УДК 577.151.6

РОТОРНЫЕ ИОН-ТРАНСЛОЦИРУЮЩИЕ АТФазы/АТФ-СИНТАЗЫ: РАЗНООБРАЗИЕ, ОБЩИЕ ЧЕРТЫ И ОТЛИЧИЯ

Обзор

© 2020 В.М. Зубарева¹, А.С. Лапашина^{1,2}, Т.Е. Шугаева¹, А.В. Литвин¹, Б.А. Фенюк^{1,2}*

1 Московский государственный университет имени М.В. Ломоносова, факультет биоинженерии и биоинформатики, 119991 Москва, Россия; электронная почта: feniouk@fbb.msu.ru

² НИИ физико-химической биологии имени А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова, 11991 Москва, Россия

Поступила в редакцию 22.07.2020 После доработки 22.09.2020 Принята к публикации 09.10.2020

Ион-транслоцирующие АТФазы катализируют гидролиз АТФ, сопряженный с переносом ионов через мембрану, и включают АТФазы F-, V- и А-типов, а также некоторые АТФазы Р-типа и АВС-транспортеры. F- и A-АТФазы, помимо гидролиза, способны к синтезу АТФ, т.е являются АТФ-синтазами. F-, V- и A-АТ-Фазы представляют из себя белковые наномашины, сопрягающие трансмембранный ионный транспорт и гидролиз АТФ с помощью ротационного механизма. Эти ферменты состоят из двух мультисубъединичных субкомплексов, вращающихся друг относительно друга в процессе катализа. При этом фосфорилирование/дефосфорилирование нуклеотида происходит напрямую, без интермедиата в виде фосфорилированного белка. АТФазы F-типа обнаружены в хлоропластах, митохондриях, большинстве эубактерий, и в нескольких видах архей. Ферменты V-типа присутствуют в эукариотических клетках в вакуолях, поздних эндосомах, транс-цистернах аппарата Гольджи, а также в плазматической мембране. АТФазы А-типа характерны для архебактерий и некоторых эубактерий. У ферментов F- и A-типа есть две основные функции: синтез АТФ за счет транспорта через мембрану протонов (или ионов натрия у некоторых прокариот) под действием протонного (или натриевого) электрохимического потенциала или же, наоборот, поддержание этого потенциала за счет гидролиза АТФ. У прокариот преобладание той или иной функции зависит от условий внешней среды и наличия у организма других ферментов, способных создавать этот потенциал. У эукариот преобладающей функцией F-ATФаз является синтез ATФ. V-ATФазы эукариот работают исключительно как АТФ-зависимые протонные насосы, основными функциями которых является генерация протонного электрохимического потенциала, необходимого для трансмембранного транспорта ионов и низкомолекулярных метаболитов, и регуляция рН. Данный обзор посвящен описанию разнообразия роторных ион-транслоцирующих АТФаз из разных организмов и сравнительному анализу структурных и функциональных особенностей этих ферментов.

КЛЮЧЕВЫЕ СЛОВА: АТФ-синтаза, F-АТФаза, A-АТФаза, V-АТФаза, внутриклеточный АТФ, протонтранслоцирующая АТФаза, регуляция.

DOI: 10.31857/S0320972520120131

ВВЕДЕНИЕ

АТФ является главным интермедиатом биоэнергетики клетки. Многие ферменты сопрягают экзергоническую реакцию гидролиза АТФ с необходимыми для жизни химическими реакциями, требующими энергии. Кроме того, энергия гидролиза АТФ используется клеткой для трансмембранного транспорта ионов и низкомолекулярных органических веществ и для совершения механической работы (мышечное сокращение, биение ресничек, расхождение хромосом во время деления и т.п.). Отношение АТФ/АДФ в клетке влияет на концентрации других нуклеотидов: нуклеозид-дифосфат киназа катализирует реакцию переноса γ -фосфата от АТФ на ГДФ, ЦДФ, ТДФ и УДФ с образованием соответствующих нуклеозид-трифосфатов, которые затем участвуют в синтезе белка, нуклеиновых кислот, липидов и в ряде других анаболических реакций.

Группа роторных ион-транслоцирующих АТФаз/АТФ-синтаз объединяет как ферменты, являющиеся основными «поставщиками» АТФ в клетке, так и его потребителей; в некоторых случаях один и тот же фермент может выполнять обе функции в зависимости от физиологических условий. Более того, в искусственных условиях эксперимента синтез АТФ можно получить даже на ферменте, не проявляющем этой

^{*} Адресат для корреспонденции.

активности *in vivo*. В этой связи в данном обзоре термины АТФаза и АТФ-синтаза используются как синонимы, но последний применяется только к ферментам, синтезирующим АТФ *in vivo*.

Роторные ион-транслоцирующие АТФазы подразделяют на три «семейства»: ферменты F-, V- и А-типа. Исторически первыми в середине XX в. были открыты F-АТФазы, и в настоящее время они являются наиболее подробно изученными. Они обнаружены в большинстве эубактерий и некоторых архебактериях (вместе с А-АТФазами), а также у эукариот в митохондриях и хлоропластах. Буква F является сокращением от английского «фактор» и появилась в ходе исследований окислительного фосфорилирования в митохондриях для обозначения факторов, необходимых для синтеза АТФ при дыхании.

V-АТФазы были открыты заметно позже, в 1980-х гг., в вакуолях эукариотических клеток (отсюда и буква V); история этого открытия описана в обзоре [1]. Примерно в то же время было обнаружено, что в архебактериях и некоторых эубактериях ион-транслоцирующие АТ-Фазы отличаются от ферментов F-типа и гораздо больше похожи на эукариотические V-ATФазы. Из-за этого во многих работах эти ферменты также называются V-АТФазами, особенно в случае эубактерий (например, Enterococcus hirae или Thermus thermophilus). Однако между V-АТФазами эукариот и прокариотическими ферментами есть ряд существенных отличий, описанных ниже, поэтому некоторые исследователи еще в начале 1990-х гг. предложили выделить роторные ион-транслоцирующие АТФазы архей в отдельную группу А-АТФаз [2]. Классификация, согласно которой все прокариотические ферменты этого типа объединяются в группу А-АТФаз, достаточно широко принята [3-6], представляется разумной и позволяет избежать ненужной путаницы, поэтому в данном обзоре мы употребляем термин «V-АТФазы» только для эукариотических ферментов.

Роторные ион-транслоцирующие АТФазы имеют общее эволюционное происхождение [7], сходную структуру и каталитический механизм. Это позволяет предположить, что ферменты этого типа уже были у общего предка про- и эукариот [8]. Все они осуществляют взаимопревращение двух основных «энергетических валют» клетки — АТФ и трансмембранной разности электрохимического потенциала протона ($\Delta \tilde{\mu}_{\mathrm{Na}^+}$) или, в случае некоторых прокариот, натрия ($\Delta \tilde{\mu}_{\mathrm{Na}^+}$), играют ключевую роль в регуляции концентраций нуклеотидов и энергизации мембран.

ОБЩИЕ ПРИНЦИПЫ СТРОЕНИЯ И ФУНКЦИИ РОТОРНЫХ АТФаз И ИХ СУБЪЕДИНИЧНЫЙ СОСТАВ

Все роторные АТФазы имеют общий основной принцип строения и субъединичной организации. Они состоят из двух частей: гидрофильного субкомплекса $F_1/V_1/A_1$, который связывает нуклеотиды и фосфат и катализирует синтез и/или гидролиз АТФ, и гидрофобного мембранного субкомплекса $F_0/V_0/A_0$, отвечающего за ионный транспорт. Эти две части соединены между собой центральным стержнем, а также одним или несколькими периферическими стеблями в единую структуру [9].

От общего предка все роторные АТФазы унаследовали набор субъединиц, непосредственно участвующих в синтезе/гидролизе АТФ и трансмембранном переносе ионов. Этот набор субъединиц удобно рассмотреть на примере наиболее просто устроенной F-АТФазы эубактерий. Основными функциональными компонентами бактериального F_1 являются кольцевой $\alpha_3\beta_3$ -гексамер, содержащий сайты связывания нуклеотидов, и субъединица у, которая имеет вытянутую форму и занимает центральную полость гексамера. Субъединица у вместе с небольшой субъединицей є составляют центральный стержень фермента и присоединяются к кольцевому олигомеру с-субъединиц. Ионный транспорт происходит в области контакта с-кольца с погруженной в мембрану субъединицей а и сопровождается вращением комплекса $c_{\rm n}\gamma\varepsilon$ («ротор») относительно остальной части фермента («статор»). Вращение γ внутри $\alpha_3\beta_3$ -гексамера сопряжено с конформационными изменениями в каталитических сайтах и синтезом/гидролизом АТФ.

вышеописанных субъединиц Гомологи представлены во всех известных F-АТФазах (рис. 1). Фермент хлоропластов по своему субъединичному составу практически не отличается от бактериального [14]. Митохондриальные АТФ-синтазы содержат одну дополнительную субъединицу в составе центрального стержня, называемую є, но не являющуюся гомологом єсубъединицы эубактерий и хлоропластов. Кроме того, фермент митохондрий отличается более сложным устройством периферического стебля: его составляют субъединицы девяти или более типов, различающихся у организмов разных таксономических групп (см. таблицу) [11, 15, 16]. Некоторые из субъединиц периферического стебля участвуют в димеризации митохондриального F₀F₁. Способность к димеризации, по всей видимости, является отличительной особенностью всех митохондриальных F-ATФаз: она описана для ферментов дрожжей

Субъединичный состав роторных АТФаз

	$V_{O}V_{1}$ млеко-питающих	A_0A_1	F_0F_1									
V _O V ₁ S. cerevisiae			E. coli	S. cere- visiae	B. taurus	E. gracilis	Chloro- phyceae	Комментарии				
Гексамер												
A	A	A	β	β	β	β	β	несет каталитический сайт				
В	В	В	α	α	α	α	α	несет некаталитический сайт				
_	_	_	_	_	_	p18	_	участвует в сборке				
Центральный стебель												
D ¹	Dı	D ¹	γ	γ	γ	γ	γ	вращается внутри каталитического гексамера, передает вращательный момент между мембранным и гидрофильным субкомплексами. В F-ATФазе хлоропластов имеет регуляторную функцию				
$F^{1,3}$	$F^{1,3}$	F ^{1,3}	_	-	_	_	-	сопряжение				
_	_	_	3	δ	δ	δ	δ	сопряжение; в хлоропластах и у некоторых бактерий – регуляция				
_	_	_	_	3	3	3	ε	структурный компонент ротора				
D	d	d (C)	_	-	_	_	-	структурный компонент ротора				
Voa1p	ATP6AP2 (PRR)	_	_	-	-	_	-	участвует в процессах сигналинга				
Big1	ATP6AP1 (Ac45)	_	-	-	_	_	_	участвует в процессах сигналинга				
		Мембран	нный ком	плекс F	/A _O /V _O и су	/бъединиць	ы перифери	ческого стебля				
c/c'/c'' (Vma16p)	c/c"	c (K, L)	С	С	С	С	С	перенос ионов через мембрану				
A	a	I	a	a	a	a	a	образует ионные полуканалы в мембране; у А- и V-АТФаз также образует «воротник» для прикрепления периферических стеблей				
-	_	_	-	8	A6L	A6L	_	мембранная субъединица, стабилизирует F ₀ -субкомплекс				
-	_	_	-	e (Tim11)	e	_	_	мембранные субъединицы, участвуют в димеризации				
_	_	_	_	g	g	_	-					
-	_	_	_	1	k	k ⁵	-					
_	_	_	_	k	DAPIT	_	_					
-	_	_	_	i (j)	6.8PL	i (j)	_	мембранная субъединица, участвует в сборке F_0				
-	_	_	_	_	_	_	Asa3	частично или полностью погружены в мембрану				
-	_	_	_	_	_	_	Asa5	пы в моморапу				
-	_	_	_	_	_	_	Asa6					
_	_	_	_	_	-	_	Asa8					

Окончание таблицы

V _O V ₁ S. cerevisiae	$V_{0}V_{1}$ млекопитающих	A_0A_1			F_0F_1			
			E. coli	S. cere- visiae	B. taurus	E. gracilis	Chloro- phyceae	Комментарии
	_	_	_	_	_	_	Asa9	
_	_	_	_	_	_	_	Asa10	мембранная субъединица, участвует в димеризации
_	_	_	_	_	_	ATPTB6	_	мембранные субъединицы
_	_	_	_	_	_	ATPTB12	_	
_	_	_	_	_	_	ATPEG3	_	
_	_	_	_	_	_	ATPEG4	_	
_	_	_	_	_	_	ATPEG5	_	
_	_	_	_	_	_	ATPEG6	_	
_	_	_	_	_	_	ATPEG7	_	
_	_	_	_	_	_	ATPEG8	_	
_	_	_	_	_	_	ATPEG1	_	мембранные, участвуют в димеризации
_	_	_	_	_	_	ATPEG2	_	
E	e	_	_	_	_	_	_	мембранные субъединицы
F	f	_	_	_	_	_	_	
G^1 $E^{1,2}$	G^1 $E^{1,2}$	G^1 $E^{1,2}$	b	b	b	b	_	протяженная субъединица периферического стебля, связывает мембранный и гидрофильный комплексы
_	_	_	δ	OSCP	OSCP	OSCP	OSCP	присоединяет периферический стебель к с каталитическому гексамеру
C	С	_	_	_	_	_	_	образуют «воротник» для прикреп-
Н	Н	_	_	_	_	_	_	ления периферических стеблей
_	_	_	_	f6	f6	_	_	субъединицы периферического стебля
_	_	_	_	d	d	d ⁴	_	
_	_	_	_	f	f	f ⁴	_	
_	_	_	_	_	-	_	Asa1	субъединица периферического стебля, участвует в димеризации
_	_	_	_	_	_	_	Asa2	субъединицы периферического стебля
_	_	_	_	_	_	_	Asa4	
_	_	_	_	_	-	_	Asa7	
_	_	_	_	_	_	ATPTB1	_	субъединицы периферического стебля
_	_	_	_	_	-	ATPTB3	_	
_	_	_	_	_	_	ATPTB4	_	

Примечание. В одной и той же строке указаны субъединицы, имеющие общего предка. В скобках приводятся альтернативные названия субъединиц; (¹) Эволюционное родство однозначно не показано различными исследователями, гомология как и утверждается, так и опровергается; (²) некоторые исследователи предполагают гомологю и с субъединицей δ ; (³) часть исследователей предполагает гомологию с субъединицей ε ; (4) предполагается участие в димеризации; (⁵) не предполагается участие в димеризации.

Рис. 1. Сравнение структур роторных АТФаз. Показаны: F-АТФаза эубактерии *Bacillus* sp. PS3 (PDB ID 6N2Y [10]), F-АТФаза митохондрий свиньи *Sus scrofa* (PDB ID 6J5I [11]), A-АТФаза эубактерии *Thermus thermophilus* (PDB ID 6R0W [12]), V-АТФаза крысы *Rattus norvegicus* (PDB ID: 6VQ9, 6VQC, 6VQI [13]). Одним и тем же цветом окрашены субъединицы, для которых показана или предполагается гомология последовательностей и/или функций. Субъединицы ротора выделены жирным контуром; пунктиром показана скрытая часть ротора; бежевой полосой обозначена мембрана. (С цветными вариантами рис. 1, 2, 4, 5 можно ознакомиться в электронной версии статьи на сайте: http://sciencejournals.ru/journal/biokhsm/)

[17, 18], водорослей [15, 16], высших растений [19] и, наконец, позвоночных [20]. Две молекулы фермента в составе димера соединяются между собой мембранными частями со стороны периферических стеблей; сам димер имеет V-образную форму и приводит к возникновению изгиба мембраны. Кроме того, димеры собираются в протяженные ряды [21] и обеспечивают формирование крист, располагаясь вдоль складок внутренней митохондриальной мембраны (таблица) [22]. Подробное сравнение структур F-АТФаз из разных организмов и органелл можно найти в недавнем обзоре [5].

АТФазы А- и V-типов структурно отличаются от F-АТФаз наличием не одного, а нескольких периферических стеблей. Так, прокариотические А-АТФазы содержат два периферических стебля [12], а V-АТФазы эукариот — три [13]. Каждый стебель состоит из двух субъединиц: Е и G. Некоторые исследователи предполагают, что эти субъединицы являются гомологами субъединиц δ и b периферического стебля F-АТФаз эубактерий [7, 24]. Центральный стержень А- и V-АТФаз содержит специфические дополнительные субъединицы, участвующие в присоединении субъединицы D — функционального

аналога субъединицы γ F-AT Φ аз — к c-кольцу. У V-AT Φ аз c-кольцо представляет собой гетероолигомер, который, помимо нескольких копий субъединицы c, содержит гомологичную последней субъединицу c", а у дрожжей ещё и c[13, 25]. Субъединица а у V-АТФаз (и ее гомолог I у А-АТФаз) имеет гидрофильный домен, напоминающий по форме воротник и выдающийся из мембраны; он служит для присоединения двух периферических стеблей. Третий периферический стебель у V-АТФаз присоединяется к субъединице а посредством отдельной субъединицы С, отсутствующей у ферментов А-типа [13]. Считается, что V- АТФазы эукариот произошли от А-АТФаз плазматической мембраны архей: на это указывает сходство субъединичного состава и аминокислотных последовательностей этих ферментов. Подробная характеристика структур А- и V-АТФаз дается в ряде обзоров, см. например [26–28]; полный список субъединиц отдельных представителей роторных АТФаз с учетом гомологии функций и последовательностей приведен в таблице. Стоит еще раз отметить, что, несмотря на перечисленные различия, связанные по большей части со структурной «обвязкой» ферментов, набор субъединиц, непосредственно вовлеченных в связывание субстратов и транспортируемых ионов, одинаков у всех роторных АТФаз, что указывает на общее эволюционное происхождение и высокую консервативность их каталитического механизма.

КАТАЛИТИЧЕСКИЙ МЕХАНИЗМ F₁/A₁/V₁

В составе гексамера субъединицы α и β (В и А) чередуются между собой, а нуклеотид-связывающие сайты располагаются на поверхностях их взаимодействия. У всех роторных АТФаз есть три каталитических сайта; они образованы по большей части остатками субъединиц β у F-AT-Фаз [29] и субъединиц А у V- и А-АТФаз [13, 30] и имеют чрезвычайно консервативную структуру [31]. В катализе участвует также консервативный остаток аргинина («аргининовый палец»), который принадлежит субъединице α у F-AT-Фаз и В у А- и V-АТФаз и стабилизирует γ-фосфатную группу АТФ [32, 33]. Субстратами роторных АТФаз являются магниевые комплексы нуклеотидов; без магния нуклеотиды связываются с ферментом, однако гидролиза/синтеза не происходит.

У F-АТФаз $\alpha_3\beta_3$ -гексамер содержит еще три нуклеотид-связывающих сайта, которые расположены в основном на субъединицах α и называются некаталитическими; они могут связы-

вать АТФ и другие пуриновые нуклеотиды, и, вероятно, участвуют в регуляции активности фермента (см. обзоры [34, 35]). Для АТФаз А- и V-типа сам факт существования некаталитических сайтов является предметом дискуссии. В имеющихся структурах ферментов субъединица В не содержит связанного нуклеотида [12, 13, 36]. Вместе с тем, в литературе имеются данные о связывании фотоаффинных аналогов АТФ и АДФ субъединицей В некоторых А-АТФаз как в изолированном виде, так и в составе А₁-субкомплекса, поэтому некоторые исследователи предполагают, что эта субъединица все же может играть роль в регуляции катализа [4, 37]. Появление каталитической и некаталитической субъединицы в гексамере, по всей вероятности, является результатом дупликации гена у общего предка пробактерий еще до их разделения на архе- и эубактерий [38].

При синтезе/гидролизе АТФ три каталитических сайта кооперативно взаимодействуют между собой. В отдельно взятый момент времени сайты имеют неодинаковое сродство к субстратам и продуктам реакции, а каталитические события в одном сайте влияют на конформацию двух остальных. Эта идея впервые была предложена для F-АТФазы Полом Бойером и позднее легла в основу общепринятой сейчас модели катализа, получившей название «механизм чередования изменяющегося сродства» (alternating binding change mechanism) [39]. Эффективность кооперации между сайтами обеспечивает асимметричная субъединица центрального стержня (γ у F-ATФаз и D у A- и V-AT-Фаз), которая вращается внутри каталитического гексамера, по очереди взаимодействуя с его субъединицами и вызывая конформационные изменения в них. Полный оборот этой субъединицы сопровождается синтезом или гидролизом трех молекул АТФ. Вращение γ-субъединицы в процессе катализа было предсказано на основании структуры F₁-субкомплекса из митохондрий быка [29] и впоследствии показано напрямую на единичных молекулах бактериального F_1 [40]. В дальнейшем методы исследования гидролиза $AT\Phi$ комплексом F_1 на единичных молекулах были значительно усовершенствованы и позволили получить огромный массив экспериментальных данных, детально прояснивших молекулярный механизм гидролиза АТФ для F-АТФаз прокариот и эукариот (см., например, обзоры [41–43]). Ротационный механизм A_1 субкомплекса изучен в основном на ферментах эубактерий Enterococcus hirae [44] и Thermus thermophilus [45, 46] и имеет свои особенности, однако подчиняется описанному выше принципу. Для эукариотической V-АТФазы также было показано АТФ-зависимое вращение центрального стержня [47]. Таким образом, фундаментальное сходство F-, A- и V-АТФаз просматривается не только на уровне структуры, но и в механизме ротационного катализа.

Субстратная специфичность роторных АТ-Фаз широка и исследовалась как на изолированных ферментах [48-50] или их субкомплексах [51-54], так и на мембранах митохондрий [55], хлоропластов [56], вакуолей [57] и плазматических мембранах эукариотических [58] и прокариотических клеток [59, 60]. По всей видимости, для всех роторных АТФаз характерны ГТФазная и ИТФазная активности, которые по своей величине сопоставимы с АТФазной (от 30 до 90% для разных ферментов или их субкомплексов) и способны поддерживать ионный транспорт. Для F-ATФазы из Escherichia coli показан также синтез ГТФ и ИТФ [59], а для фермента из термофильной бактерии *Bacillus* sp. PS3 — синтез ГТФ и, хотя и с очень низкой эффективностью, синтез УТФ и ЦТФ [60]. Таким образом, следует отметить, что ион-транслоцирующие роторные АТФазы, видимо, способны напрямую регулировать в клетке не только отношение $AT\Phi/AД\Phi$, но и $\Gamma T\Phi/\Gamma Д\Phi$.

Некоторые ферменты, в особенности А-АТ-Фазы архей, могут также катализировать гидролиз пиримидиновых нуклеозидтрифосфатов (УТФ и/или ЦТФ), однако эта реакция происходит гораздо медленнее [49, 50, 53, 54, 61, 62] и плохо сопрягается с протонным транспортом [57]. Лишь для некоторых A_0A_1 показана УТ-Фазная или ЦТФазная активность, сопоставимая с АТФазной [63]. УТФазная активность V-АТФазы быка не ингибируется бафиломицином – ингибитором ион-транспортирующего комплекса $V_{\rm O}$, — что указывает на нарушение сопряженности между $V_{\rm O}$ и $V_{\rm I}$ при гидролизе УТФ [58]. Исследование единичных молекул F_1 эубактерии субкомплекса термофильной Bacillus sp. PS3 показало, что вращение γ -субъединицы происходит при гидролизе только пуриновых нуклеотидов [48]. Таким образом, роторные АТФазы вряд ли могут напрямую оказывать заметное влияние на соотношение пиримидиновых нуклеотидов в клетке.

МЕХАНИЗМ ИОННОГО ТРАНСПОРТА ЧЕРЕЗ $F_{\rm O}/A_{\rm O}/V_{\rm O}$. ИОННАЯ СПЕЦИФИЧНОСТЬ И СООТНОШЕНИЕ ИОН/АТФ

Ключевыми участниками трансмембранного ионного транспорта, осуществляемого роторными АТФазами, являются кольцевой c-олигомер и прилежащая к нему субъединица a (или, в

случае V-АТФаз, ее мембранный C-концевой домен). Говоря о ферментах А-типа, гомолог субъединицы c в литературе называют субъединицей К или L, а гомолог субъединицы a — субъединицей I.

На внешней поверхности c-кольца (К-или L-кольца у A-ATФаз) находятся сайты связывания ионов, погруженные в глубину липидного бислоя. Ключевую роль в связывании иона играет карбоксильная группа остатка аспартата или глутамата, расположенного в середине одной из трансмембранных α -спиралей субъединицы c/K/L. Субъединица a (I у A-ATФаз), взаимодействуя с c/K/L -кольцом, образует два полуканала, которые открываются на разные стороны мембраны. Между полуканалами в области контакта с c/K/L -кольцом у субъединицы a/I расположен консервативный остаток аргинина, без которого ионный транспорт не происходит [64].

Принцип работы подобного ион-транслоцирующего роторного комплекса был предложен В.П. Скулачевым и А.Н. Глаголевым в 1978 г. для объяснения механизма вращения бактериального жгутика [65]. Согласно этой гипотезе, перенос иона между полуканалами происходит благодаря вращению кольцевого олигомерного белкового комплекса, несущего ион-связывающие сайты, в плоскости мембраны. Модели, описывающие сходный механизм ротационного транспорта ионов, были предложены для F-AT-Фаз еще до того, как была получена структура комплекса F₀ [66, 67] (рис. 2). Структуры, полученные позже с помощью криоэлектронной микроскопии, хорошо согласуются с этой моделью, в том числе, и для V- и A-ATФаз [10, 11, 13, 14, 68, 69].

Большинство прокариотических ферментов А- и F-типа, а также все известные на сегодня Fи V-АТФазы эукариот осуществляют трансмембранный транспорт ионов водорода, и до начала 1980-х гг. предполагалось, что биоэнергетика синтеза/гидролиза АТФ связана исключительно с протонным транспортом. Однако затем В.П. Скулачев предположил возможность существования натриевой биоэнергетики и синтеза АТФ за счет энергии $\Delta \tilde{\mu}_{Na}^{+}$ [70, 71]. Дальнейшие эксперименты подтвердили эту гипотезу. Были обнаружены F- и А-АТФазы, сопрягающие синтез/гидролиз АТФ и трансмембранный транспорт ионов натрия (см., например, обзоры [72, 73]). Они были найдены у некоторых эубактерий и архей и могут выполнять роль как АТФсинтаз, так и АТФ-зависимых Na⁺-насосов, контролирующих концентрацию натрия в цитоплазме. Весьма вероятно, что эволюционно натрий-транслоцирующие роторные АТФазы предшествовали протонным [74], и что в древ-

Рис. 2. Схема трансмембранного протонного транспорта, осуществляемого роторной АТФазой при гидролизе АТФ. Протоны могут достигнуть ион-связывающих групп на субъединицах c только через полуканалы, образованные субъединицей a (I у A-ATФаз). Гидролиз АТФ приводит во вращение субъединицы ротора, в том числе и c-кольца (K- или L-кольца у A-ATФаз). Высококонсервативный остаток аргинина субъединицы a/I, несущий положительный заряд, препятствует переносу протонов между полуканалами в области ее контакта с c/K/L-кольцом

них пробактериях присутствовали Na^+ -транслоцирующие $AT\Phi$ -синтазы, работавшие за счет $\Delta \tilde{\mu}_{Na}^+$, генерируемого в ходе синтеза ацетата из углекислого газа и молекулярного водорода [75].

Na⁺-транслоцирующие АТФазы обнаружены у многих морских и у патогенных прокариот, где они, вероятно, играют важную роль в поддержании низкой внутриклеточной концентрации натрия, а также у некоторых анаэробных эуи архебактерий, в которых они синтезируют АТФ за счет $\Delta \tilde{\mu}_{Na}^{+}$ [73]. У прокариот, для которых главной предполагаемой функцией фермента является откачка натрия из клетки, Na⁺-транслоцирующая F-АТФаза имеет ряд особенностей: у нее отсутствует субъединица δ , а субъединица b имеет дополнительный домен, вероятно, выполняющий функцию субъединицы δ. Такие F-АТФазы были выделены в отдельную подгруппу и названы *N*-АТФазами; было также отмечено, что у организмов, в которых они присутствуют, обнаруживается еще одна, протонная роторная АТФаза [76].

Следует также отметить, что N-АТФазы, вероятно, могут быть и ⁺-транслоцирующими ферментами: эксперименты на N-АТФазе патогенной бактерии *Burkholderia pseudomallei* позволяют предположить, что сопрягающим ионом является протон, а не натрий [77].

Ионная специфичность роторных АТФаз определяется первичной структурой субъединиц c/K/L и α/L . Следует отметить, что все роторные АТФазы теоретически способны к транспорту протонов; для некоторых натрий-зависимых АТФаз он показан экспериментально в условиях недостатка натрия [78-80]. В физиологических условиях, однако, концентрация ионов натрия превосходит концентрацию протонов примерно на шесть порядков. Таким образом, протон-зависимые АТФазы в ходе эволюции выработали чрезвычайно высокую селективность Н+/Na+. По всей видимости, такую селективность обеспечивает гидрофобное окружение ион-переносящей карбоксильной группы. В свою очередь, натрий-зависимые ферменты обладают более низкой протонной селективностью благодаря наличию в ион-связывающем сайте полярных групп. Эти группы принадлежат остову белка или боковым цепям аминокислот (глутамин, серин, треонин, тирозин) и координируют ион натрия вместе с ионизируемым карбоксилом; в некоторых случаях в координации иона участвует также молекула воды [81, 82]. Именно соотношение полярных и гидрофобных групп в ион-связывающем сайте, а также их расположение в пространстве определяют ионную селективность фермента, что подтверждается

Рис. 3. Варианты строения c/K/L-субъединиц роторных АТФаз с указанием примера организма, обладающего соответствующим ферментом. Буквы E/D обозначают остатки глутамата/аспартата, необходимые для связывания и транслокации ионов. В скобках указано количество субъединиц, входящих в c/K/L-кольцо у фермента из разных организмов. Простой вариант субъединицы c, как у E. coli, является преобладающим среди ферментов F-типа

молекулярно-динамическими симуляциями и мутагенезом [83, 84]. Существуют ферменты, которые в физиологических условиях могут одновременно транспортировать и H⁺, и Na⁺, например, A-ATФаза метаногенной археи *Methanosarcina acetivorans* [85].

Ключевым параметром биоэнергетики клетки является количество ионов, транслоцируемых роторной АТФазой на одну молекулу АТФ (отношение H⁺/ATФ или Na⁺/ATФ; корреляция этого параметра с функцией фермента обсуждается ниже в соответствующем разделе). Число молекул АТФ, синтезируемых или гидролизуемых за один полный оборот ротора, одинаково для всех роторных АТФаз и равняется трем по числу каталитических сайтов. В свою очередь, число ионов, переносимых через мембрану, напрямую зависит от количества карбоксильных групп консервативных остатков глутамата/аспартата, необходимых для связывания ионов на кольце с-субъединиц. Эта величина видоспецифична и зависит от стехиометрии с/К/L-кольца, от количества вышеупомянутых карбоксильных групп на одну c/K/L-субъединицу (рис. 3), и от эффективности сопряжения (т.е. от вероятности «проскальзывания» фермента и не сопряженного с синтезом/гидролизом АТФ переноса ионов).

В литературе описаны ферменты, содержащие от 8 (F-ATФаза митохондрий быка [86], А-ATФаза *Methanococcus jannaschii* [87]) до 17 (N-ATФаза патогенной бактерии *В. pseudomallei* [77]) ион-транслоцирующих групп в *с*-кольце.

Эукариотические V-АТФазы с известной стехиометрией с-кольца (ферменты дрожжей и млекопитающих) содержат по 10 ион-транслоцирующих групп [13, 25]. В простейшем случае (например, в F-ATФазе E. coli или митохондрий) cсубъединица представляет собой шпильку из двух трансмембранных а-спиралей и содержит единственный ион-переносящий остаток, который расположен в средней части С- концевой αспирали. Две спирали соединяются петлей, которая образована полярными аминокислотными остатками и взаимодействует с другими субъединицами ротора. Такое строение имеют cсубъединицы большинства изученных F-AT-Фаз, а также c/K/L-субъединицы ряда ферментов А-типа [88, 89]. Вместе с тем, во всех группах роторных АТФаз независимо происходили дупликации генов субъединицы c/K/L, что приводило к появлению субъединиц, содержащих две и более α-спиральные шпильки [90]. В некоторых случаях дупликация сопровождалась потерей ион-связывающей группы на одной из шпилек. Наиболее разнообразны субъединицы c/K/L у A-АТФаз. Типичным вариантом является субъединица с одной шпилькой [88, 91]. Также часто встречается субъединица c с двумя шпильками, причем на них могут сохраняться как два сайта связывания иона (характерно для метаногенов), так и один (у *Pyrococcus* и Thermococcus) [92, 93]. Субъединица c/K/L фермента M. jannaschii состоит из трех шпилек и несет два сайта связывания ионов [87]. Наконец, у метаногена Methanopyrus kandleri по геномной последовательности предсказано существование c-субъединицы, которая состоит из 13 шпилек, содержит 13 сайтов связывания ионов и, вероятно, образует мономерное кольцо [94].

У V-АТФаз каждая из субъединиц гетеромерного c-кольца (c, c'', а также c' дрожжей) содержит две α -спиральные шпильки, однако сохранила только один ион-переносящий остаток [90]. Гетеромерное c-кольцо известно и среди F-АТФаз: в Na⁺-транслоцирующей АТФазе *Acetobacterium woodii* оно состоит из 9 копий «обычной» c-субъединицы, образованной двумя α -спиралями, и одной дуплицированной c-субъединицы из четырех спиралей, несущей лишь один ион-связывающий сайт [95, 96].

Стехиометрия c-кольца постоянна у каждого организма и определяется первичной структурой c-субъединицы, в частности — аминокислотными остатками в области контакта соседних субъединиц. Мутации в этой области у F-АТФаз приводили к образованию c-колец с измененной стехиометрией [97, 98].

ФУНКЦИИ F- и А-АТФаз

Все роторные АТФазы устанавливают определенный баланс между величиной трансмембранной разности электрохимического потенциала сопрягающего иона ($\Delta \tilde{\mu}_{H^+}$ или $\Delta \tilde{\mu}_{Na}^+$; ниже для краткости мы будем говорить о протонах, но для ионов натрия логика сохраняется та же самая) и соотношением концентраций АТФ, АДФ, ГТФ, ГДФ, неорганического фосфата, ионов магния и величины рН. Количественно этот баланс будет определяться специфичным для каждого конкретного фермента отношением $H^+/AT\Phi$, которое, как было сказано выше, зависит от количества ион-связывающих карбоксильных групп на кольце c-субъединиц.

Величина энергии Гиббса синтеза АТФ в клетке в физиологических условиях составляет ~ 55 кДж/моль [99]. Величина энергии, высвобождаемой при транспорте протонов «вниз» по электрохимическому градиенту зависит от величины $\Delta \tilde{\mu}_{H^+}$ и для сопрягающих мембран прокариот, митохондрий и хлоропластов обычно составляет ~ 10-22 кДж/моль (что примерно соответствует протон-движущей силе р от 100 до 220 мВ). Это означает, что для синтеза одной молекулы AT Φ , в зависимости от величины $\Delta \tilde{\mu}_{H^+}$, необходим транспорт от 2,5 до 5,5 протонов. В полном соответствии с этим расчетом, у F-AT-Фазы в митохондриях млекопитающих отношение Н+/АТФ, исходя из структуры фермента, составляет $8/3 \approx 2.7$, а $\Delta \tilde{\mu}_{\text{H}^+}$, на внутренней митохондриальной мембране (с учетом различия значений рН между матриксом и межмембранным пространством) составляет $\sim 18-22$ кДж/моль ($p \approx 180-220$ мВ) [100]. Увеличение количества ион-связывающих сайтов на кольце c-субъединиц, по всей видимости, повышает отношение $H^+/AT\Phi$ и позволяет синтезировать $AT\Phi$ при меньших значениях $\Delta \tilde{\mu}_H^+$.

Направление реакции, катализируемой роторными АТФазами, зависит от наличия и активности других ферментов, генерирующих $\Delta \tilde{\mu}_{H^+}$. В митохондриях АТФ- синтаза начинает гидролизовать АТФ в условиях ишемии, когда активность ферментов дыхательной цепи падает. В хлоропластах то же самое происходит при снижении интенсивности освещения. У прокариот $\Delta \tilde{\mu}_{H^+}$ могут генерировать ферменты дыхательной или фотосинтетических цепей переноса электронов, бактериородопсины, а также некоторые белки-переносчики метаболитов. При снижении активности этих ферментов АТФаза начинает гидролизовать АТФ и выкачивать протоны из клетки, генерируя при этом $\Delta \tilde{\mu}_{H^+}$. У прокариот этот процесс имеет особо важное значение, так как $\Delta \tilde{\mu}_{\mathrm{H}^+}$ необходима для ряда важных функций: вращения жгутика, трансмембранного транспорта ионов и низкомолекулярных веществ и др. Однако в отсутствие иных источников АТФ такая активность может быстро истощить его внутриклеточные запасы. Поэтому неудивительно, что для F-АТФаз обнаружен целый ряд регуляторных механизмов, подавляющих АТФазную активность фермента в условиях падения отношения АТФ/АДФ и снижения $\Delta \tilde{\mu}_{H^+}$ [14, 35, 101]. Некоторые из этих механизмов, судя по всему, встречаются также у А-АТФаз (см. ниже).

В вышеперечисленных примерах важной, если не основной, функцией роторной АТФазы является синтез АТФ, который она осуществляет за счет работы других генераторов $\Delta \tilde{\mu}_{\rm H}^+$. У прокариот, в которых такие генераторы отсутствуют, роторная АТФаза работает исключительно как протонный насос, генерирующий $\Delta \tilde{\mu}_{\rm H}^+$ и повышающий рН цитоплазмы. Для ацидофильных прокариот последняя функция бывает жизненно важной.

Как было отмечено выше, для архебактерий характерны А-АТФазы, в то время как у эубактерий преобладают ферменты F-типа. Примечательно, что в ходе эволюции многие эубактерии приобрели опероны А-АТФаз, а в некоторых случаях потеряли затем опероны F-АТФаз. Проведенный нами анализ набора полностью секвенированных 711 геномов прокариот (83 архей и 628 эубактерий), взятый за основу последней версии базы Clusters of Orthologous Groups of proteins (COG) [102], показал, что приобретения

Рис. 4. Распределение оперонов различных типов роторных АТФаз в геномах прокариот из базы данных СОБ. Эта база данных содержит геномы 83 архей и 628 эубактерий, и достаточно равномерно покрывает все филогенетическое разнообразие известных прокариот. Количественные данные приведены в тексте

эубактериями А-АТФазы через горизонтальный перенос генов происходили многократно и независимо в разных группах. В целом, распределение оперонов роторных АТФаз в организмах базы СОС оказалось следующим (рис. 4): 1) все 83 представителя архебактерий содержат гены А-АТФазы, а один вид (Methanosarcina acetivorans) содержит еще и оперон F-АТФазы N-типа; 2) из 628 эубактерий у 488 есть только единственный оперон F-АТФазы, у 19 – только один оперон А-АТФазы, у 47 присутствуют одновременно опероны типа A и F (4 случая из них – A и N), а также встречаются эубактерии с несколькими оперонами ферментов одного типа; 3) у 12 из 628 эубактерий вообще отсутствуют роторные ион-транслоцирующие АТФазы (эти организмы являются эндосимбионтами растений и насекомых).

Эти данные указывают, что F- и A-ATФазы функционально «взаимозаменяемы» у эубактерий. Кроме того, в некоторых случаях наличие более чем одной роторной ATФазы (предположительно, с разными регуляторными особенностями), вероятно, дает эволюционное преимущество.

В заключение следует отметить, что у эукариот F-АТФазы, помимо синтеза АТФ, выполняют еще ряд функций. Выше было отмечено, что димеризация митохондриальных АТФ-синтаз необходима для образования крист. Еще одной важной, хотя и спорной, функцией этого фермента является его участие в образовании т.н.

«митохондриальной поры» (mPTP, mitochondrial permeability transition pore) — белкового комплекса, который образует в митохондриальной мембране канал, пропускающий молекулы массой до 1,5 кДа. Образование mPTP в условиях стресса (в частности, при повышении концентрации кальция или активных форм кислорода) в митохондриях млекопитающих приводит к диссипации $\Delta \tilde{\mu}_{\mathrm{H}^{+}}$, набуханию митохондрий, выходу в цитоплазму митохондриальных белков и запуску каскада программируемой клеточной гибели [103]. Ряд исследователей предполагает, что митохондриальная АТФ-синтаза играет важную роль в образовании mPTP [104]. Однако прямые эксперименты, в которых исследовалось влияние делеции генов АТФ- синтазы на формирование mPTP, противоречат этой гипотезе [105].

ФУНКЦИИ V-АТФаз

Если направление катализируемой реакции для F- и A-АТФаз зависит от внешних условий и от вида организма, то для V-ATФаз единственным режимом работы in vivo является трансмембранный транспорт протонов за счет энергии гидролиза АТФ. В искусственных условиях, однако, исследователям удалось «заставить» V-AT-Фазу дрожжей синтезировать ATФ за счет $\Delta \tilde{\mu}_{H^+}$, создаваемого пирофосфатазой [106]. Это позволяет предположить, что, как и АТФазы F- и Aтипа, фермент способен катализировать и синтез, и гидролиз АТФ. Но функция синтеза остается «невостребованной» in vivo, так как в большинстве мембран, где обнаружены V-ATФазы, отсутствуют иные генераторы $\Delta \tilde{\mu}_{H^+}$, а на плазматической мембране эукариотической клетки величина $\Delta \tilde{\mu}_{H^+}$ недостаточна для синтеза AT Φ .

Физиологическое значение V-АТФазы весьма многообразно, и в литературе есть много обзоров, где подробно описаны ее различные функции, например, [1,107,108]. Ниже мы ограничимся лишь наиболее общей информацией на эту тему.

Чаще всего V-АТФаза работает в паре с другими мембранными белками-транспортерами и выполняет функцию универсального мотора, создающего $\Delta \tilde{\mu}_{\rm H}^+$, которая затем конвертируется в различные виды работы, необходимой для жизнедеятельности клетки и организма. В большинстве случаев эта работа заключается в трансмембранном транспорте ионов и низкомолекулярных соединений (рис. 5).

Одной из важнейших функций этого фермента является закисление содержимого компартментов эукариотической клетки, а в некоторых тканях — внеклеточной среды. В этом слу-

Рис. 5. V-АТФаза как поставщик энергии для трансмембранного транспорта. Перенос протонов за счет энергии гидролиза АТФ создает на мембране $\Delta \tilde{\mu}_{\rm H}^+$, которая складывается из электрического потенциала и градиента концентрации. Разнообразные мембранные белки-переносчики (симпортеры, антипортеры, переносчики и каналы) используют энергию $\Delta \tilde{\mu}_{\rm H}^+$ для транспорта ионов (Ме $^+$ – катионы металлов, А $^-$ – анионы органических кислот, Cl $^-$ и др.) и низкомолекулярных соединений (С $^-$ нейромедиаторы, пептиды и др.)

чае электрическая компонента генерируемой $\Delta \tilde{\mu}_{\text{H}^+}$ компенсируется транспортом других ионов (симпортом анионов Cl⁻, например), что позволяет создать ДрН большей величины и сильнее закислить содержимое компартмента. V-ATФаза участвует в закислении содержимого трансцистерн аппарата Гольджи и последующем белковом сортинге [109], дает энергию для процесса ретроградного транспорта белков [28], а также необходима для снижения рН лизосом и эндосом [107] и играет важную роль в процессах эндоцитоза, в том числе клатрин-зависимого, осуществляя необходимое для этого закисление содержимого везикул [110]. Протонный транспорт из клетки в межклеточную среду, осуществляемый V- АТФазой в плазматической мембране остеокластов, необходим для нормальной ресорбции костной ткани и поддержания баланса между ее формированием и разрушением. Повышенная активность фермента может приводить к остеопетрозу, а пониженная - к остеопорозу [111]. В клетках эпителия почечных канальцев V-ATФаза осуществляет закисление мочи; нарушения ее работы приводят к неспособности дистальных канальцев поддерживать градиент рН, что приводит к потере ионов калия и натрия с мочой и возникновению дистального почечного тубулярного ацидоза [112].

Кроме поддержания рН-гомеостаза, V-AT-Фаза также необходима для осуществления транспорта ионов и низкомолекулярных соединений через мембраны. Так, активность V-AT-Фазы поддерживает нормальное функционирование Na⁺/H⁺-обменников, которые участвуют в ответе на гиперосмотический и окислительный стрессы, что было показано на клетках дрожжей *S. cerevisiae* [113]. В растительных клетках фермент играет важнейшую роль в ответе на солевой стресс, в накоплении в вакуоли ионов металлов (в том числе, токсичных), а также минеральных и органических кислот [114]. В синаптических везикулах специальные мембранные белки осуществляют обмен H⁺ и нейротрансмиттеров, что позволяет более чем в 1000 раз увеличить концентрацию последних внутри везикул по сравнению с цитоплазмой [1].

V-АТФаза также является важным элементом ряда клеточных сигнальных путей. Показано, что подавление ее активности приводит к нарушению ассоциации комплекса mTORC1 одного из важнейших регуляторов метаболизма аминокислот – с лизосомами. Закисление их содержимого в результате работы V-АТФазы оказалось необходимым этапом для нормальной активации mTORC1 в ответ на повышение концентрации аминокислот [115]. Также фермент играет важную роль в регуляции метаболизма глюкозы. В ответ на снижение внутриклеточной концентрации глюкозы происходит диссоциация комплексов V_1 и V_0 (см. также раздел «Регуляция активности роторных АТФаз» ниже), в результате которой фермент инактивируется.

РЕГУЛЯЦИЯ АКТИВНОСТИ РОТОРНЫХ АТФаз

Активность роторных АТФаз регулируется на уровне экспрессии кодирующих их генов. Кроме того, у эукариот существуют изоформы субъединиц роторных АТФаз, что позволяет модифицировать фермент под нужды разных тканей и клеточных органелл. Наконец, активность роторных АТФаз может регулироваться с помощью пост-трансляционных модификаций белка, в первую очередь — фосфорилирования. Каждый из этих уровней представляет собой большую и сложную тему. Ниже мы подробнее остановимся лишь на наиболее общих регуляторных механизмах, заложенных в аминокислотной последовательности фермента и не связанных с отдельными его изоформами.

Как было сказано выше, специфика регуляции роторных АТФаз в значительной степени зависит от того, должен ли фермент оперативно переключаться между АТФ- синтазной и гидролазной активностью, или же работает исключительно как АТФ-зависимый протонный (или натриевый) насос. Для F-АТФаз, относящихся к первой группе (ферментов митохондрий, хлоропластов, фотосинтетических и аэробных эубактерий) характерно ингибирование АТФазной активности в условиях снижения отношения $AT\Phi/AД\Phi$ и при падении $\Delta \tilde{\mu}_{H^+}$ ниже уровня, необходимого для синтеза АТФ. Ре-активация фермента из ингибированного состояния происходит при повышении $\Delta \tilde{\mu}_{ ext{H}^+}$ выше этого уровня. Описано несколько механизмов такой регуляции (см. обзор [116]). У всех изученных F-АТФаз обнаружено неконкурентное ингибирование фермента комплексом МдАДФ (АДФ-ингибирование), которое отличается от обычного ингибирования реакции ее продуктом и происходит при связывании МдАДФ в каталитическом сайте в отсутствие фосфата [35]. У многих прокариотических и у хлоропластных ферментов обнаружено ингибирование АТФазной активности при изменении конформации субъединицы ε [117]. Для АТФ-синтазы хлоропластов характерна редокс-регуляция, связанная с образованием в темноте дисульфидного мостика между специальной парой остатков цистеина в субъединице у, приводящему к подавлению активности в отсутствии освещения [101]. В митохондриях, а также у некоторых α-протеобактерий есть ингибиторные белки (IF1 и ζ , соответственно), подавляющие гидролитическую активность F-AT-Фазы в условиях де-энергизации мембраны [118, 119]. У прокариотических F-АТФаз обнаружено еще несколько регуляторных механизмов, препятствующих гидролизу АТФ (см. обзор [35]).

Регуляция А-АТФаз изучена менее подробно, однако, как минимум один из вышеперечисленных регуляторных механизмов встречается и у них – это АДФ-ингибирование. В этой связи не исключено, что оно представляет собой один из древнейших механизмов регуляции АТФазной активности роторных АТФаз. F-АТФазы некоторых организмов, в которых преобладающее значение имеет синтетазная активность (например, в ферментах Paracoccus denitrificans, некоторых видов бацилл, хлоропластов), подвержены АДФ-ингибированию настолько сильно, что практически не гидролизуют АТФ без дополнительной активации, приводящей к выбросу ингибиторного АДФ. В качестве такой активации может выступать энергизация мембраны или добавление некоторых химических веществ (детергенты, спирты, сульфит и другие анионы). С другой стороны, F-ATФаза *E. coli*, которая в случае обитания бактерии в анаэробных условиях в кишечнике человека работает как AT Φ -зависимый генератор $\Delta \tilde{\mu}_{H^+}$, гидролизует АТФ с высокой скоростью даже в случае деэнергизованной мембраны, и в отсутствие перечисленных выше стимуляторов. Добавка этих стимуляторов увеличивает АТФазную активность фермента E. coli не так сильно, как у F-АТФаз хлоропластов и бацилл [35], что, на наш взгляд, указывает на относительно менее выраженное АДФ-ингибирование. Разная степень АДФ-ингибирования показана и для А-АТФаз. Так, у ATФ-синтаз архей Th. thermophilus и Methanosarcina mazei Gö1 АДФ-ингибирование выражено сильно [120-122], а на А-АТФазе *E. hirae* — ферменте, осуществляющем АТФ-зависимую откачку ионов натрия из клетки, АДФингибирование обнаружить не удалось [123]. Мутагенез ферментов F- и A-типа позволил определить аминокислотные остатки, модулирующие силу АДФ-ингибирования [122, 124, 125].

АДФ оказывает ингибиторное действие и на V-АТФазы эукариот. Очевидно, АДФ может выступать как конкурентный ингибитор, препятствуя связыванию АТФ в каталитическом сайте V-АТФазы [126]. Однако ряд данных указывает на наличие у V-АТФаз также аллостерического или неконкурентного АДФ-ингибирования [127-129], которое может быть обусловлено механизмом, схожим с таковым у F- и A-АТФаз. У А-АТФаз предполагают ещё один механизм регуляции активности, связанный с функционированием субъединицы F. Эта небольшая субъединица вместе с субъединицей D входит в состав ротора фермента и имеет гибкий вытянутый домен, который может взаимодействовать с субъединицами каталитического гексамера. Показано, что это взаимодействие приводит к активагидролиза АТФ A_1 -субкомплексами Th. thermophilus и M. masei Gö1 [130, 131], причем предполагается, что движение регуляторного домена субъединицы F является нуклеотид-зависимым [132]. Для A_1 *E. hirae* активация также была показана, но она оказалась заметно слабее [133]. Исследователи часто сравнивают субъединицу F A-ATФаз с субъединицей є бактериальных ферментов F-типа: последняя также является частью ротора и имеет подвижный регуляторный домен, который в развернутой конформации взаимодействует с каталитическим гексамером, влияя на гидролиз АТФ. В большинстве случаев, однако, субъединица є ингибирует АТ-Фазную активность F-ATФаз ([117], но см. также [134]). Гомология последовательностей субъединицы є F-АТФаз и субъединицы F А-АТФаз не очевидна; некоторые авторы предполагают эволюционное родство субъединицы F с глобулярным доменом субъединицы у F-АТФаз [135]. У V-АТФаз регуляторная роль субъединицы F не исследовалась. В имеющихся структурных моделях эта субъединица находится в компактной конформации и, вероятно, не взаимодействует с каталитическим гексамером [13, 136].

Основным способом регуляции активности V-АТФаз является обратимая диссоциация субкомплексов V_1 и V_0 . Она характерна только для этого типа АТФаз и показана для ферментов насекомых, млекопитающих и пекарских дрожжей [137]. Ключевую роль в этом процессе играет субъединица С, которая в целом ферменте обеспечивает присоединение периферических стеблей к V_0 . Диссоциация этой субъединицы приводит к дестабилизации V_0V_1 [138]. После диссоциации комплекс V₁ утрачивает АТФазную активность; инактивация сопровождается конформационной перестройкой субъединицы Н [139, 140]. В свою очередь, свободный комплекс $m V_{
m O}$ также теряет способность транспортировать протоны. Это происходит благодаря изменению конформации цитоплазматического домена субъединицы а, который взаимодействует с субъединицей d и тем самым останавливает транспорт [141, 142]. Одним из основных факторов, вызывающих диссоциацию V_0V_1 в живых клетках, является снижение концентрации глюкозы [113]. Метаболизм глюкозы тесно связан с диссоциацией/ассоциацией V-ATФазы за счет нескольких сигнальных путей, которые подробно рассматриваются в обзоре [143]. Кроме того, V-ATФаза может напрямую взаимодействовать с двумя ферментами гликолиза: альдолазой и фосфофруктокиназой. В условиях высокой концентрации глюкозы эти взаимодействия приводят к ассоциации V_1 и V_0 и восстановлению активности V-АТФазы [144, 145]. Координация работы V-АТФазы и гликолиза позволяет клетке экономить АТФ в условиях голодания, а при интенсивном анаэробном гликолизе не допустить избыточного закисления цитоплазмы [143].

Следует отметить, что у АТФаз F- и А-типов нуклеотид-связывающий гидрофильный субкомплекс связан с ион-транслоцирующей мембранной частью настолько прочно, что для их разделения требуется достаточно жесткая обработка хаотропными агентами в отсутствие ионов магния. В этой связи диссоциация F- и А-АТФаз *in vivo* представляется крайне маловероятной.

У АТФаз V-типа встречается также редоксзависимая инактивация гидролиза АТФ за счет образования дисульфидного мостика между двумя консервативными остатками цистеина в субъединице А, один из которых принадлежит каталитическому сайту. Этот способ регуляции был неоднократно продемонстрирован in vitro на V-ATФазах млекопитающих и грибов [146–150], а его физиологическая роль была косвенно показана на клетках дрожжей [151]. У V-АТФаз растений in vitro также обнаружено ингибирование активности при окислении сульфгидрильных групп в каталитическом сайте [152]. Тем не менее эксперименты на Arabidopsis thaliana показали, что *in vivo* этот механизм не играет значительной роли [153]. В случае некоторых А-АТФаз воздействие окислителей приводит к снижению активности и образованию кросс-сшивок между субъединицами каталитического гексамера [63], однако никаких свидетельств редокс-зависимой регуляции активности A-ATФаз *in vivo* в литературе нам найти не удалось.

В заключение следует отметить, что роторные ион-транслоцирующие АТФазы играют ключевую роль в биоэнергетике большинства живых организмов. Эти ферменты имеют общее эволюционное происхождение и каталитический механизм, однако их регуляторные механизмы отличаются большим разнообразием и зависят от тех физиологических функций, которые АТФазы выполняют в клетке. Дисбаланс в регуляции активности этих ферментов является причиной многочисленных патологий, и поэтому исследования в данной области имеют не только фундаментально-научное, но и прикладное значение для разработки новых способов терапии. Кроме того, выявление отличительных особенностей роторных АТФаз вредных микроорганизмов может помочь в поиске новых специфических ингибиторов этих ферментов, на основе которых возможно будет разработать антимикробные средства, не оказывающих токсического влияния на клетки человека, но препятствующих росту этих микроорганизмов [154].

Благодарности. Авторы выражают благодарность В.П. Скулачеву за создание и поддержку уникальной и удивительной атмосферы в Институте физико-химической биологии им. А.Н. Белозерского МГУ, благодаря которой исследования в области биоэнергетики бурно и плодотворно развиваются в течение уже нескольких десятилетий, а также за его вклад в соз-

дание факультета биоинженерии и биоинформатики МГУ, не будь которого, эта работа никогда не была бы написана.

Финансирование. Работа выполнена при финансовой поддержке Российского научного фонда (грант 20-14-00268).

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм. В данной работе нет исследований, в которых были использованы в качестве объектов люди или животные.

СПИСОК ЛИТЕРАТУРЫ

- Beyenbach, K. W. (2006) The V-type H⁺ ATPase: molecular structure and function, physiological roles and regulation, *J. Exp. Biol.*, 209, 577-589, doi: 10.1242/jeb.02014.
- Ihara, K., Abe, T., Sugimura, K. I., and Mukohata, Y. (1992) Halobacterial A-ATP synthase in relation to V-ATPase, J. Exp. Biol., 172, 475-485.
- Müller, V., and Grüber, G. (2003) ATP synthases: structure, function and evolution of unique energy converters, Cell. Mol. Life Sci., 60, 474-494, doi: 10.1007/s000180300040.
- 4. Grüber, G., and Marshansky, V. (2008) New insights into structure-function relationships between archeal ATP synthase (A1A0) and vacuolar type ATPase (V1V0), *BioEssays*, **30**, 1096-1099, doi: 10.1002/bies.20827.
- Kühlbrandt, W. (2019) Structure and mechanisms of Ftype ATP synthases, *Ann. Rev. Biochem.*, 88, 515-549, doi: 10.1146/annurev-biochem-013118-110903.
- Hilario, E., and Gogarten, J. P. (1998) The prokaryote-toeukaryote transition reflected in the evolution of the V/F/A-ATPase catalytic and proteolipid subunits, *J. Mol. Evol.*, 46, 703-715, doi: 10.1007/pl00006351.
- Mulkidjanian, A. Y., Makarova, K. S., Galperin, M. Y., and Koonin, E. V. (2007) Inventing the dynamo machine: the evolution of the F-type and V-type ATPases, *Nat. Rev. Microbiol.*, 5, 892-899, doi: 10.1038/nrmicro1767.
 Gogarten, J. P., and Taiz, L. (1992) Evolution of proton
- 8. Gogarten, J. P., and Taiz, L. (1992) Evolution of proton pumping ATPases: rooting the tree of life, *Photosynth. Res.*, **33**, 137-146, doi: 10.1007/BF00039176.
- 9. Kühlbrandt, W., and Davies, K. M. (2016) Rotary ATPases: a new twist to an ancient machine, *Trends Biochem. Sci.*, **41**, 106-116, doi: 10.1016/j.tibs.2015. 10.006.
- Guo, H., Suzuki, T., and Rubinstein, J. L. (2019) Structure of a bacterial ATP synthase, *eLife*, 8, doi: 10.7554/ eLife.43128.
- 11. Gu, J., Zhang, L., Zong, S., Guo, R., Liu, T., Yi, J., et al. (2019) Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1, *Science*, **364**, 1068-1075, doi: 10.1126/science.aaw4852.
- Zhou, L., and Sazanov, L. A. (2019) Structure and conformational plasticity of the intact *Thermus thermophilus* V/A-type ATPase, *Science*, 365, doi: 10.1126/science.aaw9144.
- 13. Abbas, Y. M., Wu, D., Bueler, S. A., Robinson, C. V., and Rubinstein, J. L. (2020) Structure of V-ATPase from the mammalian brain, *Science*, **367**, 1240-1246, doi: 10.1126/science.aaz2924.
- Hahn, A., Vonck, J., Mills, D. J., Meier, T., and Kühlbrandt, W. (2018) Structure, mechanism, and regulation of the chloroplast ATP synthase, Science, 360, doi: 10.1126/science.aat4318.
- Murphy, B. J., Klusch, N., Langer, J., Mills, D. J., Yildiz, Ö., and Kühlbrandt, W. (2019) Rotary substates of mitochon-

- drial ATP synthase reveal the basis of flexible F_1 - F_0 coupling, *Science*, **364**, doi: 10.1126/science.aaw9128.
- Mühleip, A., McComas, S. E., and Amunts, A. (2019) Structure of a mitochondrial ATP synthase with bound native cardiolipin, *eLife*, 8, doi: 10.7554/eLife.51179.
- native cardiolipin, *eLife*, **8**, doi: 10.7554/eLife.51179.

 17. Arnold, I., Pfeiffer, K., Neupert, W., Stuart, R. A, and Schägger, H. (1998) Yeast mitochondrial F1F0-ATP synthase exists as a dimer: identification of three dimer-specific subunits, *EMBO J.*, **17**, 7170-7178, doi: 10.1093/emboj/17.24.7170.
- 18. Guo, H., Bueler, S. A., and Rubinstein, J. L. (2017) Atomic model for the dimeric FO region of mitochondrial ATP synthase, *Science*, **358**, 936-940, doi: 10.1126/science.aao4815.
- Eubel, H., Jänsch, L., and Braun, H.-P. (2003) New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II, *Plant Physiol.*, 133, 274-286, doi: 10.1104/pp.103.024620.
- 20. Strauss, M., Hofhaus, G., Schröder, R. R., and Kühlbrandt, W. (2008) Dimer ribbons of ATP synthase shape the inner mitochondrial membrane, *EMBO J.*, 27, 1154-1160, doi: 10.1038/emboj.2008.35.
- 21. Blum, T. B., Hahn, A., Meier, T., Davies, K. M., and Kühlbrandt, W. (2019) Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows, *Proc. Natl. Acad. Sci. USA*, doi: 10.1073/pnas. 1816556116.
- Paumard, P., Vaillier, J., Coulary, B., Schaeffer, J., Soubannier, V., Mueller, D. M., et al. (2002) The ATP synthase is involved in generating mitochondrial cristae morphology, *EMBO J.*, 21, 221-230, doi: 10.1093/emboj/21.3.221.
- Davies, K.M., Anselmi, C., Wittig, I., Faraldo-Gómez, J.D., and Kühlbrandt, W. (2012) Structure of the yeast F₁F₀-ATP synthase dimer and its role in shaping the mitochondrial cristae, *Proc. Natl. Acad. Sci. USA*, 109, 13602-13607, doi: 10.1073/pnas.1204593109.
- Muench, S. P., Trinick, J., and Harrison, M. A. (2011) Structural divergence of the rotary ATPases, *Quart. Rev. Bioph.*, 44, 311-356, doi: 10.1017/S0033583510000338.
- Mazhab-Jafari, M. T., Rohou, A., Schmidt, C., Bueler, S. A., Benlekbir, S., Robinson, C. V., et al. (2016) Atomic model for the membrane-embedded VO motor of a eukaryotic V-ATPase, *Nature*, 539, 118-122, doi: 10.1038/ nature19828.
- Grüber, G., Manimekalai, M. S. S., Mayer, F., and Müller, V. (2014) ATP synthases from archaea: the beauty of a molecular motor, *Biochim. Biophys. Acta*, 1837, 940-952, doi: 10.1016/j.bbabio.2014.03.004.
- 27. Harrison, M. A., and Muench, S. P. (2018) The Vacuolar ATPase a nano-scale motor that drives cell biology, in *Membrane Protein Complexes: Structure and Function*

- (Harris, J. R., and Boekema, E. J., eds.) Springer Singapore, Singapore, p. 409-459, doi: 10.1007/978-981-10-7757-9_14.
- 28. Vasanthakumar, T., and Rubinstein, J. L. (2020) Structure and roles of V-type ATPases, *Trends Biochem. Sci.*, **45**, 295-307, doi: 10.1016/j.tibs.2019.12.007.
- Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria, *Nature*, 370, 621-628.
- Arai, S., Saijo, S., Suzuki, K., Mizutani, K., Kakinuma, Y., Ishizuka-Katsura, Y., et al. (2013) Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures, Nature, 493, 703-707, doi: 10.1038/ nature11778.
- 31. Schäfer, G., Engelhard, M., and Müller, V. (1999) Bioenergetics of the Archaea, *Microbiol. Mol. Biol. Rev.*, 570-620, doi: 10.1128/mmbr.63.3.570-620.1999.
- Kumar, A., Manimekalai, M. S. S., Balakrishna, A. M., Jeyakanthan, J., and Grüber, G. (2010) Nucleotide binding states of subunit A of the A-ATP synthase and the implication of P-loop switch in evolution, *J. Mol. Biol.* 396, 301-320, doi: 10.1016/j.jmb.2009.11.046.
- 33. Komoriya, Y., Ariga, T., Iino, R., Imamura, H., Okuno, D., and Noji, H. (2012) Principal role of the arginine finger in rotary catalysis of F₁-ATPase, *J. Biol. Chem.*, **287**, 15134-15142, doi: 10.1074/jbc.M111.328153.
- Malyan, A. N. (2013) Noncatalytic nucleotide binding sites: properties and mechanism of involvement in ATP synthase activity regulation, *Biochemistry (Moscow)*, 78, 1512-1523, doi: 10.1134/S0006297913130099.
- 35. Lapashina, A. S., and Feniouk, B. A. (2018) ADP-inhibition of H⁺-F₀F₁-ATP synthase, *Biochemistry (Moscow)*, **83**, 1141-1160, doi: 10.1134/S0006297918100012.
- Suzuki, K., Mizutani, K., Maruyama, S., Shimono, K., Imai, F. L., Muneyuki, E., et al. (2016) Crystal structures of the ATP-binding and ADP-release dwells of the V₁ rotary motor, *Nat. Commun.*, 7, 13235, doi: 10.1038/ ncomms13235.
- 37. Schäfer, I. B., Bailer, S. M., Düser, M. G., Börsch, M., Bernal, R. A., et al. (2006) Crystal structure of the archaeal A₁A₀ ATP synthase subunit B from *Methanosarcina mazei* Gö1: implications of nucleotide-binding differences in the major A1Ao subunits A and B, *J. Mol. Biol.*, 358, 725-740, doi: 10.1016/j.jmb.2006.02.057.
- 38. Gogarten, J. P., Kibak, H., Dittrich, P., Taiz, L., Bowman, E. J., Bowman, B. J., et al. (1989) Evolution of the vacuolar H⁺-ATPase: implications for the origin of eukaryotes, *Proc. Natl. Acad. Sci. USA*, **86**, 6661-6665, doi: 10.1073/pnas.86.17.6661.
- 39. Boyer, P. D. (1997) The ATP synthase a splendid molecular machine, *Ann. Rev. Biochem.*, **66**, 717-749.
- Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K. (1997) Direct observation of the rotation of F₁-ATPase, *Nature*, 299-302, doi: 10.1038/386299a0.
- 41. Okuno, D., Iino, R., and Noji, H. (2011) Rotation and structure of FoF1-ATP synthase, *J. Biochem.*, **149**, 655-664, doi: 10.1093/jb/mvr049.
- Junge, W., and Nelson, N. (2015) ATP synthase, *Ann. Rev. Biochem.*, 84, 631-657, doi: 10.1146/annurev-biochem-060614-034124.
- Noji, H., Ueno, H., and McMillan, D. G. G. (2017) Catalytic robustness and torque generation of the F₁-ATPase, *Biophys. Rev.*, 9, 103-118, doi: 10.1007/s12551-017-0262-x.
- Iida, T., Minagawa, Y., Ueno, H., Kawai, F., Murata, T., and Iino, R. (2019) Single-molecule analysis reveals rotational substeps and chemo-mechanical coupling scheme of V-ATPase, *J. Biol. Chem.*, 294, 17017-17030, doi: 10.1074/jbc.RA119.008947.

- 45. Furuike, S., Nakano, M., Adachi, K., Noji, H., Kinosita, K., and Yokoyama, K. (2011) Resolving stepping rotation in Thermus thermophilus H(+)-ATPase/synthase with an essentially drag-free probe, *Nat. Commun.*, **2**, 233, doi: 10.1038/ncomms1215.
- Imamura, H., Takeda, M., Funamoto, S., Shimabukuro, K., Yoshida, M., and Yokoyama, K. (2005) Rotation scheme of V1-motor is different from that of F1-motor, *Proc. Natl. Acad. Sci. USA*, 102, 17929-17933.
- 47. Hirata, T., Iwamoto-Kihara, A., Sun-Wada, G.-H., Okajima, T., Wada, Y., and Futai, M. (2003) Subunit rotation of vacuolar-type proton pumping ATPase: relative rotation of the G and C subunits, *J. Biol. Chem.*, **278**, 23714-23719, doi: 10.1074/jbc.M302756200.
- 48. Noji, H., Bald, D., Yasuda, R., Itoh, H., Yoshida, M., and Kinosita, K. (2001) Purine but not pyrimidine nucleotides support rotation of F(1)-ATPase, *J. Biol. Chem.*, **276**, 25480-25486, doi: 10.1074/jbc.M102200200.
- 49. Pisa, K. Y., Huber, H., Thomm, M., and Müller, V. (2007) A sodium ion-dependent A₁A₀ ATP synthase from the hyperthermophilic archaeon *Pyrococcus furiosus*: A1AO ATPase of *Pyrococcus furiosus*, *FEBS J.*, **274**, 3928-3938, doi: 10.1111/j.1742-4658.2007.05925.x.
- Yokoyama, K., Akabane, Y., Ishii, N., and Yoshida, M. (1994) Isolation of prokaryotic V₀V₁-ATPase from a thermophilic eubacterium *Thermus thermophilus*, *J. Biol. Chem.*, 269, 12248-12253.
- Yoshida, M., Sone, N., Hirata, H., and Kagawa, Y. (1975)
 A highly stable adenosine triphosphatase from a thermophillie bacterium. Purification, properties, and reconstitution, *J. Biol. Chem.*, 250, 7910-7916.
- Senior, A. E., Lee, R. S., al-Shawi, M. K., and Weber, J. (1992) Catalytic properties of *Escherichia coli* F₁-ATPase depleted of endogenous nucleotides, *Arch. Biochem. Biophys.*, 297, 340-344.
- 53. Iida, T., Hoaki, T., Kamino, K., Inatomi, K., Kamagata, Y., and Maruyama, T. (1996) Vacuolar-type ATPase in a hyperthermophilic archaeum, *Thermococcus* sp., *Biochem. Biophys. Res. Commun.*, **229**, 559-564, doi: 10.1006/bbrc. 1996.1843.
- Konishi, J., Wakagi, T., Oshima, T., and Yoshida, M. (1987) Purification and properties of the ATPase solubilized from membranes of an acidothermophilic archaebacterium, *Sulfolobus acidocaldarius*, *J. Biochem.*, 102, 1379-1387, doi: 10.1093/oxfordjournals.jbchem.a122184.
- 55. Pedersen, P. L. (1976) ATP-dependent reactions catalyzed by inner membrane vesicles of rat liver mitochondria. Kinetics, substrate specificity, and bicarbonate sensitivity, *J. Biol. Chem.*, **251**, 934-940.
- 56. Vambutas, V. K., and Racker, E. (1965) Partial resolution of the enzymes catalyzing photophosphorylation. I. Stimulation of photophosphorylation by a preparation of a latent, Ca⁺⁺-dependent adenosine triphosphatase from chloroplasts, *J. Biol. Chem.*, 240, 2660-2667.
- 57. Struve, I., and Lüttge, U. (1987) Characteristics of MgATP²—dependent electrogenic proton transport in tonoplast vesicles of the facultative crassulacean-acid-metabolism plant *Mesembryanthemum crystallinum* L. *Planta*, **170**, 111-120, doi: 10.1007/BF00392387.
- 58. Pacheco, G., Lippo de Bécemberg, I., Gonzalez de Alfonzo, R., and Alfonzo, M. J. (1996) Biochemical characterization of a V-ATPase of tracheal smooth muscle plasma membrane fraction, *Biochim. Biophys. Acta*, **1282**, 182-192, doi: 10.1016/0005-2736(96)00038-7.
- Perlin, D. S., Latchney, L. R., Wise, J. G., and Senior, A. E. (1984) Specificity of the proton adenosine triphosphatase of *Escherichia coli* for adenine, guanine, and inosine nucleotides in catalysts and binding, *Biochem. (Am. Chem. Soc.)*, 23, 4998-5003, doi: 10.1021/bi00316a026.

- Suzuki, T., Wakabayashi, C., Tanaka, K., Feniouk, B. A., and Yoshida, M. (2011) Modulation of nucleotide specificity of thermophilic F₀F₁-ATP synthase by epsilon-subunit, *J. Biol. Chem.*, 286, 16807-16813, doi: 10.1074/jbc. M110.209965.
- 61. D'Auzac, J. (1977) ATPase membranaire de vacuoles lysosomales: les lutoides du latex d'Hevea brasiliensis, *Phytochemistry*, **16**, 1881-1885, doi: 10.1016/0031-9422(77)80088-5.
- 62. Gräf, R., Harvey, W. R., and Wieczorek, H. (1996) Purification and properties of a Cytosolic V₁-ATPase, *J. Biol. Chem.*, **271**, 20908-20913, doi: 10.1074/jbc.271. 34.20908.
- 63. Mayer, F., Lim, J. K., Langer, J. D., Kang, S. G., and Mueller, V. (2015) Na⁺ transport by the A(1)A(O)-ATP synthase purified from *Thermococcus onnurineus* and reconstituted into liposomes, *J. Biol. Chem.*, 290, 6994-7002, doi: 10.1074/jbc.M114.616862.
- 64. Valiyaveetil, F. I., and Fillingame, R. H. (1997) On the role of Arg-210 and Glu-219 of subunit a in proton translocation by the *Escherichia coli* F₀F₁-ATP synthase, *J. Biol. Chem.*, **272**, 32635-32641, doi: 10.1074/jbc.272.51.32635.
- 65. Glagolev, A. N., and Skulachev, V. P. (1978) The proton pump is a molecular engine of motile bacteria, *Nature*, **272**, 280-282, doi: 10.1038/272280a0.
- Junge, W., Lill, H., and Engelbrecht, S. (1997) ATP synthase: an electrochemical transducer with rotatory mechanics, *Trends Biochem. Sci.*, 22, 420-423, doi: 10.1016/s0968-0004(97)01129-8.
- Vik, S. B., and Antonio, B. J. (1994) A mechanism of proton translocation by F₁F₀ ATP synthases suggested by double mutants of the a subunit, *J. Biol. Chem.*, 269, 30364-30369.
- 68. Srivastava, A. P., Luo, M., Zhou, W., Symersky, J., Bai, D., Chambers, M. G., et al. (2018) High-resolution cryo-EM analysis of the yeast ATP synthase in a lipid membrane, *Science*, **360**, doi: 10.1126/science.aas9699.
- Murata, T., Yamato, I., Kakinuma, Y., Leslie, A. G. W., and Walker, J. E. (2005) Structure of the rotor of the V-Type Na⁺-ATPase from *Enterococcus hirae*, *Science*, 308, 654-659, doi: 10.1126/science.1110064.
- Skulachev, V. P. (1984) Membrane bioenergetics should we build the bridge across the river or alongside of it? *Trends Biochem. Sci.*, 9, 182-185, doi: 10.1016/0968-0004(84)90134-8.
- Skulachev, V. P. (1985) Membrane-linked energy transductions. Bioenergetic functions of sodium: H⁺ is not unique as a coupling ion, *Eur. J. Biochem.*, 151, 199-208, doi: 10.1111/j.1432-1033.1985.tb09088.x.
- 72. Dimroth, P., and Cook, G. M. (2004) Bacterial Na⁺- or H⁺-coupled ATP synthases operating at low electrochemical potential, *Adv. Microb. Physiol.*, **49**, 175-218.
- 73. Mulkidjanian, A. Y., Dibrov, P., and Galperin, M. Y. (2008) The past and present of sodium energetics: may the sodium-motive force be with you, *Biochim. Biophys. Acta*, 1777, 985-992, doi: 10.1016/j.bbabio.2008.04.028.
- Mulkidjanian, A. Y., Galperin, M. Y., Makarova, K. S., Wolf, Y. I., and Koonin, E. V. (2008) Evolutionary primacy of sodium bioenergetics, *Biol. Direct.*, 3, 13, doi: 10.1186/1745-6150-3-13.
- Poehlein, A., Schmidt, S., Kaster, A.-K., Goenrich, M., Vollmers, J., et al. (2012) An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis, *PLoS One*, 7, e33439, doi: 10.1371/journal.pone.0033439.
- Dibrova, D. V., Galperin, M. Y., and Mulkidjanian, A. Y. (2010) Characterization of the *N*-ATPase, a distinct, laterally transferred Na+-translocating form of the bacterial F-type membrane ATPase, *Bioinformatics*, 26, 1473-1476, doi: 10.1093/bioinformatics/btq234.

- 77. Schulz, S., Wilkes, M., Mills, D. J., Kuhlbrandt, W., and Meier, T. (2017) Molecular archifecture of the *N*-type ATPase rotor ring from *Barkholderia pseudomallei*, *EMBO Rep.*, **18**, 526-535, doi: 10.15252/embr.201643374.
- 78. Laubinger, W., and Dimroth, P. (1989) The sodium ion translocating adenosine triphosphatase of *Propionigenium modestum* pumps protons at low sodium ion concentrations, *Biochem. (Amer. Chem. Soc.)*, **28**, 7194-7198, doi: 10.1021/bi00444a010.
- 79. Neumann, S., Matthey, U., and Kaim, G. (1998) Purification and properties of the F1Fo ATPase of *Ilyobacter tartaricus*, a sodium ion pump, *J. Bacteriol.*, **180**, 3312-3316, doi: 10.1128/JB.180.13.3312-3316.1998.
- McMillan, D. G. G., Ferguson, S. A., Dey, D., Schröder, K., Aung, H. L., Carbone, V., et al. (2011) A1Ao-ATP synthase of *Methanobrevibacter ruminantium* couples sodium ions for ATP synthesis under physiological conditions, *J. Biol. Chem.*, 286, 39882-39892, doi: 10.1074/jbc. M111.281675.
- Murata, T., Yamato, I., Kakinuma, Y., Shirouzu, M., Walker, J.E., Yokoyama, S., et al. (2008) Ion binding and selectivity of the rotor ring of the Na⁺-transporting V-ATPase, *Proc. Natl. Acad. Sci. USA*, 105, 8607-8611, doi: 10.1073/pnas.0800992105.
- 82. Meier, T., Krah, A., Bond, P. J., Pogoryelov, D., Diederichs, K., and Faraldo-Gómez, J. D. (2009) Complete ion-coordination structure in the rotor ring of Na⁺-dependent F-ATP synthases, *J. Mol. Biol.*, 391, 498-507, doi: 10.1016/j.jmb.2009.05.082.
- 83. Krah, A., Pogoryelov, D., Langer, J. D., Bond, P. J., Meier, T., and Faraldo-Gómez, J. D. (2010) Structural and energetic basis for H⁺ versus Na⁺ binding selectivity in ATP synthase F_O rotors, *Biochim. Biophys. Acta*, **1797**, 763-772, doi: 10.1016/j.bbabio.2010.04.014.
- 84. Leone, V., Pogoryelov, D., Meier, T., and Faraldo-Gómez, J. D. (2015) On the principle of ion selectivity in Na⁺/H⁺-coupled membrane proteins: experimental and theoretical studies of an ATP synthase rotor, *Proc. Natl. Acad. Sci. USA*, **112**, 1057-1066, doi: 10.1073/pnas.1421202112.
- 85. Schlegel, K., Leone, V., Faraldo-Gómez, J.D., and Müller, V. (2012) Promiscuous archaeal ATP synthase concurrently coupled to Na⁺ and H⁺ translocation, *Proc. Natl. Acad. Sci. USA*, **109**, 947-952, doi: 10.1073/pnas.1115796109.
- 86. Watt, I. N., Montgomery, M. G., Runswick, M. J., Leslie, A. G. W., and Walker, J. E. (2010) Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. *Proc. Natl. Acad. Sci. USA*, 107, 16823-16827, doi: 10.1073/pnas.1011099107.
- 87. Ruppert, C., Kavermann, H., Wimmers, S., Schmid, R., Kellermann, J., Lottspeich, F., et al. (1999) The proteolipid of the A₁A₀ ATP synthase from *Methanococcus jannaschii* has six predicted transmembrane helices but only two proton-translocating carboxyl groups, *J. Biol. Chem.*, 274, 25281-25284, doi: 10.1074/jbc.274.36.25281.
- 88. Wilms, R., Freiberg, C., Wegerle, E., Meier, I., Mayer, F., and Müller, V. (1996) Subunit structure and organization of the genes of the A₁A₀ ATPase from the Archaeon *Methanosarcina mazei* Gö1, *J. Biol. Chem.*, **271**, 18843-18852, doi: 10.1074/jbc.271.31.18843.
- 89. Steinert, K., Wagner, V., Kroth-Pancic, P. G., and Bickel-Sandkötter, S. (1997) Characterization and subunit structure of the ATP synthase of the halophilic archaeon *Haloferax volcanii* and organization of the ATP synthase genes, *J. Biol. Chem.*, **272**, 6261-6269, doi: 10.1074/jbc. 272.10.6261.
- 90. Kibak, H., Taiz, L., Starke, T., Bernasconi, P., and Gogarten, J. P. (1992) Evolution of structure and function of V-ATPases, *J. Bioenerg. Biomembr.*, **24**, 415-424, doi: 10.1007/BF00762534.

- 91. Ihara, K., Watanabe, S., Sugimura, K.-I., Katagiri, I., and Mukohata, Y. (1997) Identification of proteolipid from an extremely halophilic archaeon *Halobacterium salinarumas* an *N*, *N'*-dicyclohexyl-carbodiimide binding subunit of ATP synthase, *Arch. Biochem. Biophys.*, **341**, 267-272, doi: 10.1006/abbi.1997.9972.
- 92. Vonck, J., Pisa, K. Y., Morgner, N., Brutschy, B., and Müller, V. (2009) Three-dimensional structure of A1A0 ATP synthase from the hyperthermophilic archaeon *Pyrococcus furiosus* by electron microscopy, *J. Biol. Chem.*, **284**, 10110-10119, doi: 10.1074/jbc.M808498200.
- 93. Mayer, F., Leone, V., Langer, J. D., Faraldo-Gómez, J. D., and Müller, V. (2012) A c subunit with four transmembrane helices and one ion Na⁺-binding site in an archaeal ATP synthase: implications for c ring function and structure, *J. Biol. Chem.*, **287**, 39327-39337, doi: 10.1074/jbc.M112. 411223.
- 94. Slesarev, A. I., Mezhevaya, K. V., Makarova, K. S., Polushin, N. N., Shcherbinina, O. V., et al. (2002) The complete genome of hyperthermophile *Methanopyrus kan-dleri* AV19 and monophyly of archaeal methanogens, *Proc. Natl. Acad. Sci. USA*, **99**, 4644-4649, doi: 10.1073/ pnas.032671499.
- 95. Müller, V., Aufurth, S., and Rahlfs, S. (2001) The Na⁺ cycle in *Acetobacterium woodii*: identification and characterization of a Na⁺ translocating F1F0-ATPase with a mixed oligomer of 8 and 16 kDa proteolipids, *Biochim. Biophys. Acta Bioenergetics*, 1505, 108-120, doi: 10.1016/S0005-2728(00)00281-4.
- Matthies, D., Zhou, W., Klyszejko, A. L., Anselmi, C., Yildiz, Ö., Brandt, K., et al. (2014) High-resolution structure and mechanism of an F/V-hybrid rotor ring in a Na+coupled ATP synthase, *Nat. Commun.*, 5, 5286, doi: 10.1038/ncomms6286.
- Pogoryelov, D., Klyszejko, A. L., Krasnoselska, G. O., Heller, E.-M., Leone, V., et al. (2012) Engineering rotor ring stoichiometries in the ATP synthase, *Proc. Natl. Acad. Sci. USA*, 109, 1599-1608, doi: 10.1073/pnas.1120027109.
- Preiss, L., Klyszejko, A. L., Hicks, D. B., Liu, J., Fackelmayer, O. J., et al. (2013) The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic *Bacillus pseudofirmus* OF4, *Proc. Natl. Acad. Sci. USA*, 110, 7874-7879, doi: 10.1073/pnas. 1303333110.
- 99. Veech, R. L., King, M. T., Pawlosky, R., Bradshaw, P. C., and Curtis, W. (2019) Relationship between inorganic ion distribution, resting membrane potential, and the ΔG' of ATP hydrolysis: a new paradigm, *FASEB J.*, 33, 13126-13130, doi: 10.1096/fj.201901942R.
- 100. Hüttemann, M., Lee, I., Pecinova, A., Pecina, P., Przyklenk, K., and Doan, J. W. (2008) Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease, *J. Bioener. Biomembr.*, 40, 445-456, doi: 10.1007/s10863-008-9169-3.
- 101. Hisabori, T., Konno, H., Ichimura, H., Strotmann, H., and Bald, D. (2002) Molecular devices of chloroplast F1-ATP synthase for the regulation, *Biochim. Biophys. Acta Bioenergetics*, 1555, 140-146, doi: 10.1016/S0005-2728(02)00269-4.
- 102. Galperin, M. Y., Makarova, K. S., Wolf, Y. I., and Koonin, E. V. (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database, *Nucleic Acids Res.*, 43, 261-269, doi: 10.1093/nar/gku1223.
- 103. Zorov, D. B., Juhaszova, M., and Sollott, S. J. (2014) Mitochondrial reactive oxygen species (ROS) and ROSinduced ROS release, *Physiol. Rev.*, 94, 909-950, doi: 10.1152/physrev.00026.2013.
- 104. Giorgio, V., von Stockum, S., Antoniel, M., Fabbro, A., Fogolari, F., Forte, M., et al. (2013) Dimers of mitochon-

- drial ATP synthase form the permeability transition pore, *Proc. Natl. Acad. Sci. USA*, **110**, 5887-5892, doi: 10.1073/pnas.1217823110.
- 105. Carroll, J., He, J., Ding, S., Fearnley, I. M., and Walker, J. E. (2019) Persistence of the permeability transition pore in human mitochondria devoid of an assembled ATP synthase, *Proc. Natl. Acad. Sci. USA*, 116, 12816-12821, doi: 10.1073/pnas.1904005116.
- 106. Hirata, T., Nakamura, N., Omote, H., Wada, Y., and Futai, M. (2000) Regulation and reversibility of vacuolar H⁺-ATPase, *J. Biol. Chem.*, **275**, 386-389, doi: 10.1074/jbc.275.1.386.
- 107. Forgac, M. (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology, *Nat. Rev. Mol. Cell Biol.*, **8**, 917-929, doi: 10.1038/nrm2272.
- 108. McGuire, C., Stransky, L., Cotter, K., and Forgac, M. (2017) Regulation of V-ATPase activity, *Front. Biosci.*, 22, 609-622, doi: 10.2741/4506.
- Huang, C., and Chang, A. (2011) pH-dependent cargo sorting from the Golgi, *J. Biol. Chem.*, 286, 10058-10065, doi: 10.1074/jbc.M110.197889.
- 110. Kozik, P., Hodson, N. A., Sahlender, D. A., Simecek, N., Soromani, C., Wu, J., et al. (2013) A human genome-wide screen for regulators of clathrin-coated vesicle formation reveals an unexpected role for the V-ATPase, *Nat. Cell Biol.*, 15, 50-60, doi: 10.1038/ncb2652.
- 111. Futai, M., Sun-Wada, G.-H., Wada, Y., Matsumoto, N., and Nakanishi-Matsui, M. (2019) Vacuolar-type ATPase: A proton pump to lysosomal trafficking, *Proc. Japan Acad. Series B Physic. Biol. Sci.*, 95, 261-277, doi: 10.2183/piab.95.018.
- 112. Finberg, K. E., Wagner, C. A., Bailey, M. A., Paunescu, T. G., Breton, S., Brown, D., et al. (2005) The B1-subunit of the H⁺ ATPase is required for maximal urinary acidification, *Proc. Natl. Acad. Sci. USA*, 102, 13616-13621, doi: 10.1073/pnas.0506769102.
- 113. Cotter, K., Stransky, L., McGuire, C., and Forgac, M. (2015) Recent insights into the structure, regulation, and function of the V-ATPases, *Trends Biochem. Sci.*, 40, 611-622, doi: 10.1016/j.tibs.2015.08.005.
- 114. Almeida, D. M., Oliveira, M. M., and Saibo, N. J. M. (2017) Regulation of Na⁺ and K⁺ homeostasis in plants: towards improved salt stress tolerance in crop plants, *Genet. Mol. Biol.*, **40**, 326-345, doi: 10.1590/1678-4685-GMB-2016-0106.
- 115. Zoncu, R., Bar-Peled, L., Efeyan, A., Wang, S., Sancak, Y., and Sabatini, D. M. (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H⁺-ATPase, *Science*, **334**, 678-683, doi: 10.1126/science.1207056.
- 116. Feniouk, B. A., and Yoshida, M. (2008) Regulatory mechanisms of proton-translocating F₀F₁-ATP synthase, *Results Problems Cell Differ.*, **45**, 279-308, doi: 10.1007/400_2007_043.
- 117. Feniouk, B. A., Suzuki, T., and Yoshida, M. (2006) The role of subunit epsilon in the catalysis and regulation of F₀F₁-ATP synthase, *Biochim. Biophys. Acta*, **1757**, 326-338, doi: 10.1016/j.bbabio.2006.03.022.
- 118. Gledhill, J. R., Montgomery, M. G., Leslie, A. G. W., and Walker, J. E. (2007) How the regulatory protein, IF1, inhibits F₁-ATPase from bovine mitochondria, *Proc. Natl. Acad. Sci. USA*, **104**, 15671-15676, doi: 10.1073/pnas. 0707326104.
- 119. Morales-Ríos, E., de la Rosa-Morales, F., Mendoza-Hernández, G., Rodríguez-Zavala, J.S., Celis, H., et al. (2010) A novel 11-kDa inhibitory subunit in the F1FO ATP synthase of *Paracoccus denitrificans* and related alpha-proteobacteria, *FASEB J.*, **24**, 599-608, doi: 10.1096/fj.09-137356.

- 120. Yokoyama, K., Muneyuki, E., Amano, T., Mizutani, S., Yoshida, M., Ishida, M., et al. (1998) V-ATPase of *Thermus thermophilus* is inactivated during ATP hydrolysis but can synthesize ATP, *J. Biol. Chem.*, **273**, 20504-20510, doi: 10.1074/jbc.273.32.20504.
- 121. Nakano, M., Imamura, H., Toei, M., Tamakoshi, M., Yoshida, M., and Yokoyama, K. (2008) ATP hydrolysis and synthesis of a rotary motor V-ATPase from *Thermus thermophilus*, *J. Biol. Chem.*, 283, 20789-20796, doi: 10.1074/jbc.M801276200.
- 122. Singh, D., and Grüber, G. (2018) Crystallographic and enzymatic insights into the mechanisms of Mg-ADP inhibition in the A₁ complex of the A₁A₀ ATP synthase, *J. Struct. Biol.*, **201**, 26-35, doi: 10.1016/j.jsb.2017.10.008.
- 123. Kishikawa, J.-I., Nakanishi, A., Furuike, S., Tamakoshi, M., and Yokoyama, K. (2014) Molecular basis of ADP inhibition of vacuolar (V)-type ATPase/synthase, *J. Biol. Chem.*, 289, 403-412, doi: 10.1074/jbc.M113.523498.
- 124. Lapashina, A. S., Prikhodko, A. S., Shugaeva, T. E., and Feniouk, B. A. (2019) Residue 249 in subunit beta regulates ADP inhibition and its phosphate modulation in *Escherichia coli* ATP synthase, *Biochim. Biophys. Acta Bioenerg.*, **1860**, 181-188, doi: 10.1016/j.bbabio.2018. 12.003.
- 125. Lapashina, A. S., and Feniouk, B. A. (2019) Mutation Q259L in subunit beta in *Bacillus subtilis* ATP synthase attenuates ADP-inhibition and decreases fitness in mixed cultures, *Biochem. Biophys. Res. Commun.*, **509**, 102-107, doi: 10.1016/j.bbrc.2018.12.075.
- David, P., and Baron, R. (1994) The catalytic cycle of the vacuolar H⁺-ATPase. Comparison of proton transport in kidney- and osteoclast-derived vesicles, *J. Biol. Chem.*, 269, 30158-30163.
- 127. Moriyama, Y., and Nelson, N. (1987) Nucleotide binding sites and chemical modification of the chromaffin granule proton ATPase, *J. Biol. Chem.*, **262**, 14723-14729.
- 128. Webster, L. C., Pérez-Casticeira, J. R., Atkins, G. L., and Apps, D. K. (1995) Allosteric regulation of proton translocation by a vacuolar adenosinetriphosphatase, *Eur. J. Biochem.*, **232**, 586-595, doi: 10.1111/j.1432-1033.1995. 5867z x.
- 129. Vasilyeva, E., and Forgac, M. (1998) Interaction of the clathrin-coated vesicle V-ATPase with ADP and sodium azide, *J. Biol. Chem.*, **273**, 23823-23829, doi: 10.1074/jbc.273.37.23823.
- Kishikawa, J.-I., Seino, A., Nakanishi, A., Tirtom, N. E., Noji, H., Yokoyama, K., et al. (2014) F-subunit reinforces torque generation in V-ATPase, *Eur. Biophys. J.*, 43, 415-422, doi: 10.1007/s00249-014-0973-x.
- 131. Singh, D., Sielaff, H., Sundararaman, L., Bhushan, S., and Grüber, G. (2016) The stimulating role of subunit F in ATPase activity inside the A1-complex of the Methanosarcina mazei Gö1 A1AO ATP synthase, *Biochim. Biophys. Acta*, 1857, 177-187, doi: 10.1016/j.bbabio.2015. 12.003.
- 132. Singh, D., Sielaff, H., Börsch, M., and Grüber, G. (2017) Conformational dynamics of the rotary subunit F in the A3B3DF complex of *Methanosarcina mazei* Göl A-ATP synthase monitored by single-molecule FRET, *FEBS Lett.*, **591**, 854-862, doi: 10.1002/1873-3468.12605.
- 133. Saijo, S., Arai, S., Hossain, K. M. M., Yamato, I., Suzuki, K., Kakinuma, Y., et al. (2011) Crystal structure of the central axis DF complex of the prokaryotic V-ATPase, *Proc. Natl. Acad. Sci. USA*, 108, 19955-19960, doi: 10.1073/pnas.1108810108.
- 134. Akanuma, G., Tagana, T., Sawada, M., Suzuki, S., Shimada, T., Tanaka, K., et al. (2019) C-terminal regulatory domain of the ϵ subunit of F_0F_1 ATP synthase enhances the ATP-dependent H^+ pumping that is involved in the

- maintenance of cellular membrane potential in *Bacillus* subtilis, *Microbiol. Open*, **8**, e00815, doi: 10.1002/mbo3.815.
- 135. Kishikawa, J.-I., Ibuki, T., Nakamura, S., Nakanishi, A., Minamino, T., Miyata, T., et al. (2013) Common evolutionary origin for the rotor domain of rotary ATPases and flagellar protein export apparatus, *PLoS One*, **8**, e64695, doi: 10.1371/journal.pone.0064695.
- 136. Balakrishna, A. M., Basak, S., Manimekalai, M. S. S., and Grüber, G. (2015) Crystal structure of subunits D and F in complex gives insight into energy transmission of the eukary-otic V-ATPase from Saccharomyces cerevisiae, *J. Biol. Chem.*, **290**, 3183-3186, doi: 10.1074/jbc.M114.622688.
- 137. Kane, P. M. (2012) Targeting reversible disassembly as a mechanism of controlling V-ATPase activity, *Curr. Protein Peptide Sci.*, 13, 117-123, doi: 10.2174/138920312800493142.
- 138. Tabke, K., Albertmelcher, A., Vitavska, O., Huss, M., Schmitz, H.-P., and Wieczorek, H. (2014) Reversible disassembly of the yeast V-ATPase revisited under *in vivo* conditions, *Biochem. J.*, 462, 185-197, doi: 10.1042/BJ20131293.
- Beltrán, C., and Nelson, N. (1992) The membrane sector of vacuolar H(+)-ATPase by itself is impermeable to protons, *Acta Physiol. Scandinavica Suppl.*, 607, 41-47.
- Zhang, J., Myers, M., and Forgac, M. (1992) Characterization of the V₀ domain of the coated vesicle (H+)-ATPase, J. Biol. Chem., 267, 9773-9778.
- 141. Qi, J., and Forgac, M. (2008) Function and subunit interactions of the N-terminal domain of subunit a (Vph1p) of the yeast V-ATPase, *J. Biol. Chem.*, **283**, 19274-19282, doi: 10.1074/jbc.M802442200.
- 142. Couoh-Cardel, S., Milgrom, E., and Wilkens, S. (2015) Affinity purification and structural features of the yeast vacuolar ATPase V₀ membrane sector, *J. Biol. Chem.*, **290**, 27959-27971, doi: 10.1074/jbc.M115.662494.
- 143. Hayek, S. R., Rane, H. S., and Parra, K. J. (2019) Reciprocal regulation of V-ATPase and glycolytic pathway elements in health and disease, *Front. Physiol.*, **10**, 127, doi: 10.3389/fphys.2019.00127.
- 144. Lu, M., Ammar, D., Ives, H., Albrecht, F., and Gluck, S. L. (2007) Physical interaction between aldolase and vacuolar H⁺-ATPase is essential for the assembly and activity of the proton pump, *J. Biol. Chem.*, 282, 24495-24503, doi: 10.1074/jbc.M702598200.
- 145. Chan, C.-Y., and Parra, K. J. (2014) Yeast phosphofructokinase-1 subunit Pfk2p is necessary for pH homeostasis and glucose-dependent vacuolar ATPase reassembly, *J. Biol. Chem.*, **289**, 19448-19457, doi: 10.1074/jbc. M114.569855.
- 146. Feng, Y., and Forgac, M. (1992) A novel mechanism for regulation of vacuolar acidification, *J. Biol. Chem.*, 267, 19769-19772.
- 147. Feng, Y., and Forgac, M. (1994) Inhibition of vacuolar H⁺-ATPase by disulfide bond formation between cysteine 254 and cysteine 532 in subunit A, *J. Biol.Chem.*, **269**, 13224-13230.
- 148. Forgac, M. (1999) The vacuolar H⁺-ATPase of clathrincoated vesicles is reversibly inhibited by S-nitrosoglutathione, *J. Biol. Chem.*, **274**, 1301-1305, doi: 10.1074/jbc. 274.3.1301.
- 149. Dschida, W. J., and Bowman, B. J. (1995) The vacuolar ATPase: sulfite stabilization and the mechanism of nitrate inactivation, *J. Biol. Chem.*, **270**, 1557-1563, doi: 10.1074/jbc.270.4.1557.
- Liu, Q., Leng, X. H., Newman, P. R., Vasilyeva, E., Kane, P. M., and Forgac, M. (1997) Site-directed mutagenesis of the yeast V-ATPase A subunit, *J. Biol. Chem.*, 272, 11750-11756, doi: 10.1074/jbc.272.18.11750.
- 151. Oluwatosin, Y. E., and Kane, P. M. (1997) Mutations in the *CYS4* gene provide evidence for regulation of the yeast vac-

- uolar H⁺-ATPase by oxidation and reduction *in vivo*, *J. Biol. Chem.*, **272**, 28149-28157, doi: 10.1074/jbc. 272.44.28149.
- 152. Hager, A., and Lanz, C. (1989) Essential sulfhydryl groups in the catalytic center of the tonoplast H⁺-ATPase from coleoptiles of *Zea mays* L. as demonstrated by the biotinstreptavidin-peroxidase system, *Planta*, **180**, 116-212, doi: 10.1007/BF02411417.
- 153. Seidel, T., Scholl, S., Krebs, M., Rienmüller, F., Marten, I., Hedrich, R., et al. (2012) Regulation of the V-type ATPase by redox modulation, *Biochem. J.*, **448**, 243-251, doi: 10.1042/BJ20120976.
- 154. Hards, K., and Cook, G. M. (2018) Targeting bacterial energetics to produce new antimicrobials, *Drug Resist. Updates: Rev.Comm. Antimicrob. Anticancer Chemother.*, **36**, 1-12, doi: 10.1016/j.drup.2017.11.001.

ROTARY ION-TRANSLOCATING ATPases/ATP SYNTHASES: DIVERSITY, SIMILARITIES, AND DIFFERENCES

Review

V. M. Zubareva¹, A. S. Lapashina^{1,2}, T. E. Shugaeva¹, A. V. Litvin¹, and B. A. Feniouk^{1,2*}

¹ Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, 119991 Moscow, Russia; E-mail: feniouk@fbb.msu.ru

² Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia

Received July 22, 2020 Revised September 22, 2020 Accepted October 9, 2020

Ion-translocating ATPases and ATP synthases (F-, V-, A-type ATPases, and several P-type ATPases and ABC-transporters) catalyze ATP hydrolysis or ATP synthesis coupled with the ion transport across the membrane. F-, V-, and A-ATPases are protein nanomachines that combine transmembrane transport of protons or sodium ions with ATP synthesis/hydrolysis by means of a rotary mechanism. These enzymes are composed of two multisubunit subcomplexes that rotate relative to each other during catalysis. Rotary ATPases phosphorylate/dephosphorylate nucleotides directly, without the generation of phosphorylated protein intermediates. F-type ATPases are found in chloroplasts, mitochondria, most eubacteria, and in few archaea. V-type ATPases are eukaryotic enzymes present in a variety of cellular membranes, including the plasma membrane, vacuoles, late endosomes, and *trans*-Golgi cisternae. A-type ATPases are found in archaea and some eubacteria. F- and A-ATPases have two main functions: ATP synthesis powered by the proton motive force (*pmf*) or, in some prokaryotes, sodium-motive force (*smf*) and generation of the *pmf* or *smf* at the expense of ATP hydrolysis. In prokaryotes, both functions may be vitally important, depending on the environment and the presence of other enzymes capable of *pmf* or *smf* generation. In eukaryotes, the primary and the most crucial function of F-ATPases is ATP synthesis. Eukaryotic V-ATPases function exclusively as ATP-dependent proton pumps that generate *pmf* necessary for the transmembrane transport of ions and metabolites and are vitally important for pH regulation. This review describes the diversity of rotary ion-translocating ATPases from different organisms and compares the structural, functional, and regulatory features of these enzymes.

Keywords: ATP synthase, F-ATPase, A-ATPase, V-ATPase, intracellular ATP, proton-translocating ATPase, regulation