											Condición Inicial					
	$x_0 = \beta_j, x_1$	11	$= \alpha_j, x_2 = \gamma_j$		$x_0 = \overline{\beta}_j$	$x_0 = \beta_j, x_1 = b_j, x_2 = \gamma_j$	$j, x_2 =$	γ_j		$x_0 = \beta_j, x_1$	$x_0 = \beta_j, x_1 = \alpha_j, x_2 = b_j$			= 0x	$x_0 = \alpha_j, x_1 = b_j, x_2 = \gamma_j$	
Iteración	x_{i-2}	x_{i-1}	$x_i \mid f($	$f(x_i) \mid z$	$x_{i-2} \mid x_{i-1}$		$x_i \mid f($	$f(x_i)$	x_{i-2}	x_{i-1}	x_i	$f(x_i)$	x_{i-2}	x_{i-1}	x_i	$f(x_i)$
0	-1	-0.76	Ī	-0.4	-1	-0.81	<u> </u>	-0.4	-1	-0.76	-0.81	-0.0071296522431815 -0.76	92.0-	-0.81		-0.4
1	-0.76		nan n	nan -	-0.81	n	nan n	nan	-0.76	-0.81	-0.81554919091683	0.00033694663670063 -0.81	-0.81		-0.64049472250976	-0.20100202403686
2									-0.81	-0.81554919091683	-0.81554919091683 -0.81529807543648	-1.944831341696e-06		-0.64049472250976	nan	nan
3								<u> </u>	-0.81554919091683	-0.81529807543648	-0.81529807543648 -0.81529951638858	-4.6948609901962e-10				
4									-0.81529807543648	-0.81529807543648 -0.81529951638858 -0.81529951673651	-0.81529951673651	7.2965979931349e-16				

Figure 1: Método Muller, raíz 4