T3. Micrófonos

Características de los micrófonos

Sensibilidad

La sensibilidad de un micrófono es la relación entre la tensión eléctrica generada y la presión acústica incidente (en circuito abierto, campo libre, a $1\,\mathrm{kHz}$).

$$\begin{split} S &= \frac{E_{\text{c.a.}}}{p} \quad \left[\text{V Pa}^{-1} \right] \\ &= 20 \log \left(\frac{|S|}{1 \, \text{V Pa}^{-1}} \right) \, \left[\text{dB re. 1 V Pa}^{-1} \right] \end{split}$$

La sensibilidad de referencia es la sensibilidad medida en el eje del micrófono.

$$S_0 = S(\theta = 0^\circ)$$

Respuesta en frecuencia

La respuesta en frecuencia de un micrófono es la variación de la sensibilidad con la frecuencia [S=S(f)]. Se suele representar la respuesta relativa con respecto a la sensibilidad de referencia en decibelios.

$$S(f) - S_0 = 20 \log \left(\frac{|S(f)|}{|S_0|} \right) dB$$

La presencia del micrófono afecta a su respuesta. La respuesta del diafragma en alta frecuencia aumenta la presión frente a la cápsula.

Distorsión lineal

- Coloraciones. La respuesta en frecuencia no es plana.
- Vibraciones parciales del diafragma. Debidas a modos propios. Los micros de condensador no tienen este problema.
- Resonancias mecánicas o acústicas. Sobre todo en micros dinámicos.
- Ancho de banda limitado por componentes eléctricos.
- Distorsión de fase.

Distorsión no lineal

- Saturación. Sobrecarga de presión. Si saturan fácilmente se llaman micros blandos. Si no, duros.
- Pop. Chorros de aire (no sonido). Suele ser por fonemas "explosivos".

Directividad

Generalmente, su supone simetría cilíndrica de los micrófonos, por lo que la directividad no depende del plano azimutal φ .

$$D(\theta, \varphi) \equiv \mathsf{Directividad}$$

 $Q(\theta, \varphi) \equiv \mathsf{Factor} \ \mathsf{de} \ \mathsf{directividad}$

 $Q_{ax} \equiv Factor de directividad axial (en el eje)$

DI ≡ Índice de directividad

 $DI_{ax} \equiv \text{Índice de directividad axial (en el eje)}$

REE = Eficiencia de energía aleatoria

DSF ≡ Factor de distancia

 $E_d \equiv {\sf Tensi\'on\ directa}$

 $E_r \equiv$ Tensión reverberante

 $E_{ro} \equiv$ Tensión reverberante del equivalente omnidireccional

Si especifican que se ha medido en cámara anecoica, entonces se refiere a que $E_{\rm c.a.}$ es también el valor de E_d .

$$E_r = \frac{p_r S_0}{\sqrt{Q_{\rm ax}}} \qquad E_{ro} = p_r S$$

Nota 1: En la fórmula de $Q_{\rm ax}$ para N valores, si nos dicen que supongamos simetría de revolución se usan los valores entre $\theta=0^\circ$ y $\theta=180^\circ$, sin incluir este último. Si da tiempo (y en entornos reales), se calculan tanto en el intervalo [0,180) como en [180,360) y se hace la media entre ambos $Q_{\rm ax}$ obtenidos.

Nota 2: Si nos piden sacar la directividad sabiendo que es de familia cardioide y no dicen nada más, debemos suponer orden n=1.

$$\begin{split} Q(\theta,\varphi) &= \frac{S^2(\theta,\varphi)}{\langle S^2(\theta,\varphi) \rangle} = \frac{S^2(\theta,\varphi)}{\frac{1}{4\pi} \int_{\varphi=0}^{2\pi} \int_{\theta=0}^{\pi} S^2(\theta,\varphi) \sin(\theta) \mathrm{d}\theta \mathrm{d}\varphi} \\ Q_{\mathrm{ax}} &= Q(\theta=0^\circ) = \frac{2}{\int_{\theta=0}^{\pi} D^2(\theta) \sin(\theta) \mathrm{d}\theta} \approx \frac{2}{\frac{\pi}{N} \sum_{i=1}^{N} D^2(\theta_i) \sin(\theta i)} \\ Q_{\mathrm{ax}} &= \frac{E_{ro}^2}{E_r^2} \Bigg|_{\text{campo difuso}} \mathrm{DI} = 10 \log \left[Q(\theta,\varphi)\right] \quad \mathrm{DI}_{\mathrm{ax}} = 10 \log \left(Q_{\mathrm{ax}}\right) \end{split}$$

Directividad de la familia cardiode

 $REE = \frac{1}{Q_{ax}} \qquad DSF = \sqrt{Q_{ax}}$

 $D(\theta, \varphi) = \frac{S(\theta, \varphi)}{S}$

 ${\cal A}$ es el componente omnidireccional, ${\cal B}$ el componente bidireccional y n el orden de la directividad.

$$\begin{cases} D(\theta) = [A + B\cos(\theta)]\cos^{n-1}(\theta) \\ A + B = 1 \end{cases}$$

Α	В	Tipo
0.50	0.50	Cardioide
0.75	0.25	Subcardioide
0.25	0.75	Hipercardioide

Si n=1, el valor de $Q_{\rm ax}$ viene dado por la resolución de la integral de su definición, el resultado es este:

$$Q_{\rm ax} = \frac{3}{4B^2 - 6B + 3}$$

Ruido eléctrico

- Ruido eléctrico. Tensión de salida del micrófono cuando no recibe excitación acústica. Causado por:
 - Agitación térmica de moléculas de aire o del diafragma.
 - Agitación térmica electrónica, debi principalmente a resistencias altas.

$$E_N = \sqrt{4kTR\Delta f}$$
 [V]

Donde k es la constante de Boltzmann, T la temperatura, R la resistencia y Δf el ancho de banda. Se suele expresar en $\mathrm{dB}_{\mathrm{SPL}}$ y se denomina

"nivel de presión sonora equivalente al ruido":

$$\mathsf{ENL} = 20 \log \left(\frac{p_N}{p_\mathsf{ref}} \right) = 20 \log \left(\frac{E_N}{p_\mathsf{ref} S_0} \right)$$

Donde $p_{\rm ref}=20\,\rm \mu Pa$. Para usar esta expresión, mencionar que se debería filtrar E_N con un filtro de ponderación A.

- Ruido por zumbido electromagnético (hum).
- Ruido por viento.

Márgenes dinámicos

 $\begin{array}{ll} {\sf Margen\ dinámico} & {\sf DR} = {\sf SPL_{máx}} - {\sf ENL} \\ \\ {\sf Margen\ de\ sobrecarga} & {\sf HR} = {\sf SPL_{máx}} - 94\ ({\sf viene\ de\ }p_{\sf ref}) \end{array}$

Relación señal a ruido SNR = DR - HR = 94 - FNI

Otras características

Tipos de micrófonos

TAM: Micrófonos de presión

TAM: Micrófonos de gradiente de presión

TAM: Micrófonos combinados de presión - gradiente de presión

TME: Micrófonos de bobina móvil

TME: Micrófonos de cinta

TME: Micrófonos electrostáticos de condensador

TME: Micrófonos electrostáticos de electret (o prepolarizados)

TME: Micrófonos MEMS

Especiales: Micrófonos de doble diafragma

Especiales: Micrófonos superdirectivos

Especiales: Microfonía estereofónica

Especiales: Micrófonos lavalier

Especiales: Micrófonos de superficie o de zona de presión

Especiales: Micrófonos inalámbricos

Conexión eléctrica de los micrófonos

Impedancias características

Efecto del cable en la banda de frecuencias transmitida

Línea microfónica balanceada

Alimentación de micrófonos electrostáticos

Adaptadores, conversores y distribuidores microfónicos

T4. Sistemas de Refuerzo Sonoro

Niveles acústicos

Niveles de presión directo y reverberante

Constante acústica de la sala

Modificadores acústicos

Distancia crítica

Campo semirreverberante

Niveles debidos a varias fuentes

Potencia acústica

Respuesta temporal

Molestia por ecos

Efecto precedencia

Respuesta temporal mediante simulación

Auralización

Inteligibilidad

Índice de inteligibilidad del habla

Pérdida de articulación de consonantes

Índice de transmisión del habla

Configuraciones de altavoces

Sistema centralizado con un altavoz o un cluster

Clusters y arrays de altavoces

Sistema distribuidos de altavoces

Realimentación acústica

Modelo

Realimentación por un solo camino y en campo libre

Realimentación cuando existe reverberación

Condición de oscilación según los niveles acústicos en los micrófonos

Respuesta temporal de la realimentación

Control de la realimentación acústica

Ganancia acústica

Distancia acústica equivalente

Ganancia acústica necesaria y ganancia acústica potencial

Uso de la ganancia acústica para el diseño de un sistema de refuerzo sonoro

Amplificación

Amplificación de baja impedancia

Amplificación de alta impedancia, líneas de tensión constante

Conexión de amplificadores

Clases de amplificación

Fuentes de alimentación