UE IMOD

Systèmes dynamiques : Introduction aux EDOs

& Applications en Dynamique des Populations Cédric Wolf

Université de Rennes I, ECOBIO, OSUR

Cadre = Système dynamique = Le temps (chronologique pas météo !) est pris en compte

L'inconnue est la variable N(t) (ex: Population)

On a une description du fonctionnement du système biologique (processus en cours, parametres)

m : N augmente de m individus en 1 unite de temps (⇔N augmente de 1 individu en 1/m unite de temps)

b : N individus produirons bN nouveaux individus en 1 unite de temps

d : dN est la proportion d'individus qui vont mourir en 1 unite de temps

(⇔ 1 individu survivra en moyenne 1/d unite de temps)

Situation au bout d'une unité de temps ? (pas de temps = 1)

$$N(t+1)=N(t)+migrations+naissances-morts$$

$$N(t+1)=N(t)+m+bN(t)-dN(t)$$

Et entre les deux ? (pas de temps = $\Delta t < 1$) $N(t + \Delta t) = N(t) + m\Delta t + b \Delta t N(t) - d \Delta t N(t)$

pas de temps = $\Delta t < 1$

$$N(t+\Delta t) = N(t) + m \Delta t + b \Delta t N(t) - d \Delta t N(t)$$

$$N(t+\Delta t) - N(t) = m \Delta t + b \Delta t N(t) - d \Delta t N(t)$$

$$\frac{N(t+\Delta t) - N(t)}{\Delta t} = m + b N(t) - d N(t)$$

temps continu : $\Delta t \rightarrow 0$

$$\lim_{\Delta t \to 0} \left(\frac{N(t + \Delta t) - N(t)}{\Delta t} \right) = m + b N(t) - d N(t)$$

$$\frac{dN}{dt} = m + b N(t) - d N(t)$$

Def : Une **équation différentielle** est une équation reliant une variable (ici N(t)) à ses dérivées (ici uniquement dN/dt)

Concrètement, une équation différentielle décrit donc la vitesse à laquelle une variable varie au cours du temps

$$\frac{dN}{dt}$$
 = flux entrants – flux sortants

$$\frac{dN}{dt} = f(t, N(t))$$

Notion apparue fin XVIIème siècle (Calcul différentiel & calcul intégral par Newton & Leibnitz)

Premières applications en mécanique & géométrie ; puis physique Biologie : à partir du XXème siècle

Une équation différentielle, même bien définie à une infinité de solutions

Unicité nécessite une condition initiale*

$$\begin{cases} \frac{dN}{dt} = m + bN(t) - dN(t) \\ N(0) = N_0 \end{cases}$$

^{*} En réalité une condition, pas nécessairement initiale par ordre de l'équation

Le modèle exponentiel (ou modèle de Malthus)

Hypothèse : La population s'accroit proportionnellement à son effectif présent.

N(n)?

Modèle discrèt:

Accroissement entre n et n+1: N(n+1)-N(n)

Par hypothèse, cet accroissement est r*N(n)

D'où le modèle exponentiel discret :

$$N(n+1)=N(n) + r*N(n)$$

Équation aux différences

Modèle continu:

$$\lim_{dt\to 0} \left(\frac{N(t+dt)-N(t)}{dt} \right) = \frac{dN(t)}{dt} = r * N(t)$$
 EDO

Le modèle exponentiel (ou modèle de Malthus)

Le modèle exponentiel est un modèle que l'on sait résoudre (en fixant N₀)

Modèle discrèt:

$$N(n+1)=N(n) +r*N(n)$$

La solution est : N(n)=

$$N(n)=(1+r)^n N(0)$$

Modèle continu:

$$\frac{dN(t)}{dt} = r * N(t)$$

La solution est :

 $N(t)=e^{r^*t} N_0$

(méthode de séparation des variables)

Quel est le devenir de la population ?

Le modèle exponentiel (ou modèle de Malthus)

 $\frac{dN(t)}{dt} = r * N(t)$

La solution est :

 $N(t)=e^{r^*t} N_0$

Trajectoire d'un système dynamique

Pour un système dynamique quelconque définit par une EDO ; soit

$$\frac{dN(t)}{dt} = f(N(t))$$

on appelle trajectoire la représentation d'une solution (correspondant à un N_0) dans le plan N(t) vs t

Une propriété essentielle de ces trajectoires, est que 2 trajectoires <u>ne peuvent pas</u> se couper (à variables externes identiques).

Autrement dit, pour un point (t,N) donné, il ne peut passer qu'une seule trajectoire : « à un présent donné, il n'existe qu'un seul passé et un seul futur possible » : Déterminisme !

Le modèle logistique (ou modèle de Verhulst)

Hypothèse : On introduit de plus une densité-dépendance pour tenir compte de l'effet limitant des ressources (qui ne sont pas infinies) : compétition intraspécifique Plus la population augmente, plus la croissance est "freinée"

Le modèle logistique (ou modèle de Verhulst)

Hypothèse : On introduit de plus une densité-dépendance pour tenir compte de l'effet limitant des ressources (qui ne sont pas infinies) : compétition intraspécifique Plus la population augmente, plus la croissance est "freinée"

D'où le modèle logistique continu :

$$\left[\frac{dN(t)}{dt} = r\left(1 - \frac{N(t)}{K}\right)N(t)\right]$$

Écologiquement, K est la capacité d'accueil du milieu

Le modèle logistique (ou modèle de Verhulst)

Le modèle exponentiel est un modèle que l'on sait résoudre (en fixant N₀)

$$\frac{dN(t)}{dt} = r\left(1 - \frac{N(t)}{K}\right)N(t)$$
La solution est:
$$N(t) = \frac{K}{1 + \frac{K - N_0}{N_0}}e^{-rt}$$

Quel est le devenir de la population ?

4 cas sont possibles, selon la valeur de N₀ :

Si
$$N_0 = 0$$
, alors pour t>0,

Si K >
$$N_0$$
 > 0, alors pour t>0

Si
$$N_0$$
 = K, alors pour t>0,

Si
$$N_0 > K$$
, alors pour t>0

$$N(t) = 0$$

$$N > 0$$
 et $N(t)$ tend vers K

$$N(t) = N_0$$

N>0 et N(t) tend vers K

Analyses possibles

Ce que nous avons vu pour le moment relève de l'analyse quantitative des modèles :

- Recherche de solutions « exactes » = résolution analytique
- Etude des fonctions solutions

La résolution est possible lorsque l'équation est lineaire d'ordre 1, c'est a dire que :

$$f(t, N(t))=a(t)N(t)+b(t)$$

En dehors de ces cas, elle n'est pas forcement possible et souvent difficile.

Une solution est alors de passer par des simulations numériques (par ordinateur)

Mais : Choix de la méthode ?

Risques d'erreurs

Exhaustivité ?

Il faut donc passer également par une analyse qualitative du modèle :

- Etude des propriétés des solutions (Points d'équilibres ?)
- Etude asymptotique (stabilité des équilbres,...)

Introduction à l'analyse qualitative

Un point d'équilibre (ou point fixe) d'un modèle $\frac{dN(t)}{dt} = f(N(t))$ est une valeur N* qui est telle qu'en ce point N(t) n'évolue plus (si N(t)= N* alors N(t)=N* pour tous les temps suivants)

Par une approche graphique

Analyse asymptotique?

Comment évolue N dans chaque zone ainsi définie ?

Introduction à l'analyse qualitative

Modèle logistique :

$$\frac{dN(t)}{dt} = r\left(1 - \frac{N(t)}{K}\right)N(t)$$

 N_0 *=0 est instable N_1 *=K est stable

Modèle exponentiel:

$$\frac{dN(t)}{dt} = r * N(t)$$

N*=0 est instable

Et s'il y a plusieurs variables (populations)?

Si les populations n'interagissent pas : Une seule équation à la fois !

Dès lors qu'il y a des interactions, on parle de système d'équation

$$\begin{cases} \frac{dN_1}{dt} = f_1(N_1, N_2) \\ \frac{dN_2}{dt} = f_2(N_1, N_2) \end{cases}$$

analyse quantitative : encore plus rare que pour 1 seule équation

➤ Simulation numérique, analyse qualitative

En dynamique des populations, lorsqu'il y a plus de deux populations, on parle de modèles de communautés : 1 équation par "population"

Exemple : Modèle de compétition de de Lotka-Volterra

$$\begin{cases} \frac{dN_1}{dt} = r_1 N_1 - c_1 N_1 N_2 \\ \frac{dN_2}{dt} = r_2 N_2 - c_2 N_1 N_2 \end{cases}$$

Et s'il y a plusieurs variables (populations)?

➤ En traçant les isoclines dans le plan de phase et en étudiant les variations de N1 et N2 dans chacune des régions ainsi délimitées, on établit le portrait de phase.

Et les ED " pas O"?

Certaines équations différentielles ne sont pas "Ordinaires". On distingue notamment :

Equations différentielles stochastique (EDS)

Ex : ajout d'un "bruit blanc", modélisé par un mouvement Brownien (=processus de Wiener)

Plus de déterminisme !
 Etude et calculs biens plus complexes qu'une EDO

Equations aux dérivées partielles (EDP)

La(es) variable(s) étudiée(s) dépend(ent) de plusieurs variables : ex N(t,a,x)

Ex : Modèles structurés en âge (continu) ; Modèles de réaction-advection-diffusion

Des dérivées en a, en x, ... apparaissent
 Etude et calculs biens plus complexes qu'une EDO