Microprogrammed Control Unit (MPCU) (Wilkes' design)

-> MPCU produces control signals by software, using micro-instructions.

Brighen instructions set of Instruction Set of instructions

- -> Every instruction requires a set of micro-instructions.
- -> This is called its micro-program.
- microprograms for all instructions are stored in a small memory called "Control Memory"

figure-1

wilke's derign

Typical Microprogramed Control Unit -> There is a big improvement over wilker' design, to reduce the size of micro-instructions. -> Most-micro-instructions will only have a

control field.

> The control field indicates the control signals to be generated.

- most of the micro-instructions will not have an address field. Of

-> 9f there is a branch-11-instruction then there will be an address field.

Figure -2

Micro-instruction Format Horizontal Micro-Instruction Svertical micro-Instruction

Here, every bit of the micro-instruction there, every bit of the micro-instruction corresponds to a control signal. whichever bit is "1", that particular control signal bit is "1", that particular micro-instruction. will be produced by the micro-instruction.

micro-Instⁿ
$$\rightarrow C_3 C_2 C_1 C_0$$
.

Example $\rightarrow 10001$

Control signals to C_3

be produced.

Derrical bits of the micro-instruction have to Here, bits of the micro-instruction have to be decoded. The decoded output decides the control signal to be produced.

Control signal to Cg

Honzontal micro- instructions	Vertical Micro-instructions
1. I that the	Bits of U-instruction have to
I AM ENDONOUS	be decoded to produce control signals.
Connox	
2. Does not require : dewder.	
3) N bits in the micro-instruction will micro-instruction	N bits will produce 2N control signals
micro-instruction with totally produce	2N control signals
N control signals	I Only one control signel
y) multiple control signels can be signels can be	Only one control signel can be produced bef one micro-instruction.
produced by one micro-instruction	
5) Faster	5) slower became of decoding
6) Cantrol me mory is	6) Mico-instruction are
6) Control me mory is large as u-instit are very wide	much narrower. Hence control memory is small.
7) Simple circuit	8) Complex circuit.

Aboth the methods, horizontal & vertical have their pros & combination of both is used together a combination of both is used together Called Nano-programming.

Nano-Programming:

- -5) H-u-instructions can produce multiple control signals, but are very wide, which makes the control memory very large in
- -> Vertical-u-instructions are narrow, but on decoding can produce only one control signal. This makes the control memory small but the execution is slow.
 - -> Hence e combination of both techniques is needed called nano-programming.
 - -> Here, we have a two-level control memory. -> The instruction is fetched from main memory into IR.
- -> The address of first micro-instruction is loaded
- The dewded output loads a new address in a nans-program counter (nPC).
- Here, it is homental from and can directly generate control signals.

-> Such a combination gives advantages of both techniques.

as u-inshukons are vertical.

-> Multiple control signals can be produced simultaneously as Nano-instructions are Horizontal. From instruction

Micro-Instruction Sequencing: It is a method of determining the flow of the microprogram. There are two mein techniques:

1) Dual Address field:

