Session 10: Linear regression

Optimization and Computational Linear Algebra for Data Science

Marylou Gabrié (based on material by Léo Miolane)

Contents

- 1. Ordinary least squares
- 2. Penalized linear regression
- 3. Matrix norms

Introduction

- We have n « feature vectors » $a_1, \ldots, a_n \in \mathbb{R}^d$.
- **Each** point a_i comes with a « target variable » $y_i \in \mathbb{R}$.
- **Goal.** Find a linear relation between the a_i s and the y_i s:

Prediction:

Can we have an intercept?

Solving Ax = y is a bad idea

The system Ax = y may have:

No solution.

Infinitely many solutions.

1. Ordinary least squares

1. Ordinary least squares 4/20

Least squares problem

The Moore-Penrose pseudo-inverse

What if $A^{\top}A$ is not invertible?

Definition

Let $A = U\Sigma V^\mathsf{T}$ be the SVD of A. The matrix $A^\dagger \stackrel{\mathrm{def}}{=} V\Sigma' U^\mathsf{T}$ is called the **(Moore-Penrose) pseudo-inverse** of A, where $\Sigma' \in \mathbb{R}^{d \times n}$ is

$$\Sigma'_{i,i} = \begin{cases} 1/\Sigma_{i,i} & \text{if } \Sigma_{i,i} \neq 0 \\ 0 & \text{otherwise} \end{cases}, \quad \text{and} \quad \Sigma'_{i,j} = 0 \text{ for } i \neq j$$

Exercise: Check that if A is invertible then $A^{-1} = A^{\dagger}$.

Solving $A^{\mathsf{T}}Ax = A^{\mathsf{T}}y$

Claim: The vector $x^{\text{LS}} \stackrel{\text{def}}{=} A^{\dagger}y$ is a solution of $A^{\mathsf{T}}Ax = A^{\mathsf{T}}y$

Theorem

The set of the minimizers of $f(x) = ||Ax - y||^2$ is

$$\left\{ x^{\mathrm{LS}} + v \,\middle|\, v \in \mathrm{Ker}(A) \right\}.$$

1. Ordinary least squares 7/20

2. Penalized least squares

Ridge regression

Ridge regression consists in adding a « ℓ_2 penalty » :

(Ridge) Minimize
$$f(x) = \|Ax - y\|^2 + \lambda \|x\|^2$$
 w.r.t. $x \in \mathbb{R}^d$.

for some fixed $\lambda > 0$.

Lasso

The Lasso adds a « ℓ_1 penalty » :

(Lasso) Minimize
$$f(x) = \|Ax - y\|^2 + \lambda \|x\|_1$$
 w.r.t. $x \in \mathbb{R}^d$.

for some fixed $\lambda > 0$.

Intuition behind feature selection

Lemma

Let x^{Lasso} be a minimizer of the Lasso cost function and let $r = \|x^{\mathrm{Lasso}}\|_1$. Then x^{Lasso} is a solution to the constrained optimization problem:

minimize
$$||Ax - y||^2$$
 subject to $||x||_1 \le r$.

Consider a data set with n=442 patients, with d=10 dimensions feature vectors and the prediction of diabetese disease progression

Consider a data set with n=442 patients, with d=10 dimensions feature vectors and the prediction of diabetese disease progression

Consider a data set with n=442 patients, with d=10 dimensions feature vectors and the prediction of diabetese disease progression

Consider a data set with n=442 patients, with d=10 dimensions feature vectors and the prediction of diabetese disease progression

https://scikit-learn.org/stable/datasets/toy_dataset.html

3. Matrix norms

Frobenius norm

Definition

The Frobenius norm of a matrix $A \in \mathbb{R}^{n \times m}$ is defined as

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^m A_{i,j}^2}$$

Proposition

$$||A||_F = \sqrt{\sum_{i=1}^{\min(n,m)} \sigma_i(A)^2}$$

The spectral norm

Definition

The spectral norm of a matrix $A \in \mathbb{R}^{n \times m}$ is defined as

$$||A||_{\mathrm{Sp}} = \max_{||x||=1} ||Ax||.$$

Proposition

$$||A||_{\mathrm{Sp}} = \sigma_1(A).$$

The nuclear norm

Definition

The nuclear norm of a matrix $A \in \mathbb{R}^{n \times m}$ is defined as

$$||A||_{\star} = \sum_{i=1}^{\min(n,m)} \sigma_i(A).$$

3. Matrix norms 19/20

Application to matrix completion

We have a data matrix $M \in \mathbb{R}^{n \times m}$ that we only observe partially. That is we only have access to

$$M_{i,j}$$
 for $(i,j) \in \Omega$,

where $\Omega\subset\{1,\dots,n\}\times\{1,\dots m\}$ is a subset of the complete set of the entries.

Application to matrix completion																			

20/20

Questions?

Questions?

