MATH 318, Assignment 3

Kyle Rubenok, 260667187

October 2019

C is the only tautology.

2. (a) $\neg p \lor q$

3. (a) DNF

$$p \vee r$$

(b) CNF

$$p \vee r$$

4. 1) $p \rightarrow q$ with only NAND

p q	((p	NAND	q)	NAND	p	$) \leftrightarrow ($	р	\rightarrow	q)
TT	Т	F	Т	Т	Τ	Τ	Τ	Τ	T
TF	T	${ m T}$	F	F	Τ	${ m T}$	Τ	F	F
F T	F	${ m T}$	Τ	${ m T}$	F	${ m T}$	F	Τ	${ m T}$
F F	F	${ m T}$	\mathbf{F}	${ m T}$	F	\mathbf{T}	\mathbf{F}	Τ	\mathbf{F}

2) $(p \wedge q) \vee \neg p$ with only NOR

p	q	(((p	NOR	p) NOR	q) NOR $($	(p	NOR	p)	NOR	q	$))\leftrightarrow (($	p	\wedge	q)	\ \	\neg	p)	
Т	T	Т	F	Τ	F	Τ	Τ	Т	F	Τ	F	Τ	T	Τ	Τ	Τ	Τ	F	Τ	_
Τ	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{T}	${ m T}$	F	\mathbf{F}	\mathbf{T}	\mathbf{F}	Τ	${ m T}$	F	${f T}$	Τ	F	F	\mathbf{F}	F	\mathbf{T}	
F	T	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	Τ	${ m T}$	\mathbf{F}	${ m T}$	F	\mathbf{F}	Τ	${ m T}$	\mathbf{F}	F	Τ	\mathbf{T}	\mathbf{T}	\mathbf{F}	
\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	F	${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	F	${f T}$	F	F	\mathbf{F}	\mathbf{T}	Τ	\mathbf{F}	

5. The formula is even when $n \ge 2$ and n is an even number. We will proove this by induction on n.

Base Case: take n = 2. This follows from the truth table.

$$\begin{array}{c|cccc} p & p \rightarrow p \\ \hline T & T & T & T \\ F & F & T & F \end{array}$$

Induction Step: Taking that this holds for any other n, we will show that it holds for n+2. Since we can assume that any formula with an even n number of p's, we need to show that $(T \to p) \to p$ is also true. This clearly follows from the truth table.

6.

7. Drawing the karnaugh map as follows:

Giving the following: $f = \neg r \lor (\neg p \land \neg q) \lor (p \land \neg q)$

8. Take for example the formula $p \vee \neg p$. If we attempt to replicate this with the set $\{\oplus\}$. Considering the operations available, it's clear that outside of the identity function of p = T any formulas constructed with combinations of p and \oplus such as $p \oplus p$ and so on will be logically false. This makes replicating the formula $p \vee \neg p$ and many others impossible. Thus $\{\oplus\}$ is not functionally complete.