Definition: Norm

Let (V, < , >) be an inner product space.

The length, or norm, of a vector v in V is given by

$$\vec{\Lambda} = [-5] \times + 3 \times_{5}$$

$$||\underline{V}|| = \left(\frac{184}{15}\right)|_{12}$$

Lemma: Let (V, < , >) be an inner product space. Then:

• For all vectors \underline{v} in V, $||\underline{v}|| \ge 0$ and $||\underline{v}|| = 0$ if and only if $\underline{v} = \underline{0}$

<f, g> = [f(x)g(x) dx

• For all constants c, $||c\underline{v}|| = |c| \cdot ||\underline{v}||$

Definition: Distance

Let (V, <, >) be an inner product space, and let \underline{v} and \underline{w} be in V.

Then, the distance from \underline{v} to \underline{w} is dist $(\underline{v}, \underline{w}) = ||\underline{v} - \underline{w}||$

The distance from v to w is the same as the distance from w to v.