Corrigé _ les ensembles

Exercice 1 16/13 V; 15/13 F; 06/1,23 F; 16/13,/23) F; 213 € 113 V, 113 € 113 F, 11,23 € 113 F, 113 € 1,23 F, 1-13 = {1,23v; {1,23 = {1,23 v; {13 = {1,6133 v; 213 € {1, {13}} V; {13 ⊆ {{13, {23}} F}, Ø € {1,23 F}; $\phi \leq 11,23 \ V_j \ \phi \in \phi \ F_j \ \phi \leq \phi \ V$

Exercice 2

$$\begin{array}{ll}
A = \{2,4\}, & B = \{1,2,3\}, & \overline{A} = \{1,3,5\}, & \overline{B} = \{4,5\}, \\
A - B = \{4\}, & \overline{A} = \{2\}, & \overline{A} = \{1,3,4,5\}, & \overline{A} = \{1,2,3,4\}, & \overline{A} =$$

2) ajilestrai que x est impair au supérieur à 3.

(b) x ∈ {1,3,4,5}

(c) oc € ANB

(d) XEAUB

3)
$$\overline{ANB} = \overline{AUB}$$
 $\overline{AUB} = \overline{ANB}$

(5) Hontrons que AUB = ANB.

Soit X EE X EAUB (=>] (X EAUB) (définition du complémentaire

(=) 7 (ce) (ce) (de) (de)

<=> 7(x∈A) ∧ 7(x∈B) (Horgan Pogrque)

(=) $x \in A \land x \in B$ (cléf complémentaire) (=) $x \in A \land B$ (cléf n)

Hontrons que ANB = AUB.

SatacEE XEANB () (XEANB)

(=) 7(xEAn XEB)

(⇒) 7(x ∈ A) ∨ 7(x ∈ B)

(=) XEAVXEB

<=> x ∈ ĀUB

E	Χ	er	ci	ce	3
E	X	er	ч	œ	<u>ح</u>

A	B	IANBI	JAUBI	1A-13]	1B-A
15	7	3	19	12	4
10	12	2	20	8 8	10
8	5	0	13	8	5
6	Ь	i	atb-i	a-6	6-4
a	. b	atb-u	m	u-b	M-9
4-3	3+x	X	1 4 1	4-26-3	3

Exercice 4

(1)
$$|A-B| = |A| - |A \cap B|$$

 $|A \cup B| = |A| + |B| - |A \cap B|$

$$\begin{array}{l} (2) | (AUB)UC| = |AUB| + |C| = |(AUB)NC| \\ &= |A| + |B| - |ANB| + |C| - |(ANC)U(BNC)| \\ &= |A| + |B| + |C| - |ANB| - |(ANC) + |BNC| - |ANBNC| \\ &= |A| + |B| + |C| - |ANB| - |ANC| - |BNC| + |ANBNC| \end{aligned}$$

(2)
$$|AUBUC| = 93$$

 $|A| = 54$
 $|BUC| = 52$
 $|C-13| = 27$
 $|B-(AUC)| = 3$
 $|ANBNC| = 12$

(3)
$$|AUC| = ?$$

 $|AUBUC| = |(AUC)UB|$
 $|AUC| + |B-(AUC)|$
 $|AUC| = |AUBUC| - |B-(AUC)|$
 $= 93-3 d'a |AUC| = 90$

$$(4) |B|=?$$
 $|BUC|= (1a) |B|+|C-B| d'ai |B|=|BUC|-|C-B| = 51-27 d'ai |B|=24|$

(5)
$$|A-(BUC)|=?$$
 $|AUBUC|=|BUC)UA|=|BUC|+|A-(BUC)|$
 $|A'ai||A-(BUC)|=|AUBUC|-|BUC|=93-51$
 $|A'ai||A-(BUC)|=42$

$$|C-(AUB)|=27$$

$$|E \times F| = 6$$

$$|FxE| = 6$$

$$|E^2| = 4$$

$$|Ex | = || | | | | | | | | | | | | |$$

```
(3) | ExF | = |E| |F| |E2 | = |E|2
(4) ExF = FxE \iff (E = \emptyset \vee F = \emptyset \vee E = F)
( Jecas E=$
 Exf= ØxF= FXØ=FXE
    \frac{2! \cos F = \emptyset i ckm}{}
    3º cas E=F: ExF=E = ExE = FxE
 =) Supposas ExF = FXE.
  la cos: E= ØVF= Ø alas E= ØVF= ØVE=F
   2º cos: E + Ø 1 F + Ø.
   Hankons que E=F.
 Montrons d'abord que ECF.
  Sar SCEE
  Comme F + p, ] y & F.
  XEEnyEF => (xy) EXF
             => (x, g) EFXE (export hypothese)
             =) XEF(AYEE) (déf. produit carksien)
   d'un x EE = ) x Ef : Dac E C F
De Jago similaire, on montre que FCE.
```

(ECFAFCE) => E=F