Page 1 of 4

Description

Image

Caption

1. Thermosetting polyester used as the matrix of fiber-reinforced boat parts. 2. Thermosetting polyester used as the matrix of fiber-reinforced car parts.

The material

Polyesters can be a thermosets, a thermoplastics or elastomers. The unsaturated polyester resins are thermosets. Most polyester thermosets are used in glass fiber/polyester composites. They are less stiff and strong than epoxies, but they are considerably cheaper.

Composition (summary)

(OOC-C6H4-COO-C6H10)n

Thermal expansion coefficient

Gen	eral	nro	perties
OCII	CIG	טוט ו	pei lies

Density	64.9	-	87.4	lb/ft^3
Price	* 1.74	-	1.95	USD/lb
Date first used	1942			
Mechanical properties				
Young's modulus	0.3	-	0.64	10^6 psi
Shear modulus	* 0.108	-	0.23	10^6 psi
Bulk modulus	0.653	-	0.682	10^6 psi
Poisson's ratio	0.381	-	0.403	•
Yield strength (elastic limit)	* 4.79	-	5.8	ksi
Tensile strength	6	-	13	ksi
Compressive strength	* 5.26	-	6.38	ksi
Elongation	2	-	2.6	% strain
Hardness - Vickers	9.9	-	21.5	HV
Fatigue strength at 10^7 cycles	* 2.4	-	5.2	ksi
Fracture toughness	* 0.987	-	1.54	ksi.in^0.5
Mechanical loss coefficient (tan delta)	* 0.00907	-	0.0193	
Thermal properties				
Glass temperature	296	-	404	°F
Maximum service temperature	266	-	302	°F
Minimum service temperature	* -190	-	-99.7	°F
Thermal conductor or insulator?	Good ins	ulat	or	
Thermal conductivity	* 0.166	-	0.173	BTU.ft/h.ft^2.F
Specific heat capacity	* 0.36	-	0.374	BTU/lb.°F

MITH		Ε	\leq	2	20	21	5
Diena	Ei			P	A	C	K

55 100 ustrain/°F

Electrical properties

Electrical conductor or insulator? Good insulator Electrical resistivity 3.3e18 3e19 µohm.cm Dielectric constant (relative permittivity) 2.8 3.3 Dissipation factor (dielectric loss tangent) * 0.001 0.03 Dielectric strength (dielectric breakdown) 381 500 V/mil

Optical properties

Transparency Transparent Refractive index 1.54 1.57 **Processability** Castability 3 4

Moldability 3 4 Machinability 3 4 Weldability 1

Durability: water and aqueous solutions

Water (fresh) Excellent Water (salt) Excellent Soils, acidic (peat) Limited use Soils, alkaline (clay) Unacceptable Wine Acceptable

Durability: acids

Acetic acid (10%) Limited use Acetic acid (glacial) Unacceptable Citric acid (10%) Excellent Hydrochloric acid (10%) Excellent Hydrochloric acid (36%) Excellent Hydrofluoric acid (40%) Unacceptable Nitric acid (10%) Excellent Nitric acid (70%) Unacceptable Phosphoric acid (10%) Excellent Excellent Phosphoric acid (85%) Sulfuric acid (10%) Excellent Sulfuric acid (70%) Excellent

Durability: alkalis

Sodium hydroxide (10%) Unacceptable Sodium hydroxide (60%) Unacceptable

Durability: fuels, oils and solvents

Amyl acetate Limited use Benzene Unacceptable Carbon tetrachloride Excellent Chloroform Unacceptable Crude oil Excellent Diesel oil Excellent Excellent Lubricating oil Paraffin oil (kerosene) Excellent Petrol (gasoline) Excellent Silicone fluids Excellent

81.	-	 _		
2	F= 1		m.	- 14
01	Server Ser		1-16	

Toluene Limited use
Turpentine Excellent
Vegetable oils (general) Acceptable
White spirit Limited use

Durability: alcohols, aldehydes, ketones

Acetaldehyde Limited use
Acetone Limited use
Ethyl alcohol (ethanol) Limited use
Ethylene glycol Excellent
Formaldehyde (40%) Excellent
Glycerol Excellent
Methyl alcohol (methanol) Limited use

Durability: halogens and gases

Chlorine gas (dry)

Fluorine (gas)

O2 (oxygen gas)

Sulfur dioxide (gas)

Excellent

Unacceptable
Excellent

Durability: built environments

Industrial atmosphereExcellentRural atmosphereExcellentMarine atmosphereExcellentUV radiation (sunlight)Good

Durability: flammability

Flammability Highly flammable

Durability: thermal environments

Tolerance to cryogenic temperatures

Tolerance up to 150 C (302 F)

Tolerance up to 250 C (482 F)

Tolerance up to 450 C (842 F)

Tolerance up to 850 C (1562 F)

Tolerance above 850 C (1562 F)

Unacceptable
Unacceptable
Unacceptable
Unacceptable

Geo-economic data for principal component

Annual world production 3.94e7 - 3.99e7 ton/yr Reserves * 9.84e8 - 9.94e8 l. ton

Primary material production: energy, CO2 and water

Embodied energy, primary production * 7.33e3 - 8.11e3 kcal/lb CO2 footprint, primary production * 2.83 - 3.12 lb/lb Water usage * 22.8 - 25.2 gal(US)/lb Eco-indicator 99 437 millipoints/kg

Material processing: energy

Polymer molding energy * 2.74e3 3.02e3kcal/lb Coarse machining energy (per unit wt removed) * 197 218 kcal/lb Fine machining energy (per unit wt removed) kcal/lb * 1.51e3 - 1.66e3 Grinding energy (per unit wt removed) * 2.96e3 - 3.27e3 kcal/lb

Material processing: CO2 footprint

Polymer molding CO2

	* 2.02	-	2.23	lb/lb
Coarse machining CO2 (per unit wt removed)	* 0.136	-	0.15	lb/lb
Fine machining CO2 (per unit wt removed)	* 1.04	-	1.15	lb/lb
Grinding CO2 (per unit wt removed)	* 2.05	_	2.26	lb/lb

Material recycling: energy, CO2 and recycle fraction

Recycle	×		
Recycle fraction in current supply	0.1		%
Downcycle	✓		
Combust for energy recovery	✓		
Heat of combustion (net)	* 3.03e3 -	3.18e3	kcal/lb
Combustion CO2	* 2.49 -	2.62	lb/lb
Landfill	✓		
Biodegrade	×		
Toxicity rating	Non-toxic		
A renewable resource?	×		

Environmental notes

Thermosetting polyesters cannot be recycled.

Supporting information

Design guidelines

Thermosetting polyesters are the cheapest resins for making glass or carbon fiber composites, but they have lower strength than epoxies. They can be formulated to cure at or above room temperature. Modifications can improve the chemical resistance, UV resistance and heat resistance without too much change in the ease of processing. Polyester elastomers have relatively high moduli and are stronger than polyurethanes. They have good melt flow properties, low shrinkage, good resistance to oils and fuels. Polyester can be made conductive by adding 30% carbon fiber. As a tape, Mylar is used for magnetic sound recording. Unfilled polyester thermosetting resins are normally used as surface coatings but they tend to be brittle. of Thermosetting polyester has a corroding influence on copper

Technical notes

Polyesters are made by a condensation reaction of an alcohol like ethyl alcohol (the one in beer) and an organic acid like acetic acid (the one in vinegar). The two react, releasing water, and forming an ester.

Typical uses

Laminated structures; Surface gel coatings; Liquid castings; Furniture products; Bowling balls; Simulated marble; Sewer pipe gaskets; Pistol grips; Television tube implosion barriers; Boats; Truck cabs; Concrete forms; Lamp housings; Skylights; Fishing rods.

Tradenames

Celanex, Eastar, Hytrel, Plenco, Rynite, Synolite, Valox, Vybrex

Links

Reference

ProcessUniverse

Producers