DCC638 - Introdução à Lógica Computacional 2023.1

Introdução ao Curso

Área de Teoria DCC/UFMG

Introdução - O que é "lógica"?

 Vamos abrir o curso de Introdução à Lógica Computacional com uma pergunta:

O que é "lógica" ?

Introdução - O que é "lógica"?

 Vamos abrir o curso de Introdução à Lógica Computacional com uma pergunta:

O que é "lógica" ?

Algumas definições (mais ou menos) formais incluem:

- "A lógica (do grego antigo $\lambda o \gamma \iota \kappa \eta$) é o método de <u>raciocínio</u> conduzido ou avaliado de acordo com princípios estritos de <u>validade</u>."
- "A lógica é o estudo sistemático das formas de inferência válidas, e das leis gerais da verdade."
- "A lógica é o uso sistemático de <u>técnicas matemáticas e simbólicas</u> para determinar as formas de argumento dedutivo válido."

• . . .

Introdução - O que é "lógica"?

- Nas definições acima, alguns termos merecem destaque:
 - "raciocínio".
 - "verdade" e "validade".
 - "formas de inferência" e "argumento dedutivo",

- "técnicas matemáticas e simbólicas", e
- "princípios estritos", "estudo sistemático" e "leis gerais".
- Neste curso vamos estudar estes termos com o devido cuidado.
- Mas podemos dizer que a intuição de "lógica" pode ser capturada informalmente como:

"A lógica é o método de raciocinar de maneira estruturalmente válida."

É isso que vamos fazer neste curso: aprender a estruturar raciocínio de maneira válida, principalmente voltado para computação!

Objetivos e Programa da Disciplina

ILC: Objetivos

- Ao final deste curso, espera-se que o(a) estudante seja capaz de responder com propriedade as seguintes perguntas:
 - O que é a lógica proposicional, e como aplicá-la a problemas reais?
 - O que é a lógica de predicados, e como aplicá-la a problemas reais?
 - A partir de um conjunto de hipóteses, como realizar apenas deduções válidas?
 - Como demonstrar formalmente a veracidade de uma proposição matemática?
 - O que é o conceito de recursão, e como aplicá-lo a problemas reais?
 - Como a lógica Booleana é aplicada à base dos circuitos digitais que compõem os computadores modernos?

1. Fundamentos das lógicas proposicional e de predicados.

- Conectivos lógicos (conjunção, disjunções inclusiva e exclusiva, negação, implicação, implicação dupla).
- Tabelas da verdade.
- Satisfatibilidade, tautologias, contradições.
- Consequência lógica, equivalência lógica.
- Predicados, quantificadores, e proposições quantificadas.
- Regras de inferência.
- Expressividade das lógicas proposicional e de predicados.

2. Métodos de demonstração.

- Demonstração direta, por contra-exemplo e por divisão em casos.
- Demonstração por contradição e por implicação contra-positiva.
- O Demonstrações construtivas e não-construtivas.
- Automatização de demonstrações

2. Métodos de demonstração.

- Demonstração direta, por contra-exemplo e por divisão em casos.
- Demonstração por contradição e por implicação contra-positiva.
- Demonstrações construtivas e não-construtivas.
- Automatização de demonstrações

3. Teoria de conjuntos e funções.

- Onjuntos dos números naturais, inteiros, racionais e reais.
- Teoria de conjuntos elementar.
- Funções injetivas, sobrejetivas e bijetivas.
- Conjuntos enumeráveis e não-enumeráveis.
- Somatórios e produtórios.

4. Indução e recursão.

- Indução matemática fraca e forte.
- Princípio da boa ordenação.
- Relações de recorrência e recursão.
- Indução estrutural.

4. Indução e recursão.

- Indução matemática fraca e forte.
- Princípio da boa ordenação.
- Relações de recorrência e recursão.
- Indução estrutural.

5. Fundamentos de álgebra Booleana e circuitos digitais combinatórios.

- Conversão entre bases numéricas.
- Álgebra Booleana e aritmética binária (incluindo leis de De Morgan e representação em complemento de dois).
- Portas lógicas.
- Formas normais conjuntiva e disjuntiva.
- Minimização de circuitos e mapas de Karnaugh.
- Completude de operadores.

Um exemplo de uso de lógica: Definindo números

O papel da lógica na definição de números

- Começamos com uma motivação natural para a lógica: definir os números.
- Definir números rigorosamente é essencial.

Computadores, por exemplo, manipulam números o tempo todo, seguindo instruções.

Tudo precisa ser rigorosamente definido para computadores funcionarem bem.

- Porém, quando os matemáticos tentaram definir rigorosamente o conceito de "número", muitas dificuldades surgiram.
 - Como conseguir uma definição finita para um conjunto infinito (como o conjunto dos números naturais, ou o dos números reais)?
 - ② Como demonstrar que sua definição está correta: que nenhum número "errado" está incluído nela, e que nenhum número "certo" está excluído?

• Para resolver estas dificuldades, muitas técnicas lógicas foram aprimoradas.

O papel da lógica na definição de números

• Aqui definiremos conjuntos de números importantes:

os números naturais N.

os números irracionais I. e

os números inteiros Z,

os números racionais ①,

• os números reais \mathbb{R} .

• Para isto, vamos usar vários conceitos que veremos com cuidado neste curso:

- conectivos lógicos para definir conjuntos,
- definições recursivas,
- uso de bases diferentes (decimal, binária) para representar números,
- como representar somas com infinitos termos (somatórios), e
- como demonstrar a veracidade de uma afirmação matemática.

Os números naturais

• O conjunto dos números naturais é o conjunto

$$\mathbb{N}=\{0,1,2,3\ldots\}.$$

Os números naturais

• O conjunto dos **números naturais** é o conjunto

$$\mathbb{N} = \{0, 1, 2, 3 \ldots\}.$$

Alguns autores não consideram o número 0 (zero) como um número natural, definindo $\mathbb{N} = \{1, 2, 3, \ldots\}$.

 \bullet O conjunto dos números naturais $\mathbb N$ pode ser definido através de duas "observações auto-evidentes":

 N_1 : 0 (zero) é um número natural, e

 N_2 : cada número natural tem um sucessor.

Os números naturais

 Reescrevendo estas "observações auto-evidentes" de maneira mais formal, obtemos os seguintes axiomas para os naturais:

$$\mathrm{N}_1$$
': $0 \in \mathbb{N}$, e N_2 ': se $k \in \mathbb{N}$. então $s(k) \in \mathbb{N}$.

onde
$$s(\cdot)$$
 é a **função sucessor**: $s(k) = k + 1$.

- Exemplos:
 - $oldsymbol{0}$ $0 \in \mathbb{N}$, por causa de (N_1') .
 - ② $s(0) \in \mathbb{N}$, por causa de (N_2') . Notação: s(0) = 1.
 - **3** $s(s(s(s(s(0))))) = 5 \in \mathbb{N}.$

• Para obter-se o número natural n, aplica-se (N_1') uma vez, e depois aplica-se (N_2') n vezes.

Números naturais na representação decimal e binária

• Números naturais podem ser escritos em função de potências de 10.

Introdução ao Curso

Números naturais na representação decimal e binária

• Números naturais podem ser escritos em função de potências de 10.

• Exemplo 1

$$237 = 2 \cdot 10^2 + 3 \cdot 10^1 + 7 \cdot 10^0$$

Introdução ao Curso

Números naturais na representação decimal e binária

• Números naturais podem ser escritos em função de potências de 10.

• Exemplo 1

$$237 = 2 \cdot 10^2 + 3 \cdot 10^1 + 7 \cdot 10^0$$

• Entretanto, não há nada de especial na escolha de potências de 10 para decompor os números naturais.

Podemos representar os números naturais em potências de 2, por exemplo.

• Exemplo 2

$$11101101_{2} = 1 \cdot 2^{7} + 1 \cdot 2^{6} + 1 \cdot 2^{5} + 0 \cdot 2^{4} + 1 \cdot 2^{3} + 1 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0}$$

$$= 1 \cdot 128 + 1 \cdot 64 + 1 \cdot 32 + 0 \cdot 16 + 1 \cdot 8 + 1 \cdot 4 + 0 \cdot 2 + 1 \cdot 1$$

$$= 237$$

Os números inteiros

• O conjunto dos números inteiros é o conjunto

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}.$$

O conjunto

$$\mathbb{Z}^+ = \{1, 2, 3, 4, 5, \ldots\}$$

é o conjunto dos números inteiros positivos.

ullet O conjunto dos números inteiros $\mathbb Z$ pode ser definido como sendo o conjunto de todos os números naturais e seus negativos:

$$\mathbb{Z} = \{ x \mid x \in \mathbb{N} \text{ ou } -x \in \mathbb{N} \}.$$

Os números reais

- \bullet Outro conjunto importante é o conjunto dos **números reais** $\mathbb{R}.$
- Exemplos:

$$\bullet$$
 $\pi = 3.14159265359...$

$$\sqrt{2} = 1.41421356237...$$

 Um número real pode ser definido como uma soma ponderada infinita de potências de 10:

$$d_k \quad d_{k-1} \quad \cdots \quad d_1 \quad d_0 \quad . \quad d_{-1} \quad d_{-2} \quad d_{-3} \quad \cdots \quad = \quad \sum_{i=-\infty}^{\infty} d_i \cdot 10^i$$

Os números reais

- \bullet Outro conjunto importante é o conjunto dos **números reais** $\mathbb{R}.$
- Exemplos:

$$\bullet$$
 $\pi = 3.14159265359...$

$$\sqrt{2} = 1.41421356237...$$

 Um número real pode ser definido como uma soma ponderada infinita de potências de 10:

$$d_k \quad d_{k-1} \quad \cdots \quad d_1 \quad d_0 \quad . \quad d_{-1} \quad d_{-2} \quad d_{-3} \quad \cdots \quad = \quad \sum_{i=-\infty}^{\infty} d_i \cdot 10^i$$

Exemplo 3

$$\pi = 3 \cdot 10^{0} + 1 \cdot 10^{-1} + 4 \cdot 10^{-2} + 1 \cdot 10^{-3} + 5 \cdot 10^{-4} + \dots$$

= $3 + 0.1 + 0.04 + 0.001 + 0.0005 + \dots$

- O próximo conjunto de interesse é o dos **números racionais** Q.
- Um número racional é um numero real x tal que existam $p, q \in \mathbb{Z}$, com $q \neq 0$, tais que

$$x = \frac{p}{q}$$
.

Note sempre podemos usar a representação simplificada de racional, em que mdc(p, q) = 1.

• Exemplos:

$$\frac{-1}{3} = \frac{1}{-3} = -\frac{1}{3} = -0.333333\dots$$

• Teorema. Um número real é racional se, e somente se, há periodicidade na sua representação decimal.

Exemplos:

$$\mathbf{0} \ 1/5 = 0.2000000000...$$

• O conjunto dos **números irracionais** são os números reais não-racionais:

$$\mathbb{I} = \mathbb{R} - \mathbb{Q} = \{ x \mid x \in \mathbb{R} \text{ e } x \notin \mathbb{Q} \}$$

- O seguinte resultado mostra que existe pelo menos um número irracional.
- **Teorema.** $\sqrt{2}$ não é racional.

• O conjunto dos **números irracionais** são os números reais não-racionais:

$$\mathbb{I} = \mathbb{R} - \mathbb{Q} = \{ x \mid x \in \mathbb{R} \text{ e } x \notin \mathbb{Q} \}$$

- O seguinte resultado mostra que existe pelo menos um número irracional.
- **Teorema.** $\sqrt{2}$ não é racional.

Demonstração.

Por contradição: Suponha que $\sqrt{2}$ é racional.

• O conjunto dos **números irracionais** são os números reais não-racionais:

$$\mathbb{I} = \mathbb{R} - \mathbb{Q} = \{ x \mid x \in \mathbb{R} \text{ e } x \notin \mathbb{Q} \}$$

- O seguinte resultado mostra que existe pelo menos um número irracional.
- **Teorema.** $\sqrt{2}$ não é racional.

Demonstração.

Por contradição: Suponha que $\sqrt{2}$ é racional.

Neste caso, sabemos que existem números $p,q\in\mathbb{Z}$, com $\mathrm{mdc}(p,q)=1$, tais que $\sqrt{2}=p/q$.

• O conjunto dos **números irracionais** são os números reais não-racionais:

$$\mathbb{I} = \mathbb{R} - \mathbb{Q} = \{ x \mid x \in \mathbb{R} \text{ e } x \notin \mathbb{Q} \}$$

- O seguinte resultado mostra que existe pelo menos um número irracional.
- **Teorema.** $\sqrt{2}$ não é racional.

Demonstração.

Por contradição: Suponha que $\sqrt{2}$ é racional.

Neste caso, sabemos que existem números $p,q\in\mathbb{Z}$, com $\mathrm{mdc}(p,q)=1$, tais que $\sqrt{2}=p/q$.

Elevando os dois lados da equação acima ao quadrado, obtemos $2=p^2/q^2$, ou seja, $p^2=2q^2$.

Demonstração (Continuação).

Note que $2q^2$ é par, portanto pela igualdade acima p^2 também tem que ser par. Isto implica que p deve ser par.

• Demonstração (Continuação).

Note que $2q^2$ é par, portanto pela igualdade acima p^2 também tem que ser par. Isto implica que p deve ser par.

Agora, já que p é par, existe algum $r \in \mathbb{Z}$ tal que p = 2r. Isso implica que $2q^2 = p^2 = (2r)^2 = 4r^2$, o que resulta em $q^2 = 2r^2$. Note que então q^2 é par, portanto q deve ser par.

• Demonstração (Continuação).

Note que $2q^2$ é par, portanto pela igualdade acima p^2 também tem que ser par. Isto implica que p deve ser par.

Agora, já que p é par, existe algum $r \in \mathbb{Z}$ tal que p = 2r. Isso implica que $2q^2 = p^2 = (2r)^2 = 4r^2$, o que resulta em $q^2 = 2r^2$. Note que então q^2 é par, portanto q deve ser par.

Mas se ambos p e q são pares, isto contradiz a suposição de que o mdc(p,q)=1: encontramos uma contradição.

Conclusão: não existem $p, q \in \mathbb{Z}$, com $q \neq 0$ e mdc(p, q) = 1, tais que $\sqrt{2} = p/q$, portanto $\sqrt{2}$ não é racional.

Observações sobre os números racionais e irracionais

- Alguns fatos interessantes sobre racionais e irracionais:
 - **1** O conjunto dos números reais é a união dos racionais e irracionais: $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$.
 - Entre dois números racionais quaisquer sempre existe um número irracional.
 - Entre dois números irracionais quaisquer sempre existe um número racional.
 - A soma de dois números racionais é sempre um número racional.
 - A soma de um racional e um irracional é sempre um número irracional.
 - **1** A soma de dois números irracionais é mais complicada: não se sabe se o número $\pi + e$, onde e é a constante de Euler, é racional ou irracional!

Introdução ao Curso

Uma última questão "complicada"

Vamos fechar com uma questão mais "complicada" sobre os números.

A seguinte afirmação é verdadeira ou é falsa?

"O conjunto $\mathbb Z$ dos inteiros é "maior" que o conjunto $\mathbb N$ dos naturais."

Uma última questão "complicada"

• Vamos fechar com uma questão mais "complicada" sobre os números.

A seguinte afirmação é verdadeira ou é falsa?

"O conjunto $\mathbb Z$ dos inteiros é "maior" que o conjunto $\mathbb N$ dos naturais."

Há duas possibilidades:

- Se a afirmação for <u>verdadeira</u>, então existe um infinito "maior" que o outro!
- Mas se ela for <u>falsa</u>, então é possível um conjunto ter o mesmo "tamanho" que de um de seus subconjuntos próprios (ou seja, $\mathbb Z$ ter o mesmo "tamanho" que seu subconjunto próprio $\mathbb N$)!

Dilemas como este, em que nossa intuição não é de muita ajuda, dependem de métodos lógicos cuidadosos para serem resolvidos.