Phần Lý thuyết

- 1. Giới thiệu chung Mô hình hệ VXL Nguyên tắc hoạt động
- 2. Cấu trúc và hoạt động của vi xử lý 8085
- 3. Quá trình thực hiện 1 lệnh trong VXL 8085
- 4. Giới thiệu về vi điều khiển PIC
- 5. Bộ công cụ nạp chương trình, công cụ mô phỏng vi điều khiển
- 6. Bộ định thời Timer
- 7. Ghép nối với bộ hiển thị
- 8. ADC
- 9. Giao tiếp truyền dữ liệu
- 10. Ngắt
- 11. PWM

Nội dung buổi học

- 1. ADC
- 2. Bộ so sánh

Chuyển đổi giữa các tín hiệu

Analog to Digital Converter converts an analog input to a digital output

Digital to Analog Converter converts a digital signal to an analog output

Bộ chuyển đổi tương tự-số ADC

Bộ chuyển đổi tương tự-số ADC

- 8 đầu vào ADC 10 bit (5 chân PortA và 3 chân PortE)
- Dữ liệu sau khi chuyển ADC xong được lưu tạm thời tại 2 thanh ghi ADRESH và ADRESL
- Thanh ghi ADCON0 điều khiển chức năng hoạt động của khối ADC
- Thanh ghi ADCON1 thiết lập chức năng cho các chân của port

Adc Channel	Pic16f877a Pin	Pin Function	
0	RA0	AN0	
1	RA1	AN1	
2	RA2	AN2/VREF-	
3	RA3	AN3/VREF+	
4	RA5	AN4	
2	RE0	AN5	
3	RE1	AN6	
4	RE2	AN7	

• Thanh ghi ADCON0

ADCONO REGISTER (ADDRESS 1Fh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON
bit 7							bit 0

ADCS1 và ADCS0 là các bit lựa chọn tần số xung chuyển đổi ADC

ADCON1 <adcs2></adcs2>	ADCON0 <adcs1:adcs0></adcs1:adcs0>	Clock Conversion
0	00	Fosc/2
0	01	Fosc/8
0	10	Fosc/32
0	11	FRC (clock derived from the internal A/D RC oscillator)
1	00	Fosc/4
1	01	Fosc/16
1	10	Fosc/64
1	11	FRC (clock derived from the internal A/D RC oscillator)

CHS2:CHS0 là các bit lựa chọn kênh vào ADC

```
CHS2:CHS0: Analog Channel Select bits
```

000 = Channel 0 (AN0)

001 = Channel 1 (AN1)

010 = Channel 2 (AN2)

011 = Channel 3 (AN3)

100 = Channel 4 (AN4)

101 = Channel 5 (AN5)

110 = Channel 6 (AN6)

111 = Channel 7 (AN7)

GO/DONE: báo trạng thái của ADC

ADON: Bit mở nguồn cho ADC hoạt động

ADONE =0 : Khối ADC bị cắt nguồn để giảm công suất tiêu thụ

ADONE =1 : Khối ADC được cấp nguồn. Khi đó:

GO/DONE =1 : quá trình chuyển đổi ADC đang diễn ra

GO/DONE =0 : quá trình chuyển đổi ADC không diễn ra

• Thanh ghi ADCON1

ADCON1 REGISTER (ADDRESS 9Fh)

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0
bit 7			•				bit 0

ADFM Bit định dạng kết quả đầu ra của ADC. Nên có ADFM=1

ADCS2 Lựa chọn tần số xung chuyển đổi. Kết hợp với ADCS0 và ADCS1 ở thanh ghi ADCON0

PCFG3:PCFG0 Bit điều khiển ADC

PCFG3:PCFG0: A/D Port Configuration Control bits

PCFG <3:0>	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0	VREF+	VREF-	C/R
0000	Α	Α	Α	Α	Α	Α	Α	Α	V DD	Vss	8/0
0001	Α	Α	Α	Α	VREF+	Α	Α	Α	AN3	Vss	7/1
0010	D	D	D	Α	Α	Α	Α	Α	VDD	Vss	5/0
0011	D	D	D	Α	VREF+	Α	Α	Α	AN3	Vss	4/1
0100	D	D	D	D	Α	D	Α	Α	VDD	Vss	3/0
0101	D	D	D	D	VREF+	D	Α	Α	AN3	Vss	2/1
011x	D	D	D	D	D	D	D	D	_	_	0/0
1000	Α	Α	Α	Α	VREF+	VREF-	Α	Α	AN3	AN2	6/2
1001	D	D	Α	Α	Α	Α	Α	Α	VDD	Vss	6/0
1010	D	D	Α	Α	VREF+	Α	Α	Α	AN3	Vss	5/1
1011	D	D	Α	Α	VREF+	VREF-	Α	Α	AN3	AN2	4/2
1100	D	D	D	Α	VREF+	VREF-	Α	Α	AN3	AN2	3/2
1101	D	D	D	D	VREF+	VREF-	Α	Α	AN3	AN2	2/2
1110	D	D	D	D	D	D	D	Α	VDD	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	Α	AN3	AN2	1/2

A = Analog input D = Digital I/O

C/R = # of analog input channels/# of A/D voltage references

Quá trình chuyển đổi ADC hoàn thành

Kết quả 10 bit được nạp vào ADRESH:ADRESL

Bit GO/DONE bị xoá về 0

Bit ADIF được set lên 1

Các bước thực hiện ADC

1. Cấu hình module ADC

Cấu hình các chân analog/digital và Vref -ADCON1

Chọn các chân đầu vào cho A/D - ADCON0

Chọn xung nhịp chuyển đổi ADC - ADCON0

Cấp nguồn cho ADC - ADCON0

2. Cấu hình ngắt ADC nếu có

Xoá bit ADIF

Set bit ADIE

Set bit PEIE

Set bit GIE

3. Chờ 1 khoảng thời gian yêu cầu khoảng 19,72μs → thường chọn 20μs

Các bước thực hiện ADC

- 4. Bắt đầu chuyển đổi: set bit GO/DONE
- 5. Chờ cho ADC hoàn thành

Kiểm tra liên tục bit GO/DONE xem về 0 hay chưa Đợi ngắt ADC

- 6. Đọc kết quả từ ADRESH: ADRESL. Xoá ADIF nếu được yêu cầu
- 7. Quay về bước 1 hoặc 2 nếu cần. Thời gian dãn cách chuyển đổi là T_{AD}

AD Cloc	Maximum Device Frequency			
Operation	Operation ADCS2:ADCS1:ADCS0			
2 Tosc	000	1.25 MHz		
4 Tosc	100	2.5 MHz		
8 Tosc	001	5 MHz		
16 Tosc	101	10 MHz		
32 Tosc	010	20 MHz		
64 Tosc	110	20 MHz		
RC ^(1, 2, 3)	x11	(Note 1)		

Các hàm khai báo, sử dụng trên CCS

1. setup_adc(mode)

Hàm không trả về giá trị

Các tham số cho từng VĐK có thể mở file.h tương ứng, xem tại phần ADC

Cơ bản có những mode sau

adc_off	tắt hoạt động của ADC
adc_clock_internal	thời gian lấy mẫu bằng xung clock IC, 200ns với thạch anh 20MHz
adc_clock_div_2	Thời gian lấy mẫu bằng xung clock/2 (400ns - 0.4μs)
adc_clock_div_8	Thời gian lấy mẫu bằng xung clock/8 (1.6μs)
adc_clock_div_32	Thời gian lấy mẫu bằng xung clock/32 (6.4μs)

Các hàm khai báo, sử dụng trên CCS

2. setup_adc_ports(value)

Xác định chân vào analog và các điện thế chuẩn để sử dụng

Tham số chi tiết cần xem trong thư viện. Khai báo các chân như ví dụ dưới đây

	Chân đầu vào analog	Điện áp so sánh
all_analogs	A0 A1 A2 A3 A5 E0 E1 E2	Vref=Vdd
no_analog	Không dùng ADC, các chân chỉ là cổng I/O	
an0_an1_an3	A0 A1 A3	Vref=Vdd
an0_an1_an4_an5_vss_vref	A0 A1 A5 E0	Vref=A3
an0_an1_an4_vref_vref	A0 A1 A5	Vrefh=A3, Vrefl=A2

Các hàm khai báo, sử dụng trên CCS

3. set_adc_channel(channel)

Hàm không trả về giá trị

Dùng để chọn chân vào analog trước khi đọc giá trị analog

Giá trị từ 0 đến 7

Nên delay khoảng 10µs trước khi dùng lệnh read_adc()

4. read adc(mode)

trả về kết quả số 8 bit (hoặc 10 bit) từ chân được chọn trong lệnh set adc channel() ở trước đó

Chú ý cần khai báo để chọn độ phân giải adc

mode có thể có/có thể không

#device adc=8

hoặc #device adc=10

adc_start_and_read	Giá trị mặc định
adc_start_only	bắt đầu chuyển đổi và trả về
adc_read_only	đọc KQ chuyển lần cuối

Đọc tín hiệu analog từ 3 biến trở, hiển thị kết quả điện áp tương ứng trên led 7 thanh

```
#include <16F877A.h>
#device ADC=10
#fuses HS, NOWDT, PROTECT
#use delay(clock=20M)
#use fast_io(b)
#use fast_io(c)
static unsigned char So[]=\{0x03, 0x9f, 0x25, 0x0d, 0x99, 0x49, 0x41, 0x1b, 0x01, 0x09\};
unsigned int8 DV, TP; Biến lưu tạm thời số đơn vị, thập phân
                                        Biến lưu giá trị từ ADC
unsigned int8 Value1, Value2, Value3;
float Temp;
```

```
void Hienthi()
                                                    TP=Value3%10:
 TP=Value1%10:
                                                    DV=Value3/10;
 DV=Value1/10;
                                                    output c(0x10);
 output c(0x01);
                                                    output_b(So[DV]-0x01);
 output_b(So[DV]-0x01);
                                                    delay_ms(1);
 delay ms(1);
                                                    output c(0x20);
 output_c(0x02);
                                                    output_b(So[TP]);
 output_b(So[TP]);
                                                    delay ms(1);
 delay ms(1);
                                                    output_c(0x00);
 TP=Value2%10;
                                                    output_b(0xff);
 DV=Value2/10;
                                                    delay ms(1);
 output c(0x04);
 output b(So[DV]-0x01);
 delay ms(1);
 output c(0x08);
 output_b(So[TP]);
 delay ms(1);
```

Hàm chuyển đổi mã 7 thanh, chia tách thập phân - đơn vị rồi hiển thị trên led 7 thanh

```
void Doc_ADC()
 set_adc_channel(0); //Chon kenh AN0
                                              void main()
                    //Trễ tối thiểu 20us
 delay_us(20);
 temp=read adc();
                                               set_tris_b(0x00);
 Value1=(int8)((temp*50)/1023);
                                               set_tris_c(0x00);
                                               setup adc(ADC CLOCK INTERNAL);
                                               setup_adc_ports(AN0_AN1_AN2);
 set_adc_channel(1); // Chon Kenh AN1
               //Trễ tối thiểu 20us
                                               while(true)
 delay_us(20);
 temp=read_adc();
 Value2=(int8)((temp*50)/1023);
                                                 Doc_ADC();
                                                 Hienthi();
                     //Chọn Kênh AN2
 set_adc_channel(2);
                    //Trễ tối thiểu 20us
 delay us(20);
 temp=read adc();
 Value3=(int8)((temp*50)/1023);
```

Bộ so sánh Comparator

- Khối so sánh trong PIC16F877A có 2 bộ so sánh
- Các đầu vào được tích hợp trong chân RA0-RA3
- Tín hiệu ra được tích hợp trong chân RA4, RA5
- Điện áp tham chiếu on-chip cũng có thể được coi là 1 đầu input

Thanh ghi điều khiển bộ so sánh

CMCON REGISTER

C2OUT: Comparator 2 Output bit

When C2INV = 0:

1 = C2 VIN+ > C2 VIN-

0 = C2 VIN+ < C2 VIN-

When C2INV = 1:

1 = C2 VIN+ < C2 VIN-

0 = C2 VIN+ > C2 VIN-

C2INV: Comparator 2 Output Inversion bit

1 = C2 output inverted

0 = C2 output not inverted

C1INV: Comparator 1 Output Inversion bit

1 = C1 output inverted

0 = C1 output not inverted

C10UT: Comparator 1 Output bit

When C1INV = 0:

1 = C1 VIN+ > C1 VIN-

0 = C1 VIN+ < C1 VIN-

When C1INV = 1:

1 = C1 VIN+ < C1 VIN-

0 = C1 Vin+ > C1 Vin-

CIS: Comparator Input Switch bit

When CM2:CM0 = 110:

1 = C1 Vin- connects to RA3/AN3

C2 VIN- connects to RA2/AN2

0 = C1 Vin-connects to RA0/AN0

C2 VIN- connects to RA1/AN1

8 cấu hình bộ so sánh

Two Independent Comparators CM2:CM0 = 010

Two Independent Comparators with Outputs CM2:CM0 = 011

8 cấu hình bộ so sánh

Two Common Reference Comparators CM2:CM0 = 100

Two Common Reference Comparators with Outputs CM2:CM0 = 101

One Independent Comparator with Output CM2:CM0 = 001

Four Inputs Multiplexed to Two Comparators CM2:CM0 = 110

Ngắt của bộ so sánh

Kiểm tra bằng cách kiểm tra C2OUT và C1OUT

- CMIF (trong PIR) là cờ báo ngắt bộ so sánh
- CMIF được reset bằng cách xoá nó
- Để cho phép thực hiện ngắt so sánh, cần set các bit CMIE (trong PIE) và PEIE (trong INTCON) lên 1. Ngoài ra bit GIE cũng phải được set lên 1
- Trong chương trình ngắt, người sử dụng xoá ngắt theo cách sau

Thực hiện lệnh bất kỳ đọc/ghi CMCON để kết thúc điều kiện không thích ứng

Xoá CMIF

Bộ tạo điện áp chuẩn so sánh

- Là mạng điện trở bậc thang 16 cấp
- Tạo điện áp chuẩn cố định khi bộ so sánh làm việc kiểu 101

Bộ tạo điện áp chuẩn so sánh

CVRCON CONTROL REGISTER (ADDRESS 9Dh)

bit 7							bit 0
CVREN	CVROE	CVRR	_	CVR3	CVR2	CVR1	CVR0
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0

CVREN: Cho phép sử dụng bộ điện áp chuẩn so sánh

1 = CVREF circuit powered on

0 = CVREF circuit powered down

CVRR: Lựa chọn dãy điện áp của bộ so sánh

1 = 0 to 0.75 CVRSRC, with CVRSRC/24 step size

0 = 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size

CVROE: Cho phép đưa điện áp ra ngoài chân CV_{REF}

1 = CVREF voltage level is output on RA2/AN2/VREF-/CVREF pin

0 = CVREF voltage level is disconnected from RA2/AN2/VREF-/CVREF pin

CVR3:CVR0: Lựa chọn giá trị V_{REF} của bộ so sánh từ 0 đến 15

When CVRR = 1.

 $CVREF = (VR < 3:0 > / 24) \bullet (CVRSRC)$

When CVRR = 0:

CVREF = 1/4 • (CVRSRC) + (VR3:VR0/32) • (CVRSRC)

 CV_{RSRC} là điện áp nguồn cho bộ so sánh - thường đến trực tiếp từ V_{DD}