

ECON 3818

Distributions

Kyle Butts

28 July 2021

Outline

Discrete Case

- Probability Mass Function
- Calculating probabilities

Continuous Case

- Probability Density Function
- Calculating probabilities

Probability Distribution Functions

Until now we have discussed probability distributions in very loose terms. We will build a formal definition of a **probability distribution function**.

First we consider the discrete case, and then the continuous case.

Defining Probability Mass Function

Let X be a discrete random variable defined over sample space S with outcome $x \in S$.

The probability mass function (or pmf) of X is a function that assigns a probability value to every possible outcome of X.

We write this as $P_X(x)$, probability of X=x.

Example PMF

Explicitly Given

X is defined as the number of people seated at a random table at a restaurant. The PMF of X is provided below:

Probability Distribution of X	
X	P(X = X)
1	0.07
2	0.36
3	0.32
4	0.21
5 or more	0.04

Example PMF

Based on Scenario

Suppose you flip a fair coin twice. Let X be the number of heads that appear. The pmf of X is

Probability Distribution of X	
X	P_X(X)
0	0.25
1	0.50
2	0.25

Example PMF

Properties of PMFs

We say a $p_X(x)$ is a valid pmf if it satisfies the following:

- 1. $0 \le p_X(x) \le 1$ for all $x \in S$.
- 2. $\sum_{x \in S} p_X(x) = 1$.

Using PMFs

We can use the PMF to answer questions about cumulative probabilities, for example: Recall the previous example:

Probability Distribution of X	
X	P(X = X)
1	0.07
2	0.36
3	0.32
4	0.21
5 or more	0.04

What is the probability a random table at the restaurant has 2 or 3 people seated?

$$P(X=2) = 0.36 \text{ and } P(X=3) = 0.32 \implies$$

 $P(X=2 \text{ or } 3) = 0.36 + 0.32 = .68$

Clicker Question

Assume there are four outcomes of X: 1,5,10 and 20. Given the following PMF, what is the probability X=20?

Probability Distribution of X	
Х	P(X = X)
1	0.42
5	0.23
10	0.18
20	?

- a. 0.35
- b. 0.17
- c. 0.40
- d. Cannot be determined given the information

Defining Probability Density Function

Let Y be a continuous random variable defined over the interval [a, b].

The **probability density function** (or pdf) of Y is a function, $f_Y(y)$, that assigns a probability value to every possible *interval* in [a,b].

We write

$$Pr(c\leqslant Y\leqslant d)=\int_{c}^{d}f_{Y}(y)dy,$$

for all $(c,d)\subset [a,b]$.

Example pdf

For $Z \sim N(0,1)$, find P(Z <= -1).

Integral of PDF = Probability

Example PDF

Suppose that Y is a continuous random variable with pdf $f_Y(y)=3y^2$ for 0< y<1. What is $P(\frac{1}{4}\leqslant Y\leqslant \frac{1}{2})$?

Example PDF

Suppose that Y is a continuous random variable with pdf $f_Y(y)=3y^2$ for 0< y<1. What is $P(\frac{1}{4}\leqslant Y\leqslant \frac{1}{2})$?

Properties of PDFs

We say a $f_Y(y)$ is a **valid** pdf if it satisfies the following:

1.
$$0\leqslant \int f_Y(y)\leqslant 1$$
 for all $y\in [a,b]$.

2.
$$\int_a^b f_Y(y) dy = 1$$
.

Note that
$$Pr(Y=a)=\int_a^a f_Y(y)dy=0.$$

At first this might seem counterintuitive. But imagine trying to stop a stopwatch at exactly 30 seconds. What is the probability of that event?

Clicker Question

Given the pdf, $f(y) = 3y^2$ for 0 < y < 1. What is the P(Y < 1/3)?

- a. $\frac{1}{3}$ b. $\frac{1}{9}$
- c. $\frac{1}{27}$
- d. $\frac{26}{27}$

Midterm Example

Consider the probability distribution for random variable Y:

$$f(y)=8y,\ 0\leq y\leq \frac{1}{2}$$

- 1. Find $P(Y < rac{1}{3})$
- 2. Find $P(Y=rac{1}{4})$
- 3. Find $P(rac{3}{4} < Y < 1)$