Linear Methods for Regression

Zed

March 5, 2017

1 Ordinary Least Squares

We write the linear regression model

$$f(X) = \beta_0 + \sum_{i=1}^p X_j \beta_j = X^{\top} \beta$$

where $\beta = (\beta_0, \beta_1..., \beta_p)^{\top}$. $X = (1, X_1, ..., X_p)^{\top}$ is a p+1 column vector, with the inputs X_j being quantitative, factor variables $(X_j = \mathbb{1}_{\{G = \mathcal{G}_j\}})$, transformation of quantitative (say $\sin X_j$, $\log X_j$), basis expansions $(X_2 = X_1^2, X_3 = X_1^3, ...)$ or cross terms $(X_3 = X_2X_1)$. We have a quick review of the familiar OLS estimator before proceeding to new concepts and models.

Def. Least Squares Estimator: We choose squared error as loss function, and solve

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{N} (y_i - \boldsymbol{x}_i^{\top} \beta)^2 = \underset{\beta}{\operatorname{argmin}} (\boldsymbol{y} - \boldsymbol{X} \beta)^{\top} (\boldsymbol{y} - \boldsymbol{X} \beta)$$

by the familiar method of moments, and get $\hat{\beta} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$;

the prediction for training set is $\hat{y} = X(X^{\top}X)^{-1}X^{\top}y$, which is, geometrically, an orthogonal projection of y onto the column space of X, i.e. $\mathcal{C}(X) = \text{span}\{\text{Cols}(X)\}$. A few highlights:

- · \hat{y} is within $\mathcal{C}(X)$, since $\hat{y} = X\hat{\beta}$, a linear combination of the columns of X. The residual $y \hat{y}$ is orthogonal to the subspace $\mathcal{C}(X)$, since $X^{\top}(y \hat{y}) = X^{\top}(y X(X^{\top}X)^{-1}X^{\top}y) = 0$.
- · The matrix $H_X := X(X^\top X)^{-1}X^\top$ is called the "hat" matrix, which maps a vector to its orthogonal projection on $\mathcal{C}(X)$. (idempotent, and maps columns of X to itself.)
- · When columns of X are linearly dependent, $X^{\top}X$ becomes singular, and $\hat{\beta}$ is not uniquely defined. But \hat{y} is still the orthogonal projection onto $\mathcal{C}(X)$, just with more than one way to do the projection.

To discuss statistical properties of $\hat{\beta}$, we assume that the linear model is the true model for the mean, i.e. the conditional expectation of Y is $X\beta$, and that the devation of Y from the mean is additive, distributed as $\epsilon \sim \mathcal{N}(0, \sigma^2)$. That is $Y = \mathbb{E}[Y|X] + \epsilon = X\beta + \epsilon$. We further assume that the inputs X in the training set are fixed (non-random).

Under these assumptions, a few other highlights on statistical properties of OLS estimator:

- · $\mathbb{E}(\hat{\beta}) = \mathbb{E}\left[(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}(\boldsymbol{X}\boldsymbol{\beta} + \epsilon) \right] = \beta$, i.e. it is an unbiased estimator.
- $\cdot \operatorname{\mathbb{V}ar}(\hat{\beta}) = \mathbb{E}\left[(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\top}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X} \right] = \sigma^{2}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}. \text{ That is, the estimator } \hat{\beta} \sim \mathcal{N}(\beta, \sigma^{2}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1})$

An unbiased estimator of residual variance (square of residual standard error: RSE^2) is

$$\hat{\sigma}^2 = \frac{RSS}{N - p - 1}$$