

Conformal Prediction with Temporal Quantile Adjustments

Zhen Lin¹

Shubhendu Trivedi

Jimeng Sun¹

¹ University of Illinois at Urbana-Champaign

Task: Construct prediction intervals for time series data with a cross-section

Applications: Healthcare; econometrics; science.

Notation:

- $ightharpoonup \mathbf{S}_i = [Z_{i,1}, \dots, Z_{i,t}, \dots, Z_{i,T}]$: The *i*-th time series
- $ightharpoonup Z_{i,t} = (X_{i,t}, Y_{i,t})$: random variable (input and response) for the *i*-th time series at time *t*
- \triangleright $\hat{C}_{i,t}$: Prediction interval for $Y_{i,t}$.

Cross-sectional and Longitudinal Validity

Definition

Prediction interval $\hat{C}_{\cdot,\cdot}$ is $1-\alpha$ cross-sectionally valid if, for any t,

$$\mathbb{P}_{S_{N+1}}\{Y_{N+1,t}\in\hat{C}_{N+1,t}\}\geq 1-\alpha.$$

Definition

Prediction interval $\hat{C}_{\cdot,\cdot}$ is $1-\alpha$ longitudinally valid if for almost every time-series $\mathbf{S}_{N+1} \sim \mathcal{P}_{S}$ there exists a T_0 such that:

$$t > T_0 \implies \mathbb{P}_{Y_{N+1,t}|\mathbf{S}_{N+1,:t-1}}\{Y_{N+1,t} \in \hat{\mathbf{C}}_{N+1,t}\} \ge 1 - \alpha.$$

Temporal Quantile Adjustments (TQA

Preliminary: Split Conformal

Treading $\{S_i\}_{i=1}^N$ as the calibration set,

 $\hat{C}_{N+1,t+1}^{split} := [\hat{y} - \hat{v}, \hat{y} + \hat{v}] \text{ where } \hat{v} := Q \Big(1 - \alpha; \{ |y_{i,t+1} - \hat{y}_{i,t+1}| \}_{i=1}^N \cup \{\infty\} \} \Big)$ (3) Here, $Q(\beta; A)$ means the β -quantile for the set A.

Validity: Assuming exchangeability, split conformal is cross-sectionally valid.

Limitation: If we already have evidence that S_{N+1} is "abnormal", we could adapt to this observation/belief.

Solution: In TQA, we replace α with a dynamic $a_{i,t} = \alpha - \hat{\delta}_{i,t}$. This could improve longitudinal coverage while maintaining cross-sectional validity. Please find all theorems in our paper.

TQA-B: Quantile Budgeting (i) Quantile Prediction:

$$\hat{r}_{i,t+1}^{ms} := Q^{-1}(\overline{\epsilon}_{i,t}; \{\overline{\epsilon}_{j,t}\}_{j=1}^{N+1}) \text{ where } \overline{\epsilon}_{i,t} := \sum_{t'=1}^t \frac{|y_{i,t'} - \hat{y}_{i,t'}|}{t} \beta^{(t-t')}.$$

(ii) Budgeting:

$$\hat{\delta}_{i,t}^{B}(r;\alpha) := \begin{cases} C(r - (1 - \alpha)) & (r < 1 - \alpha) \\ (r - (1 - \alpha)) & (r \ge 1 - \alpha) \end{cases} \text{ where } C = \frac{(2\alpha N - \lfloor \alpha N \rfloor)(\lfloor \alpha N \rfloor + 1)}{\lceil (1 - \alpha)N \rceil((1 - 2\alpha)N + 1 + \lfloor \alpha N \rfloor)}.$$
 (5)

TQA-E: Error-Based Adjustment

$$\hat{\delta}_{t+1} \leftarrow \begin{cases} \hat{\delta}_t + \gamma(err_t - \alpha) & (\hat{\delta}_t \ge \alpha - 1) \\ (1 - \gamma)\hat{\delta}_t & (otherwise) \end{cases}$$

Coverage profiles with hypothetical realized rank r condition on prediction \hat{r} , with $\alpha=0.2$ for readability. ($Y_{i,t} \in \hat{C}_{i,t} \Leftrightarrow r_{i,t} \leq 1-a_{i,t}$.) As \hat{r} follows a uniform distribution, the proportion of dots below the red line represents the cross-sectional coverage probability. TQA-B generally improves coverage if \hat{r} is correlated with the realized r (middle), and does not lose coverage otherwise (right). "Budgeting" refers to the constraint that sacrificed and gained have equal areas.

Experiments

Average Coverage: Frequency of $Y_{i,t}$ being in $\hat{C}_{i,t}$.

Tail Coverage: Average coverage of the least-covered 10% time series. **Inverse Efficiency**: Average PI width divided by the average coverage.

Coverage	TQA-B	TQA-E	CFRNN (Split)	CQRNN	LASplit	QRNN	DPRNN
MIMIC	91.31±1.32	91.19±0.48	90.06±1.73	90.15±1.24	90.33±1.54	86.90±1.22	46.30±3.84
CLAIM	91.19±0.49	91.56±0.35	90.21 ± 0.56	90.15±0.68	90.20 ± 0.64	85.90 ± 0.78	24.79 ± 0.85
COVID	90.79±1.45	91.73±0.85	90.25±1.69	90.08±1.62	90.18±1.46	89.19 ± 1.54	67.51 ± 3.76
EEG	90.73±1.21	90.63±0.75	89.92 ± 1.44	89.99±1.76	89.80±1.15	87.96 ± 0.82	39.24 ± 1.30
GEFCom			88.61 ± 0.16	89.16 ± 0.17	88.96 ± 0.18	80.40 ± 1.36	89.50 ± 0.73
GEFCom-R	90.56±0.64	90.72±0.45	89.92±0.78	90.07±0.63	89.95±0.72	85.49 ± 1.08	91.03±0.76

Tail Coverage Rate	↑ TQA-B	TQA-E	CFRNN (Split)	CQRNN	LASplit	QRNN	DPRNN
MIMIC	71.59 ± 4.03	80.68±1.74	62.22±7.09	68.60±3.84	65.05±6.12	61.80±3.91	17.24 ± 5.38
CLAIM	74.16±1.22	81.53±0.77	65.95 ± 1.88	66.45 ± 3.19	68.08 ± 2.44	53.89 ± 3.59	1.65 ± 0.54
COVID	70.01 ± 4.45	82.39±1.28	64.41 ± 6.11	66.41 ± 5.99	67.38 ± 4.63	65.16±6.15	36.65 ± 5.63
EEG	70.99 ± 2.18	79.03±1.22	64.14 ± 3.42	61.95 ± 4.71	67.13 ± 2.32	57.82±2.78	12.99 ± 1.32
GEFCom	68.96 ± 1.70	81.77±0.36	58.49 ± 1.38	61.63 ± 1.56	60.46 ± 1.66	47.56±2.27	67.45 ± 1.69
GEFCom-R	75.28 ± 1.28	81.80±0.69	68.76 ± 2.18	71.95 ± 1.66	70.79 ± 2.12	64.99 ± 1.92	71.86 ± 1.75
Inverse Efficiency	TQA-B	TQA-E	CFRNN (Split)	CQRNN	LASplit	QRNN	DPRNN
MIMIC	1.990±0.165	2.382 ± 0.265	1.964 ± 0.170	1.738±0.14	5 2.072±0.2	23 1.623±0.	146 1.258±0.132
CLAIM	3.020 ± 0.045	3.279 ± 0.074	3.003 ± 0.052	2.902 ± 0.04	4 3.009±0.0	64 $2.691\pm0.$	$035\ 2.401\pm0.205$
COVID	0.831 ± 0.032	1.167 ± 0.337	0.826 ± 0.034	0.908 ± 0.09	1 0.826 ± 0.0	37 0.888±0.	$096\ 0.744 \pm 0.050$
EEG	1.449 ± 0.025	1.749 ± 0.125	1.445 ± 0.031	1.586 ± 0.05	2 1.448 ± 0.0	25 1.497±0.	$042\ 1.061\pm0.027$
GEFCom (0.238 ± 0.005	0.280 ± 0.013	0.235 ± 0.005	0.242 ± 0.00	5 0.238±0.0	$05 0.211 \pm 0.$	$005\ 0.636\pm0.009$
GEFCom-R	0.200 ± 0.004	0.222 ± 0.010	0.198 ± 0.004	0.207 ± 0.00	4 0.201±0.0	$04 \mid 0.193 \pm 0.$	$004 \ 0.590 \pm 0.009$

This work was supported by NSF award SCH-2205289, DMS-1439786, SCH-2014438, IIS-1838042, NIH award R01 1R01NS107291-01.