Atty. Dkt. No.: 39153/646 (HO975)

CLAIMS

WHAT IS CLAIMED IS:

- 1. A method of manufacturing an integrated circuit having a 1 2 gate structure above a substrate including germanium, the method comprising: 3 forming a first layer above the gate structure and above the 4 5 substrate: forming a second layer above the first layer; and 6 7 doping source and drain regions through the first layer and 8 the second layer, whereby germanium back sputtering is reduced.
- 1 2. The method of claim 1, further comprising:
 2 annealing the substrate whereby the first layer and the
 3 second layer prevent outgassing.
- 3. The method of claim 1, wherein the first layer includes at least one of silicon dioxide and silicon carbide.
 - 4. The method of claim 1, wherein second layer includes at least one of silicon nitride, titanium, titanium nitride, titanium/titanium nitride, tantalum nitride, and silicon carbide.
- 5. The method of claim 1, wherein the steps of forming a first layer and forming a second layer utilize low temperature deposition.
- 1 6. The method of claim 5, wherein the low temperature deposition is performed at a temperature below approximately 800°C.
- 7. The method of claim 5, wherein the low temperature deposition is a chemical vapor deposition process.

1

2

3

1	8.	The method of claim T, further comprising:
2		providing a rapid thermal anneal.
1	9.	A method of forming source and drain regions in a strained
2	semiconductor layer, the method comprising:	
3		providing a first layer comprising at least one of silicon
4	nitride and	silicon dioxide above the strained semiconductor layer;
5		providing a second layer above the first layer, the second
6	layer contai	ning nitrogen, titanium, tantalum, or carbon;
7		implanting non-neutral dopants into the strained
8	semiconductor layer; and	
9		annealing the strained semiconductor layer.
1	10.	The method of claim 9, wherein the annealing step is a rapid
2	thermal ann	neal for activating the dopants.
1	11.	The method of claim 10, further comprising:
2		removing the second layer after the annealing step.
1	12.	The method of claim 9, further comprising:
2		providing an insulative material above the first layer.
1	13.	The method of claim 12, wherein the first layer includes
2	silicon diox	ide and the insulative material includes silicon nitride.
1	14.	The method of claim 9, wherein the anneal is a rapid thermal
2	anneal at a	temperature above 600°C.
1	15.	The method of claim 14, wherein the first layer is deposited

2 in a low temperature process.

- 1 16. The method of claim 15, wherein the layer containing 2 titanium, nitrogen, tantalum or carbon is provided in a low temperature 3 process.
- 1 17. A method of fabricating a transistor in a germanium containing layer, the method comprising:
- providing a gate structure above the germanium containing
- 4 layer;
- 5 providing a first layer of insulative material in a low
- 6 temperature process above the germanium containing layer;
- doping the germanium containing layer to form source and
- 8 drain regions; and
- annealing the germanium containing layer to activate dopants
- in the source and drain regions.
- 1 18. The method of claim 17, wherein the step of providing a first
- 2 layer is an LPCVD deposition process performed at a low temperature.
- 1 19. The method of claim 18, wherein the step of providing a first
- 2 layer utilizes an oxygen atmosphere and silane atmosphere.
- 1 20. The method of claim 19, further comprising:
- 2 depositing a second layer over the first layer before the
- 3 doping step.