# Filtro de Kalman Extendido

Procesamiento de señales



# FILTRO DE KALMAN EXTENDIDO

## Filtro de Kalman Extendido

Inicialización 
$$\begin{cases} \mathbf{x}_{0/-1} = E[\mathbf{x}_0] \\ \mathbf{P}_{0/-1} = Cov[\mathbf{x} - \mathbf{x}_0] \end{cases}$$
Predicción 
$$\begin{cases} \mathbf{F}_k = \frac{\partial f_k(\widehat{\mathbf{x}}_{k/k})}{\partial \mathbf{x}} \quad \mathbf{H}_k = \frac{\partial h_k(\widehat{\mathbf{x}}_{k/k-1})}{\partial \mathbf{x}} \quad \mathbf{G}_k = g_k(\widehat{\mathbf{x}}_{k/k}) \end{cases}$$
Actualización 
$$\begin{cases} \mathbf{K}_k = \mathbf{P}_{k/k-1} \mathbf{H}_k^H \left( \mathbf{H}_k \mathbf{P}_{k/k-1} \mathbf{H}_k^H + \mathbf{R}_k \right)^{-1} \\ \mathbf{P}_{k/k} = (I - \mathbf{K}_k \mathbf{H}_k) \mathbf{P}_{k/k-1} \\ \widehat{\mathbf{x}}_{k/k} = \widehat{\mathbf{x}}_{k/k-1} + \mathbf{K}_k \left( \mathbf{y}_k - \mathbf{h}_k(\widehat{\mathbf{x}}_{k/k-1}) \right) \end{cases}$$
Predicción 
$$\begin{cases} \widehat{\mathbf{x}}_{k+1/k} = \mathbf{f}_k(\widehat{\mathbf{x}}_{k/k}) \\ \mathbf{P}_{k+1/k} = \mathbf{F}_k \mathbf{P}_{k/k} \mathbf{F}_k^H + \mathbf{G}_k \mathbf{Q}_k \mathbf{G}_k^H \end{cases}$$

Dado el problema de masa resorte y amortiguador del Ejercicio 3, asumiendo conocidos los parámetros m=10 kg y b=18 kg/m (error en el modelo con  $\sigma_b^2 = 0.2$ ), se toman muestras de la posición  $y_k = d_k + w_k$  cada T = 0.01 s (puede considerar una aproximación de primer orden para la derivada), con ruido blanco de varianza  $\sigma_w^2 = 0.01$ .

Se quieren estimar los estados velocidad  $(x_1)$  y posición  $(x_2)$  mediante kalman, pero suponiendo que se desconoce el valor de la constante elástica del resorte. Reformule el sistema de estados para poder estimar los estados.

Considere:  $\mathbf{x}_{0/-1} = [0\ 0\ 0]$ ,  $P_{0/-1} = \text{diag}([3\ 3\ 1000].^2)$ . En el archivo **MRA.mat** se encuentran los estados reales y otros parámetros necesarios.

# Ejemplo de localización

# Definición del problema

## Ejemplo de localización

El problema es el mismo que en el ejemplo anterior, en el que existe un objeto moviéndose en el espacio cartesiano (x,y,z) siguiendo una determinada trayectoria

$$\mathbf{p} = \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} \quad \mathbf{a} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$



Sea un sistema de m=8 anclas con las coordenadas indicadas abajo. Se desea estimar, mediante un filtro de kalman, posición, velocidad y aceleración de un objetivo midiendo cada T=1 s el tiempo de propagación  $\tau$  entre una señal enviada desde cada ancla  $A_i$  al objetivo, separados a una distancia  $d_i$ . Plantee las ecuaciones de estados y de observaciones e implemente el algoritmo aplicando la linealización donde corresponda. Se sabe que cada retardo medido posee ruido con cierta varianza (ver contenido en siguiente filmina).





#### Archivos en el campus y su contenido (N: cant. de mediciones)

#### kalman\_loc.mat:

**p**: estados de las posiciones (Nx3)

v: estados de las velocidades (Nx3)

a: estados de las aceleraciones (Nx3)

**RP**: coordenadas de las anclas (mx3), cada fila corresponde a un ancla.

**q**: matriz de covarianza del proceso para las aceleraciones (3x3)

tau: matriz de tiempos de propagación entre anclas y objetivo (Nx8)

varw: varianza de ruido de medición para los tiempos medidos

map: imagen del mapa para dar contexto (usada con la función plotloc\_3d.m)

#### plotloc\_3d.m:

Para agilizar el trabajo en clase, se dispone de esta función que permite graficar las estimaciones de la trayectoria junto a la trayectoria real, además de las anclas y un mapa de fondo.

#### Considere las siguientes condiciones iniciales

Vector de estados inicial x0 1 = [10; -600; 50; 2; 3; 4; 0; 0; 0];

Matriz de autocovarianza de los estados

 $P0_1 = diag([10^5 10^5 10^5 10^3 10^3 10^3 0.9 0.9 0.9]);$