

Klinische Genetica

Vooraanstaand in erfelijkheidsvraagstukken

Whole Exome Sequencing as a diagnostic test

Quality standards and reporting VEP results

International Post-graduate Course

Marjon van Slegtenhorst laboratoriumspecialist klinische genetica m.vanslegtenhorst@erasmusmc.nl

This course

- Gene variant database sharing
- HPO in genomic medicine
- Variant classification
- Protein prediction tools
- Viewing the diagnostic data
- [Phenotypic sharing (Face to Gene)]

How we use all these different tools in WES diagnostics:

Successes Limitations and pitfalls

Exome sequencing

Human Genome Project

Start in 1990

10 years later; first exome sequenced

GGCCCTCGTTACGGCATCGAGCTGCTGCAGAGCTTCGTACGTGCTGACTGCGCATATTATATTAGCTGATCGTGAT ATGCTAGCTGTTGTGAATTTAGTATGGGCCCTCGTTACGGCATCGAGCTGCTGCAGAGCTTCGTACGTGCTGACT TTATATTAGCTGATCGTGATTTCTGAATGCTAGCTGTTGTGAATTTAGTATGGGCCCTCGTTACGGCATCGAGCT AGCTTCGTACTTCGTACGTGCTGACTGCGCATATTATATTAGCTGATCGTGATTTCTGAATGCTAGCTGTTGTGA ATGGGCCCTCGTTACGGCATCGAGCTGCTGCAGAGCTTCGTACGTGCTGACTGCGCATATTATATTAGCTGATCG tgaatgctagctgttg**tgaatttagtatgggccctcgttacggcatcgagctgctgca**gagcttcgtacgtgctg atattatattagetgategtgatteetgaatgetagetgttgtgaatttagtatgggeeetegttaeggeatega CAGAGCTTCGTACGTGCTGACTGCGCATATTATATTAGCTGATCGTGATTTCTGAATGCTAGCTGTTGTGAATTT GCCCTCGTTACGGCATCGAGCTGCTGCAGAGCTTCGTACGTGCTGACTGCGCATATTATATTAGCTGATCGTGAT TGCTAGCTGTTGTGAATTTAGTATGGGCCCTCGTTACGGCATCTGATCGTGATTTTGTGAATTTAGTATGGGCCC GGCATCGAGCTGCTGCAGAGCTTCGTACGTGCTGACTGCGCATATTATATTATCTGATCGTGATTTCTGAATGCT GTGAATTTAGTATGGGCCCTCGTTACGGCATCGAGCTGCTGCAGAGCTTGCTACTGCTGCTGCTGCATATTATA ATCGTGATTTCTGAATGCTAGCTGTTGTGAATTTAGTATGGGCCCTCGTTATGATCTTCTGAATGCTAGCTGTTGT GTATGGGCCCTCGTTACGGCATCGAGCTGCTGCAGAGCTTCGTACGTG TCTGAATGCTAGCTGTTGTGAATTTAGTATGGGCCCTCGTTACGGC TGCAGAGCTTCGTACGTGCT GCATATTATATTAGCTGATC TGGGCCCTCGTTACGGCATC TGCAGAGCTTCGTACGTCC GGGCCCTCGTTACGGCAT AATGCTAGCTGTTGTGAATTTAG CTAGCTGTTGTGAATTTAGTATGC TOGTACGTGCTGACTGCG TATTAGCTGP TCGTGATTTCTGGA TGAATTTAGTATGGGCCCTCGTTACGGCATCGAGCTGCTGCAGAGCTTCGTAC TGAATCGTGATTTCTGAAT tgttgtgaatttagtatgggccctogttacggcatcgagctgctgcagagcttcgtacgtgctgactgcgcatat GCTGATCGTCATTTCTGAATGCTAGCTGTTGTGAATTTAGTATGGGCCCTCGTTACGGCATCGAGCTGCTGCAGA ACGTGCTGAK T GCATATTATATTAGCTGATCGTGA: C ATGCTAGCTGTTGTGAAT TAGTATGGGCCC GGCATCGAGCTGCTGCAGAGCTTCGTACGTGCTGACTGCGCA ATTATATT4GCTGATCGTGATTTCTGAATGCT. GTGAATTTAGTATC FICCTCGTTACGGC TCGAGCTGCT CAGAGCTTC CTGCTGACTGCGCATATTATA ATCGTGATTTCTGAATGCTAGCTGTTGTG ATT WITATGG CTOSTTACGGCATOSAGCTGCTGCAGAGCTT GCTGACTGCGCATATTATATTAGCTGATUUMAATTTCTGAATG TAGCTGTTGTGAATTTAGTATGGGCCCTCGT TCGAGCTGCTGCAGAGCTTCGTACGTGCTGACTGCGCATATTA ATTTAGTATGGGCCC PCGTTACGGCATCGAGCTGCTGCAGAG TTCGCTGCAGAGCTTCGTACGTGCTGACTGCG TATTAGCTGATCGTGATTTCTGAATGCTAGCTGT TTCGTACGTGCTCACTGCGCATATTATA **IGTTGTGAATTTAGTATG** GTTACGGCATCGAGCTGCTGCAGAGCT COTACGTUCTGACTGCGCATATTATATTAGCTGATCGTGATTTCTGAL CTGTTGTGAATTTAGTATGCGCCCTCUTTMCGGCATCGAGCTGCTGCAGACCTTCGTACCTGCTGACTGCCGCATACAGCTGATCGTGATTCTGAATGCTAGCTGTTGAATTTAGTADGGCCCTCGTTACGGCATCGAGCTGCTGCAGG Tacgtgctgactgcgcatat**ta**tattagctg**atc**gyg**atttc:** --aat**gctagctgttg**tgaatttagtatgggcc CGGCATCGAGCTGCTGCAGAGCTTCGTACGTGCTGACTGCGCATATTATATTAGCTGATCGTGATTTCTGAATGC TGTGAATTTAGTATGGGCCCTCGTTACGGCATCGAGCTGCTGCAGAGCTTCGTACGTGCTGACTGCGCATATTAT/ GATCGTGATTTCTGAATGCTAGCTGTTGTGAATTTAGT/ CCCTOSTTACGGCATCGAGCTGCTGCAGAGCT TGCTGACTGCGCATATTATATTAGCTGATCGTGATTTCTGAATGCTAGCTGTTGTGAATTTAGTATGGGCCCTCG TTCTGAATGCTAGCTGTTGTGAATTTAGTATGGGCCCCCC C A ACGAGCTGCT CAGAGCTTCGTACGTGCGCATATTATATATAGCTGATCGTGATTCTGAATGCTAGC. CAGAATTTAGTATC GCCCTCGTTACGGCAT TGGGCCCTCGTTACGGCATCGAGCTGCTGCAGAGCTTCGTACGTGCTGACTGCGCAT/ PATATTAGCTGATCGT GAATGCTAGCTGTTGTGAATTTAGTATGGGCCCTCGTTACGGCATCGAGCTGCTGCA TATTATATTAGCTGATCGTGATTTCT(NATGCT) AGAGCTTCGTACGTGCTGACTGCGCA' \TTATATTA ATTCTGAA AGCTGTTGTGAATTTA CCCTCGTTACGGCATCGAGCTGCTGC; AGCTTCGTAC ATTAGCTGATCGTGATT GCTAGCTGTTGTGAATTTAGTATGGGK *TOGTTACGGCATCGAGCTGCTGCA TCGTACGTGCTGACTGC ATATTAGCTGATCGTGATTTCTGAATC AGCTGTTGTGAATTTAGTATGGC **GTTACGGCATCGAGCTGC** CTTCGTACGTGCTGACTGCGCATATTA TAGCTGATCGTGATTTCTGA' **ACTIGTTGTGAATTTAGTAT** CGTTACGGCATCGAGCTGCTGCAGAGC TACGTGCTGACTGCGCAT" TAGCTGATCGTGATTTCTG GCTGTTGTGAATTTAGTATGGGCCCTC GCATCGAGCTGCT JGTACGATCGTGATTTCTGAJ CTGTTGTGAATTTAGTATGGGCCCTCF PETCGAGCT JGTACGTGCTGACTGCGCATAT AGCTGATCGTGATTTCTGAATGCTAG? GAAL TO .TACGGCATCGAGCTGCTGCAG TACGTGCTGACTGCGCATATTATATTA ATCGTGAI IV FTGTGAATTTAGTATGGGCC CGGCATCGAGCTGCTGCAGAGCTTCGC GAATGCTAGCTGTTGTGAATTTAGTAF AGAGCTTCG1 :ATATTATATTAGCTGATCGT CCCTCGTTAC6 TATTATATTAGCTGATCGTGATTTAC3 COTGCTGACTGCGCATATTATAT GCTGCTGL ATCGTGATTTCTGAATGCTAGCTGTT3 AGTATGGG GCATCGAGCTGCTGCAGAGCTT AL TUACTGCGCATATTATATTAGCTGA TCTGAAT GTGAATTTAGTATGGGCCCTCGT GAGCTGCTGCAGAGCTTCGTACGTG JATCGTGATTTCTGAATGCTAGCT GCATA ' AGTATGGGCCCTCGTTACGGCAT TGCTGACTGCGCATATTATATTAG TGCAG. **TCTGAATGCTAGCTGTTGTGA** regeccc ATGCTAGCTGTTGTGAATTTAGTAT CONTRACGGCATCGAGCTGCTGCAGAG .TTATATTAGCTGATCGTGATTTCTG

NGS in DNA diagnostics

Targeted Sequencing

- -enrichment group of genes
- -enrichment for all coding genes (WES)

(NIPT)

(Whole Genome Sequencing)

WES in DNA diagnostics

Why WES in DNA diagnostics? One test fits all

- Indications like ID are heterogeneous
- Diagnostic yield increases
- Flexible
- FULL WES analysis possible

Many children are in diagnotic routing, still without diagnosis

More information for parents about recurrent risk and prognosis Organ involvement Contact with other parents/ patients

DNA as starting material

EDTA blood

Fibroblasts
Amniotic fluid
Chorionic villi
Sputum
Tumor

Important! Quantity DNA Quality DNA

Technical Information

- Quality check; gender match for 96 well plate
- Agilent SureSelect Clinical Research Exome V2 capture (paired-end sequenced /Illumina platform) (outsourced).
- Duplicate reads are excluded
- Mapping to the genome using the BWA-MEM algorithm (reference:http://bio-bwa.sourceforge.net/).
- Variant detection: Genome Analysis Toolkit HaplotypeCaller (reference:http://www.broadinstitute.org/gatk/).
- > Filtering and annotation with Cartagenia software
- Classification with Alamut Visual
- Sample ID check standard for single patients (process not automated)

Sample prep and run on Novaseq

Single exome versus Trio exome

Exome for single patient:

HCM: Left ventricular hypertrophy; diagnostic yield 45%

▶ Indicatie

- □ Aangeboren afwijking (alleen trio analyse) (0161)
- Aneurysma (2454)
- Anusatresie (0057)
- Autisme (1486)
- □ Bewegingsstoornis (incl. voormalige panels ataxie, Parkinson en paroxismale dyskinesie) (5222)
- □ Ceroïdlipofuscinose (CLN) (3512)
- Ciliopathie, incl. Bardet Biedl syndroom (5599)
- □ Disorders of Sex Development (DSD) (1439) resultaten karyotypering:.....
- □ Doofheid (0800)
- □ Epilepsie (2011)
- Hernia diafragmatica (0271)
- Neurodegeneratie (incl. voormalige panels dementie/FTD/ALS, NBIA en Parkinson (1656)
- □ Oesophagusatrasie (0905)
- □ Oncopakket voor kinderen (4722)
- □ Oncopakket voor volwassenen (5407)
- □ Verstandelijke beperking (alleen trio analyse) (0311)
- □ Visusstoornis (2089)
- □ Ouder voor trio analyse

WES Trio diagnostics

Intellectual disability and congenital abnormalies

- de novo variants for intellectual disability (ID)
- consanguineous families for AR (homozygous variants)
- recessive diseases (compound heterozygous variants)

Include parents for filtering

Quality issues; GIAB

How do you determine how much you sequence? More is better, but also more is more expensive

Martin Elferink & Koen van Gassen, UMCU 22-02-2017

vcf files (list with all variants in sample)

#CHROM	POS	ID	REF	ALT
chr1	762273	rs3115849	G	Α
chr1	792263	rs1044922	Α	G
chr1	792480	rs2905036	С	T
chr1	808922	rs6594027	G	Α
chr1	866319	rs9988021	G	Α
chr1	877715	rs6605066	С	G
chr1	879676	rs6605067	G	Α
chr1	879687	rs2839	T	C
chr1	880238	rs3748592	Α	G
chr1	882033	rs2272756	G	Α
chr1	883625	rs4970378	Α	G

In total ~ >100 000 variants

How do you find the variants of interest?

- 1. Filtering (Software versus Pipeline homemade)
- 2. Classification
- 3. Interpretation
- 4. Reporting

Cartagenia Trio Filtering

Variants loaded with genepanel filter

- 1) Intellectual disability panel (1162 genes)
- 2) Congenital abnormality panel (2777 genes)

Inheritance filter:

- 1) De novo variants
- 2) Compound heterozygous variants
- 3) Homozygous/hemizygous variants
- 4) Imprinted genes

Variant detection/ coverage

Important:

- -quality of reads
- -quality of base
- -coverage of variant

Classification scheme Sanger genes

Follow-up variants

After filtering, variants are classified

Classification of sequence variants (known genes)

- Class 1; benign variants (frequent in control populations)
- Class 2; silent variants and intronic variants with no effect splicing
- Class 3; "rest group"
- Class 4; Likely pathogenic, HGMD link (inspecion!); more often found in patients
- Class 5; pathogenic (frameshift, nonsense, splicesite (+/- 1 and 2)), functional data

What to report?
What to confirm with Sanger sequencing?

Wallis et al (ACGS & VKGL; 2013) Practice guidelines for the evaluation of pathogenicity and the reporting of sequence variants in Clinical Molecular Genetics

ACMG guidelines for variant classification in near future as the standard?

Cardiomyopathy single patient reporting

Gene	~	Position	1	Ref	Pat	ient	Read Depth	Туре	Transcript	cDNA		Location	Exon	Effect ~	Protein	
TTN	M	2:179,454,135	Q	G	G	Α	40	snp	NM_001267550.1	c.62317C>T	Q	exonic	304	synonymous	p.Leu20773=	Q
EYA4	M 🖜	6:133,783,573	Q	G	G	Α	79	snp	NM_004100.4	c.538G>A	Q	exonic	8	nonsynonymous	p.Ala180Thr	Q
MYBPC3	M	11:47,359,280	Q			С	160	insertion	NM_000256.3	c.2373dupG	Q	exonic	24	frameshift	p.Trp792Valfs*41	Q

How do we analyse the data?

PolyPhen-2	2 report f	or O 9	5677	'A180T
Query				
Protein Acc	Position	AA ₁	AA ₂	Description
<u>095677</u>	180	Α	Т	Canonical; RecName: Full=Eyes absent homolog 4; EC=3.1.3.48; Length: 639
Results				
+ Prediction	/Confidence	e		PolyPhen-2 v2.2.2r398
HumDiv				
This m	utation is pr	edicted	to be	BENIGN with a score of 0.028 (sensitivity: 0.95; specificity: 0.81)
	0.00	9	0,26	0 0.40 0.60 0.80 1.00
+ HumVa	r			
Details				
+ Multiple s	equence al	ignme	nt	UniProtKB/UniRef100 Release 2011_12 (14-Dec-2011)
+ 3D Visuali	zation			PDB/DSSP Snapshot 03-Jan-2012 (78304 Structures)

Gene	~	Position	Classification	Databases	Eras	Gene	niet	verk	Other	VKGL	Simil.
TTN	M	2:179,454,135	Likely benign	db swr							
EYA4	M 🔊	6:133,783,573	VOUS								
MYBPC3	M	11:47,359,280	Pathogenic	縁器の							

ラスし

Variant classification

It's not good, should be deleted HGMD Professional

				External			M	IVL			
Gene	~	Position	Classification	Databases	Eras	Gene	niet	verk	Other	VKGL	Simil.
TTN	M	2:179,454,135	Likely benign	(db)							
EYA4	M 🔊	6:133,783,573	VOUS								
MYBPC3	M 🔊	11:47,359,280	Pathogenic	# K S							

HGMD accession	Reported disease/phenotype	Variant class	Gene symbol			Insertion
CI983160	Cardiomyopathy, hypertrophic	DM	MYBPC3			CACAGTA^CAGgTGGGAGCCGC
	Literature citation			Citation type	Support	
 Niimura (1998) N Engl J Med 338: 1248 Mutations in the gene for cardiac myosin-binding protein C ar 				Primary literature report		aka c.2373_2374insG/c.2373dupG.
 Marston (2009) Circ Res 105: 219 PubMed Evidence from human myectomy samples that MYBPC3 mut 	i: 19574547 ations cause hypertrophic cardiomyopathy through haploinsufficiency.			Additional literature report		None
3. van Dijk (2009) Circulation 119: 1473 Po Cardiac Myosin-Binding Protein C Mutations and Hypertroph	abMed: 19273718 tic Cardiomyopathy. Haploinsufficiency, Deranged Phosphorylation, and Cardiomyocyte Dysfunction.			Functional characterisation		None
4. Christiaans (2010) Neth Heart J 18: 248 Founder mutations in hypertrophic cardiomyopathy patients in				Additional literature report		Founder mutation in Dutch.
 Yiu (2012) PLoS One 7: e36115 PubMed: 2 Myocardial structural alteration and systolic dysfunction in pr 				Additional literature report		None
 Birket (2015) Cell Rep 13: 733 PubMed: 26: Contractile Defect Caused by Mutation in MYBPC3 Revealed 	489474 i under Conditions Optimized for Human PSC-Cardiomyocyte Function.			Functional characterisation		None
7. Murphy (2016) J Cardiovasc Transl Res Evaluation of the Mayo Clinic Phenotype-Based Genotype Pr	9: 153 PubMed: 26914223 edictor Score in Patients with Clinically Diagnosed Hypertrophic Cardiomyopathy.			Additional literature report		Descr. in Supplemental Table 2 (online).
8. Wijnker (2016) J Mol Cell Cardiol 97: 8. Comparison of the effects of a truncating and a missense MY	2 PubMed: 27108529 BPC3 mutation on contractile parameters of engineered heart tissue.			Functional characterisation		None
9. Baudhuin (2017) Circ Cardiovasc Genet Technical Advances for the Clinical Genomic Evaluation of S	10: e001844 PubMed: 29237689 udden Cardiac Death: Verification of Next-Generation Sequencing Panels for Hereditary Cardiovascular Co	onditions Using Formalin-Fixed Paraffin-Embedd	ed Tissues and Dried Blood Spots.	Additional case report		None
10. Burns (2017) Circ Cardiovasc Genet 10 Multiple Gene Variants in Hypertrophic Cardiomyopathy in the				Additional literature report		None
11. Miller (2017) Circ Cardiovasc Genet 10 Genetic Testing in Pediatric Left Ventricular Noncompaction.	D: e001735 PubMed: 29212898			Additional phenotype		Noncompaction, left ventricular
12. van Velzen (2017) Circ Cardiovasc Ger Clinical Characteristics and Long-Term Outcome of Hypertro	net 10: e001660 PubMed: 28794111 phic Cardiomyopathy in Individuals With a MYBPC3 (Myosin-Binding Protein C) Founder Mutation.			Additional literature report		None
13. Viswanathan (2017) PLoS One 12: e019 Hypertrophic cardiomyopathy clinical phenotype is independe				Additional literature report		Potentially recessive. See Table S4 and S5.

What to confirm/ report in this case?

Single patient;

Class 4 or 5 that confirms the diagnosis; MYBPC3 pathogenic variant All other class 3 variants! EYA4 variant (involvement in DCM)

Conclusion in letter: Diagnosis HCM has been confirmed.

Further testing for the pathogenic variant in the familiy of tested person is possible

What to confirm with Sanger?

You do not confirm all the variants from the report!

Single patient (more general);

- 1) Class 4 or 5: that confirms the diagnosis
- in most cases there will be presymptomatic testing of family members
- 2) Class 3: good candidate
- when you expect testing of affected family members or parents in case of suspicion the novo
- 3) Class 1 or 2: Fragment that is working in the lab
- ID check of a known variant (filterstep 1-5% in controls)

You often have to design the Sanger test

What to confirm with Sanger?

- 1) Class 4 and 5 variants which confirm the diagnosis
- 2) Class 3 variants:

Only the novo variants when the coverage in the parents is <30 reads Autosomal recessive disease you have internal controles (parents)

What to look out for:

False positives!

AF between 25% and 35%: often T-stretches, CG rich regions, deletions/duplications Germline mosaicims in parents (always check BAM files in the novo calls!)

					Read							
Gene 🔻	Position	1	Ref	Patient	Depth ~	Type 🔻	Transcript -	cDNA	Location -	Exon	Effect	Protein
NAA10 🚻	X:153,197,863	Q	G	G A	76	snp	▶ NM_003491.3	c.247C>T	exonic	5	nonsynonymous	p.Arg83Cys

Trio reporting

The novo variants (class 3 or higher for AR and AD)
Compound heterozygous variants (class 3 or higher)
Homozygous variants (class 3 or higher)
X-linked variants (class 3 or higher)

In all cases a is clinical geneticist is involved for informed consent; secundary findings

The phenotype on application form is often not complete.

Discussions in Multidisciplinary Expertise Group (MEG) to decide what can fit

Helpful tools with classification with examples:

- Gene variant database sharing in Netherlands
- Genematcher
- HPO in genomic medicine

Sharing information VKGL

VKGL: Dutch database of the diagnositic laboratories

Participant	Classification	
vkgl (Consensus list)	☐ Variant not present	
vkgl (VKGL-AMC)	Vous	0
vkgl (VKGL-ERASMUS)	☐ Variant not present	
vkgl (VKGL-LUMC)	☐ Variant not present	
vkgl (VKGL-NKI)	☐ Variant not present	
vkgl (VKGL-RADBOUD)	☐ Variant not present	
vkgl (VKGL-UMCG)	☐ Variant not present	
vkgl (VKGL-UMCU)	☐ Variant not present	
vkgl (VKGL-VUMC)	☐ Variant not present	

DPYSL5; 2 children share the same de novo variant

Severe brain abnormalities in these two children: are we convinced this is it?

Important for solving exomes:

Datasharing (worldwide); databases and genematcher Multidisciplinairy discussions Software tools; face to gene

Multidisciplinary expertise group (MEG)

Child with short stature, abnormal teeth, epilepsy, no speech, macrocephaly, dysmorphic face, cataract at age 5, abnormal toes.

Trio ID panel : negative

Power of Genematcher

INTS1 homozygous nonsense variant (Integrator Complex Subunit 1) c.5351C>A, p.Ser1784* (NM_001080453)

Follow up after variant in gene with no linked fenotype in OMIM

Discuss in MEG/ submit to Genematcher: very striking features is helpful Fenotype recognized by other clinical geneticist and hit genematcher Now 3 extra patients found with same nonsense variant worldwide

3 patients from the Netherlands: information meeting organized for parents

Google your genes/ variants!

Program #: 3367

Whole Exome Sequencing (WES) Identifies a Mutation in ALPK1 Responsible for a Novel, Autosomal Dominant Disorder of Vision Loss, Splenomegaly, and Pancytopenia

Lloyd B. Williams, Chad D. Huff, Denise J. Morgan, Rosann Robinson, Margaux A. Morrison, Krista Kinard, George Rodgers, Kathleen B. Digre, Margaret M. DeAngelis

T237M Mutation in ALPK1 is identified as the likely causative mutation in **Autosomal Dominant Digre-Williams Syndrome**

Phenotype

Genotype

Candidate genes identified using VAAST 6.10E-06 chr1 ANKRD20A4 7.32E-06 chr9 69423637 G->A E->K MBPL4 8.55E-06 chr19 10367459 C->T R->W FAM90A10 9.77E-06 chr8 7629232 G->T A->S 9.77E-06 chr15 FFF1A1 1.65E-05.chr6 74228474 CoT BoH 1.65F-05.chr12 VDAC2 1.71E-05 chr10 2.26E-05 chrX TAS2R31 2.62E-05.chr12 ABCF1 DUP 2.87E-05 chr6 STAU2 3.30E-05 chr8 PRAMEF4 3.48E-05 chr1 3.97E-05 chr4 TAS2B10 4.59E-05-chr12 11174390 GoA LoE ZNF527 4.64E-05 chr19 37879853 C->T P->L 4.64E-05 chr1 145368518C->T S->L NBPF10 4.82E-05 chr10 ZNF846 6.96E-05 chr19 9869202 T->A N->I CLDN25 7.94E-05 chr11 113651170T->C F->S 9.03E-05 chr19 51917709 G->A T->M SIGLEC10 TBRG1 PDIA2 15514392 C->T A->T AKAP8L 0.000337chr10 FAM90A13 DUP 020.002901chr8 7575210 G->C M->I DMRTA2 0.003176chr1 50886700 G->C A->G CDKN2/ HSP17 9217197 T-xC S-xP 0.004235chr11 110300857G->A G->R

Methods / Results

Conclusions:

WES identifies ALPK1 mutation in Digre-Williams Syndrome Disease causing mutation is inherited in AD pattern SNP is chr4:113348736 C → T, located in exon 7 of 16 in ALPK1 ALPK1 T237M mutation cosegregates with disease 3 of 3 affected, 0 of 6 unaffected.

T237M mutation is predicted to be damaging - SIFT, PolyPhen2 T237 position is conserved across species

Corresponding Author: Margaret M. Deangelis. margaret.deangelis@utah.edu

Contact with group in VS

Family 1 (Utah cohort)

Family 3 (Netherlands)

Family 2 (Australian cohort)

Family 4 (Virginia)

Family 5 (Delaware cohort)

Limitations of WES

Also deeper intronic variants Variants in promotor region

Whole Genome Sequencing? The holy grail?

Conclusions/ Discussion

Important for WES diagnostics:

Datasharing, good databases
Multidisciplinairy meetings
Bioinfomaticians
HPO terms in future (not used yet on routine basis)

Discussion: What to report is a main discussion point!

Examples incidental findings:

- 1) Finding XXY when you do the quality control
- 2) You find a pathogenic BRCA1 variant in child and parent
- 3) DPYP pathogenic variants: "Dihydropyrimidine dehydrogenase deficiency", risk factor for 5-FU hypersensitivity
- 4) Carrier of AR disease: CFTR

Questions?

Acknowlegdements

Clinical Genetics EURMC

NGS unit

Joan Kromosoeto

Grazia Mancini

Alice Brooks

Iris Hollink

Walter de Valk

Frank Sleutels

Martina Wilke

Rick van Minkelen

Ans van den Ouweland

Hennie Bruggenwirth

Lies Hoefsloot

