2008 NSW BOS Mathematics Extension 1 Solutions Free download and print from www.itute.com Do not photocopy © Copyright 2008 itute.com

Q1a Let $p(x) = x^3$. When p(x) is divided by x + 3, the remainder is $p(-3) = (-3)^3 = -27$.

Q1b
$$\frac{d}{dx}\cos^{-1}(3x) = \frac{-1}{\sqrt{1-(3x)^2}} = \frac{-3}{\sqrt{1-9x^2}}$$

Q1c
$$\int_{-1}^{1} \frac{1}{\sqrt{4 - x^2}} dx = \left[\sin^{-1} \frac{x}{2} \right]_{-1}^{1} = \sin^{-1} \frac{1}{2} - \sin^{-1} \frac{-1}{2} = \frac{\pi}{3}$$

Q1d
$$(2x+3y)^{12} = \dots + {}^{12}C_4(2x)^8(3y)^4 + \dots$$

The coefficient is ${}^{12}C_4(2^8)(3^4) = 10264320$.

Q1e Let
$$u = \sin \theta$$
, $\frac{du}{d\theta} = \cos \theta$.

$$\int_{0}^{\frac{\pi}{4}} \cos \theta \sin^{2} \theta d\theta = \int_{0}^{\frac{\pi}{4}} u^{2} \frac{du}{d\theta} d\theta = \int_{0}^{\frac{1}{\sqrt{2}}} u^{2} du = \left[\frac{u^{3}}{3}\right]_{0}^{\frac{1}{\sqrt{2}}}$$

$$= \frac{1}{3} \left(\frac{\sqrt{2}}{2} \right)^3 = \frac{\sqrt{2}}{12} .$$

Q1f (x-3)(5-x) > 0 when 3 < x < 5. The domain of $f(x) = \log_e[(x-3)(5-x)]$ is the interval (3,5).

Q2a Let
$$u = \log_e x$$
, $\frac{du}{dx} = \frac{1}{x}$.

$$\int_{a}^{e^{2}} \frac{1}{x(\log_{a} x)^{2}} dx = \int_{a}^{e^{2}} \frac{1}{u^{2}} \frac{du}{dx} dx = \int_{1}^{2} \frac{1}{u^{2}} du = \left[-\frac{1}{u} \right]_{1}^{2} = -\frac{1}{2} + 1 = \frac{1}{2}$$

Q2b Given $\ddot{x} = x + 4$, and v = 0 at x = 1

$$\frac{d}{dx}\left(\frac{1}{2}v^2\right) = x+4, \ \frac{1}{2}v^2 = \int (x+4)dx = \frac{(x+4)^2}{2} + c.$$

$$0 = \frac{25}{2} + c$$
, $c = -\frac{25}{2}$.

$$\therefore \frac{1}{2}v^2 = \frac{(x+4)^2}{2} - \frac{25}{2}, \ v^2 = (x+4)^2 - 25.$$

At
$$x = 2$$
, $v^2 = 11$, speed = $|v| = \sqrt{11}$.

O2c
$$p(x) = ax^3 + 16x^2 + cx - 120$$
.

$$p(-2) = a(-2)^3 + 16(-2)^2 + c(-2) - 120 = 0$$
, $\therefore 4a + c = -28$..(1)

$$p(3) = a(3)^3 + 16(3)^2 + c(3) - 120 = 0$$
, $\therefore 9a + c = -8$(2)

$$(2) - (1)$$
: $5a = 20$, $a = 4$ and $c = -44$.

$$\therefore p(x) = 4x^3 + 16x^2 - 44x - 120 = 4(x^3 + 4x^2 - 11x - 30)$$

$$(-2)(3)(\alpha) = 30$$
, $\therefore \alpha = -5$.

© Copyright 2008 itute.com

Q2d $f(x) = \tan x - \log_a x$ has a zero near x = 4.

$$f'(x) = \sec^2 x - \frac{1}{x}.$$

Newton's method: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Another approximation = $4 - \frac{f(4)}{f'(4)} = 4 - \frac{-0.2285}{2.0906} = 4.11$

Q3ai

Q3aii

$$-(x-3) = -(2x-1), -x+3 = -2x+1, x = -2$$
$$-(x-3) = 2x-1, -x+3 = 2x-1, 3x = 4, x = \frac{4}{3}$$
$$\therefore |2x-1| \le |x-3| \text{ when } -2 \le x \le \frac{4}{3}.$$

Q3b When n = 1, $\frac{1}{6}(1+1)(2(1)+7) = 3 = 1 \times 3$, the statement is true. Assume that it is true when n = k,

i.e.
$$1 \times 3 + 2 \times 4 + 3 \times 5 + ... + k(k+2) = \frac{k}{6}(k+1)(2k+7)$$
, then

$$1 \times 3 + \dots + k(k+2) + (k+1)(k+3) = \frac{k}{6}(k+1)(2k+7) + (k+1)(k+3)$$

$$= (k+1)\left(\frac{2k^2+13k+18}{6}\right) = \frac{(k+1)}{6}(k+2)(2k+9)$$

$$= \frac{(k+1)}{6}((k+1)+1)(2(k+1)+7)$$
. : it is also true for $n = k+1$.

Hence it is true for all $n \ge 1$.

Q3ci
$$\theta = \tan^{-1} \left(\frac{x}{\ell} \right)$$
, $\frac{d\theta}{dt} = \frac{\ell}{\ell^2 + x^2} \times \frac{dx}{dt} = \frac{v\ell}{\ell^2 + x^2}$, where $v = \frac{dx}{dt}$.

Q3cii At x = 0, $m = \frac{v}{\ell}$ is the maximum value of $\frac{d\theta}{dt}$.

Q3ciii
$$\frac{d\theta}{dt} = \frac{m}{4}$$
, $\frac{v\ell}{\ell^2 + x^2} = \frac{v}{4\ell}$, $\therefore \ell^2 + x^2 = 4\ell^2$, $\frac{x}{\ell} = \pm\sqrt{3}$, $\therefore \theta = \tan^{-1}(\pm\sqrt{3}) = \pm\frac{\pi}{3}$.

Q4ai
$$T = 190 - 185e^{-kt}$$
. At $t = 0$, $T = 190 - 185e^{0} = 5$.

$$\frac{dT}{dt} = 185ke^{-kt} = -k(-185e^{-kt}) = -k(T - 190).$$

Q4aii At
$$t = 0$$
 (9 am), $T = 5$.
At $t = 1$ (10 am), $T = 29$.

$$\therefore 29 = 190 - 185e^{-k}, \ 185e^{-k} = 161, \ e^{-k} = \frac{161}{185}$$

When
$$T = 80$$
, $80 = 190 - 185 \left(\frac{161}{185}\right)^t$,

$$\left(\frac{161}{185}\right)^t = \frac{110}{185}, \ t = \frac{\log_e \frac{110}{185}}{\log_e \frac{161}{185}} = 3.74142 \text{ h} \approx 3 \text{ h} \ 44 \text{ min}$$

The turkey is cooked at 12:44 pm.

Q4bi Group Barbara and John (in that order) together and arrange with the other six people. Number of ways = 7!= 5040.

Q4bii Total number of ways without restrictions = 8! Half of these John goes through after Barbara, and the other half Barbara goes through after John.

Number of ways = $\frac{8!}{2}$ = 20160.

Q4ci Gradient of
$$QO = \frac{aq^2}{2aq} = \frac{q}{2}$$

Gradient of
$$PT = \frac{dy}{dx}\Big|_{x=2ap} = p$$
.

$$PT \perp QO$$
, $\therefore p \times \frac{q}{2} = -1$, $pq = -2$.

Q4cii Gradient of $PL = \frac{p}{2}$.

Gradient of
$$QT = q$$
. $\frac{p}{2} \times q = \frac{pq}{2} = \frac{-2}{2} = -1$,

 $\therefore PL$ and QT are perpendicular, $\angle PLQ = 90^{\circ}$.

Q4ciii Since $\angle PLQ = \angle PKQ = 90^{\circ}$,

 $\therefore PQ$ is a diameter of a circle through L and K. M is the midpoint of PQ,

 $\therefore MK = ML$, radius of the circle.

Q5ai

Q5aii The inverse of $y = x - \frac{1}{2}x^2$ is $x = y - \frac{1}{2}y^2$.

$$y^2 - 2y + 2x = 0$$
, $y^2 - 2y + 1 - (1 - 2x) = 0$, $(y - 1)^2 = 1 - 2x$,
 $y - 1 = -\sqrt{1 - 2x}$.

$$\therefore y = 1 - \sqrt{1 - 2x}, \ \therefore f^{-1}(x) = 1 - \sqrt{1 - 2x}.$$

Note: Minus is chosen because the domain of f(x) is the range of $f^{-1}(x)$.

Q5aiii
$$f^{-1}\left(\frac{3}{8}\right) = 1 - \sqrt{1 - 2 \times \frac{3}{8}} = 1 - \frac{1}{2} = \frac{1}{2}$$
.

Q5b SHM: $\ddot{x} = -k^2x$, where k is a positive constant.

$$\frac{d}{dx} \left(\frac{1}{2} v^2 \right) = -k^2 x \,, \ \frac{1}{2} v^2 = -\frac{k^2 x^2}{2} + c \,.$$

Maximum speed = 2 ms^{-1} when x = 0, $\therefore c = 2$, $v^2 = 4 - k^2 x^2$.

When
$$v = 0$$
, $0 = 4 - k^2 x^2$, $x = \pm \frac{2}{k}$. Amplitude = $\frac{2}{k}$.

At
$$x = -\frac{2}{k}$$
, maximum acceleration $6 = -k^2 \left(-\frac{2}{k}\right)$, $\therefore k = 3$.

Hence the amplitude $=\frac{2}{k} = \frac{2}{3}$ metres,

And the period = $\frac{2\pi}{k} = \frac{2\pi}{3}$ seconds.

Q5c

 $\angle PMQ = \angle KPQ$ (Angle between tangent and chord equals angle subtended by chord at a point on circumference)

$$\angle PMQ + \angle MPQ = \angle KPQ + \angle MPQ$$

$$\angle PQK = \angle KPM \ (\angle PQK \text{ is an exterior angle of } \Delta PMQ)$$

$$\angle PQK + \angle KLP = \angle KPM + \angle KPL = 180^{\circ}$$

 $(\angle PQK + \angle KLP)$ is the sum of the opposite angles of a quadrilateral with vertices on the circle)

 $\therefore \angle KLP = \angle KPL$

 $\therefore \Delta PKL$ is isosceles.

Q6ai

Q6aii Let h m be the height of the tower. $OA = h \tan 23^{\circ}$, $OB = h \tan 32^{\circ}$, $\angle AOB = 180^{\circ} - 120^{\circ} = 60^{\circ}$.

$$200^{2} = \left(\frac{h}{\tan 23^{\circ}}\right)^{2} + \left(\frac{h}{\tan 32^{\circ}}\right)^{2} - 2\left(\frac{h}{\tan 23^{\circ}}\right)\left(\frac{h}{\tan 32^{\circ}}\right)\cos 60^{\circ}$$

$$40000 = \frac{h^{2}}{0.18018} + \frac{h^{2}}{0.39046} - \frac{h^{2}}{0.26524}, \ h \approx 96 \text{ m}.$$

Q6b $\sin 3\theta + \sin 2\theta = \sin \theta$,

$$\therefore \sin 3\theta = -\sin 2\theta + \sin \theta = -2\sin \theta \cos \theta + \sin \theta$$

$$=-\sin\theta(2\cos\theta-1)$$
.

Given $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta = 4\sin \theta - 4\sin^3 \theta - \sin \theta$ $=\sin\theta(4\cos^2\theta-1).$

$$\therefore \sin\theta \left(4\cos^2\theta - 1\right) = -\sin\theta \left(2\cos\theta - 1\right),\,$$

$$\therefore \sin\theta (4\cos^2\theta - 1) + \sin\theta (2\cos\theta - 1) = 0,$$

$$2\sin\theta(2\cos^2\theta+\cos\theta-1)=0.$$

Hence $\sin \theta = 0$, $\cos \theta = \frac{1}{2}$ or $\cos \theta = -1$, where $0 \le \theta \le 2\pi$.

$$\therefore \theta = 0, \frac{\pi}{3}, \pi, \frac{5\pi}{3} \text{ or } 2\pi.$$

$$(1+x)^{p+q} = 1 + {}^{p+q}C_1x + {}^{p+q}C_2x^2 + \dots + {}^{p+q}C_qx^q + \dots + {}^{p+q}C_{p+q-1}x^{p+q-1} + x^{p+q}$$

The term of $\frac{(1+x)^{p+q}}{x^q}$ which is independent of x is $x^{p+q}C_q$.

Q6cii
$$(1+x)^p = 1 + {}^pC_1x + {}^pC_2x^2 + ... + {}^pC_ix^i + ... + {}^pC_{p-1}x^{p-1} + x^p$$

$$\left(1+\frac{1}{x}\right)^{q}=1+{}^{q}C_{1}\frac{1}{x}+{}^{q}C_{2}\frac{1}{x^{2}}+...+{}^{q}C_{i}\frac{1}{x^{i}}+...+{}^{q}C_{q-1}\frac{1}{x^{q-1}}+\frac{1}{x^{q}}\,,$$

In the expansion of $(1+x)^p \left(1+\frac{1}{x}\right)^q$, the term independent of x is

$$1^{2}+{}^{p}C_{1}{}^{q}C_{1}x\frac{1}{r}+{}^{p}C_{2}{}^{q}C_{2}x^{2}\frac{1}{r^{2}}+...+{}^{p}C_{p}{}^{q}C_{p}x^{p}\frac{1}{r^{p}}$$

i.e.
$$1^2 + {}^pC_1{}^qC_1 + {}^pC_2{}^qC_2 + ... + {}^pC_p{}^qC_p$$
.

$$\therefore 1^{2} + {}^{p}C_{1}{}^{q}C_{1} + {}^{p}C_{2}{}^{q}C_{2} + \dots + {}^{p}C_{p}{}^{q}C_{p} = {}^{p+q}C_{q}$$

Q7a
$$y = Vt \sin \theta - \frac{1}{2}gt^2$$
. When $y = h$, $\frac{1}{2}gt^2 - Vt \sin \theta + h = 0$,

$$\therefore t_1 = \frac{V \sin \theta - \sqrt{(V \sin \theta)^2 - 2gh}}{g}$$

and
$$t_2 = \frac{V \sin \theta + \sqrt{(V \sin \theta)^2 - 2gh}}{g}$$

$$\therefore t_1 + t_2 = \frac{2V}{g} \sin \theta \text{ and } t_1 t_2 = \frac{\left(V \sin \theta\right)^2 - \left(V \sin \theta\right)^2 + 2gh}{g^2} = \frac{2h}{g}$$

Q7b
$$\tan \alpha + \tan \beta = \frac{h}{Vt_1 \cos \theta} + \frac{h}{Vt_2 \cos \theta} = \frac{h}{V \cos \theta} \left(\frac{1}{t_1} + \frac{1}{t_2}\right)$$

$$= \frac{h}{V \cos \theta} \left(\frac{t_1 + t_2}{t_1 t_2} \right) = \frac{h}{V \cos \theta} \left(\frac{\frac{2V}{g} \sin \theta}{\frac{2h}{g}} \right) = \tan \theta.$$

Q7c
$$\tan \alpha \tan \beta = \left(\frac{h}{Vt_1 \cos \theta}\right) \left(\frac{h}{Vt_2 \cos \theta}\right) = \frac{h^2}{V^2t_1t_2 \cos^2 \theta}$$

$$=\frac{h^2}{V^2\left(\frac{2h}{g}\right)\cos^2\theta}=\frac{gh}{2V^2\cos^2\theta}.$$

O7d From the given diagram:

$$r = OP + PN = h \cot \alpha + h \cot \beta = h(\cot \alpha + \cot \beta)$$
 and
 $r = PN = ON = PN = OP = h \cot \beta$, heat $\alpha = h(\cot \beta)$ and

$$w = PN - QN = PN - OP = h \cot \beta - h \cot \alpha = h(\cot \beta - \cot \alpha).$$

Q7e
$$x = Vt \cos \theta$$
 and $y = Vt \sin \theta - \frac{1}{2}gt^2$.

Eliminate t to obtain
$$y = x \tan \theta - \frac{gx^2}{2(V \cos \theta)^2}$$
.

$$\frac{dy}{dx} = \tan\theta - \frac{gx}{(V\cos\theta)^2}.$$

At
$$L$$
, $t = t_1 = \frac{V \sin \theta - \sqrt{(V \sin \theta)^2 - 2gh}}{g}$,

$$\therefore \frac{x}{V\cos\theta} = \frac{V\sin\theta - \sqrt{(V\sin\theta)^2 - 2gh}}{g},$$

$$\therefore \frac{gx}{\left(V\cos\theta\right)^2} = \frac{V\sin\theta - \sqrt{\left(V\sin\theta\right)^2 - 2gh}}{V\cos\theta} = \tan\theta - \frac{\sqrt{\left(V\sin\theta\right)^2 - 2gh}}{V\cos\theta}$$

$$\therefore \frac{dy}{dx} = \frac{\sqrt{(V\sin\theta)^2 - 2gh}}{V\cos\theta}$$

i.e.
$$\tan \phi = \frac{\sqrt{(V \sin \theta)^2 - 2gh}}{V \cos \theta}$$
.

$$\tan \alpha - \tan \beta = \frac{h}{Vt_1 \cos \theta} - \frac{h}{Vt_2 \cos \theta} = \frac{h}{V \cos \theta} \left(\frac{1}{t_1} - \frac{1}{t_2} \right)$$

$$= \frac{h}{V\cos\theta} \left(\frac{t_1 - t_2}{t_1 t_2} \right) = \frac{h}{V\cos\theta} \left(\frac{\frac{2}{g}\sqrt{(V\sin\theta)^2 - 2gh}}{\frac{2h}{g}} \right)$$

$$=\frac{\sqrt{(V\sin\theta)^2-2gh}}{V\cos\theta}$$

$$\therefore \tan \phi = \tan \alpha - \tan \beta .$$

Q7f
$$\frac{\tan \theta}{\tan \phi} = \frac{\tan \alpha + \tan \beta}{\tan \alpha - \tan \beta} = \frac{\frac{\tan \alpha + \tan \beta}{\tan \alpha \tan \beta}}{\frac{\tan \alpha - \tan \beta}{\tan \alpha \tan \beta}} = \frac{\frac{1}{\tan \beta} + \frac{1}{\tan \alpha}}{\frac{1}{\tan \beta} - \frac{1}{\tan \alpha}}$$

$$= \frac{\cot \beta + \cot \alpha}{\cot \beta - \cot \alpha} = \frac{\frac{r}{h}}{\frac{w}{h}} = \frac{r}{w}.$$

$$\therefore \frac{w}{\tan \phi} = \frac{r}{\tan \theta}.$$

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors.