

# BEST AVAILABLE COPY

## AMENDMENT TO CLAIMS

All pending claims are reproduced below.

1. (Previously presented) A method for shaping a surface of a workpiece, comprising:

positioning at least one of a workpiece and a plasma torch; and  
shaping the surface of the workpiece by using reactive atom plasma processing to add material to the surface of the workpiece and modify the surface with the discharge from the plasma torch.

2. (Original) A method according to claim 1, wherein:  
the step of using reactive plasma processing to modify the surface of the workpiece further includes modifying the surface of the workpiece by at least one of etching, polishing, cleaning, planarizing, and removing material from the surface.
3. (Original) A method according to claim 1, further comprising:  
altering the chemistry of the surface of the workpiece with the plasma.
4. (Original) A method according to claim 1, wherein:  
the step of using reactive plasma processing to shape the surface of the workpiece causes minimal or no damage to the workpiece underneath the surface.

5. (Original) A method according to claim 1, further comprising:  
rotating the workpiece with respect to the plasma torch.
6. (Original) A method according to claim 1, further comprising:  
creating a reactive species in the plasma.
7. (Original) A method according to claim 1, further comprising:  
placing a precursor in a central channel of the plasma torch.
8. (Original) A method according to claim 1, further comprising:  
controlling the mass flow of a precursor into the plasma from between about 0 ml/min  
to about 2,000 ml/min.
9. (Original) A method according to claim 1, further comprising:  
controlling the mass flow of a precursor into the plasma from between about 0 ml/min  
to about 50,000 ml/min.
10. (Original) A method according to claim 1, further comprising:  
selecting a concentration of precursor to be introduced into a central channel of the  
plasma.
11. (Original) A method according to claim 1, further comprising:  
introducing a plasma gas through an outer tube of the plasma torch.

12. (Original) A method according to claim 1, further comprising:  
coupling energy to the discharge in an annular region of the plasma torch.
13. (Original) A method according to claim 1, further comprising:  
introducing an auxiliary gas through a second of three concentric tubes in the plasma torch.
14. (Original) A method according to claim 1, further comprising:  
using an auxiliary gas to keep hot plasma away from a central channel of the plasma torch.
15. (Original) A method according to claim 1, further comprising:  
using an auxiliary gas to adjust the position of a discharge.
16. (Original) A method according to claim 1, further comprising:  
introducing a plasma gas tangentially.
17. (Original) A method according to claim 1, further comprising:  
maintaining the temperature of the plasma between 5,000 and 15,000 degrees C.
18. (Original) A method according to claim 1, further comprising:  
producing a volatile reaction on the surface of the workpiece.
19. (Original) A method according to claim 1, wherein:

the step of using reactive atom plasma processing occurs at about atmospheric pressure.

20. (Original) A method according to claim 1, further comprising:  
using a precursor to control the etch rate of the plasma, the precursor being any one of a solid, liquid, or gas.
21. (Original) A method for planarizing a surface of a workpiece, comprising:  
translating at least one of a workpiece and a plasma torch;  
depositing material on the surface of the workpiece using the plasma torch;  
removing material from the surface of the workpiece using a discharge from the plasma torch; and  
using reactive atom plasma processing to redeposit the removed material on the surface of the workpiece.
22. (Original) A method according to claim 21, further comprising:  
introducing reactive species into the plasma through a central channel in the plasma torch.
23. (Original) A method according to claim 21, further comprising:  
placing a precursor in a central channel of the plasma.
24. (Original) A method according to claim 21, further comprising:  
controlling the mass flow of a precursor into the processing chamber.

25. (Original) A method according to claim 21, further comprising:  
selecting a concentration of precursor to be introduced into a central channel of the plasma.
26. (Original) A method according to claim 21, further comprising:  
introducing a plasma gas through an outer tube of the plasma torch.
27. (Original) A method according to claim 21, further comprising:  
coupling energy to the discharge in an annular region of the plasma torch.
28. (Original) A method according to claim 21, further comprising:  
introducing an auxiliary gas through a second of three concentric tubes in the plasma torch.
29. (Original) A method according to claim 21, further comprising:  
maintaining the temperature of the plasma.
30. (Original) A method according to claim 21, wherein:  
the depositing and removing steps occur at atmospheric pressure.
31. (Original) A method according to claim 21, further comprising:  
altering the chemistry of the surface of the workpiece with the plasma.

32. (Original) A method according to claim 21, further comprising:  
controlling the removal rate at which material is removed from the surface of the workpiece.
33. (Original) A method according to claim 21, further comprising:  
controlling the deposition rate at which material is deposited onto the surface of the workpiece.
34. (Original) A method according to claim 21, further comprising:  
controlling the redeposition rate at which material removed from the surface during processing is redeposited on the surface.
35. (Previously presented) A method for cleaning a surface, comprising:  
positioning at least one of a workpiece and a plasma torch; and  
cleaning the surface by using reactive atom plasma processing to deposit and remove material from the surface of the workpiece.
36. (Original) A method for redistributing a material on a surface, comprising:  
translating at least one of a workpiece and a plasma torch; and  
using reactive atom plasma processing to deposit and redistribute material on the surface of the workpiece.
37. (Previously presented) A tool for shaping the surface of a workpiece, the tool being able to accomplish the following steps:

positioning at least one of the workpiece and the plasma torch; and  
shaping the surface of the workpiece by using reactive atom plasma processing to  
deposit material on the surface of the workpiece and modify the surface with the  
discharge from the plasma torch.

38. (Original) A tool for shaping the surface of a workpiece, comprising:  
means for translating at least one of a workpiece and a plasma torch; and  
means for using reactive atom plasma processing to deposit material on the surface of  
the workpiece and modify the surface with the discharge from the plasma torch.
39. (Original) A tool for shaping the surface of a workpiece, comprising:  
a plasma torch;  
a translator that can translate at least one of a workpiece and said torch; and  
wherein said torch is configured to deposit material and modify the surface of a  
workpiece using a reactive plasma process.
40. (New) A method according to claim 1, further comprising:  
translating at least one of the workpiece and the plasma torch.

**This Page is Inserted by IFW Indexing and Scanning  
Operations and is not part of the Official Record**

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** \_\_\_\_\_

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.**