4. Model-based Planning

2019 Fall

Yusung Kim yskim525@skku.edu

Planning and Learning

Two fundamental problems in sequential decision making

- Planning:
 - A model of the environment is known
 - The agent performs computations with its model (without any external interaction)
 - The agent improves its policy
- Reinforcement Learning:
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy

What is Dynamic Programming?

- Simplifying a complicated problem by breaking it down into simpler sub-problems in a recursive manner.
 - Solve the sub-problems.
 - Combines sub-programs to a final solution

Requirements for Dynamic Programming Dynamic

- Dynamic Programming is a very general solution method for problems which have two properties:
 - Optimal substructure
 - Principle of optimality applies
 - Optimal solution can be decomposed into subproblems
 - Overlapping subproblems
 - Subproblems recur many times
 - Solutions can be cached and reused

- Markov decision processes satisfy both properties
 - Bellman equation gives recursive decomposition
 - Value function stores and reuses solutions

Review: Shortest Path

Definition

 A path between two vertices in a graph such that the sum of the weights along the path is minimized

• Example: The shortest path from A to E

- Path 1 (A-F-C-E): 15 + 5 + 8 = 28
- Path 2 (A-F-G-E): 15 + 6 + 4 = 25
- Path 3 (A-B-D-E): 2 + 14 + 10 = 26

. . .

Planning by Dynamic Programming

- Assumes full knowledge of the MDP.
 - It is used for planning in an MDP
- For prediction (i.e., evaluation)
 - Input: MDP $\langle S, A, P, R, \gamma \rangle$ and policy π
 - Output: value function v_{π} 어떤 바보 같은 policy여도 그에 맞춰 value function을 찾음.
- For control (i.e., improvement)
 - Input: MDP $\langle S, A, P, R, \gamma \rangle$
 - Output: optimal value function v_* and optimal policy π_*

Iterative Policy Evaluation

- How to evaluate a given policy π
 - iterative calculation of bellman expectation backup
- At each iteration k+1
- For all states $S \in S$
- Update $v_{k+1}(s)$ from $v_k(s')$

v파이에 수렴하게 반복함.

$$v_{k+1}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_k(s') \Big]$$

Bellman Expectation Equation

처음에는 쓰레기값이 들어있음.(초기화) 어떤 값에 수렴할때까지 반복함. 어느 순간 값이 더 바뀌지 않음.

Example: Small Grid World

- Undiscounted episodic MDP (γ =1)
- Nonterminal states 1, ..., 14
- Terminal state at shared squares

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

- Actions leading out of the grid leave state unchanged.
- Reward is -1 for all movements

Small Grid World with Random Policy

Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

$$k = 1$$

Up: $v_1(s) = 0.25 \times (-1+0)$

Down: $v_1(s) = 0.25 \times (-1 + 0)$

Left: $v_1(s) = 0.25 \times (-1 + 0)$

Right: $v_1(s) = 0.25 \times (-1+0)$

$$v_1(s) = 4 \times 0.25 \times -1 = -1$$

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

0	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	0

$$k = 1$$

After updating all states from k = 0

0	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	0

$$k = 1$$

$$k = 2$$

Up:
$$v_2(s) = 0.25 \times (-1 - 1)$$

Down:
$$v_2(s) = 0.25 \times (-1 - 1)$$

Left:
$$v_2(s) = 0.25 \times (-1 + 0)$$

Right:
$$v_2(s) = 0.25 \times (-1 - 1)$$

$$v_2(s) = 3 \times 0.25 \times -2 + 0.25 \times -1 = -1.75$$

0	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	-1
-1	-1	-1	0

k = 1

0	-1.75	-2	-2
-1.75	-2	-2	-2
-2	-2	-2	-1.75
-2	-2	-1.75	0

$$k = 2$$

After updating all states from k = 1

0	0	0	0		0	-1	-1	-1
0	0	0	0		-1	-1	-1	-1
0	0	0	0		-1	-1	-1	-1
0	0	0	0		-1	-1	-1	0
	k =	= 0		_		k =	= 1	
0	-2.4	-2.9	-3		0	-6.1	-8.4	-9.0
-2.4	-2.9	-3	-2.9		-6.1	-7.7	-8.4	-8.4
-2.9	-3	-2.9	-2.4		-8.4	-8.4	-7.7	-6.1
-3	-2.9	-2.4	0		-9.0	-8.4	-6.1	0
	k =	= 3		•		k =	: 10	

Algorithm: Iterative Policy Evaluation

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

```
Input \pi, the policy to be evaluated
Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation
Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0
Loop:
```

```
\Delta \leftarrow 0
Loop for each s \in \mathcal{S}:
v \leftarrow V(s)
V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
\Delta \leftarrow \max(\Delta,|v - V(s)|)
until \Delta < \theta
```

v_k for the Random Policy

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

$$k = 0$$

$$k = 1$$

0	-1.75	-2	-2
-1.75	-2	-2	-2
-2	-2	-2	-1.75
-2	-2	-1.75	0

Greedy Policy w.r.t. v_k

	←	←	\longleftrightarrow
†	Ţ	\Rightarrow	→
1	$ \Longleftrightarrow $	₽	ļ
\Leftrightarrow	\rightarrow	\rightarrow	

v_k for the Random Policy

0	-2.4	-2.9	-3
-2.4	-2,8	-3	-2.9
-2.9	-3	-2.8	-2.4
-3	-2.9	-2.4	0

k = 3

0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0

k = 10

0	-14	-20	-22
-14	-18	-20	-20
-20	-20	-18	-14
-22	-20	-14	0

Greedy Policy w.r.t. v_k

 $k = \infty$

19

optimal

policy

Policy Improvement

- Consider a deterministic policy, $a = \pi(s)$
- We can improve the policy by acting greedily

$$\pi'(s) = \underset{a \in A}{\operatorname{argmax}} q_{\pi}(s, a)$$

• This improves the value from any state S over one step.

$$q_{\pi}(s, \pi'(s)) = \max_{a \in A} q_{\pi}(s, a) \ge q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

첫 step은 파이프라임을 따라가고 나머지는 파이를 따라가는 것이
• It improves the value function, 첫 step부터 전부 파이를 따라가는 것보다 좋다.

$$v_{\pi'}(s) \ge v_{\pi}(s)$$

$$q_{\pi}(s, a) \doteq \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a]$$

$$= \sum_{s', r} p(s', r \mid s, a) \Big[r + \gamma v_{\pi}(s') \Big].$$
(4.6)

$$q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s). \tag{4.7}$$

$$v_{\pi'}(s) \ge v_{\pi}(s). \tag{4.8}$$

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s))$$

$$= \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s, A_{t} = \pi'(s)] \qquad (by (4.6))$$

$$= \mathbb{E}_{\pi'}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s]$$

$$\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, \pi'(S_{t+1})) \mid S_{t} = s] \qquad (by (4.7))$$

$$= \mathbb{E}_{\pi'}[R_{t+1} + \gamma \mathbb{E}_{\pi'}[R_{t+2} + \gamma v_{\pi}(S_{t+2}) | S_{t+1}, A_{t+1} = \pi'(S_{t+1})] \mid S_{t} = s]$$

$$= \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} v_{\pi}(S_{t+2}) \mid S_{t} = s]$$

$$\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} v_{\pi}(S_{t+3}) \mid S_{t} = s]$$

$$\vdots$$

$$\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots \mid S_{t} = s]$$

 $=v_{\pi'}(s).$

Policy Improvement

• If improvements stop,

$$q_{\pi}(s, \pi'(s)) = \max_{a \in A} q_{\pi}(s, a) = q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

Then the Bellman optimality equation has been satisfied

$$v_{\pi}(s) = \max_{a \in A} q_{\pi}(s, a)$$

- Therefore, $v_{\pi}(s) = v_{*}(s)$ for all $s \in S$
- So π is an optimal policy

Policy Iteration

• Given a policy π

evaluate와 improve를 반복하면 optimal에 도달함.

• Evaluate the policy π

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots | S_t = s]$$

• Improve the policy by acting greedily with respect to v_π

$$\pi' = greedy(v_{\pi})$$

- In Small Grid World, a few times improved policy was optimal.
- In general, need more iterations of improvement.
- The policy iteration always converges to optimal policy π^*

Policy Iteration

Policy evaluation Estimate v_{π} Iterative policy evaluation

Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Algorithm: Policy Iteration

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathbb{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy$$
-stable $\leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Modified Policy Iteration

- Does policy evaluation need to converge to v_{π} ? policy evaluation단계에서 꼭 v파이에 수렴해야 하는가?
- Can we introduce a stopping condition?
- ullet Or simply stop after k iterations of iterative policy evaluation?
 - For example, in Small Grid World, k=3 was sufficient to achieve optimal policy
- Why not update policy every iteration ? e.g. stop after k=1
 - This is equivalent to value iteration (next slide)

Generalized Policy Iteration

Policy evaluation Estimate v_{π} Any policy evaluation algorithm Policy improvement Generate $\pi' \geq \pi$ Any policy improvement algorithm

Principle of Optimality

- Any optimal policy can be subdivided into two components:
 - ullet An optimal first action A
 - Followed by an optimal policy from successor state \mathcal{S}'

Theorem (Principle of Optimality)

A policy $\pi(a|s)$ achieves the optimal value from state s, $v_{\pi}(s) = v_{*}(s)$, if and only if

- For any state s' reachable from s
- \blacksquare π achieves the optimal value from state s', $v_{\pi}(s') = v_{*}(s')$

Deterministic Value Iteration

policy없이 value만 가지고 update해나가는 것.

- If we know the solution to subproblems $\mathcal{V}_*(s')$
- Then solution $v_*(s)$ can be found by one-step lookahead

$$v_*(s) \leftarrow \max_{a \in \mathcal{A}} \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$

bellman optimality equation

- The idea of value iteration is to apply these updates iteratively
- Still works with loopy, stochastic MDPs

goal에서 시작해서 뒤로 가면서 구하는 것.

Value Iteration

- To find optimal policy
 - · A case of policy iteration when policy evaluation is stopped after just one sweep
- Iterative application of bellman optimality backup
 - At each iteration k+1
 - For all states $S \in S$
 - Update $v_{k+1}(s)$ from $v_k(s')$

$$v_{k+1}(s) \doteq \max_{a} \mathbb{E}[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s, A_t = a]$$

= $\max_{a} \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_k(s') \Big],$

Value Iteration

$$egin{aligned} v_{k+1}(s) &= \max_{a \in \mathcal{A}} \ \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s')
ight) \ \mathbf{v}_{k+1} &= \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a \mathbf{v}_k \end{aligned}$$

Algorithm: Value Iteration

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

```
 | \Delta \leftarrow 0 
 | \text{Loop for each } s \in \mathbb{S}: 
 | v \leftarrow V(s) 
 | V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')] 
 | \Delta \leftarrow \max(\Delta, |v - V(s)|) 
 | \text{until } \Delta < \theta
```

Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \arg\max_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

dynamic 중에 synchronous한 것만 배움. 한 타이밍에 모든 state를 update하는 것. Summary

- * Algorithms are based on state-value function $v_\pi({\scriptscriptstyle S})$ or $v_*({\scriptscriptstyle S})$
 - Complexity $\mathcal{O}(mn^2)$ per iteration, for m actions and n states

Problem	Bellman Equation	Algorithm
Prediction	Bellman Expectation Equation	Iterative Policy Evaluation
Control	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration
Control	Bellman Optimality Equation	Value Iteration

