Switching & VLANs

NETWORK ADMINISTRATION

Songyut Phoemphon

Email: songyut@sut.ac.th

Objective

Student are able to

- understand how switching and VLAN are working
- configure switch (Layer-2)

OSI Layer

Layer-2 Switching

- Separate collision domain
- Better performance than hub
- Use Spanning Tree Protocol (STP)
 - Loop prevention

Switching

- Without switch (Layer-2)
- With switch (Layer-2)

Design a switch

Switch mode

latency vs reliability

Cut-Through Switching (Real Time, Fast Forward)

Fast, no error checking (only look at destination)

Fragment-Free Switching (Modified Cut-Through)

Prevent collision (look at the first 64 Bytes)

Store-and-Forward Switching

Use CRC for error checking

IEEE 802.3 Ethernet Frame Format

Switching

Services

- Hardware based bridging (ASIC)
- Wire speed, Low latency, Low cost

Limitation

- need correct collision domain separation
- not separate broadcast domain
- 80% of traffic should be in local

Switching vs Bridging

Switching = Multi-port Bridge

- Bridge may have only one STP tree
- Switch may have multiple STP trees
- Both forward broadcast
- Both forward from MAC address learning

A NETWORK BRIDGE	A NETWORK SWITCH
SW-based	HW-based
Method of switching of a Bridge is store and forward.	Method of switching of a Switch can be store and forward, cut-through, or fragment-free.
A Bridge has only 2 ports.	A switch can handle many ports.
A Bridge is a device that connects two LANs and controls data flow between them.	A Switch is a networking device that learns which machine is connected to its port by using the device's Address.
Bridges divide collision domain into two parts. Bridges can create collision domains but not broadcast domains.	Switches are used to connect the work stations or computer systems. If there are 20 workstations connected to a switch then there will be separate collision domain for each of the nodes.

How does Switch work?

Switches processing

- Listening
- Learning
- Forwarding
- Flooding
- Filtering

Spanning tree protocol

Prevent loop

How does Switch work?

How does Switch work?

EtherChannel

Link Aggregation

combination of physical interfaces as Logical interface

Advantages

- Congestion
- Redundant

Etherchannel

EtherChannel Protocol

- PAgP Cisco Proprietary
- LACP IEEE 802.3ad Standard of Link Aggregation

Mode

- Active (LACP) other device (Active or Passive)
- Passive (LACP) other device (only Active)
- Desirable (PAgP) other device (Desirable or Auto)
- Auto (PAgP) other device (Desirable)
- on Not exchange PAgP and LACP Packet (other device (on))
- off prevent EtherChannel

Network device switch – switch switch – server

server - switch

switch - router

router - switch

Switching Loop

- Broadcast Storm
- Multiple Frame Transmissions
- MAC Database Instability

Spanning Tree Protocol (STP)

Root bridge (a bridge as root) vs Non-root bridge

Bridge ID (usually use MAC address)

- Root port (port that point to root)
- Designated port = Forwarding port
- Non-designated port = Block port

Spanning Tree Example

Spanning Tree Operation

- Select root bridge
- Select designated port

Protocol Identifier	Protocol Version Identifier	BPDU Type	Flags	Root Identifier	Root Path Cost	Bridge Identifier	Port Identifier	Message Age	Max Age	Hello Time	Forward Delay	
------------------------	-----------------------------------	--------------	-------	--------------------	-------------------	----------------------	--------------------	----------------	---------	---------------	------------------	--

Bandwidth /Speed	New IEEE Cost	Original IEEE Cost	RSTP/MS TP cost
1000 Gbps	N/A	N/A	20
100 Gbps	N/A	N/A	200
10000 Mbps / 10 Gbps	2	1	2000
1000 Mbps / 1 Gbps	4	1	20000
100 Mbps	19	19	200000
10 Mbps	100	100	2000000

Switching Loops

Spanning tree port states (IEEE802.1D)

- Blocking
- Listening
- Learning
- Forwarding
- Disabled

STP Modes	Modes Receive BPDUs Send BPDUs		Learn MAC Address	Forward Data Packets
Blocking	Yes	No	No	No
Listening	Yes	Yes	No	No
Learning	Yes	Yes	Yes	No
Forwarding	Yes	Yes	Yes	Yes
Disabled	No	No	No	No

Switching Loops

Spanning tree port states (IEEE802.1W)

- Discarding
- Learning
- Forwarding

STP Modes	Receive BPDUs	Send BPDUs	Learn MAC Address	Forward Data Packets
Discarding	Yes	No	No	No
Discarding	Yes	Yes	No	No
Learning	Yes	Yes	Yes	No
Forwarding	Yes	Yes	Yes	Yes
Discarding	No	No	No	No

Virtual LANs (VLAN)

Group of networks determined by port of a switch

• Group by location, department, application etc.

Reduce broadcast domain

Reduce traffic

Easy for management

Flexibility and Scalability

Security

Virtual LANs (VLAN)

- Marketing
- Finance
- Sales
- Management

VLANs

Membership management

- Statics: the most secure & typically used method
- Dynamics
 - MAC address, protocol
 - VLAN Management Policy Server (VMPS)
 - oMAC address database

Type of links

- Access one VLAN
- Trunk multiple VLAN

Frame tagging

Add an ID to a frame for VLAN operation

VLAN ID

- Inter-switch link (ISL)
 - Cisco proprietary: Fast / Gigabit Ethernet
- IEEE 802.1Q

Normal Ethernet Frame

Preamble- 56 bits of alternating 0 and 1 SFD-Start Frame Delimiter (10101011)

TPID: Tag Protocol Identifier, 2 bytes PCP: Priority Code Point

DEI: Drop Eligible Indicator, 1 bit

VID: VLAN ID, 12 bits

VLAN Trunk Protocol (VTP)

Protocol for sharing VLAN values to switches

- Server: default for catalyst
 require at least one per domain
- Client: for sending-receiving data
- Transparent: forward VTP but not involving

Linking with Router

• 1 VLAN per 1 port

Combine VLANs into 1 port

VLAN Configuration

VLAN Configuration

- sw(config)# vlan <ID> names <txt>
- sw(config)# vlan 2 names sales
- sw(config)# vlan 3 names marketing

VLAN Display

- sw# show vlan
- sw# show vlan brief

router# show vlan-switch

Assign port to VLAN

- sw(config)# int f0/2
- sw(config-if)#vlan-membership static 3 or
- sw(config-if)#switchport access vlan 3

VLAN Configuration

Setting in Trunk port

- sw(config)# int f0/2
- sw(config-if)# trunk on or
- sw(config-if)# switchport mode trunk
- sw(config-if)# switchport trunk encapsulation dot1q/isl <ID>

Setting in Router

- Router(config)# int f0/0.1
- Router(config-subif)#encapsulation dot1q <ID>

VLAN Setting

Switch(config) #vtp domain network Changing VTP domain name from NULL to network Switch(config) #vtp mod Switch(config) #vtp mode client Setting device to VTP CLIENT mode. Switch(config) #vtp pas Switch(config) #vtp password admin Setting device VLAN database password to admin Switch (config) #vtp Switch(config) #vtp ver Switch(config) #vtp version 2 Cannot modify version in VTP client mode Switch (config) #exit Switch# %SYS-5-CONFIG I: Configured from console by console 10.10.10.10

VLAN 10

In the following lines, record the commands to configure R1 with router-on-a-stick inter-VLAN routing:

```
R1(config)#interface fastethernet 0/0
R1(config-if)#no shutdown
R1(config-if)#interface fastethernet 0/0.10
R1(config-subif)#encapsulation dot1q 10
R1(config-subif)#ip address 10.10.10.1 255.255.255.0
R1(config-subif)#interface fastethernet 0/0.30
R1(config-subif)#encapsulation dot1q 30
R1(config-subif)#ip address 10.10.30.1 255.255.255.0
```

- SW#config t
- SW(config)#int f0/1
- SW(config)#switchport mode trunk
- SW(config)#int f0/2
- SW(config)#switchport access vlan 1
- SW(config)#int f0/3
- SW(config)#switchport access vlan 2

- Router#config t
- Router(config)#int f0/0
- Router(config-if)#no ip address
- Router(config-if)#no shutdown Router(config-if)#int f0/0.1
- Router(config-subif)#encapsulation dot1q 1
- Router(config-subif)#ip address 172.16.10.1 255.255.255.128
- Router(config-subif)#int f0/0.2
- Router(config-subif)#encapsulation dot1q 2
- Router(config-subif)#ip address 172.16.10.254 255.255.255.128

- sw# config t
- sw(config)#int f0/1
- sw(config-if)#switchport mode trunk
- sw(config-if)#int f0/2
- sw(config-if)#switchport access vlan 1
- sw(config-if)#int f0/3
- sw(config-if)#switchport access vlan 1
- sw(config-if)#int f0/4
- sw(config-if)#switchport access vlan 3
- sw(config-if)#int f0/5
- sw(config-if)#switchport access vlan 3
- sw(config-if)#int f0/6 sw(config-if)#switchport access vlan 2

- R# config t
- R(config)# int f0/0
- R(config-if)# no ip address
- R(config-if)# no shutdown
- R(config-if)# int f0/0.1 Router(config-subif)# encapsulation dot1q 1
- R(config-subif)# ip address 192.168.10.17 255.255.255.240
- R(config-subif)# int f0/0.2
- R(config-subif)# encapsulation dot1q 2
- R(config-subif)# ip address 192.168.10.33 255.255.255.240
- R(config-subif)# int f0/0.3
- R(config-subif)# encapsulation dot1q 3
- R(config-subif)# ip address 192.168.10.49 255.255.255.240

2950C

[OK] 2950C#

2950C(config)#int f0/1
2950C(config-if)#description Connection to router
2950C(config-if)#interface f0/4
2950C(config-if)#description Connection to 2950B
2950C(config-if)#int f0/5
2950C(config-if)#description 2nd connection to 2950B
2950C(config-if)#int vlan1
2950C(config-if)#ip address 172.16.10.2 255.255.255.0
2950C(config-if)#no shut
2950C(config-if)#exit
2950C(config)#ip default-gateway 172.16.10.1
2950C(config)#rZ
2950C#copy run start
Destination filename [startup-config]? [Press Enter]
Building configuration...

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)#hostname 2950C

2950C(config)#enable secret todd

2950C(config)#line con 0

2950C(config-line)#login

2950C(config-line)#password console

2950C(config-line)#line vty 0 15

2950C(config-line)#login

2950C(config-line)#password telnet

2950C(config-line)#banner motd #

Enter TEXT message. End with the character '#'.

This is my 2950C switch

#

2950B

Switch(config)#hostname 2950B 2950B(config-if)#desc 2nd connection to 2950C 2950B(config)#enable secret todd 2950B(config-if)#int vlan 1 2950B(config)#line con 0 2950B(config-line)#login 2950B(config-if)#ip address 172.16.10.3 255.255.255.0 2950B(config-line)#password console 2950B(config-if)#no shut 2950B(config-line)#line vty 0 15 2950B(config-if)#exit 2950B(config-line)#login 2950B(config)#ip default-gateway 172.16.10.1 2950B(config-line)#password telnet 2950B(config-line)#banner motd # 2950B(config)#exit Enter TEXT message. End with the character '#'. 2950B#copy run start This is my 2950B switch Destination filename [startup-config]? [Press Enter] 2950B(config)# Building configuration... 2950B(config)#int f0/4 [OK] 2950B(config-if)#desc connection to 2950C 2950B# 2950B(config-if)#int f0/5

Setup a Trunk

2950B#config t
2950B(config)#int f0/1
2950B(config-if)#switchport mode trunk
2950B(config-if)#int f0/4
2950B(config-if)#switchport mode trunk
2950B(config-if)#int fa0/5
2950B(config-if)#switchport mode trunk
2950B(config-if)#switchport mode trunk
2950B(config-if)#

2950C#config t
Enter configuration commands, one per line. End with CNTL/Z.
2950C(config)#int fa0/4
2950C(config-if)#switchport mode trunk
2950C(config-if)#int fa0/5
2950C(config-if)#switchport mode trunk
2950C(config-if)#

Checking a Trunk

2950B#sh int trunk

Port	Mode	Encapsulation	Status	Native vlan
Fa0/1	on	802.1q	trunking	1
Fa0/4	on	802.1q	trunking	1
Fa0/5	on	802.1q	trunking	1

Setting VTP, Name a VLAN

2950C#config t

Enter configuration commands, one per line. End with CNTL/Z.

2950C(config)#vtp mode server

Device mode already VTP SERVER.

2950C(config)#vtp domain RouterSim

2950C(config)#^z

2950C#vlan database

2950C(vlan)#vlan 2 name Sales

VLAN 2 added:

Name: Sales

2950C(vlan)#vlan 3 name Marketing

VLAN 3 added:

Name: Marketing

2950C(vlan)#apply

APPLY completed.

2950C(vlan)#

2950C#sh vlan brief

VLAN	l Name	Status	Ports
1	default	active	Fa0/1, Fa0/2, Fa0/3, Fa0/4 Fa0/7, Fa0/8, Fa0/11, Fa0/12
2	Sales	active	
3	Marketing	active	

Setting up a port for VLAN

2950C#config t 2950C(config)#int fa0/2 2950C(config-if)#switchport access vlan 2 2950C(config-if)#int fa0/3 2950C(config-if)#switchport access vlan 3

2950C#sh vlan brief

VLAN	Name	Status	Ports			
1	default	active	Fa0/1,	Fa0/4,	Fa0/5,	Fa0/6
			Fa0/7,	Fa0/8,	Fa0/9,	Fa0/10
2	Sales	active	Fa0/2			
3	Marketing	active	Fa0/3			

Specify values for 2950B

2950B#config t

Enter configuration commands, one per line. End with CNTL/Z. 2950B(config)#vtp domain RouterSim

Device mode set to VTP CLIENT. 2950B(config)#vtp mode client

2950B(config)#^**z**

2950B#

2950B#config

2950B(config)#int fa0/2 2950B(config-if)#switchport access vlan 2 2950B(config-if)#int fa0/3 2950B(config-if)#switchport access vlan 3

2950B#sh vlan brief

VLAN	Name	Status	Ports
1	default	active	Fa0/1, Fa0/2, Fa0/3, Fa0/4
			Fa0/7, Fa0/8, Fa0/11, Fa0/12
2	Sales	active	
3	Marketing	active	

2950B#sh vlan brief

VLAN	Name	Status	Ports		
1	default	active	Fa0/1, Fa0/7,	 Fa0/5, Fa0/9,	,
2	Sales	active	Fa0/2		
3	Marketing	active	Fa0/3		

Link between VLANs

Router>enable

Router#config t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#hostname Trunkrouter
Trunkrouter(config)#int f0/0
Trunkrouter(config-if)#no ip address
Trunkrouter(config-if)#no shutdown
Trunkrouter(config-if)#int f0/0.1
Trunkrouter(config-subif)#ip address 172.16.10.1 255.255.255.0
Configuring IP routing on a LAN subinterface is only allowed if that subinterface is already configured as part of an IEEE 802.10, IEEE 802.1Q, or ISL VLAN.
Trunkrouter(config-subif)#encapsulation dot1q 1
Trunkrouter(config-subif)#ip address 172.16.10.1 255.255.255.0
Trunkrouter(config-subif)#int f0/0.2
Trunkrouter(config-subif)#encap dot1q 2

Trunkrouter(config-subif)#ip address 172.16.20.1 255.255.255.0

Trunkrouter(config-subif)#ip address 172.16.30.1 255.255.255.0

Trunkrouter(config-subif)#int f0/0.3
Trunkrouter(config-subif)#encap dot1q 3

Trunkrouter(config-subif)#exit

Summary

- Switch and Bridge
- VTP
- RSTP
- VLAN
- VTP

Thank you.

Songyut Phoemphon

Email: songyut@sut.ac.th