PHYS 20323/60323: Fall 2019 - LaTeX Example

1. Consider a particle confined in a two-dimensional infinite square well

$$V(x,y) = \begin{cases} 0, & 0 \le x \le a, 0 < y < a \\ \infty, & \text{otherwise} \end{cases}$$
 (1)

The eigenfunctions have the form:

$$\Psi(x,y) = \frac{2}{a}\sin(\frac{n\pi x}{a})\sin(\frac{m\pi y}{a})$$
(2)

with the corresponding energies being given by:

$$E_{nm} = (n^2 + m^2) \frac{\pi^2 h^{-2}}{2ma^2}$$
 (3)

- (a) (5 points) What are the levels of degeneracy of the five lowest energy values?
- (b) (5 points) Consider a perturbation given by:

$$\hat{H}' = a^2 V_0 \delta(x - \frac{a}{2}) \delta(y - \frac{a}{2}) \tag{4}$$

Calculate the first order correction to the ground state energy

2. The following questions refer to stars in the Table below

Note: There may be multiple answers.

Name	Mass	Luminosity	Lifetime	Temperature	Radius
Zeta	$60.M_{sun}$	$10^6 L_{sun}$	$8.0x10^5$ years		
Epsilon	$6.0M_{sun}$	$10^3 L_{sun}$		20,000 K	
Delta	$2.0M_{sun}$		$5.0x10^8$ years		$2R_{sun}$
Beta	$1.3M_{sun}$	$3.5L_{sun}$			
Alpha	$1.0M_{sun}$				$1R_{sun}$
Gamma	$0.7M_{sun}$		$4.5x10^{10}$ years	5000 K	

- (a) (4 points) Which of these stars will produce a planetary nebula at the end of their life.
- (b) (4 points) Elements heavier than Carbon will be produced in which stars.