

New Kids on the Unblocking: Strategies to Overcome Blocking Networks

Caio Morais, Jeronimo Penha, José Nacif, **Ricardo Ferreira** Universidade Federal de Viçosa

13 a 15 de maio de 1987 Gramado - Brasil

I SIMPÓSIO BRASILEIRO DE ARQUITETURA DE COMPUTADORES

Processamento Paralelo

19th International Symposium on Computer Architecture and High Performance Computing

October 24-27, 2007 Gramado, RS - Brazil

SBAC-PAD

2007

• Blocking or non-blocking?

 Multistage Networks and Coarse-Grained Reconfigurable Arrays (CGRAs)

Placement and Routing

Conclusions

Blocking, non-blocking or Rearrangeable non-blocking?

- 1953 Clos Network Telecommunications Central
- 1962 Benes Network Rearrangeable
- 1976 Omega or Shuffle Exchange
- Golden Age 1980 -> 2000
- Multistage Interconnection Network (MIN)
 - Cost O(n log N) < Crossbar O(N²)</p>
 - Routing O(log N)

Permutation and Stages

Routing $0 \rightarrow 2$

IN OUT 0 0 1 0

Extra Stage to solve (rearrangeable)

6 switches = 2^6 = 64 > 24 permutations

Multicast (rearrangeable)

6 switches = 4^6 = 4096 > 256 permutations w/ repeat

Multicast (rearrangeable)

4x4 No Extra levels

- 4 switches = 4^4 = 256 = 256 permutations w/ repeat
- However there are:
 - 112 blocking permutations....
- Extra Levels 6 switches = 4^6 = 4096 > 256
 - Rearrangeable Non Blocking
 - 48 patterns has only 2 configurations (hard) 0.04%
 - 4 patterns has 176 configurations (easy) 5%

Multicast (rearrangeable)

8x8 No Extra levels

- 12 switches = 4^{12} = 16M = 16M permutations
 - However 97% of patterns are blocking!
- Extra Level 20 switches = 4^{16} = 4G > 16M
 - 60% or 10M patterns are Blocking
 - 256k patterns has 2 configurations in 4G (hard)
 - 8 patterns has 3M configurations (easy)

Multistage and Coarse-Grained Reconfigurable Array

Placement and Routing

Placement and Routing

Placement and Routing Strategies

- Random
- Greedy Approach
- Greedy + Local Search
- Simulated Annealing

Large Network 256 x 256

- 10⁶⁸¹ huge search space
 - Configuration Workload
 - 128 connections in a 256 Network = 50% workload
 - 192 in 256 = 75% workload
 - less connection less conflict in Extra Level Coding
 - less conflict in Rearrangeable non-blocking Space

1 Million Random Permutation in a 256 x 256

Low Workload Placement and Routing 256 x 256

Workload	d Rnd	Greedy	Local Search	Sim.Anneal
126	2 extra	2 extra	no extra	no extra
edges	100%	100%	100%	100%
138	4 extra	4 extra	no extra	no extra
edges	84.4%	83.3%	100%	100%

Medium Workload Placement 256 x 256

40 edges fails...

Workload	Rnd	Greedy	Local Sea	rch Sim.Anneal
in edges				100 % !
188	80.5%	82.4%	99.5%	2 extra
189	74.6%	74.6%	99.5%	3
208	79.3%	78.8%	99.5%	3
212	82.1%	75.0%	99.5%	2
213	80.8%	77.9%	98.6%	3
no solution even 4 extra levels				

one edge...

Medium Workload Placement 256 x 256

Workload	Rnd	Greedy	Local Search			Sim.Anneal	
in edges							
223	87.5%	82.4%	2	extra		1 extra	
224	99.5%	3 extra	N	o extra		No extra	
238	90.5%	90.5%	4	extra	F,	AIL!1 edge	
255	85.0%	No extra	No	o extra		1 extra	
256	99.5%	3 extra	2	extra		1 extra	

Pipeline (ideal for Omega Network)

High Workload Placement 256 x 256

Workload	Rnd	Greedy	Local Searc	ch Sim.Anneal
in edges				
223	87.5%	82.4%	2 extra	1 extra
224	99.5%	3 extra	No extra	No extra
238	90.5%	90.5%	4 extra	FAIL!1 edge
255	85.0%	No extra	No extra	1 extra
256	99.5%	3 extra	2 extra	1 extra

Synthetic Graph

Execution Time Placement 256 x 256

Rnd Greedy Local Search Sim.Anneal OpenMP

1ms 10ms 2.3 sec 93.6 (10x) 16 (10x) 6 times faster

Conclusions

- Huge Space 10⁶⁸¹ -> hard to find rearrangeable code
- Improve Greedy solutions by using S.A. and Local Search
- up to 2-3x faster CGRA execution Time up-to 2x smaller
- Next Steps improve even more:
 - Reinforcement Learning, Graph Neural Networks
 - GPU and Optimizations

Questions?

ricardo@ufv.br Acknowledgments

Financial support from FAPEMIG APQ-01577-22, CNPq, and UFV. This work was also carried out with the support of the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior - Brasil (CAPES) - Financing Code 001


```
aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll
```



```
aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll
```



```
aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll
```

```
INPUT EXTRA OUTPUT

aa bb cc dd ee ff gg hh ii jj kk ll

aa bb cc dd ee ff gg hh ii jj kk ll

aa bb cc dd ee ff gg hh ii jj kk ll

aa bb cc dd ee ff gg hh ii jj kk ll

aa bb cc dd ee ff gg hh ii jj kk ll

aa bb cc dd ee ff gg hh ii jj kk ll
```



```
aa bb cc dd ee ff gg hh ii j kk ll aa bb cc dd ee ff gg hh ii j kk ll aa bb cc dd ee ff gg hh ii j kk ll aa bb cc dd ee ff gg hh ii j kk ll aa bb cc dd ee ff gg hh ii j kk ll aa bb cc dd ee ff gg hh ii j kk ll aa bb cc dd ee ff gg hh ii j kk ll
```



```
aa bb cc dd ee f gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll
```

```
aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll
```


INPUT EXTRA OUTPUT aa bb cc dd ee ff gg hh ii ji kk ll ii jj kk ll aa bb cc dd ee ff gg hh aa bb cc dd ee ff gg hh ii ji kk II aa bb cc dd ee ff gg hh ii jj kk ll ii jj kk ll bb cc dd ee ff gg hh Routing Greedy

Placement Random

INPUT EXTRA OUTPUT aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii ji kk ll aa bb cc dd ee ff gg hh ii ji kk ll ee ff gg hh bb cc dd ee ff gg hh ii jj kk ll **RANDOM RANDOM**

conflict

Placement Greedy

OUTPUT INPUT EXTRA aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii jj kk ll aa bb cc dd ee ff gg hh ii ji kk ll aa bb cc dd ee ff gg hh aa bb cc dd ee ff gg hh ii ji kk ll Greedy Greedy

conflict

Placement Local Search SWAP

Placement Simulated Annealing

Architectures

In architecture A0:

There is 128 PEs, and each of these PEs has 2 inputs/outputs.

Architectures

In architecture A3:

There are 140 PEs, with 24 PE's having 1 input/output, and 116 having 2 inputs/outputs.

Architectures

In architecture A9:

There are 191 PEs, with 126 having 1 input/output, and 65 having 2 inputs/outputs.

2x Fir16

6x Mults1

7x Conv3

16x Mac

2x Ewf + 2x Conv3 + 4x Horner Bezier Surf

1x Fir16 + 5x Arf

5x Synthetic + 1x Fir16

7x Synthetic

7x Synthetic + 1x Mults1

Graphs

1x Pipeline

8x Synthetic

