

SHIFT REGISTERS

INTRODUCTION

- A sequential logic circuit, mainly for storage of digital data and movement
- A group of flip-flops connected in a chain so that the output from one flip-flop becomes the input of the next flip-flop.
- All the flip-flops are driven by a common clock, and all are set or reset simultaneously.
- > Types:
 - > Serial In Serial Out,
 - Serial In Parallel Out,
 - > Parallel In Serial Out,
 - Parallel In Parallel Out, and
 - > Bidirectional shift registers.
 - A special form of counter the shift register counter, (Ring and Johnson)

Remember:

A flip-flop stores one bit of information

When you want to store n bits \rightarrow register,

- 'n' flip-flops used,
- Clock is shared by all so action is synchronous with clock edge

REVIEW: THE D FLIP-FLOP

- > D flip flop is used to store binary Data.
- The logic level at the "D" (data) input is transferred to the Q output when the clock is asserted.
- It remains stored at output Q until the clock is asserted a second time.

> If look inside the D flip flop, you can see how it works.

- ➤ Let's assume the initial conditions at Q are 0.
- > Set D to logic 1.
- ➤ Show the logic levels at S and R
- The internal SR inputs are in the set mode. The flip flop will set if D=1 and the clock is asserted. Q=D!
- > Set D to logic 0.
- The internal SR inputs are in the reset mode. The flip flop will reset if D=0 and the clock is asserted. Q = D again!

4-BIT SHIFT REGISTER

- The 4-bit shift register can shift data from QA to QB to QC to QD. The shift register will be filled with 1's then it will be filled with 0's.
- > Assume the initial conditions are : Qa=Qb=Qc=Qd=0.
- Din is the input to QA. The data at QA shifts to QB. The data at QB shifts to QC QC shifts to QD.
- Apply a logic 1 at input Din and clock the shift register 4 times.
- > You have seen how it takes 4 clock pulses to fill the shift register with 1's. Din will now be connected to logic 0. This will shift the 1's out and fill the shift register with 0's.

FUNCTIONS OF SHIFT REGISTER

Storage Capacity

- ✓ Total no. of bits of digital binary word (data) that can be stored
- ✓ Each flip-flop in shift register stores 1 bit
- ✓ The no. of flip-flop in shift register determines storage capacity

Shifting Capability

- ✓ Movement of data from stage to stage within register or into or out of register upon the application of clock pulse
- ✓ Shifting can be done either in right direction or left direction

OPERATIONS ON SHIFT REGISTER

- Parallel and Serial Data Transmission
 - ✓ Shift registers are often used to interface digital systems situated remotely from each other.
 - ✓ Task: We want to transmit an n-bit quantity between two location that are far from each other.
- > Options:
 - ✓ Use n/lines to transmit n bits in parallel. Problem: Cost is expensive.
 - ✓ Use a single line to transmit the information serially, one bit at a time. Cost is less.

OPERATIONS ON SHIFT REGISTER

(LOADING, SHIFTING, ROTATING)

(a) Serial in/shift right/serial out

(b) Serial in/shift left/serial out

(c) Parallel in/serial out

(d) Serial in/parallel out

(e) Parallel in/parallel out

(f) Rotate right

(g) Rotate left

SERIAL IN SERIAL OUT (SISO)

- > Data entered into a register serially one bit at a time
- Output is also obtained in serial form
- On the leading edge of the first clock pulse, the signal on the INPUT (data_input) is latched in the first flip-flop.
- On the leading edge of the next clock pulse, the contents of the first flip-flop is stored in the second flip-flop, and the signal which is present at the INPUT (data_input) is stored in the first flip-flop, etc.
- A 3-bit SISO shift register can be constructed using 3-D flip-flops
- Clock is provided in synchronous way in positive edge

FOR DATA INPUT 011

- > The register is first cleared, forcing all three outputs to zero.
- The input data is then applied sequentially to the D input of the first flip-flop on the left (FFO).
- > During each clock pulse, one bit is transmitted from left to right.
- The least significant bit of the data has to be shifted through the register from FFO to FF2.

SERIAL IN PARALLEL OUT (SIPO)

- > Data entered into a register serially one bit at a time
- Output is obtained in parallel form
- On the leading edge of the first clock pulse, the signal on the INPUT is latched in the first flip-flop.
- On the leading edge of next clock pulse, the content of first flip-flop is stored in the second flip-flop, and the signal, present at the INPUT is stored in the first flip-flop, etc. as explained in previous section.
- The difference is the way in which the data bits are taken out of the register.
- Once the data are stored, each bit appears on its respective output line, and all bits are available simultaneously.
- ➤ A 3-bit SIPO shift register can be constructed using 3-D flip-flops
- Clock is provided in synchronous way in positive edge

FOR DATA INPUT 011

- > The register is first cleared, forcing all three outputs to zero.
- The input data is then applied sequentially to the D input of the first flip-flop on the left (FFO).
- > During each clock pulse, one bit is transmitted from left to right.
- The least significant bit of the data has to be shifted through the register from FFO to FF2.

TIMING DIAGRAM (SIPO)

PARALLEL IN PARALLEL OUT (PIPO)

- Data entered into a register simultaneously (all bits at the same time)
- > Output is also obtained in parallel form
- Once the register is clocked, all data bits appear on the parallel outputs immediately following the simultaneous entry of the data bits at the D inputs.
- ➤ A 3-bit PIPO shift register can be constructed using 3-D flip-flops
- Clock is provided in synchronous way in positive edge
- The D's are the parallel inputs and the Q's are the parallel outputs.

FOR DATA INPUT 011

- ➤ The register is first cleared, forcing all three outputs to zero.
- ➤ Once the register is clocked, all the data at the D inputs (011) appear at the corresponding Q outputs simultaneously

TIMING DIAGRAM (PIPO)

PARALLEL IN SERIAL OUT (PISO)

- > Data entered into a register simultaneously (all bits at the same time)
- > Output is also obtained in serial form
- ➤ A 3-bit PISO shift register can be constructed using 3-D flip-flops
- Clock is provided in synchronous way in positive edge
- ➤ D0, D1, D2 are the parallel inputs, where D0 is the most significant bit and D2 is the least significant bit.

☐ Clear

- To write data in, the mode control line (Load/Shift) is taken to HIGH and the data is clocked in.
- The data can be shifted when the mode control line (Load/Shift) is LOW as SHIFT is active low. The register performs right shift operation on the application of a clock pulse.

FOR DATA INPUT 011

- > The register is first cleared, forcing all three outputs to zero.
- To write data in, the mode control line (Load/(Shift)') is taken to HIGH and the data is clocked in.
- Once the register is clocked, all the data at the D inputs (011) appear at the corresponding Q outputs simultaneously.
- To read data out, the mode control line (Load/(Shift)') is LOW as SHIFT is active low.
- > The register performs right shift operation on the application of a clock pulse.
- > During each clock pulse, one bit is transmitted from left to right.

TIMING DIAGRAM (PISO)

BIDIRECTIONAL SHIFT REGISTER

- A Bidirectional or reversible, shift register is one in which the data can be shift either left or right
- Data entered into and taken out of a register serially one bit at a time.
- A 3-bit Bidirectional shift register can be constructed using 3-D flip-flops
- Clock is provided in synchronous way in positive edge
- To shift right, the mode control line (Right/(Left)') is taken to HIGH and the data is clocked in.
- To shift left, the mode control line (Right/(Left)') is LOW as LEFT is active low. The register performs left shift operation on the application of a clock pulse.

FOR DATA INPUT 011

- The register is first cleared, forcing all three outputs to zero.
- To shift right, the mode control line (Right/(Left)') is taken to HIGH and the data is clocked in.
- During each clock pulse, one bit is transmitted from left to right serially.
- The least significant bit of the data has to be shifted through the register from First flip-flop to Last.
- To shift left, the mode control line (Right/(Left)') is LOW as LEFT is active low. The register performs left shift operation on the application of a clock pulse.
- During each clock pulse, one bit is transmitted from right to left serially

SHIFT REGISTER COUNTERS

- > Two of the most common types of shift register counters are
 - Ring counter and
 - > Johnson counter.
- They are basically shift registers with the serial outputs connected back to the serial inputs in order to produce particular sequences.
- These registers are classified as counters because they exhibit a specified sequence of states.

RING COUNTER

- > Basically a circulating shift register (data moved in a ring)
- The output of the most significant stage (Last FF) is fed back to the input of the least significant stage (1st FF).
- Initially before clock pulse, , all the flip-flops except the first one FFO are reset to 0 using clear and 1st FF(FFO) is preset to 1 instead.
- ➤ 4-bit Ring counter constructed from 4 D flip-flops.
- > Clock is provided in synchronous way in positive edge
- The output of each stage is shifted into the next stage on the positive edge of a clock pulse serially.
- REMEMBER: N-Bit Ring Counter----N Flip-Flops----N states
- Since the count sequence has 4 distinct states, the counter can be considered as a mod-4 counter.
- > Only 4 of the maximum 16 states are used, making ring counters very inefficient in terms of state usage.
- ➤ But the major advantage of a ring counter over a binary counter is that it is self-decoding. No extra decoding circuit is needed to determine what state the counter is in.

CLEAR	FF0	FF1	FF2	FF3
	1	0	0	0

RING COUNTER

Clk	Q_0	Q_1	Q_2	Q_3	
0	1	0	0	0	
1	0	1	0	0	
2	0	0	1	0	
3	0	0	0	1	-

JOHNSON COUNTER

CLEAR

FF0	FF1	FF2	FF3
0	0	0	0

- > a circulating shift register (data moved in a ring)
- A variation of standard ring counters, with the inverted output of the last stage fed back to the input of the first stage.
- > They are also known as twisted ring counters.
- An n-stage Johnson counter yields a count sequence of length 2n, so it may be considered to be a mod-2n counter
- Disadvantage is that the maximum available states are not fully utilized. Only eight of the sixteen states are being used for 4 bit Johnson counter
- Both Ring and Johnson counter must initially be forced into a valid state in the count sequence because they operate on a subset of the available number of states. Otherwise, the ideal sequence will not be followed
- Initially before clock pulse, , all the flip-flops are reset to 0 using clear
- ➤ 4-bit Johnson counter constructed from 4 D flip-flops.
- > Clock is provided in synchronous way in positive edge
- The output of each stage is shifted into the next stage on the positive edge of a clock pulse serially.
- ➤ REMEMBER: N-Bit Johnson Counter----N Flip-Flops----2N states

JOHNSON COUNTER

Clk	Q_0	Q_1	Q_2	Q_3	
0	0	0	0	0	~
1	1	0	0	0	
2	1	1	0	0	
3	1	1	1	0	
4	1	1	1	1	
5	0	1	1	1	
6	0	0	1	1	
7	0	0	0	1	

M

Four stage Johnson counter waveforms

APPLICATION OF SHIFT REGISTERS

- > To produce Time Delay
- ✓ The serial in –serial out shift register can be used as a time delay device. The amount of delay can be controlled by
 - ✓/ the number of stages in the register
 - ✓ the clock frequency
- To simplify combinational logic
- ✓ The ring counter technique can be effectively utilized to implement synchronous sequential circuits.
- ✓ A major problem in the realization of sequential circuits is the assignment of binary codes to the internal states of the circuit in order to reduce the complexity of circuits required.
- ✓ By assigning one flip-flop to one internal state, it is possible to simplify the combinational logic required to realize the complete sequential circuit.
- ✓ When the circuit is in a particular state, the flip-flop corresponding to that state is set to HIGH and all other flip-flops remain LOW.

APPLICATION OF SHIFT REGISTERS

- > To convert serial data to parallel data
 - ✓ A computer or microprocessor-based system commonly requires incoming data to be in parallel format.
 - ✓ But frequently, these systems must communicate with external devices that send or receive serial data.
 - ✓ So, serial-to-parallel conversion is required. As shown in the previous sections, a serial in parallel out register can achieve this.
- Parallel to Serial data converter (PISO register can do this)
- > Multiplication of binary number by two.
 - ✓ Shift data one bit left to achieve this

Multiplication by 2							
4 bit SISO	0	1	1	0	=6		
Left shift with 0	1	1	0	0	=12		

- Division of binary number by two.
 - ✓ Shift data one bit right is equivalent to dividing by 2 with an error of ½ in decimal value

Divisible by 2						
4 bit SISO	0	1	1	0	=6	
Right shift with 0	0	0	1	1	=3	

APPLICATION OF SHIFT REGISTERS

- Data storage (PIPO)
- ✓ The common clock input triggers all flip-flops on the positive edge of each pulse → the binary data available at the 4 inputs are transferred into the register.
- ✓ The four outputs can be sampled to obtain the binary information stored in the register.

