2.2.3.1 Bayes Classification

In an ideal world, we have for each class $c=1,\ldots,C$ the probability for x to belong to the c-th class.

For example if we are classifying fruits, K_1 could be "Banana", K_2 could be "Apple" etc When we write $\mathbb{P}(K_c|x)$ we are asking: "Given that we observed x, what is the probability that it belongs to class c?"

If we denote the event of belonging to class c by K_c , we know the conditional probabilities $\mathbb{P}(x|K_c)$ (in English: *conditional distributions*), e.g. $\mathbb{P}(1003g, \mathrm{red}|\mathrm{Banana}) = 0\%$. Thus, we can use Bayes' theorem to obtain

$$\mathbb{P}(K_c|x) = rac{\mathbb{P}(K_c)\mathbb{P}(x|K_c)}{\mathbb{P}(x)} = rac{\mathbb{P}(K_c)\mathbb{P}(x|K_c)}{\sum_{i=1}^{C}\mathbb{P}(K_i)\mathbb{P}(x|K_i)}$$

Explanation

- $\mathbb{P}(K_c)$ is the **prior probability** of class c, i.e. how common this class is in general. It is denoted as π_c
- $\mathbb{P}(x|K_c)$ is the **likelihood**, meaning the probability of observing x given that it belongs to class c
- $\mathbb{P}(x)$ is the **total probability** of x over all possible classes, which is computed as $\sum_{i=1}^{C} \mathbb{P}(K_i) \mathbb{P}(x|K_i)$

The probability $\mathbb{P}(K_c)$ of the c-th class is usually abbreviated as π_c (in English: class prior), leading to

2.2.9

$$\mathbb{P}(K_c|x) = rac{\pi_c \mathbb{P}(x|K_c)}{\sum_{i=1}^C \pi_c \mathbb{P}(x|K_i)}$$

Classification is then done by choosing the most probable class, i.e.

$$rg \max_{c=1}^{C} rac{\pi_c \mathbb{P}(x|K_c)}{\sum_{i=1}^{C} \pi_c \mathbb{P}(x|K_i)} = rg \max_{c=1}^{C} \pi_c \mathbb{P}(x|K_c)$$

(Since the denominator is the same for all classes, we can just compute the numerator!) This means:

- Compute $\pi_c \mathbb{P}(x|K_c)$ for each class
- Pick the class with the highest value!

Example: Classifying fruits

Imagine we want to classify a fruit x based on **weight** and **color**. Suppose we have

- Bananas (K_1) : 90% of bananas are yellow and 10% are green
- Apples (K₂): 50% are red, 40% are green and 10% are yellow
- Cherries (K_3) : 95% are red, 5% are yellow

If we observe x = (1003g, red), the probability of observing that for each fruit is

- $\mathbb{P}(x|K_1)$ (prob of a 1003g red banana) is 0% --> bananas are never red
- $\mathbb{P}(x|K_2)$ is 50%
- $\mathbb{P}(x|K_3)$ is 95%

If apples and cherries are equally common, we classify x as a **cherry** since it has the highest probability

Back to the script

The mapping $x\mapsto \arg\max_{c=1}^C \pi_c \mathbb{P}(x|K_c)$ is also called the Bayes classifier.

This means that given some feature x, we assign it to the class K_c that maximizes $\pi_c \mathbb{P}(x|K_c)$ Note that this is independent of the denominator in 2.2.9

Often, x is a continuous random variable, making it meaningless to work with $\mathbb{P}(x|K_c)$: If $x|K_c$ is, for example, normally distributed, then $\mathbb{P}(x|K_c)=0$ for all $x\in\mathbb{R}^d$ In this case, however we can use Bayes' theorem for densities and obtain

2.2.10

$$\mathbb{P}(K_c|x) = rac{\pi_c p(x|K_c)}{\sum_{i=1}^C \pi_c p(x|K_i)}$$

where $p(x|K_c)$ are the conditional **densities** ($p(x|K_c)$ now is a PDF of x given class K_c). Note that the left side still represents a probability and not a density since the possible classes form a discrete and finite probability space!

In practe, we unfortunately have neither π_i nor $\mathbb{P}(x|K_c)$ or $p(x|K_c)$ available.

Both quantities must be approximated using the data. To this end, one can use the class proportions:

$$\hat{\pi}_c := rac{\#\{i=1,\ldots,N\,|\,y_i=l_c\}}{N}$$

This just means:

- l_c represents the label for the class
- $y_i = l_c$ means "the *i*-th sample is in class c"

- Count how many times class c appears in the training data
- Divide by the total number of samples N
 ... and is used regardless of discrete or continuous case (see below!)

Additionally, the conditional probabilities $\mathbb{P}(x|K_c)$ or densities $p(x|K_c)$ must be suitably approximated by $\hat{P}(x|K_c)$ or $\hat{p}(x|K_c)$.

- $\hat{P}(x|K_c)$ is an approximation of the probability $\mathbb{P}(x|K_c)$ when x is discrete (e.g. categorical features)
- $\hat{p}(x|K_c)$ is an approximation of the probability density function $p(x|K_c)$ when x is continuous (e.g. real-valued features)

We then obtain the approximate Bayes classifier:

$$x\mapsto rg \max_{c=1}^{C} \hat{\pi} \hat{P}(x|K_c) \quad ext{or} \quad x\mapsto rg \max_{c=1}^{C} \hat{\pi}_c \hat{p}(x|K_c)$$

This means:

- 1. Compute the estimated prior π_c +
- 2. Compute the estimated probability (depending on the case discrete or continuous)
- 3. Assign x to the class c that maximizes

Discrete Random Variables

If $x|K_c$ is a discrete random variable (e.g. colors red, green, yellow), one can approximate $\mathbb{P}(x|K_c)$ by proportions in the training data, e.g.

$$\hat{P}(\operatorname{red}|K_c) := rac{\#\{i|x_i=\operatorname{red},y_i=l_c\}}{\#\{i|y_i=l_c\}}$$

This means:

- **Numerator**: number of samples where x_i (the feature) is red **and** the label y_i is class c
- **Denominator**: total number of samples in class c

Example

Sample	Color (x_i)	Fruit Class (y_i)
1	Red	Apple
2	Green	Apple
3	Yellow	Banana
4	Red	Apple
5	Yellow	Banana
6	Red	Cherry
7	Green	Apple
8	Yellow	Banana
9	Red	Apple

There are 3 red apples and 4 apples in total so

$$\hat{P}(\mathrm{red}|K_{\mathrm{apple}}) = rac{3}{4} = 0.75$$

This means that 75% of apples in our training data are red

Gaussian Mixture Model

For continuous variables, a common assumption is that $x|K_c \sim \mathcal{N}(\mu_c, \sigma_c^2)$ is normally distributed with means μ_c and variances σ_c^2 for $c=1,\ldots,C$. For simplicity, we will only consider the one-dimensional case here.

We can approximate the densities $p(x|K_c)$ for $x\in\mathbb{R}$ by

$$\hat{p}(x|K_c) := rac{1}{\sqrt{2\pi \hat{\sigma_c}^2}} \mathrm{exp}igg(-rac{(x-\hat{\mu}_c)^2}{2\hat{\sigma_c}^2}igg)$$

for $c = 1, \ldots, C$ where

$$\mu_c = rac{1}{\#\{i|y_i = l_c\}} \sum_{i|y_i = l_c} x_i \qquad \hat{\sigma}_c^2 := rac{1}{\#\{i|y_i = l_c\}} \sum_{i|y_i = l_c} (x_i - \mu_c)^2$$

are the mean and discrete variance of the points with label l_c

- μ_c is just the average of all feature values x_i that belong to class c
 - ullet The denominator is the number of training samples in class c
 - \bullet The numerator sums all x_i values for class c
- $\hat{\sigma_c}^2$ is the variance estimate, which calculates the **spread** of values around the meaen

• Each sample's difference from the mean is squared and summed, then divided by the number of samples of training points in class *c*

Kernel Density Classification

If the distribution of $x|K_c$ is more complicated, the Gaussian Mixture Model may not be a good choice. In this case, one can approximate it using a so-called kernel density estimator. We also restrict ourselves here to the case d=1, i.e. the inputs are **one-dimensional**. We define

2.2.12

$$\hat{p}(x|K_c) := rac{1}{\#\{i|y_i = l_c\}} \sum_{i|y_i = l_c} K_{\lambda}(x - x_i)$$

where $\lambda>0$ is the bandwidth, $K_\lambda(x):=\frac{1}{\lambda}K(\frac{x}{\lambda})$ and $K:\mathbb{R}\to\mathbb{R}$ is a non-negative function with $\int_{\mathbb{R}}K(x)dx=1$. Possible choices are the

Gaussian kernel

$$K(x):=(2\pi)^{-1/2}{\rm exp}(-x^2/2)$$

or $K(x) := \frac{1}{2} 1_{|x| \le 1}$. However note that for the second choice, it may happen that $\hat{p}(x|K_c) = 0$ for all $c = 1, \dots, C$ which does not allow for class assignment.

This approach depends on the choice of bandwidth λ .

In particular, for $0 < \lambda \ll 1$, $\hat{p}(x|K_c) \approx 0$ if x is not a training data point x_i .

On the other hand, if λ is very large, $\hat{p}(\cdot|K_c)$ is nearly constant.

It can be shown that an optimal choice of λ for large values of $n\in\mathbb{N}$ takes the form $\lambda=Cn^{-\frac{1}{5}}$. For normally distributed data $x_i\sim\mathcal{N}(\mu,\sigma^2)$, the optimal constant is given by $C=(\frac{4}{3})^{\frac{1}{5}}\sigma$