# 工作交接-吴婷

- 1. SPARK计算任务
  - 1.1 Spark任务流程
    - 1.1.1 交接说明
  - 1.2 Spark任务资源管理器-K8S
    - 1.2.1 交接说明
    - 1.2.2 简介
    - 1.2.3 资源配置设计
  - 1.3 Spark History Server
    - 1.3.1 交接说明
    - 1.3.2 地址
    - 1.3.3 配置
    - 1.3.4 部署
  - 1.4 Spark Log Server
    - 1.4.1 交接说明
    - 1.4.2 地址
    - 1.4.3 Spark任务日志
    - 1.4.4 NFS上Spark日志
  - 1.5 构建 PySpark 基础镜像
    - 1.5.1 交接说明
    - 1.5.2 spark-official 构建流程
    - 1.5.3 pyspark-official 构建流程
    - 1.5.4 pyspark-eigen 构建流程
    - 1.5.5 pyspark-eigen镜像测试
- 2.函数编程范式数据清洗工具-ETLSDK
  - 2.1 交接说明
  - 2.2 相关链接及地址
- 3. 标准数据上传下载工具-data\_connector
  - 3.1 交接说明

- 3.2 相关链接及地址
- 4. HADOOP组件使用和维护
  - 4.1 交接说明
  - **4.2 HDFS**
  - 4.2 KAFKA
  - 4.3 HBASE
  - 4.4. EMR集群机器
  - 4.5 监控管理
- 5. Ray
  - 5.1 交接说明
  - 5.2 相关文档及链接

# 1. SPARK计算任务

# 1.1 Spark任务流程



### 1.1.1 交接说明

Spark任务流程经历几次改动。从提交到Yarn资源管理器修改到K8S,目的是为了容器化ETL任务,解决依赖不同python环境的项目之间环境隔离问题。实时流运行模式从默认的cluster模式修改为local模式,目的是为了减少单个实时流类型的任务长驻资源,解决实时流任务数量增多集群资源紧缺问题。

目前越来越多的实时流任务,Spark只作实时读取数据源,UDF函数中调用Collie服务,实际数据处理在Collie服务上,Collie服务提供了丰富的debug数据的功能。

#### 当前存在的问题:

a. HDFS的Datanode存储大量小于64MB的小文件,NameNode管理着整个HDFS文件系统的元数据内存报警。因为大部分任务涉及到使用shuffle类型算子,或者repartition Dataframe的partition数量提高并发执行效率,产生大量的小文件写出到HDFS。

## 1.2 Spark任务资源管理器-K8S

### 1.2.1 交接说明

Spark使用K8S作为资源管理器是因为Spark为了项目实现容器化隔离,并且相比在Yarn上做容器化 K8S公司技术支持更多有优势降低运维成本。目前是维护状态,这块基本是@金鸿彬 在关注。比较容易出现的问题是K8S资源在零点任务数量比较多时资源不够,目前解决方案是实现Pony Spark 任务队列。

交接接收人: 金鸿彬

### 1.2.2 简介

• Dashboard地址: http://spark-k8s.aipp.io

• Spark K8S负责人: 吴俊超

环境设置:

Spark-Prod: 用于Pony work任务 链接 Spark-Dev: 用于Pony 实验任务 链接

### 1.2.3 资源配置设计



- i. 资源节点区分使用环境通过K8S节点打不同的标签:
  - 1. share环境: spark-dev: spark-dev, spark-prod: spark-prod
  - 2. dev环境: spark-dev: spark-dev
  - 3. prod环境: spark-prod: spark-prod
  - 4. 目前节点配置share:prod:dev=6:8:0
- ii. 考虑Driver任务先启动,Executor在Driver启动之后由Driver向k8s申请资源。在离线调度任务请求非常多时极限情况下生成大量的Driver任务占用集群全部资源,而Executor没有资源可以申请,Driver任务因Executor没有资源超时失败。Driver任务使用独立的节点,资源节点按Pod跑Driver类型任务使用`driver:driver`标记专用节点。

#### iii. 资源节点链接

iv. driver yaml:

```
nodeSelector:
role: {{ service_account_name }}
{ namespace }}: {{ namespace }}
driver: driver
```

v: executor yaml:

```
nodeSelector:
role: {{ service_account_name }}
{ namespace }}: {{ namespace }}
```

vi: 资源监控

driver 节点内存监控 http://monitor.aipp.io/d/6kcRgvxZz/jie-dian-jian-kong-xin-xi-spark-kubernetes?orgId=1&from=now-24h&to=now&fullscreen&panelId=63
 executor 节点内存监控 http://monitor.aipp.io/d/6kcRgvxZz/jie-dian-jian-kong-xin-xi-spark-kubernetes?orgId=1&from=now-12h&to=now&fullscreen&panelId=69

## 1.3 Spark History Server

### 1.3.1 交接说明

Spark History Server提供Spark任务的WEBUI界面列出运行时信息,目前最多显示的作业数是 500。目前处在维护中。还存在的问题是实时流任务因为运行时间长,保存了任务的大量Events信息,在 Spark UI上展示解析要很久,基本解析不出来。

修改Spark History Server流程,修改eigen-spark2里对应的配置,push到仓库,触发Jenkins部署构建。

交接接收人: 金鸿彬

### 1.3.2 地址

https://spark.aidigger.com/

### 1.3.3 配置

https://git.aipp.io/EigenLab/eigen-spark2/blob/branch\_2.4.3/eigen\_spark\_conf/spark-defaults.conf

### 1.3.4 部署

https://jenkins.aidigger.com/job/Spark-history-Prod-Deploy/

## 1.4 Spark Log Server

### 1.4.1 交接说明

Log Server是@倪哲鸣部署用来查看日志的服务。现在使用稳定,使用上也没有用户反馈问题。 交接接收人:金鸿彬

### 1.4.2 地址

https://logs.aidigger.com/files/

### 1.4.3 Spark任务日志

python进程日志配置: https://git.aipp.io/EigenLab/etlsdk/blob/master/etlsdk/\_\_init\_\_.py java进程日志配置: https://git.aipp.io/EigenLab/eigenspark2/blob/branch\_2.4.3/eigen\_spark\_conf/log4j.properties

### 1.4.4 NFS上Spark日志

查看Spark日志在NFS目录:

dev: /srv/nas-logs/spark-dev/spark-logs/{pony-execute-id}
prod: /srv/nas-logs/spark-prod/spark-logs/{pony-execute-id}-exec-{exec\_num}

删除策略:

最后修改时间15天前或文件大小大于64M 日志被异常删除或未被删除联系@王飞

## 1.5 构建 PySpark 基础镜像

### 1.5.1 交接说明

PySpark镜像容器,目前在维护阶段,之前做过的修改是,Spark版本升级,修改Spark UI日志链接改成公司的Log Server地址,修改Spark源码给Executor增加Ptrace权限。这块平时是金鸿彬在维护。

#### 存在的问题:

a. 类似于spark-defaults.conf这样的配置文件经常修改,每次修改要通过编译新的镜像生效。之前想到通过修改Ambari上Spark配置,保持Hadoop这块配置文件修改统一入口。

#### 下面是鸿彬提的改进:

- a. 将 pyspark-official 的 OpenJDK 环境抽离成单独的镜像
- b. 在 pyspark-official 中缓存 zinc
- c. 在 pyspark-official 中缓存 Scala
- d. 合并两个构建流程 pyspark-official 和 pyspark-eigen

e. 将三个构建流程(合并后变为两个)自动化

#### 开发流程:

Repo地址: https://git.aipp.io/EigenLab/eigen-spark2/tree/branch\_2.4.3

在开发机上创建新分支,做对应代码修改,完成测试后,推到远程仓库。PySpark 基础镜像的构建是手动触发 Jenkins job, 分为三步: spark-official (基础源码构建),pyspark-official (安装python环境,将pyspark加到PYTHONPATH,安装pyspark shell) 和 pyspark-eigen (使用公司hadoop配置).根据代码修改选择需要构建的镜像,用构建完的新镜像做功能测试,然后merge到主分支。之前做版本升级,做了批量复制Pony任务修改写出表(修改不了用户hardcode在代码里的写出表),批量测试脚本。

交接接收人: 金鸿彬

### 1.5.2 spark-official 构建流程

spark-official 是在 eigen 基础镜像中构建 Spark 源代码, 生成 Spark jar 文件 (虽然有 PySpark 的文件, 但没有配置 Python 环境).

参考官方的构建文档,官方的 Dockerfile 是假设已经通过 ./dev/make-distribution.sh,在 dist 目录下生成了运行 Spark 需要的文件,然后将 dist 下的文件放入镜像中. 对此的修改是,完全将 Spark 的构建放在有 Java 环境的 Docker 镜像中. 同时,使用 multi-stage build 降低镜像大小. 需要说明的是, spark-official 构建流程几乎是完全参照官方的 Spark 构建流程. 如果使用单个镜像构建,其中必定会包含源代码和中间文件 (删除也不会降低镜像的大小,参考 Before multi-stage builds). 而运行 Spark 应用只需要 JDK (也许只需要 JRE), Spark jar 文件和相应的配置. 因此引入 multi-stage build,在中间镜像中生成 jar 文件,然后把文件复制到 Spark 镜像中.

此外,对 Spark 构建流程做了一些优化.分析 ./dev/make-distribution.sh 发现,构建逻辑主要在 ./build/mvn 文件中.分析可知,构建主要是以下工作: zinc, Scala 和 Maven 的下载,以及 Maven 构建 Spark. 对此作了两处修改:使用阿里云的 Apache 镜像下载 Maven (设置 APACHE\_MIRROR 环境变量);使用阿里云的 Maven repository (设置 setting.xml).下载 zinc 和 Scala 还是使用官方的 URL,可能会比较慢 (需要设置 TYPESAFE\_MIRROR 环境变量,但是没有找到合适的镜像).

在这个 merge request 生效之后 (目前还没有生效), 手动触发 spark-official 构建时, 设置 buildtag=2.4.3 和 branch name=origin/branch 2.4.3 即可.

### 1.5.3 pyspark-official 构建流程

pyspark-official 是在 spark-official 的基础上,安装 Python 环境和配置 PYTHONPATH 环境变量. 配置 PYTHONPATH 环境变量的目的是为了让 Python 解释器找到 PySpark 的代码. 因此,使用 pip 安装 PySpark 是多余的. 但是,由于在 PySpark 中引入了 gevent 和 eigenlog,需要在镜像中额外安装这两个依赖.

手动构建 pyspark-official 时,指定 python\_minor\_version,buildtag 和 branch\_name. 例如构建支持 Python 3.6 的镜像时,设置 python minor version=6,buildtag=2.4.3-py36

### 1.5.4 pyspark-eigen 构建流程

pyspark-eigen 是在 pyspark-official 镜像中加入了 Kubernetes 和 Hadoop 相关的配置. *用户应该使用这个构建产生的镜像*. 不应该直接使用前面的两个镜像.

```
手动构建 pyspark-eigen 时,指定 basetag,buildtag 和 branch_name. 例如构建支持 Python3.6 的镜像时,设置 basetag=2.4.3-py36,buildtag=2.4.3-py36 和 branch name=origin/branch 2.4.3.
```

### 1.5.5 pyspark-eigen镜像测试

```
1 git clone https://git.aipp.io/EigenLab/etlsdk
2 cd etlsdk/
3 pip3 install -r tests/requirements.txt
4 py.test --junitxml results.xml --cov etlsdk --cov-report=xml
```

## 2.函数编程范式数据清洗工具-ETLSDK

### 2.1 交接说明

ETLSDK让用户使用函数的方式编写数据清洗过程,提供DatasourceFactory根据数据表的大禹信息简化用户读写的数据源过程。现在基本维护状态,现在大部分需求是在原有的功能做些修改,比如修复写出HIVE时使用Dynamic Partitions报错,增加写出到MYSQL时不检查表开关,解决df写出的MYSQL表不在大禹上时验证不通过问题。ETLSDK的使用文档是ETLSDK最详细的文档了,基本可以解决用户问题。

存在的问题:

- a. PySpark Worker进程日志有EOF Error报错。
- b. 实时流读写Hbase。

开发流程:

在开发机上克隆代码后创建新分支,做完对应代码修改(一般一并修改代码中文档描述,代码合并到主分支后readthedocs自动构建更新使用文档),加上UT测试,跑通UT测试后,推到到远程分支,通过 pr\_ci后,合并到主分支。在主分支上打tag(并修改setup中版本号,保持和tag一致),推送到远程。在 Jarxis上提发布审批。

交接接收人: 马新民

### 2.2 相关链接及地址

设计文档: https://git.aipp.io/pub/wiki/blob/master/系统/Pony/ETL上线文档/ETLSDK/ETLSDK设

计文档.md

使用文档: https://alpha-readthedocs.aidigger.com/docs/etlsdk/en/latest/

Readthedocs: https://alpha-readthedocs.aidigger.com/dashboard/ 用户名 eigen 密码 eigen

Repo地址: https://git.aipp.io/EigenLab/etlsdk/

ETLSDK Jenkins:

CI: https://jenkins.aidigger.com/job/etlsdk\_ci/

https://jenkins.aidigger.com/job/etlsdk\_pr\_ci/

CD: https://jenkins.aidigger.com/job/etlsdk\_cd/项目贾维斯链接: https://jarvis.aidigger.com/app/78

## 3. 标准数据上传下载工具-data\_connector

### 3.1 交接说明

这个工具用于标准数据上传下载,开发是按照ETLSDK的Plugin插件编程规范设计的(https://alpha-readthedocs.aidigger.com/docs/etlsdk/en/latest/quick\_start.html#plugin),2020-5-28之后再没有再修改过,下载数据的插件用户正在使用。数据插件平时是NLP算法那边用户使用的比较多。每个字段在Pony上有说明。

交接接收人: 马新民

### 3.2 相关链接及地址

Repo: https://git.aipp.io/pony\_plugins/data\_connector

插件列表:

| 插件                  | SQL支持                 | 是否支持<br>调度 | 插件类型 |
|---------------------|-----------------------|------------|------|
| hive2dataset_sql模式  | 支持sql所有语法             | 支持         | 下载   |
| hive2dataset_表单模式   | 支持filter、select、limit | 支持         | 下载   |
| hive2json_sql模式     | 支持sql所有语法             | 支持         | 下载   |
| hive2json_表单模式      | 支持filter、select、limit | 支持         | 下载   |
| mysql2json_sql模式    | 支持sql所有语法             | 不支持        | 下载   |
| mysql2json_表单模式     | 支持filter、select、limit | 不支持        | 下载   |
| mysql2dataset_sql模式 | 支持sql所有语法             | 不支持        | 下载   |
| mysql2dataset_表单模式  | 支持filter、select、limit | 不支持        | 下载   |
| 根据json内容指定图片保存位置    | 不支持                   | 不支持        | 下载   |
|                     |                       |            |      |

| 根据实验参数指定图片保存位置  | 不支持                   | 不支持 | 下载 |
|-----------------|-----------------------|-----|----|
| 下载大禹数据集         | 支持limit               | 不支持 | 下载 |
| 下载 oss 数据       | 支持limit               | 不支持 | 下载 |
| json上传至hive表    | 支持filter、select、limit | 支持  | 上传 |
| dataset上传至hive表 | 支持filter、select、limit | 支持  | 上传 |

## 4. HADOOP组件使用和维护

### 4.1 交接说明

这块现在处于维护的状态,有些组件存在可做的feature会列在下面。报警触发过程,Ambari监控报警,Grafana上读取Ambari postgres报警信息并配置No Alert报警,Ambari监控报警通过No Alert发出。排查问题,我一般先看日志,日志路径一般Java进程上有,或者Ambari上有配置,遇到问题查问题。交接接收人:金鸿彬

#### **4.2 HDFS**

存在的问题:

- a. HDFS的Datanode存储大量小于64MB的小文件
- 1. 20200807Datanode-Heap报警排查
- 2. 20200728namenode异常

#### 4.2 KAFKA

Kafka Bootstrap Server访问地址: kafka.aidigger.com:6667,使用负载均衡实例kafka.aidigger.com提供统一地址。

- 1. 20200827KafkaBroker和Namenode分离
- 2. 线上Ambari Kafka暴露JMX及Burrow监控数据接口

#### 4.3 HBASE

1. 20200831Hbase重启升级Worker3内核

### 4.4. EMR集群机器

- 1. 20200825header1机器加内存升级
- 2. emr2 部署使用 playbook 实现
- 3. emr2-worker-磁盘扩容

### 4.5 监控管理

ambari dashboard: http://ambari-server.ipa.aidigger.com:8080/#/login

user: admin pwd: admin

# 5. Ray

## 5.1 交接说明

这个项目目前在调研阶段,之前把ETL的任务改写成Ray,执行结果不符合预期(更新在Ray框架调研与实践),下一步计划是分别给出"图片模型打标签"Ray和Spark版本耗时分析。

交接接收人: 马新民

## 5.2 相关文档及链接

- 1. 用户使用文档
- 2. Ray框架调研与实践