Estadística Inferencial

Capítulo VIII - Ejercicio 43

Aaric Llerena Medina

Si X_1, X_2, \dots, X_9 son 9 variables aleatorias independientes y con distribución normal N(8,4), calcule la probabilidad $P\left[1.09 \leq \hat{S}^2 \leq 10.045, 7 \leq \bar{X} \leq 9\right]$ (\bar{X} y \hat{S}^2 son independientes).

Solución:

Obteniendo los datos:

• Media poblacional: $\mu = 8$

• Varianza poblacional: $\sigma^2 = 4$

• Tamaño de muestra: n = 9

La media muestral se distribuye como: $\bar{X} \sim N\left(8, \frac{4}{9}\right)$. Para una población normal, la varianza muestral \hat{S}^2 está relacionada con la distribución chi-cuadrado:

$$\frac{(n-1)\hat{S}^2}{\sigma^2} \sim \chi^2(n-1)$$

Sustituyendo valores n=9 y $\sigma^2=4$:

$$\frac{8\hat{S}^2}{4} = 2\hat{S}^2 \sim \chi^2(8)$$

Como se debe calcular $P\left(7 \leq \bar{X} \leq 9\right)$, lo que estandarizando:

$$Z = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{\bar{X} - 8}{\frac{2}{3}}$$

Los límites estandarizados son:

• Para $\bar{X} = 7$:

$$Z = \frac{7-8}{\frac{2}{3}} = -1.5$$

• Para $\bar{X} = 9$:

$$Z = \frac{9-8}{\frac{2}{3}} = 1.5$$

Usando la tabla normal:

$$P(-1.5 \le Z \le 1.5) = \Phi(1.5) - \Phi(-1.5) = 0.9332 - 0.0668 = 0.8664$$

Asimismo, se debe encontrar $P\left(1.09 \le \hat{S}^2 \le 10.045\right)$. Se debe aplicar la transformación chicuadrado:

$$P\left(1.09 \le \hat{S}^2 \le 10.045\right) = P\left(2 \times 1.09 \le \chi^2(8) \le 2 \times 10.045\right)$$
$$= P\left(2 \times 2.18 \le \chi^2(8) \le 2 \times 20.09\right)$$

Usando la función de distribución chi-cuadrado:

$$P = F_{\chi^2(8)}(20.09) - F_{\chi^2(8)}(2.18) \approx 0.9900 - 0.0250 = 0.9650$$

Dado que \bar{X} y \hat{S}^2 son independientes, la probabilidad conjunta es:

$$P\left[1.09 \leq \hat{S}^2 \leq 10.045, 7 \leq \bar{X} \leq 9\right] = P_{\hat{S}^2} \times P_{\bar{X}}$$

$$= 0.9650 \times 0.8664$$

$$= 0.8361$$

Por lo tanto, la probabilidad es aproximadamente 0.8361.