Modelling uncertainty of the Rhenium-Osmium cosmic clock

Øyvind Brynhildsvoll Svendsen¹

Supervisor: Sijing Shen¹ Co-supervisor: Signe Riemer-Sørensen¹

¹Institute of Theoretical Astrophysics, University of Oslo

Friday 15th June 2018 Svein Rosselands hus 209

What is a cosmic clock?

Why use ${}^{187}_{75}Re^{-187}_{76}Os?$

Advantages

Halflife
$$T_{\beta}=43.3~{
m Gyr}^1~(\lambda_{\beta}=rac{\ln 2}{T_{eta}})$$

Different sources Slow and rapid neutron capture process

Nucleosynthesis

How was the nuclear elements created?

- Big bang nucleosynthesis
- Fusion of lighter elements (up to iron)
- Neutron capture processes

```
slow \beta^--decays before succesive neutron capture rapid capture multiple neutrons before \beta^--decay
```

Slow and rapid neutron capture around $^{187}_{75}$ Re- $^{187}_{76}$ Os

Figure: Adopted from [5, fig.1]

Analytical models of $^{187}_{75}$ Re- $^{187}_{76}$ Os cosmic clock

$$\frac{dN}{dt} = -\lambda N \tag{1}$$

$$^{187}_{76}\mathrm{Os}_{\odot} = ^{187}_{76}\mathrm{Os}_{s} + ^{187}_{76}\mathrm{Os}_{p} + ^{187}_{76}\mathrm{Os}_{c}$$
 (2)

$$\frac{d}{dt} \left[{}^{187}_{76} \text{Os}_c \right] = \lambda_{\beta} {}^{187}_{75} \text{Re}$$
(3)

$$\frac{d}{dt} \left[{}^{187}_{75} \mathrm{Re} \right] = A(t) - \lambda_{\beta} {}^{187}_{75} \mathrm{Re}$$
 (4)

Using the analytical model from Clayton [5]

$$A(t) = A_0 e^{-\lambda_r t} \tag{5}$$

$$f_{187} \equiv \frac{{}^{187}_{76}O_{S_c}}{{}^{187}_{75}Re} = \frac{\frac{\lambda_{\beta}}{\lambda_{r}}(1 - e^{-\lambda_{r}t}) - (1 - e^{-\lambda_{\beta}t})}{e^{-\lambda_{r}t} - e^{-\lambda_{\beta}t}}$$
(6)

Observed isotope fraction from meteorites and solar atmosphere

$$^{187}_{76}\mathrm{Os}_{\odot}/^{187}_{75}\mathrm{Re}_{\odot} = 0.226 \pm 0.0579$$
 [?] (7)

$$\Delta t_{sos} = 4.5682 \pm (4 \times 10^{-4}) Gyr$$
 [7] (8)

$$T_{1/2} = 41.577 \pm 0.12 \, Gyr \quad [8]$$
 (9)

$$f_{187}(t_{sos}) = 0.135 \pm 0.0323$$
 (10)

Chemical enrichment of galactic medium

Explosive events

- Asymptotic giant branch stars (not really explosive)
- Core collapse supernovae
- ► Type 1a supernovae
- Neutron star mergers

Eris simulation

THE ASTROPHYSICAL JOURNAL, 742:76 (10pp), 2011 December 1

Figure: credit: Guedes et al. (2011) [4, fig.2]

- Smoothed particle hydrodynamics simulation [4]
- ▶ 3D
- ▶ 18.6 million particles
- Postprocessing to add rapid neutron capture elements from neutron star mergers [2]

Omega semianalytical model [3]

- ightharpoonup SFR + timestep ightarrow stellar mass formed
- ightharpoonup stellar mass formed ightarrow stellar population
- ▶ stellar population + yield tables + delay-time → isotopic yields recycled into ISM + remnant
- ightharpoonup remnants ightarrow secondary events

Modelling uncertainty of the Rhenium-Osmium cosmic clock

Methods

- ▶ Fitting Omega to data from Eris
- Manipulate yields in Omega
- ► Main experiments
- Postprocessing

Fitting Omega to data from Eris

- ► Rough model
- " χ^2 -by-eye"
- Star formation rate, stellar mass, total mass, [O/H], [Fe/H], [Eu/H]

- Direct insertion
- Mass content
- type 1a supernovae
- Neutron star mergers
- Size of timesteps

Direct Insertion

Mass content

Stellar parameters

Neutron star mergers

Size of time steps

Manipulate yields in Omega

- ► Yields from arnould and other TODO!
- ▶ "Fudge-factors"

Table of observed abundances

isotope	standard	min	max	σ_{lower}	σ_{upper}
Re-187	0.0318	0.027	0.0359	-0.1509	0.1289
Re-185	0.0151	0.011	0.0176	-0.2715	0.1656
Os-188	0.0707	0.0633	0.0781	-0.1047	0.1047
Os-189	0.103	0.0961	0.109	-0.067	0.0583
Os-190	0.152	0.137	0.168	-0.0987	0.1053
Os-192	0.273	0.252	0.289	-0.0769	0.0586
Eu-151	0.0452	0.0267	0.0482	-0.4093	0.0664
Eu-153	0.0495	0.046	0.0526	-0.0707	0.0626
-					

Table: Values and uncertainties of r-process nuclei near $^{187}_{\ 75} Re \ from \ \emph{[1]}$

Main experiments

- Draw random "fudge-factor" from gaussian distribution
- ▶ 1500 individual calculations
- ▶ Yields
- Yields+IMFslope
- Yields+IMFslope+NSM

Postprocessing

$$\beta^-$$
-decay

- $ightharpoonup \Delta \mathrm{Re} = -\lambda_{\mathrm{Re}} \mathrm{Re} \Delta t$
- $ightharpoonup \Delta Os = \lambda_{Re} Re \Delta t$

Removing negative negative yields

$$\hat{Y} \leq 0
ightarrow ext{consider}$$
 calculation

Results

- ▶ ¹⁸⁷₇₅Re in interstellar gas
- ▶ ¹⁸⁷₇₆Os in interstellar gas
- $ightharpoonup f_{187} = rac{^{187}{76} Os}{^{187}_{75} Re}$
- Rate of neutron star mergers
- Yields
- Yields+IMFslope
- Yields+IMFslope+NSM

Yields without postprocessing

Yields with postprocessing

Comparing models

Model	$^{187}_{76}\mathrm{Os}_c/~^{187}_{75}\mathrm{Re}$	$\lambda_{\scriptscriptstyle Re}$	λ_{rncp}
Clayton	$\frac{\Lambda - \lambda}{\lambda} e^{\lambda t} \frac{1 - e^{-\Lambda t}}{1 - e^{-(\Lambda - \lambda)t}} - 1$	$\lambda = \frac{\ln 2}{\tau_{Re}}$	Λ
Clayton Sudden synthesis	$e^{\lambda t} - 1$	$\tau_{\rm Re} = 47 \pm 10 Gyr$	$\Lambda \to \infty$
Clayton Uniform synthesis	$\frac{\lambda t}{1 - e^{-\lambda t}} - 1$		$\Lambda \to 0$
Luck	$\frac{\lambda_{Re}/\beta(1-e^{-\beta t})-(1-e^{-\lambda_{Re}t})}{e^{-\beta t}-e^{-\lambda_{Re}t}}$	$\lambda_{\text{Re}} = \begin{array}{c} 1.62 \pm 0.08 \\ \times 10^{-11} yr^{-1} \end{array}$	β
Luck Sudden synthesis			$\beta=10^{-6}yr^{-1}$
Luck Steady state			$\beta = 10^{-12} yr^{-1}$
Shizuma	$\frac{(1-e^{-\lambda_{\beta}^{\text{eff}}t})-(1-e^{-\lambda t})\lambda_{\beta}^{\text{eff}}/\lambda}{e^{-\lambda_{\beta}^{\text{eff}}t}-e^{-\lambda t}}$	$\lambda_{\beta}^{\rm eff} = \tfrac{1.2 \ln 2}{\tau_{Re}} = 2.00 \times 10^{-11} [yr^{-1}]$	$\lambda \in [0,2]Gyr^{-1}$
SciPy curvefit to Fiducial Omega-model-data	"	$\begin{array}{c} 1.33 \times 10^{-11} \\ \pm 2.767 \times 10^{-14} \end{array} [yr^{-1}]$	$5.42 \times 10^{-10} \\ \pm 5.79 \times 10^{-12} [yr^{-1}]$

Comparing models

Comparing models

Uncertainties of Yields+IMFslope

Uncertianties of Yields+IMFslope+NSM

Uncertianties of Yields+IMFslope+NSM

Conclusions/summary

- Yields
- Yields+IMFslope
- Yields+IMFslope+NSM

- Uncertainties with and without β^- -decay
- Uncertainties of models and observations
- Additional uncertainties from the slope of the *Initial Mass Function*
- Additional uncertainties from Neutron Star Mergers

References 1

- [1] Arnould, M. and Goriely, S. and Takahashi, K. The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries Phys.Rep.
- [2]Shen, S. et al. The History of R-Process Enrichment in the Milky Way ApJ
- [3] Côté, B. et al. Uncertainties in Galactic Chemical Evolution Models ApJ
- [4] Guedes, J. et al. Forming Realistic Late-type Spirals in a ΛCDM Universe: The Eris Simulation ApJ

References II

- [5] Clayton, D. D. Cosmoradiogenic Chronologies of Nucleosynthesis. ApJ
- [6]Shizuma, T. et al. Photodisintegration cross section measurements on W 186, Re 187, and Os 188: Implications for the Re-Os cosmochronology Physical Review C
- [7] Bouvier, Audrey and Wadhwa, Meenakshi The age of the Solar System redefined by the oldest Pb-Pb age of a meteoritic inclusion
 Nature geoscience
 - Nature geoscience
- [8] Snelling, A.A. Determination of the Radioisotope Decay Constants and Half-Lives: Rhenium-187 (187 Re) Answers Research Journal