Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. It is usually easier to code in "high-level" languages than in "low-level" ones. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. Also, specific user environment and usage history can make it difficult to reproduce the problem. Techniques like Code refactoring can enhance readability. One approach popular for requirements analysis is Use Case analysis. One approach popular for requirements analysis is Use Case analysis. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. Integrated development environments (IDEs) aim to integrate all such help. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. Programming languages are essential for software development. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. One approach popular for requirements analysis is Use Case analysis. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). Provided the functions in a library follow the appropriate run-time conventions (e.g., method of passing arguments), then these functions may be written in any other language. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" – a series of pasteboard cards with holes punched in them. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash.