Universidad de la República Facultad de Ingeniería - IMERL

Geometría y Álgebra Lineal 2 Segundo Semestre 2019

Sábado 16 de noviembre de 2019

Nro de Parcial	Cédula	Apellido y nombre

- El puntaje total es 60 puntos.
- La duración del parcial es tres horas.
- Todos los espacios vectoriales considerados en este parcial tienen dimensión finita.
- Sólo se consideran válidas las respuestas escritas en los casilleros correspondientes.

Notación: En el parcial se usa la siguiente notación:

- $\mathcal{M}_{m \times n}$ es el espacio de las matrices reales de tamaño $m \times n$.
- \mathcal{P}_n es el conjunto de los polinomios reales de grado menor o igual que n.

(I) Verdadero Falso. Total: 20 puntos

Puntajes: 2 puntos si la respuesta es correcta, -2 puntos si la respuesta es incorrecta, 0 punto por no contestar. Indique sus respuestas (V/F) en los casilleros correspondientes.

Ej 1	Ej 2	Ej 3	Ej 4	Ej 5	Ej 6	Ej 7	Ej 8	Ej 9	Ej 10
\mathbf{F}	V	\mathbf{F}	\mathbf{F}	\mathbf{V}	F	\mathbf{V}	\mathbf{F}	\mathbf{F}	V

Ejercicio 1:

Considere el espacio vectorial $V = \mathbb{R}^n$ con el producto interno habitual. Sea $T: V \to V$ un operador diagonalizable. Existe una base **ortonormal** de V formada por vectores propios de T.

Ejercicio 2:

Sea V un espacio vectorial con producto interno sobre el cuerpo \mathbb{K} . Considere dos funcionales lineales $S, T: V \to \mathbb{K}$. Si $w_1 \in V$ es el representante de Riesz de T y $w_2 \in V$ es el representante de Riesz de S, entonces el representante de Riesz del funcional T + S es $w_1 + w_2$.

Ejercicio 3:

Sean V un espacio vectorial con producto interno sobre el cuerpo \mathbb{K} , $S \subset V$ un subespacio vectorial ($S \neq \{0\}$, $S \neq V$), y $P_S : V \to V$ la proyección ortogonal sobre S. Entonces P_S es un operador **ortogonal**.

Ejercicio 4:

Considere el espacio vectorial real $V = \mathcal{P}_2$ con el producto interno $\langle p, q \rangle = \int_0^1 p(t)q(t)dt$. Sea $T: V \to V$ el operador derivada; esto es: T(p) = p'. Entonces T es un operador autoadjunto.

Ejercicio 5:

Sea V un espacio vectorial con producto interno. Si S_{λ} y S_{μ} son subespacios propios correspondientes a dos valores propios distintos de un operador **autoadjunto** $T: V \to V$, entonces $S_{\lambda} \perp S_{\mu}$.

Ejercicio 6:

Sean V un espacio vectorial con producto interno, $B = \{v_1, v_2, \dots, v_n\}$ una base ortonormal de V, y $T: V \to V$ un operador lineal tal que $||T(v_i)|| = ||v_i||$ para todo $i = 1, 2, \dots, n$. Entonces T es una isometría.

Ejercicio 7:

Toda isometría lineal $T: \mathbb{R}^4 \to \mathcal{M}_{2\times 2}$ es invertible.

Ejercicio 8:

Sean V un espacio vectorial real con producto interno, dim(V) = n, y $T: V \to V$ un operador lineal. Suponga que existe una base ortonormal B en la cual la matriz asociada $A =_B (T)_B$ es antisimétrica (esto es: $A^t = -A$). Entonces T es autoadjunto.

Ejercicio 9:

Sean $V = \mathbb{R}^2$ con el producto interno habitual y C la base canónica de \mathbb{R}^2 . Considere un operador lineal $T: V \to V$ tal que su matriz asociada es $C(T)_C = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}$. Entonces T preserva el producto interno.

Ejercicio 10:

Sean V un espacio vectorial real con producto interno y $T:V\to V$ un operador ortogonal. Si $S\subset V$ es un subespacio invariante bajo T entonces S^\perp también es un subespacio invariante bajo T.

(II) Múltiple opción. Total: 40 puntos

Puntajes: 8 puntos si la respuesta es correcta, -2 puntos si la respuesta es incorrecta, 0 punto por no contestar. Indique sus respuestas en los casilleros correspondientes.

]	Ejercicio 1	Ejercicio 2	Ejercicio 3	Ejercicio 4	Ejercicio 5
	D	В	В	A	C

Ejercicio 1

Considere los siguientes pares de datos (x, y): (0, 1), (1, 1), (2, 0). Se desea ajustar esos datos a una función de la forma $y = \alpha x + \beta$, aplicando el método de mínimos cuadrados.

Los valores para α y β obtenidos por ese método son:

A)
$$\alpha = \frac{1}{2} \text{ y } \beta = -\frac{7}{6}$$
.

B)
$$\alpha = -\frac{1}{2} \text{ y } \beta = \frac{1}{3}.$$

C)
$$\alpha = \frac{7}{6} \text{ y } \beta = -\frac{1}{3}$$
.

D)
$$\alpha = -\frac{1}{2} \ y \ \beta = \frac{7}{6}$$
.

Ejercicio 2

Considere \mathbb{R}^2 con el producto interno habitual, B una base ortonormal de \mathbb{R}^2 , y $T: \mathbb{R}^2 \to \mathbb{R}^2$ la transformación lineal con matriz asociada

$$A =_B (T)_B = \begin{pmatrix} 4\cos\theta & -4\sin\theta \\ 4\sin\theta & 4\cos\theta \end{pmatrix},$$

donde $\theta \in [0, 2\pi)$.

Indique la opción correcta:

- A) Para todo valor de $\theta \in [0, 2\pi)$ existen matrices reales $P, D \in \mathcal{M}_{2\times 2}$, P ortogonal y D diagonal, tales que $A = PDP^t$.
- B) Hay exactamente dos valores de $\theta \in [0, 2\pi)$ para los cuales existen matrices reales $P, D \in \mathcal{M}_{2\times 2}, P$ ortogonal y D diagonal, tales que $A = PDP^t$.

- C) Hay exactamente un único valor de $\theta \in [0, 2\pi)$ para el cual existen matrices reales $P, D \in \mathcal{M}_{2\times 2}, P$ ortogonal y D diagonal, tales que $A = PDP^t$.
- D) Para ningún valor de $\theta \in [0, 2\pi)$ existen matrices reales $P, D \in \mathcal{M}_{2\times 2}$, P ortogonal y D diagonal, tales que $A = PDP^t$.

Ejercicio 3

Considere el espacio vectorial $\mathcal{M}_{2\times 2}$ con el producto interno $\langle A, B \rangle = traza(B^tA)$. Considere además el funcional lineal $T: \mathcal{M}_{2\times 2} \to \mathbb{R}$ definido por:

$$T\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = a$$

y la transformación lineal $S: \mathcal{M}_{2\times 2} \to \mathcal{M}_{2\times 2}$ dada por:

$$S\left(\begin{array}{cc}a&b\\c&d\end{array}\right)=\left(\begin{array}{cc}d&b\\c&a\end{array}\right).$$

El representante de Riesz del funcional $T \circ S : \mathcal{M}_{2 \times 2} \to \mathbb{R}$ es:

A)
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
.

B)
$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
.

C)
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
.

D)
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
.

Ejercicio 4

Considere $V = \mathcal{P}_1$, el conjunto de polinomios con coeficientes reales de grado menor o igual que 1, con el producto interno $\langle p,q\rangle=\int_0^1 p(t)q(t)dt$, y $W=\mathbb{R}^3$ con el producto interno habitual.

Sea $T: V \to W$ la transformación lineal definida por T(1) = (1, 1, 0) y T(t) = (1, 0, 1). Entonces la transformación adjunta $T^*: W \to V$ es:

A)
$$T^*(x, y, z) = 6(x - y + 2z)t - (2x - 4y + 6z), t \in \mathbb{R}.$$

B)
$$T^*(x, y, z) = (x + z)t + (x + y), t \in \mathbb{R}.$$

C)
$$T^*(x, y, z) = 3(x - y + 2z)t + (x + y), t \in \mathbb{R}.$$

D)
$$T^*(x, y, z) = (x + z)t - (2x - 3y + z), t \in \mathbb{R}.$$

Eiercicio 5

Considere la matriz real
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Se usa la descomposición en valores singulares para escribir $A = USV^t$, con U y V matrices **ortogonales** y S matriz **diagonal** (cuyos valores en la diagonal están ordenados de mayor a menor). Entonces:

A)
$$S = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.

B)
$$S = \begin{pmatrix} \frac{1+\sqrt{5}}{2} & 0 & 0\\ 0 & \frac{1+\sqrt{5}}{2} & 0\\ 0 & 0 & 0 \end{pmatrix}$$
.

C)
$$S = \begin{pmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.

D)
$$S = \begin{pmatrix} \sqrt{\frac{1+\sqrt{5}}{2}} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix}$$
.