Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolin - VR436823

October 9, 2019

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolir - VR436823

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolir - VR436823

Figure: Passive Matrix and Active Matrix

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolin - VR436823

a-Si TFT vs. LTPS TFT-LCD

<LTPS TFT-LCD>

Advantages of LTPS TFT-LCD

- 1. Higher Panel Reliability
- 2. Higher Resolution
- 3. Smaller Form Factor
- 4. Smaller Power Consumption

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testoliı - VR436823

Figure: IGZO vs a-Si

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolin - VR436823

Figure: Transistor FET

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolir - VR436823 Sorgono molti problemi nella creazione di schermi di grandi dimensioni

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolii - VR436823

- Sorgono molti problemi nella creazione di schermi di grandi dimensioni
- Molti approcci sono stati adottati per cercare di superare l'insufficienza della ricarica del pannello, cercando di usare tecniche guidate, cercando di manipolare il tempo di ricarica

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolir - VR436823

- Sorgono molti problemi nella creazione di schermi di grandi dimensioni
- Molti approcci sono stati adottati per cercare di superare l'insufficienza della ricarica del pannello, cercando di usare tecniche guidate, cercando di manipolare il tempo di ricarica
- Quando pixel e dimensione dello schermo aumentano, il consumo energetico che deve essere fornito ai pixel diventa un problema molto critico

Diverse soluzioni e sfide per gli schermi AMOLED

Leonardo Testolir - VR436823

> I problemi maggiori sono legati anche a problemi di ritardo e la distorsione data dall'alta resistenza e capacità parassitaria

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolin - VR436823

Figure: Schermo LCD

Diverse soluzioni e sfide per gli schermi AMOLED

Leonardo Testolii - VR436823

> Dall'analisi di alcuni risultati, si è potuto notare che i ritardi sulle gate line causano insufficienza di carica nei pixel causando lo sfarfallio dello schermo, mentre i ritardi sulle data line causano insufficienza di carica nei pixel relativi al cross-talk verticale

Diverse soluzioni e sfide per gli schermi AMOLED

Leonardo Testolii - VR436823

> Se ci sono questi problemi è possibile implementare lo split delle data line

Diverse soluzioni e sfide per gli schermi AMOLED

Leonardo Testoli - VR436823

- Se ci sono questi problemi è possibile implementare lo split delle data line
- Si riduce così il clock e il data rate abbastanza da usare un device con frequenze molto più basse

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testoli - VR436823

- Se ci sono questi problemi è possibile implementare lo split delle data line
- Si riduce così il clock e il data rate abbastanza da usare un device con frequenze molto più basse
- 4 differenti bus dati sono richiesti per poter gestire questi 4 blocchi dati differenti

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolin - VR436823

Figure: T-CON

24-INCH WIDE UXGA TFT-LCD: Configurazione di sistema

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testoli - VR436823

Un sistema totale usato per un display WUXGA consiste di 3 parti:

- Scheda video
- Interfaccia IC
- Modulo TFT-LCD di 24-inch

24-INCH WIDE UXGA TFT-LCD: Configurazione di sistema

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolin - VR436823

Figure: Configurazione di sistema

24-INCH WIDE UXGA TFT-LCD: angolo di visione

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolir - VR436823

 Per migliorare la visione d'angolo dello schermo è stato sviluppato un nuovo modello VA (vertical alignment) ridenominato PVA (patterned vertical alignment), che utilizza dei campi della frontiera che sono guidati rispettivamente con il modello VA

24-INCH WIDE UXGA TFT-LCD: angolo di visione

Diverse soluzioni e sfide per gli schermi AMOLED

Leonardo Testoli - VR436823

- Per migliorare la visione d'angolo dello schermo è stato sviluppato un nuovo modello VA (vertical alignment) ridenominato PVA (patterned vertical alignment), che utilizza dei campi della frontiera che sono guidati rispettivamente con il modello VA
- Cosi facendo dopo alcuni test si sono potuti ottimizzare le prestazioni delle celle del display

Diverse soluzioni e sfide per gli schermi AMOLED

Leonardo Testolir - VR436823

> In particolare si fa una comparazione tra accuratezza, velocità di guida, consumo energetico e area occupata

Diverse soluzioni e sfide per gli schermi AMOLED

Leonardo Testolii - VR436823

> Organic ligth-emitting diode (OLED) sono display che sono efficienti dal punto di vista del consumo energetico, vivido e ideale per applicazioni portatili

Diverse soluzioni e sfide per gli schermi AMOLED

Leonardo Testoli - VR436823

- Organic ligth-emitting diode (OLED) sono display che sono efficienti dal punto di vista del consumo energetico, vivido e ideale per applicazioni portatili
- Sono costituiti da materiali a basso costo e vengono utlizzati meno processi di produzione per la loro creazione rispetto agli LCDs

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolin - VR436823

LG OLED TV

Figure: OLED

Diverse soluzioni e sfide per gli schermi AMOLED

Leonardo Testolir - VR436823

> L'OLED è un device guidato da corrente dove il livello di luminosità è determinato dal livello di corrente che lo attraversa

Diverse soluzioni e sfide per gli schermi AMOLED

Leonardo Testolir - VR436823

> Per queste ragioni gli OLED appaiono i migliori candidati per le diverse applicazioni mobili

Diverse soluzioni e sfide per gli schermi AMOLED

Leonardo Testolii - VR436823

- Per queste ragioni gli OLED appaiono i migliori candidati per le diverse applicazioni mobili
- Questa corrente può essere fornita da una matrice passiva OLED (PMOLED) oppure da una matrice attiva (AMOLED)

Diverse soluzioni e sfide per gli schermi AMOLED

Leonardo Testolin

 La soluzione proposta prevede un approccio in cui si tende ad utilizzare la matrice passiva, in particolare, quando la dimensione dello schermo va aumentando

Diverse soluzioni e sfide per gli schermi AMOLED

Leonardo Testolir - VR436823

- La soluzione proposta prevede un approccio in cui si tende ad utilizzare la matrice passiva, in particolare, quando la dimensione dello schermo va aumentando
- La matrice passiva richiede un picco elevato di corrente per poter funzionare, ma questo, permette di ottenere alta luminosità

Diverse soluzioni e sfide per gli schermi AMOLED

Leonardo Testolir - VR436823

- La soluzione proposta prevede un approccio in cui si tende ad utilizzare la matrice passiva, in particolare, quando la dimensione dello schermo va aumentando
- La matrice passiva richiede un picco elevato di corrente per poter funzionare, ma questo, permette di ottenere alta luminosità
- Un consumo elevato di energia ha dimostrato effetti di maggior affidabilità da parte degli schermi OLED

Pixel AMOLED basati su circuiti in poly-Si TFTs: Circuiti driver per gli schermi OLED

Diverse soluzioni e sfide per gli schermi AMOLED

eonardo Testolin

I circuiti OLED possono essere divisi in due classi:

• Circuiti sul voltaggio

Pixel AMOLED basati su circuiti in poly-Si TFTs: Circuiti driver per gli schermi OLED

Diverse soluzioni e sfide per gli schermi AMOLED

eonardo Testolin

I circuiti OLED possono essere divisi in due classi:

- Circuiti sul voltaggio
- Circuiti sulla corrente

Diverse soluzioni e sfide per gli schermi AMOLED

Leonardo Testolin - VR436823 Il più semplice circuito chiamato 2-TFT, può essere creato tramite due TFT (T1 e T2)

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolin - VR436823 • Il più semplice circuito chiamato 2-TFT, può essere creato tramite due TFT (T1 e T2)

Figure: TFT OLED driver

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolii - VR436823

Problemi:

- Pesante drenaggio di corrente dovuto alla threshold del TFT
- Variazione di mobilità delle cariche

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolir - VR436823

Problemi:

- Pesante drenaggio di corrente dovuto alla threshold del TFT
- Variazione di mobilità delle cariche

Soluzione:

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolii - VR436823

Problemi:

- Pesante drenaggio di corrente dovuto alla threshold del TFT
- Variazione di mobilità delle cariche

Soluzione:

 Per poter superare questo inconveniente deve essere introdotto un circuito che si auto-compensa, è semplice da realizzare, ma ha bisogno di più componenti

Diverse soluzioni e sfide per gli schermi AMOLED

Leonardo Testolin - VR436823 Introducendo questa miglioria, il circuito risultante sarà denominato 4-TFT

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolin - VR436823 Introducendo questa miglioria, il circuito risultante sarà denominato 4-TFT

Diverse soluzioni e sfide per gli schermi AMOLED

Leonardo Testolir - VR436823

Possiamo settare in maniera precisa la corrente che viene data allo schermo OLED con un approccio basato sulla programmazione di corrente

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolin - VR436823

Figure: Current Mirror

Diverse soluzioni e sfide per gli schermi AMOLED

Leonardo Testolir - VR436823

Una variante migliore rispetto alla precedente, introduce una circuito driver con memoria. Questo permetterà di ottenere migliori prestazioni in quanto è possibile tenere "in memoria" un certo voltaggio

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolin - VR436823

Figure: One-transistor current memory driver circuit

Pixel AMOLED basati su circuiti in poly-Si TFTs: Velcocità di guida

Diverse soluzioni e sfide per gli schermi AMOLED

Leonardo Testolir - VR436823

> Per calcolare il frame rate dei pixel si utilizza una formula che considera il numero di righe per matrice, il tempo di ricarica dei capacitori, il tempo di ricarica del capacitore TFT e il tempo di carica e scarica delle righe della matrice

Pixel AMOLED basati su circuiti in poly-Si TFTs: Conclusioni

Diverse soluzioni e sfide per gli schermi AMOLED

Leonardo Testoli - VR436823

• Tra le differenti topologie, la migliore è la 4-TFT con la quale la velocità è 10 volte più alta rispetto alla topologia basate su corrente e con un risparmio del 30% più alto. Però, se il 10% della variazione sul drenaggio della corrente è dovuto alla variazione di mobilità, questo non può essere accettato e quindi si passa ad una topologia basata su corrente

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolii - VR436823

• La fisicità del display risulta essere molto importante in termini di portabilità e design

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolii - VR436823 Ci sono alcuni punti chiave da dover tenere in considerazione quando si parla di display OLED pieghevoli ed è la rottura del display dovuta alla curvatura

Diverse soluzioni e sfide per gli schermi AMOLED e OLED

Leonardo Testolii - VR436823

- Ci sono alcuni punti chiave da dover tenere in considerazione quando si parla di display OLED pieghevoli ed è la rottura del display dovuta alla curvatura
- Di solito,un display OLED include un sottostrato di plastica piuttosto che un sottostrato di vetro

Diverse soluzioni e sfide per gli schermi AMOLED

Leonardo Testolii - VR436823

- Ci sono alcuni punti chiave da dover tenere in considerazione quando si parla di display OLED pieghevoli ed è la rottura del display dovuta alla curvatura
- Di solito,un display OLED include un sottostrato di plastica piuttosto che un sottostrato di vetro
- La plastica trasmette condensa/umidità; quindi, dei film passivi sono richiesti per poter reagire con l'umidità e la degradazione