第3章凸优化模型

SMaLL

¹ 中国石油大学(华东) SMaLL 课题组 small.sem.upc.edu.cn liangxijunsd@163.com

2023

1. 凸优化问题

- 1.1 标准形式的优化问题
- 1.2 凸优化问题
- 1.3 线性规划
- 1.4 二次规划
- 1.5 几何规划
- 1.6 广义不等式约束
- 1.7 半定规划 Semidefinite program

本章要点

- 掌握凸优化问题的形式, 能够识别凸优化问题
- 了解拟凸优化的形式
- 掌握线性规划和二次规划的形式,能够识别这两类优化问题, 并能够调用软件包解决问题
- 掌握二阶锥规划和半定规划 (semidefinite prog.) 的的形式, 能够识别这两类优化问题,并能够调用软件包解决问题

1. 凸优化问题

1.1 标准形式的优化问题

- 1.2 凸优化问题
- 1.3 线性规划
- 1.4 二次规划
- 1.5 几何规划
- 1.6 广义不等式约束
- 1.7 半定规划 Semidefinite program

标准形式的优化问题

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, ..., m$ (1)
 $h_i(x) = 0, \quad i = 1, ..., p$

- $x \in \mathbb{R}^n$ 是优化变量
- $f_0: \mathbb{R}^n \to \mathbb{R}$ 是目标函数或代价函数
- $f_i: \mathbb{R}^n \to \mathbb{R}, i = 1, ..., m$, 是不等式约束函数
- $h_i: \mathbb{R}^n \to \mathbb{R}$ 是等式约束函数

隐式约束

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \mathbf{dom} \ f_i \cap \bigcap_{i=1}^{p} \mathbf{dom} \ h_i, \tag{2}$$

- 我们称 D 为问题的**定义域**
- 约束 $f_i(x) \le 0, h_i(x) = 0$ 是显式约束
- 如果一个问题没有明确的约束 (m = p = 0), 它就是不受约束
 的

例.

minimize
$$f_0(x) = -\sum_{i=1}^{k} \log(b_i - a_i^T x)$$
 (3)

是一个具有隐式约束 $a_i^T x < b_i$ 的无约束问题

最优点和局部最优点

定义. 如果 $x \in \text{dom } f_0$ 并且满足约束条件,则称 x 是 可行的 最优值 p^* :

$$p^* = \inf\{f_0(x) \mid f_i(x) \le 0, i = 1, \dots, m, h_i(x) = 0, i = 1, \dots, p\}$$
 (4)

如果 $f_0(x) = p^*$ 称这个可行的 x 为 **最优解**; X_{opt} 是所有最优解 的集合

x 是 **局部最优的**如果存在 R > 0 使得 x 是下面关于 z 优化问题 的解

minimize (over z)
$$f_0(z)$$

subject to $f_i(z) \le 0, \quad i=1,\ldots,m, \quad h_i(z)=0, \quad i=1,\ldots,p$
 $\|z-x\|_2 \le R$

(5)

例. (n=1, m=p=0)

- $f_0(x) = 1/x$, **dom** $f_0 = \mathbb{R}_{++} : p^* = 0$, 无最优点
- $f_0(x) = -\log x$, **dom** $f_0 = \mathbb{R}_{++} : p^* = -\infty$
- $f_0(x) = x \log x$, **dom** $f_0 = \mathbb{R}_{++} : p^* = -1/e, x = 1/e$ 是最优点
- $f_0(x) = x^3 3x$, $p^* = -\infty$, 在 x = 1 处局部最优

可行性问题

find
$$x$$
subject to $f_i(x) \le 0, \quad i = 1, \dots, m$

$$h_i(x) = 0, \quad i = 1, \dots, p$$

当 $f_0(x) = 0$ 时,可以认为是一般问题的特例:

minimize 0
subject to
$$f_i(x) \le 0$$
, $i = 1, ..., m$ (7)
 $h_i(x) = 0$, $i = 1, ..., p$

- 如果约束条件可行, 那么 $p^* = 0$; 任何可行的 x 都是最佳的
- 如果约束不可行,那么 $p^* = \infty$

1. 凸优化问题

1.1 标准形式的优化问题

1.2 凸优化问题

- 1.3 线性规划
- 1.4 二次规划
- 1.5 几何规划
- 1.6 广义不等式约束
- 1.7 半定规划 Semidefinite program

凸优化问题

标准形式的凸优化问题

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, ..., m$ (8)
 $a_i^T x = b_i, \quad i = 1, ..., p$

• f₀, f₁,..., f_m 均为凸函数; 等式约束是仿射函数

重要性质: 凸优化问题的可行集是凸的

示例

凸优化问题

minimize
$$f_0(x) = x_1^2 + x_2^2$$

subject to $f_1(x) = x_1/(1+x_2^2) \le 0$ (9)
 $h_1(x) = (x_1 + x_2)^2 = 0$

- f_0 是凸函数; 可行集 $\{(x_1, x_2) \mid x_1 = -x_2 \le 0\}$ 是凸集
- (根据我们的定义) 并非一个凸优化问题: f₁ 不是凸函数, h₁ 不是仿射函数
- 与凸问题等价(但不相同)

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 \le 0$ (10)
 $x_1 + x_2 = 0$

局部和全局最优

定理1

凸问题的任何局部最优点都是(全局)最优的

证明. 假设 x 是局部最优的,但存在一个可行的 y , $f_0(y) < f_0(x)$

x 局部最优意味着存在 R > 0 使得

$$z \overrightarrow{\Pi} \overrightarrow{\uparrow}$$
, $||z - x||_2 \le R \implies f_0(z) \ge f_0(x)$ (11)

$$\Rightarrow z = \theta y + (1 - \theta)x$$
, $\sharp + \theta = R/(2||y - x||_2)$

- $||y-x||_2 > R$, 所以 $0 < \theta < 1/2$
- z 是两个可行点的凸组合,因此也是可行的
- $||z x||_2 = R/2$ \perp

$$f_0(z) \le \theta f_0(y) + (1 - \theta) f_0(x) < f_0(x) \tag{12}$$

这与我们的假设相悖,即 x 是局部最优的

可微函数 ƒ0 的最优性准则

定理 2

对于任何凸优化问题,x 是最优的,当且仅当其可行且 $\nabla f_0(x)^T(y-x) \geq 0 \quad \text{对所有可行 } y \tag{13}$

其中可行集 x 由阴影表示,如果非零, $\nabla f_0(x)$ 在 x 处定义了可行集 X 的一个支撑超平面 14/58

证明.

证明. $\iff f_0$ 为凸函数: $f_0(y) \ge f_0(x) + \langle \nabla f_0(x), y - x \rangle,$

 $\forall x, y \in \text{dom } f_0$

 \Longrightarrow : 假设 x 是最优的, $\exists y \in X$, 满足 $\langle \nabla f_0(x), y - x \rangle < 0$.

考虑点 z(t) = ty + (1 - t)x, 其中 $t \in [0, 1]$. X 是凸集 $\Rightarrow z(t)$ 是可行的.

对于较小的正数 t: $f_0(z(t)) < f_0(x)$, $\Rightarrow x$ 不是最优的. 为了说明这点:

$$\frac{d}{dt}f_0(z(t))\Big|_{t=0} = \nabla f_0(x)^T (y-x) < 0$$

对于较小的正数 t: $f_0(z(t)) < f_0(x)$.

可微函数 fa 的最优性准则

• **无约束问题:** *x* 是最优解,当且仅当

$$x \in \mathbf{dom} \ f_0, \quad \nabla f_0(x) = 0$$

• 等式约束问题

minimize
$$f_0(x)$$
 subject to $Ax = b$ x 是最优解,当且仅当存在一个 ν 使得

• 非负整数的最小化

$$x \in \mathbf{dom} \ f_0, \quad x \succeq 0, \quad \begin{cases} \nabla f_0(x)_i \ge 0 & x_i = 0 \\ \nabla f_0(x)_i = 0 & x_i > 0 \end{cases}$$

 $x \in \mathbf{dom} \ f_0, \quad Ax = b, \quad \nabla f_0(x) + A^T \nu = 0$

minimize $f_0(x)$ subject to $x \succeq 0$

(15)

(14)

(16)

(17)

(18)

SMall 16/58

等价凸问题

如果一个问题的解很容易从另一个问题中得到,则两个问题 (非正式地) 是 **等价的**,反之亦然 保持凸性的一些常见变换:

• 消除等式约束

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, ..., m$ (19)
 $Ax = b$

等价于

minimize (over z)
$$f_0(Fz + x_0)$$

subject to $f_i(Fz + x_0) \le 0, \quad i = 1, ..., m$ (20)

其中 F 和 xo 满足

等价凸间题

引入等式约束

```
minimize f_0(A_0x+b_0)
                                                                   (22)
         subject to f_i(A_ix + b_i) \leq 0, \quad i = 1, \dots, m
等价干
   minimize (over x, y_i) f_0(y_0)
                                                                   (23)
   subject to
                              f_i(y_i) \leq 0, \quad i = 1, \dots, m
```

• 引入线性不等式的松弛变量

minimize $f_0(x)$

subject to $a_i^T x < b_i, i = 1, \ldots, m$

等价干

minimize (over x, s) $f_0(x)$ subject to

 $a_i^T x + s_i = b_i, \quad i = 1, \dots, m$ $s_i \geq 0, \quad i = 1, \dots m$

 $y_i = A_i x + b_i, \quad i = 0, 1, \dots, m$

(24)

18/58

等价凸问题

• 上图 (epigraph) 形式: 标准形式凸问题等价于

minimize (over
$$x, t$$
) t
subject to $f_0(x) - t \le 0$
 $f_i(x) \le 0, \quad i = 1, ..., m$

$$Ax = b$$

• 最小化某些变量

minimize
$$f_0(x_1, x_2)$$

subject to $f_1(x_1) \le 0$

subject to
$$f_i(x_1) \leq 0, \quad i = 1, \dots, m$$

等价于

minimize
$$\tilde{f}_0(x_1)$$

subject to
$$f_i(x_1) \leq 0, \quad i = 1, \dots, m$$

其中 $\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$

(26)

(27)

(28)

1. 凸优化问题

- 1.1 标准形式的优化问题
- 1.2 凸优化问题
- 1.3 线性规划
- 1.4 二次规划
- 1.5 几何规划
- 1.6 广义不等式约束
- 1.7 半定规划 Semidefinite program

线性规划 (LP)

minimize
$$c^T x + d$$

subject to $Gx \leq h$ (29)
 $Ax = b$

- 目标函数和约束条件都是仿射函数的凸问题
- 可行集是多面体

示例

- **1. 饮食问题:** 选择 n 种食物的数量 x_1, \ldots, x_n
 - 一个单位的食物 j 花费 c_j , 包含的营养 i 的数量为 a_{ij}
 - 健康饮食需要的营养 i 在数量上至少为 b_i

为了找到最便宜的健康饮食方案,

minimize
$$c^T x$$

subject to $Ax \succeq b$, $x \succeq 0$ (30)

2. 分段线性最小化问题

$$\min_{i=1,\dots,m} \left(a_i^T x + b_i \right) \tag{31}$$

等价于一个 LP 问题

minimize
$$t$$

subject to $a_i^T x + b_i < t, \quad i = 1, \dots, m$ (32)

示例

3. 多面体的切比雪夫中心

$$\mathcal{P} = \left\{ x \mid a_i^T x \leq b_i, i = 1, \dots, m \right\}$$
(33)
的切比雪夫中心是最大内切球的中心

 $\mathcal{B} = \{x_c + u \mid ||u||_2 < r\}$

$$_{\circ}x_{\mathrm{cheb}}$$

•
$$a_i^T x \le b_i \ \forall x \in \mathcal{B} \$$
 当且仅当

$$\sup \{a_i^T(x_c + u) \mid ||u||_2 \le r\} = a_i^T x_c + r ||a_i||_2 \le b_i$$
 (35)

• 因此, x_c , r 可以通过求解 LP 问题来确定

(34)

maximize r
subject to
$$a_i^T x_c + r \|a_i\|_2 \le b_i$$
, $i = 1, ..., m$

例. 基于线性规划求解该多面体的切比雪夫中心

考虑下面的线性不等式组定义的多面体 P:

$$\left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \\ -1 & 0 \end{array}\right] \cdot \left[\begin{array}{c} y \\ x \end{array}\right] \preccurlyeq \left[\begin{array}{c} 1 \\ 1 \\ 0 \end{array}\right]$$

运行代码, 基于线性规划求解该多面体的切比雪夫中心

基于线性规划求解该多面体的切比雪夫中心(运行代码)

- 1 from scipy import optimize
- 2 import numpy as np
- 3 from matplotlib import pyplot as plt
- 4 c = np.array([1,0,0])
- 5 A = np.array([[np.sqrt(2),1,1],[np.sqrt(2),1,1],[1,-1,0]])
- 6 b = np.array([1,1,0]) 7 res = optimize linered (a Λ b)
- 7 res = optimize.linprog(-c,A,b) 8 res.x
- 9 plt.plot([-1,0],[0,1],'b')
- 10 plt.plot([0,1],[1,0],'b')
- 11 plt.plot([-1,1],[0,0],'b')
- 12 r,x,y = res.x[0], res.x[2], res.x[1]
- 13 theta = np.arange(0,2*np.pi,0.01)
- 14plt.plot(x+r*np.cos(theta),y+r*np.sin(theta),'r')
- 15 plt.plot(x,y,'k.')
- 16 plt.axis('equal')

多面体 P 及求得的切比雪夫中心, 如图所示。

1. 凸优化问题

- 1.1 标准形式的优化问题
- 1.2 凸优化问题
- 1.3 线性规划

1.4 二次规划

- 1.5 几何规划
- 1.6 广义不等式约束
- 1.7 半定规划 Semidefinite program

二次规划 (QP)

minimize
$$(1/2)x^TPx + q^Tx + r$$

subject to $Gx \leq h$ (37)
 $Ax = b$

- $P \in \mathbf{S}_{+}^{n}$, 所以目标是凸二次函数
- 最小化多面体上的凸二次函数

示例

1. 最小二乘回归

的权衡

$$minimize \frac{1}{2} ||Ax - b||_2^2 (38)$$

- 解析解 $x^* = A^{\dagger}b(A^{\dagger} \in A)$ 的伪逆)
- 可以添加线性约束, e.g., $l \leq x \leq u$

2. 具有随机成本的线性规划

minimize
$$\bar{c}^T x + \gamma x^T \Sigma x = \mathbf{E} c^T x + \gamma \mathbf{var} (c^T x)$$

subject to $Gx \leq h$, $Ax = b$ (39)

- c 是具有均值 \bar{c} 和协方差 Σ 的随机向量
- 因此, $c^T x$ 是具有平均值 $\bar{c}^T x$ 和方差 $x^T \Sigma x$ 的随机变量
- $\gamma > 0$ 是风险规避参数;控制预期成本和差异(风险)之间

3. 多面体之间的距离

• 多面体 $\mathcal{P}_1 = \{ \mathbf{x} \mid \mathbf{A}_1 \mathbf{x} \leq \mathbf{b}_1 \}$ 和 $\mathcal{P}_2 = \{ \mathbf{x} \mid \mathbf{A}_2 \mathbf{x} \leq \mathbf{b}_2 \}$ 在 \mathbf{R}^n 上的 欧氏距离定义为

$$\operatorname{dist}\left(\mathcal{P}_{1},\mathcal{P}_{2}\right)=\inf\left\{ \left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\|_{2}\mid\boldsymbol{x}_{1}\in\mathcal{P}_{1},\boldsymbol{x}_{2}\in\mathcal{P}_{2}\right\}$$

- 如果多面体相交,则距离为零。
- 求解下面的二次规划 $\rightarrow P_1$ 和 P_2 之间的距离

minimize
$$\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$$
 $\|\mathbf{x}_1 - \mathbf{x}_2\|_2^2$ subject to $\mathbf{A}_1 \mathbf{x}_1 \leq \mathbf{b}_1, \mathbf{A}_2 \mathbf{x}_2 \leq \mathbf{b}_2$

当且仅当多面体相交时,最优值为零,否则最优解 x₁ 和 x₂
 分别是 P₁ 和 P₂ 中最接近的点

例. 二次规划求多面体间的距离

考虑多面体 丹

$$\left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \\ -1 & 0 \end{array}\right] \cdot \left[\begin{array}{c} y \\ x \end{array}\right] \preccurlyeq \left[\begin{array}{c} 1 \\ 1 \\ 0 \end{array}\right]$$

和多面体 丹2

$$\begin{bmatrix} 0 & -1 \\ -1 & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} y \\ x \end{bmatrix} \preccurlyeq \begin{bmatrix} -2 \\ 2 \\ 4 \end{bmatrix}$$

之间的距离。

学习实例代码 3.4.1, 基于二次规划求解上述两个多面体之间距离。

代码输出求得的最优解为: [5.30e-04, 1.00e+00, 5.78e-04, 2.00e+00],表示两个多面体相距最近的两个点近似为 (1,0) 和 (2,0)。

如图展示了这两个多面体及其最相距最近的两个点。

二次约束二次规划 (QCQP)

minimize
$$(1/2)x^{T}P_{0}x + q_{0}^{T}x + r_{0}$$

subject to $(1/2)x^{T}P_{i}x + q_{i}^{T}x + r_{i} \leq 0, \quad i = 1, ..., m$ (40)
 $Ax = b$

- $P_i \in \mathbf{S}_+^n$; 目标函数和约束函数是凸二次函数
- 如果 $P_1, \ldots, P_m \in \mathbf{S}_{++}^n$,可行域是 m 个椭球和仿射集 Ax = b 的交集

例. QCQP

$$\max \quad \theta$$

$$\text{s. t.} \quad \|\mu\|_2 \le 1,$$

$$\mu_i \ge 0, i = 1, \dots, p,$$

$$\frac{1}{2} \sum_{i=1}^p \mu_i f_i(\alpha) - \sum_{i=1}^l \alpha_i \ge \theta,$$

$$0 \le \alpha_i \le s_i C, \ i = 1, \dots, l,$$

$$\sum_{i=1}^l y_i \alpha_i = 0,$$

Ling Jian, Zhonghang Xia, Xinnan Niu, Xijun Liang, Parimal Samir, Andrew J. Link:L2 基于多

where $f_i(\alpha) = \sum_{j,k=1}^l \alpha_j \alpha_k y_j y_k k^i(\mathbf{x}_j, \mathbf{x}_k)$, $i = 1, \dots, p$.

二阶锥规划

minimize
$$f^T x$$

subject to $\|A_i x + b_i\|_2 \le c_i^T x + d_i$, $i = 1, ..., m$ (41)
 $F x = g$

 $(A_i \in \mathbb{R}^{n_i \times n}, F \in \mathbb{R}^{p \times n})$

• 不等式称为二阶锥 (SOC) 约束:

 \mathbb{R}^{n+1} 上的二阶锥: $\{(x,t) \in \mathbb{R}^{n+1} | ||x||_2 \le t\}$

- 当 $n_i = 0$,简化成 LP 问题; 如果 $c_i = 0$,变为一个 QCQP 问题
- 比 QCQP 和 LP 更普遍

例. 鲁棒线性规划

优化问题中的参数通常是不确定的, e.g., 在 LP 问题中

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$, $i = 1, ..., m$

在 c, a_i , b_i 中可能存在不确定性 处理不确定性的两种常见方法 (为了简单起见,以 a_i 为例)

• 确定性模型: 约束必须适用于所有 $a_i \in \mathcal{E}_i$

minimize
$$c^T x$$

subject to $a_i^T x \le b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, \dots, m$ (44)

• 随机模型: a_i 为随机变量; 约束为概率约束

minimize
$$c^T x$$

subject to $\mathbf{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, ..., m$

(45)

(43)

例. 鲁棒线性规划

确定性方法 ← SOCP (二阶锥规划) (自学)

选择椭球 ε_i:

$$\mathcal{E}_i = \{ \bar{a}_i + P_i u \mid ||u||_2 \le 1 \} \quad (\bar{a}_i \in \mathbb{R}^n, \quad P_i \in \mathbb{R}^{n \times n})$$
 (46)

球心是 \bar{a}_i , 由奇异值/向量 P_i 确定半轴

• 鲁棒线性规划问题

minimize
$$c^T x$$

subject to $a_i^T x \le b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, \dots, m$ (47)

等价于 SOCP (二阶锥规划)

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \|P_i^T x\|_2 \le b_i$, $i = 1, ..., m$ (48)

由于
$$\sup_{\|u\|_{2} \le 1} (\bar{a}_i + P_i u)^T x = \bar{a}_i^T x + \|P_i^T x\|_2$$

基于 SOCP (二阶锥规划) 的随机方法

- 假定 a_i 为高斯分布,均值为 \bar{a}_i ,方差为 $\Sigma_i(a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i))$
- $a_i^T x$ 是一个高斯 r.v. ,均值为 $\bar{a}_i^T x$,方差为 $x^T \Sigma_i x$,

$$\operatorname{\mathbf{prob}}\left(a_{i}^{T} x \leq b_{i}\right) = \Phi\left(\frac{b_{i} - \bar{a}_{i}^{T} x}{\left\|\Sigma_{i}^{1/2} x\right\|_{2}}\right) \tag{49}$$

其中 $\Phi(x) = (1/\sqrt{2\pi}) \int_{-\infty}^{x} e^{-t^2/2} dt$ 是 $\mathcal{N}(0,1)$ 的分布函数

• 鲁棒线性规划

minimize
$$c^T x$$

subject to $\operatorname{\mathbf{prob}}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m$ (50)

 $\eta \ge 1/2$, 等价于 SOCP 问题

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \Phi^{-1}(\eta) \left\| \Sigma_i^{1/2} x \right\|_2 \le b_i, \quad i = 1, \dots, m$

例. 二阶雉规划问题

学习实例代码 3.4.2, 调用 Cvxopt 包求解上述问题, 所求得的最 优解为 [-5.01e+00, -5.77e+00, -8.52e+00]

1. 凸优化问题

- 1.1 标准形式的优化问题
- 1.2 凸优化问题
- 1.3 线性规划
- 1.4 二次规划
- 1.5 几何规划
- 1.6 广义不等式约束
- 1.7 半定规划 Semidefinite program

几何规划

单项式函数

$$f(x) = cx_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}, \quad \text{dom } f = \mathbb{R}_{++}^n$$
 (52)

c > 0; a_i 可以为任意实数

多项式函数: 单项式求和

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \mathbf{dom} \ f = \mathbb{R}_{++}^n$$
 (53)

几何规划 (GP)

minimize
$$f_0(x)$$

subject to $f_i(x) \le 1$, $i = 1, ..., m$ (54)
 $h_i(x) = 1$, $i = 1, ..., p$

 f_i 为多项式, h_i 为单项式

凸形几何规划

将变量更改为 $y_i = \log x_i$, 并取目标和约束条件的对数

• 单项式 $f(x) = cx_1^{a_1} \cdots x_n^{a_n}$ 变为

$$\log f(e^{y_1}, \dots, e^{y_n}) = a^T y + b \quad (b = \log c)$$
 (55)

• 多项式 $f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$ 变为

$$\log f(e^{y_1}, \dots, e^{y_n}) = \log \left(\sum_{k=1}^K e^{a_k^T y + b_k} \right) \quad (b_k = \log c_k)$$
 (56)

• 几何规划转变为凸问题

minimize
$$\log \left(\sum_{k=1}^{K} \exp \left(a_{0k}^{T} y + b_{0k} \right) \right)$$
subject to
$$\log \left(\sum_{k=1}^{K} \exp \left(a_{ik}^{T} y + b_{ik} \right) \right) \leq 0, \quad i = 1, \dots, m$$
$$Gy + d = 0$$

(57)

悬臂梁设计

- 具有单位长度的线段 N , 大小 $w_i \times h_i$ 为矩形截面
- 给定右端施加的垂直力 F

设计问题

minimize 总重量

subject to w_i, h_i 上下界

纵横比 (aspect ratio) h_i/w_i 的上下界

每段应力的上下界

每段末尾的垂直偏转 (vertical deflection) 力的上界Mall

悬臂梁设计

目标函数和约束条件

- 总重量 $w_1h_1 + \cdots + w_Nh_N$ 是多项式
- 纵横比 h_i/w_i 和反纵横比 w_i/h_i 是单项式
- 线段 i 中的最大应力由一个单项式给出 $6iF/(w_ih_i^2)$
- 线段 i 右端中心轴的垂直偏转 y_i 和斜率 v_i 递归定义为

$$v_{i} = 12(i - 1/2) \frac{F}{Ew_{i}h_{i}^{3}} + v_{i+1}$$

$$y_{i} = 6(i - 1/3) \frac{F}{Ew_{i}h_{i}^{3}} + v_{i+1} + y_{i+1}$$
(59)

 $i = N, N - 1, ..., 1, v_{N+1} = y_{N+1} = 0$ (E 是杨氏模量) v_i 和 y_i 是 w, h 的多项式函数

悬臂梁设计

构造一个 GP 问题

$$\begin{aligned} & \text{minimize} & & & w_1h_1+\dots+w_Nh_N \\ & \text{subject to} & & & w_{\max}^{-1}w_i \leq 1, \quad w_{\min}w_i^{-1} \leq 1, \quad i=1,\dots,N \\ & & & h_{\max}^{-1}h_i \leq 1, \quad h_{\min}h_i^{-1} \leq 1, \quad i=1,\dots,N \\ & & & S_{\max}^{-1}w_i^{-1}h_i \leq 1, \quad S_{\min}w_ih_i^{-1} \leq 1, \quad i=1,\dots,N \\ & & & 6iF\sigma_{\max}^{-1}w_i^{-1}h_i^{-2} \leq 1, \quad i=1,\dots,N \\ & & & y_{\max}^{-1}y_1 \leq 1 \end{aligned}$$

注意

•
$$w_{\min} \le w_i \le w_{\max}, \ h_{\min} \le h_i \le h_{\max} \to w_{\min}/w_i \le 1, \quad w_i/w_{\max} \le 1, \quad h_{\min}/h_i \le 1, \quad h_i/h_{\max} \le 1$$
 (61)

• $S_{\min} \le h_i/w_i \le S_{\max} \leftarrow$

$$S_{\min} w_i / h_i \le 1, \quad h_i / (w_i S_{\max}) \le 1$$
 (6)

最小化非负矩阵的谱半径

erron-Frobenius 特征值 $\lambda_{pf}(A)$

- 存在对每个元素都为正的矩阵 $A \in \mathbb{R}^{n \times n}$
- 实际的正特征值 A, 等于光谱半径 $\max_i |\lambda_i(A)|$
- 确定 A^k 的渐近增长(衰减)率: $A^k \sim \lambda_{\rm pf}^k$ as $k \to \infty$
- 替代性特征: $\lambda_{\rm pf}(A) = \inf\{\lambda \mid Av \leq \lambda v \text{ for some } v \succ 0\}$

最小化多项式矩阵的谱半径

- 最小化 $\lambda_{\rm pf}(A(x))$, 其中 $A(x)_{ij}$ 中元素是 x 的多项式
- 等效几何规划:

minimize
$$\lambda$$
 subject to $\sum_{j=1}^{n} A(x)_{ij} v_j / (\lambda v_i) \leq 1, \quad i = 1, \dots, n$

变量为 λ, v, x

(63)

1. 凸优化问题

- 1.1 标准形式的优化问题
- 1.2 凸优化问题
- 1.3 线性规划
- 1.4 二次规划
- 1.5 几何规划
- 1.6 广义不等式约束
- 1.7 半定规划 Semidefinite program

广义不等式约束

具有广义不等式约束的凸问题

minimize $f_0(x)$ subject to $f_i(x) \leq_{K_i} 0, \quad i = 1, ..., m$ (64) Ax = b

- $f_0: \mathbb{R}^n \to \mathbb{R}$ 为凸函数; $f_i: \mathbb{R}^n \to \mathbb{R}^{k_i} K_i$ -凸, K_i : proper cone (正常锥)
- 与标准凸问题相同的性质(凸可行集,局部最优解是全局最优的, etc.)

锥形问题: 具有仿射目标函数和约束条件的特例

minimize $c^T x$ subject to $Fx + g \leq_K 0$ (65) Ax = b

将线性规划 $(K = \mathbb{R}_+^m)$ 推广到非多面体锥

1. 凸优化问题

- 1.1 标准形式的优化问题
- 1.2 凸优化问题
- 1.3 线性规划
- 1.4 二次规划
- 1.5 几何规划
- 1.6 广义不等式约束
- 1.7 半定规划 Semidefinite program

半定规划 (SDP)

minimize
$$c^T x$$

subject to $x_1 F_1 + x_2 F_2 + \dots + x_n F_n + G \leq 0$ (66)
 $Ax = b$

其中 $F_i, G \in \mathbf{S}^k$

- 不等式约束称为线性矩阵不等式 (LMI)
- 包括具有多个 LMI 约束的问题: 例如,

$$x_1\hat{F}_1 + \dots + x_n\hat{F}_n + \hat{G} \leq 0, \quad x_1\tilde{F}_1 + \dots + x_n\tilde{F}_n + \tilde{G} \leq 0 \quad (67)$$

等价于单线矩阵不等式 SLMI

$$x_1 \begin{bmatrix} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \tilde{G} \end{bmatrix} \leq 0$$

$$(68)$$

特征值最小化

minimize
$$\lambda_{\max}(A(x))$$
 (69)
其中 $A(x) = A_0 + x_1 A_1 + \dots + x_n A_n$ (给定 $A_i \in \mathbf{S}^k$)
等价于 SDP 问题 minimize t subject to $A(x) \preceq tI$ (70)

- 变量 $x \in \mathbb{R}^n, t \in \mathbb{R}$
- 来自于

$$\lambda_{\max}(A) \le t \iff A \le tI$$
 (71)

矩阵范数最小化

minimize
$$||A(x)||_2 = \left(\lambda_{\max}\left(A(x)^T A(x)\right)\right)^{1/2}$$
 (72)

其中 $A(x)=A_0+x_1A_1+\cdots+x_nA_n$ ($A_i\in\mathbb{R}^{p\times q}$ 给定) $\|A\|_2=A$ 的最大奇异值 \leftrightarrow SDP

minimize
$$t$$
 subject to $\begin{bmatrix} tI & A(x) \\ A(x)^T & tI \end{bmatrix} \succeq 0$ (73)

- $\mathfrak{G} \equiv x \in \mathbb{R}^n, t \in \mathbb{R}$
- 约束:

$$||A||_{2} \le t \iff A^{T}A \le t^{2}I, \quad t \ge 0$$

$$\iff \begin{bmatrix} tI & A \\ A^{T} & tI \end{bmatrix} \succeq 0$$
(74)

- 设 G 是一个无向图, 顶点集合为 $\mathbf{N}=1,2,\cdots,n$, 边的集合为 \mathbf{E}
- 设 $w_{ij} = w_{ji}$ 为边 (i, j) 上的权值, 其中 $(i, j) \in \mathbf{E}$ 。 假设对于所有的 $(i, j) \in \mathbf{E}$, 都有 $w_{ij} > 0$
- 最大割问题是指确定顶点集合 N 的一个子集 S, 使连接顶点子集 S 到它的余集 \bar{S} (其中 $\bar{S}:=N\backslash S$) 的所有的边权值之和最大
- 若 *j* ∈ S, 则令 *x_j* = −1, 否则, 令 *x_j* = 1, 可以将最大割问题描述为如下的整数规划问题:

maximize
$$\frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (1 - x_i x_j)$$

subject to $x_j \in \{-1, 1\}, j = 1, 2, \dots, n$

•

maximize
$$\frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (1 - x_i x_j)$$

subject to $x_j \in \{-1, 1\}, j = 1, 2, \dots, n$

- \diamondsuit $Y = xx^{T}$, $\not = Y_{ij} = x_i x_j$, $i = 1, 2, \dots, n, j = 1, 2, \dots, n$.
- 令 \mathbf{W} 为权矩阵,即其第 i 行,第 j 列的元素为 $\mathbf{c} \in \mathbf{R}^n, i = 1, 2, \cdots, n, j = 1, 2, \cdots, n,$ 则最大割问题 \Leftrightarrow maximize $\frac{1}{4} \sum_{i=1}^n \sum_{j=1}^n w_{ij} \mathbf{W} \cdot \mathbf{Y}$ subject to $x_j \in \{-1, 1\}, j = 1, 2, \cdots, n$

$$Y = xx$$

• 上述问题中第一部分约束等价于 $Y_{jj} = 1, j = 1, \dots, n \rightarrow$

maximize
$$\frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} - \boldsymbol{W} \cdot \boldsymbol{Y}$$
subject to
$$Y_{jj} = 1, j = 1, 2, \cdots, n$$
$$\boldsymbol{Y} = \boldsymbol{x} \boldsymbol{x}^{\mathrm{T}}$$

 矩阵 Y = xx^T 是一个秩为 1 的半正定矩阵 → 松弛, 去掉秩 为 1 这一限制 → 半定规划松弛问题:

maximize
$$\frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} - \boldsymbol{W} \cdot \boldsymbol{Y}$$
subjectto
$$Y_{jj} = 1, j = 1, 2, \cdots, n$$
$$\boldsymbol{Y} \succeq 0$$

• 已知松他问题(RELAX)为最大割问题(MAXCUT)提供了一个上界,即:

$$MAXCUT \leqslant RELAX$$
.

• 可以证明下面的不等式成立

$$0.8786RELAX \leqslant MAXCUT \leqslant RELAX$$
.

● → 半定规划松他问题的最优值与最大割这一 NP 难问题的 最优值相差不超过 13%

- 实例代码 3.6.1 给出了半定规划求解最大割问题的示例,其中有 5 个结点
- 学习代码,调用 cvxpy 包求解最大割问题的半定规划松弛 问题

作业题

- 1. 设 $A \in \mathbb{R}^{n \times n}$, $c, d \in \mathbb{R}^n$, $d \in \mathbb{R}$, 证明: 映射 $A: x \mapsto (Ax + b, c^T x + d)$, $\mathbb{R}^n \to \mathbb{R}^{n+1}$ 为仿射变换.
- 2. 编程题 (使用 Python): 求解鲁棒线性规划的二次规划问题

minimize
$$\bar{c}^T x + \gamma x^T \Sigma x = \mathbf{E} c^T x + \gamma \mathbf{var} (c^T x)$$

subject to $Gx \leq h$, $Ax = b$ (75)

c 是均值为 \bar{c} 方差为 Σ 的随机向量, 自行设置 \bar{c} , Σ 的值.

作业题

(选作) 3. 编程题 (使用 Python): 求解鲁棒 LP的 SOCP 问题

minimize
$$c^T x$$

subject to $\mathbf{prob}(a_i^T x \le b_i) \ge \eta, \quad i = 1, \dots, m$ (76)

其中 $\eta \ge 1/2$, 等价于 SOCP 问题

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \Phi^{-1}(\eta) \left\| \Sigma_i^{1/2} x \right\|_2 \le b_i, \quad i = 1, \dots, m$ (77)

4. 利用 Python 绘制以下函数的图形

$$\log f(e^{y_1}, \dots, e^{y_n}) = \log \left(\sum_{k=1}^K e^{a_k^T y + b_k} \right) \quad (b_k = \log c_k)$$
 (78)

with $y \in \mathbb{R}^2$.

