Deposition of Thin Films of Gallium Sulfide from a Novel Single-Source Precursor, Ga(S₂CNMeHex)₃, by Low-Pressure Metal-Organic Chemical Vapor Deposition

Mike R. Lazell,† Paul O'Brien,*,† David J. Otway, and Jin-Ho Park

Department of Chemistry, Imperial College of Science, Technology and Medicine, London, SW7 2AY, United Kingdom

> Received August 5, 1999 Revised Manuscript Received October 15, 1999

Group III sulfide and selenides are an interesting class of materials with promise in photovoltaic and optoelectronic applications. The related ternary and quaternary materials CuIn_xGa_ySe₂ or CuIn_xGa_yS₂ are of particular interest for solar cells.^{1,2} Binary III/VI materials exhibit a number of stoichiometric forms including ME or M_2E_3 (M = Ga, In, Tl; E = S, Se, Te) and have a range of mid- to wide-optical band gaps (e.g., In₂Te₃ \sim 1.0 eV and α -Ga₂S₃ \sim 3.4 eV).^{3,4} Gallium sulfide has the stoichiometries GaS or Ga₂S₃ and has potential application in the passivation of GaAs.^{5,6}

A number of single-source precursors have been used for the deposition of thin films of III/VI materials by chemical vapor deposition (CVD) techniques, including thiolates, ^{7,8} selenolates, ^{9,10} thiocarboxylates, ¹¹ thiocarbonates, ¹² and dithio- and diselenocarbamates. ^{13–15} Such precursors combine the group III element and chalcogenide in a single molecule. Only quite limited literature is available on gallium sulfide thin films from single-source precursors. Barron et al. have reported the preparation of films from a series of complexes with a

* Author to whom correspondence should be addressed. E-mail: p.obrien@ic.ac.uk.

- (1) Nomura, R.; Kanaya, K.; Matsuda, H. *Chem. Lett.* **1988**, 1849. (2) Nomura, R.; Sekl, Y.; Matsuda, H. *J. Mater. Chem.* **1992**, *2*, 765.
- (3) O'Brien, P.; Jones, A. C. CVD of Compound Semiconductors; VCH: Weidlein, 1997; Chapter 1.
- (4) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements, Pergamon Press: Oxford, 1984; Chapter 7.
- (5) Cao, X. A.; Hu, J. T.; Ding, X. M.; Yuan, Z. L.; Dong, Y.; Chen,
 X. Y.; Lai, B.; Hou, X. Y. J. Vac. Sci. Technol. 1998, B 16, 2656.
 (6) MacInnes, A. N.; Power, M. B.; Barron, A. R.; Jenkins, P. P.;
- Hepp, A. F. *Appl. Phys. Lett.* **1993**, *62*, 711. (7) Nomura, R.; Konishi, K.; Matsuda, H. *J. Electrochem. Soc.* **1991**,
- (8) MacInnes, A. N.; Power, M. B.; Hepp, A. F.; Barron, A. R. J. Organomet. Chem. 1993, 449, 95.
- (9) Gysling, H. J.; Wernberg, A. A.; Blanton, T. N. Chem. Mater.
- (10) Stoll, S. L.; Barron, A. R. *Chem. Mater.* **1998**, *10*, 650. (11) Shang, G.; Kunze, K.; Hampden-Smith, M. J.; Duesler, E. N. *Chem. Vap. Deposition* **1996**, *2*, 242.
- (12) Bessergenev, V. G.; Bessergenev, A. V.; Ivanova, E. N.; Kovalevskaya, Y. A. J. Solid State Chem. 1998, 137, 6.
- (13) Haggata, S. W.; Malik, M. A.; Motevalli, M.; O'Brien, P.; Knowles, J. C. *Chem. Mater.* **1995**, *7*, 716.
- (14) O'Brien, P.; Otway, D. J.; Walsh; J. R. Chem. Vap. Deposition
- (15) O'Brien, P.; Otway, D. J.; Walsh; J. R. Thin Solid Films 1998,

Figure 1. XRD pattern of the α -Ga₂S₃ film on GaAs(111) deposited from Ga(S₂CNMeHex)₃ at 500 °C (Cu Kα, 1.541 Å).

cubane core, 17-19 and more recently, we have prepared gallium sulfide films from Ga(SOCNEt₂)₃ by aerosolassisted chemical vapor deposition (AACVD) which resulted in cubic GaS.¹⁶ In this communication, we report the synthesis of a related dithiocarbamato complex $Ga(S_2\check{C}NMeHex)_3$, 18 and its use as a novel singlesource precursor to deposit thin films of gallium sulfide by low-pressure metal-organic chemical vapor deposition (LP-MOCVD).

The compound used in this experiment has two major advantages: it is easy to synthesize, and it is air-stable. Thermogravimetric analysis (TGA) of the compound was carried out at atmospheric pressure with N2 as the carrier gas. The heating rate was 10 °C/min. The TGA curve showed that the precursor started to sublime at 180 °C and decomposed at 280 °C, leaving an 18%

Analyses. Thin films of gallium sulfide were grown on glass, silicon wafer (100), and GaAs (111) single-crystal substrates by low-pressure metal-organic chemical vapor deposition (LP-MOCVD). The reactor was a cold wall, horizontal reactor. The substrate was heated by a tungsten halogen lamp, and the precursor by a Carbolite tube furnace, the system was under a dynamic vacuum at $\sim 10^{-2}$ Torr. The gallium complex, $Ga(S_2CNMeHex)_3$ (~ 20 mg), was used in each experiment. The films were then analyzed by X-ray powder diffraction (Siemens D500, Cu K α), energy-dispersive X-ray analysis (JEOL J535CM/LINK QX2000), and XPS analysis was performed on a Escalab 220I instrument using focused (500 $\!\mu m$ spot size) monochromatic Al K $\!\alpha$ radiation at a pass energy of 20 eV. Scans were acquired with steps of 20 meV. The binding energies were referenced to the adventitious hydrocarbon C1s peak at 284.8 eV.

Present address: The Manchester Materials Science Centre and Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL.

⁽¹⁶⁾ Horley, G. A.; Lazell, M. R.; O'Brien, P. Chem. Vap. Deposition

¹⁹⁹⁹, *5*, 205. (17) MacInnes, A. N.; Power, M. B.; Barron, A. R. *Chem. Mater*. 1993, 5, 1344.

⁽¹⁸⁾ Preparation of Tris(methylhexlyldithiocarbamato)gallium(III), Ga(S2CNMeHex)3. Sodium methylhexylthiocarbamate was prepared by the literature method. 15 Gallium(III) chloride was a gift from Epichem Ltd. Sodium methylhexyldithiocarbamate (8.21 g, 46.90 mmol) was dissolved in absolute ethanol (~40 mL). Gallium(III) chloride dissolved in hexane (0. 28 M in hexane, 14.7 mL, 15.63 mmol) was slowly added to the solution, and the mixture was allowed to stir for 1 h at room temperature. A white solid was deposited from the light yellow solution. This was filtered off and recrystallized from benzene to give a white crystalline solid: yield = 7.93 g (83%) (based on GaCl₃); mp 86 °C; 1 H NMR ($^{\circ}$, DMSO- $^{\circ}$ d₆, 400 MHz) 0.85 [9H, t, $^{\circ}$ CH₂-CH₃, 3 J_{H-H} 6.8 Hz], 1.27 [18H, m, NCH₂CH₂CH₂CH₂CH₂CH₂CH₃], 1.63 [6H, m, NCH₂CH₂CH₂-], 3.27 [9H, s, -NCH₃], 3.68 [6H, t, NCH₂-CH₂-, ${}^{3}J_{H-H}$ 7.5 Hz]; ${}^{13}C$ NMR (δ , DMSO- d_{δ} , 100 MHz) 13.87 [-CH₃], $\begin{array}{l} 22.03\ [-CH_2CH_3],\ 25.65\ [-CH_2-],\ 26.13\ [-CH_2-],\ 30.81\ [-CH_2-],\\ 42.40\ [-CH_2-],\ 57.10\ [-CH_2-],\ 199.77\ [N-C-S_2].\ IR\ (Nujol\ mull,\\ \end{array}$ cm⁻¹) 2932(w), 2858(m), 1508(s), 1391(m), 1192(m), 1078(w), 976(s), 727(2), 608(w). Microanalysis: Calculated for $C_{24}H_{48}GaN_3S_6$: C, 45.0; H, 7.5; N, 6.6%. Found: C, 44.4; H, 7.2; N, 6.5%. (19) **Deposition of Thin Films by LP-MOCVD and Thin-Film**

Figure 2. XPS spectrum of the α -Ga₂S₃ film deposited on GaAs(111) from Ga(S₂CNMeHex)₃ at 500 °C (Al K α , 20 eV).

Figure 3. SEM images of α -Ga₂S₃ films deposited on GaAs(111) from Ga(S₂CNMeHex)₃ at 500 °C: (a and b) top view, (c) tilted view, and (d) cross-sectional view.

residue. Hence, the evaporation temperature for the precursor was set to 230 $^{\circ}\text{C}$ in subsequent deposition experiments. Deposition was attempted by AACVD and LP-MOCVD. 19 AACVD leads to films with a very poor morphology over a range of substrate temperatures

(350-500 °C) on glass, GaAs (111) or silicon wafer (100) substrates. However, the growth of gallium sulfide thin films by LP-MOCVD gave much improved crystallinity and morphology. In all cases the source temperature was maintained at 225 °C. Little or no film growth was

observed at substrate temperatures below 475 °C. However, at a substrate temperature of 500 °C, a crystalline film was obtained but only on the GaAs(111) substrate. EDAX analysis of the film at random sites showed a gallium-to-sulfur ratio of close to 2:3. XRD analysis of the thin film (Figure 1) grown from the compound indicated that α -Ga₂S₃ (JCPDS 30-577) was deposited on GaAs(111) with a strong reflection for (002) plane. There is no obvious lattice match between the substrate and the oriented film of α-Ga₂S₃ deposited. The effectiveness of deposition on GaAs, as opposed to glass, may reflect some initial chemical step in the nucleation and growth of the films. The XRD results are much improved over films grown from precursors such as Et₂-GaS₂CNEt₂, which were amorphous.¹³ Films obtained from a gallium thiocarboxylate, 20 using AACVD, were found to be of the same phase $(\alpha-Ga_2S_3)$ but with a different preferred orientation (312). XPS analysis confirmed that only gallium (2p₁, 2p₃, and Auger lines $L_2M_{45}M_{45}$, $L_3M_{23}M_{45}$, and $L_3M_{45}M_{45}$) and sulfur (2s and 2p₃) are present at the surface (Figure 2). Analysis of the film by SEM (Figure 3) shows average particle sizes of \sim 2 μ m in plane view in a film of thickness \sim 1.5 μ m (30 min growth). Films grown from Et₂GaS₂CNEt₂, ¹³ or [('Bu)₂Ga(S'Bu)]₂,¹⁷ were dominated by spherical par-

(20) Shang, G.; Hampden-Smith, M. J.; Duesler, E. N. *J. Chem. Soc., Chem. Commun.* **1996**, 1733.

ticles, a quite different morphology from those observed in this study.

It is interesting to note that the precursor [Ga-(SOCNEt₂)₃] leads, under similar conditions, to films of the cubic phase of GaS with a 1:1 stoichiometry. The present work leads to the more sulfur-rich phase Ga_2S_3 . It is tempting to conclude that the different phases depend on the supply of sulfur from the precursor which may suggest that the amount of an element delivered by a single-molecule precursor is one factor important in controlling the phase deposited. These studies demonstrate the formation of dense and relatively thick polycrystalline Ga_2S_3 films from a precursor which is air stable and relatively easy to synthesize.

Acknowledgment. This work has been funded by an EPSRC grant to P.O.B. We thank Mr. K. Pell (QMW) for EDAX and SEM, Mr. D. Niemeyer (UCL) for XPS, and Dr. M. Odlyha (Birkbeck) for TGA and also special thanks to Mr. G. A. Horley and Dr. J. Walsh for initial precursor syntheses. J.H.P thanks the Rotary International Foundation for a studentship. P.O.B is the Sumitomo/STS Professor of Materials at IC and from 9/1/99 Professor of Inorganic Materials at The Manchester Materials Science Centre and The Chemistry Department.

CM9905040