Project assignment 1. (Groups of two, using two laptops).

Step 0.

Find out the IP Addresses of your computers (you might use the ip config command).

Check the connectivity using the PING command.

Prepare a BIG file – e.g. a high resolution image?

Step 1.

Write a simple application allowing the file transfer using

a/ datagram sockets (with and without enabled checksum!).

Compare the speed of packet transmissions. Check the packet loss rate.

b/ Byte stream sockets. Be sure that the sending application process knows that all the data have been received. Explain how you do it.

c/ extend the Datagram socket based mechanism by means to assure that the whole file is successfully transmitted and correctly put together. .

Step 2.

Compare the time needed to transmit your data in all cases defined above. Repeat the experiments

a/ positioning both the computers close to each other on the campus

b/ running one of the campus and another form an "open access point" outside the campus.

c/ choose a placement of the receiving laptop to have a rather weak wireless connectivity

Step 3.

a/For the set up as in Step 3a/ and 3c/, send (via datagram sockets) a long stream of packets – say 200 bytes of payload roughly every 50 msec? (send for at least 10 seconds!)

Measure the delay differences of individual packets. Compute the variance, and histogram.

b/ Use the packet pair method to determine the Bottleneck capacity of the communication path. Repeat the experiment several times.

Step 4.

Send the stream of data with mean sending rate 1 packet /5 second, and vary the time distances. Use a random number generator with uniform distribution of inter-packet space between 0- 10 seconds.

a/Create a program receiving datagram stream and generating a signal (say a blink?) consuming for that one data packet.(

b/ Create a data structure (buffering) supporting the "smoothing" of the "blinks" so that they appear equidistantly every 5 seconds