Tutorial VI

- 1. Locate and classify the singularities of the following:
 - a) $\sin(1/z)$;
 - b) $\frac{z^2+z+1}{z^3-11z+13}$;
 - c) $\frac{1}{\sin(1/z)}$;
 - d) $\tan(1/z)$.
- 2. Find the poles and their orders of the functions
 - (i) $\frac{1}{(z^4+1)^2}$, (ii) $\frac{1}{z^2+z-1}$.
- 3. Find Laurent expansions for the function $f(z) = \frac{2(z-1)}{z^2-2z-3}$ valid on the following sets: (i) |z| < 1, (ii) 1 < |z| < 3, (iii) |z| > 3.
- 4. Let Ω be a domain in \mathbb{C} . Suppose that $z_0 \in \Omega$ is an isolated singularity of f(z) and f(z) is bounded in some punctured neighborhood of z_0 (that is, there exists M > 0 such that $|f(z)| \leq M$ for all $0 < |z z_0| < r$). Show that f(z) has a removable singularity at z_0 .
- 5. If $f(z) = \frac{p(z)}{q(z)}$ where p, q are differentiable with $p(z_0) \neq 0, q(z_0) = 0$ and $q'(z_0) \neq 0$, then show that

Res
$$(f, z_0) = \frac{p(z_0)}{q'(z_0)}$$
.

- 6. Calculate residue at each singular point of the functions
 - (i) $\frac{1}{z^2 \sin z}$, (ii) $\frac{1}{z(1-z)^2}$, (iii) $(\frac{z+1}{z-1})^3$.