

Tobia Claglüna :: AMAS Group, LSM

IPPL Meeting

May 23, 2023

Contact: tobia.clagluena@psi.ch

1/9

Tobia Claglüna (LSM, PSI) May 23, 2023 May 23, 2023

Figure 1: Poisson Solver possibly computes $-F_d(\vec{v})$?

Diffusion Coefficient: DIH

- Simulation crashes after 200-400 timesteps.
- Computed $D(\vec{v})$ are positive definite and symmetric.
- Crashes in scatterCIC() as **Q** is too big (particles leave configuration space).

D-Field Analysis: Maxwellian Test-Case

Diagonal elements of 3×3 matrices in the center of the domain Ω , averaged over all velocity cells:

Figure 2: Diagonal elements of Ω (without boundary cells).

Figure 3: Reference distribution Qiang et al. [2000]

D-Field Analysis: Maxwellian Test-Case

Diagonal elements of 3x3 matrices averaged over all velocity cells:

Figure 4: Diagonal elements of boundary cells $\partial\Omega$ compared to center cells $\Omega.$

 \implies Onesided Hessian is needed to resolve boundary cells properly.

D-Field Analysis: Maxwellian Test-Case

Off-Diagonal elements D_{xy} of 3x3 matrices:

Figure 5: Distribution of off-diagonal entries on both the center domain and the boundary cells.

Progress

- ✓ Maxwellian Test-Case
- \Box Onesided Hessian: $m{D}(ec{v}) = \Gamma rac{\partial^2}{\partial ec{v} \partial ec{v}}$
- \square Test how FD gradient impacts $F_d(\vec{v})$ (instead of computing it in Fourier space)
- \square Check if FFTPoissonSolver solves for $\Delta \phi = -\rho$ or $\Delta \phi = \rho$?
- Analyse Diffusion Coefficients on Boundary Cells in DIH:
 - \vec{v} Check that calculated $D(\vec{v})$ are positive definite and symmetric
 - ☐ Analyse Error introduced by Cholesky decomposition
- Application to DIH:

$$\overset{\bullet}{\mathbf{V}} F_d(\vec{v})$$

$$\Box$$
 $D(\vec{v})$

(Adjusted) Timeline

Date	Target Goals
16/05	Setup v-space datastructures in LangevinParticles.hpp. Add Friction coefficient. Add Solver for 2nd Rosenbluth potential $g(\vec{v})$.
23/05	Analyse structure of D . Finish Diffusion coefficient computation (via onesided Hessian operator).
30/05	Analyse interplay between collision coeff.'s (see whether Severin's conclusions are confirmed or can be disproved).
	Profiling of runtime and memory consumption.
06/06	Start improving most pressing bottlenecks. Start writing.
17/07	Submission.

Table 1: Timeline with approximate milestones

References I

Ji Qiang, Robert D. Ryne, and Salman Habib. Self-consistent langevin simulation of coulomb collisions in charged-particle beams. In *Proceedings of the 2000* ACM/IEEE Conference on Supercomputing, SC '00, page 27–es, USA, 2000. IEEE Computer Society. ISBN 0780398025.