Homework 4

- 1. Show that for any real number x there exists a natural number n such that n > x.
- 2. Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be bounded sequences in \mathbb{R} with $x_n, y_n \geq 0$ for all $n \in \mathbb{N}$.
- (i) Show that

$$\limsup_{n \to \infty} (x_n y_y) \le (\limsup_{n \to \infty} x_n) (\limsup_{n \to \infty} y_n)$$

(ii) If one of the sequences converge, and the product is not of the form $0 \times \infty$ or $\infty \times 0$, show that

$$\lim_{n\to\infty} \sup (x_n y_y) = (\lim_{n\to\infty} \sup x_n)(\lim_{n\to\infty} \sup y_n)$$

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{R} , and let $A \in \mathbb{R}$ and $B \in \mathbb{R} \bigcup \{\pm \infty\}$. Show that the followings hold.

- 3. (i) The limit superior $\limsup_{n\to\infty} x_n = A$
- \Leftrightarrow (ii)the sequence $\{sup\ \{x_n : n \geq m\}\}_{m=1}^{\infty}$ is bounded below with the limit A
- \Leftrightarrow (iii) for any $\epsilon > 0$, there are infinitely many n's such that $A \epsilon < x_n$, but only finitely many n's such that $A + \epsilon < x_n$.

(Just need to prove (i) \Rightarrow (ii), (ii) \Rightarrow (iii), (iii) \Rightarrow (i))

- 4. The limit superior $\limsup_{n\to\infty} x_n$ is the limit of a subsequence of $\{x_n\}_{n=1}^{\infty}$
- 5. If B is the limit of the sequence $\{x_n\}_{n=1}^{\infty} \Leftrightarrow \limsup_{n\to\infty} x_n = \liminf_{n\to\infty} x_n = B$