

Database Processing-Chapter 4 Study online at quizlet.com/_37g48

1. (T or F) 1) When you are given a set of tables and asked to create a database to store their data, the first step is to assess the tables' structure and content.	TRUE Diff: 1 Page Ref: 128	10. (T or F) 10) When examining data values as a part of assessing table structure, there is no need to try to determine candidate keys other than the table's primary key.	FALSE Diff: 1 Page Ref: 128- 129 Fig 4-1
2. (T or F) 2) The first step in assessing table structure is to count rows and examine columns.	TRUE Diff: 2 Page Ref: 128-129 Fig 4-1		
		11. (T or F) 11) When examining data values as a part of assessing table structure, there is no need to try to determine foreign keys.	FALSE Diff: 1 Page Ref: 128- 129 Fig 4-1
3. (T or F) 3) To count the number of rows in a table, use the SQL construct COUNT(ROWS).	FALSE Diff: 2 Page Ref: 128		
4. (T or F) 4) To determine the number and type of columns in a table, use the SQL construct COUNT(*).	FALSE Diff: 1 Page Ref: 128	12. (T or F) 12) The third step in assessing table structure is to check the validity of presumed referential integrity constraints.	TRUE Diff: 2 Page Ref: 128-
5. (T or F) 5) To limit the number of rows retrieved from a table, use the SQL keyword TOP.	TRUE Diff: 1		1129 Fig 4-1
	Page Ref: 128	13. (T or F) 13) Database design varies depending on whether you're building an updateable database or a read-only database.	TRUE
6. (T or F) 6) The second step in assessing table structure is to examine data values and determine dependencies and keys.	TRUE Diff: 2 Page		Diff: 2 Page Ref: 129
	Ref: 128-129 Fig 4-1	14. (T or F) 14) Normalization eliminates modification anomalies and data duplication.	FALSE Diff: 3 Page
7. (T or F) 7) When examining data values as a part of assessing table structure, you should try to determine functional dependencies.	TRUE Diff: 1 Page		Ref: 129 Fig 4-2
	Ref: 128-129 Fig 4-1	15. (T or F) 15) The presence of one or more foreign keys in a relation means that we cannot eliminate duplicated data in that table.	TRUE Diff: 2 Page
8. (T or F) 8) When examining data values as a part of assessing table structure, you should	TRUE Diff: 1 Page Ref: 128-129 Fig 4-1		Ref: 129
try to determine multivalued dependencies.		16. (T or F) 16) Normalization requires applications to use more complex SQL since they will need to write subqueries and joins to recombine data stored in separate relations.	TRUE Diff: 2 Page Ref:
9. (T or F) 9) When examining data values as a part of assessing table structure, you should	TRUE Diff: 1 Page Ref: 128-129 Fig 4-1		129 Fig 4-2
try to determine the table's primary key.		17. (T or F) 17) The standard sales order/line item pattern is a classic example of unneeded normalization.	FALSE Diff: 2 Page Ref:
		18. (T or F) 18) Multivalued dependencies create anomalies so serious that multivalued dependencies must always be eliminated.	TRUE Diff: 1 Page Ref: 132

19. (T or F) 19) To eliminate multivalued dependencies, normalize your tables so that they are all in BCNF.	FALSE Diff: 3 Page Ref:	29. (T or F) 29) Null values are a problem because they are ambiguous.	TRUE Diff: 1 Page Ref: 137
20. (T or F) 20) Creating a read-only database is a job often given to beginning database professionals.	TRUE Diff: 1 Page	30. (T or F) 30) General-purpose remarks columns rarely contain important data.	FALSE Diff: 1 Page Ref: 138139
21. (T or F) 21) Read-only databases are often updated.	Ref: 132 FALSE Diff: 2 Page Ref: 132	asked to create a database to store their data, the first step is to A) assess the existing tables' structure and content B) design the database structure C) create one or more new tables	A Diff: 1 Page Ref: 128-129 Fig 4-1
22. (T or F) 22) Design guidelines and priorities are the same whether you're working with an updateable database or a read-only database.	FALSE Diff: 1 Page Ref:	D) move the data into the new database E) design the applications that will use the database 32. 32) The first step in assessing table	D
23. (T or F) 23) Normalization is an advantage for a read-only database.	FALSE Diff: 2 Page Ref: 132	structure includes A) counting rows B) examining columns C) examining data values D) A and B E) B and C	Diff: 2 Page Ref: 128-129 Fig 4-1
24. (T or F) 24) Denormalization is the process of joining previously normalized tables back together.	TRUE Diff: 1 Page Ref: 132	33. 33) The second step in assessing table structure includes A) counting rows B) examining columns C) examining data values D) A and B	C Diff: 2 Page Ref: 128-129 Fig 4-1
25. (T or F) 25) Denormalization reduces the complexity of the SQL statements needed in an application to read required data.	TRUE Diff: 2 Page Ref: 133	E) B and C 34. 34) During the second step of the assessing table structure, you are trying to determine	E Diff: 2 Page Ref:
26. (T or F) 26) Read-only databases seldom use more than one copy of a set of same data.	FALSE Diff: 2 Page Ref:	 A) multivalued dependencies B) functional dependencies C) foreign keys D) A and B E) A, B and C 	128-12 Fig 4-1
27. (T or F) 27) Multivalued dependencies show up under a different name as the multivalued, multicolumn problem.	TRUE Diff: 1 Page Ref: 135- 136	35. 35) During the second step of the assessing table structure, you are trying to determine A) primary keys B) candidate keys C) foreign keys D) A and B	E Diff: 2 Page Ref: 128-129 Fig 4-1
28. (T or F) 28) When you are creating a database from existing data, you will have only minor problems with inconsistent values.	FALSE Diff: 1 Page Ref: 111	E) A, B and C 36. 36) To count the number of rows in a table, use the SQL construct A) SELECT * B) SELECT TOP n * C) SELECT COUNT(TOP n) D) SELECT COUNT(*) E) SELECT COUNT *	D Diff: 3 Page Ref: 128

37. 37) The SQL function COUNT A) counts the number of columns in a table B) counts the number of rows in a table C) counts the number of tables in a database D) A and C E) B and C 38. 38) To limit the number of rows retrieved	B Diff: 1 Page Ref: 128	42. 42) The disadvantages of normalization include A) the elimination of modification anomalies B) the elimination of duplicated data C) more complex SQL for multitable subqueries and joins D) A and B	C Diff: 1 Page Ref: 129 Fig 4-2
from a table, use the SQL construct A) SELECT * B) SELECT TOP n * C) SELECT COUNT(TOP n) D) SELECT COUNT(*) E) SELECT COUNT *	Diff: 2 Page Ref: 128	E) A, B and C 43. 43) The presence of one or more foreign keys in a relation prevents A) the elimination of modification anomalies B) the elimination of duplicated data C) more complex SQL for multitable subqueries and joins D) A and B	B Diff: 3 Page Ref: 129
39. 39) The SQL keyword TOP A) limits the number of columns retrieved from a table B) limits the number of rows retrieved from a table C) limits the number of tables retrieved from a database D) A and C E) B and C	B Diff: 1 Page Ref: 128	E) A, B and C 44. 44) Anomalies caused by functional dependencies can be eliminated by putting tables into A) 1NF B) 2NF C) 3NF D) BCNF	D Diff: 2 Page Ref: 129
	Diff: 3 Page Ref:	E) 4NF 45. 45) The defining characteristic of BCNF is that a table is in BCNF if A) all rows are unique B) all columns are consistent C) the primary key is a candidate key D) all determinants are candidate keys E) all candidate keys are determinants 46. 46) A classic example of unneeded normalization is when we are dealing with A) ZIP codes B) sales orders and line items C) association patterns D) multivalued dependencies E) general purpose remarks columns 47. 47) Unlike the anomalies from functional dependencies, the anomalies from are so serious that they should always be eliminated. A) ZIP codes B) sales orders and line items	D Diff: 2 Page Ref: 130
			A Diff: 2 Page Ref: 131
			D Diff: 2 Page Ref: 132
A) the elimination of modification anomalies B) the elimination of duplicated data	A Diff: 3 Page Ref: 129 Fig 4-2	C) association patterns D) multivalued dependencies E) general purpose remarks columns 48. 48) Read-only databases are used for A) updating	E Diff: 1
C) more complex SQL for multitable subqueries and joins D) A and B E) A, B and C		A) updating B) querying C) reporting D) A and B E) B and C	Page Ref: 132

49) For a number of reasons, is not often an advantage for a read-only database. A) updating B) normalization C) denormalization D) A and B E) B and C 50. 50) is the process of joining two or more tables and storing the result as a single table. A) Querying B) Normalization C) Denormalization D) A and B E) B and C	B Diff: 1 Page Ref: 132 C Diff: 2 Page Ref: 132	existing data from multiple sources. Examining the data, you find that you have "large red hat", "large hat, red", "red hat large" and "hat, large, red." This is an example of A) the multivalue, multicolumn problem B) the inconsistent values problem C) the missing values problem D) the general-purpose remarks column problem E) None of the above is correct.	
		56. 56) When a table is created using existing data from multiple sources, you are likely to find that some data values have never been provided. This is an example of	C Diff: 2 Page
51. 51) An advantage of denormalization is ———————————————————————————————————	E Diff: 3 Page Ref: 132-	 A) the multivalued, multicolumn problem B) the inconsistent values problem C) the missing values problem D) the general-purpose remarks column problem E) None of the above is correct. 	Ref: 137- 138
E) B and C 52. 52) A table designed to store PhoneNumbero1, PhoneNumbero2 and PhoneNumbero3 contains A) the multivalued, multicolumn problem B) the inconsistent values problem C) the missing values problem	A Diff: 1 Page Ref: 135	57. 57) A missing value is called a(n) A) empty value B) null value C) missing value D) Any of A, B or C can be used. E) None of the above is correct.	B Diff: 1 Page Ref: 137- 138
D) the general-purpose remarks column problem E) None of the above is correct.	-33	58. 58) A null value can indicate which of the following conditions?A) The value is inappropriate.	D Diff: 2
53. 53) A form of multivalued dependency is found in A) the multivalued, multicolumn problem B) the inconsistent values problem C) the missing values problem D) the general-purpose remarks column problem E) None of the above is correct.	A Diff: 2 Page Ref:	B) The value is appropriate but unknown.C) The value is appropriate and known, but not entered into the database.D) All of A, B or C are correct.E) None of the above is correct.	Page Ref: 137- 138
	136	59. 59) To check for null values in a column in a table, use the SQL phraseA) IS	C Diff:
54. 54) When a table is created using existing data from multiple sources, you are likely to find that the different sources code data in slightly different ways. This is an example of A) the multivalued, multicolumn problem B) the inconsistent values problem C) the missing values problem D) the general-purpose remarks column problem E) None of the above is correct.	B Diff: 2 Page	B) IS NOT C) IS NULL D) COUNT(IS NOT) E) COUNT(IS NULL)	Page Ref: 137- 138
	Ref: 136- 137	60. 60) The SQL keyword IS NULL can be used to A) count the number of columns in a table B) count the number of rows in a table C) count the number of null values in a column D) A and C E) B and C	C Diff: 2 Page Ref: 137-138

61. 61) When you are given a set of tables and asked to create a database to store their data, the first step is to assess the tables'	structure and content Diff: 1 Page Ref: 128-129 Fig 4-1	72. 72) Relations in BCNF have no modification anomalies in regard to 73. 73) A defining requirement for	functional dependencies Diff: 3 Page Ref: 129 BCNF
62. 62) The first step in assessing table structure is to and	count rows; examine columns Diff: 2 Page Ref: 128-129 Fig 4-1	is that every determinant must be a candidate key.	Diff: 2 Page Ref:
		74. 74) A relation is in BCNF if every is a candidate key.	determinant Diff: 2 Page Ref: 130
63. 63) To count the number of rows in a table, use the SQL construct	COUNT(*) Diff: 2 Page Ref: 128	75. 75) A relation is in BCNF if every determinant is a(n)	candidate key Diff: 2 Page Ref: 130
64. 64) To determine the number and type of columns in a table, use the SQL construct	SELECT * Diff: 1 Page Ref: 128	76. 76) Anomalies from are so serious that these structures must be eliminated.	multivalued dependencies Diff: 2 Page Ref: 132
65. 65) To limit the number of rows retrieved from a table, use the SQL keyword	TOP Diff: 1 Page Ref: 128	77. 77) Writing SQL subqueries and joins against normalized tables is compared to the code that	simple (or a similar word) Diff: 2 Page Ref:
66. 66) When examining data values as a part of assessing table structure, you should try to determine two types of dependencies: and	functional dependencies; multivalued dependencies Diff: 2 Page Ref: 128-129	must be written to handle anomalies from multivalued dependencies.	132
		78. 78) Creating a database is a job often given to beginning database professionals.	read-only Diff: 1 Page Ref: 132
67. 67) When examining data values as a	Fig 4-1 primary key;	79. 79) Read-only databases are updated.	never Diff: 2 Page Ref:
part of assessing table structure, you should try to determine three types of keys: the, any additional and any	candidate keys; foreign keys Diff: 2 Page Ref: 128-129 Fig 4-1 modification anomalies; duplicated data Diff: 3 Page Ref: 129 Fig 4-2 foreign keys Diff: 3 Page Ref: 129	80. 80) Normalization is seldom an advantage for a database.	read-only Diff: 2 Page Ref: 132
68. 68) The elimination of and		81. 81) is the process of joining previously normalized tables back together.	Denormalization Diff: 1 Page Ref: 132-133
the reduction of are advantages of normalization.		82. 82) reduces the complexity of the SQL statements needed in an application to read required data.	Denormalization Diff: 2 Page Ref: 132-133
		83. 83) often use several copies of a set of same data, where each copy is modified for a specific	Read-only databases Diff: 2 Page Ref:
in a relation means that we will not be able to eliminate all duplicated data in that table.		use. 84. 84) Denormalization is simple join the data together and store it in a(n)	table (or relation) Diff: 1 Page Ref:
70. 70) requires application programmers to write complex SQL since they will need to write subqueries and joins to recombine data stored in separate relations.	Normalization Diff: 2 Page Ref: 129 Fig 4- 2		132-133
		85. 85) Multivalued dependencies show up under a different name as the problem.	multivalued, multicolumn Diff: 1 Page Ref: 135-139
71. 71) Relations are sometimes left unnormalized to improve	performance Diff: 3 Page Ref: 120		

Ref: 129

86. 86) If you have a table with a set of columns named "Childo1", "Childo2" and "Childo3", the table has the problem.	multivalued, multicolumn Diff: 1 Page Ref: 135-139
87. 87) You are creating a BOAT table using existing data from multiple sources, and you find that you have "power boat blue", "boat, power, blue" and "blue power boat" as data values for the same column. This is an example of the problem.	inconsistent values Diff: 1 Page Ref: 135-139
88. 88) A missing value is called a(n)	null value Diff: 1 Page Ref: 137-138
89. 89) Null values are a problem because they are	ambiguous Diff: 3 Page Ref: 137-138
90. 90) The SQL keyword can be used to count the number of nulls in a column.	IS NULL Diff: 1 Page Ref: 137-138