CSDS 440: Assignment 4

Shaochen (Henry) ZHONG, sxz517 Mingyang TIE, mxt497

Due on 10/02/2020, submitted early on 09/25/2020 Fall 2020, Dr. Ray

Problem 15

Say we have X being a Bernoulli r. v. Let P(X=1)=p and P(X=0)=1-p we know that its entropy would be:

$$H(X) = H_b(p) = -p \log_2(p) - (1-p) \log_2(1-p)$$

 $\Rightarrow H'_b(p) = \log_2(1-p) - \log_2(p)$

Now plot the function.

With the first derivative being a decreasing function, we know the function is concave.

Problem 16

Pick two points, x_1 and x_2 in R^n where $Ax_1, Ax_2 \ge b$. W.T.S. for any point x between the line of x_1 and x_2 , we have $Ax \ge b$.

$$Ax = A(\lambda x_1 + (1 - \lambda)x_2)$$

$$= \lambda Ax_1 + (1 - \lambda)Ax_2$$

$$\geq \lambda b + (1 - \lambda)b = \lambda b + b\lambda b = b$$

$$\Longrightarrow Ax \geq b$$

As x in above case can be any point from of $\{x \mid Ax \geq b\}$, we have proven the set is convex.

Problem 17

Proof. To prove by contradiction. Assume we have a local minimum x in a convex function f but there is another global minimum x', where f(x') < f(x).

Since f is convex, by Jensen's inequality we must have:

$$f(\lambda x + (1 - \lambda)x') \le \lambda f(x) + (1 - \lambda)f(x')$$
$$< \lambda f(x) + (1 - \lambda)f(x)$$
$$< f(x)$$

Let $\lambda = 1$, we will have the below contradiction:

$$f(x) < f(x)$$

Thus, by contradiction, the local minimum of a convex function is always the global minimum.

Problem 18

For the ease of description, we denotes elements in A as $\begin{pmatrix} x & y \\ x & y \\ \dots \end{pmatrix}$. We have the following for $Ax \geq b$:

$$0x - y \ge -5$$
$$-x - y \ge -9$$
$$-x + 2y \ge 0$$
$$x - y \ge -1$$

Similarly, we also have $c^T x = -x - 2y$.

(a) (b)

The area shaded by dark blue is the feasible region, the three c^Tx contours are labelled accordingly.

Yes. The minimum did go through a vertex of the feasible region at (4, 5).

It is because to optimize a line, either the oprimized line will "overlap" with an edge of the feasible region, or it will intersect an edge / vertex of the feasible region. In the former case, any point on the "overlapped" edge is able to provide the optimized solution; and since an edge includes two vertices, the minimum can be on a vertex. In the latter case, the line will always find a direction (along the edge it intersects) to further optimize untill it reaches a vertex, so the minimum will also be on a vertex.

In this particular problem setting, among three contours the "higher" one (one with larger y-axis intersection value) on graph will have a smaller value. Since $c^T x = -16$ is not in the feasible region, we have $c^T x = -14$ being the minimum.