Examen del bloc 2 de SIN: Test (1,75 punts)

ETSINF, Universitat Politècnica de València, 18 de gener de 2021

Grup, cognoms i nom: 3X, 1,

Marca cada requadre amb una única opció. Puntuació: $máx(0, (encerts - errors / 3) \cdot 1, 75 / 9)$.

1 D Donat el conjunt de mostres de 2 classes (∘ i •) de la figura de la dreta, ¿quin dels següents arbres de classificació és coherent amb la partició representada?

- Siga un problema de classificació en tres classes per a dades del tipus $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, amb les distribucions de probabilitat de la taula. Indica en quin interval es troba l'error de Bayes, ε^* :
 - A) $\varepsilon^* < 0.40$.
 - B) $0.40 \le \varepsilon^* < 0.45$.
 - C) $0.45 \le \varepsilon^* < 0.50$.
 - D) $0.50 \le \varepsilon^*$.

X		$P(c \mid \mathbf{x})$			
x_1	x_2	c=1	c=2	c=3	$P(\mathbf{x})$
0	0	0.1	0.5	0.4	0.3
0	1	0	0.5	0.5	0.3
1	0	0.5	0.4	0.1	0.3
1	1	0.4	0.4	0.2	0.1
$\varepsilon^* = 0.51$					

- 3 B Suposeu que estem aplicant l'algorisme d'aprenentatge d'arbres de classificació per a un problema de quatre classes, c=1,2,3,4. L'algorisme ha arribat a un node t el qual inclou les següents dades: 8 de la classe 1, 256 de la 2, 4 de la 3 i 64 de la 4. La impuresa de t, $\mathcal{I}(t)$, mesurada com l'entropia de la distribució empírica de les probabilitats a posteriori de les classes en t, és: I=0.95
 - A) $0.00 \le \mathcal{I}(t) < 0.50$.
 - B) $0.50 \le \mathcal{I}(t) < 1.00$.
 - C) $1.00 \le \mathcal{I}(t) < 1.50$.
 - D) $1.50 \le \mathcal{I}(t)$.

4 A Donat el classificador en dues classes definit per la seua frontera i regions de decisió de la figura de la dreta, ¿quin dels següents vectors de pesos (en notació homogènia) defineix un classificador equivalent al donat?

- A) $\mathbf{w}_1 = (0,0,1)^t$ i $\mathbf{w}_2 = (0.5,0,0)^t$.
- B) $\mathbf{w}_1 = (0, 0, -1)^t$ i $\mathbf{w}_2 = (-0.5, 0, 0)^t$.
- C) $\mathbf{w}_1 = (0.5, 0, 0)^t$ i $\mathbf{w}_2 = (0, 0, 1)^t$.
- D) Tots els vectors de pesos anteriors defineixen classificadors equivalents.
- 5 D Siga M un model de Markov de representació gràfica:

- ξ Quantes cadenes distintes de llargària 4 pot generar M? 16
- A) Cap.
- B) Al menys una, però no més de 6.
- C) Més de 6, però no més de 12.
- D) Més de 12.
- 6 D Siga $\mathbf{x} = (x_1, \dots, x_D)^t$, D > 1, un objecte representat mitjançant un vector de característiques D-dimensional a classificar en una de C classes. Indica quin dels següents classificadors no és (de risc) d'error mínim (o escull l'última opció si cap dels tres és d'error mínim):
 - A) $c(\mathbf{x}) = \arg\max_{c=1,\dots,C} p(x_1 \mid c) p(x_2,\dots,x_D \mid x_1,c)$
 - B) $c(\mathbf{x}) = \arg \max_{c=1,\dots,C} \log p(x_1) + \log p(x_1 \mid c) + \log p(x_2,\dots,x_D \mid x_1,c)$
 - C) $c(\mathbf{x}) = \arg \max_{c=1,...,C} p(x_1) p(x_1 \mid c) p(x_2,...,x_D \mid x_1,c)$
 - D) Cap dels classificadors anteriors és d'error mínim.

- 7 C Suposeu que tenim dues caixes amb 40 pomes cadascuna. La primera caixa conté 22 pomes Gala i 18 Fuji. La segona caixa conté 20 pomes de cada tipus. Ara suposeu que s'escull una caixa a l'atzar, i després una poma a l'atzar de la caixa escollida. Si la poma escollida és Gala, la probabilitat P de que procedisca de la primera caixa és: P=0.52
 - A) $0/4 \le P < 1/4$.
 - B) $1/4 \le P < 2/4$.
 - C) $2/4 \le P < 3/4$.
 - D) $3/4 \le P \le 4/4$.
- 8 C La probabilitat d'error d'un classificador s'estima que és del 12 %. Determina quin és el nombre mínim de mostres de test necessari, M, per aconseguir que l'interval de confiança al 95 % del dit error no supere el ± 1 %; açò es, $I = [11\,\%, 13\,\%]$: M = 4057
 - A) M < 2000.
 - B) $2000 \le M < 3500$.
 - C) $3500 \le M < 5000$.
 - D) $M \ge 5000$.
- 9 A La figura següent mostra una partició de 6 punts bidimensionals en dos clústers, \bullet i \circ :

La transferència del punt $(4,1)^t$ del clúster • al clúster • produeix una variació de la suma d'errors quadràtics, ΔJ , tal que: $\Delta J = -0.666667$

- A) $\Delta J < 0$, açò és, la transferència és profitosa.
- B) $0 \le \Delta J < 1$.
- C) $1 \le \Delta J < 2$.
- D) $\Delta J \geq 2$.

Examen del bloc 2 de SIN: Problema (2 punts)

ETSINF, Universitat Politècnica de València, 18 de gener de 2021

Grup, cognoms i nom: 3X, 1,

Problema sobre Viterbi

Siga M un model de Markov de conjunt d'estats $Q=\{1,2,F\}$; alfabet $\Sigma=\{a,b\}$; probabilitats inicials $\pi_1=\frac{1}{2},\pi_2=\frac{1}{2}$; i probabilitats de transició entre estats i d'emissió de símbols:

A	1	2	F
1	3 6	<u>2</u>	$\frac{1}{6}$
2	$\frac{1}{4}$	$\frac{2}{4}$	$\frac{1}{4}$

B	a	b
1	$\frac{2}{3}$	$\frac{1}{3}$
2	$\frac{1}{3}$	$\frac{2}{3}$

Es demana:

- 1. (1 punt) Realitzeu una traça de l'algorisme de Viterbi per a obtindre la seqüència d'estats més probable amb la qual M genera la cadena baaa.
- 2. (1 punt) A partir de les cadenes d'entrenament baaa i abb, reestimeu els paràmetres d'M mitjançant una iteració de l'algorisme de reestimació per Viterbi.

Solució:

1. Traça de Viterbi per a la cadena baaa (els estats 1 i 2 es representen com 0 i 1, respectivament):

2. Reestimació per Viterbi a partir de baaa i abb.

Per a la primera iteració, ja tenim el parell (baaa, 1111F) calculat en l'apartat anterior. Falta calcular el camí més probable per a la segona cadena d'entrenament:

```
a b b
0 0.333389 0.055573 0.009264 0.001544
1 0.166692 0.074098 0.024703 0.006176
Q: 0 1 1
```

Així doncs, el segon parell és (abb, 122F). A partir d'ambdós parells, obtenim els paràmetres reestimats desitjats:

π	1	2
	$\frac{2}{2}$	$\frac{0}{2}$

A	1	2	F
1	3 5	$\frac{1}{5}$	$\frac{1}{5}$
2	$\frac{0}{2}$	$\frac{1}{2}$	$\frac{1}{2}$

B	a	b
1	$\frac{4}{5}$	$\frac{1}{5}$
2	$\frac{0}{2}$	$\frac{2}{2}$

Es pot comprovar, mitjançant una nova iteració de reestimació per Viterbi, que l'algorisme convergeix al modelo anterior.