

ST. PAUL'S UNIVERSITY

Private Bag - 00217 Limuru, Kenya

Tel. Office: 020-2020505/10; Mobile: 0728-669000

Website: www.spu.ac.ke

FACULTY OF BUSINESS, COMPUTER SCIENCE AND COMMUNICATION BACHELOR OF COMPUTER SCIENCE SEPTEMBER-DECEMBER 2019/2020 SEMESTER CSC 2210 AUTOMATA THEORY

CAT

ANSWER ALL QUESTIONS

a) Convert the following NFA to a regular CFG:

(4 marks)

Ans

$$\begin{array}{c|cccc} S \rightarrow aA & bA & \varepsilon \\ A \rightarrow aA & bB \\ B \rightarrow aS & bA & \varepsilon \end{array}$$

b) Mathematically define a DFA that accepts the language of all strings over alphabet $\{a, b\}$ in which each b is separated from the next by at least 100 a's. (6 marks)

Ans

Define
$$A = (Q, \{a, b\}, \delta, q_0, F)$$
 with $Q = [0, 100] \cap \mathbb{Z}$, $q_0 = 100$, $F = Q$, and $\delta = \{((100, a), 100), ((100, b), 0)\} \cup \{((q, a), q + 1) \mid q \in Q - \{100\}\}$

c) Write a CFG that generates the language of ALL palindromes over alphabet $\{a, b\}$ that do not contain the substring aa. (6 marks)

Ans

$$S \rightarrow abSba \mid bSb \mid aba \mid a \mid b \mid \varepsilon$$

d) Obtain DFAs to accept strings of a's and b's having exactly one a.

(4 marks)

Ans

e) Discuss FOUR applications of Finite Automata.

(4 marks)

Ans

String Processing

Consider finding all occurrences of a short string (pattern string) within a long string (text string).

This can be done by processing the text through a DFA: the DFA for all strings that end with the pattern

string. Each time the accept state is reached, the current position in the text is output.

Finite-State Machines

A finite-state machine is an FA together with actions on the arcs.

Statecharts

Statecharts model tasks as a set of states and actions. They extend FA diagrams.

Lexical Analysis

In compiling a program, the first step is lexical analysis. This isolates keywords, identifiers etc., while

eliminating irrelevant symbols. A token is a category, for example "identifier", "relation operator" or specific keyword.

f) Explain decision properties of regular language.

(6 marks)

Ans

To locate the regular languages in the Chomsky hierarchy, one notices that every regular language is context-free. The converse is not true: for example the language consisting of all strings having the same number of a's as b's is context-free but not regular. To prove that a language such as this is not regular, one often uses the Myhill–Nerode theorem or the pumping lemma among other methods. [5]

If L is any subset of Σ^* , one defines an equivalence relation \sim (called the syntactic relation) on Σ^* as follows: $\in u \sim v$ is defined \in to mean $\in uw$ $\in L$ if and only if vw $\in L$ for all vw $\in L$ for al

The language L is regular if and only if the number of equivalence classes of \sim is finite (A proof of this is provided in the article on the syntactic monoid). When a language is regular, then the number of equivalence classes is equal to the number of states of the minimal deterministic finite automaton accepting L.

A similar set of statements can be formulated for a monoid $M \subset \Sigma^*$. In this case, equivalence over M leads to the concept of a recognizable language.