Bits, Bytes, and Integers

Lecture 0/1 - 2015 Mads Chr. Olesen

Credits to Alexandre David (AAU),
Randy Bryant & Dave O'Hallaron (CMU)

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Binary Representations

Humans: 10 fingers, base 10 natural.

Computers: base 2 more natural and reliable.

PP2.1 PP2.3

Encoding Byte Values

- Byte = 8 bits
 - Binary 000000002 to 111111112
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

Hex Decimanary

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
C	12	1100
0 1 2 3 4 5 6 7 8 9 A B C D E	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0000 0011 0010 0011 0100 0101 0110 0111 1000 1011 1100 1111 1110 1111
Ē	14	$11\overline{10}$
F	15	1111

Byte-Oriented Memory Organization

Programs Refer to Virtual Addresses

- Conceptually very large array of bytes
- Actually implemented with hierarchy of different memory types
- System provides address space private to particular "process"
 - Program being executed
 - Program can clobber its own data, but not that of others

Compiler + Run-Time System Control Allocation

- Where different program objects should be stored
- All allocation within single virtual address space

Machine Words

Machine Has "Word Size"

- Nominal size of integer-valued data
 - Including addresses
- Most previous machines use 32 bits (4 bytes) words
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
- Most current systems use 64 bits (8 bytes) words
 - Potential address space ≈ 1.8 X 10¹¹ bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
- Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Related to pointer arithmetic.

Data Representations

C Data Type	Typical 32- bit	Intel IA32	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	4	8
long long	8	8	8
float	4	4	4
double	8	8	8
long double	8	10/12	10/16
pointer	4	4	8

Byte Ordering

- How should bytes within a multi-byte word be ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86
 - Least significant byte has lowest address

Byte Ordering Example

Big Endian

Least significant byte has highest address

Little Endian

Least significant byte has lowest address

Example

- Variable x has 4-byte representation 0x01234567
- Address given by &x is 0x100

Big Endian		0×100	0×101	0×102	0×103	
		01	23	45	67	
Little Endia	n	0×100	0×101	0x102	0x103	
		67	45	23	01	

Reading Byte-Reversed Listings

Disassembly

- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

Address	Instruction Code	Assembly Rendition
8048365:	5b	pop %ebx
8048366:	81 c3 ab 12 00 00	add \$0x12ab,%ebx
804836c:	83 bb 28 00 00 00 00	cmpl \$ 0x0,0x28(%ebx)

Deciphering Numbers

- Value:
- Pad to 32 bits:
- Split into bytes:
- Reverse:

0x12ab 0x000012ab 00 00 12 ab ab 12 00 00

Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * creates byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, int len) {
  int i;
  for (i = 0; i < len; i++)
    printf("%p\t0x%.2x\n",start+i, start[i]);
  printf("\n");
}</pre>
```

Printf directives:

%p: Print pointer

%x: Print Hexadecimal

Try it.

show_bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```
int a = 15213;
0x11ffffcb8 0x6d
0x11ffffcb9 0x3b
0x11ffffcba 0x00
0x11ffffcbb 0x00
```

Representing Integers

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

int A = 15213;

int B = -15213;

long int C = 15213;

Two's complement representation (Covered later)

Representing Pointers

```
int B = -15213;
int *P = &B;
```


Different compilers & machines assign different locations to objects

(Representing Strings)

char S[6] = "18243";

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit i has code 0x30+i
- String should be null-terminated
 - Final character = 0

Compatibility

Byte ordering not an issue

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Boolean Algebra

Developed by George Boole in 19th Century

- Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

A&B = 1 when both A=1 and B=1

&	0	1
0	0	0
1	0	1

Or

 \blacksquare A|B = 1 when either A=1 or B=1

1	0	1
0	0	1
1	1	1

Not

A = 1 when A=0

~	
0	1
1	0

Exclusive-Or (Xor)

A^B = 1 when either A=1 or B=1, but not both

^	0	1
0	0	1
1	1	0

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

```
 01101001  01101001  01101001   01010101   01010101   01000001   01111101   00111100   10101010
```

All of the Properties of Boolean Algebra Apply

Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w−1}
- aj = 1 if j \in A
 - 01101001 { 0, 3, 5, 6 }
 - **76543210**
 - **•** 01010101 { 0, 2, 4, 6 }
 - **76543210**

Operations

- & Intersection 01000001 { 0, 6 }
- Union
 01111101 { 0, 2, 3, 4, 5, 6 }
- Symmetric difference 00111100 { 2, 3, 4, 5 }
- Complement 10101010 { 1, 3, 5, 7 }

Useful, simple, efficient, for "small" integers.

PP2.10 PP2.11

Bit-Level Operations in C

■ Operations &, |, ~, ^ Available in C

- Apply to any "integral" data type
 - long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- $\sim 0 \times 41 \rightarrow 0 \times BE$
 - $\sim 01000001_2 \rightarrow 10111110_2$
- ~0x00 → 0xFF
 - $\sim 0000000002 \rightarrow 11111111122$
- $0x69 \& 0x55 \rightarrow 0x41$
 - \blacksquare 01101001₂ & 01010101₂ → 01000001₂
- $0x69 \mid 0x55 \rightarrow 0x7D$
 - \blacksquare 01101001₂ | 01010101₂ → 01111101₂

PP2.13 PP2.14

Contrast: Logic Operations in C

Contrast to Logical Operators

- **&**&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- $!0x41 \rightarrow 0x00$
- !0x00 \rightarrow 0x01
- \blacksquare !!0x41 → 0x01
- $0x69 \&\& 0x55 \rightarrow 0x01$
- $0x69 \mid \mid 0x55 \rightarrow 0x01$
- p && *p (avoids null pointer access)

!a same as a == 0

Shift Operations

- Left Shift: X << y</p>
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: X >> y
 - Shift bit-vector X right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on right

Argument x	01100010
<< 3	00010000
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010000
Log. >> 2	00101000
Arith. >> 2	11101000

Undefined Behavior

Shift amount < 0 or ≥ word size</p>

Aside: Shifts

- Shifts are undefined for values ≥ word size.
- Why?
- Machine instruction for shifts operates with the CL register and not all bits are used.
 - x >> m implemented as x >> (m % word_size)
 - x << m implemented as x << (m % word_size)</p>

Aside: Precedence

- Beware!
- Binary operators have low precedence.
 - a << 3 + b << 2 same as a << (3 + b) << 2</p>
 - a & 3 != 0 same as a & (3 != 0)
- Always put parenthesis around these operators.

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Bit

Encoding Integers

Unsigned

Two's Complement

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \qquad B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$
short int $\mathbf{x} = 15213$;
short int $\mathbf{y} = -15213$;
Sign

C short 2 bytes long

	Decimal	Hex	Binary	
x	15213	3B 6D	00111011 01101101	
У	-15213	C4 93	11000100 10010011	

Sign Bit

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Encoding Example (Cont.)

x = 15213: 00111011 01101101y = -15213: 11000100 10010011

Weight	152	.13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768

Sum 15213 -15213

29

Numeric Ranges

Unsigned Values

- *UMin* = 0 000...0
- $UMax = 2^w 1$ 111...1

■ Two's Complement Values

- $\begin{array}{ccc}
 & TMin & = & -2^{w-1} \\
 & 100...0 & & & \\
 & & & & & \\
 \end{array}$
- $TMax = 2^{w-1} 1$

Other Values

Minus 1111...1

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

Values for Different Word Sizes

			W	
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations

- \blacksquare | TMin | = TMax + 1
 - Asymmetric range
- *UMax* = 2 * *TMax* + 1

C Programming

- #include <limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

C# has its constants too.

Aside: Arbitrary Precision

- Some libraries support arbitrary precision computations.
 - Limited by RAM.
- Ruby/Python integers behave like this.
 - Try it.
- Not a native type (machine word).

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)	
0000	0	0	
0001	1	1	
0010	2	2	
0011	3	3	
0100	4	4	
0101	5	5	
0110	6	6	
0111	7	7	
1000	8	-8	
1001	9	- 7	
1010	10	– 6	
1011	11	– 5	
1100	12	- 4	
1101	13	- 3	
1110	14	– 2	
1111	15	-1	

Equivalence

Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

■ ⇒ Can Invert Mappings

- U2B(x) = B2U⁻¹(x)
 - Bit pattern for unsigned integer
- T2B(x) = B2T⁻¹(x)
 - Bit pattern for two's comp integer

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Mapping Between Signed & Unsigned

Mappings between unsigned and two's complement numbers: keep bit representations and reinterpret

Mapping Signed ↔ Unsigned

Bits
DILS
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Relation between Signed & Unsigned

Maintain Same Bit Pattern

Large negative weight

becomes

Large positive weight

$$ux = \begin{cases} x & x \ge 0 \\ x + 2^w & x < 0 \end{cases}$$

Conversion Visualized

2's Comp. \rightarrow Unsigned **UMax Ordering Inversion** UMax - 1Negative → Big Positive TMax + 1Unsigned TMax **TMax** Range 2's Complement Range

Evil but important technicalities.

(Signed vs. Unsigned in C)

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix
 0U, 4294967259U

Casting

Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;
uy = ty;
```

Some languages, e.g. Java, have only ints.

(Casting Surprises)

PP2.21

Expression Evaluation

- If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- **Examples for** W = 32: **TMIN = -2,147,483,648**, **TMAX = 2,147,483,647**

Constant₁ Constant₂ Relation Evaluation

```
OU
0
              unsigned
-1 0
              signed
-1 OU
              unsigned
2147483647
              -2147483647-1
                                    signed
2147483647U
              -2147483647-1
                                    unsigned
              signed
(unsigned)-1
                         unsigned
2147483647
              2147483648U
                                    unsigned
2147483647
               (int) 2147483648U
                                        signed
```

Code Security Example

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

- Similar to code found in FreeBSD's implementation of getpeername
- There are legions of smart people trying to find vulnerabilities in programs

Typical Usage

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
```

Malicious Usage

```
/* Declaration of library function memcpy */
void *memcpy(void *dest, void *src, size_t n);
```

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, -MSIZE);
    . . .
}
```

Summary Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Sign Extension

Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

Make k copies of sign bit:

$$X' = X_{w-1},...,X_{w-1},X_{w-1},X_{w-2},...,X_0$$

Sign Extension Example

```
short int x = 15213;
int         ix = (int) x;
short int y = -15213;
int         iy = (int) y;
```

	Decimal	Hex	Binary		
x	15213	3B 6D	00111011 01101101		
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101		
У	-15213	C4 93	11000100 10010011		
iy	-15213	FF FF C4 93	1111111 1111111 11000100 10010011		

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behaviour

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Negation: Complement & Increment

Claim: Following Holds for 2's Complement

$$~x + 1 == -x$$

Complement

Observation: $\sim x + x == 1111...111 == -1$ x = 10011101 $+ \sim x = 01100010$

Complete Proof?

Complement & Increment Examples

$$x = 15213$$

	Decimal	Hex		Binary		
x	15213				01101101	
~x	-15214	C4	92	11000100	10010010	
~x+1	-15213	C4	93	11000100	10010011	
У	-15213	C4	93	11000100	10010011	

$$x = 0$$

	Decimal	Hex	Binary	
0	0	00 00	00000000 00000000	
~0	-1	FF FF	11111111 11111111	
~0+1	0	00 00	00000000 00000000	

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

 $UAdd_{w}(u, v)$

Standard Addition Function

- Ignores carry output
- Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

$$UAdd_{w}(u,v) = \begin{cases} u+v & u+v < 2^{w} \\ u+v-2^{w} & u+v \ge 2^{w} \end{cases}$$

Visualizing (Mathematical) Integer Addition

Integer Addition

- 4-bit integers u, v
- Compute true sum $Add_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface

$Add_{a}(u, v)$

Visualizing Unsigned Addition

Wraps Around

- If true sum $\ge 2^w$
- At most once

True Sum

Mathematical Properties

Modular Addition Forms an Abelian Group

Closed under addition

$$0 \leq \mathsf{UAdd}_{w}(u, v) \leq 2^{w} - 1$$

Commutative

$$UAdd_{w}(u, v) = UAdd_{w}(v, u)$$

Associative

$$UAdd_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UAdd_{w}(t, u), v)$$

• 0 is additive identity

$$UAdd_{w}(u,0) = u$$

Every element has additive inverse

Let
$$UComp_w(u) = 2^w - u$$

 $UAdd_w(u, UComp_w(u)) = 0$

Two's Complement Addition

TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

Will give s == t

TAdd Overflow

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

True Sum

Visualizing 2's Complement Addition

NegOver

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum ≥ 2^{w-1}
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

Characterizing TAdd

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w-1} & u+v < TMin_{w} \\ u+v & TMin_{w} \leq u+v \leq TMax_{w} \\ u+v-2^{w-1} & TMax_{w} < u+v \end{cases}$$
 (PosOver)

Multiplication

- Computing Exact Product of w-bit numbers x, y
 - Either signed or unsigned

Ranges

- Unsigned: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Up to 2w bits
- Two's complement min: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Up to 2*w*−1 bits
- Two's complement max: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
 - Up to 2w bits, but only for (*TMin*_w)²

Maintaining Exact Results

- Would need to keep expanding word size with each product computed
- Done in software by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

$$UMult_{w}(u, v) = u \cdot v \mod 2^{w}$$

Code Security Example #2

- SUN XDR library
 - Widely used library for transferring data between machines

```
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```


malloc(ele_cnt * ele_size)

XDR Code

```
void* copy elements(void *ele src[], int ele cnt, size t ele size) {
    /*
     * Allocate buffer for ele cnt objects, each of ele size bytes
     * and copy from locations designated by ele src
     */
    void *result = malloc(ele cnt * ele size);
    if (result == NULL)
       /* malloc failed */
       return NULL;
    void *next = result;
    int i;
    for (i = 0; i < ele cnt; i++) {
        /* Copy object i to destination */
        memcpy(next, ele src[i], ele size);
       /* Move pointer to next memory region */
       next += ele size;
    return result;
```

XDR Vulnerability

malloc(ele_cnt * ele_size)

What if:

- ele_cnt = 2²⁰ + 1
- **ele size** = 4096 = 2¹²
- Allocation = ??

How can I make this function secure?

Signed Multiplication in C

Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

Power-of-2 Multiply with Shift

Operation

 \blacksquare u << k gives u * 2^k

True Product: *w*+*k* bits

Discard k bits: w bits

Both signed and unsigned

Operands: w bits

Examples

■ u << 3

- == u * 8
- u << 5 u << 3 == u * 24
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Compiled Multiplication Code

C Function

```
int mul12(int x)
{
   return x*12;
}
```

Compiled Arithmetic Operations

```
leal (%eax,%eax,2), %eax
sall $2, %eax
```

Explanation

```
t <- x+x*2
return t << 2;
```

 C compiler automatically generates shift/add code when multiplying by constant

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $\mathbf{u} \gg \mathbf{k}$ gives $\left[\mathbf{u} / 2^k \right]$
 - Uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Compiled Unsigned Division Code

C Function

```
unsigned udiv8(unsigned x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when u < 0

	Division	Computed	Hex	Binary	
У	-15213	-15213	C4 93	11000100 10010011	
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001	
y >> 4	-950.8125	-951	FC 49	11111100 01001001	
у >> 8	-59.4257813	-60	FF C4	1111111 11000100	

Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want $[x / 2^k]$ (Round Toward 0)
 - Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - In C: (x + (1 << k) -1) >> k
 - Biases dividend toward 0

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Biasing adds 1 to final result

Compiled Signed Division Code

C Function

```
int idiv8(int x)
{
   return x/8;
}
```

Compiled Arithmetic Operations

```
test1 %eax, %eax
  js L4
L3:
  sarl $3, %eax
  ret
L4:
  addl $7, %eax
  jmp L3
```

Explanation

```
if x < 0
   x += 7;
# Arithmetic shift
return x >> 3;
```

- Uses arithmetic shift for int
- For C#
 - If unsigned, >> is logical

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate,
 same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Arithmetic: Basic Rules

Unsigned ints, 2's complement ints are isomorphic rings: isomorphism = casting

Left shift

- Unsigned/signed: multiplication by 2^k
- Always logical shift

Right shift

- Unsigned: logical shift, div (division + round to zero) by 2^k
- Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix