HW1-2023

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Q1> Video game sales data (https://www.kaggle.com/gregorut/videogamesales), consisting of rank, genre, publisher, and global sales amount (in millions) worldwide. Using Python create a Pie chart and find out which genre accounts for a high portion of global sales in a video game. This would help understand the potential needs of the video game that will be published by the company.

```
data = pd.read_csv('vgsales.csv')
data.head()
```

	Rank	Name	Platform	Year	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
0	1	Wii Sports	Wii	2006.0	Sports	Nintendo	41.49	29.02	3.77	8.46	82.74
1	2	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
2	3	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.85	12.88	3.79	3.31	35.82
3	4	Wii Sports Resort	Wii	2009.0	Sports	Nintendo	15.75	11.01	3.28	2.96	33.00
4	5	Pokemon Red/Pokemon Blue	GB	1996.0	Role- Playing	Nintendo	11.27	8.89	10.22	1.00	31.37

```
print(data.isnull().sum())
     Rank
                       0
    Name
                       0
    Platform
                       0
                     271
     Year
    Genre
                       9
    Publisher
                      58
    NA_Sales
                       0
    EU Sales
                       0
    JP_Sales
                       0
    Other_Sales
                       0
    Global_Sales
                       0
    dtype: int64
print(data.duplicated().sum())
     0
data.shape
     (16598, 11)
sales_by_genre = data.groupby('Genre')['Global_Sales'].sum()
sales_by_genre = sales_by_genre.sort_values(ascending=False)
print("No. of genres: ", len(sales_by_genre.index), "\n")
print(sales_by_genre)
    No. of genres: 12
     Genre
    Action
                     1751.18
    Sports
                    1330.93
     Shooter
                     1037.37
    Role-Playing
                     927.37
    Platform
                      831.37
    Misc
                      809.96
                      732.04
    Racing
    Fighting
                      448.91
                      392.20
    Simulation
    Puzzle
                      244.95
    Adventure
                      239.04
                      175.12
    Strategy
    Name: Global_Sales, dtype: float64
```

plt.pie(sales_by_genre, labels=sales_by_genre.index, autopct='%1.2f%%')
plt.title('Global Video Game Sales by Genre', size=20, fontweight="bold")
plt.show()

Global Video Game Sales by Genre

=> 'Action' genre acounts for the highest portion of global sales.

▼ QUESTION 2

data = pd.read_csv('SeoulBikeData.csv')
data.head()

	Date	Rented Bike Count	Hour	Temperature(°C)	Humidity(%)	Wind speed (m/s)	Visibility (10m)	Dew point temperature(°C)	Solar Radiation (MJ/m2)	Rainfall(mm)	Snowf (
(01/12/2017	254	0	-5.2	37	2.2	2000	-17.6	0.0	0.0	
1	01/12/2017	204	1	-5.5	38	8.0	2000	-17.6	0.0	0.0	
2	2 01/12/2017	173	2	-6.0	39	1.0	2000	-17.7	0.0	0.0	
3	01/12/2017	107	3	-6.2	40	0.9	2000	-17.6	0.0	0.0	
4	01/12/2017	78	4	-6.0	36	2.3	2000	-18.6	0.0	0.0	

print(data.isnull().sum())

Date Rented Bike Count 0 Temperature(°C) 0 Humidity(%) 0 Wind speed (m/s) Visibility (10m) 0 Dew point temperature(°C) Solar Radiation (MJ/m2) Rainfall(mm) 0 Snowfall (cm) 0 Seasons 0 0 Functioning Day dtype: int64

print(data.duplicated().sum())

0

```
data.shape (8760, 14)
```

Q1- What is the trend of rented bike count over the months?

```
# extract Month from Date column
data['Month'] = pd.to_datetime(data['Date'], format='%d/%m/%Y').dt.month

# line chart of rented bike count over the months
plt.figure(figsize=(10,5))
sns.lineplot(x='Month', y='Rented Bike Count', data=data, color='purple', errorbar=None)
plt.title('Rented Bike Count over Months', size=20, fontweight="bold")
plt.xlabel('Month')
plt.ylabel('Rented Bike Count')
plt.show()
```



```
# line chart of temperature over months
plt.figure(figsize=(10,5))
sns.lineplot(x='Month', y='Temperature(°C)', data=data, color='purple', errorbar=None)
plt.title('Temperature over Months', size=20, fontweight="bold")
plt.xlabel('Month')
plt.ylabel('Temperature (°C)')
plt.show()
```

Temperature over Months

Rented Bike Count by Season


```
bike_data_holiday = data.groupby('Holiday').sum(numeric_only=True).reset_index()
plt.figure(figsize=(6,4))
plt.bar(bike_data_holiday['Holiday'], bike_data_holiday['Rented Bike Count'], color='purple')
plt.title('Rented Bike Count by Holiday', size=20, fontweight="bold")
plt.xlabel('Holiday')
plt.ylabel('Rented Bike Count')
plt.ticklabel_format(axis='y', style='plain')
plt.show()
```



```
# stacked bar chart of rented bike count by holiday
bike_data_holiday = data.groupby(['Holiday', 'Seasons'])['Rented Bike Count'].sum().reset_index()
plt.figure(figsize=(10,5))
# pivot table
bike_data_holiday = bike_data_holiday.pivot(index='Seasons', columns='Holiday', values='Rented Bike Count')
bike_data_holiday.plot(kind='bar', stacked=True, figsize=(10,5), color=['yellow', 'purple'])
plt.title('Rented Bike Count by Holiday and Season', size=20, fontweight="bold")
```

```
plt.xlabel('Season')
plt.ylabel('Rented Bike Count')
plt.ticklabel_format(axis='y', style='plain')
plt.show()
```

<Figure size 1000x500 with 0 Axes>


```
# scatter plot of rented bike count and temperature
plt.figure(figsize=(10,5))
\verb|sns.scatterplot(x='Temperature(°C)', y='Rented Bike Count', data=data)| \\
plt.title('Rented Bike Count vs. Temperature',)
plt.xlabel('Temperature (°C)')
plt.ylabel('Rented Bike Count')
plt.show()
```



```
# scatter plot of rented bike count and rainfall
plt.figure(figsize=(10,5))
\verb|sns.scatterplot(x='Rainfall(mm)', y='Rented Bike Count', data=data)|\\
plt.title('Rented Bike Count vs. Rainfall', size=20, fontweight="bold")
plt.xlabel('Rainfall (mm)')
plt.ylabel('Rented Bike Count')
```


ANSWER FOLLOWING QUESTIONS

Q2- Which seasons show greater demand for the rented bike than other seasons?

SUMMER

Q3- Is the demand for rented bikes affected by the holiday season?

DECREASES IN HOLIDAYS

Q4- Is there a relationship between the rented bike demand and temperature?

PEAK DEMAND AT ROOM TEMP 25 DEGREES

Q5- Is there a relationship between the rented bike demand and the amount of rainfall?

LOW RAINFALL HAS HIGH DEMAND

▼ QUESTION 3

concatenate datasets for may and april
data = pd.concat([pd.read_csv('CallVoiceQuality_Data_2018_May.csv'),pd.read_csv('CallVoiceQualityExperience-2018-April.csv')])
data.head()

	Operator	In Out Travelling	Network Type	Rating	Call Drop Category	Latitude	Longitude	State Name	<pre>Indoor_Outdoor_Travelling</pre>
0	RJio	Travelling	4G	5.0	Satisfactory	-1.000000	-1.000000	NaN	NaN
1	RJio	Travelling	4G	2.0	Poor Voice Quality	28.593588	77.164276	NCT	NaN
2	BSNL	Indoor	3G	5.0	Satisfactory	-1.000000	-1.000000	NaN	NaN
3	BSNL	Indoor	3G	5.0	Satisfactory	-1.000000	-1.000000	NaN	NaN

missing values in the 'Indoor_Outdoor_Travelling' column replaced with the values from the 'In Out Travelling' column
data['Indoor_Outdoor_Travelling'].fillna(data['In Out Travelling'], inplace=True)
data.drop('In Out Travelling', axis=1, inplace=True)
data.head()

	operator	Network	туре	Kating	Call Drop Category	Latitude	Longitude	State Name	<pre>Indoor_Outdoor_Travelling</pre>
0	RJio		4G	5.0	Satisfactory	-1.000000	-1.000000	NaN	Travelling
1	RJio		4G	2.0	Poor Voice Quality	28.593588	77.164276	NCT	Travelling
print("Or	riginal da	taframe	shape"	, data.	shape)				
Orig	ginal data	frame sh	ape (6	6685, 8)				
print(dat	a.isnull().sum())							
	rator			0					
	vork Type			1					
Rati	_			1					
	l Drop Cat itude	egory		1					
	ituae gitude			1					
	te Name			17121					
	or Outdoo	r Travel	ling	1/121					
	pe: int64		8	_					
print(dat	a.duplica	ted().su	m())						
3216	91								
data = da	rows with ata.dropna o_duplicat	()			ve duplicates				
print("Cl	leaned dat	aframe s	hape",	data.sI	nape)				
Clea	aned dataf	rame sha	pe (33	886, 8)					

vertical bar chart of avg call quality rating per operator
pivot_table = pd.pivot_table(data, values='Rating', index='Operator')
plt.bar(pivot_table.index, pivot_table['Rating'], color='purple')
plt.title('Average Call Quality per Operator', size=20, fontweight="bold")

vertical bar chart of call quality level (rating) per state in India
pivot_table = pd.pivot_table(data, values='Rating', index='State Name')
plt.bar(pivot_table.index, pivot_table['Rating'], color='purple')

MAL

other

PCOMM

Operator

0.5

0.0

RIIO

```
plt.title('Quality Level per State', size=20, fontweight="bold")
plt.xlabel('State')
plt.xticks(rotation=90)
plt.ylabel('Quality Rated By Customers')
plt.show()
```


vertical bar chart showing relationship between call quality (rating) and network type
pivot_table = pd.pivot_table(data, values='Rating', index='Network Type')
plt.bar(pivot_table.index, pivot_table['Rating'], color='purple')
plt.title('Relationship between Call Quality and Network Type', size=20, fontweight="bold")
plt.xlabel('Network Type')
plt.ylabel('Quality Rated By Customers')
plt.show()

Relationship between Call Quality and Network Type

horizontal bar chart of avg call quality rate per call drop category
avg_quality = data.groupby('Call Drop Category')['Rating'].mean()
plt.barh(avg_quality.index, avg_quality.values, color='purple')
plt.title('Average Call Quality Rate per Call Category', size=20, fontweight="bold")
plt.xlabel('Average Quality Rating')
plt.ylabel('Call Drop Category')
plt.show()

heatmap between State, Network Type and Rating
pivot_table = pd.pivot_table(data, values='Rating', index='State Name', columns='Network Type')
sns.heatmap(pivot_table, cmap='coolwarm')
plt.title('Heatmap between State, Network Type and Rating', size=20, fontweight="bold")
plt.xlabel('Network Type')
plt.ylabel('State')
plt.show()

Heatmap between State, Network Type and Rating


```
# vertical bar chart of average call quality rate per Indoor Outdoor Travelling
pivot_table = pd.pivot_table(data, values='Rating', index='Indoor_Outdoor_Travelling')
plt.bar(pivot_table.index, pivot_table['Rating'], color='purple')
plt.title('Average Call Quality Rate per Indoor Outdoor Travelling', size=20, fontweight="bold")
plt.xlabel('Indoor Outdoor Travelling')
plt.ylabel('Quality Rated By Customers')
plt.show()
```

Average Call Quality Rate per Indoor Outdoor Travelling

ANSWER FOLLOWING QUESTIONS

Q1- What is the level of overall call quality? (by the operator, by the network)

HIGHEST BY TATA IN 4G

Q2- Which operators provide low-value services

RCOMM

Q3- What is the frequency of poor quality calls?

answer

Q4- Based on the analysis results, what are the suggestions to improve call quality?

INCREASE TOWER BANDWIDTH IN SEVERAL STATES, SWITCH TO 4G

• ,