Računalniško podprto geometrijsko oblikovanje

Iskanje presečišč Bèzierjevih krivulj z metodo hibridnih izrezkov

Domen Keglevič

1. Uvod

V seminarski nalogi nas bo zanimalo kako najti presečišča dveh ravninskih Bèzierjevih krivulj. Pri tem nas ne zanimajo koordinate presečišč, temveč točke v domeni, ki se preslikajo v presečišča. Ta problem lahko formalno opišemo na naslednji način. Naj bosta $\mathbf{f}: [\alpha, \beta] \to \mathbb{R}^2$ in $\mathbf{g}: [\xi, \eta] \to \mathbb{R}^2$ ravninski Bèzierjevi krivulji. Želimo najti učinkovit algoritem, ki za poljuben $\epsilon > 0$ vrne pare intervalov $[\alpha_i, \beta_i]$ in $[\xi_i, \eta_i]$, ki vsebujejo presečišča $\mathbf{f}(t_i) = \mathbf{g}(s_i), t_i \in [\alpha_i, \beta_i], s_i \in [\xi_i, \eta_i]$, tako da velja $|\alpha_i - \beta_i| < \epsilon$ in $|\xi_i - \eta_i| < \epsilon$.

Ta problem se da rešiti na več načinov. Tu bomo predstavili metodo hibridnih izrezkov, ki je razširitev metode Bèzierjevih izrezkov.

Metoda Bèzierjevih izrezkov najprej aproksimira krivuljo \mathbf{g} z ozkim pasom \mathcal{L} v ravnini (fat line), tako da \mathbf{g} leži znotraj \mathcal{L} . Nato izračuna presek pasa \mathcal{L} in konveksne ovojnice kontrolnih točk krivulje \mathbf{f} , ter definicijsko območje krivulje \mathbf{f} omeji na intervale, kjer je presek neprazen. Nato vlogi \mathbf{f} in \mathbf{g} zamenja in postopek ponavlja, dokler ne pride do željene natančnosti.

Ideja metode hibridnih izrezkov je podobna kot ideja metode Bèzierjevih izrezkov, le da ne opazujemo presek pasa \mathcal{L} s konveksno ovojnico kontrolnih točk krivulje \mathbf{f} , ampak z območjem \mathcal{P} (fat curve). Tega dobimo tako, da z nižanjem stopnje krivulje \mathbf{f} dobimo aproksimacijo, ki jo lahko premaknemo v dve nasprotni smeri tako, da je krivulja \mathbf{f} vsebovana v območju \mathcal{P} vmes (slika (1)). Nato krivuljo \mathbf{f} zmanjšamo na tiste intervale, kjer je presek $\mathcal{L} \cap \mathcal{P}$ neprazen. V naslednjem koraku vlogi \mathbf{f} in \mathbf{g} zamenjamo in postopek ponavljamo do željene natančnosti.

SLIKA 1. Fat line \mathcal{L} in fat curve \mathcal{P} , ki vsebujeta \mathbf{g} in \mathbf{f} .

2. Metoda hibridnih izrezkov

Vpeljimo nekaj oznak, ki jih bomo uporabljali v nadaljevanju. Z

$$B_{i,[\alpha,\beta]}^n(t) = \binom{n}{i} \frac{(t-\alpha)^i (\beta-t)^{n-i}}{(\beta-\alpha)^n}$$

označimo *i*-ti Bernsteinov bazni polinom stopnje n na intervalu $[\alpha, \beta]$. Intervale $[\alpha, \beta]$ namesto intervala [0, 1] opazujemo zato, ker bo algoritem generiral zaporedje vedno manjših intervalov.

Trditev 2.1. Velja $B_{i,[\alpha,\beta]}^n(t) \geq 0$ za vsak $t \in [\alpha,\beta]$.

Dokaz. V definiciji $B^n_{i,[\alpha,\beta]}(t)$ so vsi členi v števcu in imenovalcu večji ali enaki 0. \square

Trditev 2.2. Velja $\sum_{i=0}^{n} B_{i,[\alpha,\beta]}^{n}(t) = 1$.

Dokaz. Vsoto razpišemo in dobimo

$$\sum_{i=0}^{n} B_{i,[\alpha,\beta]}^{n}(t) = \sum_{i=0}^{n} \binom{n}{i} \frac{(t-\alpha)^{i}(\beta-t)^{n-i}}{(\beta-\alpha)^{n}}$$
$$= \frac{1}{(\beta-\alpha)^{n}} \sum_{i=0}^{n} \binom{n}{i} (t-\alpha)^{i} (\beta-t)^{n-i}$$
$$= \frac{1}{(\beta-\alpha)^{n}} \cdot ((t-\alpha) + (\beta-t))^{n} = 1.$$

Naj bosta ${\bf f}$ in ${\bf g}$ ravninski Bèzierjevi krivulji dani z

$$\mathbf{f}(t) = \sum_{i=0}^{n} \mathbf{a}_{i} B_{i,[\alpha,\beta]}^{n}(t), \qquad t \in [\alpha,\beta]$$

in

$$\mathbf{g}(s) = \sum_{j=0}^{m} \mathbf{b}_{i} B_{j,[\xi,\eta]}^{m}(s), \qquad s \in [\xi,\eta],$$

kjer so $\mathbf{a}_i, \mathbf{b}_j \in \mathbb{R}^2$ kontrolne točke od \mathbf{f} oz. \mathbf{g} . Naj bo $\|\cdot\|$ Evklidska norma na \mathbb{R}^2 . Definiramo še naslednje norme:

(1) Normalizirana L_2 norma

$$\|\mathbf{f}\|_2^{[\alpha,\beta]} = \sqrt{\frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} \|f(t)\|^2 dt},$$

(2) L_{∞} norma

$$\|\mathbf{f}\|_{\infty}^{[\alpha,\beta]} = \max_{t \in [\alpha,\beta]} \|\mathbf{f}(t)\|,$$

(3) BB norma

$$\|\mathbf{f}\|_{\mathrm{BB}}^{[\alpha,\beta]} = \max_{i=0,\dots,n} \|\mathbf{a}_i\|.$$

Prepričajmo se, da je $\|\cdot\|_{\mathrm{BB}}^{[\alpha,\beta]}$ res norma. Velja $\|\mathbf{f}\|_{\mathrm{BB}}^{[\alpha,\beta]} \geq 0$, saj je $\|\mathbf{a}_i\| \geq 0$. Velja

$$\|\mathbf{f}\|_{\mathrm{BB}}^{[\alpha,\beta]} = 0 \Leftrightarrow \max_{i=0,\dots,n} \|\mathbf{a}_i\| = 0 \Leftrightarrow \|\mathbf{a}_i\| = 0 \Leftrightarrow \mathbf{a}_i = \mathbf{0} \Leftrightarrow \mathbf{f} = \mathbf{0}.$$

Homogenost sledi iz enakosti

$$\|\gamma \mathbf{f}\|_{\mathrm{BB}}^{[\alpha,\beta]} = \max_{i=0,\dots,n} \|\gamma \mathbf{a}_i\| = |\gamma| \max_{i=0,\dots,n} \|\mathbf{a}_i\| = |\gamma| \|\mathbf{f}\|_{\mathrm{BB}}^{[\alpha,\beta]},$$

trikotniška neenakost pa iz

$$\|\mathbf{f} + \mathbf{g}\|_{BB}^{[\alpha,\beta]} = \max_{i=0,\dots,n} \|\mathbf{a}_i + \mathbf{b}_i\| \le \max_{i=0,\dots,n} (\|\mathbf{a}_i\| + \|\mathbf{b}_i\|)$$

$$\le \max_{i=0,\dots,n} \|\mathbf{a}_i\| + \max_{i=0,\dots,n} \|\mathbf{b}_i\| = \|\mathbf{f}\|_{BB}^{[\alpha,\beta]} + \|\mathbf{g}\|_{BB}^{[\alpha,\beta]}.$$

Tudi za $\|\cdot\|_2^{[\alpha,\beta]}$ in $\|\cdot\|_{\infty}^{[\alpha,\beta]}$ se lahko hitro prepričamo, da ustrezata definiciji norme.

2.1. *Fat line*. Naj bo **n** normalni vektor, ki je pravokoten na $\mathbf{b}_m - \mathbf{b}_0$. Definiramo predznačeni razdalji

$$d_{\max} = \max_{i=0,\dots,m} (\mathbf{n} \cdot (\mathbf{b}_i - \mathbf{b}_0)),$$

$$d_{\min} = \min_{i=0,\dots,m} (\mathbf{n} \cdot (\mathbf{b}_i - \mathbf{b}_0)).$$

Območje \mathcal{L} , ki ga sestavljajo točke, ki so od premice $\mathbf{b}_0\mathbf{b}_m$ oddaljene kvečjemu za d_{\min} oz. d_{\max} imenujemo fat line. Krivulja \mathbf{g} je vsebovana v \mathcal{L} , saj je v \mathcal{L} vsebovana njena konveksna ovojnica.

SLIKA 2. Krivulja g in fat line.

2.2. **Fat curve.** Naj bo $\hat{\mathbf{p}}(t)$ polinom stopnje k < n, ki optimalno aproksimira $\mathbf{f}(t)$ glede na normo L_2 . Konstruiramo ga s pomočjo nižanja stopnje krivulje $\mathbf{f}(t)$, podrobnosti o tem kako to naredimo so v [3]. Sedaj polinomu $\hat{\mathbf{p}}(t)$ s pomočjo višanja stopnje lahko zvišamo stopnjo do n in zapišemo

$$\hat{\mathbf{p}}(t) = \mathbf{p}(t) = \sum_{i=0}^{n} \mathbf{c}_{i} B_{i,[\alpha,\beta]}^{n}(t),$$

kjer so \mathbf{c}_i nove kontrolne točke. Naj bo

$$\delta = \|\mathbf{f}(t) - \mathbf{p}(t)\|_{BB}^{[\alpha,\beta]}.\tag{1}$$

Velja naslednja ocena

$$\|\mathbf{f}(t) - \mathbf{p}(t)\| = \|\sum_{i=0}^{n} (\mathbf{a}_{i} - \mathbf{c}_{i}) B_{i,[\alpha,\beta]}^{n}(t)\| \le \sum_{i=0}^{n} \|\mathbf{a}_{i} - \mathbf{c}_{i}\| B_{i,[\alpha,\beta]}^{n}(t) \le \delta.$$

Sledi, da $\mathbf{f}(t)$ leži v območju \mathcal{P} med $\mathbf{p}_1(t) = \hat{\mathbf{p}}(t) + \delta \mathbf{n}$ in $\mathbf{p}_2(t) = \hat{\mathbf{p}}(t) - \delta \mathbf{n}$, kjer je \mathbf{n} normala, ki je pravokotna na $\mathbf{b}_m - \mathbf{b}_0$. Območje \mathcal{P} imenujemo fat curve. Naj bo

$$d(t) = \mathbf{n} \cdot (\mathbf{f}(t) - \mathbf{b}_0),$$

$$d_0(t) = \mathbf{n} \cdot (\mathbf{p}(t) - \mathbf{b}_0),$$

$$d_1(t) = \mathbf{n}(\mathbf{p}_1(t) - \mathbf{b}_0) = d_0(t) + \delta,$$

$$d_2(t) = \mathbf{n}(\mathbf{p}_2(t) - \mathbf{b}_0) = d_0(t) - \delta.$$

Potem velja ocena

 $|d(t) - d_0(t)| = |\mathbf{n} \cdot (\mathbf{f}(t) - \mathbf{p}(t))| \le ||\mathbf{n}|| \cdot ||\mathbf{f}(t) - \mathbf{p}(t)|| \le ||\mathbf{f}(t) - \mathbf{p}(t)||_{\infty}^{[\alpha,\beta]} \le \delta.$ To pomeni, da d(t) leži v pasu med $d_1(t)$ in $d_2(t)$ kot prikazuje slika (3).

SLIKA 3

2.3. Iskanje intervalov. Iz zgornjih dveh razdelkov vemo, da je predznačena razdalja točke $\mathbf{g}(t)$ od premice $\mathbf{b}_0\mathbf{b}_m$ vsebovana v intervalu $[d_{\min}, d_{\max}]$, in da je predznačena razdalja točke $\mathbf{f}(t)$ od premice $\mathbf{b}_0\mathbf{b}_m$ vsebovana v intervalu $[d_2(t), d_1(t)]$. Zato lahko tista območja, kjer je $d_1(t) < d_{\min}$ in $d_2(t) > d_{\max}$, zavržemo. Splošneje, če najdemo rešitve enačb

$$d_1(t) = d_{\min} \text{ in } d_2(t) = d_{\max},$$

potem lahko v domeni krivulje \mathbf{f} najdemo iskane intervale $[\alpha_i, \beta_i]$, ki vsebujejo točke, ki se preslikajo v presečišča od \mathbf{f} in \mathbf{g} .

V obeh zgoraj navedenih enačbah iščemo ničle polinoma. Če smo krivuljo **f** aproksimirali s krivuljo stopnje 2 ali 3, potem lahko ti dve enačbi rešimo analitično. To je v praksi najbolj učinkovita možnost.

2.4. Psevdo koda algoritma.

Vhod: $(\mathbf{f}, \mathbf{g}, [\alpha, \beta], [\xi, \eta], k)$: ravninski Bèzierjevi krivulji, njuni domeni in stopnja aproksimacijske krivulje

1: if
$$|\alpha - \beta| < \epsilon$$
 in $|\xi - \eta| < \epsilon$ then

ustavitveni pogoj

2: **return** $[\alpha, \beta], [\xi, \eta]$

3: **else**

4: if $|\alpha - \beta| < |\xi - \eta|$ then

če ima **f** manjšo domeno zamenjamo vlogi **f** in **g**

5: $HybridClip(\mathbf{g}, \mathbf{f}, [\xi, \eta], [\alpha, \beta], k)$

```
else
  6:
  7:
                   L, C \leftarrow fat \ line(\mathbf{g}), \ fat \ curve(\mathbf{f})
                                                                                                                            aproksimiraj f in g
  8:
                   Najdi intervale [\alpha_i, \beta_i], kjer je L \cap C \neq \emptyset
                   if l > 0 in \max_{i=1,...,l} \{ |\alpha_i - \beta_i| \} \ge \frac{1}{2} |\alpha - \beta| then
                                                                                                                     aproksimacija ni dobra
 9:
                         return HybridClip(\mathbf{f}, \mathbf{g}, [\alpha, \frac{1}{2}(\alpha + \beta)], [\xi, \frac{1}{2}(\xi + \eta)], k)
10:
                                             \cup HybridClip(\mathbf{f}, \mathbf{g}, [\alpha, \frac{1}{2}(\alpha + \beta)], [\frac{1}{2}(\xi + \eta), \eta], k)
                                             \cup HybridClip(\mathbf{f}, \mathbf{g}, [\frac{1}{2}(\alpha + \beta), \beta], [\frac{1}{2}(\xi + \eta), \eta], k)
                                             \cup \, HybridClip(\mathbf{f},\mathbf{g},[\frac{1}{2}(\alpha+\beta),\beta],[\xi,\frac{1}{2}(\xi+\eta)],k)
11:
                   else
                                                                                                                      aproksimacija je dobra
                         S \leftarrow \emptyset
12:
                         for i = 1, \ldots, l do
13:
                               S \leftarrow S \cup HybridClip(\mathbf{f}, \mathbf{g}, [\alpha_i, \beta_i], [\xi, \eta], k)
14:
                                                                                                                                    rekurziven klic
15:
                         end for
                         return S
                                                                                                                                  vrnemo rezultat
16:
                   end if
17:
18:
             end if
19: end if
```

Klic funkcije $HybridClip(\mathbf{f}, \mathbf{g}, [\alpha, \beta], [\xi, \eta], k)$ vrne pare intervalov $[\alpha_i, \beta_i], [\xi_i, \eta_i],$ ki vsebujejo vsa presečišča in so manjši od predpisanega ϵ . Lahko se zgodi, da med njimi vrne tudi par intervalov, kjer se krivulji \mathbf{f} in \mathbf{g} ne sekata, ampak le prideta blizu skupaj.

3. Red konvergence

Trditev 3.1. invarianca norm za afine transormacije

 \square Dokaz.

Lema 3.2. Naj bo **f** ravninska Bèzierjeva krivulja in **p** njena optimalna L_2 aproksimacija stopnje k. Potem obstaja konstanta C, da za poljuben interval $[\alpha, \beta] \subseteq [0, 1]$ velja $\|\mathbf{f} - \mathbf{p}\|_{BB}^{[\alpha, \beta]} \le C|\alpha - \beta|^{k+1}$.

Dokaz. Spomnimo se, da za poljubni normi $\|\cdot\|_1$ in $\|\cdot\|_2$ na končno dimenzionalnem vektorskem prostoru V obstajata konstanti $0 < C_1 \le C_2$, tako da je

$$C_1||v||_2 \le ||v||_1 \le C_2||v||_2, \ v \in V.$$
 (2)

Zato obstajata konstanti D_1 in D_2 , da je $\|\mathbf{r}\|_{BB}^{[\alpha,\beta]} \leq D_1 \|\mathbf{r}\|_2^{[\alpha,\beta]}$ in $\|\mathbf{r}\|_2^{[\alpha,\beta]} \leq D_2 \|\mathbf{r}\|_{\infty}^{[\alpha,\beta]}$ za vsak $\mathbf{r} \in \Pi_{[\alpha,\beta]}^n$. Pri tem konstanti D_1 in D_2 nista odvisni od intervala $[\alpha,\beta]$, saj so po trditvi (3.1) norme invariantne glede na afine transformacije.

so po trditvi (3.1) norme invariantne glede na afine transformacije. Od tod sledi, da je $\|\mathbf{f} - \mathbf{p}\|_{BB}^{[\alpha,\beta]} \leq D_1 \|\mathbf{f} - \mathbf{p}\|_2^{[\alpha,\beta]}$. Naj bodo komponente \mathbf{q}_{α} Taylorjevi polinomi stopnje k razviti okrog točke $t = \alpha$ za vsako komponento krivulje \mathbf{f} . Potem velja

$$D_1 \|\mathbf{f} - \mathbf{p}\|_2^{[\alpha,\beta]} \le D_1 \|\mathbf{f} - \mathbf{q}_\alpha\|_2^{[\alpha,\beta]},$$

saj je **p** optimalna L_2 aproksimacija za **f**. Iz (2) sledi, da je $D_1 \| \mathbf{f} - \mathbf{q}_{\alpha} \|_{2}^{[\alpha,\beta]} \le D_1 D_2 \| \mathbf{f} - \mathbf{q}_{\alpha} \|_{\infty}^{[\alpha,\beta]}$. Spomnimo se, da lahko razliko med $\mathbf{f}(t) - \mathbf{q}_{\alpha}(t)$ zapišemo v obliki

$$\mathbf{f}(t) - \mathbf{q}_{\alpha}(t) = \frac{\mathbf{f}^{(k+1)}(t_o)}{(k+1)!} (t-\alpha)^{k+1},$$

kjer je $\mathbf{f}^{(k+1)}$ (k+1)-vi odvod krivulje \mathbf{f} in kjer vse člene opazujemo po komponentah. Od tod dobimo oceno

$$D_1 D_2 \|\mathbf{f} - \mathbf{q}_{\alpha}\|_{\infty}^{[\alpha,\beta]} \le \frac{\sqrt{2}}{(k+1)!} D_1 D_2 \max_{t \in [0,1]} \|\mathbf{f}^{(k+1)}(t_0)\| |\alpha - \beta|^{k+1}.$$

Lema 3.3. Naj bo **f** ravninska Bèzierjeva krivulja stopnje n. Potem obstajajo konstante C_j , tako da za poljuben interval $[\alpha, \beta] \subseteq [0, 1]$ in optimalno L_2 aproksimacijo **p** stopnje k od **f** velja $\|\mathbf{f}^{(j)} - \mathbf{p}^{(j)}\|_{\infty} \leq C_j |\alpha - \beta|^{k+1-j}$, za j = 0, 1, ..., k.

Dokaz. Definirajmo novo normo z naslednjim predpisom

$$\|\mathbf{r}\|_{*}^{[\alpha,\beta]} = \|\mathbf{r}\|_{\infty}^{[\alpha,\beta]} + |\alpha - \beta| \|\mathbf{r}'\|_{\infty}^{[\alpha,\beta]} + \ldots + |\alpha - \beta|^{k} \|\mathbf{r}^{(k)}\|_{\infty}^{[\alpha,\beta]}.$$

To je res norma, saj je $\|\cdot\|_{\infty}$ norma. Po trditvi (3.1) in iz neka referenca sledi, da obstaja konstanta D_1 , da je

$$\|\mathbf{r}\|_{*}^{[\alpha,\beta]} \leq D_1 \|\mathbf{r}\|_{2}^{[\alpha,\beta]}.$$

S pomočjo te ocene lahko zapišemo

$$\|\mathbf{f} - \mathbf{p}\|_{*}^{[\alpha,\beta]} = \|\mathbf{f} - \mathbf{p}\|_{\infty}^{[\alpha,\beta]} + |\alpha - \beta| \|\mathbf{f}' - \mathbf{p}'\|_{\infty}^{[\alpha,\beta]} + \dots + |\alpha - \beta|^{k} \|\mathbf{f}^{(k)} - \mathbf{p}^{(k)}\|_{\infty}^{[\alpha,\beta]} \le D_{1} \|\mathbf{f} - \mathbf{p}\|_{2}^{[\alpha,\beta]}$$

Sedaj podobno kot v lemi (3.2) s pomočjo Taylorjevega polinoma in izreka o ostanku ocenimo

$$D_{1} \|\mathbf{f} - \mathbf{p}\|_{2}^{[\alpha,\beta]} \leq D_{1} \|\mathbf{f} - \mathbf{q}_{\alpha}\|_{2}^{[\alpha,\beta]} \leq D_{1} D_{2} \|\mathbf{f} - \mathbf{q}_{\alpha}\|_{\infty}^{[\alpha,\beta]} \leq \frac{\sqrt{2}}{(k+1)!} D_{1} D_{2} \max_{t \in [0,1]} \|\mathbf{f}^{(k+1)}(t_{0})\| |\alpha - \beta|^{k+1}.$$

Definicija 3.4. Naj bosta $\mathbf{f}(t)$ in $\mathbf{g}(s)$ ravninski Bèzierjevi krivulji s presečiščem $\mathbf{z}_0 = \mathbf{f}(t_0) = \mathbf{g}(s_0)$. Presečišče \mathbf{z}_0 imenujemo:

- transverzalno presečišče, če je $\mathbf{f}'(t_0) \times \mathbf{g}'(s_0) \neq \mathbf{0}$,
- tangentno presečišče, če je $\mathbf{f}'(t_0) \times \mathbf{g}'(s_0) = \mathbf{0}$ in $\mathbf{f}'(t_0) \neq \mathbf{0}$, $\mathbf{g}'(s_0) \neq \mathbf{0}$,
- degenerirano presečišče, če je $\mathbf{f}'(t_0) = \mathbf{0}$ ali $\mathbf{g}'(s_0) = \mathbf{0}$.

Trditev 3.5. Naj imata Bezierjevi krivulji \mathbf{f} in \mathbf{g} transverzalno presečišče v $\mathbf{f}(t_0) = \mathbf{g}(s_0)$. Potem obstajajo konstante C_f, C'_f, C_g in C'_g , da za dovolj velike $i \in \mathbb{N}$ velja

$$|\alpha_{i+1} - \beta_{i+1}| \le C_f |\alpha_i - \beta_i|^{k+1} + C_g |\xi_i - \eta_i|^2$$
(3)

oz.

$$|\xi_{i+1} - \eta_{i+1}| \le C_f' |\alpha_i - \beta_i|^2 + C_g' |\xi_i - \eta_i|^{k+1}.$$
(4)

Dokaz. Dokazali bomo le neenakost (3), saj je dokaz za (4) podoben.

Naj bosta $[\alpha_i, \beta_i]$ in $[\xi_i, \eta_i]$ zaporedji intervalov, ki jih algoritem generira. Oglejmo si kako se algoritem obnaša za velike i. Ker se dolžine intervalov v vsakem koraku zmanjšajo vsaj za polovico, je

$$\lim_{i \to \infty} |\alpha_i - \beta_i| = 0 \text{ in } \lim_{i \to \infty} |\xi_i - \eta_i| = 0.$$

Sledi, da $\mathbf{b}_0 \mathbf{b}_m$ konvergira proti tangenti $\mathbf{g}'(s_0)$. Zato gre normala \mathbf{n} na $\mathbf{b}_0 \mathbf{b}_m$ proti normali \mathbf{n}_0 na $\mathbf{g}(s_0)$.

Naj bo $\omega = \mathbf{n}_0 \cdot \mathbf{f}'(t_0)$. Po predpostavki je $\mathbf{f}'(t_0) \times \mathbf{g}'(s_0) \neq \mathbf{0}$, torej je $\omega \neq 0$. Oglejmo si situacijo v *i*-tem koraku algoritma, ki jo prikazuje slika (4). Velja

$$|\alpha_{i+1} - \beta_{i+1}| = h_{i+1,\mathbf{f}} \le L_{i+1} = l_{i+1,1} + l_{i+1,2} + l_{i+1,3}.$$

Želimo oceniti člene na desni strani ne
enakosti. Ker je $\frac{\omega}{4}=\frac{d_{max}-d_{min}}{l_{i+1,1}+l_{i+1,3}}$ je

$$l_{i+1,1} + l_{i+1,3} = \frac{4(d_{max} - d_{min})}{\omega}.$$
 (5)

Želimo oceniti še člen $l_{i+1,2}$. V ta namen si najprej oglejmo ali sta funkciji $d_1(t)$ in $d_2(t)$ naraščajoči. Najprej opazimo, da obstaja tak $\epsilon_1 > 0$, da je za dovolj velike i

$$|d'(t_0) - \omega| = |\mathbf{n} \cdot \mathbf{f}'(t_0) - \mathbf{n}_0 \cdot \mathbf{f}'(t_0)| < \frac{\omega}{4}, \tag{6}$$

ko je $|\xi_i - \eta_i| < \epsilon_1$, saj gre **n** proti \mathbf{n}_0 , ko $i \to \infty$. Obstaja tudi tak $\epsilon_2 > 0$, da je za dovolj velike i

$$\|\mathbf{f}'(t) - \mathbf{f}'(t_0)\| < \frac{\omega}{4},\tag{7}$$

ko je $|\alpha_i - \beta_i| < \epsilon_2$ saj je ${\bf f}'$ zvezna. Dalje obstaja tudi tak $\epsilon_3 > 0$, da za dovolj velike i velja

$$|d'(t) - d_1'(t)| < \frac{\omega}{4},\tag{8}$$

ko je $|\alpha_i - \beta_i| < \epsilon_3$, saj po lemi (3.3) velja

$$|d'(t) - d'_1(t)| = |\mathbf{n} \cdot (\mathbf{f}'(t) - \mathbf{p}'(t))| \le ||\mathbf{f}'(t) - \mathbf{p}'(t)|| \le ||\mathbf{f}'(t) - \mathbf{p}'(t)||_{\infty}^{[\alpha, \beta]} \le C|\alpha_i - \beta_i|^k$$

Naj bo $\epsilon_4 = \min(\epsilon_1, \epsilon_2, \epsilon_3)$. S pomočjo ocen (6) in (7) lahko ocenimo

$$|d'(t) - \omega| = |\mathbf{n} \cdot \mathbf{f}'(t) - \mathbf{n}_0 \cdot \mathbf{f}'(t_0)|$$

$$\leq |\mathbf{n} \cdot \mathbf{f}'(t) - \mathbf{n} \cdot \mathbf{f}'(t_0)| + |\mathbf{n} \cdot \mathbf{f}'(t_0) - \mathbf{n}_0 \cdot \mathbf{f}'(t_0)|$$

$$\leq ||\mathbf{f}'(t) - \mathbf{f}'(t_0)|| + |d'(t_0) - \omega|$$

$$\leq \frac{\omega}{4} + \frac{\omega}{4} = \frac{\omega}{2},$$

za vse dovolj velike i,tako da je $|\alpha_i-\beta_i|<\epsilon_4$ in $|\xi_i-\eta_i|<\epsilon_4.$ Zato je

$$d'(t) < \frac{\omega}{2},\tag{9}$$

in skupaj z (8) dobimo, da je $d_1'(t) = d_2'(t) > \frac{\omega}{4}$. Torej smo ugotovili, da sta funkciji $d_1(t)$ in $d_2(t)$ strogo naraščajoči na dovolj poznih intervalih $[\alpha_i, \beta_i]$.

Od tod sledi, da za poljuben y_0 , za katerega velja $d_1(\alpha_i) < y_0 < d_2(\beta_i)$, velja, da imata enačbi $d_1(t) = y_0$ in $d_2(t) = y_0$ rešitvi t_1 in t_2 na intervalu $[\alpha_i, \beta_i]$. Zato je

$$l_{i+1,2} \le \sup_{y_0 \in (d_1(\alpha_i), d_2(\beta_i))} \{ |t_1 - t_2| ; d_1(t_1) = d_2(t_2) = y_0 \}.$$

Če najdemo oceno za $|t_1 - t_2|$, potem lahko s pomočjo zgornje enačbe ocenimo $l_{i+1,2}$. Oceno za $|t_1 - t_2|$ bomo dobili na sledeč način. Opazimo, da za $d_1(t_1) = d_2(t_2) = y_0$ velja

$$\mathbf{n} \cdot (\mathbf{p}(t_1) - \mathbf{p}(t_2)) = 2\delta,$$

kjer je δ kot v (1). Naj bo $\mathbf{p}(t) = (x(t), y(t))$. Potem po Lagrange-ovem izreku o srednji vrednosti obstajata takšna t^* in t^{\diamond} , da je

$$\mathbf{p}(t_1) - \mathbf{p}(t_2) = (x(t_1) - x(t_2), y(t_1) - y(t_2)) = (x'(t^*)(t_1 - t_2), y'(t^*)(t_1 - t_2)).$$

Od tod dobimo oceno

$$|\mathbf{n} \cdot (x'(t^{\star}), y'(t^{\diamond})) - d'(t)|$$

$$= |\mathbf{n}(x'(t^{\star}), y'(t^{\diamond})) - \mathbf{n} \cdot \mathbf{f}'(t)|$$

$$\leq ||(x'(t^{\star}), y'(t^{\diamond})) - \mathbf{f}'(t)||$$

$$= ||(x'(t^{\star}), y'(t^{\star})) - \mathbf{f}'(t) + (0, y'(t^{\diamond})) - (0, y'(t^{\star}))||$$

$$\leq ||\mathbf{p}'(t^{\star}) - \mathbf{f}'(t)|| + ||\mathbf{p}'(t^{\diamond}) - \mathbf{p}'(t^{\star})||$$

$$\leq ||\mathbf{p}'(t^{\star}) - \mathbf{p}'(t)|| + ||\mathbf{p}'(t) - \mathbf{f}'(t)|| + ||\mathbf{p}'(t^{\diamond}) - \mathbf{p}'(t^{\star})||$$

$$\leq 2 \max_{t^{1}, t^{2} \in [\alpha_{i}, \beta_{i}]} ||\mathbf{p}'(t^{1}) - \mathbf{p}'(t^{2})|| + ||\mathbf{p}'(t) - \mathbf{f}'(t)||_{\infty}^{[\alpha_{i}, \beta_{i}]}.$$

Po lemi (3.3) in ker je $\mathbf{p}'(t)$ enakomerno zvezna na $[\alpha_i, \beta_i]$ obstaja $\epsilon_5 > 0$, da za dovolj velike i velja

$$\max_{t^1, t^2 \in [\alpha_i, \beta_i]} \|\mathbf{p}'(t^1) - \mathbf{p}'(t^2)\| < \frac{\omega}{16},$$
$$\|\mathbf{p}'(t) - \mathbf{f}'(t)\|_{\infty}^{[\alpha_i, \beta_i]} < \frac{\omega}{8},$$

ko je $|\alpha_i - \beta_i| < \epsilon_5$. Naj bo $\epsilon_0 = \min(\epsilon_4, \epsilon_5)$. Potem je

$$|\mathbf{n}\cdot(x'(t^*),y'(t^\diamond))-d'(t)|<\frac{\omega}{4},$$

ko je $|\alpha_i - \beta_i| < \epsilon_0$ in $|\xi_i - \eta_i| < \epsilon_0$. Če (9) kombiniramo z zgornjo neenakostjo dobimo oceno

$$\mathbf{n} \cdot (x'(t^*), y'(t^{\diamond})) > \frac{\omega}{4}.$$
Ker je $2\delta_i = \mathbf{n} \cdot (\mathbf{p}(t_1) - \mathbf{p}(t_2)) = (t_1 - t_2)\mathbf{n} \cdot (x'(t^*), y'(t^{\diamond})),$ dobimo
$$|t_1 - t_2| < \frac{2\delta_i}{\omega/4} = \frac{8\delta_i}{\omega}.$$

SLIKA 4. Situacija v *i*-tem koraku algoritma.

4. Eksperimentalni rezultati

V [2] so opisani eksperimentalni testi metode hibridnih izrezkov. Implementirani sta aproksimaciji s krivuljo stopnje 2 in 3 ter narejene primerjave z metodo Bèzierjevih izrezkov za vse tri različne tipe presečišč in za krivulji z več kot enim presečiščem. Izkaže se, da je tudi v praksi konvergenca metode hibridnih izrezkov boljša. Pri tem je aproksimacija s krivuljo stopnje 2 pogosto boljša kot aproksimacija s krivuljo stopnje 3, razlog pa je verjetno računsko manj zahtevna aproksimacija. Primerjave so prikazane na sliki (5) (povzeto po [2]).

Slika 5. Primerjave časovne zahtevnosti.

5. Zaključek

Predstavili smo metodo hibridnih izrezkov, ki omogoča izračun presečišč dveh ravninskih Bèzierjevih krivulj. Algoritem temelji na aproksimaciji ene in druge krivulje z območjema, ki krivulji vsebujeta in zmanjšanjem domene le na tiste dele, kjer je presek območij neprazen. Na ta način dobimo zaporedje vedno manjših intervalov, ki konvergirajo proti presečiščem.

Pokazali smo, da je v primeru transverzalnih presečišč konvergenca vsaj kvadratična. Tega nismo mogli pokazati za primer tangentnih in degeneriranih presečišč.

V primeru tangentnih presečišč algoritem degenerira v metodo *deli in vladaj*, saj območja ne omejijo krivulj dobro. V primeru degeneriranih presečišč je aproksimacija boljša. Podobno sliko pokažejo tudi eksperimentalni rezultati. Hitrost konvergence transverzalnih presečišč je najboljša, hitro sledijo degenerirana presečišča in precej slabše se odrežejo tangentna presečišča.

Zaključimo, da je metoda hibridnih izrezkov uporabna tudi v praksi, saj najde vsa presečišča in je hitrejša od metode Bèzierjevih izrezkov. Možnosti za razširitve metode hibridnih izrezkov vključujejo izračun presečišč dveh racionalnih Bèzierjevih krivulj in izračun preseka dveh Bèzierjevih ploskev.

LITERATURA

- [1] Sederberg T., Nishita T., Curve intersection using Bèzier clipping, Comput. Aided Des., 1990, 538–49.
- [2] Qi Lou, Ligang Liu, Curve intersection using hybrid clipping, Computers and Graphics, 36 (5), 2012, 309-320.
- [3] Zhang R., Wang G., Constrained Bèzier curves best multi-degree reduction in the L₂-norm, Prog. Nat. Sci., 2005, 15(9): 843–50