

LLMs for Cyberattack Detection on UNSW-NB15

University of Tehran — Large Language Models (Spring 2025)

Instructors: Dr. Mohammad-Javad Doosti, Dr. Yadollah Yaghoubzadeh

Mobin Tirafkan, Kiyan Khezri, Mohammad Mehrabian

Sep. 2025

Introduction: Modern Network Security

The Importance

- The Threat: We operate in an era of escalating and sophisticated cyber threats
- The Capability: The ability to accurately detect is fundamental
- The Goal: To protect an organization's critical digital assets and infrastructure.

The Challenge

- Log Volume: Network logs are increasingly complex and voluminous.
- Analyst Overload: Human analysts are overwhelmed by raw data, leading to alert fatigue.
- Traditional ML Limits: Often "black-box" decisions without explanation.
- LLM Direct Use: LLMs struggle with direct tabular data classification and raise privacy concerns

Introduction: From Logs To Explainable Verdict

- Our Proposed Solution: A multi-agent Framework
- We introduce a novel framework where two specialist agents sequentially transform raw data into a final, explainable verdict.
- This verdict consists of two key parts:
 - A classification Label (Attack / Normal)
 - An evidence-based Analysis (The "Reason")
- The Agents:
 - 1. The Storyteller
 - 2. The Reasoner (a fine-tuned gemma-3-1B Model)

Introduction: From Logs To Explainable Verdict

Key Accomplishments

- Our Multi-agent framework achieved a remarkable 93% accuracy on attack predication.
- This significantly outperforms larger models:
 - GPT OSS (120B): 59.7% accuracy
 - Qwen 3 (32B)(Reasoning): 58.9% accuracy

Related Works

- Traditional Machine Learning Approaches
 - Focus: Primarily on feature engineering and maximizing classification accuracy using numerical data.
 - Techniques: Employ models like CNNs, LSTMs, Autoencoders, and XGBoost for feature selection on datasets like UNSW-NB15.
 - Key Limitation: While achieving high accuracy, these models often function as "black boxes," lacking the crucial explainability needed for an effective security response.

Related Works

- Recent LLM-based Approaches
 - Focus: Exploring the direct use of LLMs for tabular data classification and anomaly detection.
 - Techniques:
 - Prompt Engineering: Guiding pre-trained models with advanced prompts (e.g., Chain-of-Thought) to analyze tabular data.
 - Fine-Tuning Strategies: Optimizing models by enhancing data representation, such as using decimal truncation and randomizing feature order to improve robustness and generalization.
 - Key Limitation: These methods still primarily target classification accuracy. They do not emphasize generating human-readable justifications or proposing concrete, actionable steps.

Background: UNSW-NB15 Dataset

- A Benchmark for Network Intrusion Detection
- Dataset Composition and Features
 - o real-world normal traffic and nine families of attacks.
 - Each record is explicitly labeled as Normal (0) or Attack (1).
 - Comprises 49 features
 - Training Set (175,341 records) and a Testing Set (82,332 records).

dur	proto	service	sbytes	dbytes	sttl	sload	attack_cat	label
0.012947	tcp	-	2766	24004	31	1670811.875	Normal	0
0.031951	tcp	-	1540	1644	31	361553.625	Normal	0
0.005483	tcp	http	1040	824	31	1327740.25	Normal	0
0.004066	tcp	http	1040	824	31	1790457.375	Normal	0
0.132404	tcp	-	4862	77276	31	290323.5625	Normal	0
4.413976	tcp	ftp	1284	1638	62	2231.094971	Exploits	1
0.623141	tcp	smtp	28292	1936	62	353666.3438	Exploits	1
1.360272	tcp	ftp	1210	1662	62	6792.758789	Exploits	1
1.252438	tcp	ftp-data	364	740	62	2037.625854	Exploits	1
7.717545	tcp	smtp	3235	2048	254	3242.481934	DoS	1

Methodology: A Multi-Agent Framework Overview

- Objective: From Raw Numbers to a Rich Narrative
 - To transform a single, cryptic log entry (a row of numbers and codes) into an analytical, human-readable "story."
 - The goal is to provide context, not just data.
- Core Mechanism: Contextualization via Baseline Comparison
 - Agent 1 compares each feature from an incoming log against a pre-computed statistical baseline derived from "Normal" traffic.
 - This process turns raw data into meaningful insights by quantifying the **deviation from the norm.**

- Implementation: A Two-Step Process
- Step 1 (Offline): Building the "Normal" Baseline
 - First we selected 21 important features from all dataset features.
 - Then, we performed a statistical analysis exclusively on the "Normal" records from the training set.
 - This process involved computing and storing key statistics for our 21 selected features:
 - For Numerical Features: We calculated the Mean, Min, and Max.
 - For Categorical Features: We calculated the frequency distribution of each value (e.g., tcp appears in 75% of normal traffic).

This baseline serves as the algorithm's "memory" of what constitutes usual network behavior.

- Step 2 (Online): The Story-Generation Algorithm
- For each new log, the Python algorithm compares its feature values against the stored baseline statistics:
 - Numerical Comparison: The log's value is compared to the stored Mean. The algorithm calculates the ratio (value / mean) to generate dynamic, qualitative phrases like ~88% below the Usual or several-fold higher.
 - **Categorical Comparison:** The log's value (e.g., udp) is looked up in the stored frequency distribution. The algorithm then uses this percentage to generate phrases like observed in ~22% of the Usual set.

- An Example:
 - Input (A Single Row from UNSW-NB15):

Input (Features)

dur: 0.02595, proto: tcp, service: -, state: FIN, spkts: 48, dpkts: 50, sbytes: 2974, dbytes: 30506,
rate: 3737.957655, sttl: 31, dttl: 29, sload: 898034.6875, dload: 9216493, sloss: 7, dloss: 18, sinpkt:
0.556935, dinpkt: 0.550848, sjit: 37.603086, djit: 39.067097, swin: 255, stcpb: 2509677024, dtcpb:
364595143, dwin: 255, tcprtt: 0.000768, synack: 0.000603, ackdat: 0.000165, smean: 62, dmean:
610, trans_depth: 0, response_body_len: 0, ct_srv_src: 11, ct_state_ttl: 0, ct_dst_ltm:
2, ct_src_dport_ltm: 1, ct_dst_sport_ltm: 1, ct_dst_src_ltm: 2, is_ftp_login: 0,
ct_ftp_cmd: 0, ct_flw_http_mthd: 0, ct_src_ltm: 6, ct_srv_dst: 7, is_sm_ips_ports:
0

An Example:

Output (The Generated "Story"):

Output (The Generated "Story")

This record describes a single network flow using tcp (Transmission Control Protocol; observed in ~75% of the Usual set); the application service was identified as http (web (unencrypted)) (observed in ~11% of the Usual set), and the connection state recorded as FIN (graceful close observed). As a combination, the proto \leftrightarrow service pairing is pairing frequency not available. The flow duration was ~1% below the Usual. source→destination data volume was ~61% below the Usual and destination→source data volume was ~46% below the Usual. source \rightarrow destination packet count was ~47% below the Usual and destination \rightarrow source packet count was ~29% below the Usual. source→destination transfer rate was very lower than the Usual and destination→source transfer rate was ~94% below the Usual. source→destination hop limit (TTL) was ~75% below the Usual and destination→source hop limit (TTL) was ~73% below the Usual. source→destination packet loss was ~30% below the Usual and destination→source packet loss was ~45% below the Usual. source TCP window was ~+33% vs the Usual. destination TCP window was ~+41% vs the Usual. source TCP base sequence was ~77% below the Usual. destination TCP base sequence was $^{\sim}+66\%$ vs the Usual. SYN-to-SYN-ACK time was \approx 0.51 ms. SYN-ACK-to-ACK time was \approx 0.14 ms. TCP handshake round-trip time was \approx 0.66 ms.

Evaluation

- Baseline Performance with In-Context Learning (ICL)
 - We first evaluated the Reasoner agent using only ICL to measure the impact of the "Story" format without fine-tuning.
 - Raw Logs: Prompting a large LLM with raw log data resulted in random, coin-flip performance (~50% Accuracy).
 - Story (Zero-shot): Simply converting the log to a "Story" immediately boosted accuracy significantly.
 - Story (Few-shot): Adding a few examples provided the best ICL results, but performance was still not sufficient for a reliable security tool.

Comparison to prior work (UNSW-NB15)

Gemma-7b-it

Dataset	Accuracy	Precision	Recall	F1 Score	Remarks		
CICIDS2017	0.6600	0.7222	0.5200	0.6047	Experiment 1, 2^a		
CICIDS2017	0.7600	0.6970	0.9200	0.7931	Experiment 2, 3^b		
CICIDS2017	0.6800	0.6216	0.9200	0.7419	Experiment 3^c		
CICIDS2017	0.5000	0.000	0.000	0.000	Experiment 1^d		
KDD Cup 1999	0.7600	1.0000	0.5200	0.6842	Experiment 1, 2^a		
KDD Cup 1999	0.9800	1.0000	0.9600	0.9796	Experiment 2, 3^b		
KDD Cup 1999	0.7800	0.6944	1.0000	0.8197	Experiment 3^c		
KDD Cup 1999	0.5000	0.000	0.000	0.000	Experiment 1^d		
UNSW-NB15	0.4200	0.3750	0.2400	0.2927	Experiment 1, 2^a		
UNSW-NB15	0.6000	0.6471	0.4400	0.5238	Experiment 2, 3^b		
UNSW-NB15	0.6400	0.6842	0.5200	0.5909	Experiment 3^c		
UNSW-NB15	0.5000	0.000	0.000	0.000	Experiment 1^d		

Zhao, X., Leng, X., Wang, L., **et al.** "Efficient anomaly detection in tabular cybersecurity data using large language models." **Scientific Reports** 15, 3344 (2025). https://www.nature.com/articles/s41598-025-88050-z 15

ICL Performance Analysis

- Objective: Moving from "What" to "Why"
 - To go beyond a simple Attack/Normal label and provide a concise, evidence-based "Reason" for each classification.
 - This transforms a black-box detection into an explainable analysis.

- Implementation:
- **Step1**:Curating a Diverse Set of Stories
 - To ensure quality and prevent redundancy, we first clustered all "Stories" using sentence embeddings.
 - We then sampled from each cluster to create a diverse and representative training set of ~4,000 high-quality examples.
 - To clarify, this curated set is **highly efficient**, constituting just **3%** of the total records in the original training dataset.

- **Step 2:** Generating the Reasoning Dataset (The "Teacher")
 - We feed the powerful "Teacher" model (e.g., GPT-5) the curated stories along with their correct ground-truth "attack category".
 - The Teacher's task is to act as a security expert and generate a high-quality, professional "Reason" for each story.
 - The output is our final training dataset of Story \rightarrow {Reason, label}.

- Step 3: Fine-Tuning the Specialist (The "Student")
 - The curated Story → {Reason, label} dataset is used to fine-tune the smaller, efficient "Student" model (Gemma 3 1B & 4B).
 - The Student model learns to mimic the expert reasoning patterns of the Teacher, becoming a highly specialized agent for this task.

An Example:

Input (A "Story" from Agent 1):

An Example:

Output (The final JSON from Agent 2):

"reason": "Despite rate and TTL anomalies, the graceful TCP close and healthy handshake timings suggest a legitimate, non-malicious data exchange.",

"label": "normal"

UMAP of sentence-transformer embeddings (metric = cosine)

Evaluation: Fine Tuning Results

Comparison to prior work (UNSW-NB15)

JNSW-NB15 Binary Classification	n Results					
ODEL	SIZE	TEST	ACCURACY	PRECISION	RECALL	F1-SCORE
Zhao et al. (2024) Gemma-2 2B IT + LoRA	2.0B	300	86.67	82.50	91.67	86.84
Our Approach Gemma-3 1B IT + LORA	1.0B (-50%)	1,000 (+233%)	93.00 +6.33	93.20 +10.70	92.80 +1.13	93.00

Intrusion Class Breakdown — Strengths & Gaps

Gemma-3 1B IT (finetuned) -3% training subset, test n=1,000.

Performance by Attack Type							
АТТАСК ТҮРЕ	TOTAL	TRUE POSITIVE	FALSE NEGATIVE	ACCURACY			
Analysis	6	4	2	66.7%			
Backdoor	7	7	0	100.0%			
Dos	53	52	1	98.1%			
Exploits	152	146	6	96.1%			
Fuzzers	68	45	23	66.2%			
Generic	165	165	0	100.0%			
Reconnaissance	42	42	0	100.0%			
Shellcode	7	3	4	42.9%			
Normal (TN/FP)	500	466	34	93.2%			

Conclusion

- Summary of Our Contribution
 - We successfully developed a novel 2-agent framework, "From Logs to Explainable Verdict," that transforms cryptic network logs into clear, evidence-based security insights.
 - Our hybrid approach effectively combines a rule-based algorithm (Agent 1) for data contextualization with a fine-tuned small LLM (Agent 2) for expert-level reasoning.
- Key Findings
 - The **"Story" format** is critical: it bridges the semantic gap, making log data intelligible to LLMs and dramatically improving performance.
 - Our fine-tuned Gemma 3 1B model achieved ~93% balanced accuracy and F1-score, vastly outperforming massive, general-purpose LLMs.
 - This high performance was achieved by fine-tuning on just 3% of the training data, proving the efficiency of our curation method.
 - The final model is highly reliable, with low rates of both false positives and false negatives, making it suitable for real-world use.