Exercise sheet 9

- 1. Realize the torus as a simplicial complex, K. Find subcomplexes K_1 and K_2 so that $|K_1|$ and $|K_2|$ are the cylinder, and $K_1 \cup K_2 = K$, while $|K_1 \cap K_2|$ is a circle.
 - a. Compute all the homologies of $K_1 \cap K_2$ using the definition of homology.
 - b. Compute all the homologies of K_1 and K_2 using the definition of homology. To represent the homology classes, find cycles induced by the inclusion map of the intersection. You will need to know this for the next part.
 - c. Use the Mayer-Vietoris sequence to compute all the homologies of the torus.
- 2. Let $f, g: K \to L$ be simplicial maps and $D_k: C_k(K) \to C_{k+1}(L)$ is a map such that $\partial \circ D + D \circ \partial = f_\# g_\#$.
 - (a) Prove that $\alpha_k(c) := f_{\#}(c) g_{\#}(c) D_k(\partial(c))$ is a cycle for any k+1-chain c, and therefore even for an oriented simplex (treated as a chain).
 - (b) Use the above to prove that if f and g are carried by an acyclic carrier Φ, then one can inductively define a chain homotopy between f_# and g_#. The chain homotopy is also carried by Φ. (Acyclicity allows you to express α_k(c) as a boundary of some chain. If you simply define D_{k+1} to be that chain, note that it satisfies the condition for it to be a chain homotopy. You merely have to check that by the definition of an acyclic carrier, that α_{k+1} is still in an acyclic subcomplex, thereby allowing you to proceed to the next level of induction.)

To be updated