本试卷适应范围 人工智能 学院

南京农业大学试题纸

2021~2022 学年 第二学期 课程类型: 必修 试卷类型: A

课程号 MATH2104

课程名 数学分析Ⅱ

5 学分

学号 姓名 _ 班级

题号	1	 三	总分	签名
得分				

- ·. 填空题或选择题(每题3分, 计30分. 选择题正确选项唯一)
- 1. 若 $\int_{1}^{A} e^{x^{2}} dx = 0$,则A =______.
- 2. 积分 $\int_{2}^{+\infty} \frac{1}{x(\ln x)^{p}} dx$ 在p______ 时收敛.
- 4. 幂级数 $\sum_{3^n \cdot n^3}^{\infty}$ 的收敛半径为_____.
- 5. 试问以下论断是否正确 ? 你的回答是_____(填:正确 或 错误).

对正项级数 $\sum a_n$ 而言,如果 $\sqrt[n]{a_n} < 1$,则级数 $\sum a_n$ 收敛.

- 6. 设z = f(x+y, x-y), 函数 f 有连续的偏导数,则 $\frac{\partial z}{\partial x} \frac{\partial z}{\partial y} = \underline{\qquad}$
- 7. 曲线 $r^2 = 2\cos\theta$ 围成图形的面积为A =______.
- 8. 若级数 $\sum_{n=1}^{\infty} a_n$ 收敛于 S ,则级数 $\sum_{n=1}^{\infty} \left(a_n + a_{n+1} a_{n+2}\right)$ 收敛于 ______ ·

- A. $S + a_1$; B. $S + a_2$; C. $S + a_1 a_2$; D. $S a_1 + a_2$.
- 9. 设f(x,y)在 \mathbb{R}^2 上可微,且对任意(x,y)均有 $\frac{\partial f(x,y)}{\partial x} > 0$, $\frac{\partial f(x,y)}{\partial y} < 0$,则______.
 - A. f(0,0) > f(1,1); B. f(0,0) < f(1,1); C. f(0,1) < f(1,0); D. f(0,1) > f(1,0).

- 10. 设 f(x) 为连续函数, $F(u) = \int_{1}^{u} dy \int_{y}^{u} f(x) dx$, 则 F'(2) =_______.
 - A. 2f(2);
- B. f(2); C. -f(2); D. 0.

- 二. 解答题 I.(每题 8 分, 计 24 分)(解答题须写出文字说明、证明过程或演算步骤.)
- 11. 试求出反常积分 $\int_0^{+\infty} \left(\sqrt{x}e^{-\sqrt{x}}\right)^2 dx$ 的值.

12. 设函数z = z(x, y)满足 $x^2 + y^2 - 2z = e^{2z}$.计算 dz, $\frac{\partial^2 z}{\partial x \partial y}$.

13. 试给出 $\sum_{n=1}^{\infty} \frac{x^{2n}}{(2n)!}$ 的收敛域.在该收敛域内记 $S(x) = \sum_{n=1}^{\infty} \frac{x^{2n}}{(2n)!}$.验证S(x)满足S''(x) = 1 + S(x), S(0) = S'(0) = 0.试求出S(x)初等函数形式的表达式.

系主任 杨涛

出卷人 朱震球

解答题 II (14~17 题各 8 分		

14. 试证明椭球体 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$ (a > 0, b > 0, c > 0)的体积公式为 $V_{\text{椭球体}} = \frac{4}{3}\pi abc$.

15. 证明: 曲面 $\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{a} \ (a > 0)$ 上任一点处的切平面在三根坐标轴上的截距之和为常数.

16. 计算积分 $I = \iint_D (x-2y)^2 dx dy$,其中区域 $D: x^2 + y^2 \le 2y$.

- 17. (1).设函数z = f(x, y)在 \mathbb{R}^2 上可微,且有 $\frac{\partial z}{\partial y} = 0$.试给出z关于x, y 的函数式.
- (2).设函数z = f(x,y)在 \mathbb{R}^2 上可微,且有 $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$.求证:必定有 $z = \varphi(x y)$ 的形式.

18. 求质地均匀、长为2L(m)、质量为M(kg)的均匀细杆与放置在该细杆垂直平分线上距离细杆L(m)处、质量为m(kg)的质点间的万有引力,引力常数为G.

19. 试问级数 $\sum_{n=1}^{\infty} \sin\left(\pi\sqrt{n^2+1}\right)$ 是否收敛?是绝对收敛还是条件收敛?给出结论,说明理由 .

$$\left($$
提示: $\sin(\alpha-n\pi)=(-1)^n\sin\alpha\right)$