

Communication 3rd year 2016 – 2017

Sheet 3 Inter-symbol Interference

Problem 1

A computer puts out binary data at the rate of 56 Kbps. The computer output is transmitted using a base-band binary PAM system that is designed to have a raised-cosine spectrum. Determine the transmission bandwidth required for each of the following roll-off factors: $\alpha = 0.25, 0.5, 0.75, 1$

Problem 2

A binary PAM wave is to be transmitted over a baseband channel with an absolute maximum bandwidth of 75 KHz. The bit duration is $10 \mu s$. Find a raised-cosine spectrum that satisfies these requirements.

Problem 3

A pulse p(t) whose spectrum P(f) is shown in Fig. 1 satisfies Nyquist's criterion. If $f_1 = 0.8$ MHz and $f_2 = 1.2$ MHz, determine the maximum rate at which binary data can be transmitted by this pulse using Nyquist's criterion. What is the roll-off factor?

Problem 4

Binary data at a rate of 1 Mbps is to be transmitted using Nyquist criterion pulses with P(f) shown in Fig. 1, the frequencies f_1 and f_2 of the spectrum are adjustable. The channel available for transmission of this data has a bandwidth of 700 KHz. Determine f_1 , f_2 , and the roll-off factor.