Kapitel L:II

II. Aussagenlogik

- □ Syntax der Aussagenlogik
- □ Semantik der Aussagenlogik
- Eigenschaften des Folgerungsbegriffs
- □ Äquivalenz
- □ Formeltransformation
- □ Normalformen
- □ Bedeutung der Folgerung
- □ Erfüllbarkeitsalgorithmen
- □ Semantische Bäume
- □ Weiterentwicklung semantischer Bäume
- □ Syntaktische Schlussfolgerungsverfahren
- □ Erfüllbarkeitsprobleme

L:II-170 Propositional Logics ©LETTMANN/STEIN 1996-2011

Wiederholung (theoretische Informatik)

Die Frage "Gilt $\alpha \models \beta$?" lässt sich auf einen Erfüllbarkeitstest zurückführen.

Definition 32 (Komplexitätsklasse P)

Die Komplexitätsklasse P enthält alle Probleme, die sich mit einer deterministischen Turingmaschine in polynomieller Rechenzeit lösen lassen.

L:II-171 Propositional Logics ©LETTMANN/STEIN 1996-2011

Wiederholung (theoretische Informatik)

Definition 33 (Entscheidungsprobleme)

Gegeben sei ein Problem mit der Eingabemenge Σ^* . Dann bezeichnen wir ein Problem als Entscheidungsproblem, wenn für alle $x \in \Sigma^*$ die Antwort (das Ergebnis, die Ausgabe einer Turingmaschine) nur "0" (nein) oder "1" (ja) sein kann.

Definition 34 (Sprache)

Gegeben sei ein Entscheidungsproblem mit der Eingabemenge Σ^* . Dann bezeichnen wir diejenige Teilmenge L von Σ^* , deren Elemente die Antwort "1" haben, als Sprache.

L:II-172 Propositional Logics ©LETTMANN/STEIN 1996-2011

Wiederholung (theoretische Informatik)

Definition 35 (Komplexitätsklasse NP)

Die Komplexitätsklasse NP enthält alle Entscheidungsprobleme, von denen mit einer nichtdeterministischen Turingmaschine M in polynomieller Rechenzeit festgestellt werden kann, dass ein Element zur Sprache des Problems gehört.

Sprachgebrauch: M akzeptiert die Elemente der Sprache (eines Entscheidungsproblems aus NP) in polynomieller Zeit.

L:II-173 Propositional Logics ©LETTMANN/STEIN 1996-2011

Bemerkungen:

- □ Probleme aus der Komplexitätsklasse NP sind entscheidbar.
- \Box Vermutung, dass $P \neq NP$

L:II-174 Propositional Logics © LETTMANN/STEIN 1996-2011

Wiederholung (theoretische Informatik)

Definition 36 (polynomielle Reduktion)

Eine Sprache $L_1 \subseteq \Sigma_1^*$ lässt sich polynomiell auf eine Sprache $L_2 \subseteq \Sigma_2^*$ reduzieren, in Zeichen: $L_1 \leq L_2$, wenn es eine polynomiell berechenbare Transformation $f: \Sigma_1^* \to \Sigma_2^*$ gibt, so dass gilt:

$$\forall x \in \Sigma_1^* : x \in L_1 \Leftrightarrow f(x) \in L_2$$

L:II-175 Propositional Logics ©LETTMANN/STEIN 1996-2011

Bemerkungen:

 \Box $L_1 \leq L_2$ kann interpretiert werden als: L_1 ist nicht schwerer als L_2 .

L:II-176 Propositional Logics © LETTMANN/STEIN 1996-2011

Wiederholung (theoretische Informatik)

Definition 37 (hart bzgl. einer Menge von Sprachen)

Eine Sprache L heißt hart für eine Menge von Sprachen \mathcal{L} , falls sich jede Sprache $L' \in \mathcal{L}$ auf L reduzieren lässt. In Zeichen: $\forall L' \in \mathcal{L} : L' \leq L$.

Definition 38 (vollständig bzgl. einer Menge von Sprachen)

Eine Sprache L heißt vollständig für eine Menge von Sprachen \mathcal{L} , falls L hart für \mathcal{L} ist, und falls zusätzlich $L \in \mathcal{L}$ gilt.

L:II-177 Propositional Logics © LETTMANN/STEIN 1996-2011

Definition 39 (SAT*)

SAT* = $\{\alpha \mid \alpha \text{ aussagenlogische Formel } \land \alpha \text{ erfüllbar } \}$

Satz 40 (Komplexität von SAT*)

- 1. $SAT^* \in NP$
- 2. SAT* ist NP-hart. [Cook 1971]

Beweis (Skizze)

Zu (1): Elemente aus SAT* werden von einer nichtdeterministischen Turingmaschine in polynomieller Zeit akzeptiert.

Frage: Wie zeigt man das?

Zu (2): Alle Probleme aus NP lassen sich in polynomieller Zeit auf SAT* reduzieren.

Frage: Wie hat Cook das gezeigt?

Bemerkung: SAT ist NP-vollständig.

Definition 41 (SAT)

 $SAT = \{ \alpha \mid \alpha \in KNF \land \alpha \text{ erfullbar } \}$

Satz 42 (Komplexität von SAT)

SAT ist NP-vollständig.

Beweis (Skizze)

Reduktion von SAT* auf SAT, in Zeichen: SAT* \leq SAT.

Definition 43 (3SAT)

 $3SAT = \{ \alpha \mid \alpha \in 3KNF \land \alpha \text{ erfullbar } \}$

Satz 44 (Komplexität von 3SAT)

3SAT ist NP-vollständig.

Beweis (Skizze)

Reduktion von SAT auf 3SAT, in Zeichen: SAT \leq 3SAT.

L:II-180 Propositional Logics ©LETTMANN/STEIN 1996-2011

Wiederholung (theoretische Informatik)

Definition 45 (Komplexitätsklasse co-NP)

Die Komplexitätsklasse co-NP enthält alle Entscheidungsprobleme, deren Komplementsprachen $\overline{L},$ $\overline{L}:=\Sigma^*\setminus L$, in NP liegen.

Vermutung: $NP \neq co-NP$

Definition 46 (DEDUCT)

 $\mathsf{DEDUCT} = \{(\alpha, L) \mid \alpha \in \mathsf{KNF} \land L \text{ Literal mit } \alpha \models L\}$

Satz 47 (Komplexität von DEDUCT)

DEDUCT ist co-NP-vollständig.

Beweis

Reduktion von SAT auf DEDUCT.

- \square Sei A ein Atom mit $A \notin atoms(\alpha)$.
- $\ \ \, \supseteq \ \, \underbrace{\alpha \in \atop x} \text{KNF beliebig.} \underbrace{(\alpha,A)}_{f(x)} \text{ eine spezielle Instanz des Entscheidungsproblems.}$
- □ Es gilt: α erfüllbar $\Leftrightarrow \alpha \not\models A$ Bzw.: $x \in \mathsf{SAT} \Leftrightarrow f(x) \in \overline{\mathsf{DEDUCT}}$
- □ Die Komplementsprache von DEDUCT ist DEDUCT und ist NP-vollständig. Also ist DEDUCT co-NP-vollständig.

Definition 48 (EQUIV)

$$\mathsf{EQUIV} = \{(\alpha, \beta) \mid \alpha, \beta \in \mathsf{KNF} \land \alpha \approx \beta\}$$

Satz 49 (Komplexität von EQUIV)

EQUIV ist co-NP-vollständig.

Beweis

Reduktion von SAT auf EQUIV.

Rest als Übungsaufgabe.

Definition 50 (2SAT)

$$2SAT = \{ \alpha \mid \alpha \in 2KNF \land \alpha \text{ erfullbar } \}$$

Satz 51 (Komplexität von 2SAT)

 $2SAT \in P$. [Aspvall 1980]

Beweis (Skizze: Komplexität von 2SAT)

- 1. Units L durch $L \vee L$ ersetzen \Rightarrow alle Klauseln haben genau zwei Literale.
- 2. Generierung eines gerichteten Graphen $G = \langle V, E \rangle$. V enthält alle Literale aus α sowie deren Komplemente.
- 3. Aus jeder Klausel (L_1, L_2) werden zwei Kanten. Es gilt: $(L_1, L_2) \approx (L_1 \vee L_2) \wedge (L_2 \vee L_1) \approx (\neg \neg L_1 \vee L_2) \wedge (\neg \neg L_2 \vee L_1) \approx (\neg L_1 \to L_2) \wedge (\neg L_2 \to L_1)$
- 4. Die starken Zusammenhangskomponenten von G sind zyklische Ketten von Implikationen. Sie können nur dann erfüllt sein, wenn alle beteiligten Literale entweder mit 0 oder mit 1 bewertet sind. Folglich dürfen alle starken Zusammenhangskomponenten zu einem Knoten kontrahiert werden.
- 5. Erzeugung einer Initialbewertung: Bewertung aller Knoten, die nur ausgehende Kanten haben, mit 0. Bewertung aller Knoten, die nur eingehende Kanten haben, mit 1. (Least-Commitment-Prinzip)
- 6. Propagierung der Initialbewertung entlang einer topologischen Sortierung.
- 7. α ist erfüllbar \Leftrightarrow keine starke Zusammenhangskomponente enthält ein Literal als positive und negative Instanz.

L:II-185 Propositional Logics ©LETTMANN/STEIN 1996-2011

Definition 52 (SAT-Probleme in HORN)

- 1. SAT \cap HORN = { $\alpha \mid \alpha \in$ HORN $\wedge \alpha$ erfüllbar }
- 2. SAT \cap DHORN = { $\alpha \mid \alpha \in$ DHORN $\wedge \alpha$ erfüllbar }
- 3. DEDUCT \cap HORN = $\{(\alpha, L) \mid \alpha \in HORN \land L \text{ Literal mit } \alpha \models L\}$
- 4. EQUIV \cap HORN = $\{(\alpha, \beta) \mid \alpha, \beta \in HORN \land \alpha \approx \beta\}$

Satz 53 (Komplexität von SAT-Problemen in HORN)

Die Probleme SAT∩HORN, SAT∩DHORN, DEDUCT∩HORN und EQUIV∩HORN sind in P.

L:II-186 Propositional Logics © LETTMANN/STEIN 1996-2011

L:II-187 Propositional Logics © LETTMANN/STEIN 1996-2011