Sample Quiz 2, Math 1554, Spring 2020

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

First Name	Last Name
GTID Number:	
Student GT Email Address:	@gatech.edu
Section Number (e.g. A4, M2, QH3, etc.) TA Name	
Circle your instructor:	

Student Instructions

- Print your name and GTID darkly and neatly on the cover page.
- You will have 20 minutes to complete this quiz.
- Notes, books, cell phones, and all electronic devices are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- The quiz is 1 page and double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- Any work done on scratch paper will be collected and will not be graded.

You do not need to justify your reasoning for questions in this quiz.

- 1. (6 points) Fill in the blanks.
 - (a) (1 point) If $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, then $A^{-1} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$
 - (b) (2 points) If $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{pmatrix}$, then A has the LU factorization A = LU, where $U = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{pmatrix}$ and $L = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{pmatrix}$.
 - (c) (1 point) E is an elementary matrix. EB = C, and $B = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 4 \\ 0 & 1 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. $E = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.
 - (d) (1 point) By using homogeneous coordinates, 2D transform $(x_1, x_2) \to (x_1 + 1, x_2 3)$ can be represented with the product $A\vec{x}$, where $A = \begin{pmatrix} \\ \end{pmatrix}$.
 - (e) (1 point) Suppose A, B, C, and X are invertible $n \times n$ matrices, and $\begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix} \begin{pmatrix} X \\ A \end{pmatrix} = \begin{pmatrix} B+I \\ B \end{pmatrix}$. Express A in terms of B and C. $A = \begin{bmatrix} B & I \\ B & C \end{bmatrix}$
- 2. (2 points) Let A be an $n \times n$ matrix. Fill in the circles next to the statements that guarantee that A is invertible; leave the other circles empty.
 - \bigcirc Every vector in \mathbb{R}^n is in the span of the columns of A.
 - \bigcirc The homogeneous linear system $A\vec{x} = \vec{0}$ has a non-trivial solution.
- 3. (2 points) Indicate whether the statements are true or false.

true false

- \bigcirc An example of an upper triangular matrix is $A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
- \bigcirc If E_1 and E_2 are $n \times n$ elementary matrices, then $E_1E_2 = E_2E_1$.

Answers

No justification needed for any questions in this quiz. Answers were only graded for completion, not accuracy.

1. Fill in the blanks.

(a)
$$A^{-1} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0.5 \end{pmatrix}$$
.

(b)
$$U = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}, L = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

(c)
$$E = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(d)
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{pmatrix}$$

(e)
$$CA = B \Rightarrow A = C^{-1}B$$
.

- 2. Statement indicates A is invertible.
 - matrix must be invertible
 - matrix cannot be invertible (not every column would be pivotal)
- 3. True/false.
 - (a) True (elements below main diagonal are zero)
 - (b) False