

Problem statement:

- What do you want to predict or learn?
- What would this enable?
- How do you define success?

Problem statement:

- What do you want to predict or learn?
- What would this enable?
- How do you define success?

Data:

- Where will you get data points?
- What will the features be?
- How will you need to process data?

Problem statement:

- What do you want to predict or learn?
- What would this enable?
- How do you define success?

Data:

- Where will you get data points?
- What will the features be?
- How will you need to process data?

Model:

- What algorithm(s) will you use?
- What hyperparameters will be important?
- How will you train it?

Problem statement:

- What do you want to predict or learn?
- What would this enable?
- How do you define success?

Data:

- Where will you get data points?
- What will the features be?
- How will you need to process data?

Model:

- What algorithm(s) will you use?
- What hyperparameters will be important?
- How will you train it?

Evaluation:

- What will be the loss function?
- How will hyperparameters be tuned?
- How will you assess IID and OOD performance?

Problem statement:

- What do you want to predict or learn?
- What would this enable?
- How do you define success?

Data:

- Where will you get data points?
- What will the features be?
- How will you need to process data?

Model:

- What algorithm(s) will you use?
- What hyperparameters will be important?
- How will you train it?

Evaluation:

- What will be the loss function?
- How will hyperparameters be tuned?
- How will you assess IID and OOD performance?

Interpretation:

- Intrinsic or post hoc?
- Local or global explanations?
- Understanding model or generalization?

Problem statement:

- What do you want to predict or learn?
- What would this enable?
- How do you define success?

Data:

- Where will you get data points?
- What will the features be?
- How will you need to process data?

Model:

- What algorithm(s) will you use?
- What hyperparameters will be important?
- How will you train it?

Evaluation:

- What will be the loss function?
- How will hyperparameters be tuned?
- How will you assess IID and OOD performance?

Interpretation:

- Intrinsic or post hoc?
- Local or global explanations?
- Understanding model or generalization?

Prediction:

- How should this model be used?
- What are the limitations?
- Where is the model/data/code?

Shallow vs deep learning

Shallow ML as we know The features (structured) Deep ML = sue learn the fectures (unstructured) Similar concepts apply the regularist a lot of data

Lovalidation

Lovalidation

Louis in his success

Louis in his success

Louis in help.

Louis andustanding features (representation) New challenge => training takes a long time (106-1015 meist)

Where to go next

CS231n: Deep Learning for Computer Vision

Stanford - Spring 2023

DEEP LEARNING

DS-GA 1008 · FALL 2022 · NYU CENTER FOR DATA SCIENCE

INSTRUCTOR

Alfredo Canziani, Yann LeCun

Use .py instead of .ipynb files

Use .py instead of .ipynb files

Everything should be in a function

Use .py instead of .ipynb files

Everything should be in a function

Build classes to collect related functions/properties

Use .py instead of .ipynb files

Everything should be in a function

Build classes to collect related functions/properties

Use an IDE (e.g., VSCode+CoPilot)

Use .py instead of .ipynb files

Everything should be in a function

Build classes to collect related functions/properties

Use an IDE + Al assistant (e.g., VSCode+CoPilot)

 Make sure your work is reproducible (track experiments, build python packages, use environments)

Using ML for your research

1) Let your fundamental research questions drive the use of ML

Using ML for your research

- 1) Let your fundamental research questions drive the use of ML
- 2) You are (probably) not going to invent a new ML method from scratch

Using ML for your research

- 1) Let your fundamental research questions drive the use of ML
- 2) You are (probably) not going to invent a new ML method from scratch
- 3) Still, your domain knowledge can lead to creative data-driven solutions and solve your problems!

1) Do I have enough data to train an ML model?

1) Do I have enough data to train an ML model?

2) Do I understand the problem well enough to propose good features?

1) Do I have enough data to train an ML model?

2) Do I understand the problem well enough to propose good features?

3) Does my validation/testing scheme align with how the model will be used in practice?

1) Do I have enough data to train an ML model?

2) Do I understand the problem well enough to propose good features?

3) Does my validation/testing scheme align with how the model will be used in practice?

4) Do my results pass a sanity check?!