DATA & KNOWLEDGE ENGINEERING PRAKTIKUM

Felix Burgstaller

AGENDA

- Ziele
- Beurteilungskriterien
- Vorläufiger Terminplan
- Fokus
- Themenstellung CBR und Inheritance
- Technologien

ZIELE

- Praxisrelevant und praxisnah
- Werkzeugeinsatz
- Aufgaben selbständig und eigenverantwortlich bearbeiten
- Notwendige Qualifikationen aneignen
- Teamorientierung

BEURTEILUNGSKRITERIEN

- Abgabedokumente
- Code- und Code-Dokumentation
- Präsentationen
- Diskussionsbeteiligung
- Bewertung Gruppenleistung
- Bewertung Einzelleistung (*klare Aufgabenteilung in der Gruppe erforderlich!!*)

VORLÄUFIGER TERMINPLAN

04.10.2018	Vorbesprechung
11.10.2018	Diskussion über Themengebiet & Besprechungen
18.10.2018	Präsentation Requirements
08.11.2018	Gruppendiskussion
15.11.2018	Einzelbesprechungen
22.11.2018	Präsentation Konzeptueller Entwurf
29.11.2018	(Einzelbesprechungen)
06.12.2018	Einzelbesprechungen
13.12.2018	Zwischenpräsentation Implementierung
10.01.2019	Einzelbesprechungen
17.01.2019	Zwischenpräsentation Adaption Konzept / Implementierung
24.01.2019	Implementierungs- & Abschlusspräsentationen

ZWISCHENBERICHTE & MEILENSTEINE

21.10.2018	Requirements
25.11.2018	Konzeptueller Entwurf
27.01.2019	Implementierung
31.01.2019	Finale Abgabe des Projektes (inkl. aller Deliverables, Zeitaufzeichnungen, Code, Installationsanleitung,)

FOKUS IN DIESEM PRAKTIKUM

- Implementierung von Design Science Research Artefakten
- Modularisierte Implementierung

THEMENSTELLUNG

THEMENSTELLUNG

Contextualized Business Rule Management (CBR) □ Organisationsform für Geschäftsregeln ☐ Unterstützt inkrementelle Regelerhebung Ermöglicht Aufgabenteilung Effizientes und flexibles Regelmanagement ☐ Einsatz im SemNOTAM Projekt ■ Rule Module Inheritance with Modification Restrictions ☐ Rule sets mit definierten Schnittstellen ☐ Single und Multi-inheritance ☐ Änderungen an geerbten Regeln & Fakten ☐ Restrictions um Änderungen einzuschränken Implementierung in Vadalog (Oxford)

ZIELSETZUNG

- Design der Performance Evaluierung

 - □ Inheritance
- Implementierung der notwendigen Datengeneratoren
- Bereitstellung eines Evaluierungsframeworks (automatische Evaluierung von spezifizierten Tests)

BEREITGESTELLTE DOKUMENTE

■ Anforderungen / Erwartete Leistungen

Business Informatics (CBI), 2016, 262-271

- InProceedings (Burgstaller2016a)
 Burgstaller, F.; Steiner, D. & Schrefl, M.: Modeling Context for Business Rule Management, 2016 IEEE 18th Conference on
- InProceedings (Burgstaller2018)
 Burgstaller, F.; Neumayr, B.; Sallinger, E. & Schrefl, M.
 Rule Module Inheritance with Modification Restrictions
 On the Move to Meaningful Internet Systems. OTM 2018
 Conferences, Springer International Publishing, 2018, tbp}

CBR UND VERERBUNG

Zusammenspiel

- CBR ermittelt relevante Module
- Rule Module Inheritance
 - □ Auflösung der Vererbung
 - ☐ Structural Conformance
 - □ Abstrakte Module und Prädikate
 - ☐ Static Behavioral Detection
 - □ Dynamic Behavioral Detection

ERWARTETE LEISTUNG

JYU

OS-unabhängiges Framework für Performance Evaluierung
□ Performance Suites definieren
Anzahl Wiederholungen
 Parameter Datengenerator
WarmUps
•
□ Aufruf Vadalog-Schnittstelle
□ Speicherung der Performance Ergebnisse (Zeit, Speicher, …)
☐ [Aufbereitung für weitere Analyse]
Muss auf Fedora 28 ohne Probleme laufen!
□ Container, VM,

ERWARTETE LEISTUNG

■ CBR □ Datengenerator – Kontexte, Parameter, Parameterwerte, Geschäftsfälle, Ableitung Parameterwerte □ Tests ob generierter Code lauffähig □ Testsuites für CBR in Framework definieren ■ Test Cases zur Demonstration der Funktionalitäten □ Datengenerator für fünf Punkte vorige Folie ● Single- & Multi-inheritance ● mit/ohne Modifications ● mit/ohne Restrictions

Entsprechende Tests über generierten Code

Testsuites für Inheritance

TECHNOLOGIEN

- Vadalog
- Servicekommunikation
- Java / Python / ...
- **.**..

