Прикладной статистический анализ данных Последовательный анализ

Бахтеев Олег psad-2020@phystech.edu

2020

История задачи

Задача

ВМФ США хочет проверить эффективность двух типов снарядов. Производится N ($N \approx 1000$) раундов обстрелов целей двумя типами снарядов, после чего производится статистический тест.

Проблема

Статистический тест может быть слишком расточительным. Часто знающий офицер может "на глаз" понять, какой снаряд лучше после нескольких сотен раундов.

Задача: рекламная кампания планировалась так, чтобы обеспечить узнаваемость продукта среди целевой аудитории более 30%. После окончания кампании проводится опрос с целью оценки узнаваемости.

 H_0 : узнаваемость продукта не превышает 30%.

 H_1 : узнаваемость продукта превышает 30%.

выборка: $X^n = (X_1, \dots, X_n), X \sim Ber(p)$

нулевая гипотеза: H_0 : $p = p_0$

альтернатива: $H_1: p > p_0$

статистика: $Z\left(X^{n}\right)=rac{\hat{p}-p_{0}}{\sqrt{rac{p_{0}\left(1-p_{0}
ight)}{n}}},\;\;\hat{p}=rac{1}{n}\sum_{i=1}^{n}X_{i}$

нулевое распределение: N(0,1)

выборка: $X^n = (X_1, \dots, X_n), X \sim Ber(p)$

нулевая гипотеза: H_0 : $p\leqslant p_0$

альтернатива: $H_1: p > p_0$

статистика: $Z\left(X^{n}\right)=rac{\hat{p}-p_{0}}{\sqrt{rac{p_{0}\left(1-p_{0}
ight)}{n}}},\;\;\hat{p}=rac{1}{n}\sum_{i=1}^{n}X_{i}$

нулевое распределение: N(0,1) при $p=p_0$

Как выбрать наименьший достаточный объём выборки?

Последовательный анализ Вальда: ключевая идея

Вместо порога p_0 введем два порога: $p_L, p_U.$ Будем полагать, что отклонение значения параметра p от p_0 несущественно, если:

$$p_L \leqslant p_0 \leqslant p_U$$
.

Алгоритм

- \P Если $rac{p_U}{p_L}\geqslant A$ для очередной выборки x_1,\ldots,x_m : отклонить гипотезу $H_0.$
- $m{2}$ Если $rac{p_U}{p_L}\leqslant B$ для очередной выборки x_1,\ldots,x_m : принять гипотезу $H_0.$
- $egin{aligned} egin{aligned} egin{aligned} \begin{aligned} \begin{aligned$

Последовательный анализ Вальда: ключевая идея

Пусть:

lpha — уровень значимости — допускаемая вероятность ошибки первого рода,

eta — допускаемая вероятность ошибки второго рода.

Вероятность получения такой выборки x_1,\dots,x_n , что

$$B < rac{p_U}{p_L} < A$$
(для меньших подвыборок), $\qquad rac{p_U}{p_L} \geqslant A$

при выполнении гипотезы $H_1(p=p_U)$ больше в A раз, чем при выполнении альтернативы $H_0(p=p_L)$.

Но эта вероятность равна α при верности H_0 и $1-\beta$ при верности H_1 :

$$1 - \beta \geqslant \alpha A$$
.

Постановка задачи последовательного анализа

выборка:
$$X^{m} = (X_{1}, ..., X_{m}), X \sim Ber(p).$$

Фиксируем «коридор» отклонений значения параметра p от p_0 , которые можно считать несущественными:

$$p_L \leqslant p_0 \leqslant p_U$$

(хотя бы одно из неравенств — строгое).

нулевая гипотеза: $H_0: p \leq p_L;$ альтернатива: $H_1: p \geq p_U.$

Пусть данные поступают постепенно.

Задача: построить проверку гипотез так, чтобы обойтись как можно меньшим объёмом выборки.

Анонс: процедура последовательного анализа при тех же значениях мощности и уровня значимости позволяет обойтись меньшим (иногда вдвое) объёмом выборки.

Процедура последовательного анализа

Поскольку размер выборки не фиксирован, мы можем фиксировать вероятности ошибок обоих родов:

lpha — уровень значимости — допускаемая вероятность ошибки первого рода,

eta — допускаемая вероятность ошибки второго рода.

статистика:
$$d_m(X^m) = \sum_{i=1}^m X_i$$
.

Введём следующие обозначения:

$$\begin{split} A &= \frac{1-\beta}{\alpha}, \ B = \frac{\beta}{1-\alpha}, \\ a_m &= \frac{\ln B + m \ln \frac{1-p_L}{1-p_U}}{\ln \frac{p_U}{p_L} - \ln \frac{1-p_U}{1-p_L}}, \\ r_m &= \frac{\ln A + m \ln \frac{1-p_L}{1-p_U}}{\ln \frac{p_U}{p_L} - \ln \frac{1-p_U}{1-p_L}}. \end{split}$$

Процедура последовательного анализа

При каждом значении m:

- $d_m \leqslant a_m \Rightarrow$ принимаем $H_0, p \leqslant p_L;$
- $a_m < d_m < r_m \Rightarrow$ процесс продолжается, добавляем элемент выборки.

Момент остановки

На каком элементы выборки n произойдёт остановка процедуры?

n — случайная величина, можно говорить о её матожидании:

$$\mathbb{E}_{p}(n) = \frac{L(p) \ln B + (1 - L(p)) \ln A}{p \ln \frac{p_{U}}{p_{L}} + (1 - p) \ln \frac{1 - p_{U}}{1 - p_{L}}},$$

 $L\left(p
ight)=rac{A^{h}-1}{A^{h}-B^{h}}$ — оперативная характеристика — вероятность принять нулевую гипотезу при условии, что p — истинное значение параметра; h определяется как решение уравнения:

$$p = \frac{1 - \left(\frac{1-p_U}{1-p_L}\right)^h}{\left(\frac{p_U}{p_L}\right)^h - \left(\frac{1-p_U}{1-p_L}\right)^h}.$$

Усечение

Если при $m=n_0$ решение ещё не принято, но возможности добавлять элементы выборки больше нет, используем следующий критерий:

$$d_m\geqslant rac{a_{n_0}+r_{n_0}}{2} \Rightarrow$$
 отвергаем $H_0,\ p\geqslant p_U;$

$$d_m \leqslant rac{a_{n_0} + r_{n_0}}{2} \Rightarrow$$
 принимаем $H_0, \ p \leqslant p_L.$

Группировка наблюдений

Наблюдения могут поступать группами g_1,g_2,\dots по v элементов. Тогда значения статистики d_m сравниваются с a_m,r_m только при $m=v,2v,\dots$

Последствия:

- увеличивается размер выборки, при котором происходит остановка;
- истинные вероятности ошибок могут оказаться больше номинальных, но при этом

$$\alpha' \leqslant \frac{\alpha}{1-\beta}, \ \beta' \leqslant \frac{\beta}{1-\alpha}.$$

Так как величины α и β обычно малы, отклонением можно пренебречь.

Z-критерий для разности двух долей, связанные выборки

выборки:
$$X_1^n = (X_{11}, \dots, X_{1n}), X_1 \sim Ber(p_1)$$
 $X_2^n = (X_{21}, \dots, X_{2n}), X_2 \sim Ber(p_2)$ выборки связанные

$X_1^n X_2^n$	1	0
1	e	f
0	g	h

нулевая гипотеза: $H_0: p_1 \geqslant p_2$

альтернатива: $H_1: p_1 < p_2$

ьтернатива: $H_1 \cdot p_1 \sim_{P^2}$ статистика: $Z\left(X_1^n, X_2^n\right) = \frac{f-g}{\sqrt{f+g-\frac{(f-g)^2}{n}}}$

N(0,1) при $p_1 = p_2$ нулевое распределение:

Z-критерий для разности двух долей, связанные выборки

Пример: имеются два технологических процесса, классический и модернизированный, p_1, p_2 — доли брака в них.

 H_0 : доля брака в классическом процессе не меньше доли брака в модернизированном.

 H_1 : доля брака в классическом процессе меньше доли брака в модернизированном.

Аналог в последовательном анализе

Пусть значения x_{1i}, x_{2i} поступают парами.

Будем рассматривать только различающиеся пары — (0,1) и (1,0), а остальные будем отбрасывать.

$$k_1=rac{p_1}{1-p_1},\ k_2=rac{p_2}{1-p_2}$$
 — риски, $u=rac{k_1}{k_2}=rac{p_1(1-p_2)}{p_2(1-p_1)}$ — относительный риск:

$$\bullet \ u=1 \ \Leftrightarrow \ p_1=p_2,$$

$$u>1 \Leftrightarrow p_1>p_2,$$

$$u < 1 \Leftrightarrow p_1 < p_2.$$

Фиксируем «коридор» отклонений u от 1, которые можно считать незначимыми:

$$u_L \leqslant 1 \leqslant u_U$$

(хотя бы одно из неравенств — строгое).

нулевая гипотеза: $H_0: u \geqslant u_U$

альтернатива: $H_1: u \leqslant u_L$

статистика: $d_m\left(X_1^m,X_2^m\right) = \sum_{i=1}^m \left(1-X_{1i}\right)X_{2i}$

Аналог в последовательном анализе

Константы последовательного анализа:

$$a_m = \frac{\ln B + m \ln \frac{1 + u_U}{1 + u_L}}{\ln u_U - \ln u_L},$$

$$r_m = \frac{\ln A + m \ln \frac{1 + u_U}{1 + u_L}}{\ln u_U - \ln u_L}.$$

Момент остановки:

$$\mathbb{E}_{u}(n) = \frac{L(u) \ln B + (1 - L(u)) \ln A}{\frac{u}{u + 1} \ln \frac{u_{U}(1 + u_{L})}{u_{L}(1 + u_{U})} + \frac{1}{u + 1} \ln \frac{1 + u_{L}}{1 + u_{U}}} / (p_{1}(1 - p_{2}) + p_{2}(1 - p_{1})),$$

$$L(u) = \frac{A^{h} - 1}{A^{h} - B^{h}},$$

h определяется как решение уравнения

$$\frac{u}{u+1} = \frac{1 - \left(\frac{1+u_L}{1+u_U}\right)^h}{\left(\frac{u_U(1+u_L)}{u_I(1+u_U)}\right)^h - \left(\frac{1+u_L}{1+u_U}\right)^h}.$$

Группировка наблюдений

Наблюдения могут поступать группами g_1,g_2,\ldots пар выборок по v элементов. Если при этом внутри пар выборок не указаны соответствия элементов (x_{1i},x_{2i}) , статистику d_m вычислить невозможно.

Пусть $v_1\left(g_i\right)$ — число успехов в выборке из v наблюдений над первой биномиальной совокупностью в группе $g_i,\,v_2(g_i)$ — над второй. Тогда для этой пары групп в качестве оценки числа пар (0,1) примем величину $v_2(g_i)-\frac{v_1(g_i)v_2(g_i)}{v}$.

$$d_{g_{m}} = \sum_{i=1}^{g_{m}} \left(v_{2}(g_{i}) - \frac{v_{1}(g_{i}) v_{2}(g_{i})}{v} \right).$$

Последствия: аналогичные.

Z-критерий для среднего нормального распределения, односторонняя альтернатива

выборка: $X^n = (X_1, \dots, X_n), X \sim N(\mu, \sigma^2), \sigma$ известна

нулевая гипотеза: $H_0: \mu \leq \mu_0$ альтернатива: $H_1: \mu > \mu_0$

статистика: $Z(X^n) = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$

нулевое распределение: N(0,1) при $\mu=\mu_0$

Пример: при помощи прибора с известной погрешностью σ измеряется концентрация вредного вещества в образце. Необходимо проверить, что она не превышает предельно допустимой.

Аналог в последовательном анализе

Фиксируем «коридор» отклонений μ от μ_0 , которые можно считать незначимыми:

$$\mu_L \leqslant \mu_0 \leqslant \mu_U$$

(хотя бы одно из неравенств — строгое).

нулевая гипотеза: $H_0: \mu \leqslant \mu_L$

альтернатива: $H_1:\mu\geqslant \mu_U$ статистика: $d_m\left(X^m
ight)=\sum\limits_{i=1}^m X_i$

Аналог в последовательном анализе

Константы последовательного анализа:

$$a_{m} = \frac{\sigma^{2}}{\mu_{U} - \mu_{L}} \ln B + m \frac{\mu_{U} + \mu_{L}}{2},$$
$$r_{m} = \frac{\sigma^{2}}{\mu_{U} - \mu_{L}} \ln A + m \frac{\mu_{U} + \mu_{L}}{2},$$

Момент остановки:

$$\mathbb{E}_{\mu}(n) = \frac{L(\mu) \ln B (1 - L(\mu)) \ln A}{\mu_L^2 - \mu_U^2 + 2 (\mu_U - \mu_L) \mu},$$
$$L(\mu) = \frac{A^h - 1}{A^h - B^h},$$
$$h = \frac{\mu_U + \mu_L - 2\mu}{\mu_U - \mu_L}.$$

Z-критерий для среднего нормального распределения, двусторонняя альтернатива

выборка: $X^n = \left(X_1, \ldots, X_n\right), X \sim N\left(\mu, \sigma^2\right), \sigma$ известна

нулевая гипотеза: $H_0: \mu = \mu_0$ альтернатива: $H_1: \mu \neq \mu_0$

статистика: $Z(X^n) = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$

нулевое распределение: N(0,1)

Пример: многократные измерения прибором с известной погрешностью для проверки наличия у прибора смещения.

Аналог в последовательном анализе

Фиксируем симметричный «коридор» отклонений μ от μ_0 , которые можно считать незначимыми:

$$\left|\frac{\mu-\mu_0}{\sigma}\right| \leqslant \delta.$$

нулевая гипотеза:
$$H_0$$
: $\left|\frac{\mu-\mu_0}{\sigma}\right| \leqslant \delta$ альтернатива: H_1 : $\left|\frac{\mu-\mu_0}{\sigma}\right| > \delta$ статистика: $d_m\left(X^m\right) = \ln \operatorname{ch}\left(\frac{\delta}{\sigma}\sum_{i=1}^m\left(X_i-\mu_0\right)\right)$

Константы последовательного анализа:

$$a_m = \ln B + m \frac{\delta^2}{2},$$

$$r_m = \ln A + m \frac{\delta^2}{2}.$$

Критерий хи-квадрат

выборка: $X^{n} = (X_{1}, ..., X_{n}), X \sim N(\mu, \sigma^{2}), \mu$ известно

нулевая гипотеза: $H_0: \sigma \leqslant \sigma_0$

альтернатива: $H_1: \sigma > \sigma_0$

статистика: $\chi^2(X^n) = \frac{\sum_{i=1}^n (X_i - \mu)}{\sigma_0^2}$

нулевое распределение: χ^2_n при $\sigma=\sigma_0$

Критерий хи-квадрат

Пример: не превышает ли погрешность прибора заявленного уровня?

Аналог в последовательном анализе

Фиксируем «коридор» отклонений σ от σ_0 , которые можно считать незначимыми:

$$\sigma_L \leqslant \sigma_0 \leqslant \sigma_U$$

(хотя бы одно из неравенств — строгое).

нулевая гипотеза:
$$H_0: \sigma \leqslant \sigma_L$$

альтернатива:
$$H_1 \colon \sigma \geqslant \sigma_U$$

статистика:
$$d_m\left(X^m\right) = \sum_{i=1}^m \left(X_i - \mu\right)^2$$

Константы последовательного анализа:

$$a_m = \frac{2 \ln B + m \ln \frac{\sigma_U^2}{\sigma_L^2}}{\frac{1}{\sigma_L^2} - \frac{1}{\sigma_L^2}},$$

$$r_m = \frac{2 \ln A + m \ln \frac{\sigma_U^2}{\sigma_L^2}}{\frac{1}{\sigma_L^2} - \frac{1}{\sigma_L^2}}.$$

Случай неизвестного среднего

Если среднее неизвестно, предлагается использовать его выборочную оценку:

статистика:
$$d_m\left(X^m\right) = \sum\limits_{i=1}^m \left(X_i - \bar{X}\right)^2$$

При этом в последовательном анализе на m-м шаге вместо констант a_m, r_m необходимо использовать $a_{m-1}, r_{m-1}.$

Доверительный интервал для среднего

Дано: $X_1,\ldots,X_n,\ X\sim N\left(\mu,\sigma^2\right),\ \mu,\sigma$ неизвестны.

Требуется: построить доверительный интервал J для среднего μ фиксированной длины 2d:

$$P(\mu \in J) \geqslant 1 - \alpha \ \forall \mu, \sigma.$$

При фиксированном n и неизвестном σ решения не существует (Данциг, 1940).

При известном σ :

$$J_{n} = \left[\bar{X}_{n} - d, \bar{X}_{n} + d \right],$$

$$P\left(\mu \in J_{n} \right) = P\left(\left| \bar{X}_{n} - \mu \right| \leq d \right) = P\left(\frac{\sqrt{n} \left| \bar{X}_{n} - \mu \right|}{\sigma} \leq \frac{\sqrt{n}d}{\sigma} \right) = 2\Phi\left(\sqrt{n}d/\sigma \right) - 1;$$

$$2\Phi\left(\sqrt{n}d/\sigma \right) - 1 \geqslant 1 - \alpha = 2\Phi\left(z_{1-\alpha/2} \right) - 1;$$

так как Φ монотонна.

$$\frac{\sqrt{n}d}{\sigma}\geqslant z_{1-\alpha/2}\Rightarrow n\geqslant \frac{z_{1-\alpha/2}^2\sigma^2}{d^2}\equiv C.$$

C — минимальный размер выборки, при котором J_n имеет уровень доверия 1-lpha.

Двухэтапная процедура Стейна.

- $lackbox{0}\ X_1,\ldots,X_m$ пилотная выборка, $m\geqslant 2,\ S_m^2$ её выборочная дисперсия.
- ② Определим, сколько нужно добавить наблюдений:

$$\begin{split} \hat{C} &= \frac{t_{1-\alpha/2,m-1}^2 S_m^2}{d^2}, \\ N &= \max\left(\left[\hat{C}\right] + 1, m\right), \end{split}$$

 $J_N = \left[ar{X}_N - d, ar{X}_N + d
ight]$ — искомый 100(1-lpha)% доверительный интервал для μ .

$$\frac{t_{1-\alpha/2,m-1}^{2}}{z_{1-\alpha/2}^{2}}C \leq \mathbb{E}_{\mu,\sigma}(N) \leq \frac{t_{1-\alpha/2,m-1}^{2}}{z_{1-\alpha/2}^{2}}C + m.$$

Двухэтапная процедура состоятельна:

$$P_{\mu,\sigma} (\mu \in J_N) \geqslant 1 - \alpha,$$

и асимптотически состоятельна:

$$\lim_{d\to 0} P_{\mu,\sigma} \left(\mu \in J_N \right) = 1 - \alpha,$$

но асимптотически неэффективна:

$$\lim_{d\to 0} \mathbb{E}_{\mu,\sigma}\left(\frac{N}{C}\right) = \frac{t_{1-\alpha/2,m-1}^2}{z_{1-\alpha/2}^2} > 1.$$

Полностью последовательная процедура.

- \bullet X_1, \ldots, X_m пилотная выборка, $m \geqslant 2$.
- ullet Для каждого $n=m,m+1,\ldots$ вычисляем

$$\hat{C}_n = \frac{z_{1-\alpha/2}^2 S_n^2}{d^2}.$$

ullet Продолжаем набирать выборку, если $n < \hat{C}_n$.

N — наименьшее целое $n\geqslant \hat{C}_n$.

$$\mathbb{E}_{\mu,\sigma}\left(N\right)\leqslant C+m.$$

Полностью последовательная процедура только асимптотически состоятельна:

$$\lim_{d\to 0} P_{\mu,\sigma} \left(\mu \in J_N \right) = 1 - \alpha,$$

но зато асимптотически эффективна:

$$\lim_{d \to 0} \mathbb{E}_{\mu, \sigma} \left(\frac{N}{C} \right) = 1.$$

Доверительный интервал для разности двух средних

Дано: $X_{i1}, \dots, X_{in_i}, \ X_i \sim N\left(\mu_i, \sigma_i^2\right), \ i = 1, 2.$

Требуется: построить доверительный интервал J для разности средних $\mu_1 - \mu_2$ фиксированной длины 2d:

$$P(\mu_1 - \mu_2 \in J) \geqslant 1 - \alpha \ \forall \mu_1, \mu_2, \sigma_1, \sigma_2.$$

Введём следующие обозначения:

$$n = (n_1, n_2),$$

$$T_n = \bar{X}_{1n_1} - \bar{X}_{2n_2},$$

$$U_n^2 = \frac{(n_1 - 1)S_{1n_1}^2 + (n_2 - 1)S_{2n_2}^2}{n_1 + n_2 - 2}.$$

Будем рассматривать доверительные интервалы $J_n = [T_n - d, T_n + d].$

Случай $\sigma_1 = \sigma_2 = \sigma$

Поскольку дисперсии равны, будем брать выборки одинакового размера:

$$n_1 = n_2 = n,$$

$$U_n^2 = \frac{S_{1n}^2 + S_{2n}^2}{2}.$$

Двухэтапная процедура.

- $lackbox{1}{0} \; X_{i1},\ldots,X_{im}$ пилотные выборки, $m\geqslant 2,\;\; U_m^2$ оценка дисперсии по ним.
- 2 Определим, сколько нужно добавить пар наблюдений:

$$\begin{split} \hat{C} &= \frac{2t_{1-\alpha/2,2m-2}^2 U_m^2}{d^2}, \\ N &= \max\left(\left[\hat{C}\right] + 1, m\right), \end{split}$$

 $J_N = \left[ar{T}_N - d, ar{T}_N + d
ight]$ — искомый 100(1-lpha)% доверительный интервал для $\mu_1 - \mu_2.$

Случай $\sigma_1 = \sigma_2 = \sigma$

$$\frac{t_{1-\alpha/2,2m-2}^{2}}{z_{1-\alpha/2}^{2}}C \leqslant \mathbb{E}_{\mu_{1},\mu_{2},\sigma}\left(N\right) \leqslant \frac{t_{1-\alpha/2,2m-2}^{2}}{z_{1-\alpha/2}^{2}}C + m.$$

Двухэтапная процедура состоятельна и асимптотически состоятельна, но асимптотически неэффективна (по сравнению с $C=rac{2z_{1-lpha/2}^2\sigma^2}{d^2}$).

Случай $\sigma_1 \neq \sigma_2$

Пусть $W_1, W_2 \sim St \, (m-1)$ независимы, $h_{m,1-\alpha/2} - (1-\alpha/2)$ -квантиль распределения $W_1 - W_2$:

$$P(W_1 - W_2 \leqslant h_{m,1-\alpha/2}) = 1 - \frac{\alpha}{2}.$$

 $h_{m,1-\alpha/2} \approx \sqrt{2}z_{1-\alpha/2}.$

Двухэтапная процедура.

- (3) X_{i1},\ldots,X_{im} пилотные выборки, $m\geqslant 2, \quad S_{1m}^2,S_{2m}^2$ оценки дисперсий по ним;
- 2 Определим, сколько нужно добавить наблюдений в каждую выборку:

$$\hat{C}_1 = \frac{h_{m,1-\alpha/2} S_{1m}^2}{d^2}, \quad \hat{C}_2 = \frac{h_{m,1-\alpha/2} S_{2m}^2}{d^2},$$

$$N_1 = \max\left(\left[\hat{C}_1\right] + 1, m\right), \quad N_2 = \max\left(\left[\hat{C}_2\right] + 1, m\right),$$

 $J_N = \left[\bar{T}_N - d, \bar{T}_N + d \right], \quad N = (N_1, N_2)$ — искомый $100(1-\alpha)\%$ доверительный интервал для $\mu_1 - \mu_2$.

Случай $\sigma_1 \neq \sigma_2$

$$\mathbb{E}N_i \approx \frac{h_{m,1-\alpha/2}^2 \sigma_i^2}{d^2}, \ i = 1, 2.$$

Двухэтапная процедура состоятельна.

В рамках последовательного анализа удалось найти точное решение проблемы Беренца-Фишера!

Доверительный интервал для матожидания

Дано: $X_1, X_2, \ldots, X \sim F(x), \mathbb{E}X, \mathbb{D}X$ конечны.

Требуется: построить доверительный интервал J для среднего $\mathbb{E} X$ фиксированной длины 2d:

$$P\left(\mathbb{E}X \in J\right) \geqslant 1 - \alpha \ \forall F\left(x\right).$$

Если известно $\mathbb{D}X$, по центральной предельной теореме приближённым решением является интервал $J_n=\left[\bar{X}_n-d,\bar{X}_n+d\right]$, где n — наименьшее целое, удовлетворяющее условию

$$n \geqslant \frac{z_{1-\alpha/2} \left(\mathbb{D}X \right)^2}{d^2} \equiv C.$$

Последовательные доверительные интервалы для матожидания

Полностью последовательная процедура.

- ullet X_1, \dots, X_m пилотная выборка, $m \geqslant 2, \quad S_m^2$ оценка дисперсии по ней.
- ullet Для каждого $n=m,m+1,\ldots$ вычисляем

$$\hat{C}_n = \frac{z_{1-\alpha/2}^2 \left(S_n^2 + \frac{1}{n}\right)}{d^2}.$$

ullet Продолжаем набирать выборку, если $n < \hat{C}_n$.

 $\frac{1}{n}$ — поправка на случай, если распределение $F\left(x\right)$ дискретно.

N — наименьшее целое $n\geqslant \hat{C}_n.$

$$\mathbb{E}_F(N) \leqslant C + m + 2.$$

Процедура асимптотически состоятельна и асимптотически эффективна.

Доверительный интервал для медианы

Дано:
$$X_1, X_2, \ldots, X \sim F(x - \theta), \theta = \text{med } X,$$

- \bullet F(x) симметрична относительно нуля,
- ullet $F\left(x
 ight)$ дважды дифференцируема в окрестности нуля \mathcal{N} ;
- ullet $F^{\prime\prime}\left(x
 ight)$ ограничена вне ${\cal N}.$

Требуется: построить доверительный интервал J для медианы θ фиксированной длины 2d:

$$P(\theta \in J) \geqslant 1 - \alpha \ \forall F(x).$$

Доверительный интервал для медианы

При фиксированом n асимптотический доверительный интервал задаётся порядковыми статистиками:

$$b(n) = \max\left(1, \left[\frac{1}{2}\left(n - z_{1-\alpha/2}\sqrt{n} - 1\right)\right]\right),$$

$$a(n) = n - b(n) + 1,$$

$$J_n = \left[X_{n:b(n)}, X_{n:a(n)}\right],$$

$$\lim_{n \to \infty} P\left(\theta \in J_n\right) = 1 - \alpha.$$

Чтобы построить доверительный интервал фиксированной длины 2d с помощью полностью последовательной процедуры, нужно продолжать набирать выборку, пока $X_{n:a(n)}-X_{n:b(n)}>2d$.

Литература

- последовательная проверка гипотез Вальд;
- ullet последовательные доверительные интервалы Mukhopadhyay.

Вальд, А. Последовательный анализ, 1960.

Mukhopadhyay, N., de Silva, B. M. Sequential methods and their applications, 2009.