Khôlles de Mathématiques - Semaine 20

Hugo Vangilluwen

10 Mars 2024

Eléments inversibles de l'anneau $\mathbb{K}[X]$

$$\mathbb{K}[X]^{\times} = \left\{ \lambda X^0, \lambda \in \mathbb{K}^* \right\} \tag{1}$$

Démonstration. Soit P un élément inversible de $\mathbb{K}[X]$. Alors $\exists Q \in \mathbb{K}[X] : P \cdot Q = Q \cdot P = 1_{\mathbb{K}[X]}$. En prenant les degrés des polynômes, deg $P \times \deg Q = 0$.

Si deg P=0 alors $P \neq O_{\mathbb{K}[X]}$ (sinon $PQ=0_{\mathbb{K}[X]}$). Donc $\exists \lambda \in \mathbb{K}^*: P=\lambda$. Si deg $P \neq 0$. Or deg : $\mathbb{K}[X] \to \mathbb{N}$, $\mathbb{N} \subset \mathbb{Z}$ et \mathbb{Z} est intègre donc deg Q=0. D'où $\exists \mu \in \mathbb{K}: Q=\mu(=\mu X^0)$. Par définition de $\mathbb{K}[X]$, $\exists p \in \mathbb{Z}^{(\mathbb{N})}: P=\sum_{k \in \mathbb{N}} p_k X^k$. Or $P \cdot Q=X^0$ donc $\sum_{k \in \mathbb{N}} \mu p_k X^k = X^0$. Par unicité des coefficients, $\forall k \in \mathbb{N}^*, p_k = 0$ et $p_0 = \mu^{-1} \in \mathbb{K}^*$. Donc, en posant $\lambda = \mu^{-1}$, $P = \lambda$.

Ainsi $\mathbb{K}[X]^{\times} \subset \{\lambda X^0, \lambda \in \mathbb{K}^*\}.$

Soit $\lambda \in \mathbb{K}^*$. Considérons $P = \lambda$. Posons $Q = \lambda^{-1}$ (car \mathbb{K} est un corps). $P \cdot Q = \lambda \lambda^{-1}$ et $Q \cdot P = \lambda^{-1} \lambda$ donc P est inversible. Ainsi $\{\lambda X^0, \lambda \in \mathbb{K}^*\} \subset \mathbb{K}[X]^{\times}$.

Pour $P = (X - x_1)(X - x_2)(X - x_3)$, exprimer $x_1^3 + x_2^3 + x_3^3$ en fonction des fonctions symétriques élémentaires

Les fonctions symétriques élémentaires $(\sigma_k)_{k \in \llbracket 0;n \rrbracket}$ pour une famille $(x_k)_{k \in \llbracket 1;n \rrbracket}$ sont définies par

$$\sigma_k = \sum_{1 \leqslant i_1 < \dots < i_k \leqslant n} \prod_{j=1}^k x_{i_j} \tag{2}$$

Démonstration. Sous forme développée, $P = X^3 - (x1 + x_2 + x_3)X^2 + (x_1x_2 + x_1x_3 + x_2x_3)X - x_1x_2x_3 = X^3 - \sigma_1X^2 + \sigma_2X - \sigma_3$. Comme x_1, x_2, x_3 sont racines de P, nous avons les trois égalité suivantes:

$$0 = P(x_1) = x_1^3 - \sigma_1 x_1^2 + \sigma_2 x_1 - \sigma_3$$

$$0 = P(x_1) = x_2^3 - \sigma_1 x_2^2 + \sigma_2 x_2 - \sigma_3$$

$$0 = P(x_1) = x_3^3 - \sigma_1 x_3^2 + \sigma_2 x_3 - \sigma_3$$

En sommant ces trois équation,

$$0 = x_1^3 + x_2^3 + x_3^3 - \sigma_1(x_1^2 + x_2^2 + x_3^2) + \sigma_2(x_1 + x_2 + x_3) - 3\sigma_3$$

Cherchons la somme des carrés.

$$(x_1 + x_2 + x_3)^2 = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$$

$$\implies x_1^2 + x_2^2 + x_3^2 + x_1x_2 = \sigma_1^2 - 2\sigma_2$$

Ainsi

$$x_1^3 + x_2^3 + x_3^3 = \sigma_1^3 - 3\sigma_1\sigma_2 + 3\sigma_3$$

3 Expression de S_2 , S_{-1} et S_{-2} à l'aide des fonctions élémentaires symétriques.

Les sommes de Newton $(S_k)_{k\in\mathbb{Z}^*}$ pour une famille $(x_k)_{k\in\mathbb{N}^*}$ sont définies par (sous réserve d'existence pour k<0):

$$S_k = \sum_{i=1}^n x_i^k \tag{3}$$

 $D\'{e}monstration.$

$$\sigma_{1}^{2} = \left(\sum_{i=1}^{n} x_{i}\right)^{2}$$

$$= \sum_{i=1}^{n} x_{i}^{2} + 2 \underbrace{\sum_{1 \leq i < j \leq n} x_{i} x_{j}}_{\sigma_{2}}$$

$$\implies S_{2} = \sigma_{1}^{2} - 2\sigma_{2}$$

$$S_{-1} = \sum_{i=1}^{n} \frac{1}{x_{i}} = \frac{\sum_{i=1}^{n} \prod_{\substack{j=1\\j \neq i\\j \neq i}}^{n} x_{j}}{\prod_{i=1}^{n} x_{i}} = \frac{\sigma_{n-1}}{\sigma_{n}}$$

$$S_{-2} = \sum_{i=1}^{n} \frac{1}{x_{i}^{2}}$$

$$= \left(\sum_{i=1}^{n} \frac{1}{x_{i}}\right)^{2} - 2 \sum_{1 \leq i < j \leq n} \frac{1}{x_{i}} \frac{1}{x_{j}}$$

$$= \frac{\sum_{i=1}^{n} \frac{1}{x_{i}}}{\sigma_{n}} - 2 \frac{\sum_{1 \leq i < j \leq n} \prod_{\substack{k=1\\k \notin \{i,j\}\\\sigma_{n}}}^{1} \frac{1}{x_{j}}}{\sigma_{n}}$$

$$= \frac{\sigma_{n-1}^{2} - 2\sigma_{n-2}\sigma_{n}}{\sigma_{n}^{2}}$$