### Introduction to HPC2N, Kebnekaise and HPC

Birgitte Brydsö, Pedro Ojeda May, and others at HPC2N

> HPC2N Umeå University

21. September 2023







 High Performance Computing Center North (HPC2N) is a competence center for Scientific and Parallel Computing







 High Performance Computing Center North (HPC2N) is a competence center for Scientific and Parallel Computing



 A part of National Academic Infrastructure for Supercomputing in Sweden (NAISS)









Provides state-of-the-art resources and expertise:

Scalable and parallel HPC







- Scalable and parallel HPC
- Large-scale storage facilities (Project storage (Lustre), SweStore, Tape)





- Scalable and parallel HPC
- Large-scale storage facilities (Project storage (Lustre), SweStore, Tape)
- Grid and cloud computing (WLCG NT1, SNIC Cloud)





- Scalable and parallel HPC
- Large-scale storage facilities (Project storage (Lustre), SweStore, Tape)
- Grid and cloud computing (WLCG NT1, SNIC Cloud)
- National Data Science Node in "Epidemiology and Biology of Infections" (DDLS)





- Scalable and parallel HPC
- Large-scale storage facilities (Project storage (Lustre), SweStore, Tape)
- Grid and cloud computing (WLCG NT1, SNIC Cloud)
- National Data Science Node in "Epidemiology and Biology of Infections" (DDLS)
- Software for e-Science applications





- Scalable and parallel HPC
- Large-scale storage facilities (Project storage (Lustre), SweStore, Tape)
- Grid and cloud computing (WLCG NT1, SNIC Cloud)
- National Data Science Node in "Epidemiology and Biology of Infections" (DDLS)
- Software for e-Science applications
- All levels of user support
  - Primary, advanced, dedicated
  - Application Experts (AEs)







### HPC2N

**Primary objective:** to raise the national and local level of HPC competence and transfer HPC knowledge and technology to new users in academia and industry.







# HPC2N (partners)

### HPC2N is hosted by



## UMEÅ UNIVERSITY

#### Partners:















### HPC2N (funding and collaborations)

 Funded mainly by Umeå University, with contributions from the other HPC2N partners





### HPC2N (funding and collaborations)

- Funded mainly by Umeå University, with contributions from the other HPC2N partners
- Involved in several projects and collaborations























- User support (primary, advanced, dedicated)
  - Research group meetings @ UmU
  - Also at the partner sites





- User support (primary, advanced, dedicated)
  - Research group meetings @ UmU
  - Also at the partner sites
- User training and education program
  - 0.5 3 days; ready-to-run exercises
  - Introduction to HPC2N and Kebnekaise
  - Parallel programming and tools (OpenMP, MPI, debugging, perf. analyzers, Matlab, R, MD simulation, ML, GPU, ...)
    - Using Python in an HPC environment, 1 December 2023
    - Introduction to Git, 13-17 November 2023
    - Introduction to running R, Python, and Julia in HPC, 17-19 October 2023
    - Workshop: Matlab in HPC, 11, 18, 25/26 September 2023
    - Introduction to Kebnekaise, 21 September 2023





- User support (primary, advanced, dedicated)
  - Research group meetings @ UmU
  - Also at the partner sites
- User training and education program
  - 0.5 3 days; ready-to-run exercises
  - Introduction to HPC2N and Kebnekaise
  - Parallel programming and tools (OpenMP, MPI, debugging, perf. analyzers, Matlab, R, MD simulation, ML, GPU, ...)
    - Using Python in an HPC environment, 1 December 2023
    - Introduction to Git, 13-17 November 2023
    - Introduction to running R, Python, and Julia in HPC, 17-19 October 2023
    - Workshop: Matlab in HPC, 11, 18, 25/26 September 2023
    - Introduction to Kebnekaise, 21 September 2023
- Workshops and seminars







- User support (primary, advanced, dedicated)
  - Research group meetings @ UmU
  - Also at the partner sites
- User training and education program
  - 0.5 3 days; ready-to-run exercises
  - Introduction to HPC2N and Kebnekaise
  - Parallel programming and tools (OpenMP, MPI, debugging, perf. analyzers, Matlab, R, MD simulation, ML, GPU, ...)
    - Using Python in an HPC environment, 1 December 2023
    - Introduction to Git, 13-17 November 2023
    - Introduction to running R, Python, and Julia in HPC, 17-19 October 2023
    - Workshop: Matlab in HPC, 11, 18, 25/26 September 2023
    - Introduction to Kebnekaise, 21 September 2023
- Workshops and seminars
- NGSSC / SeSE & university courses







### Management

- Paolo Bientinesi, director
- Björn Torkelsson, deputy director
- Lena Hellman, administrator





#### Management

- Paolo Bientinesi, director
- Björn Torkelsson, deputy director
- Lena Hellman, administrator

#### **Application experts**

- Jerry Eriksson
- Pedro Ojeda May





### Management

- Paolo Bientinesi, director
- Björn Torkelsson, deputy director
- Lena Hellman, administrator

#### Application experts

- Jerry Eriksson
- Pedro Ojeda May

#### Others

- Mikael Rännar (WLCG coord)
- Research Engineers under DDLS, HPC2N/SciLifeLab
  - System Developer, IT
  - Data Engineer
  - Data Steward







#### Management

- Paolo Bientinesi, director
- Björn Torkelsson, deputy director
- Lena Hellman, administrator

#### **Application experts**

- Jerry Eriksson
- Pedro Ojeda May

#### Others

- Mikael Rännar (WLCG coord)
- Research Engineers under DDLS, HPC2N/SciLifeLab
  - System Developer, IT
  - Data Engineer
  - Data Steward

### System and support

- Erik Andersson
- Birgitte Brydsö
- Niklas Edmundsson (Tape coord)
- Ingemar Fällman
- Magnus Jonsson
- Roger Oscarsson
- Åke Sandgren
- Mattias Wadenstein (NeIC, Tier1)
- Lars Viklund







 HPC2N provides advanced and dedicated support in the form of Application Experts (AEs):





 HPC2N provides advanced and dedicated support in the form of Application Experts (AEs):

Jerry Eriksson Profiling, Machine learning (DNN), MPI, OpenMP, OpenACC





 HPC2N provides advanced and dedicated support in the form of Application Experts (AEs):

Jerry Eriksson Profiling, Machine learning (DNN), MPI, OpenMP, OpenACC

Pedro Ojeda May

Molecular dynamics, Profiling, QM/MM, NAMD, Amber, Gromacs, GAUSSIAN, R







 HPC2N provides advanced and dedicated support in the form of Application Experts (AEs):

Jerry Eriksson Profiling, Machine learning (DNN), MPI, OpenMP, OpenACC

Pedro Ojeda May

Molecular dynamics, Profiling, QM/MM, NAMD, Amber, Gromacs, GAUSSIAN, R

Åke Sandgren

General high level programming assistance,

VASP. Gromacs. Amber







 HPC2N provides advanced and dedicated support in the form of Application Experts (AEs):

Jerry Eriksson Profiling, Machine learning (DNN), MPI,

OpenMP, OpenACC

Pedro Ojeda May Molecular dynamics, Profiling, QM/MM,

NAMD, Amber, Gromacs, GAUSSIAN, R

Åke Sandgren General high level programming assistance,

VASP, Gromacs, Amber

- Contact through regular support
  - If you have a specific problem/question and/or need consultation







### HPC2N (users by discipline)

- Users from several scientific disciplines:
  - Biosciences and medicine
  - Chemistry
  - Computing science
  - Engineering
  - Materials science
  - Mathematics and statistics
  - Physics including space physics
  - ML, DL, and other AI







## HPC2N (users by discipline, largest users)

- Users from several scientific disciplines:
  - Biosciences and medicine
  - Chemistry
  - Computing science
  - Engineering
  - Materials science
  - Mathematics and statistics
  - Physics including space physics
  - Machine learning and artificial intelligence (several new projects)







### HPC2N (users by software)









• The current supercomputer at HPC2N







- The current supercomputer at HPC2N
- Named after a massif (contains some of Sweden's highest mountain peaks)





- The current supercomputer at HPC2N
- Named after a massif (contains some of Sweden's highest mountain peaks)
- Kebnekaise was
  - delivered by Lenovo and
  - installed during the summer 2016





- The current supercomputer at HPC2N
- Named after a massif (contains some of Sweden's highest mountain peaks)
- Kebnekaise was
  - delivered by Lenovo and
  - installed during the summer 2016
- Opened up for general availability on November 7, 2016





- The current supercomputer at HPC2N
- Named after a massif (contains some of Sweden's highest mountain peaks)
- Kebnekaise was
  - · delivered by Lenovo and
  - installed during the summer 2016
- Opened up for general availability on November 7, 2016
- In 2018, Kebnekaise was extended with
  - 52 Intel Xeon Gold 6132 (Skylake) nodes, as well as
  - 10 NVidian V100 (Volta) GPU nodes





- The current supercomputer at HPC2N
- Named after a massif (contains some of Sweden's highest mountain peaks)
- Kebnekaise was
  - delivered by Lenovo and
  - installed during the summer 2016
- Opened up for general availability on November 7, 2016
- In 2018, Kebnekaise was extended with
  - 52 Intel Xeon Gold 6132 (Skylake) nodes, as well as
  - 10 NVidian V100 (Volta) GPU nodes
- In 2023, Kebnekaise was extended with
  - 2 dual NVIDIA A100 GPU nodes
  - one many-core AMD Zen3 CPU node







# Kebnekaise (compute nodes)

|   | Name             | # | Description                                                      |
|---|------------------|---|------------------------------------------------------------------|
| _ | Compute-AMD Zen3 | 1 | AMD Zen3 (EPYC 7762), 2 x 64 cores, <b>1 TB</b> , EDR Infiniband |





# Kebnekaise (compute nodes)

| Name             | #  | Description                                                             |
|------------------|----|-------------------------------------------------------------------------|
| Compute-AMD Zen3 | 1  | AMD Zen3 (EPYC 7762), $2 \times 64$ cores, <b>1 TB</b> , EDR Infiniband |
| Compute-skylake  | 52 | Intel Xeon Gold 6132, 2 x 14 cores, 192 GB, EDR Infiniband, AVX-512     |







# Kebnekaise (compute nodes)

| Name                             | #   | Description                                                            |
|----------------------------------|-----|------------------------------------------------------------------------|
| Compute-AMD Zen3                 | 1   | AMD Zen3 (EPYC 7762), 2 x 64 cores, <b>1 TB</b> , EDR Infiniband       |
| Compute-skylake                  | 52  | Intel Xeon Gold 6132, 2 x 14 cores,<br>192 GB, EDR Infiniband, AVX-512 |
| Compute !!! Being phased out !!! | 432 | Intel Xeon E5-2690v4, 2 x 14 cores, 128 GB, FDR Infiniband             |







# Kebnekaise (compute nodes)

| Name                             | #   | Description                                                            |
|----------------------------------|-----|------------------------------------------------------------------------|
| Compute-AMD Zen3                 | 1   | AMD Zen3 (EPYC 7762), 2 x 64 cores, <b>1 TB</b> , EDR Infiniband       |
| Compute-skylake                  | 52  | Intel Xeon Gold 6132, 2 x 14 cores,<br>192 GB, EDR Infiniband, AVX-512 |
| Compute !!! Being phased out !!! | 432 | Intel Xeon E5-2690v4, 2 x 14 cores,<br>128 GB, FDR Infiniband          |
| Large Memory                     | 20  | Intel Xeon E7-8860v4, 4 x 18 cores, 3072 GB, EDR Infiniband            |







| Name     | # | Description                             |
|----------|---|-----------------------------------------|
|          |   | AMD Zen3 (AMD EPYC 7413), 2 x 24 cores, |
|          |   | 512 GB, EDR Infiniband,                 |
| 2 × A100 | 2 | 2 x NVidia A100,                        |
|          |   | 2 x 6912 CUDA cores,                    |
|          |   | 2 x 432 Tensor cores                    |





| Name      | #  | Description                                        |
|-----------|----|----------------------------------------------------|
|           |    | AMD Zen3 (AMD EPYC 7413), 2 x 24 cores,            |
|           |    | 512 GB, EDR Infiniband,                            |
| 2 × A100  | 2  | 2 x NVidia A100,                                   |
|           |    | $2 \times 6912$ CUDA cores,                        |
|           |    | 2 x 432 Tensor cores                               |
|           |    | Intel Xeon Gold 6132, 2 x 14 cores,                |
|           |    | 192 GB, EDR Infiniband,                            |
| GPU-volta | 10 | 2 x NVidia V100,                                   |
|           |    | $2 \times 5120$ CUDA cores, $2 \times 16$ GB VRAM, |
|           |    | 2 x 640 Tensor cores                               |







| Name                     | #  | Description                                                                                                                                                     |
|--------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |    | AMD Zen3 (AMD EPYC 7413), 2 x 24 cores,                                                                                                                         |
|                          |    | 512 GB, EDR Infiniband,                                                                                                                                         |
| 2 × A100                 | 2  | 2 x NVidia A100,                                                                                                                                                |
|                          |    | 2 x 6912 CUDA cores,                                                                                                                                            |
|                          |    | 2 x 432 Tensor cores                                                                                                                                            |
|                          |    | Intel Xeon Gold 6132, 2 x 14 cores,                                                                                                                             |
| GPU-volta 1              | 10 | 192 GB, EDR Infiniband,                                                                                                                                         |
|                          |    | 2 x NVidia V100,                                                                                                                                                |
|                          |    | $2 \times 5120$ CUDA cores, $2 \times 16$ GB VRAM,                                                                                                              |
|                          |    | 512 GB, EDR Infiniband, 2 x NVidia A100, 2 x 6912 CUDA cores, 2 x 432 Tensor cores Intel Xeon Gold 6132, 2 x 14 cores, 192 GB, EDR Infiniband, 2 x NVidia V100, |
|                          |    | Intel Xeon E5-2690v4, 2 x 14 cores,                                                                                                                             |
| 4×GPU                    | 4  | 128 GB, FDR Infiniband,                                                                                                                                         |
| !!! Being phased out !!! | 4  | 4 x NVidia K80                                                                                                                                                  |
|                          |    | $8 \times 2496$ CUDA cores, $8 \times 12$ GB VRAM                                                                                                               |







| Name                              | #  | Description                             |
|-----------------------------------|----|-----------------------------------------|
|                                   | 2  | AMD Zen3 (AMD EPYC 7413), 2 x 24 cores, |
|                                   |    | 512 GB, EDR Infiniband,                 |
| 2 × A100                          |    | 2 x NVidia A100,                        |
|                                   |    | $2 \times 6912$ CUDA cores,             |
|                                   |    | 2 x 432 Tensor cores                    |
|                                   | 10 | Intel Xeon Gold 6132, 2 x 14 cores,     |
|                                   |    | 192 GB, EDR Infiniband,                 |
| GPU-volta                         |    | 2 x NVidia V100,                        |
|                                   |    | 2 x 5120 CUDA cores, 2 x 16 GB VRAM,    |
|                                   |    | 2 x 640 Tensor cores                    |
|                                   | 4  | Intel Xeon E5-2690v4, 2 x 14 cores,     |
| 4×GPU                             |    | 128 GB, FDR Infiniband,                 |
| !!! Being phased out !!!          |    | 4 x NVidia K80                          |
|                                   |    | 8 x 2496 CUDA cores, 8 x 12 GB VRAM     |
| 2xGPU<br>!!! Being phased out !!! | 32 | Intel Xeon E5-2690v4, 2 x 14 cores,     |
|                                   |    | 128 GB, FDR Infiniband,                 |
|                                   |    | 2 x NVidia K80                          |
|                                   |    | 4 x 2496 CUDA cores, 4 x 12 GB VRAM     |
|                                   |    |                                         |







• 553 nodes in 15 racks





- 553 nodes in 15 racks
- Intel Broadwell and Skylake, AMD Zen3





- 553 nodes in 15 racks
- Intel Broadwell and Skylake, AMD Zen3
- NVidia A100, V100, K80 GPUs





- 553 nodes in 15 racks
- Intel Broadwell and Skylake, AMD Zen3
- NVidia A100, V100, K80 GPUs
- More than 135 TB memory





- 553 nodes in 15 racks
- Intel Broadwell and Skylake, AMD Zen3
- NVidia A100, V100, K80 GPUs
- More than 135 TB memory
- 71 switches (Infiniband, Access and Management networks)





- 553 nodes in 15 racks
- Intel Broadwell and Skylake, AMD Zen3
- NVidia A100, V100, K80 GPUs
- More than 135 TB memory
- 71 switches (Infiniband, Access and Management networks)
- 16504 CPU cores





- 553 nodes in 15 racks
- Intel Broadwell and Skylake, AMD Zen3
- NVidia A100, V100, K80 GPUs
- More than 135 TB memory
- 71 switches (Infiniband, Access and Management networks)
- 16504 CPU cores
- 501760 CUDA cores







- 553 nodes in 15 racks
- Intel Broadwell and Skylake, AMD Zen3
- NVidia A100, V100, K80 GPUs
- More than 135 TB memory
- 71 switches (Infiniband, Access and Management networks)
- 16504 CPU cores
- 501760 CUDA cores
- 12800 Tensor cores







• Basically four types of storage are available at HPC2N:





- Basically four types of storage are available at HPC2N:
  - Home directory
    - ullet /home/X/Xyz, \$HOME,  $\sim$
    - 25 GB, user owned





- Basically four types of storage are available at HPC2N:
  - Home directory
    - /home/X/Xyz, \$HOME,  $\sim$
    - 25 GB, user owned
  - Project storage
    - /proj/nobackup/abc
    - Shared among project members





- Basically four types of storage are available at HPC2N:
  - Home directory
    - ullet /home/X/Xyz, \$HOME,  $\sim$
    - 25 GB, user owned
  - Project storage
    - /proj/nobackup/abc
    - Shared among project members
  - Local scratch space
    - \$SNIC\_TMP
    - SSD (170GB), per job, per node, "volatile"





- Basically four types of storage are available at HPC2N:
  - Home directory
    - /home/X/Xyz, \$HOME,  $\sim$
    - 25 GB, user owned
  - Project storage
    - /proj/nobackup/abc
    - Shared among project members
  - Local scratch space
    - \$SNIC\_TMP
    - SSD (170GB), per job, per node, "volatile"
  - Tape Storage
    - Backup
    - Long term storage







- Basically four types of storage are available at HPC2N:
  - Home directory
    - /home/X/Xyz, \$HOME,  $\sim$
    - 25 GB, user owned
  - Project storage
    - /proj/nobackup/abc
    - Shared among project members
  - Local scratch space
    - \$SNIC\_TMP
    - SSD (170GB), per job, per node, "volatile"
  - Tape Storage
    - Backup
    - Long term storage
- Also SweStore disk based (dCache)
  - Research Data Storage Infrastructure, for active research data and operated by NAISS, WLCG







• To use Kebnekaise, you must be a member of a compute project





- To use Kebnekaise, you must be a member of a compute project
  - A compute project has a certain number of core hours allocated for it per month





- To use Kebnekaise, you must be a member of a compute project
  - A compute project has a certain number of core hours allocated for it per month
  - A regular CPU core cost 1 core hour per hour, other resources (e.g., GPUs) cost more





- To use Kebnekaise, you must be a member of a compute project
  - A compute project has a certain number of core hours allocated for it per month
  - A regular CPU core cost 1 core hour per hour, other resources (e.g., GPUs) cost more
  - Not a hard limit but projects that go over the allocation get lower priority





- To use Kebnekaise, you must be a member of a compute project
  - A compute project has a certain number of core hours allocated for it per month
  - A regular CPU core cost 1 core hour per hour, other resources (e.g., GPUs) cost more
  - Not a hard limit but projects that go over the allocation get lower priority
- A compute project contains a certain amount of storage
  - If more storage is required, you must be a member of a storage project





- To use Kebnekaise, you must be a member of a **compute project** 
  - A compute project has a certain number of core hours allocated for it per month
  - A regular CPU core cost 1 core hour per hour, other resources (e.g., GPUs) cost more
  - Not a hard limit but projects that go over the allocation get lower priority
- A compute project contains a certain amount of storage
  - If more storage is required, you must be a member of a storage project
- As Kebnekaise is a local cluster, you need to be affiliated with UmU, IRF, SLU, Miun, or LTU to use it





- To use Kebnekaise, you must be a member of a compute project
  - A compute project has a certain number of core hours allocated for it per month
  - A regular CPU core cost 1 core hour per hour, other resources (e.g., GPUs) cost more
  - Not a hard limit but projects that go over the allocation get lower priority
- A compute project contains a certain amount of storage
  - If more storage is required, you must be a member of a storage project
- As Kebnekaise is a local cluster, you need to be affiliated with UmU, IRF, SLU, Miun, or LTU to use it
- Projects are applied for through SUPR (https://supr.naiss.se)





- To use Kebnekaise, you must be a member of a compute project
  - A compute project has a certain number of core hours allocated for it per month
  - A regular CPU core cost 1 core hour per hour, other resources (e.g., GPUs) cost more
  - Not a hard limit but projects that go over the allocation get lower priority
- A compute project contains a certain amount of storage
  - If more storage is required, you must be a member of a storage project
- As Kebnekaise is a local cluster, you need to be affiliated with UmU, IRF, SLU, Miun, or LTU to use it
- Projects are applied for through SUPR (https://supr.naiss.se)
- I will cover more details in the next section, where we go more into detail about HPC2N and Kebnekaise.







#### **HPC**

What is HPC?







### High Performance Computing (definition)

"High Performance Computing most generally refers to the practice of **aggregating computing power** in a way that delivers much **higher performance** than one could get out of a typical desktop computer or workstation in order to **solve large problems** in science, engineering, or business." <sup>1</sup>

<sup>&</sup>lt;sup>1</sup>https://insidehpc.com/hpc-basic-training/what-is-hpc/







### High Performance Computing (opening the definition)

- Aggregating computing power
  - 533 nodes in 15 racks totalling 16504 cores
  - Compared to 4 cores in a modern laptop

<sup>&</sup>lt;sup>3</sup>200 billion (milliard)







<sup>&</sup>lt;sup>2</sup>728 trillion (billion)

### High Performance Computing (opening the definition)

#### Aggregating computing power

- 533 nodes in 15 racks totalling 16504 cores
- Compared to 4 cores in a modern laptop

#### Higher performance

- More than 728 000 000 000 000 arithmetical operations per second<sup>2</sup>
- Compared to 200 000 000 000 Flops in a modern laptop<sup>3</sup>

<sup>&</sup>lt;sup>3</sup>200 billion (milliard)







<sup>&</sup>lt;sup>2</sup>728 trillion (billion)

#### High Performance Computing (opening the definition)

#### Aggregating computing power

- 533 nodes in 15 racks totalling 16504 cores
- Compared to 4 cores in a modern laptop

#### Higher performance

- More than 728 000 000 000 000 arithmetical operations per second<sup>2</sup>
- Compared to 200 000 000 000 Flops in a modern laptop<sup>3</sup>

#### Solve large problems

- When does a problem become large enough for HPC?
- Are there other reasons for using HPC resources? (Memory, software, support, etc.)

<sup>&</sup>lt;sup>3</sup>200 billion (milliard)







<sup>&</sup>lt;sup>2</sup>728 trillion (billion)

## High Performance Computing (large problems)

- A problem can be large for two main reasons:
  - Execution time: The time required to form a solution to the problem is very long
  - Memory / storage use: The solution of the problem requires a lot of memory and/or storage





#### High Performance Computing (large problems)

- A problem can be large for two main reasons:
  - Execution time: The time required to form a solution to the problem is very long
  - Memory / storage use: The solution of the problem requires a lot of memory and/or storage
- The former can be remedied by increasing the performance
  - More cores, more nodes, GPUs, . . .





# High Performance Computing (large problems)

- A problem can be large for two main reasons:
  - Execution time: The time required to form a solution to the problem is very long
  - Memory / storage use: The solution of the problem requires a lot of memory and/or storage
- The former can be remedied by increasing the performance
  - More cores, more nodes, GPUs, . . .
- The latter by adding more memory / storage
  - More memory per node (including large memory nodes), more nodes, . . .
  - Kebnekaise: 128GB 192GB, 512GB, 3TB
  - Large storage solutions, . . .







#### High Performance Computing (what counts as HPC)









#### High Performance Computing (what counts as HPC)









## High Performance Computing (what counts as HPC)









Specialized (expensive) hardware







- Specialized (expensive) hardware
  - GPUs, Nvidia Tesla V100/A100 GPUs are optimized for Al





- Specialized (expensive) hardware
  - GPUs, Nvidia Tesla V100/A100 GPUs are optimized for Al
  - High-end CPUs (AVX-512 etc) and ECC memory





- Specialized (expensive) hardware
  - GPUs, Nvidia Tesla V100/A100 GPUs are optimized for AI
  - High-end CPUs (AVX-512 etc) and ECC memory
- Software
  - HPC2N holds licenses for several softwares
  - Software is pre-configured and ready-to-use





- Specialized (expensive) hardware
  - GPUs, Nvidia Tesla V100/A100 GPUs are optimized for AI
  - High-end CPUs (AVX-512 etc) and ECC memory
- Software
  - HPC2N holds licenses for several softwares
  - Software is pre-configured and ready-to-use
- Support and documentation







• Two memory models are relevant for HPC:





- Two memory models are relevant for HPC:
  - Shared memory: Single memory space for all data.



- Everyone can access the same data
- Straightforward to use





- Two memory models are relevant for HPC:
  - Shared memory: Single memory space for all data.



- Everyone can access the same data
- Straightforward to use
- Distributed memory: Multiple distinct memory spaces.



- Everyone has direct access only to the local data
- Requires communication













 The programming model changes when we aim for extra performance and/or memory:





- The programming model changes when we aim for extra performance and/or memory:
  - 1 Single-core: Matlab, Python, C, Fortran, ...
    - Single stream of operations





- The programming model changes when we aim for extra performance and/or memory:
  - 1 Single-core: Matlab, Python, C, Fortran, ...
    - Single stream of operations
  - Multi-core: Vectorized Matlab, pthreads, OpenMP
    - Multiple streams of operations





- The programming model changes when we aim for extra performance and/or memory:
  - 1 Single-core: Matlab, Python, C, Fortran, ...
    - Single stream of operations
  - Multi-core: Vectorized Matlab, pthreads, OpenMP
    - Multiple streams of operations
    - Work distribution, coordination (synchronization, etc), . . .





- The programming model changes when we aim for extra performance and/or memory:
  - 1 Single-core: Matlab, Python, C, Fortran, ...
    - Single stream of operations
  - Multi-core: Vectorized Matlab, pthreads, OpenMP
    - Multiple streams of operations
    - Work distribution, coordination (synchronization, etc), . . .
  - Oistributed memory: MPI, ...
    - Multiple streams of operations
    - Work distribution, coordination (synchronization, etc), ...





- The programming model changes when we aim for extra performance and/or memory:
  - 1 Single-core: Matlab, Python, C, Fortran, ...
    - Single stream of operations
  - Multi-core: Vectorized Matlab, pthreads, OpenMP
    - Multiple streams of operations
    - Work distribution, coordination (synchronization, etc), . . .
  - 3 Distributed memory: MPI, ...
    - Multiple streams of operations
    - Work distribution, coordination (synchronization, etc), . . .
    - Data distribution and communication





- The programming model changes when we aim for extra performance and/or memory:
  - 1 Single-core: Matlab, Python, C, Fortran, ...
    - Single stream of operations
  - Multi-core: Vectorized Matlab, pthreads, OpenMP
    - Multiple streams of operations
    - Work distribution, coordination (synchronization, etc), . . .
  - 3 Distributed memory: MPI, ...
    - Multiple streams of operations
    - Work distribution, coordination (synchronization, etc), ...
    - Data distribution and communication
- GPUs: CUDA, OpenCL, OpenACC, OpenMP, ...







- The programming model changes when we aim for extra performance and/or memory:
  - 1 Single-core: Matlab, Python, C, Fortran, ...
    - Single stream of operations
  - Multi-core: Vectorized Matlab, pthreads, OpenMP
    - Multiple streams of operations
    - Work distribution, coordination (synchronization, etc), . . .
  - Oistributed memory: MPI, ...
    - Multiple streams of operations
    - Work distribution, coordination (synchronization, etc), ...
    - Data distribution and communication
- GPUs: CUDA, OpenCL, OpenACC, OpenMP, . . .
  - Many lightweight streams of operations





- The programming model changes when we aim for extra performance and/or memory:
  - 1 Single-core: Matlab, Python, C, Fortran, ...
    - Single stream of operations
  - Multi-core: Vectorized Matlab, pthreads, OpenMP
    - Multiple streams of operations
    - Work distribution, coordination (synchronization, etc), . . .
  - 3 Distributed memory: MPI, ...
    - Multiple streams of operations
    - Work distribution, coordination (synchronization, etc), ...
    - Data distribution and communication
- GPUs: CUDA, OpenCL, OpenACC, OpenMP, . . .
  - Many lightweight streams of operations
  - Work distribution, coordination (synchronization, etc), . . .







- The programming model changes when we aim for extra performance and/or memory:
  - 1 Single-core: Matlab, Python, C, Fortran, ...
    - Single stream of operations
  - Multi-core: Vectorized Matlab, pthreads, OpenMP
    - Multiple streams of operations
    - Work distribution, coordination (synchronization, etc), . . .
  - Oistributed memory: MPI, ...
    - Multiple streams of operations
    - Work distribution, coordination (synchronization, etc), ...
    - Data distribution and communication
- GPUs: CUDA, OpenCL, OpenACC, OpenMP, . . .
  - Many lightweight streams of operations
  - Work distribution, coordination (synchronization, etc), . . .
  - Data distribution across memory spaces and movement







 Complexity grows when we aim for extra performance and/or memory/storage:





- Complexity grows when we aim for extra performance and/or memory/storage:
  - Single-core: LAPACK, ...
    - Load correct toolchain etc





- Complexity grows when we aim for extra performance and/or memory/storage:
  - Single-core: LAPACK, ...
    - Load correct toolchain etc
  - Multi-core: LAPACK + parallel BLAS, ...
    - Load correct toolchain etc





- Complexity grows when we aim for extra performance and/or memory/storage:
  - Single-core: LAPACK, ...
    - Load correct toolchain etc
  - Multi-core: LAPACK + parallel BLAS, ...
    - Load correct toolchain etc
    - Allocate correct number of cores, configure software to use correct number of cores, . . .





- Complexity grows when we aim for extra performance and/or memory/storage:
  - Single-core: LAPACK, ...
    - Load correct toolchain etc
  - Multi-core: LAPACK + parallel BLAS, ...
    - Load correct toolchain etc
    - Allocate correct number of cores, configure software to use correct number of cores, . . .
  - Oistributed memory: ScaLAPACK, ...
    - Load correct toolchain etc





- Complexity grows when we aim for extra performance and/or memory/storage:
  - Single-core: LAPACK, ...
    - Load correct toolchain etc
  - 2 Multi-core: LAPACK + parallel BLAS, ...
    - Load correct toolchain etc
    - Allocate correct number of cores, configure software to use correct number of cores, . . .
  - Oistributed memory: ScaLAPACK, ...
    - Load correct toolchain etc
    - Allocate correct number of nodes and cores, configure software to use correct number of nodes and cores, . . .







- Complexity grows when we aim for extra performance and/or memory/storage:
  - 1 Single-core: LAPACK, ...
    - Load correct toolchain etc
  - 2 Multi-core: LAPACK + parallel BLAS, ...
    - Load correct toolchain etc
    - Allocate correct number of cores, configure software to use correct number of cores, . . .
  - Oistributed memory: ScaLAPACK, ...
    - Load correct toolchain etc
    - Allocate correct number of nodes and cores, configure software to use correct number of nodes and cores, . . .
    - Data distribution, storage, ...







- Complexity grows when we aim for extra performance and/or memory/storage:
  - Single-core: LAPACK, ...
    - Load correct toolchain etc
  - Multi-core: LAPACK + parallel BLAS, ...
    - Load correct toolchain etc
    - Allocate correct number of cores, configure software to use correct number of cores, . . .
  - Oistributed memory: ScaLAPACK, ...
    - Load correct toolchain etc
    - Allocate correct number of nodes and cores, configure software to use correct number of nodes and cores, . . .
    - Data distribution, storage, ...
- GPUs: MAGMA, TensorFlow, . . .
  - Load correct toolchain etc
  - Allocate correct number of cores and GPUs, configure software to use correct number of cores and GPUs, . . .







# End (questions?)

# Questions?





