Delaunay Triangulation of Imprecise Points Preprocess and actually get a fast query time

Ján Bella Maxime Portaz

Grenoble INP

January 23, 2015

Problem

Given: a set of regions (imprecise points)

Is there an advantage we can take and find Delaunay triangulation effectively?

Problem

Given: a set of regions (imprecise points)

Is there an advantage we can take and find Delaunay triangulation effectively?

Outline

- 1 Notions
- 2 Algorithm
- 3 Analysis
- 4 Experiment

- 1 Notions
- 2 Algorithm
- 3 Analysis
- 4 Experiment

Delaunay Triangulation

Ján Bella, Maxime Portaz

Imprecise point

Imprecise point: extending a point to some region

Supposing we have precise locations within the regions (points instances)

Imprecise point

Imprecise point: extending a point to some region

Supposing we have precise locations within the regions (points instances)

Imprecise point

- $|W| \to \text{a set } W$
- $|xy| \rightarrow$ distance between points x and y.
- DT_P → Delaunay triangulation of set of points P
- $NNP(v) \rightarrow$ nearest neighbour graph of $v \in P$ in $P \setminus \{v\}$
- $d^{\circ}G(v) \rightarrow \text{degree of point } v \text{ in graph } G$
- $\dot{p}
 ightarrow$ the center of imprecise point p
- $\hat{p}
 ightarrow$ an instance of imprecise point p.
- S, \dot{S}, \hat{S} analogously being the sets of points
- $D(p) \rightarrow$ the disk with center p and radius $||\dot{p}NN\dot{S}(\dot{p})|| + 1$, in case of disjoint unit disks S
- $W(q) = \{ p \in S \setminus q; \hat{q} \in D(p) \}$

- 1 Notions
- 2 Algorithm
- 3 Analysis
- 4 Experiment

Preprocessing

Frame 2

- 1 Notions
- 2 Algorithm
- 3 Analysis
- 4 Experiment

Complexity

- 1 Notions
- 2 Algorithm
- Analysis
- 4 Experiment

Experiment

- Imprecise points vs. classical Delaunay triangulation
- Point sets: Random discs, Brownian motion, Random Balls, 3D noisy data
- running time and # triangles visited

2D random								
imprecise points	running time (μs)							
n	10^{3}	$10^3 \mid 10^4 \mid 10^5 \mid 10^6 \mid 10^7 \mid 10^8 \mid 10^7 \mid 10^8 \mid $						
spatial sort	1.1	0.85	0.83	0.90	1.0	1.13		
Delaunay hierarchy	1.8	1.6	2.8	5.78	9.0	13		
Skewchuch	0.96	1.12	1.05	1.61	2.4			
hint random order	0.9	0.88	1.2	2.9	3.8	5.4		
hint spatial sort	1.0	0.79	0.59	0.61	0.61	0.62		

2D Brownian							
motion	running time (μs)						
n	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷	10 ⁸	
spatial sort	0.78	0.78	0.88	0.96	1.12	1.20	
hint spatial sort	0.73	0.69	0.79	0.81	0.83	0.82	

3D random						
imprecise points	running time (μs)					
n	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷	
spatial sort	9.0	7.6	8.0	8.2	8.4	
Delaunay hierarchy	11	9.7	18	25	33	
hint random order	9.2	7.8	14.2	19	23	
hint spatial sort	9.5	7.5	7.8	7.9	8.0	

2D noisy sample							
of scanned models	running time (μs)						
n	10 ³	10 ⁴	10^{5}	full size $(2 \cdot 10^6 \text{ points})$			
spatial sort	7	8.2	8.6	8.9			
hint spatial sort	7	7.5	7.7	7.5			

2D random								
imprecise points	number of visited triangles per point							
n	10 ³	$10^3 \mid 10^4 \mid 10^5 \mid 10^6 \mid 10^7 \mid 10^8$						
spatial sort	3.74	3.64	3.71	3.67	3.55	3.71		
Delaunay hierarchy	24	28	29	38	45	47		
hint random order	2.83	2.8	2.77	2.75	2.75	2.74		
hint spatial sort	2.82	2.80	2.77	2.76	2.75	2.75		

2D Brownian							
motion	number of visited triangles per point						
n	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷	10 ⁸	
spatial sort	3.81	3.68	3.77	3.72	3.62	3.78	
hint spatial sort	2.77	2.77	2.77	2.77	2.77	2.77	

2D random							
imprecise points	number of visited triangles per point						
n	$10^3 \mid 10^4 \mid 10^5 \mid 10^6 \mid 10^7$						
hint random order	5.2	5.3	5.3	5.2	5.2		
spatial sort	6.3	6.6	6.6	6.6	6.6		
Delaunay hierarchy	21	29	34	42	50		
hint spatial sort	4.4	4.6	4.5	4.5	4.4		

2D noisy sample						
of scanned models	number of visited triangles per point					
n	10 ³	10 ⁴	10^{5}	full size $(2 \cdot 10^6 \text{ points})$		
spatial sort	7.0	8.0	8.6	9.5		
hint spatial sort	5.7	6.0	6.1	6.4		

Conclution

Do you have any questions?

Thank you for your attention.

Do you have any questions?

Thank you for your attention.

Bibliography

Olivier Devillers.

Delaunay triangulation of imprecise points, preprocess and actually get a fast query time.

Journal of Computational Geometry, 2:30-45, 2011.

Maarten Snoeyink, Jack Löffler.

Delaunay triangulations of imprecise points in linear time after preprocessing.

Available online:

http://www.staff.science.uu.nl/~loff1001/publications/slides/preprocessing_delaunay.pdf, 2010.

[Presentation slides].