

## Studienarbeit

# Stakeholder-Kostenanalyse an Flughäfen bei Einführung neuer Luftfahrzeugantriebe

|   |      | • • •  | <b>D</b> | 1.0 |     |       |
|---|------|--------|----------|-----|-----|-------|
| Н | IANI | riieta | R n r    | าศ: | 2nc | 11/2  |
|   |      | Heta   | וטטו     | IUC | טוג | , v a |

Geboren am: 28.06.1998 in Kyiv

10.12.2024

Gutachter

Prof. Dr.-Ing. habil. Hartmut Fricke

Betreuer

Dipl.-Ing. Edgar Böttcher

Henriieta Bohdanova

# Thesen zur Arbeit

- 1. Die Einführung innovativer Antriebe führt zu höheren Betriebskosten einer Fluggesellschaft im Vergleich zu herkömmlichen Jettriebwerken, da technische Anforderung und neue zusätzliche Abfertigungsprozesse notwendig sind.
- 2. Die Wahl der Flottenzusammensetzung mit innovativen Antriebstechnologien in verschiedenen Betriebsstrategien beeinflusst die Betriebskosten von Fluggesellschaften, wobei Szenarien mit höheren Betriebskosten geringere Infrastrukturkosten erfordern.
- 3. Die Abschreibungsmethode bewirkt, dass trotz hoher Investitionskosten die jährlichen Kosten belastbarer und niedriger sind, während bei geringeren Anschaffungskosten eine ineffiziente Kostenverteilung zu höheren jährlichen Belastungen führen kann.

# **Inhaltsverzeichnis**

| 1 | Mot  | ivation |                                                      | 1  |
|---|------|---------|------------------------------------------------------|----|
| 2 | Rele | vante   | Grundlagen und Überblick über alternative Antriebe   | 3  |
|   | 2.1  | Stakeł  | nolder am Flughafen                                  | 3  |
|   | 2.2  | Boder   | nabfertigung eines Luftfahrzeugs                     | 6  |
|   | 2.3  | Betrie  | b-, Infrastruktur- und Ausbildungskosten             | 8  |
|   |      | 2.3.1   | Betriebskosten einer Fluggesellschaft                | 8  |
|   |      | 2.3.2   | Infrastrukturkosten                                  | 10 |
|   |      | 2.3.3   | Ausbildungskosten                                    | 11 |
|   | 2.4  | Klimap  | politische Maßnahmen                                 | 12 |
|   | 2.5  | Neuar   | tige Antriebe                                        | 13 |
|   |      | 2.5.1   | Sustainable Aviation Fuel (SAF)                      | 14 |
|   |      | 2.5.2   | Batterie-Antrieb                                     | 16 |
|   |      | 2.5.3   | Wasserstoff-Antrieb                                  | 18 |
|   |      | 2.5.4   | Bestehende Konzepte und zukünftige Flugzeugmodelle   | 21 |
| 3 | Änd  | erunge  | en durch neue Antriebe, Annahmen und Methodik        | 25 |
|   | 3.1  | Änder   | ungen an der Abfertigung und dazugehörige Kosten von |    |
|   |      | altern  | ativen Antrieben                                     | 25 |
|   |      | 3.1.1   | SAF                                                  | 26 |
|   |      | 3.1.2   | Batterie-Antrieb                                     | 26 |
|   |      | 3.1.3   | Wasserstoff                                          | 28 |
|   | 3.2  | Flugze  | euge und Annahmen                                    | 32 |
|   |      | 3.2.1   | Verglichene Flugzeuge und relevante Flugzeugdaten    | 32 |
|   | 3.3  | Aufste  | ellung der Formeln für Kosten                        | 34 |
|   |      | 3.3.1   | Betriebskosten einer Fluggesellschaft                | 35 |
|   |      |         |                                                      |    |

# Inhaltsverzeichnis

|      | 3.4   | 3.3.2 Infrastrukturkosten                                |       |
|------|-------|----------------------------------------------------------|-------|
| 4    | Aus   | wertung den Ergebnissen und kritische Auseinandersetzung | 43    |
|      | 4.1   | Vergleich von Referenzflugzeugen und neuen Antrieben     | 43    |
|      | 4.2   | Ergebnisse der Betriebsszenarien                         | 45    |
|      | 4.3   | Sensitivitätsanalyse                                     | 47    |
|      | 4.4   | Bewertung der Ergebnisse                                 | 49    |
| 5    | Fazi  | t                                                        | 53    |
| l it | erati | ırverzeichnis                                            | XXIII |

# 1 Motivation

Laut Verordnung (EU) 2021/1119 soll die EU zum Jahr 2050 klimaneutral sein und bereits zum Jahr 2030 sollen die Treibhauseffekte um mindestens 55% im Vergleich zum Jahr 1990 reduziert werden und das die Klimaerwärmung auf 1,5 °C der vorindustriellen Niveau begrenzt werden muss. Treibhausgase haben Auswirkungen auf das Wetter und führen zur globalen Erderwärmung, was letztlich menschliche Gesundheit bedroht. Obwohl im Jahr 2023 ermittelte Umweltbundesamt, dass die Treibhausgase im Vergleich zum Vorjahr um mehr als zehn Prozent gesunken sind, wurden in dem Jahr allein in Deutschland 673 Mio. Tonnen Treibhausgase freigesetzt [1]. CO<sub>2</sub>-Emissionen spielen eine der zentralen Rolle unter Treibhausgase vor allem durch seine Langlebigkeit [2]. Luftverkehr trägt auch eigene Verantwortung in diesen Einfluss. Etwa 2,5 % von ganzen anthropogenen CO<sub>2</sub>-Emissionen weltweit werden vom Luftverkehr durch die Treibstoffverbrennung verursacht [3].

Zudem neben dem Kohlendioxid CO<sub>2</sub> und Wasserstoff H<sub>2</sub>O entstehen bei der Verbrennung des Treibstoffs andere Nebenprodukte und Rußpartikeln, die das Klima beeinflussen, wie Stickoxide NOx, die für Ozonbildung in der Stratosphäre verantwortlich sind [3].

Internationale Gesellschaft sucht nach Lösungen, um die Klimakrise zu bewältigen. Ob nachhaltige Alternativen durch Luftverkehr verursachte Emissionswerte mindern können, ist derzeit ein begehrtes Thema. Durch die neuartigen Konfigurationen und alternative Kraftstoffe und Antriebe existiert die Möglichkeit die unnötigen Emissionen zu vermeiden. Innovative Antriebe, wie Batterie, Wassertreibstoff oder Sustainable Aviation Fuel (SAF), versprechen unter nachhaltiger Produktion und Logistik geringes Einfluss auf die Umwelt und somit die Reduktion der Emissionen. Erneurbare Energie

Ein zusammenfassender Unterschied der Kosten für die alle drei Alternativen durch die Einführung dieser Antriebe wurde bislang noch nicht systematisch untersucht. Forscher sind bereits getrennte Kostenberechnungen für die einzelne neuartige Antriebe durchgeführt, mit Akzent auf elektrische oder wasserstoffbetriebene Flugzeuge.

Geprägt von strengeren und wachsenden Maßnahmen in Bezug auf die Treibhausgase, brauchen die Betriebsunternehmen neue Technologien, um die höhere CO<sub>2</sub>-Emissionen und damit verbundene höheren Kosten zu vermeiden. Es soll untersucht werden, ob die nachhaltigen Antriebe eine Möglichkeit haben kostengünstig im Markt zu gelangen und Wettbewerb durchstehen oder sogar als Ersatz für die konventionellen Kraftstoffe, wie Kerosin, dienen können. Daraus ergeben sich folgende Fragestellungen, welcher Einfluss auf die Stakeholder hat die Einführung den neuartigen Antrieben auf den Markt, welcher Betrieb-, Infrastruktur- und Ausbildungsdifferenzen dadurch entstehen.

Im Rahmen dieser Studienarbeit werden folgende Themen berührt: Kapitel 2 stellt die relevanten Grundlagen zur weiteren Forschung dar, wie Stakeholder am Flughafen und deren Teil an der Abfertigung eines Flugzeugs, die Betriebskosten, gesetzliche Einflüsse auf der Luftverkehr sowie die zukünftigen Flugzeugkonfigurationen mit neuer Antriebstechnologien. Darauf aufbauend werden im Kapitel 3 anhand Recherche die Methodik für die Kostenberechnung und betriebliche Szenarien für einen Flughafen definiert, als auch die getroffenen Annahmen erörtert. Kapitel 4 begebt sich um die Auswertung der Kostenanalyse für den Betrieb und aufgestellten Betriebsszenarien, dazugehörige Sensitivitätsanalyse und kritische Auseinandersetzung mit den Ergebnissen. Zusätzlich werden in diesem Kapitel die aufgestellten Hypothesen diskutiert. Kapitel 5 enthält eine abschließende Zusammenfassung und erdenkliche Richtung für die weiterführende Forschungsarbeiten. Im Anhang sind die zusätzliche Information zu den einzelnen Kapiteln aufgeführt.

# 2 Relevante Grundlagen und Überblick über alternative Antriebe

Für die Analyse der Forschungsfrage es ist wichtig die zentralen theoretischen Begriffe zu definieren. Das Kapitel 2.2 stellt die Grundlagen der Flugzeugabfertigung und Definition der beteiligten Stakeholder am Flughafen dar. Zunächst beschäftigt sich das Kapitel 2.3 mit den bedeutenden Informationen zu Kosten am Flughafen und Emission-Regulierungsinitiativen. Anschließend werden im Teil 2.5 die neuartigen alternativen Antriebe und Konzepte und Flugzeugmodelle mit diesen Antrieben vorgestellt.

# 2.1 Stakeholder am Flughafen



Abbildung 2.1: Relevante Stakeholder am Flughafen

Am Flughafen ist eine Vielzahl an Stakeholdern beschäftigt, die miteinander agieren. Durch die neuen Luftfahrzeugantriebe steht diesen Akteuren eine schwierige Aufgabe vor. Gute Zusammenarbeit der Stakeholdern fördert die Pünktlichkeit der Abfertigung und hilft die Verspätungen zu vermeiden [4].

### Flughafen

Einer der Stakeholder am Flughafen ist der Flughafenbetreiber selbst. Der Flughafen stellt der Fluggerät- und Passagierabfertigung Infrastruktur wie bspw. Terminals oder Start- und Landebahnen zur Verfügung (das gilt als Kernfunktion), wofür Nutzungsgebühren erhoben werden [3].

Zum Flughafen gehören außer Start- und Landebahnen unter anderem Rollwege, Vorfeld, Flugsteige, sowie die Infrastruktur für die Gepäckabfertigung. Darüber hinaus stellen Flughäfen eine intermodale Verknüpfung dar [3]. Direkte Nutzer von Flughäfen sind die Im- und Exporteure von Dienstleistungen und Waren [5].

Flughäfen sind ein großer Teil der regionalen Wirtschaft [5] und sorgen für eine Vielzahl an Arbeitsstellen. Dennoch verursachen sie ein Ausmaß an Lärm und Umweltbelastungen, die durch die Emissionen der Flugzeuge entstehen. Demnach verlangt der Flughafen hierfür ebenfalls Entgelte.

Für die Entwicklung der Infrastruktur und Begleichung der Betriebskosten müssen Flughäfen gelegentlich finanzielle Unterstützung aus anderen Quellen, wie staatliche Subventionen, in Anspruch nehmen [5]. Die Europäische Kommission besagt, dass Flughäfen mit einem Passagieraufkommen von über 3 Millionen Passagiere jährlich in der Lage sind, ihre Betriebskosten selbst durch Gewinn zu decken. Eine Kategorisierung der Flughäfen basiert auf der Passagiermenge. Der Europäischen Kommission nach werden die Flughäfen nach jährlichem Passagieraufkommen folgend unterteilt:

- große Gemeinschaftsflughäfen > 10 Mio. Passagieren;
- nationale Flüge mit 5 bis 10 Mio. Passagieren;
- große Regionalflughäfen mit 1 bis 5 Mio. Passagieren;
- kleine Regionalflughäfen < 1 Mio. Passagieren.

<sup>&</sup>lt;sup>1</sup>"Leitlinien für staatliche Beihilfe für Flughäfen und Luftverkehrsgesellschaften"2014/C 99/03

Aufgrund dieser Kategorisierung in dem Jahr 2023 gab es in Deutschland sieben große Gemeinschaftsflughäfen, einschließlich zwei Hubs, und 16 Regionalflughäfen.<sup>2</sup> Ein Hub ausmacht ein großer Flughafen mit mächtigem Anteil an Umsteigeverkehr.

#### Fluggesellschaft

Fluggesellschaften sind Dienstleister, welche die Infrastruktur eines Flughafens für die Abfertigung von Passagieren und Fracht nutzen. Sie sind gewinnorientiert und haben das Ziel wettbewerbsfähig zu bleiben. Für eine Fluggesellschaft ist von Relevanz, wie hoch die Betriebskosten (Erträge) sind, die der Flughafen verlangt [5]. Die Erträge unterscheiden sich sowohl je nach Flughafengröße und -strategie, als auch von dem Flugzeugtyp.

#### Bodenverkehrsdienste

Bodenverkehrsdienste sind für die Abfertigung der Flugzeuge auf dem Boden zuständig. Nach Conrady [3] gehört zu ihren Tätigkeiten außerdem: die Fluggastabfertigung, administrative Abfertigung sowie Transportdienste. Sie sind auf Infrastruktureinrichtungen wie Gepäckförderanlagen und Betankungsanlagen und weitere Grundausstattung am Vorfeld angewiesen. Die Abfertigung kann entweder von einer Fluggesellschaft, einem Flughafen oder einem unabhängigen Dienstleister durchgeführt werden. Meistens werden die Bodenverkehrsdienste in Deutschland von den Flughäfen übernommen.

Bodenverkehrsdienste sind auch für den Transport von Fracht, Post und Gepäck bis zum Flugzeug zuständig [6].

Zu anderen Vorfelddienste gehören Betankungsdienste und Reinigungsdienste. Betankungsdienste führen nicht nur die Be- und Entladung und Lagerung durch, sondern auch für andere Flüssigkeiten (wie z.B. Öl) zuständig. Wartungsdienste führen die routinemäßige Kontrolle den Flugzeugen vor den Flügen (Line Maintenance). Die Reinigungsdienste und der Flugzeugservice sind Reinigung von Innen und Außen eines Flugzeugs verantwortlich, Wasserservice, Klimaanlagen in der Kabine und Enteisung.

Zu den Systempartnern (Stakeholdern) am Flughafen zählen ebenfalls Luftfahrzeughersteller, Flugsicherungen, Reiseveranstaltern, staatliche Institutionen [7], sowie Beteiligte

<sup>&</sup>lt;sup>2</sup>Die Daten stammen aus dem Statistischem Bericht, "Luftverkehr auf Hauptverkehrsflughäfen 2023"

wie Passagiere, Arbeitskräfte und Passagierdienstleister. Sie nehmen nicht direkt an der Flugzeugabfertigung bzw. an Betrieb am Vorfeld teil, deswegen werden sie außerhalb des Fokus dieser Arbeit bleiben. Analog hierzu wird die Flugsicherung aufgrund unveränderter Umstände (Bedingungen) durch alternative Antriebe nicht betrachtet. Die Arbeit wird sich auf die Betriebskosten einer Fluggesellschaft und Infrastrukturkosten des Flughafens fokussieren.

# 2.2 Bodenabfertigung eines Luftfahrzeugs

Zur Veranschaulichung der Änderungen an der Infrastruktur am Flughafen die durch neuartige Antriebe vorgenommen werden müssen, ist es notwendig wichtige Begriffe einer Abfertigung des konventionellen Flugzeugs hervorzuheben. Unter konventionellen Luftfahrzeugen sind die zu verstehen, die mit fossilen Treibstoffen, wie Kerosin auf der Ölbasis, betrieben werden. Der Fokus wird auf die gewerblichen Passagierflugzeuge gelegt, weil die Abfertigung von Passagieren besonders strengere Sicherheitsmaßnahmen erfordert.

Die Blockzeit setzt sich aus der Zeit vom Beginn der Bewegung von der Parkposition bis zum Ende der Bewegung zur Parkposition, einschließlich der Flugzeit, zusammen. An der Parkposition des Flughafens werden die Triebwerke ausgeschaltet und der Ablauf eines Turnaround beginnt. Mensen [6] definiert den Turnaround, wie die Abfertigung der Flüge, die zeitnah zusammen liegen. Bei einem Turnaround wird das Luftfahrzeug durch viele Akteure am Flughafen, wie Flugplatzbetreiber, Fluggesellschaft und die Dritte, für den nächsten Flug vorbereitet [6]. Es muss ausgeladen, kontrolliert, gereinigt, anschließend versorgt und für den nächsten Flug beladen werden.

Die Abbildung 2.2 stellt die Abfertigung eines Flugzeugs an der Parkposition dar. Nach ICAO Doc 9157 besteht Abfertigung eines Passagierflugzeugs insgesamt aus Passagier-, Gepäck- und Frachtabfertigung, Sanitärservice, Wasserbetankung, Gepäckabfertigung, Betankung, Stromversorgung, Startluft, Flugzeugschleppen, Bordküchenservice, Wartungsservice sowie Bereitstellung einer Klimaanlage und Sauerstoff, wie in der Abbildung dargestellt. Durch neuen Antriebe kann es zu

Änderung diesen Prozessen kommen aufgrund andere technischen Grundlagen. Laut EU-OPS 1.305 darf das Luftfahrzeug aus Sicherheitsgründen erst betankt werden, wenn die Passagiere sich nicht an Bord befinden.



Abbildung 2.2: Abfertigung eines A321 [8] mit eigenem Hinweis

Je nach Flugdistanz und nach Flugzeuggröße kann es zu unterschiedlichen Abfertigungszeiten kommen. Bei den kleineren Flugzeugen ist die Dauer kürzer als bei einer größeren Maschine. In Bezug auf die Transportdistanz wird nach Kurz- (ca.2 Stunden oder bis 1000 km) und Mittelstreckenflüge (bis 3,5 Stunden oder bis 3000 km), Langstreckenflüge (ab 3,5 Stunden und ab 3000 km) unterschieden [6]. Die Definition von Distanzen variiert teils erheblich, z.B. Flughafen Frankfurt definiert die Langstrecken ab 6000 km.

## Konventionelle Treibstoffe

Zurzeit werden die Treibstoffe auf der Basis der fossilen Energie, wie Öl benutzt. Die Ölpreise sind ziemlich instabil. Um den Schub zu erzeugen, wird in der Gasturbine der Treibstoff verbrannt, wodurch die mechanische Leistung entsteht und über

eine Welle den Propeller oder Strahltriebwerk antreibt. Durch Verbrennung des Treibstoffs entstehen die Abgase, wie auf der Abbildung

[4]

# 2.3 Betrieb-, Infrastruktur- und Ausbildungskosten

In diesem Unterkapitel werden die Kostenstrukturen vorgestellt, wobei bei Betriebskosten wird auf die Kosten der Fluggesellschaft eingegangen und bei Infrastruktur auf die Flughäfen, aufgrund dazugehörigen Kapitalkosten.

# 2.3.1 Betriebskosten einer Fluggesellschaft

Die Betriebskosten bei einer Flugzeugabfertigung werden auf Direct Operating Costs (*DOC*), und Indirect Operating Costs (*IOC*) geteilt, die werden auch Einzel- und Gemeinkosten genannt [3]. Nach Mensen [6] können *DOC* einem bestimmten Flugzeug oder einer Strecke zugeordnet werden und können normalerweise als DOC pro Flugstunde, pro Kilometer, pro Passagierkilometer oder pro Blockstunde berechnet werden. Wobei IOC sind nicht direkt einem Flug zugewiesen, sondern für den gesamten Betrieb anfallen, wie z.B. zeitabhängige Instandhaltungskosten, Verwaltungskosten, Infrastrukturkosten. Nach der Beschäftigungsabhängigkeit werden die Kosten auf fixe und variable Kosten aufgeteilt. Fixe Kosten sind unabhängig von dem Betrieb (z.B. Kapitalkosten, Versicherung, Personalkosten), wo hingegen die variablen Kosten sich von der Beschäftigung ändern. Die Kostenstruktur einer Fluggesellschaft kann mit der Abbildung 2.3 veranschaulicht werden.

Betriebskosten sind von dem Flugzeugtyp abhängig, deswegen ist es wichtig vor der Anschaffung zu untersuchen, ob ein Flugzeug mit einem alternativen Antrieb rentabel ist. Die neuen Regularien für CO<sub>2</sub>-Reduktion können einen Anreiz oder sogar eine Verpflichtung für die Fluggesellschaften schaffen, um die beste Lösung für eine Flotte zu finden. Mehr um politische Anreize gibt es im folgenden Unterkapitel 2.4. Es gibt verschiedene bereits vorgestellte Formeln für die Berechnung der DOC [9]. Die meisten schließen die gleichen Kosten ein, unterscheiden sich jedoch mit



Abbildung 2.3: Kostenstruktur einer Fluggesellschaft [6]

Rechnungsweise für einzelne Kosten.

Mitberechnet werden Treibstoffkosten, Crewkosten, Wartungskosten, kapitalbezogene Kosten.

Treibstoffkosten sind ein erheblicher Teil der Betriebskosten. In den USA ein Drittel von allen Gesamtkosten (TOC) aller Fluggesellschaften sind die Kosten für Treibstoff und Öl, vergleichsweise (in Korrelation) beträgt die Abfertigung am Flughafen ein Sechstel [3]. Im Jahr 2023 wurden etwa 92 Milliarden Gallonen Kraftstoff durch der Luftfahrindustrie verbraucht und somit war der Treibstoffrechnung fast 32 % alles Betriebskosten in der Luftfahrt [10]. Die jährlichen Steigerungen den Preisen für fossile Rohstoffe kann die nachhaltige Initiative fördern.

**Crewkosten** sind auch ein Bestandteil der direkten Betriebskosten. Zu einer Crew gehören Piloten und Kabine-Besatzung. Nach Conrady [3] bestehen die Besatzungskosten aus Gehälter, Reisekosten und Schulungskosten. Es gibt jedoch nur wenige Arbeiten, die bei der Berechnung der Betriebskosten die Ausbildungskosten erwähnen.

Wartungskosten von einem Flugzeug fassen zusammen die Arbeitskosten für Beschäftigten und benötigten Materialien für die Wartung. Außerdem werden die Kosten nach Wartung einer Zelle und den Triebwerken unterteilt [11]. Meistens werden diese

Komponente von unterschiedlichen Unternehmen hergestellt (Quelle). Am Vorfeld bei der Luftfahrzeugabfertigung findet eine *Line Maintenance* statt, dabei wird der Reifendruck und Ölstände überprüft [3]. Überdies gibt es eine Reihe anderen regelmäßigen Kontrollen. Wartungskosten sind von Auslastung eines Flugzeugs, je mehr ein Flugzeug sich im Betrieb befindet, desto größere Wartungskosten zu erwarten. Je nach Flotte sind die Ersparnisse möglich, wenn die Fluggesellschaften mehrere Flugzeuge vom gleichen Typ anschaffen [3]. In diesem Fall sind weniger Schulungen für die Techniker notwendig.

Unter **kapitalbezogenen Kosten** sind die Kosten, die mit der Abschreibungskosten sind ein Teil der Kapitalkosten für das Flugzeug, die für den festgelegten Zeitraum, wo Flugzeug benutzt wird, verteilt. Die Abschreibungskosten können auch auf Infrastruktur bezogen werden.

In dieser Arbeit wird der Fokus auf die direkten Betriebskosten gelegt und die indirekten Betriebskosten, wie Kosten für allgemeine Verwaltung, Marketing- und Servicekosten, werden wegen geringere Relevanz ausgelassen.

#### 2.3.2 Infrastrukturkosten

Durch den Anstieg der Nachfrage oder wie in dem Fall von innovativen Antrieben sind die Änderungen an der Flughafeninfrastruktur notwendig. Von der Infrastruktur sind abhängig welche Kapazitäten einen Flughafen hat. Die Infrastrukturkosten eines Flughafens bestehen aus Kosten für luft- und landseitige Anlagen. Landseitige sind die Einrichtung, die zum Flughafen gehören, wie Terminal oder administrative Gebäuden. Zur luftseitigen Infrastruktur gehören Start-/Landebahn, Rollbahn, Vorfeld, Flugsicherheitsinfrastruktur und -ausrüstung. Die Infrastruktur kann unterschiedlich finanziert werden. Flughafengebühren, wie Lande-, Lärm-, Emissions-, Abstell-, Passagier- und Frachtgebühr tragen zur Finanzierung des Flughafens bei.

Infrastrukturkosten setzten sich nicht nur aus Anschaffung-/Investitionskosten (Kapitalanforderungen), sondern auch die Kosten für die Instandhaltung der Anlagen und Betriebskosten. Kapitalkosten (wie Verzinsung und Abschreibung), die mit Infrastrukturinvestitionen zusammenhängen machen ein großer Teil an Gesamtkosten von einem Flughafen aus [12]. Ïnfrastrukturträger im Luftverkehr sind neben den

Flughäfen die Bodenab fertigungsdienste, Kommunikationseinrichtungen (z. B. SITA) und Flug sicherungseinrichtungen (Radar-, Funknavigationsanlagen, Flugverkehrskontrolle ATC = Air traffic control)."Flughäfen müssen wirtschaftliche Analyse nutzen, um Entscheidung über Flughafeninvestitionen zu treffen. Investitionsbeihilfen werden durch die Passagieranzahl des Flughafens bestimmt. Die Flughäfen mit mehr als fünf Millionen Passagieren sollen ihre Kapitalkosten selbst tragen können [3]. Die Flughäfen in der Deutschland sind überwiegend in der öffentlichen Hand [3].

Über landseitige Anlagen finanzieren sich Flughäfen über Mieten, Konzessionen und weitere Quellen. Hat Flughafen regionale Bedeutung werden auch anderen Interessentengruppen an der Entwicklung teilnehmen. Planung der Infrastrukturerweiterung oder -neubau muss in enger Zusammenarbeit zwischen Stakeholdern (Regulierungsbehörden, Mitarbeiter, Anteilseigner, Kreditoren usw) stattfinden [12].

Außerdem müssen Infrastrukturentscheidungen die Interessen der Gesellschaft treffen.

Diese Arbeit wird sich auf die Anschaffungskosten für neue Infrastruktur fokussieren und nicht mit laufenden Kosten, wie Betriebskosten, Unterhalt- und Administrationskosten den Flughäfen, da sie untergeordnete Relevanz haben.

# 2.3.3 Ausbildungskosten

Die Schulungen sind ein wichtiger Teil der Ausbildung. Nach ICAO Annex 6 muss das Schulungsprogramm eine Kompetenzschulung für alle installierten Geräte umfassen. Aufgrund neuen erwarteten Antrieben werden neue Infrastruktur und Geräte benötigt und somit entstehen neue Notwendigkeit fürGefahren im Luftverkehr. Wegen unzureichende Datenlage in dem Bereich ist schwierig die Ausbildungsdauer und damit verbundenen Kosten präzise zu berechnen. Aus diesem Grund wird auf eine detaillierte Analyse der Ausbildungskosten verzichtet und nur auf allgemein erforderliche Kenntnisse bei der Schulung zusammengefasst/hinweisen. Dabei wird in dem Teil ?? auf die Sicherheitsaspekte und Gefahren beim Umgang mit jedem Antrieb eingegangen und im Teil ?? Fazit für Ausbildung zusammengefasst. Wasserstoff: benötigt zusätzliche Fortbildung

Die Ausbildung soll die allgemeinen Charakteristiken des Wasserstoffs, Umgang mit Wasserstoff möglich verbundene Gefahren, wie zu reagieren im Notfallsituationen beinhalten. Die Schulungen sollten für alle Beteiligten an der Luftfahrzeugabfertigung gemacht werden.

# 2.4 Klimapolitische Maßnahmen

Durch klimapolitischen Initiativen können die Verminderung der Emissionen erreicht werden. So legt ICAO Annex 16 weltweite Grenzwerte für Umweltstandards und technische Anforderung für die Flugzeuge fest, um Emissionen zu reduzieren.

Auch die Verordnung (EU) 2018/1139 etabliert die gesetzlichen Instrumente für die Sicherheit und den Umweltschutz in der Zivilluftfahrt innerhalb der EU und fixiert die Rolle der Europäischen Agentur für Flugsicherheit (EASA). EASA als Luftfahrtbehörde verpflichtet die Umweltleistung der Luftfahrt zu überwachen und zu fördern, wozu die Gebühren erhebt werden. Außerdem macht die Verordnung die Zulassung von neuen Flugzeugen leichter und dadurch fördert Innovationen und Anregungen für nachhaltige Luftfahrttechnologien.

Die Verordnung ermöglicht Gebührenanpassung und Anreize für die Projekte, die ökologische Vorteile bringen und zu einem hohen Umweltschutzniveau beizutragen.

Die konkreten Maßnahmen dürfen auf nationalen Ebenen gesteuert werden, aber die die Mitgliedstaaten verpflichtet sind, die Sicherheit und Umweltschutz zu betrachten. Nach Artikel 126 kann die EASA (nach Konsultation der Kommission) die detaillierten Vorschriften für die Gebühren bestimmen, um nachhaltige Technologien und innovative Projekte zu fördern. Solche politischen Entscheidungen können die Fluggesellschaften zu motivieren, Emissionen zu vermeiden und somit wirtschaftlich einzusparen.

Ab Jahr 2012 wurde in der Europäischen Union (EU) EU-Emissionsrechthandel (EU ETS) für Luftverkehr eingeführt. Dabei können Zertifikate erworben werden, um bestimmte Anzahl an Emissionen freisetzen zu können. Ein Großteil der Zertifikate wird unentgeltlich für die Fluggesellschaften zugeteilt, den Rest wird versteigert.

Das Ziel ist die begrenzte Zertifikate unter Gesellschaften zu verteilen und somit die Treibhauseffekte zu senken. Die Einnahmen von der Versteigerung werden für Bekämpfung von Einflussen eingesetzt [3] Im Jahr 2016 hat Internationale Zivilluftfahrtorganisation (ICAO) die Resolution A39-3 herausgebracht, wo Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) als globale Maßnahme für den Markt vorgestellt wurde. Werden die Emissionen von dem Jahr 2020 überschritten, müssen die Beteiligte in anderen Bereichen die Kohlenstoffdioxide ausgleichen, z.B. durch Aufforstung oder anderen Klimainitiativen. Die Einführung erfolgt in 3 Phasen: bis zum Jahr 2023 verlief die Pilotphase; ab Jahr 2024 bis 2026 verläuft die Erste Phase und schließlich die Zweite Phase, wo Mitglieder verpflichtet sind teilzunehmen [3].

Ab Jahr 2027 werden alle Betreiber aus dem Europäischen Wirtschaftsraum entweder CORSIA oder EU ETS unterliegen [13]. Im Raum der Europäischen Wirtschaftsraum gilt EU ETS und hat anspruchsvollere Klimaschutzmaßnahmen als CORSIA [13]. CORSIA-Regeln gelten hingegen für internationale Flüge außerhalb Europäischen Wirtschaftsraum.

Mit dem Gesetzgebungspaket "Fit to 55" will die EU bis zum Jahr 2030 die Emissionen, unter anderem vom Luftverkehr, um mindestens 55 % senken. Verordnung RefuelEU legt fest, welche Anteil der nachhaltigen Kraftstoffe (SAF) soll im Verbrauch sein, Verpflichtungen für Kraftstofflieferanten, Flughäfen in der Union, sowie Luftfahrzeugbetreiber.

# 2.5 Neuartige Antriebe

Obwohl sich der Kraftstoffverbrauch in der letzten 30 Jahren halbiert [6] hat, bleiben die Auswirkungen hoch. Bei der Untersuchung von alternativen Antrieben sind bestimmte Überlegungen relevant. Die Dichte des Energieträgers, Kosten und Verfügbarkeit des Rohstoffs, Sicherheit in Bezug auf Herstellung und Nutzung sowie direkte und indirekte CO<sub>2</sub> Emissionen [14].

In diesem Kapitel werden folgende vielversprechende Energieträger betrachtet und zusammengefasst: nachhaltige Kraftstoffe (SAF), Batterie-Antriebe (elektrochemische) und Wasserstoff.

## 2.5.1 Sustainable Aviation Fuel (SAF)

Sustainable Aviation Fuel oder nachhaltige Flugtreibstoffe sind synthetische flüssige Biotreibstoffe oder erneuerbare nicht biogene Stoffe, die mit herkömmlichen Flugkraftstoffen und bestehenden Betankungssystemen kompatibel sind. Deswegen werden sie auch als Drop-In Treibstoffe bezeichnet [15]. Die SAFs werden zu herkömmlichen Treibstoffen beigemischt. IATA besagt, dass die zulässige Mischrate zurzeit bei max. 50 % liegt. Es existieren bis jetzt elf Verfahrenswege aus unterschiedlichen Rohstoffen für die SAF-Produktion, manche werden aktuell für die Nutzung bewertet [16].

Die SAFs haben ähnliche Charakteristiken wie Kerosin, was bspw. die Energiedichte betrifft. Dennoch weist ein Großteil des SAF keine Aromaten auf. Fehlende aromatische Verbindungen im SAF kann zu Leckagen in der Dichtung führen [17]. Aus diesem Grund ist bis jetzt kein Flugzeug für das Fliegen mit reinem SAF zertifiziert [15].

Im Hinblick auf die Zukunft ist zu erwarten, dass die CO<sub>2</sub>-Reduktion mit dem reinen SAF realisiert werden kann. Ein praxisnahes Beispiel dafür war der erste transatlantische Demonstrationsflug im November 2023, durchgeführt von der Fluggesellschaft Virgin Atlantic, welcher mit 100 % SAF durchgeführt wurde [18]. SAF Produktion erreichte im Jahr 2024 1 Million Tonnen [19]. Der Verbrauch der Luftverkehr, wie beschrieben oben erreichte im Jahr 2023 92 Milliarden Gallonen, das bedeutet, dass SAF würde nur 0,8 % der Gesamtverbrauch decken können

Es gibt keinen SAF-Flugtreibstoff, der Emissionen komplett vermeidet. Laut IATA durch Drop-In SAF können die Emissionen um 62 % reduziert werden. Jedoch durch bestimmte Verfahren können sie jedoch bis zu 95 % reduziert werden [16].

Aufgrund der kommerziellen Verfügbarkeit ist Hydroprocessed Esters and Fatty Acids (HEFA) eines der wichtigsten Verfahren. Die HEFA wird aus tierischen und pflanzlichen Ölen und Fetten mittels Hydroprocessing hergestellt [20]. Die Haupteinschränkung von HEFA ist die begrenzte Anzahl an Rohstoffen [20]. Power-to-liquid (PtL) ist ein

weiteres potenzialreiches Verfahren. Dieses katalytische Verfahren, nach Fischer-Tropsch, nutzt zur Herstellung eine Kombination aus Kohlenmonoxid CO und durch Elektrolyse produzierten Wasserstoff  $H_2$  [20]. Das Verfahren erzeugt die höchsten  $CO_2$ -Emissionseinsparungen [21], jedoch befindet es sich in einem früheren Stadium [20]. Eine zusätzliche Beschränkung besteht die Preise für SAF. In der Abbildung 2.4 sind Vergleichswerte für verschiedenen SAF und konventionelle Treibstoffe, als auch Vorhersagewerte dargestellt. Dabei hat die HEFA die günstigsten Preise im Vergleich zu den Alternativen, dagegen die nachhaltigere PtL wird deutlich über den Preis von marktüblichen Treibstoffen hinausgehen.



Abbildung 2.4: Durchschnittlicher IATA-Mindestverkaufspreis [16]

In Bezug auf die Infrastruktur sind manche davon überzeugt, dass keine Änderungen im Flugzeug oder am Betankungssystem notwendig sind [22] Wobei Dahal et al. [23] jedoch davon ausgeht, dass neue Antriebe und Triebwerke für die Nutzung des reinen SAF entwickelt werden müssen. Das reine SAF wurde noch nicht zertifiziert, um in das Treibstofflager vom Flughafen zu gelangen [15].

In EU-Richtlinien sowie in CORSIA sind die Kriterien für SAF-Qualität festgelegt. Im Rahmen EU-ETS gelten SAF als emissionsfrei und bei der richtigen Zertifizierung sind vor der Abgabe von CO<sub>2</sub>-Zertifikaten befreit [16]. Die Preise für nachhaltige Flugtreibstoffe sind zwei- bis zu fünfmal höher als für herkömmliche Kerosin [15] Um Fluggesellschaften für die Nutzung der nachhaltigen Kraftstoffe zu motivieren, hat EU-ETS 20 Mio. Zertifikaten zur Verfügung gestellt [16]. In ReFuelEU sind vor allem die verpflichtete Beimischungsanteile von nachhaltigen Stoffen festgelegt.

### 2.5.2 Batterie-Antrieb

Eine andere Möglichkeit, Emissionen zu reduzieren, ist direkten Strom als Antrieb mittels Elektromotoren und Stromspeicher, wie Batterien oder Brennstoffzellen, zu nutzen. Eine einfache Darstellung des Batterieantriebs (BA) ist in der Abbildung 2.5 gezeigt. Getriebe werden benutzt, um den Fan von den Motor zu entkoppeln und somit Wirkungsgrad zu erhöhen [24].



Abbildung 2.5: Einfaches Modell eines Batterieantriebs [24]

Antriebskonfigurationen von elektrischen Flugzeugen werden nach drei Arten unterschieden: vollelektrisch, funktioniert nur auf der Batterie oder Brennstoffzelle als Energiequelle, turboelektrisch und hybrid-elektrisch. Hybrid-elektrisch ist eine Mischung von konventionellen Gasturbinentriebwerken mit Kerosin und Batterie oder Brennstoffzellen [23]. Turboelelektrisches Antrieb verfügt über kein Energiespeicher am Bord, also es gibt eine Turbine, die mechanische Energie macht und Generator wandelt die in elektrische Energie und treibt den elektrischen Motor an.

Im Folgenden wird ein vollelektrischer Antrieb beschrieben. Funktionsweise Elektromotor: Durch die Umwandlung der elektrischen Energie in die chemische kann diese in der Batterie gespeichert werden. Die Batterie ermöglicht irreversiblen chemische Reaktion der aktiven Materialien (Energiefluss von Anode zur Kathode, wobei über aüßeren Stromkreis Elektrolyten fließen)

Bei diesem Antrieb wird durch Potenzialdifferenz und einem Stromfluss die elektrische Energie in mechanische umgewandelt.

Im Vergleich zum Verbrennungsmotor ist der einzige bewegliche Teil bei BA der Rotor [25], was die Wartungskosten im Vergleich zu Gasturbinen verringern kann. Außerdem besteht der elektrische Antrieb aus einem Controller, welcher den Energiefluss steuert. Durch den Controller wird festgelegt, welche Leistung der

Motor erzeugen bzw. wie viel Energie von einer Batterie genutzt werden soll, um die gewünschte Leistung zu erzeugen [25]. Die elektrischen Antriebe können effizienter als konventionelle Antriebe wirken [24].

Das Batteriemanagementsystem in einem Flugzeug verfügt über Informationen wie State of Health (SOH), welche den Unterschied zwischen Anfangs- und Bestandskapazität einer Batterie angibt, und State of Charge (SoC), welche zeigt, wie viel Prozent der verfügbaren Kapazität geladen werden kann [25]. Im Laufe des Fluges verändern die Batterien ihr Gewicht nicht, unabhängig davon, ob sie leer oder vollständig geladen sind [25]. Eine in der wissenschaftlichen Literatur weit verbreitete Batterie ist die Lithium-Ion-Batterie. Diese haben eine hohe Energiedichte im Vergleich zu anderen vorhandenen Batterien. Heutige Li-ion Batterien haben eine gravimetrische Energiedichte von 150 - 300 Wh/kg [26]. Werden diese Werte mit der spezifischen Energiedichte von 12 kWh/kg von Kerosin verglichen [27], ergibt sich eine ca. 40-fache Differenz gegenüber einer Li-Ion-Batterie. Das weist darauf hin, dass Batterien ein viel höheres Gewicht für die gleiche Energie verursachen. Somit steigt auch die Masse des Flugzeugs, was schließlich die Transportkapazität einschränken kann. Aus diesem Grund manche Arbeiten gehen davon aus, dass dieser Antrieb nur für die Reichweite von Regionalflügen geeignet [28].

Li-lon übersteigt in spezifischen Energie und Energiedichte anderen bekannte Batterien.

Batterien sind von äußerlichen Bedingungen beeinflussbar. Kalte Umgebungen können den Wirkungsgrad reduzieren (Quelle), warme Umgebungen können zu einem schnelleren Auslaufen der Lebensdauer führen. Die Herstellung einer Lithium-Ionen-Batterie ist durch Lithium-Produktion umweltschädlich (hoher Wasserverbrauch, gefährliche Leckagen) und kostenintensiv in der Wartung [27].

In Forschung befinden sich weitere Arten von Batterien wie Lithium-Sulfur, Lithium-Air, sowie solid-state Batterien, welche vielversprechend wirken (Quelle).

Der Batteriewechsel ist kompatibler mit der Flugplanung, benötigt aber mehrere Batterien für den Austausch, was die Logistik erschwert und höhere Anschaffungskosten verursacht. Batterien müssen ordnungsgemäß und sicher gelagert werden. [29]

Ladeleistung ist für die Dauer der Ladung verantwortlich. Durch schnellere Ladungen wird Lebensdauer der Batterien reduziert. Was mit sich bringt, dass die Batterien schneller ausgetauscht werden müssen und mehr Kosten dadurch entsteht. (Quelle) Wobei die langsamen Laden ist für die Fluggesellschaften nicht rentabel sein kann, da wenn Flugzeug auf dem Boden steht verdienen Fluggesellschaften kein Geld.

In Bezug auf Sicherheit, das größte Gefahr bei BA ist chemische Reaktion des thermischen Durchgehens, wofür stabile Kühlungssysteme benötigt sind [25]. Thermisches Durchgehen verursacht einen starken Anstieg der Innentemperatur von Batterie, was zu kompletten Ausfall der Batterie oder Freisetzung der brennbaren Gase führen kann [30].

Die Energieproduktion ist nicht emissionsfrei [28], dafür muss mehr erneuerbaren Quellen hergestellt werden, wie Solar- und Windenergie.

### 2.5.3 Wasserstoff-Antrieb

In vielen Forschungsarbeiten wird der Wasserstoff als die Lösung für umweltfreundliche Luftfahrt dargestellt/vorgestellt. Dieses Energiemedium wird jedoch von Kosten, Sicherheit und öffentlicher Akzeptanz behindert [14]. Durch Nutzung von Wasserstoff werden keine CO<sub>2</sub>-Emissionen verursacht, jedoch können andere Abgase wie Stickstoffoxid NOx bei der Verbrennung in Wasserstoffturbinen oder Wasserdampf emittiert werden, was zur Bildung der Kondensstreifen führt [24]. Herstellung

Es existieren verschiedene Wege zur Herstellung von Wasserstoff. Die gängigsten davon sind Dampfreformierung (Steam Methane Reforming - SMR) und die Elektrolyse. Bei SMR trifft Wasserdampf in der Reaktion zusammen mit Methan aus Erdgas, infolgedessen entsteht der Wasserstoff H<sub>2</sub> und Kohlenmonoxid CO bzw. -dioxid [31]. Bei der Elektrolyse wird das Wasser mithilfe von Elektrizität in Wasserstoff H<sub>2</sub>O und Sauerstoff O<sub>2</sub> gespaltet [31]. Durch diesen Herstellungsweg können CO<sub>2</sub>-Emissionen vollständig vermieden werden [27]. Die Nachhaltigkeit der Elektrolyse ist außerdem genauso wie bei BA von der Stromquelle abhängig. Wenn für die Produktion von Wasserstoff erneuerbare Energiequellen (wie Solar- und Windanlagen) genutzt worden, wird dieser als grüner Wasserstoff bezeichnet [31]. Durch Elektrolyse produzierter grüner Wasserstoff ist kostenintensiv [27]. Wird der genutzte

Strom aus fossilen Energieträgern erzeugt, kommt es zu indirekten Emissionen. Beispielhaft bei anderen Herstellungswegen (grauer und blauer Wasserstoff) kommt es hingegen zum Ausstoß von Kohlenstoff, wobei bei blauem Wasserstoff das CO<sub>2</sub> gesammelt und gespeichert wird [31].

#### Zustände

Der Wasserstoff kann in mehreren Zuständen benutzt werden. Die am weitesten verbreitete in Verkehrsbranche sind der gasförmige  $GH_2$  und kryogener flüssige Wasserstoff  $LH_2$ . Um mehr Energie speichern zu können und dabei weniger Platz zu verbrauchen, muss der gasförmigen  $H_2$  stark komprimiert werden, nämlich bei einem Druck von 350 oder 700 bar gespeichert werden [26]. Allerdings hat gasförmiger Wasserstoff auch bei einem Druck von 700 bar geringere Energiedichte als flüssiger Wasserstoff [32]. Flüssiger Wasserstoff entsteht durch die Verflüssigung des Wasserstoffs. In der Tabelle 2.1 sind die Vergleichswerte für Kerosin und Wasserstoff im flüssigen Zustand dargestellt. Gravimetrische Energiedichte bei flüssigem Wasserstoff ist deutlich höher als bei Kerosin, aber volumetrische Energiedichte  $E_V$  ist viel geringer. Das bedeutet, dass  $LH_2$  zwar bessere Gewichtsverhältnisse als Kerosin hat, jedoch wird für die gleiche Menge Energie 3,5-mal so viel Platz gebraucht. Aufgrund seiner Stoffeigenschaft ist der Wasserstoff für die Nutzung auf längeren Flugdistanzen geeignet. Flüssiger kryogener Wasserstoff ist viel besser für den Transport

**Tabelle 2.1:** Vergleich von flüssigen Wasserstoff energiebezogenen Eigenschaften mit anderen konventionellen Treibstoffen

|                 | $\mid E_V$ in $[kWh/l]$ | $E_G$ in $[kWh/kg]$ | $Dichte [kg/m^3]$ |
|-----------------|-------------------------|---------------------|-------------------|
| Wasserstoff LH2 | 2,6 [26]                | 37,0 [26]           | 70,8 [32]         |
| Kerosin         | 9,5 [26]                | 11.9 [26]           |                   |

mit LKW geeignet als gasförmigen, aber dafür benötigt mehr Energieaufwand [26].

Die Konzepte schlagen vor die Platzierung des Wasserstofftanks im Form halbkugelförmogen Endkappen auf dem Flugzeugrumpf entlang [23] oder am Ende des Rumpfes zwischen Fracht und hinteren Notausgängen [33] Bei den Flugzeuge, die mit Wasserstoff betrieben werden, und der Tankspeicher ist die Tankisolierung von großer Bedeutung. Der flüssigen LH<sub>2</sub> muss bei -253 °C gelagert werden [26]. Durch die Wärme verdampft der Wasserstoff, was zum Anstieg von Druck und Temperatur in dem Tank führt. Heutige Tankanlagen haben die täglichen Abdampfverluste in der

Höhe von 0,3 % bis 3 % [32].

Wasserstoff führt schnell zu Versprödung [23] ßyklische Belastungen, die durch die Wärmeausdehnung und -kontraktion beim Nachfüllen und den Kraftstoffverbrauch verursacht werden "Antrieb"

Wasserstoff kann in zwei Ansätzen als Antrieb genutzt werden: erstens als Treibstoff für die Verbrennung im H<sub>2</sub>-Verbrennungsmotor, zweitens in der Brennstoffzelle, um den elektrischen Motor anzutreiben [22]. Zudem gibt es einen hybriden Antrieb, wo die Brennstoffzelle zusammen mit einer Batterie genutzt wird. Eine andere Methode, um Wasserstoff in der Luftfahrt zu nutzen ist die Brennstoffzellentechnologie. Brennstoffzellen sind ziemlich schwer von Gewicht und der Struktur [24] und benötigen den gasförmigen Wasserstoff für den Antrieb [26]. Dabei wird durch die chemische Reaktion aus gasförmigem Wasserstoff H<sub>2</sub> und Sauerstoff O<sub>2</sub> wird Strom produziert [27] und dadurch der Propeller vom Flugzeug angetrieben. Aufgrund besseren Speicherung in flüssigen Form muss überlegt werden, wann der Wasserstoff in Gaszustand überführt wird.

Für die Verbrennung des Wasserstoffs werden Änderung in der Brennkammer benötigt, damit höhere Temperaturen vermieden werden können [34] Colpan et al. [26] ist jedoch der Meinung, dass sich die Wasserstofftriebwerke im Vergleich zu konventionellen Düsentriebwerken ähneln werden. Allerdings werden zusätzliche Komponenten, wie Kraftstoffpumpen und Wärmetauscher von flüssigem Wasserstoff benötigt.

## Sicherheit beim Umgang mit Wasserstoff

Wasserstoff wird als hochentzündlich skaliert [27]. Aufgrund seiner Natur breitet sich die Flamme eher vertikal aus und die Brenndauer von LH<sub>2</sub> ist kürzer als bei Kerosin [26]. Der Wasserstoff hat zwar hohe Flammengeschwindigkeit und es besteht große Gefahr an Flammenrückschlag bei der Flammenausbreitung [34]. Dennoch bei der richtigen Infrastruktur ist der Wasserstoff nicht gefährlicher als andere brennbare konventionelle Treibstoffe und in manchen Fällen sogar sicherer [34]. Wird der flüssige Wasserstoff verschüttet, wird es aufgrund seiner Leichtigkeit vertikal nach oben verdampft [26]. Direkter Kontakt mit kryogen Wasserstoff wird zu Erfrierung führen. Die Forschung der Wasserstoff muss sich mit den Themen wie

Explosionsgefahr, Materialgefahr, Betankung und bei der Umgang bei Abfertigung auseinandersetzen.

Die zusätzliche Ausbildung für Wartungsmitarbeiter und die Schulungen für Bodenabfertigen werden benötigt, weil die Charakteristiken von Wasserstoff sich von herkömmlichen Treibstoffen stark unterscheiden. [31]?

# 2.5.4 Bestehende Konzepte und zukünftige Flugzeugmodelle

In diesem Teil ist beschrieben, welche Flugzeugmodelle und -konfigurationen mit beschriebenen im Teil ?? Antrieben sind in näheren Zukunft zu erwarten. Vor allem sind hier die Modelle ohne hybride Nutzung den fossilen Energieträger zusammengefasst.

Aufgrund ihrer Drop-In Fähigkeit werden die SAFs keine neuen Luftfahrzeugkonfigurationen brauchen. Was als Vorteil für den SAF betrachtet werden kann, angesichts der aktuell produzierten Flugzeuge, die mindestens 20 Jahr im Einsatz sein werden (Quelle). Die Abbildung stellt Eintrittsjahren für alternative Antriebe dar. Die kleinere Flugzeuge mit elektrischen Antrieb, als auch Brennstoffzelle sind bereits jetzt im Einsatz finden Positive Auswirkungen auf die Emission-Werte können bereits



Abbildung 2.6: fdd

mit bestimmten Flugzeug- und Triebwerkskonfigurationen erreicht werden. Zum Beispiel *Claire Liner* vom Bauhaus Luftfahrt e. V. München nicht nur aerodynamische Vorteile mitbringt, sondern auch Verringerung des Kraftstoffverbrauchs und damit Reduktion der Emissionen. Jedoch sind mehr Änderungen notwendig, um Netto null CO<sub>2</sub>-Werte zu erreichen. Die Herstellung bereitet Schwierigkeiten, manchen Firmen

müssen den Geschäftsbetrieb einstellen, wie Universal Hydrogen oder Zunum Aero. oder Konzepte werden nicht weiterentwickelt.

Die kleineren elektrischen Flugzeugen vorgestellt, die manche wurden sogar erprobt. Institut für Flugzeugbau am Universität Stuttgart entwickelte ein zweisitziges hybrid-batteriebetriebenen Segelflugzeug *e-Genius*. Das Flugzeug soll die Reichweite von 400 km erreichen und hat die Batteriekapazität von 40 kWh mit 1,5 Stunden Ladedauer. Pipistrel Alpha Electro hat bereits im Jahr 2007 sein erstes elektrischen Zweisitzer vorgestellt, mittlerweile das Modell "Velis Electro"[35] wird für das Pilottraining mit einem Triebwerk mit 57.6 kW Leistung. Der Antrieb ist flüssigkeitsgekühlt und braucht ein externes Ladegerät. Hingegen haben die größeren Konzepte mit der Umsetzung wegen Komplexität der Technologien und Gewicht zu kämpfen.

Konfigurationen mit Batterie-Antrieb Wie bereits erwähnt wurde, haben die zurzeit bestehenden Batterien die geringe Energiedichte. Dadurch es ist zu erwarten, dass bis zum Jahr 2050 keine große vollelektrische Flugzeuge hergestellt werden, sondern werden die Regional- und Kurzstrecken in den Mittelpunkt gestellt.

Ein vielversprechender Prototyp war die ES-19 von Heart Aerospace. Das Unternehmen versprach die Beförderung von 19 Passagiere über 400 km mit einem BA. Das Flugzeug war für die Regionalstrecken konzipiert und somit konnte die geringe Nachfrage gedeckt werden. Außerdem waren geringe Betriebs- und Wartungskosten erwartet (Quelle). Jedoch zu dem Zeitpunkt wurde das Flugzeug auf ES-30 mit einem hybriden Antrieb umgerüstet.

Eine der größten Konzept mit vollelektrischen Abtrieb stellte Bauhaus Luftfahrt vor. Passagierflugzeug *Ce-Liner* [36] ist mit C-Wing-Konfiguration ausgestattet und sollte eine Reichweite von 900 NM haben und 190 Passagiere befördern. Benötigte Batteriekapazität wurde mit 2000 Wh/kg eingeschätzt. Die Batteriemodule sollen bei Turnaround ausgewechselt werden

#### Konfigurationen mit Wasserstoff-Antrieb

Embraer zeigte eine Reihe von nachhaltigen Flugzeugen *ENERGIA*. Die Flugzeuge sind mit unterschiedlichen Antriebe ausgestattet, unter anderem hybrid-elektrisch,

Wasserbrennstoffzelle und Wasserstoffturbine. Bei Wasserstoffturbine wurde das Konzept von Dualen-Treibstoff vorgeschlagen, wo entweder Jet-A/SAF oder Wasserstoff benutzt werden kann. Das Unternehmen spricht über Technologiebereitschaft ab dem Jahr 2030, Wasserstoffturbine ab Jahr 2035 und Wasserstoffturbine bei dem Jahr 2040. [37] Airbus [38] hat im Jahr 2020 drei unterschiedlichen emissionsfrei *ZEROe* Konzepte vorgestellt: Turbofan, Turboprop und ein mit "Blended-wing body"-Design. In allen Konzepten ist der Wasserstoff im Einsatz und Antrieb mit Gasturbinentriebwerk. Die Reichweite breitet sich ab über 1.850 - 3700 km und die Anzahl beförderte Passagiere wird von 100 bis 200 geschätzt. Das Unternehmen will die Technologien bis zum 2035 zur Einsatzreife bringen.

Wright Spirit [39] hat ein Konzept auf der Basis der konventionellen Flugzeug BAe 146 vorgestellt, aber mit einem Wasserstoff-Antrieb. Das Flugzeug soll mit 4 Triebwerken, 2,5 MW Motoren und vorgestellter Batterie mit 800 Wh/kg eine Reichweite von 1000 km erreichen und 100 Passagiere transportieren.

NASA hat ein turboelektrisches, der mit flüssigen Wasserstoff angetriebenen Konzept N3-X [40] vorgeschlagen. Das Modell ist *hybrid wing body* konzipiert und verspricht, dass der Treibstoffverbrauch bis um 70 % reduziert werden kann. Universal Hydrogen

ZeroAvia stellt ihrer hybrid Wasserstoff-elektrischen Antriebe mit 3 unterschiedlichen Leistungen und Kapazitäten vor. Das kleinste davon ist Antrieb ZA600 mit einer Leistung von 600 kW, mit der Möglichkeit bis 20 Passagieren über 555 km zu befördern. Geplante Eintrittzeit (Entry-in-System EIS) ist im Jahr 2025. Der Antrieb ist mit gasförmigem Wasserstoff angetrieben.

Es werden unterschiedliche wasserstoffkonfugurationen vorgeschlagen aufgrund des schweren und massiven Wasserstofftanks. Es gibt Konzepte, wo der Tank am Rumpf, am Ende des Rumpfes, vorne hinter Pilotenkabine Wie ist zu sehen, es werden viele Konzepte zurzeit ausgearbeitet. Es lässt sich abwarten bis Technologien tatsächlich auf den Markt kommen.

# 3 Änderungen durch neue Antriebe, Annahmen und Methodik

Konzepte mit neuen Antrieben befinden sich im Entwicklungsprozess und bis jetzt es ist ratsam, wie zukünftige Flughäfen aussehen werden und welche Ausstattung für die Flugzeug-Abfertigung ausgesucht wird. Wasserstoff-Flugzeuge werden ab Jahr 2035 in auf den Markt eintreten, wobei die BA-Flugzeuge schon in den nächsten Jahren erwartet werden. Der Wechsel zu nachhaltigen Antrieben kann es zu deutlichen Änderungen in der Infrastruktur und Abläufen am Vorfeld führen, die in diesem Kapitel beschrieben werden. Außerdem auf der Grundlage der unterschiedlichen Quellen und vernünftigen Behauptungen wird eine Reihe der Annahmen für diese Arbeit getroffen.

# 3.1 Änderungen an der Abfertigung und dazugehörige Kosten von alternativen Antrieben

Die Größe des Flughafens beeinflusst die Infrastrukturkosten. Größere Flughäfen können mehr Flugzeuge als Regionalflughäfen abfertigen, was dazu führt, dass mehr Abfertigungsplätze umgerüstet/versorgt werden müssen und mehr Arbeitskräfte geschult werden müssen. In diesem Teil wird näher auf die Änderungen in der Infrastruktur durch die Einführung von neuen Antrieben eingegangen und die Forschungsrichtung ausgesucht.

#### 3.1.1 SAF

SAF ist zwar nicht die beste langfristige Lösung wegen vorhandenen Emissionen, aber wegen benötigter Entwicklung der anderen nachhaltigen Antrieben stellt eine gute Option dar. In der nahen Zukunft werden vor allem die großen Flugzeuge mit BA-Antrieb nicht entwickelt, deswegen können SAF für die Langstreckenflüge benutzt werden [27]. Diese Arbeit wird sich auf das reine SAF ohne Beimischung beschränken, da nur so das Ziel 2050 erreicht werden kann.

SAF benötigt keine Infrastrukturänderung und darf in bestehenden Systemen und Flugzeugen benutzt werden [27]. Dadurch, dass SAF zu herkömmlichen Treibstoffen beigemischt wird, ist zurzeit einen zusätzlichen Treibstofftank für das gemischten Kraftstoff gebraucht. Bis jetzt Transport von SAF mit einer Pipeline nicht zugelassen (Quelle?). Bei der intensiven Recherche wurde keine Information gefunden, die besagt, dass es verboten wird reine SAF nicht als Drop-In zu benutzen. Aus diesem Grund gilt für die Arbeit, dass die Lieferung von SAF mit bestehenden Pipelines und genauso wie Kerosin-Betankung zugelassen wird.

#### 3.1.2 Batterie-Antrieb

Batteriegetriebene Flugzeuge brauchen größere Veränderung am Flughafen als bei der Nutzung von SAF. Bis zum Jahr 2050 sind die BAs auf die kleineren Flugzeuge und damit auf Kurz- und Regionalverkehr beschränkt.

Wartungsverfahren unterscheidet sich stark von konventionellen Flugzeugen. Es ist zu erwarten, dass die Wartungskosten niedriger sein können durch weniger bewegende Teile in dem Antrieb. Jedoch bei einem Fehler oder muss den ganzen Motor ausgetauscht werden [27], was die hohen Kosten mit sich bringt. Die elektrischen Motoren werden keine Kontrolle Gasturbinentriebwerks (Hot-Section Inspection) benötigen, jedoch die Teile wie Lager ausgetauscht werden müssen und es werden mögliche Schäden durch Gelangen den Fremdpartikeln in den Motor verursacht [41], was ungeplante Wartungen benötigt. Die Änderung der Lebensdauer von Flugzeugen wird auch nicht erwartet [41].

In der Literatur werden zwei Batterien-Lademöglichkeiten diskutiert, die Batterien zu wechseln (Swap-Methode), wo die Batterie aus dem Flugzeug herausgenommen werden und an einer Ladestation geladen, oder Ladekabel in das Flugzeug einzustecken (Plug-In), wie bei etablierten E-Autos. Bei diesem Antrieb muss beachtet werden, welche Lebensdauer eine Batterie hat und wie die Batterien geladen werden. Je länger die Ladung dauert, desto mehr Kosten auf dem Boden verursacht werden. Nichtsdestotrotz kann schnelle Ladung zur Stagnation von Lebensdauer einer Batterie bringen.

Bei *Plug-In* ... Plug-In Methode benötigt ein schnelles Laden, damit Flugzeuge weniger Zeit auf Boden verbringen müssen Jedoch ist ein Anstieg in Turnaround-Zeiten aufgrund nicht zurzeit möglichen Schnellladung möglich [42].

Bei Swap-Methode kann Aus- und Einbau der Batterie aus dem/in das Flugzeug lange dauern [27]. Guo et al. [43] ist zum Schluss gekommen, dass Batteriewechsel effizienter und ökonomischer ist, wenn die batteriebetriebenen Flugzeuge nur ein kleiner Teil (unter 10 %) der Flotte ist, in anderem Fall lohnt sich eine Plug-In-Ladung. Für die Batteriewechsel müssen auch Transport und Hebegeräte gestellt werden, um die Batterien bewegen zu können [41]. Jedoch mit Batteriewechsel können die Abfertigungszeiten reduziert werden (Quelle), was an einem großen Flughafen von der Bedeutung ist. Batteriewechsel bietet gleichmäßigere Deckung der Nachfrage, da der Austausch einer Batterie viel schneller ist, als Dauer einer Plug-In Ladung [43]. Außerdem ermöglicht der Swap-Methode langsameres Laden und macht das Laden mit geringer Leistung möglich [42]. Aus diesen Gründen werden in nächsten Teilen die Kosten für diese Option ausgewertet.

Annahmen für die Arbeit Die Strompreise und die vorhandene Leistung sind normalerweise von Tag und Nacht abhängig [29], aus praktischen Gründen wird die konstante Spitzenleistung von Batteriewechselsystem von 250 kW wird angenommen. Bei einer Batteriekapazität von 900 kWh, dauert es 3,6 h bis die Batterie mit so einer Leistung geladen wird.

Für die Nachhaltigkeit des Batterieantriebes sind die Energiequellen von der Bedeutung. Der Strom aus dem Stromnetz kann sein Ursprung aus den Kraftwerken und Verteilerzentren haben [27]. Was dazu führt, dass die fossilen Brennstoffe für die Verbrennung benutzt werden und dadurch zu Emissionen beitragen. Als

Alternative wäre Nutzung der erneuerbaren Energiequellen, wie Windenergie oder Solarenergie. Diese Energie ist normalerweise teurer und die Produktionsmenge ist bis jetzt nicht ausreichend, um die Luftverkehr-Nachfrage zu decken (Quelle). Anstieg in Turnaround-Zeiten aufgrund nicht zurzeit möglichen Schnellladen möglich [42]. Zudem ist ein modulares System möglich, wo beide Ansätze benutzt werden salucci2020optimal.

#### 3.1.3 Wasserstoff

Transport Wasserstoff kann auch in einer chemischen Verbindung gebunden werden, wie Ammoniak und Methanol, und somit transportiert. Die Betankungsanlagen am Flughafen müssen ausgetauscht werden oder neue Lieferketten angeschafft werden müssen, um Wasserstoff als Treibstoff benutzen zu können. Diese Investitionskosten werden die Betreiber beeinträchtigen. Wasserstoff kann hochentzündlich sein [27].

Die Effizienz der Produktion- und Lieferkosten ist geografisch determiniert. Für europäische Distanzen sind die Wasserstoff-Pipelines günstiger als Transport mit chemischen Verbindungen, welcher bei längeren Distanzen in Betracht kommt [44]. Bei Änderung von Erdgasleitung für Wasserstoff können Kosten gespart werden und muss keine neue Infrastruktur gebaut werden, sondern die Leitungen für Wasserstoff umgerüstet werden können [44]. Lieferung Logistik ist ein wichtiger Teil der Produktionskette. Nach Schenke et al. [45] kann Lieferung den flüssigen Wasserstoff mit einem LKW bei einer großen Zahl an Flügen kostengünstiger als andere Lieferalternativen sein. Transport von LH2 erfordert speziell konstruierte Tanks [31]. Der Transport ist durch Pipelines im gasförmigen Zustand, LKW und Zügen sowohl im gasförmigen, als auch im flüssigen Zustand möglich.

Wasserstoff kann unterirdisch in Salzkavernen und in erschöpften Gasfelder gespeichert werden [44], Sie müssen sich in der unmittelbaren Nähe zum Flughafen befinden. Da es sich je nach Flughafenstandort variiert, wird dieser Speicheroption nicht weiter behandelt. Außerdem kann es für die Lagerung ein oberirdischer Druckzylinder, wo flüssiger Wasserstoff oder in festen Materialien (wie Metallhybriden) gespeichert wird. Diese Zylinder oder Tankern müssen gut isoliert und kryogen sein [44]. Andernfalls wird flüssiger Wasserstoff bei der Lagerung verdampft, was zum Verlust der Menge kommt, jedoch der größte Teil der Verdampfung findet durch

Transferphase statt [44]. Der Weg zwischen Betankung und dem Tank, damit Verdampfungsverluste minimiert werden können [26] Die externe Produktion ist am Anfang sinnvoll [26]. Der Transfer von LH2 mit vakuumsisolierte Pipeline beschränkt sich auf die kurze Distanzen wegen Skalierung der Verluste zu Leitungslänge (proportional) [26]. Wird der größe Menge benötigt, weder LKW noch Pipeline sinnvoll [26]

Obwohl auf Wasserstoff und dazugehörige Infrastruktur wartet eine Reihe der Zertifizierungen, die Anschaffungskosten können bereits gefunden werden.

Aufgrund aufwendigen Infrastrukturprozessen für die Produktion und Verflüssigung von Wasserstoff werden wahrscheinlich Flughäfen, besonders kleineren, anfangs auf die Ön-Site"Produktion verzichten.

Die Verdampfung wird mit größeren Lager kleiner [26]. Eine weitere mögliche Betankungsoption ist die Austausch des Flugzeugtanks als Kapseln, dabei werden die leeren Kapseln an die Wasserstoffproduktionstelle zurückgegeben, wo die wieder nachgefüllt werden können [26]. Diese Möglichkeit kann vor allem für die kleineren Flughäfen als Alternative sein, da man kein Wasserstoffspeicher und sonstige Anlagen bauen muss. Für längeres Parken am Flughafen, werden für kalte Tanks eine sichere Verbindung mit der Wasserstoffinfrastruktur [26] Transportkosten sind von der geografische Lage des Flughafens abhängig, befindet sich ein Flughafen nahe einer Wasserstoff-Pipeline...

Auslastung eines Flugzeugs mit Wasserstoff-Antrieb kann im Vergleich zu konventionellen Flugzeug sinken, da eventuell WA-Flugzeuge wegen der Betankungsprozesse mehr Zeit auf dem Boden verbringen werden (Quelle).

Lieferung von gasförmigem Wasserstoff mit niedrigem Druck mit dem Straßenverkehr bis jetzt nur für ungenügende Menge möglich [44]

Wartung: Brennstoffzellen haben auch weniger bewegende Teile [27] und in dem Bereich zu weniger Wartungskosten kommen kann, allerdings der benötigte Wasserstofftank braucht öfteren Wartung (Quelle). "Flüssiger Wasserstoff muss jedoch bei Minusgraden gelagert werden, was eine Verbesserung der Speichertechnologien sowohl im Flugzeug selbst als auch auf Flughäfen erfordert." Wasserstoff kann

entweder als Brennstoff für Verbrennung genutzt werden oder als Wasserbrennstoffzelle für die elektrischen Flugzeuge. [27]

In dem Unterkapitel 2.5.3 wurde angeführt, dass die Produktion des Wasserstoffs hohe Kosten, viel Platz und Energie benötigt. Deswegen für die Flughäfen wäre es die Alternative besser, das Wasserstoff, woanders einzukaufen und zum Flughafen mit LKW oder Pipelines liefern zu lassen [46]. Die Änderung für Abfertingsprozesse können erheblich sein [47]. Es ist zu erwarten, dass die Wasserstoff-Flugzeuge länger als konventionelle Flugzeuge werden und dass Kraftstoffsicherheitszone bei Anschließen und Trennung von Wasserstoff-Betankung zum Jahr 2030 auf 20 m reduziert werden [48].

Aufgrund hohen Unterschiedes zu herkömmlichen Treibstoffen und neuen Ausrüstungen müssen die Mitarbeiter neu geschult werden, um mögliche Gefahren zu erkennen und zu vermeiden [46].

In der Arbeit Dalmia et al. [27] wird die Produktion am Flughafen diskutiert. Dazu wird einen Elektrolyseur für Erzeugung des gasförmigen Wasserstoffs, einen Kompressor und einen Tankwagen oder eine Pipeline mit modularem Tanksystem für Betankung der Flugzeuge benötigt. Modulares Tanksystem kann in bestehenden Flugzeugen eingesetzt werden und wird als wie Fracht in das Flugzeug geladen.

Mulder et al. [31] schätzt die Investitionskosten für Wasserstoff durch Elektrolyse deutlicher günstiger als ein Kohlekraftwerk. Obwohl die hohen Kapitalkosten von Pipeline-Anlage zu erwarten, die Betriebskosten niedriger sein werden. Also bei größerem Umfang lohnt es Pipelines, sonst Lkw. Annahmen: Es wird davon ausgegangen, dass Sicherheitsradius beim Wasserstoffbetankung nicht erweitert wird. Da sich die Flughafenposition topografisch unterscheidet, wird die Annahme getroffen, dass die Lieferung mit LKW stattfindet und die Lieferkosten bereits in dem Preis von flüssigem Wasserstoff inbegriffen sind. Lieferkosten für flüssigen Wasserstoff LH<sub>2</sub> und HEFA werden nicht explizit ausgerechnet, da die schon in Betriebskosten von Wasserstoff-getriebene Flugzeuge eingeschlossen sind. Es wird vor allem angenommen, dass die Produktion des Wasserstoffes und Verflüssigung nicht am Flughafen stattfindet, sondern eingekauft und zum Flughafen transportiert.

Ëine Kryopumpe bringt den Wasserstoff auf den benötigten Druck von 1000 bar. "?file:///C:/Users/henri/Downloads/765438.pdf

Annahmen für die Analyse Die Gesamtinvestitionen sind von der Wahl der Produktion, Speicherung, Lieferketten als auch Betankungsentscheidung abhängig. Da derzeit nicht einsehbar ist, welcher Technologie umgesetzt wird, fokussiert sich die Arbeit auf eine bestimmte Versorgungsweg.

Lieferkosten für flüssigen Wasserstoff LH<sub>2</sub> werden nicht explizit ausgerechnet, da die schon in Betriebskosten von Wasserstoff-getriebene Flugzeuge eingeschlossen sind. Es wird vor allem angenommen, dass die Produktion des gasförmigen Wasserstoffes und Verflüssigung nicht am Flughafen stattfindet, sondern eingekauft und zum Flughafen mit LKW transportiert wird. Am Flughafen wird der Wasserstoff in kryogenen Tanks gespeichert und mit Betankungswagen werden die Flugzeuge mit Kraftstoff befüllt. Die Abbildung 3.1 stellt so eine Variante von Produktion- und Lieferketten für flüssigen Wasserstoff dar.



**Abbildung 3.1:** Lieferkette von flüssigem Wasserstoff mit externer Herstellung und interne Lagerung bzw. die Betankung [45]

Batterie-Antrieb Es wird angenommen, dass die Batterien für BA zur Flughafen-Infrastruktur gehören, d.h. die Anschaffungskosten für Flughafen anfallen und danach werden von für Fluggesellschaften ausgeliehen in Form von Leasing.

# 3.2 Flugzeuge und Annahmen

### 3.2.1 Verglichene Flugzeuge und relevante Flugzeugdaten

Um den betrieblichen Unterschied zwischen konventionellen und mit neuartigen Antrieben zu zeigen, werden die Referenz-Flugzeuge mit neuen Konzepten verglichen. Der Wahl eines Antriebes ist von der Reichweite abhängig. Konventionelle Flugzeuge

Für den Vergleich mit elektrischen Batteriegetriebene Flugzeug wurde ein L410 genommen. L410 ist ein Zubringer-Flugzeug mit 19 Plätzen der Firma Aircraft Industries. Die moderne Version L410NG verfügt über neue Avionik und mit zwei GE H85-200 Triebwerken mit einer Wellenleistung von 850 (SHP) ausgestattet (Quellen). Verbrauch von einem L410 beträgt 240 kg/h [49]. Sonstige wichtige für die Methodik Flugzeugdaten wurden in der Tabelle 3.1 zusammengefasst. Unter V ist die Reisegeschwindigkeit zu verstehen. R ist die Reichweite eines Flugzeugs. MTOW ist die Höchstabfluggewicht und

Für den Vergleich von größeren Distanzen wurde für A321LR entschieden. Die A321LR ist ein Schmalrumpfflugzeug von Airbus und ist eine Version der A321neo mit einer größeren Reichweite. Flugzeug ist mit zwei Triebwerken ausgestattet, die einem maximalen Schub ( $T_{T/O}$ ) von 33 kN haben [50].

Alternative Flugzeuge und Annahmen Die ES-19 von Heart Aerospace dient als Vergleich zur L410. Das Konzept hat einen rein elektrischen, batteriebetriebenen Antrieb. Das Unternehmen hat zwar die ES-19 auf eine hybride Wasserstoffversion ES-30 umgerüstet, das Konzept der ES-19 wurde allerdings breit diskutiert und oft in wissenschaftlichen Arbeiten erwähnt. Das Flugzeug hat vier Triebwerke und sollte über eine Reichweite von 400 km verfügen, wobei hierbei eine Reisegeschwindigkeit von 330 km/h erreicht wird [51] [52]. Für die Batterie der ES-19 wird eine Kapazität von 720 kWh benötigt, mit 30 % der Reserveenergie resultiert in 900 kWh [25]. Mit jetziger Leistung der Batterien wäre es unmöglich bei so einem Gewicht und der Distanz zu bleiben. Deswegen wird es angenommen, dass die Batterien sich positiv in Gewicht-zu-Leistungs-Verhältnis entwickeln und Kapazitätswert von 450 kWh/kg erreicht wird. Manche Studien gehen davon aus, dass die Einsparungen in der Wartungskosten von BA-Flugzeugen 10-15 % erreichen können [42], [53]. Deswegen

in dieser Arbeit wird eine Verminderung von 10 % zu dem Referenzflugzeug genommen. Da es bis jetzt nur wenig ausgearbeitete größere Konzepte für Wasserstoff-Antrieb gibt, wird der Betriebsvergleich auf der Basis von einer A321LR stattfinden. Dabei wird es angenommen, dass das Flugzeug mit Wasserstoffturbine betrieben ist. Im Vergleich zu konventionellen Flugzeugen werden die Wasserstoff-Flugzeuge, die für Mittelstrecken geeignet, 14 % höheres MTOW haben und die Kapitalkosten für das Kurzstrecken-Flugzeug um 7 % sowie Wartungskosten um 6 % steigen [22]. Diese Anteile sind zwar für Mittel- und Langstrecken Flugzeuge positiv, aber werden dennoch für diese Arbeit angenommen.

Es ist auch zu erwarten, dass die Flugzeit zwischen 5 und 15 % aufgrund des Wasserstofftank-Gewichts zunimmt [22]. Aus diesem Grund wurde es für einen Wert von 10 % für die Arbeit entschieden. Der Vergleich zu SAF-Betriebskosten findet auch mit der A321LR statt. Es wird davon ausgegangen, dass der Unterschied nur bei Treibstoffkosten entsteht. Für die A321LR wird die Passagieranzahl von 220 und Verbrauch von 1,7 kg pro Kilometer und pro PAX angenommen [54]. In der Tabelle 3.1 sind relevante charakteristische Werte und Annahmen für die Vergleichflugzeuge zusammengefasst. Anhand dieser Daten ist ES-19 langsamer als ein L410, das bedeutet für gleiche Strecke wird mehr Zeit benötigt, was am Ende die Auslastung eines Flugzeugs und Betriebskosten verändern kann. Aufgrund des Batteriegewichts ist das BA Flugzeug schwerer als konventionelle Alternativen. Die beiden Flugzeuge können die gleiche Anzahl an Passagieren zu befördern. Obwohl die Reisegeschwindigkeiten bei Referenz- und BA-Flugzeugen sich unterscheiden werden, für die Kurzstrecken-Flügen ergibt sich keine erhebliche Differenz. Deswegen es wird angenommen, dass die batteriebetriebenen Flugzeuge ähnliche Auslastung wie konventionelle Flugzeuge aufweisen.

Tabelle 3.1: Bewertete Flugzeuge: Werte und Annahmen

|        | V [km/h] | R [km] | MTOW [kg] | EOW [kg] | PAX-Anzahl | Quellen   |
|--------|----------|--------|-----------|----------|------------|-----------|
| L410   | 417      | 2 570  | 7000      | 4120     | 19         | [55]      |
| ES-19  | 330      | 400    | 8618      |          | 19         | [51] [52] |
| A321LR | 1104     | 7400   | 97000     |          | max. 244   | [56] [54] |
| WA     |          |        |           | 110580   | _          |           |

Dass die Anschaffungspreise die Betriebskosten beeinflussen, wurde bereits in 2.3 diskutiert. Die Tabelle 3.2 stellt die Verkaufspreise für konventionelle Referenz-

Flugzeuge dar. Da der Verkaufspreis einer A321LR nicht zur Verfügung steht, wird auf den Listenpreis einer A321neo zurückgegriffen. Da sie aus einer Flugzeug-Reihe kommen, kann es davon ausgegangen werden, dass die Preise ähnlich sind. Die Preise können nicht aktuell sein, deswegen wird für die beiden noch ein Inflationsfaktor dazugerechnet.

Tabelle 3.2: Flugzeugpreise

|                     | L410      | A321neo   | Quelle    |
|---------------------|-----------|-----------|-----------|
| Verkaufspreis [EUR] | 6 455 884 | 129,5 Mio | [57] [58] |

# 3.3 Aufstellung der Formeln für Kosten

In dem Kapitel 2.3 sind die entstehenden Kosten beim Betrieb der Fluggesellschaft definiert. Schließlich in diesem Unterkapitel sind die dazugehörigen Formeln anhand anderer Modelle vorgestellt und teilweise angepasst.

Es gibt eine Reihe von Methoden, um DOC zu berechnen. Diese wurden kurz in dem Teil 2.3 erwähnt. Als Grundlage für ein Modell wurde der Association of European Airlines (AEA) 1989 gewählt, da sie häufige Anwendung in der akademischen Welt hat, sehr umfassend ist und Berechnungswerte für sowohl Kurz-, als auch Langstrecken hat. Falls die Quelle abweicht, wurde sie explizit angegeben.

Die Betriebskosten werden mit konstanter Reisegeschwindigkeit und Verbrauch ohne Berücksichtigung erheblicher Energieverluste während des Starts und der Landung berechnet. Die Inflationsfaktoren stammen aus Verbraucherpreisindex Deutschland aus Statistischem Bundesamt, entsprechende eingesetzte Werte sind in der Anlage XX zu finden. Alle Werte in USD werden mit dem Wechselkurs <sup>3</sup> (EUR 1 = USD 1.0245) umgerechnet und mit Pfund (1,20 = EUR 1). Aufgrund der hohen Unsicherheit der Preisprojektionen wird der Preis für Kerosin konstant gehalten, nämlich im Wert von 0,688 EUR pro Liter [10]. Stromkosten von 0.1976 € per kWh werden auch als konstante angenommen [59]. In Anbetracht der Kostensenkung für nachhaltige Kraftstoffe in der Zukunft, wird der minimale Preis für HEFA-Treibstoff von 1,07 EUR pro Liter wird in den Rechnungen verwendet [60].

<sup>&</sup>lt;sup>3</sup>Wechselkurs vom 14.01.2025

#### 3.3.1 Betriebskosten einer Fluggesellschaft

Die Gleichung (3.1) stellt die Betriebskosten DOC der Flugzeugnutzung dar. Es werden sowohl variablen als auch ein Teil der Fixkosten betrachtet. Diese bestehen aus Treibstoff-/Energiekosten  $C_T$ , Wartungskosten  $C_W$ , Entgelten und Gebühren  $C_{EG}$ , Kosten für Personal  $C_{Crew}$  und kapitalgebundenen Kosten  $C_{KK}$ .

$$DOC [EUR] = C_T + C_W + C_{Crew} + C_{KK} + C_{EG}$$
 (3.1)

Die Betriebskosten werden auf Basis von Blockstunden kalkuliert. Blockstunden setzen sich aus Flugzeit  $t_{F,h}$  sowie der kumulierten Rollzeit  $t_R$  von und zur Parkposition  $t_R$  zusammen. Für Kurz- und Mittelstrecken beträgt  $t_R$  0,25 h und für Langstrecken 0,42 h [9].

$$t_B = t_{Fh} + t_R \tag{3.2}$$

Treibstoff-/ Energiepreise hängen vom Treibstoff- bzw. Energiepreis selbst  $P_{T/E}$  und vom Verbrauch eines Flugzeugs pro Blockstunde  $m_{V,B}$  ab (vgl. (3.3)).

$$C_T [\mathsf{EUR}] = (P_{T/E} \cdot m_{V,B}) \tag{3.3}$$

Die Treibstoff- bzw. Energiepreis  $P_{T/E}$  sind in der Tabelle zusammengeführt.

Die Wartungskosten werden nach dem Jenkinson 1999 Modell berechnet. Das Modell ermöglicht es, grob aber schnell die Wartungskosten für ein Flugzeug abzuschätzen [61]. Da dieses Modell auf konventionelle Flugzeuge ausgearbeitet wurde, berechnet man die Wartungskosten für alternative Antriebe als Prozentanteil des Referenz-Flugzeugs, die in 3.2.1 angeführt sind. Die Formeln stammen aus [61] und beziehen sich auf das Jahr 1994, somit muss der Inflationsfaktor  $k_{Infl}$  einkalkuliert werden. Die Berechnung liefert die Ergebnisse in USD, aus diesem Grund wird ein Wechselkursfaktor  $k_{WK}$  in die Berechnung implementiert. Wartungskosten werden normalerweise auf die Wartung der Flugzeugzelle  $C_{W,Zelle,B}$  und der Triebwerke  $C_{W,Triebwerk,B}$  aufgeteilt, wie in Gleichungen (3.4)-(3.6) dargestellt. Die Wartungskosten der Zelle sind von dem leeren Betriebsgewicht (Operating Empty Mass  $m_{OE}$ ) abhängig. Kosten

des Triebwerks sind vom erzeugten Schub beim Start (Take-Off Thrust  $T_{T/O}$ ) abhängig.

$$C_{W,B} [\mathsf{EUR}] = (C_{W,Zelle,B} + n_T \cdot C_{W,Triebwerk,B}) t_B \cdot n_{F,Jahr} \cdot k_{WK} \cdot k_{Infl}$$
(3.4)

$$C_{M,AF,b} \left[ \mathsf{EUR} \right] = \left( 175 \frac{USD}{h} + 0,0041 \frac{USD}{h} \cdot m_{OE} \right) \cdot k_{Infl} \tag{3.5}$$

$$C_{M,E,L,b} [EUR] = (0,00029 \frac{USD}{h} \cdot T_{T/O}) \cdot k_{Infl}$$
 (3.6)

Diese Formeln sind für Triebwerke mit Nebenstromverhältnis von 5:1 ausgelegt [61]. Trotz der höheren Nebenstromverhältnisse die bei moderneren und größeren Flugzeugen gegeben sind, wird aus Gründen der Vereinfachung diese Formel genutzt. Zur **Entgelte und Gebühren**  $C_{EG}$  gehören Flughafenentgelte (Passagier-, Lande- und Startentgelte, Sicherheitsentgelte sowie Abfertigung am Vorfeld) und die Flugsicherungsgebühr gemeint. Die detaillierte Beschreibung den benutzten Entgelten und Gebühren sind in der Anhang XX zu finden.

Crewkosten setzen sich aus Lohnkosten für Piloten  $L_{Pilot}$  und Besatzung  $L_{crew}$  zusammen. Die Anzahl der Besatzungsmitglieder  $n_{crew}$  ist von der Anzahl der Passagiere abhängig. Gemäß den luftfahrtrechtlichen Bestimmungen ist pro 50 Passagiere ein Flugbegleiter notwendig [3]. Die Besatzungskosten sind mit Lohn von 37 EUR für Flugbegleiter und 90 EUR für Piloten pro Blockstunden berechnet [62]. Die Erklärung für die Kosten sind in der Anhang XX zu finden. Die Werte stammen aus Grundgehalt und 75 Blockstunden pro Monat.

$$C_{crew} [\mathsf{EUR}] = (L_{Pilot} \cdot 2 + L_{crew} \cdot n_{crew}) \cdot t_B \tag{3.7}$$

Zu kapitalbezogenen Kosten gehören Abschreibungs-, Versicherungs- und Verzinsungskosten. Abschreibungskosten sind von Anschaffungskosten bzw. Kaufpreis, Abschreibungsdauer und Blockstunden pro Jahr abhängig [3]. Die Abschreibungsdauer nach AEA beträgt jeweils 14 Jahre für Kurz- und Mittelstecken und 16 Jahre für Langstrecken.

Da keine öffentlich zugänglichen Marktpreise für Luftfahrzeuge mit alternativen Antriebssystemen vorliegen, wird die Kalkulation der Anschaffungskosten für elektrisch betriebene Flugzeuge nach der Methodik von [63] durchgeführt. In der Arbeit wurde das Regressionsmodell anhand einer Marktanalyse für Berechnung erstellt. In der Formel sind aufgrund der Einführung neuer Technologien 10 % höhere Anschaffungskosten mitbetrachtet. Die Studie ist aus dem Jahr 2020, Preise wurden in USD berechnet, weshalb die Inflationsfaktor  $k_{Infl}$  und der Wechselkurs  $k_{WK}$  ebenfalls betrachtet werden sollen.

$$C_{BA,ac}$$
 [EUR] =  $(407408 \cdot n_{PAX} - 2967.4) \cdot k_{WK} \cdot k_{Infl}$  (3.8)

Ein weiterer wichtiger Faktor der kapitalgebundenen Kosten ist die Auslastung U eines Flugzeuges. Es wird durch die Anzahl der verfügbaren Stunden pro Jahr  $t_{verf}$ , Blockzeit  $t_B$  und Turnaround Zeit  $t_{TA}$  berechnet. Die jährliche Verfügbarkeitszeit  $t_{verf}$  beträgt für Kurzstreckenflugzeuge 3750 h, während für Mittel- und Langstreckenflugzeuge ein Wert von 4800 h eingesetzt wird [9]. Für die Kurzstrecken-Flugzeuge wurde Turnaround-Zeit ein Wert von 1,5 h genommen (Quelle). Aufgrund der Größe und aufwendigere Abfertigung wird für die Mittelstrecken 2 h ausgewählt.

$$U = \frac{t_{verf}}{t_B + t_{TA}} \tag{3.9}$$

Verzinsungskosten  $C_{Zins}$  sind durch den Prozentanteil von Anschaffungskosten bedingt, für diese gelten ca. 5 %. Versicherungskosten sind hingegen von dem Kaufpreis eines Flugzeugs abhängig (inklusive Rabatte beim Kauf), in dieser Arbeit werden ebenfalls 5 % angenommen [9]. Weitere Formeln für kapitalgebundene Kosten sind in dem Anhang XX zu finden.

#### 3.3.2 Infrastrukturkosten

#### Batterie-Antrieb

Kapitalkosten für BA-Infrastruktur sind in folgender Formel zusammengestellt:

$$CAPEX [EUR] = C_{Bat} + C_{BSS}$$
 (3.10)

$$C_{Bat} = P_{Bat} \cdot n_{Bat}$$

$$C_{BSS} = P_{BSS} \cdot n_{BSS}$$
(3.11)

, wobei  $P_{Bat}$  der Preis für eine Batterie darstellt und  $n_{Bat}$  die Anzahl der Batterien, die benötigt sind. Dazu werden noch die 20 % Reserve-Batterien mitgerechnet, um Einschränkung in den Betrieb zu umgehen.  $P_{BSS}$  ist der Preis des Ladegeräts der Batteriewechselstation und  $n_{BSS}$  ist der Anzahl an Ladegeräten. Stromkosten werden hier nicht mitbetrachtet, da die bereits in Betriebskosten pro Flug mitberechnet werden und somit durch Fluggesellschaft gedeckt wird. Für die Berechnung wird die lineare Beschreibung benutzt. Es ist nicht auszuschließen, dass für die richtige Lagerung von Batterien zusätzliche Anlagen, z.B. Lagergebäuden benötigt werden.

Tabelle 3.3: Werte und Annahmen der BA-Infrastruktur

|                          | Werte  | Quelle |
|--------------------------|--------|--------|
| $P_{BSS}$ [EUR]          | 11 974 | [43]   |
| Abschreibung BSS [Jahre] | 10     | [29]   |
| $P_{Bat}$ [EUR/kWh]      | 125000 | [43]   |
| Lebenszyklen Bat         | 5000   | [41]   |
| Abschreibung Bat [Jahre] | 2,7    |        |

Die Anzahl der Batterien ist von der Gesamtanzahl der Abfertigungen  $N_{Abfertigung}$  und Ladezyklen  $c_{Batterie}$  einer Batterie abhängig. Zeitgleich der Anzahl der Zyklen, die eine Batterie an einem Tag geladen werden kann, ist von Betriebsstunden des Flughafens und Ladedauer der Batterie abhängig. In der Zukunft ist die Lebensdauer einer Batterie bis 5000 und mehr Zyklen zu erwarten [41], deswegen wurde der Wert von 5000 Zyklen in der Berechnung angenommen. Ladedauer ist von Leistung des Ladungstations und Kapazität einer Batterie. Für die Ladegeräte wurde die konstante Spitzenleistung von 250 kW angenommen [29]. Zusätzlich wird der Puffer von 20 % für die Batterieanzahl implementiert, um mögliche Engpässe zu vermeiden. Die

Anzahl der Ladegeräte  $n_{BSS}$  ist von der Gesamtzahl der Batterien und Ladezyklen abhängig.

Mit angenommen Batteriekapazität von 900 kWh und Ladegeräten mit der Leistung von 250 kW, entspricht das 3,6 Stunden Ladedauer. Bei einem 18 Stunden-Betrieb entspricht das insgesamt 5 Ladezyklen pro Tag für jede Batterie. Daraus kann abgeleitet werden, dass jede Batterie 1000 Tage überleben bis ihre Leistung bis 80 % sinkt. Die Einbeziehung der Abschreibungswerte unterstützt die dritte Hypothese.

$$n_{Bat} = 1, 2 \cdot \frac{N_{Abfertigung}}{c_{Bat}} \tag{3.12}$$

#### Wasserstoff-Antrieb

Für Wasserstoff-Antriebe wird ein oberirdischer Tank für kryogenen flüssigen Wasserstoff  $LH_2$ , eine kryogene Pumpe zum Befüllen und Entleeren des Lagers kP und ein Tankwagen BW gebraucht (vgl. (3.13)). Die Preise für die Anlage sind in der Tabelle 4.2 zusammengefasst. Benötigter spezifischen Energiebedarf für die Infrastrukturelemente, wie Betankungswagen oder kryogene Pumpe, als auch Wirkungsgrad der Technologien wird dabei nicht betrachtet.

$$CAPEX [EUR] = P_{Lagertank} + P_{kP} \cdot N_{kP} + P_{BW} \cdot N_{BW}$$
 (3.13)

Tabelle 3.4: Werte und Annahmen der Wasserstoffinfrastruktur

|                                 | Werte  | Einheit                | Quellen |
|---------------------------------|--------|------------------------|---------|
| Preis Lagertank $P_{Lagertank}$ | 41,9   | EUR/kg LH <sub>2</sub> | [45]    |
| Abschreibung Lagertank          | 20     | Jahre                  | [64]    |
| Volumen Lagertank $[m^3]$       | 4 732  | $m^3$                  | [65]    |
| Preis kryogene Pumpe $P_{kP}$   | 250171 | EUR/kg/h               | [48]    |
| Abschreibung $kP$               | 10     | Jahre                  | [64]    |
| Preis Betankungswagen $P_{BW}$  | 87848  | EUR                    | [48]    |
| Abschreibung $BW$               | 12     | Jahre                  | [48]    |

Wie bereits im Grundlagen-Kapitel erläutert wurde, hat der kryogene Wasserstoff eine Dichte von ca. 65  $kg/m^3$  [26], also können 307,58 t in einem kugelförmigen Lagertank gespeichert werden. A wird davon ausgegangen, dass die Vorgänge der

Betankung des Wagens und folgende Betankung des Flugzeugs jeweils 30 Minuten dauern [48]. (1 Flugzeug pro Tankwagen, also alles von - Ankunftsrate abhängig)

Außerdem brauchen diese Teile versorgung mit der spannung: Kontrollraum, Wartungseinrichtugen

## 3.4 Betriebsszenarien

Betriebsszenarien helfen die vorher beschriebene Betrieb- und Infrastrukturkosten in Anwendung zu bringen und eine mögliche Entwicklung in der nahen Zukunft zu zeigen. Die Größe des Flughafens beeinflusst die Infrastrukturkosten. Bei einem größeren Flughafen werden die Betriebsdifferenzen deutlicher, da das Verkehrsaufkommen wesentlich höher ist. Größere Flughäfen abfertigen täglich mehr Flugzeuge als Regionalflughäfen, was dazu führt, dass mehr Abfertigungsplätze umgerüstet/versorgt werden müssen und mehr Arbeitskräfte geschult werden müssen.

Deshalb wird für die Betriebsszenarien der Flughafen Frankfurt gewählt, der fungiert als bedeutendes Luftverkehrsdrehkreuz und zudem der größte Verkehrsflughafen Deutschlands. Der Fraport meldete im Jahr 2023 insgesamt 423764 gewerbliche Flugbewegungen, was im Durchschnitt 1160 Flugbewegungen pro Tag ausmacht. Es wird angenommen, dass die Hälfte davon Abflüge sind, also müssen 580 Flugzeuge am Tag abgefertigt werden. Die Gesamtbewegungen teilen sich nach Entfernungen folgend auf [66]:

- Kurzstrecken (bis 2500 km) sind bei 72,8 %;
- Mittelstrecken (bis 6000 km) sind 9,3 %;
- · Langstrecken (ab 6000 km) die restlichen 17,9 %.

Da ist nicht explizit definiert wird, welche Entfernungen Flugzeuge zurücklegen, werden die Betriebskosten anhand vorher beschriebene Distanzen berechnet. Dabei wird für Kurzstrecken eine Entfernung von 400 km genommen und für Langstrecken eine Distanz von 6000 km. Für Mittelstrecken wird die gleichen Werte wie bei Langstreckenflügen verwendet, jedoch mit einer anderen Distanz von 4000 Kilometer, dass Treibstoffverbrauch pro Stunde sich nicht ändern wird.

Anhand dessen wird eine Flotte mit 580 Flugzeugen aufgestellt, wo die alternativen Antriebe im Einsatz sind. Aufgrund der Flugeinschränkungen in der Nacht wird es angenommen, dass die Flüge von 6 bis 24 Uhr gleichmäßig stattfinden. Wie bereits diskutiert wurde, können Kurzstrecken-Flüge durch den Einsatz von batteriebetriebenen Flugzeugen ersetzt werden. Hier wird auch als Ersatz SAF mitberechnet. Es ist nennenswert, dass nur Teil der tatsächlichen Nachfrage des Kurzstrecken-Bedarfs dadurch gedeckt werden kann. Die Mittel- und Langstrecken werden durch Flugzeuge mit Wasserstoffturbine und SAF versorgt/erfüllt. In Betrachtung des tatsächlichen Flugplans sind die Spitzenstunden im Laufe des Tages zu finden, wo der Verkehrsfluss stärker als im Durschschnitt ist. In diesem Fall werden höhere Infrastruktur- und Betriebskosten zu erwarten. Indessen um die Interpretation zu erleichtern, wird in dieser Arbeit angenommen, dass stündlich die gleiche Anzahl an Flugzeugen am Flughafen abgewickelt werden. Die Aufteilung den Antrieben für jedes Szenario ist in der Abbildung 3.2 dargestellt. In dem ersten Betriebsszenario



Abbildung 3.2: Aufteilung der Flugzeugflotte nach Antriebsart

#### wird angenommen, dass:

- Die Kurzstrecken durch die BA komplett ersetzt werden;
- · Die Mittelstrecken werden vollkommen durch WA;
- und die Langstrecken durch die SAF bedient.

#### Das zweite Betriebsszenario wird mit folgender Aufteilung berechnet:

- Die Hälfte der Kurzstrecken wird durch BA versorgt und die andere Hälfte durch SAF;
- die Mittelstrecken werden genauso, wie im ersten Szenario komplett durch die Wasserstoffflugzeuge bedient und

 Langstrecken sind 10 % der Gesamtflotte durch den SAF und den restlichen Anteil Wasserstoff.

#### Das dritte Szenario:

- 50 % der Kurzstrecken sind von Batterie-Antrieb, die restlichen 22,8 % sind mit SAF betrieben
- Mittelstrecken: die Hälfte der Mittelstrecken sind mit WA und die andere Hälfte mit SAF
- Langstrecken: die Hälfte der Mittelstrecken sind mit WA und die andere Hälfte mit SAF

Daraus ergibt sich die folgende Flottenaufteilung für die einzelnen Szenarien:

Tabelle 3.5: Werte und Annahmen der BA-Infrastruktur

| Szenario l                         |     |     |     |  |  |
|------------------------------------|-----|-----|-----|--|--|
| Batterieantrieb Wasserstoffantrieb |     | SAF |     |  |  |
| Kurzstrecken                       | 422 | -   | -   |  |  |
| Mittelstrecken                     | -   | 54  | -   |  |  |
| Langstrecken                       | -   | -   | 104 |  |  |
| Szenario II                        |     |     |     |  |  |
| Kurzstrecken                       | 211 | -   | 211 |  |  |
| Mittelstrecken                     | -   | 54  | -   |  |  |
| Langstrecken                       | -   | 46  | 58  |  |  |
| Szenario III                       |     |     |     |  |  |
| Kurzstrecken                       | 290 | -   | 132 |  |  |
| Mittelstrecken                     | -   | 27  | 27  |  |  |
| Langstrecken                       | -   | 52  | 52  |  |  |

# 4 Auswertung den Ergebnissen und kritische Auseinandersetzung

Anhand vorgeschlagene in dem Teil 3 Methodik wurde in diesem Kapitel den Vergleich zwischen Referenz-Flugzeugen und alternativen Antrieben geschaffen. Außerdem werden aufgestellte Betriebsszenarien ausgewertet, schließlich diskutiert und mit anderen Arbeiten verglichenen, als auch auf die Vorschläge für die anderen Arbeiten eingegangen.

# 4.1 Vergleich von Referenzflugzeugen und neuen Antrieben

Folgende Erkenntnisse ermöglichen Diskussion der ersten Hypothese. Die Ergebnisse sind nach Flugdistanzen aufgeteilt.

Kurzstreckenvergleich: Batterieantrieb und SAF vs. konventioneller Treibstoff In der Abbildung 4.1 sind die Ergebnisse für batteriebetriebenes ES-19 und konventionelles L410 dargestellt. Der Vergleich wurde für 400 Kilometer Flug gemacht. Die Gesamtbetriebskosten des ES-19 sind ca. 22 % höher des konventionellen L410, wobei der Antrieb mit SAF nur 3,6 % höher Ergebnis liefert. Entgelte und Gebühre bewirken den größten Teil der Betriebskosten aller verglichenen Antrieben, gefolgt von

kapitalbezogenen Kosten. Bei den ersten ist einen signifikanten Unterschied zu konventionellem Antrieb zu sehen, nämlich 56 %, bei den zweiter sind das 36 % höhere Kosten bei BA. Der Anteil der Treibstoff- bzw. Energiekosten ist am niedrigsten im Vergleich zu anderen Kosten und die Treibstoffkosten sind bei konventionellem Flugzeug 30 % höher. Die Treibstoffkosten für SAF sind wesentlich höher (38 %).



Abbildung 4.1: Vergleich der Referenz und Flugzeug mit der Batterie-Antrieb und SAF

Zu Entgelten und Gebühren bringen die zusätzlichen Abfertigungskosten in der Flughafenentgelte bei, wie Batteriewechsel oder Leasing der Batterie für den Flug. Dieser Wert wird auch in der Sensitivitätsanalyse 4.3 überprüft. Der Einflusswert für kapitalbezogenen Kosten ist der Anschaffungspreis von einem Flugzeug. Dieser Wert wurde als weiterer Parameter für Sensitivitätsanalyse ausgewählt.

#### Langstreckenvergleich: Wasserstoffantrieb und SAF vs. konventioneller Treibstoff

In der weiter Abschnitten wurde den Gegenüberstellung zwischen den herkömmlichen Treibstoffen, SAF und Flugzeug mit wasserstoffbetriebener Turbine für 6000 Kilometer-Flug durchgeführt. Aufgrund der hohen derzeitigen Wasserstoffpreise wurde zum Vergleich der Wasserstoffmindestpreis von 2,1 EUR/kg für den Jahr 2050 herangezogen [67], um die mögliche Entwicklung der Wasserstofftechnologien zu sehen. Das Ergebnis zeigt, dass die SAF- und Wasserstoffbetriebene Flugzeuge höhere Betriebskosten haben (siehe 4.2). Die Betriebskosten für Wasserstoffturbine

fallen 40 % und für SAF etwa 19 % teurer ein. Treibstoff- und kapitalbezogene Kosten haben den größten Einfluss auf die Gesamtkosten, Wartungs- und Crewkosten entgegen den geringsten. Einfluss der Entgelte und Gebühren auf Gesamtkosten ist nicht so groß, wie bei dem kleineren verglichenen Flugzeugen. Der Treibstoffkosten für WA sind fast doppelt so hoch (ca. 197 %) wie für herkömmlichen Triebwerk. Die Entgelte und Gebühren, Crew- und Wartungskosten haben nicht so ein drastischer Unterschied zu konventionellen Antrieb. Werden die Entwicklung zukünftigen Preise für Wasserstoff mitbetrachtet, kann es sogar zu geringeren Treibstoffkosten im Vergleich zu konventionellen Antrieb führen. Die Gesamtbetriebskosten werden jedoch teurer bleiben.



**Abbildung 4.2:** Vergleich der Referenz und Flugzeug mit der Wasserstoffantrieb und SAF für einen 6000 km Flug

Da die Treibstoffkosten einer der größten Teil in Ergebnissen ausmachen, wird der bedeutsame Parameter Treibstoffpreis für Sensitivitätsanalyse ausgewählt.

# 4.2 Ergebnisse der Betriebsszenarien

In dem Kapitel 3.4 wurden drei Szenarien für den Vergleich aufgestellt, in diesem Abschnitt werden sie ausgewertet und miteinander verglichen. Wobei erstens werden die Betriebskosten unter sich verglichen, zweitens die benötigten Infrastrukturkosten für jedes Szenario und schließlich werden die Szenarien mit der Berücksichtigung beider Aspekte angeschaut.

#### Betriebskosten

Obwohl der Unterschied zwischen Betriebskosten gleichmäßig ist, hat unter allen Betriebsszenarien das zweite die höchsten Gesamtbetriebskosten (siehe Abb. 4.5). Erstes gegenüber hat die geringsten Kosten. Werden, das zweite Szenario ist 3,5 % teuer als das erste. Zweites Szenario: Großteil (58 %) der Kosten entsteht durch wasserstoffbetriebene-Flugzeuge. Weitere 36 % verursacht den SAF. Erstes Szenario hat der niedrigste Betriebswert von allen drei. Die Kosten des ersten Szenarios teilen sich folgend aus. Betrieb mit der SAF verursacht in diesem Szenario die meisten Kosten. Etwa ein Drittel der Kosten sind von dem Betrieb mit Wasserstoff verbunden. Das dritte Szenario hat 1 % geringere Kosten als das zweite. Erkennbar ist auch, dass die Betriebskosten, die durch Batterieantrieb verursacht am geringsten unter allen Szenarien sind.



Abbildung 4.3: Betriebskosten in Abhängigkeit von Szenarien mit Gesamtkostentrend

#### Infrastrukturkosten

In der Tabelle 4.1 sind die benötigten Infrastrukturanschaffungswerte für jedes Szenario zusammengefasst.

Nennenswert ist, dass in der Berechnung von allen Betriebsszenarien erstmal nur einmalige Infrastrukturausgaben ohne jährliche Abschreibungen ausgerechnet sind (siehe Abb. 4.5). Das erste Szenario hat die kleinsten Ausgaben, wobei das zweite Szenario gegenüber die größte und ist 27 % höher als das erste. Die Gesamtkosten

|                                 | Szenario I | Szenario II | Szenario III |
|---------------------------------|------------|-------------|--------------|
| Anzahl Ladestationen $n_{BSS}$  | 20         | 10          | 14           |
| Anzahl Batterien $n_{Bat}$      | 101        | 51          | 70           |
| Anzahl Betankungswagen $n_{BW}$ | 4          | 7           | 5            |
| Anzahl Pumpen $n_{kP}$          | 5          | 8           | 6            |

Tabelle 4.1: Infrastrukturwerte für Wasser- und Batterieantrieb für alle Szenarien

für das zweite Szenario liegen über 35 Tausend Euro. Bei erstem Szenario ist die Aufteilung den Preisen für Batterieinfrastruktur und Wasserstoffinfrastruktur fast die gleiche Anteile hat.



Abbildung 4.4: Vergleich der einmaligen Infrastrukturausgaben zwischen den Betriebsszenarien

Wird die lineare jährliche Abschreibung betrachtet, sehen die Ergebnisse folgend aus:

# 4.3 Sensitivitätsanalyse

Die Sensitivitätsanalyse ermöglicht die Robustheit einer Berechnung zu überprüfen und die Parameter mit größtem Einfluss herauszufinden. Dafür wurde die Teilkosten



Abbildung 4.5: Vergleich der jährlichen Infrastrukturausgaben zwischen den Betriebsszenarien

aus dem 4.1 ausgesucht, die größter Einfluss auf die Gesamtkosten haben. Bei den Vergleich von Batterie, SAF und herkömmlichen Treibstoff sind die Entgelte und Gebühren, als auch kapitalbezogene Kosten.

Werden Entgelte um 10 % erhöht, erhöhen sich die Betriebskosten moderat (S=0,15), auch der Preissenkung für die Anschaffungspreise um 10 % nicht so einen großen Einfluss aus das Gesamtsystem hat (S=0,28).

Dafür wurden folgende Parametern ausgesucht: 1. der Preis für Leasing einer Batterie, 2. Flugzeugpreis Der ersten Wert kann je nach Leistung der Batterie und Häufigkeit der Nutzung unterschiedlich ausfallen, deswegen wäre es wichtig anzuschauen, welcher Unterschied im Betriebskosten entsteht, wenn ich Preis für Leasing 10 % teurer wäre. Die Preise für neue Flugzeugantriebe werden durch die steigende Nachfrage mit der Zeit sinken, aus diesem Grund wurde der 10 % Rückgang wurde angeschaut.

Beim Vergleich von Wasserstoffbetrieben und SAF mit konventionellem Antrieb entsteht der größte Kostenanteil von Treibstoffkosten und kapitalbezogenen Kosten. Deswegen wurde für Parametern wie: 1. Preis für Treibstoff; 2. Anschaffungskosten eines Flugzeugs entschieden. Dabei Preis für alternative Antriebe soll in der Zukunft senken und Preis für herkömmlichen Treibstoffen aufgrund Wachstum von Ölpreisen

wachsen. Es wird auch den Wert von 10 % genommen. Wie bereits angesprochen wird der Anschaffungspreis für neue Technologien mit der Zeit sinken.

| Antriebe                  | Referenz | Wasserstoff | SAF     |
|---------------------------|----------|-------------|---------|
| Ausgang $EUR$             | 56340,3  | 78853,1     | 66853,5 |
| Preis Szenario (+/- 10 %) | 58290,4  | 75020,3     | 63852,1 |
| Abweichung %              | 3,5      | -4,9        | -4,5    |
| S                         | 0,35     | 0,49        | 0,45    |

Der Wasserstoffantrieb reagiert der Preisänderung (S=0,49) gegenüber am stärksten. Das System reagiert relativ empfindlich auf die Preisänderung von Wasserstoff, die Preise für Kerosin und SAF sind weniger sensibel.

# 4.4 Bewertung der Ergebnisse

#### Interpretation der Ergebnisse

Die Ergebnisse dieser Studie liefern wichtige Erkenntnisse für den Betrieb mit alternativen Antrieben. Aus der Analyse der Betriebskosten, in der die konventionellen Flugzeuge mit neuen Antrieben verglichen wurden, lässt sich zusammenfassen, dass die neuartigen Antriebe höhere Betriebskosten für eine Fluggesellschaft bringen werden. Demzufolge kann die Hypothese, dass die Einführung innovativer Antriebe zu höheren Betriebskosten einer Fluggesellschaft im Vergleich zu herkömmlichen Jettriebwerken führt, bestätigt werden. Das liegt vor allem am technischen Anforderungen und neuen zusätzlichen Abfertigungsprozessen, die mit neuartigen Kraftstoffen dazukommen. Avogadro et al.[42] kommt zu gleichem Ergebnis, dass in der näheren Zukunft batteriebetribene Flugzeuge höhere Betriebskosten aufweisen werden. Und Marksel et al. [57] in ihrem Vergleich von konventionellem Flugzeug und Wasserstoffbrennzelle, geht davon aus, dass die Betriebskosten sogar unter dem marktüblichen Kerosinjets Flugzeuge vordringen werden. Jedoch die nächsten 10 Jahre ist das nicht zu erwarten. Die Entwicklung von Ölpreisen sind von der Bedeutung und beeinflussen die Attraktivität der neuen Technologien. Die höheren Kosten für elektrische Flugzeuge sind vor allem von Anschaffungspreise für die Flugzeuge abhängig. Die Sensitivitätsanalyse zu diesem Parameter zeigte, dass das Modell den Änderungen

gegenüber sensibel reagiert. In der Arbeit wurde der Konzept des Batterie-Leasing am Flughafen vorgeschlagen. Unter realen Bedingungen ist es möglich, dass die Batteriemodule bei Anschaffung der Flugzeugen mitbesorgt werden müssen, was endlich die Antriebskosten der Fluggesellschaften steigern können.

Betriebsszenarien - Betriebskosten Die Analyse der Betriebskosten unter unterschiedlichen Betriebsszenarien vermittelt, dass Verteilung der Betriebskosten sich je nach ausgewählte Antrieb unterscheidet sich. Sollte Flottengröße oder Zusammensetzung sich modifizieren, würden unterschiedliche Ergebnisse zum Vorschein kommen. Darauf wurde die zweite Hypothese basiert.

Wobei die größeren Fluggesellschaften sich eine heterogene Flotte aussuchen werden, werden Low-Cost-Carrier eher eine homogene zusammenstellen. Somit je nach Strategie werden sich die Kosten verschieben. Werden die Betriebskosten zusammen mit Infrastrukturkosten für jedes Szenario angeschaut, fällt auf, dass die Infrastrukturkosten sich proportional zu Betriebskosten verhalten. Für die beiden hat das zweite Szenario die höchsten Kosten und das erste die geringsten. Die Betriebskosten unterscheiden sich prozentual um 3,5 %, während die Infrastrukturkosten um 27 % höher ausfallen. Obwohl kein direkter Zusammenhang zwischen Betriebskosten und Infrastrukturkosten besteht, kann die Auswahl der eingesetzten Technologien seitens der Flughafenbetreiber einen Einfluss darauf haben, welche Antriebsarten von Fluggesellschaften gewählt werden. Somit wurde sich die zweite Hypothese widerlegt. Die Batterieantriebe verursachen zwar in der Szenarien die geringsten Kosten. Jedoch darf es nicht vergessen werden, dass die Batterien eingeschränkte Reichweite haben, als auch ungenügende Sitzangebot und damit können nicht vollständig die Nachfrage von Kurzstrecken decken.

#### Betriebsszenarien - Infrastrukturkosten

Wie bereits in den Ergebnissen ausgewertet wurde, sind bei zweitem Szenario die größten einmaligen Infrastrukturkosten zu erwarten. Das liegt daran, dass dieses Szenario die größten Anschaffungseinheiten für den Wasserstoffantrieb haben. Das erste Szenario liefert hingegen das kleinste Ergebnis, dabei ist die Kostenverteilung zwischen BA und WA ist etwa gleich groß. Wird die lineare Abschreibung zusätzlich betrachtet, ist eine Differenz in der Ergebnissen zu sehen. Die jährlichen Abschreibungskosten sind in dem ersten Szenario am höchsten

und hingegen zu Gesamtinfrastrukturkosten bringt hier das zweite die geringsten jährlichen Infrastrukturkosten. Das ist bedingt durch ungünstige für erstes Szenario Abschreibungsstruktur. In diesem Fall soll beobachtet werden, ob die andere Abschreibungsmethode optimaler werden. Folglich ist weitere Hypothese, dass Abschreibungsmethode bewirkt, dass trotz hoher Investitionskosten die jährlichen Kosten belastbarer und niedriger sind, während bei geringeren Anschaffungskosten eine ineffiziente Kostenverteilung zu höheren jährlichen Belastungen führen kann, hat sich bewiesen.

#### Beschränkungen der Forschung

Trotz der Ergebnisse unterliegt diese Arbeit einigen Beschränkungen. Die Arbeit hat sich nur auf Betriebskosten der Fluggesellschaften und Anschaffungskosten für die Infrastruktur, jedoch nicht auf die Betriebskosten der Infrastruktur. Außerdem sind am Flughafen viele andere Stakeholder beschäftigt, vor allem welche Herausforderungen bei Bodendienstleister dazu kommen werden.

Die Komplexität des realen Systems und Technologien wurde durch die vereinfachte Annahmen reduziert, um eine fokussierte Analyse zu ermöglichen. Wegen fehlender Daten in der technologischen Entwicklungen von neuen Antrieben wurden einige Annahmen. Zudem wurde die Arbeit in begrenzter Untersuchungszeitraum stattgefunden, wodurch manche Variablen vernachlässigt werden müssten. Angesichts der Mangel an relevanten Daten war es unmöglich die Ausbildungskosten bei der Einführung den neuen Antrieben zu berechnen. Es lässt sich eindeutig feststellen, dass da eine Forschungslücke vorhanden ist, welche noch erkundet werden muss. Trotz einer gesendeten Anfrage zu dem Thema an ein bedeutendes Unternehmen blieb eine Antwort bislang aus.

Die Ausrechnung der Kosten wurde nur mit der Betracht den Passagieren und der Fracht außer Acht gelassen hat.

Vorschläge für eventuelle weiterführende Forschungen Um die Ergebnisse zu vertiefen und die Arbeit detaillierter zu erforschen, können die Kosten für jede Entfernung berechnet werden. Das ermöglicht die Berechnungen auf die tatsächliche Flotte rübergetragen und Preisanstiege je Entfernung rauszusuchen. Als anderes Aspekt für die Vertiefung wäre interessant anzuschauen, welche konkrete Unterschiede in Emissionen durch alternative Antriebe entstehen, welcher Unterschied sich in

Flughafen-Entgelten bildet und welche Kosten dadurch für Luftfahrzeugbetreibern ergeben. Vor allem durch möglich zukünftige politische Entscheidung.

Vergleich zu anderen Arbeiten: "Im Vergleich zu bisherigen Untersuchungen wird deutlich, dass…" "Im Kontext der bestehenden Literatur deuten die Ergebnisse darauf hin, dass…"

Im Vergleich zu anderen Untersuchungen haben sich die Ergebnisse... Es gibt Werke, die sich detaillierter mit Infrastruktur auseinandersetzen und mehr Komponenten, als auch z.B. Installationsprozesse mitbeziehen.

# 5 Fazit

Die innovative Antriebe und Kraftstoffe, wie SAF, Wasserstoff und Batterieantrieb, schlagen Verkleinerung der Auswirkungen von Luftverkehr auf die Umwelt. Die Wirtschaftlichkeit von denen ist jedoch diskussionswürdig. Diese Arbeit hat sich mit dem Thema Implementierung den neuartigen Antrieben am Flughafen auseinandergesetzt. Dabei wurde anhand Recherche Schließlich wurden die erwarteten Betriebskosten für Fluggesellschaften, als auch Kapitalkosten für die Flughäfen.

Die Betriebskosten werden zwar bei alternativen Antrieben im Vergleich zu traditionellen Jets steigen, jedoch mit den Vorteilen, die sie im Umweltauswirkungen bringen, müssen die preislichen Anstiege in Kauf genommen werden. Zudem wurden die Betriebskosten und Infrastrukturkosten anhand drei Szenarien berechnet. Die Infrastrukturkosten am Flughafen drehte sich um Swap-Methode für Batterieantriebe und Nutzung von kryogenen flüssigem Wasserstoff. Die Ergebnisse zum Schluss gekommen, dass größere Nutzung von Wasserstoff-Antrieben zu größere Infrastrukturkosten führen kann. Jedoch die Nutzung der Abschreibungsmethode ein Unterschied zwischen Szenarien ausmachen kann. Dies beantwortet die eingangs gestellte Forschungsfrage, welcher Einfluss wird von Einführung geprägt

Diese Arbeit bietet eine Übersicht zu wirtschaftlichen Zusammenhängen mit Bezug auf neuen Antriebsverfahren. Um das Potenzial von neuen Technologien jedoch vollständig auszuschöpfen, müssen weitere Untersuchungen mit den tiefen Ausblicken in Infrastruktur, Ausbildung und Technologien am Luftfahrzeugen selbst erfolgen.

# Literatur

- [1] Die Bundesregierung. *Klimaziel: Deutschland reduziert Emissionen um 37 Millionen Tonnen CO<sub>2</sub>-Äquivalente.* Zugriff am 20. November, 2024. Apr. 2024. URL: https://www.bundesregierung.de/breg-de/aktuelles/treibhausgasbilanz-2023-2265440.
- [2] M. Filonchyk u. a. "Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O". In: *Science of The Total Environment* (2024), S. 173359.
- [3] R. Conrady, F. Fichert und R. Sterzenbach. *Luftverkehr: Betriebswirtschaftliches Lehr- und Handbuch*. Walter de Gruyter GmbH & Co KG, 2019.
- [4] M. Schmidt u.a. "Challenges for ground operations arising from aircraft concepts using alternative energy". In: *Journal of Air Transport Management* 56 (2016), S. 107–117.
- [5] D. Schaar und L. Sherry. "Analysis of airport stakeholders". In: *2010 Integrated Communications, Navigation, and Surveillance Conference Proceedings*. IEEE. 2010, J4–1.
- [6] H. Mensen. *Handbuch der Luftfahrt*. Springer-Verlag, 2013.
- [7] S. Maertens und K. Fromen. "Neue EASA-Anforderungen an Bodenverkehrsdienstleister–Chancen und Risiken für die Systempartner im Luftverkehr". In: *Die Verwaltung* 4 (2023), S. 517–537.
- [8] Airbus. *Airbus A321 Aircraft Characteristics: Airport and Maintenance Planning*. Revision 1. Original Issue: September 30, 1992. März 2022.
- [9] D. Scholz. *Aircraft Design / DOC*. Lecture Notes, Hamburg University of Applied Sciences (HAW Hamburg). Zugriff am 5. Januar, 2025. 2015.

- [10] International Air Transport Association (IATA). *Industry Statistics*. Report. Updated: June 2024. Juni 2024.
- [11] J. Wang. "Research on civil aircraft direct maintenance cost analysis and optimization based on data mining". In: *Journal of Physics: Conference Series*. Bd. 1992. 4. IOP Publishing. 2021.
- [12] A. Wittmer, T. Bieger und R. Müller. *Aviation systems: management of the integrated aviation value chain.* Springer, 2011.
- [13] Umweltbundesamt. *Aviation in the EU ETS and CORSIA in the Fit for 55 package Factsheet*. Zugriff am 23. Dezember 2024. Sep. 2023.
- [14] P. J. Ansell. "Review of sustainable energy carriers for aviation: Benefits, challenges, and future viability". In: *Progress in Aerospace Sciences* 141 (2023), S. 100919.
- [15] International Air Transport Association (IATA). *IATA SAF Handbook*. Zugriff am 27. Dezember 2024. 2024.
- [16] International Civil Aviation Organization (ICAO). Sustainable Aviation Fuel (SAF) Conversion Processes. Zugriff am 28. Dezember 2024. 2024. URL: https://www.icao.int/environmental-protection/GFAAF/Pages/Conversion-processes.aspx.
- [17] J.-B. Jarin u. a. "Emissions Comparison of 100% SAF With Bio-Aromatics and Conventional (Fossil) Jet Fuel". In: *Turbo Expo: Power for Land, Sea, and Air*. Bd. 87936. American Society of Mechanical Engineers. 2024, V002T03A012.
- [18] Virgin Atlantic. *Virgin Atlantic operates world's first 100% SAF transatlantic flight*. Zugriff am 27. Dezember 2024. 2023. URL: https://corporate.virginatlantic.com/gb/en/media/press-releases/worlds-first-sustainable-aviation-fuel-flight.html.
- [19] International Air Transport Association (IATA). *IATA Press Release 10 December 2024*. Zugang am 17. Februar 2025. 2024.
- [20] A. Bauen u. a. "Sustainable Aviation Fuels: Status, challenges and prospects of drop-in liquid fuels, hydrogen and electrification in aviation". In: *Johnson Matthey Technology Review* 64.3 (2020), S. 263–278.
- [21] S. De Jong u.a. "Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production". In: *Biotechnology for biofuels* 10 (2017), S. 1–18.

- [22] C. Sky u. a. "Hydrogen-powered aviation: a fact-based study of hydrogen technology, economics, and climate impact by 2050". In: (2020).
- [23] K. Dahal u. a. "Techno-economic review of alternative fuels and propulsion systems for the aviation sector". In: *Renewable and Sustainable Energy Reviews* 151 (2021), S. 111564.
- [24] M. Hepperle. "Electric flight-potential and limitations". In: (2012).
- [25] S. Donckers, K. Stamoulis und A. Apostolidis. "Electric flight operations for interisland mobility". In: *Journal of Physics: Conference Series*. Bd. 2716. 1. IOP Publishing. 2024, S. 012009.
- [26] C. O. Colpan und A. Kovač. *Fuel Cell and Hydrogen Technologies in Aviation*. Springer, 2022.
- [27] T. Dalmia u. a. "Powering the Future of Electric Aviation". In: (2022).
- [28] I. Abrantes u. a. "The impact of revolutionary aircraft designs on global aviation emissions". In: *Renewable Energy* 223 (2024), S. 119937.
- [29] F. Salucci u. a. "Optimal recharging infrastructure sizing and operations for a regional airport". In: *1st Aerospace Europe Conference (AEC 2020)*. 2020, S. 1–8.
- [30] S. Shahid und M. Agelin-Chaab. "A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries". In: *Energy Conversion and Management: X* 16 (2022), S. 100310.
- [31] M. Mulder, P. L. Perey und J. L. Moraga. "Outlook for a Dutch hydrogen market: economic conditions and scenarois". In: (2019).
- [32] H. Eichlseder und M. Klell. "Wasserstoff in der Fahrzeugtechnik. Erzeugung, Speicherung, Anwendung". In: (2012).
- [33] B. Rietdijk und M. Selier. "Architecture design for a commercially viable hydrogen-electric powered retrofitted regional aircraft". In: *Proceedings of the ICAS conference, Florence, Italy.* 2024, S. 9–13.
- [34] B. Khandelwal u. a. "Hydrogen powered aircraft: The future of air transport". In: *Progress in Aerospace Sciences* 60 (2013), S. 45–59.
- [35] P. Aircraft. Velis Electro. Zugriff am 10. Februar, 2025.
- [36] B. Luftfahrt. *CE-Liner: A Concept for Universally Electric Air Transport*. Zugriff am 9. Februar, 2025. 2011.

- [37] Embraer S.A. Embraer presents the Energia Family Four New Aircraft Concepts Using Renewable Energy Propulsion Technologies. Zugriff am 03. Januar 2025. 2021.
- [38] Airbus. *Airbus unveils Zero-Emission Aircraft (ZEA) concepts*. Online PDF. Zugriff am 16. Januar, 2025. 2020.
- [39] Wright Electric. Wright Electric Ultra-Lightweight Motors, Generators, and Batteries for Aerospace and Defense. Zugriff am 9. Februar, 2025. 2025. URL: https://www.weflywright.com/.
- [40] NASA Glenn Research Center. *N3-X Airplane Concept*. Zugriff am 9. Februar, 2025.
- [41] J. O. Reimers. "Introduction of electric aviation in Norway". In: *Green Future: Norway* (2018).
- [42] N. Avogadro und R. Redondi. "Demystifying electric aircraft's role in aviation decarbonization: Are first-generation electric aircraft cost-effective?" In: *Transportation Research Part D: Transport and Environment* 130 (2024), S. 104191.
- [43] Z. Guo u. a. "Aviation to grid: Airport charging infrastructure for electric aircraft". In: International Conference on Applied Energy. 2020.
- [44] C. H. J. Undertaking. "Strategic research and innovation agenda 2021–2027". In: *Agenda* 2021 (2022), S. 179.
- [45] F. Schenke u. a. "LH2 supply for the initial development phase of H2-powered aviation". In: *Energy Conversion and Management: X* 24 (2024).
- [46] Y. Gu u. a. "Hydrogen-Powered Aircraft at Airports: A Review of the Infrastructure Requirements and Planning Challenges". In: *Sustainability* 15.21 (2023), S. 15539.
- [47] Aerospace Technology Institute (ATI). *Airports, Airlines, Airspace Operations and Hydrogen Infrastructure*. Techn. Ber. Zugriff am 16. Januar, 2025. Aerospace Technology Institute (ATI), März 2022.
- [48] J. Hoelzen u. a. "H2-powered aviation at airports–Design and economics of LH2 refueling systems". In: *Energy Conversion and Management: X* 14 (2022).
- [49] LET Aircraft Industries. *L 410 UVP-E20 Brochure*. Zugriff am 2. Februar, 2025. 2016.

- [50] EUROCONTROL. *Aircraft Performance Database: Airbus A321*. Zugriff am 14. Januar, 2025. URL: https://contentzone.eurocontrol.int/aircraftperformance/details.aspx?ICAO=A321.
- [51] M. A. Anker, C. Hartmann und J. K. Nøland. "Feasibility of Battery-Powered Propulsion Systems for All-Electric Short-Haul Commuter Aircraft". In: *Authorea Preprints* (2023).
- [52] Heart Aerospace. Heart Aerospace partners with Aernnova to design and develop the structure for the ES-19 electric airplane. Zugriff am 20. Januar, 2025. 2021. URL: https://heartaerospace.com/newsroom/heart-aerospace-partners-with-aernnova-to-design-and-develop-the-structure-for-the-es-19-electric-airplane/.
- [53] P. B. Wangsness u. a. "Fremskyndet innfasing av elfly i Norge: mulige". In: *Environmental and Resource Economics* 37.1 (2021), S. 181–210.
- [54] D. Fonseca. *Direct Operating Costs, Fuel Consumption, and Cabin Layout of the Airbus A321LR*. Zugriff am 03. Februar, 2025. Feb. 2022.
- [55] LET Aircraft Industries. *L410 NG*. Archivierte Version vom 18. August 2021, Zugriff am [09. Januar, 2025]. 2021. URL: https://web.archive.org/web/20210818120608/http://www.let.cz/en/l410ng.
- [56] Airbus. *A321neo*. Zugriff am 03. Februar, 2025. URL: https://aircraft.airbus.com/en/aircraft/a320-family/a321neo.
- [57] M. Marksel und A. Prapotnik Brdnik. "Comparative Analysis of Direct Operating Costs: Conventional vs. Hydrogen Fuel Cell 19-Seat Aircraft". In: *Sustainability* 15.14 (2023), S. 11271.
- [58] AeroTELEGRAPH. *Die Listenpreise 2018 von Airbus*. Zugriff am 14. Januar, 2025. 2018. URL: https://www.aerotelegraph.com/die-listenpreise-2018-von-airbus.
- [59] Eurostat. *Energy Prices: Household and Industrial Consumers*. Zugriff am 20. Januar, 2025. 2025. URL: https://ec.europa.eu/eurostat/databrowser/view/nrg\_pc\_205/default/table?lang=en.
- [60] M. Watson u.a. "Sustainable aviation fuel technologies, costs, emissions, policies, and markets: a critical review". In: *Journal of Cleaner Production* 449 (2024).

- [61] N. Brüge und F. Kranich. "Wartungskosten von Passagierflugzeugen bei verschiedener Triebwerksanzahl berechnet nach DOC-Methoden". In: (2018).
- [62] Discover Airlines. *Karriere als Cabin Crew Bewerbungsbedingungen*. Zugriff am 29. Januar, 2025. 2025. URL: https://www.discover-airlines.com/de/de/about-us/career/cabin#terms\_conditions.
- [63] M. M. M. Monjon und C. M. Freire. "Conceptual design and operating costs evaluation of a 19-seat all-electric aircraft for regional aviation". In: *2020 AIAAVIEEE Electric Aircraft Technologies Symposium (EATS)*. IEEE. 2020, S. 1–16.
- [64] J. Hoelzen u. a. "H2-powered aviation–Design and economics of green LH2 supply for airports". In: *Energy Conversion and Management: X* 20 (2023).
- [65] J. E. Fesmire und A. Swanger. *New LH2 Sphere Presentation*. Presentation at DOE/NASA Advances in Liquid Hydrogen Storage Workshop. Zugriff am 16. Januar, 2025. Aug. 2021.
- [66] A. Fraport. "Frankfurt Airport Luftverkehrsstatistik 2023". In: *Frankfurt am Main* (2024).
- [67] J. Hoelzen u. a. "Hydrogen-powered aviation and its reliance on green hydrogen infrastructure–Review and research gaps". In: *International Journal of Hydrogen Energy* 47.5 (2022), S. 3108–3130.
- [68] L. Martinez-Valencia, M. Garcia-Perez und M. P. Wolcott. "Supply chain configuration of sustainable aviation fuel: Review, challenges, and pathways for including environmental and social benefits". In: *Renewable and Sustainable Energy Reviews* 152 (2021), S. 111680.
- [69] M. A. Camilleri und M. A. Camilleri. *Aircraft operating costs and profitability*. Springer, 2018.
- [70] International Air Transport Association (IATA). SAF Procurement: Pricing Options for Different Strategies. Zugriff am 28. Dezember 2024. 2024.
- [71] K. Goodge und P. Withey. "An Analysis of Direct Operating Costs for the Wright Spirit Electric Aircraft". In: *Aerospace* 11.12 (2024), S. 1007.
- [72] R. H. Liebeck u. a. *Advanced subsonic airplane design and economic studies*. Techn. Ber. 1995.
- [73] D. F. GmbH. Flugsicherungsgebühren. Zugriff am 11. Januar 2025.

- [74] International Energy Agency (IEA). Fossil jet and biojet fuel production cost ranges (2010-2030). Zugriff am 03. Januar 2025. 2021.
- [75] European Central Bank (ECB). *Euro Reference Exchange Rate: USD*. Online Resource. Zugriff am 14. Januar 2025.
- [76] European Union Aviation Safety Agency (EASA). *Type-Certificate Data Sheet: PT6A-67 Series Engines*. Techn. Ber. EASA.IM.E.008. Issue 06. European Union Aviation Safety Agency (EASA), Feb. 2022.
- [77] Fraport AG. Flughafenentgelte nach § 19b LuftVG: Entgelte für Zentrale Bodenverkehrsdienst Infrastruktureinrichtungen (gültig ab 01. Januar 2025). Zugriff am 17. Januar 2025. Jan. 2025.
- [78] Z. Guo u.a. "Infrastructure planning for airport microgrid integrated with electric aircraft and parking lot electric vehicles". In: *Etransportation* 17 (2023), S. 100257.