Matriz de una Transformación Lineal

Pablo Dario

04/01/2024

Cada transformación lineal de \mathbb{R}^n a \mathbb{R}^m es una transformación matricial $\mathbf{x} \longmapsto A\mathbf{x}$; la clave para encontrar a A es observar que T esta determinada por su acción sobre las columnas de la matriz identidad de $n \times n, I_n$

Ejemplo

Las columnas de $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ son $\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ y $\mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ Suponga que T es una transformación lineal de \mathbb{R}^2 a \mathbb{R}^3 tal que

$$T(\mathbf{e_1}) = \begin{bmatrix} 5 \\ -7 \\ 2 \end{bmatrix}$$
 y $T(\mathbf{e_2}) = \begin{bmatrix} -3 \\ 8 \\ 0 \end{bmatrix}$

Encuentre la imagen de una \mathbf{x} arbitraria en \mathbb{R}^2

Así bien creamos un vector \mathbf{x} genérico y lo múltplicamos por la matriz identidad, dejándonos:

$$A\mathbf{x} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = x_1 \mathbf{e_1} + x_2 \mathbf{e_2}$$

Como T es una transformación lineal y ya conocemos a los vectores transformados de $\mathbf{e_1}$ y $\mathbf{e_2}$, entonces:

$$T(\mathbf{x}) = x_1 T(\mathbf{e_1}) + x_2 T(\mathbf{e_2})$$

$$= x_1 \begin{bmatrix} 5 \\ -7 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} -3 \\ 8 \\ 0 \end{bmatrix} = \begin{bmatrix} 5x_1 - 3x_2 \\ -7x_1 + 8x_2 \\ 2x_1 + 0 \end{bmatrix}$$

Por lo tanto, la transformación lineal es: $T(\mathbf{x}) = T(5x_1 - 3x_2, -7x_1 + 8x_2, 2x_1 + 0)$ y su **matriz estándar** A es:

$$\left[\begin{array}{cc}
5 & -3 \\
-7 & 8 \\
2 & 0
\end{array}\right]$$

Los pasos anteriores explican porque el conocimiento de $T(\mathbf{e_1})$ y $T(\mathbf{e_2})$ es suficiente para determinar $T(\mathbf{x})$ para cualquier \mathbf{x} .

Matriz Estándar

Sea $T:\mathbb{R}^n\to\mathbb{R}^m$ una transformación lineal, existe una única matriz A tal que

$$T(\mathbf{x}) = A\mathbf{x}$$
 para toda \mathbf{x} en \mathbb{R}^n

A es la matriz de $m \times n$ cuya j-ésima columna es el vector $T(\mathbf{e_j})$, donde $\mathbf{e_j}$ es la j-ésima columna de la matriz identidad en \mathbb{R}^n

$$A = \begin{bmatrix} T(\mathbf{e_1}) & \cdots & T(\mathbf{e_n}) \end{bmatrix}$$

1

El término transformación lineal se enfoca sobre una propiedad de un mapeo, mientras que la transformación matricial describe cómo se implementa tal mapeo.

Ejemplo 2

Encuentre la matriz estándar A para la transformación de dilatación $T(\mathbf{x}) = 3\mathbf{x}$, para \mathbf{x} en \mathbb{R}^2 .

$$T(\mathbf{e_1}) = 3\mathbf{e_1} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$
 y $T(\mathbf{e_2}) = 3\mathbf{e_2} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$

$$\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$

Existencia y Unicidad

Existencia

Se dice que un mapeo $T: \mathbb{R}^n \to \mathbb{R}^m$ es **sobre** \mathbb{R}^m si cada **b** en \mathbb{R}^m es la imagen de al menos una **x** en \mathbb{R}^n . T mapea \mathbb{R}^n sobre \mathbb{R}^m si y solo si las columnas de A generan a \mathbb{R}^m .

De manera equivalente, T es sobre \mathbb{R}^m cuando todo el rango de T es codominio \mathbb{R}^m . Es decir T mapea \mathbb{R}^n sobre \mathbb{R}^m , si para cada \mathbf{b} en el codominio \mathbb{R}^m , existe al menos una solución de $T(x) = \mathbf{b}$.

El mape
oTno es sobre \mathbb{R}^m cuando existe algun
a \mathbf{b} en \mathbb{R}^m para la cual la ecuación
 $T(\mathbf{x})=\mathbf{b}$ no tiene solución.

Figure 1: ¿El rango de T es todo \mathbb{R}^m ?

Unicidad

Se dice que un mapeo $T: \mathbb{R}^n \to \mathbb{R}^m$ es uno a uno si cada b en \mathbb{R}^m es la imagen de a lo sumo una x en \mathbb{R}^n

De manera equivalente, T es uno a uno si, para cada \mathbf{b} en \mathbb{R}^m , la ecuación $T(\mathbf{x}) = \mathbf{b}$ tiene una única solución o ninguna solución.

El mapeo de T no es uno a uno cuando algún \mathbf{b} en \mathbb{R}^m es la imagen de más de un vector en \mathbb{R}^n . Si no existe tal \mathbf{b} , entonces T es uno a uno.

Figure 2: ¿Cada b es la imagen de a lo sumo un vector?

Ejemplos de Mapeo uno a uno

Figure 3: Reflexiones

Figure 4: Contracción y Expansión

Figure 5: Trasquilado

Ejemplo

Sea T la transformación lineal cuya matriz estándar A es:

$$\left[\begin{array}{cccc} 1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5 \end{array}\right]$$

encuentre si T es sobre \mathbb{R}^4 y si el mapeo es uno a uno.

Como A está en forma escalonada, podemos ver a la vez que A tiene una posición pivote en cada fila. Para cada \mathbf{b} en \mathbb{R}^3 , la ecuación $A\mathbf{x} = \mathbf{b}$ es consistente. En otras palabras, la transformación lineal T mapea \mathbb{R}^4 (su dominio) sobre \mathbb{R}^3 . Sin embargo, ya que la ecuación $A\mathbf{x} = \mathbf{b}$ tiene una variable libre, cada \mathbf{b} es la imagen de más de una \mathbf{x} . Es decir, \mathbf{T} no es uno a uno.

Unicidad

Sea $T: \mathbb{R}^n \to \mathbb{R}^m$ una transformación lineal. Entonces T es uno a uno si y solo si la ecuación $T(\mathbf{x}) = 0$ tiene únicamente la solución trivial.

T es uno a uno si y solo si las columnas de A son linealmente independientes.

Ejemplo

Sea $T(x_1, x_2) = (3x_1 + x_2, 5x_1 + 7x_2, x_1 + 3x_2)$ Demuestre que T es una transformación lineal uno a uno. T mapea a \mathbb{R}^2 sobre \mathbb{R}^3 ?

$$T(\mathbf{x}) = \begin{bmatrix} 3x_1 + x_2 \\ 5x_1 + 7x_2 \\ x_1 + 3x_2 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 5 & 7 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Las columnas de A son linealmente independientes porque no son múltiplos entre sí; por lo tanto T es uno a uno. Por otro lado las columnas de A generan a \mathbb{R}^3 si y solo si A tiene 3 posiciones pivote; podemos observar rápidamente que esto es imposible ya que A solo tiene 2 columnas. Así las columnas de A no generan a R^3 y la transformación linealmente asociada no es sobre \mathbb{R}^3 .

Resumen

- Un mapeo $T: \mathbb{R}^n \to \mathbb{R}^m$ es **sobre** \mathbb{R}^m si cada **b** en \mathbb{R}^m es la imagen de al menos una **x** en \mathbb{R}^n . Es decir T mapea \mathbb{R}^n sobre \mathbb{R}^m , si para cada **b** en el codominio \mathbb{R}^m , existe al menos una solución de $T(x) = \mathbf{b}$.
- T mapea \mathbb{R}^n sobre \mathbb{R}^m si y solo si las columnas de A generan a \mathbb{R}^m .
- Un mapeo $T: \mathbb{R}^n \to \mathbb{R}^m$ es **uno a uno** si cada **b** en \mathbb{R}^m es la imagen de a lo sumo una **x** en \mathbb{R}^n , o si, para cada **b** en \mathbb{R}^m , la ecuación $T(\mathbf{x}) = \mathbf{b}$ tiene una única solución o ninguna solución
- T es uno a uno si y solo si la ecuación $T(\mathbf{x}) = 0$ tiene únicamente la solución trivial, por lo que si hay una variable libre la transformación T no es uno a uno, o bien si hay más columnas que filas en la matriz A.
- T es uno a uno si y solo si las columnas de A son linealmente independientes.