a) to have max error of 10^{-2} in sum s, how many terms should be taken?

Solution.

a) Since $1 \geq \frac{1}{2} \geq \frac{1}{3} \dots \geq \frac{1}{n} > \dots$ and $\frac{1}{n} \to 0$, there is convergence.

b)
$$\frac{1}{n+1}<\frac{1}{10^2}\Rightarrow n+1>100\Rightarrow n>99$$
 (100 terms)

1. SERRIES OF ARBITRARY TERMS

If a series is one of positive terms, one applies a test given for such series, if the series is alternating one applies LEBNIZ'test (test for alternating serries). For an arbitrary series the following theorem holds:

Theorem A series

$$\sum_{i} a_n = a_1 + a_2 + \dots + a_n + \dots$$

is convergent if the series

$$\sum_{i} |a_n| = |a_1| + |a_2| + \dots + |a_n| + \dots$$

of absolute value is convergent.

<u>Proof.</u> Let s_n, S_n be the corresponding partial sums. The sum s_n contains non negative and negative terms and we write

$$s_n = P_n - Q_n$$
, $S_n = P_n + Q_n$

where P_n and $-Q_n$ are sums of positive and negative terms respectively. $(P_n), (Q_n)$ are monotone increasing sequences bounded above by $S = \lim S_n$. Then $P_n \to P$, $Q_n \to Q$ and $S_n \to P + Q$. It follows that $s_n \to P - Q$