DIMENSIONS PART II

Theorem

Let V be a vector space of dimension k and S a subset of V. The following statements are equivalent:

- 1) S is a basis for V.
- 2) S is linearly independent and |S| = k.
- 3) S spans V and |S| = k.

How can we use this theorem?

How to use the theorem

Let V be a vector space of dimension k and S a subset of V.

Once we know the dimension of V is k:

Any subset S of V

with exactly k

linearly independent

vectors will be a

basis for *V*.

Any subset S of V

with exactly k

vectors that spans V

will be a basis for V.

Example

Show that $u_1 = (2,0,-1)$, $u_2 = (4,0,7)$, $u_3 = (-1,1,4)$ form a basis for \mathbb{R}^3 .

If we go by definition, we need to show that the 3 vectors are linearly independent and spans \mathbb{R}^3 . But now we know dim(\mathbb{R}^3) = 3 So showing either linearly independence or span will do.

We will show that the three vectors are linearly independent.

Example

Show that $u_1 = (2,0,-1), u_2 = (4,0,7), u_3 = (-1,1,4)$ are linearly independent.

$$a(2,0,-1)+b(4,0,7)+c(-1,1,4)=(0,0,0)$$

$$\begin{cases} 2a + 4b - c = 0 & u_1, u_2, u_3 \text{ are linearly independent.} \\ c = 0 & \text{Since dim}(\mathbb{R}^3) = 3, \end{cases}$$
 3 linearly independent

$$-a + 7b + 4c = 0$$

$$\begin{pmatrix} 2 & 4 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 7 & 4 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
 always form a basis for \mathbb{R}^3 .

independent vectors in \mathbb{R}^3

Theorem

Let U be a subspace of a vector space V.

Then $\dim(U) \leq \dim(V)$.

Furthermore, if $\underline{U \neq V}$, then $\underline{\text{dim}(U) < \text{dim}(V)}$.

Example

Let V be a plane in \mathbb{R}^3 containing the origin.

Suppose U is a subspace of V

and $U \neq V$.

Then $\dim(U) < 2$.

If
$$dim(U) = 0$$

$$dim(V) = 2$$

 $\Rightarrow U$ is the zero subspace (that is, just the origin).

If dim(U) = 1

 $\Rightarrow U$ is a straight line passing through the origin.

Summary

- 1) Knowing the dimension of a vector space V helps in determining whether a set S is a basis for V.
- 2) The dimension of all subspaces of a vector space V does not exceed the dimension of V.
- 3) The only subspace of a vector space V that has the same dimension as V is V itself.