Package 'PriceIndices'

December 21, 2022
Title Calculating Bilateral and Multilateral Price Indexes
Version 0.1.2
Description Preparing a scanner data set for price dynamics calculations (data selecting, data classification, data matching, data filtering). Computing bilateral and multilateral indexes. For details on these methods see: Diewert and Fox (2020) <doi:10.1080 07350015.2020.1816176="">, Białek (2019) <doi:10.2478 jos-2019-0014=""> or Białek (2020) <doi:10.2478 jos-2020-0037="">.</doi:10.2478></doi:10.2478></doi:10.1080>
Depends R (>= $3.5.0$)
Imports lubridate (>= 1.7.4), dplyr (>= 0.8.3), ggplot2 (>= 3.2.0), reshape, reclin2, stringr, xgboost, caret, strex
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Suggests testthat, knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Jacek Białek [aut, cre] (https://orcid.org/0000-0002-0952-5327)
Maintainer Jacek Białek < jacek.bialek@uni.lodz.pl>
Repository CRAN
Date/Publication 2022-12-21 10:30:02 UTC
R topics documented:
agmean

ccdi_fbew	
ccdi_fbmw	14
ccdi_splice	15
chagmean	16
chbanajree	17
chbialek	18
chbmw	19
chcarli	20
chcswd	21
chdavies	22
chdrobisch	23
chdutot	24
chfisher	25
chgeary_khamis	26
chgeohybrid	27
chgeolaspeyres	28
chgeolowe	29
chgeopaasche	30
chgeoyoung	31
chharmonic	32
chhybrid	33
chIQMp	34
chievons	
chlaspeyres	
chlehr	
chlloyd_moulton	
chlowe	
chmarshall_edgeworth	
chpaasche	
chpalgrave	
chQMp	
chQMq	45
chsato vartia	
. 7.	47
chtornqvist	47
chvartia	
chyoung	
coffee	
compare_distances	
compare_indices_df	
compare_indices_list	
compare_to_target	
cswd	
dataAGGR	
dataCOICOP	
dataMATCH	
dataH	59

data_aggregating																
data_check																
data_classifying .																
data_filtering																
data_matching																
data_norm																
data_preparing .																
data_selecting																
data_unit																
davies																
dissimilarity																
dissimilarity_fig .	 							 								. 72
drobisch																
dutot	 							 								. 74
elasticity	 							 								. 75
elasticity_fig	 							 								. 76
expenditures	 							 								. 78
final_index	 							 								. 79
fisher	 							 								. 80
geary_khamis	 							 								. 81
geks																
geksaqi																
geksaqi_fbew																
geksaqi_fbmw																
geksaqi_splice																
geksaqu																
geksaqu_fbew																
geksaqu_fbmw .																
geksaqu_splice .																
geksgaqi																–
geksgaqi_fbew .																
geksgaqi_fbmw .																
geksgaqi_splice .																
geksgl																
geksgl_fbew																
geksgl_fbmw																
geksgl_splice																
geksiqm																
geksiqm_fbew																
geksiqm_fbmw .																
geksiqm_splice .																
geksj																
geksj_fbew																
geksj_fbmw																
geksj_splice																
geksl																
gekslm																
gekslm_fbew																
SCKSIIII_IUCW	 	 •	 ٠	•	 •	 •	•	 	•	 •	 •	•	 ٠	 •	•	. 110

gekslm_fbmw		 	 		 								. 1	17
gekslm_splice														
geksl_fbew		 	 		 								. 1	20
geksl_fbmw													. 1	
geksl_splice													. 1	
geksqm													. 1	
geksqm_fbew													. 1	
geksqm_fbmw													•	26
geksqm_splice													. 1	_~
geksw													. 1	
geksw fbew													•	
geksw_fbmw														
geksw_splice														
geks_fbew														
U –														
geks_fbmw														
geks_splice														
generate														
generate_CES														
geohybrid														
geolaspeyres														
geolowe														
geopaasche														
geoyoung														
gk														
gk_fbew														
gk_fbmw														
gk_splice			 		 								. 1	48
harmonic			 		 								. 1	50
hybrid					 								. 1	51
IQMp					 								. 1	52
jevons					 								. 1	53
laspeyres					 								. 1	54
lehr			 		 								. 1	55
lloyd_moulton		 	 		 								. 1	56
load model														
lowe			 		 								. 1	58
marshall edgeworth.													. 1	59
matched														
matched_fig														
matched_index														
milk														
model classification														
paasche														
palgrave														
• •														
PriceIndices														
prices		 	 		 	 							. 1	70

price_indices	 	 	 	 	 						. 177
QMp	 	 	 	 	 						. 178
$QMq \dots \dots$. 179
$QU\dots\dots\dots$. 180
quantities	 	 	 	 	 						. 181
sales	 	 	 	 	 						. 182
sales_groups	 	 	 	 	 						. 183
sales_groups2	 	 	 	 	 						. 184
sato_vartia	 	 	 	 	 						. 185
save_model	 	 	 	 	 						. 186
SPQ	 	 	 	 	 						. 187
stuvel	 	 	 	 	 						. 188
sugar	 	 	 	 	 						. 189
tindex	 	 	 	 	 						. 190
tornqvist	 	 	 	 	 						. 191
tpd	 	 	 	 	 						. 192
tpd_fbew	 	 	 	 	 						. 193
tpd_fbmw	 	 	 	 	 						. 194
tpd_splice	 	 	 	 	 						. 195
unit_value_index	 	 	 	 	 						. 196
utpd	 	 	 	 	 						. 197
utpd_fbew	 	 	 	 	 						. 198
utpd_fbmw	 	 	 	 	 						. 199
utpd_splice	 	 	 	 	 						. 200
value_index	 	 	 	 	 						. 202
vartia	 	 	 	 	 						. 203
walsh	 	 	 	 	 						. 204
wgeks	 	 	 	 	 						. 205
wgeksaqi	 	 	 	 	 						. 206
wgeksaqi_fbew .	 	 	 	 	 						. 207
wgeksaqi_fbmw .	 	 	 	 	 						. 208
wgeksaqi_splice.	 	 	 	 	 						. 209
wgeksaqu	 	 	 	 	 						. 211
wgeksaqu_fbew .	 	 	 	 	 						. 212
wgeksaqu_fbmw											
wgeksaqu_splice											
wgeksgaqi											
wgeksgaqi_fbew											
wgeksgaqi_fbmw											
wgeksgaqi_splice											
wgeksgl											
wgeksgl_fbew											
wgeksgl_fbmw .											
wgeksgl_splice .											
wgeksl											
wgeksl_fbew											
wgeksl_fbmw											
wgeksl_roll											

6 agmean

agmea	an		Ca	ılc	ulc	ıtiı	ıg	th	e b	ile	ate	era	ıl	40	i A	1e	an	p	ric	ce	in	de	х								
Index																														2	37
	young	 •		•	•		•	•		•	•	•	•	•		•	•	•	•	•		•	•	•			•	•	•	 . 2	35
	wgeks_splice																													 . 2	33
	wgeks_fbmw																														
	wgeks_fbew .																													 . 2	31

Description

This function returns a value (or vector of values) of the bilateral AG Mean price index.

Usage

```
agmean(data, start, end, sigma = 0.7, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
sigma	The elasticity of substitution parameter (as numeric)
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the bilateral AG Mean price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Lent J., & Dorfman, A. H. (2009). *Using a Weighted Average of Base Period Price Indexes to Approximate a Superlative Index*. Journal of Official Statistics, 25(1), 139-149.

available 7

Examples

```
agmean(sugar, start="2019-01", end="2020-01", sigma=0.5)
agmean(milk, start="2018-12", end="2020-01", interval=TRUE)
```

available	Providing values from the indicated column that occur at least once in
	one of the compared periods or in a given time interval

Description

The function returns all values from the indicated column (defined by the type parameter) which occur at least once in one of the compared periods or in a given time interval.

Usage

```
available(data, period1, period2, type = "prodID", interval = FALSE)
```

Arguments

data	The user's data frame. It must contain a column time (as Date in format: year-month-day,e.g. '2020-12-01') and also a column indicated by the type parameter.
period1	The first period (as character) limited to the year and month, e.g. "2019-03".
period2	The second period (as character) limited to the year and month, e.g. "2019-04".
type	This parameters defines the column which is used in the procedure. Possible values of the type parameter are: retID, prodID, codeIN, codeOUT or description.
interval	A logical parameter indicating whether the procedure is to work for the whole time period between period1 and period2 (then it is TRUE).

Value

The function returns all values from the indicated column (defined by the type parameter) which occur at least once in one of the compared periods or in a given time interval. Possible values of the type parameter are: retID, prodID, codeIN, codeOUT or description. If the interval parameter is set to FALSE, then the function compares only periods defined by period1 and period2. Otherwise the whole time period between period1 and period2 is considered.

```
available(milk, period1="2018-12", period2="2019-12", interval=TRUE)
available(milk, period1="2018-12", period2="2019-12", type="description")
```

8 banajree

banajree	Calculating the bilateral Banajree price index	

Description

This function returns a value (or vector of values) of the bilateral Banajree price index.

Usage

```
banajree(data, start, end, interval = FALSE)
```

Arguments

8	
data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the bilateral Banajree price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function)..

References

Banajree, K. S. (1977). On the factorial approach providing the true index of cost of living. Gottingen: Vandenhoeck und Ruprecht.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.

```
banajree(sugar, start="2018-12", end="2019-12")
banajree(milk, start="2018-12", end="2020-01", interval=TRUE)
```

bialek 9

bialek Calculating the bilateral Bialek price index

Description

This function returns a value (or vector of values) of the bilateral Bialek price index.

Usage

```
bialek(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end=""> are considered and start defines the base period (interval is set to TRUE).</start,>

Value

The function returns a value (or vector of values) of the bilateral Bialek price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Von der Lippe, P. (2012). *Some short notes on the price index of Jacek Bialek*. Econometrics (Ekonometria). 1(35), 76-83.

Bialek, J. (2013). *Some Remarks on the Original Price Index Inspired by the Notes of Peter von der Lippe*. Econometrics (Ekonometria), 3(41), 40-54.

Bialek, J. (2014). *Simulation Study of an Original Price Index Formula*. Communications in Statistics - Simulation and Computation, 43(2), 285-297

```
bialek(sugar, start="2018-12", end="2019-12")
bialek(milk, start="2018-12", end="2020-01", interval=TRUE)
```

10 bmw

bmw Calculating the unweigh	hted BMW price index
-----------------------------	----------------------

Description

This function returns a value (or vector of values) of the unweighted Balk-Mehrhoff-Walsh (BMW) price index.

Usage

```
bmw(data, start, end, interval = FALSE)
```

Arguments

data	User's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the unweighted bilateral BMW price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Mehrhoff, J.(2007). *A linear approximation to the Jevons index*. In: Von der Lippe (2007): Index Theory and Price Statistics, Peter Lang: Berlin, Germany.

(2018). Harmonised Index of Consumer Prices (HICP). Methodological Manual. Publication Office of the European union, Luxembourg.

```
bmw(sugar, start="2018-12", end="2019-12")
bmw(milk, start="2018-12", end="2020-01", interval=TRUE)
```

carli 11

carli Calculating the unweighted Carli price index	
--	--

Description

This function returns a value (or vector of values) of the unweighted bilateral Carli price index.

Usage

```
carli(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end=""> are considered and start defines the base period (interval is set to TRUE).</start,>

Value

The function returns a value (or vector of values) of the unweighted bilateral Carli price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Carli, G. (1804). *Del valore e della proporzione de'metalli monetati*. Scrittori Classici Italiani di Economia Politica, 13, 297-336.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

```
carli(sugar, start="2018-12", end="2019-12")
carli(milk, start="2018-12", end="2020-01", interval=TRUE)
```

12 ccdi

ccdi	Calculating the multilateral GEKS price index based on the Tornqvist formula (typical notation: GEKS-T or CCDI)
ccui	1

Description

This function returns a value of the multilateral CCDI price index, i.e. the GEKS price index based on the superlative Tornqvist index formula.

Usage

```
ccdi(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral CCDI price index (to be more precise: the GEKS index based on the Tornqvist formula) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Caves, D.W., Christensen, L.R. and Diewert, W.E. (1982). *Multilateral comparisons of output, input, and productivity using superlative index numbers*. Economic Journal 92, 73-86.

ccdi_fbew 13

Examples

```
ccdi(milk, start="2019-01", end="2019-08",window=10)
ccdi(milk, start="2018-12", end="2019-12")
```

Description

This function returns a value of the multilateral CCDI price index (GEKS based on the Tornqvist formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
ccdi_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral CCDI price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Caves, D.W., Christensen, L.R. and Diewert, W.E. (1982). *Multilateral comparisons of output, input, and productivity using superlative index numbers*. Economic Journal 92, 73-86.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

14 ccdi_fbmw

Examples

```
ccdi_fbew(milk, start="2018-12", end="2019-08")
```

ccdi_fbmw	Extending the multilateral CCDI price index by using the FBMW method.
	meinoa.

Description

This function returns a value of the multilateral CCDI price index (GEKS based on the Tornqvist formula) extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
ccdi_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral CCDI price index extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Caves, D.W., Christensen, L.R. and Diewert, W.E. (1982). *Multilateral comparisons of output, input, and productivity using superlative index numbers*. Economic Journal 92, 73-86.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

```
ccdi_fbmw(milk, start="2019-12", end="2020-04")
```

ccdi_splice 15

memous.	ccdi_splice	Extending the multilateral CCDI price index by using window splicing methods.
---------	-------------	---

Description

This function returns a value (or values) of the multilateral CCDI price index (GEKS based on the Tornqvist formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
ccdi_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral CCDI price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published

16 chagmean

indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Caves, D.W., Christensen, L.R. and Diewert, W.E. (1982). *Multilateral comparisons of output, input, and productivity using superlative index numbers*. Economic Journal 92, 73-86.

de Haan, J., van der Grient, H.A. (2011). Eliminating chain drift in price indexes based on scanner data. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information.* Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Examples

```
ccdi_splice(milk, start="2018-12", end="2020-02",splice="half")
ccdi_splice(milk, start="2018-12", end="2020-02",window=10,interval=TRUE)
```

chagmean

Calculating the monthly chained AG Mean price index

Description

This function returns a value (or vector of values) of the monthly chained AG Mean price index.

Usage

```
chagmean(data, start, end, sigma = 0.7, interval = FALSE)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
sigma	The elasticity of substitution parameter (as numeric).

chbanajree 17

interval

A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained AG Mean price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Lent J., & Dorfman, A. H. (2009). *Using a Weighted Average of Base Period Price Indexes to Approximate a Superlative Index*. Journal of Official Statistics, 25(1), 139-149.

Examples

```
chagmean(sugar, start="2019-01", end="2019-04", sigma=0.5) chagmean(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chbanajree

Calculating the monthly chained Banajree price index

Description

This function returns a value (or vector of values) of the monthly chained Banajree price index.

Usage

```
chbanajree(data, start, end, interval = FALSE)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

18 chbialek

Value

The function returns a value (or vector of values) of the monthly chained Banajree price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Banajree, K. S. (1977). On the factorial approach providing the true index of cost of living. Gottingen: Vandenhoeck und Ruprecht.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.

Examples

```
chbanajree(sugar, start="2018-12", end="2019-04")
chbanajree(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chbialek

Calculating the monthly chained Bialek price index

Description

This function returns a value (or vector of values) of the monthly chained Bialek price index.

Usage

```
chbialek(data, start, end, interval = FALSE)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

chbmw 19

Value

The function returns a value (or vector of values) of the monthly chained Bialek price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Von der Lippe, P. (2012). Some short notes on the price index of Jacek Bialek. Econometrics (Ekonometria). 1(35), 76-83.

Bialek, J. (2013). Some Remarks on the Original Price Index Inspired by the Notes of Peter von der Lippe. Econometrics (Ekonometria), 3(41), 40-54.

Bialek, J. (2014). *Simulation Study of an Original Price Index Formula*. Communications in Statistics - Simulation and Computation, 43(2), 285-297

Examples

```
chbialek(sugar, start="2018-12", end="2019-04")
chbialek(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chbmw

Calculating the monthly chained BMW price index

Description

This function returns a value (or vector of values) of the monthly chained Balk-Mehrhoff-Walsh (BMW) price index.

Usage

```
chbmw(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column
	quantities (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to

defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines the base period (interval is set to TRUE).

20 chcarli

Value

The function returns a value (or vector of values) of the monthly chained BMW price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Mehrhoff, J.(2007). *A linear approximation to the Jevons index*. In: Von der Lippe (2007): Index Theory and Price Statistics, Peter Lang: Berlin, Germany.

(2018). *Harmonised Index of Consumer Prices (HICP)*. *Methodological Manual*. Publication Office of the European union, Luxembourg.

Examples

```
chbmw(sugar, start="2018-12", end="2019-04")
chbmw(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chcarli

Calculating the monthly chained Carli price index

Description

This function returns a value (or vector of values) of the monthly chained Carli price index.

Usage

```
chcarli(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines

the base period (interval is set to TRUE).

chcswd 21

Value

The function returns a value (or vector of values) of the monthly chained Carli price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Carli, G. (1804). *Del valore e della proporzione de'metalli monetati*. Scrittori Classici Italiani di Economia Politica, 13, 297-336.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chcarli(sugar, start="2018-12", end="2019-04")
chcarli(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chcswd

Calculating the monthly chained CSWD price index

Description

This function returns a value (or vector of values) of the monthly chained Carruthers-Sellwood-Ward-Dalen (CSWD) price index.

Usage

```
chcswd(data, start, end, interval = FALSE)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end=""> are considered and start defines the base period (interval is set to TRUE).</start,>

22 chdavies

Value

The function returns a value (or vector of values) of the monthly chained CSWD price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Carruthers, A.G., Sellwood, D. J, Ward, P. W. (1980). *Recent developments in the retail price index*. Journal of the Royal Statistical Society. Series D (The Statisticain), 29(1), 1-32.

Dalen, J. (1992). Recent developments in the retail price index. The Statistician, 29(1), 1-32.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chcswd(sugar, start="2018-12", end="2019-04")
chcswd(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chdavies

Calculating the monthly chained Davies price index

Description

This function returns a value (or vector of values) of the monthly chained Davies price index.

Usage

```
chdavies(data, start, end, interval = FALSE)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end=""> are considered and start defines the base period (interval is set to TRUE).</start,>

chdrobisch 23

Value

The function returns a value (or vector of values) of the monthly chained Davies price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Davies, G. R. (1924). *The Problem of a Standard Index Number Formula*. Journal of the American Statistical Association, 19 (146), 180-188.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.

Examples

```
chdavies(sugar, start="2018-12", end="2019-04")
chdavies(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chd	lrob	iso	ch.

Calculating the monthly chained Drobisch price index

Description

This function returns a value (or vector of values) of the monthly chained Drobisch price index.

Usage

```
chdrobisch(data, start, end, interval = FALSE)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

24 chdutot

Value

The function returns a value (or vector of values) of the monthly chained Drobisch price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Drobisch, M. W. (1871). *Ueber einige Einwurfe gegen die in diesen Jahrbuchern veroffentlichte neue Methode, die Veranderungen der Waarenpreise und des Geldwerths zu berechten.* Jahrbucher fur Nationalokonomie und Statistik, Vol. 16, s. 416-427.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.

Examples

```
chdrobisch(sugar, start="2018-12", end="2019-04")
chdrobisch(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chdutot

Calculating the monthly chained Dutot price index

Description

This function returns a value (or vector of values) of the monthly chained Dutot price index.

Usage

```
chdutot(data, start, end, interval = FALSE)
```

data	The user's data frame with information about sold products. It must contain
	columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices
	(as positive numeric) and prodID (as numeric, factor or character). A column
	quantities (as positive numeric) is also needed because this function uses unit
	values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period
	defined by end to the base period defined by start (then interval is set to
	FALSE) or all fixed base indices are to be calculated. In this latter case, all
	months from the time interval <start, end=""> are considered and start defines</start,>
	the base period (interval is set to TRUE).

chfisher 25

Value

The function returns a value (or vector of values) of the monthly chained Dutot price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Dutot, C. F., (1738). *Reflexions Politiques sur les Finances et le Commerce*. The Hague: Les Freres Vaillant et Nicolas Prevost, Vol. 1.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chdutot(sugar, start="2018-12", end="2019-04")
chdutot(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chfisher

Calculating the monthly chained Fisher price index

Description

This function returns a value (or vector of values) of the monthly chained Fisher price index.

Usage

```
chfisher(data, start, end, interval = FALSE)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

26 chgeary_khamis

Value

The function returns a value (or vector of values) of the monthly chained Fisher price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Fisher, I. (1922). The Making of Index Numbers. Boston: Houghton Mifflin.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chfisher(sugar, start="2018-12", end="2019-04")
chfisher(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chgeary_khamis

Calculating the monthly chained Geary-Khamis price index

Description

This function returns a value (or vector of values) of the monthly chained Geary-Khamis price index.

Usage

```
chgeary_khamis(data, start, end, interval = FALSE)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end=""> are considered and start defines the base period (interval is set to TRUE).</start,>

chgeohybrid 27

Value

The function returns a value (or vector of values) of the monthly chained Geary-Khamis price index depending on the interval parameter (please use gk function to calculate the multilateral Geary-Khamis price index). If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (see the final_index function).

References

Geary, R. G. (1958). A Note on Comparisons of Exchange Rates and Purchasing Power between Countries. Journal of the Royal Statistical Society, Series A, 121, 97-99.

Khamis, S. H. (1970). *Properties and Conditions for the Existence of a new Type of Index Number.* Sankhya Series B32, 81-98.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany.

Examples

```
chgeary_khamis(sugar, start="2018-12", end="2019-04")
chgeary_khamis(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chgeohybrid

Calculating the the monthly chained geohybrid price index

Description

This function returns a value (or vector of values) of the monthly chained geohybrid price index. The geohybrid index was proposed by Bialek (2020) and it uses correlation coefficients between prices and quantities.

Usage

```
chgeohybrid(data, start, end, base = start, interval = FALSE)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices
	(as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
	mene, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
base	The prior period used in the geohybrid price index formula (as character) limited to the year and month, e.g. "2020-01"

28 chgeolaspeyres

interval

A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained geohybrid price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Bialek, J. (2020). *Proposition of a Hybrid Price Index Formula for the Consumer Price Index Measurement*. Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(4), 697-716.

Examples

```
chgeohybrid(sugar, start="2019-12", end="2020-05", base="2018-12") chgeohybrid(milk, start="2019-12", end="2020-08", base="2018-12", interval=TRUE)
```

chgeol	aspeyres	ς

Calculating the monthly chained geo-logarithmic Laspeyres price index

Description

This function returns a value (or vector of values) of the monthly chained geo-logarithmic Laspeyres price index.

Usage

```
chgeolaspeyres(data, start, end, interval = FALSE)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

chgeolowe 29

interval

A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained geo-logarithmic Laspeyres price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

```
Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany. (2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.
```

Examples

```
chgeolaspeyres(sugar, start="2018-12", end="2019-04")
chgeolaspeyres(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chgeolowe

Calculating the monthly chained geometric Lowe price index

Description

This function returns a value (or vector of values) of the monthly chained geometric Lowe price index.

Usage

```
chgeolowe(data, start, end, base = start, interval = FALSE)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

30 chgeopaasche

base The prior period used in the geometric Lowe price index formula (as character)

limited to the year and month, e.g. "2020-01"

interval A logical value indicating whether the function is to compare the research period

defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines

the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained geometric Lowe price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chgeolowe(sugar, start="2019-01", end="2019-04",base="2018-12")
chgeolowe(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chgeopaasche

Calculating the monthly chained geo-logarithmic Paasche price index

Description

This function returns a value (or vector of values) of the monthly chained geo-logarithmic Paasche price index.

Usage

```
chgeopaasche(data, start, end, interval = FALSE)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

chgeoyoung 31

interval

A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained geo-logarithmic Paasche price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany. (2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chgeopaasche(sugar, start="2018-12", end="2019-04")
chgeopaasche(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chgeoyoung

Calculating the monthly chained geometric Young price index

Description

This function returns a value (or vector of values) of the monthly chained geometric Young price index.

Usage

```
chgeoyoung(data, start, end, base = start, interval = FALSE)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

32 chharmonic

base The prior period used in the geometric Young price index formula (as character)

limited to the year and month, e.g. "2020-01".

interval A logical value indicating whether the function is to compare the research period

defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines

the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained geometric Young price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Young, A. H. (1992). *Alternative Measures of Change in Real Output and Prices*. Survey of Current Business, 72, 32-48.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chgeoyoung(sugar, start="2019-01", end="2019-04",base="2018-12") chgeoyoung(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chharmonic

Calculating the monthly chained harmonic price index

Description

This function returns a value (or vector of values) of the monthly chained "unnamed" harmonic price index.

Usage

```
chharmonic(data, start, end, interval = FALSE)
```

Arguments

data

The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also needed because this function uses unit values as monthly prices.

chhybrid 33

start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the monthly chained harmonic price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

```
Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.
```

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chharmonic(sugar, start="2018-12", end="2019-04")
chharmonic(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chhybrid

Calculating the the monthly chained hybrid price index

Description

This function returns a value (or vector of values) of the monthly chained hybrid price index. The hybrid index was proposed by Bialek (2020) and it uses correlation coefficients between prices and quantities.

Usage

```
chhybrid(data, start, end, base = start, interval = FALSE)
```

34 chIQMp

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
base	The prior period used in the hybrid price index formula (as character) limited to the year and month, e.g. "2020-01"
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the monthly chained hybrid price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Bialek, J. (2020). *Proposition of a Hybrid Price Index Formula for the Consumer Price Index Measurement*. Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(4), 697-716.

Examples

```
chhybrid(sugar, start="2019-12", end="2020-05", base="2018-12")
chhybrid(milk, start="2019-12", end="2020-08", base="2018-12", interval=TRUE)

chlQMp

Calculating the monthly chained implicit quadratic mean of order r
```

Description

This function returns a value (or vector of values) of the monthly chained implicit quadratic mean of order r price index.

Usage

```
chIQMp(data, start, end, r = 2, interval = FALSE)
```

price index

chjevons 35

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).	
start	The base period (as character) limited to the year and month, e.g. "2020-03".	
end	The research period (as character) limited to the year and month, e.g. "2020-04".	
r	The real and non-zero parameter.	
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end=""> are considered and start defines the base period (interval is set to TRUE).</start,>	

Value

The function returns a value (or vector of values) of the monthly chained implicit quadratic mean of order r price index - see CPI Manual (2004), Section 17.37, formula 17.32 (page 321).

References

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chIQMp(sugar, start="2019-01", end="2020-01")
chIQMp(sugar, start="2019-01", end="2020-01", r=1.3, interval=TRUE)
```

chjevons Calculating the monthly chained Jevons price index

Description

This function returns a value (or vector of values) of the monthly chained Jevons price index

Usage

```
chjevons(data, start, end, interval = FALSE)
```

36 chlaspeyres

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end=""> are considered and start defines the base period (interval is set to TRUE).</start,>

Value

The function returns a value (or vector of values) of the monthly chained Jevons price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Jevons, W. S., (1865). *The variation of prices and the value of the currency since 1782*. J. Statist. Soc. Lond., 28, 294-320.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chjevons(sugar, start="2018-12", end="2019-04")
chjevons(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chlaspeyres	Calculating the monthly chained Laspeyres price index
chiaspeyres	Calculating the monthly chance Easpeyres price thates

Description

This function returns a value (or vector of values) of the monthly chained Laspeyres price index.

Usage

```
chlaspeyres(data, start, end, interval = FALSE)
```

chlehr 37

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the monthly chained Laspeyres price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Laspeyres, E. (1871). *Die Berechnung einer mittleren Waarenpreissteigerung*. Jahrbucher fur Nationalokonomie und Statistik 16, 296-314.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chlaspeyres(sugar, start="2018-12", end="2019-04")
chlaspeyres(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chlehr

Calculating the monthly chained Lehr price index

Description

This function returns a value (or vector of values) of the monthly chained Lehr price index.

Usage

```
chlehr(data, start, end, interval = FALSE)
```

38 chlloyd_moulton

Arguments

The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).

Start The base period (as character) limited to the year and month, e.g. "2020-03".

end The research period (as character) limited to the year and month, e.g. "2020-04".

interval A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to

FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines

the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Lehr price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Lehr, J. (1885). Beitrage zur Statistik der Preise, insbesondere des Geldes und des Holzes. J. D. Sauerlander, Frankfurt am Main.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chlehr(sugar, start="2018-12", end="2019-04")
chlehr(milk, start="2018-12", end="2020-01", TRUE)
```

chlloyd_moulton

Calculating the monthly chained Lloyd-Moulton price index

Description

This function returns a value (or vector of values) of the monthly chained Lloyd-Moulton price index.

Usage

```
chlloyd_moulton(data, start, end, sigma = 0.7, interval = FALSE)
```

chlowe 39

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
sigma	The elasticity of substitution parameter (as numeric).
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end=""> are considered and start defines the base period (interval is set to TRUE).</start,>

Value

The function returns a value (or vector of values) of the monthly chained Lloyd-Moulton price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Lloyd, P. J. (1975). Substitution Effects and Biases in Nontrue Price Indices. The American Economic Review, 65, 301-313.

Moulton, B. R. (1996). *Constant Elasticity Cost-of-Living Index in Share-Relative Form*. Washington DC: U. S. Bureau of Labor Statistics, mimeograph

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.

Examples

```
chlloyd_moulton(sugar, start="2018-12", end="2019-04",sigma=0.9)
chlloyd_moulton(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chlowe Calculating the monthly chained Lowe price index	chlowe
---	--------

Description

This function returns a value (or vector of values) of the monthly chained Lowe price index.

Usage

```
chlowe(data, start, end, base = start, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
base	The prior period used in the Lowe price index formula (as character) limited to the year and month, e.g. "2020-01".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the monthly chained Lowe price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
chlowe(sugar, start="2019-01", end="2019-04",base="2018-12")
chlowe(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chmarshall_edgeworth Calculating the monthly chained Marshall-Edgeworth price index

Description

This function returns a value (or vector of values) of the monthly chained Marshall-Edgeworth price index.

Usage

```
chmarshall_edgeworth(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the monthly chained Marshall-Edgeworth price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Marshall, A. (1887). Remedies for Fluctuations of General Prices. Contemporary Review, 51, 355-375.

Edgeworth, F. Y. (1887). *Measurement of Change in Value of Money I*. The first Memorandum presented to the British Association for the Advancement of Science; reprinted in Papers Relating to Political Economy, Vol. 1, New York, Burt Franklin, s. 1925.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.

```
chmarshall_edgeworth(sugar, start="2018-12", end="2019-04")
chmarshall_edgeworth(milk, start="2018-12", end="2020-01", interval=TRUE)
```

42 chpaasche

Description

This function returns a value (or vector of values) of the monthly chained Paasche price index.

Usage

```
chpaasche(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the monthly chained Paasche price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Paasche, H. (1874). Uber die Preisentwicklung der letzten Jahre nach den Hamburger Borsennotirungen. Jahrbucher fur Nationalokonomie und Statistik, 12, 168-178.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

```
chpaasche(sugar, start="2018-12", end="2019-04")
chpaasche(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chpalgrave 43

chpalgrave Calculating the monthly chained Palgrave price index	
---	--

Description

This function returns a value (or vector of values) of the monthly chained Palgrave price index.

Usage

```
chpalgrave(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the monthly chained Palgrave price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Palgrave, R. H. I. (1886). *Currency and Standard of Value in England, France and India and the Rates of Exchange Between these Countries*. Memorandum submitted to the Royal Commission on Depression of trade and Industry, Third Report, Appendix B, 312-390.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.

```
chpalgrave(sugar, start="2018-12", end="2019-04")
chpalgrave(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chQMp

chQMp	Calculating the monthly chained quadratic mean of order r price index

Description

This function returns a value (or vector of values) of the monthly chained quadratic mean of order r price index.

Usage

```
chQMp(data, start, end, r = 2, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter.
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the monthly chained quadratic mean of order r price index - see CPI Manual (2004), Section 17.40, formula 17.35 (page 321).

References

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

```
chQMp(sugar, start="2019-01", end="2020-01")
chQMp(sugar, start="2019-01", end="2020-01", r=1.3, interval=TRUE)
```

chQMq 45

	chQMq	Calculating the monthly chained quadratic mean of order r quantity index
--	-------	--

Description

This function returns a value (or vector of values) of the monthly chained quadratic mean of order r quantity index.

Usage

```
chQMq(data, start, end, r = 2, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter.
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the monthly chained quadratic mean of order r quantity index - see CPI Manual (2004), Section 17.35, formula 17.30 (page 321).

References

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

```
chQMq(sugar, start="2019-01", end="2020-01")
chQMq(sugar, start="2019-01", end="2020-01", r=1.3, interval=TRUE)
```

46 chsato_vartia

chsato_vartia	Calculating the monthly chained Vartia-II (Sato-Vartia) price index

Description

This function returns a value (or vector of values) of the monthly chained Vartia-II (Sato-Vartia) price index.

Usage

```
chsato_vartia(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the monthly chained Vartia-II (Sato-Vartia) price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Sato, K. (1976). *The Ideal Log-Change Index Number*. The Review of Economics and Statistics, 58(2), 223-228.

Vartia, Y. 0. (1976). *Ideal Log-Change Index Numbers* . Scandinavian Journal of Statistics 3(3), 121-126.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.

chstuvel 47

Examples

```
chsato_vartia(sugar, start="2018-12", end="2019-04")
chsato_vartia(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chstuvel

Calculating the monthly chained Stuvel price index

Description

This function returns a value (or vector of values) of the monthly chained Stuvel price index.

Usage

```
chstuvel(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the monthly chained Stuvel price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Stuvel, G. (1957). A New Index Number Formula. Econometrica, 25, 123-131.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.

48 chtornqvist

Examples

```
chstuvel(sugar, start="2018-12", end="2019-04")
chstuvel(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chtornqvist

Calculating the monthly chained Tornqvist price index

Description

This function returns a value (or vector of values) of the monthly chained Tornqvist price index.

Usage

```
chtornqvist(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end=""> are considered and start defines the base period (interval is set to TRUE).</start,>

Value

The function returns a value (or vector of values) of the monthly chained Tornqvist price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Tornqvist, L. (1936). *The Bank of Finland's Consumption Price Index*. Bank of Finland Monthly Bulletin 10, 1-8.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

chvartia 49

Examples

```
chtornqvist(sugar, start="2018-12", end="2019-04")
chtornqvist(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chvartia	Calculating the monthly chained Vartia-I price index	

Description

This function returns a value (or vector of values) of the monthly chained Vartia-I price index.

Usage

```
chvartia(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the monthly chained Vartia-I price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Vartia, Y. 0. (1976). *Ideal Log-Change Index Numbers* . Scandinavian Journal of Statistics 3(3), 121-126.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.

50 chwalsh

Examples

```
chvartia(sugar, start="2018-12", end="2019-04")
chvartia(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chwalsh

Calculating the monthly chained Walsh price index

Description

This function returns a value (or vector of values) of the monthly chained Walsh price index.

Usage

```
chwalsh(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end=""> are considered and start defines</start,>

the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the monthly chained Walsh price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Walsh, C. M. (1901). *The Measurement of General Exchange Value*. The MacMillan Company, New York.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.

chyoung 51

Examples

```
chwalsh(sugar, start="2018-12", end="2019-04")
chwalsh(milk, start="2018-12", end="2020-01", interval=TRUE)
```

chyoung

Calculating the monthly chained Young price index

Description

This function returns a value (or vector of values) of the monthly chained Young price index.

Usage

```
chyoung(data, start, end, base = start, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
base	The prior period used in the Young price index formula (as character) limited to the year and month, e.g. "2020-01".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end=""> are considered and start defines the base period (interval is set to TRUE).</start,>

Value

The function returns a value (or vector of values) of the monthly chained Young price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Young, A. H. (1992). *Alternative Measures of Change in Real Output and Prices*. Survey of Current Business, 72, 32-48.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

52 compare_distances

Examples

```
chyoung(sugar, start="2019-01", end="2019-04",base="2018-12")
chyoung(milk, start="2018-12", end="2020-01", interval=TRUE)
```

coffee

A real data set on sold coffee

Description

A collection of scanner data on the sale of coffee in one of Polish supermarkets in the period from December 2017 to October 2020

Usage

coffee

Format

```
A data frame with 6 columns and 42561 rows. The used variables are as follows:

time - Dates of transactions (Year-Month-Day)

prices - Prices of sold products [PLN]

quantities - Quantities of sold products [kg]

prodID - Unique product codes (data set contains 79 different prodIDs)

retID - Unique codes identifying outlets/retailer sale points (data set contains 20 different retIDs)

description Descriptions of sold coffee products (data set contains 3 different product descrip-
```

compare_distances

Calculating distances between price indices

Description

tions)

The function calculates distances between price indices

Usage

```
compare_distances(
  data = data.frame(),
  measure = "MAD",
  pp = TRUE,
  first = TRUE,
  prec = 3
)
```

compare_indices_df 53

Arguments

data	A data frame containg values of indices which are to be compared
measure	A parameter specifying what measure should be used to compare the indexes. Possible parameter values are: "MAD" (Mean Absolute Distance) or "RMSD" (Root Mean Square Distance).
pp	Logical parameter indicating whether the results are to be presented in percentage points (then pp = TRUE).
first	A logical parameter that determines whether the first row of the data frame is to be taken into account when calculating the distance between the indices (then first = TRUE). Usually, the first row concerns the index values for the base period - all indexes are then set to one.
prec	Parameter that determines how many decimal places are to be used in the presentation of results.

Value

The function calculates average distances between price indices and it returns a data frame with these values for each pair of price indices.

Examples

```
#Creating a data frame with unweighted bilateral index values
df<-price_indices(milk,
formula=c("jevons","dutot","carli"),
start="2018-12", end="2019-12",interval=TRUE)
#Calculating average distances between indices (in p.p)
compare_distances(df)</pre>
```

compare_indices_df

A function for graphical comparison of price indices

Description

This function returns a figure with plots of selected price indices.

Usage

```
compare_indices_df(
  data,
  names = colnames(data)[2:length(colnames(data))],
  date_breaks = "1 month"
)
```

Arguments

data The user's data frame with price index values. It must contain columns: time

(as character in format: year-month, e.g. '2020-12') and columns with index

values.

names A vector of strings indicating names of indices which are to be used in the fig-

ure's legend.

date_breaks A string giving the distance between breaks on the X axis like "1 month" (default

value) or "4 months".

Value

This function returns a figure with plots of previously calculated indices (together with dates on X-axis and a corresponding legend). Indices must be provided as a data frame, where the first column must includes dates limited to the year and month (e.g.: "2020-04").

Examples

```
df<-price_indices(milk, start = "2018-12", end = "2019-12",
formula=c("laspeyres", "fisher"), interval = TRUE)
compare_indices_df(df)</pre>
```

compare_indices_list A general function for graphical comparison of price indices

Description

This function returns a figure with plots of previously calculated price indices.

Usage

```
compare_indices_list(data = list(), names = c(), date_breaks = "1 month")
```

Arguments

data A list of data frames with previously calculated price indices. Each data frame

must consist of two columns, i.e. the first column must includes dates limited to the year and month (e.g.: "2020-04") and the second column must indicate price index values for corresponding dates. The above-mentioned single data frame may be created manually in the previous step or it may be a result of functions: price_index or final_index. All considered data frames must have

an identical number of rows.

names A vector of character strings describing names of presented indices.

date_breaks A string giving the distance between breaks on the X axis like "1 month" (default

value) or "4 months".

compare_to_target 55

Value

This function returns a figure with plots of previously calculated price indices. It allows for graphical comparison of price index values which were previously calculated and now are provided as a list of data frames (see data parameter).

Examples

```
## Caluclating two indices by using two different package functions:
index1<-final_index(data=milk, start="2018-12",
end="2019-12",formula="walsh",interval=TRUE)
index2<-price_indices(milk,start="2018-12", end="2019-12",
formula="geks",window=13,interval=TRUE)
## Graphical comparison of these two indices
compare_indices_list(data=list(index1,index2),
names=c("Walsh index", "GEKS index"))</pre>
```

compare_to_target

Calculating distances between considered price indices and the target price index

Description

The function calculates distances between considered price indices and the target price index

Usage

```
compare_to_target(
  data = data.frame(),
  target,
  measure = "MAD",
  pp = TRUE,
  first = TRUE,
  prec = 3
)
```

Arguments

data A data frame containg values of indices which are to be compared to the target

price index

target A data frame or a vector containg values of the target price index

measure A parameter specifying what measure should be used to compare indices. Possi-

ble parameter values are: "MAD" (Mean Absolute Distance) or "RMSD" (Root

Mean Square Distance).

pp Logical parameter indicating whether the results are to be presented in percent-

age points (then pp = TRUE).

56 cswd

first A logical parameter that determines whether the first row of the data frame and

the first row of the 'target' data frame (or its first element if it is a vector) are to be taken into account when calculating the distance between the indices (then first = TRUE). Usually, the first row concerns the index values for the base

period - all indexes are then set to one.

prec Parameter that determines how many decimal places are to be used in the pre-

sentation of results.

Value

The function calculates average distances between considered price indices and the target price index and it returns a data frame with: average distances on the basis of all values of compared indices ('distance' column), average semi-distances on the basis of values of compared indices which overestimate the target index values ('distance_upper' column) and average semi-distances on the basis of values of compared indices which underestimate the target index values ('distance_lower' column).

Examples

```
#Creating a data frame with example bilateral indices
df<-price_indices(milk,
formula=c("jevons","laspeyres","paasche","walsh"),
start="2018-12",end="2019-12",interval=TRUE)
#Calculating the target Fisher price index
target_index<-fisher(milk,start="2018-12",end="2019-12",interval=TRUE)
#Calculating average distances between considered indices and the Fisher index (in p.p)
compare_to_target(df,target=target_index)</pre>
```

cswd

Calculating the unweighted CSWD price index

Description

This function returns a value (or vector of values) of the unweighted Carruthers-Sellwood-Ward-Dalen (CSWD) price index.

Usage

```
cswd(data, start, end, interval = FALSE)
```

Arguments

data The user's data frame with information about sold products. It must contain

columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also needed because this function uses unit

values as monthly prices.

start The base period (as character) limited to the year and month, e.g. "2020-03".

dataAGGR 57

end The research period (as character) limited to the year and month, e.g. "2020-04".

interval A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to

FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines

the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the unweighted bilateral CSWD price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Carruthers, A.G., Sellwood, D. J, Ward, P. W. (1980). *Recent developments in the retail price index*. Journal of the Royal Statistical Society. Series D (The Statisticain), 29(1), 1-32.

Dalen, J. (1992). Recent developments in the retail price index. The Statistician, 29(1), 1-32.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
cswd(sugar, start="2018-12", end="2019-12")
cswd(milk, start="2018-12", end="2020-01", interval=TRUE)
```

dataAGGR

A small artificial scanner data set for a demonstration of data aggregation

Description

A collection of artificial scanner data on milk products sold in three different months

Usage

dataAGGR

58 dataCOICOP

Format

```
A data frame with 6 columns and 9 rows. The used variables are as follows:

time - Dates of transactions (Year-Month-Day: 4 different dates)

prices - Prices of sold products [PLN]

quantities - Quantities of sold products [l]

prodID - Retailer product codes (3 prodIDs)

retID - Unique codes identifying outlets/retailer sale points (4 retIDs)

description Descriptions of sold products (two subgroups: goat milk, powdered milk)
```

dataCOICOP

A real scanner data set for the product classification

Description

A collection of real scanner data on the sale of milk products sold in a period: Dec, 2020 - Feb, 2022.

Usage

dataCOICOP

Format

```
A data frame with 10 columns and 139600 rows. The used variables are as follows: time - Dates of transactions (Year-Month-Day)
prices - Prices of sold products [PLN]
quantities - Quantities of sold products
description - Descriptions of sold products (original: in Polish)
codeIN - Retailer product codes
retID - Unique codes identifying outlets/retailer sale points
grammage - Product grammages
unit - Sales units, e.g.: kg, ml, etc.
category - Product categories (in English) corresponding to COICOP 6 levels
coicop6 - Identifiers of local COICOP 6 groups (6 groups)
```

dataMATCH 59

dataMATCH

An artificial scanner data set for product matching

Description

A collection of scanner data on the sale of sample artificial products.

Usage

dataMATCH

Format

A data frame with 7 columns and 30 rows. The used variables are as follows:

time - Dates of transactions (Year-Month-Day)

prices - Prices of sold products [PLN]

quantities - Quantities of sold products [liters]

codeIN - Unique internal (retailer) product codes (data set contains 5 different codeINs)

codeOUT - Unique external product codes (data set contains 5 different codeOUTs)

retID - Unique codes identifying outlets/retailer sale points (data set contains 2 different retIDs)

description Descriptions of sold products (data set contains 3 different product descriptions)

dataU

An artificial, small scanner data set

Description

A collection of artificial scanner data on 6 products sold in Dec, 2018. Product descriptions contain the information about their grammage and unit.

Usage

dataU

Format

A data frame with 5 columns and 6 rows. The used variables are as follows:

time - Dates of transactions (Year-Month-Day)

prices - Prices of sold products [PLN]

quantities - Quantities of sold products [item]

prodID - Unique product codes

description Descriptions of sold products (data set contains 6 different product descriptions)

60 data_check

data_aggregating	Aggregating the user's data frame	
------------------	-----------------------------------	--

Description

The function aggregates the user's data frame over time and optionally over outlets.

Usage

```
data_aggregating(data, join_outlets = TRUE)
```

Arguments

data The user's data frame.

join_outlets A logical value indicating whether the data aggregation over outlets should be

also done.

Value

The function aggregates the user's data frame over time and/or over outlets. Consequently, we obtain monthly data, where the unit value is calculated instead of a price for each prodID observed in each month (the time column gets the Date format: "Year-Month-01"). If the parameter join_outlets is TRUE, then the function also performs aggregation over outlets (retIDs) and the retID column is removed from the data frame. The main advantage of using this function is the ability to reduce the size of the data frame and the time needed to calculate the price index. Please note, that unnecessary columns are removed (e.g. description).

Examples

```
#Example 1
data_aggregating(dataAGGR,join_outlets = FALSE)
data_aggregating(dataAGGR,join_outlets = TRUE)
#Example 2 (data frame reduction)
nrow(milk)
nrow(data_aggregating(milk))
```

data_check

Checking the user's data frame

Description

The function checks if the argument data points to a data frame which is suitable for further price index calculation. In particular, the function checks whether the indicated data frame contains the required columns and whether they are of the appropriate type (if not, the function returns FALSE and an appropriate comment).

data_classifying 61

Usage

```
data_check(data)
```

Arguments

data

Any R object but ultimately it is a data frame.

Value

The function returns TRUE if the data frame indicated by the data parameter is suitable for the calculation of price indices and returns FALSE otherwise.

Examples

```
data_check(milk)
data_check(iris)
```

data_classifying

Predicting product COICOP levels via the machine learning model

Description

This function predicts product COICOP levels via the selected machine learning model.

Usage

```
data_classifying(model = list(), data)
```

Arguments

model A list of 8 elements which identify the previously built machine learning model

(the list is obtained via the model_classification function).

data A data set for the model (products with their characteristics). This data set must

contain all the columns which were used in the built model.

Value

This function provides the indicated data set with an additional column, i.e. coicop_predicted, which is obtained by using the selected machine learning model.

data_filtering

Examples

```
#Building the model
my.grid=list(eta=c(0.01,0.02,0.05),subsample=c(0.5,0.8))
data_train<-dplyr::filter(dataCOICOP,dataCOICOP$time<=as.Date("2021-10-01"))
data_test<-dplyr::filter(dataCOICOP,dataCOICOP$time==as.Date("2021-11-01"))
ML<-model_classification(data_train,data_test,coicop="coicop6",grid=my.grid,indicators=c("description","codeIN"),key_words=c("uht"),rounds=60)
#Data classification
data_classifying(ML, data_test)</pre>
```

data_filtering

Filtering a data set for further price index calculations

Description

This function returns a filtered data set, i.e. a reduced user's data frame with the same columns and rows limited by a criterion defined by filters.

Usage

```
data_filtering(
  data,
  start,
  end,
  filters = c(),
  plimits = c(),
  pquantiles = c(),
  dplimits = c(),
  lambda = 1.25,
  interval = FALSE,
  retailers = FALSE)
```

Arguments

data	The user's data frame with information about products to be filtered. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric) and quantities (as positive numeric).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
filters	A vector of filter names (options are: extremeprices, dumpprices and/or lowsales).
plimits	A two-dimensional vector of thresholds for minimum and maximum price change (it works if one of the chosen filters is extremeprices filter).
pquantiles	A two-dimensional vector of quantile levels for minimum and maximum price change (it works if one of the chosen filters is extremeprices filter).

data_matching 63

dplimits A two-dimensional vector of thresholds for maximum price drop and maximum ependiture drop (it works if one of the chosen filters is dumpprices filter).

1 ambda The lambda parameter for lowsales filter (see References below).

A logical value indicating whether the filtering process concerns only two periods defined by start and end parameters (then the interval is set to FALSE) or whether that function is to filter products sold during the whole time interval <start, end>, i.e. any subsequent months are compared.

A logical parameter indicating whether filtering should be done for each outlet (retID) separately. If it is set to FALSE, then there is no need to consider the retID column.

Value

This function returns a filtered data set (a reduced user's data frame). If the set of filters is empty, then the function returns the original data frame (defined by the data parameter) limited to considered months. On the other hand, if all filters are chosen, i.e. filters=c(extremeprices, dumpprices, lowsales), then these filters work independently and a summary result is returned. Please note that both variants of extremeprices filter can be chosen at the same time, i.e. plimits and pquantiles, and they work also independently.

References

Van Loon, K., Roels, D. (2018) *Integrating big data in Belgian CPI*. Meeting of the Group of Experts on Consumer Price Indices, Geneva.

Examples

```
data_filtering(milk,start="2018-12",end="2019-03",
filters=c("extremeprices"),pquantiles=c(0.01,0.99),interval=TRUE)
data_filtering(milk,start="2018-12",end="2019-03",
filters=c("extremeprices","lowsales"), plimits=c(0.25,2))
```

data_matching

Matching products

Description

This function returns a data set defined in the first parameter (data) with an additional column (prodID). Two products are treated as being matched if they have the same prodID value.

Usage

```
data_matching(
  data,
  start,
  end,
  interval = FALSE,
```

64 data_matching

```
variables = c(),
codeIN = TRUE,
codeOUT = TRUE,
description = TRUE,
onlydescription = FALSE,
precision = 0.95
)
```

Arguments

data The user's data frame with information about products to be matched. It must

contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01') and at least one of the following columns: codeIN (as numeric, factor or character), codeOUT (as numeric, factor or character) and description (as character).

start The base period (as character) limited to the year and month, e.g. "2020-03".

end The research period (as character) limited to the year and month, e.g. "2020-04".

interval A logical value indicating whether the matching process concerns only two pe-

riods defined by start and end parameters (then the interval is set to FALSE) or whether that function is to match products sold during the whole time interval

<start, end>.

variables The optional parameter describing the vector of additional column names. Val-

ues of these additional columns must be identical for matched products.

codeIN A logical value, e.g. if there are retailer (internal) product codes (as numeric

or character) written in codeIN column and there is a need to use that column while data matching, then that parameter should be set to TRUE. Otherwise it is

set to FALSE.

codeOUT A logical value, e.g. if there are external product codes, such as GTIN or SKU

(as numeric or character) written in codeOUT column and there is a need to use that column while data preparing then, that parameter should be set to TRUE.

Otherwise it is set to FALSE.

description A logical value, e.g. if there are product labels (as character) written in description

column and there is a need to use that column while data preparing, then that

parameter should be set to TRUE. Otherwise it is set to FALSE.

onlydescription

A logical value indicating whether products with identical labels (described in

the description) are to be matched.

precision A threshold value for the Jaro-Winkler similarity measure when comparing la-

bels (its value must belong to the interval [0,1]). Two labels are treated as similar

enough if their Jaro-Winkler similarity exceeds the precision value.

Value

This function returns a data set defined in the first parameter (data) with an additional column (prodID). Two products are treated as being matched if they have the same prodID value. The procedure of generating the above-mentioned additional column depends on the set of chosen columns for matching. In most extreme case, when the onlydescription parameter value is TRUE, two

data_norm 65

products are also matched if they have identical descriptions. Other cases are as follows: Case 1: Parameters codeIN, codeOUT and description are set to TRUE. Products with two identical codes or one of the codes identical and an identical description are automatically matched. Products are also matched if they have identical one of codes and the Jaro-Winkler similarity of their descriptions is bigger than the precision value. Case 2: Only one of the parameters: codeIN or codeOUT are set to TRUE and also the description parameter is set to TRUE. Products with an identical chosen code and an identical description are automatically matched. In the second stage, products are also matched if they have an identical chosen code and the Jaro-Winkler similarity of their descriptions is bigger than the precision value. Case 3: Parameters codeIN and codeOUT are set to TRUE and the parameter description is set to FALSE. In this case, products are matched if they have both codes identical. Case 4: Only the parameter description is set to TRUE. This case requires the onlydescription parameter to be TRUE and then the matching process is based only on product labels (two products are matched if they have identical descriptions). Case 5: Only one of the parameters: codeIN or codeOUT are set to TRUE and the description parameter is set to FALSE. In this case, the only reasonable option is to return the prodID column which is identical with the chosen code column. Please note that if the set of column names defined in the variables parameter is not empty, then the values of these additional columns must be identical while product matching.

Examples

data_matching(dataMATCH, start="2018-12",end="2019-02",onlydescription=TRUE,interval=TRUE) data_matching(dataMATCH, start="2018-12",end="2019-02",precision=0.98, interval=TRUE)

data_norm

Normalization of grammage units and recalculation of prices and quantities with respect to these units

Description

The function normalizes grammage units of products and recalculates product prices and quantities with respect to these normalized grammage units.

Usage

```
data_norm(
  data = data.frame(),
  rules = list(c("ml", "l", 1000), c("g", "kg", 1000)),
  all = TRUE
)
```

Arguments

data

The user's data frame. The data frame must contain the following columns: prices (as positive numeric), quantities (as positive numeric), grammage (as numeric or character) and unit (as character).

data_preparing

rules	User rules for transforming grammage, unit, prices and quantities of products. For instance, a rule ("ml", "l", 1000) changes the 'old' grammage unit: ml into the new one: 1 on the basis of the provided relation: 1000ml=11. As a consequence, for each product which is sold in liters 1, the unit price and quantity are calculated.
all	A logical value indicating whether the resulting data frame is to be limited to products with detected grammage. Its default value is TRUE which means that

not transformed rows (products) are also returned.

Value

The function returns the user's data frame with two transformed columns: grammage and unit, and two rescaled columns: prices and quantities. The above-mentioned transformation and rescaling take into consideration the user rules. Recalculated prices and quantities concern grammage units defined as the second parameter in the given rule.

Examples

```
# Preparing a data set
data<-data_unit(dataU,units=c("g","ml","kg","l"),multiplication="x")
# Normalization of grammage units
data_norm(data, rules=list(c("ml","l",1000),c("g","kg",1000)))</pre>
```

data_preparing

Preparing a data set for further data processing or price index calculations

Description

This function returns a prepared data frame based on the user's data set. The resulting data frame is ready for further data processing (such as data selecting, matching or filtering) and it is also ready for price index calculations (if only it contains required columns).

Usage

```
data_preparing(
  data,
  time = NULL,
  prices = NULL,
  quantities = NULL,
  prodID = NULL,
  retID = NULL,
  description = NULL,
  codeIN = NULL,
  codeOUT = NULL,
  grammage = NULL,
  unit = NULL,
  additional = c()
)
```

data_preparing 67

Arguments

data The user's data frame to be prepared. The user must indicate columns: time (as

Date or character type, allowed formats are, eg.: '2020-03' or '2020-12-28'), prices and quantities (as numeric). Optionally, the user may also indicate columns: prodID, codeIN, codeOUT, retID (as numeric, factor or character), description (as character), grammage (as numeric or character), unit (as character)

acter) and other columns specified by the additional parameter.

time A character name of the column which provides transaction dates.

prices A character name of the column which provides product prices.

quantities A character name of the column which provides product quantities.

prodID A character name of the column which provides product IDs. The prodID

column should include unique product IDs used for product matching (as numeric or character). It is not obligatory to consider this column while data preparing but it is required while price index calculating (to obtain it, please

see data_matching).

retID A character name of the column which provides outlet IDs (retailer sale points).

The retID column should include unique outlet IDs used for aggregating subindices over outlets. It is not obligatory to consider this column while data preparing but it is required while final price index calculating (to obtain it, please see the

final_index function).

description A character name of the column which provides product descriptions. It is not

obligatory to consider this column while data preparing but it is required while

product selecting (please see the data_selecting function).

codeIN A character name of the column which provides internal product codes (from

the retailer). It is not obligatory to consider this column while data preparing but it may be required while product matching (please see the data_matching

function).

codeOUT A character name of the column which provides external product codes (e.g.

GTIN or SKU). It is not obligatory to consider this column while data preparing but it may be required while product matching (please see the data_matching

function).

grammage A character name of the numeric column which provides the grammage of prod-

ucts

unit A character name of the column which provides the unit of the grammage of

products

additional A character vector of names of additional columns to be considered while data

preparing (records with missing values are deleted).

Value

The resulting data frame is free from missing values, zero or negative prices and quantities. As a result, column time is set to be Date type (in format: 'Year-Month-01'), columns prices and quantities are set to be numeric. If the column description is selected, then it is set to be character type. If columns: prodID, retID, codeIN or codeOUT are selected, then they are set to be factor type.

data_selecting

Examples

```
data_preparing(milk, time="time",prices="prices",quantities="quantities")
data_preparing(dataCOICOP, time="time",
prices="prices",quantities="quantities",additional="coicop6")
```

data_selecting Selecting products from the user's data set for further price index calculations

Description

The function returns a subset of the user's data set obtained by selection based on keywords and phrases.

Usage

```
data_selecting(
  data,
  include = c(),
  must = c(),
  exclude = c(),
  sensitivity = FALSE,
  coicop = NULL
)
```

Arguments

data	The user's data frame. It must contain a column description (as character).
include	A vector consisting of words and phrases. The function reduces the data set to one in which the description column contains any of these values.
must	A vector consisting of words and phrases. The function reduces the data set to one in which the description column contains each of these values.
exclude	A vector consisting of words and phrases. The function reduces the data set to one in which the description column does not contain any of these values.
sensitivity	A logical parameter indicating whether sensitivity to lowercase and uppercase letters is taken into consideration (if yes, its value is TRUE).
coicop	An optional parameter indicating a value for an additional column coicop which is added to the resulting data frame

Value

The function returns a subset of the user's data set obtained by selection based on keywords and phrases defined by parameters: include, must and exclude (an additional column coicop is optional). Providing values of these parameters, please remember that the procedure distinguishes between uppercase and lowercase letters only when sensitivity is set to TRUE.

data_unit 69

Examples

```
data_selecting(milk, include=c("milk"), must=c("UHT"))
data_selecting(milk, must=c("milk"), exclude=c("paust"))
```

data_unit

Providing information about the grammage and unit of products

Description

The function returns the grammage and unit of products as two additional columns.

Usage

```
data_unit(
  data = data.frame(),
  units = c("g", "ml", "kg", "l"),
  multiplication = "x",
  space = 1
)
```

Arguments

The user's data frame. The data frame must contain the description column (as character).

Units of products which are to be detected

multiplication A sign of the multiplication used in product descriptions

space A maximum space between the product grammage and its unit

Value

The function returns the user's data frame with two additional columns: grammage and unit (both are character type). The values of these columns are extracted from product descriptions on the basis of provided units. Please note, that the function takes into consideration a sign of the multiplication, e.g. if the product description contains: $2x50 \, g$, we obtain: grammage: 100 and unit: g for that product (for multiplication set to x).

```
data_unit(dataU,units=c("g","ml","kg","l"),multiplication="x")
```

70 davies

davies	Calculating the bilateral Davies price index

Description

This function returns a value (or vector of values) of the bilateral Davies price index.

Usage

```
davies(data, start, end, interval = FALSE)
```

Arguments

guments	
data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end=""> are considered and start defines the base period (interval is set to TRUE).</start,>

Value

The function returns a value (or vector of values) of the bilateral Davies price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Davies, G. R. (1924). *The Problem of a Standard Index Number Formula*. Journal of the American Statistical Association, 19 (146), 180-188.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.

```
davies(sugar, start="2018-12", end="2019-12")
davies(milk, start="2018-12", end="2020-01", interval=TRUE)
```

dissimilarity 71

dissimilarity	Calculating the relative price and/or quantity dissimilarity measure between periods

Description

This function returns a value of the relative price and/or quantity dissimilarity measure.

Usage

```
dissimilarity(data, period1, period2, type = "p")
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
period1	The first period (as character) limited to the year and month, e.g. '2019-03'.
period2	The second period (as character) limited to the year and month, e.g. '2019-04'.
type	The parameter indicates what type of dissimilarity measure is to be calculated. Possible values of the type parameter are: p (for the price dissimilarity measure calculation), q (for the quantity dissimilarity measure calculation) or pq (for the dSPQ measure calculation, i.e. the measure of relative price and quantity dissimilarity - see References).

Value

This function returns a value of the relative price (dSP) and/or quantity (dSQ) dissimilarity measure. In a special case, when the type parameter is set to pq, the function provides the value of dSPQ measure (the relative price and quantity dissimilarity measure calculated as min(dSP,dSQ)).

References

Diewert, E. (2020). *The Chain Drift Problem and Multilateral Indexes*. Chapter 6 in: Consumer Price Index Theory (draft)

```
dissimilarity(milk, period1="2018-12",period2="2019-12",type="q")
dissimilarity(milk, period1="2018-12",period2="2019-12",type="pq")
```

72 dissimilarity_fig

dissimilarity_fig Presenting the relative price and/or quantity dissimilarity meas over time
--

Description

This function presents values of the relative price and/or quantity dissimilarity measure over time.

Usage

```
dissimilarity_fig(
  data,
  start,
  end,
  type = "p",
  benchmark = "end",
  figure = TRUE,
  date_breaks = "1 month"
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. '2019-03'.
end	The research period (as character) limited to the year and month, e.g. '2019-07'.
type	The parameter indicates what type of dissimilarity measure is to be calculated. Possible values of the type parameter are: p (for the price dissimilarity measure calculation), q (for the quantity dissimilarity measure calculation) or pq (for the dSPQ measure calculation, i.e. the measure of relative price and quantity dissimilarity - see References).
benchmark	The benchmark period (as character) limited to the year and month, e.g. '2019-07'.
figure	A logical parameter indicating the resulting object. If it is TRUE, the function presents the above-mentioned dissimilarities over time via a figure. Otherwise, the function returns a dataframe.
date_breaks	A string giving the distance between breaks on the X axis like "1 month" (default value) or "4 months".

Value

This function presents values of the relative price and/or quantity dissimilarity measure over time. The user can choose a benchmark period (defined by benchmark) and the type of dissimilarity

drobisch 73

measure is to be calculated (defined by type). The obtained results of dissimilarities over time can be presented in a dataframe form or via a figure (the default value of figure is TRUE, which results in a figure).

References

Diewert, E. (2020). *The Chain Drift Problem and Multilateral Indexes*. Chapter 6 in: Consumer Price Index Theory (draft)

Examples

```
dissimilarity_fig(milk, start="2018-12",end="2019-12",type="q",figure=FALSE)
dissimilarity_fig(milk, start="2018-12",end="2019-12",type="pq",benchmark="start")
```

drobisch

Calculating the bilateral Drobisch price index

Description

This function returns a value (or vector of values) of the bilateral Drobisch price index.

Usage

```
drobisch(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).	
start	The base period (as character) limited to the year and month, e.g. "2020-03".	
end	The research period (as character) limited to the year and month, e.g. "2020-04".	
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end=""> are considered and start defines the base period (interval is set to TRUE).</start,>	

Value

The function returns a value (or vector of values) of the bilateral Drobisch price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

74 dutot

References

Drobisch, M. W. (1871). *Ueber einige Einwurfe gegen die in diesen Jahrbuchern veroffentlichte neue Methode, die Veranderungen der Waarenpreise und des Geldwerths zu berechten.* Jahrbucher fur Nationalokonomie und Statistik, Vol. 16, s. 416-427.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.

Examples

```
drobisch(sugar, start="2018-12", end="2019-12")
drobisch(milk, start="2018-12", end="2020-01", interval=TRUE)
```

dutot

Calculating the unweighted Dutot price index

Description

This function returns a value (or vector of values) of the unweighted bilateral Dutot price index.

Usage

```
dutot(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also needed because this function uses unit
	values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end=""> are considered and start defines the base period (interval is set to TRUE).</start,>

Value

The function returns a value (or vector of values) of the unweighted bilateral Dutot price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

elasticity 75

References

Dutot, C. F., (1738). *Reflexions Politiques sur les Finances et le Commerce*. The Hague: Les Freres Vaillant et Nicolas Prevost, Vol. 1.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
dutot(sugar, start="2018-12", end="2019-12")
dutot(milk, start="2018-12", end="2020-01", interval=TRUE)
```

elasticity

Calculating the elasticity of substitution

Description

This function returns a value of the elasticity of substitution

Usage

```
elasticity(
   data,
   start,
   end,
   method = "lm",
   left = -10,
   right = 10,
   precision = 1e-06
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
method	The index formula for which the CES index will be equated to calculate the elasticity. Acceptable options are 1m, f and sv.
left	The beginning of an interval for estimation of the elasticity of substitution (its default value is -10).
right	The end of an interval for estimation of the elasticity of substitution (its default value is 10).
precision	The precision of estimation (a 'stop' condition for the procedure). A default value of this parameter is 0.000001.

76 elasticity_fig

Value

This function returns a value of the elasticity of substitution. If the method parameter is set to 1m, the procedure of estimation solves the equation: LM(sigma)-CW(sigma)=0 numerically, where LM denotes the Lloyd-Moulton price index, the CW denotes a current weight counterpart of the Lloyd-Moulton price index, and sigma is the elasticity of substitution parameter, which is estimated. If the method parameter is set to f, the Fisher price index formula is used instead of the CW price index. If the method parameter is set to sv, the Sato-Vartia price index formula is used instead of the CW price index. The procedure continues until the absolute value of this difference is greater than the value of the 'precision' parameter.

References

de Haan, J., Balk, B.M., Hansen, C.B. (2010). *Retrospective Approximations of Superlative Price Indexes for Years Where Expenditure Data Is Unavailable*. In: Biggeri, L., Ferrari, G. (eds) Price Indexes in Time and Space. Contributions to Statistics. Physica-Verlag HD.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
elasticity(coffee, start = "2018-12", end = "2019-01")
elasticity(coffee, start = "2018-12", end = "2019-01", method = "f")
elasticity(coffee, start = "2018-12", end = "2019-01", method = "sv")
```

elasticity_fig

Presenting elasticities of substitution for time interval

Description

The function provides a data frame or a figure presenting elasticities of substitution calculated for time interval.

Usage

```
elasticity_fig(
  data,
  start,
  end,
  method = c("lm"),
  fixedbase = TRUE,
  figure = TRUE,
  date_breaks = "1 month",
  names = c(),
  left = -10,
  right = 10,
  precision = 1e-06
)
```

elasticity_fig 77

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
method	A vector indicating index formulas for which the CES index will be equated to calculate the elasticity. Acceptable options are 1m, f and sv or their combinations.
fixedbase	A logical parameter indicating whether the procedure is to work for subsequent months from the considered time interval (fixedbase=FALSE). Otherwise the period defined by start plays a role of fixed base month (fixedbase=TRUE)
figure	A logical parameter indicating whether the function returns a figure (TRUE) or a data frame (FALSE) with values of elasticity of substitution.
date_breaks	A string giving the distance between breaks on the X axis like "1 month" (default value) or "4 months".
names	A character string indicating names of indices used for elasticity approximation (see the method parameter).
left	The beginning of an interval for estimation of each elasticity of substitution (its default value is -10)
right	The end of an interval for estimation of each elasticity of substitution (its default value is 10)
precision	The precision of estimation (a 'stop' condition for the procedure). A default value of this parameter is 0.000001.

Value

The function provides a data frame or a figure presenting elasticities of substitution calculated for time interval (see the figure parameter). The elasticities of substitution can be calculated for subsequent months or for a fixed base month (see the start parameter) and rest of months from the given time interval (it depends on the fixedbase parameter). The above-mentioned parameters for compared months are calculated by using the elasticity function.

References

de Haan, J., Balk, B.M., Hansen, C.B. (2010). *Retrospective Approximations of Superlative Price Indexes for Years Where Expenditure Data Is Unavailable*. In: Biggeri, L., Ferrari, G. (eds) Price Indexes in Time and Space. Contributions to Statistics. Physica-Verlag HD.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

78 expenditures

Examples

```
elasticity_fig (milk,start="2018-12",end="2019-04",figure=TRUE,
method=c("lm","f","sv"),names=c("LM","Fisher", "SV"))
elasticity_fig (milk,start="2018-12",end="2019-12",figure=FALSE)
```

expenditures

Providing expenditures of sold products

Description

The function returns expenditures of sold products with given IDs.

Usage

```
expenditures(data, period, set = c(), ID = FALSE)
```

Arguments

data	The user's data frame. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), quantities (as positive numeric) and prodID (as numeric, factor or character) with unique product IDs.
period	The time period (as character) limited to the year and month, e.g. "2019-03".
set	The set of unique product IDs to be used for determining expenditures of sold products (see also data_matching). If the set is empty, the function returns quantities of all products being available in period.
ID	A logical parameter indicating whether a data frame with prodIDs and quantities should be returned.

Value

The function analyzes the user's data frame and returns expenditures of products with given ID and being sold in the time period indicated by the period parameter. Please note that the function returns the expenditure values for sorted prodIDs and in the absence of a given prodID in the data set, the function returns nothing (it does not return zero). If the ID parameter is set to TRUE then the function returns a data frame with columns: by (IDs of products) and expend (expenditures of products).

Examples

```
expenditures(milk, period="2019-06") expenditures(milk, period="2019-12", set=c(400032, 82919), ID=TRUE)
```

final_index 79

final_index

A general function to compute a final price index

Description

This function returns a value (or values) of the selected final price index for the selected type of aggregation of partial results.

Usage

```
final_index(
  data = data.frame(),
  start = c(),
  end = c(),
  formula = c(),
 window = c(),
  splice = c(),
  base = c(),
  sigma = c(),
  r = c(),
 outlets = FALSE,
  groups = FALSE,
 by = c(),
  aggr = "fisher",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character). A column retID (as numeric, factor or character) is also essential if the aggregation over outlets is considered. A column with grouping variable (as numeric, factor or character - indicated by the by parameter) is essential if the aggregation over product subgroups is considered.
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
formula	The character string indicating the price index formula is to be calculated. To see available options please use the link: PriceIndices.
window	The length of the time window if the multilateral index is selected (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method (if the multilateral splicing index is selected). Available options are: "movement", "window", "half", "mean" and their additional variants: "window_published", "half_published" and "mean_published".

80 fisher

base	The prior period used in the Young- or Lowe-type price indices (as character) limited to the year and month, e.g. "2020-01".
sigma	The elasticity of substitution parameter used in the Lloyed-Moulton, AG Mean or GEKS-LM indices (as numeric).
r	The non-zero parameter used in the quadratic mean of order r quantity / price index or in the GEKS-QM index (as numeric).
outlets	A logical parameter indicating whether the aggregation over outlets (defined by retID column) should be done.
groups	A logical parameter indicating whether the aggregation over product subgroups (indicated by 'by' parameter) should be done.
by	A character string which indicates a column name for creating product subgroups.
aggr	The formula used for aggregating partial index results (available values are: "arithmetic", "geometric", "laspeyres", "paasche", "fisher", "tornqvist").
interval	A logical value indicating whether the function is to provide price indices comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be presented (the fixed base month is defined by start).

Value

This general function returns a value or values of the selected final price index for the selected type of aggregation of partial results. If the interval parameter is set to TRUE, then it returns a data frame where its first column indicates dates and the remaining columns show corresponding values of all selected price indices.

Examples

fisher

Calculating the bilateral Fisher price index

Description

This function returns a value (or vector of values) of the bilateral Fisher price index.

Usage

```
fisher(data, start, end, interval = FALSE)
```

geary_khamis 81

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the bilateral Fisher price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

```
Fisher, I. (1922). The Making of Index Numbers. Boston: Houghton Mifflin.
```

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
fisher(sugar, start="2018-12", end="2019-12") fisher(milk, start="2018-12", end="2020-01", interval=TRUE)
```

geary_khamis Calc	ulating the bilateral Geary-Khamis price index
-------------------	--

Description

This function returns a value (or vector of values) of the bilateral Geary-Khamis price index.

Usage

```
geary_khamis(data, start, end, interval = FALSE)
```

82 geks

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the bilateral Geary-Khamis price index depending on the interval parameter (please use gk function to calculate the multilateral Geary-Khamis price index). If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Geary, R. G. (1958). A Note on Comparisons of Exchange Rates and Purchasing Power between Countries. Journal of the Royal Statistical Society, Series A, 121, 97-99.

Khamis, S. H. (1970). *Properties and Conditions for the Existence of a new Type of Index Number.* Sankhya Series B32, 81-98.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.

Examples

```
geary_khamis(sugar, start="2018-12", end="2019-12")
geary_khamis(milk, start="2018-12", end="2020-01", interval=TRUE)
```

geks

Calculating the multilateral GEKS price index

Description

This function returns a value of the multilateral GEKS price index (to be more precise: the GEKS index based on the Fisher formula).

geks 83

Usage

```
geks(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contact columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), price (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).	
start	The base period (as character) limited to the year and month, e.g. "2020-03".	
end	The research period (as character) limited to the year and month, e.g. "2020-04".	
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".	
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).	

Value

This function returns a value of the multilateral GEKS price index (to be more precise: the GEKS index based on the Fisher formula) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Examples

```
geks(milk, start="2019-01", end="2019-08",window=10)
geks(milk, start="2018-12", end="2019-12")
```

84 geksaqi

geksaqi	Calculating the multilateral GEKS-AQI price index	

Description

This function returns a value of the multilateral GEKS-AQI price index (to be more precise: the GEKS index based on the asynchronous quality adjusted price index formula).

Usage

```
geksaqi(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral GEKS-AQI price index (to be more precise: the GEKS index based on the asynchronous quality adjusted price index formula) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Białek, J. (2022). *The general class of multilateral indices and its two special cases.* Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

geksaqi_fbew 85

Examples

```
geksaqi(milk, start="2019-01", end="2019-08",window=10)
geksaqi(milk, start="2018-12", end="2019-12")
```

geksaqi_fbew Extending the multilateral GEKS-AQI price index by using the FBEW method.

Description

This function returns a value of the multilateral GEKS-AQI price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
geksaqi_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-AQI price index (the GEKS index based on the asynchronous quality adjusted price index formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

86 geksaqi_fbmw

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Examples

```
geksaqi_fbew(milk, start="2018-12", end="2019-08")
```

geksaqi_fbmw	V
--------------	---

Description

This function returns a value of the multilateral GEKS-AQI price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
geksaqi_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as nu-
	meric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-AQI price index (the GEKS index based on the asynchronous quality adjusted price index formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

geksaqi_splice 87

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Examples

```
geksaqi_fbmw(milk, start="2019-12", end="2020-04")
```

geksaqi_splice

Extending the multilateral GEKS-AQI price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral GEKS-AQI price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
geksaqi_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain
	columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices
	(as positive numeric), quantities (as positive numeric) and prodID (as nu-
	meric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

88 geksaqi_splice

window The length of the time window (as positive integer: typically multilateral meth-

ods are based on the 13-month time window).

splice A character string indicating the splicing method. Available options are: "move-

ment", "window", "half", "mean", "window_published", "half_published", "mean_published".

interval A logical value indicating whether the function is to provide the price index

comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are

to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral GEKS-AQI price index (the GEKS index based on the asynchronous quality adjusted price index formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Chessa, A. G. (2019). A Comparison of Index Extension Methods for Multilateral Methods. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information.* Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Examples

```
geksaqi_splice(milk, start="2018-12", end="2020-02",splice="half")
geksaqi_splice(milk, start="2018-12", end="2020-02",window=10,interval=TRUE)
```

geksaqu 89

geksaqu	Calculating the multilateral GEKS-AQU price index	

Description

This function returns a value of the multilateral GEKS-AQU price index (to be more precise: the GEKS index based on the asynchronous quality adjusted unit value formula).

Usage

```
geksaqu(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral GEKS-AQU price index (to be more precise: the GEKS index based on the asynchronous quality adjusted unit value formula) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). On a Problem of Index Number Computation Relating to International Comparisons. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Białek, J. (2022). *The general class of multilateral indices and its two special cases.* Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

90 geksaqu_fbew

Examples

```
geksaqu(milk, start="2019-01", end="2019-08",window=10)
geksaqu(milk, start="2018-12", end="2019-12")
```

geksaqu_fbew Extending the multilateral GEKS-AQU price index by using the FBEW method.

Description

This function returns a value of the multilateral GEKS-AQU price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
geksaqu_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-AQU price index (the GEKS index based on the asynchronous quality adjusted unit value formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

geksaqu_fbmw 91

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Examples

```
geksaqu_fbew(milk, start="2018-12", end="2019-08")
```

• .	Extending the multilateral FBMW method.	GEKS-AQU price	index by using the
-----	---	----------------	--------------------

Description

This function returns a value of the multilateral GEKS-AQU price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
geksaqu_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as nu-
	meric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-AQU price index (the GEKS index based on the asynchronous quality adjusted unit value formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

92 geksaqu_splice

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Examples

```
geksaqu_fbmw(milk, start="2019-12", end="2020-04")
```

geksaqu_splice

Extending the multilateral GEKS-AQU price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral GEKS-AQU price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
geksaqu_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

geksaqu_splice 93

window The length of the time window (as positive integer: typically multilateral meth-

ods are based on the 13-month time window).

splice A character string indicating the splicing method. Available options are: "move-

ment", "window", "half", "mean", "window_published", "half_published", "mean_published".

interval A logical value indicating whether the function is to provide the price index

comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are

to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral GEKS-AQU price index (the GEKS index based on the asynchronous quality adjusted unit value formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Chessa, A. G. (2019). A Comparison of Index Extension Methods for Multilateral Methods. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information.* Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Examples

```
geksaqu_splice(milk, start="2018-12", end="2020-02",splice="half")
geksaqu_splice(milk, start="2018-12", end="2020-02",window=10,interval=TRUE)
```

94 geksgaqi

geksgaqi	Calculating the multilateral GEKS-GAQI price index	

Description

This function returns a value of the multilateral GEKS-GAQI price index (to be more precise: the GEKS index based on the geometric asynchronous quality adjusted price index formula).

Usage

```
geksgaqi(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral GEKS-GAQI price index (to be more precise: the GEKS index based on the geometric asynchronous quality adjusted price index formula) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

geksgaqi_fbew 95

Examples

```
geksgaqi(milk, start="2019-01", end="2019-08",window=10)
geksgaqi(milk, start="2018-12", end="2019-12")
```

Description

This function returns a value of the multilateral GEKS-GAQI price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
geksgaqi_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-GAQI price index (the GEKS index based on the geometric asynchronous quality adjusted price index formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

96 geksgaqi_fbmw

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

Examples

```
geksgaqi_fbew(milk, start="2018-12", end="2019-08")
```

|--|

Description

This function returns a value of the multilateral GEKS-GAQI price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
geksgaqi_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-GAQI price index (the GEKS index based on the geometric asynchronous quality adjusted price index formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

geksgaqi_splice 97

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). On a Problem of Index Number Computation Relating to International Comparisons. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Examples

```
geksgaqi_fbmw(milk, start="2019-12", end="2020-04")
```

geksgaqi_splice Extending the multilateral GEKS-GAQI price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral GEKS-GAQI price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
geksgaqi_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	,
Start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

98 geksgaqi_splice

splice A character string indicating the splicing method. Available options are: "move-

ment", "window", "half", "mean", "window_published", "half_published", "mean_published".

interval A logical value indicating whether the function is to provide the price index

comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are

to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral GEKS-GAQI price index (the GEKS index based on the geometric asynchronous quality adjusted price index formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Chessa, A. G. (2019). A Comparison of Index Extension Methods for Multilateral Methods. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information.* Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Examples

```
geksgaqi_splice(milk, start="2018-12", end="2020-02",splice="half")
geksgaqi_splice(milk, start="2018-12", end="2020-02",window=10,interval=TRUE)
```

geksgl 99

geksgl	Calculating the multilateral GEKS-GL price index

Description

This function returns a value of the multilateral GEKS-GL price index (to be more precise: the GEKS index based on the geometric Laspeyres formula).

Usage

```
geksgl(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral GEKS-GL price index (to be more precise: the GEKS index based on the geometric Laspeyres formula) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, https://doi.org/10.1007/s11135-022-01506-6.

100 geksgl_fbew

Examples

```
geksgl(milk, start="2019-01", end="2019-08",window=10)
geksgl(milk, start="2018-12", end="2019-12")
```

geksgl_fbew Extending the multilateral GEKS-GL price index by using the FBEW method.

Description

This function returns a value of the multilateral GEKS-GL price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
geksgl_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-GL price index (the GEKS index based on the geometric Laspeyres formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

geksgl_fbmw 101

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, https://doi.org/10.1007/s11135-022-01506-6.

Examples

```
geksgl_fbew(milk, start="2018-12", end="2019-08")
```

geksgl_fbmw Extending the multilateral GEKS-GL price method.	index by using the FBMW
--	-------------------------

Description

This function returns a value of the multilateral GEKS-GL price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
geksgl_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-GL price index (the GEKS index based on the geometric Laspeyres formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

102 geksgl_splice

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, https://doi.org/10.1007/s11135-022-01506-6.

Examples

```
geksgl_fbmw(milk, start="2019-12", end="2020-04")
```

geksgl_splice

Extending the multilateral GEKS-GL price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral GEKS-GL price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
geksgl_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data

The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).

geksgl_splice 103

start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral GEKS-GL price index (the GEKS index based on the geometric Laspeyres formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Chessa, A. G. (2019). A Comparison of Index Extension Methods for Multilateral Methods. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information.* Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Białek, J. (2022). *The general class of multilateral indices and its two special cases.* Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, https://doi.org/10.1007/s11135-022-01506-6.

Examples

```
geksgl_splice(milk, start="2018-12", end="2020-02",splice="half")
geksgl_splice(milk, start="2018-12", end="2020-02",window=10,interval=TRUE)
```

104 geksiqm

geksiqm	Calculating the multilateral GEKS-IQM price index	
---------	---	--

Description

This function returns a value of the multilateral GEKS-IQM price index (to be more precise: the GEKS index based on the implicit quadratic mean of order r price index IQMp).

Usage

```
geksiqm(data, start, end, r = 2, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter used in the implicit quadratic mean of order r price index.
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral GEKS-IQM price index (to be more precise: the GEKS index based on the the implicit quadratic mean of order r price index IQMp) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

geksiqm_fbew 105

Examples

```
geksiqm(milk, start="2019-01", end="2019-08",window=10)
geksiqm(milk, start="2018-12", end="2019-12", r=1.6)
```

geksiqm_fbew Extending the multilateral GEKS-IQM price index by using the FBE method.	ΞW
---	----

Description

This function returns a value of the multilateral GEKS-IQM price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
geksiqm_fbew(data, start, end, r)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter used in the implicit quadratic mean of order r price index.

Value

This function returns a value of the multilateral GEKS-IQM price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

106 geksiqm_fbmw

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

Examples

```
geksiqm_fbew(milk, start="2018-12", end="2019-08", r=1.2)
```

geksiqm_fbmw Extending the multilateral GEKS-IQM price index by using the FBMW method.	geksiqm_fbmw	Extending the multilateral GEKS-IQM price index by using the FBMW method.
--	--------------	---

Description

This function returns a value of the multilateral GEKS-IQM price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
geksiqm_fbmw(data, start, end, r)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter used in the implicit quadratic mean of order r price index.

Value

This function returns a value of the multilateral GEKS-IQM price index extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

geksiqm_splice 107

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Examples

```
geksiqm_fbmw(milk, start="2019-12", end="2020-04", r=1.6)
```

geksiqm_splice

Extending the multilateral GEKS-IQM price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral GEKS-IQM price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
geksiqm_splice(
  data,
  start,
  end,
  r = 2,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

108 geksiqm_splice

r	The real and non-zero parameter used in the implicit quadratic mean of order r price index.
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral GEKS-IQM price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Chessa, A. G. (2019). A Comparison of Index Extension Methods for Multilateral Methods. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information.* Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Examples

```
geksiqm_splice(milk, start="2018-12", end="2020-02", r=0.8, splice="half")
geksiqm_splice(milk, start="2018-12", end="2020-02", window=10, interval=TRUE)
```

geksj 109

geksj	Calculating the multilateral GEKS price index based on the Jevons
	formula (typical notation: GEKS-J)

Description

This function returns a value of the multilateral GEKS-J price index (to be more precise: the GEKS index based on the Jevons formula).

Usage

```
geksj(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character). A column quantities is needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral GEKS-J price index (to be more precise: the GEKS index based on the Jevons formula) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

110 geksj_fbew

Examples

```
geksj(milk, start="2019-01", end="2019-08",window=10)
geksj(milk, start="2018-12", end="2019-12")
```

geksj_fbew Extending the multilateral GEKS-J price index by using the FBEW method.

Description

This function returns a value of the multilateral GEKS-J price index (i.e. the GEKS price index based on the Jevons formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
geksj_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character). A column quantities is needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-J price index (i.e. the GEKS price index based on the Jevons formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

geksj_fbmw 111

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

Examples

```
geksj_fbew(milk, start="2018-12", end="2019-08")
```

geksj_fbmw Extending the multilateral GEKS-J price index by using the FI method.	PMW
--	-----

Description

This function returns a value of the multilateral GEKS-J price index (i.e. the GEKS price index based on the Jevons formula) extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
geksj_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character). A column quantities is needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-J price index (i.e. the GEKS price index based on the Jevons formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

geksj_splice

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Examples

```
geksj_fbmw(milk, start="2019-12", end="2020-04")
```

geksj_splice

Extending the multilateral GEKS-J price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral GEKS-J price index (GEKS based on the Jevons formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
geksj_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices
	(as positive numeric), quantities (as positive numeric) and prodID (as nu-
	meric, factor or character). A column quantities is needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

geksj_splice 113

window The length of the time window (as positive integer: typically multilateral meth-

ods are based on the 13-month time window).

splice A character string indicating the splicing method. Available options are: "move-

ment", "window", "half", "mean", "window_published", "half_published", "mean_published".

interval A logical value indicating whether the function is to provide the price index

comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are

to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral GEKS-J price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Chessa, A. G. (2019). A Comparison of Index Extension Methods for Multilateral Methods. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). Eliminating chain drift in price indexes based on scanner data. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information.* Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Examples

```
geksj_splice(milk, start="2018-12", end="2020-02",splice="half")
geksj_splice(milk, start="2018-12", end="2020-02",window=10,interval=TRUE)
```

114 geksl

geksl	Calculating the multilateral GEKS-L price index

Description

This function returns a value of the multilateral GEKS-L price index (to be more precise: the GEKS index based on the Laspeyres formula).

Usage

```
geksl(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral GEKS-L price index (to be more precise: the GEKS index based on the Laspeyres formula) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, https://doi.org/10.1007/s11135-022-01506-6.

gekslm 115

Examples

```
geksl(milk, start="2019-01", end="2019-08",window=10)
geksl(milk, start="2018-12", end="2019-12")
```

gekslm

Calculating the multilateral GEKS-LM price index

Description

This function returns a value of the multilateral GEKS-LM price index (to be more precise: the GEKS index based on the Lloyd-Moulton price index).

Usage

```
gekslm(data, start, end, sigma = 0.7, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
sigma	The elasticity of substitution (a parameter used in the Lloyd-Moulton index formula).
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral GEKS-LM price index (to be more precise: the GEKS index based on the Lloyd-Moulton price index) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

116 gekslm_fbew

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lloyd, P. J. (1975). Substitution Effects and Biases in Nontrue Price Indices. The American Economic Review, 65, 301-313.

Moulton, B. R. (1996). *Constant Elasticity Cost-of-Living Index in Share-Relative Form*. Washington DC: U. S. Bureau of Labor Statistics, mimeograph

Examples

```
gekslm(milk, start="2019-01", end="2019-08",window=10)
gekslm(milk, start="2018-12", end="2019-12", sigma=0.5)
```

gekslm_fbew	Extending the multilateral GEKS-LM price index by using the FBEW
	method.

Description

This function returns a value of the multilateral GEKS-LM price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
gekslm_fbew(data, start, end, sigma)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
sigma	The elasticity of substitution (a parameter used in the Lloyd-Moulton index formula)

gekslm_fbmw 117

Value

This function returns a value of the multilateral GEKS-LM price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). On a Problem of Index Number Computation Relating to International Comparisons. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

Examples

```
gekslm_fbew(milk, start="2018-12", end="2019-08", sigma=1.2)
```

gekslm_fbmw Extending the multilateral GEKS-LM price index by using the FBMW method.	he multilateral GEKS-LM price index by using the Fi	BMW
--	---	-----

Description

This function returns a value of the multilateral GEKS-LM price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
gekslm_fbmw(data, start, end, sigma)
```

Arguments

data	The user's data frame with information about sold products. It must contain
	columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices
	(as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
	merie, factor of character).

start The base period (as character) limited to the year and month, e.g. "2019-12".

118 gekslm_splice

end	The research period (as character) limited to the year and month, e.g. "2020-04".
sigma	The elasticity of substitution (a parameter used in the Lloyd-Moulton index for-
	mula).

Value

This function returns a value of the multilateral GEKS-LM price index extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Examples

Description

This function returns a value (or values) of the multilateral GEKS-LM price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
gekslm_splice(
  data,
  start,
  end,
```

gekslm_splice 119

```
sigma = 0.7,
window = 13,
splice = "movement",
interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
sigma	The elasticity of substitution (a parameter used in the Lloyd-Moulton index formula).
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral GEKS-LM price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Chessa, A. G. (2019). A Comparison of Index Extension Methods for Multilateral Methods. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information.* Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

120 geksl_fbew

de Haan, J.(2015). A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Examples

```
gekslm_splice(milk, start="2018-12", end="2020-02", sigma=0.8, splice="half")
gekslm_splice(milk, start="2018-12", end="2020-02", window=10, interval=TRUE)
```

geksl_fbew	Extending the multilateral GEKS-L price index by using the FBEW method.
	memou.

Description

This function returns a value of the multilateral GEKS-L price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
geksl_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-L price index (the GEKS index based on the Laspeyres formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

geksl_fbmw 121

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, https://doi.org/10.1007/s11135-022-01506-6.

Examples

```
geksl_fbew(milk, start="2018-12", end="2019-08")
```

geks1_fbmw Extending the multilateral GEKS-L price index by using the FBMW method.	geksl_fbmw	Extending the multilateral GEKS-L price index by using the FBMW method.
--	------------	---

Description

This function returns a value of the multilateral GEKS-L price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
geksl_fbmw(data, start, end)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

122 geksl_splice

Value

This function returns a value of the multilateral GEKS-L price index (the GEKS index based on the Laspeyres formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). Improving quality of the scanner CPI: proposition of new multilateral methods, Quality & Quantity, https://doi.org/10.1007/s11135-022-01506-6.

Examples

```
geksl_fbmw(milk, start="2019-12", end="2020-04")
```

geksl_splice	Extending the multilateral GEKS-L price index by using window splic-
	ing methods.

Description

This function returns a value (or values) of the multilateral GEKS-L price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

geksl_splice 123

Usage

```
geksl_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral GEKS-L price index (the GEKS index based on the Laspeyres formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Chessa, A. G. (2019). A Comparison of Index Extension Methods for Multilateral Methods. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). Eliminating chain drift in price indexes based on scanner data. Journal of Econometrics, 161, 36-46.

124 geksqm

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information.* Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, https://doi.org/10.1007/s11135-022-01506-6.

Examples

```
geksl_splice(milk, start="2018-12", end="2020-02",splice="half")
geksl_splice(milk, start="2018-12", end="2020-02",window=10,interval=TRUE)
```

geksqm

Calculating the multilateral GEKS-QM price index

Description

This function returns a value of the multilateral GEKS-QM price index (to be more precise: the GEKS index based on the quadratic mean of order r price index QMp).

Usage

```
geksqm(data, start, end, r = 2, wstart = start, window = 13)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter used in the implicit quadratic mean of order r price index.
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

geksqm_fbew 125

Value

This function returns a value of the multilateral GEKS-QM price index (to be more precise: the GEKS index based on the the quadratic mean of order r price index QMp) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
geksqm(milk, start="2019-01", end="2019-08",window=10)
geksqm(milk, start="2018-12", end="2019-12", r=1.6)
```

geksqm_fbew

Extending the multilateral GEKS-QM price index by using the FBEW method.

Description

This function returns a value of the multilateral GEKS-QM price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
geksqm_fbew(data, start, end, r)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter used in the implicit quadratic mean of order r price index.

126 geksqm_fbmw

Value

This function returns a value of the multilateral GEKS-QM price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). On a Problem of Index Number Computation Relating to International Comparisons. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

Examples

```
geksqm_fbew(milk, start="2018-12", end="2019-08", r=1.2)
```

geksqm_fbmw	Extending the multilateral GEKS-QM price index by using the FBMW method.
geksqm_fbmw	~ 1

Description

This function returns a value of the multilateral GEKS-QM price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
geksqm_fbmw(data, start, end, r)
```

Arguments

data	The user's data frame with information about sold products. It must contain
	columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices
	(as positive numeric), quantities (as positive numeric) and prodID (as nu-
	meric, factor or character).

start The base period (as character) limited to the year and month, e.g. "2019-12".

geksqm_splice 127

end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter used in the implicit quadratic mean of order r
	price index.

Value

This function returns a value of the multilateral GEKS-QM price index extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Examples

Description

This function returns a value (or values) of the multilateral GEKS-QM price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
geksqm_splice(
  data,
  start,
  end,
```

128 geksqm_splice

```
r = 2,
window = 13,
splice = "movement",
interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter used in the implicit quadratic mean of order r price index.
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral GEKS-QM price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Chessa, A. G. (2019). A Comparison of Index Extension Methods for Multilateral Methods. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). Eliminating chain drift in price indexes based on scanner data. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information.* Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

geksw 129

de Haan, J.(2015). A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Examples

```
geksqm_splice(milk, start="2018-12", end="2020-02", r=0.8, splice="half")
geksqm_splice(milk, start="2018-12", end="2020-02", window=10, interval=TRUE)
```

geksw	Calculating the multilateral GEKS price index based on the Walsh for-
	mula (GEKS-W)

Description

This function returns a value of the multilateral GEKS-W price index, i.e. the GEKS price index based on the superlative Walsh index formula.

Usage

```
geksw(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral GEKS-W price index (to be more precise: the GEKS index based on the Walsh formula) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

130 geksw_fbew

References

Walsh, C. M. (1901). *The Measurement of General Exchange Value*. The MacMillan Company, New York.

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Examples

```
geksw(milk, start="2019-01", end="2019-08",window=10)
geksw(milk, start="2018-12", end="2019-12")
```

geksw_fbew

Extending the multilateral GEKS-W price index by using the FBEW method.

Description

This function returns a value of the multilateral GEKS-W price index (GEKS based on the Walsh formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
geksw_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain
	columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices
	(as positive numeric), quantities (as positive numeric) and prodID (as nu-
	meric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-W price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

geksw_fbmw 131

References

Walsh, C. M. (1901). *The Measurement of General Exchange Value*. The MacMillan Company, New York.

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

Examples

```
geksw_fbew(milk, start="2018-12", end="2019-08")
```

geksw_fbmw Extending the multilateral GEKS-W price index by using the FBMW method.		S-W price index by using the FBMW	
--	--	-----------------------------------	--

Description

This function returns a value of the multilateral GEKS-W price index (GEKS based on the Walsh formula) extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
geksw_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain
	columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices
	(as positive numeric), quantities (as positive numeric) and prodID (as nu-
	meric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS-W price index extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

132 geksw_splice

References

Walsh, C. M. (1901). *The Measurement of General Exchange Value*. The MacMillan Company, New York.

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Examples

```
geksw_fbmw(milk, start="2019-12", end="2020-04")
```

geksw_splice

Extending the multilateral GEKS-W price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral GEKS-W price index (GEKS based on the Walsh formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
geksw_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data

The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).

start

The base period (as character) limited to the year and month, e.g. "2019-12".

geksw_splice 133

end The research period (as character) limited to the year and month, e.g. "2020-04".

window The length of the time window (as positive integer: typically multilateral meth-

ods are based on the 13-month time window).

splice A character string indicating the splicing method. Available options are: "move-

ment", "window", "half", "mean", "window_published", "half_published", "mean_published".

interval A logical value indicating whether the function is to provide the price index

comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are

to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral GEKS-W price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Chessa, A. G. (2019). A Comparison of Index Extension Methods for Multilateral Methods. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information.* Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Examples

```
geksw_splice(milk, start="2018-12", end="2020-02",splice="half")
geksw_splice(milk, start="2018-12", end="2020-02",window=10,interval=TRUE)
```

134 geks_fbew

	geks_fbew	Extending the multilateral GEKS price index by using the FBEW method.
--	-----------	---

Description

This function returns a value of the multilateral GEKS price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
geks_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices
	(as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

geks_fbmw 135

Examples

```
geks_fbew(milk, start="2018-12", end="2019-08")
```

geks_fbmw	Extending the multilateral GEKS price index by using the FBMW method.
-----------	---

Description

This function returns a value of the multilateral GEKS price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
geks_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral GEKS price index extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). On a Problem of Index Number Computation Relating to International Comparisons. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

geks_splice

Examples

```
geks_fbmw(milk, start="2019-12", end="2020-04")
```

geks_splice Extending the multilateral GEKS price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral GEKS price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
geks_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

generate 137

Value

This function returns a value or values (depending on interval parameter) of the multilateral GEKS price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Chessa, A. G. (2019). A Comparison of Index Extension Methods for Multilateral Methods. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information.* Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Examples

```
geks_splice(milk, start="2018-12", end="2020-02",splice="half")
geks_splice(milk, start="2018-12", end="2020-02",window=10,interval=TRUE)
```

generate

Generating an artificial scanner dataset

Description

This function provides artificial scanner datasets where prices and quantities are lognormally distributed.

Usage

```
generate(
  pmi = c(),
  psigma = c(),
  qmi = c(),
```

generate generate

```
qsigma = c(),
prec = c(2, 0),
n = 100,
n0 = 1,
r = 1,
r0 = 1,
start,
days = FALSE
)
```

Arguments

pmi	A numeric vector indicating mi parameters for lognormally distributed prices from the subsequent months.
psigma	A numeric vector indicating sigma parameters for lognormally distributed prices from the subsequent months.
qmi	A numeric vector indicating mi parameters for lognormally distributed quantities from the subsequent months.
qsigma	A numeric vector indicating sigma parameters for lognormally distributed quantities from the subsequent months.
prec	A two-dimensional numeric vector indicating precision, i.e. the number of decimal places, for presenting prices and quantities.
n	An integer parameter indicating the number of products which are to be generated.
n0	An integer parameter indicating the first (the smallest) prodID.
r	An integer parameter indicating the number of outlets (retailer sale points) for which prices and quantities are to be generated.
r0	n0 An integer parameter indicating the first (the smallest) retID.
start	The first period in the generated data frame (as character) limited to the year and month, e.g. '2019-12'.
days	A logical parameter indicating whether the trading day in a given month is to be randomised. The default value of days is FALSE, which means that each transaction for a given month takes place on the first day of the month.

Value

This function returns an artificial scanner dataset where prices and quantities are lognormally distributed. The characteristics for these lognormal distributions are set by pmi, psigma, qmi and qsigma parameters. This function works for a fixed number of products and outlets (see n and r parameters). The generated dataset is ready for further price index calculations.

Examples

```
\begin{split} & generate(pmi=c(1.02,1.03,1.04), psigma=c(0.05,0.09,0.02), qmi=c(3,4,4), \\ & qsigma=c(0.1,0.1,0.15), start="2020-01", days=TRUE) \\ & generate(pmi=c(1.02,1.03,1.04), psigma=c(0.05,0.09,0.02), qmi=c(6,6,7), \\ & qsigma=c(0.1,0.1,0.15), start="2020-01", n=1000, n0=132578, r=10) \end{split}
```

generate_CES 139

generate_CES	Commuting	ı artificial scanner	· dataget in th	ha CES madal
generate CES	Generanny an	i ariinciai scanner	- aaiasei in ii	ue CES moaei

Description

This function provides artificial scanner datasets where prices are lognormally distributed and quantities are obtained under a CES utility.

Usage

```
generate_CES(
   pmi = c(),
   psigma = c(),
   prec = 2,
   elasticity = 0.7,
   S = 1000,
   alfa = c(),
   n = 100,
   n0 = 1,
   r = 1,
   r0 = 1,
   start,
   days = FALSE
)
```

pmi	A numeric vector indicating mi parameters for lognormally distributed prices from the subsequent months.
psigma	A numeric vector indicating $\verb"sigma"$ parameters for lognormally distributed prices from the subsequent months.
prec	A numeric value indicating precision, i.e. the number of decimal places, for generating prices.
elasticity	The elasticity of substitution. The default value is 0.7.
S	Sum of spending. The default value is 1000.
alfa	A numeric vector indicating positive weights that reflect the consumer preferences.By default, this vector is randomized based on a uniform distribution.
n	An integer parameter indicating the number of products which are to be generated.
n0	An integer parameter indicating the first (the smallest) prodID.
r	An integer parameter indicating the number of outlets (retailer sale points) for which prices and quantities are to be generated.
r0	n0 An integer parameter indicating the first (the smallest) retID.

140 geohybrid

start	The first period in the generated data frame (as character) limited to the year and
-------	---

month, e.g. '2019-12'.

days A logical parameter indicating whether the trading day in a given month is to

be randomised. The default value of days is FALSE, which means that each

transaction for a given month takes place on the first day of the month.

Value

This function returns an artificial scanner dataset where prices are lognormally distributed, quantities are calculated under the assumption that consumers have CES (Constant Elasticity of Substitution) preferences and their spending on all products is S. The characteristics for the lognormal price distribution are set by pmi and psigma parameters. This function works for a fixed number of products and outlets (see n and r parameters). The generated dataset is ready for further price index calculations.

References

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
#Generating an artificial dataset (the elasticity of substitution is 1.25) df<-generate_CES(pmi=c(1.02,1.03),psigma=c(0.04,0.03), elasticity=1.25,start="2020-01",n=100,days=TRUE) #Verifying the elasticity of substitution elasticity(df, start="2020-01",end="2020-02")
```

geohybrid

Calculating the bilateral geohybrid price index

Description

This function returns a value (or vector of values) of the bilateral geohybrid price index. The geohybrid index was proposed by Bialek (2020) and it uses correlation coefficients between prices and quantities.

Usage

```
geohybrid(data, start, end, base = start, interval = FALSE)
```

Arguments

data	The user's data	frame with	information	about sold	products	It must contain
uata	THE USEL S GATA	manic with	minormanon	about solu	products.	it must comam

columns: time (as Date in format: year-month-day,e.g. $^{\prime}2020\text{-}12\text{-}01^{\prime}$), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric)

meric, factor or character).

start The base period (as character) limited to the year and month, e.g. "2020-03".

geolaspeyres 141

end The research period (as character) limited to the year and month, e.g. "2020-04".

base The prior period used in the geohybrid price index formula (as character) limited

to the year and month, e.g. "2020-01"

interval A logical value indicating whether the function is to compare the research period

defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines

the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral geohybrid price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Bialek, J. (2020). *Proposition of a Hybrid Price Index Formula for the Consumer Price Index Measurement*. Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(4), 697-716.

Examples

```
geohybrid(sugar, start="2019-12", end="2020-08", base="2018-12")
geohybrid(milk, start="2019-12", end="2020-08", base="2018-12", interval=TRUE)
```

geolaspeyres

Calculating the bilateral geo-logarithmic Laspeyres price index

Description

This function returns a value (or vector of values) of the bilateral geo-logarithmic Laspeyres price index.

Usage

```
geolaspeyres(data, start, end, interval = FALSE)
```

Arguments

data The user's data frame with information about sold products. It must contain

columns: time (as Date in format: year-month-day,e.g. $^{\prime}2020\text{-}12\text{-}01^{\prime}$), prices (as positive numeric), quantities (as positive numeric) and prodID (as nu-

meric, factor or character).

start The base period (as character) limited to the year and month, e.g. "2020-03".

142 geolowe

end The research period (as character) limited to the year and month, e.g. "2020-04". interval A logical value indicating whether the function is to compare the research period

defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end> are considered and start defines

the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral geo-logarithmic Laspeyres price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany. (2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
geolaspeyres(sugar, start="2018-12", end="2019-12")
geolaspeyres(milk, start="2018-12", end="2020-01", interval=TRUE)
```

geolowe

Calculating the bilateral geometric Lowe price index

Description

This function returns a value (or vector of values) of the bilateral geometric Lowe price index.

Usage

```
geolowe(data, start, end, base = start, interval = FALSE)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

geopaasche 143

base The prior period used in the geometric Lowe price index formula (as character)

limited to the year and month, e.g. "2020-01"

interval A logical value indicating whether the function is to compare the research period

defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines

the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral geometric Lowe price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
geolowe(sugar, start="2019-01", end="2020-01", base="2018-12")
geolowe(milk, start="2018-12", end="2020-01", interval=TRUE)
```

geopaasche

Calculating the bilateral geo-logarithmic Paasche price index

Description

This function returns a value (or vector of values) of the bilateral geo-logarithmic Paasche price index.

Usage

```
geopaasche(data, start, end, interval = FALSE)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

144 geoyoung

interval

A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral geo-logarithmic Paasche price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany. (2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
geopaasche(sugar, start="2018-12", end="2019-12")
geopaasche(milk, start="2018-12", end="2020-01", interval=TRUE)
```

geoyoung

Calculating the bilateral geometric Young price index

Description

This function returns a value (or vector of values) of the bilateral geometric Young price index.

Usage

```
geoyoung(data, start, end, base = start, interval = FALSE)
```

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
base	The prior period used in the geometric Young price index formula (as character) limited to the year and month, e.g. "2020-01"

gk 145

interval

A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral geometric Young price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Young, A. H. (1992). *Alternative Measures of Change in Real Output and Prices*. Survey of Current Business, 72, 32-48.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
geoyoung(sugar, start="2019-01", end="2020-01",base="2018-12")
geoyoung(milk, start="2018-12", end="2020-01", interval=TRUE)
```

gk

Calculating the multilateral Geary-Khamis price index

Description

This function returns a value of the multilateral Geary-Khamis price index.

Usage

```
gk(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

146 *gk_fbew*

wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral Geary-Khamis price index which considers the time window defined by wstart and window parameters. The Geary-Khamis price index is calculated by using a special iterative algorithm from Chessa (2016). It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Geary, R. G. (1958). A Note on Comparisons of Exchange Rates and Purchasing Power between Countries. Journal of the Royal Statistical Society, Series A, 121, 97-99.

Khamis, S. H. (1970). *Properties and Conditions for the Existence of a new Type of Index Number.* Sankhya Series B32, 81-98.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

Examples

```
gk(milk, start="2019-01", end="2019-08",window=10)
gk(milk, start="2018-12", end="2019-12")
```

gk_fbew	Extending the multilateral Geary-Khamis price index by using the
	FBEW method.

Description

This function returns a value of the multilateral Geary-Khamis price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
gk_fbew(data, start, end)
```

gk_fbmw 147

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral Geary-Khamis price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Geary, R. G. (1958). A Note on Comparisons of Exchange Rates and Purchasing Power between Countries. Journal of the Royal Statistical Society, Series A, 121, 97-99.

Khamis, S. H. (1970). *Properties and Conditions for the Existence of a new Type of Index Number.* Sankhya Series B32, 81-98.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

Examples

```
gk_fbew(milk, start="2018-12", end="2019-08")
```

gk_fbmw	Extending the multilateral Geary-Khamis price index by using the FBMW method.

Description

This function returns a value of the multilateral Geary-Khamis price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
gk_fbmw(data, start, end)
```

gk_splice

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral Geary-Khamis price index extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Geary, R. G. (1958). A Note on Comparisons of Exchange Rates and Purchasing Power between Countries. Journal of the Royal Statistical Society, Series A, 121, 97-99.

Khamis, S. H. (1970). Properties and Conditions for the Existence of a new Type of Index Number. Sankhya Series B32, 81-98.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Examples

```
gk_fbmw(milk, start="2019-12", end="2020-04")
```

splicing methods.	gk_splice	Extending the multilateral Geary-Khamis price index by using window splicing methods.
-------------------	-----------	---

Description

This function returns a value (or values) of the multilateral Geary-Khamis price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
gk_splice(data, start, end, window = 13, splice = "movement", interval = FALSE)
```

gk_splice 149

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral Geary-Khamis price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Chessa, A. G. (2019). A Comparison of Index Extension Methods for Multilateral Methods. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). Eliminating chain drift in price indexes based on scanner data. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information.* Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

150 harmonic

Examples

```
gk_splice(milk, start="2018-12", end="2020-02",splice="half")
gk_splice(milk, start="2018-12", end="2020-02",window=10,interval=TRUE)
```

harmonic

Calculating the unweighted harmonic price index

Description

This function returns a value (or vector of values) of the unweighted "unnamed" harmonic price index.

Usage

```
harmonic(data, start, end, interval = FALSE)
```

Arguments

_	
data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines</start,end>

the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the unweighted bilateral harmonic price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Von der Lippe, P. (2007). *Index Theory and Price Statistics*. Peter Lang: Berlin, Germany. (2004). *Consumer Price Index Manual. Theory and practice*. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

hybrid 151

Examples

```
harmonic(sugar, start="2018-12", end="2019-12")
harmonic(milk, start="2018-12", end="2020-01", interval=TRUE)
```

hybrid

Calculating the bilateral hybrid price index

Description

This function returns a value (or a vector of values) of the bilateral hybrid price index. The hybrid index was proposed by Bialek (2020) and it uses correlation coefficients between prices and quantities.

Usage

```
hybrid(data, start, end, base = start, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. '2020-03'.
end	The research period (as character) limited to the year and month, e.g. '2020-04'.
base	The prior period used in the hybrid price index formula (as character) limited to the year and month, e.g. '2020-01'.
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end=""> are considered and start defines the base period (interval is set to TRUE).</start,>

Value

The function returns a value (or a vector of values) of the bilateral hybrid price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Bialek, J. (2020). *Proposition of a Hybrid Price Index Formula for the Consumer Price Index Measurement*. Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(4), 697-716.

IQMp

Examples

```
hybrid(sugar, start="2019-12", end="2020-08", base="2018-12")
hybrid(milk, start="2019-12", end="2020-08", base="2018-12", interval=TRUE)
```

IQMp

Calculating the implicit quadratic mean of order r price index

Description

This function returns a value (or vector of values) of the implicit quadratic mean of order r price index.

Usage

```
IQMp(data, start, end, r = 2, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter.
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end=""> are considered and start defines the base period (interval is set to TRUE).</start,>

Value

The function returns a value (or vector of values) of the implicit quadratic mean of order r price index - see CPI Manual (2004), Section 17.37, formula 17.32 (page 321).

References

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

```
IQMp(sugar, start="2019-01", end="2020-01")
IQMp(sugar, start="2019-01", end="2020-01", r=1.3, interval=TRUE)
```

jevons 153

Description

This function returns a value (or vector of values) of the unweighted bilateral Jevons price index.

Usage

```
jevons(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also needed because this function uses unit values as monthly prices.
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the unweighted bilateral Jevons price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Jevons, W. S., (1865). *The variation of prices and the value of the currency since 1782*. J. Statist. Soc. Lond., 28, 294-320.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

```
jevons(milk, start="2018-12", end="2020-01")
jevons(milk, start="2018-12", end="2020-01", interval=TRUE)
```

154 laspeyres

laspeyres	Calculating the bilateral Laspeyres price index
-----------	---

Description

This function returns a value (or vector of values) of the bilateral Laspeyres price index.

Usage

```
laspeyres(data, start, end, interval = FALSE)
```

Arguments

_	
data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the bilateral Laspeyres price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Laspeyres, E. (1871). *Die Berechnung einer mittleren Waarenpreissteigerung*. Jahrbucher fur Nationalokonomie und Statistik 16, 296-314.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

```
laspeyres(sugar, start="2018-12", end="2019-12")
laspeyres(milk, start="2018-12", end="2020-01", interval=TRUE)
```

lehr 155

1ehr Calculating the bilateral Lehr price index

Description

This function returns a value (or vector of values) of the bilateral Lehr price index.

Usage

```
lehr(data, start, end, interval = FALSE)
```

Arguments

0	
data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the bilateral Lehr price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Lehr, J. (1885). Beitrage zur Statistik der Preise, insbesondere des Geldes und des Holzes. J. D. Sauerlander, Frankfurt am Main.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

```
lehr(sugar, start="2018-12", end="2019-12")
lehr(milk, start="2018-12", end="2020-01", interval=TRUE)
```

156 lloyd_moulton

110yu_mou1ton Catculating the bilateral Lloya-Mounton price thatex	lloyd_moulton	Calculating the bilateral Lloyd-Moulton price index
--	---------------	---

Description

This function returns a value (or vector of values) of the bilateral Lloyd-Moulton price index.

Usage

```
lloyd_moulton(data, start, end, sigma = 0.7, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
sigma	The elasticity of substitution parameter (as numeric).
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the bilateral Lloyd-Moulton price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Lloyd, P. J. (1975). Substitution Effects and Biases in Nontrue Price Indices. The American Economic Review, 65, 301-313.

Moulton, B. R. (1996). *Constant Elasticity Cost-of-Living Index in Share-Relative Form*. Washington DC: U. S. Bureau of Labor Statistics, mimeograph

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.

load_model 157

Examples

```
lloyd_moulton(sugar, start="2018-12", end="2019-12", sigma=0.9)
lloyd_moulton(milk, start="2018-12", end="2020-01", interval=TRUE)
```

load_model

Loading the machine learning model from the disk

Description

This function loads a list of machine learning model elements from the disk, i.e. the needed 8 files are read.

Usage

```
load_model(dir = "ML_model")
```

Arguments

dir

The name of the directory from which the machine learning model is to be loaded. The directory must be in the working directory.

Value

This function loads a list of ML model elements from the disk, i.e. the needed 8 files are read from the directory selected by dir. After loading the model it can be used for product classification by using data_classifying function.

```
#Setting a temporal directory as a working directory
## Not run: wd<-tempdir()
## Not run: setwd(wd)
#Building the model
my.grid=list(eta=c(0.01,0.02,0.05),subsample=c(0.5,0.8))
data_train<-dplyr::filter(dataCOICOP,dataCOICOP$time<=as.Date("2021-10-01"))
data_test<-dplyr::filter(dataCOICOP,dataCOICOP$time=as.Date("2021-11-01"))
ML<-model_classification(data_train,data_test,coicop="coicop6",grid=my.grid,indicators=c("description","codeIN"),key_words=c("uht"),rounds=60)
#Saving the model
## Not run: save_model(ML, dir="My_model")
#Loading the model
## Not run: ML_fromPC<-load_model("My_model")
#COICOP predicting
## Not run: data_classifying(ML_fromPC, data_test)</pre>
```

lowe

lowe Calculating the bilateral Lowe price index	lowe	Calculating the bilateral Lowe price index
---	------	--

Description

This function returns a value (or vector of values) of the bilateral Lowe price index.

Usage

```
lowe(data, start, end, base = start, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
base	The prior period used in the Lowe price index formula (as character) limited to the year and month, e.g. "2020-01".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end=""> are considered and start defines the base period (interval is set to TRUE).</start,>

Value

The function returns a value (or vector of values) of the bilateral Lowe price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

```
lowe(sugar, start="2019-01", end="2020-01",base="2018-12") lowe(milk, start="2018-12", end="2020-01", interval=TRUE)
```

marshall_edgeworth 159

Description

This function returns a value (or vector of values) of the bilateral Marshall-Edgeworth price index.

Usage

```
marshall_edgeworth(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the bilateral Marshall-Edgeworth price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Marshall, A. (1887). Remedies for Fluctuations of General Prices. Contemporary Review, 51, 355-375.

Edgeworth, F. Y. (1887). *Measurement of Change in Value of Money I.* The first Memorandum presented to the British Association for the Advancement of Science; reprinted in Papers Relating to Political Economy, Vol. 1, New York, Burt Franklin, s. 1925.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.

160 matched

Examples

```
marshall_edgeworth(sugar, start="2018-12", end="2019-12")
marshall_edgeworth(milk, start="2018-12", end="2020-01", interval=TRUE)
```

matched	Providing values from the indicated column that occur simultaneously in the compared periods or in a given time interval
	in the compared periods or in a given time interval.

Description

The function returns all values from the indicated column (defined by the type parameter) which occur simultaneously in the compared periods or in a given time interval.

Usage

```
matched(data, period1, period2, type = "prodID", interval = FALSE)
```

Arguments

data	The user's data frame. It must contain a column time (as Date in format: year-month-day, e.g. '2020-12-01') and also a column indicated by the type parameter.
period1	The first period (as character) limited to the year and month, e.g. "2019-03".
period2	The second period (as character) limited to the year and month, e.g. "2019-04".
type	This parameters defines the column which is used in the procedure. Possible values of the type parameter are: retID, prodID, codeIN, codeOUT or description.
interval	A logical parameter indicating whether the procedure is to work for the whole time period between period1 and period2 (then it is TRUE).

Value

The function returns all values from the indicated column (defined by the type parameter) which occur simultaneously in the compared periods or in a given time interval. Possible values of the type parameter are: retID, prodID, codeIN, codeOUT or description. If the interval parameter is set to FALSE, then the function compares only periods defined by period1 and period2. Otherwise the whole time period between period1 and period2 is considered.

```
matched(milk, period1="2018-12", period2="2019-12", interval=TRUE)
matched(milk, period1="2018-12", period2="2019-12", type="description")
```

matched_fig 161

matched_fig	Providing a time dependent matched_index() function	
-------------	---	--

Description

The function provides a data frame or a figure presenting the matched_index function calculated for the column defined by the type parameter and for each month from the considered time interval

Usage

```
matched_fig(
  data,
  start,
  end,
  base = "start",
  type = "prodID",
  fixedbase = TRUE,
  figure = TRUE,
  date_breaks = "1 month"
)
```

Arguments

	must contain a column time (as Date in format: year-01') and also a column indicated by the type parame-
start The beginning of a time e.g. "2019-03".	interval (as character) limited to the year and month,
end The end of a time inter "2019-04".	val (as character) limited to the year and month, e.g.
base The base period (as char "start" and "end".	acter) for product comparisons. Its possible values are:
1	ne column which is used in the procedure. Possible valrare: retID, prodID, codeIN, codeOUT or description.
months from the consider	cating whether the procedure is to work for subsequent cred time interval (fixedbase=FALSE). Otherwise the clays a role of fixed base month (fixedbase=TRUE)
	cating whether the function returns a figure (TRUE) or ith matched_index values.
date_breaks A string giving the distant value) or "4 months".	ce between breaks on the X axis like "1 month" (default

162 matched_index

Value

The function returns a data frame or a figure presenting the matched_index function calculated for the column defined by the type parameter and for each month from the considered time interval. The interval is set by start and end parameters. The returned object (data frame or figure) depends on the value of figure parameter. The returned values belong to [0,1].

Examples

```
matched_fig(milk, start="2018-12", end="2019-12")
matched_fig(milk, start="2018-12", end="2019-12", figure=FALSE)
```

matched_index	Providing the ratio of number of matched values from the indicated
	column to the number of all available values from this column

Description

The function returns a ratio of number of values from the indicated column that occur simultaneously in the compared periods or in a given time interval to the number of all available values from the above-mentioned column (defined by the type parameter) at the same time.

Usage

```
matched_index(data, period1, period2, type = "prodID", interval = FALSE)
```

Arguments

data	The user's data frame. It must contain a column time (as Date in format: year-month-day,e.g. '2020-12-01') and also a column indicated by the type parameter.
period1	The first period (as character) limited to the year and month, e.g. "2019-03".
period2	The second period (as character) limited to the year and month, e.g. "2019-04".
type	This parameter defines the column which is used in the procedure. Possible values of the type parameter are: retID, prodID, codeIN, codeOUT or description.
interval	A logical parameter indicating whether the procedure is to work for the whole time period between period1 and period2 (then it is TRUE).

Value

The function returns a ratio of number of values from the indicated column that occur simultaneously in the compared periods or in a given time interval to the number of all available values from the above-mentioned column (defined by the type parameter) at the same time. Possible values of the type parameter are: retID, prodID or description. If the interval parameter is set to FALSE, then the function compares only periods defined by period1 and period2. Otherwise the whole time period between period1 and period2 is considered. The returned value belongs to [0,1].

milk 163

Examples

```
matched_index(milk, period1="2018-12", period2="2019-12", interval=TRUE)
matched_index(milk, period1="2018-12", period2="2019-12", type="retID")
```

milk

A real data set on sold milk

Description

A collection of scanner data on the sale of milk in one of Polish supermarkets in the period from December 2018 to August 2020

Usage

milk

Format

A data frame with 6 columns and 4386 rows. The used variables are as follows:

time - Dates of transactions (Year-Month-Day)

prices - Prices of sold products [PLN]

quantities - Quantities of sold products [liters]

prodID - Unique product codes (data set contains 68 different prodIDs)

retID - Unique codes identifying outlets/retailer sale points (data set contains 5 different retIDs)

description Descriptions of sold milk products (data set contains 6 different product descriptions)

model_classification

Building the machine learning model for product classification

Description

This function provides a trained machine learning model to classify products into coicop groups or any other groups defined by the user. In addition, the function returns the characteristics of the model and figures describing the learning process.

164 model_classification

Usage

```
model_classification(
  data_train = data.frame(),
  data_test = data.frame(),
  coicop = "coicop",
  indicators = c(),
  key_words = c(),
  sensitivity = FALSE,
  p = 0.9,
  w = 0.2,
  rounds = 200,
  grid = list()
)
```

Arguments

data_train

Training data set for the model. This set must contain all the columns defined by the indicators parameter and the coicop column (with matched coicop groups to all products). If the key_words vector is non-empty, the set should also contain a description column. Ideally, the indicators should be of the numerical type. If the indicator is not of the numerical type, it will be converted to this type.

data_test

A test set that is used to validate the machine learning model. This set should have the same structure as the training set, but it is not obligatory. If the test set is not specified by the user then the test set is drawn from the training set (see p parameter).

coicop

A character string which indicates the column with COICOPs of products or labels for product groups.

indicators

A vector of column names to be considered in building a machine learning model. Important: the indicated variables can be numeric but also categorical (factor or character types are acceptable).

key_words

A vector of keywords or phrases that will be recognized in the description column. For each such keyword and or phrase, a new binary variable (column) will be created and included in the machine model training process.

sensitivity

A logical parameter that indicates whether lowercase or uppercase letters are to be distinguished when the key_words vector is not empty.

р

A parameter related to creating the testing set, if it has not been specified by the user. The test set is then created on the basis of a coicop-balanced subsample of the training set. The size of this subsample is 100p percents of the training set size.

W

A parameter for determining the measure of choosing the optimal machine learning model. For each combination of parameters specified in the grid list, the error rate of the trained model is calculated on the basis of the error on the training set (error_L=1-accuracy_L) and the error on the testing set (error_T=1-accuracy_T). Final accuracy of the model is estimated as: w accuracy_L + (1-w) accuracy_T.

paasche 165

rounds The maximum number of iterations during the training stage.

grid The list of vectors of parameters which are taken into consideration during the

Extreme Gradient Boosting training. The default value of this list is as fol-

 $lows: \verb|grid=list(eta=c(0.05,0.1,0.2), max_depth=c(6), min_child_weight=c(1), max_delta_stallows | lows: \verb|grid=list(eta=c(1), max_delta_stallows | lows: low$

The complete list of parameters for the used Tree Booster is available online

here.

Value

In general, this function provides a trained machine learning model to classify products into coicop groups (or any other groups). In addition, the function returns the characteristics of the model and figures describing the learning process. The machine learning process is based on the XGBoost algorithm (from the XGBoost package) which is an implementation of gradient boosted decision trees designed for speed and performance. The function takes into account each combination of model parameters (specified by the grid list) and provides, inter alia, an optimally trained model (a model that minimizes the error rate calculated on the basis of a fixed value of the w parameter). After all, the function returns a list of the following objects: model - the optimally trained model; best_parameters - a set of parameters of the optimal model; indicators - a vector of all indicators used; key_words - a vector of all key words and phrases used; coicops - a dataframe with categorized COICOPs; sensitivity - a value of the used 'sensitivity' parameter; figure_training - a plot of the error levels calculated for the training set and the testing set during the learning process of the returned model (error = 1 - accuracy); figure_importance - a plot of the relative importance of the used indicators.

References

Tianqi Chen and Carlos Guestrin (2016). *XGBoost: A Scalable Tree Boosting System*. 22nd SIGKDD Conference on Knowledge Discovery and Data Mining.

Examples

```
my.grid=list(eta=c(0.01,0.02,0.05), subsample=c(0.5,0.8))
data_train<-dplyr::filter(dataCOICOP, dataCOICOP$time<=as.Date("2021-10-01"))
data_test<-dplyr::filter(dataCOICOP, dataCOICOP$time==as.Date("2021-11-01"))
ML<-model_classification(data_train, data_test, coicop="coicop6", grid=my.grid, indicators=c("description", "codeIN"), key_words=c("uht"), rounds=60)
ML$best_parameters
ML$figure_training
ML$figure_importance</pre>
```

paasche

Calculating the bilateral Paasche price index

Description

This function returns a value (or vector of values) of the bilateral Paasche price index.

166 palgrave

Usage

```
paasche(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all

months from the time interval <start, end> are considered and start defines

the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral Paasche price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Paasche, H. (1874). Uber die Preisentwicklung der letzten Jahre nach den Hamburger Borsennotirungen. Jahrbucher fur Nationalokonomie und Statistik, 12, 168-178.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
paasche(sugar, start="2018-12", end="2019-12")
paasche(milk, start="2018-12", end="2020-01", interval=TRUE)
```

palgrave	Calculating the bilateral Palgrave price index
----------	--

Description

This function returns a value (or vector of values) of the bilateral Palgrave price index.

palgrave 167

Usage

```
palgrave(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines</start,end>

the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the bilateral Palgrave price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Palgrave, R. H. I. (1886). *Currency and Standard of Value in England, France and India and the Rates of Exchange Between these Countries*. Memorandum submitted to the Royal Commission on Depression of trade and Industry, Third Report, Appendix B, 312-390.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.

```
palgrave(sugar, start="2018-12", end="2019-12")
palgrave(milk, start="2018-12", end="2020-01", interval=TRUE)
```

pqcor_fig

pqcor	Providing a correlation coefficient for price and quantity of sold products

Description

The function returns correlation between price and quantity of sold products with given IDs.

Usage

```
pqcor(data, period, set = c(), figure = FALSE)
```

Arguments

data	The user's data frame. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character) with unique product IDs.
period	The time period (as character) limited to the year and month, e.g. "2019-03".
set	The set of unique product IDs to be used for determining correlation between price and quantity of sold products (see also data_matching). If the set is empty, the function works for all products being available in period.
figure	A logical parameter indicating whether the function returns a figure (TRUE) or a data frame (FALSE) with correlations between price and quantity of sold products.

Value

The function returns Pearson's correlation coefficient between price and quantity of products with given IDs and sold in period.

Examples

```
pqcor(milk, period="2019-03")
pqcor(milk, period="2019-03",figure=TRUE)
```

pqcor_fig	Providing correlations between price and quantity of sold products

Description

The function returns Pearson's correlation coefficients between price and quantity of sold products with given IDs.

Usage

```
pqcor_fig(data, start, end, figure = TRUE, date_breaks = "1 month", set = c())
```

Arguments

data	The user's data frame. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character) with unique product IDs.
start	The beginning of the considered time interval (as character) limited to the year and month, e.g. "2020-03".
end	The end of the considered time interval (as character) limited to the year and month, e.g. "2020-04".
figure	A logical parameter indicating whether the function returns a figure (TRUE) or a data frame (FALSE) with price-quantity correlations.
date_breaks	A string giving the distance between breaks on the X axis like "1 month" (default value) or "4 months".
set	The set of unique product IDs to be used for determining correlation between prices and quantities of sold products (see also data_matching). If the set is empty, the function works for all products being available in period.

Value

The function returns Pearson's correlation coefficients between price and quantity of products with given IDs and sold in the time interval: <start, end>. Correlation coefficients are calculated for each month separately. Results are presented in tabular or graphical form depending on the figure parameter.

Examples

```
pqcor_fig(milk, start="2018-12", end="2019-12", figure=FALSE)
pqcor_fig(milk, start="2018-12", end="2019-12", figure=TRUE)
```

PriceIndices	The list of package functions and their demonstration	

Description

The **PriceIndices** package is a tool for Bilateral and Multilateral Price Index Calculations. A demonstration of package functions is here: **README**. The package documentation can be found **HERE**. The list of package functions is as follows:

Data sets in the package and generating artificial scanner data sets

```
dataAGGR
dataMATCH
dataCOICOP
milk
sugar
coffee
dataU
generate
generate_CES
tindex
```

Functions for data processing

```
data_check
data_preparing
data_aggregating
data_unit
data_norm
data_selecting
data_classifying
model_classification
save_model
load_model
data_matching
data_filtering
```

Functions providing dataset characteristics

```
available
matched
matched_index
matched_fig
prices
quantities
sales
sales_groups
sales_groups2
expenditures
```

```
pqcor
pqcor_fig
dissimilarity_fig
elasticity
elasticity_fig
```

Functions for bilateral unweighted price index calculation

bmw
carli
cswd
dutot
jevons
harmonic

Functions for bilateral weighted index calculation

agmean banajree bialek davies drobisch fisher geary_khamis geolaspeyres geolowe geopaasche geoyoung geohybrid hybrid laspeyres lehr $1loyd_moulton$ lowe marshall_edgeworth paasche palgrave sato_vartia stuvel

```
tornqvist
vartia
walsh
young
QMp
IQMp
QMq
value_index
unit_value_index
```

Functions for chain index calculation

```
chbmw
chcarli
chcswd
chdutot
chjevons
chharmonic
chagmean
chbanajree
chbialek
davies
chdrobisch
chfisher
chgeary_khamis
chgeolaspeyres
chgeolowe
chgeopaasche
chgeoyoung
chgeohybrid
chhybrid
chlaspeyres
chlehr
chlloyd_moulton
chlowe
chmarshall_edgeworth
chpaasche
```

chpalgrave

```
chsato_vartia
chstuvel
chtornqvist
chvartia
chwalsh
chyoung
chQMp
chQMp
chQMq
```

Functions for multilateral price index calculation

```
ccdi
geks
wgeks
geksl
wgeksl
geksgl
wgeksgl
geksaqu
wgeksaqu
geksaqi
wgeksaqi
geksgaqi
wgeksgaqi
geksj
geksw
geksqm
geksiqm
gekslm
gk
QU
tpd
```

SPQ

Functions for extending multilateral price indices by using splicing methods

```
ccdi_splice
geks_splice
wgeks_splice
geksj_splice
geksw_splice
geksl_splice
wgeksl_splice
geksgl_splice
wgeksgl_splice
geksaqu_splice
wgeksaqu_splice
geksaqi_splice
wgeksaqi_splice
geksgaqi_splice
wgeksgaqi_splice
geksqm_splice
geksiqm_splice
gekslm_splice
gk_splice
tpd_splice
```

Functions for extending multilateral price indices by using the FBEW method

```
ccdi_fbew
geks_fbew
wgeks_fbew
geksj_fbew
geksw_fbew
geksl_fbew
wgeksl_fbew
wgeksgl_fbew
wgeksql_fbew
wgeksaqu_fbew
wgeksaqu_fbew
wgeksaqi_fbew
wgeksaqi_fbew
geksaqi_fbew
geksaqi_fbew
```

```
wgeksgaqi_fbew
geksqm_fbew
geksiqm_fbew
gekslm_fbew
gk_fbew
tpd_fbew
```

Functions for extending multilateral price indices by using the FBMW method

```
ccdi_fbmw
geks_fbmw
wgeks_fbmw
geksj_fbmw
geksw_fbmw
geksl_fbmw
wgeksl_fbmw
geksgl_fbmw
wgeksgl_fbmw
geksaqu_fbmw
wgeksaqu_fbmw
geksaqi_fbmw
wgeksaqi_fbmw
geksgaqi_fbmw
wgeksgaqi_fbmw
geksqm_fbmw
geksiqm_fbmw
gekslm_fbmw
gk_fbmw
tpd_fbmw
```

General functions for price index calculations

```
price_indices
final_index
```

Functions for comparisons of price indices

```
compare_indices_df
compare_indices_list
compare_distances
compare_to_target
```

176 prices

prices	Providing prices (unit values) of sold products

Description

The function returns prices (unit values) of sold products with given IDs.

Usage

```
prices(data, period, set = c(), ID = FALSE)
```

Arguments

data	The user's data frame. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character) with unique product IDs.
period	The time period (as character) limited to the year and month, e.g. "2019-03".
set	The set of unique product IDs to be used for determining prices of sold products (see also data_matching). If the set is empty, the function returns prices of all products being available in period.
ID	A logical parameter indicating whether a data frame with prodIDs and prices (unit values) should be returned.

Value

The function analyzes the user's data frame and returns prices (unit value) of products with given ID and being sold in the time period indicated by the period parameter. Please note, that the function returns the price values for sorted prodIDs and in the absence of a given prodID in the data set, the function returns nothing (it does not return zero). If the ID parameter is set to TRUE then the function returns a data frame with columns: by (IDs of products) and uv (unit values of products).

```
prices(milk, period="2019-06")
prices(milk, period="2019-12", set=c(400032, 82919), ID=TRUE)
```

price_indices 177

price	indices	

A general function to compute one or more price indices

Description

This function returns a value or values of the selected price indices.

Usage

```
price_indices(
  data,
  start,
  end,
  formula = c(),
  window = c(),
  splice = c(),
  base = c(),
  sigma = c(),
  r = c(),
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric) and prodID (as numeric, factor or character). A column quantities (as positive numeric) is also essential even if the selected index is an unweighted formula (unit values are calculated).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
formula	A vector of character strings indicating price index formulas that are to be calculated. To see available options please use the link: PriceIndices.
window	A vector of integers. Each element of the vector defines the length of the time window of the corresponding multilateral index.
splice	A vector of character strings. Each element of the vector indicates the splicing method is to be used for the corresponding multilateral index. Available values of vector elements are: "movement", "window","half","mean" and their additional variants: "window_published", "half_published" and "mean_published".
base	The vector of prior periods used in the Young- or Lowe-type price indices or hybrid/geohybrid index. Each element of the vector (as character) must be limited to the year and month, e.g. "2020-01".
sigma	The vector of elasticity of substitution parameters used in the Lloyed-Moulton, AG Mean or GEKS-LM indices (as numeric).

178 QMp

The vector of non-zero parameters used in the quadratic mean of order r quantity / price index or in the GEKS-QM index (as numeric).

interval

A logical value indicating whether the function is to provide price indices comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be presented (the fixed base month is defined by start).

Value

This general function returns a value or values of the selected price indices. If the interval parameter is set to TRUE, then it returns a data frame where its first column indicates dates and the remaining columns show corresponding values of all selected price indices. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

Examples

QMp

Calculating the quadratic mean of order r price index

Description

This function returns a value (or vector of values) of the quadratic mean of order r price index.

Usage

```
QMp(data, start, end, r = 2, interval = FALSE)
```

Arguments

data

The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).

QMq 179

start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter.
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end=""> are considered and start defines the base period (interval is set to TRUE).</start,>

Value

The function returns a value (or vector of values) of the quadratic mean of order r price index - see CPI Manual (2004), Section 17.40, formula 17.35 (page 321).

References

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
QMp(sugar, start="2019-01", end="2020-01")
QMp(sugar, start="2019-01", end="2020-01", r=1.3, interval=TRUE)
```

QMq

Calculating the quadratic mean of order r quantity index

Description

This function returns a value (or vector of values) of the quadratic mean of order r quantity index.

Usage

```
QMq(data, start, end, r = 2, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
r	The real and non-zero parameter.

QU

interval

A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).

Value

The function returns a value (or vector of values) of the quadratic mean of order r quantity index - see CPI Manual (2004), Section 17.35, formula 17.30 (page 321).

References

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
QMq(sugar, start="2019-01", end="2020-01")
QMq(sugar, start="2019-01", end="2020-01", r=1.3, interval=TRUE)
```

QU

Calculating the quality adjusted unit value index (QU index)

Description

This function returns a value of the quality adjusted unit value index (QU index) for a given set of adjustment factors.

Usage

```
QU(data, start, end, v)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
V	The data frame with adjustment factors for at least all matched prodIDs. It must contain two columns: prodID (as numeric or character) with unique product IDs and values (as positive numeric) with corresponding adjustment factors.

quantities 181

Value

This function returns a value of the quality adjusted unit value index (QU index) for a given set of adjustment factors (adjusted factors must be available for all matched prodIDs).

References

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

Examples

```
## Creating a data frame with artificial adjustment factors
## (random numbers from uniform distribution U[1,2])
prodID<-unique(milk$prodID)
values<-stats::runif(length(prodID),1,2)
v<-data.frame(prodID,values)
## Calculating the QU index for the created data frame 'v'
QU(milk, start="2018-12", end="2019-12", v)</pre>
```

quantities

Providing quantities of sold products

Description

The function returns quantities of sold products with given IDs.

Usage

```
quantities(data, period, set = c(), ID = FALSE)
```

Arguments

data	The user's data frame. It must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), quantities (as positive numeric) and prodID (as numeric, factor or character) with unique product IDs.
period	The time period (as character) limited to the year and month, e.g. "2019-03".
set	The set of unique product IDs to be used for determining quantities of sold products (see also data_matching). If the set is empty, the function returns quantities of all products being available in period.
ID	A logical parameter indicating whether a data frame with prodIDs and quantities should be returned.

Value

The function analyzes the user's data frame and returns quantities of products with given ID and being sold in the time period indicated by the period parameter. Please note that the function returns the quantity values for sorted prodIDs and in the absence of a given prodID in the data set, the function returns nothing (it does not return zero). If the ID parameter is set to TRUE then the function returns a data frame with columns: by (IDs of products) and q (quantities of products).

182 sales

Examples

```
quantities(milk, period="2019-06")
quantities(milk, period="2019-12", set=c(400032, 82919), ID=TRUE)
```

sales

Providing values of product sales

Description

The function returns values of sales of products with given IDs.

Usage

```
sales(data, period, set = c(), shares = FALSE, hist = FALSE)
```

Arguments

data	The user's data frame. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character) with unique product IDs.
period	The time period (as character) limited to the year and month, e.g. "2019-03".
set	The set of unique product IDs to be used for determining product sales values (see also data_matching). If the set is empty, then the function returns sale values of all products being available in period.
shares	A logical parameter indicating whether the function is to return shares of product sales.
hist	A logical parameter indicating whether the function is to return histogram of product sales.

Value

The function analyzes the user's data frame and returns values of sales of products with given IDs and being sold in time period indicated by the period parameter (see also expenditures function which returns the expenditure values for sorted prodIDs).

```
sales(milk, period="2019-06", shares=TRUE, hist=TRUE)
sales(milk, period="2019-12",set=unique(milk$prodID)[1])
```

sales_groups 183

sales_groups	Providing information about sales of products from one or more datasets

Description

The function returns values of sales of products from one or more datasets or the corresponding barplot for these sales.

Usage

```
sales_groups(
  datasets = list(),
  start,
  end,
  shares = FALSE,
  barplot = FALSE,
  names = c()
)
```

Arguments

datasets	A list of user's data frames. Each data frame must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric) and quantities (as positive numeric).
start	The beginning of the considered time interval (as character) limited to the year and month, e.g. "2020-03".
end	The end of the considered time interval (as character) limited to the year and month, e.g. "2020-04".
shares	A logical parameter indicating whether the function is to calculate shares of product sales
barplot	A logical parameter indicating whether the function is to return barplot for product sales.
names	A vector of characters describing product groups defined by datasets.

Value

The function returns values of sales of products from one or more datasets or the corresponding barplot for these sales (if barplot is TRUE). Alternatively, it calculates the sale shares (if shares is TRUE).

```
## Creating 3 subgroups of milk:
ctg<-unique(milk$description)
categories<-c(ctg[1],ctg[2],ctg[3])</pre>
```

184 sales_groups2

```
milk1<-dplyr::filter(milk, milk$description==categories[1])
milk2<-dplyr::filter(milk, milk$description==categories[2])
milk3<-dplyr::filter(milk, milk$description==categories[3])
## Sample use of this function:
sales_groups(datasets=list(milk1,milk2,milk3),start="2019-04",end="2019-04",shares=TRUE)
sales_groups(datasets=list(milk1,milk2,milk3),start="2019-04",end="2019-07",
barplot=TRUE, names=categories)</pre>
```

sales_groups2

Providing information about sales of products

Description

The function returns values of sales of products or the corresponding barplot for these sales.

Usage

```
sales_groups2(
  data = data.frame(),
  by,
  start,
  end,
  shares = FALSE,
  barplot = FALSE,
  names = c()
)
```

Arguments

data	The user's data frame with subgroups of sold products (see by parameter). The data frame must contain columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices (as positive numeric) and quantities (as positive numeric). An additional column indicated via by parameter is also needed.
by	The column name indicating grouping variable, i.e. this column is used for creating subgroups of products.
start	The beginning of the considered time interval (as character) limited to the year and month, e.g. " $2020-03$ ".
end	The end of the considered time interval (as character) limited to the year and month, e.g. $"2020-04"$.
shares	A logical parameter indicating whether the function is to calculate shares of product sales
barplot	A logical parameter indicating whether the function is to return barplot for product sales.
names	A vector of characters describing product groups defined by datasets.

sato_vartia 185

Value

The function returns values of sales of products or the corresponding barplot for these sales (if barplot is TRUE). Alternatively, it calculates the sale shares (if shares is TRUE).

Examples

```
outlets<-as.character(unique(milk$retID))
sales_groups2(milk,by="retID",start="2019-04",end="2019-04",
shares=TRUE,barplot=TRUE,names=outlets)</pre>
```

sato_vartia

Calculating the bilateral Vartia-II (Sato-Vartia) price index

Description

This function returns a value (or vector of values) of the bilateral Vartia-II (Sato-Vartia) price index.

Usage

```
sato_vartia(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end=""> are considered and start defines the base period (interval is set to TRUE).</start,>

Value

The function returns a value (or vector of values) of the bilateral Vartia-II (Sato-Vartia) price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

186 save_model

References

Sato, K. (1976). *The Ideal Log-Change Index Number.* The Review of Economics and Statistics, 58(2), 223-228.

Vartia, Y. 0. (1976). *Ideal Log-Change Index Numbers*. Scandinavian Journal of Statistics 3(3), 121-126.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.

Examples

```
sato_vartia(sugar, start="2018-12", end="2019-12")
sato_vartia(milk, start="2018-12", end="2020-01", interval=TRUE)
```

save_model

Saving the machine learning model on the disk

Description

This function saves a list of machine learning model elements on the disk, i.e. the resulting 8 files are written.

Usage

```
save_model(model = list(), dir = "ML_model")
```

Arguments

model A list of 8 elements which identify the previously built machine learning model

(the list is obtained via the model_classification function).

dir The name of the directory where the selected model should be saved. The direc-

tory with all necessary files will be created in the working directory.

Value

This function saves a list of ML model elements on the disk, i.e. the resulting 8 files are written into the new directory specified by dir. The list should be obtained previously using the model_classification function. After saving the model, it can be loaded at any time by using the load_model function.

SPQ 187

Examples

```
#Setting a temporal directory as a working director
## Not run: wd<-tempdir()
## Not run: setwd(wd)
#Building the model
#Building the model
my.grid=list(eta=c(0.01,0.02,0.05),subsample=c(0.5,0.8))
data_train<-dplyr::filter(dataCOICOP,dataCOICOP$time<=as.Date("2021-10-01"))
data_test<-dplyr::filter(dataCOICOP,dataCOICOP$time=as.Date("2021-11-01"))
ML<-model_classification(data_train,data_test,coicop="coicop6",grid=my.grid,indicators=c("description","codeIN"),key_words=c("uht"),rounds=60)
#Saving the model
## Not run: save_model(ML, dir="My_model")</pre>
```

SPQ

Calculating the multilateral SPQ price index

Description

This function returns a value of the multilateral SPQ price index which is based on the relative price and quantity dissimilarity measure.

Usage

```
SPQ(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. '2019-03'.
end	The research period (as character) limited to the year and month, e.g. '2019-07'.
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

This function returns a value of the multilateral SPQ price index which is based on the relative price and quantity dissimilarity measure (see References). If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

188 stuvel

References

Diewert, E. (2020). *The Chain Drift Problem and Multilateral Indexes*. Chapter 6 in: Consumer Price Index Theory (draft)

Examples

```
SPQ(sugar, start="2018-12",end="2019-02")
SPQ(milk, start="2018-12",end="2019-12",interval=TRUE)
```

stuvel

Calculating the bilateral Stuvel price index

Description

This function returns a value (or vector of values) of the bilateral Stuvel price index.

Usage

```
stuvel(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the bilateral Stuvel price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

sugar 189

References

Stuvel, G. (1957). A New Index Number Formula. Econometrica, 25, 123-131.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.

Examples

```
stuvel(sugar, start="2018-12", end="2019-12") stuvel(milk, start="2018-12", end="2020-01", interval=TRUE)
```

sugar

A real data set on sold sugar

Description

A collection of scanner data on the sale of sugar in one of Polish supermarkets in the period from December 2017 to October 2020

Usage

sugar

Format

A data frame with 6 columns and 7666 rows. The used variables are as follows:

```
time - Dates of transactions (Year-Month-Day)
```

prices - Prices of sold products [PLN]

quantities - Quantities of sold products [kg]

prodID - Unique product codes (data set contains 11 different prodIDs)

retID - Unique codes identifying outlets/retailer sale points (data set contains 20 different retIDs)

description Descriptions of sold sugar products (data set contains 3 different product descriptions)

190 tindex

tindex	Calculating theoretical (expected) values of the unweighted price index

Description

This function calculates the theoretical value of the unweighted price index for lognormally distributed prices.

Usage

```
tindex(pmi = c(), psigma = c(), start, ratio = TRUE)
```

Arguments

pmi	A numeric vector indicating mi parameters for lognormally distributed prices from the subsequent months.
psigma	A numeric vector indicating $sigma$ parameters for lognormally distributed prices from the subsequent months.
start	The first period in the generated data frame (as character) limited to the year and month, e.g. '2019-12'.
ratio	A logical parameter indicating how we define the theoretical unweighted price index. If it is set to TRUE, then the resulting value is a ratio of expected price values from compared months; otherwise the resulting value is the expected value of the ratio of prices from compared months.

Value

This function calculates the theoretical value of the unweighted price index for lognormally distributed prices (the month defined by start parameter plays a role of the fixed base period). The characteristics for these lognormal distributions are set by pmi and sigma parameters. The ratio parameter allows to control the definition of resulting theoretical price index values. The function provides a data frame consisting of dates and corresponding expected values of the theoretical unweighted price index. The generated dataset is ready for further price index calculations.

```
\label{tindex} \begin{split} & tindex(pmi=c(1,1.2,1.3),psigma=c(0.1,0.2,0.15),start="2020-01") \\ & tindex(pmi=c(1,1.2,1.3),psigma=c(0.1,0.2,0.15),start="2020-01",ratio=FALSE) \end{split}
```

tornqvist 191

correction of the cultural state of the cult	tornqvist	Calculating the bilateral Tornqvist price index	
--	-----------	---	--

Description

This function returns a value (or vector of values) of the bilateral Tornqvist price index.

Usage

```
tornqvist(data, start, end, interval = FALSE)
```

Arguments

_	
data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the bilateral Tornqvist price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Tornqvist, L. (1936). *The Bank of Finland's Consumption Price Index*. Bank of Finland Monthly Bulletin 10, 1-8.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

```
tornqvist(sugar, start="2018-12", end="2019-12")
tornqvist(milk, start="2018-12", end="2020-01", interval=TRUE)
```

192 tpd

tpd	Calculating the multilateral TPD price index	

Description

This function returns a value of the multilateral TPD (Time Product Dummy) price index.

Usage

```
tpd(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral TPD price index which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). Please note that a Weighted Least Squares (WLS) regression is run with the expenditure shares in each period serving as weights. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

de Haan, J. and F. Krsinich (2014). *Time Dummy Hedonic and Quality-Adjusted Unit Value Indexes: Do They Really Differ?* Paper presented at the Society for Economic Measurement Conference, 18-20 August 2014, Chicago, U.S.

```
tpd(milk, start="2019-01", end="2019-08",window=10)
tpd(milk, start="2018-12", end="2019-12")
```

tpd_fbew 193

	tpd_fbew	Extending the multilateral TPD price index by using the FBEW method.
--	----------	--

Description

This function returns a value of the multilateral TPD price index (Time Product Dummy index) extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
tpd_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral TPD price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

de Haan, J. and F. Krsinich (2014). *Time Dummy Hedonic and Quality-Adjusted Unit Value Indexes: Do They Really Differ?* Paper presented at the Society for Economic Measurement Conference, 18-20 August 2014, Chicago, U.S.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

```
tpd_fbew(milk, start="2018-12", end="2019-08")
```

194 tpd_fbmw

nemou.	tpd_fbmw	Extending the multilateral TPD price index by using the FBMW method.
--------	----------	--

Description

This function returns a value of the multilateral TPD price index (Time Product Dummy index) extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
tpd_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral TPD price index extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

de Haan, J. and F. Krsinich (2014). *Time Dummy Hedonic and Quality-Adjusted Unit Value Indexes: Do They Really Differ?* Paper presented at the Society for Economic Measurement Conference, 18-20 August 2014, Chicago, U.S.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

```
tpd_fbmw(milk, start="2019-12", end="2020-04")
```

tpd_splice 195

tpd_splice	Extending the multilateral TPD price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral TPD price index (Time Product Dummy index) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
tpd_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral TPD price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published

196 unit_value_index

indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Chessa, A. G. (2019). A Comparison of Index Extension Methods for Multilateral Methods. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). Eliminating chain drift in price indexes based on scanner data. Journal of Econometrics, 161, 36-46.

de Haan, J. and F. Krsinich (2014). *Time Dummy Hedonic and Quality-Adjusted Unit Value Indexes: Do They Really Differ?* Paper presented at the Society for Economic Measurement Conference, 18-20 August 2014, Chicago, U.S.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information.* Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Examples

```
tpd_splice(milk, start="2018-12", end="2020-02",splice="half")
tpd_splice(milk, start="2018-12", end="2020-02",window=10,interval=TRUE)
```

unit_value_index

Calculating the unit value index

Description

This function returns a value (or vector of values) of the unit value index

```
unit_value_index(data, start, end, interval = FALSE)
```

utpd 197

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the unit value index. The value index is calculated as the unit value at time start divided by the unit value at time start.

References

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
unit_value_index(sugar, start="2019-01", end="2020-01")
unit_value_index(sugar, start="2019-01", end="2020-01", interval=TRUE)
```

utpd

Calculating the unweighted multilateral TPD price index

Description

This function returns a value of the unweighted multilateral TPD (Time Product Dummy) price index.

```
utpd(data, start, end, wstart = start, window = 13)
```

198 utpd_fbew

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the unweighted multilateral TPD price index which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). Please note, that the estimation procedure runs the Ordinary Least Squares (OLS) method instead of the Weighted Least Squares (WLS) method like in the case of the TPD index. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

de Haan, J. and F. Krsinich (2014). *Time Dummy Hedonic and Quality-Adjusted Unit Value Indexes: Do They Really Differ?* Paper presented at the Society for Economic Measurement Conference, 18-20 August 2014, Chicago, U.S.

Examples

```
utpd(milk, start="2019-01", end="2019-08",window=10)
utpd(milk, start="2018-12", end="2019-12")
```

Description

This function returns a value of the unweighted multilateral TPD price index (Time Product Dummy index) extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

```
utpd_fbew(data, start, end)
```

utpd_fbmw 199

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the unweighted multilateral TPD price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

de Haan, J. and F. Krsinich (2014). *Time Dummy Hedonic and Quality-Adjusted Unit Value Indexes: Do They Really Differ?* Paper presented at the Society for Economic Measurement Conference, 18-20 August 2014, Chicago, U.S.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

Examples

```
utpd_fbew(milk, start="2018-12", end="2019-08")
```

utpd_fbmw	Extending the unweighted multilateral TPD price index by using the FBMW method.
	r bin w meinoù.

Description

This function returns a value of the unweighted multilateral TPD price index (Time Product Dummy index) extended by using the FBMW (Fixed Base Moving Window) method.

```
utpd_fbmw(data, start, end)
```

200 utpd_splice

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the unweighted multilateral TPD price index extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

de Haan, J. and F. Krsinich (2014). *Time Dummy Hedonic and Quality-Adjusted Unit Value Indexes: Do They Really Differ?* Paper presented at the Society for Economic Measurement Conference, 18-20 August 2014, Chicago, U.S.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Examples

```
utpd_fbmw(milk, start="2019-12", end="2020-04")
```

utpd_splice	Extending the multilateral unweighted TPD price index by using window splicing methods.

Description

This function returns a value (or values) of the unweighted multilateral TPD price index (Time Product Dummy index) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

utpd_splice 201

Usage

```
utpd_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the unweighted multilateral TPD price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Chessa, A. G. (2019). A Comparison of Index Extension Methods for Multilateral Methods. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). Eliminating chain drift in price indexes based on scanner data. Journal of Econometrics, 161, 36-46.

202 value_index

de Haan, J. and F. Krsinich (2014). *Time Dummy Hedonic and Quality-Adjusted Unit Value Indexes: Do They Really Differ?* Paper presented at the Society for Economic Measurement Conference, 18-20 August 2014, Chicago, U.S.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information.* Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Examples

```
utpd_splice(milk, start="2018-12", end="2020-02", splice="half")
utpd_splice(milk, start="2018-12", end="2020-02", window=10, interval=TRUE)
```

value_index

Calculating the value index

Description

This function returns a value (or vector of values) of the value index

Usage

```
value_index(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the value index. The value index is calculated as sum of expenditures from period end divided by sum of expenditures from period start.

vartia 203

References

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Examples

```
value_index(sugar, start="2019-01", end="2020-01")
value_index(sugar, start="2019-01", end="2020-01", interval=TRUE)
```

vartia

Calculating the bilateral Vartia-I price index

Description

This function returns a value (or vector of values) of the bilateral Vartia-I price index.

Usage

```
vartia(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the bilateral Vartia-I price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

204 walsh

References

Vartia, Y. 0. (1976). *Ideal Log-Change Index Numbers*. Scandinavian Journal of Statistics 3(3), 121-126.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.

Examples

```
vartia(sugar, start="2018-12", end="2019-12")
vartia(milk, start="2018-12", end="2020-01", interval=TRUE)
```

walsh

Calculating the bilateral Walsh price index

Description

This function returns a value (or vector of values) of the bilateral Walsh price index.

Usage

```
walsh(data, start, end, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start,end> are considered and start defines the base period (interval is set to TRUE).</start,end>

Value

The function returns a value (or vector of values) of the bilateral Walsh price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

wgeks 205

References

Walsh, C. M. (1901). *The Measurement of General Exchange Value*. The MacMillan Company, New York.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

Von der Lippe, P. (2007). Index Theory and Price Statistics. Peter Lang: Berlin, Germany.

Examples

```
walsh(sugar, start="2018-12", end="2019-12")
walsh(milk, start="2018-12", end="2020-01", interval=TRUE)
```

wgeks

Calculating the multilateral weighted WGEKS price index

Description

This function returns a value of the multilateral weighted WGEKS price index (to be more precise: the weighted GEKS index based on the Fisher formula).

Usage

```
wgeks(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral weighted WGEKS price index (to be more precise: the weighted GEKS index based on the Fisher formula) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

206 wgeksaqi

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Examples

```
wgeks(milk, start="2019-01", end="2019-08",window=10)
wgeks(milk, start="2018-12", end="2019-12")
```

wgeksaqi

Calculating the multilateral weighted WGEKS-AQI price index

Description

This function returns a value of the multilateral weighted WGEKS-AQI price index (to be more precise: the weighted GEKS index based on the asynchronous quality adjusted price index formula).

Usage

```
wgeksaqi(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral weighted WGEKS-AQI price index (to be more precise: the weighted GEKS index based on the asynchronous quality adjusted price index formula) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

wgeksaqi_fbew 207

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Examples

```
wgeksaqi(milk, start="2019-01", end="2019-08",window=10)
wgeksaqi(milk, start="2018-12", end="2019-12")
```

wgeksaqi_fbew	Extending the multilateral weighted GEKS-AQI price index by using
	the FBEW method.

Description

This function returns a value of the multilateral weighted GEKS-AQI price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
wgeksaqi_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral weighted GEKS-AQI price index (the weighted GEKS index based on the asynchronous quality adjusted price index formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months.

208 wgeksaqi_fbmw

To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Examples

```
wgeksaqi_fbew(milk, start="2018-12", end="2019-08")
```

wgeksaqi_fbmw Extending the multilateral weighted GEKS-AQI price index by u the FBMW method.	sing
--	------

Description

This function returns a value of the multilateral weighted GEKS-AQI price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
wgeksaqi_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

wgeksaqi_splice 209

Value

This function returns a value of the multilateral weighted GEKS-AQI price index (the GEKS index based on the asynchronous quality adjusted price index formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Examples

Description

This function returns a value (or values) of the multilateral weighted GEKS-AQI price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

```
wgeksaqi_splice(
  data,
  start,
  end,
  window = 13,
```

210 wgeksaqi_splice

```
splice = "movement",
interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral weighted GEKS-AQI price index (the weighted GEKS index based on the asynchronous quality adjusted price index formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Chessa, A. G. (2019). A Comparison of Index Extension Methods for Multilateral Methods. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). Eliminating chain drift in price indexes based on scanner data. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information.* Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

wgeksaqu 211

Diewert, W.E., and Fox, K.J. (2017). Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Examples

```
wgeksaqi_splice(milk, start="2018-12", end="2020-02",splice="half")
wgeksaqi_splice(milk, start="2018-12", end="2020-02",window=10,interval=TRUE)
```

wgeksaqu

Calculating the multilateral weighted WGEKS-AQU price index

Description

This function returns a value of the multilateral weighted WGEKS-AQU price index (to be more precise: the weighted GEKS index based on the asynchronous quality adjusted unit value formula).

Usage

```
wgeksaqu(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral weighted WGEKS-AQU price index (to be more precise: the weighted GEKS index based on the asynchronous quality adjusted unit value formula) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

212 wgeksaqu_fbew

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Examples

```
wgeksaqu(milk, start="2019-01", end="2019-08",window=10)
wgeksaqu(milk, start="2018-12", end="2019-12")
```

wgeksaqu_fbew	Extending the multilateral weighted GEKS-AQU price index by using
	the FBEW method.

Description

This function returns a value of the multilateral weighted GEKS-AQU price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
wgeksaqu_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain
	columns: time (as Date in format: year-month-day, e.g. '2020-12-01'), prices
	(as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral weighted GEKS-AQU price index (the weighted GEKS index based on the asynchronous quality adjusted unit value formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months.

wgeksaqu_fbmw 213

To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Examples

```
wgeksaqu_fbew(milk, start="2018-12", end="2019-08")
```

wgeksaqu_fbmw Extending the multilateral weighted GEKS-AQU price inc the FBMW method.	dex by using
--	--------------

Description

This function returns a value of the multilateral weighted GEKS-AQU price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
wgeksaqu_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

214 wgeksaqu_splice

Value

This function returns a value of the multilateral weighted GEKS-AQU price index (the GEKS index based on the asynchronous quality adjusted unit value formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Examples

Description

This function returns a value (or values) of the multilateral weighted GEKS-AQU price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

```
wgeksaqu_splice(
  data,
  start,
  end,
  window = 13,
```

wgeksaqu_splice 215

```
splice = "movement",
interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral weighted GEKS-AQU price index (the weighted GEKS index based on the asynchronous quality adjusted unit value formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Chessa, A. G. (2019). A Comparison of Index Extension Methods for Multilateral Methods. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). Eliminating chain drift in price indexes based on scanner data. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information.* Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

216 wgeksgaqi

Diewert, W.E., and Fox, K.J. (2017). Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Examples

```
wgeksaqu_splice(milk, start="2018-12", end="2020-02",splice="half")
wgeksaqu_splice(milk, start="2018-12", end="2020-02",window=10,interval=TRUE)
```

wgeksgaqi

Calculating the multilateral weighted WGEKS-GAQI price index

Description

This function returns a value of the multilateral weighted WGEKS-GAQI price index (to be more precise: the weighted GEKS index based on the geometric asynchronous quality adjusted price index formula).

Usage

```
wgeksgaqi(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral weighted WGEKS-GAQI price index (to be more precise: the weighted GEKS index based on the geometric asynchronous quality adjusted price index formula) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

wgeksgaqi_fbew 217

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Examples

```
wgeksgaqi(milk, start="2019-01", end="2019-08",window=10)
wgeksgaqi(milk, start="2018-12", end="2019-12")
```

wgeksgaqi_fbew

Extending the multilateral weighted GEKS-GAQI price index by using the FBEW method.

Description

This function returns a value of the multilateral weighted GEKS-GAQI price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
wgeksgaqi_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral weighted GEKS-GAQI price index (the weighted GEKS index based on the geometric asynchronous quality adjusted price index formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

218 wgeksgaqi_fbmw

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

Examples

```
wgeksgaqi_fbew(milk, start="2018-12", end="2019-08")
```

wgeksgaqi_fbmw	Extending the multilateral weighted GEKS-GAQI price index by using
	the FBMW method.

Description

This function returns a value of the multilateral weighted GEKS-GAQI price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
wgeksgaqi_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral weighted GEKS-GAQI price index (the GEKS index based on the geometric asynchronous quality adjusted price index formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

wgeksgaqi_splice 219

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Examples

```
wgeksgaqi_fbmw(milk, start="2019-12", end="2020-04")
```

wgeksgaqi_splice

Extending the multilateral weighted GEKS-GAQI price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral weighted GEKS-GAQI price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
wgeksgaqi_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

220 wgeksgaqi_splice

window The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window). splice A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published". interval A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by

start (then interval is set to FALSE) or all fixed base multilateral indices are

to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral weighted GEKS-GAOI price index (the weighted GEKS index based on the geometric asynchronous quality adjusted price index formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Chessa, A. G. (2019). A Comparison of Index Extension Methods for Multilateral Methods. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). Eliminating chain drift in price indexes based on scanner data. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information. Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Examples

```
wgeksgaqi_splice(milk, start="2018-12", end="2020-02",splice="half")
wgeksgaqi_splice(milk, start="2018-12", end="2020-02",window=10,interval=TRUE)
```

wgeksgl 221

wgeksgl	Calculating the multilateral weighted WGEKS-GL price index

Description

This function returns a value of the multilateral weighted WGEKS-GL price index (to be more precise: the weighted GEKS index based on the geometric Laspeyres formula).

Usage

```
wgeksgl(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral weighted WGEKS-GL price index (to be more precise: the weighted GEKS index based on the geometric Laspeyres formula) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, https://doi.org/10.1007/s11135-022-01506-6.

222 wgeksgl_fbew

Examples

```
wgeksgl(milk, start="2019-01", end="2019-08",window=10)
wgeksgl(milk, start="2018-12", end="2019-12")
```

wgeksgl_fbew

Extending the multilateral weighted GEKS-GL price index by using the FBEW method.

Description

This function returns a value of the multilateral weighted GEKS-GL price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
wgeksgl_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral weighted GEKS-GL price index (the weighted GEKS index based on the geometric Laspeyres formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

wgeksgl_fbmw 223

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, https://doi.org/10.1007/s11135-022-01506-6.

Examples

```
wgeksgl_fbew(milk, start="2018-12", end="2019-08")
```

	Entered in a share with the analysis had CEVC CI and a feel to be united
wgeksgl_fbmw	Extending the multilateral weighted GEKS-GL price index by using
	the FBMW method.

Description

This function returns a value of the multilateral weighted GEKS-GL price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
wgeksgl_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral weighted GEKS-GL price index (the GEKS index based on the geometric Laspeyres formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

224 wgeksgl_splice

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, https://doi.org/10.1007/s11135-022-01506-6.

Examples

```
wgeksgl_fbmw(milk, start="2019-12", end="2020-04")
```

wgeksgl_splice

Extending the multilateral weighted GEKS-GL price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral weighted GEKS-GL price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
wgeksgl_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data

The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).

wgeksgl_splice 225

The base period (as character) limited to the year and month, e.g. "2019-12".

The research period (as character) limited to the year and month, e.g. "2020-04".

The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Splice A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".

A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are

Value

This function returns a value or values (depending on interval parameter) of the multilateral weighted GEKS-GL price index (the weighted GEKS index based on the geometric Laspeyres formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

to be presented (the fixed base month is defined by start).

References

Chessa, A. G. (2019). A Comparison of Index Extension Methods for Multilateral Methods. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). *Eliminating chain drift in price indexes based on scanner data*. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information.* Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, https://doi.org/10.1007/s11135-022-01506-6.

226 wgeksl

Examples

```
wgeksgl_splice(milk, start="2018-12", end="2020-02",splice="half")
wgeksgl_splice(milk, start="2018-12", end="2020-02",window=10,interval=TRUE)
```

wgeksl

Calculating the multilateral weighted WGEKS-L price index

Description

This function returns a value of the multilateral weighted WGEKS-L price index (to be more precise: the weighted GEKS index based on the Laspeyres formula).

Usage

```
wgeksl(data, start, end, wstart = start, window = 13)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
wstart	The beginning of the time interval (which is used by multilateral methods) limited to the year and month, e.g. "2020-01".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).

Value

This function returns a value of the multilateral weighted WGEKS-L price index (to be more precise: the weighted GEKS index based on the Laspeyres formula) which considers the time window defined by wstart and window parameters. It measures the price dynamics by comparing period end to period start (both start and end must be inside the considered time window). To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

wgeksl_fbew 227

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, https://doi.org/10.1007/s11135-022-01506-6.

Examples

```
wgeksl(milk, start="2019-01", end="2019-08",window=10)
wgeksl(milk, start="2018-12", end="2019-12")
```

wgeksl_fbew	Extending the multilateral weighted GEKS-L price index by using the FBEW method.

Description

This function returns a value of the multilateral weighted GEKS-L price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
wgeksl_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

Value

This function returns a value of the multilateral weighted GEKS-L price index (the weighted GEKS index based on the Laspeyres formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

228 wgeksl_fbmw

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, https://doi.org/10.1007/s11135-022-01506-6.

Examples

```
wgeksl_fbew(milk, start="2018-12", end="2019-08")
```

wgeksl_fbmw	Extending the multilateral weighted GEKS-L price index by using the FBMW method.
	FBMW method.

Description

This function returns a value of the multilateral weighted GEKS-L price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
wgeksl_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

wgeksl_splice 229

Value

This function returns a value of the multilateral weighted GEKS-L price index (the GEKS index based on the Laspeyres formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, https://doi.org/10.1007/s11135-022-01506-6.

Examples

```
wgeksl_fbmw(milk, start="2019-12", end="2020-04")
```

wgeksl_splice Extending the multilateral weighted GEKS-L price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral weighted GEKS-L price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

230 wgeksl_splice

Usage

```
wgeksl_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral weighted GEKS-L price index (the weighted GEKS index based on the Laspeyres formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Chessa, A. G. (2019). A Comparison of Index Extension Methods for Multilateral Methods. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). Eliminating chain drift in price indexes based on scanner data. Journal of Econometrics, 161, 36-46.

wgeks_fbew 231

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information.* Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

Białek, J. (2022). *The general class of multilateral indices and its two special cases*. Paper presented at the 17th Meeting of the Ottawa Group on Price Indices, Rome, Italy.

Białek, J. (2022). *Improving quality of the scanner CPI: proposition of new multilateral methods*, Quality & Quantity, https://doi.org/10.1007/s11135-022-01506-6.

Examples

```
wgeksl_splice(milk, start="2018-12", end="2020-02",splice="half")
wgeksl_splice(milk, start="2018-12", end="2020-02",window=10,interval=TRUE)
```

wgeks_fbew	Extending the multilateral weighted GEKS price index by using the FBEW method.

Description

This function returns a value of the multilateral weighted GEKS price index extended by using the FBEW (Fixed Base Monthly Expanding Window) method.

Usage

```
wgeks_fbew(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

232 wgeks_fbmw

Value

This function returns a value of the multilateral weighted GEKS price index (the weighted GEKS index based on the Fisher formula) extended by using the FBEW (Fixed Base Monthly Expanding Window) method. The FBEW method uses a time window with a fixed base month every year (December). The window is enlarged every month with one month in order to include information from a new month. The full window length (13 months) is reached in December of each year. The function measures the price dynamics between periods end and start. The month of the start parameter must be December. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Chessa, A.G. (2016). A New Methodology for Processing Scanner Data in the Dutch CPI. Eurona 1/2016, 49-69.

Examples

```
wgeks_fbew(milk, start="2018-12", end="2019-08")
```

wgeks_fbmw	Extending the multilateral weighted GEKS price index by using the FBMW method.
------------	--

Description

This function returns a value of the multilateral weighted GEKS price index extended by using the FBMW (Fixed Base Moving Window) method.

Usage

```
wgeks_fbmw(data, start, end)
```

Arguments

data	The user's data frame with information about sold products. It must contain
	columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices
	(as positive numeric), quantities (as positive numeric) and prodID (as nu-
	meric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".

wgeks_splice 233

Value

This function returns a value of the multilateral weighted GEKS price index (the weighted GEKS index based on the Fisher formula) extended by using the FBMW (Fixed Base Moving Window) method. It measures the price dynamics between periods end and start and it uses a 13-month time window with a fixed base month taken as year(end)-1. If the distance between end and start exceeds 13 months, then internal Decembers play a role of chain-linking months. The month of the start parameter must be December. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Gini, C. (1931). On the Circular Test of Index Numbers. Metron 9:9, 3-24.

Elteto, O., and Koves, P. (1964). *On a Problem of Index Number Computation Relating to International Comparisons*. Statisztikai Szemle 42, 507-518.

Szulc, B. (1983). *Linking Price Index Numbers*. In: Price Level Measurement, W. E. Diewert and C. Montmarquette (eds.), 537-566.

Lamboray, C.(2017). *The Geary Khamis index and the Lehr index: how much do they differ?* Paper presented at the 15th Ottawa Group meeting, 10-12 May 2017, Elville am Rhein, Germany.

Examples

```
wgeks_fbmw(milk, start="2019-12", end="2020-04")
```

wgeks_splice

Extending the multilateral weighted GEKS price index by using window splicing methods.

Description

This function returns a value (or values) of the multilateral weighted GEKS price index extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References).

Usage

```
wgeks_splice(
  data,
  start,
  end,
  window = 13,
  splice = "movement",
  interval = FALSE
)
```

234 wgeks_splice

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2019-12".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
window	The length of the time window (as positive integer: typically multilateral methods are based on the 13-month time window).
splice	A character string indicating the splicing method. Available options are: "movement", "window", "half", "mean", "window_published", "half_published", "mean_published".
interval	A logical value indicating whether the function is to provide the price index comparing the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base multilateral indices are to be presented (the fixed base month is defined by start).

Value

This function returns a value or values (depending on interval parameter) of the multilateral weighted GEKS price index (the weighted GEKS index based on the Fisher formula) extended by using window splicing methods. Available splicing methods are: movement splice, window splice, half splice, mean splice and their additional variants: window splice on published indices (WISP), half splice on published indices (HASP) and mean splice on published indices (see References). The time window starts in start and should consist of at least two months. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Chessa, A. G. (2019). A Comparison of Index Extension Methods for Multilateral Methods. Paper presented at the 16th Meeting of the Ottawa Group on Price Indices, 8-10 May 2019, Rio de Janeiro, Brazil.

de Haan, J., van der Grient, H.A. (2011). Eliminating chain drift in price indexes based on scanner data. Journal of Econometrics, 161, 36-46.

Krsinich, F. (2014). *The FEWS Index: Fixed Effects with a Window Splice? Non-Revisable Quality-Adjusted Price Indices with No Characteristic Information.* Paper presented at the UNECE-ILO Meeting of the Group of Experts on Consumer Price Indices, 2-4 May 2016, Geneva, Switzerland.

de Haan, J.(2015). A Framework for Large Scale Use of Scanner Data in the Dutch CPI. Paper presented at the 14th Ottawa Group meeting, Tokyo, Japan.

Diewert, W.E., and Fox, K.J. (2017). Substitution Bias in Multilateral Methods for CPI Construction using Scanner Data. Discussion paper 17-02, Vancouver School of Economics, The University of British Columbia, Vancouver, Canada.

young 235

Examples

```
wgeks_splice(milk, start="2018-12", end="2020-02",splice="half")
wgeks_splice(milk, start="2018-12", end="2020-02",window=10,interval=TRUE)
```

young

Calculating the bilateral Young price index

Description

This function returns a value (or vector of values) of the bilateral Young price index.

Usage

```
young(data, start, end, base = start, interval = FALSE)
```

Arguments

data	The user's data frame with information about sold products. It must contain columns: time (as Date in format: year-month-day,e.g. '2020-12-01'), prices (as positive numeric), quantities (as positive numeric) and prodID (as numeric, factor or character).
start	The base period (as character) limited to the year and month, e.g. "2020-03".
end	The research period (as character) limited to the year and month, e.g. "2020-04".
base	The prior period used in the Young price index formula (as character) limited to the year and month, e.g. "2020-01"
interval	A logical value indicating whether the function is to compare the research period defined by end to the base period defined by start (then interval is set to FALSE) or all fixed base indices are to be calculated. In this latter case, all months from the time interval <start, end=""> are considered and start defines the base period (interval is set to TRUE).</start,>

Value

The function returns a value (or vector of values) of the bilateral Young price index depending on the interval parameter. If the interval parameter is set to TRUE, the function returns a vector of price index values without dates. To get information about both price index values and corresponding dates, please see functions: price_indices or final_index. The function does not take into account aggregating over outlets or product subgroups (to consider these types of aggregating, please use the final_index function).

References

Young, A. H. (1992). *Alternative Measures of Change in Real Output and Prices*. Survey of Current Business, 72, 32-48.

(2004). Consumer Price Index Manual. Theory and practice. ILO/IMF/OECD/UNECE/Eurostat/The World Bank, International Labour Office (ILO), Geneva.

young young

Examples

```
young(sugar, start="2019-01", end="2020-01",base="2018-12") young(milk, start="2018-12", end="2020-01", interval=TRUE)
```

Index

* datasets	chjevons, 35, 172
coffee, 52	chlaspeyres, 36, 172
dataAGGR, 57	chlehr, 37, 172
dataColcop, 58	chlloyd_moulton, 38, 172
dataMATCH, 59	chlowe, 39, 172
dataU, 59	chmarshall_edgeworth, 40, 172
milk, 163	chpaasche, 42, 172
sugar, 189	chpalgrave, 43, 172
Sugar, 109	chQMp, 44, 173
agmean, 6, <i>171</i>	chQMq, 45, 173
available, 7, 170	
available, 7, 170	chsato_vartia, 46, 173
banajree, 8, <i>171</i>	chstuvel, 47, 173
bialek, 9, 171	chtornqvist, 48, 173
bmw, 10, 171	chvartia, 49, <i>173</i>
Dillw, 10, 171	chwalsh, 50, <i>173</i>
carli, 11, <i>171</i>	chyoung, 51, 173
ccdi, 12, 173	coffee, 52, 170
ccdi_fbew, 13, <i>174</i>	compare_distances, 52, 175
ccdi_fbmw, 14, <i>175</i>	compare_indices_df, 53, 175
	compare_indices_list, 54, 175
ccdi_splice, 15, 174	compare_to_target, 55, 175
chagmean, 16, 172	cswd, 56, <i>171</i>
chbanajree, 17, <i>172</i>	
chbialek, 18, 172	data_aggregating, 60, 170
chbmw, 19, <i>172</i>	data_check, 60, 170
chcarli, 20, 172	data_classifying, 61, 170
chcswd, 21, <i>172</i>	data_filtering, 62, 170
chdavies, 22	data_matching, 63, 67, 78, 168–170, 176,
chdrobisch, 23, 172	181, 182
chdutot, 24, <i>172</i>	data_norm, 65, 170
chfisher, 25, 172	data_preparing, 66, 170
chgeary_khamis, 26, 172	data_selecting, <i>67</i> , <i>68</i> , <i>170</i>
chgeohybrid, 27, <i>172</i>	data_unit, 69, <i>170</i>
chgeolaspeyres, 28, 172	dataAGGR, 57, <i>170</i>
chgeolowe, 29, <i>172</i>	dataCOICOP, 58, 170
chgeopaasche, 30, 172	dataMATCH, 59, <i>170</i>
chgeoyoung, 31, <i>172</i>	dataU, 59, <i>170</i>
chharmonic, 32, <i>172</i>	davies, 70, <i>171</i> , <i>172</i>
chhybrid, 33, <i>172</i>	dissimilarity, 71
chIQMp, 34, <i>173</i>	dissimilarity_fig, 72, 171

238 INDEX

drobisch, 73, 171	geksl_fbew, 120, <i>174</i>
dutot, 74, <i>171</i>	geksl_fbmw, 121, <i>175</i>
datot, 71, 171	_
-1+:-:+ 75 171	geksl_splice, 122, 174
elasticity, 75, <i>171</i>	gekslm, 115, <i>173</i>
elasticity_fig, 76, 171	gekslm_fbew, 116, <i>175</i>
expenditures, 78, 170	gekslm_fbmw, 117, <i>175</i>
	gekslm_splice, 118, <i>174</i>
final_index, 6, 8–14, 16–34, 36–43, 46–51,	geksqm, 124, <i>173</i>
57, 67, 70, 73, 74, 79, 81–86, 88–91,	geksqm_fbew, 125, 175
93–96, 98–101, 103–106, 108–111,	geksqm_fbmw, 126, 175
113–115, 117–120, 122, 123,	
125–131, 133–135, 137, 141–151,	geksqm_splice, 127, 174
153–156, 158, 159, 166, 167, 175,	geksw, 129, <i>173</i>
	geksw_fbew, 130, 174
178, 185, 187, 188, 191–194, 196,	geksw_fbmw, 131, <i>175</i>
198–201, 203–206, 208–211,	geksw_splice, 132, <i>174</i>
213–218, 220–223, 225–227, 229,	generate, 137, <i>170</i>
230, 232–235	generate_CES, 139, <i>170</i>
fisher, 80, <i>171</i>	geohybrid, 140, <i>171</i>
	geolaspeyres, 141, <i>171</i>
geary_khamis, 81, <i>171</i>	geolowe, 142, 171
geks, 82, <i>173</i>	_
geks_fbew, 134, <i>174</i>	geopaasche, 143, 171
geks_fbmw, 135, <i>175</i>	geoyoung, 144, <i>171</i>
	gk, 27, 82, 145, <i>173</i>
geks_splice, 136, 174	gk_fbew, 146, <i>175</i>
geksaqi, 84, <i>173</i>	gk_fbmw, 147, <i>175</i>
geksaqi_fbew, 85 , 174	gk_splice, 148, <i>174</i>
geksaqi_fbmw, 86, 175	
geksaqi_splice, 87, 174	harmonic, 150, <i>171</i>
geksaqu, 89, <i>173</i>	hybrid, 151, <i>171</i>
geksaqu_fbew, 90, 174	, ,
geksaqu_fbmw, 91, 175	IQMp, 152, <i>172</i>
geksaqu_splice, 92, 174	
geksgaqi, 94, <i>173</i>	jevons, 153, <i>171</i>
geksgaqi_fbew, 95, 174	laspeyres, 154, <i>171</i>
geksgaqi_fbmw, 96, 175	lehr, 155, <i>171</i>
geksgaqi_splice, 97, 174	lloyd_moulton, 156, 171
geksgl, 99, <i>173</i>	load_model, 157, 170
geksgl_fbew, 100, <i>174</i>	lowe, 158, <i>171</i>
geksgl_fbmw, 101, <i>175</i>	10wc, 130, 171
geksgl_splice, 102, 174	marshall_edgeworth, 159, 171
geksiqm, 104, <i>173</i>	matched, 160, <i>170</i>
geksiqm_fbew, 105, <i>175</i>	
geksiqm_fbmw, 106, 175	matched_fig, 161, 170
-	matched_index, 161, 162, 162, 170
geksiqm_splice, 107, 174	milk, 163, <i>170</i>
geksj, 109, <i>173</i>	model_classification, 163, 170
geksj_fbew, 110, <i>174</i>	
geksj_fbmw, 111, <i>175</i>	paasche, 165, <i>171</i>
geksj_splice, 112, <i>174</i>	palgrave, 166, <i>171</i>
geksl, 114, <i>173</i>	pqcor, 168, <i>171</i>
- ·	

INDEX 239

$\begin{array}{c} pqcor_fig, 168, 171 \\ price_indices, 6, 8-14, 16-34, 36-43, \\ & 46-51, 57, 70, 73, 74, 81-86, 88-91, \\ & 93-96, 98-101, 103-106, 108-111, \\ & 113-115, 117-120, 122, 123, \\ & 125-131, 133-135, 137, 141-151, \\ & 153-156, 158, 159, 166, 167, 175, \\ & 177, 185, 187, 188, 191-194, 196, \\ & 198-201, 203-206, 208-211, \\ & 213-218, 220-223, 225-227, 229, \\ & 230, 232-235 \\ PriceIndices, 79, 169, 177 \\ prices, 170, 176 \end{array}$	wgeksaqi_fbew, 174, 207 wgeksaqi_fbmw, 175, 208 wgeksaqi_splice, 174, 209 wgeksaqu_fbew, 174, 212 wgeksaqu_fbew, 175, 213 wgeksaqu_fbmw, 175, 213 wgeksaqu_splice, 174, 214 wgeksgaqi_fbew, 175, 217 wgeksgaqi_fbew, 175, 217 wgeksgaqi_fbmw, 175, 218 wgeksgaqi_splice, 174, 219 wgeksgl, 173, 221 wgeksgl_fbew, 174, 222 wgeksgl_fbmw, 175, 223
QMp, 172, 178 QMq, 172, 179 QU, 173, 180 quantities, 170, 181 sales, 170, 182	wgeksgl_fbliw, 173, 223 wgeksgl_splice, 174, 224 wgeksl, 173, 226 wgeksl_fbew, 174, 227 wgeksl_fbmw, 175, 228 wgeksl_splice, 174, 229
sales_groups, 170, 183 sales_groups2, 170, 184 sato_vartia, 171, 185 save_model, 170, 186 SPQ, 173, 187 stuvel, 171, 188 sugar, 170, 189	young, 172, 235
tindex, 170, 190 tornqvist, 172, 191 tpd, 173, 192 tpd_fbew, 175, 193 tpd_fbmw, 175, 194 tpd_splice, 174, 195	
unit_value_index, 172, 196 utpd, 197 utpd_fbew, 198 utpd_fbmw, 199 utpd_splice, 200	
value_index, <i>172</i> , 202 vartia, <i>172</i> , 203	
walsh, 172, 204 wgeks, 173, 205 wgeks_fbew, 174, 231 wgeks_fbmw, 175, 232 wgeks_splice, 174, 233 wgeksaqi, 173, 206	