Test 6

1. [3pts] Let a, b and c be positive real numbers. Prove that

$$\frac{a^2 + 2bc}{(a+2b)^2 + (a+2c)^2} + \frac{b^2 + 2ca}{(b+2c)^2 + (b+2a)^2} + \frac{c^2 + 2ab}{(c+2a)^2 + (c+2b)^2} \le \frac{1}{2}.$$

- 2. [5pts] Three distinct points A, B, and C are fixed on a line in this order. Let ω be a circle passing through A and C whose center does not lie on line AC. Denote by P the intersection of the tangents to ω at A and C. Suppose that ω meets segments PB at Q. Prove that the intersection of the bisector of $\angle AQC$ and line AC does not depend on the choice of ω .
- 3. In the coordinate plane, color the lattice points which have both coordinates even black and all other lattice points white. Let P be a polygon with black points as vertices. Prove that any white point on or inside P lies halfway between two black points, both of which lie on or inside P.
- 4. [7pts] Let \mathbb{R} denote the set of real numbers. Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that

$$f(x)f(yf(x) - 1) = x^2f(y) - f(x)$$

for all real numbers x and y.

- b1. In the coordinate plane, color the lattice points which have both coordinates even black and all other lattice points white. Let P be a polygon with black points as vertices. Prove that any white point on or inside P lies halfway between two black points, both of which lie on or inside P.
- b2. Let A_1 and B_1 be two points on the base AB of an isosceles triangle ABC ($\angle C > 60^{\circ}$) such that $\angle A_1CB_1 = \angle ABC$. A circle externally tangent to the circumcircle of triangle A_1B_1C is tangent also to the rays CA and CB at points A_2 and B_2 , respectively. Prove that $A_2B_2 = 2AB$.
- b3. Let \mathbb{R} denote the set of real numbers. Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that

$$f(x)f(yf(x) - 1) = x^2f(y) - f(x)$$

for all real numbers x and y.

k1. A robot is placed on an infinite square grid; it is composed of a (finite) connected block of units occupying one square each. A *valid subdivision* of the robot is a partition of its units into two connected pieces which meet along a single unbroken line segment. The robot moves as follows: it may divide into a valid subdivision, then one piece may slide one square sideways so that the result is again a valid subdivision, at which point the pieces rejoin. (See diagram for examples.)

We say a position of the robot (i.e., a connected block of squares in the plane) is row-convex if

- (a) the robot does not occupy only a single row or only a single column, and
- (b) no row meets the robot in two or more separate connected blocks.

Prove that from any row-convex position in the plane, the robot can move to any other row-convex position in the plane.

- k2. Given integer a with a > 1, an integer m is good if $m = 200a^k + 4$ for some integer k. Prove that, for any integer n, there is a degree n polynomial with integer coefficients such that $p(0), p(1), \ldots, p(n)$ are distinct good integers.
- k3. Let ABC be a triangle with ω and I with incircle and incenter, respectively. Circle ω touches the sides AB, BC, and CA at points C_1, A_1 , and B_1 , respectively. Segments AA_1 and BB_1 meet at point G. Circle ω_A is centered at A with radius AB_1 . Circles ω_B and ω_C are defined analogously. Circles ω_A, ω_B , and ω_C are externally tangent to circle ω_1 . Circles ω_A, ω_B , and ω_C are internally tangent to circle ω_2 . Let O_1 and O_2 be the centers of ω_1 and $omega_2$, respectively. Lines A_1B_1 and AB meet at C_2 , and lines A_1C_1 and AC meet at B_2 . Prove that points I, G, O_1 , and O_2 lie on a line ℓ that is perpendicular to line B_2C_2 .