1 Pose Description

Pose: position and orientation

Figure 1: pose smaple

We can describe the new frame (') with the following projection:

$$\begin{split} \vec{x}' &= x'_x \vec{X} + x'_y \vec{Y} + x'_z \vec{Z} \\ \vec{y}' &= y'_x \vec{X} + y'_y \vec{Y} + y'_z \vec{Z} \\ \vec{z}' &= z'_x \vec{X} + z'_y \vec{Y} + z'_z \vec{Z} \end{split}$$

It describes the (') frame completely.

1.1 Rotation Matrix

$$R = \begin{bmatrix} X' & Y' & Z' \end{bmatrix} = \begin{bmatrix} x'_{x} & y'_{x} & z'_{x} \\ x'_{y} & y'_{y} & z'_{y} \\ x_{z} & y'_{z} & z'_{z} \end{bmatrix} = \begin{bmatrix} x'_{x}\vec{X} & x'_{y}\vec{Y} & x'_{z}\vec{Z} \\ y'_{x}\vec{X} & y'_{y}\vec{Y} & y'_{z}\vec{Z} \\ z'_{x}\vec{X} & z'_{y}\vec{Y} & z'_{z}\vec{Z} \end{bmatrix}$$
(1)

reminder:

$$\vec{x}'^T \vec{y}' = 0$$
 $\vec{y}'^T \vec{z}' = 0$ $\vec{z}'^T \vec{x}' = 0$
 $\vec{x}'^T \vec{x}' = 1$ $\vec{y}'^T \vec{y}' = 1$ $\vec{z}'^T \vec{z}' = 1$

therefore, rotation matrix properties:

$$R^{T}R = I$$

$$R^{T} = R^{-1}$$

$$|\det(R)| = 1$$

$$R \in SO(m)$$

Special Orthonormal group: real $m \times m$ matrices with orthonormal columns and determinant=1

1.2 Rotation along the axis - Elementry Rotations

Figure 2: Rotation along z axis

Rotation matrices

$$R_z(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix}$$
 (2)

$$R_y(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$
 (3)

$$R_x(\gamma) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \gamma & -\sin \gamma \\ 0 & \sin \gamma & \cos \gamma \end{bmatrix}$$
 (4)

Rotation in the "opposite" direction is equivalent to the inverse R matrix which is the transpose rotation matrix:

$$R_k(-\vartheta) = \{R_k^{-1}(\vartheta)\} = R_k^T(\vartheta) \quad ; \quad k = x, y, z$$

(*) see rotation matrix properties

1.3 Representation of a vector

Figure 3: vector representation

$$\begin{aligned} o^{'} &= O \\ P &= \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} \quad P^{'} &= \begin{bmatrix} p'_x \\ p'_y \\ p'_z \end{bmatrix} \\ P &= p'_x x' + p'_y y' + p'_z z' = \begin{bmatrix} x' & y' & z' \end{bmatrix} p' \\ p &= Rp' \\ p' &= R^T p \end{aligned}$$

R Matrix represents:

- 1. The orientation of O' w.r.t O
- 2. The transformation of vector from O' to O
- 3. Rotation of a vector (in the same frame)

1.4 Composition of Rotation matrices

Figure 4: composition

- Consider 3 frames with same origin
- A point represented in each frame: p^0, p^1, p^2

Transformation of O_2 w.r.t O_1 : $p^1 = R_2^1 p^2$

$$p^0 = R_1^0 p^1$$

$$p^0 = R_2^0 p^2 \implies R_2^0 = R_1^0 R_2^1$$

(*) from left to right from 0 to 1 and than from 1 to 2 - "current frame" method

we can transform from 0 to 2 in two steps:

- First rotate the given frame according to R_1^0 , so as to align it with frame $O_{x_1y_1z_1}$
- Then rotate the frame, now aligned with frame $O_{x_1y_1z_1}$ according to R_2^1 so as to align it with frame $O_{x_2y_2z_2}$

The order matters - rotation transformation do not cummute!

So we can see that we can reverse the transformation using:

$$R_i^j = (R_j^i)^{-1} = (R_i^j)^T$$

1.5 Composition Current Frame vs. Fixed Frame

- Current Frame Consider the following sequence of rotations:
 - 1. Rotate around z_0
 - 2. Rotate around x_1
- Fixed Frame Consider the following sequence of rotations:
 - 1. Rotate around z_0
 - 2. Rotate around x_0

It is obvious that the rotation gives us different rotation (current vs. fixed) We cant use the same formula!

Figure 5: composition

Figure 6: composition

1.6 Fixed Frame

Define:

- R_1^0 : rotation for O_1 w.r.t O_0
- R: rotation of O_1 w.r.t O_0 to obtain O_2

 $R_2^0=R_1^0R_2^1$: rotation for O_2 w.r.t O_0 but we know it is not the transformation we want so...

$$R_2^0 \neq R_1^0 R$$

What we really want is:

$$R_2^0 = R_1^0 \left[(R_1^0)^{-1} R R_1^0 \right]$$

after opening the brackets: $\left[R_1^0(R_1^0)^{-1}=R_1^0(R_1^0)^T=I\right]$

$$R_2^0 = RR_1^0$$

Fix frame recipe:

- 1. Rotate O_1 to align with O_0
- 2. Apply R (by definition)
- 3. Undo the rotation in (1)

For rotation w.r.t fixed-frame - multiply the rotation matrices in reverse order!

2 Parameterization of rotations

- Rotaion matrix has 9 elements
- The minimum parameters needed to define arbitrary rotation 3
- there are several parameterization options.

2.1 Euler angles

- Eulre angles $(ZYZ)(\phi, \theta, \psi)$
 - 1. Rotate about Z axis by an angle ϕ , $R_z(\phi)$
 - 2. Rotate about **current** y axis by an angle θ , $R_{y}(\theta)$
 - 3. Rotate about **current** z axis by an angle ψ , $R_z(\psi)$

Figure 7: Eulre angles (ϕ, θ, ψ)

$$\begin{split} R_1^0 &= R_{z,\phi} R_{y,\theta} R_{z,\psi} = \begin{bmatrix} C_{\phi} & -S_{\phi} & 0 \\ S_{\phi} & C_{\phi} & -0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} C_{\theta} & 0 & S_{\theta} \\ 0 & 1 & 0 \\ -S_{\theta} & 0 & C_{\theta} \end{bmatrix} \begin{bmatrix} C_{\psi} & -S_{\psi} & 0 \\ S_{\psi} & C_{\psi} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \\ &= \begin{bmatrix} C_{\phi} C_{\theta} C_{\psi} - S_{\phi} S_{\psi} & -C_{\phi} C_{\theta} S_{\psi} - S_{\phi} C_{\psi} & C_{\phi} S_{\theta} \\ S_{\phi} C_{\theta} C_{\psi} + C_{\phi} S_{\psi} & -S_{\phi} C_{\theta} S_{\psi} + C_{\phi} C_{\psi} & S_{\phi} S_{\theta} \\ -S_{\theta} C_{\psi} & S_{\theta} S_{\psi} & C_{\theta} \end{bmatrix} \end{split}$$

- 4. Roll-Pitch-yaw (fixed frame) angles: (ϕ, θ, ψ)
 - Rotate about **fixed** x axis by an angle ϕ , $R_x(\phi)$
 - Rotate about **fixed** y axis by an angle θ , $R_y(\theta)$
 - Rotate about **fixed** z axis by an angle ψ , $R_z(\psi)$ (*) Fixed frame(!) multiply in reverse order.

$$\begin{split} R_1^0 &= R_{z,\phi} R_{y,\theta} R_{x,\psi} = \begin{bmatrix} C_\phi & -S_\phi & 0 \\ S_\phi & C_\phi & -0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} C_\theta & 0 & S_\theta \\ 0 & 1 & 0 \\ -S_\theta & 0 & C_\theta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & C_\psi & -S_\psi \\ 0 & S_\psi & C_\psi \end{bmatrix} = \\ &= \begin{bmatrix} C_\phi C_\theta & -S_\phi C_\psi + C_\phi S_\theta S_\psi & S_\phi S_\psi + C_\phi S_\theta C_\psi \\ S_\phi C_\theta & C_\phi C_\psi + S_\phi S_\theta S_\psi & -C_\phi S_\psi + S_\phi S_\theta C_\psi \\ -S_\theta & C_\theta S_\psi & C_\theta C_\psi \end{bmatrix} \end{split}$$

Figure 8: roll-pitch-yaw (bad axis tags... usually the x axis is along the heading of the plane) (ϕ, θ, ψ)

2.1.1 Euler angles - inverse problem

- 1. Rotate about **fixed** x by an angle ϕ
- 2. Rotate about **fixed** y by an angle θ
- 3. Rotate about **fixed** z by an angle ψ

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \rightarrow (\phi, \theta, \psi)$$

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} C_{\phi}C_{\theta} & -S_{\phi}C_{\psi} + C_{\phi}S_{\theta}S_{\psi} & S_{\phi}S_{\psi} + C_{\phi}S_{\theta}C_{\psi} \\ S_{\phi}C_{\theta} & C_{\phi}C_{\psi} + S_{\phi}S_{\theta}S_{\psi} & -C_{\phi}S_{\psi} + S_{\phi}S_{\theta}C_{\psi} \\ -S_{\theta} & C_{\theta}S_{\psi} & C_{\theta}C_{\psi} \end{bmatrix}$$

$$\begin{cases} C_{\theta}S_{\psi} = r_{32} \\ C_{\theta}C_{\psi} = r_{13} \end{cases} = \begin{cases} C_{\theta}^{2}S_{\psi}^{2} = r_{32}^{2} \\ C_{\theta}^{2}C_{\psi}^{2} = r_{13}^{2} \end{cases} +$$

$$C_{\theta}^{2}(S_{\psi}^{2} + C_{\psi}^{2}) = r_{32}^{2} + r_{33}^{2}$$

$$C_{\theta} = \pm \sqrt{r_{32}^{2} + r_{33}^{2}}$$

$$(5)$$

In case of positive θ

$$\begin{cases}
C_{\phi}C_{\theta} = r_{11} \\
S_{\pi}C_{\theta} = r_{21}
\end{cases} \implies \frac{S_{\phi}}{C_{\phi}} = \frac{r_{21}C_{\theta}}{r_{11}C_{\theta}}$$

$$\phi = Atan2(r_{21}, r_{11})$$
(6)

In case of negative θ

$$\phi = Atan2(-r_{21}, r_{11})$$

$$\begin{cases} C_{\theta} S_{\psi} = r_{32} \\ C_{\theta} C_{\psi} = r_{13} \end{cases} \rightarrow \psi = Atan2(r_{32}, r_{33})$$
 (7)

(*) all calculation are correct only if $C_{\theta} \neq 0$

In case of $C_{\theta} = 0$

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} C_{\phi}C_{\theta}^{0} - S_{\phi}C_{\psi} + C_{\phi}S_{\theta}^{0}S_{\psi} & S_{\phi}S_{\psi} + C_{\phi}S_{\theta}^{0}C_{\psi} \\ S_{\phi}C_{\theta}^{0} & C_{\phi}C_{\psi} + S_{\phi}S_{\theta}^{0}S_{\psi} & -C_{\phi}S_{\psi} + S_{\phi}S_{\theta}^{0}C_{\psi} \end{bmatrix} = \begin{bmatrix} 0 & -S_{\phi}C_{\psi} + C_{\phi}S_{\psi}^{0} & S_{\phi}S_{\psi} & -C_{\phi}S_{\psi} + S_{\phi}S_{\theta}^{0}C_{\psi} \\ 0 & -S_{\phi}C_{\psi} + C_{\phi}S_{\psi} & S_{\phi}S_{\psi} + C_{\phi}C_{\psi} \\ 0 & C_{\psi}C_{\psi} + S_{\phi}S_{\psi} & -C_{\phi}S_{\psi} + S_{\phi}C_{\psi} \end{bmatrix} = \begin{bmatrix} 0 & S_{\psi-\phi} & C_{\psi-\phi} \\ -S_{\psi-\phi} & -C_{\phi}S_{\psi} + S_{\phi}C_{\psi} \\ 1 & 0 & 0 \end{bmatrix}$$

(*) If $x = (\psi - \phi)$ we can see that we can only find the diff. between the angles.

Summary: $for\theta \in (-\frac{\pi}{2}, \frac{\pi}{2}) \ (C_{\theta} > 0)$

$$\phi = Atan2(r_{21}, r_{11})$$

$$\theta = Atan2(-r_{31}, \sqrt{r_{32}^2 + r_{33}^2})$$

$$\psi = Atan2(r_{32}, r_{33})$$

For $\theta \in (\frac{\pi}{2}, \frac{3\pi}{2})$ $(C_{\theta} < 0)$ there is another solution...

Solution for $C_{\theta} = 0$ degenerate. Only possible to determine the sum or difference of ϕ , ψ (**Gimbal lock**, Euler angle issue)

x > 0

x < 0

(*) Limitation - dont rotate twice in a sequence by the same axis e.g XXY... so we have 12 valid configuration.

Atan2 function

Figure 9: atan2 - definition

2.2 Angle and axis representation

- Non0minimal representation $R(\vec{r}, \nu)$
- Unit vector $\vec{r} = (r_x, r_y, r_z)$
- Rotation angle ν about \vec{r}

Figure 10: axis-angle representation

Matrix representation:

- 1. Alight \vec{r} with $\vec{z} \to R_y(-\beta)R_z(-\alpha)$
- 2. Apply $\nu \to R_z(\nu)$
- 3. Re-aligh with $\vec{r} \to R_z(\alpha) R_u(\beta)$

$$R(\nu, r) = R_z(\alpha)R_y(\beta)R_z(\nu)R_y(-\beta)R_z(-\alpha)$$

$$R(\nu, r) = \begin{bmatrix} r_x^2(1 - C_\nu) + C_\nu & r_x r_y(1 - C_\nu) - r_z S)\nu & r_x r_z(1 - C_\nu) + r_y S_\nu \\ r_x r_y(1 - C_\nu) + r_z S_\nu & r_y^2(1 - C_\nu) + C_\nu & r_y r_z(1 - C_\nu) - r_x S_\nu \\ r_x r_z(1 - C_\nu) - r_y S_\nu & r_y r_z(1 - C_\nu) + r_x S_\nu & r_z^2(1 - C_\nu) + C_\nu \end{bmatrix}$$

Note: $R(-\nu, -r) = R(\nu, r)$ While $\nu = 0$ there is singularity, all R matrix is zero.

2.2.1 Inverse problem

$$\nu = \arccos\left(\frac{r_{11} + r_{22} + r_{33} + 1}{2}\right)$$

$$r = \frac{1}{2S_{\nu}} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}, \quad for \ S_{\nu} \neq 0$$

for $\nu = 0$ vertor \vec{r} is arbitrary (singularity).

2.3 Quaternions

- Less intuitive than Euler/axis-angle
- Unique inverse
- No gimbal lock
- Fast, stable implementation

2.3.1 2D Rotation and Complex Numbers

- Comlex number is a tuple: a + bi
- Where: $i^2 = -1$
- Addition: (a + bi) + (c + di) = (a + c) + (b + d)i
- Multiply: $(a+bi)(c+di) = ac + adi + bci + bdj^{2} = (ac-bd) + (ad+bc)i$
- Euler formula: $e^{i\theta} = (\cos \theta + i \sin \theta)$ rotation by θ :

$$e^{i\theta}(x+iy) = (C_{\theta} + iS_{\theta})(x+yi) = (xC_{\theta} - yS_{\theta}) + i(xS_{\theta} - yC_{\theta})$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} C_{\theta} & -S_{\theta} \\ S_{\theta} & C_{\theta} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Complex multiplication=rotation(!)

Figure 11: complex multiplication

2.3.2 Quaternions

- Quaternion is a 4-tuple $q_0 + q_1i + q_2j + q_3k$
- Where:

Figure 12: quaternion multiplication order

$$i^{2} = j^{2} + k^{2} = -1$$

 $ij = k, \ ji = -k$
 $jk = i, \ kj = -i$
 $ki = j, \ ik = -j$

• Addition:

$$(q_0 + q_1i + q_2j + q_3k) + (p_0 + p_1i + p_2j + p_3k) =$$

$$= (q_0 + p_0) + (q_1 + p_1)i + (q_2 + p_2)j + (q_3 + p_3)k$$

• Multiplication:

$$(q_0 + q_1i + q_2j + q_3k)(p_0 + p_1i + p_2j + p_3k) =$$

$$= (q_0p_0 + q_1p_1i^2 + q_2p_2j^2 + q_3p_3k^2) +$$

$$(q_0p_1i + q_1p_0i + q_2p_3jk + q_3p_2kj) +$$

$$(q_0p_2j + q_2p_0j + q_1p_3ik + q_3p_1ki)$$

$$(q_0p_3k + q_3p_0k + q_1p_2ij + q_2p_1ji) =$$

$$= (q_0p_0 - q_1p_1 + q_2p_2 + q_3p_3) +$$

$$(q_0p_1 + q_1p_0 + q_2p_3 - q_3p_2)i +$$

$$(q_0p_2 + q_2p_0 - q_1p_3 + q_3p_1)j$$

$$(q_0p_3 + q_3p_0 + q_1p_2 - q_2p_1)k$$

• Quaternion Conjugate:

$$q = q_0 + Q_1 i + q_2 j + q_3 k$$

$$q * = q_0 - Q_1 - + q_2 j - q_3 k$$

- Quaternion Norm: $|q| = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2}$
- Quaternion inverse: $qq*=q_0^2+q_1^2+q_2^2+q_3^2 \implies (Norm)^2$ $q^-1=\frac{q*}{|q|^2}$
- Quaternions for rotations
 - Vector (x, y, z) is a pure quaternion: 0 + xi + yj + zk
 - Rotation = Unit quaternion $q_R : |q_R| = 1$
 - Rotation from frame B to frame A:

$$q_b = q_R q_A q_R^*$$

While q_R is a unit quaternion q_A q_B are pure quaternions.

$$\begin{split} q_R q_A q_R^* &= (q_0 + q_1 i + q_2 j + q_3 k)(x i + y j + z k)(q_0 - q_1 i - q_2 j - q_3 k) = \\ & (x(q_0^2 + q_1^2 - q_2^2 - q_3^2) + 2y(q_1 q_2 - q_0 q_3) + 2z(q_0 q_2 + q_1 q_3)) i + \\ & (2x(q_0 q_3 + q_1 q_2) + y(q_0^2 - q_1^2 + q_2^2 - q_3^2) + 2z(q_2 q_3 - q_0 q_1)) j + \\ & (2x(q_1 q_3 - q_0 q_2) + 2y(q_0 q_1 + q_2 q_3) + z(q_0^2 - q_1^2 - q_2^2 + q_3^2)) k \end{split}$$

- Matrix notation for $q_R q_A q_R^*$: $M \cdot (x, y, z)^T$:

$$M = \begin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2(q_1q_2 - q_0q_3) & 2(q_0q_2 + q_1q_3) \\ 2(q_0q_3 + q_1q_2) & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2(q_2q_3 - q_0q_1) \\ 2(q_1q_3 - q_0q_2) & 2(q_0q_1 + q_2q_3) & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$$

- Simplification of M matrix:

$$M = 2 \cdot \begin{bmatrix} q_0^2 + q_1^2 - 0.5 & q_1q_2 - q_0q_3 & q_0q_2 + q_1q_3 \\ q_0q_3 + q_1q_2 & q_0^2 + q_2^2 - 0.5 & q_2q_3 - q_0q_1 \\ q_1q_3 - q_0q_2 & q_0q_1 + q_2q_3 & q_0^2 + q_3^2 - 0.5 \end{bmatrix}$$

• Rotation Matrix to Quaternion:

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = 2 \cdot \begin{bmatrix} q_0^2 + q_1^2 - 0.5 & q_1q_2 - q_0q_3 & q_0q_2 + q_1q_3 \\ q_0q_3 + q_1q_2 & q_0^2 + q_2^2 - 0.5 & q_2q_3 - q_0q_1 \\ q_1q_3 - q_0q_2 & q_0q_1 + q_2q_3 & q_0^2 + q_3^2 - 0.5 \end{bmatrix}$$

$$q_0 = \frac{1}{2}\sqrt{r_{11} + r_{22} + r_{33} + 1}$$
 (We will take the positive result only)

$$\begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} sgn(r_{32} - r_{23})\sqrt{r_{11} - r_{22} - r_{33} + 1} \\ sgn(r_{13} - r_{31})\sqrt{r_{22} - r_{33} - r_{11} + 1} \\ sgn(r_{21} - r_{12})\sqrt{r_{33} - r_{11} - r_{22} + 1} \end{bmatrix}, \text{ No singularity!}$$

- Axis/Angle to Quaternion
 - Scalar part: $q_0 = \cos(\nu/2)$
 - Vector port $(q_1, q_2, q_3) = \sin(\nu/2)\vec{r}$

$$q_1 = r_x \sin\left(\nu/2\right)$$

• •

$$q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1$$

- Same quaternion for $(-\vec{r}, -\nu), (\vec{r}, \nu)$:unique!
- $-\nu \in [-\pi, \pi] : q_0 \ge 0$

2.3.3 Homogeneous Transformations

Figure 13: Rotation and translation

The normal way to do it is:

$$\begin{split} p^0 &= o_1^0 + R_1^0 p^1 \\ p^1 &= -R_1^{0T} o_1^0 + R_1^{0T} p^0 \; ; \; R_1^{0T} = R_0^1 \\ p^1 &= -R_0^1 o_1^0 + R_0^1 p^0 \end{split}$$

As you can see it is not so comfortable, so the following trick is needed: **Homogeneous**, we will define:

$$\tilde{p} = \begin{bmatrix} p \left[3 \times 1 \right] \\ 1 \end{bmatrix} \; ; \; A_1^0 = \begin{bmatrix} R_1^0 \left[3 \times 3 \right] & o_1^0 \left[3 \times 1 \right] \\ 0^T \left[3 \times 1 \right] & 1 \end{bmatrix}$$

so the transformation can be defined as:

$$\tilde{p}^0 = A_1^0 \tilde{p}^1$$

$$A_1^0 \tilde{p}^1 = \begin{bmatrix} R_1^0 & o_1^0 \\ 0^T & 1 \end{bmatrix} \begin{bmatrix} p^1 \\ 1 \end{bmatrix} = \begin{bmatrix} (R_1^0 p^1 + o_1^0) \\ 1 \end{bmatrix} = \tilde{p}^0$$

So, all transformation is now very easy to define:

$$\tilde{p}^0 = A_1^0 \tilde{p}^1 \iff \tilde{p}^1 = A_0^1 \tilde{p}^0 = (A_1^0)^{-1} \tilde{p}^0$$

very important to notice $A^-1 \neq A^T$

Using that trick we can now see a Sequence of transformations as the following:

$$\tilde{p}^0 = A_1^0 A_2^1 \dots A_n^{n-1} \tilde{p}^n \tag{8}$$

 A_i^{i-1} : homogeneuos transformation for point in frame i to the description of the same point in frame i-1

3 Camera Calibration and 3d reconstruct

Camera calibration is the process of estimating the parameters of camera, which affect every image no matter the camera pose in the world e.g the camera setup sensor/iris/lens. Parameters and coefficients that determine an accurate relationship between **3D point** in the real world and its corresponding **2D projection** (pixel) in the image captured by that calibrated camera. Two sets of parameters:

- Intrinsic Parameters camera/lens system:
 - Focal length (x-axis/y-axis)
 - Optical center (center pixel, along the optical axis)
 - Radial distortion coefficients of the lens.
- Exterinsic parameters orientation (rotation and translation) of the camera with respect to some world coordinate system.

3.1 Intrinsic parameters

$$K = \begin{bmatrix} f_x & \gamma & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix}$$

 f_x, f_y - x, y focal lengths (typically the same), in pixels or mm c_x, c_y - x, y coordinates of the optical axis in the image plane (pixels) γ - skew between the axes, usually 0.

Some geometrical essence

- If focal lengths f_x , f_y is given in [pixels] in order to get the focal length in [mm] use the following: $f_x[mm] = f_x[pixels] \times pixelPitch[x]$, where, pixelPitch[x] is the physical pixel size (on the sensor), the same is for f_y .
- focal lengths f_x, f_y we can calculate the camera [fov], field of view, using simple geometry. in case the focal length is given in pixels:

$$fov_{[x]} = 2 \times \arctan\left(\frac{img_{width} [pixels]}{2 \times f_x}\right)$$

$$fov_{[y]} = 2 \times \arctan\left(\frac{img_{height} [pixels]}{2 \times f_y}\right)$$

in case the focal length is given in mm, use sensor dimentions:

$$fov_{[x]} = 2 \times \arctan\left(\frac{sensor_{width} [pixels]}{2 \times f_x}\right)$$

$$fov_{[y]} = 2 \times \arctan\left(\frac{sensor_{height} [pixels]}{2 \times f_y}\right)$$

IFOV - Instantaneous field of view or (IFOV) is an important calculation in determining how
much a single detector pixel can see in terms of field of view (FOV).
 IFOV is the sapatial fov of a single pixel in an image, it is the actual image resolution in terms
of angle (and if distance is known, also the actual size of a pixel in the real world), it is roughly
calculates like this, assume uniformly distributed alog the image:

$$ifov_{[x]} = \frac{fov_x}{img_{width}[pix]}$$

$$ifov_{[y]} = \frac{fov_y}{img_{height}[pix]}$$

(why roughly, because in case of wide angle image (big fov) it is not uniformly distributed)

3.2 Extrinsic parameters

Figure 14: World and camera coordination systems

Extrinsic parameters represent the pose of the camera in the world, it includes the orientation (yaw, pitch, roll) and the camera translation $[X_c, Y_c, Z_c]$ in the world system, 6 parameters all togather: camera 6 DOF[Degree of freedom]

• Extrinsic parameters are represent in the form of rotation matrix and translation vector:

$$\begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix} = R \begin{bmatrix} X_w \\ Y_w \\ Z_w \end{bmatrix} + t = \begin{bmatrix} R|t \end{bmatrix} \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix}$$

where $P = \lceil R|t \rceil$ is homogeneous coordinatation.

$$P = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_X \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• From simple geometry: $x=f_x\frac{X_c}{Z_c};\ y=f_y\frac{Y_c}{Z_c}$; where (x,y) is image space (pixels), in matrix:

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = K \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix} = \begin{bmatrix} f_x & 0 & 0 \\ 0 & f_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix}$$

$$K = \begin{bmatrix} f_x & \gamma & c_x \\ 0 & f_y & cy \\ 0 & 0 & 1 \end{bmatrix}; \text{ K is the intrinsic matrix}$$

usually we will refer it like this:

$$\begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \begin{bmatrix} f_x & \gamma & c_x \\ 0 & f_y & cy \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix}; \text{ where: } u = \frac{u'}{w'}v = \frac{v'}{w'}$$

4 DH Recipe

The DH operating recipe is as follows:

- 1. Find and number consecutively the joint axes; set the directions of axes $z_0, ..., z_{n-1}$.
- 2. Choose frame 0 by locating the origin on axis z_0 ; axes x_0 and y_0 are chosen so as to obtain a right-handed frame. If feasible, it is worth choosing frame 0 to coincide with the base frame.

Execute steps 3-5 for $n = 1, \ldots, n-1$

- 3. In order to locate the origin O_i :
 - (a) If axes z_i and z_{i-1} are parallel:
 - i. If joint i is revolute, locate O_i so that $d_i = 0$
 - ii. If joint i is prismatic, locate O_i t a reference position for the joint range, e.g., a mechanical limit.
 - (b) Otherwise, locate the origin O_i at the intersection of z_i with the common normal to axes z_{i-1} and z_i
- 4. Choose axis x_i along the common normal to axes z_{i-1} and z_i Pointing towards the end-effector.
- 5. Choose axis y_i so as to obtain a right-handed frame. To complete:
- 6. Choose frame n:
 - (a) If joint n is revolute, align z_n with z_{n-1}
 - (b) If joint n is prismatic, choose z_n arbitrarily. Axis x_n s set according to step 4.
- 7. For i = 1, ..., n form the table of parameters $a_i, d_i, \alpha_i, \vartheta_i$
- 8. Compute the homogeneous transformation matrices A_{i-1}^i for i=1,...,n
- 9. Compute $T_0^n = A_1^0 A_2^1 ... A_n^{n-1}(q_n)$
- 10. Given T_0^b and T_e^n , compute the direct kinematics function $T_e^b(q) = T_0^b T_n^0(q) T_e^n$

a_i	Distance between O_i and $O_{i'}$
d_i	Coordinade of $O_{i'}$ along z_{i-1}
α_i	Angle between axes z_{i-1} and z_i about axis x_i to be taken positive when rotation is made counterclockwise (right handed)
	positive when rotation is made counterclockwise (right handed)
ϑ_i	Angle between axes x_{i-1} and x_i about axis z_{i-1} to be taken
	positive when rotation is made counterclockwise (right handed)

^{*} $O_{i'}$: the intersection of the common normal to z_i and z_{i-1} with z_{i-1}

Figure 15: sample Robot

5 DH Helper

Link	a_i	α_i	d_i	ϑ_i
1	0	$\pi/2$	l_1	ϑ_1
2	l_1	0	0	ϑ_2
3	l_2	0	0	ϑ_3

Each line on the table is transformed to that matrix:

$$\begin{bmatrix} C\vartheta_i & -S\vartheta_i C\alpha_i & S\vartheta_i S\alpha_i & a_i C\vartheta_i \\ S\vartheta_i & C\vartheta_i C\alpha_i & -C\vartheta_i S\alpha_i & a_i S\vartheta_i \\ 0 & S\alpha_i & C\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- 1. Link l_i is between O_{i-1} and O_i
- 2. The lines i on D-H table are per link!
- 3. Common normal is between z_{i-1} and z_i (right handed),