5, 2007

Docket No. 6847-127/10100727

1 though 6 (Cancelled)

7. (Currently Amended) A method for calculating optimal flexible savings account contributions for a particular user, comprising the steps of:

formulating a dynamic programming model based on a consumer's objective function comprising a utility function, said dynamic programming model incorporating health plan parameters; exogenous parameters, preference parameters, and a health transition equation;

AMENDMENTS TO THE CLAIMS

assigning values to the exogenous parameters by

assembling recent health care use and cost data for a reference population.

acquiring personal and health information on the user and on his/her household members,

estimating the distribution of out-of-pocket costs the user and his/her household

is likely to face in the coming year in various health plans, based on the experience of comparable households in the reference population calibrating the health transition equation with historical claims data linked to the user's health information, and

estimating a marginal tax rate based on the user's personal information; estimating the user's risk aversion;

using numerical calculation methods to estimate other said preference parameter values by:

solving the dynamic programming model with assigned values for the

exogenous parameters, with the estimated risk aversion for said particular user,[-]] and with a plurality of different test values for other preference parameters, and selecting as the estimated preference parameter

values those test parameter values which correspond to solutions of the dynamic programming model

which are close to observed historical expenditures of like-situated

25806674.1 - 2 -

Application No. 09/841,756
Amendment Dated August 20, 2007
Supplemental Reply to Office Action of February 28, 2007

members of a given health plan;

solving the dynamic programming model by numerical calculation methods for optimal flexible spending account contributions for a particular user in one or more particular health plans (or no health insurance), with the assigned exogenous parameters, the estimated risk aversion and with the estimated values for the preference parameters; and

outputting the optimal contributions, the optimal contributions reducing loss of unspent money at the end of a year.

8. (Previously presented) A computer-based method for calculating optimal flexible savings account (FSA) contributions comprising the steps of: processing data and performing numerical solutions with a central processing unit; storing data and computer programs on a mass storage device; storing data and commands in volatile memory;

<u>calculating optimal FSA contributions based upon formulating</u> a consumer's objective function which maximizes expected future utility (EU), namely

$$\max_{G,\left\{m_{\varepsilon},c_{\varepsilon}\right\}_{\varepsilon=-\infty}^{\infty}}EU=\int_{-\infty}^{\infty}U\left(h,c\right)f\left(\varepsilon,\theta\right)d\varepsilon$$

where.

G represents the FSA contribution;

 $\left\{m_{\varepsilon},c_{\varepsilon}\right\}_{\varepsilon=-\infty}^{\infty}\text{ represents the consumption plan for every possible health shock }\varepsilon\,;$

- $U(\hbar,c)$ represents the utility of the consumer from health status h and consumption of non-medical goods c;
- $f(\mathcal{E}, \theta)$ is the probability density function of the distribution for health shocks, where θ parameterizes the distribution of health shocks and will depend on the characteristics of the consumer.
- 9. (original) The method of claim 8 further comprising the step of: using

25806674.1 - 3 -

Application No. 09/841,756
Amendment Dated August 20, 2007
Supplemental Reply to Office Action of February 28, 2007

$$U(hc) = \begin{cases} \left((1-\delta)h^{\rho} + (\delta)c^{\rho} \right)^{V_{\rho}} & \text{if } h \ge h_{\min} \\ 0 & \text{if } h < h_{\min} \end{cases}$$

as the instantaneous utility function.

where, $\,^{
ho}$ < 1, $\,^{\delta}$ \in $\left[0,1\right]$ and $\,^{h_{\min}}$ are the parameters of the utility function.

 The method of claim 8 further comprising the step of: using

$$h = f(h_0, m, \varepsilon; n)$$

as an estimate of the health transition equation, where ϵ represents shocks to health in period.

11. (original) The method of claim 8 further comprising the step of:

usina

$$\varepsilon \sim F(\varepsilon;\theta)$$
 $t=1...12$

for the probability distribution from which the health shocks are drawn, where ϵ is assumed normally distributed and where F(.) is the cumulative density

function of the distribution of shocks, and θ parameterizes that distribution.

12. (original) The method of claim 8 further comprising the steps for: defining a health transition function; and

defining an asset transition function.

13. (original) The method of claim 8 further comprising the steps for: solving the numerical model by dynamic programming methods.

14 though 18 (Cancelled)

19. (currently amended) A system for calculating optimal flexible savings

25806674 | - 4 -

Supplemental Reply to Office Action of February 28 2007

account contributions comprising:

at least one computer <u>comprising a central processing unit for processing data and performing numerical solutions, and volatile memory for storing data and commands;</u> and

- an algorithm <u>executed by the computer</u> for estimating the optimal flexible spending account contribution which includes
 - a consumer's objective function;
 - an instantaneous utility function;
 - a residual utility function;
 - a health transition equation;
 - a transition equation for assets:
 - a transition equation for total medical expenditure:
 - exogenous parameters which have assigned values:
 - preference parameters which have initially assigned test values:
 - said health transition equation calibrated with historical claims data linked to the user's status;
- said algorithm forming a dynamic programming model which is first solved on said computer by numerical calculation methods with assigned exogenous parameters and with test values for the preference parameters in order to obtain estimated preference parameters based on preference parameter test values which correspond to solutions of the dynamic program which are close to observed historical expenditures of like-situated members of a given health plan; and
- which is then solved on the computer by numerical calculation methods for optimal flexible account contribution for a particular user with assigned exogenous parameters and with said estimated preference values, the optimal contributions reducing loss of unspent money at the end of a year.

25806674.1 - 5 -

- (currently amended) A computer readable medium storing a program for calculating optimal flexible savings account contributions comprising:
- a numerical model code segment comprising a consumer's objective function which maximizes expected future utility,

$$\max_{G,\left\{m_{\varepsilon},c_{\varepsilon}\right\}_{\varepsilon=-\infty}^{\infty}}EU=\int_{-\infty}^{\infty}U\left(h,c\right)f\left(\varepsilon,\theta\right)d\varepsilon$$

where.

G represents the FSA contribution:

 $\{m_e,c_e\}_{e=-\infty}^{\infty}$ represents the consumption plan for every possible health shock \mathcal{E} :

U(h,c) represents the utility of the consumer from health status $\,$ h and consumption of non-medical goods c;

 $f(\mathcal{E}, \theta)$ is the probability density function of the distribution for health shocks, where θ parameterizes the distribution of health shocks and will depend on the characteristics of the consumer,

an instantaneous utility function;

- a residual utility function;
- a health transition equation:
- a transition equation for assets:
- a transition equation for total medical expenditure;
- values assigned to exogenous parameters; and
- test values assigned to preference parameters;

wherein

the health transition equation is calibrated with historical claims data linked to the user's status; and

a solution code segment that solves said numerical model by using numerical calculation methods

to determine the optimal flexible spending plan contribution so that forfeiture of unspent money at the end of a year is reduced.

258066741 - 6 -

Docket No. 6847-127/10100727

21. (Previously presented) The medium as in claim 20 further comprising:

$$U\left(h,c\right) = \begin{cases} \left(\left(1-\delta\right)h^{\rho} + \left(\delta\right)c^{\rho}\right)^{V_{\rho}} & \text{if } h \ge h_{\min} \\ 0 & \text{if } h < h_{\min} \end{cases}$$

as the instantaneous utility function.

where, $\rho <$ 1, $\delta \in [0,1]$ and h_{\min} are the parameters of the utility function.

22. (Previously presented) The medium of claim 20 further comprising:

$$h = f(h_0, m, \varepsilon; \eta)$$

ht = f(ht-1, mt, ϵt) as an estimate of the health transition equation, where ϵt represents shocks to health in period t.

23. (Previously presented) The medium of claim 20 further comprising:

$$\varepsilon \sim F(\varepsilon; \theta)$$
 $t = 1...12$

as the probability distribution from which the health shocks are drawn, where ε is assumed normally distributed and where F(.) is the cumulative density function of

- t he distribution of shocks, and θ parameterizes that distribution; and calculating θ by dynamic programming.
- 24. (Previously presented) The medium of claim 20 in which the numerical model code segment further comprises: a health transition function; and
- an asset transition function,
- (Currently amended) The medium of claim 20 wherein: the solution code segment uses dynamic programming as the numerical <u>calculation</u> method for solving the numerical model.

25806674.1 - 7 -