Криптография

Лекция 8. Шифрование файлов.

Дмитрий Яхонтов

"Кочерга", 2019

Шифрование отдельных файлов

- Архиваторы (Zip, Rar)
 - Симметричные алгоритмы: RC4, AES
- PGP / GnuPG
 - Симметричные алгоритмы: 3DES, AES, Blowfish, Twofish, Camellia
 - Асимметричные алгоритмы: ElGamal, RSA

- удобно использовать для передачи файлов
- ✓ кроссплатформенно
- после изменения файла требуется вручную перешифровать его
- временные копии расшифрованных файлов хранятся на диске

Шифрованные файловые системы

EFS (Windows), EncFS, eCryptfs (Linux)

- "прозрачная" работа
- позволяет выполнять инкрементное резервное копирование
- не скрывает количество файлов и их размер
- сохраняет все ограничения файловой системы-источника

Шифрованные контейнеры / дисковые разделы

BitLocker (Windows), BestCrypt, DiskCryptor, TrueCrypt, VeraCrypt

- ✓ "прозрачная" работа
- скрывает всю информацию о файловой системе
- затруднено резервное копирование: только контейнер целиком
- фиксированный размер контейнера

Аппаратно шифруемые диски

- у работает независимо от ОС и приложений
- скрывает всю информацию на диске
- ▼ возможно уничтожение данных после N неудачных попыток разблокировки
- резервное копирование невозможно без расшифровки
- закрытая архитектура

Аппаратно шифруемые диски

Схема работы VeraCrypt

Режимы блочного шифрования

(и почему они не подходят для файловых систем)

- Простая замена (ЕСВ)
 - нет уникальности блоков

- Со счетчиком (СТК)
 - уязвим к повторной записи других данных в тот же блок

- С обратной связью (CFB и OFB)
 - нет произвольного доступа
 - уязвим к повторной записи других данных в тот же блок (CFB — первый блок, OFB — полностью)

Со сцеплением блоков (СВС)

- опять нет произвольного доступа
- если известен открытый текст, можно подменить каждый второй блок
- если IV предсказуемый,
 можно создавать блоки,
 обнаружимые после шифрования

Режим шифрования XTS

Правдоподобное отрицание

- Цель отрицать наличие секрета, причем так, чтобы у атакующего не было возможности доказать обратное.
- Уровень 0: контейнер выглядит как случайные данные
 - нет открытых заголовков и сигнатур
 - нет узнаваемой структуры данных
 - нет статистических особенностей (кроме высокой энтропии)
- Уровень 1, 2 ... N: скрытые разделы
 - позволяет раскрыть часть секретов, сохранив остальные

Скрытые разделы

- Скрытый раздел расположен внутри основного в случайном месте
- Скрытый раздел имеет собственный заголовок и шифруется собственными ключами
- Без знания ключа скрытый раздел выглядит как свободная часть основного (случайные данные)
- Запись в основной раздел может повредить информацию в скрытом. Этого можно избежать, используя режим защиты (требует ключ скрытого раздела)
- VeraCrypt один скрытый раздел, LibreCrypt, BestCrypt — несколько разделов

Файловые системы с множеством уровней

Ссылки

- Обратная связь:
 - android.ruberoid@gmail.com
 - @androidruberoid
- Анонсы:
 - facebook.com/kocherga.club
 - w vk.com/kocherga club
 - w vk.com/kocherga_prog
- Материалы лекций:
 - github.com/notOcelot/Kocherga_crypto
- Видео:
 - youtube.com/channel/UCeLSDFOndl4eKFutg3oowHg

