Network Slice Optimization in 5G

Harshit Soni (202211027) Hridyansh Sharma (202211029) Shreyas Makwana (202211046) Daksh Mehta (202211049)

Computer Science Department

April 2025

Outline

- Introduction
- Methodology Overview
- Synthetic Data Generation
- 4 CNN Model Architecture
- Training and Results
- 6 Conclusion and Future Work
- References

What is Network Slicing?

- Definition: Logical partitioning of 5G network to serve diverse services.
- Motivation: Ensure QoS, scalability, and efficient resource utilization.
- Use cases:
 - eMBB (Enhanced Mobile Broadband)
 - URLLC (Ultra-Reliable Low Latency Communications)
 - mMTC (Massive Machine Type Communications)

Importance of Optimization

- Challenges:
 - Dynamic traffic patterns
 - Heterogeneous service requirements
 - Resource allocation conflicts
- Goal: Maximize throughput, minimize latency, balance resource loads
- Approach: Machine learning-based predictive models

Methodology

Our approach consists of three key steps:

- Create Synthetic Data
 - Generate network slice parameters
 - Simulate traffic patterns
- Preprocess Data
 - Feature scaling and normalization
 - Prepare for CNN input
- Define and Train CNN Model
 - Design neural network architecture
 - Train and evaluate performance

Synthetic Data Generation

- Network slice parameters:
 - Bandwidth requirement (Mbps)
 - Latency sensitivity (ms)
 - User density (users/km²)
 - Mobility pattern
- Slice types:
 - eMBB: High bandwidth (100-1000 Mbps), moderate latency (30-100 ms)
 - URLLC: Moderate bandwidth (10-100 Mbps), ultra-low latency (1-10 ms)
 - mMTC: Low bandwidth (1-10 Mbps), relaxed latency (50-200 ms)
- Dataset size: 10,000 samples with balanced class distribution

CNN Model Architecture

- Input layer: Time series data (timesteps × features)
- Convolutional layers:
 - First layer: 32 filters, kernel size 3
 - Second layer: 64 filters, kernel size 3
 - Activation: ReLU
- Pooling layers: Max pooling with size 2
- Fully connected layers:
 - 128 neurons with ReLU activation
 - Dropout layer (50%) for regularization
- Output: 3 neurons with softmax activation (eMBB, URLLC, mMTC)

Model Training

- Model configuration:
 - Optimizer: Adam (adaptive learning rate)
 - Loss function: Categorical cross-entropy
 - Evaluation metric: Accuracy
- Training parameters:
 - Epochs: 50 (with early stopping)
 - Batch size: 32
 - Train/validation split: 80/20%
- Regularization techniques:
 - Dropout layers
 - Early stopping to prevent overfitting

Results and Analysis

- Performance metrics:
 - Training accuracy: 95.2%
 - Validation accuracy: 93.8%
 - Test accuracy: 94.1%
- Key findings:
 - Model successfully identifies appropriate slice types
 - High precision for all slice categories
 - Bandwidth is the most predictive feature
 - Quick convergence (23 epochs)
- Real-world implications: Enables automatic resource allocation and QoS optimization

Conclusion and Future Work

- Conclusion:
 - CNN approach achieves high accuracy for network slice classification
 - Framework enables automated slice optimization
 - Method works well on synthetic data
- Future work:
 - Apply to real network traffic datasets
 - Explore RNNs and Transformers for temporal patterns
 - Incorporate reinforcement learning for dynamic slice management
 - Develop edge-deployable lightweight models

References

- Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015.
- 3GPP, "System architecture for the 5G System (5GS)," 3GPP TS 23.501, 2020.
- I. Goodfellow, Y. Bengio, and A. Courville, "Deep Learning," MIT Press, 2016.