

DUAL N-CHANNEL AND DUAL P-CHANNEL MATCHED MOSFET PAIR

GENERAL DESCRIPTION

The ALD1103 is a monolithic dual N-channel and dual P-channel matched transistor pair intended for a broad range of analog applications. These enhancement-mode transistors are manufactured with Advanced Linear Devices' enhanced ACMOS silicon gate CMOS process. It consists of an ALD1101 N-channel MOSFET pair and an ALD1102 P-channel MOSFET pair in one package.

The ALD1103 offers high input impedance and negative current temperature coefficient. The transistor pair is matched for minimum offset voltage and differential thermal response, and it is designed for precision signal switching and amplifying applications in +2V to +10V systems where low input bias current, low input capacitance and fast switching speed are desired. Since these are MOSFET devices, they feature very large (almost infinite) current gain in a low frequency, or near DC, operating environment. When used in pairs, a dual CMOS analog switch can be constructed. In addition, the ALD1103 is intended as a building block for differential amplifier input stages, transmission gates, and multiplexer applications.

The ALD1103 is suitable for use in precision applications which require very high current gain, beta, such as current mirrors and current sources. The high input impedance and the high DC current gain of the Field Effect Transistors result in extremely low current loss through the control gate. The DC current gain is limited by the gate input leakage current, which is specified at 50pA at room temperature. For example, DC beta of the device at a drain current of 5mA at 25°C is = 5mA/50pA = 100,000,000.

FEATURES

- Thermal tracking between N-channel and P-channel pairs
- Low threshold voltage of 0.7V for both N-channel & P-channel MOSFETS
- · Low input capacitance
- Low Vos -- 10mV
- High input impedance -- $10^{13}\Omega$ typical
- · Low input and output leakage currents
- Negative current (IDS) temperature coefficient
- Enhancement mode (normally off)
- DC current gain 109
- · Matched N-channel and matched P-channel in one package
- RoHS compliant

ORDERING INFORMATION ("L" suffix denotes lead-free (RoHS))

Operating Temperature Range*							
0°C to +70°C	0°C to +70°C						
14-Pin SOIC Package	14-Pin Plastic Dip Package						
ALD1103SBL	ALD1103PBL						

^{*} Contact factory for high temperature versions.

APPLICATIONS

- · Precision current mirrors
- · Complementary push-pull linear drives
- Analog switches
- Choppers
- Differential amplifier input stage
- Voltage comparator
- Data converters
- Sample and Hold
- Analog inverter
- Precision matched current sources

PIN CONFIGURATION

BLOCK DIAGRAM

ADCOL	1176	I IRA D	ATINGS

Drain-source voltage, V _{DS}	10V
Gate-source voltage, VGS —	10V
Power dissipation ————————————————————————————————————	500mW
Operating temperature range SBL, PBL packages ————————————————————————————————————	0°C to +70°C
Storage temperature range —	-65°C to +150°C
Lead temperature, 10 seconds	+260°C

CAUTION: ESD Sensitive Device. Use static control procedures in ESD controlled environment.

OPERATING ELECTRICAL CHARACTERISTICS

$T_A = 25^{\circ}C$ unless otherwise specified

		N-	- Chanı	nel		Test	P - Channel			Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions	Min	Тур	Max	Unit	Conditions
Gate Threshold Voltage	VT	0.4	0.7	1.0	V	$I_{DS} = 10\mu A V_{GS} = V_{DS}$	-0.4	-0.7	-1.2	V	$I_{DS} = -10\mu A V_{GS} = V_{DS}$
Offset Voltage VGS1 - VGS2	Vos			10	mV	$I_{DS} = 100 \mu A V_{GS} = V_{DS}$			10	mV	I_{DS} = -100μA V_{GS} = V_{DS}
Gate Threshold Temperature Drift	TC _{VT}		-1.2		mV/°C			-1.3		mV/°C	
On Drain Current	I _{DS(ON)}	25	40		mA	$V_{GS} = V_{DS} = 5V$	-8	-16		mA	$V_{GS} = V_{DS} = -5V$
Trans conductance	G _{fs}	5	10		mmho	V _{DS} = 5V I _{DS} = 10mA	2	4		mmho	V _{DS} = -5V I _{DS} = -10mA
Mismatch	ΔG _{fs}		0.5		%			0.5		%	
Output Conductance	G _{OS}		200		μmho	$V_{DS} = 5V I_{DS} = 10mA$		500		μmho	V _{DS} = -5V I _{DS} = -10mA
Drain Source ON Resistance	R _{DS(ON)}		50	75	Ω	V _{DS} = 0.1V V _{GS} = 5V		180	270	Ω	$V_{DS} = -0.1V \ V_{GS} = -5V$
Drain Source ON Resistance Mismatch	ΔR _{DS(ON)}		0.5		%	V _{DS} = 0.1V V _{GS} = 5V		0.5		%	V _{DS} = -0.1V V _{GS} = -5V
Drain Source Breakdown Voltage	BV _{DSS}	10			V	I _{DS} = 10μΑ V _{GS} = 0V	-10			V	I _{DS} = -10μΑ V _{GS} = 0V
Off Drain Current	I _{DS(OFF)}		0.1	4 4	nA μA	V _{DS} = 10V I _{GS} = 0V T _A = 125°C		0.1	4 4	nA μA	V _{DS} = -10V V _{GS} = 0V T _A = 125°C
Gate Leakage Current	I _{GSS}		1	100 10	pA nA	V _{DS} = 0V V _{GS} = 10V T _A = 125°C		1	100 10	pA nA	V _{DS} = 0V V _{GS} = -10V T _A = 125°C
Input Capacitance	C _{ISS}		6	10	pF			6	10	pF	

TYPICAL N-CHANNEL PERFORMANCE CHARACTERISTICS

DRAIN SOURCE ON CURRENT IDS(ON) (mA)

DRAIN SOURCE ON CURRENT IDS(ON) (µA)

OUTPUT CHARACTERISTICS

LOW VOLTAGE OUTPUT CHARACTERISTICS

FORWARD TRANSCONDUCTANCE vs. DRAIN-SOURCE VOLTAGE

TRANSFER CHARACTERISTIC WITH SUBSTRATE BIAS

DRAIN SOURCE ON RESISTANCE vs. GATE-SOURCE VOLTAGE

DRAIN SOURCE OFF CURRENT vs. AMBIENT TEMPERATURE

TYPICAL P-CHANNEL PERFORMANCE CHARACTERISTICS

-80

-60

-40

-20

0

DRAIN SOURCE ON CURRENT IDS(ON) (mA)

-4V -2V

LOW VOLTAGE OUTPUT CHARACTERISTICS

FORWARD TRANSCONDUCTANCE vs. **DRAIN-SOURCE VOLTAGE**

TRANSFER CHARACTERISTIC WITH SUBSTRATE BIAS

DRAIN SOURCE OFF CURRENT vs. **AMBIENT TEMPERATURE**

TYPICAL APPLICATIONS

CURRENT SOURCE MIRROR

CURRENT SOURCE WITH GATE CONTROL

Q₁, Q₂: N-Channel MOSFET Q₃, Q₄: P-Channel MOSFET

Q₁ : N-Channel MOSFET Q₃, Q₄: P-Channel MOSFET

DIFFERENTIAL AMPLIFIER

PMOS PAIR Q3 Q3 Q4 O VOUT NMOS PAIR Current Source

Q₁, Q₂: N-Channel MOSFET Q₃, Q₄: P-Channel MOSFET

CURRENT SOURCE MULTIPLICATION

Q_{SET}, Q₁..Q_N: ALD1101 or ALD1103 N-Channel MOSFET

TYPICAL APPLICATIONS (cont.)

BASIC CURRENT SOURCES

N-CHANNEL CURRENT SOURCE

ISOURCE | SET | RSET |

Q₁, Q₂: N-Channel MOSFET

P-CHANNEL CURRENT SOURCE

Q₃, Q₄: P-Channel MOSFET

CASCODE CURRENT SOURCES

Q₁, Q₂, Q₃, Q₄: N-Channel MOSFET (ALD1101 or ALD1103)

Q₁, Q₂, Q₃, Q₄: P-Channel MOSFET (ALD1102 or ALD1103)

SOIC-14 PACKAGE DRAWING

14 Pin Plastic SOIC Package

PDIP-14 PACKAGE DRAWING

14 Pin Plastic DIP Package

	Millim	neters	Inches			
Dim	Min	Max	Min	Max		
Α	3.81	5.08	0.105	0.200		
A ₁	0.38	1.27	0.015	0.050		
A ₂	1.27	2.03	0.050	0.080		
b	0.89	1.65	0.035	0.065		
b ₁	0.38	0.51	0.015	0.020		
С	0.20	0.30	0.008	0.012		
D-14	17.27	19.30	0.680	0.760		
E	5.59	7.11	0.220	0.280		
E ₁	7.62	8.26	0.300	0.325		
е	2.29	2.79	0.090	0.110		
e ₁	7.37	7.87	0.290	0.310		
L	2.79	3.81	0.110	0.150		
S-14	1.02	2.03	0.040	0.080		
ø	0°	15°	0°	15°		

