Intervalos aleatórios

Exercício 1. Seja X uma variável aleatória com distribuição uniforme Unif(0,a). Notar que E(X)=a/2, mas a é, em princípio, desconhecido. É planejado o seguinte experimento: São extraídas duas instâncias X_1 e X_2 de X, independentes. Alguém fala: É muito improvável que a seja maior que $X_1 + X_2$ ".

Qual é a probabilidade de $a > X_1 + X_2$?

Resposta: 1/2 (se fosse a soma de n instâncias, seria 1/n!).

Exercício 2. Seja X uma variável aleatória com distribuição de Bernoulli, com probabilidade p de tomar o valor 1 e 1-p de tomar o valor 0. Notar que E(X)=p, mas p é, em princípio, desconhecido. É planejado o seguinte experimento: São extraídas n instâncias X_1 , ..., X_n de X, independentes. Alguém fala:"É muito improvável que a média $\overline{X}=\sum_k X_k/n$ seja menor que 0.9~p".

Qual é a probabilidade de $\overline{X} \leq 0.9p$? (notar que a variabilidade de \overline{X} é unicamente consequência da amostragem ser finita).

Resposta: A variável $n\overline{X}$ é binomial \sim Binom(n,p). A pergunta é a probabilidade de $n\overline{X} \le 0.9np$, que se calcula fazendo

prob=sss.binom.cdf(0.9*n*p,n,p)

Aqui temos o problema de que p é desconhecido. Suponhamos que n=100 ou 1000 e vejamos o resultado para vários p.

p	0.01	0.1	0.3	0.5	0.7	0.9
prob $(n = 100)$						4E-3
$\verb"prob"(n=1000)$	0.46	0.02	9E-3	1E-6	8E-18	

Com isto, dependendo do valor estimado para p, é possível responder a pergunta. Por exemplo, se n=100 e se estima que $p\simeq 0.7$,

$$0.05 = \text{Prob}(\overline{X} \le 0.9p) = \text{Prob}(p \ge 1.11\overline{X})$$

Exercício 3. Seja X uma variável aleatória com distribuição Normal N(a,1). Notar que E(X)=a, mas a é, em princípio, desconhecido. É planejado o seguinte experimento: São extraídas duas observações X_1 e X_2 de X, independentes. Alguém fala: É muito improvável que a média a seja menor que $\min(X_1,X_2)$ ".

Qual é a probabilidade de $a < \min(X_1, X_2)$?

Resposta: 1/4.

Lembrete: Propriedades da normal.

Se $X \sim N(\mu, \sigma^2)$, então $Y = X + c \sim N(\mu + c, \sigma^2)$. Se $X \sim N(\mu, \sigma^2)$, então $Y = cX \sim N(c\mu, c^2\sigma^2)$. Se $X \sim N(\mu, \sigma^2)$, então $(X - \mu)/\sigma \sim N(0, 1)$.

Lembrete: Soma de variáveis independentes com distribuição arbitrária de média μ_X e variança σ_X^2 . Se $X_1,\ldots,X_n\sim X$ e $Y=\sum_i X_i$, então $\mu_Y=n\mu_X$ e $\sigma_Y^2=n\sigma_X^2$.

Exercício 4. Seja X uma variável aleatória com distribuição Normal $N(\mu,1)$, cuja média μ é desconhecida. Será extraída uma amostra de 4 elementos dessa variável: X_1,\ldots,X_4 e com ela serão calculadas as variáveis $A=(X_1+X_2+X_3+X_4)/4-1$ e $B=(X_1+X_2+X_3+X_4)/4+1$.

São A e B variáveis aleatórias? Tem A e B distribuição normal? Qual a média e qual o desvio padrão de cada uma? A e B são independentes?

Resposta: A e B são variáveis aleatórias (μ não!) com distribuição normal. $A \sim N(\mu-1,1/4)$ e $B \sim N(\mu+1,1/4)$. O desvio padrão delas é 1/2. e B=A+2 (dependentes!). Notar que $Z_A=(A-(\mu-1))/(1/2)$ tem distribuição N(0,1).

Intervalo de confiança. Estimar média com variância conhecida.

Exercício 5. Sejam A e B as variáveis aleatórias definidas no exercício anterior.

Alguém fala: "É muito improvável que o intervalo [A,B] que resulte desse procedimento não contenha a média populacional μ ".

Qual é a probabilidade de $\mu \not\in [A, B]$?

Resposta: A e B são variáveis aleatórias (μ não!) com distribuição normal. $A \sim N(\mu-1,1/4)$ e B=A+2 (porquê?). Notar que $Z_A=(A-(\mu-1))/(1/2)$ tem distribuição N(0,1). Agora vejamos o perguntado:

$$\operatorname{Prob}\left(\mu \not\in [A,B]\right) = \operatorname{Prob}\left(A \ge \mu\right) + \operatorname{Prob}\left(A + 2 \le \mu\right)$$

é também igual a (somar e subtrair o necessário nas desigualdades)

$$= \operatorname{Prob} (Z_A \ge 2) + \operatorname{Prob} (Z_A \le -2)$$

$$= 1 - \text{Prob} (-2 \le Z_A \le 2)$$

import scipy.stats as sss
sss.norm.cdf(-2,0,1)+1-sss.norm.cdf(2,0,1)
=0.0455

Distribuição χ^2 e teorema central do limite. Estimar variância com média conhecida.

Lembrete: Soma de quadrados de variáveis com distribuição normal. Se Z_1,\dots,Z_k são variáveis independentes com distribuição N(0,1), e $Q=\sum_{i=1}^k Z_i^2,$ então $Q\sim \chi^2(k).$ Prova-se que E(Q)=k e que $\mathrm{Var}(Q)=2k.$

Lembrete: Teorema Central do Limite. Sejam X_1, X_2, \ldots uma sequência de variáveis aleatórias independentes e identicamente distribuídas, sendo $E(X_i) = \mu$ e $\mathrm{Var}(X_i) = \sigma^2 < \infty$. Seja $\overline{X}_n = (X_1 + \ldots + X_n)/n$ a média de n delas. Então, como distribuições,

$$Z_n = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \to N(0, 1)$$

Exercício 6. Será extraída uma amostra de n elementos independentes, X_1, \ldots, X_n da variável $X \sim N(1, \sigma^2)$, da qual a variância σ^2 é desconhecida. A partir dessa amostra será computada a **estatística** (nesse caso, o **estimador**)

$$Y^2 = \frac{1}{n-1} \sum_{i} (X_i - 1)^2 .$$

Alguém fala: "É muito improvável que a variância da população σ^2 não esteja no intervalo $[Y^2/2,2Y^2]$ ".

Qual é a probabilidade de $Y^2/2 \le \sigma^2 \le 2Y^2$?

Responder para n pequeno usando a distribuição χ^2 e para n grande usando aproximação pela distribuição normal. Comparar ambas probabilidades quando n=20.

Resposta: $Z_i = (X_i - 1)/\sigma \sim N(0,1)$, então $Q = \sum_{i=1}^n Z_i^2 \sim \chi^2(n)$. Re-escrevemos a pergunta como "qual é a probabilidade de $\sigma^2/2 \leq Y^2 \leq 2\sigma^2$ ", sabendo que $Y^2 = Q\sigma^2/(n-1)$. Assim, a pergunta se torna: "Qual é a probabilidade de $(n-1)/2 \leq Q \leq 2(n-1)$?". Agora, seja n=5, nesse caso (n-1)/2 = 2 e 2(n-1) = 8,

scipy.stats.chi2.cdf(2,5)=0.1508
scipy.stats.chi2.cdf(8,5)=0.8438

Por tanto, a probabilidade pedida é 0.6929.

As mesmas contas, quando n=20, levam à probabilidade de $19/2 \leq Q \leq 38$, que é 0.9675 (neste caso devemos usar a $\chi^2(20)$. scipy, stats.chi2.cdf(9.5,20)=0.02364

scipy.stats.chi2.cdf(38,20)=0.99114

Para aproximar com a normal, vemos que a média de Q é n e $\mathrm{Var}(Q)=2n$. Como Q é soma das n variáveis identicamente distribuídas $Y_i=Z_i^2$ e de variância finita, ela é aproximadamente N(n,2n). A probabilidade aproximada é 0.9493.

scipy.stats.norm.cdf(9.5,20,np.sqrt(40))=0.04844
scipy.stats.norm.cdf(38,20,np.sqrt(40))=0.99779

Para n maior, a probabilidade é praticamente 1.

Distribuição t de Student. Estimar média com variância desconhecida.

1

Lembrete: Se $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$, e consideramos as **estatísticas** (de fato, **estimadores**)

$$\overline{X} = \frac{1}{n} \sum_{i} X_i, \qquad S^2 = \frac{1}{n-1} \sum_{i} (X_i - \overline{X})^2.$$

então $T=(\overline{X}-\mu)/(S/\sqrt{n})$ tem distribuição t_{n-1} . Prova-se que $E(t_k)=0$, $\mathrm{Var}(t_k)=k/(k-2)$.

Exercício 7. Será extraída uma amostra de n elementos independentes, X_1, \ldots, X_n da variável $X \sim N(\mu, \sigma^2)$, da qual os parâmetros $\theta = (\mu, \sigma^2)$ são desconhecidos. A partir dessa amostra serão computadas as estatísticas \overline{X} e S^2 .

Alguém fala: "É muito improvável que a média da população μ não esteja no intervalo $[\overline{X}-S/10,\overline{X}+S/10]$ ".

Qual é a probabilidade de $\overline{X} - S/10 \le \mu \le \overline{X} + S/10$?

Responder para n pequeno usando a distribuição t de Student e para n grande usando aproximação pela distribuição normal. Comparar ambas probabilidades quando $n=10,\,100,\,1000.$

 $\bf Resposta:$ As desigual dades correspondem a

$$\frac{\overline{X}-\mu}{S}-\frac{1}{10}\leq 0 \leq \frac{\overline{X}-\mu}{S}+\frac{1}{10}$$

ou seja $T/\sqrt{n}-0.1\leq 0\leq T/\sqrt{n}+0.1$ ou seja $-0.1\sqrt{n}\leq T\leq 0.1\sqrt{n}$. Ademais sabemos que T tem distribuição t_{n-1} , então, considerando n=10,

scipy.stats.t.cdf(-0.1*np.sqrt(n),n-1)
=0.3795

 $\begin{array}{l} {\rm scipy.stats.t.cdf} \, ({\rm 0.1*np.sqrt(n)\,,n-1}) \\ = & 0.6205 \end{array}$

A probabilidade é a diferença, 0.2409.

Por outro lado, a média de $T \in 0$ e a variança é (n-1)/(n-3), e quando n é grande pode ser aproximada por N(0,(n-1)/(n-3)). Isto nos fornece uma probabilidade aproximada de 0.2197: scipy.stats.norm.cdf(-0.1*np.sqrt(n),0,np.sqrt((n-1)/(n-3))) =0.3902

 $\begin{array}{l} \mathtt{scipy.stats.norm.cdf(0.1*np.sqrt(n),0,np.sqrt((n-1)/(n-3)))} \\ = & 0.6098 \end{array}$

A probabilidade de o intervalo aleatório $[\overline{X} - 0.1S, \overline{X} + 0.1S]$ conter a média μ (desconhecida), é assim 0.24 para n = 10, 0.68 para n = 100 e 0.998 se n = 1000. Esse intervalo, cuja largura não depende de n, tem mais e mais confiabilidade a medida que n cresce.

O intervalo aleatório $[\overline{X}-0.1S,\overline{X}+0.1S]$ (ambos extremos dele são variáveis aleatórias) é um **intervalo de confiança** de 99.8% para a média μ quando n=1000. A confiabilidade cai para 68% se n=100 e para 24% se n=10.

Se quisermos um intervalo de confiança de 95%, colocaríamos o intervalo $[\overline{X}-0.062S,\overline{X}+0.062S]$ (um pouco menor que o anterior, o que é lógico já a confiabilidade é menor).

scipy.stats.t.ppf(0.975,n-1)/np.sqrt(n) = $1.962/\sqrt{n}$ =0.062.

Exercício 8. Seja X uma variável aleatória com distribuição de Bernoulli, com probabilidade p de tomar o valor 1 e 1-p de tomar o valor 0. Notar que E(X)=p, mas p é, em princípio, desconhecido. É planejado o seguinte experimento: São extraídas n observações X_1 , ..., X_n de X, independentes. Construa um intervalo de confiança de 95% para p a partir da estatística $f=\overline{X}$ (frequência amostral?).

Resposta: Vemos que $nf=\sum_k X_k$ tem distribuição binomial e tenderá a ter distribuição normal. Sabemos que $E(X_k)=p$ e que $\mathrm{Var}(X_k)=p(1-p)$. O intervalo de confiança da binomial se calcula com

n=1000

f=0.5,

intervalo=sss.binom.interval(0.95,n,f)

(469.0 531.0)

Onde utilizamos f como estimativa de p. Por isto, se a frequência amostral é igual a f=0.5, concluímos que um intervalo de 95% de confiança para p é $0.469 \le p \le 0.531$.

Por outro lado, sabemos que f tem média $\mu_f=p$, variância $\sigma_f^2=p(1-p)/n$ e vemos que satisfaz as hipôteses do TCL. Assim, $Z=(f-p)/\sqrt{p(1-p)/n}$ é aproximadamente N(0,1). Na abordagem "otimista" aproximamos $p(1-p)\simeq f(1-f)$ e por tanto definimos $S^2=f(1-f)/n$. Na abordagem "conservativa" definimos $S^2=f(1-f)/n$.

1/(4n). Calculamos o intervalo com a aproximação normal como segue:

f=0.5

n=1000

S=np.sqrt(f*(1-f)/n)
z95=sss.norm.ppf(0.975,0,1)

print(z95,f-z95*S,f+z95*S)

1.9599 0.46901 0.53099

Exercício 9. Dado que a população de homens de certa cidade tem pesos distribuídos normalmente com média 78,47Kg e desvio-padrão 13,61Kg, determinar a probabilidade de:

- (a) Um homem escolhido aleatoriamente pesar mais de 81,65 Kg.
- (b) Em 36 homens escolhidos aleatoriamente, o peso médio ser superior a 81,65Kg.

Resposta: 0,9999.

Exercício 10. Calcule o intervalo de confiança para a média de uma $N(\mu,\sigma^2)$ em cada um dos casos abaixo:

- (a) $\bar{x} = 170 \text{cm}$; n = 100; $\sigma = 15 \text{cm}$; $\alpha = 5\%$.
- **(b)** $\bar{x} = 165 \text{cm}; \ n = 184; \ \sigma = 30 \text{cm}; \ \alpha = 15\%.$

Resposta: (a) [167, 06; 172, 94], (b) [161, 82; 168, 18].

Exercício 11. Por analogia a produtos similares, o tempo de reação de um novo medicamento pode ser considerado como tendo distribuição Normal com desvio padrão igual a 2 min. Vinte pacientes foram sorteados, receberam a medicação e tiveram seu tempo de reação anotado. Os dados foram os seguinte (em min):

2,9	3,4	3,5	4,1	4,6	4,7	4,5	3,8	5,3	4,9
4,8	5,7	5,8	5,0	3,4	5,9	6,3	4,6	5,5	6,2

Obtenha um intervalo de confiança para o tempo médio de reação. Fixe o coeficiente de confiança do intervalo em 96%.

Resposta: $\bar{X} = 4.745 \text{ e } IC_{\mu}(0.96) = [3.826; 5.664]$

Exercício 12. Será coletada uma amostra de uma população Normal com variância igual a 81. Para uma confiança de 90%, determine a amplitude do intervalo de confiança para a média populacional nos casos em que o tamanho da amostra é 30, 50 e 100. Comente as diferenças.

Resposta: n=30, amplitude do $IC_{\mu}(0.90)=5.406$, n=50, amplitude do $IC_{\mu}(0.90)=4.187$, n=100, amplitude do $IC_{\mu}(0.90)=2.061$

Exercício 13. Numa pesquisa com 50 eleitores, o candidato X obteve 0,34 da preferência dos eleitores. Construa, para a confiança 94%, o intervalo de confiança para a proporção de votos a serem recebidos pelo candidato mencionado, supondo que a eleição fosse nesse momento.

Resposta: $IC_p(0.94) = [0.214; 0.466]$