Statistical Literacy — MINT

Lecture 2: Organize data and compute centrality indicators

Rémi Viné

The Graduate Institute | Geneva

October 2nd, 2023

Outline

Housekeeping

Fundamentals of a data set

Visualize data

Qualitative data

Quantitative data

Centrality indicators
The average
The median
The mode

Housekeeping

- By now, you should have filled the survey and submitted your first problem set
- Problem set 2 is now available

Data sets can be quite complex

			country	Region	income	IDA	FCY	FCM	type	stype	CPI2021	investment_real	realphysicalassets	realfeestogovernment	RealGDP	name
		1990	Argentina		Upper middle income	Non- IDA	1990	September	Brownfield	Rehabilitate, operate, and transfer	1.980824	305.046906	305.046906	0.000000	2.799942e+11	Intercity Roads - Corridor 13
			Argentina		Upper middle income	Non- IDA		September	Brownfield	Rehabilitate, operate, and transfer	1.980824	481.340240	481.340240	0.000000	2.799942e+11	Intercity Roads - Corridor 18
		1990	Argentina		Upper middle income	Non- IDA	1990	September	Brownfield	Rehabilitate, operate, and transfer	1.980824	350.605835	350.605835	0.000000	2.799942e+11	Intercity Roads - Corridor 7, 8 & 9
	1346	1990	Mexico		Upper middle income	Non- IDA	1990	March	Greenfield project	Build, operate, and transfer	1.980824			0.000000	5.174974e+11	San Martin - Tlaxcala Toll Road
		1990	Mexico		Upper middle income	Non- IDA	1990	November	Divestiture		1.980824	4124.075684	0.000000	4124.075684	5.174974e+11	Telefonos de Mexico (Telmex)
10744	10970		Turkey		Upper middle income	Non- IDA		March	Greenfield project	Build, operate, and transfer	1.000000	24.000000	24.000000	NaN	NaN	Miskevank Waste-to- Energy Power Plant
10745			Madagascar		Low income			December	Management and lease contract	Management contract	1.000000	NaN	NaN	NaN	NaN	Tomasina port concession
10746			Vietnam		Lower middle income	Non- IDA		May	Greenfield project	Build, operate, and transfer	1.000000	490.000000	490.000000	NaN	NaN	Dien Chau - Bai Vot section of the North - Sou
10747			Burkina Faso		Low income			October	Greenfield project	Build, own, and operate	1.000000	46.869999	46.869999	NaN	NaN	Kodeni Solar PV Plant
10748	10942		China	EAP	Upper middle income	Non- IDA		February	Greenfield project	Build, operate, and transfer	1.000000	737.179993	737.179993	NaN	NaN	Yunlong- Lanping section of Dali- Yangbi- Yunlong

Visualization for qualitative data

- Bar chart
- ► Pie chart

Organize qualitative data

Construct a frequency table from a raw data

- Frequency: number of occurrence of a modality
- Relative frequency: share of a given frequency with respect to total occurrences

•		
	Frequency	Relative frequency
Brownfield	2991	0.277742
Divestiture	1315	0.122110
Greenfield project	5998	0.556969
Management and lease contract	464	0.043087
Not Available		0.000093

Bar chart

- Bars represent the frequency (or relative frequency) of each modality
- Bars do not touch each other
- Categories (or modalities) are on the horizontal axis

Pie chart

- Each piece (also called wedge) is proportional to the relative frequency of a modality
- ► Wedges add up to 100

Missing pieces on the former visualizations

- Titles
- Labels
- Units of measurement
- Data source

Data source: Private Participation in Infrastructure, World Bank

Representing two categorical variables together

- Contingency table
 - One variable in rows
 - One variable in columns

income	Low income	Lower middle income	Upper middle income	
type				
Brownfield		661	2289	
Divestiture				
Greenfield project	198		4050	
Management and lease contract			340	
Not Available				

Visualization: stacked bars

Stacked bars can be normalized to all be 100%, depending on the message to convey

Quantitative variables

- Discrete
 - Countable values
- Continuous
 - Any possible values are possible (fractions, etc.)
- Beware of the unit of measurement!
 - period is expressed in months
 - investment_real is expressed in million USD

	period	investment_real		
0	13.0	305.046906		
1	28.0	481.340240		
2	13.0	350.605835		
3	30.0	67.744179		
4	NaN	4124.075684		
10744	NaN	24.000000		
10745	15.0	NaN		
10746	16.0	490.000000		
10747	25.0	46.869999		
10748	34.0	737.179993		
10749 rows × 2 columns				

Visualization for quantitative data

- Histograms (discrete and continuous)
 - Data is displayed in non-overlapping but adjacent bins
 - Heights of bars give the relative frequency of the bin
 - Shape gives an idea of the distribution
- Dot plots (discrete)
 - ► Each observation is represented by a dot on the horizontal axis
- Stem and leaf (discrete)
 - Each observation's value is split in two parts (the stem and the leaf)
 - Here, the tens are the stem and the units are the leaf

Visualization for quantitative data: histogram

Visualization for quantitative data: dot plot

- ► Each observation is a dot on the x-axis
- ightharpoonup More identical dots ightarrow more opaque color

In practice, rarely used

Visualization for quantitative data: stem and leaf

- Helps identify concentration of the data
- Unlike the two other charts, it keeps all data information

```
1 | 3 3 0 3 3 8 3 3 3 2 3 3 3 3 7 3 3
2 | 8 5 4 1 0 2 7 1 3 5 7
3 | 0 0 1 0 0 0 0 0 3 0
6 | 0
```

- In practice, rarely used
- Only useful when the data is not too large
 - ► For the current data set used (beyond 10000 observations), the Stem and Leaf is not readable

Centrality indicators

- This is the first and perhaps most common type of descriptive measures
 - Three common indicators: average (arithmetic mean), median, mode
 - These are specific to quantitative variables (except for the mode)
- Helps understand what is common, what is typical
- Also helps as starting points for future inference (later in the semester)
- Assume you have one more observation but know nothing about it, what would be the best guess of the value/category of this new observation?

The average (arithmetic mean)

- ▶ This is the sum of all values over the number of observations
- ln sample: $\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n} = \sum_i \frac{x_i}{n}$
- ▶ In population: $\mu = \frac{x_1 + x_2 + ... + x_N}{N} = \sum_i \frac{x_i}{N}$
- ► Some notation:
 - $ightharpoonup \sum_i$ is the sum over all observations "i"
 - Population size = N and sample size = n
 - Population average = μ and sample average = \bar{x}

A slight refinement: the weighted average

- ► This is the **weighted** sum of all values over the sum of weights
- ▶ In sample: $\bar{x}_{weighted} = \frac{w_1*x_1+w_2*x_2+...+w_n*x_n}{w_1+w_2+...+w_n} = \frac{\sum_i w_i*x_i}{\sum_i w_i}$

- ► Example: you obtained 5 in attendance, 5.5 in problem sets, 3.75 in assignments, and 4.5 in the final exam. What is the average grade?
 - ► Recall that attendance accounts for 10% of the grade, problem sets 15%, assignments 30%, and the final 45%

A slight refinement: the weighted average

- ► Example: you obtained 5 in attendance, 5.5 in problem sets, 3.75 in assignments, and 4.5 in the final exam. What is the average grade?
 - ▶ Recall that attendance accounts for 10% of the grade, problem sets 15%, assignments 30%, and the final 45%
- $\qquad \qquad \mathbf{Grade} \ Average = \frac{0.1*5 + 0.15*5.5 + 0.3*3.75 + 0.45*4.5}{0.1 + 0.15 + 0.3 + 0.45} = 4.475$

An example of average

- Assume you survey 10 people (=n) in a street and ask for the number of years of higher education
 - ► The result is: 2, 3, 3, 4, 4, 5, 7, 8, 8, 9, 9, 10
 - What is the average?

An example of average

- Assume you survey 12 people (=n) in a street and ask for the number of years of higher education
 - ► The result is: 2, 3, 3, 4, 4, 5, 7, 8, 8, 9, 9, 10
 - ▶ What is the average of years of education in the sample?
 - $\bar{x} = \frac{2+3+3+4+4+5+7+8+8+9+9+10}{12} = 6$
 - ► The average years of higher education in the sample is 6 years

 The average captures a central value even if here no one studied for 6 years

Average of grouped values

Frequencies (n_k)	Wage (CHF)	Wage midpoints
24	[0 - 1000)	500
61	[1000 - 2000)	1500
44	[2000 - 3000)	2500
48	[3000 - 5000)	4000
103	[5000 - 8000)	6500
95	[8000 - 13000)	10500
16	[13000 - 20000)	16500

- Grouped values are continuous variables because all values are possible within the range
- ▶ Here, the average (population) is: $\bar{x} = \frac{1}{n} \sum_{k} n_k \times x_{midpoints,k}$
 - with k the number of intervals (or classes)

Another centrality indicator: the median

- ► The median splits the ordered variable in two subsets of equal number of observations
 - With n odd, one observation splits the data in two identical subsets
 - ► The $\frac{n+1}{2}$ observation is the median
 - Example below
 - Data:

10, 25, 50, 55, 75, 95, 100, 110, 142, 160, 175, 205, 225, 250, 280, 290, 295

ightharpoonup n=17 so that $Q2=Value\ of\ 9th\ observation=142$

Another centrality indicator: the median (cont')

- With even number of observations, no observation splits the data in two equal subsets
 - ▶ The $\frac{n+1}{2}th$ observation would be the median
 - $\,\rightarrow\,$ This is between two observations in the data set, so take the average of these
 - Example below (dropping the 9th observation from previous example)
 - Data:

10, 25, 50, 55, 75, 95, 100, 110, 160, 175, 205, 225, 250, 280, 290, 295

n = 16 so that O2 = Value of 8.5th of 8.5th

$$Q2 = Value \ of \ 8.5th \ observation = \frac{110+160}{2} = 135$$

A variable x

Median of grouped values

	•		
Frequencies (n_k)	Cumulative Frequencies (N_k)	Wage (CHF)	Wage midpoints
24	24	[0 - 1000)	500
61	85	[1000 - 2000)	1500
44	129	[2000 - 3000)	2500
48	177	[3000 - 5000)	4000
103	280	[5000 - 8000)	6500
95	375	[8000 - 13000)	10500
16	391	[13000 - 20000)	16500

- n = 391 so that the median would be the $\frac{n+1}{2}th$ value = 196th value
 - ▶ Which is in the [5000 8000) interval
 - But it is closer to the interval below than the interval above
- Use linear interpolation to find Q2's linear approximation
 - ► Here: $Q2 = 5000 + \frac{196 177}{280 177} (8000 5000) \approx 5553$ CHF

Comparison Average versus Median

- ightharpoonup Data: 1, 2, 3, 4, 5
 - $\bar{x} = 3$, Q2 = 3
- ightharpoonup New Data: 1, 2, 3, 4, 1000000
 - $\bar{x} = 200002, Q2 = 3$
 - ⇒ The average is sensitive to *outliers*, while the median is not

A quick detour to distribution (a)symmetry

- Because the average depends on values, it is more prone to variation than the median
- ightharpoonup Symmetric distribution: Median = Average
- ▶ Right-skewed (or positively skewed): Median < Average (in general)</p>
- ► Left-skewed (or negatively skewed): Median > Average (in general)

A last centrality indicator: the mode

- ▶ It is the most frequent value/modality in a variable
- May not exist; may not be unique (bimodal, multimodal distributions)
 - ► What is/are the mode(s) of the following data?
 - ► Data: 1, 3, 3, 3, 4, 5, 5, 6, 7, 9, 9, 9, 10, 11, 15
- Can be used with qualitative variables (where in fact it is most useful)
 - ▶ What is the mode of the categorical variable "type" (displayed below)?

	Frequency	Relative frequency
Brownfield	2991	0.277742
Divestiture	1315	0.122110
Greenfield project	5998	0.556969
Management and lease contract	464	0.043087
Not Available		0.000093

Next session

Next session is on calculating most usual dispersion indicators, constructing and understanding a Box plot, and encountering some distribution-specific rules