

Development and evaluation of phonological models for cognate identification

Bogdan BABYCH Centre for Translation Studies, University of Leeds, UK b.babych@leeds.ac.uk

Approach

Graphemic-Phonological features

'passive:ff-palatal'

'palate:nonpalatalizing'

'passive:fl-bilabial'

'passive:pf-alveolar'

Uk: "жовтий" (zhovtyj) = 'yellow'

ж (zh) 'type:consonant', 'voice:ff-voiced',

o (o) 'type:vowel', 'backness:back',

B (v) 'type:consonant', 'voice:fl-voiced',

т (t) 'type:consonant', 'voice:pf-unvoiced',

й (j) 'type:consonant', 'voice:xm-sonorant',

'maner:xm-approximant','active:xm-

midtongue', 'passive:am-palatal'

и (y) 'type:vowel', 'backness:front',

'palate:nonpalatalizing'

'maner:pf-plosive', 'active:pf-fronttongue',

'maner:fl-fricative', 'active:fl-labial',

'maner:ff-fricative', 'active:ff-fronttongue',

'height:mid', 'roundedness:rounded'.

Problems and solutions

- Cognate identification important for Machine Translation (MT) & CAT:
 - Building cognate term-banks from comparable corpora;
 - Lexicon for closely-related & under-resourced languages;
 - Additional data source for statistical sentence alignment, etc...
- Current methods rely on character-based distances (e.g., Levenshtein)
 - Count insertions, deletions, substitutions of characters;
 - Treat each character as an 'atomic' unit without structure;
 - Difficult to apply across different scripts (need transliteration).
- Solution: phonological features of characters to calculate similarity
 - Characters mapped to sets of distinctive acoustic features;
 - Used in historical linguistics and dialectological studies;
 - Applied to cognate identification for MT (cf. Babych, 2016).
- Feature representations for corresponding Calculation of the Phonological Levenshtein for characters in Ru: "жёлтый" (zheltyj) = 'yellow'. Uk "жовтий" (zhovtyj) = 'yellow' and Ru "жёлтый" (zheltyi) = 'yellow': 0.0 1.0 2.0 3.0 4.0 5.0 6.0 1.0 **0.0** 1.0 2.0 3.0 4.0 5.0 2.0 1.0 **0.2** 1.2 2.2 3.2 4.2 ë (io) 'type:vowel', 'backness:back', 3.0 2.0 1.2 **1.0** 2.0 3.0 4.0 'height:mid', 'roundedness:rounded', 4.0 3.0 2.2 2.0 **1.0** 2.0 3.0 'palate:palatalizing' 5.0 4.0 3.2 3.0 2.0 **1.2** 2.2 л (l) 'type:consonant', 'voice:lf-sonorant', ' 6.0 5.0 4.2 4.0 3.0 2.2 **1.2** maner:lf-lateral', 'active:lf-fronttongue', 'passive:lf-alveolar' cf.: Metric calculated for Uk "жовтий" (zhovtyj) = 'yellow' with Ru "жуткий" (zhutkij) = 'dismal': 0.0 1.0 2.0 3.0 4.0 5.0 6.0 ы (y) 'type:vowel', 'backness:central', 1.0 **0.0** 1.0 2.0 3.0 4.0 5.0 'height:closemid','roundedness:unrounded' 'height:closemid','roundedness:unrounded 2.0 1.0 **0.2** 1.2 2.2 3.2 4.2 ', 'palate:nonpalatalizing' 3.0 2.0 1.2 **1.0** 1.2 2.2 3.2

- Large-vocabulary cognate identification ≠ historic linguistic studies
 - False positives due to many more plausible alternatives;
 - In pilot: phonological feature vectors degraded performance;
 - Baseline character-based Levenshtein more resistant to errors.
- Some errors of Phonological Levenshtein metric due to imbalanced cost of insertion/deletion vs. substitution, e.g., for 5 phonological features:
 - Typical substitution cost for unrelated consonants = 0.8;
 - The insertion/deletion cost = 1.0 leads to under-generation of cognates with inserted/deleted characters.
- We need a systematic way for development and evaluation of alternative feature models, arrangements and edit costs

(an automated framework for phonological feature engineering):

Development and evaluation framework for phonological models

4.0 3.0 2.2 2.0 **1.8** 2.2 3.0

5.0 4.0 3.2 3.0 2.8 **2.0** 3.0

6.0 5.0 4.2 4.0 3.8 3.0 **2.0**

Evaluation results

Experiment	Median top N	Top 1	Top 5	Top 10	Top 25
Baseline Char.Lev	50	206	328	360	382
Phon.Lev FeatVectors	87.5	215	289	319	349
Diff with Base L	-75%	+4.4%	-10%	-11%	-9%
Phon.Lev Hierarchy:					
Phon.LevH i=0.2	125.5	216	291	315	342
Phon.LevH i=0.4	54.5	230	307	334	367
Phon.LevH i=0.6	48	235	328	354	385
Phon.LevH i=0.8	40	240	337	359	391
Phon.LevH i=1.0	47.5	240	334	359	385
Best Improv. over BaseL	+20%	+16.5%	+3%	0%	+2%

Conclusions

- Hierarchical phonological models improve accuracy of largevocabulary cognate identification up to 20% on Top-N measures.
- Evaluation and development framework for phonological models:
 - Allows for accurate feature calibration and parameter setting;
 - Enables a systematic task-based feature engineering.
- Potential applications of the models beyond cognate identification:
 - Interlingual transliteration via common phonological space;
 - Character-based models for Neural MT;
 - Morphology induction & morphological variation modelling.
- Future work: evaluating alternative feature topologies, integrating statistical and semantic filters for cognate identification.
- Phonological models and resources (feature sets + scripts) released on https://github.com/bogdanbabych/cognates-phonology

