

No geral, as notações da ferramenta são exatamente iguais à notação do python, visto que a ferramenta é construída em Python, porém, como alguns usuários podem não ter algum domínio na linguagem, seguem alguns exemplos de notação para facilitar o usuário.

```
- sen(x) -> sin(x)

- cos(x) -> cos(x)

- tan(x) -> tan(x)

- senh(x) -> sinh(x)

- \sqrt{x} -> root(x, indice)

- e^x -> exp(x)
```

Demais notações serão explicitadas no vídeo disponível ao fim da documentação.

CONCLUSÃO

Este pequeno manual visou tirar dúvidas simples sobre os primeiros passos do programa, além de dar uma luz a respeito de suas capacidades de cálculo, caso haja qualquer tipo de dúvida, provavelmente será sanada no vídeo abaixo, caso não seja, sinta-se à vontade para entrar em contato nos e-mails fornecidos.

https://youtu.be/iQSe5rcx HU