ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 28 giugno 2018

Esercizio A

 Q_1 è un transistore BJT BC109B resistivo con $h_{re} = h_{oe} = 0$. Q_2 è un transistore MOS a canale p resistivo, con la corrente di drain in saturazione data da $I_D = k(V_{GS} - V_T)^2$ con k = 0.5 mA/V² e $V_T = -1$ V. Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_3 in modo che, in condizioni di riposo, la tensione sul drain di Q_2 sia 7 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_2 . (R: $R_3 = 85840 \Omega$)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 , C_3 e C_4 possono essere considerati dei corto circuiti. (R: $V_U/V_i = 47$)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \overline{\overline{D}E} \left(\overline{A}B + \overline{C}\overline{B} \right) + \overline{C} \left(\overline{B}\overline{D} + \overline{E} \right) + \overline{A}BC$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori. (R: N = 22)

Esercizio C

$R_1 = 1.8 \text{ k}\Omega$	$R_6 = 800 \Omega$
$R_2 = 40 \Omega$	$R_7 = 1 \text{ k}\Omega$
$R_3 = 200 \Omega$	C = 47 nF
$R_4 = 1920 \; \Omega$	$V_{CC} = 6 V$
$R_5 = 1920 \ \Omega$	

Il circuito IC_1 è un NE555 alimentato a $\mathbf{V}_{CC} = 6\mathbf{V}$, Q_1 ha una $R_{on} = 0$ e $V_T = 1V$, Q_2 ha una $R_{on} = 0$ e $V_T = -1V$, l'inverter è ideale. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 11041 Hz)