

Panoramica del caso di studi

- Ogni anno, all'inizio della stagione secca (maggio, giugno), più di 1 milione di gnu si preparano ad una lunga migrazione ciclica che li porterà della Tanzania al Kenya alla ricerca di cibo e acqua potabile
- Uno dei maggiori ostacoli è rappresentato dai fiumi
 - attraversamento (correnti e profondità dell'acqua)
 - predatori (leoni in attesa del loro passaggio, coccodrilli, ...)
- La maggior parte degli attraversamenti accadono lungo il fiume Mara, linea di confine fra il Parco Nazionale del Serengeti (Tanzania) e la Riserva del Masai Mara (Kenya)

Obiettivi

- Simulazione dell'attraversamento del fiume Mara da parte di una mandria di gnu
- Studio delle dinamiche di aggregazione del gruppo, delle dinamiche di leadership e di movimento durante la traversata del fiume
- Analisi di movimenti, caccia e effetto confusione dei predatori
- Osservazione dell'influenza della suddivisione del branco in vari gruppi, più o meno numerosi, e di diverse condizioni climatiche sulla riuscita della traversata e sulle interazioni con i predatori

Ambiente di simulazione

Modellazione: condizioni climatiche

- Si ottengono tramite diverse analisi le condizioni climatiche durante i mesi considerati (Giugno-Ottobre)
 - si identificano le variabili di interesse e si definiscono delle causalità fra di esse
 - si usano le causalità per stimare le variabili per cui non si dispone dei dati
- Si discretizzano i valori dei parametri in 3 livelli (1: minimo, 3: massimo)
 - il flusso in 4 livelli per maggiore precisione (causa della spinta in acqua)

Modellazione: fiume

(A) Zona con i maggiori attraversamenti

(B) Foto satellitare della zona

(C) Rappresentazione in NetLogo

acqua

OSS: larghezza e profondità variabili in base alle dipendenze

Modellazione: agenti della simulazione

• Gnu:

- singoli gnu all'interno di una mandria in viaggio
- *target:* attraversare il fiume per continuare la migrazione

• Leoni:

- singoli leoni non cooperanti fra loro
- target: cacciare più gnu possibili

Coccodrilli:

 momentaneamente non implementati per la bassa incidenza

Modellazione: agenti Gnu

- Creati in scala 1:1000 per limitare la complessità computazionale, in un range fra 100 e 1000 agenti
- Suddivisi nelle categorie: Maschio adulto-Femmina adulta-Vitello
 - influenza velocità in acqua e resistenza alla corrente
 - non influenza la velocità
- Si assume che il moto segua il modello dei Boids, con diversi parametri di aggregazione in base alla fase dell'attraversamento
 - assunzione già fatta dalla Disney per il Re Leone
- Si assume che anneghino per "solitudine", ovvero per tempo trascorso in assenza di vicini che limitino gli effetti della corrente
 - indipendentemente da qualsiasi loro caratteristica fisica (non si considerano peso, energia, fame, salute, ...)

Alignment

Cohesion

Separation

Evasion-Pursuit (evasion modificata)

Modellazione: agenti Gnu

Variabile	Descrizione	Variabile	Descrizione
sex	maschio-femmina-vitello	nearest-neighbor	L'esemplare a lui più vicino (parametro di Boids)
target	Il punto di arrivo a priori prescelto da ogni esemplare prima di seguire la mandria	status	Stato in cui si trova l'esemplare, ne motiva i movimenti
waitforleadership	Tempo trascorso nell'attesa della scelta dei leader	crossing?	Esemplare che sta compiendo o meno l'attraversamento
leadership?	Esemplare leader o non leader	timealone	Tempo trascorso "da solo" da ogni esemplare in acqua
flockmates	Vicinato per aggregazione (parametro di Boids)	firsttimeattacked?	Esemplare che si sente attaccato per la prima volta o meno

Modellazione: agenti Gnu

Stato	Descrizione				
0	Stato di partenza, precedente all'arrivo al fiume				
1	Arrivo alle rive del fiume				
2	Attraversamento del fiume				
3	Oltre al fiume				
4	Evasion: fuga da un predatore				
5	Pursuit: rientro in banco a fuga riuscita				
6	Stato finale				

Modellazione: agenti Leone

- Creati in scala 1:10 (impossibile crearli nella stessa scala degli Gnu), in un range fra 5 e 25
 - compromesso per poterne comunque osservare i movimenti
- Subiscono l'effetto confusione
 - diminuzione del tasso di successo di un attacco al crescere della dimensione della mandria di prede
 - vengono modellati semplicisticamente proprio per osservare principalmente questo fattore a scapito della precisione dei movimenti
- Si assumono come non cooperanti
 - non si è certi che cooperino spontaneamente e non solo per convenienza o opportunità
- Si assume, per semplicità, come caccino una sola preda e si allontanino dalla zona
- Esiste la possibilità che muoiano (scelta sbagliata della preda, travolto dalla mandria), ma non è
 centrale per questa simulazione

Modellazione: agenti Leone

• Concentrandosi sulla relazione con il branco di gnu si ignora ogni aspetto fisico e caratteriale dello specifico agente leone

Variabile	Descrizione
status	Stato in cui si trova l'esemplare, ne motiva movimenti e comportamenti
waitingtime	Tempo speso a distanza di attacco in attesa di compiere un'imboscata (se eccessivo desiste)
accelerationtime	Tempo per il quale l'esemplare sfrutta la propria accelerazione (accelerazione per tratti non maggiori di 200/300m, successivamente rinuncia all'attacco)

Modellazione: agenti Leone

Stato	Descrizione	Stato	Descrizione	Stato	to Descrizione		Descrizione
0	Stato di partenza	2	Targeting	4	Fuga	6	Sazio
1	Avvistamento mandria	3	Imboscata	5	Fuga da sazio	7	Attacco Fallito

Simulazione: comportamento degli Gnu

Mandria in arrivo al fiume, inizio dell'ammassamento sulle rive e scelta della leadership (rosso)

Esempi di gnu (verde) in fase di fuga dall'attacco di un leone

Mandria in attraversamento del fiume (tendendo a fare file) e ammassamento sulle rive per chi ancora non sta attraversando

Gnu (blu) che rientra nel branco dopo una fuga riuscita con successo (fine della fase di pursuit)

Simulazione: comportamento dei Leoni

Leone in avvicinamento alla mandria di gnu per valutare se è possibile identificare un'ipotetica preda

Leone in fuga per la presenza di una mandria troppo fitta di gnu dopo un attacco fallito

Leone appostato pronto a identificare una possibile preda (uno gnu molto solitario) per un'imboscata

Leone sazio dopo aver concluso la caccia, prima di allontanarsi dalla zona e smettere la ricerca di prede. OSS: attacco avvenuto con successo oltre il fiume, dove gli gnu sono più sparsi

Simulazione: test effettuati

- 1. Replicazione di singoli attraversamenti per cui si dispone di dati tramite osservazioni dirette
 - tentativo di validazione
- 2. Simulazione di singoli attraversamenti per i quali non si dispone di dati
 - ulteriore tentativo di validazione (replicare casi limite o medi)
- Effetto dell'attraversamento in un unico branco a confronto con l'attraversamento in sotto-branchi
 - ipotesi del vantaggio dell'aggregazione
- 4. Effetto di un unico branco rispetto a più sotto-branchi nel rapporto con i leoni
 - ipotesi dell'effetto confusione

			Condizio	oni						
Traversata osservata	rain level	river flow	river depth	river width	river speed	Numerosità stimata del branco	N° morti reali	N° morti simulate (K) con 1 gruppo	N° morti simulate (K) con 2 gruppi	N° morti simulate (K) con 3 gruppi
1	3	3	2	3	2	500K	3380	3.4	4.4	5
2	3	4	3	3	3	100K	990	1.2	NULL	NULL
3	3	3	3	3	3	200K	1610	1.8	2.7	NULL

- NB: non si conosceva la numerosità del branco che ha tentato l'attraversamento, la si è stimata basandosi sulle percentuali di morte totali in base alle condizioni
- Si osserva un riscontro fra il reale numero di morti e il numero di morti simulate, permettendo una parziale validazione del modello

Test	rain-level	river-flow	river-depth	river-width	river-speed	Numerosità branco		N° morti simulate (K)
1	1	1	1	1	1	500K	1250-1500	1.3
2	2	2	2	2	2	500K	2500-2750	2.8

- In mancanza di dati abbiamo, precedentemente alle simulazioni, stimato dalle informazioni in nostro possesso la numerosità del branco e un numero di morti durante la traversata del fiume
- Dai risultati si può notare come il numero di gnu affogati sia pressoché simile al numero di morti simulate dal nostro modello, confermando la parziale validazione precedente

Numerosità del branco (K)	N° sotto-gruppi	N° morti (K)
	1	7
900	2	8.9
	3	10.6
	1	5.2
600	2	6.9
	3	8.2
	1	2.7
300	2	3.6
	3	4.1

- Un branco unito durante l'attraversamento porta ad un numero inferiore di morti rispetto a diverse divisioni della mandria
- Numero medio di morti coerente con i dati a disposizione e con le stime effettuate

Leoni (*10)	Gnu	Sotto-branchi	Gnu cacciati (*10)	Kill/Attacks ratio
10	300K	1	1.5	0.009
10	300K	2	2.6	0.012
10	300K	3	3.1	0.018
20	300K	1	3.9	0.01
20	300K	2	4.3	0.011
20	300K	3	5	0.012
10	600K	1	1.6	0.01
10	600K	2	3	0.014
10	600K	3	3.4	0.018
20	600K	1	4.2	0.012
20	600K	2	4.7	0.013
20	600K	3	6.9	0.016

ATTACCHI RIUSCITI

*Kill/Attacks ratio: # ATTACCHI TOTALI (volte nelle quali un leone entra nello stato 3)

- Il numero di morti per predazione non è da ritenere affidabile (assenza di dati per validazione)
- Tendenza crescente nel tasso di successo al crescere del numero di sotto-branchi presenti (Non confermata appieno)
- Maggioranza delle morti osservate nella zona successiva all'attraversamento del fiume, dove gli gnu risultano meno compatti e più sparpagliati

Conclusioni

- Il modello risulta validato per quanto riguarda l'attraversamento del fiume
 - parziale conferma dell'ipotesi di morte per mancanza di vicini troppo a lungo
- Conferma della possibilità dell'utilizzo del modello dei Boids per l'aggregazione degli gnu
 - simulazione replica i comportamenti osservati in natura
- Conferma, seppur non validabile, dell'ipotesi della positività dell'aggregazione sulla sopravvivenza del collettivo
 - numeri di morti tanto maggiori quanto maggiori risultino essere il numero di gruppi e la sparsità del gregge
- Leggere evidenze dell'effetto confusione sul tasso di successi degli attacchi di un leone
- Mancanza di dati per validare il numero di morti a causa dei leoni e per ulteriori affinamenti del modello

Sviluppi futuri

- Reperimento di maggiori dati per quanto riguardi singoli attraversamenti, interazione con leoni e coccodrilli nella zona selezionata
- Implementazione di un fattore probabilistico per permettere agli gnu di partire da qualsiasi punto della griglia e di terminare il loro viaggio in qualsiasi altro punto
 - numero di morti variabile in base al punto di approccio scelto
- Utilizzo di differenti strumenti di simulazione, o di una potenza computazionale maggiore, in modo da ridurre la scala utilizzata per la simulazione
 - permettere analisi maggiormente significative
 - permettere di aggiungere i coccodrilli