Learning Objectives

- Learn the geometry of a stereo sensor, and how the two camera are related.
- Learn how to derive the location of a point in 3D given its projection on the two images of a stereo sensor.

Stereopsis

• Charles Wheatstone (1838): "... the mind perceives an object of three dimensions by means of the two dissimilar pictures projected by it on the two retinæ ..."

• Pre 19th century: Leonardo da Vinci

Peter Hohenstatt: Leonardo da Vinci, 1452-1519, Knemann Verlag, 1998

Stereoscopes: A 19th Century Pastime

https://commons.wikimedia.org/wiki/File:Holmes_stereoscope_anaglyph_01.jpg

https://commons.wikimedia.org/wiki/File:Lincoln_stereoscope.jpg

Stereo Cameras

Stereo Camera Model

Stereo Sensor: Assumptions

- Sensor is constructed from two identical cameras
- The two cameras have parallel optical axes
- Project to Bird's eye view for easier geometry

Stereo Camera Model

Stereo Camera Model

Computing 3D Point Coordinates

• Disparity:

$$d = x_L - x_R$$

where
$$x_L = u_L - u_0$$

 $x_R = u_R - u_0$
 $y_L = v_L - v_0$

Computing 3D Point Coordinates

Main stereo relations:

$$\frac{Z}{f} = \frac{X}{x_L} \to ZxL = fX$$

$$\frac{Z}{f} = \frac{X - b}{x_r} \to ZxR = fX - fb$$

$$Zx_R = Zx_L - fb$$

$$Z = \frac{fb}{d}$$

From above:
$$X = \frac{Zx_L}{f}$$
, $Y = \frac{Zy_L}{f}$

Computing 3D Point Coordinates

- Two main problems:
 - \circ We need to know f, b, u0, v0
 - Use stereo camera calibration
 - \circ We need to find corresponding x_R for each x_L
 - Use disparity computation algorithms

Summary

- Stereopsis as a phenomenon was well known as early as the 19th century.
- Given the geometric transformation between the two cameras of a stereo sensor, and the disparity, you can estimate the 3D location of pixel.
- Next: Disparity Computation