Comparing Statistical Models

Andy Grogan-Kaylor

26 Oct 2020 21:11:13

Introduction

Using the *general linear model* framework, we could conceivably compare different statistical models on several grounds.

- 1. Theoretical plausibility
- 2. Functional form of the dependent variable
- 3. Functional form of the entire model
- 4. Statistical criteria of fit.

Frequently, there is no one correct way to analyze data, and different statistical approaches need to be weighed on multiple criteria to ascertain which approach(es) is / are appropriate.

Theoretical and Functional Concerns

Statistical Model	Stata Command	Theoretical plausibility	Functional form of the dependent variable	Functional form of the entire model
OLS	regress	Continuous dependent variable	y can range from negative infinity to positive infinity	y is a linear function of the x's
Logistic Regression	logit	Binary dependent variable	y must be 0 or 1	logit(y) is a linear function of x's
Ordinal logistic regression	ologit	Ordered dependent variable where distance between categories does not matter	y can range from negative infinity to positive infinity	logit(y (higher category vs. lower category)) is a linear function of x's
Multinomial Logistic Regression	mlogit	Dependent variable with multiple unordered categories	y can range from negative infinity to positive infinity	logit(y (one category vs. another)) is a linear function of x's
Poisson Regression	poisson	Dependent variable representing a count	y must be an integer greater than or equal to 0	ln(y (count)) is a linear function of x's

Statistical Model	Stata Command	Theoretical plausibility	Functional form of the dependent variable	Functional form of the entire model
Negative Binomial Regression	nbreg	Dependent variable representing a count	y must be an integer greater than or equal to 0	ln(y (count)) is a linear function of x's

Assessing Model Fit

Get Data And Create Count of ACEs

- . clear all
- . use "NSCH_ACES.dta", clear
- . egen acecount = anycount(ace*R), values(1) // generate count of ACES

Explore Some Models

We use quietly to suppress model output at this stage.

- . quietly: regress acecount sc_sex i.sc_race_r i.higrade // OLS
- . estimates store OLS
- . quietly: ologit acecount sc_sex i.sc_race_r i.higrade // ordinal logit
- . estimates store ORDINAL
- . quietly: poisson acecount sc_sex i.sc_race_r i.higrade // Poisson
- . estimates store POISSON
- . quietly: nbreg acecount sc_sex i.sc_race_r i.higrade // Negative Binomial
- . estimates store NBREG

Compare The Models Including Fit Measures

. estimates table OLS ORDINAL POISSON NBREG, var(20) star stats(N ll aic bic) equations(1)

Variable	OLS	ORDINAL	POISSON	NBREG
#1				
sc_sex	01358634	02856135	01282301	0127557
sc_race_r				
Black or African	.32583464***	.47967243***	.26627607***	.28235733***
American Indian o	.88542522***	.88482406***	.59710627***	.62278046***
Asian alone	46503425***	76002818***	62438214***	62012779***
Native Hawaiian a	.2516065	.35416681	.20674094*	.21879323
Some Other Race a	.07433855	.14197623*	.06755212*	.08062919
Two or More Races	.33035205***	.39265187***	.28181254***	.28198179***
1.2 1.				
higrade				

High school (.10021068 45113751***	.17111252* 62649139***		
	_cons	1.411494***		.33994246***	.33915207***
cut1	_cons		78624597***		
cut2	_cons		.65037457***		
cut3	_cons		1.5299647***		
cut4	_cons		2.2019291***		
cut5	_cons		2.8850071***		
cut6	_cons		3.6106908***		
cut7	_cons		4.4853373***		
cut8	_cons		5.9106719***		
cut9	_cons		7.5036903***		
lnalpha	_cons				54430672***
Statistics	N 11 aic	30530 -52340.464 104700.93	30530 -42451.588 84939.175	30530 -44758.999 89537.999	30530 -42775.864 85573.728
	bic	104784.19	85089.052	89621.263	85665.319

legend: * p<0.05; ** p<0.01; *** p<0.001

In terms of log-likelihood a higher value indicates a better fit. We can also use the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) to compare models. For AIC and BIC, lower values indicate a better fit.

Thus, on strictly statistical grounds, the *ordinal* model would appear to provide the best fit, followed by the *negative binomial* model, the *Poisson* model, and the *OLS* model. However, we should note that the differences in fit between the *ordinal*, *negative binomial* and *Poisson* models are not exceptionally large. We would also worry that any differences in fit that we do see might be due to overfitting in this particular sample, or to capitalizing upon chance.

Lastly, we'd worry that the ordinal model might not satisfy the *proportional hazards* assumption, and should examine this with a **brant** test.

We need to balance these differences in fit against the fact that theoretically, a count data model seems more appropriate.

In this case, we would most likely choose to proceed with a count regression model.