Devin Hardy

Database Systems

Projection	π
Selection	σ
Cartesian Product	×
Join	M
Left Outer Join	×
Right Outer Join	M
Union	Λ
Intersection	U
Set Difference	_
Rename	ρ

1.

a. $T_1 \bowtie T_1.P = T_2.A T_2$

Q	R	A	В	С
a	5	10	b	6
a	6	25	С	3
a	5	10	b	5

b. $T_1 \bowtie T_1.Q = T_2.B T_2$

P	R	A	В	С
15	8	10	b	6
NULL	NULL	25	С	3
15	8	10	b	5

c. $T_1 \bowtie T_1.P = T_2.A T_2$

P	Q	R	В	C
10	a	5	b	6
15	b	8	NULL	NULL
25	a	6	c	3

d. $T_1 \bowtie T_1.Q = T_2.B T_2$

•				
P	Q	R	A	С
10	a	5	NULL	NULL
15	b	8	10	6
15	b	8	10	5
25	a	6	NULL	NULL

e. T1 ∪ T2

P	Q	R
10	a	5
15	b	8
25	a	6
10	b	6
25	С	3
10	b	5

f. $T_1 \bowtie (T_1.P = T_2.A \text{ AND } T_1.R = T_2.C) T_2$

P	Q	T	В
10	a	5	b

2.

red	plaid	stripe	dot
red	plaid	stripe	dot
red	plaid	stripe	dot
yellow	plaid	stripe	dot
yellow	plaid	stripe	dot
yellow	plaid	stripe	dot
green	plaid	stripe	dot
green	plaid	stripe	dot
green	plaid	stripe	dot

3.

a. (σlastName='Adams'(Emp)) ⋈ Assign

empId	lastName
E110	Adams

empId	lastName	projNo	hours
E110	Adams	P15	700
E110	Adams	P20	350

b. $\pi \text{ empID}((\sigma \text{budgent} > 400000(\text{Proj})) \bowtie \text{ Assign})$

projNo	ProjName	budget
P10	Hudson	500000
P23	Arkansas	600000

projNo	ProjName	budget	empId	hours
P10	Hudson	500000	E101	200
P10	Hudson	500000	E105	400
P10	Hudson	500000	E115	300

empId	
E101	
E105	
E115	

c. πbudget(πprojNo(Assign) ⋈ Proj)

projNo	
P10	
P15	
P20	

projNo	projName	budget
P10	Hudson	500000
P15	Columbia	350000
P20	Wabash	350000

budget	
500000	
350000	

4.

- a. σ Quarter = 'W09' ((σ Name='John Smith' (STUDENT)) ⋈ ENROLL)
- b. π Course#, Book_isbn, Book_title (σ Dept = 'CS' (COURSE) \bowtie BOOK_ADOPTION) \bowtie TEXT
- c. πDept, Book_title, Publisher (COURSE ⋈ (BOOKADOPTION ⋈ (σ Publisher = 'Pearson Publishing'(TEXT))))

5.

a. π DestinationCity(TRIP)

- b. $\sigma DeptNo = 10(EMPLOYEE)$
- c. σ Amount > 2000(EXPENSE)
- d. π SSN, Name, DestinationCity (σ DestinationCity = 'Honolulu'(TRIP) \bowtie EMPLOYEE)
- e. EXPENSE \bowtie (π SSN, Name, TripId(σ SSN = '234-56-7890'(EMPLOYEE) \bowtie TRIP))
- f. π Name, TripId, DepartureCity(EMPLOYEE \bowtie (σ DepartureCity = 'London'(TRIP)))
- g. π SNN, Name, Item, Amount(EMPLOYEE \bowtie (TRIP \bowtie (σ Amount > 1000(EXPENSE))))
- h. π Name, Item, Amount(EMPLOYEE \bowtie (TRIP \bowtie (σ Item = 'Entertainment'(EXPENSE))))
- i. π DestinationCity, Name, JobTitle(TRIP \bowtie (σ JobTitle = 'Consultant'(EMPLOYEE)))
- j. πItem, Amount, DestinationCity, Name(EXPENSE ⋈ (σ(DestinationCity = 'Cario AND DepartureDate = 'January 3')(TRIP) ⋈ (σName = 'Jones'(EMPLOYEE)))
- k. πName, DeptNo, dates, amount, JobTitle(EMPLOYEE ⋈ (σDestinationCity = 'Melbourne'(TRIP) ⋈ (σItem = 'Service Charge'(Expense))))

6.

Relation	Minimum	Maximum
a. R1 ∪ R2	N1	N2
b. R1 ∩ R2	1	N1
c. R1 – R2	N1	N2
d. R1 × R2	N2	N2
e. σ a=5(R1)	1	N1
f. πa(R1)	1	N1
g. R1 / R2	N1	N1