形式语言与自动机 第一次作业 2152118 史君宝

例 2-5

(1) 2.1 的 DFA

	0	1
->q0	q1	q0
q1	q1	q2
*q2	q2	q2

(2) 2.4的DFA

	0	1
* ->q0	q3	q1
q1	q2	q0
q2	Q1	q3
q3	q0	q2

2.2.6 (1) 以五的倍数为设计思路,就可以设计出下面的

	0	1
*q0	q0	q1
q1	q2	q3
q2	q4	q0
q3	q1	q2
q4	q3 空集	q4
->q5	空集	q1

(2)

将上面的图倒置就可以了。

(1) 由题目可知,我们使用字母表中的字母的时候,有 (q0, a) = (qf, a) 当我们使用 w 这个串时,假设 w 可以分为 w = ax 由 (q0, a) = (qf, a) ,那么就可以转化为 (q0, x) = (qf, x) 使用数学归纳法可知,不断利用上面的过程,可证明 (q0, w) = (qf, w)

(2) 由上可知, 已经证明了(q0, w)=(qf, w)

而 x 是 L(A) 上面的串,可知 (q0, x) = qf 即我们单独使用 x 就可以实现从起始状态 q0 到达终点状态 qf,对于字符串 x^k 来说,由于 (q0, w) = (qf, w),可以有 $(q0, x^k)$ = (qf, x^{k-1}) ,这样始终能够到达终止状态 qf,所以得证上面的自动机能够识别 x^k 的字符串语言。

2.2.10 可知将状态表转换到下面的形式

我们由上面的状态转移图可以知道,有两个状态,分别是 A 和 B 在整个过程中,输入 0 状态不变,从 A 到 A,从 B 到 B。

输入1,状态发生转变,从A到B,从B到A。

当串的长度为 0 的时候, |w|=0, 不能够识别。

当串的长度为1的时候, |w|=1, 只有当为1的串时才可以识别。

现在我们增加串的长度, w=aa; 当第一个 a 是 1 的时候, 后面的 a 为 0, 才可以。 当第一个 a 是 0 的时候, 后面的 a 为 1, 才可以。

当原来的串中已经有了奇数个1的时候,只能加0,或者再来偶数个1。可知上面的自动机是能够识别含有奇数个1的子串的。

对于起始状态是 A,终止状态是 B,我们可以知道,上述 DFA 能够识别所有串中含有奇数个 1 的串。

2. 2. 11

我们由上面的状态转移图可以知道,有三个状态,分别是 A,B 和 C 当串的长度为 0 的时候,|w|=0,能够识别。

当串的长度为1的时候, |w|=1, 当为0或者1的串时都可以识别。

现在我们增加串的长度,w=aa; 当第一个 a 是 1 的时候,后面 a 为 0 或 1 都行。 当第一个 a 是 0 的时候,后面的 a 为 1,才可以。

当原来的串的末尾已经有了1个0的时候,只能加1或者是空串,不能是0,而只要不出现两个连续的0,1就可以任意出现。

所以我们知道上述自动机能够识别所有不连续出现两个0的串。

2.3.3 将题目所给的 NFA 转换为下面的表

		0	1
q0	{p}	{p, q}	{p}
q1	{p, q}	{p, q, r, s}	{p, t}
q2	{p, t}	{p, q}	{p}
q3	{p, q, r, s}	{p, q, r, s}	{p, t}

非形式化描述: 是以 00 或者 01 结尾的串的集合。

2.3.4

- (a) NFA 图像如下面所示。
- (b) NFA 图像如下面所示。
- (c) NFA 图像如下面所示。

2. 3. 7

我们在这里采用数学归纳法来证明

首先当串的长度为 0 的时候,不满足 1<=i<=n, 所以是成立的。

当串的长度是 1 的时候,那么想要到达 q1 的状态,串只能是 1,也是满足的。对于任意的串的长度假如说是 |w|=x;它对任意的 i 都有倒数第 i 个字母为 1;当对于串的长度增加时,变成 |w|=x+1;这时候我们只要在上面的串后面加一个字母就可以了,对应的原来的倒数第 i 个字符就变成了倒数第 i+1 个字符了,上述结论依然成立。

由数学归纳法可知, 是成立的。

2.4.1

2.4.2

2. 1. 2				
	a	b	С	d
{0p}	{q0, q1, q2, q3}	{0p}	{0p}	$\{0p\}$
{q0, q1, q2, q3}	{q0, q1, q2, q3, q8}	{q0, q4, q6}	{q0}	{q0}
{q0, q1, q2, q3, q8}	{q0, q1, q2, q3, q8}	{q0, q4, q6}	{q0, q9}	{q0}

{q0, q4, q6}	{q0, q1, q2, q3}	{q0}	{q0, q5}	{q0, q7}
(2 - 7)			((, , , ,)
{q0, q5}	{q0, q1, q2, q3, q5}	{q0, q5}	{q0, q5}	{q0, q5}
{q0, q7}	{q0, q1, q2, q3, q7}	{q0, q7}	{q0, q7}	{q0, q7}
{q0, q9}	{q0, q1, q2, q3}	{q0}	{q0}	{q0, q10}
{q0, q10}	{q0, q1, q2, q3, q10}	{q0, q10}	{q0, q10}	{q0, q10}

	0	1
0 {q0}	{q0, q2, q3}	{q0, q1}
1 {q0, q2, q3}	{q0, q2, q3}	{q0, q1, q6, q8}
2{q0, q1}	{q0, q2, q3, q4}	{q0, q1}
3 {q0, q1, q6, q8}	{q0, q2, q3, q4, q9}	{q0, q1, q7}
4 {q0, q2, q3, q4}	{q0, q2, q3}	{q0, q1, q5, q6, q8}
5 {q0, q2, q3, q4, q9}	{q0, q2, q3}	{q0, q1, q5, q6, q8, q10}
6 {q0, q1, q7}	{q0, q2, q3, q4}	{q0, q1}

7 {q0, q1, q5, q6, q8}	{q0, q2, q3, q4, q9}	{q0, q1, q7}
8 {q0, q1, q5, q6, q8, q10}	{q0, q2, q3, q4, q9}	{q0, q1, q7}

	a	b	С
0 {q0}	{q0, q1}	{q0, q3}	{q0, q5}
1 {q0, q1}	{q0, q1}	{q0, q2, q3}	{q0, q5}
2 {q0, q3}	{q0, q1}	{q0, q3}	{q0, q4, q5}
3 {q0, q5}	{q0, q1, q6}	{q0, q3}	{q0, q5}
4 {q0, q2, q3}	{q0, q1}	{q0, q3}	{q0, q4, q5}
5 {q0, q4, q5}	{q0, q1, q6}	{q0, q3}	{q0, q5}
6 {q0, q1, q6}	{q0, q1}	{q0, q2, q3}	{q0, q5}

第二题 (1)

(2)

(3)

(4)

第三题

应该是的,我们将上述的二进制加法分解来看,我们知道对应位的 a+b=c 是应该有的。

但是在过程中会出现进位的现象, 就可能出现 1+1=1 的情况(下一位进了一个 1) 我们按照这个来进行分解就可以了。

我们看不讲位的有 000 011 101 这几种

进位的有 110 这一种, 向上产生了一个进位。

接受后一位进位时 自身运算时不进位的有 001 仅有这一种

接受后一位进位时 自身运算产生进位的有 100 010 111 这三种

不接受后一位进位有变成了 第一种情况了 就是 000 011 101 了

解释: q0 代表初始状态,q1 代表不残留进位,作为终止的,q2 代表残留进位,需要将这个进位用掉才可以终止。