FMI, Info, 2018/2019, Anul I, ID Logică matematică și computațională

Partea 2 Exerciții

(S2.1) Fie următoarele propoziții exprimate în limbaj natural:

- (i) Merg în parc dacă îmi termin treaba și nu apare altceva.
- (ii) Treci examenul la logică numai dacă înțelegi subiectul.

Transpuneți-le în formule ale limbajului formal al logicii propoziționale.

Demonstrație:

(i) Fie $\varphi=$ Merg în parc dacă îmi termin treaba și nu apare altceva. Considerăm propozițiile atomice:

p = Merg în parc. $q = \hat{\text{Imi termin treaba.}}$ r = Apare altceva.

Atunci
$$\varphi = (q \wedge (\neg r)) \to p$$
.

(ii) Fie θ = Treci examenul la logică numai dacă înțelegi subiectul. Considerăm propozițiile atomice:

w = Treci examenul la logică. $z = \hat{I}$ nțelegi subiectul.

Atunci $\theta = w \to z$.

(S2.2) Să se arate că pentru orice formulă φ , numărul parantezelor deschise care apar în φ coincide cu numărul parantezelor închise care apar în φ .

Demonstrație: Notăm, pentru orice $\varphi \in Form$, cu $l(\varphi)$ numărul parantezelor deschise și cu $r(\varphi)$ numărul parantezelor închise care apar în φ . Definim următoarea proprietate \boldsymbol{P} : pentru orice formulă φ ,

 φ are proprietate
a \boldsymbol{P} dacă și numai dacă $l(\varphi)=r(\varphi).$

1

Demonstrăm că orice formulă φ are proprietatea P folosind Principiul inducției pe formule. Avem următoarele cazuri:

- Formula φ este în V, deci există $n \in \mathbb{N}$ cu $\varphi = v_n$. Atunci $l(\varphi) = l(v_n) = 0 = r(v_n) = r(\varphi)$.
- Există $\psi \in Form$ cu $\varphi = (\neg \psi)$. Presupunem că ψ satisface \boldsymbol{P} . Obținem

$$l(\varphi) = l(\psi) + 1 = r(\psi) + 1 = r(\varphi).$$

- Există $\psi, \chi \in Form$ cu $\varphi = (\psi \to \chi)$. Presupunem că ψ, χ satisfac ${\bf \it P}$. Obținem

$$l(\varphi) = l(\psi) + l(\chi) + 1 = r(\psi) + r(\chi) + 1 = r(\varphi).$$

(S2.3) Să se demonstreze că pentru orice $x_0, x_1, x_3, x_4 \dim \{0, 1\}$ avem:

(i) $((x_0 \to x_1) \to x_0) \to x_0 = 1$;

(ii) $(x_3 \to x_4) \to ((x_4 \to x_1) \to (x_3 \to x_1)) = 1$.

Demonstraţie:

(ii) Notăm $f(x_1, x_3, x_4) := (x_3 \to x_4) \to ((x_4 \to x_1) \to (x_3 \to x_1)).$

x_1	x_3	x_4	$x_3 \rightarrow x_4$	$x_4 \rightarrow x_1$	$x_3 \rightarrow x_1$	$(x_4 \to x_1) \to (x_3 \to x_1)$	$f(x_1, x_3, x_4)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	1	1	1	1	1
1	0	0	1	1	1	1	1
0	1	1	1	0	0	1	1
0	1	0	0	1	0	0	1
0	0	1	1	0	1	1	1
0	0	0	1	1	1	1	1

(S2.4) Să se găsească câte un model pentru fiecare din formulele:

- (i) $v_0 \rightarrow v_2$;
- (ii) $v_0 \wedge v_3 \wedge \neg v_4$.

Demonstrație:

(i) Fie funcția $e:V \to \{0,1\},$ definită, pentru orice $x \in V,$ prin:

$$e(x) := \begin{cases} 0, & \text{dacă } x = v_0 \\ 1, & \text{dacă } x = v_2 \\ 0, & \text{altfel.} \end{cases}$$

Atunci:

$$e^+(v_0 \to v_2) = e^+(v_0) \to e^+(v_2) = e(v_0) \to e(v_2) = 0 \to 1 = 1.$$

(ii) Fie funcția $e:V\rightarrow\{0,1\},$ definită, pentru orice $x\in V,$ prin:

$$e(x) := \begin{cases} 1, & \text{dacă } x = v_0 \\ 1, & \text{dacă } x = v_3 \\ 0, & \text{dacă } x = v_4 \\ 1, & \text{altfel.} \end{cases}$$

Atunci:

$$e^{+}(v_{0} \wedge v_{3} \wedge \neg v_{4}) = e^{+}(v_{0}) \wedge e^{+}(v_{3}) \wedge \neg e^{+}(v_{4})$$

$$= e(v_{0}) \wedge e(v_{3}) \wedge \neg e(v_{4})$$

$$= 1 \wedge 1 \wedge \neg 0$$

$$= 1 \wedge 1 \wedge 1$$

$$= 1.$$

(S2.5) Să se demonstreze că, pentru orice formulă φ ,

- (i) φ este tautologie dacă și numai dacă $\neg \varphi$ este nesatisfiabilă.
- (ii) φ este nesatisfiabilă dacă și numai dacă $\neg \varphi$ este tautologie.

Demonstrație:

(i) Avem:

```
\varphi \text{ este tautologie } \iff \text{ pentru orice } e:V\to\{0,1\},\ e^+(\varphi)=1 \iff \text{ pentru orice } e:V\to\{0,1\},\ \neg e^+(\varphi)=0 \iff \text{ pentru orice } e:V\to\{0,1\},\ e^+(\neg\varphi)=0 \iff \text{ pentru orice } e:V\to\{0,1\},\ \text{ nu avem că } e^+(\neg\varphi)=1 \iff \text{ nu avem că există } e:V\to\{0,1\}\ \text{ cu } e^+(\neg\varphi)=1 \iff \text{ nu avem că } \neg\varphi \text{ e satisfiabilă} \iff \neg\varphi \text{ nu e satisfiabilă}.
```

(ii) Avem:

```
\varphi \text{ este nesatisfiabilă} \iff \varphi \text{ nu e satisfiabilă} \\ \iff \text{ nu avem că } \varphi \text{ e satisfiabilă} \\ \iff \text{ nu avem că există } e: V \to \{0,1\} \text{ cu } e^+(\varphi) = 1 \\ \iff \text{ pentru orice } e: V \to \{0,1\}, \text{ nu avem că } e^+(\varphi) = 1 \\ \iff \text{ pentru orice } e: V \to \{0,1\}, \ e^+(\varphi) = 0 \\ \iff \text{ pentru orice } e: V \to \{0,1\}, \ \neg e^+(\varphi) = 1 \\ \iff \text{ pentru orice } e: V \to \{0,1\}, \ e^+(\neg \varphi) = 1 \\ \iff \neg \varphi \text{ este tautologie.}
```

(S2.6) Arătați că pentru orice φ , ψ , $\chi \in Form$, avem:

- (i) $\psi \vDash \varphi \rightarrow \psi$;
- (ii) $(\varphi \to \psi) \land (\psi \to \chi) \vDash \varphi \to \chi$;
- (iii) $\varphi \to (\psi \to \chi) \sim (\varphi \land \psi) \to \chi$;
- (iv) $\varphi \vee (\varphi \wedge \psi) \sim \varphi$;
- (v) $\varphi \wedge \psi \rightarrow \chi \sim (\varphi \rightarrow \chi) \vee (\psi \rightarrow \chi);$
- (vi) $\vDash \neg \varphi \rightarrow (\neg \psi \rightarrow (\psi \leftrightarrow \varphi)).$

Demonstrație: Vom folosi în demonstrații următoarele: pentru orice $a, b \in \{0, 1\}$,

$$a \rightarrow b = 1 \iff a \leq b,$$

$$1 \rightarrow a = a, \qquad a \rightarrow 1 = 1$$

$$0 \rightarrow a = 1, \qquad a \rightarrow 0 = \neg a$$

$$1 \land a = a, \qquad 0 \land a = 0,$$

$$1 \lor a = 1, \qquad 0 \lor a = a.$$

(i) Fie $e:V\to\{0,1\}$ cu $e^+(\psi)=1$. Vrem să arătăm că $e^+(\varphi\to\psi)=1$. Dar:

$$e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi) = e^+(\varphi) \to 1 = 1.$$

(ii) Fie $e: V \to \{0, 1\}$ cu $e^+((\varphi \to \psi) \land (\psi \to \chi)) = 1$. Vrem să arătăm că $e^+(\varphi \to \chi) = 1$. Avem că

$$1 = e^+((\varphi \to \psi) \land (\psi \to \chi)) = (e^+(\varphi) \to e^+(\psi)) \land (e^+(\psi) \to e^+(\chi)),$$

de unde tragem concluzia că $e^+(\varphi) \to e^+(\psi) = 1$ şi $e^+(\psi) \to e^+(\chi) = 1$. Prin urmare, $e^+(\varphi) \le e^+(\psi)$ şi $e^+(\psi) \le e^+(\chi)$. Obţinem atunci, din tranzitivitatea lui \le , că $e^+(\varphi) \le e^+(\chi)$. Aşadar,

$$e^+(\varphi \to \chi) = e^+(\varphi) \to e^+(\chi) = 1.$$

(iii) Fie $e:V\to\{0,1\}$ o evaluare arbitrară. Trebuie să demonstrăm că

$$e^+(\varphi \to (\psi \to \chi) = 1$$
dacă și numai dacă $e^+(\varphi \land \psi \to \chi) = 1,$

ceea ce este echivalent cu a arăta că $e^+(\varphi \to (\psi \to \chi)) = e^+(\varphi \land \psi \to \chi).$

Metoda 1: Ne folosim de următorul tabel:

$e^+(\varphi)$	$e^+(\psi)$	$e^+(\chi)$	$e^+(\psi \to \chi)$	$e^+(\varphi \to (\psi \to \chi))$	$e^+(\varphi \wedge \psi)$	$e^+(\varphi \wedge \psi \to \chi)$
1	1	1	1	1	1	1
1	1	0	0	0	1	0
1	0	1	1	1	0	1
1	0	0	1	1	0	1
0	1	1	1	1	0	1
0	1	0	0	1	0	1
0	0	1	1	1	0	1
0	0	0	1	1	0	1

Metoda 2: Raţionăm direct. Observăm că

$$e^{+}(\varphi \to (\psi \to \chi)) = e^{+}(\varphi) \to (e^{+}(\psi) \to e^{+}(\chi)),$$

 $e^{+}(\varphi \land \psi \to \chi) = e^{+}(\varphi) \land e^{+}(\psi) \to e^{+}(\chi).$

Avem cazurile:

(a) $e^+(\varphi) = 0$. Atunci

$$e^{+}(\varphi) \rightarrow (e^{+}(\psi) \rightarrow e^{+}(\chi)) = 0 \rightarrow (e^{+}(\psi) \rightarrow e^{+}(\chi)) = 1,$$

$$e^{+}(\varphi) \wedge e^{+}(\psi) \rightarrow e^{+}(\chi) = 0 \wedge e^{+}(\psi) \rightarrow e^{+}(\chi) = 0 \rightarrow e^{+}(\chi) = 1.$$

(b) $e^+(\varphi) = 1$. Atunci

$$e^{+}(\varphi) \to (e^{+}(\psi) \to e^{+}(\chi)) = 1 \to (e^{+}(\psi) \to e^{+}(\chi)) = e^{+}(\psi) \to e^{+}(\chi),$$

$$e^{+}(\varphi) \wedge e^{+}(\psi) \to e^{+}(\chi) = 1 \wedge e^{+}(\psi) \to e^{+}(\chi) = e^{+}(\psi) \to e^{+}(\chi).$$

(iv) Fie $e:V \to \{0,1\}$ o evaluare arbitrară. Trebuie să demonstrăm că

$$e^+(\varphi \lor (\varphi \land \psi)) = e^+(\varphi), \quad \text{deci că} \quad e^+(\varphi) \lor (e^+(\varphi) \land e^+(\psi)) = e^+(\varphi).$$

Avem cazurile:

(a) $e^+(\varphi) = 1$. Atunci

$$e^+(\varphi) \vee (e^+(\varphi) \wedge e^+(\psi)) = 1 \vee (1 \wedge e^+(\psi)) = 1 \vee e^+(\psi) = 1.$$

(b) $e^+(\varphi) = 0$. Atunci

$$e^+(\varphi) \vee (e^+(\varphi) \wedge e^+(\psi)) = 0 \vee (0 \wedge e^+(\psi)) = 0 \vee 0 = 0.$$

(v) Fie $e:V \to \{0,1\}$ o evaluare arbitrară. Trebuie să demonstrăm că

$$e^+(\varphi \wedge \psi \to \chi) = e^+((\varphi \to \chi) \vee (\psi \to \chi)),$$

deci că

$$(e^+(\varphi) \land e^+(\psi)) \rightarrow e^+(\chi) = (e^+(\varphi) \rightarrow e^+(\chi)) \lor (e^+(\psi) \rightarrow e^+(\chi)).$$

Avem cazurile:

(a) $e^+(\varphi) = e^+(\psi) = 1$. Atunci

(b) $e^+(\varphi) = 0$. Atunci

$$\begin{split} (e^+(\varphi) \wedge e^+(\psi)) &\to e^+(\chi) &= (0 \wedge e^+(\psi)) \to e^+(\chi) \\ &= 0 \to e^+(\chi) = 1, \\ (e^+(\varphi) \to e^+(\chi)) \vee (e^+(\psi) \to e^+(\chi)) &= (0 \to e^+(\chi)) \vee (e^+(\psi) \to e^+(\chi)) \\ &= 1 \vee (e^+(\psi) \to e^+(\chi)) = 1. \end{split}$$

- (c) $e^+(\psi) = 0$. Similar cu cazul precedent.
- (vi) Fie $e: V \to \{0,1\}$ o evaluare arbitrară.

$$e^+(\neg\varphi\to(\neg\psi\to(\psi\leftrightarrow\varphi))) = \neg e^+(\varphi)\to(\neg e^+(\psi)\leftrightarrow(e^+(\psi)\to e^+(\varphi))).$$

Avem cazurile:

(a) $e^+(\varphi) = 1$. Atunci $\neg e^+(\varphi) = 0$ şi, prin urmare,

$$\neg e^{+}(\varphi) \to (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \to e^{+}(\varphi))) = 0 \to (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \to e^{+}(\varphi)))$$
$$= 1.$$

(b) $e^+(\varphi) = 0$. Atunci

$$\neg e^{+}(\varphi) \to (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \to e^{+}(\varphi))) = \neg 0 \to (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \to 0))
= 1 \to (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \to 0))
= \neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \to 0)
= \neg e^{+}(\psi) \leftrightarrow \neg e^{+}(\psi)
= 1.$$

(S2.7) Să se arate că

$$\{v_0, \neg v_0 \lor v_1 \lor v_2\} \vDash (v_3 \to v_2) \lor (\neg v_1 \to v_2)$$

Demonstrație:

Fie $e: V \to \{0,1\}$ cu $e \models \{v_0, \neg v_0 \lor v_1 \lor v_2\}$. Atunci $e^+(v_0) = 1$ (deci $e(v_0) = 1$) şi $e^+(\neg v_0 \lor v_1 \lor v_2) = 1$. Aşadar,

$$1 \ = \ \neg e(v_0) \ \mathsf{V} \ e(v_1) \ \mathsf{V} \ e(v_2) = \neg 1 \ \mathsf{V} \ e(v_1) \ \mathsf{V} \ e(v_2) = 0 \ \mathsf{V} \ e(v_1) \ \mathsf{V} \ e(v_2) = e(v_1) \ \mathsf{V} \ e(v_2).$$

Conform definiției lui \vee , avem că $v_1 \vee v_2 = \neg v_1 \rightarrow v_2$, deci

$$e^+(\neg v_1 \to v_2) = e^+(v_1 \lor v_2) = e(v_1) \lor e(v_2) = 1.$$

Prin urmare,

$$e^+((v_3 \to v_2) \lor (\neg v_1 \to v_2)) = e^+(v_3 \to v_2) \lor e^+(\neg v_1 \to v_2) = e^+(v_3 \to v_2) \lor 1 = 1,$$
 adică $e \vDash (v_3 \to v_2) \lor (\neg v_1 \to v_2).$

- (S2.8) Fie $\Gamma \cup \{\varphi, \psi\} \subseteq Form$. Să se demonstreze:
 - (i) Dacă $\Gamma \vDash \varphi$ şi $\Gamma \vDash \varphi \to \psi$, atunci $\Gamma \vDash \psi$.
 - (ii) $\Gamma \cup \{\varphi\} \vDash \psi$ dacă și numai dacă $\Gamma \vDash \varphi \to \psi$.
- (iii) $\Gamma \vDash \varphi \land \psi$ dacă și numai dacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \psi$.

Demonstraţie:

- (i) Fie e un model al lui Γ . Vrem să arătăm că e este model al lui ψ . Cum $\Gamma \vDash \varphi$ şi $\Gamma \vDash \varphi \to \psi$, avem $e \vDash \varphi$ şi $e \vDash \varphi \to \psi$. Atunci $e^+(\varphi) = 1$ şi $e^+(\varphi \to \psi) = 1$. Deoarece $e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi) = 1 \to e^+(\psi) = e^+(\psi)$, rezultă că $e^+(\psi) = 1$, adică $e \vDash \psi$.
- (ii) " \Rightarrow " Fie e un model al lui Γ . Vrem să arătăm că e este model al lui $\varphi \to \psi$. Avem două cazuri:
 - (a) $e^+(\varphi) = 0$. Atunci $e^+(\varphi \to \psi) = 0 \to e^+(\psi) = 1$, deci $e \vDash \varphi \to \psi$.
 - (b) $e^+(\varphi) = 1$, deci $e \models \varphi$. Atunci $e \models \Gamma \cup \{\varphi\}$, şi prin urmare, $e \models \psi$, adică $e^+(\psi) = 1$. Rezultă că $e^+(\varphi \to \psi) = 1 \to 1 = 1$, deci $e \models \varphi \to \psi$.

"\(\infty\)" Fie e un model al lui $\Gamma \cup \{\varphi\}$. Atunci $e^+(\varphi) = 1$ şi $e \models \Gamma$, deci, din ipoteză, $e^+(\varphi \to \psi) = 1$. Obţinem atunci, ca la (i), că $e^+(\psi) = 1$, adică $e \models \psi$.

(iii) $\Gamma \vDash \varphi \land \psi \iff \text{pentru orice model } e \text{ al lui } \Gamma, \text{ avem } e^+(\varphi \land \psi) = 1 \iff \text{pentru orice model } e \text{ al lui } \Gamma, \text{ avem } e^+(\varphi) = e^+(\psi) = 1 \iff \text{pentru orice model } e \text{ al lui } \Gamma, \text{ avem } e \vDash \varphi \text{ si } e \vDash \psi \iff \Gamma \vDash \varphi \text{ si } \Gamma \vDash \psi.$

(S2.9) (Metoda reducerii la absurd)

Să se arate că pentru orice mulțime de formule Γ și orice formule φ, ψ ,

$$\Gamma \cup \{\neg \psi\} \vdash \neg(\varphi \to \varphi) \Rightarrow \Gamma \vdash \psi.$$

Demonstrație:

Avem

(1)
$$\Gamma \cup \{\neg \psi\} \vdash \neg(\varphi \to \varphi)$$
 Ipoteză

(2)
$$\Gamma \vdash \neg \psi \rightarrow \neg (\varphi \rightarrow \varphi)$$
 Teorema deducției

(3)
$$\Gamma \vdash (\neg \psi \to \neg (\varphi \to \varphi)) \to ((\varphi \to \varphi) \to \psi)$$
(4)
$$\Gamma \vdash (\varphi \to \varphi) \to \psi$$

$$\varphi \to \varphi) \to \psi$$
) (A3) și Propoziția 1.25.(i)

(4)
$$\Gamma \vdash (\varphi \rightarrow \varphi) \rightarrow \psi$$
 (MP): (2), (3)

(5)
$$\Gamma \vdash \varphi \rightarrow \varphi$$
 Propoziţiile 1.30 şi 1.26.(ii)

(6)
$$\Gamma \vdash \psi$$
 (MP): (4), (5).

(S2.10) Să se arate că pentru orice formule φ, ψ ,

(i)
$$\{\psi, \neg\psi\} \vdash \varphi$$
;

(ii)
$$\vdash \neg \psi \rightarrow (\psi \rightarrow \varphi)$$
;

(iii)
$$\vdash \neg \neg \varphi \rightarrow \varphi$$
;

(iv)
$$\vdash \varphi \rightarrow \neg \neg \varphi$$
.

Demonstrație: Demonstrăm (i):

$$(1) \qquad \vdash \neg \psi \to (\neg \varphi \to \neg \psi) \tag{A1}$$

(2)
$$\{\neg\psi\} \vdash \neg\varphi \rightarrow \neg\psi$$
 Teorema deducției

$$(4) \qquad \{\neg\psi\} \quad \vdash \psi \to \varphi \qquad \qquad (MP): (2), (3)$$

(5)
$$\{\psi, \neg \psi\} \vdash \varphi$$
 Teorema deducţiei.

Punctul (ii) se obține din (i) aplicând de două ori Teorema deducției:

$$(1) \quad \{\psi, \neg \psi\} \quad \vdash \varphi \tag{i}$$

(1)
$$\{\psi, \neg\psi\} \vdash \varphi$$
 (1)
(2) $\{\neg\psi\} \vdash \psi \rightarrow \varphi$ Teorema deducției
(3) $\vdash \neg\psi \rightarrow (\psi \rightarrow \chi)$ Teorema deducției

(3)
$$\vdash \neg \psi \rightarrow (\psi \rightarrow \chi)$$
 Teorema deducției.

Demonstrăm în continuare (iii).

(1)
$$\{\neg \varphi, \neg \neg \varphi\} \vdash \neg(\varphi \to \varphi)$$
 (i)

(2)
$$\{\neg\neg\varphi\} \vdash \varphi$$
 (1) şi (S2.9)

Demonstrăm (iv):

(1)
$$\vdash \neg \neg \neg \varphi \rightarrow \neg \varphi$$
 (iii) cu $\varphi := \neg \varphi$

$$(2) \vdash (\neg \neg \neg \varphi \to \neg \varphi) \to (\varphi \to \neg \neg \varphi) \quad (A3)$$

$$(3) \vdash \varphi \to \neg \neg \varphi \qquad (MP): (1), (2).$$

(S2.11) ("Reciproca" axiomei 3)

Să se arate că pentru orice formule φ, ψ ,

$$\vdash (\varphi \to \psi) \to (\neg \psi \to \neg \varphi).$$

Demonstraţie:

 $\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\} \vdash \varphi \to \psi$ Propoziția 1.25.(ii) $\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\} \vdash \neg \psi$ (2)Propoziția 1.25.(ii) $\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\} \vdash \neg \neg \varphi$ Propoziția 1.25.(ii) $\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\} \vdash \neg \neg \varphi \to \varphi$ (S2.10).(iii) și Propoziția 1.26.(ii) $\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\} \vdash \varphi$ (MP): (3), (4) $\{\varphi \to \psi, \neg \psi, \neg \neg \varphi\} \vdash \psi$ (MP): (1), (5) $\begin{cases}
(7) & \{\varphi \to \psi, \neg \psi, \neg \neg \varphi\} & \vdash \neg \psi \to (\psi \to \neg(\varphi \to \varphi)) \\
(8) & \{\varphi \to \psi, \neg \psi, \neg \neg \varphi\} & \vdash \psi \to \neg(\varphi \to \varphi)
\end{cases}$ $(9) & \{\varphi \to \psi, \neg \psi, \neg \neg \varphi\} & \vdash \neg(\varphi \to \varphi)$ (S2.10).(ii) și Propoziția 1.26.(ii) (MP): (2), (7)(MP): (6), (8) $\{\varphi \to \psi, \neg \psi\} \vdash \neg \varphi$ (10)(9) şi (S2.9) $\{\varphi \to \psi\} \vdash \neg \psi \to \neg \varphi$ (11)Teorema deducției $\vdash (\varphi \to \psi) \to (\neg \psi \to \neg \varphi)$ Teorema deducției. (12)

(S2.12) Să se arate că pentru orice formule φ, ψ ,

$$\{\psi, \neg \varphi\} \vdash \neg(\psi \to \varphi).$$

Demonstrație: Avem

$$\begin{array}{lllll} (1) & \{\psi, \neg\varphi, \neg\neg(\psi\to\varphi)\} & \vdash\psi & \operatorname{Propoziţia} 1.25.(ii) \\ (2) & \{\psi, \neg\varphi, \neg\neg(\psi\to\varphi)\} & \vdash\neg\varphi & \operatorname{Propoziţia} 1.25.(ii) \\ (3) & \{\psi, \neg\varphi, \neg\neg(\psi\to\varphi)\} & \vdash\neg\neg(\psi\to\varphi) & \operatorname{Propoziţia} 1.25.(ii) \\ (4) & \{\psi, \neg\varphi, \neg\neg(\psi\to\varphi)\} & \vdash\neg\neg(\psi\to\varphi) & (S2.10).(iii) \operatorname{şi} \operatorname{Prop.} 1.26.(ii) \\ (5) & \{\psi, \neg\varphi, \neg\neg(\psi\to\varphi)\} & \vdash\psi\to\varphi & (\operatorname{MP}) : (3), (4) \\ (6) & \{\psi, \neg\varphi, \neg\neg(\psi\to\varphi)\} & \vdash\varphi & (\operatorname{MP}) : (1), (5) \\ (7) & \{\psi, \neg\varphi, \neg\neg(\psi\to\varphi)\} & \vdash\neg\varphi\to(\varphi\to\neg(\varphi\to\varphi)) & (S2.10).(ii) \operatorname{şi} \operatorname{Prop.} 1.26.(ii) \\ (8) & \{\psi, \neg\varphi, \neg\neg(\psi\to\varphi)\} & \vdash\varphi\to\neg(\varphi\to\varphi) & (\operatorname{MP}) : (2), (7) \\ (9) & \{\psi, \neg\varphi, \neg\neg(\psi\to\varphi)\} & \vdash\neg(\varphi\to\varphi) & (\operatorname{MP}) : (6), (8) \\ (10) & \{\psi, \neg\varphi\} & \vdash\neg(\psi\to\varphi) & (9) \operatorname{şi} (S2.9). \\ \end{array}$$

10