第一章 计算机系统概论

1.1 计算机系统简介

1.2 计算机的基本组成

1.3 计算机硬件的主要技术指标

1.1 计算机系统简介

一、计算机软、硬件的概念

1. 计算机系统

计算机的实体如主机、外设等如主机、外设等 机系统 软件 由具有各类特殊功能的信息(程序)组成 系统软件 用来管理整个计算机系统

语言处理程序

操作系统

服务性程序

数据库管理系统

网络软件

软件

应用软件按任务需要编制成的各种程序

2. 计算机的解题过程

1.1

计算机

1.1

二、计算机系统的层次结构

高级语言

汇编语言

操作系统

机器语言

微指令系统

虚拟机器 M3 虚拟机器 M2 虚拟机器 实际机器 M1 微程序机器 MO

用编译程序翻译 成汇编语言程序

用汇编程序翻译成机器语言程序

用机器语言解释操作系统

使 实际机器 M1 件 微程序机器 M

MO

用微指令解释机器指令

由硬件直接执行微指令

三、计算机体系结构和计算机组成 1.1

有无乘法指令

计算机一体系结构

程序员所见到的计算机系统的属性概念性的结构与功能特性

(指令系统、数据类型、寻址技术、I/0机理)

计算机 组成 实现计算机体系结构所体现的属性

(具体指令的实现)

如何实现乘法指令

1.2 计算机的基本组成

- 一、冯·诺依曼计算机的特点
 - 1. 计算机由五大部件组成
 - 2. 指令和数据以同等地位存于存储器 可按地址寻访
 - 3. 指令和数据用二进制表示
 - 4. 指令由操作码和地址码组成
 - 5. 存储程序
 - 6. 以运算器为中心

冯·诺依曼计算机硬件框图

1.2

冯·诺依曼计算机硬件框图

二、计算机硬件框图

1. 以存储器为中心的计算机硬件框图

2. 现代计算机硬件框图

1.2

三、计算机的工作步骤

- 1. 上机前的准备
 - 建立数学模型
 - 确定计算方法

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \cdots$$

$$\sqrt{x} = \frac{1}{2} (y_n + \frac{x}{y_n}) (n = 0, 1, 2, \cdots)$$

• 编制解题程序

程序 — 运算的 全部步骤

指令 — 每 一个步骤

计算 $ax^2 + bx + c = (ax + b)x + c$ 取x 至运算器中

乘以a 在运算器中

存ax² 在存储器中

取b至运算器中

乘以x 在运算器中

 max^2 在运算器中

加c 在运算器中

取x 至运算器中

乘以x 在运算器中 乘以a 在运算器中

加b 在运算器中

乘以x 在运算器中

加c 在运算器中

指令格式举例

操作码	地址码	
取数	α	$[\alpha] \rightarrow ACC$
000001	0000001000	
存数	β	$[ACC] \longrightarrow \beta$
加	γ	$[ACC] + [\gamma] \longrightarrow ACC$
乘	δ	$[ACC] \times [\delta] \longrightarrow ACC$
打印	σ	[σ] → 打印机
停机		

计算 $ax^2 + bx + c$ 程序清单

1.2

			_	
指令和数据存于			注释	
主存单元的地址	操作码	地址码		
0	000001 0000001000		取数x至ACC	
1	000100	0000001001	乘a得ax存于ACC中	
2	000011	0000001010	加b得ax+b,存于ACC中	
3	000100	0000001000	乘x得(ax+b)x,存于ACC中	
4	000011	0000001011	加c得ax² + bx + c,存于ACC	
5	000010	0000001100	将 $ax^2 + bx + c$ 存于主存单元	
6	000101	0000001100	打印	
7	000110		停机	
8		X	原始数据x	
9	a		原始数据a	
10	b		原始数据b	
11	c		原始数据c	
12			存放结果	

2. 计算机的解题过程

1.2

(1)运算器的基本组成及操作过程

	ACC	MQ	X			
加法	被加数 和		加数			
减法	被减数 差		减数			
乘法	乘积高位	乘数 乘积低位	被乘数			
除法	被除数 余数	商	除数			

① 加法操作过程

指令 加 M
初态 ACC 被加数
[M] — X
[ACC]+[X] — ACC

② 减法操作过程

指令 减 M
初态 ACC 被减数
[M] — X
[ACC]-[X] — ACC

③ 乘法操作过程

指令 乘 M 初态 ACC $[M] \longrightarrow MQ$ $[ACC] \longrightarrow X$ $\mathbf{0} \longrightarrow \mathsf{ACC}$ $[X] \times [MQ] \longrightarrow ACC //MQ$

④ 除法操作过程

指令 除 M 初态 被除数 ACC $[M] \longrightarrow X$ $[ACC] \div [X] \longrightarrow MQ$ 余数在ACC中

(2)存储器的基本组成

存储体 MAR MDR 主存储器 存储体 - 存储单元 - 存储元件 (0/1)大楼 - 房间 - 床位(无人/有人) 存储单元 存放一串二进制代码 存储字 存储单元中二进制代码的组合 存储字长存储单元中二进制代码的位数 每个存储单元赋予一个地址号

按地址寻访

(2)存储器的基本组成

存储体

MAR MDR

主存储器

MAR

存储器地址寄存器

反映存储单元的个数

MDR

存储器数据寄存器

反映存储字长

设 MAR = 4位

MDR = **8** 位

存储单元个数 16

存储字长8

(3)控制器的基本组成

 完成
 取指令
 PC

 一条
 分析指令
 IR

 指令
 执行指令

CU 执行访存

PC 存放当前欲执行指令的地址 具有计数功能 (PC) +1→PC

IR 存放当前欲执行的指令

1.2

(4) 主机完成一条指令的过程 以取数指令为例

1.2

(4) 主机完成一条指令的过程以存数指令为例

(5) $ax^2 + bx + c$ 程序的运行过程

- 将程序通过输入设备送至计算机
- 程序首地址 → PC
- 启动程序运行
- 取指令 $PC \rightarrow MAR \rightarrow M \rightarrow MDR \rightarrow IR$, $(PC)+1 \rightarrow PC$
- 分析指令 OP(IR) → CU
- 执行指令 Ad(IR) → MAR → M → MDR → ACC

- 打印结果
- 停机

1.3 计算机硬件的主要技术指标

1. 机器字长

CPU一次能处理数据的位数 与 CPU 中的 寄存器位数 有关

主频

2. 运算速度

吉普森法 $T_{\mathrm{M}} = \prod_{i=1}^{n} f_{i} t_{i}$

MTPS 每秒执行百万条指令

执行一条指令所需时钟周期数 CPT

FLOPS 每秒浮点运算次数

3. 存储容量 存放二进制信息的总数量

主存容量

存储单元个数×存储字长

如: MAR MDR 容量 10 8 1K×8位 16 32 64K×32位

字节数

如:
$$2^{13} = 1$$
KB 1 Byte $= 2^3$ $2^{21} = 256$ KB

辅存容量

字节数

80GB

 $1G = 2^{30}$

 $1K = 2^{10}$