10 класс

Первый день

10.1. Решите уравнение

$$1 + x + 2x^2 + 4x^3 + 8x^4 + \ldots + 2^{2019}x^{2020} = 0.$$

10.2. Найдите все натуральные числа m,n и простые числа p, удовлетворяющие уравнению

$$m^p \cdot p^n = n^m$$

- **10.3.** На медианах AA_1 и BB_1 треугольника ABC построили равнобедренные прямоугольные треугольники AA_1K и BB_1L таким образом, что вершины K и L прямых углов расположены в той же полуплоскости относительно соответствующих медиан, что и сторона AB. Докажите, что середина отрезка KL равноудалена от середин медиан AA_1 и BB_1 .
- 10.4. В городе P чемпионат по теннису проходит в несколько туров по своеобразной олимпийской системе. Если количество участников чётно, то такой тур называется чётным, все участники делятся на пары и играют на выбывание: победитель проходит в следующий тур, а проигравший выбывает из турнира. Если же количество участников нечётно, то такой тур называется нечётным, то жюри случайным образом выбирает из выбывших участников счастливчика, который возвращается в чемпионат, а далее всё проходит как в чётном туре. В 2020 всего было сыграно 199 игр, после чего остался только один участник победитель турнира. Известно также, что было ровно 4 нечётных тура. Найдите все возможные значения количества участников чемпионата.

(Количество участников первого тура обязательно чётное)

10 класс

Второй день

- **10.5.** Даны 20 различных натуральных чисел. Известно, что наибольший общий делитель любых двух из них не превосходит 4. Найдите наименьшее возможное значение наибольшего из данных чисел.
- **10.6.** Биссектрисы AA_1 и CC_1 треугольника ABC пересекаются в точке I. Описанные окружности треугольников AIC_1 и CIA_1 пересекаются в точке J отличной от I. Отрезки AI и C_1J пересекаются в точке X, а отрезки CI и A_1J в точке Y. Наконец, прямая XY пересекает стороны BA и BC в точках D и E соответственно. Докажите, что треугольник BDE равнобедренный.
- **10.7.** Существует ли функция f(x), определённая на множестве всех вещественных чисел и принимающая в качестве своих значений все вещественные числа такая, что для всех $x \in \mathbb{R}$ верно равенство

$$f(f(x)) = |x|f(x) + 2$$

10.8. В стране 2020 городов, соединённых сетью дорог. Для каждого города рассмотрели все отличные от него города, в которые можно попасть из данного перемещаясь по дорогам страны, и выписали на доску их количество. Найдите наибольшее число k такое, что на доске обязательно найдётся число, записанное не менее k раз.