WordNet (Discrete representation)	One-hot representation (count vectorizing)	Bag of words	TF-IDF
+ Good as a resource	+ Simplest to implement	+ captures word frequency	+ weights to represent whether a word is significant
 - Missing nuances (e.g. synonyms) - Missing new words - Needs human labor to create & adapt - Hard to compute accurate word similarity - Regards words as atomic symbols 	- Unordered, context of words is lost - vector rep is in binary form, no freq info considered - Really huge and sparse vectors	- Can't capture word order - Can't capture similarities (e.g. boy, girl, giraffe. BOW cannot say who are more similar) - High dimensional & sparse	- high dimensional - don't capture semantic relatedness

http://hunterheidenreich.com/blog/intro-to-word-embeddings/

Dense Vector Embeddings

(Singular value decomposition etc)

Window-based Co-occurrence Matrix Word-doc CM gives general topics - WBCM -> symmetric (irrelevant whether left or right context)	t-SNE (For visualization) use after SVD (rep multi-dim vectors in 2D space; suited for visualization) (optimizes st similar points in high-dim space are still closeby in low-dim space)
+ captures both syntactic (POS) & semantic info	
Increase size with vocabVery high dimSubsequent classification model will have sparsity issue (less robust)	SVD - For n x m matrix: cost = O(mn²); bad when dealing with millions of words / docs - Hard to incorporate new words/doc
Sol: Low dimensional vectors Store 'most' of the impt info in a fixed small # dim Reduce dimensionality via SVD	Let's directly learn low-dim word vectors!

Word representations

• one hot encoding • Each word is a point in n-dimensional space, represented by a vector of length \boldsymbol{n} , · Each word in the vocabulary is represented $(n \sim 100 - 300)$ by one bit position in a HUGE vector. Trained by using big text dataset For example, if we have a vocabulary of 10000 words, and "Hello" is the 4th word in • For example, "Hello" might be represented the dictionary, it would be represented by: 000100......0000 $[0.4, -0.11, 0.55, 0.3 \dots 0.1, 0.02]$ • Context information is not utilized • Dimensions are basically projections along different axes, more of a mathematical concept.

Directly learning word vectors

Word2vec Efficient embedding model Instead of capturing co-occurrence counts directly, predict surround words of each word - Maximise P(context focus word) - 2 options (both 1 layer): CBOW, Skip-gram (SG more popular) - CBOW: predict word given context, SG opposite	Negative Sampling as objective - new formulation of objective that implements binary logistic regression to classify between data & noise samples	GloVe (efficient count-based model) Combines elements from 2 main word embedding models Instead of learning raw co-occurrence probs, learn ratios of these co-occurrence prob Noise points: words that don't help us distinguish b/w i and j (use ratio b/w CO prob to filter out these noise points) P(k j)/P(k i) with different k words. If value is high -> k is useful to distinguish i and j
To train this neural network, we need to 1. Decide window size (dependent on dataset size / quality) 2. Decide embedding size (#nodes in network) 3. Size of vocab Training obj? Softmax crossentropy? -> hard to compute Solution: Negative Sampling	Results: + Fast & Accurate predictive model + Captures semantic content + Pretrained models available + Super fast to train (these models try to encode some meaning in the words so that you can use it in your eventual classification model)	+ Fast training + Scalable to huge corpus, good perf + Easier to parallelize than word2vec, but comparable accuracy + Ratio of co-occurrence probabilities can encode meaning

Negative Sampling for Word2Vec:

Instead of considering all words in vocabulary, consider a few 'negative samples' for each 'positive sample'. Randomly sample 5 negative (false) contexts for each positive (correct) (word, context) in the dataset.

Evaluation of word vectors

- 1. Intrinsic evaluation: it encodes semantic information (e.g. similarity)
- 2. Extrinsic evaluation: is it useful for other NLP tasks

Word similarity task, Word analogy task

Extrinsic evaluation: Part of Speech tagging, Named Entity recognition

Application for data science:

- Input to other models
- Sentiment analysis

Sentiment Analysis:

1. Preprocessing: remove URLs, weird characters, code tags, etc

- 2. Tokenize (i.e. split text into tokens like words)
- 3. Get embeddings for words (average the vectors to overcome variable length input)

Does not work well...

Example: tweet sentiment prestiction

→ problem: does not work super well..

→ Doc2vec

Use **Doc2vec**

- -> Generalise word2vec to whole documents
- -> Provides fixed-length vector, one vector for your document
- + Faster and consumes less memory than word2vec
- + Typically obtains better results