

Pandemic simulation A-2

Basic SIR model

$$\begin{cases} \frac{dS}{dt} = -\beta \frac{SI}{N} \\ \frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I \Rightarrow \begin{cases} \frac{S_{i+1} - S_i}{t_{i+1} - t_i} = -\beta \frac{S_i I_i}{N} \\ \frac{I_{i+1} - I_i}{t_{i+1} - t_i} = \beta \frac{S_i I_i}{N} - \gamma I_i \end{cases}, \text{ where } \\ \frac{dR}{dt} = \gamma I \end{cases}$$

S - suspected individuals;

I - infectious individuals;

R - removed (unresponsive and dead) individuals.

 β - effective contact rate of the disease $\beta \sim P(S, I \text{ contact})$.

 γ - removing rate $\sim I$.

Basic SIR model simulation

Data acquisition

Число новых заражений и смертей, Россия

Дата	Заражений	Смертей	Выздоров лений	Заражено на дату
24.10.2021	46312782	756362	36052614	9503806
23.10.2021	46294210	756205	36033886	9504119
22.10.2021	46263935	755705	36000281	9507949

https://russian-trade.com/coronavirus/usa/

Waves identification

Removed

An attempt to fit coefficients

Open source COVID-19 statistics

Target metric minimization

Using optimization

Visual estimation

Manual coefficients fitting

Infected

Removed

Infected & Removed (USA)

Optimization-based adjustment

Minimization problem formalization:

$$\beta, \gamma, \delta = argmin \left[\sum_{t=0}^{T} (I_{real}(t_i) - I_{model}(\beta, \gamma, \delta, t_i))^2 \right]$$

Error estimation metric (RMSE):

$$e = \sqrt{\frac{1}{T} \sum_{t=0}^{T} (I_{real}(t_i) - I_{model}(t_i))^2}$$

Nelder-Mead optimization method has been used (scipy.optimize)

where:

 I_{real} - real data;

 I_{model} - estimated curve;

i - time moment, $i \in [0...T]$.

Optimizationbased fitting

Removed

Infected & Removed (USA)

Error comparison

GOOD

BAD

Fitting RMSE for Infectious (x 1e3)					
	Ru	Russia		USA	
Wave	Manually	Optimization	Manually	Optimization	
1	113	64	25	22	
2	177	108	34	27	
3	116	96	79	67	
4	-//-	-//-	159	153	

Cons of Basic SIR model:

This model could be improved (to better fits reality) by following ways:

- 1) to consider vaccination effects;
- 2) to consider a latent period (when individuals are already infected by the pathogens but not yet infectious);
- 3) to consider time-varying parameters;
- 4) to consider additional parameters to describe the specific rate of immunity loss;
- 5) to consider the possibility to be infected several times.

Examples of SIR models for different diseases: Ebola, Flu, Measles, COVID-19

- 1) Temporary immunity: the SIRS model for endemic diseases.
- 2) The SIR model with demography
- SIR model with vaccination (this SIR model is for vaccine for newborn)
- SEIR model with a latent period
- 5) Age structured SIR model
- 6) SIR model with time-varying parameters and periodic forcing

Examples for different diseases: Ebola, Measles, COVID-19

Ebola and Measles in Africa during current outbreaks:

$$\begin{cases} \frac{dS}{dt} = -\beta \frac{SI}{N} + \delta R \\ \frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I \\ \frac{dR}{dt} = \gamma I - \delta R \end{cases}$$

An additional parameter δ is introduced in order to represent the specific rate of immunity loss.

Measles before invention of vaccine:

$$\begin{cases} \frac{dS}{dt} = -\beta \frac{SI}{N} \\ \frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I & \beta(t) = \beta_0 [1 + \beta_1 cos(2\pi t)] \\ \frac{dR}{dt} = \gamma I \end{cases}$$

with the time t in years and $\beta 1 = 0.2$, (i.e. a 20% seasonal variation).

Examples for different diseases: Ebola Measles, COVID-19

Measles in first world countries:

$$\begin{cases} \frac{dS}{dt} = (\mu - \sigma)N - \beta \frac{SI}{N} - \mu S \\ \frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I - \mu I \\ \frac{dR}{dt} = \gamma I - \mu R \end{cases}$$

 σ is represents the specific vaccination rate of the newborns μ is accountable for deaths (or emigration)

COVID-19?

$$\begin{cases} \frac{dS}{dt} = -\nu \ N - \beta \ IS - \mu \ S \\ \frac{dI}{dt} = \beta \ IS - \gamma I - \mu \ I \\ \frac{dR}{dt} = \gamma I - \mu \ R \end{cases}$$

$$\begin{cases} \frac{dS}{dt} = (\mu - \sigma)N - \beta \frac{SI}{N} - \mu S \\ \frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I - \mu I \\ \frac{dR}{dt} = \gamma I - \mu R \end{cases}$$

Age-structured SIR

$$\begin{cases} \frac{dS_{i}}{dt} = -\beta \frac{S_{i}}{N} \cdot \sum_{j=1}^{L} M_{ij} I_{j} \\ \frac{dI_{i}}{dt} = \beta \frac{S_{i}}{N} \cdot \sum_{j=1}^{L} M_{ij} I_{j} - \gamma I_{i} \end{cases} = > \begin{cases} \frac{d}{dt} \mathbf{S} = -\beta \frac{\mathbf{S}}{N} \cdot \mathbf{M} \mathbf{I} \\ \frac{d}{dt} \mathbf{I} = \beta \frac{\mathbf{S}}{N} \cdot \mathbf{M} \mathbf{I} - \gamma \mathbf{I} \end{cases}, \text{ where } \\ \frac{dR_{i}}{dt} = \gamma I_{i} \end{cases}$$

 $\mathbf{S} \in \mathbb{R}^{L \times 1}$ - the vector of susceptible individuals;

 $\mathbf{I} \in \mathbb{R}^{L \times 1}$ - the vector of infectious individuals;

 $\mathbf{R} \in \mathbb{R}^{L \times 1}$ - the vector of removed individuals;

 $\mathbf{M} \in \mathbb{R}^{L ext{x}L}$ - weighted age-contact matrix

Age-contact matrix scaling

$$M = M_0 \cdot diag(\mathbf{p})$$
, where

 \boldsymbol{p} - age distribution for current region

$$(\mathbf{p} \in \mathbb{R}^{L \times 1}, |p| = 1);$$

 M_0 - initial age-contact matrix;

M - weighted age-contact matrix.

Age-structured SIR - Current results

Age-targeted vaccination

$$\begin{cases} \frac{d}{dt}\mathbf{S} = -\beta \frac{\mathbf{S}}{N} \cdot \mathbf{M}\mathbf{I} - \mu \\ \frac{d}{dt}\mathbf{I} = \beta \frac{\mathbf{S}}{N} \cdot \mathbf{M}\mathbf{I} - \gamma \mathbf{I} \\ \frac{d}{dt}\mathbf{R} = \gamma \mathbf{I} + \mu \end{cases}$$
, where

$$\mathbf{S} \in \mathbb{R}^{L \times 1}, \mathbf{I} \in \mathbb{R}^{L \times 1}, \mathbf{R} \in \mathbb{R}^{L \times 1}, \beta, \gamma, \mathbf{M}$$
 - the same;

$$\mu = T \frac{\omega \circ \mathbf{S}}{|\omega \circ \mathbf{S}|}$$
 - vaccination rate vector;

 ω - age-structured vaccination priority;

T - vaccination capability.

	w_c	w_s
0-9	1	1
10-19	1	1
20-29	1	1
30-39	1	1
40-49	1	2
50-59	1	4
60-69	1	8
70-79	1	16
80+	1	16

Results comparison

Beta (0.25) and gamma (1/14) - the same

Without vaccination

With vaccination (fair and old age)

Age-targeted vaccination - literature comparison

Age distribution vect.

Conclusions

1. Vaccinate ASAP

2. Keep the distance

4. Wear a mask

5. Make others do all of the above!

Thank you for your attention!

Contacts:

Mikhail Maidan

Stanislav Krikunov

mikhail.maidan@skoltech.ru

stanislav.krikunov@skoltech.ru

@Mishgun113377

@s_krikunov