电子学基础——第十次作业

计83 刘轩奇 2018011025

2019.12.12

8.10 A truck weighing station inorporates a sensor whose resistance varies linearly with the weight: $R_S = R_0 + \alpha W$. Here R_0 is a constant value, α a proportionality factor, and W the weight of each truck. Suppose R_S plays the role of R_2 in the noninverting amplifier (Fig. 8-47). Also, $V_{in} = 1$ V. Determine the gain of the system, defined as the change in V_{out} divided by the change in W.

Figure 8-47

解

$$V_{-} = V_{+} = 1V$$

$$\therefore V_{out} = V_{+} + \frac{V_{-}}{R_{S}} \cdot R_{1} = (1 + \frac{R_{1}}{R_{S}})V_{in}$$

$$\therefore V_{out} = (1 + \frac{R_{1}}{R_{0} + \alpha W})V_{in}$$

$$\therefore \frac{\partial V_{out}}{\partial W} = \frac{-\alpha R_{1}V_{in}}{(R_{0} + \alpha W)^{2}} = \frac{-\alpha R_{1}}{(R_{0} + \alpha W)^{2}}$$

8.17 An inverting amplifier is designed for a nominal gain of 8 and a gain error of 0.1% using an op amp that exhibits an output impedance of $2k\Omega$. If the input impedance of the circuit must be equal to approximately $1k\Omega$, calculate the required open-loop gain of the op amp.

解

$$\begin{cases} \frac{R_F}{R_{in}} = 8\\ \frac{1}{A_0} (1 + \frac{R_F}{R_{in}}) = 0.1\%\\ \therefore A_0 = 9000 \end{cases}$$

8.19 The integrator of Fig. 8-51 senses an input signal given by $V_{in} = V_0 \sin \omega t$. Determine the output signal amplitude if $A_0 = \infty$.

Figure 8-51

解

$$\dot{V}_{out} = -\frac{\dot{\mathbf{j}}}{\omega C_1 R_1} \dot{V}_{in}$$

则 V_{out} 振幅为 $rac{V_0}{\omega C_1 R_1}$

8.24 The differentiator of Fig. 8-52 is used to amplify a sinusodial input at a frequency of 1MHz by a factor of 5. If $A_0 = \infty$, determine the value of R_1C_1 .

Figure 8-52

解

$$\dot{V}_{out} = jR_1C_1\omega\dot{V}_{in}$$
$$\therefore R_1C_1\omega = 5, R_1C_1 = 7.96 \times 10^{-7} \text{s/rad}^{-1}$$

8.32 The voltage adder of Fig. 8-54 employs and op amp having a finite output impedance. R_{out} . Using the op amp model depicted in Fig. 8-44, compute V_{out} in terms of V_1 and V_2 .

Figure 8-44

Figure 8-54

Figure p8-32

解 等效电路如图 p8-32 所示。

$$\begin{cases} V_{out} = V_N - R_F \left(\frac{V_1 - V_N}{R_2} + \frac{V_2 - V_N}{R_1} \right) \\ \frac{V_N + A_0 V_N}{R_F + R_{out}} = \frac{V_1 - V_N}{R_2} + \frac{V_2 - V_N}{R_1} \\ \therefore V_{out} = \frac{\left(R_1 V_1 + R_2 V_2 \right) \left[1 - \frac{R_F (1 + A_0)}{R_F + R_{out}} \right]}{R_1 + R_2 + \frac{R_1 R_2 (1 + A_0)}{R_F + R_{out}}} \end{cases}$$

8.33 Due to a manufacturing error, a parasitic resistance R_P has appeared in the adder of Fig. 8-55. Calculate V_{out} in terms of V_1 and V_2 for $A_0 = \infty$ and $A_0 < \infty$. (Note that R_P can also represent the input impedance of the op amp.)

Figure 8-55

解 等效电路如图 p8-33 所示。

$$\begin{cases} I = \frac{V_N + A_0 V_N}{R_F + R_{out}} \\ I = \frac{V_1 - V_N}{R_2} + \frac{V_2 - V_N}{R_1} - \frac{V_N}{R_P} \\ V_{out} = V_N - R_F I \end{cases}$$

$$\therefore V_{out} = \left[1 - \frac{R_F (1 + A_0)}{R_F + R_{out}}\right] \frac{\frac{V_1}{R_2} + \frac{V_2}{R_1}}{\frac{1}{R_2} + \frac{1}{R_1} + \frac{1}{R_P} + \frac{1 + A_0}{R_F + R_{out}}} \\ R_{out} \to +\infty, V_{out} \to \frac{\frac{V_1}{R_2} + \frac{V_2}{R_1}}{\frac{1}{R_2} + \frac{1}{R_1} + \frac{1}{R_P}} \end{cases}$$

Figure p8-33

8.34 Consider the voltage adder illustrated in Fig. 8-56, where R_P is a parasitic resistance and the op amp exhibits a finite input inpedance. With the aid of the op amp model shown in Fig. 8-44, determine V_{out} in terms of V_1 and V_2 .

Figure 8-56

解 等效电路如图 p8-34 所示。由于 V_P 处无电流,则 $V_P=0$,从而可以忽略 R_P 的影响,则答案同题 8.32:

Figure p8-34

$$\begin{split} V_{out} &= \frac{\left(R_1 V_1 + R_2 V_2\right) \left[1 - \frac{R_F (1 + A_0)}{R_F + R_{out}}\right]}{R_1 + R_2 + \frac{R_1 R_2 (1 + A_0)}{R_F + R_{out}}} \\ R_{out} &\to +\infty, V_{out} \to \frac{R_1 V_1 + R_2 V_2}{R_1 + R_2} \end{split}$$

8.46 Calculate V_out in terms of V_in for the circuit shown in Fig. 8-61.

Figure 8-61

解 对
$$M_1$$
, $V_D = 0$, $I_D = \frac{V_{in}}{R_1}$, 又

$$I_D = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (-V_{out} - V_{th})^2$$
$$\therefore V_{out} = \sqrt{\frac{2V_{in}}{R_1 \mu_n C_{ox}(\frac{W}{L})}} - V_{th}$$

9.50 Determine the value of R_P in the circuit of Fig. 9-70 such that $I_1 = 2I_{REF}$. With this choice of R_P , does I_1 change if the threshold voltage of both transistors increases by ΔV ?

Figure 9-70

解 M_{REF} 可视为 $\frac{1}{g_{mREF}}$ 电阻,源端电压 $V_S=I_{REF}R_P$,漏端电压同栅端电压 $V_D=V_G=I_{REF}(\frac{1}{g_{mREF}}+R_P)$

$$\begin{cases} I_{REF} = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (I_{REF} \frac{1}{g_{mREF}} - V_{th})^2 \\ I_1 = 2I_{REF} = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (I_{REF} (\frac{1}{g_{mREF}} + R_P) - V_{th})^2 \\ \therefore R_P = (\sqrt{2} - 1) (\frac{1}{g_{mREF}} - \frac{V_{th}}{I_{REF}}) \end{cases}$$

当确定 R_P , V_{th} 增长到 $V'_{th} = V_{th} + \Delta V$ 时,

$$\begin{split} \frac{I_{1}}{I_{REF}} &= \left(\frac{I_{REF}(\frac{1}{g_{mREF}} + R_{P})}{I_{REF}\frac{1}{g_{mREF}}}\right)^{2} \\ \frac{\mathrm{d}I_{1}}{\mathrm{d}V_{th}}(R_{P}) &= 2I_{REF}\frac{I_{REF}(\frac{1}{g_{mREF}} + R_{P})}{I_{REF}\frac{1}{g_{mREF}}} \cdot \frac{I_{REF}R_{P}}{(I_{REF}\frac{1}{g_{mREF}} - V_{th})^{2}} \\ &= 2\sqrt{2}I_{REF}\frac{I_{REF}R_{P}}{(I_{REF}\frac{1}{g_{mREF}} - V_{th})^{2}} \\ &= \frac{(4 - 2\sqrt{2})I_{REF}}{I_{REF}\frac{1}{g_{mREF}} - V_{th}} \end{split}$$

$$\therefore \Delta I_1 = \frac{(4 - 2\sqrt{2})I_{REF}}{I_{REF}\frac{1}{g_{mREF}} - V_{th}} \Delta V$$

9.52 Calculate I_{copy} in each of the circuits shown in Fig. 9-71. Assume all of the transisitors operate in saturation.

Figure 9-71

以下各电流符号中下标表示长宽比所对应的MOS管的电流。

(a)
$$I_{2n} = \frac{2}{3}I_{REF}, I_{copy} = \frac{2}{3} \cdot \frac{3}{5} \cdot I_{REF} = \frac{2}{5}I_{REF}$$

(b) $I_{5n} = 5I_{REF}, I_{2p} = 10I_{REF}, I_{3p} = 3I_{REF}$

(b)
$$I_{5n} = 5I_{REF}, I_{2p} = 10I_{REF}, I_{3p} = 3I_{REF}$$

$$\therefore I_{copy} = 7I_{REF}$$