

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
20 February 2003 (20.02.2003)

PCT

(10) International Publication Number
WO 03/013597 A1

(51) International Patent Classification⁷: **A61K 39/12**, 39/295, C12N 5/00, 15/09, 15/00, 15/74, 7/04

(21) International Application Number: PCT/US02/25185

(22) International Filing Date: 12 August 2002 (12.08.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/311,488 10 August 2001 (10.08.2001) US

(71) Applicant: UNIVERSITY OF MARYLAND BIOTECHNOLOGY INSTITUTE [US/US]; Office of Research Administration/Tech. Dev., 701 E. Pratt Street, Suite 200, Baltimore, MD 21202 (US).

(72) Inventor: VAKHARIA, Vikram, N.; 7906 Oxfarm Court, Bowie, MD 20715 (US).

(74) Agents: FUERER, Marianne et al.; Intellectual Property/Technology Law, P.O. Box 14329, Research Triangle Park, NC 27709 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 03/013597 A1

(54) Title: SUB-UNIT VACCINE FOR INFECTIOUS PANCREATIC NECROSIS VIRUS

(57) Abstract: The present invention relates to sub-unit vaccines comprising structural polypeptides of Infectious Pancreatic Necrosis Virus (IPNV) comprising structural proteins V2 and V3 folded as empty IPNV viral capsid that approximates the size and structural conformation of native IPNV virus.

46

SUB-UNIT VACCINE FOR INFECTIOUS PANCREATIC NECROSIS VIRUS**BACKGROUND OF INVENTION****5 Field of the Invention**

The present invention relates generally to a vaccine, and more particularly, to a sub-unit vaccine comprising structural proteins V2 and V3 of Infectious Pancreatic Necrosis Virus (IPNV) assembled as an empty viral capsid.

10

Description of the Related Art

Epizootics of viral infections are devastating in hatcheries and ponds rearing either cold or warm water fish and repeated disease outbreaks can jeopardize the financial survival 15 of an operation. Thus, the health of fish is critical to the survival of the aquaculture industry and effective vaccines are desperately needed.

Infectious pancreatic necrosis virus (IPNV) is the causal agent of a highly contagious and destructive disease of juvenile Rainbow and Brook trout and Atlantic salmon. Young 20 fish (two-to four-months old) appear to be the most susceptible to IPNV infection, resulting in high mortality. In trout and salmon, IPNV usually attacks young fry about five to six weeks after their first feeding. The affected fish are darker than usual, have slightly bulging eyes and often have swollen bellies. At the beginning of an outbreak, large numbers of slow, dark fry are seen up against water outflows, and fish are seen 25 "shivering" near the surface. The shivering results from a characteristic symptom of the disease, a violent whirling form of swimming in which the fish rotate about their long axis. If the affected fish are examined, a characteristic white mucus is seen in the stomach. The pancreas appears to be the primary target organ for the virus.

30 After an IPNV outbreak, the surviving fish generally become carriers of the virus. Trout that are carriers of the virus are a serious problem for the aqua-culture industry because the only control method currently available on a commercial basis for eliminating the virus in carrier fish is destruction of these fish.

Highly virulent strains of IPNV may cause greater than 90% mortality in hatchery stocks in less than four months old. Survivors of infection can remain lifelong asymptomatic carriers and serve as reservoirs of infection, shedding virus in their feces and 5 reproductive products. The virus is capable of infecting a number of different hosts and has a worldwide presence. IPNV can have serious economic consequences for commercial trout and salmon farms and are therefore a major concern within the aquaculture industry. Therefore, IPNV is a pathogen of major economic importance to the aquaculture industry.

10

IPNV is the prototype of the Birnaviridae virus family. IPNV contains a bisegmented dsRNA genome, which is surrounded by a single-shelled icosahedral capsid. The larger of the two genome segments, segment A (3097 bases), encodes a 106-kDa precursor polyprotein which is processed to yield mature viral structural proteins VP2 and VP3, 15 and VP4 (also named NS) a non-structural protein (Duncan et al. 1987). VP2 has been identified as the major host protective antigen of IPNV. The genome segment B encodes a minor internal polypeptide VP1 (94 kDa) which is the putative virion-associated RNA-dependent RNA polymerase.

20 An ideal vaccine for IPNV must induce protection at an early age, prevent carrier formation, and should be effective against a large number of IPNV subtypes. One approach has been the use of killed virus as a vaccine. For example, if formalin-inactivated virus is injected intraperitoneally into four week post-hatch fry, the fish becomes immunized (Dorson, J. Virol 21:242-258, 1977). However, neither immersion 25 of the fish into a liquid suspension of killed virus nor oral administration thereof has been found effective. Thus, the main problem with using killed virus is the lack of a practical method for administration for large numbers of immature fish because injection of the vaccine is impractical .

30 The use of attenuated viral strains have also been used as vaccines. However, the earlier attenuated strains either failed to infect the fish or failed to induce protection. Strains with low virulence have been tested as vaccines for more virulent strains, but mortality from the vaccinating strain was either too high or protection was only moderate (Hill et

al., "Studies of the Immunization of Trout Against IPN," in Fish Diseases, Third COPRAQ Session (W. Ahne, ed.), N.Y., pp. 29-36, 1980).

Recent reports have shown that expression of virus coat proteins often results in self-
5 assembly of virus-like particles (VLP) that are essentially empty whole virions. Of these VLP-producing systems, vaccines have been proposed for poliovirus (Urakawa et al. 1989), parvovirus (Saliki et al. 1992), bluetongue virus (Belyaev et al. 1993) and infectious bursal disease virus (IBDV) - a member of the Birnaviridae family (Vakharia, et al. 1994; Bentley, et al. 1994).

10

However, several attempts have been made to recreate the same results for IPNV but to date these attempts have not been shown effective for various reasons. For instance, McKenna, et al. 2001 reported that virus like particles were generated through expression of Segment A by recombinant Semliki Forest Virus (SFV). Notwithstanding this alleged
15 outcome, no conclusive proof was presented that the produced virus-like particles were indeed empty viral capsids. Several blots and electron microscopy slides show some type of virus like particles but without substantial proof of the formation of empty IPNV capsids resembling the size and 3D-structure of the native IPNV virus structure.

20 Magyar and Dobos, 1994 reported cloning of IPNV segment A into baculovirus expression vectors and expressing proteins pVP2, VP4 and VP3 in insect cells. However, as reported by Magyar and Dobos, using the baculovirus expression vectors in the insect cells did not show virus like particles that were correctly processed into a tertiary structure representing an empty viral capsid. Review of the process described in
25 Magyar and Dobos it is clear that generating an empty IPNV capsid was impossible because Magyar and Dobos included the very first ORF of Segment A which encodes the minor 17-kDa nonstructural protein referred to as VP5 which partly overlaps the major ORF of VP2-VP-4-VP3 proteins. The VP5 protein is toxic to the cells and hence affects the production of any of the proteins. Thus, even though the proteins may have been
30 expressed in the insect cells the proteins were not post-translationally modified and correctly folded into an empty IPNV capsid.

Phenix, et al. (2000) describes production of virus-like particles that were generated by

expressing the IPNV VP2 protein by means of a Semliki Forest Virus expression vector. However, only the VP2 protein was expressed without expressing the VP3 protein and as such, the correct formation of an empty capsid is not formed. Further, without expression of the protein VP3, aggregates may form but without the correct conformation 5 to form neutralizing epitope. The VP2 aggregates that were formed are smaller (25nm) than virus-like particles that include a fully conformational folded viral capsid (approximately 50 to 65 nm and typically about 60nm).

Inactivated IPNV vaccines have been found to be efficacious by intraperitoneal 10 inoculation IPNV (Leong and Fryer 1993). In addition, it was shown that the complete polyprotein of segment A expressed in E. coli induced protective immunity after intraperitoneal inoculation in rainbow trout fry. However, intraperitoneal inoculation for a vaccine delivery method is not very practical and bacteria are not optimal hosts for the production of many types proteins.

15 Therefore, interest has centered in other eukaryotic protein expression systems, notably yeast and insect cells in culture, as possible hosts for the production of recombinant proteins. For this reason, and related reasons, there has been effort directed toward the tissue culturing of insect cells to produce recombinant proteins. Several systems have 20 been developed for the culture of insect cells *in vitro*, and vectors have been developed which are capable of transgene expression in insect cells. The transforming vectors are most commonly made from a group of insect pathogenic viruses belonging to the Baculoviridae family, the viruses being known as Baculoviruses. Baculoviruses are characterized by a circular double-stranded DNA genome and a rod-shaped enveloped 25 virion. The DNA can be manipulated to incorporate a gene which encodes a subject protein and the DNA of the baculovirus will cause the cells of its host to produce the proteins encoded in its DNA.

Another approach to the production of recombinant proteins is based on the use of live 30 insect larvae. Such an approach uses, in effect, the insect larvae as a factory for the manufacture of the desired gene product. The transgene can be expressed in the larvae through the baculovirus expression system, allowed to proliferate, and then recovered from the larvae. Because insect larvae can be grown quickly and inexpensively and the

yields obtained from insect larvae is greatly increased relative to that obtained from bacterial cells makes them an appealing alternative to cell based protein manufacturing.

- Attie et al., U.S. Pat. No. 5,472,858 disclosed this approach with the tobacco hornworm.
- 5 After the hornworm is infected with a recombinant baculovirus, it begins secreting the recombinant protein into its hemolymph. The hemolymph can then be withdrawn using a syringe throughout the larvae's growth. However, there is a drawback to this specific method. Although the tobacco hornworm larvae is ideal for the physical manipulation because of its large size, a great deal of manual labor is required to extract the 10 recombinant protein if large numbers are to be cultivated.

Accordingly there is a need for an IPNV sub-unit vaccine and method of producing same that overcomes the shortcomings of the prior art, that does not exhibit the problems related to live vaccine and/or attenuated vaccines, can be easily produced and recovered, 15 and the proteins that are expressed are post-translationally modified and correctly folded into the conformation structure that exposes neutralizing epitopes.

SUMMARY OF THE INVENTION

20 In one aspect the present invention relates to a sub-unit vaccine to reduce and/or prevent infection by Infectious Pancreatic Necrosis Virus (IPNV), the sub-unit vaccine comprising structural proteins V2 and V3 folded as an empty IPNV viral capsid. The vaccine may further comprise a reporter protein co expressed with the IPNV structural 25 proteins.

In another aspect, the present invention relates to a baculovirus expression system comprising inclusion of a cDNA clone encoding for expressed VP2,-VP4-VP3 proteins that are self-assembled to form empty IPNV capsids that can be administered as a sub- 30 unit vaccine.

In yet another aspect, the present invention relates to production of IPN virus-like particles having the structural conformation of native IPNV virus but without the RNA

genome.

Still another aspect of the present invention is a method of generating IPN virus-like particles assembled as an empty IPNV viral capsid, the method comprising;

5

(a) providing a recombinant baculovirus comprising a polynucleotide encoding IPNV Segment A proteins VP2,-VP4 -VP3, and a reporter protein;

10

(b) infecting insect larvae with the recombinant baculovirus; and
(c) maintaining suitable conditions for expression of IPNV Segment A proteins VP2,-VP4 -VP3, and the reporter protein to generate structural proteins VP2 and VP3 assembled as an empty IPNV capsid; and

15

(d) recovering the empty IPNV capsid from the larvae.

20

Another aspect relates to a sub-unit vaccine for controlling Infectious Pancreatic Necrosis Virus (IPNV) in aquatic species, the sub-unit vaccine comprising IPNV structural proteins VP2 and VP3 assembled as an empty IPNV capsid that corresponds to the 3D-structure of a native IPN virus and does not include an infectious RNA genome.

Other aspects and features of the invention will be more fully apparent from the ensuing disclosure and appended claims.

25

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is an electron microscopy slide of IPNV native full virus containing the RNA genome, the virus is sized at about 60 nm and appears white because a full virus particle, with nucleic acid, prevents stain from entering into the capsid.

30

Figure 2 is electron microscopy slide of IPNV-type particles negatively stained with uranyl acetate showing that the virus particles are empty because the stain has entered into the structure which gives a dark appearance. The virus particles have the 3D structure of native IPN viruses but show no infectious RNA genome. The particle size

corresponds to that of the native virus.

Figure 3 is a graphical representation of cumulative mortality rates of rainbow trout that were challenged with VR299

5

DETAILED DESCRIPTION OF THE INVENTION, AND PREFERRED EMBODIMENTS THEREOF

The present invention is based on the discovery that expression of Infectious Pancreatic
10 Necrosis Virus (IPNV) structural proteins V2 and V3, assembled as empty viral capsids
that can be administered as an effective sub-unit vaccine to reduce and/or prevent
infection by IPNV.

“Sub-unit vaccine” as used herein is defined as a vaccine including sub viral components
15 that are post-translationally modified and correctly folded to act as immunogens.

“Virus-like particles” as used herein is defined as virions that lack genetic material with
3D structure and size of a native virus.

20 “Epitopic determinants” as used herein is defined as amino acids or amino acid
sequences which correspond to epitopes recognized by one or more monoclonal
antibodies.

“Reporter genes” as used herein is defined as genes that express a reporter protein, which
25 causes some determinable characteristic in a recombinant system simultaneously with the
expression of the subject gene to indicate the expression of that other gene.

Expression of the Segment A gene of IPNV that encodes for VP2-VP4-VP3 by the
insertion of an baculovirus expression vector leads to the production of virus-like
30 particles formed by the self-assembly of VP2 and VP3. A cDNA clone of segment A of
the IPNV consisting of a nucleotide sequence encoding for structural proteins VP2 and
VP3 and a non-structural protein VP4; and a reporter gene is constructed in tandem so
that the IPNV structural proteins and reporter protein are expressed simultaneously.

Briefly, the cDNA clone containing the preferred coding and/or non-coding regions of IPNV-RNA segment A can be prepared using standard cloning procedures and methods, as described for IBDV in Mundt, E., and V. N. Vakharia. 1996, Synthetic transcripts of
5 double-stranded birnavirus genome are infectious. *Proc. Natl. Acad. Sci. USA* 93:11131-11136, the contents of which are hereby incorporated herein by reference for all purposes. Manipulations of DNAs can be performed according to standard protocols (Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning a laboratory manual.2nd ed. Cold Spring Harbor Laboratory. Cold Spring Harbor. N.Y.).

10

To generate cDNA clones of a coding region of the desired structural proteins, the genomic RNA is used as a template for synthesizing and amplifying according to general RT-PCR techniques well known in the art. The desired amplified fragments are then cloned into a cloning plasmid for inclusion in the baculovirus system. Preferably a
15 reporter gene is included to simplify the harvesting and purification of the structural proteins. With this co-expression, the actual amount of subject protein produced will be directly related to the amount of reporter protein produced.

After the foreign genetic sequences for IPNV segment A and a reporter gene have been
20 assembled, it is then necessary to package the foreign gene into a baculovirus expression vector for expression in the insect cells. This is accomplished with a transfer vector. Any commercially available Baculovirus expression kit may be used, for instance, Invitrogen Corporation markets a kit for expression of foreign genes in insect cell systems using the Baculovirus vector under the tradename MAXBAC. The kit includes
25 Baculovirus stock, and suitable transfer vectors which may be used with the Baculovirus to transfer foreign genes into the Baculovirus for transfection into insect cells.

Baculoviruses characteristically have a circular double-stranded DNA genome which is contained in a rod-shaped enveloped virion. The DNA can be manipulated to incorporate
30 a gene which encodes a subject protein. Like all viruses, the DNA of the baculovirus will cause the cells of its host to produce the proteins encoded in its DNA. Consequently, if the DNA of a baculovirus is manipulated to incorporate a gene which codes for IPNV VP2-VP4-VP3 protein(s) and reporter protein and that baculovirus is

allowed to infect an insect cell or insect larvae, the cells or larvae will produce the structural proteins VP2 and VP3 and the non-structural VP4.

Construction of appropriate baculovirus vectors to express a subject protein and reporter 5 protein is apparent to one skilled in the art. The following text which is hereby incorporated herein by reference is an example of a reference that provides sufficient information and instructions to enable construction of a suitable baculovirus vector: Baculovirus Expression Vectors: A Laboratory Manual by D. R. O'Reilly, L. K. Miller and V. A. Lucklow (W. H. Freeman and Co., New York, N.Y., 1992).

10

Transfection of the baculovirus expression vector, including the gene encoding for the structural proteins of IPNV and reporter gene is transfected into cells, such as Sf9 cells, Sf21 and High Five cells, etc, which results in transcription of a recombinant baculovirus that can be used as an infectious agent to effect production of the 15 recombinant subject and reporter proteins.

The recombinant baculovirus may also be used to infect insect larvae for the expression of the IPNV structural proteins and reporter proteins. Although mammalian and insect 20 cell systems can be used to manufacture proteins, expensive and complex media are required and the bioreactors, in which the cells are grown, must be run for extended periods creating a risk of contamination of the cell culture. As such, the present invention contemplates infection of permissive insect larvae that can be infected with a baculovirus, and can be grown quickly and inexpensively. Additionally, yields can be obtained from insect larvae that cannot be obtained from cells and this fact makes insect 25 larvae an appealing alternative to cell based protein manufacturing.

To effect infection, once a recombinant baculovirus has been constructed, a solution containing the recombinant baculovirus may be sprayed on the larvae's food for absorption therein or the baculovirus can be injected directly into the hemocoel of the 30 larvae.

Because foreign proteins have been expressed in a variety of insect larvae; *Bombyx mori*, the silkworm (Maeda et al., 1985; Miyajima, et al., 1987), *Trichoplusia ni*, the cabbage

- looper larvae (Medin et al., 1990) and *Manduca sexta*, the tobacco hornworm (U.S. Pat. No. 5,471,858) there is a wide selection of insect larvae that could be utilized with this system. The larvae of the cabbage looper has been utilized and is typical of the ideal larvae envisioned for use in the present invention. Cabbage looper larvae can be ordered 5 from commercial sources such as Entopath, Inc. (Easton, Pa.) and can be easily grown in a laboratory according to the instructions provided by the supplier. Media for the larvae can be made from alfalfa meal, pinto beans, Brewer's yeast, ascorbic acid, wheat germ, sorbic acid, vitamins, and antibiotics (aureomycin).
- 10 There is a balance to be struck as to the best stage in the larval cycle of the cabbage looper or any other suitable larvae to initiate baculovirus infection. The baculovirus kills the larvae after five days so there is a limited time in which they have to grow and express the subject protein. Because the size of the larvae is related to the amount of protein they express; small larvae produce insignificant amounts of protein, it is more 15 effective to infect the larvae when they are larger. However, if the larvae are too large, too much baculovirus is required for infection. As such, Baculovirus infection in the fourth instar, which is the last instar prior to pupation, seems to strike the optimal balance between the larvae's size and the amount of virus required for infection.
- 20 A preferred embodiment of the present invention is a method that infects the larvae on a continuous basis and harvesting of the larvae from the production population when the reporter gene signals production of the structural proteins. A semi-continuous embodiment is also envisioned by the inventor wherein the larvae are infected at substantially the same time and then harvested individually when they express the 25 reporter gene.

Consequently, the reporter gene of the present invention is capable of expression in insect larvae at the same time as the gene encoding the subject protein. The determinable characteristic is a change in appearance of the living larvae that can be easily visualized. 30 Ideally, the characteristic is visible in normal light or other wavelengths of light. Thus, determination of the reporter gene's expression is simply accomplished by viewing the larvae under normal light conditions and other light conditions. Furthermore, the amount of the expressed reporter protein will directly correspond to the amount of the other

protein, such as the desired structural proteins in the larvae. Consequently, the intensity of the effect created in the appearance of the living larvae by the amount of reporter protein can be used to directly measure the amount of subject protein actually present in each larvae.

5

- An excellent choice for the role of the reporter gene is the green fluorescent protein (GFP) that was originally isolated from the jellyfish, *Aequorea victoria*, and was first described in 1962 (Shimomura et al., 1962). GFP emits bright green light when simply exposed to UV or blue light, unlike other bioluminescent reporters. The emission of green light is due to the transfer of energy from the photoprotein, aequorin, of the organism to GFP. The cDNA of GFP was cloned from *Aequorea victoria* in 1992 (Prasher et al., 1992). One such GFP is a 238 amino acid protein with a molecular weight of 28 kDa (Chalfie et al., 1994) having a major absorption peak at 395 nm and a minor peak at 470 nm with a single emission peak at 509 nm (Chalfie et al., 1994).
- 10 Preferably, the GFP gene has a nucleotide sequence selected from the group consisting of SEQ ID NOS: 1, 8, or 9.
- 15

- Advantageously, fluorescence of GFP is species-independent and requires no substrate, cofactor, or additional proteins for illuminating green light. Unlike other reporter tags such as luciferase, b-galactosidase, or fluorescent-tagged antibodies, GFP does not require fixation techniques that are toxic to the cells under the investigation (Chalfie et al., 1994).

- 20 Additionally, GFP mutations have also been developed that serve well in the capacity of the reporter gene. GFPuv was optimized for UV excitation (Crameri et al., 1996). GFPuv is 18 times brighter than wild-type GFP and can be easily detected by the naked eye when excited with standard, long-wave UV light (e.g., source for many DNA transilluminator light tables). This variant contains additional amino acid mutations which increases its translational efficiency. Purified GFPuv has the same excitation and 25 emission maxima as wild-type GFP.

Mutants of GFP are available commercially and include variants with the blue and red-shifted proteins along with several that have various intensities of green for which the

codon composition has been altered. Among the commercial vendors of these mutants are Life Technologies, Inc., Clontech, Inc., and Invitrogen, Inc.

- It is envisioned that the present invention will include the use of an automated system for
5 selecting individual larvae for harvest. A monitoring capability could be added to such a system by attaching an LED/detector to each fin where the larvae hang and wiring the LED/detector and a fin to a separate controller. When the LED/detector detects a sufficient intensity of the green color of the GFP expressed in a larva, a signal would be sent to the controller which in turn would deliver voltage to the fin where the transmitting LED/detector is located. The voltage would shock the larva causing it to fall off the fin into a collection receptacle. Another possible monitoring system could resemble the conveyor belt/switching gate apparatus used by dairy egg manufacturers, where the brightest larvae are harvested.
- 10
- 15 Although an automated system is preferable, since GFP mutants expressed in larvae, such as GFPuv, can be discerned by the human eye in normal laboratory light in larvae at least two or three days after infection with baculovirus and detection of GFP with human eyesight under UV light possible after at least three days, manual infection and selection for harvest is certainly feasible.
- 20 Conditions which enhance the expression of proteins VP2, VP4 and VP3 and the reporter gene, particularly green fluorescent protein, include infection with a viral loading of at least 5×10^7 pfu/mL recombinant baculovirus, temperature of at least about 30°C, harvesting of the larvae at least 3-5 days, more particularly at least 4 days, after post
25 infection; at a pH of at least about 3.5 to about 4.0 and in the presence of protease inhibitors such as PMSF, EDTA and benzamidine, preferably at least about 1.5 mM.
- 30 Preservation of the larvae after selection for harvest in the present invention is envisioned to be conducted by freezing the selected larvae and then homogenizing the larvae in conditions which minimize the activity of proteases.

The previously described versions of the present invention have many advantages including the easy selection of larvae -at the point of their optimal protein expression.

Because the visible expression of GFP will occur simultaneously with the expression of the IPNV structural proteins, each larvae can be selected for harvest when it is expressing the optimal amount of the subject protein. Furthermore, if the GFP is fused with at least one of the structural proteins, when expressed, it is possible in the present invention to 5 quantify the amount of subject protein in an individual larvae. This in turn allows an estimation of the total yield from a production population to be made.

In addition, larvae which are not expressing significant amounts of the IPNV structural proteins can be removed from the production population so that resources are not 10 expended attempting to purify the subject protein from them. Furthermore, because the larvae can be grown on inexpensive media, it is unnecessary to incur the high expense of formulating complex media and maintaining bioreactors.

The visualization of the reporter protein will permit the progress of the expression of V2-V4-V3 polypeptide to be monitored through the purification process directly and 15 indirectly. This will also serve to facilitate purification. Separation of the reporter protein from the V2-V4-V3 polypeptide may be accomplished in several ways. For example, an affinity ligand could be engineered onto the reporter protein. The affinity ligand can be used to bind and separate the structural proteins from the larval extract 20 during the initial purification.

As a further means to simplify purification, the linkage between the gene for the V2-V4-V3 polypeptide and the reporter gene could comprise a gene which expresses a protein that is cleaved by a specific enzyme. Once the fusion product is separated from the 25 homogenate via the affinity ligand, it could be exposed to the enzyme which cleaves the linking protein to separate the subject protein and the reporter protein. Then, a one step purification could be performed to purify the subject protein.

Still further, in the present invention with the inclusion of the VP4 protease as part of the 30 subject protein, it is contemplated that the VP4 may participate in the release of the GFP protein from either of the V2 or V3 structural proteins.

Once the V2-V4-V3 polypeptide and/or V2 and V3 proteins are separated from the

reporter protein, if it is determined that the GFP protein must be removed for effective vaccine, the purified VLPs are administered as a sub-unit vaccine to aquatic species.

It is contemplated by the inventors to include more than one strain of IPNV so that more
5 than one type of empty viral capsid can be generated and recovered. Thus, the recovered empty viral capsids may contain epitopic determinants for more than one strain of IPNV. Since VP2 protein is the major host protective immunogen of IPNV, the present invention can include structural proteins (VP2 and VP3) from at least two different IPNV strains. Strains suitable for use in producing the present vaccine include but are not
10 limited to West Buxton, Jasper, SP, N1, DRT, Ab, HE, TE, Canada 1, 2, 3 and VR299 strains.

Physiologically acceptable carriers for vaccination of fish are known in the art and need not be further described herein. In addition to being physiologically acceptable to the
15 fish the carrier must not interfere with the immunological response elicited by the vaccine and/or with the expression of its polypeptide product.

Other additives, such as adjuvants and stabilizers, among others, may also be contained in the vaccine in amounts known in the art. Preferably, adjuvants such as aluminum
20 hydroxide, aluminum phosphate, plant and animal oils, and the like, are administered with the vaccine in amounts sufficient to enhance the immune response to the IPNV. The amount of adjuvant added to the vaccine will vary depending on the nature of the adjuvant, generally ranging from about 0.1 to about 100 times the weight of the IPNV, preferably from about 1 to about 10 times the weight of the IPNV.

25

The vaccine of the present invention may also contain various stabilizers. Any suitable stabilizer can be used including carbohydrates such as sorbitol, mannitol, starch, sucrose, dextrin, or glucose; proteins such as albumin or casein; and buffers such as alkaline metal phosphate and the like.

30

The vaccine can be administered by any suitable known method of inoculating fish including but not limited to immersion, oral administration, spraying and injection. Preferably, the vaccine is administered by mass administration techniques such as

immersion as conducted by a standardized immersion protocol described by McAllister and Owens (1986), the contents of which are hereby incorporated by reference herein in its entirety.

- 5 When administered by injection, the vaccines are preferably administered parenterally. Parenteral administration as used herein means administration by intravenous, subcutaneous, intramuscular, or intraperitoneal injection. Further administration may be accomplished by sonification or electroporation.
- 10 The vaccine of the present invention is administered to fish to prevent IPNV anytime before or after hatching. The term "fish" is defined to include but not be limited to fish species including trout, salmon, carp, perch, pike, eels, and char as well as mollusks and crustaceans.
- 15 The vaccine may be provided in a sterile container in unit form or in other amounts. It is preferably stored frozen, below -20°C, and more preferably below -70°C. It is thawed prior to use, and may be refrozen immediately thereafter. For administration to fish, the recombinantly produced VLPs may be suspended in a carrier in an amount of about 10^2 to 10^7 pfu/ml, and more preferably about 10^5 to 10^6 pfu/ml in a carrier such as a saline solution. The sub-unit vaccine may contain the antigenic equivalent of 10^4 to 10^7 pfu/ml suspended in a carrier. Other carriers may also be utilized as is known in the art.
- 20

- 25 Examples of pharmaceutically acceptable carriers are diluents and inert pharmaceutical carriers known in the art. Preferably, the carrier or diluent is one compatible with the administration of the vaccine by mass administration techniques. However, the carrier or diluent may also be compatible with other administration methods such as injection, and the like.

- 30 The invention also can be used to produce combination vaccines wherein the IPNV material is combined with antigen material of other relevant fish pathogens and/or bacterial antigens. Examples of relevant fish pathogens include but are not limited to infectious hematopoietic necrosis virus (IHNV), viral hemorrhagic septicemia virus (VHSV), ISAV (Infectious salmon anemia virus), PDV (Pancreas disease virus), Irido

virus and Nodavirus. Examples of relevant bacterial antigens include but are not limited to antigens from gram positive bacteria such as but not limited to Lactococcus garvieae and gram negative bacteria such as but not limited to Aeromonas salmonicida. Other relevant bacterial antigens include but are not limited to antigens from Vibrio 5 anguillarum, Vibrio salmonicida, Vibrio viscosus, Yersinia ruckeri, Piscirickettsia salmonis, Renibacterium salmoninarum, Pasteurella piscicida, Flavobacterium columnare, and Flavobacterium psychrophilum.

The foregoing embodiments of the present invention are further described in the 10 following Examples. However, the present invention is not limited by the Examples, and variations will be apparent to those skilled in the art without departing from the scope of the present invention.

15 Cloning and expression of ALV122 segment A (major ORF) and EGFP in Bac-to-Bac baculovirus expression system.

All DNA manipulations were carried out according to standard molecular biology techniques described by Sambrook, et al. A full length complementary DNA fragment (SEQ ID NO: 2) encoding the Segment A (V2-V4-V3) of a Norwegian field isolate (Sp 20 serotype (ALV122)) of Infectious Pancreatic Necrosis Virus (IPNV) was generated by reverse transcription-polymerase chain reaction (RT-PCR).

To generate cDNA clones of segment A of Sp strain (ALV122) (SEQ ID NO: 2), two primer pairs (A-A5' NC plus SpA-KpnR, SpA-KpnF plus SpA-PstR) were used for RT- 25 PCR amplification. The sequences of these primers were:

- 1) A-A5' NC, 5'-TAATACGACTCACTATAGGAAAGAGAGTTCAACG-3' (SEQ ID NO: 10);
- 2) SpA-KpnR, 5'-GGCCATGGAGTGGTACCTTC-3' (SEQ ID NO: 11);
- 30 3) SpA-KpnF, 5'-GAAGGTACCACTCCATGGCC-3' (SEQ ID NO: 12; and
- 4) SpA-PstR, 5'-AAAGCTTCTGCAGGGGGCCCCCTGGGGGGC-3' (SEQ ID NO: 13).

Using genomic RNA as a template, desired overlapping cDNA fragments of segment A were synthesized and amplified according to the supplier's protocol (Perkins-Elmer). Amplified fragments were cloned into the EcoRI site of pCR2.1 vector (Invitrogen Corp.) to obtain plasmids pCRSpA5' and SpA31. The insert DNA in all the plasmids 5 was sequenced by the dideoxy chain termination method using an Applied Biosystem automated DNA sequencer, and the sequence data was analyzed by using PC/GENE (Intelligenetics) software. To construct a full-length cDNA clone of segment A, a representative plasmid of pCRSpA5' and pCRSpA3' clones was double-digested with restriction enzyme pairs BamHI plus KpnI and KpnI plus HindIII release 1495 and 1602 10 bp fragments, respectively. These fragments were then cloned between the BamHI and KpnI sites of pUC19 vector to obtain plasmid PUC19SpAALV122#7. This plasmid contained a full-length copy of segment A which encodes all for VP2-VP4-VP3.

A complementary DNA clone of energetic GFP (SEQ ID NO: 1) was amplified using 15 primers XhoEGFPF: 5'-AACTCGAGATGGTGAGCAAGGGCGAG-3' (SEQ ID NO: 4) and XhoEGFPR: 5'-ATCTCGACTTGTACAGCTCGTCCATGC-3' (SEQ ID NO: 5). The PCR product was cloned into pCR 2.1 vector by TA cloning. (A TOPO TA cloning kit is available from InVitrogen Corp containing T vector and other components required for cloning including the pCR2.1-TOPO vector, 10X PCR buffer, salt solution, dNTP 20 mix, control template, and control PCR primers, DH5a-T1 Competent cells (1 vial/ transformation), SOC medium.) EGFP was excised using Xho I site and cloned into a pFastBac DUAL vector next to the P10 promoter to yield FastBacEGFP(p10).

The construction of the full-length cDNA clone of segment A of IPNV strain ALV103 of 25 Sp serotype has been described in U.S. Patent No. 6,274,147, the contents of which are hereby incorporated herein by reference for all purposes. Using the methods described in U. S. Patent No: 6,274,147, the major open reading frame (ORF) of segment A was amplified by PCR with the following set of primers.: SpABamF: 5'-GGGATCCATGAACACAAACAAGGC-3' (SEQ ID NO: 6) and SpAHinR: 5'-AAAGCTTACACCTCAGCGTTGTC-3' (SED ID NO: 7). The PCR product was cloned 30 into pCR2.1 vector by TA cloning.

The SP strain ALV103 was cloned behind the polyhedrin promoter between the BamHI and HindIII sites of baculovirus vector, pBlueBac4. The recombinant plasmid BlueBacSPA#8 was obtained. This plasmid was digested with BstE II and Hind III enzymes and this fragment was replaced with a BstE II and Hind III fragment from 5 plasmid pUC19ALV122A #7 containing the entire segment A of ALV122. The resulting plasmid carrying the major ORF of segment A from ALV122 strain was digested with BamHI and Sal I enzymes and cloned next to polyhedrin promoter of FastBacEGFP(p10) to yield FastBacEGFP(p10)IPNA(poly). This plasmid was then used to make bacmid clone and subsequently used to generate recombinant baculovirus.

10

A recombinant baculovirus containing the nucleotide sequence of segment A of IPNV and the EGFP gene was obtained by the method described in the manual of O'Reilly et al. (1991) and using a BAC-TO-BAC Baculovirus Expression system available from Invitrogen. The system includes pFASTBACTM the BAC-TO-BAC expression vector 15 for transforming DH10Bac E.coli which contains a specialized Bacmid that recombines with the preferred construct via site-specific transposition to create a recombinant expression Bacmid.

The mixture was added to 0.75 ml of Grace's medium supplemented with 10% FBS in a 20 60-mm dish seeded with the permissive *Spodoptera frugiperda* (Sf9) cells. Following incubation at 27°C for 4 hr, the medium was removed; the monolayer washed with Grace's medium supplemented with 10% FBS and the dish incubated at 27°C. Four to six days post transfection, the cells were observed with an inverted microscope for signs of infection. Extracellular virus was collected and plaqued on monolayer of Sf9 cells. 25 Representative recombinant IPNV was used for infecting of insect larvae.

Infecting Insect Larvae to generate sufficient quantities of empty IPNV capsids for vaccination purposes.

30 This example describes the optimized production of IPNV structural proteins in larvae of the cabbage looper, *Trichoplusia ni*. The eggs were obtained from a commercial supplier (Entopath, Inc., Easton, Pa.) and hatched in Styrofoam cups containing solid food (Entopath) at 30°C. The recombinant baculovirus, isolated and purified from the insect

cells were used to infect the larvae by injection of 5 μ l of 5×10^6 pfu/ml per fish. (It should be noted that infection may also be accomplished by spreading 500 μ L recombinant baculovirus (5×10^7 pfu/ML) on the media which was obtained pre-made in Styrofoam cups (Entopath)).

5

The cups were covered and allowed to stand an hour for the virus to be completely absorbed by the media. The fourth instar larvae (about 4 days after hatching) were then placed into the cups (approximately about 10 to 15 larvae per cup). The cups were then inverted and the larvae were allowed to feed on the infected food at 30°C. The fecal matter dropped onto the lid so it could be discarded daily.

10 The infected larvae were then collected and frozen at about -60°C until they were ready for isolation and purification of the recovered protein structures. The frozen larvae were thawed, and homogenized in phosphate buffered saline (PBS) containing 60 mM dithiothreitol (DTT), and 0.5% Triton X-100 at pH 7.0. The homogenate was then 15 centrifuged at 4°C. to remove large debris. After centrifugation, the supernatant was also further clarified with using a 0.22 micron filter.

20 The fraction containing the expressed structural proteins was examined in an electron microscope. Empty IPNV capsids were found as shown in Figure 2, that were similar to size and symmetry to those described for native ALV122 Sp strains as shown in Figure 1. The particles viewed under the electron microscope were sized at about 60 nm and showing the capsid structure but having no RNA genome as compared to the fully active native IPN viruses. Thus, the shape and size of the negatively stained purified IBNV-like 25 particles were similar to in size and shape to the native IPNV but without the infectious genomic load.

30 The virus particles were recognized by anti-VP2 monoclonal antibody provided in an antibody kit commercially available from Dioxotics, which further confirmed the identity with the native IPNV and suggested that the surface of the virus particles were formed by VP2 proteins. Further binding of the antibody to the virus particles were evidence of correct structural formation of the outer viral capsid which has internalized the VP3 protein. As such, the VP2 protein, carrying the major neutralizing epitope formed the

external surface of the virion and the VP3 protein faces the interior of the capsid.

Efficacy of empty IPNV capsids as a sub-unit vaccine

5 This study was carried out at the United States Geological Survey, National Fish Health Research Laboratory, Kearneysville, West Virginia. The experiment was conducted in a flow through system. The experimental design consisted of four experiments with six treatments and 3 replicates with a total of seventy-two tanks. Thirty Rainbow trout fry, with an average body weight of 0.13 g were held in one-liter polypropylene tanks and used for the study. In each experiment, fish was vaccinated at high (0.5mg/mL) and low (0.1mg/mL) doses of the expressed IPNV structural proteins in three treatments and the other three treatments was treated with phosphate buffered saline (PBS) instead, and served as controls. In the first and second experiment, fish were subjected to high dose of the IPNV structural proteins and were challenged after two and three weeks post vaccination respectively, with Sp and VR-299 strains of IPNV. Low dose of expressed structural IPNV protein was used in the third and fourth experiment with similar post vaccination exposure times. Overall, the experimental set up consisted of 72 tanks (6 groups X 3 replicates X 2 vaccine doses X 2 time intervals = 72). The treatment groups and the number of tanks that were used for the study are shown in Table 1.

10

15

20

Table 1. Treatment groups and the total number of tanks used for the study. Control groups were treated with phosphate buffered saline (PBS) instead of expressed IPNV structural proteins.

Treatment	Replicates	Vaccine Dose	Exposure time	Total Tanks
Control Groups				
No vaccine + No Challenge	3	2 (PBS)	2	12
No Vaccine + ALV122 (Sp)	3	2 (PBS)	2	12
No Vaccine + VR-299	3	2 (PBS)	2	12
Immunized Groups				
Immunized + No challenge	3	2	2	12
Immunized + ALV122	3	2	2	12

Immunized + VR-299	3	2	2	12
--------------------	---	---	---	----

- For vaccination and challenging of the fish, a standardized immersion challenge described by McAllister and Owens (1986) for IPNV was followed. For vaccination, the purified larval homogenate containing expressed IPNV proteins was used. For virus challenge, stock virus was diluted in PBS and added to tanks containing fish at a density of 1g of fish per 25 mL of water to achieve a concentration of 10^5 PFU/mL. During both vaccination and challenge, fish were exposed for 5 hours with static condition and aeration. Water flow was resumed at a rate of 250 mL/min after the end of exposure.
- 5 Mortality was monitored over a period of 28 days in all the four experiments. The dead fish were collected daily and frozen at -20° C until the analysis. At the end of all the experiments, seventy-five fish from both control and vaccinated groups (twenty-five from each replicate) including the survivors and the dead fish were individually analyzed for the presence of IPNV by viral plaque assay. Histopathological studies also will be
- 10 performed to examine whether the vaccine can prevent lesions in the internal organs.
- 15

Results

In experiment 1, fish were immunized with high dose of IPNV expressed structural proteins and challenged two weeks post-vaccination with Sp and VR299 strains of IPNV. Mortality due to primary infection started to appear on the seventh day in the control group that was not immunized but challenged with VR299. Mortality in the immunized group on the other hand, started appearing on the thirteenth day in the VR299 challenged group, which indicates that the vaccine was able to prevent the primary infection. It was found that the cumulative mortality rate in the control group was 13.5% while in the immunized group it was only 8 % (Fig 3). The result indicated that the expressed proteins of Sp strain that was isolated in Norway can confer a partial cross protection against VR299 strain that was isolated from a field outbreak in USA. Neither the control nor the treated group showed mortality when exposed to the Sp strain of IPNV. The Sp isolate that was used in the study was originally isolated from a field outbreak in Norway from Atlantic salmon. The results obtained indicate that the rainbow trout used in the study might not have the receptors for the virus entry and hence may not be susceptible to Sp strain.

20

25

30

The lower doses used in Experiments 3 and 4 showed no difference in the mortality rate indicating that the effectiveness of the vaccine is dose dependent.

REFERENCES

All cited references are hereby incorporated herein by reference for all purposes.

- 5 Belyaev, A.S. and P. Roy. 1993 Development of baculovirus triple and quadruple expression vectors: co-expression of three or four bluetongue virus proteins and the synthesis of bluetongue virus-like particles in insect cells. *Nucl. Acids. Res.* 21(5):1219-1223.
- 10 Bentley, WE., M.Y. Wang and V.N. Vakharia. 1994. Development of an efficient bioprocess for poultry vaccines using high-density insect cell culture. *Ann. New York Acad. Sci.* 745: 336-359.
- 15 Cha, HJ., N.G. Dalal, M.Q. Pham, V. N. Vakharia, G. Rao, WE. Bentley. 1999. Insect larval expression process is optimized by generating fusions with green fluorescent protein. *Biotechnol. Bioeng.* 65:316-324.
- 20 Duncan, R., E. Nagy, P.J. Krell and P. Dobos. 1987. Synthesis of the infectious pancreatic necrosis virus polyprotein, detection of a virus-encoded protease, and line structure mapping of genome segment A coding regions. *J. Virol.* 61:3655-3664.
- 25 Leong, J.C. and J.L. Fryer. 1993. Viral vaccines for aquaculture. Pages 225-240 in M. Faisal and F.M. Hetrick, eds. *Annual Review of Fish Diseases*. Vol.3. Pergamon Press, New York.
- Maeda, S. 1989. Expression of foreign genes in insects using baculovirus vectors. *Ann. Rev. Entomol.* 34:351-72.
- 30 Magyar, G., and Dobos, P. (1994). Expression of infectious pancreatic necrosis virus polyprotein and VP1 in insect cells and the detection of the polyprotein in purified virus. *Virology* 198: 437-445.

- McAllister P.E., Owens, W.J., Infectious Pancreatic Necrosis Virus - Protocol for a Standard Challenge to Brook Trout, Transactions of the American Fisheries Society, 115 (3): 466-470 May 1986.
- 5 McKenna, B.M., Fitzpatrick, R.M., Phenix, K.V., Todd, D., Vaughan, L.M., and Atkins, G.J., 2001. Formation of Infectious Pancreatic Necrosis Virus-like Particles Following Expression of Segment A by Recombinant Semliki Forest Virus, Mar. Biotechnol. 3, 103-110.
- 10 O'Reilly, D.K., L.K. Miller and VA Luckow. 1991. Baculovirus expression vectors: A laboratory manual. 1st edition. W.H. Freeman and Co., New York.
- Phenix, K.V., McKenna, B., Fitzpatrick, R., Vaughan, L., Atkins, G., Liljestrom, P and Todd, D., 2000. Cell Culture Evaluation of the Semliki Forest Virus Expression System
- 15 As a Novel Approach for Antigen Delivery and Expression in Fish, Mar. Biotechnol. 2, 27-37.
- Saliki, J.T., B. Mizak and H.P. Flore. 1992. Canine parvovirus empty capsids produced by expression in a baculovirus vector: use in analysis of viral properties and
- 20 immunization. J. Gen. Virol. 73:369.
- Sambrook, J., E.F. Fritsch and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
- 25 Urakawa, T., M. Ferguson, P.D. Minor, J. Cooper, M. Sullivan, J.W. Almond and D.H.L. Bishop. 1989. Synthesis of immunogenic, but non-infectious, poliovirus particles in insect cells by a baculovirus expression vector. J. Gen. Virol. 70:1453-1463.
- 30 Vakharia, V.N., D.B. Snyder, D. Luttkien, S.A. Mengel-Whereat, P. K. Savage, G. H. Edwards and MA Goodwin. 1994. Active and passive protection against variant and classic infectious bursal disease virus induced by baculovirus expressed structural proteins. Vaccine 12:452-456.

Yao, K. and V.N. Vakharia 1998. Generation of infectious pancreatic necrosis virus from cloned cDNA J. Virol. 72:8913-8920.

5

THE CLAIMS

What is claimed is:

- 5 1. A sub-unit vaccine for controlling Infectious Pancreatic Necrosis Virus (IPNV) in aquatic species, the sub-unit vaccine comprising IPNV structural proteins VP2 and VP3 assembled as an empty IPNV capsid.
- 10 2. The vaccine according to claim 1, further comprising a green fluorescent protein.
- 15 3. The vaccine according to claim 1, wherein the IPNV is a strain selected from the group consisting of West Buxton, Jasper, SP, N1, DRT, Ab, HE, TE, Canada 1, Canada 2, Canada 3 and VR299 strains.
- 20 5. The vaccine according to claim 1, wherein the empty IPNV capsid approximates the size and conformation of a native IPN virus.
- 25 6. The vaccine according to claim 1, wherein the empty viral capsid has a diameter of about 50 to about 65 nm.
- 30 7. The vaccine according to claim 1, wherein the VP2 and VP3 structural proteins are encoded by SEQ ID NO: 2.
8. The vaccine according to claim 1, further comprising a physiologically acceptable carriers for fish.
9. A baculovirus expression vector comprising a polynucleotide sequence encoding for structural proteins VP2-VP4-VP3 of infectious pancreatic necrosis virus and a green

fluorescent protein.

10. The baculovirus expression vector according to claim 9, wherein the polynucleotide sequence encoding for the infectious pancreatic necrosis virus is SEQ ID NO: 2, and the green fluorescent protein is SEQ ID NO: 1.

11. The baculovirus expression vector according to claim 9, wherein the polynucleotide sequence encoding for the green fluorescent protein is selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 8, and SEQ ID NO: 9.

10

12. A host cell transfected with the baculovirus expression vector according to claim 9.

15 10.

14. A host cell transfected with the expression vector according to claim 11.

15. The host cell according to claim 10, wherein the host cell is an insect cell.

20

16. A method of generating structural proteins of IPNV assembled as an empty viral capsid comprising the steps of:

25 (a) providing a recombinant baculovirus comprising a polynucleotide encoding IPNV Segment A proteins VP2,-VP4 -VP3, and a reporter protein;

(b) infecting insect larvae with the recombinant baculovirus; and

30 (c) maintaining suitable conditions for expression of IPNV Segment A proteins VP2,-VP4-VP3, and the reporter protein to generate structural proteins VP2 and VP3 assembled as an empty IPNV capsid; and

(d) recovering the empty IPNV capsid from the larvae.

17. The method according to claim 16, wherein the larvae are infected all at the same time and harvested when the reporter protein is expressed.
- 5 18. The method according to claim 16, wherein suitable conditions comprises:
infecting the larvae with a viral loading of at least 5×10^7 pfu/mL recombinant baculovirus;,
maintaining a temperature of at least about 30°C; and
harvesting of the larvae at least 3-5 days after post infection at a pH of at least about 3.5
10 to about 4.0.
- 15 19. A method for reducing and/or preventing infection of IPNV in marine fish by administrating an effective amount of a sub-unit vaccine comprising IPNV structural proteins VP2 and VP3 assembled as an empty IPNV capsid that approximates the size and conformation of a native IPN virus.
- 20 20. The method according to claim 19, wherein the IPNV is a strain selected from the group consisting of West Buxton, Jasper, SP, N1, DRT, Ab, HE, TE, Canada 1, Canada 2, Canada 3 and VR299 strains.
- 25 21. The method according to claim 19, wherein the vaccine further comprising an antigen from an aquatic virus other than IPNV selected from the group consisting of: infectious hematopoietic necrosis virus (IHNV), viral hemorrhagic septicemia virus (VHSV), ISAV (Infectious salmon anemia virus), PDV (Pancreas disease virus), Irido virus, and Nodavirus.
- 30 22. The method according to claim 19, wherein the empty viral capsid resembles the 3D-structure of native IPNV particles and does not include an infectious RNA genome.
- 30 23. The method according to claim 19, wherein the empty IPNV capsid has a diameter of about 50 to about 65 nm.
24. A sub-unit vaccine for controlling Infectious Pancreatic Necrosis Virus (IPNV) in

aquatic species, the sub-unit vaccine comprising IPNV structural proteins VP2 and VP3 assembled as an empty IPNV capsid that corresponds to the 3D-structure of a native IPN virus and does not include an infectious RNA genome.

1/3

BEST AVAILABLE COPY

Figure 1

2/3

BEST AVAILABLE VUE

Figure 2

Figure 3

SEQUENCE LISTING

<110> VIKHARIA, VIKRAM N

<120> SUB-UNIT VACCINE FOR INFECTIOUS PANCREATIC NECROSIS VIRUS

<130> 4115-154

<150> 60/311,488

<151> 2001-08-10

<160> 13

<170> PatentIn version 3.1

<210> 1

<211> 720

<212> DNA

<213> Aequorea victoria

<400> 1

atggtagca agggcgagga gctgttcacc ggggtggtgc ccatacctgggt cgagctggac 60

ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 120

ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggccacc 180

ctcgtgacca ccctgaccta cggcgtgcag tgcttcagcc gctaccccgaa ccacatgaag 240

cagcacgact tcttcaagtc cgccatgccc gaaggctacg tccaggagcg caccatcttc 300

ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 360

gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 420

aagctggagt acaactacaa cagccacaaac gtctatatca tggccgacaa gcagaagaac 480

ggcatcaagg tgaacttcaa gatccgcccc aacatcgagg acggcagcgt gcagctcgcc 540

gaccactacc agcagaacac ccccatcgcc gacggccccc tgctgctgcc cgacaaccac 600

tacctgagca cccagtccgc cctgagcaaa gacccaaacg agaagcgcga tcacatggtc 660

ctgctggagt tcgtgaccgc cgccgggatc actctcgca tggacgagct gtacaagtaa 720

<210> 2

<211> 3097

<212> DNA

<213> Infectious pancreatic necrosis virus

<400> 2

ggaaagagag tttcaacgtt agtggttaacc cacgagcgga gagctttac ggaggagctc 60

tccgtcgatg gcgaaagccc tttctaacaa acaaacaac aatctatatac aatgcaagat 120

gaacacaaac aaggcaaccg caacttacct gaaatccatt atgctccag agactggacc 180

agcaagcatc ccggacgaca taacggagag acacatctta aaacaagaga cctcgatata 240

caacttagag gtctccgaat caggaagtgg cattctgtt tggccctcg gggcaccagg 300

ctcacggatc ggtgcacact acagatggaa tgcgaaccag acggggctgg agttcgacca 360

gtggctggag acgtcgagg acctgaagaa agcctcaac tacgggaggg tggatctcaag 420

gaaatatgac atccaaagct ccacactacc ggccggctc tatgctctga acgggacgct 480

caacgctgcc accttcgaag gcagtctgtc tgaggtggag agcctgaccc acaacagcct 540

gatgtcccta acaacgaacc cccaggacaa agtcaacaac cagctggta ccaaaggagt	600
cacagtcctg aatctaccaa cagggttcga caaaccatac gtccgcctag aggacgagac	660
accccagggt ctccagtcaa tgaacggggc caagatgagg tgcacagctg caactgcacc	720
gcggagggtac gagatcgacc tccccatccca acgcctaccc cccgttactg cgacaggaac	780
cctcaccact ctctacgagg gaaacgcccga catcgtaac tccacgacag tgacgggaga	840
cataaaacttc agtctgacag aacaacccgc agtcgagacc aagttcgact tccagctgga	900
cttcatgggc cttgacaacg acgtcccagt tgtcacagt gtcagctccg tgctggccac	960
aatatgacaac tacagaggag tctcagccaa gatgacccag tccatcccga ccgagaacat	1020
cacaaagccg atcaccaggg tcaagctgtc atacaagatc aaccagcaga cagcaatcgg	1080
caacgtcgcc accctgggc caatgggtcc agcatccgtc tccttctcat cagggAACGG	1140
aaatgtcccc ggctgtctca gaccaatcac actgggtggcc tatgagaaga tgacaccgct	1200
gtccatcctg accgttagctg gagtgccaa ctacgagctg atcccaaacc cagaactcct	1260
aaagaacatg gtgacacgct atggcaagta cgaccccgaa ggtctcaact atgccaagat	1320
gatccgttcc cacagggaaag agctggacat caggacagtg tggaggacag aggagtacaa	1380
ggagaggacc agagtcttca acgaaatcac ggacttctcc agtacactgc ccacgtcaaa	1440
ggcatggggc tggagagaca tagtcagagg aattcgaaa gtcgcagctc ctgtactgtc	1500
cacgctgttt ccaatggcag caccactcat aggaatggca gaccaattca ttggagatct	1560
caccaagacc aacgcacgac gcggaaaggta ccactccatg gcccggagg ggcgtacaa	1620
agacgtgctc gagtcctggg caagcggagg gcccgcacca aaattctccc gagccctcaa	1680
gaacaggctg gagtcggcca actacgagga agtcgagctt ccaccccccct caaaaggagt	1740
catgtccct gtggtgacaca cagtcaagag cgcacccaggc gaggttcgtc ggccctggc	1800
aatcataatt ccaggggagt acccccggact tctagatgcc aaccaggcagg tcctatccca	1860
cttcgcaaac gacaccggga gcgtgtgggg cataggagag gacataccct tcgagggaga	1920
caacatgtgc tacactgcac tccccactcaa ggagatcaaa agaaacggga acatagtagt	1980
cgagaagatc tttgctggac caatcatggg tccctctgtc caactaggac tgtccctact	2040
agtgaacgac atcgaggacg gagttccaa gatggattc accggcgaaa tcgcccgtga	2100
cgaggagaca atcataccaa tctgcgggtg agacatcaaa gccatcgac cccatgaaca	2160
agggtcgcca ctcatcgac accaaccagg agtggacgag gaggtgcgaa acacatccct	2220
ggccgcacac ctgatccaga cccggacccct gcccgtacaa cgcgcaccaagg gtcacacaa	2280
gaggatcaag tacctggag agctgtatggc atcaaattgca tccggatgg acgaggaact	2340
gcaacgcctc ctgaacgcca caatggcact ggccaaagaa gtccaggacg ccgagatcta	2400
caaacttctt aagctcatgg catggaccacg aaagaacgac ctcaccgacc acatgtacga	2460
gtggtcaaaa gaggaccccg atgcactaa gttcggaaag ctcatcagca cgccaccaaa	2520
gcaccccgag aagccaaag gaccagacca acaccatgcc caagaggcga gagccaccccg	2580

catatcactg gacgccgtga gagccgggc ggacttcgcc acaccgaaat gggtcgcgt	2640
gaacaactac cgccggccat ctcccggca gttcaagtac tacctgatca ctggacgaga	2700
accagaacca ggcgacgagt acgaggacta cataaaaaca cccattgtga aaccgaccga	2760
catgaacaaa atcagacgtc tagccaacag tgtgtacggc ctcccacacc aggaaccagc	2820
accagaggag ttctacgatg cagttgcagc tgtattcgca cagaacggag gcagaggtcc	2880
cgaccaggac caaatgcgaa acctcaggaa gctcgcaaga cagatgaaac gacgaccccg	2940
gaacgcccgt gcaccacgga gaaccagagc gccagcgaa ccggcacccgc ccggacgctc	3000
aaggttcacc cccagcgag acaacgctga ggtgtaacga ctactcttt tcctgactga	3060
tccccctggcc aaaaccccgg ccccccaggg ggccccc	3097

<210> 3
<211> 972
<212> PRT
<213> Infectious pancreatic necrosis virus

<400> 3

Met Asn Thr Asn Lys Ala Thr Ala Thr Tyr Leu Lys Ser Ile Met Leu			
1	5	10	15

Pro Glu Thr Gly Pro Ala Ser Ile Pro Asp Asp Ile Thr Glu Arg His		
20	25	30

Ile Leu Lys Gln Glu Thr Ser Ser Tyr Asn Leu Glu Val Ser Glu Ser		
35	40	45

Gly Ser Gly Ile Leu Val Cys Phe Pro Gly Ala Pro Gly Ser Arg Ile		
50	55	60

Gly Ala His Tyr Arg Trp Asn Ala Asn Gln Thr Gly Leu Glu Phe Asp			
65	70	75	80

Gln Trp Leu Glu Thr Ser Gln Asp Leu Lys Lys Ala Phe Asn Tyr Gly		
85	90	95

Arg Leu Ile Ser Arg Lys Tyr Asp Ile Gln Ser Ser Thr Leu Pro Ala		
100	105	110

Gly Leu Tyr Ala Leu Asn Gly Thr Leu Asn Ala Ala Thr Phe Glu Gly		
115	120	125

Ser Leu Ser Glu Val Glu Ser Leu Thr Tyr Asn Ser Leu Met Ser Leu		
130	135	140

Thr Thr Asn Pro Gln Asp Lys Val Asn Asn Gln Leu Val Thr Lys Gly			
145	150	155	160

Val Thr Val Leu Asn Leu Pro Thr Gly Phe Asp Lys Pro Tyr Val Arg		
165	170	175

Leu Glu Asp Glu Thr Pro Gln Gly Leu Gln Ser Met Asn Gly Ala Lys
180 185 190

Met Arg Cys Thr Ala Ala Thr Ala Pro Arg Arg Tyr Glu Ile Asp Leu
195 200 205

Pro Ser Gln Arg Leu Pro Pro Val Thr Ala Thr Gly Thr Leu Thr Thr
210 215 220

Leu Tyr Glu Gly Asn Ala Asp Ile Val Asn Ser Thr Thr Val Thr Gly
225 230 235 240

Asp Ile Asn Phe Ser Leu Thr Glu Gln Pro Ala Val Glu Thr Lys Phe
245 250 255

Asp Phe Gln Leu Asp Phe Met Gly Leu Asp Asn Asp Val Pro Val Val
260 265 270

Thr Val Val Ser Ser Val Leu Ala Thr Asn Asp Asn Tyr Arg Gly Val
275 280 285

Ser Ala Lys Met Thr Gln Ser Ile Pro Thr Glu Asn Ile Thr Lys Pro
290 295 300

Ile Thr Arg Val Lys Leu Ser Tyr Lys Ile Asn Gln Gln Thr Ala Ile
305 310 315 320

Gly Asn Val Ala Thr Leu Gly Thr Met Gly Pro Ala Ser Val Ser Phe
325 330 335

Ser Ser Gly Asn Gly Asn Val Pro Gly Val Leu Arg Pro Ile Thr Leu
340 345 350

Val Ala Tyr Glu Lys Met Thr Pro Leu Ser Ile Leu Thr Val Ala Gly
355 360 365

Val Ser Asn Tyr Glu Leu Ile Pro Asn Pro Glu Leu Leu Lys Asn Met
370 375 380

Val Thr Arg Tyr Gly Lys Tyr Asp Pro Glu Gly Leu Asn Tyr Ala Lys
385 390 395 400

Met Ile Leu Ser His Arg Glu Glu Leu Asp Ile Arg Thr Val Trp Arg
405 410 415

Thr Glu Glu Tyr Lys Glu Arg Thr Arg Val Phe Asn Glu Ile Thr Asp
420 425 430

Phe Ser Ser Asp Leu Pro Thr Ser Lys Ala Trp Gly Trp Arg Asp Ile
435 440 445

Val Arg Gly Ile Arg Lys Val Ala Ala Pro Val Leu Ser Thr Leu Phe
 450 455 460

Pro Met Ala Ala Pro Leu Ile Gly Met Ala Asp Gln Phe Ile Gly Asp
 465 470 475 480

Leu Thr Lys Thr Asn Ala Ala Gly Gly Arg Tyr His Ser Met Ala Ala
 485 490 495

Gly Gly Arg Tyr Lys Asp Val Leu Glu Ser Trp Ala Ser Gly Gly Pro
 500 505 510

Asp Gly Lys Phe Ser Arg Ala Leu Lys Asn Arg Leu Glu Ser Ala Asn
 515 520 525

Tyr Glu Glu Val Glu Leu Pro Pro Pro Ser Lys Gly Val Ile Val Pro
 530 535 540

Val Val His Thr Val Lys Ser Ala Pro Gly Glu Ala Phe Gly Ser Leu
 545 550 555 560

Ala Ile Ile Ile Pro Gly Glu Tyr Pro Glu Leu Leu Asp Ala Asn Gln
 565 570 575

Gln Val Leu Ser His Phe Ala Asn Asp Thr Gly Ser Val Trp Gly Ile
 580 585 590

Gly Glu Asp Ile Pro Phe Glu Gly Asp Asn Met Cys Tyr Thr Ala Leu
 595 600 605

Pro Leu Lys Glu Ile Lys Arg Asn Gly Asn Ile Val Val Glu Lys Ile
 610 615 620

Phe Ala Gly Pro Ile Met Gly Pro Ser Ala Gln Leu Gly Leu Ser Leu
 625 630 635 640

Leu Val Asn Asp Ile Glu Asp Gly Val Pro Arg Met Val Phe Thr Gly
 645 650 655

Glu Ile Ala Asp Asp Glu Glu Thr Ile Ile Pro Ile Cys Gly Val Asp
 660 665 670

Ile Lys Ala Ile Ala Ala His Glu Gln Gly Leu Pro Leu Ile Gly Asn
 675 680 685

Gln Pro Gly Val Asp Glu Glu Val Arg Asn Thr Ser Leu Ala Ala His
 690 695 700

Leu Ile Gln Thr Gly Thr Leu Pro Val Gln Arg Ala Lys Gly Ser Asn
 705 710 715 720

Lys Arg Ile Lys Tyr Leu Gly Glu Leu Met Ala Ser Asn Ala Ser Gly

725

730

735

Met Asp Glu Glu Leu Gln Arg Leu Leu Asn Ala Thr Met Ala Arg Ala
 740 745 750

Lys Glu Val Gln Asp Ala Glu Ile Tyr Lys Leu Leu Lys Leu Met Ala
 755 760 765

Trp Thr Arg Lys Asn Asp Leu Thr Asp His Met Tyr Glu Trp Ser Lys
 770 775 780

Glu Asp Pro Asp Ala Leu Lys Phe Gly Lys Leu Ile Ser Thr Pro Pro
 785 790 795 800

Lys His Pro Glu Lys Pro Lys Gly Pro Asp Gln His His Ala Gln Glu
 805 810 815

Ala Arg Ala Thr Arg Ile Ser Leu Asp Ala Val Arg Ala Gly Ala Asp
 820 825 830

Phe Ala Thr Pro Glu Trp Val Ala Leu Asn Asn Tyr Arg Gly Pro Ser
 835 840 845

Pro Gly Gln Phe Lys Tyr Tyr Leu Ile Thr Gly Arg Glu Pro Glu Pro
 850 855 860

Gly Asp Glu Tyr Glu Asp Tyr Ile Lys Gln Pro Ile Val Lys Pro Thr
 865 870 875 880

Asp Met Asn Lys Ile Arg Arg Leu Ala Asn Ser Val Tyr Gly Leu Pro
 885 890 895

His Gln Glu Pro Ala Pro Glu Glu Phe Tyr Asp Ala Val Ala Ala Val
 900 905 910

Phe Ala Gln Asn Gly Gly Arg Gly Pro Asp Gln Asp Gln Met Gln Asp
 915 920 925

Leu Arg Glu Leu Ala Arg Gln Met Lys Arg Arg Pro Arg Asn Ala Asp
 930 935 940

Ala Pro Arg Arg Thr Arg Ala Pro Ala Glu Pro Ala Pro Pro Gly Arg
 945 950 955 960

Ser Arg Phe Thr Pro Ser Gly Asp Asn Ala Glu Val
 965 970

<210> 4
 <211> 26
 <212> DNA
 <213> Artificial sequence

<220>

<223> Synthetic construct

<400> 4
aactcgagat ggtgagcaag ggcgag

26

<210> 5
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 5
atctcgacctt gtacagctcg tccatgc

27

<210> 6
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 6
gggatccatg aacacaaaaca aggc

24

<210> 7
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 7
aaagttaca cctcagcggtt gtc

23

<210> 8
<211> 5170
<212> DNA
<213> Aequorea victoria

<220>
<221> misc_feature
<222> (651)..(651)
<223> n can be a, g, t or c

<400> 8	
aagcttcaaa ttaagtcagc tccttaaatg aaagataata aagtgttagtt caagaactat	60
atgaatgatg tgtttcaga taacaaaaat gggaaaaaac atgctaaagt cagcatattt	120
ttggaaaatt gatgacgtca tcatgacgtc gtttgatga caaaacttat tataagcgaa	180
ttcttatatt ttacaggat aacaaagatg agtaaaggag aagaactttt cactggagtt	240
gtccccattc ttgttaatt agatggtgat gttaatgggc acaaattctc tgtcagtggaa	300
gagggtgaag gtgatgcaac atacggaaaa cttaccctta aatttatttg cactactggaa	360
aagctacctg ttccatggcc aacacttgtc actactttct cttatggtgt tcagtaagt	420
cattttataac tcttttaata tcagtgttaa gaaaatcaag tgtcttgcta ttttttcgt	480

tattggcattctagtca aattattgcgttttttacc caaaatgtta atgtaaaact	540
gaaatttggcacacttgcgc aaatatatac agggtatTTT gaaaaaatta aacaggatga	600
taaaagttgc acagaaaactt atctcaagat ttacccgcag aaagatgctt naaaaattga	660
tatTTgacag agcaaaaacctt gagattcagc tcttttagtt gtttgacttg aaatTTTggt	720
gacaggtagg tATCATGAAA aacAAACAAA acgtaaaaat atCACGTGAT taaAGTGTAT	780
cttacagacc agaaacagtt ttatTAactt ctattattctt atTTTGAAT atACACATTG	840
tatCAATTTC ttGAGTTACT CGAAGTAATA CCgACCTATC ATCAGAATTt CAAGTCAACA	900
caacattata tggggctgat tagggatga ttttgcTCT tttAGATGCT tttcaagata	960
cccagatcat atgAAACAGC atgACTTTT CAAGAGTGCc ATGCCCGAAG GTTATGTACA	1020
ggAAAGAact atATTTACA aAGATGACGG gaACTACAAA TCACGTGCTG aAGTCAAGTT	1080
tGAAGGTGAT ACCCTCGTTA ATAGAATTGA GTTAAAAGGT ATTGATTtTA AAGAAGATGG	1140
AAACATTCTT GGACACAAAAA TGGAAATACAA CTATAACTCA CACAATGTAT ACATCATGGC	1200
AGACAAACAA AAGAATGGAA TCAAAGTTAA CTTCAAAATT GTATGTATAC GTTAAGGGCA	1260
taaatttttgcggcataaaa atcttgcgaa atttattatc gCGAATAGGT tacgcaaaaat	1320
ctataattaa aatgtatTTT tttctgctga ttttctaaat aacaactcaa cccgtcattt	1380
ttatATCGCA AAAATAAATT CCgAAATAAT TTATGCTCGC AAAAATTTAG GCCCATAAGT	1440
AGACTTTGA TATCTGCGTG CTCTGCAATG AAGTAAAAT ACGATTTT CATTGAAATA	1500
CACGGGTTCA AAGTTATTTG TTAATTCAAT AAGCGTGCc AGAAATTAAA GGACGTATAA	1560
AGATACGAAC ACATCAAACC ATTCAATGCGT AAATAATGTT CTATTTTAA AATTCAACCA	1620
AGCTTAAATA TTCTTAAGAA TTATTCAATG GCCATGGGAG CAACAATATA GTTATGGACA	1680
AAAATTTCTG AGTTCACTT TATTCTGCG CGCCCGCATC AAAGTTCAAA CAACTGTGAA	1740
CCCGAGTTT TTCCAGCTT CAATTAAAT AAGAGACAAA AAGCAAATTG CAGTTCAAGA	1800
AAATCGAGAT ATTGCCAGAT GTAAACATT AATAAGAGAC AAAAAGTTCA TAAGCGTTCT	1860
AAAGAACAGC AACAAAATAA TAATTAGAAT TAAACGAGT CTCAAACAAA ATA AAAACTG	1920
AAGTCAAAGA GTCAAGTAAGG ATTAGTTA ACGATGCTTT ATAATCAAAG TTtTAATTCC	1980
AGTTCAATGTA TGCAATTAAAC AATAAGATCT TGGAGAATTG AATATGTTTc GAAATTTTAT	2040
AAATTCCGAT TTAATTCTA AAGTTGTGA TCAAAAATAG TTCAAAACTAT TTTCATGAAA	2100
AGATGATAAA TTACGGTAAT AAGTATATAA TATAATCAAT TAAAATTAAT TTAGGCTCA	2160
AATTACAGAA TCCACGTTT TTTCTCTAG ACATAGCACA GTGTTAGAT GTTGTtTTA	2220
TTTCATCCAT CCTTATTACA GTTTCCCTCT GAACTTTAAT ACTAGCGTAC AATTGAAATA	2280
ATAATCTGAA ATGATTCAAC TTTCAGAGA CACAACATTG AAGATGGAAG CGTTCAACTA	2340
GCAGACCATT ATCAACAAAAA TACTCCAATT GGCAGTGGCC CTGTCCTTT ACCAGACAAc	2400
CATTACCTGT CCACACAAATC TGCCCTTCC AAAGATCCA ACgAAAAGAG AGATCACATG	2460
ATCCTTCTTGA AGTTGTAAc AGCTGCTGGG ATTACACATG GCATGGATGA ACTATAACAA	2520

taaaatgtcca gacttccaat tgacactaaa gtgtccgaac aattactaaa atctcagggt 2580
 tcctggtaa attcaggctg agatattatt tatataattta tagattcatt aaaattttat 2640
 gaataattta ttgatgttat taataggggt tattttctta taaaataggc tactggagt 2700
 cattccta at tctatattaa ttacaatttg atttgacttg ctcaaaatcc cgcttcattg 2760
 ctttccact tgcattatcc ttattnatgt ttaatttgc ttttggttt gctacattga 2820
 gtgcaaaaaa ccttaatttc ggacgaattt tcgaacgaat tttttgacg gaattttctt 2880
 cattctattt actccctctag ctaaattattt ttacccctt gttaatttgg taaaatttt 2940
 ctctgagccg atgattgaga aattaatgga taaaatgtga gtaccttaca tgggtcaac 3000
 ttgtaacgaa tggaaaaaga aattacgttt caagagttt aaaggtataa cagttacagt 3060
 taaccgcaga aaaatttgcat gatgattgat aaattcgatt ttttgcattcc taaaattttc 3120
 caaacgtcag tggccgacga ctttatcagg gacttctaaa agtggaaaat aatcagggtgc 3180
 ggatttcgaa ggcgcaaaac tataggaaga gagcgaatg tcattaaattt atcatattct 3240
 attaactgat gacaatagat gatgaaaagt ttatgattat tcacttcct cctgttaatta 3300
 tgccgaccctt ctagattcac gcctgaaagt atagctacct gggatgaagt actagtctga 3360
 ggactctca cctaaaaattt aaattcttat aagagtaaac aagaaaactt gcaatgttacaa 3420
 acgggagagc gatgagaaac aaaaacaattt acgttgcac tatgaatatc gatgttcaat 3480
 caattttgtt ctttacttat aagaacgaga tcgtcttaac taaaatagt aaaatgttat 3540
 caagataata gcaatttttt accgacacag cgaagactca ctactgaaat gatcagttt 3600
 aatcaggcaa ataatccgtg gcacataata gtgaccgaaa ataattaatc ggcattaaaga 3660
 ctaccgaaat aataatgttt tttctactgc gtatacgcgt gagaattttt caataagctc 3720
 atcatctca gcatagttat acttttatgt aaagtatcaa ttccgacata aaataacggc 3780
 ttattatcga aataatagcg ttttctctac tccatgcgcg tcaaaatgtt tctctaggct 3840
 catcatcttc agcataatta taatttttgtt aaagtaccag ttccggcgtga aaataatgac 3900
 taattaccga aattatagtg ttttcttattt gcccgcgcg tgaaaaattt tgattgaatc 3960
 atcatctca gcataggcat aattctttgtt aaaaatatcga ttccgacata aaataatggc 4020
 ctattaccga aataatcgcg ttttctctac tgcgcgtgc cgtcaaaaat tatattttta 4080
 ttcatcatct tcagcataat tatattttttt tgtaaaatgtac cagttccgggt agaaaataat 4140
 gacttggttac tgaaataata gcgtttttctt attgcgcgtt cgtataaaaa attaaatgtaa 4200
 cgtcatcata ttccgcgtt gattttttt ttccaaatttta attaacctat tgaacaagaa 4260
 tgtacacttgc catcaaaaata ggtgaaatttgc gccaatatcg ctaaaatgtga cgcgcgggag 4320
 caataactacg catgtacgtt caggtaaaagc atgttagaaac tcggaggagt aggagtccac 4380
 cgtcgaaactt aaaaacgggat acactacgct atggccttcg ctctcccgta aaaaagggtact 4440
 aacaatacga cctaaatgaa atactaaaaaa aaacaagaga aatttaaccc ctttggtaac 4500
 acttttcaaa agtgggattt ttttagccaaac catctggat atatgggtgc tcatttttattt 4560
 attatctctt tctttattgtt tggtacaacg tagtcaaaaat acaaatttggg ttaataaaaaa 4620

gcaacattat aatgtataaa atctaattgt gtcttaattac cgacaaaattt tacaggaaca	4680
gttttcacca gaccgagtct taattttagt tttaaaagaa attatgttc tactgttctg	4740
acaatctgaa gacaattagt tcttagtgaa caatgtctg aattgaatat attcagcaat	4800
attttgttg taagaattgg atgaatgtac gaacccatcg cagatttata ccaagtgtta	4860
gatTTAACAA gatttgcagg ctgatgagtt tcgagaaaaat tcaacatatac tggatttgag	4920
ggTGGaacat taaaatctcc taagataata attctatcat aattagaata taaatttatca	4980
atgatgtcat ttaagtgatc tagaaaaata ttgatagtaa cagttggatg tttgtatata	5040
gaaatagtaa gccatctatt tttcccaaatt gcgagttcaa aaacccaaat tggattcctt	5100
caaagaaaaaa agacattaag aaacttgatg gaatcccttc tcgactgtaa acaagcagtc	5160
tctggatcc	5170

<210> 9
<211> 966
<212> DNA
<213> Aequorea victoria

<400> 9	
tacacacgaa taaaagataa caaagatgag taaaggagaa gaactttca ctggagttgt	60
cccaattctt gttgaatttag atggtgatgt taatggcac aaattttctg tcagtggaga	120
gggtgaaggt gatgcacat acggaaaact tacccttaaa tttatTTGCA ctactggaaa	180
actacctgtt ccattggccaa cacttgcac tactttctct tatgggttgc aatgctttc	240
aagataccca gatcatatga aacagcatga cttttcaag agtgcattgc ccgaaggta	300
tgtacaggaa agaactataat tttcaaga tgacggaaac tacaagacac gtgctgaagt	360
caagttgaa ggtgataccc ttgttaatag aatcgagttt aaaggtattt atttaaaga	420
agatggaaac attcttggac acaaatttggaa atacaactat aactcacaca atgtatacat	480
catggcagac aaacaaaaga atggaatcaa agttaacttc aaaatttagac acaacattga	540
agatggaaac gttaacttag cagaccatca tcaacaaaat actccaattt gcgatggccc	600
tgtcctttta ccagacaacc attacctgtc cacacaatct gcccttcga aagatcccaa	660
cggaaaagaga gaccacatgg tccttcttga gtttgttaca gctgctggaa ttacacatgg	720
catggatgaa ctatacaaattt aaatgtccag acttccaaattt gacactaaag tgtccgaaca	780
attactaaaa ttcagggtt cctggtaaaa ttccaggctga gatattttt atatattttat	840
agattcatta aaattgtatg aataattttat tgcgttattt gatagaggttt attttcttta	900
taaacaggct acttggagtg tattcttaat tctatattaa ttacaatttgc atttgacttg	960
ctcaaa	966

<210> 10
<211> 35
<212> DNA
<213> Artificial Sequence
<220>

<223> Synthetic Construct

<400> 10
taatacgact cactatagga aagagagttt caacg

35

<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 11
ggccatggag tggcaccttc

20

<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 12
gaaggtagcca ctccatggcc

20

<210> 13
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 13
aaagcttctg cagggggccc cctggggggc

30

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/25185

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) :A61K 39/12, 39/295; C12N 5/00, 15/09, 15/00, 15/74, 7/00, 7/04

US CL :Please See Extra Sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 424/199.1, 202.1, 204.1, 205.1; 435/235.1, 69.3, 236, 472, 320.1, 325

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WEST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y, P	US 6,274,147 B1 (VAKHARIA et al.) 14 August 2001, please see entire document	1-24
Y	US 6,180,614 B1 (DAVIS) 30 January 2001, please see entire document.	1-24
Y	US 5,939,073 A (MCLOUGHLIN et al.) 17 August 1999, see entire document.	1-24

Further documents are listed in the continuation of Box C. See patent family annex.

"A"	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E"	earlier document published on or after the international filing date	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O"	document referring to an oral disclosure, use, exhibition or other means	"&"	document member of the same patent family
"P"	document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search	Date of mailing of the international search report
29 SEPTEMBER 2002	11 DEC 2002

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer
Jayne Bridgers
LAURIE SCHEINER
Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/25185

A. CLASSIFICATION OF SUBJECT MATTER:

US CL :

424/199.1, 202.1, 204.1, 205.1; 435/285.1, 69.3, 236, 472, 320.1, 325