

General Purpose I/O (GPIO)

Computer Engineering 2

Overview

- General Purpose Input / Output GPIO
 - Reference Manual Pages 278 285

Why GPIOs?

Learning Objectives

At the end of this lesson you will be able

- to work with register descriptions in reference manuals
- to explain the concept and implementation of GPIOs
- to explain the differences between open-drain and push-pull
- to use GPIOs in your own programs
- to explain the idea of a HAL

Agenda

- Working with documents
- General Purpose Input / Output (GPIO)
- GPIO Structure
- Configuring
 - Direction
 - Output Type
 - Pull-up / Pull-down
 - Speed
- Data Registers
 - Reading Input Data
 - Writing Output Data, Setting and Clearing Bits
- GPIO Cookbook
- Hardware Abstraction Layer (HAL)

- Pin out
- Block diagram
- Etc.

F4 Reference Manual

Chapter "General-purpose I/Os (GPIO)"

RM0090 Reference manual

STM32F405xx/07xx, STM32F415xx/17xx, STM32F42xxx and STM32F43xxx advanced ARM-based 32-bit MCUs

Introduction

This reference manual targets application developers. It provides complete information on how to use the STM32F405xx/07xx, STM32F415xx/17xx, STM32F42xxx and STM32F43xxx microcontroller memory and peripherals.

The STM32F405xx/07xx, STM32F415xx/17xx, STM32F42xxx and STM32F43xxx constitute a family of microcontrollers with different memory sizes, packages and peripherals.

For ordering information, mechanical and electrical device characteristics please refer to the datasheets.

For information on the ARM Cortex™-M4 with FPU core, please refer to the Cortex™-M4 with FPU Technical Reference Manual.

Related documents

Available from STMicroelectronics web site (http://www.st.com)

- STM32F40x and STM32F41x datasheets
- STM32F42x and STM32F43x datasheets
- For information on the ARM Cortex™-M4 core with FPU, refer to the STM32F3xx/F4xxx Cortex™-M4 programming manual (PM0214).

Table 1. Applicable products

Product family	Part numbers and product categories
Microcontrollers	STM32F405xx, STM32F407xx, STM32F415xx, STM32F417xx, STM32F427xx, STM32F437xx, STM32F429xx and STM32F439xx.

September 2013 Doc ID 018909 Rev 5 1/1705

www.st.com

Sources: STM F4 Reference Manual STM F4 Data Sheet

Note: The reference manual of ST shows memory maps with the low address at the bottom.

- Register address = Base address + Offset
 - Offset is given for each register in reference manual
 - Base address defined in memory map
 - → Reference Manual

base address (

Boundary address	Peripheral
0x4002 2800 0x4002 2BFF	GPIOK
0x4002 2400 - 0x4002 27FF	GPIOJ
0x4002 2000 - 0x4002 23FF	GPIOI
0x4002 1C00 - 0x4002 1FFF	GPIOH
0x4002 1800 - 0x4002 1BFF	GPIOG
0x4002 1400 - 0x4002 17FF	GPIOF
0x4002 1000 - 0x4002 13FF	GPIOE
0x4002 0C00 - 0x4002 0FFF	GPIOD
0x4002 0800 - 0x4002 0BFF	GPIOC
0x4002 0400 - 0x4002 07FF	GPIOB
0x4002 0000 - 0x4002 03FF	GPIOA

Boundary address	Peripheral	Bus	Register map
0xA000 0000 - 0xA000 0FFF	FSMC control register (STM32F405xx/07xx and STM32F415xx/17xx)/ FMC control register (STM32F42xxx and STM32F43xxx)	AHB3	Section 36.6.9: FSMC register map on page 1573 Section 37.8: FMC register map on page 1653
0x5006 0800 - 0x5006 0BFF	RNG		Section 24.4.4: RNG register map on page 752
0x5006 0400 - 0x5006 07FF	HASH		Section 25.4.9: HASH register map on page 776
0x5006 0000 - 0x5006 03FF	CRYP	AHB2	Section 23.6.13: CRYP register map on page 745
0x5005 0000 - 0x5005 03FF	DCMI	AIIDE	Section 15.8.12: DCMI register map on page 473
0x5000 0000 - 0x5003 FFFF	USB OTG FS		Section 34.16.6: OTG_FS register map on page 1303
0x4004 0000 - 0x4007 FFFF	USB OTG HS		Section 35.12.6: OTG_HS register map on page 1445
0x4002 B000 - 0x4002 BBFF	DMA2D		Section 11.5: DMA2D registers on page 349
0x4002 9000 - 0x4002 93FF			
0x4002 8C00 - 0x4002 8FFF			
0x4002 8800 - 0x4002 8BFF	ETHERNET MAC		Section 33.8.5: Ethernet register maps on page 1214
0x4002 8400 - 0x4002 87FF			page 1214
0x4002 8000 - 0x4002 83FF			
0x4002 6400 - 0x4002 67FF	DMA2	1	
0x4002 6000 - 0x4002 63FF	DMA		Section 10.5.11: DMA register map on page 332
0x4002 4000 - 0x4002 4FFF	BKPSRAM		
0x4002 3C00 - 0x4002 3FFF	Flash interface register		Section 3.9. Flash interface registers
0x4002 3800 - 0x4002 3BFF	RCC	AHB1	Section 7.3.25: RCC register map on page 263
0x4002 3000 - 0x4002 33FF	CRC	1	Section 4.4.4: CRC register map on page 114
0x4002 2800 - 0x4002 2BFF	GPIOK		Sentine 8 4 44 CDIO inter 204
0x4002 2400 - 0x4002 27FF	GPIOJ	1	Section 8.4.11: GPIO register map on page 284
0x4002 2000 - 0x4002 23FF	GPIOI		
0x4002 1C00 - 0x4002 1FFF	GPIOH	1	
0x4002 1800 - 0x4002 1BFF	GPIOG	1	
0x4002 1400 - 0x4002 17FF	GPIOF		
0x4002 1000 - 0x4002 13FF	GPIOE		Section 8.4.11: GPIO register map on page 284
0x4002 0C00 - 0x4002 0FFF	GPIOD		
0x4002 0800 - 0x4002 0BFF	GPIOC		
0x4002 0400 - 0x4002 07FF	GPIOB	1	
0x4002 0000 - 0x4002 03FF			
0x4001 6800 - 0x4001 6BFF	LCD-TFT	APB2	Section 16.7.26: LTDC register map on page 504
0x4001 5800 - 0x4001 5BFF	Al		Section 29.17.9: SAI register map on page 944
0x4001 5400 - 0x4001 57FF	SPI6		
0x4001 5000 - 0x4001 53FF	SPI5	APB2	Section 28.5.10: SPI register map on page 906
0x4001 4800 - 0x4001 4BFF	TIM11		Section 19.5.11: TIM10/11/13/14 register map on

Exercise

Use the data sheet and reference manual to answer the following questions for an STM32F429 LQFP144

What are the pin numbers (0-144) for GPIO ports A.3 and E.1?

What is the address of register GPIOA_OTYPER?

GPIO

General Purpose Input / Output

General Purpose Input / Output

Situation

- Microcontroller as general purpose device
- Many functional blocks included

Problem

- Limited number of pins
- For a specific configuration, not all functions can be routed to I/O pins

Solution

- Many (all) pins configurable
- Select the needed I/O pins / functions
- "pin sharing"
- Output multiplexer needs to be configured

Pinout STM32F429 LQFP144 Source: STM F4 Reference Manual

General Purpose Input / Output

Multiple functions "share" a single pin (pin sharing)

- Digital inputs / outputs (GPIO)
- Serial interfaces
- Timers / Counters
- ADC (A/D conversion)

Consequences

- Not all functions externally available at the same time
- Programming of internal registers defines pin use
- Pin / function configuration is usually static, i.e. set once at startup

→ Not all combinations possible simultaneously

STM32F4xx GPIO

Features

- GPIO pins configurable by software
 - output (push-pull or open-drain; with or without pull-up or pull-down)
 - input (floating, with or without pull-up or pull-down)
 - peripheral alternate function
- High-current-capable
- Speed selection
- Maximum I/O toggling up to 90 MHz
- Most of the GPIO pins are shared with alternate digital or analog functions

Repetition: Hardware slave on synchronous bus

Address decoding: Register accesses activate the corresponding enable signals

I/O Pin

Address decoding: Register accesses activate the corresponding enable signals

Adding output

Address decoding: Register accesses activate the corresponding enable signals

Choosing between input and output

Address decoding: Register accesses activate the corresponding enable signals

GPIO as shown in ST Reference Manual

Source: ST F4 Reference Manual

Configuring Direction

Mode register (GPIOx_MODER)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MODER	R15[1:0]	MODE	R14[1:0]	MODER	R13[1:0]	MODER	R12[1:0]	MODE	R11[1:0]	MODER	R10[1:0]	MODE	R9[1:0]	MODE	R8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MODE	R7[1:0]	MODE	R6[1:0]	MODE	R5[1:0]	MODE	R4[1:0]	MODE	R3[1:0]	MODE	R2[1:0]	MODE	R1[1:0]	MODE	R0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

MODER[1:0]

- 00: Input

- 01: General purpose output mode

10: Alternate function mode

- 11: Analog mode

In case of alternate function:
The individual alternate function (SPI, UART, etc.) can be selected by programming GPIOx_AFRL/H (i.e. Alternate function register low / high)

See reference manual

22

Configuring Output Type

Output type register (GPIOx_OTYPER)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OT15	OT14	OT13	OT12	OT11	OT10	ОТ9	OT8	OT7	ОТ6	OT5	OT4	OT3	OT2	OT1	ОТ0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

- OT
 - 0: Output push-pull
 - 1: Output open-drain

See reference manual

- Push-pull vs. Open-drain
 - Case output i.e. MODER[0] = '1'

Open-drain

Pull-down transistor only → no pull-up transistor

Open-drain with pull-up resistor

- Transistor blocking (= switch open)
- Transistor conducting (= switch closed)
- → V_{out} is pulled up to level of VDD
- → V_{out} goes to GND

Multiple open-drain outputs on a bus line

- No electrical signal conflicts possible
- Any device can pull signal low at any time

Configuring Pull-up / Pull-down

Pull-up/pull-down register (GPIOx_PUPDR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PUPDF	R15[1:0]	PUPDF	R14[1:0]	PUPDR	R13[1:0]	PUPDR	R12[1:0]	PUPDF	R11[1:0]	PUPDF	R10[1:0]	PUPDI	R9[1:0]	PUPDI	R8[1:0]
rw	rw	rw	rw	rw	rw										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PUPDI	R7[1:0]	PUPDI	R6[1:0]	PUPD	R5[1:0]	PUPD	R4[1:0]	PUPDI	R3[1:0]	PUPD	R2[1:0]	PUPDI	R1[1:0]	PUPDI	R0[1:0]
rw	rw	rw	rw	rw	rw										

PUPDR[1:0]

- 00: No pull-up, no pull-down

- 01: Pull-up

- 10: Pull-down

11: Reserved

See reference manual

28

Configuring Speed

Output speed register (GPIOx_OSPEEDR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	EDR15 :0]		EDR14 :0]		EDR13 :0]		EDR12 :0]	OSPEI [1:	EDR11 :0]		EDR10 :0]	OSPE [1:	EDR9 :0]		EDR8 [0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OSPEE	DR7[1:0]	OSPEE	DR6[1:0]	OSPEE	DR5[1:0]	OSPEE	DR4[1:0]	OSPEE	DR3[1:0]	OSPEE	DR2[1:0]	OSPE [1:	EDR1 :0]		EDR0 0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

OSPEEDR[1:0]

- 00: Low speed

- 01: Medium speed

ZHAW, Computer Engineering 2

- 10: Fast speed

- 11: High speed

Motivation: Match output stage to impedance of transmission line. Control steepness of edge → e.g for EMC reasons

I/O Port Configuration

Overview

GP = general-purpose

PP = push-pull

PU = pull-up

PD = pull-down

OD = open-drain

AF = alternate function

		MODER(i) [1:0]	OTYPER(i)		EEDR(i) B:A]		DR(i) :0]	I/O con	figuration
			0			0	0	GP output	PP
			0]		0	1	GP output	PP + PU
	Π		0			1	0	GP output	PP + PD
	نا	01	0	SPEE	D	1	1	Reserved	'
	GP output	01	1	[B:A]		0	0	GP output	OD
19	بر ح		1			0	1	GP output	OD + PU
Ľ	ن		1	1		1	0	GP output	OD + PD
l			1	1		1	1	Reserved (GP	output OD)
			0			0	0	AF	PP
			0			0	1	AF	PP + PU
			0	1		1	0	AF	PP + PD
		10	0	SP	EED	1	1	Reserved	•
		10	1	[E	B:A]	0	0	AF	OD
			1			0	1	AF	OD + PU
			1	1		1	0	AF	OD + PD
			1			1	1	Reserved	•
	7		Х	Х	Х	0	0	Input	Floating
	<u>ط</u>	00	х	х	х	0	1	Input	PU
	=	00	х	х	х	1	0	Input	PD
lä	GP Input		х	х	х	1	1	Reserved (input	floating)
			Х	Х	Х	0	0	Input/output	Analog
		11	х	х	х	0	1		
		''	х	х	х	1	0	Reserved	
			х	х	х	1	1		
							Sour	ca. ST E/ Paf	erence Manual

Source: ST F4 Reference Manual

Reading Input Data

GPIO port input data register (GPIOx_IDR)

31	30	29	28	27	26	25 2		23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
Г	r	r	г	r	r r		r	г	r	г	Г	r	r	r	r

- IDR: Port input data
 - contain input value of corresponding I/O port
 - read-only

See reference manual

31

Writing Output Data

GPIO port output data register (GPIOx_ODR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

- ODR: Port output data
 - read and write by software

See reference manual

32

Setting and Clearing Bits

GPIO port bit set/reset register (**GPIO**x_BSRR)

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Cloor bito	BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
Clear bits →	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Set bits \rightarrow	BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0
	w	w	w	w	W	w	w	w	w	w	w	w	w	w	w	w

- Clear port bit by writing a '1' to BSRR[bit+16]
- Set port bit by writing a '1' to BSRR[bit]
- Ensures atomic access in software (no interruption possible)
 - Setting a bit through ODR requires 'read ODR', 'OR operation with bit mask' and 'write ODR'

GPIO Register Map

	Offset	Register	31	30	73 78	27	25	22	20	19	17	15	14	13	11 01	: 0	۰ «	^	9	2	4	က	,	- 0	
	0x00	GPIOA MODER Reset value	MODER15[1:0]		MODER14[1:0]	MODER13[1:0]	MODER12[1:0]	MODER11[1:0]	MODER10[1:0]	MODER9[1:0]	MODER8[1:0]	MODER7[1:0]	0	MODER6[1:0]	Moders[1:0]		MODER4[1:0]		MODER3[1:0]	O MODER2(1-0)	0	MODER1[1:0]	D	MODER0[1:0]	
_	0x00	GPIOB_ MODER	ModeR15[1:0]		MODER14[1:0]	MODER13[1:0]	MODER12[1:0]	MODER11[1:0]	MODER10[1:0]	MODER9[1:0]	MODER8[1:0]	MODER7[1:0]		MODER6[1:0]	MODER5[1:0]	- 1	MODER4[1:0]	- 1	MODER3[1:0]	MODER 211-01	0	MODER1[1:0]		MODER0[1:0]	-
٠	0x00	GPIOx_MODER (where x = Cl/J/K)	MODER15[1:0]	6	MODER14[1:0]	MODER13[1:0]	MODER12[1:0]	MODER11[1:0]	MODER10[1:0]	MODER9[1:0]	MODER8[1:0]	MODER7[1:0]		MODER6[1:0]	MODER5[1:0]		MODER4[1:0]		MODERS[1:0]	MODER 211-01	[0:: 5:: 5:: 6:: 6:: 6:: 6:: 6:: 6:: 6:: 6	MODER1[1:0]		MODER0[1:0]	
	0x04	Reset value GPIOx_ OTYPER (where x = AI/J/K) Reset value	0	0	0 0	1010	Rese	erved	0 0	1010	1010	OT15	o 0114 o	o 0T13 o	o OT10	OT9	OT8	0.17	o 0T6 o			o OT3	210	0 OTO	
	0x08	GPIOx_ OSPEEDER (where x = AI/J/K except B)	OSPEEDR15[1:0]		OSPEEDR14[1:0]	OSPEEDR13[1:0]	OSPEEDR12[1:0]	OSPEEDR11[1:0]	OSPEEDR10[1:0]	OSPEEDR9[1:0]	OSPEEDR8[1:0]	OSPEEDR7[1:0]		OSPEEDR6[1:0]	OSPEEDR5[1:0]	- 1	OSPEEDR4[1:0]	- 1	OSPEEDR3[1:0]	OSPEEDR2[1:0]		OSPEEDR1[1:0]		OSPEEDR0[1:0]	
	0x08	GPIOB_ OSPEEDER	OSPEEDR15[1:0]	6	OSPEEDR14[1:0]	OSPEEDR13[1:0]	OSPEEDR12[1:0]	OSPEEDR11[1:0]	OSPEEDR10[1:0]	OSPEEDR9[1:0]	OSPEEDR8[1:0]	OSPEEDR7[1:0]		OSPEEDR6[1:0]	OSPEEDR5[1:0]		SPEEDR4[1:0]	1	1 OSPEEDR3[1:0] 0	OSPEEDR2[1-0]	0	OSPEEDR1[1:0]		OSPEEDR0[1:0]	
٠	0x0C	Reset value GPIOA_PUPDR	PUPDR15[1:0]	6:10:10	PUPDR14[1:0]	PUPDR13[1:0]	PUPDR12[1:0]	PUPDR11[1:0]	PUPDR10[1:0]	PUPDR9[1:0]	PUPDR8[1:0]	PUPDR7[1:0]		PUPDR6[1:0]	PUPDR5[1:0]		PUPDR4[1:0]		PUPDR3[1:0]	PI IPDR271-01	5:15:15	PUPDR1[1:0]		PUPDR0[1:0]	
	0x0C	Reset value GPIOB_PUPDR	PUPDR15[1:0]	616	PUPDR14[1:0]	PUPDR13[1:0]	PUPDR12[1:0]	PUPDR11[1:0]	PUPDR10[1:0]	PUPDR9[1:0]	PUPDR8[1:0]	PUPDR7[1:0]	0	PUPDR6[1:0]	PUPDR5[1:0]		PUPDR4[1:0]		PUPDR3[1:0]	Pl IPDR2/11-01		PUPDR1[1:0]		PUPDR0[1:0]	
	0x0C	GPIOx_PUPDR (where x = CI/J/K)	PUPDR15[1:0]	6	PUPDR14[1:0]	PUPDR13[1:0]	PUPDR12[1:0]	PUPDR11[1:0]	PUPDR10[1:0]	PUPDR9[1:0]	PUPDR8[1:0]	PUPDR7[1:0]		PUPDR6[1:0]	PUPDR5[1:0]		PUPDR4[1:0]		PUPDK3[1:0]	PI IPDR211-01		PUPDR1[1:0]		PUPDR0[1:0]	
	0x10	Reset value GPIOx_IDR (where x = AI/J/K) Reset value	0	0	0 0	0 0	Rese	erved	10 10	1010	1010	× IDR15	х	× IDR13 o			DR8		× IDR6	x IDR5 o	× IDR4 o	IDR3	$\overline{}$	X X DRI DRI 0 0	
	0x14	GPIOx_ODR (where x = Al/J/K) Reset value					Rese	erved				0	0	o ODR13	0 0		- 1		a ODR6	a ODR5	o ODR4	a obra	- 1	o ODR0	
	0x18	GPIOx_BSRR (where x = Al/J/K) Reset value	m	m	o BR13	a BR11	0 0 BR8	o BR7	o BR5	o BR3	o BR1	0		o BS13	0 0	Τ) œ	ı اس	e BS6		_	o BS3	ا ۵	0 BS	
	0x1C	GPIOx_LCKR (where x = Al/J/K) Reset value					Reserv	/ed			P LCKK	K K		o LCK13	E E				o LCK6			o LCK3		o o	
	0x20	GPIOx_AFRL (where x = AI/J/K) Reset value GPIOx_AFRH			7[3:0] 0 0	L4[3:0]			3[3:0]	AFF				FRI					0 0						
	0x24	(where x = A l/J/K) Reset value			0 0		14[3:0]	AFRH	112[3:0			11[3:0] 0 0			-	1	FRE	-	-			3[3:0] 0 0			

See reference manual

GPIO Cookbook

Basic input / output configuration

- Find pin numbers related to GPIOx or vice versa
- Configure through configuration registers
 - GPIOx_MODER
 - GPIOx_OTYPER
 - GPIOx_OSPEEDR
 - GPIOx_PUPDR

Data operations

- Input → Read register GPIOx_IDR
- Output → Write register GPIOx_ODR or GPIOx_BSRR

Exercise: GPIO Configuration

- On a STM32F429 LQFP144 Pin 37 should be configured as low speed output with open-drain and pull-up
 - What registers (names and addresses) must be configured?
 - Indicate the bits to be configured and their values!
 - No code required.

Hardware Abstraction Layer (HAL)

Accessing a register

```
#define GPIOA MODER (*((volatile uint32 t *)(0x40020000)))
GPIOA MODER = 0x555555555; // all output
```

However

- Each GPIO port has the same 10 registers
- There are 11 GPIO ports → GPIOA GPIOK

→ Results in 110 macros with repetitive code

We want an abstraction similar to base address and offset

Hardware Abstraction Layer (HAL)

reg_stm32f4xx.h

Base addresses Pointers to struct of type reg_gpio_t ((reg gpio t *) 0x40020000) #define GPIOA ((reg gpio t *) 0x40020400) #define GPIOB ((reg gpio t *) 0x40020800) #define GPIOC #define GPIOD ((reg gpio t *) 0x40020c00) #define GPIOE ((req gpio t *) 0x40021000) #define GPIOF ((reg gpio t *) 0x40021400) ((reg gpio t *) 0x40021800) #define GPIOG ((reg gpio t *) 0x40021c00) #define GPIOH ((reg gpio t *) 0x40022000) #define GPIOI ((reg gpio t *) 0x40022400) #define GPIOJ ((reg gpio t *) 0x40022800) #define GPIOK base addresses

Offset

Typedef for reg_gpio_t

```
\struct reg gpio t
 * \brief Representation of GPIO register.
                                                       register names as
   Described in reference manual p.265ff.
                                                      in reference manual
typedef struct {
   volatile uint32 t MODER;
                                /**< Port mode register. */
   volatile uint32 t OTYPER;
                                /**< Output type register. */
   volatile uint32 t OSPEEDR; /**< Output speed register. */</pre>
   volatile uint32 t PUPDR;
                                /**< Port pull-up/pull-down register. */
                                /**< Input data register. */</pre>
    volatile uint32 t IDR;
   volatile uint32 t ODR;
                                /**< output data register. */
                                /**< Bit set/reset register */
   volatile uint32 t BSRR;
   volatile uint32 t LCKR;
                                /**< Port lock register. */
   volatile uint32 t AFRL;
                                /**< AF low register pin 0..7. */
   volatile uint32 t AFRH;
                                /**< AF high register pin 8..15. */
 reg gpio t;
```

size of registers

```
GPIOA->MODER = 0 \times 555555555; // all output
```

Hardware Abstraction Layer (HAL)

Lowest level of hardware abstraction layer, contains

- Base addresses
- Structs → members correspond to hardware registers
- Helper macros

Exercise: GPIO Configuration

Write the code to configure the bits from the last exercise

- GPIOA MODER[7:6]
- → MODER3 = 01
- → GP output

- GPIOA_OTYPER[3] \rightarrow OT3 = 1

- → open-drain
- GPIOA OSPEEDR[7:6] \rightarrow OSPEEDR3 = 00
- → low speed

- GPIOA_PUPDR[7:6]
- → PUPDR3 = 01

→ pull up

- Use the base addresses and structs in reg stm32f4xx.h
- Do not change the other bits

```
#include "reg stm32f4xx.h"
void config gpioa pin3(void)
```

ZHAW, Computer Engineering 2 21.12.2020