Synchronisation PTP de caméras RGB et événementielles

Journée Outils Logiciels et Matériels pour la Recherche sur les Véhicules Terrestres Autonomes

Stéphane Bonnet

UMR CNRS 7253 Heudiasvc

5 octobre 2023

Synchronisation locale

- Besoin de synchroniser les données issues de capteurs d'un même véhicule
- Synchronisation *locale* à l'échelle d'un véhicule

Synchronisation globale

- Besoin de synchroniser les données issues de capteurs de véhicules différents
- Synchronisation globale à l'échelle d'un réseau de véhicules et / ou d'infrastructures

Objectif

Permettre de corréler les données brutes ou traitées issues du système de véhicules:

- Fusion multicapteurs distribuée ou non
- Redondance de perception
- Intégrité
- Collaboration

Objectif de synchronisation

L'objectif de synchronisation est de corriger les horloges des capteurs afin de les rendre cohérentes:

- Synchronisation de fréquence: ajustement de la fréquence des horloges le temps s'écoule à la même vitesse
- Synchronisation de phase: ajustement du décalage temporel entre horloges – les instants sont communs

Le temps peut être absolu ou relatif:

- Temps absolu: temps UTC, GNSS, ...
- Temps relatif: temps écoulé depuis un événement (mise en route du système, d'un capteur), ...

Quel temps choisir?

- À priori, localement le temps absolu n'est pas indispensable: le temps relatif suffit à condition que l'événement de départ soit le même pour tous les capteurs embarqués.
- En revanche, globalement, le temps absolu est indispensable pour pouvoir corréler les données issues de capteurs de véhicules différents.

En pratique, il est nécessaire de disposer d'un temps absolu *local* pour pouvoir synchroniser les horloges des capteurs et corréler les données. En général on utilise le temps UTC fourni par un récepteur GNSS.

Moyens de synchronisation

- Synchronisation logicielle: utilisation d'un protocole de synchronisation logiciel (NTP, PTP, ...)
- Synchronisation matérielle: utilisation d'un protocole de synchronisation matérielle (Triggers matériels, PPS, ...)

Caméras événementielles Prophesee EVK4

- Chaque pixel est un capteur indépendant
- Seuls les pixels qui détectent un changement d'intensité lumineuse sont transmis
- Les événements {x, y, t, p} sont transmis en lots
- Les événements sont datés par rapport à un compteur interne précis mais relatif au démarrage de la caméra
- Interface USB 3.0
- Entrée de synchronisation: signal physique

Caméras RGB Allied Vision Prosilica

- Caméras industrielles haute résolution.
- Interface GigE
- Supportent le protocole PTP (Precision Time Protocol)
- Génèrent un signal de synchronisation en sortie (Trigger) sur ouverture du shutter virtuel

Problématique

- Synchroniser les caméras RGB et événementielles pour corréler les données issues des deux types de caméras.
- Et aussi avec d'autres capteurs (LiDAR en particulier)
- Et aussi avec d'autres caméras événementielles sur d'autres véhicules...

Objectifs

- Synchronisation globale sur le temps UTC
- Exigence de précision: inférieure à 0.1 ms

Architecture matérielle

- PC Intel Core i7 / Linux
- Switch 10GbE POE
- Récepteur GNSS **Ublox EVK-8T**

Heudiasyc

Architecture logicielle

- Synchronisation globale sur le temps UTC de l'horloge interne du PC: NTP (Network Time Protocol)
 - Démon GPSd pour la récupération des données du récepteur GNSS: GNZDA. **PPS**
 - Démon Chrony pour la synchronisation de l'horloge interne (Realtime clock) du PC
- Synchronisation locale des caméras sur le temps UTC de l'horloge interne du PC: PTP
 - Démon phc2sys pour la synchronisation des horloges des interfaces Ethernet avec l'horloge interne du PC
 - o Démon ptp4l pour la diffusion du temps UTC sur le réseau (rôle de Grand Master)

Synchronisation globale: NTP, GPSd, Chrony

Synchronisation globale: NTP, GPSd, Chrony

- Le noyau prend un snapshot de l'horloge temps-réel matérielle à l'instant du PPS
- Le démon GPSd récupère la trame ZDA (heure UTC réelle) et le snapshot PPS (heure UTC du PC à l'instant du PPS)
- Le démon Chrony utilise ces données pour synchroniser l'horloge interne du PC
 - Ajustement de la fréquence si l'erreur est faible (principe de la PLL)
 - Saut si l'erreur est trop importante

PTP: Precision Time Protocol (IEEE 1588)

- Fonctionnement maître-esclave
- Exploite les capacités de timestamping des interfaces Ethernet
- Timestamping hardware des paquets à l'émission / réception
- But: obtenir un consensus global sur les horloges internes des équipements du réseau
- Précision de l'ordre de la microseconde

IEEE 802.1AS

- Profil simplifié de PTP pour les réseaux filaires et le Time-Sensitive Networking
- Profil retenu dans l'automobile pour la synchronisation des futures architectures Software-defined vehicles basées sur Ethernet

PTP: Principe 1/2

- But: déterminer l'offset o = s m entre l'horloge du maître m et l'horloge de l'esclave s malgré le délai d de transmission des paquets
- Sync: le maître envoie la date T₁ aux esclaves.
- Sync: l'esclave note la date T₁ de réception de Sync. $T'_1 - T_1 = o + d$.

PTP: Principe 2/2

- Delay reg: l'esclave envoie la date T_2 au maître.
- Delay_req: le maître note la date T₂ de réception de Delay_req. $T_2' - T_2 = -o + d$.
- Delay resp: les esclaves calculent $(T'_1-T_1)-(T'_2-T_2)=o+d-(o+d)=2o.$
- L'offset est connu et ils ajustent leurs horloges.
- On suppose que le délai de transmission est symétrique.

Implémentation sous Linux

- phc2sys: synchronise l'horloge hardware de la carte réseau avec l'horloge du PC (asservie NTP)
- ptp4l: configuré en Grand Master, diffuse le temps sur le réseau

Sources possibles d'imprécision et d'incertitudes

- Précision du signal PPS du récepteur GNSS
- Latences liées aux interruptions matérielles et aux préemptions
- Latences de la mise à jour des timers hardware dans le noyau
- Effets de la synchronisation PTP par phc2sys, asservie sur l'horloge temps-réel NTP

Focalisation sur le second point: la latence d'interruption. C'est le temps indéterminé entre l'occurrence d'un événement physique et son traitement par le système d'exploitation.

Mesure de la latence d'interruption

- Instrumentation du noyau Linux pour affirmer un signal physique (signal RTS sur le port série) lors du traitement de l'interruption liée au PPS (IRQ 4 sur PC, pour le premier port série)
- Comparaison de ce signal avec le signal PPS du récepteur GNSS
- Comparaison de ce signal avec le trigger en sortie de la caméra RGB. La caméra RGB est configurée pour déclencher une acquisition à la seconde UTC exacte.

Ceci permet d'observer à l'oscilloscope les relations temporelles entre les différents signaux.

Que peut-on contrôler?

Les sources de latence d'interruption sont multiples:

- Occurrence pendant le traitement d'une autre interruption (interruptions non préemptibles dans les noyaux non PREEMPT RT)
- Occurrence pendant le traitement d'une section critique noyau
- Traitement sur un cœur dans un état basse consommation qui doit être préalablement réactivé...

Seul le dernier point est maîtrisable dans le novau Linux standard.

Contrôle des modes de gestion de l'alimentation (C-states) Intel

- Désactivables globalement par le paramètre de ligne de commande noyau intel idle.max cstate=0
- Désactivables individuellement par la commande cpupower -c <cpu> idle-set -D 0
- Dans ce cas, il faut affecter l'affinité de l'IRQ PPS au cœur qui reste actif: echo <cpu> > /proc/irq/<irq>/smp_affinity

- 1	Nehalem			Mperf			- 11	Idle_S	tats							
CPU	C3	C6	PC3	PC6	CO I	Cx	Freq	POLL	C1	C1E	C3	C6	C7s	C8	C9	C10
01	0,001	0,001	0,001	0,0011	99,74	0,26	3600	97,33	0,001	0,001	0,001	0,001	0,001	0,001	0,00	0,00
1	0,001	0,001	0,001	0,0011	99,74	0,26	3599	97,49	0,001	0,001	0,001	0,001	0,001	0,001	0,00	0,00
2	0,15	7,85	0,001	0,0011	1,51	98,491	3600	0,001	0,001	0,09	0,19	8,27	0,001	18,16	0,11	71,70
31	0,05	4,271	0,001	0,0011	1,32	98,681	3600	0,001	0,01	0,79	0,05	4,51	0,01	21,86	0,05	71,40
41	0,10	3,72	0,001	0,00	2,83	97,17	3600	0,001	0,08	0,59	0,14	4,001	0,001	12,29	0,001	80,09
5	0,091	2,46	0,001	0,00	2,09	97,91	3599	0,001	0,08	0,24	0,13	2,64	0,001	5,57	0,001	89,26
61	1,30	10,29	0,001	0,0011	17,15	82,85	3600	0,001	1,45	17,88	2,61	13,01	0,001	13,04	0,001	34,90
71	0.11	3.851	0.001	0.0011	1.891	98.11	359911	0.001	0.041	3.581	0.11	4.091	0.001	24.731	0.001	65.57

Résultats sans désactivation des C-states

CPU non chargé

CPU chargé

- Trace jaune: PPS
- Trace bleue: signal RTS dans le gestionnaire d'interruption
- Trace magenta: trigger de la caméra RGB

Résultats avec désactivation des C-states et affinité sur CPU physique 0

CPU non chargé

CPU chargé

- Trace jaune: PPS
- Trace bleue: signal RTS dans le gestionnaire d'interruption
- Trace magenta: trigger de la caméra RGB

Résultat après réglage de l'offset PPS dans Chrony

On obtient une précision de l'ordre de $\pm 6\mu s$.

- Trace jaune: PPS
- Trace bleue: signal RTS dans le gestionnaire d'interruption
- Trace magenta: trigger de la caméra RGB

Journée "Caméra à événements appliquée à la robotique..."

... organisée par le GDR ISIS à Paris Jussieu le 16 novembre 2023.

https://www.gdr-isis.fr/index.php/reunion/499/

Merci de votre attention!

