Mestrado em Engenharia e Gestão Industrial Inteligência Artificial aplicada na Indústria

Técnicas de implementação em Inteligência Artificial

Daniel Nogueira

dnogueira@ipca.pt

https://www.linkedin.com/in/danielfnogueira/

Questões!!!!

Como um sistema de IA toma uma decisão?

Como um sistema de lA aprende a tomar uma decisão?

Um sistema de IA pode tomar uma decisão como um humano?

Técnicas Emergentes de IA em Vídeojogos

Passos da Criação de um Modelo

Dataset

800 outputs

Imagem	Raça
1	Α
2	В
800	Α

Dataset

200 outputs

Imagem	Raça
801	Α
802	В
1000	В

Test

Aprendizado Supervisionado

Aprendizado Supervisionado

Var. Independentes	Var. Dependentes
Anos de Carreira, Formação, Idade	
Idade do Carro, Idade do Condutor	
Texto de um livro	
Temperatura	
Imagem da Rodovia	

Aprendizado Supervisionado

Var. Independentes	Var. Dependentes
Anos de Carreira, Formação, Idade	Salário
Idade do Carro, Idade do Condutor	Risco de Acidente Automotivo
Texto de um livro	Escola Literária
Temperatura	Conservação de Alimentos
Imagem da Rodovia	Direção de um carro autônomo

Aprendizado Não - Supervisionado

Aprendizado por Reforço

- Uma IA (chamado Albert) aprende a andar para escapar de 5 salas;
- No vídeo, é apresentado apenas um Albert, mas, na verdade, existem 200 cópias de Albert e a sala em que ele está treinando para acelerar o processo;
- Criado usando Unity e ML-Agents;
- A IA foi treinada usando Deep Reinforcement Learning;
- As ações de Albert são controladas por uma Rede Neural (ANN Artificial Neural Network) que é atualizada após cada tentativa;
- A ANN tenta dar a Albert mais recompensas e menos punições ao longo do tempo;
- A ANN tem 5 camadas: a primeira camada consiste nas entradas (a informação que Albert recebe antes de agir, como as posições e velocidades de seus membros), a última camada diz a ele quais ações executar e as 3 camadas intermediárias, chamadas de camadas ocultas, são onde os cálculos são executados para converter as entradas em ações.
- O modelo foi treinado usando o algoritmo padrão no aprendizado por reforço (Otimização de Política Proximal PPO).

- Cada membro do Albert tem, como input: **posição, velocidade, velocidade angular, contatos** (se está tocando o solo, parede ou obstáculo) **e a força aplicada a ele, a distância de cada pé até o chão, a direção do alvo mais próximo, a direção do movimento do corpo, a velocidade do corpo, a distância do peito aos pés e o tempo que um pé está à frente do outro.**
- Quanto às suas ações, são permitidos que o Albert *controle a rotação e a força de cada parte do corpo* (com algumas limitações para que seu braço não possa dobrar para trás, por exemplo).
- Para cada uma das tentativas de Albert, é atribuida uma pontuação de quão "boa" foi e são realizados pequenos ajustes no modelo para tentar encorajar os comportamentos que levaram a uma pontuação mais alta e evitar aqueles que levaram a uma pontuação mais baixa.

- ✓ FUNÇÃO DE RECOMPENSA **Sala 1**: Recompensa com base em quanto o Albert se moveu na direção do alvo.
- ✓ FUNÇÃO DE RECOMPENSA <u>Sala 2</u>: Verifica se os membros do Albert atingiram o solo. Se o membro que bate no chão for um pé, é recompensado (mas apenas se for na frente do outro pé). Também foi introduzida uma nova recompensa projetada para incentivar movimentos mais suaves; se ele se aproximar da força máxima permitida em um membro, ele é punido e recompensado se usar uma força de quase 0.
- ✓ FUNÇÃO DE RECOMPENSA <u>Sala 3</u>: É aqui que é "polida" a marcha do Albert que se desenvolveu na sala 2 e a ensiná-lo a virar. A partir daqui, é usado o cálculo da altura do peito como outra recompensa direta, onde quanto mais alto o peito, mais ele é recompensado na tentativa de fazê-lo ficar o mais reto possível.
- ✓ FUNÇÃO DE RECOMPENSA <u>Sala 4</u>: Foi introduzido um cronômetro de 2 segundos que zera quando um pé vai na frente do outro. O Albert é recompensado sempre que este cronômetro estiver acima de 0 (o pé da frente está na frente por < 2 segundos) e é punido sempre que o cronômetro fica abaixo de 0 (o pé da frente está na frente > 2 segundos). É adicionada outra recompensa proporcional à distância de seus passos para incentivá-lo a dar passos maiores. Adicionalmente, para suavizar o movimento, também há uma punição a cada *frame* proporcional à diferença na velocidade de seu corpo do *frame* anterior em relação ao *frame* atual, portanto, se ele estiver se movendo a uma velocidade perfeitamente consistente, não será punido, e se ele faz movimentos errados muito rápidos, ele é punido.
- ✓ FUNÇÃO DE RECOMPENSA Sala 5: Recompensa pelo pé da frente no chão. Desta forma, o Albert coloca mais força neste pé de apoio.

Reference

- [1] McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
- [2] Shannon, C. E. (1950). XXII. Programming a computer for playing chess. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(314), 256-275.
- [3] Turing, A. M. (2009). Computing machinery and intelligence. In Parsing the turing test (pp. 23-65). Springer, Dordrecht.
- [4] Russel, S., Artificial Intelligence: A Modern Approach, Prentice Hall, 2a edição, 2002, ISBN-10: 0137903952
- [5] Chan, C., Ginosar, S., Zhou, T., & Efros, A. A. (2019). Everybody dance now. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 5933-5942).

Mestrado em Engenharia e Gestão Industrial **Inteligência Artificial aplicada na Indústria**

Daniel Nogueira

dnogueira@ipca.pt

https://www.linkedin.com/in/danielfnogueira/

