Sakshi Srivastava

1BM18CS090

PROGRAM TITLE: SMART IRRIGATION

Aim: DESIGN A SMART IRRIGATION SYSTEM (Potentiometer, Servo Motor shaft)

Hardware Required:

- Wires
- Potentiometer
- Micro Servo
- Breadboard
- Arduino UNO

Circuit Diagram:

Write-Up:

Sakole Selvastava 18 M18 (5090.	Date
Expt. No 15	Page No.
SMART IRRIGATION	yn Nov, 2020-
# unclude (souro.h)	
"Selvo mysewo:	
unt sensorPin = AO;	
mit sensorvalue = 0;	
Void setup() {	
onysers.attach (3;	
Sedial. be gui (9600).	
void loop() {	
	2
sensorvalue - analoghead (sensort. Berial puittre (sensorvalue).	n:);
El somos value (coo)	
ef (sensorvalue >500)	
for (pos = 0; pos 2 = 100; pos +1 = 1	
myserro, write per).	
delay (15);	
for (pos = 180; pos >= 0; pes=1)	
i myservo, write (pas).	
for (pos = 180: pos >= 0: pes=1) i myservo, write (pos). delay (15):	
, delay (1000);	
Teachar's Sig	nature :

CODE:

#include <Servo.h>

Servo myservo; // create servo object to control a servo

```
// twelve servo objects can be created on most boards
int pos = 0; // variable to store the servo position
int sensorPin = A0; // select the input pin for the potentiometer
int sensorValue = 0; // variable to store the value coming from the sensor
void setup() {
myservo.attach(3); // attaches the servo on pin 3 to the servo object
Serial.begin(9600);
}
void loop() {
// read the value from the sensor:
sensorValue = analogRead(sensorPin);
Serial.println (sensorValue);
if(sensorValue>500)
for (pos = 0; pos \leq 180; pos \leq 1) { // goes from 0 degrees to 180 degrees
 // in steps of 1 degree
                               // tell servo to go to position in variable 'pos'
 myservo.write(pos);
                         // waits 15ms for the servo to reach the position
 delay(15);
for (pos = 180; pos \rightarrow = 0; pos \rightarrow = 1) { // goes from 180 degrees to 0 degrees
                              // tell servo to go to position in variable 'pos'
 myservo.write(pos);
                         // waits 15ms for the servo to reach the position
 delay(15);
delay (1000);
```

Output/Observation:

716 634

450