1 Disorder is a friend of scaling

1.1 Streaming through RAM

- Instead of reading and writing a single item at a time, batch things up
- When input buffer consumed, read another chunk. When out buffer fills, write to output using f(x) in the middle
- We can simply partition the input and parallelize

1.2 Rendezvous

- Streaming one chunk at a time is easy, but some algorithms need certain items to be co-resident in memory (not guaranteed to appear in the same input chunk)
- **Time-space rendezvous**: in the same place (RAM) at the same time most of computing is about this
- Divide and Conquer: you have B chunks, use 1 for read into and one for write into, leaving B-2 chinks of RAM left as space for rendezvous

2 SQL

The standard for database queries - has been around since the 70s and remains the top language

2.1 Pros and Cons

Pros: SQL is a declarative language and is widely implemented (varying levels of efficiency and completeness). It is also general-purpose and feature-rich (many years of added features, extensible: callouts to other languages, data sources)

Cons: Constained (Core SQL is not a Turing-complete language - extensions make it Turing complete)

2.2 Relation Terminology

- Database: set of relations
- Relation (Table): Schema (description, schema of database is set of schema of its relations), Instance (data satisfying the schema)
- Attribute (Column)
- Tuple (Record, Row)

- Schema is fixed, set up in the beginning. Attribute names, atomic types. Populated with data that changes over time
- Instance can change: a multi-set of rows. Tables are unordered and there can be repeats
- DDL: Data Definition Langue is where you declare hat you want your tables to be and look like.
- DML: Data Manipulation language is where you say what info you actually want in the table
- RDBMS is responsible for efficient evaluation

Foreign Key (sid) References Sailors: this means that the sid will be tied to the sid in the Sailors table - you can't put something in the new table that didn't exist in the other table

2.3 Single Relation Queries

DISTINCT means remove duplicates SELECT [DISTINCT] what you want FROM table WHERE condition GROUP BY column list HAVING predicate ORDER BY column list

Aggregates compute a summary of some arithmetic expression and produce one row of output

Group by partitions the table into seperate areas and produce aggregate result per group - cardinality of output is the number of distinct group values Having predicate is applied after grouping and aggregation - hence can contain anything that could go in the SELECT list - only used in aggregate queries

Order: FROM comes first - gives us the table. Then we look at the table data and stream it through the WHERE clause. In the SELECT clause we see which columns we actually care about. Then we do GROUP BY and create buckets and collect tuples for each bucket. Then we look at the HAVING clause and throw out any bucket that doesn't satisfy. Then we eliminate duplicates if DISTINCT is on and then we do that AGGREGATE

2.4 Querying Multiple Relations - Join Queries

FROM Sailors S, Reserves R - we have multiple tables in this clause WHERE S.sid = R.sid - otherwise we get nonsense

Range Variabels: needed when ambiguity could arise - same table used multiple times in ${\rm FROM}$

Where S.name LIKE 'P(underscor)p(percent sign)' means name starts with a P then some stuff then a lower case p

EXCEPT can remove sailors who have reserved a boat - removing some group - also eliminates duplicates