

高等数学(一)

主讲者: 袁荣

手机: 18719362095

教学形式以及考核方式

- *教学形式
 - 教师讲授为主、学生自学讨论为辅
- *考核方式
 - ■考试
 - ■平时 (30%)
 - 学分5分,学时80
 - ■期末 (70%)
 - ■全校统考

- [美]克莱因. 古今数学思想. 牛津大学出版社, 1972 (中译本: 北京大学 数学系数学史翻译组译, 上海科学技术出版社, 1979~1981, 4卷本)
- 张奠宙. 20世纪数学经纬. 上海: 华东师范大学出版社, 2002
- 吴文俊主编. 世界著名数学家传记(上、下册). 北京: 科学出版社, 1995
- 程民德主编. 中国现代数学家传(5卷本). 南京: 江苏教育出版社, 1994-2002
- 高等数学.同济大学数学系编,高等教育出版社(第六版)
- 高等数学.曹广福 等编,高等教育出版社

主讲教师-袁荣

主讲教师-袁荣

主讲教师-袁荣

主讲教师-袁荣

引言

一、什么是高等数学?

初等数学 — 研究对象为常量,以静止观点研究问题.

高等数学 — 研究对象为变量,运动和辩证法进入了数学.

恩格斯

数学中的转折点是笛卡儿的变数。 有了变数,运动进入了数学, 有了变数,辩证法进入了数学, 有了变数,微分和积分也就立刻成 为必要的了,而它们也就立刻产生。

主要内容

- 1. 分析基础: 函数, 极限, 连续
- 2. 微积分学: 一元微积分(上册) 多元微积分(下册)
- 3. 向量代数与空间解析几何
- 4. 无穷级数
- 5. 常微分方程

二、如何学习高等数学?

1. 认识高等数学的重要性, 培养浓厚的学习兴趣.

马克思

一门科学,只有当它成功地运用数学时,才能达到真正完善的地步。

要辩证而又唯物地了解自然,就必须熟悉数学。

恩格斯

华罗庚

聪明在于学习,天才在于积累. 学而优则用,学而优则创。由薛到厚,由厚到薛.

学习建议

- ❖上课认真听讲,课后复习做作业,并预习
 - 广泛涉猎,深入阅读,增强兴趣
 - ■结合教师推荐的教材和数学史等参考资料泛读, 了解国内外数学的发展状况
 - 作业和答疑
 - ■作业: 按时交
 - ■答疑时间:每周一到周四晚上7点到八点半
 - ■地点: 文清305

第一章 函数与极限

高等数学中几乎所有的概念都离不开极限,因此极限概念是高等数学的重要概念,极限理论是高等数学的基础理论,极限是高等数学的精华所在,是高等数学的灵魂。因此很好地理解极限概念是学习好微积分的关键,同时也是从初等数学迈入高等数学的一个重要阶梯。

极限是研究在指定的过程中某变量的变化趋势,这 里所讲的变化趋势有其明确的含义:不管所指定的变 化过程多么复杂,我们所关心的仅仅是变量变化的终 极目标,若这个终极目标存在,就称之为变量的极限

第一章我们首先介绍极限理论的基本概念、运算和性质, 然后讨论函数的连续性

一、基本概念

1. **集合**: 具有某种特定性质的事物的<u>总体</u>. 组成这个集合的事物称为该集合的元素.

 $a \in M$, $a \notin M$, $A = \{a_1, a_2, \dots, a_n\}$ 有限集 $M = \{x | x$ 所具有的特征 $\}$ 无限集 $\exists x \in A$,则必 $x \in B$,就说 $A \not\equiv B$ 的子集. 记作 $A \subset B$.

数集分类: N-----自然数集 Z-----整数集 Q-----有理数集 R-----实数集

数集间的关系: $N \subset Z$, $Z \subset Q$, $Q \subset R$.

 $若A \subset B$,且 $B \subset A$,就称集合 $A \subseteq B$ 相等. (A = B)

例如 $A = \{1,2\}$,

$$C = \{x | x^2 - 3x + 2 = 0\}, \quad \text{M} A = C.$$

不含任何元素的集合称为<u>空集</u>. (记作 Ø)

例如,
$$\{x | x \in R, x^2 + 1 = 0\} = \emptyset$$

规定 空集为任何集合的子集.

2. 区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.

 $\forall a,b \in R, \exists a < b.$ 记作 (a,b) $\{x \mid a < x < b\}$ 称为开区间, 0 \boldsymbol{a} X 记作[a,b] $\{x \mid a \leq x \leq b\}$ 称为闭区间, 0 X 称为半开区间, 记作[a,b) $\{x \mid a \le x < b\}$ $\{x \mid a < x \leq b\}$ 称为半开区间, 记作 (a,b]

有限区间

$$[a,+\infty) = \{x | a \le x\} \qquad (-\infty,b) = \{x | x < b\}$$
无限区间
$$a = x + x = x$$

区间长度的定义:

两端点间的距离(线段的长度)称为区间的长度.

3. 邻域: 设a与 δ 是两个实数,且 $\delta > 0$. 数集 $\{x \mid x-a \mid < \delta\}$ 称为点a的 δ 邻域,

点a叫做这邻域的中心, δ 叫做这邻域的半径.

$$U_{\delta}(a) = \{x \mid a - \delta < x < a + \delta \}.$$

点a的去心的 δ 邻域,记作 $U_{\delta}(a)$.

$$\overset{0}{U}_{\delta}(a) = \{ x | 0 < |x - a| < \delta \}.$$

希腊字母读音表

1	A	α	alpha	a:lf	阿尔法
2	B	β	beta	bet	贝塔
3	Γ	γ	gamma	ga:m	伽马
4	Δ	δ	delta	delt	德尔塔
5	E	3	epsilon	ep`silor	n 伊普西龙
6	Z	ζ	zeta	zat	截塔
7	H	η	eta	eit	艾塔
8	Θ	θ	theta	θit	西塔
9	I	ι	iota	aiot	约塔
10	K	К	kappa	kap	卡帕
11	\wedge	λ	lambd	a lamb	d 兰布达
12	M	μ	mu	mju	缪

```
纽
13
    N
                   nju
           nu
                           克西
14
    Ξ
         ع
            xi
                   ksi
                                 奥密克戎
15
            omicron omik'ron
    0
         0
                           派
16
            pi
                   pai
         \pi
                            肉
    P
17
            rho
                    rou
         ρ
                               西格马
18
            sigma 'sigma
         σ
    T
                            套
19
            tau
                   tau
            upsilon ju:p`sailon 宇普西龙
20
    Y
         U
                            佛爱
    Φ
                    fai
21
            phi
         φ
                            西
22
    X
            chi
                   phai
                            普西
23
    Ψ
                    psai
            psi
         Ψ
                                欧米伽
24
    \Omega
             omega o'miga
         ω
```

二、函数概念

定义 设x和y是两个变量,D是一个给定的数集, 若对于 $x \in D$,变量y按照确定的法则总有 确定的数值和它对应,则称y是x的函数

记作
$$y = f(x)$$

因变量 自变量

当 $x_0 \in D$ 时,称 $f(x_0)$ 为函数在点 x_0 处的函数值.

函数值全体组成的数集

 $W = \{y | y = f(x), x \in D\}$ 称为函数的值域.

函数的两要素: 定义域与对应法则.

约定: 定义域是自变量所能取的使算式有意义的一切实数值的集合.

例如,
$$y = \sqrt{1-x^2}$$
 $D:[-1,1]$

例如,
$$y = \frac{1}{\sqrt{1-x^2}}$$
 $D: (-1,1)$

几个特殊的函数举例

(1) 符号函数

$$y = \operatorname{sgn} x = \begin{cases} 1 & \exists x > 0 \\ 0 & \exists x = 0 \\ -1 & \exists x < 0 \end{cases}$$
$$x = \operatorname{sgn} x \cdot |x|$$

(2) 取整函数 y=[x] [x]表示不超过x的最大整数

(3) 狄利克雷函数

$$y = D(x) =$$

$$\begin{cases} 1 & \exists x \text{是有理数时} \\ 0 & \exists x \text{是无理数时} \end{cases}$$

取最值函数

$$y = \max\{f(x), g(x)\}\$$

$$y = \max\{f(x), g(x)\}\ y = \min\{f(x), g(x)\}$$

(5)绝对值函数

$$y = \mid x \mid = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$$

定义域R

值域 [0,+∞)

在自变量的不同变化范围中,对应法则用不同的式子来表示的函数,称为分段函数.

例如,
$$f(x) = \begin{cases} 2x - 1, & x > 0 \\ x^2 - 1, & x \le 0 \end{cases}$$
 $y = x^2 - 1$

例2

设
$$f(x) = \begin{cases} 1 & 0 \le x \le 1 \\ -2 & 1 < x \le 2 \end{cases}$$
,求函数 $f(x+3)$ 的定义域.

$$\mathbf{f}(x) = \begin{cases}
1 & 0 \le x \le 1 \\
-2 & 1 < x \le 2
\end{cases}$$

$$\therefore f(x+3) = \begin{cases} 1 & 0 \le x+3 \le 1 \\ -2 & 1 < x+3 \le 2 \end{cases}$$

$$= \begin{cases} 1 & -3 \le x \le -2 \\ -2 & -2 < x \le -1 \end{cases}$$
 \times D_f: [-3,-1]

三、函数的特性

1. 函数的有界性:

若 $X \subset D$,∃M > 0,∀ $x \in X$,有 $|f(x)| \le M$ 成立,则称函数f(x)在X上有界.否则称无界.

2. 函数的单调性:

设函数 f(x)的定义域为D,区间 $I \in D$,如果对于区间 I 上任意两点 x_1 及 x_2 ,当 $x_1 < x_2$ 时,恒有 (1) $f(x_1) < f(x_2)$,

则称函数f(x)在区间I上是单调增加的;

设函数 f(x)的定义域为D,区间 $I \in D$,如果对于区间 I 上任意两点 x_1 及 x_2 ,当 $x_1 < x_2$ 时,恒有 (2) $f(x_1) > f(x_2)$,

则称函数 f(x)在区间 I上是单调减少的;

3. 函数的奇偶性:

设D关于原点对称,对于 $\forall x \in D$,有 f(-x) = f(x) 称 f(x)为偶函数;

设D关于原点对称,对于 $\forall x \in D$,有 $f(-x) = -f(x) \quad \text{称 } f(x)$ 为奇函数;

4. 函数的周期性:

设函数f(x)的定义域为D,如果存在一个不为零的数l,使得对于任一 $x \in D$,($x \pm l$) $\in D$.且f(x + l) = f(x)恒成立.

则称f(x)为周期函数,l称为f(x)的周期.

(通常说周期函数的周期是指其最小正周期).

德国医生发现,人的体力(23天),情绪(28天),智力(33天)都是周期变化的.

四、反函数

直接函数与反函数的图形关于直线 y = x 对称.