Practice Problems for Quiz 6 Math 2000A

Quiz #6 will take place in class on Thursday, October 23rd.

Feel free to discuss the solutions to these quiz problems on Piazza. (As a reminder, this earns you participation credit.)

- 1. Determine if each of the assertions below is true or false. If the assertion is true, provide a proof. If not, provide a counterexample.
 - (a) For all integers a, b, and c, with $a \neq 0$, if a|b and a|c, then a|(b-c).
 - (b) For each $n \in \mathbb{Z}$, if n is odd, then n^3 is odd.
 - (c) For all integers a, b, and c with $a \neq 0$, if a|b, then a|(bc).
 - (d) For every integer n, $4n^2 + 7n + 6$ is an odd integer.
 - (e) For all integers a, b, and d with $d \neq 0$, if d divides both a b and a + b, then d divides a.
- 2. If x and y are integers, explain why xy = 1 implies either x = 1 or x = -1.
- 3. Is the following true or false? For all nonzero integers a and b, if a|b and b|a, then $a = \pm b$.
- 4. Let a and b be integers. Prove that if $a \equiv 2 \pmod{3}$ and $b \equiv 2 \pmod{3}$, then $a+b \equiv 1 \pmod{3}$ and $ab \equiv 1 \pmod{3}$.
- 5. Are the following statements true or false? Justify your conclusions.
 - (a) For each $a \in \mathbb{Z}$, if $a \equiv 2 \pmod{5}$, then $a^2 \equiv 4 \pmod{5}$.
 - (b) For each $a \in \mathbb{Z}$, if $a^2 \equiv 4 \pmod{5}$, then $a \equiv 2 \pmod{5}$.
 - (c) For each $a \in \mathbb{Z}$, $a \equiv 2 \pmod{5}$ if and only if $a^2 \equiv 4 \pmod{5}$.
- 6. Are the following statements true or false? Justify your conclusions. (For true statements, you might find that proof by contradiction is useful.)
 - (a) For all integers a and b, if a is even and b is odd, then 4 does not divide $a^2 + b^2$.
 - (b) For all integers a and b, if a is even and b is odd, then 6 does not divide $a^2 + b^2$.
 - (c) For all integers a and b, if a is even and b is odd, then 4 does not divide $a^2 + 2b^2$.
 - (d) For all integers a and b, if a is odd and b is odd, then 4 divides $a^2 + 3b^2$.

- 7. (a) Prove that for each $a \in \mathbb{Z}$, $a \not\equiv 0 \pmod{3}$ if and only if $a^2 \equiv 1 \pmod{3}$
 - (b) Prove that for each $n \in \mathbb{N}$, $\sqrt{3n+2}$ is not a natural number.
- 8. Let A, B, and C be sets. Establish the following:
 - (a) $A \times (B \cap C) = (A \times B) \cap (A \times C)$
 - (b) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
 - (c) $(A \cap B) \times C = (A \times C) \cap (B \times C)$
 - (d) $(A \cup B) \times C = (A \times C) \cup (B \times C)$
 - (e) $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$
 - (f) $(A \setminus B) \times C = (A \times C) \setminus (B \times C)$
 - (g) If $S \subseteq A$, then $S \times B \subseteq A \times B$
 - (h) If $T \subseteq B$, then $A \times T \subseteq A \times B$
- 9. Let $A = \{1\}$, $B = \{2\}$, and $C = \{3\}$.
 - (a) Explain why $A \times B \neq B \times A$.
 - (b) Explain why $(A \times B) \times C \neq A \times (B \times C)$.
- 10. Let $f: (\mathbb{R} \setminus \{0\}) \to \mathbb{R}$ be the function defined by $f(x) = \frac{x^3 + 5x}{x}$, and let $g: \mathbb{R} \to \mathbb{R}$ be the function defined by $g(x) = x^2 + 5$.
 - (a) Calculate $f(2), f(-2), f(3), \text{ and } f(\sqrt{2}).$
 - (b) Calculate $g(2), g(-2), g(3), \text{ and } g(\sqrt{2}).$
 - (c) Is the function f equal to the function g? Explain.
 - (d) If we let $h: (\mathbb{R} \setminus \{0\}) \to \mathbb{R}$ be the function defined by $h(x) = x^2 + 5$, is the function h equal to f? Explain.