דו"ח פרויקט סוף קורס סטטיסטיקה על נתוני בלוקים בתקשורת טורית

מוגש ע״י: יובל המר, 209158518 מוגש ע״י: עידו בן הרוש, 316439116

בהנחיית: ד"ר פאדל טריף

25/03/24 <u>:תאריד</u>

תוכן עניינים

3	מבוא:
4	פירוט דרישות המערכת:
5	תיאור מצבי המערכת:
6	תהליך תכנון הרכיבים:
6	הכיב Serial to Parallel:
6	תיאור הרכיב:
6	סימולציה לרכיב:
8	דיאגרמת RTL:
9	:Main Controller רכיב
9	תיאור הרכיב:
10	דיאגרמת RTL:
11	רמה עליונה – Top Level:
11	תיאור הרכיב:
11	סימולציה לרכיב:
16	דיאגרמת RTL:
17	הקצאת פינים ודו״ח קומפילציה:
18	סרטון הדגמת המערכת:
19	:SIGNAL-TAP
19	הגדרת SIGNAL-TAP:
20	תוצאות אנליזת SIGNAL-TAP:
20	מצב I :
20	מצב 🏾 :
22	מצב 🎞:
22	מצב IV:
23	קומפילציה לאחר SIGNAL-TAP:
24	נספחים:

:מבוא

בפרויקט זה, עלינו לתכנן מערכת הקולטת בלוקי נתונים בתקשורת טורית ומחשבת עליהם סטטיסטיקה – מקסימום, מינימום, ממוצע וחציון. בנוסף, המערכת תחשב את מספר השגיאות שהיו בתקשורת הנ״ל עבור כל בלוק נתונים שהתקבל.

להלן סכימת בלוקים כללית של המערכת שעלינו לממש:

הבלוק הכתום ידמה את משדר הנתונים הסינכרוני, אשר קיבלנו כרכיב נתון ויהווה חלק מהקושחה הכללית.

פירוט דרישות המערכת:

- 1. המערכת תופעל משעון יחיד של 50 MHz.
 - .2 בנמוך Reset כפתור
 - .3 המערכת תתעורר במצב
- 4. לחיצה ראשונה על הלחצן Start תגרום לבלוק Serial to Parallel להתחיל להוציא בלוק נתונים וכן תעביר את המערכת ממצב Idle למצב קליטה.
 - 5. גודל בלוק נתונים יהיה תמיד 64 נתונים.
 - 6. כל נתון מורכב מ-8 סיביות (מספר חיובי בין 0 ל-255) + סיבית זוגיות (סהייכ 9 סיביות לנתון).
 - .. כל נתון משודר בצורה טורית.
 - 8. בסיום קליטת 64 הנתונים, המערכת תעבור בצורה אוטומטית למצב חישוב.
 - 9. על המערכת לחשב את הערכים הבאים:
 - הערך המקסימלי מתוך 64 הערכים.
 - הערך המינימלי מתוך 64 הערכים.
 - הערך הממוצע של 64 ערכים.
 - החציון של 64 הערכים.
 - מספר השגיאות שהגיעו מהמשדר.
 - .10 בחישובים בהם התוצאה יכולה להיות מספר לא שלם, יש לעגל כלפי מטה.
 - .LEDG2 את בסיום התישוב, המערכת תעבור למצב הצגת הנתונים ותדליק את
- 12. במצב הצגת הנתונים יוצג ע"ג התצוגה הערך המקסימלי. לחיצה על Display תגרום להצגת הערך המינימלי, לחיצה נוספת תציג את הממוצע, לחיצה נוספת את החציון ולחיצה נוספת את מספר השגיאות שהיו. לחיצה נוספת תציג מחדש את הערך המקסימלי וחוזר חלילה.
 - 13. לחיצה על Start במצב הצגת הנתונים תחזיר את המערכת למצב Start יכבה בשלב זה.
 - 14. לחיצה נוספת על Start אחרי שהמערכת חזרה למצב Idle, תתחיל את התהליך מחדש.
 - 15. LEDG1 ידלוק תמיד.
 - .7-Segment- יסמנו איזו תוצאה מוצגת כרגע על תצוגת LEDR5-LEDR9.
 - 17. כאשר המערכת לא נמצאת במצב הצגת הנתונים, תצוגת ה-7-Segment תהיה כבויה.

תיאור מצבי המערכת:

לפי דרישות המערכת שקיבלנו, הסקנו כי עלינו לממש את המערכת כך שתקיים את דיאגרמת : המצבים הבאה

כמו כן, במצב הצגת הנתונים (Display) דיאגרמת המצבים הינה:

בדיאגרמה Idle תחזיר אותנו למצב Reset או על Treset בדיאגרמה זו, כל לחיצה על הראשונה.

תהליך תכנון הרכיבים:

בחלק זה נפרט על הרכיבים אשר מימשנו באופן עצמאי בלבד.

:Serial to Parallel רכיב

תיאור הרכיב:

רכיב זה ממיר את המידע המתקבל בתקשורת טורית למידע מקבילי אשר עליו ניתן לבצע חישובים וסטטיסטיקות.

בעזרת אוגר הזזה הרכיב קולט את הנתונים הטוריים וממיר אותם למקביליים. כמו כן, הרכיב בודק את תקינות הנתונים בעזרת סיבית הזוגיות שהתקבלה.

uיהיה יוי. PAR DOUT VALID יהיה יוי מוכנים מוכנים מוכנים לעיבוד כאשר מוצא

להלן פירוט הפורטים והמשתנים הגנריים של רכיב זה:

		Generics	
Name	default value	Туре	Description
G_DATA_BITS_W_PARITY	8	integer	Total number of bits per word including the parity bit.
G_LSB_FIRST	true	boolean	TRUE – LSB first FALSE – MSB first
G_PARITY	'0'	std_logic	0 – even parity 1 – odd parity
G_RESET_ACTIVE_VALUE	'0'	std_logic	Asynchronous reset active value
		Ports	
Name	Dir.	type	Description
		System Signals	
CLK	1	std_logic	System clock
RST	1	std_logic	System reset, active high
SER_DIN	1	std_logic	Serial data input
SER_DIN_VALID	1	std_logic	Active high serial data input valid
PAR_DOUT	0	std_logic_vector (G_DATA_BITS_W_PARITY-2:0)	Parallel data
PAR_DOUT_VALID	0	std_logic	Active high, 1 CLK duration. High when PAR_DOUT is valid.
PARITY_ERROR	0	std_logic	Goes high if parity error detected.

להלן מימוש רכיב זה: Serial To Parallel Component

סימולציה לרכיב:

:DO וקובץ TB למען בדיקת תקינות רכיב זה, יצרנו קובץ

Serial To Parallel Testbench
Serial To Parallel DO

להלן תוצאות הסימולציה לאחר הרצת ה-TB בתוכנת ה-ModelSim (כניסת LSB)

מצב I , כניסת הנתון 11111111 עם סיבית זוגיות 1 (1-1111111):

ניתן לראות כי הכניסה SER DIN VALID שווה ל- ι י עבור 9 מחזורי שעון מלאים. (ספירת עליית שעון).

הכניסה SER DIN אשר אחראית על כניסת המידע עולה ל-י1י בעליית שעון הבאה, בעוד שהאות SER DIN יורד ל-י0י למשך 2 מחזורי שעון ועולה חזרה ל-י1י. SER DIN VALID

לאחר מכן, המערכת תתחיל להכניס את המידע לאוגר (Shift Register) כך שסיבית ה-LSB תיכנס ראשונה.

האוגר יתחיל להתמלא במידע ויהיה מוכן ליציאה רק כאשר par dout valid int יהיה יו'י.

במצב זה הנתונים באוגר יועברו לאות המוצא PAR_DOUT וה-PARITY_ERROR יתעדכן ל-י1'. כלומר הייתה טעות בבדיקת הנתונים.

מצב 🏾 , כניסת הנתון 00000000 עם סיבית זוגיות 0 (0-0000000):

הכניסה SER DIN VALID שווה ל-יני עבור 10 מחזורי שעון מלאים. (ספירת עליית שעון) הכניסה SER DIN נשארת ב-י0י קבוע.

המערכת תתחיל להכניס מידע לאוגר כך סיבית ה-LSB תיכנס ראשונה.

האוגר יתחיל להתמלא במידע ויהיה מוכן ליציאה רק כאשר par_dout_valid_int יהיה יו׳.

במצב זה הנתונים באוגר יועברו לאות המוצא PAR_DOUT וה-PARITY_ERROR יתעדכן ל-י0׳. כלומר לא הייתה שגיאה בקליטת הנתונים.

⁽הכנסה לימין לשמאל) אות הסימולציה יהיו והות פרט לאופן כניסת המידע לאוגר ההוזה MSB

דיאגרמת RTL:

:2Main Controller רכיב

תיאור הרכיב:

רכיב זה אחראי על מעבר בין מכונת מצבים שתוארה קודם לכן.

.(Data Request) הרכיב אחראי ליצירת אות לבקשת המידע

כמו כן, הרכיב אחראי למיון הנתונים לפי מיון בועות (Bubble sort) וחישוב הסטטיסטיקות להצגה. בנוסף, במוצא הרכיב נקבל את האותות הבאים להצגת הנתונים :

. (מקסימום, ממוצע, חציון או שגיאות) – RESULT – הסטטיסטיקה המוצגת (מקסימום, מינימום, הסטטיסטיקה – -

. משמעותו שהנתונים מוכנים לתצוגה למשתמש – RESULT_READY

אחראי על תצוגת סוג הסטטיסטיקה המוצגת (מחובר ללדים האדומים ברמה – RESULT_TYPE

(העליונה

START RESULT

DISPLAY

RESULS_READY

RESULS_TYPE

DIN

DIN_VALID

DATA_REQUEST

PARITY_ERROR

CLK

RST

להלו פירוט הפורטים והמשתנים הגנריים של רכיב זה:

		Generics	
Name	Dir.	Туре	Description
G_DATA_BITS	8	integer	Total number of bits per word
G_RESET_ACTIVE_VALUE	'0'	std_logic	Asynchronous reset active value
		Ports	
Name	Dir.	type	Description
		System Signals	
CLK	1	std_logic	System clock
RST	1	std_logic	System reset, active high
START	T	std_logic	0 – KEY pressed
			1 – KEY not pressed
DISPLAY	1	std_logic	0 – KEY pressed
			1 – KEY not pressed
DATA_REQUEST	0	std_logic	Active high pulse, at least 150 CLK cycles
DIN	1	std_logic_vector	Parallel data input
		(G_DATA_BITS-1:0)	
DIN_VALID	1	std_logic	Active high, 1 CLK duration. High when DIN is valid.
PARITY_ERROR	1	std_logic	
RESULT	0	std_logic_vector	
		(G_DATA_BITS-1:0)	
RESULTS_READY	0	std_logic	
RESULT_TYPE	0	std_logic_vector (4:0)	Each bit corresponds to specific result
			RESULT_TYPE (0) is ON – RESULT is the MAX value
			RESULT_TYPE (1) is ON – RESULT is the MIN value
			RESULT_TYPE (2) is ON – RESULT is the average value
			RESULT_TYPE (3) is ON – RESULT is the median value
			RESULT_TYPE (4) is ON – RESULT is the total number
			of errors

Main Controller Component : להלן מימוש רכיב זה

[.] בלוק 1 היבדק במהלך ביצוע הסימולציה הכללית הנתונה לרמה העליונה. 2

:3RTL דיאגרמת

³ במהלך בדיקת מכונת המצבים ברכיב, זה נוכחנו לגלות כי היא לא מומשה כמצופה, אלא בעזרת רכיבים חומרתיים בלבד. ייתכן כי עובדה זו גלומה בכך שהמערכת עשתה אופטימיזציה והצליחה למצוא דרך לממש את מכונת המצבים (הנחשבת בזבזנית) בעזרת רכיבים פשוטים יותר.

רמה עליונה – Top Level <u>- רמה עליונה</u>

לאחר שמימשנו את הבקר הראשי (Main Controller) ואת ממיר הנתונים (Serial To Parallel) תוך שימוש בשאר הרכיבים שנתונים לנו בפרויקט זה, בנינו את הרכיב Statistics_calc שימוש בשאר הרכיבים שנתונים לנו בפרויקט זה, בנינו את הרכיבים אל ה-"עולם החיצון."
רמה עליונה (Top level entity) ומתכלל בין כלל הרכיבים אל ה-"עולם החיצון."

כמו כן, ישות זו מקשרת בין הפורטים הרלוונטיים בין כלל הרכיבים על מנת לקבל את התוצאה הרצויה.

להלן פירוט הפורטים של רכיב זה:

		Ports	
Name	Dir.	type	Description
		System Sign	als
CLK	1	std_logic	System clock
RSTn	1	std_logic	Active low system reset. Connect to KEYO on EVB.
START	1	std_logic	0 – KEY pressed
			1 – KEY not pressed
DISPLAY	1	std_logic	0 – KEY pressed
			1 – KEY not pressed
HEX0	0	std_logic_vector (6:0)	0 will turn on the relevant segment
HEX1	0	std_logic_vector (6:0)	0 will turn on the relevant segment
HEX2	0	std_logic_vector (6:0)	0 will turn on the relevant segment
HEX3	0	std_logic_vector (6:0)	Drive '1' to all segments
LEDR	0	std_logic_vector (9:5)	1 will turn on the relevant LED
LEDG	0	std_logic_vector (2:1)	1 will turn on the relevant LED

להלן מימוש רכיב זה: Statistics calc Top Level

סימולציה לרכיב:

למען בדיקת תקינות רכיב זה, קיבלנו קובץ TB ייעודי ומספר וקבצי

Statistics calc Testbench

במערכת. – Gompile all components DO

- קובץ הרצת הסימולציה. - Run all DO

: (Main Controller) ModelSim - בתוכנת ה- TB בתוכנת האחר הרצת הסימולציה לאחר הרצת ה-

נתרכז בקבלת הנתון הראשון:

ניתן לראות כי בתחילת הרצת הסימולציה המערכת מתעוררת במצב Idle כנדרש.

לקבל $^{1\prime}$ לאחר מכן, לאחר לחיצה על Start מסומן באדום) תיתן פקודה לאות Start לאחר מכן, לאחר לחיצה על מסומן באדום) (מסומן בכתום) והמערכת עוברת למצב של מיון (מסומן בכתום) הנתונים (מסומן בכחול).

רק לאחר שאות המוצא RESULTS READY עולה ל-1 אנו נכנסים למצב של הצגת הנתונים כאשר הנתון הראשון שאנו מציגים הינו הערך המקסימלי.

לחיצה על לחצן ה-Display (מסומן בלבן) תעביר אותנו להצגת הערך המינימלי כנדרש.

: (Statistics calc) ModelSim - בתוכנת ה- TB בתוכנת ה- לאחר הרצת הסימולציה לאחר הרצת ה-

: נתרכז בקבלת הנתון הראשון

ניתן לראות כי כאשר לחצן ה-Start עובד בנמוך המערכת מתחילה את פעולתה.

בנוסף, עבור לחיצה על לחצן ה-Display (עובד בנמוך) ניתן לראות המעברים בין הסטטיסטיקות שחושבו על הנתונים.

את המעברים הנייל ניתן לראות בשינוי התוצאות בסיגנל s_result ובשינוי ה-LEDR שדולק בהתאם לסטטיסטיקה המוצגת.

לעבור פקודה תינתן פקודה לעבור את הסיגנל s_result_ready ל-י0י ובכך תינתן פקודה לעבור להציג את הסטטיסטיקות על הנתון הבא.

עלה ליני. s_result_ready עלה ליני אחר שהסיגנל

Time: 230300 us Iteration: 1 Instance: /statistics_calc_tb ** Note: Pass בנוסף, הופק עבורנו דו״ח מה-TB בו השתמשנו על מנת לזהות שגיאות בפעולת המערכת: Time: 232700 us Iteration: 1 Instance: /statistics_calc_tb
** Note: Pass Time: 240100 us Iteration: 1 Instance: /statistics_calc_tb Time: 241300 us Iteration: 1 Instance: /statistics_calo_tb Time: 242500 us Iteration: 1 Instance: /statistics_calc_tb Time: 243700 us Iteration: 1 Instance: /statistics_calc_tb Time: 244900 us Iteration: 1 Instance: /statistics_calc_tb
** Note: Pass Time: 246100 us Iteration: 1 Instance: /statistics_calc_tb Time: 247300 us Iteration: 1 Instance: /statistics_calc_tb Time: 240500 us Iteration: 1 Instance: /statistics_calc_tb ניתן לראות כי המערכת שבנינו עברה את כל הבדיקות Time: 249700 us Iteration: 1 Instance: /statistics_calc_tb הנדרשות ב-TB זה וסימולציית המערכת הושלמה Time: 250900 us Iteration: 1 Instance: /statistics_calc_tb ** Note: Total errors: 0 בהצלחה. Time: 250500 us Iteration: 1 Instance: /statistics_calc_tb
Failure: End of Similation
Time: 25100 us Iteration: 0 Process: /statistics_calc_tb/line_55 File: ../src/statistics_calc_

:RTL דיאגרמת

הקצאת פינים ודו"ח קומפילציה:

< <filter>></filter>	
Flow Status	Successful - Sat Mar 23 12:45:57 2024
Quartus Prime Version	22.1std.2 Build 922 07/20/2023 SC Lite Edition
Revision Name	statistics_calc
Top-level Entity Name	statistics_calc
Family	Cyclone V
Device	5CGXFC5C6F27C7
Timing Models	Final
Logic utilization (in ALMs)	691 / 29,080 (2 %)
Total registers	775
Total pins	39 / 364 (11 %)
Total virtual pins	0
Total block memory bits	18,432 / 4,567,040 (< 1 %)
Total DSP Blocks	0 / 150 (0 %)
Total HSSI RX PCSs	0/6(0%)
Total HSSI PMA RX Deserializers	0/6(0%)
Total HSSI TX PCSs	0/6(0%)
Total HSSI PMA TX Serializers	0/6(0%)
Total PLLs	0 / 12 (0 %)
Total DLLs	0 / 4 (0 %)

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Slew Rate
L CLK	Input	PIN_R20	5B	B5B_N0	PIN_R20	3.3-V LVTTL		16mA (default)	
L DISPLAY	Input	PIN_Y15	4A	B4A_N0	PIN_Y15	1.2 V		8mA (default)	
■ HEX0[6]	Output	PIN_Y18	4A	B4A_N0	PIN_Y18	1.2 V		8mA (default)	1 (default)
■ HEX0[5]	Output	PIN_Y19	4A	B4A_N0	PIN_Y19	1.2 V		8mA (default)	1 (default)
¥ HEX0[4]	Output	PIN_Y20	4A	B4A_N0	PIN_Y20	1.2 V		8mA (default)	1 (default)
# HEX0[3]	Output	PIN_W18	4A	B4A_N0	PIN_W18	1.2 V		8mA (default)	1 (default)
≝ HEX0[2]	Output	PIN_V17	4A	B4A_N0	PIN_V17	1.2 V		8mA (default)	1 (default)
≝ HEX0[1]	Output	PIN_V18	4A	B4A_N0	PIN_V18	1.2 V		8mA (default)	1 (default)
# HEX0[0]	Output	PIN_V19	4A	B4A_N0	PIN_V19	1.2 V		8mA (default)	1 (default)
≝ HEX1[6]	Output	PIN_AF24	4A	B4A_N0	PIN_AF24	1.2 V		8mA (default)	1 (default)
≝ HEX1[5]	Output	PIN_AC19	4A	B4A_N0	PIN_AC19	1.2 V		8mA (default)	1 (default)
# HEX1[4]	Output	PIN_AE25	4A	B4A_N0	PIN_AE25	1.2 V		8mA (default)	1 (default)
■ HEX1[3]	Output	PIN_AE26	4A	B4A_N0	PIN_AE26	1.2 V		8mA (default)	1 (default)
≝ HEX1[2]	Output	PIN_AB19	4A	B4A_N0	PIN_AB19	1.2 V		8mA (default)	1 (default)
# HEX1[1]	Output	PIN_AD26	4A	B4A_N0	PIN_AD26	1.2 V		8mA (default)	1 (default)
# HEX1[0]	Output	PIN_AA18	4A	B4A_N0	PIN AA18	1.2 V		8mA (default)	1 (default)
≝ HEX2[6]	Output	PIN_W20	5A	B5A_N0	PIN_W20	3.3-V LVTTL		16mA (default)	1 (default)
# HEX2[5]	Output	PIN_W21	5A	B5A_N0	PIN_W21	3.3-V LVTTL		16mA (default)	1 (default)
■ HEX2[4]	Output	PIN_V20	5A	B5A_N0	PIN_V20	3.3-V LVTTL		16mA (default)	1 (default)
■ HEX2[3]	Output	PIN_V22	5A	B5A_N0	PIN_V22	3.3-V LVTTL		16mA (default)	1 (default)
# HEX2[2]	Output	PIN_U20	5A	B5A_N0	PIN_U20	3.3-V LVTTL		16mA (default)	1 (default)
■ HEX2[1]	Output	PIN_AD6	3A	B3A_N0	PIN_AD6	3.3-V LVTTL		16mA (default)	1 (default)
■ HEX2[0]	Output	PIN_AD7	ЗА	B3A_N0	PIN_AD7	3.3-V LVTTL		16mA (default)	1 (default)
■ HEX3[6]	Output	PIN_AC22	5A	B5A_N0	PIN_AC22	3.3-V LVTTL		16mA (default)	1 (default)
■ HEX3[5]	Output	PIN_AC23	5A	B5A_N0	PIN AC23	3.3-V LVTTL		16mA (default)	1 (default)
■ HEX3[4]	Output	PIN_AC24	5A	B5A_N0	PIN_AC24	3.3-V LVTTL		16mA (default)	1 (default)
HEX3[3]	Output	PIN_AA22	5A	B5A_N0	PIN_AA22	3.3-V LVTTL		16mA (default)	1 (default)
■ HEX3[2]	Output	PIN_AA23	5A	B5A_N0	PIN_AA23	3.3-V LVTTL		16mA (default)	1 (default)
HEX3[1]	Output	PIN_Y23	5A	B5A_N0	PIN_Y23	3.3-V LVTTL		16mA (default)	1 (default)
HEX3[0]	Output	PIN_Y24	5A	B5A_N0	PIN_Y24	3.3-V LVTTL		16mA (default)	1 (default)
LEDG[2]	Output	PIN D8	8A	B8A NO	PIN D8	2.5 V		12mA (default)	1 (default)
LEDG[1]	Output	PIN_K6	8A	B8A_N0	PIN_K6	2.5 V		12mA (default)	1 (default)
LEDR[9]	Output	PIN J10	8A	B8A NO	PIN J10	2.5 V		12mA (default)	1 (default)
LEDR[8]	Output	PIN_H7	8A	B8A_N0	PIN H7	2.5 V		12mA (default)	1 (default)
LEDR[7]	Output	PIN_K8	8A	B8A_N0	PIN K8	2.5 V		12mA (default)	1 (default)
LEDR[6]	Output	PIN K10	8A	B8A NO	PIN_K10	2.5 V		12mA (default)	1 (default)
LEDR[5]	Output	PIN J7	8A	B8A NO	PIN J7	2.5 V		12mA (default)	1 (default)
- RSTn	Input	PIN_P11	3B	B3B_N0	PIN P11	1.2 V		8mA (default)	(2.2.2.2)
- START	Input	PIN P12	3B	B3B NO	PIN P12	1.2 V		8mA (default)	

סרטון הדגמת המערכת:

:SIGNAL-TAP

:SIGNAL-TAP הגדרת

trigg	ger: 20	24/03/23 18:26:14 #0	Lock mode	e: 🚅 Allow al	l changes 🔻
		Node	Data Enable	Trigger Enable	Trigger Conditions
Туре	Alias	Name	39	39	1 ✓ Basic OR 🔻
*•		DISPLAY	✓	✓	
*•		RSTn	✓	✓	
*		START	✓	✓	
#		⊞HEX0[60]	✓	✓	XXXXXXXb (OR)
#		⊞HEX1[60]	✓	✓	XXXXXXXb (OR)
#		⊞HEX2[60]	✓	✓	XXXXXXXb (OR)
#		⊞LEDG[21]	✓	✓	XXb (OR)
#		⊞LEDR[95]	✓	✓	XXXXXb (OR)
*		⊞ main controller:main	✓	✓	XXXXXXXXb (OR)

בכדי לראות בתוכנת הקוורטוס שהמערכת עובדת כראוי, הוספנו את לחצני ה-Display, Reset, Start מכיוון שהם משפיעים על מעבר המערכת ממצב למצב וביכולתו של המשתמש להיות בבקרה על כך. מוסיף גם את תצוגות ה-7-Segment בכדי לראות את השינויים שבתצוגה.

נוסיף גם את LEDG ו-LEDR בכדי לראות את השינויים המתבצעים בהם במעבר ממצב אחד למשנהו.

בנוסף, נרצה לוודא שהתוצאות המוצגות ברכיב אכן נכונות, לשם כך נוסיף את אות ה-RESULT.

בכדי לראות את השינויים בין מצב אחד לאחר, נדרוש שהאנליזה תתרחש בעליית הלחצנים שהגדרנו תוך לוגיקת OR בין הדרבונים הנ״ל.

:SIGNAL-TAP תוצאות אנליזת

<u>מצב I :</u>

במצב זה המערכת תתחיל ממצב Idle כפי שתואר קודם לכן והמערכת תחכה לאות דירבון (Trigger) על מנת לבצע אנליזה בקווארטוס.

log: 202	4/03/23 18:43:19 #0							click	to insert time	e bar							
Type Alia	s Name	0 800ns	1.6us	2.4us	3.2us	4us	, , 4.8us	5.6us	6.4us	7.2us	8us	. 8.8us	. 9.6us	10.4us	11.2us	12us	12.8us
*	DISPLAY	Acquisition in progress															
*	RSTn																
*	START																
*	⊞-HEX0[60]																
*	⊞-HEX1[60]																
*	⊞-HEX2[60]																
*	⊞-LEDG[21]																
*	⊞-LEDR[95]																
a	E-RESULT[70]																

: 🛚 מצב

נלחץ כעת על כפתור ה-Start ונראה את תגובת המערכת:

log:	Trig @	2024/03/23 18:48:05 (0:4:45.6					click to insert time bar									
Type	Alias	Name	-1.6us -800ns	9	800	ns 1.6us	2.4us	3.2us	. 4us	4.8us	5.Gus	6.4us	7.2us			
*		DISPLAY														
*		RSTn														
*		START														
**		HEX0[60]								0110000b						
**		⊞-HEX1[60]								0000010b						
**		⊕-HEX2[60]								1000000b						
**		LEDG[21]								11b						
**		⊞ -LEDR[95]								00001b						
_		⊕ RESULT[70]								63						

המערכת הגיבה כמצופה וכעת מציגה את הערך המקסימלי שחושב עבור בלוק נתונים זה.

כמו כן, ניתן לראות כי שני הלדים הירוקים דולקים, כמו גם הלד האדום המסמן על תצוגת הערך המקסימלי.

: בכדי לעבור בין תצוגת הסטטיסטיקות Display- נלחץ כעת על כפתור

תצוגת מינימום:

log: Trig (@ 2024/03/23 18:53:43 (0:0:1.2						click to inse	rt time bar	
Type Alia	Name	-1.6us -800ns (9	1.6us	2.4us	3.2us	4us 4.8u	us	6.4us
*	DISPLAY								
*	RSTn		1						
*	START								
*	⊕ HEX0[60]						10000	000b	
*	⊞ HEX1[60]						10000	000b	
*	⊕ HEX2[60]						10000	000b	
*	⊞LEDG[21]						11	b	
*	⊞LEDR[95]						0001	10b	
_	⊕ RESULT[70]						0		

תצוגת ממוצע:

log: Trig @	0 2024/03/23 18:54:47 (0:0:1.5									C	lick to insert tir	me bar	
Type Alias	Name	-1.6us -800ns	5 (φ	800ns	1.6us	2.4	4us	3.2us	4us	4.8us	5.6us	6.4us
*	DISPLAY												
*	RSTn												
*	START												
*	⊞HEX0[60]										1111001b		
*	⊞HEX1[60]										0110000b		
*	⊞HEX2[60]										1000000b		
*	⊞LEDG[21]										11b		
*											00100b		
\(\bar{\bar{\bar{\bar{\bar{\bar{\bar{	⊞-RESULT[70]										31		

תצוגת חציון:

log:	Trig @	2024/03/23 18:55:19 (0:0:32.0								click to	insert time	bar		
Туре	Alias	Name	-1.6us -800ns (800ns	1.6us	2.	4us	3.2us	4us		4.8us	5.6us	, 6.4us	7.2us
*		DISPLAY												
*		RSTn												
*		START												
*		⊞HEX0[60]									1111001b			
*		⊞HEX1[60]								(0110000b			
*		⊞HEX2[60]									1000000b			
*		⊞LEDG[21]									11b			
*											01000b			
_		■ RESULT[70]									31			

תצוגת שגיאות:

log: Tri	g @ 2024/03/23 18:56:09 (0:0:49.	click to insert time bar
Type Al	ias Name	-1.6us80ρns γ 80ρns 1.6us 2.4us 3.2us 4ys 4.8us 5.6us 6.4us 7.2us .
*	DISPLAY	
*	RSTn	
*	START	
*	⊕ HEX0[60]	1111001b
*	⊕ HEX1[60]	100000b
#	⊕ HEX2[60]	100000b
*	⊕ LEDG[21]	11b
*	⊞LEDR[95]	1000b
a	⊕ RESULT[70]	1

חזרה לתצוגת מקסימום:

log:	Trig @	2024/03/23 18:48:05 (0:4:45.6	click to insert time bar
Туре	Alias	Name	1.6us80Pns
*		DISPLAY	
*		RSTn	
*		START	
**		⊞-HEX0[60]	0110000b
**		⊞-HEX1[60]	0000010b
**		⊞-HEX2[60]	100000b
**		⊞LEDG[21]	11b
-			00001b
_			63

.Signal Tap Logic Analyzer בכל המעברים הנייל ראינו את הערכים הנכונים ב-

מצב 🎞 :

במצב זה נעבור לבלוק נתונים הבא ונראה את תגובת המנתח הלוגי.

: פעמיים ונקבל את התוצאה הבאה

lo	log: Trig @ 2024/03/23 18:59:55 (0:0:19.4					click to insert time bar									
	pe Alias			-800ns	φ	800ns	, 1.6us	2.4uş	3.2us	4µs			6.4us	7.2us	
*		DISPLAY													
*		RSTn			i										
*		START													
3	\$	HEX0[60]									1111000b				
3		⊞-HEX1[60]									0100100b				
9		⊞-HEX2[60]									1111001b				
9	\$	⊞LEDG[21]									11b				
9	\$										00001b				
Į Ę	•	⊞ RESULT[70]									127				

ניתן לראות כי קיבלנו את התוצאה הנכונה במנתח הלוגי.

תצוגת מינימום:

tog. Trig	tog. Trig @ 2024/03/23 19.02.00 (0.2.4.9)						CHICK TO HISELT THE DAI							
Type Ali	as Name	-1.6us -80ρηs C) !	800ns	1.qus	2.4us	3.2us	4us	4.8us	5.6us	6.4us	7.2us		
*	DISPLAY													
*	RSTn													
*	START													
*	HEX0[60]								0011001b					
*	⊞ HEX1[60]								0000010b					
*	⊞HEX2[60]								1000000b					
*									11b					
*									00010b					
a	⊕ RESULT[70]								64					

:IV מצב

במצב זה נרצה לבדוק אם כפתור ה-Reset עושה את פעולתו כראוי. נלחץ עליו ונקבל את התוצאה

: הבאה

log: Trig @	2024/03/23 19:03:09 (0:1:9.8	click to insert time bar
Type Alias	Name	1.6us800ns Q .800ns 1.6us 2.4us 3.2us .4us .4us 5.6us 6.4us 7.2us 8us 8.8us 9.6us 10.4us 11.2u-
*	DISPLAY	
*	RSTn	
*	START	
₩	⊞-HEX0[60]	1111111b
#	■ HEX1[60]	1111111b
*	■ HEX2[60]	1111111b
#	⊞-LEDG[21]	01b
*	■ LEDR[95]	00000b
a	■ RESULT[70]	0

כפי שניתן לראות, כפתור ה-Reset אכן עשה את פעולתו כמצופה ואיפס את כל התצוגות והתוצאות, כפי שניתן לראות ה-LED.

יקומפילציה לאחר SIGNAL-TAP:

Flow Summary

<<Filter>>

Successful - Sat Mar 23 19:08:29 2024 Flow Status

Quartus Prime Version 22.1std.2 Build 922 07/20/2023 SC Lite Edition

Revision Name statistics_calc Top-level Entity Name statistics_calc Family Cyclone V

Device 5CGXFC5C6F27C7

Timing Models Final

Logic utilization (in ALMs) 985 / 29,080 (3 %)

Total registers 1638

Total pins 39 / 364 (11 %)

Total virtual pins

Total block memory bits 23,424 / 4,567,040 (< 1 %)

Total DSP Blocks 0 / 150 (0 %) Total HSSI RX PCSs 0/6(0%) Total HSSI PMA RX Deserializers 0/6(0%) Total HSSI TX PCSs 0/6(0%) Total HSSI PMA TX Serializers 0/6(0%) Total PLLs 0/12(0%) Total DLLs 0/4(0%)

כפי שניתן לראות, לאחר שימוש ב-SIGNAL-TAP המערכת צרכה יותר משאבים על מנת לבצע את הניתוח הנדרש.

נספחים:

- 1. Serial Data Generator
- 2. Synchronizer & differentiator
- 3. Binary to BCD 12 BITS synchronizer
- 4. BCD to 7-segment
- 5. Data rom
- 6. Final results