

Vorlesungsskript

Mitschrift von Falk-Jonatan Strube

Vorlesung von Herrn Meinhold 20. Januar 2016

Inhaltsverzeichnis

I.	Elementare Grundlagen	1
1.	Aussagen und Grundzüge der Logik	1
2.	Mengen	1
3.	Zahlen	1
4.	Reellwertige Funktionen einer reellen Veränderlichen	1
5.	Lineare Algebra	1
II.	Folgen, Reihen, Grenzwerte	2
1.	Zahlenfolgen 1.1. Grenzwerte von Zahlenfolgen	2 2

Teil I. Elementare Grundlagen

- 1. Aussagen und Grundzüge der Logik
- 2. Mengen
- 3. Zahlen
- 4. Reellwertige Funktionen einer reellen Veränderlichen
- 5. Lineare Algebra

Teil II. Folgen, Reihen, Grenzwerte

1. Zahlenfolgen

1.1. Grenzwerte von Zahlenfolgen

Def. 1:

Es sei $n_0 \in \mathbb{N}$. Eine Funktion f mit $Db(f) = \{u \in \mathbb{N} | n \ge n_0\}$ und $Wb(f) \subset \mathbb{R}$ heißt reelle Zahlenfolge. Schreibweise:

$$\begin{array}{ll} a_n = f(n) & (n \in Db(f)) \\ (a_n)_{n \geq n_0} = (a_{n_0}, a_{n_0+1}, a_{n_0+2}, \ldots) \\ \text{oft } n_0 = 0 \text{ oder } n_0 = 1. \end{array}$$

Bsp. 1:

a.)
$$a_n = (-1)^n \cdot n \quad (n \in \mathbb{N})$$

 $(a_n) = (0, -1, 2, -3, 4, ...)$

b.)
$$a_0=-1,\ a_n=n\cdot a_{n-1}\quad (n\in\mathbb{N}^*)$$
 (rekursive Def.) $(a_n)=(-1,-1,-2,-6,-24,...),\ a_n=-n!$

c.)
$$a_n = \frac{3}{10} + \frac{3}{10^2} + \dots + \frac{3}{10^n} \quad (n \in \mathbb{N}^*)$$

 $(a_n) = (0.3, 0.33, 0.333, \dots)$

d.)
$$a_n = 1 + (-1)^n \frac{1}{n^2} \quad (n \in \mathbb{N}^*)$$

 $(a_n) = \left(\frac{5}{4}, \frac{8}{9}, \frac{17}{16}, \frac{24}{25}, \dots\right)$

Def. 2:

- (a_n) heißt *konvergent*, wenn es eine Zahl $a \in \mathbb{R}$ gibt mit folgender Eigenschaft: Zu jedem $\varepsilon > 0$ existiert eine natürliche Zahl $n_0(\varepsilon)$, sodass für alle $n \ge n_0(\varepsilon)$ gilt: $|a_n - a| < \varepsilon$.
- Die Zahl a heißt *Grenzwert* von (a_n) . Schreibweisen:

$$\boxed{a = \lim_{n \to \infty} (a_n) \left| \mathsf{oder} \left[a_n \underset{n \to \infty}{\longrightarrow} a \right] \right|}$$

• (a_n) heißt *divergent*, falls (a_n) nicht konvergent ist.

Diskussion

1.) Für $\varepsilon > 0$ heißt $U_{\varepsilon}(a) := (a - \varepsilon, a + \varepsilon)$ (offenes Intervall) ε -Umgebung von a.

$$\frac{U_{\varepsilon}(a)}{a-\varepsilon} \xrightarrow{a} \xrightarrow{a+\varepsilon}$$

$$\left(\lim_{n\to\infty} a_n = a\right) \equiv (\forall \varepsilon > 0 \; \exists n_0(\varepsilon) \; \forall n \geq n_0(\varepsilon) \; a_n \in U_{\varepsilon}(a))$$

d.h. für jedes (noch so kleine) ε , liegen ab einem bestimmten (von ε abhängigen) Index $n_0(\varepsilon)$ alle Glieder $a_n(n \ge n_0(\varepsilon))$ in $U_{\varepsilon}(a)$.

2.) Im Bsp. 1 sind: konvergente Folgen:

c.) mit
$$a_n = \frac{1}{3}$$
 d.) mit $a_n = 1$ divergente Folge

d.) mit
$$a_n = 1$$

divergente Folgen: a.) und b.)

3.) Ist $a_n = 0$, so heißt (a_n) Nullfolge.

Def. 3:

 (a_n) heißt:

- *streng monoton wachsend*, falls für jedes n gilt: $a_n < a_{n+1}$.
- monoton wachsend, falls für jedes n gilt: $a_n \leq a_{n+1}$.
- streng monoton fallend, falls für jedes n gilt: $a_n > a_{n+1}$.
- monoton fallend, falls für jedes n gilt: $a_n \ge a_{n+1}$.

Def. 4:

 (a_n) heißt beschränkt, wenn es eine Konstante C>0 gibt mit $|a_n|\leq C$ für alle n.