Maps and Twitter data

ANALYZING SOCIAL MEDIA DATA IN PYTHON

Alex Hanna Computational Social Scientist

Why maps?

- Geographical scope
 - Participants or observers?
- Differentiating tweets
 - For or against?

How Twitter gets location data

- Location is devicedependent
- In practice, aggregate geographical to county, state-level

Beware selection biases!

- Warning: only 1-3% of Twitter data have geographical data
- Limits the generalizability of inference

Types of geographical data available in Twitter

- Twitter text (most imprecise)
- User location
- Bounding boxes
- Coordinates and points (most precise)

Let's practice!

ANALYZING SOCIAL MEDIA DATA IN PYTHON

Geographical data in Twitter JSON

ANALYZING SOCIAL MEDIA DATA IN PYTHON

Alex Hanna
Computational Social Scientist

Locations in Twitter text

Dr. Alex Hanna, Skatin Data Witch

@alexhanna

In Zurich! It's lovely and about as hot as Toronto.

12:32 PM - 4 Jul 2018

User-defined location

Dr. Alex Hanna, Skatin Data Witch

@alexhanna

Tech curriculum dev @GCPcloud. Sociology PhD. Computational social scientist. Trans. Roller derby athlete (Kate Silver #538). She/her.

Bay Area

S alex-hanna.com

print(tweet['user']['location'])

Bay Area

place JSON


```
print(tweet['place'])
```

```
{'attributes': {},
 'bounding_box': {'coordinates':
  [[[-80.47611, 37.185195],
    [-80.47611, 37.273387],
    [-80.381618, 37.273387],
    [-80.381618, 37.185195]]],
  'type': 'Polygon'},
 'country': 'United States',
 'country_code': 'US',
 'full_name': 'Blacksburg, VA',
 'name': 'Blacksburg',
 'place_type': 'city',
```

Calculating the centroid


```
coordinates = [
    [-80.47611, 37.185195],
    [-80.47611, 37.273387],
    [-80.381618, 37.273387],
    [-80.381618, 37.185195]]
longs = np.unique( [x[0]] for x
    in coordinates] )
lats = np.unique([x[1] for x])
    in coordinates] )
central_long = np.sum(longs) / 2
central_lat = np.sum(lats) / 2
```

coordinates JSON


```
print(tweet['coordinates'])
```

```
{'type': 'Point',
'coordinates': [-72.2833,
21.7833]}
```


Let's practice!

ANALYZING SOCIAL MEDIA DATA IN PYTHON

Creating Twitter maps

ANALYZING SOCIAL MEDIA DATA IN PYTHON

Alex Hanna Computational Social Scientist

Introducing Basemap

Source: https://matplotlib.org/basemap/users/examples.html

- Library for plotting twodimensional maps
- Built on top of matplotlib
- Converts coordinates into map projections

Beginning with Basemap

Plotting points

Using color

```
africa = pd.read_csv('africa.csv')
longs = africa['CapitalLongtiude']
lats = africa['CapitalLatitude']
arabic = africa['Arabic']
m = Basemap(...)
m.fillcontinents(color='white',
    zorder = 0)
m.drawcoastlines(color='gray')
m.drawcountries(color='gray')
m.scatter(longs.values,
         lats.values,
          latlon = True,
          c = arabic.values,
          cmap = 'Paired',
          alpha = 1)
```


Let's practice!

ANALYZING SOCIAL MEDIA DATA IN PYTHON

Congratulations!

ANALYZING SOCIAL MEDIA DATA IN PYTHON

Alex Hanna

Computational Social Scientist

Next steps

ANALYZING SOCIAL MEDIA DATA IN PYTHON

