(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 31 October 2002 (31.10.2002)

PCT

(10) International Publication Number WO 02/086443 A2

(51) International Patent Classification7:

G01N

(21) International Application Number: PCT/US02/12476

(22) International Filing Date: 18 April 2002 (18.04.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/284,770	18 April 2001 (18.04.2001)	US
60/290,492	10 May 2001 (10.05.2001)	US
60/339,245	9 November 2001 (09.11.2001)	US
60/350,666	13 November 2001 (13.11.2001)	US
60/334,370	29 November 2001 (29.11.2001)	US
60/372,246	12 April 2002 (12.04.2002)	US

(71) Applicant (for all designated States except US): EOS BIOTECHNOLOGY, INC. [US/US]; 225A Gateway Boulevard, South San Francisco, CA 94080 (US).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): AZIZ, Natasha [US/US]; 411 California Avenue, Palo Alto, CA 94306 (US). MURRAY, Richard [US/US]; 22643 Woodbridge Court, Cupertino, CA 95014 (US).
- (74) Agents: BASTIAN, Kevin, L. et al.; Townsend and Townsend and Crew LLP, Two Embarcadero Center, Eighth Floor, San Francisco, CA 94111-3834 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

— of inventorship (Rule 4.17(iv)) for US only

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

/086443 A2

(54) Title: METHODS OF DIAGNOSIS OF LUNG CANCER, COMPOSITIONS AND METHODS OF SCREENING FOR MOD-ULATORS OF LUNG CANCER

METHODS OF DIAGNOSIS OF LUNG CANCER, COMPOSITIONS AND METHODS OF SCREENING FOR MODULATORS OF LUNG CANCER

5

10

15

CROSS-REFERENCES TO RELATED APPLICATIONS

This application is related to USSN 60/284,770, filed April 18, 2001; USSN 60/290,492, filed May 10, 2001; USSN 60/334,370, filed November 29, 2001; USSN 60/339,245, filed November 9, 2001; USSN 60/350,666, filed November 13, 2001; and USSN 60/xxx,xxx, filed April 12, 2002 (Docket OMNI-002P); each of which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

The invention relates to the identification of nucleic acid and protein expression profiles and nucleic acids, products, and antibodies thereto that are involved in lung cancer; and to the use of such expression profiles and compositions in diagnosis and therapy of lung cancer. The invention further relates to methods for identifying and using agents and/or targets that inhibit lung cancer or related conditions.

20

25

30

BACKGROUND OF THE INVENTION

Lung cancer is the second most commonly occurring cancer in the United States and is the leading cause of cancer-related death. It is estimated that there are over 160,000 new cases of lung cancer in the United States every year. Of those who are diagnosed with lung cancer, 86 percent will die within five years. Lung cancer is the most common visceral cancer in men and accounts for nearly one third of all cancer deaths in both men and women. In fact, lung cancer accounts for 7% of all deaths, due to any cause, in both men and women.

Smoking is the primary cause of lung cancer, with more than 80% of lung cancers resulting from smoking. About 400 to 500 separate gaseous substances are present in the smoke of a non-filter cigarette. The most noteworthy substances include nitrogen oxides, hydrogen cyanide, formaldehyde, benzene, and toluene. The particles present in cigarette smoke contain at least 3,500 individual compounds such as nicotine, tobacco alkaloids (nornicotine, anatabine, anabasine), polycyclic aromatic hydrocarbons (e.g., benzo(a)pyrene, B(a)P), naphthalenes, aromatic amines, phenols, and tobacco-specific nitrosamines.

Tobacco-specific nitrosamines are formed during tobacco curing and processing, and are suspected of causing lung cancer in humans. In rodent studies, regardless of the where or how it is applied, the tobacco-specific nitrosamine known as NNK produces lung adenomas and lung adenocarcinomas. The tobacco-specific nitrosamine known as NNAL also produces lung adenocarcinomas in rodents.

5

10

15

20

25

30

Many of the chemicals found in cigarette smoke also affect the nonsmoker inhaling "secondhand" or sidestream smoke. Indeed, the smoke inhaled by non-smokers has a chemical composition similar to the smoke inhaled by smokers, but, importantly, the concentrations of the carcinogenic tobacco-specific nitrosamines are present in higher concentrations in second hand smoke. For this and other reasons, "passive smoking" is an important cause of lung cancer, causing as many as 3,000 lung cancer deaths in nonsmokers each year.

In addition to smoking, other factors thought to be causes of lung cancer include onthe-job exposure to carcinogens such as asbestos and uranium, exposure to chemical hazards such as radon, polycyclic aromatic hydrocarbons, chromium, nickel, and inorganic arsenic, genetic factors, and diet.

Histological classification of various lung cancers define the types of cancer that begin in the lung. See, e.g., Travis, et al. (1999) <u>Histological Typing of Lung and Pleural Tumours</u> (International Histological Classification of Tumours, No 1. Four major cell types make up more than 88% of all primary lung neoplasms. These are: squamous or epidermoid carcinoma, small cell (also called oat cell) carcinoma, adenocarcinoma, and large cell (also called large cell anaplastic) carcinoma. The remainder include undifferentiated carcinomas, carcinoids, bronchial gland tumors, and other rarer types. The various cell types have different natural histories and responses to therapy, and, thus, a correct histologic diagnosis is the first step of effective treatment.

Small cell lung cancer (SCLC) accounts for 18-25% of all lung cancers, and occurs less frequently than non-small cell lung cancers, and generally spread to distant organs more rapidly than non-small cell lung cancer. In general, at the time of presentation small cell lung cancers have already spread beyond the beyond the bounds where surgery and curative intent can be undertaken. Hoever, if identified early enough, these cancers are often responsive to chemotherapy and thoracic radiation treatment.

Non-small cell lung cancers (NSCLC) are the more frequently occurring form of lung cancer. They comprise squamous cell carcinoma, adenocarcinoma, and large cell carcinoma

and account for more than 75% of all lung cancers. Non-small cell tumors that are localized at the time of presentation can sometimes be cured with surgery and/or radiotherapy, but usually are not identified until significant metastasis has occurred, which are typically not very responsive to surgical, chemotherapy, or radiation treatment..

The screening of asymptomatic persons at high risk for lung cancer has often proven ineffective. In general, only 5 to 15 percent of lung cancer patients have their disease detected while they are asymptomatic. Of course, early detection and treatment are critical factors in the fight against lung cancer. The average survival rate is 49% for those whose cancer is detected early, before the cancer has spread from the lung. Lung cancer often spreads outside of the lung, and it may have spread to the bones or brain by the time it is diagnosed. While the prognosis may be better for lung cancers that are detected early, because of the lack of effective curative treatments, early detection does not necessarily alter the total death rate from lung cancer.

Thus, methods for diagnosis and prognosis of lung cancer and effective treatment of lung cancer would be desirable. Accordingly, provided herein are methods that can be used in diagnosis and prognosis of lung cancer. Further provided are methods that can be used to screen candidate therapeutic agents for the ability to modulate, e.g., treat, lung cancer. Additionally, provided herein are molecular targets and compositions for therapeutic intervention in lung disease and other metastatic cancers.

20

25

30

5

10

15

SUMMARY OF THE INVENTION

The present invention provides nucleotide sequences of genes that are up- and down-regulated in lung cancer cells. Such genes are useful for diagnostic purposes, and also as targets for screening for therapeutic compounds that modulate lung cancer, such as antibodies. The methods of detecting nucleic acids of the invention or their encoded proteins can be used for a number of purposes. Examples include early detection of lung cancers, monitoring and early detection of relapse following treatment of lung cancers, monitoring response to therapy of lung cancers, determining prognosis of lung cancers, directing therapy of lung cancers, selecting patients for postoperative chemotherapy or radiation therapy, selecting therapy, determining tumor prognosis, treatment, or response to treatment, and early detection of precancerous lesions of the lung. Examples of benign or precancerous lesions include: atelectasis, emphysema, brochitis, chronic obstructive pulmonary disease, fibrosis, hypersensitivity pneumonitis (HP), interstitial pulmonary fibrosis (IPF), asthma, and

WO 02/086443 PCT/US02/12476 bronchiectasis. Other aspects of the invention will become apparent to the skilled artisan by

the following description of the invention.

5

10

15

20

25

30

In one aspect, the present invention provides a method of detecting a lung cancer-associated transcript in a cell from a patient, the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16. Alternatively, the sample may be contacted with a specific binding reagent, e.g., antibody.

In one embodiment, the polynucleotide selectively hybridizes to a sequence at least 95% identical to a sequence as shown in Tables 1A-16. In another embodiment, the polynucleotide comprises a sequence as shown in Tables 1A-16.

In one embodiment, the biological sample is a tissue sample, or a body fluid. In another embodiment, the biological sample comprises isolated nucleic acids, e.g., mRNA.

In one embodiment, the polynucleotide is labeled, e.g., with a fluorescent label. In one embodiment, the polynucleotide is immobilized on a solid surface. In one embodiment, the patient is undergoing a therapeutic regimen to treat lung cancer. In another embodiment, the patient is suspected of having lung cancer. In one embodiment, the patient is a primate, e.g., a human.

In one embodiment, the method further comprises the step of amplifying nucleic acids before the step of contacting the biological sample with the polynucleotide.

In another aspect, the present invention provides a method of monitoring the efficacy of a therapeutic treatment of lung cancer, the method comprising the steps of: (i) providing a biological sample from a patient undergoing the therapeutic treatment; and (ii) determining the level of a lung cancer-associated transcript in the biological sample by contacting the biological sample with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16, thereby monitoring the efficacy of the therapy. Or the sample may be evaluated for protein, e.g., contacting the sample with an antibody.

In one embodiment, the method further comprises the step of: (iii) comparing the level of the lung cancer-associated transcript to a level of the lung cancer-associated transcript in a biological sample from the patient prior to, or earlier in, the therapeutic treatment. Or the sample may be evaluated for comparison of protein.

In another aspect, the present invention provides a method of monitoring the efficacy of a therapeutic treatment of lung cancer, the method comprising the steps of: (i) providing a

biological sample from a patient undergoing the therapeutic treatment; and (ii) determining the level of a lung cancer-associated antibody in the biological sample by contacting the biological sample with a polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16, wherein the polypeptide specifically binds to the lung cancer-associated antibody, thereby monitoring the efficacy of the therapy.

5

10

15

÷,

20

25

30

In one embodiment, the method further comprises the step of: (iii) comparing the level of the lung cancer-associated antibody to a level of the lung cancer-associated antibody in a biological sample from the patient prior to, or earlier in, the therapeutic treatment.

In another aspect, the present invention provides a method of monitoring the efficacy of a therapeutic treatment of lung cancer, the method comprising the steps of: (i) providing a biological sample from a patient undergoing the therapeutic treatment; and (ii) determining the level of a lung cancer-associated polypeptide in the biological sample by contacting the biological sample with an antibody, wherein the antibody specifically binds to a polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16, thereby monitoring the efficacy of the therapy.

In one embodiment, the method further comprises the step of: (iii) comparing the level of the lung cancer-associated polypeptide to a level of the lung cancer-associated polypeptide in a biological sample from the patient prior to, or earlier in, the therapeutic treatment. In one aspect, the present invention provides an isolated nucleic acid molecule consisting of a polynucleotide sequence as shown in Tables 1A-16. In one embodiment, an expression vector or cell comprises the isolated nucleic acid. In one aspect, the present invention provides an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Tables 1A-16.

In another aspect, the present invention provides an antibody that specifically binds to an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Tables 1A-16. In one embodiment, the antibody is conjugated to an effector component, e.g., a fluorescent label, a radioisotope or a cytotoxic chemical. In one embodiment, the antibody is an antibody fragment. In another embodiment, the antibody is humanized.

In one aspect, the present invention provides a method of detecting lung cancer in a a patient, the method comprising contacting a biological sample from the patient with an antibody or protein as described herein.

In another aspect, the present invention provides a method of detecting antibodies specific to a lung cancer gene in a patient, the method comprising contacting a biological sample from the patient with a polypeptide encoded by a nucleic acid comprises a sequence from Tables 1A-16.

5

10

15

20

25

30

In another aspect, the present invention provides a method for identifying a compound that modulates a lung cancer-associated polypeptide, the method comprising the steps of: (i) contacting the compound with a lung cancer-associated polypeptide, the polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16; and (ii) determining the functional effect of the compound upon the polypeptide.

In one embodiment, the functional effect is a physical effect, an enzymatic effect, or a chemical effect. In one embodiment, the polypeptide is expressed in a eukaryotic host cell or cell membrane. In another embodiment, the polypeptide is recombinant. In one embodiment, the functional effect is determined by measuring ligand binding to the polypeptide.

In another aspect, the present invention provides a method of inhibiting proliferation or another critical process of a lung cancer-associated cell to treat lung cancer in a patient, the method comprising the step of administering to the subject a therapeutically effective amount of a compound identified as described herein. In one embodiment, the compound is an antibody.

In another aspect, the present invention provides a drug screening assay comprising the steps of: (i) administering a test compound to a mammal having lung cancer or a cell isolated therefrom; (ii) comparing the level of gene expression of a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16 in a treated cell or mammal with the level of gene expression of the polynucleotide in a control cell or mammal, wherein a test compound that modulates the level of expression of the polynucleotide is a candidate for the treatment of lung cancer.

In one embodiment, the control is a mammal with lung cancer or a cell therefrom that has not been treated with the test compound. In another embodiment, the control is a normal cell or mammal, or a non-malignant lung disease.

In another aspect, the present invention provides a method for treating a mammal having lung cancer comprising administering a compound identified by the assay described herein.

In another aspect, the present invention provides a pharmaceutical composition for treating a mammal having lung cancer, the composition comprising a compound identified by the assay described herein and a physiologically acceptable excipient.

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

In accordance with the objects outlined above, the present invention provides novel methods for diagnosis and treatment of lung disease or cancer, as well as methods for screening for compositions which modulate lung cancer. "Treatment, monitoring, detection or modulation of lung disease or cancer" includes treatment, monitoring, detection, or modulation of lung disease in those patients who have lung disease (whether malignant or non-malignant, e.g., emphysema, bronchitis, or fibrosis) as well as patients with lung cancers in which gene expression from a gene in Tables 1A-16 is increased or decreased, indicating that the subject is more likely to have disease. In particular, while these targets are identified primarily from lung cancer samples, these same targets are likely to be similarly found in analyses of other medical conditions. These other conditions may result from similar pathological processes which affect similar tissues, e.g., lung cancer, small cell lung carcinoma (oat cell carcinoma), non-small cell carcinomas (e.g., squamous cell carcinoma, adenocarcinoma, large cell lung carcinoma, carcinoid, granulomatous), fibrosis (idiopathic pulmonary fibrosis (IPF), hypersensitivity pneumonitis (HP), interstitial pneumonitis, nonspecific idiopathic pneumonitis (NSIP)), chronic obstructive pulmonary disease (COPD, e.g., emphysema, chronic bronchitis), asthma, bronchiectasis, and esophageal cancer. See, e.g., the NCI webpage and USSN 60/347,349 and USSN 60/xxx,xxx (docket LFBR-001-1P, filed March 29, 2002), each of which is incorporated herein by reference. The treatment may be of lung cancer or related condition itself, or treatment of metastasis.

In particular, identification of markers selectively expressed on these cancers allows for use of that expression in diagnostic, prognostic, or therapeutic methods. As such, the invention defines various compositions, e.g., nucleic acids, polypeptides, antibodies, and small molecule agonists/antagonists, which will be useful to selectively identify those markers. For example, therapeutic methods may take the form of protein therapeutics which use the marker expression for selective localization or modulation of function (for those markers which have a causative disease effect), for vaccines, identification of binding partners, or antagonism, e.g., using antisense or RNAi. The markers may be useful for molecular characterization of subsets of lung diseases, which subsets may actually require

very different treatments. Moreover, the markers may also be important in related diseases to the specific cancers, e.g., which affect similar tissues in non-malignant diseases, or have similar mechanisms of induction/maintenance. Metastatic processes or characteristics may also be targeted. Diagnostic and prognostic uses are made available, e.g., to subset related but distinct diseases, or to determine treatment strategy. The detection methods may be based upon nucleic acid, e.g., PCR or hybridization techniques, or protein, e.g., ELISA, imaging, IHC, etc. The diagnosis may be qualitative or quantitative, and may detect increases or decreases in expression levels.

Tables 1A-16 provide unigene cluster identification numbers for the nucleotide sequence of genes that exhibit increased or decreased expression in lung cancer samples. The tables also provide an exemplar accession number that provides a nucleotide sequence that is part of the unigene cluster. In Table 1A, genes marked as "target 1" or "target 2" are particularly useful as therapeutic targets. Genes marked as "target 3" are particularly useful as diagnostic markers. Genes marked as "chron" are upregulated in chronically diseased lung (e.g., emphysema, bronchitis, fibrosis) relative to lung tumors and normal tissue. In certain analyses, the ratio for the "chron" category was determined using the 70th percentile of chronically diseases lung samples divided by the 90th percentile of lung tumor samples divided by the 90th percentile of lung tumor samples divided by the 90th percentile of normal lung samples.

20

25

30

5

10

15

Definitions

The term "lung cancer protein" or "lung cancer polynucleotide" or "lung cancerassociated transcript" refers to nucleic acid and polypeptide polymorphic variants, alleles, mutants, and interspecies homologs that: (1) have a nucleotide sequence that has greater than about 60% nucleotide sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or greater nucleotide sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200, 500, 1000, or more nucleotides, to a nucleotide sequence of or associated with a unigene cluster of Tables 1A-16; (2) bind to antibodies, e.g., polyclonal antibodies, raised against an immunogen comprising an amino acid sequence encoded by a nucleotide sequence of or associated with a unigene cluster of Tables 1A-16, and conservatively modified variants thereof; (3) specifically hybridize under stringent hybridization conditions to a nucleic acid sequence, or the complement thereof of Tables 1A-16 and conservatively modified variants thereof; or (4)

WO 02/086443

PCT/US02/12476

Eve an amino acid sequence that has greater than about 60% amino acid sequence identity

have an amino acid sequence that has greater than about 60% amino acid sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or greater amino sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200, 500, 1000, or more amino acid, to an amino acid sequence encoded by a nucleotide sequence of or associated with a unigene cluster of Tables 1A-16. A polynucleotide or polypeptide sequence is typically from a mammal including, but not limited to, primate, e.g., human; rodent, e.g., rat, mouse, hamster; cow, pig, horse, sheep, or other mammal. A "lung cancer polypeptide" and a "lung cancer polynucleotide," include both naturally occurring or recombinant forms.

5

10

15

20

25

30

A "full length" lung cancer protein or nucleic acid refers to a lung cancer polypeptide or polynucleotide sequence, or a variant thereof, that contains the elements normally contained in one or more naturally occurring, wild type lung cancer polynucleotide or polypeptide sequences. The "full length" may be prior to, or after, various stages of post-translational processing or splicing, including alternative splicing.

"Biological sample" as used herein is a sample of biological tissue or fluid that contains nucleic acids or polypeptides, e.g., of a lung cancer protein, polynucleotide, or transcript. Such samples include, but are not limited to, tissue isolated from primates, e.g., humans, or rodents, e.g., mice, and rats. Biological samples may also include sections of tissues such as biopsy and autopsy samples, frozen sections taken for histologic purposes, archival materials, blood, plasma, serum, sputum, stool, tears, mucus, hair, skin, etc. Biological samples also include explants and primary and/or transformed cell cultures derived from patient tissues. A biological sample is typically obtained from a eukaryotic organism, most preferably a mammal such as a primate, e.g., chimpanzee or human; cow; dog; cat; a rodent, e.g., guinea pig, rat, mouse; rabbit; or other mammal; or a bird; reptile; fish. Livestock and domestic animals are of interest.

"Providing a biological sample" means to obtain a biological sample for use in methods described in this invention. Most often, this will be done by removing a sample of cells from an animal, but can also be accomplished by using previously isolated cells (e.g., isolated by another person, at another time, and/or for another purpose), or by performing the methods of the invention in vivo. Archival tissues or materials, having treatment or outcome history, will be particularly useful.

The terms "identical" or percent "identity," in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the

same or have a specified percentage of amino acid residues or nucleotides that are the same (e.g., about 60% identity, preferably 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region, when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using, e.g., a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters described below, or by manual alignment and visual inspection (see, e.g., NCBI web site http://www.ncbi.nlm.nih.gov/BLAST/ or the like). Such sequences are then said to be "substantially identical." This definition also refers to, or may be applied to, the complement of a test sequence. The definition also includes sequences that have deletions and/or insertions, substitutions, and naturally occurring, e.g., polymorphic or allelic variants, and man-made variants. As described below, the preferred algorithms can account for gaps and the like. Preferably, identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides in length.

For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Preferably, default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

A "comparison window", as used herein, includes reference to a segment of contiguous positions selected from the group consisting typically of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2:482, by the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity method of Pearson and Lipman (1988) Proc. Nat'l. Acad. Sci. USA 85:2444, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer

Group, 575 Science Dr., Madison, WI), or by manual alignment and visual inspection (see, e.g., Ausubel, et al. (eds. 1995 and supplements) <u>Current Protocols in Molecular Biology</u>.

5

10

15

20

25

30

Preferred examples of algorithms that are suitable for determining percent sequence identity and sequence similarity include the BLAST and BLAST 2.0 algorithms, which are described in Altschul, et al. (1977) Nuc. Acids Res. 25:3389-3402 and Altschul, et al. (1990) J. Mol. Biol. 215:403-410. BLAST and BLAST 2.0 are used, with the parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul, et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, e.g., for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.

The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin and Altschul (1993) <u>Proc. Nat'l. Acad. Sci. USA</u> 90:5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between

two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001. Log values may be negative large numbers, e.g., 5, 10, 20, 30, 40, 40, 70, 90, 110, 150, 170, etc.

5

10

15

20

25

30

An indication that two nucleic acid sequences are substantially identical is that the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the antibodies raised against the polypeptide encoded by the second nucleic acid. Thus, a polypeptide is typically substantially identical to a second polypeptide, e.g., where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two molecules or their complements hybridize to each other under stringent conditions. Yet another indication that two nucleic acid sequences are substantially identical is that the same primers can be used to amplify the sequences.

A "host cell" is a naturally occurring cell or a transformed cell that contains an expression vector and supports the replication or expression of the expression vector. Host cells may be cultured cells, explants, cells *in vivo*, and the like. Host cells may be prokaryotic cells such as *E. coli*, or eukaryotic cells such as yeast, insect, amphibian, or mammalian cells such as CHO, HeLa, and the like (see, e.g., the American Type Culture Collection catalog or web site, www.atcc.org).

The terms "isolated," "purified," or "biologically pure" refer to material that is substantially or essentially free from components that normally accompany it as found in its native state. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein or nucleic acid that is the predominant species present in a preparation is substantially purified. In particular, an isolated nucleic acid is separated from some open reading frames that naturally flank the gene and encode proteins other than protein encoded by the gene. The term "purified" in some embodiments denotes that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. Preferably, it means that the nucleic acid or protein is at least about 85% pure, more preferably at least 95% pure, and most preferably at least 99% pure. "Purify" or "purification" in other embodiments means removing at least one contaminant or component from the composition to be purified.

WO 02/086443

In this sense, purification does not require that the purified compound be homogeneous, e.g., 100% pure.

The terms "polypeptide," "peptide" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers, those containing modified residues, and non-naturally occurring amino acid polymer.

5

10

15

20

25

30

The term "amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function similarly to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Amino acid analogs refer to compounds that have the same basic chemical structure as a naturally occurring amino acid, e.g., an α carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs may have modified R groups (e.g., norleucine) or modified peptide backbones, but retain some basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refer to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that function similarly to another amino acid.

Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

"Conservatively modified variants" applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical or associated, e.g., naturally contiguous, sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode most proteins. For instance, the codons GCA, GCC, GCG, and GCU each encode the amino acid alanine. Thus, at each position where an alanine is specified by a codon, the codon can be altered to another of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are "silent variations," which are one species of

conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes silent variations of the nucleic acid. In certain contexts each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally similar molecule. Accordingly, a silent variation of a nucleic acid which encodes a polypeptide is implicit in a described sequence with respect to the expression product, but not necessarily with respect to actual probe sequences.

As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a "conservatively modified variant" where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention. Typically conservative substitutions include for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, Proteins (1984)).

Macromolecular structures such as polypeptide structures can be described in terms of various levels of organization. For a general discussion of this organization, see, e.g., Alberts, et al. (1994) Molecular Biology of the Cell (3rd ed.) and Cantor and Schimmel (1980) Biophysical Chemistry Part I: The Conformation of Biological Macromolecules. "Primary structure" refers to the amino acid sequence of a particular peptide. "Secondary structure" refers to locally ordered, three dimensional structures within a polypeptide. These structures are commonly known as domains. Domains are portions of a polypeptide that often form a compact unit of the polypeptide and are typically 25 to approximately 500 amino acids long. Typical domains are made up of sections of lesser organization such as stretches of β -sheet and α -helices. "Tertiary structure" refers to the complete three dimensional structure of a polypeptide monomer. "Quaternary structure" refers to the three dimensional structure formed, usually by the noncovalent association of independent tertiary units. Anisotropic terms are also known as energy terms.

"Nucleic acid" or "oligonucleotide" or "polynucleotide" or grammatical equivalents used herein means at least two nucleotides covalently linked together. Oligonucleotides are typically from about 5, 6, 7, 8, 9, 10, 12, 15, 25, 30, 40, 50 or more nucleotides in length, up to about 100 nucleotides in length. Nucleic acids and polynucleotides are a polymers of any length, including longer lengths, e.g., 200, 300, 500, 1000, 2000, 3000, 5000, 7000, 10,000, etc. A nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, nucleic acid analogs are included that may have at least one different linkage, e.g., phosphoramidate, phosphorothioate, phosphorodithioate, or Omethylphophoroamidite linkages (see Eckstein (1992) Oligonucleotides and Analogues: A Practical Approach Oxford University Press); and peptide nucleic acid backbones and linkages. Other analog nucleic acids include those with positive backbones; non-ionic backbones, and non-ribose backbones, including those described in U.S. Patent Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, in Sanghui and Cook, eds. Carbohydrate Modifications in Antisense Research, ASC Symposium Series 580. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids. Modifications of the ribose-phosphate backbone may be done for a variety of reasons, e.g., to increase the stability and half-life of such molecules in physiological environments or as probes on a biochip. Mixtures of naturally occurring nucleic acids and analogs can be made; alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.

5

10

15

20

25

30

Particularly preferred are peptide nucleic acids (PNA) which includes peptide nucleic acid analogs. These backbones are substantially non-ionic under neutral conditions, in contrast to the highly charged phosphodiester backbone of naturally occurring nucleic acids. This results in two advantages. First, the PNA backbone exhibits improved hybridization kinetics. PNAs have larger changes in the melting temperature (T_m) for mismatched versus perfectly matched basepairs. DNA and RNA typically exhibit a 2-4° C drop in T_m for an internal mismatch. With the non-ionic PNA backbone, the drop is closer to 7-9° C. Similarly, due to their non-ionic nature, hybridization of the bases attached to these backbones is relatively insensitive to salt concentration. In addition, PNAs are not degraded by cellular enzymes, and thus can be more stable.

The nucleic acids may be single stranded or double stranded, as specified, or contain portions of both double stranded or single stranded sequence. As will be appreciated by those in the art, the depiction of a single strand also defines the sequence of the complementary

WO 02/086443

PCT/US02/12476

strand; thus the sequences described herein also provide the complement of the sequence.

The nucleic acid may be DNA, both genomic and cDNA, RNA, or a hybrid, where the nucleic acid may contain combinations of deoxyribo- and ribo-nucleotides, and combinations of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine

of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine, isoguanine, etc. "Transcript" typically refers to a naturally occurring RNA, e.g., a pre-mRNA, hnRNA, or mRNA. As used herein, the term "nucleoside" includes nucleotides and nucleoside and nucleotide analogs, and modified nucleosides such as amino modified nucleosides. In addition, "nucleoside" includes non-naturally occurring analog structures. Thus, e.g., the individual units of a peptide nucleic acid, each containing a base, are referred to herein as a nucleoside.

5

10

15

20

25

30

A "label" or a "detectable moiety" is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, physiological, chemical, or other physical means. For example, useful labels include ³²P, fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins or other entities which can be made detectable, e.g., by incorporating a radiolabel into the peptide or used to detect antibodies specifically reactive with the peptide. The labels may be incorporated into the cancer nucleic acids, proteins, and antibodies. Many methods known in the art for conjugating the antibody to the label may be employed, including those methods described by Hunter, et al. (1962) Nature 144:945; David, et al. (1974) Biochemistry 13:1014-1021; Pain, et al. (1981) J. Immunol. Meth., 40:219-230; and Nygren (1982) J. Histochem. and Cytochem. 30:407-412.

An "effector" or "effector moiety" or "effector component" is a molecule that is bound (or linked, or conjugated), either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds, to an antibody. The "effector" can be a variety of molecules including, e.g., detection moieties including radioactive compounds, fluorescent compounds, an enzyme or substrate, tags such as epitope tags, a toxin; activatable moieties, a chemotherapeutic agent; a lipase; an antibiotic; or a radioisotope emitting "hard" e.g., beta radiation.

A "labeled nucleic acid probe or oligonucleotide" is one that is bound, either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds to a label such that the presence of the probe may be detected by detecting the presence of the label bound to the probe. Alternatively, method

using high affinity interactions may achieve the same results where one of a pair of binding partners binds to the other, e.g., biotin, streptavidin.

5

10

15

20

25

30

As used herein a "nucleic acid probe or oligonucleotide" is a nucleic acid capable of binding to a target nucleic acid of complementary sequence through one or more types of chemical bonds, usually through complementary base pairing, e.g., through hydrogen bond formation. As used herein, a probe may include natural (i.e., A, G, C, or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in a probe may be joined by a linkage other than a phosphodiester bond, preferably one that does not functionally interfere with hybridization. Thus, e.g., probes may be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages. Probes may bind target sequences lacking complete complementarity with the probe sequence depending upon the stringency of the hybridization conditions. The probes are preferably directly labeled, e.g., with isotopes, chromophores, lumiphores, chromogens, or indirectly labeled, e.g., with biotin to which a streptavidin complex may later bind. By assaying for the presence or absence of the probe, one can detect the presence or absence of the select sequence or subsequence. Diagnosis or prognosis may be based at the genomic level, or at the level of RNA or protein expression.

The term "recombinant" when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, e.g., recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all. By the term "recombinant nucleic acid" herein is meant nucleic acid, originally formed in vitro, in general, by the manipulation of nucleic acid, e.g., using polymerases and endonucleases, in a form not normally found in nature. In this manner, operably linkage of different sequences is achieved. Thus an isolated nucleic acid, in a linear form, or an expression vector formed in vitro by ligating DNA molecules that are not normally joined, are both considered recombinant for the purposes of this invention. It is understood that once a recombinant nucleic acid is made and reintroduced into a host cell or organism, it will replicate non-recombinantly, i.e., using the in vivo cellular machinery of the host cell rather than in vitro manipulations; however, such nucleic acids, once produced recombinantly, although subsequently replicated non-recombinantly, are still considered

recombinant for the purposes of the invention. Similarly, a "recombinant protein" is a protein made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid as depicted above.

The term "heterologous" when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not normally found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences, e.g., from unrelated genes arranged to make a new functional nucleic acid, e.g., a promoter from one source and a coding region from another source. Similarly, a heterologous protein will often refer to two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).

5

10

15

20

25

30

A "promoter" is typically an array of nucleic acid control sequences that direct transcription of a nucleic acid. As used herein, a promoter includes necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase II type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription. A "constitutive" promoter is a promoter that is active under most environmental and developmental conditions. An "inducible" promoter is a promoter that is active under environmental or developmental regulation. The term "operably linked" refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, e.g., wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.

An "expression vector" is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a particular nucleic acid in a host cell. The expression vector can be part of a plasmid, virus, or nucleic acid fragment. Typically, the expression vector includes a nucleic acid to be transcribed in operable linkage to a promoter.

The phrase "selectively (or specifically) hybridizes to" refers to the binding, duplexing, or hybridizing of a molecule selectively to a particular nucleotide sequence under stringent hybridization conditions when that sequence is present in a complex mixture (e.g., total cellular or library DNA or RNA).

The phrase "stringent hybridization conditions" refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acids, but to essentially no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at ٠5 higher temperatures. An extensive guide to the hybridization of nucleic acids is found in "Overview of principles of hybridization and the strategy of nucleic acid assays" in Tijssen (1993) <u>Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic</u> <u>Probes</u> (vol. 24) Elsevier. Generally, stringent conditions are selected to be about 5-10° C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength pH. The T_m is the temperature (under defined ionic strength, pH, and nucleic concentration) 10 at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at T_m, 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C for short probes (e.g., 15 10 to 50 nucleotides) and at least about 60° C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is typically at least two times background, preferably 10 times background hybridization. 20 Exemplary stringent hybridization conditions are often: 50% formamide, 5x SSC, and 1% SDS, incubating at 42° C, or, 5x SSC, 1% SDS, incubating at 65° C, with wash in 0.2x SSC, and 0.1% SDS at 65° C. For PCR, a temperature of about 36° C is typical for low stringency amplification, although annealing temperatures may vary between about 32° C and 48° C depending on primer length. For high stringency PCR amplification, a temperature of about 62° C is typical, although high stringency annealing temperatures can range from about 50° C 25 to about 65° C, depending on the primer length and specificity. Typical cycle conditions for both high and low stringency amplifications include a denaturation phase of 90° C - 95° C for 0.5 - 2 min., an annealing phase lasting 0.5 - 2 min., and an extension phase of about 72° C for 1 - 2 min. Protocols and guidelines for low and high stringency amplification reactions 30 are provided, e.g., in Innis, et al. (1990) PCR Protocols, A Guide to Methods and Applications.

Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This

occurs, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize under moderately stringent hybridization conditions. Exemplary "moderately stringent hybridization conditions" include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37° C, and a wash in 1X SSC at 45° C. A positive hybridization is at least twice background. Alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency. Additional guidelines for determining hybridization parameters are provided in numerous reference, e.g., Ausubel, et al. (ed.) Current Protocols in

Molecular Biology Lippincott.

The phrase "functional effects" in the context of assays for testing compounds that modulate activity of a lung cancer protein includes the determination of a parameter that is indirectly or directly under the influence of the lung cancer protein or nucleic acid, e.g., a physiological, enzymatic, functional, physical, or chemical effect, such as the ability to decrease lung cancer. It includes ligand binding activity; cell viability, cell growth on soft agar; anchorage dependence; contact inhibition and density limitation of growth; cellular proliferation; cellular transformation; growth factor or serum dependence; tumor specific marker levels; invasiveness into Matrigel; tumor growth and metastasis *in vivo*; mRNA and protein expression in cells undergoing metastasis, and other characteristics of lung cancer cells. "Functional effects" include *in vitro*, *in vivo*, and *ex vivo* activities.

By "determining the functional effect" is meant assaying for a compound that increases or decreases a parameter that is indirectly or directly under the influence of a lung cancer protein sequence, e.g., physiological, functional, enzymatic, physical, or chemical effects. Such functional effects can be measured by many means known to those skilled in the art, e.g., changes in spectroscopic characteristics (e.g., fluorescence, absorbance, refractive index), hydrodynamic (e.g., shape), chromatographic, or solubility properties for the protein, measuring inducible markers or transcriptional activation of the lung cancer protein; measuring binding activity or binding assays, e.g., binding to antibodies or other ligands, and measuring cellular proliferation. Determination of the functional effect of a compound on lung cancer can also be performed using lung cancer assays known to those of skill in the art such as an *in vitro* assays, e.g., cell growth on soft agar; anchorage dependence; contact inhibition and density limitation of growth; cellular proliferation; cellular transformation; growth factor or serum dependence; tumor specific marker levels; invasiveness into Matrigel; tumor growth and metastasis *in vivo*; mRNA and protein

expression in cells undergoing metastasis, and other characteristics of lung cancer cells. The functional effects can be evaluated by many means known to those skilled in the art, e.g., microscopy for quantitative or qualitative measures of alterations in morphological features, measurement of changes in RNA or protein levels for lung cancer-associated sequences, measurement of RNA stability, identification of downstream or reporter gene expression (CAT, luciferase, β -gal, GFP, and the like), e.g., via chemiluminescence, fluorescence, colorimetric reactions, antibody binding, inducible markers, and ligand binding assays.

5

10

15

20

25

30

"Inhibitors", "activators", and "modulators" of lung cancer polynucleotide and polypeptide sequences are used to refer to activating, inhibitory, or modulating molecules or compounds identified using in vitro and in vivo assays of lung cancer polynucleotide and polypeptide sequences. Inhibitors are compounds that, e.g., bind to, partially or totally block activity, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity or expression of lung cancer proteins, e.g., antagonists. Antisense or inhibitory nucleic acids may seem to inhibit expression and subsequent function of the protein. "Activators" are compounds that increase, open, activate, facilitate, enhance activation, sensitize, agonize, or up regulate lung cancer protein activity. Inhibitors, activators, or modulators also include genetically modified versions of lung cancer proteins, e.g., versions with altered activity, as well as naturally occurring and synthetic ligands, antagonists, agonists, antibodies, small chemical molecules and the like. Such assays for inhibitors and activators include, e.g., expressing the lung cancer protein in vitro, in cells, or cell membranes, applying putative modulator compounds, and then determining the functional effects on activity, as described above. Activators and inhibitors of lung cancer can also be identified by incubating lung cancer cells with the test compound and determining increases or decreases in the expression of 1 or more lung cancer proteins, e.g., 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50 or more lung cancer proteins, such as lung cancer proteins encoded by the sequences set out in Tables 1A-16.

Samples or assays comprising lung cancer proteins that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of inhibition. Control samples (untreated with inhibitors) are assigned a relative protein activity value of 100%. Inhibition of a polypeptide is achieved when the activity value relative to the control is about 80%, preferably 50%, more preferably 25-0%. Activation of a lung cancer polypeptide is achieved when the activity value relative to the control (untreated with activators) is 110%, more preferably 150%, more

WO 02/086443 PCT/US02/12476 preferably 200-500% (i.e., two to five fold higher relative to the control), more preferably 1000-3000% higher.

The phrase "changes in cell growth" refers to any change in cell growth and proliferation characteristics *in vitro* or *in vivo*, such as cell viability, formation of foci, anchorage independence, semi-solid or soft agar growth, changes in contact inhibition and density limitation of growth, loss of growth factor or serum requirements, changes in cell morphology, gaining or losing immortalization, gaining or losing tumor specific markers, ability to form or suppress tumors when injected into suitable animal hosts, and/or immortalization of the cell. See, e.g., Freshney (1994) <u>Culture of Animal Cells a Manual of Basic Technique</u> pp. 231-241 (3rd ed.).

"Tumor cell" refers to precancerous, cancerous, and normal cells in a tumor.

10

15

20

25

30

"Cancer cells," "transformed" cells, or "transformation" in tissue culture, refers to spontaneous or induced phenotypic changes that do not necessarily involve the uptake of new genetic material. Although transformation can arise from infection with a transforming virus and incorporation of new genomic DNA, or uptake of exogenous DNA, it can also arise spontaneously or following exposure to a carcinogen, thereby mutating an endogenous gene. Transformation is associated with phenotypic changes, such as immortalization of cells, aberrant growth control, nonmorphological changes, and/or malignancy (see, Freshney (1994) Culture of Animal Cells a Manual of Basic Technique (3rd ed.)).

"Antibody" refers to a polypeptide comprising a framework region from an immunoglobulin gene or fragments thereof that specifically binds and recognizes an antigen. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD, and IgE, respectively. Typically, the antigen-binding region of an antibody or its functional equivalent will be most critical in specificity and affinity of binding. See Paul, Fundamental Immunology.

An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light" (about 25 kD) and one "heavy" chain (about 50-70 kD). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible

for antigen recognition. The terms variable light chain (V_L) and variable heavy chain (V_H) refer to these light and heavy chains respectively.

5

10

15

20

25

30

Antibodies exist, e.g., as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases. Thus, e.g., pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)'₂, a dimer of Fab which itself is a light chain joined to V_H-C_H1 by a disulfide bond. The F(ab)'₂ may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab)'₂ dimer into an Fab' monomer. The Fab' monomer is essentially Fab with part of the hinge region (see Paul (ed. 1999) Fundamental Immunology (4th ed.). While various antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized *de novo* either chemically or by using recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized *de novo* using recombinant DNA methodologies (e.g., single chain Fv) or those identified using phage display libraries (see, e.g., McCafferty, et al. (1990) Nature 348:552-554).

For preparation of antibodies, e.g., recombinant, monoclonal, or polyclonal antibodies, many technique known in the art can be used (see, e.g., Kohler and Milstein (1975) Nature 256:495-497; Kozbor, et al. (1983) Immunology Today 4:72; Cole, et al. (1985), pp. 77-96 in Monoclonal Antibodies and Cancer Therapy; Coligan (1991 and supplements) Current Protocols in Immunology; Harlow and Lane (1988) Antibodies, A Laboratory Manual; and Goding (1986) Monoclonal Antibodies: Principles and Practice (2d ed.)). Techniques for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies. Alternatively, phage display technology can be used to identify antibodies and heteromeric Fab fragments that specifically bind to selected antigens (see, e.g., McCafferty, et al. (1990) Nature 348:552-554; Marks, et al. (1992) Biotechnology 10:779-783).

A "chimeric antibody" is an antibody molecule in which, e.g, (a) the constant region, or a portion thereof, is altered, replaced, or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function, and/or species, or an entirely different molecule which confers new properties to the chimeric antibody, e.g., an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the

variable region, or a portion thereof, is altered, replaced, or exchanged with a variable region having a different or altered antigen specificity.

Identification of lung cancer-associated sequences

5

10

15

20

25

30

In one aspect, the expression levels of genes are determined in different patient samples for which diagnosis information is desired, to provide expression profiles. An expression profile of a particular sample is essentially a "fingerprint" of the state of the sample; while two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is characteristic of the state of the cell. That is, normal tissue may be distinguished from cancerous or metastatic cancerous tissue, or metastatic cancerous tissue can be compared with tissue from surviving cancer patients. By comparing expression profiles of tissue in known different lung cancer states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. Molecular profiling may distinguish subtypes of a currently collective disease designation, e.g., different forms of lung cancer (chronic disease, adenocarcinoma, etc.)

The identification of sequences that are differentially expressed in lung cancer versus non-lung cancer tissue allows the use of this information in a number of ways. For example, a particular treatment regime may be evaluated: does a chemotherapeutic drug act to downregulate lung cancer, and thus tumor growth or recurrence, in a particular patient. Alternatively, a treatment step may induce other markers which may be used as targets to destroy tumor cells. Similarly, diagnosis and treatment outcomes may be done or confirmed by comparing patient samples with the known expression profiles. Malignant diseasemay be compared to non-malignant conditions. Metastatic tissue can also be analyzed to determine the stage of lung cancer in the tissue, or origin of primary tumor, e.g., metastasis from a remote primary site. Furthermore, these gene expression profiles (or individual genes) allow screening of drug candidates with an eye to mimicking or altering a particular expression profile; e.g., screening can be done for drugs that suppress the lung cancer expression profile. This may be done by making biochips comprising sets of the important lung cancer genes, which can then be used in these screens. PCR methods may be applied with selected primer pairs, and analysis may be of RNA or of genomic sequences. These methods can also be done on the protein basis; that is, protein expression levels of the lung cancer proteins can be evaluated for diagnostic purposes or to screen candidate agents. In addition, the lung cancer

nucleic acid sequences can be administered for gene therapy purposes, including the administration of antisense nucleic acids, or the lung cancer proteins (including antibodies and other modulators thereof) administered as therapeutic drugs or as protein or DNA vaccines.

5

10

15

20

25

30

Thus the present invention provides nucleic acid and protein sequences that are differentially expressed in lung cancer relative to normal tissues and/or non-malignant lung disease, or in different types of lung disease, herein termed "lung cancer sequences." As outlined below, lung cancer sequences include those that are up-regulated (i.e., expressed at a higher level) in lung cancer, as well as those that are down-regulated (i.e., expressed at a lower level). In a preferred embodiment, the lung cancer sequences are from humans; however, as will be appreciated by those in the art, lung cancer sequences from other organisms may be useful in animal models of disease and drug evaluation; thus, other lung cancer sequences are provided, from vertebrates, including mammals, including rodents (rats, mice, hamsters, guinea pigs, etc.), primates, farm animals (including sheep, goats, pigs, cows, horses, etc.) and pets (dogs, cats, etc.). Lung cancer sequences from other organisms may be obtained using the techniques outlined below.

Lung cancer sequences can include both nucleic acid and amino acid sequences. As will be appreciated by those in the art and is more fully outlined below, lung cancer nucleic acid sequences are useful in a variety of applications, including diagnostic applications, which will detect naturally occurring nucleic acids, as well as screening applications; e.g., biochips comprising nucleic acid probes or PCR microtiter plates with selected probes to the lung cancer sequences can be generated.

A lung cancer sequence can be initially identified by substantial nucleic acid and/or amino acid sequence homology to the lung cancer sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, e.g., using homology programs or hybridization conditions.

For identifying lung cancer-associated sequences, the lung cancer screen typically includes comparing genes identified in different tissues, e.g., normal and cancerous tissues, cancer and non-malignant conditions, non-malignant conditions and normal tissues, or tumor tissue samples from patients who have metastatic disease vs. non metastatic tissue. Other suitable tissue comparisons include comparing lung cancer samples with metastatic cancer samples from other cancers, such as, breast, other gastrointestinal cancers, prostate, ovarian,

etc. Samples of, non metastatic disease tissue and tissue undergoing metastasis are applied to biochips comprising nucleic acid probes. The samples are first microdissected, if applicable, and treated as is known in the art for the preparation of mRNA. Suitable biochips are commercially available, e.g., from Affymetrix, Santa Clara, CA. Gene expression profiles as described herein are generated and the data analyzed.

5

10

15

20

25

30

In one embodiment, the genes showing changes in expression as between normal and disease states are compared to genes expressed in other normal tissues, preferably normal lung, but also including, and not limited to colon, heart, brain, liver, breast, kidney, muscle, prostate, small intestine, large intestine, spleen, bone, and/or placenta. In a preferred embodiment, those genes identified during the lung cancer screen that are expressed in significant amounts in other tissues (e.g., essential organs) are removed from the profile, although in some embodiments, this is not necessary (e.g., where organs may be dispensible at a later stage of life). That is, when screening for drugs, it is usually preferable that the target expression be disease specific, to minimize possible side effects on other organs.

In a preferred embodiment, lung cancer sequences are those that are up-regulated in lung cancer; that is, the expression of these genes is higher in cancerous tissue than in normal lung or other tissue. "Up-regulation" as used herein means, when the ratio is presented as a number greater than one, that the ratio is greater than one, preferably 1.5 or greater, more preferably 2.0 or greater. Another embodiment is directed to sequences up-regulated in nonmalignant conditions relative to normal. Unigene cluster identification numbers and accession numbers herein are for the GenBank sequence database and the sequences of the accession numbers are hereby expressly incorporated by reference. GenBank is known in the art, see, e.g., Benson, DA, et al (1998) Nucleic Acids Research 26:1-7 and http://www.ncbi.nlm.nih.gov/. Sequences are also available in other databases, e.g., European Molecular Biology Laboratory (EMBL) and DNA Database of Japan (DDBJ). Another embodiment is directed to sequences up-regulated in non-malignant conditions relative to normal. In some situations, the sequences may be derived from assembly of available sequences or be predicted from genomic DNA using exon prediction algorithms, such as FGENESH (Salamov and Solovyev (2000) Genome Res. 10:516-522). In other situations, sequences have been derived from cloning and sequencing of isolated nucleic acids.

In another preferred embodiment, lung cancer sequences are those that are downregulated in the lung cancer; that is, the expression of these genes is lower in cancerous tissue

or normal lung or other tissue. "Down-regulation" as used herein means, when the ratio is presented as a number greater than one, that the ratio is greater than one, preferably 1.5 or greater, more preferably 2.0 or greater, or, when the ratio is presented as a number less than one, that the ratio is less than one, preferably 0.5 or less, more preferably 0.25 or less.

· 5

10

15

20

25

Informatics

The ability to identify genes that are over or under expressed in lung cancer can additionally provide high-resolution, high-sensitivity datasets which can be used in the areas of diagnostics, therapeutics, drug development, pharmacogenetics, protein structure, biosensor development, and other related areas. For example, the expression profiles can be used in diagnostic or prognostic evaluation of patients with lung cancer. Or as another example, subcellular toxicological information can be generated to better direct drug structure and activity correlation (see Anderson (1998) Pharmaceutical Proteomics: Targets,

Mechanism, and Function, paper presented at the IBC Proteomics conference, Coronado, CA (June 11-12, 1998)). Subcellular toxicological information can also be utilized in a biological sensor device to predict the likely toxicological effect of chemical exposures and likely tolerable exposure thresholds (see U.S. Patent No. 5,811,231). Similar advantages accrue from datasets relevant to other biomolecules and bioactive agents (e.g., nucleic acids, saccharides, lipids, drugs, and the like).

Thus, in another embodiment, the present invention provides a database that includes at least one set of assay data. The data contained in the database is acquired, e.g., using array analysis either singly or in a library format. The database can be in a form in which data can be maintained and transmitted, but is preferably an electronic database. The electronic database of the invention can be maintained on any electronic device allowing for the storage of and access to the database, such as a personal computer, but is preferably distributed on a

wide area network, such as the World Wide Web.

The focus of the present section on databases that include peptide sequence data is for clarity of illustration only. It will be apparent to those of skill in the art that similar databases can be assembled for assay data acquired using an assay of the invention.

30

The compositions and methods for identifying and/or quantitating the relative and/or absolute abundance of a variety of molecular and macromolecular species from a biological sample representing lung cancer, i.e., the identification of lung cancer-associated sequences described herein, provide an abundance of information, which can be correlated with

pathological conditions, predisposition to disease, drug testing, therapeutic monitoring, genedisease causal linkages, identification of correlates of immunity and physiological status, among others. Although the data generated from the assays of the invention is suited for manual review and analysis, in a preferred embodiment, data processing using high-speed computers is utilized.

5

10

15

20

25

30

An array of methods for indexing and retrieving biomolecular information is known in the art. For example, U.S. Patents 6,023,659 and 5,966,712 disclose a relational database system for storing biomolecular sequence information in a manner that allows sequences to be catalogued and searched according to one or more protein function hierarchies. U.S. Patent 5,953,727 discloses a relational database having sequence records containing information in a format that allows a collection of partial-length DNA sequences to be catalogued and searched according to association with one or more sequencing projects for obtaining full-length sequences from the collection of partial length sequences. U.S. Patent 5,706,498 discloses a gene database retrieval system for making a retrieval of a gene sequence similar to a sequence data item in a gene database based on the degree of similarity between a key sequence and a target sequence. U.S. Patent 5,538,897 discloses a method using mass spectroscopy fragmentation patterns of peptides to identify amino acid sequences in computer databases by comparison of predicted mass spectra with experimentally-derived mass spectra using a closeness-of-fit measure. U.S. Patent 5,926,818 discloses a multidimensional database comprising a functionality for multi-dimensional data analysis described as on-line analytical processing (OLAP), which entails the consolidation of projected and actual data according to more than one consolidation path or dimension. U.S. Patent 5,295,261 reports a hybrid database structure in which the fields of each database record are divided into two classes, navigational and informational data, with navigational fields stored in a hierarchical topological map which can be viewed as a tree structure or as the merger of two or more such tree structures.

See also Mount, et al. (2001) Bioinformatics; Durbin, et al. (eds., 1999) <u>Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids</u> (; Baxevanis and Oeullette (eds., 1998) <u>Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins</u>); Rashidi and Buehler (1999) <u>Bioinformatics: Basic Applications in Biological Science and Medicine</u>; Setubal, et al. (eds 1997) <u>Introduction to Computational Molecular Biology</u>; Misener and Krawetz (eds, 2000) <u>Bioinformatics: Methods and Protocols</u>; Higgins and Taylor (eds., 2000) <u>Bioinformatics: Sequence</u>, Structure, and Databanks: A Practical

WO 02/086443

Approach; Brown (2001) Bioinformatics: A Biologist's Guide to Biocomputing and the

Internet; Han and Kamber (2000) Data Mining: Concepts and Techniques (2000); and

Waterman (1995) Introduction to Computational Biology: Maps, Sequences, and Genomes.

The present invention provides a computer database comprising a computer and software for storing in computer-retrievable form assay data records cross-tabulated, e.g., with data specifying the source of the target-containing sample from which each sequence specificity record was obtained.

5

10

15

20

25

30

In an exemplary embodiment, at least one of the sources of target-containing sample is from a control tissue sample known to be free of pathological disorders. In a variation, at least one of the sources is a known pathological tissue specimen, e.g., a neoplastic lesion or another tissue specimen to be analyzed for lung cancer. In another variation, the assay records cross-tabulate one or more of the following parameters for each target species in a sample: (1) a unique identification code, which can include, e.g., a target molecular structure and/or characteristic separation coordinate (e.g., electrophoretic coordinates); (2) sample source; and (3) absolute and/or relative quantity of the target species present in the sample.

The invention also provides for the storage and retrieval of a collection of target data in a computer data storage apparatus, which can include magnetic disks, optical disks, magneto-optical disks, DRAM, SRAM, SGRAM, SDRAM, RDRAM, DDR RAM, magnetic bubble memory devices, and other data storage devices, including CPU registers and on-CPU data storage arrays. Typically, the target data records are stored as a bit pattern in an array of magnetic domains on a magnetizable medium or as an array of charge states or transistor gate states, such as an array of cells in a DRAM device (e.g., each cell comprised of a transistor and a charge storage area, which may be on the transistor). In one embodiment, the invention provides such storage devices, and computer systems built therewith, comprising a bit pattern encoding a protein expression fingerprint record comprising unique identifiers for at least 10 target data records cross-tabulated with target source.

When the target is a peptide or nucleic acid, the invention preferably provides a method for identifying related peptide or nucleic acid sequences, comprising performing a computerized comparison between a peptide or nucleic acid sequence assay record stored in or retrieved from a computer storage device or database and at least one other sequence. The comparison can include a sequence analysis or comparison algorithm or computer program embodiment thereof (e.g., FASTA, TFASTA, GAP, BESTFIT) and/or the comparison may

be of the relative amount of a peptide or nucleic acid sequence in a pool of sequences determined from a polypeptide or nucleic acid sample of a specimen.

The invention also preferably provides a magnetic disk, such as an IBM-compatible (DOS, Windows, Windows95/98/2000, Windows NT, OS/2) or other format (e.g., Linux, SunOS, Solaris, AIX, SCO Unix, VMS, MV, Macintosh, etc.) floppy diskette or hard (fixed, Winchester) disk drive, comprising a bit pattern encoding data from an assay of the invention in a file format suitable for retrieval and processing in a computerized sequence analysis, comparison, or relative quantitation method.

5

10

15

20

25

30

The invention also provides a network, comprising a plurality of computing devices linked via a data link, such as an Ethernet cable (coax or 10BaseT), telephone line, ISDN line, wireless network, optical fiber, or other suitable signal transmission medium, whereby at least one network device (e.g., computer, disk array, etc.) comprises a pattern of magnetic domains (e.g., magnetic disk) and/or charge domains (e.g., an array of DRAM cells) composing a bit pattern encoding data acquired from an assay of the invention.

The invention also provides a method for transmitting assay data that includes generating an electronic signal on an electronic communications device, such as a modem, ISDN terminal adapter, DSL, cable modem, ATM switch, or the like, wherein the signal includes (in native or encrypted format) a bit pattern encoding data from an assay or a database comprising a plurality of assay results obtained by the method of the invention.

In a preferred embodiment, the invention provides a computer system for comparing a query target to a database containing an array of data structures, such as an assay result obtained by the method of the invention, and ranking database targets based on the degree of identity and gap weight to the target data. A central processor is preferably initialized to load and execute the computer program for alignment and/or comparison of the assay results.

Data for a query target is entered into the central processor via an I/O device. Execution of the computer program results in the central processor retrieving the assay data from the data file, which comprises a binary description of an assay result.

The target data or record and the computer program can be transferred to secondary memory, which is typically random access memory (e.g., DRAM, SRAM, SGRAM, or SDRAM). Targets are ranked according to the degree of correspondence between a selected assay characteristic (e.g., binding to a selected affinity moiety) and the same characteristic of the query target and results are output via an I/O device. For example, a central processor can be a conventional computer (e.g., Intel Pentium, PowerPC, Alpha, PA-8000, SPARC,

WO 02/086443
MIPS 4400, MIPS 10000, VAX, etc.); a program can be a commercial or public domain molecular biology software package (e.g., UWGCG Sequence Analysis Software, Darwin); a data file can be an optical or magnetic disk, a data server, a memory device (e.g., DRAM, SRAM, SGRAM, SDRAM, EPROM, bubble memory, flash memory, etc.); an I/O device can be a terminal comprising a video display and a keyboard, a modem, an ISDN terminal adapter, an Ethernet port, a punched card reader, a magnetic strip reader, or other suitable I/O device.

The invention also preferably provides the use of a computer system, such as that described above, which comprises: (1) a computer; (2) a stored bit pattern encoding a collection of peptide sequence specificity records obtained by the methods of the invention, which may be stored in the computer; (3) a comparison target, such as a query target; and (4) a program for alignment and comparison, typically with rank-ordering of comparison results on the basis of computed similarity values.

Characteristics of lung cancer-associated proteins

5

10

15

20

25

30

Lung cancer proteins of the present invention may be classified as secreted proteins, transmembrane proteins or intracellular proteins. In one embodiment, the lung cancer protein is an intracellular protein. Intracellular proteins may be found in the cytoplasm and/or in the nucleus. Intracellular proteins are involved in all aspects of cellular function and replication (including, e.g., signaling pathways); aberrant expression of such proteins often results in unregulated or disregulated cellular processes (see, e.g., Alberts (ed. 1994) Molecular Biology of the Cell (3d ed.). For example, many intracellular proteins have enzymatic activity such as protein kinase activity, protein phosphatase activity, protease activity, nucleotide cyclase activity, polymerase activity and the like. Intracellular proteins also serve as docking proteins that are involved in organizing complexes of proteins, or targeting proteins to various subcellular localizations, and are involved in maintaining the structural integrity of organelles.

An increasingly appreciated concept in characterizing proteins is the presence in the proteins of one or more structural motifs for which defined functions have been attributed. In addition to the highly conserved sequences found in the enzymatic domain of proteins, highly conserved sequences have been identified in proteins that are involved in protein-protein interaction. For example, Src-homology-2 (SH2) domains bind tyrosine-phosphorylated targets in a sequence dependent manner. PTB domains, which are distinct from SH2

domains, also bind tyrosine phosphorylated targets. SH3 domains bind to proline-rich targets. In addition, PH domains, tetratricopeptide repeats and WD domains to name only a few, have been shown to mediate protein-protein interactions. Some of these may also be involved in binding to phospholipids or other second messengers. As will be appreciated by one of ordinary skill in the art, these motifs can be identified on the basis of amino acid sequence; thus, an analysis of the sequence of proteins may provide insight into both the enzymatic potential of the molecule and/or molecules with which the protein may associate. One useful database is Pfam (protein families), which is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains. Versions are available via the internet from Washington University in St. Louis, the Sanger Center in England, and the Karolinska Institute in Sweden (see, e.g., Bateman, et al (2000) Nuc. Acids Res. 28:263-266; Sonnhammer, et al. (1997) Proteins 28:405-420; Bateman, et al. (1999) Nuc. Acids Res. 27:260-262; and Sonnhammer, et al. (1998) Nuc. Acids Res. 26:320-322).

In another embodiment, the lung cancer sequences are transmembrane proteins. Transmembrane proteins are molecules that span a phospholipid bilayer of a cell. They may have an intracellular domain, an extracellular domain, or both. The intracellular domains of such proteins may have a number of functions including those already described for intracellular proteins. For example, the intracellular domain may have enzymatic activity and/or may serve as a binding site for additional proteins. Frequently the intracellular domain of transmembrane proteins serves both roles. For example certain receptor tyrosine kinases have both protein kinase activity and SH2 domains. In addition, autophosphorylation of tyrosines on the receptor molecule itself, creates binding sites for additional SH2 domain containing proteins.

Transmembrane proteins may contain from one to many transmembrane domains. For example, receptor tyrosine kinases, certain cytokine receptors, receptor guanylyl cyclases and receptor serine/threonine protein kinases contain a single transmembrane domain. However, various other proteins including channels, pumps, and adenylyl cyclases contain numerous transmembrane domains. Many important cell surface receptors such as G protein coupled receptors (GPCRs) are classified as "seven transmembrane domain" proteins, as they contain 7 membrane spanning regions. Characteristics of transmembrane domains include approximately 17 consecutive hydrophobic amino acids that may be followed by charged amino acids. Therefore, upon analysis of the amino acid sequence of a particular protein, the

WO 02/086443

PCT/US02/12476
localization and number of transmembrane domains within the protein may be predicted (see, e.g., PSORT web site http://psort.nibb.ac.jp/).

5

10

15

20

25

30

The extracellular domains of transmembrane proteins are diverse; however, conserved motifs are found repeatedly among various extracellular domains. Conserved structure and/or functions have been ascribed to different extracellular motifs. Many extracellular domains are involved in binding to other molecules. In one aspect, extracellular domains are found on receptors. Factors that bind the receptor domain include circulating ligands, which may be peptides, proteins, or small molecules such as adenosine and the like. For example, growth factors such as EGF, FGF, and PDGF are circulating growth factors that bind to their cognate receptors to initiate a variety of cellular responses. Other factors include cytokines, mitogenic factors, hormones, neurotrophic factors and the like. Extracellular domains also bind to cell-associated molecules. In this respect, they may mediate cell-cell interactions. Cell-associated ligands can be tethered to the cell, e.g., via a glycosylphosphatidylinositol (GPI) anchor, or may themselves be transmembrane proteins. Extracellular domains may also associate with the extracellular matrix and contribute to the maintenance of the cell structure.

Lung cancer proteins that are transmembrane are particularly preferred in the present invention as they are readily accessible targets for extracellular immunotherapeutics, as are described herein. In addition, as outlined below, transmembrane proteins can be also useful in imaging modalities. Antibodies may be used to label such readily accessible proteins in situ or in histological analysis. Alternatively, antibodies can also label intracellular proteins, in which case analytical samples are typically permeablized to provide access to intracellular proteins. In addition, some membrane proteins can be processed to release a soluble protein, or to expose a residual fragment. Released soluble proteins may be useful diagnostic markers, processed residual protein fragments may be useful lung markers of disease.

It will also be appreciated by those in the art that a transmembrane protein can be made soluble by removing transmembrane sequences, e.g., through recombinant methods. Furthermore, transmembrane proteins that have been made soluble can be made to be secreted through recombinant means by adding an appropriate signal sequence.

In another embodiment, the lung cancer proteins are secreted proteins; the secretion of which can be either constitutive or regulated. These proteins may have a signal peptide or signal sequence that targets the molecule to the secretory pathway. Secreted proteins are involved in numerous physiological events; e.g., if circulating, they often serve to transmit

signals to various other cell types. The secreted protein may function in an autocrine manner (acting on the cell that secreted the factor), a paracrine manner (acting on cells in close proximity to the cell that secreted the factor), an endocrine manner (acting on cells at a distance, e.g., secretion into the blood stream), or exocrine (secretion, e.g., through a duct or to adjacent epithelial surface as sweat glands, sebaceous glands, pancreatic ducts, lacrimal glands, mammary glands, sax producing glands of the ear, etc.). Thus secreted molecules often find use in modulating or altering numerous aspects of physiology. Lung cancer proteins that are secreted proteins are particularly preferred in the present invention as they serve as good targets for diagnostic markers, e.g., for blood, plasma, serum, or stool tests. Those which are enzymes may be antibody or small molecule targets. Others may be useful as vaccine targets, e.g., via CTL mechanisms.

Use of lung cancer nucleic acids

5

10

15

20

25

30

As described above, lung cancer sequence is initially identified by substantial nucleic acid and/or amino acid sequence homology or linkage to the lung cancer sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions. Typically, linked sequences on a mRNA are found on the same molecule.

The lung cancer nucleic acid sequences of the invention, e.g., the sequences in Tables 1A-16, can be fragments of larger genes, i.e., they are nucleic acid segments. "Genes" in this context includes coding regions, non-coding regions, and mixtures of coding and non-coding regions. Accordingly, as will be appreciated by those in the art, using the sequences provided herein, extended sequences, in either direction, of the lung cancer genes can be obtained, using techniques well known in the art for cloning either longer sequences or the full length sequences; see Ausubel, et al., *supra*. Much can be done by informatics and many sequences can be clustered to include multiple sequences corresponding to a single gene, e.g., systems such as UniGene (see, http://www.ncbi.nlm.nih.gov/UniGene/).

Once a lung cancer nucleic acid is identified, it can be cloned and, if necessary, its constituent parts recombined to form the entire lung cancer nucleic acid coding regions or the entire mRNA sequence. Once isolated from its natural source, e.g., contained within a plasmid or other vector or excised therefrom as a linear nucleic acid segment, the recombinant lung cancer nucleic acid can be further-used as a probe to identify and isolate

other lung cancer nucleic acids, e.g., extended coding regions. It can also be used as a "precursor" nucleic acid to make modified or variant lung cancer nucleic acids and proteins.

The lung cancer nucleic acids of the present invention are used in several ways. In a first embodiment, nucleic acid probes to the lung cancer nucleic acids are made and attached to biochips to be used in screening and diagnostic methods, as outlined below, or for administration, e.g., for gene therapy, RNAi, vaccine, and/or antisense applications. Alternatively, the lung cancer nucleic acids that include coding regions of lung cancer proteins can be put into expression vectors for the expression of lung cancer proteins, again for screening purposes or for administration to a patient.

5

10

15

20

25

30

In a preferred embodiment, nucleic acid probes to lung cancer nucleic acids (both the nucleic acid sequences outlined in the figures and/or the complements thereof) are made. The nucleic acid probes attached to the biochip are designed to be substantially complementary to the lung cancer nucleic acids, i.e., the target sequence (either the target sequence of the sample or to other probe sequences, e.g., in sandwich assays), such that hybridization of the target sequence and the probes of the present invention occurs. As outlined below, this complementarity need not be perfect; there may be any number of base pair mismatches which will interfere with hybridization between the target sequence and the single stranded nucleic acids of the present invention. However, if the number of mutations is so great that no hybridization can occur under even the least stringent of hybridization conditions, the sequence is not a complementary target sequence. Thus, by "substantially complementary" herein is meant that the probes are sufficiently complementary to the target sequences to hybridize under appropriate reaction conditions, particularly high stringency conditions, as outlined herein.

A nucleic acid probe is generally single stranded but can be partially single and partially double stranded. The strandedness of the probe is dictated by the structure, composition, and properties of the target sequence. In general, the nucleic acid probes range from about 8 to about 100 bases long, with from about 10 to about 80 bases being preferred, and from about 30 to about 50 bases being particularly preferred. That is, generally complements of ORFs or whole genes are not used. In some embodiments, nucleic acids of lengths up to hundreds of bases can be used.

In a preferred embodiment, more than one probe per sequence is used, with either overlapping probes or probes to different sections of the target being used. That is, two, three, four or more probes, with three being preferred, are used to build in a redundancy for a

particular target. The probes can be overlapping (i.e., have some sequence in common), or separate. In some cases, PCR primers may be used to amplify signal for higher sensitivity.

5

10

15

20

25

30

As will be appreciated by those in the art, nucleic acids can be attached or immobilized to a solid support in a wide variety of ways. By "immobilized" and grammatical equivalents herein is meant the association or binding between the nucleic acid probe and the solid support is sufficient to be stable under the conditions of binding, washing, analysis, and removal as outlined below. The binding can typically be covalent or non-covalent. By "non-covalent binding" and grammatical equivalents herein is typically meant one or more of electrostatic, hydrophilic, and hydrophobic interactions. Included in non-covalent binding is the covalent attachment of a molecule, such as, streptavidin to the support and the non-covalent binding of the biotinylated probe to the streptavidin. By "covalent binding" and grammatical equivalents herein is meant that the two moieties, the solid support and the probe, are attached by at least one bond, including sigma bonds, pi bonds and coordination bonds. Covalent bonds can be formed directly between the probe and the solid support or can be formed by a cross linker or by inclusion of a specific reactive group on either the solid support or the probe or both molecules. Immobilization may also involve a combination of covalent and non-covalent interactions.

In general, the probes are attached to a biochip in a wide variety of ways, as will be appreciated by those in the art. As described herein, the nucleic acids can either be synthesized first, with subsequent attachment to the biochip, or can be directly synthesized on the biochip.

The biochip comprises a suitable solid substrate. By "substrate" or "solid support" or other grammatical equivalents herein is meant a material that can be modified for the attachment or association of the nucleic acid probes and is amenable to at least one detection method. Often the substrate may contain discrete individual sites appropriate for ndivitual partitioning and identification. As will be appreciated by those in the art, the number of possible substrates are very large, and include, but are not limited to, glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, Teflon, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silica-based materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, etc. In general, the substrates allow optical detection and do not appreciably fluoresce. A preferred substrate is described in US application entitled Reusable Low Fluorescent Plastic Biochip, U.S.

WO 02/086443 PCT/US02/12476 Application Serial No. 09/270,214, filed March 15, 1999, herein incorporated by reference in its entirety.

Generally the substrate is planar, although as will be appreciated by those in the art, other configurations of substrates may be used as well. For example, the probes may be placed on the inside surface of a tube, for flow-through sample analysis to minimize sample volume. Similarly, the substrate may be flexible, such as a flexible foam, including closed cell foams made of particular plastics.

5

10

15

20

25

30

In a preferred embodiment, the surface of the biochip and the probe may be derivatized with chemical functional groups for subsequent attachment of the two. Thus, e.g., the biochip is derivatized with a chemical functional group including, but not limited to, amino groups, carboxy groups, oxo groups and thiol groups, with amino groups being particularly preferred. Using these functional groups, the probes can be attached using functional groups on the probes. For example, nucleic acids containing amino groups can be attached to surfaces comprising amino groups, e.g., using linkers as are known in the art; e.g., homo-or hetero-bifunctional linkers as are well known (see 1994 Pierce Chemical Company catalog, technical section on cross-linkers, pages 155-200). In addition, in some cases, additional linkers, such as alkyl groups (including substituted and heteroalkyl groups) may be used.

In this embodiment, oligonucleotides are synthesized, and then attached to the surface of the solid support. Either the 5' or 3' terminus may be attached to the solid support, or attachment may be via linkage to an internal nucleoside.

In another embodiment, the immobilization to the solid support may be very strong, yet non-covalent. For example, biotinylated oligonucleotides can be made, which bind to surfaces covalently coated with streptavidin, resulting in attachment.

Alternatively, the oligonucleotides may be synthesized on the surface, as is known in the art. For example, photoactivation techniques utilizing photopolymerization compounds and techniques are used. In a preferred embodiment, the nucleic acids can be synthesized *in situ*, using known photolithographic techniques, such as those described in WO 95/25116; WO 95/35505; U.S. Patent Nos. 5,700,637 and 5,445,934; and references cited within, all of which are expressly incorporated by reference; these methods of attachment form the basis of the Affymetrix GeneChipTM technology.

Often, amplification-based assays are performed to measure the expression level of lung cancer-associated sequences. These assays are typically performed in conjunction with

reverse transcription. In such assays, a lung cancer-associated nucleic acid sequence acts as a template in an amplification reaction (e.g., Polymerase Chain Reaction, or PCR). In a quantitative amplification, the amount of amplification product will be proportional to the amount of template in the original sample. Comparison to appropriate controls provides a measure of the amount of lung cancer-associated RNA. Methods of quantitative amplification are well known to those of skill in the art. Detailed protocols for quantitative PCR are provided, e.g., in Innis, et al. (1990) PCR Protocols, A Guide to Methods and Applications.

In some embodiments, a TaqMan based assay is used to measure expression. TaqMan based assays use a fluorogenic oligonucleotide probe that contains a 5' fluorescent dye and a 3' quenching agent. The probe hybridizes to a PCR product, but cannot itself be extended due to a blocking agent at the 3' end. When the PCR product is amplified in subsequent cycles, the 5' nuclease activity of the polymerase, e.g., AmpliTaq, results in the cleavage of the TaqMan probe. This cleavage separates the 5' fluorescent dye and the 3' quenching agent, thereby resulting in an increase in fluorescence as a function of amplification (see, e.g., literature provided by Perkin-Elmer, e.g., www2.perkin-elmer.com).

Other suitable amplification methods include, but are not limited to, ligase chain reaction (LCR) (see Wu and Wallace (1989) Genomics 4:560, Landegren, et al. (1988) Science 241:1077, and Barringer, et al. (1990) Gene 89:117), transcription amplification (Kwoh, et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173), self-sustained sequence replication (Guatelli, et al. (1990) Proc. Nat. Acad. Sci. USA 87:1874), dot PCR, and linker adapter PCR, etc.

Expression of lung cancer proteins from nucleic acids

5

10

15

20

25

30

In a preferred embodiment, lung cancer nucleic acids, e.g., encoding lung cancer proteins, are used to make a variety of expression vectors to express lung cancer proteins which can then be used in screening assays, as described below. Expression vectors and recombinant DNA technology are well known to those of skill in the art (see, e.g., Ausubel, supra, and Fernandez and Hoeffler (eds 1999) Gene Expression Systems) and are used to express proteins. The expression vectors may be either self-replicating extrachromosomal vectors or vectors which integrate into a host genome. Generally, these expression vectors include transcriptional and translational regulatory nucleic acid operably linked to the nucleic acid encoding the lung cancer protein. The term "control sequences" refers to DNA

sequences used for the expression of an operably linked coding sequence in a particular host organism. Control sequences that are suitable for prokaryotes, e.g., include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

5

10

15

20

25

30

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is typically accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. Transcriptional and translational regulatory nucleic acid will generally be appropriate to the host cell used to express the lung cancer protein. Numerous types of appropriate expression vectors, and suitable regulatory sequences are known in the art for a variety of host cells.

In general, transcriptional and translational regulatory sequences may include, but are not limited to, promoter sequences, ribosomal binding sites, transcriptional start and stop sequences, translational start and stop sequences, and enhancer or activator sequences. In a preferred embodiment, the regulatory sequences include a promoter and transcriptional start and stop sequences.

Promoter sequences may be either constitutive or inducible promoters. The promoters may be either naturally occurring promoters or hybrid promoters. Hybrid promoters, which combine elements of more than one promoter, are also known in the art, and are useful in the present invention.

In addition, an expression vector may comprise additional elements. For example, the expression vector may have two replication systems, thus allowing it to be maintained in two organisms, e.g., in mammalian or insect cells for expression and in a prokaryotic host for cloning and amplification. Furthermore, for integrating expression vectors, the expression vector often contains at least one sequence homologous to the host cell genome, and preferably two homologous sequences which flank the expression construct. The integrating

vector may be directed to a specific locus in the host cell by selecting the appropriate homologous sequence for inclusion in the vector. Constructs for integrating vectors are well known in the art (e.g., Fernandez and Hoeffler, *supra*).

In addition, in a preferred embodiment, the expression vector contains a selectable marker gene to allow the selection of transformed host cells. Selection genes are well known in the art and will vary with the host cell used.

5

10

15

20

25

30

The lung cancer proteins of the present invention are usually produced by culturing a host cell transformed with an expression vector containing nucleic acid encoding a lung cancer protein, under the appropriate conditions to induce or cause expression of the lung cancer protein. Conditions appropriate for lung cancer protein expression will vary with the choice of the expression vector and the host cell, and will be easily ascertained by one skilled in the art through routine experimentation or optimization. For example, the use of constitutive promoters in the expression vector will require optimizing the growth and proliferation of the host cell, while the use of an inducible promoter requires the appropriate growth conditions for induction. In addition, in some embodiments, the timing of the harvest is important. For example, the baculoviral systems used in insect cell expression are lytic viruses, and thus harvest time selection can be crucial for product yield.

Appropriate host cells include yeast, bacteria, archaebacteria, fungi, and insect and animal cells, including mammalian cells. Of particular interest are *Saccharomyces cerevisiae* and other yeasts, *E. coli*, *Bacillus subtilis*, Sf9 cells, C129 cells, 293 cells, *Neurospora*, BHK, CHO, COS, HeLa cells, HUVEC (human umbilical vein endothelial cells), THP1 cells (a macrophage cell line) and various other human cells and cell lines.

In a preferred embodiment, the lung cancer proteins are expressed in mammalian cells. Mammalian expression systems are also known in the art, and include retroviral and adenoviral systems. Of particular use as mammalian promoters are the promoters from mammalian viral genes, since the viral genes are often highly expressed and have a broad host range. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter, herpes simplex virus promoter, and the CMV promoter (see, e.g., Fernandez and Hoeffler, *supra*). Typically, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. Examples of transcription terminator and polyadenylation signals include those derived form SV40.

The methods of introducing exogenous nucleic acid into mammalian hosts, as well as other hosts, is well known in the art, and will vary with the host cell used. Techniques include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, viral infection, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

5

10

15

20

25

30

In a preferred embodiment, lung cancer proteins are expressed in bacterial systems. Promoters from bacteriophage may also be used and are known in the art. In addition, synthetic promoters and hybrid promoters are also useful; e.g., the tac promoter is a hybrid of the trp and lac promoter sequences. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. In addition to a functioning promoter sequence, an efficient ribosome binding site is desirable. The expression vector may also include a signal peptide sequence that provides for secretion of the lung cancer protein in bacteria. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). The bacterial expression vector may also include a selectable marker gene to allow for the selection of bacterial strains that have been transformed. Suitable selection genes include genes which render the bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin, neomycin and tetracycline. Selectable markers also include biosynthetic genes, such as those in the histidine, tryptophan and leucine biosynthetic pathways. These components are assembled into expression vectors. Expression vectors for bacteria are well known in the art, and include vectors for Bacillus subtilis, E. coli, Streptococcus cremoris, and Streptococcus lividans, among others (e.g., Fernandez and Hoeffler, supra). The bacterial expression vectors are transformed into bacterial host cells using techniques well known in the art, such as calcium chloride treatment, electroporation, and others.

In one embodiment, lung cancer proteins are produced in insect cells. Expression vectors for the transformation of insect cells, and in particular, baculovirus-based expression vectors, are well known in the art.

In a preferred embodiment, lung cancer protein is produced in yeast cells. Yeast expression systems are well known in the art, and include expression vectors for Saccharomyces cerevisiae, Candida albicans and C. maltosa, Hansenula polymorpha,

Kluyveromyces fragilis and K. lactis, Pichia guillerimondii, and P. pastoris, Schizosaccharomyces pombe, and Yarrowia lipolytica.

The lung cancer protein may also be made as a fusion protein, using techniques well known in the art. Thus, e.g., for the creation of monoclonal antibodies, if the desired epitope is small, the lung cancer protein may be fused to a carrier protein to form an immunogen. Alternatively, the lung cancer protein may be made as a fusion protein to increase expression for affinity purification purposes, or for other reasons. For example, when the lung cancer protein is a lung cancer peptide, the nucleic acid encoding the peptide may be linked to other nucleic acid for expression purposes.

In a preferred embodiment, the lung cancer protein is purified or isolated after expression. Lung cancer proteins may be isolated or purified in a variety of appropriate ways. Standard purification methods include electrophoretic, molecular, immunological and chromatographic techniques, including ion exchange, hydrophobic, affinity, and reverse-phase HPLC chromatography, and chromatofocusing. For example, the lung cancer protein may be purified using a standard anti-lung cancer protein antibody column. Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, are also useful. For general guidance in suitable purification techniques, see Scopes (1982) Protein Purification. The degree of purification necessary will vary depending on the use of the lung cancer protein. In some instances no purification will be necessary.

Once expressed and purified if necessary, the lung cancer proteins and nucleic acids are useful in a number of applications. They may be used as immunoselection reagents, as vaccine reagents, as screening agents, therapeutic entities, for production of antibodies, as transcription or translation inhibitors, etc.

Variants of lung cancer proteins

5

10

15

20

25

30

In one embodiment, the lung cancer proteins are derivative or variant lung cancer proteins as compared to the wild-type sequence. That is, as outlined more fully below, the derivative lung cancer peptide will often contain at least one amino acid substitution, deletion or insertion, with amino acid substitutions being particularly preferred. The amino acid substitution, insertion or deletion may occur at a particular residue within the lung cancer peptide.

Also included within one embodiment of lung cancer proteins of the present invention are amino acid sequence variants. These variants typically fall into one or more of three

classes: substitutional, insertional or deletional variants. These variants ordinarily are prepared by site specific mutagenesis of nucleotides in the DNA encoding the lung cancer protein, using cassette or PCR mutagenesis or other techniques, to produce DNA encoding the variant, and thereafter expressing the DNA in recombinant cell culture as outlined above. However, variant lung cancer protein fragments having up to about 100-150 residues may be prepared by *in vitro* synthesis. Amino acid sequence variants are characterized by the predetermined nature of the variation, a feature that sets them apart from naturally occurring allelic or interspecies variation of the lung cancer protein amino acid sequence. The variants typically exhibit a similar qualitative biological activity as the naturally occurring analogue, although variants can also be selected which have modified characteristics as will be more fully outlined below.

5

10

15

20

25

30

While the site or region for introducing an amino acid sequence variation is often predetermined, the mutation per se need not be predetermined. For example, in order to optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed lung cancer variants screened for the optimal combination of desired activity. Techniques exist for making substitution mutations at predetermined sites in DNA having a known sequence, e.g., M13 primer mutagenesis and PCR mutagenesis. Screening of mutants is often done using assays of lung cancer protein activities.

Amino acid substitutions are typically of single residues; insertions usually will be on the order of from about 1 to 20 amino acids, although considerably larger insertions may be occasionally tolerated. Deletions generally range from about 1 to about 20 residues, although in some cases deletions may be much larger.

Substitutions, deletions, insertions or any combination thereof may be used to arrive at a final derivative. Generally these changes are done on a few amino acids to minimize the alteration of the molecule. Larger changes may be tolerated in certain circumstances. When small alterations in the characteristics of a lung cancer protein are desired, substitutions are generally made in accordance with the amino acid substitution chart provided in the definition section.

Variants typically exhibit essentially the same qualitative biological activity and will elicit the same immune response as a naturally-occurring analog, although variants also are selected to modify the characteristics of lung cancer proteins as needed. Alternatively, the

variant may be designed or reorganized such that a biological activity of the lung cancer protein is altered. For example, glycosylation sites may be added, altered, or removed.

5

10

15

20

25

30

Covalent modifications of lung cancer polypeptides are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of a lung cancer polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N-or C-terminal residues of a lung cancer polypeptide. Derivatization with bifunctional agents is useful, for instance, for crosslinking lung cancer polypeptides to a water-insoluble support matrix or surface for use in a method for purifying anti-lung cancer polypeptide antibodies or screening assays, as is more fully described below. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, e.g., esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-((p-azidophenyl)dithio)propioimidate.

Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of serinyl, threonyl or tyrosyl residues, methylation of the γ-amino groups of lysine, arginine, and histidine side chains (Creighton (1983) Proteins: Structure and Molecular Properties, pp. 79-86), acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.

Another type of covalent modification of the lung cancer polypeptide encompassed by this invention is an altered native glycosylation pattern of the polypeptide. "Altering the native glycosylation pattern" is intended herein to mean adding to or deleting one or more carbohydrate moieties of a native sequence lung cancer polypeptide. Glycosylation patterns can be altered in many ways. For example the use of different cell types to express lung cancer-associated sequences can result in different glycosylation patterns.

Addition of glycosylation sites to lung cancer polypeptides may also be accomplished by altering the amino acid sequence thereof. The alteration may be made, e.g., by the addition of, or substitution by, one or more serine or threonine residues to the native sequence lung cancer polypeptide (for O-linked glycosylation sites). The lung cancer amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the lung cancer polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.

Another means of increasing the number of carbohydrate moieties on the lung cancer polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330, and in Aplin and Wriston (1981) CRC Crit. Rev. Biochem., pp. 259-306.

5

10

15

20

25

30

Removal of carbohydrate moieties present on the lung cancer polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al. (1987)

Arch. Biochem. Biophys., 259:52 and by Edge, et al. (1981) Anal. Biochem., 118:131.

Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo-and exo-glycosidases as described by Thotakura, et al. (1987) Meth.

Enzymol., 138:350.

Another type of covalent modification of lung cancer comprises linking the lung cancer polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192, or 4,179,337.

Lung cancer polypeptides of the present invention may also be modified in a way to form chimeric molecules comprising a lung cancer polypeptide fused to another, heterologous polypeptide or amino acid sequence. In one embodiment, such a chimeric molecule comprises a fusion of a lung cancer polypeptide with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino-or carboxyl-terminus of the lung cancer polypeptide. The presence of such epitope-tagged forms of a lung cancer polypeptide can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the lung cancer polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. In an alternative embodiment, the chimeric molecule may comprise a fusion of a lung cancer polypeptide with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule, such a fusion could be to the Fc region of an IgG molecule.

Various tag polypeptides and their respective antibodies are well known and examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; HIS6 and metal chelation tags, the flu HA tag polypeptide and its antibody 12CA5 (Field, et al. (1988) Mol. Cell. Biol. 8:2159-2165); the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies

thereto (Evan, et al. (1985) Molecular and Cellular Biology 5:3610-3616); and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody (Paborsky, et al. (1990) Protein Engineering 3(6):547-553). Other tag polypeptides include the Flag-peptide (Hopp, et al. (1988) BioTechnology 6:1204-1210); the KT3 epitope peptide (Martin, et al. (1992) Science 255:192-194); tubulin epitope peptide (Skinner, et al. (1991) J. Biol. Chem. 266:15163-15166); and the T7 gene 10 protein peptide tag (Lutz-Freyermuth, et al. (1990) Proc. Nat'l Acad. Sci. USA 87:6393-6397).

Also included are other lung cancer proteins of the lung cancer family, and lung cancer proteins from other organisms, which are cloned and expressed as outlined below. Thus, probe or degenerate polymerase chain reaction (PCR) primer sequences may be used to find other related lung cancer proteins from primates or other organisms. As will be appreciated by those in the art, particularly useful probe and/or PCR primer sequences include unique areas of the lung cancer nucleic acid sequence. As is generally known in the art, preferred PCR primers are from about 15 to about 35 nucleotides in length, with from about 20 to about 30 being preferred, and may contain inosine as needed. PCR reaction conditions are well known in the art (e.g., Innis, PCR Protocols, supra).

Antibodies to lung cancer proteins

5

10

15

20

25

30

In a preferred embodiment, when a lung cancer protein is to be used to generate antibodies, e.g., for immunotherapy or immunodiagnosis, the lung cancer protein should share at least one epitope or determinant with the full length protein. By "epitope" or "determinant" herein is typically meant a portion of a protein which will generate and/or bind an antibody or T-cell receptor in the context of MHC. Thus, in most instances, antibodies made to a smaller lung cancer protein will be able to bind to the full-length protein, particularly linear epitopes. In a preferred embodiment, the epitope is unique; that is, antibodies generated to a unique epitope show little or no cross-reactivity.

Methods of preparing polyclonal antibodies are well known (e.g., Coligan, supra; and Harlow and Lane, supra). Polyclonal antibodies can be raised in a mammal, e.g., by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include a protein encoded by a nucleic acid of Tables 1A-16 or fragment thereof or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal

being immunized. Immunogenic proteins include, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Adjuvants include, e.g., Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art.

5

10

15

20

25

30

The antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein (1975) Nature 256:495. In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro. The immunizing agent will typically include a polypeptide encoded by a nucleic acid of the tables, or fragment thereof, or a fusion protein thereof. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if nonhuman mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding (1986) Monoclonal Antibodies: Principles and Practice, pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovin, or primate origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

In one embodiment, the antibodies are bispecific antibodies. Bispecific antibodies are typically monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens or that have binding specificities for two epitopes on the same antigen. In one embodiment, one of the binding specificities is for a protein encoded by a nucleic acid of the tables or a fragment thereof, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit, preferably one that is tumor specific. Alternatively, tetramer-type technology may create multivalent reagents.

In a preferred embodiment, the antibodies to lung cancer protein are capable of reducing or eliminating a biological function of a lung cancer protein, in a naked form or conjugated to an effector moiety. That is, the addition of anti-lung cancer protein antibodies (either polyclonal or preferably monoclonal) to lung cancer tissue (or cells containing lung cancer) may reduce or eliminate the lung cancer. Generally, at least a 25% decrease in activity, growth, size or the like is preferred, with at least about 50% being particularly preferred and about a 95-100% decrease being especially preferred.

5

10

15

20

25

30

In a preferred embodiment the antibodies to the lung cancer proteins are humanized antibodies (e.g., Xenerex Biosciences, Medarex, Inc., Abgenix, Inc., Protein Design Labs, Inc.) Humanized forms of non-human (e.g., murine) antibodies are chimeric molecules of immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of a human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, a humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework (FR) regions are those of a human immunoglobulin consensus sequence. A humanized antibody optimally also will typically comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones, et al. (1986) Nature 321:522-525; Riechmann, et al. (1988) Nature 332:323-329; and Presta (1992) Curr. Op. Struct. Biol. 2:593-596). Humanization can be performed following the method of Winter and co-workers (Jones, et al. (1986) Nature 321:522-525; Riechmann, et al. (1988) Nature 332:323-327; Verhoeyen, et al. (1988) Science 239:1534-1536), by substituting rodent CDRs or CDR sequences for corresponding sequences of a human antibody. Accordingly, such humanized antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by corresponding sequence from a non-human species.

Human-like antibodies can also be produced using various techniques known in the art, including phage display libraries (Hoogenboom and Winter (1991) J. Mol. Biol. 227:381; Marks, et al. (1991) J. Mol. Biol. 222:581). The techniques of Cole, et al. and Boerner, et al. are also available for the preparation of human monoclonal antibodies (Cole, et al. (1985) Monoclonal Antibodies and Cancer Therapy, p. 77 and Boerner, et al. (1991) J. Immunol. 147(1):86-95). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in nearly all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, e.g., in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in the following scientific publications: Marks, et al. (1992) Bio/Technology 10:779-783; Lonberg, et al. (1994) Nature 368:856-859; Morrison (1994) Nature 368:812-13; Fishwild, et al. (1996) Nature Biotechnology 14:845-51; Neuberger (1996) Nature Biotechnology 14:826; and Lonberg and Huszar (1995) Intern. Rev. Immunol. 13:65-93.

5

10

15

20

25

30

By immunotherapy is meant treatment of lung cancer with an antibody raised against a lung cancer proteins. As used herein, immunotherapy can be passive or active. Passive immunotherapy as defined herein is the passive transfer of antibody to a recipient (patient). Active immunization is the induction of antibody and/or T-cell responses in a recipient (patient). Induction of an immune response is the result of providing the recipient with an antigen to which antibodies are raised. The antigen may be provided by injecting a polypeptide against which antibodies are desired to be raised into a recipient, or contacting the recipient with a nucleic acid capable of expressing the antigen and under conditions for expression of the antigen, leading to an immune response.

In a preferred embodiment the lung cancer proteins against which antibodies are raised are secreted proteins as described above. Without being bound by theory, antibodies used for treatment, may bind and prevent the secreted protein from binding to its receptor, thereby inactivating the secreted lung cancer protein.

In another preferred embodiment, the lung cancer protein to which antibodies are raised is a transmembrane protein. Without being bound by theory, antibodies used for treatment may bind the extracellular domain of the lung cancer protein and prevent it from binding to other proteins, such as circulating ligands or cell-associated molecules. The

antibody may cause down-regulation of the transmembrane lung cancer protein. The antibody may be a competitive, non-competitive or uncompetitive inhibitor of protein binding to the extracellular domain of the lung cancer protein. The antibody may be an antagonist of the lung cancer protein or may prevent activation of a transmembrane lung cancer protein, or may induce or suppress a particular cellular pathway. In some embodiments, when the antibody prevents the binding of other molecules to the lung cancer protein, the antibody prevents growth of the cell. The antibody may also be used to target or sensitize the cell to cytotoxic agents, including, but not limited to TNF-α, TNF-β, IL-1, INF-γ, and IL-2, or chemotherapeutic agents including 5FU, vinblastine, actinomycin D, cisplatin, methotrexate, and the like. In some instances the antibody may belong to a sub-type that activates serum complement when complexed with the transmembrane protein thereby mediating cytotoxicity or antigen-dependent cytotoxicity (ADCC). Thus, lung cancer may be treated by administering to a patient antibodies directed against the transmembrane lung cancer protein. Antibody-labeling may activate a co-toxin, localize a toxin payload, or otherwise provide means to locally ablate cells.

In another preferred embodiment, the antibody is conjugated to an effector moiety. The effector moiety can be various molecules, including labeling moieties such as radioactive labels or fluorescent labels, or can be a therapeutic moiety. In one aspect the therapeutic moiety is a small molecule that modulates the activity of a lung cancer protein. In another aspect the therapeutic moiety may modulate an activity of molecules associated with or in close proximity to a lung cancer protein. The therapeutic moiety may inhibit enzymatic or signaling activity such as protease or collagenase activity associated with lung cancer.

In a preferred embodiment, the therapeutic moiety can also be a cytotoxic agent. In this method, targeting the cytotoxic agent to lung cancer tissue or cells results in a reduction in the number of afflicted cells, thereby reducing symptoms associated with lung cancer. Cytotoxic agents are numerous and varied and include, but are not limited to, cytotoxic drugs or toxins or active fragments of such toxins. Suitable toxins and their corresponding fragments include diphtheria A chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin, saporin, auristatin, and the like. Cytotoxic agents also include radiochemicals made by conjugating radioisotopes to antibodies raised against lung cancer proteins, or binding of a radionuclide to a chelating agent that has been covalently attached to the antibody. Targeting the therapeutic moiety to transmembrane lung cancer proteins not only serves to increase the local concentration of therapeutic moiety in the lung cancer

afflicted area, but also serves to reduce deleterious side effects that may be associated with the untargeted therapeutic moiety.

In another preferred embodiment, the lung cancer protein against which the antibodies are raised is an intracellular protein. In this case, the antibody may be conjugated to a protein or other entity which facilitates entry into the cell. In one case, the antibody enters the cell by endocytosis. In another embodiment, a nucleic acid encoding the antibody is administered to the individual or cell. Moreover, wherein the lung cancer protein can be targeted within a cell, i.e., the nucleus, an antibody theretomay contain a signal for that target localization, i.e., a nuclear localization signal.

10

The lung cancer antibodies of the invention specifically bind to lung cancer proteins. By "specifically bind" herein is meant that the antibodies bind to the protein with a K_d of at least about 0.1 mM, more usually at least about 1 μ M, preferably at least about 0.1 μ M or better, and most preferably, 0.01 μ M or better. Selectivity of binding to the specific target and not to related other sequences is also important.

15

20

25

Detection of lung cancer sequence for diagnostic and therapeutic applications

In one aspect, the RNA expression levels of genes are determined for different cellular states in the lung cancer phenotype. Expression levels of genes in normal tissue (e.g., not undergoing lung cancer), in lung cancer tissue (and in some cases, for varying severities of lung cancer that relate to prognosis, as outlined below), or in non-malignant disease are evaluated to provide expression profiles. A gene expression profile of a particular cell state or point of development is essentially a "fingerprint" of the state of the cell. While two states may have a particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is reflective of the state of the cell. By comparing expression profiles of cells in different states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. Then, diagnosis may be performed or confirmed to determine whether a tissue sample has the gene expression profile of normal or cancerous tissue. This will provide for molecular diagnosis of related conditions.

30

"Differential expression," or grammatical equivalents as used herein, refers to qualitative or quantitative differences in the temporal and/or cellular gene expression patterns within and among cells and tissue. Thus, a differentially expressed gene can qualitatively have its expression altered, including an activation or inactivation, in, e.g.,

WO 02/086443 PCT/US02/12476 normal versus lung cancer tissue. Genes may be turned on or turned off in a particular state, relative to another state thus permitting comparison of two or more states. A qualitatively regulated gene will exhibit an expression pattern within a state or cell type which is detectable by standard techniques. Some genes will be expressed in one state or cell type, but not in both. Alternatively, the difference in expression may be quantitative, e.g., in that expression is increased or decreased; i.e., gene expression is either upregulated, resulting in an increased amount of transcript, or downregulated, resulting in a decreased amount of transcript. The degree to which expression differs need only be large enough to quantify via standard characterization techniques as outlined below, such as by use of Affymetrix GeneChip™ expression arrays, Lockhart (1996) Nature Biotechnology 14:1675-1680, hereby expressly incorporated by reference. Other techniques include, but are not limited to, quantitative reverse transcriptase PCR, northern analysis and RNase protection. As outlined above, preferably the change in expression (i.e., upregulation or downregulation) is typically at least about 50%, more preferably at least about 100%, more preferably at least about 150%, more preferably at least about 200%, with from 300 to at least 1000% being especially preferred.

5

10

15

20

25

30

Evaluation may be at the gene transcript or the protein level. The amount of gene expression may be monitored using nucleic acid probes to the RNA or DNA equivalent of the gene transcript, and the quantification of gene expression levels, or, alternatively, the final gene product itself (protein) can be monitored, e.g., with antibodies to the lung cancer protein and standard immunoassays (ELISAs, etc.) or other techniques, including mass spectroscopy assays, 2D gel electrophoresis assays, etc. Proteins corresponding to lung cancer genes, e.g., those identified as being important in a lung cancer or disease phenotype, can be evaluated in a lung cancer diagnostic test. In a preferred embodiment, gene expression monitoring is performed simultaneously on a number of genes.

The lung cancer nucleic acid probes may be attached to biochips as outlined herein for the detection and quantification of lung cancer sequences in a particular cell. The assays are further described below in the example. PCR techniques can be used to provide greater sensitivity. Multiple protein expression monitoring can be performed as well. Similarly, these assays may be performed on an individual basis as well.

In a preferred embodiment nucleic acids encoding the lung cancer protein are detected. Although DNA or RNA encoding the lung cancer protein may be detected, of particular interest are methods wherein an mRNA encoding a lung cancer protein is detected.

ς.

Probes to detect mRNA can be a nucleotide/deoxynucleotide probe that is complementary to and hybridizes with the mRNA and includes, but is not limited to, oligonucleotides, cDNA or RNA. Probes also should contain a detectable label, as defined herein. In one method the mRNA is detected after immobilizing the nucleic acid to be examined on a solid support such as nylon membranes and hybridizing the probe with the sample. Following washing to remove the non-specifically bound probe, the label is detected. In another method detection of the mRNA is performed *in situ*. In this method permeabilized cells or tissue samples are contacted with a detectably labeled nucleic acid probe for sufficient time to allow the probe to hybridize with the target mRNA. Following washing to remove the non-specifically bound probe, the label is detected. For example a digoxygenin labeled riboprobe (RNA probe) that is complementary to the mRNA encoding a lung cancer protein is detected by binding the digoxygenin with an anti-digoxygenin secondary antibody and developed with nitro blue tetrazolium and 5-bromo-4-chloro-3-indoyl phosphate.

5

10

15

20

25

30

In a preferred embodiment, various proteins from the three classes of proteins as described herein (secreted, transmembrane or intracellular proteins) are used in diagnostic assays. The lung cancer proteins, antibodies, nucleic acids, modified proteins and cells containing lung cancer sequences are used in diagnostic assays. This can be performed on an individual gene or corresponding polypeptide level. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes and/or corresponding polypeptides.

As described and defined herein, lung cancer proteins, including intracellular, transmembrane, or secreted proteins, find use as markers of lung cancer, e.g., for prognostic or diagnostic purposes. Detection of these proteins in putative lung cancer tissue allows for detection, prognosis, or diagnosis of lung cancer or similar disease, and perhaps for selection of therapeutic strategy. In one embodiment, antibodies are used to detect lung cancer proteins. A preferred method separates proteins from a sample by electrophoresis on a gel (typically a denaturing and reducing protein gel, but may be another type of gel, including isoelectric focusing gels and the like). Following separation of proteins, the lung cancer protein is detected, e.g., by immunoblotting with antibodies raised against the lung cancer protein. Methods of immunoblotting are well known to those of ordinary skill in the art.

In another preferred method, antibodies to the lung cancer protein find use in *in situ* imaging techniques, e.g., in histology (e.g., Asai (ed. 1993) Methods in Cell Biology:

Antibodies in Cell Biology, volume 37. In this method cells are contacted with from one to many antibodies to the lung cancer protein(s). Following washing to remove non-specific antibody binding, the presence of the antibody or antibodies is detected. In one embodiment the antibody is detected by incubating with a secondary antibody that contains a detectable label, e.g., multicolor fluorescence or confocal imaging. In another method the primary antibody to the lung cancer protein(s) contains a detectable label, e.g., an enzyme marker that can act on a substrate. In another preferred embodiment each one of multiple primary antibodies contains a distinct and detectable label. This method finds particular use in simultaneous screening for a plurality of lung cancer proteins. Many other histological imaging techniques are also provided by the invention.

5

10

15

20

25

30

In a preferred embodiment the label is detected in a fluorometer which has the ability to detect and distinguish emissions of different wavelengths. In addition, a fluorescence activated cell sorter (FACS) can be used in the method.

In another preferred embodiment, antibodies find use in diagnosing lung cancer from blood, serum, plasma, stool, and other samples. Such samples, therefore, are useful as samples to be probed or tested for the presence of lung cancer proteins. Antibodies can be used to detect a lung cancer protein by previously described immunoassay techniques including ELISA, immunoblotting (western blotting), immunoprecipitation, BIACORE technology and the like. Conversely, the presence of antibodies may indicate an immune response against an endogenous lung cancer protein or vaccine.

In a preferred embodiment, in situ hybridization of labeled lung cancer nucleic acid probes to tissue arrays is done. For example, arrays of tissue samples, including lung cancer tissue and/or normal tissue, are made. In situ hybridization (see, e.g., Ausubel, supra) is then performed. When comparing the fingerprints between an individual and a standard, the skilled artisan can make a diagnosis, a prognosis, or a prediction based on the findings. It is further understood that the genes which indicate the diagnosis may differ from those which indicate the prognosis and molecular profiling of the condition of the cells may lead to distinctions between responsive or refractory conditions or may be predictive of outcomes.

In a preferred embodiment, the lung cancer proteins, antibodies, nucleic acids, modified proteins and cells containing lung cancer sequences are used in prognosis assays. As above, gene expression profiles can be generated that correlate to lung cancer, clinical, pathological, or other information, in terms of long term prognosis. Again, this may be done on either a protein or gene level, with the use of genes being preferred. Single or multiple

genes may be useful in various combinations. As above, lung cancer probes may be attached to biochips for the detection and quantification of lung cancer sequences in a tissue or patient. The assays proceed as outlined above for diagnosis. PCR method may provide more sensitive and accurate quantification.

5

10

15

20

25

30

Assays for therapeutic compounds

In a preferred embodiment, the proteins, nucleic acids, and antibodies as described herein are used in drug screening assays. The lung cancer proteins, antibodies, nucleic acids, modified proteins and cells containing lung cancer sequences are used in drug screening assays or by evaluating the effect of drug candidates on a "gene expression profile" or expression profile of polypeptides. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent (e.g., Zlokarnik, et al. (1998) Science 279:84-8; Heid (1996) Genome Res. 6:986-94.

In a preferred embodiment, the lung cancer proteins, antibodies, nucleic acids, modified proteins and cells containing the native or modified lung cancer proteins are used in screening assays. That is, the present invention provides novel methods for screening for compositions which modulate the lung cancer phenotype or an identified physiological function of a lung cancer protein. As above, this can be done on an individual gene level or by evaluating the effect of drug candidates on a "gene expression profile". In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent, see Zlokarnik, *supra*.

Having identified differentially expressed genes herein, a variety of assays may be performed. In a preferred embodiment, assays may be run on an individual gene or protein level. That is, having identified a particular gene with altered regulation in lung cancer, test compounds can be screened for the ability to modulate gene expression or for binding to the lung cancer protein. "Modulation" thus includes an increase or a decrease in gene expression. The preferred amount of modulation will depend on the original change of the gene expression in normal versus tissue undergoing lung cancer, with changes of at least 10%, preferably 50%, more preferably 100-300%, and in some embodiments 300-1000% or greater. Thus, if a gene exhibits a 4-fold increase in lung cancer tissue compared to normal tissue, a decrease of about four-fold is often desired; similarly, a 10-fold decrease in lung

WO 02/086443

PCT/US02/12476

cancer tissue compared to normal tissue often provides a target value of a 10-fold increase in expression to be induced by the test compound.

The amount of gene expression may be monitored using nucleic acid probes and the quantification of gene expression levels, or, alternatively, the gene product itself can be monitored, e.g., through the use of antibodies to the lung cancer protein and standard immunoassays. Proteomics and separation techniques may also allow quantification of expression.

5

10

15

20

25

30 ·

In a preferred embodiment, gene or protein expression monitoring of a number of entities, i.e., an expression profile, is monitored simultaneously. Such profiles will typically involve a plurality of those entities described herein.

In this embodiment, the lung cancer nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of lung cancer sequences in a particular cell. Alternatively, PCR may be used. Thus, a series, e.g., of microtiter plate, may be used with dispensed primers in desired wells. A PCR reaction can then be performed and analyzed for each well.

Expression monitoring can be performed to identify compounds that modify the expression of one or more lung cancer-associated sequences, e.g., a polynucleotide sequence set out in the tables. Generally, in a preferred embodiment, a test compound is added to the cells prior to analysis. Moreover, screens are also provided to identify agents that modulate lung cancer, modulate lung cancer proteins, bind to a lung cancer protein; or interfere with the binding of a lung cancer protein and an antibody, substrate, or other binding partner.

The term "test compound" or "drug candidate" or "modulator" or grammatical equivalents as used herein describes a molecule, e.g., protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, etc., to be tested for the capacity to directly or indirectly alter the lung cancer phenotype or the expression of a lung cancer sequence, e.g., a nucleic acid or protein sequence. In preferred embodiments, modulators alter expression profiles of nucleic acids or proteins provided herein. In one embodiment, the modulator suppresses a lung cancer phenotype, e.g., to a normal or non-malignant tissue fingerprint. In another embodiment, a modulator induces a lung cancer phenotype. Generally, a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration or below the level of detection.

In one aspect, a modulator will neutralize the effect of a lung cancer protein. By "neutralize" is meant that activity of a protein and the consequent effect on the cell is inhibited or blocked.

In certain embodiments, combinatorial libraries of potential modulators will be screened for an ability to bind to a lung cancer polypeptide or to modulate activity. Conventionally, new chemical entities with useful properties are generated by identifying a chemical compound (called a "lead compound") with some desirable property or activity, e.g., inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysis.

5

10

15

20

25

10

In one preferred embodiment, high throughput screening methods involve providing a library containing a large number of potential therapeutic compounds (candidate compounds). Such "combinatorial chemical libraries" are then screened in one or more assays to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional "lead compounds" or can themselves be used as potential or actual therapeutics.

A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library, such as a polypeptide (e.g., mutein) library, is formed by combining a set of chemical building blocks called amino acids in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks (Gallop, et al. (1994) <u>J. Med. Chem.</u> 37(9):1233-1251).

Preparation and screening of combinatorial chemical libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent No. 5,010,175, Furka (1991) Pept. Prot. Res. 37:487-493, Houghton, et al. (1991) Nature, 354:84-88), peptoids (PCT Publication No WO 91/19735), encoded peptides (PCT Publication WO 93/20242), random bio-oligomers (PCT Publication WO 92/00091), benzodiazepines (U.S. Pat. No. 5,288,514), diversomers such as hydantoins, benzodiazepines and dipeptides (Hobbs, et al. (1993) Proc. Nat. Acad. Sci. USA 90:6909-6913), vinylogous polypeptides (Hagihara, et al. (1992) J. Amer. Chem. Soc. 114:6568), nonpeptidal peptidomimetics with a Beta-D-Glucose scaffolding (Hirschmann, et

WO 02/086443 PCT/US02/12476 al. (1992) J. Amer. Chem. Soc. 114:9217-9218), analogous organic syntheses of small compound libraries (Chen, et al. (1994) J. Amer. Chem. Soc. 116:2661), oligocarbamates (Cho. et al. (1993) Science 261:1303), and/or peptidyl phosphonates (Campbell, et al. (1994) J. Org. Chem. 59:658). See, generally, Gordon, et al. (1994) J. Med. Chem. 37:1385, nucleic acid libraries (see, e.g., Stratagene, Corp.), peptide nucleic acid libraries (see, e.g., U.S. 5 Patent 5,539,083), antibody libraries (see, e.g., Vaughn, et al. (1996) Nature Biotechnology 14(3):309-314, and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang, et al. (1996) Science 274:1520-1522, and U.S. Patent No. 5,593,853), and small organic molecule libraries (see, e.g., benzodiazepines, Baum (1993) C&EN, Jan 18, page 33; isoprenoids, U.S. Patent No. 5,569,588; thiazolidinones and metathiazanones, U.S. Patent No. 5,549,974; pyrrolidines, 10 U.S. Patent Nos. 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent No. 5,506,337; benzodiazepines, U.S. Patent No. 5,288,514; and the like).

Devices for the preparation of combinatorial libraries are commercially available (see, e.g., 357 MPS, 390 MPS, Advanced Chem Tech, Louisville KY, Symphony, Rainin, Woburn, MA, 433A Applied Biosystems, Foster City, CA, 9050 Plus, Millipore, Bedford, MA).

15

20

25

30

A number of well known robotic systems have also been developed for solution phase chemistries. These systems include automated workstations like the automated synthesis apparatus developed by Takeda Chemical Industries, LTD. (Osaka, Japan) and many robotic systems utilizing robotic arms (Zymate II, Zymark Corporation, Hopkinton, Mass.; Orca, Hewlett-Packard, Palo Alto, Calif.), which mimic the manual synthetic operations performed by a chemist. The above devices, with appropriate modification, are suitable for use with the present invention. In addition, numerous combinatorial libraries are themselves commercially available (see, e.g., ComGenex, Princeton, N.J., Asinex, Moscow, Ru, Tripos, Inc., St. Louis, MO, ChemStar, Ltd, Moscow, RU, 3D Pharmaceuticals, Exton, PA, Martek Biosciences, Columbia, MD, etc.).

The assays to identify modulators are amenable to high throughput screening. Preferred assays thus detect modulation of lung cancer gene transcription, polypeptide expression, and polypeptide activity.

High throughput assays for evaluating the presence, absence, quantification, or other properties of particular nucleic acids or protein products are well known to those of skill in the art. Similarly, binding assays and reporter gene assays are similarly well known. Thus, e.g., U.S. Patent No. 5,559,410 discloses high throughput screening methods for proteins,

U.S. Patent No. 5,585,639 discloses high throughput screening methods for nucleic acid binding (i.e., in arrays), while U.S. Patent Nos. 5,576,220 and 5,541,061 disclose high throughput methods of screening for ligand/antibody binding.

5

10

15

20

25

30

In addition, high throughput screening systems are commercially available (see, e.g., Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH; Beckman Instruments, Inc. Fullerton, CA; Precision Systems, Inc., Natick, MA, etc.). These systems typically automate procedures, including sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. The manufacturers of such systems provide detailed protocols for various high throughput systems. Thus, e.g., Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like.

In one embodiment, modulators are proteins, often naturally occurring proteins or fragments of naturally occurring proteins. Thus, e.g., cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, may be used. In this way libraries of proteins may be made for screening in the methods of the invention. Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred. Particularly useful test compound will be directed to the class of proteins to which the target belongs, e.g., substrates for enzymes or ligands and receptors.

In a preferred embodiment, modulators are peptides of from about 5 to about 30 amino acids, with from about 5 to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred. The peptides may be digests of naturally occurring proteins, random peptides, or "biased" random peptides. By "randomized" or grammatical equivalents herein is meant that the nucleic acid or peptide consists of essentially random sequences of nucleotides and amino acids, respectively. Since these random peptides (or nucleic acids, discussed below) are often chemically synthesized, they may incorporate a nucleotide or amino acid at any position. The synthetic process can be designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.

In one embodiment, the library is fully randomized, with no sequence preferences or constants at any position. In a preferred embodiment, the library is biased. That is, some positions within the sequence are either held constant, or are selected from a limited number of possibilities. In a preferred embodiment, the nucleotides or amino acid residues are randomized within a defined class, e.g., of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of nucleic acid binding domains, the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc.

Modulators of lung cancer can also be nucleic acids, as defined above.

5

10

15

20

25

30

As described above generally for proteins, nucleic acid modulating agents may be naturally occurring nucleic acids, random nucleic acids, or "biased" random nucleic acids. Digests of procaryotic or eucaryotic genomes may be used as is outlined above for proteins.

In a preferred embodiment, the candidate compounds are organic chemical moieties, a wide variety of which are available in the literature.

After a candidate agent has been added and the cells allowed to incubate for some period of time, the sample containing a target sequence is analyzed. If required, the target sequence is prepared using known techniques. For example, the sample may be treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification such as PCR performed as appropriate. For example, an *in vitro* transcription with labels covalently attached to the nucleotides is performed. Generally, the nucleic acids are labeled with biotin-FITC or PE, or with cy3 or cy5.

In a preferred embodiment, the target sequence is labeled with, e.g., a fluorescent, a chemiluminescent, a chemical, or a radioactive signal, to provide a means of detecting the target sequence's specific binding to a probe. The label also can be an enzyme, such as, alkaline phosphatase or horseradish peroxidase, which when provided with an appropriate substrate produces a product that can be detected. Alternatively, the label can be a labeled compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme. The label also can be a moiety or compound, such as, an epitope tag or biotin which specifically binds to streptavidin. For the example of biotin, the streptavidin is labeled as described above, thereby, providing a detectable signal for the bound target sequence. Unbound labeled streptavidin is typically removed prior to analysis.

Nucleic acid assays can be direct hybridization assays or can comprise "sandwich assays", which include the use of multiple probes, as is generally outlined in U.S. Patent Nos.

WO 02/086443
PCT/US02/12476
5,681,702, 5,597,909, 5,545,730, 5,594,117, 5,591,584, 5,571,670, 5,580,731, 5,571,670,
5,591,584, 5,624,802, 5,635,352, 5,594,118, 5,359,100, 5,124,246 and 5,681,697, all of which are hereby incorporated by reference. In this embodiment, in general, the target nucleic acid is prepared as outlined above, and then added to the biochip comprising a plurality of nucleic acid probes, under conditions that allow the formation of a hybridization complex.

5

10

15

20

25

30

A variety of hybridization conditions may be used in the present invention, including high, moderate and low stringency conditions as outlined above. The assays are generally run under stringency conditions which allow formation of the label probe hybridization complex only in the presence of target. Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to, temperature, formamide concentration, salt concentration, chaotropic salt concentration, pH, organic solvent concentration, etc.

These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Patent No. 5,681,697. Thus it may be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding.

The reactions outlined herein may be accomplished in a variety of ways. Components of the reaction may be added simultaneously, or sequentially, in different orders, with preferred embodiments outlined below. In addition, the reaction may include a variety of other reagents. These include salts, buffers, neutral proteins, e.g., albumin, detergents, etc. which may be used to facilitate optimal hybridization and detection, and/or reduce non-specific or background interactions. Reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may also be used as appropriate, depending on the sample preparation methods and purity of the target.

The assay data are analyzed to determine the expression levels, and changes in expression levels as between states, of individual genes, forming a gene expression profile.

Screens are performed to identify modulators of the lung cancer phenotype. In one embodiment, screening is performed to identify modulators that can induce or suppress a particular expression profile, thus preferably generating the associated phenotype. In another embodiment, e.g., for diagnostic applications, having identified differentially expressed genes important in a particular state, screens can be performed to identify modulators that alter expression of individual genes. In an another embodiment, screening is performed to identify modulators that alter a biological function of the expression product of a differentially expressed gene. Again, having identified the importance of a gene in a particular state,

screens are performed to identify agents that bind and/or modulate the biological activity of the gene product, or evaluate genetic polymorphisms.

5

10

15

20

. 25

30

Genes can be screened for those that are induced in response to a candidate agent. After identifying a modulator based upon its ability to suppress a lung cancer expression pattern leading to a normal expression pattern, or to modulate a single lung cancer gene expression profile so as to mimic the expression of the gene from normal tissue, a screen as described above can be performed to identify genes that are specifically modulated in response to the agent. Comparing expression profiles between normal tissue and agent treated lung cancer tissue reveals genes that are not expressed in normal tissue or lung cancer tissue, but are expressed in agent treated tissue. These agent-specific sequences can be identified and used by methods described herein for lung cancer genes or proteins. In particular these sequences and the proteins they encode find use in marking or identifying agent treated cells. In addition, antibodies can be raised against the agent induced proteins and used to target novel therapeutics to the treated lung cancer tissue sample.

Thus, in one embodiment, a test compound is administered to a population of lung cancer cells, that have an associated lung cancer expression profile. By "administration" or "contacting" herein is meant that the candidate agent is added to the cells in such a manner as to allow the agent to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface. In some embodiments, nucleic acid encoding a proteinaceous candidate agent (i.e., a peptide) may be put into a viral construct such as an adenoviral or retroviral construct, and added to the cell, such that expression of the peptide agent is accomplished, e.g., PCT US97/01019. Regulatable gene therapy systems can also be used.

Once a test compound has been administered to the cells, the cells can be washed if desired and are allowed to incubate under preferably physiological conditions for some period of time. The cells are then harvested and a new gene expression profile is generated, as outlined herein.

Thus, e.g., lung cancer or non-malignant tissue may be screened for agents that modulate, e.g., induce or suppress a lung cancer phenotype. A change in at least one gene, preferably many, of the expression profile indicates that the agent has an effect on lung cancer activity. By defining such a signature for the lung cancer phenotype, screens for new drugs that alter the phenotype can be devised. With this approach, the drug target need not be known and need not be represented in the original expression screening platform, nor does the level of transcript for the target protein need to change.

Measure of lung cancer polypeptide activity, or of lung cancer or the lung cancer phenotype can be performed using a variety of assays. For example, the effects of the test compounds upon the function of the metastatic polypeptides can be measured by examining parameters described above. A suitable physiological change that affects activity can be used to assess the influence of a test compound on the polypeptides of this invention. When the functional consequences are determined using intact cells or animals, one can also measure a variety of effects such as, in the case of lung cancer associated with tumors, tumor growth, tumor metastasis, neovascularization, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as cGMP. In the assays of the invention, mammalian lung cancer polypeptide is typically used, e.g., mouse, preferably human.

5

10

15

20

25

30

Assays to identify compounds with modulating activity can be performed *in vitro*. For example, a lung cancer polypeptide is first contacted with a potential modulator and incubated for a suitable amount of time, e.g., from 0.5 to 48 hours. In one embodiment, the lung cancer polypeptide levels are determined *in vitro* by measuring the level of protein or mRNA. The level of protein is typically measured using immunoassays such as western blotting, ELISA and the like with an antibody that selectively binds to the lung cancer polypeptide or a fragment thereof. For measurement of mRNA, amplification, e.g., using PCR, LCR, or hybridization assays, e.g., northern hybridization, RNAse protection, dot blotting, are preferred. The level of protein or mRNA is typically detected using directly or indirectly labeled detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described herein.

Alternatively, a reporter gene system can be devised using a lung cancer protein promoter operably linked to a reporter gene such as luciferase, green fluorescent protein, CAT, or β -gal. The reporter construct is typically transfected into a cell. After treatment with a potential modulator, the amount of reporter gene transcription, translation, or activity is measured according to standard techniques known to those of skill in the art.

In a preferred embodiment, as outlined above, screens may be done on individual genes and gene products (proteins). That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of the expression of the gene or the gene product itself can be done. The gene products of differentially expressed

WO 02/086443 PCT/US02/12476 genes are sometimes referred to herein as "lung cancer proteins." The lung cancer protein

may be a fragment, or alternatively, be the full length protein to a fragment shown herein.

In one embodiment, screening for modulators of expression of specific genes is performed. Typically, the expression of only one or a few genes are evaluated. In another embodiment, screens are designed to first find compounds that bind to differentially expressed proteins. These compounds are then evaluated for the ability to modulate differentially expressed activity. Moreover, once initial candidate compounds are identified, variants can be further screened to better evaluate structure activity relationships.

5

10

15

20

25

30

In a preferred embodiment, binding assays are done. In general, purified or isolated gene product is used; that is, the gene products of one or more differentially expressed nucleic acids are made. For example, antibodies are generated to the protein gene products, and standard immunoassays are run to determine the amount of protein present. Alternatively, cells comprising the lung cancer proteins can be used in the assays.

Thus, in a preferred embodiment, the methods comprise combining a lung cancer protein and a candidate compound, and determining the binding of the compound to the lung cancer protein. Preferred embodiments utilize the human lung cancer protein, although other mammalian proteins may also be used, e.g., for the development of animal models of human disease. In some embodiments, as outlined herein, variant or derivative lung cancer proteins may be used.

Generally, in a preferred embodiment of the methods herein, the lung cancer protein or the candidate agent is non-diffusably bound to an insoluble support, preferably having isolated sample receiving areas (e.g., a microtiter plate, an array, etc.). The insoluble supports may be made of a composition to which the compositions can be bound, is readily separated from soluble material, and is otherwise compatible with the overall method of screening. The surface of such supports may be solid or porous and of a convenient shape. Examples of suitable insoluble supports include microtiter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharides, nylon or nitrocellulose, teflon™, etc. Microtiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition is typically not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition, and is nondiffusable. Preferred methods of binding include the use of antibodies (which do not sterically block either the ligand binding site or activation

sequence when the protein is bound to the support), direct binding to "sticky" or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or agent, excess unbound material is removed by washing. The sample receiving areas may then be blocked through incubation with bovine serum albumin (BSA), casein or other innocuous protein or other moiety.

5

10

15

20

25

30

In a preferred embodiment, the lung cancer protein is bound to the support, and a test compound is added to the assay. Alternatively, the candidate agent is bound to the support and the lung cancer protein is added. Novel binding agents include specific antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc. Of particular interest are screening assays for agents that have a low toxicity for human cells. A wide variety of assays may be used for this purpose, including labeled *in vitro* protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like.

The determination of the binding of the test modulating compound to the lung cancer protein may be done in a number of ways. In a preferred embodiment, the compound is labeled, and binding determined directly, e.g., by attaching all or a portion of the lung cancer protein to a solid support, adding a labeled candidate agent (e.g., a fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support. Various blocking and washing steps may be utilized as appropriate.

In some embodiments, only one of the components is labeled, e.g., the proteins (or proteinaceous candidate compounds) can be labeled. Alternatively, more than one component can be labeled with different labels, e.g., ¹²⁵I for the proteins and a fluorophor for the compound. Proximity reagents, e.g., quenching or energy transfer reagents are also useful.

In one embodiment, the binding of the test compound is determined by competitive binding assay. The competitor may be a binding moiety known to bind to the target molecule (i.e., a lung cancer protein), such as an antibody, peptide, binding partner, ligand, etc. Under certain circumstances, there may be competitive binding between the compound and the binding moiety, with the binding moiety displacing the compound. In one embodiment, the test compound is labeled. Either the compound, or the competitor, or both, is added first to the protein for a time sufficient to allow binding, if present. Incubations may be performed at a temperature which facilitates optimal activity, typically between 4 and 40° C. Incubation periods are typically optimized, e.g., to facilitate rapid high throughput screening. Typically

between 0.1 and 1 hour will be sufficient. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.

5

10

15

20

25

30

In a preferred embodiment, the competitor is added first, followed by a test compound. Displacement of the competitor is an indication that the test compound is binding to the lung cancer protein and thus is capable of binding to, and potentially modulating, the activity of the lung cancer protein. In this embodiment, either component can be labeled. Thus, e.g., if the competitor is labeled, the presence of label in the wash solution indicates displacement by the agent. Alternatively, if the test compound is labeled, the presence of the label on the support indicates displacement.

In an alternative embodiment, the test compound is added first, with incubation and washing, followed by the competitor. The absence of binding by the competitor may indicate that the test compound is bound to the lung cancer protein with a higher affinity. Thus, if the test compound is labeled, the presence of the label on the support, coupled with a lack of competitor binding, may indicate that the test compound is capable of binding to the lung cancer protein.

In a preferred embodiment, the methods comprise differential screening to identity agents that are capable of modulating the activity of the lung cancer proteins. In one embodiment, the methods comprise combining a lung cancer protein and a competitor in a first sample. A second sample comprises a test compound, a lung cancer protein, and a competitor. The binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the lung cancer protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the lung cancer protein.

Alternatively, differential screening is used to identify drug candidates that bind to the native lung cancer protein, but cannot bind to modified lung cancer proteins. The structure of the lung cancer protein may be modeled, and used in rational drug design to synthesize agents that interact with that site. Drug candidates that affect the activity of a lung cancer protein are also identified by screening drugs for the ability to either enhance or reduce the activity of the protein.

Positive controls and negative controls may be used in the assays. Preferably control and test samples are performed in at least triplicate to obtain statistically significant results.

Incubation of all samples is for a time sufficient for the binding of the agent to the protein. Following incubation, samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples may be counted in a scintillation counter to determine the amount of bound compound.

5

10

15

20

25

30

A variety of other reagents may be included in the screening assays. These include reagents like salts, neutral proteins, e.g., albumin, detergents, etc. which may be used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may be used. The mixture of components may be added in an order that provides for the requisite binding.

In a preferred embodiment, the invention provides methods for screening for a compound capable of modulating the activity of a lung cancer protein. The methods comprise adding a test compound, as defined above, to a cell comprising lung cancer proteins. Preferred cell types include almost any cell. The cells contain a recombinant nucleic acid that encodes a lung cancer protein. In a preferred embodiment, a library of candidate agents are tested on a plurality of cells.

In one aspect, the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, e.g., hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including chemotherapeutics, radiation, carcinogenics, or other cells (e.g., cell-cell contacts). In another example, the determinations are determined at different stages of the cell cycle process.

In this way, compounds that modulate lung cancer agents are identified. Compounds with pharmacological activity are able to enhance or interfere with the activity of the lung cancer protein. Once identified, similar structures are evaluated to identify critical structural feature of the compound.

In one embodiment, a method of inhibiting lung cancer cell division is provided. The method comprises administration of a lung cancer inhibitor. In another embodiment, a method of inhibiting lung cancer is provided. The method may comprise administration of a lung cancer inhibitor. In a further embodiment, methods of treating cells or individuals with lung cancer are provided, e.g., comprising administration of a lung cancer inhibitor.

In one embodiment, a lung cancer inhibitor is an antibody as discussed above. In another embodiment, the lung cancer inhibitor is an antisense molecule.

A variety of cell growth, proliferation, viability, and metastasis assays are known to those of skill in the art, as described below.

Soft agar growth or colony formation in suspension

5

10

15

25

30

Normal cells require a solid substrate to attach and grow. When the cells are transformed, they lose this phenotype and grow detached from the substrate. For example, transformed cells can grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft agar. The transformed cells, when transfected with tumor suppressor genes, regenerate normal phenotype and require a solid substrate to attach and grow. Soft agar growth or colony formation in suspension assays can be used to identify modulators of lung cancer sequences, which when expressed in host cells, inhibit abnormal cellular proliferation and transformation. A therapeutic compound would reduce or eliminate the host cells' ability to grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft.

Techniques for soft agar growth or colony formation in suspension assays are described in Freshney (1994) <u>Culture of Animal Cells a Manual of Basic Technique</u> (3rd ed.), herein incorporated by reference. See also, the methods section of Garkavtsev, et al. (1996), *supra*, herein incorporated by reference.

20 Contact inhibition and density limitation of growth

Normal cells typically grow in a flat and organized pattern in a petri dish until they touch other cells. When the cells touch one another, they are contact inhibited and stop growing. When cells are transformed, however, the cells are not contact inhibited and continue to grow to high densities in disorganized foci. Thus, the transformed cells grow to a higher saturation density than normal cells. This can be detected morphologically by the formation of a disoriented monolayer of cells or rounded cells in foci within the regular pattern of normal surrounding cells. Alternatively, labeling index with (³H)-thymidine at saturation density can be used to measure density limitation of growth. See Freshney (1994), supra. The transformed cells, when transfected with tumor suppressor genes, regenerate a normal phenotype and become contact inhibited and would grow to a lower density.

In this assay, labeling index with (³H)-thymidine at saturation density is a preferred method of measuring density limitation of growth. Transformed host cells are transfected with a lung cancer-associated sequence and are grown for 24 hours at saturation density in

WO 02/086443

non-limiting medium conditions. The percentage of cells labeling with (³H)-thymidine is determined autoradiographically. See, Freshney (1994), *supra*.

Growth factor or serum dependence

Transformed cells typically have a lower serum dependence than their normal counterparts (see, e.g., Temin (1966) <u>J. Natl. Cancer Insti.</u> 37:167-175; Eagle, et al. (1970) <u>J. Exp. Med.</u> 131:836-879); Freshney, *supra*. This is in part due to release of various growth factors by the transformed cells. Growth factor or serum dependence of transformed host cells can be compared with that of control.

10

15

20

5

Tumor specific markers levels

Tumor cells release an increased amount of certain factors (hereinafter "tumor specific markers") than their normal counterparts. For example, plasminogen activator (PA) is released from human glioma at a higher level than from normal brain cells (see, e.g., Gullino, "Angiogenesis, tumor vascularization, and potential interference with tumor growth" in Mihich (ed. 1985) <u>Biological Responses in Cancer</u>, pp. 178-184). Similarly, Tumor angiogenesis factor (TAF) is released at a higher level in tumor cells than their normal counterparts. See, e.g., Folkman (1992) "Angiogenesis and Cancer" in Sem Cancer Biol.).

Various techniques which measure the release of these factors are described in Freshney (1994), *supra*. Also, see, Unkeless, et al. (1974) <u>J. Biol. Chem.</u> 249:4295-4305; Strickland and Beers (1976) <u>J. Biol. Chem.</u> 251:5694-5702; Whur, et al. (1980) <u>Br. J. Cancer</u> 42:305-312; Gullino, "Angiogenesis, tumor vascularization, and potential interference with tumor growth" in Mihich (ed. 1985) <u>Biological Responses in Cancer</u>, pp. 178-184; Freshney <u>Anticancer Res.</u> 5:111-130 (1985).

25

30

Invasiveness into Matrigel

The degree of invasiveness into Matrigel or some other extracellular matrix constituent can be used as an assay to identify compounds that modulate lung cancer-associated sequences. Tumor cells exhibit a good correlation between malignancy and invasiveness of cells into Matrigel or some other extracellular matrix constituent. In this assay, tumorigenic cells are typically used as host cells. Expression of a tumor suppressor gene in these host cells would decrease invasiveness of the host cells.

Techniques described in Freshney (1994), *supra*, can be used. Briefly, the level of invasion of host cells can be measured by using filters coated with Matrigel or some other extracellular matrix constituent. Penetration into the gel, or through to the distal side of the filter, is rated as invasiveness, and rated histologically by number of cells and distance moved, or by prelabeling the cells with ¹²⁵I and counting the radioactivity on the distal side of the filter or bottom of the dish. See, e.g., Freshney (1984), *supra*.

Tumor growth in vivo

5

10

15

20

25

30

Effects of lung cancer-associated sequences on cell growth can be tested in transgenic or immune-suppressed mice. Knock-out transgenic mice can be made, in which the lung cancer gene is disrupted or in which a lung cancer gene is inserted. Knock-out transgenic mice can be made by insertion of a marker gene or other heterologous gene into the endogenous lung cancer gene site in the mouse genome via homologous recombination. Such mice can also be made by substituting the endogenous lung cancer gene with a mutated version of the lung cancer gene, or by mutating the endogenous lung cancer gene, e.g., by exposure to carcinogens.

A DNA construct is introduced into the nuclei of embryonic stem cells. Cells containing the newly engineered genetic lesion are injected into a host mouse embryo, which is re-implanted into a recipient female. Some of these embryos develop into chimeric mice that possess germ cells partially derived from the mutant cell line. Therefore, by breeding the chimeric mice it is possible to obtain a new line of mice containing the introduced genetic lesion (see, e.g., Capecchi, et al. (1989) Science 244:1288). Chimeric targeted mice can be derived according to Hogan, et al. (1988) Manipulating the Mouse Embryo: A Laboratory Manual, Cold Spring Harbor Laboratory and Robertson (ed. 1987) Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, , IRL Press, Washington, D.C.

Alternatively, various immune-suppressed or immune-deficient host animals can be used. For example, genetically athymic "nude" mouse (see, e.g., Giovanella, et al. (1974) <u>J. Natl. Cancer Inst.</u> 52:921), a SCID mouse, a thymectomized mouse, or an irradiated mouse (see, e.g., Bradley, et al. (1978) <u>Br. J. Cancer</u> 38:263; Selby, et al. (1980) <u>Br. J. Cancer</u> 41:52) can be used as a host. Transplantable tumor cells (typically about 10⁶ cells) injected into isogenic hosts will produce invasive tumors in a high proportions of cases, while normal cells of similar origin will not. In hosts which developed invasive tumors, cells expressing a lung cancer-associated sequences are injected subcutaneously. After a suitable length of time,

preferably 4-8 weeks, tumor growth is measured (e.g., by volume or by its two largest dimensions) and compared to the control. Tumors that have statistically significant reduction (using, e.g., Student's T test) are said to have inhibited growth.

Polynucleotide modulators of lung cancer

Antisense and RNAi Polynucleotides

5

10

15

20

25

30

In certain embodiments, the activity of a lung cancer-associated protein is downregulated, or entirely inhibited, by the use of antisense or an inhibitory polynucleotide, i.e., a nucleic acid complementary to, and which can preferably hybridize specifically to, a coding mRNA nucleic acid sequence, e.g., a lung cancer protein mRNA, or a subsequence thereof. Binding of the antisense polynucleotide to the mRNA reduces the translation and/or stability of the mRNA.

In the context of this invention, antisense polynucleotides can comprise naturally-occurring nucleotides, or synthetic species formed from naturally-occurring subunits or their close homologs. Antisense polynucleotides may also have altered sugar moieties or intersugar linkages. Exemplary among these are the phosphorothioate and other sulfur containing species which are known for use in the art. Analogs are comprehended by this invention so long as they function effectively to hybridize with the lung cancer protein mRNA. See, e.g., Isis Pharmaceuticals, Carlsbad, CA; Sequitor, Inc., Natick, MA.

Such antisense polynucleotides can readily be synthesized using recombinant means, or can be synthesized *in vitro*. Equipment for such synthesis is sold by several vendors, including Applied Biosystems. The preparation of other oligonucleotides such as phosphorothioates and alkylated derivatives is also well known to those of skill in the art.

Antisense molecules as used herein include antisense or sense oligonucleotides. Sense oligonucleotides can, e.g., be employed to block transcription by binding to the antisense strand. The antisense and sense oligonucleotide comprise a single-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences for lung cancer molecules. A preferred antisense molecule is for a lung cancer sequence in the tables, or for a ligand or activator thereof. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment generally at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein

WO 02/086443
PCT/US02/12476
is described in, e.g., Stein and Cohen (1988) Cancer Res. 48:2659 and van der Krol, et al.
(1988) BioTechniques 6:958).

RNA interference is a mechanism to suppress gene expression in a sequence specific manner. See, e.g., Brumelkamp, et al. (2002) Sciencexpress (21March2002); Sharp (1999) Genes Dev. 13:139-141; and Cathew (2001) Curr. Op. Cell Biol. 13:244-248. In mammalian cells, short, e.g., 21 nt, double stranded small interfering RNAs (siRNA) have been shown to be effective at inducing an RNAi response. See, e.g., Elbashir, et al. (2001) Nature 411:494-498. The mechanism may be used to downregulate expression levels of identified genes, e.g., treatment of or validation of relevance to disease.

10

15

20

5

Ribozymes

In addition to antisense polynucleotides, ribozymes can be used to target and inhibit transcription of lung cancer-associated nucleotide sequences. A ribozyme is an RNA molecule that catalytically cleaves other RNA molecules. Different kinds of ribozymes have been described, including group I ribozymes, hammerhead ribozymes, hairpin ribozymes, RNase P, and axhead ribozymes (see, e.g., Castanotto, et al. (1994) <u>Adv. in Pharmacology</u> 25: 289-317 for a general review of the properties of different ribozymes).

The general features of hairpin ribozymes are described, e.g., in Hampel, et al. (1990) Nucl. Acids Res. 18:299-304; European Patent Publication No. 0 360 257; U.S. Patent No. 5,254,678. Methods of preparing are well known to those of skill in the art (see, e.g., WO 94/26877; Ojwang, et al. (1993) Proc. Natl. Acad. Sci. USA 90:6340-6344; Yamada, et al. (1994) Human Gene Therapy 1:39-45; Leavitt, et al. (1995) Proc. Natl. Acad. Sci. USA 92:699-703; Leavitt, et al. (1994) Human Gene Therapy 5:1151-120; and Yamada, et al. (1994) Virology 205: 121-126).

30

25

Polynucleotide modulators of lung cancer may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a polynucleotide modulator of lung cancer may be introduced into a cell containing the target nucleic acid sequence, e.g., by

WO 02/086443 PCT/US02/12476 formation of an polynucleotide-lipid complex, as described in WO 90/10448. It is

understood that the use of antisense molecules or knock out and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment.

5

10

15

20

25

30

Thus, in one embodiment, methods of modulating lung cancer in cells or organisms are provided. In one embodiment, the methods comprise administering to a cell an anti-lung cancer antibody that reduces or eliminates the biological activity of an endogenous lung cancer protein. Alternatively, the methods comprise administering to a cell or organism a recombinant nucleic acid encoding a lung cancer protein. This may be accomplished in any number of ways. In a preferred embodiment, e.g., when the lung cancer sequence is down-regulated in lung cancer, such state may be reversed by increasing the amount of lung cancer gene product in the cell. This can be accomplished, e.g., by overexpressing the endogenous lung cancer gene or administering a gene encoding the lung cancer sequence, using known gene-therapy techniques. In a preferred embodiment, the gene therapy techniques include the incorporation of the exogenous gene using enhanced homologous recombination (EHR), e.g., as described in PCT/US93/03868, hereby incorporated by reference in its entirety.

Alternatively, e.g., when the lung cancer sequence is up-regulated in lung cancer, the activity of the endogenous lung cancer gene is decreased, e.g., by the administration of a lung cancer antisense or RNAi nucleic acid.

In one embodiment, the lung cancer proteins of the present invention may be used to generate polyclonal and monoclonal antibodies to lung cancer proteins. Similarly, the lung cancer proteins can be coupled, using standard technology, to affinity chromatography columns. These columns may then be used to purify lung cancer antibodies useful for production, diagnostic, or therapeutic purposes. In a preferred embodiment, the antibodies are generated to epitopes unique to a lung cancer protein; that is, the antibodies show little or no cross-reactivity to other proteins. The lung cancer antibodies may be coupled to standard affinity chromatography columns and used to purify lung cancer proteins. The antibodies may also be used as blocking polypeptides, as outlined above, since they will specifically bind to the lung cancer protein.

Methods of identifying variant lung cancer-associated sequences

Without being bound by theory, expression of various lung cancer sequences is correlated with lung cancer. Accordingly, disorders based on mutant or variant lung cancer genes may be determined. In one embodiment, the invention provides methods for

identifying cells containing variant lung cancer genes, e.g., determining all or part of the sequence of at least one endogenous lung cancer genes in a cell. In a preferred embodiment, the invention provides methods of identifying the lung cancer genotype of an individual, e.g., determining all or part of the sequence of at least one lung cancer gene of the individual.

This is generally done in at least one tissue of the individual, and may include the evaluation of a number of tissues or different samples of the same tissue. The method may include comparing the sequence of the sequenced lung cancer gene to a known lung cancer gene, i.e., a wild-type gene.

5

10

15

20

25

30

The sequence of all or part of the lung cancer gene can then be compared to the sequence of a known lung cancer gene to determine if any differences exist. This can be done using known homology programs, such as Bestfit, etc. In a preferred embodiment, the presence of a difference in the sequence between the lung cancer gene of the patient and the known lung cancer gene correlates with a disease state or a propensity for a disease state, as outlined herein.

In a preferred embodiment, the lung cancer genes are used as probes to determine the number of copies of the lung cancer gene in the genome.

In another preferred embodiment, the lung cancer genes are used as probes to determine the chromosomal localization of the lung cancer genes. Information such as chromosomal localization finds use in providing a diagnosis or prognosis in particular when chromosomal abnormalities such as translocations, and the like are identified in the lung cancer gene locus.

Administration of pharmaceutical and vaccine compositions

In one embodiment, a therapeutically effective dose of a lung cancer protein or modulator thereof, is administered to a patient. By "therapeutically effective dose" herein is meant a dose that produces effects for which it is administered. The exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (e.g., Ansel, et al. (1992) Pharmaceutical Dosage Forms and Drug Delivery; Lieberman, Pharmaceutical Dosage Forms (vols. 1-3), Dekker, ISBN 0824770846, 082476918X, 0824712692, 0824716981; Lloyd (1999) The Art, Science and Technology of Pharmaceutical Compounding; and Pickar (1999) Dosage Calculations). Adjustments for lung cancer degradation, systemic versus localized delivery, and rate of new protease synthesis, as well as the age, body weight, general health, sex, diet, time of administration,

drug interaction and the severity of the condition may be necessary, and will be ascertainable with routine experimentation by those skilled in the art.

A "patient" for the purposes of the present invention includes both humans and other animals, particularly mammals. Thus the methods are applicable to both human therapy and veterinary applications. In the preferred embodiment the patient is a mammal, preferably a primate, and in the most preferred embodiment the patient is human.

5

10

15

20

25

30

The administration of the lung cancer proteins and modulators thereof of the present invention can be done in a variety of ways, including, but not limited to, orally, subcutaneously, intravenously, intranasally, transdermally, intraperitoneally, intramuscularly, intrapulmonary, vaginally, rectally, or intraocularly. In some instances, e.g., in the treatment of wounds and inflammation, the lung cancer proteins and modulators may be directly applied as a solution or spray.

The pharmaceutical compositions of the present invention comprise a lung cancer protein in a form suitable for administration to a patient. In the preferred embodiment, the pharmaceutical compositions are in a water soluble form, such as being present as pharmaceutically acceptable salts, which is meant to include both acid and base addition salts. "Pharmaceutically acceptable acid addition salt" refers to those salts that retain the biological effectiveness of the free bases and that are not biologically or otherwise undesirable, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like. "Pharmaceutically acceptable base addition salts" include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Particularly preferred are the ammonium, potassium, sodium, calcium, and magnesium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine.

The pharmaceutical compositions may also include one or more of the following: carrier proteins such as serum albumin; buffers; fillers such as microcrystalline cellulose,

lactose, corn and other starches; binding agents; sweeteners and other flavoring agents; coloring agents; and polyethylene glycol.

5

10

15

20

25

30

The pharmaceutical compositions can be administered in a variety of unit dosage forms depending upon the method of administration. For example, unit dosage forms suitable for oral administration include, but are not limited to, powder, tablets, pills, capsules and lozenges. It is recognized that lung cancer protein modulators (e.g., antibodies, antisense constructs, ribozymes, small organic molecules, etc.) when administered orally, should be protected from digestion. This is typically accomplished either by complexing the molecule(s) with a composition to render it resistant to acidic and enzymatic hydrolysis, or by packaging the molecule(s) in an appropriately resistant carrier, such as a liposome or a protection barrier. Means of protecting agents from digestion are well known in the art.

The compositions for administration will commonly comprise a lung cancer protein modulator dissolved in a pharmaceutically acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers can be used, e.g., buffered saline and the like. These solutions are sterile and generally free of undesirable matter. These compositions may be sterilized by conventional, well known sterilization techniques. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, e.g., sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like. The concentration of active agent in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the patient's needs (e.g., Remington's Pharmaceutical Science (15th ed., 1980) and Hardman, et al. (eds. 1996)

Goodman and Gilman: The Pharmacologial Basis of Therapeutics).

Thus, a typical pharmaceutical composition for intravenous administration would be about 0.1 to 10 mg per patient per day. Dosages from 0.1 up to about 100 mg per patient per day may be used, particularly when the drug is administered to a secluded site and not into the blood stream, such as into a body cavity or into a lumen of an organ. Substantially higher dosages are possible in topical administration. Actual methods for preparing parenterally administrable compositions will be known or apparent to those skilled in the art, e.g., Remington's Pharmaceutical Science and Goodman and Gilman, The Pharmacologial Basis of Therapeutics, supra.

The compositions containing modulators of lung cancer proteins can be administered for therapeutic or prophylactic treatments. In therapeutic applications, compositions are administered to a patient suffering from a disease (e.g., a cancer) in an amount sufficient to cure or at least partially arrest the disease and its complications. An amount adequate to accomplish this is defined as a "therapeutically effective dose." Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered depending on the dosage and frequency as required and tolerated by the patient. In any event, the composition should provide a sufficient quantity of the agents of this invention to effectively treat the patient. An amount of modulator that is capable of preventing or slowing the development of cancer in a mammal is referred to as a "prophylactically effective dose." The particular dose required for a prophylactic treatment will depend upon the medical condition and history of the mammal, the particular cancer being prevented, as well as other factors such as age, weight, gender, administration route, efficiency, etc. Such prophylactic treatments may be used, e.g., in a mammal who has previously had cancer to prevent a recurrence of the cancer, or in a mammal who is suspected of having a significant likelihood of developing cancer based, at least in part, upon gene expression profiles. Vaccine strategies may be used, in either a DNA vaccine form, or protein vaccine.

5

10

15

20

25

30

It will be appreciated that the present lung cancer protein-modulating compounds can be administered alone or in combination with additional lung cancer modulating compounds or with other therapeutic agent, e.g., other anti-cancer agents or treatments.

In numerous embodiments, one or more nucleic acids, e.g., polynucleotides comprising nucleic acid sequences set forth in the tables, such as antisense or RNAi polynucleotides or ribozymes, will be introduced into cells, *in vitro* or *in vivo*. The present invention provides methods, reagents, vectors, and cells useful for expression of lung cancer-associated polypeptides and nucleic acids using *in vitro* (cell-free), *ex vivo*, or *in vivo* (cell or organism-based) recombinant expression systems.

The particular procedure used to introduce the nucleic acids into a host cell for expression of a protein or nucleic acid is application specific. Many procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, spheroplasts, electroporation, liposomes, microinjection, plasma vectors, viral vectors and other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g.,

Berger and Kimmel, <u>Guide to Molecular Cloning Techniques</u>, <u>Methods in Enzymology</u> volume 152 (Berger), Ausubel, et al. (eds. 1999) <u>Current Protocols</u> (supplemented through 1999), and Sambrook, et al. (1989) <u>Molecular Cloning - A Laboratory Manual</u> (2nd ed., Vol. 1-3).

5

10

15

20

25

30

In a preferred embodiment, lung cancer proteins and modulators are administered as therapeutic agents, and can be formulated as outlined above. Similarly, lung cancer genes (including both the full-length sequence, partial sequences, or regulatory sequences of the lung cancer coding regions) can be administered in a gene therapy application. These lung cancer genes can include antisense or inhibitory applications, e.g., as inhibitory RNA or gene therapy (e.g., for incorporation into the genome) or as antisense compositions.

Lung cancer polypeptides and polynucleotides can also be administered as vaccine compositions to stimulate HTL, CTL, and antibody responses. Such vaccine compositions can include, e.g., lipidated peptides (see, e.g., Vitiello, et al. (1995) J. Clin. Invest. 95:341), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) ("PLG") microspheres (see, e.g., Eldridge, et al. (1991) Molec. Immunol. 28:287-294; Alonso, et al. (1994) Vaccine 12:299-306; Jones, et al. (1995) Vaccine 13:675-681), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, e.g., Takahashi, et al. (1990) Nature 344:873-875; Hu, et al. (1998) Clin Exp Immunol. 113:235-243), multiple antigen peptide systems (MAPs) (see, e.g., Tam (1988) Proc. Natl. Acad. Sci. U.S.A. 85:5409-5413; Tam (1996) J. Immunol. Methods 196:17-32), peptides formulated as multivalent peptides; peptides for use in ballistic delivery systems, typically crystallized peptides, viral delivery vectors (Perkus, et al., p. 379 In: Kaufmann (ed. 1996) Concepts in vaccine development; Chakrabarti, et al. (1986) Nature 320:535; Hu, et al. (1986) Nature 320:537; Kieny, et al. (1986) AIDS Bio/Technology 4:790; Top, et al. (1971) J. Infect. Dis. 124:148; Chanda, et al. (1990) Virology 175:535), particles of viral or synthetic origin (see, e.g., Kofler, et al. (1996) J. Immunol. Methods 192:25; Eldridge, et al. (1993) Sem. Hematol. 30:16; Falo, et al. (1995) Nature Med. 7:649), adjuvants (Warren, et al. (1986) Annu. Rev. Immunol. 4:369; Gupta, et al. (1993) Vaccine 11:293), liposomes (Reddy, et al. (1992) J. Immunol. 148:1585; Rock (1996) Immunol. Today 17:131), or, naked or particle absorbed cDNA (Ulmer, et al. (1993) Science 259:1745; Robinson, et al. (1993) Vaccine 11:957; Shiver, et al., p. 423 In: Kaufmann (ed. 1996) Concepts in vaccine development; Cease and Berzofsky (1994) Annu. Rev. Immunol. 12:923 and Eldridge, et al. (1993) Sem. Hematol. 30:16). Toxin-targeted

delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Massachusetts) may also be used.

5

10

15

20

25

30

Vaccine compositions often include adjuvants. Many adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, *Bortadella pertussis* or *Mycobacterium tuberculosis* derived proteins. Certain adjuvants are commercially available as, e.g., Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF, interleukin-2, -7, -12, and other like growth factors, may also be used as adjuvants.

Vaccines can be administered as nucleic acid compositions wherein DNA or RNA encoding one or more of the polypeptides, or a fragment thereof, is administered to a patient. This approach is described, for instance, in Wolff, et. al. (1990) Science 247:1465 as well as U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720; and in more detail below. Examples of DNA-based delivery technologies include "naked DNA", facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") or pressure-mediated delivery (see, e.g., U.S. Patent No. 5,922,687).

For therapeutic or prophylactic immunization purposes, the peptides of the invention can be expressed by viral or bacterial vectors. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use of vaccinia virus, e.g., as a vector to express nucleotide sequences that encode lung cancer polypeptides or polypeptide fragments. Upon introduction into a host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits an immune response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover, et al. (1991) Nature 351:456-460. A wide variety of other vectors useful for therapeutic administration or immunization e.g., adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the

like, will be apparent to those skilled in the art from the description herein (see, e.g., Shata, et al. (2000) Mol Med Today 6:66-71; Shedlock, et al. (2000) J. Leukoc. Biol. 68:793-806; Hipp, et al. (2000) In Vivo 14:571-85).

5

10

15

20

25

30

Methods for the use of genes as DNA vaccines are well known, and include placing a lung cancer gene or portion of a lung cancer gene under the control of a regulatable promoter or a tissue-specific promoter for expression in a lung cancer patient. The lung cancer gene used for DNA vaccines can encode full-length lung cancer proteins, but more preferably encodes portions of the lung cancer proteins including peptides derived from the lung cancer protein. In one embodiment, a patient is immunized with a DNA vaccine comprising a plurality of nucleotide sequences derived from a lung cancer gene. For example, lung cancer-associated genes or sequence encoding subfragments of a lung cancer protein are introduced into expression vectors and tested for their immunogenicity in the context of Class I MHC and an ability to generate cytotoxic T cell responses. This procedure provides for production of cytotoxic T cell responses against cells which present antigen, including intracellular epitopes.

In a preferred embodiment, DNA vaccines include a gene encoding an adjuvant molecule with the DNA vaccine. Such adjuvant molecules include cytokines that increase the immunogenic response to the lung cancer polypeptide encoded by the DNA vaccine. Additional or alternative adjuvants are available.

In another preferred embodiment lung cancer genes find use in generating animal models of lung cancer. When the lung cancer gene identified is repressed or diminished in metastatic tissue, gene therapy technology, e.g., wherein antisense or inhibitory RNA directed to the lung cancer gene will also diminish or repress expression of the gene. Animal models of lung cancer find use in screening for modulators of a lung cancer-associated sequence or modulators of lung cancer. Similarly, transgenic animal technology including gene knockout technology, e.g., as a result of homologous recombination with an appropriate gene targeting vector, will result in the absence or increased expression of the lung cancer protein. When desired, tissue-specific expression or knockout of the lung cancer protein may be necessary.

It is also possible that the lung cancer protein is overexpressed in lung cancer. As such, transgenic animals can be generated that overexpress the lung cancer protein.

Depending on the desired expression level, promoters of various strengths can be employed to express the transgene. Also, the number of copies of the integrated transgene can be determined and compared for a determination of the expression level of the transgene.

Animals generated by such methods will find use as animal models of lung cancer and are additionally useful in screening for modulators to treat lung cancer.

Kits for Use in Diagnostic and/or Prognostic Applications

5

10

15

20

25

For use in diagnostic, research, and therapeutic applications suggested above, kits are also provided by the invention. In diagnostic and research applications such kits may include at least one of the following: assay reagents, buffers, lung cancer-specific nucleic acids or antibodies, hybridization probes and/or primers, antisense polynucleotides, ribozymes, RNAi, dominant negative lung cancer polypeptides or polynucleotides, small molecule inhibitors of lung cancer-associated sequences, etc. A therapeutic product may include sterile saline or another pharmaceutically acceptable emulsion and suspension base.

In addition, the kits may include instructional materials containing instructions (e.g., protocols) for the practice of the methods of this invention. While the instructional materials typically comprise written or printed materials they are not limited to such. A medium capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. Such media may include addresses to internet sites that provide such instructional materials.

The present invention also provides for kits for screening for modulators of lung cancer-associated sequences. Such kits can be prepared from readily available materials and reagents. For example, such kits can comprise one or more of the following materials: a lung cancer-associated polypeptide or polynucleotide, reaction tubes, and instructions for testing lung cancer-associated activity. Optionally, the kit contains biologically active lung cancer protein. A wide variety of kits and components can be prepared according to the present invention, depending upon the intended user of the kit and the particular needs of the user. Diagnosis would typically involve evaluation of a plurality of genes or products. The genes typically will be selected based on correlations with important parameters in disease which may be identified in historical or outcome data.

Example 1: Gene Chip Analysis

Molecular profiles of various normal and cancerous tissues were determined and analyzed using gene chips. RNA was isolated and gene chip analysis was performed as described (Glynne, et al. (2000) Nature 403:672-676; Zhao, et al. (2000) Genes Dev. 14:981-993).

Tables 1A and 1B were previously filed on April 18, 2001 in USSN 60/284,770 (18501-001500US) and on November 29, 2001 in USSN 60/334,370 (18501-001520US)

_		,				
5	Table 1A					
	Pkey	ExAccn	UnigenelD	Unigene Title	70% chron/90% NL	70% SQAD/90% NL
	100134	D13264	Hs.49	macrophage scavenger receptor 1 ***Immunoglobulin Heavy Chain, Vdjrc Reg	1.61	0.74
	100780 100971	HG3731-HT4001 J02874	Hs.83213	fatty acid binding protein 4; adipocyte	2.68 1.96	3.28 0.14
10		L05568	Hs.553	solute carrier family 6 (neurotransmitte	0.79	0.07
		L07594	Hs.79059	transforming growth factor; beta recepto	2.55	1
		L15388	Hs.211569	G protein-coupled receptor kinase 5	0.88	0.27
		L38486	Hs.118223	microfibrillar-associated protein 4	0.89	0.26
15		L43821	Hs.80261	enhancer of filamentation 1 (cas-like do	0.59	0.29 0.41
13		L49169 L76380	Hs.75678 Hs.152175	FBJ murine osteosarcoma viral oncogene h calcitonin receptor-like	1.15 0.81	0.41
	101678	M62505	Hs.2161	complement component 5 receptor 1 (C5a I	1.31	0.77
	101764	M80563	Hs.81256	S100 calcium-binding protein A4 (calcium	1.44	0.82
20	101771	M81750	Hs.153837	myeloid cell nuclear differentiation ant	0.96	0.45
20	101842	M93221	Hs.75182	mannose receptor; C type 1	1.27	0.37
	102283 102363	U31384 U39447	Hs.83381 Hs.198241	guanine nucleotide binding protein 11 amine oxldase; copper containing 3 (vasc	1.04 0.96	0.3 0.26
	102507	U52154	Hs.193044	potassium inwardly-rectifying channel; s	2.81	3.45
	102698	U75272	Hs.1867	progastricsin (pepsinogen C)	0.95	0.23
25		X54131	Hs.123641	protein lyrosine phosphatase; receptor t	1.62	0.21
	103280	X79981	Hs.76206	cadherin 5; VE-cadherin (vascular epithe	0.9	0.41
	103496 103541	Y09267 Z11697	Hs.132821 Hs.79197	flavin containing monooxygenase 2 CD83 antigen (activated B lymphocytes; i	1.27 1.86	0.49 1
	103554	Z18951	Hs.74034	caveolin 1; caveolae protein; 22kD	1.27	0.47
30	104212	AB002298	Hs.173035	KIAA0300 protein	1.17	0.16
	104691	AA011176	Hs.37744	ESTs	1.08 .	0.35
	104825	AA035613		ESTs	0.75	0.27
	104857	AA043219	Hs.19058	ESTS	2.6	3.3
35	104865 104989	AA045136 AA102098	Hs.22575 Hs.118615	ESTs ESTs	1.23 0.63	0.49 0.32
55		AA292694	Hs.3807	ESTs; Weakly similar to PHOSPHOLEMMAN PR	0.86	0.34
	105847	AA398606	Hs.32241	ESTs	1.32	0.4
	105894	AA400979	Hs.25691	calcitonin receptor-like receptor activi	0.78	0.28
40		AA451861		ESTs; Weakly similar to dipeptidase prec	1.2	0.47
40	106536 106605	AA453997 AA457718	Hs.23804 Hs.21103	ESTs Homo sapiens mRNA; cDNA DKFZp564B076 (fr	0.82 0.99	0.15 0.07
	106667		Hs.16578	ESTs	1.17	0.4
	106773	AA478109		ESTs	1.46	0.43
45	106797	AA478962	Hs.169943	ESTs	1.18	0.32
43	106844 106870	AA485055 AA487576	Hs.158213 Hs.26530	sperm associated antigen 6 serum deprivation response (phosphalidy)	0.98 1.05	0.51 0.14
	106954	AA496980	Hs.204038	ESTs	1.25	0.33
	107054	AA600150	Hs.14366	ESTs	1.11	0.4
50	107292	T30407	Hs.4789	ESTs; Weakly similar to oxidative-stress	1.07	2.58
50	107994 107997	AA036811 AA037388	Hs.165030 Hs.82223	ESTs Human DNA sequence from clone 141H5 on c	0.7 1.02	0.2 1 0.48
	108041	AA041552	Hs.61957	ESTs	1.44	0.51
		AA045709	Hs.40545	ESTs	1.98	1
55	108382	AA074885		macrophage receptor with collagenous str	1.52	0.72
33	108435 108480	AA078787 AA081093		ESTs ESTs	2.53 1.56	1.53 0.48
	109252	AA194830	Hs.68055 Hs.85944	FSTe	2.69	3.18
	109550	F01534		ESTs	1.19	0.65
C 0	109613		Hs.27519	ESTs	1.01	0.29
60	109837	H00656	Hs.29792	ESTs	0.81	0.15
	109893 109984	H04768 H09594	Hs.30484 Hs.10299	ESTs ESTs	1.44 0.62	0.32 0.14
	110099	H16568		ESTs	1.01	0.28
~-	110837	N30796	Hs.17424	ESTs; Weakly similar to semaphorin F [H.	1.1	0.22
65	111247			Homo sapiens mRNA; cDNA DKFZp564B2062 (f	1.26	0.26
	111341	N80935		ESTs ESTs	1.57	0.52 1
	111510 111737	R07856 R25410		ESTs	3.96 0.97	0.24
	113195	T57112	110.0210	""yc20g11.s1 Stratagene lung (#937210)	1.22	0.35
70	113238			ESTs	2.27	0.45
		T90496		ESTs	1.06	0.22
	113552 113606	T90889		ESTs	1.16 1.48	0.42 0.7
	113695			ESTs ESTs	1.54	0.28
75	113946	W84753		ESTs	1.79	0.72
	114251	Z39898	Hs.21948	ESTs	1.95	0.25
	114359			ESTs; Moderately similar to H1 chloride	1.42	0.13
	115230 115279	AA278300 AA279760		ESTs ESTs	2.62 1.79	0.42 0.91
80	115566			ESTs	0.86	0.2
- •	115965	AA446661		ESTs	0.79	0.04
	116166	AA461556	Hs.202949	KIAA1102 protein	2.29	0.68
	116279	AA486073		ESTs	2.27	0.78
	117023	H88157	Hs.41105	ESTs	1.36	0.16

	W	'O 02/0864	143			
	117209	H99959	Hs.42768	ESTs	1.46	0.48
	118901	N90719	Hs.94445	ESTs	1.51	1
	118981		Hs.39288	ESTs	1.34	0.48
5	119073	R32894	Hs.45514	v-ets avian erythroblastosis virus E26 o	1.14	0.27
3	119221	R98105	404	***yr30g11.s1 Soares fetal liver spleen	1.32	0.53
	119824	W74536	Hs.184	advanced glycosylation end product-speci	1	0.19
	119861	W80715	U- C02C0	ESTs; Moderalely similar to !!!! ALU SUB	1.83	0.45
	120041	W92775	Hs.59368	ESTs	1.23	0.55
10	120132	Z38839	Hs.125019	ESTs; Highly similar to KIAA0886 protein	0.91	0.37
10	120467	AA251579	Hs.187628	ESTs	1.87	1.91
	121314	AA402799	Hs.182538	ESTs	1.3	0.31
	121643	AA417078	Hs.193767	ESTs ESTs	2.31	0.68
	121690	AA418074	Hs.110286		1.47	0.51 0.63
15	122633 123978	AA454080	Hs.34853	inhibitor of DNA binding 4; dominant neg	1.31	0.63
1.5	124214	C20653	Hs.170278	ESTs ESTs	1.52	0.32
	124357	H58608 N22401	Hs.151323	""yw37g07.s1 Morton Fetal Cochlea Homo	0.93 1.29	1
	124438	N40188	Hs.102550	ESTs	1.36	0.7
	125167	W45560	Hs.102541	ESTs	1.46	0.69
20	125174	W51835	Hs.231082	EST	3.07	3.76
	125422	AA903229	Hs.153717	ESTs	1.34	0.3
	125561	Al417667	Hs.22978	ESTs	1.89	0.63
	125831	D60988	, D.ELOTO	****HUM145B09B Clontech human fetal brain	0.94	0.36
	127002	R35380	Hs.24979	ESTs	3.02	4.06
25	127307	AA369367	Hs.126712	ESTs; Weakly similar to plL2 hypothetica	1.01	0.69
	127609	AA622559	Hs.150318	ESTs	1.21	0.32
	127959	Al302471	Hs.124292	ESTs	2.5	1
	128458	D52193	Hs.56340	ESTs	1.13	0.33
	128624	AA479209	Hs.102647	ESTs	1.45	0.58
30	128789	AA486567	Hs.105695	ESTs	1.1	0.34
	128798	AF014958	Hs.105938	chemokine (C-C motif) receptor-like 2	1.16	0.55
	128952	R51076	Hs.107361	ESTs; Highly similar to Rap2 interacting	2.04	2.4
	129057	X62466	Hs.214742	CDW52 antigen (CAMPATH-1 antigen)	1.77	0.73
	129210	AA401654	Hs.202949	KIAA1102 protein	1.11	0.36
35	129240	W24360	Hs.237868	Interleukin 7 receptor	0.91	0.41
	129402	T63781		""yc21g01.s1 Stratagene lung (#937210)	1.36	0.43
	129565	· X77777	Hs.198726	vasoactive intestinal peptide receptor 1	0.67	0.08
	129593	AA487015	Hs.98314	Homo sapiens mRNA; cDNA DKFZp586L0120 (f	1.3	0.42
	129626	AA447410	Hs.11712	ESTs; Weakly similar to !!!! ALU SUBFAMI	1.28	0.46
40	129699	AA458578	Hs.12017	KIAA0439 protein; homolog of yeast ubiqu	1.58	1
	129898	N48595	Hs.13256	ESTs	1.13	0.53
	129958	L20591	Hs.1378	annexin A3	0.81	0.31
	130273	U59914	Hs.153863	MAD (mothers against decapentaplegic; Dr	0.59	0.22
15	130655	N92934	Hs.17409	cysteine-rich protein 1 (intestinal)	1.44	0.76
45	130657	T94452	Hs.201591	ESTs	0.96	0.42
	131061	N64328	Hs.22567	ESTs; Moderately similar to HYPOTHETICAL	1.51	0.45
	131066	F09006	Hs.22588	ESTs	0.97	0.37
	131263	R38334	Hs.24950	regulator of G-protein signalling 5	2.34	. 2.82
50	131589	U52100	Hs.29191	epithelial membrane protein 2	1.2	0.62
30	131686	AA157428	Hs.30687	Grb2-associated binder 2	0.95	0.38
	131751	H18335	Hs.31562	ESTs	1.47	0.52
	132430	T23630	Hs.258675	EST	1.86	2.09
	132476	N67192	Hs.49476	Homo saplens clone TUA8 Cri-du-chal regi	1.73	0.58
55	132836	F09557	Hs.57929	slit (Drosophila) homolog 3	0.91	0.29
55	133120	X64559	Hs.65424	tetranectin (plasminogen-binding protein adipose specific 2	0.82 1.29	0.2
	133488	D45370	Hs.74120 Hs.204831		2.25	0.48
	133565 133651	H57056	Hs.173381	ESTs dihydropyrimidinase-like 2	1.65	0.57 0.62
	133835	U97105 AA059489	Hs.76640	ESTs; Highly similar to RGC-32 [R.norveg	1.16	0.02
60	133978	W73859	Hs.78061	transcription factor 21	0.79	0.34
00	133985	L34657	Hs.78146	plateleVendothelial cell adhesion molec	0.99	0.28
	134299	AA487558	Hs.8135	ESTs	1.02	0.26
	134300	U81984	Hs.166082	endothelial PAS domain protein 1	0.86	0.42
	134323	AA028976	Hs.8175	Homo sapiens mRNA; cDNA DKFZp564M0763 (f	1.19	0.27
65	134343	D50683	Hs.82028	transforming growth factor; beta recepto	1.21	0.67
	134417	D87969	Hs.82921	solute carrier family 35 (CMP-sialic aci	1.28	1
	134561	U76421	Hs.85302	adenosine deaminase; RNA-specific; B1 (h	2.12	0.55
	134624	W67147	Hs.8700	deleted in liver cancer 1	2.35	2.74
=-	134696	H88354	Hs.8861	ESTs	1.35	0.33
70	134749	L10955	Hs.89485	carbonic anhydrase IV	0.89	0.2
	134786	L06139	Hs.89640	TEK tyrosine kinase; endothelial (venous	0.48	0.21
	134869	T35288	Hs.90421	ESTs; Moderately similar to !!!! ALU SUB	2.14	2.64
	135346	M21056	Hs.992	phospholipase A2; group IB (pancreas)	0.63	0.13
70	100113	D00591	Hs.84746	Chromosome condensation 1	1	2.15
75	100147	D13666	Hs.136348	Homo sapiens mRNA for osteoblast specifi	0.5	2
	100280	D42085	Hs.155314	KIAA0095 gene product	1.02	1.39
	100335	D63391	Hs.6793	platelet-activating factor acetylhydrola	1	5.58
	100360	D78335	Hs.75939	Uridine monophosphate kinase	0.91	2.04
00	100372	D79997	Hs.184339	KIAA0175 gene product	0.75	2.03
80	100486	HG1112-HT111		TIGR: ras-like protein TC4	1.09	1.93
	100559	HG2197-HT226		collagen, type VII, alpha 1*	0.97	3.6
	100576	HG2290-HT238		*calcitonin/alpha-CGRP, alt. transcript	1	1
	100668	HG2981-HT393		*TIGR: CD44 (epican, all transcript 12	0.85	1.9
85	100906	HG4716-HT515		Guanosine 5'-Monophosphate Synthase	1.18	2.29
υJ	100930	HG721-HT4827	7	"TIGR: placental protein 14, endometrial	1	1.45

	W	O 02/086	443			
	100960	J00124	Hs.117729	keratin 14 (epidermolysis bullosa simple	0.84	. 2.6
	101031	J05070	Hs.151738	*Matrix metalloproteinase 9 (gelatinase	0.77	1.52
	101111	L08424	Hs.1619	Achaete-scute complex (Drosophila) homol	1	1
_	101124	L10343	Hs.112341	"Protease inhibitor 3, skin-derived (SKA	0.62	2.67
5	101175	L18920	Hs.36980	"Melanoma antigen, family A, 2"	1	1
	101204	L24203	Hs.82237	Ataxia-telangiectasia group D-associated	0.74	4.1
	101431	M19888	Hs.1076	Small proline-rich protein 1B (comifin)	0.85	2.51
	101448	M21389	Hs.195850	keratin 5 (epidermolysis bullosa simplex	. 0.61	8.83
10	101511	M27826	Hs.267319	Endogenous retroviral protease	1.03	1.13
10	101526	M29540	Hs.220529	Carcinoembryonic antigen-related cell ad	1.07	4.61
	101548	M31328	Hs.71642	*Guanine nucleotide binding protein (G p	0.97	1.13
	101625	M57293		"Human parathyroid hormone-related pepti	1	1
	101649	M60047	Hs.1690	Heparin-binding growth factor binding pr	1	2.7
	101724	M69225	Hs.620	bullous pemphigoid antigen 1 (230/240kD)	1	8.98
15	101748	M76482	Hs.1925	Desmoglein 3 (pemphigus vulgaris antigen	1	2.78
	101759	M80244	Hs.184601	"Solute carrier family 7 (cationic amino	1.07	2.45
	101804	M86699	Hs.169840	TTK protein kinase	1	1
	101806	M86757	Hs.112408	S100 calcium-binding protein A7 (psorias	0.74	1.76
	101809	M86849		"Homo sapiens connexin 26 (GJB2) mRNA, c	1	7
20	101845	M93426	Hs.78867	"Protein tyrosine phosphatase, receptor-	1	1
	101851	M94250	Hs.82045	Midkine (neurite growth-promoting factor	1.13	2.6
	102083	U10323	Hs.75117	"Interleukin enhancer binding factor 2,	1.03	1.61
	102154	U17760	Hs.75517	"Laminin, beta 3 (nicein (125kD), kalini	0.94	3.62
	102193	U20758	Hs.313	secreted phosphoprotein 1 (osteopontin;	0.34	4.59
25	102305	U33286	Hs.90073	chromosome segregation 1 (yeast homolog)	1.45	2.97
	102348	U37519	Hs.87539	Aldehyde dehydrogenase 8	0.52	2.25
	102581	U61145	Hs.77256	Enhancer of zeste (Drosophila) homolog 2	0.91	2.46
	102610	U65011	Hs.30743	Preferentially expressed antigen in mela	1	3.88
	102623	U66083	Hs.37110	"Melanoma antigen, family A, 9 (MAGE-9)"	1	1
30	102669	U71207	Hs.29279	Eyes absent (Drosophila) homolog 2	1	1
-	102696	U74612	Hs.239	Forkhead box M1	1.06	2.77
	102829	U91618	Hs.80962	Neurotensin	1	1
	102888	X04741	Hs.76118	Ubiquitin carboxyl-terminal esterase L1	1.13	2.59
	102913	X07696	Hs.80342	keratin 15	0.7	4.72
35	102915	X07820	Hs.2258	Matrix Metalloproteinase 10 (Stromolysin	1.15	3.35
	102963	X15943	Hs.37058	"Calcitonin/calcitonin-related polypepti	• 1	1
	103021	X53587	Hs.85266	"Integrin, beta 4"	1.38	2.34
	103036	X54925	Hs.83169	Matrix metalloprotease 1 (interstitial c	1	14.93
	103058	X57348	Hs.184510	Stratifin	1.25	4.17
40	103060	X57766	Hs.155324	matrix metalloproteinase 11 (stromelysin	1	1.72
	103119	X63629	Hs.2877	"Cadherin 3, P-cadherin (placental)"	1.16	7.38
	103206	X72755	Hs.77367	monokine induced by gamma interferon	0.71	1.48
	103242	X76342	Hs.389	*Alcohol dehydrogenase 7 (class IV), mu	1	1
	103312	X82693	Hs.3185	"Lymphocyte antigen 6 complex, locus D;	0.92	1.28
45	103478	Y07755	Hs.38991	S100 calcium-binding protein A2	1.05	5.81
	103558	Z19574	Hs.2785	keratin 17	0.65	6.68
	103576	Z26317	Hs.2631	Desmoglein 2	0.79	1.73
	103587	Z29083 .	Hs.82128	5T4 Oncofetal antigen	1	3.93
	103594	Z31560	Hs.816	"SRY (sex determining region Y)-box 2, p	0.71	7.23
50	103768	AA089997	,,,,,,,,	"ESTs, Highly similar to integral membra	0.99	1.8
	104158	AA454908	Hs.8127	KIAA0144 gene product	0.96	1.29
	104558	R56678	Hs.88959	Human DNA sequence from clone 967N21 on	1.23	7.23
	104689	AA010665		ESTs	0.96	2.11
	104733	AA019498	Hs.23071	ESTs	1.18	1.88
55	104906	AA055809	Hs.26802	Protein kinase domains containing protei	1.11	3.15
	104978	AA088458	Hs.19322	ESTs; Weakly similar to !!!! ALU SUBFAMI	1.64	2.89
	105012	AA116036	Hs.9329	"Homo sapiens mRNA for fls353, complete	1.19	3.91
	105175	AA186804	Hs.25740	ESTs; Weakly similar to unknown [S.cerev	0.9	4.63
	105263	AA227926	Hs.6682	ESTs	0.95	2.87
60	105298	AA233459	Hs.26369	ESTs	1	1.13
•	105312	AA233854	Hs.23348	S-phase kinase-associated protein 2 (p45	1.32	3.01
	105719	AA291644	Hs.36793	Hypothetical protein FLJ23188	1.28	2.31
	105743	AA293300	Hs.9598	ESTs	1	1
		AA411621	Hs.8895	ESTs; same as BFH6?	0.94	2.04
65	106231	AA429571	Hs.38002	KIAA1355 protein	1.04	1.5
	106540	AA454607	Hs.38114	Hypothetical protein FLJ11100	1.26	2.26
	106575	AA456039	Hs.105421	ESTs	1	2
	106632	AA459897	Hs.11950	GPI-anchored metastasis-associated prote	0.87	1.32
	106727	AA465342	Hs.34045	Hypothetical protein FLJ20764	0.87	1.59
70	106906	AA490237	Hs.222024	Transcription factor BMAL2 (cycle-like f	0.61	1.6
	107059	AA608545	Hs.23044	RAD51 (S. cerevisiae) homolog (E coli Re	0.48	2.67
	107104	AA609786	Hs.15243	Nucleolar protein 1 (120kD)	1.01	1.44
	107151	AA621169	Hs.8687	ESTs; procollagen I-N proteinase	0.97	2.89
<i>-</i>	107284	S74039	Hs.291904	Accessory proteins BAP31/BAP29	1.15	3.65
75	107901	AA026418	Hs.91539	ESTs	0.72	3.44
	107922	AA028028	Hs.61460	lg superfamily receptor LNIR precursor	1	2.48
	107932	AA029317	Hs.18878	Hypothetical protein FLJ21620	1	1
	108695	AA121315	Hs.70823	KIAA1077 protein	0.91	3.53
٥.	108857	AA133250	Hs.62180	ESTs	1	1
80	108860	AA133334	Hs.129911	ESTs	0.73	7.3
	108990	AA152296	Hs.72045	ESTs	1	1
	109166	AA179845	Hs.73625	"RAB6 interacting, kinesin-like (rabkine	1	4.55
	109424	AA227919	Hs.85962	Hyaluronan synthase 3	1	1.28
0.~	109665	F05012	Hs.27027	Hypothetical protein DKFZp762H1311	1.42	2
85	109970	H09281	Hs.13234	ESTs	1.13	2.16
					•	

	W	O 02/086	443			
	110015	H10998	Hs.7164	A disintegrin and metalloproteinase doma	0.84	1.95
	110156	H18957	Hs.4213	ESTs	0.94	1.41
	110561	H59617	Hs.5199	HSPC150 protein similar to ubiquitin-con	0.91	3.18
_	111223	N68921	Hs.34806	ESTs; Weakly similar to neogenin [H.sapi	0.91	3.13
5	111345	N89820	Hs.14559	Hypothetical protein FLJ 10540	1	1.25
	111876	R38239	Hs.293246	*ESTs, Weakly similar to putative p150 [0.83	1.27
	111902	R39191	Hs.109445	KIAA1020 protein	0.91	0.91
	112244	R51309	Hs.70823	KIAA1077 protein	0.77 1	3.01 1
10	112973	T17271	Hs.89981	"cDNA FLJ13308 fis, clone OVARC1001436, "Diacylglycerol kinase, zeta (104kD)"	0.55	1.03
10	112989 113047	T23482 T25867	Hs.7549	ESTs	0.87	2
	113047	T40920	Hs.126733	ESTs	1	ī
	113531	T90345	Hs.16740	Hypothetical protein FLJ11036	0.42	1.44
	113970	W86748	Hs.8109	ESTs	1.17	1.73
15	114346	Z41450	Hs.130489	*ATPase, aminophospholipid transporter-l	0.86	0.82
	114407	AA010188	Hs.103305	ESTs	0.8	1.88
	114471	AA028074	Hs.104613	RP42 homolog	1.06	1.34
	114509	AA043551	Hs.101799	KIAA1350 protein	1.82	2.32
20	115060	AA253214	Hs.198249	"Gap junction protein, beta 5 (connexin	0.79	1.49
20	115091	AA255900	Hs.184523	KIAA0965 protein	0.72 0.59	1.92 1.97
	115123	AA256642	Hs.236894	"ESTs, High sim to LRP1_hu tow density I ESTs	1	1.25
	115291 115506	AA279943 AA292537	Hs.122579 Hs.45207	Hypothetical protein KIAA1335	1.15	1.48
	115522	AA331393	Hs.47378	ESTs	0.5	3.29
25	115536	AA347193	Hs.62180	ESTs	1	1
	115697	AA411502	Hs.63325	Homo sapiens type II membrane serine pro	1	6.53
	115909	AA436666	Hs.59761	ESTs	1	6.98
	115978	AA447522	Hs.69517	Differentially expressed in Fanconi anem	1	2.31
20	116028	AA452112	Hs.42644	thioredoxin-like	0.99	1.68
30	116107	AA456968	Hs.92030	CGL04 protein	1.14	1.8 1.86
	116134	AA460246	Hs.50441	OOI-O4 Proton	1.11 0.99	1.00
	116157	AA461063	Hs.44298 Hs.61762	Hypothetical protein Hypoxia-inducible protein 2	0.44	0.86
	116158 116335	AA461187 AA495830	Hs.87013	"Homo sapiens cDNA FLJ10238 fis, clone H	0.62	3.89
35	116483	C14092	Hs.76118	Ubiquitin carboxyl-terminal esterase L1	1.04	2.36
55	117320	N23239	Hs.211092	LUNX protein; PLUNC(palate lung & nasal	0.51	0.64
	117557	N33920	Hs.44532	Diubiquitin	1.11	2.63
	117693	N40939	Hs.112110	PTD007 protein	0.98	1.79
40	117881	N50073	Hs.260622	Butyrate-induced transcript 1	1	1.43
40	118368	N64339	Hs.48956	ESTs	0.67 1.21	2.86 0.83
	118566	N68558	Hs.42824 Hs.50081	Hypothetical protein FLJ10718 KIAA1199 see CVA7.doc	0.88	1.63
	118695 119780	N71781 W72967	Hs.191381	ESTs; Weakly similar to hypothetical pro	1	1
	119845	W79920	Hs.58561	G protein-coupled receptor 87	1	1
45	120102	W95428	Hs.132927	"ESTs, Moderately similar to p53 regulat	1	1
	120104	W95477	Hs.180479	ESTs	0.69	3.07
	120486	AA253400	Hs.137569	Turnor protein 63 kDa with strong homolog	1.08	12.05 1
	120859	AA350158	Hs.1619 Hs.97019	Achaete-scute complex (Drosophila) homol EST	1	i
50	120880 120948	AA360240 AA397822	Hs.104650	Hypothetical protein FLJ10292	1.04	2.15
50	120983	AA398209	Hs.97587	EST	1	1
	121362	AA405500	Hs.97932	Chondromodulin I precursor	1	1
	121369	AA405657	Hs.128791	CGI-09 protein	. 1	1.8
	121791	AA423978	Hs.293317	"ESTs, Weakly similar to JM27 (H.sapiens	1	1
55	123005	AA479726	Hs.105577	ESTs	1	1
	123044	AA481549	Hs.130881	B-cell CLL/lymphoma 11A (zinc finger pro	0.95	1.88
	123160	AA488687	Hs.284235	ESTs	1.59 1.19	4.98 1.64
	123479	AA599469	Hs.135056 Hs.112619	clone RP5-850E9 on chromosome 20 *ESTs, Weakly similar to PQ0109 Purkinje	1.03	1.14
60	123571 123829	AA608956 AA620697	Hs.112208	XAGE-1 protein	1.39	2.2
OO	124006	D60302	Hs.108977	ESTs	1	4.85
	124059	F13673	Hs.99769	ESTs	1.49	8.62
	124960	T15386	Hs.194766	Seizure related gene 6 (mouse)-like	0.76	0.77
~~	125218	W73561	Hs.110024	NADH:ublquinone oxidoreductase MLRQ subu	1.33	1.77
65	125453	R06041	Hs.18048	"Melanoma antigen, family A, 10"	0.8	1.42
	125759	AA425587	Hs.82226	Glycoprotein (transmembrane) nmb	1.52	2.26
	125972	AA434562	Hs.35406	*ESTs, Highly similar to unnamed protein	1.05 1	2.48 1.95
	125994 126395	H55782	Hs.270799 Hs.278956	EST Hypothetical protein FLJ12929	i	1.35
70	126645	N70192 AJ167942	Hs.61635	STEAP1 (Homo sapiens BAC clone RG041D11	i	2.23
, 0	127221	A1354332	Hs.72365	ESTs	0.73	3.27
	127479	AA513722	Hs.179729	collagen; type X; alpha 1 (Schmid metaph	0.51	1.94
	128192	AI204246		KIAA1085 protein	1.8	3.16
~~	128610	L38608	Hs.10247	activated leucocyte cell adhesion molecu	0.89	0.97
75	128777	U46006	Hs.10526	Cysteine and glycine-rich protein 2	1	1
	128924	AA234962	Hs.26557	Plakophilin 3	1.3	2.97
	129041	H58873	Hs.169902	"Solute carrier family 2 (facilitated gl	0.84 0.87	2.04 1.04
	129099	H50398 AA172056	Hs.108660	"ATP-binding cassette, sub-family C (CFT ESTs	1	1.04
80	129404 129466	L42583	Hs.111128	*Genbank Homo sapiens keratin 6 isoform	0.72	12.67
00	129605	S72493	Hs.115947	Keratin 16 (focal non-epidermolytic palm	0.92	1.5
	129628	U26727	Hs.1174	*Cyclin-dependent kinase inhibitor 2A (m	0.85	1.93
	130023	X13461	Hs.239600	Calmodulin-like 3	0.84	1.22
0.5	130080	X14850	Hs.147097	*H2A histone family, member X*	0.98	1.96
85	130385	AA126474	Hs.155223	stanniocalcin 2	1	1

	W	O 02/086	443			
	130410	V01514	Hs.155421	Alpha-fetoprotein	0.63	0.63
	130441	U35835	Hs.301387	"Human DNA-PK mRNA, partial cds"	1.15	3.65
	130482	L32866	Hs.1578	Baculoviral IAP repeat-containing 5 (sur	1	1.88
_	130553	AA430032	Hs.252587	Pituitary tumor-transforming 1	0.92	1.96
5	130577	M35410	Hs.162	Insulin-like growth factor binding prote	1.17	4.7
	130627	L23808	Hs.1695	Matrix metalloproteinase 12 (macrophage	0.69	4.05
	130800	AA223386	Hs.19574	ESTs; Weakly similar to katanin p80 subu	1.13	241
	130939	AA598689	Hs.21400	ESTs	0.8	0.89
10	131046	X02530	Hs.2248	INTERFERON-GAMMA INDUCED PROTEIN PRECURS		1.15
10	131244	D38076	Hs.24763	RAN binding protein 1	1.13	1.85
	131877	J04088	Hs.156346	Topoisomerase (DNA) II alpha (170kD)	1	1
	131927	AA461549	Hs.34780	*Doublecortex; lissencephaly, X-linked (0.81	0.62
	131965	W90146	Hs.35962	ESTs	0.74	3.27
15	131978	D80008	Hs.36232	KIAA0186 gene product	1	1
15	132354	L05187	Hs.211913	Small proline-rich protein 1A	0.69	1.43
	132543	AA417152	Hs.5101	ESTs; Highly similar to protein regulati	0.79	4.27
	132632	N59764	Hs.5398	guanine-monophosphate synthetase	1	1.08
	132653 132659	U31201 Z75190	Hs.54451 Hs.54481	"laminin gamma2 chain gene (LAMC2), exon	1	1
20	132710	W93726	Hs.55279	"Low density lipoprotein receptor-relate "Serine (or cysteine) proteinase Inhibit	0.89 0.64	0.89 4.41
20	132758	W52432	Hs.56105	*ESTs, Weakly similar to WDNM RAT WDNM1	1.55	2.08
	132767	L05188	Hs.231622	Small proline-rich protein 2B	0.83 ~	1.66
	132816	M74542	Hs.575	Aldehyde dehydrogenase 3	0.55	0.55
	132990	AA458761	Hs.18387	transcription factor AP-2 alpha (activat	1	3.53
25	133070	U69611	Hs.64311	A disintegrin and metalloproteinase dom	1,16	2
	133282	U52960	Hs.286145	"SRB7 (suppressor of RNA polymerase B, y	1	2.7
	133317	AA215299	Hs.70830	U6 snRNA-associated Sm-like protein LSm7	0.95	1.42
		AA156897	Hs.72157	Homo sapiens mRNA; cDNA DKFZp564I1922	1.12	2.55
	133391	X57579	Hs.727	H.sapiens activin beta-A subunit (exon 2	1.65	1.76
30	133832	H03387	Hs.241305	estrogen-responsive B box protein (EBBP)	1.02	1.39
	134032	Z81326	Hs.78589	"Serine (or cysteine) proteinase inhibit	1	1
	134168	AA398908	Hs.181634	"Homo sapiens cDNA: FLJ23602 fis, clone	0.95	1.53
	134218	AA227480	Hs.80205	Pim-2 oncogene	1.36	2.48
~ -	134405	R67275	Hs.82772	""collagen, type XI, alpha 1""	0.76	2.86
35	134453	X70683	Hs.83484	SRY (sex determining region Y)-box 4	1.89	3.78
	134470	X54942	Hs.83758	CDC28 protein kinase 2	1.82	4.11
	134645	U87459	Hs.167379	"Cancer/testis antigen (NY-ESO-1, CTAG1,	0.82	0.83
	134781	M17183	Hs.89626	Parathyroid hormone-like hormone	1	1
40	135002	U19147	Hs.272484	Gantigen 6	1	1
40	100040	M97935	11 0050	AFFX control: STAT1	0.92	1.25
	101201	L22524	Hs.2256	matrix metalloproteinase 7 (matrilysin;	2.92	8.5
	101664	M60752	Hs.121017	H2A histone family; member A	1	1
	102025	U03911	Hs.78934		0.8	1.61
45	102031	U04898	. Hs.2156	RAR-related orphan receptor A	1	1
43	102221	U24576	Un 75000	LIM domain only 4	1	1
	102270 102339	U30255	Hs.75888	phosphogluconate dehydrogenase	1.08	1.43
	102339	U37022 U41668	Hs.95577 Hs.77494		0.88 1.07	1.32 1.58
•	103000	X51956	Hs.146580		0.91	1.49
50	103395	X94754	Hs.119503		0.89	1.32
50	105638	AA281599	Hs.20418		0.91	1.25
	105726	AA292328	Hs.9754		0.94	1.48
	114841	AA234722	Hs.55408		0.78	1.56
	115206	AA262491	Hs.186572		1	1
55	115906	AA436616	Hs.82302		0.74	2.52
	119132	R49046	Hs.107911	ATP-binding cassette; sub-family 8 (MDR/	1.1	1.51
	124163	H30539	Hs.189838	ESTs	1	1
	126487	AA482505	Hs.184601	solute carrier family 7 (cationic amino	1.01	1.46
	127141	AA307960	Hs.75478	KIAA0956 protein	0.85	1.4
60	128034	AA905754	Hs.75103	tyrosine 3-monooxygenase/tryptophan 5-mo	1	1.18
	128609	AA234365	Hs.102456	survival of motor neuron protein interac	1	1.5
	128895	R37753	Hs.106985		1.7	2
	130199	Z48579	Hs.172028		1	1
65	130524	U89995	Hs.159234		1	1
65	133000	U24152	Hs.62402	• • • • • • • • • • • • • • • • • • • •	1	1
	133658	M25756	Hs.75426	• , • ,	1	1
	135047	AA460466	Hs.93597		1	1
	100053	M27830	11. 00000		0.88	1.53
70	100114	D00596	Hs.82962		0.68	1.86
70	100128	D11094	Hs.61153		1.29	2.03
	100154	D14657	Hs.81892		0.71	4.26
	100161	D14694	Hs.77329		1.02 .	1.56
	100168	D14874	Hs.394		0.46	1.17
75	100187 100188	D17793 D21063	Hs.78183		1	1
, ,	100217	D26600	Hs.57101		0.97	1.4
	100217	D28364	Hs.89545		1.13	1.9 1.53
	100220	D43950	Hs.1600		1.11	1.53 2.09
	100287	D49489	Hs.182429		1.13 0.92	1.78
80	100297	D55716	Hs.77152		0.92 1.07	1.61
	100355	D78129	110.17 102		0,96	1.87
	100353	D78586	Hs.154868		1.49	2.46
	100368	D79987	Hs.153479		0.59	1.32
	100398	D84557	Hs.155462		1.08	1.9
85	100438	D87448	Hs.91417		1.00	2.15
				returning to a distribution of the second	•	

	W	U 02/0804				
	100455	D87953	Hs.75789	N-myc downstream regulated	0.91	1.48
	100491	HG1153-HT115	3	Nucleoside Diphosphate Kinase Nm23-H2s	0.99	1.41
	100518	HG174-HT174		Desmoplakin I	1.28	3.17
_	100528	HG1828-HT185	7	""Nexin, Glia-Derived""	0.68	1.9
5	100661	HG2874-HT301	_	Ribosomal Protein L39 Homolog	1.1	5.44
_	100667	HG2981-HT312		Epican, Alt. Splice 11***	0.8	1.97
	100830	HG4074-HT434		Rad2	1.01	2.12
	101061	K03515	Hs.944	glucose phosphate isomerase	0.91	1.79
	101131	L10838	Hs.167460	splicing factor; arginine/serine-rich 3	1.23	1.87
10	101162	L14595	Hs.174203	solute carrier family 1 (glutamate/neutr	1.35	2.73
10						
	101181	L19686	Hs.73798	macrophage migration inhibitory factor (1.03	1.78
	101183	L19779	Hs.795	H2A histone family; member O	0.57	1.3
	101216	L25876	Hs.84113	cyclin-dependent kinase inhibitor 3 (CDK	0.7	2.2
15	101228	L27706	Hs.82916	chaperonin containing TCP1; subunit 6A (0.99	1.99
15	101233	L29008	Hs.878	sorbital dehydrogenase	0.82	2.11
	101247	L33801	Hs.78802	glycogen synthase kinase 3 beta	1.2	1.91
	101332	L47276		""Homo sapiens (cell line HL-6) alpha t	0.69	2.78
	101342	L76191	Hs,182018	interleukin-1 receptor-associated kinase	1.04	1.84
	101396	M15796	Hs.78996	proliferating cell nuclear antigen	0.95	3.55
20	101423	M18391	Hs.89839	EphA1	1	1.5
20	101445	M21259	Hs.1066	small nuclear ribonucleoprotein polypept	1.21	1.96
			Hs.75692	asparagine synthetase	0.93	. 1.6
	101505	M27396				1.93
	101525	M29536	Hs.12163	eukaryotic translation initiation factor	1.19	
25	101535	M30448	Hs.251669	casein kinase 2; beta polypeptide	0.96	1.42
25	101607	M38690	Hs.1244	CD9 antigen (p24)	1.11	1.25
	101624	M55998		""Human alpha-1 collagen type I gene, 3	1.17	1.98
	101758	M77836	Hs.79217	pyrroline-5-carboxylate reductase 1	1.77	3.45
	101839	M93036	Hs.692	membrane component; chromosomal 4; surfa	0.71	1.45
• •	101853	M94362	Hs.76084	lamin B2	0.84	1.19
30	101977	S83364		""putative Rab5-interacting protein (cl	0.89	1.9
	101992	U01038	Hs.77597	polo (Drosophia)-like kinase	0.66	1.46
	102009	U02680	Hs.82643	protein tyrosine kinase 9	1.23	3.35
	102012	U03057	Hs.118400	singed (Drosophila)-like (sea urchin fas	0.85	1.88
	102039	U05861	Hs.201967	aldo-keto reductase family 1; member C1	0.93	2.32
35	102123	U14518	Hs.1594	centromere protein A (17kD)	1	4.28
55					0.89	1.42
	102130	U15009	Hs.1575	small nuclear ribonucleoprolein D3 polyp		
	102148	U16954	Hs.75823	ALL1-fused gene from chromosome 1q	0.8	2.95
	102210	U23028	Hs.2437	eukaryotic translation Initiation factor	1.01	1.34
40	102220	U24389	Hs.65436	lysyl oxidase-like 1	1.15	2.34
40	102260	U28386	Hs.159557	karyopherin alpha 2 (RAG cohort 1; impor	1.14	2.69
	102330	U35451	Hs.77254	chromobox homolog 1 (Drosophila HP1 beta	1.05	1.7
	102423	U44754	Hs.179312	small nuclear RNA activating complex; po	1.14	2.99
	102455	U48705	Hs.75562	discoidin domain receptor family; member	1.05	2.01
	102499	U51478	Hs.76941	ATPase; Na+/K+ transporting; beta 3 poly	1.27	1.92
45	102522	U53347	Hs.183556	solute carrier family 1 (neutral amino a	0.84	1.31
	102590	U62136		***Homo sapiens enterocyte differentiati	1.11	1.6
	102676	U72514	Hs.12045	putative protein	1.04	2.17
	102687	U73379	Hs.93002	ubiquitin carrier protein E2-C	0.86	2.28
	102704	U76638	Hs.54089	BRCA1 associated RING domain 1	1.12	1.63
50			115.54005		0.9	1.39
50	102781	U83843	U- C470C	""Human HiV-1 Nef interacting protein (2.16
	102784	U85658	Hs.61796	transcription factor AP-2 gamma (activat	0.98	
	102827	U91327	Hs.6456	chaperonin containing TCP1; subunit 2 (b	0.96	1.62
	102935	X13482	Hs.80506	small nuclear ribonucleoprotein polypept	1.21	4.2
	102972	X16662	Hs.87268	annexin A8	1.25	2.32
55	102983	X17620	Hs.118638	non-metastatic cells 1; protein (NM23A)	1.03	1.83
	103023	X53793	Hs.117950	multifunctional polypeptide similar to S	1.58	5.44
	103038	X54941	Hs.77550	CDC28 protein kinase 1	1.32	3.79
	103075	X59543	Hs.2934	ribonucleotide reductase M1 polypeptide	1.11	2.58
	103168	X68314	Hs.2704	glutathione peroxidase 2 (gastrointestin	0.75	3.05
60	103185	X69910	Hs.74368	transmembrane protein (63kD); endoplasmi	1.01	1.97
	103212	X73874	Hs.2393	phosphorylase kinase; alpha 1 (muscle)	0.95	1.72
	103223	X74801	Hs.1708	chaperonin containing TCP1; subunit 3 (g	0.97	1.77
	103260	X78416	Hs.3155	casein; alpha	1	1
	103262	X78565	Hs.204133	hexabrachion (tenascin C; cytotactin)	1.23	3.09
65	103202	X85373	Hs.77496	small nuclear ribonucleoprotein polypept	1.12	2.25
UJ				SULT1C sulfotransferase	· 2.85	4.62
	103364	X90872	Hs.75854			
	103375	X91868	Hs.54416	sine oculis homeobox (Drosophila) homolo	1	2.48
	103391	X94453	Hs.114366	pyrroline-5-carboxylate synthetase (glut	1	1.53
70	103404	X95586	Hs.78596	proteasome (prosome; macropain) subunit;	0.92	1.53
70	103437	X98260	Hs.82254	M-phase phosphoprotein 11	0.92	1.54
	103448	X99133	Hs.204238	lipocalin 2 (oncogene 24p3)	0.55	0.96
	103605	Z35402	Hs.194657	cadherin 1; E-cadherin (epithelial)	1.32	2.51
	103646	Z68228	Hs.2340	junction plakoglobin	0.88	1.28
. بيم	103658	Z74615	Hs.172928	collagen; type I; alpha 1	1.06	2.98
75	103774	AA092898	Hs.92918	ESTs; Weakly similar to R07G3.8 [C.elega	1.88	4.66
-	104261	AF008442	Hs.5409	RNA polymerase I subunit	0.87	2.17
	104276	C02193	Hs.85222	ESTs; Weakly similar to R27090_2 [H.sapi	1.4	2.49
	104289	C16281	Hs.75478	KIAA0956 protein	1.15	1.68
	104434	L02870	Hs.1640	collagen; type VII; alpha 1 (epidermolys	1.04	1.49
80	104453	M19169		cystatin SN	0.38	0.76
00			Hs.123114			2.25
	104611	R98280	Hs.125845	ribulose-5-phosphate-3-epimerase	1.08	
	104758	AA024661	Hs.7010	ESTs; Weakly similar to ACYL-COA DEHYDRO	1.14	1.65
	105114	AA156532	Hs.11801	adenosine A2b receptor pseudogene	0.91	1.38
05	105132	AA159501	Hs.247280	HBV associated factor	1.08	1.7
85	105174	AA186613	Hs.34744	ESTs	0.95	2.05

	W	O 02/086	6443			
	105280	AA232215	Hs.14600	ESTs	1	1.4
	105344	AA235303	Hs.8645	ESTs	0.72	2.02
	105516	AA257971	Hs.21214	ESTs	1.35	3.56
_	105621	AA280865	Hs.6375	Homo sapiens mRNA; cDNA DKFZp564K0222 (f	1.23	1.82
5	105698	AA287393	Hs.15202	ESTs; Weakly similar to oligodendrocyte-	0.98	1.28
	105705	AA290767	Hs.101282	Homo sapiens mRNA; cDNA DKFZp434B102 (fr	0.92	1.32
	105724	AA292098	Hs.22934	ESTs; Weakly similar to ZINC FINGER PROT	0.99	1.41
	105782	AA350215	Hs.21580	ESTs	1	1
10	105799	AA372018	Hs.24743	ESTs	1.08	1.78
10	105807	AA393803	Hs.16869	ESTs; Moderately similar to COLLAGEN ALP	0.95	1.34
	105891	AA400768	Hs.26662	ESTs; Weakly similar to tumor necrosis f	0.87	2.25
	105936	AA404338		ESTs	1.14	1.46
	106069	AA417741	Hs.29899	ESTs; Weakly similar to ZINC FINGER PROT	1	1
1.5	106103	AA421104	Hs.12094	ESTs	1.04	1.44
15	106140	AA424524	Hs.14912	KIAA0286 protein	1.23	2.11
	106149	AA424881	Hs.256301	ESTs	0.83	1.48
	106154	AA425304	Hs.6994	ESTs	0.77	2.05
	106182	AA426609	Hs.10862	ESTs	0.74	2.23
20	106220	AA428582	Hs.32196	ESTs; Moderately similar to metargidin p	0.97	1.99
20	106228	AA429290	Hs.17719	ESTs	0.99	1.54
	106318	AA436570	Hs.9605	pre-mRNA cleavage factor Im (25kD)	0.95	2.09
	106341	AA441798	Hs.5243	ESTs; Moderately similar to plL2 hypothe	0.98	2.66
	106432	AA448850	Hs.17138	ESTs	0.95	1.93
~ ~	106474	AA450212	Hs.42484	Homo sapiens mRNA; cDNA DKFZp564C053 (fr	1	1
25	106483	AA451676	Hs.30299	IGF-II mRNA-binding protein 2	1.4	2.29
	106599	AA457235	Hs.12842	ESTs; Moderately similar to non-function	1	1.82
	106611	AA458904	Hs.26267	ESTs; Weakly similar to torsinA [H.sapie	1.49	2.78
	106654	AA460449	Hs.3784	ESTs; Highly similar to phosphoserine am	1	1.4
	107076	AA609145	Hs.21143	ESTs; Weakly similar to fos39554_1 [H.sa	1.11	1.49
30	107115	AA610108	Hs.27693	ESTs; Highly similar to CGI-124 protein	1	1.03
	107129	AA620553	Hs.4756	flap structure-specific endonuclease 1	1.13	3.63
	107159	AA621340	Hs.10600	ESTs; Weakly similar to ORF YKR081c [S.c	1.05	2.09
	107444	W28391	Hs.5181	proliferation-associated 2G4; 38kD	1.18	1.9
	107481	W58247	Hs.27437	Homo sapiens kinesin superfamily motor K	0.99	2.74
35	107516	X56597	Hs.99853	fibrillarin	0.94	1.77
	107529	Y12065	Hs.5092	nucleolar protein (KKE/D repeat)	1.05	2.29
	107531	Y13936	Hs.17883	protein phosphatase 1G (formerly 2C); ma	1.06	1.62
	107801	AA019433	Hs.173100	ESTs	1.03	1.4
	107957	AA031948	Hs.57548	ESTs	0.95	1.46
40	108565	AA085342	Hs.1526	ATPase; Ca++ transporting; cardiac muscl	0.59	1.35
	108780	AA128561	Hs.117938	collagen; type XVII; alpha 1	1	7.63
	108828	AA131584	Hs.71435	DKFZP564O0463 protein	1.33	2.56
	109060	AA160879	Hs.241551	chloride channel; calcium activated; fam	0.67	1.42
	109112	AA169379	Hs.72865	ESTs	1.03	2.31
45	109344	AA213696	Hs.86559	poly(A)-binding protein-like 1	0.97	1.55
	109412	AA227145	Hs.209473	ESTs; Weakly similar to REGULATOR OF MIT	0.76	1.87
	110780	N23174	Hs.22891	solute carrier family 7 (cationic amino	0.9	0.95
	110958	N50550	Hs.24587	signal transduction protein (SH3 contain	1.17	2.26
	111018	N54067	Hs.3628	mitogen-activated protein kinase kinase	1.21	1.85
50	111337	N79612	Hs.16607	ESTs; Highly similar to Myosin heavy cha	1	. 1.45
	112305	R54822	Hs.26244	ESTs .	1	1
	112401	R61279	Hs.237536	ESTs; Weakly similar to F25B5.3 [C.elega	1.24	1.64
	112853	T02843	Hs.4351	EST	1.56	1.96
	112869	T03313	Hs.4747	dyskeratosis congenita 1; dyskerin	1.03	1.57
`55	112992	T23513	Hs.7147	ESTs	1 ,	1
	113048	T25895	Hs.184008	ESTs; Weakly similar to RNA-binding prot	1.37	2.26
	113063	T32438	Hs.5027	ESTs	1	1
	113179	T55182	Hs.152571	ESTs; Highly similar to IGF-II mRNA-bind	1.33	2.7
C O	113573	T91166	Hs.15990	ESTs	0.76	1.47
60	113811	W44928	Hs.4878	ESTs	0.79	1.51
	114086	Z38266	Hs.12770	Homo sapiens PAC clone DJ0777O23 from 7p	0.9	1.34
	114587	AA070827	Hs.180320	ESTs; Weakly similar to GOLGI 4-TRANSMEM	1.02	1.76
	114846	AA234929	Hs.44343	ESTs	1.32	2.36
65	114964	AA243873	Hs.82184	ring finger protein 3	1.1	1.84
65	115047	AA252627	Hs.22554	homeo box B5	1.01	2.36
	115166	AA258409	Hs.198907	myelin protein zero-like 1	1.05	2.31
	115167	AA258421	Hs.43728	hypothetical protein	1.52	2.52
	115239	AA278650	Hs.73291	ESTs; Weakly similar to similar to the b	0.7	2.57
70	115278	AA279757	Hs.67466	ESTs; Weakly similar to BACN32G11.d [D.m	1.14	2.12
70	115652	AA405098	Hs.38178	ESTs	0.82	4.67
	115875	AA433943	Hs.43946	ESTs; Weakly similar to Weak similarity	1.2	1.98
	116004	AA449122	Hs.76086	ESTs; Highly similar to small zinc finge	0.96	1.31
	116121	AA459254	Hs.48855	ESTs	0.97	1.55
75	116129	AA459956	Hs.49163	ESTs; Highly similar to putative ribonuc	1.08	2.73
13	116190	AA464963	Hs.67776	ESTs	0.8	1.57
	116312	AA490494	Hs.65403	ESTs	1.37	2.65
	116732	F13779	Hs.165909	ESTs	0.92	1.8
	117602	N35020	Hs.44685	ESTs; Weakly similar to GOLIATH PROTEIN	1.15	1.84
80	117950	N51394	Hs.75478	KIAA0956 protein	1.04	2.36
00	117992	N52000	Hs.172089	Homo sapiens mRNA; cDNA DKFZp58680222 (f	0.62	1.29
	118785	N75386	Hs.111867	GLI-Kruppel family member GL12	1	1
	119717	W69134	Hs.57987	ESTs ESTs	1 0.78	1.4 1.77
	119814	W74069	Hs.58350		0.78 0.86	1.46
85	120128	Z38499 Z98443	Hs.91448 Hs.86366	MKP-1 like protein tyrosine phosphatase ESTs	0.83	2.01
55	120242	L30443	1 13.00300	2019	0.00	2.01

	W	O 02/086	443			
	120483	AA252994	Hs.1578	apoptosis inhibitor 4 (survivin)	0.74	1.64
	121054	AA398604	Hs.97387	ESTs	1.05	1.93
	121326	AA404246	Hs.97031	ESTs; Weakly similar to Similar to phyto	0.98	1.3
_	121376	AA405699	Hs.166232	ESTs; Moderately similar to SODIUM- AND	0.91	1.83
5	121457	AA411448	Hs.208985	ESTs	0.91	1.59
	121780	AA422086	Hs.124660	ESTs	0.46	0.55
	121781	AA422150	Hs.98370	cytochrome P540 family member predicted	1.07	1.54
	121844	AA425732	Hs.98485	gap junction protein; beta 2; 26kD (conn	0.94	1.4
10	122059	AA431737	Hs.98749	EST .	1.93 1	2.33 1
10	122338	AA443311	Hs.98998 Hs.186692	ESTs ESTs	0.88	1.39
	122354 122591	AA443772 AA453265	Hs.99311	ESTs; Weakly similar to MRJ (H.sapiens)	2.28	2.93
	122790	AA460156	Hs.99556	ESTs	0.88	1.3
	123398	AA521265	Hs.105514	ESTs	1	1.93
15	123518	AA608531	Hs.170313	ESTs	i	1
	123673	AA609471	Hs.112712	ESTs	1	1.15
	124000	D57317	Hs.74861	activated RNA polymerase II transcriptio	0.74	1.12
	124367	N24006	Hs.99348	distal-less homeo box 5	0.67	1.1
••	124447	N48000	Hs.140945	Homo saplens mRNA; cDNA DKFZp586L141 (fr	1.19	1.7
20	125756	W25498	Hs.81634	ATP synthase; H+ transporting; mitochond	0.93	1.59
	125769	Al382972	Hs.82128	5T4 oncofetal trophoblast glycoprotein	1.65	6.76
	125852	H09290	Hs.76550	Homo sapiens mRNA; cDNA DKFZp564B1264 (f	0.72	2.26
	125924	AA526849	Hs.82109	syndecan 1	1.22	2.25
25	126037	M85772 N29455	Hs.6066 Hs.74316	KIAA1112 protein desmoplakin (DPI; DPII)	1.36 1.93	1.63 3.55
23	126214 126414	N78770	Hs.223439	ESTs	1.21	1.66
	126737	AA488132	Hs.62741	ESTs	1	1
	126743	AA179253	Hs.172182	poly(A)-binding protein; cytoplasmic 1	1.3	2.16
	126926	AA179546	Hs.832	ESTs; Highly similar to INTEGRIN BETA-8	2.53	2.8
30	127432	AA501734	Hs.170311	heterogeneous nuclear ribonucleoprolein	1.57	2,12
	128218	H02682	Hs.99189	ESTs; Moderately similar to recombinatio	1.24	2.09
	128527	M31523	Hs.101047	transcription factor 3 (E2A immunoglobul	1.08	1.78
	128568	X60673	Hs.247568	adenylate kinase 3	1.23	3.48
25	128584	M11433	Hs.101850	retinol-binding protein 1; cellular	0.87	2.42
35	128628	C14037	Hs.251978	EST	1.22	1.9
	128691	W27939	Hs.103834	ESTS	1.1	1.73
	128714	V00599	Hs.179661	Homo sapiens clone 24703 beta-tubulin mR	0.92 1.34	1.17 1.94
	128733 128781	AA328993 X85372	Hs.104558 Hs.105465	ESTs small nuclear ribonucleoprotein polypept	0.9	1.34
40	129052	AA496297	Hs.182740	ribosomal protein S11	2.59 ·	3.19
	129095	L12350	Hs.108623	thrombospondin 2	1.04	3.2
	129241	AA435665	Hs.109706	ESTs; Moderalely similar to HN1 [M.muscu	0.95	1.61
	129665	M88458	Hs.118778	KDEL (Lys-Asp-Glu-Leu) endoplasmic retic	1.28	2.63
	129703	AA401348	Hs.179999	ESTs	0.97	1.63
45	129720	AA476582	Hs.12152	ESTs; Moderately similar to SIGNAL RECOG	1.09	1.79
	129850	N20593	Hs.56845	GDP dissociation inhibitor 2	0.74	1.68
	129896	AA043021	Hs.13225	UDP-Gal:betaGlcNAc beta 1;4- galactosylt	1.43	4.19
	130069	AA055896	Hs.146428	collagen; type V; alpha 1	1.17	1.98
50	130405 130541	H88359 X05608	Hs.155396 Hs.211584	nuclear factor (erythroid-derived 2)-lik	1.26 1	1.79 1
50	130599	M91670	Hs.174070	neurofilament; light polypeptide (68kD) ubiquitin carrier protein	1.07	1.66
	130867	J04093	Hs.2056	UDP glycosyltransferase 1	1	4.8
	131009	AA063596	Hs.22142	ESTs; Weakly similar to NADH-CYTOCHROME	0.93	1.05
	131028	U20240	Hs.2227	CCAAT/enhancer binding protein (C/EBP);	1	1.23
55	131083	U66661	Hs.22785	gamma-aminobutyric acid (GABA) A recepto	1.1	1.8
	131091	T35341	Hs.22880	ESTs; Highly similar to dipeptidyl pepti	1.28	1.98
•	131144	C14412	Hs.23528	ESTs; Highly similar to HSPC038 protein	1.43	2.06
	131148	C00038	Hs.23579	ESTs	0.88	3.38
60	131164	Y00503	Hs.182265	keralin 19	1.19	2.77
00	131185 131219	M25753 C00476	Hs.23960 Hs.24395	cyclin B1 small inducible cytokine subfamily B (Cy	0.86 0.66	3.84 2.96
	131454	AA455896	Hs.2699	glypican 1	0.99	1.54
	131687	L11066	Hs.3069	heat shock 70kD protein 9B (mortalin-2)	1	1.18
	131689	AA599653	Hs.30696	transcription factor-like 5 (basic helix	1	1.95
65	131692	D50914	Hs.30736	KIAA0124 protein	1.55	2.39
	131786	AA135554	Hs.32125	ESTs	1	1.33
,	131843	AA195893	Hs.184062	ESTs; Moderately similar to putative Rab	0.83	1.63
	131860	U02082	Hs.334	Oncogene TIM	1.08	2.2
70	131884	H90124	Hs.3463	ribosomal protein S23	1.23	1.24
70	131903	AA481723	Hs.3436	deleted in oral cancer (mouse; homolog)	0.91	1.18
	131945 131958	M87339	Hs.35120	replication factor C (activator 1) 4 (37	1 0.87	2.8
	131964	AA093998 W42508	Hs.3566 Hs.3593	ESTs; Highly similar to phosphorylation ESTs	1	1.36 1.25
	132001	J00277	Hs.37003	v-Ha-ras Harvey rat sarcoma viral oncoge	1.12	1.43
75	132040	AA146843	Hs.172894	BH3 interacting domain death agonist	1	1.55
	132065	D82226	Hs.211594	proteasome (prosome; macropain) 26S subu	0.89	1.27
	132109	AA599801	Hs.40098	ESTs	. 1	1.05
	132112	AA150661	Hs.40154	jumonji (mouse) homolog	0.99	1.44
00	132123	AA447123	Hs.250705	ESTs	1.06	2.46
80	132162	H89551	Hs.41241	ESTs	1.08	2.46
	132180	AA405569	Hs.418	fibroblast activation protein; alpha; se	1.02	4.56
	132309	AA460917	Hs.2780	jun D proto-oncogene	1.16	1.8
	132371	AA235448 AA253330	Hs.46677	ESTs adaptor-related protein complex 1; gamma	0.8 0.5	1.26 1.49
85	132618 132736	U68019	Hs.5344 Hs.211578	MAD (mothers against decapentaplegic; Dr	1.21	1.81
	.02700		1010	(monore against accobemanded of or		

	W	O 02/0864	43				PCT/US02/12476
	132771	AA488432	Hs.56407	phosphoserine phosphatase	1	1.3	
	132833	U78525	Hs.57783	eukaryotic translation initiation factor	0.91	1.43	
	132922	T23641	Hs.6066	KIAA1112 protein	1.16	1.53	
_	132959	AA028103	Hs.61472	ESTs; Wealty similar to unknown (S.cerev	1.02	1.88	
5	132994	AA505133	Hs.7594	solute carrier family 2 (facilitated glu	0.72	2.97	
	133005	C21400	Hs.103329	KIAA0970 protein	0.88	1.34	
	133065	X62535	Hs.172690	diacylglycerol kinase; alpha (80kD)	0.93	1.23	
	133083	N70633	Hs.6456	chaperonin containing TCP1; subunit 2 (b	1.14	1.76	
4.0	133086	L17131	Hs.139800	high-mobility group (nonhistone chromoso	0.97	1.43	
10	133134	T89703	Hs.65648	RNA binding motif protein 8	1.1	1.8	
	133195	AA350744	Hs.181409	KIAA1007 protein	2.29	2.69	
	133313	AA249427	Hs.70704	ESTs	1.07	1.68	
	133331	T62039	Hs.158675	ribosomal protein L14	0.85	1.18	•
	133438	D13370	Hs.73722	APEX nuclease (multifunctional DNA repail	0.91	1.45	
15	133445	T99303	Hs.73797	guanine nucleotide binding protein (G pr	0.94	1.68	
	133483	X52426	Hs.74070	keratin 13	0.85	1.14	
	133492	L40397	Hs.74137	transmembrane trafficking protein	1.1	1.69	
	133504	W95070	Hs.74316	desmoplakin (DPI; DPII)	0.7	6.21	
	133517	X52947	Hs.74471	gap junction protein; alpha 1; 43kD (con	0.95	1.3	
20	133540	D78151	Hs.74619	proteasome (prosome; macropain) 26S subu	0.91	1.25	
	133594	L07758	Hs.172589	nuclear phosphoprotein similar to S. cer	0.84	1.29	
	133627	U09587	Hs.75280	glycyl-tRNA synthetase	1.09	1.99	
	133671	T25747	Hs.75471	zinc finger protein 146	1.02	1.5	
	133859	U86782	Hs.178761	26S proteasome-associated pad1 homolog	1.11	3.33	
25	133865	F09315	Hs.170290	discs; large (Drosophila) homolog 5	1.84	6.7	
	133913	W84712	Hs.7753	calumenin	1.15	1.86	
	133963	L34587	Hs.184693	transcription elongation factor B (SIII)	1.3	1.91	
	133982	U47621	Hs.207251	nucleolar autoantigen (55kD) similar to	1.3	1.99	
	134100	L07540	Hs.171075	replication factor C (activator 1) 5 (36	0.72	1.65	
30	134110	U41060	Hs.79136	LIV-1 protein; estrogen regulated	1.04	1.62	
	134158	U15174	Hs.79428	BCL2/adenovirus E1B 19kD-interacting pro	1	1.55	
	134161	U97188	Hs.79440	IGF-II mRNA-binding protein 3	0.82	1.95	
	134193	F09570	Hs.7980	ESTs	0.98	1.48	
	134367	X54199	Hs.82285	phosphoribosylglycinamide formyltransfer	1.	2.8	
35	134402	U25165	Hs.82712	fragile X mental retardation; autosomal	1.26	2	
	134457	D86963	Hs.174044	dishevelled 3 (homologous to Drosophila	1	1.47	
	134469	X17567	Hs.83753	small nuclear ribonucleoprotein polypept	0.94	1.57	
	134498	M63180	Hs.84131	threonyl-tRNA synthetase	1.2	2.64	
4.0	134501	W84870	Hs.211568	eukaryotic translation initiation factor	0.84	1.36	
40	134507	M63488	Hs.84318	replication protein A1 (70kD)	1.7	2.93	
	134548	U41515	Hs.85215	Deleted in split-hand/split-foot 1 regio	1.46	2.73	
	134599	X99226	Hs.86297	Fanconi anemia; complementation group A	1.36	2.22	
	134692	R73567	Hs.8850	a disintegrin and metalloprotelnase doma	0.77	1.64	
	134693	N70361	Hs.8854	ESTs	1.09	1.82	
45	134806	Z49099	Hs.89718	spermine synthase	0.98	1.35	
	134821	Z34974	Hs.198382	plakophilin 1 (ectodermal dysplasia/skin	0.99	1.4	
	134864	Y08999	Hs.90370	actin related protein 2/3 complex; subun	0.95	1.42	
	134914	U29615	Hs.91093	chitinase 1 (chitotriosidase)	1.16	1.29	
50	134953	L10678	Hs.91747	profilin 2	0.95	1.76	
50	134993	AA282343	Hs.9242	purine-rich element binding protein B	0.98	1.73	
	135051	C15324	Hs.93668	ESTs	1.35	2.11	
	135158	U51711		Human desmocollin-2 mRNA; 3' UTR	0.86	1.16	
	Table 18	shows the acces	sion numbers t	for those pkeys in Table 1A lacking uniqueelD's.	For each probeset we have	listed the gene clus	ster number from which the

Table 1B shows the accession numbers for those pkeys in Table 1A lacking unigenelD's. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the Accession column.

Pkey:	Unique Eos probeset identifier number
CAT number:	Gene cluster number
Accession:	Genbank accession numbers

	Pkey	CAT	Accessions
65	100661 100667	23182_1 26401_3	BE623001 L05096 AA383604 AW966416 N53295 AA460213 AW571519 AA603655 L05424 X56794 S66400 X55150 W60071 AW351820 X55938 M83326 BE005289 BE070059 M83324 BE005248 BE069717 BE181648 BE069700 AW606203 BE069721 AW382138 AW803776 BE463954 BE005374 BE005274 T27386 AA932714 AA972695 AW377728 AI632506 T29066
70			AJ783934 AW377727 BE163715 AL047291 AA279047 AA523003 BE008048 BE440141 W23614 BE090519 BE092193 N29181 N20368 N44153 BE546944 T69231 AW377741 AA907406 H50799 AW051416 AJ420712 BE620922 AJ279161 AA992549 W47198 BE005241 AJ342696 H50700 AJ969974 AJ863855 AA374490 AW130675 AJ950633 AA146687 H99482 X55150 BE005414 BE005339 N28294 AJ673068 AJ887890 AW804171 AJ675961 AW804172 AA778841 AL048050 AJ127757 AJ095568 AW204955 AW468978 W31898 AJ052595 AJ278771 BE464018 AJ081503 AJ824196 AA513211 AA411052 AW084376 N48752 AA703209 N35580 AW059918 AA054563 AJ280942 T27619 BE621435 N66010 AW589527 AJ160414 AA283090 AA962536 H82726 W52115 W45432 W60433 AA577548 AA146714 BE150994 AA054615 AW796025 AW382768 BE565671 C00444
75	100668	26401_3	AA054555 L05424 X56794 S66400 X55150 W60071 AW351820 X55938 M83326 BE005289 BE070059 M83324 BE005248 BE069717 BE181648 BE069700 AW606203 BE069721 AW382138 AW803776 BE463954 BE005334 BE005274 T27386 AA932714 AA972695 AW377728 A1632506 T29066 A1783934 AW377727 BE163715 AL047291 AA279047 AA523003 BE008048 BE440141 W23614 BE090519 BE092193 N29181 N20358 N44153 BE546944 T69231 AW3777441 AA907406 H50799 AW051416 A1420712 BE620922 A1279161 AA992549 W47198 BE005241 A1342696 H50700
80			AJ959974 AJ863855 AA374490 AW130675 AJ950633 AA146687 H99482 X55150 BE005414 BE005339 N28294 AJ673088 AJ887890 AW804171 AJ675961 AW804172 AA778841 AL048050 AJ127757 AJ095568 AW204965 AW468978 W31898 AJ052595 AJ278771 BE464018 AJ081503 AJ824196 AA513211 AA411062 AW084376 N48752 AA703209 N35580 AW059918 AA054563 AJ280942 T27619 BE621435 N66010 AW589527 AJ160414 AA283090 AA962536 H82726 W52115 W45432 W60433 AA577548 AA146714 BE150994 AA054615 AW796025 AW382768 BE565671 C00444 AA0546555
85	101332	25130_1	J04088 NM_001067 AF071747 AJ011741 N85424 AL042407 AA218572 BE296748 BE083981 AL040877 AW499918 AW675045 H17813 BE081283 AA670403 AW504327 BE094229 AA104024 AI471482 AI970337 AA737616 AI827444 AW003286 AI742333 AI344044 AI765634

	• •	0 02,000	AI948838 AW235336 AW172827 AA095289 BE046383 AI734240 W16699 AI660329 AI289433 AA933778 AW469242 AA468838 AA806983
			AA625873 W78031 BE206307 AA550803 AI743147 AI990075 AA948274 AA129533 AI635399 AA605313 AI624669 AW594319 AI221834 AI337434
			AA307706 BE550282 Al760467 Al630636 Al221521 AW674314 AW078889 Al933732 Al686969 Al186928 AW074595 Al127486 AL079644
5			AI910815 H17814 AA310903 AW137854 T19279 AA026682 AA306035 AW383390 AW383389 AW383422 AW383427 AW383395 H09977
,			AA306247 AA352501 AW403639 F05421 AA224473 AA305321 H93904 AA089612 AW391543 AW402915 AW173382 AW402701 AW403113 R94438 N73126 H93466 AA090928 AA095051 T29025 AW951071 L47277 L47276 AI375913 BE384156 W24652 AA746288 AA568223 BE090591
			H93033 N57027 AA504348 AA327653 AW959913 N53767 AA843715 AI453437 AW263710 AI076594 AA583483 AW873194 AW575166 AI128799
			AI803319 AL042776 AW074313 AI887722 AI032284 AA447521 AI123885 N29334 AI354911 AW090687 AA236763 AA435535 AA236910
10			AA047124 AA236734 AW514610 H93467 AA962007 AI446783 AA127259 AI613495 AI686720 AI587374 AA936731 AA702453 AI859757 AA245786 AI351940 AI460277 AA966222 AI022244 A74889 AA068780 AA266030 AA068720 AA266284 AI022007 AA768940
10			AA216786 AI251819 AI469227 AA806022 AI092324 N71868 AA968782 AA236919 AA809450 AA227220 AA765284 AI192007 AA768810 AA805794 AA729280 AA806238 AW768817 N71879 AI050686 AA505822 AA668974 AI688160 BE045915 AW466315 AA731314 AA649568
		•	AA834316 AW591901 AW063876 AW294770 Al300266 Al336094 Al560380 AA721755 H09978 D20305 D29155 AW821790 BE150864 F01675
			AI457474 AW466316 AA550969 AA630788
15	100780	458_127	BE561958 BE561728 BE397612 BE514391 BE269037 BE514207 BE562381 BE514256 BE514403 BE514250 BE397832 BE269598 BE559865 BE396881 BE560031 BE514199 BE560037 BE560454
13	100830	4002_1	AC004770 W05005 AA356068 AA094281 H29358 T56781 AW875313 L37374 BE312466 BE311755 BE207106 BE293320 BE018115 AW239090
	100000	1002_1	BE548830 AW247547 AA776062 BE397382 AA486713 T10111 T09340 AW498981 BE547280 AA356003 AW581520 AW875331 AA580720
			AW875336 BE276873 BE408229 AW188148 BE255166 BE253761 AW793727 AW373141 AW581548 AA471223 AA305950 BE263976 AA626820
20			BE257409 AW360962 AA090655 C00312 BE312741 BE407213 AA209352 AW298199 AW248553 AW297794 AW731722 BE300586 AW731972 AW615446 BE301599 AW615520 AA486714 AW440257 AA196516 AA564630 AA618079 AW192592 AW474985 AA604580 AI627461 AA765440
20			ANO 15440 BESU 1539 ANNO 15520 AA4607 14 ANNA 40257 AA 1565 16 AA564650 AA6 1607 9 ANN 152532 ANNA 14663 AA66206 AI683224 AI581126 AW245096 AW194154 H29274 N70363 AA629758 AA580602 AA662006 AI663841 AI097667 AI928583
			AJ358774 BE243487 AA620553 AA653297 AA292690 T10110 Z38905 AA908544 AA340930 A1185438 T03328 T28844 A1687010 Al864965
			AI872575 BE388740 T56780 AW373138 BE258717 AA699671
25	100906	4312_1	AU076916 BE298110 AW239395 AW672700 NM_003875 U10860 AW651755 BE297958 C03806 AI795876 AA644165 T36030 AW392852
25			AA446421 AW881866 AJ469428 BE548103 T96204 R94457 N78225 AJ564549 AW004984 AW780423 AW675448 AW087890 AA971454 AA305698 AA879433 AA535069 AJ394371 AA928053 AJ378367 N59764 AJ364000 AJ431285 T81090 AW674657 AW674987 AA897396 AW673412 BE063175
			AM674408 Al202011 R00723 Al753769 Al460161 AW079585 AW275744 Al873729 D25791 BE537646 T81139 R00722
	100930	16865_1	J04129 NM_002571 AA293088 AA477016 AA404631 T28299 AA476904 AA433965 AA430486 AA495907 AI151391 AA291495 AA402723 W25651
• •			AA706816 AB26712 AW296294 AA293479 Al276581 AW044154 Al080180 Al417985 Al274168 Al474212 AA495908 AA635664 Al092114
30			AI804952 AA479874 AI597661 AI420511 AA479738 AA421417 AA421247 AA436220 AL047797 M34046 N42277 AA228076 W02698 AI420297
	102221	3861_1	AA434011 Al369971 AA479731 Al865541 Al418020 AA421246 AA452764 AL048051 NM_006769 U24576 AW161961 AW160473 AW160465 AW160472 AW161069 Al824831 AW162635 Al990356 AW162477 AW162571 Al520836
	102221	3001_1	AW162352 AW162351 AW162752 AI962216 AI537346 AA853902 H17667 BE045346 BE559802 BE255391 AA985217 AA235051 AI129757
			AW366451 T34489 D56106 D56351 Al936579 AW023219 AW889335 AW889120 AW889232 AW889175 BE093702 AW889349 AA147546
35			AI952998 AA912579 AI143356 AW902211 R64717 AW157236 AI815242 D45274 AW263991 AA442920 AA129965 AL035713 AI923255 AI949082
			A1142826 A1684160 A1701987 A1678954 A1827349 BE463635 AW628092 AW302281 AA493203 BE348856 BE536419 AW193969 AW673561
			AW592609 AI224044 H43943 AA091912 R49632 R48353 AI568409 R48256 AI198046 H27986 H43899 AI678759 AI680310 AI624220 H17052 AA156410 N56062 AI699430 AA664529 T09406 T10459 AA627506 AI379584 N83831 N88633 AW022651 AA971281 AA248036 AI039197
			A1914689 AA973825 AL047305 AA129966 A1798369 AW264348 A1445879 A1658759 N67924 A1933507 A1216121 A1333174 T10972 A1375028
40			Al186756 Al273778 AA610487 Al797946 AA853903 AA903939 Al338587 Al278494 AW627595 AA904019
	101809	32963_1	M86849 AA315280 NM_004004 AA315269 BE142653 AA461400 AW802042 BE152893 AW383155 AA490688 AW117930 AW384563 AW384544
			AW384566 AW378307 AW378323 AW839085 AA257102 AW378317 AW276060 AW271245 AW378298 AW384497 AI598114 AW264544 AI018136 AW021810 AA961504 AW086214 AW771489 AW192483 AI290266 AW192488 AW384490 AW007451 AW890895 AA554460 AA613715
•			AW020066 A1783695 A1589498 A1917637 AW264471 AW384491 A1816732 AW368530 AW368521 AW368463 AA461087 A1341438 A1970613
45			AI040737 AI418400 AA947181 AA962716 AI280695 AW769275 AW023591 AI160977 AA055400 N71882 AA490466 AW243772 AW316636
			AI076554 AW511702 N69323 H88912 AA257017 AI952506 H88913 AI912481 AA600714 BE465701 N64149 C00523 N64240 AA677120
	102590	15932_1	R61573 BE005029 X98091 AA297307 BE537267 BE566138 BE566139 F11561 BE564795 BE568776 AW064005 BE566479 BE380035 BE567012
			BE568634 BE566568 AA298060 BE566043 BE568813 BE568618 AA283070 BE565414 BE566738 BE568585 BE565667 BE566116 BE566433 U62136 AF049140 BE567057 BE567297 BE567403 BE564316 BE567400 BE568854 BE566588 AA448772 AA071363 AW732642 BE564996
50			AA297763 AA278550 AA421083 AA298184 AA091007 AA984577 AA205916 N28759 AL031291 C15757 C15761 H02728 BE566410 AA129335
			AA419499 N87741 BE379689 BE004824 BE379611 D25874 AA148454 AA323654 AW950311 AA448795 AW749423 AA773386 AA773843
			AW020327 BE348580 BE564258 BE549990 BE220200 AI673334 AI202679 A975515 D61421 A168698 AA102843 AW246621 AI276203
			AI074054 AI633824 AI962927 AI148926 N50969 AI308911 AA410994 AW373025 AA148455 H02620 AA688293 AI246318 N22220 AI917777 AI050943 AI097286 AA663794 AW368662 AW627826 AW078734 AI253060 AA749154 AA832236 AI192358 AW024676 AA448676 AA764891
55		,	BE439467 AA661534 AA258061 Al090546 AA995157 Al051011 AA584421 Al026032 AW591338 AW589563 AA776914 AW024684 AA421002
•			F09219 BE464500 Al383595 AA954244 AA601583 AA737304 AA195549 AA805778 Al055876 AA164942 AW013961 Al672608 AW514211 D59441
			AW582574 AA160935 BE566501 BE564612 BE565353 BE568195 BE565447 BE568302 BE566097 BE565470 BE564249 AL036217 AW749424
	101977	29073_1	BE567494 AA102842 AA314761 AV661237 C14211 AA651866 AW798997 AA470605 AF112213 AL050318 T24804 AW248136 BE386341 BE263177 W16677 BE250224 BE563669 BE267405 BE546577 AV651354 AV651292
60	101311	230/3_1	AJ346903 AJ539128 A1189171 583364 AW073849 AJ816760 AW073309 AJ422690 AA296692 AJ860301 AJ805446 N77735 AJ340328 BE092530
			AW028742 BE088442 AA657742 AA742438 AW170086 Al038920 Al432379 N36073 Al936194 AA868655 AA983612 Al077505 BE080433
			AI375014 AI126547 AI348244 AI346077 AI748952 N26915 AI753574 AI093341 AI278762 BE092517 N74204 H06158 T58149 AI129303 N58366
			AA524456 BE122661 AA542925 Al246120 Al735203 AA706829 AA877544 Al082289 AA926687 N92840 AW249798 AA934763 AW998363 Al128632 N25202 Al240209 AW118892 N80744 R35655 Al342321 Al340141 AW878792 Al857321 H09610 W04601 AW006650 AA126006
65			AA553875 AJ052791 AW059835 AJ041906 AA814658 AW002059 AA729483 AI609301 AA994633 AA903851 AI459183 T95072 AW088630
			AA126112 Al800091 Al561215 H17502 AW475072 Al819003 Al683272 Al262701 AW793140 T81787 R99586 Al275160 Al310420 Al698929
			AA159174 AI827968 F30305 F30309 AA806662 AI091923 AW878722 AA583430 AW571913 AI674584 AA292533 AI079471 AA642325 AA719050
			AW793172 AA305476 AW103745 T23459 N79525 AI784438 AA534551 AW193751 AI074360 BE281214 T32229 W25066 W01205 T63086 AW795348 AI361287 AW795353 AW795349 AA594759 AI400295 D11489 AI370689 AA482356 AA485295 W40151 AA564661 AW300745
70			AN195036 AI361267 AW195035 AW195039 AW5034705 AW50255 B 1 1465 AI076065 AW502505 AW502505 WHO 151 AW304601 AW500745 AI346938 AI374975 AI423782 AW193899 AA612604 AI183409 AA996156 AW366963 AW366977 AI284860 AA846503 AI985064 AA844576
. •			AA737921 AA873274 BE241546 BE241540 AA484058 AW468970 AA127876 AA159120 AW001568 AW795213 AW795258 AW795330 BE250589
			BE387572 AA910895 AA161217 BE250380 W31500 T95167 AI719306 AI359224
	102781	20812_1	BE258778 BE281230 BE410044 T33723 AW672694 AW410439 NM_006429 AF026292 T35505 BE542333 T08940 AU076737 AW247471
75			BE393215 AW328640 BE542408 T32170 BE302544 T31955 BE206898 BE275738 T32570 BE386426 BE298746 BE389937 BE293991 BE315289 BE389578 R34739 R15312 BE279365 BE277756 AL036019 T33725 BE277779 BE302962 AL047294 BE276505 T09070 T33673 BE312580
			AW387774 BE257175 AW674367 BE253331 BE270344 BE299831 BE273576 T32062 AI751831 BE618381 AA304899 BE252268 U46364
			BE256790 BE207199 BE256209 BE251941 BE250791 BE313955 BE269806 BE543623 BE279212 BE252289 T31699 BE262220 T31669
			AA315781 AA192212 N84547 BE292737 BE259631 AA232179 Al133144 T31292 AA315945 BE407301 BE251184 BE409006 Al880158 Al904003
80			Al904114 AW651768 AW651763 R58247 BE271897 U83843 C05298 BE261609 BE255973 AA351650 N84631 BE263637 AW452910 AA328465 AA324549 AW579525 BE252296 BE257551 AL048332 BE208630 AA359336 AW327897 AA151742 AA305816 BE076862 BE076796 BE263161
50			AA324349 AW079323 BE252286 BE257331 ALU40332 BE20630 AA339330 AW37097 AA131742 AA300010 BEU70002 BEU70780 BE203101 AA323785 AA676588 AA626565 AA078917 W87657 R09002 R94021 AA312032 BE276665 AA295608 AW407162 AA329374 AW877912 N27885
		•	AA369256 AA360968 BE250476 N85427 BE265569 AI278639 AI816576 AI691037 AW328583 AI567949 AI983455 AI927732 AI811297 AI571508
			AW073674 BE296039 BE467326 Al828796 Al816578 AW511604 Al921213 AW152427 Al795787 Al801618 AW16866 Al628144 Al890339
85			AW173690 AW511540 BE535620 AA383014 BE301164 AI866596 AW514909 AA658050 AW575243 AA074631 AI093488 AW575408 AW675443
0,5			AW615636 AW732207 AW377638 AA321784 AA641629 AA633105 AA527640 AW129146 AW615672 BE394607 AA483902 AW475032 BE378532

	***	<i>J</i> 02/00044	
5			AA872808 Al469388 AW105268 BE047301 AW591843 AW410066 AW517153 Al950495 AA746641 Al914878 AA873185 Al696911 AA548625 AA911505 AA148762 AW674535 Al587329 BE328328 AW270348 AA158225 AW117705 AW474997 AW519193 AA614757 AW664383 Al082647 AW590973 Al476711 AA192213 N88741 BE464552 AW072679 Al453708 AA152166 AA805924 Al581078 Al125768 AW173484 Al961980 BE300766 Al199698 Al636792 AW247333 AW272861 AA078818 AA150012 AA551232 AA678821 AW873869 AW768266 Al660315 AA319210 AA814551 AA157994 AA318886 Al582962 AW089224 Al356098 Al343694 AW072598 N21054 Al301249 AA742924 H17917 AW328584
J			AW248898 AI751830 AA907816 R08898 AW087989 AI828300 AA148596 AI269577 T33426 AA213571 AI973201 AA666279 R49612 AI573183 AW799762 AW410068 AW769566 AI962097 AI475204 D57490 AW517531 BE245270 AW470008 T33427 AW005731 AI795795 T23753 AW272981 T15747 AA552875 T23644 AW361289 AI758558 BE207435 AA876958 T03361 AA883569 F37533 AA582321 AW082524 R42212 AA973847 T18900 AA086202 AI559867 AI302418 AA948667 AA745670 T08939 T33724 T33722 BE621568 D57489 D25906 BE621151 F16510 C05966
10			T35127 AA630427 AI933481 AA309426 AI918440 BE561854 BE618866 BE394675 BE296173 AW951687 BE383739 BE616141 BE312730 BE535351 AW080575 BE313330 BE616664 AI354390 AA847315 BE544509 BE515212 BE297833 BE278808 BE544844 AW090178 AI890664 BE546708 AW189943 BE274412 BE382399 BE266392 BE254949 BE280696 BE383237 BE261756 BE257721 BE312683 BE275476 BE514880 BE545314 BE313587 BE384537 BE386691 BE264813 AW592575 AI336332 AI278641 AI795791 BE222662 AW249316 AA314361 AL036012 AW402923 BE266845 AA075945 AA314436 BE384640 AW731769 AW957077 AA552234 AA573560 AW367038 AA313399 AI983873 BE410159
15		•	BE263803 BE514339 BE409073 BE281296 BE543396 BE395387 BE088360 BE546946 BE546570 BE390626 AA074638 AA301821 AW845230 AW582379 AJ849222 AW029572 AA515843 AW272394 BE250234
20	119221	102947_1	C14322 W74050 Al074232 AA595624 BE048955 Al148417 Al583145 Al473460 Al801688 AW573593 Al950741 Al628140 AW467921 R98105 Al149258 Al247584 Al078378 Al139850 AA489411 W24744 R98104 Al033826 AA699589 Al033120 N55544 W88984 AW970771 AA703362 AA099138 AA706792 AA046150 H98981 Al916674 AA953018 Al972749 Al921343 AA909044 AA094751 Al203124 AA582143 Al446654 AW235415 R70377 AA099236 F20703 AA524436 R69484
20	125831	1522905.1	H04043 D60988 D60337
	128192	45743_3	Al204246 Al204250 Al194050
	113195	178688_1	H83265 T63524 AA304359 AW960551 AI672874 AI749427 AA227777 AW027055 AA971834 T49644 T54122 AI983239 AI808233 T91264 T96544
25	,,,,,,,		* AI350945 AI709114 R72382 T48788 R48726 AW385418 AI095484 T49645 AA928653 AA570082 AW007545 T57178 AA516413 AA913118 T57112 AA564433 AA774503 AA367671 T59757
20	119861	238266_1	W78816 AI720806 AI633854 AI632086 AI668663 N70894 AW571809 AI383592 AI201348 W80715 N91880 AW963101 AA339011
30	112973	4868_1	AB033023 BE391906 BE275965 BE277872 BE003882 AA313774 BE019159 BE298024 BE299727 BE300011 BE390277 BE394764 N87550 BE409419 BE408652 BE408197 AL119332 AA622427 Al816265 AA610118 T07318 AA019839 AA634430 BE205794 BE049461 Al042322 Al652711 Al917645 AA630045 AW191969 Al817882 T17271 Al803663 Al095533 H46019 AW592438 Al624836 Al675552 D51149 AW132058 AA639614 Al925762 AW088153 T17455 AA018640 AW751475 BE300241 Al816255 BE391981 AW408671 AA353910 AW875446 AW875703
30			AW875926 AW875645 AW875647 AW938037 AL138042 AW892619 BE243018 AW995454 BE246381 BE009082 BE278921 AW967842 AA262454 H30121
	129402	47367_1	W72062 AF088057 W76255 Al827219 Al631461 AW449295 Al354957 Al913803 T62772 Al222040 T62921 T63781
	105936	260931_1	AI678765 H12175 R14664 AI914049 AA995383 H08009 H19418 AW953728 AI358021 AA587361 AI269377 AA369905 AW957113 H27693
35			AI300474 H73776 W74397 AA579604 AI131018 W72331 AI719085 AA568348 AI859045 AI814819 AI888714 BE467470 AW131268 H19419
			H27694 Al342165 Al914155 AA534872 BE018176 R60206 H11647 R45641 Al860466 BE301656 Al125453 Al498120 AA593735 AA879110
	129466	2094_50	AI016404 T35018 AA588397 AW449767 AA470365 BE501139 AA588354 AI337500 AW078532 Z41279 AI125449 AA935725 AA404338 L42583 NM 005554 L42601 BE183076 AI541221 BE140567 L42610 V01516 J00269 AW275792 AW383052 AW380143 AI541102 BE612846
	125400	2034_30	AI541344 AW238368 BE613405 BE615705 BE615530 BE615301 BE615301 BE615301 AW379823 AW3794706 AA194806 AA194992 AW384024 AW384000 AA641239
40			AI246504 AI540333 AW238681 AA640939 AI540863 AI608860 AW862564 AW366725 AW368983 AW366870 AA596020 AW794721 AW794511
			AI591181 BE182523 AW794644 AW794620 AI935234 AI608903 AI608623 AW797060 AW084935 BE182517 BE182319 AI890082 AW238346
			AW797012 BE182522 AW794838 Al608794 AW304289 AA147193 AA595995 AW381128 AW366720 AA583718 Al828416 BE122864 AW368343 AA431080 AW082039 AW380976 AA587144 AA443636 AW872937 AW794448 AW378382 AW085761 AW794718 AW263895 AA583587
			AA583991 AA583994 AA586886 AA586880 AW368365 Al814460 AA586991 Al282829 AW378406 AA586721 Al609242 AA431973 AA232959
45	•		AI831095 AW263854 AW378391 AW378415 AW378381 AA036990 AW238395 AI285446 BE208219 BE049526 AA583605 AA583918 AW366711
			AI285580 AW082642 AI285712 AA582875 AW591216 AW368719 AW378408 BE122835 AA582976 BE350422 AA418328 AI541454 AI565930
			AA583700 AA150575 AW238427 Al287474 AA912658 AA584223 AW238528 C17918 AW136169 AA159847 Al923797 Al609009 BE182479 Al915198 AW378114 AA147179 AA584239 AA150532 AW168862 AW085999 AW082480 AA659742 AW079703 Al872793 AA583981 Al824571
			BE182316 BE182507 AA233331 Al824572 Al540586 D29492 BE182931 AA036948 BE551821 D29401 AW378365 C00141 D29181 D29567
50			AW103359 W95238 Al991663 AA587298 BE184608 AA099833 W95121 W95150 D29584 Al934111 D29456 D29533 AW265380 D29290
			AW238463 AA121041 D29204 AA595925 D29441 AW081840 AA587018 D29323 AA582891 BE182433 BE182437 BE158295 BE182434
	100220 100355	45374_1 12538_1	AW015534 AA314369 AA290715 BE568683 AW629494 D28364 AW995678 AI907114 AA580734 AL041945 AA101515 AA121344 D78130 NM_003129 AA341650 T84166 AF098865 AA130976 BE089553
	100300		N997714 AA360734 ALU41343 AA101313 AA121344 D18130 NW_UUG123 AA341630 164160 AF936063 AA150970 BE963333 16 T66122 AW175590 F05344 Al114790 R12900 AA194871 AA132298 D78129 AA132213 AW948930 AW948919 AA263053 AW946593 AW948840
55		7,007,01,104	AA278558 R50895 N26940 N40818 AW021255 AA054851 AA663379 AW948795 AW948893 AA400356 AW948911 N85024 W78844 AI341546
			AI760182 AA286783 BE617763 BE617263 AW263690 BE049454 BE617928 AW515038 AW950584 AA601009 AI079194 AA147204 AW083163 AA130981 AI218369 AA604784 AI806257 AI559556 AA232318 AA258065 AI471982 AA687949 AI143944 N30172 AA400196 AI769049 AI084342 AI221380 AA948469 AI802469 H05720 AA113270 AA158138 AA076231 AI521024 AI810962 AI133616 AA805106 AA101516 R40052 R50778
60			R43280 T65036 AW131924 AA114251 AA152331 F09650 AA580614 AA558927 C75491 Z38352 AA954595 C75606 W80742
oo	100491 BE277805	34803_1 AA1 <i>4</i> 7951 AA6	D56165 M36981 X58965 NM_002512 BE379177 AA314836 BE256445 BE252016 AW248343 AI720933 AW085701 BE386050 BE619742 D3113 BE253293 AI246588 AI183405 AI954174 AI126891 AI829101 AI123832 AW129670 AA471268 AW170242 AW873079 AA148011 AI608620
	DLL. 1000	7511475517516	AA482951 AI003658 H43261 AA657978 AI735072 R83138 AA722002 AA626271 AW273877 BE464626 AA071483 AA429973 AA494342
			AA620436 AA775597 AA775601 AA826847 A1192585 AA826359 AA411159 A1193419 A1204013 AA705323 AA716255 A1784611 A1081144
65			AI128227 AA828464 AI148911 AI493446 AI626084 AI189180 AI721196 AI190618 AA284987 AI128543 AA632064 AI333073 AI278470 AA131688 AI491768 AA937581 AA630065 AA834257 AW249841 AA583742 AI309756 AA961676 AI760860 AA557818 AA954238 H43655 AI302564
03			AA127545 AI609219 H20426 AI042292 AI056466 AA581836 W47002 AA422057 AA937673 F29757 AA829208 AW327462 AA372098 W02144
			AA036805 AA487365 AA961037 Al139946 AA487250 AA737118 Al952504 Al242293 AA650552 Al708401 Al633133 AA630848 AA654317 F24128
			Al434165 W46252 AW043879 Al033763 F37228 AA687809 N49087 AA876981 AA506947 Al914572 Al833284 F22253 AA026222 R50166
70			AI219267 N27095 AA496512 AI784222 AI289904 AA513146 AA528547 AA418700 F36721 AI880700 AI601170 AI862851 AI708633 AA524499 AA642220 AA496628 AI718709 W80579 AI720547 F20718 AA649943 AA588229 N40503 H46029 BE262669 BE391069 BE537538 AI510751
, 0			AJ905958 AJ318511 H46099 AJ472604 T60667 AA373087 W32479 AA514034 BE619183 AA134672 AA127544 H26942 BE536689 AW327461
			AA422139 AW262357 AW327348 F33510 Al630382 AW827126 F27133 Al335189 AW517599 W80471 AA885814 N89681 BE393173 AA617760
			AA584268 AA460537 AA446261 H20425 N64040 AW276801 AA316367 AA071232 BE545409 AA308292 BE274447 AA380861 AA340038
75			AA341806 AA865579 AI018634 AI766314 AI919302 AA872367 AA991404 AI906961 AA888375 BE621012 AA505388 AA935192 AA290828 R50220 H50814 H44721 AW951723 AA514796 AA418708 AW673377 AA379622 AA977995 AA708224 AA708216 AI318249 AI318233 AA411160
. –			AA026221 AA316774 AA486908 AI500094 AA096362 AW583742 BE536422 BE618653 R70203 AA131732 AA345048 BE562720 T28342
	100518	13165_1	NM_004415 AL031058 M77830 BE149760 AW752599 AW848723 AW376697 AW376817 AW376699 AW848371 AW376782 AW848789
			AW361413 AW849074 AW997139 AW799304 AW799309 BE077020 BE077017 BE185187 AW997196 BE156621 BE179915 BE006561 BE143155
80 ·		•	AW890985 BE002107 AW103521 AA857316 AW383133 BE011378 AW170253 BE185750 AW886475 BE160433 J05211 BE082576 BE082584 BE004047 AW607238 AW377700 AW377699 BE082526 BE082505 BE082507 BE082514 AW178000 AW177933 AI905935 AW747877 AW748114
			BE148516 AW265328 AW847678 AW847688 AW365151 AW365148 AW365153 AW365156 AW365175 AW365157 AW365154 AW068840
			BE005272 AW365145 BE001925 BE182166 BE144243 BE001923 Al951766 Al434518 BE184920 BE184933 Al284090 BE184941 AW804674
			BE184924 C04715 W39488 AW995615 BE184949 BE159646 AW606653 AA099891 AA131128 AA337270 AA340777 AW384371 AA852212
85			R58704 AW366566 AW364859 AA025851 AA025852 AA455100 AA719958 AW352220 AW996245 BE165351 BE073467 AA377127 AW890264 AW609750 AW391912 AW849690 T87267 AW853812 AA852213 W74149 BE009090 AA056401 H91011 AW368529 AW390272 C18467
0.5			, WINDOWS AND THE VIEW PROPERTY WINDOWS WAS A STATE OF THE PROPERTY WAS A STATE OF THE VIEW OF THE VIE

-	wo	O 02/08644	3 PCT/US02/12476
5			AW674920 N57176 AA026480 AW576767 H93284 AA026863 AW177787 AA026654 AW177786 BE092134 BE092137 BE092136 AW177784 AI022862 BE091653 AW376811 AW848592 AA040018 BE185331 BE182164 AA368564 AW951576 T29918 AA131077 W95048 W25458 AW205789 H90899 N29754 W32490 R20904 BE167181 BE167165 N84767 H27408 H30146 A190590 C03378 AI554403 AI205263 AA128470 AI392926 AF139065 AW370813 AW370827 AW798417 AW798780 AW798883 AW798569 R33557 AA149190 C03029 AW177783 AA088866 AW370829 AA247685 BE002273 AI760816 AI439101 AW879451 AI700963 AA451923 AI340326 AI590975 T48793 AI568096 AI142882 AA039975 AI470146 AA946936 BE067737 BE067786 W19287 AA644381 AA702424 AI417612 AI306554 AI686869 AI568892 AW190555 AI571075 AI220573 AA056527 AI471874 AI304772 AW517828 AI915596 AI627383 AI270345 AW021347 AW166807 AW105614 AI346078 AA552300 W95070
10	,		AI494069 AI911702 AA149191 AA026864 AI830049 AI887258 AW780435 AI910434 AI819984 AI858282 AI078449 AI025932 AI860584 AI635878 AA026047 AA703232 D12062 AW192085 AA658154 AW514597 AW591892 T87181 AA782066 AW243815 AW150038 AW268383 AW004633 AI927207 AA782109 AW473233 AI804485 AW169216 AI572669 AA602182 AW015480 AW771865 AI270027 AA961816 AA283207 AI076962 AI498487 AI348053 AI783914 H44405 AW799118 AA128330 AA515500 AA918281 W02156 AI905927 AA022701 W38382 R20795 T77861 AW860878
15	100528	-	BE386801 AU077299 AA143755 BE302747 AA853375 U30162 BE274163 BE277479 BE408180 BE274874 C15000 AA047476 N27099 Al359165 Al638794 Al151283 Al863925 AW444977 Al207392 AA931263 AA443112 R40138 AW068538 AA351008 AA676972 R62503 AA916492 AW001865 H42334 H38280 AA121497 AA114137 Al750938 M17763 AA383786 BE274462 Al753182 C05975 AA347404 AW069298 Al754351 Al754044 AA188808 AA186879 AA565243 AL040655 AA456177 Al750723 AA045756 AA213580 C16936 AW578747 AW753731 H41632 N44761 R58560 R61260 AA039902 N59721 AW992543 R68380 AA149686 T29017 H03739 BE383822 BE387105 BE408251 BE410425 H41560 AA247591 BE389677 Al752233 Al566195 AA868004 Al424523 AW753720 AA852159 BE386803
20	100559		NM_00094 L02870 D13694 S51236 M96984 AW946290 M65158 AI285422 D29523 AL119886 AW630655 L06862 AI884355 AW168737 T29085 AW797005 AW801340 AI355504 AW079048 AW801337 AI690455 AI972063 AW268565 W68588 AA587326 AA883498 AI033523 AW510356 AW591998 H98463 AL043852 AI150055 AI566239 AI624803 AA844717 H40670 AA922334 AI864424 AW615094 AW451233 AI302203 F31221 AI872170 W68589 AA904478 AI917631 AW014208 AW450759 AA847625 AI284033 AA848176 AA598507
25	100576 124357 101624 101625 135158	genbank_N224 entrez_M55998 entrez_M57293 57963_1	BM55998

Tables 2A-8C were previously filed on November 9, 2001 in USSN 60/339,245 (18501-004100US)

5

Table 2A shows 504 genes down-regulated in lung tumors relative to normal lung and chronically diseased lung. Chronically diseased lung samples represent chronic non-malignant lung diseases such as fibrosis, emphysema, and bronchitis. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechlp array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

	•			•								-
	Pkey: ExAcon: UnigenelD	Exempla		identifier number number, Genbank accession number								
10	Unigene T R1:	itle: Unigene 90th per samples	egene title centile of Al f	or normal lung samples divided by the 80th percent								
	R2:	median	of Al for norm	al lung samples divided by 90th percentile of Al for	adenocarcino	ma and s	euomaup Olivericasi	cell carcin	oma lung	tumor sam	iples.	
15	R3:	median the 90th	of At for norm percentile of	al lung samples minus the 15th percentile of Al for Al for adenocarcinoma and squamous cell carcino	an normai iuni ma luno tumo	g, caronic r samoles	minus the	eu lung a 15th pen	centile of	Al for all no	vided by Smal	
		luna, ch	ronically disea	ased lung and tumor samples.								
	R4:			nal lung samples divided by average Al for squamo			denocarci	noma lun	g tumors.			
	R5: R6:	nedian	of Al for norm	al lung samples divided by the 90th percentile of Al al lung samples minus the 15th percentile of Al for	all normal lun	cinomas. L'ebronic	ally diseas	ed lung a	nd tumor	samples di	ivided by ti	ne 90th
20	110.	percenti	le of Al for ad	enocarcinomas minus the 15th percentile of Al for	all normal lung	, chronica	lly diseas	ed lung ar	nd tumor s	samples.		.0 00
	R7:	average	of Al for norm	nal lung samples divided by the 90th percentile of A	d for squamou	is cell car	cinomas.					
	R8:	median	Of Al for norm Te of Al for so	al lung samples minus the 15th percentile of Al for uamous cell carcinomas minus the 15th percentile	ali normai iuni of Al for all no	g, caronic rmal luno	any diseas chronical	ieu iung a Iv disease	d lung an	d tumor sa	vided by tr moles.	ie 90th
		percons	10 0174 101 04	danious con suranionas minos de tour personais	o. ,o. ao							
25	Pkey	ExAccn	UnigenelD	Unigene Title	R1	R2	R3	R4	R5	R6	R7	R8
	100095	Z97171	Hs.78454	myocilin; trabecular meshwork inducible	40.20							
		NM_002084		glutathione peroxidase 3 (plasma)	10.20							3.46
20	100138	U83508	Hs.2463	angiopoietin 1			2.30					
30	100299	D49493	Hs.2171	growth differentiation factor 10		11.00				3.06		
	100306 100447	U86749 NM_014767	Hs.80598 Hs.74583	transcription elongation factor A (SII); KIAA0275 gene product						0.00		3.16
	100458	S74019	Hs.247979	Vpre-B	42.40							
25		AA005247	Hs.285754	Hepatocyte Growth Factor Receptor				125.60		4.13		
35	100959 101032	AA359129 BE206854	Hs.118127 Hs.46039	actin; alpha; cardiac muscle phosphoglycerale mutase 2 (muscle)	36.40			125.00				
		AF047347	Hs.4880	amyloid beta (A4) precursor protein-bind	00.70			34.60				
,		X70697	Hs.553	solute carrier family 6 (neurotransmitte				193.20		240		
40		AJ250562 U11874	Hs.82749 Hs.846	transmembrane 4 superfamily member 2 interleukin 8 receptor; beta				54.86		3.10		
40		L41390	113.040	"Homo sapiens core 2 beta-1,6-N-acetylgi	33.20							
	101330	L43821	Hs.80261	enhancer of filamentation 1 (cas-like do			0.00	36.40				
	101345 101346	NM_005795 Al738616	Hs.152175 Hs.77348	Calcitonin receptor-like hydroxyprostaglandin dehydrogenase 15-(N			2.29	70.55				
45	101397	M26380	Hs.180878	lipoprotein lipase				. 0.00				3.54
	101414	NM_000066	Hs.38069	complement component 8; beta polypeptide							3.81	
	101435	NM_001100 X16896	Hs.1288 Hs.82112	actin; alpha 1; skeletal muscle interleukin 1 receptor; type I				34.60 37.60				
	101507 101530	M29874	Hs.1360	cytochrome P450; subfamily IIB (phenobar				37.00				4.25
50	101537	Al469059	Hs.184915	zinc finger protein; Y-linked			2.54					
	101542	NM_000102		cytochrome P450; subfamily XVII (steroid	39.40	5.50					•	
	101545 101554	BE246154 BE207611	Hs.154210 Hs.123078	EDG1; endothelial differentiation, sphin thyroid stimulating hormone receptor	33.40	13.00				•		
	101560	AW958272	Hs.83733	Intercellular adhesion molecule 2, exon								3.38
55	101574 101605	M34182 M37984	Hs.158029 Hs.118845	protein kinase; cAMP-dependent; catalyti troponin C; slow						4.37		3.80
,	101603	BE391804	Hs.62661	guanylate binding protein 1; interferon-	30.20							0.00
	101680	AA299330	Hs.1042	Sjogren syndrome antigen A1 (52kD; ribon						0.05	2.75	
60	101829 101842	AW452398 M93221	Hs.129763 Hs.75182	solute carrier family 8 (sodium/calcium mannose receptor; C type 1				38.20		3.37		
00	101961	AW004056	Hs.168357	"Hs-TBX2=T-box gene {T-box region} [huma			2.32	00.20				
	101994	T92248	Hs.2240	uteroglobin			0.45	•				6.85
	102020 102091	AU077315 BE280901	Hs.154970 Hs.83155	transcription factor CP2 aldehyde dehydrogenase 7			2.45					6.75
65	102112	AW025430	Hs.155591	forkhead box F1	54.60							
	102190	AA723157	Hs.73769	folate receptor 1 (adult)					•			3.98
	102202 102241	NM_000507 NM_007351		fructose-bisphosphatase 1 Multimerin			2.32					3.62
=0	102310	U33839	110,200107	Accession not listed in Genbank		7.00						
70	102397	U41898		"Human sodium cotransporter RKST1 mRNA,	29.40							0.75
	102571 102620	U60115 AA976427	Hs.239069 Hs.121513	"Homo sapiens skeletal muscle LIM-protei Human clone W2-6 mRNA from chromosome X						3.07		3.75
	102636	U67092	110.121010	"Human ataxia-telangiectasia locus prote			2.40			0.01		
75	102667	U70867	Hs.83974	solute carrier family 21 (prostaglandin			3.15					
75	102675 102698	U72512 M18667	Hs.7771 Hs.1867	"Human B-cell receptor associated protei progastricsin (pepsinogen C)						3.56		4.51
	102727	U79251	Hs.99902	opioid-binding protein/cell adhesion mol				•	12.00			
	102852	V00571	Hs.75294	corticotropin releasing hormone	37.40	•			40.00			
80	103026 103028	X54162 X54380	Hs.79386 Hs.74094	thyroid and eye muscle autoanligen D1 (6 pregnancy-zone protein	28.80				13.00			,
00	103028	M86361	. 13.1 7034	Human mRNA for T cell receptor; clone IG	20.00				10.00			
	103117	X63578	Hs.295449	parvalbumin		6.00	0.47					
	103241 103280	X76223 U84722	Hs.76206	H.sapiens MAL gene exon 4 Cadherin 5, VE-cadherin (vascular epithe			2.47 2.69					
85	103360	Y16791	Hs.73082	keratin; hair; acidic; 5							2.16	

	W	O 02/086	6443							PCT/	US02/1	
	103496	Y09267	Hs.132821	flavin containing monooxygenase 2 *H.sapiens DAT1 gene, partial, VNTR*						3.27		5.97
	103508 103561	Y10141 NM_001843	Hs.143434	contactin 1			2.40			0.21		
,	103569	NM_005512	Hs.151641	glycoprotein A repetitions predominant			2.99			4 40		
5	103575	Z26256		"H.sapiens isoform 1 gene for L-type cal H.sapiens XG mRNA (clone PEP6)						4.18 3.44		
	103627 103767	Z48513 BE244667	Hs.296155	CGI-100 protein						4	2.25	
	103850	AA187101	Hs.213194	Hypothetical protein MGC10895; sim to SR				46.55		3.05		
10	104078 104326	AA402801 AW732858	Hs.303276 Hs.143067	ESTs ESTs						3.54		
10	104352	BE219898	Hs.173135	dual-specificity tyrosine-(Y)-phosphoryl						3.16		
	104398 104473	A1423930 A1904823	Hs.36790 Hs.31297	ESTs; Weakly similar to putative p150 [H ESTs	64.80							3.38
	104473	AW960427	Hs.79059	ESTs; Moderately similar to TGF-BETA REC			2.47					
15	104495	AW975687	Hs.292979	ESTs	28.60					3.42		
	104595 104597	A1799603 A1364504	Hs.271568 Hs.93967	ESTs ESTs; Weakly similar to Slit-1 protein [6.00				J. 12		
	104659	AW969769	Hs.105201	ESTs	34.00	44.00						
20	104686 104691	AA010539 U29690	Hs.18912 Hs.37744	ESTs ESTs; Beta-1-adrenergic receptor	56.80	11.00						
20	104764	AI039243	Hs.278585	ESTs				60.40				
	104776	AA026349	Un 4.44002	ESTs ESTs	34.20		3.03					
	104825 104865	AA035613 T79340	Hs.141883 Hs.22575	Homo sapiens cDNA: FLJ21042 fis, clone C	41.20		0.00					
25	104942	NM_016348	Hs.10235	ESTs				40.00				3.27
	104989 105062	R65998 AW954355	Hs.285243 Hs.36529	ESTs ESTs				40.00				3.20
	105101	H63202	Hs.38163	ESTs	34.20							4.47
30	105173 105194	U54617 R06780	Hs.8364 Hs.19800	ESTs ESTs		16.00						4.17
50	105194	R58958	Hs.26608	ESTs			2.34					
	105256	AA430650	Hs.16529	transmembrane 4 superfamily member (tetr			2.72 2.61					
	105394 105647	BE245812 Y09306	Hs.8941 Hs.30148	ESTs homeodomain-interacting protein kinase 3	33.60		2.01					
35	105789	AF106941	Hs.18142	arrestin; beta 2						4.46		3.59
	105817 105847	AA397825 AW964490	Hs.32241	synaptopodin ESTs				35.40		4.40		
	105894	A1904740	Hs.25691	calcitonin receptor-like receptor activi			3.43					
40	105999	BE268786 AA045290	Hs.21543 Hs.25930	ESTs ESTs		7.00		42.60				
40	106075 106178	AL049235	Hs.301763	KIAA0554 protein	34.80							
	106381	AB040916	Hs.24106	ESTs					12.00	3.69		
	106467 106536	AA450040 AA329648	Hs.154162 Hs.23804	ADP-ribosylation factor-like 2 ESTs				96.40		0.00		
45	106569	R20909	Hs.300741	sorcin				47.20				
	106605 106842	AW772298 AF124251	Hs.21103 Hs.26054	Homo sapiens mRNA; cDNA DKFZp564B076 (fr novel SH2-containing protein 3			2.55	220.40				
	106844	AA485055	Hs.158213	sperm associated antigen 6	39.20		0.00					
50	106870 106943	Al983730 AW888222	Hs.26530 Hs.9973	serum deprivation response (phosphalidy) ESTs			2.28					4.28
50	106954	AF128847	Hs.204038	ESTs								4.32
	107106	AA862496	Hs.28482 Hs.27018	ESTs ESTs			2.57		10.45	٠		
	107163 107201	AF233588 D20378	Hs.30731	EST			2.01			3.84		
55	107238	D59362	Hs.330777	EST		8.00 10.67						
	107376 107530	U90545 Y13622	Hs.327179 Hs.85087	solute carrier family 17 (sodium phospha latent transforming growth factor beta b		10.07	2.32					
	107688	AW082221	Hs.60536	ESTs	00.40			34.60				
60	107706 107723	AA015579 AA015967	Hs.29276	ESTs EST	28.40					3.29		
55	107727	AA149707	Hs.173091	DKFZP434K151 protein				80.80				
	107750 107751	AA017291 AA017301	Hs.60781 Hs.235390	ESTs ESTs				51.40		3.14		
~	107873	AK000520	Hs.143811	ESTs		9.00						
65	107899	BE019261 AA036811	Hs.83869 Hs.48469	ESTs; Weakly similar to !!!! ALU SUBFAMI ESTs				44.60		3.65		
	107994 107997	AL049176	Hs.82223	Human DNA sequence from clone 141H5 on c				32.00				
	108041	AW204712	Hs.61957	ESTs				30.80			4.75	
70	108048 108338	AI797341 AA070773	Hs.165195	ESTs "zm53g11.s1 Stratagene fibroblast (#9372			2.33					
. •	108434	AA078899		"zm94b1.s1 Stratagene colon HT29 (#93722						2.00	2.92	
	108447 108480	AA079126 AL133092	Hs.68055	"zm92a11.s1 Stratagene ovarian cancer (# ESTs				34.00		3.06		
7.5	108499	AA083103		"zn1b12.s1 Stratagene hNT neuron (#93723					40.00		•	3.36
75	108535 108550	R13949 AA084867	Hs.226440	Homo sapiens clone 24881 mRNA sequence "zn11f6.s1 Stratagene hNT neuron (#93723					19.00 12.00			
	108504	AA934589	Hs.49696	ESTs			2.33					
	108625	AW972330	Hs.283022	ESTs							3.42	5.82
80	108629 108655	AA102425 AA099960		"zn24c6.s1 Stratagene neuroepithelium NT "zm65c6.s1 Stratagene fibroblast (#93721		7.00					J.7£	
	108756	AA127221	Hs.117037	Homo sapiens mRNA; cDNA DKFZp564N1164 (f	00.00	6.05						
	108864 108895	Al733852 AL138272	Hs.199957 Hs.62713	ESTs .	28.80 32.80							
0.5	108921	Al568801	Hs.71721	ESTs			-	57.80				
85	108967	AA142989	Hs.71730	ESTs	28.80							

	W	O 02/086	443							PCT/	US02/:	12476
	109001	AI056548 AA147497	Hs.72116 Hs.71825	ESTs, Moderately similar to hedgehog-int ESTs			2.57				2.11	
	109003 109004	AA156235	Hs.139077	EST		5.60					211	
_	109065	AA161125	Hs.252739	EST					10.00		0.44	
5	109250 109490	H83784 AA233416	Hs.62113 Hs.139202	ESTs; Weakly similar to PHOSPHATIDYLETHA ESTs							3.44 2.92	
	109450	A1798863	Hs.87191	ESTs	*		2.40				2.02	
	109578	F02208	Hs.27214	ESTs		10.00		40.00				
10	109601	F02695	Hs.311662 Hs.27519	EST ESTs				40.80 54.40				
10	109613 109650	H47315 R31770	Hs.23540	ESTs	31.20			34.40				
	109682	H18017	Hs.22869	ESTs	-	8.40						
	109724	D59899	Hs.127842	ESTs				29.40	8.00			
15	109782 109833	AB020644 R79864	Hs.14945 Hs.29889	long fatty acyl-CoA synthetase 2 gene ESTs		10.00			0.00			
	109837	H00656	Hs.29792	ESTs			6.49					
	109977	T64183	Hs.282982	ESTs				107.00			2.75	
	109984 110146	Al796320 H41324	Hs.10299 Hs.31581	ESTs ESTs; Moderately simitar to SYNTAXIN 1B				107.00			2.22	
20	110271	H28985	Hs.31330	ESTs						3.48		
	110280	AW874263	Hs.32468	ESTs	44.20			22.00				
	110420 110578	R93141 T62507	Hs.184261 Hs.11038	ESTs ESTs	28.40			32.00				
	110634	R98905	Hs.35992	ESTs	20.40				20.00			
25	110726	AW961818	Hs.24379	polassium voltage-gated channel; shaker-				50.00				4.15
	110837 110875	H03109 N35070	Hs.108920 Hs.26401	ESTs; Weakly similar to semaphorin F [H. tumor necrosis factor (ligand) superfami			3.13	56.80				
	110894	R92356	Hs.66881	ESTs; Moderately similar to cytoplasmic		5.33	0.10					
20	110971	AI760098 .	Hs.21411	ESTs				44.60				
30	111023 111057	AV655386 T79639	Hs.7645 Hs.14629	ESTs ESTs	32.40				17.14			
	111247	AW058350	Hs.16762	Homo sapiens mRNA; cDNA DKFZp564B2062 (f					*****		4.58	
	111330	BE247767	Hs.18166	KIAA0870 protein								3.42
35	111374	BE250726 AW449573	Hs.283724 Hs.181003	ESTs; Moderately similar to HYA22 (H.sap ESTs				33.20				3.91
55	111442 111737	H04607	Hs.9218	ESTs				53.00				
	111747	Al741471	Hs.23666	ESTs	46.20	40.00						
	111807 111862	R33508 R37472	Hs.18827 Hs.21559	-ESTs EST		16.00			•	3.91		
40	112045	Al372588	Hs.8022	TU3A prolein						0.51	2.74	
	112057	R43713	Hs.22945	EST					40.00		4.92	
	112214	AW148652	Hs.167398 Hs.25917	ESTs ESTs			2.43		13.00			
	112263 112314	R52393 AW206093	Hs.748	ESTs ·		9.00	2.40					
45 ·	112324	R55965	Hs.26479	limbic system-associated membrane protei					14.00			
	112362 112380	AW300887 H63010	Hs.26638 Hs.5740	ESTs; Weakly similar to CD20 receptor [H ESTs			2.49 2.34					
	112425	AA324998	Hs.321677	ESTs; Weakly similar to !!!! ALU SUBFAMI		8.00	2.07					
50	112473	R65993	Hs.279798	pregnancy specific beta-1-glycoprotein 9						4.53		
50	112492 112541	N51620 AF038392	Hs.28694 Hs.116674	ESTs ESTs				29.80		3.62		
	112620	R80552	Hs.29040	ESTs			2.37			0.02		
	112623	AW373104		ESTs			2.26		40.00			•
55	112867 112894	T03254 T08188	Hs.167393 Hs.3770	ESTs ESTs		6.50			12.00			
55	112954	AA928953	Hs.6655	ESTs		7.00						
	113029	AW081710	Hs.7369	ESTs; Weakly similar to !!!! ALU SUBFAMI								4.39
	113086 113140	AA346839 T50405	Hs.209100 Hs.175967	DKFZP434C171 protein ESTs					10.00			4.47
60	113252	NM_004469		c-fos induced growth factor (vascular en		14.00						
	113257	Al821378	Hs.159367	ESTs				•		3.72 3.60		•
	113394 113437	T81473 T85349	Hs.177894 Hs.15923	ESTs EST	35.00					3.00		
, .	113454	Al022166	Hs.16188	ESTs		6.00						
65	113502	T89130	11- 40000	ESTs	39.60							3.88
	113552 113645	AI654223 T95358	Hs.16026 Hs.333181	ESTs ESTs							2.58	3.00
	113691	T96935	Hs.17932	EST .				38.20				
70	113706	AA004693	Hs.269192	ESTs			2.31			3.09		
70	113883 113924	U89281 BE178285	Hs.11958 Hs.170056	oxidative 3 alpha hydroxysteroid dehydro Homo sapiens mRNA; cDNA DXFZp586B0220 (f	30.40		2,31					
	114035	W92798	Hs.269181	ESTs	·				13.00		•	
	114058	AK002016	Hs.114727	ESTs				40.60				5.00
75	114084 114121	AA708035 H05785	Hs.12248 Hs.25425	ESTs ESTs			2.31	40.60				
	114124	W57554	Hs.125019	Human lymphoid nuclear protein (LAF-4)		7.00						
	114275	AW515443	Hs.306117	interleukin 13 receptor; alpha 1		6.00		40 0A				
	114297 114427	AA149707 AA017176	Hs.173091 Hs.33532	DKFZP434K151 protein ESTs; Highly similar to Miz-1 protein [H				48.80		3.45		
80	114449	AA020736		"ze63b11.s1 Soares retina N2b4HR Homo sa					10.00			
	114452	AI369275	Hs.243010	ESTs, Moderately similar to RTC0_HUMAN G		14.00				3.13		
	114609 114648	AA079505 AA101056		"zm97a5.s1 Stratagene colon HT29 (#93722 "zn25b3.s1 Stratagene neuroepithelium NT				35.40		J. 1J		
0.5	114731	BE094291	Hs.155651	Homo sapiens HNF-3beta mRNA for hepatocy	**			-				3.42
85	114762	AA146979	Hs.288464	ESTs	33.00							

	W	O 02/08	6443							PCT	/US02/	12476
	114776 115009	AA151719 AA251561	Hs.95834 Hs.48689	ESTs ESTs	34.40 30.20							
	115272	AW015947		ESTs; Weakly similar to hypothetical L1	32.60							
5	115279	AW964897 AL109719	Hs.290825 Hs.47578	ESTs ESTs	•	6.00			12.00			
,	115302 115365	AL109719 AW976252	Hs.268391	ESTs					12.00	3.32		
	115559	AL079707	Hs.207443	ESTs				48.00				•
	115566 115683	Al142336 AF255910	Hs.43977 Hs.54650	ESTs ESTs, Weakly similar to (defline not ava	31.40			56.20				
10	115744	AA418538	Hs.43945	ESTs; Highly similar to dJ1178H5.3 [H.sa				33.60				
	115819 115949	AA486620 AI478427	Hs.41135 Hs.43125	Endomucin 2 ESTs			3.18	74.40				
	115965	AA001732	Hs.173233	ESTs				388.80				
15	116035 116049	AA621405 AA454033	Hs.184664 Hs.41644	ESTs ESTs				33.20 45.80				
	116081	AJ190071	Hs.55278	ESTs						3.57		
	116082 116213	AB029496 AA292105	Hs.59729 Hs.326740	ESTs leucine rich repeat (in FUI) interactin	50.60		3.06					
20	116228	A1767947	Hs.50841	ESTs; Weakly similar to tuftelin (M.musc	******		3.85					
20	116250 116419	N76712 Al613480	Hs.44829 Hs.47152	ESTs ESTs; Weakly similar to testicular tekti		6.00		30.00				
	116617	D80761	Hs.45220	EST		•	2.27	00.00				
	116784 116835	AB007979 N39230	Hs.301281 Hs.38218	tenascin R (restrictin; janusin) ESTs	47.20			41.20				
25	116970	AB023179	Hs.9059	KIAA0962 protein					11.00			
	117023 117027	AW070211 AW085208	Hs.102415 Hs.130093	ESTs ESTs	49.40			91.00				
	117036	H88908	Hs.41192	EST	10.10			32.60				
30	117110 117209	AA160079 W03011	Hs.172932 Hs.306881	ESTs ESTs		8.67		30.60				
50	117325	N23599	Hs.43396	ESTs				00.00	9.29			
	117454 117475	N29569 N30205	Hs.44055 Hs.93740	ESTs ESTs	44.00					3.19		
	117543	BE219453	Hs.42722	ESTs	44.00	16.00						•
35	117567	AW444761	Hs.44565	ESTs					12.00 11.00			
	117570 117600	N48649 N34963	Hs.44583 Hs.44676	ESTs EST					11.00	3.74		
	117730	N45513	Hs.46608	ESTs		6.00 9.00					•	
40	117791 117929	N48325 N51075	Hs.93956 Hs.47191	EST ESTs		5.00		29.20				
	117990	AA446167	Hs.47385	ESTs	24.40	8.00						
	118224 118244	N62275 N62516	Hs.48503 Hs.48556	EST ESTs	31.40 32.80							
45	118357	AL109667	Hs.124154	Homo sapiens mRNA full length insert cDN			2.40					
43	118446 118447	N66361 N66399	Hs.269121 Hs.49193	ESTs EST	30.80		2.28				•	
	118530	N67900	Hs.118446	ESTs						3.10		
	118549 118823	N68163 W03754	Hs.322954 Hs.50813	EST ESTs; Weakly similar to long chain fatty			3.94			3.41		
50	118862	W17065	Hs.54522	ESTs				00.00		3.58		
	118935 118944	Al979247 Al734233	Hs.247043 Hs.226142	KIAA0525 protein ESTs; Weakly similar to !!!! ALU SUBFAMI				33.00	11.43			
	118995	N94591	Hs.323056	ESTs		14.00						
55	119073 119268	BE245360 T16335	Hs.279477 Hs.65325	ERG-2/ERG-1; V-ets avian erythroblastosi EST	31.40			52.60				
	119514	W37937 ·		Accession not listed in Genbank			0.75			3.50		
	119824 119831	W74536 AL117664	Hs.184 Hs.58419	advanced glycosylation end product-speci DKFZP586L2024 protein			2.75					3.21
60	119861	W78816	Hs.49943	ESTs; Moderately similar to !!!! ALU SUB				33.80				
60	119889 119921	W84346 W86192	Hs.58671 Hs.58815	ESTs ESTs	29.00			30.03				
	120082	H80286	Hs.40111	ESTs	•	C 00				3.80		
	120094 120132	AA811339 W57554	Hs.124049 Hs.125019	ESTs Human lymphoid nuclear protein (LAF-4)		6.00		36.60				
65	120378	AA223249	Hs.285728	ESTs	20.40	12.00						
	120404 120504	AB023230- AA256837	Hs.96427	KIAA1013 protein ESTs	39.40				8.00			
	120512	N55761	Hs.194718	ESTs	33.00							4.40
70	120667 120777	AA287740 AA287702	Hs.78335 Hs.10031	microtubule-associated protein; RP/EB fa KIAA0955 protein				46.60				4.18
	121082	AA398722		ESTs	44.00			39.00				
	121191 121248	AA400205 AA400914	Hs.104447 Hs.97827	ESTs EST	41.60						5.08	
75	121363	A1287280	Hs.97933	ESTs					12.00			
13	121366 121483		Hs.25274	ESTs ESTs; Moderately similar to putative sev					20.00	3.32		
	121518	AA412155		ESTs			• • •	30.20				
		AA412442 AA416931	Hs.98132 Hs.126065	ESTs ESTs		9.00	2,29					
80	121665	AA416556	Hs.98234	ESTs		5.00		34.80				
	121709 121730	Al338247 Al140683	Hs.98314 Hs.98328	Homo sapiens mRNA; cDNA DKFZp586L0120 (f ESTs	34.80 38.80							
	121740	AA421138	Hs.98334	EST		7.00						
85	121772 121821	A1590770 AL040235	Hs.110347 Hs.3346	Homo sapiens mRNA for alpha integrin bin ESTs	36.20							3.61
00	121021	. 10200	13.0340									

	. W	O 02/086	6443							PCT/US02/12476		
	121835	AB033030	Hs.300670	ESTs			2.34				•	
	121841	AA427794	Hs.104864	ESTs			2.61				0.00	
	121885	AA934883 AA426429	Hs.98467 Hs.98463	ESTs ESTs							2.25 2.92	
5	121888 121938	AA428659	Hs.98610	ESTs				46.80			Z.JZ	
	121950	AA429515		EST .				31.40				
	122030	AA431310	Hs.98724	ESTs	34.40						:	
	122054	AA431725	Hs.98746	EST	40.40						3.58	
10	122211 122233	AA300900 AA436455	Hs.98849 Hs.98872	ESTs; Moderately similar to bithoraxoid- EST	49.40 29.80							
	122247	AA436676	Hs.98890	EST	25.00			39.80				
	122253	AA436703	Hs.104936	ESTs; Weakly similar to hypothetical pro		9.00						
	122266	AA436840	Hs.98907	EST						3.60		
15	122285 122409	AA436981 AA446830	Hs.121602 Hs.99081	EST ESTs	30.80					3.14		
13	122485	AA524547	Hs.160318	phospholemman	30.00		2.65					
	. 122697	AA420683	Hs.98321	Homo sapiens cDNA FLJ14103 fis, clone MA		15.00						
	122772	AW117452	Hs.99489	ESTs		6.67			,	2 27		
20	122831 122913	A1857570 A1638774	Hs.5120 Hs.105328	ESTs ESTs				32.20		3.37		
20	123049	BE047680	Hs.211869	ESTs				41.80				
	123076	Al345569	Hs.190046	ESTs	35.80							
	123136	AW451999	Hs.194024	ESTs					40.00		2.58	
25	123309 123455	N52937 AA353113	Hs.102679 Hs.112497	ESTs ESTs				82.80	19.00			
23	123435	AA609579	Hs.112724	ESTs				02.00		3.95		
	123756	AA609971	Hs.112795	EST	35.40				•			
	123802	AA620448		Homo sapiens clone 24760 mRNA sequence	58.00			00.10				
30	123837 123844	Al807243 AA938905	Hs.112893 Hs.120017	ESTs			2.63	32.40				
50	123936	NM_004673	Hs.241519	olfactory receptor, family 7; subfamily ESTs	29.00		2.00					
	123987	C21171	Hs.95497	ESTs; Weakly similar to GLUCOSE TRANSPOR				70.60				
	124013	Al521936	Hs.107149	ESTs; Weakly similar to PTB-ASSOCIATED S	28.40							
35	124160 124205	R40290	Hs.124685 Hs.108135	ESTS ESTS					13.00	4.74		
55	124205	H77570 AA618527	Hs.190266	ESTs			2.35			4.14		•
	124246	H67680	Hs.270962	ESTs				29.40				
	124348	AI796320	Hs.10299	ESTs		17.00						
40	124358 124409	AW070211 Al814166	Hs.102415 Hs.107197	"yw35g11.s1 Morton Fetal Cochlea Homo sa ESTs			3.07			3.14		
40	124442	AW663632	Hs.285625	TATA box binding protein (TBP)-associate			2.48			J. 17	•	
	124468	N51413	Hs.109284	ESTs				30.80				
	124479	AB011130	Hs.127436	calcium channel; voltage-dependent; alph			0.50					6.03
45	124519 124711	A1670056 NM_004657	Hs.137274	ESTs; Weakly similar to SPLICEOSOME ASSO serum deprivation response (phosphatidy)	59.20		2.50					
43	124866	Al768289	Hs.304389	ESTs	00.ZU	8.00						
	124874	BE550182	Hs.127826	ESTs				37.60				
	125097	AW576389	Hs.335774	ESTs					10.00	2 42		
50	125179 125200	AW206468 AW836591	Hs.103118 Hs.103156	ESTs ESTs						3.12	2.79	
50	125299	T32982	Hs.102720	ESTs				34.20				
	125400	AL110151	Hs.128797	DKFZP586D0824 protein	29.00							
	125810	H00083	Hs.2441	aryl hydrocarbon receptor-interacting pr	32.20	12.00						
55	126176 126303	BE242256 D78841	N5.2441	KIAA0022 gene product HUM525A05B Human placenta polyA+ (TFuji		12.00		33.60				
	126403	AW629054	Hs.125976	ESTs; Weakly similar to metalloprotease/	35.80							
	126507	AL040137	Hs.23964	ESTs; Weakly similar to HC1 ORF [M.muscu	00.00			29.80				
	126773 127307	AA648284 AW962712	Hs.187584 Hs.126712	ESTs ESTs; Weakly similar to pIL2 hypothetica	39.60 28.80							
60	127462		Hs.293977	aa59b04.s1 NCI_CGAP_GCB1 Homo sapiens c	20.00			34.40				
	127486	AW002846	Hs.105468	ESTs ·		9.00						
	127572	AA594027	Hs.191788 Hs.530	ESTs ESTs			2.36	29.40				
	127609 127832	X80031 AW976035	Hs.292396	ESTs				37.20				•
65	127898	AA774725	Hs.128970	ESTs .				•			4.42	
	128073	AW340720	Hs.125983	ESTs				38.40				
	128101 128149	AA905730 NM_012214	Hs.128254	ESTs		7.33					2.58	
	128212	W27411	Hs.336920	mannosyl (alpha-1;3-)-glycoprotein beta- glutathione peroxidase 3 (plasma)			3.09				2.50	
70	128333	W68800	Hs.12126	ESTs; Weakly similar to LR8 [H.sapiens]				34.40				
	128364	N76462	Hs.269152	ESTs; Weakly similar to ZINC FINGER PROT		10.00					4.04	
	128426	AI265784 AA305407	Hs.145197 Hs.102308	ESTs	31.20						4.31	
	128598 128634	AA464918	113.102300	potassium inwardly-rectifying channel; s ESTs; Moderately similar to !!!! ALU SUB	01.20			41.60				
75	128687	AW271273	Hs.23767	ESTs			٠	87.00				
	128726	AJ311238	Hs.104476	ESTs					0.00			4.02
	128773 128833	NM_004131 W26667	Hs.1051 Hs.184581	granzyme B (granzyme 2; cytotoxic T-lymp ESTs					9.00			3.76
	128870	H39537	Hs.75309	eukaryotic translation elongation factor			2.66					5.70
80	128878	R25513	Hs.10683	ESTs						3.10		
	128885	AF134803	Hs.180141	cofilin 2 (muscle)					11.00		2 24	
٠	128998 129000	W04245 AA744902	Hs.107761 Hs.107767	ESTs; Weakly similar to PUTATIVE RHO/RAC ESTs; Moderately similar to CaM-KII inhi							3.21	3.68
0.5	129038	AW156903	Hs.108124	ribosomal protein L41						3.17		
85	129098	AW580945	Hs.330466	ESTs	34.60		•					

	w	O 02/086	5443							PCT/	US02/:	12476
	129210	AL039940	Hs.202949	KIAA1102 protein								4.09
	129240	AA361258	Hs.237868	interleukin 7 receptor			2.29			2.20		
	129262 129301	BE222198 AF182277	Hs.109843 Hs.330780	ESTs Human cylochrome P450-IIB (hIIB3) mRNA;						3.30		4.05
5	129331	AW167668	Hs.279772	ESTs; Highly similar to CGI-38 protein [4.09
	129381	AW245805	Hs.110903	claudin 5 (transmembrane protein defeted			2.93					
	129565 129595	X77777 U09550	Hs.198726 Hs.1154	vasoactive intestinal peptide receptor 1 oviductal glycoprotein 1; 120kD				160.80	10.00			
	129613	AW978517	Hs.172847	ESTs; Weakly similar to collagen alpha 1					10.00	3.40		
10	129782	AW016932	Hs.104105	EST		9.00						
	129950	F07783	Hs.1369	decay accelerating factor for complement				87.80				
	129958 129959	R27496 AL036554	Hs.1378 Hs.274463	annexin A3 defensin; alpha 1; myeloid-related seque			2.72	44.60				
	130160	AA305688	Hs.267695	UDP-Gal:betaGlcNAc beta 1;3-galactosyltr				42.20				
15	130259	NM_000328		retinitis pigmentosa GTPase regulator			2.54					
	130273 130312	AW972422 AF056195	Hs.153863 Hs.15430	MAD (mothers against decapentaplegic; Dr DKFZP586G1219 protein				51.60		3.16		
	130436	NM_001928		D component of complement (adipsin)						0.10		4.11
20	130523	AA999702	Hs.214507	ESTs						4.77		
20	130799 130885	AB028945 NM_005883	Hs.12696	ESTs adenomatous polyposis coli like		6.00				3.54		
	131002	AL050295	Hs.22039	KIAA0758 protein						3.54		3.50
	131012	AL039940	Hs.202949	KIAA1102 protein		20.00						
25	131031	NM_001650 N64328	Hs.288650 Hs.268744	aquaporin 4 ESTs; Moderately similar to KIAA0273 [H.	41.20			31.40				
23	131061 131066	AW169287	Hs.22588	ESTs				29.60				
	131082	Al091121	Hs.246218	ESTs; Weakly similar to zinc finger prot					9.00			
	131087	AF147709	Hs.22824	ESTs; Wealdy similar to p160 myb-binding						244		3.86
30	131161 131179	AF033382 AA171388	Hs.23735 Hs.184482	potassium voltage-gated channel; subfami DKFZP586D0624 protein						3.14 3.80		
50	131182	Al824144	Hs.23912	ESTs						0.00		3.67
	131205	NM_003102		superoxide dismutase 3; extracellular			2.98					
	131277 131281	AA131466 AA251716	Hs.23767 Hs.25227	ESTs ESTs			3.15	32.20				
35	131282	X03350	Hs.4	alcohol dehydrogenase 3 (class I); gamma				J2.20				3.44
	131285	Al567943	Hs.25274	ESTs; Moderately similar to putative sev			·			6.40		
	131355	R52804	Hs.25956	DKFZP564D206 protein		8.00						
	131391 131461	AW085781 AA992841	Hs.26270 Hs.27263	ESTs butyrate response factor 2 (EGF-response	28.80	10.00						
40	131487	F13036	Hs.27373	Homo sapiens mRNA; cDNA DKFZp564O1763 (f	20.00						4.03	
	131517	AB037789	Hs.263395	ESTs; Highly similar to semaphorin VIa [39.00				44.00			
	131545 131583	AL137432 AK000383	Hs.28564 Hs.323092	ESTs ESTs; Weakly similar to dual specificity					11.00 10.00			
	131647	AA359615	Hs.30089	ESTs		•	2.47		10.00			
45	131675	H15205	Hs.30509	ESTs						3.06		,
	131676 131708	Al126821 S60415	Hs.30514 Hs.30941	ESTs calcium channel; voltage-dependent; beta	45.80		2.28					
	131717	X94630	Hs.3107	CD97 antigen			2.20					3.78
60	131756	AA443966	Hs.31595	ESTs				40.60			•	
50	131762 131821	AA744902	Hs.107767 Hs.164577	ESTs; Moderately similar to CaM-KII inhi ESTs			2.87					3.67
	131839	AA017247 AB014533	Hs.33010	KIAA0633 protein			2.01				3.48	
	131861	AL096858	Hs.184245	KIAA0929 protein Msx2 interacting nuclea	54.00							
55	132015	Al418006	Hs.3731	ESTS				49.20 34.80		•		
55	132070 132242	BE622641 AA332697	Hs.38489 Hs.42721	ESTs ESTs			2.68	34.00				
	132334	AW080704	Hs.45033	lacrimal proline rich protein			4.66					
	132476	AL119844	Hs.49476	Horno sapiens clone TUA8 Cri-du-chat regi	34.20		2 60					
60	132490 132533	NM_001290 Al922988	Hs.172510	LIM binding domain 2 ESTs		13.00	2.66					
	132598	X80031	Hs.530	collagen; type IV; alpha 3 (Goodpasture				30.60				
	132619	H28855	Hs.53447	ESTs; Moderately similar to kinesin ligh	•					4.02		
	132652 132726	N41739 N52298	Hs.61260 Hs.55608	ESTs ESTs; Weakly similar to cDNA EST yk484g1					11.43	3.18		
65	133028	R51604	Hs.300842	ESTs			2.37		,,,,,			
	133071	BE384932	Hs.64313	ESTs			2.27					
	133120 133129	NM_003278 AA428580	Hs.65551	tetranectin (plasminogen-binding protein ESTs			2.63					5.49
	133147	AA026533	Hs.66	interleukin 1 receptor-like 1			6.20					0.45
70	133151	NM_014051		ESTs						3.69		
	· 133213 133276	AA903424 AW978439	Hs.6786 Hs.69504	ESTs ESTs				31.40	9.00			
	133377	AJ131245	Hs.7239	SEC24 (S. cerevisiae) related gene famil	41.20	•			5.00			
75	133407	AF017987	Hs.7306	secreted frizzled-related protein 1	50.20							
75	133535 133537	AL134030	Hs.284180	protocadherin 2 (cadherin-like 2)						3.72		3.35
	133537	U41518 BE149455	Hs.74602 Hs.75415	aquaporin 1 (channel-forming integral pr Accession not listed in Genbank			2.65					J.JO
	133689	NM_001872	Hs.75572	carboxypeptidase B2 (plasma)				90.80				
80	133779	T58486	Hs.222566	ESTs			2.00			3.05		
30	133978 133985	AF035718 L34657	Hs.78061 Hs.78146	transcription factor 21 platelet/endothelial cell adhesion molec			2.92	-			•	3.45
	134000	AW175787	Hs.334841	selenium binding protein 1								4.05
	134111	Al372588	Hs.8022	TU3A protein			4.49				2 27	
85	134185 134204	AA285136 AI873257	Hs.301914 Hs.7994	Homo sapiens mRNA; cDNA DKFZp586K1220 (f ESTs; Weakly similar to CGI-69 protein (40.80			3.27	
•												

	W	O 02/086	443							02/12476
	134641	AI092634	Hs.156114	protein tyrosine phosphatase; non-recept					3.76	
	134677	AA251363	Hs.177711	ESTs				32.20		
	134745	NM_000685	Hs.89472	anglotensin receptor 1B -		15.00	0.05			
5	134749	T28499	Hs.89485	carbonic anhydrase IV			3.05	00		
5	134786	T29618	Hs.89640	angiopoietin 1 receptor; TEK tyrosine ki thyroid transcription factor 1				57.80		0.70
	134825	U33749	Hs.197764	ficolin (collager/fibringen domain-cont			0.50			3.73
	134978 135010	A1829008 N50465	Hs.333383 Hs.92927	ESTs			2.52	31.60		
	135053	AW796190	Hs.93678	ESTs				31.00	3.21	
10	135081	AF069517	Hs.173993	RNA binding motif protein 6	28.80				3.21	
10	135091	AA493650	Hs.94367	ESTs	28.60					4.24
	135135	AA775910	Hs.95011	syntrophin; beta 1 (dystrophin-associate		8.00				4.24
	135203	C15737	Hs.269386	ESTs .		0.00			4.31	
	135236	AI636208	Hs.96901	ESTs	43.00				4.91	
15	135266	R41179	Hs.97393	Human mRNA for KIAA0328 gene; partial cd	40.00				6.	42
	135346	NM_000928	Hs.992	phospholipase A2; group I8 (pancreas)			3.82		0.	74,
	135378	AW961818	Hs.24379	potassium voltage-gated channel; shaker-			4.15			
	135387	NM_001972		elastase 2; neutrophil	37.20					
	135388	W27965	Hs.99865	EST	38.80					
20	135402	L12398	Hs.99922	dopamine receptor D4	22.00				4.21	•
			•	• • •						

TABLE 2B shows the accession numbers for those primekeys lacking unigenelD's for Table 2A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

	Pkey:	Unique Eos probeset i	identifier number
30		ber: Gene cluster number	
30	Accession	n: Genbank accession n	umbers
	Pkey	CAT number Acces	ssions
	108447	434527 AA079	9126
35	108550		4867 AA084996
	108655		9960 AA113013
	102397	443711 U4189	
	126303		41 D78880
	125810		83 R81062
40	103627		13 Z48512
	121366		515 AA405617 AW276706
	114609		9505 AA079537
	115272		5947 AA211890 AA279425
	108338	112186_1 AA070	0773 AA070774
45	108434	114012_1 AA078	8899 AA078782 AA075788
	123802	genbank_AA620448	AA620448
	102310	NOT_FOUND_entrez_L	J33839 U33839
	102636	entrez_U67092 U6709	3 2
~0	104776	genbank_AA026349	AA026349
50	120504	genbank_AA256837	AA256837
	113502	genbank_T89130T8913	10
	108499	genbank_AA083103	AA083103
	101308	entrez_L41390 L4139	
E E	108629	genbank_AA102425	AA102425
55	103098	221_215 M8636	61 Z26593 X02850 D13070 AE000559 M17649 M87869 M87871 X61077 M16286 AF018169 X61079 S59351 X60142 AF043169
	103241	entrez_X76223 X7622	
	103508	entrez_Y10141 Y1014	
	103575	entrez_Z26256 Z2625	
60	119514 121082	NOT_FOUND_entrez_V	
00	128634	genbank_AA398722 AA464918_at AA464	AA398722
	105817	genbank_AA397825	AA397825
	121518	genbank_AA412155	AA412155
	114449	genbank AA020736	AA020736
65	114648	genbank_AA101056	AA101056
	121950	genbank AA429515	AA429515
	107723	genbank_AA015967	AA015967
		3	14.0.1000

Table 3A shows 452 genes up-regulated in chronically diseased lung relative to normal lung. Chronically diseased lung samples represent chronic non-malignant lung diseases such as fibrosis, emphysema, and bronchibs. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

5 Pkey: ExAccn: Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number UnigenelD: Unigene number Unigene gene title
Unigene gene title
80th percentile of AI for chronically diseased lung samples divided by the 90th percentile of AI for normal lung samples.
80th percentile of AI for chronically diseased lung samples divided by the 90th percentile of normal lung samples, squamous cell carcinomas and Unigene Tille: R1:

10 R2:

adenocarcinomas

R3:

70th percentile of AI for chronically diseased lung samples minus the 15th percentile of AI for all normal lung, chronically diseased lung and tumor samples divided by the 90th percentile of normal lung samples, squamous cell carcinomas and adenocarcinomas minus the 15th percentile of AI for all normal lung,

	RJ:	divided	i by the 90th p	for chronically diseased lung samples minus the four ercentile of normal lung samples, squamous cell card			
15		chronic	cally diseased	lung and tumor samples			
	Pkey	ExAcon	UnigenelD	Unigene Title	R1	R2	`R3
20	135423	U50531	Hs.138751	Human BRCA2 region, mRNA sequence CG030	12.40		
20	135378 135346	AW961818 NM_000928	Hs.24379 Hs.992	MUM2 protein phospholipase A2, group IB (pancreas)			2.13
	135235	AW298244	Hs.293507	ESTs	12.40		
	135057	U9026B	Hs.93810	cerebral cavernous malformations 1	11.67		
25	134951 134799	BE305081 M36821	Hs.169358 Hs.89690	hypothetical protein GRO3 oncogene		8.00 8.20	
23	134786	T29618	Hs.89640	TEK tyrosine kinase, endothelial (venous		0.20	
	134772	NM_000829	Hs.163697	glutamate receptor, ionotrophic, AMPA 4	29.80		
	134752 134749	BE246762 T28499	Hs.89499 Hs.89485	arachidonale 5-lipoxygenase carbonic anhydrase IV			1.93 2.07
30	134696	BE326276	Hs.8861	ESTs .			2.07
	134636	NM_005582	Hs.87205	lymphocyte antigen 64 (mouse) homolog, r	13.60		
	134627 134622	AI018768 AW975159	Hs.12482 Hs.293097	glyceronephosphate O-acyltransferase ESTs, Weakly similar to A55380 faciogeni			1.92 1.92
	134570	U66615	Hs.172280	SWI/SNF related, matrix associated, acti	13.20		1.02
35	134561	U76421	Hs.85302	adenosine deaminase, RNA-specific, B1 (h			1.78
	134468 134417	NM_001772 NM_006416	Hs.83731 Hs.82921	CD33 antigen (gp67) solute carrier family 35 (CMP-sialic aci		6.20	
	134343	D50683	Hs.82028	transforming growth factor, beta recepto			
40	134323	BE170651	Hs.8700	deleted in liver cancer 1			
40 .	134300 134299	NM_001430 AW580939	Hs.8136 Hs.97199	endotheliat PAS domain protein 1 complement component C1q receptor			
	134253	X52075	Hs.80738	sialophorin (gpL115, leukosialin, CD43)	20.60		
	134182	D52059	Hs.7972	KIAA0871 protein	12.20		
45	133985 133978	L34657 AF035718	Hs.78146 Hs.78061	platelet/endothelial cell adhesion molec transcription factor 21			
1.5	133835	Al677897	Hs.76640	RGC32 protein			•
•	133651	Al301740	Hs.173381	dihydropyrimidinase-like 2	45.00		
	133633 133565	D21262 AW955776	Hs.75337 Hs.313500	nucleolar and coiled-body phosphprotein ESTs, Moderately similar to ALU7_HUMAN A	15.20		
50	133548	AW946384	Hs.178112	DNA segment, single copy probe LNS-CAI/L			1.77
	133488	AA335295	Hs.74120	adipose specific 2			0.00
	133478 133337	X83703 AF085983	Hs.31432 Hs.293676	cardiac ankyrin repeat protein ESTs		9.60	2.08
c	133200	AB037715	Hs.183639	hypothetical protein FLJ10210			1.77
. 55	133153	AF070592	Hs.66170	HSKM-B protein	30.60 22,60		
	133130 133120	AI128606 NM_003278	Hs.6557 Hs.65424	zinc finger protein 161 tetranectin (plasminogen-binding protein	22,00		
	132928	AW168082	Hs.169449	protein kinase C, alpha	13.80		
60	132836 132799	AB023177	Hs.29900	KIAA0960 protein	41.60		
ŲŪ.	132742	W73311 AA025480	Hs.169407 Hs.292812	SAC2 (suppressor of actin mutations 2, ESTs, Weakly similar to T33468 hypotheti	40.40		
	132548	X12830	Hs.193400	interleukin 6 receptor		7.20	
	132476 132439	AL119844 AK001942	Hs.49476 Hs.4863	Homo sapiens clone TUA8 Cri-du-chat regi hypothetical protein DKFZp566A1524		4.76	1.88
65	132240	AB018324	Hs.42676	KIAA0781 protein	21.20		1.00
	132210	NM_007203	Hs.42322	A kinase (PRKA) anchor protein 2	45.00		1.99
	132199 131751	AL041299 T96555	Hs.165084 Hs.31562	ESTs ESTs	15.20		1.76
~ 0	131745	Al828559	Hs.31447	ESTs, Moderately similar to A46010 X-li	27.80		•
70	131694	NM_000246	Hs.3076	MHC class II transactivator		4.00	
	131686 131676	NM_012296 Al126821	Hs.30687 Hs.30514	GRB2-associated blnding protein 2 ESTs		6.20	
	131629	Z45794	Hs.238809	ESTs	21.40	0,20	
75	131589	C18825	Hs.29191	epithelial membrane protein 2		0.40	
15	131536 131517	AA019201 AB037789	Hs.269210 Hs.263395	ESTs sema domain, transmembrane domain (TM),		9,40 3,59	
	131355	R52804	Hs.25956	DKFZP564D206 protein		4.48	
	131253	R71802	Hs.24853	ESTs	15.00		1.75
80	131207 131156	AF104266 AI472209	Hs.24212 Hs.323117	latrophilin ESTs			1.75
	131066	AW169287	Hs.22588	ESTs		3.54	•
	131061 131053	N64328 AA348541	Hs.268744 Hs.296261	KIAA1796 protein guanine nucleotide binding protein (G pr			1.93
0.5		AA641767	Hs.21015	hypothetical protein DKFZp564L0864 simil	16.60		1.00
85	130762	D84371	Hs.1898	paraoxonase 1	12.00		

	w	O 02/086	443				
	130657	AW337575	Hs.201591	ESTs			
	130655	A1831962	Hs.17409	cysteine-rich protein 1 (intestinal)			
	130589 130562	AL110226 D50402	Hs.16441 Hs.182611	DKFZP434H204 protein solute carrier family 11 (proton-coupled			2.08
5	130555	R69743	Hs.116774	integrin, alpha 1		9.60	1.91
	130365	W56119	Hs.155103	eukaryotic translation initiation factor	11.60	0.00	
	130273	AW972422	Hs.153863	MAD (mothers against decapentaplegic, Dr		6.60	
	130259 130090	NM_000328	Hs.153614	relinitis pigmentosa GTPase regulator	04.00		1.91
10	129958	H97878 R27496	Hs.132390 Hs.1378	zinc finger protein 36 (KOX 18) annexin A3	21.20	5.05	
10	129898	Al672731	Hs.13256	ESTs		0.00	
	129875	AA181018	Hs.13056	hypothetical protein FLJ13920	18.60		
	129699	AB007899	Hs.12017	homolog of yeast ubiquitin-protein ligas			
15	129626	F13272 N30436	Hs.111334	ferritin, light polypeptide	00.00		
13	129598 129593	AJ338247	Hs.11556 Hs.98314	Homo sapiens cDNA FLJ12566 fis, clone NT Homo sapiens mRNA; cDNA DKFZp586L0120 (f	22.63		
	129565	X77777	Hs.198726	vasoactive intestinal peptide receptor 1			2.53
	129527	AA769221	Hs.270847	delta-tubulin	39.20		
20	129402	W72062	Hs.11112	ESTs			2.11
20	129385	AA172106	Hs.110950	Rag C protein	15.20		
	129315 129312	NM_014563 T97579	Hs.174038 Hs.110334	spondyloepiphyseal dysplasia, late ESTs, Weakly similar to 178885 serine/th	12.40 20.83		
	129240	AA361258	Hs.237868	interleukin 7 receptor	20.00		1.95
0.5	129210	AL039940	Hs.202949	KIAA1102 protein			
25	129122	AW958473	Hs.301957	nudix (nucleoside diphosphate linked moi		4.20	
	129057 128946	N90866	Hs.276770 Hs.107318	CDW52 antigen (CAMPATH-1 antigen) kynurenine 3-monooxygenase (kynurenine 3		5.20	
	128798	Y13153 AF015525	Hs.302043	chemokine (C-C motif) receptor-like 2		5.20	
	128789	AW368576	Hs.139851	caveolin 2			2.24
30	128778	AA504776	Hs.186709	ESTs, Weakly similar to I38022 hypothet	12.20		
	128766	AW160432	Hs.296460	craniofacial development protein 1	26.40		4 70
	128631 128624	R44238 BE154765	Hs.155546 Hs.102647	KIAA1080 protein; Golgi-associated, gamm ESTs, Weakly similar to TRHY_HUMAN TRICH			1.78 2.51
	128609	NM_003616	Hs.102456	survival of motor neuron protein interac	16.00		2.71
35	128603	NM_004915	Hs.10237	ATP-binding cassette, sub-family G (WHIT	12.80		
	128598	AA305407	Hs.102308	potassium inwardly-rectifying channel, s		4.00	
	128458	H55864	Hs.56340	ESTs	47.00		
	128061 127968	AF150882 AA830201	Hs.186877 Hs.124347	sodium channel, voltage-gated, type XII, ESTs	17.20 21.30		
40	127959	Al302471	Hs.124292	Homo sapiens cDNA: FLJ23123 fis, clone L	21.00		
	127944	Al557081	Hs.262476	S-adenosylmethionine decarboxylase 1	10.60		
	127925	AA805151	Hs.3628	mitogen-activated protein kinase kinase	13.40		
	127896	AI669586	Hs.222194	ESTs	44.00	7.00	
45	127859 127817	AA761802 AA836641	Hs.291559 Hs.163085	ESTs ·	14.00 14.00		•
,,,	127742	AW293496	Hs.180138	ESTs	11.00		
	127628	Al240102	Hs.322430	NDRG family, member 4	11.10		
	127609	X80031	Hs.530	collagen, type IV, alpha 3 (Goodpasture	40.00		
50	127582 127543	AA908954 AK000787	Hs.130844 Hs.157392	ESTs Homo sapiens cDNA FLJ20780 fis, clone CO	19.60 15.40		
50	127535	AA568424	Hs.164450	ESTs	17.50		
	127404	AJ379920	Hs.270224	ESTs	14.60		
	127396	L31968	Hs.187991	DKFZP564A122 protein	15.40		
55	127374	AA442797	Hs.312110	ESTs, Weakly similar to 138022 hypothet	14.60		
33	127346 127340	AA203616 BE047653	Hs.44896 Hs.119183	DnaJ (Hsp40) homolog, subfamily B, membe ESTs, Weakly similar to ZN91_HUMAN ZINC	21.00 15.80		
	127307	AW962712	Hs.126712	ESTs, Weakly similar to AF191020 1 E2IG5	10.00		
	127242	AW390395	Hs.181301	cathepsin S	22.60		
6 0	127167	AA625690	Hs.190272	ESTs	21.40		
60	127046 126928	AA321948 AA480902	Hs.293968 Hs.137401	ESTs ESTs	41.20 11.00		
	126900	AF137386	Hs.12701	plasmolipin	11.00		1.78
	126852	AA399961	**********	gb:zu68c01.r1 Soares_testis_NHT Homo sap		5.60	
65	126816	AA248234		gb:csg2228.seq.F Human fetal heart, Lamb	12.20		
65	126812	AB037860	Hs.173933	nuclear factor I/A	17.19		
	126666 126645	AA648886 AA316181	Hs.151999 Hs.61635	ESTs six transmembrane epithelial antigen of	13.57 15.40		
	126592	AI611153	Hs.6093	Homo sapiens cDNA: FLJ22783 fis, cione K	13.40	4.67	
70	126556	AF255303	Hs.112227	membrane-associated nucleic acid binding	18.00		
70	126433	AA325606		gb:EST28707 Cerebellum II Homo sapiens c	16.77		
	126299	AW979155	Hs.298275	amino acid transporter 2	14.60	2.50	
	126218 126182	AL049801 AA721331	Hs.13649 Hs.293771	Novel human gene mapping to chomosome 13 ESTs	13.40	3.50	
	126177	AW752782	Hs.129750	hypothetical protein FLJ10546	18.20		
75	126142	H86261	Hs.40568	ESTs	14.00		
	126077	M78772	Hs.210836	ESTs	16.59		
	125994	A1990529	Hs.270799	ESTs	17.40		
	125934 125847	AA193325 AW161885	Hs.32646 Hs.249034	hypothelical protein FLJ21901 ESTs	13.00 49.57		
80	125831	H04043	110.670004	gb:yi45c03.r1 Soares placenta Nb2HP Homo	73.01		
	125731	R61771	Hs.26912	ESTs	13.20		•
	125676	BE612918	Hs.151973	hypothetical protein FLJ23511	11.20		
	125561	F18572	Hs.22978	ESTs, Weakly similar to ALU4_HUMAN ALU S	10.00		
85	125552 125489	H09701 H49193	Hs.278366 Hs.124984	ESTs, Weakly similar to I38022 hypotheti ESTs, Moderately similar to ALU7_HUMAN A	12.60 33.40		
	,			and the state of t			

PCT/US02/12476

	WO 02/086443						
	125422	AA903229	Hs.153717	ESTs			1.80
	125331	Al422996	Hs.161378	ESTs	38.00		
	125309 125167	T12411 AL137540	Hs.183745 Hs.102541	hypothetical protein FLJ13456 netrin 4	18.20		1.95
5	125139	AW194933	Hs.9788	hypothetical protein MGC10924 similar to			1.84
	125042	T78906	Hs.269432	ESTs, Moderately similar to ALU1_HUMAN	21.80		
	124711	NM_004657	Hs.26530	serum deprivation response (phosphatidy)	22.00	10.60	
	124631 124578	NM_014053 N68321	Hs.270594 Hs.231500	FLVCR protein EST	23.20 21.43		
10	124574	AL036596	Hs.42322	A kinase (PRKA) anchor protein 2	21.10		1.77
	124472	N52517	Hs.102670	EST	37.20		
	124438	BE178536	Hs.11090	membrane-spanning 4-domains, subfamily A	14.64		
	124357 124306	N22401 AW973078	Hs.293039	gb:yw37g07.s1 Morton Fetal Cochlea Homo ESTs	14.04	4.00	
15	124214	H58608	Hs.151323	ESTs			
	124097	AW298235	Hs.101689	ESTs .		27.20	
	123978 123972	T89832 T46848	Hs.170278 Hs.70337	ESTs Immunoglobulin superfamily, member 4		6.00	2.03
	123961	AL050184	Hs.21610	DKFZP434B203 protein		0.00	1.79
20	123936	NM_004673	Hs.241519	angiopoletin-like 1		15.80	
	123802	AA620448		gb:ae58c09.s1 Stratagene lung carcinoma		4.23	
	123734 123619	AA609861 AA602964	Hs.312447	ESTs gb:no97c02.s1 NCI_CGAP_Pr2 Homo sapiens	33.60	4.20	•
	123596	AA421130	Hs.112640	EST	10.93		
25	123476	AA384564	Hs.108829	ESTs			2.18
	123340	AA504264	Hs.182937	peptidylprolyl isomerase A (cyclophilin	11.20	,	
	123190 123136	AA489212 AW451999	Hs.105228 Hs.194024	EST ESTs	14.20	7.00	
	123073	AA485061	Hs.105652	ESTs	31.20		
30	123055	AA482005	Hs.105102	ESTs, Weakly similar to reverse transcri		4.80	
	122699 122679	AA456130 AA811286	Hs.301721 Hs.192837	KIAA1255 protein ESTs, Weakly similar to ALU5_HUMAN ALU S	14.40	5.00	
	122633	NM_001546	Hs.34853	inhibitor of DNA binding 4, dominant neg			
25	122553	AA451884	Hs.190121	ESTs	40.00		
35	122544 122485	AW973253 AA524547	Hs.292689 Hs.160318	ESTs FXYD domain-containing ion transport reg	15.40		1.81
	122211	AA300900	Hs.98849	ESTs, Moderately similar to AF161511 1 H		12.10	
	122127	AW207175	Hs.106771	ESTs			1.95
40	122011 121992	AA431082	Hs.98506	gb:zw78a10.s1 Soares_testis_NHT Homo sap ESTs		3.60	1.89
70	121989	Al860775 W56487	Hs.193784	Homo sapiens mRNA; cDNA DKFZp586K1922 (f		0.00	2.01
	121835	AB033030	Hs.300670	KIAA1204 protein	40.40		1.85
	121726 121690	AF241254 AV660305	Hs.178098 Hs.110286	angiotensin I converting enzyme (peptidy ESTs	12.43		1.82
45	. 121643	AA640987	Hs.193767	ESTs			1.02
	121633	AA417011	Hs.98175	EST	14.00	40.10	
	121622 121497	AA416931 AA412031	Hs.126065 Hs.97901	ESTs EST	11.20	16.40	
	121351	AW206227	Hs.287727	hypothetical protein FLJ23132	12.20		
50	121314	W07343	Hs.182538	phospholipid scramblase 4			1.83
	121242	AA400857	Hs.97509	ESTs	22.40 14.80		
	121059 120934	AA393283 AA226198		gb:zt74e03.r1 Soares_testis_NHT Homo sap gb:nc26a07.s1 NCI_CGAP_Pr1 Homo sapiens	21.20		
	120755	AA312934	Hs.190745	Homo sapiens cDNA: FLJ21326 fis, clone			1.79
55	120637	AA811804		gb:ob39a05.s1 NCI_CGAP_GCB1 Homo sapiens	20.00		
	120484 120336	AA253170 N85785	Hs.96473 Hs.181165	EST eukaryotic translation elongation factor	40.20	6.60	
	120266	Al807264	Hs.205442	ESTs, Weakly similar to T34036 hypotheti	16.80	0.00	
60	120132	W57554	Hs.125019	ESTs ;		4.73	
60	120041	AA830882	Hs.59368	ESTs EST		7.20	1.75
	119996 119970	W88996 AA767718	Hs.59134 Hs.93581	hypothetical protein FLJ10512	11.20	1.20	
	119861	W78816	Hs.49943	ESTs, Weakly similar to S65657 alpha-1C-		3.78	
65	119824	W74536	Hs.184	advanced glycosylation end product-speci	20.20		
05	119740 119271	AW021407 Al061118	Hs.21068 Hs.65328	hypothetical protein Fanconi anemia, complementation group F	15.20		
	119221	C14322	Hs.250700	tryptase beta 1			
	119126	R45175	Hs.117183	ĖŠTs	12.60		
70	119073 118928	BE245360 AA312799	Hs,279477 Hs,283689	ESTs activator of CREM in testis		10.00	
, 0	118901	AW292577	Hs.94445	ESTs		3.96	
	118661	AL137554	Hs.49927	protein kinase NYD-SP15	40.40	9.60	
	118607 118449	Al377444 Al813865	Hs.54245 Hs.164478	ESTs, Weakly similar to S65824 reverse the hypothetical protein FLJ21939 similar to	10.40		1.90
75	118416	N66028	Hs.49105	FKBP-associated protein	16.20		
•	118379	N64491	Hs.48990	ESTs	-	4.00	
	118329	N63520		gb:yy62f01.s1 Soares_multiple_sclerosis_		6.60	
	118320 118253	N63451 AA497044	Hs.141600 Hs.20887	ESTs, Weakly similar to alternatively s hypothetical protein FLJ10392	17.60	3.80	
80	118124	N56968	Hs.46707	chromosome 21 open reading frame 37	14.00		_
	118056	AB037746	Hs.42768	hypothetical protein DKFZp761O0113		E 00	1.86
	118032 117840	N52802 T26379	Hs.47544 Hs.48802	- EST Homo sapiens clone 23632 mRNA sequence		5.00 4.00	
0.5	117404	N39725	Hs.15220	zinc finger protein 106	44.00		1.90
85	117314	N32498	Hs.42829	ESTs	14.20		

PCT/US02/12476

	W	O 02/086	6443				
		W03011	Hs.306881	MSTP043 protein			
		AW070211	Hs.102415	Homo sapiens mRNA; cDNA DKFZp586N0121 (f			2.31
	116814		11- 004004	gb:yp86a10.s1 Soares fetal liver spleen	20.20		
5	116784	AB007979 Al608657	Hs.301281 Hs.95097	Homo sapiens mRNA, chromosome 1 specific ESTs	16.20	3.51	
-		AW901618	Hs.61935	Homo sapiens mRNA; cDNA DKFZp761l071 (fr	10.20	6.80	
	116707	H10344	Hs.49050	ESTs, Weakly similar to A Chain A, Human	18.60	0.00	
	116351		Hs.82501	similar to mouse Xm1 / Dhm2 protein	19.40		
10	116279		Hs.291289	ESTs, Weakly similar to ALU1_HUMAN ALU S			
10	116166		Hs.202949	KIAA1102 protein	•		2.13
	116152 116117		Hs.15220 Hs.31575	zinc finger protein 106 SEC63, endoplasmic reticulum translocon	13.20		1.75
	116107		Hs.172572	hypothetical protein FLJ20093	30.11		
	115965		Hs.173233	hypothetical protein FLJ10970			2.36
15	115955	AF263613	Hs.44198	intracellular membrane-associated calciu	18.20		
	115844		Hs.332938	hypothetical protein MGC5370	18.57		
	115683 115673	AF255910 AA406341	Hs.54650 Hs.269908	junctional adhesion molecule 2	44.00	23.00	
	115673		Hs.73251	Homo sapiens cDNA FLJ11991 fis, clone HE ESTs	11.82 10.60		
20	115566	AI142336	Hs.43977	Human DNA sequence from clone RP11-196N1	10.00		1.76
	115313	AA808001	Hs.184411	albumin	25.20		
	115279	AW964897	Hs.290825	ESTs		8.00	
	115230		Hs.124292	Homo sapiens cDNA: FLJ23123 fis, clone L	44.00		1.80
25	115110 114999	AK001671 BE246481	Hs.11387 Hs.87856	KIAA1453 protein ESTs	14.20 19.20		
23	114930		Hs.188717	ESTs	19.20	5.60	
	114922		Hs.87491	ESTs		3.60	
	114837	BE244930	Hs.166895	ESTs	43.70		
20	114769	AA149060	Hs.296100	ESTs	11.00		
30	114761		Hs.126280	hypothetical protein FLJ23393	14.00		
	114736 114596	AA310162	Hs.103812 Hs.169248	ESTs, Moderately similar to ALU1_HUMAN A cytochrome c	10.71	4.20	
	114518	AW163267	Hs.106469	suppressor of var1 (S.cerevisiae) 3-like	20.40		
~ ~		H37908	Hs.271616	ESTs, Weakly similar to ALU8_HUMAN ALU S	20.40		
35	114452	Al369275	Hs.243010	Homo sapiens cDNA FLJ14445 fis, clone HE		17.20	
	114359	NM_016929	Hs.283021	chloride intracellular channel 5			2.09
	114357 114251	R41677 H15261	Hs.6107 Hs.21948	Homo sapiens cDNA FLJ14839 fis, clone OV ESTs	12.40		2.00
	114138	AW384793	Hs.15740	Homo sapiens mRNA; cDNA DKFZp434E033 (fr		11.40	2.00
40	114124	W57554	Hs.125019	ESTs		6.04	
	113946	AW083883	Hs.37896	Homo sapiens cDNA FLJ13510 fis, clone PL			1.82
	113695	T96965	Hs.17948	ESTs, Weakly similar to ALUB_HUMAN !!!!			
	113606 113590	NM_013343 R49642	Hs.278951 Hs.142447	NAG-7 protein	•	2.00	2.15
45	113560	T91015	Hs.268626	ESTs, Weakly similar to ALU1_HUMAN ALU S ESTs	32.00	3.60	
	113552	AI654223	Hs.16026	hypothetical protein FLJ23191	02.00		
	113540	AW152618	Hs.16757	ESTs			
	113502	T89130		gb:ye12d01.s1 Stratagene lung (937210) H		8.35	
50	113288 113252	A1076838	Hs.12967 Hs.11392	ESTs	12.40	4.07	
50	113238	NM_004469 R45467	Hs.189813	c-fos induced growth factor (vascular en ESTs	•	4.27	
	113203	AA743563	Hs.10305	ESTs	21.20		
	113195	H83265	Hs.8881	ESTs, Weakly similar to S41044 chromosom			1.92
55	113089	T40707	Hs.270862	ESTs	14.33		
55	113076	AF033199	Hs.8198	zinc finger prolein 204		6.00	
	113009 112937	T23699 Al694320	Hs.7246 Hs.6295	ESTs ESTs, Weakly similar to T17248 hypotheti		9.40 12.20	
	112891	T03927	Hs.293147	ESTs, Moderately similar to A46010 X-li	10.57	12.20	
	112794	R97018		gb:yq74b08.s1 Soares fetal liver spleen	26.60		
60	112691	R88708	Hs.220647	ESTs	15.33		
	112602	AW004045	Hs.203365	ESTs	15.60		
	112366 112210	AF035318 R49645	Hs.12533 Hs.7004	Homo sapiens clone 23705 mRNA sequence	15.40		
	112064	AL049390	Hs.22689	ESTs Homo sapiens mRNA; cDNA DKFZp586O1318 [f	14.00 13.00		
65	111998	R42379	Hs.138283	ESTs	11.00		
	111987	NM_015310	Hs.6763	KIAA0942 protein	22.40		
	111803	AA593731	Hs.325823	ESTs, Moderately similar to ALU5_HUMAN A			1.77
	111737	H04607	Hs.9218	ESTs	00.00		1.86
70	111605 111510	T91061 R07856	Hs.194178 Hs.16355	ESTs, Moderately similar to PC4259 ferri ESTs	23.00		
, 0	111341	AL157484	Hs.22483	Homo sapiens mRNA; cDNA DKFZp762M127 (fr	11.02		1.88
	111280	AA373527	Hs.19385	CGI-58 protein	18.40		1.00
	111247	AW058350	Hs.16762	Homo sapiens mRNA; cDNA DKFZp564B2062 (f			
75	111232	Al247763	Hs.16928	ESTs	27.60		
13	110942	R63503 AW058463	Hs.28419 He 12040	ESTs	14.80		
	110924 110837	H03109	Hs.12940 Hs.108920	zinc-fingers and homeoboxes 1 HT018 protein	24.71		2.18
	110824	Al767183	Hs.26942	ESTs	12.20		2, 10
00	110776	AB032417	Hs.19545	frizzled (Drosophila) homolog 4			1.75
80	110576	H60869	Hs.37889	ESTs	13.00	•	
	110369	AK000768	Hs.107872	hypothetical protein FLJ20761		5.60	
	110099	R44557	Hs.23748	ESTS			2.31

hypothetical protein FLJ20761
ESTs
Homo sapiens cDNA FLJ13545 fis, clone PL
ESTs
ESTs

Hs.10299 Hs.133521 Hs.30484

85

109984

109958

109893

Al796320

AA001266

AA884208

PCT/US02/12476

11.25

2.68

	WO 02/086443						
	109842	AW818436	Hs.23590	solute carrier family 16 (monocarboxylic	23.83		
	109837	H00656	Hs.29792	ESTs, Weakly similar to 138022 hypotheti			3.91
	109796 109688	Al800515 R41900	Hs.12024 Hs.22245	ESTs ESTs		17.20 9.60	
5	109648	H17800	Hs.7154	ESTs	22.80	3.00	
	109613	H47315	Hs.27519	ESTs			
	109550 109523	AW021488	Hs.26981 Hs.24144	ESTs ESTs			1.89
	109323	AW193342 AK001989	Hs.91165	hypothetical protein		6.00	1.03
10	109355	AA524525	Hs.48297	DKFZP586C1620 protein	15.00		
	109260	AW978515	Hs.131915	KIAA0863 protein	25.60		
	108781 108663	AA128654 BE219231	Hs.292653	gb:zn98g07.s1 Stratagene fetal retina 93 ESTs, Weakly similar to T26845 hypotheti	14.20 11.00		
	108573	AA086005	1,0,10	gb:zl84c04.s1 Stratagene colon (937204)	26.00		
15	108480	AL133092	Hs.68055	hypothetical protein DKFZp434I0428			4.00
	108382 108174	NM_006770 AA055632	Hs.67726 Hs.303070	macrophage receptor with collagenous str ESTs	15.20		1.83
	108138	AL049990	Hs.51515	Homo sapiens mRNA; cDNA DKFZp564G112 (fr	10.20	3.60	
20	108087	AA045708	Hs.40545	ESTs	15.44		
20	108048 108041	Al797341 AW204712	Hs.165195 Hs.61957	Homo sapiens cDNA FLJ14237 fis, clone NT ESTs		11.40	
	107997	AL049176	Hs.82223	chordin-like		4.76	
	107994	AA036811	Hs.48469	LIM domains containing 1			
25	107922	BE153855	Hs.61460	lg superfamily receptor LNIR	14.20		
23	107681 107666	BE379594 AA010611	Hs.49136 Hs.60418	ESTs, Moderately similar to ALU7_HUMAN A EST	51.80 29.20		
	107332	T87750	Hs.183297	DKFZP566F2124 protein	10.73		
		BE166479	Hs.4789	Homo saplens serologically defined breas	32.00		
30	107230 107168	AI034467 W57578	Hs.34650 Hs.237955	ESTs RAB7, member RAS oncogene family	17.40 10.43		
30	107160	AA314490	Hs.27669	KIAA1563 protein	11.40		
	107054	Al076459	Hs.15978	KIAA1272 protein			
	107029	AF264750	Hs.288971	myeloid/lymphoid or mixed-lineage leukern	21.40		
35	106999 106954	H93281 AF128847	Hs.10710 Hs.204038	hypothetical protein FLJ20417 indolethylamine N-methyltransferase	35.80		1.76
-	106870	Al983730	Hs.26530	serum deprivation response (phosphalidy)			
	106865	AW192535	Hs.19479	ESTs	13.40	7.40	
	106844 106820	AA485055 NM_016831	Hs.158213 Hs.12592	sperm associated antigen 6 period (Drosophila) homolog 3		7.13 7.00	
40	106818	AK002135	Hs.3542	hypothetical protein FLJ11273	13.00	1.00	
	106797	AI768801	Hs.169943	Homo sapiens cDNA FLJ13569 fis, clone PL			2.05
	106773 106747	AA478109 NM 007118	Hs.188833 Hs.171957	ESTs triple functional domain (PTPRF interact	12.60		
	106747	NM_007118 BE613328	Hs.21938	hypothetical protein FLJ12492	10.60		
45	106667	AW360847	Hs.16578	ESTs			
	106605	AW772298	Hs.21103	Homo sapiens mRNA; cDNA DKFZp564B076 (fr			2.40 1.78
	106567 106562	AW450408 AL031846	Hs.86412 Hs.152151	chromosome 9 open reading frame 5 plakophilin 4			1.76
50	106536	AA329648	Hs.23804	ESTs, Weakly similar to PN0099 son3 prot			2.19
50	106533	AL134708	Hs.145998	ESTS	23.20		
	106507 106490	AA259068 AA404265	Hs.267819 Hs.115537	prolein phosphatase 1, regulatory (inhib putative dipeptidase	15.20		
	106474	BE383668	Hs.42484	hypothetical protein FLJ10618	10.44		
55	106211	AA428240	Hs.126083	ESTs		29.80	
22	105986 105894	AB037722 Al904740	Hs.8707 Hs.25691	KIAA1301 protein receptor (calcitonin) activity modifying		3.70	1.94
	105847	AW964490	Hs.32241	ESTs, Weakly similar to S65657 alpha-1C-			1.75
	105803	AW747996	Hs.160999	ESTs, Moderately similar to A56194 throm			2.47
60	105731 105729	AA834664 H46612	Hs.29131 Hs.293815	nuclear receptor coactivator 2 Homo sapiens HSPC285 mRNA, partial cds	10.71		
00	105725	Al299139	Hs.17517	ESTs	23.40		
	105510	Z42047	Hs.283978	Homo sapiens PRO2751 mRNA, complete cds	37.20		
	105101	H63202	Hs.38163	ESTs		8.30 8.09	
65	104989 104986	R65998 AW088826	Hs.285243 Hs.117176	hypothetical protein FLJ22029 poly(A)-binding protein, nuclear 1		0.05	1.92
	104969	Al670947	Hs.78406	phosphatidylinositol-4-phosphate 5-kinas		5.40	
	104903	Al436323	Hs.31141	Homo saplens mRNA for KIAA1568 protein,	12.00	7.60	
	104896 104865	AW015318 T79340	Hs.23165 Hs.22575	ESTs Homo saplens cDNA: FLJ21042 fis, clone C	13.80		
70	104825	AA035613	Hs.141883	ESTs			1.87
	104781	AA099904	Hs.21610	DKFZP434B203 protein		40.00	1.93
	104776 104691	AA026349 U29690	Hs.37744	gb:zj99f01.s1 Soares_pregnant_uterus_NbH Homo sapiens beta-1 adrenergic receptor		10.20 5.69	
	104667	Al239923	Hs.30098	ESTs		3.82	
75	104404	H58762		gb:EST00057 HE6W Homo sapiens cDNA clone		4.20	
	104392	AA076049	Hs.274415	Homo sapiens cDNA FLJ10229 fis, clone HE	27.20		4.04
	104212 104074	AB002298 AL162039	Hs.173035 Hs.31422	KIAA0300 protein Homo sapiens mRNA; cDNA DKFZp434M229 (fr	11.20		1.91
	103749	AL135301	Hs.8768	hypothetical protein FLJ10849	10.86		
80	103645	AW246253	Hs.7043	succinate-CoA ligase, GDP-forming, alpha	12.00		
	103554	Al878826	Hs.323469	caveolin 1, caveolae protein, 22kD			· 1.80
	103541 103496	Al815601 Y09267	Hs.79197 Hs.132821	CD83 antigen (activated B lymphocytes, i flavin containing monooxygenase 2			
0.5	103428	BE383507	Hs.78921	A kinase (PRKA) anchor protein 1	11.20		
85	103353	X89399	Hs.119274	RAS p21 protein activator (GTPase activa	19.80		-

PCT/US02/12476

	W	O 02/086	443	•				PCT/US02/12476
	103295	X81479	Hs.2375	egf-like module containing, mucin-like,		3.60		
	103280	U84722	Hs.76206	cadherin 5, type 2, VE-cadherin (vascula				
	103100	NM_005574	Hs.184585	LIM domain only 2 (rhombotin-like 1)			1.76	
~	103025	NM_002837	Hs.123641	protein tyrosine phosphatase, receptor t			2.15	
5	102698	M18667	Hs.1867	progastricsin (pepsinogen C)				
	102659	BE245169	Hs.211610	CUG triplet repeat, RNA-binding protein	11.00			
	102580	U60808	Hs.152981	CDP-diacylglycerol synthase (phosphatida	25.40			
	102417	AA034127	Hs.153487	signal transducing adaptor molecule (SH3	14.00			
10	102363	NM_003734	Hs.198241	amine oxidase, copper containing 3 (vasc				
10	102302	AA306342	Hs.69171	protein kinase C-like 2	10.86			•
	102283	AW161552	Hs.83381	guanine nucleotide binding protein 11				
	102188	U20350	Hs.78913	chemokine (C-X3-C) receptor 1		7.40		
	102151		Hs.3132	steroidogenic acute regulatory protein	16.40			
1 /	101957		Hs.74101	spleen tyrosine kinase	15.40			
15	101842		Hs.75182	mannose receptor, C type 1				
	101771	NM_002432	Hs.153837	myeloid cell nuclear differentiation ant				
	101764		Hs.81256	S100 calcium-binding protein A4 (calcium			1.78	
	101716	AF050658	Hs.2563	tachykinin, precursor 1 (substance K, su	18.80			
00	101678	M62505	Hs.2161	complement component 5 receptor 1 (C5a I			2.22	
20	101447	M21305		gb:Human alpha satellite and satellite 3	504.80			
	101383	NM_000132	Hs.79345	coagulation factor VIII, procoagulant co		31.00		
	101346	Al738616	Hs.77348	hydroxyprostaglandin dehydrogenase 15-(N			1.75	
	101345	NM_005795	Hs.152175	calcitonin receptor-like				
0.5	101336	NM_006732	Hs.75678	FBJ murine osteosarcoma viral oncogene h			2.24	
25	101330	L43821	Hs.80261	enhancer of filamentation 1 (cas-like do				
	101277	BE297626	Hs.296049	microfibrillar-associated protein 4				•
	101262	L35854		gb:Human dystrophin (dp140) mRNA, 5' end	19.00			
	101168	NM_005308	Hs.211569	G protein-coupled receptor kinase 5			2.01	
20	101102	NM_003243	Hs.79059	transforming growth factor, beta recepto				
30	101088	X70697	Hs.553	solute carrier family 6 (neurotransmitte		7.52		
	101066	AW970254	Hs.889	Charot-Leyden crystal protein	19.38			
	100971	BE379727	Hs.83213	fatty acid binding protein 4, adipocyte			1.91	
	100893	BE245294	Hs.180789	S164 protein	15.40			
35	100770	W25797.comp		amyloid beta (A4) precursor protein (pro	11.20			
33	100716	X89887	Hs.172350	HIR (histone cell cycle regulation defec	14.80			
	100555	M69181	11- 20240	gb:Human nonmuscle myosin heavy chain-B	33.00			
	100425	NM_014747	Hs.78748	KIAA0237 gene product	16.20	4.00		
	100408	D86640	Hs.56045	src homology three (SH3) and cysteine ri		4.00		
40	100382	D83407	Hs.156007	Down syndrome critical region gene 1-lik		4.24		
-1 U	100351	D64158	Un 2474	assuith differentiation feater 10		6.20		
	100299		Hs.2171	growth differentiation factor 10		21.20		
	100134 100108	AA305746	Hs.49	macrophage scavenger receptor 1			1.79	
	100108	U09577 Z97171	Hs.76873 Hs.78454	hyaluronoglucosaminidase 2 myocilin, trabecular meshwork inducible		5.40	1.19	
45	100095	23/1/1	110.70404	myocan, oadecolar meshwork modeldle	11.29	J.40		
73	100000			•	11.43			

TABLE 3B shows the accession numbers for those primakeys lacking unigenelD's for Table 3A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers

85

Pkey	CAT number	Accessions	
123619	371681_1	AA602964	AA609200
126433	127143_1	AA325606 A	AA099517 N89423
125831	1522905_1	H04043 D66	0988 D60337
126816	122973 1	AA248234 A	AA090985
126852	136135 1	AA399961 A	AA128347
121059			
120637			AA809404 AA286907 AW977624
			AA226513 AA383773
	acabaak AAGOO	MAD	
	genbank H5083	14	H50834
	genbank N6352	0	N63520
			AA026349
			70.0200.10
			AA086005
			74.00000
			N22401 '
			R97018
	J		K31010
			1105 1151020
100000	ug:_1112245	MOSIBINO	น เกอ ก๋อ เกอล
	123619 126433 125831 126816 126852 121059 120637 122011 120934 123802 116814 118329 104404 104776 101562 108573 10147 124357 10147 124357 10147 124357 101794	123619 371681_1 126433 127143_1 125831 1522905_1 126816 122973_1 126852 136135_1 121059 273450_1 120637 200885_1 122011 76172 120934 177521_1 123802 genbank_AA620 118329 genbank_H5083 104404 genbank_A8026 113502 genbank_A8026 113502 genbank_A8036 101467 genbank_A8036 101467 genbank_A8036 101467 genbank_A8036 101467 genbank_A8036 101467 genbank_A8036 112794 genbank_A8128 112794 genbank_A8128 112794 genbank_A8126 112795 genbank_A8126	123619 371681_1 AA602964 126433 127143_1 AA325606 125831 1522905_1 H04043 D6 126816 122973_1 AA248234 126852 136135_1 AA399961 121059 273450_1 AA393283 120637 200885_1 AA811804 122011 7617_2 AA431082 122934 177521_1 AA226198 123802 genbank_AA620448 116814 genbank_H50834 118329 genbank_N63520 104404 H58762_at H58762 104776 genbank_AA026349 113502 genbank_AA026349 113502 genbank_AB03805 101262 entrez_L35854 L35854 108573 genbank_A086005 101447 entrez_M21305 M21305 104474 genbank_N22401 108781 genbank_R97018 100351 entrez_D64158 D64158

WO 02/086443 PCT/US02/12476

Table 4A shows 202 genes up-regulated in samples from patients treated with chemotherapy or radiotherapy. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

5

Pkey: Unique Eos probeset identifier number

ExAccn: Exemplar Accession number, Genbank accession number
UnigenelD: Unigene number
Unigene Title: Unigene gene title
R1: average of Al for samples from patients treated with chemo om patients treated with chemotherapy or radiotherapy divided by the average of AI for normal lung samples.

10	R1:	average of	Al for samples	s from patients treated with chemotherapy or radiother	apy divideo
10	Pkey	ExAcen	UnigenelD	Unigene Title	R1
•	100113	NM_001269	Hs.84746	chromosome condensation 1	27.20
	100187	D17793	Hs.78183	aldo-keto reductase family 1, member C3	20.60
15	100210	D26361	Hs.3104	KIAA0042 gene product	- 20.40
	100225	D28539	Hs.167185	glutamate receptor, metabotropic 5	20.60
	100269 100438	NM_001949 AA013051	Hs.1189 Hs.91417	E2F transcription factor 3 topoisomerase (DNA) Il binding protein	29.40 23.50
	100436	X80821	Hs.27973	KIAA0874 protein	35.56
20	100893	BE245294	Hs.180789	S164 protein	43.40
	101273	Z11933	Hs.182505	POU domain, class 3, transcription facto	21.80
•	101447	M21305		gb:Human alpha satellite and satellite 3	193.60
	101649	AW959908	Hs.1690	heparin-binding growth factor binding pr	38.40
25	101724 101748	L11690 NM_001944	Hs.620 Hs.1925	bullous pemphigoid antigen 1 (230/240kD) desmoglein 3 (pemphigus vulgaris antigen	198.80 78.60
25	101809	M86849	Hs.323733	gap junction protein, beta 2, 26kD (conn	162.20
	101879	AA176374	Hs.243886	nuclear autoantigenic sperm protein (his	50.00
	101915	AF207881	Hs.155185	cytosolic ovarian carcinoma antigen 1	26.00
20	101973	U41514	Hs.80120	UDP-N-acetyl-alpha-D-galactosamine:polyp	37.20
30	102025 102031	U04045 U04898	Hs.78934 Hs.2156	mutS (E. coli) homolog 2 (colon cancer, RAR-related orphan receptor A	32.00
	102051	NM_002202	Hs.505	ISL1 transcription factor, LIM/homeodoma	51.20
	102391	AA296874	Hs.77494	deoxyguanosine kinase	13.90
0.5	102420	U44060	Hs.14427	Homo sapiens cDNA: FLJ21800 fis, clone H	28.80
35	102610	U65011	Hs.30743	preferentially expressed antigen in mela	110.60
	102829 103000	NM_006183	Hs.80962	neurotensin	116.80 2.30
	103000	NM_001975 M13509	Hs.146580 Hs.83169	enolase 2, (gamma, neuronal) matrix metalloproteinase 1 (interstitial	181.40
	103507	AJ000512	Hs.296323	serum/glucocorticoid regulated kinase	49.20
40	103587	BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein	86.60
	104660	BE298665	Hs.14846	Homo sapiens mRNA; cDNA DKFZp564D016 (fr	42.60
	104896 105038	AW015318 AW503733	Hs.23165 Hs.9414	ESTs KIAA1488 protein	29.40 21.50
	105038	BE387790	Hs.26369	hypothetical protein FLJ20287	32.80
45	105510	Z42047	Hs.283978	Homo sapiens PRO2751 mRNA, complete cds	20.20
	105667	AA767526	Hs.22030	paired box gene 5 (B-cell lineage specif	28.40
	106073	AL157441	Hs.17834	downstream neighbor of SON	25.40
	106205 106516	AW965058 AL137311	Hs.111583 Hs.234074	ESTs, Weakly similar to I38022 hypotheti Homo sapiens mRNA; cDNA DKFZp761G02121 (32.00 40.60
50	106516	AL134708	Hs.145998	ESTs	59.80
•	106575	AW970602	Hs.105421	ESTs	43.40
	106654	AW075485	Hs.286049	phosphoserine aminotransferase	50.80
	106851	Al458623	11. 07000	gb:tk04g09.x1 NCI_CGAP_Lu24 Homo sapiens	53.40
55	106995 107332	AB023139 T87750	Hs.37892 Hs.183297	KIAA0922 protein DKFZP566F2124 protein	20.88 23.60
33	107532	AA443473	Hs.173684	Homo sapiens mRNA; cDNA DKFZp762G207 (fr	57.20
	107922	BE153855	Hs.61460	lg superfamily receptor LNIR	49.00
	108609	BE409857	Hs.69499	hypothetical protein	19.67
60	108780	AU076442	Hs.117938	collagen, type XVII, alpha 1	48.17 59.20
00	109166 109260	AA219691 AW978515	Hs.73625 Hs.131915	RAB6 interacting, kinesin-like (rabkines KIAA0863 protein	28.60
	109280	AK001355	Hs.279610	hypothetical protein FLJ10493	22.80
	109292	AW975746	Hs.188662	KIAA1702 protein	
65	109384	AA219172	Hs.86849	ESTs	21.00
65	109415 109445	U80736 AA232103	Hs.110826 Hs.189915	trinucleotide repeat containing 9 ESTs	31.60 24.20
	109502	AW967069	Hs.211556	hypothetical protein MGC5487	21.40
	109633	AW003785	Hs.170267	ESTs	20.40
70	109786	Al989482	Hs.146286	kinesin family member 13A	19.60
70 ·	109958	AA001266	Hs.133521	ESTs	24.00
	110920 110924	N47224 AW058463	Hs.20521 Hs.12940	HMT1 (hnRNP methyltransferase, S. cerevi zinc-fingers and homeoboxes 1	28.40 36.00
	111084	H44186	Hs.15456	PDZ domain containing 1	61.20
	111132	AB037807	Hs.83293	hypothetical protein	24.60
75	111229	AW389845	Hs.110855	ESTs	27.20
	111337	AA837396	Hs.263925	LIS1-interacting protein NUDE1, rat homo	48.00
	111987 112046	NM_015310 AA383343	Hs.6763 Hs.22116	KIAA0942 protein CDC14 (cell division cycle 14, S. cerevi	37.80 26.80
_	112046	W39609	Hs.22003	solute carrier family 6 (neurotransmitte	63.80
80	112685	R87650	Hs.33439	ESTs, Weakly similar to ALU1_HUMAN ALU	26.40
	112871	AL110216	Hs.12285	ESTs, Weakly similar to 155214 salivary	47.64
	112897	AW206453	Hs.3782	ESTs	22.00
	112973	AB033023 AL157425	Hs.318127 Hs.133315	hypothetical protein FLJ10201 Homo sapiens mRNA; cDNA DKFZp761J1324 (f	65.00 42.00
85	112992 113073	N39342	Hs.103042	microtubule-associated protein 18	55.40

	W	O 02/086	443		
	113494	T91451	Hs.86538	ESTs	22.80
	113560 113849	T91015 AA457211	Hs.268626 Hs.8858	ESTs bromodomain adjacent to zinc finger doma	22.80
	113950	Al267652	Hs.30504	Homo sapiens mRNA; cDNA DKFZp434E082 (fr	51.80 28.20
5	114339	AA782845	Hs.22790	ESTs	20.20
	114365	H42169	Hs.18653	hypothetical protein FLJ14627	21.00
	114455 114518	H37908 AW163267	Hs.271616 Hs.106469	ESTs, Weakly similar to ALUB_HUMAN ALU S	25.80
	114824	AA960961	Hs.305953	suppressor of var1 (S.cerevisiae) 3-like zinc finger protein 83 (HPF1)	23.60 27.20
10	114837	BE244930	Hs.166895	ESTs	30.20
	114974	AW966931	Hs.179662	nucleosome assembly protein 1-like 1	20.80
	115075 115084	AA814043 BE383668	Hs.88045 Hs.42484	ESTs hypothetical protein FLJ10618	30.60
	115291	BE545072	Hs.122579	hypothetical protein FLJ10461	28.86 38.00
15	115313	AA808001	Hs.184411	albumin	22.60
	115697	D31382	Hs.63325	transmembrane protease, serine 4	173.6
	115909 116090	AW872527 Al591147	Hs.59761 Hs.61232	ESTs, Weakly similar to DAP1_HUMAN DEATH ESTs	27.77 20.80
	116107	AL133916	Hs.172572	hypothetical protein FLJ20093	164.2
20	116399	AA889120	Hs.110637	homeo box A10	38.00
	117099	H93699	11- 000000	gb:yv16a11.s1 Soares fetal liver spleen	21.60
	117881 118091	AF161470 AW005054	Hs.260622 Hs.47883	butyrate-induced transcript 1 ESTs, Weakly similar to KCC1_HUMAN CALCI	49.40 22.40
	118138	AA374756	Hs.93560	Homo sapiens mRNA for KIAA1771 protein,	22.00
25	118720	N73515		gb:za49d07.s1 Soares fetal liver spleen	20.00
	118873	A1824009	Hs.44577	ESTS	19.40
	119126 119717	R45175 AA918317	Hs.117183 Hs.57987	ESTs B-cell CLL/lymphoma 118 (zinc finger pro	111.2 33.00
••	119940	AL050097	Hs.272531	DKFZP586B0319 protein	31.00
30	120266	Al807264	Hs.205442	ESTs, Weakly similar to T34036 hypotheti	20.20
	120515 120859	AA258356 AA826434	Hs.1619	gb:zr59c10.s1 Soares_NhHMPu_S1 Homo sapi achaete-scute complex (Drosophila) homol	25.00 95.40
	120983	AA398209	Hs.97587	EST	105.2
25	121054	AW976570	Hs.97387	ESTs	38.80
35	121369	AW450737	Hs.128791	CGI-09 protein	41.60
	122335 122612	AA443258 AA974832	Hs.241551 Hs.128708	chloride channel, calcium activated, fam ESTs	30.80 19.60
	123130	AA487200	7.5.125.05	gb:ab19f02.s1 Stratagene lung (937210) H	33.20
40	123440	A1733692	Hs.112488	ESTs	23.17
40	123596 123619	AA421130 AA602964	Hs.112640	EST gb:no97c02.s1 NCI_CGAP_Pr2 Homo sapiens	23.00 28.80
	124006	A1147155	Hs.270016	ESTs .	77.60
	124169	BE079334	Hs.271630	ESTs	22.20
45	124281	Al333756	Hs.111801	arsenate resistance protein ARS2	42.20
43	124472 124617	N52517 AW628168	Hs.102670 Hs.152684	EST ESTs	32.60 21.80
	124631	NM_014053	Hs.270594	FLVCR protein	30.40
	124839	R55784	Hs.140942	ESTs	21.20
50	125186 125321	AA610620 T86652	Hs.181244	major histocompatibility complex, class	42.80
50	125535	NM_013243	Hs.178294 Hs.22215	ESTs secretogranin III	27.00 23.80
	125646	AA628962	Hs.75209	protein kinase (cAMP-dependent, catalyti	23.20
	125684	AW589427	Hs.158849	Homo sapiens cDNA: FLJ21663 fis, clone C	21.20
55	125724 125847	AL360190 AW161885	Hs.295978 Hs.249034	Homo sapiens mRNA full length insert cDN ESTs	48.80 31.00
55	125934	AA193325	Hs.32646	hypothetical protein FLJ21901	21.20
	126077	M78772	Hs.210836	ESTs	49.80
	126299	AW979155	Hs.298275	amino acid transporter 2	21.80
60	126395 126433	A1468004 AA325606	Hs.278956	hypothetical protein FLJ12929 gb:EST28707 Cerebellum II Homo sapiens c	71.00 23.20
	126509	R47400	Hs.23850	ESTs	23.80
	126538	AB030656	Hs.17377	coronin, actin-binding protein, 1C	23.10
	126666 126812	AA648886 AB037860	Hs.151999 Hs.173933	ESTs nuclear factor I/A	36.00 20.80
65	126872	AW450979	115,17,0500	gb:UI-H-BI3-ala-a-12-0-UI.s1 NCI_CGAP_Su	46.29
	127046	AA321948	Hs.293968	ESTs	22.80
	127431	AW771958	Hs.175437	ESTs, Moderately similar to PC4259 ferri	30.00
	127489 127521	AA650250 AW297206	Hs.272076 Hs.164018	ESTs ESTs	20.80 25.20
70	127742	AW293496	Hs.180138	ESTs ·	28.00
	127925	AA805151	Hs.3628	mitogen-activated protein klnase kinase	21.20
	127930 127968	AA809672	Hs.123304	ESTs ESTs	20.54 28.20
	127987	AA830201 Al022103	Hs.124347 Hs.124511	ESTs	19.60
75	128116	H07103	Hs.286014	Homo sapiens, clone IMAGE:3867243, mRNA	20.40
	128609	NM_003616	Hs.102456	survival of motor neuron protein interac	34.40
	128777 128949	Al878918 AA009647	Hs.10526 Hs.8850	cysteine and glycine-rich protein 2 a disintegrin and metalloproteinase doma	53.80 23.00
	129168	Al132988	Hs.109052	chromosome 14 open reading frame 2	37.60
80	129404	Al267700	Hs.317584	ESTs	28.60
	129527	AA769221	Hs.270847	delta-tubulin	40.80
	129574 129598	AA026815 N30436	Hs.11463 Hs.11556	UMP-CMP kinase Homo sapiens cDNA FLJ12566 fis, clone NT	31.20 29.60
^-	129785	H19006	Hs.184780	ESTs	72.20
85	129970	AV655806	Hs.296198	chromosome 12 open reading frame 4	22.20

	W	O 02/086	443		
	130149	AW067805	Hs.172665	methylenetetrahydrofolate dehydrogenase	29.60
	130199	Z48579	Hs.172028	a disintegrin and metalloproteinase doma	27.60
	130441	U63630	Hs.155637	protein kinase, DNA-activated, catalytic	28.36
_	130466	W19744	Hs.180059	Homo sapiens cDNA FLJ20653 fis, clone KA	20.20
5	130482	AW409701	Hs.1578	bacutoviral IAP repeat-containing 5 (sur	22.40
	130617	M90516	Hs.1674	glutamine-fructose-6-phosphate transamin	19.60
	130703	R77776	Hs.18103	ESTs ·	19.40
	130732	AW890487	Hs.63984	cadherin 13, H-cadherin (heart)	21.40
10	130867	NM_001072	Hs.284239	UDP glycosyltransferase 1 family, polype	110.00
10	131028	Al879165	Hs.2227	CCAAT/enhancer binding protein (C/EBP),	25.20
	131086	AL035461	Hs.2281	chromogranin B (secretogranin 1)	40.60
	131284	NM_001429	Hs.25272	E1A binding protein p300	24.60
	131775	AB014548	Hs.31921	KIAA0648 protein	21.00
1.5	131860	BE383676	Hs.334	Rho guanine nucleotide exchange factor (33.40
15	131945	NM_002916	Hs.35120	replication factor C (activator 1) 4 (37	60.80
	132040	NM_001196	Hs.315689	Homo sapiens cDNA: FLJ22373 fis, clone H	. 20.40
	132084	NM_002267	Hs.3886	karyopherin alpha 3 (importin alpha 4)	29.40
	132389	AA310393	Hs.190044	ESTs	32.40
20	132437	AA152106	Hs.4859	cyclin L ania-6a	27.40
20	132550	AW969253	Hs.170195	bone morphogenetic protein 7 (osteogenic	75.60
	132617	AF037335	Hs.5338	carbonic anhydrase XII	31.36
	132632	AU076916	Hs.5398	guanine monphosphate synthelase	32.40
	132672	W27721	Hs.54697	Cdc42 guanine exchange factor (GEF) 9	23.40
25	132742	AA025480	Hs.292812	ESTs, Weakly similar to T33468 hypotheti	61.20
25	132771	Y10275	Hs.56407	phosphoserine phosphatase	22.33
	133070	U92649	Hs.64311	a disintegrin and metalloproteinase doma	23.50
	133153	AF070592	Hs.66170	HSKM-B protein	30.00
	133181	X91662	Hs.66744	twist (Drosophila) homolog (acrocephalos	23.80
20 .	133282	AA449015	Hs.286145	SRB7 (suppressor of RNA polymerase B, ye	51.60
3 0 °	133350	Al499220	Hs.71573	hypothetical protein FLJ10074	33.00
	133592	AV652066	Hs.75113	general transcription factor IIIA	82.00
	133658	AA319146	Hs.75426	secretogranin II (chromogranin C)	co oo
	133865	AB011155	Hs.170290	discs, large (Drosophila) homolog 5	69.33
35	134032	NM_005025	Hs.78589	serine (or cysteine) proteinase inhibito	33.20 31.60
33	134125	NM_014781	Hs.50421	KIAA0203 gene product	30.60
	134158	U15174	Hs.79428	BCL2/adenovirus E1B 19kD-interacting pro ESTs, Moderately similar to A46010 X-lin	23.40
	134321	BE538082	Hs.8172 Hs.82285	phosphoribosylglycinamide formyltransfer	49.20
	134367 134570	AA339449 U66615	Hs.172280	SWI/SNF related, matrix associated, acti	20.20
40	134770	NM_006482	Hs.173135	dual-specificity tyrosine-(Y)-phosphoryl	20.20
70	135002	AA448542	Hs.251677	G antigen 7B	37.60
	135029	H58818	Hs.187579	hydroxysteroid (17-beta) dehydrogenase	53.40
	135047	AL134197	Hs.93597	cyclin-dependent kinase 5, regulatory su	31.60
	135345	X53655	Hs.99171	neurotrophin 3	28.80
45	100040	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 110.00111	nononopiar o	20.00
,,					

TABLE 4B shows the accession numbers for those primekeys lacking unigenelD's for Table 4A. For each probeset we have listed the gene cluster number from which the cligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

PCT/US02/12476

Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number

50

55

Accession: Genbank accession numbers

	Pkey	CAT number Accessions	
60	123619 126433 126872	871681_1	BE011359
65	106851 118720 120515 117099 101447 123130	822947_1 Al458623 AA639708 AA485409 R22065 AA485570 enbank_N73515 N73515 enbank_AA258356 AA258356 i21871_1 H93699 H97976 H80036 entrez_M21305 M21305 enbank_AA487200 AA487200	
70		•	

WO 02/086443 PCT/US02/12476

Table 5A shows 680 genes up-regulated in squamous cell carcinoma or adenocarcinoma lung tumors relative to normal lung and chronically diseased lung. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

5 Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number UnigenelD: Unigene number Unigene Title: Unigene gene title 70th percentile of AI for squamous cell carcinoma and adenocarcinoma lung tumor samples divided by the 90th percentile of AI for normal and chronically R1: The percentile of AI adenocarcinoma lung tumor samples divided by the 90th percentile of AI for normal and chronically diseased lung samples.

80th percentile of AI adenocarcinoma lung tumor samples divided by the 90th percentile of AI for normal and chronically diseased lung samples.

80th percentile of AI adenocarcinoma lung tumor samples divided by the 90th percentile of AI for normal and chronically diseased lung samples.

80th percentile of AI adenocarcinoma lung tumor samples divided by the 80th percentile of AI for squamous cell carcinoma and adenocarcinoma lung tumor samples in AI for squamous cell carcinoma and adenocarcinoma lung tumor samples in AI for squamous cell carcinoma and adenocarcinoma lung tumor samples in AI for squamous cell carcinoma and adenocarcinoma lung tumor samples in AI for squamous cell carcinoma and adenocarcinoma lung tumor samples in AI for squamous cell carcinoma and adenocarcinoma lung tumor samples in AI for squamous cell carcinoma and adenocarcinoma lung tumor samples in AI for squamous cell carcinoma and adenocarcinoma lung tumor samples in AI for squamous cell carcinoma and adenocarcinoma lung tumor samples in AI for squamous cell carcinoma and adenocarcinoma lung tumor samples in AI for squamous cell carcinoma and adenocarcinoma lung tumor samples in AI for squamous cell carcinoma and adenocarcinoma lung tumor samples in AI for squamous cell carcinoma and adenocarcinoma lung tumor samples in AI for squamous cell carcinoma and adenocarcinoma lung tumor samples in AI for squamous cell carcinoma and adenocarcinoma lung tumor samples in AI for squamous cell carcinoma and adenocarcinoma lung tumor samples in AI for squamous cell carcinoma and adenocarcinoma lung tumor samples in AI for squamous cell carcinoma and adenocarcinoma lung tumor samples in AI for squamous cell carcinoma and adenocarcinoma lung tumor samples in AI for squamous cell carcinoma and adenocarcinoma lung tumor samples in AI for squamous cell carcinoma and adenocarcinoma lung tumor samples in AI for squamo 10 R2: R3: R4: R5: 15 diseased lung and tumor samples divided by 90th percentile of AI for normal and chronically diseased lung samples minus the 15th percentile of AI for all normal lung, chronically diseased lung and tumor samples

									•
20	Pkey	ExAcon	UnigeneID	Unigene Title	R1	R2	R3	R4	R5
20	100035			AFFX control: GAPDH					6.76
	100036			AFFX control: GAPDH					5.77
	100037	•		AFFX control: GAPDH					5.75
25	100071	A28102		Human GABAa receptor alpha-3 subunit		8.00			F 74
25	100114	X02308	Hs.82962	thymidylate synthetase	3.84				5.71
	100154 100187	H60720 D17793	Hs.81892 Hs.78183	KIAA0101 gene product aldo-kelo reductase family 1, member C3	3.33				
	100188	AW247090	Hs.57101	minichromosome maintenance deficient (S.	5.55				4.52
	100202		Hs.99910	phosphofructokinase, platelet					5.49
30	100216	AA489908	Hs.1390	proteasome (prosome, macropain) subunit,					5.67
	100269	NM_001949	Hs.1189	E2F transcription factor 3	2.55				
	100287	AU076657	Hs.1600	chaperonin containing TCP1, subunit 5 (e					5.66
	100297	AU077258	Hs.182429	protein disulfide isomerase-related prot		•			3.81
35	100330 100335	AW410976	Hs.77152	minichromosome maintenance deficient (S.	5.07				4.50
55	100355	AW247529 W70171	Hs.6793 Hs.75939	platelet-activating factor acelylhydrola uridine monophosphate kinase	3.07				4.82
	100300	NM_014791	Hs.184339	KIAA0175 gene product					3.79
	100474	NM_000699	Hs.300280	amylase, alpha 2A; pancreatic			•	15.65	
	100486	T19006	Hs.10842	RAN, member RAS oncogene family					5.49
40	100491	D56165	Hs.275163	non-metastatic cells 2, protein (NM23B)					4.17
	100516	D90278	Hs.11	carcinoembryonic antigen-related cell ad		7.20		44.00	•
	100522	X51501	Hs.99949	prolactin-induced protein	0.40			14.20	
	100559	NM_000094	Hs.1640	collagen, type VII, alpha 1 (epidermolys	3.10			9.30	
45	100576 100629	X00356 AA015693	Hs.37058 Hs.21291	calcitonin/calcitonin-related polypeptid mitogen-activated protein kinase kinase				20.60	
73	100623	BE623001	Hs.132748	Homo sapiens ribosomal protein L39 mRNA,	3.85			Ļ0.00	
	100677	AA353686	Hs.57813	zinc ribbon domain containing, 1	5.55	8.60			
	100696	D14887	Hs.121686	general transcription factor IIA, 1 (37k				10.00	
50	100709	N26539	Hs.100469	myeloid/lymphoid or mixed-lineage leukem			24.80		
50	100761	BE208491	Hs.295112	KIAA0618 gene product		7.60			7.00
	100830	AC004770	Hs.4756	flap structure-specific endonuclease 1		10.00			7.99
	100867 100902	U14622 M16029	Hs.287270	gb:Human transketolase-like protein gene ret proto-oncogene (multiple endocrine n		10.20 8.00			
	100902	AU076916	Hs.5398	guanine monphosphale synthelase		0.00			5.16
55	100960	J00124	Hs.117729	keralin 14 (epidermolysis bullosa simple	2.57				V
	101045	J05614		gb:Human proliferating cell nuclear anti					4.69
	101061	NM_000175	Hs.180532	glucose phosphate isomerase					4.19
		L02840	Hs.84244	potassium voltage-gated channel, Shab-re	0.40	12.91			
60		L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL	3.12 3.50				
00	101175 101181	U82671 BE262621	Hs.36980 Hs.73798	melanoma antigen, family A, 2 macrophage migration inhibitory factor (3.30				5.69
	101204	L24203	Hs.82237	ataxia-telangiectasia group D-associated	4.08				0.00
	101210	L29301	Hs.2353	opioid receptor, mu 1			6.40		
	101216	AA284166	Hs.84113	cyclin-dependent kinase inhibitor 3 (CDK	2.53				
65	101228	AA333387	Hs.82916	chaperonin containing TCP1, subunit 6A (7.90
	101233	AL135173	Hs.878	sorbitol dehydrogenase	0.50				4.45
	101273 101342	Z11933 U52112	Hs.182505 Hs.182018	POU domain, class 3, transcription facto	8.50				4.17
	101342	AI738616	Hs.77348	interleukin-1 receptor-associated kinase hydroxyprostaglandin dehydrogenase 15-(N				21.89	4.11
70	101369	NM 000892	Hs.1901	kallikrein B, plasma (Fletcher factor) 1				12.80	
	101396	BE267931	Hs.78996	proliferating cell nuclear antigen	3.24				
	101431	BE185289	Hs.1076	small proline-rich protein 1B (comifin)					7.90
	101448		Hs.195850	keratin 5 (epidermolysis bullosa simplex	8.31				
75		AL035668	Hs.73853	bone morphogenetic protein 2				38.80	4.04
13	101466	BE262660	Hs.170197	glutamic-oxaloacetic transaminase 2, mit				12.00	4.01
	101484 101502		Hs.20315	interferon-induced protein with tetratri gb:Human parathyroid hormone-related pro	10.50			12.00	
	101505		Hs.75692	asparagine synthetase	10.00				4.46
	101526		Hs.154721	aconitase 1. soluble	4.02				
80	101535	X57152	Hs.99853	fibrillarin					4.65
	101577	M34353	Hs.1041	v-ros avian UR2 sarcoma virus oncogene h				9.09	
	101649	AW959908	Hs.1690	heparin-binding growth factor binding pr	54.00				
	101663	NM_003528	Hs.2178	H2B histone family, member Q	5.59				
85	101664	AA436989 L24498	Hs.121017 Hs.80409	H2A histone family, member A growth arrest and DNA-damage-inducible,	7.00	7.60			
0.5	101003	-C-7730	13,0403	grown area and providingsenducions,		1,00			

	W	O 02/086	443						PCT/US02/12476
	101695	M69136	Hs.135626	chymase 1, mast cell	4.79				
	101724	L11690	Hs.620	bullous pemphigoid antigen 1 (230/240kD)	15.21				
	101748	NM_001944 M80244	Hs.1925 Hs.184601	desmoglein 3 (pemphigus vulgaris antigen solute carrier family 7 (cationic amino	55.50				4.10
5	101759 101771	NM_002432	Hs.153837	myeloid cell nuclear differentiation ant				18.57	4.10
_	101804	M86699	Hs.169840	TTK protein kinase	4.50			10.07	
	101809	M86849	Hs.323733	gap junction protein, beta 2, 26kO (conn	140.00				
	101833	AU076442	Hs.117938 -	collagen, type XVII, alpha 1	2.56			40.00	
10	101842 101851	M93221 BE260964	Hs.75182 Hs.82045	mannose receptor, C type 1 midkine (neurite growth-promoting factor				12.80	5.88
~~	102002	NM_002484	Hs.81469	nucleotide binding protein 1 (E.coli Min		7.80			0.00
	102039	AL134223	Hs.306098	aldo-keto reductase family 1, member C1					4.35
	102072	U09410	Hs.78743	zinc finger protein 131 (clone pHZ-10)	•		7.40		5.40
15	102083 102111	T35901 L36196	Hs.75117 Hs.81884	interleukin enhancer binding factor 2, 4 sulfotransferase family, cytosolic, 2A,				12.00	5.12
13	102123	NM_001809	Hs.1594	centromere protein A (17kD)	6.20			12.00	
	102154	U17760	Hs.75517	laminin, beta 3 (nicein (125kD), kalinin	2.62				
	102193	AL036335	Hs.313	secreted phosphoprotein 1 (osteopontin,	5.85				
20	102217	AA829978	Hs.301613	JTV1 gene					6.18
20	102224 102234	NM_002810 AW163390	Hs.148495 Hs.278554	proteasome (prosome, macropain) 26S subu heterochromatin-like protein 1	•				4.49 5.80
	102251	NM_004398	Hs.41706	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep	4.50				0.00
	102305	AL043202	Hs.90073	chromosome segregation 1 (yeast homolog)					5.15
25	102330	BE298063	Hs.77254	chromobox homolog 1 (Drosophila HP1 beta				0.22	4.17
43	102340 102348	U37055 U37519	Hs.278657 Hs.87539	macrophage stimulating 1 (hepatocyte gro aldehyde dehydrogenase 3 family, member	8.87			9.33	
	102368	U39817	Hs.36820	Bloom syndrome	15.91				
	102394	NM_003816	Hs.2442	a disintegrin and metalioproteinase doma			19.20		•
30	102404	NM_005429	Hs.79141	vascular endothelial growth factor C				14.00	
30	102537 102581	U57094 AU077228	Hs.50477 Hs.77256	RAB27A, member RAS oncogene family enhancer of zeste (Drosophila) homolog 2				12.00	4.57
	102605	AJ435128	Hs.181369	ubiquitin fusion degradation 1-like					3.98
	102610	U65011	Hs.30743	preferentially expressed antigen in mela	77.50				
25	102623	AW249285	Hs.37110	melanoma antigen, family A, 9	12.50				
35	102642 102654	AA205847 AV649989	Hs.23016 Hs.24385	G protein-coupled receptor Human hbc647 mRNA sequence		12.00	22.00		
	102659	BE245169	Hs.211610	CUG triplet repeat, RNA-binding protein		12.00		12.80	
	102669	U71207	Hs.29279	eyes absent (Drosophila) homolog 2	6.50				
40	102672	U72066	Hs.29287	retinoblastoma-binding protein 8	8.50				
40	102687 102696	NM_007019 BE540274	Hs.93002 Hs.239	ubiquitin carrier protein E2-C forkhead box M1					9.24 5.54
	102768	U82321	113.203	gb:Homo sapiens clone 14.9B mRNA sequenc		6.60			3.54
	102781	BE258778	Hs.108809	chaperonin containing TCP1, subunit 7 (e					3.78
45	102784	U85658	Hs.61796	transcription factor AP-2 gamma (activat			44.40		4.26
43	102824 102829	U90916 NM_006183	Hs.82845 Hs.80962	Homo sapiens cDNA: FLJ21930 fis, clone H neurotensin	8.00		14.40		
	102888	Al346201	Hs.76118	ubiquilin carboxyl-terminal esterase L1	0.00				5.50
	102892	BE440042	Hs.83326	matrix metalloproteinase 3 (stromelysin			6.70		
50	102913	NM_002275	Hs.80342	keratin 15	4.64				
50	102935 102951	BE561850 X15218	Hs.80506 Hs.2969	small nuclear ribonucleoprotein polypept v-ski avian sarcoma viral oncogene homol	2.93			11.40	
	102983	BE387202	Hs.118638	non-metastatic cells 1, protein (NM23A)				11.40	7.26
	103023	AW500470	Hs.117950	multifunctional polypeptide similar to S	3.01				
55	103036	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial	27.90				0.70
33	103038 103060	AA926960 NM_005940	Hs.334883 Hs.155324	CDC28 protein kinase 1 matrix metalloproteinase 11 (stromelysin					8.79 4.27
	103099	Al693251	Hs.8248	NADH dehydrogenase (ubiquinone) Fe-S pro		9.80			-T- 66 F
	103119	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	4.05				
60	103168	X53463	Hs.2704	glutathione peroxidase 2 (gastrointestin	3.07				5.00
00	103185 103192	NM_006825 M22440	Hs.74368 Hs.170009	transmembrane protein (63kD), endoplasmi transforming growth factor, alpha		7.40			5.62
	103223	BE275607	Hs.1708	chaperonin containing TCP1, subunit 3 (g					4.70
	103242	X76342	Hs.389	alcohol dehydrogenase 7 (class IV), mu o			100.00		
65	103316 103375	X83301 NM_005982	Hs.324728 Hs.54416	SMA5 sine oculis homeobox (Drosophila) homolo	9.71			9.80	
05	103375	AL036166	Hs.323378	coated vesicle membrane protein	14.00				
	103385	NM_007069	Hs.37189	similar to rat HREV107				11.00	
	103391	X94453	Hs.114366	pyrroline-5-carboxylate synthetase (glut	2.93				6.45
70	103404 103430	BE394784 BE564090	Hs.78596 Hs.20716	proteasome (prosome, macropain) subunit, translocase of inner mitochondrial membr					5.15 3.98
, 0	103446	X98834	Hs.79971	sal (Drosophila)-like 2				21.40	0.50
	103476	Y07701	Hs.293007	aminopeptidase puromycin sensitive		13.00			
	103477	AJ011812	Hs.119018	transcription factor NRF	r 00		6.40		
75	103478 103515	BE514982 Y10275	Hs.38991 Hs.56407	S100 calcium-binding protein A2 phosphoserine phosphatase	5.02 10.50				•
	103558	BE616547	Hs.2785	keratin 17	6.41				
	103580	AA328046	Hs.46405	polymerase (RNA) II (DNA directed) polyp					3.84
	103587	BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein	78.50				
80	103594 103636	Al368680 NM_006235	Hs.816 Hs.2407	SRY (sex determining region Y)-box 2 POU domain, class 2, associating factor	6.51 3.50				
	103768	AF086009		gb:Homo sapiens full length insert cDNA	J.00				4.48
	103841	AA314821	Hs.38178	hypothetical protein FLJ23468		8.00			
	103847 103913	AF219946	Hs.102237 Hs.133543	tubby super-family protein ESTs		10.40		15.60	
85	104094	AW967500 AA418187	Hs.330515	ESTS			6.60	15.00	
		. =-							

	W	O 02/086	442						DCT/HS02/12474
	104150	AL122044	Hs.331633	hypothetical protein DKFZp566N034				26.00	PCT/US02/12476
	104257	BE560621	Hs.9222	estrogen receptor binding site associate		6.80			
	104261 104331	AW248364 AB040450	Hs.5409 Hs.279862	RNA polymerase I subunit cdk inhibitor p21 binding protein		E 90			3.98
5	104415	BE410992	Hs.258730	heme-regulated initiation factor 2-alpha		6.80 10.29			
	104558	R56678	Hs.88959	hypothetical protein MGC4816	4.21				
	104590 104658	AW373062 AA360954	Hs.83623 Hs.27268	nuclear receptor subfamily 1, group I, m Homo sapiens cDNA: FLJ21933 fis, clone H				15.79	
10	104660	BE298665	Hs.14846	Homo sapiens mRNA; cDNA DKFZp564D016 (fr	6.40			17.40	
10	104689	AA420450	Hs.292911	ESTs, Highly similar to S60712 band-6-pr	57.10				6.55
	104754 104758	Al206234 BE560269	Hs.155924 Hs.7010	cAMP responsive element modulator				10.00	
	104971	BE311926	Hs.15830	NPD002 protein hypothetical protein FLJ12691	2.87				4.47
1.5	105011	BE091926	Hs.16244	mitotic spindle coiled-coil related prot	3.83				
15	105012 105026	AF098158 AA809485	Hs.9329	chromosome 20 open reading frame 1	2.86	44.00			
	105026	A1598252	Hs.124219 Hs.37810	hypothetical protein FLJ12934 hypothetical protein MGC14833		11.00			5.01
	105132	AA148164	Hs.247280	HBV associated factor	•				3.99
20	105143	Al368836	Hs.24808	ESTs, Weakly similar to 138022 hypotheti			11.00		
20	105158 105175	AW976357 AA305384	Hs.234545 Hs.25740	hypothetical protein NUF2R	4 20	16.00			
	105200	AA328102	Hs.24641	ERO1 (S. cerevisiae)-like cytoskeleton associated protein 2	4.32 3.00				
	105264	AA227934		gb:zr57e08.s1 Soares_NhHMPu_S1 Homo sapi	0.00			10.00	
25	105298	BE387790	Hs.26369	hypothetical protein FLJ20287	3.69				
25	105409 105460	AW505076 AW296078	Hs.301855 Hs.271721	DiGeorge syndrome critical region gene 8 Homo sapiens, clone IMAGE:4179986, mRNA,			7.80	9.20	
	105667	AA767526	Hs.22030	paired box gene 5 (B-cell lineage specif	4.12		7.00		
	105743	BE246502	Hs.9598	sema domain, immunoglobulin domain (lg),	3.82				
30	105782 105848	H09748 AW954064	Hs.57987 Hs.24951	B-cell CLL/lymphoma 11B (zinc finger pro ESTs	•		27.00		
30	105891	U55984	Hs.289088	heat shock 90kD protein 1, alpha			7.60		4.14
	106019	AF221993	Hs.46743	McKusick-Kaufman syndrome	•		16.80		7.47
	106069	BE566623	Hs.29899	ESTs, Weakly similar to G02075 transcrip			23.40		
35	106073 106126	AL157441 AA576953	Hs.17834 Hs.22972	downstream neighbor of SON hypothetical protein FLJ13352	9.50 6.00				
	106159	AK001301	Hs.3487	hypothetical protein FLJ10439	0.00				3.95
	106220	D61329	Hs.32196	mitochondrial ribosomal protein L36					6.04
	106260 106300	A1097144 Y10043	Hs.5250 Hs.19114	ESTs, Weakly similar to ALU1_HUMAN ALU S high-mobility group (nonhistone chromoso			13.20		E 00
40	106307	AA436174	Hs.37751	ESTs, Weakly similar to putative p150 [6.60			5.02
	106318	AA025610	Hs.9605	cleavage and polyadenylation specific fa					5.04
	106341 106440	AF191020 AA449563	Hs.5243 Hs.151393	hypothetical protein, estradiol-induced			40.00		7.25
	106481	D61594	Hs.17279	glutamate-cysteine ligase, catalytic sub tyrosylprotein sulfotransferase 1	4.75		13.80		
45	106586	AA243837	Hs.57787	ÉSTs				10.84	
	106605	AW772298	Hs.21103	Homo sapiens mRNA; cDNA DKFZp564B076 (fr	00.00			45.60	
	106654 106785	AW075485 Y15227	Hs.286049 Hs.20149	phosphoserine aminotransferase deleted in lymphocytic leukemia, 1	28.00 3.00			•	
50	106813	C05766	Hs.181022	CGI-07 protein	0.00		11.40		,
50	106895	AK001826	Hs.25245	hypothetical protein FLJ11269			6.00		
	106913 106919	Al219346 AW043637	Hs.86178 Hs.21766	M-phase phosphoprotein 9 ESTs, Weakly similar to ALU5_HUMAN ALU S		6.56			4.27
	107054	A1076459	Hs.15978	KIAA1272 protein				34.80	4.21
55	107059	BE614410	Hs.23044	RAD51 (S. cerevisiae) homolog (E coli Re	4.71				
33	107098 107104	Al823593 AU076640	Hs.27688 Hs.15243	ESTs nucleolar protein 1 (120kD)				24.80	7.05
	107129	AC004770	Hs.4756	flap structure-specific endonuclease 1	2.60		•		7.05
	107198	AV657225	Hs.9846	KIAA1040 protein		19.20			
60	107203 107217	D20426 AL080235	Hs.41639 Hs.35861	programmed cell death 2 DKFZP586E1621 protein	0.50	7.60			
00	107284	NM_005629	Hs.187958	solute carrier family 6 (neurotransmitte	9.50 2.71		•		
	107318	T74445	Hs.5957	Homo sapiens clone 24416 mRNA sequence	_,,,		8.71		•
	107516 107529	X57152 BE515065	Hs.99853 Hs.296585	fibrillarin			•	•	4.33
65	107728	AA019551	Hs.294151	nucleolar protein (KKE/D repeat) Homo sapiens, clone IMAGE:3603836, mRNA.		10.80			4.00 .
	107851	AA022953	Hs.61172	EST		10.00	8.00		
	107901 107922	L42612	Hs.335952	keratin 6B	3.40				
	107932	BE153855 AW392555	Hs.61460 Hs.18878	lg superfamily receptor LNIR hypothetical protein FLJ21620	2.88 7.50				
70	108015	AW298357	Hs.49927	protein kinase NYD-SP15	7.00			23.40	
	108056	AA043675	Hs.62633	ESTs				12.80	
	-108075 108187	AI867370 BE245374	Hs.139709 Hs.27842	hypothetical protein FLJ12572 hypothetical protein FLJ11210		7.00		12.80	
76	108296	N31256	Hs.161623	ESTs		6.60			
75	108305	AA071391		gb:zm61e06.r1 Stratagene fibroblast (937				11.80	
	108393 108480	AA075211 AL133092	He RONEE	gb:zm86a08.r1 Stratagene ovarian cancer				11.80	
	108554	AA084948	Hs.68055	hypothetical protein DKFZp434l0428 gb:zn13b09.s1 Stratagene hNT neuron (937		6.40		20.80	
0Λ	108573	AA086005		gb:zl84c04.s1 Stratagene colon (937204)				25.40	
80	108584	AA088326	Hs.120905	Homo sapiens cDNA FLJ11448 fis, clone HE		9.60			
	108597 108695	AK000292 AB029000	Hs.278732 Hs.70823	hypothetical protein FLJ20285 KIAA1077 protein	3.00			14.60	
	108699	AA121514	Hs.70832	ESTs	5.55			10.00	
85	108700	AA121518	Hs.193540	ESTs, Moderately similar to 2109260A B c	44.04		11.00		*
33	108780	AU076442	Hs.117938	collagen, type XVII, alpha 1	11.21				

	W	O 02/086	443						PCT/US02/12476
	108810	AW295647	Hs.71331	hypothetical protein MGC5350	8.50				
	108816	AA130884	Hs.270501	ESTs, Moderately similar to ALU2_HUMAN	4.00	7.40			
	108857 108860	AK001468 AA133334	Hs.62180 Hs.129911	anillin (Drosophila Scraps homolog), act ESTs	4.00 6.09				
5	108937	AL050107	Hs.24341	transcriptional co-activator with PDZ-bi	3.00				
	109010	NM_007240	Hs.44229	dual specificity phosphatase 12	2.69				4.50
	109121 109166	BE389387 AA219691	Hs.49767 Hs.73625	NADH dehydrogenase (ubiquinone) Fe-S pro RAB6 interacting, kinesin-like (rabkines	10.58				4.53
10	109227	AA766998	Hs.85874	Human DNA sequence from clone RP11-16L21		9.00			
10	109415	U80736	Hs.110826	trinucleotide repeat containing 9		51.40			
	109418 109454	AI866946 AA232255	Hs.161707 Hs.295232	ESTs ESTs, Moderately similar to A46010 X-li			17.60	11.00	
	109502	AW967069	Hs.211556	hypothetical protein MGC5487			9.49		
1.5	109543	AA564994	Hs.222851	ÉSTs ·		12.67			
15	109648	H17800	Hs.7154	ESTS			33.20	10.40	
	109680 109700	AB037734 F09609	Hs.4993	KIAA1313 protein gb:HSC33H092 normalized infant brain cDN			33.20	16.00	
	109704	AI743880	Hs.12876	ESTs			11.00		
20	109792	R49625		gb:yg61f03.s1 Soares infant brain 1NIB H	4.00			12.60	
20	109981 109998	BE546208 AL042201	Hs.26090 Hs.21273	hypothetical protein FLJ20272 transcription factor NYD-sp10	4.00	7.80			
	110039	H11938	Hs.21907	histone acetyltransferase		7.00			
	110156	AA581322	Hs.4213	hypothetical protein MGC16207					4.24
25	110500 110551	AA907723 AW450381	Hs.36962	ESTs ESTs	4.50	8.60			
2.7	110561	AA379597	Hs.14529 Hs.5199	HSPC150 protein similar to ubiquitin-con	3.06	0.00			
	110854	BE612992	Hs.27931	hypothetical protein FLJ10607 similar to		6.80			
	110886	AW274992	Hs.72249	three-PDZ containing protein similar to		c 00	8.80		
30	110916 111003	BE178102 N52980	Hs.24349 Hs.83765	ESTs dihydrofolate reductase.		6.80		16.80	
50	111337	AA837396	Hs.263925	LIS1-interacting protein NUDE1, rat homo	2.54			10.00	
	111434	R01608	Hs.142736	ESTs		•		9.80	•
	111439 111540	A1476429 U82670	Hs.19238 Hs.9786	ESTs zinc finger protein 275			15.40	10.40	•
35	111597	R11499	Hs.189716	ESTs			10.40	9.20	
	111895	T80581	Hs.12723	Homo sapiens clone 25153 mRNA sequence		6.80			
	111929	AF027208	Hs.112360	prominin (mouse)-like 1		10.80		14.67	
	112054 112210	R43590 R49645	Hs.7004	gb:yc85g02.s1 Soares infant brain 1NiB H ESTs		10.60		10.20	
40	112244	AB029000	Hs.70823	KIAA1077 protein	2.99				
	112382	R59904	11- 400074	gb:yh07g12.s1 Soares infant brain 1NIB H		6.60	7.40		
	112392 112442	R60763 AA280174	Hs.193274 Hs.285681	ESTs, Moderately similar to 157588 HSrel Williams-Beuren syndrome chromosome regi	3.00		7.10		
	112539	R70318	Hs.339730	ESTs	0.00			37.20	
45	112772	Al992283	Hs.35437	ESTs, Moderately similar to 138026 MLN 6				14.60	
	112869 112935	BE261750 R71449	Hs.4747 Hs.268760	dyskeratosis congenita 1, dyskerin ESTs	2.73				4.83
	112970	AA694010	Hs.6932	Homo sapiens clone 23809 mRNA sequence	2.70			12.00	*
50	112973	AB033023	Hs.318127	hypothetical protein FLJ10201	11.50				
50	112992 113063	AL157425 W15573	Hs.133315 Hs.5027	Homo sapiens mRNA; cDNA DKFZp761J1324 (f ESTs, Weakly similar to A47582 B-cell gr	15.00		10.89		•
	113073	N39342	Hs.103042	microtubule-associated protein 1B	13.00		15.31		
	113078	T40444	Hs.118354	CAT56 protein		7.00			
55	113238	R45467	Hs.189813	ESTs				41.20	
33	113591 113702	T91881 T97307	Hs.200597	KIAA0563 gene product qb:ye53h05.s1 Soares fetal liver spleen	25.00			9.40	
	113844	Al369275	Hs.243010	Homo sapiens cDNA FLJ14445 fis, clone HE	20.00			13.91	
		R96696	Hs.35598	ESTs		7.80			•
60		R44953 AF155661	Hs.22908 Hs.22265	Homo sapiens mRNA; cDNA DKFZp434J1027 (f pyruvate dehydrogenase phosphalase	3.42	7.20			
	114208	AL049466	Hs.7859	ESTs	0.72		6.74		
	114251	H15261	Hs.21948	ESTs			,	33.20	
	114285 114313	R44338 H18456	Hs.22974 Hs.27946	ESTs ESTs				13.20 10.00	
65	114339	AA782845	Hs.22790	ESTs		7.80		10.00	
	114407	BE539976	Hs.103305	Homo sapiens mRNA; cDNA DKFZp434B0425 (f					4.14
	114560 114699	AI452469 AA127386	Hs.165221	ESTs qb:zn90d09.r1 Stratagene lung carcinoma		7.60		9.80	
	114767	A1859865	Hs.154443	minichromosome maintenance deficient (S	3.21	7.00			
70	114793	AA158245		gb:zo76c03.s1 Stratagene pancreas (93720			6.00		
	114833	Al417215	Hs.87159	hypothetical protein FLJ12577				11.40	4.24
	115047 115060	BE270930 AF052693	Hs.82916 Hs.198249	chaperonin containing TCP1, subunit 6A (gap junction protein, beta 5 (connexin 3					4.31 4.03
	115097	AA256213	Hs.72010	ESTs				35.40	4.55
75	115113	AA256460		gb:zr81a04.s1 Soares_NhHMPu_S1 Homo sapi				15.20	440
	115123 115134	AA256641 AW968073	Hs.236894 Hs.194331	ESTs, Highly similar to S02392 alpha-2-m				12.40	4.19
	115134	BE545072	Hs.122579	ESTs, Highly similar to A55713 inositol hypothetical protein FLJ10461	25.00			12.40	
00	115347	AA356792	Hs.334824	hypothetical protein FLJ14825		7.00			
80	115414		Hs.283099	AF15q14 protein	3.25				
	115522 115536	BE614387 AK001468	Hs.333893 Hs.62180	c-Myc target JPO1 anillin (Drosophila Scraps homolog), act	3.68 10.50				
	115566	Al142336	Hs.43977	Human DNA sequence from clone RP11-196N1				24.40	
85	115645	A1207410	Hs.69280	Homo sapiens, clone IMAGE:3636299, mRNA,	4.17		6.00		
0.5	110048	AW016811	Hs.234478	Homo sapiens cDNA: FLJ22648 fis, clone H			6.00		

	w	O 02/086							PCT/US02/12476
	115652	BE093589	Hs.38178	hypothetical protein FLJ23468	3.81			•	
	115697 115793	D31382 AA424883	Hs.63325 Hs.70333	transmembrane protease, serine 4 hypothetical protein MGC10753	62.14			11.80	
	115816	BE042915	Hs.287588	. Homo sapiens cDNA FLJ13675 fis, clone PL		•		9.71	
5	115892	AA291377	Hs.50831	ESTs			27.40		
	115906	AJ767756	Hs.82302	Homo sapiens cDNA FLJ14814 fis, clone NT	2.53				
	115909 115965	AW872527 AA001732	Hs.59761 Hs.173233	ESTs, Weakly similar to DAP1_HUMAN DEATH hypothetical protein FLJ10970	11.82			34.29	
	115978	AL035864	Hs.69517	cDNA for differentially expressed CO16 g				V	8.23
10	115985	AA447709	Hs.268115	ESTs, Wealty similar to T08599 probable	3.00				
	116090	Al591147	Hs.61232	ESTs	5.17		0.00		
	116096	AA682382	Hs.59982 Hs.279884	ESTs DNAJ domain-containing		10.60	8.20		•
	116127 116157	AF126743 BE439838	Hs.44298	mitochondrial ribosomal protein S17		10.00			5.82
15	116190	A1949095	Hs.67776	ESTs, Weakly similar to T22341 hypotheti					4.08
	116278	NM_003686	Hs.47504	exonuclease 1	9.50				
	116335	AK001100	Hs.41690	desmocollin 3	3.67	7.00			
	116496 116503	AW450694 AI925316	Hs.21433 Hs.212617	hypothetical protein DKFZp547J036 ESTs	•	7.00		12.60	
20	116674	AI768015	Hs.92127	ESTs			32.00		
	116929	AA586922	Hs.80475	polymerase (RNA) II (DNA directed) polyp		7.60			
	116973	AI702054	Hs.166982	phosphatidylinositol glycan, class F ESTs	•	9.80		10.20	
_	116993 117079	AJ417023 H92325	Hs.40478	gb:ys85f05.s1 Soares retina N2b4HR Homo				15.20	
25	117317	AI263517	Hs.43322	ESTs				13.40	
	117326	N23629	Hs.241420	Homo sapiens mRNA for KIAA1756 protein,				20.60	
	117396	W20128	Hs.296039	ESTs				10.60 16.00	
	117412 117519	N32536 N32528	Hs.42645 Hs.146286	ESTs kinesin family member 13A				9.11	
30	117693	AW179019	Hs.112110	mitochondrial ribosomal protein L42					4.01
	117721	N46100	Hs.93939	EST				19.80	
	117881	AF161470	Hs.260622	butyrate-induced transcript 1	2.71			17.80	
	117903 117992	AA768283 Al015709	Hs.47111 Hs.172089	ESTs Homo sapiens mRNA; cDNA DKFZp586l2022 (f				17.00	4.17
35	118013	Al674126	Hs.94031	ESTs				10.60	
	118017	AI813444	Hs.42197	ESTs			8.82		
	118186 118325	N22886 Al868065	Hs.42380 Hs.166184	ESTs intersectin 2		7.00		13.80	
	118367	N64269	Hs.48946	EST			6.14	10.00	
40	118368	N64339	Hs.48956	gap junction protein, beta 6 (connexin 3	3.14				
	118472	AL157545	Hs.42179	bromodomain and PHD finger containing, 3			12.40	40.00	
	118709 119025	AA232970 .BE003760	Hs.293774 Hs.55209	ESTs Homo sapiens mRNA; cDNA DKFZp434K0514 (f	4.50			12.20	•
	119027	AF086161	Hs.114611	hypothetical protein FLJ11808	3.22				
45	119052	R10889		gb:yf38d02.s1 Soares fetal liver spleen		9.60			
	119164	AF221993	Hs.46743	McKusick-Kaufman syndrome			6.60	10.00	
	119186 119243	Al979147 T12603	Hs.101265	hypothetical protein FLJ22593 gb:CHR90123 Chromosome 9 exon II Homo sa				10.80 9.44	
	119490	AA195276	Hs.263858	ESTs, Moderately similar to B34087 hypot				11.80	
50	119499	Al918906	Hs.55080	ESTs			14.80		
	119599	W45552	11- 404204	gb:zc26d03.s1 Soares_senescent_fibroblas	17.00	12.60			
	119780 119845	NM_016625 W79123	Hs.191381 Hs.58561	hypothetical protein G protein-coupled receptor 87	13.50				
	119941	AA699485	Hs.58896	ESTs		8.00			
55	119994	AA642402	Hs.59142	ESTs	7.73				•
	120102 120104	W67353 AK000123	Hs.170218 Hs.180479	KIAA0251 protein hypothetical protein FLJ20116	2.91		39.60		•
	120294	AK000059	Hs.153881	Homo sapiens NY-REN-62 antigen mRNA, par	2.01		8.20		
CO	120486	AW368377	Hs.137569	tumor protein 63 kDa with strong homolog	8.73				
60	120599	AA804448	Hs.104463	ESTs		7.00		10.00	
	120699 120715	A1683243 AA292700	Hs.97258	ESTs, Moderately similar to S29539 ribos gb:zs59a06.s1 NCI_CGAP_GCB1 Homo sapiens		9.40		10.00	
	120821	Y19062	Hs.96870	staufen (Drosophila, RNA-binding protein		0. 10		13.80	
65	120859	AA826434	Hs.1619	achaete-scute complex (Drosophila) homol		9.00			
65	120880	AA360240	Hs.97019	EST		15.60	27.66		
	120983 121034	AA398209 AL389951	. Hs.97587 Hs.271623	EST nucleoporin 50kD			20.80		
	121121	AA399371	Hs.189095	similar to SALL1 (sal (Drosophila)-like		22.80		•	
70	121313	AA402713	Hs.97872	ESTs	00.74			10.00	
70	121369 121376	AW450737 AA448103	Hs.128791 Hs.187958	CGI-09 protein solute carrier family 6 (neurotransmitte	25.71		•		5.42
	121476	AA412311	Hs.97903	ESTs		8.30			0.42
	121509	AA868939	Hs.97888	ESTs		8.59			
75	121553	AA412488	Hs.48820	TATA box binding protein (TBP)-associat	18.50				
13	121753 121838	AK000552 AA425680	Hs.323518 Hs.98441	WD repeat domain 5 ESTs	7.00			10.40	
	121857	BE387162	Hs.280858	ESTs, Highly similar to A35661 DNA excis	6.00				
	121991	AA430058	Hs.98649	EST				12.20	
80	122089	AW016543	Hs.98682	hypothetical protein FKSG32			8.60 6.14		
ou	122105 122163	AW241685 AA435702	Hs.98699 Hs.98829	ESTs EST			0.14	10.40	
	122318	AA429743		gb:zv60b05.r1 Soares_testis_NHT Homo sap				18.20	
	122335	AA443258	Hs.241551	chloride channel, calcium activated, fam	13.50				
85	122338 122414	AA443311 Al313473	Hs.98998 Hs.99087	ESTs ESTs, Weakly similar to S47073 finger pr	4.80	8.00			
33	122717	, 10 11 0	, 10.00001	and the state of t		5.50			

	WO 02/086443								PCT/US02/12476
	122512	AF053305	Hs.98658	budding uninhibited by benzimidazoles 1			8.80		
		AA449352	Hs.99217	ESTs				9.40	
	122/02	Al220089 Al580056	Hs.99439 Hs.98992	ESTs ESTs		9.20		10.40	
5	122925	AW268962	Hs.111335	ESTs		6.80		10.40	
	123005	AW369771	Hs.52620	integrin, beta 8		0.00	12.60		
	123044	AK001035	Hs.130881	B-cell CLL/lymphoma 11A (zinc finger pro					5.35
	123160	AA488687	Hs.284235	ESTs, Weakly similar to 138022 hypotheti			6.06		
10	123315 123329	AA496369 Z47542	Hs.179312	gb:zv37d10.s1 Soares ovary turnor NbHOT H small nuclear RNA activating complex, po			12.40 11.80		
10	123497	AA765256	Hs.135191	ESTs, Weakly similar to unnamed protein		12.00	11.00		•
	123518		Hs.21068	hypothetical protein			13.00		
	123519	AW015887	Hs.112574	ESTs		12.20			
15	123614	AK000492	Hs.98806	hypothetical protein			7.80	10.60	
13	123616 123673	AA680003 BE550112	Hs.109363 Hs.158549	Homo sapiens cDNA: FLJ23603 fis, clone L ESTs, Weakly similar to T2D3_HUMAN TRANS	23.00			10.60	
	123727	AI083986	Hs.282977	hypothetical protein FLJ13490	20.00	7.00			
	123731	AA609839		gb:ae62f01.s1 Stratagene lung carcinoma			9.80		
00	123752	AA227714	Hs.179703	KIAA0129 gene product	3.50			40.00	
20	123900	AA621223	Hs.112953	EST	07.00		•	12.80	
	124006 124059	Al147155 BE387335	Hs.270016 Hs.283713	ESTs ESTs, Weakly similar to S64054 hypotheti	97.00 3.02				
	124069	AF134160	Hs.7327	claudin 1	0.02		27.80		
	124191	T96509	Hs.248549	ESTs, Moderately similar to S65657 alpha				35.80	
25	124273	AA457211	Hs.8858	bromodomain adjacent to zinc finger doma		7.20		44.00	
	124297	AL080215	Hs.102301	Homo sapiens mRNA; cDNA DKFZp586J0323 (f				11.00 16.00	
	124305 124676	AW963221 Al360119.com	nHe 181013	gb:EST375294 MAGE resequences, MAGH Homo phosphoglycerate mutase 1 (brain)				10.00	6.08
	124874	BE550182	Hs.127826	RaiGEF-like protein 3, mouse homolog				21.00	,
30	124904	AK000483	Hs.93872	KIAA1682 protein		9.40			•
	124969	AI650360	Hs.100256	ESTs				10:80	
	125000	T58615	Hs.110640	ESTs		7.60		9.80	
	125201 125266	AA693960 W90022	Hs.103158 Hs.186809	ESTs, Weakly similar to T33296 hypotheti ESTs, Highly similar to LCT2_HUMAN LEUKO		6.59			
35	125299	T32982	Hs.102720	ESTs				9.57	
	125356	AI057052	Hs.133554	ESTs, Weakly similar to Z195_HUMAN ZINC				14.00	
	125370	AA256743	Hs.134158	Homo sapiens, Similar to KiAA0092 gene p			8.20	12.20	
	125418 125433	AA777690 AL162066	Hs.188501 Hs.54320	ESTs hypothetical protein DKFZp762D096		21.40		13.20	
40	125433	AL102000 Al609449	Hs.140197	ESTs		6.96			
	125446	BE219987	Hs.166982	phosphatidylinositol glycan, class F		8.80			
	125711	AA305800	Hs.5672	hypothetical protein AF140225				11.20	
	125756	BE174587	Hs.289721	growth arrest specific transcript 5				15.60	4.31
45	125757 125769	Al274906 BE270266	Hs.166835 Hs.82128	ESTs, Highly similar to 1814460A p53-ass 5T4 oncofetal trophoblast glycoprotein	3.20			13.00	
73	125839	AW836261	Hs.337717	ESTs	0.20	8.20			•
	125850	W85858	Hs.99804	ESTs	2.65				•
	125875	H14480		gb:ym18b09.r1 Soares infant brain 1NIB H		7.40			4.00
50	125924	BE272506	Hs.82109	syndecan 1					4.23 3.98
50	125972 126034	A1927475 H60340	Hs.35406	ESTs, Highly similar to unnamed protein gb:yr39b04.r1 Soares fetal liver spleen				10.60	3.30
	126327	AA432266	Hs.44648	ESTs		11.60			
	126345	N49713	•	gb:yv23f06.s1 Soares fetal liver spleen		6.67			
55	126435	AW614529	Hs.285847	CGI-19 protein				10.60	4.38
23	126487 126521	AA283809 AI475110	Hs.184601 Hs.203933	solute carrier family 7 (cationic amino ESTs		6.60			4.30
	126522	W31912	115.200350	gb:zc76d03.s1 Pancreatic Islet Homo sapi		0.00		14.80	
	126543	AL035864	Hs.69517	cDNA for differentially expressed CO16 g					4.01
60	126567	AA058394	Hs.57887	ESTs, Weakly similar to KIAA0758 protein			7.80	44.00	
. 60	126605	AA676910 AA497044	Hs.20887	gb:zj65h07.s1 Soares_fetat_liver_spleen_ hypothetical protein FLJ10392				11.60 14.60	
	126627 126628	N49776	Hs.170994	hypothetical protein MGC10946	8.00			14.00	
	126737	AW976516	Hs.283707	Homo sapiens cDNA: FLJ21354 fis, clone C	2.92				
C 5	126795	AW975076	Hs.172589	nuclear phosphoprotein similar to S. cer	7.50				
65	126802	AW805510	Hs.97056	hypothetical protein FLJ21634	2.50	11.60			
	126892 126928	AF121856 AA480902	Hs.284291 Hs.137401	sorting nexin 6 ESTs	3.50			22.83	
	126979	AA210954	115.101401	gb:zq89h10.r1 Stratagene hNT neuron (937				11.80	
7 0	126986	AI279892	Hs.46801	sorting nexin 14				11.60	
70	126992	Al809521	•	gb:wf30e03.x1 Soares_NFL_T_GBC_S1 Homo s				20.80	
	127066	R25066		gb:yg42c07.r1 Soares infant brain 1NIB H				27.60 21.60	,
	127099 127139	AA347668 AA830233	Hs.293585	gb:EST54026 Fetal heart If Homo sapiens ESTs				11.20	
	127209	AA305023	Hs.81964	SEC24 (S. cerevisiae) related gene famil	3.10				
75	127221	BE062109	Hs.241551	chloride channel, calcium activated, fam	2.76			46.50	
	127225	AA315933	Hs.120879	ESTs	44.00			16.80	
	127313	AK002014	Hs.47546	Homo sapiens cDNA FLJ11458 fis, clone HE	14.00			13.60	
	127444 127500	AW978474 AW971353	Hs.7560 Hs.162115	Homo sapiens mRNA for KIAA1729 protein, ESTs		11.20		10.00	
80	127524	AI243596	Hs.94830	ESTs, Moderately similar to T03094 A-kin			7.80		
	127540	N45572	Hs.105362	Homo sapiens, clone MGC:18257, mRNA, com	3.53			46.55	
	127599	AA613204	Hs.150399	ESTs				13.80	
	127609 127662	X80031 W80755	Hs.530 Hs.8294	collagen, type IV, alpha 3 (Goodpasture KIAA0196 gene product				28.00 19.80	
85	127668	Al343257	Hs.139993	ESTs				11.20	
	, 500			: -				-	

	WO 02/086443								PCT/US02/12476
	127746	A1239495	Hs.120189	ESTs				14.18	202,000
	127812 127817	AA741368 AA836641	Hs.291434 Hs.163085	ESTs ESTs .	4.50			24.60	•
_	127959	Al302471	Hs.124292	Homo sapiens cDNA: FLJ23123 fis, clone L				9.20	
5	127960	Al613226	Hs.41569	phosphalidic acid phosphatase type 2A		40.00		16.83	•
	127969 128015	F06498 Z21169	Hs.93748 Hs.334659	Homo sapiens cDNA FLJ14676 fis, clone NT hypothetical protein MGC14139		13.60 7.00			
	128027	AI433721	Hs.164153	ESTs		1.00		37.40	
10	128077	AI310330	Hs.128720	ESTs				9.60	
10	128166 128226	NM_006147 Al284940	Hs.11801 Hs.289082	interferon regulatory factor 6 GM2 ganglioside activator protein	19.00			9.24	
	128305	A1954968	Hs.279009	matrix Gla protein				10.40	
•	128341 128527	AA191420 AA504583	Hs.185030 Hs.101047	ESTs transcription factor 3 (E2A immunoglobu)		9.00			4.30
15	128539	R46163	Hs.258618	ESTs		12.60			4.50
	128568	H12912	Hs.274691	adenylate kinase 3				40.00	4.56
	128572 128777	AA933022 AI878918	Hs.256583 Hs.10526	interleukin enhancer binding factor 3, 9 cysteine and glycine-rich protein 2			16.80	10.00	
	128781	N71826	Hs.105465	small nuclear ribonucleoprotein polypept			10.00		4.48
20	128796	AJ000152	Hs.105924	defensin, beta 2		8.12			4.60
	128920 128924	AA622037 BE279383	Hs.166468 Hs.26557	programmed cell death 5 plakophilin 3					4.62 4.04
	128971	H05132	Hs.107510	ESTS		12.60			
25	129008 129041	AL079648 BE382756	Hs.301088 Hs.169902	ESTs solute carrier family 2 (facilitated glu		8.80			· 6.05
23	129075	BE250162	Hs.83765	dihydrofolate reductase	2.59				0.00
	129105	Al769160	Hs.108681	Homo saplens brain tumor associated prot	•		6.67		
	129189 129229	AB023179 AF013758	Hs.9059 Hs.109643	KIAA0962 protein polyadenylate binding protein-interactin	4.00	8.00			•
30	129241	A1878857	Hs.109706	hematological and neurological expressed	4.00				4.06
	129300	W94197	Hs.110165	ribosomal protein L26 homolog	2.55				
	129404 129457	Al267700 X61959	Hs.317584 Hs.207776	ESTs aspartylglucosaminidase	18.00 6.50				
	129466	L42583	Hs.334309	keratin 6A	12.94				
35	129494	AI148976	Hs.112062	ESTs				11.00	4.46
	129605 129641	AF061812 Al911527	Hs.115947 Hs.11805	keratin 16 (focal non-epidermolytic palm ESTs				12.00	4.40
	129665	AW163331	Hs.118778	KDEL (Lys-Asp-Glu-Leu) endoplasmic retic					4.70
40	129703 129720	BE388665 AA156214	Hs.179999 Hs.12152	Homo sapiens, clone IMAGE:3457003, mRNA APMCF1 protein					4.02 5.71
70	129748	M16707	Hs.123053	H4 histone, family 2	3.50				
	129890	Al868872	Hs.282804	hypothetical protein FLJ22704	0.55				4.21 ·
	129896 129945	BE295568 BE514376	Hs.13225 Hs.165998	UDP-Gal:betaGlcNAc beta 1,4- galactosylt PAI-1 mRNA-binding protein	2.56				4.03
45	130010	AA301116	Hs.142838	nucleolar phosphoprotein Nopp34			7.00		
	130026 130080	T40480 X14850	Hs.332112 Hs.147097	EST H2A histone family, member X		6.40			4.65
	130149	AW067805	Hs.172665	methylenetetrahydrofolate dehydrogenase	2.74				4,00
50	130285	AA063546	Hs.75981	ubiquitin specific protease 14 (tRNA-gua			7.40		2.04
30	130441 130482	U63630 AW409701	Hs.155637 Hs.1578	protein kinase, DNA-activated, catalytic baculoviral IAP repeat-containing 5 (sur	4.87				3.91
	130500	AB007913	Hs.158291	KIAA0444 protein				9.60	
	130524	U89995	Hs.159234	forkhead box E1 (thyroid transcription f			13.40 8.20		
55	130541 130553	X05608 AF062649	Hs.211584 Hs.252587	neurofilament, light polypeptide (68kD) pituitary tumor-transforming 1			0.20		6.06
	130567	AA383092	Hs.1608	replication protein A3 (14kD)			7.00		
	130577 130627	M69241 BE003054	Hs.162 Hs.1695	insulin-like growth factor binding prote matrix metalloproteinase 12 (macrophage	3.04 3.87				
	130648	Al458165	Hs.17296	hypothetical protein MGC2376	0.0.			16.20	
60	130697	L29472	Hs.1802	major histocompatibility complex, class				17.80	5.28
	130744 130800	H59696 Al187292	Hs.18747 Hs.19574	POP7 (processing of precursor, S. cerevi hypothetical protein MGC5469					4.43
	130867	NM_001072	Hs.284239	UDP glycosyltransferase 1 family, polype	16.84				4.00
65	130869 130925	J03626 AF093419	Hs.2057 Hs.169378	uridine monophosphate synthetase (orotat multiple PDZ domain protein				9.60	4.92
05	130994	W17044	Hs.327337	ESTs		12.40		0.00	
•	131028	AI879165	Hs.2227	CCAAT/enhancer binding protein (C/EBP),	10.21			0.00	
	131031 131041	NM_001650 T15767	Hs.288650 Hs.22452	aquaporin 4 Homo sapiens mRNA for KIAA1737 protein,				9.80 9.60	,
70	131058	W28545	Hs.101514	hypothetical protein FLJ10342				17.00	
	131090 131112	AI143139 H15302	Hs.2288 Hs.168950	visinin-like 1 Homo saplens mRNA; cDNA DKFZp566A1046 (f	2.74		8.80		
	131148	AW953575	Hs.303125	p53-induced protein PIGPC1	3.12		0.00		
75	131185	BE280074	Hs.23960	cyclin B1	3.07				
13	131200 131219	BE540516 W25005	Hs.293732 Hs.24395	hypothetical protein MGC3195 small inducible cytokine subfamily B (Cy	3.07 2.87				
	131257	AW339037	Hs.24908	ESTs				14.67	
	131375	AW293165	Hs.143134	ESTs	3 EU		19.20		
80	131460 131476	NM_003729 Al521663	Hs.27076 Hs.334644	RNA 3'-terminal phosphate cyclase hypothetical protein FLJ14668	3.50 15.00				
	131510	BE245374	Hs.27842	hypothetical protein FLJ11210			7.80	•	
	131646 131786	BE302464 BE000971	Hs.30057 Hs.306083	MRS2 (S. cerevislae)-like, magnesium hom Novel human gene mapping to chomosome 22	2.65		7.00		
0.5	131839	AB014533	Hs.33010	KIAA0633 protein				35.20	
85	131843	AA192315	Hs.184062	putative Rab5-interacting protein					4.11

	w	O 02/086	443						PCT/US02/12476
	131877	J04088	Hs.156346	topoisomerase (DNA) II alpha (170kD)	19.00				
	131885	BE502341	Hs.3402	ESTs	6.48				
	131921	AA456093	Hs.34720 Hs.35120	ESTs	50.00		8.40		
5	131945 131958	NM_002916 NM_014062	Hs.3566	replication factor C (activator 1) 4 (37 ART-4 protein	56.00				3.82
,	131965	W79283	Hs.35962	ESTs	3.03				3.02
	132000	AW247017	Hs.36978	melanoma antigen, family A, 3	0.00	9.80			
_	132040	NM_001196	Hs.315689	Homo sapiens cDNA: FLJ22373 fis, clone H	3.30				
10	132109	AW190902	Hs.40098	cysteine knot superfamily 1, BMP antagon	21.00				
10	132114	NM_006152	Hs.40202	lymphold-restricted membrane protein		8.40	•		10.05
	132162 132164	AA315805 AI752235	Hs.94560 Hs.41270	desmoglein 2 procollagen-lysine, 2-oxoglutarate 5-dio	2.70				12.25
	132180	NM_004460	Hs.418	fibroblast activation protein, alpha	271				
4.5	132181	AW961231	Hs.16773	Homo sapiens clone TCCCIA00427 mRNA sequ	3.83				
15	132182	NM_014210	Hs.70499	ecotropic viral integration site 2A				13.20	
	132231	AA662910	Hs.42635	hypothetical protein DKFZp434K2435	9.50				
	132277 132328	AK001745 NM_014787	Hs.184628 Hs.44896	hypothetical protein FLJ10883	4.50			9.20	
	132394	AK001680	Hs.30488	DnaJ (Hsp40) homolog, subfamily B, membe DKFZP434F091 protein				19.80	
20	132424	AA417878	Hs.48401	ESTs, Moderately similar to ALU8_HUMAN A			8.60		
	132528	T78736	Hs.50758	SMC4 (structural maintenance of chromoso			27.40		·
	132543	BE568452	Hs.5101	protein regulator of cytokinesis 1	4.38				
	132544 132550	L19778 AW969253	Hs.51011	H2A histone family, member P	264	7.00			
25	132552	BE621985	Hs.170195 Hs.296922	bone morphogenetic protein 7 (osteogenic thiopurine S-methyltransferase	2.64			15.83	
20	132581	AK000631	Hs.52256	hypothetical protein FLJ20624			6.60	10.00	
	132617	AF037335	Hs.5338	carbonic anhydrase XII	4.95				
	132638	Al796870	Hs.54277	DNA segment on chromosome X (unique) 992		8.20			
30	132653	Z15008	Hs.54451	laminin, gamma 2 (nicein (100kD), kalini	4.38				4.20
30	132669 132710	W38586 W74001	Hs.293981 Hs.55279	guanine nucleotide binding protein (G pr serine (or cysteine) proteinase inhibito	4.60				4.36
	132771	Y10275	Hs.56407	phosphoserine phosphalase	3.71				
	132799	W73311	Hs.169407	SAC2 (suppressor of actin mutations 2,				9.48	
25	132833	U78525	Hs.57783	eukaryotic translation initiation factor					5.83
35	132892	AW834050	Hs.9973	tensin	2.00			12.00	•
	132906 132959	BE613337 AW014195	Hs.234896 Hs.61472	geminin ESTs, Weakly similar to YAE6_YEAST HYPOT	3.09				3.87
	132962	AA576635	Hs.6153	CGI-48 protein	3.50				0.07
٠,,	132990	X77343	Hs.334334	transcription factor AP-2 alpha (activat	6.18				·
40	132994	AA112748	Hs.279905	clone HQ0310 PRO0310p1	3.19				
	133000 133050	AL042444 X73424	Hs.62402	p21/Cdc42/Rac1-activated kinase 1 (yeast	2.96				
	133083	BE244588	Hs.63788 Hs.6456	propionyl Coenzyme A carboxylase, beta p chaperonin containing TCP1, subunit 2 (b	2.55				4.00
	133086	L17131	Hs.139800	high-mobility group (nonhistone chromoso					8.96
45	133134	AF198620	Hs.65648	RNA binding motif protein 8A				•	4.28
	133155	M58583	Hs.662	cerebellin 1 precursor	2.00			10.80	
	133181 133204	X91662 BE267696	Hs.66744 Hs.254105	twist (Drosophila) homolog (acrocephalos enolase 1, (alpha)	3.00				4.63
	133412	U41493	Hs.73112	guanine nucleotide binding protein (G pr		12.50			4.55
50	133421	AF134160	Hs.7327	claudin 1	2.85				
	133451	AW970026	Hs.73818	ubiquinol-cytochrome c reductase hinge p		•			4.66
	133453	Al659306 NM_004415	Hs.73826 Hs.74316	protein tyrosine phosphatase, non-recept	6.14	6.80			
	133504 133506	BE562958	Hs.74346	desmoplakin (DPI, DPII) hypothetical protein MGC14353	0.14				4.55
55	133615	M62843	Hs.75236	ELAV (embryonic lethal, abnormal vision,				17.80	
	133627	NM_002047	Hs.75280	glycyl-tRNA synthetase					4.85
	133649	U25849	Hs.75393	acid phosphatase 1, soluble				44.00	6.34
	133669 133749	NM_006925 L20852	Hs.166975 Hs.10018	splicing factor, arginine/serine-rich 5 solute carrier family 20 (phosphate tran			6.11	14.00	
60	133776	BE268649	Hs.177766	ADP-ribosyltransferase (NAD+; poly (ADP-			0.11		4.91
	133865	AB011155	Hs.170290	discs, large (Drosophila) homolog 5	3.07				
	133946	AJ001258	Hs.173878	NIPSNAP, C. elegans, homolog 1					4.60
	133973	N55540	Hs.78026	ESTs, Weakly similar to similar to ankyr				13.00	2.05
65	134047 134098	BE262529 BE513171	Hs.78771 Hs.79086	phosphoglycerate kinase 1 mitochondrial ribosomal protein L3	2.56				3.85
Ų.	134107	NM_005629	Hs.187958	solute carrier family 6 (neurotransmitte	200		8.20		
	134112	AW449809	Hs.79150	chaperonin containing TCP1, subunit 4 (d					4.08
	134158	U15174	Hs.79428	BCL2/adenovirus E1B 19kD-interacting pro	31.00				
70	134160 134168	T98152	Hs.79432	fibrillin 2 (congenital contractural ara			24.60		C 74
70	134185	AA398908 AA285136	Hs.181634 Hs.301914	Homo sapiens cDNA: FLJ23602 fis, clone L neuronal specific transcription factor D				14.74	6.71
	134201	L35035	Hs.79886	ribose 5-phosphate isomerase A (ribose 5		8.40			
	134272		Hs.278614	protease, serine, 15	4.50				
75	134276	BE083936	Hs.80976	antigen identified by monoclonal antibod		9.00		40.40	
13	134353 134367	AL138201 AA339449	Hs.82120 Hs.82285	nuclear receptor subfamily 4, group A, m phosphoribosylglycinamide formyltransfer	2.80			16.40	
	134380	AU077143	нs.02205 Hs.179565	minichromosome maintenance deficient (S.	4.68				
	134423	H53497	Hs.83006	CGI-139 protein					3.84
οΛ	134469	AA279661	Hs.83753	small nuclear ribonucleoprotein polypept					5.81
80	134470	X54942	Hs.83758	CDC28 protein kinase 2					4.21
	134498 134502	AW246273 BE148534	Hs.84131 Hs.84168	threonyl-IRNA synthetase UV-B repressed sequence, HUR 7	-	13.60		•	7.30
	134510	NM_002757	Hs.250870	mitogen-activated protein kinase kinase		. 5.00		9.70	
0.5	134548	N95406	Hs.333495	Deleted in split-hand/split-foot 1 regio			•		4.63
85	134654	AK001741	Hs.8739	hypothetical protein FLJ 10879	6.00				

	W	O 02/086	443		PCT/US02/1			PCT/US02/12476	
	134724	AF045239	Hs.321576	ring finger protein 22				12.00	
	134743	AA044163	Hs.89463	potassium large conductance calcium-acti	4.00				
	134781	AA374372	Hs.89626	parathyroid hormone-like hormone			25.20		
5	134806	AD001528	Hs.89718	spermine synthase					4.58
5	134853	BE268326	Hs.90280	5-aminoimidazole-4-carboxamide ribonucle					4.79
	134859	D26488	Hs.90315	KIAA0007 protein			6.20		
	134891	R51083	Hs.90787	ESTs			7.40		
	134960	BE246400	Hs.285176	acetyl-Coenzyme A transporter	4.00				
10	134993	BE409809	Hs.301005	purine-rich element binding protein B					4.48
10	135047	AL134197 Al761180	Hs.93597 Hs.94211	cyclin-dependent kinase 5, regulatory su	9.50				
	135080 135103	NM_003428	Hs.9450	rcd1 (required for cell differentiation,	5.00				
	135145	AW014729	Hs.95262	zinc finger protein 84 (HPF2)		11.00			4.04
	135184	U13222	Hs.96028	nuclear factor related to kappa 8 bindin forkhead box D1			7.00		4.01
15	135242	Al583187	Hs.9700	cyclin E1	42.50		7.00		
13	135286	AW023482	Hs.97849	ESTs	13.50				
	135289	AW372569	Hs.9788	hypothetical protein MGC10924 similar to	6.46	8.80			
	135355	AK001652	Hs.99423	ATP-dependent RNA helicase	10.00	0.00			
	135371	NM_006025	Hs.997	protease, serine. 22	8.00				
20	135393	L11244	Hs.99886	complement component 4-binding protein.	0.00			14.60	

TABLE 5B shows the accession numbers for those primekeys lacking unigenelD's for Table 5A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Unique Eos probeset identifier number CAT number: Gene cluster number 30 Accession: Genbank accession numbers CAT number Pkey Accessions 117079 · 1621717_1 H92325 T97125 35 124305 242183_1 AW963221 AA344870 AA344871 H93331 101502 18202_-6 M26958 754958_1 109792 R49625 F10674 126034 1598157_1 H60340 N91637 102768 44641 1 U82321 H66077 40 1653833_1 N49713 N49819 W03810 126345 127066 1703458_1 R25066 R20144 R20145 Z43845 127099 244301_1 AA347668 AW956810 Z44271 F07065 F07064 R13506 119243 1774795_1 T12603 T12604 125875 1566433_1 H14480 N98295 45 112054 1538292_1 R43590 F10439 171411_1 126979 AA210954 AA211007 880655_1 A)809521 H12174 Z42556 126992 122318 292419_1 AA429743 AA442754 AA127386 R15644 AA127404 114699 135322_1 50 114793 150742 1 AA158245 AA158235 108305 111550_1 AA071391 AA069892 AA069891 108393 113411 1 AA075211 AA075245 AA075126 AA074946 100867 tigr_HT4586 U14622 123731 genbank_AA609839 AA609839 55 genbank_F09609 F09609 109700 120715 genbank_AA292700 AA292700 113702 genbank_T97307 T97307 115113 genbank_AA256460 AA256460 101045 entrez_J05614 J05614 60 108554 genbank_AA084948 AA084948 108573 genbank_AA086005 AA086005 119052 149538_1 R10889 R10888 126522 416020_1 W31912 Al167491 126605 439280 1 AA676910 AA778853 AA778865 W86800 65 W42667 AI580740 AI690440 AI561350 AW467906 AW151450 AI825927 AL041716 AI885600 AI742213 AW248624 AI955498 AA033947 103768 46922_1 AA845593 AI623711 N68583 C00064 AA193567 AW083868 AW163216 AA191595 AA522778 AI628008 AI915518 AA843508 AI926195 AA176265 AW167963 AA992115 W93647 AW103572 AI862994 AI342059 AA911719 AA176155 AA024712 AA069988 AA205591 AI591107 Al199673 Al811766 Al275832 Al422233 Al191852 Al096682 Al580124 Al683612 AA582453 AA927559 AA486415 T32414 Al084978 H44849 H44848 H20477 T91695 W47039 AA070055 AA024795 AA328855 AA379248 AA379330 AA385580 W25920 W03688 AA448359 AA093881 70 AW362477 AA089997 Al350265 W93479 N99688 AA932257 AW351469 H68590 AA663402 AA069771 AW087986 Al858420 AA600214 AI970774 AI857712 AI683081 AI885584 AW131150 AI567981 AW002714 AW189973 AW075495 AW168303 AA953714 AW516881 AI357375 Al566663 AW512676 Al570580 Al023690 AA448216 Al079853 Al422707 AA779516 AW026972 AW130082 AW162307 AW438646 AA709332 AW192394 Al167350 Al217879 Al129152 AA719509 Al350480 AA663418 Al003634 AW118546 AA180261 AA442833 Al268625 AA888881 AI038759 AA846723 AI248770 AA993694 AI280335 AI885107 AW518649 AA641563 AA995835 AA582521 AI276744 AA436478 AI017360 Al038759 AA846723 Al248770 AA993694 Al280335 Al885107 AW518649 AA641563 AA995835 AA582521 Al276744 AA435478 AU17360
Al620763 Al659887 N73926 Al076327 Al741615 Al160617 AW172819 Al492005 AA677429 AA996334 Al693771 Al950039 Al245629 Al288515
Al866186 T93293 AA173262 AA599779 Al680092 AW439316 Al084555 Al272672 Al583507 AW473219 AA738132 AW473283 Al367492
AA995410 Al689624 AA206353 Al033095 Al040382 AA873630 Al221074 Al934840 Al418680 AA844306 R94503 AA773520 AA843169
AA219425 AA629658 Al811719 AW411275 Al590981 W37907 Al591178 Al684051 AA983238 AA669347 AA976239 AA704570 Al628339
Al884391 Al241580 Al003539 AW176687 AA009650 N34566 Al333493 Al186070 AA070827 AA411683 Al280884 AA872023 AA207255
AA021576 N71953 Al885888 AW076639 T15777 Al537673 AW248048 H09554 W33480 W47001 AW070114 AA063160 AA757453 R60788 75 80 AI859431 H20478 AA218882 AA757465 AA100995 AI864135 AI934209 AA070503 H47008 AA219646 W61039 W93907 AW385050 W37967 W78028 AA189007 AA479136 R93650 AA442312 T30287 AA847628 AA180262 AA009649 C03892 AW149464 AA310963 AA219693 AA069747 R29207 AA094784 AA293615 AA447848 Al984167 N90393 C05097 N56499 AW292351 AW149681 AW473258 AA629322 Al004409

85

AW105577 AI954937 AI811070 AA902422 AW514437 AA535460 AA916877 AW517122 AA974657 AA975649 AW517130 AW517129 F31737

W07688 AA193645 AA378994 AA489273 F32267 W39303 AA021181 N86810 AA406524 AA062553 AA436801 H08985 H15979 N40310

WO 02/086443

PCT/US02/12476
AA436789 AA232172 AW360778 W25862 R60282 AA436530 AA378894 AA187461 AI940535 AA604210 AA089514 AA360421 N88243 N84281
AA209340 N56174 N88374 AA191088 AW247691 AA249013 AA093111 AA972536 AW298594 AA375893 T12139 W28186 AW243849
AI288629 AA843996 W15260 AI188286 AW248079 R16232 AI288629 AA843996 W15260 AI188286 AW248079 R15836

genbank_W45552 W45552 119599 5 genbank_R59904 R59904 112382 genbank_AA227934 AA227934 entrez_A28102 A28102 714071_1 AA496369 AA496646 105264 100071 123315

10

Table 6A shows 99 genes up-regulated nonsmokers with lung cancer relative to smokers with lung cancer. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

15 Pkey: ExAccn:

Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number Unigene number

UnigeneID: Unigene Title: Unigene gene title

average of AI for samples from non-smokers with adenocarcinoma divided by the 90th percentile of AI for samples from smokers with adenocarcinoma 20 average of AI for samples from non-smokers with squamous cell carcinoma divided by the 90th percentile of AI for samples from smokers with squamous cell R2:

		carcinom	a	•	•	
	Pkey	ExAcon	UnigenelD	Unigene Title	R1	R2
25	100971	BE379727	Hs.83213	fatty acid binding protein 4, adipocyte		3.64
	101174	L17330	Hs.280	pre-T/NK cell associated protein	15.00	
	101296	Y12490	Hs.85092	thyroid hormone receptor interactor 11		2.46
	101304	AA001021	Hs.6685	thyroid hormone receptor interactor 8		12.00
••	101806	AA586894	Hs.112408	S100 calcium-binding protein A7 (psorias		2.68
30	101972	S82472		gb:beta -pol=DNA polymerase beta (exon a		2.11
	102274	U30930	Hs.158540	UDP glycosyltransferase 8 (UDP-galactose	7.50	
	102394	NM_003816	Hs.2442	a disintegrin and metalloproteinase doma	7.50	
	102832	U92015		gb:Human clone 143789 defective mariner	13.50	
25	103010	X52509	Hs.161640	tyrosine aminotransferase	9.50	2.50
35	103439	X98266	11- 450400	gb:H.sapiens mRNA for ligase like protei	9.00	2.50
	103563	L02911	Hs.150402	activin A receptor, type I lacrimal proline rich protein	9.00	3.94
	103857	A1076795 AB002367	Hs.45033 Hs.21355	doublecortin and CaM kinase-like 1	13.50	0.34
	104239 104590	AW373062	Hs.83623	nuclear receptor subfamily 1, group I, m	13.30	12.66
40	104907	AA055829	Hs.196701	ESTs, Weakly similar to ALU1_HUMAN ALU	16.50	12.00
40	106131	BE514788	Hs.296244	SNARE protein		2.17
	106672	H47233	Hs.30643	ESTs	7.00	
	106872	T56887	Hs.18282	KIAA1134 protein	11.50	
	106960	AA156238	Hs.32501	ESTs		2.38
45	106971	Z43846	Hs.194478	Homo sapiens mRNA; cDNA DKFZp434O1572 (f	9.50	
	107982	AA035375	Hs.57887	ESTs, Weakly similar to KIAA0758 protei		2.95
	108562	AA100796		gb:zm26c06.s1 Stratagene pancreas (93720	16.50	
	108599	AB018549	Hs.69328	MD-2 protein	13.00	
	108663	BE219231	Hs.292653	ESTs, Weakly similar to T26845 hypotheti		2.40
50	109247	AA314907	Hs.85950	ESTs	7.00	
	109630	R44607	Hs.22672	ESTs		5.00
	110193	A1004874	Hs.310764	Homo sapiens mRNA; cDNA DKFZp434M082 (fr	12,50	
	110234	H24458	Hs.32085	EST	16.50	
<i>5 5</i>	110644	R94207	Hs.268989	ESTs, Highly similar to type II CALM/AF1	8.00	
55	110886	AW274992	Hs.72249	three-PDZ containing protein similar to	17.00	
	111057	T79639	Hs.14629	ESTs	16.50	
	111950	AF071594	Hs.110457	Wolf-Hirschhorn syndrome candidate 1	11.00	3.00
	112291	R53972 Z43784	Hs.26026 Hs.75893	ESTs ankyrin 3, node of Ranvier (ankyrin G)		2.79
60	112956 113009	T23699	Hs.7246	ESTs		4.50
00	113060	BE564162	Hs.250820	hypothetical protein FLJ14827	9.79	1.00
	113073	N39342	Hs.103042	microtubule-associated protein 1B	32.50	
	113074	AK001335	Hs.31137	protein tyrosine phosphatase, receptor t	-	3.82
	113121	T48011	Hs.8764	EST		2.21
65	113125	AA968672	Hs.8929	hypothetical protein FLJ11362	19.50	
	113757	AA703095	Hs.18631	EŜTs		2.65
	113848	W52854	Hs.27099	hypothetical protein FLJ23293 similar to	6.00	
	113884	Al333076	Hs.28529	chromosome 12 open reading frame 2		6.00
70	113936	W17056	Hs.83623	nuclear receptor subfamily 1, group I, m		4.63
70	114875	AA235609	Hs.236443	Horno sapiens mRNA; cDNA DKFZp564N1063 (7.00
	114987	AA251016	Hs.87808	EST		6.00
	115460	AW958439	Hs.38613	ESTs		2.27
	115722	W91892	Hs.59609	ESTs	0.50	9.00
75	116261	AA481788	Hs.190150	ESTs	9.50 8.50	
15	116830	H61037	Hs.70404	ESTs, Weakly similar to ALU2_HUMAN ALU		
	116970	AB023179 H98675	Hs.9059 Hs.269034	KIAA0962 protein ESTs	7.50	2.68
	117178 117757	AF088019	Hs.46732	EST	7.50	2.00
	118283	AA287747	Hs.173012	ESTs, Weakly similar to A46010 X-linked	16.50	
80	118384	AF217525	Hs.49002	Down syndrome cell adhesion molecule	. 5.00	2.50
-	118657	AI822106	Hs.49902	ESTs		2.39
	120328	AA923278	Hs.290905	ESTs, Weakly similar to protease [H.sapi		3.50
	120404	AB023230	Hs.96427	KIAA1013 protein	7.00	
	120524	AA261852	Hs.192905	ESTs	6.00	
85	120688	AW207555	Hs.97093	Homo sapiens cDNA: FLJ23004 fis, clone L	17.92	

	w	O 02/0864	143				PCT/US02/12476
	121558	AA412497		gb:zt95g12.s1 Soares_testis_NHT Homo sap		2.95	
	121676	H56037	Hs.108146	ESTs	10.00		
	121936	AI024600	Hs.98612	ESTs	15.00		•
	121938	AA428659	Hs.98610	ESTs	14.00		
5	122177	AA435789	Hs.98833	EST	8.93		
•	123442	AA299652	Hs.111496	Homo sapiens cDNA FLJ11643 fis, clone HE	13.04		
	123551	AA608837		gb:af03h12.s1 Soares_testis_NHT Homo sap	11.50		
	123756	AA609971	Hs.112795	EST	11.00		
	123861	AA620840		gb:af89g01.s1 Soares_testis_NHT Homo sap	******	2.50	
10	124371	N24924	Hs.188601	ESTs	6.50		
10	127477	BE328720	Hs.280651	ESTs		4.33	
	127591	Al190540	Hs.131092	ESTs ·		3.02	
	128252	AA455924	Hs.192228	ESTs	7.00		
	128426	AI265784	Hs.145197	ESTs		2.08	
15	128925	R67419	Hs.21851	Homo sapiens cDNA FLJ12900 fis, clone NT		2.11	
	128945	Al990506	Hs.8077	Homo sapiens mRNA; cDNA DKFZp547E184 (fr	10.00		
	129105	Al769160	Hs.108681	Homo sapiens brain tumor associated prot	15.50		•
	129235	AW977238	Hs.126084	KIAA1055 protein		4.25	
	129506	AB020684	Hs.11217	KIAA0877 protein	6.50		
20	129595	U09550	Hs.1154	oviductal glycoprotein 1, 120kD (mucin 9		10.00	
	130160	AA305688	Hs.267695	UDP-Gal:betaGlcNAc beta 1,3-galactosyltr	20.00		
	130340	D82326	Hs.239106	solute carrier family 3 (cystine, dibasi	11.50		
	131220	AB023194	Hs.300855	KIAA0977 protein	17.50		
	131430	AI879148	Hs.26770	fatty acid binding protein 7, brain	6.10		
25	132114	NM_006152	Hs.40202	lymphoid-restricted membrane protein		6.15	
	132458	AA935315	Hs.48965	Homo sapiens cDNA: FLJ21693 fis, clone C		5.58	
	132647	NM_006927	Hs.54432	sialyltransferase 4B (beta-galactosidase	7.50		
	132655	D49372	Hs.54460	small inducible cytokine subfamily A (Cy		2.53	
	132682	A1077500	Hs.54900	serologically defined colon cancer antig		2.50	
30	132747	AA345241	Hs.55950	ESTs, Weakly similar to KIAA1330 protein		2.83	
	132812	R50333	Hs.92186	Leman coiled-coil protein		3.82	
	133337	AF085983	Hs.293676	ESTs		5.00	
	133876	AL134906	Hs.771	phosphorylase, glycogen; liver (Hers dis		3.00	
	134119	AW157837	Hs.79226	fasciculation and elongation protein zet		2.06	
35	134464	AA302983	Hs.239720	CCR4-NOT transcription complex, subunit		2.27	
	134542	M14156	Hs.85112	insulin-like growth factor 1 (somatomedi		11.50	•
	135002	AA448542	Hs.251677	G antigen 7B	87.00		
	135305	AA203555	Hs.98288	Homo sapiens cDNA FLJ14903 fis, clone PL		6.50	
40							
40							
	TABLE 6B	show the acce	ssion numbers	for those primekeys tacking unigenelD's for Table 6A. For	each probeset we h	ave listed the ge	ne cluster number from which the

objective and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers

45

50

CAT number Accessions Pkey AA100796 AF020589 AA074629 AA075946 AA100849 AA085347 AA126309 AA079311 AA079323 AA085274 X98266 N41124 108562 35330_1 X98266 genbank_AA608837 55 103439 123551 AA608837 AA620840 U92015 123861

genbank_AA620840 entrez_U92015 entrez_S82472 genbank_AA412497 102832 101972 S82472 60 121558 AA412497

WO 02/086443

Table 7A shows 98 genes down-regulated in non-smokers with lung cancer relative to smokers with lung cancer. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

5 Pkey:

Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number Unigene number ExAccn:

UnigenelD:

Unigene Title:
Unigene Title:
Unigene gene title
Unigene gene title
Unigene gene title
90th percentile of Al for samples from smokers with adenocarcinoma divided by the average of Al for samples from non-smokers with adenocarcinoma.
R2:
90th percentile of Al for samples from smokers with squamous cell carcinoma divided by the average of Al for samples from non-smokers with squamous cell 10

		carcinor	na.	•	-	-
	Pkey	ExAcon	UnigenelD	Unigene Title	R1	R2
15	100187 100380	D17793 D82343	Hs.78183 Hs.18551	aldo-keto reductase family 1, member C3 neuroblastoma (nerve tissue) protein		164.10 77.40
	100576	X00356	Hs.37058	calcitonin/calcitonin-related polypeptid	102.40	
	100971	BE379727	Hs.83213	fatty acid binding protein 4, adipocyte	463.80	
20	101046 101066	K01160 AW970254	Hs.889	(NONE) Charot-Leyden crystal protein	672.00 66.00	
20	101175	U82671	Hs.36980	melanoma antigen, family A, 2	00.00	77.20
	101497	W05150	Hs.37034	homeo box A5	62.80	
	101663	NM_003528	Hs.2178	H2B histone family, member Q	78.00	
0.5	101677	NM_000715	Hs.1012	complement component 4-binding protein,	186.20	
25	101745	M88700	Hs.150403	dopa decarboxylase (aromatic L-amino aci	80.08	
	101941	S77583	11- 200245	gb:HERVK10/HUMMTV reverse transcriptase	99.20	102.10
	102125 102242	NM_006456 U27185	Hs.288215 Hs.82547	sialyltransferase relinoic acid receptor responder (tazaro	67.00	103.10
	102340	U37055	Hs.278657	macrophage stimulating 1 (hepatocyte gro	71.60	
30	102369	U39840	Hs.299867	hepatocyte nuclear factor 3, alpha	,	69.70
	102457	NM_001394	Hs.2359	dual specificity phosphatase 4	153.00	
	102669	U71207	Hs.29279	eyes absent (Drosophila) homolog 2		65.70
	102796	AL079646	Hs.107019	symplekin; Huntingtin interacting protei		58.80
35	102829 103207	NM_006183 X72790	Hs.80962	neurotensin gb:Human endogenous retrovirus mRNA for	70.00	268.80
55	103242	X76342	Hs.389	alcohol dehydrogenase 7 (class IV), mu o	10.00	212.10
	103260	X78416	Hs.3155	casein, alpha		130.70
	103351	X89211		gb:H.sapiens DNA for endogenous retrovir	64.60	
40	104212	AB002298	Hs.173035	KIAA0300 protein	66.80	
40	104252	AF002246	Hs.210863	cell adhesion molecule with homology to	63.80	
	104258 105024	AF007216 AA126311	Hs.5462 Hs.9879	solute carrier family 4, sodium bicarbon ESTs	94.40 68.20	
	106260	Al097144	Hs.5250	ESTs, Weakly similar to ALU1_HUMAN ALU S	00.20	74.60
	106440	AA449563	Hs.151393	glutamate-cysteine ligase, catalytic sub		71.10
45	106566	BE298210		gb:601118016F1 NIH_MGC_17 Homo sapiens c	73.20	
	106605	AW772298	Hs.21103	Homo sapiens mRNA; cDNA DKFZp564B076 (fr	83.80	
	106614	AA648459	Hs.335951	hypothetical protein AF301222		62.30
	106654 106999	AW075485 H93281	Hs.286049 Hs.10710	phosphoserine aminotransferase hypothetical protein FLJ20417		202.40 89.60
50	108700	AA121518	Hs.193540	ESTs, Moderately similar to 2109260A B c		66.40
	108810	AW295647	Hs.71331	hypothetical protein MGC5350		95.50
	108857	AK001468	Hs.62180	anillin (Drosophila Scraps homolog), act		63.40
	109597	AA989362	Hs.293780	ESTs	85.00	PA 70
55	109691 109704	T65568 A1743880	Hs.12860 Hs.12876	ESTs ESTs		58.70 60.60
33	110942	R63503	Hs.28419	ESTs	76.40	00.00
	111722	R23924	Hs.23596	EST	74.60	
	112891	T03927	Hs.293147	ESTs, Moderately similar to A46010 X-li	64.80	
60	112992	AL157425	Hs.133315	Homo sapiens mRNA; cDNA DKFZp761J1324 (f		76.70
OU	113073 114251	N39342 H15261	Hs.103042 Hs.21948	microtubule-associated protein 1B ESTs	127.20	120.20
	115230	AA278300	Hs.124292	Homo sapiens cDNA: FLJ23123 fis, clone L	174.00	
	115291	BE545072	Hs.122579	hypothetical protein FLJ10461		91.00
CE	115815	AW905328	Hs.180842	ribosomal protein L13	66.40	
65	115909	AW872527	Hs.59761	ESTs, Weakly similar to DAP1_HUMAN DEATH	00.00	226.60
	115965 116107	AA001732 AL133916	Hs.173233 Hs.172572	hypothetical protein FLJ10970 hypothetical protein FLJ20093	82.80	361.60
	116552	D20508	Hs.164649	hypothetical protein DKFZp434H247	69.00	351.00
	116571	D45652	110.104010	gb:HUMGS02848 Human adult lung 3' direct	64.20	
70	118466	N66741		gb:yz33g08.s1 Morton Fetal Cochlea Homo		63.50
	120484	AA253170	Hs.96473	EST	81.60	
	120983	AA398209 AL389951	Hs.97587	EST nucleoporin 50kD		81.10
	121034 121423	AU973352	Hs.271623 Hs.290585	ESTs	64.40	66.20
75	122553	AA451884	Hs.190121	ESTs	04.40	60.40
	122946	AI718702	Hs.308026	major histocompatibility complex, class	188.60	
	123130	AA487200		gb:ab19f02.s1 Stratagene lung (937210) H		80.20
	124472	N52517	Hs.102670	EST	71.00	40.00
80	124526	N62096	Hs.293185	ESTs, Weakly similar to JC7328 amino aci		104.90
00	125489 125731	H49193 R61771	Hs.124984 Hs.26912	ESTs, Moderately similar to ALU7_HUMAN A ESTs		72.00 69.90
	- 125747	NM_002884	Hs.865	RAP1A, member of RAS oncogene family	69.00	00.00
	126020	H79863	Hs.114243	ESTs		62.40
0.5	126547	U47732	Hs.84072	transmembrane 4 superfamily member 3		62.80
85	126966	R38438	Hs.182575	solute carrier family 15 (H+/peptide tra		60.10

	W	O 02/086	443			PCT/US02/12476
	127610	AA761378 AA960867 AW293496	Hs.192013 Hs.150271 Hs.180138	ESTs ESTs, Highly similar to unnamed protein ESTs	70.20 64.00 85.20	
		AI022103	Hs.124511	ESTs	96.60	
5		AW889132	Hs.11916	ribokinase	••••	78.90
_	128420		Hs.41296	fibronectin leucine rich transmembrane p	•	106.90
	128766	AW160432	Hs.296460	craniofacial development protein 1	66.80	
	129014	AW935187	Hs.170162	KIAA1357 protein		58.53
10	129215		Hs.126085	KIAA1497 prolein	64.20	
10	130090	H97878	Hs.132390	zinc finger protein 36 (KOX 18)	63.80	400.00
	130385		Hs.155223	stanniocalcin 2		139.60
		AW890487 AB040900	Hs.63984 Hs.6189	cadherin 13, H-cadherin (heart) KIAA1467 protein	64.40	64.60
	131025	BE501914	Hs.24654	Homo sapiens cDNA FLJ11640 fis, clone HE	76.20	
15		AB014548	Hs.31921	KIAA0648 protein	97.80	
15		AB018324	Hs.42676	KIAA0781 protein	37.00	· 71.00
	132856	NM_001448	Hs.58367	glypican 4		88.40
	132977	AA093322	Hs.301404	RNA binding motif protein 3	133.20	00.00
	133749	L20852	Hs.10018	solute carrier family 20 (phosphate tran	100120	59.30
20	133818	Al110684	Hs.7645	fibrinogen, B beta polypeptide	341.00	
	134264		Hs.8087	NAG-5 protein		64.30 .
	134265	M83772	Hs.80876	flavin containing monooxygenase 3		232.53
	134346	X84002	Hs.82037	TATA box binding protein (TBP)-associate	66.00	
0.5	134395	AA456539	Hs.8262	lysosomal-associated membrane protein 2		75.80
25	135047	AL134197	Hs.93597	cyclin-dependent kinase 5, regulatory su		108.30
	135056	N75765	Hs.93765	lipoma HMGIC fusion partner	71.40	
	135309	Al564123	Hs.42500	ADP-ribosylation factor-like 5	70.40	
30	oligonucle similarity	eotides were de	signed. Gene	clusters were compiled using sequences derived	from Genbank ES	probeset we have listed the gene cluster number from which the Ts and mRNAs. These sequences were clustered based on sequen a numbers for sequences comprising each cluster are listed in the
35	Pkey: CAT num Accession	ber: Gene clus	s probeset ide ter number accession num			
40	Pkey	CAT number	r Accessions			
40	103207 106566	306354 120358_1		Al672315 AW086489 BE298417 AA455921 AA9 Al476470 Al287650 Al885299 Al985381 AW5926		R14963 AA085210 AW274273 Al333584 Al369742 Al039658 66556 AA456390 Al310815 AA484951
45	116571 118466 101046 101941	genbank_D4 genbank_N6 entrez_K011 entrez_S775	15652 56741 160 K01160	D45652 N66741	247111010100742	
	103351	entrez_X892				·
	123130	genbank_A/		AA487200		
50		J = -				

WO 02/086443 PCT/US02/12476

Table 8A shows 1720 genes either up or down-regulated in lung tumors or chronically diseased lung relative to a broad collection of over 40 distinct normal body tissues. Chronically diseased lung samples represent chronic non-malignant lung diseases such as fibrosis, emphysema, and bronchitis. These genes were selected from 39494 probesets on the Eos/Affymetrix Hu02 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (Al), a normalized value reflecting the relative level of mRNA expression.

Unique Eos probeset identifier number

ExAccn: Exemplar Accession number, Genbank accession number

UnigeneID: Unigene number Unigene Title: Unigene gene title

5

10

70th percentile of Al for lung tumors divided by 90th percentile of Al for normal lung 70th percentile of Al for chronically diseased lung divided by 90th percentile of Al for normal lung

	R2:	70th pen	centile of AI for	chronically diseased lung divided by 90th percentile o	of Al for norm	al lung
	Pkey	ExAcon	UnigenelD	Unigene Title	R1	R2
15	300097	Al916973	Hs.213603	ESTs	5.46	4.69
	300117	AW189787	Hs.147474	ESTs	0.58	0.56
	300197	Al686661	Hs.218286	ESTs	4.26	5.44
	300201	Al308300	U= 107505	gb:ta90c06.x1 NCI_CGAP_Bm20 Homo sapien	0.62	0.83
20	300225 300247	Al989963 AW274682	Hs.197505 Hs.161394	ESTs ESTs	1.68 1.08	1.75 2.28
20	300256	A1469095	Hs.298241	Transmembrane protease, serine 3	0.86	1.00
	300337	Al707881	Hs.202090	ESTs	5.80	9.09
	300362	Z42308		gb:HSC0FB121 normalized infant brain cDN	4.18	12.78
25	300374	Al859947	Hs.314158	ESTs	2.99	4.38
25	300387	AW270150	Hs.254516	ESTs	1.50	2.53
	300440 300441	Al421541	Hs.146164	ESTS	3.98	5.25
	300447	R10367 Al362967	Hs.307921 Hs.132221	EST, Weakly similar to Z232_HUMAN ZINC F hypothetical protein FLJ12401	3.18 0.43	6.80 0.62
	300469	AW135830	Hs.233955	hypothetical protein FLJ20401	0.16	0.83
30	300552	X85711	Hs.21838	hypothetical protein FLJ11191	4.10	9.75
	300627	W27363		gb:ab37d01.r1 Stratagene HeLa cell s3 93	4.60	12.60
	300630	AW118822	Hs.128757	ESTs	2.91	5.86
	300716	Al216113	Hs.126280	hypothetical protein FLJ23393	1.00	0.92
35	300738 300777	Al623332 AA235361	Hs.130541 Hs.96840	KIAA1542 protein KIAA1527 protein	1.82 4.48	1.71 8.22
55	300790	Al492471	Hs.188270	ESTs	1.29	1.18
	300832	Al688147	Hs.220615	ESTs, Weakly similar to T03829 transcrip	5.51	8.56
	300836	Z44942	Hs.22958	calcium channel alpha2-delta3 subunit	4.90	6.34
40	300838	Al582897	Hs.192570	hypothetical protein FLJ22028	1.70	2.81
40	300878	AW449802	Hs.285901	Homo sapiens cDNA FLJ20428 fis, clone KA	4.56	7.91
	300897 300926	Al890356 AA504860	Hs.127804	ESTs, Weakly similar to T17233 hypotheti gb:ab03a10.s1 Stratagene fetal retina 93	2.23 ⁻ 2.13	1.58 3.50
	300960	AI041019	Hs.152454	ESTs	2.74	4.46
	300961	AW204069	Hs.312716	ESTs, Weakly similar to unnamed protein	1.00	1.00
45	300962	AA593373	Hs.293744	ESTs	1.46	1.51
	300967	AA565209	Hs.269439	ESTs	0.39	1.30
	300987	AW450840	Hs.148590	ESTs, Weakly similar to AF208846 1 BM-00	1.49	1.08
	300988 301050	Al927208 AW136973	Hs.208952 Hs.288516	ESTs ESTs, Weakly similar to S69890 mitogen i	0.16 3.23	0.37 1.94
50	301098	AA677570	Hs.185918	ESTs	6.76	14,28
	301157	AA729905	Hs.231916	ESTs	3.16	8.85
	301162	Al142118	Hs.129004	ESTs	1.68	7.18
	301170	AA737594	Hs.247606	ESTs	4.40	6.42
55	301192	AI808751	Hs.121188	ESTs	6.38	11.59
55	301193 301267	AA758115 AW297762	Hs.128350 Hs.255690	ESTs, Weakly similar to JC5423 2-hydroxy ESTs	4.35 1.56	7.78 1.61
	301281	AA843986	Hs.190586	ESTs	2.19	1.78
	301341	Al819198	Hs.208229	ESTs	0.76	0.76
C O	301382	AA912839	Hs.163369	ESTs	1.00	1.81
60	301407	AW450466	Hs.126830	ESTs	1.48	1.51
	301452 301483	AA975688 AW272467	Hs.159955 Hs.254655	ESTs Untitled	0.51 2.40	1.46 5.02
	301494	A1678034	Hs.131099	ESTs .	2.79	3.41
	301521	Al733621	Hs.133011	zinc finger protein 117 (HPF9)	0.67	0.67
65	301531	A1077462	Hs.134084	ESTs	2.52	3.76
	301580	AI878959	Hs.73737	splicing factor, arginine/serine-rich 1	7.41	11.92
	301676 301690	Z43570	Hs.27453	ESTs, Moderately similar to G01251 Rar p	8.31	10.70
	301718	F05865 F07744	Hs.108323 Hs.7987	ubiquitin-conjugating enzyme E2E 2 (homo DKFZP434F162 protein	2.70 4.20	4.22 8.78
70	301799	AA384252	Hs.286132	D15F37 (pseudogene)	5.93	7.04
	301804	AA581004	Hs.62180	anillin (Drosophila Scraps homolog), act	1.70	0.76
	301822	X17033	Hs.271986	integrin, alpha 2 (CD49B, alpha 2 subuni	1.58	1.36
	301846	R20002	Hs.6823	hypothetical protein FLJ10430	1.00	1.00
75	301868	T71508	Hs.13861	ESTs, Weakly similar to pH sensitive max	2.88	5.49
	301882 301905	T78054 Al991127	Hs.117202	gb:yc97g09.r1 Soares infant brain 1NIB H ESTs	2.28 1.00	3.80 1.00
	301948	AA344647	Hs.116724	aldo-keto reductase family 1, member B11	5.28	2.28
	301960	AW070252	Hs.27973	KIAA0874 protein	5.38	6.48
90	302011	T91418	Hs.125156	transcriptional adaptor 2 (ADA2, yeast,	3.03	3.42
80	302016	N40834	Hs.23495	hypothetical protein FLJ11252	1.00	1.25
	302041 302072	NM_001501 AJ238381	Hs.129715 Hs.132576	gonadotropin-releasing hormone 2 paired box gene 9	0.71 1.60	0.99 1.71
	302094	A1286176	Hs.6786	ESTs	0.52	1.20
0.7	302095	AW044300	Hs.137506	Homo sapiens BAC clone RP11-120J2 from 7	2.75	4.93
85	302148	AW269618	Hs.23244	ESTs	3.04	3.87
			-			

		U 02/080				
	302155	AI088485	Hs.144759	ESTs	0.45	1.15
	302201	AJ006276	Hs.159003	transient receptor potential channel 6	0.33	0.84
	302202	AF097159	Hs.159140	UDP-Gal:betaGlcNAc beta 1,4- galactosylt	0.52	0.94
_	302206	Al937193	Hs.41143	phosphoinositide-specific phospholipase	2.76	3.65
5	302209	AF047445	Hs.159297	killer cell lectin-like receptor subfami	1.00	1.00
-	302235	AL049987	Hs.166361	Homo sapiens mRNA; cDNA DKFZp564F112 (fr	1.68	1.50
	302290	AL117607	Hs.175563	Homo sapiens mRNA; cDNA DKFZp564N0763 (f	1.00	2.11
	302328	AA354849	Hs.23240	Homo sapiens cDNA FLJ13496 fis, clone PL	9.38	13.08
	302346	AL039101	Hs.194625	dynein, cytoplasmic, light intermediate		7.24
10					3.27	
10	302360	AJ010901	Hs.198267	mucin 4, tracheobronchial	2.54	1.88
	302384	Y08982	Hs.202676	synaptonemal complex protein 2	1.00	0.91
	302406	U86751	Hs.211956	CD3-epsilon-associated protein; antisens	2.63	2.67
	302409	AF155156	Hs.218028	adaptor-related protein complex 4, epsit	5.82	9.34
	302423	AB028977	Hs.225974	KIAA1054 protein	3.66	3.18
15	302432	AL080068	Hs.272534	Homo sapiens mRNA; cDNA DKFZp564J062 (fr	2.44	6.77
	302435	AF092047	Hs.227277	sine oculis homeobox (Drosophila) homolo	0.44	0.84
	302437	AB024730	Hs.227473	UDP-N-acetylglucosamine:a-1,3-D-mannosid	4.18	5.64
	302455	AA356923	Hs.240770	nuclear cap binding protein subunit 2, 2	1.85	0.92
	302472	AA317451	Hs.6335 ·	SWI/SNF related, matrix associated, acti	2.04	2.13
20	302476	AF182294	Hs.241578	U6 snRNA-associated Sm-like protein LSm8	1:44	1.89
20						1.10
	302489	T80660	Hs.230424	Horno sapiens cDNA FLJ13540 fis, clone PL	0.51	
	302490	AA885502	Hs.187032	ESTs	2.64	4.87
	302562	AJ005585	Hs.48956	gap junction protein, beta 6 (connexin 3	5.34	2.68
25	302566	AA085996	Hs.248572	hypothetical protein FLJ22965	1.00	1.21
25	302630	AB029488	Hs.272100	SMS3 protein	0.52	1.24
	302634	AB032953	Hs.173560	odd Oz/ten-m homolog 2 (Drosophila, mous	1.00	1.00
	302638	AA463798	Hs.102696	MCT-1 protein	1.58	1.02
	302647	X57723	Hs.198273	NADH dehydrogenase (ubiquinone) 1 bela s	2.72	6.85
	302655	AJ227892	Hs.146274	ESTs	1.00	4.32
30	302656	AW293005	Hs.70704	Homo sapiens, clone IMAGE:2823731, mRNA,	2.97	0.93
•	302668	AA580691	Hs.180789	S164 protein	0.80	0.95
	302679	H65022		gb:yu66g11.r1 Weizmann Olfactory Epithel	1.68	5.04
	302680	AW192334	Hs.38218	ESTs	2.70	7.98
	302697	AJ001408	115.50210	gb:Homo sapiens mRNA for immunoglobulin	4.25	8.13
35					3.91	8.68
33	302705	U09060		gb:Human immunoglobulin heavy chain, V-r		
	302711	L08442		gb:Human autonomously replicating sequen	2.20	2.73
	302719	W69724	Hs.288959	hypothetical protein FLJ20920	0.54	1.02
	302742	L12069		gb:Homo sapiens (clone WR4.10VH) anti-th	4.28	11.57
40	302755	AW384815	Hs.149208	KIAA1555 protein	1.57	2.38
40	302771	H98476	Hs.42522	ESTs	2.94	4.68
	30278 9	AJ245067		gb:Homo sapiens mRNA for immunoglobulin	3.49	6.31
	302795	AJ245313	Hs.272838	hypothetical protein FLJ10494	0.80	2.74
	302802	Y08250		gb:H.sapiens mRNA for variable region of	1.13	0.77
	302803	AA442824	Hs.293961	ESTs, Moderately similar to putative DNA	3.14	10.68
45	302812	N31301	Hs.152664	hypothetical protein FLJ20051	3.04	8.24
	302847	X98940	(10.102001	gb:H.sapiens rearranged lg heavy chain (1.80	1.92
	302885	AL137763	Hs.132127	hypothetical protein LOC57822	1.00	1.00
		AI581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti	0.53	0.67
	302943					
50	302977	AW263124	Hs.315111	hypothetical protein FLJ12894	2.45	2.62
50	303006	AF078950	Hs.24139	Homo sapiens cDNA: FLJ23137 fis, clone L	4.88	8.61
•	303011	AF090405		gb:Homo sapiens clone 2A1 scFV anitbody	1.41	1.86
	303013	F07898	Hs.288968	RAB22A, member RAS oncogene family	1.51	1.19
	303061	AF151882	Hs.27693	peptidylprolyl Isomerase (cyclophilin)-l	0.72	0.76
	303077	AF163305		gb:H.sapiens T-cell receptor mRNA	1.17	3.90
55	303090	AA443259	Hs.146286	kinesin family member 13A	4.08	6.46
	303091	AF192913	Hs.130683	zinc finger protein 180 (HHZ168)	2.50	4.37
	303094	AF195513	Hs.278953	Pur-gamma	5.38	8.38
	303095	AF202051	Hs.134079	NM23-H8	3.26	4.08
	303131	AW081061	Hs.103180	DC2 protein	2.02	1.83
60	303195	AA082211	Hs.233936	myosin, light polypeptide, regulatory, n	1.32	3.95
	303196	AA082298	Hs.59710	ESTs	0.77	0.53
	303216	AA581439	Hs.152328	ESTs	0.24	0.63
	303222	AA333538	Hs.204501	hypothetical protein FLJ10534	3.56	6.22
	303234	AA132255	Hs.143951	ESTs	2.28	3.17
65					0.38	1.02
05	303251	AW340037	Hs.115897	protocadherin 12 ESTs		
	303295	AA205625	Hs.208067	==::	2.30	1.00
	303297	T80072	Hs.13423	Homo sapiens clone 24468 mRNA sequence	1.86	4.48
	303316	AF033122	Hs.14125	p53 regulated PA26 nuclear protein	0.10	0.80
70	303467	AA398801	Hs.323397	ESTs	4.54	9.65
70	303506	AA340605	Hs.105887	ESTs, Weakly similar to Homolog of rat Z	0.09	, 0.04
	303552	AA359799	Hs.224662	ESTs, Weakly similar to unnamed protein	1.00	1.72
	303598	AA382814		gb:EST96097 Testis I Homo sapiens cDNA 5	4.96	9.14
	303637	AF056083	Hs.24879	phosphatidic acid phosphatase type 2C	2.06	2.02
	303655	AA504702	Hs.258802	ATPase, (Na+)/K+ transporting, beta 4 po	1.00	1.24
75	303756	A1738488	Hs.115838	ESTs	1.08	1.43
	303856	AA968589	Hs.180532	glucose phosphate isomerase	1.76	1.31
	303893	N88597	Hs.113503	karyopherin (importin) beta 3	2.30	2.57
	303907	AW467774	Hs.171880	polymerase (RNA) II (DNA directed) polyp	3.10	5.79
	303946	AW474196	Hs.306637	Homo sapiens cDNA FLJ12363 fis, clone MA	5.06	11.86
80			. 13.300037			7.31
00	303978	AW513315	Un 270024	gb:xo43c12.x1 NCI_CGAP_Ut1 Homo sapiens	5.14	
	303981	AW513804	Hs.278834	ESTs, Weakly similar to ALU1_HUMAN ALU S	2.83	4.06
	303990	AW515465		gb:xu71a11.x1 NCI_CGAP_Kid8 Homo sapiens	1.15	2.35
	303998	AW516449		gb:xt68f05.x1 NCI_CGAP_Ut2 Homo sapiens	2.20	9.35
0.5	303999	AW516611		gb:xp70b11.x1 NCI_CGAP_Ov39 Homo sapiens	4.85	6.28
85	304006	AW517947		gb:xt66h02.x1 NCI_CGAP_Ut2 Homo sapiens	3.21	4.07
				·		

	W	O 02/08	6443			
	304008	AW518198	Hs.3297	ribosomal protein S27a	6.50	11.08
	304009	AW518206	Hs.181165	eukaryotic translation elongation factor	1.88	3.27
	304024	T03036		gb:FB21B7 Fetal brain, Stratagene Homo s	2.15	3.55
	304026			gb:FB26F2 Fetal brain, Stratagene Homo s	5.88	11.80
5	304028	T03266		gb:FB7C1 Fetal brain, Stratagene Homo sa	5.59	13.46
,	304036	T16855	Hs.244621	ribosomal protein S14	6.55	14.43
	304046	T54803	113.271021	gb:yb42d06.s1 Stratagene fetat spleen (9	6.18	12.19
	304061	T61521		gb:yb73g01.s1 Stratagene ovary (937217)	2.64	8.23
		T62536		gb:yc04c12s1 Stratagene lung (937217)		1.61
10	304063		Un 477500		0.53	
10	304097	R25376	Hs.177592	ribosomal protein, large, P1	6.49	11.67
	304114	R78946		gb:yi87g02.s1 Soares placenta Nb2HP Homo	2.90	4.18
	304122	H28966		gb:ym31a06.s1 Soares infant brain 1NIB H	1.00	2.76
	304155	H68696		gb:yr78b06.s1 Soares fetal liver spleen	0.79	1.18
	304203	N56929		gb:yy82d08.s1 Soares_multiple_sclerosis_	4.28	11.34
15	304234	W81608	-	gb:zd88h06.s1 Soares_fetal_heart_NbHH19W	6.47	11.03
	304267	AA064862	Hs.73742	ribosomal protein, large, P0	1.34	1.16
	304270	AA069711	Hs.297753	vimentin	3.40	5.40
	304287	AA079286	Hs.78466	proteasome (prosome, macropain) 26S sub	2.93	4.42
	304348	AA179868	. 10.7 0 100	gb:zp38g12.s1 Stratagene muscle 937209 H	3.98	10.96
20 .	304415	AA290747	Hs.169476	glyceraldehyde-3-phosphate dehydrogenase	3.32	5.99
20 .			115.105410			1.00
	304430	AA347682		gb:EST54044 Fetal heart II Homo sapiens	1.00	
	304456	AA411240		gb:zv26g05.s1 Soares_NhHMPu_S1 Homo sapi	1.42	3.33
	304521	AA464716		gb:zx82c11.s1 Soares ovary tumor NbHOT H	2.18	1.15
0.5	304526	AA476427		gb:zx02c05.s1 Soares_total_fetus_Nb2HF8_	5.38	14,11
25	304542	AA482602	Hs.169476	glyceraldehyde-3-phosphate dehydrogenase	4.16	8.23
	304546	AA486074	Hs.297681	serine (or cysteine) proteinase inhibito	0.55	1.20
	304607	AA513322		gb:nh85e08.s1 NCI_CGAP_Br1.1 Homo sapien	1.95	2.10
	304640	AA524440	Hs.111334	ferritin, light polypeptide	2.10	2.83
	304650	AA527489	Hs.3463	ribosomal protein S23	3.33	12.62
30	304735	AA576453		gb:nm75h11.s1 NCI_CGAP_Co9 Homo sapiens	1.33	0.88
20	304760	AA580401		gb:nn13g09.s1 NCI_CGAP_Co12 Homo saplens	3.68	8.14
	304849	AA588157	Hs.13801	KIAA1685 protein	2.77	3.70
			Hs.284136	PRO2047 protein	7.16	11.01
	304917	AA602685			2.47	4.24
25	304921	AA603092	Hs.297753	vimentin		
35	304966	AA613893	Hs.282435	ESTs 2/0	6.78	11.66
	304987	AA618044	Hs.300697	Immunoglobulin heavy constant gamma 3 (G	0.90	1.23
	305016	AA626876		gb:zu89h06.s1 Soares_testis_NHT Homo sap	6.46	10.17
	305034	AA630128		gb:ab99c04.s1 Stratagene lung (937210) H	1.00	1.00
	305072	AA641012		gb:nr72a12.s1 NCI_CGAP_Pr24 Homo sapiens	5.68	11.59
40	305111	AA644187	Hs.303405	ESTs	1.48	1.37
	305148	AA654070	•	gb:nt01g08.s1 NCI_CGAP_Lym3 Homo sapiens	1.76	4.61
	305159	AA659166	Hs.275668	EST, Weakly similar to EF1D_HUMAN ELONG	1.00	2.15
	305190	AA665955		gb:ag57d12.s1 Gessler Wilms tumor Homo s	5.31	8.14
	305232	AA670052	Hs.169476	glyceraldehyde-3-phosphate dehydrogenase	0.78	1.18
45	305235	AA670480		gb:ag37e01.s1 Jia bone marrow stroma Hom	3.11	8.66
10	305245	AA676695	Hs.81328	nuclear factor of kappa light polypeptid	4.38	7.53
	305312	AA700201	113.01320	gb:zj44f07.s1 Soares_fetal_liver_spleen_	2.13	2.66
			Un 462040	<u> </u>	1.20	1.40
	305322	AA701597	Hs.163019	EST		
50	305394	AA720942	Hs.300697	immunoglobulin heavy constant gamma 3 (G	1.16	0.68
50	305413	AA724659		gb:ai10f08.s1 Soares_parathyroid_tumor_N	5.86	9.87
	305447	AA737856		gb:nx10c08.s1 NCI_CGAP_GC3 Homo sapiens	2.21	2.86
	305476	AA745664	Hs.287445	hypothetical protein FLJ11726	3.36	6.54
	305483	AA748030	Hs.303512	EST	1.00	2.02
	305528	AA769156		gb:nz12e05.s1 NCI_CGAP_GCB1 Homo sapiens	6.44	9.10
55	305612	AA782347	Hs.272572	hemoglobin, alpha 2	0.19	0.79
	305614	AA782866		gb:aj09h02.s1 Soares_parathyroid_tumor_N	1.00	1.00
	305616	AA782884	Hs.275865	ribosomal protein S18	7.57	10.20
	305637	AA806124		gb:oe29a12.s1 NCI_CGAP_Pr25 Homo sapiens	4.78	12.42
	305639	AA806138		gb:oe29c12.s1 NCI_CGAP_Pr25 Homo sapiens	0.89	0.70
60	305650	AA807709		gb:nw31e04.s1 NCI_CGAP_GCB0 Homo sapiens4.		8.71
	305690	AA813477		gb:ai67a05.s1 Soares_testis_NHT Homo sap	4.91	9.40
	305726	AA828156	Hs.73742	ribosomal protein, large, P0	0.19	0.81
	305728	AA828209	10.10144	gb:of34a02.s1 NCI_CGAP_Kid6 Homo sapiens	5.12	9.29
						4.11
65	305759	AA835353		gb:ak72b06.s1 Barstead spleen HPLRB2 Hom	1.66	
03	305792	AA845256		gb:ak84a08.s1 Barstead spleen HPLRB2 Hom	2.34	4.25
	305864	AA864374	Hs.73742	ribosomal protein, large, PO	0.30	1.40
	305901	AA872968		gb:oh63h08.s1 NCI_CGAP_Kid5 Homo sapiens	2.10	5.21
	305910	AA875981		gb:nx21h02.s1 NCI_CGAP_GC3 Homo sapiens	0.32	1.01
70	306015	AA897116		gb:am08b07.s1 Soares_NFL_T_GBC_S1 Homo s1.	56	1.12
70	306017	AA897221	Hs.109058	ribosomal protein S6 kinase, 90kD, polyp	5.21	7.90
	306020	AA897630	Hs.130027	EST	1.96	6.59
	306063	AA906316		gb:ok03g03.s1 Soares_NFL_T_GBC_S1 Homo s	7.38	20.69
	306065	AA906725		gb:ok78g02.s1 NCI_CGAP_GC4 Homo sapiens	7.19	13.48
	306104	AA910956		gb:ok85h11.s1 NCI_CGAP_Kid3 Homo sapiens	6.50	9.13
75	306109	AA911861		gb:og21a07.s1 NCI_CGAP_PNS1 Homo sapiens	4.21	5.25
	306148	AA917409	Hs.288036	tRNA isopentenylpyrophosphate transferas	2.20	2.70
	306242	AA932805	113.200000	gb:oo60g04.s1 NCI_CGAP_Lu5 Homo sapiens	2.84	5.35
					1.60	1.12
	306288	AA936900	Un 040540	gb:oi53h05.s1 NCI_CGAP_HN3 Homo sapiens		
80	306325	AA953072	Hs.210546	interleukin 21 receptor	1.65	2.26
80	306353	AA961382	Hs.275865	ribosomal protein S18	3.78	6.32
	306375	AA968650	Hs.276018	EST, Moderately similar to JC4662 ribos	4.30	5.74
	306396	AA970223		gb:op09d05.s1 NCI_CGAP_Kid6 Homo sapiens	0.95	2.45
	306428	AA975110	Hs.191228	hypothetical protein FLJ20284	3.19	4.10
0.5	306442	AA976899		gb:oq35e09.s1 NCI_CGAP_GC4 Homo sapiens	4.67	7.44
85	306446	AA977348		gb:oq72e12.s1 NCI_CGAP_Kid6 Homo sapiens	3.92	6.27

	V1	0 02/00	10443			
	306458	AA978186		gb:op33c06.s1 Soares_NFL_T_GBC_S1 Homo s	3.35	5.77
	306467	AA983508	Hs.163593	ribosomal protein L18a	3.72	5.37
	306510	AA988546		gb:or84d07.s1 NCI_CGAP_Lu5 Horno sapiens	1.00	- 1.00
_	306555	AA994304	Hs.276083	EST, Weakly similar to RL23_HUMAN 60S R	6.61	10.91
5	306557	AA994530		gb:ou57e08.s1 NCI_CGAP_Br2 Homo sapiens	16.20	31.83
•	306572	AA995686		gb:os25c12.s1 NCI_CGAP_Kid5 Homo sapiens	2.51	6.52
	306582	AA996248		gb:os18c10.s1 NCI_CGAP_Kid5 Homo sapiens	1.42	3.13
	306598	Al000320	Hs.169476	glyceraldehyde-3-phosphate dehydrogenase	4.91	8.68
	306605	A1000497	Hs.119500	ribosomal protein, large P2		8.60
10			115.115500		1.96	
10	306656	AI004024	11- 004420	gb:ou11b07.x1 Soares_NFL_T_GBC_S1 Homo s	0.11	0.45
	306676	Al005603	Hs.284136	PRO2047 protein	9.56	17.28
	306686	AI015615		gb:ov29f10.x1 Soares_testis_NHT Homo sap	1.86	3.60
	306702	AI022565	Hs.307670	EST	1.47	1.19
	306728	AI027359	Hs.272572	hemoglobin, alpha 2	1.28	2.83
15	306751	A1032589		gb:ow70h12.s1 Soares_fetat_liver_spleen_	3.91	5.21
	306767	A1038963	Hs.249118	ESTs	3.33	6.06
	306892	AI092465		gb:qa75h12.x1 Soares_fetal_heart_NbHH19W	3.77	7.46
	306897	Al093967		gb:qa33c06.s1 Soares_NhHMPu_S1 Homo sapi	2.12	2.85
	306956	Al125111		gb:am66f03.s1 Barstead spleen HPLRB2 Hom	6.10	10.52
20	306958	AJ125152		gb:am55e09.x1 Johnston frontal cortex Ho	1.72	1.56
20		Al142774	Hs.119122		2.00	4.70
	307035		13.113122	ribosomal protein L13a		
	307041	Al144243		gb:qb85b12.x1 Soares_fetal_heart_NbHH19W	9.12	12.56
	307091	Al167439		gb:ox70h06.s1 Soares_NhHMPu_S1 Homo sapi	4.88	8.52
3.5	307181	Al189251		gb:qc99g06.x1 Soares_pregnant_uterus_NbH	3.55	6.44
25	307297	A1205798	Hs.111334	ferritin, light polypeptide	2.46	4.65
	307317	A1208303	Hs.147333	EST	5.64	10.13
	307327	A1214142	Hs.246381	CD68 antigen	3.18	5.15
	307382	A)223158	Hs.147885	ESTs	2.02	3.73
	307410	AI241715	. Hs.77039	ribosomal protein S3A	0.72	0.48
30	307415	Al242118		gb:qh92b02.x1 Soares_NFL_T_GBC_S1 Homo s	2.38	3.51
-	307423	Al243206	Hs.179573	collagen, type I, alpha 2	2.60	5.44
	307426	Al243364		gb:qh30g11.x1 Soares_NFL_T_GBC_S1 Homo s	3.18	7.67
	307517	A1275055		gb:gl72d03.x1 Soares_NhHMPu_S1 Homo sapi	1.00	1.00
	307551	Al281556		gb:qu52f11.x1 NCI_CGAP_Lym6 Homo sapiens	3.40	11.20
35		Al282207			4.74	15.51
33	307561			gb:qp65a12.x1 Soares_fetal_lung_NbHL19W	3.50	7.19
	307608	Al290295	11. 000000	gb:qm01f02.x1 Soares_NhHMPu_S1 Homo sapi		
	307657	Al306428	Hs.298262	ribosomal protein S19	1.76	2.44
	307691	Al318285		gb:tb17b01.x1 NCI_CGAP_Ov37 Homo sapiens	1.59	1.31
40	307701	Al318583	Hs.276672	EST, Weakly similar to RL6_HUMAN 60S RI	1.90	2.13
40	307718	Al333406	Hs.83753	small nuclear ribonucleoprotein polypept	0.45	0.99
	307730	Al336092		gb:qt43b07.x1 Soares_fetal_lung_NbHL19W	1.51	0.99
	307760	Al342387		gb:qt27f07.x1 Soares_pregnant_uterus_NbH	1.00	1.00
	307764	Al342731		gb:qo26a07.x1 NCI_CGAP_Lu5 Homo sapiens	4.52	12.58
	307783	Al347274		gb:tc05d02.x1 NCI_CGAP_Co16 Homo sapiens	1.42	1.00
45	307796	Al350556		gb:qt18f09.x1 NCI_CGAP_GC4 Homo sapiens	6.57	9.61
	307807	Al351799		gb:gt09d02.x1 NCI_CGAP_GC4 Homo sapiens	3.38	7.68
	307808	Al351826		gb:qt09g03.x1 NCI_CGAP_GC4 Homo sapiens	0.33	0.86
	307820	Al355761		gb:qt94a11.x1 NCI_CGAP_Co14 Homo sapiens	7.94	21.57
			いっつフロフラフ		2.05	3.32
50	307830	Al358722	Hs.276737	EST, Weakly similar to R5HU22 ribosomal		
50	307852	Al365541		gb:qz08g05.x1 NCI_CGAP_CLL1 Homo sapiens	3.18	5.21
	307902	Al380462		gb:tg02h05.x1 NCI_CGAP_CLL1 Homo sapiens	3.13	4.99
	307997	Al434512	Hs.181165	eukaryotic translation elongation factor	1.00	3.01
	308002	AI435240	Hs.283442	ESTs	5.86	12.64
	308011	A1439473		gb:ti60a08.x1 NCI_CGAP_Lym12 Homo sapien	3.79	5.83
55	308023	A1452732	Hs.251577	hemoglobin, alpha 1	0.38	0.88
	308041	A1458824	Hs.169476	glyceraldehyde-3-phosphate dehydrogenase	4.36	6.06
	308059	Al468938	Hs.276877	EST, Weakly similar to RL10_HUMAN 60S R	1.80	1.98
	308085	Al474135	Hs.181165	eukaryotic translation elongation factor	3.38	4.14
_	308101	Al475950	Hs.181165	eukaryotic translation elongation factor	1.30	3.87
60	308106	Al476803		gb:tj77e12.x1 Soares_NSF_F8_9W_OT_PA_P_S2		8.72
	308122	AI480123	Hs.309411	EST	2.70	3.86
	308154	AI500600	110.000471	gb;tn93d08.x1 NCI_CGAP_Ut2 Homo sapiens	0.66	1.33
	308171	Al523632	Hs.298766	ESTs, Weakly similar to schlafen4 [M.mu	2.48	4.86
	308211	AI557029	Hs.278572	anaplastic lymphoma kinase (Ki-1)	2.43	2.14
65			115.270372	gb:PT2.1_12_E04.r tumor2 Homo sapiens cD	3.34	3.79
05	308213	AI557041			4.61	4.78
	308216	AI557135		gb:PT2.1_13_H06.r turnor2 Homo sapiens cD	4.87	7.94
	308219	Al557246		gb:PT2.1_15_D07.r tumor2 Homo sapiens cD		
	308271	AI567844	Hs.252259	ribosomal protein S3	2.40	6.35
70	308319	Al583983	Hs.181165	eukaryotic translation elongation factor	2.45	3.33
70	308362	Al613519	Hs.105749	KIAA0553 protein	1.24	1.41
	308413	A1636253	Hs.196511	ESTs	3.16	4.82
	308450	A1660860	Hs.96840	KIAA1527 prolein	1.79	2.68
	308464	Al672425	Hs.277117	EST, Moderately similar to 138055 myosi	4.87	8.27
	308588	Al718299		gb:as51g12.x1 Barstead aorta HPLRB6 Homo	3.90	5.64
75	308599	Al719893	_	ob:as47d07.x1 Barstead aorta HPLRB6 Homo	3.32	5.12
	308615	AI738593	Hs.101774	hypothetical protein FLJ23045	3.11	2.36
	308643	Al745040		gb:tr19a12.x1 NCI_CGAP_Ov23 Homo sapiens	3.98	3.69
	308673	A1760864		gb:wi09c10.x1 NCI_CGAP_CLL1 Homo sapiens	0.82	0.99
				gb:wi97a07x1 NCI_CGAP_CLL1 Homo sapiens gb:wi97a07x1 NCI_CGAP_Kid12 Homo sapien	2.76	5.59
80	308697	A1767143	Un 350/00			
OU	308762	A1807405	Hs.259408	ESTs	3.17	6.30
	308778	AI811109	11-64-5	gb:tr04c11.x1 NCI_CGAP_Ov23 Homo sapiens	1.00	1.00
	308782	AJ811767	Hs.2186	eukaryotic translation elongation factor	2.94	5.15
	308808	Al818289		gb:wk52c01.x1 NCI_CGAP_Pr22 Homo sapiens	4.41	8.34
0.5	308823	Al824118	Hs.217493	annexin A2	1.85	1.92
85	308875	AI832332		gb:at48g03.x1 Barstead colon HPLRB7 Homo	2.52	3.80

WO 02/086443

	W	O 02/086	3443	•		
	308879	AI832763	Hs.75968	thymosin, beta 4, X chromosome	3.38	7.96
	308886	A1833240	115.7 5500	gb:at76d10.x1 Barstead colon HPLRB7 Homo	3.06	2.65
	308898	AI858845		gb:wl32d10.x1 NCI_CGAP_Ut1 Homo sapiens	2.45	3.44
	308934	Al865023	Hs.177	phosphatidylinositol glycan, class H	4.14	6.76
5	308966	AI870704		gb:wl47h01.x1 NCI_CGAP_Ut1 Homo sapiens	1.00	1.00
_	308979	Al873111		gb:wl52h05.x1 NCI_CGAP_Brn25 Homo sapien	7.15	11.10
	309045	Al910902		gb:tq39f01.x1 NCI_CGAP_Ut1 Homo sapiens	0.61	0.59
	309051	Al911975		gb:wd78d01.x1 NCI_CGAP_Lu24 Homo sapiens	1.78	4.42
10	309069	Al917366	Hs.78202	SWI/SNF related, matrix associated, act	3.27	5.88
10	309083	Al922426	Hs.119598	ribosomal protein L3	2.39	3.34
	309105	Al925503	Hs.265884	ESTS .	5.54	17.78 2.92
	309122	Al928178	Hs.180842	gb:wo95a11.x1 NCI_CGAP_Kid11 Homo saplen ribosomal protein L13	1.00 1.38	5.55
	309128 309164	Al928816 Al937761	NS. 100042	gb:wp84b09.x1 NCl_CGAP_Bm25 Homo sapien	2.43	3.11
15	309177	Al951118		gb:wx63g05.x1 NCI_CGAP_Br18 Homo sapiens	0.81	0.97
13	309288	A)991525	Hs.299426	ESTs	4.86	7.46
	309299	AW003478	113,200420	gb:wq66c06.x1 NCI_CGAP_GC6 Homo sapiens	4.36	9.43
	309303	AW004823		gb;ws93a08.x1 NCI_CGAP_Co3 Homo sapiens	2.88	7.54
	309411	AW085201	Hs.244144	EST	4.30	7.14
20	309437	AW090702	Hs.278242	tubulin, alpha, ubiquitous	2.49	3.11
	309459	AW117645	Hs.65114	keratin 18	2.88	4.55
	309476	AW129368		gb:xe14b05.x1 NCI_CGAP_Ut4 Homo sapiens	2.08	6.60
	309499	AW136325	Hs.279771	Homo sapiens clone PP1596 unknown mRNA	2.82	3.55
25	309529	AW150807	Hs.181357	laminin receptor 1 (67kD, ribosomal pro	4.78	3.95
25	309532	AW151119	11- 007004	gb:xg33e10.x1 NCI_CGAP_Ut1 Homo sapiens	1.18 4.46	4.40 12.06
	309626	AW192004	Hs.297681	serine (or cysteine) proteinase inhibit EST, Moderately similar to GHHU Ig gamm	1.47	1.39
•	309641 309675	AW194230 AW205681	Hs.253100 Hs.253506	EST, Moderately similar to ATPN_HUMAN A	5.68	15.20
	309693	AW203081 AW237221	Hs.181357	laminin receptor 1 (67kD, ribosomal prot	1.00	1.00
30	309695	AW238011	Hs.295605	mannosidase, alpha, class 2A, member 2	5.45	9.61
50	309700	AW241170	Hs.179661	tubulin, beta polypeptide	1.41	1.25
	309747	AW264889		gb:xq36h02.x1 NCI_CGAP_Lu28 Homo saplens	5.00	8.35
	309769	AW272346		gb:xs13c10.x1 NCI_CGAP_Kid11 Homo sapien	5.76	11.90
	309782	AW275156	Hs.156110	immunoglobulin kappa constant	0.42	0.69
35	309783	AW275401	Hs.254798	EST	1.00	4.11
	309799	AW276964		gb:xp58h01.x1 NCI_CGAP_Ov39 Homo sapiens	1.68	1.44
	309866	AW299916	11. 000007	gb:xs44c01.x1 NCI_CGAP_Kid11 Homo sapien	3.02 1.05	5.04 1.18
	309903	AW339071	Hs.300697	immunoglobulin heavy constant gamma 3 (G gb:hd05g08.x1 Soares_NFL_T_GBC_S1 Homo s	2.30	3.67
40	309923	AW340684		gb:hd08c03.x1 Soares_NFL_T_GBC_S1 Homo s	7.41	13.71
40	309928 309931	AW341418 AW341683		gb:hd13d01.x1 Soares_NFL_T_GBC_S1 Homo s	1.20	12.70
	309933	AW341936		gb:hb73f10.x1 NCI_CGAP_Ut2 Homo sapiens	4.90	18.29
	309964	AW449111	Hs.257111	hypothetical protein MGC3265	1.99	3.07
	310002	Al439096	Hs.323079	Homo sapiens mRNA; cDNA DKFZp564P116 (fr	0.20	0.47
45	310096	AW136822	Hs.172824	ESTs, Weakly similar to B48013 proline-r	1.51	1.22
	310098	Al685841	Hs.161354	ESTs	0.31	0.76
	310109	Al203094	Hs.148633	ESTs	2.06	5.83
	310112	AW197233	Hs.147253	ESTs	2.92	3.55
50	310115	AI611317	Hs.223796	ESTs	1.25 1.00	0.84 2.71
30	310121	AW195642 AJ206614	Hs.148901	ESTS	9.50	15.31
	310146 310193	AJ200014 AJ627653	Hs.197422 Hs.147562	ESTs ESTs	2.85	4.18
	310255	AW450439		ESTs	4.26	10.63
	310261	A1240483	Hs.201217	ESTs	3.28	4.40
55	310264	AJ915771	Hs.74170	metallothionein 1E (functional)	0.26	0.86
	310275	AI242102	Hs.213636	ESTs	5.43	8.19
	310282	AI243332	Hs.156055	ESTs	3.15	8.06
	310290	AW013815	Hs.149103	ESTs	2.19	3.12
60	310333	Al253200	Hs.145402	ESTs	1.17	1.91
60	310346	AI261340	Hs.145517	ESTs	4.81	9.95 7.79
	310385	A)263392	Hs.156151	ESTs EST-	5.96 2.90	4.63
	310443 310444	AW119018 AW196632	Hs.164231 Hs.252956	ESTs ESTs	0.85	1.01
	310446	AI275715	Hs.145926	ESTs	2.18	3.85
65	310468	AI984074	Hs.196398	ESTs	3.39	5.19
00	310477	AI948801	Hs.171073	ESTs	1.00	1.00
	310512	AW275603	Hs.200712	ESTs	3.87	8.12
	310514	AI681145	Hs.160724	ESTs ·	3.30	7.33
70	310524	AW082270	Hs.12496	ESTs, Highly similar to AC004836 1 simil	0.72	1.44
70	310547	Al302654	Hs.208024	ESTs	3.26	3.46
	310584	A1653007	Hs.156304	ESTs	2.39 5.60	4.08 6.49
	310608	AI962234	Hs.196102	ESTs	4.91	9.09
	310624 310636	Al341594 Al814373	Hs.164175	gb:Human endogenous retrovirus H proteas ESTs	1.85	1.71
75	310648	AJ347863	Hs.156672	ESTS	0.17	0.69
, 5	310694	AI654370	Hs.157752	Homo sapiens mRNA full length insert cDN	5.40	13.22
	310695	AM72124	Hs.157757	ESTs	4.82	6.27
	310714	AI418446	Hs.157882	ESTs	1.76	3.51
~ ~	310722	AJ989803	Hs.157289	ESTs	1.14	6.85
80	310756	AI916560	Hs.158707	ESTs	8.46	13.01
	310764	A1376769	Hs.167172	ESTs	4.76	7.37
	310848	A1459554	Hs.161286	ESTs	2.84	1.96
	310851	AW291714	Hs.221703	ESTs	1.00 6.37	2.32 7.94
85	310854 310858	AJ421677 AJ871000	Hs.161332 Hs.161330	ESTs ESTs	6.07	7.94 9.84
55	310000	7401 1000	113.101330	LOID	0.01	0.5

		O 02/080	5443			
	310864	AJ924558	Hs.161399	ESTs	0.87	0.78
	310875	T47764	Hs.132917	ESTs	1.00	3.63
	310896	AW157731	Hs.270982	ESTs, Moderately similar to ALU7_HUMAN A	7.07	16.68
_	310922	AW195634	Hs.170401	ESTs	1.00	1.00
5	310955	Al560210	Hs.263912	ESTs	10.08	17.66
	310957	AW190974	Hs.196918	ESTs	2.18	3.18
	311000	AI521830	Hs.171050	ESTs	3.06	6.64
	311012	AW298070	Hs.241097	ESTs	1.23	3.77
	311034	AJ564023	Hs.311389	ESTs, Moderately similar to PT0375 natur	2.44	2.09
10	311074	AW290922	Hs.199848	ESTs	6.04	14.19
	311134	AI990849	Hs.196971	ESTs	3.54	6.96
	311174	AW450552	Hs.205457	periaxin	0.65	0.95
	311187	AI638374	Hs.224189	ESTs	2.46	2.78
	311220	A1656040	Hs.196532	ESTs	1.10	2.52
15	311230	A1989808	Hs.197663	ESTs	1.41	1.75
13	311236	Al653378	Hs.197674	ESTs	2.18	2.11
	311230	AW016812	Hs.200266	ESTs	0.63	5.11
				ESTS		
	311258	AJ671221	Hs.199887		1.00	1.41
20	311277	AW072813	Hs.270868	ESTs, Moderalely similar to ALU4_HUMAN A	2.56	1.94
20	311294	AA826425	Hs.291829	ESTs	1.04	2.69
	311308	F12664	Hs.49000	ESTs	1.96	6.70
	311351	A1682303	Hs.201274	ESTs	4.77	9.38
	311390	AW392997	Hs.202280	ESTs	2.80	6.06
05	311405	AW290961	Hs.201815	ESTs	3.80	11.66
25	311409	Al698839		gb:wd31f02.x1 Soares_NFL_T_GBC_S1 Homo s	3.84	6.94
	311420	Al936291	Hs.209867	ESTs	5.30	12.56
	311443	A1791521	Hs.192206	ESTs	4.39	6.09
	311467	A1934909	Hs.175377	ESTs	1.00	1.04
	311479	AI933672	Hs.211399	ESTs	2.76	5.61
30	311488	R57390	Hs.301064	arfaptin 1	2.50	5.73
	311495	AW300077	Hs.221358	ESTs	3.63	6.09
	311511	AW444568	Hs.210303	ESTs	2.00	2.87
	311534	AW130351	Hs.243549	ESTs	0.31	1.33
	311537	A)805121	Hs.211828	ESTs	3.69	5.85
35	311543	AJ681360	Hs.201259	ESTs	1.73	1.34
-	311551	AW449774	Hs.296380	POM (POM121 rat homolog) and ZP3 fusion	3.31	6.12
	311557	Al819230	Hs.211238	interleukin-1 homolog 1	1.00	1.00
	311558	Z44432	Hs.63128	KIAA1292 protein	2.25	3.41
	311559	AW008271	Hs.265848	similar to rat myomegalin	2.68	5.90
40	311563	Al922143	Hs.211334	ESTs	2.39	3.32
70	311586	Al827834	Hs.211227	ESTs	2.47	3.85
	311616	AW450675	Hs.212709	ESTs	1.00	1.00
			Hs.213464	ESTs	4.16	6.74
	311621	A1924307			2.17	3.76
45	311635	AI928456	Hs.213081	ESTs		3.12
43	311668	AW193674	Hs.240044	ESTs	2.60	5.18
	311672	R11807	Hs.20914	hypothetical protein FLJ23056	2.79	
	311683	AW183738	Hs.232644	ESTs	0.19	0.96
	311700	R49601	Hs.171495	retinoic acid receptor, beta	6.28	8.83
50	311714	AW131785	Hs.246831	ESTs, Weakly similar to CIKG_HUMAN VOLTA	5.00	8.17
50	311735	AW294416	Hs.144687	Homo sapiens cDNA FLJ12981 fis, clone NT	0.96	0.72
	311743	T99079	Hs.191194	ESTs	1.00	1.95
	311783	AI682478	Hs.13528	hypothetical protein FLJ14054	0.16	0.77
	311785	AI056769	Hs.133512	ESTs	1.34	3.97
<i>E E</i>	311799	AA780791	Hs.14014	ESTs, Weakly similar to KIAA0973 protein	8.52	13.32
55	311819	AW265275	Hs.254325	ESTs	3.58	3.91
	311823	AI089422	Hs.131297	ESTs	1.40	1.72
	311877	AA349893	Hs.85339	G protein-coupled receptor 39	0.95	0.91
	311886	AA522738	Hs.132554	ESTs	0.88	0.87
C O	311896	AW206447		gb:UI-H-BI1-afg-g-02-0-UI.s1 NCI_CGAP_Su	1.66	1.13
60	311910	N28365	Hs.22579	Homo sapiens clone CDABP0036 mRNA sequen	1.66	2.30
	311923	T60843	Hs.189679	ESTs	0.42	2.63
	311933	Al597963	Hs.118726	ESTs	1.88	3.02
	311959	T67262	Hs.124733	ESTs	2.02	2.33
	311960	AW440133	Hs.189690	ESTs	3.87	6.62
65	311967	A1382726	Hs.182434	ESTs	5.80	8.14
	311975	AA804374	Hs.272203	Homo sapiens cDNA FLJ20843 fis, clone AD	0.98	3.26
	312005	T78450	Hs.13941	ESTs	0.12	1.39
	312028	T78886	Hs.284450	ESTs	3.78	4.92
70	312046	Al580018	Hs.268591	ESTs	4.11	7.32
70	312056	T83748	Hs.268594	ESTs	2.36	3.08
	312064	AA676713	Hs.191155	ESTs	3.34	5.28
	312088	AW303760	Hs.13685	ESTs	1.60	1.15
	312093	T91809	Hs.121296	ESTs	0.68	0.85
	312094	Z78390		gb:HSZ78390 Human fetal brain S. Meier-E	3.05	4.48
75	312097	Al352096	Hs.112180	· zinc finger protein 148 (pHZ-52)	4.52	9.70
	312118	T85332	Hs.178294	ESTs	2.40	2.60
	312128	Al052609	Hs.17631	Homo sapiens cDNA FLJ20118 fis, clone CO	2.39	3.53
	312147	T89855	Hs.195648	ESTs	0.67	1.03
	312175	AA953383	Hs.127554	ESTs	5.85	10.60
80	312179	AI052572	Hs.269864	ESTs	2.41	3.32
-	312201	Al928365	Hs.91139	solute carrier family 1 (neuronal/epithe	0.24	0.89
	312207	H90213	Hs.191330	ESTs	2.20	4.55
	312220	N74613		gb:za55a07.s1 Soares fetal liver spleen	4.28	11.13
	312252	Al128388	Hs.143655	ESTs	1.64	1.57
85	312304	AA491949	Hs.269392	ESTs	0.12	2.47
-					-	

12193 AV21698 1.181670 1.18			U 02/000				
31221 AA25512 AL58010 Labora regulated protein, 58iD 3.73 S.58 S.58 S.58 S.75 S.58 S.		312318	AW235092	Hs.143981	ESTs		
\$ 312333 AA254394 Lis. ISSA \$ 312334 AA254394 Lis. ISSA \$ 312375 A375955 Lis. ISSA \$ 312376 A375955 Lis. ISSA \$ 312377 A375955 Lis. ISSA \$ 31247 A3859228 Lis. ISSA \$ 31247 A385928 Lis. ISSA \$ 31248 A385928 Lis. ISSA \$ 31249 A385928 Lis. ISSA \$ 31259 A385927 Lis. ISSA \$ 31259 A385927 Lis. ISSA \$ 31259 A385927 Lis. ISSA \$ 31264 Lis. ISSA \$ 31265 A365628 Lis. ISSA \$ 31265 A366526 Lis. ISSA \$ 31265 A3665628 Lis. ISSA \$ 31265 A3665628 Lis. ISSA \$ 31265 A366656 Lis. ISSA \$ 31267 A36666 Lis. ISSA \$ 31268 A36666 Lis. ISSA \$ 31269 A36666 Lis.							
\$\frac{5}{31239} \times A243948 \times \tin \times \times \times \times \times \times \times \times \times							
312635 AB75069 http://doi.org/10.1001	_				·	3.73	5.96
13/275 R52099 11/72076 15/20	5						
10 312368 AB63140 AB63140 Study Study Study Study AB63140 AB							
13/2349 Al959028 Al1-19307 Al959028 Al1-19307 Al1-19308 Al1-1930							
100 312447 A995028 18-133315 18-133315 18-133315 18-133315 18-133315 18-133315 18-133315 18-133315 18-133315 18-133315 18-133315 18-133315 18-133315 18-133315 18-13220 18-				Hs.172717			
312440 All Price All Pri	10						
312451 A1967837 H. 149853 EST6	10						
13/2569 Alf-67677 Hs. 146924 ESTs 5.89 8.24							
15 13/2507 Artifaction							
155 31250 API/42591 Hs_2005392 ESTs 3,300 8.92 31264 AB566228 Hs.159026 hs.35988 ESTs 0.40 0.77 31266 AB56228 Hs.124141 1590207 ESTs 0.33 1659 31267 AB56637 Hs.12714 ESTs 0.33 75 5.29 31268 B52121 Hs.193007 ESTs 0.38 1.13 31268 B52121 Hs.193007 ESTs 0.38 1.13 31268 API/4509 Hs.21467 ESTs 0.38 1.13 31269 API/4504 Hs.203595 ESTs 0.21 0.61 312697 API/4504 Hs.203595 ESTs 0.21 0.61 312697 API/4509 Hs.203595 ESTs 0.21 0.61 312697 API/4509 Hs.203595 ESTs 0.21 0.61 312697 API/4509 Hs.203595 ESTs 0.22 0.61 312697 API/4509 Hs.172322 ESTs ESTs, Weakly similar to unnamed protein 4.20 6.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0							
312546 A156228 hs.159428 hs.159428 hs.30988 ESTS	1.5						
31296 H21520 Ha.1968 ESTs 0.40 0.77	13				<u>-</u>		
31298 Al93122 hs.12414 ESTs CSTs 3.75 5.29							
200 312599 AMBS073 th. 125720 ESTs 6.78 12.93 312645 H52121 th. 193007 ESTs 0.38 1.13 312695 AWS04651 th. 203955 ESTs 0.21 0.61 312696 AWS04651 th. 203955 ESTs 0.21 0.61 312691 AWS04651 th. 203955 ESTs 0.21 0.61 312693 AWS04651 th. 203956 ESTs 0.21 0.61 312693 AWS04651 th. 203956 ESTs 0.21 0.61 312694 AWS04651 th. 203950 ESTs Weakly similar to unnamed protein 4.20 6.23 312695 AWS04651 th. 203159 ESTs Weakly similar to 2D3 HUMAN TRANS 1.19 0.71 312695 AWS04651 th. 203159 ESTs Weakly similar to AUJ7, HUMAN ALU S 2.30 4.80 312696 AWS04651 th. 193555 ESTs 0.22 0.30 1.05 31393 AWS04651 th. 193555 ESTs 0.22 0.30 1.05 313030 AWS04651 th. 193555 ESTs 0.22 0.30 1.05 313030 AWS04651 th. 193555 ESTs 0.22 0.30 1.05 313030 AWS04651 th. 193556 ESTs 0.22 0.30 1.05 313030 AWS04651 th. 193556 ESTs 0.22 0.30 1.05 313030 AWS04651 th. 193556 ESTs 0.22 0.30 1.30 313030 AWS04651 th. 193556 ESTs 0.22 0.30 0.30 313030 AWS04651 th. 193556 ESTs 0.22 0.30 0.30 313030 AWS04651 th. 193556 ESTs 0.22 0.30 313030 AWS04651 th. 193566 ESTs 0.22 0.30 313030 AWS04651							
200 312602 AAA66451 hs. 165200 ESTs 6.78 12.93 312665 A322405 hs. 161500 ESTs 0.38 1.13 312665 A322405 hs. 214678 ESTs 0.29 0.66 312471 H74549 hs. 203975 ESTs 0.21 0.61 0.65 312473 A1600071 hs. 220375 STS 0.21 0.65 312473 A1600071 hs. 220375 STS 0.21 0.65 312473 A1600071 hs. 220375 STS 0.21 A22373 A1600071 hs. 220375 STS A160005 hs. 173245 STS A160005 hs. 173245 STS A16005 A16							
312645 H52121 hs.193007 ESTs 0.38 1.13	20						
312666 A240682 Hs.214678 ESTs 0.21 0.61	20						
312889							
Section Sect							
Section Sect							
312973 Al990071 Hs.2825522 ESTs, Weakly similar to unnamed protein 4.20 6.23 12020 AV202797 Hs.130316 ESTs, Weakly similar to T2D3_HUMAN TRANS 1.19 0.71 0.71	25						
312833 Alfolicold Hs. 172922 AP297979 Hs. 133316 ESTs, Weakly similar to T2D3_HUMAN TRANS 1.19 0.71 1.19 0	23						
312902 AW292797 Bit S27600 Bit S27680 ESTs ESTs ESTs ESTs ESTs 1.00 1.17							
312925 N90688 Hs. 27/1695 ESTs ESTs 1.00 1.17							
312936 Al861581 Hz. 21525 ESTs L.00							
312975 Al640506 Ha. 293119 ESTs, Weakly similar to ALUT_HUMAN ALU S 2.30 4.80	20						
312976 N248971 Hs. 1292500 ESTs SSTs SS	30						
31/2890 AA497043 Inc. 11/585 ESTs 3.12 3.60							
313939 AV58971 Hs.177337 ESTs 2.03 2.13							
313000							
313029	25						
313039 Al419290	33						
313049 AW293055 hs. 119357 ESTs 1.51 2.04							
\$\frac{313058}{400} = \frac{31651930}{313070} \text{Al22023}{422023} \text{Hs.16338}{4516338} \text{ESTs} \text{CSTs}							
A							
313070	40						
313097 Al676164 Hs.204339 ESTs 3.28 5.06	70						
313130 AW449171 Hs.186677 ESTs							
45 313153 Al240834 Hs. 288010 ESTs 5.36 5.52 al33210 N74077 Hs. 197043 ESTs 5.36 5.52 al32210 N74077 Hs. 197043 ESTs Weakly similar to ALU1_HUMAN ALU S 5.16 8.76 8.76 313226 Al27604 Hs. 129583 ESTs 5.23 1.30 313227 Al27604 Hs. 159550 ESTs 5.23 1.30 Al27604 Hs. 159550 ESTs 5.23 1.30 Al27604 Hs. 159550 ESTs 5.23 1.30 Al27604 Hs. 159550 ESTs 5.25 1.30 6.68 9.57 313290 Al753247 Hs. 29643 Homo sapiens cDNA FLJ13103 fis, clone NT 1.34 1.07 1.33225 Al20611 Hs. 127832 ESTs 5.20 4.02 5.33 313332 Al20611 Hs. 127832 ESTs 5.20 4.02 5.33 313393 Al074685 Hs. 200141 ESTs 1.36 2.84 313399 Alv76889 Hs. 194097 ESTs 5.26 5.26 313414 Al241540 Hs. 132933 ESTs 5.26 6.57 15.07 313417 AA741151 Hs. 137233 ESTs 5.26 6.57 15.07 313417 AA741151 Hs. 137323 ESTs 5.26 6.57 15.07 313419 Al280968 Hs. 135145 ESTs 5.26 6.57 15.07 313459 Al280968 Hs. 135145 ESTs 5.26 6.57 15.07 313538 Al280968 Hs. 135145 ESTs 5.26 6.57 15.07 313539 Al273419 Hs. 135146 ESTs 5.26 Al204155 Hs. 193223 Homo sapiens cDNA FLJ11646 fis, clone HE 2.78 4.70 313638 Al753075 Hs. 104627 Hs. 130425 Hs. 13							
13153 Al240838 Hs.132750 ESTs 5.36 5.52							
313216	45						
313238 AW238169	73						
313239 W19632 Hs.124170 ESTs U.00 3.87							
STS							
ST ST ST ST ST ST ST ST							
313275 A1027604 Hs.159650 ESTs 6.68 9.57	50						
313290	-						
313292							
55 313325 Al420611 Hs.127832 ESTs 4.02 5.33 313337 Al674685 Hs.201501 ESTs 4.02 5.33 313339 Al674685 Hs.200141 ESTs 1.36 2.84 313339 AW376889 Hs.194097 ESTs 2.58 5.26 313414 Al241540 Hs.132933 ESTs 0.63 3.01 60 313457 AA741151 Hs.133293 ESTs 0.63 3.01 60 313457 AA576052 Hs.18502 Hs.19223 Homo sapiens cDNA FLJ11646 fis, clone HE 2.78 4.70 313457 AA628517 Hs.118502 ESTs 0.23 0.70 313550 AA273419 Hs.135146 hypothetical protein FLJ13984 1.88 1.00 50 313570 AA740151 Hs.104627 Homo sapiens cDNA FLJ10156 fis, clone HE 1.00 1.72 313672 AV468891 Hs.130425 ESTs 0.20 1.42 313771 AV4982384							
55 313357 AW074848 Hs.201501 ESTs 4.02 5.33 313393 Al674685 Hs.200141 ESTs 1.36 2.84 313399 AW376899 Hs.194097 ESTs 2.58 5.26 313414 Al241540 Hs.132933 ESTs 0.63 3.01 60 313457 AA576052 Hs.1329223 Homo sapiens cDNA FLJ11646 fis, clone HE 2.78 4.70 313499 Al261390 Hs.145085 KIAA1345 protein 0.91 2.37 313556 AA628517 Hs.118502 ESTs 0.23 0.70 313559 A273419 Hs.135146 hsyothetical protein FLJ13984 1.88 1.00 5313570 AA041455 Hs.104627 Homo sapiens cDNA FLJ10158 fis, clone HE 1.00 1.72 313682 AA740151 Hs.104627 Homo sapiens cDNA FLJ10158 fis, clone HE 1.00 1.72 313672 AW468891 Hs.130425 ESTs 0.20 1.42 313771 AA98070 Hs.133							
313393 Al674685 Hs.200141 ESTs 2.58 5.26 313399 AW376889 Hs.194097 ESTs 2.58 5.26 313414 Al241540 Hs.132933 ESTs 0.657 15.07 313417 AA741151 Hs.137323 ESTs 0.63 3.01 313457 AA576052 Hs.193223 Homo sapiens cDNA FLJ11646 fis, clone HE 2.78 4.70 313499 Al261390 Hs.146085 KIAA1345 protein 0.91 2.37 313516 AA029058 Hs.135145 ESTs 0.23 0.70 313569 Al273419 Hs.135146 hypothetical protein FLJ13984 1.88 1.00 313570 AA041455 Hs.209312 ESTs 0.73 2.27 313632 AA740151 Hs.104627 Homo sapiens cDNA FLJ10158 fis, clone HE 1.00 1.72 313662 AA740151 Hs.104627 Homo sapiens cDNA FLJ10158 fis, clone HE 1.00 1.72 313672 AW468891 Hs.122948 ESTs 0.20 1.42 313671 W49823 Hs.104613 RP42 homolog 1.00 1.00 313672 AW468891 Hs.182948 ESTs 3.46 5.80 313711 AA398070 Hs.133471 ESTs 0.18 1.01 313723 AA070412 gbzm68c10.s1 Stratagene neuroepithelium 1.08 1.03 313724 AW38836 Hs.144583 ESTs 1.33 1.19 313725 AI744687 Hs.257806 ESTs 1.33 1.19 313734 AA910514 Hs.133490 ESTs 0.22 2.06 313832 AW271022 Hs.133294 ESTs 0.22 2.06 313833 AW271022 Hs.133294 ESTs 0.68 3.14 313834 AW4108779 Hs.114889 ESTs 0.68 3.14 313854 AW470806 Hs.275002 ESTs 0.74 8.88 313854 AW470806 Hs.275002 ESTs 0.74 8.88 313865 AA731470 Hs.163839 ESTs 0.74 8.88 313883 Al949384 Hs.126641 protein tyrosine phosphatase, receptor t 0.16 1.14 313884 AW470806 Hs.275002 ESTs 0.74 8.88 313883 Al949384 Hs.159507 ESTs 0.74 8.88	55						
313399 AW376889 Hs.194097 ESTs 2.58 5.26 313414 Al241540 Hs.132933 ESTs 6.57 15.07 313417 AA741151 Hs.137323 ESTs 0.63 3.01 313457 AA576052 Hs.193223 Homo sapiens cDNA FLJ11646 fis, clone HE 2.78 4.70 313499 Al261390 Hs.146085 KIAA1345 protein 0.91 2.37 313516 AA029058 Hs.135145 ESTs 0.23 0.70 313560 AA628517 Hs.118502 ESTs 0.23 0.70 313560 AA273419 Hs.135146 hypothetical protein FLJ13984 1.88 1.00 313570 AA041455 Hs.209312 ESTs 0.73 2.27 313638 Al753075 Hs.104627 Homo sapiens cDNA FLJ10158 fis, clone HE 1.00 1.72 313662 AA740151 Hs.130425 ESTs 0.20 1.42 313671 W49823 Hs.104613 RP42 homolog 1.00 1.00 313672 AW468891 Hs.122948 ESTs 3.46 5.80 313690 Al493591 Hs.78146 platelet/endothelial cell adhesion molec 0.51 0.97 313711 AA398070 Hs.133471 ESTs 0.18 1.01 313723 AA070412 gbzm68c10.s1 Stratagene neuroepithelium 1.08 1.03 313774 AW136836 Hs.144583 ESTs 1.38 1.19 313784 AA910514 Hs.133294 ESTs 0.22 2.06 313832 AW271022 Hs.133294 ESTs 0.22 2.06 313833 AN383 AN39838 Hs.159087 ESTs 0.22 2.06 313834 AW418779 Hs.114889 ESTs 0.68 3.14 313854 AW470806 Hs.275002 ESTs 3.41 4.09 313865 AA731470 Hs.163839 ESTs 3.41 4.09 313871 AW471088 Hs.159500 ESTs 3.41 4.09 313871 AW471088 Hs.159500 ESTS 3.41 4.09 313871 AW471088 Hs.163839 ESTS 5.28 6.83							
313414 Al241540 Hs.132933 ESTs 6.57 15.07							5.26
State					ESTs	6.57	15.07
60 313457 AA576052 Hs.193223 Homo sapiens cDNA FLJ11646 fis, clone HE 2.78 4.70 313499 Al261390 Hs.146085 KIAA1345 protein 0.91 2.37 313516 AA029058 Hs.135145 ESTs 0.23 0.70 313556 AA628517 Hs.118502 ESTs 0.23 0.70 313569 AIZ73419 Hs.135146 hypothetical protein FLJ13984 1.88 1.00 65 313570 AA041455 Hs.209312 ESTs 0.73 2.27 313683 AI753075 Hs.104627 Homo sapiens cDNA FLJ10158 fis, clone HE 1.00 1.72 313662 AA740151 Hs.130425 ESTs 0.20 1.42 313671 W49823 Hs.104613 RP42 homolog 1.00 1.00 313672 AW468891 Hs.122948 ESTs 3.46 5.80 70 313690 Al493591 Hs.78146 platelet/endothelial cell adhesion molec 0.51 0.97 313772 AW70412 Bs.133471 ESTs 0.18 1.01 313774		313417				0.63	3.01
313499 Al261390 Hs.146085 KIAA1345 protein 0.91 2.37	60	313457	AA576052	Hs.193223	Homo sapiens cDNA FLJ11646 fis, clone HE	2.78	4.70
313556		313499	AI261390	Hs.146085	KIAA1345 protein	0.91	2.37
1.88 1.00 313569 Al273419 Hs.135146 hypothetical protein FLJ13984 1.88 1.00 1.72 313638 Al753075 Hs.104627 Homo sapiens cDNA FLJ10158 fis, clone HE 1.00 1.72 313662 AA740151 Hs.130425 ESTs 0.20 1.42 313671 W49923 Hs.104613 RP42 homolog 1.00 1.00 1.00 313672 AW468891 Hs.122948 ESTs 3.46 5.80 313690 Al493591 Hs.78146 platelet/endothetial cell adhesion molec 0.51 0.97 313711 AA398070 Hs.133471 ESTs 0.18 1.01 313723 AA070412 313726 Al744687 Hs.257806 ESTs 2.13 2.99 313774 AW136836 Hs.144583 ESTs 1.38 1.19 313784 AA910514 Hs.134905 ESTs 3.88 5.78 313790 AW078569 Hs.177043 ESTs 0.22 2.06 313832 AW271022 Hs.133294 ESTs 0.68 3.14 313835 Al538438 Hs.159087 ESTs 0.68 3.14 313855 Al538438 Hs.159087 ESTs 5.74 8.88 313854 AW470806 Hs.275002 ESTs 5.75 5.28 6.83 313871 AW471088 Hs.145950 ESTs 5.28 6.83 313871 AW471088 Hs.145950 ESTs 5.75 5.28 6.83 313881 Al949384 Al949384 Hs.145950 ESTs 5.28 6.83 313881 Al949384 Al94		313516	AA029058	Hs.135145	ESTs	3.41	7.08
65 313570 AA041455 Hs.209312 ESTs 0.73 2.27 313638 AI753075 Hs.104627 Homo sapiens cDNA FLJ10158 fis, clone HE 1.00 1.72 313662 AA740151 Hs.130425 ESTs 0.20 1.42 313671 W49823 Hs.104613 RP42 homolog 1.00 1.00 313672 AW468891 Hs.122948 ESTs 3.46 5.80 313791 AA938970 Hs.78146 platelet/endothelial cell adhesion molec 0.51 0.97 313711 AA398070 Hs.133471 ESTs 0.18 1.01 313723 AA070412 gbzm68c10.s1 Stratagene neuroepithelium 1.08 1.03 313774 AW136836 Hs.144583 ESTs 1.38 1.19 75 313784 AA910514 Hs.134905 ESTs 3.88 5.78 313390 AW078569 Hs.177043 ESTs 0.22 2.06 313832 AW271022 Hs.133294 ESTs 1.15 0.91 313853 AI538438 Hs.1599087 ESTs		313556	AA628517	Hs.118502	ESTs	0.23	0.70
313638		313569	Al273419	Hs.135146	hypothetical protein FLJ 13984	1.88	
313662	65	313570	AA041455	Hs.209312	ESTs	0.73	
313671 W49823 Hs.104613 RP42 homolog 1.00 1.00 313672 AW468891 Hs.122948 ESTs 3.46 5.80 313690 Al493591 Hs.78146 platelet/endothelial cell adhesion molec 0.51 0.97 313711 AA398070 Hs.133471 ESTs 0.18 1.01 313723 AA070412 gb:zm68c10.s1 Stratagene neuroepithelium 1.08 1.03 313726 Al744687 Hs.257806 ESTs 2.13 2.99 313774 AW136836 Hs.144583 ESTs 1.38 1.19 313784 AA910514 Hs.134905 ESTs 3.88 5.78 313790 AW078569 Hs.177043 ESTs 0.22 2.06 313832 AW271022 Hs.133294 ESTs 0.58 3.14 313834 AW418779 Hs.114889 ESTs 0.68 3.14 313835 Al538438 Hs.159087 ESTs 0.68 3.14 313854 AW470806 Hs.275002 ESTs 5.74 8.88 313871 AW471088 Hs.163839 ESTs 3.41 4.09 313871 AW471088 Hs.145950 ESTs 5.28 6.83 313873 Al949384 Hs.145950 ESTs 5.28 6.83 313883 Al949384 Hs.145950 ESTs 5.28 6.83 313884 Al494084 Al447088 ESTs 5.28 6.83 313883 Al949384 Al448950 ESTs 5.28 6.83 313883 Al4489384 Al448936 ESTs 5.28 6.83 313883 Al4489384 Al448936 ESTs 5.28 6.83 313883 Al4489384 Al4489384 Al448936 Al4489484 Al448960		313638		Hs.104627	Homo sapiens cDNA FLJ10158 fis, clone HE		
70 313672 AW468891 Al493591 Hs.78146 Platelet/endothelial cell adhesion molec 3.46 5.80 0.97 1313711 AA398070 Hs.133471 ESTs 0.18 1.01 0.97 1313721 AA398070 Hs.133471 ESTs 0.18 1.01 313723 AA070412 Spizm68c10.s1 Stratagene neuroepithelium 1.08 1.03 131726 AI744687 Hs.257806 ESTs 2.13 2.99 313774 AW136836 Hs.144583 ESTs 1.38 1.19 1.19 313784 AA910514 Hs.134905 ESTs 3.88 5.78 313790 AW078569 Hs.177043 ESTs 0.22 2.06 313832 AW271022 Hs.133294 ESTs 1.15 0.91 313834 AW418779 Hs.114889 ESTs 1.15 0.91 313834 AW418779 Hs.114889 ESTs 0.68 3.14 313835 AI538438 Hs.159087 ESTs 5.74 8.88 313852 H18633 Hs.123641 protein tyrosine phosphatase, receptor t 0.16 1.14 313854 AW470806 Hs.275002 ESTs 3.381 AW470806 Hs.275002 ESTs 3.381 AW471088 Hs.145950 ESTs 3.341 4.99 313871 AW471088 Hs.145950 ESTS 5.28 6.83 313883 AI949384 AW471088 Hs.145950							
70 313690 Al493591 Hs.78146 platelet/endothelial cell adhesion molec 0.51 0.97 313711 AA398070 Hs.133471 ESTs 0.18 1.01 313723 AA070412 gbzm68c10.s1 Stratagene neuroepithelium 1.08 1.03 313726 AI744687 Hs.257806 ESTs 2.13 2.99 313774 AW136836 Hs.144583 ESTs 1.38 1.19 313784 AA910514 Hs.134905 ESTs 3.88 5.78 313790 AW078569 Hs.177043 ESTs 0.22 2.06 313832 AW271022 Hs.133294 ESTs 1.15 0.91 313834 AW418779 Hs.114889 ESTs 5.74 8.88 80 313852 H18633 Hs.123641 protein tyrosine phosphatase, receptor t 0.16 1.14 313854 AW470806 Hs.159309 ESTs 3.41 4.09 313871 AW471088 Hs.145950 ESTs 5.28 6.8							
313711	70						
313723	70						
313726				Hs.133471			
75 313774 AW136836 Hs.144583 ESTs 1.38 1.19 313784 AA910514 Hs.134905 ESTs 3.88 5.78 313790 AW078569 Hs.177043 ESTs 0.22 2.06 313832 AW271022 Hs.133294 ESTs 1.15 0.91 313834 AW418779 Hs.114889 ESTs 0.68 3.14 313835 AI538438 Hs.159087 ESTs 5.74 8.88 313852 H18633 Hs.123641 protein tyrosine phosphatase, receptor t 0.16 1.14 313854 AW470806 Hs.275002 ESTs 2.09 4.06 313865 AA731470 Hs.163839 ESTs 3.41 4.09 313871 AW471088 Hs.145950 ESTs 5.28 6.83					<u> </u>		
313784							
313790	75						
313832 AW271022 Hs.133294 ESTs 1.15 0.91 313834 AW418779 Hs.114889 ESTs 0.68 3.14 313835 AI538438 Hs.159087 ESTs 5.74 8.88 313852 H18633 Hs.123641 protein tyrosine phosphatase, receptor t 0.16 1.14 313854 AW470806 Hs.275002 ESTs 2.09 4.06 313865 AA731470 Hs.163839 ESTs 3.41 4.09 313871 AW471088 Hs.145950 ESTs 5.28 6.83 313883 AI949384 open/76601 st NCL CGAP AIVI Homo sapiens 2.90 10.91	13						
80 313834 AW418779 Hs.114889 ESTs 0.68 3.14 313835 Al538438 Hs.159087 ESTs 5.74 8.88 313852 H18633 Hs.123641 protein tyrosine phosphatase, receptor t 0.16 1.14 313854 AW470806 Hs.275002 ESTs 2.09 4.06 313865 AA731470 Hs.163839 ESTs 3.41 4.09 313871 AW471088 Hs.145950 ESTs 5.28 6.83 313883 Al949384 open/8601 st NCL CGAP Alv1 Home series 2.90 10.91							
80 313835 Al538438 Hs.159087 ESTs 5.74 8.88 313852 H18633 Hs.123641 protein tyrosine phosphatase, receptor t 0.16 1.14 313854 AW470806 Hs.275002 ESTs 2.09 4.06 313865 AA731470 Hs.163839 ESTs 3.41 4.09 313871 AW471088 Hs.145950 ESTs 5.28 6.83 313883 Al949384 open/07/6701 st NCL CGAP Alv1 Homo sapiens 2.90 10.91							
80 313852 H18633 Hs.123641 protein tyrosine phosphatase, receptor t 0.16 1.14 313854 AW470806 Hs.275002 ESTs 2.09 4.06 313865 AA731470 Hs.163839 ESTs 3.41 4.09 313871 AW471088 Hs.145950 ESTs 5.28 6.83 313883 AI949384 optimized from the companion of the companio							
313854 AW470806 Hs.275002 ESTs 2.09 4.05 313865 AA731470 Hs.163839 ESTs 3.41 4.09 313871 AW471088 Hs.145950 ESTs 5.28 6.83 313883 AI949384 objut/5601 st NCI CGAP Alvi Homp sapiers 2.90 10.91	90						
313865 AA731470 Hs.163839 ESTs 3.41 4.09 313871 AW471088 Hs.145950 ESTs 5.28 6.83 313883 Al949384 gbruy76d01 s1 NOL CGAP Alv1 Home sariers 2.90 10.91	٥U						
313871 AW471088 Hs.145950 ESTs 5.28 6.83 313883 Al949384 gbrau76d01 s1 NCL CGAP Alv1 Home saries 2.90 10.91							
313883 Al949384 abrau76d01 s1 NCL CGAP Alv1 Homo sariens 2 90 10.91							
85 313915 Al969390 Hs.163443 Inc. GCAP_AIV1 Homo sapiens 2.90 10.91 1.00 1.00				Hs.145950			
313915 AI309390 HS.163443 Homo Sapiens CDNA FLJ115/6 IIS, CIONE HE 1.00 1.00	25			11- 400 140			
	O.J	313915	VISCEDEIV	rts.103443	nomo sapiens cuna ruj 1370 iis, cione HE	1.00	1.00

	W	U 02/08	6443			
	313926	AW473830	Hs.171442	ESTs	3.40	4.11
	313948	AW452823	Hs.135268	ESTs .	5.77	9.15
	313978	AI870175	Hs.13957	ESTs	0.46	0.75
_	313983	Al829133	Hs.226780	ESTs	4.10	6.40
5	314035	AA164199	Hs.270152	ESTs	5.88	7.90
	314037	AW300048	Hs.275272	ESTs	1.00	3.79
	314040	AA166970	Hs.118748	ESTs	7.60	11.33
	314067	AW293538	Hs.51743	KIAA1340 protein	1.86	1,21
	314103	Al028477	Hs.132775	ESTs	2.90	5.29
10	314107	AA806113	Hs.189025	ESTs	2.00	1.66
	314113	AA218986	Hs.118854	ESTs	0.91	4.17
	314124	AW118745	Hs.9460	Homo sapiens mRNA; cDNA DKFZp547C244 (fr	2.53	3.32
	314126	AA226431		gb:nc18b12.s1 NCI_CGAP_Pr1 Homo sapiens	3.13	5.08
	314128	AA935633	Hs.194628	ESTs	2.90	6.35
15	314151	AA236163	Hs.202430	ESTs	4.15	6.45
13	314184	AW081795	Hs.233465	ESTs	3.44	4.65
					1.00	1.23
	314192	AW290975	Hs.118923	ESTs		
	314244	AL036450	Hs.103238	ESTs	2.88	3.67
20	314253	AA278679	Hs.189510	ESTs	4.98	7.16
20	314262	AW086215	Hs.246096	ESTs	0.38	1.94
	314320	AA811598	Hs.275809	ESTs	3.34	5.66
	314332	AL037551	Hs.95612	ESTs	2.85	2.09
	314335	AA287443	Hs.142570	Homo saplens clone 24629 mRNA sequence	4.35	4.78
0.5	314340	AW304350	Hs.130879	ESTs, Moderately similar to putative p15	0.77	0.86
25	314351	AA292275	Hs.193746	ESTs	3.07	3.77
	314376	AI628633	Hs.324679	ESTs .	4.10	6.11
	314443	AA827125	Hs.192043	ESTs	6.20	13.67
	314458	Al217440	Hs.143873	ESTs	0.58	2.49
	314466	AA767818	Hs.122707	ESTs	2.53	2.62
30	314478	AI521173	Hs.125507	DEAD-box protein	3.94	5.65
	314482	AL043807	Hs.134182	ESTs	1.30	1.44
	314506	AA833655	Hs.206868	Homo sapiens cDNA FLJ14056 fis, clone HE	3.28	3.47
	314519	R42554	Hs.210862	T-box, brain, 1	3.12	6.16
	314529	AL046412	Hs.202151	ESTs	3.43	6.87
35	314546	AW007211	Hs.16131	hypothetical protein FLJ12876	1.38	1.00
55	314562	Al564127	Hs.143493	ESTs	2.29	5.27
	314579	AW197442	Hs.116998	ESTs	3.87	5.75
	314580	AW451832	Hs.255938	ESTs, Moderately similar to KIAA1200 pro	0.10	0.71
	314585	AA918474	Hs.216363	ESTs	1.08	1.40
40		AW384790	Hs.153408	Homo sapiens cDNA FLJ10570 fis, clone NT	1.00	1.00
40	314589	AA435761	Hs.192148	ESTs	0.90	2.60
	314592			ESTS	4.56	6.29
	314603	AA418024	Hs.270670		3.42	3.92
	314604	AA946582	Hs.8700	deleted in liver cancer 1	2.97	3.52 4.55
45	314606	AA418241	Hs.188767	ESTS		
43	314648	AA878419	11- 400004	gb:EST391378 MAGE resequences, MAGP Homo		1.36
	314699	Al038719	Hs.132801	ESTs	3.66	4.97
	314701	Al754634	Hs.131987	ESTs	0.03	0.90
	314710	AI669131	Hs.290989	EST	3.40	7.52
50	314750	Al095005	Hs.135174	ESTs	2.80	6.54
50	314767	AW135412	Hs.164002	ESTs	3.20	4.26
	314801	AA481027	Hs.109045	hypothetical protein FLJ10498	1.00	1.00
	314817	Al694139	Hs.192855	ESTs	0.91	0.99
	314835	Al281370	Hs.76064	ribosomal protein L27a	5.75	7.44
	314852	A1903735		gb:MR-BT035-200199-031 BT035 Homo saplen	1.68	4.34
55	314853	AA729232	Hs.153279	ESTs	0.60	1.85
	314940	AW452768	Hs.162045	ESTs	10.10	16.20
	314941	AA515902	Hs.130650	ESTs	0.31	1.02
	314943	A1476797	Hs.184572	cell division cycle 2, G1 to S and G2 to	2.18	0.37
	314955	AA521382	Hs.192534	ESTs	2.59	3.90
60	314973	AW273128	Hs.300268	ESTs	1.05	1.25
	315004	AA527941	Hs.325351	EST	5.64	13.63
	315006	Al538613	Hs.298241	Transmembrane protease, serine 3	0.52	1.78
	315033	A1493046	Hs.146133	ESTs	2.46	1.00
	315035	AI569476	Hs.177135	ESTs	0.34	1.33
65	315056	Al202703	Hs.152414	ESTs	2.10	2.64
	315069	AI821517	Hs.105866	ESTs	1.00	1.30
	315071	AA552690	Hs.152423	Homo sapiens cDNA: FLJ21274 fis, clone C	1.78	1.00
	315073	AW452948	Hs.257631	ESTs	1.17	1.52
	315078	AA568548	Hs.190616	ESTs	3.00	3.79
70	315080	AA744550	Hs.136345	ESTs	1.00	1.00
, 0	315120	AA564991	Hs.269477	ESTs	0.64	1.44
						1.91
	315175 315193	Al025842 Al241331	Hs.152530 Hs.131765	ESTs ESTs	0.61 1.06	0.97
				Homo sapiens clone TCCCTA00151 mRNA sequ		1.96
75	315196	AA972756	Hs.44898		0.48	9.40
, 5	315200	AI808235	Hs.307686	EST	3.76 5.27	
	315254	A1474433	Hs.179556	ESTs	5.37	9.36
	315353	AW452608	Hs.279610	hypothetical protein FLJ10493	1.00	1.30
	315397	AA218940	Hs.137516	fidgetin-like 1	3.38	2.24
80	315403	AW362980	Hs.163924	ESTs	2.04	5.23
οU	315431	AA622104	Hs.184838	ESTS	2.36	8.04
	315454	A1239473		gb:qh36f02.x1 Soares_NFL_T_GBC_S1 Homo s	3.46	7.64
	315455	AW393391	Hs.156919	ESTs	3.78	5.76
	315473	Al681671	Hs.312671	ESTs, Moderately similar to OVCA1	0.89	2.15
0.5	315483	AW512763	Hs.222024	transcription factor BMAL2	2.32	1.96
85	315526	Al193048	Hs.128685	ESTs	1.67	1.78

	W	O 02/08	6443			
	315530	A1200852	Hs.127780	ESTs	1.05	1.01
	315541	Al168233	Hs.123159	sperm associated antigen 4	0.85	0.56
	315552	AW445034	Hs.256578	ESTs	1.00	2.22
_	315562	AA737415	Hs.152826	ESTs	2.66	2.48
5	315577	AW513545	Hs.17283	hypothetical protein FLJ10890	2.20	2.25
	315587	A1268399	Hs.140489	ESTs	1.00	1.04
	315589	AW072387	Hs.158258	Homo sapiens mRNA; cDNA DKFZp434B1272 (f	0.14	1.05
	315623	AA364078	Hs.258189	ESTs	7.44	12.56
• •	315634	AA837085	Hs.220585	ESTs	0.50	1.40
10	315668	AA912347	Hs.136585	ESTs	0.43	1.22
	315677	Al932662	Hs.164073	ESTs	0.60	1.39
	315706	AW440742	Hs.155556	hypothetical protein FLJ20202	2.18	3.77
	315707	Al418055	Hs.161160	ESTs	2.88	2.63
	315730	H25899	Hs.201591	ESTs	0.11	0.60
15	315745	AI821759	Hs.191856	ESTs	3.50	7.25
	315791	AA678177		gb:zi15a05.s1 Soares_fetal_liver_spleen_	1.78	2.63
	315801	AA827752	Hs.266134	ESTs	4.31	6.23
	315820	A1652022	Hs.258785	ESTs	2.35	3.01
	315878	AA683336	Hs.189046	ESTs	2.12	2.64
20	315905	AJ821911	Hs.209452	ESTs	1.03	1.97
20	315923	Al052789	Hs.133263	ESTs	2.63	5.06
	315954	AW276810	Hs.254859	ESTs, Moderately similar to ALU5_HUMAN A	1.21	0.85
	315978	AA830893	Hs.119769	ESTs	3.09	3.41
	316001	Al248584	Hs.190745	Homo sapiens cDNA: FLJ21326 fis, clone C	2.20	6.82
25 -	316011	AW516953	Hs.201372	ESTs	0.35	1.63
25	316012	AA764950	Hs.119898	ESTs	6.56	8.13
	316040	Al983409	Hs.189226	ESTs	5.69	10.69
	316048	Al720759	Hs.224971	ESTs	2.84	10.45
	316076	AW297895	Hs.116424	ESTs	0.30	1.05
30	316124	Al308862	Hs.167028	ESTs	1.00	1.43
50	316151	AI806016	Hs.156520	ESTs	5.80	9.03
	316187	AW518299	Hs.192253	ESTs	1.20	3.96
	316204	AA731509	Hs.120257	ESTs	4.92	6.94
	316232	AW297853	Hs.251203	ESTs	1.48	1.60
35	316275	Al671041	Hs.292611	ESTs, Moderalely similar to ALU1_HUMAN A	5.86	12.14
55	316291	AW375974	Hs.156704	ESTs	2.73	2.69
	316303	AA740994	Hs.209609	ESTs	1.53	1.26
	316344	AA744518	Hs.120610	ESTs	3.66	8.34
	316346	Al028478	Hs.157447	ESTs	3.51	6.69
40	316365	A1627845	Hs.210776	ESTs	2.50	4.33
40	316380	Al393378	Hs.164496	ESTs	1.16	2.16
	316470	AA809902	Hs.243813	ESTs	5.40	10.34
	316509	AA767310	Hs.291766	ESTs	2.46	2.89
	316514	AA768037	Hs.291671	ESTs ·	4.70	6.04
45	316519	Al929097	113.231071	gb:od10c11.s1 NCI_CGAP_GCB1 Homo sapiens	4.41	9.70
73	316609	AW292520	Hs.122082	ESTs	1.00	2.89
	316633	A)125586	Hs.127955	ESTs	2.61	3.72
	316700	AW172316	Hs.252961	ESTs, Weakly similar to ALU1_HUMAN ALU S	3.46	4.64
	316711	AI743721	Hs.285316	ESTs, Moderately similar to ALU7_HUMAN A	4.45	6.95
50	316713	AI090671	Hs.134807	hypothetical protein FLJ12057	0.30	2.40
50	316715	Al440266	Hs.170673	ESTs, Weakly similar to AF126780 1 retin	0.20	1.45
	316787	AW369770	Hs.130351	ESTs	4.05	5.53
	316809	AA825839	Hs.202238	ESTs	2.25	3.82
	316811	AA922060	Hs.132471	ESTs	1.00	1.32
55	316812	AW135045	Hs.232001	ESTs	3.28	4.70
55	316818	AA827176	Hs.124316	ESTs	0.67	1.81
	316824	AA837416	Hs.124299	ESTs	3.53	6.00
	316827	Al380429	Hs.172445	ESTs	0.72	1.56
	316891	AW298119	Hs.202536	ESTs	1.64	2.97
60	316951	AA134365	Hs.57548	ESTs ·	1.45	1.08
•	316970	AA860172	Hs.132406	ESTs	1.00	1.53
	316971	AA860212	Hs.170991	ESTs	1.08	1.96
	316990	AA861611	Hs.130643	ESTs	5.44	10.04
	317001	Al627917	Hs.233694	hypothetical protein FLJ11350	3.56	4.37
65	317008	AW051597	Hs.143707	ESTs	0.69	1.37
	317051	AA873253	Hs.126233	ESTs:	6.18	12.72
	317128	AA971374	Hs.125674	ESTs	1.87	2.66
	317129	H12523	Hs.78521	Homo sapiens cDNA: FLJ21193 fis, clone C	4.12	6.64
	317137	AW341567	Hs.125710	ESTs	2.82	5.12
70	317196	AJ348258	Hs.153412	ESTs	1.98	2.51
	317212	AI866468	Hs.148294	ESTs	1.86	2.83
	317223	AW297920	Hs.130054	ESTs	0.83	1.57
	317224	D56760	Hs.93029	sparc/osteonectin, cwcv and kazal-like d	2.74	0.86
	317266	AA906289	Hs.203614	ESTs	1.00	1.00
75	317282	AI807444	Hs.176101	ESTs	2.60	4.21
	317285	AW370882	Hs.222080	ESTs	1.96	3.49
	317302	AA908709	Hs.135564	ESTs	7.16	8.32
	317304	AW449899	Hs.130184	ESTs	1.38	2.28
	317320	AA927151	Hs.130452	ESTs	3.58	8.13
80	317413	AW341701	Hs.126622	ESTs	2.08	4.92
	317417	AA918420	Hs.145378	ESTs	3.06	4.79
	317452	AA972965	Hs.135568	ESTs	4.22	9.21
	317519	AI859695	Hs.126860	ESTs	1.88	4.15
<u>.</u> -	317521	AI824338	Hs.126891	ESTs	3.12	4.55
85	317529	AI916517	Hs.126865	ESTs	2.73	3.34

	W	O 02/086	5443		•	
	317570	Al733361	Hs.127122	ESTs	1.00	2.43
	317571	AA938663	Hs.199828	ESTs	5.20	11.95
	317598	AW206035	Hs.192123 Hs.132553	ESTs ESTs	0.33 1.50	1.56 1.39
5	317627 317650	Al346110 Al733310	Hs.127346	ESTs	0.48	1.46
•	317659	AA961216	Hs.127785	ESTs	4.18	7.14
	317674	AW294909	Hs.132208	ESTs	2.92	3.20
•	317686	AA969051	Hs.187319	ESTs	1.00	1.01
10	317692	Al307659	Hs.174794	ESTs	5.33	9.59
10	317701	Al674774 Al733015	Hs.128014 Hs.272189	ESTs ESTs	1.00 5.13	1.00 7.81
	317711 317722	AI733373	Hs.128119	ESTs	2.50	6.03
	317756	AA973667	Hs.128320	ESTs	1.59	1.30
	317777	Al143525	Hs.47313	KIAA0258 gene product	1.00	2.48
15	317799	Al498273	Hs.128808	ESTs	1.78	2.11
	317803	AA983251	Hs.128899	ESTs	0.80	1.06
	317821	Al368158	Hs.70983	PTPL1-associated RhoGAP 1	0.17	0.68 8.16
	317848 317850	AI820575 N29974	Hs.129086 Hs.152982	Homo sapiens cDNA FLJ12007 fis, clone HE hypothetical protein FLJ13117	5.30 1.30	2.28
20	317861	AW341064	Hs.129119	ESTs	2.18	5.93
20	317865	Al298794	Hs.129130	ESTs	4.48	8.20
	317869	AW295184	Hs.129142	deoxyribonuclease II beta	0.44	0.99
	317881	A1827248	Hs.224398	Homo sapiens cDNA FLJ11469 fis, clone HE	4.06	2.23
25	317890	Al915599	Hs.129225	ESTS	4.68	7.48 3.37
25	317899 317986	A1952430	Hs.150614 Hs.201378	ESTs, Weakly similar to ALU4_HUMAN ALU S ESTs, Weakly similar to T12545 hypotheti	3.14 0.28	3.37 1.66
	318001	Ai005163 AW235697	Hs.130980	ESTs. Weakly similar to 112545 hypotheti	5.12	9.97
	318016	AI016694	Hs.256921	ESTs	1.86	4.50
	318023	AW243058	Hs.131155	ESTs	2.92	5.22
30	318054	AW449270	Hs.232140	ESTs	3.92	6.37
	318068	A1024540	Hs.131574	ESTs	1.21 0.86	1.27 1.17
	318117 318187	AJ208304 AJ792585	Hs.250114 Hs.133272	ESTs ESTs, Weakly similar to ALUC_HUMAN !!!!	5.90	6.98
	318223	Al077540	Hs.134090	ESTs	1.05	0.90
35	318240	Al085377	Hs.143610	ESTs	3.10	2.40
	318255	Al082692	Hs.134662	ESTs	0.02	1.05
	318266	AI554341	Hs.271443	ESTs	6.12	10.55
	318330	Al093840 Al493501	Hs.143758 Hs.170974	ESTs ESTs	4.98 2.46	7.90 5.62
40	318369 318428	Al949409	Hs.194591	ESTS	0.77	0.45
.0	318458	AI149783	Hs.158438	ESTs	3.54	4.92
	318467	Al151395	Hs.144834	ESTs -	4.56	5.62
	318473	Al939339	Hs.146883	ESTs	2.08	4.05
15	318476	Al693927	Hs.265165	ESTs	4.22	8.07
45	318487 318488	Al167877 Al217431	Hs.143716 Hs.144709	ESTs ESTs	1.47 1.40	1.05 4.14
	318491	- T26477	Hs.22883	ESTs, Weakly similar to ALU8_HUMAN ALU S	1.84	1.90
	318499	T25451		gb:PTHI188 HTCDL1 Homo sapiens cDNA 5'/3	2.58	5.20
50	318537	AA377908	Hs.13254	ESTs	3.26	4.18
50	318538	N28625	Hs.74034	Homo sapiens clone 24651 mRNA sequence	0.35	1.07
	318547	R20578	Hs.90431 Hs.90363	ESTs ESTs	3.22 4.87	4.60 9.06
	318552 318575	R18364 R55102	Hs.107761	ESTs, Weakly similar to unnamed protein	1.91	1.98
	318580	T34571	Hs.49007	poly(A) polymerase alpha	2.74	6.22
55	318587	AA779704	Hs.168830	Homo sapiens cDNA FLJ12136 fis, clone MA	0.85	2.46
	318596	A1470235	Hs.172698	EST	4.88	4.93
	318622 318629	T48325 N25163	Hs.237658 Hs.8861	apolipoprotein A-II ESTs	4.80 0.39	12.51 1.04
	318637	AA243539	Hs.9196	hypothetical protein	1.72	3.57
60	318648	T77141	Hs.184411	albumin	6.27	9.91
	318650	AA393302	Hs.176626	hypothetical protein EDAG-1	3.96	8.84
	318671	AA188823	Hs.299254	Homo sapiens cDNA: FLJ23597 fis, clone L	1.53	0.81
	318679 318711	T58115 Al936475	Hs.10336 Hs.101282	ESTs Homo sapiens cDNA: FLJ21238 fis, clone C	1.00 3.05	2.19 3.18
65	318725	Al962487	Hs.242990	ESTs	1.08	2.46
	318728	Z30201	Hs.291289	ESTs, Weakly similar to ALU1_HUMAN ALU S	0.77	1.33
	318740	NM_002543		oxidised low density lipoprotein (lectin	0.25	1.49
	318776	R24963	Hs.23766	ESTs	1.00	3.01
70	318784	H00148	Hs.5181	proliferation-associated 2G4, 38kD	2.70 3.90	3.86 7.13
70	318816 318865	F07873 H10818	Hs.21273	ESTs gb:ym04f10.r1 Soares infant brain 1NIB H	2.25	3.56 _.
	318879	R56332	Hs.18268	adenylate kinase 5	1.78	5.00
	318881	Z43224	Hs.124952	ESTs	4.79	14.13
75	318894	F08138	Hs.7387	DKFZP564B116 protein	5.31	7.00
75	318901	AW368520	Hs.301528	L-kynurenine/alpha-aminoadipate aminotra	1.03	0.91 2.80
	318925 318936	Z43577 Al219221	Hs.21470 Hs.308298	ESTs ESTs	2.23 1.86	3.80 7.16
	318982	Z44140	Hs.269622	ESTS	5.84	9.79
	318986	Z44186	Hs.169161	ESTs, Highly similar to MAON_HUMAN NADP-	1.00	1.00
80	319041	Z44720	Hs.98365	ESTs, Weakly similar to weak similarity	3.38	6.11
	319103	H05896	Hs.4993	KIAA1313 protein	1.00	1.07
	319170	R13678	Hs.285306	putative selenocysteine tyase	3.79 1.00	5.03 2.98
	319196 319199	F07953 F07361	Hs.16085 Hs.13306	putative G-protein coupled receptor ESTs	3.53	2.96 5.66
85	319242	F11472	Hs.12839	ESTs	5.87	7.26

	W	O 02/086	6443			
	319263	T65331	Hs.81360	Horno sapiens cDNA: FLJ21927 fis, clone H	1.81	1.57
	319267	F11802	Hs.6818	ESTs	1.10	4.72
	319270	R13474	Hs.290263	ESTs	4.80	10.40
_	319279	T65094	Hs.12677	CGI-147 protein	1.50	2.11
5	319282	AA461358	Hs.12876	ESTs	1.00	1.00
	319289	W07304	Hs.79059	transforming growth factor, beta recepto	0.18	0.68
	319291	W86578	Hs.285243	hypothetical protein FLJ22029	0.26	0.62
	319293	F12119	Hs.12583	ESTs gb:HSC2QE041 normalized infant brain cDN	3.13	4.50 1.00
10	319312	Z45481 H54254	Hs.325823	ESTs, Moderately similar to ALU5_HUMAN A	1.10 0.16	0.73
10	319370 319391	R06304	Hs.13911	ESTs. Moderately similar to ACOS_HOWAY A	1.26	2.43
	319396	H67130	Hs.301743	ESTs	0.70	0.76
	319398	AA359754	Hs.191196	ESTs	2.45	3.59
	319407	R05329		gb:ye91b04.r1 Soares fetal liver spleen	2.00	3.54
15	319425	T82930		gb:yd39f07.r1 Soares fetal liver spleen	4.28	8.81
	319433	R06050	Hs.191198	ESTs	6.15	14.13
	319437	AA282420	Hs.111991	ESTs, Weakly similar to Y48A5A.1 [C.eleg	3.26	5.68
	319466	A1809937	Hs.116417	ESTs	1.76	5.65
20	319471	R06546	Hs.19717	ESTs	4.29	4.84
20	319480	R06933	Hs.184221	ESTs	1.00	1.00
	319484	T91772	11- 050700	gb:yd52a10.s1 Soares fetal liver spleen	2.81	4.88
	319486	AJ382429	Hs.250799	ESTS	2.08 2.80	2.82 4.39
	319508 319523	T99898 T69499	Hs.270104 Hs.191184	ESTs, Moderately similar to ALU8_HUMAN A ESTs	1.55	3.25
25	319545	R83716	Hs.14355	Homo sapiens cDNA FLJ13207 fis, clone NT	1.65	1.19
23	319546	R09692	113,14000	gb:yf23b12.r1 Soares fetal liver spleen	5.11	8.54
	319552	AA096106	Hs.20403	ESTs	1.89	3.36
	319582	T82998	Hs.250154	hypothetical protein FLJ12973	3.48	4.82
	319586	D78808	Hs.283683	chromosome 8 open reading frame 4	0.26	0.82
30	319604	R11679	Hs.297753	vimentin	1.68	3.41
	319609	AW247514	Hs.12293	hypothetical protein FLJ21103	3.06	4.24
	319611	H14957		gb:ym19c10.r1 Soares infant brain 1NIB H	2.76	4.24
	319653	AA770183	Hs.173515	uncharacterized hypothalamus protein HT0	2.51	3.55
35	319657	R19897	Hs.106604	ESTs	5.32	7.68
33	319658	R13432	Hs.167481	syntrophin, gamma 1	3.35 5.18	5.00 12.55
	319661 319662	H08035 H06382	Hs.21398 Hs.21400	ESTs, Moderately similar to A Chain A, H ESTs	1.58	1.56
	319708	R15372	Hs.22664	ESTs	1.00	1.22
	319742	T77668	Hs.21162	ESTs	2.48	3.13
40	319748	R18178	Hs.295866	Homo sapiens mRNA; cDNA DKFZp434N1923 (f	3.02	4.85
	319772	R76633	Hs.22646	ESTs	4.36	11.61
	319788	AA321932	Hs.117414	KIAA1320 protein	2.56	3.68
	319805	R92857	Hs.271350	likely ortholog of mouse polydom	4.63	6.56
15	319812	N74880	Hs.264330	N-acylsphingosine amidohydrolase (acid c	0.63	1.32
45	319834	AA071267	11- 42044	gb:zm61g01.r1 Stratagene fibroblast (937	0.30	0.94
	319878 319882	T78517	Hs.13941 Hs.291392	ESTs ESTs	3.99 5.09	6.44 7.36
	319912	AA258981 T77559	Hs.94109	Homo sapiens cDNA FLJ13634 fis, clone PL	3.24	3.21
	319935	H79460	Hs.271722	ESTs, Weakly similar to ALU1_HUMAN ALU S	4.40	9.42
50	319944	T79248	Hs.133510	ESTs	3.31	5.39
	319947	AA160967	Hs.14479	Homo sapiens cDNA FLJ14199 fis, clone NT	2.90	4.95
	319962	H06350	Hs.135056	Human DNA sequence from clone RP5-850E9	1.81	1.57
	320007	AA336314		gb:EST40943 Endometrial tumor Homo saple	3.42	6.29
<i>E E</i>	320018	T83263		gb:yd40h09.r1 Soares fetal liver spleen	2.77	5.14
55	320030	H63789	Hs.296288	ESTs, Weakly similar to KIAA0638 protein	4.10	6.69
	320032	A1699772	Hs.292664	ESTs, Weakly similar to A46010 X-linked	3.27	3.27
	320040	AA233671 T86564	Hs.87164 Hs.302256	hypothetical protein FLJ14001 EST	1.81 3.38	1.64 7.36
	320047 320063	AA074108	Hs.120844	FOXJ2 forkhead factor	5.90	16.73
60	320096	H58138	Hs.117915	ESTs	2.08	4.47
	320099	AW411307	Hs.114311	CDC45 (cell division cycle 45, S.cerevis	1.00	1.00
	320112	T92107	Hs.188489	ESTs	2.27	2.06
	320140	H94179	Hs.119023	SMC2 (structural maintenance of chromoso	1.00	1.00
~=	320188	AW419200	Hs.172318	ESTs	1.26	1.00
65	320193	AA831259	Hs.17132	ESTs	2.58	6.23
	320195	R62203	Hs.24321	Homo sapiens cDNA FLJ12028 fis, clone HE	2.85	4.53
	320199	R78659	Hs.29792	ESTS	0.40 0.84	0.94 1.18
	320203 320219	AL049227 AA327564	Hs.124776 Hs.127011	Homo sapiens mRNA; cDNA DKFZp564N1116 (f tubulointerstitial nephritis antigen	1.00	1.17
70	320220	AF054910	Hs.127111	tektin 2 (testicular)	0.18	1.09
	320225	AF058989	Hs.128231	G antigen, family B, 1 (prostate associa	5.26	13.75
	320231	H03139	Hs.24683	ESTs	1.59	1.93
	320260	NM_003608		G protein-coupled receptor 65	1.38	4.56
76	320267	AL049337	Hs.132571	Homo sapiens mRNA; cDNA DKFZp564P016 (fr	1.00	1.92
75	320268	H06019	Hs.151293	Homo sapiens cDNA FLJ10664 fis, clone NT	5.58	5.70
	320322	AF077374	Hs.139322	small proline-rich protein 3	1.41	1.01
	320325	AI167978	Hs.139851	caveolin 2	0.05	0.67
	320330	AF026004	Hs.141660	chloride channel 2	2.17 1.81	1.26 2.32
80	320339 320388	H10807 H16065	Hs.281434 Hs.31286	Homo sapiens cDNA FLJ14028 fis, clone HE ESTs	1.00	3.22
00	320402	R22291	Hs.23368	Homo sapiens clone FLC0578 PRO2852 mRNA,	1.41	1.36
	320413	AA203711	Hs.173269	ESTs	2.31	3.61
	320432	R62786	Hs.124136	ESTs	11.25	20.78
0.5	320436	AA253352	Hs.293663	ESTs	2.22	3.49
85	320438	W24548	Hs.5669	ESTs	3.53	8.14

		U 02/00				
•	320448	AJ240233	Hs.80887	v-yes-1 Yamaguchi sarcoma viral related	1.42	3.46
	320451	R26944	Hs.180777	Homo sapiens mRNA; cDNA DKFZp564M0264 (f	0.87	0.81
	320484	AA094436	Hs.296267	follistatin-like 1	0.65	1.18
	320499	R32555	Hs.24321	Homo sapiens cDNA FLJ12028 fis, clone HE	3.44	7.15
5	320514	AB007978	Hs.158278	KIAA0509 protein	6.44	13.62
•	320521	N31464	Hs.24743	hypothetical protein FLJ20171	1.48	1.04
	320526	AW374205	Hs.111314	ESTs	3.66	7.87
	320527	R34672	Hs.324522	ESTs	3.16	5.63
				ESTs		
10	320536	AA331732	Hs.137224		2.83	5.83
10	320556	AF054177	Hs.14570	hypothetical protein FLJ22530	1.28	1.00
	320564	AF056209	Hs.159396	peptidylglycine alpha-amidating monooxyg	1.22	0.81
	320587	Z44524	Hs.167456	Homo sapiens mRNA full length insert cDN	1.84	2.44
	320635	R54159	Hs.80506	small nuclear ribonucleoprotein polypept	1.00	6.25
	320639	AA243258	Hs.7395	hypothetical protein FLJ23182	2.60	2.30
15	320648	N48521	Hs.26549	Homo sapiens mRNA for KIAA1708 protein,	1.00	1.53
	320651	AA489268	Hs.111334	ferritin, light polypeptide	0.14	0.79
	320664	AI904216	Hs.91251	hypothetical protein FLJ11198	5.02	8.84
	320676	AA132650	Hs.300511	ESTs	3.63	5.37
			Hs.26638	ESTs, Weakly similar to unnamed protein	0.37	1.31
20	320683	R59291				
20	320689	AA334609	Hs.171929	ESTs, Weakly similar to A54849 collagen	1.27	1.02
	320696	AW135016	Hs.172780	ESTs	3.53	4.60
	320714	A1445591		gb:yq04a10.r1 Soares fetal liver spleen	1.06	0.85
	320727	U96044	Hs.181125	immunoglobulin lambda locus	1.35	1.49
	320771	A1793266	Hs.117176	poly(A)-binding protein, nuclear 1	0.04	0.82
25	320794	AA281993	Hs.91226	ESTs	2.96	4.33
	320822	AF100780	Hs.194679	WNT1 inducible signaling pathway protein	0.10	0.79
	320824	AF120274	Hs.194689	artemin	1.16	1.11
	320830	AJ132445	Hs.266416	claudin 14	1.06	1.75
				Homo sapiens mRNA; cDNA DKFZp547C136 (fr	1.36	1.47
30	320843	AA317372	Hs.34744			
30	320849	D60031	Hs.34771	ESTs	5.30	7.49
	320853	A1473796	Hs.135904	ESTs .	1.00	1.00
	320896	AB002155	Hs.271580	uroplakin 1B	5.90	2.55
	320921	R94038	Hs.199538	inhibin, beta C	2.20	1.17
	320927	Al205786	Hs.213923	ESTs	0.18	1.46
35	320957	AJ878933	Hs.92023	core histone macroH2A2.2	1.67	2.18
	320997	H22544		gb:yn69f11.r1 Soares adult brain N2b5HB5	3.26	3.62
	321045	W88483	Hs.293650	ESTs	2.25	4.55
	321046	H27794	Hs.269055	ESTs	2.69	4.25
	321052	AW372884	Hs.240770	nuclear cap binding protein subunit 2, 2	2.14	2.56
40				ESTs	1.69	0.53
40	321059	A1092824	Hs.126465			
	321062	R87955	Hs.241411	Homo sapiens mRNA full length insert cDN	2.76	5.20
	321067	AF131782	Hs.241438	Homo sapiens clone 24941 mRNA sequence	4.79	7.41
	321102	AA018306		gb:ze40d08.r1 Soares retina N2b4HR Homo	1.79	4.27
4.5	321130	H43750	Hs.125494	ESTs	1.00	3.14
45	321142	Al817933	Hs.298351	ASPL protein	8.73	15.36
	321155	AA336635	Hs.99598	hypothetical protein MGC5338	3.04	5.03
	321158	AA700289		gb:yu76f11.r1 Soares fetal liver spleen	4.62	8.39
	321170	N53742	Hs.172982	ESTs	2.21	4.46
	321199	AW385512		gb:yy56d10.s1 Soares_multiple_sclerosis_	5.69	8.01
50	321206	H54178	Hs.226469	Homo sapiens cDNA FLJ12417 fis, clone MA	4.00	7.32
50	321225	AL080073	Hs.251414	Homo sapiens mRNA; cDNA DKFZp564B1462 (f	4.17	4.63
	321236	AW371941	Hs.18192	Ser/Arg-related nuclear matrix protein (1.00	1.00
			FIS. 10 13Z		2.18	
	321244	AF068654		gb:Homo sapiens isolate AN.1 immunoglobu		9.13
55	321270	R83560		gb:yv76c06.s1 Soares fetal liver spleen	3.80	5.26
55	321317	AI937060	Hs.6298	KIAA1151 protein	1.81	1.65
	321318	AB033041	Hs.137507	KIAA1215 protein	1.00	1.00
	321325	AB033100	Hs.300646	KIAA protein (similar to mouse paladin)	0.44	0.93
	321342	AA127984	Hs.222024	transcription factor BMAL2	4.94	4.93
	321356	R93443	Hs.271770	ESTs	3.10	4.66
60	321418	AJ739161	Hs.161075	ESTs	2.28	2.54
	321420	Al368667	Hs.132743	ESTs	1.13	0.97
	321430	U05890		qb:H.saplens (DIG3) mRNA for immunoglobu	2.42	3.35
	321453	N50080	Hs.82845	Homo sapiens cDNA: FLJ21930 fis, clone H	1.60	3.11
	321467	X13075		gb:Human 2a12 mRNA for kappa-immunoglobu	0.42	0.72
65	321468	AA514198	Hs.38540	ESTs	2.46	6.50
05	321491	H70665	Hs.292549	ESTs	1.00	1.25
		AW295517			3.19	6.24
	321498		Hs.255436	ESTs		
	321504	W02356	Hs.268980	ESTs	2.28	3.86
70	321510	AA703650	Hs.255748	ESTs	2.14	3.94
70	321513	H84972	Hs.108551	ESTs .	2.78	5.37
	321516	Al382803	Hs.159235	ESTs	3.06	7.19
	321565	Al525773	Hs.266514	hypothetical protein FLJ11342	4.89	7.82
	321577	H84260		gb:ys90g04.r1 Soares retina N2b5HR Homo	1.00	1.73
	321581	AA019964	Hs.28803	ESTs	4.88	6.73
75	321582	AA143755	Hs.21858	trinucleotide repeat containing 3	1.00	2.08
	321587	H95531		gb:ys76e02.r1 Soares retina N2b4HR Homo	2.26	4.52
	321626	AA295430	Hs.96322	hypothetical protein FLJ23560	1.95	3.83
	321628	H87064	Hs.161051	ESTs, Moderately similar to ALU6_HUMAN A	0.47	1.02
	321642	AW085917	Hs.247084	ESTs	1.52	1.38
80					2.17	
50	321669	H95404	Hs.294110	ESTS		2.45
	321687	AA625149	11- 4004-0	gb:af70c12.r1 Soares_NhHMPu_S1 Homo sapi	4.31	6.95
	321688	H97646	Hs.123158	Homo sapiens cDNA FLJ12830 fis, clone NT	2.82	3.28
	321693	AA700017	Hs.173737	ras-related C3 botulinum toxin substrate	0.51	1.08
0.5	321700	N55160	Hs.167260	ESTs	4.57	7.46
85	321701	AW390923	Hs.42568	ESTs	1.00	1.00

	VV	U 04/00	0443			
	321709	N25847	Hs.108923	RAB38, member RAS oncogene family	1.00	1.00
	321710	N35682	Hs.259743	ESTs	2.97	5.26
	321775 321777	Al694875 Al637993	Hs.202312 Hs.202312	Homo sapiens clone N11 NTera2D1 teratoca Homo sapiens clone N11 NTera2D1 teratoca	1.00 1.68	1.00 0.45
5	321779	N42729	Hs.163835	ESTs	0.90	0.45
_	321829	D81993	Hs.8966	turnor endothelial marker 8	2.69	3.89
	321846	AA281594	Hs.87902	ESTs	5.11	7.64
	321879	AL109670	Hs.302809	ESTs	6.49	9.58
10	321883	AA426494	Hs.46901	KIAA1462 protein	0.28	0.95
10	321899 321911	N55158 AF026944	Hs.29468 Hs.293797	ESTs ESTs	0.39 6.20	0.95 10.76
	321949	R49202	Hs.181694	EST	4.62	10.70
	321955	AI651866	Hs.195689	ESTs	2.89	5.47
1.5	321956	AL110177	Hs.132882	ESTs	0.32	1.25
15	321987	AL133612	Hs.272759	KIAA1457 protein	1.00	1.83
	321991 322002	AL133627 AA328801	Hs.158923 Hs.84522	Homo sapiens mRNA; cDNA DKFZp434K0722 (f ESTs	4.00 2.10	6.47 3.48
	322035	AL137517	Hs.306201	hypothetical protein DKFZp564O1278	1.00	1.90
	322044	AW340926	7.0.000201	gb:xy51b10.x1 NCI_CGAP_Lu34.1 Homo sapie	3.20	9.67
20	322057	N92197	Hs.154679	synaptotagmin 1	1.55	1.07
	322060	Al341937		gb:qt10e03.x1 NCI_CGAP_GC4 Homo sapiens	4.59	7.68
	322070	U80769	Hs.210322	Homo sapiens mRNA for KIAA1766 protein,	2.78	4.52
	322083 322091	AF074982 AI819863	Hs.226031 Hs.106243	ESTs, Highly similar to KIAA0535 protein ESTs	3.10 1.59	5.52 1.75
25	322125	R93901	NS. 100243	gb:yq16c12.r1 Soares fetal liver spleen	2.06	5.27
20	322130	R98978	Hs.117767	ESTs	10.12	16.49
	322147	AF085919	Hs.114176	ESTs	0.94	0.64
	322166	AF085958		gb:yr88b03.r1 Soares fetal liver spleen	4.09	6.67
30	322173	H52567		gb:yt85d04.r1 Soares_pineal_gland_N3HPG	3.46	4.85
- 30	322178 322179	H56535 H92891		gb:yt88g03.r1 Soares_pineal_gland_N3HPG gb:yt94c02.s1 Soares_pineal_gland_N3HPG	0.44 4.52	2.54 7.50
	322179	H67346	Hs.269187	ESTs	0.15	0.98
	322196	W87895	Hs.211516	ESTs	2.20	5.04
~~	322212	AF087995	Hs.134877	ESTs	3.42	4.84
35	322221	AI890619	Hs.179662	nucleosome assembly protein 1-like 1	0.82	2.14
	322277	Al640193 AF086283	Hs.226389	ESTs gb:zd46f01.r1 Soares_fetal_heart_NbHH19W	3.62 1.00	3.98 1.00
	322278 322284	AI792140	Hs.49265	ESTs	0.66	2.76
	322288	AL037273	Hs.7886	pellino (Drosophila) homolog 1	0.71	0.70
40	322320	AF086419		gb:zd78d03.r1 Soares_fetal_heart_NbHH19W	2.02	2.76
	322336	AA308526	Hs.76152	decorin	2.92	4.44
	322339	W17348	Un 122402	gb:zb18c07:x5 Soares_fetal_lung_NbHL19W	8.50 0.61	11.56 1.34
	322366 322372	AW404274 W25624	Hs.122492 Hs.153943	hypothetical protein ESTs	7.37	12.07
45	322374	Al394663	Hs.122116	ESTs, Moderately similar to Osf2 [M.musc	4.78	10.50
	322378	AF064819	Hs.201877	DESC1 protein	1.00	1.00
	322388	Al815730	Hs.247474	hypothetical protein FLJ21032	7.09	8.49
	322416	AA223183	Hs.298442 Hs.14084	adaptor-related protein complex 3, mu 1	3.20 1.64	5.80 1.57
50	322419 322425	AA248987 W37943	Hs.34892	ring finger protein 7 KIAA1323 protein	0.83	1.00
50	322431	AA069222	Hs.141892	ESTs	3.96	5.22
	322450	AA040131	Hs.25144	ESTs .	5.18	12.67
	322465	AA137152	Hs.286049	phosphoserine aminotransferase	3.41	2.23
55	322467	AF116826	Hs.180340	putative protein-tyrosine kinase	1.00	1.30
33	322473 322509	AA744286 T52172	Hs.266935 Hs.302213	IRNA selenocysteine associated protein ESTs	1.75 1.00	2.03 2.27
	322523	W80398	Hs.193197	ESTs	2.75	5.49
	322527	AF147359		gb:Homo sapiens full length insert cDNA	1.25	1.27
C O	322560	Al916847	Hs.270947	ESTs	4.57	8.81
60	322566	W87285	Hs.269587	ESTs	1.00	1.42 6.94
	322585 322635	AA837622 AA679084		gb:zh69c01.r1 Soares_fetal_liver_spleen_ gb:zh90h08.r1 Soares_fetal_liver_spleen_	4.18 2.40	4.85
	322641	AA007352	Hs.256042	ESTs	2.94	4.64
	322653	AI828854	Hs.258538	striatin, calmodulin-binding protein	0.48	0.38
65	322664	AA011522		gb:zi03g07.r1 Soares_fetal_liver_spleen_	1.92	2.18
	322687	Al110759		gb:AF074666 Human fetal liver cDNA libra	4.14	6.75
	322692 322694	AA018117 Al110872	Hs.60843 Hs.279812	potassium voltage-gated channel, shaker- PRO0327 protein	3.50 1.80	5.00 1.72
	322708	AF113674	Hs.283773	clone FLB1727	1.00	3.43
70	322712	AA021328	Hs.23607	hypothetical protein FLJ11109	3.28	3.86
	322766	AW068805	Hs.288467	Homo sapiens cDNA FLJ12280 fis, clone MA	1.63	1.53
	322770	AA045796	Hs.122682	ESTs	1.53	1.06
	322794 322810	Al608591 Al962276	Hs.38991 Hs.127444	S100 calcium-binding protein A2	12.06 4.09	1.94 6.90
75	322818	AW043782	Hs.293616	ESTs ESTs	1.20	1.63
, ,	322820	Al377755	Hs.120695	ESTs	0.21	1.93
	322872	AA827228	Hs.126943	ESTs	2.04	1.63
	322882	AW248508	Hs.279727	Homo sapiens cDNA FLJ14035 fis, clone HE	5.26	1.22
80	322887	A1986306	Hs.86149	phosphoinositol 3-phosphate-binding prot	2.80 2.38	2.24 6.61
30	322913 322926	A1733737 A1825940	Hs.68837 Hs.211192	ESTs ESTs	4.02	5.79
	322929	Al365585	Hs.146246	ESTs	0.30	1.14
	322968	Al905228	Hs.83484	SRY (sex determining region Y)-box 4	2.06	1.13
0.5	322971	C15953	Hs.212760	hypothetical protein FLJ13649	1.18	2.00
85	322981	AA493252	Hs.159577	ESTs	2.28	2.61

	W	O 02/080	5443			
	322988	C18727	Hs.171941	ESTs	0.39	2.00
	323003	A1733859	Hs.149089	ESTs	3.28	1.00
	323013	AA134042	Hs.191451	ESTs	3.38	5.68
	323025	AL157565	Hs.315369	Homo sapiens cDNA: FLJ23075 fis, clone L	0.06	1.10
5	323032	AW244073	Hs.145946	ESTs	10.18	21.27
	323052	R21124	Hs.85573	Homo sapiens DC29 mRNA, complete cds	1.46	1.90
	323064	AL119341	Hs.49359	Homo sapiens mRNA; cDNA DKFZp547E052 (fr	3.08	5.64
	323098	AI700025	Hs.270471	ESTs	2.31	4.49
	323102	AL119913	Hs.163615	ESTs	5.38	11.64
10	323155	AL135041		gb:DKFZp762K2310_r1 762 (synonym: hmel2)	2.38	5.56
	323176	AW071648	Hs.82101	pleckstrin homology-like domain, family	1.06	1.41
	323191	AA195600	Hs.301570	ESTs	0.73	1.24
	323225	AA205654	Hs.24790	KIAA1573 protein	5.25	11.95
	323232	AA148722	Hs.224680	ESTs	0.45	1.35
15	323266	AW003362	Hs.243886	nuclear autoantigenic sperm protein (his	1.71	1.83
	323281	A1697556	Hs.292659	ESTs	1.24	3.21
	323283	AA256014	Hs.86682	Homo sapiens cDNA: FLJ21578 fis, clone C	12.68	15.05
	323314	AA226310	Hs.191501	ESTs	4.42	9.61
00	323316	AL134620	Hs.280175	ESTs	2.98	5.93
20	323334	AJ336501	Hs.77273	ras homolog gene family, member A	1.98	3.30
	323338	R74219	Hs.23348	S-phase kinase-associated protein 2 (p45	1.62	1.00
	323348	AA233056	Hs.191518	ESTs	1.00	1.07
	323351	AA704103	Hs.24049	ESTs	1.43	1.68
~~	323359	AA234172	Hs.137418	ESTs	0.34	1.18
25	323360	AA716061	Hs.161719	ESTs	3.01	3.71
	323405	AW139550	Hs.115173	ESTs	1.90	8.81
	323420	Al672386	Hs.263780	ESTs	0.29	1.01
	323434	AW081455	Hs.120219	ESTs	2.27	1.92
20	323445	AA253103	Hs.135569	ESTs, Weakly similar to NEUROD (H.sapien	0.43	0.80
30	323449	AA282865	Hs.284153	Fanconi anemia, complementation group A	3.19	3.85
	323492	H00978	Hs.20887	hypothetical protein FLJ10392	2.70	3.20
	323501	AA182461	Hs.84520	ESTs	2.04	3.31
	323505	A1652287		gb:EST382593 MAGE resequences, MAGK Homo:		3.08
25	323515	AA282274	Hs.256083	ESTs	2.69	3.40
35	323541	Al185116	Hs.104613	RP42 homolog	1.20	1.09
	323545	AI814405	Hs.224569	ESTs	1.25	1.55
	323635	R63117	Hs.9691	Homo sapiens cDNA: FLJ23249 fis, clone C	0.27	0.72
	323675	AA984759	Hs.272168	tumor differentially expressed 1	3.70	5.80
40	323678	AL042121	Hs.20880	ESTs	3.33	5.10
40	323691	AA317561	Hs.145599	ESTs .	1.00	1.00
	323693	AW297758	Hs.249721	ESTs	2.01	1.54
	323746	AW298611	Hs.12808	MARK	4.11	5.53
	323774	AA329806	Hs.321056	Homo sapiens mRNA; cDNA DKFZp586F1322 (f	2.06 3.42	3.70
45	323856	AA355264	Hs.267604	hypothetical protein FLJ10450	5.42 5.97	8.13 12.51
43	323857	T18988	Hs.293668	ESTs ESTs	3.17	4.52
	323870 323876	AA341774 AL042492	Hs.129212 Hs.147313	ESTS	0.36	1.00
	323885	AA344308	Hs.128427	Horno sapiens BAC clone RP11-335J18 from	2.31	3.33
	323911	AL043212	Hs.92550	ESTs	4.38	5.41
50	323919	AA862973	Hs.220704	ESTs	5.80	10.20
50	323972	AI869964	Hs.182906	ESTs	3.10	5.14
	324005	AA610011	Hs.208021	ESTs	5.34	10.07
	324036	Al472078	Hs.303662	ESTs	1.00	5.03
	324055	AA528794	Hs.128644	ESTs	0.86	1.00
55	324063	AW292740	Hs.272813	dual oxidase 1	0.45	0.91
	324072	AA381829	1,0,2,20	gb:EST94855 Activated T-cells I Homo sap	2.82	5.12
	324092	AW269931	Hs.202473	Homo sapiens cDNA: FLJ22278 fis, clone H	2.40	2.52
	324095	AW377983	Hs.298140	Homo saplens cDNA: FLJ22502 fis, clone H	1.32	4.30
	324129	Al381918	Hs.285833	Homo sapiens cDNA: FLJ22135 fis, clone H	1.40	1.77
60	324132	AW504860	Hs.288836	hypothetical protein FLJ12673	4.24	6.21
	324214	AA412395	Hs.225740	ESTs	6.96	10.69
	324227	AA295552	Hs.28631	Homo sapiens cDNA: FLJ22141 fis, clone H	0.81	0.53
	324266	AL047634	Hs.231913	ESTs	2.42	4.05
	324275	AA429088	Hs.98523	ESTs .	3.62	5.38
65	324281	AL048026	Hs.124675	ESTs, Weakly similar to T14742 hypotheti	0.14	0.70
	324290	AA432032	Hs.304420	ESTs	3.71	4.34
	324303	AL118754		gb:DKFZp761P1910_r1 761 (synonym: hamy2)	0.95	0.91
	324312	Al198841	Hs.128173	ESTs	4.06	5.91
70	324325	AL138153	Hs.300410	ESTs	5.88	8.25
70	324338	AL138357	Hs.145078	regulator of differentiation (in S. pomb .	0.87	1.25
	324341	AW197734	Hs.99807	ESTs, Weakly similar to unnamed protein	1.28	1.00
	324343	AW452016	Hs.293232	ESTs	2.54	3.46
	324371	AA452305	Hs.270319	ESTs	5.85	8.36
75	324382	AW502749	Hs.24724	MFH-amplified sequences with leucine-ric	0.76	1.64
75	324384	AA453396	Hs.127656	KIAA1349 protein	2.88	5.69
	324385	F28212	Hs.284247	KIAA1491 protein	1.81	1.99
	324388	AI924963	Hs.306206	hypothetical protein FLJ11215	1.00	1.00
	324432	AA464510	Hs.152812	ESTs	2.73	2.17
80	324497	AW152624	Hs.136340	ESTs, Weakly similar to unnamed protein	0.71	1.90
δU	324510	AI148353	Hs.287425	Homo sapiens cDNA FLJ11569 fis, clone HE	1.00	1.00
	324580	AA492588	Un 400000	gb:ng99c08.s1 NCI_CGAP_Thy1 Homo sapiens	2.18	3.50
	324582	AA506935	Hs.132036	ESTs, Weakly similar to ALU1_HUMAN ALU S	5.96	11.36
	324633	AA572994	Hs.325489	ESTs ESTs Madarataly similar to TTI MOUSE TH	2.92 5.48	4.22 11.74
85	324640	AW295832	Hs.134798	ESTs, Moderately similar to TTL MOUSE TU	5.48 n an	11.74 0.73
05	324675	AW014734	Hs.157969	ESTs	0.39	U./ J

	W	O 02/08	6443			
	324699	AW504732	Hs.21275	hypothetical protein FLJ11011	0.93	0.93
	324747	AA603532	Hs.130807	ESTs	1.57	1.81
	324748	AA657457	Hs.292385	ESTs	1.55	1.34
_	324801	Al819924	Hs.14553	sterol O-acyltransferase (acyl-Coenzyme	1.00	6.56
5	324804	Al692552		gb:wd73f12.x1 NCI_CGAP_Lu24 Homo sapiens	1.00	7.53
	324828	AA843926	Hs.124434	ESTs	2.00 2.74	3.25 3.43
	324855 324866	AW152305 Al541214	Hs.122364 Hs.46320	ESTs Small proline-rich protein SPRK [human,	1.07	0.95
	324871	AW297755	Hs.271923	Homo sapiens cDNA: FLJ22785 fis, clone K	1.68	1.21
10	324886	AA806794	Hs.131511	ESTs	2.56	5.61
	324889	D31010		gb:HUML12147 Human fetal lung Homo sapie	2.20	4.65
	324948	AW383618	Hs.265459	ESTs, Moderately similar to ALU2_HUMAN A	5.28	7.05
	324953	A)264628	Hs.125428	ESTs	3.37	5.51
15	324958	AA625076	Hs.132892	protocadherin 20 hypothetical protein FLJ 10549	5.12 2.52	9.81 1.08
13	324988 325024	T06997 F13254	Hs.121028 Hs.78672	laminin, alpha 4	5.24	10.22
	325105	H97109	Hs.105421	ESTs	1.00	1.00
_	325108	AA401863	Hs.22380	ESTs	1.99	2.14
•	325114	D83901	Hs.315562	ESTs	2.73	3.17
20	325146	AI064690	Hs.171176	ESTs	1.86	3.41
	325149	D61117	Hs.187646	ESTs	0.42	0.93
	325187	AI653682	Hs.197812	ESTs	6.50 6.18	11.31 . 15.76
	325228 325235				2.64	4.12
25	325328				2.87	4.42
	325340				0.29	0.33
	325367				16.56	24.29
	325373	•			0.63	1.22
20	325389			•	0.88	1.05
30	325436				5.75 8.46	14.14 17.82
	325471 325498				3.32	6.42
	325557				5.51	8.28
	325559				7.48	21.40
35	325560				4.08	6.25
	325569				4.20	5.24
	325585				1.10	1.13
	325587				1.00 2.98	1.00 13.40
40	325597 325639				0.78	0.78
-10	325685				0.46	0.66
	325686				0.95	1.55
	325735	•			4.48	9.20
15	325739				0.59	0.88
45	325740				2.42	6.61
	325792 325819				7.88 4.74	9.83 7.18
	325883				2.02	2.64
	325895		•		7.78	15.98
50 `	325925				2.04	10.60
	325932				4.18	7.36
	325941			•	3.66	9.03
	325969				0.61 4.88	0.80 7.42
55	325971 326025				4.66 0.55	1.07
33	326046				7.21	14.72
	326099				3.60	5.98
	326108				1.27	1.06
C O	326163			·	3.27	5.70
60	326165				0.45	1.11
	326189				0.13 5.60	0.45 9.00
	326204 326230				7.00	12.01
	326274				1.00	8.09
65	326360				9.86	15.35
	326393				0.52	0.77
	326505				1.00	1.42
	326515				1.24	5.84
70	326589 326592				9.20 2.77	13.49 4.01
70	326605				2.01	2.53
	326692				1.00	1.00
	326693				1.00	1.31
7.5	326720				0.19	0.65
75	326742				2.34	7.20
	326770				0.25	0.83
	326818				3.09	4.56
	326936 326964				2.08 0.41	3.45 1.70
80	326983	•			2.02	3.80
-0	326991				1.09	1.20
	327036				1.00	8.04
	327040				3.05	4.22
85	327053				3.55	6.31
0)	327075				1.59	1.40

PCT/US02/12476

	WO 02/086443					,	PCT/US02/12476
	327085			2.50	12.57		
	327130 327156			5.38 3.74	8.04 6.58		
5	327220			1.28	1.54		
3	327224 327288			6.56 2.61	12.91 5.40		
	327321			2.42	3.11		
	327332 327361			6.62 2.69	10.58 4.41		
10	327377			2.04	6.72	•	
	327396			2.61	4.50		
	327414 327442			1.00 5.91	8.01 9.65		
1.5	327467			6.58	18.01		
15	327473 327483			3.79 4.08	7.48 8.87		
	327562			0.68	2.86		
	327568 327606			1.00 2.06	2.00 3.61		
20	327611			5.90	14.26		
	327642			4.06	8.74		
	327654 327734		•	1.05 1.00	2.08 1.00		
25	327775			1.46	11.79		
25	327796 327840			3.47 3.26	5.65 6.64		
	327940			5.84	15.58		
	327984	•		0.36 1.87	1.50 1.42		
30	328004 328021			0.42	0.59		
	328068			2.83	4.68		•
	328100 328101			3.04 3.54	5.39 5.20		
25	328113			0.72	0.91		
35	328157 328196			5.58 .5.76	5.16 11.13		
	328197	•		5.98	10.58		
	328264 328299			3.11 2.20	4.88 3.06		•
40	328342			1.49	1.94		
	328365	•	,	1.00	1.00		
	328369 328381			4.40 1.86	7.36 4.93		
15	328451			5.51	7.56		
45	328481 328500			0.13 2.71	0.72 3.97		
	328530			5.41	7.62		
	328600 328608			3.14 4.56	10.68 8.17		
50	328616			2.24	11.91		•
	328623 328632			3.04 · 0.70	5.46 1.19		
	328664			3.48	6.80		•
55	328666 328698		-	10.42 9.68	26.47 14.56		
33	328700	•		2.74	10.22		
	328708			0.15	0.57		
	328735 328743			6.23 3.62	8.91 6.54		
60	328806			0.22	0.78		
	328861 328908			3.68 5.42	10.54 16.36		
	328933			2.02	5.29	**	
65	328934 328949	•		1.73 3.34	4.45 5.41		
	329005			2.88	7.26		
	329011 329033			2.52 1.00	3.72 1.03		
70	329037	•		5.07	8.16		
70	329067 329134			1.98 2.24	2.41 3.25		,
	329157			2.30	11.04		
	329178 329192			2.64 6.41	5.02 15.27		
75	329194			0.31	0.79		
	329204 329224			1.60 2.99	3.75 6.11		
	329228			0.83	0.83		
80	329288			0.63	1.01		
UV	329337 329541			1.00 0.76	1.00 1.68		
	329560			1.34	2.02		
	329588 329643			1.68 4.18	2.22 11.77		
85	329703			1.00	11.77 1.00		
					,		

	W	O 02/08	6443			
	329764				5.78	15.50
	329816			•	2.09	5.44
	329860				3.13	10.77
_	329993				7.83	14.21
5	330020				5.58	13.12
	330036				3.32 4.31	5.57 7.07
	330052				1.34	7.97 1.76
	330085 330088				4.70	12.46
10	330093				0.44	1.06
10	330100				3.47	4.83
	330106				2.14	3.61
	330107				3.17	6.87
	330120				5.61	11.89
15	330123			•	4.50	12.74
	330208	,			1.55	7.62
	330263				13.10 2.81	23.38 4.98
	330300 330313				3.00	4.41
20	330366				0.67	0.76
20	330372				4.76	11.82
	330385	AA449749	Hs.182971	karyopherin alpha 5 (importin alpha 6)	2.14	2.15
	330397	D14659	Hs.154387	KIAA0103 gene product	0.40	1.15
0.5	330468	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL	1.11	0.94
25	330472	L24203	Hs.82237	ataxia-telangiectasia group D-associated	1.67	1.17
	330478	L38486	Hs.296049	microfibrillar-associated protein 4	0.46 1.07	1.07 0.95
	330493 330495	M27826 M31328	Hs.267319 Hs.71642	endogenous retroviral protease quanine nucleotide binding protein (G pr	0.97	0.95
	330506	M61906	Hs.6241	phosphoinositide-3-kinase, regulatory su	0.17	3.66
30	330512	M80563	Hs.81256	S100 calcium-binding protein A4 (calcium	0.60	1.06
50	330537	U19765	Hs.2110	zinc finger protein 9 (a cellular retrov	2.81	2.07
	330547	U32989	Hs.183671	tryptophan 2,3-dioxygenase	3.91	1.49
	330551	U39840	Hs.299867	hepatocyte nuclear factor 3, alpha	1.15	1.03
25	330568	U56244		(NONE)	2.83	4.79
35	330599	U90437	N- 00045	gb:Human RP1 homolog mRNA, 3'UTR region	2.08 0.89	1.54 1.35
	330601 330605	U90916 X02419	Hs.82845 Hs.77274	Homo sapiens cDNA: FLJ21930 fis, clone H plasminogen activator, urokinase	1.87	1.55
	330609	X04741	Hs.76118	ubiquitin carboxyl-terminal esterase L1	1.83	1.30
	330617	X53587	Hs.85266	integrin, beta 4	1.54	1.15
40	330630	X78669	Hs.79088	reticulocalbin 2, EF-hand calcium bindin	1.39	1.19
	330644	Y07755	Hs.38991	S100 całcium-binding protein A2	3.83	1.13
	330650	Z68228	Hs.2340	junction plakoglobin	1.25	0.95
	330660	AA347868	Hs.139293	ESTs, Weakly similar to ALU7_HUMAN ALU S	15.50	29.07
45	330692	AA017045	Hs.6702	ESTs ESTs	1.00 0.20	1.00 1.35
70	330707 330715	AA133891 AA233707	Hs.293690 Hs.11571	Homo sapiens cDNA FLJ11570 fis, clone HE	0.12	1.40
	330717	AA233926	Hs.52620	integrin, bela 8	6.62	5.42
	330722	AA243560	Hs.34382	ESTs	1.40	1.65
	330740	AA297746	Hs.22654	Homo sapiens voltage-gated sodium channe	0.27	2.04
50	330742	AA400979	Hs.25691	receptor (calcitonin) activity modifying	0.44	0.90
•	330744	AA406142	Hs.12393	dTDP-D-glucose 4,6-dehydratase	0.71	3.23
	330751 330760	AA428286 AA448663	Hs.29643 Hs.30469	Homo sapiens cDNA FLJ13103 fis, clone NT ESTs	1.66 0.52	1.52 0.90
	330763	AA450200	Hs.274337	hypothetical protein FLJ20666	0.37	0.97
55	330786	D60374	Hs.49136	ESTs, Moderately similar to ALU7_HUMAN A	0.78	0.84
	330790	T48536	Hs.105807	ESTs	0.23	3.17
	330814	AA015730	Hs.265398	ESTs, Weakly similar to transformation-r	0.37	2.07
	330827	AA040332	Hs.12744	ESTs	1.60	1.00
60	330844	AA063037	Hs.66803	ESTs	0.93 1.02	1.16 1.03
UU	330901 330931	AA157818 F01443	Hs.267319 Hs.284256	endogenous retroviral protease hypothetical protein FLJ14033 similar to	0.24	0.88
	330952	H02855	Hs.29567	ESTs	0.08	1.31
	330961	H10998	Hs.7164	a disintegrin and metalloproteinase doma	1.29	1.26
	330968	H16568	Hs.23748	ESTs	0.48	0.96
65	331014	H98597	Hs.30340	hypothetical protein KIAA1165	0.29	0.74
	331046	N66563	Hs.191358	ESTs	0.99	8.56
	331060	N75081	Hs.157148	Homo sapiens cDNA FLJ11883 fis, clone HE	1.24	1.00
	331099 331108	R36671 R41408	Hs.83937 Hs.21983	hypothetical protein ESTs	0.75 1.00	1.03 2.75
70	331131	R54797	113.21303	gb:yg87b07.s1 Soares infant brain 1NIB H	6.04	10.68
, ,	331135	R61398	Hs.4197	ESTs	0.80	0.96
	331170	T23461	Hs.159293	ESTs	2.63	4.29
	331180	T32446	Hs.6640	Human DNA sequence from PAC 75N13 on chr	1.78	2.71
75	331183	T40769	Hs.8469	ESTs	1.00	3.01
75	331203	T82310	11- 00000	(NONE)	1.70	3.80
	331271	AA059347	Hs.82226	glycoprotein (transmembrane) nmb	1.20	3.19 1.30
	331306	AA252079 AA281076	Hs.63931 Hs.109221	dachshund (Drosophila) homolog ESTs	0.31 2.09	1.30 2.41
	331327 331341	AA303125	Hs.23240	Homo sapiens cDNA FLJ13496 fis, clone PL	0.72	2.43
80	331359	AA416979	Hs.46901	KIAA1462 protein	0.09	0.91
	331363	AA421562	Hs.91011	anterior gradient 2 (Xenepus laevis) hom	1.02	0.87
	331378	AA448881	Hs.49282	hypothetical protein FLJ11088	1.03	1.23
	331384	AA456001	Hs.93847	NADPH oxidase 4	1.40	1.00
85	331402	AA505135	Hs.44037	ESTs	1.80 1.65	3.93 1.89
S	331422	F10802	Hs.163628	ESTs, Moderately similar to ALU7_HUMAN	1.03	1.05
			•			

PCT/US02/12476

	w	O 02/08	6443			
	331490	N32912	Hs.26813	CDA14	2.48	1.73
	331531	N51343		gb:yz15g04.s1 Soares_multiple_sclerosis_	0.98	1.68
	331547	N54811 N67960	Hs.249989	gb:od74f04.s1 NCI_CGAP_Ov2 Horno sapiens ESTs	3.80	5.75
5	331578 331589	N71027	Hs.152618	ESTs	0.11 1.09	0.67 1.38
	331608	N89861	Hs.112110	PTD007 protein	0.93	0.76
	331614	N92293	Hs.240272	EST	0.17	1.34
	331668 331671	W69707 W72033	Hs.58030 Hs.194695	EST ras homolog gene family, member I	2.24 1.00	3.82 1.24
10	331676	W79834	Hs.58559	ESTs, Weakly similar to rhotekin [M.musc	0.08	1.07
	331681	W85712	Hs.119571	collagen, type III, alpha 1 (Ehlers-Dani	8.72	4.27
	331692 331717	W93592 AA190888	Hs.152213 Hs.153881	wingless-type MMTV integration site fami Homo sapiens NY-REN-62 antigen mRNA, par	0.94 1.57	0.54 1.34
	331718	AA191404	Hs.104072	ESTs	6.80	11.77
15	331811	AA404500	Hs.301570	ESTs	1.10	1.00
	331820	AA405970	Hs.97996	transcription termination factor, mitoc	0.73	0.59
	331831 331852	AA412031 AA418988	Hs.97901 Hs.98314	EST Homo sapiens mRNA; cDNA DKFZp586L0120 (f	2.77 0.23	4.08 0.93
00	331943	AA453418	Hs.21275	hypothetical protein FLJ11011	0.36	1.88
20	331969	AA460702	Hs.82772	collagen, type XI, alpha 1	1.00	1.00
	331990 332002	AA478102 AA482009	Hs.139631 Hs.105104	ESTs ESTs	3.04 1.19	3.87 0.78
	332027	AA489671	Hs.65641	hypothetical protein FLJ20073	1.27	1.03
25	332029	AA489697	Hs.145053	ESTs	0.30	1.62
25	332033	AA489840	Hs.251014	EST	2.30	3.70
	332048 332071	AA496019 AA598594	Hs.201591 Hs.205293	ESTs KIAA1211 protein	0.17 1.35	0.52 1.23
	332074	AA599012		.gb:ae41e11.s1 Gessler Wilms tumor Homo s	0.19	2.00
20	332083	AA600200	Hs.155546	KIAA1080 protein; Golgi-associated, gamm	0.31	1.18
30	332085 332125	AA600353 AA609861	Hs.173933 Hs.312447	nuclear factor I/A ESTs	0.30 0.22	1.50 0.62
	332177	F10812	Hs.101433	ESTs	8.21	18.03
	332180	H0334B	Hs.7327	claudin 1	2.27	1.57
35	332185	H10356	Hs.101689	ESTs	0.09	1.18 5.02
33	332203 332232	H49388 N48891	Hs.317769 Hs.101915	EST Stargardt disease 3 (autosomal dominant)	8.05 0.78	0.85
	332240	N54803	Hs.324267	ESTs, Weakly similar to putative p150 [0.96	1.23
	332261	N70294	Hs.269137	ESTs	2.40	3.74
40	332275 332280	R08838 R38100	Hs.26530 Hs.146381	serum deprivation response (phosphatidyl RNA binding motif protein, X chromosome	0.27 0.39	0.75 1.88
10	332299	R69250	Hs.21201	nectin 3; DKFZP56680846 protein	5.24	12.76
	332304	R74041	Hs.101539	ESTs	1.44	3.18
	332314 332384	T25862 M11433	Hs.101774 Hs.101850	hypothetical protein FLJ23045 retinol-binding protein 1, cellular	0.68 1.71	1.32 0.88
45	332434	N75542	Hs.289068	Homo sapiens cDNA FLJ11918 fis, clone HE	0.43	0.86
	332445	T63781	Hs.11112	ESTs	0.68	1.00
	332453	L00205	Hs.111758	keratin 6A	31.54	1.00
	332458 332504	M33493 AA053917	Hs.250700 Hs.15106	tryptase beta 1 chromosome 14 open reading frame 1	0.51 0.79	1.00 1.24
50	332525	M17252	Hs.278430	cytochrome P450, subfamily XXIA (steroid	0.98	1.70
	332530	M31682	Hs.1735	inhibin, beta B (activin AB beta polypep	0.88	0.66
	332535	N20284 AA412528	Hs.19280 Hs.20183	cysteine-rich motor neuron 1 ESTs, Wealdy similar to AF164793 1 prote	0.22 0.93	1.46 1.49
	332539 332559	M13955	Hs.166189	cytokeratin 2	0.35	1.13
55	332563	N92924	Hs.274407	protease, serine, 16 (thymus)	1.00	1.00
	332565 332594	AA234896 AA279313	Hs.25272 Hs.3239	E1A binding protein p300 methyl CpG binding protein 2 (Rett syndr	0.36 0.53	1.05 0.59
	332634	S38953	Hs.283750	tenascin XA	0.38	1.16
60	332638	AA283034	Hs.50640	JAK binding protein	1.00	1.70
60	332640 332654	AA417152 AA001296	Hs.5101 Hs.288217	protein regulator of cytokinesis 1 hypothetical protein MGC2941	6.15 1.50	1.16 2.73
	332665	AA223335	Hs.63788	propionyl Coenzyme A carboxylase, beta p	1.20	0.91
	332692	AA496035	Hs.247926	gap junction protein, alpha 5, 40kD (con	0.17	1.12
65	332716	L00058	Hs.79070	v-myc avian myelocytomatosis viral oncog	1.00	1.44 1.81
03	332736 332758	L13773 X93921	Hs.114765 Hs.296938	myeloid/lymphoid or mixed-lineage leukem dual specificity phosphatase 7	1.00 0.53	0.78
	332781	AA233258	Hs.247112	hypothetical protein FLJ10902	1.44	1.56
	332792				1.70	1.19
70	332816 332858				1.85 1.04	2.47 1.57
, ,	332906				3.48	8.04
	332911				1.00	1.00
	332912 332922				1.06 1.00	4.40 1.00
75	332956				0.42	0.88
	332959				1.96	6.34
	332982				0.56	0.99
	332984 332998				0.30 1.47	0.78 2.01
80	333058				0.47	1.38
	333097				2.14	3.19
	333121 333122				2.76 1.92	3.70 1.21
0.5	333123				1.85	1.39
85	333138			•	0.47	0.52

	WO 02/08	36443		
	333139		1.88	0.84
	333140	•	0.21	0.64
	333221		1.51	1.11
5	333260 333380		0.75 6.68	1.01 15.75
	333387		4.56	12.61
	333512		5.05	8.01
	333524 333585	·	2.28 2.31	3.98 1.53
10	333603		2.23	1.17
	333604		2.51	1.58
	333618		0.52	0.98
	333627 333628		1.44 1.90	1.36 1.90
15	333650		1.85	2.10
	333678		1.85	2.35
	333750	•	2.18 1.99	5.67 2.60
	333763 . 333767		1.02	0.96
20	333768		1.78	1.65
	333769		2.15	2.13
	333772 333777		1.46 1.00	2.53 1.42
	333846		2.99	4.50
25	333884		0.47	0.94
	333887 333891		0.50 0.43	1.00 0.89
	333892	•	0.40	0.91
20	333904		0.26	1.13
30	333906		0.55 1.70	0.98 2.15
	333948 333954		0.37	1.09
	333966		8.10	14.30
25	333968		0.63	1.38
35	334061 · 334094		4.24 1.30	12.30 12.03
	334113		4.55	8.63
	334161		0.82	1.59
40	334183		0.47 1.36	0.76 3.70
70	334187 334219		0.69	1.04
	334222		1.88	1.70
	334223		4.72 0.79	3.14 0.62
45	334239 334255		0.45	1.10
	334333		1.00	3.56
	334378		3.98	5.76
	334382 334492		1.50 3.59	1.31 4.75
50	334562		5.94	15.40
	334588		8.14	19.53
	334616 334633		1.55 5.16	1.56 8.07
	334648	•	0.59	2.13
55	334787		3.70	7.15
	334866		8.13 0.32	10.60 1.14
	334891 334933		1.00	3.84
C O	334934	·	4.01	7.43
60	334945 334967		1.04 0.29	2.96 1.14
	334990		1.50	1.14 1.39
	335015		5.88	18.65
65	335093		0.55 4.31	1.75 8.01
05	335120 335125		0.38	1.97
	335179		1.24	1.98
	335188		0.46	1.47 1.42
70	335211 335288		1.61 0.73	0.97
, 0	335289		0.20	0.26
	335361		2.18	1.58
	335379 335414		0.50 3.64	0.71 14.94
75	335416		-2.93	3.98
-	335496	·	0.96	0.91
	335497		1.71	1.92 2.40
	335548 335551 .		1.15 3.22	10.54
80	335558		3.42	4.89
	335586		5.50 2.00	12.75
	335619 335620		2.99 3.80	· 3.07 8.29
0.5	335621		0.28	8.29 0.57
85	335682		0.46	1.17
		•		

PCT/US02/12476

	WO 02	2/086443					
	335686					2.55	3.81
	335755		•			2.24	1.07
	335784					0.20	0.97
5	335814 335815					1.13 2.45	1.48 3.51
,	335823	•				1.00	4.16
	335835					0.49	1.70
	335851					1.66	1.39
10	335868 335896					2.98 0.98	6.43 0.99
10	335936					12.10	21.93
	335948					1.00	1.64
	335983			,		1.00 0.37	4.21 1.17
15	335995 336021					1.04	0.84
10	336034					11.40	23.54
	336038	•				1.19	1.21
	336066 336107					0.54 0.95	1.63 0.70
20	336205					3.13	6.29
_•	336275					3.20	10.10
	336292					2.34	3.09
	336331 336419					1.00 0.65	1.00 0.79
25	336632					2.33	2.16
	336633					2.55	2.23
	336634					2.19 2.69	2.03 2.48
	336635 336636					2.13	1.83
30	336637					2.43	2.24
	336638					2.31	2.03
	336659 336675					0.60 0.31	1.31 1.18
	336684					1.50	1.14
35	336694					4.74	7.10
	336716					4.43 2.20	6.37 0.74
	336721 336798					1.64	2.14
• •	336900					6.14	12.73
40	336948					1.00	1.00 2.09
	337028 337043					1.30 4.01	11.53
	337045					1.67	1.84
4.5	337054					2.78	7.35
45	337128 337162					7.20 3.45	16.14 5.34
	337183					5.72	11.41
	337184	•				3.72	5.90
50	337192					1.27 1.88	1.06 1.68
30	337194 337229				•	0.22	1.03
	337268					1.00	3.31
	337299					3.23	5.14
55	337325 337389					2.76 5.80	3.72 10.42
55	337493					2.06	6.30
	337497					7.88	20.29
	337500 337549					3.80 1.66	4.48 2.31
60	337603					1.27	8.54
	337605					5.76	7.16 0.97
	337671					0.73 1.54	0.97
	337755 337786	•				5.07	9.73
65	337809					6.18	12.87
	337862					3.78 2.66	12.97 8.16
	337871 337958					0.26	1.34
=-	338008					1.48	1.12
70	338033					2.38	14.59
	338083 338110					0.65 1.00	2.16 1.61
	338112					5.86	8.25
75	338145					1.70	1.97
75	338148					8.07 1.30	18.19 4.55
	338158 338161					2.58	3.57
	338179					1.00	1.00
90	338182					3.32	4.63
80	338189 338197					1.00 0.99	3.34 1.69
	338199					4.58	7.62
	338215					6.01	15.85
85	338279		•			0.53 20.58	0.95 38.66
35	338316					20.00	JJ.,JJ

	WO 02/086443		
	338322	3,23	7.39
	338357	4.10	11.39
	338359	10.12	21.59
_	338366	0.69	1.02
5	338374	0.40	1.18
	338414	0,47	1.06
	338418	6.12	13.86
	338469	3.09	5.11
	338501	6.28	10.32
10	338506	6.97	12.41
	338523	3.10	5.84
	338549	1.70	2.70
	338561	- 0.79	0.81
4.5	338662	1.72	1.46
15	338671	0.17	0.91
	338676	2.10	15.86
	338726	1,20	1.09
	338779	0.12	0.57
	338804	0.99	1.67
20	338836	1.00	1.00
	338871	4.30	9.81
	338872	5.02	12.81
	338879	. 0.23	1.12
0.5	338937	6.55	12.26
25	338966	1.76	5.42
	338993	1.00	2.40
	339047	5.26	10.81
	339100	5.10	6.88
20	339114	1.00	1.70
30	339121	1.00	3.75
	339170	10.36	19.67
	339229	4.08	13.48
	339264	2.64	3.83
25	339293	1.73	1.94
35			

TABLE 8B shows the accession numbers for those Pkeys in Table 8A lacking unigenelD's. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

PCT/US02/12476

Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers

45 Accession: Gentrank accession no

40

1110 00/00/440

45	Pkey	CAT number	Accessions
	322044	187363_1	AW340926 AA249063 N86075
50	322060	44320_1	Al341937 AW003063 U34725 AA904742
30	321430	42705_1 43034_1	X57414 X57415 X13075 X13076
	321467 322125	45054_1 46779 1	R93901 AF075073 R93902
	322125	46861 1	H69434 AF085958 H69846
	322173	46873 1	H52567 H52557 AF085970 H52164
55	322178	46882_1	H56535 AF085980 H56712
55	322179	46885 1	H92891 AF085982 H92777
	321577	1615102_1	
	321587	1615333_1	
	313723	111953 1	AA070412 AA102346 AA081885
60	320997	627492 1	H22544 H46842 Al204929
•	322278	47271 1	W69304 AF086283 W69200
	321687		AA625149 AA313030 AA313052 H97463
	313883	129439 1	AA665089 AA135130 AA484059 AA102419 AW877765
	322320	47422_1	W79150 AF086419
65	322339	814584_1	AI668646 AI734214 W17348
	314648	293660_1	AW979268 AA878419 AA431342 AA431628
	300201	682222_1	Al308300 Al308296
	306897	251962	A1093967
70	323155	979809_1	AL120701 AL135041 AL121524
70	322527	38927_1	AF147359 T58511 T58560
	322585		W88919 W89125
	300362		Z42308 H23514
	322635	82296_1	AA005129 AA679084 AA694399
75	322664	85042_1	AA011522 AA702841 AA011691 AA330797
75	315454	380580_1	AI239464 AI239473 AA625812 AI208703
	322687	37372_1	AF074666 Al110759 AF090902
	314852	327472_1	AI903735 AA491283 AI694953 AW976903 AA761362
	307783	697809_1	AI347274 AW844024
80	324072	269032_1	AA381722 AA381829 AW963906 AW963902 AA381242
80	300627	221345_1	AA488472 W27363 AA317053 BE082689 AW967036 BE079872
	323505	196389_1	AW970512 AA280251 Al652287 BE466438 Al650725 AA551854 AA281574 AW571481
	315791 324303	403558_1 233842_1	AA678177 AA677034 AA448754 AA333303 N33004
	324303 316519	442885 1	AL118754 AA333202 H38001 AA847835 AA768376
85	300926	333127 1	AA504860 AA504911
05	300320	333121_1	I I EPUCAN DUOPUCAN

	WC	02/0864	43 PCT/US02/12476
	324580	328264_1	AA492588 AA492498 AA492571
	301882		T78054 T79888 AA398185
	324804	398093_1	AI692552 AI393343 AI800510 AI377711 F24263 AA661876
5	324889	1515978_1	
,	302697 302711	43219_1 45419_1	AJ001409 AJ001410 L08442 D51348
	302742	458_39	112061
	318499	364430_1	T25451 AAS85296 AA585305
10	310624	34624_4	U88896 U88898 AA916056 T03285 AI341594 AI359534 AI634031 U88897
10	302847 304122	458_105 772715	X98941 X98942 X98943 X98953 X98949 H28966
	303598	270283_1	A3382814 AA402411 AA412355
	311409	837264_1	Al698839 Al909260 Al909259
15	312094	797889_1	Z78390 T97427
13	319312 319407	1540116_1 1688823_1	Z45481 F12393 T74437 R05329 R01555 R08276
	319425	1689571_1	
	320007	229683_1	AA336314 T82938 AA327744 AW967388 AA639967 T10753
20	320018		T83263 T85731 T85730
20	319484 318865	1691553_1 1535937_1	
	312220	1671607_1	
	319546	243305_1	R09692 R09414 AA346353
25	312389 319611	902067_1 1566863_1	AI863140 W80703 R43474 H14957 R56522 R11908
25	312437	291472_1	BE080180 AW827313 AW231970 AA995028 AA428584 AW872716 AW892508 AW854593 AA578441 AW975234 AA664937 AA984131
,			AA528743 AA552874 AA564758 AW063245 Al267534 AW070190 AW893483 AA770330 AA906928 AA906582 AA758746 AA551717
	311896	579192_1	AW063311 AA429538 AW206447 Al248530 Al084433 Al400976 R16553
30	319834	112523_1	ANO71267 T65940 T64515 AA071334
	321102	80531_1	AA018306 H38925 AA001221
	321158	410938_1	H79670 H47799 AA700289
	321199	212379_1	N34524 AA305071 AW954803 AA502335 Al433430 Al203597 AW026670 AW265323 AW850787 AA317554 AW993643 AW835572 AW385512 Al334966 W32951 H62656 H53902 R88904 AW835732
35	305528	288323	AA769156
	321270	1662057_1	N59537 N78278 R83560
	314126 320714	177666_1 743644_1	AA226431 AA226569 AA488748 R91883 Al445591
	306442	AA976899	13100 MAH0091
40	306446	AA977348	
	306458	AA978186	
	306510 306557	AA988546 AA994530	
	306572	AA995686	•
45	306582	AA996248	
	306656 306686	Al004024 Al015615	
	306751	AI032589	
50	308011	A1439473	
50	306892 308106	Al092465 Al476803	
	308154	AJ500600	
	306956	Al125111	
55	306958	Al125152	
55	308213 308216	AI557041 AI557135	\cdot
	308219	Al557246	
	308588	Al718299	
60	308599 308643	AI719893 AI745040	
00	308673	Al760864	
	308697	AI767143	
	308778 308808	A1811109 A1818289	
65	308875	A1832332	
	308886	A1833240	
	308898 308966	AI858845 AI870704	
	308979	Al873111	
70	303011	41689_1	AF090405 AF090407 AF090406
	303077	44060_1	AF163305 AF163307 AF163303
	305016 305034	AA626876 AA630128	
	305072	AA641012	
75	305148	. AA654070	
	305190 303978	AA665955 AW513315	
	303990	AW515465	
00	303998	AW516449	
80	303999 305235	AW516611 AA670480	
	305235 305312	AA070480 AA700201	·
	305413	AA724659	•
85	305447 321244	AA737856 29327_1	AF068654 AF068656 AF068655
	9616TT	20051-1	18 9000 114 20000 14 20000

	· WO	02/086443
	305614	AA782866
	305637	AA806124
	305639 305650	AA806138 AA807709
5	305690	AA813477
	305728 305759	AA828209 AA835353
	305792	AA845256
10	307041 307091	Al144243 Al167439
10	307181	Al189251
	305901	AA872968
	305910 307415	AA875981 Al242118
15	307426	Al243364
	307517 307551	Al275055 Al281556
	307561	Al282207
20	307608 307691	Al290295 Al318285
20	307730	A1336092
	307760 307764	AJ342387 AJ342731
	307796	Al350556
25	309045	Al910902
	309051 307807	AI911975 AI351799
	307808	Al351826
30	307820 307852	Al355761 Al365541
	309122	Al928178
	309164 309177	Al937761 Al951118
25	307902	Al380462
35	309299 309303	AW003478 AW004823
	309476	AW129368
	309532 309747	AW151119 AW264889
40	309769	AW272346
	309799 309866	AW276964 AW299916
-	302679	311853_1 H65022 AA186889
45	309923 309928	AW340684 AW341418
	309931	AW341683
	309933 302705	AW341936 31765_1 U09060 U09061
50	302789	34161_1 AJ245067 AJ245070
50	304006 304024	AW517947 T03036
	304026	T03160
	304028 304046	T03266 T54803
55	304061	T61521
	304063 302802	T62536 34487_1 Y08250 Y08245
	304114	R78946
60	304155 304203	H68696 N56929
00	304234	W81608
	304348 304430	AA179868 AA347682
<i>(E</i>	304456	AA411240
65	304521 304526	AA464716 AA476427
	304607	AA513322
	304735 304760	AA576453 AA580401
70	306015	AA897116
	306063 306065	AA906316 AA906725
	306104	AA910956
75	306109 306242	AA911861 AA932805
, ,	306288	AA936900
	306396 330568	· AA970223 NOT_FOUND_entrez U56244
QΛ	330599	1532312 U90437
80	331131 331203	genbank_R54797 R54797 NOT_FOUND_entrez T82310
	331531	genbank_N51343 N51343
	331547 332074	467396_1 AA828597 N54811 genbank_AA599012 AA599012
85	•••	0

PCT/US02/12476

WO 02/086443 PCT/US02/12476

TABLE 8C shows the genomic position for those Pkeys in Table 8A lacking unigene ID's and accession numbers. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

	•				,	
5	Pkey: Ref:	Sequer	ice source. T		ers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication	entilled "The DNA
10	Strand: Nt_position:	Indicate	es DNA strand		." Dunham I. et al., Nature (1999) 402:489-495. ns were predicted. icted exons.	
10	Pkey	Ref	Strand	Nt_position	·	
15	332792 332816 332906 332911 332912	Dunham, I. Dunham, I. Dunham, I. Dunham, I. Dunham, I.	et.al. et.al. et.al.	Plus Plus Plus Plus Plus	73381-73768 359844-360030 1923101-1923205 1961767-1961858 1962120-1962246	
20	332922 332956	Dunham, I. Dunham, I.		Plus Plus	2009620-2009738 2510528-2510658	

20

25

30

35

40 .

45

50

55

60

65

70

75

80

85

332959

333138

333139

333221

333380

333387

333512

333524

333585

333618

333627

333628

333650

333678

333750

333763

333767

333768

333769

333772

333777

333846

333884

333887

333891

333892

333948

333954

333966

333968

334061

334094

334113

334161

334219

334239

334333

334378

334382

334562

334588

334616

334633

334866

334891

334934

335015

335120

335125

335179

335188

335211

335361

335379

335414

335416

335496

335497

335558

335586

335686

335784

335823

335983

335995

336021

Dunham, I. et.al.

Plus

Plus

Plus

Plus

Plus

Plus

Plus

Plus

.Plus

Plus

Phis

Plus

. Plus

Plus

Plus

Plus

Plus

Plus

Plus

Plus

Plus

Plús

Plus

2518145-2518213

3369205-3369323

3369495-3369571

3978070-3978187

4904775-4904846

4910935-4910997

5560510-5560564

5612620-5612780

6234778-6234894

6562391-6562566

6620584-6620903

6629004-6629233

6796852-6797128

7068223-7068288

7608165-7608234

7692491-7692630

7694407-7694623

7695440-7695697 7696625-7696707

7706773-7706902

7746805-7746916

8008623-8008757

8153960-8154161

8154882-8155025

8156437-8156709

8156825-8157001

8583497-8583627

6563186-6563335

8655643-8655826

8681004-8681241

9686941-9687077

9889953-9890105

10282459-10282597 10599033-10599180

12716160-12716384

13056569-13056693

13603544-13603657

13907239-13907370

13915866-13916036

14987847-14987940

15032740-15032817

15176123-15176470

15333206-153333305

18872214-18872317

19299770-19299944

20103970-20104058

20682792-20682945

21436286-21436384

21441390-21441471

21634405-21634526

21669118-21669328

21774611-21774680

22807292-22807445

22899306-22899420

23235546-23235684

23237354-23237465

24164386-24164545

24164386-24164845 24167666-24167869 24740167-24740347 24990333-24990497 25439839-25439920 25942710-25942792

26365925-26366004

27938968-27939070

28009044-28009184

28686482-28686559

WO 02/086443 PCT/US02/12476

	WC	02/086443		
	336034	Dunham, I. et.al.	Plus	29014404-29014590
	336038	Dunham, I. et.al.	Plus	29022963-29023165
	336107 336632	Dunham, I. et.al.	Plus	29987731-29987869
5	336633	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	983890-985529 985591-986221
	336634	Dunham, I. et.al.	Plus	986296-986670
	336635	Dunham, I. et.al.	Plus	987908-988364
	336636 - 336637	Dunham, I. et.al.	Plus	988418-989185
10	336638	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	989276-990813 991906-993240
	336659	Dunham, I. et.al.	Plus	1896402-1896478
	336694	Dunham, I. et.al.	Plus	2420546-2420616
	336721	Dunham, I. et.al.	Plus	3371522-3371586
15	336900 336948	Ounham, I. et.al. Ounham, I. et.al.	Plus Plus	10236423-10236523 12692290-12692381
	337028	Dunham, I. et.al.	Plus	16644817-16644942
	337054	Dunham, I. et.al.	Plus	17821742-17821922
	337162 337183	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	23478943-23479145 23943606-23943696
20	337184	Dunham, i. et.al.	Plus	23973949-23974016
	337268	Dunham, I. et.al.	Plus	28011979-28012034
	337299	Ounham, I. et.al.	Plus	29022656-29022775
	337389 337493	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	31401509-31401579 33330760-33330981
25	337549	Dunham, I. et.al.	Plus	34474472-34474531
	337755	Dunham, I. et.al.	Plus	3971764-3971900
	337809	Dunham, I. et.al.	Plus	4449069-4449193
	337871 337958	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	5443027-5443101 6969162-6969270
30	338008	Dunham, I. et.al.	Plus	7697068-7697236
	338033	Dunham, I. et.al.	Plus	8092128-8092271
	338110	Dunham, I. et.al.	Plus	10384481-10384621
	338112 338145	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	10391398-10391600 11386629-11386692
35	338148	Dunham, I. et.al.	Plus	11448985-11449085
	338179	Dunham, I. et.al.	Plus	12808775-12808833
	338197 338279	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	13638107-13638181 16168944-16169091
	338316	Dunham, I. et.al.	Plus	17089711-17089988
40	338322	Dunham, I. et.al.	Plus	17132477-17132547
	338357	Dunham, I. et.al.	Plus	18062184-18062402
	338359 338366	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	18074402-18074501 18252026-18252189
	338374	Dunham, I. et.al.	Plus	18371200-18371282
45	338414	Dunham, I. et.al.	Plus	19345573-19345660
	338418 338501	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	19435506-19435596 21244713-21244828
	338506	Dunham, I. et.al.	Plus	21221871-21221953
50	338523	Dunham, I. et.al.	Plus	21509763-21509864
30	338662 338804	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	24404720-24404899 27236005-27236108
	338836	Dunham, I. et.al.	Plus	27792166-27792272
	338879	Dunham, I. et.al.	Plus	28410653-28410734
55	338937 338993	Dunham, I. et.al.	Plus	29160655-29160725 30077787-30078184
55	339047	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	30760793-30760968
	339100	Dunham, I. et.al.	Plus	31141580-31141765
	339114	Dunham, I. et.al.	Plus	31456454-31456519
60	339121 339170	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	31583467-31583536 32216399-32216527
00	339293	Dunham, I. et.al.	Plus	33223671-33223819
	332858	Dunham, I. et.al.	Minus	1339607-1339397
	332982 332984	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	2628296-2628109 2632606-2632457
65	332998	Dunham, I. et.al.	Minus	2711704-2711565
	333058	Dunham, I. et.al.	Minus	3028925-3028811
	333097	Dunham, I. et.al.	Minus	3204124-3204036
	333121 333122	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	3308446-3308358 3309596-3309531
70	333123	Dunham, I. et.al.	Minus	3310817-3310749
	333140	Dunham, I. et.al.	Minus	3377220-3376309
	333260 333603	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	4308400-4308304 6466335-6465727
_	333604	Dunham, I. et.al.	Minus	6467090-6466768
75	333904	Dunham, I. et.al.	Minus	8217374-8217261
	333906	Dunham, I. et.al.	Minus	8218238-8218063
	334183 334187	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	11832582-11832508 11921456-11921205
	334222	Dunham, I. et.al.	Minus	12732417-12732289
80	334223	Dunham, I. et.al.	Minus	12734365-12734269
	334255	Dunham, I. et.al.	Minus	13200776-13200692
	334492 334648	Dunham, I. et.at. Dunham, I. et.at.	Minus Minus	14478333-14478172 15363301-15363222
0.5	334787	Dunham, I. et.al.	Minus	16299093-16298937
85	334933	Dunham, I. et.al.	Minus	20078117-20077991

		0.00/00/1/0		
	334945	O 02/086443 Dunham, I. et.al.	Minus	20138885-20138637
	334967	Dunham, I. et.al.	Minus	20173311-20173218
	334990	Dunham, I. et.al.	Minus	20341159-20341087
5	335093 335288	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	21297367-21297214 22304275-22303770
_	335289	Dunham, I. et.al.	Minus	22305950-22305708
	335548	Dunham, I. et.al.	Minus	24662773-24662673
	335551 335619	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	24679828-24678961 25082677-25082498
10	335620	Dunham, I. et.al.	Minus	25092561-25092434
	335621	Dunham, I. et.al.	Minus	25098878-25098767
	335682 335755	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	25421215-25421093 25763806-25763747
	335814	Dunham, I. et.al.	Minus	26320043-26319845
15	335815	Dunham, I. et.al.	Minus	26320518-26320421
	335835 335851	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	26393311-26393245 26604863-26604742
	335868	Dunham, I. et.al.	Minus	26711437-26711300
20	335896	Dunham, I. et.al.	Minus	26977639-26977558
20	335936 335948	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	27360474-27360400 27555924-27555788
	336066	Dunham, I. et.al.	Minus	29241080-29240842
	336205	Dunham, I. et.al.	Minus	30477456-30477311
25	336275 336292	Dunham, I. et.al.	Minus	32086675-32086536
23	336331	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	32818035-32817927 33594527-33594371
	336419	Dunham, I. et.al.	Minus	34052568-34052445
	336675 336684	Dunham, I. et.al. Dunham, I. et.al.	Minus	2020758-2020664
30	336716	Dunham, I. et.al.	Minus Minus	2158060-2157993 3259952-3259862
	336798	Dunham, I. et.al.	Minus	5888954-5888757
	337043	Dunham, I. et.at.	Minus	17407330-17407251
	337046 337128	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	17610892-17610821 22215251-22215034
35	337192	Dunham, I. et.al.	Minus	24591853-24591771
	337194 337229	Dunham, I. et.al.	Minus	24610510-24610359
	337325	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	26716579-26716481 30015948-30015800
40	337497	Dunham, I. et.al.	Minus	33371317-33371258
40	337500	Dunham, I. et.al.	Minus	33376212-33376158
	337603 337605	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	1299296-1299194 1346555-1346397
	337671	Dunham, I. et.al.	Minus	3260634-3260547
45	337786 337862	Dunham, I. et.al.	Minus	4133203-4133081
43	338083	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	5347658-5347550 9318438-9318301
	338158	Dunham, I. et.al.	Minus	11794465-11794343
	338161 338182	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	12124716-12124658
50	338189	Dunham, I. et.al.	Minus	12824919-12824827 12878594-12878478
	338199	Dunham, I. et.al.	Minus	13760865-13760780
	338215 338469	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	14055447-14055355 20520387-20520242
	338549	Dunham, I. et.al.	Minus	22049171-22049081
55	338561	Dunham, I. et.al.	Minus	22311966-22311856
	338671 338676	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	24508421-24508346 24637427-24637369
	338726	Dunham, I. et.al.	Minus	25926206-25925618
50	338779	Dunham, I. et.al.	Minus	27030151-27029795
30	338871 338872	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	28301708-28301611 28300921-28300790
	338966	Dunham, I. et.al.	Minus	29614876-29614749
	339229 339264	Dunham, I. et.al.	Minus	32722330-32722199
55	325228	Dunham, I. et.al. 6381940 Plus	Minus 2630-269	32975145-32975053 4
	325235	6381943 Mins	is 162154-1	
	329588	3962484 Plus		=
	329560 329541	3962491 Plus 3983503 Minu		
70	325328	5866875 Plus	86780-868	354 .
	325340 325373	6017033 Mint 5866920 Mint		
	325367	5866920 Minu 5866920 Minu		
7.5	325389	5866921 Plus		
75	325436 325408	5866939 Mint		
	325498 325471	5866967 Plus 6017034 Minu		
	325557	6056302 Plus	50921-510	050
30	325559	6249595 Minu		
,0	325560 325569	6249595 Minu 6249599 Plus		
	325587	6682462 Plus	126724-12	
	325585	6682462 Plus	73476-735	
35	325597 325639	5866992 Plus 5867002 Plus	1065020-1 253525-25	
	· -			· · · · · ·

PCT	'/Т	IC.	ഹ	/1	24	76
rui	/ L	JO	VZ.	и.	44	/υ

	325739) U2/U864 5867038	Minus	205138-205269
	325740	5867038	Minus	207533-207690
	325792 325735	6469828 6552447	· Minus Minus	1018-1176 269122-269190
5	325685	6682468	Plus	117397-117483
	325686	6682468	Plus	118337-118439
	325819 329764	6682490 6048195	Minus Minus	130314-130370 109733-109968
	329704	6065793	Minus	139994-140138
10	329643	6448539	Plus	53403-53537
	329816 329860	6624888	Minus Minus	70296-70423 163474-163605
	325883	6687260 5867087	Minus Plus	22498-22663
4 ~	325895	5867097	Plus	358317-358476
15	325925	5867124	Plus	115749-115962
	325932 325941	5867127 5867133	Plus Minus	7369-7441 64228-64402
	325969	5867153	Plus	101911-102081
20	325971 329993	5867153 4567166	Plus Minus	105841-106035 101307-101434
20	330020	6671887	Plus	172397-172491
	326163	5867168	Minus	7831-8035
	326274	5867171	Minus Plus	410289-410404
25	326025 326046	5867176 5867182	Minus	70854-70915 62668-62825
	326099	5867186	Minus	661381-661510
	326108	5867187	Minus	23784-23903 62787-62929
	326165 326189	5867208 5867212	Minus Plus	69288-69413
30	326204	5867218	Minus	148088-148200
	326230 330052	5867230 4567182	Minus Plus	301868-301972 352560-352963
	330032	6042048	Plus	117120-117216
25	326360	5867293	Plus	13627-13844
35	326589 326393	5867320 5867341	Plus Plus	22760-22919 41702-41841
	326505	5867435	Minus	8818-8949
	326515	5867439	Plus	36683-36809
40	326592 330107	6138928 6015249	Plus Minus	23689-23828 100091-100282
••	330106	6015249	Minus	99443-99778
	330100	6015253	Plus	21166-21301
	330093 330088	6015278 6015293	Plus Plus	1043-1199 37517-37638
45	330085	6015302	Minus	59613-59770
	330120 330123	6671864 6671869	Minus Minus	127553-127656 35311-35406
	326742	5867611	Minus	95187-95248
50	326605	5867637	Plus	24656-24749
30	326818 326720	6117831 6552456	Minus Plus	15199-15309 84525-84677
	326770	6598307	Minus	513603-513668
	326692	6682502	Plus	117697-117899
55	326693 326983	6682502 5867657	Minus Minus	335002-335095 16023-16581
	326991	5867660	Plus	18147-18339
	326936	6004446	Minus	10217-10357
	326964 327040	6469836 6531965	Plus Plus	75340-75456 783670-783817
60	327053	6531965	Plus	2247267-2247437
	327075 327085	6531965 6531965	Plus Plus	4041318-4041431 4734947-4735069
	327035	6531965	Plus	319951-320040
<i>(</i> =	327130	6531976	Plus	20247-22343
65	327156 327288	5866841 5867481	Minus Plus	2462-2620 48583-48773
	327332	5867516	Minus	56361-56532
	327220	5867525	Minus	65701-65781
70	327224 327321	5867534 6249562	Plus Minus	188468-188544 99745-99836
	327361	6552412	Minus	61013-62130
	327396	5867743	Plus	8702-8820
	327414 327442	5867750 5867759	Plus Plus	102461-102586 111483-111618
75 °	327467	5867772	Plus	88030-88151
	327473	5867775	Plus	75101-75181
	327483 327377	5867783 5867793	Plus Minus	181573-181662 37610-37676
00	327562	5867804	Minus	343989-344474
80	327568	5867811	Minus	46152-46287
	327606 327611	6004463 5867868	Plus Minus	200262-200495 175063-175392
	327642	5867891	Minus	2513-2743
85	327654	5867910	Minus	97564-97710
55	327734	5867940	Minus	31003-31583

	W	J UZ/U864	143	
	327775	5867964	Minus	130791-130871
	327796	5867982	Plus	85267-85405
	327840	6249578	Minus	73065-73206
5	330208	6013599	Plus	66517-66931
3	330263	6671884	Minus	101503-101634 157407-157887
	328004	5867993	Minus	289920-290014
	328101 328100	5868020 5868020	Plus Minus	263545-263635
	328113	5868024	Minus	80378-80491
10	328157	5868064	Plus	73326-73615
10	328196	5868080	Minus	16551-16729
	328197	5868081	Minus	42133-42438
	327940	5868197	Minus	95240-95428
	327984	5868216	Plus	66611-66677
15	328021	5902482	Plus	713478-714590
	328068	6117819	Plus	253903-254022
	328264	6381912	Plus	55086-55404
	330300	2905862	Minus	3246-3302
20	328608	5868222	Minus	87770-87953
20	328600	5868229	Minus	38889-40010
	328616	5868239	Plus	293920-294224
	328623 328632	5868246 5868247	Minus Plus	120020-120126 76734-76853
	328666	5868254	Minus	778-901
25	328698	5868264	Minus	625555-625633
25	328700	5868264	Plus	764089-764203
	328708	5868271	Minus	68114-68854
	328735	5868289	Plus	89389-89455
	328743	5868289	Plus	274638-274726
30	328806	5868324	Plus	29408-29684
	328299	5868366	Minus	149708-149889
	328342	5868383	Plus	59955-60094
	328365	5868387	Minus	270724-270798
35	328369	5868388	Plus	75371-75583 662758-662848
33	328381 328451	5868392 5868425	Plus Minus	217275-217336
	328481	5868449	Minus	8987-9180
	328500	5868464	Plus	59098-59481
	328530	5868482	Plus	334973-335406
40	328664	6004473	Plus	1193739-1193866
	328861	6381928	Minus	108317-108403
	328908	5868493	Plus	117002-117059
	328933	5868500	Plus	771755-771889
4 ~	328934	5868500	· Plus	846342-846448
45	328949	6456765	Minus	43552-43619
	330313	6042030	Minus	33642-33775
	329005	5868542	Plus	85470-85673
	330366	2944106	Plus	151837-151914 317461-317688
50	330372 329033	6580495 5868561	Minus Minus	5390-5479
50	329037	5868562	Minus	32466-32562
	329067	5868591	Minus	146417-147652
	329134	5868679	Plus	29959-30018
	329157	5868687	Minus	145940-146155
55	329178	5868704	Plus	179177-179463
	329192	5868716	Plus	166936-167020
	329194	5868716	Minus	304450-304559
	329204	5868720	Minus	3050-3190
60	329224	5868728	Plus	27422-27664
60	329228	5868728	Minus	50118-50287
	329288	5868771	Plus	25554-26299
	329337 329011	5868806 6682532	Minus Plus	467155-467222 48658-48741
	J23011	UUU2332	FIUS	10000040141

TABLE 9A: Polential Therapeutic, Diagnostic and Prognostic targets for Therapy of Lung Cancer

Table 9A shows about 1312 genes up-regulated in lung tumors (including squamous cell carcinomas, adenocarcinomas, small cell carcinomas, granulomatous and carcinoid tumors) relative to normal body tissues. These genes were selected from about 59680 probesets on the Eos/Affymetrix Hu03 Genechip array.

Table 9B show the accession numbers for those Pkey's lacking UnigenelD's for table 9A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oaldand California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Table 9C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 9A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

15 Pkey: Unique Eos probeset identifier number

ExAccn: Exemplar Accession number, Genbank accession number

Unigene lD: Unigene number Unigene Title: Unigene gene title

5

10

20

R1: Average of lung tumors (including squamous cell carcinomas, adenocarcinomas, small cell carcinomas, granulomatous and carcinoid tumors) divided by the

average of normal lung samples

R2: Average of non-malignant lung disease samples (including bronchitis, emphysema, fibrosis, atelectasis, asthma) divided by the average of normal lung samples

	R2:	Averag	e of non-malig	mant lung disease samples (including bronchitis, emphys	ema, fibrosis, ate	electasis, asth
	Pkey 400195	ExAccn	UnigenelD	Unigene Title NM_007057*:Homo sapiens ZW10 interactor	R1 1.00	R2 1.00
25	400205			NM_006265*:Homo sapiens RAD21 (S. pombe)	15.80	396.00
	400220			Eos Control	2.28 7.68	2.84 9.72
	400277 400285			Eos Control Eos Control	1.00	1.00
	400288	X06256	Hs.149609	integrin, alpha 5 (fibronectin receptor,	1.04	2.24
30	400289	X07820	Hs.2258	matrix metalloproteinase 10 (stromelysin	132.45	4.00
	400298	AA032279	Hs.61635	six transmembrane epithelial antigen of	43.86	74.00
	400301 400303	X03635 AA242758	Hs.1657 Hs.79136	estrogen receptor 1 LIV-1 protein, estrogen regulated	1.00 1.75	1.00 1.65
	400303	X87344	Hs.180062	transporter 2, ATP-binding cassette, sub	0.87	1.80
35	400419	AF084545		Target	156.55	253.00
	400512	•		NM_030878*:Homo sapiens cytochrome P450,	1.00	2.00
	400517	AF242388		lengsin NM 030878*:Homo sapiens cytochrome P450,	3.67 1.00	87.00 1.00
	400560 400664			NM_002425:Homo sapiens matrix metallopro	20.26	45.00
40	400665			NM_002425:Homo sapiens matrix metallopro	1.36	1.07
	400666			NM_002425:Homo sapiens matrix metallopro	3.26	3.22
	400749			NM_003105*:Homo sapiens sortilin-related	1.00	91.00
	400763			Target Exon	7.63 1.00	24.00 1.00
45	401027 401093			Target Exon C12000586*:gi]6330167[dbj]BAA86477.1] (A	1.00	155.00
1.5	401203			Target Exon	1.00	86.00
	401212			C12000457*:gi 7512178 pir T30337 polypr	1.00	400.00
	401411			ENSP00000247172*:HYPOTHETICAL 126.2 kDa	1.00	72.00
50	401435	45000044		C14000397*:gi 7499898 pir T33295 hypoth	1.00	64.00 49.00
30	401464 401714	AF039241		histone deacetylase 5 ENSP00000241802*:CDNA FLJ11007 FIS, CLON	3.82 2.02	49.00
	401747			Homo sapiens keratin 17 (KRT17)	128.43	68.00
	401760			Target Exon	1.74	35.00
	401780			NM_005557*:Homo sapiens keratin 16 (foca	26.47	10.50
55	401781			Target Exon	10.33 4.13	4.61
	401785 401797			NM_002275*:Homo sapiens keratin 15 (KRT1 Target Exon	4.13 1.44	2.70 2.10
	401961			NM_021626:Homo sapiens serine carboxypep	1.41	1.86
	401985	AF053004		class I cytokine receptor	1.00	177.00
60	401994			Target Exon	61.84	47.00
	402075			ENSP00000251056*:Plasma membrane calcium	1.00	1.00
	402260 402265			NM_001436*:Horno sapiens fibrillarin (FBL Target Exon	1.58 2.09	1.39 35.00
	402297			Target Exon	1.00	92.00
65	402408			NM_030920*:Homo sapiens hypothetical pro	28.87	13.00
	402420			C1000823*:gi]10432400 emb CAC10290.1 (A	1.00	1.44
	402674			Target Exon	7.44	243.00
	402802 402994			NM_001397:Homo sapiens endothelin conver NM_002463*:Homo sapiens myxovirus (influ	1.00 1.37	70.00 1.43
70	403137			NM_005381*:Homo saplens nucleolin (NCL),	1.00	19.00
	403306	NM_006825		transmembrane protein (63kD), endoplasmi	1.00	43.00
	403329			Target Exon	1.00	61.00
	403381			ENSP00000231844*:Ecotropic virus integra	1.00	119.00
75	403478 403485			NM_022342:Homo sapiens kinesin protein 9 C3001813*:qi 12737279 ref XP_012163.1 k	28.13 20.23	136.00 76.00
15	403627			Target Exon	6.30	29.33
	403715			Target Exon	1.30	35.00
	404044			ENSP00000237855*:DJ398G3.2 (NOVEL PROTEI	1.00	54.00
90	404076			NM_016020*:Homo sapiens CGI-75 protein (14.29	91.00
80	404101			C8000950:gi[423560[pir][A47318 RNA-bindi NM_006510:Homo saplens ret finger protei	1.00 1.42	1.00 1.44
	404140 404165			ENSP00000244562:NRH dehydrogenase Iquino	1.42	54.00
	404185			Target Exon	1.00	117.00
0.5	404210			NM_005936:Homo sapiens myeloid/lymphoid	5.93	13.77
85	404253			NM_021058*:Homo sapiens H2B histone fami	1.00	1.00

404287 404347 171		W	O 02/086	443			
404447		404287		•	C6001909:gij704441 dbj BAA18909.1] (D298	29.71	42.00
404494							
404774 404784 404874 404874 404874 404874 404874 404874 404874 404874 404874 404874 404874 404874 404874 404874 404874 404874 404874 404874 404874 4048849 4048849 405868 405872 405868 405872 405868 405875 405876					Target Exon		
404974 MM, 000078 Challestery lesher transfer protein, plas	5						
404977 NM, 000556:Home sapiens melanoma antigen, 10.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	•		NM_000078				
A04927 Target Exon					Target Exon		
404949							
46546 46557 46566 5 10,45666 1 10,00	10						
405568	-,0				CY000047*:gi[11427234 ref XP_009399.1] z		
15							78.00
13							
406770 40680 40680 40680 40680 40680 40680 40680 40680 40680 40680 40680 40680 40680 40681	15		DE326744				
4095197	13		DE330/14				
406359 406390 406390 406390 406390 406617 406621 407363 406632 406633 406634 406637 406637 406637 406637 406637 406637 406637 406637 406637 406637 406637 406637 406637 406637 406637 406637 406638 406636 406636 406636 406636 406636 406636 406636 406636 406637 406637 406637 406638 406638 406639 40							
MoRFIT M					NM_000179*:Homo sapiens mutS (E. coli) h		
Heart	20						
406612	20						
406642 AL95470 406675 A26897 45.28574 45.28574 406675 A26897 45.28574 45.28574 45.28574 45.28574 45.28575 406676 A26897 45.28574 45.28574 46.28575 406685 A117254 45.28574 406685 A117254 45.28574 406685 A117254 45.28574 406685 A117254 45.28574 46.			X57809	Hs.181125			
April							
Heart Hear	25						
Human L29 transcript of unrearranged im, 406865 M8728 Hs.81221 Human L29 transcript of unrearranged im, 406865 M8728 Hs.222629 Hs.22629 Hs.226	25						
406878 M1754							
406855 M302940 Hs.220220				110.01221			
406690 M29540 Hs. 220529 carcinoembryonic antigen-related cell ad 406815 AA83330 Hs. 288036 Hs. 288036 M36815 AA69330 Hs. 288036 M36815 AA69330 M36815 M368							
406895 AA83939 Hs.28936 H	30						
408815 AA83330 Hs.288036 Hs.288036 Hs.288036 A698784 A07305 A083776 A083776 A083776 A07329 A07329 A076350 A07324 A07329 A076350 A07329 A076350 A07329 A076350 A07324 A07328 A07330 A073300 A07330 A073300 A073300 A073300 A073300 A073300 A073300 A073300 A0733							
April							
April				110.20000			
405974 M57293 A07103 A042881 Hs.25501 hypothetical protein MGC13170 1.00	35				gb:Human alpha satellite and satellite 3		
407103							
407128 R83312 Hs.237260 EST 1.00 1.00 1.00 1.00 4071437 T97307 407168 R45175 Hs.17183 ESTS 507242 M18728 407244 M18728 407244 M18728 407244 M18014 Hs.57841 ESTS 407289 A4135159 Hs.203349 407300 A4102616 Hs.120769 407300 A4102616 Hs.120769 407300 A4102616 Hs.215300 407378 A4299264 Hs.57776 407430 A7169351 Hs.215300 407453 A4132087 407577 A47131224 Hs.246759 407761 A400221727 Hs.23616 407710 A400221727 Hs.23616 407710 A400221727 Hs.23616 407762 A400863 BEE14982 Hs.389911 Hs.389210 407782 A4608956 Hs.112519 407783 A4008658 Hs.112519 407783 A40086594 Hs.123753 408000 L11690 Hs.6200 408000 L11690 Hs.6200 408000 L11690 Hs.6200 408000 A408313 A4081395 Hs.423727 408000 A408313 A4081395 Hs.423727 408000 A408313 A4081395 Hs.43286 A408000 A408313 A4081395 Hs.44276 A408343 BEE469847				Un 256201			
April							
407242	40						
M07244 M10014					= :		
407244 M10014 Hs.75431 fibrinogen, gamma potypeptide 3.24 15.38 407300 AA102616 Hs. 120769 407366 AF026942 Hs.271530 407366 AF026942 Hs.271530 407430 AF169351 9thoms sapiens cig33 mRNA, partial sequ 0.06 8.25 407430 AF169351 9thoms sapiens cig33 mRNA, partial sequ 0.06 8.25 407430 AF169351 9thoms sapiens cig33 mRNA, partial sequ 0.06 8.25 407430 AF169351 9thoms sapiens cig33 mRNA, partial sequ 0.06 8.25 407430 AF169351 9thoms sapiens cig33 mRNA, partial sequ 0.06 8.25 407450 AV016569 Hs. 36475 9thoms sapiens mRNA for exonemal dynein 1.00 25.00 9thoms sapiens mRNA for exonemal dynein 1.00 75.00 407630 AN016569 Hs. 36476 407760 AA116021 Hs.38260 407765 AA116021 Hs.38260 407765 AA116021 Hs.38260 407768 AA116021 Hs.38260 407768 AA16021 Hs.38260 407768 AA16021 Hs.38260 407768 AA16021 Hs.38260 407768 AA08996 Hs. 12615 Hs.38365 40782 AA0845144 Hs.161566 407940 A022727 Hs.38091 Hs.38991 407839 AA045144 Hs.161566 40784 R34008 Hs.287974 Hs.38091 408000 L11690 Hs.620 408000 L11690 Hs.620 408000 L11690 Hs.620 408000 L11690 Hs.620 408000 AV148852 408070 AW148852 Hs.42364 408070 AW148852 Hs.42364 408070 AW148852 Hs.42364 408070 AW148852 Hs.42364 408070 AW148852 Hs.42365 AW3330 Hs.15235 Hs.42330 Hs.42365 AW3330 Hs.15235 Hs.42330 Hs.42365 AW3330 Hs.15235 Hs.42330 Hs.42365 AW3330 Hs.15235 Hs.42330 Hs.42365 AW3330 Hs.15235 Hs.42360 Hs.42360 AW3330 AF1330 Hs.42363 AW363372 Hs.433360 Hs.52350 AW3349 BE546947 Hs.44276 AW3350 AW33493 Hs.15235 Hs.43330 Hs.15235 Hs.43330 Hs.15235 AW3340 AW3330 Hs.15235 Hs.43330 Hs.15235 Hs.43330 Hs.45273 AW33405 Hs.45236 AW3340 Hs.45273 AW33405 Hs.45236 AW3340 Hs.45236 AW3340 Hs.45273 AW33405 Hs.45236 AW33405 Hs.45236 AW33405 Hs.45236 Hs.45236 AW33405 Hs.45236 AW33405 Hs.45236 AW33405 Hs.45236 AW33405 Hs.45236 AW3				Hs.67846			
407289 AA132169				Hs 75431			
407306	45						
4077430		407300	AA102616	Hs.120769			
\$\frac{407433}{407433} \							
More				HS.5///6			
407577 AW131324 Hs_246759	50						
Math				Hs.246759	· · · · · · · · · · · · · · · · · · ·	1.00	
March Marc							
55 407746 AK001962 407758 hypothetical protein FLJ11100 1.00 1.00 407758 D50915 Hs.38260 ublquitin specific protease 18 4.51 5.00 407782 AA608956 Hs.112619 ESTs, Moderately similar to PURKINJE CEL 0.97 1.14 407788 BE514982 Hs.38991 S100 calclum-binding protein A2 7.88 3.83 60 407790 Al027274 Hs.288941 Homo sapiens cDNA FLJ14866 fis, clone PL 3.63 42.00 407811 AW190902 Hs.4098 cysteine knot superfamily 1, BMP antagon 89.96 109.00 407944 R34008 Hs.239727 desmocollin 2 111.30 70.00 40800 L11690 Hs.620 bullous pemphigold antigen 1 (230/240kD) 151.17 8.00 408073 AA081395 Hs.42173 Homo sapiens cDNA FLJ10366 fis, clone NT 9.91 93.00 40812 AW368504 Hs.123073 Hs.42246 home phase cDNA FLJ10366 fis, clone NT 9.91 93.00 408121 AW397567 Hs.43228 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Month	55			113.00002			
Month				Hs.38260			
60 407788 BE514982 Hs.38991 S100 calcium-binding protein A2 7.88 3.83 407790 AI027274 Hs.288941 Homo sapiens cDNA FLJ14866 fis, clone PL 3.63 42.00 407811 AW190902 Hs.4098 cysteine knot superfamily 1, BMP antagon 89.96 109.00 407944 R34008 Hs.239727 desmocollin 2 111.30 70.00 40801 L11690 Hs.620 bullous pemphigoid antigen 1 (230/240kD) 151.17 8.00 5 408031 AA081395 Hs.42173 Homo sapiens cDNA FLJ10366 fis, clone NT 9.91 93.00 408603 BE066548 Hs.42346 calcineurin-binding protein calsarcin-1 195.78 231.00 408101 AW968504 Hs.123073 CDC2-related protein kinase 7 37.84 61.00 408122 AI432652 Hs.43824 hypothetical protein FLJ10718 0.85 1.71 408243 Y00787 Hs.624 interleukin 8 4.27 9.98 408353 BE3439838 Hs.44278 homeo box C10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
60 407790 Al027274 AV190902 Hs.40098 cysteine knot superfamily 1, BMP antagon 3.63 42.00 407811 AW190902 Hs.40098 cysteine knot superfamily 1, BMP antagon 89.96 109.00 111.30 70.00 109.00 111.30 70.00 111.30 70.00 111.30 70.00 111.30 70.00 111.30 70.00 111.30 70.00 109.00 111.30 70.00 111.30 70.00 109.00 111.30 70.00 109.00 111.30 70.00 109.00 109.00 111.30 70.00 109							
A07811 AW190902	60						
407944 R34008 Hs.239727 desmocollin 2 111.30 70.00 408000 L11690 Hs.620 bullous pemphigoid antigen 1 (230/240kD) 151.17 8.00 408031 AA081395 Hs.42173 Homo sapiens cDNA FLJ10366 fis, clone NT 9.91 93.00 408070 AW148852 Hs.42346 calcineurin-binding protein calsarcin-1 195.78 231.00 408101 AW968504 Hs.123073 CDC2-related protein kinase 7 37.84 61.00 408122 Al432652 Hs.42824 hypothetical protein FLJ10718 0.85 1.71 408243 Y00787 Hs. 43728 hypothetical protein FLJ10718 0.85 1.71 408243 Y00787 Hs. 43728 hypothetical protein FLJ10718 0.85 1.71 408349 BE546947 Hs. 44276 horneo box C10 3.79 3.46 408353 BE439838 Hs. 182575 ESTs 1.00 73.00 408354 Al382803 Hs. 182575 solute carrier family 15 (H7?7? transport 1.41 16.50 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	•						
408000 L11690 Hs.620 bullous pernphigoid antigen 1 (230/240kD) 151.17 8.00 408031 AA081395 Hs.42173 Homo sapiens cDNA FLJ10366 fis, clone NT 9.91 93.00 408070 AW148852 Hs.42346 calcineurin-binding protein calsarcin-1 195.78 231.00 408101 AW968504 Hs.123073 CDC2-related protein kinase 7 37.84 61.00 408122 Al432652 Hs.42824 hypothetical protein kinase 7 37.84 61.00 408121 AA297567 Hs.43728 hypothetical protein FLJ10718 0.85 1.71 408243 Y00787 Hs.624 interleukin 8 4.27 9.98 408353 BE546947 Hs.44276 homeo box C10 3.79 3.46 408354 Al382803 Hs.159235 ESTs 1.00 73.00 408354 Al382803 Hs.182575 solute carrier family 15 (H???? transport 1.41 16.50 408360 AF123050 Hs.44532 diublquitin 15.19 37.22 <							
65 408031 AA081395 AA081395 AV8 42173 AV8 408063 BE086548 Hs. 42346 Calcineurin-binding protein calsarcin-1 195.78 231.00 gbx/0505x1 NCI_CGAP_Brn35 Homo sapien 1.00 1.00 1.00 AV8 408101 AW968504 Hs. 123073 CDC2-related protein kinase 7 37.84 61.00 AV8 408122 AA297567 Hs. 43728 hypothetical protein relation for the protein sinase 7 37.84 61.00 AV8 408122 AA297567 Hs. 43728 hypothetical protein sinase 7 37.84 61.00 AV8 408121 AA297567 Hs. 43728 hypothetical protein sinase 7 9.91 interleukin 8 4.27 9.98 AV8 408349 BE546947 Hs. 44276 homeo box C10 3.79 3.46 AV8 408354 AI382803 Hs. 44298 mitochondrial ribosomal protein S17 1.88 1.65 AV8 408354 AI382803 Hs. 44298 mitochondrial ribosomal protein S17 1.88 1.65 AV8 408369 R38438 Hs. 182575 solute carrier family 15 (H???? transport 1.41 16.50 AV8 408482 NM_000676 Hs. 445743 adenosine A2b receptor 1.65 1.19 AV8 40852 AI541214 Hs. 46320 Small protine-rich protein SPRK (human, 1.98 1.24 AV8 408536 AW381532 Hs. 135188 ESTs 1.00 1.00 1.00 AV8 572 AA055611 Hs. 253690 ESTs, Moderately similar to ALU4_HUMAN A 1.00 44.00 AV8 572 AA05764 Hs. 46677 PRO2000 protein ESTs, Weakly similar to PC4259 ferri 1.00 1.00 AV8 572 AA05764 Hs. 238936 ESTs, Weakly similar to PC4259 ferri 1.00 1.00 AV8 572 AA05764 Hs. 238936 ESTs, Weakly similar to (defline not ava							
A08053 BE086548 Hs. 42346 Calcineurin-binding protein calsarcin-1 195.78 231.00 408070 AW148852 document of the pix of the pi	65						
A08070	•••						
70 408122 Al432652 Al524652 Hs.42824 hypothetical protein FLJ10718 (408212 AA297567 Hs.43728 hypothetical protein 5.88 7.91 hypothetical protein 7.98 7.91 AA297567 Hs.624 interleukin 8 4.27 9.98 A08349 BE546947 Hs.44276 homeo box C10 3.79 3.46 A08353 BE439838 Hs.44298 mitochondrial ribosomal protein S17 1.88 1.65 A08354 Al382803 Hs.159235 ESTs 1.00 73.00 Solute carrier family 15 (H??? transport 1.41 16.50 A08369 R38438 Hs.48275 solute carrier family 15 (H??? transport 1.41 16.50 A08380 AF123050 Hs.44532 diubliquitin 15.19 37.22 A08482 NM_000676 Hs.45743 adenosine A2b receptor 1.65 1.19 A0852 Al541214 Hs.46320 Small protine-rich protein SPRK [human, 1.98 1.24 A08536 AW381532 Hs.135188 ESTs 1.55 1.50 A08545 AW235405 Hs.253690 ESTs 1.00 1.00 1.00 A08572 AA055611 Hs.26568 ESTs, Moderately similar to ALU4_HUMAN A 1.00 44.00 A0853 AW963372 Hs.46677 PRO2000 protein ESTs, Woderately similar to PC4259 ferri 1.00 1.00 A0860 AA525775 ESTs, Woderately similar to PC4259 ferri 1.00 1.00 A0860 AA525775 ESTs, Woderately similar to PC4259 ferri 1.00 1.00 A0860 AA525775 ESTs, Weakly similar to (defline not ava			AW148852		gb:xf05d05.x1 NCI_CGAP_Bm35 Homo sapien		
70 408212 A297567 Hs. 43728 hypothetical protein (10084) 5.88 7.91 hypothetical protein (10184) 5.88 7.91 hypothetical protein (10184) 5.88 7.91 hypothetical protein (10184) 7.91 hypothetical protein (100 hypothetical protein (10084) 7.91 hypothetical protein (100 hypothetical protein (10084) 7.91 hypothetical protein (100 hypotein (10084) 7.91 hypothetical protein (1008) 7.91 hypothetical protein (1008) 7.91 hypothetical protein (10084) 7.91 hypothetical							
408243 Y00787 Hs.624 inlerleukin 8 4.27 9.98 408349 BE546947 Hs.44276 homeo box C10 3.79 3.46 408353 BE439838 Hs.44288 mitochondrial ribosomal protein S17 1.88 1.65 408354 Al382803 Hs.159235 ESTs 1.00 73.00 408369 R38438 Hs.182575 solute carrier family 15 (H??? transport 1.41 16.50 408380 AF123050 Hs.44532 diubiquitin 15.19 37.22 408482 NM_000676 Hs.45743 adenosine A2b receptor 1.65 1.19 408522 Al541214 Hs.46320 Small protine-rich protein SPRK [human, 1.98 1.24 408536 AW331532 Hs.135188 ESTs 1.55 1.50 408545 AW235405 Hs.253690 ESTS 1.00 1.00 408572 AA055611 Hs.253690 ESTS, Moderately similar to ALU4_HUMAN A 1.00 44.00 408633 AW963372 Hs.46677 PRO2000 protein 107.16 56.00 408600 AA525775 ESTS, Woderately similar to PC4259 ferri 1.00 1.00 85	70						
408349 BE546947 Hs.44276 homeo box C10 3.79 3.46 408353 BE439838 Hs.44298 mitochondrial ribosomal protein S17 1.88 1.65 408354 Al382803 Hs.159235 ESTs 1.00 73.00 408369 R38438 Hs.182575 solute carrier family 15 (H??? transport 1.41 16.50 408380 AF123050 Hs.44532 diubiquitin 15.19 37.22 408482 NM_000676 Hs.45743 adenosine A2b receptor 1.65 1.19 408522 Al541214 Hs.46320 Small proline-rich protein SPRK [human, 1.98 1.24 408536 AW381532 Hs.135188 ESTs 1.55 1.50 408545 AW235405 Hs.253690 ESTs 1.00 1.00 408572 AA055611 Hs.226568 ESTs, Moderately similar to ALU4_HUMAN A 1.00 4.00 408600 AA525775 PRO2000 protein 107.16 56.00 408761 AA05764 Hs.238936 ESTs, We	, 0						
75 408354 A382803 A382803 Hs.159235 Solute carrier family 15 (H??? transport 1.00 73.00 7							
75 408369 A38438 AF123050 Hs.44532 dubbiquitin solute carrier family 15 (H??? transport 1.41 16.50 15.19 37.22 dibbiquitin 408482 NM_000676 A5452 A1541214 Hs.45323 denosine A2b receptor 1.65 1.19 16.50 1.65 1.19 16.50 1.65 1.19 16.50 1.19							
408380 AF123050 Hs.44532 diubiquitin 15.19 37.22 408482 NM_000676 Hs.45743 adenosine A2b receptor 1.65 1.19 408522 AI541214 Hs.46320 Small proline-rich protein SPRK [hurnan, 1.98 1.24 408536 AW381532 Hs.135188 ESTs 1.55 1.50 408545 AW235405 Hs.253690 ESTs 1.00 1.00 408572 AA055611 Hs.226568 ESTs, Moderately similar to ALU4_HUMAN A 1.00 44.00 408633 AW963372 Hs.46677 PRO2000 protein 107.16 56.00 408660 AA525775 ESTs, Moderately similar to PC4259 ferri 1.00 1.00 408761 AA057264 Hs.238936 ESTs, Weakly similar to (defline not ava 52.24 141.00	75						
80	15						
80 408522 Al541214 Hs.46320 Small proline-rich protein SPRK [human, 1.98 1.24 408536 AW381532 Hs.135188 ESTs 1.55 1.50 408545 AW235405 Hs.235690 ESTs 1.00 1.00 1.00 44.00 408533 AW963372 Hs.46677 PRO2000 protein 107.16 56.00 408600 AA525775 ESTs, Moderately similar to ALU4_HUMAN A 1.00 1.00 1.00 44.							
80 408545 AW235405 Hs.253690 ESTs 1.00 1.00 44.0		408522	Al541214				1.24
408572 AA055611 Hs.226568 ESTs, Moderately similar to ALU4_HUMAN A 1.00 44.00 44.00 408633 AW963372 Hs.46677 PRO2000 protein 107.16 56.00 408660 AA525775 ESTs, Moderately similar to PC4259 ferri 1.00 1.00 44.00	QΛ						
408633 AW963372 Hs.45677 PRO2000 protein 107.16 56.00 408660 AA525775 ESTs, Moderately similar to PC4259 ferri 1.00 1.00 408761 AA057264 Hs.238936 ESTs, Weakly similar to (defline not ava 52.24 141.00	۰ ۵۵						
408660 AA525775 ESTs, Moderately similar to PC4259 ferri 1.00 1.00 408761 AA057264 Hs.238936 ESTs, Weakly similar to (defline not ava 52.24 141.00							
408761 AA057264 Hs.238936 ESTs, Weakly similar to (defline not ava 52.24 141.00				- 101 1001 1			
O.J. 408771 AW732573 Hs.47584 potassium voltage-gated channel, delayed 3.05 109.00	05	408761	AA057264		ESTs, Weakly similar to (defline not ava	52.24	
	03	408771	AW732573	Hs.47584	potassium voitage-galed channel, delayed	3.05	109.00

	W	O 02/086	443			
	408783	AF192522	Hs.47701	NPC1 (Niemann-Pick disease, type C1, gen	1.02	1.07
	408790	AW580227	Hs.47860	neurotrophic tyrosine kinase, receptor,	41.19	61.00
	408805	H69912	Hs.48269	vaccinia related kinase 1	24.67	45.00
	408841	AW438865	Hs.256862	ESTs	1.00	58.00
5	408873	AL046017	Hs.182278	calmodulin 2 (phosphorylase kinase, delt	1.00	89.00
,	408908	BE296227	Hs.250822	serine/Ihreonine kinase 15	7.76	1.00
			Hs.71642		1.00	
	408992	AA059325		guanine nucleotide binding protein (G pr		1.00
	408996	Al979168	Hs.344096	glycoprotein (transmembrane) nmb	3.71	5.50
10	409015	BE389387	Hs.49767	NM_004553:Homo sapiens NADH dehydrogenas	1.44	1.24
10	409038	T97490	Hs.50002	small inducible cytokine subfamily A (Cy	4.28	5.32
	409041	AB033025	Hs.50081	Hypothetical protein, XP_051860 (KIAA119	.112.42	195.00
	409077	AA401369	Hs.190721	ESTs	1.00	17.00
	409093	BE243834	Hs.50441	CGI-04 protein	2.02	1.93
	409103	AF251237	Hs.112208	XAGE-1 protein	80.44	40.00
15	409142	AL136877	Hs.50758	SMC4 (structural maintenance of chromoso	14.87	6.00
	409187	AF154830	Hs.50966	carbamoyl-phosphate synthetase 1, mitoch	1.00	1.00
	409228	Al654298	Hs.271695	ESTs, Weakly similar to 2109260A B cell	1.22	1.00
	409234	Al879419	Hs.27206	ESTs	1.00	1.00
•						
20	409268	AA625304	Hs.187579	ESTs	11.90	23.00
20	409269	AA576953	Hs.22972	hypothetical protein FLJ13352	1.00	1.00
	409361	NM_005982	Hs.54416	sine oculls homeobox (Drosophila) homolo	168.91	35.00
	409404	BE220053	Hs.129056	ESTs	1.00	1.00
	409420	Z15008	Hs.54451	laminin, gamma 2 (nicein (100kD), kalini	79.74	96.00
0.5	409430	R21945	Hs.346735	splicing factor, arginine/serine-rich 5	1.45	2.10
25	409446	Al561173	Hs.67688	ESTs	1.00	4.00
	409506	NM_006153	Hs.54589	NCK adaptor protein 1	3.97	28.00
	409522	AA075382		gb:zm87b03.s1 Stratagene ovarian cancer	15.98	141.00
	409582	AA401369	Hs.190721	ESTs	1.00	17.00
	409632	W74001	Hs.55279	serine (or cysteine) proteinase inhibito	292.12	79.00
30	409705	M37762	Hs.56023	brain-derived neurotrophic factor	1.00	82.00
50	409719	Al769160	Hs.108681	Homo sapiens brain tumor associated prot	1.00	1.00
	409731	AA125985	Hs.56145	thymosin, beta, identified in neuroblast	0.12	18.12
			Hs.56265		20.75	51.00
	409744	AW675258		Homo sapiens mRNA; cDNA DKFZp586P2321 (f	22.46	15.80
25	409757	NM_001898	Hs.123114	cystatin SN		
35	409866	AW502152		gb:UI-HF-BR0p-ajr-f-11-0-UI.r1 NIH_MGC_5	1.00	1.00
	409893	AW247090	Hs.57101	minichromosome maintenance deficient (S.	1.50	1.09
	409902	Al337658	Hs.156351	ESTs	25.92	50.00
	409935	AW511413	Hs.278025	ESTs	2.63	2.11
40	409956	AW103364	Hs.727	inhibin, beta A (activin A, activin AB a	2.17	4.01
40	409958	NM_001523	Hs.57697	hyaluronan synthase 1	0.91	2.07
	410001	AB041036	Hs.57771	kallikrein 11	1.04	2.28
	410032	BE065985		gb:RC3-BT0319-120200-014-a09 BT0319 Homo	1.00	58.00
	410037	AB020725	Hs.58009	KIAA0918 protein	1.00	34.00
	410044	BE566742	Hs.58169	highly expressed in cancer, rich in leuc	1.00	1.00
45	410048	W76467	Hs.58218	proline oxidase homolog	1.03	1.44
1.0	410076	T05387	Hs.7991	ESTs	1.12	1.50
	410102	AW248508	Hs.279727	Homo sapiens cDNA FLJ14035 fis, clone HE	9.89	1.00
					1.00	1.00
	410153	BE311926	Hs.15830	hypothetical protein FLJ12691		
50	410166	AK001376	Hs.59346	hypothetical protein FLJ10514	1.00	1.00
50	410193	AJ132592	Hs.59757	zinc finger protein 281	42.01	51.00
	410274	AA381807	Hs.61762	hypoxia-inducible protein 2	1.72	1.32
	410309	BE043077	Hs.278153	ESTs	1.00	2.00
	410340	AW182833	Hs.112188	hypothetical protein FLJ13149	32.08	75.00
Ė	410348	AW182663	Hs.95469	ESTs	1.00	1.00
55	410407	X66839	Hs.63287	carbonic anhydrase IX	1.40	1.11
	410418	D31382	Hs.63325	transmembrane protease, serine 4	4.30	2.03
	410438	AB037756	Hs.45207	hypothetical protein KIAA1335	1.00	18.00
	410553	AW016824	Hs.255527	hypothetical protein MGC14128	1.34	1.04
	410555	W27235	Hs.64311	a disintegrin and metalloproteinase doma	23.99	1.41
60	410561	BE540255	Hs.6994	Homo sapiens cDNA: FLJ22044 fis, clone H	10.04	1.00
	410681	AW246890	Hs.65425	calbindin 1, (28kD)	10,88	18.92
	410781	Al375672	Hs.165028	ESTs	1.00	57.00
	411027	AF072099	Hs.67846	leukocyte immunoglobulin-like receptor,	1.62	3.78
	411074	X60435	Hs.68137	adenylate cyclase activating polypeptide	1.00	1.15
65	411089	AA456454	110.00101	cell division cycle 2-like 1 (PITSLRE pr	1.56	1.58
05	411152	BE069199		gb:QV3-BT0379-010300-105-g03 BT0379 Homo	1.00	84.00
	411248	AA551538	Hs.334605	Homo sapiens cDNA FLJ14408 fis, clone HE	1.82	1.45
	411252				7.32	12.74
		AB018549	Hs.69328	MD-2 protein		
70	411263	BE297802	Hs.69360	kinesin-like 6 (mitotic centromere-assoc	3.44	2.55
70	411365	M76477	Hs.289082	GM2 ganglioside activator protein	1.35	2.02
	411402	BE297855	Hs.69855	NRAS-related gene	1.00	46.00
	411573	AB029000	Hs.70823	KIAA1077 protein	11.40	11.35
	411579	AC005258	Hs.70830	U6 snRNA-associated Sm-like protein LSm7	1.08	1.90
75	411617	AA247994	Hs.90063	neurocalcin della	1.74	2.57
75	411732	AA059325	Hs.71642	guanine nucleotide binding protein (G pr	1.02	1.00
	411773	NM_006799	Hs.72026	protease, serine, 21 (testisin)	1.34	2.19
	411789	AF245505	Hs.72157	Adlican	2.19	2.79
	411800	N39342	Hs.103042	microtubule-associated protein 18	23.34	34.00
- -	411945	AL033527	Hs.92137	v-myc avian myelocytomatosis viral oncog	1.00	8.00
80	412115	AK001763	Hs.73239	hypothetical protein FLJ10901	2.07	1.64
	412140	AA219691	Hs.73625	RAB6 interacting, kinesin-like (rabkines	118.48	92.00
	412276	BE262621	Hs.73798	macrophage migration inhibitory factor (1.98	1.49
						1.34
	412464	T78141	Hs.22826	ESTs, Weakly similar to 155214 salivary	1.16	
85	412530	AA766268	Hs.266273	hypothetical protein FLJ13346	41.52	84.00
03	412537	AL031778		nuclear transcription factor Y, alpha	17.90	55.00

	W	O 02/086	443			
	412659	AW753865	Hs.74376	olfactomedin related ER localized protei	14.65	47.00
	412719	AW016610	Hs.816	ESTs	382.46	128.00
	412723	AA648459	Hs.335951	hypothetical protein AF301222	54.90	1.00
_	412811	H06382		ESTs	1.00	11.00
5	412817	AL037159	Hs.74619	proteasome (prosome, macropain) 26S subu	1.63	1.42
	412863	AA121673	Hs.59757	zinc finger protein 281	17.63	56.00
	412924	BE018422	Hs.75258	H2A histone family, member Y	1.00	22.00
	413004	T35901	Hs.75117	interleukin enhancer binding factor 2, 4	2.19	2.05
10	413011	AW068115	Hs.821	biglycan	1.22	1.88
10	413048	M93221	Hs.75182	mannose receptor, C type 1	0.30	6.23
	413063	AL035737	Hs.75184	chitinase 3-like 1 (cartilage glycoprote	3.43	8.71
	413129	AF292100	Hs.104613	RP42 homolog	4.67	4.77
	413142	M81740	Hs.75212	omithine decarboxylase 1	1.92	2.59
4	413223	Al732182 ·	Hs.191866	ESTs	5.73	27.00
15	413248	T64858	Hs.21433	hypothetical protein DKFZp547J036	0.99	1.06
	413273	U75679	Hs.75257	stem-loop (histone) binding protein	1.00	18.00
	413278	BE563085	Hs.833	interferon-stimulated protein, 15 kDa	1.10	1.09
	413281	AA861271	Hs.222024	transcription factor BMAL2	95.94	69.00
•	413364	BE536218	Hs.137516	fidgetin-like 1	1.00	1.00
20	413385	M34455	Hs.840	indoleamine-pyrrole 2,3 dioxygenase	0.95	2.09
	413409	Al638418	Hs.1440	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep	1.00	1.00
	413453	AA129640	Hs.128065	ESTs	1.00	31.00
	413527	BE250788	Hs.179882	hypothetical protein FLJ12443	1.08	1.46
	413554	AA319146	Hs.75426	secretogranin II (chromogranin C)	79.15	114.00
25	413573	AI733859	Hs.149089	ESTs	1.00	1.00
	413582	AW295647	Hs.71331	hypothetical protein MGC5350	8.80	10.00
	413597	AW302885	Hs.117183	ESTs	1.00	1.00
	413690	BE157489		gb:RC1-HT0375-120200-011-e06 HT0375 Homo	1.00	1.00
	413691	AB023173	Hs.75478	ATPase, Class VI, type 11B	3.16	2.32
30	413719	BE439580	Hs.75498	small inducible cytokine subfamily A (Cy	2.88	9.52
	413753	U17760	Hs.75517	laminin, beta 3 (nicein (125kD), kalinin	144.10	108.00
	413801	M62246	Hs.35406	ESTs, Highly similar to unnamed protein	1.00	17.00
	413833	Z15005	Hs.75573	centromere protein E (312kD)	1.00	1.00
	413882	AA132973	Hs.184492	ESTs	64.24	148.00
35	413926	AA133338	Hs.54310	ESTs	1.00	67.00
	413943	AW294416	Hs.144687	Homo sapiens cDNA FLJ12981 fis, clone NT	43.42	42.00
	413995	BE048146	Hs.75671	syntaxin 1A (brain)	1.23	1.11
	414035	Y00630	Hs.75716	serine (or cysteine) proteinase inhibito	2.02	2.51
	414142	AW368397	Hs.334485	Homo sapiens cDNA FLJ14438 fis, clone HE	1.00	102.00
40	414180	A1863304	Hs.120905	Homo sapiens cDNA FLJ11448 fis, clone HE	6.92	77.00
	414245	BE148072	Hs.75850	WAS protein family, member 1	1.00-	1.00
	414275	AW970254	Hs.889	Charot-Leyden crystal protein	1.00	59.00
	414317	BE263280	Hs.75888	phosphogluconate dehydrogenase	1.52	1.73
	414334	AA824298	Hs.21331	hypothetical protein FLJ10036	1.78	1.72
45	414341	D80004	Hs.75909	KIAA0182 protein	33.90	151.00
	414368	W70171	Hs.75939	uridine monophosphate kinase	171.60	97.00
	414416	AW409985	Hs.76084	hypothetical protein MGC2721	2.32	1.85
	414430	Al346201	Hs.76118	ubiquitin carboxyl-terminal esterase L1	226.15	66.00
	414570	Y00285	Hs.76473	insulin-like growth factor 2 receptor	1.64	1.98
50	414618	A1204600	Hs.96978	hypothetical protein MGC10764	1.87	72.00
	414675	R79015	Hs.296281	interleukin enhancer binding factor 1	1.51	1.39
	414683	S78296	Hs.76888	hypothetical protein MGC12702	43.61	64.00
	414696	AF002020	Hs.76918	Niemann-Pick disease, type C1	28.63	71.00
	414711	Al310440	Hs.288735	Homo saplens cDNA FLJ13522 fis, clone PL	14.86	42.00
55	414718	H95348	Hs.107987	ESTs	1.00	5.00
	414732	AW410976	Hs.77152	minichromosome maintenance deficient (S.	1.64	1.44
	414747	U30872	Hs.77204	centromere protein F (350/400kD, mitosin	65.01	74.00
	414761	AU077228	Hs.77256	enhancer of zeste (Drosophila) homolog 2	130.35	121.00
	414774	X02419	Hs.77274	plasminogen activator, urokinase	2.24	2.19
60	414806	D14694	Hs.77329	phosphalidylserine synthase 1	1.63	1.53
	414809	A1434699	Hs.77356	transferrin receptor (p90, CD71)	1.97	2.60
	414812	X72755	Hs.77367	monokine induced by gamma interferon	3.48	10.60
	414825	X06370	Hs.77432	epidermal growth factor receptor (avian	103.22	143.00
	414839	X63692	Hs.77462	DNA (cytosine-5-)-methyltransferase 1	1.80	1.69
65	414883	AA926960 ·		CDC28 protein kinase 1	14.29	10.06
	414907	X90725	Hs.77597	polo (Drosophia)-like kinase	1.95	2.20
	414914	U49844	Hs.77613	ataxia telangiectasia and Rad3 related	3.00	. 2.90
	414945	BE076358	Hs.77667	lymphocyte antigen 6 complex, locus E	1.02	1.21
70	414972	BE263782	Hs.77695	KIAA0008 gene product	1.00	1.00
70	415014	AW954064	Hs.24951	ESTs	1.42	2.84
	415091	AL044872	Hs.77910	3-hydroxy-3-methylglutaryl-Coenzyme A sy	1.00	30.00
	415138	C18356	Hs.295944	tissue factor pathway inhibitor 2	34.72	107.00
	415227	AW821113	Hs.72402	ESTs	1.87	49.00
76	415238	R37780	Hs.21422	ESTs	1.00	1.00
75	415263	AA948033	Hs.130853	ESTs	1.00	1.00
	415295	R41450	Hs.6546	ESTs	1.00	1.00
	415339	NM_015156	Hs.78398	KIAA0071 protein	51.18	166.00
	415669	NM_005025	Hs.78589	serine (or cysteine) proteinase inhibito	30.84	63.00
00	415674	BE394784	Hs.78596	proteasome (prosome, macropain) subunit,	1.48	1.39
80	415709	AA649850	Hs.278558	ESTs	1.00	1.00
	415735	AA704162	Hs.120811	ESTs, Weakly similar to I38022 hypotheti	1.00	72.00
	415799	AA653718	Hs.225841	DKFZP434D193 protein	6.23	31.00
	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t	24.30	1.00
05	415857	AA866115	Hs.127797	Homo sapiens cDNA FLJ11381 fis, clone HE	32.51	35.00
85	415989	A1267700		ESTs	78.89	1.00

	W	O 02/086	443			
	416018	AW138239	Hs.78977	proprotein convertase subtilisin/kexin t	1.00	1.00
	416065	BE267931	Hs.78996	proliferating cell nuclear antigen	3.35	2.32
	416111	AA033813	Hs.79018	chromatin assembly factor 1, subunit A (39.03	3.00
_	416177	AA174069	Hs.187607	ESTs	1.00	9.00
5	416178	AI808527	Hs.192822	serologically defined breast cancer anti	3.83	3.76
	416208	AW291168	Hs.41295	ESTs, Wealty similar to MUC2_HUMAN MUCIN	3.67	1.00
	416209	AA236776	Hs.79078	MAD2 (mitotic arrest deficient, yeast, h	9.70	1.00
	416239	AL038450	Hs.48948	ESTs	83.87	129.00
•	416250	AA581386	Hs.73452	hypothetical protein MGC10791	1.96	2.12
10	416322	BE019494	Hs.79217	pyrroline-5-carboxylate reductase 1	2.08	1.73
		H54375	Hs.268921	ESTs	1.00	89.00
	416448	L13210	Hs.79339	lectin, galactoside-binding, soluble, 3	1.28	1.54
	416498	U33632	Hs.79351	potassium channel, subfamily K, member 1	27.29	67.00
	416658	U03272	Hs.79432	fibrillin 2 (congenital contractural ara		
15					53.29	51.00
13	416661	AA634543	Hs.79440	IGF-II mRNA-binding protein 3	9.96	5.00
	416722	AA354604	-	hypothetical protein FLJ23017	3.68	33.00
	416819	U77735	Hs.80205	pim-2 oncogene	1.59	1.84
	416936	N21352	Hs.42987	ESTs, Wealdy similar to S21348 probable	1.00	1.00
20	417034	NM_006183	Hs.80962	neurolensin	1.00	1.00
20	417061	A1675944	Hs.188691	Homo sapiens cDNA FLJ12033 fis, clone HE	32.95	156.00
	417079	U65590	Hs.81134	interleukin 1 receptor antagonist	3.91	4.93
	417218	AA129547	Hs.285754	met proto-oncogene (hepatocyte growth fa	1.00	51.00
	417233	W25005	Hs.24395	small inducible cytokine subfamily B (Cy	3.38	2.05
~ ~	417308	H60720	Hs.81892	KIAA0101 gene product	82.94	25.36
25	417315	A1080042	Hs.180450	ribosomal protein S24	106.61	121.00
	417324	AW265494		ESTs	1.20	1.28
	417366	BE185289	Hs.1076	small proline-rich protein 18 (comifin)	8.97	3.27
	417389	BE260964	Hs.82045	midkine (neurite growth-promoting factor	2.59	1.82
	417428	N87579	Hs.278871	gb:LL2030F Human fetal heart, Lambda ZAP	1.00	52.00
30 [.]	417433	BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein	304.75	173.00
-	417466	Al681547	Hs.59457	hypothetical protein FLJ22127	1.24	1.34
	417512	Al979168	Hs.344096	glycoprotein (transmembrane) nmb	2.14	5.50
	417515	L24203	Hs.82237	ataxia-telangiectasia group D-associated	2.66	1.68
	417542	J04129	Hs.82269	progestagen-associated endometrial prote	1.28	1.35
35	417576	AA339449	Hs.82285	phosphoribosylglycinamide formyltransfer	42.76	51.00
55	417715	AW969587	Hs.86366	ESTs	6.35	2.75
	417720	AA205625	Hs.208067	ESTs	113.31	56.00
	417791	AW965339	Hs.111471	ESTs	39.98	16.00
				hypothetical protein FLJ10461	2.61	31.00
40	417830	AW504786	Hs.122579			
40	417866	AW067903	Hs.82772	collagen, type XI, alpha 1	2.35	2.44
	417900	BE250127	Hs.82906	CDC20 (cell division cycle 20, S. cerevi	1.52	1.11
	417933	X02308	Hs.82962	thymidylate synthetase	4.74	2.55
	417944	AU077196	Hs.82985	collagen, type V, alpha 2	3.61	5.21
15	417975	AA641836	Hs.30085	hypothetical protein FLJ23186	12.49	38.00
45	417991	AA731452	Hs.190008	ESTs	1.00	26.00
	418004	U37519	Hs.87539	aldehyde dehydrogenase 3 family, member	3.02	2.12
	418007	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial	187.59	1.00
	418054	NM_002318	Hs.83354	lysyl oxidase-like 2	2.85	2.63
~ ^	418057	NM_012151	Hs.83363	coagulation factor VIII-associated (intr	1.54	1.69
50	418113	Al272141	Hs.83484	SRY (sex determining region Y)-box 4	6.82	5.22
	418140	BE613836 .	Hs.83551	microfibriliar-associated protein 2	1.26	1.46
	418203	X54942	Hs.83758	CDC28 protein kinase 2	134.19	144.00
	418207	C14685	Hs.34772	ESTs	1.00	1.00
	418216	AA662240	Hs.283099	AF15q14 protein	64.66	61.00
55	418236	AW994005	Hs.337534	ESTs	18.53	147.00
	418249	H89226	Hs.34892	KIAA1323 protein	30.53	106.00
	418281	U09550	Hs.1154	oviductal glycoprotein 1, 120kD (mucin 9	1.00	. 3.00
	418283	S79895	Hs.83942	calhepsin K (pycnodysostosis)	3.96	5,16
	418300	A)433074	Hs.86682	Homo sapiens cDNA: FLJ21578 fis, clone C	3.18	2.91
60	418322	AA284166	Hs.84113	cyclin-dependent kinase inhibitor 3 (CDK	11.96	6.68
	418327	U70370	Hs.84136	paired-like homeodomain transcription fa	9.23	2.22
	418345	AJ001696	Hs.241407	serine (or cysteine) proteinase inhibito	1.00	1.00
	418379	AA218940	Hs.137516	fidgetin-like 1	21.68	44.00
	418397	NM_001269	Hs.84746	chromosome condensation 1	1.00	8.00
65	418403	D86978	Hs.84790	KIAA0225 protein	16.91	18.98
-	418462	BE001596	Hs.85266	integrin, beta 4	1.56	1.16
	418478	U38945	Hs.1174	cyclin-dependent kinase Inhibitor 2A (me	3.22	2.38
	418506	AA084248	Hs.85339	G protein-coupled receptor 39	2.66	2.22
	418526	BE019020	Hs.85838	solute carrier family 16 (monocarboxylic	2.04	2.21
70	418538	BE244323	Hs.85951	exportin, tRNA (nuclear export receptor	1.33	37.00
. •	418543	NM_005329	Hs.85962	hyaluronan synthase 3	1.04	1.23
	418574	N28754	113.00002	M-phase phosphoprotein 9	48.60	85.00
	418592	X99226	Hs.284153	Fanconi anemia, complementation group A	18.24	26.00
	418641	BE243136	Hs.86947	a disintegrin and metalloproteinase doma	1.19	1.41
75						
, 5	418661 418663	NM_001949	Hs.1189	E2F transcription factor 3	29.05	43.00
		AK001100	Hs.41690	desmocollin 3	112.17	19.00
	418678	NM_001327	Hs.87225	cancer/lestis antigen	1.18	1.10
	418686	Z36830	Hs.87268	annexin A8	1.54	1.98
80	418689	Al360883	Hs.274448	hypothetical protein FLJ11029	1.19	1.04
50	418712	Z42183	11-04004	gb:HSC0BF041 normalized infant brain cDN	1.00	12.00
	418727	AA227609	Hs.94834	ESTS	1.00	49.00
	418738	AW388633	Hs.6682	solute carrier family 7, (cationic amino	49.85	1.00
	418819	AA228776	Hs.191721	ESTS	1.00	140.00
85	418830	BE513731	Hs.88959	hypothetical protein MGC4816	20.97	23.00
0.1	418882	NM_004996	Hs.89433	ATP-binding cassette, sub-family C (CFTR	57.09	35.00

	W	0 02/080				
	418971	AA360392	Hs.87113	ESTs	1.00	12.00
	418973	AA233056	Hs.191518	ESTs	4.89	28.00
	419078	M93119	Hs.89584	insulinoma-associated 1	1.00	10.00
_	419079	AW014836	Hs.18844	ESTs	1.09	1.98
5	419080	AW150835	Hs.18878	hypothetical protein FLJ21620	2.06	1.68
_	419088	AI538323°	Hs.52620	integrin, beta 8	15.60	51.00
	419092	J05581	Hs.89603	mucin 1, transmembrane	1.11	1.83
	419121	AA374372	Hs.89626	parathyroid hormone-like hormone	1.00	1.00
	419171	NM_002846	Hs.89655	protein tyrosine phosphatase, receptor t	1.10	1.14
10	419183	U60669	Hs.89663	cytochrome P450, subfamily XXIV (vitamin	1.00	1.00
	419216	AU076718	Hs.164021	small inducible cytokine subfamily B (Cy	3.18	2.43
	419288	AA256106	Hs.87507	ESTs	1.00	34.00
	419335	AW960146	Hs.284137	hypothetical protein FLJ12888	1.00	8.00
		M62839	Hs.1252	apolipoprotein H (beta-2-glycoprotein I)	22.63	54.00
15	419354		Hs.90073			1.98
13	419359	AL043202		chromosome segregation 1 (yeast homolog)	2.50	
	419423	D26488	Hs.90315	KIAA0007 protein	1.00	7.00
	419443	D62703		gb:HUM316G10B Clontech human aorta polyA	1.00	12.00
	419452	U33635	Hs.90572	PTK7 protein tyrosine kinase 7	1.64	1.84
20	419474	AW968619	Hs.155849	ESTs	13.63	62.00
20	419485	AA489023	Hs.99807	ESTs, Weakly similar to unnamed protein	4.27	2.26
	419488	AA316241	Hs.90691	nucleophosmin/nucleoplasmin 3	3.66	3.63
	419502	AU076704		fibrinogen, A alpha polypeptide	13.05	115.00
	419539	AF070590	Hs.90869	Homo sapiens clones 24622 and 24623 mRNA	74.60	117.00
	419556	U29615	Hs.91093	chitinase 1 (chitotriosidase)	1.47	4.98
25	419569	AI971651	Hs.91143	- jagged 1 (Alagille syndrome)	1.00	4.00
	419594	AA013051	Hs.91417	topoisomerase (DNA) Il binding protein	94.30	94.00
	419703	AI793257	Hs.128151	ESTs	15.26	50.00
	419721	NM_001650	Hs.288650	aquaporin 4	1.00	191.00
	419729	AA586442	Hs.21411	gb:no53a03.s1 NCI_CGAP_SS1 Homo sapiens	1.00	59.00
30	419741	NM_007019	Hs.93002	ubiquitin carrier protein E2-C	2.02	1.08
50	419745	AF042001	Hs.93005	slug (chicken homolog), zinc finger prot	1.00	1.00
		AA249573	Hs.152618	ESTs, Moderately similar to ZN91_HUMAN Z	29.87	77.00
	419752	U24577			50.99	214.00
	419839	-	Hs.93304	phospholipase A2, group VII (platelet-ac	1.00	1.00
25	419936	AI792788	11- 00000	gb:ol91d05.y5 NCI_CGAP_Kid5 Homo sapiens		2.47
35	419937	AB040959	Hs.93836	DKFZP434N014 protein	1.64	
	419983	W55956	Hs.94030	Homo sapiens mRNA; cDNA DKFZp586E1624 (f	15.72	94.00
	420005	AW271106	Hs.133294	ESTs	3.15	1.43
	420047	A1478658	Hs.94631	brefeldin A-inhibited guanine nucleotide	12.45	39.00
40	420058	AK001423	Hs.94694	Homo sapiens cDNA FLJ10561 fis, clone NT	1.00	117.00
40	420162	BE378432	Hs.95577	cyclin-dependent kinase 4	1.43	1.21
	420251	AW374968	Hs.348112	Human DNA sequence from clone RP5-1103G7	2.35	3.23
	420259	AF004884	Hs.96253	calcium channel, voltage-dependent, P/Q	0.77	1.15
	420281	Al623693	Hs.323494	ESTs	45.04	54.00
	420309	AW043637	Hs.21766	ESTs, Weakly similar to ALU5_HUMAN ALU S	49.22	31.00
45	420332	NM_001756	Hs.1305	serine (or cysteine) proteinase inhibito	0.05	2.82
	420380	AA640891	Hs.102406	ESTs	0.99	2.74
	420462	AF050147 ·	Hs.97932	chondromodulin I precursor	1.00	1.00
	420520	AK001978	Hs.98510	similar to rab11-binding protein	49.74	133.00
	420552	AK000492	Hs.98806	hypothetical protein	94.65	88.00
50	420560	AW207748	Hs.59115	ESTs	1.00	17.00
	420610	A1683183	Hs.99348	distal-less homeo box 5	1.00	13.00
	420689	H79979	Hs.88678	ESTs	50.09	95.00
	420721	AA927802	Hs.159471	ZAP3 protein	1.00	31.00
	420759	T11832	Hs.127797	Homo sapiens cDNA FLJ11381 fis, clone HE	1.00	48.00
55	420783	AI659838	Hs.99923	lectin, galactoside-binding, soluble, 7	3.04	1.25
	420900	AL045633	Hs.44269	ESTs	2.24	7.00
	420931	AF044197	Hs.100431	small inducible cytokine B subfamily (Cy	1.00	8.00
	421002	AF116030	Hs.100932	transcription factor 17	1.00	27.00
		AA761198	Hs.55254	ESTs	2.87	38.00
60	421027 421037	AA701198 Al684808	Hs.197653	ESTs	1.00	46.00
00		N36914	Hs.14691	ESTs, Moderately similar to 138022 hypot	1.00	98.00
	421041 421073	NM_004689	Hs.101448	metastasis associated 1	1.34	1.46
		AJ250717	Hs.1355		119.47	427.00
	. 421110			cathepsin E	1.10	17.00
65	421133	AA401369	Hs.190721	ESTs	1.45	1.63
UJ	421150	Al913562	Hs.189902	ESTs		15.00
	421155	H87879	Hs.102267	lysyl oxidase	1.00	
	421307	BE539976	Hs.103305	Homo sapiens mRNA; cDNA DKFZp434B0425 (f	1.37	1.10
	421316	AA287203	Hs.324728	SMA5	1.00	21.00
70	421379	Y15221	Hs.103982	small Inducible cytokine subfamily B (Cy	1.92	3.94
70	421451	AA291377	Hs.50831	ESTs	5.89	14.00
	421474	U76362	Hs.104637	solute carrier family 1 (glutamate trans	1.46	1.76
	421506	BE302796	Hs.105097	thymidine kinase 1, soluble	1.56	1.08
	421508	NM_004833	Hs.105115	absent in melanoma 2	5.11	5.23
75	421515	Y11339	Hs.105352	GalNAc alpha-2, 6-sialyltransferase I, I	1.00	3.00
75	421524	AA312082	Hs.105445	GDNF family receptor alpha 1	2.63	10.58
•	421526	AL080121	Hs.105460	DKFZP564O0823 protein	1.46	1.88
	421552	AF026692	Hs.105700	secreted frizzled-related protein 4	30.21	50.32
	421574	AJ000152	Hs.105924	defensin, beta 2	1.67	1.74
00	421582	Al910275		trefoil factor 1 (breast cancer, estroge	1.23	1.00
80	421633	AF121860	Hs.106260	sorting nexin 10	1.00	116.00
	421659	NM_014459	Hs.106511	protocadherin 17	0.05	6.33
	421677	H64092	Hs.38282	ESTs	1.31	1.42
	421753	BE314828	Hs.107911	ATP-binding cassette, sub-family B (MDR/	1.41	1.20
	421773	W69233	Hs.112457	ESTs	1.12	1.14
85	421777	BE562088	Hs.108196	HSPC037 protein	1.97	1.29
	14.1111		. 10. 100 130	over protein		

	W	O 02/086				
	421800	AA298151	Hs.222969	ESTs	1.03	1.30
	421817	AF146074	Hs.108660	ATP-binding cassette, sub-family C (CFTR	1.88	1.59
	421896	N62293	Hs.45107	ESTs	11.84	22.80
_	421928	AF013758	Hs.109643	polyadenylate binding protein-Interactin	45.89	90.00
5	421931	NM_000814	Hs.1440	gamma-aminobutyric acid (GABA) A recepto	1.13	1.49
	421948	L42583	Hs.334309	keratin 6A	51.83 1.17	20.25 1.15
	421975	AW961017	Hs.6459	hypothetical protein FLJ11856 trinucleotide repeat containing 9	1.00	52.00
	422026	U80736	Hs.110826	•	67.61	62.00
10	422094	AF129535	Hs.272027	F-box only protein 5	4.37	2.34
10	422095	AI868872	Hs.282804	hypothetical protein FLJ22704 gastrin-releasing peptide	4.18	95.50
	422109	S73265	Hs.1473	gb:QV0-OT0033-010400-182-a07 OT0033 Homo	40.89	71.00
	422128 422129	AW881145	Hs.1478	serine (or cysteine) proteinase inhibito	1.13	1.38
	422129	AU076635	Hs.112110	mitochondrial ribosomal protein L42	41.59	96.00
15	422158	AW179019 L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL	2,37	1.10
15	422168	AA586894	Hs.112408	S100 calcium-binding protein A7 (psorias	3.29	1.68
	422278	AF072873	Hs.114218	frizzled (Drosophila) homolog 6	4.93	5.73
	422282	AF019225	Hs.114309	apolipoprotein L	1.49	1.71
	422283	AW411307	Hs.114311	CDC45 (cell division cycle 45, S.cerevis	25.99	10.91
20	422310	AA316622	Hs.98370	cytochrome P450, subfamily IIS, polypept	1.54	1.41
	422311	AF073515	Hs.114948	cytokine receptor-like factor 1	1.15	1.78
	422330	D30783	Hs.115263	epiregulin	1.00	112.00
	422364	AF067800	Hs.115515	C-type (calcium dependent, carbohydrate-	9.39	60.00
	422406	AF025441	Hs.116206	Opa-interacting protein 5	18.33	53.00
25	422424	AI186431	Hs.296638	prostate differentiation factor	1.71	3.21
	422440	NM_004812	Hs.116724	aldo-keto reductase family 1, member B10	47.53	32.00
	422487.	AJ010901	Hs.198267	mucin 4, tracheobronchial	73.68	35.54
	422511	AU076442	Hs.117938	collagen, type XVII, alpha 1	173.97	26.00
	422515	AW500470	Hs.117950	multifunctional polypeptide similar to S	4.68	2.92
30	422656	AI870435	Hs.1569	LIM homeobox protein 2	1.00	1.00
	422737	M26939	Hs.119571	collagen, type III, alpha 1 (Ehlers-Danl	3.89	4.55
•	422756	AA441787	Hs.119689	glycoprotein hormones, alpha polypeptide	1.05	1.46
	422765	AW409701	Hs.1578	baculoviral IAP repeat-containing 5 (sur	3.88	1.53
25	422809	AK001379	Hs.121028	hypothetical protein FLJ10549	99.56	53.00
35	422867	L32137	Hs.1584	cartilage oligomeric matrix protein (pse	1.69	3.17
	422938	NM_001809	Hs.1594	centromere protein A (17kD)	70.46	61.00
	422956	BE545072	Hs.122579	ECT2 protein (Epithelial cell transformi	77.74	3.00
	422960	AW890487	Hs.63984	cadherin 13, H-cadherin (heart)	5.88	8.55
40	422963	AA401369	Hs.190721	ESTs	171.41	17.00
40	422976	AU076657	Hs.1600	chaperonin containing TCP1, subunit 5 (e	2.12	1.62 35.00
	422981	AF026445	Hs.122752	TATA box binding protein (TBP)-associate	10.49 12.40	32.47
	422986	AA319777	Hs.221974	ESTS	16.41	60.00
	423034	AL119930	Un 100022	gb:DKFZp761A092_r1 761 (synonym: hamy2)	1.00	1.00
45	423049	X59373 AF262992	Hs.188023 Hs.123159	ESTs, Moderately similar to HXDA_HUMAN H	1.82	2.96
42	423081 423184	NM_004428	Hs.1624	sperm associated antigen 4 ephrin-A1	1.14	1.53
	423217	NM_000094	Hs.1640	collagen, type VII, alpha 1 (epidermolys	2.14	1.69
	423248	AA380177	Hs.125845	ribulose-5-phosphate-3-epimerase	7.18	14.00
	423309	BE006775	Hs.126782	sushi-repeat protein	21.90	64.00
50	423361	AW170055	Hs.47628	ESTs	1.00	1.00
•	423453	AW450737	Hs.128791	CGI-09 protein	55.52	66.00
	423511	AF036329	Hs.129715	gonadotropin-releasing hormone 2	0.88	1.17
	423516	AB007933	Hs.129729	ligand of neuronal nitric oxide synthase	1.76	5.40
	423551	AA327598	Hs.233785	ESTs	3.54	4.33
55	423554	M90516	Hs.1674	glutamine-fructose-6-phosphate transamin	1.00	50.00
	423575	C18863	Hs.163443	Homo sapiens cDNA FLJ11576 fis, clone HE	38.88	70.00
	423624	A1807408	Hs.166368	EST\$	1.00	67.00
	423634	AW959908	Hs.1690	heparin-binding growth factor binding pr	76.02	1.00
~ 0	423642	AW452650	Hs.157148	hypothetical protein MGC13204	19.14	58.00
60	423662	AA642452	Hs.130881	B-cell CLL/lymphoma 11A (zinc finger pro	3.61	13.57
	423673	BE003054	Hs.1695	matrix metalloproteinase 12 (macrophage	240.73	40.00
	423698	AA329796	Hs.1098	DKFZp434J1813 protein	1.00	59.00
	423725	AJ403108	Hs.132127	hypothetical protein LOC57822	4.20	1.00
65	423761	NM_006194	Hs.132576	paired box gene 9	1.00 7.18	1.00 6.64
05	423787	AJ295745	Hs.236204	nuclear pore complex protein	1.00	44.00
	423816 423826	AF151064 U20325	Un 1707	hypothetical protein	1.00	1.00
	423849	AL157425	Hs.1707 Hs.133315	cocaine- and amphelamine-regulated trans Homo sapiens mRNA; cDNA DKFZp761J1324 (f	1.00	1.00
	423887	AL080207	Hs.134585	DKFZP434G232 protein	1.00	1.00
70	423934	U89995	Hs.159234	forkhead box E1 (thyroid transcription f	31.33	31.00
, 0	423954	AW753164	Hs.288604	KIAA1632 protein	5.81	10.87
	423961	D13666	Hs.136348	osteoblast specific factor 2 (fasciclin	3.55	3.30
	424012	AW368377	Hs.137569	tumor protein 63 kDa with strong homolog	233.42	68.00
	424016	AW163729	Hs.6140	hypothetical protein MGC15730	0.93	1.01
75	424028	AF055084	Hs.153692	Homo sapiens cDNA FLJ14354 fis, clone Y7	21.30	52.00
	424046	AF027866	Hs.138202	serine (or cysteine) proteinase inhibito	1.00	1.00
	424086	AI351010	Hs.102267	lysyl oxidase	21.91	70.00
	424098	AF077374	Hs.139322	small proline-rich prolein 3	137.82	54.00
6.0	424120	T80579	Hs.290270	ESTs	1.00	1.00
80	424165	AW582904	Hs.142255	islet amyloid polypeptide	1.00	34.00
	424200	AA337221		gb:EST41944 Endometrial tumor Homo sapie	13.06	48.00
	424279	L29306	Hs.171814	tryptophan hydroxylase (tryptophan 5-mon	1.00	1.00
	424308	AW975531	Hs.154443	minichromosome maintenance deficient (S.	164.58	87.00
05	424326	NM_014479	Hs.145296	disintegrin protease	53.72	302.00
85	424340	AA339036	Hs.7033	ESTs	0.88	1.15

	W	O 02/086	443			
	424351	BE622117	Hs.145567	hypothetical protein	0.93	1.03
	424364	AW383226	Hs.201189	ESTs, Weakly similar to G01763 atrophin-	7.02	3.24
	424381	AA285249	Hs.146329	protein kinase Chk2	95.55	92.00
5	424411	NM_005209 BE614743	Hs.146549 Hs.146688	crystallin, beta A2 prostaglandin E synthase	1.63	3.25
J	424420 424441	X14850	Hs.147097	H2A histone family, member X	1.63 1.82	1.33 1.29
	424502	AF242388	Hs.149585	lengsin	1.02	1.00
	424503	X06256	Hs.149609	integrin, alpha 5 (fibronectin receptor,	1.02	2.24
	424513	BE385864	Hs.149894	mitochondrial translational initiation f	1.00	17.00
10	424539	L02911	Hs.150402	Activin A receptor, type I (ACVR1) (ALK	32.46	108.00
	424568	AF005418	Hs.150595	cytochrome P450, subfamily XXVIA, polype	3.40	2.58
	424602	AK002055	Hs.151046	hypothetical protein FLJ11193	31.87	25.00
	424629	M90656	Hs.151393	glutamate-cysteine ligase, catalytic sub	3.58	2.37
1 ~	424645	NM_014682	Hs.151449	KIAA0535 gene product	1.00	1.00
15	424687	J05070	Hs.151738	matrix metalloproteinase 9 (gelatinase B .	2.12	2.23
	424717	AW992292	Hs.152213	wingless-type MMTV integration site fami	1.00	1.00
	424834	AK001432	Hs.153408	Homo sapiens cDNA FLJ10570 fis, clone NT	56.19	12.00
	424840	D79987	Hs.153479	extra spindle poles, S. cerevisiae, homo	2.65	1.30
20	424867	AI024860	Hs.153591	Not56 (D. melanogaster)-like protein	1.23	1.05
20	424905	NM_002497	Hs.153704	NIMA (never in mitosis gene a)-related k	21.35	1.00
	424979	D87989	Hs.154073	UDP-galactose transporter related	1.36	1.35 1.41
	424999 425048	AW953120 H05468	Hs.164502	gb:EST365190 MAGE resequences, MAGB Homo ESTs	1.24 1.00	11.00
	425057	AA826434	Hs.1619	achaete-scute complex (Drosophila) homol	7.46	87.00
25	425037	X74794	Hs.154443	minichromosome maintenance deficient (S.	2.52	3.82
25	425118	AU076611	Hs.154672	methylene tetrahydrofolate dehydrogenase	4.84	4.03
	425159	NM_004341	Hs.154868	carbamoyl-phosphate synthetase 2, aspart	3.62	2.73
	425202	AW962282	Hs.152049	ESTs, Weakly similar to 138022 hypotheti	1.00	53.00
	425234	AW152225	Hs.165909	ESTs, Weakly similar to 138022 hypotheti	100.77	44.00
30	425236	AW067800	Hs.155223	stanniocalcin 2	3.30	2.90
	425245	AI751768	Hs.155314	KIAA0095 gene product	1.91	2.32
	425247	NM_005940	Hs.155324	matrix metalloproteinase 11 (stromelysin	1.41	1.49
	425266	J00077	Hs.155421	alpha-fetoprotein	1.00	68.00
25	425274	BE281191	Hs.155462	minichromosome maintenance deficient (mi	1.97	1.63
35	425322	U63630	Hs.155637	protein kinase, DNA-activated, catalytic	141.49	123.00
	425349	AA425234	Hs.79886	ribose 5-phosphale isomerase A (ribose 5	1.00	84.00
	425371	D49441	Hs.155981	mesothelin	0.87	1.59
•	425397 425420	J04088	Hs.156346 Hs.234545	topoisomerase (DNA) II alpha (170kD) hypothetical protein NUF2R	14.90 1.00	5.76 1.00
40	425420 425424	BE536911 NM_004954	Hs.157199	ELKL motif kinase	10.58	9.74
70	425483	AF231022	Hs.158159	FAT tumor suppressor (Drosophila) homolo	1.74	1.40
	425566	AW162943	Hs.250618	UL16 binding protein 2	1.49	1.14
	425580	L11144	Hs.1907	galanin	53.29	233.00
	425650	NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris antigen	33.45	1.00
45	425692	D90041	Hs.155956	N-acetyltransferase 1 (arylamine N-acety	1.00	55.00
	425695	NM_005401	Hs.159238	protein tyrosine phosphatase, non-recept	1.00	10.00
	425734	AF056209	Hs.159396	peptidylglycine alpha-amidating monooxyg	1.00	41.00
	425776	U25128	Hs.159499	parathyroid hormone receptor 2	1.00	48.00
50	425810	AI923627	Hs.31903	ESTs	27.39	98.00
50	425811	AL039104	Hs.159557	karyopherin alpha 2 (RAG cohort 1, impor	1.99	1.58
	425849	A1077288	Hs.296323	serum/glucocorticoid regulated kinase	71.16	3.42
	425852		Hs.159651 Hs.190721	death receptor 6, TNF superfamily member	1.35	1.34 17.00
	426067 426088	AA401369		ESTs ATPase, Class I, type 8B, member 1	1.01 26.26	47.00
55	426215	AF038007 AW067800	Hs.166196 Hs.155223	stanniocalcin 2	1.91	2.90
00	426227	U67058	Hs.154299	Human proteinase activated receptor-2 mR	22.40	25.00
	426269	H15302	Hs.168950	Homo sapiens mRNA; cDNA DKFZp566A1046 (f	1.00	1.00
	426283	NM_003937	Hs.169139	kynureninase (L-kynurenine hydrolase)	91.39	229.00
	426329	AL389951	Hs.271623	nucleoporin 50kD	4.34	4.08
60	426427	M86699	Hs.169840	TTK protein kinase	7.02	1.00
	426432	AF001601	Hs.169857	paraoxonase 2	1.16	1.68
	426440	BE382756	Hs.169902	solute carrier family 2 (facilitated glu	2.59	1.71
	426459	AF151812	Hs.169992	hypothetical 43.2 Kd protein	1.56	1.66
65	426471	M22440	Hs.170009	transforming growth factor, alpha	20.60 9.81	26.00
05	426496 426501	D31765 AA401369	Hs.170114	KIAA0061 protein	19.23	22.00 17.00
	426514	BE616633	Hs.190721 Hs.170195	ESTs bone morphogenetic protein 7 (osteogenic	103.74	41.00
	426536	A1949749	Hs.44441	ESTs	4.65	23.00
	426572	AB037783	Hs.170623	hypothetical protein FLJ11183	1.00	43.00
70	426682	AV660038	Hs.2056	UDP glycosyltransferase 1 family, polype	160.06	8.00
	426691	NM_006201	Hs.171834	PCTAIRE protein kinase 1	1.51	1.35
	426746	J03626	Hs.2057	uridine monophosphate synthetase (orotat	2.13	1.68
	426752	X69490	Hs.172004	titin	0.02	5.14
~~	426784	U03749	Hs.172216	chromogranin A (parathyroid secretory pr	1.72	1.71
75	426807	AA385315	Hs.156682	ESTs	1.30	1.64
	426812	AF105365	Hs.172613	solute carrier family 12 (potassium/chlo	1.47	1.53
	426814	AF036943	Hs.172619	myelin transcription factor 1-like	1.00	1.00
	426831	BE296216	Hs.172673	S-adenosylhomocysteine hydrolase	1.51	1.25
QΛ	426897	AA401369	Hs.190721	ESTs	141.56	17.00
80	426925	NM_001196	Hs.315689	Homo sapiens cDNA: FLJ22373 fis, clone H	32.61	38.00
	426935	NM_000088	Hs.172928	collagen, type I, alpha 1	2.65	3.16
	426964 426966	AA393739 Al493134	Hs.287416	Homo sapiens cDNA FLJ11439 fis, clone HE sclerostin	1.97 1.00	3.49 1.00
	426991	AK001536		Homo sapiens cDNA FLJ10674 fis, clone NT	3.39	2.28
85	427099	AB032953	Hs.173560	odd Oz/ten-m homolog 2 (Drosophila, mous	4.24	17.00
J.	121000		1 10. 1 1 3300	The Section in Indianal E fortabalities image	****T	

	w	O 02/086	443			
	427239	BE270447	Hs.174070	ubiquitin carrier protein	1.58	1.05
	427260	AA663848		gb:ae70b06.s1 Stratagene schizo brain S1	1.34	1.60
	427281	AA906147	Hs.102869	ESTs	1.00 51.83	66.00 4.00
5	427335 427354	AA448542 T57896	Hs.251677 Hs.191095	G antigen 7B ESTs	1.17	1.95
_	427356	AW023482	Hs.97849	ESTs	7.31	41.00
	427376	AA401533	Hs.19440	ESTs	1.00	57.00
	427383	NM_005411	Hs.177582	surfactant, pulmonary-associated protein	0.42	1.32
10	427427 427441	AF077345 AA412605	Hs.177936 Hs.343879	lectin, superfamily member 1 (cartilage- SPANX family, member C	1.00 1.00	20.00 1.00
10	427445	X80818	Hs.178078	glutamate receptor, metabotropic 4	0.97	1.03
	427505	AA361562	Hs.178761	26S proteasome-associated pad1 homolog	4.60	4.04
	427510	Z47542	Hs.179312	small nuclear RNA activating complex, po	22.00	45.00
15	427528	AU077143	Hs.179565	minichromosome maintenance deficient (S.	97.45	92.00 3.24
13	427546 427562	AA188763 R56424	Hs.36793 Hs.26534	hypothetical protein FLJ23188 ESTs	1.50 6.81	40.00
	427585	D31152	Hs.179729	collagen, type X, alpha 1 (Schmid metaph	69.91	62.00
	427660	Al741320	Hs.114121	Homo sapiens cDNA: FLJ23228 fis, clone C	2.70	49.00
20	427686	A)791495	Hs.180142	calmodulin-like skin protein	1.37	1.88
20	427668	AA298760	Hs.180191	hypothetical protein FLJ14904	29.55 3.52	67.00 2.63
	427677 427701	NM_007045 AA411101	Hs.180296 Hs.243886	FGFR1 oncogene partner nuclear autoantigenic sperm protein (his	7.41	34.00
	427711	M31659	Hs.180408	solute carrier family 25 (mitochondrial	15.84	70.00
25	427719	Al393122	Hs.134726	ESTs	7.03	4.52
25	427722	AK000123	Hs.180479	hypothetical protein FLJ20116	2.92	1.74
	427747 427912	AW411425 AL022310	Hs.180655 Hs.181097	serine/threonine kinase 12 tumor necrosis factor (ligand) superfamt	1.76 9.63	1.26 59.00
	427961	ALU22310 AW293165	Hs.143134	ESTs	41.97	118.00
	428004	AA449563	Hs.151393	glutamate-cysteine ligase, catalytic sub	23.82	1.00
30	428023	AL038843		Homo sapiens cDNA: FLJ23602 fis, clone L	1.40	1.33
	428046	AW812795	Hs.337534	ESTs, Moderately similar to I38022 hypot	96.28	167.00
	428093 428098	AW594506 AU077258	Hs.104830 Hs.182429	ESTs protein disulfide isomerase-related prot	1.25 1.86	1.29 1.60
	428129	AI244311	Hs.26912	ESTs	1.00	42.00
35	428169	A1928984	Hs.182793	golgi phosphoprotein 2	2.76	2.11
	428182	BE386042	Hs.293317	ESTs, Weakly similar to GGC1_HUMAN G ANT	1.00	1.00
	428227	AA321649 H55709	Hs.2248 Hs.2250	small inducible cytokine subfamily B (Cy leukemia inhibitory factor (cholinergic	85.59 8.57	181.00 21.64
	428330	L22524	Hs.2256	matrix metalloproteinase 7 (matrilysin,	7.77	15.90
40	428434	A1909935	Hs.65551	Homo sapiens, Similar to DNA segment, Ch	0.58	1.43
	428450	NM_014791	Hs.184339	KIAA0175 gene product	237.53	204.00
	428471	X57348	Hs.184510	stratifin	6.00 56.54	4.60 16.00
	428479 428484	Y00272 AF104032	Hs.334562 Hs.184601	cell division cycle 2, G1 to S and G2 to solute carrier family 7 (cationic amino	3.53	2.15
45	428505	AL035461	Hs.2281	chromogranin B (secretogranin 1)	1.00	1.00
	428532	AF157326	Hs.184786	TBP-interacting protein	1.00	58.00
	428645	AA431400	Hs.98729	ESTs, Weakly similar to 2017205A dihydro	1.00	16.00
	428664 428698	AK001666 AA852773	Hs.189095 Hs.334838	similar to SALL1 (sal (Drosophila)-like KIAA1866 protein	1.00 187.37	1.00 255.00
50	428728	NM_016625	Hs.191381	hypothetical protein	47.24	80.00
	428748	AW593206	Hs.98785	Ksp37 protein	1.00	87.00
	428758	AA433988	Hs.98502	hypothetical protein FLJ14303	1.06	1.13
	428771	AB028992 AW277121	Hs.193143 Hs.254881	KIAA1069 protein ESTs	1.98 1.67	92.00 6.15
55	428801 428810	AF068236	Hs.193788	nitric oxide synthase 2A (inducible, hep	1.03	1.27
••	428839	Al767756	Hs.82302	Homo sapiens cDNA FLJ14814 fis, clone NT	124.17	43.00
	428845	AL157579	Hs.153610	KIAA0751 gene product	1.00	1.00
	428959	AF100779	Hs.194680	WNT1 inducible signaling pathway protein	15.16 1.36	27.00 1.24
60	428969 429038	AF120274 AL023513	Hs.194689 Hs.194766	artemin seizure related gene 6 (mouse)-like	0.97	3.31
00	429065	AI753247	Hs.29643	Homo sapiens cDNA FLJ13103 fis, clone NT	6.82	16.47
	429164	AI688663	Hs.116586	ESTs	19.08	67.00
	429170	NM_001394	Hs.2359	dual specificity phosphatase 4	16.18	105.00
65	429183 429201	AB014604 X03178	Hs.197955 Hs.198246	KIAA0704 protein group-specific component (vitamin D bind	79.72 1.00	104.00 1.00
00	429211	AF052693	Hs.198249	gap junction protein, beta 5 (connexin 3	1.33	1.09
	429220	AW207206		ESTs	1.00	7.00
	429228	AI553633	Hs.326447	ESTs	39.47	29.25
70	429259 429263	AA420450 AA019004	Hs.292911 Hs.198396	ESTs, Highly similar to S60712 band-6-pr ATP-binding cassette, sub-family A (ABC1	2.01 1.07	1.18 1.00
70	429276	AF056085	Hs.198612	G protein-coupled receptor 51	3.70	142.00
	429359	W00482	Hs.2399	matrix metalloproteinase 14 (membrane-in	1.30	1.94
	429412	NM_006235	Hs.2407	POU domain, class 2, associating factor	94.09	86.00
75	429413	NM_014058	Hs.201877	DESC1 protein	41.91	10.00
, 5	429486 429504	AF155827 X99133	Hs.203963 Hs.204238	hypothetical protein FLJ10339 lipocalin 2 (oncogene 24p3)	12.19 1.61	1.00 1.08
	429538	BE182592	Hs.11261	small proline-rich protein 2A	4.43	2.90
	429547	AA401369	Hs.190721	ESTs	1.06	17.00
90	429551	AW450624	Hs.220931	ESTs	2.89	65.00
80	429563	BE619413	Hs.2437	eukaryotic translation initiation factor	1.49	1.37 100.00
	429597 429610	NM_003816 AB024937	Hs.2442 Hs.211092	a disintegrin and metalloproteinase doma LUNX protein; PLUNC (palate lung and nas	61.86 1.59	1.69
	429612	AF062649	Hs.252587	pituitary tumor-transforming 1	2.78	1.74
05	429616	A1982722	Hs.120845	ESTs	1.00	1.00
85	429656	X05608	Hs.211584	neurofilament, light polypeptide (68kD)	1.00	4.00

	w	O 02/086	443			
	429663	M68874	Hs.211587	phospholipase A2, group IVA (cytosolic,	69.95	104.00
	429736	AF125304	Hs.212680	tumor necrosis factor receptor superfamil	1.25	1.21
	429782	NM_005754	Hs.220689	Ras-GTPase-activating protein SH3-domain	1.00	7.00
_	429903	AL134197	Hs.93597	cyclin-dependent kinase 5, regulatory su	11.80 .	1.00
5	429918	AW873986	Hs.119383	ESTs	1.00	78.00
	429978	AA249027		ribosomal protein S6	1.98	3.09
	429986	AF092047	Hs.227277	sine oculis homeobox (Drosophila) homolo ESTs	1.00 69.27	48.00 59.00
	430044 430114	AA464510 AA847744	Hs.152812 Hs.99640	ESTs	1.00	1.00
10	430134	BE380149	Hs.105223	ESTs, Weakly similar to T33188 hypotheti	1.00	51.00
10	430147	R60704	Hs.234434	hairy/enhancer-of-split related with YRP	1.10	2.22
	430287	AW182459	Hs.125759	ESTs, Weakly similar to LEU5_HUMAN LEUKE	1.00	127.00
	430294	AI538226	Hs.32976	guanine nucleotide binding protein 4	3.80	1.47
1.5	430300	U60805	Hs.238648	oncostatin M receptor	1.00	35.00
15	430315	NM_004293	Hs.239147	guanine deaminase	92.31	28.00
	430337	M36707	Hs.239600	calmodulin-like 3	1.18	1.08
	430378	Z29572	Hs.2556	tumor necrosis factor receptor superfami nuclear cap binding protein subunit 2, 2	5.28 16.76	66.00 38.00
	430388 430393	AA356923 BE185030	Hs.240770 Hs.241305	estrogen-responsive B box protein	1.63	1.50
20	430439	AL133561	H3.24 1303	DKFZP434B061 protein	1.00	1.00
	430451	AA836472	Hs.297939	cathepsin B	1.64	2.12
	430454	AW469011	Hs.105635	ESTs	63.35	44.00
	430466	AF052573	Hs.241517	polymerase (DNA directed), theta	2.47	1.91
0.5	430481	AA479678	Hs.203269	ESTs, Moderately similar to ALU8_HUMAN A	1.00	31.00
25	430486	BE062109	Hs.241551	chloride channel, calcium activated, fam	12.28	41.00
	430508	AI015435	Hs.104637	ESTs	4.75 1.00	7.27 1.00
	430533	AA480895	Hs.57749	ESTs, Weakly similar to T17288 hypotheti ATP-binding cassette, sub-family C (CFTR	1.00	1.59
	430563 430677	AF146074 Z26317	Hs.108660 Hs.94560	desmoglein 2	1.72	1.30
30	430678	AA401369	Hs.190721	ESTs	0.90	17.00
•	430686	NM_001942	Hs.2633	desmoglein 1	1.00	1.00
	430788	Al742925	Hs.7179	ESTs, Weakly similar to 2004399A chromos	1.62	1.84
	430890	X54232	Hs.2699	glypican 1	1.58	1.40
35	430935	AW072916	Hs.27323	zinc finger protein 131 (clone pHZ-10) ESTs, Weakly similar to i78885 serine/th	90.28 0.94	132.00 1.28
33	430985 431009	AA490232 BE149762	Hs.48956	gap junction protein, beta 6 (connexin 3	60.25	28.00
	431089	BE041395	110.40000	ESTs, Weakly similar to unknown protein	23.32	941.00
	431092	Al332764	Hs.125757	ESTs	13.46	63.00
40	431124	AF284221	Hs.59506	doublesex and mab-3 related transcriptio	49.43	62.00
40	431164	AA493650	Hs.94367	Homo sapiens cDNA: FLJ23494 fis, clone L	0.44	2.20
	431211	M86849	Hs.323733	gap junction protein, beta 2, 26kD (conn	182.26 4.15	101.00 13,97
	431221 431277	AW207837 AA501806	Hs.286145 Hs.345824	SRB7 (suppressor of RNA polymerase B, ye ESTs	1.00	86.00
	431322	AW970622	16.040024	gb:EST382704 MAGE resequences, MAGK Homo	40.55	200.00
45	431342	AW971018	Hs.21659	ESTs	1.00	53.00
	431384	BE158000	Hs.285026	gb:MR2-HT0377-150200-202-e03 HT0377 Homo	0.94	1.14
	431462	AW583672	Hs.256311	granin-like neuroendocrine peptide precu	1.30	1.25
	431494	AA991355	Hs.298312	hypothetical protein DKFZp434A1315	3.90 1.41	26.00 1.87
50	431515 431548	NM_012152 AIB34273	Hs.258583 Hs.9711	endothelial differentiation, lysophospha novel protein	5.66	15.00
30	431630	NM_002204	Hs.265829	integrin, alpha 3 (antigen CD49C, alpha	0.99	1.44
	431745	AW972448	Hs.163425	ESTs	0.99	3.51
	431770	BE221880	Hs.268555	5'-3' exoribonuclease 2	67.12	91.00
~~	431830	Y16645	Hs.271387	small inducible cytokine subfamily A (Cy	3.36	4.71
55	431846	BE019924	Hs.271580	uroplakin 1B	4.49	2.51
	431890	X17033	Hs.271986	integrin, alpha 2 (CD49B, alpha 2 subuni	2.20 1.01	3.32 1.04
	431934	AB031481	Hs.272214	STG protein cadherin (placenta	51.17	46.35
	431958 432006	X63629 AL137382	Hs.2877 Hs.272320	Homo sapiens mRNA; cDNA DKFZp434L1226 (f	0.94	1.65
60	432023	R43020	Hs.236223	EST	0.94	47.00
	432201	Al538613	Hs.298241	Transmembrane protease, serine 3	1.10	2,24
	432210	Al567421	Hs.273330	Homo sapiens, clone IMAGE:3544662, mRNA,	1.42	1.45
	432226	AW182766	Hs.273558	phosphate cytidylyltransferase 1, cholin	1.00	1.00
65	432239	X81334	Hs.2936	matrix metalloproteinase 13 (collagenase	18.67 1.09	1.00 1.21
05	432265 432281	BE382679 AK001239	Hs.285753 Hs.274263	SCG10-like-protein hypothetical protein FLJ10377	40.98	58.00
	432365	AK001106	Hs.274419	hypothetical protein FLJ10244	1.00	214.00
	432374	W68815	Hs.301885	Homo sapiens cDNA FLJ11346 fis, clone PL	157.34	37.00
70	432375	BE536069	Hs.2962	S100 calcium-binding protein P	1.65	1.06
70	432407	AA221036		gb:zr03f12.r1 Stratagene NT2 neuronal pr	73.71	75.00
	432441	AW292425	Hs.163484	ESTs	56.35 1.00	72,00 24.00
	432489 432543	A1804855 AA552690	Hs.207530 Hs.152423	ESTs Homo sapiens cDNA: FLJ21274 fis, clone C	137.72	98.00
	432552	A1537170	Hs.173725	ESTs, Weakly similar to ALU8_HUMAN ALU S	1.00	31.00
75	432583	AW023624	Hs.162282	potassium channel TASK-4; potassium chan	0.27	35.18
	432606	NM_002104	Hs.3066	granzyme K (serine protease, granzyme 3;	2.87	6.22
	432625	A1243596	Hs.94830	ESTs, Moderately similar to T03094 A-kin	26.63	56.00
	432653	N62096	Hs.293185	ESTs, Weakly similar to JC7328 amino aci	1.92 1.00	5.29 48.00
80	432677 432715	NM_004482 AA247152	Hs.278611 Hs.200483	UDP-N-acetyl-alpha-D-galactosamine:polyp ESTs, Weakly similar to KIAA1074 protein	45.13	31.00
	432753	NM_014075	Hs.336938	Homo sapiens PRO0593 mRNA, complete cds	1.00	68.00
	432788	AA521091	Hs.178499	Homo sapiens cDNA: FLJ23117 fis, clone L	2.69	3.67
	432842	AW674093	Hs.334822	hypothetical protein MGC4485	1.22	1.34
85	432867	AW016936	Hs.233364	ESTs	1.00 10.25	1.00 6.62
ری	432917	NM_014125	Hs.241517	PRO0327 protein	10.23	0.02

	w	O 02/0864	143			
		U37689	Hs.3128	polymerase (RNA) II (DNA directed) polyp	1.44	1.30
	433001	AF217513	Hs.279905	clone HQ0310 PRO0310p1	154.79	85.64
		AW864793	Hs.87409	thrombospondin 1	20.96	100.00
5		AW193534	Hs.281895 Hs.3185	Homo sapiens cDNA FLJ11660 fis, clone HE lymphocyte antigen 6 complex, locus D	1.00 1.20	10.00 1.09
3	433091 433159	Y12642 AB035898	Hs.150587	kinesin-like protein 2	13.82	39.00
	433183	AF231338	Hs.222024	transcription factor BMAL2	1.00	69.00
	433258	AA622788	Hs.203613	ESTs, Weakly similar to ALUB_HUMAN !!!!	1.00	1.25
4.0	433409	AJ278802	Hs.25661	ESTs	44.81	117.00
10	433437	U20536	Hs.3280	caspase 6, apoptosis-related cysteine pr	70.39	105.00
	433485	A1493076	Hs.201967	aldo-keto reductase family 1, member C2	11.55	2.00
	433537	Al733692	Hs.112488 Hs.303023	ESTs beta tubulin 1, class VI	8.66 25.16	55.00 83.00
	433547 433556	W04978 W56321	Hs.111460	calcium/calmodulin-dependent protein kin	1.00	19.00
15	433647	AA603367	Hs.222294	ESTs	20.30	49.00
10	433658	L03678	Hs.156110	immunoglobulin kappa constant	5.92	10.03
	433800	AI094221	Hs.135150	lung type-I cell membrane-associated gly	2.29	2.22
	433819	AW511097	Hs.112765	ESTs	3.71	8.00
20	433862	D86960	Hs.3610	KIAA0205 gene product	62.08	104.00 47.00
20	433980	AA137152	Hs.286049 Hs.249270	phosphoserine aminotransferase hypothetical protein PRO1966	108.91 1.00	1.00
	434088 434094	AF116677 AA305599	Hs.238205	hypothetical protein PRO2013	121.27	87.00
	434105	AW952124	Hs.13094	presenifins associated rhomboid-like pro	1.22	1.23
	434217	AW014795	Hs.23349	ESTs	14.11	57.00
25	434340	Al193043	Hs.128685	ESTs, Weakly similar to T17226 hypotheti	2.10	2.56
	434360	AA401369	Hs.190721	ESTs	40.98	17.00
	434414	A1798376	11- 22525	gb:tr34b07.x1 NCI_CGAP_0v23 Homo sapiens Homo sapiens cDNA: FLJ23523 fis, clone L	1.48 1.00	1.56 64.00
	434424 434467	A1811202 BE552368	Hs.325335 Hs.231853	Homo sapiens CDNA FLJ13445 fis, clone PL	54.91	85.00
30	434551	BE387162	Hs.280858	ESTs, Highly similar to A35661 DNA excis	2.46	2.00
50	434627	Al221894	Hs.39311	ESTs	1.00	1.00
	434699	AA643687	Hs.149425	Homo sapiens cDNA FLJ11980 fis, clone HE	1.00	23.00
		AA648884	Hs.134278	Homo sapiens cDNA FLJ12676 fis, clone NT	7.08	56.00
25	434792	AA649253	Hs.132458	ESTS	8.52 11.33	44.00 1.00
35	434808	AF155108	Hs.256150	Homo sapiens, Similar to RIKEN cDNA 2810 phorbol-12-myristate-13-acetate-induced	1.00	1.00
	434828 434876	D90070 AF160477	Hs.96 Hs.61460	Ig superfamily receptor LNIR	1.25	1.29
	434891	AA814309	Hs.123583	ESTs	1.00	6.00
	434928	AW015595	Hs.4267	Homo sapiens clones 24714 and 24715 mRNA	1.00	1.00
40	435013	H91923	Hs.110024	Target CAT	1.26	1.10
	435066	BE261750	Hs.4747	dyskeratosis congenita 1, dyskerin	1.69	1.37
	435087	AW975241	Hs.23567	ESTs flap structure-specific endonuclease 1	1.00 2.90	1.00 1.93
	435099 435159	AC004770 AA668879	Hs.4756 Hs.116649	ESTs	1.00	1.00
45	435205	X54136	Hs.181125	immunoglobulin lambda tocus	1.02	1.46
	435232	NM_001262	Hs.4854	cyclin-dependent kinase inhibitor 2C (p1	2.04	2.70
	435304	H10709	Hs.269524	ESTs	27.58	139.00
	435313	AI769400	Hs.189729	ESTs	1.00	14.00
50	435505		Hs.211238	interleukin-1 homolog 1	1.00 1.00	38.00 1.00
30	435525	AJ458679 AJ831297	Hs.181915 Hs.123310	ESTs ESTs	1.00	56.00
	435532	AW291488	Hs.117305	Homo sapiens, clone IMAGE:3682908, mRNA	1.00	2.00
		Al224456	Hs.324507	H.sapiens polyA site DNA	3.42	3.92
		AF217515	Hs.283532	uncharacterized bone marrow protein BM03	3.95	1.80
55		R11673	Hs.186498	ESTs	1.00	28.00
	435793		Hs.4993	KIAA1313 protein	23.68 1.00	42.00 58.00
	436069		Hs.263209 Hs.14529	ESTs ESTs	1.00	18.00
	436170 436211	AW450381 AK001581	Hs.334828	hypothetical protein FLJ10719; KIAA1794	5.84	22.00
60	436213		Hs.71472	hypothetical protein FLJ10774; KIAA1709	1.42	1.27
	436217		Hs.107	fibrinogen-like 1	57.97	31.00
	436238		Hs.301724	hypothetical protein FLJ11301	2.51	1.71
	436251	BE515065	Hs.296585	nucleolar protein (KKE/D repeat) protein regulator of cytokinesis 1	2.33 108.99	1.64 52.00
65	436291 436302	BE568452 AL355841	Hs.344037 Hs.99330	hypothetical protein FLJ23588	0.75	2.81
05	436396		Hs.152213	wingless-type MMTV integration site fami	- 60.01	1.00
	436414		Hs.143638	WD repeat domain 4	2.50	2.19
	436419		Hs.171356	ESTs	0.95	1.33
70	436443		Hs.128746	ESTs	1.12	9.26
70	436474		Hs.199887	ESTs	1.00 3.28	1.00 1.56
	436481	AA379597	Hs.5199 Hs.120633	HSPC150 protein similar to ubiquilin-con ESTs	1.00	19.00
	436486 436511		Hs.291502	ESTS	16.76	14.00
	436553	X57809	Hs.181125	immunoqlobulin lambda locus	1.08	1.74
75	436557	W15573	Hs.5027	ESTs, Weakly similar to A47582 B-cell gr	19.20	9.75
	436608	AA628980		down syndrome critical region protein DS	33.92	25.00
	436667		Hs.127680	ESTs	0.89	1.19
	436771	AW975687	Hs.292979	ESTs ESTo	1.00 1.00	10.00 17.00
80	436839 436887		Hs.190721 Hs.193235	ESTs hypothetical protein DKFZp547D155	1.06	1.15
55	436944		Hs.5840	ESTs	1.00	1.00
	436961	AW375974	Hs.156704	ESTs	25.13	25.00
	436972		Hs.25640	claudin 3	1.59	1.46
85	437016		Hs.5398	guanine monphosphate synthelase	2.35	1.78
ره	437044	AL035864	Hs.69517	cDNA for differentially expressed CO16 g	1.34	1.13

	w	O 02/086	443			
	437181	Al306615	Hs.125343	ESTs, Weakly similar to KIAA0758 protein	1.00	17.00
	437204	AL110216	Hs.22826	ESTs, Weakly similar to 155214 salivary	40.55	82.00
	437205	AL110232	Hs.279243	Homo sapiens mRNA; cDNA DKFZp564D2071 (f	1.00	112.00
5	437259	Al377755	Hs.120695	ESTs cisplatin resistance related protein CRR	1.00 1.56	205.00 1.54
3	437270 437271	R18087 AL137445	Hs.323769 Hs.28846	Homo sapiens mRNA; cDNA DKFZp566O134 (fr	113.25	125.00
	437370	AL359567	Hs.161962	Homo sapiens mRNA; cDNA DKFZp547D023 (fr	1.82	4.57
	437390	Al125859	Hs.112607	ESTs	1.35	1.75
	437412	BE069288	Hs.34744	Homo sapiens mRNA; cDNA DKFZp547C136 (fr	3.58	3.20
10	437435	Al306152	Hs.27027	hypothetical protein DKFZp762H1311	3.03	1.08
	437444	H46008	Hs.31518	ESTs	1.00 1.00	39.00 19.00
	437568	Al954795 D63880	Hs.156135 Hs.5719	ESTs chromosome condensation-related SMC-asso	1.95	1.57
	437623 437789	Al581344	Hs.127812	ESTs. Weakly similar to T17330 hypotheti	1.00	3.00
15	437814	A)088192	Hs.135474	ESTs, Weakly similar to DDX9_HUMAN ATP-D	1.00	45.00
	437840	AA884836	Hs.292014	ESTs	1.07	1.78
	437852	BE001836	Hs.256897	ESTs, Weakly similar to dJ365O12.1 [H.sa	1.68	3.26
	437879	BE262082	Hs.5894	hypothetical protein FLJ10305	1.87	2.52
20	437915	Al637993	Hs.202312	Homo sapiens clone N11 NTera2D1 teratoca hypothetical protein FLJ23142	74.05 23.15	35.00 89.00
20	437916 437937	BE566249 Al917222	Hs.20999 Hs.121655	ESTs	1.00	1.00
	437942	Al888256	Hs.307526	ESTs :	12.28	31.00
	438091	AW373062		nuclear receptor subfamily 1, group 1, m	1.53	10.85
0.5	438113	AJ467908	Hs.8882	ESTs	1.80	2.39
25	438119	AW963217	Hs.203961	ESTs, Moderately similar to AF116721 89	22.67	36.90
	438274	A1918906	Hs.55080	ESTs	1.00 38.92	1.00 38.00
	438378 438403	AW970529 AA806607	Hs.86434 Hs.292206	hypothetical protein FLJ21816 ESTs	1.00	1.00
	438494	AA908678	Hs.130183	ESTs	2.05	80.00
30	438546	AW297204	Hs.125811	ESTs	1.00	131.00
	438552	AJ245820	Hs.6314	type I transmembrane receptor (seizure-r	1.43	1.45
	438702	A1879064	Hs.54618	ESTs	1.00	34.00
	438724	AW612553	Hs.114670 Hs.184727	Human DNA sequence from clone RP11-16L21	1.33 2.42	1.10 1.59
35	438746 438779	Al885815 NM_003787	Hs.6414	Human melanoma-associated antigen p97 (m nucleolar protein 4	1.00	18.00
55	438821	AA826425	Hs.192375	ESTs	2.03	2.57
	438885	A1886558	Hs.184987	ESTs	6.42	88.00
	438898	AA401369	Hs.190721	ESTs	22.41	17.00
40	438915	AA280174	Hs.285681	Williams-Beuren syndrome chromosome regi	1.00	1.00 1.88
40	438956 439000	W00847 AW979121	Hs.135056	Human DNA sequence from clone RP5-850E9 gb:EST391231 MAGE resequences, MAGP Homo	2.20 2.78	4.81
	439023	AA745978	Hs.28273	ESTs	1.17	1.31
	439024	R96696	Hs.35598	ESTs	1.00	28.00
	439128	Al949371	Hs.153089	ESTs	1.00	67.00
45	439146	AW138909	Hs.156110	immunoglobulin kappa constant	1.38	1.41
	439223	AW238299	Hs.250618	UL16 binding protein 2 hypothetical protein FLJ20093	1.93 46.23	1.64 139.00
	439285 439318	AL133916 AW837046	Hs.6527	G protein-coupled receptor 56	2.00	2.20
	439343	AF086161	Hs.114611	hypothetical protein FLJ11808	6.10	7.37
50	439394	AA401369	Hs.190721	ESTs	3.39	17.00
	439410	AA632012	Hs.188746	ESTs	1.83	3.07
	439451	AF086270	Hs.278554	heterochromatin-like protein 1 B-cell CLL/lymphoma 11B (zinc finger pro	23.28 18.76	52.00 122.00
	439452 439453	AA918317 BE264974	Hs.57987 Hs.6566	thyroid hormone receptor interactor 13	2.78	1.58
55	439477	W69813	Hs.58042	ESTs, Moderately similar to GFR3_HUMAN G	1.22	1.44
	439492	AF086310	Hs.103159	ESTs	7.46	39.00
	439523	W72348	Hs.185029	ESTs	1.00	1.19
	439592	AF086413	Hs.58399	ESTs	1.00	1.00
60	439606 439670	W79123 AF088076	Hs.58561 Hs.59507	G protein-coupled receptor 87 ESTs, Weakly similar to AC004858 3 U1 sm	33.61 1.00	1.00 1.00
00	439702	AW085525	Hs.134182	ESTs	4.30	10.00
	439706	AW872527	Hs.59761	ESTs, Weakly similar to DAP1_HUMAN DEATH	86.55	11.00
	439738	BE246502	Hs.9598	sema domain, immunoglobulin domain (lg),	2.36	1.88
65	439750	AL359053	Hs.57664	Homo sapiens mRNA full length Insert cDN	2.02	6.08
65	439759 439780	AL359055 AL109688	Hs.67709	Homo sapiens mRNA full length insert cDN gb:Homo sapiens mRNA full length insert	1.00 7.27	21.00 25.00
	439840	AW449211	Hs.105445	GDNF family receptor alpha 1	1.00	1.00
	439926	AW014875	Hs.137007	ESTs	32.58	71.00
7 0	439963	AW247529	Hs.6793	platelet-activating factor acetylhydrola	21.28	9.55
70	439979	AW600291	Hs.6823	hypothetical protein FLI10430	68.83	61.00
	440006	AK000517	Hs.6844	hypothetical protein FLJ20510	1.83	4.02
	440028	AW473675 AA864968	Hs.125843	ESTs, Weakly similar to T17227 hypotheti	1.42 1.00	2.54 54.00
	440106 440138	AB033023	Hs.127699 Hs.318127	KIAA1603 protein hypothetical protein FLJ10201	24.18	52.00
75	440273	AI805392	Hs.325335	Homo sapiens cDNA: FLJ23523 fis, clone L.	3.21	4.72
	440289	AW450991	Hs.192071	ESTs	38.63	113.00
	440325	NM_003812	Hs.7164	a disintegrin and metalloproteinase doma	62.88	147.00
	440492	R39127	Hs.21433	hypothetical protein DKFZp547J036	2.35 10.84	3.62 57.00
80	440527 440659	AV657117 AF134160	Hs.184164 Hs.7327	ESTs, Moderately similar to S65657 alpha claudin 1	3.18	2.37
00	440704	M69241	Hs.162	insulin-like growth factor binding prote	2.89	2.09
	440943	AW082298	Hs.146161	hypothetical protein MGC2408	2.02	1,41
	440994	AI160011	Hs.272068	ESTs	1.29	1.14
85	441020	AA401369	Hs.190721	ESTs	142.99 1.41	17.00 99.00
UJ	441031	Al110684	· Hs.7645	fibrinogen, B beta polypeptide	1.41	33.00

	w	O 02/086	443			
	441128	AA570256	775	ESTs, Weakly similar to T23273 hypotheti	4.13	3.50
	441290	W27501	Hs.89605	cholinergic receptor, nicotinic, alpha p	1.00	1.00
	441362	BE614410	Hs.23044	RAD51 (S. cerevisiae) homolog (E call Re	130.23	43.00
5	441377	BE218239	Hs.202656	ESTs ·	22.03 3.65	1.00 7.70
,	441390 441497	A1692560 R51064	Hs.131175 Hs.23172	ESTs ESTs	1.00	1.00
	441525	AW241867	Hs.127728	ESTs	1.53	1.42
,	441553	AA281219	Hs.121296	ESTs	1.89	1.57
	441607	NM_005010	Hs.7912	neuronal cell adhesion molecule	1.47	2.11
10	441633	AW958544	Hs.112242	normal mucosa of esophagus specific 1	216.22	363.00
	441636	AA081846	Hs.7921	Homo sapiens mRNA; cDNA DKFZp566E183 (fr	2.31	2.05
	441737 441790	X79449 AA401369	Hs.7957 Hs.190721	adenosine deaminase, RNA-specific ESTs	1.30 44.15	1.49 17.00
	441790	AW242799	Hs.86366	ESTs	1.00	1.00
15	441919	Al553802	Hs.128121	ESTs	1.00	122.00
	441937	R41782	Hs.22279	ESTs	0.86	1.37
	441954	AJ744935	Hs.8047	Fanconi anemia, complementation group G	1.48	1.39
	442025	AW887434	Hs.11810	CDA11 protein	1.00	46.00
20	442029	AW956698	Hs.14456	neural precursor cell expressed, develop	9.92	45.00 77.00
20	442072 442108	A1740832	Hs.12311 Hs.166314	Homo sapiens clone 23570 mRNA sequence ESTs	25.05 3.61	3.14
	442117	AW452649 AW664964	Hs.128899	ESTs	3.00	5.49
	442137	AA977235	Hs.128830	ESTs, Weakly similar to Z192_HUMAN ZINC	1.00	1.00
	442159	AW163390	Hs.278554	heterochromatin-like protein 1	1.92	1.66
25	442179	AA983842	Hs.333555	chromosome 2 open reading frame 2	27.22	50.00
	442328	Al952430	Hs.150614	ESTs, Weakly similar to ALU4_HUMAN ALU S	5.00	3.42
	442432	BE093589	Hs.38178	hypothetical protein FLJ23468	181.59 10.59	76.00 144.00
	442530	A1580830	Hs.176508 Hs.217484	Homo sapiens cDNA FLJ14712 fis, clone NT ESTs, Weakly similar to ALU1_HUMAN ALU S	109.23	98.00
30	442547 442556	AA306997 AL137761	Hs.8379	Homo sapiens mRNA; cDNA DKFZp586L2424 (f	1.00	53.00
50	442619	AA447492	Hs.20183	ESTs, Weakly similar to AF164793 1 prote	29.02	50.00
	442710	AI015631	Hs.23210	ESTs	1.00	19.00
	442717	R88362	Hs.180591	ESTs, Weakly similar to T23976 hypotheti	1.00	5.00
25	442875	BE623003	Hs.23625	Homo sapiens clone TCCCTA00142 mRNA sequ	22.85	50.00
35	442914	AW188551	Hs.99519	hypothetical protein FLJ14007	25.33 3.18	82.00 4.41
	442932 442942	AA457211 AW167087	Hs.8858 Hs.131562	bromodomain adjacent to zinc finger doma ESTs	8.45	64.00
	443068	AV107007	115.151502	ESTs	1.00	27.00
	443204	AW205878	Hs.29643	Homo sapiens cDNA FLJ13103 fis, clone NT	1.00	24.00
40	443211	Al128388	Hs.143655	ESTs	12.42	2.00
	443247	BE614387	Hs.333893	c-Myc target JPO1	128.84	96.00
	443324	R44013	Hs.164225	ESTs	0.02	4.59 47.00
	443383	A1792453	Hs.166507	ESTs ESTs	1.00 18.52	61.00
45	443400 443426	R28424 AF098158	Hs.250648 Hs.9329	chromosome 20 open reading frame 1	4.02	1.75
75	443572	AA025610	Hs.9605	cleavage and polyadenylation specific fa	2.98	2.57
	443575	Al078022	Hs.269636	ESTs, Weakly similar to ALU1_HUMAN ALU S	1.00	29.00
	443614	AV655386	Hs.7645	fibrinogen, B beta polypeptide	1.00	16.00
60	443633	AL031290	Hs.9654	similar to pregnancy-associated plasma p	1.00	39.00
50	443648	A1085377	Hs.143610	ESTs cyclin E1	39.81 48.74	70.00 7.00
	443715 443723	Al583187 Al144442	Hs.9700 Hs.157144	syntaxin 6	1.29	1.30
	443802	AW504924	Hs.9805	KIAA1291 protein	1.75	1.61
	443859	NM_013409	Hs.9914	follistatin	1.35	1.13
55	443892	AA401369	Hs.190721	ESTs	1.00	17.00
	443947	W24187		gb:zb47f09.r1 Soares_fetal_lung_NbHL19W	1.33	1.64
	443991	NM_002250	Hs.10082	potassium intermediate/small conductance	5.71 1.47	6.87 1.92
	444006 444009	BE395085 Al380792	Hs.10086 Hs.135104	type I transmembrane protein Fn14 ESTs	1.00	77.00
60	444017	L)04840	Hs.214	neuro-oncological ventral antigen 1	1.00	1.00
•	444127	N63620	Hs.13281	ESTs	1.00	29.00
	444129	AW294292	Hs.256212	ESTs	1.00	1.00
	444279	U62432	Hs.89605	cholinergic receptor, nicotinic, alpha p	0.60	7.80
65	444371	BE540274	Hs.239	forkhead box M1	2.91 1.00	1.14 1.00
05	444378 444381	R41339 BE387335	Hs.12569 Hs.283713	ESTs ESTs, Weakly similar to S64054 hypotheti	469.00	556.00
	444461	R53734	Hs.25978	ESTs, Weakly similar to 2109260A B cell	12.88	105.00
	444471	AB020684	Hs.11217	KIAA0877 protein	24.91	90.00
70	444489	AI151010	Hs.157774	ESTs	1.00	111.00
70	444619	BE538082	Hs.8172	ESTs, Moderately similar to A46010 X-lin	1.00	70.00
	444665	BE613126	Hs.47783	B aggressive lymphoma gene	30.56	139.00 1.00
	444707 444735	Al188613 BE019923	Hs.41690 Hs.243122	desmocollin 3 hypothetical protein FLJ13057 similar to	1.00 77.02	90.00
	444781	NM_014400	Hs.11950	GPI-anchored metastasis-associated prote	1.57	1.31
75	444783	AK001468	Hs.62180	anillin (Drosophila Scraps homolog), act	77.55	2.00
	445236	AK001676	Hs.12457	hypothetical protein FLJ10814	1.00	27.00
	445258	Al635931	Hs.147613	ESTs	1.00	73.00
	445413	AA151342	Hs.12677	CGI-147 protein	28.14	50.00
80	445417	AK001058	Hs.12680	Homo sapiens cDNA FLJ10196 fis, clone HE ESTs	1.81 1.00	2.62 1.00
30	445443 445462	AV653838 AA378776	Hs.322971 Hs.288649	hypothetical protein MGC3077	2.09	1.70
	445517	AF208855	Hs.12830	hypothetical protein	1.87	70.00
	445537	AJ245671	Hs.12844	EGF-like-domain, multiple 6	1.71	2.72
05	445580	AF167572	Hs.12912	skb1 (S. pombe) homolog	1.52	1.34
85	445654	X91247	Hs.13046	thioredoxin reductase 1	1.51	1.52

	w	O 02/086	443			
	445669	Al570830	Hs.174870	ESTs	10.95	11.45
	445818	BE045321	Hs.136017	ESTs	1.00	1.00
	445873	AA250970	Hs.251946 Hs.127699	poly(A)-binding protein, cytoplasmic 1-1 KIAA1603 protein	49.42 1.00	54.00 132.00
5	445885 445898	AI734009 AF070623	Hs. 13423	Homo sapiens clone 24468 mRNA sequence	1.00	1.00
-	445903	Al347487	Hs.132781	class I cytokine receptor	1.00	36.00
	445932	BE046441	Hs.333555	Homo sapiens clone 24859 mRNA sequence	2.41	2.88
	445982	BE410233	Hs.13501	pescadillo (zebrafish) homolog 1, contai ESTs	1.60 1.00	1.35 42.00
10	446078 446102	Al339982 AW168067	Hs.156061 Hs.317694	ESTs	1.00	1.00
10	446157	BE270828	Hs.131740	Homo sapiens cDNA: FLJ22562 fis, clone H	1.70	1.53
	446269	AW263155	Hs.14559	hypothetical protein FLJ10540	73.01	48.00
	446292	AF081497	Hs.279682	Rh type C glycoprotein ESTs	1.55	1.26 2.00
15	446293 446423	Al420213 AW139655	Hs.149722 Hs.150120	ESTs	1.00 1.10	4.19
15	446428	AW082270	Hs.12496	ESTs, Weakly similar to ALU4_HUMAN ALU S	0.53	3.26
	446432	Al377320	Hs.150058	ESTs	1.00	5.00
	446528	AU076640	Hs.15243	nucleolar protein 1 (120kD)	1.36	1.31 72.00
20	446574 446619	A)310135 AU076643	Hs.335933 Hs.313	ESTs secreted phosphoprotein 1 (osteopontin,	3.89 32.03	20.23
20	446636	AC002563	Hs.15767	citron (rho-interacting, serine/threonin	4.19	5.07
	446783	AW138343	Hs.141867	ESTs	2.82	9.47
	446839	BE091926	Hs.16244	mitotic spindle colled-coil related prot	110.28	28.00
25	446849 446856	AU076617 Al814373	Hs.16251 Hs.164175	cleavage and polyadenylation specific fa ESTs	3.26 6.38	2.94 11.30
43	446872	X97058	Hs.16362	pyrimidinergic receptor P2Y, G-protein c	1.98	2.03
	446880	AI811807	Hs.108646	Homo sapiens cDNA FLJ14934 fis, clone PL	94.90	113.00
	446921	AB012113	Hs.16530	small inducible cytokine subfamily A (Cy	1.67	3.90 3.12
30	446989 447022	AK001898 AW291223	Hs.16740 Hs.157573	hypothetical protein FLJ11036 ESTs	2.82 1.00	170.00
50	447033	Al357412	Hs.157601	ESTs	7.15	107.00
	447078	AW885727	Hs.9914	ESTs	47.24	24.00
	447081	Y13896	Hs.17287	potassium inwardly-rectifying channel, s retinoic acid receptor responder (tazaro	0.12 0.97	17.88 1.48
35	447131 447149	NM_004585 BE299857	Hs.17466 Hs.326	TAR (HIV) RNA-binding protein 2	1.24	1.26
55	447153	AA805202	Hs.315562	ESTs	1.00	54.00
	447164	AF026941	Hs.17518	Homo sapiens cig5 mRNA, partial sequence	1.00	67.00
	447178	AW594641 A1878909	Hs.192417 Hs.17883	ESTs protein phosphatase 1G (formerly 2C), ma	3.42 1.60	50.00 1.52
40	447250 447289	AW247017	Hs.36978	melanoma antigen, family A, 3	1.00	1.00
	447342	Al199268	Hs.19322	Homo saplens, Similar to RIKEN cDNA 2010	28.63	1.00
	447343	AA256641	Hs.236894	ESTs, Highly similar to S02392 alpha-2-m	146.62	51.00
	447350 447377	AJ375572 N27687	Hs.172634 Hs.334334	ESTs transcription factor AP-2 alpha (activat	1.00 2.55	12.00 63.00
45	447415	AW937335	Hs.28149	ESTs, Weakly similar to KF3B_HUMAN KINES	0.91	1.13
	447425	Al963747	Hs.18573	acylphosphatase 1, erythrocyte (common)	1.00	35.00
	447519	U46258	Hs.339665	ESTs	59.89 1.23	49.00 1.63
	447532 447534	AK000614 AA401369	Hs.18791 Hs.190721	hypothetical protein FLJ20607 ESTs	1.00	17.00
50	447636	Y10043		high-mobility group (nonhistone chromoso	1.41	1.11
	447688	N87079	Hs.19236	Target CAT	1.00	39.00
	447733 447769	AF157482` AW873704	Hs.19400 Hs.320831	MAD2 (mitotic arrest deficient, yeast, h Homo sapiens cDNA FLJ14597 fis, clone NT	1.17 6.47	1.12 5.95
	447802	AW593432	Hs.161455	ESTs	0.73	2.34
55	447850	AB018298	Hs.19822	SEC24 (S. cerevisiae) related gene famil	86.45	116.00
	447924	AI817226	Hs.313413	ESTs, Weakly similar to T23110 hypotheti	1.00	• 1.00
	447973 448030	AB011169 N30714	Hs.20141 Hs.325960	similar to S. cerevislae SSM4 membrane-spanning 4-domains, subfamily A	3.50 4.13	4.27 142.00
	448105	Al538613	Hs.298241	Transmembrane protease, serine 3	1.15	2.24
60	448243	AW369771	Hs.52620	integrin, beta 8	15.84	1.00
	448278 448290	WQ7369 AK002107	Hs.11782 Hs.20843	ESTs Homo sapiens cDNA FLJ11245 fis, clone PL	0.97 1.00	1.90 1.00
	448296	BE622756	Hs.10949	Homo sapiens cDNA FLJ14162 fis, clone NT	2.42	2.17
65	· 448357	BE274396	Hs.108923	RAB38, member RAS oncogene family	1.44	1.08
65	448390	AL035414	Hs.21068	hypothetical protein	1.00 2.63	43.00 2.49
	448469 448569	AW504732 BE382657	Hs.21275 Hs.21486	hypothetical protein FLJ11011 signal transducer and activator of trans	1.84	2.53
	448663	BE614599	Hs.106823	hypothetical protein MGC14797	3.29	46.00
70	448672	Al955511	Hs.225106	ESTs	1.00	21.00
70	448733	NM_005629	Hs.187958	solute carrier family 6 (neurotransmitte hypothetical protein MGC5469	1.82 2.48	1.08 1.92
	448741 448757	BE614567 Al366784	Hs.19574 Hs.48820	TATA box binding protein (TBP)-associate	23.53	20.00
	448775	AB025237	Hs.388	nudix (nucleoside diphosphale linked moi	2.34	1.97
75	448826	Al580252	Hs.293246	ESTs, Weakly similar to putative p150 [H	74.07	62.67
75	448830 448844	AL031658	Hs.22181	hypothetical protein dJ310O13.3 ESTs	1.37 1.00	1.31 31.00
	448988	Al581519 Y09763	Hs.177164 Hs.22785	gamma-aminobutyric acid (GABA) A recepto	1.84	1.95
	448993	Al471630		KIAA0144 gene product	1.63	1.49
80	449003	X76342	Hs.389	alcohol dehydrogenase 7 (class IV), mu o	1.00	1.00
30	449029 449040	N28989 AF040704	Hs.22891 Hs.149443	solute carrier family 7 (cationic amino putative tumor suppressor	1.97 0.97	2.26 1.56
	449048	Z45051	Hs.22920	similar to S68401 (cattle) glucose induc	27.13	90.00
	449053	Al625777	Hs.344766	ESTs	8.33	44.00
85	449054	AF148848	Hs.22934	myoneurin G protein coupled recentor	73.85 2.58	104.00 27.00
J	449101	AA205847	Hs.23016	G protein-coupled receptor	2.00	21.00

	W	O 02/086	5443			
	449167	T05095	Hs.19597	KIAA1694 protein	1.61	2.36
	449207	AL044222	Hs.23255	nucleoporin 155kD	2.36	1.56
	· 449228	AJ403107	Hs.148590	protein related with psoriasis	1.15	1.15
5	449230	BE613348	Hs.211579	melanoma cell adhesion molecule	206.65	151.00
3	449305 449318	A1638293 AW236021	Hs.78531	gb:tt09b07.x1 NCI_CGAP_GC6 Homo sapiens Homo sapiens, Similar to RIKEN cDNA 5730	17.28 26.39	45.00
	449448	D60730	Hs.57471	ESTs	1.00	35.00 1.00
	449467	AW205006	Hs.197042	ESTs	1.00	1.00
• •	449523	NM_000579	Hs.54443	chemokine (C-C motif) receptor 5	56.80	216.86
10	449722	BE280074	Hs.23960	cyclin B1	150.03	1.00
	449976	H06350	Hs.135056	Human DNA sequence from clone RP5-850E9	2.16	2.85
	450001 450098	NM_001044	Hs.406 Hs.8109	solute carrier family 6 (neurotransmitte hypothetical protein FLJ21080	1.17 1.79	1.45
	450101	W27249 AV649989	Hs.24385	Human hbc647 mRNA sequence	1.00	2.38 69.00
15	450149	AW969781	Hs.132863	Zic family member 2 (odd-paired Drosophi	1.00	1.00
	450193	AI916071	Hs.15607	Homo sapiens Fanconi anemia complementat	29.85	34.00
	450221	AA328102	Hs.24641	cytoskeleton associated protein 2	1.00	1.00
	450372	BE218107	Hs.202436	ESTs	1.00	1.00
20	450375	AA009647	Hs.8850	a disintegrin and metalloproteinase doma	51.26	93.00
20	450447 450568	AF212223 AL050078	Hs.25010 Hs.25159	hypothetical protein P15-2	123.20 1.00	181.00 19.00
	450589	AL030076 Al701505	Hs.202526	Homo sapiens cDNA FLJ10784 fis, clone NT ESTs	1.00	23.00
	450684	AA872605	Hs.25333	interleukin 1 receptor, type II	1.00	100.00
	450701	H39960	Hs.288467	Homo sapiens cDNA FLJ12280 fis, clone MA	1.89	1.55
25	450705	U90304	Hs.25351	iroquois homeobox protein 2A (IRX-2A) (1.00	45.00
	450832	AA401369	Hs.190721	ESTs	25.17	17.00
	450937	R49131	Hs.26267	ATP-dependant interferon response protei	90.92	90.00
	450983 451105	AA305384 Al761324	Hs.25740	ERO1 (S. cerevisiae)-like gb:wi60b11.x1 NCI_CGAP_Co16 Homo sapiens	3.33 15.02	1.70 124.00
30	451110	A1955040	Hs.265398	ESTs, Weakly similar to transformation-r	1.00	143.00
50	451253	H48299	Hs.26126	claudin 10	3.02	2.29
	451291	R39288	Hs.6702	ESTs	1.00	1.00
	451320	AW498974		diacylglycerol kinase, zeta (104kD)	2.92	18.00
25	451380	H09280	Hs.13234	ESTs	6.90	6.67
35	451386	AB029006 H24143	Hs.26334 Hs.31945	spastic paraplegia 4 (autosomal dominant hypothetical protein FLJ11071	35.75 1.00	72.00 69.00
	451437 451462	AK000367	Hs.26434	hypothetical protein FLJ20360	1.83	2.10
	. 451524	AK001466	Hs.26516	hypothetical protein FLJ10604	1.13	1.07
	451541	BE279383	Hs.26557	plakophilin 3	1.88	1.33
40	451592	Al805416	Hs.213897	ESTs	1.00	1.00
	451635	AA018899	Hs.127179	cryptic gene	1.52	1.92
	451743 451806	AA401369 NM_003729	Hs.190721 Hs.27076	ESTs RNA 3'-terminal phosphate cyclase	4.95 13.55	17.00 31.00
	451807	W52854	113.21010	hypothetical protein FLJ23293 similar to	1.55	35.00
45	451871	AI821005	Hs.118599	ESTs	1.81	2.53
	451952	AL120173	Hs.301663	ESTs	1.00	22.00
	452012	AA307703	Hs.279766	kinesin family member 4A	3.43	2.26
	452046	AB018345	Hs.27657	KIAA0802 protein	56.59	19.00
50	452194 452206	Al694413 AW340281	Hs.332649 Hs.33074	olfactory receptor, family 2, subfamily Homo sapiens, clone IMAGE:3606519, mRNA,	1.67 9.31	4.09 53.00
50	452240	AA401369	Hs.190721	ESTs	13.42	17.00
	452256	AK000933	Hs.28661	Homo sapiens cDNA FLJ10071 fis, clone HE	39.03	94.00
	452281	T93500	Hs.28792	Homo sapiens cDNA FLJ11041 fis, clone PL	153.01	340.00
55	452291	AF015592	Hs.28853	CDC7 (cell division cycle 7, S. cerevisi	1.95	23.00
55	452295	BE379936	Hs.28866	programmed cell death 10	42.33 1.17	61.00 2.14
	452304 452340	AA025386 NM_002202	Hs.61311 Hs.505	ESTs, Weakly similar to S10590 cysteine ISL1 transcription factor, LIM/homeodoma	1.00	13.00
	452349	AB028944	Hs.29189	ATPase, Class VI, type 11A	1.09	1.42
	452367	U71207	Hs.29279	eyes absent (Drosophila) homolog 2	54.49	53.00
60	452401	NM_007115	Hs.29352	tumor necrosis factor, alpha-induced pro	1.00	32.00
	452410	AL133619	11- 400400	Homo sapiens mRNA; cDNA DKFZp434E2321 (f	1.26	1.99
	452461 452571	N78223 W31518	Hs.108106 Hs.34665	transcription factor ESTs	24.47 54.61	35.00 102.00
	452613	AA461599	Hs.23459	ESTs	1.39	1.32
65	452699	AW295390	Hs.213062	ESTs	1.00	26.00
	452705	H49805	Hs.246005	ESTs	1.00	1.00
	452747	AF160477	Hs.61460	lg superfamily receptor LNIR	112.87	1.29
	452787	AW294022	Hs.222707	KIAA1718 protein	1.00	1.00
70	452795 452823	AW392555 AB012124	Hs.18878 Hs.30696	hypothetical protein FLJ21620 transcription factor-like 5 (basic helix	1.00 7.91	1.00 75.00
, ,	452833	BE559681	Hs.30736	KIAA0124 protein	3.16	1.92
	452838	U65011	Hs.30743	preferentially expressed antigen in mela	174.35	1.00
	452862	AA401369	Hs.190721	ESTs	98.26	17.00
75	452865	AW173720	Hs.345805	ESTs, Weakly similar to A47582 B-cell gr	1.55	1.00
75	452934	AA581322	Hs.4213	hypothetical protein MGC16207	1.73	1.19
	452946 452976	X95425 R44214	Hs.31092	ESTs	1.00 1.58	1.00 1.98
	452976 453028	AB006532	Hs.101189 Hs.31442	RecQ protein-like 4	1.80	1.60
•	453095	AW295660	Hs.252756	ESTs	0.77	1.50
80	453102	NM_007197	Hs.31664	frizzled (Drosophila) homolog 10	1.00	1.00
	453103	Al301052	Hs.153444	ESTs	1.00	1.00
	453120	AA292891	Hs.31773	pregnancy-induced growth inhibitor	1.23	1.20
	453153 453160	N53893 AJ263307	Hs.24360 Hs.239884	ESTs H2B histone family, member L	1.00 1.00	83.00 30.00
85	453197	Al916269	Hs.109057	ESTs, Weakly similar to ALU5_HUMAN ALU S	1.00	134.00
-						

	w	O 02/0864	143				РСТ/І	JS02/12476
	453210	AL133161	Hs.32360	hypothetical protein FLJ10867	1.69	1.93	101/0	002/124/0
	453240 453317	AI969564 NM_002277	Hs.166254	hypothetical protein DKFZp566i133	1.00	1.00		
	453317		Hs.41696 Hs.32951	keratin, hair, acidic, 1 solute carrier family 29 (nucleoside tra	1.19 4.90	1.27 4.11		
5	453331	AJ240665	Hs.8850	ESTs	199.42	340.00		
	453392		Hs.32964	SRY (sex determining region Y)-box 11	1.00	16.00		
	453431 453439	AF094754 Al572438	Hs.32973 Hs.32976	glycine receptor, beta guanine nucleofide binding protein 4	1.00 3.44	1.00 5.17		
	453459	BE047032	Hs.257789	ESTs	2.84	5.58		
10	453563	AW608906.com		Hs.181163		rotein MGC5629	4.58	90.00
	453633	AA357001	Hs.34045 Hs.35120	hypothetical protein FLJ20764	1.74	1.60		
•	453775 453830	NM_002916 AA534296	Hs.20953	replication factor C (activator 1) 4 (37 ESTs	19.49 24.92	1.00 25.00		
	453857	AL080235	Hs.35861	DKFZP586E1621 protein	167.59	66.00		
15	453867	A1929383	Hs.33032	hypothetical protein DKFZp434N185	1.00	39.00		
	453883 453884	Al638516 AA355925	Hs.347524 Hs.36232	cofactor required for Sp1 transcriptiona KIAA0186 gene product	1.97 63.89	1.58 20.00		
	453900	AW003582	Hs.226414	ESTs, Weakly similar to ALU8_HUMAN ALU S	20.41	16.00		
00	453922	AF053306	Hs.36708	budding uninhibited by benzimidazoles 1	7.09	22.00		
20	453941	U39817	Hs.36820	Bloom syndrome	29.75	19.00		
	453964 453968	AJ961486 AA847843	Hs.12744 Hs.62711	ESTs Homo sapiens, clone IMAGE:3351295, mRNA	1.00 2.06	1.00 1.81		
	453976	BE463830	Hs.163714	ESTs	3.02	131.00		
25	454024	AA993527	Hs.293907	hypothetical protein FLJ23403	1.00	131.00		
25	454034	NM_000691	Hs.575	aldehyde dehydrogenase 3 family, member	1.23 30.63	1.02 171.00		
	454042 454059	T19228 NM_003154	Hs.172572 Hs.37048	hypothetical protein FLJ20093 statherin	1.00	1.00		
	454066	X00356	Hs.37058	calcitonin/calcitonin-related potypeptid	1.01	1.45		
20	454098	W27953	Hs.292911	ESTs, Highly similar to S60712 band-6-pr	1.26	1.11		
30	454241 454417	8E144666 AJ244459	Hs.110826	gb:CM2-HT0176-041099-017-c02 HT0176 Homo trinucleotide repeat containing 9	6.33 4.30	5.04 7.82		
	454439	AW819152	Hs.154320	DKFZP566O1646 protein	1.00	1.00		
	455175	AW993247		gb:RC2-BN0033-180200-014-h09 BN0033 Homo	13.75	103.00		
35	455601	A1368680	Hs.816	SRY (sex determining region Y)-box 2	206.11	1.00		
33	456237 456321	AA203682 NM_001327	Hs.87225	gb:zx52e07.r1 Soares_fetal_fiver_spleen_ cancer/testis antigen	1.00 1.14	1.00 1.10		
	456475	NM_000144	Hs.95998	Friedreich ataxia	1.00	48.00		
	456508	AA502764	Hs.123469	ESTs, Weakly similar to AF208855 1 BM-01	162.25	189.00	•	
40	456534 456736	X91195 AW248217	Hs.100623 Hs.1619	phospholipase C, beta 3, neighbor pseudo achaete-scute complex (Drosophila) homol	2.12 1.15	1.80 1.94	,	
40	456759	BE259150	Hs.127792	delta (Drosophila)-like 3	1.00	1.00		
	456990	NM_004504	Hs.171545	HIV-1 Rev binding protein	16.42	84.00		
	457200	U33749	Hs.197764	thyroid transcription factor 1	0.57	1.76		
45	457234 457465	AW968360 AW301344	Hs.14355 Hs.122908	Homo saplens cDNA FLJ13207 fis, clone NT DNA replication factor	2.71 46.37	4.15 47.00		
72	457489	Al693815	Hs.127179	cryptic gene	1.12	1.35		
	457646	AA725650	Hs.112948	ESTs	1.55	2.51		
	457733	AW974812	Hs.291971	ESTs Highly similar to upgemed contain	1.00 4.36	55.00 3.18		
50	457819 458092	AA057484 BE545684	Hs.35406 Hs.343566	ESTs, Highly similar to unnamed protein KIAA0251 protein	1.00	1.32		
	458098	BE550224		metalloihionein 1E (functional)	1.00	22.00		
	458207	T28472	Hs.7655	U2 small nuclear ribonucleoprotein auxil	2.06	1.88		
•	458242 458247	8E299588 R14439	Hs.28465 Hs.209194	Homo sapiens cDNA: FLJ21869 fis, clone H ESTs	1.00 7.00	1.00 9.85		
55	458679		Hs.142913	ESTs	1.00	3.00		
	458778	AW451034	Hs.326525	arylsulfatase D	1.31	2.01		
		A1638429	Hs.24763 Hs.206828	RAN binding protein 1	1.98 12.60	1.71 63.00		
	459352 459670		Hs.172004	ESTs litin	1.00	1.00		
60		Al204995	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	gb:an03c03.x1 Stratagene schizo brain S1	1.00	237.00		
	TABLE 9	R		•				
	171022 3	•						
65	Pkey:			ntifier number				
	Accession	ber: Gene cluste	er number ocession num	hare				•
	nuccasion	ii. Octivatik di	JOC33IVII 110111	0613				
70	Pkey	CAT Number						
70	407746	10125_1		962 R69415 BE464605 AA418699 AA053293 AA1490 082 AA720022 AA575507 AA801217 AA782057 A180				
				982 AA730033 AA576507 AA991217 AA782067 AI98! 1 T27343 AA306950 AA360989 R58778	0851 AA8U5864 AA5U	15598 AVV469857 KO	9546 AA966219 A	WUU1047 ND332U
	408070	1036688_1		1 127343 AA300930 AA300969 R36776 1852 BE350895				
75	408660	107294_1	AA525	775 AA056342 Al538978 AW975281 AA664986				
75	409522	113735_1		382 AA075431				•
	409866 410032	1156522_1 1170435_1		1152 H41202 H29772 985 BE065944 BE066008 BE066083 BE066093				
	411089	123172_1		965 BE069944 BE066006 BE066063 BE066093 454 AA713730 AA091294 AA584921 N86077 AW8367	81 AA601031 AA579	876 AA551106 AA63	3188 AW905577 J	A1955808 A1679386
00		_	A16798	95 AA514764 AA454562 A1082382 AA595822 AA5513	51 AA586369 AA666	384 AA188934 AA66	6398 AA551297 A	A565188
80	411152	1234028_1		199 AW936012 AW877466 AW819782 AW935798 AW				
	412537	1304_1		1019 AW935937 BE160180 AW935946 BE069101 BE0 178 X59711 NM_002505 M59079 A1870439 A1494259				
	7,2001			B BE079412 BE079428 N90322 Al631202 Al141758 A				
•				918 AA927051 AA889823 BE003094 AW390155 AW3				

	W	02/086443	PCT/US02/12476
			Al478773 Al160445 Al674630 N69088 AW665529 N49278 Al129239 Al457890 Al621264 AW297152 Al268215 AA907787 Al286170 Al017982 Al963541 Al469807 Al969353 BE552356 N66509 AA736741 AA382555 AW075811 AW292026
5	412811	132943_1	H06382 AW957730 AA352014 R13591 AA121201 D60420 BE263253 BE047862 Z41952 AH24991 AI693507 AI863108 AA599060 AI091148 AA598689 R39887 AA813482 AW016452 H06383 R41807 AI364268 AA620528 AI241940 AW089149 AW090733 AW088875 Z38240 AA121202 R17734
	413690 414883	1383256_1 15024_1	BE157489 BE157560 AA926960 AA926959 W76521 W24270 W21526 AA037172 BE267636 H83186 AA469909 N86396 AA001348 BE535736 AA081745 BE566245
	414003	15024_1	AA082436 H72525 H77575 N49786 W80565 H78746 BE569085 W04339 R98127 T55938 BE279271 AW960304 T29812 AA476873 BE297387
10			AA292753 AA177048 NM_001826 X54941 BE314366 AA908783 AI719075 BE270172 BE269819 AA889955 Al204630 W25243 Al935150 AA872039 W72395 T99630 Al422691 H98460 N31428 BE255916 H03265 Al857576 AA776920 AA910644 AA459522 AA293140 AW514667
			R75953 AW662396 AA662522 Al865147 Al423153 AW262230 AA584410 AA583187 AW024595 AW069734 Al828995 AA282997 AA876046 AW613002 AA527373 AW972459 Al831360 AA621337 AA100926 AA772418 AA594628 Al033892 W95096 Al034317 AA398727 Al085031 N95210 Al459432 Al041437 AA932124 AA627684 AA935829 Al004827 Al423513 Al094597 H42079 R54703 Al630359 AA617681 AA978045
15		¢.	AA643280 W44561 AI991988 AI537692 AI090262 AA740817 AI312104 AI911822 AA416871 AI185409 AA129784 AA701623 AI075239 AI139549 AA633648 AI339996 AI336880 AA399239 AI078708 AI085351 AI362835 AI346618 AI146955 AI989380 AI348243 N92892 AA765850
			Al494230 Al278887 AA962596 Al492600 W80435 AA001979 R97424 Al129015 N24127 AA157451 AA235549 AA459292 AA037114 AA 129785 Al494211 AW059601 AW886710 R92790 N59755 Al361128 AW589407 H47725 H97534 H48076 H48450 T99631 AW300758 H03431 R76789
20			AA954344 H77576 R96823 AI457100 N92845 N49682 H42038 BE220698 BE220715 H99552 AA701624 N74173 R54704 H79520 H72923 H03266 BE261919 AA769633 AA480310 AA507454 AA910586 AI203723 AW104725 W25611 W25071 T88980 H03513 T77589 R99156
20	415989	156454_1	W95095 R97470 AA702275 T77551 AA911952 H82956 N83673 AA283672 AI267700 AI720344 AA191424 AI023543 AI469633 AA172056 AW958465 AA172236 AW953397 AA355086
	417324 418574	166714_1 17690 1	AW265494 AA455904 AA195677 AW265432 AW991605 AA456370 N28754 N28747 Al568146 Al979339 AA322671 AA322672 AW955043 Al990326 AA776406 Al016250 AA843678 AW451882 N23137 N23129
25		_	W70051 Al038748 AA831327 Al925845 AW945895
23	418712 419443	1784125_1 184788_1	Z42183 T31621 T97478 D62703 AA242966 D79798
	419502	18535_1	AU076704 T74854 T74860 T72098 T73265 T73873 T69180 T74658 T58786 T60385 T73410 T68781 T67845 T67593 T73952 T67864 T60630 T68367 T68401 T53959 T72360 T72099 T60377 T58961 T71712 T72821 T64738 T74645 T72037 T68688 T72063 T73258 T72826 T64242
30			T68220 T74673 T71800 T68355 T61227 T62738 T69317 T53850 T64692 T73768 T73962 T73382 T68914 T70975 T73400 T60631 T73277 T73203 T70498 T61409 T58925 NM_000508 M54982 T68301 T73729 T69445 T60424 T67922 T67736 T68716 T67755 T74765 T73819 T58719
50			T74756 T60477 T74863 T61109 T68329 T58850 T71857 T73425 T53736 T68607 T58898 T64309 T72031 T72079 T64305 T71908 T68107
			T71916 T73787 T56035 T64425 T71870 T60476 T61376 T67820 T71895 T41006 T69441 T68170 T74617 T71958 T69440 T61875 R06796 H48353 T71914 T53939 T64121 AA693996 T72525 T67779 T68078 AA011465 AA345378 AV654847 AV654272 AV656001 A1064740 T82897
35			N33594 AA344542 AW805054 Al207457 T61743 AA026737 H94389 AA382695 AA918409 T68044 S82092 T39959 Al017721 AA312395 AA312919 T40156 H66239 AV652989 H38728 R98521 AV655200 R95790 W03250 W00913 AA344136 AV660126 R97923 AA343596
		•	AW470774 AV651256 N54417 AA812862 AW182929 Al111192 H61463 H72060 AA344503 H38639 Al277511 AV561108 Al207625 T47810 AA235252 T27853 T47778 R95746 H70620 AA701463 AW827166 R98475 C20925 AV657287 T71959 T71313 T73920 T73333 T61618 T69293
			T69283 T73931 T72178 T72456 AV645639 AV653476 T72957 T72300 T58906 T71457 T70494 T72956 T70495 T68267 T74407 T85778
40			AA344726 T27854 T74485 T74101 T73868 T71518 T72304 AA343853 T73909 T68070 T72065 H72149 T73493 T73495 AV645993 R02293 T70475 T64751 AA344441 AA343657 AA345732 AA344328 Al110639 AA344603 AF063513 T64696 T68516 T72223 T60507 T67633 R29500
	•		T72517 R02292 T60599 T69206 T70452 T74677 R29366 T61277 T74914 T60352 R29675 T74843 AV645792 AA344408 T69197 T72057 T69368 T69358 T68258 AV650429 T73341 T61702 T74598 T40095 K02272 T40106 AA343045 AA341908 AA341907 AA342807 AA341964
			T53747 T72042 T62764 Al064899 AA343060 T67832 T72440 T71770 T68091 T69108 T72449 T69167 T71289 T68251 AV654844 T64375 AA345234 T67598 AA011414 T68036 H48262 Al207557 T68219 W86031 T69081 T64232 R93196 T62136 AV650539 H67459 T72978
45			AA344583 T60362 H58121 T95711 T72803 T68055 T71715 R29036 T72793 T69122 T64595 T62888 T69139 T68291 T64652 T67971 T46862 AA693592 Al248502 R29454 T64764 T57001 T73052 T71429 T51176 T58866 AV655414 H90426 AA342489 T73666 T67848 T72512 T53835
	446000	400404	T67837 T73317 T74273 T69420 T68245 T74380 T67862 T74474 T56068
50	419936 421582	189181_1 2041_1	Al792788 BE142230 AA252019 Al910275 X00474 X52003 X05030 NM_003225 AA314326 AA308400 AA506787 AA314825 Al571948 AA507595 AA614579 AA587613 R83818
50			AA568312 AA614409 AA307578 A1925552 AW950155 A1910083 M12075 BE074052 AW004668 AA578674 AA582084 BE074053 BE074126 BE074140 AA514776 AA588034 BE074051 BE074068 AW009769 AW050690 AA858276 R55389 A1001051 AW050700 AW750216 AA614539
	422128	211994_1	BE074045 Al307407 AW602303 BE073575 Al202532 AA524242 Al970839 Al909751 BE076078 Al909749 R55292 AW881145 AA490718 M85637 AA304575 T06067 AA331991
55	423034 423816	224122_1 23234_1	AL119930 AA320696 AW752565
33	424200	236595_1	AL031985 AL137241 Al792386 Al733664 Al857654 Al049911 AA337221 AA336756 AW966196
	424999 426966	245835_1 273896_1	AW953120 R56325 AA349562 AI493134 AI498691 AW771508 AI498457 AI768408 AI783624 AI383985 AI580267 D79813 AA393768
60	426991 427260	27415_1 276598_1	AK001536 AA191092 AW510354 Al554256 AL353968 AA134266 AA663848 AA400100 AA401424
	428023	28589_2	AL038843 AA161338 BE268213 AA425597 N87306 AA092969 BE566038 AA247451 N47392 AI928802 AW182584 AW027872 AI819831 AI936994 W56258 AI653448 AI278611 AI283557 AI824306 AW338658 AW150899 AA687514 N47393 N29885 AA973469 AI038904 AI292064
			Al034339 AW674593 N72156 Al079733 Al038683 Al291616 AA491599 AA993675 AA837380 BE006554 BE006473 Al087090 T33044
65			AA652043 Al203503 AA583959 W35283 Al129926 Z41844 AW020925 AW575848 Al684603 AA493297 Al140589 Al277175 AA425444 Al932767 W02632 BE396786 R37261
	429220 429978	301384_1 31150_1	AW207206 AW341473 AA448195 Al951341 AA249027 AL038984 AK001993 AL080066 AV652725 BE566226 AA345557 AA315222 AA090585 AA375688 AA301092 AA298454 W05762
		_	AW607939 H51658 D83880 N84323 BE296821 AW947007 D61461 AW079261 AA329482 AW901780 Al354442 AA772275 R31663 Al354441 Al767525 H92431 Al916735 H93575 Al394255 AW014741 Al573090 C06195 AW612857 AW265195 Al339558 Al377532 Al308821 Al919424
70			AI589705 AW055215 AI336532 AI338051 AA806547 C75509 C00618 AW071172 AW769904 AA630381 AI678018 AI863985 D79662 BE221049
	430439	31808_1	AW265018 AI589700 AW196655 N76573 AI370908 BE042393 N75017 AI698870 AW960115 AL133561 AL041090 AL117481 AL122069 AW439292 AI968826
75	430935 431089	325772_1 327825_1	AW072916 A1184913 AA489195 AW466994 AW469044 N59350 Al819642 Al280239 Al220572 AA789302 Al473611 AW841126 D60937 BE041395 AA491826 AA621946 AA715980 AA666102
75	431322 432407	331543_1 34624_1	AW970622 AA503009 AA502998 AA502989 AA502805 T92188 AA221036 R87170 BE537068 BE544757 C18935 AW812058 T92565 AA227415 AA233942 AA223237 AA668403 AA601627 AW859639
		=:	BE061833 BE000620 AW961170 AW847519 AA308542 AW821833 AW945688 C04699 AA205504 AA377241 AW821667 AA055720 AW817981 AW856468 AA155719 AA179928 T03007 AW754298 AA227407 AA113928 AA307904 C16859
80	434414	38585_1	AI798376 S46400 AW811617 AW811616 W00557 BE142245 AW858232 AW861851 AW858362 AA232351 AA218567 AA055556 AW858231
00			AW857541 AW814172 H66214 AW814398 AF134164 AA243093 AA173345 AA199942 AA223384 AA227092 AA227080 T12379 AA092174 T61139 AA149776 AA699829 AW879188 AW813567 AW813538 AI267168 AA157718 AA157719 AA100472 AA100774 AA130756 AA157705
			AA157730 AA157715 AA053524 AW849581 AW854566 C05254 AW882836 T92637 AW812621 AA206583 AA209204 BE156909 AA226824 AI829309 AW991957 N66951 AA527374 H66215 AA045564 AI694265 H60808 AA149726 AW195620 BE081333 BE073424 AW817662
85	436608		AW817705 AW817703 AW817659 BE081531 H59570 AA628980 Al126603 BE504035
- -			

				•
	W	O 02/0864		PCT/US02/12476
5	438091	44964_1	A A A	W373062 T55662 Al299190 BE174210 AW579001 H01811 W40186 R67100 Al923886 AW952164 AA628440 AW898607 AW898616 A709126 AW898628 AW898544 AA947932 AW898625 AW898622 Al276125 Al185720 AW510698 AA987230 T52522 BE467708 AW243400 W043642 Al288245 Al186932 D52654 D55017 D52715 D52477 D53933 D54679 Al298739 Al146984 Al922204 N98343 BE174213 AA845571 IB13854 Al214518 Al635262 Al139455 Al707807 Al698085 AW884528 Al024768 Al004723 AW087420 Al565133 N9464 Al268939
5	439000	467716_1	A A	W513280 Al061126 Al435818 Al859106 Al360506 Al024767 AA513019 AA757598 X56196 AA902959 Al334784 Al860794 AA010207 W890091 AW513771 Al951391 Al337671 T52499 AA890205 Al640908 H75966 AA463487 AA358688 Al961767 Al866295 AA780994 I985913 BE174196 AA029094 AW592159 T55581 N79072 Al611201 AA910812 Al220713 AW149306 Al758412 AA045713 R79750 N76096 W979121 AA847986 AA829098
10	439285	47065_1	A	L133916 N79113 AF086101 N76721 AW950828 AA364013 AW955684 AI346341 AI867454 N54784 AI655270 AI421279 AW014882 A775552 N62351 N59253 AA626243 AI341407 BE175639 AA456968 AI358918 AA457077
	439780 441128 443068	47673_1 51021_2 558874_1	A	L109688 R23665 R26578 A570256 AW014761 AA573721 AI473237 AI022165 AA554071 AA127551 N90525 AW973623 AA447991 AA243852 BE328850 AI148171 I359627 AI005068 AI356567 AA232991 AW016855 AA906902 AA233101 AA127550 BE512923 I188710 AI032142 AW078833 N30308 AW675632 AI219028 AI341201 N22181 H95390
15	443947 447636	586160_1 7301_1	Y Y A	/24187 W24194 R17789 10043 NM_005342 L05085 AL034450 BE614226 AW749053 AA379173 AA248230 BE514634 AA334622 R70656 AA367593 AA214649 A369318 AW957081 R05760 AA039903 A1886597 AW630122 AA906264 AA041527 R01145 A1088688 BE463637 AA398795 A1354883 I768938 A1569996 A1452952 A1168582 A1189869 A1086670 AW262560 AW613854 AA862839 AA435840 AA670197 A1024032 A1990659 I990089 N81095 AA847919 AW960150 AA211075 AA044704 AA367594 AW582587 AW858854 AW818630 AW818281 AW818433 AW582595
20	448993	79225_1	A	A096002 N83992 1471630 BE540637 BE265481 AW407710 BE513882 BE546739 AA053597 BE140503 BE218514 AW956702 Al656234 Al636283 Al567265 W340858 BE207794 AA053085 R69173 AA292343 AA454908 AA293504 Al659741 Al927478 AA399460 Al760441 AA346416 BE047245 A730380 AA394063 AA454833 Al982791 Al567270 Al813332 Al767858 AA427705 D20284 Al221458 BE048537 Al263048 AA346417 A911497 BE537702
25	449305 451105 451320	804424_1 859083_1 86576_1	A A A	J638293 AW813561 J761324 AW880941 AW880937 JW118072 Al631982 T15734 AA224195 AI701458 W20198 F26326 AA890570 N90552 AW071907 Al671352 AI375892 T03517 R88265 J124088 AA224388 AJ084316 AI354686 T33662 AI140719 AI720211 T03490 AI372637 T15415 AW205836 AA630384 T03515 T33230 JA017131 AA443303 T33623 AI222556 T33511 T33785 AI419606 D55612
30	451807 .	8865_1	. V	V52854 AL.117600 BE208116 BE208432 BE206239 BE082291 AW953423 AA351619 BE180648 BE140560 W60080 AA865478 N90291 W450652 AW449519 AA993634 Al806539 AA351618 AW449522 Al827626 AA904788 AA380381 AA886045 AA774409 BE003229 Z41756
35	452410	9163_1	Ā	IL133619 AA468118 AA383064 AI476447 T09430 AI673758 AA524895 AI581345 AI300820 AW498812 AA256162 AI559724 AI685732 IA602400 AA905453 AI204595 AW166541 AA157456 AA156269 AA383652 AA431072 AW592707 AI435410 AW272464 AI215594 AA622747 IZ4039 N35031 AI804128 AW513621 AA868351 AI026826 AI493388 AA614641 W81604 AI567080 AI214351 AA730140 AI125754 AI200813 IZ69603 AI565082 AI807095 AI476629 AA505909 AI368449 AI686077 AI582930 AW085038 AA757863 AA730154 AI767072 AA468316
	454241 455175	1067807_1 1257335_1	E	J734130 AJ734138 AA426284 AA433997 AJ741241 AW043563 AJ732741 AJ732734 AA437369 AA425820 AA664048 R74130 IE144666 BE184942 AW238414 BE184946 IW993247 AW861464 A932628 AB41669
40	456237 458098	168730_1 47395_1	E A	A203682 R11958 IE550224 AA832519 N45402 AW885857 N29245 BE465409 W07677 AW970089 AI299731 AA482971 BE503548 H18151 W79223 AF086393 IA461301 W74510 R34182 AI090689 N46003 BE071550 R28075 AW134982 AI240204 AI138906 AW026179 AI572316 BE466182 AI206395 IZ76154 AI273269 AI422817 AI371014 AI421274 AI188525 AA839164 BE549810 AW137865 AI694996 BE503841 AA459718 BE327407 IE467534 BE218421 BE467767 AA989054 BE467063 AI797130 BE327781
45	. TABLE 9C			
50	Pkey: Ref: Strand: Nt_position	Sequence of sequence of Indicates D	source. of huma NA stra	rresponding to an Eos probeset The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA in chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Ind from which exons were predicted. In a positions of predicted exons.
55	Pkey 400512 400517 400560 400664	9796593 9796686 9843598	Strand Viinus Viinus Plus Plus	Nt_position 1439-1615 49996-50346 94182-94323,97056-97243,101095-101236,102824-103005 13558-13721,13942-14090,14554-14679
60	400665 400666 400749 400763 401027	8118496 8118496 7331445 8131616	Plus Plus Minus Minus Minus	16879-17023 17982-18115,20297-20456 9162-9293 35537-35784 70407-70554,71060-71160
65	401093 401203 401212 401411 401435	8516137 9743387 9858408 7799787	Minus Minus Plus Minus Vinus	22335-23166 172961-173056,173868-173928 87839-88028 144144-144329 54508-55233
70	401464 401714 401747	6682291 F	Vinus Plus Vinus	170688-170834 96484-96681 118596-118816,119119-119244,119609-119761,120422-120990,130161-130381,130468-130593,131097-131258,131866- 131932,132451-132575,133580-134011
75	401760 401780 401781 401785 401797	7249190 1 7249190 1 7249190 1 6730720 1	Plus Vinus Vinus Vinus Plus	83126-83250,85320-85540,94719-95287 28397-28617,28920-29045,29135-29296,29411-29567,29705-29787,30224-30573 83215-83435,83531-83656,83740-83901,84237-84393,84955-85037,86290-86814 165776-165996,166189-166314,166408-166569,167112-167268,167387-167469,168634-168942 6973-7118
80	401961 401985 401994 402075 402260	2580474 4153858 8117407 3399665	Minus Plus Minus Plus Minus	124054-124209 61542-61750 42904-43124,43211-43336,44607-44763,45199-45281,46337-46732 121907-122035,122804-122921,124019-124161,124455-124610,125672-126076 113765-113910,115653-115765,116808-116940
85	402265 402297 402408	6598824	Plus Plus Minus	21059-21168 35279-35405,35573-35659 110326-110491

	W	O 02/08	6443		PCT/US02/12476
	402420	9796339	Plus	129750-129919	
	402674	8077108	Minus	39290-39502	
	402802	3287156	Minus	53242-53432	
	402994	2996643	Minus	4727-4969	
5	402334	9211494	Minus	92349-92572,92958-93084,93579-93712,93949-94072,94591-94748,95214-95337	•
,	403306	8099945	Pius	127100-127251	
	403329	8516120	Plus	96450-96598	
	403329	9438267	Minus	26009-26178	
	403361	9958258	Plus	116458-116564	
10	403476	9966528		2888-3001,3198-3532,3655-4117	
10			Plus		
	403627	8569879	Minus	23868-24342	
	403715	7239669	Plus	85128-85292	
	404044	9558573	Minus	225757-225939	
15	404076	9931752	Minus	3848-3967	
13	404101	8076925	Minus	125742-125997	
	404140	9843520	Plus	37761-38147	
	404165	. 9926489	Minus	69025-69128	
	404185	4572584	Minus	129171-129327	•
20	404210	5006246	Plus	169926-170121	
20	404253	9367202	Minus	55675-56055	
	404287	2326514	Plus	53134-53281	
	404298	9944263	Minus	73591-73723	
	404347	9838195	Plus	74493-74829	
~-	404440	7528051	Plus	80430-81581	
25	404721	9856648	Minus	173763-174294	
	404794	4826439	Plus	101619-101898	
	404854	7143420	Plus	14260-14537	
	404877	1519284	Plus	1095-2107	
	404927	7342002	Plus	68690-69563	
30	404996	6007890	Plus	37999-38145,38652-38998,39727-39872,40557-40674,42351-42450	
	405449	7622497	Plus	42236-42570	
	405568	6006906	Plus	35912-36065	
	405572	3800891	Plus	85230-85938	
	405646	4914350	Plus	741-969	
35	405676	4557087	Plus	73195-73917	
	405770	2735037	Plus	61057-62075	
	405932	7767812	Minus	123525-123713	
	406137	9166422	Minus	30487-31058	
	406360	9256107	Minus	7513-7673	
40	406399	9256288	Minus	63448-63554	

TABLE 10A: Potential Therapeutic, Diagnostic and Prognostic targets for Therapy of Lung Cancer and Non-malignant Lung Disease
Table 2A shows about 307 genes up-regulated in non-malignant lung disease relative to lung tumors and normal body tissues and/or down-regulated in lung tumors relative to
normal lung and non-malignant lung disease. These genes were selected from about 59580 probesets on the Eos/Affymetrix Hu03 Genechip array. 45

Table 10B show the accession numbers for those Pkey's lacking UnigenelD's for table 10A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence 50 similarity using Clustering and Alignment Tools (Double Twist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Table 10C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 10A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

Unique Eos probeset identifier number Pkey: ExAccn: Exemplar Accession number, Genbank accession number UnigenelD: Unigene number

Unigene Title: Unigene gene title

9795551

Plus

182212-182958

406467

55

60

Average of lung tumors (including squamous cell carcinomas, adenocarcinomas, small cell carcinomas, granulomatous and carcinoid tumors) divided by the

average of normal lung samples

R2: Average of non-malignant lung disease samples (including bronchitis, emphysema, fibrosis, atelectasis, asthma) divided by the average of normal lung samples

Pkey	ExAccn	UnigenelD	Unigene Tille	R1	R2
404394		·	ENSP00000241075:TRRAP PROTEIN.	0.79	3.10
404916			Target Exon	1.00	159.00
405257			Target Exon	1.00	422.00
407228	M25079	Hs.155376	hemoglobin, beta	0.47	2.33
407568	AA740964	Hs.62699	ESTs	1.00	123.00
408562	A1436323	Hs.31141	Homo sagiens mRNA for KIAA1568 protein,	1.00	230.00
409031	AA376836	Hs.76728	ESTs	1.00	128.00
410434	AF051152	Hs.63668	toll-like receptor 2	39.65	149.00
410467	AF102546	Hs.63931	dachshund (Orosophila) homolog	1.00	109.00
410808	T40326	Hs.167793	ESTs	1.14	13.14
412351	AL135960	Hs.73828	T-cell acute lymphocytic leukemia 1	0.37	2.27
412372	R65998	Hs.285243	hypothetical protein FLJ22029	1.00	173.00
413795	AL040178	Hs.142003	ESTs	0.10	11.90
414154	AW205314	Hs.323060	ESTs	0.62	2.09
414214	D49958	Hs.75819	glycoprotein M6A	0.03	4.55
414998	NM_002543	Hs.77729	oxidised low density lipoprotein (lectin	0.64	2.97
415122	D60708	Hs.22245	ESTs	0.07	8.97
415765	NM_005424	Hs.78824	tyrosine kinase with immunoglobulin and	0.67	1.65
415775	H00747	Hs.29792	ESTs, Weakly similar to 138022 hypotheti	0.29	2.64
415910	U20350	Hs.78913	chemokine (C-X3-C) receptor 1	1.00	145.00
	404394 404916 405257 407228 407568 408562 409031 410467 410808 412351 412372 413792 414154 414998 415125 415765 415765	404394 404916 405257 407228 M25079 407568 AA740964 408562 Al436323 409031 AA376836 410434 AF051152 410467 AF102546 410808 T40326 412351 Al.135960 412372 R65998 413795 AL040178 414154 AW205314 414214 D49958 414998 NM_002543 415765 NM_005424 415775 H00747	404394 404916 405257 407228 M25079 Hs.155376 407568 AA740964 Hs.62699 408562 Al436323 Hs.31141 409031 AA376836 Hs.76728 410434 AF051152 Hs.63668 410467 AF102546 Hs.63931 410808 T40326 Hs.167793 412351 Al.135960 Hs.73828 412372 R65998 Hs.285243 413795 AL040178 Hs.142003 414154 AW205314 Hs.323060 414214 D49958 Hs.75819 414998 NM_002543 Hs.77729 415122 D60708 Hs.22245 415765 NM_005424 Hs.78824 415775 H00747 Hs.29792	404394 404916 405257 407228 405257 407228 407568 AA740964 408562 A1436323 Hs.31141 409031 AA376836 Hs.62699 410467 AF102546 Hs.63668 410467 AF102546 Hs.63631 Hs.167793 412351 AL135950 Hs.78728 Hs.285243 412372 R65998 Hs.285243 413795 AL040178 Hs.142003 ESTs Hs.142003 ESTs Hypothetical protein FLJ22029 ESTs Hs.14203 Hs.323060 ESTs Hypothetical protein FLJ22029 ESTs Hs.14203 ESTs Hs.14203 ESTs Hypothetical protein FLJ22029 ESTs Hs.14203 ESTs Hs.14203 ESTs Hs.14203 ESTs Hs.14203 ESTs Hs.14204 ESTs Hs.14205 ESTs Hs.14205 ESTs Hs.14205 ESTs Hs.14205 ESTs Hs.14205 ESTs Hs.14206 ESTs Hs.14206 ESTs Hs.14207 ESTs Hs.22046 Hs.22245 Hs.7824 Hs.28292 ESTs, Weakly similar to 138022 hypothetic	404394 ENSP00000241075:TRRAP PROTEIN. 0.79 404916 Target Exon 1.00 405257 Target Exon 1.00 407228 M25079 Hs.155376 hemoglobin, beta 0.47 407588 AA740964 Hs.62699 ESTs 1.00 408562 AI436323 Hs.31141 Homo sapiens mRNA for KIAA1568 protein, 1.00 409031 AA376836 Hs.76728 ESTs 1.00 410434 AF051152 Hs.63668 bil-like receptor 2 39.65 410467 AF102546 Hs.63931 dachshund (Orosophila) homolog 1.00 410808 T40326 Hs.167793 ESTs 1.14 412351 AL135960 Hs.73828 T-cell acute lymphocytic leukemia 1 0.37 412372 R65998 Hs.285243 hypothetical protein FLJ22029 1.00 413765 AU400178 Hs.142003 ESTs 0.10 414154 AW205314 Hs.323060 ESTs 0.62 414214 D49958 Hs.76819 glycoprotein M6A 0.03 414998 NM_002543 Hs.77729 oxidised low density lipoprotein (lectin 0.64 415775 H00747 Hs.22792 ESTs, Weakly similar to 138022 hypotheti

	w	O 02/086	443			
	416319	Al815601	Hs.79197	CD83 antigen (activated B lymphocytes, i	15.32	237.00
	416402	NM_000715	Hs.1012	complement component 4-binding protein,	0.64	4.00
	417355	D13168	Hs.82002	endothelin receptor type B	0.01	3.90
_	417421	AL138201	Hs.82120	nuclear receptor subfamily 4, group A, m	36.30	357.00
5	417511	AL049176	Hs.82223	chordin-like	1.00	179.00
	418489	U76421	Hs.85302	adenosine deaminase, RNA-specific, B1 (h	0.02	6.00
	418726	BE241812	Hs.87860	protein tyrosine phosphatase, non-recept	1.00	113.00
	418741	H83265	Hs.8881	ESTs, Weakly similar to S41044 chromosom	0.44	1.90 2.04
10	418883	BE387036 NM_000216	Hs.1211 Hs.89591	acid phosphatase 5, tartrate resistant Kaltmann syndrome 1 sequence	0.96 0.62	2.74
10	419086 419150	T29618	Hs.89640	TEK tyrosine kinase, endotheliat (venous	0.02	6.90
	419235	AW470411	Hs.288433	neurolrimin	1.48	5.13
	419407	AW410377	Hs.41502	hypothetical protein FLJ21276	37.55	336.00
	420556	AA278300	Hs.124292	Homo sapiens cDNA: FLJ23123 fis, clone L	0.80	3.65
15	420656	AA279098	Hs.187636	ESTs	1.65	8.07
	420729	AW964897	Hs.290825	ESTs	2.99	25.82
	421177	AW070211	Hs.102415	Homo saplens mRNA; cDNA DKFZp586N0121 (f	0.46	1.95
	422060	R20893	Hs.325823	ESTs, Moderately similar to ALU5_HUMAN A	1.00	156.00
20	422426	W79117	Hs.58559	ESTs	0.03	7.44
20	422652	AW967969	Hs.118958	syntaxin 11	0.14	3.62
	423099	NM_002837	Hs.123641	protein tyrosine phosphatase, receptor t ESTs	0.01 0.75	3.16 141.75
	424433 424585	H04607 AA464840	Hs.9218 Hs.131987	ESTs	1.00	167.00
	424703	NM_005795	Hs.152175	calcitonin receptor-like	0.43	3.01
25	424973	X92521	Hs.154057	matrix metalloproleinase 19	0.37	19.45
	425023	AW956889	Hs.154210	endothelial differentiation, sphingolipi	0.14	3.35
	425664	AJ006276	Hs.159003	transient receptor potential channel 6	1.00	94.00
	425998	AU076629	Hs.165950	fibroblast growth factor receptor 4	0.68	1.42
••	426657	NM_015865	Hs.171731	solute carrier family 14 (urea transport	0.03	3.74
30	426753	T89832	Hs.170278	ESTs	1.00	141.00
	427558	D49493	Hs.2171	growth differentiation factor 10	1.00	117.00
	427983	M17706	Hs.2233	colony stimulating factor 3 (granulocyte	0.75 0.76	2,20 2.25
	428467	AK002121	Hs.184465 Hs.90250	hypothetical protein FLJ11259 ESTs	0.76	3.62
35	428927 429496	AA441837 AA453800	Hs.192793	ESTs	1.00	138.00
55	430468	NM_004673	Hs.241519	angiopoietin-like 1	1.00	132.00
	431385	BE178536	Hs.11090	membrane-spanning 4-domains, subfamily A	1.00	157.00
	431728	NM_007351	Hs.268107	multimerin	1.00	157.00
40	431848	Al378857	Hs.126758	ESTs, Highly similar to AF175283 1 zinc	0.34	2.24
40	432128	AA127221	Hs.117037	ESTs	0.00	1.15
	432519	Al221311	Hs.130704	ESTs, Weakly similar to BCHUIA S-100 pro	0.01	2.06
•	433043 433803	W57554	Hs.125019 Hs.27688	lymphoid nuclear protein (LAF-4) mRNA ESTs	1.00 1.00	267.00 105.00
•	434730	A1823593 AA644669	Hs.193042	ESTs	1.05	3.15
45	435472	AW972330	Hs.283022	triggering receptor expressed on myeloid	0.83	1.94
	436532	AA721522	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	qb:nv54h12.r1 NCI_CGAP_Ew1 Homo sapiens	1.00	218.00
	437119	Al379921	Hs.177043	ESTs	1.00	133.00
	437140	AA312799	Hs.283689	activator of CREM in testis	0.67	122.67
50	437211	AA382207	Hs.5509	ecotropic viral integration site 2B	1.00	142.00
50	437960	A1669586	Hs.222194	ESTs	1.00	147.00
	438202	AW169287	Hs.22588	ESTS	1.00 0.71	141.00 3.66
	438873 438875	Al302471 AA827640	Hs.124292 Hs.189059	Homo sapiens cDNA: FLJ23123 fis, clone L ESTs	23.32	370.00
	441048	AA913488	Hs.192102	ESTs	0.77	8.50
55	441188	AW292830	Hs.255609	ESTs	3.43	16.36
	441499	AW298235	Hs.101689	ESTs	1.00	167.00
	444513	AL120214	Hs.7117	glutamate receptor, ionotropic, AMPA 1	1.00	151.00
	444527	NM_005408	Hs.11383	small inducible cylokine subfamily A (Cy	46.47	153.00
<i>(</i>)	444561	NM_004469	Hs.11392	c-fos induced growth factor (vascular en	0.01	3.08
60	445279	R41900	Hs.22245	ESTs	0.60	141.00
	446017	N98238	Hs.55185	ESTs Rho guanine exchange factor (GEF) 15	0.18 0.10	2.3 9 2.16
	446984 446998	AB020722 N99013	Hs.16714 Hs.16762	Homo sapiens mRNA; cDNA DKFZp564B2062 (f	0.10	2.53
	447357	Al375922	Hs.159367	ESTs	0.46	2.64
65	448106	A1800470	Hs.171941	ESTs	18.05	296.00
	448253	H25899	Hs.201591	ESTs	1.00	141.00
	449275	AW450848	· Hs.205457	periaxin	0.56	1.38
	450400	Al694722	Hs.279744	ESTs	0.88	4.33
70	450696	AI654223	Hs.16026	hypothetical protein FLJ23191	0.52	2.08
70	450726 451497	AW204600 H83294	Hs.250505 Hs.284122	retinoic acid receptor, alpha Wnt inhibitory factor-1	0.79 0.35	2.01 2.03
	451533	NM_004657	Hs.26530	serum deprivation response (phosphatidy)	0.13	2.25
	453636	R67837	Hs.169872	ESTs	1.00	116.00
	458332	AI000341	Hs.220491	ESTs	1.00	192.00
75	459580	AA022888	Hs.176065	ESTs	0.20	2.98
	400269			Eos Control	0.40	2.40
	403421	740000	11	NM_016369*:Homo sapiens claudin 18 (CLDN	0.53	1.77
•	407570	Z19002	Hs.37096	zinc finger protein 145 (Kruppel-like, e	0.01	3.18
80	412295 414517	AW088826 M24461	Hs.117176 Hs.76305	poly(A)-binding protein, nuclear 1 surfactant, pulmonary-associated protein	0.56 0.64	1.74 1.50
50	417204	N81037	Hs.1074	surfactant, pulmonary-associated protein	0.04	1.16
	418307	U70867	Hs.83974	solute carrier family 21 (prostaglandin	0.53	1.55
	418935	T28499	Hs.89485	carbonic anhydrase IV	0.20	1.28
0.5	421502	AF111856	Hs.105039	solute carrier family 34 (sodium phospha	0.78	1.90
85	421798	N74880	Hs.29877	N-acylsphingosine amidohydrolase (acid c	0.59	1.54

	W	O 02/086	443			
	423354	AB011130	Hs.127436	calcium channel, voltage-dependent, alph	0.59	1.55
	423738	AB002134	Hs.132195	airway trypsin-like protease	10.14	51.00
	425211	M18667	Hs.1867	progastricsin (pepsinogen C)	0.35	1.62
	425438	T62216	Hs.270840	ESTs	0.23	9.45
5	426828		Hs.172670	activin A receptor type II-like 1	0.03	1.71
9		NM_000020		hypothetical protein FLJ10970	0.03	1.49
	427019	AA001732	Hs.173233		0.42	1.26
	428043	T92248	Hs.2240	uteroglobin		
	430280	AA361258	Hs.237868	interleukin 7 receptor	0.46	2.43
10	431433	X65018	Hs.253495	surfactant, pulmonary-associated protein	0.57	1.59
10	431723	AW058350	Hs.16762	Homo sapiens mRNA; cDNA DKFZp564B2062 (f	0.29	1.80
	432985	T92363	Hs.178703	ESTs	0.32	2.27
	441835	AB036432	Hs.184	advanced glycosylation end product-speci	0.31	1.51
	442275	AW449467	Hs.54795	ESTs	0.55	1.78
	443709	AI082692	Hs.134662	ESTs	0.00	3.02
15	444325	AW152618	Hs.16757	ESTs	0.32	2.49
	450954	A1904740	Hs.25691	receptor (calcitonin) activity modifying	0.46	1.74
	451558	NM_001089	Hs.26630	ATP-binding cassette, sub-family A (ABC1	0.52	1.87
	453310	X70697	Hs.553	solute carrier family 6 (neurotransmitte	0.00	3.30
	456855	AF035528	Hs.153863	MAD (mothers against decapentaplegic, Dr	0.01	2.31
20	444342	NM_014398	Hs.10887	similar to lysosome-associated membrane	0.66	2.20
20		MM_014030	113.10007	Target Exon	1.00	297.00
	400754			C11001883*:gi[6753278 ref]NP_033938.1 c	1.00	109.00
	401045				0.89	1.39
	401083			NM_016582*:Homo sapiens peptide transpor		
25	402474			NM_004079:Homo sapiens cathepsin S (CTSS	1.45	4.47
25	402808			ENSP00000235229:SEMB.	1.00	1.87
	403021			C21000030:gi 9955960 ref NP_063957.1 AT	1.00	149.00
	403438			NM_031419*:Homo sapiens molecule possess	1.06	2.96
	403687			NM_007037*:Homo saplens a disintegrin-li	0.04	4.89
~ ~	403764			NM_005463:Homo sapiens heterogeneous nuc	1.00	225.00
30	404277			NM_019111*:Homo sapiens major histocompa	0.97	1.93
	404288			NM_002944*:Homo sapiens v-ros avian UR2	1.00	68.00
	404518	Al815601		CD83 antigen (activated B lymphocytes, i	0.02	1.83
	405106			C11001637*:gij5032241[ref]NP_005732.1] z	1.00	235.00
	405381			Target Exon	1.00	93.00
35	406387			Target Exon	1.37	6.02
	406646	M33600		major histocompatibility complex, class	0.86	2.46
	406714	Al219304	Hs.266959	hemoglobin, gamma G	0.01	3.19
	406753	AA505665	Hs.217493	annexin A2	1.00	147.00
	406973	M34996	Hs.198253	major histocompatibility complex, class	1.03	2.04
40	407248	U82275	Hs.94498	teukocyte immunogłobulin-like receptor,	1.00	64.00
	407510	U96191		gb:Human trophoblast hypoxia-regulated f	1.00	90.00
	407731	NM_000066	Hs.38069	complement component 8, beta polypeptide	1.00	67.00
	407830	NM_001086	Hs.587	arylacetamide deacetylase (esterase)	1.00	102.00
		AW138959	Hs.245123	ESTs	1.00	70.00
45	408045		115.243123	ESTs	1.00	112.00
73	408074	R20723 AW025430	Hs.155591	forkhead box F1	0.07	10.17
	408374		Hs.141883	ESTs .	0.39	2.31
	409064	AA062954 AF050083	Hs.673	interleukin 12A (natural killer cell sti	1.00	95.00
	409083	W03754		hypothetical protein FLJ20022	0.01	4.55
50	409153		Hs.50813		0.01	3.72
50	409203	AA780473	Hs.687	cytochrome P450, subfamily IVB, polypept		79.00
	409238	AL049990	Hs.51515	Homo sapiens mRNA; cDNA DKFZp564G112 (fr	1.00	
	409389	AB007979	Hs.301281	Homo saplens mRNA, chromosome 1 specific	0.14	27.35
,	409718	D86640	Hs.56045	src homology three (SH3) and cystelne ri	1.00	113.00
E E	410798	BE178622	Hs.16291	gb:PM3-HT0605-270200-001-a02 HT0605 Homo	0.64	2.47
55	411020	NM_006770	Hs.67726	macrophage receptor with collagenous str	0.55	2.40
	411667	BE160198		gb:QV1-HT0413-010200-059-h03 HT0413 Homo	1.00	- 111.00
	412000	AW576555	Hs.15780	ATP-binding cassette, sub-family A (ABC1	1.00	95.00
	412358	BE047490	Hs.24172	ESTs	1.00	87.00
<i></i>	412420	AL035668	Hs.73853	bone morphogenetic protein 2	1.43	8.07
60	412564	X83703	Hs.31432	cardiac ankyrin repeat protein	0.02	3.07
	412869	AA290712	Hs.82407	CXC chemokine ligand 16	0.93	1.72
	412870	N22788	Hs.82407	CXC chemokine ligand 16	0.97	1.51
	413529	U11874	Hs.846	interlaukin 8 receptor, beta	0.02	2.42
	413533	BE146973		gb:QV4-HT0222-011199-019-e05 HT0222 Homo	0.65	1.50
65	413689	BE157286	Hs.20631	zinc finger protein, subfamily 1A, 5 (Pe	20.87	232.00
90	413724	AA131466	Hs.23767	hypothetical protein FLJ12666	1.00	80.00
	413800	Al129238	Hs.192235	ESTs	1.00	85.00
	413802	AW964490	Hs.32241	ESTs, Weakly similar to S65657 alpha-1C-	1.00	213.00
		NM_001872	Hs.75572	carboxypeptidase B2 (plasma)	0.02	3.93
70	413829	BE393856	Hs.66915	ESTs, Weakly similar to 16.7Kd protein [1.00	115.00
70	414376				0.49	1.94
	414577	AI056548	Hs.72116	hypothetical protein FLJ20992 similar to	0.43	3.75
	414700	H63202	Hs.38163	ESTs		
	415078	AA311223	Hs.283091	found in inflammatory zone 3	0.86	1.95
75	415120	N64464	Hs.34950	ESTs	1.00 .	120.00
75	415323	BE269352	Hs.949	neutrophil cytosolic factor 2 (65kD, chr	0.60	2.48
	415335	AA847758	Hs.111030	ESTS	1.00	95.00
	415582	W92445	Hs.165195	Homo sapiens cDNA FLJ14237 fis, clone NT	1.00	136.00
	416030	H15261	Hs.21948	ESTs	0.02	8.07
90	416427	BE244050	Hs.79307	Rac/Cdc42 guanine exchange factor (GEF)	1.00	73.00
80	416464	NM_000132	Hs.79345	coagulation factor VIII, procoagulant co	0.70	3.36
	416585	X54162	Hs.79386	leiomodin 1 (smooth muscle)	0.06	6.56
	416847	L43821	Hs.80261	enhancer of filamentation 1 (cas-like do	0.70	3.66
	417148	AA359896	Hs.293885	hypothetical protein FLJ14902	1.00	114.00
0.5	417370	T28651	Hs.82030	tryplophanyl-IRNA synthetase	0.85	1.30
85	417673	T87281	Hs.16355	ESTs	0.15	15.54

	w	O 02/086	443			
	418067	Al127958	Hs.83393	cystatin E/M	0.81	1.74
	418296	C01566	Hs.86671	ESTs	1.00	99.00
	418643	J03798	Hs.86948	small nuclear ribonucleoprotein D1 polyp	1.00	60.00
_	418832	X04011	Hs.88974	cytochrome b-245, beta polypeptide (chro	2.40	14.74
5	418945	BE246762	Hs.89499	arachidonate 5-lipoxygenase	0.67	3.16
	419261	X07876	Hs.89791	wingless-type MMTV integration site fami	1.00	73.00 192.00
	419564 419574	U08989 AK001989	Hs.91139 Hs.91165	solute carrier family 1 (neuronal/epithe hypothetical protein	1.00 1.00	94.00
	419968	X04430	Hs.93913	interleukin 6 (interferon, bela 2)	61.16	500.00
10	420256	U84722	Hs.76206	cadherin 5, type 2, VE-cadherin (vascula	0.52	1.70
	420285	AA258124	Hs.293878	ESTs, Moderately similar to ZN91_HUMAN Z	1.00	172.00
•	420577	AA278436	Hs.186649	ESTs	1.00	97.00
	421262	AA286746	Hs.9343	Homo sapiens cDNA FLJ14265 fis, clone PL	1.00	64.00
1.5	421445	AA913059	Hs.104433	Homo sapiens, clone IMAGE:4054868, mRNA	0.88	1.51
15	421470	R27496	Hs.1378	annexin A3	0.05	11.26
	421478	AI683243	Hs.97258	ESTs, Moderately similar to S29539 ribos	1.00	73.00
	421563	NM_006433	Hs.105806	granulysin	0.82 5.50	2.42 31.57
	421566 421855	NM_000399 F06504	Hs.1395 Hs.27384	early growth response 2 (Krox-20 (Drosop ESTs, Moderately similar to ALU4_HUMAN A	1.00	129.00
20	421913	Al934365	Hs.109439	osteoglycin (osteoinductive factor, mime	1.00	101.00
20	421952	AA300900	Hs.98849	ESTs, Moderately similar to AF161511 1 H	0.60	63.60
	422232	D43945	Hs.113274	transcription factor EC	1.00	148.00
	422386	AF105374	Hs.115830	heparan sulfate (glucosamine) 3-O-sulfot	1.40	3.98
25	423168	R34385	Hs.124940	GTP-binding protein	0.34	3.59
25	423196	AK001866	Hs.125139	hypothetical protein FLJ11004	0.55	2.00
	423387	AJ012074	11- 400400	vasoactive intestinal peptide receptor 1	0.09	2.13
	423424	AF150241	Hs.128433	prostaglandin D2 synthase, hematopoietic	1.00	141.00 66.00
	423456 423696	AL110151 Z92546	Hs.128797	DKFZP586D0824 protein Sushi domain (SCR repeat) containing	1.00 0.73	1.27
30	424027	AW337575	Hs.201591	ESTs	0.54	2.58
50	424212	NM_005814	Hs.143131	glycoprotein A33 (transmembrane)	0.77	2.47
	425087	R62424	Hs.126059	ESTs	1.00	74.00
	425175	AF020202	Hs.155001	UNC13 (C. elegans)-like	0.85	1.96
25	425771	BE561776	Hs.159494	Bruton agammaglobulinemia tyrosine kinas	1.18	2.56
35	426486	BE178285	Hs.170056	Homo sapiens mRNA; cDNA DKFZp586B0220 (f	1.00 1.00	76.00 63.00
	427507 427618	AF240467 NM_000760	Hs.179152 Hs.2175	toll-like receptor 7 colony stimulating factor 3 receptor (gr	0.60	2.19
	427732	NM_002980	Hs.2199	secretin receptor	0.97	1.42
	427952	AA765368	Hs.293941	ESTs, Moderately similar to A53959 throm	1.00	105.00
40	428709	BE268717	Hs.104916	hypothetical protein FLJ21940	1.00	80.00
	428769	AW207175	Hs.106771	ESTs	0.09	2.55
	428780	A1478578	Hs.50636	ESTS	1.00 . 1.00	98.00
	428833 429657	Ai928355 D13626	Hs.185805 Hs.2465	ESTs KIAA0001 gene product; putative G-protei	1.00	113.00 52.00
45	430212	AA469153	110.2400	gb:nc67f04.s1 NCI_CGAP_Pr1 Homo sapiens	1.00	132.00
	430226	BE245562	Hs.2551	adrenergic, beta-2-, receptor, surface	0.11	15.60
	430376	AW292053	Hs.12532	chromosome 1 open reading frame 21	1.00	103.00
	430414	AW365665	Hs.120388	ESTs	0.50	6.96
50	430656	AA482900	Hs.162080	ESTs ESTs	1.00	70.00
50	430843 430998	A1734149 AF128847	Hs.119514 Hs.204038	indolethylamine N-methyltransferase	1.00 0.29	90.00 1.84
	431217	NM_013427	Hs.250830	Rho GTPase activating protein 6	1.00	79.00
	431921		Hs.58879	ESTs	0.91	1.67
	432176	AW090386	Hs.112278	arrestin, beta 1	0.66	2.63
55	432203	AA305746	Hs.49	macrophage scavenger receptor 1	1.00	76.00
	432231	AA339977	Hs.274127	CLST 11240 protein	0.46	1.46
	432485	N90866	Hs.276770	CDW52 antigen (CAMPATH-1 antigen)	0.79	2.25
	432522 432596	D11466	Hs.51 Hs.278461	phosphatidylinositol glycan, class A (pa matrilin 3	1.93 0.04	4.83 5.79
60	432850	AJ224741 X87723	Hs.3110	angiolensin receptor 2	1.00	167.00
O	433138	AB029496	Hs.59729	semaphorin sem2	0.04	9.16
	433563	A1732637	Hs.277901	ESTs	1.00	91.00
	433588	AI056872	Hs.133386	ESTs	120.16	315.00
65	434445	Al349306	Hs.11782	ESTs	0.60	1.84
65	435496	AW840171	Hs.265398	ESTs, Weakly similar to transformation-r	1.00 1.00	128.00
	435974 436061	U29690 A1248584	Hs.37744 Hs.190745	Homo sapiens beta-1 adrenergic receptor Homo sapiens cDNA: FLJ21326 fis, clone C	1.00	108.00 91.00
	437157	BE048860	Hs.120655	ESTs	1.00	87.00
	437207	T27503	Hs.15929	hypothetical protein FLJ12910	1.00	105.00
70	437311	AA370041	Hs.9456	SWI/SNF related, matrix associated, acti	1.00	71.00
	437439	H29796	Hs.269622	ESTs	1.00	115.00
	438199	AW016531	Hs.122147	ESTS	1.00	80.00
	439551 440515	W72062 AJ131245	Hs.11112 Hs.7239	ESTs SEC24 (S. cerevisiae) related gene famil	0.30 1.00	3.10 77.00
75	440887	A1799488	Hs.135905	ESTs	1.00	85.00
	441025	AA913880	Hs.176379	ESTs.	1.00	82.00
	441384	AA447849	Hs.288660	Homo sapiens cDNA: FLJ22182 fis, clone H	0.79	1.89
	441735	AI738675	Hs.127346	ESTs	1.00	75.00
80	442200	AW590572	Hs.235768	ESTs	0.78	5.83
ou	442832 442957	AW206560 Al949952	Hs.253569 Hs.49397	ESTs ESTs	0.03 1.00	10.88 70.00
	443282	T47764	Hs.132917	ESTs	1.00	197.00
	443547	AW271273	Hs.23767	hypothetical protein FLJ12666	1.00	253.00
05	443951	F13272	Hs.111334	ferritin, light polypeptide	0.55	2.09
85	444330	Al597655	Hs.49265	ESTs	1.00	90.00

	w	02/086	443				PCT/US02/12476
		W204908	Hs.169979	ESTs	1.00	84.00 4.38	
		N741471 R13580	Hs.23666 Hs.13436	ESTs Homo sapiens clone 24425 mRNA sequence	0.02 1.00	97.00	
5		E397753	Hs.14623 Hs.156672	Interferon, gamma-inducible protein 30 ESTs	0.93 1.00	1.69 106.00	
3	446917 A	1347663 IM_006691	Hs.17917	extracellular link domain-containing 1	0.40	47.20	
	447432 A	W958473	Hs.301957	nudix (nucleoside diphosphate linked moi	1.00	100.00	•
		\B033059 100656	Hs.18705 Hs.29792	KIAA1233 protein ESTs, Weakly similar to 138022 hypotheti	0.05 0.02	8.21 5.42	
10	448299	VA497044	Hs.20887	hypothetical protein FLJ10392	1.00	79.00	•
		\L050295 \M_005859	Hs.22039 Hs.29117	KIAA0758 protein purine-rich element binding protein A	0.42 0.17	1.56 11.33	
	450584 A	VA040403	Hs.60371	ESTs	1.00	94.00	
15		W450461 W266484	Hs.203965 Hs.31570	ESTs ESTs, Weakly similar to KIAA1324 protein	1.00 1.00	91.00 152.00	
13		R52804	Hs.25956	DKFZP564D206 protein	1.00	86.00	
		\F124251	Hs.26054 Hs.326444	novel SH2-containing protein 3 cartilage acidic protein 1	0.60 0.54	1.30 1.91	
	451668 2 452197 A	243948 AW023595	Hs.232048	ESTs -	1.00	67.00	
20	452331 A	A598509	Hs.29117	purine-rich eternent binding protein A	4.53 0.72	11.07 2.24	
		C18825 BE537217	Hs.29191 Hs.30343	epithelial membrane protein 2 ESTs	1.00	68.00	
	453107	VM_016113	Hs.279746	vanilloid receptor-like protein 1	0.83	1.70	
25		\W295374 \A862496	Hs.31412 Hs.28482	Homo sapiens cDNA FLJ11422 fis, clone HE ESTs	1.00 1.00	132.00 72.00	
25	453531	VA417940	110.20 102	ESTs, Weakly similar to JC5795 CDEP prot	1.00	68.00	·
		3E154396 VA287827	Hs.284205	gb:CM2-HT0342-091299-050-b05 HT0342 Homo up-regulated by BCG-CWS	0.57 1.00	2.89 82.00	
		VK002016	Hs.114727	Homo saplens, clone MGC:16327, mRNA, com	0.79	1.96	
30		AF032906	Hs.252549	cathepsin Z ESTs, Weakly similar to ALU4_HUMAN ALU S	1.03 1.00	3.25 113.00	
		-18572 -03027	Hs.22978	gb:HSC1KA072 normalized infant brain cDN	1.00	544.00	
35	TABLE 10E	,					
	Pkey:			ntifier number			
	Accession:	er: Gene cluste Genbank a	er number ccession num	bers			
40							
40	Pkey 408074	CAT Numb 103684_1	er Access R2072	ion 3 AA263003 AA333976 AA334725 AA334151 AW96	5490 AA31051	13 Al810530 D31302 Al	N134897 AA830127 AA046953 Al668930
	444007	_		4 AW104534 198 AW935898 T11520 AW935930 AW856073 AW8	6103/		
	411667 413533	1253334_1 1375344_1	BE146	973 BE146972 BE147042 BE147018 BE146783 BE1	47020 BE146	781 BE147019 BE1467	66 BE147021 BE146952 BE146767 BE147044
45	400007		BE146	797 BE146776 BE146985 BE146793 BE146768 BE 174 U11087 L13288 X75299 L20295 AW630780 H14	46771 BE146	6954 BE146760 BE1470	48 BE147025 BE147030 19839 T81622 T79697 T29519 R94105 T83923
	423387	22779_1	R7330	0 A1797007 R73390 AA961010 H74168 A1689932 BE	045543 A1808	8418 A1608912 A180657	'3 AW884084 AW872978 AW872985 AA565655
			Al0229	15 R50647 R73210 H45098 R46451 AW166269 T7 2 R73145 R50549 Al094557 Al668793 R72302 Al56	132 Al264547	7 R52146 Al304920 R73 4 A418962 W32571 B7	3391 AW884059 AW884085 H73241 T60038
50			AA508	805 AA418798 T83751 R94072 T16182 AA928785 A	A903896		
	423696	23112_1	Z92546	3 AA330586 A1570568 AW341487 A1827050 AW298 175 A1206100 AA912444 A1269365 A1640254 AW772	368 Al792189	Al015693 Al733599 Al	572251 Al672488 AW193262 Al244716
	430212	314437_1	AA469	153 Al718503 AA469225	400 A1001 550	700270041110314701	, , , , , , , , , , , , , , , , , , ,
55	436532	421802_1	AA721	522 AW975443 T93070			
55	453531 454741	97026_1 1232559_1		940 AA036735 T07025 396 AW817959 BE154393			
	1017-11	.202000	5_151				
	TABLE 100						•
60			nhar aarras	inding to an Eos probeset			
	Pkey: Ref:	Sequence	source. The 7	digit numbers in this column are Genbank Identifier	(GI) numbers.	"Dunham I. et al." refe	rs to the publication entitled "The DNA
		sequence of	of human chro	mosome 22." Dunham I. et al., Nature (1999) 402:4	39-495.		
65	Strand: Nt_position			m which exons were predicted. tions of predicted exons.			
			•	•			
	Pkey 400754	Ref 7331445	Strand Plus	Nt_position 144559-144684			
70	401045	8117619	Plus	90044-90184,91111-91345			
70	401083 402474	3242744 7547175	Plus Minus	33192-33360 53526-53628,55755-55920,57530-57757			
	402808	6456148	Minus	114964-115136,115461-115585,115931-116047	,117666-1177	71,118004-118102	
	403021 403421	7547270 9665041	Plus Minus	120799-120966 126609-126773,139986-140205			
75	403438	9719679	Plus	90792-90938			
	403687 403764	7387384 7717105	Plus Minus	9009-9534 118692-118853			
٠	404277	7717105 1834458	Minus ·	91665-91946			
80	404288	2769644	Plus	3512-3691	A1502 A1772	A1010	•
30	404394 404518	3135305 8151988	Minus Plus	37121-37205,37491-37762,41053-41140,41322- 84494-84603	41053,41713	71313	
	404916	7341826	Plus	91057-91188			
	405106 405257	8079395 7329310	Minus Plus	80877-81418 73121-73273			
85	405381	6006920	Minus	75121-75275 7636-8054			

TABLE 11A: Genes Distinguishing Adenocarcinoma from Other Lung Diseases and Normal Lung

Table 11A shows about 84 genes upregulated in lung adenocarcinomas relative to other lung tumors, non-matignant lung disease, and normal lung. These genes were selected from about 59680 probesets on the Eos/Affymetrix Hu03 Genechip array.

Table 11B show the accession numbers for those Pkey's lacking UnigenelD's for table 11A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Table 11C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in lable 11A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

Pkey: Unique Eos probeset identifier number

15 Exaccn: Exemplar Accession number, Genbank accession number

UnigenelD: Unigene number Unigene Title: Unigene gene title

5

10

R1: Average of lung tumors (including squamous cell carcinomas, adenocarcinomas, small cell carcinomas, granulomatous and carcinoid tumors) divided by the

average of normal lung samples

20 R2: Average of non-mailgnant lung disease samples (including bronchilis, emphysema, fibrosis, atelectasis, asthma) divided by the average of normal lung samples

20	RZ:	Averag	je or non-malig	mant lung disease samples (including bronchills, emp	nysema, noros	is, atelectasis
	Pkey	ExAccn	UnigenelD	Unigene Title	R1	R2
	403329		····g	Targel Exon	1.00	61.00
	406399			NM_003122*:Homo sapiens serine protease	1.00	39.00
25	406690	M29540	Hs.220529	carcinoembryonic antigen-related cell ad	226.37	350.00
	407869	AI827976	Hs.24391	hypothetical protein FLJ13612	0.77	1.18
	407881	AW072003	Hs.40968	heparan sulfate (glucosamine) 3-O-sulfot	1.00	10.00
	408908	BE296227	Hs.250822	serine/threonine kinase 15	7.76	1.00
•	409103	AF251237	Hs.112208	XAGE-1 protein	80.44	40.00
30	409187	AF154830	Hs.50966	carbamoyl-phosphale synthetase 1, mitoch	1.00	1.00
	409269	AA576953	Hs.22972	hypothetical protein FLJ13352	1.00	1.00
	410076	T05387	Hs.7991	ESTs	1.12	1.50
	410102	AW248508	Hs.279727	Homo sapiens cDNA FLJ14035 fis, clone HE	9.89	1.00
25	410399	BE068889		synuclein, gamma (breast cancer-specific	0.92	1.06
35	411908	L27943	Hs.72924	cytidine deaminase	1.00	1.00
	412612	NM_000047	Hs.74131	arylsulfatase E (chondrodysplasia puncta	1.02	1.03
	414075	U11862	Hs.75741	amiloride binding protein 1 (amine oxida	0.84 3.67	1.07 1.00
	416208 417542	AW291168 J04129	Hs.41295 Hs.82269	ESTs, Weakly similar to MUC2_HUMAN MUCIN progestagen-associated endometrial prote	1.28	1.35
40	419183	U60669	Hs.89663	cytochrome P450, subfamily XXIV (vitamin	1.00	1.00
70	419502	AU076704	115.03005	fibrinogen, A alpha polypeptide	13.05	115.00
	419631	AW188117	Hs.303154	popeye protein 3	1.00	13.00
	420931	AF044197	Hs.100431	small inducible cytokine B subfamily (Cy	1.00	8.00
	421155	H87879	Hs.102267	lysyl oxidase	1.00	15.00
45	421190	U95031	Hs.102482	mucin 5, subtype B, tracheobronchial	1.17	1.55
	421474	U76362	Hs.104637	solute carrier family 1 (glutamate trans	1.46	1.76
	421515	Y11339	Hs.105352	GalNAc alpha-2, 6-sialyltransferase I, I	1.00	3.00
	421582	Al910275		trefoil factor 1 (breast cancer, estroge	1.23	1.00
	422026	U80736	Hs.110826	trinucleotide repeat containing 9	1.00	52.00
50	422095	AI868872	Hs.282804	hypothetical protein FLJ22704	4.37	2.34
	422311	AF073515	Hs.114948	cytokine receptor-like factor 1	1.15	1.78
	422867	L32137	Hs.1584	cartilage oligomeric matrix protein (pse	1.69	3.17
	423472	AF041260	Hs.129057	breast carcinoma amplified sequence 1	48.13	72.00
55	423554	M90516	Hs.1674	glutamine-fructose-6-phosphate transamin	1.00	50.00
33	424502	AF242388	Hs.149585	lengsin	1.00	1.00
	424544	M88700	Hs.150403	dopa decarboxylase (aromatic L-amino aci	1.00 21.35	59.00 1.00
	424905 424960	NM_002497 BE245380	Hs.153704 Hs.153952	NIMA (never in mitosis gene a)-related k 5' nucleotidase (CD73)	1.00	1.00
	425523	AB007948	Hs.158244	KIAA0479 protein	1.00	35.00
60	426230	AA367019	Hs.241395	protease, serine, 1 (trypsin 1)	1.00	83.00
00	427701	AA411101	Hs.243886	nuclear autoantigenic sperm protein (his	7.41	34.00
	428585	AB007863	Hs.185140	KIAA0403 protein	1.00	6.00
	428758	AA433988	Hs.98502	hypothetical protein FLJ14303	1.06	1.13
	429170	NM_001394	Hs.2359	dual specificity phosphatase 4	16.18	105.00
65	429263	AA019004	Hs.198396	ATP-binding cassette, sub-family A (ABC1	1.07	1.00
	429610	AB024937	Hs.211092	LUNX protein; PLUNC (palate lung and nas	1.59	1.69
	430508	Al015435	Hs.104637	ESTs	4.75	7.27
	430985	AA490232	Hs.27323	ESTs, Weakly similar to I78885 serine/th	0.94	1.28
70	431548	Al834273	Hs.9711	novel protein	5.66	15.00
70	431566	AF176012	Hs.260720	J domain containing protein 1	49.76	37.00
	431986	AA536130	Hs.149018	Novel human gene mapping to chomosome 20	1.19	1.47
	432375	BE536069	Hs.2962	S100 calcium-binding protein P UDP-N-acetyl-alpha-D-galactosamine:polyp	1.65 1.00	1.06 48.00
	432677 433556	NM_004482 W56321	Hs.278611	calcium/calmodulin-dependent protein kin	1.00	19.00
75	433819	AW511097	Hs.111460 Hs.112765	ESTs	3.71	8.00
, ,	434001	AW950905	Hs.3697	serine (or cysteine) proteinase inhibito	29.31	72.00
	434424	A1811202	Hs.325335	Homo sapiens cDNA: FLJ23523 fis, clone L	1.00	64.00
	434792	AA649253	Hs.132458	ESTs	8.52	44.00
	436217	T53925	Hs.107	fibrinogen-like 1	57.97	31.00
80	436749	AA584890	Hs.5302	lectin, galactoside-binding, soluble, 4	1.10	1.41
	436972	AA284679	Hs.25640	claudin 3	1.59	1.46
	437866	AA156781		metallothionein 1E (functional)	3.62	101.00
	437935	AW939591	Hs.5940	mucin 13, epithelial transmembrane	1.60	1.39
0.5	438915	AA280174	Hs.285681	Williams-Beuren syndrome chromosome regi	1.00	1.00
85	439451	AF086270	Hs.278554	heterochromatin-like protein 1	23.28	52.00

	W	O 02/086	443				PCT/US02/12476
	439759	AL359055	Hs.67709	Homo sapiens mRNA full tength insert cDN	1.00	21.00	101/00/2/124/0
		AJ110684 BE218239	Hs.7645 Hs.202656	fibrinogen, B beta polypeptide ESTs	1.41 22.03	99.00 1.00	
E	443614	AV655386	Hs.7645	fibrinogen, B beta polypeptide	1.00	16.00	
5		AA876372 NM_002250	Hs.93961 Hs.10082	Homo sapiens mRNA; cDNA DKFZp657D095 (fr potassium intermediate/small conductance	1.20 5.71	1.99 6.87	
	444670	H58373	Hs.332938	hypothetical protein MGC5370	1.98	38.00	
		AV652066 AW168067	Hs.75113 Hs.317694	general transcription factor IIIA ESTs	1.00 1.00	54.00 1.00	
10	446163	AA026880	Hs.25252	Homo sapiens cDNA FLJ13603 fis, clone PL	1.00	36.00	
		BE094848 AW630534	Hs.15113 Hs.76277	homogentisate 1,2-dioxygenase (homogenti Homo sapiens, clone MGC:9381, mRNA, comp	1.00 1.24	11.00 1.16	
	447532	AK000614	Hs.18791	hypothetical protein FLJ20607	1.23	1.63	
15		AW369771 Al581519	Hs.52620 Hs.177164	integrin, beta 8 ESTs	15.84 1.00	1.00 31.00	
10	449444	AW818436	Hs.23590	solute carrier family 16 (monocarboxylic	1.00	83.00	
		W52854 F33868	Hs.284176	hypothetical protein FLJ23293 similar to transferrin	1.55 1.54	35.00 1.44	
20	453392	U23752	Hs.32964	SRY (sex determining region Y)-box 11	1.00	16.00	
20		A1884911 A1066629	Hs.32989 Hs.125073	receptor (calcitonin) activity modifying ESTs	1.55 1.01	2.45 1.30	
			115.120075	2013	1.01	1.50	
	TABLE 11	iB					
25	Pkey:		s probeset ide	nlifier number			•
	Accession	ber: Gene clust n: Genbank a	ter number accession num	bers			_
	Dieu	CAT Numbe		lan.			
30	Pkey 410399	CAT Numbe 11995_1		ion 889 BE068882 AF044311 AF017256 NM_003087 A	F037207 AF010	126 AA633976 AA	A872836 BE298825 BE299889 Al016464 Al684600
				27 AA804675 AA394097 Al139933 AA946606 BE1: 737 H49348 AA486472 AA411094 AA235594 AA40			
	419502	18535_1		704 T74854 T74860 T72098 T73265 T73873 T6918			The state of the s
35				7 T68401 T53959 T72360 T72099 T60377 T58961 T 3 T74673 T71800 T68355 T61227 T62738 T69317 T			
55			T73203	3 T70498 T61409 T58925 NM_000508 M64982 T68	301 T73729 T69	445 T60424 T679	22 T67736 T68716 T67755 T74765 T73819 T58719
				3 T60477 T74863 T61109 T68329 T58850 T71857 T 3 T73787 T56035 T64425 T71870 T60476 T61376 T			
40			H4835	3 T71914 T53939 T64121 AA693996 T72525 T6777	9 T68078 AA01	1465 AA345378 A	V654847 AV654272 AV656001 Al064740 T82897
40				4 AA344542 AW805054 Al207457 T61743 AA02673 919 T40156 H66239 AV652989 H38728 R98521 AV			
			AW470	1774 AV651256 N54417 AA812862 AW182929 A111	1192 H61463 H	72060 AA344503	H38639 Al277511 AV661108 Al207625 T47810
		,		252 127853 147778 R95746 H70620 AA701463 AW 3 T73931 T72178 T72456 AV645639 AV653476 T72			87 T71959 T71313 T73920 T73333 T61618 T69293 494 T72956 T70495 T68267 T74407 T85778
45	•		AA344	726 T27854 T74485 T74101 T73868 T71518 T7230	4 AA343853 T7:	39 <mark>09 T68</mark> 070 T720	065 H72149 T73493 T73495 AV645993 R02293
				5 T64751 AA344441 AA343657 AA345732 AA34432 7 R02292 T60599 T69206 T70452 T74677 R29366 '			
			T69368	3 T69358 T68258 AV650429 T73341 T61702 T7459	B T40095 K0227	72 T40106 AA3430	045 AA341908 AA341907 AA342807 AA341964
50				' T72042 T62764 Al064899 AA343060 T67832 T72 [,] 234 T67598 AA011414 T68036 H48262 Al207557 T			
			AA344	583 T60362 H58121 T95711 T72803 T68055 T7171	5 R29036 T727	93 T69122 T64599	5 T62888 T69139 T68291 T64652 T67971 T46862
				592 Al248502 R29454 T64764 T57001 T73052 T71 ' T73317 T74273 T69420 T68245 T74380 T67862 T		000 AV000414 H	30420 AA342489 173000 107648 172012 153835
55	421582	2041_1	AI9102	75 X00474 X52003 X05030 NM_003225 AA314326 312 AA614409 AA307578 AI925552 AW950155 AI9	AA308400 AA5	06787 AA314825	A1571948 AA507595 AA614579 AA587613 R83818
55				312 AA614409 AA307578 A1923552 AVV950155 A19 140 AA514776 AA588034 BE074051 BE074068 AW			
,	437866	44433_2		045 Al307407 AW602303 BE073575 Al202532 AA5 781 AW293839 U52054 AA024963 AA778446 BE07			
60	437000	44433_2		481 AW468444 BE185091 AW468002 AA687333 A			
60	451807	8865_1		489 AW874142 Al471883 W84421 AA156850 4 AL117600 BE208116 BE208432 BE206239 BE08	2204 AMDE2422	2 A A 251610 DE 10	0648 DE440660 Niconon A Ages470 Nicono
	451001	0000_1		4 ALTI 1000 BE2081 10 BE200432 BE200239 BE00 1652 AW449519 AA993634 AI806539 AA351618 AV			
65	TABLE 11	IC					
	Pkey:	Unique nu	mber correspo	nding to an Eos probeset			•
	Ref:	Sequence	source. The 7	digit numbers in this column are Genbank Idenlifier		'Dunham I, et al." i	refers to the publication entitled "The DNA
70	Strand:			mosome 22." Dunham I. et al., Nature (1999) 402:4 m which exons were predicted.	19-495.		
,	Nt_positio			tions of predicted exons.			

Pkey 403329 406399

75

Ref 8516120 9256288 Strand Plus Minus Nt_position 96450-96598 63448-63554 WO 02/086443 PCT/US02/12476

TABLE 12A: Genes Distinguishing Squamous Cell Carcinoma from Other Lung Diseases and Normal Lung

Table 12A shows about 72 genes upregulated in squamous cell carcinomas of the lung relative to other lung turnors, non-malignant lung disease, and normal lung. These genes were selected from about 59680 probesets on the Eos/Affymetrix Hu03 Genechip array.

Table 12B show the accession numbers for those Pkey's lacking UnigenelD's for table 12A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Table 12C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 12A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

15

10

Pkey: Unique Eos probeset identifier number

ExAccn: Exemplar Accession number, Genbank accession number

UnigenelD: Unigene number

Unigene Title: Unigene gene title

20 R1: Average of lung tumors (including squamous cell carcinomas, adenocarcinomas, small cell carcinomas, granulomatous and carcinoid tumors) divided by the

average of normal lung samples

R2: Average of non-malignant lung disease samples (including bronchitis, emphysema, fibrosis, atelectasis, asthma) divided by the average of normal lung samples

		•	•	. , , ,		
	Pkey	ExAccn	UnigenelD	Unigene Title	R1	R2
25	400289	X07820	Hs.2258	matrix metalloproteinase 10 (stromelysin	132.45	4.00
	400666	•		NM_002425:Homo sapiens matrix metallopro	3.26	3.22
	401780			NM_005557*:Homo sapiens keratin 16 (foca	26.47	10.50
	401781			Target Exon	10.33	4.61
30	401785			NM_002275°:Homo sapiens keratin 15 (KRT1	4.13	2.70
30	401994			Target Exon	61.84 1.00	47.00 1.00
	402075			ENSP00000251056*:Plasma membrane calcium	1.00	1.00
	404996	AA04E144	Hs.161566	Target Exon ESTs	173.91	108.00
	407839 408000	AA045144 L11690	Hs.620	bullous pemphigoid antigen 1 (230/240kD)	151.17	8.00
35	408522	Al541214	Hs.46320	Small proline-rich protein SPRK [human,	1.98	1.24
55	410561	BE540255	Hs.6994	Homo sapiens cDNA: FLJ22044 fis, clone H	10.04	1.00
	415091	AL044872	Hs.77910	3-hydroxy-3-methylglutaryi-Coenzyme A sy	1.00	30.00
	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t	24.30	1.00
•	416658	U03272	Hs.79432	fibrillin 2 (congenital contractural ara	53.29	51.00
40	417034	NM_006183	Hs.80962	neurotensin	1.00	1.00
	417366	BE185289	Hs.1076	small proline-rich protein 1B (cornifin)	8.97	3.27
	418663	AK001100	Hs.41690	desmocollin 3	112.17	19.00
	418678	NM_001327	Hs.87225	cancer/testis antigen	1.18	1.10
	419121	AA374372	Hs.89626	parathyroid hormone-like hormone	1.00	1.00
45	420783	A1659838	Hs.99923	lectin, galactoside-binding, soluble, 7	3.04	1.25
	421773	W69233	Hs.112457	ESTs	1.12	1.14
	421948	L42583	Hs.334309	keratin 6A .	51.83	20.25
	421978	AJ243662	Hs.110196	NICE-1 protein	1.01	0.91
50	422158	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL	2.37	1.10
50	422440	NM_004812	Hs.116724	aldo-keto reductase family 1, member B10	47.53	32.00
	423634	AW959908	Hs.1690	heparin-binding growth factor binding pr	76.02	1.00
	423725	AJ403108	Hs.132127	hypothetical protein LOC57822	4.20	1.00
	423738	AB002134	Hs.132195	airway trypsin-like protease	10.14	51.00
55	424012	AW368377	Hs.137569	tumor protein 63 kDa with strong homolog	233.42	68.00
33	424046	AF027866	Hs.138202	serine (or cysteine) proteinase inhibito	1.00 137.82	1.00 54.00
	424098	AF077374	Hs.139322	small proline-rich protein 3 Homo sapiens cDNA FLJ10570 fis, clone NT	56.19	12.00
	424834 425650	AK001432 NM_001944	Hs.153408 Hs.1925	desmoglein 3 (pemphigus vulgaris antigen	33.45	1.00
	423030	AB032953	Hs.173560	odd Oz/ten-m homolog 2 (Drosophila, mous	4.24	17.00
60	427335	AA448542	Hs.251677	G antigen 7B	51.83	4.00
00	428182	BE386042	Hs.293317	ESTs, Weakly similar to GGC1_HUMAN G ANT	1.00	1.00
	428645	AA431400	Hs.98729	ESTs, Weakly similar to 2017205A dihydro	1.00	16.00
	428748	AW593206	Hs.98785	Ksp37 protein	1.00	87.00
	429259	AA420450	Hs.292911	ESTs, Highly similar to S60712 band-6-pr	2.01	1.18
65	429538	BE182592	Hs.11261	small proline-rich protein 2A	4.43	2.90
	429903	AL134197	Hs.93597	cyclin-dependent kinase 5, regulatory su	11.80	1.00
	430486	BE062109	Hs.241551	chloride channel, calcium activated, fam	12.28	41.00
	430890	X54232	Hs.2699	glypican 1	1.58	1.40
70	431009	BE149762	Hs.48956	gap junction protein, beta 6 (connexin 3	60.25	28.00
70	431846	BE019924	Hs.271580	uroplakin 1B	4.49	2.51
	433091	Y12642	Hs.3185	lymphocyte antigen 6 complex, locus D	1.20	1.09
	434360	AW015415	Hs.127780	ESTs	40.98	27.00
	434880	U02388	Hs.101	cytochrome P450, subfamily IVF, polypept	1.00	1.00
75	435505	AF200492	Hs.211238	interleukin-1 homolog 1	1.00	38.00
15	435793	AB037734	Hs.4993	KIAA1313 protein	23.68 16.76	42.00 14.00
	436511	AA721252	Hs.291502	ESTs ESTs	1.00	1.00
	438403	AA806607	Hs.292206	hypothetical protein FLJ20093	46.23	139.00
	439285 439606	AL133916 W79123	Hs.58561	G protein-coupled receptor 87	33.61	1.00
80	439606	W79123 AF088076	Hs.59507	ESTs, Weakly similar to AC004858 3 U1 sm	1.00	1.00
55	439706	AW872527	Hs.59761	ESTs, Weakly similar to DAP1_HUMAN DEATH	86.55	11.00
	440325	NM_003812	Hs.7164	a disintegrin and metalloproteinase doma	62.88	147.00
	441525	AW241867	Hs.127728	ESTs	1.53	1.42
	443162	T49951	Hs.9029	DKFZP434G032 protein	31.11	38.00
85	444378	R41339	Hs.12569	ESTs	1.00	1.00

	, WC	02/0864					PCT/US02/12476				
	447078	AF081497 AW885727	Hs.279682 Hs.9914 Hs.19322	Rh type C glycoprotein ESTs Homo sapiens, Similar to RIKEN cDNA 2010	1.55 47.24 28.63	1.26 24.00					
5	449003 449101 450832 452240	A1199268 X76342 AA205847 AW970602 A1591147	Hs.389 Hs.23016 Hs.105421 Hs.61232	alcohol dehydrogenase 7 (class IV), mu o G protein-coupled receptor ESTs ESTs	1.00 2.58 25.17 13.42	1.00 1.00 27.00 36.00 1.00	•				
10	453830 454098	NM_002277 AA534296 W27953 Al368680	Hs.41696 Hs.20953 Hs.292911 Hs.816	keratin, hair, acidic, 1 ESTs ESTs, Highly similar to S60712 band-6-pr SRY (sex determining region Y)-box 2	1.19 24.92 1.26 206.11	1.27 25.00 1.11 1.00					
	TABLE 12B										
15	Pkey: CAT numbe Accession:	T number: Gene cluster number									
20		CAT Number 47065_1		on 16 N79113 AF086101 N76721 AW950828 AA364013 52 N62351 N59253 AA626243 Al341407 BE175639			N655270 Al421279 AW014882				
25	TABLE 12C										
	Pkey: Unique number corresponding to an Eos probeset Ref: Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495.										
30	Strand: Nt_position:	d: Indicates DNA strand from which exons were predicted.									
35	Pkey Ref Strand NL position 400666 8118496 Plus 17982-18115,20297-20456 401780 7249190 Minus 28397-28617,28920-29045,29135-29296,29411-29567,29705-29787,30224-30573 401781 7249190 Minus 83215-83435,83531-83656,83740-83901,84237-84393,84955-86037,86290-86814 401978 7249190 Minus 165776-165996,166189-166514,166408-166519,167112-167268,167387-167469,168634-168942 401994 4153858 Minus 42904-43124,43211-43336,44607-44763,45199-45281,46337-46732 402075 8117407 Plus 121907-122035,122804-122921,124019-124161,124455-124610,125672-126076										
40	402075 404996	8117407 6007890	Plus Plus	37999-38145,38652-38998,39727-39872,40557-4							

TABLE 13A: Genes Distinguishing Non-Malignant Lung Disease from Lung Tumors and Normal lung

5

10

Table 13A shows about 23 genes upregulated in non-matignant lung disease relative to lung tumors and normal lung. These genes were selected from about 59680 probesets on the Eos/Affymetrix Hu03 Genechip array.

Table 13B show the accession numbers for those Pkey's lacking UnigenelD's for table 13A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Table 13C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in lable 13A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

						,	
15	Pkey:			et identifier number			
	ExAcon: UnigenelD:		olar Accession ne number	n number, Genbank accession number			
	Unigene Titl		ne gene title			•	
	R1:	Avera	se of lung tur	nors (including squamous cell carcinomas, adenocarc	inomas, small cell o	carcinomas, granulomatous and carcinoid tumors) divided by th	18
20		averag	e of normal h	ung samples			
	R2:	Avera	ge of non-mal	ignant lung disease samples (including bronchitis, en	ıphysema, fibrosis,	atelectasis, asthma) divided by the average of normal lung san	nples
	Ol F		Halanasin	I beingen Title	04	R2	
		xAccn 1436323	UnigenelD Hs.31141	Unigene Title Homo sepiens mRNA for KIAA1568 protein,	R1 1.00	230.00	
25		A376836	Hs.76728	ESTs	1.00	128.00	
		865998	Hs.285243	hypothetical protein FLJ22029	1.00	173.00	
	415910 U		Hs.78913	chemokine (C-X3-C) receptor 1	1.00	145.00	
•	417511 A		Hs.82223	chordin-like	1.00	179.00	
30	418819 A		Hs.191721	ESTS	1.00	140.00 156.00	
30	422060 R 424585 A	20893	Hs.325823 Hs.131987	ESTs, Moderately similar to ALU5_HUMAN A ESTs	1.00 1.00	167.00	
		89832	Hs.170278	ESTs	1.00	141.00	
		A453800	Hs.192793	ESTs	1.00	138.00	
	430719 A		Hs.293796	ESTs	1.00	133.00	
35	431089 B	E041395		ESTs, Weakly similar to unknown protein	23.32	941.00	
		E178536	Hs.11090	membrane-spanning 4-domains, subfamily A	1.00	157.00	
		IM_007351	Hs.268107	multimerin	1.00 1.00	157.00 218.00	
	436532 A 437960 A		Hs.222194	gb:nv54h12.r1 NCI_CGAP_Ew1 Homo sapiens ESTs	1.00	147.00	
40	438202 A		Hs.22588	ESTs	1.00	141.00	
	441499 A		Hs.101689	ESTs	1.00	167.00	
	444513 A	L120214	Hs.7117	glutamate receptor, ionotropic, AMPA 1	1.00	151.00	
		25899	Hs.201591	ESTs	1.00	141.00	
45		867837	Hs.169872	ESTs	1.00	. 116.00	
43	458332 A 459587 A	1000341	Hs.220491	ESTs gb:zk15e04.s1 Soares_pregnant_uterus_NbH	1.00 1.00	192.00 154.00	
	403001 A	W031330		gu.zk13604.31 30aies_pregnan_uterus_nuri	1.00	104.00	
	TABLE 13B						
~ 0							
50	Pkey:			lentifier number			
	CAT numbe Accession:	r: Gene clus	iter number accession nu				
-	Accession:	Gennank	accession nu	muers			
	Pkey	CAT Num	ber Accessio	n			
55	431089	327825_1		5 AA491826 AA621946 AA715980 AA666102			
	436532	421802_1	AA72152	2 AW975443 T93070			
	TABLE 13C						
60	TABLE 100						
	Pkey:			onding to an Eos probeset			
	Ref:	Sequence	source. The	7 digit numbers in this column are Genbank Identifie	r (GI) numbers. "D	unham I. et al." refers to the publication entitled "The DNA	
		sequence	of human chi	romosome 22." Dunham I. et al., Nature (1999) 402.4	189-495.	•	
65	Strand:			om which exons were predicted.			
05	Nt_position:	muicales	пистеопие ро	sitions of predicted exons.			
	Pkey	Ref	Strand	Nt_position			
	·						
70	402075	8117407	Plus	121907-122035, 122804-122921, 124019-12416	1,124455-124610,1	25672-126076	
70							

Table 14A shows the subcellular localization and preferred utility for the genes appearing in Tables 9A and 10A. mAb symbolizes monoclonal antibody, diag symbolizes diagnostic, s.m. symbolizes small molecule, and CTL symbolizes cytotoxic lymphocytic ligand. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array.

Table 14B show the accession numbers for those Pkey's lacking UnigenelD's for table 14A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland Celifornia). The Genbank accession numbers for sequences comprising each cluster are listed in the

Table 14C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 14A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

15

20

10

5

Unique Eos probeset identifier number

ExAcon: Exemplar Accession number, Genbank accession number

UnigeneID: Unigene number Unigene Title: Unigene gene title

Pref. Utility: Preferred Utility
Pred.Loc: Predicted subcellular localization

	Pkey	ExAcon	UnigenelD	Unigene Title	Pref Utility	Pred. Loc
	400289	X07820	Hs.2258	matrix metalloproteinase 10 (stromelysin	mAb & diag & s.m.	extracellular
25	400303	AA242758	Hs.79136	LIV-1 protein, estrogen regulated	mAb	plasma membrane
	402075			ENSP00000251056*:Plasma membrane calcium	mAb & diag	secreted
	407811	AW190902	Hs.40098	cysteine knot superfamily 1, BMP antagon	diag	secreted
	408243	Y00787	Hs.624	interleukin 8	diag	secreted
•	408790	AW580227	Hs.47860	neurotrophic tyrosine kinase, receptor,	mAb & s.m.	plasma membrane
30	408908	BE296227	Hs.250822	serine/threonine kinase 15	s.m.	cytoplasm
-	409041	AB033025	Hs.50081	Hypothetical protein, XP_051860 (KIAA119	CTL & diag	secreted
	409103	AF251237	Hs.112208	XAGE-1 protein	CTL	nuclear
	409420	Z15008	Hs.54451	laminin, gamma 2 (nicein (100kD), kalini	diag	secreted
	409632	W74001	Hs.55279	serine (or cysteine) proteinase inhibito	diag	secreted
35	409757	NM_001898	Hs.123114	cystatin SN	diag	extracellular
JJ	409893	AW247090	Hs.57101	minichromosome maintenance deficient (S.	CTL	nuclear
	409956	AW103364	Hs.727	Inhibin, beta A (activin A, activin AB a	diag	extracellular
	410001	AB041036	Hs.57771	kallikrein 11	diag	extracellular
	410407	X66839	Hs.63287	carbonic anhydrase IX	mAb & s.m.	plasma membrane
40	410407	D31382	Hs.63325	transmembrane protease, serine 4	mAb & diag & s.m.	plasma membrane
40		AA219691	Hs.73625		=	plasma membrana
	412140			RAB6 interacting, kinesin-like (rabkines	s.m.	nuclear
	412719	AW016610	Hs.816	ESTs	s.m.	
	414774	X02419	Hs.77274	plasminogen activator, urokinase	diag	extracellular
45	414883	AA926960	11. 005044	CDC28 protein kinase 1	S.M.	
43	415138	C18356	Hs.295944	tissue factor pathway inhibitor 2	CTL & diag	extracellular
	415669	NM_005025	Hs.78589	serine (or cysteine) proteinase inhibito	mAb & diag & s.m.	secreted
	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t	mAb & s.m.	plasma membrane
	416658	U03272	Hs.79432	fibrillin 2 (congenital contractural ara	diag	extracellular
50	417034	NM_006183	Hs.80962	neurotensin	diag	extracellular
50	417079	U65590	Hs.81134	interleukin 1 receptor antagonist	diag	extracellular
	417308	H60720	Hs.81892	KIAA0101 gene product	s.m.	mitochondrial
	417389	BE260964	Hs.82045	midkine (neurite growth-promoting factor	mAb & diag	secreted
	417433	BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein	mAb	plasma membrane
	417933	X02308	Hs.82962	thymidylate synthetase	s.m.	endoplasmic reticulum
55	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me	s.m.	cytoplasm
	418506	AA084248	Hs.85339	G protein-coupled receptor 39	mAb & s.m.	plasma membrane
	418678	NM_001327	Hs.167379	cancer/testis antigen (NY-ESO-1)	CTL	cytoplasmic
	419121	AA374372	Hs.89626	parathyroid hormone-like hormone	diag	secreted
~ 0	419171	NM_002846	Hs.89655	protein tyrosine phosphatase, receptor t	mAb & s.m.	plasma membrane
60	419183	U60669	Hs.89663	cytochrome P450, subfamily XXIV (vitamin	CTL & s.m.	mitochondrial
	419216	AU076718	Hs.164021	small inducible cytokine subfamily B (Cy	diag	secreted
	419235	AW470411	Hs.288433	neurotrimin	mAb & diag	plasma membrane
	419452	U33635	Hs.90572	PTK7 protein tyrosine kinase 7	mAb & s.m.	plasma membrane
	419556	U29615	Hs.91093	chitinase 1 (chitotriosidase)	mAb & diag	extracellular*
65	420610	Al683183	Hs.99348	distal-less homeo box 5	CTL	nuclear
	421110	AJ250717	Hs.1355	cathepsin E	sm & diag	extracellular
	421379	Y15221	Hs.103982	small inducible cytokine subfamily B (Cy	diag	secreted
	421474	U76362	Hs.104637	solute carrier family 1 (glutamate trans	mAb & s.m.	plasma membrane
	421552	AF026692	Hs.105700	secreted frizzled-related protein 4	diag	secreted
70	421753	BE314828	Hs.107911	ATP-binding cassette, sub-family B (MDR/	mAb & s.m.	plasma membrane
	421817	AF146074	Hs.108660	ATP-binding cassette, sub-family C (CFTR	mAb & s.m.	plasma membrane
	422109	S73265	Hs.1473	gastrin-releasing peptide	diag	secreted
	422158	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL	diag	secreted
	422282	AF019225	Hs.114309	apolipoprotein L	diag	secreted
75	422283	AW411307	Hs.114311	CDC45 (cell division cycle 45, S.cerevis	s.m.	nuclear
	422424	Al186431	Hs.296638	prostate differentiation factor	diag	extracellular
	422765	AW409701	Hs.1578	baculoviral IAP repeat-containing 5 (sur	s.m.	cytoplasm
	422809	AK001379	Hs.121028	hypothetical protein FLJ10549	s.m.	nuclear
	422867	L32137	Hs.1584	cartilage oligomeric matrix protein (pse	diag	extracellular
80	422956	BE545072	Hs.122579	ECT2 protein (Epithelial cell transformi	CTL & s.m.	
30	423634	AW959908	Hs.1690	heparin-binding growth factor binding pr	diag	
	423673	BE003054	Hs.1695	matrix metalloproteinase 12 (macrophage	mAb & diaq & s.m.	secreted
	423961	D13666	Hs.136348	periostin (OSF-20s)	mAb & diag	extracellular
	424046	AF027866	Hs.138202	serine (or cysteine) proteinase inhibito	diag	secreted
85	424381	AA285249	Hs.146329	protein kinase Chk2	s.m.	nuclear
55	127001		113.170323	proton tended offitz	9	110000

PCT/US02/12476 WO 02/086443

	W	U U2/U80	443			
	424502	AF242388	Hs.149585	lengsin	s.m.	cytoplasmic
	424503	NM_002205	Hs.149609	integrin, alpha 5 (fibronectin receptor,	mAb & s.m.	plasma membrane
	424687	J05070	Hs.151738	matrix metalloproteinase 9 (gelatinase B	diag	extracellular
	425247	NM 005940	Hs.155324	matrix metalloproteinase 11 (stromelysin	mAb & diag & s.m.	secreted
5	425322	U63630	Hs.155637	protein kinase, DNA-activated, catalytic	S.M.	cytoplasmic
,	425650	NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris antigen	mAb	
						plasma membrane
	425734	AF056209	Hs.159396	peptidylglycine alpha-amidating monooxyg	s.m.	
	425776	U25128	Hs.159499	parathyroid hormone receptor 2	mAb & diag	plasma membrane
10	425852	AK001504	Hs.159651	death receptor 6, TNF superfamily member	mAb & s.m.	plasma membrane
10	426215	AW963419	Hs.155223	stanniocalcin 2	mAb & diag	secreted
	426427	M86699	Hs.169840	TTK protein kinase	CTL & s.m.	nudear
	426514	BE616633	Hs.170195	bone morphogenetic protein 7 (osteogenic	mAb & diag	secreted
	427335	AA448542	Hs.251677	G antigen 7B	CTL	cytoplasmic
	427747	AW411425	Hs.180655	serine/threonine kinase 12	s.m.	cytoplasmic
15	428242	H55709	Hs.2250	leukemia inhibitory factor (cholinergic	diag	Ojapiconno
. 13		L22524	Hs.2256	matrix metalloproteinase 7 (matrilysin,	mAb & diag & s.m.	extracellular
	428330				•	
	428450	NM_014791	Hs.184339	KIAA0175 gene product	s.m.	nuclear
	428479	Y00272	Hs.334562	cell division cycle 2, G1 to S and G2 to	s.m.	nuclear
00	428484	AF104032	Hs.184601	solute carrier family 7 (cationic amino	mAb & s.m.	plasma membrane
20	428664	AK001666	Hs.189095	similar to SALL1 (sal (Drosophila)-like	CTL & s.m.	nuclear .
	428698	AA852773	Hs.334838	KIAA1866 protein	mAb	
	428748	AW593206	Hs.98785	Ksp37 protein	diag	extracellular
	428758	AA433988	Hs.98502	CA125 antigen; mucin 16	diag	mitochodria*
	428969	AF120274	Hs.194689	artemin	diag	extracellular
25	429211	AF052693	Hs.198249	gap junction protein, beta 5 (connexin 3	mAb & s.m.	plasma membrane
23	429263			ATP-binding cassette, sub-family A (ABC1	mAb & s.m.	plasma membrane
		AA019004	Hs.198396			F
	429547	AW009166	Hs.99376	ESTs	diag	secreted
	429610	AB024937	Hs.211092	LUNX protein; PLUNC (palate lung and nas	mAb & diag	secreted
20	429903	AL134197	Hs.93597	cyclin-dependent kinase 5, regulatory su	s.m.	
30	430486	BE062109	Hs.241551	chloride channel, calcium activated, fam	mAb & s.m.	plasma membrane
	431462	AW583672	Hs.256311	granin-like neuroendocrine peptide precu	diag	extracellular
	431515	NM_012152	Hs.258583	endothelial differentiation, lysophospha	mAb & s.m.	plasma membrane
	431846	BE019924	Hs.271580	uroplakin 1B	mAb & diag	plasma membrane
	431958	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	mAb & diag	plasma membrane
35	432201	Al538613 ·	Hs.298241	Transmembrane protease, serine 3	mAb & diag & s.m.	plasma membrane
33	433001	AF217513	Hs.279905	clone HQ0310 PRO0310p1	s.m.	nuclear
		AF200492	Hs.211238		diag	secreted
	435505	AA379597	Hs.5199	interleukin-1 homolog 1 HSPC150 protein similar to ubiquitin-con	s.m.	Scacica
	436481 [,]					audania ma
40	437016	AU076916	Hs.5398	guanine monphosphate synthetase	s.m.	cytoplasm
40	437016 437044	AU076916 AL035864	Hs.5398 Hs.69517	guanine monphosphate synthetase differentially expressed in Fanconi's an	s.m. CTL	ER
40	437016 437044 437789	AU076916	Hs.5398 Hs.69517 Hs.127812	guanine monphosphate synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti	s.m. CTL CTL	ER nuclear
40	437016 437044	AU076916 AL035864	Hs.5398 Hs.69517	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to dJ365O12.1 [H.sa	s.m. CTL	ER
40	437016 437044 437789	AU076916 AL035864 Al581344	Hs.5398 Hs.69517 Hs.127812	guanine monphosphate synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti	s.m. CTL CTL	ER nuclear
	437016 437044 437789 437852 439223	AU076916 AL035864 Al581344 BE001836 AW238299	Hs.5398 Hs.69517 Hs.127812 Hs.256897	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to 117330 hypotheti ESTs, Weakly similar to dJ365O12.1 [H.sa UL16 binding protein 2	s.m. CTL CTL mAb & s.m.	ER nuclear plasma membrane
	437016 437044 437789 437852 439223 439477	AU076916 AL035864 AI581344 BE001836 AW238299 W69813	Hs.5398 Hs.69517 Hs.127812 Hs.256897 Hs.250618 Hs.58042	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to dJ365O12.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G	s.m. CTL CTL mAb & s.m. mAb	ER nuclear plasma membrane plasma membrane
40 45	437016 437044 437789 437852 439223 439477 439606	AU076916 AL035864 AI581344 BE001836 AW238299 W69813 W79123	Hs.5398 Hs.69517 Hs.127812 Hs.256897 Hs.250618 Hs.58042 Hs.58561	guanine monphosphate synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to 117330 hypotheti ESTs, Weakly similar to dJ365O12.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87	s.m. CTL CTL mAb & s.m. mAb mAb & s.m. mAb & s.m.	ER nuclear plasma membrane plasma membrane plasma membrane
	437016 437044 437789 437852 439223 439477 439606 439738	AU076916 AL035864 AI581344 BE001836 AW238299 W69813 W79123 BE246502	Hs.5398 Hs.69517 Hs.127812 Hs.256897 Hs.250618 Hs.58042 Hs.58561 Hs.9598	guanine monphosphate synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to 117330 hypotheti ESTs, Weakly similar to d3365O12.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig),	s.m. CTL CTL mAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m.	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane plasma membrane
	437016 437044 437789 437852 439223 439477 439606 439738 440006	AU076916 AL035864 AI581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517	Hs.5398 Hs.69517 Hs.127812 Hs.256897 Hs.250618 Hs.58042 Hs.58561 Hs.9598 Hs.6844	guanine monphosphate synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to 117330 hypotheti ESTs, Weakly similar to 13365012.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-li	s.m. CTL CTL mAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. s.m.	ER nuclear plasma membrane plasma membrane plasma membrane
	437016 437044 437789 437852 439223 439477 439606 439738 440006 441362	AU076916 AL035864 AI581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410	Hs.5398 Hs.69517 Hs.127812 Hs.256897 Hs.250618 Hs.58042 Hs.58561 Hs.9598 Hs.6844 Hs.23044	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to 117330 hypotheti ESTs, Weakly similar to dJ365O12.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-li RAD51 (S. cerevisiae) homolog (E coli Re	s.m. CTL CTL mAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. s.m.	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane nuclear
45	437016 437044 437789 437852 439223 439477 439606 439738 440006 441362 442117	AU076916 AL035864 AI581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964	Hs.5398 Hs.69517 Hs.127812 Hs.256897 Hs.250618 Hs.58042 Hs.58561 Hs.9598 Hs.6844 Hs.23044 Hs.128899	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to dJ365O12.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-li RAD51 (S. cerevisiae) homolog (E coil Re ESTs; hypothetical protein for IMAGE:447	s.m. CTL CTL mAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. s.m. s.m. s.m. s.m.	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane
	437016 437044 437789 437852 439223 439477 439606 439738 440006 441362 442117 443247	AU076916 AL035864 AI581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387	Hs.5398 Hs.69517 Hs.127812 Hs.256897 Hs.250618 Hs.58042 Hs.58561 Hs.9598 Hs.6844 Hs.23044 Hs.128899 Hs.333893	guanine monphosphate synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to dJ365O12.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-li RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1	S.M. CTL CTL mAb & S.M. S.M. S.M. S.M. TMAb & S.M. TMAB & S.M. TMAB & S.M. TMAB & S.M. CTL	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane nuclear
45	437016 437044 437789 437852 439223 439477 439606 439738 440006 441362 442117 443247 443426	AU076916 AL035864 AI581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158	Hs.5398 Hs.69517 Hs.127812 Hs.256897 Hs.250618 Hs.58042 Hs.58561 Hs.9598 Hs.6844 Hs.23044 Hs.128899 Hs.333893 Hs.9329	guanine monphosphate synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to dJ365O12.1 [H.sa UL.16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-II RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1	S.M. CTL CTL mAb & S.M. S.M. S.M. S.M. CTL CTL	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular*
45	437016 437044 437789 437852 439223 439477 439606 439738 440006 441362 442117 443247 443426 443859	AU076916 AL035864 AI581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387	Hs.5398 Hs.69517 Hs.127812 Hs.256897 Hs.250618 Hs.58042 Hs.58561 Hs.9598 Hs.6844 Hs.23044 Hs.128899 Hs.333893	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to 117330 hypotheti ESTs, Weakly similar to dJ365O12.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (lg), NALP2 protein; PYRIN-Containing APAF1-li RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin	s.m. CTL CTL mAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. s.m. s.m. s.m. cTL CTL diag	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular* extracellular
45	437016 437044 437789 437852 439223 439477 439606 439738 440006 441362 442117 443247 443426 443859 444005	AU076916 AL035864 AI581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085	Hs.5398 Hs.69517 Hs.127812 Hs.256897 Hs.250618 Hs.58042 Hs.58561 Hs.9598 Hs.6844 Hs.23044 Hs.128899 Hs.333893 Hs.9329	guanine monphosphate synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to dJ365O12.1 [H.sa UL.16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-II RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1	S.M. CTL CTL mAb & S.M. S.M. S.M. S.M. CTL CTL	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular*
45	437016 437044 4377852 439223 439477 439606 439738 440066 442117 443247 443826 443826 444806 444371	AU076916 AL035864 AI581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085 BE395085 BE540274	Hs.5398 Hs.69517 Hs.127812 Hs.256897 Hs.250618 Hs.58042 Hs.58561 Hs.9598 Hs.6844 Hs.23044 Hs.128899 Hs.128899 Hs.9329	guanine monphosphate synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to d3365012.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-li RAD51 (S. cerevisiae) homolog (E coil Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1	s.m. CTL CTL mAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. s.m. s.m. s.m. cTL CTL diag	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular plasma membrane nuclear
45	437016 437044 437789 437852 439223 439477 439606 439738 440006 441362 442117 443247 443426 443859 444005	AU076916 AL035864 AI581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085 BE395085 BE540274	Hs.5398 Hs.69517 Hs.127812 Hs.256697 Hs.250618 Hs.58042 Hs.58561 Hs.9598 Hs.6844 Hs.23044 Hs.128899 Hs.333893 Hs.9329 Hs.9329 Hs.10086	guanine monphosphate synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to d3365012.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-li RAD51 (S. cerevisiae) homolog (E coil Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1	s.m. CTL mAb & s.m. s.m. s.m. cTL cTL diag mAb	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular*
45	437016 437044 4377852 439223 439477 439606 439738 440066 441362 442117 443247 443426 443859 444006 444371 444381	AU076916 AL035864 AI581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085	Hs.5398 Hs.69517 Hs.127812 Hs.256897 Hs.250618 Hs.58042 Hs.58561 Hs.9598 Hs.6844 Hs.128899 Hs.333893 Hs.9329 Hs.9329 Hs.10066 Hs.239 Hs.283713	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to dJ365012.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-II RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14	s.m. CTL TL TMAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. s.m. s.m. s.m. TMAb & s.m.	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular plasma membrane nuclear
45	437016 437044 4377852 4398223 439477 439606 439738 440006 441362 442117 443247 443426 443859 444006 444381 444781	AU076916 AL035864 AI581344 BE001836 AV238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE387335 NM_014400	Hs.5398 Hs.69517 Hs.127812 Hs.256897 Hs.250618 Hs.58042 Hs.58561 Hs.9598 Hs.6844 Hs.23044 Hs.23044 Hs.23044 Hs.128899 Hs.333893 Hs.9312 Hs.9914 Hs.10086 Hs.239 Hs.283713 Hs.11950	guanine monphosphate synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to dJ365O12.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-li RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPI-anchored metastasis-associated prote	s.m. CTL CTL mAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. s.m. s.m. s.m. CTL CTL diag mAb s.m. diag mAb & diag	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular extracellular plasma membrane nuclear secreted
45 50	437016 437044 4377852 439223 439477 439606 439738 440006 441362 442117 443247 443426 443859 444006 444371 444781 444781 444781	AU076916 AL035864 AI581344 BE601836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE387335 NM_014400 AJ245671	Hs.5398 Hs.69517 Hs.127812 Hs.250618 Hs.250618 Hs.58042 Hs.5958 Hs.6844 Hs.23044 Hs.128899 Hs.333893 Hs.9914 Hs.9914 Hs.10086 Hs.239 Hs.239 Hs.239 Hs.11950 Hs.12844	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to 117330 hypotheti ESTs, Weakly similar to dJ365012.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-li RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPI-anchored metastasis-associated prote EGF-like-domain, multiple 6	s.m. CTL mAb & s.m. s.m. s.m. s.m. s.m. tall cTL cTL diag mAb s.m. diag mAb s.m. diag mAb & diag mAb & diag mAb & diag	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular extracellular plasma membrane nuclear secreted plasma membrane secreted
45 50	437016 437044 4377849 437852 439223 439477 4396006 439738 440006 441362 442117 443247 443426 443859 444006 444371 444381 444781 445537 446619	AU076916 AL035864 Al581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE387335 NM_014400 AJ245671 AU076643	Hs.5398 Hs.69517 Hs.127812 Hs.256697 Hs.250618 Hs.58042 Hs.5958 Hs.6844 Hs.23044 Hs.128899 Hs.333893 Hs.9329 Hs.33393 Hs.9329 Hs.283713 Hs.11950 Hs.12844 Hs.313	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to d3365012.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-li RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPI-anchored metastasis-associated prote EGF-like-domain, multiple 6 secreted phosphoprotein 1 (osteopontin,	s.m. CTL TL TMAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. s.m. s.m. s.m. CTL CTL diag mAb s.m. diag mAb & diag mAb & diag diag diag	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular extracellular plasma membrane nuclear secreted plasma membrane secreted secreted secreted
45 50 55	437016 437044 4377849 437852 439223 439477 439606 439738 440006 441362 442117 443247 443426 44381 444781 444881 444781 4445537 446921	AU076916 AL035864 Al581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE387335 NM_014400 AJ245671 AU076643 AB012113	Hs.5398 Hs.69517 Hs.127812 Hs.256897 Hs.250618 Hs.58042 Hs.58561 Hs.9598 Hs.63344 Hs.128899 Hs.333893 Hs.9329 Hs.9314 Hs.10066 Hs.239 Hs.283713 Hs.12844 Hs.12844 Hs.1313 Hs.16530	guanine monphosphate synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to d3365012.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-li RAD51 (S. cerevisiae) homolog (E coil Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPI-anchored metastasis-associated prote EGF-like-domain, multiple 6 secreted phosphoprotein 1 (osteopontin, small inducible cytokine subfamily A (Cy	s.m. CTL TL TMAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. s.m. s.m. s.m. TCTL CTL diag mAb & s.m. diag mAb & diag mAb & diag mbab & diag diag diag diag	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular extracellular plasma membrane nuclear secreted plasma membrane secreted secreted extracellular
45 50	437016 437044 4377852 439223 439477 439606 439738 44006 441362 442117 443247 443859 444006 444371 444381 444781 445537 446092 447033	AU076916 AL035864 AI581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE387335 NM_014400 AJ245671 AU076643 AB012113 AI357412	Hs.5398 Hs.69517 Hs.127812 Hs.256897 Hs.250618 Hs.58042 Hs.58561 Hs.9598 Hs.6844 Hs.128899 Hs.333893 Hs.9329 Hs.9314 Hs.10066 Hs.239 Hs.283713 Hs.11950 Hs.12844 Hs.313 Hs.313 Hs.15630 Hs.157601	guanine monphosphate synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to d3365012.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-li RAD51 (S. cerevisiae) homolog (E coil Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPI-anchored metastasis-associated prote EGF-like-domain, multiple 6 secreted phosphoprotein 1 (osteopontin, small inducible cytokine subfamily A (Cy ESTs	s.m. CTL CTL mAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. s.m. s.m. s.m. cTL CTL diag mAb & diag mAb & diag diag mAb & diag diag mAb & diag diag CTL & diag	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular extracellular plasma membrane nuclear secreted plasma membrane secreted secreted secreted
45 50 55	437016 437044 437784 437852 439223 439477 439606 439738 440006 441362 442117 443247 443426 443859 444006 444371 444781 445537 446619 446921 447921 447921 447921 447921	AU076916 AL035864 AI581344 BE601836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE387335 NM_014400 AJ245671 AU076643 AB012113 AB012113 AB012113 AI357412 AI199268	Hs.5398 Hs.69517 Hs.127812 Hs.250618 Hs.250618 Hs.58042 Hs.89561 Hs.9598 Hs.6844 Hs.23044 Hs.128899 Hs.333893 Hs.9914 Hs.10086 Hs.239 Hs.9914 Hs.10086 Hs.239 Hs.913 Hs.16530 Hs.1757601 Hs.19322	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to 117330 hypotheti ESTs, Weakly similar to dJ365O12.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-II RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPI-anchored metastasis-associated prote EGF-like-domain, multiple 6 secreted phosphoprotein 1 (osteopontin, small inducible cytokine subfamily A (Cy ESTs	s.m. CTL mAb & s.m. s.m. s.m. s.m. s.m. till diag mAb s.m. diag mAb & diag mAb & diag diag diag cTL & diag CTL & diag CTL	extracellular plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular extracellular plasma membrane nuclear secreted plasma membrane secreted extracellular secreted extracellular secreted
45 50 55	437016 437044 437784 437852 439223 439477 439606 449738 44006 441362 442117 443247 443247 443243 444781 444781 445537 446919 446921 447034 44784 44784 44784 44784 44784 44784	AU076916 AL035864 AI581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW064964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE387335 NM_014400 AJ245671 AU076643 AB012113 AI357412 AI199268 AW369771	Hs.5398 Hs.69517 Hs.127812 Hs.256697 Hs.250618 Hs.58042 Hs.58561 Hs.9598 Hs.6844 Hs.23044 Hs.128899 Hs.333893 Hs.9329 Hs.333991 Hs.19806 Hs.239 Hs.239 Hs.239 Hs.239 Hs.283713 Hs.16530 Hs.157601 Hs.157601 Hs.19522 Hs.52620	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to 117330 hypotheti ESTs, Weakly similar to dJ365012.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-II RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPI-anchored metastasis-associated prote EGF-like-domain, multiple 6 secreted phosphoprotein 1 (osteopontin, small inducible cytokine subfamily A (Cy ESTs Homo sapiens, Similar to RIKEN cDNA 2010 integrin, beta 8	s.m. CTL TL TMAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. s.m. s.m. s.m. s.m. tCTL diag mAb & s.m. diag mAb & diag diag diag diag diag diag diag diag	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular extracellular plasma membrane nuclear secreted plasma membrane secreted secreted extracellular
45 50 55	437016 437044 4377849 437852 439223 439477 439606 439738 440006 441362 442117 443247 443426 44381 444781 444781 445537 446619 446921 447033 447034 447842 448844	AU076916 AL035864 Al581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE387335 NM_014400 AJ245671 AU076643 AB012113 Al357412 Al199268 AW369771 Al581519	Hs.5398 Hs.69517 Hs.127812 Hs.256697 Hs.250618 Hs.58042 Hs.59598 Hs.6844 Hs.23044 Hs.128899 Hs.333893 Hs.9329 Hs.283713 Hs.11950 Hs.12844 Hs.313 Hs.16530 Hs.157601 Hs.157601 Hs.157601 Hs.157601	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to d3365012.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-li RAD51 (S. cerevislae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPI-anchored metastasis-associated prote EGF-like-domain, multiple 6 secreted phosphoprotein 1 (osteopontin, small inducible cytokine subfamily A (Cy ESTs Homo sapiens, Similar to RIKEN cDNA 2010 integrin, beta 8 ESTs	s.m. CTL TL TMAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. s.m. s.m. s.m. CTL CTL diag mAb & diag mAb & diag diag diag diag diag diag diag CTL & diag CTL mAb & s.m mAb & s.m mAb & s.m mAb & s.m	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular extracellular plasma membrane nuclear secreted plasma membrane secreted secreted extracellular secreted plasma membrane
45 50 55 60	437016 437044 4377852 439223 439477 439606 439738 440006 441362 442117 443247 443426 44381 444781 444781 444781 44581 44619 446921 447033 447342 44844 448844 449048	AU076916 AL035864 AL035864 Al581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE387335 NM_014400 AJ245671 AU076643 AB012113 Al357412 Al199268 AW369771 AU381519 Z45051	Hs.5398 Hs.69517 Hs.127812 Hs.256897 Hs.250618 Hs.58042 Hs.58561 Hs.9598 Hs.63344 Hs.128899 Hs.333893 Hs.9329 Hs.93113 Hs.10086 Hs.239 Hs.283713 Hs.11950 Hs.12844 Hs.16530 Hs.157601 Hs.19322 Hs.52620 Hs.52620 Hs.52620 Hs.22920	guanine monphosphate synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to d3365012.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-li RAD51 (S. cerevisiae) homolog (E coil Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPI-anchored metastasis-associated prote EGF-like-domain, multiple 6 secreted phosphophorotein 1 (osteopontin, small inducible cytokine subfamily A (Cy ESTs Homo sapiens, Similar to RIKEN cDNA 2010 integrin, beta 8 ESTs similar to S68401 (cattle) glucose induc	s.m. CTL CTL mAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. s.m. s.m. s.m. CTL CTL diag mAb & s.m. diag mAb & diag diag diag CTL & diag diag CTL & diag mAb & s.m. mAb & s.m. diag	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular extracellular plasma membrane nuclear secreted plasma membrane secreted extracellular secreted plasma membrane
45 50 55	437016 437044 4377842 439223 439477 439605 439738 440006 441362 442117 443247 443263 444381 444781 444781 445537 446619 446213 44703 44703 44703 448243 448243 448844 448948 449048	AU076916 AL035864 AI581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE387335 NM_014400 AJ245671 AU076643 AB012113 AI357412 AI199268 AW369771 AI5869771 BE5280074	Hs.5398 Hs.69517 Hs.127812 Hs.250618 Hs.250618 Hs.58042 Hs.89561 Hs.9598 Hs.6844 Hs.23044 Hs.128899 Hs.333893 Hs.9914 Hs.10086 Hs.239 Hs.283713 Hs.11950 Hs.12844 Hs.313 Hs.16530 Hs.17164 Hs.57601 Hs.19322 Hs.52620 Hs.177164 Hs.22920 Hs.23960	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to 117330 hypotheti ESTs, Weakly similar to dJ365O12.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (lg), NALP2 protein; PYRIN-Containing APAF1-II RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPI-anchored metastasis-associated prote EGF-like-domain, multiple 6 secreted phosphoprotein 1 (osteopontin, small inducible cytokine subfamily A (Cy ESTs Homo sapiens, Similar to RIKEN cDNA 2010 integrin, beta 8 ESTs similar to S68401 (cattle) glucose induc cyclin B1	s.m. CTL CTL mAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. s.m. s.m. mAb & s.m. CTL CTL diag mAb & diag mAb & diag diag cTL & diag diag CTL & diag CTL mAb & s.m mAb s.m.	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular extracellular extracellular plasma membrane nuclear secreted plasma membrane secreted extracellular secreted plasma membrane plasma membrane
45 50 55 60	437016 437044 4377852 439223 439477 439606 439738 440006 441362 442117 443247 443426 44381 444781 444781 444781 44581 44619 446921 447033 447342 44844 448844 449048	AU076916 AL035864 AL035864 Al581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE387335 NM_014400 AJ245671 AU076643 AB012113 Al357412 Al199268 AW369771 AU381519 Z45051	Hs.5398 Hs.69517 Hs.127812 Hs.256897 Hs.250618 Hs.58042 Hs.58561 Hs.9598 Hs.63344 Hs.128899 Hs.333893 Hs.9329 Hs.93113 Hs.10086 Hs.239 Hs.283713 Hs.11950 Hs.12844 Hs.16530 Hs.157601 Hs.19322 Hs.52620 Hs.52620 Hs.52620 Hs.22920	guanine monphosphate synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to d3365012.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-li RAD51 (S. cerevisiae) homolog (E coil Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPI-anchored metastasis-associated prote EGF-like-domain, multiple 6 secreted phosphophorotein 1 (osteopontin, small inducible cytokine subfamily A (Cy ESTs Homo sapiens, Similar to RIKEN cDNA 2010 integrin, beta 8 ESTs similar to S68401 (cattle) glucose induc	s.m. CTL CTL mAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. s.m. s.m. s.m. CTL CTL diag mAb & s.m. diag mAb & diag diag diag CTL & diag diag CTL & diag mAb & s.m. mAb & s.m. diag	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular extracellular plasma membrane nuclear secreted plasma membrane secreted extracellular secreted plasma membrane
45 50 55 60	437016 437044 4377842 439223 439477 439605 439738 440006 441362 442117 443247 443263 444381 444781 444781 445537 446619 446213 44703 44703 44703 448243 448243 448844 448948 449048	AU076916 AL035864 AI581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE387335 NM_014400 AJ245671 AU076643 AB012113 AI357412 AI199268 AW369771 AI5869771 BE5280074	Hs.5398 Hs.69517 Hs.127812 Hs.250618 Hs.250618 Hs.58042 Hs.89561 Hs.9598 Hs.6844 Hs.23044 Hs.128899 Hs.333893 Hs.9914 Hs.10086 Hs.239 Hs.283713 Hs.11950 Hs.12844 Hs.313 Hs.16530 Hs.17164 Hs.57601 Hs.19322 Hs.52620 Hs.177164 Hs.22920 Hs.23960	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to 117330 hypotheti ESTs, Weakly similar to dJ365O12.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (lg), NALP2 protein; PYRIN-Containing APAF1-II RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPI-anchored metastasis-associated prote EGF-like-domain, multiple 6 secreted phosphoprotein 1 (osteopontin, small inducible cytokine subfamily A (Cy ESTs Homo sapiens, Similar to RIKEN cDNA 2010 integrin, beta 8 ESTs similar to S68401 (cattle) glucose induc cyclin B1	s.m. CTL CTL mAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. s.m. s.m. mAb & s.m. CTL CTL diag mAb & diag mAb & diag diag cTL & diag diag CTL & diag CTL mAb & s.m mAb s.m.	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular extracellular extracellular plasma membrane nuclear secreted plasma membrane secreted extracellular secreted plasma membrane plasma membrane
45 50 55 60	437016 437044 437784 437852 439223 439477 439606 44973 44006 441362 442117 443247 443426 443859 444006 444371 444781 444781 445537 446921 447033 447033 447342 448243 44844 449042 449042 450001	AU076916 AL035864 AI581344 BE601836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE614387 AF098158 NM_013409 BE395085 BE540274 AU076643 AB012113 AB012	Hs.5398 Hs.69517 Hs.127812 Hs.250618 Hs.250618 Hs.58042 Hs.89561 Hs.9598 Hs.6844 Hs.23044 Hs.128899 Hs.333893 Hs.9914 Hs.10086 Hs.239 Hs.283713 Hs.11950 Hs.12844 Hs.313 Hs.16530 Hs.17164 Hs.57601 Hs.19322 Hs.52620 Hs.177164 Hs.22920 Hs.23960	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to 117330 hypotheti ESTs, Weakly similar to dJ365012.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-II RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPI-anchored metastasis-associated prote EGF-like-domain, multiple 6 secreted phosphoprotein 1 (osteopontin, small inducible cytokine subfamily A (Cy ESTs Homo sapiens, Similar to RIKEN cDNA 2010 integrin, beta 8 ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte	s.m. CTL mAb & s.m. s.m. s.m. s.m. cTL cTL diag mAb & s.m. diag diag diag diag diag diag diag cTL & diag cTL & diag cTL mAb & s.m.	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular extracellular plasma membrane nuclear secreted plasma membrane secreted extracellular secreted plasma membrane
4550556065	437016 437044 4377849 437852 439223 439477 439606 449738 440006 441362 442117 443247 443426 443819 444701 444381 445537 446619 446921 447033 447034 448243 448844 449048 449722 450001	AU076916 AL035864 Al581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE387335 NM_014400 AJ245671 AU076643 AB012113 Al357412 Al199268 AW369771 Al581519 Z45051 BE280074 NM_010444 AA003647 H39960	Hs.5398 Hs.69517 Hs.127812 Hs.256697 Hs.250618 Hs.58042 Hs.59598 Hs.6844 Hs.23044 Hs.128899 Hs.333893 Hs.9329 Hs.283713 Hs.11950 Hs.12844 Hs.313 Hs.16530 Hs.157601 Hs.157601 Hs.19322 Hs.2920 Hs.29390 Hs.29390 Hs.29390 Hs.29390	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to d3365012.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-li RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistaltin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPI-anchored metastasis-associated prote EGF-like-domain, multiple 6 secreted phosphoprotein 1 (osteopontin, small inducible cytokine subfamily A (Cy ESTs Homo sapiens, Similar to RIKEN cDNA 2010 integrin, beta 8 ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-	s.m. CTL CTL mAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. s.m. s.m. s.m. cTL CTL diag mAb & diag mAb & diag diag diag diag diag diag diag diag	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular extracellular plasma membrane nuclear secreted plasma membrane secreted plasma membrane secreted plasma membrane
4550556065	437016 437044 4377852 439223 439477 439606 439738 440006 441362 442117 443247 443426 44381 444781 444781 444781 444781 44503 44733 447342 448844 449048 449048 449048 450701 4509701 4509701 450983	AU076916 AL035864 Al581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE387335 NM_014400 AJ245671 AU076643 AB012113 Al357412 Al199268 AW369771 AL581519 Z45051 BE280074 NM_001044 AA009647 NM_001044 AA00960 AA305384	Hs.5398 Hs.69517 Hs.127812 Hs.256897 Hs.250618 Hs.58042 Hs.58561 Hs.9598 Hs.63344 Hs.128899 Hs.333893 Hs.9329 Hs.9914 Hs.10086 Hs.239 Hs.283713 Hs.11950 Hs.12844 Hs.10560 Hs.157601 Hs.19322 Hs.52620 Hs.406 Hs.22920 Hs.29360 Hs.406	guanine monphosphate synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to d3365012.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-li RAD51 (S. cerevisiae) homolog (E coii Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPI-anchored metastasis-associated prote EGF-like-domain, multiple 6 secreted phosphophorotein 1 (osteopontin, small inducible cytokine subfamily A (Cy ESTs Homo sapiens, Similar to RIKEN cDNA 2010 integrin, beta 8 ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ERO1 (S. cerevisiae)-like	s.m. CTL CTL mAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. s.m. s.m. mAb & s.m. CTL CTL diag mAb & diag mAb & diag diag CTL & diag CTL & diag mAb & s.m. mAb & diag diag diag	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular extracellular extracellular secreted plasma membrane secreted extracellular secreted plasma membrane secreted
45 50 55 60	437016 437044 4377842 439223 439477 439606 439738 440006 441362 442117 443247 443247 443247 444381 444781 444781 444781 45781 45781	AU076916 AL035864 AI581344 BE601836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE614387 AF098158 NM_013409 BE395085 BE540274 AU076643 AB012113 AB012113 AB012113 AB012113 AB012113 AB012113 AB012113 AB012113 AB012113 AB012113 AB012113 AB012113 AB012113 AB012113 AB012113 AB012113 AB012113 AB012113 AB01213 AB01213 AB01213 AB01213 AB01213 AB01213 AB01213 AB01213 AB01213 AB03584 AA003547 H39960 AA305384 Z43948	Hs.5398 Hs.69517 Hs.127812 Hs.250618 Hs.250618 Hs.58042 Hs.89561 Hs.9598 Hs.6844 Hs.23044 Hs.128899 Hs.333893 Hs.9914 Hs.10086 Hs.239 Hs.9318713 Hs.16530 Hs.12844 Hs.313 Hs.16530 Hs.177164 Hs.3713 Hs.16530 Hs.177164 Hs.22920 Hs.777164 Hs.22920 Hs.23960 Hs.23960 Hs.406	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to 117330 hypotheti ESTs, Weakly similar to dJ365O12.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-II RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPL-anchored metastasis-associated prote EGF-like-domain, multiple 6 secreted phosphoprotein 1 (osteopontin, small inducible cytokine subfamily A (Cy ESTs Homo sapiens, Similar to RIKEN cDNA 2010 integrin, beta 8 ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ERO1 (S. cerevisiae)-like cartilage acidic protein 1	s.m. CTL mAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. s.m. s.m. s.m. s.m. cTL cTL diag mAb & s.m. cTL diag mAb & diag diag cTL & diag diag diag cTL & diag diag diag diag s.m. mAb & diag diag mAb & diag	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular extracellular plasma membrane nuclear secreted plasma membrane secreted secreted extracellular secreted plasma membrane
4550556065	437016 437044 437784 437852 439223 439477 439606 439738 44006 441362 442117 443247 443247 444381 444781 444781 444781 445537 446619 446921 447034 449048 450001 4500375 45068 4506	AU076916 AL035864 AI581344 BE601836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE387335 NM_014400 AJ245671 AU076643 AB012113 AI357412 AI199268 AW369771 AI581519 Z45051 BE280074 NM_001044 AA009647 H39960 AA305384 Z43948 T93500	Hs.5398 Hs.69517 Hs.127812 Hs.250618 Hs.550618 Hs.58042 Hs.5958 Hs.6844 Hs.23044 Hs.128899 Hs.333893 Hs.9329 Hs.33391 Hs.19506 Hs.239 Hs.2391 Hs.11950 Hs.12844 Hs.313 Hs.16530 Hs.157601 Hs.195222 Hs.52620 Hs.177164 Hs.22920 Hs.177164 Hs.22920 Hs.23960 Hs.25740 Hs.258447 Hs.25740	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to 177330 hypotheti ESTs, Weakly similar to dJ365012.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-Ii RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPI-anchored metastasis-associated prote EGF-like-domain, multiple 6 secreted phosphoprotein 1 (osteopontin, small inducible cytokine subfamily A (Cy ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ERO1 (S. cerevisiae)-like cartilage acidic protein 1	s.m. CTL mAb & s.m. s.m. s.m. s.m. cTL cTL diag mAb & s.m. diag mAb & diag diag diag diag diag diag diag diag	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular extracellular plasma membrane nuclear secreted plasma membrane secreted secreted secreted plasma membrane
4550556065	437016 437044 4377849 437852 439223 439477 4396006 441362 442117 443247 443247 443243 444006 444371 444381 4447034 446019 446921 447033 447034 448048 449048 450001 450988 450001 450988 450001 450988 450001 450488 450001 450488 450001 450488 450494 450	AU076916 AL035864 Al581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE387335 NM_014400 AJ245671 AU076643 AB012113 AI357412 AI357412 AI357412 AI357412 AI357412 AI399288 AW369771 AI581519 Z45051 BE280074 NM_001044 AA009647 H39960 AA305384 Z43948 T93500 NM_007115	Hs.5398 Hs.69517 Hs.127812 Hs.256697 Hs.250618 Hs.58042 Hs.59561 Hs.9598 Hs.6844 Hs.23044 Hs.128899 Hs.333893 Hs.9329 Hs.333893 Hs.9329 Hs.283713 Hs.11950 Hs.12844 Hs.313 Hs.16530 Hs.157601 Hs.157601 Hs.2920 Hs.177164 Hs.22920 Hs.27106 Hs.23960 Hs.23960 Hs.23960 Hs.26740 Hs.26740 Hs.26740 Hs.326444 Hs.326444 Hs.326444 Hs.326444 Hs.32952 Hs.29352	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to dJ365012.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-II RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPI-anchored metastasis-associated prote EGF-like-domain, multiple 6 secreted phosphoprotein 1 (osteopontin, small inducible cytokine subfamily A (Cy ESTs Homo sapiens, Similar to RIKEN cDNA 2010 integrin, beta 8 ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ERO1 (S. cerevisiae)-like cartilage acidic protein 1 Homo sapiens cDNA FLJ11041 fis, clone PL tumor necrosis factor, alpha-induced pro	s.m. CTL TL TMAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. s.m. s.m. s.m. s.m. CTL diag mAb & diag diag diag diag CTL & diag diag diag CTL & diag mAb & s.m. mAb & diag diag diag mAb & diag diag diag diag diag diag diag diag	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular plasma membrane nuclear secreted plasma membrane secreted extracellular secreted plasma membrane
4550556065	437016 437044 4377849 437852 439223 439477 439606 449738 440006 441362 442117 443247 443426 44381 444781 445537 446019 446921 447033 447034 448243 448844 449048 449722 450001 450375 450701 450983 451668 4522801 452401 452747	AU076916 AL035864 Al581344 BE001836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE387335 NM_014400 AJ245671 AU076643 AB012113 Al357412 Al199268 AW369771 Al581519 Z45051 BE280074 NM_001044 AA003647 H39960 AA305384 Z43948 T393500 NM_007115 BE153855	Hs.5398 Hs.69517 Hs.127812 Hs.256697 Hs.250618 Hs.58042 Hs.58561 Hs.9598 Hs.33093 Hs.33893 Hs.9329 Hs.33893 Hs.9329 Hs.283713 Hs.16530 Hs.157601 Hs.157601 Hs.157601 Hs.12920 Hs.23980 Hs.29300 Hs.29300 Hs.29300 Hs.29300 Hs.29300 Hs.29300 Hs.29350 Hs.29352 Hs.61460	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to d3365012.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-li RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPI-anchored metastasis-associated prote EGF-like-domain, multiple 6 secreted phosphoprotein 1 (osteopontin, small inducible cytokine subfamily A (Cy ESTs Homo sapiens, Similar to RIKEN cDNA 2010 integrin, beta 8 ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ER01 (S. cerevisiae)-like cartilage acidic protein 1 Homo sapiens cDNA FLJ11041 fis, clone PL tumor necrosis factor, alpha-induced pro Ig superfamily receptor LNIR	s.m. CTL CTL mAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. s.m. s.m. cTL CTL diag mAb & diag diag diag diag diag diag diag diag	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular extracellular plasma membrane nuclear secreted plasma membrane secreted extracellular secreted plasma membrane extracellular plasma membrane extracellular plasma membrane
455055606570	437016 437044 4377842 439223 439477 439606 439738 440006 441362 442117 443247 443246 443859 444006 444371 444781 444781 445537 446619 446703 44722 48243 448243 448243 448243 448243 448243 448243 449722 450001 450375 450701 450375 450701 450378 452281 452281 452281 452281 452283	AU076916 AL035864 AI581344 BE601836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW0664964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE387335 NM_014400 AJ245671 AU076643 AB01213 AB01213 AB012141 AI99268 AW369771 AIS81519 245051 BE280074 NM_001044 AA009647 H39960 H39	Hs.5398 Hs.69517 Hs.127812 Hs.250618 Hs.58042 Hs.85561 Hs.58561 Hs.58561 Hs.9598 Hs.6844 Hs.23044 Hs.128899 Hs.9314 Hs.10086 Hs.239 Hs.9914 Hs.10086 Hs.239 Hs.913 Hs.11950 Hs.12844 Hs.313 Hs.16530 Hs.17164 Hs.313 Hs.16530 Hs.177164 Hs.322 Hs.52620 Hs.177164 Hs.28290 Hs.28360 Hs.28467 Hs.28260 Hs.27710 Hs.28467 Hs.282792 Hs.29350 Hs.326444 Hs.28792 Hs.29352 Hs.29352 Hs.29352 Hs.30743	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to 117330 hypotheti ESTs, Weakly similar to dJ365O12.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-II RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPL-anchored metastasis-associated prote EGF-like-domain, multiple 6 secreted phosphoprotein 1 (osteopontin, small inducible cytokine subfamily A (Cy ESTs Homo sapiens, Similar to RIKEN cDNA 2010 integrin, beta 8 ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ERO1 (S. cerevisiae)-like cartilage acidic protein 1 Homo sapiens CDNA FLJ11041 fis, clone PL tumor necrosis factor, alpha-induced pro 1g superfamily receptor LNIR preferentially expressed antigen in meta	s.m. CTL mAb & s.m. s.m. s.m. s.m. cTL cTL diag mAb & diag mAb & diag diag cTL & diag diag cTL & diag cTL & diag mAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. mAb & diag diag cTL s.m. mAb & s.m. mAb & s.m. mAb & s.m. mAb & diag diag diag cTL s.m. mAb & diag diag	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular extracellular extracellular secreted plasma membrane secreted extracellular secreted plasma membrane extracellular plasma membrane extracellular plasma membrane extracellular plasma membrane
4550556065	437016 437044 437784 437852 439223 439477 439606 44973 44006 441362 442117 443247 443426 444859 444006 444371 4445537 446619 446921 44703 44781 448243 448243 448243 448243 449722 450001 450375 450701 450375 450701 450383 45281 45281 452838 453968	AU076916 AL035864 AI581344 BE601836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW664964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE614387 AU076643 AB012113 AI357412 AI199268 AW369771 AI581519 Z45051 AW369771 AI581519 Z45051 NM_001044 AA009647 H39960 AA305384 Z43948 T93500 NM_007115 BE153855 U65011 AA847843	Hs.5398 Hs.69517 Hs.127812 Hs.250618 Hs.550618 Hs.58042 Hs.59598 Hs.6844 Hs.23044 Hs.128899 Hs.333893 Hs.9914 Hs.10086 Hs.239 Hs.333893 Hs.9914 Hs.10086 Hs.239 Hs.23916 Hs.12844 Hs.313 Hs.16530 Hs.177164 Hs.12844 Hs.313 Hs.16530 Hs.177164 Hs.22920 Hs.177164 Hs.22920 Hs.275700 Hs.275740 Hs.288467 Hs.288467 Hs.288467 Hs.288467 Hs.288467 Hs.288467 Hs.288467 Hs.288467 Hs.28792 Hs.29352 Hs.61460 Hs.30743 Hs.62711	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to 177330 hypotheti ESTs, Weakly similar to dJ365O12.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-II RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPL-anchored metastasis-associated prote EGF-like-domain, multiple 6 secreted phosphoprotein 1 (osteopontin, small inducible cytokine subfamily A (Cy ESTs Homo sapiens, Similar to RIKEN cDNA 2010 integrin, beta 8 ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitle a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ERO1 (S. cerevisiae)-like cartilage acidic protein 1 Homo sapiens cDNA FLJ11041 fis, clone PL tumor necrosis factor, alpha-induced pro Ig superfamily receptor LNIR preferentially expressed antigen in mela High mobility group (nonhistone chromoso	s.m. CTL mAb & s.m. s.m. s.m. s.m. cTL cTL diag mAb & s.m. diag mAb & diag diag diag diag diag diag diag diag	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular plasma membrane nuclear secreted plasma membrane secreted secreted plasma membrane
455055606570	437016 437044 4377842 439223 439477 439606 439738 440006 441362 442117 443247 443246 443859 444006 444371 444781 444781 445537 446619 446703 44722 48243 448243 448243 448243 448243 448243 448243 449722 450001 450375 450701 450375 450701 450378 452281 452281 452281 452281 452283	AU076916 AL035864 AI581344 BE601836 AW238299 W69813 W79123 BE246502 AK000517 BE614410 AW0664964 BE614387 AF098158 NM_013409 BE395085 BE540274 BE387335 NM_014400 AJ245671 AU076643 AB01213 AB01213 AB012141 AI99268 AW369771 AIS81519 245051 BE280074 NM_001044 AA009647 H39960 H39	Hs.5398 Hs.69517 Hs.127812 Hs.250618 Hs.58042 Hs.85561 Hs.58561 Hs.58561 Hs.9598 Hs.6844 Hs.23044 Hs.128899 Hs.9314 Hs.10086 Hs.239 Hs.9914 Hs.10086 Hs.239 Hs.913 Hs.11950 Hs.12844 Hs.313 Hs.16530 Hs.17164 Hs.313 Hs.16530 Hs.177164 Hs.322 Hs.52620 Hs.177164 Hs.28290 Hs.28360 Hs.28467 Hs.28260 Hs.27710 Hs.28467 Hs.282792 Hs.29350 Hs.326444 Hs.28792 Hs.29352 Hs.29352 Hs.29352 Hs.30743	guanine monphosphale synthetase differentially expressed in Fanconi's an ESTs, Weakly similar to 117330 hypotheti ESTs, Weakly similar to dJ365O12.1 [H.sa UL16 binding protein 2 ESTs, Moderately similar to GFR3_HUMAN G G protein-coupled receptor 87 sema domain, immunoglobulin domain (Ig), NALP2 protein; PYRIN-Containing APAF1-II RAD51 (S. cerevisiae) homolog (E coli Re ESTs; hypothetical protein for IMAGE:447 c-Myc target JPO1 chromosome 20 open reading frame 1 follistatin type I transmembrane protein Fn14 forkhead box M1 ESTs, Weakly similar to S64054 hypotheti GPL-anchored metastasis-associated prote EGF-like-domain, multiple 6 secreted phosphoprotein 1 (osteopontin, small inducible cytokine subfamily A (Cy ESTs Homo sapiens, Similar to RIKEN cDNA 2010 integrin, beta 8 ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ERO1 (S. cerevisiae)-like cartilage acidic protein 1 Homo sapiens CDNA FLJ11041 fis, clone PL tumor necrosis factor, alpha-induced pro 1g superfamily receptor LNIR preferentially expressed antigen in meta	s.m. CTL mAb & s.m. s.m. s.m. s.m. cTL cTL diag mAb & diag mAb & diag diag cTL & diag diag cTL & diag cTL & diag mAb & s.m. mAb & s.m. mAb & s.m. mAb & s.m. mAb & diag diag cTL s.m. mAb & s.m. mAb & s.m. mAb & s.m. mAb & diag diag diag cTL s.m. mAb & diag diag	ER nuclear plasma membrane plasma membrane plasma membrane plasma membrane plasma membrane nuclear plasma membrane extracellular extracellular extracellular secreted plasma membrane secreted extracellular secreted plasma membrane extracellular plasma membrane extracellular plasma membrane extracellular plasma membrane

TABLE 14B

80

Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers

CAT Number Pkey Accession

	WO 02/086443			PCT/US02/12476
5	414883	15024_1	AA08243 AA29275 AA87203 R75953 A AW61300 N95210 A	0 AA926959 W76521 W24270 W21526 AA037172 BE267636 H83186 AA469909 N86396 AA001348 BE535736 AA081745 BE566245 6 H72525 H77575 N49786 W80565 H78746 BE569085 W04339 R98127 T55938 BE279271 AW960304 T29812 AA476873 BE297387 3 AA177048 NM_001826 X54941 BE314366 AA908783 AI719075 BE270172 BE269819 AA889955 AI204630 W25243 AI935150 99 W72395 T99630 AI422691 H98460 N31428 BE255916 H03265 AI857576 AA776920 AA910644 AA459522 AA293140 AW514667 AW662396 AA662522 AI865147 AI423153 AW262230 AA58410 AA583187 AW024595 AW069734 AI828996 AA282997 AA876046 AI2 AA527373 AW972459 AI831360 AA621337 AA109265 AA772418 AA594628 AI033892 W95096 AI034317 AA398727 AI085031 AI459432 AI041437 AA932124 AA627684 AA935829 AI004827 AI423513 AI094597 H42079 R54703 AI630359 AA617681 AA978045
10			Al139549 Al494230 Al494211 AA95434	0 W44561 AI991988 AI537692 Al090262 AA740817 AI312104 AI911822 AA416871 AI185409 AA129784 AA701623 AI075239 I AA633648 AI339996 AI336880 AA399239 AI078708 AI085351 AI362835 AI346618 AI146955 AI989380 AI348243 N92892 AA765850 I AI278887 AA962596 AI492600 W80435 AA001979 R97424 AI129015 N24127 AA157451 AA235549 AA459292 AA037114 AA129785 AW059601 AW886710 R92790 N59755 AI361128 AW589407 H47725 H97534 H48076 H48450 T99631 AW300758 H03431 R76789 4 H77576 R96823 AI457100 N92845 N49682 H42038 BE220698 BE220715 H99552 AA701624 N74173 R54704 H79520 H72923 BE261919 AA769633 AA480310 AA507454 AA910586 AI203723 AW104725 W25611 W25071 T88980 H03513 T77589 R99156
15	450375	83327_1	W95095 I AA00964	R97470 AA702275 T77551 AA911952 H82956 N83673 AA283672 7 AA131254 AA374293 AW954405 H04410 AW606284 AA151166 BE157467 BE157601 H04384 W46291 AW663674 H04021 H01532 3 H03231 H59605 H01642 AA852876 AA113758 AA626915 AA746952 AI161014 AA099554 R69067
20	TABLE 14C			
20	Pkey: Ref:	Sequence sou	rce. The 7 d	ling to an Eos probeset igit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA osome 22." Dunham I. et al., Nature (1999) 402:489-495.
25	Strand: Nt_position:	Indicates DNA	strand from	which exons were predicted. ns of predicted exons.
	Pkey	Ref	Strand	Nt_position
30	402075	8117407	Plus	121907-122035,122804-122921,124019-124161,124455-124610,125672-126076

TABLE 15A: Information for all sequences in Table 16

Table 15A shows the Seq ID No, Pkey, ExAcon, UnigenelD, and Unigene Title for all of the sequences in Table 16.

- Table 15B show the accession numbers for those Pkey's lacking UnigenelD's for table 15A. For each probeset we have listed the gene cluster number from which the digonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the 5
- 10 Table 15C show the genomic positioning for those Pkey's tacking Unigene ID's and accession numbers in table 15A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

15

Seq ID No: Sequence ID number
Pkey: Unique Eos probeset identifier number

Exemplar Accession number, Genbank accession number

UnigenelD: Unigene number Unigene Title: Unigene gene title

20	Seq ID No:	Pkey	ExAccn	UnigenelD	Unigene Title
	Seq ID No: 1 & 2	410407	X66839	Hs.63287	carbonic anhydrase IX
	Seq ID No: 3 & 4	412719	AW016610	Hs.816	ESTs
	Seq ID No: 5 & 6	417034	NM_006183	Hs.80962	neurotensin
25				Hs.241551	chloride channel, calcium activated, fam
23	Seq ID No: 7 & 8	430486	BE062109		
	Seq ID No: 9 & 10	407788	BE514982	Hs.38991	S100 calcium-binding protein A2
	Seq ID No: 11 & 12	407788	BE514982	Hs.38991	S100 calcium-binding protein A2
	Seq ID No: 13 & 14	407788	BE514982	Hs.38991	S100 calcium-binding protein A2
	Seq ID No: 15 & 16	407788	BE514982	Hs.38991	S100 calcium-binding protein A2
30	Seq ID No: 17 & 18	439285	AL133916		hypothetical protein FLJ20093
-	Seq ID No: 19 & 20	413753	U17760	Hs.75517	laminin, beta 3 (nicein (125kD), kalinin
	Seq ID No: 21 & 22	120486	AW368377	Hs.137569	turnor protein 63 kDa with strong homolog
				Hs.1925	desmoglein 3 (pemphigus vulgaris anligen
	Seq ID No: 23 & 24		NM_001944 AA219691		RAB6 interacting, kinesin-like (rabkines
25	Seq ID No: 25 & 26	412140		Hs.73625	
35	Seq ID No: 27 & 28	423673	BE003054	Hs.1695	matrix metalloproteinase 12 (macrophage
	Seq ID No: 29 & 30	452838	U65011	Hs.30743	preferentially expressed antigen in mela
	Seq ID No: 31 & 32	418663	AK001100	Hs.41690	desmocollin 3
	Seq ID No: 33 & 34	418663	AK001100	Hs.41690	desmocollin 3
	Seq ID No: 35 & 36	409632	W74001	Hs.55279	serine (or cysteine) proteinase inhibito
40	Seq ID No: 37 & 38	429610	AB024937	Hs.211092	LUNX protein; PLUNC (palate lung and nas
10	Seq ID No: 39 & 40	406690	M29540	Hs.220529	carcinoembryonic antigen-related cell ad
		431846	BE019924	Hs.271580	uroplakin 1B
	Seq ID No: 41 & 42				hypothetical protein MGC4816
	Seq ID No: 43 & 44	418830	BE513731	Hs.88959	
15	Seq ID No: 45 & 46	424098	AF077374	Hs.139322	small proline-rich protein 3
45	Seq ID No: 47 & 48	443648	Al085377	Hs.143610	ESTs
	Seq ID No: 49	311034	BE567130	Hs.311389	ESTs, Highly similar to NKGD_HUMAN NKG2-
	Seq ID No: 50 & 51	408522	Al541214	Hs.46320	Small proline-rich protein SPRK [human,
	Seq ID No: 52 & 53	422158	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL
	Seq ID No: 54 & 55	435505	AF200492	Hs.211238	interleukin-1 homolog 1
50	Seq ID No: 56 & 57	417366	BE185289	Hs.1076	small proline-rich protein 1B (comifin)
50	Seq ID No: 58 & 59	431958	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta
	Seq ID No: 60 & 61	441020	W79283	Hs.35962	ESTs
					collagen, type VII, alpha 1 (epidermolys
	Seq ID No: 62 & 63	423217	NM_000094	Hs.1640	
<i>5 5</i>	Seq ID No: 64 & 65	429538	BE182592	Hs.11261	small proline-rich protein 2A
55	Seq ID No: 66 & 67	448733	NM_005629	Hs.187958	solute carrier family 6 (neurotransmitte
	Seq ID No: 68 & 69	444371	BE540274	Hs.239	forkhead box M1
	Seq ID No: 70 & 71	444371	BE540274	Hs.239	forkhead box M1
	Seq ID No: 72 & 73	444371	BE540274	Hs.239	forkhead box M1
	Seq ID No: 74 & 75	422168	AA586894	Hs.112408	S100 calcium-binding protein A7 (psorias
60	Seq ID No: 76 & 77	422168	AA586894	Hs.112408	S100 calcium-binding protein A7 (psorias
00	Seq ID No: 78 & 79	429259	AA420450	Hs.292911	Plakophilin
		426440	BE382756	Hs.169902	solute carrier family 2 (facilitated glu
	Seq ID No: 80 & 81				
	Seq ID No: 82 & 83	437044	AL035864	Hs.69517	differentially expressed in Fanconi's an
65	Seq ID No: 84 & 85	423662	AK001035	Hs.130881	B-cell CLL/lymphoma 11A (zinc finger pro
65	Seq ID No: 86 & 87	428484	AF104032	Hs.184601	solute carrier family 7 (calionic amino
	Seq ID No: 88 & 89	429211	AF052693	Hs.198249	gap junction protein, beta 5 (connexin 3
	Seq ID No: 90 & 91	417389	BE260964	Hs.82045	midkine (neurite growth-promotting factor
	Seq ID No: 92 & 93	423634	AW959908	Hs.1690	heparin-binding growth factor binding pr
	Seq ID No: 94 & 95	417515	L24203	Hs.82237	ataxia-telangiectasia group D-associated
70	Seq 1D No: 96 & 97	441362	BE614410	Hs.23044	RAD51 (S. cerevisiae) homolog (E coli Re
	Seq ID No: 98 & 99	425322	U63630	Hs.155637	protein kinase, DNA-activated, catalytic
	Seq ID No: 100 & 101	449003	X76342	Hs.389	alcohol dehydrogenase 7 (class IV), mu o
			BE149762	Hs.48956	gap junction protein, beta 6 (connexin 3
	Seq ID No: 102 & 103	431009		11 440000	Wide 4
75	Seq ID No: 104 & 105	409103	AF251237	HS.112208	XAGE-1 protein
75	Seq ID No: 106 & 107	417542	J04129	Hs.82269	progestagen-associated endometrial prote
	Seq ID No: 108 & 109	428471	X57348	Hs.184510	stratifin
	Seq ID No: 110 & 111	418004	U37519	Hs.87539	aldehyde dehydrogenase 3 family, member
	Seq ID No: 112 & 113	414761	AU077228	Hs.77256	enhancer of zeste (Drosophila) homolog 2
	Seq ID No: 114 & 115	418203	X54942	Hs.83758	CDC28 protein kinase 2
80	Seq ID No: 116	447343	AA256641	Hs.236894	ESTs, Highly similar to S02392 alpha-2-m
	Seq ID No: 117 & 118	437016	AU076916	Hs.5398	guanine monphosphate synthetase
				Hs.211579	melanoma cell adhesion molecule
	Seq ID No: 119 & 120	449230	BE613348		
	Seq ID No: 121 & 122	446989	AK001898	Hs.16740	hypothetical protein FLJ11036
95	Seq ID No: 123 & 124	457819	AA057484	Hs.35406	ESTs, Highly similar to unnamed protein
85	Seq ID No: 125 & 126	424687	J05070	Hs.151738	matrix metalioproteinase 9 (gelatinase B

	W O 02/000		11010001	1)- 70440	
	Seq ID No: 127 & 128	414430	Al346201	Hs.76118	ubiquitin carboxyl-terminal esterase L1
	Seq ID No: 129 & 130	418462	BE001596	Hs.85266	integrin, beta 4
	Seq ID No: 131 & 132	100668	L05424	Hs.169610	CD44 antigen (homing function and Indian
	Seq ID No: 133 & 134	458933	Al638429	Hs.24763	RAN binding protein 1
5	Seq ID No: 135 & 136	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me
	Seq ID No: 137 & 138	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me
	Seq ID No: 139 & 140	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me
	Seg ID No: 141 & 142	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me
		446269	AW263155	Hs.14559	hypothetical protein FLJ 10540
10	Seq ID No: 143 & 144				
10	Seq ID No: 145 & 146	422765	AW409701	Hs.1578	baculoviral IAP repeat-containing 5 (sur
	Seq ID No: 147 & 148	436481	AA379597	Hs.5199	HSPC150 protein similar to ubiquitin-con
	Seq ID No: 149 & 150	440325	NM_003812	Hs.7164	a disintegrin and metalloproteinase doma
	Seq ID No: 151 & 152	439606	W79123	Hs.58561	G protein-coupled receptor 87
	Seq ID No: 153 & 154	453884	AA355925	Hs.36232	KIAA0186 gene product
15	Seq ID No: 155 & 156	453884	AA355925	Hs.36232	KIAA0186 gene product
	Seq ID No: 157 & 158	453884	AA355925	Hs.36232	KIAA0186 gene product
	Seq ID No: 159 & 160	453884	AA355925	Hs.36232	KIAA0186 gene product
			701000020	110.00202	
	Seq ID No: 161 & 162	404877	AE000400	U- 404612	NM_005365:Homo sapiens metanoma antigen,
20	Seq ID No: 163 & 164	413129	AF292100	Hs.104613	RP42 homolog
20	Seq ID No: 165 & 166	413281	AA861271	Hs.222024	transcription factor BMAL2
	Seq ID No: 167 & 168	444781	NM_014400	Hs.11950	GPI-anchored metastasis-associated prote
	Seq ID No: 169 & 170	416819	U77735	Hs.80205	pim-2 oncogene
	Seq ID No: 171 & 172	451320	AW118072		dlacylglycerol kinase, zeta (104kD)
	Seq ID No: 173 & 174	418543	NM_005329	Hs.85962	hyaluronan synthase 3
25	Seq ID No: 175 & 176	454034	NM_000691	Hs.575	aldehyde dehydrogenase 3 family, member
	Seq ID No: 177 & 178	425397	J04088	Hs.156346	topoisomerase (DNA) Il alpha (170kD)
		415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
	Seq ID No: 179 & 180				
	Seq ID No: 181 & 182	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
20	Seq ID No: 183 & 184	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
30	Seq ID No: 185 & 186	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
	Seq ID No: 187 & 188	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
•	Seg ID No: 189 & 190	419121	AA374372	Hs.89626	parathyroid hormone-like hormone
	Seq ID No: 191 & 192	448993	AI471630	Hs.8127	KIAA0144 gene product
	Seq ID No: 193 & 194	421817	AF146074	Hs.108660	ATP-binding cassette, sub-family C (CFTR
35	Seq ID No: 195 & 196	430393	BE185030	Hs.241305	estrogen-responsive B box protein
55					achaete-scute complex (Drosophila) homol
	Seq ID No: 197 & 198	425057	AA826434	Hs.1619	
	Seq ID No: 199 & 200	420462	AF050147	Hs.97932	chondromodulin I precursor
	Seq ID No: 201 & 202	102963	X02404	Hs.274534	calcitonin-related polypeptide, beta
40	Seq ID No: 203 & 204	100576	X00356	Hs.37058	calcitonin/calcitonin-related polypeptid
40	Seq ID No: 205 & 206	101175	U82671	Hs.36980	melanoma antigen, family A, 2
	Seq ID No: 207 & 208	429038	AL023513	Hs.194766	seizure related gene 6 (mouse)-like
	Seq ID No: 209 & 210	418678	NM_001327	Hs.167379	cancer/testis antigen (NY-ESO-1)
	Seq ID No: 211 & 212	418678	NM_001327	Hs.167379	cancer/testis antigen (NY-ESO-1)
	Seq ID No: 213 & 214	131927	AJ003112	Hs.34780	doublecortex; lissencephaly, X-linked (d
45	Seq ID No: 215 & 216	428182	BE386042	Hs.293317	ESTs, Weakly similar to GGC1_HUMAN G ANT
73					
	Seq ID No: 217 & 218	427335	AA448542	Hs.251677	G antigen 7B
	Seq ID No: 219 & 220	409420	. Z15008	Hs.54451	laminin, gamma 2 (nicein (100kD), kalini
	Seq ID No: 221 & 222	114346	AL137256	Hs.130489	ATPase, aminophospholipid transporter-li
~ 0	Seq ID No: 223 & 224	438956	W00847	Hs.135056	Human DNA sequence from clone RP5-850E9
50	Seq ID No: 225 & 226	404440			NM_021048:Homo sapiens melanoma antigen,
	Seq ID No: 227 & 228	415669	NM_005025	Hs.78589	serine (or cysteine) proteinase inhibito
	Seq ID No: 229 & 230	103312	Y12642	Hs.3185	lysosomal
	Seq ID No: 231 & 232	320843	BE069288	Hs.34744	Homo sapiens mRNA; cDNA DKFZp547C136 (fr
	Seq ID No: 233	429065	AI753247	Hs.29643	Homo sapiens cDNA FLJ13103 fis, clone NT
55	Seg ID No: 234 & 235	446102	AW168067	Hs.317694	
	004 10 1101 201 a 200				FSTs
	Con ID Mor 226 & 227				ESTs
	Seq ID No: 236 & 237	330495	U47924	Hs.71642	guanine nucleotide binding protein (G pr
	Seq ID No: 238	330495 413573	U47924 Al733859	Hs.71642 Hs.149089	guanine nucleotide binding protein (G pr ESTs
	Seq ID No: 238 Seq ID No: 239 & 240	330495 413573 428479	U47924 AI733859 Y00272	Hs.71642 Hs.149089 Hs.334562	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to
60	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242	330495 413573 428479 428479	U47924 AI733859 Y00272 Y00272	Hs.71642 Hs.149089 Hs.334562 Hs.334562	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to
60	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244	330495 413573 428479 428479 332180	U47924 AI733859 Y00272 Y00272 AF134160	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1
60	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245	330495 413573 428479 428479 332180 437915	U47924 AI733859 Y00272 Y00272 AF134160 AI637993	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca
60	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 Seq ID No: 246 & 247	330495 413573 428479 428479 332180 437915 441553	U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca . ESTs
60	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245	330495 413573 428479 428479 332180 437915 441553 331692	U47924 AI733859 Y00272 Y00272 AF134160 AI637993	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami
	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 Seq ID No: 246 & 247	330495 413573 428479 428479 332180 437915 441553	U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca . ESTs
	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 Seq ID No: 246 & 247 Seq ID No: 248 & 249 Seq ID No: 250 & 251	330495 413573 428479 428479 332180 437915 441553 331692 429413	U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca . ESTs wingless-type MMTV integration site fami DESC1 protein
60 65	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 266 & 247 Seq ID No: 248 & 249 Seq ID No: 250 & 251 Seq ID No: 252 & 253	330495 413573 428479 428479 332180 437915 441553 331692 429413 422283	U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis
	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 Seq ID No: 246 & 247 Seq ID No: 248 & 249 Seq ID No: 250 & 251 Seq ID No: 252 & 253 Seq ID No: 254 & 255	330495 413573 428479 428479 332180 437915 441553 331692 429413 422283 448357	U47924 A1733859 Y00272 Y00272 AF134160 A1637993 AA281219 A1683487 NM_014058 AW411307 N20169	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family
	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 Seq ID No: 246 & 247 Seq ID No: 248 & 249 Seq ID No: 252 & 251 Seq ID No: 254 & 255 Seq ID No: 256 & 257 Seq ID No: 256 & 257	330495 413573 428479 428479 332180 437915 441553 331692 429413 422283 448357 446292	U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.108923 Hs.279682	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein
	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 Seq ID No: 246 & 247 Seq ID No: 256 & 251 Seq ID No: 250 & 251 Seq ID No: 254 & 255 Seq ID No: 256 & 257 Seq ID No: 258 & 255 Seq ID No: 258 & 255	330495 413573 428479 428479 332180 437915 441553 331692 429413 422283 448357 446292 416209	U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (milotic arrest deficient, yeast, h
65	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 Seq ID No: 246 & 247 Seq ID No: 250 & 251 Seq ID No: 252 & 253 Seq ID No: 254 & 255 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 258 & 259 Seq ID No: 258 & 259 Seq ID No: 250 & 251	330495 413573 428479 428479 332180 437915 441553 331692 429413 422283 448357 446292 416209 453922	U47924 A1733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1
	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 & 247 Seq ID No: 246 & 247 Seq ID No: 248 & 249 Seq ID No: 250 & 251 Seq ID No: 252 & 253 Seq ID No: 254 & 255 Seq ID No: 258 & 257 Seq ID No: 258 & 259 Seq ID No: 260 & 261 Seq ID No: 262 & 263	330495 413573 428479 428479 332180 437915 441553 331692 429413 422283 448357 446292 416209 453922 424046	U47924 A1733859 Y00272 Y00272 AF134160 A1637993 AA281219 A1683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF083306 AF027866	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.138202	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito
65	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 Seq ID No: 246 & 247 Seq ID No: 248 & 249 Seq ID No: 250 & 250 Seq ID No: 252 & 253 Seq ID No: 254 & 255 Seq ID No: 256 & 257 Seq ID No: 256 & 253 Seq ID No: 262 & 263 Seq ID No: 262 & 263 Seq ID No: 264 & 265	330495 413573 428479 428479 332180 437915 441553 331692 429243 448357 446292 416292 453922 424046 439223	U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.138202 Hs.250618	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2
65	Seq ID No: 238 & 240 Seq ID No: 239 & 240 Seq ID No: 239 & 244 Seq ID No: 243 & 244 Seq ID No: 245 Seq ID No: 246 & 247 Seq ID No: 248 & 249 Seq ID No: 252 & 251 Seq ID No: 254 & 255 Seq ID No: 254 & 255 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 256 & 259 Seq ID No: 256 & 259 Seq ID No: 262 & 263 Seq ID No: 264 & 265 Seq ID No: 264 & 265 Seq ID No: 266 & 267	330495 413573 428479 428479 332180 437915 441553 331692 429413 422283 448357 446292 416209 453922 424046 439223 429228	U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 AI553633	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.138202 Hs.250618 Hs.326447	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2
65	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 Seq ID No: 246 & 247 Seq ID No: 248 & 249 Seq ID No: 250 & 251 Seq ID No: 252 & 253 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 260 & 261 Seq ID No: 268 & 261 Seq ID No: 264 & 265 Seq ID No: 264 & 265 Seq ID No: 266 & 267 Seq ID No: 266 & 267 Seq ID No: 268 & 267 Seq ID No: 268 & 269	330495 413573 428479 428479 332180 437915 441553 331692 429213 422213 448357 446292 416209 453922 42404 439223 429228 409757	U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 AI553633 NM_001898	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.138202 Hs.250618 Hs.326447 Hs.123114	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2 ESTs cystatin SN
65 70	Seq ID No: 238 & 240 Seq ID No: 239 & 240 Seq ID No: 239 & 244 Seq ID No: 243 & 244 Seq ID No: 245 Seq ID No: 246 & 247 Seq ID No: 248 & 249 Seq ID No: 252 & 251 Seq ID No: 254 & 255 Seq ID No: 254 & 255 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 256 & 259 Seq ID No: 256 & 259 Seq ID No: 262 & 263 Seq ID No: 264 & 265 Seq ID No: 264 & 265 Seq ID No: 266 & 267	330495 413573 428479 428479 332180 437915 441553 331692 429413 422283 448357 446292 416209 453922 424046 439223 429228	U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 AI553633	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.138202 Hs.250618 Hs.326447	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2
65	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 Seq ID No: 246 & 247 Seq ID No: 248 & 249 Seq ID No: 250 & 251 Seq ID No: 252 & 253 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 260 & 261 Seq ID No: 268 & 261 Seq ID No: 264 & 265 Seq ID No: 264 & 265 Seq ID No: 266 & 267 Seq ID No: 266 & 267 Seq ID No: 268 & 267 Seq ID No: 268 & 269	330495 413573 428479 428479 332180 437915 441553 331692 429213 422213 448357 446292 416209 453922 42404 439223 429228 409757	U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 AI553633 NM_001898	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.138202 Hs.250618 Hs.326447 Hs.123114	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2 ESTs cystatin SN
65 70	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 & 247 Seq ID No: 246 & 247 Seq ID No: 250 & 251 Seq ID No: 252 & 253 Seq ID No: 254 & 255 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 262 & 263 Seq ID No: 266 & 261 Seq ID No: 266 & 261 Seq ID No: 266 & 265 Seq ID No: 266 & 267 Seq ID No: 268 & 259 Seq ID No: 268 & 259 Seq ID No: 268 & 269	330495 413573 428479 438479 332180 437915 441553 331692 4292413 422283 448357 446292 416292 424046 439223 429228 40975 411089 436511	U47924 A1733859 Y00272 Y00272 AF134160 A1637993 AA281219 A1683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF083306 AF027866 AW238299 A1553633 NM_001898 AA456454 AA721252	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.36708 Hs.36708 Hs.36708 Hs.36708 Hs.138202 Hs.250618 Hs.326447 Hs.214291	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teraloca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (milotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2 ESTs cystatin SN cell division cycle 2-like 1 (PITSLRE pr
65 70	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 Seq ID No: 246 & 247 Seq ID No: 250 & 251 Seq ID No: 250 & 255 Seq ID No: 254 & 255 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 256 & 261 D No: 256 & 261 D No: 266 & 261 Seq ID No: 262 & 263 Seq ID No: 266 & 267 Seq ID No: 268 & 269 Seq ID No: 270 & 271 Seq ID No: 272 & 273 Seq ID No: 274 & 275	330495 413573 428479 428479 332180 437915 441553 331692 429413 4422283 448357 446292 416292 424046 439223 429228 409757 411089 436511 428969	U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 AI553633 NM_001898 AA456454 AA721252 AF120274	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.36708 Hs.326447 Hs.123114 Hs.214291 Hs.291502 Hs.194689	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (milotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2 ESTs cystatin SN cell division cycle 2-like 1 (PITSLRE pr ESTs artemin
65 70	Seq ID No: 238 & 240 Seq ID No: 239 & 240 Seq ID No: 239 & 244 Seq ID No: 243 & 244 Seq ID No: 243 & 244 Seq ID No: 246 & 247 Seq ID No: 248 & 249 Seq ID No: 252 & 253 Seq ID No: 254 & 255 Seq ID No: 254 & 255 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 256 & 259 Seq ID No: 262 & 263 Seq ID No: 266 & 267 Seq ID No: 268 & 269 Seq ID No: 270 & 271 Seq ID No: 272 & 273 Seq ID No: 274 & 275 Seq ID No: 276 & 277	330495 413573 428479 428479 332180 437915 441553 331692 42943 422283 448357 446292 416209 4539223 429228 409757 411089 436511 428969 428969	U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 AI553633 NM_001898 AA456454 AA721252 AF120274 AF120274	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.138202 Hs.250618 Hs.326447 Hs.123114 Hs.214291 Hs.214291 Hs.291502 Hs.194689 Hs.194689	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2 ESTs cystatin SN cell division cycle 2-like 1 (PITSLRE pr ESTs artemin artemin
65 70	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 & 247 Seq ID No: 246 & 247 Seq ID No: 250 & 251 Seq ID No: 250 & 251 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 266 & 261 Seq ID No: 268 & 269 Seq ID No: 268 & 269 Seq ID No: 268 & 267 Seq ID No: 268 & 267 Seq ID No: 270 & 271 Seq ID No: 274 & 275 Seq ID No: 274 & 275 Seq ID No: 276 & 277 Seq ID No: 278 & 279	330495 413573 428479 332180 437915 441553 331692 429413 422283 448357 446209 453922 424046 439223 429228 409757 411089 436511 428969 428969 428969	U47924 A1733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 AI553633 NM_001898 AA456454 AA721252 AF120274 AF120274	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.136202 Hs.250618 Hs.3250447 Hs.214291 Hs.291502 Hs.194689 Hs.194689 Hs.194689	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2 ESTs cystatin SN cell division cycle 2-like 1 (PITSLRE pr ESTs artemin artemin artemin
657075	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 243 & 244 Seq ID No: 246 & 247 Seq ID No: 248 & 249 Seq ID No: 250 & 251 Seq ID No: 252 & 253 Seq ID No: 254 & 255 Seq ID No: 258 & 257 Seq ID No: 258 & 259 Seq ID No: 258 & 259 Seq ID No: 264 & 265 Seq ID No: 262 & 263 Seq ID No: 264 & 265 Seq ID No: 268 & 267 Seq ID No: 276 & 271 Seq ID No: 272 & 273 Seq ID No: 274 & 275 Seq ID No: 274 & 275 Seq ID No: 276 & 277 Seq ID No: 278 & 279	330495 413573 428479 332180 437915 441553 331692 429413 422283 448357 446299 453922 424046 439223 42924 42924 42925 411089 428969 428969 428969 428969	U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 AI553633 NM_001898 AA456454 AA721252 AF120274 AF120274 AF120274	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.138202 Hs.250618 Hs.326447 Hs.123114 Hs.214291 Hs.214291 Hs.291502 Hs.194689 Hs.194689	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2 ESTs cystatin SN cell division cycle 2-like 1 (PITSLRE pr ESTs artemin artem
65 70	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 Seq ID No: 246 & 247 Seq ID No: 248 & 249 Seq ID No: 250 & 251 Seq ID No: 252 & 253 Seq ID No: 254 & 255 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 266 & 261 Seq ID No: 266 & 261 Seq ID No: 266 & 267 Seq ID No: 266 & 267 Seq ID No: 272 & 273 Seq ID No: 274 & 275 Seq ID No: 274 & 275 Seq ID No: 278 & 279 Seq ID No: 280 & 281 Seq ID No: 280	330495 413573 428479 428479 332180 437915 441553 331692 429243 448357 446292 416292 424046 439223 429228 40975 411089 428969 428969 428969 428969 428969 428969 428969	U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF023306 AF027866 AW238299 AI553633 NM_001898 AA456454 AA721252 AF120274 AF120274 AF120274 AF120274 AF120274	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.36708 Hs.36708 Hs.36708 Hs.138202 Hs.250618 Hs.326447 Hs.123114 Hs.214291 Hs.291502 Hs.194689 Hs.194689 Hs.194689	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (milotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2 ESTs cystatin SN cell division cycle 2-like 1 (PITSLRE pr ESTs artemin artemin artemin artemin gb:ye53h05.s1 Soares fetal liver spleen
657075	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 Seq ID No: 246 & 247 Seq ID No: 250 & 251 Seq ID No: 250 & 251 Seq ID No: 254 & 253 Seq ID No: 256 & 257 Seq ID No: 266 & 267 Seq ID No: 268 & 269 Seq ID No: 268 & 267 Seq ID No: 268 & 269 Seq ID No: 276 & 277 Seq ID No: 278 & 279 Seq ID No: 278 & 279 Seq ID No: 278 & 279 Seq ID No: 288 & 281 Seq ID No: 282 Seq ID No: 283 & 284	330495 413573 428479 428479 332180 437915 441553 331692 429413 4422283 448357 446292 416292 424046 439223 429228 409757 411089 428969	U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 AI553633 NM_001898 AA456454 AA721252 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120277 AA648459	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.36708 Hs.36708 Hs.326447 Hs.123114 Hs.291502 Hs.194689 Hs.194689 Hs.194689 Hs.194689	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding unInhibited by benzimidazoles 1 serine (or cysteine) proteinase Inhibito UL16 binding protein 2 ESTs cystatin SN cell division cycle 2-like 1 (PITSLRE pr ESTs artemin artemin artemin artemin gb:ye53h05.s1 Soares fetal liver spleen hypothetical protein AF301222
657075	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 239 & 244 Seq ID No: 243 & 244 Seq ID No: 243 & 244 Seq ID No: 246 & 247 Seq ID No: 248 & 249 Seq ID No: 248 & 249 Seq ID No: 252 & 253 Seq ID No: 254 & 255 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 268 & 269 Seq ID No: 268 & 269 Seq ID No: 268 & 269 Seq ID No: 270 & 271 Seq ID No: 274 & 275 Seq ID No: 276 & 277 Seq ID No: 276 & 277 Seq ID No: 278 & 279 Seq ID No: 278 & 279 Seq ID No: 288 & 281 Seq ID No: 283 & 284 Seq ID No: 283 & 284 Seq ID No: 283 & 284	330495 413573 428479 332180 437915 44153 331692 429413 422283 448357 446209 453922 424046 439228 409757 411089 436511 428969 428969 428969 428969 428969 42723 447273 450701	U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF023306 AF027866 AW238299 AI553633 NM_001898 AA456454 AA721252 AF120274 AF120274 AF120274 AF120274 AF120274	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.36708 Hs.36708 Hs.36708 Hs.138202 Hs.250618 Hs.326447 Hs.123114 Hs.214291 Hs.291502 Hs.194689 Hs.194689 Hs.194689	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2 ESTs cystatin SN cell division cycle 2-like 1 (PITSLRE pr ESTs artemin artemin artemin artemin artemin artemin gb:ye53h05.s1 Soares fetal liver spleen hypothetical protein AF301222 hypothetical protein XP_098151 (leucine-
657075	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 & 247 Seq ID No: 246 & 247 Seq ID No: 250 & 251 Seq ID No: 252 & 253 Seq ID No: 254 & 255 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 264 & 255 Seq ID No: 264 & 255 Seq ID No: 264 & 255 Seq ID No: 266 & 257 Seq ID No: 267 & 258 Seq ID No: 268 & 259 Seq ID No: 268 & 259 Seq ID No: 268 & 259 Seq ID No: 270 & 271 Seq ID No: 272 & 273 Seq ID No: 274 & 275 Seq ID No: 276 & 277 Seq ID No: 278 & 279 Seq ID No: 278 & 279 Seq ID No: 282 Seq ID No: 283 & 284 Seq ID No: 283 & 284 Seq ID No: 283 & 288 Seq ID No: 283 & 288 Seq ID No: 283 & 288 Seq ID No: 287 & 288	330495 413573 428479 332180 437915 441553 331692 429413 422283 448357 44629 453922 424046 439223 42923 42924 42925 428969	U47924 A1733859 Y00272 Y00272 AF134160 A1637993 AA281219 A1683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 A1553633 NM_001898 AA456454 AA721252 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF1307 AA648459 H39960	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.36708 Hs.36708 Hs.326447 Hs.214291 Hs.291502 Hs.291502 Hs.194689 Hs.194689 Hs.194689 Hs.194689 Hs.194689 Hs.194689 Hs.194689 Hs.194689 Hs.194689 Hs.194689	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teraloca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (milotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito U1:16 binding protein 2 ESTs cystatin SN cell division cycle 2-like 1 (PITSLRE pr ESTs artemin arte
65707580	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 239 & 244 Seq ID No: 243 & 244 Seq ID No: 243 & 244 Seq ID No: 246 & 247 Seq ID No: 248 & 249 Seq ID No: 248 & 249 Seq ID No: 252 & 253 Seq ID No: 254 & 255 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 268 & 269 Seq ID No: 268 & 269 Seq ID No: 268 & 269 Seq ID No: 270 & 271 Seq ID No: 274 & 275 Seq ID No: 276 & 277 Seq ID No: 276 & 277 Seq ID No: 278 & 279 Seq ID No: 278 & 279 Seq ID No: 288 & 281 Seq ID No: 283 & 284 Seq ID No: 283 & 284 Seq ID No: 283 & 284	330495 413573 428479 332180 437915 44153 331692 429413 422283 448357 446209 453922 424046 439228 409757 411089 436511 428969 428969 428969 428969 428969 42723 447273 450701	U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 AI553633 NM_001898 AA456454 AA721252 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120277 AA648459	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.36708 Hs.36708 Hs.326447 Hs.123114 Hs.291502 Hs.194689 Hs.194689 Hs.194689 Hs.194689	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teratoca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2 ESTs cystatin SN cell division cycle 2-like 1 (PITSLRE pr ESTs artemin artemin artemin artemin artemin artemin gb:ye53h05.s1 Soares fetal liver spleen hypothetical protein AF301222 hypothetical protein XP_098151 (leucine-
65707580	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 & 247 Seq ID No: 246 & 247 Seq ID No: 246 & 247 Seq ID No: 250 & 251 Seq ID No: 252 & 253 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 264 & 265 Seq ID No: 266 & 267 Seq ID No: 266 & 267 Seq ID No: 268 & 259 Seq ID No: 268 & 269 Seq ID No: 270 & 271 Seq ID No: 272 & 273 Seq ID No: 274 & 275 Seq ID No: 278 & 279 Seq ID No: 283 & 284 Seq ID No: 283 & 284 Seq ID No: 283 & 284 Seq ID No: 287 & 288 Seq ID No: 287 & 288 Seq ID No: 287 & 288 Seq ID No: 288 & 289	330495 413573 428479 332180 437915 441553 331692 429413 422283 448357 446209 453922 424046 439223 429283 429283 429283 429289 428969	U47924 A1733859 Y00272 Y00272 AF134160 A1637993 AA281219 A1683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 A1553633 NM_001898 AA456454 AA721252 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF120274 AF1307 AA648459 H39960	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.36708 Hs.36708 Hs.326447 Hs.214291 Hs.291502 Hs.291502 Hs.194689 Hs.194689 Hs.194689 Hs.194689 Hs.194689 Hs.194689 Hs.194689 Hs.194689 Hs.194689 Hs.194689	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teraloca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (milotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito U1:16 binding protein 2 ESTs cystatin SN cell division cycle 2-like 1 (PITSLRE pr ESTs artemin arte
657075	Seq ID No: 238 Seq ID No: 239 & 240 Seq ID No: 241 & 242 Seq ID No: 243 & 244 Seq ID No: 245 & 247 Seq ID No: 246 & 247 Seq ID No: 250 & 251 Seq ID No: 252 & 253 Seq ID No: 254 & 255 Seq ID No: 256 & 257 Seq ID No: 256 & 257 Seq ID No: 264 & 255 Seq ID No: 264 & 255 Seq ID No: 264 & 255 Seq ID No: 266 & 257 Seq ID No: 267 & 258 Seq ID No: 268 & 259 Seq ID No: 268 & 259 Seq ID No: 268 & 259 Seq ID No: 270 & 271 Seq ID No: 272 & 273 Seq ID No: 274 & 275 Seq ID No: 276 & 277 Seq ID No: 278 & 279 Seq ID No: 278 & 279 Seq ID No: 282 Seq ID No: 283 & 284 Seq ID No: 283 & 284 Seq ID No: 283 & 288 Seq ID No: 283 & 288 Seq ID No: 283 & 288 Seq ID No: 287 & 288	330495 413573 428479 332180 437915 441553 331692 429413 422283 448357 44629 453922 424046 439223 42923 42924 42925 428969	U47924 AI733859 Y00272 Y00272 AF134160 AI637993 AA281219 AI683487 NM_014058 AW411307 N20169 AF081497 AA236776 AF053306 AF027866 AW238299 AI553633 NM_001898 AA456454 AA721252 AF120274	Hs.71642 Hs.149089 Hs.334562 Hs.334562 Hs.334562 Hs.7327 Hs.202312 Hs.121296 Hs.152213 Hs.201877 Hs.114311 Hs.108923 Hs.279682 Hs.79078 Hs.36708 Hs.36708 Hs.36708 Hs.36708 Hs.138202 Hs.250618 Hs.326447 Hs.123114 Hs.214291 Hs.291502 Hs.194689 Hs.194689 Hs.194689 Hs.194689 Hs.194689 Hs.194689 Hs.194689 Hs.194689 Hs.335951 Hs.288467 Hs.6566	guanine nucleotide binding protein (G pr ESTs cell division cycle 2, G1 to S and G2 to cell division cycle 2, G1 to S and G2 to claudin 1 Homo sapiens clone N11 NTera2D1 teraloca ESTs wingless-type MMTV integration site fami DESC1 protein CDC45 (cell division cycle 45, S.cerevis RAB38, member RAS oncogene family Rh type C glycoprotein MAD2 (mitotic arrest deficient, yeast, h budding uninhibited by benzimidazoles 1 serine (or cysteine) proteinase inhibito UL16 binding protein 2 ESTs cystatin SN cell division cycle 2-like 1 (PITSLRE pr ESTs artemin artemin artemin gb:ye53h05.s1 Soares fetal liver spleen hypothetical protein AF301222 hypothetical protein XP_098151 (leucine-NM_002362:Homo sapiens melanoma antigen, thyroid hormone receptor interactor 13

	Com ID Not 202 9 204	424629	M90656	Ue 151303	chilarests contains these actability out
	Seq ID No: 293 & 294	437789	Al581344	Hs.151393 Hs.127812	glutamate-cysteine ligase, catalytic sub
	Seq ID No: 295 & 296	437789	Al581344	Hs.127812	ESTs, Wealdy similar to T17330 hypotheti
	Seq ID No: 297 & 298 Seq ID No: 299 & 300	437789	Al581344	Hs.127812	ESTs, Wealdy similar to T17330 hypotheti
5	Seq ID No: 301 & 302	437789	AI581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti
,	Seq ID No: 303 & 304	437789	AJ581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti ESTs, Weakly similar to T17330 hypotheti
	Seq ID No: 305 & 306	453968	AA847843	Hs.62711	High mobility group (nonhistone chromoso
	Seq ID No: 307 & 308	403478	701017010	113.02111	NM_022342:Homo sapiens kinesin protein 9
	Seq ID No: 309	441525	AW241867	Hs.127728	ESTs .
10	Seq ID No: 310 & 311	434105	AW952124	Hs.13094	presenilins associated rhomboid-like pro
10	Seq ID No: 312 & 313	428810	AF068236	Hs.193788	nitric oxide synthase 2A (inducible, hep
	Seq ID No: 314 & 315	413691	AB023173	Hs.75478	ATPase, Class VI, type 11B
	Seq ID No: 316 & 317	423934	U89995	Hs.159234	forkhead box E1 (thyroid transcription f
		409228	R16811	Hs.22010	ESTs, Weakly similar to 2109260A B cell
15	Seq ID No: 318 & 319	425734	AF056209	Hs.159396	peptidylglycine alpha-amidating monooxyg
13	Seq ID No: 320 & 321	413582	AW295647	Hs.71331	
	Seq ID No: 322 & 323	438403	AA806607	Hs.292206	hypothetical protein MGC5350
	Seq ID No: 324 & 325	403329	77000001	1 13.232200	ESTS
	Seq ID No: 326 & 327		A1AP247000	Hs.57101	unnamed protein product [Homo sapiens]
20	Seq ID No: 328 & 329	409893	AW247090 BE245360		minichromosome maintenance deficient (S.
20	Seq ID No: 330 & 331	119073		Hs.279477	v-ets erythroblastosis virus E26 oncogen
	Seq ID No: 332 & 333	113195	H83265	Hs.8881	ESTs, Weakly similar to S41044 chromosom
	Seq ID No: 334 & 335	102283	AW161552	Hs.83381	guanine nucleotide binding protein 11
	Seq ID No: 336 & 337	101345	NM_005795	Hs.152175	calcitonin receptor-like
25	Seq ID No: 338 & 339	103280	U84722	Hs.76206	cadherin 5, type 2, VE-cadherin (vascula
25	Seq ID No: 340 & 341	102012	BE259035	Hs.118400	singed (Drosophila)-like (sea urchin fas
	Seq ID No: 342 & 343	105729	H46612	Hs.293815	Homo sapiens HSPC285 mRNA, partial cds
	Seq ID No: 344 & 345	134299	AW580939	Hs.97199	complement component C1q receptor
	Seq ID No: 346 & 347	412719	AW016610	Hs.816	ESTs
20	Seq ID No: 348 & 349	422158	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL
30	Seq ID No: 350 & 351	128924	BE279383	Hs.26557	plakophilin 3
	Seq ID No: 352 & 353	100486	T19006	Hs.10842	RAN, member RAS oncogene family
	Seq ID No: 354 & 355	419121	AA374372	Hs.89626	parathyroid hormone-like hormone
	Seq ID No: 356 & 357	409459	D86407	Hs.54481	low density lipoprotein receptor-related
25	Seq ID No: 358 & 359	330493	M27826	N . 00770	endogenous retroviral protease
35	Seq ID No: 360 & 361	417866	AW067903	Hs.82772	collagen, type XI, alpha 1
	Seq ID No: 362 & 363	418113	AI272141	Hs.83484	SRY (sex determining region Y)-box 4
	Seq ID No: 364 & 365	437016	AU076916	Hs.5398	guanine monphosphate synthetase
	Seq ID No: 366 & 367	429612	AF062649	Hs.252587	pituitary tumor-transforming 1
40	Seq ID No: 368 & 369	440704	M69241	Hs.162	insulin-like growth factor binding prote
40	Seq ID No: 370 & 371	431221	AA449015	Hs.286145	SR87 (suppressor of RNA polymerase B, ye
	Seq ID No: 372 & 373	431565	AF161470	Hs.260622	butyrate-induced transcript 1
	Seq ID No: 374 & 375	431565	AF161470	Hs.260622	butyrate-induced transcript 1
	Seq ID No: 376 & 377	132354	BE185289	Hs.1076	small proline-rich protein 1B (comifin)
15	Seq ID No: 378 & 379	424441	X14850	Hs.147097	H2A histone family, member X
45	Seq ID No: 380 & 381	103768	AF086009	Hs.296398	gb:Homo sapiens full length insert cDNA
	Seq ID No: 382 & 383	417512	X76534	Hs.82226	glycoprotein (transmembrane) nmb
	Seq ID No: 384 & 385	425266	J00077	Hs.155421	alpha-fetoprotein
		424503	NM_002205	Hs.149609	integrin, alpha 5 (fibronectin receptor,
	Seq ID No: 386 & 387		V07000	Hs.2258	
50	Seq ID No: 388 & 389	400289	X07820		matrix metalloproteinase 10 (stromelysin
50	Seq ID No: 388 & 389 Seq ID No: 390 & 391	400289 418007	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial
50	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393	400289 418007 418007	M13509 M13509	Hs.83169 Hs.83169	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial
50	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395	400289 418007 418007 418738	M13509 M13509 AW388633	Hs.83169 Hs.83169 Hs.6682	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (cationic amino
50	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 396 & 397	400289 418007 418007 418738 415138	M13509 M13509 AW388633 C18356	Hs.83169 Hs.83169 Hs.6682 Hs.295944	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (cationic amino tissue factor pathway inhibitor 2
	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 396 & 397 Seq ID No: 398 & 399	400289 418007 418007 418738 415138 418506	M13509 M13509 AW388633 C18356 AA084248	Hs.83169 Hs.83169 Hs.6682 Hs.295944 Hs.85339	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (cationic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39
50 55	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 396 & 397 Seq ID No: 398 & 399 Seq ID No: 400 & 401	400289 418007 418007 418738 415138 418506 423961	M13509 M13509 AW388633 C18356 AA084248 D13666	Hs.83169 Hs.83169 Hs.6682 Hs.295944 Hs.85339 Hs.136348	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (caltonic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os)
	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 396 & 397 Seq ID No: 398 & 399 Seq ID No: 400 & 401 Seq ID No: 402 & 403	400289 418007 418007 418738 415138 418506 423961 414812	M13509 M13509 AW388633 C18356 AA084248 D13666 X72755	Hs.83169 Hs.83169 Hs.6682 Hs.295944 Hs.85339 Hs.136348 Hs.77367	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (cationic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma interferon
	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 398 & 399 Seq ID No: 400 & 401 Seq ID No: 402 & 403 Seq ID No: 404 & 405	400289 418007 418007 418738 415138 418506 423961 414812 417433	M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266	Hs.83169 Hs.83169 Hs.6682 Hs.295944 Hs.85339 Hs.136348 Hs.77367 Hs.82128	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (cationic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma interferon 5T4 oncofetal trophoblast glycoprotein
	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 396 & 397 Seq ID No: 408 & 409 Seq ID No: 402 & 403 Seq ID No: 404 & 405 Seq ID No: 406 & 407	400289 418007 418007 418738 415138 418506 423961 414812 417433 417433	M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266	Hs.83169 Hs.63169 Hs.6682 Hs.295944 Hs.85339 Hs.136348 Hs.77367 Hs.82128 Hs.82128	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (cationic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein
55	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 396 & 397 Seq ID No: 400 & 401 Seq ID No: 400 & 401 Seq ID No: 404 & 405 Seq ID No: 406 & 407 Seq ID No: 408 & 409	400289 418007 418007 418738 415138 418506 423961 414812 417433 417433 422867	M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266 L32137	Hs.83169 Hs.83169 Hs.6682 Hs.295944 Hs.85339 Hs.136348 Hs.77367 Hs.82128 Hs.82128	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (calionic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein cartilage oligomeric matrix protein (pse
	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 396 & 397 Seq ID No: 398 & 399 Seq ID No: 400 & 401 Seq ID No: 402 & 403 Seq ID No: 406 & 407 Seq ID No: 406 & 407 Seq ID No: 406 & 407 Seq ID No: 408 & 409 Seq ID No: 410 & 411	400289 418007 418007 418738 415138 418506 423961 414812 417433 417433 422867 428227	M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266 L32137 AA321649	Hs. 83169 Hs. 83169 Hs. 6682 Hs. 295944 Hs. 85339 Hs. 136348 Hs. 77367 Hs. 82128 Hs. 82128 Hs. 1584 Hs. 2248	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (calonic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein cartilage ofigomeric matrix protein (pse small inducible cytokine subfamily B (Cy
55	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 396 & 397 Seq ID No: 396 & 399 Seq ID No: 400 & 401 Seq ID No: 402 & 403 Seq ID No: 406 & 407 Seq ID No: 408 & 409 Seq ID No: 410 & 411 Seq ID No: 412 & 413	400289 418007 418007 418738 415138 418506 423961 414812 417433 417433 422867 428227 444381	M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266 BE270266 L32137 AA321649 BE387335	Hs. 83169 Hs. 83169 Hs. 6682 Hs. 295944 Hs. 85339 Hs. 136348 Hs. 77367 Hs. 82128 Hs. 82128 Hs. 1584 Hs. 2248 Hs. 283713	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (calcionic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein cartilage ofigomeric matrix protein (pse small inducible cytokine subfamily 8 (Cy ESTs, Weakly similar to S64054 hypotheti
55	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 396 & 397 Seq ID No: 408 & 409 Seq ID No: 400 & 401 Seq ID No: 404 & 405 Seq ID No: 406 & 407 Seq ID No: 408 & 409 Seq ID No: 408 & 409 Seq ID No: 410 & 411 Seq ID No: 412 & 413 Seq ID No: 414 & 415	400289 418007 418007 418738 415138 415138 418506 423961 414812 417433 417433 422867 428227 444381 400303	M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266 B270266 L32137 AA321649 BE387335 AA242758	Hs. 83169 Hs. 63169 Hs. 6682 Hs. 295944 Hs. 85339 Hs. 136348 Hs. 77367 Hs. 82128 Hs. 82128 Hs. 1584 Hs. 2248 Hs. 283713 Hs. 79136	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (cationic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein cartilage eligomeric matrix protein (pse small inducible cytokine subfamily B (Cy ESTs, Weakly similar to \$64054 hypotheti LIV-1 protein, estrogen regulated
55	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 396 & 397 Seq ID No: 398 & 399 Seq ID No: 400 & 401 Seq ID No: 406 & 405 Seq ID No: 406 & 407 Seq ID No: 408 & 409 Seq ID No: 410 & 411 Seq ID No: 412 & 413 Seq ID No: 416 & 415 Seq ID No: 416 & 415 Seq ID No: 416 & 415	400289 418007 418007 418738 415138 418506 423961 414812 417433 417433 422867 428227 444381 400303 411789	M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266 L32137 AA321649 BE387335 AA242758 AF245505	Hs.83169 Hs.83169 Hs.6682 Hs.259944 Hs.85339 Hs.136348 Hs.77367 Hs.82128 Hs.1584 Hs.2248 Hs.2248 Hs.2248 Hs.233713 Hs.79136 Hs.72157	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (cationic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein cartilage ofigomeric matrix protein (pse small inducible cytokine subfamily 8 (Cy ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Adlican
55 60	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 396 & 397 Seq ID No: 400 & 401 Seq ID No: 400 & 401 Seq ID No: 406 & 407 Seq ID No: 408 & 409 Seq ID No: 410 & 411 Seq ID No: 412 & 413 Seq ID No: 416 & 417 Seq ID No: 418 & 415	400289 418007 418007 418738 415138 418506 423961 414812 417433 422867 428227 44431 400303 411789 428698	M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266 L32137 AA321649 BE387335 AA242758 AF245505 AA852773	Hs. 83169 Hs. 83169 Hs. 6682 Hs. 295944 Hs. 85339 Hs. 136348 Hs. 77367 Hs. 82128 Hs. 82128 Hs. 1584 Hs. 2248 Hs. 283713 Hs. 79136 Hs. 79136 Hs. 79136 Hs. 79136	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (calionic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein cartilage oligomeric matrix protein (pse small inducible cytokine subfamily 8 (Cy ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Adfican KIAA1866 protein
55	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 396 & 397 Seq ID No: 400 & 401 Seq ID No: 400 & 401 Seq ID No: 402 & 403 Seq ID No: 406 & 407 Seq ID No: 406 & 407 Seq ID No: 410 & 411 Seq ID No: 412 & 413 Seq ID No: 416 & 417 Seq ID No: 418 & 419 Seq ID No: 420 & 421	400289 418007 418007 418738 415138 418506 423961 414812 417433 422867 428227 444381 400033 411789 428698 450098	M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266 BE270266 L32137 AA321649 BE387335 AA242758 AF245505 AA852773 W27249	Hs. 83169 Hs. 83169 Hs. 6682 Hs. 295944 Hs. 85339 Hs. 136348 Hs. 77367 Hs. 82128 Hs. 82128 Hs. 1584 Hs. 2248 Hs. 283713 Hs. 79136 Hs. 72157 Hs. 3334838 Hs. 8109	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (calonic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein carillage ofigomeric matrix protein (pse small inducible cytokine subfamily B (Cy ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Adlican KIAA1866 protein hypothetical protein FLJ21080
55 60	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 396 & 397 Seq ID No: 408 & 399 Seq ID No: 400 & 401 Seq ID No: 406 & 405 Seq ID No: 406 & 407 Seq ID No: 410 & 411 Seq ID No: 410 & 411 Seq ID No: 416 & 417 Seq ID No: 418 & 419 Seq ID No: 418 & 417 Seq ID No: 420 & 421 Seq ID No: 420 & 421 Seq ID No: 422 & 423	400289 418007 418007 418738 415138 415138 418506 423961 414812 417433 417433 422867 428227 444381 400303 411789 428698 450098 421552	M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266 BE270266 L32137 AA321649 BE387335 AA242758 AF245505 AA852773 W27249 AF026692	Hs. 83169 Hs. 83169 Hs. 6682 Hs. 295944 Hs. 85339 Hs. 136348 Hs. 77367 Hs. 82128 Hs. 82128 Hs. 1584 Hs. 2248 Hs. 283713 Hs. 79136 Hs. 72157 Hs. 334838 Hs. 8109 Hs. 105700	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (calcionic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein carlilage oligomenic matrix protein (pse small inducible cytokine subfamily B (Cy ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Adlican KIAA1866 protein hypothetical protein FLJ21080 secreted frizzled-related protein 4
55 60	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 396 & 397 Seq ID No: 396 & 399 Seq ID No: 400 & 401 Seq ID No: 402 & 403 Seq ID No: 408 & 407 Seq ID No: 408 & 409 Seq ID No: 416 & 417 Seq ID No: 416 & 417 Seq ID No: 416 & 417 Seq ID No: 420 & 421 Seq ID No: 420 & 421 Seq ID No: 422 & 423 Seq ID No: 424 & 425	400289 418007 418007 418738 418738 415138 418506 423861 417433 417433 422867 428227 444381 400303 411789 428698 450098 421552 451552 452747	M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266 B23137 AA321649 BE387335 AA242758 AF245505 AA852773 W27249 AF026692 BE153855	Hs. 83169 Hs. 83169 Hs. 6682 Hs. 295944 Hs. 85339 Hs. 136348 Hs. 77367 Hs. 82128 Hs. 82128 Hs. 1584 Hs. 2248 Hs. 283713 Hs. 79136 Hs. 72157 Hs. 3334838 Hs. 8109	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (cationic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein cartilage ofigomeric matrix protein (pse small inducible cytokine subfamily B (Cy ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Adlican KIAA1866 protein hypothetical protein FLJ21080 secreted frizzled-related protein 4 lg superfamily receptor LNIR
556065	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 396 & 397 Seq ID No: 398 & 399 Seq ID No: 400 & 401 Seq ID No: 406 & 407 Seq ID No: 408 & 409 Seq ID No: 410 & 411 Seq ID No: 412 & 413 Seq ID No: 416 & 417 Seq ID No: 418 & 419 Seq ID No: 422 & 423 Seq ID No: 422 & 423 Seq ID No: 424 & 425 Seq ID No: 424 & 425 Seq ID No: 426 & 427	400289 418007 418007 418738 415138 415138 418506 423961 417433 422867 428227 44433 40303 411789 428698 425098 421552 452747 450375	M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 B2270266 L32137 AA321649 BE387335 AA242758 AF245505 AA852773 W27249 AF026692 BE153855 AA009647	Hs. 83169 Hs. 83169 Hs. 6682 Hs. 295944 Hs. 85339 Hs. 136348 Hs. 77367 Hs. 82128 Hs. 1584 Hs. 2248 Hs. 283713 Hs. 79136 Hs. 72157 Hs. 334838 Hs. 8109 Hs. 105700 Hs. 61460	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (cationic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma Interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein cartilage oligomeric matrix protein (pse small inducible cytokine subfamily B (Cy ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Adlican KIAA1866 protein hypothetical protein FLJ21080 secreted frizzled-related protein 4 Ig superfamily receptor LNIR a disintegrin and metalloproteinase doma
556065	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 396 & 397 Seq ID No: 400 & 401 Seq ID No: 400 & 401 Seq ID No: 404 & 405 Seq ID No: 408 & 407 Seq ID No: 408 & 407 Seq ID No: 410 & 411 Seq ID No: 410 & 411 Seq ID No: 416 & 417 Seq ID No: 416 & 417 Seq ID No: 418 & 419 Seq ID No: 420 & 421 Seq ID No: 424 & 425 Seq ID No: 424 & 425 Seq ID No: 426 & 427 Seq ID No: 428 & 425 Seq ID No: 428 & 425	400289 418007 418007 418738 415138 415138 418506 423961 417433 422867 428227 44431 400303 411789 428698 450098 421552 452747 450375 426215	M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 B2270266 L32137 AA321649 BE387335 AA242758 AF245505 AA852773 W27249 AF026692 BE153855 AA009647 AW963419	Hs. 83169 Hs. 83169 Hs. 6682 Hs. 295944 Hs. 85339 Hs. 136348 Hs. 77367 Hs. 82128 Hs. 82128 Hs. 1584 Hs. 2248 Hs. 283713 Hs. 79136 Hs. 79	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (calonic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein cartilage oligomeric matrix protein (pse small inducible cytokine subfamily 8 (Cy ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Adlican KIAA1866 protein FLJ21080 secreted frizzled-related protein 4 Ig superfamily receptor LNIR a disintegrin and metalloproteinase doma stannicoalcin 2
55 60	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 396 & 397 Seq ID No: 400 & 401 Seq ID No: 400 & 401 Seq ID No: 402 & 403 Seq ID No: 406 & 407 Seq ID No: 406 & 407 Seq ID No: 410 & 411 Seq ID No: 410 & 411 Seq ID No: 418 & 419 Seq ID No: 418 & 419 Seq ID No: 420 & 421 Seq ID No: 420 & 421 Seq ID No: 426 & 423 Seq ID No: 426 & 427 Seq ID No: 426 & 427 Seq ID No: 426 & 427 Seq ID No: 428 & 429 Seq ID No: 430 & 431	400289 418007 418007 418738 415138 415138 418506 423961 417433 417433 417433 422867 428227 444381 40003 411789 428698 450098 421552 452747 450375 426215 425247	M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266 BE270266 BE387335 AA321649 BE387335 AA242758 AF245505 AA852773 W27249 AF026692 BE153855 AA009647 AW963419 NM_005940	Hs. 83169 Hs. 83169 Hs. 6682 Hs. 295944 Hs. 85339 Hs. 136348 Hs. 77367 Hs. 82128 Hs. 82128 Hs. 82128 Hs. 1554 Hs. 2248 Hs. 2248 Hs. 283713 Hs. 79136 Hs. 72157 Hs. 334838 Hs. 8109 Hs. 105700 Hs. 61460 Hs. 155223 Hs. 155324	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (cationic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma Interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein cartilage oligomeric matrix protein (pse small inducible cytokine subfamily B (Cy ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Adlican KIAA1866 protein hypothetical protein FLJ21080 secreted frizzled-related protein 4 Ig superfamily receptor LNIR a disintegrin and metalloproteinase doma
556065	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 396 & 397 Seq ID No: 400 & 401 Seq ID No: 400 & 401 Seq ID No: 404 & 405 Seq ID No: 408 & 407 Seq ID No: 408 & 407 Seq ID No: 410 & 411 Seq ID No: 410 & 411 Seq ID No: 416 & 417 Seq ID No: 416 & 417 Seq ID No: 418 & 419 Seq ID No: 420 & 421 Seq ID No: 424 & 425 Seq ID No: 424 & 425 Seq ID No: 426 & 427 Seq ID No: 428 & 425 Seq ID No: 428 & 425	400289 418007 418007 418738 415138 415138 418506 423961 417433 422867 428227 44431 400303 411789 428698 450098 421552 452747 450375 426215	M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 B2270266 L32137 AA321649 BE387335 AA242758 AF245505 AA852773 W27249 AF026692 BE153855 AA009647 AW963419	Hs. 83169 Hs. 83169 Hs. 6682 Hs. 295944 Hs. 85339 Hs. 136348 Hs. 77367 Hs. 82128 Hs. 82128 Hs. 1584 Hs. 2248 Hs. 283713 Hs. 79136 Hs. 79	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (calonic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein carillage oligomeric matrix protein (pse small inducible cytokine subfamily 8 (Cy ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Adlican KIAA1866 protein hypothetical protein FLJ21080 secreted frizzled-related protein 4 Ig superfamily receptor LNIR a disintegrin and metalloproteinase doma starniocalcin 2 matrix metalloproteinase 11 (stromelysin
556065	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 392 & 395 Seq ID No: 396 & 397 Seq ID No: 408 & 409 Seq ID No: 402 & 403 Seq ID No: 404 & 405 Seq ID No: 408 & 409 Seq ID No: 408 & 409 Seq ID No: 416 & 417 Seq ID No: 426 & 421 Seq ID No: 426 & 421 Seq ID No: 428 & 423 Seq ID No: 428 & 423 Seq ID No: 428 & 425 Seq ID No: 426 & 427 Seq ID No: 428 & 425 Seq ID No: 426 & 427 Seq ID No: 430 & 431 Seq ID No: 430 & 431 Seq ID No: 432 & 433	400289 418007 418007 418073 418738 415138 418506 423861 417433 417433 422867 428267 444381 400303 411789 42869 421552 452747 450078 4262547 4262547 432201	M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266 BE270266 L32137 AA321649 BE387335 AA242758 AF245505 AA852773 W27249 AF026692 BE153855 AA009647 AW963419 NM_005940 AI538613	Hs.83169 Hs.83169 Hs.6682 Hs.295944 Hs.85339 Hs.136348 Hs.77367 Hs.82128 Hs.82128 Hs.1584 Hs.2248 Hs.283713 Hs.79136 Hs.72157 Hs.334838 Hs.8109 Hs.105700 Hs.105700 Hs.155223 Hs.155324 Hs.298241 Hs.298241	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (calonic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein carlilage ofigomeric matrix protein (pse small inducible cytokine subfamily B (Cy ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Adlican KIAA1866 protein hypothetical protein FLJ21080 secreted frizzled-retated protein 4 Ig superfamily receptor LNIR a disintegrin and metalloproteinase doma stanniocalcin 2 matrix metalloproteinase 11 (stromelysin Transmembrane protease, serine 3
55606570	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 398 & 399 Seq ID No: 400 & 401 Seq ID No: 400 & 401 Seq ID No: 406 & 407 Seq ID No: 408 & 409 Seq ID No: 410 & 411 Seq ID No: 412 & 413 Seq ID No: 418 & 419 Seq ID No: 416 & 417 Seq ID No: 418 & 419 Seq ID No: 428 & 423 Seq ID No: 428 & 423 Seq ID No: 428 & 423 Seq ID No: 428 & 429 Seq ID No: 428 & 429 Seq ID No: 430 & 431 Seq ID No: 436 & 437 Seq ID No: 436 & 433 Seq ID No: 436 & 433 Seq ID No: 436 & 433	400289 418007 418007 418738 415138 415138 418506 423961 417433 422867 428227 44433 417433 422867 428698 425098 421552 425274 4450375 426215 425247 432201 427585 442117	M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266 L32137 AA321649 BE387335 AA242758 AF245505 AA852773 W27249 AF026692 BE153855 AA009647 AW963419 NM_005940 AI538613 D31152 AW664964	Hs.83169 Hs.83169 Hs.6682 Hs.295944 Hs.85339 Hs.136348 Hs.77367 Hs.82128 Hs.1584 Hs.22128 Hs.1584 Hs.2248 Hs.23713 Hs.79136 Hs.72157 Hs.334838 Hs.8109 Hs.105700 Hs.61460 Hs.155223 Hs.155324 Hs.298241 Hs.179729 Hs.128899	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (cationic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein cartilage oligomeric matrix protein (pse small inducible cytokine subfamily B (Cy ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Adtican KIAA1866 protein FLJ21080 secreted frizzled-related protein 4 lg superfamily receptor LNIR a disintegrin and metalloproteinase doma stanniocalcin 2 matrix metalloproteinase 11 (stromelysin Transmembrane protease, serine 3 collagen, type X, alpha 1 (Schmid metaph ESTs; hypothetical protein for IMAGE: 447
556065	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 396 & 397 Seq ID No: 398 & 399 Seq ID No: 400 & 401 Seq ID No: 400 & 401 Seq ID No: 406 & 407 Seq ID No: 406 & 407 Seq ID No: 408 & 409 Seq ID No: 410 & 411 Seq ID No: 416 & 417 Seq ID No: 416 & 417 Seq ID No: 418 & 419 Seq ID No: 418 & 419 Seq ID No: 428 & 425 Seq ID No: 436 & 431 Seq ID No: 436 & 437 Seq ID No: 436 & 437 Seq ID No: 438 & 433	400289 418007 418007 418738 418738 415138 418506 423961 417433 417433 422867 42827 444381 400303 411789 428698 450098 450755 426215 4252147 450375 426215 425216 425201 427585	M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 B2270266 L32137 AA321649 BE387335 AA242758 AF245505 AA852773 W27249 AF026692 BE153855 AA009647 AW963419 NM_005940 AI5338613 D31152 AW664964 M86849	Hs.83169 Hs.83169 Hs.6682 Hs.295944 Hs.85339 Hs.136348 Hs.77367 Hs.82128 Hs.82128 Hs.1584 Hs.2248 Hs.283713 Hs.79136 Hs.72157 Hs.334838 Hs.8109 Hs.105700 Hs.105700 Hs.155223 Hs.155324 Hs.298241 Hs.298241	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (calionic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein cartilage ofigomeric matrix protein (pse small inducible cytokine subfamily 8 (Cy ESTs, Weakly similar to S64054 hypothetic LIV-1 protein, estrogen regulated Adlican KIAA1866 protein hypothetical protein FLJ21080 secreted frizzled-related protein 4 lg superfamily receptor LNIR a disintegrin and metalloproteinase doma starniocalcin 2 matrix metalloproteinase 11 (stromelysin Transmembrane protease, serine 3 collagen, type X, alpha 1 (Schmid metaph
55606570	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 398 & 399 Seq ID No: 400 & 401 Seq ID No: 400 & 401 Seq ID No: 406 & 407 Seq ID No: 408 & 409 Seq ID No: 410 & 411 Seq ID No: 412 & 413 Seq ID No: 418 & 419 Seq ID No: 416 & 417 Seq ID No: 418 & 419 Seq ID No: 428 & 423 Seq ID No: 428 & 423 Seq ID No: 428 & 423 Seq ID No: 428 & 429 Seq ID No: 428 & 429 Seq ID No: 430 & 431 Seq ID No: 436 & 437 Seq ID No: 436 & 433 Seq ID No: 436 & 433 Seq ID No: 436 & 433	400289 418007 418007 418738 415138 415138 418506 423961 417433 422867 428227 44431 400303 411789 428698 450098 421552 452747 432201 425247 432201 427585 442117 431211	M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266 BE270266 L32137 AA321649 BE387335 AA242758 AF245505 AA852773 W27249 AF026692 BE153855 AA009647 AW963419 NM_005940 AI538613 D31152 AW664964 M86849 AN357412	Hs.83169 Hs.83169 Hs.6682 Hs.295944 Hs.85339 Hs.136348 Hs.77367 Hs.82128 Hs.82128 Hs.82128 Hs.1584 Hs.2248 Hs.283713 Hs.79136 Hs.72157 Hs.334838 Hs.8109 Hs.105700 Hs.61460 Hs.155223 Hs.155324 Hs.298241 Hs.179729 Hs.128899 Hs.323733	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (cationic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein cartilage oligomeric matrix protein (pse small inducible cytokine subfamily 8 (Cy ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Adfican KIAA1866 protein FLJ21080 secreted frizzled-related protein 4 Ig superfamily receptor LNIR a disintegrin and metalloproteinase doma stanniocalcin 2 matrix metalloproteinase 11 (stromelysin Transmembrane protease, serine 3 collagen, type X, alpha 1 (Schmid metaph ESTs; hypothetical protein for IMAGE:447 gap junction protein, beta 2, 26kD (conn
55606570	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 392 & 395 Seq ID No: 396 & 397 Seq ID No: 396 & 397 Seq ID No: 400 & 401 Seq ID No: 402 & 403 Seq ID No: 404 & 405 Seq ID No: 408 & 409 Seq ID No: 408 & 409 Seq ID No: 416 & 417 Seq ID No: 426 & 427 Seq ID No: 434 & 435 Seq ID No: 434 & 435 Seq ID No: 434 & 435 Seq ID No: 438 & 439 Seq ID No: 448 & 443 Seq ID No: 448 & 443 Seq ID No: 448 & 443	400289 418007 418007 418073 418738 415138 418506 423961 417433 417433 422867 42827 444381 400303 411789 428698 450098 450098 450098 421552 452747 450375 4262147 431211 431211 431211 431211 431211 447033 447033	M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266 BE270266 BE387335 AA242758 AF245505 AA852773 W27249 AF026692 BE153855 AA009647 AW963419 NM_005940 AI538613 D31152 AW664964 M86849 AJ357412	Hs. 83169 Hs. 83169 Hs. 6682 Hs. 295944 Hs. 85339 Hs. 136348 Hs. 77367 Hs. 82128 Hs. 82128 Hs. 2248 Hs. 2248 Hs. 2248 Hs. 283713 Hs. 79136 Hs. 72157 Hs. 334838 Hs. 8109 Hs. 105700 Hs. 61460 Hs. 155223 Hs. 155324 Hs. 298241 Hs. 179729 Hs. 128899 Hs. 323733 Hs. 157601 Hs. 157601	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (calonic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma interferon 5T4 oncofetal trophoblast glycoprotein cartilage oligomeric matrix protein (pse small inducible cytokine subfamily 8 (Cy ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Adlican KIAA1866 protein hypothetical protein FLJ21080 secreted frizzled-related protein 4 lg superfamily receptor LNIR a disintegrin and metalloproteinase doma stanniocalcin 2 matrix metalloproteinase 11 (stromelysin Transmembrane protease, serine 3 collagen, type X, alpha 1 (Schmid metaph ESTs; hypothetical protein for IMAGE:447 gap junction protein, beta 2, 26kD (conn ESTs
55606570	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 396 & 397 Seq ID No: 398 & 399 Seq ID No: 400 & 401 Seq ID No: 402 & 403 Seq ID No: 404 & 405 Seq ID No: 408 & 409 Seq ID No: 408 & 409 Seq ID No: 412 & 413 Seq ID No: 416 & 417 Seq ID No: 416 & 417 Seq ID No: 418 & 419 Seq ID No: 418 & 419 Seq ID No: 426 & 427 Seq ID No: 436 & 439 Seq ID No: 436 & 439 Seq ID No: 436 & 439 Seq ID No: 438 & 439 Seq ID No: 438 & 439 Seq ID No: 438 & 439 Seq ID No: 436 & 437 Seq ID No: 436 & 437 Seq ID No: 440 & 441 Seq ID No: 444 & 445 Seq ID No: 444 & 445 Seq ID No: 444 & 445	400289 418007 418007 41807 418738 415138 418506 423961 417433 417433 422867 42827 444381 400303 411789 428698 450078 45075 426215 425247 450375 426215 425201 427585 442117 431211 447033 447033 447033	M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266 L32137 AA321649 BE387335 AA242758 AF245505 AA852773 W27249 AF026692 BE153855 AA009647 AW963419 NM_005940 AI538613 D31152 AW664964 M86849 AI357412 AI357412	Hs. 83169 Hs. 83169 Hs. 83169 Hs. 6682 Hs. 295944 Hs. 85339 Hs. 136348 Hs. 77367 Hs. 82128 Hs. 82128 Hs. 1584 Hs. 2248 Hs. 283713 Hs. 79136 Hs. 72157 Hs. 334838 Hs. 8109 Hs. 105700 Hs. 155223 Hs. 155223 Hs. 155224 Hs. 179729 Hs. 128899 Hs. 128899 Hs. 128899 Hs. 157601 Hs. 157601 Hs. 157601	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (cationic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein cartilage ofigomeric matrix protein (pse small inducible cytokine subtamily 8 (Cy ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Adlican KIAA1866 protein hypothetical protein FLJ21080 secreted frizzled-related protein 4 lg superfamily receptor LNIR a disintegrin and metalloproteinase doma stanniocatcin 2 matrix metalloproteinase 11 (stromelysin Transmembrane protease, serine 3 collagen, type X, alpha 1 (Schmid metaph ESTs, hypothetical protein for IMAGE:447 gap junction protein, beta 2, 26kD (conn ESTs
5560657075	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 392 & 395 Seq ID No: 396 & 397 Seq ID No: 396 & 397 Seq ID No: 400 & 401 Seq ID No: 402 & 403 Seq ID No: 404 & 405 Seq ID No: 408 & 409 Seq ID No: 408 & 409 Seq ID No: 416 & 417 Seq ID No: 426 & 427 Seq ID No: 434 & 435 Seq ID No: 434 & 435 Seq ID No: 434 & 435 Seq ID No: 438 & 439 Seq ID No: 448 & 443 Seq ID No: 448 & 443 Seq ID No: 448 & 443	400289 418007 418007 418073 418738 415138 418506 423961 417433 417433 422867 42827 444381 400303 411789 428698 450098 450098 450098 421552 452747 450375 4262147 431211 431211 431211 431211 431211 447033 447033	M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266 BE270266 BE387335 AA242758 AF245505 AA852773 W27249 AF026692 BE153855 AA009647 AW963419 NM_005940 AI538613 D31152 AW664964 M86849 AJ357412	Hs. 83169 Hs. 83169 Hs. 6682 Hs. 295944 Hs. 85339 Hs. 136348 Hs. 77367 Hs. 82128 Hs. 82128 Hs. 2248 Hs. 2248 Hs. 2248 Hs. 283713 Hs. 79136 Hs. 72157 Hs. 334838 Hs. 8109 Hs. 105700 Hs. 61460 Hs. 155223 Hs. 155324 Hs. 298241 Hs. 179729 Hs. 128899 Hs. 323733 Hs. 157601 Hs. 157601	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (cationic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma Interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein cartilage oligomeric matrix protein (pse small inducible cytokine subfamily B (Cy ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Adtican KIAA1866 protein FLJ21080 secreted frizzled-related protein 4 lg superfamily receptor LNIR a disintegrin and metalloproteinase doma stanniocalcin 2 matrix metalloproteinase 11 (stromelysin Transmembrane protease, serine 3 collagen, type X, alpha 1 (Schmid metaph ESTs; hypothetical protein for IMAGE:447 gap junction protein, beta 2, 26kD (conn ESTs ESTs
55606570	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 398 & 399 Seq ID No: 400 & 401 Seq ID No: 400 & 401 Seq ID No: 406 & 407 Seq ID No: 408 & 409 Seq ID No: 408 & 409 Seq ID No: 410 & 411 Seq ID No: 412 & 413 Seq ID No: 418 & 419 Seq ID No: 418 & 419 Seq ID No: 428 & 429 Seq ID No: 428 & 425 Seq ID No: 428 & 427 Seq ID No: 428 & 429 Seq ID No: 430 & 431 Seq ID No: 431 & 435 Seq ID No: 436 & 437 Seq ID No: 436 & 437 Seq ID No: 438 & 439 Seq ID No: 440 & 441 Seq ID No: 444 & 445 Seq ID No: 444 & 445 Seq ID No: 446 & 447	400289 418007 418007 418738 415138 415138 418506 423961 417433 422867 428227 44433 417433 422867 428698 421552 425274 4450375 426215 425274 432201 427585 442117 431211 447033 447033 115522	M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266 BE270266 L32137 AA321649 BE387335 AA242758 AF245505 AA852773 W27249 AF026692 BE153855 AA009647 AW963419 NM_005940 AI538613 D31152 AW664964 M86849 AJ357412	Hs. 83169 Hs. 83169 Hs. 83169 Hs. 6682 Hs. 295944 Hs. 85339 Hs. 136348 Hs. 77367 Hs. 82128 Hs. 82128 Hs. 2248 Hs. 2248 Hs. 2248 Hs. 27157 Hs. 334838 Hs. 79157 Hs. 105700 Hs. 105700 Hs. 155223 Hs. 155324 Hs. 179729 Hs. 128899 Hs. 128899 Hs. 128899 Hs. 127601 Hs. 157601 Hs. 157601 Hs. 157601 Hs. 157601 Hs. 157601 Hs. 157601 Hs. 157601 Hs. 157601 Hs. 157601 Hs. 157601	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (calonic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma Interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein cartilage oligomeric matrix protein (pse small inducible cytokine subfamily 8 (Cy ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Adlican KIAA1866 protein hypothetical protein FLJ21080 secreted frizzled-related protein 4 Ig superfamily receptor LNIR a disintegrin and metalloproteinase doma starniocaticn 2 matrix metalloproteinase 11 (stromelysin Transmembrane protease, serine 3 collagen, type X, alpha 1 (Schmid metaph ESTs; hypothetical protein for IMAGE:447 gap junction protein, beta 2, 26kD (conn ESTs
5560657075	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 398 & 397 Seq ID No: 398 & 399 Seq ID No: 400 & 401 Seq ID No: 400 & 401 Seq ID No: 406 & 407 Seq ID No: 406 & 407 Seq ID No: 408 & 409 Seq ID No: 410 & 411 Seq ID No: 416 & 417 Seq ID No: 416 & 417 Seq ID No: 418 & 419 Seq ID No: 418 & 419 Seq ID No: 428 & 425 Seq ID No: 428 & 425 Seq ID No: 428 & 425 Seq ID No: 438 & 433 Seq ID No: 438 & 433 Seq ID No: 438 & 433 Seq ID No: 448 & 441 Seq ID No: 448 & 445 Seq ID No: 448 & 443 Seq ID No: 448 & 443 Seq ID No: 448 & 444 Seq ID No: 448 & 445 Seq ID No: 448 & 445 Seq ID No: 448 & 444 Seq ID No: 448 & 445 Seq ID No: 448 & 444 Seq ID No: 448 & 445	400289 418007 418007 418738 415138 415138 418506 423961 417433 422867 428227 44431 400303 411789 428698 45098 421552 452747 432201 427585 425247 432201 427585 42511 447033 447033 447033 447033 447033 447033 447033 447033 447033 447033 447033	M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266 L32137 AA321649 BE387335 AA242758 AF245505 AA852773 W27249 AF026692 BE153855 AA009647 AW963419 NM_005940 AI538613 D31152 AW664964 M86849 AI357412 AI357412 BE614387	Hs. 83169 Hs. 83169 Hs. 6682 Hs. 295944 Hs. 85339 Hs. 136348 Hs. 77367 Hs. 82128 Hs. 82128 Hs. 82128 Hs. 1584 Hs. 2248 Hs. 2248 Hs. 27157 Hs. 334838 Hs. 8109 Hs. 105700 Hs. 61460 Hs. 155223 Hs. 155324 Hs. 298241 Hs. 179729 Hs. 128899 Hs. 128899 Hs. 157601 Hs. 157601	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (cationic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein cartilage oligomeric matrix protein (pse small inducible cytokine subfamily 8 (Cy ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Adtican KIAA1866 protein FLJ21080 secreted frizzled-related protein 4 lg superfamily receptor LNIR a disintegrin and metalloproteinase doma stanniocalcin 2 matrix metalloproteinase 11 (stromelysin Transmembrane protease, serine 3 collagen, type X, alpha 1 (Schmid metaph ESTs; hypothetical protein for IMAGE:447 gap junction protein, beta 2, 26kD (conn ESTs ESTs c. Myc target JPO1 transmembrane protease, serine 4
5560657075	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 392 & 395 Seq ID No: 396 & 397 Seq ID No: 398 & 399 Seq ID No: 400 & 401 Seq ID No: 402 & 403 Seq ID No: 404 & 405 Seq ID No: 406 & 407 Seq ID No: 408 & 409 Seq ID No: 416 & 417 Seq ID No: 416 & 417 Seq ID No: 418 & 419 Seq ID No: 424 & 433 Seq ID No: 424 & 425 Seq ID No: 428 & 429 Seq ID No: 428 & 433 Seq ID No: 438 & 439 Seq ID No: 438 & 439 Seq ID No: 438 & 435 Seq ID No: 440 & 441 Seq ID No: 440 & 441 Seq ID No: 446 & 447 Seq ID No: 446 & 443 Seq ID No: 446 & 443 Seq ID No: 446 & 447 Seq ID No: 446 & 447 Seq ID No: 448 & 443 Seq ID No: 448 & 443 Seq ID No: 448 & 444 Seq ID No: 448 & 444 Seq ID No: 448 & 445	400289 418007 418007 418073 418738 415138 415138 415138 417433 417433 422867 422867 424381 400303 411789 42698 421552 452747 450375 426214 425247 432201 427585 44211 447033 447033 447033 41031 410418 409041	M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266 BE270266 L32137 AA321649 BE387335 AA242758 AF245505 AA852773 W27249 AF026692 BE153855 AA009647 AW963419 NM_005940 AI538613 D31152 AW664964 M86849 AI357412	Hs. 83169 Hs. 83169 Hs. 83169 Hs. 6682 Hs. 295944 Hs. 85339 Hs. 136348 Hs. 77367 Hs. 82128 Hs. 82128 Hs. 82128 Hs. 1554 Hs. 2248 Hs. 2248 Hs. 283713 Hs. 79136 Hs. 72157 Hs. 334838 Hs. 8109 Hs. 105700 Hs. 61460 Hs. 155223 Hs. 155324 Hs. 298241 Hs. 179729 Hs. 128899 Hs. 128899 Hs. 128899 Hs. 157601 Hs. 157601	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (calionic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma Interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein cartilage oligomeric matrix protein (pse small inducible cytokine subfamily B (Cy ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Adlican KIAA1866 protein hypothetical protein FLJ21080 secreted frizzled-related protein 4 lg superfamily receptor LNIR a disintegrin and metalloproteinase doma stanniocalcin 2 matrix metalloproteinase 11 (stromelysin Transmembrane protease, serine 3 collagen, type X, alpha 1 (Schmid metaph ESTs; hypothetical protein for IMAGE:447 gap junction protein, beta 2, 26kD (conn ESTs ESTs C-Myc target JPO1 transmembrane protease, serine 4 Hypothetical protein, XP_051860 (KIAA119 transmerption factor
5560657075	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 392 & 395 Seq ID No: 396 & 397 Seq ID No: 396 & 397 Seq ID No: 400 & 401 Seq ID No: 402 & 403 Seq ID No: 404 & 405 Seq ID No: 406 & 407 Seq ID No: 408 & 409 Seq ID No: 416 & 417 Seq ID No: 416 & 417 Seq ID No: 416 & 417 Seq ID No: 426 & 423 Seq ID No: 426 & 423 Seq ID No: 426 & 427 Seq ID No: 426 & 427 Seq ID No: 430 & 431 Seq ID No: 430 & 431 Seq ID No: 436 & 437 Seq ID No: 436 & 437 Seq ID No: 436 & 437 Seq ID No: 444 & 445 Seq ID No: 444 & 445 Seq ID No: 446 & 447 Seq ID No: 448 & 449 Seq ID No: 448 & 449 Seq ID No: 450 & 451	400289 418007 418007 41807 418738 415138 418506 423961 417433 417433 422867 42827 444381 400303 411789 428698 450098 450098 450098 421552 452747 450375 42611 427585 442117 431211 447033 447033 447033 41763 41763	M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266 L32137 AA321649 BE387335 AA242758 AF245505 AA852773 W27249 AF026692 BE153855 AA009647 AW963419 NM_005940 AI538613 D31152 AW664964 M86849 AI357412	Hs.83169 Hs.83169 Hs.83169 Hs.83169 Hs.83169 Hs.6682 Hs.295944 Hs.85339 Hs.136348 Hs.77367 Hs.82128 Hs.1584 Hs.2248 Hs.2248 Hs.283713 Hs.79136 Hs.72157 Hs.334838 Hs.8109 Hs.105700 Hs.105700 Hs.155223 Hs.155324 Hs.298241 Hs.298241 Hs.179729 Hs.128899 Hs.323733 Hs.157601 Hs.157601 Hs.157601 Hs.157601 Hs.157601 Hs.157601 Hs.333893 Hs.63325 Hs.50081	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (cationic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma Interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein cartilage oligomeric matrix protein (pse small inducible cytokine subfamily B (Cy ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Adtican KIAA1866 protein FLJ21080 secreted frizzled-related protein 4 lg superfamily receptor LNIR a disintegrin and metalloproteinase doma stanniocalcin 2 matrix metalloproteinase 11 (stromelysin Transmembrane protease, serine 3 collagen, type X, alpha 1 (Schmid metaph ESTs; hypothetical protein for IMAGE:447 gap junction protein, beta 2, 26kD (conn ESTs ESTs CMyc target JPO1 transmembrane protease, serine 4 Hypothetical protein, XP_051860 (KIAA119 transcription factor bone morphogenetic protein 2
556065707580	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 393 & 397 Seq ID No: 396 & 397 Seq ID No: 396 & 397 Seq ID No: 400 & 401 Seq ID No: 402 & 403 Seq ID No: 406 & 407 Seq ID No: 408 & 409 Seq ID No: 408 & 409 Seq ID No: 412 & 413 Seq ID No: 416 & 417 Seq ID No: 416 & 417 Seq ID No: 416 & 417 Seq ID No: 418 & 419 Seq ID No: 428 & 429 Seq ID No: 436 & 437 Seq ID No: 436 & 437 Seq ID No: 436 & 437 Seq ID No: 446 & 447 Seq ID No: 456 & 455 Seq ID No: 458 & 455	400289 418007 418007 418738 415138 418506 423961 417433 417433 422867 428227 44438 4500303 411789 428698 45078 4252747 450375 4252747 450375 4252747 431211 447033 447033 115522 410418 409041 452461	M13509 M13509 M13509 AW388633 C18336 AA084248 D13666 X72755 BE270266 BE270266 L32137 AA321649 BE387335 AA242758 AF245505 AA852773 W27249 AF026692 BE153855 AA009647 AW963419 NM_005940 AI538613 D31152 AW664964 M86849 AI357412 AI357412 BE614387 D31382 AB033025 AB033025 N78223	Hs.83169 Hs.83169 Hs.83169 Hs.83169 Hs.6682 Hs.295944 Hs.85339 Hs.136348 Hs.77367 Hs.82128 Hs.1584 Hs.22128 Hs.1584 Hs.2248 Hs.23713 Hs.79136 Hs.72157 Hs.334838 Hs.8109 Hs.105700 Hs.61460 Hs.155232 Hs.155324 Hs.298241 Hs.19899 Hs.323733 Hs.157601 Hs.157601 Hs.157601 Hs.157601 Hs.333893 Hs.63325 Hs.50081 Hs.50081 Hs.50081	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (calionic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma Interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein cartilage oligomeric matrix protein (pse small inducible cytokine subfamily B (Cy ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Adlican KIAA1866 protein hypothetical protein FLJ21080 secreted frizzled-related protein 4 lg superfamily receptor LNIR a disintegrin and metalloproteinase doma stanniocalcin 2 matrix metalloproteinase 11 (stromelysin Transmembrane protease, serine 3 collagen, type X, alpha 1 (Schmid metaph ESTs; hypothetical protein for IMAGE:447 gap junction protein, beta 2, 26kD (conn ESTs ESTs C-Myc target JPO1 transmembrane protease, serine 4 Hypothetical protein, XP_051860 (KIAA119 transmerption factor
5560657075	Seq ID No: 388 & 389 Seq ID No: 390 & 391 Seq ID No: 390 & 391 Seq ID No: 392 & 393 Seq ID No: 394 & 395 Seq ID No: 398 & 399 Seq ID No: 400 & 401 Seq ID No: 400 & 401 Seq ID No: 406 & 407 Seq ID No: 408 & 409 Seq ID No: 408 & 409 Seq ID No: 410 & 411 Seq ID No: 410 & 411 Seq ID No: 418 & 419 Seq ID No: 418 & 419 Seq ID No: 418 & 419 Seq ID No: 428 & 423 Seq ID No: 428 & 423 Seq ID No: 428 & 425 Seq ID No: 438 & 433 Seq ID No: 436 & 437 Seq ID No: 436 & 437 Seq ID No: 446 & 447 Seq ID No: 445 & 445 Seq ID No: 456 & 457	400289 418007 418007 418738 415138 418506 423961 417433 422867 428227 44431 400303 421527 42527 44438 425098 421552 4252747 432201 425247 432201 427585 442117 431211 447033 447033 115522 410418 409041 409041 409041 409041 412420	M13509 M13509 M13509 M13509 AW388633 C18356 AA084248 D13666 X72755 BE270266 BE270266 L32137 AA321649 BE387335 AA242758 AF245505 AA852773 W27249 AF026692 BE153855 AA009647 AW963419 NM_005940 AI538613 D31152 AW664964 M86849 A357412 AJ357412 AJ35668	Hs. 83169 Hs. 83169 Hs. 83169 Hs. 6682 Hs. 295944 Hs. 85339 Hs. 136348 Hs. 77367 Hs. 82128 Hs. 82128 Hs. 82128 Hs. 1584 Hs. 2248 Hs. 1584 Hs. 79136 Hs. 105700 Hs. 155223 Hs. 155324 Hs. 179729 Hs. 128899 Hs. 323733 Hs. 157601	matrix metalloproteinase 1 (interstitial matrix metalloproteinase 1 (interstitial solute carrier family 7, (cationic amino tissue factor pathway inhibitor 2 G protein-coupled receptor 39 periostin (OSF-2os) monokine induced by gamma Interferon 5T4 oncofetal trophoblast glycoprotein 5T4 oncofetal trophoblast glycoprotein cartilage oligomeric matrix protein (pse small inducible cytokine subfamily B (Cy ESTs, Weakly similar to S64054 hypotheti LIV-1 protein, estrogen regulated Adtican KIAA1866 protein FLJ21080 secreted frizzled-related protein 4 lg superfamily receptor LNIR a disintegrin and metalloproteinase doma stanniocalcin 2 matrix metalloproteinase 11 (stromelysin Transmembrane protease, serine 3 collagen, type X, alpha 1 (Schmid metaph ESTs; hypothetical protein for IMAGE:447 gap junction protein, beta 2, 26kD (conn ESTs ESTs CMyc target JPO1 transmembrane protease, serine 4 Hypothetical protein, XP_051860 (KIAA119 transcription factor bone morphogenetic protein 2

	WO 02/080	5443			
	Seq ID No: 462 & 463	437852	BE001836	Hs.256897	ESTs, Weakly similar to dJ365O12.1 [H.sa
	Seq ID No: 464 & 465	402075			ENSP00000251056*:Plasma membrane calcium
	Seq ID No: 466 & 467	421110	AJ250717	Hs.1355	cathepsin E
	Seq ID No: 468 & 469	451668	Z43948	Hs.326444	cartilage acidic protein 1
5	Seq ID No: 470 & 471	451668	Z43948	Hs.326444	cartilage acidic protein 1
•	Seq ID No: 472 & 473	451668	Z43948	Hs.326444	cartilage acidic protein 1
	Seq ID No: 474 & 475	422282	AF019225	Hs.114309	apolipoprotein L
	Seq ID No: 476 & 477	425852	AK001504	Hs.159651	death receptor 6, TNF superfamily member
	Seq ID No: 478 & 479	439738	BE246502	Hs.9598	sema domain, immunoglobulin domain (lg),
10	Seq ID No: 480 & 481	427747	AW411425	Hs.180655	serine/threonine kinase 12
10	Seq ID No: 482 & 483	420281	AI623693	Hs.323494	Predicted cation efflux pump
		405932	AJUZJUJJ	110.020101	C15000305:gij3806122lqb[AAC69198.1] (AF0
	Seq ID No: 484 & 485	405932			C15000305:gij3806122jgbjAAC69198.1j (AF0
	Seq ID No: 486 & 487		NIM 044200	Hs.10887	similar to lysosome-associated membrane
15	Seq ID No: 488 & 489	444342	NM_014398	Hs.103982	small inducible cytokine subfamily B (Cy
13	Seq JD No: 490 & 491	421379	Y15221		
	Seq ID No: 492 & 493	417079	U65590	Hs.81134	Interlaukin 1 receptor antagonist
	Seq ID No: 494 & 495	430890	X54232	Hs.2699	glypican 1
	Seq ID No: 496 & 497	419721	NM_001650	Hs.288650	aquaporin 4
20	Seq ID No: 498 & 499	444471	AB020684	Hs.11217	KIAA0877 protein
20	Seq ID No: 500 & 501	413063	AL035737	Hs.75184	chitinase 3-like 1 (cartilage glycoprote
	Seq ID No: 502 & 503	433800	A1034361	Hs.135150	lung type-I cell membrane-associated gly
	Seq ID No: 504 & 505	452401	NM_007115	Hs.29352	turnor necrosis factor, alpha-induced pro
	Seq ID No: 506 & 507	452401	NM_007115	Hs.29352	tumor necrosis factor, alpha-induced pro
2.5	Seq ID No: 508 & 509	450001	NM_001044	Hs.406	solute carrier family 6 (neurotransmitte
25	Seq ID No: 510 & 511	410407	X66839	Hs.63287	carbonic anhydrase IX
	Seq ID No: 512 & 513	309931	AW341683		gb:hd13d01.x1 Soares_NFL_T_GBC_S1 Homo s
	Seq ID No: 514 & 515	412719	AW016610	Hs.816	ESTs
	Seq ID No: 516 & 517	417034	NM_006183	Hs.80962	neurotensin
	Seq ID No: 518 & 519	430486	BE062109	Hs.241551	chloride channel, calcium activated, fam
30	Seq ID No: 520 & 521	413753	U17760	Hs.75517	laminin, beta 3 (nicein (125kD), kalinin
	Seq ID No: 522 & 523	425650	NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris antigen
	Seq ID No: 524 & 525	423673	BE003054	Hs.1695	matrix metalloproteinase 12 (macrophage
	Seq ID No: 526 & 527	418663	AK001100	Hs.41690	desmocollin 3
	Seg ID No: 528 & 529	418663	AK001100	Hs.41690	desmocollin 3
35	Seq ID No: 530 & 531	429610	AB024937	Hs.211092	LUNX protein; PLUNC (palate lung and nas
•	Seq ID No: 532 & 533	406690	M29540	Hs.220529	carcinoembryonic antigen-related cell ad
	Seq ID No: 534 & 535	431846	BE019924	Hs.271580	uroplakin 1B
	Seq ID No: 536 & 537	422158	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL
	Seq ID No: 538 & 539	431958	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta
40	Seq ID No: 540 & 541	437044	AL035864	Hs.69517	differentially expressed in Fanconi's an
	Seq ID No: 542 & 543	428484	AF104032	Hs.184601	solute carrier family 7 (cationic amino
	Seq ID No: 544 & 545	429211	AF052693	Hs.198249	gap junction protein, beta 5 (connexin 3
	Seq ID No: 546 & 547	417389	BE260964	Hs.82045	midkine (neurite growth-promoting factor
	Seq ID No: 548 & 549	431009	BE149762	Hs.48956	gap junction protein, beta 6 (connexin 3
45	Seq ID No: 550 & 551	417542	J04129	Hs.82269	progestagen-associated endometrial prote
73	Seq ID No: 552 & 553	449230	BE613348	Hs.211579	melanoma cell adhesion molecule
	Seq ID No: 554 & 555	410555	U92649	Hs.64311	a disintegrin and metalloproteinase doma
	Seq ID No: 556 & 557	410555	U92649	Hs.64311	a disintegrin and metalloproteinase doma
•	Seq ID No: 558 & 559	424687	J05070	Hs.151738	matrix metalloproteinase 9 (gelatinase B
50	Seq ID No: 560 & 561	418462	BE001596	Hs.85266	integrin, beta 4
50	Seq ID No: 562 & 563	410274	AA381807	Hs.61762	hypoxia-inducible protein 2
	Seq ID No: 564 & 565	439606	W79123	Hs.58561	G protein-coupled receptor 87
	Seq ID No: 566 & 567	404877	1173120	113.50501	NM_005365:Homo sapiens melanoma antigen,
		444781	NM_014400	Hs.11950	GPI-anchored metaslasis-associated prote
55	Seq ID No: 568 & 569 Seq ID No: 570 & 571	418543	NM_005329	Hs.85962	hyaluronan synthase 3
55	Seq ID No: 572 & 573	415817	U88967	Hs.78867	protein tyrosine phosphalase, receptor-t
	Seq ID No: 574 & 575	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
	*	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
	Seq ID No: 576 & 577	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
60	Seq ID No: 578 & 579	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
00	Seq ID No: 580 & 581		U88967	Hs.78867	protein tyrosine phosphalase, receptor-t
	Seq ID No: 582 & 583 Seg ID No: 584 & 585	415817 421817	AF146074	Hs.108660	ATP-binding cassette, sub-family C (CFTR
		418678	NM_001327	Hs.167379	cancer/testis antigen (NY-ESO-1)
	Seq ID No: 586 & 587 Seq ID No: 588 & 589	418678	NM_001327	Hs.167379	cancer/testis antigen (NY-ESO-1)
65		409420	Z15008	Hs.54451	laminin, gamma 2 (nicein (100kD), kalini
05	Seq ID No: 590 & 591 Seq ID No: 592 & 593	332180	AF134160	Hs.7327	claudin 1
	Seq ID No: 594 & 595	408790	AW580227	Hs.47860	neurotrophic tyrosine kinase, receptor,
			AW580227	Hs.47860	neurotrophic tyrosine kinase, receptor,
	Seq ID No: 596 & 597 Seg ID No: 598 & 599	408790 439223	AW238299	Hs.250618	UL16 binding protein 2
70		409757	NM_001898	Hs.123114	cystatin SN
70	Seq ID No: 600 & 601 Seq ID No: 602 & 603	428969	AF120274	Hs.194689	artemin
					artemin
	Seq ID No: 604 & 605 Seq ID No: 606 & 607	428969 428969	AF120274 AF120274	Hs.194689 Hs.194689	arlemin
					artemin
75	Seq ID No: 608 & 609	428969 450701	AF120274	Hs.194689	hypothetical protein XP_098151 (leucine-
13	Seq ID No: 610 & 611	450701	H39960	Hs.288467	hypothetical protein XP_098151 (leucine-
	Seq ID No: 612 & 613	450701	H39960	Hs.288467	nypotnetical protein Ar_uso 151 (reddine- plasminogen activator, urokinase
	Seq ID No: 614 & 615	414774	X02419	Hs.77274	plasminogen activator, urokinase desmocollin 2
	Seq ID No: 616 & 617	407944	R34008	Hs.239727	desmocollin 2
80	Seq ID No: 618 & 619	407944	R34008	Hs.239727	==-
οU	Seq ID No: 620 & 621	457489	A1693815	Hs.127179	cryptic gene
	Seq ID No: 622 & 623	429547	AW009166	Hs.99376	ESTs
	Seq ID No: 624 & 625	407242	M18728		gb:Human nonspecific crossreacting antig gb:Human nonspecific crossreacting antig
	Seq ID No: 626 & 627	407242	M18728		gb:Human nonspecific crossreacting antig gb:Human nonspecific crossreacting antig
85	Seq ID No: 628 & 629	407242	M18728	Un 40096	type I transmembrane protein Fn14
02	Seq ID No: 630 & 631	444006	BE395085	Hs.10086	Obe i narementinare brotein Litta

WO 02/086443 PCT/US02/12476 NM_003816 Hs.2442 a disintegrin and metalloproteinase doma Seq ID No: 632 & 633 429597 Hs.1473 gastrin-releasing peptide Seq ID No: 634 & 635 422109 S73265 AW470411 Hs.288433 neurotrimin Seq ID No: 636 & 637 419235 Hs.22920 similar to S68401 (cattle) glucose induc Seq ID No: 638 & 639 449048 Z45051 5 Hs.164021 Seq ID No: 640 & 641 419216 AU076718 small inducible cytokine subfamily B (Cy Hs.256311 Seq ID No: 642 & 643 AW583672 granin-like neuroendocrine peptide precu 431462 Sea ID No: 644 & 645 448243 AW369771 Hs.52620 integrin, beta 8 Seg ID No: 646 & 647 426427 M86699 Hs.169840 TTK protein kinase Hs.12844 Seq ID No: 648 & 649 445537 AJ245671 EGF-like-domain, multiple 6 10 Hs.114218 frizzled (Drosophila) homolog 6 Seq ID No: 650 & 651 AF072873 422278 KIAA0175 gene product Seq ID No: 652 & 653 NM_014791 Hs.184339 428450 Hs.313 AU076643 secreted phosphoprotein 1 (osteopontin, Seq ID No: 654 & 655 446619 Seq ID No: 656 & 657 U23752 Hs.32964 SRY (sex determining region Y)-box 11 453392 BE616633 Hs.170195 Seq ID No: 658 & 659 426514 bone morphogenetic protein 7 (osteogenic 15 Seq ID No: 660 & 661 425776 U25128 Hs.159499 parathyroid hormone receptor 2 Hs.159499 Seq ID No: 662 & 663 U25128 parathyroid hormone receptor 2 425776 Seg ID No: 664 & 665 NM_012152 Hs.258583 endothelial differentiation, lysophospha 431515 Hs.90572 PTK7 protein tyrosine kinase 7 Seq ID No: 666 & 667 419452 U33635 Seq ID No: 668 & 669 432653 N62096 Hs.293185 ESTs, Weakly similar to JC7328 amino aci 20 N62096 Hs.293185 ESTs, Weakly similar to JC7328 amino aci ESTs, Weakly similar to JC7328 amino aci 432653 Seq ID No: 670 & 671 Hs.293185 Seq ID No: 672 & 673 N62096 432653 Hs.293185 ESTs, Weakly similar to JC7328 amino aci N62096 Seq ID No: 674 & 675 432653 kallikrein 11 Seq ID No: 676 & 677 410001 AB041036 Hs.57771 Seq ID No: 678 & 679 426501 AW043782 Hs.293616 **FSTs** 25 Seq ID No: 680 & 681 408369 R38438 Hs.182575 solute carrier family 15 (H??? transport Seq ID No: 682 & 683 445413 AA151342 Hs.12677 CGI-147 protein Seq ID No: 684 & 685 422424 AI186431 Hs.296638 prostate differentiation factor Seq 1D No: 686 & 687 428330 L22524 Hs.2256 matrix metalloproteinase 7 (matrilysin, Seq ID No: 688 & 689 420610 AI683183 Hs.99348 distal-less homeo box 5 30 TABLE 15B Unique Eos probeset identifier number Pkey: CAT number: Gene cluster number 35 Accession: Genbank accession numbers **CAT Number** Pkey Accession 309931 AW341683 330493 33264_5 M27826 R78416 AA307645 AW957879 AW957800 AA633529 H03662 40 AL133916 N79113 AF086101 N76721 AW950828 AA364013 AW955684 Al346341 Al867454 N54784 Al655270 Al421279 AW014882 439285 47065_1 AA775552 N62351 N59253 AA626243 Al341407 BE175639 AA456968 Al358918 AA457077 450375 83327_1 AA009647 AA131254 AA374293 AW954405 H04410 AW606284 AA151166 BE157467 BE157601 H04384 W46291 AW663674 H04021 H01532 AA190993 H03231 H59605 H01642 AA852876 AA113758 AA626915 AA746952 AI161014 AA099554 R69067 451320 86576_1 AW118072 AI631982 T15734 AA224195 AI701458 W20198 F26326 AA890570 N90552 AW071907 AI671352 AI375892 T03517 R88265 45 Al124088 AA224388 Al084316 Al354686 T33652 Al140719 Al720211 T03490 Al372637 T15415 AW205836 AA630384 T03515 T33230 AA017131 AA443303 T33623 AI222556 T33511 T33785 AI419606 D55612 TABLE 15C 50 Unique number corresponding to an Eos probeset Pkey: Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA Ref: sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Indicates DNA strand from which exons were predicted. Strand: 55 Nt position: Indicates nucleotide positions of predicted exons. Strand Nt position 402075 8117407 121907-122035, 122804-122921, 124019-124161, 124455-124610, 125672-126076 Plus 403329 8516120 Plus 96450-96598 60 403478 116458-116564 9958258 Plus 404440 7528051 80430-81581 Plus

404877

405770

405932

65

1519284

2735037

7767812

Plus

Plus

Minus

1095-2107

61057-62075

123525-123713

Seq ID NO: 1 DNA sequence

Table 16

```
Nucleic Acid Accession #: NM 001216
 5
       Coding sequence: 43..1422
       GCCCGTACAC ACCGTGTGCT GGGACACCCC ACAGTCAGCC GCATGGCTCC CCTGTGCCCC
                                                                             60
10
       AGCCCCTGGC TCCCTCTGTT GATCCCGGCC CCTGCTCCAG GCCTCACTGT GCAACTGCTG
                                                                            120
       CTGTCACTGC TGCTTCTGAT GCCTGTCCAT CCCCAGAGGT TGCCCCGGAT GCAGGAGGAT
                                                                            180
      TCCCCCTTGG GAGGAGGCTC TTCTGGGGAA GATGACCCAC TGGGCGAGGA GGATCTGCCC AGTGAAGAGG ATTCACCCAG AGAGGAGGAT CCACCCGGAG AGGAGGATCT ACCTGGAGAG
                                                                            240
                                                                            300
       GAGGATCTAC CTGGAGAGGA GGATCTACCT GAAGTTAAGC CTAAATCAGA AGAAGAGGGC
15
       TCCCTGAAGT TAGAGGATCT ACCTACTGTT GAGGCTCCTG GAGATCCTCA AGAACCCCAG
                                                                            420
       AATAATGCCC ACAGGGACAA AGAAGGGGAT GACCAGAGTC ATTGGCGCTA TGGAGGCGAC
       CCGCCCTGGC CCCGGGTGTC CCCAGCCTGC GCGGGCCGCT TCCAGTCCCC GGTGGATATC
       CGCCCCAGC TCGCCGCCTT CTGCCCGGCC CTGCGCCCCC TGGAACTCCT GGGCTTCCAG
       CTCCCGCCGC TCCCAGAACT GCGCCTGCGC AACAATGGCC ACAGTGTGCA ACTGACCCTG
                                                                            660
20
       CCTCCTGGGC TAGAGATGGC TCTGGGTCCC GGGCGGGAGT ACCGGGCTCT GCAGCTGCAT
                                                                            720
       CTGCACTGGG GGGCTGCAGG TCGTCCGGGC TCGGAGCACA CTGTGGAAGG CCACCGTTTC
                                                                            780
       CCTGCCGAGA TCCACGTGGT TCACCTCAGC ACCGCCTTTG CCAGAGTTGA CGAGGCCTTG
                                                                            840
       GGGCGCCCGG GAGGCCTGGC CGTGTTGGCC GCCTTTCTGG AGGAGGGCCC GGAAGAAAAC
                                                                            900
       AGTGCCTATG AGCAGTTGCT GTCTCGCTTG GAAGAAATCG CTGAGGAAGG CTCAGAGACT
                                                                            960
       CAGGTCCCAG GACTGGACAT ATCTGCACTC CTGCCCTCTG ACTTCAGCCG CTACTTCCAA
TATGAGGGGT CTCTGACTAC ACCGCCCTGT GCCCAGGGTG TCATCTGGAC TGTGTTTAAC
25
                                                                           1020
                                                                           1080
       CAGACAGTGA TGCTGAGTGC TAAGCAGCTC CACACCCTCT CTGACACCCT GTGGGGACCT
                                                                           1140
       GGTGACTCTC GGCTACAGCT GAACTTCCGA GCGACGCAGC CTTTGAATGG GCGAGTGATT
                                                                           1200
       GAGGCCTCCT TCCCTGCTGG AGTGGACAGC AGTCCTCGGG CTGCTGAGCC AGTCCAGCTG
                                                                           1260
30
       AATTCCTGCC TGGCTGCTGG TGACATCCTA GCCCTGGTTT TTGGCCTCCT TTTTGCTGTC
                                                                           1320
       ACCAGCGTCG CGTTCCTTGT GCAGATGAGA AGGCAGCACA GAAGGGGAAC CAAAGGGGGT
                                                                           1380
       GTGAGCTACC GCCCAGCAGA GGTAGCCGAG ACTGGAGCCT AGAGGCTGGA TCTTGGAGAA
                                                                           1440
       TGTGAGAAGC CAGCCAGAGG CATCTGAGGG GGAGCCGGTA ACTGTCCTGT CCTGCTCATT
                                                                           1500
       ATGCCACTTC CTTTTAACTG CCAAGAAATT TTTTAAAATA AATATTTATA AT
35
       Seq ID NO: 2 Protein sequence:
       Protein Accession #: NP_001207
                                        31
                                                               51
40
       MAPLCPSPWL PLLIPAPAPG LTVQLLLSLL LLMPVHPQRL PRMQEDSPLG GGSSGEDDPL
       GEEDLPSEED SPREEDPPGE EDLPGEEDLP GEEDLPEVKP KSEEEGSLKL EDLPTVEAPG
                                                                            120
       DPQEPONNAH RDKEGDDQSH WRYGGDPPWP RVSPACAGRF QSPVDIRPQL AAFCPALRPL
                                                                            180
       ELLGFOLPPL PELRLRNNGH SVOLTLPPGL EMALGPGREY RALQLHLHWG AAGRPGSEHT
                                                                            240
45
       VEGHRFPAEI HVVHLSTAFA RVDEALGRPG GLAVLAAFLE EGPEENSAYE QLLSRLEEIA
                                                                            300
       EEGSETQVPG LDISALLPSD FSRYFQYEGS LTTPPCAQGV IWTVFNQTVM LSAKQLHTLS
                                                                            360
       DTLWGPGDSR LQLNFRATQP LNGRVIEASF PAGVDSSPRA AEPVQLNSCL AAGDILALVF
                                                                            420
       GLLFAVTSVA FLVQMRRQHR RGTKGGVSYR PAEVAETGA
50
       Seg ID NO: 3 DNA sequence
       Nucleic Acid Accession #: BC013923
       Coding sequence: 438-1391
                             21
                                                    41
                                                               51
                                        31
55
       GTGTTTGCAA AAGGGGGAAA GTAGTTTGCT GCCTCTTTAA GACTAGGACT GAGAGAAAGA
                                                                            120
       AGAGGAGAG GAAAGAAAGG GAGAGAAGTT TGAGCCCCAG GCTTAAGCCT TTCCAAAAAA
                                                                            180
       TAATAATAAC AATCATCGGC GGCGGCAGGA TCGGCCAGAG GAGGAGGGAA GCGCTTTTTT
                                                                            240
60
       TGATCCTGAT TCCAGTTTGC CTCTCTCTT TTTTCCCCCA AATTATTCTT CGCCTGATTT
       TCCTCGCGGA GCCCTGCGCT CCCGACACCC CCGCCCGCCT CCCCTCCTCC TCTCCCCCCG
                                                                            360
       CCGCGCACAG CGCCCGCATG TACAACATGA TGGAGACGGA GCTGAAGCCG CCGGGCCCGC
                                                                            480
       AGCAAACTTC GGGGGGGGGC GGCGGCAACT CCACCGCGGC GGCGGCCGGC GGCAACCAGA
65
       AAAACAGCCC GGACCGCGTC AAGCGGCCCA TGAATGCCTT CATGGTGTGG TCCCGCGGGC
                                                                            600
       AGCGGCGCAA GATGGCCCAG GAGAACCCCA AGATGCACAA CTCGGAGATC AGCAAGCGCC
       TGGGCGCCGA GTGGAAACTT TTGTCGGAGA CGGAGAAGCG GCCGTTCATC GACGAGGCTA
                                                                            720
       AGCGGCTGCG AGCGCTGCAC ATGAAGGAGC ACCCGGATTA TAAATACCGG CCCCGGCGGA
       AAACCAAGAC GCTCATGAAG AAGGATAAGT ACACGCTGCC CGGCGGGCTG CTGGCCCCCG
                                                                            840
70
       GCGGCAATAG CATGGCGAGC GGGGTCGGGG TGGGCGCCGG CCTGGGCGCG GGCGTGAACC
       AGCGCATGGA CAGTTACGCG CACATGAACG GCTGGAGCAA CGGCAGCTAC AGCATGATGC
                                                                            960
       AGGACCAGCT GGGCTACCCG CAGCACCCGG GCCTCAATGC GCACGGCGCA GCGCAGATGC
                                                                           1020
       AGCCCATGCA CCGCTACGAC GTGAGCGCCC TGCAGTACAA CTCCATGACC AGCTCGCAGA
                                                                           1080
       CCTACATGAA CGGCTCGCCC ACCTACAGCA TGTCCTACTC GCAGCAGGGC ACCCCTGGCA
                                                                           1140
75
       TGGCTCTTGG CTCCATGGGT TCGGTGGTCA AGTCCGAGGC CAGCTCCAGC CCCCCTGTGG
                                                                           1200
       TTACCTCTTC CTCCCACTCC AGGGCGCCCT GCCAGGCCGG GGACCTCCGG GACATGATCA
                                                                           1260
       GCATGTATCT CCCCGGCGCC GAGGTGCCGG AACCCGCCGC CCCCAGCAGA CTTCACATGT
                                                                           1320
       CCCAGCACTA CCAGAGCGGC CCGGTGCCCG GCACGGCCAT TAACGGCACA CTGCCCCTCT
                                                                           1380
       CACACATGTG AGGGCCGGAC AGCGAACTGG AGGGGGGAGA AATTTTCAAA GAAAAACGAG
                                                                           1440
80
       GGAAATGGGA GGGGTGCAAA AGAGGAGAGT AAGAAACAGC ATGGAGAAAA CCCGGTACGC
                                                                           1500
       TCAAAAAAA AAAAAAAAA AAAATCCCAT CACCCACAGC AAATGACAGC TGCAAAAGAG
                                                                           1560
       AACACCAATC CCATCCACAC TCACGCAAAA ACCGCGATGC CGACAAGAAA ACTTTTATGA
                                                                           1620
       GAGAGATCCT GGACTTCTTT TKGGGGGGACT ATTTTTGTAC AGAGAAAACC TGGGGAGGGT
                                                                           1680
       GGGGAGGGCG GGGGAATGGA CCTTGTATAG ATCTGGAGGA AAGAAAGCTA CGAAAAACTT
                                                                           1740
85
       TTTAAAAGTT CTAGTGGTAC GGTAGGAGCT TTGCAGGAAG TTTGCAAAAG TCTTTACCAA
                                                                           1800
       TAATATTAG AGCTAGTCTC CAAGCGACGA AAAAAATGTT TTAATATTTG CAAGCAACTT
                                                                           1860
       TTGTACAGTA TTTATCGAGA TAAACATGGC AATCAAAATG TCCATTGTTT ATAAGCTGAG
                                                                           1920
```

```
AATTTGCCAA TATTTTTCAA GGAGAGGCTT CTTGCTGAAT TTTGATTCTG CAGCTGAAAT
                                                                           1980
       TTAGGACAGT TGCAAACGTG AAAAGAAGAA AATTATTCAA ATTTGGACAT TTTAATTGTT
                                                                            2040
       TAAAAATTGT ACAAAAGGAA AAAATTAGAA TAAGTACTGG CGAACCATCT CTGTGGTCTT
                                                                            2100
       GTTTAAAAAG GGCAAAAGTT TTAGACTGTA CTAAATTTTA TAACTTACTG TTAAAAGCAA
                                                                            2160
       AAATGGCCAT GCAGGTTGAC ACCGTTGGTA ATTTATAATA GCTTTTGTTC GATCCCAACT
                                                                            2220
       TTCCATTTTG TTCAGATAAA AAAAACCATG AAATTACTGT GTTTGAAATA TTTTCTTATG
                                                                            2280
       GTTTGTAATA TTTCTGTAAA TTTATTGTGA TATTTTAAGG TTTTCCCCCC TTTATTTTCC
                                                                            2340
       GTAGTTGTAT TTTAAAAGAT TCGGCTCTGT ATTATTTGAA TCAGTCTGCC GAGAATCCAT
                                                                            2400
       GTATATATTT GAACTAATAT CATCCTTATA ACAGGTACAT TTTCAACTTA AGTTTTTACT
                                                                            2460
10
       CCATTATGCA CAGTTTGAGA TAAATAAATT TTTGAAATAT GGACACTGAA AAAAAAAAA
                                                                            2520
       2580
       CCACAACACA AACAACAACA CACAGAGGG
15
       Sea ID NO: 4 Protein sequence:
       Protein Accession #: CAA83435.1
                                                                51
                                         31
                                                     41
                  11
       MYNMMETELK PPGPQQTSGG GGGNSTAAAA GGNQKNSPDR VKRPMNAFMV WSRGQRRKMA
20
                                                                              60
       QENPKMHNSE ISKRLGAEWK LLSETEKRPF IDEAKRLRAL HMKEHPDYKY RPRRKTKTLM
                                                                              120
       KKDKYTLPGG LLAPGGNSMA SGVGVGAGLG AGVNQRMDSY AHMNGWSNGS YSMMQDQLGY
                                                                              180
       PQHPGLNAHG AAQMQPMHRY DVSALQYNSM TSSQTYMNGS PTYSMSYSQQ GTPGMALGSM
                                                                              240
       GSVVKSEASS SPPVVTSSSH SRAPCQAGDL RDMISMYLPG AEVPEPAAPS RLHMSQHYQS
                                                                              300
25
       GPVPGTAING TLPLSHM
       Seg ID NO: 5 DNA sequence
       Nucleic Acid Accession #: U91618
       Coding sequence: 29-541
30
                                         31
                                                                51
       CGGACTTGGC TTGTTAGAAG GCTGAAAGAT GATGGCAGGA ATGAAAATCC AGCTTGTATG
       CATGCTACTC CTGGCTTTCA GCTCCTGGAG TCTGTGCTCA GATTCAGAAG AGGAAATGAA
35
       AGCATTAGAA GCAGATTTCT TGACCAATAT GCATACATCA AAGATTAGTA AAGCACATGT
       TCCCTCTTGG AAGATGACTC TGCTAAATGT TTGCAGTCTT GTAAATAATT TGAACAGCCC
                                                                              240
       AGCTGAGGAA ACAGGAGAAG TTCATGAAGA GGAGCTTGTT GCAAGAAGGA AACTTCCTAC
       TGCTTTAGAT GGCTTTAGCT TGGAAGCAAT GTTGACAATA TACCAGCTCC ACAAAATCTG
TCACAGCAGG GCTTTTCAAC ACTGGGAGTT AATCCAGGAA GATATTCTTG ATACTGGAAA
                                                                              360
                                                                              420
40
       TGACAAAAAT GGAAAGGAAG AAGTCATAAA GAGAAAAATT CCTTATATTC TGAAACGGCA
                                                                              480
       GCTGTATGAG AATAAACCCA GAAGACCCTA CATACTCAAA AGAGATTCTT ACTATTACTG
                                                                              540
       AGAGAATAAA TCATTTATTT ACATGTGATT GTGATTCATC ATCCCTTAAT TAAATATCAA
                                                                              600
       ATTATATTTG TGTGAAAATG TGACAAACAC ACTTATCTGT CTCTTCTACA ATTGTGGTTT
                                                                              660
       ATTGAATGTG TTTTTCTGCA CTAATAGAAA TAGACTAAG TGTTTTCAAA TAAATCTAAA
TCTTCAAAAA AAAAAAAAA AAATGGGGCC GCAATT
                                                                              720
45
       Seq ID NO: 6 Protein sequence:
50
       Protein Accession #: AAB50564
                                         31
                                                     41
                                                                51
       MMAGMKIQLV CMLLLAFSSW SLCSDSEEEM KALEADFLTN MHTSKISKAH VPSWKMTLLN
                                                                              60
55
       VCSLVNNLNS PAEETGEVHE EELVARRKLP TALDGFSLEA MLTIYQLHKI CHSRAFQHWE
       LIQEDILDTG NDKNGKEEVI KRKIPYILKR QLYENKPRRP YILKRDSYYY
       Seq ID NO: 7 DNA sequence
       Nucleic Acid Accession #: NM_006536.2
60
       Coding sequence: 109-2940
                              21
                                                     41
                                                                51
       ACCTAAAACC TTGCAAGTTC AGGAAGAAAC CATCTGCATC CATATTGAAA ACCTGACACA
65
       ATGTATGCAG CAGGCTCAGT GTGAGTGAAC TGGAGGCTTC TCTACAACAT GACCCAAAGG
                                                                              120
       AGCATTGCAG GTCCTATTTG CAACCTGAAG TTTGTGACTC TCCTGGTTGC CTTAAGTTCA
                                                                              180
       GAACTCCCAT TCCTGGGAGC TGGAGTACAG CTTCAAGACA ATGGGTATAA TGGATTGCTC
                                                                              240
       ATTGCAATTA ATCCTCAGGT ACCTGAGAAT CAGAACCTCA TCTCAAACAT TAAGGAAATG
                                                                              300
       ATAACTGAAG CTTCATTTA CCTATTTAAT GCTACCAAGA GAAGAGTATT TTTCAGAAAT
                                                                              360
70
       ATAAAGATTT TAATACCTGC CACATGGAAA GCTAATAATA ACAGCAAAAT AAAACAAGAA
       TCATATGAAA AGGCAAATGT CATAGTGACT GACTGGTATG GGGCACATGG AGATGATCCA
       TACACCCTAC AATACAGAGG GTGTGGAAAA GAGGGAAAAT ACATTCATTT CACACCTAAT
       TTCCTACTGA ATGATAACTT AACAGCTGGC TACGGATCAC GAGGCCGAGT GTTTGTCCAT
       GAATGGGCCC ACCTCCGTTG GGGTGTGTTC GATGAGTATA ACAATGACAA ACCTTTCTAC
75
       ATAAATGGGC AAAATCAAAT TAAAGTGACA AGGTGTTCAT CTGACATCAC AGGCATTTTT
       GTGTGTGAAA AAGGTCCTTG CCCCCAAGAA AACTGTATTA TTAGTAAGCT TTTTAAAGAA
                                                                              780
       GGATGCACCT TTATCTACAA TAGCACCCAA AATGCAACTG CATCAATAAT GTTCATGCAA
                                                                              840
       AGTTTATCTT CTGTGGTTGA ATTTTGTAAT GCAAGTACCC ACAACCAAGA AGCACCAAAC
                                                                              900
       CTACAGAACC AGATETGCAG CCTCAGAAGT GCATEGGATE TAATCACAGA CTCTGCTGAC
TTTCACCACA GCTTTCCCAT GAATEGGACT GAGCTTCCAC CTCCTCCCAC ATTCTCGCTT
                                                                              960
80
                                                                            1020
       GTACAGGCTG GTGACAAAGT GGTCTGTTTA GTGCTGGATG TGTCCAGCAA GATGGCAGAG
GCTGACAGAC TCCTTCAACT ACAACAAGCC GCAGAATTTT ATTTGATGCA GATTGTTGAA
                                                                            1080
                                                                            1140
       ATTCATACCT TCGTGGGCAT TGCCAGTTTC GACAGCAAAG GAGAGATCAG AGCCCAGCTA
                                                                            1200
       CACCAAATTA ACAGCAATGA TGATCGAAAG TTGCTGGTTT CATATCTGCC CACCACTGTA
                                                                            1260
85
       TCAGCTAAAA CAGACATCAG CATTTGTTCA GGGCTTAAGA AAGGATTTGA GGTGGTTGAA
                                                                            1320
       AAACTGAATG GAAAAGCTTA TGGCTCTGTG ATGATATTAG TGACCAGCGG AGATGATAAG
                                                                            1380
       CTTCTTGGCA ATTGCTTACC CACTGTGCTC AGCAGTGGTT CAACAATTCA CTCCATTGCC
                                                                            1440
```

```
CTGGGTTCAT CTGCAGCCCC AAATCTGGAG GAATTATCAC GTCTTACAGG AGGTTTAAAG
                                                                            1500
       TTCTTTGTTC CAGATATATC AAACTCCAAT AGCATGATTG ATGCTTTCAG TAGAATTTCC
                                                                            1560
       TCTGGAACTG GAGACATTTT CCAGCAACAT ATTCAGCTTG AAAGTACAGG TGAAAATGTC
                                                                            1620
       AAACCTCACC ATCAATTGAA AAACACAGTG ACTGTGGATA ATACTGTGGG CAACGACACT
                                                                            1680
 5
       ATGTTTCTAG TTACGTGGCA GGCCAGTGGT CCTCCTGAGA TTATATTATT TGATCCTGAT
                                                                            1740
       GGACGAAAAT ACTACACAAA TAATTTTATC ACCAATCTAA CTTTTCGGAC AGCTAGTCTT
                                                                            1800
       TGGATTCCAG GAACAGCTAA GCCTGGGCAC TGGACTTACA CCCTGAACAA TACCCATCAT
                                                                            1860
       TCTCTGCAAG CCCTGAAAGT GACAGTGACC TCTCGCGCCT CCAACTCAGC TGTGCCCCCA
                                                                            1920
       GCCACTGTGG AAGCCTTTGT GGAAAGAGAC AGCCTCCATT TTCCTCATCC TGTGATGATT
                                                                            1980
10
       TATGCCAATG TGAAACAGGG ATTTTATCCC ATTCTTAATG CCACTGTCAC TGCCACAGTT
                                                                            2040
       GAGCCAGAGA CTGGAGATCC TGTTACGCTG AGACTCCTTG ATGATGGAGC ÁGGTGCTGAT
                                                                            2100
       GTTATAAAAA ATGATGGAAT TTACTCGAGG TATTTTTTCT CCTTTGCTGC AAATGGTAGA
                                                                            2160
       TATAGCTTGA AAGTGCATGT CAATCACTCT CCCAGCATAA GCACCCCAAC CCACTCTATT
                                                                            2220
       CCAGGGAGTC ATGCTATGTA TGTACCAGGT TACACAGCAA ACGGTAATAT TCAGATGAAT
                                                                            2280
15
       GCTCCAAGGA AATCAGTAGG CAGAAATGAG GAGGAGCGAA AGTGGGGCTT TAGCCGAGTC
                                                                            2340
       AGCTCAGGAG GCTCCTTTTC AGTGCTGGGA GTTCCAGCTG GCCCCCACCC TGATGTGTTT
       CCACCATGCA AAATTATTGA CCTGGAAGCT GTAAAAGTAG AAGAGGAATT GACCCTATCT
                                                                            2460
       TGGACAGCAC CTGGAGAAGA CTTTGATCAG GGCCAGGCTA CAAGCTATGA AATAAGAATG
       AGTAAAAGTC TACAGAATAT CCAAGATGAC TTTAACAATG CTATTTTAGT AAATACATCA
                                                                            2580
20
       AAGCGAAATC CTCAGCAAGC TGGCATCAGG GAGATATTTA CGTTCTCACC CCAGATTTCC
                                                                            2640
       ACGAATGGAC CTGAACATCA GCCAAATGGA GAAACACATG AAAGCCACAG AATTTATGTT
                                                                            2700
       GCAATACGAG CAATGGATAG GAACTCCTTA CAGTCTGCTG TATCTAACAT TGCCCAGGCG
                                                                            2760
       CCTCTGTTTA TTCCCCCCAA TTCTGATCCT GTACCTGCCA GAGATTATCT TATATTGAAA
                                                                            2820
       GGAGTTTTAA CAGCAATGGG TTTGATAGGA ATCATTTGCC TTATTATAGT TGTGACACAT
                                                                            2880
25
       CATACTITAA GCAGGAAAAA GAGAGCAGAC AAGAAAGAGA ATGGAACAAA ATTATTATAA
                                                                            2940
       ATAAATATCC AAAGTGTCTT CCTTCTTAGA TATAAGACCC ATGGCCTTCG ACTACAAAAA
                                                                            3000
       CATACTAACA AAGTCAAATT AACATCAAAA CTGTATTAAA ATGCATTGAG TTTTTGTACA
                                                                            3060
       ATACAGATAA GATTTTTACA TGGTAGATCA ACAATTCTTT TTGGGGGTAG ATTAGAAAAC
                                                                            3120
       CCTTACACTT TGGCTATGAA CAAATAATAA AAATTATTCT TTAAAGTAAT GTCTTTAAAG
                                                                            3180
30
       GCAAAGGGAA GGGTAAAGTC GGACCAGTGT CAAGGAAAGT TTGTTTTATT GAGGTGGAAA
                                                                            3240
       AATAGCCCCA AGCAGAGAAA AGGAGGGTAG GTCTGCATTA TAACTGTCTG TGTGAAGCAA
                                                                            3300
       TCATTTAGTT ACTTTGATTA ATTTTTCTTT TCTCCTTATC TGTGCAGTAC AGGTTGCTTG
                                                                            3360
       TTTACATGAA GATCATGCTA TATTTTATAT ATGTAGCCCC TAATGCAAAG CTCTTTACCT
                                                                            3420
       CTTGCTATTT TGTTATATAT ATTTCAGATG ACATCTCCCT GCTAATGCTC AGAGATCTTT
                                                                            3480
35
       TTTCACTGTA AGAGGTAACC TTTAACAATA TGGGTATTAC CTTTGTCTCT TCATACCGGT
                                                                            3540
       TTTATGACAA AGGTCTATTG AATTTATTTG TNTGTAAGTT TCTACTCCCA TCAAAGCAGC
                                                                            3600
       TTTCTAAGTT TATTGCCTTG GGTTATTATG GAATGATAGT TATAGCCCCN TATAATGCCT
       TACCTAGGAA A
40
       Sea ID NO: 8 Protein sequence:
       Protein Accession #: NP_006527.1
                  11
                             21
                                         31
                                                    41
                                                                51
45
       MTORSIAGPI CNLKFVTLLV ALSSELPFLG AGVOLODNGY NGLLIAINPO VPENONLISN
                                                                              60
       IKEMITEASF YLFNATKRRV FFRNIKILIP ATWKANNNSK IKQESYEKAN VIVTDWYGAH
                                                                             120
       GDDPYTLQYR GCGKEGKYIH FTPNFLLNDN LTAGYGSRGR VFVHEWAHLR WGVFDEYNND
                                                                             180
       KPFYINGQNQ IKVTRCSSDI TGIFVCEKGP CPQENCIISK LFKEGCTFIY NSTQNATASI
                                                                             240
       MFMQSLSSVV EFCNASTHNQ EAPNLQNQMC SLRSAWDVIT DSADFHHSFP MNGTELPPPP
                                                                             300
50
       TFSLVQAGDK VVCLVLDVSS KMAEADRLLQ LQQAAEFYLM QIVEIHTFVG IASFDSKGEI
                                                                             360
       RAQLHQINSN DDRKLLVSYL PTTVSAKTDI SICSGLKKGF EVVEKLNGKA YGSVMILVTS
                                                                             420
       GDDKLLGNCL PTVLSSGSTI HSIALGSSAA PNLEELSRLT GGLKFFVPDI SNSNSMIDAF
                                                                             480
       SRISSGTGDI FQQHIQLEST GENVKPHHQL KNTVTVDNTV GNDTMFLVTW QASGPPEIIL
                                                                             540
       FDPDGRKYYT NNFITNLTFR TASLWIPGTA KPGHWTYTLN NTHHSLQALK VTVTSRASNS
                                                                             600
55
       AVPPATVEAF VERDSLHFPH PVMIYANVKQ GFYPILNATV TATVEPETGD PVTLRLLDDG
                                                                             660
       AGADVIKNDG IYSRYFFSFA ANGRYSLKVH VNHSPSISTP AHSIPGSHAM YVPGYTANGN
                                                                             720
       IQMNAPRKSV GRNEEERKWG FSRVSSGGSF SVLGVPAGPH PDVFPPCKII DLEAVKVEEE
                                                                             780
       LTLSWTAPGE DFDQGQATSY EIRMSKSLQN IQDDFNNAIL VNTSKRNPQQ AGIREIFTFS
                                                                             840
       PQISTNGPEH QPNGETHESH RIYVAIRAMD RNSLQSAVSN IAQAPLFIPP NSDPVPARDY
                                                                             900
60
       LILKGVLTAM GLIGIICLII VVTHHTLSRK KRADKKENGT KLL
       Seq ID NO: 9 DNA sequence
       Nucleic Acid Accession #: Eos sequence
65
       Coding sequence: 336-632
                  11
                              21
                                         31
                                                                51
       CTCCCCTCAC CCCGGTCCAG GATGCCCAGT CCCCACGACA CCTCCCACTT CCCACTGTGG
70
       CCTGGGTGGG CTCAGGGGCT GCCCTTGACC TGGCCTAGAG CCCTCCCCCA GCTGGTGGTG
       GAGCTGGCAC TCTCTGGGAG GGAGGGGCT GGGAGGGAAT GAGTGGGAAT GGCAAGAGGC
                                                                             180
       CAGGGTTTGG TGGGATCAGG TTGAGGCAGG TTTGGTTTCC TTAAAATGCC AAGTTGGGGG
       CCAGTGGGGC CCACATATAA ATCCTCACCC TGGGAGCCTG GCTGCCTTGC TCTCCTTCCT
                                                                             300
       GGGTCTGTCT CTGCCACCTG GTCTGCCACA GATCCATGAT GTGCAGTTCT CTGGAGCAGG
                                                                             360
75
       CGCTGGCTGT GCTGGTCACT ACCTTCCACA AGTACTCCTG CCAAGAGGGC GACAAGTTCA
                                                                             420
       AGCTGAGTAA GGGGGAAATG AAGGAACTTC TGCACAAGGA GCTGCCCAGC TTTGTGGGGG
                                                                             480
       AGAAAGTGGA TGAGGAGGGG CTGAAGAAGC TGATGGGCAG CCTGGATGAG AACAGTGACC AGCAGGTGGA CTTCCAGGAG TATGCTGTTT TCCTGGCACT CATCACTGTC ATGTGCAATG
                                                                             540
                                                                             600
       ACTICITCCA GGGCTGCCCA GACCGACCCT GAAGCAGAAC TCTTGACTTC CTGCCATGGA
                                                                             660
80
       TCTCTTGGGC CCAGGACTGT TGATGCCTTT GAGTTTTGTA TTCAATAAAC TTTTTTTGTC
                                                                             720
       TGTTGATAAT ATTTTAATTG CTCAGTGATG TTCCATAACC CGGCTGGCTC AGCTGGAGTG
                                                                             780
       CTGGGAGATG AGGGCCTCCT GGATCCTGCT CCCTTCTGGG CTCTGACTCT CCTGGAAATC
                                                                             840
       TCTCCAAGGC CAGAGCTATG CTTTAGGTCT CAATTTTGGA ATTTCAAACA CCAGCAAAAA
                                                                             900
       ATTGGAAATC GAGATAGGTT GCTGACTTTT ATTTTGTCAA ATAAAGATAT TAAAAAAGGC
                                                                             960
85
       AAATACCA
```

Seq ID NO: 10 Protein sequence:

Protein Accession #: NP_005969.1

	FIOCEIN ACC						
5		11 AVLVTTFHKY VDFQEYAVFL	-		41 Kelpsfvgek	51 VDEEGLKKLM	60
10	Nucleic Aci	11 DNA sequid Accession lence: 336-6	ı #: Eos sed	quence		•	
15	CCTGGGTGGG GAGCTGGCAC	11 CCCGGTCCAG CTCAGGGGCT TCTCTGGGAG	GCCCTTGACC GGAGGGGGCT	TGGCCTAGAG GGGAGGGAAT	CCCTCCCCCA GAGTGGGAAT	GCTGGTGGTG GGCAAGAGGC	60 120 180
20	CCAGTGGGGC GGGTCTGTCT CGCTGGCTGT AGCTGAGTAA	TGGGATCAGG CCACATATAA CTGCCACCTG GCTGGTCACT GGGGGAAATG	ATCCTCACCC GTCTGCCACA ACCTTCCACA AAGGAACTTC	TGGGAGCCTG GATCCATGAT AGTACTCCTG TGCACAAGGA	GCTGCCTTGC GTGCAGTTCT CCAAGAGGGC GCTGCCCAGC	TCTCCTTCCT CTGGAGCAGG GACAAGTTCA TTTGTGGGGC	240 300 360 420 480
25	GAGACTTGAG GGAGAAAGTG CCAGCAGGTG TGACTTCTTC	ACCATGTGCT AAACCAGAGC GATGAGGAGG GACTTCCAGG CAGGGCTGCC	CCAGAAGGA GGCTGAAGAA AGTATGCTGT CAGACCGACC	AAAGTGATTG GCTGATGGGC TTTCCTGGCA CTGAAGCAGA	TCCCAAGATC AGCCTGGATG CTCATCACTG ACTCTTGACT	ACACAGCACT AGAACAGTGA TCATGTGCAA TCCTGCCATG	540 600 660 720 780
30	TCTGTTGATA TGCTGGGAGA TCTCTCCAAG	GCCCAGGACT ATATTTTAAT TGAGGGCCTC GCCAGAGCTA TCGAGATAGG	TGCTCAGTGA CTGGATCCTG TGCTTTAGGT	TGTTCCATAA CTCCCTTCTG CTCAATTTTG	CCCGGCTGGC GGCTCTGACT GAATTTCAAA	TCAGCTGGAG CTCCTGGAAA CACCAGCAAA	840 900 960 1020 1080
35	Seq ID NO:	12 Protein cession #: I		e	•		
	•	••	21	31	41	51	
40		11 AVLVTTFHKY LRNQSPEGKS	 SCQEGDKFKL	SKGEMKELLH	Ī	 REPCAVRAFR	60
	Seg ID NO:	13 DW com					
45	Nucleic Ac:	id Accession Lence: 58-35	ı#: Eos sed	quence		. •	
50	Nucleic According sequents 1	id Accession lence: 58-35 11 CATGTGGGGG CTCTGGAGCA GCGACAAGTT	#: Eos sec 54 21 TGAGGCTGAG GGCGCTGGCT CAAGCTGAGT	31 AGAAAACAAG GTGCTGGTCA AAGGGGGAAA	CTACCTTCCA TGAAGGAACT	CAAGTACTCC TCTGCACAAG	60 120 180
	Nucleic Ac Coding sequence of the coding sequ	id Accession lence: 58-39 11 	#: EOS SEC 54 21 TGAGGCTGAG GGCGCTGAGT CAAGCTGAGT CCAGCAGGTG CCAGCAGGTG TGACTTCTTC GATCTCTTGG	31 AGAAAACAAG GTGCTGGTCA AAGGGGGAAA GATTACAGG GACTTCCAGG GACGGCTGCC GCCCAGGACT ATATTTTAAT	TACACAGCCA CTACCTTCCA TGAAGGAACT GGCTGAAGGA AGTATGCTGT CAGACCGACC GTTGATGCCT TGCTCAGTGA	CAGATCCATG CAAGTACTCC TCTGCACAAG GCTGATGGGC TTTCCTGGCA CTGAAGCAGA TTGAGTTTTG TGTTCCATAA	120 180 240 300 360 420 480
50	Nucleic Ac: Coding sequence Telegraphic Coding sequence GTGAGCTCAC ATGTGCAGAGAGG GAGCTGCCCA AGCCTGGATG CTCATCACTG ACTCTTGACT TATTCAATAA CCCGGCTGGC GATTTCAAAA	id Accession lence: 58-39 11 	#: EOS SEC 54 21 TGAGGCTGAG GGCGCTGGCT CAAGCTGAGT CCAGCAGGTG TGACTTCTTC GATCTCTTG TCTTGTTGATA TGCTGGAGA AATTGGAAA	31 AGAAAACAAG GTGCTGGTCA AAGGGGAAA GATGAGGAGG GACTTCCAGG CAGGCTGCC GCCCAGGACT ATATTTTAAT TGAGGGCTCC GCCAGAGCTA	TACACAGCCA TACACTTCCA TGAAGGAACT GGCTGAAGGA AGTATGCTGT CAGACCGACC GTTGATGCCT TGCTCAGTGA CTGGATCCTG TGCTTTAGGT TGCTTTAGGT	CAGATCCATG CAAGTACTCC TCTGCACAAG GCTGATGGGC TTTCCTGGCA CTGAAGCAGA TTGAGTTTTG TGTTCCATAA CTCCCTTCTG CTCAATTTTG	120 180 240 300 360 420
50	Nucleic Ac: Coding sequence Telegraphic Coding sequence GTGAGCTCAC ATTTGCAGATT TGCCAAGAGG GAGCTGCCCA AGCCTGGATG CTCATCACTG ACTCTTGACT TATTCAATAA CCCGGCTGGC GGCTCTGACT GAATTCAAAA AAATAAAGAT Seq ID NO: Protein Acc MMCSSLEQAL	id Accession lence: 58-39 11 CATGTGGGGG CTCTGGAGCA GCGACAAGTT GCTTGTGGG AGAACATGA TCATGTGAGA TCATGTGAGA TCATGTGAA TCATGCATG ACTTTTTTG TCAGCTGAA CACCAGCAAA ATTAAAAAAG 14 Protein cession #: 11 AVLVTTFHKY	#: EOS SEC 54 21 TGAGGCTGAG GGCGCTGGCT CAAGCTGAGT GGAGAAAGTG CCAGCAGGTG TGACTTCTTC GATCTCTTC GATCTCTTGG TCTGTGGAGA TCTCTCCAAG AAATTGGAAA GCAAATACCA SEQUENCE: 1P_005969.1 21 SCQEGDKFKL	31 AGAAAACAAG GTGCTGGTCA AAGGGGAAA GATGAGGAGG CAGGGCTGCC GCCCAGGACT TGAGGGCCTC GCCAGAGCTA TCGAGATAGG	TACACAGCCA CTACCTTCCA CTACCTTCCA TCAAGGAACT GGCTGAAGAA AGTATGCTGT CAGACCGACC TCGCTCAGTGA CTGGATCCTG TGCTTTAGGT TTGCTGACTT	CAGATCCATG CAAGTACTCC TCTGCACAAG GCTGATGGCC TTTCCTGGCA TTGAGCTATT TGATCCATAA CTCCCTTCTG CTCAATTTTG TTATTTTGTC	120 180 240 300 360 420 480 540
505560	Nucleic Ac: Coding sequence GTGAGCTCAC ATGTGCAGTT TGCCAAGAGG GAGCTGCCCA AGCCTGGATG ACTCTTGACT TATTCAATAA CCCGGCTGGC GGCTCTGACT GAATTCAAAA AAATAAAGAT Seq ID NO: Protein Acc MMCSSLEQAL GSLDENSDQQ Seq ID NO:	id Accession lence: 58-39 11 CATGTGGGGG CTCTGGAAGCA GCGACAAGTT GCTTGTGGG AGAACAGTGA TCATGTGCAA TCCTGCCATG ACTTTTTTG TCAGCTGGAA ACTTTTTTTG TCAGCTGGAA ATTAAAAAAG 14 Protein cession #: 11 AVLVTTPHKY VDFQEYAVFL	#: EOS SEC 54 21 TGAGGCTGAG GGCGCTGGCT CAAGCTGAGT CAAGCTGAGT GCAGAAAGTG CCAGCAGGTG TGACTTCTTC GATCTCTTC GATCTCTTGG TCTGTGATA TGCTGGGAGA TCTCTCCAAG AAATTGGAAA GCAAATACCA BEQUENCE: 12 SCQEGDKFKL ALITVMCNDF	31 AGAAAACAAG GTGCTGGTCA AAGGGGAAA GATGAGGAGG GACTTCCAGG CACGGCTGCC GCCCAGGACT TGAGGGCCTC GCCAGAGCTA TCGAGATAGG	TACACAGCCA CTACCTTCCA CTACCTTCCA TCAAGGAACT GGCTGAAGAA AGTATGCTGT CAGACCGACC TCGCTCAGTGA CTGGATCCTG TGCTTTAGGT TTGCTGACTT	CAGATCCATG CAAGTACTCC TCTGCACAAG GCTGATGGCC TTTCCTGGCA TTGAGCTATT TGATCCATAA CTCCCTTCTG CTCAATTTTG TTATTTTGTC	120 180 240 300 360 420 480 540 600 660
50556065	Nucleic Ac: Coding sequence Telegraphic Action of the control of	id Accession lence: 58-35 11 CATGTGGGGG CTCTGGAGCA GCGACAAGTT GCTTGTGGG AGAACATGA TCATGTGCAA TCATGTGCAA TCATGTGCAA ACTATTTTTG TCAGCTGGAG CTCCTGGAAA CACCAGCAAA ATTAAAAAAG 14 Protein cession #: N 11 AVLVTTFHKY VDFQEYAVFL 15 DNA sequid Accession	#: EOS SEC 54 21 TGAGGCTGAG GGGCTGGCT CAAGCTGAGT CAAGCTGAGT CAACTCTTCT GATCTCTTC GATCTCTTC GATCTCTTGG TCTGTGATA TCTCTGGAGA AAATTGGAAA GCAAATACCA SEQUENCE: UP_005969.1 21 SCQEGDKFKL ALITVMCNDF	31 AGAAAACAAG GTGCTGGTCA AAGGGGAAA GATGAGGAGG GACTTCCAGG CACGGCTGCC GCCCAGGACT TGAGGGCCTC GCCAGAGCTA TCGAGATAGG	TACACAGCCA CTACCTTCCA CTACCTTCCA TCAAGGAACT GGCTGAAGAA AGTATGCTGT CAGACCGACC TCGCTCAGTGA CTGGATCCTG TGCTTTAGGT TTGCTGACTT	CAGATCCATG CAAGTACTCC TCTGCACAAG GCTGATGGCC TTTCCTGGCA TTGAGCTATT TGATCCATAA CTCCCTTCTG CTCAATTTTG TTATTTTGTC	120 180 240 300 360 420 480 540 600 660
50556065	Nucleic Ac: Coding sequence Telegraphy of the control of the cont	id Accession lence: 58-35 11 CATGTGGGGG CTCTGGAGCA GCGACAAGTT GCGACAAGTT GCATGTGGGG AGAACATGA TCATGTGAGA TCATGTGAGA TCATGTGAA TCATGCATG TCAGCTGGAG ACTTTTTTTG TCAGCTGGAA ACTAAAAAAG 14 Protein cession #: N 11 AVLVTTFHKY VDFQEYAVFL 15 DNA sequid Accession lence: 62-35	#: EOS SEC 54 21 TGAGGCTGAG GGCGCTGGCT CAAGCTGAGT CAAGCTGAGT GCAGCAGGTG TGACTTCTTC GATCTCTTC GATCTCTTGG TCTGTGATA TCTCTCCAAG AAATTGGAAA GCAAATACCA SEQUENCE: UP_005969.1 21 SCQEGDKFKL ALITYMCNDF DEBUGG #: EOS SEC 58	31 AGAAAACAAG GTGCTGGTCA AAGGGGAAA GATGAGGAGG GACTTCCAGG CAGGCTGCC GCCCAGGACT ATATTTTAAT TGAGGGCCTC GCCAGAGCTA TCGAGATAGG 31 SKGEMKELLH FQGCPDRP	TACACAGCCA CTACCTTCCA CTACCTTCCA TGAAGGAACT GGCTGAAGGA AGTATGCTGT CAGACCGACC GTTGATGCCT TGCTCAGTGA CTGGATCCTG TGCTTAGGT TTGCTGACTT 41 KELPSFVGEK	CAGATCCATG CAAGTACTCC TCTGCACAAG GCTGATGGGC TTTCCTGGCA TTGAGCAGA TTGAGTTTTG TGTTCCATAA CTCCCTTCTG CTCAATTTTG TTATTTTGTC 51 VDEEGLKKLM	120 180 240 300 420 480 540 600 660
5055606570	Nucleic Ac: Coding sequence of the coding seq	id Accession lence: 58-35 11 CATGTGGGGG CTCTGGAGCA GCGACAAGTT GCTTTGTGGG AGAACAGTGA TCATGTGCAA TCATGTGCAA TCATGTGCAA ATTATTTTT TCAGCTGGAA CACCAGCAAA ATTAAAAAAG 14 Protein lession #: N 11 AVLVTTFHKY VDFQEYAVFL 15 DNA sequid Accession lence: 62-35	#: EOS SEC #: EOS SEC # EOS SEC 21 TGAGGCTGAG GGCGCTGGCT CAAGCTGATT CAAGCTGATT CAAGCTGATT TGACTTCTTC GATCTCTTGT GATCTCTTGG TCTGTGATA TCTCTCCAAG AAATTGGAAA GCAAATACCA SEQUENCE: UP_005969.1 21 SCQEGDKFKL ALITVMCNDF #: EOS SEC # EOS SEC ACTGCCTGGG AGCAGGCGCT TGGGGAGAA GTGACCAGCA GTGACCAGCA GTGACCAGCA GTGACCAGCA	31 AGAAAACAAG GTGCTGGTCA AAGGGGAAA GATGAGGAGA GACTTCCAGG GACTTCCAGG CAGGCTGCC GCCCAGGACT ATATTTTAAT TCAAGGCCTC GCAGAGCTA TCGAGATAGG 31 SKGEMKELLH FQGCPDRP Quence 31 CATCTGGGCC GGCTGTGCTG GAGTAAGGG AGTGGATAGGG GGTGATAGGG GGTGGACTTC	TACACAGCCA CTACCTTCCA TGACGACCAGCC GGTGAAGAA AGTATGCTGT CAGACCGACC GTTGATGCCT TGCTCAGTGA CTGGATCCTG TGCTTAGGT TTGCTGACTT 41 KELPSFVGEK 41 TGGAACCTCG GTCACTACCT GAAATGAAGC CAGGGCTGA CAGGAGTATG CAGGAGTATG CAGGAGTATG CAGGAGTATG	CAGATCCATG CAAGTACTCC TCTGCACAAG GCTGATGGGC TTTCCTGGCA TTGAGCATA CTCCTTCTG CTCATTAT CTCCTTCTG CTCATTTTG TTATTTTGTC 51 VDEEGLKKLM 51 GCCACAGATC TCACACAGATC TCACACAGATC TCACACAGATC TCACACAGATC TCACACAGATC TCACACAGATC TCACACAGATC TCTCTCACACAGATC TCTCTCTCACACAGATC TCTCTTTTCCT	120 180 240 300 360 420 480 540 600 660
505560657075	Nucleic Ac: Coding sequence of the coding seq	id Accession lence: 58-39 11 CATGTGGGGG CTCTGGAGCA GCGACAAGTT GCTTGTGTGGA AGAACAGTGA TCATGTGCATG ACATGTGCATG ACTTTTTTG TCAGCTGGAG CTCCTGGAAA CACCAGCAAA ATTAAAAAAG 14 Protein cession #: 1 AVLVTTFHKY VDFQEYAVFL 15 DNA sequid Accession lence: 62-39 11 CCGCTGAGTC AGTTCTCTGG GAGGGCGACA CCCAGCTTTG GATGAGAACA	#: EOS SEC 1 #: EOS SEC 21	31 AGAAAACAAG GTGCTGGTCA AAGGGGGAAA GATGAGGAGG GACTTCCAGG CAGGCTGCC GCCAGGACTA TCGAGGATAG TCGAGATAGG 31 SKGEMKELLH FQGCPDRP JLUENCE GAGTAAGGGC GAGTAAGGGC GAGTAAGGGC GAGTAAGGGC GAGTAAGGGC TTGGGCCAGACTTC CTTCCAGGGC TTGGGCCAGACTTC CTTCCAGGGC CAAGGCCAGA CAAGGCCAGA	TACACAGCCA CTACCTTCCA CTACCTTCCA TGATGCAGA AGTATGCTGT CAGACCGACC GTTGATGCCT TGCTCAGTGA TTGCTGATCCT TGCTTAGGT TTGCTGACTT 41 KELPSFVGEK 41 TGGAACCTCG GTCACTACCT GAAATGAAG CAGGGCTGA CAGGAGTATG TGCCCAGACC GACTGTTGAT TAATTGCTCA GCTATGCTT TAATTGCTCA GCTATGCTT	CAGATCCATG CAAGTACTCC TCTGCACAAG GCTGATGGGC TTTCCTGGCA TTGAGCATA CTCCTTCTG CTCATATTTG TTATTTTGTC TATTTTGTC 51 CCCACAGATC TCCACAAGTA AACTTCTGCA AAGAGCTGAT CTGTTTTCCT GACCCTGAAG GCCTTTAGAT CTGTTTTCCT GACCCTGAAG GCCTTTAGAT CTGTTTTCCT CTGATGTTCC CCTGCTCCCT AGGTCTCCAT	120 180 240 300 420 480 540 660 600 600 120 120 120 120 300

WO 02/086443 TGTCAAATAA AGATATTAAA AAAGGCAAAT ACCA

Seq ID NO: 16 Protein sequence:

Protein Accession #: NP_005969.1

1 11 21 31 41 51

| | | | | | | | | | |

MMCSSLEQAL AVLVTTFHKY SCQEGDKFKL SKGEMKELLH KELPSFVGEK VDEEGLKKLM 60

GSLDENSDQQ VDFQEYAVFL ALITVMCNDF FQGCPDRP

Seq ID NO: 17 DNA sequence
Nucleic Acid Accession #: Eos sequence
Coding sequence: 939-2372

1.5	couring sequ	ience. 333-2	.372				
·	1	11	21	31	41	51	
				1	CATCATOMAA	OTTO CA COCCO	
20				GCCCCGCAGC			60 120
20				GTAGCTGGAT			180
				CCTAGCACAC			240
				AGACAGCCTC			300
				CGAACGGAGG			360
25				GTCAGCCCTC			420
	GCAGAGGCGG	CGGCGGCGGC	TCCCGGAATT	GGGTTGGAGC	AGGAGCCTCG	CTGGCTGCTT	480
				GGTAGCAGGA			540
				GAGGTGCATA			600
30				GGAGCGCCGC			660
30				CCGAGCAGCG TGCCGCCTGC			720 780
				GCACGCCCGC			840
				GCACGGGTGG			900
				TGCTAGGGAT			960
35	ATGGACCCGC	CATGGCGCGG	CTCTGGGGCT	TCTGCTGGCT	GGTTGTGGGC	TTCTGGAGGG	1020
				GCAGTGCCTC			1080
				TGGAGCCTAA			1140
•				GGTTAGAAAT			1200
40				TTGTGGATTC			1260
40				AGCACATCAA TTGACTTGTC			1320 1380
				GGATCAAGAC			1440
				ATGAAAGCAG			1500
				CTGCAAATCT			1560
45				GTAGTGTGGC			1620
				AACATATGAA			1680
				ATGACAGTGG			1740
				CTGTCAACCT ACCACCACTG			1800 1860
50				TCTATAACGG			1920
-				ATCACACGGA			1980
				ACTACACTCT			2040
	GGAAGGATGA	GAAACAGATT	TCTGCTCACT	TCATGGGCTG	GCCTGGAATT	GACGATGGTG	2100
55				AAGATTATGG			2160
55				CTTCCACAGA			2220
				TGATTGCGTC GACACTCCAA			2280 2340
				AGCTGAAATA			2400
				TGTAAGCTGG			2460
60				TTTTCTGGTA			2520
	GCTGTACTAT	ATGAAGCCTG	CATATACTGT	GAGCTGTGAT	TGGGGAACAC	CAATGCAGAG	2580
				AGAAAACATG			2640
				AAATCCCATT			2700
65				TATTGACTTA			2760 2820
05				TTGAGAACAG GTGATTTTCT			2880
				ACAGTGACTA			2940
				AAAAGGTTAT			3000
70				AAACAATGTT			3060
70				AACAAATGAA			3120
				CTGTTTTGTT			3180
	GGCATAGTCA	ATTTCAGAAT	AACTAAGAGT	GGAATATATG	CATATGGTGA	AATTATAACC	3240
				ACCTGCTTTT CAGAACTGCA			
75				GCAGGAGAGG			
				TTTTCATGGG			
				GAATATATGC			3540
	TGCTGAGAGG	GCAGCCTTAG	AGCTGTGGAT	TTCTGCATCC	CCCCTGAGTC	TGACCCATGG	3600
90				TGACCTTTGT			3660
80				TGGCTATCCC			3720
				CCAGGCCTGC			3780
				GACGCCATAG TGCACAAATG			
				CAGAAACATT			
85				ATTTAGGTAC			
				TACATTAGCC			
				GCAGCATTTC			

```
TGCCTTAAAG AGGGGCAGTT TCTCAAAAGC AGAAACATGC CGCCAGTTCT CAAGTTTTCC
                                                                          4200
       TCCTAACTCC ATTTGAATGT AAGGGCAGCT GGCCCCCAAT GTGGGGAGGT CCGAACATTT
                                                                          4260
       TCTGAATTCC CATTTCTTG TTCGCGGCTA AATGACAGTT TCTGTCATTA CTTAGATTCC
                                                                          4320
       GATCTTTCCC AAAGGTGTTG ATTTACAAAG AGGCCAGCTA ATAGCAGAAA TCATGACCCT
                                                                          4380
       GAAAGAGAGA TGAAATTCAA GCTGTGAGCC AGGCAGGAGC TCAGTATGGC AAAGGTTCTT
 5
                                                                          4440
       GAGAATCAGC CATTTGGTAC AAAAAAGATT TTTAAAGCTT TTATGTTATA CCATGGAGCC
                                                                          4500
       ATAGAAAGGC TATGGATTGT TTAAGAACTA TTTTAAAGTG TTCCAGACCC AAAAAGGAAA
                                                                          4560
       AATAAAAAA AAGGAATATT TGTACCCAAC AGCTAGAAGG ATTGCAAGGT AGATTTTTGT
                                                                          4620
       TTTAAAATGG AGAGAAGTGG ACAGATAAGG CCATTTAATA TATCAAAGAT CAGTTGACAT
                                                                          4680
10
       CTCCTAGGGA ATGATGAAAA CAGCAGGCTA T
       Seq ID NO: 18 Protein sequence:
       Protein Accession #: CAA53571
15
                                        31
                                                              51
                  11
       MSSWIRWHGP AMARLWGFCW LVVGFWRAAF ACPTSCKCSA SRIWCSDPSP GIVAFPRLEP
       NSVDPENITE IPIANQKRLE IINEDDVEAY VGLRNLTIVD SGLKFVAHKA FLKNSNLQHI
       NFTRNKLTSL SRKHFRHLDL SELILVGNPF TCSCDIMWIK TLQEAKSSPD TQDLYCLNES
                                                                           180
       SKNIPLANLQ IPNCGLPSAN LAAPNLTVEE GKSITLSCSV AGDPVPNMYW DVGNLVSKHM
20
                                                                           240
       NETSHTQGSL RITNISSDDS GKQISCVAEN LVGEDQDSVN LTVHFAPTIT FLESPTSDHH
                                                                           300
       WCIPFTVKGN PKPALQWFYN GAILNESKYI CTKIHVTNHT EYHGCLQLDN PTHMNNGDYT
                                                                           360
       LIAKNEYGKO EKQISAHFMG WPGIDDGANP NYPDVIYEDY GTAANDIGDT TNRSNEIPST
                                                                           420
       DVTDKTGREH LSVYAVVVIA SVVGFCLLVM LFLLKLARHS KFGMKGFVLF HKIPLDG
25
       Seq ID NO: 19 DNA sequence
       Nucleic Acid Accession #: NM_000228
       Coding sequence: 82-3600
30
                                                              51
                  11
       GCTTTCAGGC GATCTGGAGA AAGAACGGCA GAACACACAG CAAGGAAAGG TCCTTTCTGG
                                                                           .60
       GGATCACCCC ATTGGCTGAA GATGAGACCA TTCTTCCTCT TGTGTTTTGC CCTGCCTGGC
                                                                           120
       CTCCTGCATG CCCAACAAGC CTGCTCCCGT GGGGCCTGCT ATCCACCTGT TGGGGACCTG
                                                                           180
35
       CTTGTTGGGA GGACCCGGTT TCTCCGAGCT TCATCTACCT GTGGACTGAC CAAGCCTGAG
       ACCTACTGCA CCCAGTATGG CGAGTGGCAG ATGAAATGCT GCAAGTGTGA CTCCAGGCAG
       CCTCACAACT ACTACAGTCA CCGAGTAGAG AATGTGGCTT CATCCTCCGG CCCCATGCGC
       TGGTGGCAGT CCCAGAATGA TGTGAACCCT GTCTCTCTGC AGCTGGACCT GGACAGGAGA
       TTCCAGCTTC AAGAAGTCAT GATGGAGTTC CAGGGGCCCA TGCCCGCCGG CATGCTGATT
                                                                           480
       GAGCGCTCCT CAGACTTCGG TAAGACCTGG CGAGTGTACC AGTACCTGGC TGCCGACTGC
40
                                                                           540
       ACCTCCACCT TCCCTCGGGT CCGCCAGGGT CGGCCTCAGA GCTGGCAGGA TGTTCGGTGC
                                                                           600
       CAGTCCCTGC CTCAGAGGCC TAATGCACGC CTAAATGGGG GGAAGGTCCA ACTTAACCTT
                                                                           660
       ATGGATTTAG TGTCTGGGAT TCCAGCAACT CAAAGTCAAA AAATTCAAGA GGTGGGGGAG
                                                                           720
                                                                           780
       ATCACAAACT TGAGAGTCAA TTTCACCAGG CTGGCCCCTG TGCCCCAAAG GGGCTACCAC
45
       CCTCCCAGCG CCTACTATGC TGTGTCCCAG CTCCGTCTGC AGGGGAGCTG CTTCTGTCAC
                                                                           840
       GGCCATGCTG ATCGCTGCGC ACCCAAGCCT GGGGCCTCTG CAGGCCCCTC CACCGCTGTG
                                                                           900
       CAGGTCCACG ATGTCTGTGT CTGCCAGCAC AACACTGCCG GCCCAAATTG TGAGCGCTGT
                                                                           960
       GCACCCTTCT ACAACAACCG GCCCTGGAGA CCGGCGGAGG GCCAGGACGC CCATGAATGC
                                                                          1020
       CAAAGGTGCG ACTGCAATGG GCACTCAGAG ACATGTCACT TTGACCCCGC TGTGTTTGCC
                                                                          1080
50
       GCCAGCCAGG GGGCATATGG AGGTGTGTGT GACAATTGCC GGGACCACAC CGAAGGCAAG
                                                                          1140
       AACTGTGAGC GGTGTCAGCT GCACTATTTC CGGAACCGGC GCCCGGGAGC TTCCATTCAG
                                                                          1200
                                                                          1260
       GAGACCTGCA TCTCCTGCGA GTGTGATCCG GATGGGGCAG TGCCAGGGGC TCCCTGTGAC
       CCAGTGACCG GGCAGTGTGT GTGCAAGGAG CATGTGCAGG GAGAGCGCTG TGACCTATGC
                                                                          1320
       AAGCCGGGCT TCACTGGACT CACCTACGCC AACCCGCAGG GCTGCCACCG CTGTGACTGC
                                                                          1380
55
       AACATCCTGG GGTCCCGGAG GGACATGCCG TGTGACGAGG AGAGTGGGCG CTGCCTTTGT
                                                                          1440
       CTGCCCAACG TGGTGGGTCC CAAATGTGAC CAGTGTGCTC CCTACCACTG GAAGCTGGCC
                                                                          1500
       AGTGGCCAGG GCTGTGAACC GTGTGCCTGC GACCCGCACA ACTCCCCTCA GCCCACAGTG
                                                                          1560
       CAACCAGTTC ACAGGGCAGT GCCCTGTCGG GAAGGCTTTG GTGGCCTGAT GTGCAGCGCT
                                                                          1620
       GCAGCCATCC GCCAGTGTCC AGACCGGACC TATGGAGACG TGGCCACAGG ATGCCGAGCC
                                                                          1680
60
       TGTGACTGTG ATTTCCGGGG AACAGAGGGC CCGGGCTGCG ACAAGGCATC AGGCCGCTGC
                                                                          1740
       CTCTGCCGCC CTGGCTTGAC CGGGCCCCGC TGTGACCAGT GCCAGCGAGG CTACTGCAAT
                                                                          1800
       CGCTACCCGG TGTGCGTGGC CTGCCACCCT TGCTTCCAGA CCTATGATGC GGACCTCCGG
       GAGCAGGCCC TGCGCTTTGG TAGACTCCGC AATGCCACCG CCAGCCTGTG GTCAGGGCCT
                                                                          1920
       GGGCTGGAGG ACCGTGGCCT GGCCTCCCGG ATCCTAGATG CAAAGAGTAA GATTGAGCAG
65
       ATCCGAGCAG TTCTCAGCAG CCCCGCAGTC ACAGAGCAGG AGGTGGCTCA GGTGGCCAGT
                                                                          2040
       GCCATCCTCT CCCTCAGGCG AACTCTCCAG GGCCTGCAGC TGGATCTGCC CCTGGAGGAG
       GAGACGTTGT CCCTTCCGAG AGACCTGGAG AGTCTTGACA GAAGCTTCAA TGGTCTCCTT
                                                                          2160
       ACTATGTATC AGAGGAAGAG GGAGCAGTTT GAAAAAATAA GCAGTGCTGA TCCTTCAGGA
       GCCTTCCGGA TGCTGAGCAC AGCCTACGAG CAGTCAGCCC AGGCTGCTCA GCAGGTCTCC
                                                                          2280
70
       GACAGCTCGC GCCTTTTGGA CCAGCTCAGG GACAGCCGGA GAGAGGCAGA GAGGCTGGTG
                                                                          2340
       CGGCAGGCGG GAGGAGGAGG AGGCACCGGC AGCCCCAAGC TTGTGGCCCT GAGGCTGGAG
                                                                          2400
       ATGTCTTCGT TGCCTGACCT GACACCCACC TTCAACAAGC TCTGTGGCAA CTCCAGGCAG
                                                                          2460
       ATGGCTTGCA CCCCAATATC ATGCCCTGGT GAGCTATGTC CCCAAGACAA TGGCACAGCC
                                                                          2520
       TGTGGCTCCC GCTGCAGGGG TGTCCTTCCC AGGGCCGGTG GGGCCTTCTT GATGGCGGGG
                                                                          2580
75
       CAGGTGGCTG AGCAGCTGCG GGGCTTCAAT GCCCAGCTCC AGCGGACCAG GCAGATGATT
                                                                          2640
       AGGGCAGCCG AGGAATCTGC CTCACAGATT CAATCCAGTG CCCAGCGCTT GGAGACCCAG
                                                                          2700
       GTGAGCGCCA GCCGCTCCCA GATGGAGGAA GATGTCAGAC GCACACGGCT CCTAATCCAG
                                                                          2760
       CAGGTCCGGG ACTTCCTAAC AGACCCCGAC ACTGATGCAG CCACTATCCA GGAGGTCAGC
                                                                          2820
       GAGGCCGTGC TGGCCCTGTG GCTGCCCACA GACTCAGCTA CTGTTCTGCA GAAGATGAAT
                                                                          2880
80
       GAGATCCAGG CCATTGCAGC CAGGCTCCCC AACGTGGACT TGGTGCTGTC CCAGACCAAG
                                                                          2940
       3000
       CATGCAGTGG AGGGCCAGGT GGAAGATGTG GTTGGGAACC TGCGGCAGGG GACAGTGGCA
                                                                          3060
       CTGCAGGAAG CTCAGGACAC CATGCAAGGC ACCAGCCGCT CCCTTCGGCT TATCCAGGAC
                                                                          3120
       AGGGTTGCTG AGGTTCAGCA GGTACTGCGG CCAGCAGAAA AGCTGGTGAC AAGCATGACC
                                                                          3180
85
       AAGCAGCTGG GTGACTTCTG GACACGGATG GAGGAGCTCC GCCACCAAGC CCGGCAGCAG
                                                                          3240
       GGGGCAGAGG CAGTCCAGGC CCAGCAGCTT GCGGAAGGTG CCAGCGAGCA GGCATTGAGT
                                                                          3300
       GCCCAAGAGG GATTTGAGAG AATAAAACAA AAGTATGCTG AGTTGAAGGA CCGGTTGGGT
                                                                          3360
```

```
CAGAGTTCCA TGCTGGGTGA GCAGGGTGCC CGGATCCAGA GTGTGAAGAC AGAGGCAGAG
      GAGCTGTTTG GGGAGACCAT GGAGATGATG GACAGGATGA AAGACATGGA GTTGGAGCTG
                                                                           3480
       CTGCGGGGCA GCCAGGCCAT CATGCTGCGC TCGGCGGACC TGACAGGACT GGAGAAGCGT
       GTGGAGCAGA TCCGTGACCA CATCAATGGG CGCGTGCTCT ACTATGCCAC CTGCAAGTGA
                                                                           3600
 5
       TGCTACAGCT TCCAGCCCGT TGCCCCACTC ATCTGCCGCC TTTGCTTTTG GTTGGGGGCA
                                                                           3660
      GATTGGGTTG GAATGCTTTC CATCTCCAGG AGACTTTCAT GCAGCCTAAA GTACAGCCTG
                                                                           3720
      GACCACCCCT GGTGTGTAGC TAGTAAGATT ACCCTGAGCT GCAGCTGAGC CTGAGCCAAT
                                                                           3780
       GGGACAGTTA CACTTGACAG ACAAAGATGG TGGAGATTGG CATGCCATTG AAACTAAGAG
                                                                           3840
       CTCTCAAGTC AAGGAAGCTG GGCTGGGCAG TATCCCCCGC CTTTAGTTCT CCACTGGGGA
                                                                           3900
10
       GGAATCCTGG ACCAAGCACA AAAACTTAAC AAAAGTGATG TAAAAATGAA AAGCCAAATA
                                                                           3960
       AAAATCTTTG G
       Seq ID NO: 20 Protein sequence:
       Protein Accession #: NP_000219
15
       MRPFFLLCFA LPGLLHAQQA CSRGACYPPV GDLLVGRTRF LRASSTCGLT KPETYCTQYG
       EWQMKCCKCD SRQPHNYYSH RVENVASSSG PMRWWQSQND VNPVSLQLDL DRRFQLQEVM
                                                                             120
20
       MEFQGPMPAG MLIERSSDFG KTWRVYQYLA ADCTSTFPRV RQGRPQSWQD VRCQSLPQRP
                                                                            180
       NARLNGGKVO LNLMDLVSGI PATQSQKIQE VGEITNLRVN FTRLAPVPQR GYHPPSAYYA
                                                                            240
       VSQLRLQGSC FCHGHADRCA PKPGASAGPS TAVQVHDVCV CQHNTAGPNC ERCAPFYNNR
                                                                            300
       PWRPAEGODA HECORCDCNG HSETCHFDPA VFAASQGAYG GVCDNCRDHT EGKNCERCQL
                                                                            360
       HYFRNRRPGA SIQETCISCE CDPDGAVPGA PCDPVTGQCV CKEHVQGERC DLCKPGFTGL
                                                                            420
25
       TYANPOGCHR CDCNILGSRR DMPCDEESGR CLCLPNVVGP KCDQCAPYHW KLASGOGCEP
                                                                            480
       CACDPHNSPQ PTVQPVHRAV PCREGFGGLM CSAAAIRQCP DRTYGDVATG CRACDCDFRG
                                                                            540
       TEGPGCDKAS GRCLCRPGLT GPRCDQCQRG YCNRYPVCVA CHPCFQTYDA DLREQALRFG
                                                                            600
       RLRNATASLW SGPGLEDRGL ASRILDAKSK IEQIRAVLSS PAVTEQEVAQ VASAILSLRR
                                                                            660
       TLQGLQLDLP LEEETLSLPR DLESLDRSFN GLLTMYQRKR EQFEKISSAD PSGAPRMLST
                                                                            720
30
       AYEQSAQAAQ QVSDSSRLLD QLRDSRREAE RLVRQAGGGG GTGSPKLVAL RLEMSSLPDL
                                                                            780
       TPTFNKLCGN SROMACTPIS CPGELCPQDN GTACGSRCRG VLPRAGGAFL MAGQVAEQLR
                                                                            840
       GFNAQLQRTR QMIRAAEESA SQIQSSAQRL ETQVSASRSQ MEEDVRRTRL LIQQVRDFLT
                                                                            900
       DPDTDAATIQ EVSEAVLALW LPTDSATVLQ KMNEIQAIAA RLPNVDLVLS QTKQDIARAR
                                                                            960
       RLQAEAEEAR SRAHAVEGQV EDVVGNLRQG TVALQEAQDT MQGTSRSLRL IQDRVAEVQQ
                                                                           1020
35
       VLRPAEKLVT SMTKQLGDFW TRMEELRHQA RQQGAEAVQA QQLAEGASEQ ALSAQEGFER
                                                                           1080
       IKQKYAELKD RLGQSSMLGE QGARIQSVKT EAEELFGETM EMMDRMKDME LELLRGSQAI
                                                                           1140
       MLRSADLTGL EKRVEQIRDH INGRVLYYAT CK
       Seq ID NO: 21 DNA sequence
40
       Nucleic Acid Accession #: NM 003722
       Coding sequence: 145-1491
                                         31
                  11
                             21
45
       TCGTTGATAT CAAAGACAGT TGAAGGAAAT GAATTTTGAA ACTTCACGGT GTGCCACCCT
       ACAGTACTGC CCTGACCCTT ACATCCAGCG TTTCGTAGAA ACCCAGCTCA TTTCTCTTGG
                                                                            120
       AAAGAAAGTT ATTACCGATC CACCATGTCC CAGAGCACAC AGACAAATGA ATTCCTCAGT
                                                                             180
       CCAGAGGTTT TCCAGCATAT CTGGGATTTT CTGGAACAGC CTATATGTTC AGTTCAGCCC
                                                                            240
       ATTGACTTGA ACTTTGTGGA TGAACCATCA GAAGATGGTG CGACAAACAA GATTGAGATT
                                                                            300
50
       AGCATGGACT GTATCCGCAT GCAGGACTCG GACCTGAGTG ACCCCATGTG GCCACAGTAC
                                                                            360
       ACGAACCTGG GGCTCCTGAA CAGCATGGAC CAGCAGATTC AGAACGGCTC CTCGTCCACC
                                                                            420
       AGTCCCTATA ACACAGACCA CGCGCAGAAC AGCGTCACGG CGCCCTCGCC CTACGCACAG
                                                                             480
       CCCAGCTCCA CCTTCGATGC TCTCTCCA TCACCCGCCA TCCCCTCCAA CACCGACTAC
                                                                            540
       CCAGGCCCGC ACAGTTTCGA CGTGTCCTTC CAGCAGTCGA GCACCGCCAA GTCGGCCACC
                                                                            600
55
       TGGACGTATT CCACTGAACT GAAGAAACTC TACTGCCAAA TTGCAAAGAC ATGCCCCATC
                                                                            660
       CAGATCAAGG TGATGACCCC ACCTCCTCAG GGAGCTGTTA TCCGCGCCAT GCCTGTCTAC
                                                                             720
       AAAAAAGCTG AGCACGTCAC GGAGGTGGTG AAGCGGTGCC CCAACCATGA GCTGAGCCGT
                                                                            780
       GAATTCAACG AGGGACAGAT TGCCCCTCCT AGTCATTTGA TTCGAGTAGA GGGGAACAGC
                                                                            840
       CATGCCCAGT ATGTAGAAGA TCCCATCACA GGAAGACAGA GTGTGCTGGT ACCTTATGAG
                                                                            900
60
       CCACCCCAGG TTGGCACTGA ATTCACGACA GTCTTGTACA ATTTCATGTG TAACAGCAGT
                                                                            960
       TGTGTTGGAG GGATGAACCG CCGTCCAATT TTAATCATTG TTACTCTGGA AACCAGAGAT
                                                                           1020
       GGGCAAGTCC TGGGCCGACG CTGCTTTGAG GCCCGGATCT GTGCTTGCCC AGGAAGAGAC
                                                                           1080
       AGGAAGGCGG ATGAAGATAG CATCAGAAAG CAGCAAGTTT CGGACAGTAC AAAGAACGGT
                                                                           1140
       GATGGTACGA AGCGCCCGTT TCGTCAGAAC ACACATGGTA TCCAGATGAC ATCCATCAAG
                                                                           1200
65
       AAACGAAGAT CCCCAGATGA TGAACTGTTA TACTTACCAG TGAGGGGCCG TGAGACTTAT
                                                                           1260
       GAAATGCTGT TGAAGATCAA AGAGTCCCTG GAACTCATGC AGTACCTTCC TCAGCACACA
                                                                           1320
       ATTGAAACGT ACAGGCAACA GCAACAGCAG CAGCACCAGC ACTTACTTCA GAAACATCTC
                                                                           1380
       CTTTCAGCCT GCTTCAGGAA TGAGCTTGTG GAGCCCCGGA GAGAAACTCC AAAACAATCT
                                                                           1440
       GACGTCTTCT TTAGACATTC CAAGCCCCCA AACCGATCAG TGTACCCATA GAGCCCTATC
                                                                           1500
70
       TCTATATTTT AAGTGTGTGT GTTGTATTTC CATGTGTATA TGTGAGTGTG TGTGTGTGTA
                                                                           1560
       TGTGTGTGCG TGTGTATCTA GCCCTCATAA ACAGGACTTG AAGACACTTT GGCTCAGAGA
                                                                           1620
       CCCAACTGCT CAAAGGCACA AAGCCACTAG TGAGAGAATC TTTTGAAGGG ACTCAAACCT
                                                                           1680
       TTACAAGAAA GGATGTTTTC TGCAGATTTT GTATCCTTAG ACCGGCCATT GGTGGGTGAG
                                                                           1740
       GAACCACTGT GTTTGTCTGT GAGCTTTCTG TTGTTTCCTG GGAGGGAGGG GTCAGGTGGG
                                                                           1800
75
       GAAAGGGGCA TTAAGATGTT TATTGGAACC CTTTTCTGTC TTCTTCTGTT GTTTTTCTAA
                                                                           1860
       AATTCACAGG GAAGCTTTTG AGCAGGTCTC AAACTTAAGA TGTCTTTTTA AGAAAAGGAG
                                                                           1920
       AAAAAGTTG TTATTGTCTG TGCATAAGTA AGTTGTAGGT GACTGAGAGA CTCAGTCAGA
                                                                           1980
       CCCTTTTAAT GCTGGTCATG TAATAATATT GCAAGTAGTA AGAAACGAAG GTGTCAAGTG
                                                                           2040
       TACTGCTGGG CAGCGAGGTG ATCATTACCA AAAGTAATCA ACTTTGTGGG TGGAGAGTTC
TTTGTGAGAA CTTGCATTAT TTGTGTCCTC CCCTCATGTG TAGGTAGAAC ATTTCTTAAT
                                                                           2100
80
                                                                           2160
       GCTGTGTACC TGCCTCTGCC ACTGTATGTT GGCATCTGTT ATGCTAAAGT TTTTCTTGTA
                                                                           2220
       CATGAAACCC TGGAAGACCT ACTACAAAAA AACTGTTGTT TGGCCCCCCAT AGCAGGTGAA
                                                                           2280
       CTCATTTTGT GCTTTTAATA GAAAGACAAA TCCACCCCAG TAATATTGCC CTTACGTAGT
                                                                           2340
       TGTTTACCAT TATTCAAAGC TCAAAATAGA ATTTGAAGCC CTCTCACAAA ATCTGTGATT
                                                                           2400
85
       AATTTGCTTA ATTAGAGCTT CTATCCCTCA AGCCTACCTA CCATAAAACC AGCCATATTA
                                                                           2460
       CTGATACTGT TCAGTGCATT TAGCCAGGAG ACTTACGTTT TGAGTAAGTG AGATCCAAGC
                                                                           2520
       AGACGTGTTA AAATCAGCAC TCCTGGACTG GAAATTAAAG ATTGAAAGGG TAGACTACTT
                                                                           2580
```

```
TTCTTTTTT TACTCAAAAG TTTAGAGAAT CTCTGTTTCT TTCCATTTTA AAAACATATT 2640
       TTAAGATAAT AGCATAAAGA CTTTAAAAAT GTTCCTCCCC TCCATCTTCC CACACCCAGT
       CACCAGCACT GTATTTTCTG TCACCAAGAC AATGATTTCT TGTTATTGAG GCTGTTGCTT 2760
       TTGTGGATGT GTGATTTTAA TTTTCAATAA ACTTTTGCAT CTTGGTTTAA AAGAAA
 5
       Seg ID NO: 22 Protein sequence:
       Protein Accession #: NP_003713
                                         31
                                                     41
                                                                51
                  11
                              21
10
       MSQSTQTNEF LSPEVFQHIW DPLEQPICSV QPIDLNFVDE PSEDGATNKI EISMDCIRMQ
                                                                              60
       DSDLSDPMWP QYTNLGLLNS MDQQIQNGSS STSPYNTDHA QNSVTAPSPY AQPSSTFDAL
                                                                             120
       SPSPAIPSNT DYPGPHSFDV SFQQSSTAKS ATWTYSTELK KLYCQIAKTC PIQIKVMTPP
                                                                             180
       PQGAVIRAMP VYKKAEHVTE VVKRCPNHEL SREFNEGQIA PPSHLIRVEG NSHAQYVEDP
                                                                             240
15
       ITGRQSVLVP YEPPQVGTEF TTVLYNFMCN SSCVGGMNRR PILIIVTLET RDGQVLGRRC
                                                                             300
       FEARICACPG RDRKADEDSI RKQQVSDSTK NGDGTKRPFR QNTHGIQMTS IKKRRSPDDE
                                                                             360
       LLYLPVRGRE TYEMLLKIKE SLELMQYLPQ HTIETYRQQQ QQQHQHLLQK HLLSACFRNE
                                                                             420
       LVEPRRETPK OSDVFFRHSK PPNRSVYP
20
       Seq ID NO: 23 DNA sequence
       Nucleic Acid Accession #: NM_001944.1
       Coding sequence: 84-3083
25
                                                                51
                  11
                              21
                                         31
                                                     41
       TTTTCTTAGA CATTAACTGC AGACGGCTGG CAGGATAGAA GCAGCGGCTC ACTTGGACTT
                                                                              60
       TTTCACCAGG GAAATCAGAG ACAATGATGG GGCTCTTCCC CAGAACTACA GGGGCTCTGG
                                                                             120
       CCATCTTCGT GGTGGTCATA TTGGTTCATG GAGAATTGCG AATAGAGACT AAAGGTCAAT
                                                                             180
30
       ATGATGAAGA AGAGATGACT ATGCAACAAG CTAAAAGAAG GCAAAAACGT GAATGGGTGA
                                                                             240
       AATTTGCCAA ACCCTGCAGA GAAGGAGAAG ATAACTCAAA AAGAAACCCA ATTGCCAAGA
                                                                             300
       TTACTTCAGA TTACCAAGCA ACCCAGAAAA TCACCTACCG AATCTCTGGA GTGGGAATCG .
                                                                             360
       ATCAGCCGCC TTTTGGAATC TTTGTTGTTG ACAAAAACAC TGGAGATATT AACATAACAG
                                                                             420
       CTATAGTCGA CCGGGAGGAA ACTCCAAGCT TCCTGATCAC ATGTCGGGCT CTAAATGCCC
                                                                             480
35
       AAGGACTAGA TGTAGAGAAA CCACTTATAC TAACGGTTAA AATTTTGGAT ATTAATGATA
                                                                             540
       ATCCTCCAGT ATTTTCACAA CAAATTTTCA TGGGTGAAAT TGAAGAAAAT AGTGCCTCAA
                                                                             600
       ACTCACTGGT GATGATACTA AATGCCACAG ATGCAGATGA ACCAAACCAC TTGAATTCTA
       AAATTGCCTT CAAAATTGTC TCTCAGGAAC CAGCAGGCAC ACCCATGTTC CTCCTAAGCA
                                                                             720
       GAAACACTGG GGAAGTCCGT ACTTTGACCA ATTCTCTTGA CCGAGAGCAA GCTAGCAGCT
40
       ATCGTCTGGT TGTGAGTGGT GCAGACAAAG ATGGAGAAGG ACTATCAACT CAATGTGAAT
                                                                             840
       GTAATATTAA AGTGAAAGAT GTCAACGATA ACTTCCCAAT GTTTAGAGAC TCTCAGTATT
       CAGCACGTAT TGAAGAAAAT ATTTTAAGTT CTGAATTACT TCGATTTCAA GTAACAGATT
                                                                             960
       TGGATGAAGA GTACACAGAT AATTGGCTTG CAGTATATTT CTTTACCTCT GGGAATGAAG
                                                                            1020
       GAAATTGGTT TGAAATACAA ACTGATCCTA GAACTAATGA AGGCATCCTG AAAGTGGTGA
                                                                            1080
45
       AGGCTCTAGA TTATGAACAA CTACAAAGCG TGAAACTTAG TATTGCTGTC AAAAACAAAG
                                                                            1140
       CTGAATTCA CCAATCAGTT ATCTCTCGAT ACCGAGTTCA GTCAACCCCA GTCACAATTC AGGTAATAAA TGTAAGAGAA GGAATTGCAT TCCGTCCTGC TTCCAAGACA TTTACTGTGC
                                                                            1200
                                                                            1260
       AAAAAGGCAT AAGTAGCAAA AAATTGGTGG ATTATATCCT GGGAACATAT CAAGCCATCG
                                                                            1320
       ATGAGGACAC TAACAAAGCT GCCTCAAATG TCAAATATGT CATGGGACGT AACGATGGTG
                                                                            1380
50
       GATACCTAAT GATTGATTCA AAAACTGCTG AAATCAAATT TGTCAAAAAT ATGAACCGAG
                                                                            1440
       ATTCTACTTT CATAGTTAAC AAAACAATCA CAGCTGAGGT TCTGGCCATA GATGAATACA
                                                                            1500
       CGGGTAAAAC TTCTACAGGC ACGGTATATG TTAGAGTACC CGATTTCAAT GACAATTGTC
                                                                            1560
       CAACAGCTGT CCTCGAAAAA GATGCAGTTT GCAGTTCTTC ACCTTCCGTG GTTGTCTCCG
                                                                            1620
       CTAGAACACT GAATAATAGA TACACTGGCC CCTATACATT TGCACTGGAA GATCAACCTG TAAAGTTGCC TGCCGTATGG AGTATCACAA CCCTCAATGC TACCTCGGCC CTCCTCAGAG
                                                                            1680
55
                                                                            1740
       CCCAGGAACA GATACCTCCT GGAGTATACC ACATCTCCCT GGTACTTACA GACAGTCAGA
                                                                            1800
       ACAATCGGTG TGAGATGCCA CGCAGCTTGA CACTGGAAGT CTGTCAGTGT GACAACAGGG
                                                                            1860
       GCATCTGTGG AACTTCTTAC CCAACCACAA GCCCTGGGAC CAGGTATGGC AGGCCGCACT
                                                                            1920
       CAGGGAGGCT GGGGCCTGCC GCCATCGGCC TGCTGCTCCT TGGTCTCCTG CTGCTGCTGT
                                                                            1980
60
       TGGCCCCCT TCTGCTGTTG ACCTGTGACT GTGGGGCAGG TTCTACTGGG GGAGTGACAG
                                                                            2040
       GTGGTTTTAT CCCAGTTCCT GATGGCTCAG AAGGAACAAT TCATCAGTGG GGAATTGAAG
                                                                            2100
       GAGCCCATCC TGAAGACAAG GAAATCACAA ATATTTGTGT GCCTCCTGTA ACAGCCAATG
                                                                            2160
       GAGCCGATTT CATGGAAAGT TCTGAAGTTT GTACAAATAC GTATGCCAGA GGCACAGCGG
                                                                            2220
       TGGAAGGCAC TTCAGGAATG GAAATGACCA CTAAGCTTGG AGCAGCCACT GAATCTGGAG
                                                                            2280
65
       GTGCTGCAGG CTTTGCAACA GGGACAGTGT CAGGAGCTGC TTCAGGATTC GGAGCAGCCA
                                                                            2340
       CTGGAGTTGG CATCTGTTCC TCAGGGCAGT CTGGAACCAT GAGAACAAGG CATTCCACTG
                                                                            2400
       GAGGAACCAA TAAGGACTAC GCTGATGGGG CGATAAGCAT GAATTTTCTG GACTCCTACT
                                                                            2460
       TTTCTCAGAA AGCATTTGCC TGTGCGGAGG AAGACGATGG CCAGGAAGCA AATGACTGCT
                                                                            2520
       TGTTGATCTA TGATAATGAA GGCGCAGATG CCACTGGTTC TCCTGTGGGC TCCGTGGGTT
70
       GTTGCAGTTT TATTGCTGAT GACCTGGATG ACAGCTTCTT GGACTCACTT GGACCCAAAT
       TTAAAAAACT TGCAGAGATA AGCCTTGGTG TTGATGGTGA AGGCAAAGAA GTTCAGCCAC
       CCTCTAAAGA CAGCGGTTAT GGGATTGAAT CCTGTGGCCA TCCCATAGAA GTCCAGCAGA
                                                                            2760
       CAGGATTTGT TAAGTGCCAG ACTTTGTCAG GAAGTCAAGG AGCTTCTGCT TTGTCCGCCT
                                                                            2820
       CTGGGTCTGT CCAGCCAGCT GTTTCCATCC CTGACCCTCT GCAGCATGGT AACTATTTAG
                                                                            2880
75
       TAACGGAGAC TTACTCGGCT TCTGGTTCCC TCGTGCAACC TTCCACTGCA GGCTTTGATC
                                                                            2940
       CACTTCTCAC ACAAAATGTG ATAGTGACAG AAAGGGTGAT CTGTCCCATT TCCAGTGTTC
                                                                            3000
       CTGGCAACCT AGCTGGCCCA ACGCAGCTAC GAGGGTCACA TACTATGCTC TGTACAGAGG
                                                                            3060
       ATCCTTGCTC CCGTCTAATA TGACCAGAAT GAGCTGGAAT ACCACACTGA CCAAATCTGG
                                                                            3120
       ATCTTTGGAC TAAAGTATTC AAAATAGCAT AGCAAAGCTC ACTGTATTGG GCTAATAATT
                                                                            3180
80
       TGGCACTTAT TAGCTTCTCT CATAAACTGA TCACGATTAT AAATTAAATG TTTGGGTTCA
                                                                            3240
       TACCCCAAAA GCAATATGTT GTCACTCCTA ATTCTCAAGT ACTATTCAAA TTGTAGTAAA
                                                                            3300
       TCTTAAAGTT TTTCAAAACC CTAAAATCAT ATTCGC
       Seq ID NO: 24 Protein sequence:
85
       Protein Accession #: NP_001935.1
                  11
                              21
                                         31
                                                     41
                                                                51
```

LKRSVYIESR IGTSTSFDSG IAGLSSISQC TSSSQLDETS HRWAQPDTAP LPVPANIRFS

300

PCT/US02/12476

PCT/US02/12476 WO 02/086443

360

```
IWISFPEIYN ELLYDLLEPP SQQRKRQTLR LCEDQNGNPY VKDLNWIHVQ DAEEAWKLLK
      VGRKNQSFAS THLNQNSSRS HSIFSIRILH LQGEGDIVPK ISELSLCDLA GSERCKDOKS
                                                                         420
      GERLKEAGNI NTSLHTLGRC IAALRONOON RSKONLVPFR DSKLTRVFQG FFTGRGRSCM
                                                                         480
      IVNVNPCAST YDETLHVAKF SAIASQVTCA CPTYATGIPI PALVHQGT
 5
      Seq ID NO: 27 DNA sequence
      Nucleic Acid Accession #: Eos sequence
      Coding sequence: 13-1424
10
                                                             51
                            21
                                       31
      TAGAAGTTTA CAATGAAGTT TCTTCTAATA CTGCTCCTGC AGGCCACTGC TTCTGGAGCT
      CTTCCCCTGA ACAGCTCTAC AAGCCTGGAA AAAAATAATG TGCTATTTGG TGAAAGATAC
      TTAGAAAAAT TTTATGGCCT TGAGATAAAC AAACTTCCAG TGACAAAAAT GAAATATAGT
                                                                         180
      GGAAACTTAA TGAAGGAAAA AATCCAAGAA ATGCAGCACT TCTTGGGTCT GAAAGTGACC
15
                                                                         240
      GGGCAACTGG ACACATCTAC CCTGGAGATG ATGCACGCAC CTCGATGTGG AGTCCCCGAT
                                                                         300
      GTCCATCATT TCAGGGAAAT GCCAGGGGGG CCCGTATGGA GGAAACATTA TATCACCTAC
                                                                         360
      AGAATCAATA ATTACACACC TGACATGAAC CGTGAGGATG TTGACTACGC AATCCGGAAA
                                                                         420
      GCTTTCCAAG TATGGAGTAA TGTTACCCCC TTGAAATTCA GCAAGATTAA CACAGGCATG
                                                                         480
20
      GCTGACATTT TGGTGGTTTT TGCCCGTGGA GCTCATGGAG ACTTCCATGC TTTTGATGGC
                                                                         540
      AAAGGTGGAA TCCTAGCCCA TGCTTTTGGA CCTGGATCTG GCATTGGAGG GGATGCACAT
                                                                         600
      TTCGATGAGG ACGAATTCTG GACTACACAT TCAGGAGGCA CAAACTTGTT CCTCACTGCT
                                                                         660
                                                                         720
      GTTCACGAGA TTGGCCATTC CTTAGGTCTT GGCCATTCTA GTGATCCAAA GGCCGTAATG
      TTCCCCACCT ACAAATATGT TGACATCAAC ACATTTCGCC TCTCTGCTGA TGACATACGT
                                                                         780
25
      GGCATTCAGT CCCTGTATGG AGACCCAAAA GAGAACCAAC GCTTGCCAAA TCCTGACAAT
                                                                         840
      TCAGAACCAG CTCTCTGTGA CCCCAATTTG AGTTTTGATG CTGTCACTAC CGTGGGAAAT
      AAGATCTTTT TCTTCAAAGA CAGGTTCTTC TGGCTGAAGG TTTCTGAGAG ACCAAAGACC
                                                                         960
      AGTGTTAATT TAATTTCTTC CTTATGGCCA ACCTTGCCAT CTGGCATTGA AGCTGCTTAT
                                                                        1020
      GAAATTGAAG CCAGAAATCA AGTTTTTCTT TTTAAAGATG ACAAATACTG GTTAATTAGC
                                                                        1080
      AATTTAAGAC CAGAGCCAAA TTATCCCAAG AGCATACATT CTTTTGGTTT TCCTAACTTT
30
                                                                        1140
      GTGAAAAAA TTGATGCAGC TGTTTTTAAC CCACGTTTTT ATAGGACCTA CTTCTTTGTA
                                                                        1200
      GATAACCAGT ATTGGAGGTA TGATGAAAGG AGACAGATGA TGGACCCTGG TTATCCCAAA
                                                                        1260
      CTGATTACCA AGAACTTCCA AGGAATCGGG CCTAAAATTG ATGCAGTCTT CTACTCTAAA
                                                                        1320
      AACAAATACT ACTATTCTT CCAAGGATCT AACCAATTTG AATATGACTT CCTACTCCAA
                                                                        1380
35
       1440
       TGGTTTTTGT TAGTTCACTT CAGCTTAATA AGTATTTATT GCATATTTGC TATGTCCTCA 1500
      1560
       TTATATAAAA TACATAATAT TTTTCAATTT TGAAAACTCT AATTGTCCAT TCTTGCTTGA
                                                                        1620
       CTCTACTATT AAGTTTGAAA ATAGTTACCT TCAAAGCAAG ATAATTCTAT TTGAAGCATG
                                                                        1680
40
       CTCTGTAAGT TGCTTCCTAA CATCCTTGGA CTGAGAAATT ATACTTACTT CTGGCATAAC
                                                                        1740
       TAAAATTAAG TATATATATT TTGGCTCAAA TAAAATTG
      Seq ID NO: 28 Protein sequence:
       Protein Accession #: Eos sequence
45
                            21
                                       31
                                                  41
                                                             51
                 11
       MKFLLILLLQ ATASGALPLN SSTSLEKNNV LFGERYLEKF YGLEINKLPV TKMKYSGNLM
      KEKIOEMOHF LGLKVTGOLD TSTLEMMHAP RCGVPDVHHF REMPGGPVWR KHYITYRINN
50
       YTPDMNREDV DYAIRKAFOV WSNVTPLKFS KINTGMADIL VVFARGAHGD FHAFDGKGGI
                                                                         180
       LAHAFGPGSG IGGDAHFDED EFWTTHSGGT NLFLTAVHEI GHSLGLGHSS DPKAVMFPTY
                                                                         240
       KYVDINTFRL SADDIRGIQS LYGDPKENQR LPNPDNSEPA LCDPNLSFDA VTTVGNKIFF
                                                                         300
      PKDRFFWLKV SERPKTSVNL ISSLWPTLPS GIEAAYEIEA RNQVFLFKDD KYWLISNLRP
                                                                         360
       EPNYPKSIHS FGFPNFVKKI DAAVFNPRFY RTYFFVDNQY WRYDERROMM DPGYPKLITK
                                                                         420
55
      NFQGIGPKID AVFYSKNKYY YFFQGSNQFE YDFLLQRITK TLKSNSWFGC
       Seq ID NO: 29 DNA sequence
      Nucleic Acid Accession #: NM_006115.1
       Coding sequence: 236..1765
60
                                       31
       GCTTCAGGGT ACAGCTCCCC CGCAGCCAGA AGCCGGGCCT GCAGCCCCTC AGCACCGCTC
                                                                          60
       CGGGACACCC CACCCGCTTC CCAGGCGTGA CCTGTCAACA GCAACTTCGC GGTGTGGTGA
                                                                         120
65
       ACTCTCTGAG GAAAAACCAT TTTGATTATT ACTCTCAGAC GTGCGTGGCA ACAAGTGACT
                                                                         180
       GAGACCTAGA AATCCAAGCG TTGGAGGTCC TGAGGCCAGC CTAAGTCGCT TCAAAATGGA
                                                                         240
       ACGAAGGCGT TTGTGGGGTT CCATTCAGAG CCGATACATC AGCATGAGTG TGTGGACAAG
                                                                         300
       CCCACGGAGA CTTGTGGAGC TGGCAGGGCA GAGCCTGCTG AAGGATGAGG CCCTGGCCAT
                                                                         360
       TGCCGCCCTG GAGTTGCTGC CCAGGGAGCT CTTCCCGCCA CTCTTCATGG CAGCCTTTGA
                                                                         420
70
       CGGGAGACAC AGCCAGACCC TGAAGGCAAT GGTGCAGGCC TGGCCCTTCA CCTGCCTCCC
                                                                         480
       TCTGGGAGTG CTGATGAAGG GACAACATCT TCACCTGGAG ACCTTCAAAG CTGTGCTTGA
                                                                         540
      TGGACTTGAT GTGCTCCTTG CCCAGGAGGT TCGCCCCAGG AGGTGGAAAC TTCAAGTGCT
      GGATTTACGG AAGAACTCTC ATCAGGACTT CTGGACTGTA TGGTCTGGAA ACAGGGCCAG
                                                                         660
      TCTGTACTCA TTTCCAGAGC CAGAAGCAGC TCAGCCCATG ACAAAGAAGC GAAAAGTAGA
75
      TGGTTTGAGC ACAGAGGCAG AGCAGCCCTT CATTCCAGTA GAGGTGCTCG TAGACCTGTT
                                                                         780
      CCTCAAGGAA GGTGCCTGTG ATGAATTGTT CTCCTACCTC ATTGAGAAAG TGAAGCGAAA
      GAAAAATGTA CTACGCCTGT GCTGTAAGAA GCTGAAGATT TTTGCAATGC CCATGCAGGA
                                                                         900
      TATCAAGATG ATCCTGAAAA TGGTGCAGCT GGACTCTATT GAAGATTTGG AAGTGACTTG
                                                                         960
      TACCTGGAAG CTACCCACCT TGGCGAAATT TTCTCCTTAC CTGGGCCAGA TGATTAATCT
                                                                        1020
80
      GCGTAGACTC CTCCTCTCCC ACATCCATGC ATCTTCCTAC ATTTCCCCGG AGAAGGAAGA
                                                                        1080
      GCAGTATATC GCCCAGTTCA CCTCTCAGTT CCTCAGTCTG CAGTGCCTGC AGGCTCTCTA
                                                                        1140
      TGTGGACTCT TTATTTTTCC TTAGAGGCCG CCTGGATCAG TTGCTCAGGC ACGTGATGAA
                                                                        1200
       CCCCTTGGAA ACCCTCTCAA TAACTAACTG CCGGCTTTCG GAAGGGGATG TGATGCATCT
                                                                        1260
      GTCCCAGAGT CCCAGCGTCA GTCAGCTAAG TGTCCTGAGT CTAAGTGGGG TCATGCTGAC
                                                                        1320
85
       CGATGTAAGT CCCGAGCCCC TCCAAGCTCT GCTGGAGAGA GCCTCTGCCA CCCTCCAGGA
                                                                        1380
       CCTGGTCTTT GATGAGTGTG GGATCACGGA TGATCAGCTC CTTGCCCTCC TGCCTTCCCT
                                                                        1440
       GAGCCACTGC TCCCAGCTTA CAACCTTAAG CTTCTACGGG AATTCCATCT CCATATCTGC
                                                                       1500
```

```
CTTGCAGAGT CTCCTGCAGC ACCTCATCGG GCTGAGCAAT CTGACCCACG TGCTGTATCC 1560
      TGTCCCCCTG GAGAGTTATG AGGACATCCA TGGTACCCTC CACCTGGAGA GGCTTGCCTA
                                                                          1620
      TCTGCATGCC AGGCTCAGGG AGTTGCTGTG TGAGTTGGGG CGGCCCAGCA TGGTCTGGCT
                                                                          1680
      TAGTGCCAAC CCCTGTCCTC ACTGTGGGGA CAGAACCTTC TATGACCCGG AGCCCATCCT
                                                                          1740
 5
                                                                          1800
      GTGCCCCTGT TTCATGCCTA ACTAGCTGGG TGCACATATC AAATGCTTCA TTCTGCATAC
       TTGGACACTA AAGCCAGGAT GTGCATGCAT CTTGAAGCAA CAAAGCAGCC ACAGTTTCAG
                                                                          1860
      ACAAATGTTC AGTGTGAGTG AGGAAAACAT GTTCAGTGAG GAAAAAACAT TCAGACAAAT
                                                                          1920
      GTTCAGTGAG GAAAAAAAGG GGAAGTTGGG GATAGGCAGA TGTTGACTTG AGGAGTTAAT
                                                                          1980
      GTGATCTTTG GGGAGATACA TCTTATAGAG TTAGAAATAG AATCTGAATT TCTAAAGGGA
10
      GATTCTGGCT TGGGAAGTAC ATGTAGGAGT TAATCCCTGT GTAGACTGTT GTAAAGAAAC
                                                                          2100
       TGTTGAAAAT AAAGAGAAGC AATGTGAAGC AAAAAAAAA AAAAAAAA
       Seq ID NO: 30 Protein sequence:
      Protein Accession #: NP 006106.1
15
                                                              51
                                        31
                                                   41
       GCTTCAGGGT ACAGCTCCCC CGCAGCCAGA AGCCGGGCCT GCAGCGCCTC AGCACCGCTC
                                                                            60
       CGGGACACCC CACCGCTTC CCAGGCGTGA CCTGTCAACA GCAACTTCGC GGTGTGGTGA
                                                                           120
20
       ACTCTCTGAG GAAAAACCAT TTTGATTATT ACTCTCAGAC GTGCGTGGCA ACAAGTGACT
                                                                           180
       GAGACCTAGA AATCCAAGCG TTGGAGGTCC TGAGGCCAGC CTAAGTCGCT TCAAAATGGA
                                                                           240
       ACGAAGGCGT TTGTGGGGTT CCATTCAGAG CCGATACATC AGCATGAGTG TGTGGACAAG
                                                                           300
       CCCACGGAGA CTTGTGGAGC TGGCAGGGCA GAGCCTGCTG AAGGATGAGG CCCTGGCCAT
                                                                           360
       TGCCGCCCTG GAGTTGCTGC CCAGGGAGCT CTTCCCGCCA CTCTTCATGG CAGCCTTTGA
25
       CGGGAGACAC AGCCAGACCC TGAAGGCAAT GGTGCAGGCC TGGCCCTTCA CCTGCCTCCC
                                                                           480
       TCTGGGAGTG CTGATGAAGG GACAACATCT TCACCTGGAG ACCTTCAAAG CTGTGCTTGA
       TGGACTTGAT GTGCTCCTTG CCCAGGAGGT TCGCCCCAGG AGGTGGAAAC TTCAAGTGCT
                                                                           600
       GGATTTACGG AAGAACTCTC ATCAGGACTT CTGGACTGTA TGGTCTGGAA ACAGGGCCAG
                                                                           660
       TCTGTACTCA TTTCCAGAGC CAGAAGCAGC TCAGCCCATG ACAAAGAAGC GAAAAGTAGA
                                                                           720
       TGGTTTGAGC ACAGAGGCAG AGCAGCCCTT CATTCCAGTA GAGGTGCTCG TAGACCTGTT
30
                                                                           780
       CCTCAAGGAA GGTGCCTGTG ATGAATTGTT CTCCTACCTC ATTGAGAAAG TGAAGCGAAA
                                                                           840
       GAAAAATGTA CTACGCCTGT GCTGTAAGAA GCTGAAGATT TTTGCAATGC CCATGCAGGA
                                                                           900
       TATCAAGATG ATCCTGAAAA TGGTGCAGCT GGACTCTATT GAAGATTTGG AAGTGACTTG
                                                                           960
       TACCTGGAAG CTACCCACCT TGGCGAAATT TTCTCCTTAC CTGGGCCAGA TGATTAATCT
                                                                          1020
35
       GCGTAGACTC CTCCTCTCCC ACATCCATGC ATCTTCCTAC ATTTCCCCGG AGAAGGAAGA
                                                                          1080
       GCAGTATATC GCCCAGTTCA CCTCTCAGTT CCTCAGTCTG CAGTGCCTGC AGGCTCTCTA
                                                                          1140
       TGTGGACTCT TTATTTTCC TTAGAGGCCG CCTGGATCAG TTGCTCAGGC ACGTGATGAA
                                                                          1200
       CCCCTTGGAA ACCCTCTCAA TAACTAACTG CCGGCTTTCG GAAGGGGATG TGATGCATCT
                                                                          1260
       GTCCCAGAGT CCCAGCGTCA GTCAGCTAAG TGTCCTGAGT CTAAGTGGGG TCATGCTGAC
                                                                          1320
40
       CGATGTAAGT CCCGAGCCCC TCCAAGCTCT GCTGGAGAGA GCCTCTGCCA CCCTCCAGGA
                                                                          1380
       CCTGGTCTTT GATGAGTGTG GGATCACGGA TGATCAGCTC CTTGCCCTCC TGCCTTCCCT
                                                                          1440
       GAGCCACTGC TCCCAGCTTA CAACCTTAAG CTTCTACGGG AATTCCATCT CCATATCTGC
                                                                          1500
       CTTGCAGAGT CTCCTGCAGC ACCTCATCGG GCTGAGCAAT CTGACCCACG TGCTGTATCC
       TGTCCCCCTG GAGAGTTATG AGGACATCCA TGGTACCCTC CACCTGGAGA GGCTTGCCTA
                                                                          1620
45
       TCTGCATGCC AGGCTCAGGG AGTTGCTGTG TGAGTTGGGG CGGCCCAGCA TGGTCTGGCT
       TAGTGCCAAC CCCTGTCCTC ACTGTGGGGA CAGAACCTTC TATGACCCGG AGCCCATCCT
       GTGCCCCTGT TTCATGCCTA ACTAGCTGGG TGCACATATC AAATGCTTCA TTCTGCATAC
                                                                          1800
       TTGGACACTA AAGCCAGGAT GTGCATGCAT CTTGAAGCAA CAAAGCAGCC ACAGTTTCAG
                                                                          1860
       ACAAATGTTC AGTGTGAGTG AGGAAAACAT GTTCAGTGAG GAAAAAACAT TCAGACAAAT
                                                                          1920
50
       GTTCAGTGAG GAAAAAAGG GGAAGTTGGG GATAGGCAGA TGTTGACTTG AGGAGTTAAT
                                                                          1980
       GTGATCTTTG GGGAGATACA TCTTATAGAG TTAGAAATAG AATCTGAATT TCTAAAGGGA
                                                                          2040
       GATTCTGGCT TGGGAAGTAC ATGTAGGAGT TAATCCCTGT GTAGACTGTT GTAAAGAAAC
                                                                          2100
       TGTTGAAAAT AAAGAGAAGC AATGTGAAGC AAAAAAAAA AAAAAAAA
55
       Seq ID NO: 31 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 64-2754
60
                                        31
                                                              51
       GGCAGGTCTC GCTCTCGGCA CCCTCCCGGC GCCCGCGTTC TCCTGGCCCT GCCCGGCATC
                                                                            60
       CCGATGGCCG CCGCTGGGCC CCGGCGCTCC GTGCGCGGAG CCGTCTGCCT GCATCTGCTG
                                                                           120
       CTGACCCTCG TGATCTTCAG TCGTGATGGT GAAGCCTGCA AAAAGGTGAT ACTTAATGTA
                                                                           180
65
       CCTTCTAAAC TAGAGGCAGA CAAAATAATT GGCAGAGTTA ATTTGGAAGA GTGCTTCAGG
                                                                           240
       TCTGCAGACC TCATCCGGTC AAGTGATCCT GATTTCAGAG TTCTAAATGA TGGGTCAGTG
                                                                           300
       TACACAGCCA GGGCTGTTGC GCTGTCTGAT AAGAAAAGAT CATTTACCAT ATGGCTTTCT
                                                                           360
       GACAAAAGGA AACAGACACA GAAAGAGGTT ACTGTGCTGC TAGAACATCA GAAGAAGGTA
                                                                           420
       TCGAAGACAA GACACATAG AGAAACTGTT CTCAGGCGTG CCAAGAGGAG ATGGGCACCT
                                                                            480
70
       ATTCCTTGCT CTATGCAAGA GAATTCCTTG GGCCCTTTCC CATTGTTTCT TCAACAAGTT
                                                                           540
       GAATCTGATG CAGCACAGAA CTATACTGTC TTCTACTCAA TAAGTGGACG TGGAGTTGAT
                                                                           600
       AAAGAACCTT TAAATTTGTT TTATATAGAA AGAGACACTG GAAATCTATT TTGCACTCGG
       CCTGTGGATC GTGAAGAATA TGATGTTTTT GATTTGATTG CTTATGCGTC AACTGCAGAT
                                                                           720
       GGATATTCAG CAGATCTGCC CCTCCCACTA CCCATCAGGG TAGAGGATGA AAATGACAAC
75
       CACCCTGTTT TCACAGAAGC AATTTATAAT TTTGAAGTTT TGGAAAGTAG TAGACCTGGT
                                                                           840
       ACTACAGTGG GGGTGGTTTG TGCCACAGAC AGAGATGAAC CGGACACAAT GCATACGCGC
                                                                           900
       CTGAAATACA GCATTTTGCA GCAGACACCA AGGTCACCTG GGCTCTTTTC TGTGCATCCC
                                                                           960
       AGCACAGGCG TAATCACCAC AGTCTCTCAT TATTTGGACA GAGAGGTTGT AGACAAGTAC
                                                                          1020
       TCATTGATAA TGAAAGTACA AGACATGGAT GGCCAGTTTT TTGGATTGAT AGGCACATCA
                                                                          1080
       ACTTGTATCA TAACAGTAAC AGATTCAAAT GATAATGCAC CCACTTTCAG ACAAAATGCT
80
                                                                          1140
       TATGAAGCAT TTGTAGAGGA AAATGCATTC AATGTGGAAA TCTTACGAAT ACCTATAGAA
                                                                          1200
       GATAAGGATT TAATTAACAC TGCCAATTGG AGAGTCAATT TTACCATTTT AAAGGGAAAT
                                                                          1260
       GAAAATGGAC ATTTCAAAAT CAGCACAGAC AAAGAAACTA ATGAAGGTGT TCTTTCTGTT
                                                                          1320
       GTAAAGCCAC TGAATTATGA AGAAAACCGT CAAGTGAACC TGGAAATTGG AGTAAACAAT
                                                                          1380
85
                                                                          1440
       GAAGCGCCAT TTGCTAGAGA TATTCCCAGA GTGACAGCCT TGAACAGAGC CTTGGTTACA
       GTTCATGTGA GGGATCTGGA TGAGGGGCCT GAATGCACTC CTGCAGCCCA ATATGTGCGG
                                                                          1500
       ATTAAAGAAA ACTTAGCAGT GGGGTCAAAG ATCAACGGCT ATAAGGCATA TGACCCCGAA
                                                                          1560
```

		7000443					
				AAATTGCATG			1620
				TCCAAAATCC			1680
	CCCAAAAATG	AGTTGTATAA	TATTACAGTC	CTGGCAATAG	ACAAAGATGA	TAGATCATGT	1740
	ACTGGAACAC	TIGCTGTGAA	CATTGAAGAT	GTAAATGATA	ATCCACCAGA	AATACTTCAA	1800
5	GAATATGTAG	TCATTTGCAA	ACCAAAAATG	GGGTATACCG	ACATTTTAGC	TGTTGATCCT	1860
•				TTCAGTTTGC			1920
				GATACAGCTG			1980
				ATTACTGTAA			
							2040
10				GAATGTACTC			2100
10				AAATGGGCAA			2160
	ATAGCACTGC	TCTTTTCTGT	ATTGCTAACT	TTAGTATGTG	GAGTTTTTGG	TGCAACTAAA	2220
	GGGAAACGTT	TTCCTGAAGA	TTTAGCACAG	CAAAACTTAA	TTATATCAAA	CACAGAAGCA	2280
				GGATTTATGA			2340
				GGAATGAAAA			2400
15				GAATCCTGCC			2460
15							
				GAGGTGGACA			2520
				GGTGAAAAAT			2580
				CTCACTTATA			2640
	CCAGCTGGTT	CTGTGGGCTG	CTGCAGTGAA	AAGCAGGAAG	AAGATGGCCT	TGACTTTTTA	2700
20	AATAATTTGG	AACCCAAATT	TATTACATTA	GCAGAAGCAT	GCACAAAGAG	ATAATGTCAC	2760
				CTGGAGGTTT			2820
				TTTTTTCTCA			2880
				TTATCTTTTC			2940
25				CACTGGAATT			3000
25				TAAATATGCT			3060
				ATGTATTCAC			3120
	ATAAACAAGA	AATATTGAGT	ATCACTATGT	GAAGAAAGTT	TTGGAAAAGA	AACAATGAAG	3180
	ACTGAATTAA	ATTAAAAATG	TTGCAGCTCA	TAAAGAATTG	GGACTCACCC	CTACTGCACT	3240
	ACCAAATTCA	TTTGACTTTG	GAGGCAAAAT	GTGTTGAAGT	GCCCTATGAA	GTAGCAATTT	3300
30				TGTGTGTATA			3360
50				ATGGTAAAAA			3420
				GCTTCCTAGG			3480
				CTGTCCAATT			3540
0.5				GGGAAGGAAA			3600
35				TCTGCATCCA			3660
	GAATACTCGC	TGCAGCTGGG	GTTCCCTGCT	TTTTGGTAGC	AAGGGTCCAG	AGATGAGGTG	3720
	THUTTHUCGG	GGAGCTAATA	ACAAAAACAT	TTTAAAACTT	ACCTTTACTG	AAGTTAAATC	3780
				TGACCAACAT			3840
				GAGGGAGCTG			3900
40	TAACCATGIC	CICCIAGAGI	TINGAGGCIA	CTAAGCCCCA	CAAACTTCAC	ACCTCATCAC	3960
70							
				CTCACTGCCC			4020
				CCCCTTCTTT			4080
				CAGGTTTTCC			4140
	AATTTTTAAT	CAGTTTGCTT	TCTCCAGAGA	AATTTTAAAA	TAATAGAAGA	AATAGAAATT	4200
45	TTGAATGTAT	AAAAGAAAAA	GATCAAGTTG	TCATTTTAGA	ACAGAGGGAA	CTTTGGGAGA	4260
				AGAGGGCAAC			4320
•				GGGAGTAAAA			4380
				TTTCTCAGGC			4440
50	GTCCGGTGAG	GGATCAGCCA	ACCICITCIC	TATGGCTCAC	CTTATTTGGA	GTGAGAAATC ·	
50				TGAAGGCATT			4560
				AATTGTTGTA			4620
	CTGGGCACTA	AGAAGGTCTA	TGAATTAAAT	GCCTATCTAA	AATTCTGATT	TATTCCTACA	4680
	TTTTCTGTTT	TCTAATTTGA	CCCTAAAATC	TATGTGTTTT	AGACTTAGAC	TTTTTATTGC	4740
	CCCCCCCCCC	TTTTTTTTTG	AGACGGAGTC	TCGCTCTGAC	GCACAGGCTG	GAGTGCAGTG	4800
55				CTCCCGGGTT			4860
-				CACCACCACG			4920
				CCAGGATGGT			4980
				GGATTACAGG			5040
C O				AATGTAATCA			5100
60				ACTCAACCAA			5160
	GGGAGAAAGA	ACTCAGGGCA	CAAAATATTG	GTCTGAGAAT	GGAATTCTCT	GTAAGCCTAG	5220
	TTGCTGAAAT	TTCCTGCTGT	AACCAGAAGC	CAGTTTTATC	TAACGGCTAC	TGAAACACCC	5280
				ATCAAAACCT			5340
				CCAGTATCAC			5400
65				AAAACCACCT			5460
05	mmmounts a mmo	mmmm/m/m/m	AATVAAAATT	TAATTTTAGG	CATTCATTC	ጥ ስጥ ስጥጥጥ ር ል	5520
				GTAAGGTGAA			5580
	CATAIGIAGI	ATTATTATTT	CCITATATGI	GIAAGGIGAA	ATTIALGGIA	IIIGAGIGIG	
				TTCCCCCAGT			5640
70				TTATAAGGAA			5700
70	GGGGTTTGTT	TTGCAATGTT	TTAAACAGAG	TTTTAGTATT	GCTATTAAAA	GAAGTTACTT	5760
	TGCTTTTAAA	GAAACTTGGC	TGCTTAAAAT	AAGCAAAAAT	TGGATGCATA	aagtaatatt	5820
	TACAGATGTG	GGGAGATGTA	ATAAAACAAT	ATTAACTTGG	TTTCTTGTTT	TTGCTGTATT	5880
				TTGCAAAATT			5940
•				ATTAATGGGG			6000
75				ATTGTAATGT			6060
, 5							6120
				ATACATATGT			
	ATTAAAAGTA	TTAGAAGGTG	GTTATAATTG	CAGAGTATTC	CATGAATAGT	ACACTGACAC	6180
				AAGGGAAAAC			6240
00				ACAGGATAGA			6300
80				GCTTCACAGT			6360
	AGTGTGCTCC	CCTACAAACG	TTAAGACTGA	TCATTTCAAA	AATCTATTAG	CTATATCAAA	6420
				AATTTCAATT			6480
							6540
				TCATTGGATT			
85				TGATTTGGTT			6600
0)				TTGGATATGA			6660
						TAAAATCAAT	
	GAACAATGCC	AGCCTCATGG	GGTTGTTGAA	TGATTAAATT	AGTTAATATA	CCTAAAGTAC	6780

PCT/US02/12476

WO 02/086443 ATAGAACACT GCCTGCACAT AGTAAAAGAA TTATAAGTGT GAGGTAGTTG GTAAAATTAT 6840 GTAGTTGGAT ATACTACCGA ACAATATCTA ATCTCTTTTT AGGGAAATAA AGTTTGTGCA TATATATAAT CCCGAAACAT G 5 Seq ID NO: 32 Protein sequence: Protein Accession #: NP 001932.1 21 31 41 51 11 10 MAAAGPRRSV RGAVCLHLLL TLVIFSRDGE ACKKVILNVP SKLEADKIIG RVNLEECFRS 60 ADLIRSSDPD FRVLNDGSVY TARAVALSDK KRSFTIWLSD KRKQTQKEVT VLLEHQKKVS 120 KTRHTRETVL RRAKRRWAPI PCSMQENSLG PFPLFLQQVE SDAAQNYTVF YSISGRGVDK 180 EPLNLFYIER DTGNLFCTRP VDREEYDVFD LIAYASTADG YSADLPLPLP IRVEDENDNH 240 PVFTEAIYNF EVLESSRPGT TVGVVCATDR DEPDTMHTRL KYSILQQTPR SPGLFSVHPS 300 15 TGVITTVSHY LDREVVDKYS LIMKVQDMDG QFFGLIGTST CIITVTDSND NAPTFRQNAY 360 EAFVEENAFN VEILRIPIED KOLINTANWR VNFTILKGNE NGHFKISTOK ETNEGVLSVV 420 KPLNYEENRO VNLEIGVNNE APFARDIPRV TALNRALVTV HVRDLDEGPE CTPAAQYVRI 480 KENLAVGSKI NGYKAYDPEN RNGNGLRYKK LHDPKGWITI DEISGSIITS KILDREVETP 540 KNELYNITVL AIDKDDRSCT GTLAVNIEDV NDNPPEILQE YVVICKPKMG YTDILAVDPD 600 20 EPVHGAPFYF SLPNTSPEIS RLWSLTKVND TAARLSYQKN AGFQEYTIPI TVKDRAGQAA TKLLRVNLCE CTHPTQCRAT SRSTGVILGK WAILAILLGI ALLPSVLLTL VCGVFGATKG 720 KRFPEDLAQO NLIISNTEAP GDDRVCSANG FMTQTTNNSS QGFCGTMGSG MKNGGQETIE 780 MMKGGNOTLE SCRGAGHHHT LDSCRGGHTE VDNCRYTYSE WHSFTQPRLG EKLHRCNQNE 840 DRMPSQDYVL TYNYEGRGSP AGSVGCCSEK QEEDGLDFLN NLEPKFITLA EACTKR 25 Seg ID NO: 33 DNA seguence Nucleic Acid Accession #: Eos sequence Coding sequence: 64-2583 30 31 41 51 21 GGCAGGTCTC GCTCTCGGCA CCCTCCCGGC GCCCGCGTTC TCCTGGCCCT GCCCGGCATC 60 CCGATGGCCG CCGCTGGGCC CCGGCGCTCC GTGCGCGGAG CCGTCTGCCT GCATCTGCTG 120 35 CTGACCCTCG TGATCTTCAG TCGTGATGGT GAAGCCTGCA AAAAGGTGAT ACTTAATGTA 180 CCTTCTAAAC TAGAGGCAGA CAAAATAATT GGCAGAGTTA ATTTGGAAGA GTGCTTCAGG 240 TCTGCAGACC TCATCCGGTC AAGTGATCCT GATTTCAGAG TTCTAAATGA TGGGTCAGTG 300 TACACAGCCA GGGCTGTTGC GCTGTCTGAT AAGAAAAGAT CATTTACCAT ATGGCTTTCT 360 GACAAAAGGA AACAGACACA GAAAGAGGTT ACTGTGCTGC TAGAACATCA GAAGAAGGTA 420 40 TCGAAGACAA GACACACTAG AGAAACTGTT CTCAGGCGTG CCAAGAGGAG ATGGGCACCT 480 ATTCCTTGCT CTATGCAAGA GAATTCCTTG GGCCCTTTCC CATTGTTTCT TCAACAAGTT GAATCTGATG CAGCACAGAA CTATACTGTC TTCTACTCAA TAAGTGGACG TGGAGTTGAT AAAGAACCTT TAAATTTGTT TTATATAGAA AGAGACACTG GAAATCTATT TTGCACTCGG CCTGTGGATC GTGAAGAATA TGATGTTTTT GATTTGATTG CTTATGCGTC AACTGCAGAT 45 GGATATTCAG CAGATCTGCC CCTCCCACTA CCCATCAGGG TAGAGGATGA AAATGACAAC 780 CACCCTGTTT TCACAGAAGC AATTTATAAT TTTGAAGTTT TGGAAAGTAG TAGACCTGGT 840 ACTACAGTGG GGGTGGTTTG TGCCACAGAC AGAGATGAAC CGGACACAAT GCATACGCGC 900 CTGAAATACA GCATTTTGCA GCAGACACCA AGGTCACCTG GGCTCTTTTC TGTGCATCCC 960 AGCACAGGCG TAATCACCAC AGTCTCTCAT TATTTGGACA GAGAGGTTGT AGACAAGTAC 1020 50 TCATTGATAA TGAAAGTACA AGACATGGAT GGCCAGTTTT TTGGATTGAT AGGCACATCA 1080 ACTTGTATCA TAACAGTAAC AGATTCAAAT GATAATGCAC CCACTTTCAG ACAAAATGCT 1140 TATGAAGCAT TTGTAGAGGA AAATGCATTC AATGTGGAAA TCTTACGAAT ACCTATAGAA 1200 GATAAGGATT TAATTAACAC TGCCAATTGG AGAGTCAATT TTACCATTTT AAAGGGAAAT 1260 GAAAATGGAC ATTTCAAAAT CAGCACAGAC AAAGAAACTA ATGAAGGTGT TCTTTCTGTT 1320 55 GTAAAGCCAC TGAATTATGA AGAAAACCGT CAAGTGAACC TGGAAATTGG AGTAAACAAT 1380 GAAGCGCCAT TTGCTAGAGA TATTCCCAGA GTGACAGCCT TGAACAGAGC CTTGGTTACA 1440 GTTCATGTGA GGGATCTGGA TGAGGGGCCT GAATGCACTC CTGCAGCCCA ATATGTGCGG 1500 ATTANAGANA ACTTAGCAGT GGGGTCANAG ATCANCGGCT ATANGGCATA TGACCCCGAN 1560 AATAGAAATG GCAATGGTTT AAGGTACAAA AAATTGCATG ATCCTAAAGG TTGGATCACC 1620 60 ATTGATGAAA TTTCAGGGTC AATCATAACT TCCAAAATCC TGGATAGGGA GGTTGAAACT 1680 CCCAAAAATG AGTTGTATAA TATTACAGTC CTGGCAATAG ACAAAGATGA TAGATCATGT 1740 ACTGGAACAC TTGCTGTGAA CATTGAAGAT GTAAATGATA ATCCACCAGA AATACTTCAA 1800 GAATATGTAG TCATTTGCAA ACCAAAAATG GGGTATACCG ACATTTTAGC TGTTGATCCT 1860 GATGAACCTG TCCATGGAGC TCCATTTTAT TTCAGTTTGC CCAATACTTC TCCAGAAATC 1920 65 AGTAGACTGT GGAGCCTCAC CAAAGTTAAT GATACAGCTG CCCGTCTTTC ATATCAGAAA 1980 AATGCTGGAT TTCAAGAATA TACCATTCCT ATTACTGTAA AAGACAGGGC CGGCCAAGCT 2040 GCAACAAAAT TATTGAGAGT TAATCTGTGT GAATGTACTC ATCCAACTCA GTGTCGTGCG 2100 ACTTCAAGGA GTACAGGAGT AATACTTGGA AAATGGGCAA TCCTTGCAAT ATTACTGGGT 2160 ATAGCACTGC TCTTTCTGT ATTGCTAACT TTAGTATGTG GAGTTTTTGG TGCAACTAAA 2220 70 GGGAAACGTT TTCCTGAAGA TTTAGCACAG CAAAACTTAA TTATATCAAA CACAGAAGCA 2280 CCTGGAGACG ATAGAGTGTG CTCTGCCAAT GGATTTATGA CCCAAACTAC CAACAACTCT 2340 AGCCAAGGTT TTTGTGGTAC TATGGGATCA GGAATGAAAA ATGGAGGGCA GGAAACCATT GAAATGATGA AAGGAGGAAA CCAGACCTTG GAATCCTGCC GGGGGGTGG GCATCATCAT 2460 ACCCTGGACT CCTGCAGGGG AGGACACACG GAGGTGGACA ACTGCAGATA CACTTACTCG 75 GAGTGGCACA GTTTTACTCA ACCCCGTCTC GGTGAAGAAT CCATTAGAGG ACACACTGGT 2580 TAAAAATTAA ACATAAAAGA AATTGCATCG ATGTAATCAG AATGAAGACC GCATGCCATC 2640 CCAAGATTAT GTCCTCACTT ATAACTATGA GGGAAGAGGA TCTCCAGCTG GTTCTGTGGG 2700 CTGCTGCAGT GAAAAGCAGG AAGAAGATGG CCTTGACTTT TTAAATAATT TGGAACCCAA 2760

ATTTATTACA TTAGCAGAAG CATGCACAAA GAGATAATGT CACAGTGCTA CAATTAGGTC

TTTGTCAGAC ATTCTGGAGG TTTCCAAAAA TAATATTGTA AAGTTCAATT TCAACATGTA

TGTATATGAT GATTTTTTC TCAATTTTGA ATTATGCTAC TCACCAATTT ATATTTTTAA

AGCCAGTTGT TGCTTATCTT TTCCAAAAAG TGAAAAATGT TAAAACAGAC AACTGGTAAA

TCTCAAACTC CAGCACTGGA ATTAAGGTCT CTAAAGCATC TGCTCTTTTT TTTTTTTACG

GATATTTTAG TAATAAATAT GCTGGATAAA TATTAGTCCA ACAATAGCTA AGTTATGCTA

ATATCACATT ATTATGTATT CACTTTAAGT GATAGTTTAA AAAATAAACA AGAAATATTG

AGTATCACTA TGTGAAGAAA GTTTTGGAAA AGAAACAATG AAGACTGAAT TAAATTAAAA

ATGTTGCAGC TCATAAAGAA TTGGGACTCA CCCCTACTGC ACTACCAAAT TCATTTGACT

80

85

2820

2880

2940

3000

3060

3120

3180

3240

3300

	WO 02	/086443					
	TTGGAGGCAA	AATGTGTTGA	AGTGCCCTAT	GAAGTAGCAA	TTTTCTATAG	GAATATAGTT	3360
	GGAAATAAAT	GTGTGTGTGT	ATATTATTAT	TAATCAATGC	AATATTTAAA	ATGAAATGAG	3420
	AACAAAGAGG	AAAATGGTAA	AAACTTGAAA	TGAGGCTGGG	GTATAGTTTG	TCCTACAATA	3480
_	GAAAAAAGAG	AGAGCTTCCT	AGGCCTGGGC	TCTTAAATGC	TGCATTATAA	CTGAGTCTAT	3540
5			ATTTGTGTAA				3600
•			AAATAGGGAA				3660
			CCACAAGTTA				3720
			AGCAAGGGTC				3780
10			CITACCTTTA				3840
10			CATCTTTTTA				3900
			CTGAGGGGAG				3960
	ATTGTCCTTA	AACCTAAGCC	CCACAAACTT	GACACCTGAT	CAGGTCTGGG	AGCTACAAAA	4020
			CCCTTCTTCT				4080
	AGGCCTTGTG	GGCCCCCTTC	TTTCGGCTTT	CTGCTAAAGC	AACACCTCCA	GCAGAGATTC	4140
15	CCTTAAGTGA	CTCCAGGTTT	TCCACCATCC	TTCAGCGTGA	ATTAATTTTT	AATCAGTTTG	4200
			AAATAATAGA				4260
			AGAACAGAGG				4320
			AACAGGAAGA				4380
			AAAGCAACAT				4440
20			GGCCAATGGC				4500
20							
			CACCTTATTT				4560
			ATTTGCAGGA				4620
			GTATTCCTTC				4680
~-	CTATGAATTA	AATGCCTATC	TAAAATTCTG	ATTTATTCCT	ACATTTTCTG	TTTTCTAATT	4740
25	TGACCCTAAA	ATCTATGTGT	TTTAGACTTA	GACTTTTTAT	TGCCCCCCC	CCCTTTTTTT	4800
	TTGAGACGGA	GTCTCGCTCT	GACGCACAGG	CTGGAGTGCA	GTGGCTCCGA	TCTCTGCTCA	4860
	CTGAAAGCTC	CGCCTCCCGG	GTTCATGCCA	TTCTCCTGCC	TCAGCCTCCT	GAGTAGCTGG	4920
			ACGCCCGGCT				4980
			GGTCTCGATC				5040
30			AGGCATGACC				5100
50			TCATTTTGAA				5160
			CAAAAGACAG				5220
			AATGGAATTC				5280
			ATCTAACGGE				
35							5340 5400
33			TGCTACCTCC				
			CTTCCCTGTT				5460
			TGGTCTGCAT				5520
			GGATTCATTT				5580
40			AATTTATGGT				5640
40			TGAATGATTT				5700
			AGCAGCTGTC				5760
			TGCTATTAAA				5820
			TTGGATGCAT				5880
45			GCTGCTTAAA				5940
43			TAATAAAACA				6000
			AAGATGATCA				6060
			TGTCTTTGTT				6120
			TCATTAATAT				6180
50			TGAGTATCTA				6240
50	GTATTAAAAG	TATTAGAAGG	TGGTTATAAT	TGCAGAGTAT	TCCATGAATA	GTACACTGAC	6300
	ACAGGGGTTT	TACTTTGAGG	ACCAGTGTAG	TCAAGGGAAA	ACATGAGTTA	aaaagaaaag	6360
	CAGGCAATAT	TGCAGTCTTG	ATTCTGCCAC	TTACAGGATA	GATAATGCCT	GAACTTTAAT	6420
	GACAAGATGA	TCCAACCATA	AAGGTGCTCT	GTGCTTCACA	GTGAATCTTT	TCCCCATGCA	6480
	GGAGTGTGCT	CCCCTACAAA	CGTTAAGACT	GATCATTTCA	AAAATCTATT	AGCTATATCA	6540
55			AGGTTGAACC				6600
			CTTCAAGAAT				6660
			GTCCTTCAGT				6720
			GAGCCAGAAT				6780
						ATTAAAATCA	6840
60							
00						TACCTAAAGT	
						TGGTAAAATT	
			GAACAATATC	TAATCTCTTT	TTAGGGAAAT	AAAGTTTGTG	7020
	CATATATATA	ATCCCGAAAC	ATG				
65							
65		34 Protein					
	Protein Acc	cession #: 1	NP_077741.1				
	1	11	21	31	41	51	
70	ı	l	J	j	1	1	
70			TLVIFSRDGE				60
			TARAVALSDK				120
	KTRHTRETVL	RRAKRRWAPI	PCSMQENSLG	PFPLFLQQVE	SDAAQNYTVF	YSISGRGVDK	180
	EPLNLFYIER	DTGNLFCTRP	VDREEYDVFD	LIAYASTADG	YSADLPLPLP	IRVEDENDNH	240
77.	PVFTEAIYNF	EVLESSRPGT	TVGVVCATDR	DEPDTMHTRL	KYSILQQTPR	SPGLFSVHPS	300
75	TGVITTVSHY	LDREVVDKYS	LIMKVQDMDG	QFFGLIGTST	CIITVTDSND	NAPTFRQNAY	360
			KDLINTANWR				420
•			APFARDIPRV				480
			RNGNGLRYKK				540
			GTLAVNIEDV				600
80			RLWSLTKVND				660
			SRSTGVILGK				720
							780
			GDDRVCSANG				,80
	""WGGWÖLPR	SCROMOMMIT	LDSCRGGHTE	VUNCRIIISE	uuse Making	Prolitera	
85	Cog ID No	25 DWA	10000				
05		35 DNA seq					
	MICTEIC AC	IU ACCESSIO	n #: Eos se	fractice.			

5 Seq ID NO: 35 DNA sequence Nucleic Acid Accession #: Eos sequence Coding sequence: 146-1273

```
51
                                                   41
      GGGAGTGGGC GTGGCGGTGC TGCCCAGGTG AGCCACCGCT GCTTCTGCCC AGACACGGTC
 5
      GCCTCCACAT CCAGGTCTTT GTGCTCCTCG CTTGCCTGTT CCTTTTCCAC GCATTTTCCA
       GGATAACTGT GACTCCAGGC CCGCAATGGA TGCCCTGCAA CTAGCAAATT CGGCTTTTGC
                                                                           180
      CGTTGATCTG TTCAAACAAC TATGTGAAAA GGAGCCACTG GGCAATGTCC TCTTCTCTCC
                                                                           240
      AATCTGTCTC TCCACCTCTC TGTCACTTGC TCAAGTGGGT GCTAAAGGTG ACACTGCAAA
                                                                           300
      TGAAATTGGA CAGGTTCTTC ATTTGAAAA TGTCAAAGAT ATACCCTTTG GATTTCAAAC
                                                                           360
10
       AGTAACATCG GATGTAAACA AACTTAGTTC CTTTTACTCA CTGAAACTAA TCAAGCGGCT
                                                                           420
       CTACGTAGAC AAATCTCTGA ATCTTTCTAC AGAGTTCATC AGCTCTACGA AGAGACCCTA
                                                                           480
       TGCAAAGGAA TTGGAAACTG TTGACTTCAA AGATAAATTG GAAGAAACGA AAGGTCAGAT
                                                                           540
       CAACAACTCA ATTAAGGATC TCACAGATGG CCACTTTGAG AACATTTTAG CTGACAACAG
                                                                           600
       TGTGAACGAC CAGACCAAAA TCCTTGTGGT TAATGCTGCC TACTTTGTTG GCAAGTGGAT
                                                                           660
       GAAGAAATTT CCTGAATCAG AAACAAAAGA ATGTCCTTTC AGACTCAACA AGACAGACAC
15
                                                                           720
       CAAACCAGTG CAGATGATGA ACATGGAGGC CACGTTCTGT ATGGGAAACA TTGACAGTAT
                                                                           780
       CAATTGTAAG ATCATAGAGC TTCCTTTTCA AAATAAGCAT CTCAGCATGT TCATCCTACT
                                                                           840
       900
       AGAGTCACTG TCACAGTGGA CTAATCCCAG CACCATGGCC AATGCCAAGG TCAAACTCTC
                                                                           960
20
       CATTCCAAAA TTTAAGGTGG AAAAGATGAT TGATCCCAAG GCTTGTCTGG AAAATCTAGG
                                                                          1020
       GCTGAAACAT ATCTTCAGTG AAGACACATC TGATTTCTCT GGAATGTCAG AGACCAAGGG
                                                                          1080
       AGTGGCCCTA TCAAATGTTA TCCACAAAGT GTGCTTAGAA ATAACTGAAG ATGGTGGGGA
                                                                          1140
       TTCCATAGAG GTGCCAGGAG CACGGATCCT GCAGCACAAG GATGAATTGA ATGCTGACCA
                                                                          1200
       TCCCTTTATT TACATCATCA GGCACAACAA AACTCGAAAC ATCATTTCT TTGGCAAATT
                                                                          1260
       CTGTTCTCCT TAAGTGGCAT AGCCCATGTT AAGTCCTCCC TGACTTTTCT GTGGATGCCG
25
                                                                          1320
       ATTTCTGTAA ACTCTGCATC CAGAGATTCA TTTTCTAGAT ACAATAAATT GCTAATGTTG
                                                                          1380
       CTGGATCAGG AAGCCGCCAG TACTTGTCAT ATGTAGCCTT CACACAGATA GACCTTTTTT
                                                                          1440
       TTTTTCCAAT TCTATCTTTT GTTTCCTTTT TTCCCATAAG ACAATGACAT ACGCTTTTAA
                                                                          1500
      TGAAAAGGAA TCACGTTAGA GGAAAAATAT TTATTCATTA TTTGTCAAAT TGTCCGGGGT
AGTTGGCAGA AATACAGTCT TCCACAAAGA AAATTCCTAT AAGGAAGAT TGGAAGCTCT
                                                                          1560
30
                                                                          1620
       TCTTCCCAGC ACTATGCTTT CCTTCTTTGG GATAGAGAAT GTTCCAGACA TTCTCGCTTC
                                                                          1680
       CCTGAAAGAC TGAAGAAAGT GTAGTGCATG GGACCCACGA AACTGCCCTG GCTCCAGTGA
                                                                          1740
       AACTTGGGCA CATGCTCAGG CTACTATAGG TCCAGAAGTC CTTATGTTAA GCCCTGGCAG
                                                                          1800
       GCAGGTGTTT ATTAAAATTC TGAATTTTGG GGATTTTCAA AAGATAATAT TTTACATACA
                                                                          1860
35
                                                                          1920
       CTGTATGTTA TAGAACTTCA TGGATCAGAT CTGGGGCAGC AACCTATAAA TCAACACCTT
       AATATGCTGC AACAAAATGT AGAATATTCA GACAAAATGG ATACATAAAG ACTAAGTAGC
                                                                          1980
       CCATAAGGGG TCAAAATTTG CTGCCAAATG CGTATGCCAC CAACTTACAA AAACACTTCG
                                                                          2040
       TTCGCAGAGC TTTTCAGATT GTGGAATGTT GGATAAGGAA TTATAGACCT CTAGTAGCTG
                                                                          2100
       AAATGCAAGA CCCCAAGAGG AAGTTCAGAT CTTAATATAA ATTCACTTTC ATTTTTGATA
                                                                          2160
40
                                                                          2220
       GCTGTCCCAT CTGGTCATGT GGTTGGCACT AGACTGGTGG CAGGGGCTTC TAGCTGACTC
       GCACAGGGAT TCTCACAATA GCCGATATCA GAATTTGTGT TGAAGGAACT TGTCTCTTCA
                                                                          2280
       TCTAATATGA TAGCGGGAAA AGGAGAGGAA ACTACTGCCT TTAGAAAATA TAAGTAAAGT
                                                                          2340
       GATTAAAGTG CTCACGTTAC CTTGACACAT AGTTTTTCAG TCTATGGGTT TAGTTACTTT
                                                                          2400
       AGATGGCAAG CATGTAACTT ATATTAATAG TAATTTGTAA AGTTGGGTGG ATAAGCTATC
                                                                          2460
45
       CCTGTTGCCG GTTCATGGAT TACTTCTCTA TAAAAAATAT ATATTTACCA AAAAATTTTG
       TGACATTCCT TCTCCCATCT CTTCCTTGAC ATGCATTGTA AATAGGTTCT TCTTGTTCTG
       AGATTCAATA TTGAATTTCT CCTATGCTAT TGACAATAAA ATATTATTGA ACTACC
       Seg ID NO: 36 Protein seguence:
50
       Protein Accession #: NP_002630.1
                                                   41
                                                              51
                  11
       MDALQLANSA FAVDLFKQLC EKEPLGNVLF SPICLSTSLS LAQVGAKGDT ANEIGQVLHF
                                                                            60
55
       ENVKDIPFGF QTVTSDVNKL SSFYSLKLIK RLYVDKSLNL STEFISSTKR PYAKELETVD
                                                                           120
       FKDKLEETKG QINNSIKDLT DGHFENILAD NSVNDQTKIL VVNAAYFVGK WMKKFPESET
                                                                           180
       KECPFRLNKT DTKPVQMMNM EATFCMGNID SINCKIIELP FQNKHLSMFI LLPKDVEDES
                                                                           240
       TGLEKIEKQL NSESLSQWTN PSTMANAKVK LSIPKFKVEK MIDPKACLEN LGLKHIFSED
                                                                           300
       TSDFSGMSET KGVALSNVIH KVCLEITEDG GDSIEVPGAR ILQHKDELNA DHPFIYIIRH
                                                                           360
60
       NKTRNIIFFG KFCSP
       Seq ID NO: 37 DNA sequence
       Nucleic Acid Accession #: NM_0168583
65
       Coding sequence: 72-842
                  11
                             21
                                        31
                                                   41
                                                              51
       GGAGTGGGG AGAGAGAGGA GACCAGGACA GCTGCTGAGA CCTCTAAGAA GTCCAGATAC
70
       TAAGAGCAAA GATGTTTCAA ACTGGGGGCC TCATTGTCTT CTACGGGCTG TTAGCCCAGA
                                                                           120
       CCATGGCCCA GTTTGGAGGC CTGCCCGTGC CCCTGGACCA GACCCTGCCC TTGAATGTGA
                                                                           180
       ATCCAGCCCT GCCCTTGAGT CCCACAGGTC TTGCAGGAAG CTTGACAAAT GCCCTCAGCA
                                                                           240
       ATGGCCTGCT GTCTGGGGGC CTGTTGGGCA TTCTGGAAAA CCTTCCGCTC CTGGACATCC
                                                                           300
       TGAAGCCTGG AGGAGGTACT TCTGGTGGCC TCCTTGGGGG ACTGCTTGGA AAAGTGACGT
75
       CAGTGATTCC TGGCCTGAAC AACATCATTG ACATAAAGGT CACTGACCCC CAGCTGCTGG
                                                                           420
       AACTTGGCCT TGTGCAGAGC CCTGATGGCC ACCGTCTCTA TGTCACCATC CCTCTCGGCA
       TARAGCTCCA AGTGAATACG CCCCTGGTCG GTGCAAGTCT GTTGAGGCTG GCTGTGAAGC
                                                                           540
       TGGACATCAC TGCAGAAATC TTAGCTGTGA GAGATAAGCA GGAGAGGATC CACCTGGTCC
       TTGGTGACTG CACCCATTCC CCTGGAAGCC TGCAAATTTC TCTGCTTGAT GGACTTGGCC
                                                                           660
80
       CCCTCCCCAT TCAAGGTCTT CTGGACAGCC TCACAGGGAT CTTGAATAAA GTCCTGCCTG
                                                                           720
       AGTTGGTTCA GGGCAACGTG TGCCCTCTGG TCAATGAGGT TCTCAGAGGC TTGGACATCA
                                                                           780
       CCCTGGTGCA TGACATTGTT AACATGCTGA TCCACGGACT ACAGTTTGTC ATCAAGGTCT
                                                                           840
       AAGCCTTCCA GGAAGGGGCT GGCCTCTGCT GAGCTGCTTC CCAGTGCTCA CAGATGGCTG
                                                                           900
       GCCCATGTGC TGGAAGATGA CACAGTTGCC TTCTCTCCGA GGAACCTGCC CCCTCTCCTT
                                                                           960
85
       TCCCACCAGG CGTGTGTAAC ATCCCATGTG CCTCACCTAA TAAAATGGCT CTTCTTCTGC
                                                                          1020
       ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ
```

Seq ID NO: 38 Protein sequence: Protein Accession #: NP_057667

```
11
                             21
                                         31
                                                    41
                                                               51
 5
       MFOTGGLIVF YGLLAQTMAQ FGGLPVPLDQ TLPLNVNPAL PLSPTGLAGS LTNALSNGLL
                                                                              60
       SGGLIGILEN LPLLDILKPG GGTSGGLLGG LLGKVTSVIP GLNNIIDIKV TDPQLLELGL
                                                                             120
       VQSPDGHRLY VTIPLGIKLQ VNTPLVGASL LRLAVKLDIT AEILAVRDKQ ERIHLVLGDC
                                                                             180
       THSPGSLQIS LLDGLGPLPI QGLLDSLTGI LNKVLPELVQ GNVCPLVNEV LRGLDITLVH
10
       DIVNMLIHGL QFVIKV
       Seq ID NO: 39 DNA sequence
       Nucleic Acid Accession #: NM_004363.1
15
       Coding sequence: 115-2223
                  11
                             21
                                         31
                                                               51
       CTCAGGGCAG AGGGAGGAAG GACAGCAGAC CAGACAGTCA CAGCAGCCTT GACAAAACGT
                                                                              60
20
       TCCTGGAACT CAAGCTCTTC TCCACAGAGG AGGACAGAGC AGACAGCAGA GACCATGGAG
                                                                             120
       TCTCCCTCGG CCCCTCCCCA CAGATGGTGC ATCCCCTGGC AGAGGCTCCT GCTCACAGCC
                                                                             180
       TCACTTCTAA CCTTCTGGAA CCCGCCCACC ACTGCCAAGC TCACTATTGA ATCCACGCCG
                                                                             240
       TTCAATGTCG CAGAGGGGAA GGAGGTGCTT CTACTTGTCC ACAATCTGCC CCAGCATCTT
                                                                             300
       TTTGGCTACA GCTGGTACAA AGGTGAAAGA GTGGATGGCA ACCGTCAAAT TATAGGATAT
                                                                             360
       GTAATAGGAA CTCAACAAGC TACCCCAGGG CCCGCATACA GTGGTCGAGA GATAATATAC
25
                                                                             420
       CCCAATGCAT CCCTGCTGAT CCAGAACATC ATCCAGAATG ACACAGGATT CTACACCCTA
       CACGTCATAA AGTCAGATCT TGTGAATGAA GAAGCAACTG GCCAGTTCCG GGTATACCCG
                                                                             540
       GAGCTGCCCA AGCCCTCCAT CTCCAGCAAC AACTCCAAAC CCGTGGAGGA CAAGGATGCT
       GTGGCCTTCA CCTGTGAACC TGAGACTCAG GACGCAACCT ACCTGTGGTG GGTAAACAAT CAGAGCCTCC CGGTCAGTCC CAGGCTGCAG CTGTCCAATG GCAACAGGAC CCTCACTCTA
                                                                             660
30
                                                                             720
       TTCAATGTCA CAAGAAATGA CACAGCAAGC TACAAATGTG AAACCCAGAA CCCAGTGAGT
                                                                             780
       GCCAGGCGCA GTGATTCAGT CATCCTGAAT GTCCTCTATG GCCCGGATGC CCCCACCATT
                                                                             840
       TCCCCTCTAA ACACATCTTA CAGATCAGGG GAAAATCTGA ACCTCTCCTG CCACGCAGCC
                                                                             900
       TCTAACCCAC CTGCACAGTA CTCTTGGTTT GTCAATGGGA CTTTCCAGCA ATCCACCCAA
                                                                             960
35
       GAGCTCTTTA TCCCCAACAT CACTGTGAAT AATAGTGGAT CCTATACGTG CCAAGCCCAT
                                                                            1020
       AACTCAGACA CTGGCCTCAA TAGGACCACA GTCACGACGA TCACAGTCTA TGCAGAGCCA
                                                                            1080
       CCCAAACCCT TCATCACCAG CAACAACTCC AACCCCGTGG AGGATGAGGA TGCTGTAGCC
                                                                            1140
       TTAACCTGTG AACCTGAGAT TCAGAACACA ACCTACCTGT GGTGGGTAAA TAATCAGAGC
                                                                            1200
       CTCCCGGTCA GTCCCAGGCT GCAGCTGTCC AATGACAACA GGACCCTCAC TCTACTCAGT
                                                                            1260
40
       GTCACAAGGA ATGATGTAGG ACCCTATGAG TGTGGAATCC AGAACGAATT AAGTGTTGAC
                                                                            1320
       CACAGCGACC CAGTCATCCT GAATGTCCTC TATGGCCCAG ACGACCCCAC CATTTCCCCC
                                                                            1380
       TCATACACCT ATTACCGTCC AGGGGTGAAC CTCAGCCTCT CCTGCCATGC AGCCTCTAAC
                                                                            1440
                                                                            1500
       CCACCTGCAC AGTATTCTTG GCTGATTGAT GGGAACATCC AGCAACACAC ACAAGAGCTC
       TTTATCTCCA ACATCACTGA GAAGAACAGC GGACTCTATA CCTGCCAGGC CAATAACTCA
                                                                            1560
45
       GCCAGTGGCC ACAGCAGGAC TACAGTCAAG ACAATCACAG TCTCTGCGGA GCTGCCCAAG
                                                                            1620
       CCCTCCATCT CCAGCAACAA CTCCAAACCC GTGGAGGACA AGGATGCTGT GGCCTTCACC
                                                                            1680
       TGTGAACCTG AGGCTCAGAA CACAACCTAC CTGTGGTGGG TAAATGGTCA GAGCCTCCCA
                                                                            1740
       GTCAGTCCCA GGCTGCAGCT GTCCAATGGC AACAGGACCC TCACTCTATT CAATGTCACA
                                                                            1800
       AGAAATGACG CAAGAGCCTA TGTATGTGGA ATCCAGAACT CAGTGAGTGC AAACCGCAGT
                                                                            1860
50
       GACCCAGTCA CCCTGGATGT CCTCTATGGG CCGGACACCC CCATCATTTC CCCCCCAGAC
                                                                            1920
       TOGTCTTACC TTTCGGGAGC GAACCTCAAC CTCTCCTGCC ACTCGGCCTC TAACCCATCC
                                                                            1980
       CCGCAGTATT CTTGGCGTAT CAATGGGATA CCGCAGCAAC ACACACAAGT TCTCTTTATC
                                                                            2040
       GCCAAAATCA CGCCAAATAA TAACGGGACC TATGCCTGTT TTGTCTCTAA CTTGGCTACT
                                                                            2100
       GGCCGCAATA ATTCCATAGT CAAGAGCATC ACAGTCTCTG CATCTGGAAC TTCTCCTGGT
                                                                            2160
55
       CTCTCAGCTG GGGCCACTGT CGGCATCATG ATTGGAGTGC TGGTTGGGGT TGCTCTGATA
       TAGCAGCCCT GGTGTAGTTT CTTCATTTCA GGAAGACTGA CAGTTGTTTT GCTTCTTCCT
                                                                            2280
       TAAAGCATTT GCAACAGCTA CAGTCTAAAA TTGCTTCTTT ACCAAGGATA TTTACAGAAA
                                                                            2340
       AGACTCTGAC CAGAGATCGA GACCATCCTA GCCAACATCG TGAAACCCCA TCTCTACTAA
                                                                            2400
       AAATACAAAA ATGAGCTGGG CTTGGTGGCG CGCACCTGTA GTCCCAGTTA CTCGGGAGGC
                                                                            2460
60
       TGAGGCAGGA GAATCGCTTG AACCCGGGAG GTGGAGATTG CAGTGAGCCC AGATCGCACC
                                                                            2520
       2580
       TCTGACCTGT ACTCTTGAAT ACAAGTTTCT GATACCACTG CACTGTCTGA GAATTTCCAA
                                                                            2640
       AACTTTAATG AACTAACTGA CAGCTTCATG AAACTGTCCA CCAAGATCAA GCAGAGAAAA
                                                                            2700
       TAATTAATTT CATGGGACTA AATGAACTAA TGAGGATTGC TGATTCTTTA AATGTCTTGT
                                                                            2760
65
                                                                            2820
       TTCCCAGATT TCAGGAAACT TTTTTTCTTT TAAGCTATCC ACTCTTACAG CAATTTGATA
       AAATATACTT TTGTGAACAA AAATTGAGAC ATTTACATTT TCTCCCTATG TGGTCGCTCC
                                                                            2880
       AGACTTGGGA AACTATTCAT GAATATTTAT ATTGTATGGT AATATAGTTA TTGCACAAGT
                                                                            2940
       TCAATAAAAA TCTGCTCTTT GTATAACAGA AAAA
70
       Seq ID NO: 40 Protein sequence:
       Protein Accession #: NP 004354.1
75
       MESPSAPPHR WCIPWORLLL TASLLTFWNP PTTAKLTIES TPFNVAEGKE VLLLVHNLPQ
       HLFGYSWYKG ERVDGNRQII GYVIGTQQAT PGPAYSGREI IYPNASLLIQ NIIQNDTGFY
                                                                             120
       TLHVIKSDLV NEEATGOFRV YPELPKPSIS SNNSKPVEDK DAVAFTCEPE TODATYLWWV
                                                                             180
       NNOSLPVSPR LOLSNGNRTL TLFNVTRNDT ASYKCETQNP VSARRSDSVI LNVLYGPDAP
                                                                             240
       TISPLNTSYR SGENLNLSCH AASNPPAQYS WFVNGTFQQS TQELFIPNIT VNNSGSYTCQ
                                                                             300
80
       AHNSDTGLNR TTVTTITVYA EPPKPFITSN NSNPVEDEDA VALTCEPEIQ NTTYLWWVNN
                                                                             360
       QSLPVSPRLQ LSNDNRTLTL LSVTRNDVGP YECGIQNELS VDHSDPVILN VLYGPDDPTI
SPSYTYYRPG VNLSLSCHAA SNPPAQYSWL IDGNIQQHTQ ELFISNITEK NSGLYTCQAN
                                                                             420
                                                                             480
       NSASGHSRTT VKTITVSAEL PKPSISSNNS KPVEDKDAVA FTCEPEAQNT TYLWWVNGQS
                                                                             540
       LPVSPRLQLS NGNRTLTLFN VTRNDARAYV CGIQNSVSAN RSDPVTLDVL YGPDTPIISP
                                                                             600
85
       PDSSYLSGAN LNLSCHSASN PSPQYSWRIN GIPQQHTQVL FIAKITPNNN GTYACFVSNL
       ATGRNNSIVK SITVSASGTS PGLSAGATVG IMIGVLVGVA LI
```

Seq ID NO: 41 DNA sequence Nucleic Acid Accession #: NM_006952.1 Coding sequence: 11-793 5 31 . 51 AATCCCGACA ATGGCGAAAG ACAACTCAAC TGTTCGTTGC TTCCAGGGCC TGCTGATTTT 60 TGGAAATGTG ATTATTGGTT GTTGCGGCAT TGCCCTGACT GCGGAGTGCA TCTTCTTTGT 120 10 ATCTGACCAA CACAGCCTCT ACCCACTGCT TGAAGCCACC GACAACGATG ACATCTATGG 180 GGCTGCCTGG ATCGGCATAT TTGTGGGCAT CTGCCTCTTC TGCCTGTCTG TTCTAGGCAT 240 TGTAGGCATC ATGAAGTCCA GCAGGAAAAT TCTTCTGGCG TATTTCATTC TGATGTTTAT 300 AGTATATGCC TTTGAAGTGG CATCTTGTAT CACAGCAGCA ACACAACGAG ACTTTTTCAC 360 ACCCAACCTC TTCCTGAAGC AGATGCTAGA GAGGTACCAA AACAACAGCC CTCCAAACAA 420 15 TGATGACCAG TGGAAAAACA ATGGAGTCAC CAAAACCTGG GACAGGCTCA TGCTCCAGGA 480 CAATTGCTGT GGCGTAAATG GTCCATCAGA CTGGCAAAAA TACACATCTG CCTTCCGGAC 540 TGAGAATAAT GATGCTGACT ATCCCTGGCC TCGTCAATGC TGTGTTATGA ACAATCTTAA 600 AGAACCTCTC AACCTGGAGG CTTGTAAACT AGGCGTGCCT GGTTTTTATC ACAATCAGGG 660 CTGCTATGAA CTGATCTCTG GTCCAATGAA CCGACACGCC TGGGGGGTTG CCTGGTTTGG 720 20 ATTTGCCATT CTCTGCTGGA CTTTTTGGGT TCTCCTGGGT ACCATGTTCT ACTGGAGCAG AATTGAATAT TAAGAA Seq ID NO: 42 Protein sequence: Protein Accession #: NP_008883.1 25 21 51 11 31 41 MAKDNSTVRC FQGLLIFGNV IIGCCGIALT AECIFFVSDQ HSLYPLLEAT DNDDIYGAAW 60 IGIFVGICLF CLSVLGIVGI MKSSRKILLA YFILMFIVYA FEVASCITAA TQRDFFTPNL 120 30 FLKQMLERYQ NNSPPNNDDQ WKNNGVTKTW DRLMLQDNCC GVNGPSDWQK YTSAFRTENN 180 DADYFWPRQC CVMNNLKEPL NLEACKLGVP GFYHNQGCYE LISGPMNRHA WGVAWFGFAI 240 LCWTFWVLLG TMFYWSRIEY 35 Seq ID NO: 43 DNA sequence Nucleic Acid Accession #: Eos sequence Coding sequence: 83-2605 40 GCCGGACAGA TCTGCGCGTA TCCTGGAGCC GGCCCAGTTG TGAACTAGGA GAGCTTTGGG ACCTCTGTCC CAAGCAAGAG AGATGAATGG AGAGTATAGA 'GGCAGAGGAT TTGGACGAGG AAGATTTCAA AGCTGGAAAA GGGGAAGAGG TGGTGGGAAC TTCTCAGGAA AATGGAGAGA AAGAGAACAC AGACCTGATC TGAGTAAAAC CACAGGAAAA CGTACTTCTG AACAAACCCC 240 45 ACAGTTTTTG CTTTCAACAA AGACCCCACA GTCAATGCAG TCAACATTGG ATCGATTCAT 300 ACCATATAAA GGCTGGAAGC TTTATTTCTC TGAAGTTTAC AGCGATAGCT CTCCTTTGAT 360 TGAGAAGATT CAAGCATTTG AAAAATTTTT CACAAGGCAT ATTGATTTGT ATGACAAGGA 420 TGAAATAGAA AGAAAGGGAA GTATTTTGGT AGATTTTAAA GAACTGACAG AAGGTGGTGA 480 AGTAACTAAC TTGATACCAG ATATAGCAAC TGAACTAAGA GATGCACCTG AGAAAACCTT 540 50 GGCTTGCATG GGTTTGGCAA TACATCAGGT GTTAACTAAG GACCTTGAAA GGCATGCAGC 600 TGAGTTACAA GCCCAGGAAG GATTGTCTAA TGATGGAGAA ACAATGGTAA ATGTGCCACA 660 TATTCATGCA AGGGTGTACA ACTATGAGCC TTTGACACAG CTCAAGAATG TCAGAGCAAA 720 TTACTATGGA AAATACATTG CTCTAAGAGG GACAGTGGTT CGTGTCAGTA ATATAAAGCC 780 TCTTTGCACC AAGATGGCTT TTCTTTGTGC TGCATGTGGA GAAATTCAGA GCTTTCCTCT 840 55 TCCAGATGGA AAATACAGTC TTCCCACAAA GTGTCCTGTG CCTGTGTGTC GAGGCAGGTC 900 ATTTACTGCT CTCCGCAGCT CTCCTCTCAC AGTTACGATG GACTGGCAGT CAATCAAAAT 960 CCAGGAATTG ATGTCTGATG ATCAGAGAGA AGCAGGTCGG ATTCCACGAA CAATAGAATG 1020 TGAGCTTGTT CATGATCTTG TGGATAGCTG TGTCCCGGGA GACACAGTGA CTATTACTGG 1080 AATTGTCAAA GTCTCAAATG CGGAAGAAGG TTCTCGAAAT AAGAATGACA AGTGTATGTT 1140 60 CCTTTTGTAT ATTGAAGCAA ATTCTATTAG TAATAGCAAA GGACAGAAAA CAAAGAGTTC 1200 TGAGGATGGG TGTAAGCATG GAATGTTGAT GGAGTTCTCA CTTAAAGACC TTTATGCCAT 1260 CCAAGAGATT CAAGCTGAAG AAAACCTGTT TAAACTCATT GTCAACTCGC TTTGCCCTGT 1320 CATTTTGGT CATGAACTTG TTAAAGCAGG TTTGGCATTA GCACTCTTTG GAGGAAGCCA 1380 GAAATACGCA GATGACAAAA ACAGAATTCC AATTCGGGGA GACCCCCACA TCCTTGTTGT 1440 65 TGGAGATCCA GGCCTAGGAA AAAGTCAAAT GCTACAGGCA GCGTGCAATG TTGCCCCACG 1500 TGGCGTGTAT GTTTGTGGTA ACACCACGAC CACCTCTGGT CTGACGGTAA CTCTTTCAAA 1560 AGATAGTICC TCTGGAGATT TTGCTTTGGA AGCTGGTGCC CTGGTACTTG GTGATCAAGG 1620 TATTTGTGGA ATCGATGAAT TTGATAAGAT GGGGAATCAA CATCAAGCCT TGTTGGAAGC 1680 CATGGAGCAG CAAAGTATTA GTCTTGCTAA GGCTGGTGTG GTTTGTAGCC TTCCTGCAAG 1740 70 AACTTCCATT ATTGCTGCTG CAAATCCAGT TGGAGGACAT TACAATAAAG CCAAAACAGT TTCTGAGAAT TTAAAAATGG GGAGTGCACT ACTATCCAGA TTTGATTTGG TCTTTATCCT 1860 GTTAGATACT CCAAATGAGC ATCATGATCA CTTACTCTCT GAACATGTGA TTGCAATAAG AGCTGGAAAG CAGAGAACCA TTAGCAGTGC CACAGTAGCT CGTATGAATA GTCAAGATTC 1980 AAATACTTCC GTACTTGAAG TAGTTTCTGA GAAGCCATTA TCAGAAAGAC TAAAGGTGGT 75 TCCTGGAGAA ACAATAGATC CCATTCCCCA CCAGCTATTG AGAAAGTACA TTGGCTATGC 2100 TCGGCAGTAT GTGTACCCAA GGCTATCCAC AGAAGCTGCT CGAGTTCTTC AAGATTTTTA 2160 CCTTGAGCTC CGGAAACAGA GCCAGAGGTT AAATAGCTCA CCAATCACTA CCAGGCAGCT 2220 GGAATCTTTG ATTCGTCTGA CAGAGGCACG AGCAAGGTTG GAATTGAGAG AGGAAGCAAC 2280 CAAAGAAGAC GCTGAGGATA TAGTGGAAAT TATGAAATAT AGCATGCTAG GAACTTACTC 2340 80 TGATGAATTT GGGAACCTAG ATTTTGAGCG ATCCCAGCAT GGTTCTGGAA TGAGCAACAG 2400 GTCAACAGCG AAAAGATTTA TTTCTGCTCT CAACAACGTT GCTGAAAGAA CTTATAATAA 2460 TATATTCAA TITCATCAAC TICGGCAGAT TGCCAAAGAA CTAAACATTC AGGTTGCTGA 2520 TTTTGAAAAT TTTATTGGAT CACTAAATGA CCAGGGTTAC CTCTTGAAAA AAGGCCCAAA 2580 AGTITACCAG CITCAAACTA TGTAAAAGGA CITCACCAAG TTAGGGCCTC CIGGGITTAT 2640 85 TGCAGATTAA AGCCATCTCA GTGAAGATAT GCGTGCACGC ACAGACAGAC AGACACACAC 2700

ACACACACA ACACACAC ACACACACA ACACACAGTC AAATACTGTT CTCTGAAAAA

TGATGTCCCA AAAGTATTAT AATAGGAAAA AAGCATTAAA TATAATAAAC TAATTTAAGA

2760

2820

```
AGTGATAAAG TCTCCAGATG CAGTAGCTCA CACTGTAATC ACAGTGACTC AGGAGGCTGA
                                                                           2880
       GGTGAGAGGA TTCCTTGAGG CCAGGGTTCG AGACCAACCT TGGGCAACAT AGCAAGACCC
                                                                           2940
       CATTTCTTAA AAAAAAAAA AAAAAATTTA AACTTAGCTG GGTATGGTGG CACATGCCTA
       TAGTCTCAGC TACTTGTGAG GCTGAGGCAG GAGGATTCTT TGAGCCCAGG AGTTTGAGGT
                                                                           3060
      TACAGTGAGC CACAATCACA CCAATCACTG CACTCCAGCC TGGGCAATAA AGTAACTCTT
                                                                           3120
       GACTCAAAAA AATAAAAAA ATTGTAGTGG TAGCCATGTG TTAATTGTTA AATAAATTCT
                                                                           3180
       CCAAAGGGCT AAAAGTAAAT TACTTATAAA TTTTTTATAG TTGTATTTTT GACCTGCCTT
                                                                           3240
      TTATATGTAT GAATATTTCA TAGTTTTGCA TATCAGATGT AGGCATACAG ACAAATACAT AAACCAATGA ATATATTACA TATTCTGTGT TCCAATAAAA CTTTATTAT GGACACTAAA
                                                                           3300
                                                                           3360
       ATTTGAATTT CATAAAATTT TCCCATGTCA AGAATACAAA ATACTTGAGT TTTGTTTTTA
10
                                                                           3420
       GCTATTTAAT AATAGGTCTC ATTTATTCCA CAGGCTGTAG TTTGTAGTCT TGCTTGAAAC
                                                                           3480
       AATAGAAACA GACTGATTAA GCAGGAGAAG TTTTTTGAAA GAATTTTGTT TGGCTCACGG
                                                                           3540
       AATTATTAGA AGGCAGGTGA ACCAGGAGGG TAAGCTTCCA GCAGCAATTT GTAAAACCAT
                                                                           3600
       GCCTTAGAAT TGGACTAAGG AAGAAGCTGC TGACACTCCA CTGCCACACA GGGCACTGGA
                                                                           3660
15
       AGAAAGTGCT GCTGCCTCCC TGCCCCACCT TTGCCACTTC TGCAGCAGGA ATAGGTAGAA
                                                                           3720
                                                                           3780
       GAATGCCCCC ACCCGCACCG GAACAGCAAC AAAAGGATTC TGCATGAGAT GCCTCCCTAA
       ATTGCTGAAT TCAAAAAAGA AGTTGCATAC AAAGACATCT GATTGAAAAA GGGTATGTTA
                                                                           3840
       TATGCCCCTT TCATAGGCTG CTAGGGAGTT TTCCTGGTTC TACTTTCAGG TGGTGGGATC
                                                                           3900
       AATAAGACCA GAATITCTCA TATGTTGTGA GAGGATTCAA ATGTTACAGG GTTGCCAGCC
                                                                           3960
20
       AAACTATCAA TCATGTATAA ATCCAACAAA CACTTTGTAA CATACAAGAA CTCAGGAAAT
                                                                           4020
       GTGAACCATT GTTGGAGAAT CTACTAAAAT ACGGCTTCCC GCAAACGAAG ATGAATGGAA
                                                                           4080
       AATGTAAATA AAAAGAACTG GCAGTGTATA TCAGATGTTT AACTATAGGA CCAGAACTAA
                                                                           4140
       GATGTGGAGA CTATTGCCAT AGACCACAAT GTAAATTTTT AAGTGAGGAA GGAAAAATCA
                                                                           4200
       GGAATCAAAA GGGGCCAGGT GCAGTGGCTC ACATCTATAA TCCCAGAGCT TTGGGAGTTC
                                                                           4260
25
       GAGGCAGGAG GATCACTTGA AGCCAGTTTT GAGACCAGCC TATGCAACAC ATTGAGACCC
                                                                           4320
       TATCTCTACA AAAAATAGAT TAGCTGGGCA CGGTGGTGCA TGCCTATTGT CCTACCTACT
                                                                           4380
       GTGGAGGCTG AAGTAGGAAA TCACTTGAGC CCGAGAGTTT GAGGTTACAG TGAGCTATGA
                                                                           4440
       TTATACCACT GCACTCCAGC CTGGGCAAGA GAGCAAGACC TTGTCTCTT
30
       Seq ID NO: 44 Protein sequence:
       Protein Accession #: CAB55276.2
                                                               51
                              21
35
       MNGEYRGRGF GRGRFQSWKR GRGGGNFSGK WREREHRPDL SKTTGKRTSE QTPQFLLSTK
       TPOSMOSTLD RFIPYKGWKL YFSEVYSDSS PLIEKIQAPE KFFTRHIDLY DKDEIERKGS
                                                                             120
       ILVDFKELTE GGEVTNLIPD IATELRDAPE KTLACMGLAI HQVLTKDLER HAAELQAQEG
       LSNDGETMVN VPHIHARVYN YEPLTQLKNV RANYYGKYIA LRGTVVRVSN IKPLCTKMAF
                                                                             240
       LCAACGEIQS FPLPDGKYSL PTKCPVPVCR GRSFTALRSS PLTVTMDWQS IKIQELMSDD
40
       OREAGRIPRT IECELVHDLV DSCVPGDTVT ITGIVKVSNA EEGSRNKNDK CMFLLYIEAN
                                                                            360
       SISNSKGOKT KSSEDGCKHG MLMEFSLKDL YAIQEIQARE NLFKLIVNSL CPVIFGHELV
                                                                             420
       KAGLALALFG GSQKYADDKN RIPIRGDPHI LVVGDPGLGK SQMLQAACNV APRGVYVCGN
                                                                             480
       TTTTSGLTVT LSKDSSSGDF ALEAGALVLG DQGICGIDEF DKMGNQHQAL LEAMEQQSIS
                                                                            540
       LAKAGVVCSL PARTSIIAAA NPVGGHYNKA KTVSENLKMG SALLSRFDLV FILLDTPNEH
                                                                             600
       HDHLLSEHVI AIRAGKQRTI SSATVARMNS QDSNTSVLEV VSEKPLSERL KVVPGETIDP
45
                                                                             660
       IPHQLLRKYI GYARQYVYPR LSTEAARVLQ DFYLELRKQS QRLNSSPITT RQLESLIRLT
                                                                             720
       EARARLELRE EATKEDAEDI VEIMKYSMLG TYSDEFGNLD FERSQHGSGM SNRSTAKRFI
                                                                             780
       SALNNVAERT YNNIFQFHQL RQIAKELNIQ VADFENFIGS LNDQGYLLKK GPKVYQLQTM
50
       Seq ID NO: 45 DNA sequence
       Nucleic Acid Accession #: NM_005416.1
       Coding sequence: 149..658
55
                              21
                                                    41
                                                               51
                                         31
       ACCAGATCCC AGAGGCTGAA CACCTCGACC TTCTCTGCAC AGCAGATGAT CCCTGAGCAG
                                                                              60
       CTGAAGACCA GAAAAGCCAC TAAGACTTTC TGCTTAATTC AGGAGCTTAG AGGATTCTTC
                                                                             120
       AAAGAGTGTG TCCACGATCC TTTGAAGCAT GAGTTCTTAC CAGCAGAAGC AGACCTTTAC
                                                                            180
60
       CCCACCACCT CAGCTTCAAC AGCAGCAGGT GAAACAACCC AGCCAGCCTC CACCTCAGGA
                                                                             240
       AATATTTGTT CCCACAACCA AGGAGCCATG CCACTCAAAG GTTCCACAAC CTGGAAACAC
                                                                             300
       AAAGATTCCA GAGCCAGGCT GTACCAAGGT CCCTGAGCCA GGCTGTACCA AGGTCCCTGA
                                                                             360
       GCCAGGCTGT ACCAAGGTCC CTGAGCCAGG TTGTACCAAG GTCCCTGAGC CAGGCTGTAC
                                                                             420
       CAAGGTCCCT GAGCCAGGTT GTACCAAGGT CCCTGAGCCA GGCTACACCA AGGTCCCTGA
                                                                             480
65
       ACCAGGCAGC ATCAAGGTCC CTGACCAAGG CTTCATCAAG TTTCCTGAGC CAGGTGCCAT
                                                                             540
       CAAAGTTCCT GAGCAAGGAT ACACCAAAGT TCCTGTGCCA GGCTACACAA AGCTACCAGA
                                                                             600
       GCCATGTCCT TCAACGGTCA CTCCAGGCCC AGCTCAGCAG AAGACCAAGC AGAAGTAATT
                                                                             660
       TGGTGCACAG ACAAGCCCTT GAGAAGCCAA CCACCAGATG CTGGACACCC TCTTCCCATC
                                                                             720
       TGTTTCTGTG TCTTAATTGT CTGTAGACCT TGTAATCAGC ACATTGTCAC CCCAAGCCAT
                                                                             780
70
       AGTCTCTCTC TTATTTGTAT CCTAAAAATA CGTACTATAA AGCTTTTGTT CACACACACT
                                                                             840
       CTGAAGAATC CTGTAAGCCC CTGAATTAAG CAGAAAGTCT TCATGGCTTT TCTGGTCTTC
                                                                             900
       GGCTGCTCAG GGTTCATCTG AAGATTCGAA TGAAAAGAAA TGCATGTTTC CTGCTCTTCC
                                                                             960
       CTCATTAAAT TGCTTTTAAT TCCA
75
       Seq ID NO: 46 Protein sequence:
       Protein Accession #: NP 005407.1
                              21
                                                               51
80
       MSSYQQKQTF TPPPQLQQQQ VKQPSQPPPQ EIFVPTTKEP CHSKVPQPGN TKIPEPGCTK
                                                                              60
       VPEPGCTKVP EPGCTKVPEP GCTKVPEPGC TKVPEPGCTK VPEPGYTKVP EPGSIKVPDQ
                                                                            120
       GFIKFPEPGA IKVPEQGYTK VPVPGYTKLP EPCPSTVTPG PAQQKTKQK
85
       Seq ID NO: 47 DNA sequence
       Nucleic Acid Accession #: Eos sequence
```

ATTTCTAGCT TCCACCTTCA CCAAGGCAGA CAAGGAGGGC CCACCTCAGC TCCTCTGCTC 420 CCCCTCCCTT TCCCACCTAT TCATGTGTGC AAGAGTGCCC TGTCCCACAG AACACGGGGA 480 ACAACCATCT CAATGACAAG GACAGCAGGT GGCAAGGCTC AACAGGACTC AGATGTCCCC 540 CCAGGGTTAA CTCATGAAAC CCTCCATGAA GCCTGCTGCT CACCCCTCCC TCAAGGCAAG 600 CCCTGCACCT GGGTCTGAGG ATGAGGGTGG CAGTGAAAAT TAGGCCAGTG ACATCATTTT 660 CAGCCAGCTA GTGCCAAAAA ATATCAGGTG GTGTTCATCA AATAAGCCGA GCCAACCGGT 720 GATGAGGATG GTAGTGTGAG TCATGTGTGA CAGGTGAGGA ATGAAAACAG AGTGCCCGAG 780 AGCTTCTATT TCCTTGAGGC AGGGCTCATT CATCTTATAA AAGCCAGCTG GCCATTGCCT 840 TCACACCAAA CCCAAGGGAC CACACAGCCC ATTCTGCTCC GTATACCAGG TAAGTCTCTG 900 ATTGCAACAA ACTGGCAATT CTAGTGTACT TTTTCATTAT TAGAAATTAG CTAAAGGCAA 960 ATATGTGTAA GCAGGTTAAT CCAGGGTTTC AATGGGAGAT AGAGAATAGT GGAATATCTT 1020 TATTTTAAGT TAAATTACAG TCTGGATTTG AAAGGACCTT AGAGATGGTT AGGGCTCCCA 1080 CCTCAGTAGA TAGTCATTGA ACTGGGAGTC CTGGAGAAGA TTGTTCAAAT GCCCATGGGA 1140 AGTTCATAGC AGAACTAGAA CTCAGGCCAG AGCACTCTCA GTAACACTGC AATTTCCCCC 1200 TGACAAGATA TTTATAGAAA TTTTAATTTA TTAGATGGAT CTCTACTGAG CATTTATTCC 1260 ATTTAAGGCA GTATGCTAGG CACTTTGGAC AAATCAATGC CCTAACGTAC TTACTTAACA 1320 1380 AGTAATTGGC ATGACGGAGA TGGGCAGAGA AGGGCTGTGC ACTTTTGGGA GACTTGCTCA 1440 AGGAGACCTC TAGGGTGTCA AGTGATGTGA GCTATGATGG AGGGGTATTT GGACAAGCAG 1500 AGATGGGAAG AAAAGCATTT GGAAGGGACT GTGTAAGCAC AGACCAGAAG CAAAACCATA 1560 GAGGCTTAGA TGAATATAAA GCCATCCTAT AAGTCACAGG CTTTCTACAT GGTACTAGGA 1620 GAGGAAAGTG GTCTGATGCC ATTTTCCAAA AGACCTAATA TGCGGACCTC ATGTCCCTCA 1680 GAAGCCAGCT TTAGTAGGGC ATTTTTCCAG AACAGATATA AGGTGCCTTG GGTAGGAAGG 1740 GAGCCAAGAA GAGAACTCCA ATAAAATGGA GCAGAAGAAA TTGCCTTTTA GCTCCTCCTC 1800

TTCAAAGGC CTGAAAATTA TCCAAGCTTA TTTCATTTTT AAATGTAATG GGGGAGCTAA 1860

65

70

75

80

85

WO 02/086443 GGGAGATGAA AGGCTTTCTC TTCTAAAGGG TCCTGAAATA AAATCTGTTT GGCATTGAAT 1920 TTGTATCCAT CTTTCTTTAA TTGAATCACT GTGTCAGCTT TCTGTCTCTA GAAAAAACA 1980 2040 GCAGCAGCAG GTGAAACAAC CTTGCCAGCC TCCACCCCAG GAACCATGCA TCCCCAAAAC 2100 5 CAAGGAGCCC TGCCAACCCA AGGTGCCTGA GCCCTGCCAC CCCAAAGTGC CTGAGCCCTG 2160 CCAGCCCAAG ATTCCAGAGC CCTGCCAGCC CAAGGTGCCT GAGCCCTGCC CTTCAACGGT 2220 CACTCCAGCA CCAGCCCAGC AGAAGACCAA GCAGAAGTAA TGTGGTCCAC AGCCATGCCC 2280 TTGAGGAGCT GGCCACTGGA TACTGAACAC CCTACTCCAT TCTGCTTATG AATCCCATTT 2340 GCCTATTGAC CCTGCAGTTA GCATGCTGTC ACCCTGAATC ATAATCGCTC CTTTGCACCT 2400 10 CTAAAAAGAT GTCCCTTACC CTCATTCTGG AGGCTCCTGA GCCTCTGCGT AAGGCTGAAC 2460 GTCTCACTGA CTGAGCTAGT CTTCTTGTTG CTCGGGTGCA TTTGAGGATG GATTTGGGGA 2520 AGGTCAAGTG ACCATCCCTA G Seq ID NO: 51 Protein sequence: 15 Protein Accession #: AAC26838 11 21 31 MNSQQQKQPC TPPPQPQQQQ VKQPCQPPPQ EPCIPKTKEP CQPKVPEPCH PKVPEPCQPK 60 20 IPEPCQPKVP EPCPSTVTPA PAQQKTKQK Sea ID NO: 52 DNA sequence Nucleic Acid Accession #: NM_002638.1 25 Coding sequence: 120-473 11 21 31 CAATACAGCT AAGGAATTAT CCCTTGTAAA TACCACAGAC CCGCCCTGGA GCCAGGCCAA 60 30 GCTGGACTGC ATAAAGATTG GTATGGCCTT AGCTCTTAGC CAAACACCTT CCTGACACCA 120 TGAGGGCCAG CAGCTTCTTG ATCGTGGTGG TGTTCCTCAT CGCTGGGACG CTGGTTCTAG 180 AGGCAGCTGT CACGGGAGTT CCTGTTAAAG GTCAAGACAC TGTCAAAGGC CGTGTTCCAT 240 TCAATGGACA AGATCCCGTT AAAGGACAAG TTTCAGTTAA AGGTCAAGAT AAAGTCAAAG 300 CGCAAGAGCC AGTCAAAGGT CCAGTCTCCA CTAAGCCTGG CTCCTGCCCC ATTATCTTGA 360 35 TCCGGTGCGC CATGTTGAAT CCCCCTAACC GCTGCTTGAA AGATACTGAC TGCCCAGGÂA 420 TCAAGAAGTG CTGTGAAGGC TCTTGCGGGA TGGCCTGTTT CGTTCCCCAG TGAAGGGAGC 480 CGGTCCTTGC TGCACCTGTG CCGTCCCCAG AGCTACAGGC CCCATCTGGT CCTAAGTCCC 540 TECTECCTT CCCCTTCCCA CACTETCCAT TCTTCCTCCC ATTCAGGATG CCCACGGCTG GAGCTGCCTC TCTCATCCAC TTTCCAATAA A 40 Seq ID NO: 53 Protein sequence: Protein Accession #: NP_002629.1 51 21 31 41 45 MRASSFLIVV VFLIAGTLVL EAAVTGVPVK GQDTVKGRVP FNGQDPVKGQ VSVKGQDKVK 60 AQEPVKGPVS TKPGSCPIIL IRCAMLNPPN RCLKDTDCPG IKKCCEGSCG MACFVPQ Seq ID NO: 54 DNA sequence 50 Nucleic Acid Accession #: NM_019618 Coding sequence: 75-584 51 55 GGCACGAGCC ACGATTCAGT CCCCTGGACT GTAGATAAAG ACCCTTTCTT GCCAGGTGCT GAGACAACCA CACTATGAGA GGCACTCCAG GAGACGCTGA TGGTGGAGGA AGGGCCGTCT ATCAATCAAT GTGTAAACCT ATTACTGGGA CTATTAATGA TTTGAATCAG CAAGTGTGGA CCCTTCAGGG TCAGAACCTT GTGGCAGTTC CACGAAGTGA CAGTGTGACC CCAGTCACTG TTGCTGTTAT CACATGCAAG TATCCAGAGG CTCTTGAGCA AGGCAGAGGG GATCCCATTT 60 ATTTGGGAAT CCAGAATCCA GAAATGTGTT TGTATTGTGA GAAGGTTGGA GAACAGCCCA 360 CATTGCAGCT AAAAGAGCAG AAGATCATGG ATCTGTATGG CCAACCCGAG CCCGTGAAAC 420 CCTTCCTTTT CTACCGTGCC AAGACTGGTA GGACCTCCAC CCTTGAGTCT GTGGCCTTCC CGGACTGGTT CATTGCCTCC TCCAAGAGAG ACCAGCCCAT CATTCTGACT TCAGAACTTG 540 GGAAGTCATA CAACACTGCC TTTGAATTAA ATATAAATGA CTGAACTCAG CCTAGAGGTG 65 GCAGCTTGGT CTTTGTCTTA AAGTTTCTGG TTCCCAATGT GTTTTCGTCT ACATTTTCTT 660 AGTGTCATTT TCACGCTGGT GCTGAGACAG GGGCAAGGCT GCTGTTATCA TCTCATTTTA 720 TAATGAAGAA GAAGCAATTA CTTCATAGCA ACTGAAGAAC AGGATGTGGC CTCAGAAGCA 780 GGAGAGCTGG GTGGTATAAG GCTGTCCTCT CAAGCTGGTG CTGTGTAGGC CACAAGGCAT 840 CTGCATGAGT GACTITAAGA CTCAAAGACC AAACACTGAG CTTTCTTCTA GGGGTGGGTA 900 70 TGAAGATGCT TCAGAGCTCA TGCGCGTTAC CCACGATGGC ATGACTAGCA CAGAGCTGAT 960 CTCTGTTTCT GTTTTGCTTT ATTCCCTCTT GGGATGATAT CATCCAGTCT TTATATGTTG CCAATATACC TCATTGTGTG TAATAGAACC TTCTTAGCAT TAAGACCTTG TAAACAAAAA 1020 1080 TAATTCTTGT GTTAAGTTAA ATCATTTTTG TCCTAATTGT AATGTGTAAT CTTAAAGTTA 75 Seq ID NO: 55 Protein sequence: Protein Accession #: NP_062564 11 80 MRGTPGDADG GGRAVYQSMC KPITGTINDL NQQVWTLQGQ NLVAVPRSDS VTPVTVAVIT 60 CKYPEALEQG RGDPIYLGIQ NPEMCLYCEK VGEQPTLQLK EQKIMDLYGQ PEPVKPFLFY 120 RAKTGRTSTL ESVAPPDWFI ASSKRDQPII LTSELGKSYN TAFELNIND 85

Seq ID NO: 56 DNA sequence

Coding sequence: 65-334

Nucleic Acid Accession #: NM_003125

PCT/US02/12476

5 10 15	CAGCATGAGT GCAGGTGAAA GCCCTGCCAC CAAGCTTCCA AGCACCAGCC AGCCGGCCAC CAATTAGCAT TCTGAGTCTC	11 AGGGACCATA TCCCAGCAGC CAGCCTTGCC CCCAAGGTGC CAGCAGAAGA CAGATGCTGA TCTGTCTCCC TGAATGAAGC AGAAGAACT TCAATTCCA	AGAAGCAGCC AGCCTCCACC CTGAGCCCTG ACCCCAAGGT CCAAGCAGAA ATCCCCTATC CCAAAAAAGA TGAAGGTCTT	CTGCATCCCA TCAGGAACCA CCACCCCAAA GCCTGAGCCC GTAATGTGGT CCATTCTGTG ATGTGCTATG AGTACCAGAG	CCCCTCAGC TGCATCCCCA GTGCCTGAGC TGCCCTTCAA CCACAGCCAT TATGAGTCCC AAGCTTTCTT CTAGTTTTCA	TTCAGCAGCA AAACCAAGGA CCTGCCAGCC TAGTCACTCC GCCCTTGAGG ATTTGCCTTG TCCTACACAC GCTGCTCAGA	60 120 180 240 300 360 420 480 540 600
20		57 Protein cession #: N					
20	1	11	21	31	41	51	
		1		boot parked	Cimkinsberch	PKIMEDCODK	60
		IPPPQLQQQQ EPCPSIVTPA		EPCIPKIKEP	CHPKVPEPCH	PRVPEPCQPR	60
25	DI DI CILI IVI	ar croiviiii					
	Nucleic Ac	58 DNA sequid Accession tence: 71-25	#: NM_001	793.2			
30	1	11	21	31	41	51	
50	Ī	1	1	1	1	1	
	AAAGGGGCAA	GAGCTGAGCG	GAACACCGGC	CCGCCGTCGC	GGCAGCTGCT	TCACCCCTCT	60 120
	CTCTGCAGCC	ATGGGGGCTCC TGCGCGGCCT	CCGAGCCGTG	CCGGGCGTC	TTCAGGGAGG	CTGAAGTGAC	180
35	CTTGGAGGCG	GGAGGCGCGG	AGCAGGAGCC	CGGCCAGGCG	CTGGGGAAAG	TATTCATGGG	240
		CAAGAGCCAG GTCCAGGAAA					300 360
	ATCCAAACGT	ATCTTACGAA	GACACAAGAG	AGATTGGGTG	GTTGCTCCAA	TATCTGTCCC	420
40	TGAAAATGGC	AAGGGTCCCT	TCCCCCAGAG	ACTGAATCAG	CTCAAGTCTA	ATAAAGATAG	480
40		ATTTTCTACA GAGAAGGAGA					540 600
	GATTGCCAAG	TATGAGCTCT	TTGGCCACGC	TGTGTCAGAG	AATGGTGCCT	CAGTGGAGGA	660
	CCCCATGAAC	ATCTCCATCA	TCGTGACCGA	CCAGAATGAC	CACAAGCCCA	AGTTTACCCA	720
45		CGAGGGAGTG GATGAGGATG					780 840
43		GAACCAAAGG					900
	CACCATCAGC	GTCATCTCCA	GTGGCCTGGA	CCGGGAAAAA	GTCCCTGAGT	ACACACTGAC	960
		ACAGACATGG GCCAATGACA					1020 1080
50		GCAGTGGGCC					1140
	CAACTCACCA	GCGTGGCGTG	CCACCTACCT	TATCATGGGC	GGTGACGACG	GGGACCATTT	1200
		ACCCACCCTG AAAAACCAGC					1260 1320
		CCAACCTCCA					1380
55	ACCTGTGTTT	GTCCCACCCT	CCAAAGTCGT	TGAGGTCCAG	GAGGGCATCC	CCACTGGGGA	1440
	GCCTGTGTGT	GTCTACACTG GACCCAGCAG	CAGAAGACCC	TGACAAGGAG	AATCAAAAGA	AGGTCACAGC	1500 1560
	TGTGGGCACC	CTCGACCGTG	AGGATGAGCA	GTTTGTGAGG	AACAACATCT	ATGAAGTCAT	1620
60	GGTCTTGGCC	ATGGACAATG	GAAGCCCTCC	CACCACTGGC	ACGGGAACCC	TTCTGCTAAC	1680
60	ACTGATTGAT	GTCAATGACC	ATGGCCCAGT	CCCTGAGCCC	CGTCAGATCA	CCATCTGCAA CCCACACCTC	1740 1800
	CCCTTTCCAG	GCCCAGCTCA	CAGATGACTC	AGACATCTAC	TGGACGGCAG	AGGTCAACGA	1860
	GGAAGGTGAC	ACAGTGGTCT	TGTCCCTGAA	GAAGTTCCTG	AAGCAĠGATA	CATATGACGT	1920
65	GCACCTTTCT	CTGTCTGACC	TCGAAACCTG	CCCTGGACCC	TGGAAGGGAG	GGGCCACTGT GTTTCATCCT	1980 2040
00	CCCTGTGCTG	GGGGCTGTCC	TGGCTCTGCT	GTTCCTCCTG	CTGGTGCTGC	TTTTGTTGGT	2100
						CCCGTGACAA	2160 2220
						ACATCACCCA TGGCACCAAC	
70	CATCATCCCG	ACACCCATGT	ACCGTCCTCG	GCCAGCCAAC	CCAGATGAAA	TCGGCAACTT	2340
						ACGACACCCT	
						CCCTCACCTC GCCGCTTCAA	2520
75	GAAGCTGGCA	GACATGTACG	GTGGCGGGGA	GGACGACTAG	GCGGCCTGCC	TGCAGGGCTG	2580
75	GGGACCAAAC	GTCAGGCCAC	AGAGCATCTC	CAAGGGGTCT	CAGTTCCCCC	TTCAGCTGAG	2640 2700
	GACTTCGGAG ACGTTAGAGT	GGTTGCTTCC	TTAGCCTTTC	AGGATGGAGG	AATGTGGGCA	TATGAGTCTG GTTTGACTTC	
	AGCACTGAAA	ACCTCTCCAC	CTGGGCCAGG	GTTGCCTCAG	AGGCCAAGTT	TCCAGAAGCC	2820
80	TCTTACCTGC	CGTAAAATGC	TCAACCCTGT	GTCCTGGGCC	TGGGCCTGCT	GTGACTGACC	
00 .						ACTTAATTTT GCCCAGAGCT	2940 3000
	GCTGGGCCCA	CTGGCCGTCC	TGCATTTCTG	GTTTCCAGAC	CCCAATGCCT	CCCATTCGGA	3060
	TGGATCTCTG	CGTTTTTATA	CTGAGTGTGC	CTAGGTTGCC	CCTTATTTTT	TATTTTCCCT	
85		TATAGATGAA TTTCCCAGAA		AATCGTGTAT	AIGTACTAGA	ACTTTTTAT	3180

Seq ID NO: 59 Protein sequence:

Protein Accession #: NP_001784.2

```
MGLPRGPLAS LLLLQVCWLQ CAASEPCRAV FREAEVTLEA GGAEQEPGQA LGKVFMGCPG
 5
                                                                              60
       QEPALFSTDN DDFTVRNGET VQERRSLKER NPLKIFPSKR ILRRHKRDWV VAPISVPENG
                                                                             120
       KGPFPQRLNQ LKSNKDRDTK IFYSITGPGA DSPPEGVFAV EKETGWLLLN KPLDREEIAK
                                                                             180
       YELFGHAVSE NGASVEDPMN ISIIVTDQND HKPKFTQDTF RGSVLEGVLP GTSVMQVTAT
                                                                             240
       DEDDALYTYN GVVAYSIHSQ EPKDPHDLMF TIHRSTGTIS VISSGLDREK VPEYTLTIQA
                                                                             300
10
       TDMDGDGSTT TAVAVVEILD ANDNAPMFDP QKYEAHVPEN AVGHEVQRLT VTDLDAPNSP
                                                                             360
       AWRATYLIMG GDDGDHFTIT THPESNQGIL TTRKGLDFEA KNQHTLYVEV TNEAPFVLKL
                                                                             420
       PTSTATIVVH VEDVNEAPVF VPPSKVVEVQ EGIPTGEPVC VYTAEDPDKE NQKISYRILR DPAGWLAMDP DSGQVTAVGT LDREDEQFVR NNIYEVMVLA MDNGSPPTTG TGTLLLTLID
                                                                             540
       VNDHGPVPEP RQITICNQSP VRQVLNITDK DLSPHTSPFQ AQLTDDSDIY WTAEVNEEGD
                                                                             600
       TVVLSLKKFL KQDTYDVHLS LSDHGNKEQL TVIRATVCDC HGHVETCPGP WKGGFILPVL
15
                                                                             660
       GAVLALLFLL LVLLLLVRKK RKIKEPLLLP EDDTRDNVFY YGEEGGGEED QDYDITQLHR
                                                                             720
       GLEARPEVVL RNDVAPTIIP TPMYRPRPAN PDEIGNFIIE NLKAANTDPT APPYDTLLVF
                                                                             780
       DYEGSGSDAA SLSSLTSSAS DQDQDYDYLN EWGSRFKKLA DMYGGGEDD
20
       Seq ID NO: 60 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 162-428
25
       GCGTTCCGTT GGCGGCGGAT TCGAACGTTC GGACTGAGGT TTTTCTGCCT GAAGAAGCGT
       CATACGGACC GGATTGTTTT CGCTGGCCCA GTGTCCCCGG AGCTTGTGTG CGATACAGAG
                                                                             120
       AGCACCTCGG AAGCTGAGGC AGCTGGTACT TGACAGAGAG GATGGCGCTG TCGACCATAG
                                                                             180
       TCTCCCAGAG GAAGCAGATA AAGCGGAAGG CTCCCCGTGG CTTTCTAAAG CGAGTCTTCA
                                                                             240
30
       AGCGAAGAA GCCTCAACTT CGTCTGGAGA AAAGTGGTGA CTTATTGGTC CATCTGAACT
                                                                             300
       GTTTACTGTT TGTTCATCGA TTAGCAGAAG AGTCCAGGAC AAACGCTTGT GCGAGTAAAT
                                                                             360
       GTAGAGTCAT TAACAAGGAG CATGTACTGG CCGCAGCAAA GGTAATTCTA AAGAAGAGCA
                                                                             420
       GAGGTTAGAA GTCAAAGAAC ATATTCTTGA AAGTTATGAT GCATTCTTTT GGGTGGTAAC
                                                                             480
       AGATCATAAA GACATTTTTT ACACATCAGT TAATATGGGA TTATTAAATA TTGG
35
       Seq ID NO: 61 Protein sequence:
       Protein Accession #: Eos sequence
                              21
                                                    41
                                                                51
                  11
40
       MALSTIVSOR KOIKRKAPRG FLKRVFKRKK POLRLEKSGD LLVHLNCLLF VHRLAEESRT
                                                                              60
       NACASKCRVI NKEHVLAAAK VILKKSRG
       Seq ID NO: 62 DNA sequence
45
       Nucleic Acid Accession #: NM_000094.2
       Coding sequence: 99-8933
50
       GGGCTGGAGG GGCGCTGGGC TCGGACCTGC CAAGGCCACC GCAGGGGGGA GCAAGGGACA
       GAGGCGGGG TCCTAGCTGA CGGCTTTTAC TGCCTAGGAT GACGCTGCGG CTTCTGGTGG
                                                                             120
       CCGCGCTCTG CGCCGGGATC CTGGCAGAGG CGCCCCGAGT GCGAGCCCAG CACAGGGAGA
                                                                             180
       GAGTGACCTG CACGCGCCTT TACGCCGCTG ACATTGTGTT CTTACTGGAT GGCTCCTCAT
       CCATTGGCCG CAGCAATTTC CGCGAGGTCC GCAGCTTTCT CGAAGGGCTG GTGCTGCCTT
55
       TCTCTGGAGC AGCCAGTGCA CAGGGTGTGC GCTTTGCCAC AGTGCAGTAC AGCGATGACC
                                                                             360
       CACGGACAGA GTTCGGCCTG GATGCACTTG GCTCTGGGGG TGATGTGATC CGCGCCATCC
       GTGAGCTTAG CTACAAGGGG GGCAACACTC GCACAGGGGC TGCAATTCTC CATGTGGCTG
                                                                             480
       ACCATGTCTT CCTGCCCCAG CTGGCCCGAC CTGGTGTCCC CAAGGTCTGC ATCCTGATCA
                                                                             540
       CAGACGGGAA GTCCCAGGAC CTGGTGGACA CAGCTGCCCA AAGGCTGAAG GGGCAGGGGG
                                                                             600
       TCAAGCTATT TGCTGTGGGG ATCAAGAATG CTGACCCTGA GGAGCTGAAG CGAGTTGCCT
60
                                                                             660
       CACAGCCAAC CTCCGACTTC TTCTTCTTCG TCAATGACTT CAGCATCTTG AGGACACTAC
                                                                             720
       TGCCCCTCGT TTCCCGGAGA GTGTGCACGA CTGCTGGTGG CGTGCCTGTG ACCCGACCTC
                                                                             780
       CGGATGACTC GACCTCTGCT CCACGAGACC TGGTGCTGTC TGAGCCAAGC AGCCAATCCT
                                                                             840
       TGAGAGTACA GTGGACAGCG GCCAGTGGCC CTGTGACTGG CTACAAGGTC CAGTACACTC
                                                                             900
65
       CTCTGACGGG GCTGGGACAG CCACTGCCGA GTGAGCGGCA GGAGGTGAAC GTCCCAGCTG
                                                                             960
       GTGAGACCAG TGTGCGGCTG CGGGGTCTCC GGCCACTGAC CGAGTACCAA GTGACTGTGA
                                                                            1020
       TTGCCCTCTA CGCCAACAGC ATCGGGGAGG CTGTGAGCGG GACAGCTCGG ACCACTGCCC
                                                                            1080
       TAGAAGGGCC GGAACTGACC ATCCAGAATA CCACAGCCCA CAGCCTCCTG GTGGCCTGGC
                                                                            1140
       GGAGTGTGCC AGGTGCCACT GGCTACCGTG TGACATGGCG GGTCCTCAGT GGTGGGCCCA
                                                                            1200
70
       CACAGCAGCA GGAGCTGGGC CCTGGGCAGG GTTCAGTGTT GCTGCGTGAC TTGGAGCCTG
                                                                            1260
       GCACGGACTA TGAGGTGACC GTGAGCACCC TATTTGGCCG CAGTGTGGGG CCCGCCACTT
                                                                            1320
       CCCTGATGGC TCGCACTGAC GCTTCTGTTG AGCAGACCCT GCGCCCGGTC ATCCTGGGCC
                                                                            1380
       CCACATCCAT CCTCCTTTCC TGGAACTTGG TGCCTGAGGC CCGTGGCTAC CGGTTGGAAT
                                                                            1440
       GGCGGCGTGA GACTGGCTTG GAGCCACCGC AGAAGGTGGT ACTGCCCTCT GATGTGACCC
                                                                            1500
75
       GCTACCAGTT GGATGGGCTG CAGCCGGGCA CTGAGTACCG CCTCACACTC TACACTCTGC
                                                                            1560
       TGGAGGGCCA CGAGGTGGCC ACCCCTGCAA CCGTGGTTCC CACTGGACCA GAGCTGCCTG
                                                                            1620
       TGAGCCCTGT AACAGACCTG CAAGCCACCG AGCTGCCCGG GCAGCGGGTG CGAGTGTCCT
                                                                            1680
       GGAGCCCAGT CCCTGGTGCC ACCCAGTACC GCATCATTGT GCGCAGCACC CAGGGGGTTG
                                                                            1740
       AGCGGACCCT GGTGCTTCCT GGGAGTCAGA CAGCATTCGA CTTGGATGAC GTTCAGGCTG
                                                                            1800
80
       GGCTTAGCTA CACTGTGCGG GTGTCTGCTC GAGTGGGTCC CCGTGAGGGC AGTGCCAGTG
                                                                            1860
                                                                            1920
       TCCTCACTGT CCGCCGGGAG CCGGAAACTC CACTTGCTGT TCCAGGGCTG CGGGTTGTGG
       TGTCAGATGC AACGCGAGTG AGGGTGGCCT GGGGACCCGT CCCTGGAGCC AGTGGATTTC
                                                                            1980
       GGATTAGCTG GAGCACAGGC AGTGGTCCGG AGTCCAGCCA GACACTGCCC CCAGACTCTA
                                                                            2040
       CTGCCACAGA CATCACAGGG CTGCAGCCTG GAACCACCTA CCAGGTGGCT GTGTCGGTAC
                                                                            2100
85
       TGCGAGGCAG AGAGGAGGGC CCTGCTGCAG TCATCGTGGC TCGAACGGAC CCACTGGGCC
                                                                            2160
       CAGTGAGGAC GGTCCATGTG ACTCAGGCCA GCAGCTCATC TGTCACCATT ACCTGGACCA
       GGGTTCCTGG CGCCACAGGA TACAGGGTTT CCTGGCACTC AGCCCACGGC CCAGAGAAAT
```

		000443					
		TTCTGGGGAG					2340
		GCATGTGAGG					2400
		TGCCCCTGAG					2460
5		TCTACGGATC					2520
)		GAGTGAAGGC					2580
		CCGGGGTCTC					2640
		CGAGGGCACA					2700
		GACGCTTCAC					2760
10		CAGAGCGCAG					2820
10	AGTCCCGGGT	CCTGGGGCCC	GAGCTCAGCA	GCTATCACCT	GGACGGGCTG	GAGCCAGCGA	2880
	CACAGTACCG	CGTGAGGCTG	AGTGTCCTAG	GGCCGGCTGG	AGAAGGCCC	TCTGCAGAGG	2940
	TGACTGCGCG	CACTGAGTCA	CCTCGTGTTC	CAAGCATTGA	ACTACGTGTG	GTGGACACCT	3000
	CGATCGACTC	GGTGACTTTG	GCCTGGACTC	CAGTGTCCAG	GGCATCCAGC	TACATCCTAT	3060
	CCTGGCGGCC	ACTCAGAGGC	CCTGGCCAGG	AAGTGCCTGG	GTCCCCGCAG	ACACTTCCAG	3120
15	GGATCTCAAG	CTCCCAGCGG	GTGACAGGGC	TAGAGCCTGG	CGTCTCTTAC	ATCTTCTCCC	3180
		CCTGGATGGT					3240
		CCTGGCGGAT					3300
		TACGAGGAGG					3360
		TCAGGTTGGC					3420
20		CCATGACCTT					3480
20		GAACAACCTG					3540
		TGGGCGCCGC					3600
		TGACATATTC					3660
25		AATGGCTGGA					3720
25		GACCTTCTTC					3780
		AGCCCTGTGT					3840
		TCCAAAGGGC					3900
	TTGGGCCTCC	TGGCGACCCT	GGCCTCCCGG	GCAGGACCGG	TGCTCCCGGC	CCCCAGGGGC	3960
	CCCCTGGAAG	TGCCACTGCC	AAGGGCGAGA	GGGGCTTCCC	TGGAGCAGAT	GGGCGTCCAG	4020
30	GCAGCCCTGG	CCGCGCCGGG	AATCCTGGGA	CCCCTGGAGC	CCCTGGCCTA	AAGGGCTCTC	4080
	CAGGGTTGCC	TGGCCCTCGT	GGGGACCCGG	GAGAGCGAGG	ACCTCGAGGC	CCAAAGGGGG	4140
		TCCCGGACAA					4200
		ACCATCGGGC					4260
		AGGGCTTCCT					4320
35							
33		TGGACCAGGT					4380
		CCCTGGACCC					4440
		GGATGGAGCT					4500
		ACCTCCTGGA					4560
	TGGGTGAGGC	TGGAGAGAAG	GGCGAACGTG	GACCCCCAGG	CCCAGCGGGA	TCCCGGGGGC	4620
40	TGCCAGGGGT	TGCTGGACGT	CCTGGAGCCA	AGGGTCCTGA	AGGGCCACCA	GGACCCACTG	4680
	GCCGCCAAGG	AGAGAAGGGG	GAGCCTGGTC	GCCCTGGGGA	CCCTGCAGTG	GTGGGACCTG	4740
		ACCCAAAGGA					4800
		AGGGGAACGG					4860
		TGGAGACCGG					4920
45		TCCTGGAGAG					4980
73		ACGAGATGGT					5040
		TGGAAAAGCA					5100
		AAAGGGAGAC					5160
50		ACCCAAGGGT					5220
50		AGGACCTGGA					5280
		GCCCAAGGGT					5340
	AAGGGTTTCG	GGGACCCCCA	GGCCCACAGG	GGGACCCAGG	TGTCCGAGGC	CCAGCAGGAG	5400
	AAAAGGGTGA	CCGGGGTCCC	CCTGGGCTGG	ATGGCCGGAG	CGGACTGGAT	GGGAAACCAG	5460
	GAGCCGCTGG	GCCCTCTGGG	CCGAATGGTG	CTGCAGGCAA	AGCTGGGGAC	CCAGGGAGAG	5520
55	ACGGGCTTCC	AGGCCTCCGT	GGAGAACAAG	GCCTCCCTGG	CCCCTCTGGT	CCCCCTGGAT	5580
	TACCGGGAAA	GCCAGGCGAG	GATGGGAAAC	CTGGCCTGAA	TGGAAAAAAC	GGAGAACCTG	5640
		AGAAGACGGG					5700
		TGGCCCCAAG					5760
		CCCAGGGCCA					5820
60		CAAGGGTGAC					5880
00							
	GAGAGCGTGG	CCIGCGAGGA	GAGCCIGGAA	ACAMCCMCC-	TOTOGNICOR	TTGCTGGAAA	5940
		CAAGGCATCT					6000
		GCCTGTGCCC					6060
65		CAAGGAGGGC					6120
65		TGGCCCTCAG					6180
		CCTTGCCGGG					6240
						GAGAAAGGAG	6300
		ACAGGGCAGA					6360
	GACCCCCTGG	CCCCAAGGTG	TCTGTGGATG	AGCCAGGTCC	TGGACTCTCT	GGAGAACAGG	6420
70		ACTCAAGGGT					6480
-	AAGGAGACAG	GGGTGTGCCA	GGCATCAAAG	GAGACCGGGG	AGAGCCTGGA	CCGAGGGGTC	6540
		CCCGGGTCTA					6600
		TCCAAGAGGC					6660
							6720
75		GGGTCTTGCT					
13		GACAGGACCT					6780
		CCCCGGCCCT					6840
		GGAGACAGGG					6900
		AGGGAGCCCT					6960
00	CTAAAGGAGA	ACCTGGCCCC	ACGGGGGCCC	CTGGACAGGC	TGTGGTCGGG	CTCCCTGGAG	7020
80		GAAGGGAGCC					7080
		CCGAGGACTG					7140
		AGACCCTGGG					7200
		AGGAGTCGGG					7260
		GGGCCTCCCT					7320
85		TCGAGGAGAG					7380
55	SCHOOL SC	GAGAGAAGGA	VICCOST CUCC	COCCUMO	VCC.JCCGCGG	CCCCCCCCC	7440
	TGGGACCACC	TGGGGCCTCT	GGACTCAAAG	GAGACAAGGG	AGACCCTGGA	GIAGGGCTGC	7500

```
WO 02/086443
       CTGGGCCCCG AGGCGAGCCT GGGGAGCCAG GCATCCGGGG TGAAGATGGC CGCCCCGGCC 7560
       AGGAGGGACC CCGAGGACTC ACGGGGCCCC CTGGCAGCAG GGGAGAGCGT GGGGAGAAGG
                                                                          7620
       GTGATGTTGG GAGTGCAGGA CTAAAGGGTG ACAAGGGAGA CTCAGCTGTG ATCCTGGGGC
                                                                          7680
       CTCCAGGCCC ACGGGTGCC AAGGGGGACA TGGGTGAACG AGGGCCTCGG GGCTTGGATG
                                                                          7740
 5
       GTGACAAAGG ACCTCGGGGA GACAATGGGG ACCCTGGTGA CAAGGGCAGC AAGGGAGAGC
                                                                          7800
       CTGGTGACAA GGGCTCAGCC GGGTTGCCAG GACTGCGTGG ACTCCTGGGA CCCCAGGGTC
                                                                          7860
       AACCTGGTGC AGCAGGGATC CCTGGTGACC CGGGATCCCC AGGAAAGGAT GGAGTGCCTG
                                                                          7920
       GTATCCGAGG AGAAAAGGA GATGTTGGCT TCATGGGTCC CCGGGGCCTC AAGGGTGAAC
                                                                          7980
       GGGGAGTGAA GGGAGCCTGT GGCCTTGATG GAGAGAAGGG AGACAAGGGA GAAGCTGGTC
                                                                          8040
10
       CCCCAGGCCG CCCCGGGCTG GCAGGACACA AAGGAGAGAT GGGGGAGCCT GGTGTGCCGG
                                                                          8100
       GCCAGTCGGG GGCCCCTGGC AAGGAGGGCC TGATCGGTCC CAAGGGTGAC CGAGGCTTTG
                                                                          8160
       ACGGGCAGCC AGGCCCCAAG GGTGACCAGG GCGAGAAAGG GGAGCGGGGA ACCCCAGGAA
                                                                          8220
       TTGGGGGCTT CCCAGGCCCC AGTGGAAATG ATGGCTCTGC TGGTCCCCCA GGGCCACCTG
                                                                          8280
       GCAGTGTTGG TCCCAGAGGC CCCGAAGGAC TTCAGGGCCA GAAGGGTGAG CGAGGTCCCC
                                                                          8340
15
       CCGGAGAGAG AGTGGTGGGG GCTCCTGGGG TCCCTGGAGC TCCTGGCGAG AGAGGGGAGC
                                                                          8400
       AGGGGCGGCC AGGGCCTGCC GGTCCTCGAG GCGAGAAGGG AGAAGCTGCA CTGACGGAGG
                                                                          8460
       ATGACATCCG GGGCTTTGTG CGCCAAGAGA TGAGTCAGCA CTGTGCCTGC CAGGGCCAGT
                                                                          8520
       TCATCGCATC TGGATCACGA CCCCTCCCTA GTTATGCTGC AGACACTGCC GGCTCCCAGC
       TCCATGCTGT GCCTGTGCTC CGCGTCTCTC ATGCAGAGGA GGAAGAGCGG GTACCCCCTG
20
       AGGATGATGA GTACTCTGAA TACTCCGAGT ATTCTGTGGA GGAGTACCAG GACCCTGAAG
       CTCCTTGGGA TAGTGATGAC CCCTGTTCCC TGCCACTGGA TGAGGGCTCC TGCACTGCCT
                                                                          8760
       ACACCCTGCG CTGGTACCAT CGGGCTGTGA CAGGCAGCAC AGAGGCCTGT CACCCTTTTG
                                                                          8820
       TCTATGGTGG CTGTGGAGGG AATGCCAACC GTTTTGGGAC CCGTGAGGCC TGCGAGCGCC
                                                                          8880
       GCTGCCCACC CCGGGTGGTC CAGAGCCAGG GGACAGGTAC TGCCCAGGAC TGAGGCCCAG
                                                                          8940
25
       ATAATGAGCT GAGATTCAGC ATCCCCTGGA GGAGTCGGGG TCTCAGCAGA ACCCCACTGT
                                                                          9000
       CCCTCCCCTT GGTGCTAGAG GCTTGTGTGC ACGTGAGCGT GCGAGTGCAC GTCCGTTATT
                                                                          9060
       TCAGTGACTT GGTCCCGTGG GTCTAGCCTT CCCCCCTGTG GACAAACCCC CATTGTGGCT
                                                                          9120
       CCTGCCACCC TGGCAGATGA CTCACTGTGG GGGGGTGGCT GTGGGCAGTG AGCGGATGTG
                                                                          9180
       ACTGGCGTCT GACCCGCCCC TTGACCCAAG CCTGTGATGA CATGGTGCTG ATTCTGGGGG 9240
30
       GCATTAAAGC TGCTGTTTTA AAAGGCAAAA AA
       Seq ID NO: 63 Protein sequence:
       Protein Accession #: NP_000085.1
```

35	1	11	21	31	41	51	
					1	1	
				CTRLYAADIV			60
				EFGLDALGSG			120
40				KSQDLVDTAA			180
40				VSRRVCTTAG			240
				GLGQPLPSER			300
				PELTIQNTTA			360
				YEVTVSTLFG			420
45				ETGLEPPQKV			480
43				VTDLQATELP			540
				YTVRVSARVG			600
				WSTGSGPESS			660
				TVHVTQASSS			720
50				VHVRAHVAGV			780
3 0.				RSEGGPMRHQ			840
				GTLHVVQRGE		-	900
•				RVRLSVLGPA			960
				PLRGPGQEVP			1020
55				GLADVVFLPH			1080
<i>33</i>				SHDLGIILQR			1140
				GDIFSPIREA			1200
				TALCQASFTT			1260
				SATAKGERGF			1320
<i>6</i> 0				APGQVIGGEG			1380
60				PGPGEGGIAP			1440
				GPPGAIGPKG			1500
				GEKGEPGRPG			1560
				PGDRGPIGLT			1620
65				PGKAGERGLR			1680
03				TGPGAREKGE			1740
				DRGPPGLDGR			1800
				KPGEDGKPGL			1860
				LPGPVGPPGQ			1920
70				IKASALREIV			1980
70	-			PGPQGPPGLA			2040
				EQGRDGPPGL			2100
				RGVPGIKGDR			2160
				PGLAGPAGPQ			2220
75				GETGKPGAPG			2280
15				EKGAPGGLAG			2340
				PGVGVPGSPG			2400
				GREGIPGPLG			2460
				PRGLTGPPGS			2520
80				GPRGDNGDPG			2580
٥0				GEKGDVGFMG			2640
				GAPGKEGLIG			2700
				GPRGPEGLQG			2760
				RGFVRQEMSQ			2820
0.5	ADTAGSQLHA	VPVLRVSHAE	EEERVPPEDD	EYSEYSEYSV	EEYQDPEAPW	DSDDPCSLPL	2880
85		RWYHRAVTGS	TEACHPFVYG	GCGGNANRFG	TREACERRCP	PRVVQSQGTG	2940
	TAQD						

WO 02/086443

Seq ID NO: 64 DNA sequence
Nucleic Acid Accession #: NM_006945,
Coding sequence: 1-219

5	1	11 	21 GTGCAAGCAG	31 	41 CACCTCCTGT	51 GTGCCCCACG	60		
10	CCAAAGTGCC TGTCCACAGC	CAGAGCCATG CCTGCCCACC	TCCACCCCCG TCAGCAGTGC TCCACCGAAG	AAGTGCCCTG CAGCAGAAAT	AGCCCTGCCC	ACCACCAAAG	120 180		
	Seq ID NO: 65 Protein sequence: Protein Accession #: NP_008876								
15	1	11	21	31	41	51			
	1	 PCQPPPVCPT) PKCPEPCPPP	 KCPEPCPPPK	 CPQPCPPQQC	QQKYPPVTPS	69		
20	Seq ID NO: 66 DNA sequence Nucleic Acid Accession #: NM_005629.1 Coding sequence: 639-2546								
0.5	1	11	21	31	41	51			
25	1	1]		0000000000		60		
	CCGCCGCCGG	GAAGGAGAGG	GTCGCTGAGC GCGAGGCGCG GGAGTCGCGG	CCCGAGCCGC	CGCCGCCGCC	GCCACCGCCG	60 120 180		
			ACAGGCCCCT				240		
30	CCGATGTCGC	CCGCGCCCCG	TTAGGATGAG	TCTCGGGTCG	GGCGAGGAGC	CGCCGCAGCC	300		
			CAGGAGCCTC				360 420		
			GCGCGCCCCC				480		
25	CGTCCGCCCG	CCGCCCCGTC	CCCCGGCCCG	GCCGCCCCC	GGCCCCGGC	CGGCCCGCGC	540		
35			CCGCCGGTGC				600		
			GTGCGGCCCG GGCGACGAGA				660 720		
			GACGGCCCCG				780		
40			TGGACGCGCC				840		
40			GTGTGGCGCT			AACGGCGGAG ATTTTCTTCT	900 960		
			TTCATGAAGG				1020		
			TACGCCTCCA				1080		
45			GGCTTCTATT				1140		
45			ACCTGGAACA CTGGCCAACC				1200 1260		
			GAGAACAAAG				1320		
			GTGACCCTTT				1380		
50			AAATCCACGG				1440		
50			CTGCTGGTGC CCTGACTGGT				1500 1560		
			TTTTCTTACG				1620		
			AACAACTGCT				1680		
55			GCTGGCTTCG				1740		
55			TCCAAGGTGG CTGATGCCAG				1800 1860		
			CTCGACAGCC				1920		
			GCCTCCTACT				1980		
60			TTTGTCATCG			TGGCAGGCCT	2040 2100		
00						GACGACATTG			
	CCTGTATGAT	CGGGTACCGA	CCTTGCCCCT	GGATGAAATG	GTGCTGGTCC	TTCTTCACCC	2220		
						CTGGTCTACA			
65	ACAACACCTA	CGTGTACCCG	TGGTGGGGTG	AGGCCATGGG	CIGGGCCTTC	GCCCTGTCCT GGCACCATGG	2340 2400	4	
05						GAGTACCGAG		ĺ	
	CTCAGGACGC	AGATGTCAGG	GGCCTGACCA	CCCTGACCCC	AGTGTCCGAG	AGCAGCAAGG	2520		
	TCGTCGTGGT	GGAGAGTGTC	ATGTGACAAC	TCAGCTCACA	TCACCAGCTC	ACCTCTGGTA	2580		
70						CTTTCCCTGA CACTAAAACA			
						TAGATGCCTC			
	TCCCCCTCCA	GCCCTAGCCG	AGCTGGTCCT	AGGCCCCGCC	TAGTGCCCCA	CCCCCACCCA	2820		
						CCAGGCTCTG			
75						GCTTGGGAAA GGAGGCAGGG			
, ,						CCCATCCCTG			
•	TTATAGAAGC	TTAGAGAGCC	AGCCAGCAAT	GGAACCTTCT	GGTTCCTGCG	CCAATCGCCA	3120		
						GGAGAGTATA			
80						TCTGGGCAAA TGCTTGTATA	3240 3300		
00						CCCTGTGAGC			
	CCTACCTTAC	CCCTCTGCCC	CTAGCCAAGG	AGTGTGAATT	TATAGATCTA	ACTTTCATÁG	3420		
	GCAAAACAAA	AGCTTCGAGC	TGTTGCGTGT	GTGAGTCTGT	TGTGTGGATG	TGCGTGTGTG	3480		
85						CTGTCCCCAC			
G.J						CTGGGTGTCT CCCAGGAAGG			
						CACCTCCAGT			

CTTCTGTGTA GCAGCTTTAA CCCACGTTTG TCTGTCACGT CCAGTCCCGA GACGGCTGAG 3780 TGACCCCAAG AAAGGCTTCC CCGACACCCA GACAGAGGCT GCAGGGCTGG GGCTGGGTGA 3840 GGGTGGCGGG CCTGCGGGGA CATTCTACTG TGCTAAAAAG CCACTGCAGA CATAGCAATA AAAACATGTC ATTTTCC 5 Seq ID NO: 67 Protein sequence: Protein Accession #: NP_005620.1 10 MAKKSAENGI YSVSGDEKKG PLIAPGPDGA PAKGDGPVGL GTPGGRLAVP PRETWTROMD έo PIMSCVGFAV GLGNVWRFPY LCYKNGGGVF LIPYVLIALV GGIPIFFLEI SLGQFMKAGS 120 INVWNICPLF KGLGYASMVI VFYCNTYYIM VLAWGFYYLV KSFTTTLPWA TCGHTWNTPD 180 CVEIFRHEDC ANASLANLTC DQLADRRSPV IEFWENKVLR LSGGLEVPGA LNWEVTLCLL 240 15 ACWVLVYFCV WKGVKSTGKI VYFTATFPYV VLVVLLVRGV LLPGALDGII YYLKPDWSKL 300 GSPQVWIDAG TQIFFSYAIG LGALTALGSY NRFNNNCYKD AIILALINSG TSFFAGFVVF 360 SILGFMAAEQ GVHISKVAES GPGLAFIAYP RAVTLMPVAP LWAALFFFML LLLGLDSQFV 420 GVEGFITGLL DLLPASYYFR FQREISVALC CALCFVIDLS MVTDGGMYVF QLFDYYSASG 480 TTLLWQAFWE CVVVAWVYGA DRFMDDIACM IGYRPCPWMK WCWSFFTPLV CMGIFIFNVV 540 20 YYEPLVYNNT YVYPWWGEAM GWAFALSSML CVPLHLLGCL LRAKGTMAER WQHLTQPIWG 600 LHHLEYRAQD ADVRGLTTLT PVSESSKVVV VESVM Seq ID NO: 68 DNA sequence 25 Nucleic Acid Accession #: NM 021953.1 Coding sequence: 178-2469 51 31 21 30 GGCACGAGGG GGACCGGCC GGTCCGGCGC GAGCCCCCGT CCGGGGCCCT GGCTCGGCCC 60 CCAGGTTGGA GGAGCCCGGA GCCCGCCTTC GGAGCTACGG CCTAACGGCG GCGGCGACTG 120 CAGTCTGGÁG GGTCCACACT TGTGATTCTC AATGGAGAGT GAAAACGCAG ATTCATAATG 180 AAAGCTAGCC CCCGTCGGCC ACTGATTCTC AAAAGACGGA GGCTGCCCCT TCCTGTTCAA 240 AATGCCCCAA GTGAAACATC AGAGGAGGAA CCTAAGAGAT CCCCTGCCCA ACAGGAGTCT 300 35 AATCAAGCAG AGGCCTCCAA GGAAGTGGCG GAGTCCAACT CTTGCAAGTT TCCAGCTGGG 360 ATCAAGATTA TTAACCACCC CACCATGCCC AACACGCAAG TAGTGGCCAT CCCCAACAAT 420 GCTAATATTC ACAGCATCAT CACAGCACTG ACTGCCAAGG GAAAAGAGAG TGGCAGTAGT 480 GGGCCCAACA AATTCATCCT CATCAGCTGT GGGGGAGCCC CAACTCAGCC TCCAGGACTC 540 CGGCCTCAAA CCCAAACCAG CTATGATGCC AAAAGGACAG AAGTGACCCT GGAGACCTTG 600 40 GGACCAAAAC CTGCAGCTAG GGATGTGAAT CTTCCTAGAC CACCTGGAGC CCTTTGCGAG 660 CAGAAACGGG AGACCTGTGC AGATGGTGAG GCAGCAGGCT GCACTATCAA CAATAGCCTA 720 TCCAACATCC AGTGGCTTCG AAAGATGAGT TCTGATGGAC TGGGCTCCCG CAGCATCAAG 780 CAAGAGATGG AGGAAAAGGA GAATTGTCAC CTGGAGCAGC GACAGGTTAA GGTTGAGGAG CCTTCGAGAC CATCAGCGTC CTGGCAGAAC TCTGTGTCTG AGCGGCCACC CTACTCTTAC 900 45 ATGGCCATGA TACAATTCGC CATCAACAGC ACTGAGAGGA AGCGCATGAC TTTGAAAGAC ATCTATACGT GGATTGAGGA CCACTTTCCC TACTTTAAGC ACATTGCCAA GCCAGGCTGG 1020 AAGAACTCCA TCCGCCACAA CCTTTCCCTG CACGACATGT TTGTCCGGGA GACGTCTGCC 1080 AATGGCAAGG TCTCCTTCTG GACCATTCAC CCCAGTGCCA ACCGCTACTT GACATTGGAC 1140 CAGGTGTTTA AGCCACTGGA CCCAGGGTCT CCACAATTGC CCGAGCACTT GGAATCACAG 1200 50 CAGAAACGAC CGAATCCAGA GCTCCGCCGG AACATGACCA TCAAAACCGA ACTCCCCCTG 1260 1320 GGCGCACGGC GGAAGATGAA GCCACTGCTA CCACGGGTCA GCTCATACCT GGTACCTATC CAGTTCCCGG TGAACCAGTC ACTGGTGTTG CAGCCCTCGG TGAAGGTGCC ATTGCCCCTG 1380 GCGGCTTCCC TCATGAGCTC AGAGCTTGCC CGCCATAGCA AGCGAGTCCG CATTGCCCCC 1440 AAGGTGCTGC TAGCTGAGGA GGGGATAGCT CCTCTTTCTT CTGCAGGACC AGGGAAAGAG 1500 55 GAGAAACTCC TGTTTGGAGA AGGGTTTTCT CCTTTGCTTC CAGTTCAGAC TATCAAGGAG 1560 GAAGAAATCC AGCCTGGGGA GGAAATGCCA CACTTAGCGA GACCCATCAA AGTGGAGAGC 1620 CCTCCCTTGG AAGAGTGGCC CTCCCCGGCC CCATCTTTCA AAGAGGAATC ATCTCACTCC 1680 TGGGAGGATT CGTCCCAATC TCCCACCCCA AGACCCAAGA AGTCCTACAG TGGGCTTAGG 1740 TCCCCAACCC GGTGTGTCTC GGAAATGCTT GTGATTCAAC ACAGGGAGAG GAGGGAGAGG 1800 60 AGCCGGTCTC GGAGGAAACA GCATCTACTG CCTCCCTGTG TGGATGAGCC GGAGCTGCTC 1860 TTCTCAGAGG GGCCCAGTAC TTCCCGCTGG GCCGCAGAGC TCCCGTTCCC AGCAGACTCC 1920 TCTGACCCTG CCTCCCAGCT CAGCTACTCC CAGGAAGTGG GAGGACCTTT TAAGACACCC 1980 ATTAAGGAAA CGCTGCCCAT CTCCTCCACC CCGAGCAAAT CTGTCCTCCC CAGAACCCCT 2040 GAATCCTGGA GGCTCACGCC CCCAGCCAAA GTAGGGGGGAC TGGATTTCAG CCCAGTACAA 2100 65 ACCTCCCAGG GTGCCTCTGA CCCCTTGCCT GACCCCCTGG GGCTGATGGA TCTCAGCACC 2160 ACTCCCTTGC AAAGTGCTCC CCCCCTTGAA TCACCGCAAA GGCTCCTCAG TTCAGAACCC 2220 TTAGACCTCA TCTCCGTCCC CTTTGGCAAC TCTTCTCCCT CAGATATAGA CGTCCCCAAG 2280 CCAGGCTCCC CGGAGCCACA GGTTTCTGGC CTTGCAGCCA ATCGTTCTCT GACAGAAGGC 2340 CTGGTCCTGG ACACAATGAA TGACAGCCTC AGCAAGATCC TGCTGGACAT CAGCTTTCCT 2400 70 GGCCTGGACG AGGACCCACT GGGCCCTGAC AACATCAACT GGTCCCAGTT TATTCCTGAG 2460 CTACAGTAGA GCCCTGCCCT TGCCCCTGTG CTCAAGCTGT CCACCATCCC GGGCACTCCA 2520 AGGCTCAGTG CACCCCAAGC CTCTGAGTGA GGACAGCAGG CAGGGACTGT TCTGCTCCTC ATAGCTCCCT GCTGCCTGAT TATGCAAAAG TAGCAGTCAC ACCCTAGCCA CTGCTGGGAC 2640 CTTGTGTTCC CCAAGAGTAT CTGATTCCTC TGCTGTCCCT GCCAGGAGCT GAAGGGTGGG 2700 75 AACAACAAAG GCAATGGTGA AAAGAGATTA GGAACCCCCC AGCCTGTTTC CATTCTCTGC 2760 CCAGCAGTCT CTTACCTTCC CTGATCTTTG CAGGGTGGTC CGTGTAAATA GTATAAATTC TCCAAATTAT CCTCTAATTA TAAATGTAAG CTTATTTCCT TAGATCATTA TCCAGAGACT 2880 GCCAGAAGGT GGGTAGGATG ACCTGGGGTT TCAATTGACT TCTGTTCCTT GCTTTTAGTT 2940 TTGATAGAAG GGAAGACCTG CAGTGCACGG TTTCTTCCAG GCTGAGGTAC CTGGATCTTG 3000 80 GGTTCTTCAC TGCAGGGACC CAGACAAGTG GATCTGCTTG CCAGAGTCCT TTTTGCCCCT 3060 CCCTGCCACC TCCCCGTGTT TCCAAGTCAG CTTTCCTGCA AGAAGAAATC CTGGTTAAAA 3120 AAGTCTTTTG TATTGGGTCA GGAGTTGAAT TTGGGGTGGG AGGATGGATG CAACTGAAGC 3180 AGAGTGTGGG TGCCCAGATG TGCGCTATTA GATGTTTCTC TGATAATGTC CCCAATCATA 3240 CCAGGGAGAC TGGCATTGAC GAGAACTCAG GTGGAGGCTT GAGAAGGCCG AAAGGGCCCC 3300 85 TGACCTGCCT GGCTTCCTTA GCTTGCCCCT CAGCTTTGCA AAGAGCCACC CTAGGCCCCA 3360 GCTGACCGCA TGGGTGTGAG CCAGCTTGAG AACACTAACT ACTCAATAAA AGCGAAGGTG 3420 GACCNAAAAA AAAAAAAAAAA AAAA

Seq ID NO: 69 Protein sequence: Protein Accession #: NP_068772.1

	Protein Accession #: NP_068772.1							
5	1	11	21	31	41	51		
	 MKASPRRPLI	 LKRRRLPLPV	 QNAPSETSEE	 EPKRSPAQQE	 SNQAEASKEV	 AESNSCKFPA	60	
	GIKIINHPTM	PNTQVVAIPN AKRTEVTLET	NANIHSIITA	LTAKGKESGS	SGPNKFILIS	CGGAPTQPPG	120	
10	PKPAIAILSID	SSDGLGSRSI	KOEMEEKENC	HI-FOROVKVE	EPSRPSASWO	NSVSERPPYS	180 240	
10	YMAMIOFAIN	STERKRMTLK	DIYTWIEDHP	PYFKHIAKPG	WKNSIRHNLS	LHDMFVRETS	300	
	ANGKVSFWTI	HPSANRYLTL	DQVFKPLDPG	SPQLPEHLES	QQKRPNPELR	RNMTIKTELP	360	
	LGARRKMKPL	LPRVSSYLVP	IOFPVNOSLV	LOPSVKVPLP	LAASLMSSEL	ARHSKRVRIA	420	
15	PKVLLAEEGI	APLSSAGPGK	EEKLLFGEGP	SPLLPVQTIK	EEEIQPGEEM	PHLARPIKVE	480	
13		APSFKEESSH LPPCVDEPEL					540 600	
	PIKETLPISS	TPSKSVLPRT	PESWRLTPPA	KVGGLDFSPV	QTSQGASDPL	PDPLGLMDLS	660	
	TTPLQSAPPL	ESPORLLSSE	PLDLISVPFG	NSSPSDIDVP	KPGSPEPQVS	GLAANRSLTE	720	
00		LSKILLDISF						
20								
	Sea ID NO:	70 DNA sequ	ience					
	-	ld Accession		29.1				
25	Coding sequ	ience: 178-2	2424					
25	•	11	21	21	41	51		
	1	11	21 	31 	i I	1		
	GGCACGAGGG	GGACCCGGCC	GGTCCGGCGC	GAGCCCCCGT	CCGGGGCCCT	GGCTCGGCCC	60	
20		GGAGCCCGGA					120	
30		GGTCCACACT					180	
		CCCGTCGGCC					240 300	
		AGGCCTCCAA					360	
		TTAACCACCC					420	
35		ACAGCATCAT					480	
		AATTCATCCT					540	
		CCCAAACCAG CTGCAGCTAG					600 660	
		AGACCTGTGC					720	
40		AGTGGCTTCG					780	
		AGGAAAAGGA					840	
		CATCAGCGTC TACAATTCGC					900 960	
		GGATTGAGGA					1020	
45		TCCGCCACAA					1080	
		TCTÇCTTCTG					1140	
		AGCAGCAGAA					1200	
		CCCTGGGCGC CTATCCAGTT					1260 1320	
50		CCCTGGCGGC					1380	
		CCCCCAAGGT					1440	
		AAGAGGAGAA					1500	
		AGGAGGAAGA AGAGCCCTCC					1560 1620	
55		ACTCCTGGGA					1680	
		TTAGGTCCCC					1740	
		AGAGGAGCCG					1800	
		TGCTCTTCTC				AGAGCTCCCG	1860 1920	
60						CAAATCTGTC		
•	CTCCCCAGAA	CCCCTGAATC	CTGGAGGCTC	ACGCCCCCAG	CCAAAGTAGG	GGGACTGGAT	2040	
						CCTGGGGCTG		
						GCAAAGGCTC TCCCTCAGAT		
65						AGCCAATCGT		
						GATCCTGCTG		
						CAACTGGTCC		
						GCTGTCCACC GCAGGCAGGG		
70						GTCACACCCT		
						TCCCTGCCAG		
						CCCCCAGCCT		
						TGGTCCGTGT		
75						TTCCTTAGAT		
						TCCAGGCTGA		
						GCTTGCCAGA		
	GTCCTTTTTG	CCCCTCCCTG	CCACCTCCCC	GTGTTTCCAA	GTCAGCTTTC	CTGCAAGAAG	3060	
80						GTGGGAGGAT		
50						TTCTCTGATA GGCTTGAGAA		
						TTGCAAAGAG		
	CCACCCTAGG	CCCCAGCTGA	CCGCATGGGT	GTGAGCCAGC		TAACTACTCA		
85	ATAAAAGCGA	AGGTGGAAAA	AAAAAAAA	AAAAAA				
U)	Sea ID NO-	71 Protein	semience.					
	HO:	FIULCIII	ocquemes.					

Seq ID NO: 71 Protein sequence: Protein Accession #: AAH06529.1

-	1	11	21	31	41	51	
	MKTSPRRPT.T	 LKRRRLPLPV	ONAPSETSEE	 EPKRSPAGOE	SNOAFASKEV	ARSNSCKEDA	60
5		PNTQVVAIPN					120
		AKRTEVTLET					180
		SSDGLGSRSI					240
		STERKRMTLK					300
10		HPSANRYLTL NQSLVLQPSV					360 420
10		FGEGFSPLLP					480
		SQSPTPRPKK					540
		PSTSRWAAEL					600
15		LTPPAKVGGL					660
13		SVPFGNSSPS DPLGPDNINW		EPQVSGLAAN	Kanlegnand	TMNDSLSKIL	720
	LDISFFGLDE	DEDGEDNINK	SQFIFEDQ				
20		72 DNA sequ		_			
20		id Accession Lence: 178-2		• •			
	courns sed	ichee. 170 .					
	1	11	21	31	41	51	
25		GGACCCGGCC	COMPOSES	CACCCCCCC		l.	
23		GGACCCGGCC					60 120
		GGTCCACACT					180
		CCCGTCGGCC					240
20		GTGAAACATC					300
30		AGGCCTCCAA					360
		TTAACCACCC ACAGCATCAT					420 480
		AATTCATCCT					540
		CCCAAACCAG					600
35		CTGCAGCTAG					660
		AGACCTGTGC					720
		AGTGGCTTCG AGGAAAAGGA					780 840
		CATCAGCGTC					900
40		TACAATTCGC					960
		GGATTGAGGA					1020
		TCCGCCACAA					1080
		TCTCCTTCTG AGCCACTGGA					1140 1200
45		CGAATCCAGA					1260
		GGAAGATGAA					1320
		TGAACCAGTC					1380
		TCATGAGCTC					1440
50		GGGAACAGGT GTACACCCAT					1500 1560
50		AGGAGGGGAT					1620
		GAGAAGGGTT					1680
		GGGAGGAAAT					1740
55		GGCCCTCCCC					1800
55		AATCTCCCAC TCTCGGAAAT					1860 1920
		AACAGCATCT					1980
	GAGGGGCCCA	GTACTTCCCG	CTGGGCCGCA	GAGCTCCCGT	TCCCAGCAGA	CTCCTCTGAC	
60						ACCCATTAAG	
60						CCCTGAATCC ACAAACCTCC	
						CACCACTCCC	
						ACCCTTAGAC	
<i>(</i>						CAAGCCAGGC	
65						AGGCCTGGTC	2460
						TCCTGGCCTG	
						TCCAAGGCTC	
		AAGCCTCTGA					2700
70						GGACCTTGTG	
						TGGGAACAAC	
						CTGCCCAGCA ATTCTCCAAA	
						GACTGCCAGA	
75						AGTTTTGATA	
	GAAGGGAAGA	CCTGCAGTGC	ACGGTTTCTT	CCAGGCTGAG	GTACCTGGAT	CTTGGGTTCT	3120
						CCCTCCCTGC	
-						AAAAAAGTCT	
80						AAGCAGAGTG CATACCAGGG.	
						CCCCTGACCT	
	GCCTGGCTTC	CTTAGCTTGC	CCCTCAGCTT	TGCAAAGAGC	CACCCTAGGC	CCCAGCTGAC	3480
	CGCATGGGTG	TGAGCCAGCT				GGTGGACAAA	
85	ААААААААА	AAAAA					
00	Son In No.	73 Protein	gemience.				
	acd in MA:	') FTOCETH	and action.				

Seq ID NO: 73 Protein sequence: Protein Accession #: AAC51128.1

5	GIKIINHPTM LRPQTQTSYD LSNIQWLRKM YMAMIOPAIN	PNTQVVAIPN AKRTEVTLET SSDGLGSRSI STERKRMTLK	21 QNAPSETSEE NANIHSIITA LGPKPAARDV KQEMEEKENC DIYTWIEDHF	LTAKGKESGS NLPRPPGALC HLEQRQVKVE PYFKHIAKPG	SGPNKFILIS EQKRETCADG EPSRPSASWQ WKNSIRHNLS	CGGAPTOPPG EAAGCTINNS NSVSERPPYS LHDMFVRETS	60 120 180 240 300
10	ANGKVSFWTI LGARRKMKPL PKVFGEQVVF KLLFGEGFSP	HPSANRYLTL LPRVSSYLVP GYMSKFFSGD LLPVOTIKEE	DQVFKPLDPG IQFPVNQSLV LRDFGTPITS EIQPGEEMPH PTRCVSEMLV	SPOLPEHLES LQPSVKVPLP LFNFIFLCLS LARPIKVESP	QQKRPNPELR LAASLMSSEL VLLAEEGIAP PLEEWPSPAP	RNMTIKTELP ARHSKRVRIA LSSAGPGKEE SPKEESSHSW	360 420 480 540 600
15	SEGPSTSRWA SWRLTPPAKV DLISVPFGNS	AELPFPADSS GGLDFSPVQT	DPASQLSYSQ SQGASDPLPD GSPEPQVSGL	EVGGPFKTPI PLGLMDLSTT	KETLPISSTP PLQSAPPLES	SKSVLPRTPE PQRLLSSEPL	660 720 780
20	Nucleic Aci	74 DNA sequid Accession lence: 111-4	ı#: Eos sed	quence			
25	TCATCCTTCT CTCAAGCTGA	ACTCGTGACG GAGGTCCATA	21 TTATAAAGGA CTTCCCAGCT ATAGGCATGA AGCCTGCTGA	CTGGCTTTTT TCGACATGTT	GAAAGCAAAG TCACAAATAC	ATGAGCAACA ACCAGACGTG	60 120 180 240
30	AGAATGAGGA CAGACTACCA	TAAGAAGATT CAAGCAGAGC	GGCACAAATT GATTTTTCTG CATGGAGCAG GAGACCCCAG	AGTTTCTGTC CGCCCTGTTC	CTTGCTGGGA CGGGGGCAGC	GACATAGCCA CAGTGACCCA	300 360 420
35		75 Protein cession #: 1	sequence: Sos sequence	9			
	1	11	21	31	41	51	
40			TRRDDKIEKP DIATDYHKQS			 GTNYLADVFE	60
45	Nucleic Aci	76 DNA sequid Accession	ı #: Eos sed	quence			
	1	11	21	31	41	51	
50	TCATCCTTCT CTCAAGCTGA	ACTCGTGACA GAGGTCCATA	TTATAAAGGA CTTCCCAGTT ATAGGCATGA	CTGGCTTTTT TCGACATGTT	GAAAGCAAAG TCACAAATAC	ATGAGCAACA ACCGGACGTG	60 120 180
55	TCAGTGCCTG AGAATGAGGA	TGACAAAAG TAAGAAGATT CAAGCAGAGC	AGCCTGCTGA GGCATACATT GATTTTTCTG CATGGAGCGG GAGACCCCAG	ACCTCGCCAC AGTTTCTGTC CGCCCTGTTC	TGTCTTTGAG CTTGCTGGGA TGGGGGAAGC	AAAAAGGACA GACATAGCCG CAGTGATCCA	240 300 360 420
60		77 Protein cession #: 3		•			
00	1	11	21	31	41	51	
	VOTTO A EDGY		#GDDGKIEKD	CL L THOUSENE	BARLEACOKA	CTUVI.ATUEE	60
65	KKDKNEDKKI	DFSEFLSLLG	TGRDGKIEKP DIAADYHKQS			GINIBATVE	80
70	Nucleic Ac:	78 DNA sequid Accession uence: 253-	1 #: Z73678	.1			
. •	1	11	21	31	41	51	
		100000			1	 	
75	CAGAGAGGGA CCTCGCACTC CGCTGCACCG CCTCCCGCCA GACCAGGACA	CGAACCAGGG TATGGCCGTA CACCTCGCCT CCATGAACCA ACTCCACGTT	GGGAGCCGCT CGCCTCTCTG CTCGCCGCTC GGCTTTGCCG	AGGAGCAGCT GAGAGCGAGA CTCTCCTAGG AAGACCGCCT TCGGACCAAA	GCAGGGAGCC AGAGCACGCT CCCCGGCCGC TGGCGTACGA AGATGAAAAC	CTCACGCGGA CCTGCCCGCC GCGCCACCCG ATGCTTCCAG AGGCACGTCT	60 120 180 240 300 360
80						GTCCAAGTCT	420
ου						CTTGGCTGAC GGCAGGGAAT	480 540
	GGCTCATGGG	GATATCCGAT	CTACAATGGA	ACCCTCAAGC	GGGAGCCTGA	CAACAGGCGC	600
						CAGCTGTAAC	660 720
85	CCCGACCTCT CAGAAGACCA	ACTGTGACCC CCCAGAACCG	ACGGGGCACC	CTGCGCAAGG TACAGCACCT	GCACGCTGGG GCAGTGGTCA	CCGCAGTGAG CAGCAAGGGC GAAGGCCATA GTATATCCCG	720 780 840 900

	CCCATCTCCT	GCAACAAGGA	CCTGTCCTTT	GGCCACTCTA	GGGCCAGCTC	CAAGATCTGC	960
				ATCCCCAAGG			1020
				TATTACATCC			1080
5				GGAGGCATCT GCGGCAGGGG			1140 1200
,				AGGCAGAATG			1260
				CAGAAGCAGC			1320
				CTCATTGCCG			1380
10				TGCGATGGCA			1440
10				ACAGGCTGCT			1500
				TCAGGGCTCA GACGACAAGT			1560 1620
				GCCGAGGTGC			1680
	GAGTATAACG	CCCGCAACGC	CTACACCGAG	AAGTCCTCCA	CTGGCTGCTT	CAGCAACAAG	1740
15				TGCCCCCTGC			1800
				GCCATCCGCA			1860
				TGTGCTGGTG CAGTTGATTG			1920 1980
				AACTCTGATG			2040
20	CTCCTGAGCA	ACATGTCCCG	CCACCCTCTG	CTGCACAGAG	TGATGGGGAA	CCAGGTGTTC	2100
	CCGGAGGTGA	CCAGGCTCCT	CACCAGCCAC	ACTGGCAATA	CCAGCAACTC	CGAAGACATC	2160
				CTGATGGCCT			2220
				ATCATCAACC			2280
25				CTGTCTGACA AGGAACATGC			2340 2400
43				TAAGAAGAGA			2460
				CTCAGGCCTC			2520
	CATCCTGTGC	AGTATTTGGG	AAAGTTCACA	AGAAACTGAG	AAGAAACCTA	AAAACTGTGG	2580
20	ATAGTGGAAA	GATTTTTAGA	TTTTTTTTT	CCTTGGGGAA	ACTGGCAGGC	AATGGGGGTT	2640
30				AGTTAAAGGG			2700
				TGTCTAATGT AAGCATAACC			2760 2820
				TGAAAAGGAC			2880
	TAGGCAAGGA	CAACATGTGC	TTTTTGGTGA	GCTGCTCATA	ATTCCTGAAA	TGTGTGGTGC	2940
35	CAGGGCAAGG	GGGCCATCAC	TGCAGTCAGG	CCCTCAGAGG	AGTCCTGCAG	GCTTCCTACC	3000
	AGTGGTCTCC	AAGGGTGCAG	GAGTAACTGG	GGCTGGGCCA	GCCTCCCCCC	TTACAAGGCT	3060
	GCTTTCCACG	AAGGGAGGTC	TGGTGTATCT	CATGGGAGAA TTGGGTAGGT	TCTGGGGTGT	ACACCACACC	3120 3180
				GCCTGCTCAG			3240
40				CATCAGAGCA			3300
	TGCATTCAGA	GGTCTTGTAA	TCTACTTGTT	GCAGGAGAAA	GAAGGTAAAA	AATGATTTTT	3360
				CCCAAGAGCT			3420
				GGGCTGGGCA			3480
45				CAGGAAGATG AGACTTGGAC			3540 3600
73				GTACCGGCAA			3660
	CCATGCCCCA	CTTCCCCTGA	CCCCAGCTGT	CTTGTCTCCA	CTCTGTGAAA	CCCACAGGGG	3720
	ATGTGATAAA	CAGGGCTATT	AGGGGTATCA	GCCACGTCGA	GCCCCAGAC	TCTGTGCACT	3780
50				GGGCCTTATG			3840
30				CAGCGCTCCC			3900 3960
				CTCACCCCTT			4020
				CCACCTCTTG			4080
	AACACTGATG	TGGACTCAGT	ATGACAACTG	AGATGGGGGA	AGCCAGACAT	GTGAGGACGC	4140
55	TGTCCTCCGA	GAGGTGTCCC	CGGCTGTTAG	CCAGCTGTGC	TGTGGTGCTG	TGGGTCTGTC	4200
	ATACCCTCCC	TTGCTTCTGT	TCACACTGGG	AGGCCCACTC ACTGTCCTGG	CTGGCTCACC	CAGGGGGCCTC	4260 4320
				TTCTCCTAAA			4380
	TCTGTGCGGG	GCAGTGTCCT	AAGCACTTAG	ACTACATCAG	GGAAGAACAC	AGACCACATC	4440
60				GGAAAGTGGA			4500
				GGTCAGGGCG			4560
				CCCTTCCCCT			4620 4680
				ACCTCAGGGG			4740
65	AGGGCTGACT	TTGGTGACAC	TGCCCATTCC	CTCTCAGGCC	AGCTCAGGTC	ACCCGGGCCT	4800
	CTGACCCAGG	CCTGTCACTT	TGAGAGGGGC	AAAACTGAGA	GGGGCTTTTC	CTAGAGAAAG	4860
						TTAAGTCCAC	
				CAAAATAAGG			4980
70				CTCCTGTGCT		ACTCCACACT	5040 5100
, 0						ATCTGGCTGA	5160
	ACTGGCTGGG	AGGACCAAGA	CTGCGGCTGG	GGTGGGCAGG	GAAGGGAAGC	CGGGGGCTGC	5220
						TTTGTAGAGG	
75	AACCTTGTGC	CGGCCAGGCC	CAGTTTCCTT	GTGTGATACA	CTAATGTATT	TGCTTTTTT	5340
13	GGAAATAGAG	AAAATCAATA	AATTGCTAGT	GTTTCTTTGA	AAAAAAAA		
	Seg ID NO.	79 Protein	sequence:				
		cession #: (
90							
80	1	11	21	31	41	51	
	MNILLODT.PMAT	ן אַערפסססססייי	POTAT.DEDOV	 MKTGTSGRQR	AUEUMWaana	BUKEKSEUSE 	60
				KFQAGNGSWG			120
0.7	SQMENWSRHY	PRGSCNTTGA	GSDICFMQKI	KASRSEPDLY	CDPRGTLRKG	TLGSKGQKTT	180
85	QNRYSFYSTC	SGQKAIKKCP	VRPPSCASKQ	DPVYIPPISC	nkdlsfghsr	ASSKICSEDI	240
				HTCFQDESAK			300
•	QNVQQAAAGA	LRNLVFRSTT	NKLETRRQNG	IREAVSLLRR	TGWWETÖKÖF	TGLLWNLSST	360

5	QTMRNYSGLI RNAYTEKSST DATLEACAGA MSRHPLLHRV	ALPVLADRVI DSLMAYVONC GCFSNKSDKM LQNLTASKGL MGNQVFPEVT CRSSASPKAA	VAASRCDDKS MNNNYDCPLP MSSGMSQLIG RLLTSHTGNT	VENCMCVLHN EEETNPKGSG LKEKGLPQIA SNSEDILSSA	LSYRLDAEVP WLYHSDAIRT RLLQSGNSDV CYTVRNLMAS	TRYRQLEYNA YLNLMGKSKK VRSGASLLSN QPQLAKQYFS	420 480 540 600 660 720
10	Nucleic Aci	80 DNA sequid Accession mence: 180-1	1 #: NM_0065	516.1			
	1	11	21	31	41	51	
15	Ĭ	ī	1	1	ł	1	
		TCCCCGAGTG					60
		CAGTGGGAGT					120
		TCGCCACCCG					180
20		CAGCAAGAAG					240
20		GCAGTTTGGC					300
		CAACCAGACA					360
		CIGGICCCIC					420
		CCTTTTCGTT					480
25		CGTGTCCGCC					540
23		GGGCCGCTTC					600 660
		CGTCGTCGGC					720
		CCTGTGGCCC					780
		GCCCTTCTGC					840
30	AGAACCGGGC	CAAGAGTGTG	CTAAAGAAGC	TGCGCGGGAC	AGCTGACGTG	ACCCATGACC	900
	TGCAGGAGAT	GAAGGAAGAG	AGTCGGCAGA	TGATGCGGGA	GAAGAAGGTC	ACCATCCTGG	960
		CTCCCCCCCC					1020
		GTCTGGCATC					1080
35		GCAGCCTGTG					1140
33		GCTGTTTGTG GGCGGGTTGT					1200 1260
		GTCCTATCTG					1320
		CCCCATCCCA					1380
		TGCCGTTGCA					1440
40		TGTGGAGCAA					1500
		CTTCATCTTC					1560
		TTCCGGCTTC					1620
		TCCCCTGGGG					1680
45		AGCAGCCCTA ATGTCAGCCG					1740 1800
73		ATTCAGGACT					1860
		AGACAAGCAA					1920
		GAGTCTCCTG					1980
	GAGGGTGGAG	ACTAAGCCCT	GTCGAGACAC	TTGCCTTCTT	CACCCAGCTA	ATCTGTAGGG	2040
50		GTCCTAAGGA					2100
		TGGCCACCCG					2160
		TGCCCCTTCC					2220
		GTTGGGAGCA AGTCTCCTTT					2280 2340
55		AAACTCACTG					2400
55		TTATATATAT					2460
		AAGCCAACTT					2520
	TATAAATGGC	TGGTTTTTAG	AAACATGGTT	TTGAAATGCT	TGTGGATTGA	GGGTAGGAGG	2580
60	TTTGGATGGG	AGTGAGACAG	AAGTAAGTGG	GGTTGCAACC	ACTGCAACGG	CTTAGACTTC	2640
60						CAAAAATCTG	2700
						AGGCATTTCT	2760
		TCGCATTATT			TIGIGCCAGC	CGTGATGCTC	2820
	AGGETTOMA	ICOCAIIAII	110/211010/	ACCOPET			
65		81 Protein cession #: 1			٠		
	3==37	11 *					
•	1	11	21	31	41	51	
70	1.	1	l	1	1	1	•
70		RLMLAVGGAV					60
		IFSVGGMIGS					120
						AQVFGLDSIM LRGTADVTHD	180 240
		MMREKKVTIL					300
75		IGSGIVNTAP					360
-						NWTSNFIVGM	420
		PYVFIIFTVL					480
	ELFHPLGADS				-		
80	0						
50		npea ANG S8		13			
		id Accession uence: 44-5		· ±			
	secting pedi						
0.5	1	11	21	31	41	51	
85	1	1	1	1	<u> </u>	1	
		CGCGCTGACC					60
	GCIGCIGGIC	GTGGCCCTAC	COCOGGIGIG	GACAGACGCC	ANCCIONCIG	CONGREMACE	120

WO 02/086443 AGATCCAGAG GACTCCCAGC GAACGGACGA GGGTGACAAT AGAGTGTGGT GTCATGTTTG 180 TGAGAGAGAA AACACTTTCG AGTGCCAGAA CCCAAGGAGG TGCAAATGGA CAGAGCCATA 240 CTGCGTTATA GCGGCCGTGA AAATATTTCC ACGTTTTTTC ATGGTTGCGA AGCAGTGCTC 300 CGCTGGTTGT GCAGCGATGG AGAGACCCAA GCCAGAGGAG AAGCGGTTTC TCCTGGAAGA 360 5 GCCCATGCCC TTCTTTTACC TCAAGTGTTG TAAAATTCGC TACTGCAATT TAGAGGGGCC 420 ACCTATCAAC TCATCAGTGT TCAAAGAATA TGCTGGGAGC ATGGGTGAGA GCTGTGGTGG 480 GCTGTGGCTG GCCATCCTCC TGCTGCTGGC CTCCATTGCA GCCGGCCTCA GCCTGTCTTG 540 AGCCACGGGA CTGCCACAGA CTGAGCCTTC CGGAGCATGG ACTCGCTCCA GACCGTTGTC 600 ACCTGTTGCA TTAAACTTGT TTTCTGTTGA TTACCTCTTG GTTTGACTTC CCAGGGTCTT 660 10 GGGATGGGAG AGTGGGGATC AGGTGCAGTT GGCTCTTAAC CCTCAAGGGT TCTTTAACTC 720 ACATTCAGAG GAAGTCCAGA TCTCCTGAGT AGTGATTTTG GTGACAAGTT TTTCTCTTTG 780 AAATCAAACC TTGTAACTCA TTTATTGCTG ATGGCCACTC TTTTCCTTGA CTCCCCTCTG 840 CCTCTGAGGG CTTCAGTATT GATGGGGAGG GAGGCCTAAG TACCACTCAT GGAGAGTATG 900 TGCTGAGATG CTTCCGACCT TTCAGGTGAC GCAGGAACAC TGGGGGAGTC TGAATGATTG 960 15 GGGTGAAGAC ATCCCTGGAG TGAAGGACTC CTCAGCATGG GGGGCAGTGG GGCACACGTT 1020 AGGGCTGCCC CCATTCCAGT GGTGGAGGCG CTGTGGATGG CTGCTTTTCC TCAACCTTTC .1080 CTACCAGATT CCAGGAGGCA GAAGATAACT AATTGTGTTG AAGAAACTTA GACTTCACCC 1140 ACCAGCTGGC ACAGGTGCAC AGATTCATAA ATTCCCACAC GTGTGTGTTC AACATCTGAA 1200 ACTTAGGCCA AGTAGAGAGC ATCAGGGTAA ATGGCGTTCA TTTCTCTGTT AAGATGCAGC 1260 20 CATCCATGGG GAGCTGAGAA ATCAGACTCA AAGTTCCACC AAAAACAAAT ACAAGGGGAC 1320 Seg ID NO: 83 Protein seguence: Protein Accession #: AAH01291 25 51 11 31 41 MALLALLLVV ALPRVWTDAN LTARORDPED SORTDEGDNR VWCHVCEREN TFECONPRRC 60 KWTEPYCVIA AVKIFPRFFM VAKQCSAGCA AMERPKPEEK RFLLEEPMPF FYLKCCKIRY 120 30 CNLEGPPINS SVPKEYAGSM GESCGGLWLA ILLLLASIAA GLSLS Seg ID NO: 84 DNA sequence Nucleic Acid Accession #: NM_022893.1 Coding sequence: 229-2726 35 51 TTTTTTTTT TTTTTTGCTT AAAAAAAGC CATGACGGCT CTCCCACAAT TCATCTTCCC 60 TGCGCCATCT TTGTATTATT TCTAATTTAT TTTGGATGTC AAAAGGCACT GATGAAGATA 120 40 TTTTCTCTGG AGTCTCCTTC TTTCTAACCC GGCTCTCCCG ATGTGAACCG AGCCGTCGTC 180 240 AAGCAAGGCA AACCCCAGCA CTTAAGCAAA CGGGAATTCT CGCCCGAGCC TCTTGAAGCC 300 ATTCTTACAG ATGATGAACC AGACCACGGC CCGTTGGGAG CTCCAGAAGG GGATCATGAC 360 CTCCTCACCT GTGGGCAGTG CCAGATGAAC TTCCCATTGG GGGACATTCT TATTTTTATC 420 45 GAGCACAAAC GGAAACAATG CAATGGCAGC CTCTGCTTAG AAAAAGCTGT GGATAAGCCA 480 CCTTCCCCTT CACCAATCGA GATGAAAAAA GCATCCAATC CCGTGGAGGT TGGCATCCAG 540 GTCACGCCAG AAGATGACGA TTGTTTATCA ACGTCATCTA GAAGAATTTG CCCCAAACAG 600 GAACACATAG CAGATAAACT TCTGCACTGG AGGGGCCTCT CCTCCCCTCG TTCTGCACAT 660 GGAGCTCTAA TCCCCACGCC TGGGATGAGT GCAGAATATG CCCCGCAGGG TATTTGTAAA 720 50 GATGAGCCCA GCAGCTACAC ATGTACAACT TGCAAACAGC CATTCACCAG TGCATGGTTT 780 CTCTTGCAAC ACGCACAGAA CACTCATGGA TTAAGAATCT ACTTAGAAAG CGAACACGGA 840 AGTCCCCTGA CCCCGCGGGT TGGTATCCCT TCAGGACTAG GTGCAGAATG TCCTTCCCAG 900 CCACCTCTCC ATGGGATTCA TATTGCAGAC AATAACCCCT TTAACCTGCT AAGAATACCA 960 GGATCAGTAT CGAGAGAGGC TTCCGGCCTG GCAGAAGGGC GCTTTCCACC CACTCCCCCC 1020 55 CTGTTTAGTC CACCACCGAG ACATCACTTG GACCCCCACC GCATAGAGCG CCTGGGGGCG 1080 GAAGAAATGG CCCTGGCCAC CCATCACCCG AGTGCCTTTG ACAGGGTGCT GCGGTTGAAT 1140 CCAATGGCTA TGGAGCCTCC CGCCATGGAT TTCTCTAGGA GACTTAGAGA GCTGGCAGGG 1200 AACACGTCTA GCCCACCGCT GTCCCCAGGC CGGCCCAGCC CTATGCAAAG GTTACTGCAA 1260 CCATTCCAGC CAGGTAGCAA GCCGCCCTTC CTGGCGACGC CCCCCCTCCC TCCTCTGCAA 1320 60 TCCGCCCTC CTCCCTCCA GCCCCGGTC AAGTCCAAGT CATGCGAGTT CTGCGGCAAG 1380 ACGTTCAAAT TTCAGAGCAA CCTGGTGGTG CACCGGCGCA GCCACACGGG CGAGAAGCCC 1440 TACAAGTGCA ACCTGTGCGA CCACGCGTGC ACCCAGGCCA GCAAGCTGAA GCGCCACATG 1500 AAGACGCACA TGCACAAATC GTCCCCCATG ACGGTCAAGT CCGACGACGG TCTCTCCACC 1560 GCCAGCTCCC CGGAACCCGG CACCAGCGAC TTGGTGGGCA GCGCCAGCAG CGCGCTCAAG 1620 65 TCCGTGGTGG CCAAGTTCAA GAGCGAGAAC GACCCCAACC TGATCCCGGA GAACGGGGAC 1680 1740 CTGACGGAGA GCGAGAGGGT GGACTACGGC TTCGGGCTGA GCCTGGAGGC GGCGCCCAC 1800 CACGAGAACA GCTCGCGGGG CGCGGTCGTG GGCGTGGGCG ACGAGAGCCG CGCCCTGCCC 1860 GACGTCATGC AGGGCATGGT GCTCAGCTCC ATGCAGCACT TCAGCGAGGC CTTCCACCAG 1920 70 GTCCTGGGCG AGAAGCATAA GCGCGGCCAC CTGGCCGAGG CCGAGGGCCA CAGGGACACT 1980 TGCGACGAAG ACTCGGTGGC CGGCGAGTCG GACCGCATAG ACGATGGCAC TGTTAATGGC 2040 CGCGGCTGCT CCCCGGGCGA GTCGGCCTCG GGGGGCCTGT CCAAAAAGCT GCTGCTGGGC AGCCCCAGCT CGCTGAGCCC CTTCTCTAAG CGCATCAAGC TCGAGAAGGA GTTCGACCTG 2160 CCCCCGGCCA CGATGCCCAA CACGGAGAAC GTGTACTCGC AGTGGCTCGC CGGCTACGCG 2220 75 GCCTCCAGGC AGCTCAAAGA TCCCTTCCTT AGCTTCGGAG ACTCCAGACA ATCGCCTTTT 2280 GCCTCCTCGT CGGAGCACTC CTCGGAGAAC GGGAGCTTGC GCTTCTCCAC ACCGCCCGGG 2340 GAGCTGGACG GAGGGATCTC GGGGCGCAGC GGCACGGGAA GTGGAGGGAG CACGCCCCAT 2400 ATTAGTGGTC CGGGCACGGG CAGGCCCAGC TCAAAAGAGG GCAGACGCAG CGACACTTGT 2460 GAGTACTGTG GGAAAGTCTT CAAGAACTGT AGCAATCTCA CTGTCCACAG GAGAAGCCAC 2520 80 ACGGGCGAAA GGCCTTATAA ATGCGAGCTG TGCAACTATG CCTGTGCCCA GAGTAGCAAG 2580 CTCACCAGGC ACATGAAAAC GCATGGCCAG GTGGGGAAGG ACGTTTACAA ATGTGAAATT 2640 TGTAAGATGC CTTTTAGCGT GTACAGTACC CTGGAGAAAC ACATGAAAAA ATGGCACAGT 2700 GATCGAGTGT TGAATAATGA TATAAAAACT GAATAGAGGT ATATTAATAC CCCTCCCTCA 2760 CTCCCACCTG ACACCCCCTT TTTCACCACT CCCTTTCCCC ATCGCCCTCC AGCCCCACTC 2820 85 CCTGTAGGAT TTTTTTCTAG TCCCATGTGA TTTAAACAAA CAAACAAACA AACAGAAGTA ACGAAGCTAA GAATATGAGA GTGCTTGTCA CCAGCACACC TGTTTTTTT CTTTTCTTT 2880

TTCTTTTTC TTTTTCCTTT TTTTTTTTT TCCTTTATGT TCTCACCGTT TGAATGCATG

2940

3000

PCT/US02/12476

```
ATCTGTATGG GGCAATACTA TTGCATTTTA CGCAAACTTT GAGCCTTTCT CTTGTGCAAT
       AATTTACATG TTGTGTATGT TTTTTTTTAA ACTTAGACAG CATGTATGGT ATGTTATGGC
                                                                          3120
       TATTTTAAAT TGTCCCTAAT TCGTTGCTGA GCAAACATGT TGCTGTTTCC AGTTCCGTTC
       TGAGAGAAAA AGAGAGAGAG AGAGAAAAAG ACCATGCTGC ATACATTCTG TAATACATAT
                                                                          3240
 5
       CATGTACAGT TTTATTTAT AACGTGAGGA GGAAAAACAG TCTTTGGATT AACCCTCTAT
                                                                          3300
       AGACAGAATA GATAGCACTG AAAAAAATC TCTATGAGCT AAATGTCTGT CTCTAAAGGG
                                                                          3360
       TTAAATGTAT CAATTGGAAA GGAAGAAAAA AGGCCTTGAA TTGACAAATT AACAGAAAAA
                                                                          3420
       CAGAACAAGT TTATTCTATC ATTTGGTTTT AAAATATGAG TGCCTTGGAT CTATTAAAAC
                                                                          3480
       CACATCGATG GTTCTTTCTA CTTGTTATAA ACTTGTAGCT TAATTCAGCA TTGGGTGAGG
                                                                          3540
       TAATAAACCT TAGGAACTAG CATATAATTC TATATTGTAT TTCTCACAAC AATGGCTACC
10
                                                                          3600
       TAAAAAGATG ACCCATTATG TCCTAGTTAA TCATCATTTT TCCTTTAGTT TAATTTATA
                                                                          3660
       AACAAAACTG ATTATACCAG TATAAAAGCT ACTTTGCTCC TGGTGAGAGC TTAAAAGAAA
                                                                          3720
       TGGGCTGTTT TGCCCAAAGT TTTATTTTT TTAAACAATG ATTAAATTGA ATGTGTAATG
                                                                          3780
       TGCAAAAGCC CTGGAACGCA ATTAAATACA CTAGTAAGGA GTTCATTTTA TGAAGATATT
                                                                          3840
15
       TGCTTTAATA ATGTCTTTTT AAAAATACTG GCACCAAAAG AAATAGATCC AGATCTACTT
                                                                          3900
                                                                          3960
       GGTTGTCAAG TGGACAATCA AATGATAAAC TTTAAGACCT TGTATACCAT ATTGAAAGGA
       AGAGGCTGAC AATAAGGTTT GACAGAGGGG AACAGAAGAA AATAATATGA TTTATTAGCA
                                                                          4020
       CAACGTGGTA CTATTTGCCA TTTAAAACTA GAACAGGTAT ATAAGCTAAT ATTGATACAA
                                                                          4080
       TGATGATTAA CTATGAATTC TTAAGACTTG CATTTAAATG TGACATTCTT AAAAAAAGAA
                                                                           4140
20
       GAGAAAGAAT TTTAAGAGTA GCAGTATATA TGTCTGTGCT CCCTAAAAGT TGTACTTCAT
       TTCTTTTCCA TACACTGTGT GCTATTTGTG TTAACATGGA AGAGGATTCA TTGTTTTTAT
                                                                          4260
       TTTTATTTT TTAATTTTTT CTTTTTTATT AAGCTAGCAT CTGCCCCAGT TGGTGTTCAA
                                                                          4320
       ATAGCACTTG ACTCTGCCTG TGATATCTGT ATCTTTTCTC TAATCAGAGA TACAGAGGTT
                                                                          4380
       GAGTATAAAA TAAACCTGCT CAGATAGGAC AATTAAGTGC ACTGTACAAT TTTCCCAGTT
                                                                          4440
25
       TACAGGTCTA TACTTAAGGG AAAAGTTGCA AGAATGCTGA AAAAAAATTG AACACAATCT
                                                                          4500
       CATTGAGGAG CATTTTTAA AAACTAAAAA AAAAAAAACT TTGCCAGCCA TTTACTTGAC
                                                                          4560
       TATTGAGCTT ACTTACTTGG ACGCAACATT GCAAGCGCTG TGAATGGAAA CAGAATACAC
                                                                          4620
       TTAACATAGA AATGAATGAT TGCTTTCGCT TCTACAGTGC AAGGATTTTT TTGTACAAAA
                                                                          4680
       CTTTTTTAAA TATAAATGTT AAGAAAAATT TTTTTTAAAA AACACTTCAT TATGTTTAGG
                                                                          4740
30
       GGGGAACTGC ATTTTAGGGT TCCATTGTCT TGGTGGTGTT ACAAGACTTG TTATCCATTT
                                                                          4800
       AAAAATGGTA GTGGAAATTC TATGCCTTGG ATACACACCG CTCTTCAGGT TGTAAAAAAA
                                                                          4860
       AAAAACATAC ATTGGGGAAA GGTTTAAGAT TATATAGTAC TTAAATATAG GAAAATGCAC
                                                                          4920
       ACTCATGTTG ATTCCTATGC TAAAATACAT TTATGGTCTT TTTTCTGTAT TTCTAGAATG
                                                                          4980
       GTATTTGAAT TAAATGTTCA TCTAGTGTTA GGCACTATAG TATTTATATT GAAGCTTGTA
                                                                          5040
35
       TTTTTAACTG TTGCTTGTTC TCTTAAAAGG TATCAATGTA CCTTTTTTGG TAGTGGAAAA
                                                                          5100
       AAAAAGACA GGCTGCCACA GTATATTTTT TTAATTTGGC AGGATAATAT AGTGCAAATT
                                                                          5160
       ATTTGTATGC TTCAAAAAA AAAAAAAGAG AGAAACAAAA AAGTGTGACA TTACAGATGA
                                                                          5220
       GAAGCCATAT AATGGCGGTT TGGGGGAGCC TGCTAGAATG TCACATGGAT GGCTGTCATA
                                                                          5280
       GGGGTTGTAC ATATCCTTTT TTGTTCCTTT TTCCTGCTGC CATACTGTAT GCAGTACTGC
                                                                          5340
40
       AAGCTAATAA CGTTGGTTTG TTATGTAGTG TGCTTTTTGT CCCTTTCCTT CTATCACCCT
                                                                          5400
       ACATTCCAGC ATCTTACCTT CATATGCAGT AAAAGAAAGA AAGAAAAAA AAGGAAAAAA
                                                                          5460
       AAAAAAAAC CAATGTTTTG CAGTTTTTTT CATTGCCAAA AACTAAATGG TGCTTTATAT
                                                                          5520
       TTAGATTGGA AAGAATTTCA TATGCAAAGC ATATTAAAGA GAAAGCCCGC TTTAGTCAAT
                                                                          5580
       ACTITITGT AAATGGCAAT GCAGAATATT TTGTTATTGG CCTTTTCTAT TCCTGTAATG
                                                                          5640
45
       AAAGCTGTTT GTCGTAACTT GAAATTTTAT CTTTTACTAT GGGAGTCACT ATTTATTATT
       GCTTATGTGC CCTGTTCAAA ACAGAGGCAC TTAATTTGAT CTTTATTTT TCTTTGTTTT
                                                                          5760
       TATTTTTTT TTTATTTAGA TGACCAAAGG TCATTACAAC CTGGCTTTTT ATTGTATTTG
                                                                          5820
       TTTCTGGTCT TTGTTAAGTT CTATTGGAAA AACCACTGTC TGTGTTTTTT TGGCAGTTGT
                                                                           5880
       CTGCATTAAC CTGTTCATAC ACCCATTTTG TCCCTTTATT GAAAAAATAA AAAAAATTAA
                                                                          5940
50
       Seq ID NO: 85 Protein sequence:
       Protein Accession #: NP_075044.1
55
                  11
                             21
                                        31
                                                   41
                                                              51
       MSRRKQGKPQ HLSKREFSPE PLEAILTDDE PDHGPLGAPE GDHDLLTCGQ CQMNFPLGDI
       LIFIEHKRKQ CNGSLCLEKA VDKPPSPSPI EMKKASNPVE VGIQVTPEDD DCLSTSSRRI
                                                                           120
       CPKQEHIADK LLHWRGLSSP RSAHGALIPT PGMSAEYAPQ GICKDEPSSY TCTTCKQPFT
                                                                           180
60
       SAWFLLQHAQ NTHGLRIYLE SEHGSPLTPR VGIPSGLGAE CPSQPPLHGI HIADNNPFNL
                                                                           240
       LRIPGSVSRE ASGLÆGRFP PTPPLFSPPP RHHLDPHRIE RLGÆEEMALA THHPSAFDRV
                                                                           300
       LRLNPMAMEP PAMDFSRRLR ELAGNTSSPP LSPGRPSPMQ RLLQPFQPGS KPPFLATPPL
                                                                           360
       PPLQSAPPPS QPPVKSKSCE FCGKTFKFQS NLVVHRRSHT GEKPYKCNLC DHACTQASKL
                                                                           420
       KRHMKTHMHK SSPMTVKSDD GLSTASSPEP GTSDLVGSAS SALKSVVAKF KSENDPNLIP
                                                                           480
65
       ENGDEEEEED DEEEEEEEE EEEELTESER VDYGFGLSLE AARHHENSSR GAVVGVGDES
                                                                           540
       RALPDVMQGM VLSSMQHFSE APHQVLGEKH KRGHLAEAEG HRDTCDEDSV AGESDRIDDG
                                                                           600
       TVNGRGCSPG ESASGLSKK LLLGSPSSLS PFSKRIKLEK EFDLPPATMP NTENVYSQWL
                                                                           660
       AGYAASRQLK DPFLSFGDSR QSPFASSSEH SSENGSLRFS TPPGELDGGI SGRSGTGSGG
                                                                           720
       STPHISGPGT GRPSSKEGRR SDTCEYCGKV FKNCSNLTVH RRSHTGERPY KCELCNYACA
                                                                            780
70
       QSSKLTRHMK THGQVGKDVY KCEICKMPFS VYSTLEKHMK KWHSDRVLNN DIKTE
       Seq ID NO: 86 DNA sequence
       Nucleic Acid Accession #: XM_035292.2
75
       Coding sequence: 53-1576
                             21
                                         31
       GCTCGCTGGG CCGCGGCTCC CGGGTGTCCC AGGCCCGGCC GGTGCGCAGA GCATGGCGGG
80
       TGCGGGCCG AAGCGCGCG CGCTAGCGGC GCCGCCGCC GAGGAGAAGG AAGAGGCGCG
                                                                           120
       GGAGAAGATG CTGGCCGCCA AGAGCGCGGA CGGCTCGGCG CCGGCAGGCG AGGGCGAGGG
                                                                           180
       CGTGACCCTG CAGCGGAACA TCACGCTGCT CAACGGCGTG GCCATCATCG TGGGGACCAT
                                                                           240
       TATCGGCTCG GGCATCTTCG TGACGCCCAC GGGCGTGCTC AAGGAGGCAG GCTCGCCGGG
                                                                           300
       GCTGGCGCTG GTGGTGTGGG CCGCCTGCGG CGTCTTCTCC ATCGTGGGCG CGCTCTGCTA
                                                                           360
85
       CGCGGAGCTC GGCACCACCA TCTCCAAATC GGGCGGCGAC TACGCCTACA TGCTGGAGGT
                                                                            420
       CTACGGCTCG CTGCCCGCCT TCCTCAAGCT CTGGATCGAG CTGCTCATCA TCCGGCCTTC
                                                                            480
```

ATCGCAGTAC ATCGTGGCCC TGGTCTTCGC CACCTACCTG CTCAAGCCGC TCTTCCCCAC

540

```
CTGCCCGGTG CCCGAGGAGG CAGCCAAGCT CGTGGCCTGC CTCTGCGTGC TGCTGCTCAC
                                                                                600
       GGCCGTGAAC TGCTACAGCG TGAAGGCCGC CACCCGGGTC CAGGATGCCT TTGCCGCCGC
                                                                                 660
       CAAGCTCCTG GCCCTGGCCC TGATCATCCT GCTGGGCTTC GTCCAGATCG GGAAGGGTGA
                                                                                 720
       TGTGTCCAAT CTAGATCCCA ACTTCTCATT TGAAGGCACC AAACTGGATG TGGGGAACAT
                                                                                780
 5
       TGTGCTGGCA TTATACAGCG GCCTCTTTGC CTATGGAGGA TGGAATTACT TGAATTTCGT
       CACAGAGGAA ATGATCAACC CCTACAGAAA CCTGCCCCTG GCCATCATCA TCTCCCTGCC
                                                                                 900
       CATCGTGACG CTGGTGTACG TGCTGACCAA CCTGGCCTAC TTCACCACCC TGTCCACCGA
                                                                                960
       GCAGATGCTG TCGTCCGAGG CCGTGGCCGT GGACTTCGGG AACTATCACC TGGGCGTCAT
                                                                               1020
       GTCCTGGATC ATCCCCGTCT TCGTGGGCCT GTCCTGCTTC GGCTCCGTCA ATGGGTCCCT
                                                                               1080
10
       GTTCACATCC TCCAGGCTCT TCTTCGTGGG GTCCCGGGAA GGCCACCTGC CCTCCATCCT
                                                                               1140
       CTCCATGATC CACCCACAGC TCCTCACCCC CGTGCCGTCC CTCGTGTTCA CGTGTGTGAT
                                                                               1200
       GACGCTGCTC TACGCCTTCT CCAAGGACAT CTTCTCCGTC ATCAACTTCT TCAGCTTCTT
                                                                               1260
       CAACTGGCTC TGCGTGGCCC TGGCCATCAT CGGCATGATC TGGCTGCGCC ACAGAAAGCC
                                                                               1320
       TGAGCTTGAG CGGCCCATCA AGGTGAACCT GGCCCTGCCT GTGTTCTTCA TCCTGGCCTG
                                                                               1380
15
       CCTCTTCCTG ATCGCCGTCT CCTTCTGGAA GACACCCGTG GAGTGTGGCA TCGGCTTCAC
                                                                               1440
       CATCATCCTC AGCGGGCTGC CCGTCTACTT CTTCGGGGTC TGGTGGAAAA ACAAGCCCAA
                                                                               1500
       GTGGCTCCTC CAGGGCATCT TCTCCACGAC CGTCCTGTGT CAGAAGCTCA TGCAGGTGGT
                                                                               1560
       CCCCAGGAG ACATAGCCAG GAGGCCGAGT GGCTGCCGGA GGAGCATGC
20
       Seg ID NO: 87 Protein sequence:
       Protein Accession #: XP_035292.2
                                           31
                                                                  51
25
       MAGAGPKRRA LAAPAAEEKE EAREKMLAAK SADGSAPAGE GEGVTLQRNI TLLNGVAIIV
                                                                                 60
       GTIIGSGIFV TPTGVLKEAG SPGLALVVWA ACGVFSIVGA LCYAELGTTI SKSGGDYAYM
                                                                                 120
       LEVYGSLPAF LKLWIELLII RPSSQYIVAL VFATYLLKPL PPTCPVPEEA AKLVACLCVL
                                                                                180
       LLTAVNCYSV KAATRVQDAF AAAKLLALAL IILLGFVQIG KGDVSNLDPN FSFEGTKLDV
                                                                                 240
       GNIVLALYSG LFAYGGWNYL NFVTEEMINP YRNLPLAIII SLPIVTLVYV LTNLAYFTTL
STEQMLSSEA VAVDFGNYHL GVMSWIIPVF VGLSCFGSVN GSLFTSSRLF FVGSREGHLP
                                                                                 300
30
                                                                                 360
       SILSMIHPQL LTPVPSLVFT CVMTLLYAFS KDIFSVINFF SFFNWLCVAL AIIGMIWLRH
                                                                                 420
       RKPELERPIK VNLALPVFFI LACLFLIAVS FWKTPVECGI GFTIILSGLP VYFFGVWWKN
                                                                                 480
       KPKWLLQGIF STTVLCQKLM QVVPQET
35
       Seq ID NO: 88 DNA sequence
       Nucleic Acid Accession #: NM_005268.1
       Coding sequence: 168-989
40
       TAAAAAGCAA AAGAATTCGC GGCCGCGTCG ACACGGGCTT CCCCGAAAAC CTTCCCCGCT
       TCTGGATATG AAATTCAAGC TGCTTGCTGA GTCCTATTGC CGGCTGCTGG GAGCCAGGAG
       AGCCCTGAGG AGTAGTCACT CAGTAGCAGC TGACGCGTGG GTCCACCATG AACTGGAGTA
                                                                                 180
45
       TCTTTGAGGG ACTCCTGAGT GGGGTCAACA AGTACTCCAC AGCCTTTGGG CGCATCTGGC
       TGTCTCTGGT CTTCATCTTC CGCGTGCTGG TGTACCTGGT GACGGCCGAG CGTGTGTGGA
                                                                                 300
       GTGATGACCA CAAGGACTTC GACTGCAATA CTCGCCAGCC CGGCTGCTCC AACGTCTGCT
                                                                                 360
       TTGATGAGTT CTTCCCTGTG TCCCATGTGC GCCTCTGGGC CCTGCAGCTT ATCCTGGTGA CATGCCCCTC ACTGCTCGTG GTCATGCACG TGGCCTACCG GGAGGTTCAG GAGAAGAGGC
                                                                                 420
                                                                                 480
       ACCGAGAAGC CCATGGGGAG AACAGTGGGC GCCTCTACCT GAACCCCGGC AAGAAGCGGG
GTGGGCTCTG GTGGACATAT GTCTGCAGCC TAGTGTTCAA GGCGAGCGTG GACATCGCCT
50
                                                                                 540
                                                                                 600
       TTCTCTATGT GTTCCACTCA TTCTACCCCA AATATATCCT CCCTCCTGTG GTCAAGTGCC
                                                                                 660
       ACGCAGATCC ATGTCCCAAT ATAGTGGACT GCTTCATCTC CAAGCCCTCA GAGAAGAACA
                                                                                 720
       TTTTCACCCT CTTCATGGTG GCCACAGCTG CCATCTGCAT CCTGCTCAAC CTCGTGGAGC
                                                                                 780
55
       TCATCTACCT GGTGAGCAAG AGATGCCACG AGTGCCTGGC AGCAAGGAAA GCTCAAGCCA
                                                                                 840
       TGTGCACAGG TCATCACCCC CACGGTACCA CCTCTTCCTG CAAACAAGAC GACCTCCTTT
                                                                                 900
       CGGGTGACCT CATCTTTCTG GGCTCAGACA GTCATCCTCC TCTCTTACCA GACCGCCCCC
                                                                                 960
       GAGACCATGT GAAGAAAACC ATCTTGTGAG GGGCTGCCTG GACTGGTCTG GCAGGTTGGG
                                                                               1020
       CCTGGATGGG GAGGCTCTAG CATCTCTCAT AGGTGCAACC TGAGAGTGGG GGAGCTAAGC
                                                                               1080
60
       CATGAGGTAG GGGCAGGCAA GAGAGAGGAT TCAGACGCTC TGGGAGCCAG TTCCTAGTCC
                                                                               1140
       TCAACTCCAG CCACCTGCCC CAGCTCGACG GCACTGGGCC AGTTCCCCCT CTGCTCTGCA
                                                                               1200
       GCTCGGTTTC CTTTTCTAGA ATGGAAATAG TGAGGGCCAA TGC
       Seq ID NO: 89 Protein sequence:
65
       Protein Accession #: NP_005259.1
                   11
                               21
                                           31
                                                                  51
       MNWSIFEGLL SGVNKYSTAF GRIWLSLVFI FRVLVYLVTA ERVWSDDHKD FDCNTRQPGC
70
       SNVCFDEFFP VSHVRLWALQ LILVTCPSLL VVMHVAYREV QEKRHREAHG ENSGRLYLNP
                                                                                 120
       GKKRGGLWWT YVCSLVFKAS VDIAFLYVFH SFYPKYILPP VVKCHADPCP NIVDCFISKP
                                                                                 180
       SEKNIFTLFM VATAAICILL NLVELIYLVS KRCHECLAAR KAQAMCTGHH PHGTTSSCKQ
       DDLLSGDLIF LGSDSHPPLL PDRPRDHVKK TIL
75
       Seq ID NO: 90 DNA sequence
       Nucleic Acid Accession #: NM_002391.1
       Coding sequence: 26-457
80
                   11
                               21
                                           31
                                                                   51
       CGGGCGAAGC AGCGCGGGCA GCGAGATGCA GCACCGAGGC TTCCTCCTCC TCACCCTCCT
       CGCCCTGCTG GCGCTCACCT CCGCGGTCGC CAAAAAGAAA GATAAGGTGA AGAAGGGCGG
                                                                                 120
       CCCGGGGAGC GAGTGCGCTG AGTGGGCCTG GGGGCCCTGC ACCCCCAGCA GCAAGGATTG
                                                                                 180
85
       CGGCCTGCGG TTCCGCGAGG GCACCTGCGG GGCCCAGACC CAGCGCATCC GGTGCAGGGT GCCCTGCAAC TGGAAGAAGG AGTTTGGAGC CGACTGCAAG TACAAGTTTG AGAACTGGGG
                                                                                 240
                                                                                300
       TECGTGTGAT GGGGGCACAG GCACCAAAGT CCGCCAAGGC ACCCTGAAGA AGGCGCGCTA
                                                                                 360
```

GCTGGAGGGG GAGGGCCTGG GACAGTCACT AGGCAACTTC AAGGACGACC TGCTCAATGT

ATGCATGCGC CACGTTGAGA AGATGTGCAA GGCGGACCTG AGCCGTAACT TCATTGAGAG

GAACCACATG GAGAACGGTG GTGACCATCG CTATGTGAAC AACTACACGA ACAGCTTCGG

1380

1440

1500

PCT/US02/12476

```
GGGTGAGTGG AGTGCACCGG ACACCATGAA GAGATACTCC ATGTACCTGA CACCCAAAGG
      TGGGGTCCGG ACATCATACC AGCCCTCGTC TCCTGGCCGC TTCACCAAGG AGACCACCCA
                                                                          1620
      GAAGAATTTC AACAATCTCT ATGGCACCAA AGGTAACTAC ACCTCCCGGG TCTGGGAGTA
                                                                          1680
      CTCCTCCAGC ATTCAGAACT CTGACAATGA CCTGCCCGTC GTCCAAGGCA GCTCCTCCTT
                                                                          1740
      CTCCCTGAAA GGCTATCCCT CCCTCATGCG GAGCCAAAGC CCCAAGGCCC AGCCCCAGAC
5
      TTGGAAATCT GGCAAGCAGA CTATGCTGTC TCACTACCGG CCATTCTACG TCAACAAAGG
                                                                          1860
      CAACGGGATT GGGTCCAACG AAGCCCCATG AGCTCCTGGC GGAAGGAACG AGGCGCCACA
                                                                          1920
      CCCCTGCTCT TCCTCCTGAC CCTGCTGCTC TTGCCTTCTA AGCTACTGTG CTTGTCTGGG
                                                                          1980
      TGGGAGGGAG CCTGGTCCTG CACCTGCCCT CTGCAGCCCT CTGCGAGCCT CTTGGGGGCA
                                                                          2040
      GTTCCGGCCT CTCCGACTTC CCCACTGGCC ACACTCCATT CAGACTCCTT TCCTGCCTTG
10
                                                                          2100
      TGACCTCAGA TGGTCACCAT CATTCCTGTG CTCAGAGGCC AACCCATCAC AGGGGTGAGA
                                                                          2160
      TAGGTTGGGG CCTGCCCTAA CCCGCCAGCC TCCTCCTCTC GGGCTGGATC TGGGGGCTAG
                                                                          2220
      CAGTGAGTAC CCGCATGGTA TCAGCCTGCC TCTCCCGCCC ACGCCCTGCT GTCTCCAGGC
                                                                          2280
       CTATAGACGT TTCTCTCCAA GGCCCTATCC CCCAATGTTG TCAGCAGATG CCTGGACAGC
                                                                          2340
      ACAGCCACCC ATCTCCCATT CACATGGCCC ACCTCCTGCT TCCCAGAGGA CTGGCCCTAC
                                                                          2400
15
       GTGCTCTCTC TCGTCCTACC TATCAATGCC CAGCATGGCA GAACCTGCAG TGGCCAAGGG
                                                                          2460
       CTGCAGATGG AAACCTCTCA GTGTCTTGAC ATCACCCTAC CCAGGCGGTG GGTCTCCACC
                                                                          2520
       ACAGCCACTT TGAGTCTGTG GTCCCTGGAG GGTGGCTTCT CCTGACTGGC AGGATGACCT
                                                                          2580
       TAGCCAAGAT ATTCCTCTGT TCCCTCTGCT GAGATAAAGA ATTCCCTTAA CATGATATAA
                                                                          2640
       TCCACCCATG CAAATAGCTA CTGGCCCAGC TACCATTTAC CATTTGCCTA CAGAATTTCA
                                                                          2700
20
       2760
       GTGCCTTACA CACTGCCCCC ACCCTCAGCC GTTGCCCCAT CAGAGGCTGC CTCCTCCTTC
       2880
       AGCAGCACAG TGGGGACATC TCCCGTCTCA ACAGCCCCAG GCCTATGGGG GCTCTGGAAG
                                                                          2940
       GATGGGCCAG CTTGCAGGGG TTGGGGAGGG AGACATCCAG CTTGGGCTTT CCCCTTTGGA
                                                                          3000
25
       ATAAACCATT GGTCTGTC
       Seq ID NO: 95 Protein sequence:
       Protein Accession #: NP_036233.1
30
                  11
                             21
       MEAADASRSN GSSPEARDAR SPSGPSGSLE NGTKADGKDA KTTNGHGGEA AEGKSLGSAL
       KPGEGRSALF AGNEWRRPII QFVESGDDKN SNYFSMDSME GKRSPYAGLQ LGAAKKPPVT
                                                                            120
35
       FAEKGDVRKS IFSESRKPTV SIMEPGETRR NSYPRADTGL FSRSKSGSEE VLCDSCIGNK
                                                                            180
       QKAVKSCLVC QASFCELHLK PHLEGAAFRD HQLLEPIRDF EARKCPVHGK TMELFCQTDQ
                                                                            240
       TCICYLCMFQ EHKNHSTVTV EEAKAEKETE LSLQKEQLQL KIIEIEDEAE KWQKEKDRIK
                                                                            300
       SFTTNEKAIL EQNFRDLVRD LEKQKEEVRA ALEQREQDAV DQVKVIMDAL DERAKVLHED
                                                                            360
       KOTREQLHSI SDSVLFLQEF GALMSNYSLP PPLPTYHVLL EGEGLGQSLG NFKDDLLNVC
MRHVEKMCKA DLSRNFIERN HMENGGDHRY VNNYTNSFGG EWSAPDTMKR YSMYLTPKGG
                                                                            420
40
                                                                            480
       VRTSYQPSSP GRFTKETTQK NFNNLYGTKG NYTSRVWEYS SSIQNSDNDL PVVQGSSSFS
                                                                            540
       LKGYPSLMRS QSPKAQPQTW KSGKQTMLSH YRPFYVNKGN GIGSNEAP
45
       Seg ID NO: 96 DNA sequence
       Nucleic Acid Accession #: NM_080668.1
       Coding sequence: 83-841
                                                               51
                                                    41
50
       GGCACGAGGG CAGCGAGTGG CCTTCCCGGT TGGCGCGCGC CCGGGGGGGG GGCGCTGGAG
       GAGCTCGAGA CGGAGCCTAG TTATGTCTGG GAGGCGAACG CGGTCCGGAG GAGCCGCTCA
                                                                            120
                                                                            180
       GCGCTCCGGG CCAAGGGCCC CATCTCCTAC TAAGCCTCTG CGGAGGTCCC AGCGGAAATC
       AGGCTCTGAA CTCCCGAGCA TCCTCCCTGA AATCTGGCCG AAGACACCCA GTGCGGCTGC
                                                                            240
        AGTCAGAAAG CCCATCGTCT TAAAGAGGAT CGTGGCCCAT GCTGTAGAGG TCCCAGCTGT
                                                                            300
55
        CCAATCACCT CGCAGGAGCC CTAGGATTTC CTTTTTCTTG GAGAAAGAAA ACGAGCCCCC
                                                                            360
        TGGCAGGGAG CTTACTAAGG AGGACCTTTT CAAGACACAC AGCGTCCCTG CCACCCCCAC
                                                                            420
        CAGCACTCCT GTGCCGAACC CTGAGGCCGA GTCCAGCTCC AAGGAAGGAG AGCTGGACGC
                                                                            480
        CAGAGACTTG GAAATGTCTA AGAAAGTCAG GCGTTCCTAC AGCCGGCTGG AGACCCTGGG
CTCTGCCTCT ACCTCCACCC CAGGCCGCCG GTCCTGCTTT GGCTTCGAGG GGCTGCTGGG
                                                                            540
                                                                            600
60
        GGCAGAAGAC TTGTCCGGAG TCTCGCCAGT GGTGTGCTCC AAACTCACCG AGGTCCCCAG
                                                                            660
        GGTTTGTGCA AAGCCCTGGG CCCCAGACAT GACTCTCCCT GGAATCTCCC CACCACCCGA
                                                                            720
        GAAACAGAAA CGTAAGAAGA AGAAAATGCC AGAGATCTTG AAAACGGAGC TGGATGAGTG
                                                                            780
        GGCTGCGGCC ATGAATGCCG AGTTTGAAGC TGCTGAGCAG TTTGATCTCC TGGTTGAATG
                                                                            840
        AGATGCAGTG GGGGGTGCAC CTGGCCAGAC TCTCCCTCCT GTCCTGTACA TAGCCACCTC
                                                                            900
 65
        CCTGTGGAGA GGACACTTAG GGTCCCCTCC CCTGGTCTTG TTACCTGTGT GTGTGCTGGT
                                                                            960
        GCTGCGCATG AGGACTGTCT GCCTTTGAGG GCTTGGGCAG CAGCGGCAGC CATCTTGGTT
                                                                           1020
        TTAGGAAATG GGGCCGCCTG GCCCAGCCAC TCACTGGTGT CCTGTCTCTT GTCGTCCTGT
                                                                           1080
        CCTTCCTATC TCCCCAAAGT ACCATAGCCA GTTTCCAGAT GGGCCACAGA CTGGGGAGGA
                                                                           1140
        GAATCAGTGG CCCAGCCAGA AGTTAAAGGG CTGAGGGTTG AGGTGAGAGG CACCTCTGCT
                                                                           1200
 70
        CTTGTTGGGA GGGGTGGCTG CTTGGAAATA GGCCCAGGGG CTCTGCCAGC CTCGGCCTCT
                                                                           1260
        CCCTCCTGAG TTGCCTTCTG TTGGTGGCTT TCTTCTTGAA CCCACCTGTG TAAAGAGGTT
                                                                           1320
        TTCAGTTCCG TGGGTTTCCC CTTTGATTCT GTAAATAGTC CCAGAGAGAA TTCGTGGGCT
                                                                           1380
        GAGGGCAATT CTGTCTTGGA GGAAGAAGCT GGACATTCAG CCTGTGGAGT CTGAGTTTTG
                                                                            1440
        AAGGATGTAG GGAGCCTTAG TTGGGTCTCA GACCATAAGT GTGTACTACA CAGAAGCTGT
 75
                                                                            1500
        GTTTTCTAGT TCTGGTCTGC TGTTGAGATG TTTGGTAAAT GCCAGGTTGA TAGGGCGCTG
                                                                            1560
        GCTGCTTGGA GCAAAGGGTG CATTTCAGGG TGTGGCCACC AGGTGCTGTG AGTTTCTGTG
                                                                            1620
        GCTCATGGCC TCTGGGCTGG TCCCTTGCAC AGGGCCCACG CTGGAGTCTT ACCACTCTGC
                                                                            1680
        TGCAGGGGTG GAAGGTGGCC CCTCTTGTCA CCCATACCCA TTTCTTACAA AATAAGTTAC
                                                                            1740
        ACCGAGTCTA CTTGGCCCTA GAAGAGAAAG TTGAAGAGTC CCAGACCTAC TAGCATTTTG
 80
        CAACTATGCT TGTAAAGTCC TCGGAAAGTT TCCTCGCGTA CCAGACAGCG GCGGGGGCTG
        ATAGCAATTT TAGTTTTTGG CCTCCCTATC CTCTCACATG AGAACACTGC CTGGATGCAT
        CTCATGATCT CTGGAGAATT TCCCCATCTT TCTCTTCTTT CCATCGTGTG GATTCAATAG
        TTTGGATTTG AAGGCTGCCC TGCCCCCGAC TCTCCTGCCG CACCCCTGGC CATTGTACCT
                                                                            2100
        TTTGATGTTT AGAAGTTCGT GGAAGTAGAC GCTGAGGTGT GCAGAGGAGC TGGTGGATAA
 85
        CAGAGAATGC CAGGGAAGAT GAGTGCTGGG TCAGGGTACT TGGATGAAAC GGTGCAGGCC
                                                                            2160
```

AGGCGGGCCC TAATAAAACC CTCTGCCAGG TCTGGGAGTC CCAGGCCATC TGCTCAACGC

	TCTGTGGTTT	GTCAGACCTG	CAAGCAAGCC	CCCTGCTGGG CTGGCTGATG	GAAGCCTAGG	TGTCCTTGAG	2280
_	GTCTTAGTCC	TGCAGAATCA	GGAGTCACCA	GATGATGCAG GGAAAAAATG	AGTTGAGATC	ATCATTGCAA	2340 2400 2460
5	AAAAAAAGCC	TGATTAAAGA	GTTTCTGCCT	GTTAAAAAA	AAAAAAAA	AAAAAA	2.00
	-	97 Protein cession #: 1	-				
10	1	11 	21 	31	41 	51 	٠
				RKSGSELPSI EPPGRELTKE			60 120
15	EAESSSKEGE	LDARDLEMSK	KVRRSYSRLE	TLGSASTSTP PPEKQKRKKK	GRRSCFGFEG	LLGAEDLSGV	180
	FEAAEQFDLL						210
20		98 DNA seq id Accession	uence n #: Eos sec	nence			
20	Coding seq	lence: 58-12	2444				
	1	11	21 	31 	41	51 	
25				GCACGCGCGG CTGCTGCGGC			60 120
				CATCAACTGA			180
				GCATTACAGA TCACTCAACA			240 300
30				TTCTTAGAAA			360
30.				ACCAGTGTTT ATTAAGTTAC			420 480
				TTATTTAGTA			540
25				GAAAAAGTAT AATGCAGAAA			600 660
35				GTAAGAGAGC			720
				TGCAACTTCA GTACTAAAGG			780 840
				TTGCGCCTAT TCTCTATTTG			900
40				GCACTTTCAG			960 1020
				GAAATGCATA GTGGATTCGA			1080
				CCGTGCAAGG			1140 1200
45				TGCAAGCAGA AGCTTCCTCC			1260 1320
1.5				ACTCCAGTTC			1380
				AAAATGCAGC GGGCCAGTTC			1440 1500
50				TCTAAACCAG			1560
50				GGGGAAGTCA AGACATCTCC			1620 1680
	GATTCTATTT	TAGCAGATGA	AGCATTTTTC	TCTGTGAATT	CCTCCAGTGA	AAGTCTGAAT	1740
				GTTTTGAAGA GAGAATGGAG			1800 1860
55	ATGATCCCAA	CTTCAGATCC	AGCGGCTAAC	TTGCATCCAG	CTAAACCTAA	AGATTTTTCG	1920
				GAGATTCTCC		AGCAGAATTT AAGGTTGCCC	1980 2040
	CTCATCAGTG	GTTTCTACAA	ATTGCTTTCT	ATTACAGTAA	GAAATGCCAA	GAAAATAAAA	2100
60						AGAAAAGTAT GAAGCAGTAC	2160 2220
-	AAAGATGAAC	TTTTGGCCTC	TTGTTTGACC	TTTCTTCTGT	CCTTGCCACA	CAACATCATT	2280
						GGGCCTGAGC TTATATTGAC	2340 2400
65	AGACATGTAA	TGCAGCCTTA	TTACAAAGAC	ATTCTCCCCT	GCCTGGATGG	ATACCTGAAG	2460
05						TTCTCGGGCT GAACCTTTCA	2520 2580
						GCTTGGATCT	2640
5 0						GATGATGAAG TAGAGAGATG	2700 2760
70						GCTCACAGCC	2820
						TATGTTTATG GTACCAGCTC	2880 2940
						GGTGACAAGG	3000
75						CAAGAAATTT GGACCCTGTT	3060 3120
						ATGGTCCATT	3180
						GCTTTTCAAG ATCACTTGCC	3240 3300
80	TTTAATAATA	TCTACAGGGA	ATTCAGGGAA	GAAGAGTCTC	TGGTGGAACA	GTTTGTGTTT	3360
50						GAAGTCCTTA TGAAAAGAAG	3420 3480
	CATGTTTCTT	TAAATAAAGC	AAAGAAACGA	CGTTTGCCGC	GAGGATTTCC	ACCTTCCGCA	3540
0.5						GCCCCAGACA GCCAGGCAAC	3600 3660
85	AGATCCCCTA	ATTTGTGGCT	GAAAGATGTT	CTCAAGGAAG	AAGGTGTCTC	TTTTCTCATC	3720
						GCCCACCCTC CCTGCTCCTG	

	W U UZ						
			CACGTTCATT				3900
	CTAGGTACTG	AAGCCCAGTC	TTCACTTTTG	AAAGCAGTGG	CTTTCTTCTT	AGAAAGCATT	3960
	GCCATGCATG	ACATTATAGC	AGCAGAAAAG	TGCTTTGGCA	CTGGGGCAGC	AGGTAACAGA	4020
_	ACAAGCCCAC	AAGAGGGAGA	AAGGTACAAC	TACAGCAAAT	GCACCGTTGT	GGTCCGGATT	4080
5	ATGGAGTTTA	CCACGACTCT	GCTAAACACC	TCCCCGGAAG	GATGGAAGCT	CCTGAAGAAG	4140
-	GACTTGTGTA	ATACACACCT	GATGAGAGTC	CTGGTGCAGA	CGCTGTGTGA	GCCCGCAAGC	4200
			CGTCCAGGTT				4260
			GTCCCCATAC				4320
			TGAGGAGCTT				4380
10			GGCTGCTGTT				
10							4440
			ACCGTCTCAG				4500
			TAAAGGCATT				4560
			GCAGCTGGCC				4620
	GGAGGACTGT	GTGAGCGCCT	TGTGAGTCTT	CTCCTGAACC	CAGCGGTGCT	GTCCACGGCG	4680,
15	TCCTTGGGCA	GCTCACAGGG	CAGCGTCATC	CACTTCTCCC	ATGGGGAGTA	TTTCTATAGC	4740
	TTGTTCTCAG	AAACGATCAA	CACGGAATTA	TTGAAAAATC	TGGATCTTGC	TGTATTGGAG	4800
			TAATACCAAA				4860
			AGCAAACCAG				4920
			GTGTGATTCA				4980
20			ACTGGCAAAA				5040
20							
			CCCTGAAGTC				5100
			AAAGGGCCAA				5160
			GGAACTTAGA				5220
~ ~			ATTTCCTCCA				5280
25	TGCATGAAAA	AGTTTCTAGA	TGCATTGGAA	TTATCTCAAA	GCCCTATGTT	GTTGGAATTG	5340
	ATGACAGAAG	TTCTTTGTCG	GGAACAGCAG	CATGTCATGG	AAGAATTATT	TCAATCCAGT	5400
•	TTCAGGAGGA	TTGCCAGAAG	GGGTTCATGT	GTCACACAAG	TAGGCCTTCT	GGAAAGCGTG	5460
			TGACCCCCGC				5520
			GTGGCACTGT				5580
30			TGATGTGTTG				5640
50			CAAGAAGATG				5700
			TGTTCATGCT				5760
			AAATGAACTT				5820
25			AGGAGAGAAT				5880
35	TGTGCAGCAT	ACAACTGCGC	CATATCTGTC	ATCTGCTGTG	TCTTCAATGA	GTTAAAATTT	5940
			TGAAAAACCA				6000
	ATCGACCTGA	AGCGCCGCTA	TAATTTTCCT	GTAGAAGTTG	AGGTTCCTAT	GGAAAGAAAG	6060
			GAAAGAAGCC				6120
			GTCATATTTG				6180
40			AGTTCAGAGC				6240
10			ACGGGAGCAG				6300
							6360
			CAATCGGCAT				
			GGGCCCGCCT				6420
15			CCTCCATGGC				6480
45			GCTTGTTATT				6540
			GCTGCAGCTG				6600
			GATAGTGGCC				6660
	CCAACAGGGG	TCCCTAAAGA	TGAAGTGTTA	GCAAATCGAT	TGCTTAATTT	CCTAATGAAA	6720
	CATGTCTTTC	ATCCAAAAAG	AGCTGTGTTT	AGACACAACC	TTGAAATTAT	AAAGACCCTT	6780
50	GTCGAGTGCT	GGAAGGATTG	TTTATCCATC	CCTTATAGGT	TAATATTTGA	AAAGTTTTCC	6840
,			AGACAACTCA				6900
•							6960
	GCCAATGACC	TCCCTCCCTA					
	GCCAATGACC				TCTATCCCCC	TGCAGCAGAA	
	GCTTTGGTGA	ATAATATGTC	CTTTGTAAGA				7020
55	GCTTTGGTGA GTTCTAGGAC	ATAATATGTC TTATACTTCG	CTTTGTAAGA ATATGTTATG	GAGAGAAAA	ACATACTGGA	GGAGTCTCTG	7020 7080
55	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG	ATAATATGTC TTATACTTCG TTGCGAAACA	CTTTGTAAGA ATATGTTATG ATTGAAGCAA	GAGAGAAAAA CATCAGAATA	ACATACTGGA CTATGGAGGA	GGAGTCTCTG CAAGTTTATT	7020 7080 7140
55	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTGCTTGA	ATAATATGTC TTATACTTCG TTGCGAAACA ACAAAGTGAC	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC	GAGAGAAAA CATCAGAATA CCTCCTCTTG	ACATACTGGA CTATGGAGGA CAGACAGGTT	GGAGTCTCTG CAAGTTTATT CATGAATGCT	7020 7080 7140 7200
55	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTGCTTGA GTGTTCTTTC	ATAATATGTC TTATACTTCG TTGCGAAACA ACAAAGTGAC TGCTGCCAAA	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGGA	GAGAGAAAA CATCAGAATA CCTCCTCTTG GTGTTGAAAA	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT	GGAGTCTCTG CAAGTTTATT CATGAATGCT GGAGGTGGTA	7020 7080 7140 7200 7260
55	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTGCTTGA GTGTTCTTTC CTTTGTCGTG	ATAATATGTC TTATACTTCG TTGCGAAACA ACAAAGTGAC TGCTGCCAAA TGGAGGGAAT	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTG	GAGAGAAAA CATCAGAATA CCTCCTCTTG GTGTTGAAAA TACTTCCAGT	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA	GGAGTCTCTG CAAGTTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT	7020 7080 7140 7200 7260 7320
	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTGCTTGA GTGTTCTTTC CTTTGTCGTG CAAGTCATGA	ATAATATGTC TTATACTTCG TTGCGAAACA ACAAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTG TGATGAAAGA	GAGAGAAAA CATCAGAATA CCTCCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT	GGAGTCTCTG CAAGTTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG	7020 7080 7140 7200 7260 7320 7380
55 60	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTGCTTGA GTGTTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCAA	ATAATATGTC TTATACTTCG TTGCGAAACA ACAAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA AGTTAAAACC	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTG TGATGAAAGA AGTAGAACTC	GAGAGAAAA CATCAGAATA CCTCCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT CGAGAACTTC	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT	GGAGTCTCTG CAAGTTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTC	7020 7080 7140 7200 7260 7320 7380 7440
	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCAA GTTTCCCATC	ATAATATGTC TTATACTTCG TTGCGAAACA ACAAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA AGTTAAAACC CTTCTACAAC	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGG GACAGAGCTG TGATGAAAGA AGTAGAACTC ATGTAGGGAA	GAGAGAAAA CATCAGAATA CCTCCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT CGAGAACTTC	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT ATATTCTCAT	GGAGTCTCTG CAAGTTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTC GTGGATTCAT	7020 7080 7140 7200 7260 7320 7380 7440 7500
	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCAA GTTTCCCATC GATAATTACA	ATAATATGTC TTATACTTCGAAACTGAC ACAAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA AGTTAAAAC CTTCTACAAC GAGATCCAGA	CTTTGTAAGA ATATGTTATG ATTGAAGCAT CAAGAGCTTC ATTTCATGGA GACAGAGCTG TGATGAAAGA AGTAGAACTC ATGTAGGGAA AAGTGAGACA	GAGAGAAAA CATCAGAATA CCTCCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT CGAGAACTTC CAAATGTATA GATAATGACT	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT ATATTCTCAT CCCAGGAAAT	GGAGTCTCTG CAAGTTTATT CATGAATGCT GGAGGTGGTA AGACTTCGTT AATTTATAAG TGTGGAATTC GTGGATTCAT ATTTAAGTTG	7020 7080 7140 7200 7260 7320 7380 7440 7500 7560
	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCAA GTTTCCCATC GATAATTACA	ATAATATGTC TTATACTTCGAAACTGAC ACAAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA AGTTAAAAC CTTCTACAAC GAGATCCAGA	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGG GACAGAGCTG TGATGAAAGA AGTAGAACTC ATGTAGGGAA	GAGAGAAAA CATCAGAATA CCTCCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT CGAGAACTTC CAAATGTATA GATAATGACT	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT ATATTCTCAT CCCAGGAAAT	GGAGTCTCTG CAAGTTTATT CATGAATGCT GGAGGTGGTA AGACTTCGTT AATTTATAAG TGTGGAATTC GTGGATTCAT ATTTAAGTTG	7020 7080 7140 7200 7260 7320 7380 7440 7500
60	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTGCTTGA GTGTTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCAA GTTTCCCATC GATAATTACA GCAAAAGATG	ATAATATGTC TTATACTTCG ATACGGAAAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA AGTTAAAACC CTTCTACAAC TGGAGTCCAGA TGCTGATTCA	CTTTGTAAGA ATATGTTATG ATTGAAGCAT CAAGAGCTTC ATTTCATGGA GACAGAGCTG TGATGAAAGA AGTAGAACTC ATGTAGGGAA AAGTGAGACA	GAGAGAAAA CATCAGAATA CCTCCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAGTAT CGAGAACTTC CAAATGTATA GATAATGACT GATGAGAACC	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT ATATTCTCAT CCCAGGAAAT CTGGACTTCA	GGAGTCTCTG CAAGGTTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTC GTGGATTCAT ATTTAAGTTG ATTTAATTT	7020 7080 7140 7200 7260 7320 7380 7440 7500 7560
	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCAA GTTTCCCATC GATAATTACA GCAAAAGATG CGAAATTTCT	ATAATATGTC TTATACTTCG TTGCGAAACA ACAAAGTGAC TGGTGCCAAA TGGAGGGAAT GACATAGAGA AGTTAAAACC CTTCTACAAC GAGATCCAGA TGCTGATTCA GGAGCCATGA	CTTTGTAAGA ATATGTTATG ACTAGAGCATC ATTTCATGGA GACAGAGCTG GACAGAGCTG TGATGAAAGA AGTAGAACTA ATGTAGGAACA AAGTGAGACA AGGATTGATCA	GAGAGAAAA CATCAGAATA CCTCCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT CGAGAACTTC CAAATGTATA GATAATGACT GATGAGAAC CCTTCAAATA	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT ATATTCTCAT CCCAGGAAAT CTGGACTTCA CCTTGGACTCC	GGAGTCTCTG CAAGGTTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGATTCAT ATTTAAGTTG ATTTAAGTTG ATTTAAGTTG GTTGGTTG	7020 7080 7140 7200 7260 7320 7380 7440 7500 7560 7620
60	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTGCTTGA GTGTTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCAA GTTTCCCATC GATAATTACA GCAAAAGATG CGAAATTTCT CTAAATTCCT	ATAATATCTC TTATACTTCG TTGCGAAACA ACAAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA AGTTAAAACC CTTCTACAAC GAGATCCAGA TGCTGATTCA GGAGCCATGA TATATTCTCC	CTTTGTAAGA ATATGTTATGA ATTGAAGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTG TGATGAAAGA AGTAGAACTC ATGTAGGGAA AAGTGAGACA AAGTAGATCATC TAAGATAGATAGATAGATAGATAGATAGATAGAATAGA	GAGAGAAAA CATCAGAATA CCTCCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT CGAGAACTTC CAAATGTATA GATAATGACT GATGAGAAC CCTTCAAATA GTGCACTTT	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT ATATTCTCAT CCCAGGAAAT CTGGACTAC CCTTGGACTCG TAAGTTTAGC	GGAGTCTCTG CAAGATTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGATTCAT ATTTAAGTTG ATTTAAGTTG GTTGCTTCAT ATTAATTATT GTTGCTGCCA AACAAATTTT	7020 7080 7140 7200 7260 7320 7380 7440 7500 7560 7620 7680
60	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCAA GTTTCCCATC GATAATTACA GCAAAAGATG CTAAATTCCT CTTGTCGAAA CTTCCTAAATTCCT CTGCTCGAAA	ATAATATGTC TTATACTTCG TTGCGAAACA ACAAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA AGTTAAAACC CTTCTACAAC GAGATCCAGA TGCTGATTCA GAGACCATGA TATATTCTCC TGACCAGCAT	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTG TGATGAAAGA AGTAGAACTC ATGTAGGGAA AAGTGAGACA AAGTGAGACA AAGTAGATC AACTAGGTTA AACTAGGTTA TAAGATAGAA GAGCCCAGAT	GAGAGAAAA CATCAGAATA CCTCCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT CAAATGTATA GATAATGACT GATGAGAACC CCTTCAAATA GTGCACTTT TATCCAAACC	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT ATATTCTCAT CCCAGGAAAT CTGGACTTCA CCTTGGACCT CAGGATTAC CCTTGGACCT CCAGGTTTCGC CCATGTTCGA	GGAGTCTCTG CAAGGTTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTC GTGGATTCAT ATTTAAGTTG ATTAATTATT GTTGCTGGCA AACAAATTTT GCATCCTCTG	7020 7080 7140 7200 7260 7320 7380 7440 7500 7660 7680 7740 7800
60	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCATC GATAATTACA GCAAAAGATG CGAAATTTCT CTGCTCGAAA TCTCTCTCGAAA TCAGAATTCCT	ATAATATGTC TTATACTTCG TTATCGAAAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA CTTTCACAAC GAGATCCAGA TGCTGATTCA GGAGCCATGA TATATTCTCC TGACCAGCAT AATTTCAGGA	CTTTGTAAGA ATATGATGCAA ATATGAAGCAT ATTTCATGGA GACAGAGCTG TGATGAAAGA AGTAGAACTA AAGTGAGACA AAGTGAGACA AAGTGAGACA AAGTAGAACT AACTAGGTTA AACTAGGTTA TAAGATAGAA GAGCCCAGAT ATATACCATT	GAGAGAAAA CATCAGAATA CCTCCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAGTAT CGAGAACTTC CAAATGTATA GATAATGACT GATGAGAACC CCTTCAAATA GTGCACTTTT TATCCAAACC GATTCTGATT	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT ATATTCTCAT CCCAGGAAAT CTGGACTCA CCTTGGACCT TAAGTTTAGC CCATGGTTCGA GGCGTTTCCG	GGAGTCTCTG CAAGGTTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTCA ATTTAAGTTG ATTTAAGTTG ATTAATTATT GTTGCTGGCA AACAAATTTT GCATCCTCTG AAGTACTGTT	7020 7080 7140 7200 7260 7320 7380 7440 7500 7620 7680 7740 7800 7860
60	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTTGATTCC CTTTGTCGTG CAAGTCATGA ATGATGCCAA GTTTCCCATC GATAATTACA GCAAAAGATC CTAAATTCT CTAAATTCT CTGCTCGAA TCAGGAATGCG CTCACTCCGA	ATAATATGTC TTATACTTCG TTATCGAAACT TGCGAAAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA AGTTAAAACC CTTCTACAAC GGAGTCCAGA TGCTGATTCA GGAGCCATGA TATATTCTCC TGACCAGCAT AATTTCAGGA TGTTTTGTGGA	CTTTGTAAGA ATATGATGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTG TGATGAAAGA AGTAGAACTA ATGTAGGGAA AAGTGAGACA AGGATTGATC AACTAGGTTA AACTAGGTTA TAAGATAGAA GAGCCCAGAT ATATACCATT GACCCAGGCC	GAGAGAAAA CATCAGAATA CCTCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT CGAGAACTTC CAAATGTATA GATAATGACT GATGAGAACC CCTTCAAATA GTGCACTTTT TATCCAAACC GATTCTGATT TCCCAGGGCA	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT ATATTCTCAT CCCAGGAAAT CTGGACTTCA CCTTGGACTC TAAGTTTAGC CATGTTCGA GGCGTTTCCG CTCCCAGAC CTCCCAGAC	GGAGTCTCTG CAAGGTTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTCT GTGGATTCAT ATTTAAGTTG ATTAATTATT GTTGCTGGCA AACAAATTTT GCATCCTCTG AAGTACTGTT CCGTACCCAG	7020 7080 7140 7200 7260 7320 7380 7500 7560 7620 7680 7740 7800 7860 7920
60 65	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCAA GTTTCCCATC GATAATTACA GCAAAAGATG CGAAATTTC CTAAATTCC CTAAATTCC CTCAGAATGC CTCACCCGA GAAGGGTCCC	ATAATATGTC TTATACTTCG TTGCGAAACA ACAAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA AGTTAAAACC CTTCTACAAC GAGATCCAGA TGCTGATTCA CGAGCCATGA TATATTCTCC TGACCAGCAT AATTTCAGGA ACTTTGTGGA TCTCAGCTCG	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTTG TGATGAAAGA AGTAGAACTC ATGTAGGGAA AAGTGAGACA AAGTGAGACA AAGTAGGTTA TAAGATTGAT TAAGATTGAT TAAGATAGAA GAGCCCAGAT ATATACCATT GACCCAGGCC CTGGCCAGTG	GAGAGAAAA CATCAGAATA CCTCCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAGTAT CGAGAACTTC CAAATGTATA GATAATGACT GATGAGAAC CCTTCAAATA GTGCACTTTT TATCCAAACC GATTCTGATT TCCCAGGGCA GCAGGGCAGA	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCGT ATATTCTCAT CCCAGGAAAT CTGGACTTCA CCTTGGACCC TAAGTTTAGC CCATGTTCGA GCGTTTTCGG GCGTTTCCG GTCTCCAGAC TAAGGGCCAC	GGAGTCTCTG CAAGATTCTT CATGAATGCT GGAGGTGGTA AGACTTCGTT AATTTATAAG TGTGGATTCAT ATTTAAGTTG ATTTAAGTTG ATTTAAGTTTG GTGCTGCCA AACAAATTTT GCATCCTCTG AAGTACTCTGT CCGTACCTCTG CCGAGCAGCAG	7020 7080 7140 7200 7260 7380 7440 7500 7620 7680 7740 7800 7800 7920 7980
60	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTGCTTGA GTGTTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCAA GTTTCCCATC GATAATTACA GCAAAAGATG CGAAATTTCT CTAAATTCCT CTAAATTCCT CTAAATTCCT CTACTCCGAAA TCAGAATGCG GCACCCCCACCCCCACCCCCACCCCCCACCCCCCACCCCCC	ATAATATGTC TTATACTTCG TTGCGAAACA ACAAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA AGTTAAAACC CTTCTACAAC GAGATCCAGA TGCTGATTCA GGAGCCATGA TATATTCTCC TGACCAGCAT AATTTCAGGA TGTTTGTGGG TGTTTGTGGC CACTGACACA	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTG TGATGAACAC ATGTAGGGAA AAGTGAGACA AGGATTGATC AACTAGGTTA AACTAGGTTA TAAGATAGAA GAGCCCAGAT ATATACCATT GACCCAGGC CTGGCCAGTG GACTGCAGAT	GAGAGAAAAA CATCAGAATA CCTCCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT CGAGAACTTC CAAATGTATA GATAATGACT GATGAGAACC CCTTCAAATC TATCCAAACC GATTCTGATT TCCCAGGGCA GCAGGGCAGA GCAGGGCAGA	ACATACTGGA CTATTGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT ATATTCTCAT CCCAGGAAAT CTGGACTTCA CCTTGGACTC CATGTTGGA CCTTGGACCC CTAGTTTCGA GCGTTTCCAG GCGTTTCCACAC CTTCCCAGC CTAGGCCAC CATTTGATTG	GGAGTCTCTG CAAGATTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTC GTGGATTCAT ATTTAAGTTG ATTAATTATT GTTGCTGGCA AACAAATTTT GCATCCTCTG AAGTACCAGG CCAGCAGCAG GCTGACCGGG	7020 7080 7140 7200 7360 7380 7560 7620 7680 7740 7800 7800 7980 8040
60 65	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCAA GCTAAATTACA GCAAAAGATG CTAAATTCCT CTGCTCGAAA TCAGAATTCCT CTGCTCGAAA TCAGAATGCG CTCACTCCGA GAAGGGTCCC CATGACTTCA AGCAGCACTG AGCAGCACTG	ATAATATGTC TTATACTTCG TTGCGAAACA ACAAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA CCTTCTACAAC GAGATCCAGA TGCTGATTCA GGAGCCATGA TATATTCTCC TGACCAGCAT AATTTCAGGA TCTTTGTGGA TCTTCAGCTCACCTCAC	CTTTGTAAGA ATATGATGCA ATTTGAAGCA CAAGAGCTTC ATTTCATGGA GACAGAGCTG TGATGAAAGA AGTAGAACTC ATGTAGGGAA AAGTGAGACA AAGTGAGACA AAGTAGATC AACTAGGTTA TAAGATAGAA GAGCCCAGAT ATATACCATT GACCCAGGC CTGGCCAGTC CTGCCAGGTA CGACTGCAGAT CGACCACACC	GAGAGAAAA CATCAGAATA CCTCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAGTAT CAAATGTATA GATAATGACT GATGAGAACC CCTTCAAATA GTGCACTTTT TATCCAAACC GATTCTGATT TCCCAGGGCA GCAGGGCAGA GCAGGGCAGA GCAGGAGAGC AGTCCCTCAT	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT CTCAGGAAAT CTGGACTTCA CCTTGGACCT TAAGTTTAGC CCATGTTCGA GCGTTTCCG TAAGTTCCG TAAGTTCCG TAAGTTTCCG CCATGTTCCA CCTTCCAGAC CTCTCCAGAC CATTTCCAGAC CTCTCCAGAC TAAGGCCCAT CAGTTTCCG CTCTCCAGAC TAAGGCCCAT CATTTGATTG CTGACTCCTT	GGAGTCTCTG CAAGGTTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTC ATTTAAGTTG ATTAATTATT GCTTGCTGGCA AACAAATTTT GCATCCTCTG AAGTACTGTT CCGTACCCAG CCAGCAGCAG GCTGACCGGG GCTGTTTGCC	7020 7080 7140 7200 7320 7380 7440 7500 7660 7680 7740 7860 7980 8040 8100
60 65	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCATC GATAATTACA GCAAAAGATC CTAAATTCCT CTGCTCGAAA TCAGAATTCCT CTGCTCGAAA TCAGAATGCG CTCACTCCGA GAAGGGTCCC CATGACTTCC CATGACTTCC CACACGGGACACTG CACAAGAGGA	ATAATATGTC TTATACTTCG AAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA CTTTAACAC CATACACA GAGATCCAGA TGCTGATTCA GAGCCATGA TATATTCTCC TGACCAGCAT AATTTCAGGA TCTTAGGA TCTCAGCTCG CACTGACACA ACCCGCTGGT GTGAAAGGTT	CTTTGTAAGA ATATGATGCAA ATATGAAGCAT ATTTCATGGA GACAGAGCTG GACAGAGCTG TGATGAAAGA AGTGAGACA AGGATTGATGA AAGTGAGACA AGGATTGATC AACTAGGTA AACTAGGTA AACTAGGTA AACTAGGTA AACTAGATACA AGACCCAGAT ATATACCATT GACCCAGGC CTGCCAGTG GACTGCAGAG CGACCACACC ACAGAGAGCA	GAGAGAAAA CATCAGAATA CCTCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT CGAGAACTTC CAAATGTATA GATGAGACC CCTTCAAATA GTGCACTTTT TATCCAAACC GATTCTGATT TCCCAGGGCA GCAGGCAGG GCAGGCAGA GGAAGAAGCT AGTCCTCAT CCCTTGAAGT CCCTTGAAGT	ACATACTGGA CTATGGAGGA CAGACAGGTT CACACTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT ATATTCTCAT CCCAGGAAAT CTGGACTTCA CCTTGGACCG TAAGTTTAGC CCATGTTCGA GGCGTTTCCG CTCTCCAGAC TAAGGGCCAC CATTTGATTCC CTGCAGAC CATTGATTCC CAGGGCCAC CATTGATCC CAGGGCCAC CATTGATCC CAGGGCCC CTGACCCCTT CAGTGGGCCC CTGACTCCTT CAGTGGGGCC	GGAGTCTCTG CAAGGTTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTCA ATTTAAGATTG ATTTAATTATT GTTGCTGGCA AACAAATTTT CCGTACCCTCG AAGTACTGT CCGTACCCAG CCAGCAGCAG GCTGGTTTGCC TGATTTTGCG TGATTTTGCG CTGATTTTCGG CTGACTGGG CTGTTTTCCC TGATTTTTGGG	7020 7080 7140 7200 7320 7380 7440 7500 7560 7680 7740 7860 7920 7980 8040 8160
60 65	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCAA GTTTCCCATC GAAAATATCA GCAAAAGATC CTAAATTCT CTGCTCGAA TCAGAATCCAT CTGCTCGAA GTCTCCGA GAAGATCCA CTCACTCCGA GAAGGGTCCC CATGACTTCA AGCAGCACTG CACAAGAGGGA AAAAAAAGGC	ATAATATGTC TTATACTTCG TTATACTTCG TTGCGAAAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA AGTTAAAACC CTTCTACAAC GGAGTCCAGA TGCTGATTCA GGAGCATGA TATATTCTCC TGACCAGCAT AATTTCAGGA TCTTAGGA TCTCAGCTCG CACTGACACA ACCCGCTGGT TGGGCCTTCC	CTTTGTAAGA ATATGATGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTG TGATGAAAGA AGTAGAACTA ATGTAGGGAA AGTAGAACTA AAGTAGGACA AGGATTGATC AACTAGGTTA TAAGATAGAA GAGCCCAGGTT GACCCAGGCC CTGGCCAGTG GACTGCAGAT CACTGCAGAT ACAGAGAC ACAGAGCCAACA ACAGAGACAAC ACAGAGACCAACA ACAGAGACCAACAC ACAGAGACCAA	GAGAGAAAA CATCAGAATA CCTCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT CGAGAACTTC CAAATGTATA GATAATGACT GATGAGAAC CCTTCAAATA GTGCACTTTT TATCCAAAC GATTCTGATT TCCCAGGGCA GCAGGGCAGA GCAGGGCAGA GCAGGCCT AGTCCCTCAT CCCTTGAAGT TCCTTCAGATA TCCCAGGCA GCAGGGCAGA GCAGGGCAGA GGAGAAGAAC TCCTTGAAGT TCCTTGAAGT TCCCTTGAAGT TCCCTTGAAGT TCCTTGAAGT	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCGT ATATTCTCAT CCCAGGAAAT CTGGACTTCA CCTTGGACTC TAAGTTTAGC CCATGTTCGG CCATGTTCGG CTCTCCAGAC TAAGGGCCAC CATTGATTG CTGACTCCTT CAGTGGGCC AAGTGAAAGG	GGAGTCTCTG CAAGGTTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTCT GTGGATTCAT AATTAAATTT GTTGCTGGCA AACAAATTTT GCATCCTCTG AAGTACTGTT CCGTACCCAG CCAGCAGCAG GCTGATCGGC GCTGTTTTGGG TGGATTTTGGG TGGCGCCGC	7020 7080 7140 7260 7320 7380 7560 7620 7680 7740 7860 7920 7980 8040 8100 8160 8220
606570	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTTCTTTC CTTTGTCGTG GATATTCCCATC GATAATTACA GCAAAAGATG CGAAATTTCT CTAGATTCCT CTGCTCGAAA TCAGAATGCC CATCACCCGA GAAGGGTCCCC CATGACTTCA AGCAGCACTC CACAAGAGGA AGCAAGAGGA AAAAAAAGGC CGGACGGA	ATAATATGTC TTATACTTCG TTGCGAAACA ACAAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA AGTTAAAACC CTTCTACAAC GAGATCCAGA TGCTGATTCA GGAGCCATGA TATATTCTCC TGACCAGCAT AATTTCAGGA TCTTGTGGA TCTCAGCTCG CACTGACACA ACCCGCTGGT TGGACACT TGGACACT TGGGCCTTCC TGGACACT TGGGCCTTCC TGGACACT TGGGCCTTCC TACTACGACT TACTACCACT	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTTC ATGTAGAACA AGTAGAACTC ATGTAGGGAA AAGTGAGACA AAGTGAGACA AAGTAGATCAT TAAGATAGAA GAGCCCAGAT ATATACCATT GACCCAGGCC CTGGCCAGTG GACTGCAGAT CAACACACAC ACAGAGAGCA ACAGAGAGCA ACAGAGAGCA GCGCAGACGG	GAGAGAAAA CATCAGAATA CCTCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT CGAGAACTTC CAAATGTATA GATAATGACT GATGAGAAC CCTTCAAATA TATCCAAAC GATTCTAATT TATCCAAAC GATTCTGATT TCCCAGGGCA GCAGGGCAGA GCAGGGCAGA GCAGGCCAGA GCAGGGCAGA GCAGGGCAGA GCAGGGCAGA GCAGGGCAGA GCAGGGCAGA GCAGGGCAGA GCAGGGCAGA GCAGGGCAGA GTGGATAACA TTTATGAGGG	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCGT ATATTCTCAT CCCAGGAAAT CTGGACTTCA CCTTGGACCG TAAGTTTAGC CCATGTTCGA GGCGTTTCCG GTCTCCAGAC TAAGGGCCAC CATTTGATTG CTGACTCCT CAGTGGGCCC AAGTGGACCC AAGTGACTCCAAGAC CATTTGATTG CTGACTCCTC AAGTGGGGCC AAGTGAAAGG ACCAGGAGAA	GGAGTCTCTG CAAGATTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTCT GTGGATTCAT ATTTAAGTTG ATTAATTATT GTTGCTGGCA AACAAATTTT GCATCCTCTTG CAGCAGCAG CCAGCAGCAG GCTGACCGGG GCTGATCTTTGC TGATTTTGCG TGCGCCGCC GCTCAGTTTG	7020 7080 7140 7260 7260 7320 7380 7560 7560 7740 7860 7740 7880 7920 8040 8160 8160 8220 8280
60 65	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCAA GCTAATTACA GCAAAAGATG CGAAATTTCT CTTACTCGAAA TCAGCAAATTCCT CTCCGAAA TCAGCACCCGAAAGGGTCC CATGACTCCGA GAAGGGTCCC CATGACTTCA AGCAGCACTG CACAAGAGGA AAAAAAAGGA	ATAATATGTC TTATACTTCG TTGCGAAACA ACAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA CCTTCTACAAC GAGATCCAGA TGCTGATTCA GAGCCATGA TATATTCTCC TGACCAGCAT AATTTCAGGA TCTTGTGGA TCTTGTGGA TCTTGTGGA CCCGCTGGT GTGAAAGGTT TGGGCCTTCC TGACACCA ACCCGCTGGT TGGAAAGGTT TGGGCCTTCC TACTACCACT	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTG TGATGAAAGA AGTAGAACTC ATGTAGGGAA AAGTGAGACA AGGATTGATC AACTAGGTTA TAAGATAGAA GAGCCAGAT ATATACCATT GACCCAGGC CTGGCCAGTC CGACCACAC ACAGAGAGCA ACAGAGAGCA ACAGAGAGCA ACAGAGAGCA ACAGAGAGCA ACAGAGAGCA ACGAGACACA CGACCACACC ACAGAGAGCA ACGAGACACAC CGCCAGACCA ACGAGAGCACAC CGCCAGACCAC ACGAGACACAC ACGAGACACAC TGCTGAGCAA	GAGAGAAAA CATCAGAATA CCTCCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT CAAAATGATTC GATGAGAACTTC GATGAGAACT GATGAGACC CCTTCAAATA TATCCAAACC GATTCTGATT TATCCAAACC GATTCTGATT TCCCAGGGCA GCAGGGCAGA GCAGGGCAGA GCAGGCCAGA TCTCTAT CCCTTGAAGT TCCCTTGAAGT TCCCTTGAAGT TCCCTTGAAGT AGTCCCTCAT CCCTTGAAGT TTTATGAGGG AAACGAGAGA	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT ATATTCTCAT CCCAGGAAAT CTGGACTTCA CCTTGGACCT CCATGTTCGA CCATGTTCGA CCATGTTCGA CCATGTTCGA CTCTCCAGAC CTCTCCAGAC CATTTGATTC CAGTGGGCC AAGTGAAGA AGGAAATCAA AGGAAATCAA	GGAGTCTCTG CAAGTTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTC ATTTAAGTTG ATTAATTATT GTTGCTGGCA AACAAATTTT GCATCCTCTG AAGTACTGTT CCGTACCCAG CCAGCAGCAG GCTGACCAGG GCTGATTGCC TGGATTTTGGG TGCGGCCCGG GCTCAGTTTG	7020 7080 7140 7200 7260 7320 7560 7560 7620 7680 7740 7860 7920 7980 8100 8160 8220 8340
606570	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCAA GCTAATTACA GCAAAAGATG CGAAATTTCT CTTACTCGAAA TCAGCAAATTCCT CTCCGAAA TCAGCACCCGAAAGGGTCC CATGACTCCGA GAAGGGTCCC CATGACTTCA AGCAGCACTG CACAAGAGGA AAAAAAAGGA	ATAATATGTC TTATACTTCG TTGCGAAACA ACAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA CCTTCTACAAC GAGATCCAGA TGCTGATTCA GAGCCATGA TATATTCTCC TGACCAGCAT AATTTCAGGA TCTTGTGGA TCTTGTGGA TCTTGTGGA CCCGCTGGT GTGAAAGGTT TGGGCCTTCC TGACACCA ACCCGCTGGT TGGAAAGGTT TGGGCCTTCC TACTACCACT	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTG TGATGAAAGA AGTAGAACTC ATGTAGGGAA AAGTGAGACA AGGATTGATC AACTAGGTTA TAAGATAGAA GAGCCAGAT ATATACCATT GACCCAGGC CTGGCCAGTC CGACCACAC ACAGAGAGCA ACAGAGAGCA ACAGAGAGCA ACAGAGAGCA ACAGAGAGCA ACAGAGAGCA ACGAGACACA CGACCACACC ACAGAGAGCA ACGAGACACAC CGCCAGACCA ACGAGAGCACAC CGCCAGACCAC ACGAGACACAC ACGAGACACAC TGCTGAGCAA	GAGAGAAAA CATCAGAATA CCTCCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT CAAAATGATTC GATGAGAACTTC GATGAGAACT GATGAGACC CCTTCAAATA TATCCAAACC GATTCTGATT TATCCAAACC GATTCTGATT TCCCAGGGCA GCAGGGCAGA GCAGGGCAGA GCAGGCCAGA TCTCTAT CCCTTGAAGT TCCCTTGAAGT TCCCTTGAAGT TCCCTTGAAGT AGTCCCTCAT CCCTTGAAGT TTTATGAGGG AAACGAGAGA	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT ATATTCTCAT CCCAGGAAAT CTGGACTTCA CCTTGGACCT CCATGTTCGA CCATGTTCGA CCATGTTCGA CCATGTTCGA CTCTCCAGAC CTCTCCAGAC CATTTGATTC CAGTGGGCC AAGTGAAGA AGGAAATCAA AGGAAATCAA	GGAGTCTCTG CAAGATTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTCT GTGGATTCAT ATTTAAGTTG ATTAATTATT GTTGCTGGCA AACAAATTTT GCATCCTCTTG CAGCAGCAG CCAGCAGCAG GCTGACCGGG GCTGATCTTTGC TGATTTTGCG TGCGCCGCC GCTCAGTTTG	7020 7080 7140 7200 7260 7320 7560 7560 7620 7680 7740 7860 7920 7980 8100 8160 8220 8340
606570	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCAA GCTAAATTACA GCAAAAGATG TCAGAATTCCT CTACTCCGAAA TCAGAATTCCT CTACTCCGAAA TCAGAATGCG CACACTCCGAAA TCAGAATGCG CACACTCCGAAA TCAGAATGCG CACACTCCAAC AGCAGCACTC AGCAGCACTC AAAAAAAAAGGC CTGACTCCAAAAAAAAAA	ATAATATGTC TTATACTTCG TTGCGAAACA ACAAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA CCTTCTACAAC GAGATCCAGA TGCTGATTCA GGAGCCATGA TATATTCTCC TGACCAGCAT AATTTCAGGA TCTTGTGGA TCTTGACCAC CACTGACACA ACCCGCTGGT GTGAAAGGTT TGGGCCTTCC TACTACCAC TGACAACA ACCCGCTGGT ACTACGACT TGACAACA ACCCGCTGCT TGGAAAGGCTT TGGGCCTTCC TACTACCACCT TACTACCACCT TACTACCACCT TACTACCACCT TACTACCACCT TACTACCACCT TACTACCACCT TACTACCACCT ACAAAAGGCGT ACGATGCCCA	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTG TGATGAAAGA AGTAGAACTC ATGTGAGCAC AAGTGAGACA AAGTGAGACA AAGTAGATC AACTAGGTTA TAAGATAGAA GAGCCAGAT ATATACCATT GACCCAGGC CTGCCAGTC CTGCCAGTC CGACCACAC ACAGAGAGCA AGGAGAGAGAGAGAGAG	GAGAGAAAA CATCAGAATA CCTCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAGTAT GAGAACTTC GATGAGAAC GATGAGAAC GATGAGAAC GATCAGAAC GATCAGAAC GATCTGATT TCCCAGGGCA GCAGGGCAGA GGAAGAGCT AGTCCCTCAT CCCTTGAAGT CCCTTGAAGT AGTCCCTCAT CCCTTGAAGT AGTCCCTCAT CCCTTGAAGT AGTCCCTCAT CCCTTGAAGT AGTCCCTCAT CCCTTGAAGT AGTCCCTCAT AGTCCCTCAT CACAGAGAGC TAGAGAGAGA TACAGAAGCT	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT CTGGACTTCA CCTGGACTC TAAGTTCAC CCTTGGACCT TAAGTTCAC CCATGTTCAC CCATGTTCGA GCGTTTCCA GCGTTTCCA CCTTCCAGAC CTTCCAGAC CATTTGATC CATTTGATC CATTGATC CAGTGGGCC AAGTGAAAGA AGGAAATCAA ACCGGCACGG	GGAGTCTCTG CAAGTTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTC ATTTAAGTTG ATTAATTATT GTTGCTGGCA AACAAATTTT GCATCCTCTG AAGTACTGTT CCGTACCCAG CCAGCAGCAG GCTGACCAGG GCTGATTGCC TGGATTTTGGG TGCGGCCCGG GCTCAGTTTG	7020 7080 7140 7200 7260 7320 7560 7560 7620 7680 7860 7920 7980 8040 8160 8220 8280 8340 8400
606570	GCTTTGGTGA GTTGAACTGG GTGTGCTTGA GTGTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCAA GCAAAATTCC GCAAAATTCC CTGCGAAA TCAGAATTCC CTCCGAAA TCAGAATTCC CAAGACTCCGA AGGGGTCCC CATGACTCCGA AGCAGCACTG CACAAGAGGA CACAAGAGGA AAAAAAAGGC CGGACGGA	ATAATATGTC TTATACTTCG AAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA CTTTACAAC GAGATCCAGA TGCTGATTCA GGAGCCATGA TATATCTCC TGACCAGCAT AATTTCAGGA TCTCAGCTCG CACTGACAC CACTGACAC TGTGACAC TGTTAGAGC TGTTAGAGC TGTTAGAGC TGTTAGAGC TGTTAGAGC TGTTAGAGC TGTTAGAGC TCTCAGCTCG TACTACAGCT TACTACAGCT TAGAAAGGCT GAAAAGGCT AAAAGGCCT AAAAAGCCT AAAAGCCCA TCAAGCACA	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTG TGATGAAAGA AGTGAGACA AGGATTGATGA AAGTGAGACA AGGATTGATC AACTAGGTTA TAAGATAGA AGGACCAGAT ATATACCATT GACCCAGGC CTGCCAGTG GACTGCAGAC ACAGAGAGCA ACAGAGAGCA ACGGACGAC ACAGAGCAC ACGGACGAC GCCCAGACGA TGCTGAGCAC CGGCCAGACGC TGCTGAGCAC CGGCCAGACGC TGCTGAGCAC CGGTTGTTCTG CAGCCTCATC	GAGAGAAAA CATCAGAATA CCTCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT CGAGAACTTC CAAATGTATA GATGAGAACC CCTTCAAATA GTGCACTTTT TATCCAAACC GATCTTTT TACCAAACC GATCTGATT TCCCAGGGCA GCAGGCAGA GCAGGCAGA GCAGGCAGA GCAGGCAG	ACATACTGGA CTATGGAGGA CAGACAGGTT CACACTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCGT ATATTCTCAT CCCAGGAAAT CCTGGACTC TAGACTTCA CCTTGGACC TAGATTCAG CCATGTTCGA GCGTTTCCG CTCTCCAGAC TAAGGGCAC CATTTGATC CAGTGTCGA CAGGAAAT CAGGAAATAA ACCGGCACGG AGGCACGG	GGAGTCTCTG CAAGGTTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTCT ATTTAAGTTG ATTAATTATT GTTGCTGGCA AACAAATTTT CCGTACCCAG CCAGCAGCAG GCTGACCGGG GCTGTTTGCC TGATTTTGGG TGCGGCCGGC GCTCAGTTTGG GAGTGAGTTA AGACCTTCCT CCAGAGGGAC CCAGGGGGCCGC CCCCAGTTTG CCAGAGGGAC CCAGAGGGGAC	7020 7080 7140 7200 7260 7320 7560 7560 7620 7680 7860 7920 7980 8040 8160 8220 8280 8340 8400
606570	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTGCTTGA GTGTTCTTTC CTTTGTCGTG GATATTACA GTTTCCCATC GATAATTACA GCAAAAGATG CTGAAATTTCT CTAAATTCCT CTGAAATTCCT CTGACCCGA GAAGGGTCCC CATGACTCCA GCAAGAGGG GAAGGGA AAAAAAAGGC CGGACGGA	ATAATATCTC TTATACTTCTC TTGCGAAACA ACAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA AGTTAAAACC CTTCTACAAC GAGATCCAGA TGCTGATTCA GGAGCCATGA TATATTCTCC TGACCAGCAT AATTTCAGCA TCTTGGGA TCTCAGCTCG CACTGACACA ACCCGCTGGT TGGACACT TGGGCCTTCC TACTACGACT TACTACGACT CACAAAGGCT CAAAAGGCT CAAAACAGCT CAAAACAGCT	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTTC ATGTAGGAA AGTAGAACTC ATGTAGGGAA AAGTGAGACA AGGATTGATC AACTAGGTTA TAAGATAGAA GAGCCCAGAT ATATACCATT GACCCAGGC CTGGCCAGTG GACTGCAGAC ACAGAGAGC ACAGAGAGC ACAGAGAGC ACGGACACC CTGCCAGCAC CGCCACACC CTGCCAGCAC CCAGCCACC CCAGCACC CCAGCCACC CCAGCACC CCAGCCACC CCAGCACCAC CCAGCCACC CCACCCC CCACCC CCACC CCACCC CCACCC CCACCC CCACCC CCACCC CCACC CCACCC CCACC C	GAGAGAAAA CATCAGAATA CCTCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT CGAGAACTTC CAAAATGTATA GATAATGACT GATGAGAAC CCTTCAAATA GTGCACTTTT TATCCAAGC GCATGCAGT GCAGGCAG GCAGGGCAGA GCAGGGCAGA GGAGAAGCT TCCTTGAAGT TCCTTGAAGT TCCTTGAAGT TCCTTGAAGT TTTATGAGGG AAACGAGAGA TACAGAAGCT TCCTTTAC TTGTTTTCTG	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCGT ATATTCTCAT CCCAGGAAAT CTGGACTTCA CCTTGGACTC CATGTCCG CATGTTCGG CTCTCCAGAC TAAGGGCCAC CATTTGATTG CTGACTCCTT CAGTGGGCC AAGTGAAAG ACCAGGAAAA ACCGGCACGG GAATTTGAA	GGAGTCTCTG CAAGATTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTCT GTGGATTCAT AATTAATATT GTTGCTGGCA AACAAATTTT GCATCCTCTG AAGTACTGTT CCGTACCCAG CCAGCAGCAG GCTGATCTGGC TGATTTTGGG TGCGGCCGGC GCTGTTTGGC GCTGACCGGC GCTCAGTTTG GAGTCACTTT GCAGCAGCAG CCTCAGTTTG GAGTCACTCCT CCAGAGGGAC AGAGATGGAT	7020 7080 7140 7200 7320 7320 7380 7500 7620 7680 7740 7860 7920 7860 7920 8100 8160 8220 8280 8340 8400 8520
60657075	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTGCTTGA GTGTTCTTTC CTTTGTCGTG AAGTCATGA GTTTCCCATC GATAATTACA GCAAAAGATG CTGAAATTTCT CTAATTCCT CTAATTCCT CTAATTCCT CAACACCGA CACACCGA CAACACGGC CATGACTTCA AGCAGCACTG CACAAGAGGC CACAAGAGGC CAGCACTG CACAAGAGGC CAGCACTG CACAAGAGGC CAGCACTG CACAAGAGGC CAGCACTG CACAAGAGGC CACAAGAGGC CACACAGAGGC CACAAGAGGC CACAAGAGGC CACAAGAGGC CACAAGAGGC CACAAGAGGC CACAAGAGGC CCGACGGACC ATGATTCAAAATGAAGC CACATTCAGA CAATTCAGA	ATAATATCTC TTATACTTCG TTGCGAAACA ACAAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA AGTTAAAACC CTTCTACAAC GAGATCCAGA TGCTGATTCA GGAGCCATGA TATATTCTCC TGACCAGCAT AATTTCAGGA TCTTAGGACACA ACCCGCTGGT GTGAAAGGTT TGGGCCTTCC TACTACGACT CAAAAGGCT CAAAAGGCT CAAAACAGCT CAAAACAGCT CAACTGCACAC CAAAACAGCT CAACTGCACCAC CAAAACACCC CACTGTCTGA	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTG TGATGAAGCAC ATGTAGGGAA AAGTGAGACA AAGTGAGACA AAGTGAGACA AAGATTGATC ATATACCATT GACCCAGGC CTGGCCAGTG GACTGCAGAT CGACCACACC ACAGAGAGGC GCCAGACGG TGCTGAGCAA GGTCGTTCTG CAGCCTCTTC CAGCCTCTCTC CAGCCCCACACC CAGAGAGACA CCCTCATC CAGCCCCACAC CCCCAGACGAC CCCCCAGACGAC CCCCCAGACGAC CCCCCAGACGAC CCCCCAGACGAC CCCCCAGACGAC CCCCCACACC CAGACAGCAC CCCCCAGACGAC CCCCCATTCTG CAGCCCCCATC CAGCCCCCACACACC CAGACAGCAC CCTCTTAGCAGC AAAAAACAAC	GAGAGAAAA CATCAGAATA CCTCCTTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT GAGAACTTC CAAATGTATA GATAATGACT GATGAGAACC CCTTCAAATC GATGAGACC GATCCAGGCC GATCCTGATT TATCCAAACC GATCTGATT TCCCAGGGCAGA GCAGGGCAGA GCAGGGCAGA GCAGGAGAGCT ACTCCTCAT TCTTTTATGAGGG AAACGAGAGA TACAGAAGCT ACCCCGTTAC TTGTTTTCTG ATCACTCAAA	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT ATATTCTCAT CCCAGGAAAT CTGGACTTCA CCTTGGACCC TAAGTTTCGA CCTTGGACCC CTAGTTCGA CCTTGGACCC AGGTTTCCA GCGTTTCCAGA CCTCCCAGC CATTTGATTC CAGTGGGCC CATTTGATTC CAGTGGGCCA CAGTGGAGAA ACCAGGAGAA ACCAGGAGAA ACCAGGAGGA ACCAGGAGGA ACCAGGACGG AGGCCGTGGC GAATTTTTAA AGTTGCTTCA	GGAGTCTCTG CAAGATTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTC TGTGGAATTCAT ATTTAAGTTG ATTAATTATT GCTGCCAG AACAAATTTT GCATCCTCTG AAGTACCTGT CCAGCAGCAG GCTGACCAGG GCTGACTTCCT CCAGAGGGAC AGGAGTGAAT AGACTTCAAT	7020 7080 7140 7260 7320 7380 7440 7560 7620 7680 7740 7860 7980 8100 8160 8280 8340 8460 8450 8580
606570	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCAA GCTAATTACA GCAAAAGATG TCTAATTCCT CTAATTCCT CTAATTCCT CTAATTCCT CTAATTCCT CTACTCCGAAA TCAGAATTCCT CACACTCCGA GAAGGGTCCC CATGACTTCA AGCAGCACTG CACAAGAGGA AAAAAAAAGGC CCGGACGGACC ATGTATGCCA AAAATGAAGC GACATTCATA	ATAATATGTC TTATACTTCG TTGCGAAAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA AGTTAAAACC CTTCTACAAC GAGATCCAGA TGCTGATTCAGAC TGATGATTCAGA TATATTCTCC TGACCAGCAT AATTCAGGA TCTTGAGCAC ACCCGCTGGT GTGAAAGGTT TGGGCCTTCC TACTACCAC ACCCGCTGGT GTGAAAGGTT TGGGCATCC TACTACGAC TACTACGAC TGACACC TACTACGAC TGACACC TCAAGCACC TCAAGCACCA CCAAAACAGCT CAAAACAGCT CACTGTCTGA ATACCACCTT	CTTTGTAAGA ATATGTTATGA ATTGAAGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTG TGATGAAAGA AGTAGAACTC ATGTAGGGAA AAGTGAGACA AGGATTGATC AACTAGGTTA TAAGATAGAA GAGCCAGACT CTGCCAGGCC CTGGCCAGTC CGACCACACC ACAGAGGACAA GCGCAGACGA GCGCAGACGA TGTTGAGCAA GCGCAGACGC CTCTTTTTTAGCAGC CTTTCTTTT	GAGAGAAAA CATCAGAATA CCTCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAGTAT CGAGAACTTC CAAATGATA GATGAGAACC CCTTCAAATA GTGCACTTTT TATCCAAACC GATTCTGATT TCCCAGGGCA GCAGGGCAGA GGAGAGAGCT AGTCCCTCAT CCCTTGAAGT ATTATGAGG TATATGAGG TATATGAGG TATATGAGG TATATGAGG TACCCGTTAC TTTATGAGG TACCCGTTAC TTGTTTTCTC TTGTTTTCTC TTGTTTTCTAA	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT CTGACTCAT CCCAGGAAAT CTGGACTTCA CCTTGGACCT TAAGTTTCAC CTAGGTTCAC CCATGTTCGA GCGTTTCCA GCGTTTCCA CATTTGATC CAGTGGGCC TAAGGGCCA CATTTGATT CAGTGGGCC AAGTGAAAG ACGAAATCAA ACCGGCACGG AGCTGGC GAATTTTGAT ACCGGCACGG AGGCCGTGC CAATTTTCAT ACTCTTCTAT TCTCTTGTAT	GGAGTCTCTG CAAGTTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAGG TGTGGAATTC GTGGATTCAT ATTTAAGTTG ATTAATTATT GCTTGCTGGCA AACAAATTTT GCATCCTCTG AAGTACTGTT CCGTACCCAG CCAGCAGCAG GCTGATTGCC TGATTTTGGG TGCGCCGGC GCTCAGTTTGC GAGTGAGTTA AGACCTTCCT CCAGAGGGAC AGAGAGGAC AGAGATCGAT TCAGGACCAT TCAGGACCAT TCAGGACCAT TCAGGACCAT	7020 7080 7140 7260 7260 7320 7560 7560 7620 7680 7740 7860 7920 7980 8100 8160 8220 8340 8460 8580 8640
60657075	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCAA GCTAAATTACA GCAAAATTCCT CTAAATTCCT CTACTCGAAA TCAGAATTCCT CTACTCCGAAA TCAGAATTCCT CACTCCGAAA TCAGAATTCCT CACTCCGA GAAGGGTCCC CATGACTTCA AGCAGCACTG CACAAGAGGA CAAAAAAAAAGGG CCGGACGGAC AAAATGAAG GACATTCAA AAATTCAGA CCAATAATTC AAATTCAGA CCAATAATTC AAATTAAGA CCGTTTCTTA	ATAATATGTC TTATACTTCG TTATACTTCG TTGCGAAAC ACAAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA CTTCTACAAC GAGATCCAGA TGCTGATTCA GGAGCCATGA TATATTCTCC TGACCAGCAT AATTCAGGA TCTTGAGCA TCTTGAGCAC TCACTGACAC ACCCGCTGGT GTGAAAGGTT TGGGCCTTCC TACTACCAC TGACACAC TGACACAC TCACACCC TACACCC TCACACCC TCACTGCTTCA ATACCACCTT ACGCACCCT ACCCCCTTCTCA ATACCACCTT ACCCACCCT ACCCACCC	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTG TGATGAAAGA AGTAGAACTC ATGTAGGGAA AAGTGAGACA AGGATTGATC AACTAGGTTA TAAGATAGAA AGACCCAGAT ATATACCATT GACCCAGGC CTGCCAGTC CAGAGCACACC ACAGAGAGCA AGGGACAGC GCCAGACG CGCAGACG TGCTGAGCAA GGTCGTTCTG CAGCCTCATC CTTTAGCAGC CTCATCTTTTTTTTTT	GAGAGAAAA CATCAGAATA CCTCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT CGAGAACTTC CAAATGTATA GATGAGACC CCTTCAAATA GTGCACTTTT TATCCAAACC GATTCTGATT TCCCAGGGCA GCAGGGCAGA GGAAGAAGCT AGTCCTCAT CCCTTGAAGT TTATGAGG TAGAGAGCT AACCCCTTAAGAG TTATAGAGG TACAGAAGCT ACCCCGTTAC TTCTTTCTA ACCACCCTTTG ACCCCCTTTG CCACCCCTTTC CCCCCTTCC CCCCCTTCC CCCCCTTCC CCCCCC	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT ATATTCTCAT CCCAGGAAAT CTGGACTTCA CCTTGGACCG TAAGTTTCAG CCATGTTCGA GCGTTTCCAGAC CTTCCAGAC TAAGGGCCAC CATTTGATTC CAGTGGACTC TAGGGCCAC CATTGATTC CAGTGGGCCA AGTGAAAG ACCAGCAGAA ACCGCCACGG AGGCCACGG AGGCCATGC CGATTTCTAT CTGTTTCTAT CTCTTTTGAT CTGTTAGCGC CTGTTAGCGC CTGTTAGCGC CTGTTAGCGC CTGTTTAGCGC CTGTTTGATTC CTGTTAGCGC CTGTTTGTTT CTGTTTAGCGC	GGAGTCTCTG CAAGTTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTC ATTTAAGTTG ATTAATTATT GTTGCTGGCA ACAAATTTT CCGTACCCAG CCAGCAGCAG GCTGATCTGC TGATTTTGG GCTGACCGGG GCTGTTTGCC TGATTTTGG GGTGACTTCC TGATTTTGG TGCGGCCGGC GCTCAGTTTG CAGAGTACTT CCAGAGGGAC AGAGATGAT AGACCTTCCT CCAGAGGGAC AGAGATGAT TCAGGACATT TCAGGACATT TCAGGACATT TCAGGACATT TCAGGACATT TCAGGACATT	7020 7080 7140 7200 7320 7380 7500 7560 7620 7680 77400 7860 7920 7980 8160 8220 8280 8440 8460 8520 8520 8640 8700
60657075	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTGCTTGA GTGTTCTTTC CTTTGTCGTG GAAGTCATGA ATGATGACAA GTTTCCCATC GATAATTACA GCAAAAGATG CTTAGTCCT CTGAATTCCT CTGAATTCCT CTGAATTCCT CTGACTCCGA GAAGGGTCCC CATGACTTCA AGCAGCACTG AAAAAAAAGAGC CGGACGGACC ATGATTATGCCA AAAAAAAAAGAC GGACGTACC ATGATTCAGA CCAATAATTG AAATTAAGA CCATTTCATAAAATTAAGA CGTTTTTCTTA AAGTTTACAGC GCCAGCCTAC	ATAATATGTC TTATACTTCG TTGCGAAACA ACAAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA AGTTAAAACC CTTCTACAAC GAGATCCAGA TGCTGATTCA CAGCATGA TATATTCTCC TGACCAGCAT AATTTCAGCA ACTCGCTGGT GTGAAAGGT GTGAAAGGT TGGGCCTTCC TACTACGAC ACCGCTGGT AGGATCCCA CACAGCCCC TACTACACAC CAAAACAGCT CAAAACAGCT CAAAACAGCT CACAGCCCGT AGCAGCCCGT AGCAGCCCGT AGCAGCCCGT AGCAGCCCGT AGCAGCCCGT AGCAGCCCGT AGCAGCCCGT	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTTG TGATGAACAA AGTAGAACTC ATGTAGGGAA AAGTGAGACAC ACGAGTTG TAAGATAGAACA AGGATTAGGTTA TAAGATAGAA CATGCCAGGTC CTGGCCAGTG GACTGCAGAT GACCACACC ACAGAGAGCA ACAGAGAGCA GCGCAGACGC TGGTGAGCAA GGTCGTTCTG CAGCCTCATC CTTTAGCAGC CTCTTTCTTT GCTGAGCCTC GCGGCCTCGCCCTCC CGGCCATCCCCCCCCCC	GAGAGAAAA CATCAGAATA CCTCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAGTAT CGAGAACTTC CAAATGTATA GATGAGAACC CCTTCAAATA GTGCACTTTT TATCCAAACC GATTCTGATT TCCCAGGGCA GCAGGCAGA GCAGGCAGA GCAGGCAGA TTTATGAGGG AAACAGAGGC AAACAGAGGC ACCCCTTAC TCCCTCAT TCCTTGAATA CCACCCTTAC TTCTTTCTG ATCACTCAAACC TTGTTTCTG ATCACTCAAACC TTGTTTTCTG ATCACTCAAACC CACCCTTTAC CCACCGCGGC CTGCCAGGGC CTGCTAGAGG CTGCTAGAGG	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT ATATTCTCAT CCCAGGAAAT CTGGACTTCA CCTTGGACTC TAAGTTTAGC CCATGTTCGA GCGTTTCCG CTCTCCAGAC TAAGGGCCAC CATTTGATC CAGGGAGAA AGGAAATCA ACCGGCACGG AGGCCGTGGC GAATTTGAT CTGTTGTAT CTGTTAGCGC CAGTTGCAC CGCTTGCAC AGGCCTTGCAC AGGCCTTGCAC AGGCCTTGCAC AGGCCTTGCAC CGCTTGCAC CGCTTGCAC CGCTTGCAC CGCTTGCCT CTGTTCTTTTTACCAC AGGCCTTGCC AGGCCTCGCC AGGCCTCGCC AGGCCTCGCC AGGCCTCTCCT	GGAGTCTCTG CAAGATTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTCT GTGGATTCAT ATTTAAAGTTG ATTAATTATT GTTGCTGGCA AACAAATTTT CCGTACCCAG CCAGCAGCAGCAG GCTGACCGGG GCTGACTGGC TGACTTTGGG TGCGGCCGGC GCTGTTTGCC CAGCAGCAGCAGC GCTGACTTTGG AGACTTCTCT CCAGAGGGAC AGACTTCAT TCAGGACATT TCAGGACATT TCAGGACATT TCAGGACATT TCAGGACATT TGGTTGCCTG CCGCCTGCTG	7020 7080 7140 7200 7320 7380 7560 7560 7620 7680 7740 7860 7920 7860 8100 8160 8280 8340 8460 8520 8580 8640 8760
60657075	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTGCTTGA GTGTTCTTTC CTTTGTCGTG AAGTCATGA GTTTCCCATC GATAATTACA GCAAAAGATG CTGAATCCTG CTGAAATTCT CTAATTCCT CTGACCGA GAAGGGTCCC CATGACTCA AGCAGCACTG CACAAGAGGC CACAAGAGGC CAGCACTGACTTCA AGCAGCACTG AAAATTGCCA AAAATGAGC CGCACGGACC ATGTTTCTA AGCTTCAAAACGC GACTTCAAAAAAAGGC CGCACGGACC ATGTTTCTTA AGCTTCTAAAACCCTTCTAAAATTCAGA CCGTTTTCTTA AGCTGTCAGC	ATAATATGTC TTATACTTCG TTGCGAAACA ACAAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA AGTTAAAACC CTTCTACAAC GAGATCCAGA TGCTGATTCA GGAGCCATGA TATATTCTCC TGACCAGCAT AATTTCAGGA TCTTAGGACACA ACCCGCTGGT GTGAAAGGTT TGGGCCTTCC TACTACGACT CAAGACCAC ACAGCACCA CCAAGCACCA CCACTGTTCT CACAGCCT CAAGCACCA CCAAGCACCA CCAAGCACCA CCAAGCACCA CCAAGCACCA CCACGCCTTGA ATACCACCTT ACGCAGCCCT CACTGCCGAACCCT CACGAGCCCT TCGCAGCCCT TGCCTGCCAA	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTG TGATGAAGCAC ATGTAGGGAA AAGTGAGACA AGGATTGATC ATATGAGCAA AAGTGAGACA AGGATTGATC ATATACCATT GACCCAGGC CTGGCCAGTG GACTGCAGAT CGACCACACC ACAGAGAGGAC GCGCAGACGG TGCTGAGCAA CGTTTTTTT CACCTTTTCTTT CTGGCCACTC CAAAAAACAAC CTCTTTCTTT CTGGCCACTCC CGGCCACCCC CACAGCCCC CACAGCCGC TGCTGAGCAA CTCTTTCTTT CCTGGCCACCC CACAGCCCC CACAGCCCC CTTTAGCAGC CTCTTTCTTT CCTGGCCACCCC GCGCATCCCC GCGCATCCCC	GAGAGAAAA CATCAGAATA CCTCCTTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT CGAGAACTTC CAAATGTATA GATAATGACT GATGAGAACC CCTTCAAATC GATCAGACC GATCTGATT TATCCAAACC GATCTGATT TCCCAGGGCA GCAGGGCAGA GCAGGGCAGA GCAGGGCAGA TCCCTCAT CCCTTGAAGT TTTATGAGGG AAACGAGAGA TACAGAAGCT ACCCCGTTAC TTGTTTTCTG ATCACTCAAA CCACCCTTTG GCCCCCTTGAAGT CCCCGTTAC CCCGTTAC CCCCGTTAC CCCCGTTAC CCCCCTTGAAGT CCCCGTTAC CCCCGTTAC CCCCCTTAGAGGC CCCCCTTGAAGCT CCCCGTTAC CCCCCTTAGAGGC CCCCCTTGAAGCCCCCGCTCC CCCCCTTACAC CCACCCTTTG CCCCCCTTGAAGCCCCCGCTCC CTGCTAGAGGCCCCGCTTACAC	ACATACTGGA CTATAGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT ATATTCTCAT CCCAGGAAAT CTGGACTTCA CCTTGGACCC CTAGTTCGA GCGTTTCGA GCGTTTCCAGA GCGTTTCCAGA GCGTTTCCAGA GCGTTTCCAGA GCGGTTCCT CAGTGGGCC CATTTGATTG CAGTGGGCC AAGTGAAAG ACCAGGAGAA ACCAGCACG AGCCGTGC GAATTTTGAA ACTTGCTCA TCTCTTGTAT CTGTTAGCGC GCCTCCCTCC	GGAGTCTCTG CAAGATTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTC GTGGATTCAT ATTTAAGTTG ATTAATTATT GTTGCTGGCA AACAAATTTT GCATCCTCTG AAGTACCAG GCTGACCAG GCTGACTTCC CCAGAGGGAC AGAGATGAT TCAGGACATT TCAGGACATT TCAGGACATT TCAGGACATT TCAGGACATT TGGTTGCCTC TGATGTCCTC	7020 7080 7140 7260 7320 7380 7440 7560 7620 7680 7860 7980 8100 8100 8100 8280 8340 8460 8580 8580 8640 8700 8820
60 65 70 75	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTGCTTGA GTGTTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCAA ATGATGCCAA GCAAAAGATG CGAAAATTTCT CTGTCGAAA TCAGCCCC CTCACTCCGAAA GAAGGGTCCC CATGACTTCA AGCAGCACTG AAAAAAAAGGC CGCACGGACC ATGATTCGCA AAAATTCAGA AAAATTAGA CGATTCAGAA CCGATCGACC ATGATTCTAAAATTCCA AGCAGCCCC ATGATTCCAACCCCAAAAATTCAGA CCAATAATTCAGA CCGACGGACC CCCTGCTGAGC CCCTGCTGAGC CCCTGCTGAGC AGATGGGTGG	ATAATATGTC TTATACTTCG TTGCGAAACA ACAAGTGAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA AGTTAAAACC CTTCTTACAAC GAGATCCAGA TGCTGATTCA GAGACCATGA TATATTCTCC TGACCAGCAT AATTTCAGGA TCTCAGCTCG CACTGACACA ACCCGCTGGT GTGAAAGGTT TGGGCATTCC GAAAAGGCCT CAAGCACCA CCACTGCTCACCCA CCACTGCTCACACAC CACTGCTCTCACACCC CACTGCTCTCACACCC CACTGCTCTCACACCCCACCC	CTTTGTAAGA ATATGTTATG ATTGAAGCA ATATGTATGA CAAGAGCTTC ATTTCATGGA GACAGAGCTG TGATGAAAGA AAGTGAGACA AGGATTGATC AACTAGGTA AACTAGGTA AACTAGGTA AACTAGGTA CACCCAGAT CACCCAGAT CACCCAGAT CACCCAGAT CACCCAGAT CGACCACAC CACAGAGAGCA AGGGGACGAG TGCTGAGCA CGTCGTCTTT CACCTCTTCTTT CACCTCTTTCTTT CGCCACTC CGCCACTC CAGAGACAC CCTTTCTTT CGCGCACCC CACAGCC CACAGCC CACAGCC CACAGCC CCTTTAGCAG CCTCTTCTTT CGCGCACCC CGCAGTCCGC CCCGTCCCT CGCCACCC CCCCCC CCCCCCC CCCCCCC CCCCCCCC	GAGAGAAAA CATCAGAATA CCTCCTTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT GAGAACTTC CAAATGTATA GATAATGACT GATGAGAACC CCTTCAAATT TATCCAAACC GATTCTGATT TATCCAAACC GATTCTGATT TCCCAGGGCA GCAGGGCAGA GCAGGGCAGA GCAGGGCAGA TACAGAAGCT ACCCCTTAT TTTATGAGGG AAACGAGAGA TACAGAAGCT ACCCCGTTAC ATCACTCAAA CCACCCGTTAC CCACTCAGACC GACCCGCTGG ACCCCCTTGAAGC TTGATTTCTG ATCACTCAAA CCACCCTTTG GACCCAGCGG CTGCTAGAGG CTGCTAGAGC CTGCTAGAGC CTGCTAGAGG CTGCTAGAGG CTGCTAGAGC	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT ATATTCTCAT CCCAGGAAAT CTGGACTTCA CCATGGACTC CATGTTCGA CCATGTTCGA GCGTTTCGA GCGTTTCCA TAAGGGCAC TAAGGGCAC CATTTGATTG CTGACTCCT CAGTGGGCC AAGTGAAAG ACCAGGAGAA ACCAGGAGAA ACCAGGAGAA ACCAGGACAC AGGCCGTGGC CAATTTGAT CTCTTGTAT CTGTTAGCCC AGGCTCTCC AGGCCTCCC AGTAGGCCT CCCCTCC AATACGACGT	GGAGTCTCTG CAAGATTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTC GTGGATTCAT ATTTAAGTTG ATTAATTATT GTTGCTGGCA AACAAATTTT GCATCCTCTG AAGTACTGTT CCGTACCCAG CCAGCAGCAG GCTGATCTGC TGATTTTGG TGCGCCGGC GCTCAGTTTGC GAGTGAGTTA AGACCTTCCT CCAGAGGGAC AGAGATGATT TCAGGACATT TCAGCACAT TCAGACAT TCA	7020 7080 7140 7260 7320 7380 74400 7560 7620 7680 7860 7920 7860 8100 8160 8280 8400 8460 8580 8700 8760 8760 8880
60657075	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTCTTTC CTTTGTCGTG CAAGTCATGA ATGATGCCAA GCTAAATTACA GCAAAAGATG TCTGAACTCCGAAA TCAGAATTCCT CTACTCCGAAA TCAGAATTCCT CTACTCCGAAA TCAGAATTCCT CACACTCCGA GAAAGGGTCCC CATGACTTCA AGCAGCACTG CACAAGAGGA CCAAGAAGAGA CCAATAATTC AAAATTAGA CCAATAATTCA AAATTAAGA CCATTCTTA AGCTGCTCAGC CCTGCTGAGC CCTGCTGAGC ACATGGGTGG CCCTGCTGAGC ACATGGGTGG ACATTTACCA AGCTGCTGAC CCTGCTGAGC ACATGGGTGG ACTTTTACCA	ATAATATGTC TTATACTTCG TTATCATACTTCG TTGCGAAAC TGCTGCCAAA TGGAGGGAAT GACATAGAGA CCTTCTACAAC GAGATCCAGA TGCTGATTCA GGAGCCATGA TATATTCTCC TGACCAGCAT AATTTCAGGA TCTTGTGGA CCTGCTGGT GTGACACA ACCCCTGGT GTGACACC TACTACGACT TAGACACCT TAGACACC TACTACGACT TAGACACC TACTACGACT AAGACACCT CACTGCTCAC CCAAAACAGCCT CACTGTCTGA ATACCACCT CACTGCTCAC TCACGCCTGT ACGACCCT CACTGCCTAC ACCACCCT ACCACCT ACCACCCT ACCACCCT ACCACCCT ACCACCCT ACCACCCT ACCACCCT ACCACCCT ACCACCCT ACCACCT ACCACCCT ACCACCT ACCACCCT ACCACCT ACCACCCT ACCACCT ACCACCCT ACCACCT ACCACCCT ACCACCCT ACCACCC ACCACCT ACCACCCT ACCACCCT ACCACCC ACCACCC ACCACC ACCACC ACCACC ACCACC	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTG GACAGAGCTG TGATGAAAGA AGTGAGACA AAGTGAGACA AAGTGAGACA AAGTGAGCA AAGTGAGACA AAGTGAGACA AAGTGAGACA AAGACACACC CTGGCCAGTC GACCACACC ACAGAGGCA ACAGAGACAC CTGTTCTTCTC CTTTAGCAGC CTCTTCTTTTTCTTT GCTGAGCTCC GCGAGTCCGC GCGAGTCCGC GCGAGTCCGC GCGAGTCCGC GCGAGTCCGC GCGAGTCCGC ACAGAGCACAC	GAGAGAAAA CATCAGAATA CCTCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAAGTAT GAGAACTTC GATGAGAAC GATGAGACC GATGAGAAC GATGAGAC GATCAGAC GATCTGATT TCCCAGGGCA GCAGGGCAGA GGAAGACT CCCTTGAAGT AGTCCTCAT CCCTGAGT AGTCCTCAT CCCTTGAGG TACAGAGC TTCTTT CCCTGAGG TACAGAGC TACAGAGC TACAGAGC TACAGAGC TTCTTT GACCCAGCG CTGCTAGAGG CGGAAGGC TCAATTGGAG ATCACTCAGA	ACATACTGGA CTATGGAGGA CAGACAGGTT CACTCTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT ATATTCTCAT CCCAGGAAAT CTGGACTTCA CCTTGGACCG TAAGTTTCAG CCATGTTCGA GCGTTTCCAGAC CTTCCAGAC TAAGGGCCAC CATTTGATTC CAGTGGGCCAC CATTGATTG CAGTGGGCCAC AGTGAAAT ACCGCCACGACAA ACCGGCACGG AAGTGAAAGG AGCCGTTGC CAATTTGAT CTCTTTGTAT CTCTTTGTAT CTGTTAGCC AGGCTTCC AGTTGCTTC AGTTGCTTC AGTTGCTTC AGTTGCTTC AGTTGCTTC AGTTGCTTC AGTTGCTTC AGTTGCTTC AGTTGCTTC AGTTAGCGC AGCTCCTCC AATACGACGT GTCCATTATT	GGAGTCTCTG CAAGTTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAGT GTGGAATTC ATTTAAGTTG ATTAATTATT GTTGCTGGCA AACAAATTTT GCATCCTCTG AAGTACTGTT CCGTACCCAG GCTGACCGAG GCTGACCGAG GCTGACTTCC TGATTTTGG GGAGGACTA AGACTTCCT CCAGAGGAC AGAGATTA AGACTTCCT CCAGAGGAC AGAGATCAT TCAGGACATT TCAGGACAT TCAGCAC TC	7020 7080 7140 7260 7320 7380 7560 7560 7620 7740 7860 7920 7980 8160 8220 8280 8460 8520 8520 8540 8760 8760 8760 88840 8760 88840 8940
60 65 70 75	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTGCTTGA GTGTTCTTTC CTTTGTCGTG GAAGTCATGA ATGATGCCAA GTTTCCCATC GATAATTACA GCAAAAGATC CTAGAATCCT CTAGATCCT CTAGAATCCT CTAGAATGCG GAAGGGTCCC CATGACTTCA AGCAGCACTG CACAAGAGGA AAAAAAAAGAC CGGACGGACC ATGATTCAGA CCAATTTCAGA CCAATTTACGA AGAATGCGTCG CCTGCTGAGC AGAAGGGTGAT AAAATGAAGC CCTGCTGAGC AGAATGGGTGA CCTGCTGAGC AGAATGGGTGA AGAAGGGATTTTCACA AGAAGTGATT	ATAATATGTC TTATACTTCG TTGCGAAACA TGCGCAAA TGGAGGGATT GACATAGAGA AGTTAAAACC CTTCTACAAC GAGATCCAGA TGCTGCTATAA TGCAGCATGA TATATTCTCC TGACCAGCAT AATTTCAGGA TCTTGTGGA TCTCAGCTCG CACTGACACA ACCCGCTGGT TGGGCCTTCC TACTACGACT CACTACGACT CACTACCAC CACTGCTCC TACTACGACT CACTACCAC CACTGCTCC TACTACGACT CACTGCCCAC AGCACCCCT TCCCCCACAC AGCTTCCCAA AGCTTCCCAA AGCTTCCCAA AGCTTCCCAA AGCTTCCCAA AGCTTCCCAA AGCTTCCCAA AGCTTCCCAA AGCTTGCCAA AGCTTGCAAA CTGAAACAGC	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTTG TGATGAAGCA AGTAGAACTC ATGTAGGGAA AAGTGAGACAC AGGATTGAT TAAGATAGAA CAAGAGTTG GACCCAGGT GACCACCAC ACAGAGCAG GCCAGACACC CTGGCCAGAC GCGCAGCACC CTGTGCAGCA CGCCAGCC CTCTTCTTT CTGAGCCAC CTCTTTCTTT GCTGAGCCTC GCCAGTCCGC GCCAGTCCGC GCCAGTCCGC CTCTTTCTTT GCTGAGCCTC GCCAGTCCGC	GAGAGAAAA CATCAGAATA CCTCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAGTAT CGAGAACTTC CAAATGTATA GATGAGAACC CCTTCAAATA GTGCACTTTT TATCCAACC GATTCTGATT TCCCAGGGCA GCAGGGCAGA GCAGGCAGA GCAGGAGACT CCCTTGAAGT ACTCCTCAT CCCTTGAAGT ACTCCTCAT CCCTTGAAGT ACCCCGTTAC TTATAGAGG AAACGAGAGC AAACGAGAGC TACAGCC TCATTCTGTTTCTG ATCACTCAAA CCACCCTTTG GACCCAGCG CTGCTAGAGG CTGCTAGAGG TGCTAGAGG TTGCTAGAGG TTGCTAGAGG TGCTAGAGG TTGCTAGAG TTGCTCAGAG TTCACTCAGA	ACATACTGGA CTATGGAGGA CAGACAGGTT CACACTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT TGAACCCGT CCCAGGAAAT CCCAGGAAAT CCTGGACTCA CCTTGGACTC TAAGTTTAGC CCATGTTCGA GGCGTTTCCG CTCTCCAGAC TAAGGGCAC CATTTGATC CAGTGGGGC AAGTGAAAG ACCGGCACGG AGCCATGCC AATTGATC CAGTGCCCCCC CATAGCGC CATTTGCT CAGTGCCCCTCC CAGCCCACC CATTGCACC CATTGCACC CATTGCACC CATTGCACC CATTGCACC CATTGCACC CATTGCACC CATTAGCACC CATTACGACC CATTACGACC CATTCCATATA	GGAGTCTCTG CAAGATTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAAG TGTGGAATTCT ATTTAACTTG ATTAATTATT GTTGCTGGCA AACAAATTTT CCGTACCCAG CCAGCACCAG GCTGACCGGG GCTGTTTGCC TGATTTTGGG GAGTGATTCC TCAGTAGCAGA AGACTTCCT CCAGAGGGCA AGACTTCCT CCAGAGGGCC GCTCAGTTTG CCAGAGGGCC TGATTTGGG TGCGGCTGCT TGAGTACCTC CCAGAGGGCC AGAGACTCCAT TCAGGACATT TCAGGACATC CCACCAGACCC ACAAGACTGG	7020 7080 7140 7200 7320 7380 7500 7560 7620 7680 77400 7860 7920 7860 8100 8160 8220 8340 84520 8460 8520 8580 8640 8760 8880 8940 9000
60 65 70 75	GCTTTGGTGA GTTCTAGGAC TGTGAACTGG GTGTGCTTGA GTGTTCTTTC CTTTGTCGTG GAAGTCATGA ATGATGCCAA GTTTCCCATC GATAATTACA GCAAAAGATC CTAGAATCCT CTAGATCCT CTAGAATCCT CTAGAATGCG GAAGGGTCCC CATGACTTCA AGCAGCACTG CACAAGAGGA AAAAAAAAGAC CGGACGGACC ATGATTCAGA CCAATTTCAGA CCAATTTACGA AGAATGCGTCG CCTGCTGAGC AGAAGGGTGAT AAAATGAAGC CCTGCTGAGC AGAATGGGTGA CCTGCTGAGC AGAATGGGTGA AGAAGGGATTTTCACA AGAAGTGATT	ATAATATGTC TTATACTTCG TTGCGAAACA TGCGCAAA TGGAGGGATT GACATAGAGA AGTTAAAACC CTTCTACAAC GAGATCCAGA TGCTGCTATAA TGCAGCATGA TATATTCTCC TGACCAGCAT AATTTCAGGA TCTTGTGGA TCTCAGCTCG CACTGACACA ACCCGCTGGT TGGGCCTTCC TACTACGACT CACTACGACT CACTACCAC CACTGCTCC TACTACGACT CACTACCAC CACTGCTCC TACTACGACT CACTGCCCAC AGCACCCCT TCCCCCACAC AGCTTCCCAA AGCTTCCCAA AGCTTCCCAA AGCTTCCCAA AGCTTCCCAA AGCTTCCCAA AGCTTCCCAA AGCTTCCCAA AGCTTGCCAA AGCTTGCAAA CTGAAACAGC	CTTTGTAAGA ATATGTTATG ATTGAAGCAA CAAGAGCTTC ATTTCATGGA GACAGAGCTTG TGATGAAGCA AGTAGAACTC ATGTAGGGAA AAGTGAGACAC AGGATTGAT TAAGATAGAA CAAGAGTTG GACCCAGGT GACCACCAC ACAGAGCAG GCCAGACACC CTGGCCAGAC GCGCAGCACC CTGTGCAGCA CGCCAGCC CTCTTCTTT CTGAGCCAC CTCTTTCTTT GCTGAGCCTC GCCAGTCCGC GCCAGTCCGC GCCAGTCCGC CTCTTTCTTT GCTGAGCCTC GCCAGTCCGC	GAGAGAAAA CATCAGAATA CCTCTCTTG GTGTTGAAAA TACTTCCAGT CAAAAGTAT CGAGAACTTC CAAATGTATA GATGAGAACC CCTTCAAATA GTGCACTTTT TATCCAACC GATTCTGATT TCCCAGGGCA GCAGGGCAGA GCAGGCAGA GCAGGAGACT CCCTTGAAGT ACTCCTCAT CCCTTGAAGT ACTCCTCAT CCCTTGAAGT ACCCCGTTAC TTATAGAGG AAACGAGAGC AAACGAGAGC TACAGCC TCATTCTGTTTCTG ATCACTCAAA CCACCCTTTG GACCCAGCG CTGCTAGAGG CTGCTAGAGG TGCTAGAGG TTGCTAGAGG TTGCTAGAGG TGCTAGAGG TTGCTAGAG TTGCTCAGAG TTCACTCAGA	ACATACTGGA CTATGGAGGA CAGACAGGTT CACACTGTCT TAAAGAGCAA GTTTGGACAT TGAACCCCGT TGAACCCGT CCCAGGAAAT CCCAGGAAAT CCTGGACTCA CCTTGGACTC TAAGTTTAGC CCATGTTCGA GGCGTTTCCG CTCTCCAGAC TAAGGGCAC CATTTGATC CAGTGGGGC AAGTGAAAG ACCGGCACGG AGCCATGCC AATTGATC CAGTGCCCCCC CATAGCGC CATTTGCT CAGTGCCCCTCC CAGCCCACC CATTGCACC CATTGCACC CATTGCACC CATTGCACC CATTGCACC CATTGCACC CATTGCACC CATTAGCACC CATTACGACC CATTACGACC CATTCCATATA	GGAGTCTCTG CAAGTTTATT CATGAATGCT GGAGGTGGTA GGACTTCGTT AATTTATAGT GTGGAATTC ATTTAAGTTG ATTAATTATT GTTGCTGGCA AACAAATTTT GCATCCTCTG AAGTACTGTT CCGTACCCAG GCTGACCGAG GCTGACCGAG GCTGACTTCC TGATTTTGG GGAGGACTA AGACTTCCT CCAGAGGAC AGAGATTA AGACTTCCT CCAGAGGAC AGAGATCAT TCAGGACATT TCAGGACAT TCAGCAC TC	7020 7080 7140 7200 7320 7380 7500 7560 7620 7680 77400 7860 7920 7860 8100 8160 8220 8340 84520 8460 8520 8580 8640 8760 8880 8940 9000

```
TACAACCACC TTGCTGAGTG GAAATCACTT GAATACTGTT CTACAGCCAG TATAGACAGT
                                                                           9120
       GAGAACCCCC CAGACCTAAA TAAAATCTGG AGTGAACCAT TTTATCAGGA AACATATCTA
                                                                           9180
       CCTTACATGA TCCGCAGCAA GCTGAAGCTG CTGCTCCAGG GAGAGGCTGA CCAGTCCCTG
       CTGACATTTA TTGACAAAGC TATGCACGGG GAGCTCCAGA AGGCGATTCT AGAGCTTCAT
                                                                           9300
 5
       TACAGTCAAG AGCTGAGTCT GCTTTACCTC CTGCAAGATG ATGTTGACAG AGCCAAATAT
                                                                           9360
       TACATTCAAA ATGGCATTCA GAGTTTTATG CAGAATTATT CTAGTATTGA TGTCCTCTTA
                                                                           9420
       CACCAAAGTA GACTCACCAA ATTGCAGTCT GTACAGGCTT TAACAGAAAT TCAGGAGTTC
                                                                           9480
       ATCAGCTTTA TAAGCAAACA AGGCAATTTA TCATCTCAAG TTCCCCTTAA GAGACTTCTG
                                                                           9540
       AACACCTGGA CAAACAGATA TCCAGATGCT AAAATGGACC CAATGAACAT CTGGGATGAC
                                                                           9600
10
       ATCATCACAA ATCGATGTTT CTTTCTCAGC AAAATAGAGG AGAAGCTTAC CCCTCTTCCA
                                                                           9660
       GAAGATAATA GTATGAATGT GGATCAAGAT GGAGACCCCA GTGACAGGAT GGAAGTGCAA
                                                                           9720
       GAGCAGGAAG AAGATATCAG CTCCCTGATC AGGAGTTGCA AGTTTTCCAT GAAAATGAAG
                                                                           9780
       ATGATAGACA GTGCCCGGAA GCAGAACAAT TTCTCACTTG CTATGAAACT ACTGAAGGAG
                                                                           9840
       CTGCATAAAG AGTCAAAAAC CAGAGACGAT TGGCTGGTGA GCTGGGTGCA GAGCTACTGC
                                                                           9900
15
       CGCCTGAGCC ACTGCCGGAG CCGGTCCCAG GGCTGCTCTG AGCAGGTGCT CACTGTGCTG
                                                                          9960
       AAAACAGTCT CTTTGTTGGA TGAGAACAAC GTGTCAAGCT ACTTAAGCAA AAATATTCTG 10020
       GCTTTCCGTG ACCAGAACAT TCTCTTGGGT ACAACTTACA GGATCATAGC GAATGCTCTC 10080
       AGCAGTGAGC CAGCCTGCCT TGCTGAAATC GAGGAGGACA AGGCTAGAAG AATCTTAGAG 10140
       CTTTCTGGAT CCAGTTCAGA GGATTCAGAG AAGGTGATCG CGGGTCTGTA CCAGAGAGCA 10200
20
       TTCCAGCACC TCTCTGAGGC TGTGCAGGCG GCTGAGGAGG AGGCCCAGCC TCCCTCCTGG 10260
       AGCTGTGGGC CTGCAGCTGG GGTGATTGAT GCTTACATGA CGCTGGCAGA TTTCTGTGAC 10320
       CAACAGCTGC GCAAGGAGGA AGAGAATGCA TCAGTTATTG ATTCTGCAGA ACTGCAGGCG 10380
       TATCCAGCAC TTGTGGTGGA GAAAATGTTG AAAGCTTTAA AATTAAATTC CAATGAAGCC 10440
       AGATTGAAGT TTCCTAGATT ACTTCAGATT ATAGAACGGT ATCCAGAGGA GACTTTGAGC 10500
25
       CTCATGACAA AAGAGATCTC TTCCGTTCCC TGCTGGCAGT TCATCAGCTG GATCAGCCAC 10560
ATGGTGGCCT TACTGGACAA AGACCAAGCC GTTGCTGTTC AGCACTCTGT GGAAGAAATC 10620
       ACTGATAACT ACCCGCAGGC TATTGTTTAT CCCTTCATCA TAAGCAGCGA AAGCTATTCC 10680
       TTCAAGGATA CTTCTACTGG TCATAAGAAT AAGGAGTTTG TGGCAAGGAT TAAAAGTAAG 10740
       TTGGATCAAG GAGGAGTGAT TCAAGATTTT ATTAATGCCT TAGATCAGCT CTCTAATCCT 10800
30
       GAACTGCTCT TTAAGGATTG GAGCAATGAT GTAAGAGCTG AACTAGCAAA AACCCCTGTA 10860
       AATAAAAAA ACATTGAAAA AATGTATGAA AGAATGTATG CAGCCTTGGG TGACCCAAAG 10920
       GCTCCAGGCC TGGGGGCCTT TAGAAGGAAG TTTATTCAGA CTTTTGGAAA AGAATTTGAT 10980
       AAACATTTTG GGAAAGGAGG TTCTAAACTA CTGAGAATGA AGCTCAGTGA CTTCAACGAC 11040
       ATTACCAACA TGCTACTTTT AAAAATGAAC AAAGACTCAA AGCCCCCTGG GAATCTGAAA 11100
35
       GAATGTTCAC CCTGGATGAG CGACTTCAAA GTGGAGTTCC TGAGAAATGA GCTGGAGATT 11160
       CCCGGTCAGT ATGACGGTAG GGGAAAGCCA TTGCCAGAGT ACCACGTGCG AATCGCCGGG 11220
       TTTGATGAGC GGGTGACAGT CATGGCGTCT CTGCGAAGGC CCAAGCGCAT CATCATCCGT 11280
       GGCCATGACG AGAGGGAACA CCCTTTCCTG GTGAAGGGTG GCGAGGACCT GCGGCAGGAC 11340
       CAGCGCGTGG AGCAGCTCTT CCAGGTCATG AATGGGATCC TGGCCCAAGA CTCCGCCTGC 11400
40
       AGCCAGAGGG CCCTGCAGCT GAGGACCTAT AGCGTTGTGC CCATGACCTC CAGGTTAGGA 11460
       TTAATTGAGT GGCTTGAAAA TACTGTTACC TTGAAGGACC TTCTTTTGAA CACCATGTCC 11520
       CAAGAGGAGA AGGCGGCTTA CCTGAGTGAT CCCAGGGCAC CGCCGTGTGA ATATAAAGAT 11580
       TGGCTGACAA AAATGTCAGG AAAACATGAT GTTGGAGCTT ACATGCTAAT GTATAAGGGC 11640
       45
       CTCTTAAAGC GGGCCTTCGT GAGGATGAGT ACAAGCCCTG AGGCTTTCCT GGCGCTCCGC 11760
       TCCCACTTCG CCAGCTCTCA CGCTCTGATA TGCATCAGCC ACTGGATCCT CGGGATTGGA 11820
       GACAGACATC TGAACAACTT TATGGTGGCC ATGGAGACTG GCGGCGTGAT CGGGATCGAC 11880
       TTTGGGCATG CGTTTGGATC CGCTACACAG TTTCTGCCAG TCCCTGAGTT GATGCCTTTT 11940
CGGCTAACTC GCCAGTTTAT CAATCTGATG TTACCAATGA AAGAAACGGG CCTTATGTAC 12000
50
       AGCATCATGG TACACGCACT CCGGGCCTTC CGCTCAGACC CTGGCCTGCT CACCAACACC 12060
       ATGGATGTGT TTGTCAAGGA GCCCTCCTTT GATTGGAAAA ATTTTGAACA GAAAATGCTG 12120
       AAAAAAGGAG GGTCATGGAT TCAAGAAATA AATGTTGCTG AAAAAAATTG GTACCCCCGA 12180
       CAGAAAATAT GTTACGCTAA GAGAAAGTTA GCAGGTGCCA ATCCAGCAGT CATTACTTGT 12240
       GATGAGCTAC TCCTGGGTCA TGAGAAGGCC CCTGCCTTCA GAGACTATGT GGCTGTGGCA 12300
55
       CGAGGAAGCA AAGATCACAA CATTCGTGCC CAAGAACCAG AGAGTGGGCT TTCAGAAGAG 12360
       ACTCAAGTGA AGTGCCTGAT GGACCAGGCA ACAGACCCCA ACATCCTTGG CAGAACCTGG 12420
       GAAGGATGGG AGCCCTGGAT GTGAGGTCTG TGGGAGTCTG CAGATAGAAA GCATTACATT 12480
       GTTTAAAGAA TCTACTATAC TTTGGTTGGC AGCATTCCAT GAGCTGATTT TCCTGAAACA 12540
       CTAAAGAGAA ATGTCTTTTG TGCTACAGTT TCGTAGCATG AGTTTAAATC AAGATTATGA 12600
60
       TGAGTAAATG TGTATGGGTT AAATCAAAGA TAAGGTTATA GTAACATCAA AGATTAGGTG 12660
       AGGTTTATAG AAAGATAGAT ATCCAGGCTT ACCAAAGTAT TAAGTCAAGA ATATAATATG 12720
       TGATCAGCTT TCAAAGCATT TACAAGTGCT GCAAGTTAGT GAAACAGCTG TCTCCGTAAA 12780
       TGGAGGAAAT GTGGGGAAGC CTTGGAATGC CCTTCTGGTT CTGGCACATT GGAAAGCACA 12840
       CTCAGAAGGC TTCATCACCA AGATTTTGGG AGAGTAAAGC TAAGTATAGT TGATGTAACA 12900
65
       TTGTAGAAGC AGCATAGGAA CAATAAGAAC AATAGGTAAA GCTATAATTA TGGCTTATAT 12960
       TTAGAAATGA CTGCATTTGA TATTTTAGGA TATTTTTCTA GGTTTTTTCC TTTCATTTTA 13020
       TTCTCTTCTA GTTTTGACAT TTTATGATAG ATTTGCTCTC TAGAAGGAAA CGTCTTTATT 13080
       TAGGAGGCA AAAATTTTGG TCATAGCATT CACTTTTGCT ATTCCAATCT ACAACTGGAA 13140
       GATACATAAA AGTGCTTTGC ATTGAATTTG GGATAACTTC AAAAATCCCA TGGTTGTTGT 13200
70
       TAGGGATAGT ACTAAGCATT TCAGTTCCAG GAGAATAAAA GAAATTCCTA TTTGAAATGA 13260
       ATTCCTCATT TGGAGGAAAA AAAGCATGCA TTCTAGCACA ACAAGATGAA ATTATGGAAT 13320
       ACAAAAGTGG CTCCTTCCCA TGTGCAGTCC CTGTCCCCCC CCGCCAGTCC TCCACACCCA 13380
       AACTGTTTCT GATTGGCTTT TAGCTTTTTG TTGTTTTTTT TTTTCCTTCT AACACTTGTA 13440
       TTTGGAGGCT CTTCTGTGAT TTTGAGAAGT ATACTCTTGA GTGTTTAATA AAGTTTTTTT 13500
75
       CCAAAAGTA
       Seg ID NO: 99 Protein seguence:
       Protein Accession #: NP_008835.5
80
                  11
                             21
                                        31
                                                    41
                                                               51
       MAGSGAGVRC SLLRLQETLS AADRCGAALA GHQLIRGLGQ ECVLSSSPAV LALQTSLVF9
                                                                             60
       RDFGLLVFVR KSLNSIEPRE CREEILKFLC IFLEKMGQKI APYSVEIKNT CTSVYTKDRA
                                                                            120
       AKCKIPALDL LIKLLOTFRS SRLMDEFKIG ELFSKFYGEL ALKKKIPDTV LEKVYELLGL
                                                                            180
85
       LGEVHPSEMI NNAENLFRAF LGELKTOMTS AVREPKLPVL AGCLKGLSSL LCNFTKSMEE
                                                                            240
```

DPQTSREIFN FVLKAIRPQI DLKRYAVPSA GLRLFALHAS QFSTCLLDNY VSLFEVLLKW

CAHTNVELKK AALSALESFL KQVSNMVAKN AEMHKNKLQY FMEQFYGIIR NVDSNNKELS

227

300

360

	IAIRGYGLFA	GPCKVINAKD	VDFMYVELIQ	RCKQMFLTQT	DTGDDRVYQM	PSFLQSVASV	420
	LLYLDTUDEV	VTPVLEHLVV	MOTDSPPOYS	PKMQLVCCRA	IVKVFLALAA	KGPVLRNCIS.	480
	TVVHOGT.TPT	CSKPVVI.PKG	PESESEDHRA	SGEVRTGKWK	VPTYKDYVDL	FRHLLSSDQM	540
	MUSTIVENE	PEINICECERST.	MULT. VDE PUR	SVLKIVEKLD	LTLEIOTVGE	OENGDEAPGV	600
5	PUSTUADEAE	LOANGOOD CON	CARTALIBRO	REILPEKQAE	FFFDWVVSFS	VELTIOSTEL	660
J	WHIFISDPAA	NUMPARPRUF	SAFINDVEC	LKHSPEDPEK	ACCENT DAME	CALINATIONALO	720
	PLISGFYKLL	SITVRNAKKI	KYPEGVSPKS	LKHSFEDFER	COMPLANTICE	GVEANAUTAG	
	YKDELLASCL	TFLLSLPHNI	IELDVRAYVP	ALQMAPKLGL	STIPLABUGL	NAUEEWSIII	780
	DRHVMQPYYK	DILPCLDGYL	KTSALSDETK	NNWEVSALSR	AAQKGFNKVV	PKHPKKLKNP	840
	SSNEATSLEE	IRIRVVOMLG	SLGGOINKNL	LTVTSSDEMM	KSYVAWDREK	RLSFAVPFRE	900
10	MKPVIFLDVF	LPRVTELALT	ASDROTKVAA	CELLHSMVMF	MLGKATQMPE	GGQGAPPMYQ	960
	I.VKRTPRVI.I.	RIACDVDOVT	ROLVEPLVMO	LIHWFTNNKK	FESODTVALL	EAILDGIVDP	1020
	INCEL BUSCO	DCTDDDT.VWS	TRUTTEUUUE	KSPVNTKSLF	KRLYSLALHP	NAPKRLGASL	1080
	VDSTERDFCG	RCIREFIRMS	TUĞTTLÖĞÖD	LALAHADEKS	LCTLOCCOD	TOUT.COTTEK	1140
	AFNNIYKEFR	EEESUVEUFV	PEAUVIIMES	DATIMOCE DO	BOLLEGECON	TOMBURITOR	1200
1.5	KHVSLNKAKK	RRLPRGFPPS	ASECUEDLYK	WLLAHCGRPQ	IBCKRASIED	FIREVELLEG	
15	NRSPNLWLKD	VLKEEGVSFL	INTFEGGGCG	QPSGILAQPT	PPAPKGSER	OATECMEDEE	1260
	LAALECYNTF	IGERTVGALQ	VLGTEAQSSL	LKAVAFFLES	IAMHDIIAAE	KCFGTGAAGN	1320
	RTSPOEGERY	NYSKCTVVVR	IMEFTTTLLN	TSPEGWKLLK	KDLCNTHLMR	VLVQTLCEPA	1380
	SIGFNIGDVO	VMAHLPDVCV	NLMKALKMSP	YKDILETHLR	EKITAQSIEE	LCAVNLYGPD	1440
	AAJIG2STOVA	VVSACKOLHR	AGLIHNTLPS	QSTDLHHSVG	TELLSLVYKG	IAPGDEROCL	1500
20	DELDI-CCKOL	ACCLUDIADA	PCCLCPDIAGE	LLLNPAVLST	ASTESSOGSV	THESHGEVEY	1560
20	PSIDDSCAQD	ASGULEUAFA	PLYCOCUPAT	MUCCAUT NCM	TOUCEDEDIN	OVUCCINIAT	1620
	SUPSETINTE	PPKNPDPWAT	REMOSSADMI	KMVSAVLNGM	DIRACA TEGORA	CULTATION	
	TILQHWKKCD	SWWAKDSPLE	TKMAVLALLA	KILQIDSSVS	FNISHGSFPE	VETTITSBUA	1680
	DTKLDLHLKG	QAVTLLPFFT	SLTGGSLEEL	RRVLEQLIVA	HFPMQSREFP	PGTPRFNNYV	1740
	DCMKKFLDAL	ELSQSPMLLE	LMTEVLCREQ	QHVMEELFQS	SFRRIARRGS	CVTQVGLLES	1800
25	VYEMFRKDDP	RLSFTROSFV	DRSLLTLLWH	CSLDALREFF	STIVVDAIDV	LKSRFTKLNE	1860
	STEDTOLTKK	MGYYKTLDVM	YSRI-PKDDVH	AKESKINQVF	HGSCITEGNE	LTKTLIKLCY	1920
	DAPTENIMAGE	NOT TEPPPILY	UCAAVNICATS	VICCVFNELK	PYOGELESEK	PEKNILITEEN	1980
				AREAANGDSD			2040
20	SQFDFSTGVQ	SYSYSSODPR	PATGRFRRRE	QRDPTVHDDV	DELEMDEDNK	HECMAPUTAL	2100
30	VKHMHRSLGP	PQGEEDSVPR	DLPSWMKFLH	GKLGNPIVPL	NIRLFLAKLV	INTEEVFRPY	2160
	AKHWLSPLLQ	LAASENNGGE	GIHYMVVEIV	ATILSWTGLA	TPTGVPKDEV	LANRLLNFLM	2220
	KHVFHPKRAV	FRHNLEIIKT	LVECWKDCLS	IPYRLIFEKF	SGKDPNSKDN	SVGIQLLGIV	2280
	MANDLPPYDP	OCGIOSSEYF	OALVNNMSFV	RYKEVYAAAA	EVLGLILRYV	MERKNILEES	2340
	I-CELVAKOLK	OHONTMEDKE	IVCLNKVTKS	FPPLADRFMN	AVFFLLPKFH	GVLKTLCLEV	2400
35				RQKVCLDIIY			2460
55				TONDSQEIFK			2520
				EVHFLSLATN			2580
				ASQGTLQTRT			2640
	QHDFTLTQTA	DGRSSFDWLT	GSSTDPLVDH	TSPSSDSLLF	AHKRSERLQR	APLKSVGPDF	2700
40				RFMRDQEKLS			2760
	LKMKQDAOVV	LYRSYRHGDL	PDIQIKHSSL	ITPLQAVAQR	DPIIAKQLFS	SLFSGILKEM	2820
				FPPFVSCIQD			2880
				RGKARLPPDV			2940
•	THURDOOFFORE	OTTOCALLAR	ADCDVCEAAV	QYDEALNKQD	MUNCEPTEAR	KDEMETVETO	3000
45							
43				WSEPFYQETY			3060
				LLQDDVDRAK			3120
	LHQSRLTKLQ	SVQALTEIQE	FISFISKQGN	LSSQVPLKRL	LNTWTNRYPD	AKMDPMNIWD	3180
	DY TONID COOK	SKIEEKLTPL	PEDNSMNVDQ	DGDPSDRMEV	QEQEEDISSL	IRSCKFSMKM	3240
	DITINKCLED						
			ELHKESKTRD	DWLVSWVQSY	CRLSHCRSRS	QGCSEQVLTV	3300
50	KMIDSARKQN	NFSLAMKLLK					3300 3360
50	KMIDSARKQN LKTVSLLDEN	NFSLAMKLLK NVSSYLSKNI	LAFRDQNILL	GTTYRIIANA	LSSEPACLAR	IEEDKARRIL	3360
50	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR	LAFRDQNILL AFQHLSEAVQ	GTTYRIIANA AAEEEAQPPS	LSSEPACLAE WSCGPAAGVI	IEEDKARRIL DAYMTLADFC	3360 3420
50	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM	GTTYRIIANA AAEEEAQPPS LKALKLNSNE	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ	IEEDKARRIL DAYMTLADFC IIERYPEETL	3360 3420 3480
50	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY	3360 3420 3480 3540
	KMIDSARKON LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KLDQGGVIQD	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP	3360 3420 3480 3540 3600
50 55	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VNKKNIEKMY	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KLDQGGVIQD KAPGLGAFRR	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN	3360 3420 3480 3540 3600 3660
	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VNKKNIEKMY	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KLDQGGVIQD KAPGLGAFRR	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP	3360 3420 3480 3540 3600 3660 3720
	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VNKKNIEKMY DITNMLLLKM	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDF	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN	3360 3420 3480 3540 3600 3660
	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VNKKNIEKMY DITMMLILKM GFDERVTVMA	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDF RGHDEREHPF	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA	3360 3420 3480 3540 3600 3660 3720 3780
	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SEMTKEISSV SFKDTSTGHK VNKKNIEKMY DITNMLLLKM GFDERVTVMA CSQRALQLRT	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDF RGHDEREHPF GLIEWLENTV	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYK	3360 3420 3480 3540 3600 3660 3720 3780 3840
55	KMIDSARKQN LKTVSLLDEN ELSGSSEED DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VNKKNIEKMY DITMMLLLKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDF RGHDEREHPF GLIEWLENTV GANRTETVTS	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TIKDLILINTM FRKRESKVPA	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYK STSPEAFLAL	3360 3420 3480 3540 3600 3720 3780 3840 3900
	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SIMTKEISSV SFKDTSTGHK VNKKNIEKMY DITMMLLLKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH RSHFASSHAL	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDF RGHDEREHPF GLIEWLENTV GANRTETVTS GDRHLNNFMV	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM FRKRESKVPA AMETGGVIGI	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYK STSPEAFLAL QFLPVPELMP	3360 3420 3480 3540 3600 3720 3780 3840 3900 3960
55	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VNKKNIEKMY DITMMLLKMY GFDERVTVMA CSQRALQLRT DWLTKMSGKH RSHFASSHAL FRLTRQFINL	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYS ICISHWILGI MLPMKETGLM	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KAPGLGAFRR KECSPWMSDF RGHDEREHPF GLIEWLENTTS GANRTETVTS GDRHLNNFMV YSIMVHALRA	GTTYRIIANA AAEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNT FRKRESKVPA AMETGGVIGI FRSDPGLLTN	LSSEPACLAE WSCGPAAGVI ARLKFPRLU ARLKFPRLU PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVFVKEPS	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYA STSPEAFLAL QFLPVPELMP FDWKNFEQKM	3360 3420 3480 3540 3660 3720 3780 3840 3900 3960 4020
55	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VNKKNIEKMY DITMMLLLKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH RSHFASSHAL FRLTRQFINL LKKGGSWIQE	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KAPGLGAFRR KECSPWMSDF RGHDEREHPF GLIEWLENTUTS GANRTETUTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM PRKRESKVPA AMETGGVIGI FRSDPGLLTN LAGANPAVIT	LSSEPACLAE WSCGPAAGVI ARLKFPRLLG ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHEK	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYK STSPEAFLAL QFLPVPELMP	3360 3420 3480 3540 3660 3720 3780 3840 3900 3960 4020
55	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VNKKNIEKMY DITMMLLLKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH RSHFASSHAL FRLTRQFINL LKKGGSWIQE	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KAPGLGAFRR KECSPWMSDF RGHDEREHPF GLIEWLENTUTS GANRTETUTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK	GTTYRIIANA AAEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNT FRKRESKVPA AMETGGVIGI FRSDPGLLTN	LSSEPACLAE WSCGPAAGVI ARLKFPRLLG ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHEK	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYA STSPEAFLAL QFLPVPELMP FDWKNFEQKM	3360 3420 3480 3540 3660 3720 3780 3840 3900 3960 4020
55 60	KMIDSARKQN LKTVSLLDEN ELSGSSEDS DQQLRKEEEN SEMTKEISSV SFKDTSTGHK VNKKNIEKMY DITMILLIKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH RSHFASSHAL FRLTRQFINL LKKGGSWIQE ARGSKDHNIR	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNI SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDF GGHEREHPF GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM PRKRESKVPA AMETGGVIGI FRSDPGLLTN LAGANPAVIT	LSSEPACLAE WSCGPAAGVI ARLKFPRLLG ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHEK	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYA STSPEAFLAL QFLPVPELMP FDWKNFEQKM	3360 3420 3480 3540 3660 3720 3780 3840 3900 3960 4020
55	KMIDSARKQN LKTVSLLDEN ELSGSSEDS DQQLRKEEEN SEMTKEISSV SFKDTSTGHK VNKKNIEKMY DITMILLIKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH RSHFASSHAL FRLTRQFINL LKKGGSWIQE ARGSKDHNIR	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDF GGHEREHPF GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM PRKRESKVPA AMETGGVIGI FRSDPGLLTN LAGANPAVIT	LSSEPACLAE WSCGPAAGVI ARLKFPRLLG ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHEK	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYA STSPEAFLAL QFLPVPELMP FDWKNFEQKM	3360 3420 3480 3540 3660 3720 3780 3840 3900 3960 4020
55 60	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VNKKNIEKMY DITMMLLLKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH RSHFASSHAL FRLTRQFINL LKKGGSWIQE ARGSKDHNIR Seq ID NO:	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNI SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KLDQGGVIQD KAPGLGAPRR KECSPWMSDF RGHDEREHPF GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ Quence	GTTYRIIANA AAEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM FRKRESKVPA AMETGGVIGI FRSDPGLLTN LAGANPAVIT ATDPNILGRT	LSSEPACLAE WSCGPAAGVI ARLKFPRLLG ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHEK	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYA STSPEAFLAL QFLPVPELMP FDWKNFEQKM	3360 3420 3480 3540 3660 3720 3780 3840 3900 3960 4020
55 60	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VNKKNIEKMY DITMMLLKM GFDERVTVMA CSQRALQLRT DWITKMSGKH RSHFASSHAL FRITRQFINL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Ac	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE 100 DNA seid Accession	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KAPGLGAFRR KECSPWMSDF RGHDEREHPF GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ Quence a #: NM_00066	GTTYRIIANA AAEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM FRKRESKVPA AMETGGVIGI FRSDPGLLTN LAGANPAVIT ATDPNILGRT	LSSEPACLAE WSCGPAAGVI ARLKFPRLLG ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHEK	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYA STSPEAFLAL QFLPVPELMP FDWKNFEQKM	3360 3420 3480 3540 3660 3720 3780 3840 3900 3960 4020
55 60	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VNKKNIEKMY DITMMLLKM GFDERVTVMA CSQRALQLRT DWITKMSGKH RSHFASSHAL FRITRQFINL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Ac	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KAPGLGAFRR KECSPWMSDF RGHDEREHPF GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ Quence a #: NM_00066	GTTYRIIANA AAEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM FRKRESKVPA AMETGGVIGI FRSDPGLLTN LAGANPAVIT ATDPNILGRT	LSSEPACLAE WSCGPAAGVI ARLKFPRLLG ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHEK	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYA STSPEAFLAL QFLPVPELMP FDWKNFEQKM	3360 3420 3480 3540 3660 3720 3780 3840 3900 3960 4020
55 60	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SIMTKEISSV SFKDTSTGHK VNKKNIEKMY DITNMLLLKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH RSHFASSHAL FRLTRQFINL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Acc Coding sequences	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE 100 DNA sec id Accession lence: 101-	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDI GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ Quence 1#: NM_0006	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE PINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM PRKRESKVPA AMETGGVIGI FRSDPGLLTI LAGANPAVIT ATDPNILGRT	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHEK WEGWEPWM	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYK STSPEAFLAL QFLPVPELMP FDWKNFEQKM APAFRDYVAV	3360 3420 3480 3540 3660 3720 3780 3840 3900 3960 4020
556065	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VNKKNIEKMY DITMMLLKM GFDERVTVMA CSQRALQLRT DWITKMSGKH RSHFASSHAL FRITRQFINL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Ac	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE 100 DNA seid Accession	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KAPGLGAFRR KECSPWMSDF RGHDEREHPF GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ Quence a #: NM_00066	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TIKDLLLINTM FRKRESKVPA AMETGGVIGI FRSDPGLLTN LAGANPAVIT ATDPNILGRT	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHEK WEGWEPWM	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYA STSPEAFLAL QFLPVPELMP FDWKNFEQKM	3360 3420 3480 3540 3660 3720 3780 3840 3900 3960 4020
55 60	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VNKKNIEKMY DITMMLLLKM GFDERVTVMA CSQRALQLRT DWITKMSGKH RSHFASSHAL FRITRQFINL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Accoding sequence	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE 100 DNA see id Accession ence: 101-1	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KAPGLGAPRR KECSPWMSDF RGHDEREHPF GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ Quence 1 #: NM_0006	GTTYRIIANA AAEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM FRKRESKVPA AMETGGVIGI FRSDPGLLTN LAGANPAVIT ATDPNILGRT	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK OQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVFVKEPS CDELLLGHBK WEGWEPWM	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYK STSPEAFLAL QFLPVPELMP FDWKNFECKM APAFRDYVAV	3360 3420 3480 3540 3660 3720 3780 3940 3960 4020 4080
556065	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SIMTKEISSV SFKDTSTGHK VNKKNIEKMY DITNMLLLKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH RSHFASSHAL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Ac: Coding sequents	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE 100 DNA see id Accession lence: 101-:	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDF GGLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ Quence 1 #: NM_0006	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM FRKRESKVPA AMETGGVIGI FRSDPGLLTN LAGANPAVIT ATDPNILGRT	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAF TMDVPVKEPS CDELLLGHEK WEGWEPWM	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYK STSPEAFLAL QFLPVPELMP FDWKNFEQKM APAFRDYVAV	3360 3420 3480 3540 3660 3720 3780 3900 3960 4020 4080
556065	KMIDSARKQN LKTVSLLDEN ELSGSSEDS DQQLRKEEEN SIMTKEISSV SFKDTSTGHK VNKKNIEKMY DITNMLLLKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH RSHFASSHAL FRLTRQFINL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Ac: Coding sequ 1 ATGTGAAGGC GTCTATGTTT	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE 100 DNA second accession icid Accession icid Accession icid Accession control to the control to	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDI GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ Quence 1225 21 GTTATATACA AGATCCAAGA	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE PINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM PRKRESKVPA AMETGGVIGI FRSDPGLLTI ATDPNILGRT 31 ACAGAGTGAA CAAAGACAGG	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHEK WEGWEPWM	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYK STSPEAFLAL QFLPVPELMP FDWKNFEQKM APAFRDYVAV	3360 3420 3480 3540 3660 3780 3780 3960 4020 4080
556065	KMIDSARKQN LKTVSLLDEN ELSGSSEDS DQQLRKEEEN SIMTKEISSV SFKDTSTGHK VNKKNIEKMY DITNMLLLKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH RSHFASSHAL FRLTRQFINL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Ac: Coding sequ 1 ATGTGAAGGC GTCTATGTTT	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SURRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE 100 DNA second accession icid Accession icid Accession icid Accession control to the control to	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDI GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ Quence 1225 21 GTTATATACA AGATCCAAGA	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM FRKRESKVPA AMETGGVIGI FRSDPGLLTN LAGANPAVIT ATDPNILGRT	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHEK WEGWEPWM	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYK STSPEAFLAL QFLPVPELMP FDWKNFEQKM APAFRDYVAV	3360 3420 3480 3540 3600 3720 3780 3960 4020 4080
55606570	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VNKKNIEKMY DITMMLLKM GFDERVTVMA CSQRALQLRT DWITKMSGKH RSHFASSHAL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Ac: Coding seq 1 ATGTGAAGGC GTCTATGTT TATTAAATGC AGAAGTTGCC	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE 100 DNA see id Accession ience: 101-: ACAAGCTGCT GCAGAAATAC AAAGCAGCTG CCACCAAAGA	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KAPGLGAPRR KECSPWMSDF RGHDEREHPF GGLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ Quence 1 #: NM_0006 1225 21 GTTATATATACA AGATCCAAGA TGCTTTGGGA CTAAAGAAGT	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TIKDLLLNTM FRKRESKVPA AMETGGVIGI FRSDPGLLTN LAGANPAVIT ATDPNILGRT 31 ACAGAGTGAA CAAAGACAGG GCAGAAGCAA TCGCATTAAG	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK OQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVFVKEPS CDELLLGHEK WEGWEPWM 41 CTGAGCATCA ATTGGCCA ATTTTGGCCA	IEEDKARRIL DAYMTLADFC IIERYPETTL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYK STSPEAFLAL QFLPVPELMP FDWKNFECKM APAFRDYVAV 51] GTCAGAAAAA CTGGAAAAAA TTGAGGAAAT CAGGAATCTG	3360 3420 3480 3540 3660 3780 3780 3960 4020 4080
556065	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VNKKNIEKMY DITMMLLKM GFDERVTVMA CSQRALQLRT DWITKMSGKH RSHFASSHAL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Ac: Coding seq 1 ATGTGAAGGC GTCTATGTT TATTAAATGC AGAAGTTGCC	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE 100 DNA see id Accession ience: 101-: ACAAGCTGCT GCAGAAATAC AAAGCAGCTG CCACCAAAGA	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KAPGLGAPRR KECSPWMSDF RGHDEREHPF GGLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ Quence 1 #: NM_0006 1225 21 GTTATATATACA AGATCCAAGA TGCTTTGGGA CTAAAGAAGT	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TIKDLLLNTM FRKRESKVPA AMETGGVIGI FRSDPGLLTN LAGANPAVIT ATDPNILGRT 31 ACAGAGTGAA CAAAGACAGG GCAGAAGCAA TCGCATTAAG	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK OQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVFVKEPS CDELLLGHEK WEGWEPWM 41 CTGAGCATCA ATTGGCCA ATTTTGGCCA	IEEDKARRIL DAYMTLADFC IIERYPETTL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYK STSPEAFLAL QFLPVPELMP FDWKNFECKM APAFRDYVAV 51] GTCAGAAAAA CTGGAAAAAA TTGAGGAAAT CAGGAATCTG	3360 3420 3480 3540 3600 3720 3780 3960 4020 4080
55606570	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VMKKNIEKMY DITNMLLLKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH RSHFASSHAL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Ac: Coding sequ 1 ATGTGAAGGC GTCTATGTTT TATTAAATGC AGAAGTTGCC TCGCACAGAT	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE 100 DNA see id Accession lence: 101-: 11	LAFRDQNILL AFQHLSEAVQ AFPALVVEKM HMVALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDF GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ Quence 1 #: NM_0006 1225 21 GTTATATACA AGATCCAAGA TGCTTTGGGA TGCTTTGGGA TTAAAAGAAGT TAAAAGGAAC	GTTYRIIANA AAESEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM FRKRESKVPA AMETGGVIGI LAGANPAVIT ATDPNILGRT 31 ACAGAGTGAA CAAAGACAGG GCAGAAGCAA AATGGTGTCC	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHEK WEGWEPWM 41 CTGAGCATCA ATGGGCACTC ATGTGGCCACTCA AAGTTTCCAG	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYK STSPEAFILAL QFLPVPELMP FDWKNFEQKM APAFRDYVAV 51 GTCAGAAAAA CTGGAAAAAA CTGGAAAAT CTGGAAAAT CTGGAAATTCT TGATTGTGGG	3360 3420 3480 3540 3600 3720 3780 3900 4020 4080 60 120 180 240
55606570	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SIMTKEISSV SFKDTSTGHK VNKKNIEKMY DITNMLLLKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH RSHFASSHAL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Ac: Coding sequ 1 ATGTGAAGGC GTCTATGTTT TATTAAATGC AGAGTTGCC TCGCACAGAT ACATGAGGCA	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWOFISWIS NKEFVARIKS ERMYAALGDP NXDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE 100 DNA sec id Accessiol ence: 101	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMYALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDI GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ 21 21 3 #: NM_0006 1225 21 GTTATATACA AGATCCAAGA TGCTTTGGGA TGCTTTGGGA TAGAGAAGCT TAGAGAAGCT TAGAGAAGCAT	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM FRKRESKVPA AMETGGVIGI FRSDPGLLTN LAGANPAVIT ATDPNILGRT 31 ACAGAGTGAA CAAAGACAGG GCAGAAGCAA TCGCATTAAG TGGAGAAGGA	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHEK WEGWEPWM 41 CTGAGCATCA ATGGGCACTG CCCTTCTCCA ATTTTGGCCA ATGTTTCCAG GTGACTACAG	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DFRAPPCEYK STSPEAFLAL QFLPVPELMP FDWKNFEQKM APAFRDYVAV 51 GTCAGAAAAAA CTGGAAAGT TTGAGGAAATT CAGGAATTG TGATTGTGGG TGAAACCAGG	3360 3420 3480 3540 3660 3720 3780 3960 4020 4080 60 120 180 240 3360
55606570	KMIDSARKQN LKTVSLLDEN ELSGSSEDS DQQLRKEEEN SIMTKEISSV SFKDTSTGHK VNKKNIEKMY DITNMLLLKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH RSHFASSHAL FRLTRQFINL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Ac: Coding sequ 1 ATGTGAAGGC GTCTATGTTT TATTAAATGC AGAAGTTGCC TCGCACAGAT ACATGAGGCA TGACAAAGTC	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SURRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE 100 DNA see id Accession ience: 101- ACAAGCTGCT GCAGAAATAC AAAGCAGCTG CCACCAAAGA ACTGGGATTG ACTCCTCTCT	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDI GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ 1225 21 GTTATATACA AGATCCAAGA TGCTTTGGGA CTAAAGAAGT TAAAAGGAGCT TTCTGCCACA	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE PINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM PRKRESKVPA AMETGGVIGI FRSDPGLLTI ATDPNILGRT 31 ACAGAGTGAA CAAAGACAGG GCAGAAGCAA TCGCATTAAG ATGTTGCAGAAAAAAAAAA	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHEK WEGWEPWM 41 CTGAGCATCA ATGGGCACTG CCCTTCTCCA ATTTTGGCCA ATTTTTGGCCA ATGTTTCCAG GTGACTACAG TGCAATGCTT	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYK STSPEAFLAL QFLPVPELMP FDWKNFEQKM APAFRDYVAV 51 GTCAGAAAAA CTGGAAAAAT CTGGAAAAAT TTGAGGAATT TTGAGGAATT TTGAGGAATT TGAGGATTGTGG TGAACCCGG GTCGCAACCC	3360 3420 3480 3540 3660 3720 3780 3960 4020 4080 60 120 180 240 300 420
55606570	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VNKKNIEKMY DITMMLLKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Ac: Coding sequ 1 ATGTGAAGGC GTCTATGTTT TATTAAATGC AGAAGTTGCC TCGCACAGAT ACATGAGGCA AGATGGCAAC AGATGGCAAC AGATGGCAAC AGATGGCAAC AGATGGCAAC LLSSSSEDS	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL UVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE 100 DNA see id Accession ence: 101- 11 ACAAGCTGCT GCAGAAATAC AAAGCAGCTG CCACCAAAGA GACCATGTGA ACTGGGATTG ATCCCTCTCT CTTTGCATTA	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMYALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDF GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ QUENCE 1 #: NM_0006 1225 21 GTTATATACA AGATCCAAGA TGCTTTGGGA TGCTTTGGGA CTAAAGAAGT TAAAAGGAAC TAGGAGCAT TTCTGCCACA GGAGCGATAT	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE PINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TIKDLLLNTM PRKRESKVPA AMETGGVIGI FRSDPGLLTN LAGANPAVIT ATDPNILGRT 31 ACAGAGTGAA ACAGAGCAGG GCAGAAGCAA TCGCATTAAG AATGGTGTCC TGGAGAGGA ATGTAGAGAA TACTGGTCGT	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHEK WEGWEPWM 41 CTGAGCATCA ATTTTGGCCA AAGTTTCCAG GTGACTACAG GTGAATGCTT GGAGTACTGG	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYK STSPEAPLAL QFLPVPELMP FDWKNFEQKM APAFRDYVAV 51 GTCAGAAAAA CTGGAAAAAT CTGGAAAAAT TTGAGGAAAT TTGAGGAAAT TGAGTCTG TGATTGTGG TGATGCCC CTGATGGCACCC	3360 3420 3480 3540 3660 3720 3780 3960 4020 4080 60 120 180 240 300 360 420 480
5560657075	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VNKKNIEKMY DITNMLLKM GFDERVTVMA CSQRALQLRT DWITKMSGKH RSHFASSHAL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Ac. Coding sequ 1 ATGTGAAGGC GTCTATGTTT TATTAAATGC AGAAGTTGCC TCGCACAGAT ACATGAGGCA TGACAAAGTC CACCAGATTT	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE 100 DNA see id Accession ience: 101-: ACAAGCTGCT GCAGAAATAC GCAGAAATAC CACACAAGA GACCATGTGA ACTGGGATTG ATCCCTCTCT ACATGCAAGG	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDF RGHDEREHPF GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ QUENCE 1 #: NM_0006 1225 21 GTTATATACA AGATCCAAGA TGCTTTGGGA CTAAAGAAGT TAAAAGAAGT TACAAGAA TTCTGCCACA GGAGCGATAT GCAAACCAGT	GTTYRIIANA AAESEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM FRKRESKVPA AMETGGVIGI FRSDPGLLTN LAGANPAVIT ATDPNILGRT 31 ACAGAGTGAA CAAAGACAGG GCAGAAGCAA TCGCATTAAG AATGGTGTCC TGGAGAAGGA ATGTTAGAGAA TACTGGTCGT ACACCACTTC	LSSEPACLAE WSCGPAAGVI MSCGPAAGVI ARLKFPRLIQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK LPGQVDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHEK WEGWEPWM 41 CTGAGCATCA ATGGCACTC CCCTTCTCCA AATTTTGGCCA AAGTTTCCAG GTGACTACAG GTGACTACAG GTGACTACAG TGCAATGCTT GGAGTACTGG ATGAACACCA	IEEDKARRIL DAYMTLADF IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFM PLPEYHVRIA MNGILAQDSA DPRAPPCEYK STSPEAFILAL QFLPVPELMP FDWKNFEQKM APAFRDYVAV 51 GTCAGAAAAA CTGGAAAAT TTGAGGAAAT TGAGGAAAT CAGGAAAT CAGGAAAT GTGATGCGG GTCGCAACC CTGATGGCACC CTGATGGCACC CTGATGGCACC GTACATTTAC	3360 3420 3540 3560 3720 3780 3900 4020 4080 60 120 180 240 300 420 480 540
55606570	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VNKKNIEKMY DITNMLLLKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH RSHFASSHAL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Aci Coding sequ 1 ATGTGAAGGC GTCTATGTTT TATTAAATG AGAAGTTGC TCGCACAGAT ACATGAGGCA TGACAAAGTC CACCAGATTT CGAGTACACA	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE 100 DNA see id Accession lence: 101-1 1 ACAAGCTGCT GCAGAAATAC AAAGCAGCTG CCACCAAAGA GACCATGTGA ACTGGGATTG ATCCTTTTCATTT ACATGCAAGG GTGGTGGATG	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HYPALVVEKM HWYALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDF GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ QUENCE 1 #: NM_0006 1225 21 GTTATATACA AGATCCAAGA TGCTTTGGGA CTAAAGAAGT TAAAAGAAT TTCTGCCACA GGAGCGATAT TTCTGCCACA GGAGCGATAT AGCAACCAGT AATCTTCTGT	GTTYRIIANA AAESEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM FRKRESKVPA AMETGGVIGI ATDPNILGRT 31 ACAGAGTGAA CAAAGACAGG GCAGAAGCAA TCGCATTAAG AATGGTGTCC TGGAGAAGGA ATGTAGAGAA TACTGGTCCT TGCTAAGATT	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHBK WEGWEPWM 41 CTGAGCATCA ATGGGCACTG CCCTTCTCCA ATTTTGGCCA AAGTTTCCAG GTGACTACAG TGCAATGCTT GGAGTACTGG ATGATGCTG GATGATGCAG GATGATGCAG	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYK STSPEAFLAL QFLPVPELMP FDWKNFEQKM APAFRDYVAV 51 GTCAGAAAAA CTGGAAAAAA CTGGAAAAT TTGAGGAAAT TTGAGGAAT TTGAGGAAT TGGAGAACC CGGAACCC CTGATGCCAC CTGATGCCAC CTGCACCC CTGATTTAC CTCCTCCTGA	3360 3420 3480 3540 3780 3780 3960 4020 4080 60 120 180 240 300 360 420 480 560
5560657075	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VNKKNIEKMY DITNMLLLKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH RSHFASSHAL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Aci Coding sequ 1 ATGTGAAGGC GTCTATGTTT TATTAAATG AGAAGTTGC TCGCACAGAT ACATGAGGCA TGACAAAGTC CACCAGATTT CGAGTACACA	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE 100 DNA see id Accession lence: 101-1 1 ACAAGCTGCT GCAGAAATAC AAAGCAGCTG CCACCAAAGA GACCATGTGA ACTGGGATTG ATCCTTTTCATTT ACATGCAAGG GTGGTGGATG	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HYPALVVEKM HWYALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDF GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ QUENCE 1 #: NM_0006 1225 21 GTTATATACA AGATCCAAGA TGCTTTGGGA CTAAAGAAGT TAAAAGAAT TTCTGCCACA GGAGCGATAT TTCTGCCACA GGAGCGATAT AGCAACCAGT AATCTTCTGT	GTTYRIIANA AAESEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM FRKRESKVPA AMETGGVIGI FRSDPGLLTN LAGANPAVIT ATDPNILGRT 31 ACAGAGTGAA CAAAGACAGG GCAGAAGCAA TCGCATTAAG AATGGTGTCC TGGAGAAGGA ATGTTAGAGAA TACTGGTCGT ACACCACTTC	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHBK WEGWEPWM 41 CTGAGCATCA ATGGGCACTG CCCTTCTCCA ATTTTGGCCA AAGTTTCCAG GTGACTACAG TGCAATGCTT GGAGTACTGG ATGATGCTG GATGATGCAG GATGATGCAG	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYK STSPEAFLAL QFLPVPELMP FDWKNFEQKM APAFRDYVAV 51 GTCAGAAAAA CTGGAAAAAA CTGGAAAAT TTGAGGAAAT TTGAGGAAT TTGAGGAAT TGGAGAACC CGGAACCC CTGATGCCAC CTGATGCCAC CTGCACCC CTGATTTAC CTCCTCCTGA	3360 3420 3540 3560 3720 3780 3900 4020 4080 60 120 180 240 300 420 480 540
5560657075	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SIMTKEISSV SFKDTSTGHK VNKKNIEKMY DITNMLLLKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH RSHFASSHAL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Ac: Coding sequence 1 ATGTGAAGGC GTCTATGTTT TATTAAATGC AGAAGTTGC AGATGGCAAC TGACAGAT ACATGAGGCA TGACAAAGTC CACCAGATT CGAGTACACA GAAAGTCTGT GAAAGTCTGT	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWOFISWIS NKEFVARIKS ERMYAALGDP NXDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGIM INVAEKNWYP AQEPESGLSE 100 DNA see id Accession ience: 101	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMYALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDI GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ 1225 21 GTTATATACA AGATCCAAGA TGCTTTGGGA TGCTTTGGGA TAGAGAGCT TAAAGAAGT TAAAGAAGT TAGAGAGCAT TTCTGCCACA GGAGCGATAT GCAAACCAGT GTGGGTTTTC GTGGGTTTTC	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE PINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM FRKRESKVPA AMETGGVIGI FRSDPGLLTN LAGANPAVIT ATDPNILGRT 31 ACAGAGTGAA CAAAGACAGG GCAGAAGCAA TCGCATTAAG AATGGTGTCC TGGAGAAGGA ATGTAGAGAA TACTGGTCTT CACTGGATAT CACTGGATAT CACTGGATAT	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHEK WEGWEPWM 41 CTGAGCATCA ATGGGCACTG CCCTTCTCCA ATTTTGGCCA GTGACTACAG GTGACTACAG GTGACTACAG GGAGTACTG GAGGTACTG GGAGTACTG GGCGCTGCTG	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DFRAPPCEYK STSPEAFLAL QFLPVPELMP FDWKNFEQKM APAFRDYVAV 51 GTCAGAAAAAA CTGGAAAGT TTGAGGAAAT TTGAGGAAAT TGGAGATTGTGGG GTCACCC CTGATGGCA CTCCTCCTGA TTAAAACTGG	3360 3420 3480 3540 3780 3780 3960 4020 4080 60 120 180 240 300 360 420 480 560
5560657075	KMIDSARKQN LKTVSLLDEN ELSGSSEDS DQQLRKEEEN SIMTKEISSV SFKDTSTGHK VNKKNIEKMY DITNMLLLKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH RSHFASSHAL FRLTRQFINL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Ac: Coding sequ 1 ATGTGAAGGC GTCTATGTTT TATTAAATGC AGAAGTTGCC TCGCACAGAT ACATGAGGCA TGACAAAGTC CGGTACACA GGATAGCACA GGATAGCACA GGATAGCT CGAGTACACA GAAAGTCTGT CAAGGTCAAA	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE 100 DNA sec id Accession ience: 101- ACAAGCTGCT GCAGAAATAC AAAGCAGCTG CCACCAAAGA GACCATGTGA ACCATGTGA ACTGGGATTG ACATGCAAGGA GTGGTGGATG TTAATTGGCT CCTGGTTCCA	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMYALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDIF GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ QUENCE 1225 21 GTTATATACA AGATCCAAGA TGCTTTGGGA CTAAAGAAGT TAAAAGGAAGT TAGAGAGCAT TTCTGCCACA GGAGCGATAT GCAAACCAGT AATCTTCTGT GTGGGTTTTC CTTGCGTCGT	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE PINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM PRKRESKVPA AMETGGVIGI FRSDPGLLTI ATDPNILGRT 31 ACAGAGTGAA CAAAGACAGG GCAGAAGCAA TCGCATTAAG ATGTGTCGT TGCATAGAGT TCACTGGATAT CACTGGATAT CACTGGATAT CACTGGATAT CACTGGATAT CACTGGATAT CTTTGGCCTG	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK QQVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHEK WEGWEPWM 41 CTGAGCATCA ATGGCACTC ATTTTGGCCA ATTTTCGCA ATTTTCGCA GTGACTACAG TGCAATGCTT GGAGTACTG GAGTACTG GGAGTACTG GGAGTACTG GGCGCTGCTG GGAGGAGTTC GGAGGAGTTC	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYK STSPEAFLAL QFLPVPELMP FDWKNFEQKM APAFRDYVAV 51 GTCAGAAAAA CTGGAAAAAT CTGGAAAAT TTGAGGAATTT TGAGGAATTT TGAGGAATCT GTGATGTGG TGAAACCAGG GTCGCAACCC CTGATGGCAC CTCCTCCTGA TTAAAACTGG GCCTGTCAGT	3360 3420 3480 3560 3720 3780 3960 4020 4080 600 120 180 240 300 360 420 480 540 600 720
5560657075	KMIDSARKQN LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VNKKNIEKMY DITMMLLKM GFDERVTVMA CSQRALQLRT DWITKMSGKH RSHFASSHAL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Ac: Coding seq 1 ATGTGAAGGC GTCTATGTT TATTAATTC AGAAGTTGCC TCGCACAGAT ACATGAGGCA TGACAAAGTC CACCAGATTT CGAGTACACA GAAAGTCTGT CAAGGTCAAA CATCATGGC CACCAGATT CCAGGTACACA GAAAGTCTGT CAAGGTCAAA CATCATGGC	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE 100 DNA see id Accession ence: 101-: ACAAGCTGCT GCAGAAATAC AAAGCAGCTGCT GCAGAAATAC CAACAAGAA GACCATGTGA ACTGGGATTG CTCTCTCTCT CTTTGCATTA ACATGCAAGG GTGGTGGATG TTAAATTGGCT CCTGGTTCCA TGTAAGTCAG	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMVALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDF RGHDEREHPF GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ QUENCE 1 #: NM_0006 1225 21 GTTATATATACA AGATCCAAGA TGCTTTGGGA CTAAAGAAGT TAAAAGGAAC TAGAGAGCAT TTCTGCCACA GGAGAGCAT TTCTGCCACA GCAAACCAGT AATCTTCTGT GTGGGTTTTC CTTGCGTCGTT CTGGGTGCATC	GTTYRIIANA AAEEEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TIKDLLLNTM FRKRESKVPA AMETGGVIGI FRSDPGLLTN LAGANPAVIT ATDPNILGRT 31 ACAGAGTGAA CAAGAGCAGG GCAGAAGCAA TCGCATTAAG AATGGTGTCC TGGAGAAGGA ATCTGGTCGT TACTGGATAT CACTGGATAT CACTGGATAT CACTGGATAT TCTTTGGCCTG TAGGATCATT	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK QQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHEK WEGWEPWM 41 CTGAGCATCA ATTTTGGCCA AAGTTTCCAG GTGACTACAG GTGACTACAG GTGACTACTG GAGTACTGG GAGGATCG GGAGGACTTG GGAGGACTTG GGAGGACTTG GGAGGACTTG GGAGGACTTG GGAGGACTTG GGAGGACTTG GGAGGACTTG GGAGGAGTTG GGAGGAGTTG GGGGAGTTG GGGGATTGACC	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYK STSPEAPLAL QFLPVPELMP FDWKNFEQKM APAFRDYVAV 51 GTCAGAAAAA CTGGAAAAT TTGAGGAAAT TTGAGGAAAT TGAGTCGG GTCGCACCC CTGATGGCA CTCCTCCTGA TTAAAACTGG GCCTGTCAGT TCAACAAGA	3360 3420 3480 3540 3720 3780 3960 4020 4080 600 120 180 240 300 360 420 480 540 600 600 720 780
556065707580	KMIDSARKON LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SLMTKEISSV SFKDTSTGHK VNKKNIEKMY DITNMLLLKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH RSHFASSHAL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Aci Coding sequ 1 ATGTGAAGGC GTCTATGTT TATTAAATGC AGAAGTTGCC TCGCACAGAT ACATGAGGCA TGACAAAGTC CACCAGATTT CGAGTACACA GAAAGTCTGT CAGAGTCTGT CAGATGGCC CACAGGTTTACACA CACAGGTCTACACA GAAAGTCTGT CAGAGGTCACACA CACAGGTCTACACACACACACACACACACACACACACACA	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE 100 DNA see id Accession lence: 101 11 ACAAGCTGCT GCAGAAATAC CCACCAAGA GACCATGTGA AAGCAGCTG CCACCAAGGA GACCATGTGA ACTGGGATTG ATCCTCTTT CATTGCATTG	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HYPALVVEKM HYPALVVEKM HYPALVVEKM KLDQGGVIQD KAPGLGAFRR KECSPWMSDF GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ QUENCE 1 #: NM_0006 1225 21 GTTATATACA AGATCCAAGA TGCTTTGGGA CTAAAGAAGT TAAAAGAAGT TAAAAGAAGT TTCTGCCACA GGAGCGATAT TTCTGCATCA GGAACCAGT AATCTTCTGT GTGGGTTTTC CTTGCGTCGT CTTGTGGTGTCT CTGTGTGTG	GTTYRIIANA AAESEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM FRKRESKVPA AMETGGVIGI ATDPNILGRT 31 ACAGAGTGAA CAAAGACAGG GCAGAAGCAA TACTGGTCCT TGGAGAAGGA TACTGGTCGT TGCTAAGATT CACTGGATCAT CACTGAGTGT	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM TMDVPVKEPS CDELLLGHBK WEGWEPWM 41 CTGAGCATCA ATGGGCACTCA ATGTTCCAG GTGACTACAG TGCAATGCTT GCAATGCTT GAGGAATCAG GGGATACTG GAGGACTCG GAGGACTCG GAGGACTCG GAGGACTCC GATGATGCCC GATGATGCCC GATGATGCCC GATGATGCCC AACTTCCCC GATGATCCCA GTGACTCCCA ATCAGTCCCA	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYK STSPEAFLAL QFLPVPELMP FDWKNFEQKM APAFRDYVAV 51 GTCAGAAAAA CTGGAAAAAA CTGGAAAAT TTGAGGAAAT TTGAGGAAT TTGAGGAATCTG TGATTGTGGG TGAACCCC CTGATGCCAC CTGCAACCC CTGCAACCC CTGCAACCC CTGCAACCC CTGCAACCC CTGCAACCC CTGCAACCAC CTGCAACCT CTCCTCCTGA TTAAAACTGG GCCTGTCAGT TCAACAAAGA AGGACTCTAC	3360 3420 3540 3540 3780 3780 3990 4080 4080 600 120 180 240 360 420 480 660 720 780 840
5560657075	KMIDSARKON LKTVSLLDEN ELSGSSSEDS DQQLRKEEEN SIMTKEISSV SFKDTSTGHK VNKKNIEKMY DITNMLLLKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH RSHFASSHAL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Ac: Coding sequence 1 ATGTGAAGGC GTCTATGTTT TATTAAATGC TGACACAGATT ACATGAGGCAA CTCACCAGATT CGAGTACACA GAAAGTCTGT CAAGGTCAAA CATCATGGGG CAAATTTGAG CAAACCCATC	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SLRRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGLM INVAEKNWYP AQEPESGLSE 100 DNA see id Accession lence: 101-: 1 ACAAGCTGCT GCAGAAATAC AAAGCAGCTG GCAGCAAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMYALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDI GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ 21 GTTATATACA AGATCCAAGA TGCTTTGGGA CTAAAGAAGT TTCTGCCACA GGAGCGATAT TAAAGAAGT TTCTGCCACA GGAGCGATAT GCAACCTGT GTGGGTCAT CTTGCGTCGT CTGTGGGTGCT CTGTGGGTGCT TGTCAGAAAT	GTTYRIIANA AAESEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM FRKRESKVPA AMETGGVIGI FRSDPGLLTN LAGANPAVIT ATDPNILGRT 31 ACAGAGTGAA CAAAGACAGG GCAGAAGCAA ATGTGGTGTC TGGAGAAGGA ATGTAGAGAT TCCTTTGGCCTT ACACCACTTC TACGATTAT CACTGAGTTT CACTGAGTTT CACTGAGTTT CACTGAGTTT CACTGAGGTAA	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK IPGQYDGRGK DQRVEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHBK WEGWEPWM 41 CTGAGCATCA ATGGGCACTG CCCTTCTCCA ATGTTTCGCA GTGACTACAG GTGACTACAG GTGACTACAG GTGACTACAG GGGATACAG ATGAACACCA GATGATGCTT GGAGGATTCCG GAGGATTCCG GAGGATTCCAG GGCGCTGCTG GGAGGATTCCAG ATCAGTCCCA AACGTGGGAT AACGTCCCA AACGTGGGAT	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYK STSPEAFLAL QFLPVPELMP FDWKNFEQKM APAFRDYVAV 51 GTCAGAAAAA CTGGAAAGT TTGAGGAAAT CAGGAATCTG TGATTGTGGG GTCGCAACCC CTGATGCCA CTCCTCTGA TTAAAACTG GCCTGTCAGT TCAACAAAGA AGGACTCTAC ACACCTTTGA ACACCTTTGA	3360 3420 3420 3540 3540 3720 3780 3960 4020 4080 60 120 180 240 3300 420 480 540 600 720 780 890
556065707580	KMIDSARKQN LKTVSLLDEN ELSGSSEDS DQQLRKEEEN SIMTKEISSV SFKDTSTGHK VNKKNIEKMY DITNMLLLKM GFDERVTVMA CSQRALQLRT DWLTKMSGKH RSHFASSHAL FRLTRQFINL LKKGGSWIQE ARGSKDHNIR Seq ID NO: Nucleic Ac: Coding sequity ATGTGAAGGC GTCTATGTTT TATTAAATGC AGAAGTTGCC TCGCACAGAT TACTAGAGGCA TGACAAAGTC CACCAGATT CGAGTACACA GAAAGTCGTC CAAGGTCAAA CATCATGGGC CAAAATTTGGC CAAAATTTGGC CAAAATTTGGC CAAAATTTGGC CAAAATTTGGG CAAAATTGGGC CAAAACCCATC AGTTATTGGG	NFSLAMKLLK NVSSYLSKNI EKVIAGLYQR ASVIDSAELQ PCWQFISWIS NKEFVARIKS ERMYAALGDP NKDSKPPGNL SURRPKRIII YSVVPMTSRL DVGAYMLMYK ICISHWILGI MLPMKETGIM INVAEKNWYP AQEPESGLSE 100 DNA see id Accession ience: 101- ACAAGCTGCT GCAGAAATAC AAAGCAGGTG GCAGCATGGA GACCATGTGA ACCATGTGA ATCCCTCTCT CTTTGCATTA ACATGCAAGG GTGGTGGATG TTAATTGGCT CCTGGTTCCA TGTAAGTCAG AAGCCATGGA AAGCCATGGA AAGCCATGCA AAGCCATGCA AGGCATGCA AGGCATGCA AGGCATGCA AGGCATGCA AGGCATGCA AGGCATGCA AGGCCATGCA AGGCCATGCA AGGCCATGCA AGGCCATGCA AGGCCATGCA AGGCCATGCA AGTGGATGCC CCTTGTAAGTACA CCTTGAAAACA CCATCTTGAAAA	LAFRDQNILL AFQHLSEAVQ AYPALVVEKM HMYALLDKDQ KLDQGGVIQD KAPGLGAFRR KECSPWMSDIF GLIEWLENTV GANRTETVTS GDRHLNNFMV YSIMVHALRA RQKICYAKRK ETQVKCLMDQ 1225 21 GTTATATACA AGATCCAAGA TGCTTTGGGA CTAAAGAAGT TAAAAGGAGT TAGAGAGCAT TTCTGCCACA GGAGCGATAT GCAAACCAGT AATCTTCTGT GTGGGTCTTC CTTGCGTCGT CTGTGGGAAC CTGTAGGTAGT CCATGAGTT CCATGATT	GTTYRIIANA AAESEAQPPS LKALKLNSNE AVAVQHSVEE FINALDQLSN KFIQTFGKEF KVEFLRNELE LVKGGEDLRQ TLKDLLLNTM FRKRESKVPA AMETGGVIGI ATDPNILGRT 31 ACAGAGTGAA CAAAGACAGG GCAGAAGCAA TACTGGTCCT TGGAGAAGGA TACTGGTCGT TGCTAAGATT CACTGGATCAT CACTGAGTGT	LSSEPACLAE WSCGPAAGVI ARLKFPRLLQ ARLKFPRLLQ ITDNYPQAIV PELLFKDWSN DKHFGKGGSK DQVPEQLFQV SQEEKAAYLS DLLKRAFVRM DFGHAFGSAT TMDVPVKEPS CDELLLGHEK WEGWEPWM 41 CTGAGCATCA ATGGCACA ATGGCACTG GCATTCCCA ATTTTCGCCA ATTTTCGCCA GTGACTACCG GTGACTACCG GTGACTACCG GTGACTACCG GTGACTACCG GTGACTACCG GTGACTCC GGAGGACTTG GGGGTTGCC ATCAGTCCCA ATCTGGGCAT TCCTGCCACA	IEEDKARRIL DAYMTLADFC IIERYPEETL YPFIISSESY DVRAELAKTP LLRMKLSDFN PLPEYHVRIA MNGILAQDSA DPRAPPCEYK STSPEAFLAL QFLPVPELMP FDWKNFEQKM APAFRDYVAV 51 GTCAGAAAAAA CTGGAAAAT TTGAGGAATTT TGAGGAATTTT CAGGAATCTG TGATTGTGG TGAACCAGG GTCGCACCC CTGATGGCAC CTCCTCCTCA TTAAAACTGG GCCTGTCAGT TCAACAAAAGA AGGACTCTTA AGGACTCTTA ACACCTTTGA TGAACTTGG TGAACATTGG ACCCTTTTGA TGAACTTTGG TCAACATTGG TCAACATTGG ACCCTTTTGA TGAACTTTGG	3360 3420 3420 3540 3540 3780 3780 3960 4020 4080 600 120 180 240 360 420 420 480 660 720 780 840

WO 02/086443 GCTCTTCACT GGACGCACAT GGAAGGGATG TGTCTTTGGA GGTTTGAAAA GCAGAGATGA 1080 TGTCCCAAAA CTAGTGACTG AGTTCCTGGC AAAGAAATTT GACCTGGACC AGTTGATAAC 1140 TCATGTTTTA CCATTTAAAA AAATCAGTGA AGGATTTGAG CTGCTCAATT CAGGACAAAG 1200 CATTCGAACG GTCCTGACGT TTTGAGATCC AAAGTGGCAG GAGGTCTGTG TTGTCATGGT 1260 5 GAACTGGAGT TTCTCTTGTG AGAGTTCCCT CATCTGAAAT CATGTATCTG TCTCACAAAT 1320 ACAAGCATAA GTAGAAGATT TGTTGAAGAC ATAGAACCCT TATAAAGAAT TATTAACCTT 1380 TATAAACATT TAAAGTCTTG TGAGCACCTG GGAATTAGTA TAATAACAAT GTTAATATTT 1440 TTGATTTACA TTTTGTAAGG CTATAATTGT ATCTTTTAAG AAAACATACA CTTGGATTTC 1500 TATGTTGAAA TGGAGATTTT TAAGAGTTTT AACCAGCTGC TGCAGATATA TAACTCAAAA 1560 10 CAGATATAGC GTATAAAGAT ATAGTAAATG CATCTCCCAG AGTAATATTC ACTTAACACA 1620 TTGAAACTAT TATTTTTTAG ATTTGAATAT AAATGTATTT TTTAAACACT TGTTATGAGT 1680 1740 AGAAAGACAG AAAAGATTAA GGGACGGGCA CATTTTTCAA CGATTAAGAA TCATCATTAC 1800 ATAACTTGGT GAAACTGAAA AAGTATATCA TATGGGTACA CAAGGCTATT TGCCAGCATA 1860 15 TATTAATATT TTAGAAAATA TTCCTTTTGT AATACTGAAT ATAAACATAG AGCTAGAGTC ATATTATCAT ACTTATCATA ATGTTCAATT TGATACAGTA GAATTGCAAG TCCCTAAGTC 1980 CCTATTCACT GTGCTTAGTA GTGACTCCAT TTAATAAAAA GTGTTTTTAG TTTTTAACAA CTAAACCG 20 Seq ID NO: 101 Protein sequence: Protein Accession #: NP_000664 31 25 MGTAGKVIKC KAAVLWEQKQ PFSIEEIEVA PPKTKEVRIK ILATGICRTD DHVIKGTMVS 60 KFPVIVGHEA TGIVESIGEG VTTVKPGDKV IPLFLPQCRE CNACRNPDGN LCIRSDITGR 120 GVLADGTTRF TCKGKPVHHF MNTSTFTEYT VVDESSVAKI DDAAPPEKVC LIGCGFSTGY 180 GAAVKTGKVK PGSTCVVFGL GGVGLSVIMG CKSAGASRII GIDLNKDKFE KAMAVGATEC 240 ISPKDSTKPI SEVLSEMTGN NVGYTFEVIG HLETMIDALA SCHMNYGTSV VVGVPPSAKM 300 30 LTYDPMLLFT GRTWKGCVFG GLKSRDDVPK LVTEFLAKKF DLDQLITHVL PFKKISEGFE 360 LLNSGOSIRT VLTF Seq ID NO: 102 DNA sequence Nucleic Acid Accession #: NM_006783.1 35 Coding sequence: 1..786 31 ATGGATTGGG GGACGCTGCA CACTTTCATC GGGGGTGTCA ACAAACACTC CACCAGCATC 40 GGGAAGGTGT GGATCACAGT CATCTTATT TTCCGAGTCA TGATCCTAGT GGTGGCTGCC 120 CAGGAAGTGT GGGGTGACGA GCAAGAGGAC TTCGTCTGCA ACACACTGCA ACCGGGATGC AAAAATGTGT GCTATGACCA CTTTTTCCCG GTGTCCCACA TCCGGCTGTG GGCCCTCCAG 240 CTGATCTTCG TCTCCACCCC AGCGCTGCTG GTGGCCATGC ATGTGGCCTA CTACAGGCAC GAAACCACTC GCAAGTTCAG GCGAGGAGAG AAGAGGAATG ATTTCAAAGA CATAGAGGAC 360 45 ATTAAAAAGC ACAAGGTTCG GATAGAGGGG TCGCTGTGGT GGACGTACAC CAGCAGCATC 420 TTTTTCCGAA TCATCTTGA AGCAGCCTTT ATGTATGTGT TTTACTTCCT TTACAATGGG 480 TACCACCTGC CCTGGGTGTT GAAATGTGGG ATTGACCCCT GCCCCAACCT TGTTGACTGC 540 TTTATTTCTA GGCCAACAGA GAAGACCGTG TTTACCATTT TTATGATTTC TGCGTCTGTG 600 ATTTGCATGC TGCTTAACGT GGCAGAGTTG TGCTACCTGC TGCTGAAAGT GTGTTTTAGG 660 50 AGATCAAAGA GAGCACAGAC GCAAAAAAAT CACCCCAATC ATGCCCTAAA GGAGAGTAAG 720 CAGAATGAAA TGAATGAGCT GATTTCAGAT AGTGGTCAAA ATGCAATCAC AGGTTTCCCA 780 Seq ID NO: 103 Protein sequence: 55 Protein Accession #: NP_006774.1 MDWGTLHTFI GGVNKHSTSI GKVWITVIFI FRVMILVVAA QEVWGDEQED FVCNTLQPGC 60 KNVCYDHFFP VSHIRLWALQ LIFVSTPALL VAMHVAYYRH ETTRKFRRGE KRNDFKDIED 120 IKKHKVRIEG SLWWTYTSSI FFRIIFEAAF MYVFYFLYNG YHLPWVLKCG IDPCPNLVDC 180 PISRPTEKTV FTIFMISASV ICMLLNVAEL CYLLLKVCFR RSKRAQTQKN HPNHALKESK QNEMNELISD SGQNAITGFP S 65 Seq ID NO: 104 DNA sequence Nucleic Acid Accession #: NM 020411 Coding sequence: 86-526 31 21 11 70 GGACCTGGGA AGGAGCATAG GACAGGGCAA GGCGGGATAA GGAGGGGCAC CACAGCCCTT AAGGCACGAG GGAACCTCAC TGCGCATGCT CCTTTGGTGC CCACCTCAGT GCGCATGTTC ACTGGGCGTC TTCCCATCGG CCCCTTCGCC AGTGTGGGGA ACGCGGCGGA GCTGTGAGCC 180 GGCGACTCGG GTCCCTGAGG TCTGGATTCT TTCTCCGCTA CTGAGACACG GCGGACACAC 240 75 ACAAACACA AACCACACAC CCAGTCCCAG GAGCCCAGTA ATGGAGAGCC CCAAAAAGAA GAACCAGCAG CTGAAAGTCG GGATCCTACA CCTGGGCAGC AGACAGAAGA AGATCAGGAT ACAGCTGAGA TCCCAGTGCG CGACATGGAA GGTGATCTGC AAGAGCTGCA TCAGTCAAAC 420 ACCGGGGATA AATCTGGATT TGGGTTCCGG CGTCAAGGTG AAGATAATAC CTAAAGAGGA ACACTGTAAA ATGCCAGAAG CAGGTGAAGA GCAACCACAA GTTTAAATGA AGACAAGCTG 540 80 AAACAACGCA AGCTGGTTTT ATATTAGATA TTTGACTTAA ACTATCTCAA TAAAGTTTTG CAGCTTTCAC CAAAAAAAAA AAAAAA Seg ID NO: 105 Protein sequence: 85 Protein Accession #: NP_065144.1

11

21

31

41

51

PCT/US02/12476

```
MLLWCPPQCA CSLGVPPSAP SPVWGTRRSC EPATRVPEVW ILSPLLRHGG HTQTQNHTAS
                                                                              60
       PRSPVMESPK KKNQQLKVGI LHLGSRQKKI RIQLRSQCAT WKVICKSCIS QTPGINLDLG
       SGVKVKIIPK EEHCKMPEAG EEOPOV
 5
       Seg ID NO: 106 DNA seguence
       Nucleic Acid Accession #: J04129
       Coding sequence: 99-587
10
                                                                51
                   11
                                          31
                                                     41
                              21
       CATCCCTCTG GCTCCAGAGC TCAGAGCCAC CCACAGCCGC AGCCATGCTG TGCCTCCTGC
                                                                              60
       TCACCCTGGG CGTGGCCCTG GTCTGTGGTG TCCCGGCCAT GGACATCCCC CAGACCAAGC
                                                                             120
       AGGACCTGGA GCTCCCAAAG TTGGCAGGGA CCTGGCACTC CATGGCCATG GCGACCAACA
                                                                             180
15
       ACATCTCCCT CATGGCGACA CTGAAGGCCC CTCTGAGGGT CCACATCACC TCACTGTTGC
                                                                             240
        CCACCCCGA GGACAACCTG GAGATCGTTC TGCACAGATG GGAGAACAAC AGCTGTGTTG
                                                                             300
        AGAAGAAGGT CCTTGGAGAG AAGACTGGGA ATCCAAAGAA GTTCAAGATC AACTATACGG
                                                                             360
       TGGCGAACGA GGCCACGCTG CTCGATACTG ACTACGACAA TTTCCTGTTT CTCTGCCTAC
                                                                             420
        AGGACACCAC CACCCCATC CAGAGCATGA TGTGCCAGTA CCTGGCCAGA GTCCTGGTGG
                                                                             480
20
       AGGACGATGA GATCATGCAG GGATTCATCA GGGCTTTCAG GCCCCTGCCC AGGCACCTAT
                                                                             540
        GGTACTTGCT GGACTTGAAA CAGATGGAAG AGCCGTGCCG TTTCTAGCTC ACCTCCGCCT
                                                                             600
        CCAGGAAGAC CAGACTCCCA CCCTTCCACA CCTCCAGAGC AGTGGGACTT CCTCCTGCCC
                                                                             660
       TTTCAAAGAA TAACCACAGC TCAGAAGACG ATGACGTGGT CATCTGTGTC GCCATCCCCT
TCCTGCTGCA CACCTGCACC ATTGCCATGG GGAGGCTGCT CCCTGGGGGC AGAGTCTCTG
                                                                             720
                                                                             780
25
        GCAGAGGTTA TTAATAAACC CTTGGAGCAT G
        Seq ID NO: 107 Protein sequence:
        Protein Accession #: AAA60147
30
                                          31
                                                                51
        MDIPOTKODL ELPKLAGTWH SMAMATNNIS LMATLKAPLR VHITSLLPTP EDNLEIVLHR
                                                                              60
        WENNSCVEKK VLGEKTGNPK KFKINYTVAN EATLLDTDYD NFLFLCLQDT TTPIQSMMCQ
                                                                             120
35
        YLARVLVEDD EIMQGFIRAF RPLPRHLWYL LDLKQMEEPC RF
        Seq ID NO: 108 DNA sequence
        Nucleic Acid Accession #: Eos sequence
        Coding sequence: 48-794
40
        TCCCAGGCAG CAGTTAGCCC GCCGCCCGCC TGTGTGTCCC CAGAGCCATG GAGAGAGCCA
        GTCTGATCCA GAAGGCCAAG CTGGCAGAGC AGGCCGAACG CTATGAGGAC ATGGCAGCCT
45
        TCATGAAAGG CGCCGTGGAG AAGGGCGAGG AGCTCTCCTG CGAAGAGCGA AACCTGCTCT
        CAGTAGCCTA TAAGAACGTG GTGGGCGGCC AGAGGGCTGC CTGGAGGGTG CTGTCCAGTA
        TTGAGCAGAA AAGCAACGAG GAGGGCTCGG AGGAGAAGGG GCCCGAGGTG CGTGAGTACC
        GGGAGAAGGT GGAGACTGAG CTCCAGGGCG TGTGCGACAC CGTGCTGGGC CTGCTGGACA
                                                                             360
        GCCACCTCAT CAAGGAGGCC GGGGACGCCG AGAGCCGGGT CTTCTACCTG AAGATGAAGG
                                                                             420
50
        GTGACTACTA CCGCTACCTG GCCGAGGTGG CCACCGGTGA CGACAAGAAG CGCATCATTG
                                                                             480
        ACTCAGCCCG GTCAGCCTAC CAGGAGGCCA TGGACATCAG CAAGAAGGAG ATGCCGCCCA
                                                                             540
        CCAACCCCAT CCGCCTGGGC CTGGCCCTGA ACTTTTCCGT CTTCCACTAC GAGATCGCCA
                                                                             600
        ACAGCCCCGA GGAGGCCATC TCTCTGGCCA AGACCACTTT CGACGAGGCC ATGGCTGATC
                                                                             660
        TGCACACCCT CAGCGAGGAC TCCTACAAAG ACAGCACCCT CATCATGCAG CTGCTGCGAG
                                                                             720
55
        ACAACCTGAC ACTGTGGACG GCCGACAACG CCGGGGAAGA GGGGGGCGAG GCTCCCCAGG
                                                                             780
        AGCCCCAGAG CTGAGTGTTG CCCGCCACCG CCCCGCCCTG CCCCCTCCAG TCCCCCACCC
                                                                             840
        TGCCGAGAGG ACTAGTATGG GGTGGGAGGC CCCACCCTTC TCCCCTAGGC GCTGTTCTTG
                                                                             900
        CTCCAAAGGG CTCCGTGGAG AGGGACTGGC AGAGCTGAGG CCACCTGGGG CTGGGGATCC
                                                                             960
        CACTCTTCTT GCAGCTGTTG AGCGCACCTA ACCACTGGTC ATGCCCCCAC CCCTGCTCTC
                                                                            1020
60
        CGCACCCGCT TCCTCCCGAC CCCAGGACCA GGCTACTTCT CCCCTCCTCT TGCCTCCTC
                                                                            1080
        CTGCCCCTGC TGCCTCTGAT CGTAGGAATT GAGGAGTGTC CCGCCTTGTG GCTGAGAACT
                                                                            1140
                                                                            1200
        GGACAGTGGC AGGGGCTGGA GATGGGTGTG TGTGTGTGTG TGTGTGTGTG
        CGCGCGCGCC AGTGCAAGAC CGAGATTGAG GGAAAGCATG TCTGCTGGGT GTGACCATGT
                                                                            1260
        TTCCTCTCAA TAAAGTTCCC CTGTGACACT C
65
        Seq ID NO: 109 Protein sequence:
        Protein Accession #: NP_006133.1
70
        MERASLIQKA KLAEQAERYE DMAAFMKGAV EKGEELSCEE RNLLSVAYKN VVGGQRAAWR
        VLSSIEQKSN EEGSEEKGPE VREYREKVET ELQGVCDTVL GLLDSHLIKE AGDAESRVFY
                                                                             120
        LKMKGDYYRY LAEVATGDDK KRIIDSARSA YQEAMDISKK EMPPTNPIRL GLALNFSVFH
                                                                             180
        YEIANSPEEA ISLAKTTFDE AMADLHTLSE DSYKOSTLIM QLLRDNLTLW TADNAGEEGG
75
        EAPOEPOS
        Seq ID NO: 110 DNA sequence
        Nucleic Acid Accession #: NM 000695
        Coding sequence: 407-1564
. 80
                              21
                                          31
        CACGAGTTGG TTTGGGAGCT GCCAGTCTCC TGGGAGGATC GCAGTCAGCA GAGCAGGGCT
                                                                              60
        GAGGCCTGGG GGTAGGAGCA GAGCCTGCGC ATCTGGAGGC AGCATGTCCA AGAAAGGGAG
                                                                             120
85
        TGGAGGTGCA GCGAAGGACC CAGGGGCAGA GCCCACGCTG GGGATGGACC CCTTCGAGGA
                                                                             180
        CACACTGCGG CGGCTGCGTG AGGCCTTCAA CTGAGGGCGC ACGCGGCCGG CCGAGTTCCG
                                                                             240
        GGCTGCGCAG CTCCAGGGCC TGGGCCACTT CCTTCAAGAA AACAAGCAGC TTCTGCGCGA
```

```
CGTGCTGGCC CAGGACCTGC ATAAGCCAGC TTTCGAGGCA GACATATCTG AGCTCATCCT
                                                                            360
       TTGCCAGAAC GAGGTTGACT ACGCTCTCAA GAACCTTCAG GCCTGGATGA AGGATGAACC
                                                                            420
       ACGGTCCACG AACCTGTTCA TGAAGCTGGA CTCGGTCTTC ATCTGGAAGG AACCCTTTGG
                                                                            480
       CCTGGTCCTC ATCATCGCAC CCTGGAACTA CCCATTGAAC CTGACCCTGG TGCTCCTGGT
                                                                            540
 5
       GGGCACCCTC CCCGCAGGGA ATTGCGTGGT GCTGAAGCCG TCAGAAATCA GCCAGGGCAC
                                                                            600
       AGAGAAGGTC CTGGCTGAGG TGCTGCCCCA GTACCTGGAC CAGAGCTGCT TTGCCGTGGT
                                                                            660
       GCTGGGCGGA CCCCAGGAGA CAGGGCAGCT GCTAGAGCAC AAGTTGGACT ACATCTTCTT
                                                                            720
       CACAGGGAGC CCTCGTGTGG GCAAGATTGT CATGACTGCT GCCACCAAGC ACCTGACGCC
                                                                            780
       TGTCACCCTG GAGCTGGGGG GCAAGAACCC CTGCTACGTG GACGACAACT GCGACCCCCA
10
       GACCGTGGCC AACCGCGTGG CCTGGTTCTG CTACTTCAAT GCCGGCCAGA CCTGCGTGGC
       CCCTGACTAC GTCCTGTGCA GCCCCGAGAT GCAGGAGAGG CTGCTGCCCG CCCTGCAGAG
       CACCATCACC CGTTTCTATG GCGACGACCC CCAGAGCTCC CCAAACCTGG GCCGCATCAT
                                                                           1020
       CAACCAGAAA CAGTTCCAGC GGCTGCGGGC ATTGCTGGGC TGCGGCCGCG TGGCCATTGG
       GGGCCAGAGC AACGAGAGCG ATCGCTACAT CGCCCCCACG GTGCTGGTGG ACGTGCAGGA
                                                                           1140
       GACGGAGCCT GTGATGCAGG AGGAGATCTT CGGGCCCATC CTGCCCATCG TGAACGTGCA
15
                                                                           1200
       GAGCGTGGAC GAGGCCATCA AGTTCATCAA CCGGCAGGAG AAGCCCCTGG CCCTGTACGC
                                                                           1260
       CITCTCCAAC AGCAGACAGG TTGTGAACCA GATGCTGGAG CGGACCAGCA GCGGCAGCTT
                                                                           1320
       TGGAGGCAAT GAGGGCTTCA CCTACATATC TCTGCTGTCC GTGCCATTCG GGGGAGTCGG
                                                                           1380
       CCACAGTGGG ATGGGCCGGT ACCACGGCAA GTTCACCTTC GACACCTTCT CCCACCACCG
                                                                           1440
20
       CACCTGCCTG CTCGCCCCCT CCGGCCTGGA GAAATTAAAG GAGATCCGCT ACCCACCCTA
                                                                           1500
       TACCGACTGG AACCAGCAGC TGTTACGCTG GGGCATGGGC TCCCAGAGCT GCACCCTCCT
                                                                           1560
       GTGAGCGTCC CACCCGCCTC CAACGGGTCA CACAGAGAAA CCTGAGTCTA GCCATGAGGG
       GCTTATGCTC CCAACTCACA TTGTTCCTCC AGACCGCAGG CTCCCCCAGC CTCAGGTTGC
       TGGAGCTGTC ACATGACTGC ATCCTGCCTG CCAGGGCTGC AAAGCAAGGT CTTGCTTCTA
25
       TCTGGGGGAC GCTGCTCGAG AGAGGCCGAG AGGCCGCAGA ACATGCCAGG TGTCCTCACT
       CACCCCACCC TCCCCAATTC CAGCCCTTTG CCCTCTCGGT CAGGGTTGGC CAGGCCCAGT
       CACAGGGGCA GTGTCACCCT GGAAAATACA GTGCCCTGCC TTCTTAGGGG CATCAGCCCT
                                                                           1920
       GAACGGTTGA GAGCGTGGAG CCCTCCAGGC CTTTGCTCTC CCCTCTAGGC ACACGCGCAC
                                                                           1980
       TTCCACCTCT GCCCCATCCC AACTGCACCA GCACTGCCTC CCCCAGGGAT CCTCTCACAT
                                                                           2040
30
       CCCACACTGG TCTCTGCACC ACCCCTCTGG TTCACACCGC ACCCTGCACT CACCCACAGC
                                                                           2100
       AGCTCCATCC ACTGGGAAAA CTGGGGTTTG CATCACTCCA CTGCACAGTG TTAGTGGGAC CTGGGGGCAA GTCCCTTGAC TTCTCTGAGC CTCAGTTTCC TTATGTGAAA GTTGCTGGAA
                                                                           2160
                                                                           2220
       CCAAAATGGA GTCACTTATG CCAAACTCTA ATAAAATGGA GTCGGGGGGG CACATAGAAG
                                                                           2280
       CCCTCACACA CACATGCCCG TAACAGGATT TATCACCAAG ACACGCCTGC ATGTAAGACC
                                                                           2340
35
       AGACACAGGG CGTATGGAAA AGCACGTCCT CAAAGACTGT AGTATTCCAG ATGAGCTGCA
                                                                           2400
       GATGCTTACC TACCACGGCC GTCTCCACCA GAAAACCATC GCCAACTCCT GCGATCAGCT
                                                                           2460
       TGTGACTTAC AAACCTTGTT TAAAAGCTGC TTACATGGAC TTCTGTCCTT TAAAACGTTC 2520
       CCCTTGGCTG TGGCCCTCTG TGTATGCCTG GGATCCTTCC AAGCACTCAT AGCCCAGATA
       GGAATCCTCT GCTCCTCCCA AATAAATTCA TCTGTTC
40
       Seq ID NO: 111 Protein sequence:
       Protein Accession #: NP_000686
45
       MKDEPRSTNL FMKLDSVFIW KEPFGLVLII APWNYPLNLT LVLLVGTLPA GNCVVLKPSE
       ISQGTEKVLA EVLPQYLDQS CFAVVLGGPQ ETGQLLEHKL DYIFFTGSPR VGKIVMTAAT
                                                                            120
       KHLTPVTLEL GGKNPCYVDD NCDPOTVANR VAWFCYFNAG OTCVAPDYVL CSPEMOERLL
50
       PALOSTITRF YGDDPQSSPN LGRIINQKQF QRLRALLGCG RVAIGGQSNE SDRYIAPTVL
                                                                            240
       VDVQETEPVM QEEIFGPILP IVNVQSVDEA IKFINRQEKP LALYAFSNSR QVVNQMLERT
                                                                            300
       SSGSFGGNEG FTYISLLSVP FGGVGHSGMG RYHGKFTFDT FSHHRTCLLA PSGLEKLKEI
                                                                            360
       RYPPYTDWNQ QLLRWGMGSQ SCTLL
55
       Seq ID NO: 112 DNA sequence
       Nucleic Acid Accession #: NM_004456
       Coding sequence: 58-2298
                  11
                             21
                                         31
                                                    41
                                                               51
60
       GAATTCCGGG CGACGCGCG GAACAACGCG AGTCGGCGCG CGGGACGAAG AATAATCATG
       GGCCAGACTG GGAAGAAATC TGAGAAGGGA CCAGTTTGTT GGCGGAAGCG TGTAAAATCA
                                                                            120
       GAGTACATGC GACTGAGACA GCTCAAGAGG TTCAGACGAG CTGATGAAGT AAAGAGTATG
                                                                            180
       TTTAGTTCCA ATCGTCAGAA AATTTTGGAA AGAACGGAAA TCTTAAACCA AGAATGGAAA
                                                                            240
65
       CAGCGAAGGA TACAGCCTGT GCACATCCTG ACTTCTGTGA GCTCATTGCG CGGGACTAGG
       GAGTGTTCGG TGACCAGTGA CTTGGATTTT CCAACACAG TCATCCCATT AAAGACTCTG
                                                                            360
       AATGCAGTTG CTTCAGTACC CATAATGTAT TCTTGGTCTC CCCTACAGCA GAATTTTATG
                                                                            420
       GTGGAAGATG AAACTGTTTT ACATAACATT CCTTATATGG GAGATGAAGT TTTAGATCAG
                                                                            480
       GATGGTACTT TCATTGAAGA ACTAATAAAA AATTATGATG GGAAAGTACA CGGGGATAGA
                                                                            540
70
       GAATGTGGGT TTATAAATGA TGAAATTTTT GTGGAGTTGG TGAATGCCCT TGGTCAATAT
                                                                            600
       AATGATGATG ACGATGATGA TGATGGAGAC GATCCTGAAG AAAGAGAAGA AAAGCAGAAA
                                                                            660
       GATCTGGAGG ATCACCGAGA TGATAAAGAA AGCCGCCCAC CTCGGAAATT TCCTTCTGAT
                                                                            720
       AAAATTTTGG AGGCCATTTC CTCAATGTTT CCAGATAAGG GCACAGCAGA AGAACTAAAG
                                                                            780
       GAAAAATATA AAGAACTCAC CGAACAGCAG CTCCCAGGCG CACTTCCTCC TGAATGTACC
75
       CCCAACATAG ATGGACCAAA TGCTAAATCT GTTCAGAGAG AGCAAAGCTT ACACTCCTTT
                                                                            900
       CATACGCTTT TCTGTAGGCG ATGTTTTAAA TATGACTGCT TCCTACATCC TTTTCATGCA
       ACACCCAACA CTTATAAGCG GAAGAACACA GAAACAGCTC TAGACAACAA ACCTTGTGGA
       CCACAGTGTT ACCAGCATTT GGAGGGAGCA AAGGAGTTTG CTGCTGCTCT CACCGCTGAG
       CGGATAAAGA CCCCACCAAA ACGTCCAGGA GGCCGCAGAA GAGGACGGCT TCCCAATAAC
                                                                           1140
80
       AGTAGCAGGC CCAGCACCCC CACCATTAAT GTGCTGGAAT CAAAGGATAC AGACAGTGAT
       AGGGAAGCAG GGACTGAAAC GGGGGGAGAG AACAATGATA AAGAAGAAGA AGAGAAGAAA
                                                                           1260
       GATGAAACTT CGAGCTCCTC TGAAGCAAAT TCTCGGTGTC AAACACCAAT AAAGATGAAG
                                                                           1320
       CCAAATATTG AACCTCCTGA GAATGTGGAG TGGAGTGGTG CTGAAGCCTC AATGTTTAGA
                                                                           1380
       GTCCTCATTG GCACTTACTA TGACAATTTC TGTGCCATTG CTAGGTTAAT TGGGACCAAA
                                                                           1440
85
       ACATGTAGAC AGGTGTATGA GTTTAGAGTC AAAGAATCTA GCATCATAGC TCCAGCTCCC
                                                                           1500
       GCTGAGGATG TGGATACTCC TCCAAGGAAA AAGAAGAGGA AACACCGGTT GTGGGCTGCA
                                                                           1560
       CACTGCAGAA AGATACAGCT GAAAAAGGAC GGCTCCTCTA ACCATGTTTA CAACTATCAA 1620
```

```
CCCTGTGATC ATCCACGGCA GCCTTGTGAC AGTTCGTGCC CTTGTGTGAT AGCACAAAAT 1680
       TTTTGTGAAA AGTTTTGTCA ATGTAGTTCA GAGTGTCAAA ACCGCTTTCC GGGATGCCGC
                                                                             1740
       TGCAAAGCAC AGTGCAACAC CAAGCAGTGC CCGTGCTACC TGGCTGTCCG AGAGTGTGAC
                                                                             1800
       CCTGACCTCT GTCTTACTTG TGGAGCCGCT GACCATTGGG ACAGTAAAAA TGTGTCCTGC
                                                                             1860
 5
       AAGAACTGCA GTATTCAGCG GGGCTCCAAA AAGCATCTAT TGCTGGCACC ATCTGACGTG
                                                                             1920
       GCAGGCTGGG GGATTTTTAT CAAAGATCCT GTGCAGAAAA ATGAATTCAT CTCAGAATAC
                                                                             1980
       TGTGGAGAGA TTATTTCTCA AGATGAAGCT GACAGAAGAG GGAAAGTGTA TGATAAATAC
                                                                             2040
       ATGTGCAGCT TTCTGTTCAA CTTGAACAAT GATTTTGTGG TGGATGCAAC CCGCAAGGGT
                                                                             2100
       AACAAAATTC GTTTTGCAAA TCATTCGGTA AATCCAAACT GCTATGCAAA AGTTATGATG
10
       GTTAACGGTG ATCACAGGAT AGGTATTTTT GCCAAGAGAG CCATCCAGAC TGGCGAAGAG
       CTGTTTGTTG ATTACAGATA CAGCCAGGCT GATGCCCTGA AGTATGTCGG CATCGAAAGA
       GAAATGGAAA TCCCTTGACA TCTGCTACCT CCTCCCCCTC CTCTGAAACA GCTGCCTTAG
                                                                             2340
       CTTCAGGAAC CTCGAGTACT GTGGGCAATT TAGAAAAAGA ACATGCAGTT TGAAATTCTG
                                                                             2400
       AATTTGCAAA GTACTGTAAG AATAATTTAT AGTAATGAGT TTAAAAATCA ACTTTTTATT
                                                                             2460
15
       GCCTTCTCAC CAGCTGCAAA GTGTTTTGTA CCAGTGAATT TTTGCAATAA TGCAGTATGG
                                                                             2520
       TACATTTTTC AACTTGAAT AAAGAATACT TGAACTTGAA AAAAAAAAA AAAAAA
       Seq ID NO: 113 Protein sequence:
20
       Protein Accession #: NP_004447
                                                                 51
       MGQTGKKSEK GPVCWRKRVK SEYMRLRQLK RFRRADEVKS MFSSNRQKIL ERTEILNQEW
25
       KORRIOPVHI LTSVSSLRGT RECSVTSDLD FPTQVIPLKT LNAVASVPIM YSWSPLQQNF
                                                                              120
       MVEDETVLHN IPYMGDEVLD QDGTFIEELI KNYDGKVHGD RECGFINDEI FVELVNALGQ
                                                                              180
       YNDDDDDDDG DDPERREEKQ KOLEDHRODK ESRPPRKFPS DKILEAISSM FPDKGTAEEL
KEKYKELTEQ QLPGALPPEC TPNIDGPNAK SVQREQSLHS FHTLFCRRCF KYDCFLHPFH
                                                                              240
       ATPNTYKRKN TETALDNKPC GPQCYQHLEG AKEFAAALTA ERIKTPPKRP GGRRRGRLPN
                                                                              360
30
       NSSRPSTPTI NVLESKDTDS DREAGTETGG ENNDKEEEEK KDETSSSEA NSRCQTPIKM
       KPNIEPPENV EWSGAEASMF RVLIGTYYDN FCAIARLIGT KTCRQVYEFR VKESSIIAPA
                                                                              480
       PAEDVDTPPR KKKRKHRLWA AHCRKIQLKK DGSSNHVYNY QPCDHPRQPC DSSCPCVIAQ
                                                                              540
       NFCEKFCQCS SECONRFPGC RCKAQCNTKQ CPCYLAVREC DPDLCLTCGA ADHWDSKNVS
                                                                              600
       CKNCSIORGS KKHLLLAPSD VAGWGIFIKD PVQKNEFISE YCGEIISQDE ADRRGKVYDK
                                                                              660
35
       YMCSFLFNLN NDFVVDATRK GNKIRFANHS VNPNCYAKVM MVNGDHRIGI FAKRAIQTGE
                                                                              720
       ELFVDYRYSO ADALKYVGIE REMEIP
       Seq ID NO: 114 DNA sequence
       Nucleic Acid Accession #: NM_001827
40
       Coding sequence: 96-335
                              21
                                         31
                                                     41
                                                                 51
       AGTCTCCGGC GAGTTGTTGC CTGGGCTGGA CGTGGTTTTG TCTGCTGCGC CCGCTCTTCG
                                                                               60
45
       CGCTCTCGTT TCATTTCTG CAGCGCGCCA CGAGGATGGC CCACAAGCAG ATCTACTACT
                                                                              120
       CGGACAAGTA CTTCGACGAA CACTACGAGT ACCGGCATGT TATGTTACCC AGAGAACTTT
                                                                              180
       CCAAACAAGT ACCTAAAACT CATCTGATGT CTGAAGAGGA GTGGAGGAGA CTTGGTGTCC
                                                                              240
       AACAGAGTCT AGGCTGGGTT CATTACATGA TTCATGAGCC AGAACCACAT ATTCTTCTCT
                                                                              300
       TTAGACGACC TCTTCCAAAA GATCAACAAA AATGAAGTTT ATCTGGGGAT CGTCAAATCT
                                                                              360
50
       TTTTCAAATT TAATGTATAT GTGTATATAA GGTAGTATTC AGTGAATACT TGAGAAATGT
                                                                              420
       ACAAATCTTT CATCCATACC TGTGCATGAG CTGTATTCTT CACAGCAACA GAGCTCAGTT
                                                                              480
       AAATGCAACT GCAAGTAGGT TACTGTAAGA TGTTTAAGAT AAAAGTTCTT CCAGTCAGTT
                                                                              540
       TTTCTCTTAA GTGCCTGTTT GAGTTTACTG AAACAGTTTA CTTTTGTTCA ATAAAGTTTG
                                                                              600
       TATGTTGCAT TTAAAAAAA AAAAAAA
55
       Sea ID NO: 115 Protein sequence:
       Protein Accession #: NP_001818
                                          31
                  11
                              21
60
       MAHKOIYYSD KYFDEHYEYR HVMLPRELSK QVPKTHLMSE EEWRRLGVQQ SLGWVHYMIH
       EPEPHILLFR RPLPKDQQK
       Sea ID NO: 116 DNA sequence
65
       Nucleic Acid Accession #: CAT cluster
                              21
                                                                 51
                  11
                                          31
                                                     41
       TCAGACCTCA TGAGTCACTT GGACTCTTGA GCCACCTCTG GGGGTGGAGT CTCTCTCCTG
70
       GCATCTGGAC CCTTGGTGCT ATCGACGAAG CTTGGGTGGG GCTCTTAGCT GCTATGTGCA
                                                                              120
       AGAGGTGTGT TCCAGGGAAA GCCCCTATCT CTCTGCAGAG GTCAAGTGAA AGCGACGGCC
                                                                              180
       GCAGCCAACA GAGTTCAAAA TGCAGGCTTG GAAAGTACAG GGGGCTCTGT GGAGGATGGG
AAGGACTGAT CCACATTCCC ACCAGGAAGT TTAGCAGAAC CCCCGCGTGC CAACTGGACC
                                                                              240
                                                                              300
       CCTTGGAAGG ACCTGGCTCA GGCTGGACCA CCTCTTGAGA GGGAGGAGCT CTGGATTTGA
                                                                              360
75
       TCAAGAATTC TTTGCTGAGC ATGGTGCCTC ATGCCTATAA TACCAACACT TTGGGAGGCC
                                                                              420
       AGTGTGGGAG GATCTCTTGA GCCCAGGAGT TCAAGACTAG CCTGGGCAAC ACAGAGAGAA
                                                                              480
       CCCATCTCTA AAATAATAAT AATAATAAAA TAAAAAATTA GCAGGGCATG GTGGCATGTG
                                                                              540
       CCTGTAGTTC CAGCTACCCA GGAGGCTGAG GCAAGAGGAT GGCTGGAGCC TGGGATGTTG
                                                                              600
       AGGCTGCAAT GAACTGTGAT TACCCCACTG CACTCCAGCC TGGGCAAAAG AGCGAGAGAA
                                                                              660
80
       CCTGTCTCAA ATAATAATAA TAATAATAAT CTTATTTTGG AGAATAAAGA GACCTCTGGA
                                                                              720
       TTTGAGGTGC CATTTGGGTA GAAAGAAAAG ACGTTTACAC CGAGAAATAG TCTGTGTTGC
                                                                              780
       CCTGAAGGAG CAGAGGGATG CATCGCTGGA GGTGACCTAC AGTTGAAGAA GACTCATTAT
                                                                              840
       GACAGACCTT GTCCTTCTTC CTTGTGGAAA GTGTTTCCTC TGCTGCTACT GCTCATGAGA
                                                                              900
       CTCTTCCCCC TCCCTGTCCC AGGGAACCAA AGGGCTTTCT ACCACACCCT TTCTTGCCCC
                                                                              960
85
       CCGCCTCCCA TGTCTGCTGT GCCTTTGTAC TCAGCAATTC TTGTTTGCTC CATTATCTTC
                                                                             1020
       CAGCCGGATA CAGAGTGAAT AGTTAACCAC ACTTAGGTCA AATAGGATCT AAATTTTTGT
                                                                             1080
       TCCTGCTCCG TGTAAAGAGG CCAGTGTTTG TGTGTTGCAA GCAGCCTTGG AATAGTAACT
```

```
AGTTCATCAG GCTCTCGGAC CTTAGGGCTG TTGGAGAAGG CTTCAGCAGC AGAACTGATG
                                                                              1260
       GTGAAGGCTC GTGTTCTCCA TCCTCAACTT TCTTTGCTTC GATCATACAC AAGAATACAT
                                                                              1320
       TTGGAAGGC AAAAATGAA CACTGTCGTT CATTGCAGCC GTGTTTTGTG ACACAGATGC
       ACAGTCTGCT GTGAAGACCT TCTCTCAAGT GGCATTTGGG AGTCCATGCC AGATCATGGT
                                                                              1440
       GCTTCATGAG AGACTGACAG CTATCAGGGG TTGTGGCACT TAGTGAGGAC TCTCCTCCCC
                                                                              1500
       CAGTGTGTGC TGATGACACA TACACACCTG ACAATAGCTT GAGTCTTCTC TGTTCCTTTT
                                                                              1560
       ACTCTGTAGC CAACATACAC ATGATTTAAA ACCCTTTCTA AATATCTATC ATGGTTCATC
                                                                              1620
       CTTGTCCAAA TGCAGAGTCA GAGCTATTTG TACTTCATTA TTATTTCCAA GGCGAATAGT TGGCTTTCTT TTTGCAAAAA TAATTAAAGT TTTTGTATGT TGCAAAAAA AAAAAAAAA
                                                                              1680
10
       AAACAAAAAA
       Seq ID NO: 117 DNA sequence
       Nucleic Acid Accession #: BC012178.1
15
       Coding sequence: 204-2285
                   11
                              21
                                           31
       CTTCTCTCCC GOGGCGCTGG GGCCCGCGCT CCGCTGCTGT TGCTCCATTC GGCGCTTTTC
                                                                                 60
20
       TGGCGGCTGG CTCCTCTCCG CTGCCGGCTG CTCCTCGACC AGGCCTCCTT CTCAACCTCA
                                                                               120
       GCCCGCGGGG CCGACCCTTC CGGCACCCTC CCGCCCCGTC TCGTACTGTC GCCGTCACCG
       CCGCGGCTCC GGCCCTGGCC CCGATGGCTC TGTGCAACGG AGACTCCAAG CTGGAGAATG
       CTGGAGGAGA CCTTAAGGAT GGCCACCACC ACTATGAAGG AGCTGTTGTC ATTCTGGATG
       CTGGTGCTCA GTACGGGAAA GTCATAGACC GAAGAGTGAG GGAACTGTTC GTGCAGTCTG
                                                                                360
25
       AAATTTTCCC CTTGGAAACA CCAGCATTTG CTATAAAGGA ACAAGGATTC CGTGCTATTA
                                                                                420
       TCATCTCTGG AGGACCTAAT TCTGTGTATG CTGAAGATGC TCCCTGGTTT GATCCAGCAA
                                                                                480
       TATTCACTAT TGGCAAGCCT GTTCTTGGAA TTTGCTATGG TATGCAGATG ATGAATAAGG
TATTTGGAGG TACTGTGCAC AAAAAAAGTG TCAGAGAAGA TGGAGTTTTC AACATTAGTG
TGGATAATAC ATGTTCATTA TTCAGGGGCC TTCAGAAGGA AGAAGTTGTT TTGCTTACAC
                                                                                540
                                                                                600
                                                                                660
30
       ATGGAGATAG TGTAGACAAA GTAGCTGATG GATTCAAGGT TGTGGCACGT TCTGGAAACA
                                                                                720
       TAGTAGCAGG CATAGCAAAT GAATCTAAAA AGTTATATGG AGCACAGTTC CACCCTGAAG
                                                                                780
       TTGGCCTTAC AGAAAATGGA AAAGTAATAC TGAAGAATTT CCTTTATGAT ATAGCTGGAT
                                                                               840
       GCAGTGGAAC CTTCACCGTG CAGAACAGAG AACTTGAGTG TATTCGAGAG ATCAAAGAGA
                                                                               900
       GAGTAGGCAC GTCAAAAGTT TTGGTTTTAC TCAGTGGTGG AGTAGACTCA ACAGTTTGTA
                                                                               960
35
       CAGCTTTGCT AAATCGTGCT TTGAACCAAG AACAAGTCAT TGCTGTGCAC ATTGATAATG
                                                                              1020
       GCTTTATGAG AAAACGAGAA AGCCAGTCTG TTGAAGAGGC CCTCAAAAAG CTTGGAATTC
                                                                              1080
       AGGTCAAAGT GATAAATGCT GCTCATTCTT TCTACAATGG AACAACAACC CTACCAATAT
                                                                              1140
       CAGATGAAGA TAGAACCCCA CGGAAAAGAA TTAGCAAAAC GTTAAATATG ACCACAAGTC
                                                                              1200
       CTGAAGAGAA AAGAAAAATC ATTGGGGATA CTTTTGTTAA GATTGCCAAT GAAGTAATTG
                                                                              1260
40
       GAGAAATGAA CTTGAAACCA GAGGAGGTTT TCCTTGCCCA AGGTACTTTA CGGCCTGATC
                                                                              1320
       TAATTGAAAG TGCATCCCTT GTTGCAAGTG GCAAAGCTGA ACTCATCAAA ACCCATCACA
       ATGACACAGA GCTCATCAGA AAGTTGAGAG AGGAGGGAAA AGTAATAGAA CCTCTGAAAG
       ATTTCATAA AGATGAAGTG AGAATTTTGG GCAGAGAACT TGGACTTCCA GAAGAGTTAG
                                                                              1500
       TTTCCAGGCA TCCATTTCCA GGTCCTGGCC TGGCAATCAG AGTAATATGT GCTGAAGAAC
                                                                              1560
45
       CTTATATTTG TAAGGACTTT CCTGAAACCA ACAATATTTT GAAAATAGTA GCTGATTTTT CTGCAAGTGT TAAAAAGCCA CATACCCTAT TACAGAGAGT CAAAGCCTGC ACAACAGAAG
                                                                              1620
                                                                              1680
       AGGATCAGGA GAAGCTGATG CAAATTACCA GTCTGCATTC ACTGAATGCC TTCTTGCTGC
                                                                              1740
       CAATTAAAAC TGTAGGTGTG CAGGGTGACT GTCGTTCCTA CAGTTACGTG TGTGGAATCT
                                                                              1800
       CCAGTAAAGA TGAACCTGAC TGGGAATCAC TTATTTTTCT GGCTAGGCTT ATACCTCGCA
                                                                              1860
50
       TGTGTCACAA CGTTAACAGA GTTGTTTATA TATTTGGCCC ACCAGTTAAA GAACCTCCTA
                                                                              1920
       CAGATGTTAC TCCCACTTTC TTGACAACAG GGGTGCTCAG TACTTTACGC CAAGCTGATT
                                                                              1980
       TTGAGGCCCA TAACATTCTC AGGGAGTCTG GGTATGCTGG GAAAATCAGC CAGATGCCGG
                                                                              2040
       TGATTTTGAC ACCATTACAT TTTGATCGGG ACCCACTTCA AAAGCAGCCT TCATGCCAGA
                                                                              2100
       GATCTGTGGT TATTCGAACC TTTATTACTA GTGACTTCAT GACTGGTATA CCTGCAACAC
                                                                              2160
55
       CTGGCAATGA GATCCCTGTA GAGGTGGTAT TAAAGATGGT CACTGAGATT AAGAAGATTC
                                                                              2220
       CTGGTATTTC TCGAATTATG TATGACTTAA CATCAAAGCC CCCAGGAACT ACTGAGTGGG 2280
       AGTAATAAAC TTCTTGTTCT ATTAAAA
60
       Seq ID NO: 118 Protein sequence:
       Protein Accession #: AAH12178.1
                                          31
                                                      41
65
       MALCNGDSKL ENAGGDLKDG HHHYEGAVVI LDAGAQYGKV IDRRVRELFV QSEIFPLETP
       AFAIKEQGFR AIIISGGPNS VYAEDAPWFD PAIFTIGKPV LGICYGMQMM NKVFGGTVHK
                                                                               120
       KSVREDGVFN ISVDNTCSLF RGLQKEEVVL LTHGDSVDKV ADGFKVVARS GNIVAGIANE
                                                                               180
       SKKLYGAQFH PEVGLTENGK VILKNFLYDI AGCSGTFTVQ NRELECIREI KERVGTSKVL
                                                                               240
       VLLSGGVDST VCTALLNRAL NQEQVIAVHI DNGFMRKRES QSVEEALKKL GIQVKVINAA
                                                                               300
70
       HSFYNGTTTL PISDEDRTPR KRISKTLNMT TSPEEKRKII GDTFVKIANE VIGEMNLKPE
                                                                               360
       EVFLAQGTLR PDLIESASLV ASGKAELIKT HHNDTELIRK LREEGKVIEP LKDFHKDEVR
                                                                                420
       ILGRELGLPE ELVSRHPFPG PGLAIRVICA EEPYICKDFP ETNNILKIVA DFSASVKKPH
                                                                                480
       TLLQRVKACT TEEDQEKLMQ ITSLHSLNAF LLPIKTVGVQ GDCRSYSYVC GISSKDEPDW
                                                                                540
       ESLIPLARLI PRMCHNVNRV VYIFGPPVKE PPTDVTPTFL TTGVLSTLRQ ADFEAHNILR
                                                                               600
75
       ESGYAGKISQ MPVILTPLHF DRDPLQKQPS CQRSVVIRTF ITSDFMTGIP ATPGNEIPVE
       VVLKMVTEIK KIPGISRIMY DLTSKPPGTT EWE
       Seg ID NO: 119 DNA seguence
       Nucleic Acid Accession #: NM 006500.1
80
       Coding sequence: 27..1967
                   11
                              21
                                           31
                                                                  51
       ACTTGCGTCT CGCCCTCCGG CCAAGCATGG GGCTTCCCAG GCTGGTCTGC GCCTTCTTGC
                                                                                60
85
       TCGCCGCCTG CTGCTGCTGT CCTCGCGTCG CGGGTGTGCC CGGAGAGGCT GAGCAGCCTG
                                                                               120
       CGCCTGAGCT GGTGGAGGTG GAAGTGGGCA GCACAGCCCT TCTGAAGTGC GGCCTCTCCC
                                                                               180
       AGTCCCAAGG CAACCTCAGC CATGTCGACT GGTTTTCTGT CCACAAGGAG AAGCGGACGC
                                                                               240
```

```
TCATCTTCCG TGTGCGCCAG GGCCAGGGCC AGAGCGAACC TGGGGAGTAC GAGCAGCGGC
       TCAGCCTCCA GGACAGAGGG GCTACTCTGG CCCTGACTCA AGTCACCCCC CAAGACGAGC
                                                                                360
       GCATCTTCTT GTGCCAGGGC AAGCGCCCTC GGTCCCAGGA GTACCGCATC CAGCTCCGCG
       TCTACAAAGC TCCGGAGGAG CCAAACATCC AGGTCAACCC CCTGGGCATC CCTGTGAACA
                                                                                480
       GTAAGGAGCC TGAGGAGGTC GCTACCTGTG TAGGGAGGAA CGGGTACCCC ATTCCTCAAG
                                                                                540
       TCATCTGGTA CAAGAATGGC CGGCCTCTGA AGGAGGAGAA GAACCGGGTC CACATTCAGT
                                                                                600
       CGTCCCAGAC TGTGGAGTCG AGTGGTTTGT ACACCTTGCA GAGTATTCTG AAGGCACAGC
                                                                                660
       TGGTTAAAGA AGACAAAGAT GCCCAGTTTT ACTGTGAGCT CAACTACCGG CTGCCCAGTG
                                                                                720
       GGAACCACAT GAAGGAGTCC AGGGAAGTCA CCGTCCCTGT TTTCTACCCG ACAGAAAAAG
                                                                                780
       TGTGGCTGGA AGTGGAGCCC GTGGGAATGC TGAAGGAAGG GGACCGCGTG GAAATCAGGT
10
                                                                                840
       GTTTGGCTGA TGGCAACCCT CCACCACACT TCAGCATCAG CAAGCAGAAC CCCAGCACCA
                                                                                900
       GGGAGGCAGA GGAAGAGACA ACCAACGACA ACGGGGTCCT GGTGCTGGAG CCTGCCCGGA
                                                                                960
       AGGAACACAG TGGGCGCTAT GAATGTCAGG CCTGGAACTT GGACACCATG ATATCGCTGC
                                                                               1020
       TGAGTGAACC ACAGGAACTA CTGGTGAACT ATGTGTCTGA CGTCCGAGTG AGTCCCGCAG
                                                                               1080
15
       CCCCTGAGAG ACAGGAAGGC AGCAGCCTCA CCCTGACCTG TGAGGCAGAG AGTAGCCAGG
                                                                               1140
       ACCTCGAGTT CCAGTGGCTG AGAGAAGAGA CAGACCAGGT GCTGGAAAGG GGGCCTGTGC
                                                                               1200
       TTCAGTTGCA TGACCTGAAA CGGGAGGCAG GAGGCGGCTA TCGCTGCGTG GCGTCTGTGC CCAGCATACC CGGCCTGAAC CGCACACAGC TGGTCAAGCT GGCCATTTTT GGCCCCCCTT
                                                                               1260
                                                                               1320
       GGATGGCATT CAAGGAGAGG AAGGTGTGGG TGAAAGAGAA TATGGTGTTG AATCTGTCTT
                                                                               1380
       GTGAAGCGTC AGGGCACCCC CGGCCCACCA TCTCCTGGAA CGTCAACGGC ACGGCAAGTG
20
                                                                               1440
       AACAAGACCA AGATCCACAG CGAGTCCTGA GCACCCTGAA TGTCCTCGTG ACCCCGGAGC
                                                                               1500
       TGTTGGAGAC AGGTGTTGAA TGCACGGCCT CCAACGACCT GGGCAAAAAC ACCAGCATCC
                                                                               1560
       TCTTCCTGGA GCTGGTCAAT TTAACCACCC TCACACCAGA CTCCAACACA ACCACTGGCC
                                                                               1620
       TCAGCACTTC CACTGCCAGT CCTCATACCA GAGCCAACAG CACCTCCACA GAGAGAAAGC
                                                                               1680
25
       TGCCGGAGCC GGAGAGCCGG GGCGTGGTCA TCGTGGCTGT GATTGTGTGC ATCCTGGTCC
                                                                               1740.
       TGGCGGTGCT GGGCGCTGTC CTCTATTTCC TCTATAAGAA GGGCAAGCTG CCGTGCAGGC
                                                                               1800
       GCTCAGGGAA GCAGGAGATC ACGCTGCCCC CGTCTCGTAA GACCGAACTT GTAGTTGAAG
                                                                               1860
       TTAAGTCAGA TAAGCTCCCA GAAGAGATGG GCCTCCTGCA GGGCAGCAGC GGTGACAAGA
                                                                               1920
       GGGCTCCGGG AGACCAGGGA GAGAAATACA TCGATCTGAG GCATTAGCCC CGAATCACTT
                                                                               1980
30
       CAGCTCCCTT CCCTGCCTGG ACCATTCCCA GCTCCCTGCT CACTCTTCTC TCAGCCAAAG
                                                                               2040
       CCTCCAAAGG GACTAGAGAG AAGCCTCCTG CTCCCCTCAC CTGCACACCC CCTTTCAGAG
                                                                               2100
       GGCCACTGGG TTAGGACCTG AGGACCTCAC TTGGCCCTGC AAGCCGCTTT TCAGGGACCA
                                                                               2160
       GTCCACCACC ATCTCCTCCA CGTTGAGTGA AGCTCATCCC AAGCAAGGAG CCCCAGTCTC
                                                                               2220
       CCGAGCGGGT AGGAGAGTTT CTTGCAGAAC GTGTTTTTTC TTTACACACA TTATGGCTGT
                                                                               2280
       AAATACCTGG CTCCTGCCAG CAGCTGAGCT GGGTAGCCTC TCTGAGCTGG TTTCCTGCCC
35
                                                                               2340
       CAAAGGCTGG CTTCCACCAT CCAGGTGCAC CACTGAAGTG AGGACACACC GGAGCCAGGC
                                                                               2400
       GCCTGCTCAT GTTGAAGTGC GCTGTTCACA CCCGCTCCGG AGAGCACCCC AGCGGCATCC
       AGAAGCAGCT GCAGTGTTGC TGCCACCACC CTCCTGCTCG CCTCTTCAAA GTCTCCTGTG
                                                                               2520
       ACATTITTC TTTGGTCAGA AGCCAGGAAC TGGTGTCATT CCTTAAAAGA TACGTGCCGG
       GGCCAGGTGT GGTGGCTCAC GCCTGTAATC CCAGCACTTT GGGAGGCCGA GGCGGGCGGA
TCACAAAGTC AGGACGAGAC CATCCTGGCT AACACGGTGA AACCCTGTCT CTACTAAAAA
40
                                                                               2640
       TACAAAAAA AATTAGCTAG GCGTAGTGGT TGGCACCTAT AGTCCCAGCT ACTCGGAAGG
                                                                               2760
       CTGAAGCAGG AGAATGGTAT GAATCCAGGA GGTGGAGCTT GCAGTGAGCC GAGACCGTGC
                                                                               2820
       2880
45
       ACGCGTACCT GCGGTGAGGA AGCTGGGCGC TGTTTTCGAG TTCAGGTGAA TTAGCCTCAA
                                                                               2940
       TCCCCGTGTT CACTTGCTCC CATAGCCCTC TTGATGGATC ACGTAAAACT GAAAGGCAGC
                                                                               3000
       GGGGAGCAGA CAAAGATGAG GTCTACACTG TCCTTCATGG GGATTAAAGC TATGGTTATA 3060
       TTAGCACCAA ACTTCTACAA ACCAAGCTCA GGGCCCCAAC CCTAGAAGGG CCCAAATGAG
                                                                               3120
       AGAATGGTAC TTAGGGATGG AAAACGGGGC CTGGCTAGAG CTTCGGGTGT GTGTGTCTGT
                                                                               3180
50
       CTGTGTGTAT GCATACATAT GTGTGTATAT ATGGTTTTGT CAGGTGTGTA AATTTGCAAA
                                                                               3240
       3300
       AAAGCTTAAT TGTCCCAGAA AATCATACAT TGCTTTTTTA TTCTACATGG GTACCACAGG 3360
       AACCTGGGGG CCTGTGAAAC TACAACCAAA AGGCACACAA AACCGTTTCC AGTTGGCAGC
                                                                               3420
       AGAGATCAGG GGTTACCTCT GCTTCTGAGC AAATGGCTCA AGCTCTACCA GAGCAGACAG
                                                                              3480
55
       CTACCCTACT TTTCAGCAGC AAAACGTCCC GTATGACGCA GCACGAAGGG CCTGGCAGGC
                                                                              3540
       TGTTAGCAGG AGCTATGTCC CTTCCTATCG TTTCCGTCCA CTT
       Seg ID NO: 120 Protein seguence:
60
       Protein Accession #: NP_006491.1
                                           31
                   11
                               21
       MGLPRLVCAF LLAACCCCPR VAGVPGEAEQ PAPELVEVEV GSTALLKCGL SQSQGNLSHV
DWFSVHKEKR TLIFRVRQGQ GQSEPGEYEQ RLSLQDRGAT LALTQVTPQD ERIFLCQGKR
PRSQEYRIQL RVYKAPEEPN IQVNPLGIPV NSKEPEEVAT CVGRNGYPIP QVIWYKNGRP
65
       LKEEKNRVHI QSSQTVESSG LYTLQSILKA QLVKEDKDAQ FYCELNYRLP SGNHMKESRE
VTVPVFYPTE KVWLEVEPVG MLKEGDRVEI RCLADGNPPP HFSISKQNPS TREAEEETTN
                                                                                300
70
       DNGVLVLEPA RKEHSGRYEC QAWNLDTMIS LLSEPQELLV NYVSDVRVSP AAPERQEGSS
                                                                                360
       LTLTCEAESS QDLEFQWLRE ETDQVLERGP VLQLHDLKRE AGGGYRCVAS VPSIFGLNRT QLVKLAIFGP PWMAFKERKV WVKENMVLNL SCEASGHPRP TISWNVNGTA SEQDQDPQRV
                                                                                420
                                                                                480
       LSTLNVLVTP ELLETGVECT ASNDLGKNTS ILFLELVNLT TLTPDSNTTT GLSTSTASPH
                                                                                540
       TRANSTSTER KLPEPESRGV VIVAVIVCIL VLAVLGAVLY FLYKKGKLPC RRSGKQEITL
                                                                                600
75
       PPSRKTELVV EVKSDKLPEE MGLLQGSSGD KRAPGDQGEK YIDLRH
       Seg ID NO: 121 DNA seguence
       Nucleic Acid Accession #: NM_018306
        Coding sequence: 60-671
80
       ATAGTCTACA CAGAGCTCCC CTTGCTGCCC AGACAAGCTG AAGGACCACA GGAAAAGCCA
        TGGAGACTTC AGCATCCTCC TCCCAGCCTC AGGACAACAG TCAAGTCCAC AGAGAAACAG
                                                                                120
85
       AAGATGTAGA CTATGGAGAG ACAGATTTCC ACAAGCAAGA CGGGAAGGCT GGACTCTTTT
                                                                                180
       CCCAAGAACA ATATGAGAGA AACAAGTCTT CTTCCTCCTC CTTCTCTCC TCCTCATCCT CCTCATCTT TTCATCCTC TCCTCCTCAG GTCCTGGGCA TGGGGAGCCT GACGTTTTGA
                                                                                240
```

```
AGGATGAGCT TCAACTCTAT GGAGATGCTC CTGGAGAGGT GGTACCCTCT GGGGAATCAG
                                                                           360
      GACTCCGAAG GAGAGGCTCT GACCCAGCAA GTGGAGAGAGT GGAGGCCTCT CAGTTAAGAA
                                                                           420
      GACTGAATAT AAAGAAAGAT GATGAGTTTT TCCATTTCGT CCTCCTGTGC TTTGCCATCG
                                                                           480
      GGGCCTTGCT GGTGTGTTAT CACTATTACG CAGACTGGTT CATGTCTCTT GGGGTCGGCC
                                                                           540
       TGCTCACCTT CGCCTCCCTG GAAACCGTTG GCATCTACTT CGGACTAGTG TACCGTATCC
                                                                           600
       ACAGCGTCCT CCAAGGCTTC ATCCCCCTCT TCCAGAAGTT TAGGCTGACA GGGTTCAGGA
                                                                           660
       AGACTGACTG AGGCCACTTC CAGGTGGGCA GCAGAGGCAG GCCCCAGTGT GACCACCACT
                                                                           720
      GCGACCCCTG AGCCCACAAG GGCAGAGCAG CATTCTGAGA GACGCACAGG AGACCAAGCC
                                                                           780
      AGACCAATAA ACAGAACACT TTTCCTTCCA TGTGGTCTGA ATGTTGGCAC CAGCCCGGGC
                                                                           840
      AGGGGCATCT CATTTGGGCA GTACTGCTGT GCAACCCAGC TGCAAGGATG GAAGGCAGAG
10
                                                                           900
       GGTGGGTGTG GGGCCTGAGG CTTCACAGTA CCTGGACCAG CAGGAAGATT CTGGGAGGTC
                                                                           960
       ACTGCTCTCA GAGGACAGCA AGGGACCCTG AGCTCTGCAA GCTGTGATCT GTCTGGGTTC
                                                                          1020
       ATGGTTTTTC TCAAATCCCA GGCTATCTGC ATGCGCTCTC AGGTGCTACC GAGCCATCCT
                                                                          1080
       GGGAGAGATG GATGGTCCAC TGCTTTGAGG CAGGGAGCCA TCGGGCTGGG GCCCCTTGGT
                                                                          1140
       GAACCTGATG CAGGTAAGAT GCTGAGGACT AAAACCATTT TTTTTGCACC CAAAAAAAAA
15
                                                                          1200
       GGCAGGAAAA TGATCATCAG AAACTAAATG GCAGCCAGGC ATGGGGGCTC ACGACTGTAA
                                                                          1260
       TCCTCGCACT TTGGGAGGCT CAGGCTAAGG GTCGCTTGAA GCTGAGAGTT CAAGACCAAC
                                                                          1320
       CTGGGCAACA TAGTGAGACC CCCATCTCTA CAATTTTTT TTAATGACCA AATGTGGCGG
                                                                          1380
       TACATACCTG TACATACCTG CGGTTCCAGC TACTCAAGAG GCTGAGGCAG GAGGACTGCT
                                                                          1440
20
       TGAGCCCAGG AGTTCAGGGC TGCAGTGAGG TACGATCAAG CCACTGCACT CCAGCCTGGG
                                                                          1500
       CGACAGAGCA AGATCGTTTC TCTAAAATT
       Seg ID NO: 122 Protein sequence:
25
       Protein Accession #: NP_060776
       METSASSOP ODNSOVHRET EDVDYGETDF HKQDGKAGLF SQEQYERNKS SSSSFSSSS
                                                                            60
30
       SSSSSSSS GPGHGEPDVL KDELQLYGDA PGEVVPSGES GLRRRGSDPA SGEVEASQLR
                                                                           120
       RLNIKKDDEF FHFVLLCFAI GALLVCYHYY ADWFMSLGVG LLTFASLETV GIYFGLVYRI
                                                                           180
       HSVLQGFIPL FQKFRLTGFR KTD
       Seq ID NO: 123 DNA sequence
35
       Nucleic Acid Accession #: BC022542
       Coding sequence: 243..896
40
       ACTTGGTCCC AGCCGATAAA TCTGGGGCAG CGCGCGGTAG GAGCTGCGGG CGGCCAGGCC
                                                                            60
       CCTTCCTGCG TCCGCACCTG GCCCCGCGCG CCCCTCTCGG GCGTCCGGCT TCCGGCGTCC
                                                                           120
       TEGCEGETCG GETEGCEGCG GTTCGGGCGG CCGCCTGGCT GCTCCTCGGG GCGGCGACGG
                                                                           180
       GGCTCACGCG CGGGCCCGCC ACGGCCTTCA CCGCCGCGCG CTCTGACGCC GGCATAAGGG
                                                                           240
       CCATGTGTTC TGAAATTATT TTGAGGCAAG AAGTTTTGAA AGATGGTTTC CACAGAGACC
45
       TTTTAATCAA AGTGAAGTTT GGGGAAAGCA TTGAGGACTT GCACACGTGC CGTCTCTTAA
                                                                           360
       TTAAACAGGA CATTCCTGCA GGACTTTATG TGGATCCGTA TGAGTTGGCT TCATTACGAG
                                                                           420
       AGAGAAACAT AACAGAGGCA GTGATGGTTT CAGAAAATTT TGATATAGAG GCCCCTAACT
                                                                           480
       ATTTGTCCAA GGAGTCTGAA GTTCTCATTT ATGCCAGACG AGATTCACAG TGCATTGACT
                                                                           540
       GTTTTCAAGC CTTTTTGCCT GTGCACTGCC GCTATCATCG GCCGCACAGT GAAGATGGAG
                                                                           600
       AAGCCTCGAT TGTGGTCAAT AACCCAGATT TGTTGATGTT TTGTGACCAA GAGTTCCCGA
50
                                                                           660
       TTTTGAAATG CTGGGCTCAC TCAGAAGTGG CAGCCCCTTG TGCTTTGGAT AATGAGGATA
                                                                           720
       TATGCCAATG GAACAAGATG AAGTATAAAT CAGTATATAA GAATGTGATT CTACAAGTTC
                                                                           780
       CAGTGGGACT GACTGTACAT ACCTCTCTAG TATGTTCTGT GACTCTGCTC ATTACAATCC
                                                                           840
       TGTGCTCTAC ATTGATCCTT GTAGCAGTTT TCAAATATGG CCATTTTTCC CTATAAGTTT
                                                                           900
55
       TATGTAGTTA AATGCTTCCT AGAAACCTAA ATAAGATCTA TTAATTTCTG ACGAGAGGTG
                                                                           960
       TTCTTCTAGA ATTAATTACT TTTATCTTTT GTCTTCATTT GTGGCCAAAA TTATGTTTAC
                                                                          1020
       TAGAGGAAAT TTGGGATCAT TCTCAGCTAA TTCCAAAATG TAGTGCTCTA TTGCATGGAT
                                                                          1080
       CCTTGGTAAT CCTCAAGCAT CAGATGCCAT AAGGGGAAAC TTAATTCTGC TAAATTAATG
                                                                          1140
       TTTATTTTGT GAGAAGTGAC TTTATCTTCA TTTGGGGTAG AAAAATTATT TCTTTATGTA
                                                                          1200
60
       GTAGAGACAA ATTATTCTCA TTTTGCAAGT ACTTTCAATT TAAGCTACAA ATTGAGAAAA
                                                                          1260
       CCGTTATAAA TAAGAATAAA ATAGGCCAGG CACAGTGGCT CACACCTGTA ATCCCAGCAC
                                                                          1320
       TTTGGGAGGC CGAGGTGGGC GGATCACCAG AGGTCAAGAG TTTGAGACCA GCTTGGTGAA
                                                                          1380
       ACCCTGTCTC TACTAAAAAT ACAAAAGTTA GCTGGGGCTG GTGGTGGGCA TCTGTAGTCC
                                                                          1440
       CAGCTAATTG GAAGGGTGAG GCGGGAGGAT CGCTTGAACC TGGGAGGCGG AGGTTCCAGA
                                                                          1500
65
       GAGCCAAGAT CGCACCACTG CACTACAGCC TGGGCGACAG AACGAGACCC TGTCTCCAAA
                                                                          1560
       GGAAAAACAA AAAAGAAGAA TAAAATAATT TGGATGAAAA TCATGTTTAT TTAAATAGTA
                                                                          1620
       ATGTCATGAG ACTATTAAAG ATGTGCCAGA GTTTCAATGA AAATCATTAA AGTAGGACAG
                                                                          1680
       CTAAGAAATT AATATTAATA TAAAAATTAT TGATAATCTT AAATTATTGA TTATTCCTTA
                                                                          1740
        ACGCACTCCA TTCTCCTTTT ACATTTTATC ATGTTTCTTT TGAATATATG AATTGGCAAA
                                                                           1800
70
        GGACTTGATG AAACTGAGTA CTAAGATTTG GTACAGAGTA TGTCAGGAAG ACAACTCAGA
                                                                           1860
        TTGCCATTTT AAATAAAGTT GTACATGAAC AAAAAAAAA AAAAAA
       Seq ID NO: 124 Protein sequence:
75
       Protein Accession #: AAH22542
       MCSEIILROE VLKDGFHRDL LIKVKFGESI EDLHTCRLLI KQDIPAGLYV DPYELASLRE
80
       RNITEAVMVS ENFDIEAPNY LSKESEVLIY ARRDSQCIDC FQAFLPVHCR YHRPHSEDGE
                                                                           120
       ASIVVNNPDL LMFCDOAGSR RMIRFRFDSF DKTIEFPILK CWAHSEVAAP CALENEDICQ
       WNKMKYKSVY KNVILQVPVG LTVHTSLVCS VTLLITILCS KKKKK
       Seq ID NO: 125 DNA sequence
85
       Nucleic Acid Accession #: NM 004994.1
```

Coding sequence: 20..2143

```
WO 02/086443
                             21
      AGACACCTCT GCCCTCACCA TGAGCCTCTG GCAGCCCCTG GTCCTGGTGC TCCTGGTGCT
                                                                             60
      GGGCTGCTGC TTTGCTGCCC CCAGACAGCG CCAGTCCACC CTTGTGCTCT TCCCTGGAGA
 5
      CCTGAGAACC AATCTCACCG ACAGGCAGCT GGCAGAGGAA TACCTGTACC GCTATGGTTA
                                                                            180
       CACTCGGGTG GCAGAGATGC GTGGAGAGTC GAAATCTCTG GGGCCTGCGC TGCTGCTTCT
                                                                            240
       CCAGAAGCAA CTGTCCCTGC CCGAGACCGG TGAGCTGGAT AGCGCCACGC TGAAGGCCAT
                                                                            300
      GCGAACCCCA CGGTGCGGGG TCCCAGACCT GGGCAGATTC CAAACCTTTG AGGGCGACCT
                                                                            360
      CAAGTGGCAC CACCACAACA TCACCTATTG GATCCAAAAC TACTCGGAAG ACTTGCCGCG
                                                                            420
10
      GGCGGTGATT GACGACGCCT TTGCCCGCGC CTTCGCACTG TGGAGCGCGG TGACGCCGCT
                                                                            480
       CACCTTCACT CGCGTGTACA GCCGGGACGC AGACATCGTC ATCCAGTTTG GTGTCGCGGA
                                                                            540
      GCACGGAGAC GGGTATCCCT TCGACGGGAA GGACGGGCTC CTGGCACACG CCTTTCCTCC
                                                                            600
       TGGCCCCGGC ATTCAGGGAG ACGCCCATTT CGACGATGAC GAGTTGTGGT CCCTGGGCAA
                                                                            660
      GGGCGTCGTG GTTCCAACTC GGTTTGGAAA CGCAGATGGC GCGGCCTGCC ACTTCCCCTT
                                                                            720
       CATCTTCGAG GGCCGCTCCT ACTCTGCCTG CACCACCGAC GGTCGCTCCG ACGGCTTGCC
15
                                                                            780
       CTGGTGCAGT ACCACGGCCA ACTACGACAC CGACGACCGG TTTGGCTTCT GCCCCAGCGA
                                                                            840
       GAGACTCTAC ACCCGGGACG GCAATGCTGA TGGGAAACCC TGCCAGTTTC CATTCATCTT
                                                                            900
       CCAAGGCCAA TCCTACTCCG CCTGCACCAC GGACGGTCGC TCCGACGGCT ACCGCTGGTG
                                                                            960
       CGCCACCACC GCCAACTACG ACCGGGACAA GCTCTTCGGC TTCTGCCCGA CCCGAGCTGA
                                                                           1020
20
       CTCGACGGTG ATGGGGGGCA ACTCGGCGGG GGAGCTGTGC GTCTTCCCCT TCACTTTCCT
                                                                           1080
       GGGTAAGGAG TACTCGACCT GTACCAGCGA GGGCCGCGGA GATGGGCGCC TCTGGTGCGC
       TACCACCTCG AACTTTGACA GCGACAAGAA GTGGGGCTTC TGCCCGGACC AAGGATACAG
                                                                           1200
       TTTGTTCCTC GTGGCGGCGC ATGAGTTCGG CCACGCGCTG GGCTTAGATC ATTCCTCAGT
                                                                           1260
       GCCGGAGGCG CTCATGTACC CTATGTACCG CTTCACTGAG GGGCCCCCCT TGCATAAGGA
                                                                           1320
25
       CGACGTGAAT GGCATCCGGC ACCTCTATGG TCCTCGCCCT GAACCTGAGC CACGGCCTCC
                                                                           1380
       AACCACCACC ACACCGCAGC CCACGGCTCC CCCGACGGTC TGCCCCACCG GACCCCCCAC
                                                                           1440
       TGTCCACCCC TCAGAGCGCC CCACAGCTGG CCCCACAGGT CCCCCCTCAG CTGGCCCCAC
                                                                           1500
       AGGTCCCCCC ACTGCTGGCC CTTCTACGGC CACTACTGTG CCTTTGAGTC CGGTGGACGA
                                                                           1560
       TGCCTGCAAC GTGAACATCT TCGACGCCAT CGCGGAGATT GGGAACCAGC TGTATTTGTT
                                                                           1620
30
       CAAGGATGGG AAGTACTGGC GATTCTCTGA GGGCAGGGGG AGCCGGCCGC AGGGCCCCTT
                                                                           1680
       CCTTATCGCC GACAAGTGGC CCGCGCTGCC CCGCAAGCTG GACTCGGTCT TTGAGGAGCC
                                                                           1740
       GCTCTCCAAG AAGCTTTTCT TCTTCTCTGG GCGCCAGGTG TGGGTGTACA CAGGCGCGTC
                                                                           1800
       GGTGCTGGGC CCGAGGCGTC TGGACAAGCT GGGCCTGGGA GCCGACGTGG CCCAGGTGAC
                                                                           1860
       CGGGGCCCTC CGGAGTGGCA GGGGGAAGAT GCTGCTGTTC AGCGGGCGGC GCCTCTGGAG
                                                                           1920
35
       GTTCGACGTG AAGGCGCAGA TGGTGGATCC CCGGAGCGCC AGCGAGGTGG ACCGGATGTT
                                                                           1980
       CCCCGGGGTG CCTTTGGACA CGCACGACGT CTTCCAGTAC CGAGAGAAAG CCTATTTCTG
                                                                           2040
       CCAGGACCGC TTCTACTGGC GCGTGAGTTC CCGGAGTGAG TTGAACCAGG TGGACCAAGT
                                                                           2100
       GGGCTACGTG ACCTATGACA TCCTGCAGTG CCCTGAGGAC TAGGGCTCCC GTCCTGCTTT
                                                                           2160
       GCAGTGCCAT GTAAATCCCC ACTGGGACCA ACCCTGGGGA AGGAGCCAGT TTGCCGGATA
                                                                           2220
40
       CAAACTGGTA TTCTGTTCTG GAGGAAAGGG AGGAGTGGAG GTGGGCTGGG CCCTCTCTTC
                                                                           2280
       TCACCTTTGT TTTTTGTTGG AGTGTTTCTA ATAAACTTGG ATTCTCTAAC CTTT
       Seq ID NO: 126 Protein sequence:
       Protein Accession #: NP_004985.1
45
                             21
                                        31
                                                               51
                  11
       MSLWOPLVLV LLVLGCCFAA PROROSTLVL FPGDLRTNLT DRQLAEEYLY RYGYTRVAEM
                                                                             60
       RGESKSLGPA LLLLQKQLSL PETGELDSAT LKAMRTPRCG VPDLGRFQTF EGDLKWHHHN
                                                                            120
50
       ITYWIONYSE DLPRAVIDDA FARAFALWSA VTPLTFTRVY SRDADIVIQF GVAEHGDGYP
                                                                            180
       FDGKDGLLAH AFPPGPGIQG DAHFDDDELW SLGKGVVVPT RFGNADGAAC HFPFIFEGRS
                                                                            240
       YSACTTDGRS DGLPWCSTTA NYDTDDRFGF CPSERLYTRD GNADGKPCQF PF1FQGQSYS
                                                                            300
       ACTTDGRSDG YRWCATTANY DRDKLFGFCP TRADSTVMGG NSAGELCVFP FTFLGKEYST
                                                                            360
       CTSEGRGDGR LWCATTSNFD SDKKWGFCPD QGYSLFLVAA HEFGHALGLD HSSVPEALMY
                                                                            420
55
       PMYRFTEGPP LHKDDVNGIR HLYGPRPEPE PRPPTTTTPQ PTAPPTVCPT GPPTVHPSER
                                                                            480
       PTAGPTGPPS AGPTGPPTAG PSTATTVPLS PVDDACNVNI FDAIAEIGNO LYLFKDGKYW
                                                                            540
       RFSEGRGSRP QGPFLIADKW PALPRKLDSV FEEPLSKKLF FFSGRQVWVY TGASVLGPRR
                                                                            600
       LDKLGLGADV AQVTGALRSG RGKMLLFSGR RLWRFDVKAQ MVDPRSASEV DRMFPGVPLD
                                                                            660
       THOVFOYREK AYFCODRFYW RVSSRSELNQ VDQVGYVTYD ILQCPED
60
       Seq ID NO: 127 DNA sequence
       Nucleic Acid Accession #: NM_004181
       Coding sequence: 32-670
65
                             21
                                                    41
                                                               51
                                        31
       GCAGAAATAG CCTAGGGAGA TCAACCCCGA GATGCTGAAC AAAGTGCTGT CCCGGCTGGG
                                                                             60
       GGTCGCCGGC CAGTGGCGCT TCGTGGACGT GCTGGGGCTG GAAGAGGAGT CTCTGGGCTC
                                                                            120
       GGTGCCAGCG CCTGCCTGCG CGCTGCTGCT GCTGTTTCCC CTCACGGCCC AGCATGAGAA
                                                                            180
70
       CTTCAGGAAA AAGCAGATTG AAGAGCTGAA GGGACAAGAA GTTAGTCCTA AAGTGTACTT
                                                                            240
       CATGAAGCAG ACCATTGGGA ATTCCTGTGG CACAATCGGA CTTATTCACG CAGTGGCCAA
                                                                            300
       TAATCAAGAC AAACTGGGAT TTGAGGATGG ATCAGTTCTG AAACAGTTTC TTTCTGAAAC
                                                                            360
       AGAGAAAATG TCCCCTGAAG ACAGAGCAAA ATGCTTTGAA AAGAATGAGG CCATACAGGC
                                                                            420
       AGCCCATGAT GCCGTGGCAC AGGAAGGCCA ATGTCGGGTA GATGACAAGG TGAATTTCCA
                                                                            480
75
       TTTTATTCTG TTTAACAACG TGGATGGCCA CCTCTATGAA CTTGATGGAC GAATGCCTTT
                                                                            540
       TCCGGTGAAC CATGGCGCCA GTTCAGAGGA CACCCTGCTG AAGGACGCTG CCAAGGTGTG
                                                                            600
       CAGAGAATTC ACCGAGCGTG AGCAAGGAGA AGTCCGCTTC TCTGCCGTGG CTCTCTGCAA
                                                                            660
       GGCAGCCTAA TGCTCTGTGG GAGGGACTTT GCTGATTTCC CCTCTTCCCT TCAACATGAA
                                                                            720
       AATATATACC CCCCATGCAG TCTAAAATGC TTCAGTACTT GTGAAACACA GCTGTTCTTC
                                                                            780
80
       TGTTCTGCAG ACACGCCTTC CCCTCAGCCA CACCCAGGCA CTTAAGCACA AGCAGAGTGC
                                                                            840
       ACAGCTGTCC ACTGGGCCAT TGTGGTGTGA GCTTCAGATG GTGAAGCATT CTCCCCAGTG
                                                                            900
       TATGTCTTGT ATCCGATATC TAACGCTTTA AATGGCTACT TTGGTTTCTG TCTGTAAGTT
                                                                            960
       AAGACCTTGG ATGTGGTTAT GTTGTCCTAA AGAATAAATT TTGCTGATAG TAGC
85
       Seg ID NO: 128 Protein sequence:
```

Protein Accession #: NP_004172

	WO 02	/086443					
	1	11	21 	31 }	41 	51 	
5	GQEVSPKVYF CFEKNEAIQA	VAGQWRFVDV MKQTIGNSCG AHDAVAQEGQ	LGLEEESLGS TIGLIHAVAN CRVDDKVNFH	NQDKLGFEDG FILFNNVDGH	SVLKQFLSET	EKMSPEDRAK	60 120 180
10		REFTEREQGE 129 DNA sec		AA			
10	Coding sequ	d Accession mence: 127-5	5385		41		
	1	11	21	31]	51	
15		CTGCAGCCCC					60
		GGTCCAGGAC CAGGGCCACG					120 180
		TCTCTGGGAC					240
20		TCCGTGTGGA ACACCCAGGC					300 360
	GTCATGGAGA	GCAGCTTCCA	AATCACAGAG	GAGACCCAGA	TTGACACCAC	CCTGCGGCGC	420
	AGCCAGATGT GAGCTGGAGG	CCCCCCAAGG TGTTTGAGCC	ACTGCGGGTC ACTGGAGAGC	CCCGTGGACC	TGTACATCCT	CATGGACTTC	480 540
25	TCCAACTCCA	TGTCCGATGA	TCTGGACAAC	CTCAAGAAGA	TGGGGCAGAA	CCTGGCTCGG	600
25		AGCTCACCAG AGACGGACAT					660 720
	CCCCCCTTCT	CCTTCAAGAA	CGTCATCAGC	CTGACAGAAG	ATGTGGATGA	GTTCCGGAAT	780
		GAGAGCGGAT					840
30		CACCGAGTC					900 960
•	GGCATCATGA	GCCGCAACGA	TGAACGGTGC	CACCTGGACA	CCACGGGCAC	CTACACCCAG	1020
		AGGACTACCC TCTTTGCTGT					1080 1140
~ -		TCTCCTCACT					1200
35		CCTTCAATCG					1260
		GGACAGAGGT GGGGGGAAGT					1320
	GATGGGACGC	ACGTGTGCCA	GCTGCCGGAG	GACCAGAAGG	GCAACATCCA	TCTGAAACCT	1440
40		ACGGCCTCAA AGGTGCGGTC					1500 1560
	TGTGTGTGCA	GCGAGGGCTG	GAGTGGCCAG	ACCTGCAACT	GCTCCACCGG	CTCTCTGAGT	1620
		CCTGCCTGCG ACTGTGTGTG					1680 1740
		AGTGTCCCCG					1800
45		GTGTGTGTGA					1860
		GCATCGACAG ACTGCCACCA					1920 1980
		ACCCGGGCCT					2040
50		AGAAGAGCCGA					2100 2160
	GACTGCACCT	ACAGCTACAC	CATGGAAGGT	GACGGCGCCC	CTGGGCCCAA	CAGCACTGTC	2220
		AGAAGAAGGA TGCCGCTCCT					2280 2340
		GCCTGGCACT					2400
55		ACATGCTGCG					2460
		GGAACCTCAA GCTTTGCCAC					2520 2580
	GGGCTGTCCT	TGCGCCTGGC	CCGCCTTTGC	ACCGAGAACC	TGCTGAAGCC	TGACACTCGG	2640
60		AGCTGCGCCA ACAAGCTCCA					2700 2760
	CAAGACCACA	CCATTGTGGA	CACAGTGCTG	ATGGCGCCCC	GCTCGGCCAA	GCCGGCCCTG	2820
		CAGAGAAGCA CCCTCACTGC					2880 2940
						CGACGAGAAG	3000
65		TGGAGGCCAT					3060
		CCATCATCAA GCCGCGGGGA					3120 3180
	GGCGGGAAGT	CCCAGGTCTC	CTACCGCACA	CAGGATGGCA	CCGCGCAGGG	CAACCGGGAC	3240
70		TGGAGGTGA TGGAGCTGCA					3300 3360
, 0	TTCCACGTCC	AGCTCAGCAA	CCCTAAGTTT	GGGGCCCACC	TGGGCCAGCC	CCACTCCACC	3420
		TCAGGGACCC					3480 3540
		CCCCTCACGG AGATCCATTT				GGGGTACAGG	3600
75		GGATTCAGGG					3660
		AGCTCACCAA AGGGCGAGGG				GGTGTGCGCC CCACCAGGAA	3720 3780
	GTGCCCAGCG	AGCCAGGGCG	TCTGGCCTTC	AATGTCGTCT	CCTCCACGGT	GACCCAGCTG	3840
80		AGCCGGCTGA ATGACAACCG				CTGCTATGGC	3900 3960
3 3		TGCTGCTTAT					4020
		ACGGGGCCGG					4080
٥	AGCGGGGAGG	ACTACGACAG	CTTCCTTATG	TACAGCGATG	ACGTTCTACG	GGACGCCCAG CTCTCCATCG	4140 4200
85	GGCAGCCAGA	GGCCCAGCGT	CTCCGATGAC	ACTGAGCACC	TGGTGAATGG	CCGGATGGAC	4260
		CGGGCAGCAC				TGCTGCTGCC	4320 4380
	2112000000			_,			

```
WO\ 02/086443 acaceggact acaactcac gaccectca gaacactcac actegaccac actgecgagg
                                                                            4440
       GACTACTCCA CCCTCACCTC CGTCTCCTCC CACGACTCTC GCCTGACTGC TGGTGTGCCC
                                                                            4500
       GACACGCCCA CCCGCCTGGT GTTCTCTGCC CTGGGGCCCA CATCTCTCAG AGTGAGCTGG
                                                                            4560
       CAGGAGCCGC GGTGCGAGCG GCCGCTGCAG GGCTACAGTG TGGAGTACCA GCTGCTGAAC
                                                                            4620
 5
       GGCGGTGAGC TGCATCGGCT CAACATCCCC AACCCTGCCC AGACCTCGGT GGTGGTGGAA
                                                                            4680
       GACCTCCTGC CCAACCACTC CTACGTGTTC CGCGTGCGGG CCCAGAGCCA GGAAGGCTGG
       GGCCGAGAGC GTGAGGGTGT CATCACCATT GAATCCCAGG TGCACCCGCA GAGCCCACTG
                                                                            4800
       TGTCCCCTGC CAGGCTCCGC CTTCACTTTG AGCACTCCCA GTGCCCCAGG CCCGCTGGTG
                                                                            4860
       TTCACTGCCC TGAGCCCAGA CTCGCTGCAG CTGAGCTGGG AGCGGCCACG GAGGCCCAAT
                                                                            4920
10
       GGGGATATCG TCGGCTACCT GGTGACCTGT GAGATGGCCC AAGGAGGAGG GCCAGCCACC
                                                                            4980
       GCATTCCGGG TGGATGGAGA CAGCCCCGAG AGCCGGCTGA CCGTGCCGGG CCTCAGCGAG
                                                                            5040
       AACGTGCCCT ACAAGTTCAA GGTGCAGGCC AGGACCACTG AGGGCTTCGG GCCAGAGCGC
                                                                            5100
       GAGGGCATCA TCACCATAGA GTCCCAGGAT GGAGGACCCT TCCCGCAGCT GGGCAGCCGT
                                                                            5160
       GCCGGGCTCT TCCAGCACCC GCTGCAAAGC GAGTACAGCA GCATCACCAC CACCCACACC
                                                                            5220
15
       AGCGCCACCG AGCCCTTCCT AGTGGATGGG CCGACCCTGG GGGCCCAGCA CCTGGAGGCA
                                                                            5280
       GGCGGCTCCC TCACCCGGCA TGTGACCCAG GAGTTTGTGA GCCGGACACT GACCACCAGC
                                                                            5340
       GGAACCCTTA GCACCCACAT GGACCAACAG TTCTTCCAAA CTTGACCGCA CCCTGCCCCA
                                                                            5400
       CCCCCGCCAT GTCCCACTAG GCGTCCTCCC GACTCCTCTC CCGGAGCCTC CTCAGCTACT
                                                                            5460
       CCATCCTTGC ACCCCTGGGG GCCCAGCCCA CCCGCATGCA CAGAGCAGGG GCTAGGTGTC
                                                                            5520
20
       TCCTGGGAGG CATGAAGGGG GCAAGGTCCG TCCTCTGTGG GCCCAAACCT ATTTGTAACC
                                                                            5580
       AAAGAGCTGG GAGCAGCACA AGGACCCAGC CTTTGTTCTG CACTTAATAA ATGGTTTTGC
                                                                            5640
25
       Seq ID NO: 130 Protein sequence:
       Protein Accession #: NP 000204
                              21
                                         31
                  11
30
       MAGPRPSPWA RLLLAALISV SLSGTLANRC KKAPVKSCTE CVRVDKDCAY CTDEMFRDRR
                                                                              60
       CNTOAELLAA GCORESIVVM ESSFOITEET OIDTTLRRSO MSPOGLRVRL RPGEERHFEL
                                                                             120
       EVFEPLESPV DLYILMDFSN SMSDDLDNLK KMGQNLARVL SQLTSDYTIG FGKFVDKVSV
                                                                            180
       POTDMRPEKL KEPWPNSDPP FSFKNVISLT EDVDEFRNKL OGERISGNLD APEGGFDAIL
                                                                            240
       QTAVCTRDIG WRPDSTHLLV FSTESAFHYE ADGANVLAGI MSRNDERCHL DTTGTYTQYR
                                                                             300
35
       TODYPSVPTL VRLLAKHNII PIFAVTNYSY SYYEKLHTYF PVSSLGVLQE DSSNIVELLE
                                                                            360
       EAFNRIRSNL DIRALDSPRG LRTEVTSKMF QKTRTGSFHI RRGEVGIYQV QLRALEHVDG
THVCQLPEDQ KGNIHLKPSF SDGLKMDAGI ICDVCTCELQ KEVRSARCSF NGDFVCGQCV
                                                                             420
                                                                             480
       CSEGWSGQTC NCSTGSLSDI QPCLREGEDK PCSGRGECQC GHCVCYGEGR YEGQFCEYDN
                                                                             540
       FQCPRTSGFL CNDRGRCSMG QCVCEPGWTG PSCDCPLSNA TCIDSNGGIC NGRGHCECGR
                                                                            600
40
       CHCHQQSLYT DTICEINYSA IHPGLCEDLR SCVQCQAWGT GEKKGRTCEE CNFKVKMVDE
                                                                             660
       LKRAEEVVVR CSFRDEDDDC TYSYTMEGDG APGPNSTVLV HKKKDCPPGS FWWLIPLLLL
                                                                             720
       LLPLLALLL LCWKYCACCK ACLALLPCCN RGHMVGFKED HYMLRENLMA SDHLDTPMLR
                                                                             780
       SGNLKGRDVV RWKVTNNMQR PGFATHAASI NPTELVPYGL SLRLARLCTE NLLKPDTREC
                                                                             840
       AQLRQEVEEN LNEVYRQISG VHKLQQTKFR QQPNAGKKQD HTIVDTVLMA PRSAKPALLK
                                                                             900
45
       LTEKQVEQRA FHDLKVAPGY YTLTADQDAR GMVEFQEGVE LVDVRVPLFI RPEDDDEKQL
                                                                             960
       LVEAIDVPAG TATLGRRLVN ITIIKEQARD VVSFEQPEFS VSRGDQVARI PVIRRVLDGG
                                                                           1020
       KSQVSYRTQD GTAQGNRDYI PVEGELLFQP GEAWKELQVK LLELQEVDSL LRGRQVRRFH
                                                                            1080
       VQLSNPKFGA HLGQPHSTTI IIRDPDELDR SFTSQMLSSQ PPPHGDLGAP QNPNAKAAGS
                                                                            1140
       RKIHFNWLPP SGKPMGYRVK YWIQGDSESE AHLLDSKVPS VELTNLYPYC DYEMKVCAYG
                                                                           1200
50
       AQGEGPYSSL VSCRTHQEVP SEPGRLAFNV VSSTVTQLSW AEPAETNGEI TAYEVCYGLV
                                                                           1260
       NDDNRPIGPM KKVLVDNPKN RMLLIENLRE SQPYRYTVKA RNGAGWGPER EAIINLATQP
                                                                            1320
       KRPMSIPIIP DIPIVDAQSG EDYDSFLMYS DDVLRSPSGS QRPSVSDDTE HLVNGRMDFA
                                                                           1380
       FPGSTNSLHR MTTTSAAAYG THLSPHVPHR VLSTSSTLTR DYNSLTRSEH SHSTTLPRDY
                                                                            1440
       STLTSVSSHD SRLTAGVPDT PTRLVFSALG PTSLRVSWQE PRCERPLQGY SVEYQLLNGG
55
       ELHRLNIPNP AQTSVVVEDL LPNHSYVFRV RAQSQEGWGR EREGVITIES QVHPQSPLCP
                                                                            1560
       LPGSAFTLST PSAPGPLVFT ALSPDSLQLS WERPRRPNGD IVGYLVTCEM AQGGGPATAF
                                                                           1620
       RVDGDSPESR LTVPGLSENV PYKFKVOART TEGFGPEREG IITIESODGG PFPOLGSRAG
                                                                            1680
       LFQHPLQSEY SSITTTHTSA TEPFLVDGPT LGAQHLEAGG SLTRHVTQEF VSRTLTTSGT
                                                                           1740
       LSTHMDOOFF OT
60
       Seg ID NO: 131 DNA sequence
       Nucleic Acid Accession #: BC004372
       Coding sequence: 132..2231
65
                  11
                             21
                                         31 ,
                                                    41
                                                               51
       CCTCGTGCCG CGGACCCCAG CCTCTGCCAG GTTCGGTCCG CCATCCTCGT CCCGTCCTCC
                                                                             60
       GCCGGCCCCT GCCCCGCGCC CAGGGATCCT CCAGCTCCTT TCGCCCGCGC CCTCCGTTCG
                                                                            120
       CTCCGGACAC CATGGACAAG TTTTGGTGGC ACGCAGCCTG GGGACTCTGC CTCGTGCCGC
                                                                            180
70
       TGAGCCTGGC GCAGATCGAT TTGAATATAA CCTGCCGCTT TGCAGGTGTA TTCCACGTGG
                                                                            240
       AGAAAAATGG TCGCTACAGC ATCTCTCGGA CGGAGGCCGC TGACCTCTGC AAGGCTTTCA
                                                                            300
       ATAGCACCTT GCCCACAATG GCCCAGATGG AGAAAGCTCT GAGCATCGGA TTTGAGACCT
                                                                            360
       GCAGGTATGG GTTCATAGAA GGGCATGTGG TGATTCCCCG GATCCACCCC AACTCCATCT
                                                                            420
       GTGCAGCAAA CAACACAGGG GTGTACATCC TCACATCCAA CACCTCCCAG TATGACACAT
                                                                            480
75
       ATTGCTTCAA TGCTTCAGCT CCACCTGAAG AAGATTGTAC ATCAGTCACA GACCTGCCCA
                                                                            540
       ATGCCTTTGA TGGACCAATT ACCATAACTA TTGTTAACCG TGATGGCACC CGCTATGTCC
                                                                            600
       AGAAAGGAGA ATACAGAACG AATCCTGAAG ACATCTACCC CAGCAACCCT ACTGATGATG
                                                                            660
       ACGTGAGCAG CGGCTCCTCC AGTGAAAGGA GCAGCACTTC AGGAGGTTAC ATCTTTTACA
                                                                            720
       CCTTTTCTAC TGTACACCCC ATCCCAGACG AAGACAGTCC CTGGATCACC GACAGCACAG
                                                                            780
80
       ACAGAATCCC TGCTACCAGT ACGTCTTCAA ATACCATCTC AGCAGGCTGG GAGCCAAATG
                                                                            840
       AAGAAAATGA AGATGAAAGA GACAGACACC TCAGTTTTTC TGGATCAGGC ATTGATGATG
       ATGAAGATTT TATCTCCAGC ACCATTCAA CCACACCACG GGCTTTTGAC CACACAAAAC
                                                                            960
       AGAACCAGGA CTGGACCCAG TGGAACCCAA GCCATTCAAA TCCGGAAGTG CTACTTCAGA
       CAACCACAAG GATGACTGAT GTAGACAGAA ATGGCACCAC TGCTTATGAA GGAAACTGGA
                                                                           1080
85
       ACCCAGAAGC ACACCCTCCC CTCATTCACC ATGAGCATCA TGAGGAAGAA GAGACCCCAC
                                                                           1140
       ATTCTACAAG CACAATCCAG GCAACTCCTA GTAGTACAAC GGAAGAAACA GCTACCCAGA
                                                                           1200
       AGGAACAGTG GTTTGGCAAC AGATGGCATG AGGGATATCG CCAAACACCC AGAGAAGACT
```

```
CCCATTCGAC AACAGGACA GCTGCAGCCT CAGCTCATAC CAGCCATCCA ATGCAAGGAA 1320
      GGACAACACC AAGCCCAGAG GACAGTTCCT GGACTGATTT CTTCAACCCA ATCTCACACC
                                                                        1380
      CCATGGGACG AGGTCATCAA GCAGGAAGAA GGATGGATAT GGACTCCAGT CATAGTACAA
                                                                        1440
      1500
 5
      CTCTTCAAT GACAACGCAG CAGAGTAATT CTCAGAGCTT CTCTACATCA CATGAAGGCT
                                                                        1560
      TGGAAGAAGA TAAAGACCAT CCAACAACTT CTACTCTGAC ATCAAGCAAT AGGAATGATG
                                                                        1620
      TCACAGGTGG AAGAAGAGC CCAAATCATT CTGAAGGCTC AACTACTTTA CTGGAAGGTT
                                                                        1680
      ATACCTCTCA TTACCCACAC ACGAAGGAAA GCAGGACCTT CATCCCAGTG ACCTCAGCTA
                                                                        1740
      AGACTGGGTC CTTTGGAGTT ACTGCAGTTA CTGTTGGAGA TTCCAACTCT AATGTCAATC
                                                                        1800
10
       GTTCCTTATC AGGAGACCAA GACACATTCC ACCCCAGTGG GGGGTCCCAT ACCACTCATG
                                                                        1860
       GATCTGAATC AGATGGACAC TCACATGGGA GTCAAGAAGG TGGAGCAAAC ACAACCTCTG
                                                                        1920
      GTCCTATAAG GACACCCCAA ATTCCAGAAT GGCTGATCAT CTTGGCATCC CTCTTGGCCT
                                                                        1980
       TGGCTTTGAT TCTTGCAGTT TGCATTGCAG TCAACAGTCG AAGAAGGTGT GGGCAGAAGA
                                                                        2040
      AAAAGCTAGT GATCAACAGT GGCAATGGAG CTGTGGAGGA CAGAAAGCCA AGTGGACTCA
                                                                        2100
15
      ACGGAGAGGC CAGCAAGTCT CAGGAAATGG TGCATTTGGT GAACAAGGAG TCGTCAGAAA
                                                                        2160
      CTCCAGACCA GTTTATGACA GCTGATGAGA CAAGGAACCT GCAGAATGTG GACATGAAGA
                                                                        2220
       TTGGGGTGTA ACACCTACAC CATTATCTTG GAAAGAAACA ACCGTTGGAA ACATAACCAT
                                                                        2280
       TACAGGGAGC TGGGACACTT AACAGATGCA ATGTGCTACT GATTGTTTCA TTGCGAATCT
                                                                        2340
       TTTTTAGCAT AAAATTTTCT ACTCTTAAAA AAAAAAAAA AAAAAAA
20
       Seq ID NO: 132 Protein sequence:
      Protein Accession #: AAH04372
25
                            21
                 11
                                       31
       MDKFWWHAAW GLCLVPLSLA QIDLNITCRF AGVFHVEKNG RYSISRTEAA DLCKAFNSTL
       PTMAQMEKAL SIGFETCRYG FIEGHVVIPR IHPNSICAAN NTGVYILTSN TSQYDTYCFN
                                                                         120
30
       ASAPPEEDCT SVTDLPNAFD GPITITIVNR DGTRYVQKGE YRTNPEDIYP SNPTDDDVSS
                                                                         180
       GSSSERSSTS GGYIFYTFST VHPIPDEDSP WITDSTDRIP ATSTSSNTIS AGWEPNEENE
                                                                         240
       DERDRHLSFS GSGIDDDEDF ISSTISTTPR AFDHTKQNQD WTQWNPSHSN PEVLLQTTTR
                                                                         300
       MTDVDRNGTT AYEGNWNPEA HPPLIHHEHH EEEETPHSTS TIQATPSSTT EETATQKEQW
                                                                         360
       FGNRWHEGYR QTPREDSHST TGTAAASAHT SHPMQGRTTP SPEDSSWTDF FNPISHPMGR
                                                                         420
35
       GHQAGRRMDM DSSHSTTLQP TANPNTGLVE DLDRTGPLSM TTQQSNSQSF STSHEGLEED
                                                                         480
       KDHPTTSTLT SSNRNDVTGG RRDPNHSEGS TTLLEGYTSH YPHTKESRTF IPVTSAKTGS
                                                                         540
       FGVTAVTVGD SNSNVNRSLS GDQDTFHPSG GSHTTHGSES DGHSHGSQEG GANTTSGPIR
                                                                         600
       TPOIPEWLII LASLLALALI LAVCIAVNSR RRCGQKKKLV INSGNGAVED RKPSGLNGEA
                                                                         660
       SKSQEMVHLV NKESSETPDQ FMTADETRNL QNVDMKIGV
40
       Seq ID NO: 133 DNA sequence
       Nucleic Acid Accession #: NM_002882
       Coding sequence: 150-755
45
                 11
                           . 21
                                       31
       CGAGGTTCGG GTCGTGGGGC GGAGGGAAGA GCGGGCGGGC GGGAGGCGCC GGCGCCAGAC
                                                                          60
       120
50
       AGCCGAGCCG CCGCCGCCCCCA TGGCGGCCGC CAAGGACACT CATGAGGACC
                                                                         180
       ATGATACTTC CACTGAGAAT ACAGACGAGT CCAACCATGA CCCTCAGTTT GAGCCAATAG
                                                                         240
       TTTCTCTTCC TGAGCAAGAA ATTAAAACAC TGGAAGAAGA TGAAGAGGAA CTTTTTAAAA
                                                                         300
       TGCGGGCAAA ACTGTTCCGA TTTGCCTCTG AGAACGATCT CCCAGAATGG AAGGAGCGAG
                                                                         360
       GCACTGGTGA CGTCAAGCTC CTGAAGCACA AGGAGAAAGG GGCCATCCGC CTCCTCATGC
                                                                         420
55
       GGAGGGACAA GACCCTGAAG ATCTGTGCCA ACCACTACAT CACGCCGATG ATGGAGCTGA
                                                                         480
       AGCCCAACGC AGGTAGCGAC CGTGCCTGGG TCTGGAACAC CCACGCTGAC TTCGCCGACG
       AGTGCCCCAA GCCAGAGCTG CTGGCCATCC GCTTCCTGAA TGCTGAGAAT GCACAGAAAT
                                                                         600
       TCAAAACAAA GTTTGAAGAA TGCAGGAAAG AGATCGAAGA GAGAGAAAAG AAAGCAGGAT
       CAGGCAAAAA TGATCATGCC GAAAAAGTGG CGGAAAAGCT AGAAGCTCTC TCGGTGAAGG
                                                                         720
60
       AGGAGACCAA GGAGGATGCT GAGGAGAAGC AATAAATCGT CTTATTTTAT TTTCTTTTCC
       TCTCTTTCCT TTCCTTTTT TAAAAATTT TACCCTGCCC CTCTTTTCG GTTTGTTTTT
       ATTCTTTCAT TTTTACAAGG GACGTTATAT AAAGAACTGA ACTC
       Seg ID NO: 134 Protein seguence:
65
       Protein Accession #: NP_002873
                                       31
       MAAAKDTHED HDTSTENTDE SNHDPOFEPI VSLPEGEIKT LEEDEEELFK MRAKLFRFAS
                                                                          60
70
       ENDLPEWKER GTGDVKLLKH KEKGAIRLLM RRDKTLKICA NHYITPMMEL KPNAGSDRAW
                                                                         120
       VWNTHADFAD ECPKPELLAI RFLNAENAQK FKTKFEECRK EIEEREKKAG SGKNDHAEKV
                                                                         180
       AEKLEALSVK EETKEDAEEK O
       Seq ID NO: 135 DNA sequence
75
       Nucleic Acid Accession #: NM_000077.2
       Coding sequence: 277-742
                 11
                            21
                                       31
                                                             51
80
       CCCAACCTGG GGCGACTTCA GGTGTGCCAC ATTCGCTAAG TGCTCGGAGT TAATAGCACC
                                                                          60
       TCCTCCGAGC ACTCGCTCAC GGCGTCCCCT TGCCTGGAAA GATACCGCGG TCCCTCCAGA
                                                                         120
       GGATTTGAGG GACAGGGTCG GAGGGGGCTC TTCCGCCAGC ACCGGAGGAA GAAAGAGGAG
                                                                         180
       GGGCTGGCTG GTCACCAGAG GGTGGGGCGG ACCGCGTGCG CTCGGCGGCT GCGGAGAGGG
                                                                         240
       GGAGAGCAGG CAGCGGGCGG CGGGGAGCAG CATGGAGCCG GCGGCGGGGA GCAGCATGGA
                                                                         300
85
       GCCTTCGGCT GACTGGCTGG CCACGGCCGC GGCCCGGGGT CGGGTAGAGG AGGTGCGGGC
                                                                         360
       GCTGCTGGAG GCGGGGGCGC TGCCCAACGC ACCGAATAGT TACGGTCGGA GGCCGATCCA
                                                                         420
       GGTCATGATG ATGGGCAGCG CCCGAGTGGC GGAGCTGCTG CTGCTCCACG GCGCGGAGCC
```

GGGCTGGCTG GTCACCAGAG GGTGGGGCGG ACCGCGTGCG CTCGGCGGCT GCGGAGAGGG

GGAGAGCAGG CAGCGGGCGG CGGGGAGCAG CATGGAGCCG GCGGCGGGGA GCAGCATGGA

GCCGGCGGCG GGGAGCAGCA TGGAGCCTTC GGCTGACTGG CTGGCCACGG CCGCGGCCCG

GGGTCGGGTA GAGGAGGTGC GGGCGCTGCT GGAGGCGGGG GCGCTGCCCA ACGCACCGAA

TAGTTACGGT CGGAGGCCGA TCCAGGTGGG TAGAAGGTCT GCAGCGGGAG CAGGGGATGG

CGGGCGACTC TGGAGGACGA AGTTTGCAGG GGAATTGGAA TCAGGTAGCG CTTCGATTCT

CCGGAAAAAG GGGAGGCTTC CTGGGGAGTT TTCAGAAGGG GTTTGTAATC ACAGACCTCC

TCCTGGCGAC GCCCTGGGGG CTTGGGAAAC CAAGGAAGAG GAATGAGGAG CCACGCGCGT

ACAGATCTCT CGAATGCTGA GAAGATCTGA AGGGGGGAAC ATATTTGTAT TAGATGGAAG

TCATGATGAT GGGCAGCGCC CGAGTGGCGG AGCTGCTGCT GCTCCACGGC GCGGAGCCCA

ACTGCGCCGA CCCCGCCACT CTCACCCGAC CCGTGCACGA CGCTGCCCGG GAGGGCTTCC

TGGACACGCT GGTGGTGCTG CACCGGGCCG GGGCGCGGCT GGACGTGCGC GATGCCTGGG

GCCGTCTGCC CGTGGACCTG GCTGAGGAGC TGGGCCATCG CGATGTCGCA CGGTACCTGC

GCGCGGCTGC GGGGGCACC AGAGGCAGTA ACCATGCCCG CATAGATGCC GCGGAAGGTC

CCTCAGACAT CCCCGATTGA AAGAACCAGA GAGGCTCTGA GAAACCTCGG GAACTTAGAT

CATCAGTCAC CGAAGGTCCT ACAGGGCCAC AACTGCCCCC GCCACAACCC ACCCCGCTTT

CGTAGTTTTC ATTTAGAAAA TAGAGCTTTT AAAAATGTCC TGCCTTTTAA CGTAGATATA

TGCCTTCCCC CACTACCGTA AATGTCCATT TATATCATTT TTTATATATT CTTATAAAAA

TGTAAAAAG AAAAACACCG CTTCTGCCTT TTCACTGTGT TGGAGTTTTC TGGAGTGAGC

ACTCACGCCC TAAGCGCACA TTCATGTGGG CATTTCTTGC GAGCCTCGCA GCCTCCGGAA

GCTGTCGACT TCATGACAAG CATTTTGTGA ACTAGGGAAG CTCAGGGGGG TTACTGGCTT

CTCTTGAGTC ACACTGCTAG CAAATGGCAG AACCAAAGCT CAAATAAAAA TAAAATAATT

70

75

80

85

240

300

360

420

480

540

600

660

720

780

840

900

960

1020

1080

1140

1200

1260

1320

1380

1440

1500

```
Seq ID NO: 140 Protein sequence:
      Protein Accession #: NP_478104.1
 5
                                        31
      MEPAAGSSME PAAGSSMEPS ADWLATAAAR GRVEEVRALL EAGALPNAPN SYGRRPIQVG
      RRSAAGAGDG GRLWRTKFAG ELESGSASIL RKKGRLPGEF SEGVCNHRPP PGDALGAWET
10
      Seq ID NO: 141 DNA sequence
      Nucleic Acid Accession #: NM_058195.1
      Coding sequence: 163-684
15
                  11
                             21
                                        31
                                                              51
       CCTCCCTACG GCGCCTCCG GCAGCCCTTC CCGCGTGCGC AGGGCTCAGA GCCGTTCCGA
                                                                            60
       GATCTTGGAG GTCCGGGTGG GAGTGGGGGT GGGGTGGGG TGGGGGTGAA GGTGGGGGGC
                                                                           120
20
       GGGCGCCTC AGGGAAGGCG GGTGCGCGCC TGCGGGGCGG AGATGGGCAG GGGGCGGTGC
                                                                           180
       GTGGGTCCCA GTCTGCAGTT AAGGGGGCAG GAGTGGCGCT GCTCACCTCT GGTGCCAAAG
                                                                           240
       GGCGGCGCAG CGGCTGCCGA GCTCGGCCCT GGAGGCGGCG AGAACATGGT GCGCAGGTTC
                                                                           300
       TTGGTGACCC TCCGGATTCG GCGCGCGTGC GGCCCGCCGC GAGTGAGGGT TTTCGTGGTT
                                                                           360
       CACATCCCGC GGCTCACGGG GGAGTGGGCA GCGCCAGGGG CGCCCGCCGC TGTGGCCCTC
                                                                           420
25
       GTGCTGATGC TACTGAGGAG CCAGCGTCTA GGGCAGCAGC CGCTTCCTAG AAGACCAGGT
       CATGATGATG GGCAGCGCCC GAGTGGCGGA GCTGCTGCTG CTCCACGGCG CGGAGCCCAA
                                                                           540
       CTGCGCCGAC CCCGCCACTC TCACCCGACC CGTGCACGAC GCTGCCCGGG AGGGCTTCCT
       GGACACGCTG GTGGTGCTGC ACCGGGCCGG GGCGCGGCTG GACGTGCGCG ATGCCTGGGG
                                                                           660
       CCGTCTGCCC GTGGACCTGG CTGAGGAGCT GGGCCATCGC GATGTCGCAC GGTACCTGCG
                                                                           720
30
       CGCGGCTGCG GGGGGCACCA GAGGCAGTAA CCATGCCCGC ATAGATGCCG CGGAAGGTCC
                                                                           780
       CTCAGACATC CCCGATTGAA AGAACCAGAG AGGCTCTGAG AAACCTCGGG AAACTTAGAT
                                                                           840
       CATCAGTCAC CGAAGGTCCT ACAGGGCCAC AACTGCCCCC GCCACAACCC ACCCCGCTTT
                                                                           900
       CGTAGTTTTC ATTTAGAAAA TAGAGCTTTT AAAAATGTCC TGCCTTTTAA CGTAGATATA
                                                                           960
       TGCCTTCCCC CACTACCGTA AATGTCCATT TATATCATTT TTTATATATT CTTATAAAAA
                                                                          1020
35
       TGTAAAAAG AAAAACACCG CTTCTGCCTT TTCACTGTGT TGGAGTTTTC TGGAGTGAGC
                                                                          1080
       ACTCACGCCC TAAGCGCACA TTCATGTGGG CATTTCTTGC GAGCCTCGCA GCCTCCGGAA
                                                                          1140
       GCTGTCGACT TCATGACAAG CATTTTGTGA ACTAGGGAAG CTCAGGGGGG TTACTGGCTT
                                                                          1200
       CTCTTGAGTC ACACTGCTAG CAAATGGCAG AACCAAAGCT CAAATAAAAA TAAAATAATT
                                                                          1260
       TTCATTCATT CACTC
40
       Seq ID NO: 142 Protein sequence:
       Protein Accession #: NP_478102.1
45
                             21
                                        31
                11
       MGRGRCVGPS LQLRGQEWRC SPLVPKGGAA AAELGPGGGE NMVRRFLVTL RIRRACGPPR
                                                                            60
       VRVFVVHIPR LTGEWAAPGA PAAVALVLML LRSQRLGQQP LPRRPGHDDG QRPSGGAAAA
       PRRGAQLERP RHSHPTRARE CPGGLPGHAG GAAPGRGAAG RARCLGPSAE GPG
50
       Seq ID NO: 143 DNA sequence
       Nucleic Acid Accession #: NM 018131
       Coding sequence: 412..1107
55
                                       · 31
                             21
       GAAATTGCAC ACTTAAAGAC ATCAGTGGAT GAAATCACAA GTGGGAAAGG AAAGCTGACT
       GATAAAGAGA GACAGAGACT TTTGGAGAAA ATTCGAGTCC TTGAGGCTGA GAAGGAGAAG
                                                                           120
60
       AATGCTTATC AACTCACAGA GAAGGACAAA GAAATACAGC GACTGAGAGA CCAACTGAAG
                                                                           180
       GCCAGATATA GTACTACCGC ATTGCTTGAA CAGCTGGAAG AGACAACGAG AGAAGGAGAA
                                                                           240
       AGGAGGGAGC AGGTGTTGAA AGCCTTATCT GAAGAGAAAG ACGTATTGAA ACAACAGTTG
                                                                           300
       TCTGCTGCAA CCTCACGAAT TGCTGAACTT GAAAGCAAAA CCAATACACT CCGTTTATCA
                                                                           360
       CAGACTGTGG CTCCAAACTG CTTCAACTCA TCAATAAATA ATATTCATGA AATGGAAATA
                                                                           420
65
       CAGCTGAAAG ATGCTCTGGA GAAAAATCAG CAGTGGCTCG TGTATGATCA GCAGCGGGAA
                                                                           480
       GTCTATGTAA AAGGACTTTT AGCAAAGATC TTTGAGTTGG AAAAGAAAAC GGAAACAGCT
                                                                           540
       GCTCATTCAC TCCCACAGCA GACAAAAAG CCTGAATCAG AAGGTTATCT TCAAGAAGAG
                                                                           600
       AAGCAGAAAT GTTACAACGA TCTCTTGGCA AGTGCAAAAA AAGATCTTGA GGTTGAACGA
                                                                           660
       CAAACCATAA CTCAGCTGAG TTTTGAACTG AGTGAATTTC GAAGAAAATA TGAAGAAACC
                                                                           720
70
       CAAAAAGAAG TTCACAATTT AAATCAGCTG TTGTATTCAC AAAGAAGGGC AGATGTGCAA
                                                                           780
       CATCTGGAAG ATGATAGGCA TAAAACAGAG AAGATACAAA AACTCAGGGA AGAGAATGAT
                                                                           840
       ATTGCTAGGG GAAAACTTGA AGAAGAGAAG AAGAGATCCG AAGAGCTCTT ATCTCAGGTC
                                                                           900
       CAGTCTCTTT ACACATCTCT GCTAAAGCAG CAAGAAGAAC AAACAAGGGT AGCTCTGTTG
                                                                           960
       GAACAACAGA TGCAGGCATG TACTTTAGAC TTTGAAAATG AAAAACTCGA CCGTCAACAT
                                                                           1020
75
       GTGCAGCATC AATTGCATGT AATTCTTAAG GAGCTCCGAA AAGCAAGAAA AAATAACACA
                                                                          1080
       GTTGGAATCC TTGAAACAGC TTCATGAGTT TGCCATCACA GAGCCATTAG TCACTTTCCA
                                                                          1140
       AGGAGAGACT GAAAACAGAG AAAAAGTTGC CGCCTCACCA AAAAGTCCCA CTGCTGCACT
                                                                           1200
       CAATGGAAGC CTGGTGGAAT GTCCCAAGTG CAATATACAG TATCCAGCCA CTGAGCATCG
                                                                           1260
       CGATCTGCTT GTCCATGTGG AATACTGTTC AAAGTAGCAA AATAAGTATT TGTTTTGATA
                                                                           1320
80
       TTAAAAGATT CAATACTGTA TTTTCTGTTA GCTTGTGGGC ATTTTGAATT ATATATTTCA
       CATTTTGCAT AAAACTGCCT ATCTACCTTT GACACTCCAG CATGCTAGTG AATCATGTAT
       CTTTTAGGCT GCTGTGCATT TCTCTTGGCA GTGATACCTC CCTGACATGG TTCATCATCA
       GGCTGCAATG ACAGAATGTG GTGAGCAGCG TCTACTGAGA TACTAACATT TTGCACTGTC
       AAAATACTTG GTGAGGAAAA GATAGCTCAG GTTATTGCTA ATGGGTTAAT GCACCAGCAA
                                                                           1620
85
       GCAAAATATT TTATGTTTCG GGGGTTTTGA AAAATCAAAG ATAATTAACC AAGGATCTTA
       ACTGTGTTCG CATTTTTTAT CCAAGCACTT AGAAAACCTA CAATCCTAAT TTTGATGTCC
                                                                           1740
       ATTGTTAAGA GGTGGTGATA GATACTATTT TTTTTTCATA TTGTATAGCG GTTATTAGAA
```

```
AAGTTGGGGA TTTTCTTGAT CTTTATTGCT GCTTACCATT GAAACTTAAC CCAGCTGTGT 1860
       TCCCCAACTC TGTTCTGCGC ACGAAACAGT ATCTGTTTGA GGCATAATCT TAAGTGGCCA
                                                                         1920
       CACACAATGT TTTCTCTTAT GTTATCTGGC AGTAACTGTA ACTTGAATTA CATTAGCACA
                                                                         1980
       TTCTGCTTAG CTAAAATTGT TAAAATAAAC TTTAATAAAC CCATGTAGCC CTCTCATTTG
                                                                         2040
 5
                                                                         2100
       ATTGACAGTA TITTAGTTAT TITTGGCATT CTTAAAGCTG GGCAATGTAA TGATCAGATC
       TTTGTTTGTC TGAACAGGTA TTTTTATACA TGCTTTTTGT AAACCAAAAA CTTTTAAATT
       TCTTCAGGTT TTCTAACATG CTTACCACTG GGCTACTGTA AATGAGAAAA GAATAAAATT
       ATTTAATGTT TT
10
       Seg ID NO: 144 Protein sequence:
       Protein Accession #: NP_060601
15
                                                              51
                 11
                             21
                                        31
       MEIQLKDALE KNQQWLVYDQ QREVYVKGLL AKIFELEKKT ETAAHSLPQQ TKKPESEGYL
                                                                           60
       QEEKQKCYND LLASAKKDLE VERQTITQLS FELSEFRRKY EETQKEVHNL NQLLYSQRRA
                                                                          120
       DVQHLEDDRH KTEKIQKLRE ENDIARGKLE EEKKRSEELL SQVQSLYTSL LKQQEEQTRV
                                                                          180
20
       ALLEQOMOAC TLDFENEKLD ROHVQHQLHV ILKELRKARK NNTVGILETA S
       Seq ID NO: 145 DNA sequence
       Nucleic Acid Accession #: NM_001168
       Coding sequence: 50..478
25
                            21
                                        31
       CCGCCAGATT TGAATCGCGG GACCCGTTGG CAGAGGTGGC GGCGGCGGCA TGGGTGCCCC
30
       GACGTTGCCC CCTGCCTGGC AGCCCTTTCT CAAGGACCAC CGCATCTCTA CATTCAAGAA
                                                                          120
       CTGGCCCTTC TTGGAGGGCT GCGCCTGCAC CCCGGAGCGG ATGGCCGAGG CTGGCTTCAT
                                                                          180
       CCACTGCCCC ACTGAGAACG AGCCAGACTT GGCCCAGTGT TTCTTCTGCT TCAAGGAGCT
                                                                          240
       GGAAGGCTGG GAGCCAGATG ACGACCCCAT AGAGGAACAT AAAAAGCATT CGTCCGGTTG
                                                                          300
       CGCTTTCCTT TCTGTCAAGA AGCAGTTTGA AGAATTAACC CTTGGTGAAT TTTTGAAACT
                                                                          360
35
       GGACAGAGAA AGAGCCAAGA ACAAAATTGC AAAGGAAACC AACAATAAGA AGAAAGAATT
                                                                          420
       TGAGGAAACT GCGAAGAAAG TGCGCCGTGC CATCGAGCAG CTGGCTGCCA TGGATTGAGG
                                                                          480
       CCTCTGGCCG GAGCTGCCTG GTCCCAGAGT GGCTGCACCA CTTCCAGGGT TTATTCCCTG
                                                                          540
       GTGCCACCAG CCTTCCTGTG GGCCCCTTAG CAATGTCTTA GGAAAGGAGA TCAACATTTT
                                                                          600
       CAAATTAGAT GTTTCAACTG TGCTCCTGTT TTGTCTTGAA AGTGGCACCA GAGGTGCTTC
                                                                          660
40
       TGCCTGTGCA GCGGGTGCTG CTGGTAACAG TGGCTGCTTC TCTCTCTCT TCTCTTTTT
                                                                          720
       GGGGGCTCAT TTTTGCTGTT TTGATTCCCG GGCTTACCAG GTGAGAAGTG AGGGAGGAAG
                                                                          780
       AAGGCAGTGT CCCTTTTGCT AGAGCTGACA GCTTTGTTCG CGTGGGCAGA GCCTTCCACA
                                                                          840
       GTGAATGTGT CTGGACCTCA TGTTGTTGAG GCTGTCACAG TCCTGAGTGT GGACTTGGCA
                                                                          900
       GGTGCCTGTT GAATCTGAGC TGCAGGTTCC TTATCTGTCA CACCTGTGCC TCCTCAGAGG
                                                                          960
45
       1020
       GTGATGAGAG AATGGAGACA GAGTCCCTGG CTCCTCTACT GTTTAACAAC ATGGCTTTCT
                                                                         1080
       TATTTGTTT GAATTGTTAA TTCACAGAAT AGCACAAACT ACAATTAAAA CTAAGCACAA
                                                                         1140
       AGCCATTCTA AGTCATTGGG GAAACGGGGT GAACTTCAGG TGGATGAGGA GACAGAATAG
                                                                         1200
       AGTGATAGGA AGCGTCTGGC AGATACTCCT TTTGCCACTG CTGTGTGATT AGACAGGCCC
                                                                         1260
50
       AGTGAGCCGC GGGGCACATG CTGGCCGCTC CTCCCTCAGA AAAAGGCAGT GGCCTAAATC
                                                                         1320
       CTTTTTAAAT GACTTGGCTC GATGCTGTGG GGGACTGGCT GGGCTGCTGC AGGCCGTGTG
                                                                         1380
       TCTGTCAGCC CAACCTTCAC ATCTGTCACG TTCTCCACAC GGGGGAGAGA CGCAGTCCGC
                                                                         1440
       CCAGGTCCCC GCTTTCTTTG GAGGCAGCAG CTCCCGCAGG GCTGAAGTCT GGCGTAAGAT
                                                                         1500
       GATGGATTTG ATTCGCCCTC CTCCCTGTCA TAGAGCTGCA GGGTGGATTG TTACAGCTTC
                                                                         1560
55
       GCTGGAAACC TCTGGAGGTC ATCTCGGCTG TTCCTGAGAA ATAAAAAGCC TGTCATTTC
       Seq ID NO: 146 Protein sequence:
       Protein Accession #: NP_001159
60
                            21
                                        31
                                                             51
                 11
       MGAPTLPPAW OPFLKDHRIS TFKNWPFLEG CACTPERMAE AGFIHCPTEN EPDLAQCFFC
                                                                           60
       FKELEGWEPD DDPIEEHKKH SSGCAFLSVK KQFEELTLGE FLKLDRERAK NKIAKETNNK
                                                                          1.20
65
       KKEFEETAKK VRRAIEQLAA MD
       Seq ID NO: 147 DNA sequence
       Nucleic Acid Accession #: NM_014176.1
       Coding sequence: 127-720
70
                                                             51 ..
                                        31
                                                  41
                            21
       GCGCGCAGCG CTGGTACCCC GTTGGTCCGC GCGTTGCTGC GTTGTGAGGG GTGTCAGCTC
       AGTGCATCCC AGGCAGCTCT TAGTGTGGAG CAGTGAACTG TGTGTGGTTC CTTCTACTTG
                                                                          120
75
       GGGATCATGC AGAGAGCTTC ACGTCTGAAG AGAGAGCTGC ACATGTTAGC CACAGAGCCA
                                                                          180
       CCCCCAGGCA TCACATGTTG GCAAGATAAA GACCAAATGG ATGACCTGCG AGCTCAAATA
                                                                          240
       TTAGGTGGAG CCAACACCC TTATGAGAAA GGTGTTTTTA AGCTAGAAGT TATCATTCCT
                                                                          300
       GAGAGGTACC CATTIGAACC TCCTCAGATC CGATTTCTCA CTCCAATTTA TCATCCAAAC
                                                                          360
       ATTGATTCTG CTGGAAGGAT TTGTCTGGAT GTTCTCAAAT TGCCACCAAA AGGTGCTTGG
                                                                          420
80
       AGACCATCCC TCAACATCGC AACTGTGTTG ACCTCTATTC AGCTGCTCAT GTCAGAACCC
                                                                          480
       AACCCTGATG ACCCGCTCAT GGCTGACATA TCCTCAGAAT TTAAATATAA TAAGCCAGCC
                                                                          540
       TTCCTCAAGA ATGCCAGACA GTGGACAGAG AAGCATGCAA GACAGAAACA AAAGGCTGAT
                                                                          600
       GAGGAAGAGA TGCTTGATAA TCTACCAGAG GCTGGTGACT CCAGAGTACA CAACTCAACA
                                                                          660
       CAGAAAAGGA AGGCCAGTCA GCTAGTAGGC ATAGAAAAGA AATTTCATCC TGATGTTTAG
                                                                          720
85
       GGGACTTGTC CTGGTTCATC TTAGTTAATG TGTTCTTTGC CAAGGTGATC TAAGTTGCCT
                                                                          780
       ACCTTGAATT TTTTTTTAAA TATATTTGAT GACATAATTT TTGTGTAGTT TATTTATCTT
                                                                          840
       GTACATATGT ATTTTGAAAT CTTTTAAACC TGAAAAATAA ATAGTCATTT AATGTTGAAA
```

```
Seq ID NO: 148 Protein sequence:
       Protein Accession #: NP_054895.1
 5
                                        31
       MQRASRLKRE LHMLATEPPP GITCWQDKDQ MDDLRAQILG GANTPYEKGV FKLEVIIPER
                                                                            60
       YPPEPPQIRF LTPIYHPNID SAGRICLDVL KLPPKGAWRP SLNIATVLTS IQLLMSEPNP
                                                                           120
10
       DDPLMADISS EPKYNKPAFL KNARQWTEKH ARQKQKADEE EMLDNLPEAG DSRVHNSTQK
       RKASQLVGIE KKFHPDV
       Seq ID NO: 149 DNA sequence
       Nucleic Acid Accession #: NM_003812
15
       Coding sequence: 224-2722
                  11
                             21
                                        31
       TCCTCTGCGT CCCGCCCGG GAGTGGCTGC GAGGCTAGGC GAGCCGGGAA AGGGGGCGCC
20
       GCCCAGCCC GAGCCCGCG CCCCGTGCCC CGAGCCCGGA GCCCCCTGCC CGCGGCGGCA
                                                                           120
       CCATGCGCGC CGAGCCGGCG TGACCGGCTC CGCCCGCGGC CGCCCCGCAG CTAGCCCGGC
                                                                           180
       GCTCTCGCCG GCCACACGGA GCGGCGCCCG GGAGCTATGA GCCATGAAGC CGCCCGGCAG
                                                                            240
       CAGCTCGCGG CAGCCGCCCC TGGCGGGCTG CAGCCTTGCC GGCGCTTCCT GCGGCCCCCA
                                                                           300
       ACGCGGCCCC GCCGGCTCGG TGCCTGCCAG CGCCCCGGCC CGCACGCCGC CCTGCCGCCT
                                                                           360
25
       GCTTCTCGTC CTTCTCCTGC TGCCTCCGCT CGCCGCCTCG TCCCGGCCCC GCGCCTGGGG
                                                                            420
       GGCTGCTGCG CCCAGCGCTC CGCATTGGAA TGAAACTGCA GAAAAAATT TGGGAGTCCT
                                                                            480
       GGCAGATGAA GACAATACAT TGCAACAGAA TAGCAGCAGT AATATCAGTT ACAGCAATGC
                                                                           540
       AATGCAGAAA GAAATCACAC TGCCTTCAAG ACTCATATAT TACATCAACC AAGACTCGGA
                                                                            600
       AAGCCCTTAT CACGTTCTTG ACACAAAGGC AAGACACCAG CAAAAACATA ATAAGGCTGT
                                                                           660
30
       CCATCTGGCC CAGGCAAGCT TCCAGATTGA AGCCTTCGGC TCCAAATTCA TTCTTGACCT
                                                                            720
       CATACTGAAC AATGGTTTGT TGTCTTCTGA TTATGTGGAG ATTCACTACG AAAATGGGAA
                                                                           780
       ACCACAGTAC TCTAAGGGTG GAGAGCACTG TTACTACCAT GGAAGCATCA GAGGCGTCAA
                                                                           840
       AGACTCCAAG GTGGCTCTGT CAACCTGCAA TGGACTTCAT GGCATGTTTG AAGATGATAC
                                                                           900
       CTTCGTGTAT ATGATAGAGC CACTAGAGCT GGTTCATGAT GAGAAAAGCA CAGGTCGACC
                                                                           960
35
       ACATATAATC CAGAAAACCT TGGCAGGACA GTATTCTAAG CAAATGAAGA ATCTCACTAT
                                                                          1020
       GGAAAGAGGT GACCAGTGGC CCTTTCTCTC TGAATTACAG TGGTTGAAAA GAAGGAAGAG
                                                                          1080
                                                                          1140
       AGCAGTGAAT CCATCACGTG GTATATTTGA AGAAATGAAA TATTTGGAAC TTATGATTGT
       TAATGATCAC AAAACGTATA AGAAGCATCG CTCTTCTCAT GCACATACCA ACAACTTTGC
                                                                          1200
       AAAGTCCGTG GTCAACCTTG TGGATTCTAT TTACAAGGAG CAGCTCAACA CCAGGGTTGT
                                                                          1260
40
       CCTGGTGGCT GTAGAGACCT GGACTGAGAA GGATCAGATT GACATCACCA CCAACCCTGT
                                                                          1320
       GCAGATGCTC CATGAGTTCT CAAAATACCG GCAGCGCATT AAGCAGCATG CTGATGCTGT
                                                                          1380
       GCACCTCATC TCGCGGGTGA CATTTCACTA TAAGAGAAGC AGTCTGAGTT ACTTTGGAGG
                                                                          1440
       TGTCTGTTCT CGCACAAGAG GAGTTGGTGT GAATGAGTAT GGTCTTCCAA TGGCAGTGGC
                                                                          1500
       ACAAGTATTA TCGCAGAGCC TGGCTCAAAA CCTTGGAATC CAATGGGAAC CTTCTAGCAG
                                                                           1560
45
       AAAGCCAAAA TGTGACTGCA CAGAATCCTG GGGTGGCTGC ATCATGGAGG AAACAGGGGT
                                                                           1620
       GTCCCATTCT CGAAAATTTT CAAAGTGCAG CATTTTGGAG TATAGAGACT TTTTACAGAG
                                                                          1680
       AGGAGGTGGA GCCTGCCTTT TCAACAGGCC AACAAAGCTA TTTGAGCCCA CGGAATGTGG
                                                                          1740
       AAATGGATAC GTGGAAGCTG GGGAGGAGTG TGATTGTGGT TTTCATGTGG AATGCTATGG
                                                                          1800
       ATTATGCTGT AAGAAATGTT CCCTCTCCAA CGGGGCTCAC TGCAGCGACG GGCCCTGCTG
                                                                          1860
50
       TAACAATACC TCATGTCTTT TTCAGCCACG AGGGTATGAA TGCCGGGATG CTGTGAACGA
                                                                          1920
       GTGTGATATT ACTGAATATT GTACTGGAGA CTCTGGTCAG TGCCCACCAA ATCTTCATAA
                                                                          1980
       GCAAGACGGA TATGCATGCA ATCAAAATCA GGGCCGCTGC TACAATGGCG AGTGCAAGAC
                                                                          2040
       CAGAGACAAC CAGTGTCAGT ACATCTGGGG AACAAAGGCT GCAGGGTCTG ACAAGTTCTG
                                                                          2100
       CTATGAAAAG CTGAATACAG AAGGCACTGA GAAGGGAAAC TGCGGGAAGG ATGGAGACCG
                                                                          2160
55
       GTGGATTCAG TGCAGCAAAC ATGATGTGTT CTGTGGATTC TTACTCTGTA CCAATCTTAC
                                                                          2220
       TCGAGCTCCA CGTATTGGTC AACTTCAGGG TGAGATCATT CCAACTTCCT TCTACCATCA
                                                                          2280
       AGGCCGGGTG ATTGACTGCA GTGGTGCCCA TGTAGTTTTA GATGATGATA CGGATGTGGG
                                                                          2340
       CTATGTAGAA GATGGAACGC CATGTGGCCC GTCTATGATG TGTTTAGATC GGAAGTGCCT
                                                                          2400
       ACAAATTCAA GCCCTAAATA TGAGCAGCTG TCCACTCGAT TCCAAGGGTA AAGTCTGTTC
                                                                          2460
60
       GGGCCATGGG GTGTGTAGTA ATGAAGCCAC CTGCATTTGT GATTTCACCT GGGCAGGGAC
                                                                          2520
       AGATTGCAGT ATCCGGGATC CAGTTAGGAA CCTTCACCCC CCCAAGGATG AAGGACCCAA
                                                                          2580
       GGGTCCTAGT GCCACCAATC TCATAATAGG CTCCATCGCT GGTGCCATCC TGGTAGCAGC
                                                                          2640
       TATTGTCCTT GGGGGCACAG GCTGGGGATT TAAAAATGTC AAGAAGAGAA GGTTCGATCC
                                                                          2700
       TACTCAGCAA GGCCCCATCT GAATCAGCTG CGCTGGATGG ACACCGCCTT GCACTGTTGG
                                                                          2760
65
       ATTCTGGGTA TGACATACTC GCAGCAGTGT TACTGGAACT ATTAAGTTTG TAAACAAAAC
                                                                          2820
       CTTTGGGTGG TAATGACTAC GGAGCTAAAG TTGGGGTGAC AAGGATGGGG TAAAAGAAAA
                                                                          2880
       CTGTCTCTTT TGGAAATAAT GTCAAAGAAC ACCTTTCACC ACCTGTCAGT AAACGGGGGA
                                                                          2940
       GGGGGCAAAA GACCATGCTA TAAAAAGAAC TGTTCCAGAA TCTTTTTTT TCCCTAATGG
                                                                          3000
       ACGAAGGAAC AACACACAC CAAAAATTAA ATGCAATAAA GGAATCATTA AAAA
70
       Seq ID NO: 150 Protein sequence:
       Protein Accession #: NP_003803
75
                             21
                                        31
       MKPPGSSSRQ PPLAGCSLAG ASCGPQRGPA GSVPASAPAR TPPCRLLLVL LLLPPLAASS
       RPRAWGAAAP SAPHWNETAE KNLGVLADED NTLQQNSSSN ISYSNAMQKE ITLPSRLIYY
       INQDSESPYH VLDTKARHQQ KHNKAVHLAQ ASFQIEAFGS KFILDLILNN GLLSSDYVEI
80
       HYENGKPQYS KGGEHCYYHG SIRGVKDSKV ALSTCNGLHG MFEDDTFVYM IEPLELVHDE
                                                                           240
       KSTGRPHIIQ KTLAGQYSKQ MKNLTMERGD QWPFLSELQW LKRRKRAVNP SRGIFEEMKY
                                                                           300
       LELMIVNDHK TYKKHRSSHA HTNNFAKSVV NLVDSIYKEQ LNTRVVLVAV ETWTEKDQID
                                                                           360
       ITTNPVQMLH EFSKYRQRIK QHADAVHLIS RVTFHYKRSS LSYFGGVCSR TRGVGVNEYG
                                                                           420
       LPMAVAQVLS QSLAQNLGIQ WEPSSRKPKC DCTESWGGCI MEETGVSHSR KPSKCSILEY
                                                                           480
85
       RDFLQRGGGA CLFNRPTKLF EPTECGNGYV EAGEECDCGF HVECYGLCCK KCSLSNGAHC
                                                                           540
       SDGPCCNNTS CLFQPRGYEC RDAVNECDIT EYCTGDSGOC PPNLHKQDGY ACNONQGRCY
                                                                           600
       NGECKTRDNQ CQYIWGTKAA GSDKFCYEKL NTEGTEKGNC GKDGDRWIQC SKHDVFCGFL
                                                                           660
```

780

KDEGPKGPSA TNLIIGSIAG AILVAAIVLG GTGWGFKNVK KRRFDPTQQG PI 5 Seq ID NO: 151 DNA sequence Nucleic Acid Accession #: NM_023915 Coding sequence: 250-1326 10 GGCACGAGGG TTTCGTTTTC ATGCTTTACC AGAAAATCCA CTTCCCTGCC GACCTTAGTT 60 TCAAAGCTTA TTCTTAATTA GAGACAAGAA ACCTGTTTCA ACTTGAAGAC ACCGTATGAG 120 GTGAATGGAC AGCCAGCCAC CACAATGAAA GAAATCAAAC CAGGAATAAC CTATGCTGAA 180 CCCACGCCTC AATCGTCCCC AAGTGTTTCC TGACACGCAT CTTTGCTTAC AGTGCATCAC 240 15 AACTGAAGAA TGGGGTTCAA CTTGACGCTT GCAAAATTAC CAAATAACGA GCTGCACGGC 300 CAAGAGAGTC ACAATTCAGG CAACAGGAGC GACGGGCCAG GAAAGAACAC CACCCTTCAC 360 AATGAATTTG ACACAATTGT CTTGCCGGTG CTTTATCTCA TTATATTTGT GGCAAGCATC 420 TTGCTGAATG GTTTAGCAGT GTGGATCTTC TTCCACATTA GGAATAAAAC CAGCTTCATA 480 TTCTATCTCA AAAACATAGT GGTTGCAGAC CTCATAATGA CGCTGACATT TCCATTTCGA 540 20 ATAGTCCATG ATGCAGGATT TGGACCTTGG TACTTCAAGT TTATTCTCTG CAGATACACT 600 TCAGTTTTGT TTTATGCAAA CATGTATACT TCCATCGTGT TCCTTGGGCT GATAAGCATT 660 GATCGCTATC TGAAGGTGGT CAAGCCATTT GGGGACTCTC GGATGTACAG CATAACCTTC 720 ACGAAGGTTT TATCTGTTTG TGTTTGGGTG ATCATGGCTG TTTTGTCTTT GCCAAACATC 780 ATCCTGACAA ATGGTCAGCC AACAGAGGAC AATATCCATG ACTGCTCAAA ACTTAAAAGT 840 25 CCTTTGGGGG TCAAATGGCA TACGGCAGTC ACCTATGTGA ACAGCTGCTT GTTTGTGGCC GTGCTGGTGA TTCTGATCGG ATGTTACATA GCCATATCCA GGTACATCCA CAAATCCAGC 960 AGGCAATTCA TAAGTCAGTC AAGCCGAAAG CGAAAACATA ACCAGAGCAT CAGGGTTGTT GTGGCTGTGT TTTTTACCTG CTTTCTACCA TATCACTTGT GCAGAATTCC TTTTACTTTT AGTCACTTAG ACAGGCTTTT AGATGAATCT GCACAAAAAA TCCTATATTA CTGCAAAGAA 1140 30 ATTACACTTT TCTTGTCTGC GTGTAATGTT TGCCTGGATC CAATAATTTA CTTTTTCATG 1200 TGTAGGTCAT TTTCAAGAAG GCTGTTCAAA AAATCAAATA TCAGAACCAG GAGTGAAAGC 1260 ATCAGATCAC TGCAAAGTGT GAGAAGATCG GAAGTTCGCA TATATTATGA TTACACTGAT 1320 GTGTAGGCCT TTTATTGTTT GTTGGAATCG ATATGTACAA AGTGTAAATA AATGTTTCTT TTCATTATCC TTAAAAAAAA AA 35 Seq ID NO: 152 Protein sequence: Protein Accession #: NP_076404 40 31 MGFNLTLAKL PNNELHGQES HNSGNRSDGP GKNTTLHNEF DTIVLPVLYL IIFVASILLN 60 GLAVWIFFHI RNKTSFIFYL KNIVVADLIM TLTFPFRIVH DAGFGPWYFK FILCRYTSVL 120 FYANMYTSIV FLGLISIDRY LKVVKPFGDS RMYSITFTKV LSVCVWVIMA VLSLPNIILT 180 45 NGOPTEDNIH DCSKLKSPLG VKWHTAVTYV NSCLFVAVLV ILIGCYIAIS RYIHKSSRQF 240 ISQSSRKRKH NQSIRVVVAV PFTCFLPYHL CRIPFTFSHL DRLLDESAQK ILYYCKEITL 300 FLSACNVCLD PITYFFMCRS FSRRLFKKSN IRTRSESIRS LQSVRRSEVR IYYDYTDV Seq ID NO: 153 DNA sequence 50 Nucleic Acid Accession #: D80008.1 Coding sequence: 149-739 41 21 31 55 GTTCGGCGCC AAAGCGCGGA GCGGAGGCCG AGGCGAGAGC CTGGCGCTGT AGGACTAGAA CGAAAGGAGT GAGGCGCCGA GAGCCCAGAT ACCATTTTGG CGTGAGAGCT GGTGGTTGGC 120 AAGGCCGCGG GAGTGGGAAG CGTCCGCCAT GTTCTGCGAA AAAGCCATGG AACTGATCCG 180 CGAGCTGCAT CGCGCGCCCG AAGGGCAACT GCCTGCCTTC AACGAGGATG GACTCAGACA 240 AGTTCTGGAG GAGATGAAAG CTTTGTATGA ACAAAACCAG TCTGATGTGA ATGAAGCAAA GTCAGGTGGA CGAAGTGATT TGATACCAAC TATCAAATTT CGACACTGTT CTCTGTTAAG 300 60 360 AAATCGACGC TGCACTGTAG CATACCTGTA TGACCGCTTG CTTCGGATCA GAGCACTCAG ATGGGAATAT GGTAGCGTCT TGCCAAATGC ATTACGATTT CACATGGCTG CTGAAGAAAT 420 480 GGAGTGGTTT AATAATTATA AAAGATCTCT TGCTACTTAT ATGAGGTCAC TGGGAGGAGA 540 TGAAGGTTTG GACATTACAC AGGATATGAA ACCACCAAAA AGCCTATATA TTGAAGTCCG 600 65 GTGTCTAAAA GACTATGGAG AATTTGAAGT TGATGATGGC ACTTCAGTCC TATTAAAAAA 660 AAATAGCCAG CACTTTTTAC CTCGATGGAA ATGTGAGCAG CTGATCAGAC AAGGAGTCCT 720 GGAGCACATC CTGTCATGAC CATGCGCCGA GGCACTTCCA GGCTTCACTC AACTCATGGA 780 CTCCTCTGTA CTCACTCTC CCACCACTCC CTTCACCTCC CTCTTTGATT TTAGAAGCTA 840 TAGACATTGT TTAAGATAAC TAAGAATACT TGGCTAAGAA GTATAATTTG CTAACTATTA 900 70 AGGACTITCT TITTITAATG TIGTACACTA TICTICCTAC TCTTTTTTGG TITTGGTTTT 960 GTTTTGTAGA GACTGTCTCA CTATGTTGCC CAAGCTGGTC TCAAACTCCT GGCCTCAAGC 1020 AGTCCTCCCA CCTTAGCTTC TCAAAGTGTT GAGATCACAG GCGTGAGCCA CTGCACCCGG 1080 CCCCTACTCC TTTTTCTAAT AAGCTGTATC TGTAATCACA GCATTCCTAC AGTTGTTACA 1140 GTGTGTTTTT TAAATGAAAG TAAACATGGT TACATTTGAA TCTCTTAAAT AAGCAGTCAC 1200 75 TTGGCTGGAC AGGAAGAAGG TAGATCCTGT GTGTCTTGTT TTCTGGTCAT GTGTATTGTA 1260 CAAGCTAGAG AGCTGAATTT CTGAGATACA CATTTTCAAA TCACATGCAA GTGAAGATGA 1320 TGGTCTGTAG AAATTTTCAG TATATATAAT GTTTAATGAC ATACTAATTT ATCATCTGGC 1380 TATTTGGGAA GGAAGGACAC ACATGGATTT TGCACATTTC CACCATGGTG GCTGGTGTGG 1440 CTTGTGGCTA TGGGGTGATC ACCAGTATCA CCACTTTGGA AGGGGACAGT GAAATTGGGG 80 CTAGAGAAGG AACTTTGTAC AGTTTTCCCT GAGATTCAGA TTGACTGAAA AGTCACATGA 1560 AGAGTTGATT GTCTTTTAAT GGTATGTTTT AAACAGCTGA CATTTTAAAT TTTGATGAAA 1620 TCCAGTTTAT TCGTTTGTTC TTTTATGCTT TGGGTGTTGC ATCCGAGAAA TCTTTTCCCA
TCCCAAGATC ACAATTTTT TTCCTTTTTA CTTCTAGAAG TGTTATAATT TTAAGCTTTA 85 GTTTTGAGAT GGAGTCTTGT TCTGTCACCC AGGCTGGGGT GCAGTGGCGT GATCTTGGCT 1860 CACTGCAATC TCTATCCCCT GGGTTCAAGT GATTCTCTTG TCTCAGCCTC CCAAGTAGCT 1920 GGGATTACAG GCACAGGCCG CCACGCCTGG CTAATTTTTG TATTTTTAGT AGAGACAGAG 1980

LDRKCLQIQA LNMSSCPLDS KGKVCSGHGV CSNEATCICD PTWAGTDCSI RDPVRNLHPP

```
WO 02/086443
      TTTTACCATG TTGGCCAGGC TGGTTTCAAA CTCCTGACCT CAAGTGACCC ACCTTGGCCT
                                                                        2040
      CCCAAAGTTT TGGGATTACA AGTGTGGGCC ACCGCGGCCA GCCTATGATC CATTTTGAAT
                                                                         2100
      GAATTTTTTA TATGGIGCAA GGTGTCAATC CACCTTCACT TTTTCTTGGG AATATAGATA
                                                                         2160
      TCCAGCTGTT TCACTACCAT TTTTTGAAAG GACTGCCCTT TGCTCTATCA CCTTTGCATT
                                                                         2220
 5
      TTTGTTAAAA AGTAGTTGTC AATGTATATG TGGGTTTATT TCAGGACTCT GTTTTGTTCC
                                                                         2280
      ATTGACCTGT TTTTCTCTCC TGAATGCCAA TACCATATTT GTATGTAGTG TATGTAATTT
                                                                         2340
      TCTAATAATT CTTGAAACAG ATAGTATTAA TGTGTCATAT TTTTGCTGTT GTTTGTATTT
                                                                         2400
      TTTGTAGAGA TGGGGTTTCA CCGTGTTGGC CAGGCTGTGT TGAACTCCTG AGCTAAAGCA
                                                                         2460
      ATACACTTGC CTCGTCCTCC CCATGTGCTG GGATTACAGG CGTGAGCCTT GGTGCTGGCC
                                                                         2520
10
       CAGTGTACCA CATTTCTTTT TGAGATTTGT TTTGGCTATG TTAAGTCCTT TGCTTTTGAT
                                                                         2580
      GTGAAATTTG GGAACAGGCA GGGTGTGGTG GCTTATGCCT GTAATCCTAG AACTTTGGGA
                                                                         2640
       GGCCTAGATG GGTGGATCAC TTGAGCTCAG GAGTTCCAGA CCAGCCCGGG CCTATGGCAA
                                                                         2700
      AACTCCGTCT CTACAAAAA TAGAAAAAT TAGCCAGGTG TGGTGGTGCA TGCCTGTAGT
                                                                         2760
      CACAGTTACA CGGCAGGCTG AGGTGGGAGG ATCACTTGAA CCCCAGAGGT CAAGACTGCA
15
       GTGAGCTGAG ATCACACCAC TGTACTCCAG CCTGGGTGAC AAAGTGAGAC TCTATCTCAA
      AAAGAAATTA GGATCAATTT GTCAATTTCT ACAACAACAA CAACAAAAAC CCCTGTTGGG
                                                                         2940
      CACCTTGATT GAGATTGCAT TGAATTTATA TAAAACTGTT GGGAGAATTG ACATCTTAAT
                                                                         3000
      AATATTGAGT CTTCTGGCCT ATAAACAAGG TCTGTCTTCC TAGGTATTAA TGTTTTGTCT
                                                                         3060
       TCTATTTCTC TTAATAATCT TTTGTAGTTT TCAGTGTACA GGTCTACCAT GTCAGCATTT
                                                                         3120
      CATAGTTTTG ATGCTAAATG GTATTTTAAA ATTTCAAATT CTAACCACTT GTTGCTAGTA
20
                                                                         3180
      AATAGAAATA CAATTGATGT TGAACTTGTA TCCTTCAGCC TTGCTAAACT GTGAGTTCTC
                                                                         3240
      ATGGTGTTTT TGTAAATTAC ATCAACAGTC ATGTGTTCTA TGAATAAAGA GTTTTACTCC 3300
25
       Seq ID NO: 154 Protein sequence:
       Protein Accession #: BAA11503.1
                                                   41
                                                             51
                 11
                             21
                                       31
30
      MFCEKAMELI RELHRAPEGO LPAFNEDGLR QVLEEMKALY EQNOSDVNEA KSGGRSDLIP
                                                                           60
      TIKFRHCSLL RNRRCTVAYL YDRLLRIRAL RWEYGSVLPN ALRFHMAAEE MEWFNNYKRS
                                                                          120
       LATYMRSLGG DEGLDITQDM KPPKSLYIEV RCLKDYGEFE VDDGTSVLLK KNSQHFLPRW
                                                                          180
      KCEOLIROGV LEHILS
35
       Seq ID NO: 155 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 149-709
                                                             51
                                                   41
                                       31
40
       GTTCGGCGCC AAAGCGCGGA GCGGAGGCCG AGGCGAGAGC CTGGCGCTGT AGGACTAGAA
       CGAAAGGAGT GAGGCGCCGA GAGCCCAGAT ACCATTTTGG CGTGAGAGCT GGTGGTTGGC
                                                                          120
       AAGGCCGCGG GAGTGGGAAG CGTCCGCCAT GTTCTGCGAA AAAGCCATGG AACTGATCCG
                                                                          180
       CGAGCTGCAT CGCGCGCCCG AAGGGCAACT GCCTGCCTTC AACGAGGATG GACTCAGACA
                                                                          240
45
       AGTTCTGGAG GAGATGAAAG CTTTGTATGA ACAAAACCAG TCTGATGTGA ATGAAGCAAA
                                                                          300
       GTCAGGTGGA CGAAGTGATT TGATACCAAC TATCAAATTT CGACACTGTT CTCTGTTAAG
                                                                          360
       AAATCGACGC TGCACTGTAG CATACCTGTA TGACCGCTTG CTTCGGATCA GAGCACTCAG
                                                                          420
       ATGGGAATAT GGTAGCGTCT TGCCAAATGC ATTACGATTT CACATGGCTG CTGAAGAAAT
                                                                          480
       GGAGTGGTTT AATAATTATA AAAGATCTCT TGCTACTTAT ATGAGGTCAC TGGGAGGAGA
                                                                          540
50
       TGAAGGTTTG GACATTACAC AGGATATGAA ACCACCAAAA AGCCTATATA TTGAAGCTGG
                                                                          600
       ATGCAGTGGC GCGATCTCGG CTCAACCTGC AACCTCCACC TCCCAGGTTC ACCTCAACTG
                                                                          660
       CAACCTCCAC CTCCCAGGTC CGGTGTCTAA AAGACTATGG AGAATTTGAA GTTGATGATG
                                                                          720
       GCACTTCAGT CCTATTAAAA AAAAATAGCC AGCACTTTTT ACCTCGATGG AAATGTGAGC
                                                                          780
       AGCTGATCAG ACAAGGAGTC CTGGAGCACA TCCTGTCATG ACCATGCGCC GAGGCACTTC
                                                                          840
55
       CAGGCTTCAC TCAACTCATG GACTCCTCTG TACTCACTCT CTCCACCACT CCCTTCACCT
                                                                          900
       CCCTCTTTGA TTTTAGAAGC TATAGACATT GTTTAAGATA ACTAAGAATA CTTGGCTAAG
                                                                          960
       AAGTATAATT TGCTAACTAT TAAGGACTTT CTTTTTTTAA TGTTGTACAC TATTCTTCCT
                                                                         1020
       ACTOTTTTT GGTTTTGGTT TTGTTTTGTA GAGACTGTCT CACTATGTTG CCCAAGCTGG
       TCTCAAACTC CTGGCCTCAA GCAGTCCTCC CACCTTAGCT TCTCAAAGTG TTGAGATCAC
60
       AGGCGTGAGC CACTGCACCC GGCCCCTACT CCTTTTTCTA ATAAGCTGTA TCTGTAATCA
       CAGCATTCCT ACAGTTGTTA CAGTGTGTTT TTTAAATGAA AGTAAACATG GTTACATTTG
                                                                         1260
       AATCTCTTAA ATAAGCAGTC ACTTGGCTGG ACAGGAAGAA GGTAGATCCT GTGTGTCTTG
                                                                         1320
       TTTTCTGGTC ATGTGTATTG TACAAGCTAG AGAGCTGAAT TTCTGAGATA CACATTTCA
                                                                         1380
       AATCACATGC AAGTGAAGAT GATGGTCTGT AGAAATTTTC AGTATATATA ATGTTTAATG
65
       ACATACTAAT TTATCATCTG GCTATTTGGG AAGGAAGGAC ACACATGGAT TTTGCACATT
                                                                         1500
       TCCACCATGG TGGCTGGTGT GGCTTGTGGC TATGGGGTGA TCACCAGTAT CACCACTTTG
                                                                         1560
       GAAGGGGACA GTGAAATTGG GGCTAGAGAA GGAACTTTGT ACAGTTTTCC CTGAGATTCA
                                                                         1620
       GATTGACTGA AAAGTCACAT GAAGAGTTGA TTGTCTTTTA ATGGTATGTT TTAAACAGCT
                                                                         1680
       GACATTITAA ATTITGATGA AATCCAGTIT ATTCGTTTGT TCTTTTATGC TTTGGGTGTT
                                                                         1740
70
       GCATCCGAGA AATCTTTTCC CATCCCAAGA TCACAATTTT TTTTCCTTTT TACTTCTAGA
                                                                         1800
       1860
       TTGTTTTTC GTTTGTTTCT TTGTTTTGAG ATGGAGTCTT GTTCTGTCAC CCAGGCTGGG
                                                                         1920
       GTGCAGTGGC GTGATCTTGG CTCACTGCAA TCTCTATCCC CTGGGTTCAA GTGATTCTCT
                                                                         1980
       TGTCTCAGCC TCCCAAGTAG CTGGGATTAC AGGCACAGGC CGCCACGCCT GGCTAATTTT
                                                                         2040
75
       TGTATTTTTA GTAGAGACAG AGTTTTACCA TGTTGGCCAG GCTGGTTTCA AACTCCTGAC
                                                                         2100
       CTCAAGTGAC CCACCTTGGC CTCCCAAAGT TTTGGGATTA CAAGTGTGGG CCACCGCGGC
                                                                         2160
       CAGCCTATGA TCCATTTTGA ATGAATTTTT TATATGGTGC AAGGTGTCAA TCCACCTTCA
                                                                         2220
       CTTTTTCTTG GGAATATAGA TATCCAGCTG TTTCACTACC ATTTTTTGAA AGGACTGCCC
                                                                         2280
       TTTGCTCTAT CACCTTTGCA TTTTTGTTAA AAAGTAGTTG TCAATGTATA TGTGGGTTTA
                                                                         2340
80
       TTTCAGGACT CTGTTTTGTT CCATTGACCT GTTTTTCTCT CCTGAATGCC AATACCATAT
                                                                         2400
       TTGTATGTAG TGTATGTAAT TTTCTAATAA TTCTTGAAAC AGATAGTATT AATGTGTCAT
                                                                         2460
       ATTTTTGCTG TTGTTTGTAT TTTTTGTAGA GATGGGGTTT CACCGTGTTG GCCAGGCTGT
                                                                         2520
       GTTGAACTCC TGAGCTAAAG CAATACACTT GCCTCGTCCT CCCCATGTGC TGGGATTACA
                                                                         2580
       GGCGTGAGCC TTGGTGCTGG CCCAGTGTAC CACATTTCTT TTTGAGATTT GTTTTGGCTA
                                                                         2640
85
       TGTTAAGTCC TTTGCTTTTG ATGTGAAATT TGGGAACAGG CAGGGTGTGG TGGCTTATGC
                                                                         2700
       CTGTAATCCT AGAACTTTGG GAGGCCTAGA TGGGTGGATC ACTTGAGCTC AGGAGTTCCA
                                                                         2760
       GACCAGCCCG GGCCTATGGC AAAACTCCGT CTCTACAAAA AATAGAAAAA ATTAGCCAGG
```

```
TGTGGTGGTG CATGCCTGTA GTCACAGTTA CACGGCAGGC TGAGGTGGGA GGATCACTTG 2880
       AACCCCAGAG GTCAAGACTG CAGTGAGCTG AGATCACACC ACTGTACTCC AGCCTGGGTG
                                                                            2940
       ACAAAGTGAG ACTCTATCTC AAAAAGAAAT TAGGATCAAT TTGTCAATTT CTACAACAAC
                                                                            3000
       AACAACAAAA ACCCCTGTTG GGCACCTTGA TTGAGATTGC ATTGAATTTA TATAAAACTG
                                                                             3060
 5
       TTGGGAGAAT TGACATCTTA ATAATATTGA GTCTTCTGGC CTATAAACAA GGTCTGTCTT
                                                                            3120
       CCTAGGTATT AATGTTTTGT CTTCTATTTC TCTTAATAAT CTTTTTAGT TTTCAGTGTA
CAGGTCTACC ATGTCAGCAT TTCATAGTTT TGATGCTAAA TGGTATTTTA AAATTTCAAA
                                                                             3180
                                                                            3240
       TTCTAACCAC TTGTTGCTAG TAAATAGAAA TACAATTGAT GTTGAACTTG TATCCTTCAG 3300
CCTTGCTAAA CTGTGAGTTC TCATGGTGTT TTTGTAAATT ACATCAACAG TCATGTGTTC 3360
10
       TATGAATAAA GAGTTTTACT CCTTC
       Seq ID NO: 156 Protein sequence:
       Protein Accession #: Eos sequence
15
                                          31
                                                     41
                                                                51
                              21
       MPCEKAMELI RELHRAPEGO LPAFNEDGLR QVLEEMKALY EQNOSDVNEA KSGGRSDLIP
                                                                               60
       TIKFRHCSLL RNRRCTVAYL YDRLLRIRAL RWEYGSVLPN ALRFHMAAEE MEWFNNYKRS
                                                                              120
       LATYMRSLGG DEGLDITODM KPPKSLYIEA GCSGAISAQP ATSTSQVHLN CNLHLPGPVS
20
       KRLWRI
       Seq ID NO: 157 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 148-621
25
                                          31
                                                     41
                                                                51
       TTCGGCGCCA AAGCGCGGAG CGGAGGCCGA GGCGAGAGCC TGGCGCTGTA GGACTAGAAC
                                                                               60
       GAAAGGAGTG AGGCGCCGAG AGCCCAGATA CCATTTTGGC GTGAGAGCTG GTGGTTGGCA
                                                                              120
30
       AGGCCGCGGG AGTGGGAAGC GTCCGCCATG TTCTGCGAAA AAGCCATGGA ACTGATCCGC
                                                                              180
       GAGCTGCATC GCGCGCCCGA AGGGCAACTG CCTGCCTTCA ACGAGGATGG ACTCAGACAA
                                                                              240
       GTTCTGGAGG AGATGAAAGC TTTGTATGAA CAAAACCAGT CTGATGTGAA TGAAGCAAAG
                                                                              300
       TCAGGTGGAC GAAGTGATTT GATACCAACT ATCAAATTTC GACACTGTTC TCTGTTAAGA
       AATCGACGCT GCACTGTAGC ATACCTGTAT GACCGCTTGC TTCGGATCAG AGCACTCAGA
                                                                              420
35
       TGGGAATATG GTAGCGTCTT GCCAAATGCA TTACGATTTC ACATGGCTGC TGAAGAAGTC
       CGGTGTCTAA AAGACTATGG AGAATTTGAA GTTGATGATG GCACTTCAGT CCTATTAAAA
       AAAAATAGCC AGCACTTTTT ACCTCGATGG AAATGTGAGC AGCTGATCAG ACAAGGAGTC
       CTGGAGCACA TCCTGTCATG ACCATGCGCC GAGGCACTTC CAGGCTTCAC TCAACTCATG
                                                                              660
       GACTCCTCTG TACTCACTCT CTCCACCACT CCCTTCACCT CCCTCTTTGA TTTTAGAAGC
                                                                              720
40
       TATAGACATT GTTTAAGATA ACTAAGAATA CTTGGCTAAG AAGTATAATT TGCTAACTAT TAAGGACTTT CTTTTTTTAA TGTTGTACAC TATTCTTCCT ACTCTTTTTT GGTTTTGGTT
                                                                              780
                                                                              840
       TTGTTTTGTA GAGACTGTCT CACTATGTTG CCCAAGCTGG TCTCAAACTC CTGGCCTCAA
                                                                              900
       GCAGTCCTCC CACCTTAGCT TCTCAAAGTG TTGAGATCAC AGGCGTGAGC CACTGCACCC
                                                                              960
       GGCCCCTACT CCTTTTCTA ATAAGCTGTA TCTGTAATCA CAGCATTCCT ACAGTTGTTA
                                                                            1020
45
       CAGTGTGTTT TTTAAATGAA AGTAAACATG GTTACATTTG AATCTCTTAA ATAAGCAGTC
                                                                            1080
       ACTTGGCTGG ACAGGAAGAA GGTAGATCCT GTGTGTCTTG TTTTCTGGTC ATGTGTATTG
                                                                            1140
       TACAAGCTAG AGAGCTGAAT TTCTGAGATA CACATTTTCA AATCACATGC AAGTGAAGAT
                                                                            1200
       GATGGTCTGT AGAAATTTTC AGTATATATA ATGTTTAATG ACATACTAAT TTATCATCTG
                                                                            1260
       GCTATTTGGG AAGGAAGGAC ACACATGGAT TTTGCACATT TCCACCATGG TGGCTGGTGT
                                                                            1320
50
       GGCTTGTGGC TATGGGGTGA TCACCAGTAT CACCACTTTG GAAGGGGACA GTGAAATTGG
                                                                            1380
       GGCTAGAGAA GGAACTTTGT ACAGTTTTCC CTGAGATTCA GATTGACTGA AAAGTCACAT
                                                                            1440
       GAAGAGTTGA TTGTCTTTTA ATGGTATGTT TTAAACAGCT GACATTTTAA ATTTTGATGA
                                                                            1500
       AATCCAGTTT ATTCGTTTGT TCTTTTATGC TTTGGGTGTT GCATCCGAGA AATCTTTTCC
                                                                            1560
       CATCCCAAGA TCACAATTTT TTTTCCTTTT TACTTCTAGA AGTGTTATAA TTTTAAGCTT
                                                                            1620
55
       1680
       TTGTTTTGAG ATGGAGTCTT GTTCTGTCAC CCAGGCTGGG GTGCAGTGGC GTGATCTTGG
                                                                            1740
       CTCACTGCAA TCTCTATCCC CTGGGTTCAA GTGATTCTCT TGTCTCAGCC TCCCAAGTAG
                                                                            1800
       CTGGGATTAC AGGCACAGGC CGCCACGCCT GGCTAATTTT TGTATTTTTA GTAGAGACAG
       AGTTTTACCA TGTTGGCCAG GCTGGTTTCA AACTCCTGAC CTCAAGTGAC CCACCTTGGC
                                                                            1920
60
       CTCCCAAAGT TTTGGGATTA CAAGTGTGGG CCACCGCGGC CAGCCTATGA TCCATTTTGA
       ATGAATTTT TATATGGTGC AAGGTGTCAA TCCACCTTCA CTTTTTCTTG GGAATATAGA
                                                                            2040
       TATCCAGCTG TTTCACTACC ATTTTTTGAA AGGACTGCCC TTTGCTCTAT CACCTTTGCA
                                                                            2100
       TTTTTGTTAA AAAGTAGTTG TCAATGTATA TGTGGGTTTA TTTCAGGACT CTGTTTTGTT
                                                                            2160
       CCATTGACCT GTTTTCTCT CCTGAATGCC AATACCATAT TTGTATGTAG TGTATGTAAT
                                                                            2220
65
       TTTCTAATAA TTCTTGAAAC AGATAGTATT AATGTGTCAT ATTTTTGCTG TTGTTTGTAT
                                                                            2280
       TTTTTGTAGA GATGGGGTTT CACCGTGTTG GCCAGGCTGT GTTGAACTCC TGAGCTAAAG
                                                                            2340
       CAATACACTT GCCTCGTCCT CCCCATGTGC TGGGATTACA GGCGTGAGCC TTGGTGCTGG
                                                                            2400
       CCCAGTGTAC CACATTCTT TTTGAGATTT GTTTTGGCTA TGTTAAGTCC TTTGCTTTTG
                                                                            2460
       ATGTGAAATT TGGGAACAGG CAGGGTGTGG TGGCTTATGC CTGTAATCCT AGAACTTTGG
                                                                            2520
70
       GAGGCCTAGA TGGGTGGATC ACTTGAGCTC AGGAGTTCCA GACCAGCCCG GGCCTATGGC
                                                                            2580
       AAAACTCCGT CTCTACAAAA AATAGAAAAA ATTAGCCAGG TGTGGTGGTG CATGCCTGTA
                                                                            2640
       GTCACAGTTA CACGGCAGGC TGAGGTGGGA GGATCACTTG AACCCCAGAG GTCAAGACTG
                                                                            2700
       CAGTGAGCTG AGATCACACC ACTGTACTCC AGCCTGGGTG ACAAAGTGAG ACTCTATCTC
                                                                            2760
       AAAAAGAAT TAGGATCAAT TTGTCAATTT CTACAACAAC AACAACAAA ACCCCTGTTG
                                                                            2820
75
       GGCACCTTGA TTGAGATTGC ATTGAATTTA TATAAAACTG TTGGGAGAAT TGACATCTTA
                                                                            2880
       ATAATATTGA GTCTTCTGGC CTATAAACAA GGTCTGTCTT CCTAGGTATT AATGTTTTGT
                                                                            2940
       CTTCTATTTC TCTTAATAAT CTTTTGTAGT TTTCAGTGTA CAGGTCTACC ATGTCAGCAT
                                                                            3000
       TTCATAGTTT TGATGCTAAA TGGTATTTTA AAATTTCAAA TTCTAACCAC TTGTTGCTAG
                                                                            3060
       TAAATAGAAA TACAATTGAT GTTGAACTTG TATCCTTCAG CCTTGCTAAA CTGTGAGTTC
                                                                            3120
80
       TCATGGTGTT TTTGTAAATT ACATCAACAG TCATGTGTTC TATGAATAAA GAGTTTTACT
                                                                            3180
       Seq ID NO: 158 Protein sequence:
       Protein Accession #: Eos sequence
85
```

WO 02/086443

MFCEKAMELI RELHRAPEGQ LPAFNEDGLR QVLEEMKALY EQNQSDVNEA KSGGRSDLIP
TIKFRHCSLL RNRRCTVAYL YDRLLRIRAL RWEYGSVLPN ALRFHMAAEE VRCLKDYGEF
EVDDGTSVLL KKNSQHFLPR WKCEQLIRQG VLEHILS

	TIKFRHCSLL	RNRRCTVAYL KKNSQHFLPR	YDRLLRIRAL	RWEYGSVLPN	ALRFHMAAEE	VRCLKDYGEP	120
5	Nucleic Aci	159 DNA sec id Accession Jence: 149-2	ı #: Eos se	quence			
4.0	1	11	21	31	41	51	
10	1	1		1	1]	
		AAAGCGCGGA GAGGCGCCGA					60 120
		GAGGGGGAAG					180
4.5	CGAGCTGCAT	CGCGCGCCCG	AAGGGCAACT	GCCTGCCTTC	AACAATTAGC	TGGGTGTGGT	240
15		TGTAGTCCCA					300
		ACTGCAGTGA TCTCAAAAAG					360 420
		TGAACAAAAC					480
•	GTAGCATACC	TGTATGACCG	CTTGCTTCGG	ATCAGAGCAC	TCAGATGG		
20 .		160 Proteir cession #: F	_	•			
0.5	1	11	21	31	41	51	
25	h morrowcoc	 AAAAAGCCAT	CCAACTCATC	CCCCACCTCC	ATCCCCCCC	CCAACCCCAA	60
		TCAACAATTA		CGCGAGCIGC	ATCGCGCGCC	CGAAGGCAA	60
30		161 DNA sec id Accession				•	
30		ience: 1333-					
	1	11	21	31	41	51	
35	 GGATCCGGCC	GGATCTCAGG	GAGGTGAGGA	CTTTGTTCTC	AGAGGGTGTG	TGTGGACAAA	60
55		CCTGTGTTCG					120
		GGGAGGATCG					180
		CCCTACTGTC GGGATCACTG					240 300
40		GAGGGAGGGT					360
	CCCACTCACC	AAACACAGAG	GACCTAGCCC	CACCCTGCCC	CTTGTGTCAG	CTGAGGGAAG	420
		GATGGACTCC					480
		AGGGAGGGTT GACACATGGA					540 600
45	AACCCTGGGC	AGGTGTGGGC	AGATGTTGGT	TGGGGCATGT	CCTTCTGTTC	CATATCAGGG	660
•		CTGATCTGAG					720
		GTCAGGGCCC AGTGTCCAGC					780 840
		CCTAAGGGCC					900
50		GACAGTGTCC					960
		GTGTTCACCC GCACCTGGCC					1020 1080
		CACGCTGAGT					1140
<i></i>		CAGGAGCCCC					1200
55		GAACCTCCAA TGTGGGTCTC					1260 1320
		TCATGTCTCT					1380
	GAAGCCCAAG	GAGAGGACTT	GGGCCTGATG	GGTGCACAGG	AACCCACAGG	CGAGGAGGAG	1440
60		CCTCCTCTGA GTCCTCAGGG					1500 1560
00		ATGAGGGCTC					1620
	CCAGCTCAGC	TGGAGTTCAT	GTTCCAAGAA	GCACTGAAAT	TGAAGGTGGC	TGAGTTGGTT	1680
		TCCACAAATA AAAATTACAA					1740 1800
65		TCTTTGGCAC					1860
	CTTGTCACTG	CTCTTGGCCT	CTCGTGCGAT	AGCATGCTGG	GTGATGGTCA	TAGCATGCCC	1920
		TCCTGATCAT					1980
		TCTGGGAAGC AGCCCAGGAA					2040 2100
70	TACCGGCAGG	TGCCCGGCAG	TGATCCTGCG	CACTACGAGT	TCCTGTGGGG	TTCCAAGGCC	2160
		CCAGCTATGA					2220
		ACCCATCCCT CAGCCGGGGC					2280 2340
		ACATGAGGCC					2400
75	CAGTGGCAGT	GGGTGGAAGT	GAGCACACTG	TATGTCATCT	CTGGGTTCCT	TGTCTATTGG	2460
		GATTTATCCT ACTTCACCAT					2520 2580
		GGAGTAAGAT					2640
0Λ	TGAATTGGGA	CAAGATAACA	TAGCAGAGGA	ATTAATAATT	TTTTTGAAAC	TTGAACTTAG	2700
80		GAGCTCATAA					2760 2820
		CTCTCCTGTA TGTAAGAGAA					2880
		AGACACGCAC					
0.5							

Seq ID NO: 162 Protein sequence: Protein Accession #: AAA68877.1

85

```
21
                                       31
                 11
                                                  41
                                                             51
      MSLEORSPHC KPDEDLEAGG EDLGLMGAGE PTGEEEETTS SSDSKREEVS AAGSSSPPQS
                                                                           60
      PQGGASSSIS VYYTLWSQFD EGSSSQEEEE PSSSVDPAQL EFMFQEALKL KVAELVHFLL
                                                                          120
      HKYRVKEPVT KAEMLESVIK NYKRYPPVIF GKASEFMQVI FGTDVKEVDP AGHSYILVTA
                                                                          180
      LGLSCDSMLG DGHSMPKAAL LIIVLGVILT KONCAPEEVI WEALSVMGVY VGKEHMFYGE
                                                                          240
      PRKLLTQDWV QENYLEYRQV PGSDPAHYEF LWGSKAHAET SYEKVINYLV MLNAREPICY
                                                                          300
      PSLYEEVLGE EQEGV
10
       Seq ID NO: 163 DNA sequence
      Nucleic Acid Accession #: AF292100
      Coding sequence: 30-809
15
                            21
                                       31
                                                  41
                                                             51
      GGGGGGGGAG AGGCCTGGAG GACACCAACA TGAACAAGTT GAAATCATCG CAGAAGGATA
                                                                           60
      AAGTTCGTCA GTTTATGATC TTCACACAAT CTAGTGAAAA AACAGCAGTA AGTTGTCTTT
                                                                          120
      CTCAAAATGA CTGGAAGTTA GATGTTGCAA CAGATAATTT TTTCCAAAAT CCTGAACTTT
                                                                          180
20
      ATATACGAGA GAGTGTAAAA GGATCATTGG ACAGGAAGAA GTTAGAACAG CTGTACAATA
                                                                          240
      GATACAAAGA CCCTCAAGAT GAGAATAAAA TTGGAATAGA TGGCATACAG CAGTTCTGTG
                                                                          300
      ATGACCTGGC ACTCGATCCA GCCAGCATTA GTGTGTTGAT TATTGCGTGG AAGTTCAGAG
                                                                          360
      CAGCAACACA GTGCGAGTTC TCCAAACAGG AGTTCATGGA TGGCATGACA GAATTAGGAT
                                                                          420
      GTGACAGCAT AGAACAACTA AAGGCCCAGA TACCCAAGAT GGAACAAGAA TTGAAAGAAC
25
       CAGGACGATT TAAGGATTTT TACCAGTTTA CTTTTAATTT TGCAAAGAAT CCAGGACAAA
                                                                          540
      AAGGATTAGA TCTAGAAATG GCCATTGCCT ACTGGAACTT AGTGCTTAAT GGAAGATTTA.
      AATTCTTAGA CTTATGGAAT AAATTTTTGT TGGAACATCA TAAACGATCA ATACCAAAAG
                                                                          660
      ACACTTGGAA TCTTCTTTTA GACTTCAGTA CGATGATTGC AGATGACATG TCTAATTATG
                                                                          720
      ATGAAGAAGG AGCATGGCCT GTTCTTATTG ATGACTTTGT GGAATTTGCA CGCCCTCAAA
30
      TTGCTGGGAC AAAAAGTACA ACAGTGTAGC ACTAAAGGAA CCTTTTAGAA TGTACATAGT
       900
      AGATCAATCC TCACAATTCA GACTGAGGGT TGAGACAAAA CTTTAAGGAT ACATCTTGGA
                                                                          960
       CCATATCGTA TTTCATTCTT CTAATGGTGG TTTGGGCTTG TCTTCTAGTC TGGGCCGCTC
                                                                         1020
      TAAACATTTA TAATTCCAAC ATTGTGGATT TCATCTTATA TCTGTGGACC ATCCTAGTTT
                                                                         1080
35
      ATTCTCCCAT AAGTCTTAGA AGCTTTATGG TGATTATTTT GAGGTTTTCA TTCTCGCATA
                                                                         1140
      AAGCACAATG CTGTCTTCAT CAGAAAACAG TTGGCATAAG AATTAAACAT ATGAACATCA
                                                                         1200
       CAAAACAATT TATAAAAACT TCTTAAATAT ACGCTTTGGG CTAGTTGCAA AGACTATGCT
                                                                         1260
       AATAGCACTT CCAGTGAGAG TGATATATTT AAGTGTACTG GATCTGGAAT GGTGTTTTGG
                                                                         1320
       TTTGGGGGGA ATTTTTTTT TTTCCTGGCA AATCACATAT GTTGTTGATG TGAGTATCTG
                                                                         1380
40
      ATGAAAAAC AATGTCAGAA TAACCGACAT GAAAATTTTT TAGGATAACT TGGTGCCTAC
                                                                         1440
       CTGAAAAATG TATTGTGTTT TAGACTCTTG ATTTCAAAAG GTTCCACAGA ACTAGTCTGC
                                                                         1500
       GCTTACCTTA CCCATGTTTA TATATAGCTG TCCTACAGGG AGCTTTTATT TAGAAAATGT
                                                                         1560
       CTGCATAATG TTAGATTCTT CTCCTGTCTA CATTATGCAC TACATAATTG GACTTCATTA
                                                                         1620
       TGCTTTTGAA ATGCTTATCT GCCTGTCACA TAAGTTAAAC TATTTAATTT GTTTTGAATG
                                                                         1680
45
       TTTTGGATTG CTACACAATA CAATATTCTA AATTTAGGCA TGAGGGTTTT TTTGTTTTAT
                                                                         1740
       TTTTACTTTT TTTTTGTCAT TGCACTATGG AACACAAATG AAATTCTCTT AATTTATAAG
                                                                         1800
       AAGATAGTAG GAGTTAAATT TTGAAAATGG TTGTGATGAG CCACGAAATT CAATCTTTAT
                                                                         1860
       AATATAGGTA CTGCTCTTC AGACAAACAG TCCATTTTTA ATGACTTCTT ATTTTGTTGA
                                                                         1920
       AATTACTTTA ACTGCTAATC ACTGTGGTTG CCAAATATTT ACTTCAGAAG CAAAGATTTT
                                                                         1980
50
       CAAACAAGCA TACACGATGC AAAATACCAG TCTGGCTTCT AGTCTATTTA CTGTTTTGTT
                                                                         2040
       TCACTCAGAT TAGCTCAGTT TTCTCATCAA AGCAGAATGC TATCTTGCGT GTGTGTGT
                                                                         2100
       2160
       TTTTTTTTT TTTTTTTAA ATTACAAAAG CCATGAGCTG CTTTTATGCT GAAAATGGTC
       ATTTCCCTGT TCACTTACTG ACATGTGAAG AAGGGTTTCT TGCTTTCTTA AACATTTCCG
55
       TAAGGCAGGC TAGAAATGTA ATACTTCAAA TGTTTGATGA TTATGGTCTT TTGATAGGAA
      TAGATTCTGC TTGGGATATA TATCCAGGCA CTCTCTAAGG TCTAGGGTTG ATATTAACAA AGGAATGTAC TTAGAATAGC AGTACATTTT ATGCAAATAT GGAAATTATT TTAAGAAACA
                                                                         2400
                                                                         2460
       ATGACATATC AAAACTGCTT TTTACATGAT TTTGAAATAG ACTAGAAAGC TTTCCCTATA
                                                                         2520
       GACATATTAA TATTCCAATC ATAACTTTAA TTCAAGAATG CAGTTTTACC AAAAGAAAAA
                                                                         2580
60
       TTTGAAAATT TCTATTCAGG CTACTGGAAT TGGTTATTAA AAGAAAAAGG AAAAAGAAGA
                                                                         2640
       ATCTTGCTGC TTTCAGTATT TCCTGATTTT TTTGTAAATA TAAAGAGGAA CTTCAATTAT
                                                                         2700
       GAAAAATTTT TAAAAGATAT ATATATCTAT ATATCTATAT ATATGTACTG TTTTGTTTCC
                                                                         2760
       TGTCTTGAAG ATTTTGAGTT ATGGTTATTG GTTTCAGATT GATTAATTCA CATATGCTGT
                                                                         2820
       GTTTTCTTTA AAAGTCATAT GGGTTCGTGG CCTAATGCCT TGGATTTTAC ATATTTTTCT
                                                                         2880
65
       TTTTAAATGC AAAACCTTTT CAACAAAATA GTGTTTGTCA TCAGGTTGGT ACTAAACATT
                                                                         2940
       TATAATTACT GTGTAATTAT AAACAAAAAT ACATAAAGCT TTGAATATAA TTATGTAGCA
                                                                         3000
       TAAAAGTTAA GGTTGTTCAC TATGATGGCA TCTTAGAATT AAACAAAACT TTTACTAGGG
                                                                         3060
       CTGAAAAGAG AAGACTGATT TAATGTGGTG TGATTATTCT GAAGATAAAT GTCTGGCTAC
                                                                         3120
      AGGGAATATT TTGTACTAAA AAATGATTAC ACATATGGCT GTGTGTGTTT GAGTCTGTGT
                                                                         3180
70
       CTGTGAGAGA GCCAGAGAGA GTGAGAGAGA TTGACAGAGA AAGGGAGAGA CACACACAC
                                                                         3240
       CCCCTTGAAT TGCTTTAACT CCTAAGTGTT TCAGTCCTCA TTCCGGTAAA CTCCCCATGC
                                                                         3300
       TGATTCTTTG TTTTAAACTG AACCATAGGT ACAGTTTCCT TTTTGCCAAA TGTCAAAACA
                                                                         3360
       GGTACAAATT TTAAAATGTA ATGCTTTTTA AATAGAAAAA TGTATAAAAT TAGAAGTGCC
                                                                         3420
                                                                         3480
       CACATATAAA AAATACTTGA GATGAAGATT ATCTTTAGTG AATATCATCT GCATATCTCT
75
                                                                         3540
      GTAAGTTCAA TTGTGTTTCT TACAGTCCCT GTCATATTAC CAACAGAGGC AATAAAAGCT
       GCAGTGAAAT TG
       Seq ID NO: 164 Protein sequence:
       Protein Accession #: AAG00606
80
       MNKLKSSQKD KVRQFMIFTQ SSEKTAVSCL SQNDWKLDVA TDNFFQNPEL YIRESVKGSL
       DRKKLEQLYN RYKDPODENK IGIDGIQQFC DDLALDPASI SVLIIAWKFR AATQCEFSKQ
85
       EFMDGMTELG CDSIEQLKAQ IPKMEQELKE PGRFKDFYQF TFNFAKNPGQ KGLDLEMAIA
       YWNLVLNGRF KFLDLWNKFL LEHHKRSIPK DTWNLLLDFS TMIADDMSNY DEEGAWPVLI
       DDFVEFARPO IAGTKSTTV
```

Seq ID NO: 165 DNA sequence Nucleic Acid Accession #: AF256215 Coding sequence: 220-2028

5	Coaing sequ	lence: 220-2	2028		•		
_	1	11	21	31	41	51	
	1	1	I	1	1	1	
	CTCCAGTCCG	CATGCTCAGT	AGCTGCTGCC	GCCGGGCTG	CGGGGCGCG	TCCGCTGCGC	60
10	GCCTACGGGC	TGCGGTGGCG	GCCGCCGCGG	CACCCGGCAG	GGCCCGCCAG	TCCCCGCTTC	120 180
10	CCTGCTCCAG	AGCCGCCGCC	TGGGCCGGGG	CAGGGCGGGC GCTCCTGCGA	TGGCGGCTCC	ACACCAGCT	240
	CAGCCGCCAG	GC1GCGGAGC	CACCAAGIG	AACCAGTGCA	TTGCTCCTCT	GGTTTCCAGC	300
	CCCCTCACTC	CAGGGACAAG	TODACACACA	ATGGGGTCTT	TCAGCTCACA	CATGACAGAG	360
	TTTCCACGAA	AACGCAAAGG	AAGTGATTCA	GACCCATCCC	AAGTGGAAGA	TGGTGAACAC	420
15	CAAGTTAAAA	TGAAGGCCTT	CAGAGAAGCT	CATAGCCAAA	CTGAAAAGCG	GAGGAGAGAT	480
	AAAATGAATA	ACCTGATTGA	AGAACTGTCT	GCAATGATCC	CTCAGTGCAA	CCCCATGGCG	540
	CGTAAACTGG	ACAAACTTAC	AGTTTTAAGA	ATGGCTGTTC	AACACTTGAG	ATCTTTAAAA	600
				TATAGACCAT			660
20	CTCAGACATT	TAATCCTTAA	GACTGCAGAA	GGCTTCTTAT	TTGTGGTTGG	ATGTGAAAGA	720 780
20	GGAAAAATTC	TCTTCGTTTC	TAAGTCAGTC	TCCAAAATAC CATCCAAAAG	ATCTTCCCAA	ACTARACCAA	840
				GAAAAGCTAA			900
	CAAGTTCACA	GTAATCTCCA	CGCTGGAAGG	ACACGTGTGT	ATTCTGGCTC	AAGACGATCT	960
				TCTGTCAAAG			1020
25	AACTCAAAGA	AGAAAGAGCA	CAGAAAATTC	TATACTATCC	ATTGCACTGG	TTACTTGAGA	1080
				GAAGAAAGGA			1140
				TTACAGCCAT			1200
				ATAACCCGGT			1260
30				TTAGGATATC GACCACAATA			1320 1380
50				ACAGATTCCT			1440
				TTTAGTTTCA			1500
				GTTTTGGGAC			1560
	TCATTTTTAC	CTTGTAGCTC	TCAATCATCA	GAAGAATCCT	CTAGACAGTC	CTGTATGAGT	1620
35				GGTGCTGGTA			1680
				TCTTCTTCAT			1740
				AACTGCAGGA			1800
				CTAGAGGCTA AGTGATGGTG			1860 1920
40				GCATTTATGA			1980
••				ATCCAGTGGA			2040
				TTATTTACGA			2100
	TTAAGTACTG	TATTGATATT	GTTTGTATCT	TTTATTAATG	TTCTACCACT	TTTTATAGAT	2160
. 4 =	TTGCATCTTC	CTGTCACAGG	GATGTGGGGA	AATACGTTTT	CCTCCCAAGA	GAACCAAGTT	2220
45				CTTATAATCC			2280
				CATATTGTTT			2340
				ATATTGATGT			2400
				AACATTTTCC AACAGTGAGT			2460 2520
50				TACTGTATTT			2580
				GAGCACTTTA			2640
				AGAGTTTCAG			2700
				CCTCTGCATA			2760
55				GTACTTTGGG			2820
33				CCAATATGGT			2880
				CTTGAGGTAA ATGACCTAAT			2940 3000
				CTTGAACCTG			3060
				GGCAACAGAG			3120
60						ATTAGGTTTT	
	TGACATTGGA	AACATACTTA	GGGATAGATT	TGTCCTAAAG	GAAAAAAGTA	GGCCCGGGCA	3240
						TTCATAGAGT	
						ACATTGGTCT	
65						AAGTAATTAG TACATGTTTA	
05						TTTAAAATTT	
						AAGAATTAAG	3600
						ACTTTCTGCT	
7 0						TGCCTCGCAA	3720
70						GTGGGCTTCA	
						TCAGAGCCCC	
						AGGTGATAGA	
						CCAAAGCAAA GGCACACTGT	3960 4020
75				TGGAGGTTGG.			4080
						AGATGGGGAG	4140
				TTAAGTCTAA			4200
				CTACCAATAT			4260
90				TCTGCCTAAG			4320
80						GATGCCAGGA	
				AGTGCTGCCT			4440
						CCAGTTGAAT AGATCCTTTT	
				GTATGATACC			4620
85						TTAGAAGTGA	
	CATATTTTTA	TGGTATACAC	TATGTTCCTT	TTTTCTACTG	CGAGTCAATT	TTTTGAATTT	4740
	TCGTGAGAAA	GAATATATCT	ACAAATTGCA	CGAAAGTATC	ATAAAAACAG	TACTCTAGAG	4800

```
WO 02/086443
      CAGCGCTGTC CAATAGAAAT ATAATCTGAG CCACATGTAT AATTTTATTT TCTTCTAGCC
                                                                        4860
      ACATTAAAGA AGTAAAAAGA TACAAGTAGA ACTAATTTTA ATGTTTTAAT TCAGTATATC
                                                                        4920
      CAAAATATCA TTTGAACATG TAATTAATAT AAAATTATTA ATGTGATATT TTACATTCTT
                                                                        4980
      TTGGTAATAC TAGTCTTCAA AATCTGGTAT GTATCTTACA TTGATAGCAC ATCTCACTTT
                                                                        5040
      GTACTAGCCA CATTGCAAGT GCTCAGTAGC CACATGTGGC TAGTGGCTAC TGCACTGGAC
                                                                        5100
      AGCACAGTTC TAGGTTCCAC CCTAACACCC AAGTCCTGTG GATTAGAATC CCAGAATCAG
                                                                        5160
      AGCTGGAAGT AAACATAGAG ATCAAACCTC CTTTTAAAAA TGAGGACGCT GAGGCACAGA
                                                                        5220
      GTTTAAATGG CTTGCATGAG GTCATACAGC TAAATTCAGC CTCAACAGGG TCTTCTGATT
                                                                        5280
      CCAGGCACTC TTCCCACTCC ACTACATTAC TGTAGTGGTA ATTCTTAGGG TTAAAAAAAG
10
      TGTAGAGTAG GCCGGGCGCA GTGGCTCATG CCTGTAATCC CAGCACTTTG GGAGGCCGAA
      GTGGGCGGAT CACGAGGTCA GGAGATCGAG ACCATCCTGG CCAACATGGT GAAACCCCGT
       CTCTACTGAA AATACAAAGC AAAATTAGCC AGGTGTGGTG GCGGGCGCCT GTGGTCCCAG
      CTGCTCTGGA GGCTGAGGCA GAATGGCGTG AACCCAGGAG GCAGAGATGG CAGTGAGCCA
      5640
15
      AAAAAAAAA AAGAAAAGAA AAGAAAAGTC TAGAGAACAT TATATTAAGT GGTTATTATT
                                                                        5700
      GAAGTAGACC AAAGTTTATA CCATAAGGAT ATTTTTCCTT AAATACCATG TTTGAAGAAC
                                                                        5760
      AATTATTTAT TGATCCTTGA ATCTGTAAGA TCAAATAACA AGTCTCTATC CATGTTACCA
                                                                        5820
      AATTTAACCT TTTGAAAATA ATAAACTTTA AAATATCAGA TGTGTTATTA CAGGATGATA
                                                                        5880
      CTTGGAATCA AGTGAAATGA GTTATATGGT CATCACTAAA TTTAGAAATC TATTGTGAAA
                                                                        5940
20
       CAAAGACAAA CAGGAAAGTA CAGAATAGAG ACTTTTAGTA AATAAATGGA ATTTAAAAGA
                                                                        6000
       AAGTGTTTAT TTACAGTGTC ACGACAGAAA AGGATGTCTT TGTTGTCATA GTCTTTGAGG
                                                                        6060
      GATCTCCGTA AAATCTGGGG CACAGGTACA AGAAATAGCC AATATTTAGT TCCCAGACCA
                                                                        6120
      TGTTTAGTAG TGTCCAGTTT CAGATCATGC TGCCAAGAGG TATCTCCCCC TCAGGTGGGT
                                                                        6180
      CATCACTGAG CCCTGGAATT GGAGACTCAT ACTTGCCCAG CACAATGTTA CGGGCAGACA
                                                                        6240
25
      GGCCGACATC TATGATTAGC TAGAAGCCAT AAAGAAAAGC TGCTAAGTGG CCACTAGGTG
                                                                        6300
      CCACTTTTCT GTTTTTGTAA TGCTTTCATT AGCAGATCTT TTTTTTCCAA GCTCCATGGG
                                                                        6360
      GCCTATGAGA GGCATTTATG ATTTTTGTGC CTACAATAAG TCAGCCTGTC TGGTGTGAGT
                                                                        6420
      TGTTTTATGA GAAATGCTTT CCAAGGGAGG TCTAGGAAGA TCCTGACACA TAAGAACTTT
                                                                        6480
      GGCTTAGAGA GCTTTCCAGG TGTAGTGCCA ATAAAAACTG ACCTGGAAAG AAAACCTGCC
                                                                        6540
30
      CAGCACGGAA CATGCTTTCT GAACTCACTT GAGAGTGTAT GGTGTATGTC ACTTCTCATA
      TATTCTTGAG TTTAGATTTG TCTTTTATAC AATTTTTAGC TCTTTTCCAG TTCACTTGTG
      CTCGTCTGTA TATTGGTATT TTTAAATTTT TGTGGTAAAT AATGAAAAGA GTGAAATTAT
      ATTTTATAAT TACTCATTTG TAGTTTTTTT TTTTAATTTA ATAAACTTCC TCCAAAAAGT
      GCTCCCTTAA AA
35
      Seq ID NO: 166 Protein sequence:
      Protein Accession #: AAG34652
40
                                       31
```

```
MAAEERAAAG GKVLREENQC IAPVVSSRVS PGTRPTAMGS FSSHMTEFPR KRKGSDSDPS
       QVEDGEHQVK MKAFREAHSQ TEKRRRDKMN NLIEELSAMI PQCNPMARKL DKLTVLRMAV
                                                                           120
       QHLRSLKGLT NSYVGSNYRP SPLQDNELRH LILKTAEGFL FVVGCERGKI LFVSKSVSKI
                                                                           180
45
       LNYDQASLTG QSLFDFLHPK DVAKVKEQLS SFDISPREKL IDAKTGLQVH SNLHAGRTRV
                                                                           240
       YSGSRRSFFC RIKSCKISVK EEHGCLPNSK KKEHRKFYTI HCTGYLRSWP PNIVGMEEER
                                                                           300
       NSKKDNSNFT CLVAIGRLQP YIVPQNSGEI NVKPTEFITR FAVNGKFVYV DQRATAILGY
                                                                           360
       LPQELLGTSC YEYFHQDDHN NLTDKHKAVL QSKEKILTDS YKFRAKDGSF VTLKSQWFSF
                                                                           420
       TNPWTKELEY IVSVNTLVLG HSEPGEASFL PCSSQSSEES SRQSCMSVPG MSTGTVLGAG
                                                                           480
50
       SIGTDIANEI LDLQRLQSSS YLDDSSPTGL MKDTHTVNCR SMSNKELFPP SPSEMGELEA
                                                                           540
       TRONOSTVAV HSHEPLLSDG AQLDFDALCD NDDTAMAAFM NYLEAEGGLG DPGDFSDIQW
```

Seg ID NO: 167 DNA sequence 55 Nucleic Acid Accession #: NM 014400 Coding sequence: 86-1126

	1 	11	21 	31 	41	51 	
60	GGTTACTCAT	CCTGGGCTCA	GGTAAGAGGG	CCCGAGCTCG	GAGGCGGCAC	ACCCAGGGGG	60
				CCCCGCCAGG			120
				GCTGCTTCGC			180
	GTGCTACAGC	TGCGTGCAGA	AAGCAGATGA	CGGATGCTCC	CCGAACAAGA	TGAAGACAGT	240
	GAAGTGCGCG	CCGGGCGTGG	ACGTCTGCAC	CGAGGCCGTG	GGGGCGGTGG	AGACCATCCA	300
65	CGGACAATTC	TCGCTGGCAG	TGCSGGGTTG	CGGTTCGGGA	CTCCCCGGCA	AGAATGACCG	360
	CGGCCTGGAT	CTTCACGGGC	TTCTGGCGTT	CATCCAGCTG	CAGCAATGCG	CTCAGGATCG	420
	CTGCAACGCC	AAGCTCAACC	TCACCTCGCG	GGCGCTCGAC	CCGGCAGGTA	ATGAGAGTGC	480
	ATACCCGCCC	AACGGCGTGG	AGTGCTACAG	CTGTGTGGGC	CTGAGCCGGG	AGGCGTGCCA	540
	GGGTACATCG	CCGCCGGTCG	TGAGCTGCTA	CAACGCCAGC	GATCATGTCT	ACAAGGGCTG	600
70	CTTCGACGGC	AACGTCACCT	TGACGGCAGC	TAATGTGACT	GTGTCCTTGC	CTGTCCGGGG	660
	CTGTGTCCAG	GATGAATTCT	GCACTCGGGA	TGGAGTAACA	GGCCCAGGGT	TCACGCTCAG	720
	TGGCTCCTGT	TGCCAGGGGT	CCCGCTGTAA	CTCTGACCTC	CGCAACAAGA	CCTACTTCTC	780
	CCCTCGAATC	CCACCCCTTG	TCCGGCTGCC	CCCTCCAGAG	CCCACGACTG	TGGCCTCAAC	840
7.5	CACATCTGTC	ACCACTTCTA	CCTCGGCCCC	AGTGAGACCC	ACATCCACCA	CCAAACCCAT	900
75	GCCAGCGCCA	ACCAGTCAGA	CTCCGAGACA	GGGAGTAGAA	CACGAGGCCT	CCCGGGATGA	960
	GGAGCCCAGG	TTGACTGGAG	GCGCCGCTGG	CCACCAGGAC	CGCAGCAATT	CAGGGCAGTA	1020
	TCCTGCAAAA	GGGGGGCCCC	AGCAGCCCCA	TAATAAAGGC	TGTGTGGCTC	CCACAGCTGG	1080
	ATTGGCAGCC	CTTCTGTTGG	CCGTGGCTGC	TGGTGTCCTA	CTGTGAGCTT	CTCCACCTGG	1140
00	AAATTTCCCT	CTCACCTACT	TCTCTGGCCC	TGGGTACCCC	TCTTCTCATC	ACTTCCTGTT	1200
80	CCCACCACTG	GACTGGGCTG	GCCCAGCCCC	TGTTTTTCCA	ACATTCCCCA	GTATCCCCAG	1260
	CTTCTGCTGC	GCTGGTTTGC	GGCTTTGGGA	AATAAAATAC	CGTTGTATAT	ATTCTGGCAG	1320
	GGGTGTTCTA	GCTTTTTGAG	GACAGCTCCT	GTATCCTTCT	CATCCTTGTC	TCTCCGCTTG	1380
•	TCCTCTTGTG	ATGTTAGGAC	AGAGTGAGAG	AAGTCAGCTG	TCACGGGGAA	GGTGAGAGAG	1440
0.5	AGGATGCTAA	GCTTCCTACT	CACTTTCTCC	TAGCCAGCCT	GGACTTTGGA	GCGTGGGGTG	1500
85	GGTGGGACAA	TGGCTCCCCA	CTCTAAGCAC	TGCCTCCCCT	ACTCCCCGCA	TCTTTGGGGA	1560
	ATCGGTTCCC	CATATGTCTT	CCTTACTAGA	CTGTGAGCTC	CTCGAGGGCA	GGGACCGTGC	1620

CTTATGTCTG TGTGTGATCA GTTTCTGGCA CATAAATGCC TCAATAAAGA TTTAATTACT 1680

Seg ID NO: 168 Protein sequence: Protein Accession #: NP_055215 5 MDPARKAGAQ AMIWTAGWLL LLLLRGGAQA LECYSCVQKA DDGCSPNKMK TVKCAPGVDV 60 CTEAVGAVET IHGQFSLAVX GCGSGLPGKN DRGLDLHGLL AFIQLQQCAQ DRCNAKLNLT 120 10 SRALDPAGNE SAYPPNGVEC YSCVGLSREA CQGTSPPVVS CYNASDHVYK GCFDGNVTLT 180 AANVTVSLPV RGCVQDEFCT RDGVTGPGFT LSGSCCQGSR CNSDLRNKTY FSPRIPPLVR LPPPEPTTVA STTSVTTSTS APVRPTSTTK PMPAPTSQTP RQGVEHEASR DEEPRLTGGA AGHQDRSNSG QYPAKGGPQQ PHNKGCVAPT AGLAALLLAV AAGVLL 15 Seq ID NO: 169 DNA sequence Nucleic Acid Accession #: NM_006875 Coding sequence: 186-1190 41 20 GAATTCGGCA CGAGCGCGCG GCGAATCTCA ACGCTGCGCC GTCTGCGGGC GCTTCCGGGC 60 120 CCCGGGCGTC CACGCCCTGC GGGCTTAGCG GGTTCAGTGG GCTCAATCTG CGCAGCGCCA 180 CCTCCATGTT GACCAAGCCT CTACAGGGGC CTCCCGCGCC CCCCGGGACC CCCACGCCGC 240 25 CGCCAGGAGG CAAGGATCGG GAAGCGTTCG AGGCCGAGTA TCGACTCGGC CCCCTCCTGG 300 GTAAGGGGGG CTTTGGCACC GTCTTCGCAG GACACCGCCT CACAGATCGA CTCCAGGTGG CCATCAAAGT GATTCCCCGG AATCGTGTGC TGGGCTGGTC CCCCTTGTCA GACTCAGTCA 420 CATGCCCACT CGAAGTCGCA CTGCTATGGA AAGTGGGTGC AGGTGGTGGG CACCCTGGCG TGATCCGCCT GCTTGACTGG TTTGAGACAC AGGAAGGCTT CATGCTGGTC CTCGAGCGGC 540 30 CTTTGCCCGC CCAGGATCTC TTTGACTATA TCACAGAGAA GGGCCCACTG GGTGAAGGCC CAAGCCGCTG CTTCTTTGGC CAAGTAGTGG CAGCCATCCA GCACTGCCAT TCCCGTGGAG 660 TTGTCCATCG TGACATCAAG GATGAGAACA TCCTGATAGA CCTACGCCGT GGCTGTGCCA 720 AACTCATTGA TTTTGGTTCT GGTGCCCTGC TTCATGATGA ACCCTACACT GACTTTGATG 780 GGACAAGGGT GTACAGCCCC CCAGAGTGGA TCTCTCGACA CCAGTACCAT GCACTCCCGG 840 35 CCACTGTCTG GTCACTGGGC ATCCTCCTCT ATGACATGGT GTGTGGGGAC ATTCCCTTTG 900 AGAGGGACCA GGAGATTCTG GAAGCTGAGC TCCACTTCCC AGCCCATGTC TCCCCAGACT 960 GCTGTGCCCT AATCCGCCGG TGCCTGGCCC CCAAACCTTC TTCCCGACCC TCACTGGAAG 1020 AGATCCTGCT GGACCCCTGG ATGCAAACAC CAGCCGAGGA TGTTACCCCT CAACCCCTCC 1080 1140 40 TGGCCCCCAA TGGTCAGAAG AGCCATCCCA TGGCCATGTC ACAGGGATAG ATGGACATTT 1200 GTTGACTTGG TTTTACAGGT CATTACCAGT CATTAAAGTC CAGTATTACT AAGGTAAGGG 1260 ATTGAGGATC AGGGGTTAGA AGACATAAAC CAAGTTTGCC CAGTTCCCTT CCCAATCCTA 1320 CAAAGGAGCC TTCCTCCCAG AACCTGTGGT CCCTGATTTT GGAGGGGGAA CTTCTTGCTT 1380 CTCATTTTGC TAAGGAAGTT TATTTTGGTG AAGTTGTTCC CATTTTGAGC CCCGGGACTC 1440 45 TTATTTTGAT GATGTGTCAC CCCACATTGG CACCTCCTAC TACCACCACA CAAACTTAGT 1500 TCATATGCTT TTACTTGGGC AAGGGTGCTT TCCTTCCAAT ACCCCAGTAG CTTTTATTTT 1560 AGTAAAGGGA CCCTTTCCCC TAGCCTAGGG TCCCATATTG GGTCAAGCTG CTTACCTGCC 1620 TCAGCCCAGG ATTTTTTATT TTGGGGGAGG TAATGCCCTG TTGTTACCCC AAGGCTTCTT 1680 TTTTTTTT TTTTTTTTG GGTGAGGGGA CCCTACTTTG TTATCCCAAG TGCTCTTATT 50 CTGGTGAGAA GAACCTTAAT TCCATAATTT GGGAAGGAAT GGAAGATGGA CACCACCGGA 1800 CACCACCAGA CAATAGGATG GGATGGATGG TTTTTTGGGG GATGGGCTAG GGGAAATAAG GCTTGCTGTT TGTTTTCCTG GGGCGCTCCC TCCAATTTTG CAGATTTTTG CAACCTCCTC 1920 CTGAGCCGGG ATTGTCCAAT TACTAAAATG TAAATAATCA CGTATTGTGG GGAGGGGAGT TCCAAGTGTG CCCTCCTTTT TTTTCCTGCC TGGATTATTT AAAAAGCCAT GTGTGGAAAC 55 CCACTATTTA ATAAAAGTAA TAGAATCAGA AAAAAAAAA AAAAAAAA Seg ID NO: 170 Protein seguence: Protein Accession #: NP_006866 60 MLTKPLOGPP APPGTPTPPP GGKDREAFEA EYRLGPLLGK GGFGTVFAGH RLTDRLOVAI 60 KVIPRNRVLG WSPLSDSVTC PLEVALLWKV GAGGGHPGVI RLLDWFETQE GFMLVLERPL 120 65 PAQDLFDYIT EKGPLGEGPS RCFFGQVVAA IQHCHSRGVV HRDIKDENIL IDLRRGCAKL 180 IDFGSGALLH DEPYTDFDGT RVYSPPEWIS RHQYHALPAT VWSLGILLYD MVCGDIPFER 240 DOEILEAELH FPAHVSPDCC ALIRRCLAPK PSSRPSLEEI LLDPWMQTPA EDVTPQPLQR 300 RPCPFGLVLA TLSLAWPGLA PNGQKSHPMA MSQG 70 Seq ID NO: 171 DNA sequence Nucleic Acid Accession #: NM_003646 Coding sequence: 89..2875 21 31 75 GCGGCGCGGA GCGGGCGTGC TGAGCCCCGG CCGCCGGCCC GGCATGGGCG TCTCCCGCGG GCCCTCCGCC GGCCGGGGCT AGGGCCGGAT GGAGCCGCGG GACGGTAGCC CCGAGGCCCG 120 GAGCAGCGAC TCCGAGTCGG CTTCCGCCTC GTCCAGCGGC TCCGAGCGCG ACGCCGGTCC 180 CGAGCCGGAC AAGGCGCCGC GGCGACTCAA CAAGCGGCGC TTCCCGGGGC TGCGGCTCTT 240 80 CGGGCACAGG AAAGCCATCA CCAAGTCGGG CCTCCAGCAC CTGGCCCCCC CTCCGCCCAC CCCTGGGGCC CCGTGCAGCG AGTCAGAGCG GCAGATCCGG AGTACAGTGG ACTGGAGCGA 360 GTCAGCGACA TATGGGGAGC ACATCTGGTT CGAGACCAAC GTGTCCGGGG ACTTCTGCTA CGTTGGGGAG CAGTACTGTG TAGCCAGGAT GCTGAAGTCA GTGTCTCGAA GAAAGTGCGC 480

AGCCTGCAAG ATTGTGGTGC ACACGCCCTG CATCGAGCAG CTGGAGAAGA TAAATTTCCG

CTGTAAGCCG TCCTTCCGTG AATCAGGCTC CAGGAATGTC CGCGAGCCAA CCTTTGTACG

GCACCACTGG GTACACAGAC GACGCCAGGA CGGCAAGTGT CGGCACTGTG GGAAGGGATT

CCAGCAGAAG TTCACCTTCC ACAGCAAGGA GATTGTGGCC ATCAGCTGCT CGTGGTGCAA

85

540

600

660

```
GCAGGCATAC CACAGCAAGG TGTCCTGCTT CATGCTGCAG CAGATCGAGG AGCCGTGCTC
       GCTGGGGGTC CACGCAGCCG TGGTCATCCC GCCCACCTGG ATCCTCCGCG CCCGGAGGCC
                                                                               840
       CCAGAATACT CTGAAAGCAA GCAAGAAGAA GAAGAGGGCA TCCTTCAAGA GGAAGTCCAG
                                                                               900
       CAAGAAAGGG CCTGAGGAGG GCCGCTGGAG ACCCTTCATC ATCAGGCCCA CCCCCTCCCC
                                                                               960
 5
       GCTCATGAAG CCCCTGCTGG TGTTTGTGAA CCCCAAGAGT GGGGGCAACC AGGGTGCAAA
                                                                              1020
       GATCATCCAG TCTTTCCTCT GGTATCTCAA TCCCCGACAA GTCTTCGACC TGAGCCAGGG
                                                                              1080
       AGGGCCCAAG GAGGCGCTGG AGATGTACCG CAAAGTGCAC AACCTGCGGA TCCTGGCGTG
                                                                              1140
       CGGGGGCGAC GGCACGGTGG GCTGGATCCT CTCCACCCTG GACCAGCTAC GCCTGAAGCC
                                                                              1200
       GCCACCCCT GTTGCCATCC TGCCCCTGGG TACTGGCAAC GACTTGGCCC GAACCCTCAA
CTGGGGTGGG GGCTACACAG ATGAGCCTGT GTCCAAGATC CTCTCCCACG TGGAGGAGGG
                                                                              1260
10
                                                                              1320
       GAACGTGGTA CAGCTGGACC GCTGGGACCT CCACGCTGAG CCCAACCCCG AGGCAGGGCC
                                                                              1380
       TGAGGACCGA GATGAAGGCG CCACCGACCG GTTGCCCCTG GATGTCTTCA ACAACTACTT
                                                                              1440
       CAGCCTGGGC TTTGACGCCC ACGTCACCCT GGAGTTCCAC GAGTCTCGAG AGGCCAACCC
                                                                              1500
       AGAGAAATTC AACAGCCGCT TTCGGAATAA GATGTTCTAC GCCGGGACAG CTTTCTCTGA
                                                                              1560
15
       CTTCCTGATG GGCAGCTCCA AGGACCTGGC CAAGCACATC CGAGTGGTGT GTGATGGAAT
                                                                              1620
       GGACTTGACT CCCAAGATCC AGGACCTGAA ACCCCAGTGT GTTGTTTTCC TGAACATCCC
                                                                              1680
       CAGGTACTGT GCGGGCACCA TGCCCTGGGG CCACCCTGGG GAGCACCACG ACTTTGAGCC
                                                                              1740
       CCAGCGGCAT GACGACGGCT ACCTCGAGGT CATTGGCTTC ACCATGACGT CGTTGGCCGC
                                                                              1800
       GCTGCAGGTG GGCGGACACG GCGAGCGGCT GACGCAGTGT CGCGAGGTGG TGCTCACCAC
                                                                              1860
20
       ATCCAAGGCC ATCCCGGTGC AGGTGGATGG CGAGCCCTGC AAGCTTGCAG CCTCACGCAT
                                                                              1920
       CCGCATCGCC CTGCGCAACC AGGCCACCAT GGTGCAGAAG GCCAAGCGGC GGAGCGCCGC
                                                                              1980
       CCCCTGCAC AGCGACCAGC AGCCGGTGCC AGAGCAGTTG CGCATCCAGG TGAGTCGCGT
                                                                              2040
       CAGCATGCAC GACTATGAGG CCCTGCACTA CGACAAGGAG CAGCTCAAGG AGGCCTCTGT
                                                                              2100
       GCCGCTGGGC ACTGTGGTGG TCCCAGGAGA CAGTGACCTA GAGCTCTGCC GTGCCCACAT TGAGAGACTC CAGCAGGAGC CCGATGGTGC TGGAGCCAAG TCCCCGACAT GCCAGAAACT
                                                                              2160
25
                                                                              2220
       GTCCCCCAAG TGGTGCTTCC TGGACGCCAC CACTGCCAGC CGCTTCTACA GGATCGACCG
                                                                              2280
       AGCCCAGGAG CACCTCAACT ATGTGACTGA GATCGCACAG GATGAGATTT ATATCCTGGA
                                                                              2340
       CCCTGAGCTG CTGGGGGCAT CGGCCCGGCC TGACCTCCCA ACCCCCACTT CCCCTCTCCC
                                                                              2400
       CACCTCACCC TGCTCACCCA CGCCCCGGTC ACTGCAAGGG GATGCTGCAC CCCCTCAAGG
                                                                              2460
30
       TGAAGAGCTG ATTGAGGCTG CCAAGAGGAA CGACTTCTGT AAGCTCCAGG AGCTGCACCG
                                                                              2520
       AGCTGGGGGC GACCTCATGC ACCGAGACGA GCAGAGTCGC ACGCTCCTGC ACCACGCAGT
                                                                              2580
       CAGCACTGGC AGCAAGGATG TGGTCCGCTA CCTGCTGGAC CACGCCCCCC CAGAGATCCT
                                                                              2640
       TGATGCGGTG GAGGAAAACG GGGAGACCTG TTTGCACCAA GCAGCGGCCC TGGGCCAGCG
                                                                              2700
       CACCATCTGC CACTACATCG TGGAGGCCGG GGCCTCGCTC ATGAAGACAG ACCAGCAGGG
                                                                              2760
35
       CGACACTCCC CGGCAGCGGG CTGAGAAGGC TCAGGACACC GAGCTGGCCG CCTACCTGGA
                                                                              2820
       GAACCGGCAG CACTACCAGA TGATCCAGCG GGAGGACCAG GAGACGGCTG TGTAGCGGGC
       Seq ID NO: 172 Protein sequence:
       Protein Accession #: NP 003637
40
                   11
                               21
                                          31
                                                      41
                                                                  51
       MEPROGSPEA RSSDSESASA SSSGSERDAG PEPDKAPRRL NKRRFPGLRL FGHRKAITKS
                                                                                60
       GLQHLAPPPP TPGAPCSESE RQIRSTVDWS ESATYGEHIW FETNVSGDFC YVGEQYCVAR
                                                                               120
45
       MLKSVSRRKC AACKIVVHTP CIEOLEKINF RCKPSFRESG SRNVREPTFV RHHWVHRRRQ
                                                                               180
       DGKCRHCGKG FOOKFTFHSK EIVAISCSWC KQAYHSKVSC FMLQQIEEPC SLGVHAAVVI
                                                                               240
       PPTWILRARR PONTLKASKK KKRASFKRKS SKKGPEEGRW RPFIIRPTPS PLMKPLLVFV
                                                                               300
       NPKSGGNQGA KIIQSFLWYL NPRQVFDLSQ GGPKEALEMY RKVHNLRILA CGGDGTVGWI
                                                                               360
       LSTLDQLRLK PPPPVAILPL GTGNDLARTL NWGGGYTDEP VSKILSHVEE GNVVQLDRWD
                                                                               420
50
       LHAEPNPEAG PEDRDEGATD RLPLDVFNNY FSLGFDAHVT LEFHESREAN PEKFNSRFRN
                                                                               480
       KMFYAGTAFS DFLMGSSKDL AKHIRVVCDG MDLTPKIQDL KPQCVVFLNI PRYCAGTMPW
                                                                               540
       GHPGEHHDFE PQRHDDGYLE VIGFTMTSLA ALQVGGHGER LTQCREVVLT TSKAIPVQVD
                                                                               600
       GEPCKLAASR IRIALRNQAT MVQKAKRRSA APLHSDQQPV PEQLRIQVSR VSMHDYEALH
                                                                               660
       YDKEQLKEAS VPLGTVVVPG DSDLELCRAH IERLQQEPDG AGAKSPTCQK LSPKWCFLDA
                                                                               720
55
       TTASRFYRID RAQEHLNYVT EIAQDEIYIL DPELLGASAR PDLPTPTSPL PTSPCSPTPR
                                                                               780
       SLQGDAAPPQ GEELIEAAKR NDFCKLQELH RAGGDLMHRD EQSRTLLHHA VSTGSKDVVR
                                                                               840
       YLLDHAPPEI LDAVEENGET CLHQAAALGQ RTICHYIVEA GASLMKTDQQ GDTPRQRAEK
                                                                               900
       AQDTELAAYL ENRQHYQMIQ REDQETAV
60
       Seq ID NO: 173 DNA sequence
       Nucleic Acid Accession #: AF232772
       Coding sequence: 1-1662
65
       ATGCCGGTGC AGCTGACGAC AGCCCTGCGT GTGGTGGGCA CCAGCCTGTT TGCCCTGGCA
       GTGCTGGGTG GCATCCTGGC AGCCTATGTG ACGGGCTACC AGTTCATCCA CACGGAAAAG
       CACTACCTGT CCTTCGGCCT GTACGGCGCC ATCCTGGGCC TGCACCTGCT CATTCAGAGC
                                                                               180
       CTTTTTGCCT TCCTGGAGCA CCGGCGCATG CGACGTGCCG GCCAGGCCCT GAAGCTGCCC
70
       TCCCCGCGGC GGGGCTCGGT GGCACTGTGC ATTGCCGCAT ACCAGGAGGA CCCTGACTAC
                                                                               300
       TTGCGCAAGT GCCTGCGCTC GGCCCAGCGC ATCTCCTTCC CTGACCTCAA GGTGGTCATG
                                                                               360
       GTGGTGGATG GCAACCGCCA GGAGGACGCC TACATGCTGG ACATCTTCCA CGAGGTGCTG
GGCGGCACCG AGCAGGCCGG CTTCTTTGTG TGGCGCAGCA ACTTCCATGA GGCAGGCGAG
                                                                               420
                                                                               480
       GGTGAGACGG AGGCCAGCCT GCAGGAGGGC ATGGACCGTG TGCGGGATGT GGTGCGGGCC
                                                                               540
75
       AGCACCTTCT CGTGCATCAT GCAGAAGTGG GGAGGCAAGC GCGAGGTCAT GTACACGGCC
                                                                               600
       TTCAAGGCCC TCGGCGATTC GGTGGACTAC ATCCAGGTGT GCGACTCTGA CACTGTGCTG
                                                                               660
       GATCEAGCCT GCACCATCGA GATGCTTCGA GTCCTGGAGG AGGATCCCCA AGTAGGGGGA
                                                                               720
       GTCGGGGGAG ATGTCCAGAT CCTCAACAAG TACGACTCAT GGATTTCCTT CCTGAGCAGC
GTGCGGTACT GGATGGCCTT CAACGTGGAG CGGGCCTGCC AGTCCTACTT TGGCTGTGTG
                                                                               780
                                                                               840
80
       CAGTGTATTA GTGGGCCCTT GGGCATGTAC CGCAACAGCC TCCTCCAGCA GTTCCTGGAG
                                                                               900
       GACTGGTACC ATCAGAAGTT CCTAGGCAGC AAGTGCAGCT TCGGGGATGA CCGGCACCTC
                                                                               960
       ACCAACCGAG TCCTGAGCCT TGGCTACCGA ACTAAGTATA CCGCGCGCTC CAAGTGCCTC
                                                                              1020
       ACAGAGACCC CCACTAAGTA CCTCCGGTGG CTCAACCAGC AAACCCGCTG GAGCAAGTCT
                                                                              1080
       TACTTCCGGG AGTGGCTCTA CAACTCTCTG TGGTTCCATA AGCACCACCT CTGGATGACC
                                                                              1140
85
       TACGAGTCAG TGGTCACGGG TTTCTTCCCC TTCTTCCTCA TTGCCACGGT TATACAGCTT
                                                                              1200
       TTCTACCGGG GCCGCATCTG GAACATTCTC CTCTTCCTGC TGACGGTGCA GCTGGTGGGC
                                                                              1260
       ATTATCAAGG CCACCTACGC CTGCTTCCTT CGGGGCAATG CAGAGATGAT CTTCATGTCC
                                                                             1320
```

```
CTCTACTCCC TCCTCTATAT GTCCAGCCTT CTGCCGGCCA AGATCTTTGC CATTGCTACC 1380
       ATCAACAAAT CTGGCTGGGG CACCTCTGGC CGAAAAACCA TTGTGGTGAA CTTCATTGGC
                                                                           1440
       CTCATTCCTG TGTCCATCTG GGTGGCAGTT CTCCTGGAGG GGCTGGCCTA CACAGCTTAT
                                                                           1500
       TGCCAGGACC TGTTCAGTGA GACAGAGCTA GCCTTCCTTG TCTCTGGGGC TATACTGTAT
                                                                           1560
       GGCTGCTACT GGGTGGCCCT CCTCATGCTA TATCTGGCCA TCATCGCCCG GCGATGTGGG
 5
                                                                           1620
       AAGAAGCCGG AGCAGTACAG CTTGGCTTTT GCTGAGGTGT GACATGGCCC CCAAGCAGAG
                                                                           1680
       CGGGTAAAGT GCAATGGGTA AGGGAGGGAA GGGGAATGGA AGAGAAAAGA CAGGGTGGGA
                                                                           1740
       GGGAGGAGGG AGTGCTGTGT TTTAGTCTCT TAATGGTCCA AAGGACAAAT CTAAAATGCA
                                                                           1800
       AAGAACGGTG ATGTAGTATG GCCTGACAGC TCTGTTTAGA GGAGGCAACA CTGATCCCCC
10
       AGATGCAGGG CTGCAGGGGA TTCTGTGTTT TCAGACTGCC TGTCTGCTTG CATCTGCACA
                                                                           1920
       TAGGCAGTAG CCTCCTCCTG GGCTCCAGAG GGCACTCAGA AGTTGTGCTA AACCAAGTTA
       AGTCCCATTC AGTGGCAACT TGTGATAGGT ACCTGAGTGA CGGCAACCTG CGGAAGGAGG
                                                                           -2040
       TTCTCCCAGC CCATCTGAAC ACAACCAGAG GTGGCAGGAG AATTTCTACT GAGCGAGGTG
                                                                           2100
       GGCCGGTTAG TGTATGTCAC CCCCACCCCA CCCATAAGTA GTCATCAATG CAATAAGATT
                                                                           2160
       GCGCGTGAGA TACAAGGCCC AGAAGCCTGA TCTTTGGGCA TCAGAAAACA GGGTCCAGGA
15
                                                                           2220
       ATGGTGCTTT ATGTGAGATA CCCCACTCCA CATCAACATT CCAGGGATGA GCCAAACCAG
                                                                           2280
       CAGGGAGTTA GCACTGAACT GCTTTTAAAA GTGCACATTA AAAAGGAAAG TTTGCCAGGA
                                                                           2340
       GGAACAAAGA GATTGTGGTG GTGCTAAAGG AGGCCATAAG CTACACAGAG GCCTTGGGTG
                                                                           2400
       TTCCACCTGG AAACTGCTCA GACGTCTAGA TGGGTTCTTA GCTTGTCTGT GATCTCTGCT
                                                                           2460
20
       GGGGAGATAA AAAGATTAAG CCCCAACATG TTCAGAAAAG AAGTGAAGTC TTGGGTATTT
                                                                           2520
       TAACCTGTAT ACTCTTGAAT TCCTCTCAAA TTCAGCTCTG ATCTGAGGCT AAGACACACT
                                                                           2580
       CCCCACTTCA CTTTCTTCAA AGCCACATTT TTTGAGGTAT CACTGCAGTC ACCTCTTCTA
                                                                           2640
       CCCTCATCAT CATAGGTAAG GTTTTCAAGG TGGCAATTGG GGCGGAGCCC CGGCTTCTTA
                                                                           2700
       TAGAAGCTTC AGCAGGAGGC AAGCGTGTTC TCAGCACATA TGGGAACTAT GAGGAGCCTC
                                                                           2760
25
       TGATCAAATT GGCTACAATC TTGGAGCTGC TTGGACGGAT TCCTTGGCAG CCGGGTTAGC
                                                                           2820
       ATGTGTGACT TTCAGGCTAC TGTTCTTGAC AATCATCTCC AATGGAAAGC TTTTCAGTGT
       TCCCAAAGTG AACTCTCAAA TCCAAAATGG TTATCTTTGA GACCATCCAT TCTCCTCAGT GGCTTCTCCA GGGAATTCTT ACAGCCAAGT TGTGACAGTC ACTGCATTTG CCTGCTTCTT
       TCCAGAAACC AAACTAGGAG ATGAAACTGG TTCCTACATC CTAAGGTTCT TGCTTTCTCT
                                                                           3060
       CTCATGCCTC CTGAGGCTGT TTTTGGCTGT TTTCCCTCTG CTGCTTTTGG GGAATGAGGG
30
                                                                           3120
       GAAGCCATTT TCCAAGTGAC TTGCAATCCA GGCTGTTCTC AGCGTTTTGA GTTTAAAACC
                                                                           3180
       TGGGATCCTG ACTAAGCCTT TGACTTAAGG GTTGCTTGCT TGCCCTCCAA ATGTCCTTTC
                                                                           3240
       TCAAAGGGGC CAACTAACCC GTGCAGAACC AGCACTAAGG TGGACAGCAG ACAAGAGGGC
                                                                           3300
       AAGCCTCTAA TGTACCAAGT GCTTCCTACA AAGACGCAAG GTGTGCTCCG AACCACAGAT
                                                                           3360
35
       GGGCAAACCC TGGTGCTTTC CTTCATCTCC CACGAACTCA AGGGTTTTCC AAGTGTAGCT
                                                                           3420
       AACAGTTGCC ACATCACACA GACCTCCAGT TTCTGGTAAG ACTGCTGGTT GACATCAGAC
                                                                           3480
       CCAACCCATT GAAGGCTGGA AGGCAGCAGG CATTTGCTAA GGCAGCTGAT CCAGGCAATC
                                                                           3540
       GTTCTGCTGG CCAAGAAGTT AAACTATTTT GAGCATTAGA ATGGAGGAAA TCCGGTCAGC
                                                                           3600
       CAAGTGCAGA GTTCAGACTT CGCTAAGGGC TTGTTTTTCT TCAGCATTTA CTTGAAGATT
                                                                           3660
40
                                                                           3720
       AATGTAGGAT GACAGGCTCT CCTGGCTGTC CTACCATCAG CTCTGCCTTG CACTGTGGTC
       GTCAACTTTC CTCAAATCAA AAACAGGCAG GTACAGGTAG TGGGCTCACA ACGTTTGACC
                                                                           3780
       TCGACTGGTT TTTCTAAGTT ATTTTGTACA TTTTTCAGCA GCAAAACCAA ACTGGGTCTT
                                                                           3840
       CAGCTTTATC CCCGTTTCTT GCAAGGGAAG AGCCTTTATA CAATTGGACG CATTTTGGTT
                                                                           3900
       TTTCCTCATT GAGAATTCAA ATCCTCTTTT GTATTGTTTC TACAATAATT TGTAAACATA
                                                                           3960
45
       TTTATTTTTA CCTGCTTTTT TTTTTTTTT TAATTTTCAG GTCAAGTTTT TTATACTGCA 4020
       CTTATTTGTC AAAATAAAGA TTCTCACAT
       Seq ID NO: 174 Protein sequence:
       Protein Accession #: AAF36984
50
                                         31
                  11
                             21
       MPVOLTTALR VVGTSLFALA VLGGILAAYV TGYQFIHTEK HYLSFGLYGA ILGLHLLIQS
       LFAFLEHRRM RRAGOALKLP SPRRGSVALC IAAYQEDPDY LRKCLRSAQR ISFPDLKVVM
                                                                            120
55
       VVDGNRQEDA YMLDIFHEVL GGTEQAGFFV WRSNFHEAGE GETEASLQEG MDRVRDVVRA
       STFSCIMQKW GGKREVMYTA FKALGDSVDY IQVCDSDTVL DPACTIEMLR VLEEDPQVGG
                                                                            240
       VGGDVQILNK YDSWISFLSS VRYWMAFNVE RACQSYFGCV QCISGPLGMY RNSLLQQFLE
                                                                             300
       DWYHQKFLGS KCSFGDDRHL TNRVLSLGYR TKYTARSKCL TETPTKYLRW LNQQTRWSKS
                                                                             360
       YFREWLYNSL WFHKHHLWMT YESVVTGFFP FFLIATVIQL FYRGRIWNIL LFLLTVQLVG
                                                                             420
60
       IIKATYACFL RGNAEMIFMS LYSLLYMSSL LPAKIFAIAT INKSGWGTSG RKTIVVNPIG
                                                                             480
       LIPVSIWVAV LLEGLAYTAY CQDLFSETEL AFLVSGAILY GCYWVALLML YLAIIARRCG
                                                                            540
       KKPEQYSLAF AEV
       Seq ID NO: 175 DNA sequence
65
       Nucleic Acid Accession #: NM 000691
       Coding sequence: 43..1404
                             21
                                         31
                                                    41
70
       CCAGGAGCCC CAGTTACCGG GAGAGGCTGT GTCAAAGGCG CCATGAGCAA GATCAGCGAG
       GCCGTGAAGC GCGCCCGCGC CGCCTTCAGC TCGGGCAGGA CCCGTCCGCT GCAGTTCCGA
                                                                            120
       TTCCAGCAGC TGGAGGCGCT GCAGCGCCTG ATCCAGGAGC AGGAGCAGGA GCTGGTGGGC
                                                                             180
       GCGCTGGCCG CAGACCTGCA CAAGAATGAA TGGAACGCCT ACTATGAGGA GGTGGTGTAC
                                                                            240
75
       GTCCTAGAGG AGATCGAGTA CATGATCCAG AAGCTCCCTG AGTGGGCCGC GGATGAGCCC
                                                                             300
       GTGGAGAAGA CGCCCCAGAC TCAGCAGGAC GAGCTCTACA TCCACTCGGA GCCACTGGGC
                                                                             360
       GTGGTCCTCG TCATTGGCAC CTGGAACTAC CCCTTCAACC TCACCATCCA GCCCATGGTG
                                                                             420
       GGCGCCATCG CTGCAGGGAA CGCAGTGGTC CTCAAGCCCT CGGAGCTGAG TGAGAACATG
                                                                             480
       GCGAGCCTGC TGGCTACCAT CATCCCCCAG TACCTGGACA AGGATCTGTA CCCAGTAATC
                                                                             540
80
       AATGGGGGTG TCCCTGAGAC CACGGAGCTG CTCAAGGAGA GGTTCGACCA TATCCTGTAC
                                                                             600
       ACGGGCAGCA CGGGGGTGGG GAAGATCATC ATGACGGCTG CTGCCAAGCA CCTGACCCCT
                                                                             660
       GTCACGCTGG AGCTGGGAGG GAAGAGTCCC TGCTACGTGG ACAAGAACTG TGACCTGGAC
       GTGGCCTGCC GACGCATCGC CTGGGGGAAA TTCATGAACA GTGGCCAGAC CTGCGTGGCC
                                                                             780
       CCAGACTACA TCCTCTGTGA CCCCTCGATC CAGAACCAAA TTGTGGAGAA GCTCAAGAAG
85
       TCACTGAAAG AGTTCTACGG GGAAGATGCT AAGAAATCCC GGGACTATGG AAGAATCATT
                                                                             900
       AGTGCCCGGC ACTTCCAGAG GGTGATGGGC CTGATTGAGG GCCAGAAGGT GGCTTATGGG
                                                                             960
       GGCACCGGGG ATGCCGCCAC TCGCTACATA GCCCCCACCA TCCTCACGGA CGTGGACCCC
```

```
CAGTCCCCGG TGATGCAAGA GGAGATCTTC GGGCCTGTGC TGCCCATCGT GTGCGTGCGC 1080
      AGCCTGGAGG AGGCCATCCA GTTCATCAAC CAGCGTGAGA AGCCCCTGGC CCTCTACATG
                                                                          1140
      TTCTCCAGCA ACGACAAGGT GATTAAGAAG ATGATTGCAG AGACATCCAG TGGTGGGGTG
      GCGGCCAACG ATGTCATCGT CCACATCACC TTGCACTCTC TGCCCTTCGG GGGCGTGGGG
 5
      AACAGCGGCA TGGGATCCTA CCATGGCAAG AAGAGCTTCG AGACTTTCTC TCACCGCCGC
       TCTTGCCTGG TGAGGCCTCT GATGAATGAT GAAGGCCTGA AGGTCAGATA CCCCCCGAGC
                                                                          1380
       1440
       CCCATCGGAG TGCGGACCAC CCTCACTGGC TCTCCTGGCC CTGGAGAATC GCTCCTGCAG
                                                                          1500
       CCCCAGCCCA GCCCCACTCC TCTGCTGACC TGCTGACCTG TGCACACCCC ACTCCCACAT
                                                                          1560
10
      GGGCCCAGGC CTCACCATTC CAAGTCTCCA CCCCTTTCTA GACCAATAAA GAGACAAATA
                                                                          1620
       CAATTTTCTA ACTCGG
       Seq ID NO: 176 Protein sequence:
       Protein Accession #: NP 000682
15
                                        31
       MSKISEAVKR ARAAFSSGRT RPLOFRFOOL EALQRLIQEO EQELVGALAA DLHKNEWNAY
       YEEVVYVLEE IEYMIQKLPE WAADEPVEKT PQTQQDELYI HSEPLGVVLV IGTWNYPFNL
                                                                           120
20
       TIQPMVGAIA AGNAVVLKPS ELSENMASLL ATIIPQYLDK DLYPVINGGV PETTELLKER
       FDHILYTGST GVGKIIMTAA AKHLTPVTLE LGGKSPCYVD KNCDLDVACR RIAWGKFMNS
                                                                           240
       GOTCVAPDYI LCDPSIQNQI VEKLKKSLKE FYGEDAKKSR DYGRIISARH FQRVMGLIEG
       OKVAYGGTGD AATRYLAPTI LTDVDPQSPV MQEEIFGPVL PIVCVRSLEE AIQFINQREK
                                                                           360
       PLALYMFSSN DKVIKKMIAE TSSGGVAAND VIVHITLHSL PFGGVGNSGM GSYHGKKSFE
25
       TFSHRRSCLV RPLMNDEGLK VRYPPSPAKM TQH
       Seg ID NO: 177 DNA seguence
       Nucleic Acid Accession #: NM_001067.1
       Coding sequence: 108-4703
30
                                        31
                                                   41
                                                              51
                             21
       CTAACCGACG CGCGTCTGTG GAGAAGCGGC TTGGTCGGGG GTGGTCTCGT GGGGTCCTGC
       CTGTTTAGTC GCTTTCAGGG TTCTTGAGCC CCTTCACGAC CGTCACCATG GAAGTGTCAC
                                                                           120
35
       CATTGCAGCC TGTAAATGAA AATATGCAAG TCAACAAAAT AAAGAAAAAT GAAGATGCTA
                                                                           180
       AGAAAAGACT GTCTGTTGAA AGAATCTATC AAAAGAAAAC ACAATTGGAA CATATTTTGC
                                                                           240
       TCCGCCCAGA CACCTACATT GGTTCTGTGG AATTAGTGAC CCAGCAAATG TGGGTTTACG
                                                                           300
       ATGAAGATGT TGGCATTAAC TATAGGGAAG TCACTTTTGT TCCTGGTTTG TACAAAATCT
                                                                           360
       TTGATGAGAT TCTAGTTAAT GCTGCGGACA ACAAACAAAG GGACCCAAAA ATGTCTTGTA
                                                                           420
40
       TTAGAGTCAC AATTGATCCG GAAAACAATT TAATTAGTAT ATGGAATAAT GGAAAAGGTA
                                                                           480
       TTCCTGTTGT TGAACACAAA GTTGAAAAGA TGTATGTCCC AGCTCTCATA TTTGGACAGC
                                                                           540
       TCCTAACTTC TAGTAACTAT GATGATGATG AAAAGAAAGT GACAGGTGGT CGAAATGGCT
                                                                           600
       ATGGAGCCAA ATTGTGTAAC ATATTCAGTA CCAAATTTAC TGTGGAAACA GCCAGTAGAG
       AATACAAGAA AATGTTCAAA CAGACATGGA TGGATAATAT GGGAAGAGCT GGTGAGATGG
                                                                           720
45
       AACTCAAGCC CTTCAATGGA GAAGATTATA CATGTATCAC CTTTCAGCCT GATTTGTCTA
       AGTTTAAAAT GCAAAGCCTG GACAAAGATA TTGTTGCACT AATGGTCAGA AGAGCATATG
                                                                           840
       ATATTGCTGG ATCCACCAAA GATGTCAAAG TCTTTCTTAA TGGAAATAAA CTGCCAGTAA
       AAGGATTTCG TAGTTATGTG GACATGTATT TGAAGGACAA GTTGGATGAA ACTGGTAACT
       CCTTGAAAGT AATACATGAA CAAGTAAACC ACAGGTGGGA AGTGTGTTTA ACTATGAGTG
       AAAAAGGCTT TCAGCAAATT AGCTTTGTCA ACAGCATTGC TACATCCAAG GGTGGCAGAC ATGTTGATTA TGTAGCTGAT CAGATTGTGA CTAAACTTGT TGATGTTGTG AAGAAGAAGA
50
       ACAAGGGTGG TGTTGCAGTA AAAGCACATC AGGTGAAAAA TCACATGTGG ATTTTTGTAA
                                                                          1200
       ATGCCTTAAT TGAAAACCCA ACCTTTGACT CTCAGACAAA AGAAAACATG ACTTTACAAC
                                                                          1260
       CCAAGAGCTT TGGATCAACA TGCCAATTGA GTGAAAAATT TATCAAAGCT GCCATTGGCT
                                                                          1320
55
       GTGGTATTGT AGAAAGCATA CTAAACTGGG TGAAGTTTAA GGCCCAAGTC CAGTTAAACA
                                                                          1380
       AGAAGTGTTC AGCTGTAAAA CATAATAGAA TCAAGGGAAT TCCCAAACTC GATGATGCCA
                                                                          1440
       ATGATGCAGG GGGCCGAAAC TCCACTGAGT GTACGCTTAT CCTGACTGAG GGAGATTCAG
                                                                          1500
       CCAAAACTTT GGCTGTTTCA GGCCTTGGTG TGGTTGGGAG AGACAAATAT GGGGTTTTCC
                                                                          1560
       CTCTTAGAGG AAAAATACTC AATGTTCGAG AAGCTTCTCA TAAGCAGATC ATGGAAAATG
                                                                          1620
60
       CTGAGATTAA CAATATCATC AAGATTGTGG GTCTTCAGTA CAAGAAAAAC TATGAAGATG
                                                                          1680
       AAGATTCATT GAAGACGCTT CGTTATGGGA AGATAATGAT TATGACAGAT CAGGACCAAG
                                                                          1740
       ATGGTTCCCA CATCAAAGGC TTGCTGATTA ATTTTATCCA TCACAACTGG CCCTCTCTTC
                                                                          1800
       TGCGACATCG TTTTCTGGAG GAATTTATCA CTCCCATTGT AAAGGTATCT AAAAACAAGC
                                                                          1860
       AAGAAATGGC ATTTTACAGC CTTCCTGAAT TTGAAGAGTG GAAGAGTTCT ACTCCAAATC
                                                                          1920
65
       ATAAAAATG GAAAGTCAAA TATTACAAAG GTTTGGGCAC CAGCACATCA AAGGAAGCTA
                                                                          1980
       AAGAATACTT TGCAGATATG AAAAGACATC GTATCCAGTT CAAATATTCT GGTCCTGAAG
                                                                          2040
       ATGATGCTGC TATCAGCCTG GCCTTTAGCA AAAAACAGAT AGATGATCGA AAGGAATGGT
                                                                          2100
       TAACTAATTT CATGGAGGAT AGAAGACAAC GAAAGTTACT TGGGCTTCCT GAGGATTACT
                                                                          2160
       TGTATGGACA AACTACCACA TATCTGACAT ATAATGACTT CATCAACAAG GAACTTATCT
                                                                          2220
70
       TGTTCTCAAA TTCTGATAAC GAGAGATCTA TCCCTTCTAT GGTGGATGGT TTGAAACCAG
                                                                          2280
       GTCAGAGAAA GGTTTTGTTT ACTTGCTTCA AACGGAATGA CAAGCGAGAA GTAAAGGTTG
                                                                          2340
       CCCAATTAGC TGGATCAGTG GCTGAAATGT CTTCTTATCA TCATGGTGAG ATGTCACTAA
                                                                          2400
       TGATGACCAT TATCAATTTG GCTCAGAATT TTGTGGGTAG CAATAATCTA AACCTCTTGC
                                                                          2460
       AGCCCATTGG TCAGTTTGGT ACCAGGCTAC ATGGTGGCAA GGATTCTGCT AGTCCACGAT
                                                                          2520
75
       ACATCTTTAC AATGCTCAGC TCTTTGGCTC GATTGTTATT TCCACCAAAA GATGATCACA
                                                                          2580
       CGTTGAAGTT TTTATATGAT GACAACCAGC GTGTTGAGCC TGAATGGTAC ATTCCTATTA
       TTCCCATGGT GCTGATAAAT GGTGCTGAAG GAATCGGTAC TGGGTGGTCC TGCAAAATCC
       CCAACTTTGA TGTGCGTGAA ATTGTAAATA ACATCAGGCG TTTGATGGAT GGAGAAGAAC
       CTTTGCCAAT GCTTCCAAGT TACAAGAACT TCAAGGGTAC TATTGAAGAA CTGGCTCCAA
80
       ATCAATATGT GATTAGTGGT GAAGTAGCTA TTCTTAATTC TACAACCATT GAAATCTCAG
       AGCTTCCCGT CAGAACATGG ACCCAGACAT ACAAAGAACA AGTTCTAGAA CCCATGTTGA
       ATGGCACCGA GAAGACACCT CCTCTCATAA CAGACTATAG GGAATACCAT ACAGATACCA
       CTGTGAAATT TGTTGTGAAG ATGACTGAAG AAAAACTGGC AGAGGCAGAG AGAGTTGGAC
       TACACAAAGT CTTCAAACTC CAAACTAGTC TCACATGCAA CTCTATGGTG CTTTTTGACC
85
       ACGTAGGCTG TTTAAAGAAA TATGACACGG TGTTGGATAT TCTAAGAGAC TTTTTTGAAC
                                                                          3180
       TCAGACTTAA ATATTATGGA TTAAGAAAAG AATGGCTCCT AGGAATGCTT GGTGCTGAAT
      · CTGCTAAACT GAATAATCAG GCTCGCTTTA TCTTAGAGAA AATAGATGGC AAAATAATCA
```

```
TTGAAAATAA GCCTAAGAAA GAATTAATTA AAGTTCTGAT TCAGAGGGGA TATGATTCGG 3360
       ATCCTGTGAA GGCCTGGAAA GAAGCCCAGC AAAAGGTTCC AGATGAAGAA GAAAATGAAG
                                                                           3420
       AGAGTGACAA CGAAAAGGAA ACTGAAAAGA GTGACTCCGT AACAGATTCT GGACCAACCT
                                                                           3480
       TCAACTATCT TCTTGATATG CCCCTTTGGT ATTTAACCAA GGAAAAGAAA GATGAACTCT
                                                                           3540
 5
       GCAGGCTAAG AAATGAAAAA GAACAAGAGC TGGACACATT AAAAAGAAAG AGTCCATCAG
                                                                           3600
       ATTTGTGGAA AGAAGACTTG GCTACATTTA TTGAAGAATT GGAGGCTGTT GAAGCCAAGG
                                                                           3660
       AAAAACAAGA TGAACAAGTC GGACTTCCTG GGAAAGGGGG GAAGGCCAAG GGGAAAAAA
                                                                           3720
       CACAAATGGC TGAAGTTTTG CCTTCTCCGC GTGGTCAAAG AGTCATTCCA CGAATAACCA
                                                                           3780
       TAGAAATGAA AGCAGAGGCA GAAAAGAAAA ATAAAAAGAA AATTAAGAAT GAAAATACTG
10
       AAGGAAGCCC TCAAGAAGAT GGTGTGGAAC TAGAAGGCCT AAAACAAAGA TTAGAAAAGA
       AACAGAAAAG AGAACCAGGT ACAAAGACAA AGAAACAAAC TACATTGGCA TTTAAGCCAA
       TCAAAAAAGG AAAGAAGAGA AATCCCTGGC CTGATTCAGA ATCAGATAGG AGCAGTGACG
                                                                           4020
       AAAGTAATTT TGATGTCCCT CCACGAGAAA CAGAGCCACG GAGAGCAGCA ACAAAAACAA
                                                                           4080
       AATTCACAAT GGATTTGGAT TCAGATGAAG ATTTCTCAGA TTTTGATGAA AAAACTGATG
                                                                           4140
15
       ATGAAGATTT TGTCCCATCA GATGCTAGTC CACCTAAGAC CAAAACTTCC CCAAAACTTA
                                                                           4200
       GTAACAAAGA ACTGAAACCA CAGAAAAGTG TCGTGTCAGA CCTTGAAGCT GATGATGTTA
                                                                           4260
       AGGGCAGTGT ACCACTGTCT TCAAGCCCTC CTGCTACACA TTTCCCAGAT GAAACTGAAA 4320
       TTACAAACCC AGTTCCTAAA AAGAATGTGA CAGTGAAGAA GACAGCAGCA AAAAGTCAGT
                                                                           4380
       CTTCCACCTC CACTACCGGT GCCAAAAAAA GGGCTGCCCC AAAAGGAACT AAAAGGGATC
                                                                           4440
20
       CAGCTTTGAA TTCTGGTGTC TCTCAAAAGC CTGATCCTGC CAAAACCAAG AATCGCCGCA
                                                                           4500
       AAAGGAAGCC ATCCACTTCT GATGATTCTG ACTCTAATTT TGAGAAAATT GTTTCGAAAG
                                                                           4560
       CAGTCACAAG CAAGAAATCC AAGGGGGAGA GTGATGACTT CCATATGGAC TTTGACTCAG
                                                                           4620
       CTGTGGCTCC TCGGGCAAAA TCTGTACGGG CAAAGAAACC TATAAAGTAC CTGGAAGAGT
                                                                           4680
       CAGATGAAGA TGATCTGTTT TAAAATGTGA GGCGATTATT TTAAGTAATT ATCTTACCAA
                                                                           4740
25
       GCCCAAGACT GGTTTTAAAG TTACCTGAAG CTCTTAACTT CCTCCCCTCT GAATTTAGTT
                                                                           4800
       TGGGGAAGGT GTTTTTAGTA CAAGACATCA AAGTGAAGTA AAGCCCAAGT GTTCTTTAGC
                                                                           4860
       TTTTTATAAT ACTGTCTAAA TAGTGACCAT CTCATGGGCA TTGTTTTCTT CTCTGCTTTG
                                                                           4920
       TCTGTGTTTT GAGTCTGCTT TCTTTTGTCT TTAAAACCTG ATTTTTAAGT TCTTCTGAAC
                                                                           4980
       TGTAGAAATA GCTATCTGAT CACTTCAGCG TAAAGCAGTG TGTTTATTAA CCATCCACTA
                                                                           5040
30
       AGCTAAAACT AGAGCAGTTT GATTTAAAAG TGTCACTCTT CCTCCTTTTC TACTTTCAGT
       AGATATGAGA TAGAGCATAA TTATCTGTTT TATCTTAGTT TTATACATAA TTTACCATCA
                                                                           5160
       GATAGAACTT TATGGTTCTA GTACAGATAC TCTACTACAC TCAGCCTCTT ATGTGCCAAG
                                                                           5220
       TTTTCTTTA AGCAATGAGA AATTGCTCAT GTTCTTCATC TTCTCAAATC ATCAGAGGCC
                                                                           5280
       AAAGAAAAAC ACTTTGGCTG TGTCTATAAC TTGACACAGT CAATAGAATG AAGAAAATTA
                                                                           5340
35
       GAGTAGTTAT GTGATTATTT CAGCTCTTGA CCTGTCCCCT CTGGCTGCCT CTGAGTCTGA
                                                                           5400
       ATCTCCCAAA GAGAGAAACC AATTTCTAAG AGGACTGGAT TGCAGAAGAC TCGGGGACAA
                                                                           5460
       CATTGATCC AAGATCTTAA ATGTTATATT GATAACCATG CTCAGCAATG AGCTATTAGA
                                                                           5520
       TTCATTTTGG GAAATCTCCA TAATTTCAAT TTGTAAACTT TGTTAAGACC TGTCTACATT
                                                                           5580
       GTTATATGTG TGTGACTTGA GTAATGTTAT CAACGTTTTT GTAAATATTT ACTATGTTTT TCTATTAGCT AAATTCCAAC AATTTTGTAC TTTAATAAAA TGTTCTAAAC ATTGC
                                                                           5640
40
       Seq ID NO: 178 Protein sequence:
       Protein Accession #: NP_001058.1
45
                  11
                             21
                                         31
       MEVSPLQPVN ENMOVNKIKK NEDAKKRLSV ERIYQKKTQL EHILLRPDTY IGSVELVTQQ
       MWVYDEDVGI NYREVTFVPG LYKIFDEILV NAADNKQRDP KMSCIRVTID PENNLISIWN
                                                                            120
       NGKGIPVVEH KVEKMYVPAL IFGQLLTSSN YDDDEKKVTG GRNGYGAKLC NIFSTKFTVE
50
       TASREYKKMF KQTWMDNMGR AGEMELKPFN GEDYTCITFQ PDLSKFKMQS LDKDIVALMV
                                                                            240
       RRAYDIAGST KDVKVFLNGN KLPVKGFRSY VDMYLKDKLD ETGNSLKVIH EQVNHRWEVC
                                                                            300
       LTMSEKGFQQ ISFVNSIATS KGGRHVDYVA DQIVTKLVDV VKKKNKGGVA VKAHQVKNHM
                                                                            360
       WIFVNALIEN PTFDSQTKEN MTLQPKSFGS TCQLSEKFIK AAIGCGIVES ILNWVKFKAQ
                                                                            420
       VQLNKKCSAV KHNRIKGIPK LDDANDAGGR NSTECTLILT EGDSAKTLAV SGLGVVGRDK
                                                                            480
55
       YGVFPLRGKI LNVREASHKQ IMENAEINNI IKIVGLQYKK NYEDEDSLKT LRYGKIMIMT
                                                                            540
       DQDQDGSHIK GLLINFIHHN WPSLLRHRFL EEFITPIVKV SKNKQEMAFY SLPEFEEWKS
                                                                            600
       STPNHKKWKV KYYKGLGTST SKEAKEYFAD MKRHRIQFKY SGPEDDAAIS LAFSKKQIDD
                                                                            660
       RKEWLTNFME DRRORKLLGL PEDYLYGOTT TYLTYNDFIN KELILFSNSD NERSIPSMVD
                                                                            720
       GLKPGQRKVL FTCFKRNDKR EVKVAQLAGS VAEMSSYHHG EMSLMMTIIN LAQNFVGSNN
                                                                            780
60
       LNLLQPIGQF GTRLHGGKDS ASPRYIFTML SSLARLLFPP KDDHTLKFLY DDNQRVEPEW
                                                                            840
       YIPIIPMVLI NGAEGIGTGW SCKIPNFDVR EIVNNIRRLM DGEEPLPMLP SYKNFKGTIE
                                                                            900
       ELAPNQYVIS GEVAILNSTT IEISELPVRT WTQTYKEQVL EPMLNGTEKT PPLITDYREY
                                                                            960
       HTDTTVKFVV KMTEEKLAEA ERVGLHKVFK LQTSLTCNSM VLFDHVGCLK KYDTVLDILR
                                                                           1020
       DFFELRLKYY GLRKEWLLGM LGAESAKLNN QARFILEKID GKIIIENKPK KELIKVLIQR
                                                                           1080
65
       GYDSDPVKAW KEAQQKVPDE EENEESDNEK ETEKSDSVTD SGPTFNYLLD MPLWYLTKEK
                                                                           1140
       KDELCRLRNE KEQELDTLKR KSPSDLWKED LATFIEELEA VEAKEKODEO VGLPGKGGKA
                                                                           1200
       KGKKTOMAEV LPSPRGORVI PRITIEMKAE AEKKNKKKIK NENTEGSPOE DGVELEGLKO
                                                                           1260
       RLEKKOKREP GTKTKKOTTL AFKPIKKGKK RNPWPDSESD RSSDESNFDV PPRETEPRRA
                                                                           1320
       ATKTKFTMDL DSDEDFSDFD EKTDDEDFVP SDASPPKTKT SPKLSNKELK PQKSVVSDLE
                                                                           1380
70
       ADDVKGSVPL SSSPPATHFP DETEITNPVP KKNVTVKKTA AKSQSSTSTT GAKKRAAPKG
                                                                           1440
       TKRDPALNSG VSQKPDPAKT KNRRKRKPST SDDSDSNFEK IVSKAVTSKK SKGESDDFHM
                                                                           1500
       DFDSAVAPRA KSVRAKKPIK YLEESDEDDL F
75
       Seq ID NO: 179 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 148-7095
                             21
                                                               51
                                        31
80
       CACACATACG CACGCACGAT CTCACTTCGA TCTATACACT GGAGGATTAA AACAAACAAA
       CAAAAAAAC ATTTCCTTCG CTCCCCCTCC CTCTCCACTC TGAGAAGCAG AGGAGCCGCA
                                                                            120
       CGGCGAGGGG CCGCAGACCG TCTGGAAATG CGAATCCTAA AGCGTTTCCT CGCTTGCATT
                                                                            180
       CAGCTCCTCT GTGTTTGCCG CCTGGATTGG GCTAATGGAT ACTACAGACA ACAGAGAAAA
85 .
       CTTGTTGAAG AGATTGGCTG GTCCTATACA GGAGCACTGA ATCAAAAAA TTGGGGAAAG
                                                                            300
```

AAATATCCAA CATGTAATAG CCCAAAACAA TCTCCTATCA ATATTGATGA AGATCTTACA

CAAGTAAATG TGAATCTTAA GAAACTTAAA TTTCAGGGTT GGGATAAAAC ATCATTGGAA

360

	WO 02/	086443				•	
	AACACATTCA	TTCATAACAC	TGGGAAAACA	GTGGAAATTA	ATCTCACTAA	TGACTACCGT	480
	GTCAGCGGAG	GAGTTTCAGA	AATGGTGTTT	AAAGCAAGCA	AGATAACTTT	TCACTGGGGA	540
	ADATGCAATA	TGTCATCTGA	TGGATCAGAG	CATAGTTTAG	AAGGACAAAA	ATTTCCACTT	600
_	GAGATGCAAA	TCTACTGCTT	TGATGCGGAC	CGATTTTCAA	GTTTTGAGGA	AGCAGTCAAA	660
5	GGAAAAGGGA	AGTTAAGAGC	TTTATCCATT	TTGTTTGAGG	TTGGGACAGA	AGAAAATTTG	720
-	GATTTCAAAG	CGATTATTGA	TGGAGTCGAA	AGTGTTAGTC	GTTTTGGGAA	GCAGGCTGCT	780
	TTACATCCAT	TCATACTGTT	GAACCTTCTG	CCAAACTCAA	CTGACAAGTA	TTACATTTAC	840
	AATCGCTCAT	TGACATCTCC	TCCCTGCACA	GACACAGTTG	ACTGGATTGT	TTTTAAAGAT	900
	ACACTTACCA	TCTCTGAAAG	CCACTTGGCT	GTTTTTTGTG	AAGTTCTTAC	AATGCAACAA	960
10	MCMG11AGCA	TCATGCTGAT	CCAGIIGGCI	CAAAACAATT	TTCCACACC	ACAGTACAAG	1020
10	TCTGGTTATG	AGGTGTTTTC	GGACIACITA	CCANACCANC	ACAMICATCA	ACCAGETTGT	1080
	TTCTCTAGAC	AGGTGTTTTC	CTCATACACT	GGAAAGGAAG	AGATICATGA	AGCAGIIIGI	1140
	AGTTCAGAAC	CAGAAAATGT	TCAGGCTGAC	CCAGAGAATT	ATACCAGCCT	TCTTGTTACA	
	TGGGAAAGAC	CTCGAGTCGT	TTATGATACC	ATGATTGAGA	AGTTTGCAGT	TTTGTACCAG	1200
15	CAGTTGGATG	GAGAGGACCA	AACCAAGCAT	GAATTTTTGA	CAGATGGCTA	TCAAGACTTG	1260
15	GGTGCTATTC	TCAATAATTT	GCTACCCAAT	ATGAGTTATG	TTCTTCAGAT	AGTAGCCATA	1320
	TGCACTAATG	GCTTATATGG	AAAATACAGC	GACCAACTGA	TTGTCGACAT	GCCTACTGAT	1380
	AATCCTGAAC	TTGATCTTTT	CCCTGAATTA	ATTGGAACTG	AAGAAATAAT	CAAGGAGGAG	1440
•	GAAGAGGGAA	AAGACATTGA	AGAAGGCGCT	ATTGTGAATC	CTGGTAGAGA	CAGTGCTACA	1500
	AACCAAATCA	GGAAAAAGGA	ACCCCAGATT	TCTACCACAA	CACACTACAA	TCGCATAGGG	1560
20	ACGARATACA	ATGAAGCCAA	GACTAACCGA	TCCCCAACAA	GAGGAAGTGA	ATTCTCTGGA	1620
	AAGGGTGATG	TTCCCAATAC	ATCTTTAAAT	TCCACTTCCC	AACCAGTCAC	TAAATTAGCC	1680
	ACACAAAAAC	ATATTTCCTT	CACTTCTCAG	ACTICTICACTIC	AACTGCCACC	TCACACTGTG	1740
	ACAGAMANG	CAGCCTCTTT	DARMORMOCCO	TOTALANCTO	THETECONEC	TOCACATATO	1800
		GGACTGCAGA					1860
25							1920
23		CCAGTTTCAA					
		CTATCCCATT					1980
		AGACAATAAC					2040
						GGAGGGAAAT	
-	GTGTGGTTTC	CTAGCTCTAC	AGACATAACA	GCACAGCCCG	ATGTTGGATC	AGGCAGAGAG	2160
·30	AGCTTTCTCC	AGACTAATTA	CACTGAGATA	CGTGTTGATG	AATCTGAGAA	GACAACCAAG	2220
	TCCTTTTCTG	CAGGCCCAGT	GATGTCACAG	GGTCCCTCAG	TTACAGATCT	GGAAATGCCA	2280
		CCTTTGCCTA					2340
		AGGATTTGGT					2400
		GTGAGACACC					2460
35		TGCTTGACAA					2520
33		ATGCTACGCC					2580
		ATGGTGCACC					2640
•		TGCATACAGT					2700
							2760
40		CCTTGCATGC					
40		AGTATTCTGA					2820
		AATCTGGTGT					2880
		CCATGATGCA					2940
		GCTCCCAACA					3000
	GATTCTGTGG	GTGTAACTTA	TCAGGGTTCC	TTATTTAGCG	GCCCTAGCCA	TATACCAATA	3060
45		CGTTAATAAC					3120
	GGTGATGGGG	AATGGTCTGG	AGCCTCTTCT	GATAGTGAAT	TTCTTTTACC	TGACACAGAT	3180
	GGGCTGACAG	CCCTTAACAT	TTCTTCACCT	GTTTCTGTAG	CTGAATTTAC	ATATACAACA	3240
	TCTGTGTTTG	GTGATGATAA	TAAGGCGCTT	TCTAAAAGTG	AAATAATATA	TGGAAATGAG	3300
	ACTGAACTGC	AAATTCCTTC	TTTCAATGAG	ATGGTTTACC	CTTCTGAAAG	CACAGTCATG	3360
50		ATGATAATGT					3420
		CCAAGGGCAT					3480
		TTAGTCAAGT					3540
		CTGGTGACAC					3600
		CTGCTTCTAG					3660
55		CTTTTAGTAC					
33							3720
						GGTTGAAACC	
						TTCTGCTTCA	
						TACTTCTCAT	
CO						ATATGAACCA	
60	GTTTTGTTAA	AAAGTGAAAG	TTCCCACCAA	GTGGTACCTT	CTTTGTACAG	TAATGATGAG	
						AAGGCATGTA	
						TAAGCTTATA	
	CATTCCGATG	AAATTTTAAC	CTCCACCAAA	AGTTCTGTTA	CTGGTAAGGT	ATTTGCTGGT	4200
	ATTCCAACAG	TTGCTTCTGA	TACATTTGTA	TCTACTGATC	ATTCTGTTCC	TATAGGAAAT	4260
65	GGGCATGTTG	CCATTACAGC	TGTTTCTCCC	CACAGAGATG	GTTCTGTAAC	CTCAACAAAG	4320
						TGATGCCGGT	
						TGATGATGAC	
						TAGAGAATCA	
						TCAGAATAAT	
70	CCAATCTCAT	ACTCACTATC	TONGACACE	CARCARCATA	ATAGAGTCAC	AAGTGTATCC	4620
, 0						AAATGGGCTA	
						TGCTCTGCTT	
						AAGTGGATCA	
75						CAGTTTTGCA	
75						AATAACTCCT	
*						GTTCCACGTT	
						TGAGGGGTTG	
						TTTTATCTGT	
0.0	CTAGTGGTTC	TTGTGGGTAT	TCTCATCTAC	TGGAGGAAAT	GCTTCCAGAC	TGCACACTTT	5160
80						TATCTTTCCA	
						TGCAGATTTA	
						CCAGGAAGTG	
						AGACAACAAG	
						GCTAGCACAG	
85						TGATGGCTAC	
	TIGGIGUM	AACCTTAGE AA	MCCOMCIGN;	CCCCC CACA	PATCONCACO	TGAAGATTTC	5500
	TOTA CD ANO.	TATCCCARG	TOCTOCCCAN	COUCLACION	WAY WAY YOU'S	COMPOSITIO	5640
	IGGAGAATGA	INTOGGAACA	TAATGTGGAA	GITATTGTCA	TGATAACAAA	CCTCGTGGAG	2040
	•						

	WO 02	/086443					
	AAAGGAAGGA	GAAAATGTGA		CCTGCCGATG			5700
				CTTGCCTATT			5760
	CTAAGAAACA	CAAAAATAAA	AAAGGGCTCC	CAGAAAGGAA	GACCCAGTGG	ACGTGTGGTC	5820
5	ACACAGTATC	ACTACACGCA	GTGGCCTGAC	ATGGGAGTAC AAGCGCCATG	CAGAGTACTC	CCTGCCAGTG	5880
_	CACTGCACTITG	CTCGACTTCG	AGCCIAIGCC	ACATATATTG	TGCTAGACAG	TATCTTCCAC	5940 6000
	CAGATTCAAC	ACGAAGGAAC	TGTCAACATA	TTTGGCTTCT	TAAAACACAT	CCGTTCACAA	6060
	AGAAATTATT	TGGTACAAAC	TGAGGAGCAA	TATGTCTTCA	TTCATGATAC	ACTGGTTGAG	6120
10	GCCATACTTA	GTAAAGAAAC	TGAGGTGCTG	GACAGTCATA	TTCATGCCTA	TGTTAATGCA	6180
10	CTCCTCATTC	CTGGACCAGC	AGGCAAAACA	AAGCTAGAGA	AACAATTCCA	GCTCCTGAGC	6240
				GCAGCCCTAA			6300
	GGAGAAGCT	CAGACTACAT	CANTECCTCC	AGATCAAGGG TATATCATGG	GCTATTACCA	CACCAATCAA	6360 6420
	TTCATCATTA	CCCAGCACCC	TCTCCTTCAT	ACCATCAAGG	ATTTCTGGAG	GATGATATGG	6480
15	GACCATAATG	CCCAACTGGT	GGTTATGATT	CCTGATGGCC	AAAACATGGC	AGAAGATGAA	6540
				ATAAATTGTG			6600
	ATGGCTGAAG	AACACAAATG	TCTATCTAAT	GAGGAAAAAC	TTATAATTCA	GGACTTTATC	6660
	TTAGAAGCTA	CACAGGATGA	TTATGTACTT	GAAGTGAGGC	ACTITCAGIG	TCCTAAATGG	6720
20				TTTGAACTTA CATGATGAGC			6780 6840
20				CAACTAGAAA			6900
				AGGCCAGGAG			6960
				CTTGTGAGCA			7020
25				TTGCCTGATG			7080
25				GGGGACTCAC			7140
				GTTCTGTTAT CGCCAAATTT			7200 7260
				TGTTTGAACT			7320
••				TTCTGTATTG			7380
30	TTTATAGAGG	TTAGGAATTC	CAAACTACAG	AAAATGTTTG	TTTTTAGTGT	CAAATTTTTA	7440
				AGAAATATAA			7500
				CATTTTACAA			7560
				GCCCTAGTGT			7620 7680
35				GTCTTACTCT			7740
				AGCATGTAAT			7800
				TGAGAATAAC			7860
				TAAATATAAAT	ATTGCCATTA	ААААААААА	7920
40	даадааааа	АААААААА	AAAA				
	-	180 Protein	n sequence:				
	Protein Acc	cession #: 1	Sos sequence	9			
15	Protein Acc	11	Sos sequence 21	31	41	51	
45 .	1 1	11 }	21	31 }	1	1	50
45 -	 MRILKRFLAC	11 } IQLLCVCRLD	21 WANGYYRQQR	31 } KLVEEIGWSY	} TGALNQKNWG	 KKYPTCNSPK	60 120
45 ·	1 MRILKRFLAC QSPINIDEDL	11 IQLLCVCRLD TQVNVNLKKL	21 WANGYYRQQR KFQGWDKTSL	31 }	 TGALNQKNWG TVEINLTNDY	 KKYPTCNSPK RVSGGVSEMV	60 120 180
	1 MRILKRFLAC QSPINIDEDL FKASKITFHW	11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS	21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP	31 } KLVEEIGWSY ENTFIHNTGK	TGALNQKNWG TVEINLTNDY DRFSSFEEAV	 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS	120
45 .	1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK	11	21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ	31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY	TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY	KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY	120 180 240 300
	1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV	11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA	21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV	31 } KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD	TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY	KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK	120 180 240 300 360
	1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD	11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP	21) WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA	31 } KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY	TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT	KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFPE	120 180 240 300 360 420
50	1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TOTTOMIVOR TGKEEIHEA HEFLIDGYQD LIGTEEIIKE	11 CONTROL OF CONTR	21) wANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA	31 } KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ	TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI	KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPDC KFSRQVFSSY QQLDGEDQTK DNPELDLFPE GTKYNEAKTN	120 180 240 300 360
	MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRGSEFS	11 TQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQL LGAILNNLLP EEEGKDIEEG GKGDVPNTSL	21) WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL	31 } KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY	TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT	KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND	120 180 240 300 360 420 480
50	MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TOTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS	11	21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQR AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA	31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE	TGALNQKNWG TVEINLTNDY DRFSSFEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTITHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG	KKYPTCNSPK RVSGGVSEWY KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND PATSAIPPIS NVWFPSSTDI	120 180 240 300 360 420 480 540 600 660
50	I MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TOTVDWIVFK TGKEEIHEAV HEFLIDGYQD LIGTEEIIKE RSPIRGSEFS GSKTVLRSPH ENISQGYIFS TAQEDVGSGR	11 COLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE	21) WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT	31 } KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ELTSFKLD SEDSTSSGSE KSFSAGPVMS	TGALNQKNWG TVEINLTNDY DRFSSFEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTITHYNRI QTVTELPPHT TGAEDSSGS ESLKDPSMEG QGPSVTDLEM	KKYPTCNSPK RVSGGVSEMV KGKGKLRALS KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND PATSAIPFIS NVWFPSSTDI PHYSTFAYFP	120 180 240 300 360 420 480 540 600 660 720
50	MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP	11 TQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE SSRQQDLVST	21) WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV MMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ	31 } KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYWLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNGETPLQ	TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM PSYSSEVFPL	KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND PATSAIPPIS NVWFPSSTDI PHYSTFAYFP VTPLLLDNQI	120 180 240 300 360 420 480 540 600 660 720 780
50	MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTHAFTP LNTTPAASSS	11 TQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE SSRQQDLVST DSALHATPVF	21) WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV MMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ PSVDVSFESI	31 } KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ELTSFKLD SEDSTSSGSE KSFSAGPVMS	TGALNQKNWG TVEINLTNDY DRFSSFEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTITHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM PSYSSEVFPL PFSSASFSSE	KKYPTCNSPK RVSGGVSEW KKSKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND PATSAIPFIS NVWFPSSTDI PHYSTFAYFP VTPLLLDNQI LFRHLHTVSQ	120 180 240 300 360 420 480 540 600 660 720
50 55	MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTE LITTPAASSS ILPQVTSATE	11	21 WANGYYRQOR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQM DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ PSVDVSFESI PVAGGDLLLE	31 } KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEXDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNGETPLQ LSSYDGAPLL	TGALNQKNWG TVEINLTNDY DRFSSFEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTITHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM PSYSSEVFPL PFSSASFSSE STTHAASETL	KKYPTCNSPK RVSGGVSEW RVSGGVSEW KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFPE GTKYNEAKTN VEGTSASLND PATSAIPPIS NVWFPSSTDI PHYSTFAYFP VTPLLLDNQI LFRHLHTVSQ EFGSESGVLY	120 180 240 300 360 420 480 540 660 720 780 840
50 55	I MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLIDGYQD LIGTEEIIKE RSPIRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LNTTPAASSS ILPQVTSATS KTLMFSQVEP SLFSGPSHIP	11 TQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE SSRQQDLVST DSALHATPVF SDKVPLHASL IPKSSLITPT	21) WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ PSVDVSFESI PVAGGDLLLE SGGPEPSYAL ASLLQPTHAL	31 } KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ELTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNGETPLQ LSSYDGAPLL LSSYDGAPLL SDNEGSQHIF SGDGEWSGAS	TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTITHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM PSYSSEVFPL PFSSASFSSE STTHAASETL TVSYSSAIPV SDSEFLLPDT	KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND PATSAIPPIS NVWFPSSTDI PHYSTFAYFP VTPLLLDNQI LFRHLHTVSQ EFGSESGVLY HDSVGVTYQG DGLTALNISS	120 180 240 300 360 480 540 660 720 780 900 960 1020
50 55	MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLIDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LNTTPAASSS ILPQVTSATE KTLMFSQVEP SLFSGPSHIP PVSVAEFTYT	11 TQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD SSRQQDLVST DSALHATPVF SDKVPLHASL PSSDAMMHAR TPKSSLITPT TSVFGDDNKA	21) WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV MMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ PSVDVSFESI PVAGGDLLLE SSGPEPSYAL ASLLQPTHAL LSKSEIIYGN	31 } KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYWLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLLD SSLDSTSSGSE KSFSAGPVMS PVYNGETPLQ LSSYDGAPLL PSLAQYSDVL SDNEGSQHIF SGDGEWSGAS ETELQIPSFN	TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM PSYSSEVFPL PFSSASFSSE STTHAASETL TVSYSSAIPV SDSEFLLPDT EMVYPSESTV	KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND PATSAIPPIS NVWFPSSTDI PHYSTFAYFP VTPLLLDNQI LFRHLHTVSQ EFGSESGVLY HDSVGVTYQG DGLTALNISS MPNMYDNVNK	120 180 240 300 420 480 540 600 720 780 840 900 1020 1080
505560	MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTI LNTTPAASSS ILPQVTSATE KTLMFSQVEP SLFSGPSHIP PVSVABFTYT LNASLQETSV	11	21 WANGYYRQOR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ PSVDVSFESI PVAGGDLLLE SGGPEPSYAL ASLLQPTHAL LSKSEIIYGN GSLAHTTTKV	31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNGETPLQ LSSYDGAPLL PSLAQYSDVL SDNEGSQHIF SGDGEWSGAS ETELQIPSFN FDHEISQVPE	TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTITHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM PSYSSEVFPL PFSSASFSSE STTHAASETL TVSSSAIPV EMVYPSESTV NNFSVQPTHT	KKYPTCNSPK RVSGGVSEW KKSKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND PATSAIPPIS NVWFPSSTDI PHYSTFAYFP VTPLLLDNQI LFRHLHTVSQ EFGSESGVLY HDSVGVTYQG MPNMYDNVNK VSQASGDTSL	120 180 240 300 420 480 540 600 720 780 840 900 900 1020 1080 1140
50 55	I MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TOTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTS LNTTPAASSS ILPQVTSATE KTLMFSQVEP SLFSGPSHIP PVSVAEFTYV KPVLSANSEP	11	21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ PSVDVSFESI PVAGGDLLLE SSGPEPSYAL ASLIQPTHAL LSKSEIIYGN GSLAHTTTKV LSPSTQLLPY	31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNIL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNGETPLQ LSSYDGAPLL PSLAQYSDVL SDNEGSQHIF SGDGEWSGAS FOHELSQVPE ETSASFSTEV	TGALNQKNWG TVEINLTNDY DRFSSFEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTITHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM PSYSSEVFPL PFSSASFSSE STTHAASETL TVSYSSAIPV SDSEFLLPDT SDSEFLLPDT SDSEFLLPDT LLQPSFQASD	KKYPTCNSPK RVSGGVSEW RVSGGVSEW KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFPE GTKYNEAKTN VEGTSASLND PATSAIPPIS NVWFPSSTDI PHYSTFAYFP VTPLLLDNQI LFRHLHTVSQ EFGSESGVLY HDSVGVTYQG DGLTALNISS MPNMYDNVNK VSQASGDTSL VDTLLKTVLP	120 180 240 360 420 480 540 660 720 780 900 960 1020 1020 1140 1200
505560	I 	11 TQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTS SENPETITYD ESFLQTNYTE SSRQQDLVST DSALHATPVF SDKVPLHASL PKSSLITPT TSVFGDDNKA 1PKSSLITPT TSVFGDDNKA SSSPRASSEM TPKVDKISST	21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ PSVDVSFESI PVAGGDLLLE SSGPEPSYAL ASLLQPTHAL LSKSEIIYGN LSPSTQLLFY MLHLIVSNSA	31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNGETPLQ LSSYDGAPLL PSLAQYSDVL SDNEGSQHIF SGDGEWSGAS ETELQIPSFN FDHEISQVPE	TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTITHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM PSYSSEVFPL PFSSASFSSE STTHAASETL TVSYSSAIPV SDSEFLLPDT EMVYPSESTV NNFSVQPTHS LLQPSFQASD VPVFDVSPTS	KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND PATSAIPPIS NVWFPSSTDI PHYSTFAYFP VTPLLLDNQI LFRHLHTVSQ EFGSESGVLY HDSVGVTYQG DGLTALNISS MPNMYDNVNK VSQASGDTSL VDTLLKTVLP HMHSASLQGL	120 180 240 300 420 480 540 600 720 780 840 900 900 1020 1080 1140
505560	I MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRESEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LNTTPAASSS ILPQVTSATE KTLMFSQVEP SLFSGPSHIP PVSVAEFTYT LNASLQETSV KPVLSANSEP AVPSDPILVE TISVASEKYE EPLNTLINKL	11 TQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE SSRQQDLVST DSALHATPVF SDKVPLHASL PSSDAMMHAR IPKSSLITPT TSVFGDDNKA SISSTKGMFP ASSDPASSEM TPKVDKISST PVLLKSESSH IHSDEILTST	21 WANGYYRQOR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQ AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ PSVDVSFESI PVAGGDLLLE SSGPEPSYAL ASLLQPTHAL LSKSEIIYGN GSLAHTTTKV LSPSTQLLFY MLHLIVSNSA QVVPSLYSND KSSVTGKVFA	31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNGETPLQ LSSYDGAPLL PSLAQYSDVL SDNEGSQHIF SGDGEWSGAS ETELQIPSFN FDHEISQVPE ETSASFSTEV SSENMLHSTS ELFQTANLEI GIPTVASDTF	TGALNQKNWG TVEINLTNDY DRFSSFEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM PSYSSEVFPL PFSSASFSSE STTHAASETL TVSYSSAIP EMVYPSESTV NNFSVQPTHT LLQPSFQASD VQAHPPKGRH VSTDHSVPIG	KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND PATSAIPFIS NVWFPSSTDI PHYSTFAYFP VTPLLLDNQI LFRHLHTVSQ EFGSESGVLY HDSVGVTYQG DGLTALNISS MPNMYDNVNK VSQASGDTSL VDTLLKTVLP HMHSASLQGL VFATPVLSID NGHVAITAVS	120 180 240 300 360 420 480 660 720 780 960 1020 1140 1260 1320 1380
50556065	I MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TOTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTS ILPOVTSATE KTLMFSQVEP SLFSGPSHIP PVASVAEFTY VASVAEFTY KPVLSANSEP AVPSDPILVE TISYASEKYE EPLNTLINKL PHRDGSVTST	11	21 WANGYYRQOR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQN AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVYSQTTV VNVYSQTTV PSVDVSFESI PVAGGDLLLE SSGPEPSYAL ASLIQPTHAL LSKSEIIYGN GSLAHTTTKV LSPSTQLLPY MLHLIVSNSA QVVPSLYSND KSSVTGKVFA ELSHSAKSDA	31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNGETPLQ LSSYDGAPLL PSLAQYSDVL SDNEGSQHIF SGDGEWSGAS EDGEWSGAS FOHEISQVPE ETSASFSTEV SSENMLHSTS ELFQTANLEI GIPTVASDTF GLVGGGEDGD	TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTITHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM PSYSSEVFPL PFSSASFSSE STTHAASETL TVSYSSAIPV SDSEPLLPDT EMYYPSESTV NNFSVQPTHT LLQPSFQASD VPVFDVSPTS NQAHPPKGRH VSTDHSVPIG TDDDGDDDDDD	KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND PATSAIPFIS NVWFPSSTDI PHYSTFAYFN VTPLLLDNQI LFRHLHTVSQ EFGSESGVLY HDSVGVTYQG DGLTALNISS WPNMYDNVNK VSQASGDTSL VDTLLKTVLP HMHSASLQGL VFATPVLSID NGHVAITAVS DRGSDGLSIH	120 180 240 300 360 420 480 540 660 720 780 960 1020 1140 1200 1260 1320 1380 1440
505560	I MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LNTTPAASTE KTLMFSQVEP SLFSGPSHIP PVSVAEFTYT LNSLQETSV KPVLSANSEP AVPSDPILVE TISVASEKYE EPLNTLINK PHRDGSVTST KCMSCSSYRE	11 TQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE SSRQQDLVST DSALHATPYT FDKVPLHASL PSSDAMMHAR IPKSSLITPT TSVFGDDNKA SISSTKGMFP ASSDPASSEM TPKVDKISST PVLLKSESSH LHSDEILTST KLLFPSKATS SQEKVMNDSD	21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ PSVDVSFESI PVAGGDLLLE SSGPEPSYAL ASLLQPTHAL LSKSEIIYGN GSLAHTTKV LSPSTQLLFY MLHLIVSNSA QVVPSLYSND KSSVTGKVFA ELSHSAKSDA THENSLMDQN	31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEXDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNGETPLQ LSSYDGAPLL PSLAQYSDVL SDNEGSQHIF SGDGEWSGAS ETELQIPSFN TOHEISQVPE ETSASFSTEV SSENMLHSTS ELFQTANLEI GIPTVASDTF GLVGGGEDGD NPISYSLSEN	TGALNQKNWG TVEINLTNDY DRFSSFEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTITHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM PSYSSEVFPL PFSSASFSSE STTHAASETL TVSYSSAIPV SDSEFLLPDT EMVYPSESTV NNFSVQPTHT LLQPSFQASD VPVFDVSPTS NQAHPPKGRH VSTDHSVPIG TDDDGDDDDD SEEDNRVTSV	KKYPTCNSPK RVSGGVSEW RVSGGVSEW KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFPE GTKYNEAKTN VEGTSASLND PATSAIPPIS NVWFPSSTDI PHYSTFAYFP VTPLLLDNQI LFRHLHTVSQ EFGSESGVLY HDSVGVTYQG DGLTALNISS MPNMYDNVNK VSQASGDTSL VDTLLKTVLP HMHSASLQGL VFATPVLSID NGHVAITAVS DRGSDGLSIH SSDSQTGMDR	120 180 240 360 420 480 540 660 720 780 840 960 1020 1140 1200 1260 1320 1320 1440 1500
50556065	I MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPPRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LNTTPAASSE ILPQVTSATE KTLMFSQVEP SLFSGPSHIP PVSVAEFTYT LNASLQETSY LNASLQETSY LNASLQETSY LNASLQETSY AVPSDPILVE TISYASEKYE EPLNTLINKL PHRDGSVTST KCMSCSSYRE SPGKSPSANG	11 TQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL SENPETITYD ESFLQTNYTE SSRQQDLVST DSALHATPVF SDKVPLHASL PSSDAMMHAR IPKSSLITPT TSVFGDDNKA SISSTKGMFP ASSDPASSEM TPKVDKISST PVLLKSESSH IHSDEILTST KULFPSKATS SQEKVMNDSD LSQKHNDGKE	21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ PSVDVSFESI PVAGGDLLLE SSGPEPSYAL ASLLQPTHAL LSKSEIIYGN GSLAHTTIKN MLHLIVSNSA QVVPSLYSND KSSVTGKVFA ELSHSAKSDA THENSLMDQN ENDIQTGSAL	31 } KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNIL QSGYVMLMDY TVERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ELTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNGETPLQ LSSYDGAPLL SSUDGAPLI SGDGEWSGAS ETELQIPSFN FDHEISQVPE ETSASFSTEV SSENMLHSTS ELFQTANLEI GIPTVASDTF GLVGGGEDGD NPISYSLSEN LPLSPESKAW	TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTITHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM PSYSSEVFPL PFSSASFSSE STTHAASETL TVSYSSAIPV SDSEFLLPDT EMVYPSESTV NNFSVQPTHT LLQPSFQASD VPVFDVSPTS NQAHPPKGRH VSTDHSVPIG TDDDGDDDDD SEEDNRVTSV AVLTSDEESG	KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND PATSAIPPIS NVWFPSSTDI PHYSTFAYFP VTPLLLDNQI LFRHLHTVSQ DGLTALNISS MPNMYDNVNK VSQASGDTSL VFATPVLSID NGHVAITAVS DRGSDGLSIH SSDSQTGMDR SGQGTSDSLN	120 180 240 360 420 480 540 660 720 780 840 960 1020 1080 1120 1260 1320 1340 1440 1500 1560
50556065	I 	11 TQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL SENPETITYD ESFLQTNYTE SSRQQDLVST DSALHATPVF SDKVPLHASL IPKSSLITPT TSVFGDDNKA SISSTKGMFP ASSDPASSEM TPKVDKISST PVLLKSESSH IHSDEILTST KLLFPSKATS SQEKVMNDSD LSQKHNDGKE ADTNEKDADG	21) wangyyrqqr kfqgwdktsl ehslegqkfp esvsrfgkqa avfcevltmq dpenytsllv nmsyvlqiva aivnpgrdsa nstsqpytkl ntvsiteyee vlipesarna irvdesektt vnvysqttq psvdvsfesi pvaggdllle ssgpepsyal asliqpthal lskseiiygn gslahtttkv Lspstqllfy mihlivsnsa qvvpslysnd kssvtgkvfa elshsaksda thenslmdqn endiqtgsal ilaagdseit	31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEXDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNGETPLQ LSSYDGAPLL PSLAQYSDVL SDNEGSQHIF SGDGEWSGAS ETELQIPSFN TOHEISQVPE ETSASFSTEV SSENMLHSTS ELFQTANLEI GIPTVASDTF GLVGGGEDGD NPISYSLSEN	TGALNQKNWG TVEINLTNUG TVEINLTNUG DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTITHYNRI QTVTELPPHT TGAEDSSGSS SSLKDPSMEG QGPSVTDLEM PSYSSEVFPL PFSSASFSSE STIHAASETL TVSYSSAIPV SDSEFLLPDT EMVYPSESTV NNFSVQPTHT LLQPSFQASD VQVFDVSPTS NQAHPPKGRH VSTDHSVPIG TDDDGDDDDD SEEDNRVTSV AVLTSDEESG VTSENSEVFH	KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND PATSAIPPIS NVWFPSSTDI LFRHLHTVSQ EFGSESGYLY HDSVGVTYQG DGLTALNISS MPNMYDNVNK VSQASGDTSL VDTLLKTVLB VFATPVLSID NGHVAITAVS DRGSDGISH SSDGGGTSDSLN VSEAEASNSS	120 180 240 360 420 480 540 660 720 780 840 960 1020 1140 1200 1260 1320 1320 1440 1500
5055606570	I MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TOTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTE LNTTPAASSS ILPQVTSATE KTLMFSQVEP SLFSGPSHIP PVSVAEFTYT KPVLSANSEP AVPSDPILVE TISYASEKYE EPLNTLINKL PHRDGSVTST KCMSCSSYRE SPGKSPSANG ENETSTDFSF HESRIGLAEG VISTPPTPIF	11 TQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE SSRQQDLVST DSALHATPVF SDKVPLHASL PSSDAMMHAR IPKSSLITPT TSVFGDDNKA SISSTKGMFP ASSDPASSEM TPKVDKISST PVLLKSESSH IHSDEILTST KLLFPSKATS SQEKVMNDSD LSQKHNDGKE ADTNEKDAGD LESEKKAVIP PISDDVGAIP	21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ PSVDVSFESI PVAGGDLLLE SSGPEPSYAL ASLLQPTHAL LSKSEIIYGN GSLAHTTTKV LSPSTQLLFY MLHLIVSNSA QVVPSLYSNG ELSHSAKSDA THENSLMDQN ENDIQTGSAL ILAAGDSEIT LVIVSALTFI IKHFPKHVAD	31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNIL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLITSFKLD SEDSTSSGSE KSFSAGPVMS PVYNGETPLQ LSSYDGAPLL PSLAQYSDVL SDNEGSQHIF SGDGEWSGAS ETELQIPSFN FDHEISQVPE ETSASFSTEV SSENMLHSTS ELFQTANLEI GIPTVASDTF GLVGGGEDGD NPISYSLSEN LPLSPESKAW PGFPQSPTSA LPLSPESKAW PGFPQSPTSA LHASSGFTEE	TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTITHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM PSYSSEVFPL PFSSASFSSE STTHAASETL TVSYSSAIPV SDSEPLLPDT EMVYPSESTV NNFSVQPTHT LLQPSFQASD VPVFDVSPTS NQAHPPKGRH VSTDHSVPIG TDDDGDDDDD SEEDNRVTSV AVLTSDEESG VTSENSEVFH YWRKCFQTAH FETLKEFYQE	KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND PATSAIPFIS NVWFPSSTDI PHYSTFAYFN TYPLLLDNQI LFRHLHTVSQ EFGSESGVLY HDSVGVTYQG DGLTALNISS WPNMYDNVNK VSQASGDTSL VDTLLKTVLP HMHSASLQGL VFATPVLSID NGHVAITAVS DRGSDGLSIH SSDSQTGMDR SGQGTSDSLN VSEAEASNSS FYLEDSTSPR VQSCTVDLGI	120 180 240 360 420 480 540 660 720 780 960 1020 11200 1260 1320 1440 1500 1560 1680 1740
50556065	I MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LNTTPAASTE KTLMFSQVEP SLFSGPSHIP PVSVAEFTYT LNASLQETSV KPVLSANSEP AVPSDPILVE TISVASEKYE EPLNTLINK PHRDGSVTST KCMSCSSYRE SPGKSPSANG ENETSTDFSF HESRIGLAEG VISTPPTPIF TADSSNHPDN	11 TQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL SENPETITYD ESFLQTNYTE SSRQQDLVST DSALHATPVT SDKVPLHASL PSSDAMMHAR IPKSSLITPT TSVFGDDNKP ASSDPASSEM TPKVDKISST PVLLKSESSH IHSDEILTST KLLPPSKATS SQEKVMNDSD LSQKHNDGKE ADTNEKDADG LESEKKAVIP PISDDVGAIP KHKNRYINIV	21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ PSVDVSFESI PVAGGDLLLE SSGPEPSYAL ASLLQPTHAL LSKSEIIYGN GSLAHTTTKV LSPSTQLLFY MLHLIVSNSA QVVPSLYSND KSSVTGKVFA ELSHSAKSDA THENSLMDQN ENDIQTGSAL ILAAGDSEIT LVIVSALTFI LKHFPKHVAD AYDHSRVKLA	31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLINL QSGYVMLMDY TYMERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNGETPLQ LSSYDGAPLL PSLAQYSDVL SDNEGSQHIF SGDGEWSGAS ETELQIPSFN FDHEISQVPE ETSASFSTEV SSENMLHSTS ELFQTANLEI GIPTVASDTE GLVGGGEDGD NPISYSLSEN LPLSPESKAW PGFPQSPTSS CLVVLVGILI LHASSGFTEE QLAEKDGKLT	TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVUMPT ISTITHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QCPSVTDLEM PSYSSEVFPL PFSSASFSSE STTHAASETL TVSYSSAIPV SDSEFLLPDT EMVYPSESTV NNFSVQPHTLLQPSFQASD VPVFDVSPTS NQAHPPKGRH VSTDHSVPIG TDDDGDDDDD SEEDNRVTSV AVLTSDEESG VTSENSEVFH YWRKCFQTAH FETLKEFYQE DYINANYVDG	KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND PATSAIPPIS NVWFPSSTDI PHYSTFAYFP VTPLLLDNQI LFRHLHTVSQ EFGSESGVLY HDSVGVTYQG DGLTALNISS MPNMYDNVNK VSQASGTTSL VFATPVLSID NGHVAITAVS DRGSDGLSIH SSDSQTGMDR SGQGTSDSLN VSEAEASNSS FYLEDSTSPR VQSCTVDLGI YNRPKAYIAA	120 180 240 360 420 480 540 660 720 780 840 960 1020 1140 1200 1320 1320 1340 1560 1680 1740 1800
5055606570	I MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LNTTPAASSS ILPQVTSATS KTLMFSQVEP SLFSGPSHIP PVSVABFTYT LNASLQETSY KPVLSANSEP AVPSDPILVE TISYASEKYE EPLNTLINKL PHRDGSVTST KCMSCSSYRE SPGKSPSANG ENETSTDFSF HESRIGLAEG VISTPPTPIF TADSSNHPDN QGPLKSTAED	11 TOLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL SENPETITYD ESFLQTNYTE SSRQQDLVST DSALHATPVF SDKVPLHASL IPKSSLITPT TSVFGDDNKA IPKSSLITPT TSVFGDDKF TFKVDKISST PVLLKSESSH IHSDEILTST KLLFPSKAST KLLFPSKAST SQEKVMNDSD LSQKHNDGKE ADTNEKDADG LESEKKAVIP PISDDVGAIP KHKNRYINIV FWRMIWEHNV	21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVYSQTTQ PSVDVSFESI PVAGGDLLLE SGPEPSYAL ASLLQPTHAL LSKSEIIYGN GSLAHTTIKV MLHLIVSNSA QVVPSLYSND KSSVTGKVFA ELSHSAKSDA THENSLMDQN ENDIQTGSAL ILAAGDSEIT LVIVSALTFI IKHFPKHVAD AYDHSRVKLA EVIVMITNLV	31 } KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNIL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ELTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNGETPLQ LSSYDGAPLL SSYDGAPLL SSUDGSQHIF SGDGEWSGAS ETELQIPSFN FDHEISQVP ETSASFSTEV SSENMLHSTS ELFQTANLEI GIPTVASDTF GLVGGEDGD NPISYSLSEN LPLSPESKAW PGPPQSPTSS CLVVLVGILI LHASSGFTEE QLAEKDGKLT EKGRRKCDQY	TGALNQKNWG TVEINLTNUG TVEINLTNUG DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTITHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM PSYSSEVFPL PFSSASFSSE STTHAASETL TVSYSSAIPV SDSEFLLPDT EMVYPSESTV NNFSVQPTHT LLQPSFQASD VPVFDVSPTS NQAHPPKGRH VSTDHSVPIG TDDDGDDDDD SEEDNRVTSV AVLTSDEESG VTSENSEVFH YWRKCFQTAH FETLKEFYQE DYINANYVDG WPADGSEEYG	KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND PATSAIPPIS NVWFPSSTDI PHYSTFAYFP VTPLLLDNQI LFRHLHTVSQ EFGSESGYLY HDSVGVTYQG DGLTALMISS MPNMYDNVNK VSQASGDTSL VDTLLKTVLP HMHSASLQGL VFATPVLSID NGHVAITAVS DRGSDGLSIH SSDSQTGMDR SGQGTSDSLN VSEAEASNSS FYLEDSTSPR VQSCTVDLGI YNTPKAYIAA NFLVTQKSVQ	120 180 240 360 420 480 540 660 720 780 840 960 1020 1280 1260 1320 1380 1440 1560 1620 1740 1740 1860
5055606570	MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LNTTPAASSS ILPQVTSATE KTLMFSQVEP SLFSGPSHIP PVSVASFTYT LNASLQETSV KPVLSANSEP AVPSDPILVE TISYASEKYE EPLMTLINKL PHRDGSVTST KCMSCSSYRE SPGKSPSANG ENETSTDFSF HESRIGLAEG VISTPPTPIF TADSSNHPDN QGPLKSTAED VLAYYTVRNF	11 TQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE SSRQQDLVST DSALHATPVF SDKVPLHASL PSSDAMMHAR IPKSSLITPT TSVFGDDNKA SISSTKGMFP ASSDPASSEM TPKVDKISST PVLLKSESSH IHSDEILTST KLLPPSKATS SQEKVMNDSD LESEKKAVIP PISDDVGAIP KHKNRYINIV FWRMIWEHNV TLRNTKIKKG	21 WANGYYRQOR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ PSVDVSFESI PVAGGDLLLE SGPEPSYAL LSKSEIIYGN GSLAHTTTKV LSPSTQLLFY MLHLIVSNSA QVVPSLYSND KSSVTGKVFA ELSHSAKSDA THENSLMDQN ENDIQTGSAL ILAAGDSEIT LVIVSALTPI IKHFPKHVAD AYDHSRVKLA EVIVMITNLV SQKGRPSGRV	31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNGETPLQ LSSYDGAPLL PSLAQYSDVL SDNEGSQHIF PSLAQYSDVL SCHELISVE ETSASFSTEV SSENMLHSTS ELFQTANLEI GIPTVASDTF GLVGGEDGD NPISYSLSEN LPLSPESKAW PGPPQSPTSS CLVVLVGILI LHASSGFTEE QLAEKDGKLD VTQYHYTQWP	TGALNQKNWG TVEINLTNUY DRFSSFEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM PSYSSEVFPL PFSSASFSSE STTHAASETL TVSYSSAIP SDSEFLLPDT EMVYPSESTV NNFSVQPTHT LLQPSFQASD VPVFDVSPTS NQAHPPKGRH VSTDHSVPIG TDDDGDDDDDS EEDNRVTS VTSENSEVFH YWRKCFQTAH FETLKEFYQE DYINANYVDG WPADGSEEYG DMGVPEYSLP	KKYPTCNSPK RVSGGVSEMV KKSGKKRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND PATSAIPFIS NVWFPSSTDI PHYSTFAYFP VTPLLLDNQI LFRHLHTVSQ EFGSESGVLY HDSVGVTYQG EFGSESGVLY HDSVGVTYQG HMHSASLQGL VFATPVLSID NGHVAITAVS DRGSDGLSIH SSDSQTGMDR SGQGTSDSLN VSEAEASNSS FYLEDSTSPR VQSCTVDLGI YNRPKAYLAA NPLVTQKSVQ VLTFVRKAAY	120 180 240 300 360 420 480 660 720 780 960 1020 1140 1200 1320 1380 1440 1560 1560 1680 1740 1860 1920
505560657075	I MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TOTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTS ILPQVTSATE KTLMFSQVEP SLFSGPSHIP PVASAFFTY FVASAEFTY KPVLSANSEP AVPSDPILVE TISYASEKYE EPLNTLINKL PHRDGSVTST KCMSCSSYRE SPGKSPSANG ENETSTOFS HESRIGLAEG VISTPPTPIF TADSSNHPDIN QGPLKSTAED VLAYYTVRNF AKRHAVGPVV	11 TQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE SSRQQDLVST DSALHATPVF SDKVPLHASL PSSDAMMHAR IPKSSLITPT TSVFGDDNKA SISSTKGMFP ASSDPASSEM TPKVDKISST PVLLKSESSH IHSDEILTST KLLFPSKATS SQEKVMNDSD LSQKHNDKS LSQKHNDKS LSQKHNDKS LSQKKNDCSD LSQKKNDCSD LSQKKNOLD PISDDVGAIP KHKNRYINIV FWRMIWEHNV TURNTKIKKG VHCSAGVGRT	21 WANGYYRQOR KFQGWDKTSL EHSLEGQKFP ESVSRFGKGW AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ PSVDVSFESI PVAGGDLLLE SSGPEPSYAL ASLIQPTHAL LSKSEIIYGN GSLAHTTTKV LSPSTQLLFY MLHLIVSNSA QVVPSLYSND KSSVTGKVFA ELSHSAKSDA THENSLMDQN ENDIQTGSAL ILAAGDSEIT LVIVSALTFI IKHFPKHVAD AYDHSRVKLA EVIVMITNLV SQKGRPSGRV GTYIVLDSML	31 } KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNIL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ELTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNGETPLQ LSSYDGAPLL SSYDGAPLL SSUDGSQHIF SGDGEWSGAS ETELQIPSFN FDHEISQVP ETSASFSTEV SSENMLHSTS ELFQTANLEI GIPTVASDTF GLVGGEDGD NPISYSLSEN LPLSPESKAW PGPPQSPTSS CLVVLVGILI LHASSGFTEE QLAEKDGKLT EKGRRKCDQY	TGALNQKNWG TVEINLTNDY DRFSSFEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTITHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM PSYSSEVFPL PFSSASFSSE STTHAASETL TVSYSSAIPV SDSEPLLPDT EMVYPSESTV NNFSVQPTHT LLQPSFQASD VPVFDVSPTS TDDDGDDDDD SEEDNRVTSV AVLTSDESG VTSENSEVFH YWRKCFQTAH FETLKEFYQE DYINANYVDG WPADGSEEYG WPADGSEEYG WPADGSEEYG LYGFLKHIRS	KKYPTCNSPK RVSGGVSEW RVSGGVSEW KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND PATSAIPFIS NVWFPSSTDI PHYSTFAYFP VTPLLLDNQI LFRHLHTVSQ EFGSESGVLY HDSVGVTYQG DGLTALNISS MPNMYDNVNK VSQASGDTSL VDTLLKTVLP HMHASLQGL VFATPVLSID NGHVAITAVS DRGSDGLSIH SSDSQTGMDR SGQGTSDSLN VSEAEASNSS FYLEDSTSPR VQSCTVDLGI YNRPKAYIAA NPLVTQKSVQ VLTFVRKAAY QRNYLVQTEE	120 180 240 360 420 480 540 660 720 780 840 960 1020 1280 1260 1320 1380 1440 1560 1620 1740 1740 1860
5055606570	I MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TOTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LNTTPAASSE KTLMFSQVEP SLFSGPSHIP PVSVAEFTYT LNASLQETSV KPVLSANSEP AVPSDPILVE TISVASEKYE EPLITLINK CMSCSSYRE SPGKSPSANG ENETSTDFSF HESRIGLAEG VISTPPTPIF TADSSNHPDN QGPLKSTAED VLAYYTVRNF AKRAVGPVV GYVFHDTLV SAALKQCNRE	11 TQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL SENPETITYD ESFLQTNYTE SSRQQDLVST DSALHATPVF SDKVPLHASL PSSDAMMHAR IPKSSLITPT TSVFGDDNKA SISSTKGMFP ASSDPASSEM TPKVDKISST PVLLKSESST IHSDEILTST SQEKVMNDSD LSQKHNDGKE ADTNEKDADG LESEKKAVID FISDDVGAIP KHKNRYINIV FWRMIWEHNV TLRNTKIKKG VHCSAGVGRT EAILSKETEV KNRTSSIIPV	21) WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ PSVDVSFESI PVAGGDLLLE SSGPEPSYAL ASLLQPTHAL LSKSEIIYGN MLHLIVSNSA QVVPSLYSND KSSVTGKVFA ELSHSAKSDA THENSLMDQN ENDIQTGSAL ILAAGDSEIT LVIVSALTFI LVIVSALTFI LVIVSALTFI IKHFPKHVAD AYDHSRVKLA EVIVMITNLV SQKGRPSGRV GTYIVLDSML LDSHIHAYVN ERSRVGISSL	31 } KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNIL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNGETPLQ LSSYDGAPLI SSUDGAPST SCHORL SCHOR	TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTITHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM PSYSSEVFPL PFSSASFSSE STTHAASETL TVSYSSAIPV SDSEFLLPDT EMVYPSESTV NNFSVQPTHT LLQPSFQASD VPVFDVSPTS NQAHPPKGRH VSTDHSVPIG TDDDGDDDDD SEEDNRVTSV AVLTSDEESG VTSENSEVFH YWRKCFQTAH FFTLKEFYQE DYINANYVDG WPADGSEEYG DMGVPEYSLP SYIMGYYQSN	KKYPTCNSPK RVSGVSEMV KKGKKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND PATSAIPPIS NVWFPSSTDI PHYSTFAYFP VTPLLLDNQI LFRHLHTUSQ EFGSESGVIY DGSLTALMISS MPNMYDNVNK VSQASGDTSL VFATPVLSID NGHVAITAVS DRGSDGLSIH SSDSQTGMDR SGQGTSDSLN VSEAEASNSS FYLEDSTSPR VQSCTVDLGI YNTPKAYIAA NPLVTQKSVQ VLTFVRKAAY QRNYLVQTEE EQSNIQQSDY EFIITQHPLL	120 180 240 360 420 480 540 660 720 780 840 960 1020 1080 1260 1320 1320 1340 1560 1560 1620 1740 1860 1740 1860 1920 2040 2040 2100
505560657075	I MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRSSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTS ILPQVTSATE KTLMFSQVEP SLFSGPSHIP PVSVABFTYT LNASLQETSV KPVLSANSEP AVPSDPILVE TISVASEKYE EPLNTLINKL PHRDGSVTST KCMSCSSYRE SPGKSPSANG ENETSTDFSF HESRIGLAEG VISTPPTPIF TADDSSNHPDN QGPLKSTAED VLAYYTVRNP AKRHAVGPVV QYVPIHDTLV SAALKQCNRE HTIKDFWRMI	11 TQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE SSRQQDLVST DSALHATPVF SDKVPLHASL PSSDAMMHAR IPKSSLITPT TSVFGDDNKA SISSTKGMFP ASSDPASSEM TPKVDKISST PVLLKSESSH IHSDEILTST KLLFPSKATS SQEKVMDSSL LSQKHNDGKE ADTNEKDADG LESEKKAVIP PISDDVGAIP FIKHNYINIV FWRMIWEHNV TLRNTKIKKG VHCSAGVGRT KNRTSSIIPV WDHNAQLVVM	21 WANGYYRQOR KFQGWDKTSL EHSLEGQKFP ESVSRFGKGA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ PSVDVSFESI PVAGGDLLLE SGGPEPSYAL ASLLQPTHAL LSKSEIIYGN GSLAHTTTKV LSPSTQLLFY MLHLIVSNSA QVVPSLYSND KSSVTGKVFA ELSHSAKSDA THENSLMDQU ENDIQTGSAL ILAAGDSEIT LVIVSALTFI IKHFPKHVAD AYDHSRVKLA EVIVMITNLV SQKGRPSGRV GTYIVLDSML LDSHIHAYVN ERSRVGISSL IPDGQNMAED	31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNGETPLQ LSSYDGAPLL PSLAQYSDVL SDNEGSQHIF SGDGEWSGAS ETELQIPSFN FDHEISQVPE ETSASFSTEV SSENMLHSTS GLVGGEDGD NPISYSLSEN LPLSPESKAW PGFPQSPTSS CLVVLVGILI LHASSGFTEE QLAEKDGKLT EKGRRKCDQY VTQYHYTQWP QQIQHEGTVN ALLIPGPAGK EGGTDYINA EFVYWPNKDE	TGALNQKNWG TVEINLTNDY TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTITHYNRI QTVTELPPHT TGAEDSSGSS SELKDPSMEG QGPSVTDLEM PSYSSEVFPL PFSSASFSSE STTHAASETL TVSYSSAIPV SDSEFLLPDT EMVYPSESTV NNFSVQPTHT LLQPSFQASD VPVFDVSPTS NQAHPPKGRH VSTDHSVPIG TDDDGDDDDD SEEDNRVTSV AVLTSDEESG VTSENSEVFH YWRKCFQTAH FETLKEFYQE DYINANYVDG WPADGSEEYG DMGVPEYSLP IFGFLKHIRS TKLEKQFQLL SYIMGYYQSN PINCESFKVT	KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEOQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND PATSAIPPIS NVWFPSSTDI LFRHLHTVSQ EFGSESGYLY HDSVGVTYQG DGLTALMISS MPNMYDNVNK VSQASGDTSL VDTLLKTVLB VFATPVLSID NGHVAITAVS DRGSDGISH SSDGYGMDR SGQGTSDSLN VSEAEASNSS FYLEDSTSPR VQSCTVPLEJ VNRPKAYIAA NPLVTQKSVQ VLTFVRKAAY QRNYLVQTEE SQSNIQQSDY EFIITOMPLL LMAEEHKCLS	120 180 240 300 360 420 480 660 720 780 960 1020 1140 1260 1320 1440 1560 1560 1740 1860 1740 1860 1920 1980 2040 2100 2160
505560657075	I MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TOTUDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LNTTPAASS ILPQVTSATE KTLMFSQVEP SLFSGPSHIP PVSVAEFTYT LNASLQETSV KPVLSANSEP AVPSDPILVE TISYASEKYE EPLINTLINKL PHRDGSVTST KCMSCSSYRE SPGKSPSANG ENETSTDFSF HESRIGLAEG VISTPPTPIF TADSSNHPDI VLAYTVRNF AKRHAVGPVV QYVFIHDTLV SAALKQCNRE NEEKLIIQDF	II TQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE SSRQQDLVST DSALHATPVF SDKVPLHASL PSSDAMMHAR IPKSSLITPT TSVFGDDNKA SISSTKGMFP ASSDPASSEM TPKVDKISST PVLLKSESSH IHSDEILTST KLLFPSKATS SQEKVMNDSD LESEKKAVIP PISDDVGAIP KHKNRYINLY FURNTKIKKG VHCSAGVGRT EAILSKETEV WDHNAQLVVM ILEATQDDYV ILEATQDDYV	21 WANGYYRQOR KFQGWDKTSL EHSLEGQKFP ESVSRFGKGW AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ PSVDVSFESI PVAGGDLLLE SGGPEPSYAL ASLLQPTHAL LSKSEIIYGN GSLAHTTTKV LSPSTQLLFY MLHLIVSNSA QVVPSLYSND KSSVTGKVFA ELSHSAKSDA THENSLMDQN ENDIQTGSAL ILAAGDSEIT LVIVSALTFI IKHFPKHVAD AYDHSRVKLA EVIVMITNLV SQKGRPSGRV GTYIVLDSML LDSHIHAYVN ERSRVGISSL LPDGQNMAED LEVRHFQCPK	31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNI QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNGETPLQ LSSYDGAPLL PSLAQYSDVL SDNEGSQHIF SGDGEWSGAS ETELQIPSFN FDHEISQVPE ETSASFSTEV SSEMMLHSTS ELFQTANLEI GIPTVASDTF GLVGGGEDGD NPISYSLSEN LPLSPESKAW PGPPQSPTSS CLVVLVGILI LHASSGFTEE QLAEKDGKLT LHASSGFTEE QLAEKDGKLT VTQYHYTQWP QQIQHEGTVN ALLIPGPAGK SGEGTDYINA EFVYWPNKDE WPNPDSPISK	TGALNQKNWG TVEINLTNUY DRFSSFEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM PSYSSEVFPL PFSSASFSSE STTHAASETL TVSYSSAIP SDSEFLLPDT EMVYPSESTV NNFSVQPTHT LLQPSFQASD VPVFDVSPTS NQAHPPKGRH VSTDHSVPIG TDDDGDDDDDS EEDNRVTS VTSENSEVFH YWRKCFQTAH FETLKEFYQE DYINANYVDG WPADGSEEYG DMGVPEYSLP IFGFLKHIRS TKLEKQFQLL SYIMGYYQSN PINCESFKVT TFELISVIKE	KKYPTCNSPK RVSGGVSEMV KKSGKKRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND PATSAIPFIS NVWFPSSTDI PHYSTFAYFP VTPLLLDNQI LFRHLHTVSQ EFGSESGVLY HDSVGVTYQE GDGLTALNISS MPNMYDNVNK VSQASGDTSL VDTLLKTVLP HMHSASLQE VFATPVLSID NGHVAITAVS DRGSDGLSIH SSDSQTGMDR SGQGTSDSLN VSEAEASNSS FYLEDSTSPR VQSCTVDLGI YNRPKAYLAA NPLVTQKSVQ VLTFVRKAAY QRNYLVQTEE SQSNIQQSDY EFIITQHPLL LMAEEHKCLS EAANRDGPMI	120 180 240 360 420 480 660 720 780 960 1020 1140 1260 1320 1440 1560 1680 1740 1860 1920 1980 2040 2160 2220
505560657075	I MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TOTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTS LNTTPAASSS LLPQVTSATE KTLMFSQVEP SLFSGPSHIP PVSVAEFTYT KVSASEP AVPSDPILVE TISYASEKY EPLINTLINKL PHRDGSVTST KCMSCSSYRE SPGKSPSANG ENETSTDFSF HESRIGLAEG VISTPPTPIF TADSSNHPDN QGPLKSTAED VLAYYTVRNF AKRHAVGPVV QYVFIHDTLV SAALKQCNRE HTIKDFWRMI NEEKLIIQDF VHDEHGGVTA	II TQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE SSRQQDLVST DSALHATPVF SDKVPLHASL PSSDAMMHAR IPKSSLITPT TSVFGDDNKA SISSTKGMFP ASSDPASSEM TPKVDKISST PVLLKSESSH IHSDEILTST KLLFPSKATS SQEKVMNDSD LESEKKAVIP PISDDVGAIP KHKNRYINLY FURNTKIKKG VHCSAGVGRT EAILSKETEV WDHNAQLVVM ILEATQDDYV ILEATQDDYV	21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ PSVDVSFESI PVAGGDLLLE SSGPEPSYAL ASLLQPTHAL LSKSEIIYGN GSLAHTTTKV LSPSTQLLFY MLHLIVSNSA QVVPSLYSNA CVVPSLYSNA ELSHSAKSDA THENSLMDQN ENDIQTGSAL ILAAGDSEIT LVIVSALTFI IKHFPKHVAD AYDHSRVKLA EVIVMITNLV SQKGRPSGRV GTYIVLDSML LDSHIHAYVN ERSRVGISSL IPDGQNMAED LEVRHFQCPK HQLEKENSVD	31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNIL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLITSFKLD SEDSTSSGSE KSFSAGPVMS PVYNGETPLQ LSSYDGAPLL PSLAQYSDVL SDNEGSQHIF SGDGEWSGAS ETELQIPSFN FDHEISQVPE ETSASFSTEV SSENMLHSTS ELFQTANLEI GIPTVASDTF GLVGGGEDGD NPISYSLSEN LPLSPESKAW PGFPQSPTSS CLVVLVGILI LHASSGFTEE QLAEKDGKLT EKGRRKCDQY VTQYHYTQWP QQIQHEGTVN ALLIPGPAGK SGEGTDYINA EFVYWPNKDE EFVYWPNKDE EFVYWPNKDE VYQVAKMINL	TGALNQKNWG TVEINLTNUY DRFSSFEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM PSYSSEVFPL PFSSASFSSE STTHAASETL TVSYSSAIP SDSEFLLPDT EMVYPSESTV NNFSVQPTHT LLQPSFQASD VPVFDVSPTS NQAHPPKGRH VSTDHSVPIG TDDDGDDDDDS EEDNRVTS VTSENSEVFH YWRKCFQTAH FETLKEFYQE DYINANYVDG WPADGSEEYG DMGVPEYSLP IFGFLKHIRS TKLEKQFQLL SYIMGYYQSN PINCESFKVT TFELISVIKE	KKYPTCNSPK RVSGGVSEMV KKSGKKRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLPPE GTKYNEAKTN VEGTSASLND PATSAIPFIS NVWFPSSTDI PHYSTFAYFP VTPLLLDNQI LFRHLHTVSQ EFGSESGVLY HDSVGVTYQE GDGLTALNISS MPNMYDNVNK VSQASGDTSL VDTLLKTVLP HMHSASLQE VFATPVLSID NGHVAITAVS DRGSDGLSIH SSDSQTGMDR SGQGTSDSLN VSEAEASNSS FYLEDSTSPR VQSCTVDLGI YNRPKAYLAA NPLVTQKSVQ VLTFVRKAAY QRNYLVQTEE SQSNIQQSDY EFIITQHPLL LMAEEHKCLS EAANRDGPMI	120 180 240 300 360 420 480 660 720 780 960 1020 1140 1260 1320 1440 1560 1560 1740 1860 1740 1860 1920 1980 2040 2100 2160

Seq ID NO: 181 DNA sequence Nucleic Acid Accession #: Eos sequence

	1	11	21	31	41	51 I	
5	CACACATACG	CACCCACCAT	CALCY CALACCEY	TCTATACACT	I GGAGGATTAA	AACAAACAAA	60
•	CAAAAAAAAAC	ATTTCCTTCG	CTCCCCCTCC	CTCTCCACTC	TGAGAAGCAG	AGGAGCCGCA	120
	CGGCGAGGGG	CCGCAGACCG	TCTGGAAATG	CGAATCCTAA	AGCGTTTCCT	CGCTTGCATT	180
	CAGCTCCTCT	GTGTTTGCCG	CCTGGATTGG	GCTAATGGAT	ACTAÇAGACA	ACAGAGAAAA	240
10				GGAGCACTGA			300
10				TCTCCTATCA			360
				TTTCAGGGTT GTGGAAATTA			420 480
				AAAGCAAGCA			540
				CATAGTTTAG			600
15				CGATTTTCAA			660
				TTGTTTGAGG			720
				AGTGTTAGTC			780
				CCAAACTCAA			840
20				GACACAGTTG GTTTTTTGTG			900 960
				CAAAACAATT			1020
				GGAAAGGAAG			1080
	AGTTCAGAAC	CAGAAAATGT	TCAGGCTGAC	CCAGAGAATT	ATACCAGCCT	TCTTGTTACA	1140
25				ATGATTGAGA			1200
25				GAATTTTTGA			1260
				ATGAGTTATG GACCAACTGA			1320 1380
				ATTGGAACTG			1440
20				ATTGTGAATC			1500
30				TCTACCACAA			1560
				TCCCCAACAA			1620
				TCCACTTCCC			1680 1740
				TCTAAAACTG			. 1800
35				ACAGTTTCTA			1860
				GGAGCTGAAG			1920
				AACATATCCC			1980
				CTTATACCAG TCACTAAAGG			2040 2100
40				GCACAGCCCG			2160
-				CGTGTTGATG			2220
				GGTCCCTCAG			2280
				GAGGTAACAC			2340
45				AACGTGGTAT CATGAGTCTC			2400 2460
,-				CTTGTGATCG			2520
	TGTCTAGTGG	${\tt TTCTTGTGGG}$	TATTCTCATC	TACTGGAGGA	AATGCTTCCA	GACTGCACAC	2580
				GTTATATCCA			2640
50				ATAAAGCACT TTTGAGACAC			2700 2760
50				ACAGCAGACA			2820
				GCCTATGATC			2880
				GATTATATCA			2940
55				CAAGGCCCAC			3000
<i>JJ</i>				GAAGTTATTG TGGCCTGCCG			3060 3120
				GTGCTTGCCT			3180
				TCCCAGAAAG			3240
60				GACATGGGAG			3300
60				GCCAAGCGCC			3360
				ATATTTGGCT		CAGTATGTTG	3480
				CAATATGTCT			3540
	GAGGCCATAC	TTAGTAAAGA	AACTGAGGTG	CTGGACAGTC	ATATTCATGC	CTATGTTAAT	3600
65						CCAGCTCCTG	
				TCTGCAGCCC			3720
				GAAAGATCAA TCCTATATCA			3780 3840
				CATACCATCA			3900
70				ATTCCTGATG			3960
				CCTATAAATT			4020
				AATGAGGAAA			4080
				CTTGAAGTGA ACTTTTGAAC			4140 4200
75				GTTCATGATG			4260
				CACCAACTAG			4320
				ATGAGGCCAG			4380
				AGCCTTGTGA			4440
80				GCATTGCCTG TGGGGGGACT			4500 4560
				CTAGTTCTGT			4620
				TGCCGCCAAA			4680
	TGCCTTTTTG	CAAGACTTGT	AATTTACTTA	TTATGTTTGA	ACTAAAATGA	TTGAATTTTA	4740
85				TTTTTCTGTA			4800
55				CAGAAAATGT GCTAGAAATA			4860 4920
				CAACATTTTA			4980
							•

```
AGTAGAAATA ATCTGTTACT TATTGTAAAT ACTGCCCTAG TGTCTCCATG GACCAAATTT 5040
       ATATTTATAA TIGTAGATTI TIATATTITA CTACTGAGTC AAGTTTTCTA GTTCTGTGTA
                                                                           5100
       ATTGTTTAGT TTAATGACGT AGTTCATTAG CTGGTCTTAC TCTACCAGTT TTCTGACATT
                                                                           5160
       GTATTGTGTT ACCTAAGTCA TTAACTTTGT TTCAGCATGT AATTTTAACT TTTGTGGAAA
                                                                           5220
 5
       ATAGAAATAC CTTCATTTTG AAAGAAGTTT TTATGAGAAT AACACCTTAC CAAACATTGT
       TCAAATGGTT TTTATCCAAG GAATTGCAAA AATAAATATA AATATTGCCA TTAAAAAAAA
       АААААА АААААААА ААААААА
10
       Seq ID NO: 182 Protein sequence:
       Protein Accession #: Eos sequence
                                         31
                                                               51
                                                    41
15
       MRILKRFLAC IOLLCVCRLD WANGYYROOR KLVEEIGWSY TGALNOKNWG KKYPTCNSPK
                                                                             60
       OSPINIDEDL TOVNVNLKKL KFOGWDKTSL ENTFIHNTGK TVEINLTNDY RVSGGVSEMV
                                                                            120
       PKASKITFHW GKCNMSSDGS EHSLEGQKPP LEMQIYCFDA DRFSSFEEAV KGKGKLRALS
                                                                            180
       ILFEVGTEEN LDFKAIIDGV ESVSRFGKQA ALDPFILLNL LPNSTDKYYI YNGSLTSPPC
                                                                            240
       TDTVDWIVFK DTVSISESQL AVFCEVLTMQ QSGYVMLMDY LQNNFREQQY KFSRQVFSSY
                                                                            300
20
       TGKEEIHEAV CSSEPENVQA DPENYTSLLV TWERPRVVYD TMIEKFAVLY QQLDGEDQTK
                                                                            360
       HEPLTDGYQD LGAILNNLLP NMSYVLQIVA ICTNGLYGKY SDQLIVDMPT DNPELDLFPE
                                                                            420
       LIGTEEIIKE EEEGKDIEEG AIVNPGRDSA TNQIRKKEPQ ISTTTHYNRI GTKYNEAKTN
       RSPTRGSEFS GKGDVPNTSL NSTSQPVTKL ATEKDISLTS QTVTELPPHT VEGTSASLND
                                                                            540
       GSKTVLRSPH MNLSGTAESL NTVSITEYEE ESLLTSFKLD TGAEDSSGSS PATSAIPFIS
25
       ENISQGYIFS SENPETITYD VLIPESARNA SEDSTSSGSE ESLKDPSMEG NVWFPSSTDI
                                                                            660
       TAQPDVGSGR ESFLQTNYTE IRVDESEKTT KSFSAGPVMS QGPSVTDLEM PHYSTFAYFP
       TEVTPHAFTP SSRQQDLVST VNVVYSQTTQ PVYNAEASNS SHESRIGLAE GLESEKKAVI
                                                                            780
       PLVIVSALTF ICLVVLVGIL IYWRKCFQTA HFYLEDSTSP RVISTPPTPI FPISDDVGAI
                                                                            840
       PIKHPPKHVA DLHASSGFTE EFETLKEFYQ EVQSCTVDLG ITADSSNHPD NKHKNRYINI
                                                                            900
30
       VAYDHSRVKL AQLAEKDGKL TDYINANYVD GYNRPKAYIA AQGPLKSTAE DFWRMIWEHN
                                                                            960
       VEVIVMITHL VEKGRRKCDQ YWPADGSEEY GNFLVTQKSV QVLAYYTVRN FTLRNTKIKK
                                                                           1020
       GSQKGRPSGR VVTQYHYTQW PDMGVPEYSL PVLTFVRKAA YAKRHAVGPV VVHCSAGVGR
                                                                           1080
       TGTYIVLDSM LQQIQHEGTV NIFGFLKHIR SQRNYLVQTE EQYVFIHDTL VEAILSKETE
                                                                           1140
       VLDSHIHAYV NALLIPGPAG KTKLEKQFQL LSQSNIQQSD YSAALKQCNR EKNRTSSIIP
                                                                           1200
35
       VERSRVGISS LSGEGTDYIN ASYIMGYYQS NEFIITQHPL LHTIKDFWRM IWDHNAQLVV
                                                                           1260
       MIPDGONMAE DEFVYWPNKD EPINCESFKV TLMAEEHKCL SNEEKLIIOD FILEATODDY
                                                                           1320
       VLEVRHFQCP KWPNPDSPIS KTFELISVIK EEAANRDGPM IVHDEHGGVT AGTFCALTTL
                                                                           1380
       MHOLEKENSV DVYQVAKMIN LMRPGVFADI EQYQFLYKVI LSLVSTRQEE NPSTSLDSNG
                                                                           1440
       AALPDGNIAE SLESLV
40
       Seq ID NO: 183 DNA sequence
       Nucleic Acid Accession #: EOS sequence
       Coding sequence: 148-4494
45
       CACACATACG CACGCACGAT CTCACTTCGA TCTATACACT GGAGGATTAA AACAAACAAA
       CAAAAAAAC ATTTCCTTCG CTCCCCTCC CTCTCCACTC TGAGAAGCAG AGGAGCCGCA
                                                                            120
       CGGCGAGGGG CCGCAGACCG TCTGGAAATG CGAATCCTAA AGCGTTTCCT CGCTTGCATT
50
       CAGCTCCTCT GTGTTTGCCG CCTGGATTGG GCTAATGGAT ACTACAGACA ACAGAGAAAA
       CTTGTTGAAG AGATTGGCTG GTCCTATACA GGAGCACTGA ATCAAAAAAA TTGGGGAAAG
       AAATATCCAA CATGTAATAG CCCAAAACAA TCTCCTATCA ATATTGATGA AGATCTTACA
                                                                            360
       CAAGTAAATG TGAATCTTAA GAAACTTAAA TTTCAGGGTT GGGATAAAAC ATCATTGGAA
       AACACATTCA TTCATAACAC TGGGAAAACA GTGGAAATTA ATCTCACTAA TGACTACCGT
                                                                            480
55
       GTCAGCGGAG GAGTTTCAGA AATGGTGTTT AAAGCAAGCA AGATAACTTT TCACTGGGGA
                                                                            540
       AAATGCAATA TGTCATCTGA TGGATCAGAG CATAGTTTAG AAGGACAAAA ATTTCCACTT
GAGATGCAAA TCTACTGCTT TGATGCAGAC CGATTTTCAA GTTTTGAGGA AGCAGTCAAA
                                                                            600
                                                                            660
       GGAAAAGGGA AGTTAAGAGC TTTATCCATT TTGTTTGAGG TTGGGACAGA AGAAAATTTG
                                                                            720
       GATTTCAAAG CGATTATTGA TGGAGTCGAA AGTGTTAGTC GTTTTGGGAA GCAGGCTGCT
                                                                            780
60
       TTAGATCCAT TCATACTGTT GAACCTTCTG CCAAACTCAA CTGACAAGTA TTACATTTAC
                                                                            840
       AATGGCTCAT TGACATCTCC TCCCTGCACA GACACAGTTG ACTGGATTGT TTTTAAAGAT
                                                                            900
       ACAGTTAGCA TCTCTGAAAG CCAGTTGGCT GTTTTTTGTG AAGTTCTTAC AATGCAACAA
                                                                            960
       TCTGGTTATG TCATGCTGAT GGACTACTTA CAAAACAATT TTCGAGAGCA ACAGTACAAG
                                                                           1020
       TTCTCTAGAC AGGTGTTTTC CTCATACACT GGAAAGGAAG AGATTCATGA AGCAGTTTGT
                                                                           1080
65
       AGTTCAGAAC CAGAAAATGT TCAGGCTGAC CCAGAGAATT ATACCAGCCT TCTTGTTACA
                                                                           1140
       TGGGAAAGAC CTCGAGTCGT TTATGATACC ATGATTGAGA AGTTTGCAGT TTTGTACCAG
                                                                           1200
       CAGTTGGATG GAGAGGACCA AACCAAGCAT GAATTTTTGA CAGATGGCTA TCAAGACTTG
                                                                           1260
       GGTGCTATTC TCAATAATTT GCTACCCAAT ATGAGTTATG TTCTTCAGAT AGTAGCCATA
                                                                           1320
       TGCACTAATG GCTTATATGG AAAATACAGC GACCAACTGA TTGTCGACAT GCCTACTGAT
                                                                           1380
70
                                                                           1440
       AATCCTGAAC TTGATCTTTT CCCTGAATTA ATTGGAACTG AAGAAATAAT CAAGGAGGAG
       GAAGAGGGAA AAGACATTGA AGAAGGCGCT ATTGTGAATC CTGGTAGAGA CAGTGCTACA
                                                                           1500
       AACCAAATCA GGAAAAAGGA ACCCCAGATT TCTACCACAA CACACTACAA TCGCATAGGG
                                                                           1560
       ACGAAATACA ATGAAGCCAA GACTAACCGA TCCCCAACAA GAGGAAGTGA ATTCTCTGGA
                                                                           1620
       AAGGGTGATG TTCCCAATAC ATCTTTAAAT TCCACTTCCC AACCAGTCAC TAAATTAGCC
                                                                           1680
75
       ACAGAAAAAG ATATTTCCTT GACTTCTCAG ACTGTGACTG AACTGCCACC TCACACTGTG
                                                                           1740
       GAAGGTACTT CAGCCTCTTT AAATGATGGC TCTAAAACTG TTCTTAGATC TCCACATATG
                                                                           1800
       AACTTGTCGG GGACTGCAGA ATCCTTAAAT ACAGTTTCTA TAACAGAATA TGAGGAGGAG
                                                                           1860
       AGTTTATTGA CCAGTTTCAA GCTTGATACT GGAGCTGAAG ATTCTTCAGG CTCCAGTCCC
                                                                           1920
       GCAACTTCTG CTATCCCATT CATCTCTGAG AACATATCCC AAGGGTATAT ATTTTCCTCC
                                                                           1980
80
       GAAAACCCAG AGACAATAAC ATATGATGTC CTTATACCAG AATCTGCTAG AAATGCTTCC
       GAAGATTCAA CTTCATCAGG TTCAGAAGAA TCACTAAAGG ATCCTTCTAT GGAGGGAAAT
                                                                           2100
       GTGTGGTTTC CTAGCTCTAC AGACATAACA GCACAGCCCG ATGTTGGATC AGGCAGAGAG
                                                                           2160
       AGCTTTCTCC AGACTAATTA CACTGAGATA CGTGTTGATG AATCTGAGAA GACAACCAAG
       TCCTTTTCTG CAGGCCCAGT GATGTCACAG GGTCCCTCAG TTACAGATCT GGAAATGCCA
                                                                           2280
85
       CATTATTCTA CCTTTGCCTA CTTCCCAACT GAGGTAACAC CTCATGCTTT TACCCCATCC
                                                                           2340
       TCCAGACAAC AGGATTTGGT CTCCACGGTC AACGTGGTAT ACTCGCAGAC AACCCAACCG
                                                                           2400
       GTATACAATG AGGCCAGTAA TAGTAGCCAT GAGTCTCGTA TTGGTCTAGC TGAGGGGTTG
                                                                          2460
```

```
GAATCCGAGA AGAAGGCAGT TATACCCCTT GTGATCGTGT CAGCCCTGAC TTTTATCTGT 2520
       CTAGTGGTTC TTGTGGGTAT TCTCATCTAC TGGAGGAAAT GCTTCCAGAC TGCACACTTT
                                                                          2580
       TACTTAGAGG ACAGTACATC CCCTAGAGTT ATATCCACAC CTCCAACACC TATCTTTCCA
                                                                          2640
       ATTTCAGATG ATGTCGGAGC AATTCCAATA AAGCACTTTC CAAAGCATGT TGCAGATTTA
                                                                          2700
 5
       CATGCAAGTA GTGGGTTTAC TGAAGAATTT GAGGAAGTGC AGAGCTGTAC TGTTGACTTA
                                                                          2760
       GGTATTACAG CAGACAGCTC CAACCACCCA GACAACAAGC ACAAGAATCG ATACATAAAT
                                                                          2820
      ATCGTTGCCT ATGATCATAG CAGGGTTAAG CTAGCACAGC TTGCTGAAAA GGATGGCAAA
                                                                          2880
       CTGACTGATT ATATCAATGC CAATTATGTT GATGGCTACA ACAGACCAAA AGCTTATATT
                                                                          2940
       GCTGCCCAAG GCCCACTGAA ATCCACAGCT GAAGATTTCT GGAGAATGAT ATGGGAACAT
                                                                          3000
10
       AATGTGGAAG TTATTGTCAT GATAACAAAC CTCGTGGAGA AAGGAAGGAG AAAATGTGAT
                                                                          3060
       CAGTACTGGC CTGCCGATGG GAGTGAGGAG TACGGGAACT TTCTGGTCAC TCAGAAGAGT
                                                                          3120
       GTGCAAGTGC TTGCCTATTA TACTGTGAGG AATTTTACTC TAAGAAACAC AAAAATAAAA
                                                                          3180
       AAGGGCTCCC AGAAAGGAAG ACCCAGTGGA CGTGTGGTCA CACAGTATCA CTACACGCAG
                                                                          3240
       TGGCCTGACA TGGGAGTACC AGAGTACTCC CTGCCAGTGC TGACCTTTGT GAGAAAGGCA
                                                                          3300
15
       GCCTATGCCA AGCGCCATGC AGTGGGGCCT GTTGTCGTCC ACTGCAGTGC TGGAGTTGGA
                                                                          3360
       AGAACAGGCA CATATATTGT GCTAGACAGT ATGTTGCAGC AGATTCAACA CGAAGGAACT
                                                                          3420
       GTCAACATAT TTGGCTTCTT AAAACACATC CGTTCACAAA GAAATTATTT GGTACAAACT
                                                                          3480
       GAGGAGCAAT ATGTCTTCAT TCATGATACA CTGGTTGAGG CCATACTTAG TAAAGAAACT
                                                                          3540
       GAGGTGCTGG ACAGTCATAT TCATGCCTAT GTTAATGCAC TCCTCATTCC TGGACCAGCA
20
       GGCAAAACAA AGCTAGAGAA ACAATTCCAG CTCCTGAGCC AGTCAAATAT ACAGCAGAGT
       GACTATTCTG CAGCCCTAAA GCAATGCAAC AGGGAAAAGA ATCGAACTTC TTCTATCATC
       CCTGTGGAAA GATCAAGGGT TGGCATTTCA TCCCTGAGTG GAGAAGGCAC AGACTACATC
       AATGCCTCCT ATATCATGGG CTATTACCAG AGCAATGAAT TCATCATTAC CCAGCACCCT
                                                                          3840
       CTCCTTCATA CCATCAAGGA TTTCTGGAGG ATGATATGGG ACCATAATGC CCAACTGGTG
                                                                          3900
       GTTATGATTC CTGATGGCCA AAACATGGCA GAAGATGAAT TTGTTTACTG GCCAAATAAA
25
                                                                          3960
       GATGAGCCTA TAAATTGTGA GAGCTTTAAG GTCACTCTTA TGGCTGAAGA ACACAAATGT
                                                                          4020
       CTATCTAATG AGGAAAAACT TATAATTCAG GACTTTATCT TAGAAGCTAC ACAGGATGAT
                                                                          4080
       TATGTACTTG AAGTGAGGCA CTTTCAGTGT CCTAAATGGC CAAATCCAGA TAGCCCCATT
                                                                          4140
       AGTAAAACTT TTGAACTTAT AAGTGTTATA AAAGAAGAAG CTGCCAATAG GGATGGGCCT
                                                                          4200
30
       ATGATTGTTC ATGATGAGCA TGGAGGAGTG ACGGCAGGAA CTTTCTGTGC TCTGACAACC
                                                                          4260
       CTTATGCACC AACTAGAAAA AGAAAATTCC GTGGATGTTT ACCAGGTAGC CAAGATGATC
                                                                          4320
       AATCTGATGA GGCCAGGAGT CTTTGCTGAC ATTGAGCAGT ATCAGTTTCT CTACAAAGTG
                                                                          4380
       ATCCTCAGCC TTGTGAGCAC AAGGCAGGAA GAGAATCCAT CCACCTCTCT GGACAGTAAT
                                                                          4440
       GGTGCAGCAT TGCCTGATGG AAATATAGCT GAGAGCTTAG AGTCTTTAGT TTAACACAGA
                                                                          4500
35
       AAGGGGTGGG GGGACTCACA TCTGAGCATT GTTTTCCTCT TCCTAAAATT AGGCAGGAAA
                                                                          4560
       ATCAGTCTAG TTCTGTTATC TGTTGATTTC CCATCACCTG ACAGTAACTT TCATGACATA
                                                                          4620
       GGATTCTGCC GCCAAATTTA TATCATTAAC AATGTGTGCC TTTTTGCAAG ACTTGTAATT
                                                                          4680
       TACTTATTAT GTTTGAACTA AAATGATTGA ATTTTACAGT ATTTCTAAGA ATGGAATTGT
                                                                          4740
       GGTATTTTT TCTGTATTGA TTTTAACAGA AAATTTCAAT TTATAGAGGT TAGGAATTCC
                                                                          4800
40
       AAACTACAGA AAATGTTTGT TTTTAGTGTC AAATTTTTAG CTGTATTTGT AGCAATTATC
                                                                          4860
       AGGTTTGCTA GAAATATAAC TTTTAATACA GTAGCCTGTA AATAAAACAC TCTTCCATAT
                                                                          4920
       GATATTCAAC ATTTTACAAC TGCAGTATTC ACCTAAAGTA GAAATAATCT GTTACTTATT
                                                                          4980
       GTAAATACTG CCCTAGTGTC TCCATGGACC AAATTTATAT TTATAATTGT AGATTTTTAT
                                                                          5040
       ATTTTACTAC TGAGTCAAGT TTTCTAGTTC TGTGTAATTG TTTAGTTTAA TGACGTAGTT
45
       CATTAGCTGG TCTTACTCTA CCAGTTTTCT GACATTGTAT TGTGTTACCT AAGTCATTAA
                                                                          5160
       CTTTGTTTCA GCATGTAATT TTAACTTTTG TGGAAAATAG AAATACCTTC ATTTTGAAAG
       AACTITITAT GAGAATAACA CCTTACCAAA CATTGTTCAA ATGGTTTTTA TCCAAGGAAT
                                                                          5280
       ТССАВАВАТА ВАТАТАВАТА ТТСССАТТАВ ВАВАВАВАВА ВАВАВАВАВ ВАВАВАВАВ
50
       Seq ID NO: 184 Protein sequence:
       Protein Accession #: EOS sequence
                                        31
                             21
                                                              51
                                                   41
55
       MRILKRFLAC IQLLCVCRLD WANGYYRQQR KLVEEIGWSY TGALNQKNWG KKYPTCNSPK
                                                                            60
       QSPINIDEDL TQVNVNLKKL KFQGWDKTSL ENTFIHNTGK TVEINLTNDY RVSGGVSEMV
                                                                           120
       FKASKITFHW GKCNMSSDGS EHSLEGQKFP LEMQIYCFDA DRFSSFEEAV KGKGKLRALS
                                                                           180
       ILFEVGTEEN LDFKAIIDGV ESVSRFGKQA ALDPFILLNL LPNSTDKYYI YNGSLTSPPC
                                                                           240
60
       TDTVDWIVFK DTVSISESQL AVFCEVLTMQ QSGYVMLMDY LQNNFREQQY KFSRQVFSSY
                                                                           300
       TGKEEIHEAV CSSEPENVQA DPENYTSLLV TWERPRVVYD TMIEKFAVLY QQLDGEDQTK
                                                                           360
       HEFLTDGYQD LGAILNNLLP NMSYVLQIVA ICTNGLYGKY SDQLIVDMPT DNPELDLFPE
                                                                           420
       LIGTEEIIKE EEEGKDIEEG AIVNPGRDSA TNQIRKKEPQ ISTTTHYNRI GTKYNEAKTN
                                                                           480
       RSPTRGSEFS GKGDVPNTSL NSTSQPVTKL ATEKDISLTS QTVTELPPHT VEGTSASLND
                                                                           540
65
       GSKTVLRSPH MNLSGTAESL NTVSITEYEE ESLLTSFKLD TGAEDSSGSS PATSAIPFIS
                                                                           600
       ENISQGYIFS SENPETITYD VLIPESARNA SEDSTSSGSE ESLKDPSMEG NVWFPSSTDI
                                                                           660
       TAQPDVGSGR ESFLQTNYTE IRVDESEKTT KSFSAGPVMS QGPSVTDLEM PHYSTFAYFP
                                                                           720
       TEVTPHAFTP SSRQQDLVST VNVVYSQTTQ PVYNEASNSS HESRIGLAEG LESEKKAVIP
                                                                           780
       LVIVSALTFI CLVVLVGILI YWRKCFQTAH FYLEDSTSPR VISTPPTPIF PISDDVGAIP
                                                                           840
70
       IKHFPKHVAD LHASSGFTEE FEEVQSCTVD LGITADSSNH PDNKHKNRYI NIVAYDHSRV
                                                                           900
       KLAQLAEKDG KLTDYINANY VDGYNRPKAY IAAQGPLKST AEDFWRMIWE HNVEVIVMIT
                                                                           960
       NLVEKGRRKC DQYWPADGSE EYGNFLVTQK SVQVLAYYTV RNFTLRNTKI KKGSQKGRPS
                                                                          1020
       GRVVTQYHYT QWPDMGVPEY SLPVLTFVRK AAYAKRHAVG PVVVHCSAGV GRTGTYIVLD
                                                                          1080
       SMLQQIQHEG TVNIFGFLKH IRSQRNYLVQ TEEQYVFIHD TLVEAILSKE TEVLDSHIHA
                                                                          1140
75
       YVNALLIPGP AGKTKLEKQF QLLSQSNIQQ SDYSAALKQC NREKNRTSSI IPVERSRVGI
                                                                          1200
       SSLSGEGTDY INASYIMGYY QSNEFIITQH PLLHTIKDFW RMIWDHNAQL VVMIPDGQNM
                                                                          1260
       AEDEFVYWPN KDEPINCESF KVTLMAEEHK CLSNEEKLII QDFILEATQD DYVLEVRHFQ
                                                                          1320
       CPKWPNPDSP ISKTFELISV IKEEAANRDG PMIVHDEHGG VTAGTFCALT TLMHQLEKEN
                                                                          1380
       SVDVYQVAKM INLMRPGVFA DIEQYQPLYK VILSLVSTRQ EENPSTSLDS NGAALPDGNI
                                                                          1440
80
```

Seq ID NO: 185 DNA sequence Nucleic Acid Accession #: EOS sequence Coding sequence: 501-4514

85

1 11 21 31 41 51

	WO 02	/086443	1	1	1	1	
	 	CACGCACGAT	CTCACTTCGA	/ ፕሮሞልሞልሮልሮፕ	 GGAGGATTAA	I AACAAACAAA	60
	CARAGAGAC	ATTTCCTTCG	CTCCCCCTCC	CTCTCCACTC	TGAGAAGCAG	AGGAGCCGCA	120
	CCCCCACCCC	CCGCAGACCG	TCTGGAAATG	CGAATCCTAA	AGCGTTTCCT	CGCTTGCATT	180
5	CACCALCALCAL	GTGTTTGCCCG	CCTGGATTGG	GCTAATGGAT	ACTACAGACA	ACAGAGAAAA	240
	CTTGTTGAAG	AGATTGGCTG	GTCCTATACA	GGAGCACTGA	ATCAAAAAAT	TGGGGAAAGA	300
	AATATCCAAC	ATGTAATAGC GAATCTTAAG	CCAAAACAAT	CTCCTATCAA	CCATAAAAA	TCATTTACAC	360 420
	AAGTAAATGT	TCATAACACT	AAACTTAAAT	TICAGGGTIG	TOTOLOTART	CATIGGAAA	480
10	ACACATTCAT	AGTTTCAGAA	ATCCTCTTTA	AAGCAAGCAA	GATAACTTTT	CACTGGGGAA	540
10	TATACONTAT	アムシナンナムフィン	GGATCAGAGC	ATAGTTTAGA	AGGACAAAAA	TTTCCACTTG	600
	ACATCCAAAT	עלערט: איני איני	GATGCGGACC	GATTTTCAAG	TTTTGAGGAA	GCAGTCAAAG	660
	CARARGCCAR	CTTAACACCT	TTATCCATTT	TGTTTGAGGT	TGGGACAGAA	GAAAATTTGG	720
	カ ヤヤヤ で の の の の の の の の の	CATTATTGAT	GGAGTCGAAA	GTGTTAGTCG	TTTTGGGAAG	CAGGCTGCTT	780
15	TAGATCCATT	CATACTGTTG	AACCTTCTGC	CAAACTCAAC	TGACAAGTAT	TACATTTACA	840
	ATGGCTCATT	GACATCTCCT	CCCTGCACAG	ACACAGTTGA	CTGGATTGTT	TTTAAAGATA	900
	CAGTTAGCAT	CTCTGAAAGC	CAGTTGGCTG	TITTIGIGA	AGTTCTTACA	CACTACAAC	960 1020
	CTGGTTATGT	CATGCTGATG GGTGTTTTCC	GACTACTTAC	CAPACCARIII	CATTCATCA	GCAGTTTGTA	1080
20	TCTCTAGACA	AGAAAATGTT	CACACACACAC	CAGAGAATTA	TACCAGCCTT	CTTGTTACAT	1140
20	CCCAAACACC	TOGAGTOGTT	TATGATACCA	TGATTGAGAA	GTTTGCAGTT	TTGTACCAGC	1200
	ACTTCCATCC	ACAGGACCAA	ACCAAGCATG	AATTTTTGAC	AGATGGCTAT	CAAGACTTGG	1260
	CALCULVALCAL	CAATAATTTC	CTACCCAATA.	TGAGTTATGT	TCTTCAGATA	GTAGCCATAT	1320
	CCACTAATCC	CTTATATGGA	AAATACAGCG	ACCAACTGAT	TGTCGACATG	CCTACTGATA	1380
25	ATCCTGAACT	TGATCTTTTC	CCTGAATTAA	TTGGAACTGA	AGAAATAATC	AAGGAGGAGG	1440
	AAGAGGGAAA	AGACATTGAA	GAAGGCGCTA	TTGTGAATCC	TGGTAGAGAC	AGTGCTACAA	1500 1560
	ACCAAATCAG	GAAAAAGGAA TGAAGCCAAG	CCCCAGATTT	CTACCACAAC	ACACTACAAT	TTCTCTGGAA	1620
	CGAAATACAA	TGAAGCCAAG TCCCAATACA	ACTAACCGAT	CCACTTCCCA	ACCAGTCACT	AAATTAGCCA	1680
30	AGGGTGATGT	TATTTCCTTG	ACTTCTCAGA	CTGTGACTGA	ACTGCCACCT	CACACTGTGG	1740
50	አ አ ር/ርሞል ርሞዋር	ACCCTCTTTA	AATGATGGCT	CTAAAACTGT	TCTTAGATCT	CCACATATGA	1800
	3 CONTICTORICE	CACTGCAGAA	TCCTTAAATA	CAGTTTCTAT	AACAGAATAT	GAGGAGGAGA	1860
	ር ጥጥጥ ስ ጥጥር ል ር	CAGTTTCAAG	CTTGATACTG	GAGCTGAAGA	TTCTTCAGGC	TCCAGTCCCG	1920
0.5	CAACTTCTGC	TATCCCATTC	ATCTCTGAGA	ACATATCCCA	AGGGTATATA	TTTTCCTCCG	1980 2040
35	AAAACCCAGA	GACAATAACA	TATGATGTCC	TTATACCAGA	ATCTGCTAGA	CACCCAAATC	2100
	AAGATTCAAC	TTCATCAGGT TAGCTCTACA	TCAGAAGAAT	CACTAAAGGA	TCTTCGATCA	GGCAGAGAGA	2160
	TGTGGTTTCC	GACTAATTAC	ACTGAGATAC	GTGTTGATGA	ATCTGAGAAG	ACAACCAAGT	2220
	COTTTTTCTCC	AGGCCCAGTG	ATGTCACAGG	GTCCCTCAGT	TACAGATCTG	GAAATGCCAC	2280
40	フタルンルルルルルイ	つるアンシンテアアン	TTCCCAACTG	AGGTAACACC	TCATGCTTTT	ACCCCATCCT	2340
	CCACACAACA	CCATTTCCTC	TCCACGGTCA	ACGTGGTATA	CTCGCAGACA	ACCCAACCGG	2400
	татасаатса	GGCCAGTAAT	AGTAGCCATG	AGTCTCGTAT	TGGTCTAGCT	GAGGGGTTGG	2460
	AATCCGAGAA	GAAGGCAGTT	ATACCCCTTG	TGATCGTGTC	AGCCCTGACT	TTTATCTGTC	2520 2580
15	TAGTGGTTCT	TGTGGGTATT	CTCATCTACT	GGAGGAAATG	CTTCCAGACT	ATCTTTCCAA	2640
45	ACTTAGAGGA	CAGTACATCC	CCTAGAGTTA	ACCACACACC	ADAGCATGTT	GCAGATTTAC	2700
	TTTCAGATGA	TGGGGTTTACT	CDACAATTTC	AGACACTGAA	AGAGTTTTAC	CAGGAAGTGC	2760
	ACACCTCTAC	TGTTGACTTA	GGTATTACAG	CAGACAGCTC	CAACCACCCA	GACAACAAGC	2820
	ACA ACA ATCC	דבבבדבטב ב י	ATCGTTGCCT	ATGATCATAG	CAGGGTTAAG	CTAGCACAGC	2880
50	ΤΤΟΟΤΟΔΑΑ	GGATGGCAAA	CTGACTGATT	ATATCAATGC	CAATTATGTT	GATGGCTACA	2940
	ACAGACCAAA	ACCTTATATT	GCTGCCCAAG	GCCCACTGAA	. ATCCACAGCT	GAAGATTTCT	3000
	GGAGAATGAT	ATGGGAACAT	AATGTGGAAG	TTATTGTCAT	GATAACAAAC	CTCGTGGAGA	3060 3120
	AAGGAAGGAG	AAAATGTGAT	CAGTACTGGC	CTGCCGATGG	GAGTGAGGAG	TACGGGAACT	3180
55	TTCTGGTCAC	TCAGAAGAGT	GIGCAAGIGC	TIGCCIATIA	ACCCAGTGGA	AATTTTACTC	3240
33	TAAGAAACAC	CTACACCCAC	TGGCCTGACA	TGGGAGTACC	AGAGTACTCC	CTGCCAGTGC	3300
	ずごみごごですずごす	CAGAAAGGCA	GCCTATGCCA	AGCGCCATGC	AGTGGGGCCT	GTTGTCGTCC	3360
	አርጥርር አርጥርር	TOCACTTGGA	AGAACAGGCA	CATATATTGT	GCTAGACAGI	ATGTTGCAGC	3420
	ስርስ ጥጥር ስስርሽ	CGAAGGAACT	GTCAACATAT	TTGGCTTCTT	· AAAACACATC	CGTTCACAAA	3480
60	CABATTATTT	GGTACAAACT	GAGGAGCAAT	ATGTCTTCAT	TCATGATACA	CTGGTTGAGG	3540
	CCATACTTAG	TAAAGAAACT	GAGGTGCTGG	ACAGTCATAT	TCATGCCTAT	GTTAATGCAC	3600 3660
	TCCTCATTCC	TGGACCAGCA	GGCAAAACAA	AGCTAGAGAA	CCAATICCAC	CTCCTGAGCC AGGGAAAAGA	3720
	AGTCAAATAT	C ACAGCAGAG1	COTOTOGRAD	CAGCCCIAAA	TGGCATTTCA	TCCCTGAGTG	3780
65	CACAACIIC	AGACTACATO	AATGCCTCCT	ATATCATGG	CTATTACCAC	AGCAATGAAT	3840
05	TCATCATTAC	CCAGCACCCT	CTCCTTCATA	CCATCAAGGA	\ TTTCTGGAGG	ATGATATGGG	3900
	ACCATAATGO	CCAACTGGTG	GTTATGATTC	CTGATGGCCA	AAACATGGC	GAAGATGAAT	3960
	TTGTTTACTO	GCCAAATAAA	GATGAGCCTA	TAAATTGTGA	GAGCTTTAAC	GTCACTCTTA	4020
70	TGGCTGAAG	A ACACAAATGI	CTATCTAATO	AGGAAAAACT	TATAATTCAC	GACTTTATCT	4080
70	TAGAAGCTAG	CACAGGATGAT	TATGTACTTC	AAGTGAGGC	CTTTCAGTGT	CCTAAATGGC	4140 4200
	CAAATCCAG	A TAGCCCCATT	AGTAAAACTT	TTGAACTTAT	AAGTGTTATA	AAAGAAGAAG	4260
	CTGCCAATAC	GGATGGGCC1	COTTATECTIC	ATGATGAGCA	A IGGAGGAGIC	ACGGCAGGAA GTGGATGTTT	4320
	ACCAGGTAGG	CADGACAACC	· AATCTGATGA	GGCCAGGAG	CTTTGCTGA	ATTGAGCAGT	4380
75	ልጥሮል ርጥጥጥርነ	r CTACAAAGTO	ATCCTCAGCC	TTGTGAGCAC	: AAGGCAGGA/	A GAGAATCCAT	4440
	CCACCTCTC	r ggacagtaat	GGTGCAGCAT	TGCCTGATG	AAATATAGC	r GAGAGCTTAG	4500
	ACTCTTTAG	T TTAACACAGA	AAGGGGTGG	GGGACTCAC	A TCTGAGCAT	r GTTTTCCTCT	4560
	TCCTAAAAT'	T AGGCAGGAAA	ATCAGTCTAC	TTCTGTTAT	C TGTTGATTT(CCATCACCIG	4620
90	ACAGTAACT'	T TCATGACATA	A GGATTCTGC	C GCCAAATTT	A TATCATTAA	AATGTGTGCC	4680 4740
80	TTTTTGCAA	G ACTTGTAAT	TACTTATTA	r GTTTGAACT	A AAATGATTG	ATTTTACAGT	4800
	ATTTCTAAG	A ATGGAATTG	GGTATTTT	L ICIGIATIG	ተ TITIMACAGO	A AAATTTCAAT C AAATTTTTAG	4860
	TTATAGAGG	TAGGAATICO	~ ANACIACAG/	GAPATALIO	TTTTAATAT	A GTAGCCTGTA	
	CIGIATITG	C TCTTAACTAT	CATATTCAM	ATTTTACAN	TGCAGTATT	C ACCTAAAGTA	4980
85	GABATAATC	T GTTACTTAT	r gtaaatact	CCCTAGTGT	C TCCATGGAC	C AAATTTATAT	5040
	TTATAATTG	T AGATTTTA	T ATTTTACTA	C TGAGTCAAG	TTTCTAGTT	C TGTGTAATIG	5100
	TTTAGTTTA	A TGACGTAGT	r CATTAGCTG	G TCTTACTCT	A CCAGTTTTC	T GACATTGTAT	5160

WO 02/086443
TGTGTTACCT AAGTCATTAA CTTTGTTTCA GCATGTAATT TTAACTTTTG TGGAAAATAG 5220
AAATACCTTC ATTTGAAAG AAGTTTTAT GAGAATAACA CCTTACCAAA CATTGTTCAA 5280 ATGGTTTTTA TCCAAGGAAT TGCAAAAATA AATATAAATA TTGCCATTAA AAAAAAAAA 5340 ААА ААААААА ААА

Seq ID NO: 186 Protein sequence: Protein Accession #: EOS sequence

5

40

45

50

55

60

65

70

75

80

85

10	÷	11	21	31	47	21	
10	1	ì	1	1	1	1	
		HWGKCNMSSD					60
		ENLDFKAIID					120
	PCTDTVDWIV	FKDTVSISES	QLAVFCEVLT	MQQSGYVMLM	DYLQNNFREQ	QYKFSRQVFS	180
	SYTGKEEIHE	AVCSSEPENV	QADPENYTSL	LVTWERPRVV	YDTMIEKFAV	LYQQLDGEDQ	240
15	TKHEFLTDGY	QDLGAILNNL	LPNMSYVLQI	VAICTNGLYG	KYSDQLIVDM	PTONPELDLF	300
	PELIGTEEII	KEREEGKDIE	EGAIVNPGRD	SATNQIRKKE	PQISTTTHYN	RIGTKYNEAK	360
	TNRSPTRGSE	PSGKGDVPNT	SLNSTSQPVT	KLATEKDISL	TSQTVTELPP	HTVEGTSASL	420
		PHMNLSGTAE					480
••		PSSENPETIT					540
20		GRESFLQTNY					600
		TPSSRQQDLV					660
		FICLVVLVGI					720
	IPIKHFPKHV	ADLHASSGFT	EEFETLKEFY	QEVQSCTVDL	GITADSSNHP	DNKHKNRYIN	780
~ ~		LAQLAEKDGK					840
25		LVEKGRRKCD					900
	KGSQKGRPSG	RVVTQYHYTQ	WPDMGVPEYS	LPVLTFVRKA	AYAKRHAVGP	VVVHCSAGVG	960
	RTGTYIVLDS	MLQQIQHEGT	VNIFGFLKHI	RSQRNYLVQT	EEQYVFIHDT	LVEAILSKET	1020
	EVLDSHIHAY	VNALLIPGPA	GKTKLEKQFQ	LLSQSNIQQS	DYSAALKQCN	REKNRTSSII	1080
	PVERSRVGIS	SLSGEGTDYI	NASYIMGYYQ	SNEFIITQHP	LLHTIKDFWR	MIWDHNAQLV	1140
30	VMI PDGQNMA	EDEFVYWPNK	DEPINCESFK	VTLMAEEHKC	LSNEEKLIIQ	DFILEATQDD	1200
		PKWPNPDSPI					1260
	LMHQLEKENS	VDVYQVAKMI	NLMRPGVFAD	IEQYQFLYKV	ILSLVSTRQE	ENPSTSLDSN	1320
	GAALPDGNIA	ESLESLV			-		

35 Seq ID NO: 187 DNA sequence Nucleic Acid Accession #: EOS sequence Coding sequence: 148-4632

	1	11	21 	31	41	51 	
	CACACATACG	CACGCACGAT	CTCACTTCGA	TCTATACACT	GGAGGATTAA	AACAAACAAA	60
	CAAAAAAAAC	ATTTCCTTCG	CTCCCCCTCC	CTCTCCACTC	TGAGAAGCAG	AGGAGCCGCA	120
	CGGCGAGGGG	CCGCAGACCG	TCTGGAAATG	CGAATCCTAA	AACGTTTCCT	CGCTTGCATT	180
	CAGCTCCTCT	GTGTTTGCCG	CCTGGATTGG	GCTAATGGAT	ACTACAGACA	ACAGAGAAAA	240
	CTTGTTGAAG	AGATTGGCTG	GTCCTATACA	GGAGCACTGA	ATCAAAAAAA	TTGGGGAAAG	300
	AAATATCCAA	CATGTAATAG	CCCAAAACAA	TCTCCTATCA	ATATTGATGA	AGATCTTACA	360
		TGAATCTTAA					420
	AACACATTCA	TTCATAACAC	TGGGAAAACA	GTGGAAATTA	ATCTCACTAA	TGACTACCGT	480
		GAGTTTCAGA					540
	AAATGCAATA	TGTCATCTGA	TGGATCAGAG	CATAGTTTAG	AAGGACAAAA	ATTTCCACTT	600
	GAGATGCAAA	TCTACTGCTT	TGATGCGGAC	CGATTTTCAA	GTTTTGAGGA	AGCAGTCAAA	660
		AGTTAAGAGC					720
	GATTTCAAAG	CGATTATTGA	TGGAGTCGAA	AGTGTTAGTC	GTTTTGGGAA	GCAGGCTGCT	780
-	TTAGATCCAT	TCATACTGTT	GAACCTTCTG	CCAAACTCAA	CTGACAAGTA	TTACATTTAC	840
	AATGGCTCAT	TGACATCTCC	TCCCTGCACA	GACACAGTTG	ACTGGATTGT	TTTTAAAGAT	900
	ACAGTTAGCA	TCTCTGAAAG	CCAGTTGGCT	GTTTTTTGTG	AAGTTCTTAC	AATGCAACAA	960
	TCTGGTTATG	TCATGCTGAT	GGACTACTTA	CAAAACAATT	TTCGAGAGCA	ACAGTACAAG	1020
	TTCTCTAGAC	AGGTGTTTTC	CTCATACACT	GGAAAGGAAG	AGATTCATGA	AGCAGTTTGT	1080
	AGTTCAGAAC	CAGAAAATGT	TCAGGCTGAC	CCAGAGAATT	ATACCAGCCT	TCTTGTTACA	1140
	TGGGAAAGAC	CTCGAGTCGT	TTATGATACC	ATGATTGAGA	AGTTTGCAGT	TTTGTACCAG	1200
	CAGTTGGATG	GAGAGGACCA	AACCAAGCAT	GAATTTTTGA	CAGATGGCTA	TCAAGACTTG	1260
	GGTGCTATTC	TCAATAATTT	GCTACCCAAT	ATGAGTTATG	TTCTTCAGAT	AGTAGCCATA	1320
	TGCACTAATG	GCTTATATGG	AAAATACAGC	GACCAACTGA	TTGTCGACAT	GCCTACTGAT	1380
	AATCCTGAAC	TTGATCTTTT	CCCTGAATTA	ATTGGAACTG	AAGAAATAAT	CAAGGAGGAG	1440
	GAAGAGGGAA	AAGACATTGA	AGAAGGCGCT	ATTGTGAATC	CTGGTAGAGA	CAGTGCTACA	1500
	AACCAAATCA	GGAAAAAGGA	ACCCCAGATT	TCTACCACAA	CACACTACAA	TCGCATAGGG	1560
	ACGAAATACA	ATGAAGCCAA	GACTAACCGA	TCCCCAACAA	GAGGAAGTGA	ATTCTCTGGA	1620
	AAGGGTGATG	TTCCCAATAC	ATCTTTAAAT	TCCACTTCCC	AACCAGTCAC	TAAATTAGCC	1680
	ACAGAAAAAG	ATATTTCCTT	GACTTCTCAG	ACTGTGACTG	AACTGCCACC	TCACACTGTG	1740
	.GAAGGTACTT	CAGCCTCTTT	AAATGATGGC	TCTAAAACTG	TTCTTAGATC	TCCACATATG	1800
	AACTTGTCGG	GGACTGCAGA	ATCCTTAAAT	ACAGTTTCTA	TAACAGAATA	TGAGGAGGAG	1860
	AGTTTATTGA	CCAGTTTCAA	GCTTGATACT	GGAGCTGAAG	ATTCTTCAGG	CTCCAGTCCC	1920
	GCAACTTCTG	CTATCCCATT	CATCTCTGAG	AACATATCCC	AAGGGTATAT	ATTTTCCTCC	1980
	GAAAACCCAG	AGACAATAAC	ATATGATGTC	CTTATACCAG	AATCTGCTAG	AAATGCTTCC	2040
	GAAGATTCAA	CTTCATCAGG	TTCAGAAGAA	TCACTAAAGG	ATCCTTCTAT	GGAGGGAAAT	2100
	GTGTGGTTTC	CTAGCTCTAC	AGACATAACA	GCACAGCCCG	ATGTTGGATC	AGGCAGAGAG	2160
	AGCTTTCTCC	AGACTAATTA	CACTGAGATA	CGTGTTGATG	AATCTGAGAA	GACAACCAAG	2220
	TCCTTTTCTG	CAGGCCCAGT	GATGTCACAG	GGTCCCTCAG	TTACAGATCT	GGAAATGCCA	2280
	CATTATTCTA	CCTTTGCCTA	CTTCCCAACT	GAGGTAACAC	CTCATGCTTT	TACCCCATCC	2340
	TCCAGACAAC	AGGATTTGGT	CTCCACGGTC	AACGTGGTAT	ACTCGCAGAC	AACCCAACCG	2400
	GTATACAATG	AGGCCAGTAA	TAGTAGCCAT	GAGTCTCGTA	TTGGTCTAGC	TGAGGGGTTG	2460
	GAATCCGAGA	AGAAGGCAGT	TATACCCCTT	GTGATCGTGT	CAGCCCTGAC	TTTTATCTGT	2520
		TTGTGGGTAT					2580
	TACTTAGAGG	ACAGTACATC	CCCTAGAGTT	ATATCCACAC	CTCCAACACC	TATCTTTCCA	2640
		ATGTCGGAGC		_			2700
		GTGGGTTTAC					2760
	CAGAGCTGTA	CTGTTGACTT	AGGTATTACA	GCAGACAGCT	CCAACCACCC	AGACAACAAG	2820

WO 02/086443 CACAAGAATC GATACATAAA TATCGTTGCC TATGATCATA GCAGGGTTAA GCTAGCACAG 2880 CTTGCTGAAA AGGATGGCAA ACTGACTGAT TATATCAATG CCAATTATGT TGATGGCTAC 2940 AACAGACCAA AAGCTTATAT TGCTGCCCAA GGCCCACTGA AATCCACAGC TGAAGATTTC TGGAGAATGA TATGGGAACA TAATGTGGAA GTTATTGTCA TGATAACAAA CCTCGTGGAG 3060 5 AAAGGAAGGA GAAAATGTGA TCAGTACTGG CCTGCCGATG GGAGTGAGGA GTACGGGAAC TTTCTGGTCA CTCAGAAGAG TGTGCAAGTG CTTGCCTATT ATACTGTGAG GAATTTTACT 3180 CTAAGAAACA CAAAAATAAA AAAGGGCTCC CAGAAAGGAA GACCCAGTGG ACGTGTGGTC ACACAGTATC ACTACACGCA GTGGCCTGAC ATGGGAGTAC CAGAGTACTC CCTGCCAGTG CTGACCTTTG TGAGAAAGGC AGCCTATGCC AAGCGCCATG CAGTGGGGCC TGTTGTCGTC 10 CACTGCAGTG CTGGAGTTGG AAGAACAGGC ACATATATTG TGCTAGACAG TATGTTGCAG CAGATTCAAC ACGAAGGAAC TGTCAACATA TTTGGCTTCT TAAAACACAT CCGTTCACAA AGAAATTATT TGGTACAAAC TGAGGAGCAA TATGTCTTCA TTCATGATAC ACTGGTTGAG 3540 GCCATACTTA GTAAAGAAAC TGAGGTGCTG GACAGTCATA TTCATGCCTA TGTTAATGCA 3600 CTCCTCATTC CTGGACCAGC AGGCAAAACA AAGCTAGAGA AACAATTCCA GGGTCTCACT 3660 15 CTGTCACCCA GGCTGGAGTG CAGAGGCACA ATCTCGGCTC ACTGCAACCT TCCTCTCCCT 3720 GGCTTAACTG ATCCTCCTAC CTCAGCCTCC CGAGTGGCTG GGACTATACT CCTGAGCCAG 3780 TCAAATATAC AGCAGAGTGA CTATTCTGCA GCCCTAAAGC AATGCAACAG GGAAAAGAAT 3840 CGAACTTCTT CTATCATCCC TGTGGAAAGA TCAAGGGTTG GCATTTCATC CCTGAGTGGA 3900 GAAGGCACAG ACTACATCAA TGCCTCCTAT ATCATGGGCT ATTACCAGAG CAATGAATTC 3960 20 ATCATTACCC AGCACCCTCT CCTTCATACC ATCAAGGATT TCTGGAGGAT GATATGGGAC 4020 CATAATGCCC AACTGGTGGT TATGATTCCT GATGGCCAAA ACATGGCAGA AGATGAATTT 4080 GTTTACTGGC CAAATAAAGA TGAGCCTATA AATTGTGAGA GCTTTAAGGT CACTCTTATG 4140 GCTGAAGAAC ACAAATGTCT ATCTAATGAG GAAAAACTTA TAATTCAGGA CTTTATCTTA 4200 GAAGCTACAC AGGATGATTA TGTACTTGAA GTGAGGCACT TTCAGTGTCC TAAATGGCCA 25 AATCCAGATA GCCCCATTAG TAAAACTTTT GAACTTATAA GTGTTATAAA AGAAGAAGCT 4320 GCCAATAGGG ATGGGCCTAT GATTGTTCAT GATGAGCATG GAGGAGTGAC GGCAGGAACT TTCTGTGCTC TGACAACCCT TATGCACCAA CTAGAAAAAG AAAATTCCGT GGATGTTTAC 4440 CAGGTAGCCA AGATGATCAA TCTGATGAGG CCAGGAGTCT TTGCTGACAT TGAGCAGTAT CAGTTTCTCT ACAAAGTGAT CCTCAGCCTT GTGGGCACAA GGCAGGAAGA GAATCCATCC 4560 30 ACCTCTCTGG ACAGTAATGG TGCAGCATTG CCTGATGGAA ATATAGCTGA GAGCTTAGAG TCTTTAGTTT AACACAGAAA GGGGTGGGGG GACTCACATC TGAGCATTGT TTTCCTCTTC 4680 CTAAAATTAG GCAGGAAAAT CAGTCTAGTT CTGTTATCTG TTGATTTCCC ATCACCTGAC AGTAACTTTC ATGACATAGG ATTCTGCCGC CAAATTTATA TCATTAACAA TGTGTGCCTT 4800 TTTGCAAGAC TTGTAATTTA CTTATTATGT TTGAACTAAA ATGATTGAAT TTTACAGTAT 4860 35 TTCTAAGAAT GGAATTGTGG TATTTTTTC TGTATTGATT TTAACAGAAA ATTTCAATTT 4920 4980 ATAGAGGTTA GGAATTCCAA ACTACAGAAA ATGTTTGTTT TTAGTGTCAA ATTTTTAGCT 5040 GTATTTGTAG CAATTATCAG GTTTGCTAGA AATATAACTT TTAATACAGT AGCCTGTAAA TAAAACACTC TTCCATATGA TATTCAACAT TTTACAACTG CAGTATTCAC CTAAAGTAGA 5100 AATAATCTGT TACTTATTGT AAATACTGCC CTAGTGTCTC CATGGACCAA ATTTATATTT 5160 40 ATAATTGTAG ATTTTTATAT TTTACTACTG AGTCAAGTTT TCTAGTTCTG TGTAATTGTT 5220 TAGTTTAATG ACGTAGTTCA TTAGCTGGTC TTACTCTACC AGTTTTCTGA CATTGTATTG 5280 TGTTACCTAA GTCATTAACT TTGTTTCAGC ATGTAATTTT AACTTTTGTG GAAAATAGAA 5340 ATACCTTCAT TTTGAAAGAA GTTTTTATGA GAATAACACC TTACCAAACA TTGTTCAAAT 5400 5460 45 Α ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ Seg ID NO: 188 Protein sequence: Protein Accession #: EOS sequence 50 31 41 21 MRILKRFLAC IQLLCVCRLD WANGYYROOR KLVEEIGWSY TGALNOKNWG KKYPTCNSPK QSPINIDEDL TQVNVNLKKL KFQGWDKTSL ENTFIHNTGK TVEINLTNDY RVSGGVSEMV 120 FKASKITFHW GKCNMSSDGS EHSLEGQKFP LEMQIYCFDA DRFSSFEEAV KGKGKLRALS 180 55 ILFEVGTEEN LDFKAIIDGV ESVSRFGKQA ALDPFILLNL LPNSTDKYYI YNGSLTSPPC 240 TDTVDWIVFK DTVSISESQL AVFCEVLTMQ QSGYVMLMDY LQNNFREQQY KFSRQVFSSY TGKEEIHEAV CSSEPENVQA DPENYTSLLV TWERPRVVYD TMIEKFAVLY QQLDGEDQTK 300 360 HEFLIDGYQD LGAILMNLLP NMSYVLQIVA ICTNGLYGKY SDQLIVDMPT DNPELDLFPE 420 LIGTEEIIKE EEEGKDIEEG AIVNPGRDSA TNQIRKKEPQ ISTTTHYNRI GTKYNEAKTN 480 60 RSPTRGSEFS GKGDVPNTSL NSTSQPVTKL ATEKDISLTS QTVTELPPHT VEGTSASLND 540 GSKTVLRSPH MNLSGTAESL NTVSITEYEE ESLLTSFKLD TGAEDSSGSS PATSAIPFIS 600 ENISQGYIFS SENPETITYD VLIPESARNA SEDSTSSGSE ESLKDPSMEG NVWFPSSTDI 660 TAQPDVGSGR ESFLQTNYTE IRVDESEKTT KSFSAGPVMS QGPSVTDLEM PHYSTFAYFP 720 TEVTPHAFTP SSRQQDLVST VNVVYSQTTQ PVYNEASNSS HESRIGLAEG LESEKKAVIP 780 65 LVIVSALTFI CLVVLVGILI YWRKCFQTAH FYLEDSTSPR VISTPPTPIF PISDDVGAIP 840 IKHFPKHVAD LHASSGFTEE FETLKEFYQE VQSCTVDLGI TADSSNHPDN KHKNRYINIV 900 AYDHSRVKLA QLAEKDGKLT DYINANYVDG YNRPKAYIAA QGPLKSTAED FWRMIWEHNV 960 EVIVMITNLV EKGRRKCDQY WPADGSEEYG NFLVTQKSVQ VLAYYTVRNF TLRNTKIKKG 1020 SQKGRPSGRV VTQYHYTQWP DMGVPEYSLP VLTFVRKAAY AKRHAVGPVV VHCSAGVGRT 1080 70 GTYIVLDSML QQIQHEGTVN IFGFLKHIRS QRNYLVQTEE QYVFIHDTLV EAILSKETEV 1140 LDSHIHAYVN ALLIPGPAGK TKLEKQFQGL TLSPRLECRG TISAHCNLPL PGLTDPPTSA 1200 SRVAGTILLS QSNIQQSDYS AALKQCNREK NRTSSIIPVE RSRVGISSLS GEGTDYINAS 1260 YIMGYYQSNE FIITQHPLLH TIKDFWRMIW DHNAQLVVMI PDGQNMAEDE FVYWPNKDEP 1320 INCESFKYTL MAEEHKCLSN EEKLIIQDFI LEATQDDYVL EVRHFQCPKW PNPDSPISKT 1380 75 FELISVIKEE AANRDGPMIV HDEHGGVTAG TFCALTTLMH QLEKENSVDV YQVAKMINLM RPGVFADIEQ YQFLYKVILS LVGTRQEENP STSLDSNGAA LPDGNIAESL ESLV Seq ID NO: 189 DNA sequence 80 Nucleic Acid Accession #: NM 002820

Coding sequence: 304..831

1 11 21 31 41 51

CCGGTTCGCA AAGAAGCTGA CTTCAGAGGG GGAAACTTC TTCTTTTAGG AGGCGGTTAG 60
CCCTGTTCCA CGAACCCAGG AGAACTGCTG GCCAGATTAA TTAGACATTG CTATGGGAGA 120
CGTGTAAACA CACTACTTAT CATTGATGCA TATATAAAAC CATTTTATTT TCGCTATTAT 180

```
TTCAGAGGAA GCGCCTCTGA TTTGTTTCTT TTTTCCCTTT TTGCTCTTTC TGGCTGTGTG
                                                                            240
       GTTTGGAGAA AGCACAGTTG GAGTAGCCGG TTGCTAAATA AGTCCCGAGC GCGAGCGGAG
                                                                            300
       ACGATGCAGC GGAGACTGGT TCAGCAGTGG AGCGTCGCGG TGTTCCTGCT GAGCTACGCG
                                                                            360
       GTGCCCTCCT GCGGGCGCTC GGTGGAGGGT CTCAGCCGCC GCCTCAAAAG AGCTGTGTCT
                                                                             420
       GAACATCAGC TCCTCCATGA CAAGGGGAAG TCCATCCAAG ATTTACGGCG ACGATTCTTC
                                                                             480
       CTTCACCATC TGATCGCAGA AATCCACACA GCTGAAATCA GAGCTACCTC GGAGGTGTCC
                                                                            540
       CCTAACTCCA AGCCCTCTCC CAACACAAAG AACCACCCCG TCCGATTTGG GTCTGATGAT
       GAGGGCAGAT ACCTAACTCA GGAAACTAAC AAGGTGGAGA CGTACAAAGA GCAGCCGCTC
       AAGACACCTG GGAAGAAAA GAAAGGCAAG CCCGGGAAAC GCAAGGAGCA GGAAAAGAAA
10
       AAACGGCGAA CTCGCTCTGC CTGGTTAGAC TCTGGAGTGA CTGGGAGTGG GCTAGAAGGG
                                                                             780
       GACCACCTGT CTGACACCTC CACAACGTCG CTGGAGCTCG ATTCACGGTA ACAGGCTTCT
                                                                             840
       CTGGCCCGTA GCCTCAGCGG GGTGCTCTCA GCTGGGTTTT GGAGCCTCCC TTCTGCCTTG
                                                                            900
       GCTTGGACAA ACCTAGAATT TTCTCCCTTT ATGTATCTCT ATCGATTGTG TAGCAATTGA
                                                                            960
       CAGAGAATAA CTCAGAATAT TGTCTGCCTT AAAGCAGTAC CCCCCTACCA CACACCCC
                                                                           1020
15
       TGTCCTCCAG CACCATAGAG AGGCGCTAGA GCCCATTCCT CTTTCTCCAC CGTCACCCAA
                                                                           1080
       CATCATACT TRACCACTCT ACCADATAAT TECATATTCA AGCTTCAGAA GCTAGTGACC ATCTTCATAA TFTGCTGGAG AAGTGTATTT CTTCCCCTTA CTCTCACACC TGGGCAAACT
                                                                           1140
                                                                           1200
       TTCTTCAGTG TTTTTCATTT CTTACGTTCT TTCACTTCAA GGGAGAATAT AGAAGCATTT
                                                                           1260
       GATATTATCT ACAAACACTG CAGAACAGCA TCATGTCATA AACGATTCTG AGCCATTCAC
                                                                           1320
20
       ACTITITATI TAATTAAATG TATITAATTA AATCICAAAT TIATITIAAT GTAAAGAACT
                                                                           1380
       TAAATTATGT TTTAAACACA TGCCTTAAAT TTGTTTAATT AAATTTAACT CTGGTTTCTA
                                                                           1440
       CCAGCTCATA CAAAATAAAT GGTTTCTGAA AATGTTTAAG TATTAACTTA CAAGGATATA
       GGTTTTTCTC ATGTATCTTT TTGTTCATTG GCAAGATGAA ATAATTTTTC TAGGGTAATG
       CCGTAGGAAA AATAAAACTT CACATTTAAA AAAAA
25
       Seq ID NO: 190 Protein sequence:
       Protein Accession #: NP_002811
30
                  11
                             21
                                                               51
                                         31
       MORRLYOOWS VAVELLSYAV PSCGRSVEGL SRRLKRAVSE HOLLHDKGKS IQDLRRRFFL
                                                                              60
       HHLIAEIHTA EIRATSEVSP NSKPSPNTKN HPVRFGSDDE GRYLTQETNK VETYKEQPLK
                                                                            120
35
       TPGKKKKGKP GKRKEQEKKK RRTRSAWLDS GVTGSGLEGD HLSDTSTTSL ELDSR
       Seq ID NO: 191 DNA sequence
       Nucleic Acid Accession #: XM 059328
       Coding sequence: 52..1023
40
                                                    41
                  11
                             21
                                         31
                                                               51
       GGGCTGTCCG GCCCACTCCC CTGGGAGCGC GAGCGGTGGA CCCAGGCGGC CATGTCCCGC
                                                                              60
       CCTCGCATGC GCCTGGTGGT CACCGCGGAC GACTTTGGTT ACTGCCCGCG ACGCGATGAG
                                                                            120
45
       GGTATCGTGG AGGCCTTTCT GGCCGGGCT GTGACCAGCG TGTCCCTGCT GGTCAACGGT
                                                                            180
       GCGGCCACGG AGAGCGCGGC GGAGCTGGCC CGCAGGCACA GCATCCCCAC GGGCCTCCAC
                                                                            240
       GCCAACCTGT CCGAGGGCCG CCCCGTGGGT CCGGCCCGCC GTGGCGCCTC ATCGCTGCTC
       GGCCCGGAAG GCTTCTTCCT TGGCAAGATG GGATTCCGGG AGGCGGTGGC GGCCGGAGAC
       GTGGATTTGC CTCAGGTGCG GGAGGAGCTC GAGGCCCAAC TAAGCTGCTT CCGGGAGCTG
                                                                            420
50
       CTGGGCAGGG CCCCCACGCA CGCGGACGGG CACCAGCACG TGCACGTGCT CCCAGGCGTG
                                                                            480
       TGCCAGGTGT TCGCCGAGGC GCTGCAGGCC TATGGGGTGC GCTTTACGCG ACTGCCGCTG
       GAGCGCGGTG TGGGTGGCTG CACTTGGCTG GAGGCCCCCG CGCGTGCCTT CGCCTGCGCC
       GTGGAGCGCG ACGCCCGGGC CGCCGTGGGC CCCTTCTCCC GCCACGGCCT GCGGTGGACA
       GACGCCTTCG TGGGCCTGAG CACTTGCGGC CGGCACATGT CCGCTCACCG CGTGTCCGGG
55
       GCCCTGGCGC GGGTCCTGGA AGGTACCCTA GCGGGCCACA CCCTGACAGC CGAGCTGATG
       GCGCACCCCG GCTACCCCAG TGTGCCTCCC ACCGGCGGCT GCGGTGAAGG CCCCGACGCT
                                                                            840
       TTCTCTTGCT CTTGGGAGCG GCTGCATGAG CTGCGCGTCC TCACCGCGCC CACGCTGCGG
                                                                            900
       GCCCAGCTTG CCCAGGATGG CGTGCAGCTT TGCGCCCTCG ACGACCTGGA CTCCAAGAGG CCAGGGGAGG AGGTCCCTG TGAGCCCACT CTGGAACCT TCCTGGAACC CTCCCTACTC
                                                                            960
                                                                           1020
60
       1080
                                                                           1140
       GGACACTGCC ACCTCTGGGC TCAGGTCCTC ATGCCTCCAA ATGGCATCTA GAGTTTGAGC
                                                                           1200
       AGCCTTCTTG GCTGCAGGCA GGCCTAGCCT GTGGCAGCGG GCTAGGGCCC GCAGAGCATT
                                                                           1260
       TGGTGCCCCT CCATGTTGCA ATGCAAACAC CTTCACCACT GGGGCAGTGG GGAGAGATGG
65
       CTATATTAAT AAAATAACGT GTGTCTTTC
       Seq ID NO: 192 Protein sequence:
       Protein Accession #: XP_059328
70
                  11
                             21
                                         31
                                                    41
                                                               51
       MSRPRMRLVV TADDFGYCPR RDEGIVEAPL AGAVTSVSLL VNGAATESAA ELARRHSIPT
                                                                             60
       GLHANLSEGR PVGPARRGAS SLLGPEGFFL GKMGFREAVA AGDVDLPQVR EELEAQLSCF
                                                                            120
75
       RELLGRAPTH ADGHQHVHVL PGVCQVFAEA LQAYGVRFTR LPLERGVGGC TWLEAPARAF
                                                                            180
       ACAVERDARA AVGPFSRHGL RWTDAFVGLS TCGRHMSAHR VSGALARVLE GTLAGHTLTA
                                                                            240
       ELMAHPGYPS VPPTGGCGEG PDAFSCSWER LHELRVLTAP TLRAQLAQDG VQLCALDDLD
                                                                            300
       SKRPGEEVPC EPTLEPFLEP SLL
80
       Seg ID NO: 193 DNA sequence
       Nucleic Acid Accession #: NM_005688.1
       Coding sequence: 126..4439
                                         31
85
       CCGGGCAGGT GGCTCATGCT CGGGAGCGTG GTTGAGCGGC TGGCGCGGTT GTCCTGGAGC
       AGGGGCGCAG GAATTCTGAT GTGAAACTAA CAGTCTGTGA GCCCTGGAAC CTCCGCTCAG
```

	WO 02/	086443					
	AGAAGATGAA	GGATATCGAC	ATAGGAAAAG	AGTATATCAT	CCCCAGTCCT	GGGTATAGAA	180
	GTGTGAGGGA	GAGAACCAGC	ACTTCTGGGA	CGCACAGAGA	CCGTGAAGAT	TCCAAGTTCA	240
	GGAGAACTCG	ACCGTTGGAA	TGCCAAGATG	CCTTGGAAAC	AGCAGCCCGA	GCCGAGGGCC	300
_	TCTCTCTTGA	TGCCTCCATG	CATTCTCAGC	TCAGAATCCT	GGATGAGGAG	CATCCCAAGG	360
5	GAAAGTACCA	TCATGGCTTG	AGTGCTCTGA	AGCCCATCCG	GACTACTTCC	AAACACCAGC	420
	ACCCAGTGGA	CAATGCTGGG	CTTTTTTCCT	GTATGACTTT	TTCGTGGCTT	TCTTCTCTGG	480
	CCCGTGTGGC	CCACAAGAAG	GGGGAGCTCT	CAATGGAAGA	CGTGTGGTCT	CTGTCCAAGC	540
	ACGAGTCTTC	TGACGTGAAC	TGCAGAAGAC	TAGAGAGACT	GIGGCAAGAA	GAGCIGAATG	600
10	AAGTTGGGCC	AGACGCTGCT	TCCCTGCGAA	GGGTTGTGTG	GATCTTCTGC	CGCACCAGGC	660
10	TCATCCTGTC	CATCGTGTGC	CTGATGATCA	CGCAGCIGGC	CTCTA A COTT	COACCAGCCT.	720
	TCATGGTGAA	ACACCTCTTG	GAGTATACCC	AGGCAACAGA	GICIAACCIG	CAGIACAGCI.	780
	TGTTGTTAGT	GCTGGGCCTC	CTCCTGACGG	AAATCGTGCG	GICTIGGICG	ACCATOCAL	840
	CTTGGGCATT	GAATTACCGA CCTTAAGTTA	ACCGGTGTCC	GCTTGCGGGG	CCTCCCTCA	CTCATCAACA	900 960
15	TTAAGAAGAT	CGATGGGCAG	AAGAACATTA	AAGAGAAATC	CCIGGGIGAG	CTCATCAACA	1020
13	CACCACCCCAA	TGTTGCCATC	AGAATGTTTG	MUTATA ATOT	AATTATTCTC	CIGCIGGCIG	1080
	CONTROLL	ATCAGCTGTT	TTAGGCATGA	TITATACTO	AMPGATGTTT	GCATCACGC	1140
	TCACAGCATA	TTTCAGGAGA	ANATOCICI	CCCCCACCGA	TEARCETETC	CAGAAGATGA	1200
	ATCALAGCATA	TACTTACATT	AAAIGCGIGG	ANDTETATEC	CTCCCTCAAA	GCATTTTCTC	1260
20	ACACTCTTCA	AAAAATCCGC	CACCACCACC	CTCCGATATT	GGAAAAAGCC	GGGTACTTCC	1320
20	AGGGTATCAC	TGTGGGTGTG	CCTCCCATTC	TECTESTEAT	TGCCAGCGTG	GTGACCTTCT	1380
		GACCCTGGGC					1440
	TCTTCAATTC	CATGACTTTT	CCTTTGAAAG	TAACACCGTT	TTCAGTAAAG	TCCCTCTCAG	1500
		GGCTGTTGAC					1560
25		ACCAGCCAGT					1620
		CCACTCCAGT					1680
		TTCCAGGGGC					1740
	AGGCGGTGCT	GGCAGAGCAG	AAAGGCCACC	TCCTCCTGGA	CAGTGACGAG	CGGCCCAGTC	1800
	CCGAAGAGGA	AGAAGGCAAG	CACATCCACC	TGGGCCACCT	GCGCTTACAG	AGGACACTGC	1860
30		TCTGGAGATC					1920
		CTCTCTCATT					1980
		TGGAACCTTC					2040
		CATCCTGTTT					2100
25		CCTGAGGCCT					2160
35		AGCCAACCTG					2220
		CAGGAGCATC					2280
		CATCTTCAAT					2340
		CCAGTTACAG GGAAAGAGGC					2400 2460
40		TAACCTGTTG					2520
70		TTCACAGAAG					2580
		AGTAAAGCCA					2640
		CTGGTCAGTA					2700
		TATGGCCCTT					2760
45		CTGGATCAAG					2820
		TGACAGCATG					2880
		GGCAGTCATG					2940
		AGCTTCCTCC					3000
		TTTTGACACG					3060
50		TGACGTGCGG					3120
		CTGTGTGGGA					3180
•	GGCCCCTTGT	CATCCTCTTT	TCAGTCCTGC	ACATTGTCTC	CAGGGTCCTG	ATTCGGGAGC	3240
	TGAAGCGTCT	GGACAATATC	ACGCAGTCAC	CTTTCCTCTC	CCACATCACG	TCCAGCATAC	3300
<i></i>		CACCATCCAC					3360
55	AGCTGCTGGA	TGACAACCAA	GCTCCTTTTT	TTTTGTTTAC	GTGTGCGATG	CGGTGGCTGG	3420
	CTGTGCGGCT	GGACCTCATC	AGCATCGCCC	TCATCACCAC	CACGGGGCTG	ATGATCGTTC	3480
	TTATGCACGG	GCAGATTCCC	CCAGCCTATG	CGGGTCTCGC	CATCTCTTAT	GCTGTCCAGT	3540
	TAACGGGGCT	GTTCCAGTTT	ACGGTCAGAC	TGGCATCTGA	GACAGAAGCT	CGATTCACCT	3600
60	CGGTGGAGAG	GATCAATCAC	TACATTAAGA	CTCTGTCCTT	GGAAGCACCT	GCCAGAATTA GAGAACGCAG	3000
UU	AGAACAAGGC	TCCCTCCCCT	GACTGGCCCC	TOOTA A CA A	ACTATICCTTC	ACGATCAAAC	3720
	AGATGAGGTA	COGAGAAAAC	CICCCICIIG	CACCATCACC	CANCTOCTO	CTGGGGATGG	3840
	CINNAGAGAA	ACACCACCYC GWT IGGCWLL	TATOGGGGA	GCTGCATCAA	GATTGATGGA	GTGAGAATCA	3900
	GTGATATTGG	CCTTCCCGAC	CTCCGAAGCA	AACTCTCTAT	CATTCCTCAA	GAGCCGGTGC	3960
65	TGTTCAGTCG	CACTGTCAGA	TCAAATTTGG	ACCCCTTCAA	CCAGTACACT	GAAGACCAGA	4020
00	TTTGGGATGC	CCTGGAGAGG	ACACACATGA	AAGAATGTAT	TGCTCAGCTA	CCTCTGAAAC	4080
	TTGAATCTGA	AGTGATGGAG	AATGGGGATA	ACTTCTCAGT	GGGGGAACGG	CAGCTCTTGT	4140
	GCATAGCTAG	AGCCCTGCTC	CGCCACTGTA	AGATTCTGAT	TTTAGATGAA	GCCACAGCTG	4200
	CCATGGACAC	AGAGACAGAC	TTATTGATTC	AAGAGACCAT	CCGAGAAGCA	TTTGCAGACT	4260
70	GTACCATGCT	GACCATTGCC	CATCGCCTGC	ACACGGTTCT	AGGCTCCGAT	AGGATTATGG	4320
	TGCTGGCCCA	GGGACAGGTG	GTGGAGTTTG	ACACCCCATC	GGTCCTTCTG	TCCAACGACA	4380
	GTTCCCGATT	CTATGCCATG	TTTGCTGCTG	CAGAGAACAA	GGTCGCTGTC	AAGGGCTGAC	4440
	TCCTCCCTGT	TGACGAAGTC	TCTTTTCTTT	AGAGCATTGC	CATTCCCTGC	CTGGGGCGGG	4500
75	CCCCTCATCG	CGTCCTCCTA	CCGAAACCTT	GCCTTTCTCG	ATTTTATCTT	TCGCACAGCA	4560
75	GTTCCGGATT	GGCTTGTGTG	TTTCACTTTT	AGGGAGAGTC	ATATTTTGAT	TATTGTATTT	4620
	ATTCCATATT	CATGTAAACA	AAATTTAGTT	TTTGTTCTTA	ATTGCACTCT	AAAAGGTTCA	4680
	GGGAACCGTT	ATTATAATTG	TATCAGAGGC	CTATAATGAA	GCTTTATACG	TGTAGCTATA	4740
	TCTATATATA	ATTCTGTACA	TAGCCTATAT	TTACAGTGAA	AATGTAAGCT	GTTTATTTTA	4800
80	TATTAAAATA	AGCACTGTGC	TAATAACAGT	GCATATTCCT	TICTATCATT	TTTGTACAGT	4860
00	TIGCTGTACT	AGAGATCTGG	TITIGCTATT	TOTOLOGIAGG	CCN A ACCARAC	TTTCATTCTT	4720
	ATACTAGCTGG	TGGTTTCACG	CCCCTCTCCC	TICIOGLEL	ACCCCCCCCC	ACGTGTGGCA GGGGTGGCTG	5040
	ATAGTGGGCC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CACCACACCAC	ACCICCONC.	CTTCTCTCTCA	CTCCTGCCTT	5100
	CLUTACOMOCOM GUGACOGGIG	CTICA CTITA CT	GUCCUI GCUG	GGAGAGCAGC	GGGGLGTTG	CCAGGCCCCT	5160
85	TTTCACTCC	TCCATCAACA	ATGGGGATCA	CAGAGACATT	CCTCCGAGCC	GGGGAGTTTC	5220
55	TTTCCTCCC	4Ch4Ch4AAA	GCTGTTGTTT	CTAAACAAGA	ATCAGTCTAT	CCACAGAGAG	5280
	TCCCACTGCC	TCAGGTTCCT	ATGGCTGGCC	ACTGCACAGA	GCTCTCCAGC	TCCAAGACCT	5340

```
GTTGGTTCCA AGCCCTGGAG CCAACTGCTG CTTTTTGAGG TGGCACTTTT TCATTTGCCT
                                                                         5400
      ATTCCCACAC CTCCACAGTT CAGTGGCAGG GCTCAGGATT TCGTGGGTCT GTTTTCCTTT
                                                                         5460
      CTCACCGCAG TCGTCGCACA GTCTCTCTCT CTCTCTCCCC TCAAAGTCTG CAACTTTAAG
                                                                         5520
      CAGCTCTTGC TAATCAGTGT CTCACACTGG CGTAGAAGTT TTTGTACTGT AAAGAGACCT
                                                                         5580
      ACCTCAGGTT GCTGGTTGCT GTGTGGTTTG GTGTGTTCCC GCAAACCCCC TTTGTGCTGT
 5
                                                                         5640
      GGGGCTGGTA GCTCAGGTGG GCGTGGTCAC TGCTGTCATC AGTTGAATGG TCAGCGTTGC
                                                                         5700
      ATGTCGTGAC CAACTAGACA TTCTGTCGCC TTAGCATGTT TGCTGAACAC CTTGTGGAAG
                                                                         5760
      5820
      ААААААА АААААААА
10
      Seq ID NO: 194 Protein sequence:
      Protein Accession #: NP_005679.1
15
                                                   41
                                                              51
                                        31
                  11
                             21
      MKDIDIGKEY IIPSPGYRSV RERTSTSGTH RDREDSKFRR TRPLECODAL ETAARAEGLS
      LDASMHSQLR ILDEEHPKGK YHHGLSALKP IRTTSKHQHP VDNAGLFSCM TFSWLSSLAR
                                                                          120
      VAHKKGELSM EDVWSLSKHE SSDVNCRRLE RLWQEELNEV GPDAASLRRV VWIFCRTRLI
                                                                          180
      LSIVCLMITQ LAGFSGPAFM VKHLLEYTQA TESNLQYSLL LVLGLLLTEI VRSWSLALTW
                                                                          240
20
       ALNYRTGVRL RGAILTMAFK KILKLKNIKE KSLGELINIC SNDGQRMFEA AAVGSLLAGG
                                                                          300
       PVVAILGMIY NVIILGPTGF LGSAVFILFY PAMMFASRLT AYFREKCVAA TDERVQKMNE
                                                                          360
       VLTYIKFIKM YAWVKAFSQS VQKIREEERR ILEKAGYFQG ITVGVAPIVV VIASVVTFSV
                                                                          420
      HMTLGFDLTA AQAPTVVTVF NSMTFALKVT PFSVKSLSEA SVAVDRPKSL FLMEEVHMIK
                                                                          480
      NKPASPHIKI EMKNATLAWD SSHSSIQNSP KLTPKMKKDK RASRGKKEKV RQLQRTEHQA
                                                                          540
25
       VLAEQKGHLL LDSDERPSPE EEEGKHIHLG HLRLQRTLHS IDLEIQEGKL VGICGSVGSG
                                                                          600
       KTSLISAILG OMTLLEGSIA ISGTFAYVAQ QAWILNATLR DNILFGKEYD EERYNSVLNS
                                                                          660
       CCLRPDLAIL PSSDLTEIGE RGANLSGGOR QRISLARALY SDRSIYILDD PLSALDAHVG
                                                                          720
      NHIFNSAIRK HLKSKTVLFV THQLQYLVDC DEVIFMKEGC ITERGTHEEL MNLNGDYATI
                                                                          780
       FNNLLLGETP PVEINSKKET SGSQKKSQDK GPKTGSVKKE KAVKPEEGQL VQLEEKGQGS
                                                                          B40
30
       VPWSVYGVYI QAAGGPLAFL VIMALFMLNV GSTAFSTWWL SYWIKQGSGN TTVTRGNETS
                                                                          900
       VSDSMKDNPH MQYYASIYAL SMAVMLILKA IRGVVFVKGT LRASSRLHDE LFRRILRSPM
       KFPDTTPTGR ILNRFSKDMD EVDVRLPFQA EMFIQNVILV FFCVGMIAGV FFWFLVAVGP
       LVILFSVLHI VSRVLIRELK RLDNITQSPF LSHITSSIQG LATIHAYNKG QEFLHRYQEL
       LDDNQAPPFL FTCAMRWLAV RLDLISIALI TTTGLMIVLM HGQIPPAYAG LAISYAVQLT
                                                                          1140
35
       GLFQFTVRLA SETEARFTSV ERINHYIKTL SLEAPARIKN KAPSPDWPQE GEVTFENAEM
                                                                          1200
                                                                          1260
       RYRENLPLVL KKVSFTIKPK EKIGIVGRTG SGKSSLGMAL FRLVELSGGC IKIDGVRISD
       IGLADLRSKL SIIPQEPVLF SGTVRSNLDP FNQYTEDQIW DALERTHMKE CIAQLPLKLE
                                                                          1320
                                                                         1380
       SEVMENGDNF SVGERQLLCI ARALLRHCKI LILDEATAAM DTETDLLIQE TIREAFADCT
       MLTIAHRLHT VLGSDRIMVL AQGQVVEFDT PSVLLSNDSS RFYAMFAAAE NKVAVKG
40
       Seg ID NO: 195 DNA sequence
       Nucleic Acid Accession #: NM_006470
       Coding sequence: 228..1922
45
                                        31
                                                   41
                             21
                  11
       GCTGTCCTGA GCCTGAGTAC TCTAGCTGCC TTGTCGCCAT CGCATCTGGC TGCCATCCAG
       CGCCAGCACA CAGTAATGAG TGGCCGAGCT TCCTCTGGGA GGGAGGAAAC AGTTAAAATC
                                                                           120
50
        TTGCAGCAGC TGCAATCATC TAGGCGTGGT TCTCTTGTCT GACTTGGGCT GCACAGATCC
                                                                           180
       TGGGCCAAGG GACAGAAGAA AGACAGCCTA GGAGCAGAGC CTCCCAGATG GCTGAGTTGG
                                                                           240
       ATCTAATGGC TCCAGGGCCA CTGCCCAGGG CCACTGCTCA GCCCCCAGGC CCTCTCAGCC
                                                                           300
       CAGACTCTGG GTCACCCAGC CCAGATTCTG GGTCAGCCAG CCCAGTGGAA GAAGAGGACG
                                                                           360
        TGGGCTCCTC GGAGAAGCTT GGCAGGGAGA CGGAGGAACA GGACAGCGAC TCTGCAGAGC
55
       AGGGGGATCC TGCTGGTGAG GGGAAAGAGG TCCTGTGTGA CTTCTGCCTT GATGACACCA
                                                                           480
        GAAGAGTGAA GGCAGTGAAG TCCTGTCTAA CCTGCATGGT GAATTACTGT GAAGAGCACT
        TGCAGCCGCA TCAGGTGAAC ATCAAACTGC AAAGCCACCT GCTGACCGAG CCAGTGAAGG
        ACCACAACTG GCGATACTGC CCTGCCCACC ACAGCCCACT GTCTGCTTTC TGCTGCCCTG
       ATCAGCAGTG CATCTGCCAG GACTGTTGCC AGGAGCACAG TGGCCACACC ATAGTCTCCC
                                                                           720
60
        TGGATGCAGC CCGCAGGGAC AAGGAGGCTG AACTCCAGTG CACCCAGTTA GACTTGGAGC
        GGAAACTCAA GTTGAATGAA AATGCCATCT CCAGGCTCCA GGCTAACCAA AAGTCTGTTC
                                                                           840
        TGGTGTCGGT GTCAGAGGTC AAAGCGGTGG CTGAAATGCA GTTTGGGGAA CTCCTTGCTG
                                                                           960
        CTGTGAGGAA GGCCCAGGCC AATGTGATGC TCTTCTTAGA GGAGAAGGAG CAAGCTGCGC
        TGAGCCAGGC CAACGGTATC AAGGCCCACC TGGAGTACAG GAGTGCCGAG ATGGAGAAGA
 65
        GCAAGCAGGA GCTGGAGAGG ATGGCGGCCA TCAGCAACAC TGTCCAGTTC TTGGAGGAGT
                                                                          1080
        ACTGCAAGTT TAAGAACACT GAAGACATCA CCTTCCCTAG TGTTTACGTA GGGCTGAAGG
                                                                          1140
                                                                          1200
        ATAAACTCTC GGGCATCCGC AAAGTTATCA CGGAATCCAC TGTACACTTA ATCCAGTTGC
        TGGAGAACTA TAAGAAAAAG CTCCAGGAGT TTTCCAAGGA AGAGGAGTAT GACATCAGAA
                                                                          1260
 70
        CTCAAGTGTC TGCCGTTGTT CAGCGCAAAT ATTGGACTTC CAAACCTGAG CCCAGCACCA
                                                                          1320
        GGGAACAGTT CCTCCAATAT GCGTATGACA TCACGTTTGA CCCGGACACA GCACACAAGT
                                                                          1380
                                                                          1440
        ATCTCCGGCT GCAGGAGGAG AACCGCAAGG TCACCAACAC CACGCCCTGG GAGCATCCCT
        ACCCGGACCT CCCCAGCAGG TTCCTGCACT GGCGGCAGGT GCTGTCCCAG CAGAGTCTGT
                                                                          1500
        ACCTGCACAG GTACTATTTT GAGGTGGAGA TCTTCGGGGC AGGCACCTAT GTTGGCCTGA
                                                                          1560
        CCTGCAAAGG CATCGACCGG AAAGGGGAGG AGCGCAACAG TTGCATTTCC GGAAACAACT
 75
                                                                          1620
        TCTCCTGGAG CCTCCAATGG AACGGGAAGG AGTTCACGGC CTGGTACAGT GACATGGAGA
                                                                          1680
        CCCCACTCAA AGCTGGCCCT TTCCGGAGGC TCGGGGTCTA TATCGACTTC CCGGGAGGGA
                                                                          1740
        TCCTTTCCTT CTATGGCGTA GAGTATGATA CCATGACTCT GGTTCACAAG TTTGCCTGCA
                                                                          1800
        AATTTTCAGA ACCAGTCTAT GCTGCCTTCT GGCTTTCCAA GAAGGAAAAC GCCATCCGGA
                                                                          1860
        TTGTAGATCT GGGAGAGGAA CCCGAGAAGC CAGCACCGTC CTTGGGGGTG ACTGCTCCCT
                                                                          1920
 80
        AGACTCCAGG AGCCATATCC CAGACCTTTG CCAGCTACAG TGATGGGATT TGCATTTTAG
                                                                          1980
        GGTGATTTGT GGGCAGAAAT AACTGCTGAT GGTAGCTGGC TTTTGAAATC CTATGGGGTC
                                                                          2040
        TCTGAATGAA AACATTCTCC AGCTGCTCTC TTTTGCTCCA TATGGTGCTG TTCTCTATGT
                                                                          2100
        GTTTGCAGTA ATTCTTTTTT TTTTTTTGA GACGGAGTCT CGCACTGTTG CCCAGGCTGG
                                                                          2160
 85
        AGAGCAGTGG CGCGATCTTG GCTCACTGCA AGCTCCGCCT CCCGAGTTCA AGCAATTCTC
                                                                          2220
        CTGCCTCAGC CTCCCGAGTA GCTGGGATTA CAGGTGCCTG CCACCACACC CAGCTAATGT
                                                                          2280
        TTTGTATTTT TAGTAGAGAT GGGGTTTCAC CATGTTGGCC AGGCAGATCT CAAACTCCTG
```

5	CGCCCTGCCT CTCCTCTCTG	GTTTGTAGTA TTCAGGTAAA	ATTTTTAGGC TGTCACACTG	AAGTGCTGGG ACCAAATCTC TGCCCAGAAT AATAAATTGC	CCTCATCTTC GGATGACCAG	TAGTGCCATT	2400 2460 2520
		196 Protein cession #: 1					
10	1	11	21	31	41	51	
15	DSAEQGDPAG EPVKDHNWRY	EGKEVLCDFC CPAHHSPLSA	LDDTRRVKAV FCCPDQQCIC	SPDSGSASPV KSCLTCMVNY QDCCQEHSGH VKAVAEMQFG	CEEHLQPHQV TIVSLDAARR	NIKLQSHLLT DKEAELQCTQ	60 120 180 240
20	EQAALSQANG VGLKDKLSGI EPSTREQFLQ QQSLYLHRYY	IKAHLEYRSA RKVITESTVH YAYDITFDPD FEVEIFGAGT	EMEKSKQELE LIQLLENYKK TAHKYLRLQE YVGLTCKGID	RMAAISNTVQ KLQEFSKEEE ENRKVTNTTP RKGEERNSCI	FLEEYCKFKN YDIRTQVSAV WEHPYPDLPS SGNNFSWSLQ	TEDITFPSVY VQRKYWTSKP RFLHWRQVLS WNGKEFTAWY	300 360 420 480
20	NAIRIVDLGE	EPEKPAPSLG 197 DNA sec	VTAP	VEYDTMTLVH	RFACRFSEPV	TAAPWLSKKE	540
25	Nucleic Ac	id Accession	. #: NM_0043	16			
	1	11	21	31 I	41	51 1	
20				TAGTAGGAGA			60
30				TCTGCTTTTT			120 180
	GGAGGAGGGG	AGGGAGGAGG	AGGCGGCGTG	CAGGGAGGAG	AAAAAGCATT	TTCACCTTTT	240
				TTTTGTATAT TCTCTGTTCC			300 360
35	GTCCCCCTCG	CGGGCCCCGC	ACCTCGCGTC	CCGGATCGCT	CTGATTCCGC	GACTCCTTGG	420
				ATGGAGAGCG CCCGCAGCCT			480 540
	GCCGCGGCGG	CCGCAGCCGC	CGCAGCGGCA	GCGCAGAGCG	CGCAGCAGCA	GCAGCAGCAG	600
40				CAGCTGAGAC CAAGTCAAGC			660 720
-10	GAACTGATGC	GCTGCAAACG	CCGGCTCAAC	TTCAGCGGCT	TTGGCTACAG	CCTGCCGCAG	780
				GAGCGCGAGC			840
_				GTCCCCAACG GAGTACATCC			900 960
45	GACGAGCATG	ACGCGGTGAG	CGCCGCCTTC	CAGGCAGGCG	TCCTGTCGCC	CACCATCTCC	1020
				GCCGGCTCGC GAGGAGCAGG			1080 1140
				CTGGTGCGAA			1200
50				TGTCAGTGGC			1260 1320
30				AGAGAAGAAG CCTGAGAGAC			1320
				TCATTCACGG			1440
				GTGCAAAAGC CACCTCTAAC			1500 1560
55		CTTCACCTCC		TTAGAGTGCA			1620
60		198 Protein cession #: 1					
	1	11	21 .	31	41	51 1	
<i>(</i> =	MESSAKMESG			FFATAAAAAA			60
65	AVARRNERER	NRVKLVNLGF	ATLREHVPNG	QRSSSPELMR AANKKMSKVE VSSYSSDEGS	TLRSAVEYIR	ALQQLLDEHD	120 180
70	Nucleic Ac	199 DNA sec id Accession Lence: 1-100	. #: NM_0070	15			
	1	11	21	31	41	51	
75	ATGACAGAGA	ACTCCGACAA	AGTTCCCATT	GCCCTGGTGG	GACCTGATGA	CGTGGAATTC	60
-	TGCAGCCCCC	CGGCGTACGC	TACGCTGACG	GTGAAGCCCT	CCAGCCCCGC	GCGGCTGCTC	120
				GCTGTGCTGC CACATTTACA			180 240
0.0				GAAATAGACG			300
80	TTTAAAATGG	GAAGTGGAGC	TGAAGAAGCA	ATTGCAGTTA	ATGATTTCCA	GAATGGCATC	360
				TGCTACATTA AGCATCTCCT			420 480
	ATGCCAGTCA	AATATGAAGA	AAATTCTCTT	ATCTGGGTGG	CTGTAGATCA	GCCTGTGAAG	540
85				GAACTCTGCG AGGGAAAGAA			600 660
	GTTCCAACTA	CCACAAAAAG	ACCACACAGT	GGACCACGGA	GCAACCCAGG	CGCTGGAAGA	720
	CTGAATAATG	AAACCAGACC	CAGTGTTCAA	GAGGACTCAC	AAGCCTTCAA	TCCTGATAAT	780

```
CCTTATCATC AGCAGGAAGG GGAAAGCATG ACATTCGACC CTAGACTGGA TCACGAAGGA
                                                                             840
      ATCTGTTGTA TAGAATGTAG GCGGAGCTAC ACCCACTGCC AGAAGATCTG TGAACCCCTG
                                                                             900
      GGGGGCTATT ACCCATGGCC TTATAATTAT CAAGGCTGCC GTTCGGCCTG CAGAGTCATC
                                                                             960
      ATGCCATGTA GCTGGTGGGT GGCCCGTATC TTGGGCATGG TGTGAAATCA CTTCATATAT
                                                                            1020
       CACGTGCTGT AAAATAAGAA CTAGCTGAAG AGACAACCAA AGAAGCATTA AGGCAGGTTG
 5
                                                                            1080
      ATGCTGATGG GACCATAAAA TATTTTTACA CGCAGCCTGA GCGGTTATTC TTGACACTCT
                                                                            1140
       TAACAGAATT TTTTTAATCG TTTTCCAGAA CTTTAGTATA TGCAAATGCA CTGAAAGGGT
                                                                            1200
       AGTTCAAGTC TAAAATGCCA TAACCCCGTT ATTTGTTATT TTTTATTTGC ATTGATTTGC
                                                                            1260
       CATAAGTCTT CCCTTGCTTG CATCTTCCAA AGCTATTTCG AAATAAACAC GAAAATTTAC
10
       Seq ID NO: 200 Protein sequence:
       Protein Accession #: NP_008946
15
       MTENSDKVPI ALVGPDDVEF CSPPAYATLT VKPSSPARLL KVGAVVLISG AVLLLFGAIG
                                                                               60
       AFYFWKGSDS HIYNVHYTMS INGKLQDGSM EIDAGNNLET FKMGSGAEEA IAVNDFQNGI
                                                                              120
       TGIRFAGGEK CYIKAQVKAR IPEVGAVTKQ SISSKLEGKI MPVKYEENSL IWVAVDQPVK
20
                                                                              180
       DNSPLSSKVL ELCGDLPIFW LKPTYPKEIQ RERREVVRKI VPTTTKRPHS GPRSNPGAGR
                                                                              240
       LNNETRPSVQ EDSQAFNPDN PYHQQEGESM TFDPRLDHEG ICCIECRSY THCQKICEPL
                                                                              300
       GGYYPWPYNY QGCRSACRVI MPCSWWVARI LGMV
25
       Seg ID NO: 201 DNA sequence
       Nucleic Acid Accession #: NM_000728.2
       Coding sequence: 112..495
                                          31
30
       GTAATAAGAG CGGGGTCTCC GCGGGGAAGG CGCCCACAGC AGGTGTGGTG TTCATCCCGG
       GTCGACCGGC CGCTCGCGCT GCCCTGAAAC TCTAGTCGCC AGAGAGGCGG CATGGGTTTC
                                                                              120
       CGGAAGTTCT CCCCCTTCCT GGCTCTCAGT ATCTTGGTCC TGTACCAGGC GGGCAGCCTC
       CAGGCGGCGC CATTCAGGTC TGCCCTGGAG AGCAGCCCAG ACCCGGCCAC ACTCAGTAAA
                                                                              240
       GAGGACGCGC GCCTCCTGCT GGCTGCACTG GTGCAGGACT ATGTGCAGAT GAAGGCCAGT
                                                                              300
35
                                                                              360
       GAGCTGAAGC AGGAGCAGGA GACACAGGGC TCCAGCTCCG CTGCCCAGAA GAGAGCCTGC
                                                                              420
       AACACTGCCA CCTGTGTGAC TCATCGGCTG GCAGGCTTGC TGAGCAGATC AGGGGGCATG
        GTGAAGAGCA ACTTCGTGCC CACCAATGTG GGTTCCAAAG CCTTTGGCAG GCGCCGCAGG
                                                                              480
        GACCTTCAAG CCTGAGCAGA TGAATGACTC CAGGAAGAAG GTGTGTCCTA AATCCAATGA
                                                                              540
        CATATCCTTA TAAGAGATTC ACTCAGAAGA CACATGTGGA GAAGGTGACA TGACAGAGGC
40
                                                                              600
        AAGGAGGCAC AAGCCAAGGA AGTCTGTGTC TACCAGAAGC CAGAATCACA GAACAGTCTC
                                                                              660
       TGGAAGAAGA GCAGCCCTGC TGACACCTAG AGTTTGGACT TCCAGCTTCC AGAACTGTGA GAGAATAATT TCTGTTGTTT TAAGCCACAA AGTTTGTGGT AATTTGTTAT GACAGCCCTA
                                                                              720
                                                                              780
        GGAAACTAAT ACAATACATT TTCATTTATT TTGGGTAAAT GCCTTGGAGT GGGATTGCTG
                                                                              840
        GGTTATTTGG AAAGTGTGTA TTTAACTCTG TAAGAAACTG CCAAACTATT TTCTGAAGTG
45
                                                                              900
        ACTGTACCAC TTCGCCTTCT TGCCAGCCAC ATATGAGAGC TCTAGTATTT CCACAAATAG
                                                                              960
        GTATGTAGCA GTATCTCATT GCTGTTTTAA TTTGTATTTC CCCAATGACT AATGACGTTG
                                                                             1020
       AGCATCTATT TTACCATATG TTTATCACCT TTATTGAAGG GTCTGTTTAA ATCTTCTGCT AAATTTTTGT TGGCTTGCTT GCTTTATTAG TGTTGAGTTT TTAGAGCTCT TTATATGTTG
                                                                             1080
                                                                             1140
        TGGATGCAAG ATTGTTTTCA GATATATAGT TTGGAAACTT CCTTCCCCTG AATCTGCGGA
50
        TTGCTTTTTC ATTTTCTTAG CAGTGTCTCT CACAGAGAAA AAGTTGTAAT TTGAATAAGA
        TCCAATTCAT CTTTTTTTT CTTTTATGTA TTGTGCTTTT AGTTCATGTC TAAGAACTCT
        TTGCCTAACT AAGGTCCCAA GGTCACAATA ACCTTATTCT ATACTTTCTT GTAAAAGTTT
        TATAGTTTTA TATTTTATAT GTAGATTAGT GATCTATTTT GAGTTAATTT TTGTATAAGG
        TGAGAGGTGT AGGTTGAAAT TCATACCTGT GAATATAGAT ACCCAATTGT TTCAGTGCCA
55
        TTTGTTAAAA AGACTGTTAT TTCACCATTT AATTGCCCCT GCACCTTTGT CAAAAAGCAA
                                                                             1560
        CTGATCATAT TTGTGTGGGT ATATTTCTGG GTTCTCAATT CTGTCTCATT GATTGATTTG
                                                                             1620
        ACCATTCTTT TGCCAATGTC ATACTGCCTT GATTAGTGTA GTGTTAAAGT GAATCTCAAA
                                                                             1680
                                                                             1740
        ACCAGATAAT GTGGGTCTAC CAACATTGTT CATTCTTGTT CAAAAAGATT TTAGCTACAT
                                                                             1800
        CTAAAATATT TTCTACATCT TTTATACATT TTAGAATCAG TGTGTTACTA TCTACAAAAT
60
        TTCTGATGAG ATTTTTAATG GGATTGTGTT AAATCAGTGG GTTAATTTTG GGAGAATTAG
                                                                             1860
        CATATTAATA ATATTAAGTC GTTCAATTCA TGAACACAAT ACATGTTTTC ACTTATTTAG
                                                                             1920
        GTTTTCTCTG TTTTTTTTT TTTAACAGTG TTCTCAGTTT TCAACAGAAA TATTCTACAC
                                                                             1980
        ATATCTTGTT AGATTTTTAA CTATTTTATT TTTTGGTGCT AATGTAAATG GTACTTAAAC
                                                                             2040
 65
        ATTTTTGTTT TTAATTGTTC ATTGCTAGTA GATAGAAATA CAATATTTAA AATATTAGGA
                                                                             2100
        АААААААА АААААААА АААААААА
        Seq ID NO: 202 Protein sequence:
        Protein Accession #: NP 000719.1
 70
                                           31
         MGFRKFSPFL ALSILVLYQA GSLQAAPFRS ALESSPDPAT LSKEDARLLL AALVQDYVQM
                                                                                 60
         KASELKQEQE TQGSSSAAQK RACNTATCVT HRLAGLLSRS GGMVKSNFVP TNVGSKAFGR
 75
        Seg ID NO: 203 DNA seguence
        Nucleic Acid Accession #: NM_001741
        Coding sequence: 71..496
 80
                                           31
        CTCTGGCTGG ACGCCGCCGC CGCCGCTGCC ACCGCCTCTG ATCCAAGCCA CCTCCCGCCA
        GAGAGGTGTC ATGGGCTTCC AAAAGTTCTC CCCCTTCCTG GCTCTCAGCA TCTTGGTCCT
                                                                               120
 85
        GTTGCAGGCA GGCAGCCTCC ATGCAGCACC ATTCAGGTCT GCCCTGGAGA GCAGCCCAGC
                                                                               180
        AGACCCGGCC ACGCTCAGTG AGGACGAAGC GCGCCTCCTG CTGGCTGCAC TGGTGCAGGA
        CTATGTGCAG ATGAAGGCCA GTGAGCTGGA GCAGGAGCAA GAGAGAGAG GCTCCAGCCT
```

WO 02/086443 GGACAGCCCC AGATCTAAGC GGTGCGGTAA TCTGAGTACT TGCATGCTGG GCACATACAC 360 GCAGGACTTC AACAAGTTTC ACACGTTCCC CCAAACTGCA ATTGGGGTTG GAGCACCTGG 420 AAAGAAAAGG GATATGTCCA GCGACTTGGA GAGAGACCAT CGCCCTCATG TTAGCATGCC 480 CCAGAATGCC AACTAAACTC CTCCCTTTCC TTCCTAATTT CCCTTCTTGC ATCCTTCCTA 540 5 TAACTTGATG CATGTGGTTT GGTTCCTCTC TGGTGGCTCT TTGGGCTGGT ATTGGTGGCT 600 TTCCTTGTGG CAGAGGATGT CTCAAACTTC AGATGGGAGG AAAGAGAGCA GGACTCACAG 660 GTTGGAAGAG AATCACCTGG GAAAATACCA GAAAATGAGG GCCGCTTTGA GTCCCCCAGA 720 GATGTCATCA GAGCTCCTCT GTCCTGCTTC TGAATGTGCT GATCATTTGA GGAATAAAAT 780 TATTTTTCCC C 10 Seq ID NO: 204 Protein sequence: Protein Accession #: NP 001732 15 31 MGFOKFSPFL ALSILVLLQA GSLHAAPFRS ALESSPADPA TLSEDEARLL LAALVODYVO MKASELEQEQ EREGSSLDSP RSKRCGNLST CMLGTYTQDF NKFHTFPQTA IGVGAPGKKR DMSSDLERDH RPHVSMPONA N 20 Seq ID NO: 205 DNA sequence Nucleic Acid Accession #: NM_005361 Coding sequence: 1-945 25 21 31 41 51 ATGCCTCTTG AGCAGAGGAG TCAGCACTGC AAGCCTGAAG AAGGCCTTGA GGCCCGAGGA 60 120 GAGGCCCTGG GCCTGGTGGG TGCGCAGGCT CCTGCTACTG AGGAGCAGCA GACCGCTTCT TCCTCTTCTA CTCTAGTGGA AGTTACCCTG GGGGAGGTGC CTGCTGCCGA CTCACCGAGT 180 30 CCTCCCCACA GTCCTCAGGG AGCCTCCAGC TTCTCGACTA CCATCAACTA CACTCTTTGG 240 AGACAATCCG ATGAGGGCTC CAGCAACCAA GAAGAGGAGG GGCCAAGAAT GTTTCCCGAC 300 CTGGAGTCCG AGTTCCAAGC AGCAATCAGT AGGAAGATGG TTGAGTTGGT TCATTTTCTG CTCCTCAAGT ATCGAGCCAG GGAGCCGGTC ACAAAGGCAG AAATGCTGGA GAGTGTCCTC AGAAATTGCC AGGACTTCTT TCCCGTGATC TTCAGCAAAG CCTCCGAGTA CTTGCAGCTG 35 GTCTTTGGCA TCGAGGTGGT GGAAGTGGTC CCCATCAGCC ACTTGTACAT CCTTGTCACC 540 TGCCTGGGCC TCTCCTACGA TGGCCTGCTG GGCGACAATC AGGTCATGCC CAAGACAGGC CTCCTGATAA TCGTCCTGGC CATAATCGCA ATAGAGGGCG ACTGTGCCCC TGAGGAGAAA ATCTGGGAGG AGCTGAGTAT GTTGGAGGTG TTTGAGGGGA GGGAGGACAG TGTCTTCGCA CATCCCAGGA AGCTGCTCAT GCAAGATCTG GTGCAGGAAA ACTACCTGGA GTACCGGCAG 780 40 GTGCCCGGCA GTGATCCTGC ATGCTACGAG TTCCTGTGGG GTCCAAGGGC CCTCATTGAA 840 ACCAGCTATG TGAAAGTCCT GCACCATACA CTAAAGATCG GTGGAGAACC TCACATTTCC TACCCACCCC TGCATGAACG GGCTTTGAGA GAGGGAGAAG AGTGA Seg ID NO: 206 Protein sequence: 45 Protein Accession #: NP_005352 11 31 51 MPLEQRSQHC KPEEGLEARG EALGLVGAQA PATEEQQTAS SSSTLVEVTL GEVPAADSPS 60 50 PPHSPQGASS FSTTINYTLW RQSDEGSSNQ EEEGPRMFPD LESEFQAAIS RKMVELVHFL 120 LLKYRAREPV TKAEMLESVL RNCQDFFPVI FSKASEYLQL VFGIEVVEVV PISHLYILVT 180 CLGLSYDGLL GDNQVMPKTG LLIIVLAIIA IEGDCAPEEK IWEELSMLEV FEGREDSVFA 240 HPRKLLMQDL VQENYLEYRQ VPGSDPACYE FLWGPRALIE TSYVKVLHHT LKIGGEPHIS YPPLHERALR EGEE 55 Seg ID NO: 207 DNA sequence Nucleic Acid Accession #: NM_021115 Coding sequence: 743-2893 60 AAAGGAAGGG AGGGAGGAG AAAGGAGAAG TTGGTTTAGA GGCCAGCCGG ACGAGCTTTG GGCACCGCCC TTAGGAGGGC CACCCTCAGA GTCTGACAGC AGGTGAAGGT CCTAAATCTC CCCAAACTAA CTGGTGTCTT TTCTCCTCTT CCAAGATGCT CTTCCCGAGG GAGATGCTAG 65 CCCTTTGGGT CCTTACCTCC TGCCCTCAGG AGCCCCGGAG AGAGGCAGTC CTGGCAAAGA 240 GCACCCTGAA GAGAGAGTGG TAACAGCGCC CCCCAGTTCC TCACAGTCGG CGGAAGTGCT GGGCGAGCTG GTGCTGGATG GGACCGCACC CTCTGCACAT CACGACATCC CAGCCCTGTC ACCGCTGCTT CCAGAGGAGG CCCGCCCCAA GCACGCCTTG CCCCCCAAGA AGAAACTGCC 420 TTCGCTCAAG CAGGTGAACT CTGCCAGGAA GCAGCTGAGG CCCAAGGCCA CCTCCGCAGC 70 CACTGTCCAA AGGGCAGGGT CCCAGCCAGC GTCCCAGGGC CTAGATCTCC TCTCCTCCTC CACGGAGAAG CCTGGCCCAC CGGGGGACCC GGACCCCATC GTGGCCTCCG AGGAGGCATC AGAAGTGCCC CTTTGGCTGG ACCGAAAGGA GAGTGCGGTC CCTACAACAC CCGCACCCCT 660 GCAAATCTCC CCCTTCACTT CGCAGCCCTA TGTGGCCCAC ACACTCCCCC AGAGGCCAGA ACCCGGGGAG CCTGGGCCTG ACATGGCCCA GGAGGCCCCC CAGGAGGACA CCAGCCCCAT 780 75 GGCCCTGATG GACAAAGGTG AGAATGAGCT GACTGGGTCA GCCTCAGAGG AGAGCCAGGA 840 GACCACTACC TCCACCATTA TCACCACCAC GGTCATCACC ACCGAGCAGG CACCAGCTCT 900 CTGCAGTGTG AGCTTCTCCA ATCCTGAGGG GTACATTGAC TCCAGCGACT ACCCACTGCT 960 GCCCCTCAAC AACTTTCTGG AGTGCACATA CAACGTGACA GTCTACACTG GCTATGGGGT 1020 GGAGCTCCAG GTGAAGAGTG TGAACCTGTC CGATGGGGAA CTGCTCTCCA TCCGCGGGGT 1080 80 GGACGGCCCT ACCCTGACCG TCCTGGCCAA CCAGACACTC CTGGTGGAGG GGCAGGTAAT CCGAAGCCCC ACCAACACCA TCTCCGTCTA CTTCCGGACC TTCCAGGACG ACGGCCTTGG 1140 1200 GACCTTCCAG CTTCACTACC AGGCCTTCAT GCTGAGCTGC AACTTTCCCC GCCGGCCTGA 1260 CTCTGGGGAT GTCACGGTGA TGGACCTGCA CTCAGGTGGG GTGGCCCACT TTCACTGCCA 1320 CCTGGGCTAT GAGCTCCAGG GCGCTAAGAT GCTGACATGC ATCAATGCCT CCAAGCCGCA 1380 85 CTGGAGCAGC CAGGAGCCCA TCTGCTCAGC TCCTTGTGGA GGGGCAGTGC ACAATGCCAC 1440 1500 CATCGGCCGC GTCCTCTCCC CAAGTTACCC TGAAAACACA AATGGGAGCC AATTCTGCAT

CTGGACGATT GAAGCTCCAG AGGGCCAGAA GCTGCACCTG CACTTTGAGA GGCTGTTGCT

1560

```
GCATGACAAG GACAGGATGA CGGTTCACAG CGGGCAGACC AACAAGTCAG CTCTTCTCTA 1620
       CGACTCCCTT CAAACCGAGA GTGTCCCTTT TGAGGGGCCTG CTGAGCGAAG GCAACACCAT
                                                                             1680
       CCGCATCGAG TTCACGTCCG ACCAGGCCCG GGCGGCCTCC ACCTTCAACA TCCGATTTGA
                                                                             1740
       AGCGTTTGAG AAAGGCCACT GCTATGAGCC CTACATCCAG AATGGGAACT TCACTACATC
                                                                             1800
 5
       CGACCCGACC TATAACATTG GGACTATAGT GGAGTTCACC TGCGACCCCG GCCACTCCCT
                                                                             1860
       GGAGCAGGC CCGGCCATCA TCGAATGCAT CAATGTGCGG GACCCATACT GGAATGACAC
                                                                             1920
       AGAGCCCCTG TGCAGAGCCA TGTGTGGTGG GGAGCTCTCT GCTGTGGCTG GGGTGGTATT
                                                                             1980
       GTCCCCAAAC TGGCCCGAGC CCTACGTGGA AGGTGAAGAT TGTATCTGGA AGATCCACGT
                                                                             2040
       GGGAGAAGAG AAACGGATCT TCTTAGATAT CCAGTTCCTG AATCTGAGCA ACAGTGACAT
                                                                             2100
10
       CTTGACCATC TACGATGGCG ACGAGGTCAT GCCCCACATC TTGGGGCAGT ACCTTGGGAA
                                                                             2160
       CAGTGGCCCC CAGAAACTGT ACTCCTCCAC GCCAGACTTA ACCATCCAGT TCCATTCGGA
                                                                             2220
       CCCTGCTGGC CTCATCTTTG GAAAGGGCCA GGGATTTATC ATGAACTACA TAGAGGTATC
                                                                             2280
       AAGGAATGAC TCCTGCTCGG ATTTACCCGA GATCCAGAAT GGCTGGAAAA CCACTTCTCA
                                                                             2340
       CACGGAGTTG GTGCGGGGAG CCAGAATCAC CTACCAGTGT GACCCCGGCT ATGACATCGT
                                                                             2400
15
       GGGGAGTGAC ACCCTCACCT GCCAGTGGGA CCTCAGCTGG AGCAGCGACC CCCCATTTTG
                                                                             2460
       TGAGAAAATT ATGTACTGCA CCGACCCCGG AGAGGTGGAT CACTCGACCC GCTTAATTTC
       GGATCCTGTG CTGCTGGTGG GGACCACCAT CCAATACACC TGCAACCCCG GTTTTGTGCT
       TGAAGGGAGT TCTCTTCTGA CCTGCTACAG CCGTGAAACA GGGACTCCCA TCTGGACGTC
       TCGCCTGCCC CACTGCGTTT CAGAAGCGGC AGCAGAGACG TCGCTGGAAG GGGGGAACAT
20
       GGCCCTGGCT ATCTTCATCC CGGTCCTCAT CATCTCCTTA CTGCTGGGAG GAGCCTACAT
       TTACATCACA AGATETCECT ACTATTCCAA CCTCCGCCTG CCTCTGATGT ACTCCCACCC CTACAGCCAG ATCACCGTGG AAACCGAGTT TGACAACCC ATTTACGAGA CAGGGGGAAC
                                                                             2820
                                                                            2880
       CCAAAAGGTT TAGGGTTTCA TTTAAAAAGA GGTACCCTTT AAAAAGGGGC TTGTGAACTC
                                                                             2940
       AACCCCAATT TCCCCGAGAC ATTTATCCAA AGGCCCTGGG GGCCTTGATT TAAACCCCCA
                                                                             3000
25
       AAAGGCGGCT GTTTTTGGT TAAACTTTTT AACAAAGGGT TACGGGTTTT TTCCCCGGAT
       TTTATAAATT TTAAAAGTG
       Seq ID NO: 208 Protein sequence:
30
       Protein Accession #: NP_066938
                                         31
       MAQEAPQEDT SPMALMDKGE NELTGSASEE SQETTTSTII TTTVITTEQA PALCSVSFSN
35
       PEGYIDSSDY PLLPLNNFLE CTYNVTVYTG YGVELQVKSV NLSDGELLSI RGVDGPTLTV
       LANOTLLVEG OVIRSPINTI SVYFRIFODD GLGTFOLHYO AFMLSCNFPR RPDSGDVTVM
                                                                              180
       DLHSGGVAHF HCHLGYELQG AKMLTCINAS KPHWSSQEPI CSAPCGGAVH NATIGRVLSP
       SYPENTINGSQ FCIWTIEAPE GQKLHLHFER LLLHDKORMT VHSGQTNKSA LLYDSLQTES
VPFEGLLSEG NTIRIEFTSD QARAASTFNI RFEAFEKGHC YEPYIQNGNF TTSDPTYNIG
                                                                              300
                                                                              360
40
       TIVEFTCDPG HSLEQGPAII ECINVRDPYW NDTEPLCRAM CGGELSAVAG VVLSPNWPEP
                                                                              420
       YVEGEDCIWK IHVGEEKRIF LDIQFLNLSN SDILTIYDGD EVMPHILGQY LGNSGPQKLY
                                                                              480
       SSTPDLTIQF HSDPAGLIFG KGQGFIMNYI EVSRNDSCSD LPEIQNGWKT TSHTELVRGA
                                                                              540
       RITYQCDPGY DIVGSDTLTC QWDLSWSSDP PFCEKIMYCT DPGEVDHSTR LISDPVLLVG
                                                                              600
       TTIQYTCNPG FVLEGSSLLT CYSRETGTPI WTSRLPHCVS EAAAETSLEG GNMALAIFIP
                                                                              660
45
       VLIISLLLGG AYIYITRCRY YSNLRLPLMY SHPYSQITVE TEFDNPIYET GGTQKV
       Seq ID NO: 209 DNA sequence
       Nucleic Acid Accession #: NM 001327.1
       Coding sequence: 89-631
50
                                                                51
       AGCAGGGGC GCTGTGTGTA CCGAGAATAC GAGAATACCT CGTGGGCCCT GACCTTCTCT
                                                                               60
       CTGAGAGCCG GGCAGAGGCT CCGGAGCCAT GCAGGCCGAA GGCCGGGGCA CAGGGGGTTC
                                                                              120
55
       GACGGGCGAT GCTGATGGCC CAGGAGGCCC TGGCATTCCT GATGGCCCAG GGGGCAATGC
                                                                              180
                                                                              240
       TGGCGGCCCA GGAGAGGCGG GTGCCACGGG CGGCAGAGGT CCCCGGGGCG CAGGGGCAGC
       AAGGGCCTCG GGGCCGGGAG GAGGCGCCCC GCGGGGTCCG CATGGCGGCG CGGCTTCAGG
                                                                              300
       GCTGAATGGA TGCTGCAGAT GCGGGGCCAG GGGGCCGGAG AGCCGCCTGC TTGAGTTCTA
                                                                              360
       CCTCGCCATG CCTTTCGCGA CACCCATGGA AGCAGAGCTG GCCCGCAGGA GCCTGGCCCA
                                                                              420
60
       GGATGCCCCA CCGCTTCCCG TGCCAGGGGT GCTTCTGAAG GAGTTCACTG TGTCCGGCAA
                                                                              480
       CATACTGACT ATCCGACTGA CTGCTGCAGA CCACCGCCAA CTGCAGCTCT CCATCAGCTC
                                                                              540
       CTGTCTCCAG CAGCTTTCCC TGTTGATGTG GATCACGCAG TGCTTTCTGC CCGTGTTTTT .
                                                                              600
       GGCTCAGCCT CCCTCAGGGC AGAGGCGCTA AGCCCAGCCT GGCGCCCCTT CCTAGGTCAT
                                                                              660
       GCCTCCTCCC CTAGGGAATG GTCCCAGCAC GAGTGGCCAG TTCATTGTGG GGGCCTGATT
65
       GTTTGTCGCT GGAGGAGGAC GGCTTACATG TTTGTTTCTG TAGAAAATAA AACTGAGCTA
       Seg ID NO: 210 Protein seguence:
       Protein Accession #: NP_001318.1
70
                                                                51
                  11
                              21
                                         31
                                                     41
       MQAEGRGTGG STGDADGPGG PGIPDGPGGN AGGPGEAGAT GGRGPRGAGA ARASGPGGGA
                                                                               60
       PRGPHGGAAS GLNGCCRCGA RGPESRLLEF YLAMPFATPM EAELARRSLA QDAPPLPVPG
                                                                              120
       VLLKEFTVSG NILTIRLTAA DHRQLQLSIS SCLQQLSLLM WITQCFLPVF LAQPPSGQRR
75
       Seq ID NO: 211 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 52-459
80
                              21
                                         31
                                                     41
                                                                51
       CCTCGTGGGC CCTGACCTTC TCTCTGAGAG CCGGGCAGAG GCTCCGGAGC CATGCAGGCC
       GAAGGCCAGG GCACAGGGGG TTCGACGGGC GATGCTGATG GCCCAGGAGG CCCTGGCATT
                                                                              120
85
       CCTGATGGCC CAGGGGGCAA TGCTGGCGGC CCAGGAGAGG CGGGTGCCAC GGGCGGCAGA
                                                                              180
       GGTCCCCGGG GCGCAGGGGC AGCAAGGGCC TCGGGGCCGA GAGGAGGCGC CCCGCGGGGT
                                                                              240
       CCGCATGGCG GTGCCGCTTC TGCGCAGGAT GGAAGGTGCC CCTGCGGGGC CAGGAGGCCG
```

WO 02/086443

	GACAGCCGCC	TGCTTCAGTT	CCGACTGACT	GCTGCAGACC	ACCGCCAACT	GCAGCTCTCC	360
	ATCAGCTCCT	GTCTCCAGCA	GCTTTCCCTG	TTGATGTGGA	TCACGCAGTG	CTTTCTGCCC	420
		CTCAGGCTCC CTCCTCCCCT					480
5		TTGTCGCTGG					540 600
	CTGAGCTA				IGITICIGIA	Christiana	800
	-	212 Protein	-				
10	Protein Acc	cession #: I	sos sequence	•			
10	1	11	21	31	41	51	
	Ī	ī	Ĩ	Ī	ī	Ĩ	
		STGDADGPGG					60
15		AQDGRCPCGA	RRPDSRLLQF	RLTAADHRQL	Orsisscroo	LSLLMWITQC	120
13	FLPVFLAQAP	SGQRR					
	Seq ID NO:	213 DNA sec	quence				
•		ld Accession		555			
20	Coding sequ	ience: 416.	.1498				
20	1	11	21	31	41	51	
	Ī	ī	Ī	Ĩ	ī	ĭ	
		ATGAATGTCG					60
25		CACTGGCTGT					120
23		GGGGATGCAC CATAGTCATT					180 240
		AGCTCCTTCT					300
		AGTCATGTGG					360
20		CAATTTGATA					420
30		GGACACTTTG TTGCCTAGCC					480 540
		CTGAGTAATG					600
		AAGGGGATTG					660
25		GACCTGACGC					720
35		ACCATTGATG					780
		GTCTGTTCCT TGGTCTGTCA					840 900
		AACAGTGCAC					960
40		CGCAGTGGGG					1020
40		TCTTTTGAGC					1080
		AAAAAACTCT GATGATGTGT					1140 1200
		CTGGATGAAA					1260
4.5	TGGCCCAAAG	GCATCCCCAA	CACCTCAGAA	GACTTCAGCC	AAGAGCCCTG	GTCCTATGCG	1320
45		TCTCCAGCTG					1380
		CAGTCTCCCA CTGCCTCTGT					1440 1500
		TGCTCAGAGT					1560
		TGTCCAACAG					1620
50		AACACATTGT					1680
		CAGTTACCAA CAAAATGTGC					1740 1800
		CCGTTTAAAT					1860
~ ~		TAAAAAGTTT					1920
55		GTGCCCCTTT					1980
		TCCCCAGCCT GGCTGTCAAT					2040 2100
						AATACTGCAG	
60						ACTGAGGCAA	
60						ACCTGATTCC	
						CATCTATCTC TTTGTTTTCA	
						TATAAAAATT	
~~	CATGTCTGTA	TTTCAGGAGC	AAACTCTTCA	GGCTCCTTTT	TTATAAACTG	GTGATTTTTC	2520
65		AAAACACATG					2580
						AAACAAGATG GTTATGCTTG	
						ATGTTACAGC	2760
70	ATATTTTAAG	CAACTCTTTT	TATCTATAAT	CCTAATATTT	CATACTGAAG	ACACAGAAAT	2820
70						TCATTTGAAA	
		TCTTTTGAGA				TCTGAAACATA	2940 3000
						TTTGGAAAGG	
						TTCCTCCACT	
75						TGGTGCATGT	3180
						AGACACCCCT	
						GGGGAACCCA GCTACCAAAA	3300 3360
00						AAATTGAAAA	
80	ACCCCAAATG	ATGAGGATCT	CTTTTTGCCC	CCTCTCCTTT	TTTTGTAAAC	CCATTCAAAA	3480
						GGTTTNCTTA	
						TAGGGGGTGT CCAATGACTC	3600 3660
						GTTGAGGAAG	
85	TGGAGGCTGG	TAAAGAGCAG	GACCAGAGGA	AGAATCCAGA	TTTCCTTATG	CTTGGGCCTC	3780
						AATACCAAAT	
	GGATATATTT	TCTTTAGGAT	AACCTTTGAA	CCAACAATNT	TCAATAACAA	TAGTACATCT	3900

	WO 02/	086443					
	TCCATCTTAC	TTTTAATCGA	GTATAAGGAA	ATGTTTCTTT	ATGGCCATTT	TGGAGGGAGC	3960
		GCTTGGCATA					4020
		TTGGCCCACT					4080
_		CATTCACTTC					4140
5		TGCACGGTCT					4200
		CTTTTTTACA					4260
		CCTGATTTTT					4320
		TGGGGCTGGG AAGCTCCTTT					4380 4440
10		CTTATGGACT					4500
10		TAAGATCACA					4560
		GACACAGAGG					4620
		ACAACCCACA					4680
		CATTAGGCTC					4740
15	ACATGCTGCT	GCCCTGATCT	CAGTGGGAAA	TNCACCCAGC	AACCTAATAC	AGCCCCTTTT	4800
		ACCTGGTTCC					4860
		AATAGGAGCA					4920
		TGAGGAGCCC					4980
20		AGATTGATTT					5040
20		TGAGGGAAAT					5100
		TCATCCTAAC					5160
		ACTGGCANGA					5220
		CACTGTGGTT TCCAGGTATA					5280 5340
25		CTCCTGTGTT					5400
23		TGTACACTGC					5460
		GTTTTCCTTG					5520
		AGAGACCTCC					5580
		CTCCACAGTC					5640
30		AAGGAACCCT					5700
_	GTGATTGGTG	CTTACCTTGA	ACAAAATTTT	GTCTGTGTTC	CTAATCCCTT	CAATACTNTG	5760
	GGTACAATGC	TCCCAATCAC	CCTGCACATT	TGATTCTAAA	TGGCTTTTAT	TTTTTAAAAA	5820
		TAGGACAAGA					5880
3.5		GATCCCAANG					5940
35		NCACTGGGAC					6000
•		AAGGCATTGA					6060
		GGATCCATTT					6120
		CCAGACTGGT GAATGTTGCC					6180 6240
40		TGGTCCCCAA					6300
10		CITAGTGTTG					6360
		CTTAGCTAGC					6420
		ACTGAGTCTC					6480
	CTCGCTGCAA	CCTTCACCCT	TCACCTCCCA	GGTCGAAGCG	ATTCTCCTGC	CTCAGTCTCC	6540
45	CGAGTAGCTG	GGATTACAGG	CGTGCGCCAC	CAAATCTGGC	TATTTTTTTA	TTATTATTAT	6600
	TTTTAGTAGA	GATGGGGTTT	CACCATGTTG	GCCAGACTGG	TCTTGAACTC	TTGGCCTCAA	6660
		CACCTCGGCC					6720
		CTAATTTTTT					6780
50		TCTTACCTTG					6840
50		TTTCTGCTCC					6900 6960
		CACCTTGTAA AACCTTGAGG					7020
		TTCTTTCTCT					7080
		TCCACAGTAC					7140
55 .		TTATTTGTAC					7200
	TTCTTAGCCT	GTGATTTTGC	CTTGGGACTG	ATGATAAATT	ATTTCCAGAT	TCAATCAGCC	7260
	CTGGTCCTAC	CCCAGTCCAA	TCAGAAGTAT	GTTGGTGGGG	AATCAACCTG	ATCCTGGCCC	7320
						GCAGTTTCCT	
~						CTTTGTGGTT	
60						ATCAGCTGAA	
						TTTGTTTGAT	
						AATTTCTCCT	
						ACCATTACAC TTTTAACTAA	
65						TATACTATAA	
05						AACATTTACT	
						TTAGTGGACC	
						CTTGGAAATG	
						TTTATAAGTT	
70	ATCCAAAAGG	GATTTGAACA	AGTAAGAGGT	TATGCCAAAA	TGTCTCCAAT	GTATGGTCCT	8100
	GTAATATATT	GCAGCTTGAA	GCCAATGATC	CCTTATGACT	TGTATACAAC	TAATGCATGT	8160
	TTTATTGAAT	TTTGCATTTC	CCACGTGTGG	TAAGTCTTTA	AAATGTTTTT	GATCACCTTT	8220
						GAGAAAGTTT	
75						GTACCTGTAG	
13						TGACTAGCTT	
						CCTCTGAAAA	
						CTCCCTGCTC	
						CCAAGTAAAG ATCTCTCAGC	
80						TACGTAAAAA	
50						TAGTTTTCAG	
						GCTGTTTTAA	
						AAAAAAAAA	
0.5						GAATAGTTAT	
85						CCTAGGCAAT	
						TCTCCTTTTT	
	TGGTTTGCTG	ACCCCACTTG	GACTGGTAGG	TTTGGTGAGG	CCCCCATAAA	CCAGCTGGAG	9120

GCTTTTACCG GCACAGAGAA AGGGACCGCT GTTTGCCCTG CAATTGTAAC TCCAAAGGTT

360

	CTCTTAGTGC	TCGATGTGAC	AACTCTGGAC	GGTGCAGCTG	TAAACCAGGT	GTGACAGGAG	420
	CCAGATGCGA	CCGATGTCTG	CCAGGCTTCC	ACATGCTCAC	GGATGCGGGG	TGCACCCAAG	480
	ACCAGAGACT	GCTAGACTCC CTGTGTCTGC	AAGTGTGACT	TTACTGGAGA	ACGCTGTGAT	AGGTGTCGAT	540 600
5	CAGGTTACTA	TAATCTGGAT	GGGGGGAACC	CTGAGGGCTG	TACCCAGTGT	TTCTGCTATG	660
	GGCATTCAGC	CAGCTGCCGC	AGCTCTGCAG	AATACAGTGT	CCATAAGATC	ACCTCTACCT	720
	TTCATCAAGA	TGTTGATGGC GCGCCATCAA	TGGAAGGCTG	CTCAGCCCA	ACGACTAGAC	CCTGTCTATT	780 840
	TTGTGGCTCC	TGCCAAATTT	CTTGGGAATC	AACAGGTGAG	CTATGGGCAA	AGCCTGTCCT	900
10	TTGACTACCG	TGTGGACAGA	GGAGGCAGAC	ACCCATCTGC	CCATGATGTG	ATTCTGGAAG	960
	GTGCTGGTCT	ACGGATCACA TTACACATTC	GCTCCCTTGA	TGCCACTIGG	CAAGACACIG	AGCCCCCAGC	1020 1080
	TGAGTTACTT	TGAGTATCGA	AGGTTACTGC	GGAATCTCAC	AGCCCTCCGC	ATCCGAGCTA	1140
1.5	CATATGGAGA	ATACAGTACT	GGGTACATTG	ACAATGTGAC	CCTGATTTCA	GCCCGCCCTG	1200
15	TCTCTGGAGC	CCCAGCACCC GGATTGTGCT	TGGGTTGAAC	AGTGTATATG	ACCCAGACTG	GGGCCTTTTG	1260 1320
	GCACCTGTAT	TCCTTGTAAC	TGTCAAGGGG	GAGGGGCCTG	TGATCCAGAC	ACAGGAGATT	1380
	GTTATTCAGG	GGATGAGAAT	CCTGACATTG	AGTGTGCTGA	CTGCCCAATT	GGTTTCTACA	1440
20	ACGATCCGCA	CGACCCCCGC GGAGACGGAG	AGCTGCAAGC	CATGTCCCTG	TCATAACGGG	TTCAGCTGCT	1500 1560
20	CCCGCTGTGA	GCTCTGTGCT	GATGGCTACT	TTGGGGACCC	CTTTGGTGAA	CATGGCCCAG	1620
	TGAGGCCTTG	TCAGCCCTGT	CAATGCAACA	ACAATGTGGA	CCCCAGTGCC	TCTGGGAATT	1680
	GTGACCGGCT	GACAGGCAGG	TGTTTGAAGT	GTATCCACAA	CACAGCCGGC	ATCTACTGCG	1740 1800
25	GAGCTTGCAA	AGCAGGCTAC CTGTAACCCC	ATGGGGTCAG	AGCCTGTAGG	ATGTCGAAGT	GATGGCACCT	1860
	GTGTTTGCAA	GCCAGGATTT	GGTGGCCCCA	ACTGTGAGCA	TGGAGCATTC	AGCTGTCCAG	1920
		TCAAGTGAAG					1980
		TTCAAAGGCT GCAGGCTGAG					2040 2100
30		CAGATCCCTT					2160
	ACCAGAGCCG	CCTGGATGAC	CTCAAGATGA	CTGTGGAAAG	AGTTCGGGCT	CTGGGAAGTC	2220
		CCGAGTTCGG AGCTTCCTTG					2280 2340
		TAAAAGTCTG					2400
35	CAGCCAGTAA	CATGGAGCAA	CTGACAAGGG	AAACTGAGGA	CTATTCCAAA	CAAGCCCTCT	2460
	CACTGGTGCG	CAAGGCCCTG AGGGCTTGTG	CATGAAGGAG	TCGGAAGCGG	AAGCGGTAGC	CAGCAGTTGA	2520 2580
		CACTCAAGCG					2640
40	TCCTGGATTC	AGTGTCTCGG	CTTCAGGGAG	TCAGTGATCA	GTCCTTTCAG	GTGGAAGAAG	2700
40		CAAACAAAAA					2760
		TACACAAAAG AAGTGGGAGA					2820 2880
•	AAAGCAGAGC	ACAAGAAGCA	CTGAGTATGG	GCAATGCCAC	TTTTTTATGAA	GTTGAGAGCA	2940
15		CCTCAGAGAG					3000
45		GAGACTCTCC AAGAGCCCTG					3060 3120
	CCGGGGAGGC	CCTGGAAATC	TCCAGTGAGA	TTGAACAGGA	GATTGGGAGT	CTGAACTTGG	3180
	AAGCCAATGT	GACAGCAGAT	GGAGCCTTGG	CCATGGAAAA	GGGACTGGCC	TCTCTGAAGA	3240
50		GGAAGTGGAA					3300 3360.
50		ACAGATGGTG AATCCAAGAC					3420
	AGCCTCTCAG	TGTAGATGAA	GAGGGGCTGG	TCTTACTGGA	GCAGAAGCTT	TCCCGAGCCA	3480
		CAACAGCCAA					3540
55		CCACCTCCAT GAACATTAGG					3600 3660
-	AGCAACAGTG	AAGCTGCCAT	AAATATTTCT	CAACTGAGGT	TCTTGGGATA	CAGATCTCAG	3720
						GTTTAATGGG	
						GTTGTCTTAT GGGTGTGAGA	
60	ATGATCAAGG	ATCTGGACCC	CAAAGAATAG	ACTGGATGGA	AAGACAAACT	GCACAGGCAG	3960
	ATGTTTGCCT	CATAATAGTC	GTAAGTGGAG	TCCTGGAATT	TGGACAAGTG	CTGTTGGGAT	4020
	ATAGTCAACT	TATTCTTTGA	GTAATGTGAC	TAAAGGAAAA	AACTTTGACT	TTGCCCAGGC CCAGTAAAAT	4080
	ACTATTCCT	CATATTGTCC	TCTGCAAGCT	TCTTGCTGAT	CAGAGTTCCT	CCTACTTACA	4200
65	ACCCAGGGTG	TGAACATGTT	CTCCATTTTC	AAGCTGGAAG	AAGTGAGCAG	TGTTGGAGTG	4260
						CCACCTTCAA	
	ATTTTTATTA	AAGCATTTCC	TACCAGCAAA	GCAAATGTTG	GGAAAGTATT	TAGAGATTGC TACTTTTTCG	4440
70	GTTTCAAAGT	GATAGAAAAG	TGTGGCTTGG	GCATTGAAAG	AGGTAAAATT	CTCTAGATTT	4500
70						AATGTATTTT	
						TGTTCCTACT TTTCCATCCA	
						CCAGGGGCTG	
75	GTGĠGACAGT	GGTGACATAG	TCTCTGCCCT	CATAGAGTTG	ATTGTCTAGT	GAGGAAGACA	4800
75						GGTGTTTATT	
						AAGACCCTCC CATTTCTTTG	
	CATTCCAGCT	GTCACTCTGT	GCCTTTCTAC	AACTGATTGC	AACAGACTGT	TGAGTTATGA	5040
80	TAACACCAGT	GGGAATTGCT	GGAGGAACCA	GAGGCACTTC	CACCTTGGCT	GGGAAGACTA	5100
80	TGGTGCTGCC CAATTGTTAG		ATTTCCTTGG	ATTTTCCTGA	AAGTGTTTTT	AAATAAAGAA	5160
	CUW110114G	VIOCE					
		220 Protei					
85	Protein Ac	cession #:N	P_005553				
05	1	11	21	31	41	51	
	Ī	1	1	1	1	1	

```
MPALWLGCCL CFSLLLPAAR ATSRREVCDC NGKSRQCIFD RELHRQTGNG FRCLNCNDNT
       DGIHCEKCKN GFYRHRERDR CLPCNCNSKG SLSARCDNSG RCSCKPGVTG ARCDRCLPGF
                                                                             120
       HMLTDAGCTO DORLLDSKCD CDPAGIAGPC DAGRCVCKPA VTGERCDRCR SGYYNLDGGN
                                                                             180
       PEGCTQCFCY GHSASCRSSA EYSVHKITST FHQDVDGWKA VQRNGSPAKL QWSQRHQDVF
                                                                             240
 5
       SSAORLDPVY FVAPAKPLGN QQVSYGQSLS FDYRVDRGGR HPSAHDVILE GAGLRITAPL
                                                                             300
       MPLGKTLPCG LTKTYTFRLN EHPSNNWSPQ LSYFEYRRLL RNLTALRIRA TYGEYSTGYI
       DNVTLISARP VSGAPAPWVE QCICPVGYKG QFCQDCASGY KRDSARLGPF GTCIPCNCQG
                                                                             420
       GGACDPDTGD CYSGDENPD1 ECADCPIGFY NDPHDPRSCK PCPCHNGFSC SVMPETEEVV
       CNNCPPGVTG ARCELCADGY FGDPFGEHGP VRPCQPCQCN NNVDPSASGN CDRLTGRCLK
                                                                             540
10 .
       CIHNTAGIYC DQCKAGYFGD PLAPNPADKC RACNCNPMGS EPVGCRSDGT CVCKPGFGGP
       NCEHGAFSCP ACYNOVKIOM DOFMOOLORM EALISKAOGG DGVVPDTELE GRMOOAEQAL
       ODILRDAQIS EGASRSLGLQ LAKVRSQENS YQSRLDDLKM TVERVRALGS QYONRVRDTH
       RLITOMQLSL AESEASLGNT NIPASDHYVG PNGFKSLAQE ATRLAESHVE SASNMEQLTR
                                                                             780
       ETEDYSKOAL SLVRKALHEG VGSGSGSPDG AVVQGLVEKL EKTKSLAQQL TREATQAEIE
                                                                             840
15
       ADRSYOHSLR LLDSVSRLQG VSDQSFQVEE AKRIKQKADS LSTLVTRHMD EFKRTQKNLG
                                                                             900
       NWKEEAOOLL ONGKSGREKS DOLLSRANLA KSRAQEALSM GNATFYEVES ILKNLREFDL
                                                                             960
       QVDNRKAEAE EAMKRLSYIS QKVSDASDKT QQAERALGSA AADAQRAKNG AGEALBISSE
                                                                            1020
       IEOEIGSLNL EANVTADGAL AMEKGLASLK SEMREVEGEL ERKELEFDTN MDAVOMVITE
                                                                            1080
       AQKVDTRAKN AGVTIQDTLN TLDGLLHLMD QPLSVDEEGL VLLEQKLSRA KTQINSQLRP
                                                                           1140
20
       MMSELEERAR QQRGHLHLLE TSIDGILADV KNLENIRDNL PPGCYNTQAL EQO
       Seq ID NO: 221 DNA sequence
       Nucleic Acid Accession #: NM_016529
       Coding sequence: 13-1854
25
                                                    41
                                                               51
                                         31
       GTCAAGAAAA GAATGTCTGT AATTGTTCGA ACTCCTTCAG GACGACTTCG GCTTTACTGT
       AAAGGGGCTG ATAATGTGAT TTTTGAGAGA CTTTCAAAAG ACTCAAAATA TATGGAGGAA
30
       ACATTATGCC ATCTGGAATA CTTTGCCACG GAAGGCTTGC GGACTCTCTG TGTGGCTTAT
                                                                             180
       GCTGATCTCT CTGAGAATGA GTATGAGGAG TGGCTGAAAG TCTATCAGGA AGCCAGCACC
                                                                             240
       ATATTGAAGG ACAGAGCTCA ACGGTTGGAA GAGTGTTACG AGATCATTGA GAAGAATTTG
                                                                             300
       CTGCTACTTG GAGCCACAGC CATAGAAGAT CGCCTTCAAG CAGGAGTTCC AGAAACCATC
                                                                             360
       GCAACACTGT TGAAGGCAGA AATTAAAATA TGGGTGTTGA CAGGAGACAA ACAAGAAACT
                                                                             420
35
       GCGATTAATA TAGGGTATTC CTGCCGATTG GTATCGCAGA ATATGGCCCT TATCCTATTG
                                                                             480
       AAGGAGGACT CTTTGGATGC CACAAGGGCA GCCATTACTC AGCACTGCAC TGACCTTGGG
AATTTGCTGG GCAAGGAAAA TGACGTGGCC CTCATCATCG ATGGCCACAC CCTGAAGTAC
                                                                             540
                                                                             600
       GCGCTCTCCT TCGAAGTCCG GAGGAGTTTC CTGGATTTGG CACTCTCGTG CAAAGCGGTC
                                                                             660
       ATATGCTGCA GAGTGTCTCC TCTGCAGAAG TCTGAGATAG TGGATGTGGT GAAGAAGCGG
                                                                             720
       GTGAAGGCCA TCACCCTCGC CATCGGAGAC GGCGCCAACG ATGTCGGGAT GATCCAGACA
40
                                                                             780
       GCCCACGTGG GTGTGGGAAT CAGTGGGAAT GAAGGCATGC AGGCCACCAA CAACTCGGAT
                                                                             840
       TACGCCATCG CACAGTTTTC CTACTTAGAG AAGCTTCTGT TGGTTCATGG AGCCTGGAGC
                                                                             900
       TACAACCGGG TGACCAAGTG CATCTTGTAC TGCTTCTATA AGAACGTGGT CCTGTATATT
                                                                             960
       ATTGAGCTTT GGTTCGCCTT TGTTAATGGA TTTTCTGGGC AGATTTTATT TGAACGTTGG
                                                                           1020
45
       TGCATCGGCC TGTACAATGT GATTTTCACC GCTTTGCCGC CCTTCACTCT GGGAATCTTT
                                                                            1080
       GAGAGGTCTT GCACTCAGGA GAGCATGCTC AGGTTTCCCC AGCTCTACAA AATCACCCAG
                                                                            1140
       AATGGCGAAG GCTTCAACAC AAAGGTTTTC TGGGGTCACT GCATCAACGC CTTGGTCCAC
                                                                           1200
       TCCCTCATCC TCTTCTGGTT TCCCATGAAA GCTCTGGAGC ATGATACTGT GTTTGACAGT
                                                                           1260
       GGTCATGCTA CCGACTATTT ATTTGTTGGA AATATTGTTT ACACATATGT TGTTGTTACT
                                                                            1320
50
       GTTTGTCTGA AAGCTGGTTT GGAGACCACA GCTTGGACTA AATTCAGTCA TCTGGCTGTC
       TGGGGAAGCA TGCTGACCTG GCTGGTGTTT TTTGGCATCT ACTCGACCAT CTGGCCCACC
                                                                            1440
       ATTCCCATTG CTCCAGATAT GAGAGGACAG GCAACTATGG TCCTGAGCTC CGCACACTTC
       TGGTTGGGAT TATTTCTGGT TCCTACTGCC TGTTTGATTG AAGATGTGGC ATGGAGAGCA
                                                                            1560
       GCCAAGCACA CCTGCAAAAA GACATTGCTG GAGGAGGTGC AGGAGCTGGA AACCAAGTCT
55
       CGAGTCCTGG GAAAAGCGGT GCTGCGGGAT AGCAATGGAA AGAGGCTGAA CGAGCGCGAC
       CGCCTGATCA AGAGGCTGGG CCGGAAGACG CCCCCGACGC TGTTCCGGGG CAGCTCCCTG
       CAGCAGGGCG TCCCGCATGG GTATGCTTTT TCTCAAGAAG AACACGGAGC TGTTAGTCAG
       GAAGAAGTCA TCCGTGCTTA TGACACCACC AAAAAGAAAT CCAGGAAGAA ATAAGACATG
       AATTTTCCTG ACTGATCTTA GGAAAGAGAT TCAGTTTGTT GCACCCAGTG TTAACACATC
                                                                            1920
60
       TTTGTCAGAG AAGACTGGCG TCCAAGGCCA AAACACCAGG AAACACATTT CTGTGGCCTT
                                                                            1980
       AGTTAAGCAG TTTGTTAGTT ACATATTCCC TCGCAAACCT GGAGTGCAGA CCACAGGGGA
                                                                            2040
       AGCTATCTTT GCCCTCCCAA CTCGTCTGCA GTGCTTAGCC TAACTTTTGT TTATGTCGTT
                                                                            2100
       ATGAAGCATT CAACTGTGCT CTGTGAGGTC TCAAATTAAA AACATTATGT TTCACCAATA
                                                                           2160
       AGAAAAAAA AAAAAAA
65
       Seq ID NO: 222 Protein sequence:
       Protein Accession #: NP_057613
                              21
                                         31
                                                    41
70
       MSVIVRTPSG RLRLYCKGAD NVIFERLSKD SKYMEETLCH LEYFATEGLR TLCVAYADLS
                                                                              60
       ENEYEEWLKV YQEASTILKD RAQRLEECYE IIEKNLLLLG ATAIEDRLQA GVPETIATLL
                                                                             120
       KAEIKIWULT GDKQETAINI GYSCRLVSQN MALILLKEDS LDATRAAITQ HCTDLGNLLG
                                                                            180
       KENDVALIID GHTLKYALSF EVRRSFLDLA LSCKAVICCR VSPLQKSEIV DVVKKRVKAI
                                                                             240
75
       TLAIGDGAND VGMIQTAHVG VGISGNEGMQ ATNNSDYAIA QFSYLEKLLL VHGAWSYNRV
                                                                             300
       TKCILYCFYK NVVLYIIELW FAFVNGFSGQ ILFERWCIGL YNVIFTALPP FTLGIFERSC
                                                                             360
       TQESMLRFPQ LYKITQNGEG FNTKVFWGHC INALVHSLIL FWPPMKALEH DTVFDSGHAT
                                                                             420
       DYLFVGNIVY TYVVVTVCLK AGLETTAWTK FSHLAVWGSM LTWLVFFGIY STIWPTIPIA
                                                                             480
       PDMRGQATMV LSSAHFWLGL FLVPTACLIE DVAWRAAKHT CKKTLLEEVQ ELETKSRVLG
                                                                             540
80
       KAVLRDSNGK RLNERDRLIK RLGRKTPPTL FRGSSLQQGV PHGYAFSQEE HGAVSQEEVI
                                                                             600
       RAYDTTKKKS RKK
       Seq ID NO: 223 DNA sequence
       Nucleic Acid Accession #: BC017001
85
       Coding sequence: 1-394
                             21
                                         31
                  11
                                                               51
```

WO 02/086443

MPRAPKRORC MPEEDLOSOS ETOGLEGAQA PLAVEEDASS STSTSSSFPS SFPSSSSSS

60

WO 02/086443 SSCYPLIPST PEEVSADDET PNPPQSAQIA CSSPSVVASL PLDQSDEGSS SQKEESPSTL 120 QVLPDSESLP RSEIDEKVTD LVQFLLFKYQ MKEPITKAEI LESVIKNYED HFPLLFSEAS 180 ECMLLVFGID VKEVDPTGHS FVLVTSLGLT YDGMLSDVQS MPKTGILILI LSIIFIEGYC 240 TPEEVIWEAL NMMGLYDGME HLIYGEPRKL LTQDWVQENY LEYRQVPGSD PARYEFLWGP 300 5 RAHAEIRKMS LLKFLAKVNG SDPRSFPLWY EEALKDEEER AQDRIATTDD TTAMASASSS 360 Seq ID NO: 227 DNA sequence Nucleic Acid Accession #: NM 005025.1 10 Coding sequence: 82-1314 21 11 31 51 GCGGAGCACA GTCCGCCGAG CACAAGCTCC AGCATCCCGT CAGGGGTTGC AGGTGTGTGG 15 GAGGCTTGAA ACTGTTACAA TATGGCTTTC CTTGGACTCT TCTCTTTGCT GGTTCTGCAA 120 AGTATGGCTA CAGGGGCCAC TTTCCCTGAG GAAGCCATTG CTGACTTGTC AGTGAATATG 180 TATAATCGTC TTAGAGCCAC TGGTGAAGAT GAAAATATTC TCTTCTCTCC ATTGAGTATT GCTCTTGCAA TGGGAATGAT GGAACTTGGG GCCCAAGGAT CTACCCAGAA AGAAATCCGC CACTCAATGG GATATGACAG CCTAAAAAAT GGTGAAGAAT TTTCTTTCTT GAAGGAGTTT 360 20 TCAAACATGG TAACTGCTAA AGAGAGCCAA TATGTGATGA AAATTGCCAA TTCCTTGTTT 420 GTGCAAAATG GATTTCATGT CAATGAGGAG TTTTTGCAAA TGATGAAAAA ATATTTAAT 480 GCAGCAGTAA ATCATGTGGA CTTCAGTCAA AATGTAGCCG TGGCCAACTA CATCAATAAG 540 TGGGTGGAGA ATAACACAAA CAATCTGGTG AAAGATTTGG TATCCCCAAG GGATTTTGAT 600 GCTGCCACTT ATCTGGCCCT CATTAATGCT GTCTATTTCA AGGGGAACTG GAAGTCGCAG 660 25 TTTAGGCCTG AAAATACTAG AACCTTTTCT TTCACTAAAG ATGATGAAAG TGAAGTCCAA 720 ATTCCAATGA TGTATCAGCA AGGAGAATTT TATTATGGGG AATTTAGTGA TGGCTCCAAT 780 GAAGCTGGTG GTATCTACCA AGTCCTAGAA ATACCATATG AAGGAGATGA AATAAGCATG 840 ATGCTGGTGC TGTCCAGACA GGAAGTTCCT CTTGCTACTC TGGAGCCATT AGTCAAAGCA 900 CAGCTGGTTG AAGAATGGGC AAACTCTGTG AAGAAGCAAA AAGTAGAAGT ATACCTGCCC 960 30 AGGTTCACAG TGGAACAGGA AATTGATTTA AAAGATGTTT TGAAGGCTCT TGGAATAACT 1020 GAAATTTTCA TCAAAGATGC AAATTTGACA GGCCTCTCTG ATAATAAGGA GATTTTCTT 1080 TCCAAAGCAA TTCACAAGTC CTTCCTAGAG GTTAATGAAG AAGGCTCAGA AGCTGCTGCT CATCCATTTT TCTTTCTTAT CAGAAACAGG AGAACTGGTA CAATTCTATT CATGGGACGA 35 GTCATGCATC CTGAAACAAT GAACACAAGT GGACATGATT TCGAAGAACT TTAAGTTACT 1320 TTATTTGAAT AACAAGGAAA ACAGTAACTA AGCACATTAT GTTTGCAACT GGTATATATT 1380 TAGGATTTGT GTTTTACAGT ATATCTTAAG ATAATATTTA AAATAGTTCC AGATAAAAAC 1440 AATATATGTA AATTATAAGT AACTTGTCAA GGAATGTTAT CAGTATTAAG CTAATGGTCC 1500 TGTTATGTCA TIGTGTTTGT GTGCTGTTGT TTAAAATAAA AGTACCTATT GAACATGTG 40 Seg ID NO: 228 Protein sequence: Protein Accession #: NP_005016.1 51 31 45 MAFLGLFSLL VLOSMATGAT FPEEAIADLS VNMYNRLRAT GEDENILFSP LSIALAMGMM 60 ELGAQGSTQK EIRHSMGYDS LKNGEEFSFL KEFSNMVTAK ESQYVMKIAN SLFVQNGFHV 120 NEEFLQMMKK YFNAAVNHVD FSQNVAVANY INKWVENNTN NLVKDLVSPR DFDAATYLAL 180 INAVYFKGNW KSQFRPENTR TFSFTKDDES EVQIPMMYQQ GEFYYGEFSD GSNEAGGIYQ 240 50 VLEIPYEGDE ISMMLVLSRO EVPLATLEPL VKAOLVEEWA NSVKKOKVEV YLPRFTVEOE 300 IDLKDVLKAL GITEIFIKDA NLTGLSDNKE IFLSKAIHKS FLEVNEEGSE AAAVSGMIAI 360 SRMAVLYPOV IVDHPFFFLI RNRRTGTILF MGRVMHPETM NTSGHDFEEL Seq ID NO: 229 DNA sequence 55 Nucleic Acid Accession #: NM_003695 Coding sequence: 12-398 60 CGACATCAGA GATGAGGACA GCATTGCTGC TCCTTGCAGC CCTGGCTGTG GCTACAGGGC CAGCCCTTAC CCTGCGCTGC CACGTGTGCA CCAGCTCCAG CAACTGCAAG CATTCTGTGG 120 TCTGCCCGGC CAGCTCTCGC TTCTGCAAGA CCACGAACAC AGTGGAGCCT CTGAGGGGGA 180 ATCTGGTGAA GAAGGACTGT GCGGAGTCGT GCACACCCAG CTACACCCTG CAAGGCCAGG 240 TCAGCAGCGG CACCAGCTCC ACCCAGTGCT GCCAGGAGGA CCTGTGCAAT GAGAAGCTGC 300 65 ACAACGCTGC ACCCACCGC ACCGCCCTCG CCCACAGTGC CCTCAGCCTG GGGCTGGCCC 360 TGAGCCTCCT GGCCGTCATC TTAGCCCCCA GCCTGTGACC TTCCCCCCAG GGAAGGCCCC 420 TCATGCCTTT CCTTCCCTTT CTCTGGGGAT TCCACACCTC TCTTCCCCAG CCGGCAACGG 480 GGGTGCCAGG AGCCCCAGGC TGAGGGCTTC CCCGAAAGTC TGGGACCAGG TCCAGGTGGG 540 CATGGAATGC TGATGACTTG GAGCAGGCCC CACAGACCCC ACAGAGGATG AAGCCACCCC 600 70 ACAGAGGATG CAGCCCCCAG.CTGCATGGAA GGTGGAGGAC AGAAGCCCTG TGGATCCCCG GATTTCACAC TCCTTCTGTT TTGTTGCCGT TTATTTTGTA CTCAAATCTC TACATGGAGA 660 720 TAAATGATTT AAACC Seg ID NO: 230 Protein seguence: 75 Protein Accession #: NP_003686 MRTALLLLAA LAVATGPALT LRCHVCTSSS NCKHSVVCPA SSRFCKTTNT VEPLRGNLVK 60 80 KDCAESCTPS YTLQGQVSSG TSSTQCCQED LCNEKLHNAA PTRTALAHSA LSLGLALSLL AVILAPSL

Seq ID NO: 231 DNA sequence
Nucleic Acid Accession #: Eos sequence
Coding sequence: 126-752

```
WO 02/086443
                                                     41
       COGGGCAGGT GGCTCATGCT CGGGAGCGTG GTTGAGCGGC TGGCGCGGTT GTCCTGGAGC
                                                                               60 .
       AGGGGCGCAG GAATTCTGAT GTGAAACTAA CAGTCTGTGA GCCCTGGAAC CTCCACTCAG
                                                                              120
  5
       AGAAGATGAA GGATATCGAC ATAGGAAAAG AGTATATCAT CCCCAGTCCT GGGTATAGAA
                                                                              180
       GTGTGAGGGA GAGAACCAGC ACTTCTGGGA CGCACAGAGA CCGTGAAGAT TCCAAGTTCA
       GGAGAACTCG ACCGTTGGAA TGCCAAGATG CCTTGGAAAC AGCAGCCCGA GCCGAGGGCC
                                                                              300
       TCTCTCTTGA TGCCTCCATG CATTCTCAGC TCAGAATCCT GGATGAGGAG CATCCCAAGG
                                                                              360
       GAAAGTACCA TCATGGCTTG AGTGCTCTGA AGCCCATCCG GACTACTTCC AAACACCAGC
                                                                              420
10
       ACCCAGTGGA CAATGCTGGG CTTTTTTCCT GTATGACTTT TTCGTGGCTT TCTTCTCTGG
                                                                              480
       CCCGTGTGGC CCACAAGAAG GGGGAGCTCT CAATGGAAGA CGTGTGGTCT CTGTCCAAGC
                                                                              540
       ACGAGTOTTC TGACGTGAAC TGCAGAAGAC TAGAGAGACT GTGGCAAGAA GAGCTGAATG
                                                                              600
       AAGTTGGGCC AGACGCTGCT TCCCTGCGAA GGGTTGTGTG GATCTTCTGC CGCACCAGGC
                                                                              660
       TCATCCTGTC CATCGTGTGC CTGATGATCA CGCAGCTGGC TGGCTTCAGT GGACCAAATT
                                                                              720
       TTCAGGATGG CTGTATTCTG CGGTCAGAAT GAGAGAGTCA AGCTGGGCAG AATCTCTCGC
15
                                                                              780
       CAAGAGTTCA GCCTTCCTTT GGAGACTGCT CCATCAGTGC CGAGGTGTGT GGGAACAGGC
                                                                              840
       TTCACTGCAC CGCCATCTTA CTGAGTTGCT TCACGTGAGG AAAAGGGGGC TTTGGCCCTG
                                                                              900
       TGACTCAGTT CCACATTTTG GATTGCATAC TGGAAAAGAA GCCAATCTTC TTGCTAGTAA
                                                                             960
       ACCAGCAACC CGGCTGTATA CAGTGGTGAC CCAAGCAATG GATATAAACC TAAAAATCTG
                                                                            1020
20
                                                                            1080
       AGGGAGGGA GAGGTGGAAT ACAGTAGTTC TTGGAATCTG AAGTCTCCTA TTTGATCAGG
       TTATTTCCTG GGACTTGGCA AAAATCTGAT TGGTGGGGAT CTCCTAGGAC CTAGTGGACA
                                                                            1140
       TCTGGTATTA ATTTAATCTC AGGAAAAACA AGAAATTAAC CCAGAGAGAG TCTGGGTTTT
                                                                            1200
       GGAATTCAGC GTAGCTACCT CCAGACCGTG GTGTCTGGCC TCCATTTTTG TCTGTCATTC
       AGCTCTGACT TACAGCTGCA GTCACCTTTG CTATAAGGCA CCTGGGTAGA AGGGTGGATG
25
       GGCTTCACAT CAATTTTTT CTTCCTTTAG GGTGGGGGAT TGGTTTGGCT TTCTTTTGTT
       GTGGTTTTTT GTTTATTTT TGTCAAGATT GATTTTTAGA TGCAAGGACT TGAAAAGACC CAGAAGGATG CCACCAGTTT TTCCTTGAGG CCTAGGATTT TTTATTCTGT CCCGAGCAGA
                                                                            1440
                                                                            1500
       GGTAATTCCT CACAACTTAG TGCACCAGTA GCACCAGCCA TTTTGAGCAG AGTACCTCTT
                                                                            1560
       TGGGGAGCTT TTCGTTTTGT TTTGTTTTTA ATTCTCTTTC CTTAGCAGCA AGGTCTTTTT
                                                                            1620
30
       TCCTAGAGAA TCTACTCCGT TGCAGAATCA TTGCAACCTC AGGAGCCCTC ACTGATTGAG
                                                                            1680
       TGCTGTCAGC CTGATATACT ACTITGGACT CTGGAAACAG ATATGGGTTC TATTCTCTAT
                                                                            1740
       TTCTACTGTG TGTCGTTAAA CAACCGTCGG AGACCAGATG ACCTGTTAGA TGGCTAGTCC
                                                                            1800
       TGTATAACTC GACTCTGTAT GTTTCAATGT ATGTTACTGC AATGCTTCAC CTGCTGTACA
                                                                            1860
       GTGTTTGTGA GATGCTCTTT GAAGATGGTA CTTTTATATT T
35
       Seq ID NO: 232 Protein sequence:
       Protein Accession #: Eos sequence
                                                     41
                                                                51
40
       MKDIDIGKEY IIPSPGYRSV RERTSTSGTH RDREDSKFRR TRPLECQDAL ETAARAEGLS
                                                                              60
       LDASMHSQLR ILDEEHPKGK YHHGLSALKP IRTTSKHQHP VDNAGLFSCM TFSWLSSLAR
                                                                             120
       VAHKKGELSM EDVWSLSKHE SSDVNCRRLE RLWQEELNEV GPDAASLRRV VWIFCRTRLI
                                                                              180
       LSIVCLMITO LAGFSGPNFQ DGCILRSE
45
       Seq ID NO: 233 DNA sequence
       Nucleic Acid Accession #: CAT cluster
                              21
                                                     41
                                          31
50
       TTTTAATGGT GCTCATATAT ACTGTATTTT TTGTTGTTTA GTTTTACTTA TTGAGAGTGT
       CACAACATGA ATCACATAAT CATGATTTTT TTTTTTTACT TTTACTCCCC AAATTATTCA
                                                                              120
       TGTTTCTTAG ATCGTAGTCA TTGAGAAGTC CCAATAACTC TAAACTTTTG AGTTATAACG
TAGTAAACTT CTCTTTCATC TTTGTGTTAG CTCTGTAGTC TTAACCTGGA TTTTAATTTT
                                                                             180
55
       TTTGTTTCCA AAGTCACAAT TGAATTATTC TTAGATACCT TAAGCCACTG AATTCAGTTC
                                                                             300
       TGTTTGACTG AAAGCAAAAC AACGTGACAG TTTATTTTCA AACACTAACT TCTTGATATT
                                                                             360
       TTGTTATGGT ATATCTTTTT ATTAAATATT TATTTTGACT AAGCTTTCAT AAAATATTTG
                                                                              420
       AAGCTATTTT AATCATCAAG TATGGAAAAC AAATTACTAT TGCATTTTCC TATATATGCA
                                                                              480
       TATATTATGG ATTAACCAGA ATTGTATCAT TTTTGGCCTA ATGTCTGGAT ATAAAAGATA
                                                                             540
       ATTAGCCTAC TATAGTATTA ATAAATTTTT CAGTTGGTTT GGGCAAATTT AAACCTGAAA
60
                                                                              600
       AATAGGTTAA AAAGTAGTTA CAAATTAAAC TTACTAATTT ATACCTGATT TTTTTTCTTG
                                                                             660
       AATTAAAGTA CATTTAAAT GAGCTTTATA ATACCTTAAA AAGTTGGTTC TAATTTAAAA
                                                                              720
       TATGAAAGCT CTGGCTATCA TCCTGGGATA GTAATTTCTA ATTATATAGT ATTTCAAAAC
                                                                              780
       TATATATTT TTAGTTCCTT TGAGATAACT AATTTCTAAT TATATATGTT TCAAAAACCA
                                                                             840
65
       TATCCTGTAT TTTTTTTAAG AATTGTTTTA TAAATAGGTC ATAAGATACA AGGTCTGCAT
                                                                             900
       TAGAAGACCC ACTCTTACTA GGTTCCCTAA GGATCTGCCA TAGATTTTT TTTTTTTTT
                                                                             960
       TTTTTTTAG GTAGTTTAAA GCAAGCACTG ATACCAGTGG GAGTTGGTCT TGATCTAGGA
                                                                            1020
       GATTCTGTTA AGCATCCAAA AACAATGCCT AATTTCAGTT CTTAGGTTAT GGCTTGTGAC
                                                                            1080
                                                                            1140
       TCCAGATAAA AGATGGAGAA TACCTCATGT ACTGTGACTT GAAAATGAAT TCTTAAAATT
70
       CTTAGGCTCT CTCCATGTAT CTTTCTTAAG GAAAAGTTTC TGAGTGTGAT CTCTCTTTTG
                                                                            1200
       CCATAGTATC AAGTGGAGGG TAGTTCAGAA AAGTTAATAG GAAATCTTTT GTGACAGCAG
                                                                            1260
       ACTATAATAG AAGTTTGAGT AATATTTTAA TAAATTTATA TAATTCAAAT GATAAAAATG
                                                                            1320
       TATCAATGTT ATCCAATGAT TTTTATTAAA AAATTACCTT ATTATTAGAA CTGTGCCTAT
                                                                            1380
       TACATAAAAA GTGCTCATGT ATTTGAATTT TAAATAATTT ATTTAAATCA AGACCACCAT
                                                                            1440
75
       AAGTCATTAA TAATTTAATA ATTGTTTTAA ATCAGTGGTT TTCAACCCTC ACTTCATATT
       AGAATCATCT GAGGACTTTT AATATGGAAT CCACCTCATA ACAATTAAGT CTAAATTTCT
       GGAAGATGGA GCCATGCTTG TTTTTCCAAA AGCTCTTTGA GTGATTCTAA TTTGTAGTCA
       GAGTTGAAGA CCACTGCTCT AAATTAGTGC AGGAAAATGC TTTTATTTCT CCCATGTTAA
       CTTTTAAAAC TAGTAATGTA CCCAGTTAAG TTTTGATGGT TTAAATTCCA CTAAAGAACA
80
       TATTCTTCTA ATAACTAGCA TTTATTACAT GAAATTTAAG AGTTTAAGTT CCATCAAACT
       AGCCCTTGTG TAAGATTATT ATTTCTTCTC TATAACTTCA AAATAGATAT TTCATTCAAA
                                                                            1860
       CTGTTCAGGT GAGAAAACAT AATGGATTTT TTTTTTTTTC CTCTGGAGCT GCCTGTTCAG
                                                                            1920
       TGAGATGGAG GAGGTGGGCA CATTTAAGGT CAGTTCACTA ACCTATGGTT CAGAGTTCTG
                                                                            1980
       ATCATATGGA AGTTTGGAAA AGAGAGCTTA TCACAGGTTT GTATGCTGGT GAATGGATAG
                                                                            2040
85
       TTTTAATTCT CACTGTCTCA AAAGAGAATC AGCTCTCCAG CAGTTCTAGA AAAGCTTTGA
                                                                            2100
       CAATCCCCAA GGGGCAGTGT TACCTTACTC CTTCACTGCT TCTTAGAAGG TAGAATTAAG
                                                                            2160
       TTTCTGGAAT TGCACCTACA TGTTTTCTTA TTAACATTCA GAATTGGGAA TATTAATTTT
```

GCCCCATCAG GGAACTTTGT GGCATGTGGG GGGCTGGACA ACATGTGTTC CATCTACAAC

CTCAAATCCC GTGAGGGCAA TGTCAAGGTC AGCCGGGAGC TTTCTGCTCA CACAGGTTAT

CTCTCCTGCT GCCGCTTCCT GGATGACAAC AATATTGTGA CCAGCTCGGG GGACACCACG

TGTGCCTTGT GGGACATTGA GACTGGGCAG CAGAAGACTG TATTTGTGGG ACACACGGGT

GACTGCATGA GCCTGGCTGT GTCTCCTGAC TTCAATCTCT TCATTTCGGG GGCCTGTGAT

GCCAGTGCCA AGCTCTGGGA TGTGCGAGAG GGGACCTGCC GTCAGACTTT CACTGGCCAC

85

780

840

900

960

1020

1080

```
GAGTCGGACA TCAACGCCAT CTGTTTCTTC CCCAATGGAG AGGCCATCTG CACGGGCTCG 1140
      GATGACGCTT CCTGCCGCTT GTTTGACCTG CGGGCAGACC AGGAGCTGAT CTGCTTCTCC
                                                                          1200
      CACGAGAGCA ,TCATCTGCGG CATCACGTCC GTGGCCTTCT CCCTCAGTGG CCGCCTACTA
      TTCGCTGGCT ACGACGACTT CAACTGCAAT GTCTGGGACT CCATGAAGTC TGAGCGTGTG
      GGCATCCTCT CTGGCCACGA TAACAGGGTG AGCTGCCTGG GAGTCACAGC TGACGGGATG
 5
      GCTGTGGCCA CAGGTTCCTG GGACAGCTTC CTCAAAATCT GGAACTGAGG AGGCTGGAGA
      AAGGGAAGTG GAAGGCAGTG AACACACTCA GCAGCCCCCT GCCCGACCCC ATCTCATTCA
                                                                          1500
      GGTGTTCTCT TCTATATTCC GGGTGCCATT CCCACTAAGC TTTCTCCTTT GAGGGCAGTG
                                                                          1560
      GGGAGCATGG GACTGTGCCT TTGGGAGGCA GCATCAGGGA CACAGGGGCA AAGAACTGCC
                                                                          1620
       CCATCTCCTC CCATGGCCTT CCCTCCCCAC AGTCCTCACA GCCTCTCCCT TAATGAGCAA
10
                                                                          1680
       GGACAACCTG CCCCTCCCCA GCCCTTTGCA GGCCCAGCAG ACTTGAGTCT GAGGCCCCAG
                                                                          1740
       GCCCTAGGAT TCCTCCCCCA GAGCCACTAC CTTTGTCCAG GCCTGGGTGG TATAGGGCGT
                                                                          1800
       TTGGCCCTGT GACTATGGCT CTGGCACCAC TAGGGTCCTG GCCCTCTTCT TATTCATGCT
                                                                          1860
       TTCTCCTTTT TCTACCTTTT TTTCTCTCCT AAGACACCTG CAATAAAGTG TAGCACCCTG
                                                                          1920
15
       Seq ID NO: 237 Protein sequence:
       Protein Accession #: NP_002066
20
                                                               51
                                        31
       MGEMEQLRQE AEQLKKQIAD ARKACADVTL AELVSGLEVV GRVQMRTRRT LRGHLAKIYA
       MHWATDSKLL VSASQDGKLI VWDSYTTNKV HAIPLRSSWV MTCAYAPSGN FVACGGLDNM
                                                                           120
       CSIYNLKSRE GNVKVSRELS AHTGYLSCCR FLDDNNIVTS SGDTTCALWD IETGQQKTVF
       VGHTGDCMSL AVSPDFNLFI SGACDASAKL WDVREGTCRQ TFTGHESDIN AICFFPNGEA
                                                                           240
25
       ICTGSDDASC RLFDLRADQE LICFSHESII CGITSVAFSL SGRLLFAGYD DFNCNVWDSM
       KSERVGILSG HDNRVSCLGV TADGMAVATG SWDSFLKIWN
       Seg ID NO: 238 DNA sequence
30
       Nucleic Acid Accession #: CAT cluster
                  11
       TCCCAATGTG TNGAACCTAC CATAAATTCT TTTCTTACNG GACAATCTTA TNCTAANCAA
                                                                             60
       TACCATTTGC TTTTAAGGCA GATAATCCTC CAAGTTTTCT AATGATATCT GAAACTATTA
                                                                            120
35
       ACTGATTCTG TGAATTATGA AATCTGAAAA GGAATTGGAA GTTGCTAAAA ATCTATCATT
                                                                            180
       TGCATTGACC AGTGTGAAGC ACAGTGGAAT GAGAATGCGT GCCCTGACAC CAAAGAAAAA
                                                                            240
       TAAGTGACTG GAAAGCTGAA GAATCACCGG CTTCAGTGAC ATGGAACCCA GTGATTTGAT
                                                                            300
       TTTTGACGAG TATCGGGTGA CTTTGAGGTG GTCAAGAAAC CACACTTTAA GAACAATGTC
                                                                            360
       420
40
       AAGAAAGAAA AATAAAATAC ACAATATGGA CGATGGAGAA AAACAGTTAC ATTTCTTTAT
                                                                            480
       GGATCAAGAA GTTTGTGTAC ACATAATCTC ATTTTGAGAT ATATAACTAT TTTTGTCTTT
                                                                            540
        CAGAAGTGAA TCAAAATATT TCAAAATGCT GTCTTATGAA ACTACAATAT TCTCACAGAT
                                                                            600
       TAGAAAAGTT TTTCTGTAAA AGTCAGATAG TAAATATTTT AGGTTTTGCA GTGTCTTTTG
                                                                            660
       CAACTACTCA ACTTTCCTAC TGTAGCACAA GAGTAGCTGT GGTACTGTGC AAATAAATTG
45
                                                                            720
        CTTGTGTTCC AATAAAGCTT CATTTACAAA AACATGCCAT GGGCCATATT TGGCCTGTAC
                                                                            780
       ACTGTTGTTT GCCAAGTCCT AATATAGTTG CTTAGCAAGT ATTGTGAGCT ATTTGAGGAA
       GACATGAAAG TTCATTGGGT TGCTAAAAAG TATGTAGAAA TTCAAAGGAA AATTAAAATT
       TAGGCTAAGT TATAATACAC TGTTTTAACA ATTGTAAAAT GTAAGAGAAA TTTACAAATA
50
        AAAATCCCAA ATAAAA
        Seq ID NO: 239 DNA sequence
       Nucleic Acid Accession #: NM_001786.1
        Coding sequence: 130-1023
55
                                         31
                              21
                  11
        GGGGGGGGG GGCACTTGGC TTCAAAGCTG GCTCTTGGAA ATTGAGCGGA GAGCGACGCG
                                                                             60
        GTTGTTGTAG CTGCCGCTGC GGCCGCCGCG GAATAATAAG CCGGGATCTA CCATACCCAT
                                                                            120
        TGACTAACTA TGGAAGATTA TACCAAAATA GAGAAAATTG GAGAAGGTAC CTATGGAGTT
 60
                                                                            180
        GTGTATAAGG GTAGACACAA AACTACAGGT CAAGTGGTAG CCATGAAAAA AATCAGACTA
                                                                            240
        GAAAGTGAAG AGGAAGGGGT TCCTAGTACT GCAATTCGGG AAATTTCTCT ATTAAAGGAA
                                                                            300
        CTTCGTCATC CAAATATAGT CAGTCTTCAG GATGTGCTTA TGCAGGATTC CAGGTTATAT
                                                                            360
        CTCATCTTTG AGTTTCTTTC CATGGATCTG AAGAAATACT TGGATTCTAT CCCTCCTGGT
                                                                            420
        CAGTACATGG ATTCTTCACT TGTTAAGAGT TATTTATACC AAATCCTACA GGGGATTGTG
TTTTGTCACT CTAGAAGAGT TCTTCACAGA GACTTAAAAC CTCAAAATCT CTTGATTGAT
 65
                                                                            480
                                                                            540
        GACAAAGGAA CAATTAAACT GGCTGATTTT GGCCTTGCCA GAGCTTTTGG AATACCTATC
                                                                            600
        AGAGTATATA CACATGAGGT AGTAACACTC TGGTACAGAT CTCCAGAAGT ATTGCTGGGG
                                                                            660
        TCAGCTCGTT ACTCAACTCC AGTTGACATT TGGAGTATAG GCACCATATT TGCTGAACTA
                                                                            720
        GCAACTAAGA AACCACTTTT CCATGGGGAT TCAGAAATTG ATCAACTCTT CAGGATTTTC
 70
                                                                            780
        AGAGCTTTGG GCACTCCCAA TAATGAAGTG TGGCCAGAAG TGGAATCTTT ACAGGACTAT
                                                                            840
        AAGAATACAT TTCCCAAATG GAAACCAGGA AGCCTAGCAT CCCATGTCAA AAACTTGGAT
                                                                            900
        GAAAATGGCT TGGATTTGCT CTCGAAAATG TTAATCTATG ATCCAGCCAA ACGAATTTCT
                                                                            960
        GGCAAAATGG CACTGAATCA TCCATATTTT AATGATTTGG ACAATCAGAT TAAGAAGATG
                                                                           1020
        TAGCTTTCTG ACAAAAAGTT TCCATATGTT ATGTCAACAG ATAGTTGTGT TTTTATTGTT
 75
                                                                           1080
        AACTCTTGTC TATTTTTGTC TTATATATAT TTCTTTGTTA TCAAACTTCA GCTGTACTTC
        GTCTTCTAAT TTCAAAAATA TAACTTAAAA ATGTAAATAT TCTATATGAA TTTAAATATA
        ATTCTGTAAA TGTGAAAAAA AAAAAAAAAA AAAAA
 80
        Seg ID NO: 240 Protein sequence:
        Protein Accession #: NP_001777.1
                                         31
                                                     41
 85
        MEDYTKIEKI GEGTYGVVYK GRHKTTGQVV AMKKIRLESE EEGVPSTAIR EISLLKELRH
        PNIVSLQDVL MQDSRLYLIF EFLSMDLKKY LDSIPPGQYM DSSLVKSYLY QILQGIVFCH
```

SRRVLHRDLK PONLLIDDKG TIKLADFGLA RAFGIPIRVY THEVVTLWYR SPEVLLGSAR YSTPVDIWSI GTIFAELATK KPLFHGDSEI DQLFRIFRAL GTPNNEVWPE VESLQDYKNT FPKWKPGSLA SHVKNLDENG LDLLSKMLIY DPAKRISGKM ALNHPYFNDL DNQIKKM 5 Seq ID NO: 241 DNA sequence Nucleic Acid Accession #: NM_033379.1 Coding sequence: 132-854 10 11 31 51 CGCCCGCGCG CGGGCTCAAC TTTGTAGAGC GAGGGGCCAA CTTGGCAGAG CGCGCGGCCA 60 GCTTTGCAGA GAGCGCCCTC CAGGGACTAT GCGTGCGGGG ACACGGGATC TACCCATACC 120 ATTGACTAAC TATGGAAGAT TATACCAAAA TAGAGAAAAT TGGAGAAGGT ACCTATGGAG 180 15 TTGTGTATAA GGGTAGACAC AAAACTACAG GTCAAGTGGT AGCCATGAAA AAAATCAGAC 240 TAGAAAGTGA AGAGGAAGGG GTTCCTAGTA CTGCAATTCG GGAAATTTCT CTATTAAAGG 300 AACTTCGTCA TCCAAATATA GTCAGTCTTC AGGATGTGCT TATGCAGGAT TCCAGGTTAT 360 ATCTCATCTT TGAGTTTCTT TCCATGGATC TGAAGAAATA CTTGGATTCT ATCCCTCCTG GTCAGTACAT GGATTCTTCA CTTGTTAAGG TAGTAACACT CTGGTACAGA TCTCCAGAAG 20 TATTGCTGGG GTCAGCTCGT TACTCAACTC CAGTTGACAT TTGGAGTATA GGCACCATAT TTGCTGAACT AGCAACTAAG AAACCACTTT TCCATGGGGA TTCAGAAATT GATCAACTCT 600 TCAGGATTTT CAGAGCTTTG GGCACTCCCA ATAATGAAGT GTGGCCAGAA GTGGAATCTT 660 TACAGGACTA TAAGAATACA TTTCCCAAAT GGAAACCAGG AAGCCTAGCA TCCCATGTCA 720 AAAACTTGGA TGAAAATGGC TTGGATTTGC TCTCGAAAAT GTTAATCTAT GATCCAGCCA 780 25 AACGAATTTC TGGCAAAATG GCACTGAATC ATCCATATTT TAATGATTTG GACAATCAGA 840 TTAAGAAGAT GTAGCTTTCT GACAAAAAGT TTCCATATGT TATGTCAACA GATAGTTGTG 900 TTTTTATTGT TAACTCTTGT CTATTTTTGT CTTATATATA TTTCTTTGTT ATCAAACTTC 960 AGCTGTACTT CGTCTTCTAA TTTCAAAAAT ATAACTTAAA AATGTAAATA TTCTATATGA 1020 ATTTAAATAT AATTCTGTAA ATGTGAAAAA AAAAAAAAA AAAAAA 30 Seq ID NO: 242 Protein sequence: Protein Accession #: NP_203698.1 31 41 51 35 MEDYTKIEKI GEGTYGVVYK GRHKTTGQVV AMKKIRLESE EEGVPSTAIR EISLLKELRH 60 PNIVSLQDVL MQDSRLYLIF EFLSMDLKKY LDSIPPGQYM DSSLVKVVTL WYRSPEVLLG 120 SARYSTPVDI WSIGTIFAEL ATKKPLFHGD SEIDQLFRIF RALGTPNNEV WPEVESLQDY 180 KNTFPKWKPG SLASHVKNLD ENGLDLLSKM LIYDPAKRIS GKMALNHPYF NDLDNQIKKM 40 Seq ID NO: 243 DNA sequence Nucleic Acid Accession #: AF101051.1 Coding sequence: 221-856 45 GAGCAACCTC AGCTTCTAGT ATCCAGACTC CAGCGCCGCC CCGGGCGCGG ACCCCAACCC CGACCCAGAG CTTCTCCAGC GGCGGCGCAG CGAGCAGGGC TCCCCGCCTT AACTTCCTCC 120 GCGGGGCCCA GCCACCTTCG GGAGTCCGGG TTGCCCACCT GCAAACTCTC CGCCTTCTGC 180 50 ACCTGCCACC CCTGAGCCAG CGCGGGCGCC CGAGCGAGTC ATGGCCAACG CGGGGCTGCA 240 GCTGTTGGGC TTCATTCTCG CCTTCCTGGG ATGGATCGGC GCCATCGTCA GCACTGCCCT 300 GCCCCAGTGG AGGATTTACT CCTATGCCGG CGACAACATC GTGACCGCCC AGGCCATGTA 360 CGAGGGGCTG TGGATGTCCT GCGTGTCGCA GAGCACCGGG CAGATCCAGT GCAAAGTCTT 420 TGACTCCTTG CTGAATCTGA GCAGCACATT GCAAGCAACC CGTGCCTTGA TGGTGGTTGG 480 55 CATCCTCCTG GGAGTGATAG CAATCTTTGT GGCCACCGTT GGCATGAAGT GTATGAAGTG 540 CTTGGAAGAC GATGAGGTGC AGAAGATGAG GATGGCTGTC ATTGGGGGTG CGATATTTCT 600 TCTTGCAGGT CTGGCTATTT TAGTTGCCAC AGCATGGTAT GGCAATAGAA TCGTTCAAGA 660 ATTCTATGAC CCTATGACCC CAGTCAATGC CAGGTACGAA TTTGGTCAGG CTCTCTTCAC TGGCTGGGCT GCTGCTTCTC TCTGCCTTCT GGGAGGTGCC CTACTTTGCT GTTCCTGTCC 720 780 60 CCGAAAAACA ACCTCTTACC CAACACCAAG GCCCTATCCA AAACCTGCAC CTTCCAGCGG 840 GAAAGACTAC GTGTGACACA GAGGCAAAAG GAGAAAATCA TGTTGAAACA AACCGAAAAT 900 GGACATTGAG ATACTATCAT TAACATTAGG ACCTTAGAAT TTTGGGTATT GTAATCTGAA 960 GTATGGTATT ACAAAACAAA CAAACAAACA AAAAACCCAT GTGTTAAAAT ACTCAGTGCT 1020 AAACATGGCT TAATCTTATT TTATCTTCTT TCCTCAATAT AGGAGGGAAG ATTTTACCAT 1080 65 TTGTATTACT GCTTCCCATT GAGTAATCAT ACTCAAATGG GGGAAGGGGT GCTCCTTAAA 1140 TATATATAGA TATGTATATA TACATGTTTT TCTATTAAAA ATAGACAGTA AAATACTATT 1200 CTCATTATGT TGATACTAGC ATACTTAAAA TATCTCTAAA ATAGGTAAAT GTATTTAATT 1260 CCATATTGAT GAAGATGTTT ATTGGTATAT TTTCTTTTTC GTCCTTATAT ACATATGTAA 1320 CAGTCAAATA TCATTACTC TTCTTCATTA GCTTTGGGTG CCTTTGCCAC AAGACCTAGC 1380 70 CTAATTTACC AAGGATGAAT TCTTTCAATT CTTCATGCGT GCCCTTTTCA TATACTTATT 1440 TTATTTTTTA CCATAATCTT ATAGCACTTG CATCGTTATT AAGCCCTTAT TTGTTTTGTG 1500 TTTCATTGGT CTCTATCTCC TGAATCTAAC ACATTTCATA GCCTACATTT TAGTTTCTAA 1560 AGCCAAGAAG AATTTATTAC AAATCAGAAC TTTGGAGGCA AATCTTTCTG CATGACCAAA 1620 GTGATAAATT CCTGTTGACC TTCCCACACA ATCCCTGTAC TCTGACCCAT AGCACTCTTG 75 TTTGCTTTGA AAATATTTGT CCAATTGAGT AGCTGCATGC TGTTCCCCCA GGTGTTGTAA CACAACTTTA TTGATTGAAT TTTTAAGCTA CTTATTCATA GTTTTATATC CCCCTAAACT ACCTTTTGT TCCCCATTCC TTAATTGTAT TGTTTTCCCA AGTGTAATTA TCATGCGTTT 1860 TATATCTTCC TAATAAGGTG TGGTCTGTTT GTCTGAACAA AGTGCTAGAC TTTCTGGAGT 1920 GATAATCTGG TGACAAATAT TCTCTCTGTA GCTGTAAGCA AGTCACTTAA TCTTTCTACC 1980 80 TCTTTTTCT ATCTGCCAAA TTGAGATAAT GATACTTAAC CAGTTAGAAG AGGTAGTGTG 2040 AATATTAATT AGTTTATATT ACTCTCATTC TTTGAACATG AACTATGCCT ATGTAGTGTC 2100 TTTATTTGCT CAGCTGGCTG AGACACTGAA GAAGTCACTG AACAAAACCT ACACACGTAC 2160 CTTCATGTGA TTCACTGCCT TCCTCTCTT ACCAGTCTAT TTCCACTGAA CAAAACCTAC 2220 ACACATACCT TCATGTGGTT CAGTGCCTTC CTCTCTCTAC CAGTCTATTT CCACTGAACA 2280 85 AAACCTACGC ACATACCTTC ATGTGGCTCA GTGCCTTCCT CTCTCTACCA GTCTATTTCC 2340 ATTCTTTCAG CTGTGTCTGA CATGTTTGTG CTCTGTTCCA TTTTAACAAC TGCTCTTACT 2400 TTTCCAGTCT GTACAGAATG CTATTTCACT TGAGCAAGAT GATGTATGGA AAGGGTGTTG 2460 WO 02/086443 PCT/US02/12476
CTGGTGT CTGGAGACCT GGATTTGAGT CTTGGTGCTA TCAATCACCG TCTGTGTTTG 2520

		/086443					
			GGATTTGAGT				2520
			TAAGCTTATT				2580
			TGATGTTGTG				2640
5			GTGCTATACT				2700
)			AATGTTTGAA				2760
			TGATGAGACA				2820
			TCTTCTGCAG				2880
			TAAAAGCCTA				2940
10			TAAGGTGCTA TGCTAGGATA				3000
10			ACCGTGTCTT				3060
			ACCGIGICIT				3120
			TGTGAGTGTA				3180 3240
			AAAATGACCA				3300
15			CTACCACACC				3360
13			AAGCATTACT				3420
		AAAAAAAAAA		CITITION	MMII I GIII I	TINNTIINNN	3420
	AAAAOOAAAA		AVA		•		
20	Seg ID NO:	244 Protein	sequence:		•		
		cession #: A					
	1	11	21	31	41	51	
	Ī	1	1	1	1	1	
25	MANAGLQLLG	FILAFLGWIG	AIVSTALPQW	RIYSYAGDNI	VTAQAMYEGL	WMSCVSQSTG	60
			RALMVVGILL				120
			GNRIVQEFYD				180
•	LLCCSCPRKT	TSYPTPRPYP	KPAPSSGKDY	v			•
30	Seq ID NO:	245 DNA sec	quence				
	Nucleic Ac:	id Accession	ı #: CAT clu	ıster	_		
	1	11	21	31	41	51	
25]		1	1	1	1	
35			TTTTTCAAGG				60
			ACCAAGTGAC				120
			ACAAACCTCA				180
			TTCTTCATCG				240
40			TATATTAGAA				300
40			CCCAGGAATT				360
			GCCTGGGCAA				420
	GTCCTACGCC	CACGGAGTCT	CGCTGATTGC	TAGCACAGCA	GICIGAGAIC	AMCIGCA	
				TAGCACAGCA	GICIGAGAIC	Ancioca	
45	Seq ID NO:	246 DNA sec	quence		GICIGAGAIC	AMCIGEN	
45	Seq ID NO: Nucleic Ac	246 DNA sec id Accession	quence n #: XM_058		orcrondnic	AAACIGCA	
45	Seq ID NO: Nucleic Ac	246 DNA sec	quence n #: XM_058		Grerondare	Anneroca	
45	Seq ID NO: Nucleic Ac Coding seq	246 DNA sec id Accession Lence: 897-1	quence n #: XM_058 1400	3553.2			
	Seq ID NO: Nucleic Ac	246 DNA sec id Accession	quence n #: XM_058		41	51	
	Seq ID NO: Nucleic Ac: Coding sequent	246 DNA sec id Accession mence: 897-1	quence n #: XM_058 1400 21	31	41	51 	60
45 50	Seq ID NO: Nucleic Ac Coding sequents	246 DNA secid Accession uence: 897-1 11 AGTTTCGTAT	quence n #: XM_058 1400 21 GGGGATGGTT	31 } TTATATAAAT	41 TCAGGTTTT	51 CCCACAATAA	60 120
	Seq ID NO: Nucleic Ac: Coding sequents AATTTTCAGA TAAATGTATT	246 DNA secid Accession uence: 897-: 11	quence 1 #: XM_058 1400 21 GGGGATGGTT GCTCAATAGA	31) TTATATAAAT AGAGATTTCT	41 TCAGGTTTTT AATAGAAAAG	51 CCCACAATAA GATTCAAACT	
	Seq ID NO: Nucleic Ac: Coding sequents AATTTTCAGA TAAATGTATT GTGAAACCAT	246 DNA secid Accession tence: 897-11 AGTTTCGTAT TRACTCTCAGT	quence n #: XM_058 1400 21 GGGGATGGTT	31) TTATATAAAT AGAGATTTCT TTCCTGTTAC	41 TCAGGTTTTT AATAGAAAAG AGATTTGTTC	51 CCCACAATAA GATTCAAACT TCTTGTGACT	120
50	Seq ID NO: Nucleic Ac: Coding sequence 1 AATTTTCAGA TAAATGTATT GTGAAACCAT CTGTTTATCCA ATAGGGGAA	246 DNA secid Accession Lence: 897-1 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTAT TAATATGGAC TGAGTATTAA	quence 1 #: XM_058 1400 21 GGGGATGGTT GCTCAATAGA ATGTTTCACA AGTTCTTGAG TTGGAGAAGC	31) TTATATAAAT AGAGATTICT TCCTAACATT TCCTAACATT TTAAAGTATT	41 TCAGGTTTTT AATAGAAAAG AGATTTGTTC GAGAGGTTTT GCCACTTTAG	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT	120 180
	Seq ID NO: Nucleic Ac. Coding seq AATTTTCAGA TAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGAA TGGGATGAGA	246 DNA set id Accession tence: 897-: 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA TAATATGGAC TGAGTATAA GGAGGTGAAA	quence #: XM_058 400 21 GGGGATGGTT GCTCAATAGA ATGTTCTACA AGTTCTTGAG TTGGAGAAGC CCTCACTAGA	31) TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGTATT AAAAGGACA	41 TCAGGTTTTT AATAGAAAAG AGATTTGTTC GAGAGGTTTT GCCACTTTAG ATGTTAGTGT	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTG CACTGAAGAT GGCCCTTCCT	120 180 240
50	Seq ID NO: Nucleic Ac. Coding seq AATTTTCAGA TAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGAA TGGGATGAGA	246 DNA set id Accession tence: 897-: 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA TAATATGGAC TGAGTATAA GGAGGTGAAA	quence 1 #: XM_058 1400 21 GGGGATGGTT GCTCAATAGA ATGTTTCACA AGTTCTTGAG TTGGAGAAGC	31) TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGTATT AAAAGGACA	41 TCAGGTTTTT AATAGAAAAG AGATTTGTTC GAGAGGTTTT GCCACTTTAG ATGTTAGTGT	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTG CACTGAAGAT GGCCCTTCCT	120 180 240 300 360 420
50	Seq ID NO: Nucleic Ac: Coding sequence 1 AATTTTCAGA TAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGAA TGGGATGAGA GATCATGTTT GTTGAGTGTA	246 DNA second accession tence: 897-3 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA TAATATGGAC TCAGTATTAA GGAGGTGAA AAGAAAAGTC TACTGTCTGT	quence n #: XM_058 1400 21 GGGGATGGTT GCTCAATAGA ATGTTTCACA AGTTCTTGAG TTGGAGAAGC CCTCACTAGG ATGAAAATGG CAAAGACTTC	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGTATT AAAAGGGACT TGAACTAGTG CAGCATTTCC	41 TCAGGTTTTT AATAGAAAAG AGATTTGTTC GACACTTTAG ATGTTAGTGT TTTCCAAGCA AGGTCCTAGA	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT GGCCCTTCCT TATTGGAAGG GAGGAACAAG	120 180 240 300 360 420 480
50	Seq ID NO: Nucleic Ac: Coding seq AATTTTCAGA TAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGAA TGGGATGAGA GATCATGTTT GTTGAGTGTA ACTGGTAACC	246 DNA second accession acces 897-1 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA TAATATGGAC TGAGTATTAA GGAGGTGAAA AGGAAAAGT TACTGTCTGT TGCCTATCTG	quence 1 #: XM_058 1400 21 GGGGATGGTT GCTCAATAGA ATGTTCTGAG ATGTCTTGAG TTGGAGAAGC CCTCACTAGA ATGAAAATGG CCAAGAACTTC TATTTTTAAG	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGTATT AAAAGGGACA TGAACTAGTG CAGCATTTCC AACCCAGGAG	41 TCAGGTTTTT TAATAGAAAAG AGATTTGTTC GAGAGGTTTT GCCACTTTAG ATGTTAGTGT TTTCCAAGC AGGTCCTAGA GAAAGCTTTA	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT GGCCCTTCCT TATTGGAAGG GAGGAACAAG TAATAGAACA	120 180 240 300 360 420 480 540
50 55	Seq ID NO: Nucleic Ac: Coding sequence AATTTTCAGA TAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGAA TGGGATGAGA GATCATGTTT GTTGAGTGTT ACTGGTAACC TTATTCTGT	246 DNA second accession a	quence 1 #: XM_058 1400 21 GGGGATGGTT GCTCAATAGA AGTTCTTGAG TTGGAGAAGC CCTCACTAGA ATGAAAATGG CAAAGACTTC TATTTTTAAG AAGGGGTTTT	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGTATT AAAAGGACA TGAACTAGTC CAGCATTTCC AACCCAGGAG TTGTTTTTTT	41 TCAGGTTTTT AATAGAAAAG AGATTGTTC GCACTTTAG ATGTTAGTGT TTTCCAAGCA GAAAGCTCTAGA GAAAGCTTTA AAAGACAGGA	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT GGCCCTTCCT TATTGGAAGG GAGGAACAAG TAATAGAACA TCTCACTCCA	120 180 240 300 360 420 480 540
50	Seq ID NO: Nucleic Ac. Coding seq AATTTTCAGA TAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGA TGGGATGAGA GATCATGTTT GTTGAGTGTA ACTGGTAACC TTATTCTGT TTGTCCAGGC	246 DNA secided Accession tence: 897-11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA TAATATGGAC TGAGTATAA AGAAAAGTC TACTGTCTGT TGCCTATCTG TGCCTATCTG TGTTATGTAT CAAGTGCAAT	quence #: XM_058 400 21 GGGGATGGTT GCTCAATAGA ATGTTCTCACA AGTTCTTGAG TTGGAGAAGC CCTCACTAGA ATGAAAATGG CAAAGACTTC TATTTTTAAC AAGGGGTTTT GGCACGAACC	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGGACA TGAACTAGTG CAGCATTTCC AACCCAGGAG TTGTTTTTTTTTT	41 TCAGGTTTTT AATAGAAAAG AGATTTGTTC GAGAGGTTTT GCCACTTTAG ATGTTAGTGT TTTCCAAGCA AGGTCCTAGA GAAAGCTTTA AAAGACAGGA TGGACTTAAG	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT GGCCCTTCCT TATTGGAAGG GAGGACAAG TAATAGAACA TCTCACTCCA TGATCTGCCT	120 180 240 300 360 420 480 540 600 660
50 55	Seq ID NO: Nucleic Ac: Coding seq ANTITTCAGA TANANGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGAA TGGGATGAGA GATCATGTTT GTTGAGTGTA ACTGGTAACC TTATTCTGT TTGTCCAGGC GCCTTTGCCT	246 DNA secid Accession lence: 897-3 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA TAATATGGAC TGAGTATTAA GAGGTGAAA AAGAAAAGTC TACTGTCTGT TGCCTATCTG GTTTATGTAT CAAGTGCAAT CCTGAGTAGC	Quence n #: XM_058 1400 21 GGGGATGGTT GGTCAATAGA ATGTTTCACA AGTTCTTGAG TTGGAGAAGC CTCACTAGC ATGAAAATGG CAAAGACTTC TATTTTTAAG AAGGGGTTTT TATTTTTAAG GGCACGAACC TGGGACTACC	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGTATT TAAAGGGACA TGACTAGTG CAGCATTTCC AACCCAGGAG TTGTTTTTTT TGATAGCTCC GGCATGAGCC	41 TCAGGTTTTT AATAGAAAAG AGATTTGTTC GAGAGGTTTT GCCACTTTAGTG TTTCCAAGCA AGGTCCTAGA GAAAGCTTTA AAAGACAGGC CCCATGCCTG	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT GGCCCTTCCT TATTGGAAGG GAGGAACAAG TAATAGAACA TCTCACTCCA TGATCTGCCT GCTAAGTTTG	120 180 240 300 360 420 480 540 600 650 720
50 55	Seq ID NO: Nucleic Ac: Coding seq ARTTTTCAGA TAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGAA TGGGATGAGA TGTCATGTTT GTTCAGTTT ACTGGTAACC TTATTCTGT TTGTTCCAGG TTGTTCCAGG TTGTTCCAGG TTGTTCCAGG TTGTTCCAGG TTTTTTCTGT	246 DNA secid Accession lence: 897-1 11 AGTTTCGTAT TAGTCTCTTTA TAATATGGAC TGAGTATTAA GGAGTGAAA AAGAAAAGTC TACTGTCTGT TGCCTATCTG GTTTATGTAT CAAGTGCAAT CCTGAGTAGC TGTTTGTTTG	Quence #: XM_058 400 21 GGGGATGGTT GCTCAATAGA ATGTTCACA AGTTCTTGAG TTGGAGAAGC CCTCACTAGA ATGAAAATGG CAAAGACTTC TATTTTTAAG AAGGGTTTT GGCACGAACA TTGGTTTTTG	31 TTATATAAT TTATATAAT AGAGATTTCT TCCTGTTAC TCCTAACATT TTAAAGGACA TGAACTAGTG CAGCATTTCC AACCCAGGAG TTGTTTTTT TCATAGCTCC GGCATGAGCC GGCATGAGCC GGCATGACC GGCATCACC GGCATGACC GGCATCAC GGCATCACC	41 TCAGGTTTTT AATAGAAAG AGATTGTTC GAGAGGTTTT GCCACTTTAG ATGTTAGTGT TTTCCAAGCA AGGTCCTAGA GAAAGCTTTA AAAGACAGGA CCCATGCCTG TTTTGTTTTT	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT TGCTGGAAGA TATTGGAAGG GAGGAACAAG TAATAGAACA TCTCACTCCA TGATCTGCCT GCTAAGTTTG TGTAGAGACG	120 180 240 300 360 420 480 540 600 650 720 780
50 55	Seq ID NO: Nucleic Ac: Coding seq 1 AATTTTCAGA TAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGAA TGGGATGAGA GATCATGTTT GTTGAGTGTA ACTGGTAACC TTATTCTGT TTGTCCAGGC GCCTTTGCCT TTGTTTTTTGTT TAGTCTTGCT	246 DNA second accession a	Quence 1 #: XM_058 1400 21 GGGGATGGTT GCTCAATAGA ATGTTCTGAG TTGGAGAAGC CCTCACTAGA ATGAAAATGG CAAAGACTTC TATTTTAAG AAGGGGTTT GGCACGAACC TGGGACTACA TTTGTTTTG GCTAGTCTCA	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGGACTAT AAAAGGACAT GAACTAGTC AACCAGGAG TTGTTTTTT TCATAGCTCC GGCATGAGCC GGGGGGTTG AACTCCTGGC	41 TCAGGTTTTT TAATAGAAAG AGATTTGTTC GAGAGGTTTT GCCACTTTAG ATGTTAGTGT TTTCCAAGCG GAAAGCTTTA AAAGACAGGA TGGACTTAAG TCCATGCAT TTTTGTTTTT TTCAAGTGAT	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT TATTGGAAGG TAATTGGAAGG TAATAGAACA TCTCACTCCA TGATCTGCT GCTAAGTTT GCTAAGTTTG TGTAGAGACG CCTCCTGCCT	120 180 240 300 360 420 480 540 600 660 720 780 840
505560	Seq ID NO: Nucleic Ac. Coding seq 1 AATTTTCAGA TAAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGA TGGGATGAGA GATCATGTT GTTGAGTGTA ACTGGTAACC TTATTCTGT TTGTCCAGGC GCCTTTGCT TTGTTCTTTTTTTTTT	246 DNA set id Accession tence: 897-: 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTTA TAATATGGAC TGAGTATTAA AGAAAAGTC TACTGTCTGT TGCCTATCTG GTTTATGTAT CAAGTGCAAT CTGAGTAGT TCTGTTTG TGTTTGTTTG TGTTTTGTTT	quence #: XM_058 400 21 GGGGATGGTT GCTCAATAGA ATGTTCTACA AGTTCTTGAG ATGAAAATGG CCTCACTAGA ATGAAAATGG CAAAGACTTC TATTTTAAG AAGGGGTTTT GGCACGAACC TGGGACTACA ATTGTTTTTG GCTAGTCTCA ATTACAGCAC	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TAAAAGGACA TGAACTAGTG CAGCATTTCC AACCCAGGAG TTGTTTTTT TCATAGCTCC GGCATGAGCC GGCGGGTTG AACTCCTGGC TTGGATTCAG	41 TCAGGTTTTT AATAGAAAAG AGATTTGTTC GAGAGGTTTT TTTCCAAGCA AGGTCCTAGA GAAAGCTTTAA AAAGACATTAA TGGACATTTAA CCCATGCTG TTTTGTTTTT TTCAAGTGAT CTTCTTCATT	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT GGCCCTTCCT TATTGGAAGG GAGGACAAG TCATAGAACA TCTCACTCCA TGATCTGCCT GCTAAGTTTG TGTAGAGACG CCTCCTGCCT TCCAACATGG	120 180 240 300 360 420 480 540 600 650 720 780 840 900
50 55	Seq ID NO: Nucleic Ac: Coding seq AATTTTCAGA TAAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGAA ACTGGATGAGA GATCATGTTT GTTGAGTGTA ACTGGTAACC TTATTCTGT TTGTCCAGGC GCCTTTGCCT TTTTTTGTT TAGTCTTGCT TAGTCTTGCT TAGTCTTGCT ACAACAAACTTA	246 DNA set id Accession lence: 897-: 11 AGTTTCGTAT TRATCTCAGT TTCTCTTTA TRATATGGAC TGAGTATTAA AAGAAAAGTC TACTGTCTGT TGCCTATCTG GTTTATGTAT CCTGAGTAGC TCTGAGTAGC TGTTTGTTTG TTGTTGCCAG GAGTGCCAGG CACCGACTCC	Quence #: XM_058 4400 21 GGGGATGGTT GCTCAATAGA ATGTTTCACA AGTTCTTGAG ATGAGAAGC CCTCACTAGA ATGAGAAGC CAAAGACTTC TATTTTTAAG AAGGGGTTTT TGGCACGAACC TGGGACTACA TTTGTTTTG GCTAGTCTCA ATTACAGCAC CTGGACCCTG	31) TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TAAAGGACTATCC AACCCAGGAG TGACCAGGAG TTGATTTTTTT TCATAGCTCC GGCATGAGCC GGCGGGGTTG AACTCCTGG AACTCCTGGATCCC AACAGAGAGCC AACAGAGAGCC AACAGAGAGCC AACAGAGAGCC AACAGAGAGCCATGAGCC	41 TCAGGTTTTT AATAGAAAAG AGATTTGTTC GAGAGGTTTT GCCACTTTAG ATGTTAGTGT TTTCCAAGCA AGGTCCTAGA GAAAGCTTTA AAAGACAGGA TGGACTTAAG CCCATGCCTG TTTTGTTTTT TTCAAGTGAT CTTCTTCATT GCCAATGCCCC	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT TATTGGAAGG GAGGAACAAG TAATAGAACA TCTCACTCCA TGATCTGCCT GCTAAGTTTG TGTAGAGACG CCTCCTGCCT TCCTACCT TCCAACATGG TATGACATAGG TATGACAAAA	120 180 240 300 420 480 540 600 660 720 780 840 900
505560	Seq ID NO: Nucleic Ac: Coding seq 1 AATTTTCAGA TAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGAA TGGGATGAGA ACTGGTAACC TTATTCTGT TTGTCCAGG TTGTCCAGG TTGTTCCAGT TTGTCCAGC TTTTTTTGTT TAGTCTTGCT TAGTCTTGCT AAGAAACTTA AAGAAACTTA ACCATCAAAT	246 DNA secid Accession lence: 897-1 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA TAATATGGAC TGAGTATTAA AGGAAAAGTC TACTGTCTGT TGCCTATCTG GTTTATGAT CAAGTGCAAT CCTGAGTAGC TGTTTGTTTG TTGTTGCCAG GAGTGCACCACCACCACCTCC CAGGGCTTGC	Quence #: XM_058 4400 21 GGGGATGGTT GCTCAATAGA ATGTTTCACA AGTTCTTGAG TTGGAGAAGC CCTCACTAGA ATGAAAATGG CAAAGACTTC TATTTTTAAG AAGGGTTTT GGCACGAAC TTGGTTTTTG GCTAGTCCA ATTACAGCAC CTGGACCCTG AGGTTCCTT	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGTATT AAAAGGACT CAGCATTCC AACCAGGAG TTGTTTTTT TCATAGCTCC AGCATTTCC AACCCAGGAG TTGTTTTTT CATAGCTCC GGCATGAGCC GGCAGGGGTTG AACTCTGC TTGGATTCAGATCAGA	41 TCAGGTTTTT AATAGAAAAG AGATTTGTTC GAGAGGTTTT GCCACTTTAG ATGTTAGTGT TTTCCAAGCA AGGTCCTAGA GAAAGCTTTA AAAGACAGGA CCCATGCCTG TTTTGTTTTT TTCAAGTGAT CTTCTTCATT GCAATGCCCC CAAGTGCCAG	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT TATTGGAAGG GAGGAACAAG TAATAGAACA TCTCACTCCA TGATAGTCT GCTAAGTTTG TGTAGAGACG CCTCCTGCCT TCCAACATGG TATGACAAAA AAGAATCATC	120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020
505560	Seq ID NO: Nucleic Ac: Coding seq ANTITTCAGA TAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGAA TGGGATGAGA ACTGGTAACC TTATTCTGT TTGTCCAGG TTGTCCAGG TTGTTCCAGT TTGTCCAGG TTTTTTGTT TAGTCTTGCT AGAAACTTA ACCATCAAAT CTGATGTTGC	246 DNA secid Accession lence: 897-1 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA TAATATGGAC TGAGTATTAA AGGAAAAGTC TACTGTCTGT TGCCTATCTG GTTTATGTAT CAAGTGCAAT CCTGAGTAGC TGTTTGTTTG TTGTTGCCAG GAGTGCACCACCACCACCCACCACCCACCACCCACAATTG AAGCAAATTG	Quence #: XM_058 4400 21 GGGGATGGTT GCTCAATAGA ATGTTCACA AGTTCTTGAG TTGGAGAAGC CCTCACTAGA ATGAAAATGG CAAAGACTTC TATTTTAAG AAGGGTTTT GGCACGAAC TTGGTTTTTG GCTAGTCCA ATTACAGCAC CTGGACCCTC AGGTTTCCTT GCTACTTGTCTT	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGTATT AAAAGGACT CAGCATTCC AACCAGGAG TTGTTTTTT TCATAGCTCC AGCATTTCC AACCCAGGAG TTGTTTTTT CATAGCTCC GGCATGAGCC GGCAGGGGTTG AACTCTGGC TTGGATTCAG AGAAGCTATT ATCATCTTAT CCTTCAATGC	41 TCAGGTTTTT TCAGGTTTTT AATAGAAAAG AGATTTGTTC GCACTTTAG ATGTTAGTGT TTTCCAAGCA AGGTCCTAGA GAAAGCTTTA AAAGACAGAG CCCATGCCTG TTTTGTTTTT TTCAAGTGAT CTCATCATC CAAGTGCAGA CCAATGCCCACAG CAAGTGCAGA TCGCCACCAG	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT TATTGGAAGG GAGGAACAAG TAATAGAACA TCTCACTCCA TGATAGTCT GCTAAGTTTG TGTAGAGACG CCTCCTGCCT TCCAACATGG TATGACAAAA AAGAATCATC GTTCCTCGAG	120 180 240 300 360 420 480 540 660 720 780 840 900 1020 1080
505560	Seq ID NO: Nucleic Ac. Coding seq 1 AATTTTCAGA TAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGA TGGGATGAGA GATCATGTT GTTCAGTTAT CTTATTCTGT TTGTTCAGGC GCCTTTGCT TTTTTTTTTT	246 DNA set id Accession tence: 897-: 11 AGTTTCGTAT TRATCTCAGT TTCTCTTTA TRATATAGAC TGAGTATTAA AGARAAGTC TACTGTCTGT TGCCTATCT TGCTATCTG TGTTATGTA CAAGTGCAAT CCTGAGTAGC TGTTTGTTTG CAAGTGCTAG GAGTGCTAG GAGTGCTAG CACGACTCC CAGGGCTTGC CAGGCAATTG TCATCATATT	Quence #: XM_058 400 21 GGGGATGGTT GCTCAATAGA ATGTTTCACA AGTTCTTGAG ATGAAAATGG CCTCACTAGA ATGAAAATGG CAAAGACTTC TATTTTTAC AAGGGGTTTT GGCACGAACC TGGGACTACA ATTACTTTTTT GCTACTCA ATTACAGCAC CTGGACCCTG AGGTTTCCTT GCTACTTGTC TCAAGCTGTG	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGGACA TGAACTAGTG CAGCATTTCC AACCCAGGAG TTGTTTTTT TCATAGCTCC GGCATGAGCC GGGGGGTTG AACTCCTGGC TTGGATTCAG AGAAGCTATT ATCATCTTAT ATCATCTTAT CCTTCAATGC	41 TCAGGTTTTT AATAGAAAAG AGATTTGTTC GAGAGGTTTT TCCAAGCA AGGTCCTAGA GAGACCTTAG GAAAGCTTTAA AAGACAGGA TGGACTTAAG CCCATGCCTG TTTTGTTTTT TTCAAGTGAT TTCAAGTGAT CCCATGCCTG TTTTGTTTTT TCAAGTGAT CCAATGCCCC CAAGTGCAGA TCGCCACCAG TTGTATTGAG TCGCCACCAG	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT GGCCCTTCCT TATTGGAAGG GAGGACAAG TAATAGAACA TCTCACTCCA TGATCTGCCT GCTAAGTTTG TGTAGAGACG CCTCCTGCCT TCCAACATGG TATGACAACA TGCAACATGG TATGACAACA CGTCCTGCCT TCCAACATGG TATGACAACA AAGAATCATC GTTCCTCGAG CAAGATGTTG	120 180 240 300 360 420 480 540 660 720 780 960 1020 1080 1140
50556065	Seq ID NO: Nucleic Ac. Coding seq ANTITTCAGA TAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGA TGGGATGAGA GATCATGTT GTTGAGTGTA ACTGGTAACC TTATTCTGT TTGTCCAGGC GCCTTTGCT TTTTTTGTT TAGTCTTGCT CAGCCTCCA AAGAACTTA ACCATCAAAT CTGATGTTGC CTGAAATTAG TCAACCAAAAC	246 DNA set id Accession tence: 897-: 11 AGTTTCGTAT TRATCTCAGT TTCTCTTTA TRATATAGAC TGAGTATTAA AGARAAGTC TACTGTCTGT TGCCTATCTG GTTTATGTAT CCTGAGTAGAA CCTGAGTAGAA CCTGAGTAGC TGTTTGTTTG CAGGAGTCC CAGGGCTTGC CAGGCAATTC CAGGACAATTC TCATCATATC CAGGAGCCTT CAGGAGCCTT CCAGGAGCCTT CCAGGAGCCT CCAGGAGCCT CCAGGACT CCAGGAGCCT CCAGGAGAGCCT CCAGAGAGCCT CCAGAGAGCCT CCAGAGAGCCT CCAGAGAGCCT CCAGAGAGCCT CCAGAGAGCCT CCAGAGAGCCT CCAGAGAGCCT CCAGAGAGCCT CCAGAGAGAGCCT CCAGAGAGCCT CCAGAGAGAGCCT CCAGAGAGAGCCT CCAGAGAGAGCCT CCAGAGAGAGCCT CCAGAGAGAGCCT CCAGAGAGAGCCT	Quence #: XM_058 400 21 GGGGATGGTT GCTCAATAGA ATGTTTCACA AGTTCTTGAG ATGAAAATGG CCTCACTAGA ATGAAAATGG CAAAGACTTC TATTTTTAAG GCACGAACC TGGGACTACA TTGTTTTTG GCTAGTCTCA ATTACAGCAC CTGGACCTG AGGTTCCTT CCTACTTGT CCAACTGTC AGGTTTCT CCAACTGTG AGACAAGAGA AGACAAGAGAGA	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGGACA TGAACTAGTG CAGCATTTCC AACCCAGGAG TTGTTTTTTTTTT	41 TCAGGTTTTT AATAGAAAAG AGATTTGTTC GAGAGGTTTT GCCACTTTAG ATGTTAGTGT TTTCCAAGCA AGGTCCTAGA GAAGCCTTAG CCATGCCTG TTTTGTTTTTTTTTT	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT GGCCCTTCCT TATTGGAAGG GAGGACAAG TAATAGAACA TCTCACTCCA TGATCTGCCT GCTAAGTTTG TCTAGACACG CCTCCTGCCT TCCTACACTTG TCCAACATGG TATGACAAAA AAGAATCATC GTTCCTCGCG CAAGATTTG CAAGATTTTG CAAGATTTTG CAGTGCCCTC	120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140 1200
505560	Seq ID NO: Nucleic Ac: Coding seq ARTITICAGA TARATGIATT GTGAAACCAT CTGTTATCCA ATACAGGGAA TGGGATGAGA GATCATGTTAT CTTATTCTGT TATTCTGGT TATTCTGGT TATTCTGCT TAGTCTTGCT TAGTCTTGCT AACAAACTTA ACCATCAAAT CTGAAATTAG CTGAAATTAG CTGAAATTAG CTGACAAAC CTTGCGATGA	246 DNA set id Accession lence: 897-1 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA TAATATGGAC TGAGTATTAA AGAAAAGTC TACTGTCTGT TGCCTATCTG TTTTATGTAT CAGTGCAAT CCTGAGTAGC GAGTGCTAGC GAGTGCTAGC CACCGACTCC CAGGGCTTGC AAGCAAATTG TCATCATATTG TCATCATATTAT CAAGTGCAAT CAAGTAGC CACCGACTCC CAGGGCTTGC AAGCAAATTG CAGGAGCCTT CAGGAGCCTT AGACTGGGAT	Quence #: XM_058 400 21 GGGGATGGTT GCTCAATAGA ATGTTTCACA AGTTCTTGAG ATGAGAAGCTTC TATTTTTAAG AAGGGTTTT TGGACACC TGGACTACA TTGGTTTTTG GCTAGTACA TTTGTTTTG GCTAGTCTCA ATTACAGCAC CTGGACCTG AGGTTTCCTT GCTACTTGT AGGTTTCCTT GCTAAGTTGT TCAAGCAC AGACAAGAGAAAAAGATTTGT	31) TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGGATAT TAAAGGGACA TGACTAGTG CAGCATTTCC AACCCAGGAG TTGTTTTTTT TCATAGCTCC GGCATGACCC GGGGGGTTG AACTCCTCCA ACCCAGAGC AGAGCTATT ATCATCTTAT CCTTCAATGC CTCTGCTGA CTCTGCTGA	41 TCAGGTTTTT AATAGAAAAG AGATTTGTTC GAGAGGTTTT GCCACTTTAG ATGTTAGTGT TTTCCAAGCA AGGTCCTAGA GAAAGCTTTA AAAGACAGGA TGGACTTAAG CCCATGCCTG TTTTGTTTTT TCCAAGTGAT CTTCTTCATT GCAATGCCCC CAAGTGCAGA TCGCCACCAG TTGTATTAGG AGGACCTTAG CAGCACCCCA	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT GGCCCTTCCT TATTGGAAGG GAGGAACAAG TAATAGAACA TCTCACTCCA TGATCTGCCT GCTAAGTTTG GCTAAGTTTG TCCAACATGG TATGACATAA AAGAATCATC GTTCCTGCGC GTTCCTGCCT CCTTCCTCTCT TCCAACATGG CAAGATGTTG CAGTGCCCTC TTTCTCTGGG	120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140 1200 1260
50556065	Seq ID NO: Nucleic Ac: Coding seq 1 AATTTTCAGA TAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGAA TGGGATGAGA GATCATGTTT GTTGAGTGTA ACTGGTAACC TTATTCTGT TTGTCCAGG TTGCTTGCT TTGTTTGTT TAGTCTTGCT CAGCCTCCCA AAGAACTTA ACCATCAAAT CTGATGTTGC CTGAAATTAG TCAACCAACC CTTGCGATGA GCACAACTCA	246 DNA secid Accession lence: 897-1 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA TAATATGGAC TGAGTATTAA AAGAAAAGTC TACTGTCTGT TGCCTATCTG GTTTATGTAT CAAGTGCAAT CCTGAGTAGC CACCGACTCC CAGGGCTTGC AAGCAAATTG TCATCATATC CAGGAGCTTGC AGGAGCTTGC AGGAGCTTGC AGGAGCTTGC AGGAGCTTGC AGGAGCCTTCC CAGGGGCTTGC AGGAGCCTTCC CAGGGGCTTGC AGGAGCCTACTCAGACTAGACT	Quence #: XM_058 4400 21 GGGGATGGTT GCTCAATAGA ATGTTTCACA AGTTCTTGAG TTGAGAAATGG CCTCACTAGA ATGAAAATGG CAAAGACTTC TATTTTTAAG AAGGGTTTT GGCACGAACC TTGGTTTTTG GCTAGTCCA ATTACAGCAC CTGGACCCTC AGTTACTTCTT GCTACTTGTC TCAAGCTGTC TCAAGCTGTC AGACAAGAGA AAAGATTTGT AACAACAGCC	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGTATA TGAACTAGTG CAGCATTTCC AACCCAGGAG TTGTTTTTTT TCATAGCTCC GGCATGAGCC GGCAGGGGTTG AACTCCTGGC AGAACTATTAC ACTCTGGCTAA ACTCTGATTAC CCTTCAATGC CTCTGGCTGA CTCTGGCTGA CTCTGGCTGA CTCTGGCTGA CTCTGGCTGA CTCTGGCTAG CTCTGGCTAG CTGCGAGCAA CTGCGAGCAA	41 TCAGGTTTTT TCAGGTTTTT GAGAGGTTTT GCACTTTAG ATGTTAGTGT TTTCCAAGCA AGGTCCTAGA GAAAGCTTTA AAAGACAGAG CCCATGCCTG TTTTGTTTTT TCAAGTGAT CTCTTCATT TCAAGTGAT CCAATGCCCC CAAGTGCAG TCGCACCAG TTGTATTAGA TCGCCACCAG TGGAATTAGAC CAGCACCCCA CAGCACCCCA CAGCACCCCA CATAGTTACA	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT GGCCCTTCCT TATTGGAAGG GAGGAACAAG TAATAGAACA TCTCACTCCA GCTAAGTTTG TGTAGAGTAG CCTCCTGCCT TCCAACATGG CAACATGG CAACATGG CAACATGG CAACATGG CAAGATCTCCT TTTGTCTCGAG CAAGATCTTC CAGTCCCTC TTTTGTCTCTGGG GAACATAAGA	120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140 1200
50556065	Seq ID NO: Nucleic Ac. Coding seq 1 AATTTTCAGA TAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGA GATCATGTTT GTTCAGTAA ACTGGTAACC TTATTCTGT TTGTCCAGGC GCCTTTGCT TTGTTTTTGT TAGTCTTGCT CAGCCTCCA AAGAAACTTA ACCATCAAT CTGAATGTTG CTGAATTAG CCTGCATGA GCACAACC ATAACCTAGG	246 DNA set id Accession tence: 897-: 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTTA TAATATGGAC TGAGTATAA AGAAAAGTC TACTGTCTGT TGCCTATCTG TGCCTATCTG TGCTTATGTAT CAAGTGCAAT CATGTCAG GAGTGCAAT CCTGAGTAGC CACGACTCC CAGGGCTTGC AGACAATTG TCATCATATC CAGGAGCCTT AGACTGGAC TCATCATATC CAGGAGCCTT AGACTGGAC TCATCATATC TCATCATCATC TCATCATCATC TCAGGACTCT TCAGGACTCT TCAGGACTCT TCAGGACTCT TCAGGACTCT TCAGGCATG TTCAGGCATG	quence #: XM_058 400 21 GGGGATGGTT GCTCAATAGA ATGTTCTCACA AGTTCTTGAG ATGAAAATGG CCACACTAGA ATGAAAATGG CAAAGACTTC TATTTTTAAG AAGGGGTTTT GGCACGAACC TGGGACTACA ATTACAGCAC CTGGACCCTG AGGTTTCCTT GCTACTTGTCTT TCAAGCTGTG AGACAAGAGA AAAGATTTGT ACAACAGCC CGAGTTCCCA	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGGACA TGAACTAGTG CAGCATTTCC GCCATGAGCC TTGTTTTT TCATAGCTCC GGGGGGGTTG AACTCCTGGC TTGGATTCA TCATACTTAT ATCATCTTAT ATCATCTTAT ATCATCTTAT CTTCAATGC CTGCGAGCAGA CTCTGGCTGA	41 TCAGGTTTT AATAGAAAG AGATTTGTTC GAGAGGTTTT GCCACTTTAG ATGTTAGTGT TTTCCAAGCA AGGTCCTAGA AGAGCTTTA AAAGACAGGA TGGACTTAAG CCCATGCTG TTTTGTTTT TTCAAGTGAT CTTCTTCATT GCAATGCCCC CAAGTGCAGA TCGCCACCAG TTGTATTGAG GAGCACTCCA CATAGTTACA GAGCACCCCA CATAGTTACA GTATGTTACA GTATGTTACA	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT GGCCCTTCCT TATTGGAAGG GAGGACCAG TCACTCCA TGATCTCCA TGATCTCCT TGTAGAGAC TCTCACTCCA TGATCTCCT TCTAAGTTTG CTTAGAGACG CCTCCTGCCT TCCAACATGG TATGACAAAA AAGAATCATC GTTCCTCGAG CAAGATGTTG CAGTGCCCTC TTTGTCTGGG GAACATAAGA CCATGGAAAA	120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140 1200 1250
5055606570	Seq ID NO: Nucleic Ac. Coding seq 1 AATTTTCAGA TAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGA GATCATGTTT GTTGAGTGTA ACTGGTAACC TTATTCGT TTGTCCAGGC GCCTTTGCT TTGTTTTTTTTT AGTCTTGCT TAGTCTTGCT TAGTCTTGCT CAGCCTCCCA AAGAACTTA ACCATCAAAT CTGATGTTGC CTGAAGTTAG CCTGAAGTTAG CCTGAAGTTAG CCTGAAGTTAG CACACAAC ATAACCTGGC ACAATGGAAA	246 DNA set id Accession tence: 897-: 11	Quence #: XM_058 4400 21 GGGGATGGTT GCTCAATAGA ATGTTTCACA AGTTCTTGAG TTGAGAAATGG CCTCACTAGA ATGAAAATGG CAAAGACTTC TATTTTTAAG AAGGGTTTT GGCACGAACC TTGGTTTTTG GCTAGTCCA ATTACAGCAC CTGGACCCTC AGTTACTTCTT GCTACTTGTC TCAAGCTGTC TCAAGCTGTC AGACAAGAGA AAAGATTTGT AACAACAGCC	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGGACA TGAACTAGTG CAGCATTTCC AACCCAGGAG TTGTTTTTT TCATAGCTCC GGCATGAGCC GGGGGGTTG TCATCCTGGC TTGGATTCAG AGAAGCTATT CCTTCAATGC ATGACAGAAG CTCTGGCTGA GGAGCAGAAG CTCTGGCTGA ATCCTGCC ATCTCTCAA	41 TCAGGTTTT TAATAGAAAAG AGATTTGTTC GAGAGGTTTT TCCAAGCA AGGTCCTAGA AGGTCCTAGA GAGACCTTAAG CCCATGCCTG TTTGTTTTT TCAAGCA TGGACTTAAG CCCATGCCTG TTTGTTTTT TCAAGTGAT CCCATGCCTG TTTGTTTTT GCAATGCCCC CAAGTGCAGA TTGTATTGAG GAGCACCCCA CATAGTTACA GTATGTTACA GTATGTTACA GTATGTTCTC ATGCCAGACC ATGCCAGACC ATGCCAGACC ATGCCAGACC CATAGCTTACA GTATGTTCTC ATGCCAGACC ATGCCACACC ATGCCAGACC ATGCCAGACC ATGCCAGACC ATGCCAGACC ATGCCAGACC ATGCCAGACC ATGCCACACC ATGCCACACC ATGCCACACC ATGCCACACC ATGCCACACC ATGCCACACC ATGCCACC ATGCCACACC ATG	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT GGCCCTTCCT TATTGGAAGG GAGGACAAG TAATAGAACA TCTCACTCCA TGATCTCCT GCTAAGTTTG TGTAGAGACG CCTCCTGCCT TCCAACATGG TATGACAACA TGTCCTCGCG TCCAACATGG TATGACATCAT CGTCCTGCCT TCCAACATGG TATGACAACA CCTCCTGCT TTTGTCTGGG GAACATAAGA CCATGGAAAA CCATGGAAAA CTAGAAGACT	120 180 240 300 360 420 480 540 660 720 780 840 900 1020 1080 1140 1200 1320 1380
50556065	Seq ID NO: Nucleic Ac. Coding seq 1 AATTTTCAGA TAAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGA GATCATGTTA GTTGAGTGTA ACTGGTAACC TTATTCTGT TTGTCCAGGC GCCTTTGCCT TTTTTTGTT CAGCCTCCCA AAGAAACTTA ACCATCAAAT CTGATGTTGC CTGAAGTTGC CTGAAGTTGC CTGAAGTAGC CTTGCGATGA GCACAACTCA ATAACCTGGA ACAAACTCA ACAACTGAAA GTTGCTTCTT	246 DNA set id Accession tence: 897-1 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA TAATATGAC TGAGTATATA AAGAAAAGTC TACTGTCTGT TGCCTATCTG TTTTTGTTGCAG GAGTGCAAT CCAGGGCTTGC AAGCAAATTG TCATCATGTTGTTG TCATCATGTTGTTGTGCAG TCATCATATTG TCATCATATAT TCAGGCATG CACCGACTCC CAGGGCTTGC AAGCAAATTG TCATCATATG TCATCATATG TCATCATATG TCAGACTGAGATA CTACTCAGACTTCAGACTAA CTTCTACCAG	Quence #: XM_058 1400 21 GGGGATGGTT GGTCAATAGA ATGTTTCACA AGTTCTTGAG ATGAGAAGC CCTCACTAGA ATGAGAAATGG CAAAGACTTC TAGTTTTAAG AAGGGGTTTT GGCACGAACC TGGGACCACA ATTACAGCAC CTGGACCTG AGGTTCCTT GCTAAGTTCCT GCAAGACAC CTGAACTGTC CCAAGCAC CCGAGTTCCCT AGACAAGAGA AAAGATTCGT AACAACAGCC CGAGTTCCCT TGAGTTCCT TGAATACCT TGGGTTCCCT TGGGTTCCCT TGGGTTCCCT TGGGTTCCC	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGTATT TAAAGGACTATCC AACCCAGGAG TGGATTTCT GCATTATTTTT TCATAGCTCC GGCATGAGCC GGGGGGTTG AACTCCTGCA AGAAGCTATT ATCATCTTAT CCTTCAATGC CTTCGATGAC GGGAGCAGAC CTCTGGCTGA GGGAGCAGAC CTGCGGGCAA AATCTCTGCA TTGCATCAA	41 TCAGGTTTTT AATAGAAAAG AGATTTGTTC GAGAGGTTTT GCCACTTTAG ATGTTAGTGT TTTCCAAGCA AGGTCCTAGA GAAAGCTTTA TGGACTTAAG CCCATGCCTG TTTGTTTTT TCAAGTGAT TCTCATTCATT GCAATGCCCC CAAGTGCAGA TGGACTTAGG GAGCACCCC CATGCTTGTTTTTT CTATTTCATT GCAATGCCCC CAAGTGCAGA TGGACCCCA CATAGTTACA GTATTTAGA TAGCCCCCA CATAGTTACA ATGCCAGACC AATCTAATTA	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT GGCCCTTCCT TATTGGAAGG GAGGACAAG TAATAGAACA TCTCACTCCA TGATCTGCCT GCTAAGTTTG TCTAGAGAGC CCTCCTGCCT TCCAACATGG TATGACAAAA AAGAATCATC GTTCCTGAG CAAGATGTTG CAGTGCCCTC TTTGTCTGGG GAACATAGA CCATGGAAAA CCATGGAAAA CCATGGAAAAA CCATGGAAAAA CCTAGAAAAA CTAGAAAGACT TAGAATGGTA	120 180 240 300 360 420 480 540 660 720 780 960 1020 1140 1220 1320 1380 1440
5055606570	Seq ID NO: Nucleic Ac. Coding seq 1 AATTTTCAGA TAAATGTATT GTGAAACCAT CTGTTATCCA ATACAGGGAA TGGGATGAGA GATCATGTTT GTTGAGTGTA ACTGGTAACC TTATTCTGT TAGTCCAGGC GCCTTTGCCT CAGCCTCCCA AACAAACTTA ACCATCAAAT CTGATGTTGC CTGAAATTAG TCAAACAAC CTTGCGATGA GCACAACC ATAACCTGGC ACAATGGAAA GTTGCTCTT AACTCCCTGT	246 DNA secid Accession lence: 897-1 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA TAATATGGAC TGAGTATAA AGAAAAAGTC TACTGTCTGT TGCCTATCTGTTTATGTAT TAATATGTAT TCAAGTGCAAT CCTGAGTAGCATGCAGGACTCC CAGGGCTTGC AAGCAAATTG TCATCATATC CAGGACCTT TCATCATATC CAGGACCTT TCATCATATC CAGGACCTT TCAGCATGCATGCAAGCATGCTTCAGACTGACTTCAGACTGACT	Quence #: XM_058 4400 21 GGGGATGGTT GCTCAATAGA ATGTTTCACA AGTTCTTGAG TTGGAGAAGC CCTCACTAGA ATGATATTTTAAG AAGGGGTTTT TATTTTTAAG AAGGGGTTTT TATTTTAAG CAAGAACCAC TTGGTCTCA ATTACAGCAC ATTACAGCAC ACTGACACAGAC CTGAACATGTC CAAGCTGTC AGACATGTC TCAAGCTGTC AGACACAGCC CGAGTTCCCA CTGAATACCT TGGGTTCTCA ACTGACACAGC CTGAATACCT TGGGTTCTCA ACTGACAAGC CTGAATACCT TGGGTTCTCA ACTGACAAGC	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGGACA TGAACTAGTG CAGCATTTCC AACCAGGAG TTGTTTTTTT TCATAGCTCC GGCATGAGCC GGGGGGTTG AACCTCGCA ACCTCGCA ACCTCGCA ACCTCGCA ACCTCTCAATGC CTCGCTGA CTCGCTGA CTCGCTGA CTCTCATCA ATCTCATCAA ATCTCTTCATCA ATCTCATCAC ACCTTTTT	41 TCAGGTTTTT TCAGGTTTTT AATAGAAAAG AGATTTGTTC GCACTTTAGG ATGTTAGTGT TTTCCAAGCA AGGTCCTAGA GAAAGCTTTA AAAGACAGGA TCGACTTAAG CCCATGCCTG TTTTGTTTTT TCAAGTGAT CTTCTTCATTTT GCAATGCCCC CAAGTGCAGA TCGCACCAG CAGCCCCA CATAGTTACA GTATTTTCAAGTGAT CTCCCCCCC CATAGTTCAC ATGCCAGAC CATAGTTACA GTATGTTCTC ATGCCAGACC AATCTAATTA CCTCCCCCCT	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT GGCCCTTCCT TATTGGAAGG GAGGAACAAG TCTCACTCCA TGATCTGCCT GCTAAGTTTG TGTAGAGACA AGAATCTTC GTTCCACCCA TCCACTCGG TATGCAACATGG TATGCAACATGG TATGCACAACA CATGGCCTC TTCTCTCGGG GAACATAGA CCATGGAAAA CCATGAAAAC TAGAAGACT TAGAAGACT TAGAAGACT TAGAATGGTA TAGAATGGTA TGAATCCTCA	120 180 240 300 360 420 480 660 720 780 840 900 960 1020 1140 1200 1320 1320 1340 1500
5055606570	Seq ID NO: Nucleic Ac. Coding seq 1 AATTTTCAGA TAAATGTATT GTGAAACCAT CTGTTATCCA ATACAGGGAA TGGGATGAGA GATCATGTTT GTTGAGTGTA ACTGGTAACC TTATTCTGT TAGTCCAGGC GCCTTTGCCT CAGCCTCCCA AACAAACTTA ACCATCAAAT CTGATGTTGC CTGAAATTAG TCAAACAAC CTTGCGATGA GCACAACC ATAACCTGGC ACAATGGAAA GTTGCTCTT AACTCCCTGT	246 DNA secid Accession lence: 897-1 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA TAATATGGAC TGAGTATAA AGAAAAAGTC TACTGTCTGT TGCCTATCTGTTTATGTAT TAATATGTAT TCAAGTGCAAT CCTGAGTAGCATGCAGGACTCC CAGGGCTTGC AAGCAAATTG TCATCATATC CAGGACCTT TCATCATATC CAGGACCTT TCATCATATC CAGGACCTT TCAGCATGCATGCAAGCATGCTTCAGACTGACTTCAGACTGACT	Quence #: XM_058 1400 21 GGGGATGGTT GGTCAATAGA ATGTTTCACA AGTTCTTGAG ATGAGAAGC CCTCACTAGA ATGAGAAATGG CAAAGACTTC TAGTTTTAAG AAGGGGTTTT GGCACGAACC TGGGACCACA ATTACAGCAC CTGGACCTG AGGTTCCTT GCTAAGTTCCT GCAAGACAC CTGAACTGTC CCAAGCAC CCGAGTTCCCT AGACAAGAGA AAAGATTCGT AACAACAGCC CGAGTTCCCT TGAGTTCCT TGAATACCT TGGGTTCCCT TGGGTTCCCT TGGGTTCCCT TGGGTTCCC	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGGACA TGAACTAGTG CAGCATTTCC AACCAGGAG TTGTTTTTTT TCATAGCTCC GGCATGAGCC GGGGGGTTG AACCTCGCA ACCTCGCA ACCTCGCA ACCTCGCA ACCTCTCAATGC CTCGCTGA CTCGCTGA CTCGCTGA CTCTCATCA ATCTCATCAA ATCTCTTCATCA ATCTCATCAC ACCTTTTT	41 TCAGGTTTTT TCAGGTTTTT AATAGAAAAG AGATTTGTTC GCACTTTAGG ATGTTAGTGT TTTCCAAGCA AGGTCCTAGA GAAAGCTTTA AAAGACAGGA TCGACTTAAG CCCATGCCTG TTTTGTTTTT TCAAGTGAT CTTCTTCATTTT GCAATGCCCC CAAGTGCAGA TCGCACCAG CAGCCCCA CATAGTTACA GTATTTTCAAGTGAT CTCCCCCCC CATAGTTCAC ATGCCAGAC CATAGTTACA GTATGTTCTC ATGCCAGACC AATCTAATTA CCTCCCCCCT	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT GGCCCTTCCT TATTGGAAGG GAGGAACAAG TCTCACTCCA TGATCTGCCT GCTAAGTTTG TGTAGAGACA AGAATCTTC GTTCCACCCA TCCACTCGG TATGCAACATGG TATGCAACATGG TATGCACAACA CATGGCCTC TTCTCTCGGG GAACATAGA CCATGGAAAA CCATGAAAAC TAGAAGACT TAGAAGACT TAGAAGACT TAGAATGGTA TAGAATGGTA TGAATCCTCA	120 180 240 300 360 420 480 660 720 780 840 900 960 1020 1140 1200 1320 1320 1340 1500
5055606570	Seq ID NO: Nucleic Ac. Coding seq 1 AATTTTCAGA TAAATGTATT GTGAAACCAT CTGTTATCCA ATACAGGGAA TGGGATGAGA GATCATGTTT GTTGAGTGTA ACTGGTAACC TTATTCTGT TAGTCCAGGC GCCTTTGCCT CAGCCTCCCA AACAAACTTA ACCATCAAAT CTGATGTTGC CTGAAATTAG TCAAACAAC CTTGCGATGA GCACAACC ATAACCTGGC ACAATGGAAA GTTGCTCTT AACTCCCTGT	246 DNA secid Accession lence: 897-1 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA TAATATGGAC TGAGTATAA AGAAAAAGTC TACTGTCTGT TGCCTATCTGTTTATGTAT TAATATGTAT TCAAGTGCAAT CCTGAGTAGCATGCAGGACTCC CAGGGCTTGC AAGCAAATTG TCATCATATC CAGGACCTT TCATCATATC CAGGACCTT TCATCATATC CAGGACCTT TCAGCATGCATGCAAGCATGCTTCAGACTGACTTCAGACTGACT	Quence #: XM_058 4400 21 GGGGATGGTT GCTCAATAGA ATGTTTCACA AGTTCTTGAG TTGGAGAAGC CCTCACTAGA ATGATATTTTAAG AAGGGGTTTT TATTTTTAAG AAGGGGTTTT TATTTTAAG CAAGAACCAC TTGGTCTCA ATTACAGCAC ATTACAGCAC ACTGACACAGAC CTGAACATGTC CAAGCTGTC AGACATGTC TCAAGCTGTC AGACACAGCC CGAGTTCCCA CTGAATACCT TGGGTTCTCA ACTGACACAGC CTGAATACCT TGGGTTCTCA ACTGACAAGC CTGAATACCT TGGGTTCTCA ACTGACAAGC	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGGACA TGAACTAGTG CAGCATTTCC AACCAGGAG TTGTTTTTTT TCATAGCTCC GGCATGAGCC GGGGGGTTG AACCTCGCA ACCTCGCA ACCTCGCA ACCTCGCA ACCTCTCAATGC CTCGCTGA CTCGCTGA CTCGCTGA CTCTCATCA ATCTCATCAA ATCTCTTCATCA ATCTCATCAC ACCTTTTT	41 TCAGGTTTTT TCAGGTTTTT AATAGAAAAG AGATTTGTTC GCACTTTAGG ATGTTAGTGT TTTCCAAGCA AGGTCCTAGA GAAAGCTTTA AAAGACAGGA TCGACTTAAG CCCATGCCTG TTTTGTTTTT TCAAGTGAT CTTCTTCATTTT GCAATGCCCC CAAGTGCAGA TCGCACCAG CAGCCCCA CATAGTTACA GTATTTTCAAGTGAT CTCCCCCCC CATAGTTCAC ATGCCAGAC CATAGTTACA GTATGTTCTC ATGCCAGACC AATCTAATTA CCTCCCCCCT	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT GGCCCTTCCT TATTGGAAGG GAGGAACAAG TCTCACTCCA TGATCTGCCT GCTAAGTTTG TGTAGAGACA AGAATCTTC GTTCCACCCA TCCACTCGG TATGCAACATGG TATGCAACATGG TATGCACAACA CATGGCCTC TTCTCTCGGG GAACATAGA CCATGGAAAA CCATGAAAAC TAGAAGACT TAGAAGACT TAGAAGACT TAGAATGGTA TAGAATGGTA TGAATCCTCA	120 180 240 300 360 420 480 660 720 780 840 900 960 1020 1140 1200 1320 1320 1340 1500
505560657075	Seq ID NO: Nucleic Ac. Coding seq 1 AATTTTCAGA TAAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGA TGGGATGAGA GATCATGTT GTTGAGTGTA ACTGGTAACC TTATTTCTGT TTGTCCAGGC GCCTTTGCCT TTTTTTGTT AGCTCTGCA AGAAACTTA ACCATCAAAT CTGATGTTGC CTGAAGTTGC CTGAAGTTGC CTGAGTTGC ACAACCAAAC CTTGCGATGA GCACAACTCA ATAACCTGGC ACAATGGAAA GTTGCTTCTT AACTCCCTGT TTTAATGCAA	246 DNA secid Accession lence: 897-1 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA TAATATGGAC TGAGTATAA AGAAAAAGTC TACTGTCTGT TGCCTATCTGTTTATGTAT TAATATGTAT TCAAGTGCAAT CCTGAGTAGCATGCAGGACTCC CAGGGCTTGC AAGCAAATTG TCATCATATC CAGGACCTT TCATCATATC CAGGACCTT TCATCATATC CAGGACCTT TCAGCATGCATGCAAGCATGCTTCAGACTGACTTCAGACTGACT	Quence #: XM_058 400 21 GGGGATGGTT GCTCAATAGA ATGTTTCACA AGTTCTTGAG ATGAAAATGG CCTCACTAGA ATGAAAATGG CAAAGACTTC TATTTTTAAG GCACGAACC TGGGACTACA ATTACAGCAC CTGGACCTG AGGTTCCTT GCTACTTGT CTAACTTGTC AGGTTCCTT CCAACGACC CCGACCAGACC CTGACCAGAC CTGACCAGAC CTGACCAGAC CTGACACAC CTGACCAGAC ACTGACAGAC ACTGACAGAC ACTGACAGAC ACTGACAGAC ACTGACAGAC ACTGACAGAC ACTGACAGC ACTCAGAAGC ACTCAGAAGC ACTCAGAAGC	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGGACA TGAACTAGTG CAGCATTTCC AACCAGGAG TTGTTTTTTT TCATAGCTCC GGCATGAGCC GGGGGGTTG AACCTCGCA ACCTCGCA ACCTCGCA ACCTCGCA ACCTCTCAATGC CTCGCTGA CTCGCTGA CTCGCTGA CTCTCATCA ATCTCATCAA ATCTCTTCATCA ATCTCATCAC ACCTTTTT	41 TCAGGTTTTT TCAGGTTTTT AATAGAAAAG AGATTTGTTC GCACTTTAGG ATGTTAGTGT TTTCCAAGCA AGGTCCTAGA GAAAGCTTTA AAAGACAGGA TCGACTTAAG CCCATGCCTG TTTTGTTTTT TCAAGTGAT CTTCTTCATTTT GCAATGCCCC CAAGTGCAGA TCGCACCAG CAGCCCCA CATAGTTACA GTATTTTCAAGTGAT CTCCCCCCC CATAGTTCAC ATGCCAGAC CATAGTTACA GTATGTTCTC ATGCCAGACC AATCTAATTA CCTCCCCCCT	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT GGCCCTTCCT TATTGGAAGG GAGGAACAAG TCTCACTCCA TGATCTGCCT GCTAAGTTTG TGTAGAGACA AGAATCTTC GTTCCACCCA TCCACTCGG TATGCAACATGG TATGCAACATGG TATGCACAACA CATGGCCTC TTCTCTCGGG GAACATAGA CCATGGAAAA CCATGAAAAC TAGAAGACT TAGAAGACT TAGAAGACT TAGAATGGTA TAGAATGGTA TGAATCCTCA	120 180 240 300 360 420 480 660 720 780 840 900 960 1020 1140 1200 1320 1320 1340 1500
5055606570	Seq ID NO: Nucleic Ac: Coding seq ANTITTCAGA TAMATGTATT GTGAMACCAT CTGTTATCCA ATAGAGGGA GATCATGTTT GTTGAGTGTA ACTGGTAMCC TTATTCTGT TTGTCCAGGC GCCTTTGCCT TTTTTTGTT TAGTCTTGCT TAGTCTTGCT TAGTCTTGCT ACCATCAMAT CCGAMACTTA ACCATCAMAC CTGAMATTAG CTGAMATTAG CTGAACTCA ATAMACCTGG GCACAACTCA ATAMACCTGG ACAATGGAMA GTTGCTTCTT ACTCCCTGT TTTAATGCAM Seq ID NO:	246 DNA set id Accession tence: 897-1 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA TAATATGGAC TGAGTATAA AGAAAAGTC TACTGTCTGT TGCTATCTG GTTTATGTAT CAAGTGCAAT CCTGAGTATCA GAGTGCAAT CAGGACTCC CAGGGCTTGC CAGGACTCC CAGGACTCTCACAGACCTTCAGACTGAC CTCCAGGATAA CTTCTACCAG GACTTTCCAA GAACCCTCAT	Quence #: XM_058 1400 21 GGGGATGGTT GGTCAATAGA ATGTTTCACA AGTTCTTGAG ATGAAAATGG CAAAGACTTC TATTTTTAAG AAGGGTTTT GGCACGAACC TGGGACCTG AGTTCTTGAG ATTACAGCAC CTGAACCTG AGGTTCCTT GCTAACTTGTT GCTAACTTGT ACAACAGAC TCAAGCTCCT AGGATTCCT TGAACTTGT ACAACAGAC ACTGAACACC CGAGTTCCCA ACTGACACC ACTGACACC ACTGACAGC ACTCAGAAGC ACTCAGACC ACTCAGC ACTCACC ACTCAGC ACTCA	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGTATT AAAAGGACA TGACTAGTG CAGCATTTCC AACCAGGAG TTGTTTTTTT TCATAGCTCC GGCATGAGCC GGGGGGGTTG AACCTCGCA ACCTCTCACAT ATCATCTAT CCTTCAATGC CTCGGCTGA CTCTGGCTGA CTCTGCTGA CTCTGCTGA ATCTCTTCATCA TTGCTCATCA ATCTCATCAC ACACTTTTTT	41 TCAGGTTTTT TCAGGTTTTT AATAGAAAAG AGATTTGTTC GCACTTTAGG ATGTTAGTGT TTTCCAAGCA AGGTCCTAGA GAAAGCTTTA AAAGACAGGA TCGACTTAAG CCCATGCCTG TTTTGTTTTT TCAAGTGAT CTTCTTCATTTT GCAATGCCCC CAAGTGCAGA TCGCACCAG CAGCCCCA CATAGTTACA GTATTTTCAAGTGAT CTCCCCCCC CATAGTTCAC ATGCCAGAC CATAGTTACA GTATGTTCTC ATGCCAGACC AATCTAATTA CCTCCCCCCT	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT GGCCCTTCCT TATTGGAAGG GAGGAACAAG TCTCACTCCA TGATCTGCCT GCTAAGTTTG TGTAGAGACA AGAATCTTC GTTCCACCCA TCCACTCGG TATGCAACATGG TATGCAACATGG TATGCACAACA CATGGCCTC TTCTCTCGGG GAACATAGA CCATGGAAAA CCATGAAAAC TAGAAGACT TAGAAGACT TAGAAGACT TAGAATGGTA TAGAATGGTA TGAATCCTCA	120 180 240 300 360 420 480 660 720 780 840 900 960 1020 1140 1200 1320 1320 1340 1500
505560657075	Seq ID NO: Nucleic Ac: Coding seq ANTITTCAGA TAMATGTATT GTGAMACCAT CTGTTATCCA ATAGAGGGA GATCATGTTT GTTGAGTGTA ACTGGTAMCC TTATTCTGT TTGTCCAGGC GCCTTTGCCT TTTTTTGTT TAGTCTTGCT TAGTCTTGCT TAGTCTTGCT ACCATCAMAT CCGAMACTTA ACCATCAMAC CTGAMATTAG CTGAMATTAG CTGAACTCA ATAMACCTGG GCACAACTCA ATAMACCTGG ACAATGGAMA GTTGCTTCTT ACTCCCTGT TTTAATGCAM Seq ID NO:	246 DNA set id Accession tence: 897-1 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA TAATATGAC TGAGTATA AAGAAAAGTC TACTGTCTGT TGCCTATCTG GTTTATGTAT CAAGTGCAAT CCTGAGTAGC CACGACTCC CAGGGCTTGC AAGCAAATTG TCATCATGTCTATCTGCAGCATATCTCAGGCATG CACCGACTCC CAGGGCTTC AGACTGAGTATC TCATCATCATCTCAGGCATT CTACTCTGAC TTCACAGGATA CTTCTACCAG GACTTTCACAG GACTTTCACAG GACTTTCACAG GACTTTCCAA GAACCCTCAT	Quence #: XM_058 1400 21 GGGGATGGTT GGTCAATAGA ATGTTTCACA AGTTCTTGAG ATGAAAATGG CAAAGACTTC TATTTTTAAG AAGGGTTTT GGCACGAACC TGGGACCTG AGTTCTTGAG ATTACAGCAC CTGAACCTG AGGTTCCTT GCTAACTTGTT GCTAACTTGT ACAACAGAC TCAAGCTCCT AGGATTCCT TGAACTTGT ACAACAGAC ACTGAACACC CGAGTTCCCA ACTGACACC ACTGACACC ACTGACAGC ACTCAGAAGC ACTCAGACC ACTCAGC ACTCACC ACTCAGC ACTCA	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGTATT AAAAGGACA TGACTAGTG CAGCATTTCC AACCAGGAG TTGTTTTTTT TCATAGCTCC GGCATGAGCC GGGGGGGTTG AACCTCGCA ACCTCTCACAT ATCATCTAT CCTTCAATGC CTCGGCTGA CTCTGGCTGA CTCTGCTGA CTCTGCTGA ATCTCTTCATCA TTGCTCATCA ATCTCATCAC ACACTTTTTT	41 TCAGGTTTTT TCAGGTTTTT AATAGAAAAG AGATTTGTTC GCACTTTAGG ATGTTAGTGT TTTCCAAGCA AGGTCCTAGA GAAAGCTTTA AAAGACAGGA TCGACTTAAG CCCATGCCTG TTTTGTTTTT TCAAGTGAT CTTCTTCATTTT GCAATGCCCC CAAGTGCAGA TCGCACCAG CAGCCCCA CATAGTTACA GTATTTTCAAGTGAT CTCCCCCCC CATAGTTCAC ATGCCAGAC CATAGTTACA GTATGTTCTC ATGCCAGACC AATCTAATTA CCTCCCCCCT	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT GGCCCTTCCT TATTGGAAGG GAGGAACAAG TCTCACTCCA TGATCTGCCT GCTAAGTTTG TGTAGAGACA AGAATCTTC GTTCCACCCA TCCACTCGG TATGCAACATGG TATGCAACATGG TATGCACAACA CATGGCCTC TTCTCTCGGG GAACATAGA CCATGGAAAA CCATGAAAAC TAGAAGACT TAGAAGACT TAGAAGACT TAGAATGGTA TAGAATGGTA TGAATCCTCA	120 180 240 300 360 420 480 660 720 780 840 900 960 1020 1140 1200 1320 1320 1340 1500
505560657075	Seq ID NO: Nucleic Ac: Coding seq ANTITTCAGA TAMATGTATT GTGAMACCAT CTGTTATCCA ATAGAGGGA GATCATGTTT GTTGAGTGTA ACTGGTAMCC TTATTCTGT TTGTCCAGGC GCCTTTGCCT TTTTTTGTT TAGTCTTGCT TAGTCTTGCT TAGTCTTGCT ACCATCAMAT CCGAMACTTA ACCATCAMAC CTGAMATTAG CTGAMATTAG CTGAACTCA ATAMACCTGG GCACAACTCA ATAMACCTGG ACAATGGAMA GTTGCTTCTT ACTCCCTGT TTTAATGCAM Seq ID NO:	246 DNA set id Accession tence: 897-1 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA TAATATGAC TGAGTATA AAGAAAAGTC TACTGTCTGT TGCCTATCTG GTTTATGTAT CAAGTGCAAT CCTGAGTAGC CACGACTCC CAGGGCTTGC AAGCAAATTG TCATCATGTCTATCTGCAGCATATCTCAGGCATG CACCGACTCC CAGGGCTTC AGACTGAGTATC TCATCATCATCTCAGGCATT CTACTCTGAC TTCACAGGATA CTTCTACCAG GACTTTCACAG GACTTTCACAG GACTTTCACAG GACTTTCCAA GAACCCTCAT	Quence #: XM_058 1400 21 GGGGATGGTT GGTCAATAGA ATGTTTCACA AGTTCTTGAG ATGAAAATGG CAAAGACTTC TATTTTTAAG AAGGGTTTT GGCACGAACC TGGGACCTG AGTTCTTGAG ATTACAGCAC CTGAACCTG AGGTTCCTT GCTAACTTGTT GCTAACTTGT ACAACAGAC TCAAGCTCCT AGGATTCCT TGAACTTGT ACAACAGAC ACTGAACACC CGAGTTCCCA ACTGACACC ACTGACACC ACTGACAGC ACTCAGAAGC ACTCAGACC ACTCAGC ACTCACC ACTCAGC ACTCA	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGTATT AAAAGGACA TGACTAGTG CAGCATTTCC AACCAGGAG TTGTTTTTTT TCATAGCTCC GGCATGAGCC GGGGGGGTTG AACCTCGCA ACCTCTCACAT ATCATCTAT CCTTCAATGC CTCGGCTGA CTCTGGCTGA CTCTGCTGA CTCTGCTGA ATCTCTTCATCA TTGCTCATCA ATCTCATCAC ACACTTTTTT	41 TCAGGTTTTT TCAGGTTTTT AATAGAAAAG AGATTTGTTC GCACTTTAGG ATGTTAGTGT TTTCCAAGCA AGGTCCTAGA GAAAGCTTTA AAAGACAGGA TCGACTTAAG CCCATGCCTG TTTTGTTTTT TCAAGTGAT CTTCTTCATTTT GCAATGCCCC CAAGTGCAGA TCGCACCAG CAGCCCCA CATAGTTACA GTATTTTCAAGTGAT CTCCCCCCC CATAGTTCAC ATGCCAGAC CATAGTTACA GTATGTTCTC ATGCCAGACC AATCTAATTA CCTCCCCCCT	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT GGCCCTTCCT TATTGGAAGG GAGGAACAAG TCTCACTCCA TGATCTGCCT GCTAAGTTTG TGTAGAGACA AGAATCTTC GTTCCACCCA TCCACTCGG TATGCAACATGG TATGCAACATGG TATGCACAACA CATGGCCTC TTCTCTCGGG GAACATAGA CCATGGAAAA CCATGAAAAC TAGAAGACT TAGAAGACT TAGAAGACT TAGAATGGTA TAGAATGGTA TGAATCCTCA	120 180 240 300 360 420 480 660 720 780 840 900 960 1020 1140 1200 1320 1320 1340 1500
505560657075	Seq ID NO: Nucleic Ac: Coding seq AATTTTCAGA TAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGA ATGGATGAGA GATCATGTT GTTGAGTGTA ACTGGTTACC TATTTCTGT TTGTCCAGGC GCCTTTGCCT TTTTTTGTT CAGCCTCCA AAGAAACTTA ACCATCAAAT CTGATGTTGC CTGAAATTAG CTGAAATTAG CTGAAATTAG CTAACCAAAC CTTGCGATGA GCACAACCCA ATAACCTGGA ATAACCTGGA ATAACCTGGA ATAACCTGGA ATAACCTGGA ATAACCTGGA CACATGGAAA GTTGCTTCTT AACTCCCTGT TTTAATGCAA Seq ID NO: Protein Acc 1	246 DNA secid Accession lence: 897-1 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA TAATATGGAC TGAGTATA AGAAAAGTC TACTGTCTGT TGCCTATCTG GTTTATGTAT CAGGTGCAAT CCTGAGTAGC CACGACTCC CAGGGCTTGC AAGCAAATTG TCATCATATC TCAGGACT TCACAGGAT TCTCTGAC TCATCATATC CAGGAGTCTC AGACTGACTT AGACTGGAT CTACTCTGAC TCACAGGAT CTACTCTGAC TCACAGGATA CTTCTACCAG GACTTTCCAA GAACCCTCAT 247 Protein cession #: 3	Quence #: XM_058 4400 21 GGGGATGGTT GCTCAATAGA ATGTTTCACA AGTTCTTGAG ATGAAAATGG CAAAGACTTC TATTTTTAAG AAGGGTTTT GGCACGAACC TGGGACCTG ACTAGTCTCA ATTACAGCAC CTGAACTGTC AGGTTCCTT GCTACTTGT AACAACAGCC TCAAGCTGT AACAACAGCC TCAAGTTCCT TCAAGCTTGT ACTACTTGT ACAACAGCC TCAAGTTCCT AGCTTCTCA ACTGACAAGCC ACTGACAAGCC CGAGTTCCCA ACTGACAAGCC ACTGACAAGC ACTCAGAAGC Sequence: (P_058553.1	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGTATT TAAAGGACA TGAACTAGTG CAGCATTTCC AACCCAGGAG TTCTTTTTTTTTT	41 TCAGGTTTTT AATAGAAAAG AGATTTGTTC GAGAGGTTTT GCCACTTTAG ATGTTAGTGT TTTCCAAGCA AGGTCCTAGA GGAAGCTTTA TCAAGCAA TGGACTTAAG CCCATGCCTG TTTTGTTTTT TTCAAGTGAT TCTCATTTGTTTTT TCTAAGTGAT CCTCTCTCATT GCAATGCCCC CAAGTGCAGA GTAGTTAGAG GAGCACTTAG GAGCACCCCA CATAGTTTCAG TATGTTCTCT ATGCCAGACC AATCTTAATTA CCTCCCCCCT ACCTTTGATA 41	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGAT GGCCCTTCCT TATTGGAAGG GAGGACAAG TAATAGAACA TCTCACTCCA TGATCTGCCT GCTAAGTTTG TCCACACATGG TATGACAAAA AAGAATCATC GTTCCTCGAG CAAGATTG CAGTGCCCTC TTTGTCTGGG GAACATAAGA CCATGGAAAA CCATGGAAAA CCATGGAAAA CCATGGAAAA CCAGAACTT TAGAATGTT TAGAATGTT TAGAATGTT TAGAATGTT CAGATTG CAGTTCCTCA CAGATTG	120 180 240 300 360 420 480 660 720 780 840 900 960 1020 1140 1260 1320 1380 1340 1560
50556065707580	Seq ID NO: Nucleic Ac. Coding seq 1 AATTTTCAGA TAAAATGTATT GTGAAACCAT CTGTTATCCA ATACAGGGAA ACGATGAGAC ACTGGTTACC TTATTCTGT TTGTCCAGC GCCTTTGCCT TAGTCTAGC TAGTCTTGCT CAGCCTCCCA ACAAACTTA ACCATCAAAT CTGAAATTAG GCACAACC CTTGCGATGA GCACAACC ATAACCTGGA ACAATGGAAA GTTGCTCTT AACTCCCTGT TTTAATGCAA Seq ID NO: Protein Acc 1 MEETYTDSLD	246 DNA set id Accession tence: 897-1 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA AGTCTCAGT TTCTCTTTA AAGAAAAGTC TACTGTCTGT TGCCTATCTG GTTTATGTAT CAAGTGCAAT CCTGAGTAGC GAGTGCTAGG GAGTGCTAGG CACCGACTCC CAGGGCTTGC AAGCAAATTG TCATCATGAGT TCATCATGAGT TCATCATGAGT TCATCATGAG TTCACAGGATT CAAGCAGACTC CAGGACTCC CAGGACTCC CAGGACTCC CAGGACTCC CAGGACTCC CAGGACTCC CAGGACTCC CAGGACTCT CAACATGACTGAAC CTACTCAAGACTGCATA CTACTCAAG GACTTTCCAA GAACCCTCAT 247 Protein cession #: 1 11 PEKLLQCPYD	Quence #: XM_058 4400 21 GGGGATGGTT GCTCAATAGA ATGTTTCACA AGTTCTTGAG ATGAGAACT TTGGAGAAGC CAAAGACTTC TATTTTTAG GCACGAACC TGGACTACA ATTACAGCAC CTGACTCTA AGTTCTTT GCACTAGA AAGACTTC TGGACTACA CTGACTCT AGGACCTG AGGTTCCTT GCAAGCAC CTGAACCT TCAAGCAC CTGAACCT TCAAGCAC CGAGTTCCCA ACTGACAAGC ACTCAGAAGC ACTCAGAACC A	31 TTATATAAAT AGAGATTTCT TTCCTGTTAC TCCTAACATT TTAAAGGATAT TAAAGGACA TGAACTAGTG CAGCATTTCC AACCCAGGAG TTGTTTTTTT TCATAGCTCC GGCATGACCC GGGGGGGTTG AACCCATGAC AGAAGCTATT ATCATCTTAT CCTTCAATGC CTGGCTGA GGGAGCAGAC CTGCGAGCAA AATCTCTTCAT TTCTCATCAT ATCATCTAT TTCCTCCT ACACTTTTT TTCCAAATAA	41 TCAGGTTTTT AATAGAAAAG AGATTTGTTC GAGAGGTTTT GCCACTTTAG ATGTTAGTG TTTCCAAGCA AGGTCCTAGA GAAAGCTTTA AAAGACAGGA TCGACTTATT TCCAAGTGAT TCTCATCATT GCAATGCCCC CAAGTGCAG ACGCACCCA CATAGTTATACA GAGACCCCA CATAGTTACA GTATTTCTC CAAGTGCAGAC CATAGTTACA CATAGTTCT ACTCCCCCCT ACCTTTGATA 41 HPDVASKLAT	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGGT GGCCCTCCT TATTGGAAGG GAGGAACAAG TAATAGAACA TCACTCCAT GCTAAGTTTG GCTAAGTTTG GCTAAGTTTG TGTAGAGACA AAGAATCATC GTTCCTCGAG CAAGATGTTG TCCAACATGG GAACATAGA AAGAATCATC TTTGTCTGGG GAACATAAGA CCATGGAAAA CTAGAAGACT TAGAATGGTA TAGAATGTTA CAGATTG CAGTTCCTCA CAGATTG 51 CPFNARHQVP	120 180 240 300 360 420 480 660 720 780 840 900 960 1020 1140 1200 1320 1320 1350 1440 1500
505560657075	Seq ID NO: Nucleic Ac. Coding seq 1 AATTTTCAGA TAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGA GATCATGTT GTTCAGGTAA CTGTTATCGT TTGTCCAGGC GCCTTTGCT TTGTCCAGGC GCCTTTGCT TAGTCTTGCT TAGTCTTGCT CAGCCTCCA AACAAACTAA ACCATCAAAT CTGAATGTGC CTGAAATTAG TCAACCAACC CTTGCGATGA GCACAACTCA ATAACCTGGC ACAATGGAAA GTTGCTTCTT TAGTCTCTGT TTAATGCAA Seq ID NO: Protein Acc 1	246 DNA set id Accession tence: 897-: 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA TAATATGAC TGAGTATAA AGAAAAGTC TACTGTCTGT TGCCTATCTG GATTGCAG GAGTGCAAT CAGGGCTTGC CAGGGCTTGC CAGGGCTTGC CAGGACTCC CAGGACTCC CAGGACTCT TCATCATATC CAGGAGCTTT CAACTGACTAG CACTCTGACTAGACTGCAATC CAGGACTCT CAGAACTCTACAGAACTCTCACAGGATAA CTTCTACCAG GACTTTCCAACAGGACCTCAT CCAGGCATG TGCACAGTAA CTTCTACCAG GACTTTCCAACAGGACCTCAT CCAGGCATG TGCACAGTAA CTTCTACCAG GACTTTCCAACAGGACCTCAT CCAGGCATG CACCCCAT CCACCCCAT CCACCCCACC	Quence #: XM_058 400 21 GGGGATGGTT GCTCAATAGA ATGTTCTACA AGTTCTTGAG ATGAAAATGG CCAAAGACTTC TATTTTAAG AAGGGGTTTT GGCACGAACC TGGGACTACA ATTACAGCAC CTGGACCCTG AGTTCCTT GCTACTTGTC TCAAGCTGTG AGACAAGAGA AAAGATTGC TCAAGCTGTG AGACAAGAGA AAAGATTGC TCAAGCTGTG ACTACAGAC CTGAATACCT TGGGTTCCA ACTGACAGC CTGAATACCT TGGGTTCCA ACTGACAGC CTGAATACCT TGGGTTCCA ACTGACAGC CTGAATACCT TGGGTTCTCA ACTGACAGC CTGAATACCT TGGGTTCCA CTGAATACCT TGGGTTCCA CTGAATACCT TGGGTTCCA CTGAATACCT TGGGTTCCA ACTGACAGC CCAGTTCCCA CTGAATACCT CGAGTTCCCA CTGAATACCT TGGGTTCCCA CTGAATACCT TGGGTTCCCA CTGAATACCT CCAGAAGC CCAGGTTCCCA CTGAATACCT CCAGAAGC CCAGATCCCA CCAGAACC CCAGACC CCAGACC CCAGACC CCAGACC CCAGAACC CCAGACC CCACAC CCAGACC CCAGACC CCAGACC CCAGACC CCACAC CCAC	31 TTATATAAAT AGAGATTICT TTCCTGTTAC TCCTAACATT TTAAAGGACA TGAACTAGTG CAGCATTACC AACCCAGGAG TTGTTTTTT TCATAGCTCC GGCATGAGCC GGGGGGTTG AACTCCTGGC TTGGATTCA ACTCTTAT ATCATATTA ATCATCTTAT ATCATCTTAT TCCTTCAATGC ATGACAGAAG CTCTGGCTGA AGACCAGAAG CTCTGGCTGA ACTCTTTTTTCCTCCT ACACTTTTTT TTCCAAATAA 31	41 TCAGGTTTT AATAGAAAAG AGATTTGTTC GAGAGGTTTT GCCACTTTAG ATGTTAGTGT TTTCCAAGCA AGGTCCTAGA GAAAGCTTTA GAAAGCTTTAG TTTCCAAGCA TGGACTTAAG CCCATGCCTG TTTTGTTTTT TTCAAGTGAT CTTCTTCATT GCAATGCCCC CAAGTGCAGA TTGATTTGAG GAGCACCCCA ATTGTTTCT ATGCCAGACC AATGTTACA GTATGTTCTG ATGCCAGACC AATCTAATTA CCTCCCCCT ACCTTTGATA 41 HPDVASKLAT PPCDEDWDKD	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGGT GGCCCTCCT TATTGGAAGG GAGGAACAAG TAATAGAACA TCACTCCAT GCTAAGTTTG GCTAAGTTTG GCTAAGTTTG TGTAGAGACA AAGAATCATC GTTCCTCGAG CAAGATGTTG TCCAACATGG GAACATAGA AAGAATCATC TTTGTCTGGG GAACATAAGA CCATGGAAAA CTAGAAGACT TAGAATGGTA TAGAATGTTA CAGATTG CAGTTCCTCA CAGATTG 51 CPFNARHQVP	120 180 240 300 360 420 480 660 720 780 840 900 960 1020 1140 1260 1320 1380 1340 1560
50556065707580	Seq ID NO: Nucleic Ac. Coding seq 1 AATTTTCAGA TAAATGTATT GTGAAACCAT CTGTTATCCA ATAGAGGGA GATCATGTT GTTCAGGTAA CTGTTATCGT TTGTCCAGGC GCCTTTGCT TTGTCCAGGC GCCTTTGCT TAGTCTTGCT TAGTCTTGCT CAGCCTCCA AACAAACTAA ACCATCAAAT CTGAATGTGC CTGAAATTAG TCAACCAACC CTTGCGATGA GCACAACTCA ATAACCTGGC ACAATGGAAA GTTGCTTCTT TAGTCTCTGT TTAATGCAA Seq ID NO: Protein Acc 1	246 DNA set id Accession tence: 897-: 11 AGTTTCGTAT TAGTCTCAGT TTCTCTTTA TAATATGAC TGAGTATAA AGAAAAGTC TACTGTCTGT TGCCTATCTG GATTGCAG GAGTGCAAT CAGGGCTTGC CAGGGCTTGC CAGGGCTTGC CAGGACTCC CAGGACTCC CAGGACTCT TCATCATATC CAGGAGCTTT CAACTGACTAG CACTCTGACTAGACTGCAATC CAGGACTCT CAGAACTCTACAGAACTCTCACAGGATAA CTTCTACCAG GACTTTCCAACAGGACCTCAT CCAGGCATG TGCACAGTAA CTTCTACCAG GACTTTCCAACAGGACCTCAT CCAGGCATG TGCACAGTAA CTTCTACCAG GACTTTCCAACAGGACCTCAT CCAGGCATG CACCCCAT CCACCCCAT CCACCCCACC	Quence #: XM_058 4400 21 GGGGATGGTT GCTCAATAGA ATGTTTCACA AGTTCTTGAG ATGAGAACT TTGGAGAAGC CAAAGACTTC TATTTTTAG GCACGAACC TGGACTACA ATTACAGCAC CTGACTCTA AGTTCTTT GCACTAGA AAGACTTC TGGACTACA CTGACTCT AGGACCTG AGGTTCCTT GCAAGCAC CTGAACCT TCAAGCAC CTGAACCT TCAAGCAC CGAGTTCCCA ACTGACAAGC ACTCAGAAGC ACTCAGAACC A	31 TTATATAAAT AGAGATTICT TTCCTGTTAC TCCTAACATT TTAAAGGACA TGAACTAGTG CAGCATTACC AACCCAGGAG TTGTTTTTT TCATAGCTCC GGCATGAGCC GGGGGGTTG AACTCCTGGC TTGGATTCA ACTCTTAT ATCATATTA ATCATCTTAT ATCATCTTAT TCCTTCAATGC ATGACAGAAG CTCTGGCTGA AGACCAGAAG CTCTGGCTGA ACTCTTTTTTCCTCCT ACACTTTTTT TTCCAAATAA 31	41 TCAGGTTTT AATAGAAAAG AGATTTGTTC GAGAGGTTTT GCCACTTTAG ATGTTAGTGT TTTCCAAGCA AGGTCCTAGA GAAAGCTTTA GAAAGCTTTAG TTTCCAAGCA TGGACTTAAG CCCATGCCTG TTTTGTTTTT TTCAAGTGAT CTTCTTCATT GCAATGCCCC CAAGTGCAGA TTGATTTGAG GAGCACCCCA ATTGTTTCT ATGCCAGACC AATGTTACA GTATGTTCTG ATGCCAGACC AATCTAATTA CCTCCCCCT ACCTTTGATA 41 HPDVASKLAT PPCDEDWDKD	51 CCCACAATAA GATTCAAACT TCTTGTGACT CCCTTAGTGC CACTGAAGGT GGCCCTCCT TATTGGAAGG GAGGAACAAG TAATAGAACA TCACTCCAT GCTAAGTTTG GCTAAGTTTG GCTAAGTTTG TGTAGAGACA AAGAATCATC GTTCCTCGAG CAAGATGTTG TCCAACATGG GAACATAGA AAGAATCATC TTTGTCTGGG GAACATAAGA CCATGGAAAA CTAGAAGACT TAGAATGGTA TAGAATGTTA CAGATTG CAGTTCCTCA CAGATTG 51 CPFNARHQVP	120 180 240 300 360 420 480 660 720 780 840 900 960 1020 1140 1200 1320 1320 1350 1440 1500

WO 02/086443

Seq ID NO: 248 DNA sequence
Nucleic Acid Accession #: NM_003392
Coding sequence: 758..1855

	courne sequ	ence: /30	1633				
5							
9	1	11	21	31	41	51 .	
	1 .	ī	1	1	1	1	
	TTAAGGAAAT	CCGGGCTGCT	CTTCCCCATC	TGGAAGTGGC	TTTCCCCACA	TCGGCTCGTA	60
	ΔΔ ("ΤΩΤΆΤΤΔΤ	GAAACATACG	ATGTTAATTC	GGAGCTGCAT	TTCCCAGCTG	GGCACTCTCG	120
10	CCCCCTCCTC	CCCCCCCCCCT	CCCCCCCAC	CCCCTGCCCT	TCCCTCCCGC	GTCCTGCCCC	180
	CATCCTCCAC	CCCCCGCGCT	GGCCACCCCG	CCTCCTTGGC	AGCCTCTGGC	GGCAGCGCGC	240
	TOTAL CTOROCC	TOTOGREGATO	CTCTCGCCCA	TGGAATTAAT	TCTGGCTCCA	CTTGTTGCTC	300
	CCCCCACCTT	GGGGAGAGGA	CCGACGCTCC	CCGCAGCGGG	TTCCTGAGTG	AATTACCCAG	360
	CACCCACTCA	GCACAGCACC	AACTAGAGAG	GGGTCAGGGG	GTGCGGGACT	CGAGCGAGCA	420
15	GCAAGCAGGC	AGCGCCTGGC	ACCAGGGCTT	TGACTCAACA	GAATTGAGAC	ACGTTTGTAA	480
	TOTAL	GCCCCCCCCCA	CAGGATCCCA	GCGAAAATCA	GATTTCCTGG	TGAGGTTGCG	540
	TOCOTOGATT	ΔΔΩΣΥΈΓΓΔΔ	AAGAAACTGC	CTATATCTTG	CCATCAAAAA	ACTCACGGAG	600
	CAGAAGCCA	GTCAATCAAC	AGTAAACTTA	AGAGACCCCC	GATGCTCCCC	TGGTTTAACT	660
20	TGTATGCTTG	AAAATTATCT	GAGAGGGAAT	AAACATCTTT	TCCTTCTTCC	CTCTCCAGAA	720
20	GTCCATTGGA	ATATTAAGCC	CAGGAGTTGC	TTTGGGGATG	GCTGGAAGTG	CAATGTCTTC	780
	CAAGTTCTTC	CTAGTGGCTT	TGGCCATATT	TTTCTCCTTC	GCCCAGGTTG	TAATTGAAGC	840
	CAATTCTTGG	TGGTCGCTAG	GTATGAATAA	CCCTGTTCAG	ATGTCAGAAG	TATATATTAT	900
	AGGAGCACAG	CCTCTCTGCA	GCCAACTGGC	AGGACTTTCT	CAAGGACAGA	AGAAACTGTG	960
25	CCACTTGTAT	CAGGACCACA	TGCAGTACAT	CGGAGAAGGC	GCGAAGACAG	GCATCAAAGA	1020
25	ATGCCAGTAT	CAATTCCGAC	ATCGACGGTG	GAACTGCAGC	ACTGTGGATA	ACACCTCTGT	1080
	TTTTGGCAGG	GTGATGCAGA	TAGGCAGCCG	CGAGACGGCC	TTCACATACG	CCGTGAGCGC	1140 1200
	AGCAGGGGTG	GTGAACGCCA	TGAGCCGGGC	GIGCCGCGAG	TCCCTCTCCCC	CCACCIGCGG	1260
	CTGCAGCCGC	GCCGCGCGCC GACTATGGCT	CCAAGGACCT	GCCGCGGGAC	CTCCACCCC	CCGGCTGCGG	1320
20	CGACAACATC	GCCAAGGGCT	ACCGCTTTGC	TOTTOTOTO	CTCATCAACC	TGCACAACAA	1380
30	GCGCATCCAC	CGCAGGACGG	CCTACGAGAG	CCCTCGCATC	CCCTCCAACT	CCCATGGGGT	1440
	CGAGGCCGGC	TGTAGCCTGA	TGTACAACCT	CCTCCACCTC	CCACACTTCC	GCAAGGTGGG	1500
	GTCCGGCTCA	AAGGAGAAGT	AGACATGCTG	CCCCCCCATC	CCCCTCAACA	GCCGGGGCAA	1560
	TGATGCCCIG	GTCAACAGCC	CCTTCA ACTC	GCCCACCACA	CAAGACCTGG	TCTACATCGA	1620
35	CCCCACCCCT	GACTACTGCG	TGCGCAATGA	GAGCACCGGC	TCGCTGGGCA	CGCAGGGCCG	1680
<i>J J</i>	CCCCAGCCCI	AAGACGTCGG	AGGGCATGGA	TGGCTGCGAG	CTCATGTGCT	GCGGCCGTGG	1740
	CTACCACCAC	TTCAAGACCG	TGCAGACGGA	GCGCTGCCAC	TGCAAGTTCC	ACTGGTGCTG	1800
	CTACCTCAAG	TGCAAGAAGT	GCACGGAGAT	CGTGGACCAG	TTTGTGTGCA	AGTAGTGGGT	1860
	GCCACCCAGC	ACTCAGCCCC	GCTCCCAGGA	CCCGCTTATT	TATAGAAAGT	ACAGTGATTC	1920
40	ጥርረጥተሞተሞርር	TTTTTAGAAA	TATTTTTTAT	TTTTCCCCAA	GAATTGCAAC	CGGAACCATT	1980
	TTTTTTTCCTG	TTACCATCTA	AGAACTCTGT	GGTTTATTAT	TAATATTATA	ATTATTATTT	2040
	GGCAATAATG	GGGGTGGGAA	CCACGAAAAA	TATTTATTTT	GTGGATCTTT	GAAAAGGTAA	2100
	TACAAGACTT	CTTTTGGATA	GTATAGAATG	AAGGGGGAAA	TAACACATAC	CCTAACTTAG	2160
	CTCTCTCCCA	CATGGTACAC	ATCCAGAAGG	TAAAGAAATA	CATTTTCTTT	TTCTCAAATA	2220
45	TGCCATCATA	TGGGATGGGT	AGGTTCCAGT	TGAAAGAGGG	TGGTAGAAAT	CTATTCACAA	2280
	TTCAGCTTCT	ATGACCAAAA	TGAGTTGTAA	ATTCTCTGGT	GCAAGATAAA	AGGTCTTGGG	2340
	AAAACAAAAC	AAAACAAAAC	AAACCTCCCT	TCCCCAGCAG	GGCTGCTAGC	TTGCTTTCTG	2400
	CATTTTCAAA	ATGATAATTT	ACAATGGAAG	GACAAGAATG	TCATATTCTC	AAGGAAAAA	2460
50	GGTATATCAC	ATGTCTCATT	CTCCTCAAAT	ATTCCATTTG	CAGACAGACC	GTCATATTCT	2520
50	AATAGCTCAT	GAAATTTGGG	CAGCAGGGAG	GAAAGTCCCC	AGAAATTAAA	AAATTTAAAA	2580
	CTCTTATGTC	AAGATGTTGA	TTTGAAGCTG	TTATAAGAAT	TGGGATTCCA	GATTTGTAAA	2640 2700
	AAGACCCCCA	ATGATTCTGG	ACACTAGATT	TTTTGTTTGG	DUAGGTTGGC	CUNCANATAN	2760
	ATGAAATATC	CTGTATTTTC	TTAGGGATAC	TIGGITAGIA	AAIIAIAAIA	GINGNANIAN	2820
55	TACATGAATC	CCATTCACAG AGAGCAGACA	GTTTCTCAGC	CCAAGCAACA	TCANATCCAC	CTTCCTCTTC	2880
33	GCACTGCACC	CTCTCTGATT	ACCIAITIGA	CTCATCTCAT	CCTCCCCACC	TTTCCTCTC	2940
	ACACTGAGCC	TGGGTCCCCT	CCTCCGTGTT	CACACCAAAT	GAAACATTAG	GAGCTCTGCT	3000
	GCAGCTCCAC	TTCACTACTT	ACCCATTUM	GACAGGAAAI	ACTTTTATTT	TGAGGAGCAG	3060
	TOGAMMACAG	TOTOTALI	ACAGAACTTG	GCTAATGGAA	TTCACAGAGG	TGTTGCAGCG	3120
60	TAGITICIA	ATCATCCTCT	CTTTACATTA	TCCACTCATG	CTTCTCCTAT	TGTACTGCAG	3180
OU	GTGTACCTTA	ADACTETTO	CAGTGTACTT	GAACAGTTGC	ATTTATAAGG	GGGGAAATGT	3240
	GGTTTAATGG	TGCCTGATAT	CTCAAAGTCT	TTTGTACATA	ACATATATAT	TATATACAT	3300
	ATATATAAAT	ATAAATATAA	ATATATCTCA	TTGCAGCCAG	TGATTTAGAT	TTACAGCTTA	3360
	CTCTGGGGTT	ATCTCTCTGT	CTAGAGCATT	GTTGTCCTTC	ACTGCAGTCC	AGTTGGGATT	3420
65	ATTCCAAAAG	TTTTTTGAGT	CTTGAGCTTG	GGCTGTGGCC	CCGCTGTGAT	CATACCCTGA	3480
	GCACGACGAA	GCAACCTCGT	TTCTGAGGAA	GAAGCTTGAG	TTCTGACTCA	CTGAAATGCG	3540
	TGTTGGGTTG	AAGATATCTT	TTTTTCTTTT	CTGCCTCACC	CCTTTGTCTC	CAACCTCCAT	3600
	TTCTGTTCAC	TTTGTGGAGA	GGGCATTACT	TGTTCGTTAT	AGAÇATGGAC	GTTAAGAGAT	3660
=0	ATTCAAAACT	CAGAAGCATC	AGCAATGTTT	CTCTTTTCTT	AGTTCATTCT	GCAGAATGGA	3720
70	AACCCATGCC	TATTAGAAAT	GACAGTACTT	ATTAATTGAG	TCCCTAAGGA	ATATTCAGCC	3780
	CACTACATAG	ATAGCTTTTT	TTTTTTTTT	TTTTTTTAA	TAAGGACACC	TCTTTCCAAA	3840
	CAGGCCATCA	AATATGTTCT	TATCTCAGAC	TTACGTTGTT	TTAAAAGTTI	GGAAAGATAC	3900
	ACATCTTTTC	ATACCCCCCC	TTAGGAGGTT	GGGCTTTCAT	ATCACCTCAG	CCAACTGTGG	3960
75	CTCTTAATTT	ATTGCATAAT	GATATCCACA	TCAGCCAACT	GTGGCTCTTT	AATTTATTGC	4020
75	ATAATGATAT	TCACATCCCC	TCAGTTGCAG	TGAATTGTGA	GCAAAAGATC	TTGAAAGCAA	4080
	AAAGCACTAA	TTAGTTTAAA	ATGTCACTTT	TTTGGTTTTT	ATTATACAAA	AACCATGAAG	4140
	TACTTTTTT	ATTTGCTAAA	TCAGATTGTT	CCTTTTTAGT	GACTCATGTT	TATGAAGAGA	4200
	GTTGAGTTTA	ACAATCCTAG	CITTTAAAAG	AAACTATTTA	AIGTAAAATA	TTCTACATGT	4260
80	CATTCAGATA	TTATGTATAT	CTTCTAGCCT	TTATTCTGTA	CITITAMIGI	ACATATTTCT	4320
OU.	GTCTTGCGTG	ATTIGIATAT	TTCACTGGTT	AMAMAMACAA * * * * * * * * * * * * * * * * * * *	ACRICGMANC	GCTTATTCCA	-1300
	AATGGAAGAT	AGAATATAAA	AIMAMACGII	WCT TO I WHAN	, AND OTHER PARTY.		
	Sec In No.	249 Protei	n semience:				
	-	cession #:	-				
85	ETOCETH WO	reseron #;	003363				
J.J.	1	11	21	31	41	51	
	Ī	Ĩ	ī	ī	1		
	•	•	•	•	•	•	

5	MAGSAMSSKF SQGQKKLCHL AFTYAVSAAG FVDARERERI LADPRKVGDA	FLVALAIFFS YQDHMQYIGE VVNAMSRACR HAKGSYESAR LKEKYDSAAA NKTSEGMDGC	GAKTGIKECQ EGELSTCGCS ILMNLHNNEA MRLNSRGKLV	YQFRHRRWNC RAARPKDLPR GRRTVYNLAD QVNSRFNSPT	STVDNTSVFG DWLWGGCGDN VACKCHGVSG TQDLVYIDPS	RVMQIGSRET IDYGYRFAKE SCSLKTCWLQ PDYCVRNEST	60 120 180 240 300 360
10	Nucleic Aci	250 DNA sec d Accession lence: 56	#: NM_0140)58			
	1	11	21	31	41	51	
15	TO A COMMON CONTRACTOR	CTRCA CCTCC	A COTTO CAG	Gy California Cy at	 TCCTCCTTCC	CAATGATGTA.	60
13		GTGGTGAGGG					120
	CGTCATCTTC	ATATCCCTGA	TTGTCCTGGC	AGTGTGCATT	GGACTCACTG	TTCATTATGT	180
	GAGATATAAT	CAAAAGAAGA GAGTTTGGCA	CCTACAATTA	TAACAATTTT	ACAGAAATGA	GCCAGAGACT	240 300
20	TGAATCAATG	GTGAAAAATG	CATTTTATAA	ATCTCCATTA	AGGGAAGAAT	TTGTCAAGTC	360
		AAGTTCAGTC					420
		TCTACTGAGG CAAGATGCTG					480 540
	AAAAATCAAC	AAGACAGAAA	CAGACAGCTA	TCTAAACCAT	TGCTGCGGAA	CACGAAGAAG	600
25	TAAAACTCTA	GGTCAGAGTC GCTAGCCTGC	TCAGGATCGT	TGGTGGGACA	GAAGTAGAAG	AGGGTGAATG	660 720
		CTTGTGAGTG					780
	GACTGCTTCC	TTTGGAGTAA	CAATAAAACC	TTCGAAAATG	AAACGGGGTC	TCCGGAGAAT	840
30	AATTGTCCAT	GAAAAATACA GTTCCCTACA	AACACCCATC	ACATGACTAT	GATATTTCTC	ATGCAGAGCT	900 960
30	TGAGTTTCAA	CCAGGTGATG	TGATGTTTGT	GACAGGATTT	GGAGCACTGA	AAAATGATGG	1020
	TTACAGTCAA	AATCATCTTC	GACAAGCACA	GGTGACTCTC	ATAGACGCTA	CAACTTGCAA	1080 1140
	TGAACCTCAA AGGAAAAAACA	GCTTACAATG GATGCATGCC	AGGCCATAAC	TGGAGGACCA	CTGGTTAGTT	CAGATGCTAG	1200
35	AGATATCTGG	TACCTTGCTG	GAATAGTGAG	CTGGGGAGAT	GAATGTGCGA	AACCCAACAA	1260
		TATACTAGAG AAAGCCTCAT					1320 1380
	CCATTTTTAG	AGATACAGAA	TTGGAGAAGA	CTTGCAAAAC	AGCTAGATTT	GACTGATCTC	1440
40	AATAAACTGT	TTGCTTGATG	САААААААА	A			
		251 Protein cession #: 1					
4.5							
45	1	11	21 1	31	41	51 !	
45	 MYRPDVVRAR	 KRVCWEPWVI	 GLVIFISLIV	 LAVCIGLTVH	. YVRYNQKKTY	 NYYSTLSFTT	60
45	 MYRPDVVRAR DKLYAEFGRE	 KRVCWEPWVI ASNNFTEMSQ	 GLVIFISLIV RLESMVKNAF	 LAVCIGLTVH YKSPLREEFV	 YVRYNQKKTY KSQVIKFSQQ	 NYYSTLSFTT KHGVLAHMLL	120
45 50	 MYRPDVVRAR DKLYAEFGRE ICRFHSTEDP RSKTLGQSLR	KRVCWEPWVI ASNNFTEMSQ ETVDKIVQLV IVGGTEVEEG	GLVIFISLIV RLESMVKNAF LHEKLQDAVG EWPWQASLQW	LAVCIGLTVH YKSPLREEFV PPKVDPHSVK DGSHRCGATL	 YVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA	 NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA	
	MYRPDVVRAR DKLYAEFGRE ICRFHSTEDP RSKTLGQSLR RWTASFGVTI	KRVCWEPWVI ASNNFTEMSQ ETVDKIVQLV IVGGTEVEEG KPSKMKRGLR	GLVIFISLIV RLESMVKNAF LHEKLQDAVG EWPWQASLQW RIIVHEKYKH	LAVCIGLTVH YKSPLREEFV PPKVDPHSVK DGSHRCGATL PSHDYDISLA	YVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA ELSSPVPYTN	 NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA	120 180 240 300
	MYRPDVVRAR DKLYAEFGRE ICRFHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM	KRVCWEPWVI ASNNFTEMSQ ETVDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN	GLVIFISLIV RLESMVKNAF LHEKLQDAVG EWPWQASLQW RIIVHEKYKH DGYSQNHLRQ	LAVCIGLTVH YKSPLREEFV PPKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT	YVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA	NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS	120 180 240
50	MYRPDVVRAR DKLYAEFGRE ICRFHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM	KRVCWEPWVI ASNNFTEMSQ ETVDKIVQLV IVGGTEVEEG KPSKMKRGLR	GLVIFISLIV RLESMVKNAF LHEKLQDAVG EWPWQASLQW RIIVHEKYKH DGYSQNHLRQ	LAVCIGLTVH YKSPLREEFV PPKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT	YVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA	NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS	120 180 240 300 360
	MYRPDVVRAR DKLYAEFGRE ICRFHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM LEGKTDACQG GI Seq ID NO: Nucleic Ac:	KRVCWEPWVI ASNNFTEMSQ ETVDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN	GLVIFISLIV RLESMVKNAF LHEKLQDAVG EWFWQASLQW RIIVHEKYKH DGYSQNHLRQ ARDIWYLAGI Quence n #: NM_003	LAVCIGLTVH YKSPLREEFV PPKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT VSWGDECAKP	YVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA	NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS	120 180 240 300 360
50 55	MYRPDVVRAR DKLYAEFGRE ICRPHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM LEGKTDACQG GI Seq ID NO: Nucleic According sequences	RRVCWEPWVI ASNNFTEMSQ ETYDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN DSGGPLVSSD 252 DNA sec id Accession lence: 71-1	GLVIFISLIV RLESMVKNAF RLESMVKNAF LHEKLQDAVG EWPWQASLQW RIIVHEKYKH DGYSQNHLRQ ARDIWYLAGI Quence n #: NM_003	LAVCIGLTVH YKSPLREEFV PPKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT VSWGDECAKP	YVRYNQKKTY YVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA NKPGVYTRVT	 NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS ALRDWITSKT	120 180 240 300 360
50	MYRPDVVRAR DKLYAEFGRE ICRFHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM LECKTDACQG GI Seq ID NO: Nucleic Ac: Coding sequents	KRVCWEPWVI ASNNFTEMSQ ETVDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN DSGGPLVSSD 252 DNA secid Accession ence: 71-1	GLVIFISLIV RLESMYKNAF LHEKLQDAVG EWPWQASLQW RIIVHEKYKH DGYSQNHLRQ ARDIWYLAGI Quence n #: NM_003	LAVCIGLTVH YKSPLREEFV PPKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT VSWGDECAKP	YVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA NKPGVYTRVT	 NYYSTLSFTT KHGVLAIMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS ALRDWITSKT	120 180 240 300 360 420
50 55	 MYRPDVVRAR DKLYAEFGRE ICRFHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM LEGKTDACQG GI Seq ID NO: Nucleic Ac: Coding sequ	KRVCWEPWVI ASNNFTEMSQ ETVDKIVQLV ETVDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN DSGGPLVSSD 252 DNA secid Accessionence: 71-1	GLVIFISLIV RLESMVKNAF LHEKLQDAVG EWFWQASLQW RIIVHEKYKH DGYSQNHLRQ ARDIWYLAGI Quence n #: NM_003 771 21 CGGGCTCTTG	LAVCIGLTVH YKSPLREEFV PPKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT VSWGDECAKP 504.2 31 GTACCTCAGC	YVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA NKPGVYTRVT 41 GCGAGCGCCA	NYYSTLSFTT KHGVLAHNLL SYLNHCCGTR HCPTTYKNPA AVHRVCLPDA ITPRMLCAGS ALRDWITSKT	120 180 240 300 360
50 55 60	 MYRPDUVRAR DKLYAEFGRE ICRFHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM LEGKTDACQG GI Seq ID NO: Nucleic Ac: Coding sequence 1 GGCACGAGGC CGCCGTGGCT GAGGGTCCTT	KRVCWEPWVI ASNNFTEMSQ ETVDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN DSGGPLVSSD 252 DNA secid Accession Lence: 71-1' 1 CTCGTGCCGC ATGTTCGTGT CTCTTCGTGG	GLVIFISLIV RLESMVKNAF RLESMVKNAF LHEKLQDAVG EWHWQASLQW RIIVHEKYKH DGYSQNHLRQ ARDIWYLAGI Quence h #: NM_003 771 21 CGGGCTCTTG CCGACTTTCCG CCTCGGACGT	 LAVCIGLTVH YKSPLREEFV PPKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT VSWGDECAKP 504.2 31 GTACCTCAGC CAAAGAGTTC GGATGCTCTG	YVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA NKPGVYTRVT 41 GCGAGCGCCA TACGAGGTGG TGTGCGTGCA	NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS ALRDWITSKT 51 GGCGTCCGGC TCCAGAGCCA AGATCCTTCA	120 180 240 300 360 420
50 55	MYRPDUVRAR DKLYAEFGRE CRPHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM LEGKTDACQG GI Seq ID NO: Nucleic Ac: Coding sequiples of the coding sequiples of	KRVCWEPWVI ASNNFTEMSQ ETVDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN DSGGPLVSSD 252 DNA secid Accession ence: 71-1' 11 CTCGTGCCGC ATGTTCGTGG CAGTGTGACC	GLVIFISLIV RLESMYKNAF LHEKLQDAVG EMPWQASLQW RIIVHEKYKH DGYSQNHLRQ ARDIWYLAGI QUENCE 1 #: NM_003 771 21 CGGGCTCTTG CCGATCTTCCG CCTTCTGGACGT ACGTGCAATA	LAVCIGLTVH YKSPLREEFV PPKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT VSWGDECAKP 504.2 31 GTACCTCAGC CAAAGAGTTC GGATGCTCTG TACGCTGGTT	YVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA NKPGVYTRVT 41 GCGAGCGCCA TACGAGGTGG TGTGCGTGCA CCAGTTTCTG	NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS ALRDWITSKT 51 GGCGTCCGGC TCCAGAGCCA AGATCCTTCA GGTGGCAAGA	120 180 240 300 360 420
50 55 60	MYRPDVVRAR DKLYAEFGRE ICRFHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM LECKTDACQG GI	KRVCWEPWVI ASNNFTEMSQ ETVDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN DSGGPLVSSD 252 DNA secid Accession Lence: 71-1	GLVIFISLIV RLESMYKNAF LHEKLQDAVG EWPWQASLQW RIIVHEKYKH DGYSQNHLRQ ARDIWYLAGI Quence n #: NM_003 771 21 CGGGCTCTTG CCGATTTCCG CCTCGGACGT ACCTGCAATA AGCATAAAGA	 LAVCIGLTVH YKSPLREEFV PPKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT VSWGDECAKP 504.2 31 GTACCTCAGC CAAAGAGTTC GGATGCTCTG TACGCTGGTT ACAGTTTCAT	YVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA NKPGVYTRVT 41 GCGAGCGCCA TACGAGGTGG TGTGCGTGCA CCAGTTTCTG TATTTTATTC	NYYSTLSFTT KHGVLAHNLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS ALRDWITSKT 51 GGCGTCCGGC TCCAGAGCCA AGGATCCTTCA GGTGCAAGA TCATAAACTG	120 180 240 300 360 420
50556065	MYRPDUVRAR DKLYAEFGRE ICRPHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM LEGKTDACQG GI Seq ID NO: Nucleic Ac: Coding sequil	KRVCWEPWVI ASNNFTEMSQ ETVDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN DSGGPLVSSD 252 DNA sectod Accession Lence: 71-1' CTCGTGCCGC ATGTTCGTGT CTCTTCGTGG CAGTGTGACC GCATTTCTTG GCTAGACCTAT CATAGGCCAG	GLVIFISLIV RLESMVKNAF RLESMVKNAF LHEKLQDAVG EWHWQASLQW RIIVHEKYKH DGYSQNHLRQ ARDIWYLAGI Quence 1 #: NM_003 771 21 CGGGCTCTTG CCGACTCTTG CCGACTTTCCG CCTCGGACGT ACGTGCAATA AGCATAAAGA TGGATATCT TCAATGTCGT	LAVCIGLTVH YKSPLREEFV PPKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT VSWGDECAKP 504.2 31 GTACCTCAGC CAAAGAGTTC GGATGCTCTG TACGCTGGTT ACAGTTTCAT TCAACCTGAT CAATGTATAC	YVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA NKPGVYTRVT 41 GCGAGCGCCA TACGAGGTGG TGTGCGTGCA CCAGTTTCTG GAAGACACTA AACGATACCC	NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS ALRDWITSKT 51 GGCGTCCGGC TCCAGAGCCA AGATCCTTCA GGTGGCAAGA TCATAAACTG AGATCAAATT	120 180 240 360 420 60 120 180 240 300 360 420
50556065	MYRPDUVRAR DKLYAEFGRE ICRPHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM LEGKTDACQG GI Seq ID NO: Nucleic Ac: Coding sequity of the	KRVCWEPWVI ASNNFTEMSQ ETVDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN DSGGPLVSSD 252 DNA secid Accession Lence: 71-1' CTCGTGCCGC ATGTTCGTGT CTCTTCGTGG CAGTGTGACCTA GTAGACCTAT CATAGGCCAG CAAGATGATG CAAGATGATG	GLVIFISLIV RLESMYKNAF LHEKLQDAVG EWEWQASLQW RIIVHEKYKH DGYSQNHLRQ ARDIWYLAGI Quence 1 #: NM_003 771 21 CGGGCTCTTG CCGACGT CCGACGT ACGTGCAATA AGCATAAAGA TGGATATTCT TCAATGTCGT ACCTTGAAGT	LAVCIGLTVH YKSPLREEFV PFKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT VSWGDECAKP 504.2 31 GTACCTCAGC CAAAGAGTTC GGATGCTCTG TACGCTGGTT ACAGTTTCAT TCAACCTGAT TCAACCTGAT TCATGTATAC TCCCGCCTAT	YVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA NKPGVYTRVT 41 GCGAGCGCCA TACGAGGTGG TGTGCGTGCA CCAGTTTCTG TATTTTATTC GAAGACACTT AACGATACCC GAAGACACTCT	NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS ALRDWITSKT 51 GGCGTCCGGC TCCAGAGCCA AGATCCTTCA GGTGGCAAGA TCATAAACTG TATTCTTTGT AGATCAAATT TCAGGGATGA	120 180 240 300 360 420 60 120 180 240 300 360
50556065	MYRPDVVRAR DKLYAEFGRE ICRPHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM LEGKTDACQG GI Seq ID NO: Nucleic Ac: Coding sequ GGCACGAGGC CGCCGTGGCT GACGGTCCTT GGCCTTGTTC ACTTGAAACT TGGAGCTAAT GTGTGACACA ACTGATACAA AGAGGAGGAT CACACGGTTA	RRVCWEPWVI ASNNFTEMSQ ETYDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN DSGGPLVSSD 252 DNA secid Accession tence: 71-1' CTCGTGCCGC ATGTTCGTGG CAGTGTGACC GCATTTCTTGG CAGTGTACC GCATTTCTTG GTAGACCTAT CATAGGCCAG CAAGATGATG GAAGAGGATAT GAAGAGGAGA	GLVIFISLIV RLESMVKNAF RLESMVKNAF LHEKLQDAVG EWPWQASLQW RIIVHEKYKH DGYSQNHLRQ ARDIWYLAGI "#: NM_003 771 21 CGGGCTCTTG CCGATTTCCG CCTCGGACGT ACGTGCAATA AGCATAAAGA TGGATATCT TCAATGTCGT ACCTTGAAGT TCAGGAAATGA TAGTGGAGCA TAGTGGAGCA TAGTGGAGCA TAGTGGAGCA	LAVCIGLTVH YKSPLREEFV PFKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT VSWGDECAKP 504.2 31 GTACCTCAGC CAAAGAGTTC GGATGCTCT TACGCTGGTT ACAGCTGGTT ACAGCTGAT CCAATGTATACA TCACTGAT CAATGTATACA TCAGTGATGGG AACCATGCGG AACCATGCGG	YVRYNQKKTY YVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA NKPGVYTRVT 41 GCGAGCGCCA TACGAGGTGG TGTGCGTGCA CCAGTTTCTG TATTTTATTC GAAGACACTA AACGATACCC GAAGACATCT TCAGAGGCCTT AGGAGGCAGC	NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS ALRDWITSKT 51 GGCGTCCGGC TCCAGAGCCA AGATCCTTCA GGTGGCAAGA TCATAAACTG TATTCTTTGT AGATCAAATT TCAGGGATGA CTGAGAAGCG GGCGAGAGTG GGCGAGAGTG	120 180 240 300 360 420 60 120 180 240 360 420 480 540 600
50556065	MYRPDVVRAR DKLYAEFGRE ICRPHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM LEGKTDACQG GI Seq ID NO: Nucleic Ac: Coding sequ GGCACGAGGC CGCCGTGGCT GAGGGTCCTT GGCCTTGTACACT TGGAGCTAAT GTGTGACACC ACTCATTAAA AGAGGAGGAT CACACGGTTA GGAGGCCCGG	KRVCWEPWVI ASNNFTEMSQ ETYDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN DSGGPLVSSD 252 DNA seid Accession lence: 71-1' CTCGTGCCGC ATGTTCGTGT CTCTTCGTGG CAGTGTGACC GCATTTCTTG GTAGACCTAT CATAGGCCAG CAAGATGATG GAAGAGCATT GAAGAGGAGAA AGAAGAGACAA	GLVIFISLIV RLESMVKNAF RLESMVKNAF LHEKLQDAVG EWPWQASLQW RIIVHEKYKH DGYSQNHLRQ ARDIWYLAGI TO #: NM_003 771 21 CGGGCTCTTG CCGATTTCCG CCTCGGACGT ACCTGCAATA AGCATAATGA TGAATATCT TCAATGTCGT CAGGAATTGA TCAGGAATTGA TAGTGGAGCA TAGTGGAGCA TCCTCTTTGA	LAVCIGLTVH YKSPLREEFV PFKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT VSWGDECAKP 504.2 31 GTACCTCAGC CAAAGAGTTC GGATGCTCTG TACGCTGGTT TCAGCTGGTT TCAACCTGAT CCAATGTATAC TCACGCTAT CAATGTATAC TCCGCCTAT CAGTGATGGGG AACCATGCGG CTACGAGCAG CTACGAGCAG	YVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA NKPGVYTRVT GCGAGCGCCA TACGAGGTGG TGTGCGTGCA CCAGTTTCTG GAAGACACTA AACGATACCC GAAGACATCT TCAGAGCCTT TCAGAGCCTT TCAGAGCCTT TATATATC	NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS ALRDWITSKT 51 GGCGTCCGGC TCCAGAGCCA AGATCCTTCA GGTGGCAAGA TCATAAACTG TATTCTTTGT AGATCAAATT TCAGGGATGA CTGAGAAGCG GGCGAGAGTG ATGGGACATC	120 180 240 360 420 60 120 180 240 480 540 660
50 55 60 65 70	MYRPDUVRAR DKLYAEFGRE CRPHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM LEGKTDACQG GI Seq ID NO: Nucleic Ac: Coding sequity	KRVCWEPWVI ASNNFTEMSQ ETVDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN DSGGPLVSSD 252 DNA section Lence: 71-1' CTCGTGCCGC ATGTTCGTGG CAGTGTGACCAG CATGTTCGTGG CAGTGTGACCAG CAAGATGATG GAAGAGCAAT GAAGAGGAGA AGAAGAGACA GTGATGTTTG ATCGTTGGAC CATGTCTTG GAAGAGGACA GAAGAGACA GTGATGTTTTG ATCGTTGGAC	GLVIFISLIV RLESMYKNAF LHEKLQDAVG EWEWQASLQW RIIVHEKYKH DGYSQNHLRQ ARDIWYLAGI THE NM_003 TT1 21 CGGGCTCTTG CCGACGT ACGTGCAATA AGCATAAAGA TGGATATTCT TCAATGTCGT ACCTTGAAGT CAGGAAATGA TAGTGAGCA TCCTCTTGA TCCTCTTGAAGT ACCTCTTTGAAGT ACCTCTTTGAAGT ACCTCTTTGAAGT ACCTCTTTGAAGT ACCTCTTTGAAGT TAACTGGACCA TCCTCTTTGA	LAVCIGLTVH YKSPLREEFV PFKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT VSWGDECAKP 504.2 31 GTACCTCAGC CAAAGAGTTC GGATGCTCTG TACGCTGGTT ACAGTTTCAT TCAACCTGAT CAATGTATAC TCCCGCCTAT CAGTGATGGG AACCATGCGG CTACGAGCGG GATGCTGCCG GTGGGTGCCA	YVRYNQKKTY KSQVIKFSQO IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA NKPGVYTRVT 41 GCGAGCGCCA TACGAGGTGG TGTGCGTGCA CCAGTTTCTG TATTTTATTC GAAGACACTT TCAGAGCACTT TCAGAGCCTT AGGAGCAGCT TATGATATC AAGGACCTGA GACAAGATCA	NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS ALRDWITSKT 51 GGCGTCCGGC TCCAGAGCCA AGATCCTTCA GGTGGCAAGA TCATAAACTG TATTCTTTGT TAGATCAAATT TCAGGGATGA CTGAGAAGCG GGCGAGAGTG ATGACATC ATGACATC ATGACATC CTCAAATGAA	120 180 240 300 360 420 60 120 180 240 300 3420 480 640 660 6720 780
50556065	MYRPDVVRAR DKLYAEFGRE ICRPHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM LEGKTDACQG GI Seq ID NO: Nucleic Ac: Coding sequ GGCACGAGGC CGCCGTGGCT GACGGTCCTT GGCCTTGTTC ACTTGAACT TGGAGCTAAT GTGTGACACC ACTCATTAAA AGAGGAGGAT CACAGGGTTA GGAGCCCGG GTCAGCCAT GGAGCCCGG GTCAGCCAT GGAGGCCCAT GGAGGCCCAT GGAGGCCCAT GTGTGGCC ATACGTGAC ATACGT	KRVCWEPWVI ASNNFTEMSQ ETYDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN DSGGPLVSSD 252 DNA secid Accession lence: 71-1' CTCGTGCCGC ATGTTCGTGG CAGTGTGACC GCATTTCTTG GTAGACCTAT CATAGGCCAG CAAGATGATG GAAGAGGATAT GAAGAGATAT GAAGAGGATAT GAAGAGGATAT GAAGAGGATAT GAAGAGGACA AGAAGAGACA AGAAGAGACA AGAAGAGACA AGAAGAGACA AGAAGAGACA AGAAGAGACA AGAAGAGACA GTGATGTTGGAC GATGTTGGAC GATGTTGGAC GATGTTGGTC	GLVIFISLIV RLESMVKNAF RLESMVKNAF LHEKLQDAVG EWPWQASLQW RIIVHEKYKH DGYSQNHLRQ ARDIWYLAGI "#: NM_003 771 21 CGGGCTCTTG CCGATTTCCG CCTCGGACGT ACGTGCAATA AGCATAAAGA TGGATATCT TCAATGTCGT ACCTTGAAGT TCAGGAAATGA TAGTGGAGCA TCCTCTTTGA AGCTGCTTTG AGCTGCTTTG AGCTGCTTTG TAACAGACCA TCCTGCAGCG	LAVCIGLTVH YKSPLREEFV PRKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT VSWGDECAKP 504.2 31 GTACCTCAGC CAAAGAGTTC GGATGCTCTG TACGCTGGTT ACAGTTTCAT TCAATCATATCAT	YVRYNQKKTY YVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA NKPGVYTRVT 41 GCGAGCGCCA TACGAGGTGG TGTGCGTGCA CCAGTTTCTG GAAGACACTA AACGATACCC GAAGACATCT TCAGAGGCTT AGGAGCCTT AGGAGCCTT AGGAGCCTT AGGAGCCTCA AAGGATCAC CGCCACAACC	NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS ALRDWITSKT 51 GGCGTCCGGC TCCAGAGCCA AGATCCTTCA GGTGGCAAGA TCATAAACTG TATTCTTTGT AGATCAATGT ATGGGACAG CTGAGAAGCG GCGAGAGTG ATGGGACATC ATGACATGCT CTCAAATGAA ACCGGAACGA	120 180 240 360 420 60 120 180 240 300 360 420 660 720 840
50 55 60 65 70	MYRPDVVRAR DKLYAEFGRE ICRPHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM LEGKTDACQG GI Seq ID NO: Nucleic Ac: Coding sequ GGCACGAGGC CGCCGTGGCT GAGGGTCCTT TGGAGCTAAT GTGTGACACC ACTCATTAAA AGAGGAGGAT GAGGGGCCGG GTCAGCCGG GTCAGCCAT GATGAGCACC ACTCATTAAA AGAGGAGGAT CACACGGTTA GGAGGCCCGG GTCAGCCAT GTGTGGCCATG GTGTGGCCATG GTGTGGCCATG GTGTGGCCATG GTGTGGCCATG GTGTGGGCCCGG GTCAGCCATG GTGTGGACCATG GTGTGGGCC GTAGCTGACC GGATGAGGAG	KRVCWEPWVI ASNNFTEMSQ ETVDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN DSGGPLVSSD 252 DNA section Lence: 71-1' CTCGTGCCGC ATGTTCGTGG CAGTGTGACCAG CATGTTCGTGG CAGTGTGACCAG CAAGATGATG GAAGAGCAAT GAAGAGGAGA AGAAGAGACA GTGATGTTTG ATCGTTGGAC CATGTCTTG GAAGAGGACA GAAGAGACA GTGATGTTTTG ATCGTTGGAC	GLVIFISLIV RLESMVKNAF RLESMVKNAF EWBWQASLQW RIIVHEKYKH DGYSQNHLRQ ARDIWYLAGI #: NM_003 771 21 CGGGCTCTTG CCGATTTCCG CCTCGGACGT ACGTGCAATA TGGATAATGA TGGATATCT TCAATGTCGT ACCTTGAAGT TAGGAAATGA TCGGAATGA TCTGGAGCA TCCTCTTTGA AGCTGCTTTGA TCTGGAGCT TAACAGACCA TCCTGCAGCG CCGTGCACTG	LAVCIGLTVH YKSPLREEFV PFKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT VSWGDECAKP 504.2 31 GTACCTCAGC CAAAGAGTTC GGATGCTCTG TACGCTGGTT ACAGTTTCAT CAATGTATAC TCAGCGGAT CACTGATCAT CAGTGATGCGG CTACGAGCAG GATGCTGCC GTACGAGCAG GATGCTGCC CACACGGATC CACACGGATC CACACGGATC CACACGGATC CACACGGATC CACACGGATC	YVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA NKPGVYTRVT 41 GCGAGCGCCA TACGAGGTGG TGTGCGTGCA TATTTTATTC GAAGACACTA AACGATACCC GAAGACATCT TCAGAGCCTT AGGAGGCAGC TATGAATATC AAGGACACTA AACGATACCC TATGAATCA CGCCACAACC TCCTTTGAGT	NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS ALRDWITSKT 51 GGCGTCCGGC TCCAGAGCCA AGATCCTTCA GGTGGCAAGA TCATAAACTG TATTCTTTGT AGATCAAATT TCAGGGAATGC CTGAGAAGCC ATGACACT ATGGCACAC ATGACATGC ATGACATGCA ATGACATCCA ATGACATCCA ATGACACAA ATGACCTCCG	120 180 240 300 360 420 60 120 180 240 300 3420 480 640 660 6720 780
50 55 60 65 70	MYRPDUVRAR DKLYAEFGRE ICRPHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM LEGKTDACQG GI Seq ID NO: Nucleic Ac: Coding sequ GGCACGAGGC CGCCGTGGCT GGCCTTGTTC ACTTGAAACT TGGAGGCTCAT GGTGTGACACC ACTCATTAAA AGAGGAGGAT CACAGGTTA GGTGGGCCG GTCAGCCATG GGTGGGCCG GTCAGCATG GGTGGGCCCATG GGTGGGCCCATG GGATGAGCATG GGATGAGCTA CCCAGGTTC ACTCGTGGCC ATACGTGACT AGCAGGTTC AGCCAGGTTC AGCCAGGTTC AGCCAGGTTC AGCCAGGTTC AGCCAGGTTC	KRVCWEPWVI ASNNFTEMSQ ETVDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN DSGGPLVSSD 252 DNA section Lence: 71-1' CTCGTGCCGC ATGTTCGTGT CTCTTCGTGG CAGTGTGACCTAT CATAGGCCAG CAAGATGATG GAAGAGGACA GTGATGTTTG AACACACTT ATCGTTGGAC GATGTTGGTG AACACACTT TACCAGCACT AAGCTGTGGT AAGCTGTGGT AAGCTGTGGT AAGCTGTGGT AAGCTGTGGT AAGCTGTGGT	GLVIFISLIV RLESMYKNAF RLESMYKNAF LHEKLQDAVG EWHWQASLQW RIIVHEKYKH DGYSQNHLRQ ARDIWYLAGI Quence n #: NM_003 771 21 CGGGCTCTTG CCGATTTCCG CCTCGGACGT ACGTGCAATA AGCATAAAGA AGCATAATGA TCGTTGTAAGT ACGTGCATG ACGTGCTTG ACGTGCTTG ACGTGCTTG ACGTGCTTG ACGTGCTTGAAGT ACGTGGCTTG ACGTGGCTTG TAACAGACCA TCCTGCTGCAGCG CCGTGGACTG CCGTGGACTG CCGTGGACTG CCGTGGACTG CCGTGGACTG CCGTGGACTG CCGTGGACTG CCGTGCATGG	LAVCIGLTVH YKSPLREEFV PFKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT VSWGDECAKP 504.2 31 GTACCTCAGC CAAAGAGTTCA TCAACCTGAT TCAACCTGAT TCAATGTATAC TCAGCTGAT CAGTGATGCACCTGAT CAGTGATGCACCTGAT CAGTGATGCACCTGAT CACATGCAGC GATGCTGTCC GTGGGTGCAA CCACGATTCC CACACGGATTCC CACACGGATC TCAACGCTGT TCAACGCTGT ACACGGATC CACACGCTTCC CACACGCATTCC CACACGCATTCC CACACGCATC TCACAGCCTG ACAGAAGCCG	YVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA NKPGVYTRVT 41 GCGAGCGCCA TACGAGGTGG TATGCGTGCA CCAGTTTCTG TATTTATTC GAAGACACTT TCAGAGCCTT TCAGAGCCTT TAGGAGCAGC GACACCC CCCTTTGAGT GACACACCA CCCCACACC CCCTTTTGAGT TCCAAGGGC TCCCAGGAGT CTCCAGGAGT CTCCAGGAGT CTCCAGGAGT CTCCAGGAGT CTCCAGGAGT CTCCAGGAGT	NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS ALRDWITSKT 51 GGCGTCCGGC TCCAGAGCCA AGATCCTTCA GGTGGCAAGA TCATAAACTG TATTCTTTGT AGATCAAATT TCAGGGATGA CTGAGAAGCG GGCGGAGAGTG ATGACATCCT CTCAAATGAA ACCGGAACGA ACCGGAACGA ACGGACCCCG GCTATACCCC GCTATACCCCC TCCTTGCAGA	120 180 240 300 360 420 60 120 180 240 300 360 420 480 540 600 720 780 840 900 1020
50 55 60 65 70	MYRPDUVRAR DKLYAEFGRE CTPHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM LEGKTDACQG GI	KRVCWEPWVI ASNNFTEMSQ ETVDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN DSGGPLVSSD 252 DNA sec id Accession Lence: 71-1' CTCGTGCCGC ATGTTCGTGG CAGTGTGACCA GCATTTCTTG GTAGACCTAT CATAGGCCAG CAAGATGATG GAAGAGGAGA AGAAGAGACA GTGATGTTGG ATGTTGGTG ATGTTGGTG ATGTTGGT AACACACTCT TACCAGCACT TACCAGCACT CCCTGAAGC CCTGAAGC CCTGAAGC CCCTGAAGC	GLVIFISLIV RLESMYKNAF LHEKLQDAVG EMPWQASLQW RIIVHEKYKH DGYSQNHLRQ ARDIWYLAGI THE NM_003 TT1 21 CGGGCTCTTG CCGGACGT ACGTGAATA AGCATAAAGA TGGATATTCT TCAATGTCGT ACCTTGAAGT CAGGAAATGA TCCTCTTTGA TCCTGCATGG TCCTGCATGG TCCTGCATGG AGGTGAAGCA	LAVCIGLTVH YKSPLREEFV PFKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT VSWGDECAKP 504.2 31 GTACCTCAGC CAAAGAGTTC GGATGCTCTG TACGCTGGTT ACAGTTTCAT TCAACCTGAT CAATGTATAC TCACGAGGAG CTACGAGGAG CTACGAGGAG CTACGAGGAG CACACGGATC CACACGGATC CACACGGATC CACACGGATC TCACACGGATC CACACGGATC CACACGCTG ACACACGCTG ACACACGCTG ACAGAAGCCG GAAGTTCCAG	YVRYNQKKTY KSQVIKFSQV IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA NKPGVYTRVT 41 GCGAGCGCCA TACGAGGTGG TGTGCGTGCA CCAGTTTCTG TATTTTATTC GAAGACACTT TCAGAGCACT TCAGAGCACT TCAGAGCACT TCAGAGCAGC TATGAATAC GACACACC TCCTTTGAGT TGCACACC TCCTTTGAGT GCCACACCC TCCTTTGAGT GCCACACCC TCCTTTGAGT GCCACACCC CTCCAGGAGT GCCATGGACAC	NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS ALRDWITSKT 51 GGCGTCCGGC TCCAGAGCCA AGATCCTTCA GGTGGCAAGA TCATAAACTG TATTCTTTGT AGATCAAATT TCAGGGATGA CTGAGAAGCG GGCGAGAGTG ATGGGACATC ATGACATGA ACCGGACGA ATGACTCCG CTCTAAATGAA ACCGGAACGA ATGACTCCG TCTTGCAGA TCTCTTGCAGA TCTCCTTGCAGA	120 180 240 300 360 420 60 120 300 360 420 600 660 620 780 840 900 900 900 1020 1080
50 55 60 65 70	MYRPDUVRAR DKLYAEFGRE ICRPHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM LEGKTDACQG GI Seq ID NO: Nucleic Ac: Coding sequ GGCACGAGGC CGCCGTGGCT GAGGGTCCTT GGCCTTGTTC ACTTGAAACT GTGTGACACC ACTCATTAAA AGAGGAGGT CACACGGTTA GGAGGCCCGG GTCAGCCAG CTCAGTCGCC ATACGTGACC ATACGTGACC ATACGTGACC ATACGTGACC CATGGGTTC CGATGAGGAG CCTGGTGCTC AGCCAGGTTC CGATGAGAGTTC CGGAGGAATTTG GGAGAATTTG GGAGAATTTG CGGTCAGACT	KRVCWEPWVI ASNNFTEMSQ ETYDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN DSGGPLVSSD 252 DNA set id Accession lence: 71-1' CTCGTGCCGC ATGTTCGTGT CTCTTCGTGG CAGTGTGACC GCATTTCTTG GTAGACCTAT CATAGGCCAG GAAGAGAGACA GTGATGTTGGAC GAAGAGAGACA AGAAGAGACA ATGTTGGT ATCGTTGGAC GATGTTGGAC CATGTTGGAC CATGTTGGAC CATGTTGGAC CATGTTGGAC CATGTTGGAC CATGTTGGAC CATGTTGGAC CATGTTGGAC CATGTTGGAC TTCCAGCATT TACCAGCATT TACCAGCATT TACCAGCATT TACCAGCATT TTCAGCATTC	GLVIFISLIV RLESMVKNAF RLESMVKNAF EMPWQASLQW RIIVHEKYKH DGYSQNHLRQ ARDIWYLAGI THE NM_003 TTI 21 CGGGCTCTTG CCGATTTCCG CCTCGGACGT CCGGATATTCG TCAATGATCT TCAATGTCGT ACCTTGAAGT TCAATGTCGT ACCTGCAGCA TCCTCTTTGA AGCATAATCA TCCTCTTTGA TAACAGACCA TCCTGCAGCG CCCTGGACTG GGTCCCTCCA TCTGCAGCG CCTTGCAGCG CCTTGCATGA TCCTGCAGCT TAACAGACCA TCCTGCAGCG CCTTGCATGA TCTTGAGGGC ATTTTGGGTT ATTTTGGTT	LAVCIGLTVH YKSPLREEFV PFKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT VSWGDECAKP 504.2 31 GTACCTCAGC CAAAGAGTTCA GGATGCTCTG TACGCTGGTT ACAGTTTCAT CAATGATATAC TCACCATGGT CAATGAGCAG GATGCTGGT GATGCTGGT CACATGCGG GATGCTGTCC GTAGGAGCAG GATGCTGCC GTAGGAGCAG CACAGGATC CACAGGATC TCACAGGATC TGACAGCAGAAC CACAGAATCAAATAAA CAAGCACAAG CAAGCACAAA	VVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA NKPGVYTRVT 41 GCGAGCGCCA TACGAGGTGG TGTGCGTGCA CCAGTTTCTG GAAGACACTA AACGATACCC GAAGACATCT TCAGAGCCTT AAGACACTCA AGGAGCAGC TATGAATATC AGCACCACACC TCCTTGAGT TCCAGGAGT TCCAGGAGT TTCCAGGACA TTCCAGGACA TTTCGGCACA TTTTGGCCA	NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS ALRDWITSKT 51 GGCGTCCGGC TCCAGAGCCA AGATCCTTCA GGTGGCAAGA TCATAAACTG TATTCTTTGT AGATCAAATT TCAGGGATGA ATGACATCCT CTCAAATGAA ACGGAACGC GCCGGACGGC TCCTTGCAGA ATGACCTCCG GCTATACCGC TCCTTGCAGA ATGACCTCCG GCTATACCGC TCCTTGCAGA AGGACATGCG GCGACGTGGT	120 180 240 360 420 60 120 180 240 360 420 480 660 720 780 960 1020 1080 1140 1200
50 55 60 65 70	MYRPDUVRAR DKLYAEFGRE ICRPHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM LEGKTDACQG GI Seq ID NO: Nucleic Ac: Coding sequ GGCACGAGGC GGCACGAGGC CGCCGTGGCT GGCCTTGTTC ACTTGAAACT TGGAGGCTATAAA AGAGGAGGAT CACACGGTTA GGTAGCCATG GTCAGCCATG GTCAGCCATG GTCAGCCATG GTGAGCCATG GTCAGCCATG GTCAGCCATG GTCAGCCATG CCTGGGCTC CATGGGTCT CATGGGTCTC CATGGGTCTC CATGGGTCTC CATGGGTCTC CATGGGTCTC CATGGGTCTC CATGGGTCTC CTTTGCCACC	KRVCWEPWVI ASNNFTEMSQ ETVDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN DSGGPLVSSD 252 DNA section Lence: 71-1' CTCGTGCCGC ATGTTCGTGT CTCTTCGTGG CAGTGTACC GCATTTCTTG GTAGACCTAT CATAGGCCAG CAAGATGATG GAAGAGGAGA GTGATGTTTGAACCAGT ATGTTGGTG AACACACTT TACCAGCACT AAGCTGTGGT CCCCTGAAGC CGGAAATGA TTCAGCATTC ATGTCTTTGA	GLVIFISLIV RLESMYKNAF RLESMYKNAF LHEKLQDAVG EWHWQASLQW RIIVHEKYKH DGYSQNHLRQ ARDIWYLAGI THE NM_003 TT1 21 CGGGCTCTTG CCGACGT ACGTGCAATA AGCATAATGA TCGATATCT TCAATGTCGT ACCTTGAAGGA AGCTGCTTG ACCTGCAGCA AGCTGCTTG TACAGCCA TCCTCTTTGA AGCTGGCTTG TACAGCCA TCCTGCAGCA AGCTGGACTG TCCTGCAGCA AGCTGGACTG TGAAGACCA TCCTGCAGCA CCGTGGACTG TGGAAGCCA TTGAAGACCA TTGAAGACCC TTGAAGACCC TTGAAGACCC TTGAAGACCC TTGAAGACCC TTGAAGACCC	LAVCIGLTVH YKSPLREEFV PFKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT VSWGDECAKP 504.2 31 GTACCTCAGC CAAAGAGTTCAT TCAACCTGAT TCAACCTGAT TCAACCTGAT CAATGTATAC TCACGCTAT CAGTGATGCAG GATGCTGTCC GTGGGTGCAACAGGATC CACAGGATC TCACAGGCAG GATGCTGTCC CACAGGATC CACAGGATC CACAGGATC CACAGGATC ACAGCACGAAC CACAAACAG CAGAAAGGAC CACAAGGAT CAAATAAA CAAGCACAAG CGAGAAGGAT CCACAAAGAC CGAGAAGGAT CCACAAGGAT CCACAAAGCACAAG CGAGAAAGGAT CAGAAAGGAC	YVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA NKPGVYTRVT 41 GCGAGCGCCA TACGAGGTGG TATTTATTC GAAGACACTA TAGGACCACTA CGAGAGCACTC TATGAATATC GCCACAACC TCCTTTGAGT TCCAGGAGT TCCAGGAGT TCCAGGAGT TCCAGGAGT TCCAGGAGT TTCGGATGA TTTCGGATGA TTTCGGATGA TTTCGGATGA GCCATGACAC CTCCTTTGGGATGA TTTCTGGGATGA TTTCGGATGA TTTCTGGCATG GCCTCAGGGA	NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS ALRDWITSKT 51 GGCGTCCGGC TCCAGAGCCA AGATCCTTCA GGTGGCAAGA TCATAAACTG TATTCTTTGT AGATCAAATT TCAGGGATGA CTGAGAAGGG GGCGAGAGTG ATGACATCCT CTCAAATGAA ACCGGAACGA ATGACCTCCG GCTATACCGC TCCTTGCAGA TCTCCTTGCAGA TCTCCTTGCAGA CGCAGCATCT CTCAGATCACTT CAGATCACTT CAGATCACTT CAGATCACTT CAGATCACTT CAGATCACTT CAGATCACTT	120 180 240 300 360 420 600 120 180 240 300 360 480 540 600 720 780 840 900 1020 1020 1020 1120 1200 1260
50 55 60 65 70 75	MYRPDUVRAR DKLYAEFGRE ICRPHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM LEGKTDACQG GI Seq ID NO: Nucleic Ac: Coding sequ GGCACGAGGC CGCCGTGGCT GAGGGTCCTT GGCCTTGTTC ACTTGAAACT TGTAGAACT TGTAGACTATAAA AGAGGAGGAT CACACGGTTA CACACGGTTA GGAGCACATG GTGTGACCC GTCAGCCATG GTGTGGCC CCTGGTGCT CCATGGGTCT CCATGGGTCT CCATGGGTCT CCATGCACC CATCCAGGTTC CCTTTGCCACC CATCCAGGCT CATCCAGCC CATCCAGC CATC	KRVCWEPWVI ASNNFTEMSQ ETYDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN DSGGPLVSSD 252 DNA set id Accession lence: 71-1' CTCGTGCCGC ATGTTCGTGT CTCTTCGTGG CAGTGTGACC GCATTTCTTG GTAGACCTAT CATAGGCCAG GAAGAGAGACA GTGATGTTGGAC GAAGAGAGACA AGAAGAGACA ATGTTGGT ATCGTTGGAC GATGTTGGAC CATGTTGGAC CATGTTGGAC CATGTTGGAC CATGTTGGAC CATGTTGGAC CATGTTGGAC CATGTTGGAC CATGTTGGAC CATGTTGGAC TTCCAGCATT TACCAGCATT TACCAGCATT TACCAGCATT TACCAGCATT TTCAGCATTC	GLVIFISLIV RLESMYKNAF RLESMYKNAF LHEKLQDAVG EWPWQASLQW RIIVHEKYKH DGYSQNHLRQ ARDIWYLAGI THE NM_003 TT1 21 CGGGCTCTTG CCGACGT ACGTGCAATA AGCATAAAGA TGGATATTCT TCAATGTCGT TAACAGACCA TCCTCTTGAAGT TCCTCTTGAGCG CCTGGACTT TCATGTCGT ACCTTGAAGT ACCTGCATGA TCCTCTTGA TCCTCTTGA TCCTCTTGA TCCTCTTGA TCCTCTTGA TCCTCTTGA TCCTCTTGAAGACCA TCCTGCATGG TTACAGACCA TTGAAGAGCC TTGGAAGGC ATTTTGGGT TGGAGAGCCC TCTCCAGGAG	LAVCIGLTVH YKSPLREEFV PFKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT VSWGDECAKP 504.2 31 GTACCTCAGC CAAAGAGTTC TCAGCTGGTT ACAGTTTCAT TCAATCTAT TCAATCTAT TCAGTGATGGG AACCATGCGG CTACGAGCAG CATAGCAGCAG CACAGGATT TCAACGTTCC GTGGGTGCAA CAACGATTCC GTGGGTGCAA CAACGATTCC GTGGGTGCAA CAACGATTCC GTGGGTGCAA CAACGATTCC GTGGGTGCAACGAGCAG CACAGAGCACAG CACAAGCACAAC CAAGCACAAC CAGAAGCACAAG CAAGAAGCACAAG CAGAAGCACAAG CAGAAGGAT TAACCTGGAC	VVRYNQKKTY KSQVIKFSQO IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA NKPGVYTRVT 41 GCGAGCGCCA TACGAGGTGG TATGCGTGCA CCAGTTTCTG GAAGACACTT TCAGAGCACTT TCAGAGCACTT TCAGAGCACTT TCAGAGCACTC TATGATATCC GAAGACACTC TCTTGAGT GCCACACC TCCTTTGAGT TGCAACACC TCCTTTGAGT TTCCAGCAGT TTCCGGCCA ACCCC TCCTTGGGT TTCCGCCACACC CTCCTTTGAGT TTCCACCCACACC CTCCAGGAGT TTCCGGCCA ACCCCCACACC CTCCAGGAGT ACCCCCAGGAGT TTCCGGCCA ACCCCCACACC CCCTCAGGAGT ACCCCCACACC CCCTCAGGAGT TTCCGGCCA ACCCCCACACC CCCTCAGGAGT ACCCCCACACC ACCCCCAGGAGT TTCCGCCCA ACCCCCACACC ACCCCCACACC CCCCAGGAGT ACCCCCACACC ACCCCCACGGACA ACCCCCACACC ACCCCCACACC CCCCAGGAGT ACCCCCACACC ACCCCCCACACC ACCCCCCACACC ACCCCCC	NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS ALRDWITSKT 51 GGCGTCCGGC TCCAGAGCCA AGATCCTTCA GGTGGCAAGA TCATAAACTG TATTCTTTGT AGATCAAATT TCAGGGATGA CTGAGAAGCG GGCGAGAGTG ATGACATGCT CTCAAATGAA ACCGGAACGA ATGACATCCT CTCAAATGAA ACCGGAACGA TCTCCTTGCAGA	120 180 240 360 420 60 120 180 240 360 420 480 660 720 780 960 1020 1080 1140 1200
50 55 60 65 70	MYRPDVVRAR DKLYAEFGRE ICRPHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM LEGKTDACQG GI Seq ID NO: Nucleic Ac: Coding sequ GGCACGAGGC CGCCGTGGCT GAGGGTCCTT GGCCTTGTTC ACTCTGAACC ACTCATTAAA AGAGGAGGAT CGAGGCCGG GTCAGCCAG CTCAGCCTG ATACGTGACT AGCAGGTTC AGCCAGGTTC CGATGAGGCC CTCGGTGCTC CATCGGTCTC CATCGGTCTC CATCGGTCTC CATCGGTCTC CATCGGGTCTC AGCCAGGCT CCTCCCAAGCC CCTCCCCAAGC CCTCGCCAAG CCTCGTCATC	KRVCWEPWVI ASNNFTEMSQ ETYDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN DSGGPLVSSD	GLVIFISLIV RLESMVKNAF RLESMVKNAF EMPWQASLQW RIIVHEKYKH DGYSQNHLRQ ARDIWYLAGI TO #: NM_003 TO 1 21 CGGGCTCTTG CCGATTTCCG CCTCGGACGT CCGGATATCCT TCAATGTCGT ACCTTGAAGT TCAATGTCGT ACCTTGAAGA TCCTCTTTGA AGCATAATGA TCCTGCAGGCA TCCTGCAGGCA TCCTGCAGGCA TCTTGCAGGCA TCCTGCAGGCA TCCTGCAGGCA TCCTGCAGGCA TCCTCCAGGA TCCTCCAGGCA TCCTCCAGGA TCCTCCAGGA AGGTGAACTC TTGAAGACCC TTTCCAGGA AGGTCACCC ACTTTCCAGGA AGCTCACCCA CTTTCCAGGA CACCCCA CTTTCCAGGA	LAVCIGLTVH YKSPLREEFV PRKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT VSWGDECAKP 504.2 31 GTACCTCAGC CAAAGAGTTC GGATGCTCTG TACGCTGGTT TACACCTGAT TCAACCTGAT CAATGTATAC TCACCGGAT CAATGTATCAC CACAGGATC CACAGGATC CACAGGATC CACAGGATC TGACAGCCTG ACAGAGCCTG ACAGAAGCGG GAAGTTCCC CACACGGATC TGACAGCCTG ACAGAAGCAG CAGAAGCAG CAGAAGCAG CAGAAGCACAG CAGAAGCACAG CAGAAGCACAG CAGAAGCAT CACACGATC TGCACACCTCTC TGCTCTCTC	YVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA NKPGVYTRVT 41 GCGAGCGCCA TACGAGGTGG TGTGCGTGCA TATTTATTC GAAGACACTA AACGATACCC GAAGACACTT CAGAGCCTT AGGAGGCTGA GCCACAACC TCCTTGAGT TCCTTGAGT TCCAGGAGT TTCCAGGAGT TTCCAGGAGT TTCCAGGAGT ATTTGTCCAGGAGT TTCCAGGAGT TTCCAGGAGT TTCCAGGAGT ACCACACC CCCACAGCC CCCAGGAGT ATTTCTGGCCA GGCTCAGGGA AAGCTGTACC CGCAGCTGCC ATGGAGGGCA	NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS ALRDWITSKT 51 GGCGTCCGGC TCCAGAGCCA AGATCCTTCA GGTGCAAGA TCATAAACTG TATTCTTTGT AGATCAAATT TCAGGGATGA ATGGCACGA ATGACATCCT CTCAAATGAA ACCGGAACGA ATGACCTCCG GCTATACCG GCTATACCG GCTATACCG TCCTTGCAGA ACGCACGTGT CTCCTTGAA AGGACATCCT CTCAAATGAA ATGACCTCCG GCTATACCGC TCCTTGCAGA TCTCCTTGAA AGGACATGCT CTCCTTGAA TCTCCTTGAA TCTCCTTGAA TCTCCTTGAA TCTCCTTGAA TCTCCTTGAA TCTCCTTGAA TCTCCTGAA TCTCCTGAA TCTCCTGAA TCTCCTGCAA TTTGCACCAA TTTGCACCAA CTCCAGATGT	120 180 240 360 420 60 120 180 240 360 420 780 840 900 960 1020 1140 1200 11320 11380 1140
50 55 60 65 70 75	MYRPDVVRAR DKLYAEFGRE ICRPHSTEDP RSKTLGQSLR RWTASFGVTI SYEFQPGDVM LEGKTDACQG GI Seq ID NO: Nucleic Ac: Coding seq GGCACGAGGC CGCCGTGGCT GAGGGTCCTT GGCCTTGTTC ACTTGAAACT GTGTGACACC ACTCATTAAA AGAGGAGGAT GGAGGCCGG GTCAGCCAT GGTGGGCC ATACGTGAC CCTGGTGTC AGCCAGGTT CGATGAGAGT CCTGGTGCT CATCGCAGAC CCTTCGCCAAC CCTTCGCATC CCTCGCCATC CCTGCTGTTC CATGCTGTTC	KRVCWEPWVI ASNNFTEMSQ ETYDKIVQLV IVGGTEVEEG KPSKMKRGLR FVTGFGALKN DSGGPLVSSD	GLVIFISLIV RLESMYKNAF RLESMYKNAF EMEWQASLQW RIIVHEKYKH DGYSQNHLRQ ARDIWYLAGI THE NM_003 TTI 21 CGGGCTCTTG CCGATTTCCG CCTCGGACGT TCCAGGACGT TCAATGTCGT ACCTTGAAGT TCAATGTCGT ACCTTGAAGT TCATGGAGCA TCCTCTTTGA AGCATAATCA TCCTGCAGCG CCTTGGACGG TCTTGCAGGCG TCTTGCAGGCG TCTTGAAGGCCA TCCAGGAGCCG CCTTGCAGGCG CCTTGCAGGCG CCTTGCAGGCG CCTTGCAGGCG CCTTGCAGGCG CCTTCCAGGAGCCA TTCCAGGAGCC TTTCCTGTA CATCCCTAAG	LAVCIGLTVH YKSPLREEFV PFKVDPHSVK DGSHRCGATL PSHDYDISLA AQVTLIDATT VSWGDECAKP 504.2 31 GTACCTCAGC CAAAGAGTTCA GGATGCTCTG TCAACCTGAT CAATGATATAC TCACGCTAT CAATGATGCG GATGCTGCC GTAGGAGCAG GATGCTGCC GTAGGAGCAG GATGCTGCC GTAGGAGCAG CACAGGATC TGACAGCATC TGACAGCAGAC CACAGAATCAAC CACAGAATCAAC CAGAACACAC CGAGAACACAC CGAGAACACAC CGAGAACCAC TAACCTGAC CGAGAACCAC TCACAGACCAC TCACAGACCAC TCACAGACCAC TCACAGACCAC TCACCACC CCTGCTCACC CCTGCTCACC	YVRYNQKKTY KSQVIKFSQQ IKKINKTETD INATWLVSAA ELSSPVPYTN CNEPQAYNDA NKPGVYTRVT	NYYSTLSFTT KHGVLAHMLL SYLNHCCGTR HCFTTYKNPA AVHRVCLPDA ITPRMLCAGS ALRDWITSKT 51 GGCGTCCGGC TCCAGAGCCA AGATCCTTCA GGTGGCAAGA TCATAAACTG TATTCTTTGT AGATCAATT TCAGGGATGA ACCGGACGGC ATGACATCCT CTCAAATGAA ACCGGAACGC GCTATACCGC TCCTTGCAGA ACGGCACTGGT CAGATCATT TCAGGCTGGT TCTCTTGTA AGGACATCCT GCGAACGGA TCTCCTTGCAGA TCTCCTTGCAGA TCTCCTTGCAGA TCTCCTTGCAGA TCTCCTTGCAGA TCTCCTTGCAGA TCTCCTTGCAGA TCTCCTTGCAGA TCTCCTGCAGATCT CAGATCACTT ATGGCCTCGA TCTCGCACA TCTCCAGATGT TCAAGTCCTT TCAAGTCCTT	120 180 240 300 360 420 60 120 240 300 360 420 600 660 720 840 900 960 1080 1140 1200 1140 1200 1320 1380

```
GAGCATGGAG CATGGCACAG TGACCGTGGT GGGCATCCCC CCAGAGACCG ACAGCTCGGA 1620
       CAGGAAGAAC TTTTTTGGGA GGGCGTTTGA GAAGGCAGCG GAAAGCACCA GCTCCCGGAT
                                                                            1680
       GCTGCACAAC CATTTTGACC TCTCAGTAAT TGAGCTGAAA GCTGAGGATC GGAGCAAGTT
                                                                            1740
       TCTGGACGCA CTTATTTCCC TCCTGTCCTA GGAATTTGAT TCTTCCAGAA TGACCTTCTT
                                                                            1800
 5
       ATTTATGTAA CTGGCTTTCA TTTAGATTGT AAGTTATGGA CATGATTTGA GATGTAGAAG
                                                                            1860
       1920
       AAAAAAAAA AA
       Seq ID NO: 253 Protein sequence:
10
       Protein Accession #: NP_003495.1
                                         31
                  11
                              21
       MFVSDFRKEF YEVVQSQRVL LFVASDVDAL CACKILQALF QCDHVQYTLV PVSGWQELET
15
       AFLEHKEQFH YFILINCGAN VDLLDILQPD EDTIFFVCDT HRPVNVVNVY NDTQIKLLIK
       QDDDLEVPAY EDIFRDEED EEHSGNDSDG SEPSEKRTRL EEEIVEQTMR RRQRREWEAR
                                                                              180
       RRDILFDYEQ YEYHGTSSAM VMFELAWMLS KDLNDMLWWA IVGLTDQWVQ DKITQMKYVT
                                                                              240
       DVGVLQRHVS RHNHRNEDEE NTLSVDCTRI SFEYDLRLVL YQHWSLHDSL CNTSYTAARF
                                                                              300
       KLWSVHGQKR LQEFLADMGL PLKQVKQKFQ AMDISLKENL REMIEESANK FGMKDMRVQT
                                                                              360
20
       FSIHFGPKHK FLASDVVPAT MSLMESPEKD GSGTDHFIQA LDSLSRSNLD KLYHGLELAK
                                                                              420
       KQLRATQQTI ASCLCTNLVI SQGPFLYCSL MEGTPDVMLF SRPASLSLLS KHLLKSFVCS
                                                                              480
       TKNRRCKLLP LVMAAPLSME HGTVTVVGIP PETDSSDRKN FFGRAFEKAA ESTSSRMLHN
                                                                              540
       HFDLSVIELK AEDRSKFLDA LISLLS
25
       Seq ID NO: 254 DNA sequence
       Nucleic Acid Accession #: NM_022337
       Coding sequence: 48..683
30
                  11
                              21
                                         31
       GGCTGCGCTT CCCTGGTCAG GCACGGCACG TCTGGCCGGC CGCCAGGATG CAGGCCCCGC
       ACAAGGAGCA CCTGTACAAG TTGCTGGTGA TTGGCGACCT GGGCGTGGGG AAGACCAGTA
       TCATCAAGCG CTACGTGCAC CAGAACTTCT CCTCGCACTA CCGGGCCACA ATCGGCGTGG
35
       ACTTCGCGCT CAAGGTGCTC CACTGGGACC CGGAGACTGT GGTGCGCCTG CAGCTCTGGG
                                                                              240
       ATATCGCAGG TCAAGAAAGA TTTGGAAACA TGACGAGGGT CTATTACCGA GAAGCTATGG
       GTGCATTTAT TGTCTTCGAT GTCACCAGGC CAGCCACATT TGAAGCAGTG GCAAAGTGGA
AAAATGATTT GGACTCCAAG TTAAGTCTCC CTAATGGCAA ACCGGTTTCA GTGGTTTTGT
                                                                              360
                                                                              420
       TGGCCAACAA ATGTGACCAG GGGAAGGATG TGCTCATGAA CAATGGCCTC AAGATGGACC AGTTCTGCAA GGAGCACGGT TTCGTAGGAT GGTTTGAAAC ATCAGCAAAG GAAAATATAA
                                                                              480
40
                                                                              540
       ACATTGATGA AGCCTCCAGA TGCCTGGTGA AACACATACT TGCAAATGAG TGTGACCTAA TGGAGTCTAT TGAGCCGGAC GTCGTGAAGC CCCATCTCAC ATCAACCAAG GTTGCCAGCT
                                                                              600
                                                                              660
       GCTCTGGCTG TGCCAAATCC TAGTAGGCAC CTTTGCTGGT GTCTGGTAGG AATGACCTCA
                                                                              720
       TTGTTCCACA AATTGTGCCT CTATTTTTAC CATTTTGGGT AAACGTCAGG ATAGATATAC
                                                                              780
45
       CACATGTGGC AAGCCAAAGA TCTATGCCTC TGTTTTTTCA ATGAGAGAGA AATAGCAAAT
                                                                              840
       GTTCTTTCTA TGCTTTCCTC ACCATCATCA CAGTGTTTAC AAACTTTTGA AAATATTTAG
                                                                              900
       TCTGTTACAA ACTTCTGTCA TGTAGCTGAC CAAAATCCTG CAGGGCCACA GTCGGCACTG
                                                                              960
       TTATTTGCTT CTTTTAATCA GCAAAGGCCT CAAGTCTTAA AATAAAAGGG GAGAAGAACA
                                                                             1020
       AACTAGCTGT CAAGTCAAGG ACTGGCTTTC ACCTTGCCCT GGTGTCTTTT TCCAGATTTC
                                                                             1080
50
       AATATATTCT CTGATGGCCT GACAGGCCTA TTAAGTAGAT GTGATATTTT CTTCCAAGAT
                                                                             1140
       GACCTCCATT CTCGGCAGAC CTAAGAGTTG CCTCTGAGTT AGCTCTTTGG AATCGTGAAC
                                                                             1200
       ACAGGTGTGC TATATTGTCC TTGTCCTAAC TGTCACTTGC CATGGCCTGA ATGTTGGCTT
                                                                             1260
                                                                             1320
       AACTGAATAT TGTATGAAAA GACATGCCTC CATATGTGCC TTTCTGTTAG CTCTCTTTGA
                                                                             1380
       CTCAAGCTGT GGGGCTCCTC TATACATGCT ATACATGTAA TATATATTAT ATATATTTT
55
       GCAAGTGAAC AATAAAACAT TAAAAGATAA AA
       Seq ID NO: 255 Protein sequence:
       Protein Accession #: NP_071732
60
                                          31
       MOAPHKEHLY KLLVIGDLGV GKTSIIKRYV HONFSSHYRA TIGVDFALKV LHWDPETVVR
       LOLWDIAGQE RFGNMTRVYY REAMGAFIVF DVTRPATFEA VAKWKNDLDS KLSLPNGKPV
                                                                              120
65
       SYVLLANKCD OGKDYLMING LKMDOFCKEH GFYGWFETSA KENINIDEAS RCLVKHILAN
       ECDLMESIEP DVVKPHLTST KVASCSGCAK S
       Seq ID NO: 256 DNA sequence
       Nucleic Acid Accession #: NM_016321
70
       Coding sequence: 25..1464
                                          31
                   11
                              21
       GGAACCGCCC GCTGCCAGCC CGGCCAGGCA CCCCTGCAGC ATGGCCTGGA ACACCAACCT
75 ·
       CCGCTGGCGG CTGCCGCTCA CCTGCCTGCT CCTGCAGGTG ATTATGGTGA TTCTCTTCGG
       GGTGTTCGTG CGCTACGACT TCGAGGCCGA CGCCCACTGG TGGTCAGAGA GGACGCACAA
                                                                              180
       GAACTTGAGC GACATGGAGA ACGAATTCTA CTATCGCTAC CCAAGCTTCC AGGACGTGCA
                                                                              240
       CGTGATGGTC TTCGTGGGCT TCGGCTTCCT CATGACTTTC CTGCAGCGCT ACGGCTTCAG
                                                                              300
       CGCCGTGGGC TTCAACTTCC TGTTGGCAGC CTTCGGCATC CAGTGGGCGC TGCTCATGCA
                                                                              360
80
       GGGCTGGTTC CACTTCTTAC AAGACCGCTA CATCGTCGTG GGCGTGGAGA ACCTCATCAA
                                                                              420
       CGCTGACTTC TGCGTGGCCT CTGTCTGCGT GGCCTTTGGG GCAGTTCTGG GTAAAGTCAG
                                                                              480
        CCCCATTCAG CTGCTCATCA TGACTTTCTT CCAAGTGACC CTCTTCGCTG TGAATGAGTT
                                                                              540
        CATTCTCCTT AACCTGCTAA AGGTGAAGGA TGCAGGAGGC TCCATGACCA TCCACACATT
                                                                              600
        TGGCGCCTAC TTTGGGCTCA CAGTGACCCG GATCCTCTAC CGACGCAACC TAGAGCAGAG
                                                                              660
85
       CAAGGAGAGA CAGAATTCTG TGTACCAGTC GGACCTCTTT GCCATGATTG GCACCCTCTT
                                                                              720
        CCTGTGGATG TACTGGCCCA GCTTCAACTC AGCCATATCC TACCATGGGG ACAGCCAGCA
                                                                              780
       CCGAGCCGCC ATCAACACCT ACTGCTCCTT GGCAGCCTGC GTGCTTACCT CGGTGGCAAT
                                                                              840
```

```
CGCAGGAGGG GTGGCCGTGG GTACCGCTGC TGAGATGATG CTCATGCCTT ACGGTGCCCT
                                                                           960
      CATCATCGGC TTCGTCTGCG GCATCATCTC CACCCTGGGT TTTGTATACC TGACCCCATT
                                                                          1020
      CCTGGAGTCC CGGCTGCACA TCCAGGACAC ATGTGGCATT AACAATCTGC ATGGCATTCC
                                                                          1080
 5
      TGGCATCATA GGCGGCATCG TGGGTGCTGT GACAGCGGCC TCCGCCAGCC TTGAAGTCTA
                                                                          1140
      TGGAAAAGAA GGGCTTGTCC ATTCCTTTGA CTTTCAAGGT TTCAACGGGG ACTGGACCGC
                                                                          1200
      AAGAACACAG GGAAAGTTCC AGATTTATGG TCTCTTGGTG ACCCTGGCCA TGGCCCTGAT
                                                                          1260
      GGGTGGCATC ATTGTGGGGC TCATTTTGAG ATTACCATTC TGGGGACAAC CTTCAGATGA
                                                                          1320
      GAACTGCTTT GAGGATGCGG TCTACTGGGA GATGCCTGAA GGGAACAGCA CTGTCTACAT
10
      CCCTGAGGAC CCCACCTTCA AGCCCTCAGG ACCCTCAGTA CCCTCAGTAC CCATGGTGTC
                                                                          1440
      CCCACTACCC ATGGCTTCCT CGGTACCCTT GGTACCCTAG GCTCCCAGGG CAGGTGAGGA
                                                                          1500
      GCAGGCTCCA CAGACTSTCC TGGGGCCCAG AGGAGCTGGT GCTGACCTAG CTAGGGATGC
                                                                          1560
      AAGAGTGAGC AAGCAGCACC CCCACCTGCT GGCTTGGCCT CAAGGTGCCT CCACCCCTGC
                                                                          1620
       CCTCCCCTTC ATCCCAGGGG GTCTGMCTGA GAATGGAGAA GGAGAAGCTA CAAAGTGGGC
                                                                          1680
15
      ATCCAAGCCG GGTTCTGGCT GCAGAAGTTC TGCCTCTGCC TGGGGTCTTG GCCACATTGG
                                                                          1740
       AGAAAAACAG GCTCAAAGTG GGGCTGGGAC CTGGTGGGTG AACCTGAGCT CTCCCAGGAG
                                                                          1800
       ACAACTTAGC TGCCAGTCAC CACCTATGAG GCTCTTCTAC CCCGTGCCTG CACCTCGGCC
                                                                          1860
       AGCATCTCCT ATGCTCCCTG GGTCCCCCAG ACCTCTCTGT GTTGTGTGCG TGGCAGCCTC
                                                                          1920
       CAGGAATAAA CATTCTTGTT GTCCTTTGTA AAAAAAAAA AAAAAAAA
20
       Seq ID NO: 257 Protein sequence:
       Protein Accession #: NP_057405
25
       MAWNINLRWR LPLICLLLQV IMVILIGUEV RYDFEADAHW WSERTHKNLS DMENEFYYRY
                                                                            60
       PSFQDVHVMV FVGFGFLMTF LQRYGFSAVG FNFLLAAFGI QWALLMQGWF HFLQDRYIVV
                                                                           120
       GVENLINADF CVASVCVAFG AVLGKVSPIQ LLIMTFFQVT LFAVNEFILL NLLKVKDAGG
                                                                           180
       SMTIHTFGAY FGLTVTRILY RRNLEQSKER QNSVYQSDLF AMIGTLFLWM YWPSFNSAIS
                                                                           240
30
       YHGDSOHRAA INTYCSLAAC VLTSVAISSA LHKKGKLDMV HIQNATLAGG VAVGTAAEMM
                                                                           300
       LMPYGALIIG FVCGIISTLG FVYLTPFLES RLHIQDTCGI NNLHGIPGII GGIVGAVTAA
                                                                           360
       SASLEVYGKE GLVHSFDFQG FNGDWTARTQ GKFQIYGLLV TLAMALMGGI IVGLILRLPF
       WGOPSDENCF EDAVYWEMPE GNSTVYIPED PTFKPSGPSV PSVPMVSPLP MASSVPLVP
35
       Seq ID NO: 258 DNA sequence
       Nucleic Acid Accession #: NM_002358.2
       Coding sequence: 75..692
40
                                         31
                             21
       GGGAAGTGCT GTTGGAGCCG CTGTGGTTGC TGTCCGCGGA GTGGAAGCGC GTGCTTTTGT
       TTGTGTCCCT GGCCATGGCG CTGCAGCTCT CCCGGGAGCA GGGAATCACC CTGCGCGGGA
                                                                           120
       GCGCCGAAAT CGTGGCCGAG TTCTTCTCAT TCGGCATCAA CAGCATTTTA TATCAGCGTG
                                                                           180
45
       GCATATATCC ATCTGAAACC TTTACTCGAG TGCAGAAATA CGGACTCACC TTGCTTGTAA
                                                                           240
       CTACTGATCT TGAGCTCATA AAATACCTAA ATAATGTGGT GGAACAACTG AAAGATTGGT
                                                                            300
       TATACAAGTG TTCAGTTCAG AAACTGGTTG TAGTTATCTC AAATATTGAA AGTGGTGAGG
                                                                           360
       TCCTGGAAAG ATGGCAGTTT GATATTGAGT GTGACAAGAC TGCAAAAGAT GACAGTGCAC
                                                                            420
       CCAGAGAAAA GTCTCAGAAA GCTATCCAGG ATGAAATCCG TTCAGTGATC AGACAGATCA
                                                                            480
50
       CAGCTACGGT GACATTTCTG CCACTGTTGG AAGTTTCTTG TTCATTTGAT CTGCTGATTT
                                                                            540
       ATACAGACAA AGATTTGGTT GTACCTGAAA AATGGGAAGA GTCGGGACCA CAGTTTATTA
                                                                            600
       CCAATTCTGA GGAAGTCCGC CTTCGTTCAT TTACTACTAC AATCCACAAA GTAAATAGCA
                                                                            660
       TGGTGGCCTA CAAAATTCCT GTCAATGACT GAGGATGACA TGAGGAAAAT AATGTAATTG
                                                                            720
       TAATTTTGAA ATGTGGTTTT CCTGAAATCA GGTCATCTAT AGTTGATATG TTTTATTTCA
                                                                            780
55
       TTGGTTAATT TTTACATGGA GAAAACCAAA ATGATACTTA CTGAACTGTG TGTAATTGTT
                                                                            840
       CCTTTATTTT TTTGGTACCT ATTTGACTTA CCATGGAGTT AACATCATGA ATTTATTGCA CATTGTTCAA AAGGAACCAG GAGGTTTTTT TGTCAACATT GTGATGTATA TTCCTTTGAA
                                                                            900
                                                                            960
       GATAGTAACT GTAGATGGAA AAACTTGTGC TATAAAGCTA GATGCTTTCC TAAATCAGAT
                                                                           1020
       GTTTTGGTCA AGTAGTTTGA CTCAGTATAG GTAGGGAGAT ATTTAAGTAT AAAATACAAC
60
       AAAGGAAGTC TAAATATTCA GAATCTTTGT TAAGGTCCTG AAAGTAACTC ATAATCTATA
                                                                           1140
       AACAATGAAA TATTGCTGTA TAGCTCCTTT TGACCTTCAT TTCATGTATA GTTTTCCCTA
                                                                           1200
       TTGAATCAGT TTCCAATTAT TTGACTTTAA TTTATGTAAC TTGAACCTAT GAAGCAATGG
                                                                           1260
       ATATTTGTAC TGTTTAATGT TCTGTGATAC AGAACTCTTA AAAATGTTTT TTCATGTGTT
                                                                           1320
       65
       AAAAAAAAA
       Seq ID NO: 259 Protein sequence:
       Protein Accession #: NP_002349.1
70
                                                               51
                             21
                                         31
                                                    41
       MALQLSREQG ITLRGSAEIV AEFFSFGINS ILYQRGIYPS ETFTRVQKYG LTLLVTTDLE
                                                                             60
       LIKYLNNVVE QLKDWLYKCS VQKLVVVISN IESGEVLERW QFDIECDKTA KDDSAPREKS
                                                                            120
75
       QKAIQDEIRS VIRQITATVT FLPLLEVSCS FDLLIYTDKD LVVPEKWEES GPQFITNSEE
       VRLRSFTTTI HKVNSMVAYK IPVND
       Seg ID NO: 260 DNA sequence
       Nucleic Acid Accession #: NM_001211
80
       Coding sequence: 43..3195
       AAAGGCCTGC AGCAGGACGA GGACCTGAGC CAGGAATGCA GGATGGCGGC GGTGAAGAAG
                                                                             60
85
       GAAGGGGGTG CTCTGAGTGA AGCCATGTCC CTGGAGGGAG ATGAATGGGA ACTGAGTAAA
                                                                            120
       GAAAATGTAC AACCTTTAAG GCAAGGGCGG ATCATGTCCA CGCTTCAGGG AGCACTGGCA
                                                                            180
       CAAGAATCTG CCTGTAACAA TACTCTTCAG CAGCAGAAAC GGGCATTTGA ATATGAAATT
                                                                            240
```

```
CGATTITACA CTGGAAATGA CCCTCTGGAT GTTTGGGATA GGTATATCAG CTGGACAGAG
                                                                           300
       CAGAACTATC CTCAAGGTGG GAAAGAGAGT AATATGTCAA CGTTATTAGA AAGAGCTGTA
                                                                           360
       GAAGCACTAC AAGGAGAAAA ACGATATTAT AGTGATCCTC GATTTCTCAA TCTCTGGCTT
                                                                           420
       AAATTAGGGC GTTTATGCAA TGAGCCTTTG GATATGTACA GTTACTTGCA CAACCAAGGG
                                                                           480
 5
       ATTGGTGTTT CACTTGCTCA GTTCTATATC TCATGGGCAG AAGAATATGA AGCTAGAGAA
                                                                           540
       AACTITAGGA AAGCAGATGC GATATITCAG GAAGGGATTC AACAGAAGGC TGAACCACTA
                                                                           600
       GAAAGACTAC AGTCCCAGCA CCGACAATTC CAAGCTCGAG TGTCTCGGCA AACTCTGTTG
                                                                           660
       GCACTTGAGA AAGAAGAAGA GGAGGAAGTT TTTGAGTCTT CTGTACCACA ACGAAGCACA
                                                                           720
       CTAGCTGAAC TAAAGAGCAA AGGGAAAAAG ACAGCAAGAG CTCCAATCAT CCGTGTAGGA
                                                                           780
10
       GGTGCTCTCA AGGCTCCAAG CCAGAACAGA GGACTCCAAA ATCCATTTCC TCAACAGATG
                                                                           840
       CAAAATAATA GTAGAATTAC TGTTTTTGAT GAAAATGCTG ATGAGGCTTC TACAGCAGAG
                                                                           900
       TTGTCTAAGC CTACAGTCCA GCCATGGATA GCACCCCCCA TGCCCAGGGC CAAAGAGAAT
                                                                           960
       GAGCTGCAAG CAGGCCCTTG GAACACAGGC AGGTCCTTGG AACACAGGCC TCGTGGCAAT
                                                                          1020
       ACAGCTTCAC TGATAGCTGT ACCCGCTGTG CTTCCCAGTT TCACTCCATA TGTGGAAGAG
                                                                          1080
15
       ACTGCACAAC AGCCAGTTAT GACACCATGT AAAATTGAAC CTAGTATAAA CCACATCCTA
                                                                          1140
       AGCACCAGAA AGCCTGGAAA GGAAGAAGGA GATCCTCTAC AAAGGGTTCA GAGCCATCAG
                                                                          1200
       CAAGCGTCTG AGGAGAAGAA AGAGAAGATG ATGTATTGTA AGGAGAAGAT TTATGCAGGA
                                                                          1260
       GTAGGGGAAT TCTCCTTTGA AGAAATTCGG GCTGAAGTTT TCCGGAAGAA ATTAAAAGAG
                                                                          1320
       CAAAGGGAAG CCGAGCTATT GACCAGTGCA GAGAAGAGAG CAGAAATGCA GAAACAGATT
                                                                          1380
20
       GAAGAGATGG AGAAGAAGCT AAAAGAAATC CAAACTACTC AGCAAGAAAG AACAGGTGAT
                                                                          1440
       CAGCAAGAAG AGACGATGCC TACAAAGGAG ACAACTAAAC TGCAAATTGC TTCCGAGTCT
                                                                          1500
       CAGAAAATAC CAGGAATGAC TCTATCCAGT TCTGTTTGTC AAGTAAACTG TTGTGCCAGA
                                                                          1560
       GAAACTTCAC TTGCGGAGAA CATTTGGCAG GAACAACCTC ATTCTAAAGG TCCCAGTGTA
                                                                          1620
       CCTTTCTCCA TTTTTGATGA GTTTCTTCTT TCAGAAAAGA AGAATAAAAG TCCTCCTGCA
                                                                          1680
25
       GATCCCCCAC GAGTTTTAGC TCAACGAAGA CCCCTTGCAG TTCTCAAAAC CTCAGAAAGC
                                                                          1740
       ATCACCTCAA ATGAAGATGT GTCTCCAGAT GTTTGTGATG AATTTACAGG AATTGAACCC
                                                                          1800
       TTGAGCGAGG ATGCCATTAT CACAGGCTTC AGAAATGTAA CAATTTGTCC TAACCCAGAA
                                                                          1860
       GACACTTGTG ACTTTGCCAG AGCAGCTCGT TTTGTATCCA CTCCTTTTCA TGAGATAATG
                                                                          1920
       TCCTTGAAGG ATCTCCCTTC TGATCCTGAG AGACTGTTAC CGGAAGAAGA TCTAGATGTA
                                                                          1980
30
       AAGACCTCTG AGGACCAGCA GACAGCTTGT GGCACTATGT ACAGTCAGAC TCTCAGCATC
                                                                          2040
       AAGAAGCTGA GCCCAATTAT TGAAGACAGT CGTGAAGCCA CACACTCCTC TGGCTTCTCT
                                                                          2100
       GGTTCTTCTG CCTCGGTTGC AAGCACCTCC TCCATCAAAT GTCTTCAAAT TCCTGAGAAA
                                                                          2160
       CTAGAACTTA CTAATGAGAC TTCAGAAAAC CCTACTCAGT CACCATGGTG TTCACAGTAT
                                                                          2220
       CGCAGACAGC TACTGAAGTC CCTACCAGAG TTAAGTGCCT CTGCAGAGTT GTGTATAGAA
                                                                          2280
35
       GACAGACCAA TGCCTAAGTT GGAAATTGAG AAGGAAATTG AATTAGGTAA TGAGGATTAC
       TGCATTAAAC GAGAATACCT AATATGTGAA GATTACAAGT TATTCTGGGT GGCGCCAAGA
                                                                          2400
       AACTCTGCAG AATTAACAGT AATAAAGGTA TCTTCTCAAC CTGTCCCATG GGACTTTTAT
                                                                          2460
       ATCAACCTCA AGTTAAAGGA ACGTTTAAAT GAAGATTTTG ATCATTTTTG CAGCTGTTAT
                                                                          2520
       CAATATCAAG ATGGCTGTAT TGTTTGGCAC CAATATATAA ACTGCTTCAC CCTTCAGGAT
40
       CTTCTCCAAC ACAGTGAATA TATTACCCAT GAAATAACAG TGTTGATTAT TTATAACCTT
                                                                          2640
       TTGACAATAG TGGAGATGCT ACACAAAGCA GAAATAGTCC ATGGTGACTT GAGTCCAAGG
                                                                          2700
       TGTCTGATTC TCAGAAACAG AATCCACGAT CCCTATGATT GTAACAAGAA CAATCAAGCT
                                                                          2760
       TTGAAGATAG TGGACTTTTC CTACAGTGTT GACCTTAGGG TGCAGCTGGA TGTTTTTACC
                                                                          2820
       CTCAGCGGCT TTCGGACTGT ACAGATCCTG GAAGGACAAA AGATCCTGGC TAACTGTTCT
                                                                          2880
45
       TCTCCCTACC AGGTAGACCT GTTTGGTATA GCAGATTTAG CACATTTACT ATTGTTCAAG
                                                                          2940
       GAACACCTAC AGGTCTTCTG GGATGGGTCC TTCTGGAAAC TTAGCCAAAA TATTTCTGAG
                                                                          3000
       CTAAAAGATG GTGAATTGTG GAATAAATTC TTTGTGCGGA TTCTGAATGC CAATGATGAG
                                                                          3060
       GCCACAGTGT CTGTTCTTGG GGAGCTTGCA GCAGAAATGA ATGGGGTTTT TGACACTACA
                                                                          3120
       TTCCAAAGTC ACCTGAACAA AGCCTTATGG AAGGTAGGGA AGTTAACTAG TCCTGGGGCT
                                                                          3180
50
       TTGCTCTTTC AGTGAGCTAG GCAATCAAGT CTCACAGATT GCTGCCTCAG AGCAATGGTT
                                                                          3240
       GTATTGTGGA ACACTGAAAC TGTATGTGCT GTAATTTAAT TTAGGACACA TTTAGATGCA
                                                                          3300
       CTACCATTGC TGTTCTACTT TTTGGTACAG GTATATTTTG ACGTCACTGA TATTTTTAT
                                                                          3360
       ACAGTGATAT ACTTACTCAT GGCCTTGTCT AACTTTTGTG AAGAACTATT TTATTCTAAA
                                                                          3420
       CAGACTCATT ACAAATGGTT ACCTTGTTAT TTAACCCATT TGTCTCTACT TTTCCCTGTA
                                                                          3480
55
       CTTTTCCCAT TTGTAATTTG TAAAATGTTC TCTTATGATC ACCATGTATT TTGTAAATAA
                                                                         3540
       Sea ID NO: 261 Protein sequence:
       Protein Accession #: NP_001202
60
       MAAVKKEGGA LSEAMSLEGD EWELSKENVQ PLRQGRIMST LQGALAQESA CNNTLQQQKR
       AFEYEIRFYT GNDPLDVWDR YISWTEQNYP QGGKESNMST LLERAVEALQ GEKRYYSDPR
                                                                           120
65
       FLNLWLKLGR LCNEPLDMYS YLHNQGIGVS LAQFYISWAE EYEARENFRK ADAIFQEGIQ
                                                                           180
       QKAEPLERLQ SQHRQFQARV SRQTLLALEK EEEEEVFESS VPQRSTLAEL KSKGKKTARA
                                                                           240
       PIIRVGGALK APSONRGLON PFPOOMONNS RITVFDENAD EASTAELSKP TVOPWIAPPM
                                                                           300
       PRAKENELQA GPWNTGRSLE HRPRGNTASL IAVPAVLPSF TPYVEETAQQ PVMTPCKIEP
       SINHILSTRK PGKEEGDPLQ RVQSHQQASE EKKEKMMYCK EKIYAGVGEF SFEEIRAEVF
                                                                           420
70
       RKKLKEQREA ELLTSAEKRA EMQKQIEEME KKLKEIQTTQ QERTGDQQEE TMPTKETTKL
       QIASESQKIP GMTLSSSVCQ VNCCARETSL AENIWQEQPH SKGPSVPFSI FDEPLLSEKK
                                                                           540
       NKSPPADPPR VLAQRRPLAV LKTSESITSN EDVSPDVCDE FTGIEPLSED AIITGFRNVT
                                                                           600
       ICPNPEDTCD FARAARFVST PFHEIMSLKD LPSDPERLLP EEDLDVKTSE DQQTACGTIY
                                                                           660
       SQTLSIKKLS PIIEDSREAT HSSGFSGSSA SVASTSSIKC LQIPEKLELT NETSENPTQS
                                                                           720
75
       PWCSOYRROL LKSLPELSAS AELCIEDRPM PKLEIEKEIE LGNEDYCIKR EYLICEDYKL
                                                                           780
       FWVAPRNSAE LTVIKVSSQP VPWDFYINLK LKERLNEDFD HFCSCYQYQD GCIVWHQYIN
                                                                           840
       CFTLODLLOH SEYITHEITV LIIYNLLTIV EMLHKAEIVH GDLSPRCLIL RNRIHDPYDC
                                                                           900
       NKNNOALKIV DFSYSVDLRV QLDVFTLSGF RTVQILEGQK ILANCSSPYQ VDLFGIADLA
                                                                           960
       HLLLFKEHLQ VFWDGSFWKL SQNISELKDG ELWNKFFVRI LNANDEATVS VLGELAAEMN
                                                                          1020
80
       GVFDTTFQSH LNKALWKVGK LTSPGALLFO
       Seg ID NO: 262 DNA sequence
       Nucleic Acid Accession #: NM_003784
       Coding sequence: 365..1507
85
                                        31
                  11
                             21
                                                   41
                                                              51
```

```
GTCTACTTAT CAATAAGCAG CTGCCTGTGC AGAGTGCAGG CTGCACCTTT GGACAGCCTT
                                                                              60
       TAAAACTGAA TTCTCAGAAT TTTAGAACAA ATTTTTGTCT AGAAATGCTG ACTTTGGTTC
                                                                             120
       ATTAGGTAGT GGTAAAACAG GCTCCCTTCG AAGCTCTCCT TCATCACCTT CCTAAGTGCA
                                                                             180
       TGTACAGGGA AGCTCTCCTT CATCACCTTC CTAAGTGCAT GGGGGAAAAT ACCTAGGGCT
 5
                                                                             240
       CAACAGTCTT GAGAAGTGTG GAAACATTTT CTTTGTGAGT GAGAACAGAT CACCTAGAGA
                                                                             300
       AAGGAAACCA GATTCCCATC ACTGCTTCTG GGTATCAGAT GCTAGCGCTG CACTCCATTT
                                                                              360
       TGCAATGGCC TCCCTTGCTG CAGCAAATGC AGAGTTTTGC TTCAACCTGT TCAGAGAGAT
                                                                              420
       GGATGACAAT CAAGGAAATG GAAATGTGTT CTTTTCCTCT CTGAGCCTCT TCGCTGCCCT
                                                                              480
10
       GGCCCTGGTC CGCTTGGGCG CTCAAGATGA CTCCCTCTCT CAGATTGATA AGTTGCTTCA
                                                                             540
       TGTTAACACT GCCTCAGGAT ATGGAAACTC TTCTAATAGT CAGTCAGGGC TCCAGTCTCA
                                                                              600
       ACTGAAAAGA GTTTTTCTG ATATAAATGC ATCCCACAAG GATTATGATC TCAGCATTGT
                                                                              660
                                                                              720
       GAATGGGCTT TTTGCTGAAA AAGTGTATGG CTTTCATAAG GACTACATTG AGTGTGCCGA
       AAAATTATAC GATGCCAAAG TGGAGCGAGT TGACTTTACG AATCATTTAG AAGACACTAG
                                                                              780
15
       ACGTAATATT AATAAGTGGG TTGAAAATGA AACACATGGC AAAATCAAGA ACGTGATTGG
                                                                              840
       TGAAGGTGGC ATAAGCTCAT CTGCTGTAAT GGTGCTGGTG AATGCTGTGT ACTTCAAAGG
                                                                              900
       CAAGTGGCAA TCAGCCTTCA CCAAGAGCGA AACCATAAAT TGCCATTTCA AATCTCCCAA
       GTGCTCTGGG AAGGCAGTCG CCATGATGCA TCAGGAACGG AAGTTCAATT TGTCTGTTAT TGAGGACCCA TCAATGAAGA TTCTTGAGGT CAGATACAAT GGTGGCATAA ACATGTACGT
                                                                            1020
                                                                            1080
       TCTGCTGCCT GAGAATGACC TCTCTGAAAT TGAAAACAAA CTGACCTTTC AGAATCTAAT GGAATGACC AATCCAAGGC GAATGACCTC TAAGTATGTT GAGGTATTTT TTCCTCAGTT
20
                                                                            1140
                                                                            1200
       CAAGATAGAG AAGAATTATG AAATGAAACA ATATTTGAGA GCCCTAGGGC TGAAAGATAT
                                                                            1260
       CTTTGATGAA TCCAAAGCAG ATCTCTCTGG GATTGCTTCG GGGGGTCGTC TGTATATATC
                                                                            1320
       AAGGATGATG CACAAATCTT ACATAGAGGT CACTGAGGAG GGCACCGAGG CTACTGCTGC
                                                                            1380
25
       CACAGGAAGT AATATTGTAG AAAAGCAACT CCCTCAGTCC ACGCTGTTTA GAGCTGACCA
                                                                            1440
       CCCATTCCTA TTTGTTATCA GGAAGGATGA CATCATCTTA TTCAGTGGCA AAGTTTCTTG
                                                                            1500
       CCCTTGAAAA TCCAATTGGT TTCTGTTATA GCAGTCCCCA CAACATCAAA GRACCACCAC
                                                                            1560
       AAGTCAATAG ATYTGRGTTT AATTGGAAAA ATGTGGTGTT TCCTTTGAGT TTATTTCTTC
                                                                             1620
       CTAACATTGG TCAGCAGATG ACACTGGTGA CTTGACCCTT CCTAGACACC TGGTTGATTG
                                                                            1680
30
       TCCTGATCCC TGCTCTTAGC ATTCTACCAC CATGTGTCTC ACCCATTTCT AATTTCATTG
                                                                            1740
       TCTTTCTTCC CACGCTCATT TCTATCATTC TCCCCCATGA CCCGTCTGGA AATTATGGAG
                                                                            1800
       RGTGCTCAAC TGGTAAGGAG AACGTAGAAG TAGCCCTAGG GATCCTTTTT GAAACTCTAC
                                                                            1860
       AGTTATCGCA GATATTCTAG CTTCATTGTA AGCAATCTAG GAAATAAGCC CTGCTGCTTT
                                                                            1920
       CTAGAAATAA GTGTGAAGGA TAAATTTTCT TTGTTGACCT ATGAAGATTT TAGAGTTTAC
35
       CTTCATATGT TTGATTTTAA ATCAGTGTAT AATCTAGATG GTAAAAAATG TGAAATTGGG
                                                                            2040
       ATTAGGGACC TACCAAAATA TTTCATTAAT GCTTTCAATT GACAAATTTT GGCCTTTCTT
                                                                            2100
       TGATAAGACA ATATGTACAT GTTTTTTCAA ATATTAAAGA TCTTTTAACT GTTGGCAGTT
                                                                            2160
       GTTATCTACA GAATCATATT TCATATGCTG TGTAGTTTAT AAGTTTTTCC TCTATTTATC
                                                                            2220
       AGAATAAAGA AATACAACAT ACCTGTAAA
40
       Seq ID NO: 263 Protein sequence:
       Protein Accession #: NP_003775
45
                  11
                              21
                                         31
       MASLAAANAE FCFNLFREMD DNQGNGNVFF SSLSLFAALA LVRLGAQDDS LSQIDKLLHV
                                                                               60
       NTASGYGNSS NSQSGLQSQL KRVFSDINAS HKDYDLSIVN GLFAEKVYGF HKDYIECAEK
                                                                             120
       LYDAKVERVD FTNHLEDTRR NINKWVENET HGKIKNVIGE GGISSSAVMV LVNAVYFKGK
                                                                             180
50
       WOSAFTKSET INCHFKSPKC SGKAVAMMHQ ERKFNLSVIE DPSMKILELR YNGGINMYVL
                                                                             240
       LPENDLSEIE NKLTFONLME WTNPRRMTSK YVEVFFPOFK IEKNYEMKQY LRALGLKDIF
                                                                              300
       DESKADLSGI ASGGRLYISR MMHKSYIEVT EEGTEATAAT GSNIVEKQLP QSTLFRADHP
                                                                             360
       FLFVIRKDDI ILFSGKVSCP
55
       Seq ID NO: 264 DNA sequence
       Nucleic Acid Accession #: AB052906
       Coding sequence: 74-814
                                          31
                   11
                              21
60
       AAAACCTTGA GGTGATTCAT CTTCCAGGCT CTCCTTCCAT CAAGTCTCTC CTCCCTAGCG
       CTCTGGGTCC TTAATGGCAG CAGCCGCCGC TACCAAGATC CTTCTGTGCC TCCCGCTTCT
       GCTCCTGCTG TCCGGCTGGT CCCGGGCTGG GCGAGCCGAC CCTCACTCTC TTTGCTATGA
                                                                             180
       CATCACCGTC ATCCCTAAGT TCAGACCTGG ACCACGGTGG TGTGCGGTTC AAGGCCAGGT
                                                                              240
65
       GGATGAAAAG ACTTTTCTTC ACTATGACTG TGGCAACAAG ACAGTCACAC CTGTCAGTCC
       CCTGGGGAAG AAACTAAATG TCACAACGGC CTGGAAAGCA CAGAACCCAG TACTGAGAGA
                                                                              360
       GGTGGTGGAC ATACTTACAG AGCAACTGCG TGACATTCAG CTGGAGAATT ACACACCCAA
                                                                              420
       GGAACCCCTC ACCCTGCAGG CCAGGATGTC TTGTGAGCAG AAAGCTGAAG GACACAGCAG
                                                                              480
       TGGATCTTGG CAGTTCAGTT TCGATGGGCA GATCTTCCTC CTCTTTGACT CAGAGAAGAG
                                                                              540
70
       AATGTGGACA ACGGTTCATC CTGGAGCCAG AAAGATGAAA GAAAAGTGGG AGAATGACAA
                                                                              600
       GGTTGTGGCC ATGTCCTTCC ATTACTTCTC AATGGGAGAC TGTATAGGAT GGCTTGAGGA
                                                                              660
       CTTCTTGATG GGCATGGACA GCACCCTGGA GCCAAGTGCA GGAGCACCAC TCGCCATGTC
                                                                              720
       CTCAGGCACA ACCCAACTCA GGGCCACAGC CACCACCCTC ATCCTTTGCT GCCTCCTCAT
                                                                              780
       CATCCTCCCC TGCTTCATCC TCCCTGGCAT CTGAGGAGAG TCCTTTAGAG TGACAGGTTA
                                                                              840
75
       AAGCTGATAC CAAAAGGCTC CTGTGAGCAC GGTCTTGATC AAACTCGCCC TTCTGTCTGG
                                                                              900
       CCAGCTGCCC ACGACCTACG GTGTATGTCC AGTGGCCTCC AGCAGATCAT GATGACATCA
                                                                              960
        TGGACCCAAT AGCTCATTCA CTGCCTTGAT TCCTTTTGCC AACAATTTTA CCAGCAGTTA
                                                                             1020
       TACCTAACAT ATTATGCAAT TTTCTCTTGG TGCTACCTGA TGGAATTCCT GCACTTAAAG
                                                                             1080
       TTCTGGCTGA CTAAACAAGA TATATCATTT TCTTTCTTCT CTTTTTGTTT GGAAAATCAA
                                                                            1140
80
       GTACTTCTTT GAATGATGAT CTCTTTCTTG CAAATGATAT TGTCAGTAAA ATAATCACGT
                                                                            1200
       TAGACTTCAG ACCTCTGGGG ATTCTTTCCG TGTCCTGAAA GAGAATTTT AAATTATTTA
                                                                            1260
       ATAAGAAAAA ATTTATATTA ATGATTGTTT CCTTTAGTAA TTTATTGTTC TGTACTGATA 1320
       ТТТАААТААА GAGTTCTATT ТСССАААААА ААААААААА А
85
       Seg ID NO: 265 Protein sequence:
```

Seq ID NO: 265 Protein sequence: Protein Accession #: BAB61048.1

	WO 02	/086443					
5	FLHYDCGNKT LQARMSCEQK	VTPVSPLGKK AEGHSSGSWQ	GWSRAGRADP LNVTTAWKAQ FSFDGQIFLL	31 HSLCYDITVI NPVLREVVDI FDSEKRMWTT APLAMSSGTT	LTEQLEDIQL VHPGARKMKE	ENYTPKEPLT KWENDKVVAM	60 120 180 240
10	Nucleic Aci	266 DNA sec id Accession Lence: 127-4	#: XM_084	853.1			
15	GACAAGATCA AACACCATGA AAAAAGGCCA	ACTTACCAGA GTGGCATCCA TTCGAAGAGA	TTTCCTAAAA CAAGAGCTTT GGACTTCCTG	31 GGTGAATATG GTGTACCTTA GAGGTGCTCG AGACTGCTCG	ACCACAAGCC GTTATACCAA TTACTAAAGG	ACCTTTTGGT CTCCAAAGGG TGAGCATATG	60 120 180 240
20	AAATCCGAGC CCAGACGAAA GATTCCGGCC GTGTGTGTGC	CTGCAACCTG TCACTGCAGA AGGATGGTCA ATGCACATGT	CTCCGTCAAA AATATTCGCG GTGAAGTTAC GTGTGTTTTC	TCACTGTTTG GGTTCAGAAA ACTGAAATTC CAGGAATGTT CATGAGGCAC TTAAAGCAAG	TTTGCCTTGA TTGGCTTAAC TAAAGCACAA TGCTTTTTAT	AGAAGAACTT CATTTCAGAA AGGACTTTGG GCATTTCCCT	300 360 420 480 540
25	cccccicic	AICITIAGAA	CRITIAGACA	TTAAAGCAAG	IIICIGGIGA	GCAA10	
		267 Protein cession #: }					·
30				31 LVTKGEHMTE ILGLTISEDS		51 PGLNPEGWKS	60
35	Nucleic Ac	268 DNA sec id Accession Lence: 57-48	n #: NM_0018	398			
40	CCCAGTATCT GCCCCAAGGA	GAGTACCCTG GGAGGATAGG	CTGCTCCTGC ATAATCCCGG	31 CTTTGTGCTC TGGCCACCCT GTGGCATCTA	AGCTGTGGCC TAACGCAGAC	CTGGCCTGGA CTCAATGATG	60 120 180
45	ACTACTACAG ATTACTTCTT ACACCTGTGC TCTACGAAGT	ACGTCCGCTG CGACGTAGAG CTTCCATGAA TCCCTGGGAG	CGGGTACTAA GTGGGCCGCA CAGCCAGAAC AACAGAAGGT	TCAGCGAGTA GAGCCAGGCA CCATATGTAC TGCAGAAGAA CCCTGGTGAA	ACAGACCGTT CAAGTCCCAG ACAGTTGTGC ATCCAGGTGT	GGGGGGTGA CCCAACTTGG TCTTTCGAGA CAAGAATCCT	240 300 360 420 480 540
50	CCACCCCTGG GACAGACAGA	ACTGGTGGCC GAAGGCTGCA GCTTCTAATA	CCCACCCTGC GGAGTCCTTT	CACCACCAC GGGAGGCCTC GTTGCTCAGC ATGGTACACA	CCCATGTGCC AGGGCGCTCT	TGCGCCAAGA GCCCTCCCTC	600 660 720
55		269 Protein cession #:NI	P_001889.1				
60	DDYYRRPLRV		VNYFFDVEVG	31 PGGIYNADLN RTICTKSQPN		51 AISEYNKATK ELQKKQLCSF	60 120
65	Nucleic Ac:	270 DNA sec id Accession uence: 13-10	n #: XM_0932	210			
70	AAACGAGCAC GGCAGAGGGA	ACAAGCAGCA ATGGGGAGGG	CCAGGAGCTG GGCATCCTAC	31 GTTTCACAAA CAGAAGAAGG CCCATATCTG GGCCTCAATC	AGGCGGCAGC AGGTGCGACT	GATGGACCAG GCGGGACGTA	60 120 180 240
75	GCCTTCAAAA GGCGGCGGGA ACGAGTAACA GGAACGCCCC	CGGTAAGAGC GAGATGCCCA CCGCCCCCAC GGCGCGCGGC	TGCAACTGAA TGAACTCAAG GGGACCGCTC CAGCAGCGGC	CGTGTGAGAC TACCCGGACA TCGAGGTCCC GGGCACCGGC GCGTGCAGTG	ATGGTGCAGA CGCCCTCCAC CCAAGCCAAG CCAATGGCCA	TAGGCTGAGA TTCTACCACC GACGCAAGGA CGGAACTCAG	300 360 420 480 540
80	GCCGAGGACC CTGCCCAAGG	CAGCTAGGCC CCCGAGCCC CCAGGCTCCC	GTCACCCGG AGGCTCCCTG	TTGCTCCAC GCGGAGGCCT TTCCTGTCCG	GGGAAGGGGC CCGCTGGTCC	ACCAGGCAAA CGCCCAGATC	600 660 720
85	Protein Acc	271 Protein cession #: 1					
	1	11	21	31	41	51	

	WO 02	/086443					
5	TTTSNTAPTG SRAEDPARPS PNSSVGRKEE	PLSRSPKPRT PRLLPREGAP RPGAGQQRRA	TCAFKTVRAA QGGTPRRRPA GKLPKAPSPG PAPMATELST EASAGPAQIM	AAGTRANGHG SLAEASAGLL GSRPSSHRRR	TQHWQSALLT AHVRLQNADA AVWPTEPPGP	PQACSVADGA QRVSISQALP RTQLEPSPRL	60 120 180 240
10	Nucleic Ac	272 DNA seid Accession uence: 17	n #: Eos se	equence			
15	TGAAAAAGCT TAATGTGGAG ATACCCACTT ATGATTTTGT	TTTTTTCCCA GAAATTATTC GAAGCCTCTG CTTGTTTCTG	21 TAATGGGAGG CTTTTAACTT TTTCTCATTG TAGAAATGTC CAGTGAGAAA	GCTTTAGCGT GAGATTACAG TCGTCCTCCG TTACATCCAT	TAAGAGTACT AATATATCTA GTTGTATTTC AGCAAAGACA	TACCAGCTAA TTCATCTTGA TAAAACCTAC AAAGTCTTTT	60 120 180 240 300
20	TTAGTATCAC	AATTTATGGG	TTCATATAGT AGAGGGTTTT ACTGTCATGT	TTGTATTTT	AAGCATATGT	GGCTTATATA	360 420 480
25		273 Protein cession #: 1	n sequence: Sos sequence	•			
30	1 MGGRENREGR	11) DAFEKAFFPT	21 FNLL	31	41	51 	
	Nucleic Ac:	274 DNA sec id Accession Lence: 299-	л#: NM_003	976.2			
35							
	1	11	21 	31	41	51	•
			TGTTTGCTCA GCTGCAAAGC				60 120
40			CTAGCTGTGT				180
			ACAAAAGATA TCAACAATGG				240 300
			TCTCCACGCT				360
			CCGCTCTGGC				420
45			CTGCCCCCCG				480
			GACGCACGGC				540
			CCGCGCCCCC				600
			CTGGGGGCCC				660 720
50			GCTTCTGCAG				780
			TACTGGGCGC				840
			GCCGACCCAC				900
			TGGACCGCCT				960
55			GCAGACTGGA GCCAGCGGCC				1020 1080
			TGGATATCAT				1140
			TGCGGATCCC				1200
			CTCACAGACT				1260
60	ACAGCATTTG					CTGGAACTGG	1320 1380
65		275 Protein cession #: N					-
	1	11	21	31	41	51 1	
			PALWPTLAAL PPPQPSRPAP				60 120
70 .	RGCRLRSQLV	PVRALGLGHR	SDELVRFRFC VNSTWRTVDR	SGSCRRARSP			180
75	Nucleic Aci	276 DNA sec id Accession mence: 783-1	#: NM_0570	91.1			
	1	11 .	21	31	41	51	
	1	Changer	 	Characas =	000000000	001010100	C 0
80			TCGGGTGGAG ACCAGCAGTC				60 120
			CTTTCTCCCG				180
	CGCGTGTCTA	CAAACTCAAC	TCCCGGTTTC	CGTGCCTCTC	CACCGCTCGA	GTTCTCTACT	240
			TCCCAGCATC				300
85			CCGACGGGTG				360 420
			GGGCAGGAGG				420 480
			CGCCAGCAGC				540

```
CCCGGGCCTG GAGCCCCACA CCCGAGGGTG CAGACTGGCT GCCAAGGCCA CACTTTTGGC
                                                                           600
      TAAAAGAGGC ACTGCCAGGT GTACAGTCCT GGGCATGCGC TGTTTGAGCT TCGGGGGAGA
                                                                           660
      GCCCAGCACT GGTCCCCGGA AAGGTGCCTA GAAGAACAAG GTGCAGGACC CCGTGCTGCC
                                                                           720
      TCAACAGGAG GGTGGGGGAA CAGCTCAACA ATGGCTGATG GGCGCTCCTG GTGTTGATAG
                                                                           780
      AGATGGAACT TGGACTTGGA GGCCTCTCCA CGCTGTCCCA CTGCCCCTGG CCTAGGCGGC
                                                                           840
      AGCCTGCCCT GTGGCCCACC CTGGCCGCTC TGGCTCTGCT GAGCAGCGTC GCAGAGGCCT
                                                                           900
      CCCTGGGCTC CGCGCCCCGC AGCCCTGCCC CCCGCGAAGG CCCCCCGCCT GTCCTGGCGT
                                                                           960
      CCCCCGCCGG CCACCTGCCG GGGGGACGCA CGGCCCGCTG GTGCAGTGGA AGAGCCCGGC
                                                                          1020
      GGCCGCCGCC GCAGCCTTCT CGGCCCGCGC CCCCGCCGCC TGCACCCCCA TCTGCTCTTC
                                                                          1080
10
      CCCGCGGGGG CCGCGCGGCG CGGGCTGGGG GCCCGGGCAG CCGCGCTCGG GCAGCGGGGG
                                                                          1140
      CGCGGGGCTG CCGCCTGCGC TCGCAGCTGG TGCCGGTGCG CGCGCTCGGC CTGGGCCACC
                                                                          1200
      GCTCCGACGA GCTGGTGCGT TTCCGCTTCT GCAGCGGCTC CTGCCGCCGC GCGCGCTCTC
      CACACGACCT CAGCCTGGCC AGCCTACTGG GCGCCGGGGC CCTGCGACCG CCCCCGGGCT
                                                                          1320
       CCCGGCCCGT CAGCCAGCCC TGCTGCCGAC CCACGCGCTA CGAAGCGGTC TCCTTCATGG
                                                                          1380
15
      ACGTCAACAG CACCTGGAGA ACCGTGGACC GCCTCTCCGC CACCGCCTGC GGCTGCCTGG
                                                                          1440
       GCTGAGGGCT CGCTCCAGGG CTTTGCAGAC TGGACCCTTA CCGGTGGCTC TTCCTGCCTG
                                                                          1500
      GGACCCTCCC GCAGAGTCCC ACTAGCCAGC GGCCTCAGCC AGGGACGAAG GCCTCAAAGC
                                                                          1560
       TGAGAGGCCC CTACCGGTGG GTGATGGATA TCATCCCCGA ACAGGTGAAG GGACAACTGA
                                                                          1620
       CTAGCAGCCC CAGAGCCCTC ACCCTGCGGA TCCCAGCCTA AAAGACACCA GAGACCTCAG
                                                                          1680
20
       CTATGGAGCC CTTCGGACCC ACTTCTCACA GACTCTGGCA CTGGCCAGGC CTCGAACCTG
                                                                          1740
       GGACCCCTCC TCTGATGAAC ACTACAGTGG CTGAGGCATC AGCCCCCGCC CAGGCCCTGT
                                                                          1800
       AGGGACAGCA TTTGAAGGAC ACATATTGCA GTTGCTTGGT TGAAAGTGCC TGTGCTGGAA 1860
       CTGGCCTGTA CTCACTCATG GGAGCTGGCC CC
25
       Seq ID NO: 277 Protein sequence:
       Protein Accession #: NP_003967.1
                 11
       MELGLGGLST LSHCPWPRRQ PALWPTLAAL ALLSSVAEAS LGSAPRSPAP REGPPPVLAS
                                                                            60
30
       PAGHLPGGRT ARWCSGRARR PPPQPSRPAP PPPAPPSALP RGGRAARAGG PGSRARAAGA
                                                                           120
       RGCRLRSQLV PVRALGLGHR SDELVRFRFC SGSCRRARSP HDLSLASLLG AGALRPPPGS
       RPVSQPCCRP TRYEAVSFMD VNSTWRTVDR LSATACGCLG
       Seq ID NO: 278 DNA sequence
35
       Nucleic Acid Accession #: NM_057160.1
       Coding sequence: 1-714
                 11
                             21
                                        31
                                                   41
                                                              51
40
       ATGCCCGGCC TGATCTCAGC CCGAGGACAG CCCCTCCTTG AGGTCCTTCC TCCCCAAGCC
       CACCTGGGTG CCCTCTTTCT CCCTGAGGCT CCACTTGGTC TCTCCGCGCA GCCTGCCCTG
                                                                           120
       TGGCCCACCC TGGCCGCTCT GGCTCTGCTG AGCAGCGTCG CAGAGGCCTC CCTGGGCTCC
                                                                           180
       GCGCCCCGCA GCCCTGCCCC CCGCGAAGGC CCCCCGCCTG TCCTGGCGTC CCCCGCCGGC
                                                                           240
       CACCTGCCGG GGGGACGCAC GGCCCGCTGG TGCAGTGGAA GAGCCCGGCG GCCGCCGCCG
                                                                           300
45
       CAGCCTTCTC GGCCCGCGCC CCCGCCGCCT GCACCCCCAT CTGCTCTTCC CCGCGGGGGC
                                                                           360
       CGCGCGGCGC GGGCTGGGG CCCGGGCAGC CGCGCTCGGG CAGCGGGGGC GCGGGGCTGC
                                                                           420
       CGCCTGCGCT CGCAGCTGGT GCCGGTGCGC GCGCTCGGCC TGGGCCACCG CTCCGACGAG
                                                                           480
       CTGGTGCGTT TCCGCTTCTG CAGCGGCTCC TGCCGCCGCG CGCGCTCTCC ACACGACCTC
                                                                           540
       AGCCTGGCCA GCCTACTGGG CGCCGGGGCC CTGCGACCGC CCCCGGGCTC CCGGCCCGTC
                                                                           600
50
       AGCCAGCCCT GCTGCCGACC CACGCGCTAC GAAGCGGTCT CCTTCATGGA CGTCAACAGC
                                                                           660
       ACCTGGAGAA CCGTGGACCG CCTCTCCGCC ACCGCCTGCG GCTGCCTGGG CTGAGGGCTC
                                                                           720
       GCTCCAGGGC TTTGCAGACT GGACCCTTAC CGGTGGCTCT TCCTGCCTGG GACCCTCCCG
                                                                           780
       CAGAGTCCCA CTAGCCAGCG GCCTCAGCCA GGGACGAAGG CCTCAAAGCT GAGAGGCCCC
                                                                           840
       TACCGGTGGG TGATGGATAT CATCCCGAA CAGGTGAAGG GACAACTGAC TAGCAGCCCC
                                                                           900
55
       AGAGCCCTCA CCCTGCGGAT CCCAGCCTAA AAGACACCAG AGACCTCAGC TATGGAGCCC
                                                                           960
       TTCGGACCCA CTTCTCACAG ACTCTGGCAC TGGCCAGGCC TCGAACCTGG GACCCCTCCT
                                                                          1020
       CTGATGAACA CTACAGTGGC TGAGGCATCA GCCCCCGCCC AGGCCCTGTA GGGACAGCAT
       TTGAAGGACA CATATTGCAG TTGCTTGGTT GAAAGTGCCT GTGCTGGAAC TGGCCTGTAC
       TCACTCATGG GAGCTGGCCC C
60
       Seg ID NO: 279 Protein seguence:
       Protein Accession #: NP_476501.1
                                        31
65
       MPGLISARGO PLLEVLPPOA HLGALFLPEA PLGLSAQPAL WPTLAALALL SSVAEASLGS
                                                                            60
       APRSPAPREG PPPVLASPAG HLPGGRTARW CSGRARRPPP OPSRPAPPPP APPSALPRGG
                                                                           120
       RAARAGGPGS RARAAGARGC RLRSQLVPVR ALGLGHRSDE LVRFRFCSGS CRRARSPHDL
       SLASLLGAGA LRPPPGSRPV SOPCCRPTRY EAVSFMDVNS TWRTVDRLSA TACGCLG
70
       Seg ID NO: 280 DNA sequence
       Nucleic Acid Accession #: NM_057090.1
       Coding sequence: 29-715
75
                             21
                                       . 31
                                                   41
                                                              51
       CTGATGGGCG CTCCTGGTGT TGATAGAGAT GGAACTTGGA CTTGGAGGCC TCTCCACGCT
                                                                            60
       GTCCCACTGC CCCTGGCCTA GGCGGCAGGC TCCACTTGGT CTCTCCGCGC AGCCTGCCCT
                                                                           120
       GTGGCCCACC CTGGCCGCTC TGGCTCTGCT GAGCAGCGTC GCAGAGGCCT CCCTGGGCTC
                                                                           180
80
       CGCGCCCGC AGCCCTGCCC CCCGCGAAGG CCCCCCGCCT GTCCTGGCGT CCCCCGCCGG
                                                                           240
       CCACCTGCCG GGGGGACGCA CGGCCCGCTG GTGCAGTGGA AGAGCCCGGC GGCCGCCGCC
                                                                           300
       GCAGCCTTCT CGGCCCGCGC CCCCGCCGCC TGCACCCCCA TCTGCTCTTC CCCGCGGGGG
                                                                           360
       CCGCGCGGGC CGGGCTGGGG GCCCGGGCAG CCGCGCTCGG GCAGCGGGGG CGCGGGGCTG
                                                                           420
       CCGCCTGCGC TCGCAGCTGG TGCCGGTGCG CGCGCTCGGC CTGGGCCACC GCTCCGACGA
                                                                           480
85
       GCTGGTGCGT TTCCGCTTCT GCAGCGGCTC CTGCCGCCGC GCGCGCTCTC CACACGACCT
                                                                           540
       CAGCCTGGCC AGCCTACTGG GCGCCGGGGC CCTGCGACCG CCCCCGGGCT CCCGGCCCGT
                                                                           600
       CAGCCAGCCC TGCTGCCGAC CCACGCGCTA CGAAGCGGTC TCCTTCATGG ACGTCAACAG
```

```
WO 02/086443
CACCTGGAGA ACCGTGGACC GCCTCTCCGC CACCGCCTGC GGCTGCCTGG GCTGAGGGCT
                                                                            720
       CGCTCCAGGG CTTTGCAGAC TGGACCCTTA CCGGTGGCTC TTCCTGCCTG GGACCCTCCC
                                                                            780
       GCAGAGTCCC ACTAGCCAGC GGCCTCAGCC AGGGACGAAG GCCTCAAAGC TGAGAGGCCC
                                                                            840
       CTACCGGTGG GTGATGGATA TCATCCCCGA ACAGGTGAAG GGACAACTGA CTAGCAGCCC
                                                                            900
 5
       CAGAGCCCTC ACCCTGCGGA TCCCAGCCTA AAAGACACCA GAGACCTCAG CTATGGAGCC
                                                                            960
       CTTCGGACCC ACTTCTCACA GACTCTGGCA CTGGCCAGGC CTCGAACCTG GGACCCCTCC
                                                                           1020
       TCTGATGAC ACTACAGTGG CTGAGGCATC AGCCCCCGCC CAGGCCCTGT AGGGACAGCA
                                                                           1080
       TTTGAAGGAC ACATATTGCA GTTGCTTGGT TGAAAGTGCC TGTGCTGGAA CTGGCCTGTA
       CTCACTCATG GGAGCTGGCC CC
10
       Seq ID NO: 281 Protein sequence:
       Protein Accession #: NP 476431.1
15
       MELGLGGLST LSHCPWPRRO APLGLSAQPA LWPTLAALAL LSSVAEASLG SAPRSPAPRE
                                                                             60
       GPPPVLASPA GHLPGGRTAR WCSGRARRPP POPSRPAPPP PAPPSALPRG GRAARAGGPG
                                                                            120
       SRARAAGARG CRLRSOLVPV RALGLGHRSD ELVRFRFCSG SCRRARSPHD LSLASLLGAG
                                                                            180
       ALRPPPGSRP VSQPCCRPTR YEAVSFMDVN STWRTVDRLS ATACGCLG
20
       Seq ID NO: 282 DNA sequence
       Nucleic Acid Accession #: Eos sequence
                             21
                                                    41
                                                               51
25
       CTACTGCACC TGCCCTCTGT TTCCTTTGGA AATCTCTTAC CTTTCATTAG GGTTTCTTTC
                                                                             60
       ATAGCAATTT CCTTTGGTTT TTAAGACTTC TACATTGCTT TTTCTTTTAT TATCTGTGCT
                                                                            120
       CCGTGAACCT TATGAATGCT GCTTAAAAAT AATGTCAAAA TATGTTTTAG CTGCCTACTC
                                                                            180
       AGGTAACGTT TTCTTTTGCT CTCATCTTGG TTTCCATATA CTATTTTTGG TTTTTTGTGA
30
       GATCTAATCA ATGATCTAGT CAGAAGCTAC TTCACTGGCT AACAGTGATC ATGTTCATGT
                                                                            300
       GCTAAAAATG AACTTGAAAC ACGGAAGTAG TGGTTGGTCC AGTTTGAAAG CTCTTATTAG
                                                                            360
       TATTCTTCAT CCTGGCTGTA ATAATAGCCA TTATTTGTTA TGCCTTTGTT ATGTAGCAGA
                                                                            420
       CACTCTTAAG GATTTTATGT GTATTATTCA AATTGCTATT ACTGTTCTTT TTATAGTTGA
                                                                            480
       GAATCTCAGG ATACCTACAT TTATCACTTT TTCAATATAT ATGTATTTCT TATT
35
       Seq ID NO: 283 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 564-1481
40
                                                               51
                             21
       GAGACTITTA ATCATCTATC CCTTGTGCTT TACGCAGACC CTACAATACA CTAGAGGCTT
                                                                             60
       CAAAGAGGTC AAAAATTCAC ATGTGTAGAC AAATTAGGTC CCTTAAGATG CCAGGCAAAC
                                                                            120
       GAAGTGCTAC CAAAACACGC AATGACTGTC CTAAAAGTGC GTTCTGGGAT ACACCTGTAA
                                                                            180
45
       ACTTGGATCA AGTTCCCTCC CCTCTCCTCA AAATATATCG ACTTGTGCTG AAAGAAATCA
                                                                            240
       CGACCGATGC TCACAATTCT GACCTCGTAA TTATATAGGG GGTGGTTTTG GTTTCTGCGT
                                                                            300
       CTTTCCCTGA TTCAGTGGCA GGTAACATAT TTCATGTACA AAATGAACTG CAACACCACG
                                                                            360
       GCAAACAAGG GACAGGCCCT CAAAGTTGTC GGTAGGGAGC CAGGACCCCG CCAGTGGCGT
                                                                            420
       GGGGAGACAC CGTACTAAAC AAGCTTGCAA ACAGCAGGCA CCTTCCTGCC ACTGAGGAGG
                                                                            480
50
       AAGGGCTGGC TAAGGGAGGC CGGGGCGGAG GAAGCCAAGC TCTGCAGGCC CTGACAAAGT
                                                                            540
       CCTCCCGGCC TCCACGCGTC GCCATGGCAA CGCGGGGTCT GTGCTGGCCG GGATTGGCCG
                                                                            600
       GCCTGGCGCG CGCAGGGCCC GCTGGGAAAG CGCGTCCCCG CCGCGGCTCC GCCAGTTTGA
                                                                            660
       ACTTGGCGGG CCAGATGTGG GCGGCGGGGC GCTGGGGGCC TACTTTTCCC TCTTCCTACG
                                                                            720
       CCGGTTTCTC TGCTGACTGC AGACCCAGGT CTCGGCCCTC CTCGGACTCC TGCTCAGTCC
                                                                            780
55
       CTATGACGGG CGCACGTGGG CAGGGGCTGG AGGTGGTGCG CTCGCCGTCG CCGCCGCTGC
                                                                            840
       CGCTGAGCTG CAGCAATTCC ACCAGGTCGC TGTTGTCTCC CCTTGGCCAC CAGAGCTTCC
       AGTTTGACGA GGACGACGGT GACGGGGAGG ATGAGGAAGA CGTGGATGAT GAGGAAGACG
       TGGATGAAGA TGCCCATGAT TCAGAGGCCA AAGTGGCGAG CCTGAGAGGA ATGGAGTTAC
       AGGGGTGCGC CAGCACTCAG GTTGAATCAG AAAATAACCA AGAAGAACAG AAACAGGTGC
                                                                           1080
60
       GCTTACCAGA AAGCCGCCTG ACACCATGGG AGGTGTGGTT TATTGGCAAA GAAAAAGAAG
                                                                           1140
       AACGTGACCG GCTGCAACTG AAAGCTCTAG AGGAATTAAA TCAACAACTA GAAAAAAGAA
                                                                           1200
       AAGAAATGGA AGAACGTGAA AAAAGAAAGA TAATTGCTGA AGAAAAGCAC AAGGAATGGG
                                                                           1260
       TTCAGAAAAA GAATGAGCAA AAAAGAAAAG AAAGAGAACA AAAAATTAAT AAAGAAATGG
                                                                           1320
       AGGAAAAAGC AGCAAAGGAA CTGGAGAAAG AATACTTGCA AGAAAAAGCA AAAGAAAAAT
                                                                           1380
65
       1440
       AAAACAACAG CAAGCTGAAA TACAGGAGAA AAAGGAAAATA GCAGAAAAAA AGTTTCAAGA
                                                                           1500
       ATGGTTGGAA AATGCGAAAC ATAAACCTCG TCCAGCTGCA AAGAGCTATG GTTATGCCAA
                                                                           1560
       TGGAAAACTT ACAGGTTTTT ACAGTGGAAA TTCCTATCCA GAACCAGCCT TTTATAATCC AATTCCGTGG AAACCAATTC ATATGCCACC TCCCAAAGAA GCTAAGGATC TATCAGGAAG
                                                                           1620
                                                                           1680
70
       GAAGAGTAAA AGACCTGTGA TAAGTCAGCC ACACAAGTCA TCATCTCTGG TAATTCATAA
                                                                           1740
       AGCCAGGAGC AATCTTTGCC TTGGAACTCT GTGCAGAATA CAAAGATAGC GTATGTGGAA
                                                                           1800
       AATAACATGC TTTTATCTGG AGCTATTTAA TTTAAAAAATC AGAAATTGTT TTTTACTGCT
                                                                           1860
       CAGTCAATAA CTCAACACTT AATGTGATTA TTGACAAATA GCAATTTTTG CATTTGTATA
                                                                           1920
       TGGAGTCCTT AGAGTTGAGG AAGATATTTT CTGGATTTTG GTTTTTATAA ACTTTTTAAG
                                                                           1980
75
       GTTGATCTTG GCATGTTGTT TTGCAGAATA AGTGGCTGAA TATGTAAGAA TTGTGTTTGT
                                                                           2040
       ATTTAGCTTG TATTAAAAGT ACACTGTAAT ACCAATAAAA CTAACAATTT TTCTTG
       Seq ID NO: 284 Protein sequence:
       Protein Accession #: Eos sequence
80
                                                               51
       MATRGLCWPG LAGLARAGPA GKARPRRGSA SLNLAGOMWA AGRWGPTFPS SYAGFSADCR
                                                                             60
       PRSRPSSDSC SVPMTGARGQ GLEVVRSPSP PLPLSCSNST RSLLSPLGHQ SFQFDEDDGD
                                                                            120
85
       GEDEEDVDDE EDVDEDAHDS EAKVASLRGM ELQGCASTQV ESENNQEEQK QVRLPESRLT
                                                                            180
       PWEVWPIGKE KEERDRLQLK ALEELNQQLE KRKEMEEREK RKIIAEEKHK EWVQKKNEQK
                                                                            240
       RKEREQKINK EMEEKAAKEL EKEYLQEKAK EKYQEWLKKK NAEECERKKK EKKNNSKLKY
                                                                            300
```

Seq ID NO: 285 DNA sequence
Nucleic Acid Accession #: Eos sequence
Coding sequence: 1-1746

	ļ	11	21	31	41	51	
	 	AGCATTATCT		 CTCCCCTCCC	A A G C C T G G G G	TGCACGGTTC	60
10		GCTGCCCTAG					120
		TTGTGGCGGT					180
		ACATCACTGA					240
		TTGAGAAGAA					300
15	GGCTCGCTGC	GCTATCTCAG	CCTCGCCAAC	AACAAGCTGC	AGGTTCTGCC	CATCGGCCTC	360
15	TTCCAGGGCC	TGGACAGCCT ACTTCTCCCA	TGAGTCTCTC	CTTCTGTCCA	TOCACTTOCA	CCCCAACCAC	420 480
		TCCCTGACGG					540
		GCCTCACCCA					600
	GTCCTCCGGC	TGTATGAGAA	CAGGCTCACG	GATATCCCCA	TGGGCACTTT	TGATGGGCTT	660
20	GTTAACCTGC	AGGAACTGGC	TCTACAGCAG	AACCAGATTG	GACTGCTCTC	CCCTGGTCTC	720
	TTCCACAACA	ACCACAACCT	CCAGAGACTC	TACCTGTCCA	ACAACCACAT	CTCCCAGCTG	780
	CCACCCAGCA	TCTTCATGCA	GCTGCCCCAG	CTCAACCGTC	TTACTCTCTT	TGGGAATTCC	840
	CTGAAGGAGC	TCTCTCTGGG ACATCTCTTC	TOTACCCCAC	AATGTCTTCA	CCAACCTCCC	CCACTTGCAG	900 960
25	GTCCTGATTC	TTAGCCGCAA	TCAGATCAGC	TTCATCTCCC	CGGGTGCCTT	CAACGGGCTA	1020
	ACGGAGCTTC	GGGAGCTGTC	CCTCCACACC	AACGCACTGC	AGGACCTGGA	CGGGAATGTC	1080
	TTCCGCATGT	TGGCCAACCT	GCAGAACATC	TCCCTGCAGA	ACAATCGCCT	CAGACAGCTC	1140
		TCTTCGCCAA					1200
30	CTGGAGAACT	TGCCCCTCGG	CATCTTCGAT	CACCTGGGGA	AACTGTGTGA	GCTGCGGCTG	1260
30	TATGACAATC	CCTGGAGGTG GGTTAGGGAC	CGACACTCAGAC	COTOTOTOTOTO	TCAGCCCAGC	CAATGTCCGA	1320 1380
	GGCCAGCCIA	TCATTATCAT	CAATGTCAAC	GTTGCTGTTC	CAAGCGTCCA	TGTCCCTGAG	1440
	GTGCCTAGTT	ACCCAGAAAC	ACCATGGTAC	CCAGACACAC	CCAGTTACCC	TGACACCACA	1500
~ =	TCCGTCTCTT	CTACCACTGA	GCTAACCAGC	CCTGTGGAAG	ACTACACTGA	TCTGACTACC	1560
35		CTGATGACCG					1620
		TTGTAATTGG					1680 1740
	TGTTGCTGCT	GCAAGAAGAG GCAGGCTGGA	GAGCCAAGCT	GICCIGAIGC	GACTGGAGGA	CCTGGGAATT	1800
		GCCTCCACCC					1860
40	CTAGATAAAG	GTGTGCCTAC	CTCTTCCTGA	CTTGCCTGAT	TCTCCCGTAG	AGAAGCAGGT	1920
		CTTCCTACAA					1980
		TTCATACCCC					2040
		CAAGAACAGC CAGCCTGCTC					2100 2160
45	CCTAGGGCCA	ATGTAAGTTG	ATTTCCCTTC	TTTTGTTTCT	CTTGTTTGTG	CTATGGCTTG	2220
		TCCCCTCAAA					2280
	TGAGTTCTCT	CCTCAAAGAA	GACTTCAAAC	CATTTAACTG	GTTTCTTAAG	AGCCGTCAAT	2340
		TTGGGGATGC					2400
50		GCCGTCATCA					2460 2520
50		GCAAGCTCAG AGCCCTTTAA					2520
		TATTAATACG					2640
	CACCCCTAGA	GTTTGTTTTA	AAATTTTTAA	TTGAAGCATG	TGAAGTGTAC	STGCAGAAAA	2700
<i>e e</i>	GTGGGAACAT	GATAGTGTAT	GGCTTGGTGG	ATTTTCACAA	ACTGAACATA	CCTGTGTAAT	2760
55		ACCCAGACCC					2820
		GCTTCTGAAG GTCAGCCTGT					2880 2940
		ATGGGAGACT					3000
		AGACCTGGGG					3060
60		CCACACCCTC					3120
		GCCTTCTATG					3180
		AGTGAAATCG TCTTTCTAAT					3240 3300
		AATCTCACTT					3360
65		TCCCTGGAGC					3420
		TTCTCCTCCT					3480
		CATATTCACA					3540
		CTGGCCCAGT					3600 3660
70		TTCAGCTGAC TCCCCGCTCC					3720
, 0		TTAGCTCCCC					3780
		TCTTATTAGC					3840
	CAGGAGCACG	TGCTGACCAG	TTTTCCCTTC	CAGTTCCTGC	ACAAAAAGTG	TCCAGAGGGC	3900
75		CACTAGTGCA					3960
15		CGTCAGAGTC GCACCTGGAG					4020 4080
		GCACATGAGC					4140
		GGCCCGTACC					4200
00	GGTGCTCCTG	TGAGTGGCCT	CCAGATGTCT	TTGTGCATAG	GCACAAGTGG	GCCAGGGCTG	4260
80		GGAAACCTCA					4320
		GCAGTAGCCA					4380 4440
		GTCCTCAGAT ACCTCTTGCC					4500
		CTTCAGCGGG					4560
85	TACTAGAAAA	GCTGAGTGGA	GTCTCCTTTC	CAACAGGATG	ATGCATTTGC	TCAATTCTCA	4620
		GAGCCGGCTG					4680
	CCTCTCTGTT	TACAGCTCCT	TGACAGTCCC	ACGCCCATCT	GGAGTGGGAG	CTGGGAGTTA	4740

```
GTGTTGGAGA AGAAACAACA AAAGCCAATT AGAACCACTA TTTTTAAAAA GTGCTTACTG
                                                                         4800
       TGCACAGATA CTCTTCAAGC ACTGGACGTG GATTCTCTCT CTAGCCCTCA GCACCCCTGC
                                                                         4860
      GGTAGGAGTG CCGCCTCTAC CCACTTGTGA TGGGGTACAG AGGCACTTGC TCTTCTGCAT
                                                                         4920
      GGTGTTCAAT AGGCTGGGAG TTTTATTTAT CTCTTCAAAC TTTGTACAAG AGCTCATGGC
                                                                         4980
 5
       TTGTCTTGGG CTTTCGTCAT TAAACCAAAG GAAATGGAAG CCATTCCCCT GTTGCTCTCC
                                                                         5040
      TTAGTCTTGG TCATCAGAAC CTCACTTGGT ACCATATAGA TCAAAAGCTT TGTAACCACA
                                                                         5100
       5160
       TGGGCTGTAT GTATATTGTT CTTCCTCCTT AGAATTTAGA GATACAAGAG TTCTACTTAG
                                                                         5220
       AACTTITCAT GGACACATT TCCACAACCT TTCAGATGCT GATGTAGAGC TATTGGGAAA
                                                                         5280
10
      GAACTTCCAA ACTCAGGAAG TTTGCAGAGA GCAGACAGCT AGAGATAACT CGGGACCCAG
                                                                         5340
       AGTTGGTCGA CAGATGTTAG ATGTATCCTA GCTTTTAGCC ATAAACCACT CAAAGATTCA
                                                                         5400
       GCCCCCAGAT CCCACAGTCA GAACTGAATC TGCGTTGTTG GGAAGCCAGC AGTGGCCTTG
                                                                         5460
       GGAAGGAAGC CATGGCTGTG GTTCAGAGAG GGTGGGCTGG CAAGCCACTT CCGGGGAAAA
                                                                         5520
       CTCCTTCCGC CCCAGGTTTC TTCTTCTCTT AAGGAGAGAT TGTTCTCACC AACCCGCTGC
                                                                         5580
15
       CTTCATGCTG CCTTCAAAGC TAGATCATGT TTGCCTTGCT TAGAGAATTA CTGCAAATCA
                                                                         5640
       GCCCCAGTGC TTGGCGATGC ATTTACAGAT TTCTAGGCCC TCAGGGTTTT GTAGAGTGTG
                                                                         5700
       AGCCCTGGTG GGCAGGGTTG GGGGGTCTGT CTTCTGCTGG ATGCTGCTTG TAATCCATTT
       GGTGTACAGA ATCAACAATA AATAATATAC ATGTAT
20
       Seq ID NO: 286 Protein sequence:
       Protein Accession #: NP 570843.1
                                                   41
                                                             51
25
       MPLKHYLLLL VGCQAWGAGL AYHGCPSECT CSRASQVECT GARIVAVPTP LPWNAMSLQI
                                                                           60
       LNTHITELNE SPFLNISALI ALRIEKNELS RITPGAFRNL GSLRYLSLAN NKLQVLPIGL
                                                                          120
       FQGLDSLESL LLSSNQLLQI QPAHFSQCSN LKELQLHGNH LEYIPDGAFD HLVGLTKLNL
                                                                          180
       GKNSLTHISP RVFQHLGNLQ VLRLYENRLT DIPMGTFDGL VNLQELALQQ NQIGLLSPGL
                                                                          240
       FHNNHNLQRL YLSNNHISQL PPSIFMQLPQ LNRLTLFGNS LKELSLGIFG PMPNLRELWL
                                                                          300
30
       YDNHISSLPD NVFSNLRQLQ VLILSRNQIS FISPGAFNGL TELRELSLHT NALQDLDGNV
                                                                          360
       FRMLANLQNI SLQNNRLRQL PGNIFANVNG LMAIQLQNNQ LENLPLGIFD HLGKLCELRL
                                                                          420
       YDNPWRCDSD ILPLRNWLLL NQPRLGTDTV PVCFSPANVR GQSLIIINVN VAVPSVHVPE
                                                                          480
       VPSYPETPWY PDTPSYPDTT SVSSTTELTS PVEDYTDLTT IQVTDDRSVW GMTQAQSGLA
       IAAIVIGIVA LACSLAACVG CCCCKKRSQA VLMQMKAPNE C
35
       Seq ID NO: 287 DNA sequence
       Nucleic Acid Accession #: NM 002362
       Coding sequence: 1..954
40
                                        31
       ATGTCTTCTG AGCAGAAGAG TCAGCACTGC AAGCCTGAGG AAGGCGTTGA GGCCCAAGAA
                                                                           60
       GAGGCCCTGG GCCTGGTGGG TGCACAGGCT CCTACTACTG AGGAGCAGGA GGCTGCTGTC
                                                                          120
       TCCTCCTCCT CTCCTCTGGT CCCTGGCACC CTGGAGGAAG TGCCTGCTGC TGAGTCAGCA
                                                                          180
45
       GGTCCTCCC AGAGTCCTCA GGGAGCCTCT GCCTTACCCA CTACCATCAG CTTCACTTGC
                                                                          240
       TGGAGGCAAC CCAATGAGGG TTCCAGCAGC CAAGAAGAGG AGGGGCCAAG CACCTCGCCT
                                                                          300
       GACGCAGAGT CCTTGTTCCG AGAAGCACTC AGTAACAAGG TGGATGAGTT GGCTCATTTT
                                                                          360
       CTGCTCCGCA AGTATCGAGC CAAGGAGCTG GTCACAAAGG CAGAAATGCT GGAGAGAGTC
                                                                          420
       ATCAAAAATT ACAAGCGCTG CTTTCCTGTG ATCTTCGGCA AAGCCTCCGA GTCCCTGAAG
                                                                          480
50
       ATGATCTTTG GCATTGACGT GAAGGAAGTG GACCCCGCCA GCAACACCTA CACCCTTGTC
                                                                          540
       ACCTGCCTGG GCCTTTCCTA TGATGGCCTG CTGGGTAATA ATCAGATCTT TCCCAAGACA
                                                                          600
       GGCCTTCTGA TAATCGTCCT GGGCACAATT GCAATGGAGG GCGACAGCGC CTCTGAGGAG
                                                                          660
       GAAATCTGGG AGGAGCTGGG TGTGATGGGG GTGTATGATG GGAGGGAGCA CACTGTCTAT
                                                                          720
       GGGGAGCCCA GGAAACTGCT CACCCAAGAT TGGGTGCAGG AAAACTACCT GGAGTACCGG
                                                                          780
55
       CAGGTACCCG GCAGTAATCC TGCGCGCTAT GAGTTCCTGT GGGGTCCAAG GGCTCTGGCT
                                                                          840
       GAAACCAGCT ATGTGAAAGT CCTGGAGCAT GTGGTCAGGG TCAATGCAAG AGTTCGCATT
                                                                          900
       GCCTACCCAT CCCTGCGTGA AGCAGCTTTG TTAGAGGAGG AAGAGGGAGT CTGA
60
       Seg ID NO: 288 Protein seguence:
       Protein Accession #: NP_002353.1
                             21
                                                             51
                  11
                                       31
65
       MSSEOKSOHC KPEEGVEAOE EALGLVGAOA PTTEEOEAAV SSSSPLVPGT LEEVPAAESA
                                                                           60
       GPPQSPQGAS ALPTTISFTC WRQPNEGSSS QEEEGPSTSP DAESLFREAL SNKVDELAHF
                                                                          120
       LLRKYRAKEL VTKAEMLERV IKNYKRCFPV IFGKASESLK MIFGIDVKEV DPASNTYTLV
                                                                          180
       TCLGLSYDGL LGNNQIFPKT GLLIIVLGTI AMEGDSASEE EIWEELGVMG VYDGREHTVY
                                                                          240
       GEPRKLLTOD WVOENYLEYR OVPGSNPARY EFLWGPRALA ETSYVKVLEH VVRVNARVRI
                                                                          300
70
       AYPSLREAAL LEEEGV
       Seq ID NO: 289 DNA sequence
       Nucleic Acid Accession #: NM_002362
       Coding sequence: 46..1344
75
       CGGCGGCCGC GCCTGGTTG GGTCCCCACT GCTCTCGGGG GCGCCATGGA CGAGGCCGTG
80
       GGCGACCTGA AGCAGGCGCT TCCCTGTGTG GCCGAGTCGC CAACGGTCCA CGTGGAGGTG
                                                                          120
       CATCAGCGCG GCAGCAGCAC TGCAAAGAAA GAAGACATAA ACCTGAGTGT TAGAAAGCTA
                                                                          180
       CTCAACAGAC ATAATATTGT GTTTGGTGAT TACACATGGA CTGAGTTTGA TGAACCTTTT
                                                                          240
       TTGACCAGAA ATGTGCAGTC TGTGTCTATT ATTGACACAG AATTAAAGGT TAAAGACTCA
                                                                          300
       CAGCCCATCG ATTTGAGTGC ATGCACTGTT GCACTTCACA TTTTCCAGCT GAATGAAGAT
                                                                          360
85
       GGCCCCAGCA GTGAAAATCT GGAGGAAGAG ACAGAAAACA TAATTGCAGC AAATCACTGG
                                                                          420
       GTTCTACCTG CAGCTGAATT CCATGGGCTT TGGGACAGCT TGGTATACGA TGTGGAAGTC
                                                                          480
       AAATCCCATC TCCTCGATTA TGTGATGACA ACTTTACTGT TTTCAGACAA GAACGTCAAC
                                                                          540
```

```
AGCAACCTCA TCACCTGGAA CCGGGTGGTG CTGCTCCACG GTCCTCCTGG CACTGGAAAA
       ACATCCCTGT GTAAAGCGTT AGCCCAGAAA TTGACAATTA GACTTTCAAG CAGGTACCGA
       TATGGCCAAT TAATTGAAAT AAACAGCCAC AGCCTCTTTT CTAAGTGGTT TTCGGAAAGT
                                                                               720
       GGCAAGCTGG TAACCAAGAT GTTTCAGAAG ATTCAGGATT TGATTGATGA TAAAGACGCC
 5
       CTGGTGTTCG TGCTGATTGA TGAGGTGGAG AGTCTCACAG CCGCCCGAAA TGCCTGCAGG
       GCGGGCACCG AGCCATCAGA TGCCATCCGC GTGGTCAATG CTGTCTTGAC CCAAATTGAT
       CAGATTAAAA GGCATTCCAA TGTTGTGATT CTGACCACTT CTAACATCAC CGAGAAGATC
                                                                               960
       GACGTGGCCT TCGTGGACAG GGCTGACATC AAGCAGTACA TTGGGCCACC CTCTGCAGCA
                                                                              1020
       GCCATCTTCA AAATCTACCT CTCTTGTTTG GAAGAACTGA TGAAGTGTCA GATCATATAC
                                                                              1080
       CCTCGCCAGC AGCTGCTGAC CCTCCGAGAG CTAGAGATGA TTGGCTTCAT TGAAAACAAC GTGTCAAAAT TGAGCCTTCT TTTGAATGAC ATTTCAAGGA AGAGCGAGGG CCTCAGCGGC
10
                                                                              1140
                                                                              1200
       CGGGTCCTGA GAAAACTCCC CTTTCTGGCT CATGCGCTGT ATGTCCAGGC CCCCACCGTC
                                                                              1260
       ACCATAGAGG GGTTCCTCCA GGCCCTGTCT CTGGCAGTGG ACAAGCAGTT TGAAGAGAGA
                                                                              1320
       AAGAAGCTTG CAGCTTACAT CTGATCCTGG GCTTCCCCAT CTGGTGCTTT TCCCATGGAG
                                                                              1380
15
       AACACACAAC CAGTAAGTGA GGTTGCCCCA CACAGCCGTC TCCCAGGGAA TCCCTTCTGC
                                                                              1440
       AAACCAAACG TTACTTAGAC TGCAAGCTAG AAAGCCACCA AGGCCAGGCT TTGTTAAAAG
                                                                              1500
       AAGTGTATTC TATTTATGTT GTTTTAAAAT GCATACTGAG AGACAAACAT CTTGTCATTT
                                                                              1560
       TCACTGTTTG TAAAAGATAA TTCAGATTGT TTGTCTCCTT GTGAAGAACC ATCGAAACCT
                                                                              1620
       GTTTGTTCCC AGCCCACCCC CAGTGGATGG GATGCATAAT GCCAGCAAGT TTTGTTTAAC
                                                                              1680
20
       AGCAAAAAG GAAGATTAAT GCAGGTGTTA TAGAAGCCAG AAGAGAAACT GTGTCACCCT
                                                                              1740
       AAAGAAGCAT ATAATCATAG CATTAAAAAT GCACACATTA CTCCAGGTGG AAGGTGGCAA
                                                                              1800
       TTGCTTTCTG ATATCAGCTC GTTTGATTTA GTGCAAAAAT GTTTTCAAGA CTATTTAATG
       GATGTAAAAA AGCCTATTTC TACATTATAC CAACTGAGAA AAAAATGGTC GGTAAAGTGT
                                                                              1920
       TCTTTCATAA TAAATAATCA AGACATGGTC CCATTTGCAG GAAAAGTGCA GACTCTGAGT
                                                                              1980
25
       GTTCCAGGGA AACACATGCT GGACATCCCT TGTAACCCGG TATGGGCGCC CCTGCATTGC
                                                                              2040
       TGGGATGTTT CTGCCCACGG TTTTGTTTGT GCAATAACGT TATCACATTT CTAATGAGGA
                                                                              2100
       TTCACATTAA TATAATATAA AATAAATAGG TCAGTTACTG GTCTCTTTCT GCCGAATGTT
                                                                              2160
       ATGTTTTGCT TTTATCTCAC AGTAAAATAA ATATAATTAA AAA
30
       Seq ID NO: 290 Protein sequence:
       Protein Accession #: NP_004228
                               21
                                          31
                                                      41
                                                                  51
35
       MDEAVGDLKQ ALPCVAESPT VHVEVHQRGS STAKKEDINL SVRKLLNRHN IVFGDYTWTE
                                                                                60
        FDEPFLIRNV QSVSIIDTEL KVKDSQPIDL SACTVALHIF QLNEDGPSSE NLEEETENII
                                                                               120
       AANHWVLPAA EFHGLWDSLV YDVEVKSHLL DYVMTTLLFS DKNVNSNLIT WNRVVLLHGP
                                                                               180
       PGTGKTSLCK ALAQKLTIRL SSRYRYGQLI EINSHSLFSK WFSESGKLVT KMFQKIQDLI
                                                                               240
       DDKDALVFVL IDEVESLTAA RNACRAGTEP SDAIRVVNAV LTQIDQIKRH SNVVILTTSN
                                                                               300
40
        ITEKIDVAFV DRADIKQYIG PPSAAAIFKI YLSCLEELMK CQIIYPRQQL LTLRELEMIG
                                                                               360
       FIEMNVSKLS LLLNDISRKS EGLSGRVLRK LPFLAHALYV QAPTVTIEGF LQALSLAVDK
                                                                               420
       QFEERKKLAA YI
        Seq ID NO: 291 DNA sequence
45
       Nucleic Acid Accession #: NM 002658.1
        Coding sequence: 77-1372
                               21
                                           31
50
        GTCCCCGCAG CGCCGTCGCG CCCTCCTGCC GCAGGCCACC GAGGCCGCCG CCGTCTAGCG
        CCCCGACCTC GCCACCATGA GAGCCCTGCT GGCGCGCCTG CTTCTCTGCG TCCTGGTCGT
       GAGCCACTCC AAAGGCAGCA ATGAACTTCA TCAAGTTCCA TCGAACTGTG ACTGTCTAAA
TGGAGGAACA TGTGTGTCCA ACAAGTACTT CTCCAACATT CACTGGTGCA ACTGCCCAAA
                                                                               180
                                                                               240
       GAAATTCGGA GGGCAGCACT GTGAAATAGA TAAGTCAAAA ACCTGCTATG AGGGGAATGG
TCACTTTTAC CGAGGAAAGG CCAGCACTGA CACCATGGGC CGGCCCTGCC TGCCCTGGAA
                                                                               300
55
                                                                               360
        CTCTGCCACT GTCCTTCAGC AAACGTACCA TGCCCACAGA TCTGATGCTC TTCAGCTGGG
CCTGGGGAAA CATAATTACT GCAGGAACCC AGACAACCGG AGGCGACCCT GGTGCTATGT
                                                                                420
                                                                               480
        GCAGGTGGGC CTAAAGCCGC TTGTCCAAGA GTGCATGGTG CATGACTGCG CAGATGGAAA
                                                                               540
        AAAGCCCTCC TCTCCTCCAG AAGAATTAAA ATTTCAGTGT GGCCAAAAGA CTCTGAGGCC
                                                                               600
60
        CCGCTTTAAG ATTATTGGGG GAGAATTCAC CACCATCGAG AACCAGCCCT GGTTTGCGGC
                                                                               660
        CATCTACAGG AGGCACCGGG GGGGCTCTGT CACCTACGTG TGTGGAGGCA GCCTCATCAG
                                                                               720
        CCCTTGCTGG GTGATCAGCG CCACACACTG CTTCATTGAT TACCCAAAGA AGGAGGACTA
                                                                               780
        CATCGTCTAC CTGGGTCGCT CAAGGCTTAA CTCCAACACG CAAGGGGAGA TGAAGTTTGA
                                                                               840
        GGTGGAAAAC CTCATCCTAC ACAAGGACTA CAGCGCTGAC ACGCTTGCTC ACCACAACGA
                                                                               900
65
        CATTGCCTTG CTGAAGATCC GTTCCAAGGA GGGCAGGTGT GCGCAGCCAT CCCGGACTAT
                                                                               960
        ACAGACCATC TGCCTGCCCT CGATGTATAA CGATCCCCAG TTTGGCACAA GCTGTGAGAT
                                                                              1020
        CACTGGCTTT GGAAAAGAGA ATTCTACCGA CTATCTCTAT CCGGAGCAGC TGAAAATGAC
                                                                              1080
        TGTTGTGAAG CTGATTTCCC ACCGGGAGTG TCAGCAGCCC CACTACTACG GCTCTGAAGT
                                                                              1140
        CACCACCAAA ATGCTATGTG CTGCTGACCC CCAATGGAAA ACAGATTCCT GCCAGGGAGA
                                                                              1200
70
        CTCAGGGGGA CCCCTCGTCT GTTCCCTCCA AGGCCGCATG ACTTTGACTG GAATTGTGAG
                                                                              1260
        CTGGGGCCGT GGATGTGCCC TGAAGGACAA GCCAGGCGTC TACACGAGAG TCTCACACTT
                                                                              1320
        CTTACCCTGG ATCCGCAGTC ACACCAAGGA AGAGAATGGC CTGGCCCTCT GAGGGTCCCC
                                                                              1380
        AGGGAGGAAA CGGGCACCAC CCGCTTTCTT GCTGGTTGTC ATTTTTGCAG TAGAGTCATC
                                                                              1440
        TCCATCAGCT GTAAGAAGAG ACTGGGAAGA TAGGCTCTGC ACAGATGGAT TTGCCTGTGG
                                                                              1500
75
        CACCACCAGG GTGAACGACA ATAGCTTTAC CCTCACGGAT AGGCCTGGGT GCTGGCTGCC
                                                                              1560
        CAGACCCTCT GGCCAGGATG GAGGGGTGGT CCTGACTCAA CATGTTACTG ACCAGCAACT
                                                                              1620
        TGTCTTTTTC TGGACTGAAG CCTGCAGGAG TTAAAAAGGG CAGGGCATCT CCTGTGCATG
                                                                              1680
        GGCTCGAAGG GAGAGCCAGC TCCCCCGACC GGTGGGCATT TGTGAGGCCC ATGGTTGAGA
                                                                              1740
        AATGAATAAT TTCCCAATTA GGAAGTGTAA GCAGCTGAGG TCTCTTGAGG GAGCTTAGCC
                                                                              1800
80
        AATGTGGGAG CAGCGGTTTG GGGAGCAGAG ACACTAACGA CTTCAGGGCA GGGCTCTGAT
                                                                              1860
        ATTCCATGAA TGTATCAGGA AATATATATG TGTGTGTATG TTTGCACACT TGTTGTGTGG
        GCTGTGAGTG TAAGTGTGAG TAAGAGCTGG TGTCTGATTG TTAAGTCTAA ATATTTCCTT
        AAACTGTGTG GACTGTGATG CCACACAGAG TGGTCTTTCT GGAGAGGTTA TAGGTCACTC
        CTGGGGCCTC TTGGGTCCCC CACGTGACAG TGCCTGGGAA TGTACTTATT CTGCAGCATG
                                                                              2100
85
        ACCTGTGACC AGCACTGTCT CAGTTTCACT TTCACATAGA TGTCCCTTTC TTGGCCAGTT
                                                                              2160
        ATCCCTTCCT TTTAGCCTAG TTCATCCAAT CCTCACTGGG TGGGGTGAGG ACCACTCCTT
                                                                              2220
        ACACTGAATA TTTATATTTC ACTATTTTTA TTTATATTTT TGTAATTTTA AATAAAAGTG
```

60

120

180

240

300

360

60

120

180

240

300

360

420

480

540

600

660

720

780

840

900

1020

1080

1200

1260

1320

1380

2520

2580

WO 02/086443 ATCAATAAAA TGTGATTTTT CTGA Seq ID NO: 292 Protein sequence: Protein Accession #:NP_002649.1 5 21 31 11 MRALLARLLL CYLYVSDSKG SNELHQYPSN CDCLNGGTCV SNKYFSNIHW CNCPKKFGGQ HCEIDKSKTC YEGNGHFYRG KASTDTMGRP CLPWNSATVL QQTYHAHRSD ALQLGLGKHN 10 YCRNPDNRRR PWCYVQVGLK PLVQECMVHD CADGKKPSSP PEELKFQCGQ KTLRPRFKII GGEFTTIENQ PWFAAIYRRH RGGSVTYVCG GSLISPCWVI SATHCFIDYP KKEDYIVYLG RSRLNSNTQG EMKFEVENLI LHKDYSADTL AHHNDIALLK IRSKEGRCAQ PSRTIQTICL PSMYNDPQFG TSCEITGFGK ENSTDYLYPE QLKMTVVKLI SHRECQQPHY YGSEVTTKML CAADPOWKTD SCOGDSGGPL VCSLQGRMTL TGIVSWGRGC ALKDKPGVYT RVSHPLPWIR 15 SHTKEENGLA L Seq ID NO: 293 DNA sequence Nucleic Acid Accession #: NM_001498 Coding sequence: 93..2006 20 21 31 11 GGCACGAGGC TGAGTGTCCG TCTCGCGCCC GGAAGCGGGC GACCGCCGTC AGCCCGGAGG 25 AGGAGGAGGA GGAGGAGGAG GAGGGGGCGG CCATGGGGCT GCTGTCCCAG GGCTCGCCGC TGAGCTGGGA GGAAACCAAG CGCCATGCCG ACCACGTGCG GCGCACGGG ATCCTCCAGT TCCTGCACAT CTACCACGCC GTCAAGGACC GGCACAAGGA CGTTCTCAAG TGGGGCGATG AGGTGGAATA CATGTTGGTA TCTTTTGATC ATGAAAATAA AAAAGTCCGG TTGGTCCTGT CTGGGGAGAA AGTTCTTGAA ACTCTGCAAG AGAAGGGGGA AAGGACAAAC CCAAACCATC 30 CTACCCTTTG GAGACCAGAG TATGGGAGTT ACATGATTGA AGGGACACCA GGACAGCCCT ACGGAGGAAC AATGTCCGAG TTCAATACAG TTGAGGCCAA CATGCGAAAA CGCCGGAAGG AGGCTACTTC TATATTAGAA GAAAATCAGG CTCTTTGCAC AATAACTTCA TTTCCCAGAT TAGGCTGTCC TGGGTTCACA CTGCCCGAGG TCAAACCCAA CCCAGTGGAA GGAGGAGCTT CCAAGTCCCT CTTCTTTCCA GATGAAGCAA TAAACAAGCA CCCTCGCTTC AGTACCTTAA 35 CAAGAAATAT CCGACATAGG AGAGGAGAAA AGGTTGTCAT CAATGTACCA ATATTTAAGG ACAAGAATAC ACCATCTCCA TTTATAGAAA CATTTACTGA GGATGATGAA GCTTCAAGGG CTTCTAAGCC GGATCATATT TACATGGATG CCATGGGATT TGGAATGGGC AATTGCTGTC TCCAGGTGAC ATTCCAAGCC TGCAGTATAT CTGAGGCCAG ATACCTTTAT GATCAGTTGG CTACTATCTG TCCAATTGTT ATGGCTTTGA GTGCTGCATC TCCCTTTTAC CGAGGCTATG 40 TGTCAGACAT TGATTGTCGC TGGGGAGTGA TTTCTGCATC TGTAGATGAT AGAACTCGGG AGGAGCGAGG ACTGGAGCCA TTGAAGAACA ATAACTATAG GATCAGTAAA TCCCGATATG ACTCAATAGA CAGCTATTTA TCTAAGTGTG GTGAGAAATA TAATGACATC GACTTGACGA TAGATAAAGA GATCTACGAA CAGCTGTTGC AGGAAGGCAT TGATCATCTC CTGGCCCAGC ATGTTGCTCA TCTCTTTATT AGAGACCCAC TGACACTGTT TGAAGAGAAA ATACACCTGG 45 ATGATGCTAA TGAGTCTGAC CATTTTGAGA ATATTCAGTC CACAAATTGG CAGACAATGA GATTTAAGCC CCCTCCTCCA AACTCAGACA TTGGATGGAG AGTAGAATTT CGACCCATGG 50

AGGTGCAATT AACAGACTTT GAGAACTCTG CCTATGTGGT GTTTGTGGTA CTGCTCACCA 1440 GAGTGATCCT TTCCTACAAA TTGGATTTTC TCATTCCACT GTCAAAGGTT GATGAGAACA
TGAAGGTAGC ACAGAAAAGA GATGCTGTCT TGCAGGGAAT GTTTATTTC AGGAAAGATA 1500 1560 TTTGCAAAGG TGGCAATGCA GTGGTGGATG GTTGTGGCAA GGCCCAGAAC AGCACGGAGC 1620 TCGCTGCAGA GGAGTACACC CTCATGAGCA TAGACACCAT CATCAATGGG AAGGAAGGTG 1680 TGTTTCCTGG ACTGATCCCA ATTCTGAACT CTTACCTTGA AAACATGGAA GTGGATGTGG 1740 ACACCAGATG TAGTATTCTG AACTACCTAA AGCTAATTAA GAAGAGAGCA TCTGGAGAAC 1800 TAATGACAGT TGCCAGATGG ATGAGGGAGT TTATCGCAAA CCATCCTGAC TACAAGCAAG 1860 55 ACAGTGTCAT AACTGATGAA ATGAATTATA GCCTTATTTT GAAGTGTAAC CAAATTGCAA 1920 ATGAATTATG TGAATGCCCA GAGTTACTTG GATCAGCATT TAGGAAAGTA AAATATAGTG 1980 GAAGTAAAAC TGACTCATCC AACTAGACAT TCTACAGAAA GAAAAATGCA TTATTGACGA 2040 ACTGGCTACA GTACCATGCC TCTCAGCCCG TGTGTATAAT ATGAAGACCA AATGATAGAA 2100 CTGTACTGTT TTCTGGGCCA GTGAGCCAGA AATTGATTAA GGCTTTCTTT GGTAGGTAAA 2160 60 TCTAGAGTTT ATACAGTGTA CATGTACATA GTAAAGTATT TTTGATTAAC AATGTATTTT 2220 2280 AATAACATAT CTAAAGTCAT CATGAACTGG CTTGTACATT TTTAAATTCT TACTCTGGAG 2340 CAACCTACTG TCTAAGCAGT TTTGTAAATG TACTGGTAAT TGTACAATAC TTGCATTCCA GAGTTAAAAT GTTTACTGTA AATTTTTGTT CTTTTAAAGA CTACCTGGGA CCTGATTTAT 2400 TGAAATTTTT CTCTTTAAAA ACATTTTCTC TCGTTAATTT TCCTTTGTCA TTTCCTTTGT 2460

TGTCTACATT AAATCACTTG AATCCATTGA AAGTGCTTCA AGGGTAATCT TGGGTTTCTA GCACCTTATC TATGATGTTT CTTTTGCAAT TGGAATAATC ACTTGGTCAC CTTGCCCCAA

41

51

70 Seq. ID NO: 294 Protein sequence: Protein Accession #: NP_001489

65

75 MGLLSQGSPL SWEETKRHAD HVRRHGILQF LHIYHAVKDR HKDVLKWGDE VEYMLVSFDH 60 ENKKVRLVLS GEKVLETLQE KGERTNPNHP TLWRPEYGSY MIEGTPGQPY GGTMSEFNTV 120 EANMRKRRKE ATSILEENQA LCTITSFPRL GCPGFTLPEV KPNPVEGGAS KSLFFPDEAI 180 NKHPRFSTLT RNIRHRRGEK VVINVPIFKD KNTPSPFIET FTEDDEASRA SKPDHIYMDA 240 80 MGFGMGNCCL QVTFQACSIS EARYLYDQLA TICPIVMALS AASPFYRGYV SDIDCRWGVI 300 SASVDDRTRE ERGLEPLKNN NYRISKSRYD SIDSYLSKCG EKYNDIDLTI DKEIYEQLLQ 360 EGIDHLLAQH VAHLFIRDPL TLFEEKIHLD DANESDHFEN IQSTNWQTMR FKPPPPNSDI 420 GWRVEFRPME VQLTDFENSA YVVFVVLLTR VILSYKLDFL IPLSKVDENM KVAQKRDAVL 480 QGMFYPRKDI CKGGNAVVDG CGKAQNSTEL AAEEYTLMSI DTIINGKEGV FPGLIPILNS 540 85 YLENMEVDVD TRCSILNYLK LIKKRASGEL MTVARWMREF IANHPDYKQD SVITDEMNYS 600 LILKCNQIAN ELCECPELLG SAFRKVKYSG SKTDSSN

WO 02/086443

Seq ID NO: 295 DNA sequence
Nucleic Acid Accession #: Eos sequence
Coding sequence: 247-816

5	1	11	21	31	41	51	
	1	1	1	I	Ī	1	
	AGTGTTCGGC	TGGGGCAGGC	ACGCTGTGGC	TGGCTACTTC	CCTTCCTCCC	ATCCCCCTTG	60
	GGCCAAACGG	GATCGGTGCT	TCTGGTGAGA	CGCCTCCCCA	TGCACATCAC	TCCCAGGTGC	120
10			CAACTCCCAG				180
10			TGCCATTTTG				240
			AGAGAAGGTG				300
			TTCGTATCAG				360
			CCTTATTGCA				420
15			ACCCAGCCAA GCAGAAACCT				480 540
13			TGACCTAGAA				600
			TATAAAACGT				660
			CGAAATGCTT				720
			CATCAAGGAA				780
20	AAGCACCTTA	AGAAGAAACT	GAAACGTATG	ATTTGAGAAT	ACTTGTCCCT	GGAGGATTAT	840
			TCGTTAATGA				900
			TTGCTGAAGT				960
			TCTGTTAGTA				1020
25			TTGGTTATTT			TAGATATTAT	1080
23	TAACCCATTA	GGTAAATACT	ATTACAGTCG	TGGTTTCTGC	A		
	0 TD VÔ	anc Buchai-					
	-	296 Protein	-				
	Procein Acc	session #: 1	Eos sequence	=			
30	1	11	21	31	41	51	
	ī	ī	1	Ī	Ī	1 .	
	MTDKTEKVAV	DPETVFKRPR	ECDSPSYQKR	QRMALLARKQ	GAGDSLIAGS	AMSKEKKLMT	60
	GHAIPPSQLD	SQIDDFTGFS	KDRMMQKPGS	NAPVGGNVTS	SFSGDDLECR	ETASSPKSQR	120
25	EINADIKRKL	VKELRCVGQK	YEKIFEMLEG	VQGPTAVRKR	FFESIIKEAA	RCMRRDFVKH	180
35	LKKKLKRMI						
				•			
	-	297 DNA sec					
			ı#: Eos se	quence			
40	couring sequ	uence: 247-8	313				
	1	11	21	31	41	51	
	Ī	Ī	i ·	1	1	1	
	AGTGTTCGGC	TGGGGCAGGC	ACGCTGTGGC	TGGCTACTTC	CCTTCCTCCC	ATCCCCCTTG	60
45			TCTGGTGAGA				120
			CAACTCCCAG				180
			TGCCATTTTG				240
			AGAGAAGGTG				300
50			TTCGTATCAG CCTTATTGCA				360 420
50			ACCCAGCCAA				480
			GCAGAAACCT				540
			TGACCTAGAA				600
			TATAAAACGT				660
55	CAAAAATATG	AAAAAATCTT	CGAAATGCTT	GAAGGAGTGC	AAGGACCTAC	TGCAGTCAGG	720
			CATCAAGGAA				780
			GAAACGTATG				840
			TCATTAATGA				900 960
60			TTGCTGAAGT TCTGTTAGTA				,
00			TTGGTTAGTA				1020 1080
			ATTACAGTCG			INGAINIIAI	1080
	imcccniin	COIMMING	ni indicito	1001110100	•		
	Seq ID NO:	298 Protei	in sequence:	•			
65	Protein Acc	cession #: I	Sos sequence	•			
	į	11	21	31	41	51	
	1		1				
70			ECDSPSYQKR				60
,,						ETASSPKSQQ RCMRRDFVKH	120 180
	LKKKLKRMI	VKEDKCVGQK	TEXTFEMBES	VQGFIAVAAA	FFESTIREM	KCHKADE VAN	100
	21444414414						
	Seq ID NO:	299 DNA sec	quence				
75			. #: Eos se	quence			
	Coding sequ	uence: 247-8	315				
	1	11	21 .	31	41	51	
80	 	 		 	<u> </u>	1	
ou			ACGCTGTGGC				60
			TCTGGTGAGA				120
			CAACTCCCAG				180 240
			TGCCATTTTG AGAGAAGGTG				300
85			TTCGTATCAG				360
			CCTTATTGCA				420
			CCCAGCCAAT				480

```
TCAGCAAAGA TAGGATGATG CAGAAACCTG GTAGCAATGC ACCTGTGGGA GGAAACGTTA
       CCAGCAGTTT CTCTGGAGAT GACCTAGAAT GCAGAGAAAC AGCCTCCTCT CCCAAAAGCC
       AACAAGAAAT TAATGCTGAT ATAAAACGTA AATTAGTGAA GGAACTCCGA TGCGTTGGAC
       AAAAATATGA AAAAATCTTC GAAATGCTTG AAGGAGTGCA AGGACCTACT GCAGTCAGGA
 5
       AACGATTTTT TGAATCCATC ATCAAGGAAG CAGCAAGATG TATGAGACGA GACTTTGTTA
                                                                          780
       AGCACCTTAA GAAGAAACTG AAACGTATGA TTTGAGAATA CTTGTCCCTG GAGGATTATC
                                                                          840
       ACACCCCAAA TGCATAATCT CATTAATGAT TGAGGAGAGA AAAGGATCAG ATTGCTGTTT
                                                                          900
       TCTACAATGG AGCAGGATAT TGCTGAAGTC TCCTGGCATA TGTTACCGAA TCAACTGGCC
                                                                          960
       TTCCAGAGGC TAAGAAATTT CTGTTAGTAA AAGATGTTCT TTTTCCCAAA GCGTTTTATT
                                                                         1020
10
       TGAAAGGATA ACTTGTGTTT TGGTTATTTT GTATTCCCAC CTGTGCTGGT AGATATTATT
       AACCCATTAG GTAAATACTA TTACAGTCGT GGTTTCTGCA
       Seq ID NO: 300 Protein sequence:
       Protein Accession #: Eos sequence
15
                                        31
                                                   41
                                                             51
       MTDKTEKVAV DPETVFKRPR ECDSPSYQKR QRMALLARKQ GAGDSLIAGS AMSKAKKLMT
                                                                           60
       GHAIPPSQLD SQIDDFTGFS KDRMMQKPGS NAPVGGNVTS SFSGDDLECR ETASSPKSQQ
20
       EINADIKRKL VKELRCVGOK YEKIFEMLEG VQGPTAVRKR FFESIIKEAA RCMRRDFVKH
       Seq ID NO: 301 DNA sequence
       Nucleic Acid Accession #: Eos sequence
25
       Coding sequence: 247-812
                                        31
                                                   41
       AGTGTTCGGC TGGGGCAGGC ACGCTGTGGC TGGCTACTTC CCTTCCTCCC ATCCCCCTTG
30
       GGCCAAACGG GATCGGTGCT TCTGGTGAGA CGCCTCCCCA TGCACATCAC TCCCAGGTGC
                                                                          120
       CCTAGGGGGC ACATTCCCA CAACTCCCAG AGGGCAGGTT TCTAGAAAGT GCCACCAGTG
                                                                          180
       GGGAGGCGCC ACAACTTCAC TGCCATTTTG TGAGGTGCCG CCGTCTCTCC TCCAGCAAGG
                                                                          240
       GAAACAATGA CCGATAAAAC AGAGAAGGTG GCTGTAGATC CTGAAACTGT GTTTAAACGT
                                                                          300
       CCCAGGGAAT GTGACAGTCC TTCGTATCAG AAAAGGCAGA GGATGGCCCT GTTGGCAAGG
                                                                          360
35
       AAACAAGGAG CAGGAGACAG CCTTATTGCA GGCTCTGCCA TGTCCAAAGA AAAGAGCTTA
                                                                          420
       TGACAGGACA TGCTATTCCA CCCAGCCAAT TGGATTCTCA GATTGATGAC TTCACTGGTT
                                                                          480
       TCAGCAAAGA TGGGATGATG CAGAAACCTG GTAGCAATGC ACCTGTGGGA GGAAATGTTA
                                                                          540
       CCAGCAATTT CTCTGGAGAT GACCTAGAAT GCAGAGGAAT AGCCTCCTCT CCCAAAAGCC
                                                                          600
       AACAAGAAT TAATGCTGAT ATAAAATGTC AAGTAGTGAA GGAAATCCGA TGCCTTGGAC
                                                                          660
40
       AATATGAAAA AATCTTCGAA ATGCTTGAAG GAGTGCAAGG ACCTACTGCA GTCAGGAAAC
                                                                          720
       780
       ACCTTAAGAA GAAACTGAAA CGTATGATTT GAGAATACTT GTCCCTGGAG GATTATCACA
       CCCCAAATGC ATAATCTCAT TAATGATTGA GGAGGAGAAAA GGATCAGATT GCTGTTTTCT
                                                                          900
       ACAATGGAGC AGGATATTGC TGAAGTCTCC TGGCATATGT TACCGAATCA ACTGGCCTTC
45
       CAGAGGCTAA GAAATTTCTG TTAGTAAAAG ATGTTCTTTT TCCCAAAGCG TTTTATTTGA
       AAGGATAACT TGTGTTTTGG TTATTTTGTA TTCCCACCTG TGCTGGTAGA TATTATTAAC 1080
       CCATTAGGTA AATACTATTA CAGTCGTGGT TTCTGCA
       Seq ID NO: 302 Protein sequence:
50
       Protein Accession #: Eos sequence
                                                             51
                                        31
                                                   41
       MTDKTEKVAV DPETVFKRPR ECDSPSYQKR QRMALLARKQ GAGDSLIAGS AMSKEKKLMT
                                                                           60
55
       GHAIPPSQLD SQIDDFTGFS KDGMMQKPGS NAPVGGNVTS NFSGDDLECR GIASSPKSQQ
                                                                          120
       EINADIKCQV VKEIRCLGQY EKIFEMLEGV QGPTAVRKRF FESIIKEAAR CMRRDFVKHL
                                                                          180
       Seq ID NO: 303 DNA sequence
60
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 247-815
                                        31
65
       AGTGTTCGGC TGGGACAGGC ACGCTGTGGC TGGCTACTTC CCTTCCTTCC ATCCCCCTTG
                                                                           60
       GGCCAAACAG GATCGGTGCT TCTGGTGAGA CGTCTCCCCA TGCACATCAC TCCCAGATGC
                                                                          120
       CCTAGGGGGC ACATTCCCA CAACTCCCAG AGGGCAGGTT TCTAGAAAGT GCCACCAGTG
                                                                          180
       GGGAGGCGCC ACAACTTCAC TGCCATTTTG TGAGGTGCCG CCGTCTCTCC TCCAGCAAGG
                                                                          240
       GAAACAATGA CCGATAAAAC AGAGAAGGTG GCTGTAGATC CTGAAACTGT GTTTAAACGT
                                                                          300
70
       CCCAGGGAAT GTGACAGTCC TTCGTATCAG AAAAGGCAGA GGATGGCCCT GTTGGCAAGG
                                                                          360
       AAACAAGGAG CAGGAGACAG CCTTATTGCA GGCTCTGCCA TGTCCAAAGC AAAGAGCTTA
                                                                          420
       TGACAGGACA TGCTATTCCA CCCAGCCAAT TGGATTCTCA GATTGATGAC TTCACTGGTT
                                                                          480
       TCAGCAAAGA TAGGATGATG CAGAAACCTG GTAGCAATGC ACCTGTGGGA GGAAACGTTA
       CCAGCAGTTT CTCTGGAGAT GACCTAGAAT GCAGAGAAAC AGCCTCCTCT CCCAAAAGCC
                                                                          600
75
       AACAAGAAAT TAATGCTGAT ATAAAACGTA AATTAGTGAA GGAACTCCGA TGCGTTGGAC
       AAAAATATGA AAAAATCTTC GAAATGCTTG AAGGAGTGCA AGGACCTACT GCAGTCAGGA
                                                                          720
       AACGATTTTT TGAATCCATC ATCAAGGAAG CAGCAAGATG TATGAGACGA GACTTTGTTA
       AGCACCTTAA GAAGAAACTG AAACGTATGA TTTGAGAATA CTTGTCCCTG GAGGATTATC
       ACACCCCAAA TGCATAATCT CGTTAATGAT TGAGGAGAGA AAAGGATCAG ATTGCTGTTT
80
       TCTACAATGG AGCAGGATAT TGCTGAAGTC TCCTGGCATA TGTTACCGAA TCAACTGGCC
                                                                          960
       TTCCAGAGGC TAAGAAATTT CTGTTAGTAA AAGATGTTCT TTTTCCCAAA GCGTTTTATT
                                                                         1020
       TGAAAGGATA ACTTGTGTTT TGGTTATTTT GTATTCCCAC CTGTGCTGGT AGATATTATT
       AACCCATTAG GTAAATACTA TTACAGTCGT GGTTTCTGCA
85
       Seg ID NO: 304 Protein seguence:
       Protein Accession #: Eos sequence
```

```
MTDKTEKVAV DPETVFKRPR ECDSPSYQKR QRMALLARKQ GAGDSLIAGS AMSKAKKLMT
       GHAIPPSQLD SQIDDFTGFS KDRMMQKPGS NAPVGGNVTS SFSGDDLECR ETASSPKSQQ
                                                                            120
 5
       EINADIKRKL VKELRCVGQK YEKIPEMLEG VQGPTAVRKR FFESIIKEAA RCMRRDFVKH
       Seg ID NO: 305 DNA sequence
       Nucleic Acid Accession #: Eos sequence
10
       Coding sequence: 87-689
                                                               51
                  11
                             21
                                         31
                                                    41
       CGTGGAGGCA GCTAGCGCGA GGCTGGGGAG CGCTGAGCCG CGCGTCGTGC CCTGCGCTGC
                                                                             60
15
       CCAGACTAGC GAACAATACA GTCAGGATGG CTAAAGGTGA CCCCAAGAAA CCAAAGGGCA
                                                                            120
       AGATGTCCGC TTATGCCTTC TTTGTGCAGA CATGCAGAGA AGAACATAAG AAGAAAAACC
                                                                            180
       CAGAGGTCCC TGTCAATTTT GCGGAATTTT CCAAGAAGTG CTCTGAGAGG TGGAAGACGA
                                                                            240
       TGTCCGGGAA AGAGAAATCT AAATTTGATG AAATGGCAAA GGCAGATAAA GTGCGCTATG
                                                                            300
       ATCGGGAAAT GAAGGATTAT GGACCAGCTA AGGGAGGCAA GAAGAAGAAG GATCCTAATG
                                                                            360
20
       420
       AATCCACAAA CCCCGGCATC TCTATTGGAG ACGTGGCAAA AAAGCTGGGT GAGATGTGGA
                                                                             480
       ATAATTTAAA TGACAGTGAA AAGCAGCCTT ACATCACTAA GGCGGCAAAG CTGAAGGAGA
       AGTATGAGAA GGATGTTGCT GACTATAAGT CGAAAGGAAA GTTTGATGGT GCAAAGGGTC
       CTGCTAAAGT TGCCCGGAAA AAGGTGGAAG AGGAAGATGA AGAAGAGGAG GAGGAAGAAG
                                                                            660
25
       AGGAGGAGGA GGAGGAGGAG GATGAATAAA GAAACTGTTT ATCTGTCTCC TTGTGAATAC
       TTAGAGTAGG GGAGCGCCGT AATTGACACA TCTCTTATTT GAGAAGTGTC TGTTGCCCTC
       ATTAGGTTTA ATTACAAAAT TTGATCACGA TCATATTGTA GTCTCTCAAA GTGCTCTAGA
                                                                            840
       AATTGTCAGT GGTTTACATG AAGTGGCCAT GGGTGTCTGG AGCACCCTGA AACTGTATCA
                                                                            900
       AAGTTGTACA TATTTCCAAA CATTTTTAAA ATGAAAAGGC ACTCTCGTGT TCTCCTCACT
                                                                            960
30
       CTGTGCACTT TGCTGTTGGT GTGACAAGGC ATTTAAAGAT GTTTCTGGCA TTTTCTTTTT
                                                                           1020
       ATTTGTAAGG TGGTGGTAAC TATGGTTATT GGCTAGAAAT CCTGAGTTTT CAACTGTATA
                                                                           1080
       TATCTATAGT TTGTAAAAAG AACAAAACAA CCGAGACAAA CCCTTGATGC TCCTTGCTCG
                                                                           1140
       GCGTTGAGGC TGTGGGGAAG ATGCCTTTTG GGAGAGGCTG TAGCTCAGGG CGTGCACTGT
                                                                           1200
       GAGGCTGGAC CTGTTGACTC TGCAGGGGGC ATCCATTTAG CTTCAGGTTG TCTTGTTTCT
                                                                           1260
35
       GTATATAGTG ACATAGCATT CTGCTGCCAT CTTAGCTGTG GACAAAGGGG GGTCAGCTGG
                                                                           1320
       CATGAGAATA TTTTTTTTT TAAGTGCGGT AGTTTTTAAA CTGTTTGTTT TTAAACAAAC
                                                                           1380
       TATAGAACTC TTCATTGTCA GCAAAGCAAA GAGTCACTGC ATCAATGAAA GTTCAAGAAC
                                                                           1440
       CTCCTGTACT TAAACACGAT TCGCAACGTT CTGTTATTTT TTTTGTATGT TTAGAATGCT
                                                                           1500
       GAAATGTTTT TGAAGTTAAA TAAACAGTAT TACATTTTTA AAACTCTTCT CTATTATAAC
                                                                           1560
40
       AGTCAATTTC TGACTCACAG CAGTGAACAA ACCCCCACTC CATTGTATTT GGAGACTGGC
                                                                           1620
       CTCCCTATAA ATGTGGTAGC TTCTTTTATT ACTCAGTGGC CAGCTCACTT AGGGCTGAGA
                                                                           1680
       TGAAGGAGAG GGCTACTTGA AGCTACTGTG TGATTTTGTT TGTGTCTGAG TGGCATTCAG
                                                                           1740
       ATGAAGTCTG GAGGAGTTAG GAGAACGACA TAGGCAAGGT TCAGCAGCCT TCCAAGGTAT
                                                                           1800
       AGGAAGGTGG GTGATTAGGA CTGAGGCTAT CTAGGTTTAA CTTTTGTCCC ACCTCCACCC
                                                                           1860
45
       CCTATTTTGT GGGGCCAAAT GCATTGCTAA ACAGCAATTT CAGAGTGTAT GGTGTGTCAA
                                                                           1920
       AAATTAAGGC CTTATTGTTT TTCTCTTTCA CCCCTACCCC CCGTGCTCCT GGCACATATC
                                                                           1980
       ACATTATTTG TGGTGCCCAA CATTTGGGGT CTTGAGCCTG CTGCTGGTCT CCTGGATGCC
                                                                           2040
       AGTGAGGGTA TGTGGGATGG GGTGGTGGGG TAGGGGGACGG TATCCTTTTT TTGCTCCTAC
       TTGGAAACAC CAAACACCCC AAGGAAGATG ATAGGCTCCA TCTTGGGCCA CCTGAGCTAT
                                                                           2160
50
       AGGGCAGGCT AATGGAATCA ACCATTTCTG AGCACTAAAT GTATCATGAA AAGTTGAATG
       GCCTGCTCAT AAGTTTAGCT CATTCACTGG AAATGTAGAT TGATGTTCAA TGTTAAACTG
       GAAGGAGCTT GGTTTGTGTG TCAGTGGTTA TATTAGTGGG TAGTGTAACA TTTTATCCAG
                                                                           2340
       GTTGGGGTGA GGGGAGATGG CCACAGTAGC AAGTGGTGAC ACTAAATACC ATTTTGAAGG
                                                                           2400
       CTGATGTGTA TATACATCAT TACTGTCCGT AGCAATGAAG GATACAGTAC TGTGTTGTGG
GTGAGTGTTG CTATTGCCCA GCATTAATAT TTGGGTGTGT ATGTTTGAGG CTATGAAACA
                                                                           2460
55
                                                                           2520
       CGCAGGAGTG TTTTTGTGCT ATTAATTTTA AGAGAAAGCA GCTTTTTCTT AAAATTCACT
                                                                           2580
       GTTGAGAAAC TTGCATGTCT GGAGGCGGTG TCCTCTCCGC CCTGTCGGGT CCTGGATGAG
                                                                           2640
       TACGAGTTAT GGTCACGGTC ACAGCCTGAT CTCTTATGTG TTCATAGCCA TTCGCTCTCC
CATCAGAACT GTTTGTCCTG AATGTGTTCC TCTAGTTCTA GAAAATGACC ACTAATTTAA
                                                                           2700
                                                                           2760
60
       AAAACTCGGT TGTGAGGTTT GCCCAGAGGC ACTTGTTCCA GAATTTCCCC TCCTGCTTCA
                                                                           2820
       GCCATGTCCT TGTCACTTGG CATTCTAAGC TAAAGCTTTA GCTTCCCAAT TCGTGATGTG
                                                                           2880
       CTAGGCCAAG ATTCGGGAGC TGTTGCCAGC CTCGTCAAAT ATGGAAGAGA AACAACCTGC
                                                                           2940
       GGTCAAAAGG GAGTGATTTG TTAAGTGGTG CGCGTCTATC TCATAACTAG ATGTACCAAC
                                                                           3000
       CAGGGAAGGG CCAAGGATGG AAAGGGGTAA CTTTTGTGCT TCCAAAGTAG CTAAGCAGAA
                                                                           3060
65
       GTGGGGGAGC AGTTTAGCCA GATGATCTTT GATTAGGCAA ACATTGAGTT TTAAAGAGGC
                                                                           3120
       TGTCAAGTTG AGGCCACTTG GTCCATTAGC TGGGGCAGCA AGATCACTAC TCAACGTTTT
                                                                           3180
       CACACTGTGG CAAGATTGCT CTTCTAGTGG AATAATGCCC TAGTTTCTCT GAGATGATGT
                                                                           3240
       AAGTGGCATG ATGTTACCTA AGGCTTAGGC TTAGCTTGAT TTCTGGGCCC ACTGTCTGTG
                                                                           3300
       TTCTTAAGAT GCCAACCTGT TGCTTTTTTT TTTTTTTCC CCCATTTAAA AGGATAGTAC
                                                                           3360
70
       CTACTCCCTC TAACCACCTC ACCCCATTCT TGAATGACAT TTTATCCTTC GGAAAGAACA
                                                                           3420
       AGGCTGTGAT GTAGTGACTA TTGTCTGTGT CTCCTGTGTG TGTCTGTTCT TGTCACAAAT
                                                                           3480
       GTATTTGGGG ACGTTGGATG CATTCATTTT CTGTAATAAA G
       Seq ID NO: 306 Protein sequence:
75
       Protein Accession #: NP_005333.1
       MAKGDPKKPK GKMSAYAFFV QTCREEHKKK NPEVPVNFAE FSKKCSERWK TMSGKEKSKP
                                                                             60
80
       DEMAKADKVR YDREMKDYGP AKGGKKKKDP NAPKRPPSGF FLFCSEFRPK IKSTNPGISI
                                                                            120
       GDVAKKLGEM WNNLNDSEKQ PYITKAAKLK EKYEKDVADY KSKGKFDGAK GPAKVARKKV
       EEEDEEEEE EEEEEEEDE
       Seq ID NO: 307 DNA sequence
85
       Nucleic Acid Accession #: NM_022342
       Coding sequence: 1..2178
```

299

```
51
                                                    41
                  11
                             21
      ATGGGTACTA GGAAAAAGT TCATGCATTT GTCCGTGTCA AACCCACCGA TGACTTTGCT
       CATGAAATGA TCAGATACGG AGATGACAAA AGAAGCATTG ATATTCACTT AAAAAAAGAC
                                                                            120
       ATTCGGAGAG GAGTTGTCAA TAACCAACAG ACAGACTGGT CGTTTAAGTT GGATGGAGTT
                                                                            180
       TTCACGATG CCTCCCAGGA CTTGGTTTAT GAGACAGTTG CAAAGGATGT GGTTTCTCAG
                                                                           240
       CCCTCGATG GCTATAATGG CACCATCATG TGTTATGGGC AGACGGGAGC TGGCAAGACA
                                                                           300
       ACACCATGA TGGGGGCAAC TGAGAATTAC AAGCACCGGG GGATCCTCCC TCGTGCCCTG
                                                                            360
10
       AGCAGGTTT TTAGGATGAT CGAAGAACGC CCCACACATG CCATCACTGT GCGTGTTTCC
                                                                            420
       ACTTGGAAA TCTATAATGA GAGCCTGTTT GATCTCCTGT CCACTCTGCC CTATGTTGGA
                                                                            480
       CCTCAGTCA CACCAATGAC CATCGTGGAA AACCCTCAAG GAGTCTTCAT TAAGGGCTTG
                                                                            540
       CAGTTCACC TCACAAGTCA GGAGGAGGAT GCATTCAGCC TCCTTTTTGA GGGTGAGACC
                                                                            600
       ACAGGATTA TAGCCTCCCA CACTATGAAC AAAAACTCTT CCAGATCACA CTGCATTTTC
                                                                            660
       CCATCTACT TAGAGGCCCA TTCCCGGACC TTATCAGAGG AAAAGTACAT CACTTCCAAA
15
                                                                            720
       TTAACTTGG TGGATCTGGC AGGCTCAGAG AGGCTGGGGA AGTCTGGGTC TGAGGGCCAA
                                                                            780
       TCCTGAAGG AAGCCACCTA CATCAACAAA TCGCTCTCAT TCCTGGAGCA GGCCATCATT
                                                                            840
       CCCTTGGGG ACCAGAAGCG GGACCACATC CCCTTTCGGC AGTGCAAGCT CACCCACGCT
                                                                           900
       TGAAGGACT CGTTAGGGGG AAACTGCAAT ATGGTCCTCG TGACAAACAT CTATGGAGAA
                                                                           960
20
       CTGCCCAGT TAGAAGAAAC GCTATCTTCA CTGAGATTTG CCAGCAGGAT GAAGCTAGTC
                                                                          1020
       CCACTGAGC CTGCCATCAA TGAAAAGTAT GATGCTGAGA GAATGGTCAA GAACCTGGAG
                                                                          1080
       AGGAACTAG CACTACTCAA GCAGGAGCTG GCTATCCATG ACAGCCTGAC CAACCGCACC
                                                                          1140
       TTGTGACCT ATGACCCCAT GGATGAAATC CAGATTGCTG AGATCAACTC CCAGGTGCGG
                                                                          1200
                                                                          1260
       GGTACCTGG AGGGGACACT GGACGAGATC GACATAATCA GCCTTAGACA GATCAAGGAG
25
       TGTTCAACC AGTTCCGGGT GGTTCTGAGC CAACAGGAAC AGGAAGTGGA GTCCACTTTG
                                                                          1320
       GCAGGAAGT ACACCCTCAT TGACAGGAAT GACTTTGCAG CCATTTCTGC TATCCAGAAG
                                                                          1380
       CGGGGCTTG TGGATGTTGA TGGCCACCTA GTGGGTGAGC CTGAAGGACA AAACTTTGGA
                                                                          1440
       TCGGAGTCG CCCCTTTCTC TACCAAACCT GGGAAGAAAG CCAAGTCCAA GAAGACATTC
                                                                          1500
       AAGAGCCAC TCAGGCCCGA CACCCCACCC TCCAAACCAG TGGCCTTTGA GGAGTTTAAG
                                                                          1560
30
       ATGAGCAAG GTAGTGAGAT CAACCGAATT TTCAAAGAAA ACAAATCCAT CTTGAATGAA
                                                                          1620
       GGAGGAAAA GGGCCAGCGA GACCACACAG CACATCAATG CCATCAAGCG GGAGATTGAT
                                                                          1680
       TGACCAAGG AGGCCCTGAA TTTCCAGAAG TCACTACGGG AGAAGCAAGG CAAGTACGAA
                                                                          1740
       ACAAGGGC TGATGATCAT CGATGAGGAA GAATTCCTGC TGATCCTCAA GCTCAAAGAC
                                                                          1800
       TCAAGAAGC AGTACCGCAG CGAGTACCAG GACCTGCGTG ACCTCAGGGC TGAGATCCAG
                                                                          1860
       ATTGCCAGC ACCTAGTGGA TCAGTGTCGC CACCGCCTGC TCATGGAATT TGACATCTGG ACAATGAGT CCTTTGTCAT CCCTGAGGAC ATGCAGATGG CACTGAAGCC AGGCGCAGC
35
                                                                          1920
                                                                          1980
       TCCGGCCAG GCATGGTCCC TGTGAACAGG ATTGTGTCTC TGGGAGAAGA TGACCAGGAC
                                                                          2040
       AATTCAGCC AGCTGCAGCA GAGGGTGCTT CCTGAGGGCC CTGATTCCAT CTCCTTCTAC
                                                                          2100
       ATGCCAAAG TCAAGATAGA GCAGAAGCAT AATTACTTGA AAACCATGAT GGGCCTCCAG
40
       AGGCACATA GAAAATAG
       Seq ID NO: 308 Protein sequence:
       Protein Accession #: NP_071737
45
       MGTRKKVHAF VRVKPTDDFA HEMIRYGDDK RSIDIHLKKD IRRGVVNNQQ TDWSFKLDGV
                                                                             60
       LHDASQDLVY ETVAKDVVSQ ALDGYNGTIM CYGQTGAGKT YTMMGATENY KHRGILPRAL
                                                                            120
       QQVFRMIEER PTHAITVRVS YLEIYNESLF DLLSTLPYVG PSVTPMTIVE NPQGVFIKGL
                                                                            180
50
       SVHLTSQEED AFSLLFEGET NRIIASHTMN KNSSRSHCIF TIYLEAHSRT LSEEKYITSK
                                                                            240
       INLVDLAGSE RLGKSGSEGQ VLKEATYINK SLSFLEQAII ALGDQKRDHI PFRQCKLTHA
                                                                            300
       LKDSLGGNCN MVLVTNIYGE AAQLEETLSS LRFASRMKLV TTEPAINEKY DAERMVKNLE
                                                                            360
       KELALLKQEL AIHDSLTNRT FVTYDPMDEI QIAEINSQVR RYLEGTLDEI DIISLRQIKE
                                                                            420
       VFNQFRVVLS QQEQEVESTL RRKYTLIDRN DFAAISAIQK AGLVDVDGHL VGEPEGQNFG
                                                                            480
55
       LGVAPFSTKP GKKAKSKKTF KEPLRPDTPP SKPVAFEEFK NEQGSEINRI FKENKSILNE
                                                                            540
       RRKRASETTO HINAIKREID VTKEALNFOK SLREKQGKYE NKGLMIIDEE EFLLILKLKD
       LKKOYRSEYO DLRDLRAEIQ YCOHLVDQCR HRLLMEFDIW YNESFVIPED MQMALKPGGS
       IRPGMVPVNR IVSLGEDDQD KFSQLQQRVL PEGPDSISFY NAKVKIEQKH NYLKTMMGLQ
       QAHRK
60
       Sea ID NO: 309 DNA sequence
       Nucleic Acid Accession #: CAT cluster
                  11
                             21
                                         31
65
       TTTTTTTTT TTTTTTTAA TGCCTGCTGT CATGCTCTGT CTACCAGGGT GAATTTCCAA
                                                                             60
       AAATTTCTGC ATAGCAATTT TAGCCAAAAC TATATATGTT CTGGGGAGGA TAGGCATAGG
                                                                            120
       CACATTGAAG ACCAAAGGAA AGAGTGAAGA AGTGTAGTTG GGTCATTGTG AATGGATGTT
                                                                            180
       TAGATTGTCA AGAAAAGTGG GCCAGAGGCC CCACCTCACA CTAGGACGGC AATTGCCTCT
                                                                            240
70
       CATTAGTATC TCAGGCACCA TGGGTCTTAT TTGGTGTCAT AAGAAACACC CTCAACAAAG
                                                                            300
       TAATGAACCC TCAGCCTCCA GCTTCTCTTC TTCGGGATTC TTCTTAGGGC CTCCTTTTTC
                                                                            360
       CTTTTATGTT TCCAGTACCC TGAATTTCTT ATTCCCATCC CCCATTAAAA TCTGCTTCAA
                                                                            420
       AGAAAAACA AGAAGGACAC ATTCACTTTA AGATCCAAAT GAATGATAAG AGCTTAAAAC
                                                                            480
       ATTATACTTA TCAGTATTAT TTGCATTTTT ATAGAAACCA AAACCATATT TCAACAAC
75
       Seq ID NO: 310 DNA sequence
       Nucleic Acid Accession #: NM_018622.2
       Coding sequence: 1-1140
80
                             21
                                         31
                                                               51
       ATGGCGTGGC GAGGCTGGGC GCAGAGAGGC TGGGGCTGCG GCCAGGCGTG GGGTGCGTCG
       GTGGGCGGCC GCAGCTGCGA GGAGCTCACT GCGGTCCTAA CCCCGCCGCA GCTCCTCGGA
       CGCAGGTTTA ACTTCTTTAT TCAACAAAAA TGCGGATTCA GAAAAGCACC CAGGAAGGTT
85
       GAACCTCGAA GATCAGACCC AGGGACAAGT GGTGAAGCAT ACAAGAGAAG TGCTTTGATT
                                                                            240
       CCTCCTGTGG AAGAAACAGT CTTTTATCCT TCTCCCTATC CTATAAGGAG TCTCATAAAA
       CCTTTATTTT TTACTGTTGG GTTTACAGGC TGTGCATTTG GATCAGCTGC TATTTGGCAA
```

```
TATGAATCAC TGAAATCCAG GGTCCAGAGT TATTTTGATG GTATAAAAGC TGATTGGTTG
                                                                           420
       GATAGCATAA GACCACAAAA AGAAGGAGAC TTCAGAAAGG AGATTAACAA GTGGTGGAAT
                                                                            480
       AACCTAAGTG ATGGCCAGCG GACTGTGACA GGTATTATAG CTGCAAATGT CCTTGTATTC
       TGTTTATGGA GAGTACCTTC TCTGCAGCGG ACAATGATCA GATATTTCAC ATCGAATCCA
 5
       GCCTCAAAGG TCCTTTGTTC TCCAATGTTG CTGTCAACAT TCAGTCACTT CTCCTTATTT
                                                                            660
       CACATGGCAG CAAATATGTA TGTTTTGTGG AGCTTCTCTT CCAGCATAGT GAACATTCTG
       GGTCAAGAGC AGTTCATGGC AGTGTACCTA TCTGCAGGTG TTATTTCCAA TTTTGTCAGT
                                                                            780
       TACCTGGGTA AAGTTGCCAC AGGAAGATAT GGACCATCAC TTGGTGCATC TGGTGCCATC
                                                                            840
       ATGACAGTCC TCGCAGCTGT CTGCACTAAG ATCCCAGAAG GGAGGCTTGC CATTATTTTC
                                                                           900
10
       CTTCCGATGT TCACGTTCAC AGCAGGGAAT GCCCTGAAAG CCATTATCGC CATGGATACA
                                                                           960
       GCAGGAATGA TCCTGGGATG GAAATTTTTT GATCATGCGG CACATCTTGG GGGAGCTCTT
                                                                          1020
       TTTGGAATAT GGTATGTTAC TTACGGTCAT GAACTGATTT GGAAGAACAG GGAGCCGCTA
                                                                          1080
       GTGAAAATCT GGCATGAAAT AAGGACTAAT GGCCCCAAAA AAGGAGGTGG CTCTAAGTAA
15
       Seg ID NO: 311 Protein sequence:
       Protein Accession #: NP_061092.2
20
       MAWRGWAQRG WGCGQAWGAS VGGRSCEELT AVLTPPQLLG RRFNFFIQQK CGFRKAPRKV
       EPRRSDPGTS GEAYKRSALI PPVEETVFYP SPYPIRSLIK PLFFTVGFTG CAFGSAAIWQ
       YESLKSRVQS YFDGIKADWL DSIRPQKEGD FRKEINKWWN NLSDGQRTVT GIIAANVLVF
                                                                            180
       CLWRVPSLQR TMIRYFTSNP ASKVLCSPML LSTFSHFSLF HMAANMYVLW SFSSSIVNIL
                                                                            240
25
       GQEQFMAVYL SAGVISNFVS YLGKVATGRY GPSLGASGAI MTVLAAVCTK IPEGRLAIIP
                                                                           300
       LPMFTFTAGN ALKAIIAMDT AGMILGWKFF DHAAHLGGAL FGIWYVTYGH ELIWKNREPL
                                                                           360
       VKIWHEIRTN GPKKGGGSK
       Seg ID NO: 312 DNA seguence
30
       Nucleic Acid Accession #: NM 000625
       Coding sequence: 195..3656
                             21
                                      . 31
                                                   41
                                                              51
                  11
35
       CTCTCGGCCA CCTTTGATGA GGGGACTGGG CAGTTCTAGA CAGTCCCGAA GTTCTCAAGG
                                                                            60
       CACAGGTCTC TTCCTGGTTT GACTGTCCTT ACCCCGGGGA GGCAGTGCAG CCAGCTGCAA
                                                                           120
       GCCCACAGT GAAGAACATC TGAGCTCAAA TCCAGATAAG TGACATAAGT GACCTGCTTT
                                                                           180
       GTAAAGCCAT AGAGATGGCC TGTCCTTGGA AATTTCTGTT CAAGACCAAA TTCCACCAGT
                                                                            240
40
       ATGCAATGAA TGGGGAAAAA GGCATCAACA ACAATGTGGA GAAAGCCCCC TGTGCCACCT
                                                                            300
       CCAGTCCAGT GACACAGGAT GACCTTCAGT ATCACAACCT CAGCAAGCAG CAGAATGAGT
       CCCCGCAGCC CCTCGTGGAG ACGGGAAAGA AGTCTCCAGA ATCTCTGGTC AAGCTGGATG
                                                                            420
       CAACCCCATT GTCCTCCCCA CGGCATGTGA GGATCAAAAA CTGGGGCAGC GGGATGACTT
       TCCAAGACAC ACTTCACCAT AAGGCCAAAG GGATTTTAAC TTGCAGGTCC AAATCTTGCC
                                                                            540
45
       TGGGGTCCAT TATGACTCCC AAAAGTTTGA CCAGAGGACC CAGGGACAAG CCTACCCCTC
       CAGATGAGCT TCTACCTCAA GCTATCGAAT TTGTCAACCA ATATTACGGC TCCCTCAAAG
                                                                            660
       AGGCAAAAAT AGAGGAACAT CTGGCCAGGG TGGAAGCGGT AACAAAGGAG ATAGAAACAA
                                                                            720
       CAGTAACCTA CCAACTGACG GGAGATGAGC TCATCTTCGC CACCAAGCAG GCCTGGCGCA
                                                                            780
       ATGCCCCACG CTGCATTGGG AGGATCCAGT GGTCCAACCT GCAGGTCTTC GATGCCCGCA
                                                                           840
50
       GCTGTTCCAC TGCCCGGGAA ATGTTTGAAC ACATCTGCAG ACACGTGCGT TACTCCACCA
                                                                            900
       ACAATGGCAA CATCAGGTCG GCCATCACCG TGTTCCCCCA GCGGAGTGAT GGCAAGCACG
                                                                           960
       ACTTCCGGGT GTGGAATGCT CAGCTCATCC GCTATGCTGG CTACCAGATG CCAGATGGCA
                                                                          1020
       GCATCAGAGG GGACCCTGCC AACGTGGAAT TCACTCAGCT GTGCATCGAC CTGGGCTGGA
                                                                          1080
       AGCCCAAGTA CGGCCGCTTC GATGTGGTCC CCCTGGTCCT GCAGGCCAAT GGCCGTGACC
                                                                          1140
55
       CTGAGCTCTT CGAAATCCCA CCTGACCTTG TGCTTGAGGT GGCCATGGAA CATCCCAAAT
                                                                          1200
       ACGAGTGGTT TCGGGAACTG GAGCTAAAGT GGTACGCCCT GCCTGCAGTG GCCAACATGC
                                                                          1260
       TGCTTGAGGT GGGCGGCCTG GAGTTCCCAG GGTGCCCCTT CAATGGCTGG TACATGGCCA
                                                                          1320
       CAGAGATCGG AGTCCGGGAC TTCTGTGATG TCCAGCGCTA CAACATCCTG GAGGAAGTGG
                                                                          1380
       GCAGGAGAAT GGGCCTGGAA ACGCACAAGC TGGCCTCGCT CTGGAAAGAC CAGGCTGTCG
                                                                          1440
60
       TTGAGATCAA CATTGCTGTG CTCCATAGTT TCCAGAAGCA GAATGTGACC ATCATGGACC
                                                                          1500
       ACCACTCGGC TGCAGAATCC TTCATGAAGT ACATGCAGAA TGAATACCGG TCCCGTGGGG
                                                                          1560
       GCTGCCCGGC AGACTGGATT TGGCTGGTCC CTCCCATGTC TGGGAGCATC ACCCCCGTGT
                                                                          1620
       TTCACCAGGA GATGCTGAAC TACGTCCTGT CCCCTTTCTA CTACTATCAG GTAGAGGCCT
                                                                          1680
       GGAAAACCCA TGTCTGGCAG GACGAGAAGC GGAGACCCAA GAGAAGAGA ATTCCATTGA
                                                                          1740
65
       AAGTCTTGGT CAAAGCTGTG CTCTTTGCCT GTATGCTGAT GCGCAAGACA ATGGCGTCCC
                                                                          1800
       GAGTCAGAGT CACCATCCTC TTTGCGACAG AGACAGGAAA ATCAGAGGCG CTGGCCTGGG
                                                                          1860
       ACCTGGGGGC CTTATTCAGC TGTGCCTTCA ACCCCAAGGT TGTCTGCATG GATAAGTACA
                                                                          1920
       GGCTGAGCTG CCTGGAGGAG GAACGGCTGC TGTTGGTGGT GACCAGTACG TTTGGCAATG
                                                                          1980
       GAGACTGCCC TGGCAATGGA GAGAAACTGA AGAAATCGCT CTTCATGCTG AAAGAGCTCA
                                                                          2040
70
       ACAACAAATT CAGGTACGCT GTGTTTGGCC TCGGCTCCAG CATGTACCCT CGGTTCTGCG
       CCTTTGCTCA TGACATTGAT CAGAAGCTGT CCCACCTGGG GGCCTCTCAG CTCACCCCGA
                                                                          2160
       TGGGAGAAGG GGATGAGCTC AGTGGGCAGG AGGACGCCTT CCGCAGCTGG GCCGTGCAAA
                                                                          2220
       CCTTCAAGGC AGCCTGTGAG ACGTTTGATG TCCGAGGCAA ACAGCACATT CAGATCCCCA
                                                                          2280
       AGCTCTACAC CTCCAATGTG ACCTGGGACC CGCACCACTA CAGGCTCGTG CAGGACTCAC
                                                                          2340
75
       AGCCTTTGGA CCTCAGCAAA GCCCTCAGCA GCATGCATGC CAAGAACGTG TTCACCATGA
                                                                          2400
       GGCTCAAATC TCGGCAGAAT CTACAAAGTC CGACATCCAG CCGTGCCACC ATCCTGGTGG
                                                                          2460
       AACTCTCCTG TGAGGATGGC CAAGGCCTGA ACTACCTGCC GGGGGAGCAC CTTGGGGTTT
                                                                          2520
       GCCCAGGCAA CCAGCCGGCC CTGGTCCAAG GCATCCTGGA GCGAGTGGTG GATGGCCCCA
                                                                          2580
       CACCCCACCA GGCAGTGCGC CTGGAGGCCC TGGATGAGAG TGGCAGCTAC TGGGTCAGTG
                                                                          2640
80
       ACAAGAGGCT GCCCCCCTGC TCACTCAGCC AGGCCCTCAC CTACTTCCTG GACATCACCA
                                                                          2700
       CACCCCAAC CCAGCTGCTG CTCCAAAAGC TGGCCCAGGT GGCCACAGAA GAGCCTGAGA
                                                                          2760
       GACAGAGGCT GGAGGCCCTG TGCCAGCCCT CAGAGTACAG CAAGTGGAAG TTCACCAACA
                                                                          2820
       GCCCCACATT CCTGGAGGTG CTAGAGGAGT TCCCGTCCCT GCGGGTGTCT GCTGGCTTCC
                                                                          2880
       TGCTTTCCCA GCTCCCCATT CTGAAGCCCA GGTTCTACTC CATCAGCTCC CCCCGGGATC
                                                                          2940
85
       ACACGCCCAC GGAGATCCAC CTGACTGTGG CCGTGGTCAC CTACCACACC CGAGATGGCC
                                                                          3000
       AGGGTCCCCT GCACCACGGC GTCTGCAGCA CATGGCTCAA CAGCCTGAAG CCCCAAGACC
                                                                          3060
       CAGTGCCCTG CTTTGTGCGG AATGCCAGCG GCTTCCACCT CCCCGAGGAT CCCTCCCATC
                                                                          3120
```

TACTGAAAAG GCACAGCTTA CTGAAACAAA TGCAGGTATC AAGTGCTTGG ACTCCATGTG

CTGTTTCCCG GAAGGAGAAG CAGCGTGTGC ATCTGTTGGA AGAATGCTGG AACGAGTTAT

AGGAAGATGT AGTCCAACCC ACATCAGCAG ATCATGGAGT GCATCGGATC CTTTCTATAC CAACGACAGG AGCATCTTGA CTCTCTCCAC AATGGACTCA TCTACTTGTT AAAGGGGCAG

85

2220

PCT/US02/12476

```
TAGTACTITG TGGGAGCCAG TTCACCTCCT TTCCTAAAAT TCAGTGTGAT CACCCTGTTA 2400
       ATGGCCACAC TAGCTCTGAA ATTAATTTCC AAAATCTTTG TAGTAGTTCA TACCCACTCA
                                                                           2460
       GAGTTATAAT GGCAAACAAA CAGAAAGCAT TAGTACAAGC CCCTCCCAAC ACCCTTAATT
                                                                           2520
       TGAATCTGAA CATGTTAAAA TTTGAGAATA AAGAGACATT TTTCATCTCT TTGTCTGGTT
                                                                           2580
 5
       TGTCCCTTGT GCTTATGGGA CTCCTAATGG CATTTCAGTC TGTTGCTGAG GCCATTATAT
                                                                           2640
       TTTAATATAA ATGTAGAAAA AAGAGAGAAA TCTTAGTAAA GAGTATTTTT TAGTATTAGC
                                                                           2700
       TTGATTATTG ACTCTTCTAT TTAAATCTGC TTCTGTAAAT TATGCTGAAA GTTTGCCTTG
                                                                           2760
       AGAACTCTAT TTTTTTATTA GAGTTATATT TAAAGCTTTT CATGGGAAAA GTTAATGTGA
                                                                           2820
       ATACTGAGGA ATTTTGGTCC CTCAGTGACC TGTGTTGTTA ATTCATTAAT GCATTCTGAG
                                                                           2880
10
       TTCACAGAGC AAATTAGGAG AATCATTTCC AACCATTATT TACTGCAGTA TGGGGAGTAA
                                                                           2940
       ATTTATACCA ATTCCTCTAA CTGTACTGTA ACACAGCCTG TAAAGTTAGC CATATAAATG
                                                                           3000
       CAAGGGTATA TCATATATAC AAATCAGGAA TCAGGTCCGT TCACCGAACT TCAAATTGAT
                                                                           3060
       GTTTACTAAT ATTTTTGTGA CAGAGTATAA AGACCCTATA GTGGGTAAAT TAGATACTAT
       TAGCATATTA TTAATTTAAT GTCTTTATCA TTGGATCTTT TGCATGCTTT AATCTGGTTA
                                                                           3180
15
       ACATATTTAA ATTTGCTTTT TTTCTCTTTA CCTGAAGGCT CTGTGTATAG TATTTCATGA
                                                                           3240
       CATCGTTGTA CAGTTTAACT ATATCAATAA AAAGTTTGGA CAGTATTTAA ATATTGCAAA
                                                                           3300
       TATGTTTAAT TATACAAATC AGAATAGTAT GGGTAATTAA ATGAATACAA AAAGAAGAGC
                                                                           3360
       CTCTTTCTGC AGCCGACTTA GACATGCTCT TCCCTTTCTA TAAGCTAGAT TTTAGAATAA
                                                                           3420
       AGGGTTTCAG TTAATAATCT TATTTTCAGG TTATGTCATC TAACTTATAG CAAACTACCA
                                                                           3480
20
       CAATACAGTG AGTTCTGCCA GTGTCCCAGT ACAAGGCATA TTTCAGGTGT GGCTGTGGAA
                                                                           3540
       TGTAAAAATG CTCAACTTGT ATCAGGTAAT GTTAGCAATA AATTAAATGC TAAGAATGAT
                                                                           3600
       TAATCGGGTA CATGTTACTG TAATTAACTC ATTGCACTTC AAAACCTAAC TTCCATCCTG
                                                                           3660
       AATTTATCAA GTAGTTCAGT ATTGTCATTT GTTTTTGTTT TATTGAAAAG TAATGTTGTC
                                                                           3720
       TTAAGATTTA GAAGTGATTA TTAGCTTGAG AACTATTACC CAGCTCTAAG CAAATAATGA
                                                                           3780
25
       TTGTATACAT ATTAAGATAA TGGTTAAATG CGGTTTTACC AAGTTTTCCC TTGAAAATGT
                                                                           3840
       AATTCCTTTA TGGAGATTTA TTGTGCAGCC CTAAGCTTCC TTCCCATTTC ATGAATATAA
                                                                           3900
       GGCTTCTAGA ATTGGACTGG CAGGGGAAAG AATGGTAGAG ACAGAAATTA AGACTTTATC
                                                                           3960
       CTTGTTTGCT TGTAAACTAT TATTTTCTTG CTAATGTAAC ATTTGTCTGT TCCAGTGATG
                                                                           4020
       TAAGGATATT AAGTTATTAA GCTAAATATT AATTTTCAAA AATAGTCCTT CTTTAACTTA
30
       GATATTTCAT AGCTGGATTT AGGAAGATCT GTTATTCTGG AAGTACTAAA AAGAATAATA
                                                                           4140
       CAACGTACAA TGTCTGCATT CACTAATTCA TGTTCCAGAA GAGGAAATAA TGAAGATATA
                                                                           4200
       CTCAGTAGAG TACTAGGTGG GAGGATATGG AAATTTGCTC ATAAAATCTC TTATAAAACG
                                                                           4260
       TGCATATAAC AAAATGACAC CCAGTAGGCC TGCATTACAT TTACATGACC GTGTTTATTT
                                                                           4320
       GCCATCAAAT AAACTGAGTA CTGACACCAG ACAAAGACTC CAAAGTCATA AAATAGCCTA
                                                                           4380
35
       TGACCAACTG CAGCAAGACA GGAGGTCAGC TCGCCTATAA TGGTGCTTAA AGTGTGATTG
                                                                           4440
       ATGTAATTTT CTGTACTCAC CATTTGAAGT TAGTTAAGGA GAACTTTATT TTTTTAAAAA
                                                                           4500
       AAGTAAATGG CAACCACTAG TGTGCTCATC CTGAACTGTT ACTCCAAATC CACTCCGTTT
                                                                           4560
       TTAAAGCAAA ATTATCTTGT GATTTTAAGA AAAGAGTTTT CTATTTATTT AAGAAAGTAA
                                                                           4620
       CAATGCAGTC TGCAAGCTTT CAGTAGTTTT CTAGTGCTAT ATTCATCCTG TAAAACTCTT
                                                                           4680
40
       ACTACGTAAC CAGTAATCAC AAGGAAAGTG TCCCCTTTGC ATATTTCTTT AAAATTCTTT
                                                                           4740
       CTTTGGAAAG TATGATGTTG ATAATTAACT TACCCTTATC TGCCAAAACC AGAGCAAAAT
                                                                           4800
       GCTAAATACG TTATTGCTAA TCAGTGGTCT CAAATCGATT TGCCTCCCTT TGCCTCGTCT
                                                                           4860
       GAGGGCTGTA AGCCTGAAGA TAGTGGCAAG CACCAAGTCA GTTTCCAAAA TTGCCCCTCA
                                                                           4920
       GCTGCTTTAA GTGACTCAGC ACCCTGCCTC AGCTTCAGCA GGCGTAGGCT CACCCTGGGC
                                                                           4980
45
       GGAGCAAAGT ATGGGCCAGG GAGAACTACA GCTACGAAGA CCTGCTGTCG AGTTGAGAAA
                                                                           5040
       AGGGGAGAAT TTATGGTCTG AATTTTCTAA CTGTCCTCTT TCTTGGGTCT AAAGCTCATA
                                                                           5100
       ATACACAAAG GCTTCCAGAC CTGAGCCACA CCCAGGCCCT ATCCTGAACA GGAGACTAAA
                                                                           5160
       CAGAGGCAAA TCAACCCTAG GAAATACTTG CATTCTGCCC TACGGTTAGT ACCAGGACTG
                                                                           5220
       AGGTCATTTC TACTGGAAAA GATTGTGAGA TTGAACTTAT CTGATCGCTT GAGACTCCTA
                                                                           5280
50
       ATAGGCAGGA GTCAAGGCCA CTAGAAAATT GACAGTTAAG AGCCAAAAGT TTTTAAAATA
                                                                           5340
       TGCTACTCTG AAAAATCTCG TGAAGGCTGT AGGAAAAGGG AGAATCTTCC ATGTTGGTGT
                                                                           5400
       TTTTCCTGTA AAGATCAGTT TGGGGTATGA TATAAGCAGG TATTAATAAA AATAACACAC
                                                                           S460
       CAAAGAGTTA CGTAAAACAT GTTTTATTAA TTTTGGTCCC CACGTACAGA CATTTTATTT
                                                                           5520
       CTATTTGAA ATGAGTTATC TATTTTCATA AAAGTAAAAC ACTATTAAAG TGCTGTTTTA
                                                                           5580
55
       TGTGAAATAA CTTGAATGTT GTTCCTATAA AAAATAGATC ATAACTCATG ATATGTTTGT
                                                                           5640
       AATCATGGTA ATTTAGATTT TTATGAGGAA TGAGTATCTG GAAATATTGT AGCAATACTT
                                                                           5700
       GGTTTAAAAT TTTGGACCTG AGACACTGTG GCTGTCTAAT GTAATCCTTT AAAAATTCTC
                                                                           5760
       TGCATTGTCA GTAAATGTAG TATATTATTG TACAGCTACT CATAATTTTT TAAAGTTTAT
                                                                           5820
       GAAGTTATAT TTATCAAATA AAAACTTTCC TATAT
60
       Seg ID NO: 315 Protein seguence:
       Protein Accession #: XP 087254
65
                  11
                             21
                                         31
                                                    41
                                                              51
       MOFRECSING MKYQEINGRL VPEGPTPDSS EGNLSYLSSL SHLNNLSHLT TSSSFRTSPE
                                                                             60
       NETELIKEHD LFFKAVSLCH TVOISNVOTD CTGDGPWOSN LAPSOLEYYA SSPDEKALVE
                                                                            120
       AAARIGIVFI GNSEETMEVK TLGKLERYKL LHILEFDSDR RRMSVIVQAP SGEKLLFAKG
                                                                            180
70
       AESSILPKCI GGEIEKTRIH VDEFALKGLR TLCIAYRKFT SKEYEEIDKR IFEARTALQQ
                                                                            240
       REEKLAAVFQ FIEKDLILLG ATAVEDRLQD KVRETIEALR MAGIKVWVLT GDKHETAVSV
                                                                            300
       SLSCGHFHRT MNILELINOK SDSECAEQLR QLARRITEDH VIQHGLVVDG TSLSLALREH
                                                                            360
       EKLFMEVCRN CSAVLCCRMA PLQKAKVIRL IKISPEKPIT LAVGDGANDV SMIQEAHVGI
                                                                            420
       GIMGKEGRQA ARNSDYAIAR FKFLSKLLFV HGHFYYIRIA TLVQYFFYKN VCFITPQFLY
                                                                            480
75
       QFYCLFSQQT LYDSVYLTLY NICFTSLPIL IYSLLEQHVD PHVLQNKPTL YRDISKNRLL
                                                                            540
       SIKTFLYWTI LGFSHAFIFF FGSYLLIGKD TSLLGNGQMF GNWTFGTLVF TVMVITVTVK
                                                                            600
       MALETHFWTW INHLVTWGSI IFYFVFSLFY GGILWPFLGS QNMYFVFIQL LSSGSAWPAI
                                                                            660
       ILMVVTCLFL DIIKKVFDRH LHPTSTEKAQ LTETNAGIKC LDSMCCFPEG EAACASVGRM
                                                                            720
       LERVIGROSP THISRSWSAS DPFYTNDRSI LTLSTMDSST C
80
       Seg ID NO: 316 DNA sequence
       Nucleic Acid Accession #: NM_004473
       Coding sequence: 661..1791
85
                             21
                                         31
                                                               51
       CTCGCCAGCG GTCCGCGGGG CTGGAGACCC ACGCCGTGGA GAGGACCAGC CTCAGGTCGC
                                                                             60
```

	CCCGCCTGGG	ccccccccc	GACCTCGCTG	CCCCCCCCTC	GCCTCTCTGC	CCGTGGCGCT	120
		TTGGCCTCGG					180
		GCCCTCGCTC					240
5		CTAAACTAGC					300
,		CCCCTCGACC					360 420
		GGCTAGCGGG					480
		GAGCCTCCAG					540
		CCTGAGCTCT					600
10	CGCCCCCGCC	CCCCGACAGC	CGCGGGGATC	CAGAGCCCGG	GGGTGCGGGA	CGCCCGCGCC	660
		AGAGCGGGCC					720
		AGACGGCAGC					780
		GCCGCAAGCG					840
15		TGGCCATCGC					900
13		CCGAGCGCTT					960 1020
		GCAACTACTG					1080
		GCCGCCGCAA					1140
		CGGCGGCTGC					1200
20		TCCCAGGCGC					1260
		CGCCGCCGTC					1320
	CCCGGCCCTT	GCCGCGTCTT	CGGCCTGGTT	CCTGAGCGGC	CGCTCAGCCC	AGAGCTGGGG	1380
		CGGGGCCCGG					1440
0.0		ACCAGCCCGC					1500
25		ACGCGGGCCC					1560
		GCCGCCTGGC					1620
		CGGTGGACTT					1680 1740
		CTTATCCCGG				CCATGCTCGC	1800
30		CTCATAGACA					1860
50		AGAGGACTCA					1920
		CCGCGCACAG					1980
		CAGAGCCCTT					2040
	CGGGATGCTT	TCTGGCATTC	TATCGGGGAG	GGTCCTTGGC	GGTAACCAGA	GGGCAGCGTA	2100
35		CAGAGACCAG					2160
		CGGGCCTTTT					2220
		TGCGGCAGCG					2280
		CTTCTTTTTT					2340 2400
40		CTGAGAACTT TGAACCTTCA					2460
70		CCGGGTTATC					2520
		GTGGGCCACC					2580
		AAAAGAGTTC					2640
		ATATCATAAC					2700
45	CTGTTACTGC	CCAGTCATAA	ATCTGCTTTT	CCATTATAAG	GCAGAGAGAA	GTACATTCGT	2760
		ACTGTTTCTT					2820
		AGAGGATTCA					2880
		CCAGCACCCC					2940
50		AGTTAGGGCA					3000
50		ATCTTGCTTA CCTTGAGAAA					3060 3120
		AGGCTCCATT					3180
		TCTTTGAGCA					3240
		GGAAGGGCTG					3300
55		ATTTTTGGGA					3360
	GTCCAAATGG	GGATTTGTAT	AAACCAGTGC	TCTCCATTAG	AAATATGGTG	CAAGCCACAT	3420
	ATGTAATTTT	AAATATTCTA	GTAGCCACAT	TAATAAAGTN	AAAAGAAACA	ааааааааа	3480
	AA						
6 0	_						
60		317 Protein					
	Protein Ac	cession #: 1	NP_004464				
	1	11	21	31	41	51	
	ī	i	ī	ĭ	i -	ĭ	
65	FKHLTHYROI	DTRANSCRIP	TIONFACTOR	TTFMTAESGP	PPPQPEVLAT	VKEERGETAA	60
		RGAGGRRRKR					120
		QNSIRHNLTL					180
		PAYMHDAAAA					240
70		AASPGPCRVF					300
70		SAYAAAYAGP				SGGVETTVDF	360
	YGRTSPGQFG	ALGACYNPGG	QLGGASAGAY	HARHAAAYPG	GIDRFVSAM		
	Som ID NO.	318 DNA sec	710700				
		id Accession		98			
75		lence: 126.	_				
	bod						
						•	
	1	11	21	31	41	51	
00	1	l	1.	1	1	İ	
80		GGCTCATGCT					60
		GAATTCTGAT					120
		GGATATCGAC					180 240
		GAGAACCAGC ACCGTTGGAA					300
85		TGCCTCCATG					360
		TCATGGCTTG					420
		CAATGCTGGG					480

		/080443					
	CCCGTGTGGC	CCACAAGAAG	GGGGAGCTCT	CAATGGAAGA	CGTGTGGTCT	CTGTCCAAGC	540
	ACGAGTCTTC	: TGACGTGAAC	TGCAGAAGAC	TAGAGAGACT	GTGGCAAGAA	GAGCTCAATC	600
	AAGTTGGGCC	: AGACGCTGCT	TCCCTGCGAA	GGGTTGTGTG	GATCTTCTGC	CGCACCAGGC	660
-	TCATCCTGTC	: CATCGTGTGC	CTGATGATCA	CGCAGCTGGC	: TGGCTTCAGT	GGACCAGCCT	720
5	TCATGGTGAA	ACACCTCTTG	GAGTATACCC	AGGCAACAGA	GTCTAACCTG	CAGTACAGCT	780
	TGTTGTTAGT	GCTGGGCCTC	CTCCTGACGG	AAATCGTGCG	GTCTTGGTCG	CLLICTOCIOCI	840
	CTTGGGCATT	GAATTACCGA	ACCGGTGTCC	GCTTGCGGG	GGCCATCCTA	ACCARCCOA	900
	TTARGARGAT	CCTTAAGTTA	AAGAACATTA	AAGAGAAATC	CCTGGGTGAG	CTCNTCN NCN	
	ממים ביים ביים מים	CGATGGGCAG	ACABTCTTTC	ACCCACCACCACC		CTCATCAACA	960
10	CACCACCCCT	TGTTGCCATC	TTACCCATCA	TOPAJORAJOURA TOPARATORA	COLLOGENCE	CIGCIGGCIG	1020
10	COMMOGRACICO	ATCAGCTGTT	TIMOGCATOM	TITALAAIGI	AMITATICIG	GGACCAACAG	1080
	GCTTCCTGGG	MICAGCIGII	TTTATCCTCT	TTTACCCAGC	AATGATGTTT	GCATCACGGC	1140
	1 CACAGCATA	TTTCAGGAGA	AAATGCGTGG	CCGCCACGGA	TGAACGTGTC	CAGAAGATGA	1200
	ATGAAGTTCT	TACTTACATT	AAATTTATCA	AAATGTATGC	CIGGGTCAAA	GCATTTTCTC	1260
15	AGAGTGTTCA	AAAAATCCGC	GAGGAGGAGC	GTCGGATATT	GGAAAAAGCC	GGGTACTTCC	1320
13	AGGGTATCAC	TGTGGGTGTG	GCTCCCATTG	TGGTGGTGAT	TGCCAGCGTG	GTGACCTTCT	1380
		GACCCTGGGC					1440
	TCTTCAATTC	CATGACTTTT	GCTTTGAAAG	TAACACCGTT	TTCAGTAAAG	TCCCTCTCAG	1500
•		GGCTGTTGAC					1560
20		ACCAGCCAGT					1620
20	GGGACTCCTC	CCACTCCAGT	ATCCAGAACT	CGCCCAAGCT	GACCCCCAAA	ATGAAAAAAG	1680
		TTCCAGGGGC					1740
	AGGCGGTGCT	GGCAGAGCAG	AAAGGCCACC	TCCTCCTGGA	CAGTGACGAG	CGGCCCAGTC	1800
	CCGAAGAGGA	AGAAGGCAAG	CACATCCACC	TGGGCCACCT	GCGCTTACAG	AGGACACTGC	1860
		TCTGGAGATC					1920
25	GTGGAAAAAC	CTCTCTCATT	TCAGCCATTT	TAGGCCAGAT	GACGCTTCTA	GAGGGCAGCA	1980
		TGGAACCTTC					2040
		CATCCTGTTT					2100
•		CCTGAGGCCT					2160
		AGCCAACCTG					
30		CAGGAGCATC					2220
50		CATCTTCAAT					2280
		CCAGTTACAG					2340
		GGAAAGAGGC					2400
							2460
35		TAACCTGTTG					2520
55		TTCACAGAAG AGTAAAGCCA					2580
		CTGGTCAGTA					2640
		TATGGCCCTT					2700
		CTGGATCAAG					2760
40	CCTCCCTCAC	TGACAGCATG	AACCACAAGCG	CTCATATCCA	CONCONTROCCO	AGGAACGAGA	2820
-10	CCICGGIGAG	GGCAGTCATG	CTCATCCTCA	CICAINIGCA	CIACIATGCC	AGCATCTACG	2880
		AGCTTCCTCC					2940
	CTATCAACTT	TTTTGACACG	ACCCCCACAC	CCACCAMMON	CLGAAGGATC	CTTCGAAGCC	3000
	TCCATCAACT	TGACGTGCGG	OTCCCCCACAG	DOCCOORDIN	CAACAGGIII	1 CCAAAGACA	3060
45	TOGNIGHAGI	CTGTGTGGGA	AMCAMCCCAC	AGGCCGAGAT	GTTCATCCAG	AACGTTATCC	3120
1.5							3180
		CATCCTCTTT GGACAATATC					3240
		CACCATCCAC					3300
	AGGGCCIIGC	TGACAACCAA	CONCOMPAN	MAGGGCAGGA	GTTTCTGCAC	AGATACCAGG	3360
50	CTCTCCCCC	GGACCTCATC	BCICCIIIII	TETTGTTTAC	CLOCCCATO	CGGTGGCTGG	3420
-		GCAGATTCCC					3480
		GTTCCAGTTT					3540
		GATCAATCAC					3600
							3660
55		TCCCTCCCCT					3720
55		CCGAGAAAAC					3780
		GATTGGCATT					3840
		TCTGGTGGAG					3900
		CCTTGCCGAC					3960
60		CACTGTCAGA					4020
VV		CCTGGAGAGG					4080
		AGTGATGGAG					4140
		AGCCCTGCTC					4200
	CCATGGACAC	AGAGACAGAC	TTATTGATTC	AAGAGACCAT	CCGAGAAGCA	TTTGCAGACT	4260
65		GACCATTGCC					4320
05		GGGACAGGTG					4380
	GTTCCCGATT	CTATGCCATG	TTTGCTGCTG	CAGAGAACAA	GGTCGCTGTC	AAGGGCTGAC	4440
	TCCTCCCTGT	TGACGAAGTC	TCTTTTCTTT	AGAGCATTGC	CATTCCCTGC	CTGGGGCGGG	4500
	CCCCTCATCG	CGTCCTCCTA	CCGAAACCTT	GCCTTTCTCG	ATTTTATCTT	TCGCACAGCA	4560
70	GTTCCGGATT	GGCTTGTGTG	TTTCACTTTT	AGGGAGAGTC	ATATTTTGAT	TATTGTATTT	4620
70	ATTCCATATT	CATGTAAACA	AAATTTAGTT	TTTGTTCTTA	ATTGCACTCT	AAAAGGTTCA	4680
	GGGAACCGTT	ATTATAATTG	TATCAGAGGC	CTATAATGAA	GCTTTATACG	TGTAGCTATA	4740
	TCTATATATA	ATTCTGTACA	TAGCCTATAT	TTACAGTGAA	AATGTAAGCT	GTTTATTTTA	4800
	TATTAAAATA	AGCACTGTGC	TAATAACAGT	GCATATTCCT	TTCTATCATT	TTTGTACAGT	4860
75	TTGCTGTACT	AGAGATCTGG	TTTTGCTATT	AGACTGTAGG	AAGAGTAGCA	TTTCATTCTT	4920
75	CTCTAGCTGG	TGGTTTCACG	GTGCCAGGTT	TTCTGGGTGT	CCAAAGGAAG	ACGTGTGGCA	4980
	ATAGTGGGCC	CTCCGACAGC	CCCCTCTGCC	GCCTCCCCAC	AGCCGCTCCA	GGGGTGGCTG	5040
	GAGACGGGTG	GGCGGCTGGA	GACCATGCAG	AGCGCCGTGA	GTTCTCAGGG	CTCCTGCCTT	5100
	CTGTCCTGGT	GTCACTTACT	GTTTCTGTCA	GGAGAGCAGC	GGGGCGAAGC	CCAGGCCCCT	5160
00	TTTCACTCCC	TCCATCAAGA	ATGGGGATCA	CAGAGACATT	CCTCCGAGCC	GGGGAGTTTC	5220
80	TTTCCTGCCT	TCTTCTTTTT	GCTGTTGTTT	CTAAACAAGA	ATCAGTCTAT	CCACAGAGAG	5280
	TCCCACTGCC	TCAGGTTCCT	ATGGCTGGCC	ACTGCACAGA	GCTCTCCAGC	TCCAAGACCT	5340
	GTTGGTTCCA	AGCCCTGGAG	CCAACTGCTG	CTTTTTGAGG	TGGCACTTTT	TCATTTGCCT	5400
	ATTCCCACAC	CTCCACAGTT	CAGTGGCAGG	GCTCAGGATT	TCGTGGGTCT	GTTTTCCTTT	5460
9.0	CTCACCGCAG	TCGTCGCACA	GTCTCTCTCT	CTCTCTCCCC	TCAAAGTCTG	CAACTTTAAG	5520
85	CAGCTCTTGC	TAATCAGTGT	CTCACACTGG	CGTAGAAGTT	TTTGTACTGT	AAAGAGACCT	5580
	ACCTCAGGTT	GCTGGTTGCT	GTGTGGTTTG	GTGTGTTCCC	GCAAACCCCC	TTTGTGCTGT	5640
	GGGGCTGGTA	GCTCAGGTGG	GCGTGGTCAC	TGCTGTCATC	AGTTGAATGG	TCAGCGTTGC	5700

WO 02/086443 ATGTCGTGAC CAACTAGACA TTCTGTCGCC TTAGCATGTT TGCTGAACAC CTTGTGGAAG 5760 AAAAAAA AAAAAAA 5 Seq ID NO: 319 Protein sequence: Protein Accession #: NP_005679 21 11 10 MKDIDIGKEY IIPSPGYRSV RERTSTSGTH RDREDSKFRR TRPLECQDAL ETAARAEGLS 60 LDASMHSQLR ILDEEHPKGK YHHGLSALKP IRTTSKHQHP VDNAGLFSCM TFSWLSSLAR 120 VAHKKGELSM EDVWSLSKHE SSDVNCRRLE RLWQEELNEV GPDAASLRRV VWIFCRTRLI 180 LSIVCLMITQ LAGFSGPAFM VKHLLEYTQA TESNLQYSLL LVLGLLLTEI VRSWSLALTW 240 ALNYRTGVRL RGAILTMAFK KILKLKNIKE KSLGELINIC SNDGQRMFEA AAVGSLLAGG 15 300 PVVAILGMIY NVIILGPTGF LGSAVFILFY PAMMFASRLT AYFRRKCVAA TDERVQKMNE 360 VLTYIKFIKM YAWVKAPSQS VQKIREEERR ILEKAGYFQG ITVGVAPIVV VIASVVTFSV 420 HMTLGFDLTA AQAPTVVTVF NSMTPALKVT PFSVKSLSEA SVAVDRFKSL FLMEEVHMIK 480 NKPASPHIKI EMKNATLAWD SSHSSIQNSP KLTPKMKKDK RASRGKKEKV RQLQRTEHQA 540 20 VLAEOKGHLL LDSDERPSPE EEEGKHIHLG HLRLQRTLHS IDLEIQEGKL VGICGSVGSG 600 KTSLISAILG QMTLLEGSIA ISGTFAYVAQ QAWILNATLR DNILFGKEYD EERYNSVLNS 660 CCLRPDLAIL PSSDLTEIGE RGANLSGGOR QRISLARALY SDRSIYILDD PLSALDAHVG NHIFNSAIRK HLKSKTVLFV THQLQYLVDC DEVIFMKEGC ITERGTHEEL MNLNGDYATI 780 FNNLLLGETP PVEINSKKET SGSQKKSQDK GPKTGSVKKE KAVKPEEGQL VQLEEKGQGS 840 VPWSVYGVYI QAAGGPLAFL VIMALFMLNV GSTAFSTWWL SYWIKQGSGN TTVTRGNETS 25 900 VSDSMKDNPH MQYYASIYAL SMAVMLILKA IRGVVFVKGT LRASSRLHDE LFRRILRSPM 960 KFFDTTPTGR ILNRFSKDMD EVDVRLPFQA EMFIQNVILV FFCVGMIAGV FPWFLVAVGP 1020 LVILFSVLHI VSRVLIRELK RLDNITQSPF LSHITSSIQG LATIHAYNKG QEFLHRYQEL 1080 LDDNQAPFFL FTCAMRWLAV RLDLISIALI TTTGLMIVLM HGQIPPAYAG LAISYAVQLT 1140 30 1200 GLFOFTVRLA SETEARFTSV ERINHYIKTL SLEAPARIKN KAPSPDWPQE GEVTFENAEM RYRENLPLVL KKVSFTIKPK EKIGIVGRTG SGKSSLGMAL FRLVELSGGC IKIDGVRISD 1260 1320 IGLADLRSKL SIIPQEPVLF SGTVRSNLDP FNQYTEDQIW DALERTHMKE CIAQLPLKLE SEVMENGDNF SVGERQLLCI ARALLRHCKI LILDEATAAM DTETDLLIQE TIREAFADCT 1380 MLTIAHRLHT VLGSDRIMVL AQGQVVEFDT PSVLLSNDSS RFYAMFAAAE NKVAVKG 35 Seq ID NO: 320 DNA sequence Nucleic Acid Accession #: AK022089.1 Coding sequence: 181-1488 40 21 31 41 51 11 AGCAGTTGCA CAACTTCCAG CAACTTTCTC AGCCGGCTAC TAATGAGCTG AAAGCCAGGA ACATCCGAGG AGAAGAGAAA GCTTCCAGCC CTCCTCCCTT CACCCTGGAA ATCCAGACAC 120 45 CCCCACCCC ACCCTCAGAT CACTTTAAGA TAATTTCTTT ATTCGTTTGC CCGACAGACC 180 ATGGCTCCCT TTGGAAGAAA CTTGCTAAAG ACTCGGCATA AAAACAGATC TCCAACTAAA 240 GACATGGATT CAGAAGAGAA GGAAATTGTG GTTTGGGTTT GCCAAGAAGA GAAGCTTGTC 300 TGTGGGCTGA CTAAACGCAC CACCTCTGCT GATGTCATCC AGGCTTTGCT TGAGGAACAT 360 GAGGCTACGT TTGGAGAGAA ACGATTTCTT CTGGGGAAGC CCAGTGATTA CTGCATCATA 420 50 GAGAAGTGGA GAGGCTCCGA AAGGGTTCTT CCTCCACTAA CTAGAATCCT GAAGCTTTGG 480 AAAGCGTGGG GAGATGAGCA GCCCAATATG CAATTTGTTT TGGTTAAAGC AGATGCTTTT 540 CTTCCAGTTC CTTTGTGGCG GACAGCTGAA GCCAAATTAG TGCAAAACAC AGAAAAATTG 600 TGGGAGCTCA GCCCAGCAAA CTACATGAAG ACTTTACCAC CAGATAAACA AAAAAGAATA 660 GTCAGGAAAA CTTTCCGGAA ACTGGCTAAA ATTAAGCAGG ACACAGTTTC TCATGATCGA 720 55 GATAATATGG AGACATTAGT TCATCTGATC ATTTCCCAGG ACCATACTAT TCATCAGCAA 780 GTCAAGAGAA TGAAAGAGCT GGATCTGGAA ATTGAAAAGT GTGAAGCTAA GTTCCATCTT 840 GATCGAGTAG AAAATGATGG AGAAAACTAT GTTCAGGATG CATATTTAAT GCCCAGTTTC 900 AGTGAAGTTG AGCAAAATCT AGACTTGCAG TATGAGGAAA ACCAGACTCT GGAGGACCTG 960 AGCGAAAGTG ATGGAATTGA ACAGCTGGAA GAACGACTGA AATATTACCG AATACTCATT 1020 60 GATAAGCTCT CTGCTGAAAT AGAAAAAGAG GTAAAAAGTG TTTGCATTGA TATAAATGAA 1080 GATGCGGAAG GGGAAGCTGC AAGTGAACTG GAAAGCTCTA ATTTAGAGAG TGTTAAGTGT 1140 GATTTGGAGA AAAGCATGAA AGCTGGTTTG AAAATTCACT CTCATTTGAG TGGCATCCAG 1200 AAAGAGATTA AATACAGTGA CTCATTGCTT CAGATGAAAG CAAAAGAATA TGAACTCCTG GCCAAGGAAT TCAATTCACT TCACATTAGC AACAAAGATG GGTGCCAGTT AAAGGAAAAC 65 AGAGCGAAGG AATCTGAGGT TCCCAGTAGC AATGGGGAGA TTCCTCCCTT TACTCAAAGA GTATTTAGCA ATTACACAAA TGACACAGAC TCGGACACTG GTATCAGTTC TAACCACAGT 1440 CAGGACTCCG AAACAACAGT AGGAGATGTG GTGCTGTTGT CAACATAGTT CCAATGGCTC 1500 CTTTCTGACC TGCTTTCATG TTTTAATGTT TGTTTAATTT AATAGGAAAC CTCATTTTAA 1560 ATATAACACT CAAAAAAATG TAAATCATAT TGTAGTATTC AATAGTTAAT AAAAACTCGA 70 GAAATGTGTT GTTTCTG Seg ID NO: 321 Protein seguence: Protein Accession #: NP_005438.1 75 51 11 21 31 41 MAPFGRNLLK TRHKNRSPTK DMDSEEKEIV VWVCQEEKLV CGLTKRTTSA DVIQALLEEH EATFGEKRFL LGKPSDYCII EKWRGSERVL PPLTRILKLW KAWGDEQPNM QFVLVKADAF 120 LPVPLWRTAE AKLVONTEKL WELSPANYMK TLPPDKQKRI VRKTFRKLAK IKQDTVSHDR 180 80 DNMETLVHLI ISQDHTIHQQ VKRMKELDLE IEKCEAKFHL DRVENDGENY VQDAYLMPSF 240 SEVEONLDLO YEENOTLEDL SESDGIEOLE ERLKYYRILI DKLSAEIBKE VKSVCIDINE 300 DAEGEAASEL ESSNLESVKC DLEKSMKAGL KIHSHLSGIQ KEIKYSDSLL QMKAKEYELL 360

AKEFNSLHIS NKDGCQLKEN RAKESEVPSS NGEIPPFTQR VFSNYTNDTD SDTGISSNHS ODSETTVGDV VLLST 85 Seq ID NO: 322 DNA sequence Nucleic Acid Accession #: NM_030920.1

420

```
5
      AGCATTGAAG GGGAAGGAAC TGCGGGTGTG GTGTGTGTAT GTGTGTGTG ATGTGTGTGC
      GGCGCGTGCG TGCGTGTGTG TGCGCGCGCT AGTGTGTGGA CAAGGAGGTG GGGGCAGCTG
                                                                         120
      AGTTAGAGTC CCAACTCTTG GACTCCATTT GCTATTCTCT TCTTTCTCCC CCACACCTAT
                                                                         180
      CTGGTGGTGG TAGTGGGCGT TTATATTTGC GTTCCTTTTC ATTCATTTCT AAATCTCTTA
                                                                         240
      AAAATTTTGG GTTGGGGGTA TTGGGGAAGG CAGGAAAGGG AAAAGGAGAG TAGTAGCTGA
                                                                         300
10
      AGAGCAAGAG GAGGACATGG AGATGAAGAA GAAGATTAAC CTGGAGTTAA GGAACAGATC
                                                                         360
      CCCGGAGGAG GTGACAGAGT TAGTCCTTGA TAATTGCCTG TGTGTCAATG GGGAAATTGA
                                                                         420
      AGGCCTGAAT GATACTTTCA AAGAACTAGA ATTTCTGAGT ATGGCTAATG TGGAACTAAG
                                                                         480
      TTCGCTGGCC CGGCTTCCCA GCTTAAATAA ACTTCGAAAA TTGGAGCTTA GTGATAATAT
                                                                         540
      AATTTCTGGA GGCTTGGAAG TCCTGGCAGA GAAATGTCCA AATCTTACCT ACCTCAATCT
                                                                         600
15
      GAGTGGAAAC AAAATAAAAG ATCTCAGTAC AGTAGAAGCT CTGCAAAATC TTAAAAATTT
                                                                         660
      GAAAAGTCTT GACCTGTTTA ACTGTGAGAT CACAAACCTG GAAGATTATA GAGAAAGTAT
                                                                         720
      TTTTGAACTA CTGCAGCAAA TCACATACTT AGATGGATTT GATCAGGAGG ATAATGAAGC
                                                                         780
      GCCGGACTCT GAAGAGGAGG ATGATGAGGA TGGAGATGAA GATGATGAAG AGGAAGAGGA
                                                                         840
      AAATGAAGCT GGTCCACCGG AAGGATATGA GGAAGAGGAG GAGGAAGAGG AAGAGGAGGA
                                                                         900
20
      TGAGGATGAG GATGAAGATG AAGATGAAGC AGGTTCAGAG TTGGGAGAGG GAGAAGAGGA
                                                                         960
      AGTGGGCCTC TCATACTTAA TGAAAGAAGA AATTCAGGAT GAAGAAGATG ATGATGACTA
                                                                        1020
      TGTTGAAGAA GGGGAAGAAG AGGAAGAAGA GGAAGAAGGA GGTCTTCGAG GGGAGAAGAG
      GAAACGAGAT GCTGAAGACG ATGGAGAGGA AGAAGATGAC TAGATCATTC TAAGACCAGA
                                                                        1140
      TTCTCTAATG TTTCTGGGTG TGCAATAGAG TGATCACATC TTTGTTTCTT CATGTACGAT
25
      AGCTATCCCT ACAGAAGATA ATGTGTAACT TTTTATAGGA AAAGTGTGGT TTTACTATTT
                                                                        1260
      TTGCCTTATC ATTCCAAATA AGAACTAGTC TGTTAATGAT CATATTGTAT GTAGAGAAAA
                                                                        1320
      ATTTTCATTG ACTCCCATTG TGGAATTCCC TAGCAATTTA TTTAGACTTA ATTTTTTAAA
                                                                        1380
      TTCAAGCTTA CTGTATTAGT CATTTTTAGC CCATAATTAA AACATGATCA CTTTTAAACA
                                                                        1440
      GGTGTAGTAT GGTGCATTTC ATTCCTTATT TATAGATTAA CTGAAATTAC AGTTTGCTAT
                                                                        1500
30
      AATATAAAAT GACAATAGTC TCTTGAGTGG TAAGTTGGTT ATTTTTTTAG AGGTGATCCA
                                                                        1560
      1620
      TTTGGTTGCT TTTTTGTCAC AAGTAACTTG GAAAATAGAA GCAGAATAGT AAAGGTTCTA
                                                                        1680
      TTCAGCAACA TAGTTCATGG ATTTTGTGGA GGTTCTATTC AGTAATATGG TTCATGGATT
                                                                        1740
      TAGTGGTGAC TGATAAGATT TTATTTTTGA AGGAAAAATT GCTTATACTA AGTCCAGAGA
                                                                        1800
35
       CATGCAGGTG AGCCCTTTTG TCAGGCTGCA AATCATGACA TGCCGATGGT TGTTTATTTT
                                                                        1860
      GTTTTTAGGT GTGCATTCTT TTTCTTCTTA GCAATTCCTT TATGATCACC TTCCCTTCTT
                                                                        1920
      GTTTCACTCC CTCCCGCTCT CTCAAAAGGA ACTTGGGAAA CTTGTGAAAC CCAGGAAAAC
                                                                        1980
       CTTTAGTCTT ATACCTCAAC TACGTTTCAG TCCTGTCTGG GTTTTAAATA AGTGAAGTAG
                                                                        2040
      AAGAAATTGA GTATTTCTG ACATAAGAAT ATATTATCAA TACAGTTTTA TGCAGTAAGC
                                                                        2100
40
       TCTCCTTACC ATAAATGTTT CTTGGTTGAC AACATCTAAG ACAATATTAG TGGGATGAAG
                                                                        2160
      AAAGAAAAGC AGGGGTGCTT TTGGAAGCAG TGTTAGTGTT CCTCAAAAGT CGGAACAATT
                                                                        2220
      GCCTGTTGAT ATATTAATAA GACATTAAAG TCAAATTTTA ATGTTGGCCT CTCAAATGAT
                                                                        2280
      TTGGATACCA CTCTGCAAAG TATTTCTAAC CTTTAATTCC CAGTTTTAAA ACAGATATAA
                                                                        2340
      TAATAGCATT TAATTGGAAT ATACTAGGCA GCTGGAAAAG TATTTGAAAC TAAATTGACA
                                                                        2400
45
      TTAAAATTAA GATTTGTTTT CAAGTGGATG TCCATTAAAA GTAGAAAAAT ATTTGGGATA
                                                                        2460
      2520
      CTCCTCTTTT GCTATGGAGG CTCCATGTTC AAGGCAATGG CTTTTTAAAT CTTGGCTATC
      TAAAATTTTT TCCCTTTGTT TTGAATATTT GTAAGTTTTT AAGAAGTTAG TGTCAGCAAA
      TTAATTGAAG TTATGCTTCT ATACTGGGAC ATATTTAAAT ACTGAGTATA GTACTGCTGC
50
       TACTGCTTCT ACAATGTAAA ATGTATGACT TGGTGTTTTA AAGTAAAAAT TATGATGTTA
                                                                        2760
      CTTGTGGAGA AACTAAAAAT GTTGTACAAC TGACCGAAAG AAAACCCTTG GGGATAAGTT
       TAGTGAGGGG ATTGGAATCC CCAAAAAGAT AACATTTTTC TTCTGCTTTT AAAAACTGAA
                                                                        2880
      ATTCCCTGTT CTAGTTCCTA ACAATTCTCA TTACATACTA TGCCAGATTA CAAAATACTT
                                                                        2940
       ATTTTTAAAA TGAAATCTAT ATATTGACTT TCTTATCAAT CATCTTACTG TGCAATCAAA
                                                                        3000
55
      ATTAGAGTAC TTTGGTTTGA AAACAACACT TAGAGCCTCC AGATAACTTT TAAGACTTAT
                                                                        3060
      TTAGCTTTGT GGGTGGTATT TTCATGCAAA TAAGTAAGGG TGGGTTTTAT ATTTTGTAGA
                                                                        3120
      AGTTTTCGGT CCTATTTTAA TGCTCTTTGT ATGGCAGTAT GTATATATTG TGTTAAGTTC
                                                                        3180
       CTCAAGAATC TCCTTAAAAA CTTTGAAGTT AATACTTTTG TGCAACTGTG TTTTGAATAA
                                                                        3240
      AGCCATGACA GTGTTAAAAA CAAAC
60
       Seg ID NO: 323 Protein seguence:
      Protein Accession #: NP 112182.1
                            21
                                       31
                                                             51
65
      MEMKKKINLE LRNRSPEEVT ELVLDNCLCV NGEIEGLNDT FKELEFLSMA NVELSSLARL
                                                                          60
      PSLNKLRKLE LSDNIISGGL EVLAEKCPNL TYLNLSGNKI KDLSTVEALQ NLKNLKSLDL
                                                                         120
      FNCEITNLED YRESIFELLQ QITYLDGFDQ EDNEAPDSEE EDDEDGDEDD EEEEENEAGP
                                                                         180
      PEGYEEEEE EEEEDEDEDE DEDEAGSELG EGEEEVGLSY LMKEEIQDEE DDDDYVEEGE
                                                                         240
70
      EEEEEEGGL RGEKRKRDAE DDGEEEDD
      Seq ID NO: 324 DNA sequence
      Nucleic Acid Accession #: NM 003812
      Coding sequence: 224..2722
75
                            21
                                       31
      TCCTCTGCGT CCCGCCCGG GAGTGGCTGC GAGGCTAGGC GAGCCGGGAA AGGGGGCGCC
      GCCCAGCCCC GAGCCCCGCG CCCCGTGCCC CGAGCCCGGA GCCCCCTGCC CGCGGCGGCA
                                                                         120
80
      CCATGCGCGC CGAGCCGGCG TGACCGGCTC CGCCCGCGGC CGCCCCGCAG CTAGCCCGGC
                                                                         180
      GCTCTCGCCG GCCACACGGA GCGGCGCCCG GGAGCTATGA GCCATGAAGC CGCCCGGCAG
                                                                         240
      CAGCTCGCGG CAGCCGCCCC TGGCGGGCTG CAGCCTTGCC GGCGCTTCCT GCGGCCCCCA
                                                                         300
      ACGCGGCCCC GCCGGCTCGG TGCCTGCCAG CGCCCCGGCC CGCACGCCGC CCTGCCGCCT
                                                                         360
      GCTTCTCGTC CTTCTCCTGC TGCCTCCGCT CGCCGCCTCG TCCCGGCCCC GCGCCTGGGG
                                                                         420
85
      GGCTGCTGCG CCCAGCGCTC CGCATTGGAA TGAAACTGCA GAAAAAATT TGGGAGTCCT
                                                                         480
      GGCAGATGAA GACAATACAT TGCAACAGAA TAGCAGCAGT AATATCAGTT ACAGCAATGC
                                                                         540
      AATGCAGAAA GAAATCACAC TGCCTTCAAG ACTCATATAT TACATCAACC AAGACTCGGA
```

PCT/US02/12476

```
AAGCCCTTAT CACGTTCTTG ACACAAAGGC AAGACACCAG CAAAAACATA ATAAGGCTGT
                                                                            660
       CCATCTGGCC CAGGCAAGCT TCCAGATTGA AGCCTTCGGC TCCAAATTCA TTCTTGACCT
                                                                            720
       CATACTGAAC AATGGTTTGT TGTCTTCTGA TTATGTGGAG ATTCACTACG AAAATGGGAA
                                                                             780
       ACCACAGTAC TCTAAGGGTG GAGAGCACTG TTACTACCAT GGAAGCATCA GAGGCGTCAA
                                                                            840
 5
       AGACTCCAAG GTGGCTCTGT CAACCTGCAA TGGACTTCAT GGCATGTTTG AAGATGATAC
                                                                            900
       CTTCGTGTAT ATGATAGAGC CACTAGAGCT GGTTCATGAT GAGAAAAGCA CAGGTCGACC
                                                                            960
       ACATATAATC CAGAAAACCT TGGCAGGACA GTATTCTAAG CAAATGAAGA ATCTCACTAT
                                                                           1020
       GGAAAGAGGT GACCAGTGGC CCTTTCTCTC TGAATTACAG TGGTTGAAAA GAAGGAAGAG
       AGCAGTGAAT CCATCACGTG GTATATTTGA AGAAATGAAA TATTTGGAAC TTATGATTGT
                                                                           1140
10
       TAATGATCAC AAAACGTATA AGAAGCATCG CTCTTCTCAT GCACATACCA ACAACTTTGC
       AAAGTCCGTG GTCAACCTTG TGGATTCTAT TTACAAGGAG CAGCTCAACA CCAGGGTTGT
                                                                           1260
       CCTGGTGGCT GTAGAGACCT GGACTGAGAA GGATCAGATT GACATCACCA CCAACCCTGT
                                                                           1320
       GCAGATGCTC CATGAGTTCT CAAAATACCG GCAGCGCATT AAGCAGCATG CTGATGCTGT
                                                                           1380
       GCACCTCATC TCGCGGGTGA CATTTCACTA TAAGAGAAGC AGTCTGAGTT ACTTTGGAGG
                                                                           1440
       TGTCTGTTCT CGCACAAGAG GAGTTGGTGT GAATGAGTAT GGTCTTCCAA TGGCAGTGGC
15
                                                                           1500
       ACAAGTATTA TCGCAGAGCC TGGCTCAAAA CCTTGGAATC CAATGGGAAC CTTCTAGCAG
                                                                           1560
       AAAGCCAAAA TGTGACTGCA CAGAATCCTG GGGTGGCTGC ATCATGGAGG AAACAGGGGT
                                                                           1620
       GTCCCATTCT CGAAAATTTT CAAAGTGCAG CATTTTGGAG TATAGAGACT TTTTACAGAG
                                                                           1680
       AGGAGGTGGA GCCTGCCTTT TCAACAGGCC AACAAAGCTA TTTGAGCCCA CGGAATGTGG
                                                                           1740
20
       AAATGGATAC GTGGAAGCTG GGGAGGAGTG TGATTGTGGT TTTCATGTGG AATGCTATGG
                                                                           1800
       ATTATGCTGT AAGAAATGTT CCCTCTCCAA CGGGGCTCAC TGCAGCGACG GGCCCTGCTG
                                                                           1860
       TAACAATACC TCATGTCTTT TTCAGCCACG AGGGTATGAA TGCCGGGATG CTGTGAACGA
                                                                           1920
       GTGTGATATT ACTGAATATT GTACTGGAGA CTCTGGTCAG TGCCCACCAA ATCTTCATAA
                                                                           1980
       GCAAGACGGA TATGCATGCA ATCAAAATCA GGGCCGCTGC TACAATGGCG AGTGCAAGAC
                                                                           2040
25
       CAGAGACAAC CAGTGTCAGT ACATCTGGGG AACAAAGGCT GCAGGGTCTG ACAAGTTCTG
                                                                           2100
       CTATGAAAAG CTGAATACAG AAGGCACTGA GAAGGGAAAC TGCGGGAAGG ATGGAGACCG
                                                                           2160
       GTGGATTCAG TGCAGCAAAC ATGATGTGTT CTGTGGATTC TTACTCTGTA CCAATCTTAC
       TCGAGCTCCA CGTATTGGTC AACTTCAGGG TGAGATCATT CCAACTTCCT TCTACCATCA
       AGGCCGGGTG ATTGACTGCA GTGGTGCCCA TGTAGTTTTA GATGATGATA CGGATGTGGG
30
       CTATGTAGAA GATGGAACGC CATGTGGCCC GTCTATGATG TGTTTAGATC GGAAGTGCCT
                                                                           2400
       ACAAATTCAA GCCCTAAATA TGAGCAGCTG TCCACTCGAT TCCAAGGGTA AAGTCTGTTC
                                                                           2460
       GGGCCATGGG GTGTGTAGTA ATGAAGCCAC CTGCATTTGT GATTTCACCT GGGCAGGGAC
                                                                           2520
       AGATTGCAGT ATCCGGGATC CAGTTAGGAA CCTTCACCCC CCCAAGGATG AAGGACCCAA
                                                                           2580
       GGGTCCTAGT GCCACCAATC TCATAATAGG CTCCATCGCT GGTGCCATCC TGGTAGCAGC
                                                                           2640
       TATTGTCCTT GGGGGCACAG GCTGGGGATT TAAAAATGTC AAGAAGAGA GGTTCGATCC
35
                                                                           2700
       TACTCAGCAA GGCCCCATCT GAATCAGCTG CGCTGGATGG ACACCGCCTT GCACTGTTGG
                                                                           2760
       ATTCTGGGTA TGACATACTC GCAGCAGTGT TACTGGAACT ATTAAGTTTG TAAACAAAAC
                                                                           2820
       CTTTGGGTGG TAATGACTAC GGAGCTAAAG TTGGGGTGAC AAGGATGGGG TAAAAGAAAA
                                                                           2880
       CTGTCTCTTT TGGAAATAAT GTCAAAGAAC ACCTTTCACC ACCTGTCAGT AAACGGGGGA
                                                                           2940
40
       GGGGGCAAAA GACCATGCTA TAAAAAGAAC TGTTCCAGAA TCTTTTTTT TCCCTAATGG
                                                                           3000
       ACGAAGGAAC AACACACACA CAAAAATTAA ATGCAATAAA GGAATCATTA AAAA
       Seq ID NO: 325 Protein sequence:
       Protein Accession #: NP_003803
45
                                         31
       MKPPGSSSRQ PPLAGCSLAG ASCGPQRGPA GSVPASAPAR TPPCRLLLVL LLLPPLAASS
       RPRAWGAAAP SAPHWNETAE KNLGVLADED NTLQQNSSSN ISYSNAMQKE ITLPSRLIYY
                                                                            120
50
       INODSESPYH VLDTKARHOQ KHNKAVHLAQ ASFQIEAFGS KFILDLILNN GLLSSDYVEI
       HYENGKPQYS KGGEHCYYHG SIRGVKDSKV ALSTCNGLHG MFEDDTFVYM IEPLELVHDE
       KSTGRPHIIQ KTLAGQYSKQ MKNLTMERGD QWPFLSELQW LKRRKRAVNP SRGIFEEMKY
       LELMIVNDHK TYKKHRSSHA HTNNFAKSVV NLVDSIYKEQ LNTRVVLVAV ETWTEKDQID
                                                                            360
       ITTNPVQMLH EFSKYRQRIK QHADAVHLIS RVTFHYKRSS LSYFGGVCSR TRGVGVNEYG
55
       LPMAVAQVLS OSLAONLGIQ WEPSSRKPKC DCTESWGGCI MEETGVSHSR KFSKCSILEY
                                                                            480
       RDFLORGGGA CLFNRPTKLF EPTECGNGYV EAGEECDCGF HVECYGLCCK KCSLSNGAHC
                                                                            540
       SDGPCCNNTS CLFOPRGYEC RDAVNECDIT EYCTGDSGQC PPNLHKODGY ACNONQGRCY
                                                                            600
       NGECKTRDNO COYIWGTKAA GSDKFCYEKL NTEGTEKGNC GKDGDRWIQC SKHDVFCGFL
                                                                            660
       LCTNLTRAPR IGOLOGEIIP TSFYHOGRVI DCSGAHVVLD DDTDVGYVED GTPCGPSMMC
                                                                            720
60
       LDRKCLOIOA LNMSSCPLDS KGKVCSGHGV CSNEATCICD FTWAGTDCSI RDPVRNLHPP
                                                                            780
       KDEGPKGPSA TNLIIGSIAG AILVAAIVLG GTGWGFKNVK KRRFDPTQQG PI
       Seg ID NO: 326 DNA seguence
       Nucleic Acid Accession #: AK074418.1
65
       Coding sequence: 244-1515
                  11
                             21
                                         31
                                                    41
                                                               51
       CTTTCTCCAA GACGGCCGGC CATGCTCTCC TCCTCTGCCA GTCTCCTCCA CCACTCTCTA
                                                                             60
70
       ACCTGAGAGC CTGTGGAACC TGCCCGTCTC CCCTCCTCCA TCAGACACAC CTGCCTAGGA
                                                                            120
       AACAGATGGA AAAAGTGAGG GACCGGTGAG TGACTTGCTG CTAAAGTTTA TACCAGATGC
                                                                            180
       AAATGACAGA GCTGGAGTTC TGCTGTGCCT GGAAAGGACC TCGGAAGTCT TCTAAGGAGA
                                                                            240
       GTCATGGCGT ATTACCAGGA GCCTTCAGTG GAGACCTCCA TCATCAAGTT CAAAGACCAG
GACTTTACCA CCTTGCGGGA TCACTGCCTG AGCATGGGCC GGACGTTTAA GGATGAGACA
                                                                            300
                                                                            360
75
       TTCCCCGCAG CAGATTCTTC CATAGGCCAG AAGCTGCTCC AGGAAAAACG CCTCTCCAAT
                                                                            420
       GTGATATGGA AGCGGCCACA GGATCTACCA GGGGGTCCTC CTCACTTCAT CCTGGATGAT
                                                                            480
       ATAAGCAGAT TTGACATCCA ACAAGGAGGC GCAGCTGACT GCTGGTTCCT GGCAGCACTG
                                                                            540
       GGATCCTTGA CTCAGAACCC ACAGTACAGG CAGAAGATCC TGATGGTCCA AAGCTTTTCA
                                                                            600
       CACCAGTATG CTGGCATTTT CCGTTTCCGG TTCTGGCAAT GTGGCCAGTG GGTGGAAGTG
                                                                            660
80
       GTGATTGATG ACCGCCTACC TGTCCAGGGA GATAAATGCC TCTTTGTGCG TCCTCGCCAC
                                                                            720
       CAAAACCAAG AGTTCTGGCC CTGCCTGCTG GAGAAGGCCT ATGCCAAGCT GCTCGGATCC
                                                                            780
       TATTCCGATC TGCACTATGG CTTCCTCGAG GATGCCCTGG TGGACCTCAC AGGAGGCGTG
                                                                            840
       ATCACCAACA TCCATCTGCA CTCTTCCCCT GTGGACCTGG TGAAGGCAGT GAAGACAGCG
                                                                            900
       ACCAAGGCAG GCTCCCTGAT AACCTGTGCC ACTCCAAGTG GGCCAACAGA TACAGCACAG
                                                                            960
85
       GCGATGGAGA ATGGGCTGGT GAGTCTCCAT GCCTACACTG TGACTGGGGC TGAGCAGATT
                                                                           1020
       CAATACCGAA GGGGCTGGGA AGAAATTATC TCCCTGTGGA ACCCCTGGGG CTGGGGCGAG
                                                                           1080
       ACCGAATGGA GAGGGCGCTG GAGTGATGGG TCTCAGGAGT GGGAGGAAAC CTGTGATCCG
```

```
CGGAAAAGCC AGCTACATAA GAAACGGGAA GATGGCGAGT TTTGGATGTC GTGTCAAGAT
       TTCCAACAGA AATTCATCGC CATGTTTATA TGTAGCGAAA TTCCAATTAC CCTGGACCAT
                                                                            1260
       GGAAACACA TCCACGAAGG ATGGTCCCAA ATAATGTTTA GGAAGCAAGT GATTCTAGGA
                                                                            1320
       AACACTGCAG GAGGACCTCG GAATGATGCT CAATTCAACT TCTCTGTGCA AGAGCCAATG
                                                                            1380
 5
       GAAGGCACCA ATGTTGTCGT GTGCGTCACA GTTGCTGTCA CACCATCAAA TTTGAAAGCA
                                                                            1440
       GAAGATGCAA AATTTCCACT CGATTTCCAA GTGATTCTGG CTGGCTCACA GAAACACTGT
                                                                            1500
       CCAAAGCTCA AATAATAAAT TCCGCCGCAA CTTCACCATG ACTTACCATC TGAGCCCTGG
                                                                            1560
       GAACTATGTT GTGGTTGCAC AGACACGGAG AAAATCAGCG GAGTTCTTGC TCCGAATCTT
                                                                            1620
       CCTGAAAATG CCAGACAGTG ACAGGCACCT GAGCAGCCAT TTCAACCTCA GAATGAAGGG
                                                                            1680
10
       AAGCCCTTCA GAACATGGCT CCCAACAAAG CATTTTCAAC AGATATGCTC AGCAGGTATG
                                                                            1740
       GTACCTAGCA CCCAGGGGCC TTACGTGGGA TTGGAGAAAG GGGACCTGAG GGAGGGACAG
                                                                            1800
       CCCTCACAGG CCCTTACTGG GATGCAGAGA GGAGAAGTGA CTTGATGGAC TATTTTACCT
                                                                            1860
       GCCTCTCTTC CTGGATCGTC TCCAGAACTG CTGTGGCTGC CAAGCTCGGT AGAGACGTGG
                                                                            1920
       CGCCCCACCC AGTCTCATCC GGGGGACTTC AAGCTGGAAT GCAGAGCTTA GAAAGGGAGG
                                                                            1980
15
       GGATAATTAT GGGGTGTGAG GTGCATTGCC CTCTAAATCT TTAAACAAGC AATTGGCAGT
                                                                            2040
       ACCCCGTGAA ACCTTTCCTT CTCCTACTCG GCCACCTCCC ACCAACCTGG CATCGTTCCT
                                                                            2100
       CCCGGGAGCT AGCCAGCTTC AGAAAGCACA TACAGCATCC TTGCTGCCAA ACCACCTATG
                                                                            2160
       TGCACACAGG ATTTCCTTAA TGGCTTAATA AACTGTTATA AAGAACTCCT TGACTTGTCA
                                                                            2220
       GAATAAAATA GCTGCCAGGG GCTCTGCACA ATGAGCCTCT TACCGTTAAA AAAAAAAAA
20
       АААААААА ААААААААА ААААААА
       Seg ID NO: 327 Protein sequence:
       Protein Accession #: BAB85075.1
25
                                         31
                                                                51
                              21
                  11
       MAYYQEPSVE TSIIKPKDQD FTTLRDHCLS MGRTFKDETF PAADSSIGQK LLQEKRLSNV
                                                                              60
       IWKRPODLPG GPPHFILDDI SRFDIQQGGA ADCWFLAALG SLIQMPQYRQ KILMYQSFSH
QYAGIFPRF WQCGQWVEVV IDDRLPVQGD KCLFVRPRHQ NQEFWPCLLE KAYAKLLGSY
                                                                             120
                                                                             180
30
       SDLHYGFLED ALVDLTGGVI TNIHLHSSPV DLVKAVKTAT KAGSLITCAT PSGPTDTAQA
                                                                             240
       MENGLVSLHA YTVTGAEQIQ YRRGWEEIIS LWNPWGWGET EWRGRWSDGS QEWEETCDPR
                                                                             300
       KSQLHKKRED GEFWMSCQDF QQKFIAMFIC SEIPITLDHG NTLHEGWSQI MFRKQVILGN
                                                                             360
       TAGGPRNDAQ FNFSVQEPME GTNVVVCVTV AVTPSNLKAE DAKFPLDFQV ILAGSQKHCP
                                                                             420
35
       Seq ID NO: 328 DNA sequence
       Nucleic Acid Accession #: BC017490.1
       Coding sequence: 74-2788
40
                              21
                                         31
                                                     41
                                                                51
       GTGGGTCACG TGAACCACTT TTCGCGCGAA ACCTGGTTGT TGCTGTAGTG GCGGAGAGGA
       TCGTGGTACT GCTATGGCGG AATCATCGGA ATCCTTCACC ATGGCATCCA GCCCGGCCCA
45
       GCGTCGGCGA GGCAATGATC CTCTCACCTC CAGCCCTGGC CGAAGCTCCC GGCGTACTGA
                                                                             180
       TGCCCTCACC TCCAGCCCTG GCCGTGACCT TCCACCATTT GAGGATGAGT CCGAGGGGCT
       CCTAGGCACA GAGGGGCCCC TGGAGGAAGA AGAGGATGGA GAGGAGCTCA TTGGAGATGG
       CATGGAAAGG GACTACCGCG CCATCCCAGA GCTGGACGCC TATGAGGCCG AGGGACTGGC
       TCTGGATGAT GAGGACGTAG AGGAGCTGAC GGCCAGTCAG AGGGAGGCAG CAGAGCGGGC
50
       CATGCGGCAG CGTGACCGGG AGGCTGGCCG GGGCCTGGGC CGCATGCGCC GTGGGCTCCT
       GTATGACAGC GATGAGGAGG ACGAGGAGCG CCCTGCCCGC AAGCGCCGCC AGGTGGAGCG
                                                                             540
       GGCCACGGAG GACGGCGAGG AGGACGAGGA GATGATCGAG AGCATCGAGA ACCTGGAGGA
       TCTCAAAGGC CACTCTGTGC GCGAGTGGGT GAGCATGGCG GGCCCCCGGC TGGAGATCCA
                                                                             660
       CCACCGCTTC AAGAACTTCC TGCGCACTCA CGTCGACAGC CACGGCCACA ACGTCTTCAA
                                                                             720
55
       GGAGCGCATC AGCGACATGT GCAAAGAGAA CCGTGAGAGC CTGGTGGTGA ACTATGAGGA
                                                                             780
       CTTGGCAGCC AGGGAGCACG TGCTGGCCTA CTTCCTGCCT GAGGCACCGG CGGAGCTGCT
                                                                             840
       GCAGATCTTT GATGAGGCTG CCCTGGAGGT GGTACTGGCC ATGTACCCCA AGTACCACCG CATCACCAAC CACATCCATG TCCGCATCTC CCACCTGCCT CTGGTGGAGG AGCTGCGCTC
                                                                             900
                                                                             960
       GCTGAGGCAG CTGCATCTGA ACCAGCTGAT CCGCACCAGT GGGGTGGTGA CCAGCTGCAC
                                                                            1020
60
       TGGCGTCCTG CCCCAGCTCA GCATGGTCAA GTACAACTGC AACAAGTGCA ATTTCGTCCT
                                                                            1080
       GGGTCCTTTC TGCCAGTCCC AGAACCAGGA GGTGAAACCA GGCTCCTGTC CTGAGTGCCA
                                                                            1140
       GTCGGCCGGC CCCTTTGAGG TCAACATGGA GGAGACCATC TATCAGAACT ACCAGCGTAT
                                                                            1200
       CCGAATCCAG GAGAGTCCAG GCAAAGTGGC GGCTGGCCGG CTGCCCCGCT CCAAGGACGC
                                                                            1260
       CATTCTCCTC GCAGATCTGG TGGACAGCTG CAAGCCAGGA GACGAGATAG AGCTGACTGG
                                                                            1320
65
       CATCTATCAC AACAACTATG ATGGCTCCCT CAACACTGCC AATGGCTTCC CTGTCTTTGC
                                                                            1380
       CACTGTCATC CTAGCCAACC ACGTGGCCAA GAAGGACAAC AAGGTTGCTG TAGGGGAACT
                                                                            1440
       GACCGATGAA GATGTGAAGA TGATCACTAG CCTCTCCAAG GATCAGCAGA TCGGAGAGAA
                                                                            1500
       GATCTTTGCC AGCATTGCTC CTTCCATCTA TGGTCATGAA GACATCAAGA GAGGCCTGGC
                                                                            1560
       TCTGGCCCTG TTCGGAGGGG AGCCCAAAAA CCCAGGTGGC AAGCACAAGG TACGTGGTGA
                                                                            1620
70
       TATCAACGTG CTCTTGTGCG GAGACCCTGG CACAGCGAAG TCGCAGTTTC TCAAGTATAT
                                                                            1680
       TGAGAAAGTG TCCAGCCGAG CCATCTTCAC CACTGGCCAG GGGGCGTCGG CTGTGGGCCT
                                                                            1740
       CACGGCGTAT GTCCAGCGGC ACCCTGTCAG CAGGGAGTGG ACCTTGGAGG CTGGGGCCCT
                                                                            1800
       GGTTCTGGCT GACCGAGGAG TGTGTCTCAT TGATGAATTT GACAAGATGA ATGACCAGGA
                                                                            1860
       CAGAACCAGC ATCCATGAGG CCATGGAGCA ACAGAGCATC TCCATCTCGA AGGCTGGCAT
                                                                            1920
75
       CGTCACCTCC CTGCAGGCTC GCTGCACGGT CATTGCTGCC GCCAACCCCA TAGGAGGGCG
                                                                            1980
       CTACGACCCC TCGCTGACTT TCTCTGAGAA CGTGGACCTC ACAGAGCCCA TCATCTCACG
                                                                            2040
       CTTTGACATC CTGTGTGGG TGAGGGACAC CGTGGACCCA GTCCAGGACG AGATGCTGGC
                                                                            2100
       CCGCTTCGTG GTGGGCAGCC ACGTCAGACA CCACCCCAGC AACAAGGAGG AGGAGGGGCT
                                                                            2160
       GGCCAATGGC AGCGCTGCTG AGCCCGCCAT GCCCAACACG TATGGCGTGG AGCCCCTGCC
                                                                            2220
80
       CCAGGAGGTC CTGAAGAAGT ACATCATCTA CGCCAAGGAG AGGGTCCACC CGAAGCTCAA
                                                                            2280
       CCAGATGGAC CAGGACAAGG TGGCCAAGAT GTACAGTGAC CTGAGGAAAG AATCTATGGC
                                                                            2340
       GACAGGCAGC ATCCCCATTA CGGTGCGGCA CATCGAGTCC ATGATCCGCA TGGCGGAGGC
                                                                            2400
       CCACGCGCGC ATCCATCTGC GGGACTATGT GATCGAAGAC GACGTCAACA TGGCCATCCG
                                                                            2460
       CGTGATGCTG GAGAGCTTCA TAGACACACA GAAGTTCAGC GTCATGCGCA GCATGCGCAA
                                                                            2520
85
       GACTTTTGCC CGCTACCTTT CATTCCGGCG TGACAACAAT GAGCTGTTGC TCTTCATACT
                                                                            2580
       GAAGCAGTTA GTGGCAGAGC AGGTGACATA TCAGCGCAAC CGCTTTGGGG CCCAGCAGGA
                                                                            2640
       CACTATTGAG GTCCCTGAGA AGGACTTGGT GGATAAGGCT CGTCAGATCA ACATCCACAA
```

PCT/US02/12476

```
CCTCTCTGCA TTTTATGACA GTGAGCTCTT CAGGATGAAC AAGTTCAGCC ACGACCTGAA
       AAGGAAAATG ATCCTGCAGC AGTTCTGAGG CCCTATGCCA TCCATAAGGA TTCCTTGGGA
       TTCTGGTTTG GGGTGGTCAG TGCCCTCTGT GCTTTATGGA CACAAAACCA GAGCACTTGA
                                                                             2880
       TGAACTCGGG GTACTAGGGT CAGGGCTTAT AGCAGGATGT CTGGCTGCAC CTGGCATGAC
 5
       TGTTTGTTTC TCCAAGCCTG CTTTGTGCTT CTCACCTTTG GGTGGGATGC CTTGCCAGTG
                                                                             3000
       TGTCTTACTT GGTTGCTGAA CATCTTGCCA CCTCCGAGTG CTTTGTCTCC ACTCAGTACC
                                                                             3060
       TTGGATCAGA GCTGCTGAGT TCAGGATGCC TGCGTGTGGT TTAGGTGTTA GCCTTCTTAC
                                                                             3120
       ATGGATGTCA GGAGAGCTGC TGCCCTCTTG GCGTGAGTTG CGTATTCAGG CTGCTTTTGC
                                                                             3180
       TGCCTTTGGC CAGAGAGCTG GTTGAAGATG TTTGTAATCG TTTTCAGTCT CCTGCAGGTT
                                                                             3240
10
       TCTGTGCCCC TGTGGTGGAA GAGGGCACGA CAGTGCCAGC GCAGCGTTCT GGGCTCCTCA
                                                                             3300
       GTCGCAGGGG TGGGATGTGA GTCATGCGGA TTATCCACTC GCCACAGTTA TCAGCTGCCA
                                                                             3360
       TTGCTCCCTG TCTGTTTCCC CACTCTCTTA TTTGTGCATT CGGTTTGGTT TCTGTAGTTT
                                                                            3420
       ΤΑΑΤΤΤΤΤΑΑ ΤΑΛΑGTTGAA ΤΑΛΑΑΤΑΤΑΑ ΑΛΑΑΛΑΛΑΑ ΑΛΑΛΑΑ
15
       Seq ID NO: 329 Protein sequence:
       Protein Accession #: AAH17490.1
                                                     41
20
       MAESSESFTM ASSPAGRERG NDPLTSSPGE SSERTDALTS SPGEDLPPFE DESEGLLGTE
       GPLEEEEDGE ELIGDGMERD YRAIPELDAY EAEGLALDDE DVEELTASOR EAAERAMROR
       DREAGRGLGR MRRGLLYDSD EEDEERPARK RRQVERATED GEEDEEMIES IENLEDLKGH
                                                                              180
       SVREWVSMAG PRLEIHHRFK NFLRTHVDSH GHNVFKERIS DMCKENRESL VVNYEDLAAR
                                                                              240
       EHVLAYFLPE APAELLOIFD EAALEVVLAM YPKYDRITNH IHVRISHLPL VEELRSLROL
                                                                              300
25
       HLNOLIRTSG VVTSCTGVLP QLSMVKYNCN KCNFVLGPFC QSQNQEVKPG SCPECQSAGP
                                                                              360
       FEVNMEETIY QNYQRIRIQE SPGKVAAGRL PRSKDAILLA DLVDSCKPGD EIELTGIYHN
NYDGSLNTAN GFPVFATVIL ANHVAKKDNK VAVGELTDED VKMITSLSKD QQIGEKIFAS
                                                                              420
                                                                              480
       IAPSIYGHED IKRGLALALF GGEPKNPGGK HKVRGDINVL LCGDPGTAKS QFLKYIEKVS
                                                                              540
       SRAIFTTGQG ASAVGLTAYV QRHPVSREWT LEAGALVLAD RGVCLIDEFD KMNDQDRTSI
                                                                              600
30
       HEAMEQQSIS ISKAGIVTSL QARCTVIAAA NPIGGRYDPS LTFSENVDLT EPIISRFDIL
                                                                              660
       CVVRDTVDPV ODEMLARFVV GSHVRHHPSN KEEEGLANGS AAEPAMPNTY GVEPLPOEVL
                                                                              720
       KKYIIYAKER VHPKLNQMDQ DKVAKMYSDL RKESMATGSI PITVRHIESM IRMAEAHARI
                                                                              780
       HLRDYVIEDD VNMAIRVMLE SFIDTOKFSV MRSMRKTFAR YLSFRRDNNE LLLFILKOLV
                                                                              840
       AEQVTYQRNR FGAQQDTIEV PEKDLVDKAR QINIHNLSAF YDSELFRMNK FSHDLKRKMI
                                                                              900
35
       Seq ID NO: 330 DNA sequence
       Nucleic Acid Accession #: M17254
       Coding sequence: 257-1645
40
                  11
                              21
                                          31
                                                     41
                                                                 51
       GTCCGCGCGT GTCCGCGCCC GCGTGTGCCA GCGCGCGTGC CTTGGCCGTG CGCGCCGAGC
       CGGGTCGCAC TAACTCCCTC GGCGCCGACG GCGGCGCTAA CCTCTCGGTT ATTCCAGGAT
                                                                              120
45
       CTTTGGAGAC CCGAGGAAAG CCGTGTTGAC CAAAAGCAAG ACAAATGACT CACAGAGAAA
                                                                              180
       AAAGATGGCA GAACCAAGGG CAACTAAAGC CGTCAGGTTC TGAACAGCTG GTAGATGGGC
                                                                              240
       TGGCTTACTG AAGGACATGA TTCAGACTGT CCCGGACCCA GCAGCTCATA TCAAGGAAGC
CTTATCAGTT GTGAGTGAGG ACCAGTCGTT GTTTGAGTGT GCCTACGGAA CGCCACACCT
                                                                              300
                                                                              360
       GGCTAAGACA GAGATGACCG CGTCCTCCTC CAGCGACTAT GGACAGACTT CCAAGATGAG
CCCACGCGTC CCTCAGCAGG ATTGGCTGTC TCAACCCCCA GCCAGGGTCA CCATCAAAAT
                                                                              420
50
                                                                              480
       GGAATGTAAC CCTAGCCAGG TGAATGGCTC AAGGAACTCT CCTGATGAAT GCAGTGTGGC
                                                                              540
       CAAAGGCGGG AAGATGGTGG GCAGCCCAGA CACCGTTGGG ATGAACTACG GCAGCTACAT
                                                                              600
       GGAGGAGAAG CACATGCCAC CCCCAAACAT GACCACGAAC GAGCGCAGAG TTATCGTGCC
                                                                              660
       AGCAGATCCT ACGCTATGGA GTACAGACCA TGTGCGGCAG TGGCTGGAGT GGGCGGTGAA
                                                                              720
55
       AGAATATGGC CTTCCAGACG TCAACATCTT GTTATTCCAG AACATCGATG GGAAGGAACT
                                                                              780
       GTGCAAGATG ACCAAGGACG ACTTCCAGAG GCTCACCCCC AGCTACAACG CCGACATCCT
                                                                              840
       TCTCTCACAT CTCCACTACC TCAGAGAGAC TCCTCTTCCA CATTTGACTT CAGATGATGT
                                                                              900
       TGATAAAGCC TTACAAAACT CTCCACGGTT AATGCATGCT AGAAACACAG ATTTACCATA
                                                                              960
       TGAGCCCCCC AGGAGATCAG CCTGGACCGG TCACGGCCAC CCCACGCCCC AGTCGAAAGC
                                                                             1020
60
       TGCTCAACCA TCTCCTTCCA CAGTGCCCAA AACTGAAGAC CAGCGTCCTC AGTTAGATCC
                                                                             1080
       TTATCAGATT CTTGGACCAA CAAGTAGCCG CCTTGCAAAT CCAGGCAGTG GCCAGATCCA
                                                                             1140
       GCTTTGGCAG TTCCTCCTGG AGCTCCTGTC GGACAGCTCC AACTCCAGCT GCATCACCTG
                                                                             1200
       GGAAGGCACC AACGGGGAGT TCAAGATGAC GGATCCCGAC GAGGTGGCCC GGCGCTGGGG
                                                                             1260
       AGAGCGGAAG AGCAAACCCA ACATGAACTA CGATAAGCTC AGCCGCGCCC TCCGTTACTA
                                                                             1320
65
       CTATGACAAG AACATCATGA CCAAGGTCCA TGGGAAGCGC TACGCCTACA AGTTCGACTT
                                                                             1380
       CCACGGGATC GCCCAGGCCC TCCAGCCCCA CCCCCGGAG TCATCTCTGT ACAAGTACCC
                                                                             1440
       CTCAGACCTC CCGTACATGG GCTCCTATCA CGCCCACCCA CAGAAGATGA ACTTTGTGGC
                                                                             1500
       GCCCCACCCT CCAGCCCTCC CCGTGACATC TTCCAGTTTT TTTGCTGCCC CAAACCCATA
                                                                             1560
       CTGGAATTCA CCAACTGGGG GTATATACCC CAACACTAGG CTCCCCACCA GCCATATGCC
                                                                             1620
70
       TTCTCATCTG GGCACTTACT ACTAAAGACC TGGCGGAGGC TTTTCCCATC AGCGTGCATT
                                                                             1680
       CACCAGCCCA TCGCCACAAA CTCTATCGGA GAACATGAAT CAAAAGTGCC TCAAGAGGAA
       TGAAAAAAGC TTTACTGGGG CTGGGGAAGG AAGCCGGGGA AGAGATCCAA AGACTCTTGG
       GAGGGAGTTA CTGAAGTCTT ACTACAGAAA TGAGGAGGAT GCTAAAAATG TCACGAATAT
       GGACATATCA TCTGTGGACT GACCTTGTAA AAGACAGTGT ATGTAGAAGC ATGAAGTCTT
                                                                             1920
75
       AAGGACAAAG TGCCAAAGAA AGTGGTCTTA AGAAATGTAT AAACTTTAGA GTAGAGTTTG
                                                                             1980
       AATCCCACTA ATGCAAACTG GGATGAAACT AAAGCAATAG AAACAACACA GTTTTGACCT
                                                                             2040
       AACATACCGT TTATAATGCC ATTTTAAGGA AAACTACCTG TATTTAAAAA TAGTTTCATA
                                                                             2100
       TCAAAAACAA GAGAAAAGAC ACGAGAGAGA CTGTGGCCCA TCAACAGACG TTGATATGCA
                                                                            2160
       ACTGCATGGC ATGTGCTGTT TTGGTTGAAA TCAAATACAT TCCGTTTGAT GGACAGCTGT
                                                                             2220
80
       CAGCTTTCTC AAACTGTGAA GATGACCCAA AGTTTCCAAC TCCTTTACAG TATTACCGGG
                                                                             2280
       ACTATGAACT AAAAGGTGGG ACTGAGGATG TGTATAGAGT GAGCGTGTGA TTGTAGACAG
                                                                             2340
       AGGGGTGAAG AAGGAGGAGG AAGAGGCAGA GAAGGAGGAG ACCAGGCTGG GAAAGAAACT
                                                                             2400
       TCTCAAGCAA TGAAGACTGG ACTCAGGACA TTTGGGGACT GTGTACAATG AGTTATGGAG
                                                                             2460
       ACTCGAGGGT TCATGCAGTC AGTGTTATAC CAAACCCAGT GTTAGGAGAA AGGACACAGC
                                                                             2520
85
       GTAATGGAGA AAGGGAAGTA GTAGAATTCA GAAACAAAAA TGCGCATCTC TTTCTTTGTT
                                                                             2580
       TGTCAAATGA AAATTTTAAC TGGAATTGTC TGATATTTAA GAGAAACATT CAGGACCTCA
                                                                             2640
       TCATTATGTG GGGGCTTTGT TCTCCACAGG GTCAGGTAAG AGATGGCCTT CTTGGCTGCC 2700
```

		ATCACGCAGG	CATTTTGGGT	AGGCGGCCTC	CAGTTTTCCT	TTGAGTCGCG	2760		
	AACGCTGTGC	GTTTGTCAGA	ATGAAGTATA	CAAGTCAATG	TTTTTCCCCC	TTTTTATATA	2820		
	TATATTATAT	AACTTATGCA	TTTATACACT	ACGAGTTGAT	CTCGGCCAGC	CAAAGACACA	2880		
5	CGACAAAAGA	GACAATCGAT	ATAATGTGGC	CTTGAATTTT	AACTCTGTAT	GCTTAATGTT	2940		
5	TACAATATGA	AGTTATTAGT AATCAGATTT	TCTTAGAATG	CTGCATTTGC	ACTITUTE	GTGACTAAAG	3000 3060		
	TTGCTTAATG	AAAACATGTG	CTGAATGTTG	TGGATTTTGT	GTTATAATTT	ACTITGTCCA	3120		
	GGAACTTGTG	CAAGGGAGAG	CCAAGGAAAT	AGGATGTTTG	GCACCC				
10									
10	-	331 Protein	_						
	Protein Accession #: AAA52398								
	1	11	21	31	41	51.			
1.5	1	1	1	l	l	l			
15	MIQTVPDPAA	HIKEALSVVS	EDQSLFECAY	GTPHLAKTEM	TASSSSDYGQ	TSKMSPRVPQ	60		
	DDDWMMAND	VTIKMECNPS RVIVPADPTL	QVNGSKNSPD WSTDHVDOWI.	EWAVKEYGLP	DVNILLFONI	DGKELCKMTK	120 180		
						TDLPYEPPRR	240		
00	SAWTGHGHPT	PQSKAAQPSP	STVPKTEDQR	PQLDPYQILG	PTSSRLANPG	SGQIQLWQFL	300		
20						ALRYYYDKNI	360		
		YKFDFHGIAQ APNPYWNSPT				MNFVAPHPPA	420 462		
	DEVISSOREA	APNFINNSEI	GGIIFNIKEF	131111111111111111111111111111111111111	••		402		
0.5	Seq ID NO:	332 DNA sec	quence						
25		id Accession	_	20					
	Coding sequ	ience: 283-	1794						
	1	1i .	21	31	41	51	•		
••	Ī	ī -	Ĩ	Ī	Ī	Ī			
30		TTATTAGGAG					60		
		TTGCTCCAGC					120		
		CTCCCCGGCT					180 240		
		CCCGCCACCC					300		
35		TTCTGATGCT					360		
		CGCTGGTGAC					420		
		GGTGCACAGT GGAACTTGCA					480 540		
		GCGACAGCCA					600		
40	CAACCTCCTT	CGGAGCAGCC	GGGAACAGAT	GGCCAGCTGG	CCCTGATCCT	GGGCCCCGTG	660		
		TGGCCCTGGT					720		
		AGCGTGGCCT GCGACACGAT					780 840		
		TCCCCTTCCT					900		
45	TGTGTGGGAA	AAGGCCGCTA	TGGCGAAGTG	TGGCGGGGCT	TGTGGCACGG	TGAGAGTGTG	960		
		TCTTCTCCTC					1020		
		TGCTCAGACA GCACGCAGCT					1080 1140		
		AGAGACAGAC					1200		
50		TGGCGCACCT					1260		
		ACTTCAAGAG					1320		
		GCCTGGCTGT TGGGCACCAA					1380 1440		
		TTGAGTCCTA					1500		
55	GAGATTGCCC	GCCGGACCAT	CGTGAATGGC	ATCGTGGAGG	ACTATAGACC	ACCCTTCTAT	1560		
						TGTGGATCAG	1620		
						CCTAGCTCAG GCGGATCAAG	1680 1740		
						ATAGCCCAGG	1800		
60	AGCACCTGAT	TCCTTTCTGC	CTGCAGGGGG	CTGGGGGGGT	GGGGGGCAGT	GGATGGTGCC	1860		
		AGAGGTAGTG					1920		
						ATCCCCTGCT CCCCTATGGC	1980 2040		
		CACCCCCTAC					2100		
65						TTGCCCCCTG	2160		
						CCTGTCCAGC AGAGCCAGGG	2220		
						GCTTTCTGTC	2280 2340		
=0						GGCCTGACTT	2400		
70						GGCCAGTGGA	2460		
						GGATATCGAG ACCCCGGATG	2520 2580		
						TTTTCCTTCT	2640		
		GACACGGAGT					2700		
75	CCAGCTCACC	GCAACGTCTA	CCTCCCAGGT	TCAAATCATT	CTCTTGCCTC	AGACTCCCGA	2760		
						TTAGTAGAAA	2820		
						TGTTCCACCT	2880 2940		
		TCTACATATT					3000		
80 ·	CTAGTTCTCT	GACACTTCAG	CCTATATCAC	AGCTAACTTC	YTCAGTCTCA	TCTATTCCTT	3060		
						TTACCTGACT	3120		
						TGCCTAAAAC AAGCCAGCCC	3180 3240		
						TTCCTCCAAG	3300		
85	GCTTCCAAGG	CTCAAAAGAA	ATTTGGCTCC	ATCCAAGAAG	GCTCCAGCTC	CCCTACTGGC			
						GGAGAATTCA	3420		
	ATGGGCTCTA	GAGAGACACA	CAGAAAGTTT	GGGCATTIGG	GAAATTTTCA	AGGRTGTATG	3480		

```
TATGGYTCAC GTATGGWGCA GGTTGTCCTG GTCCYKGGGT GCAGGGAAGT GGGCTGCAGG
                                                                           3540
       GAAGTGGATT GGAGGGAGC TTGAGGAATA TAAGGAGCGG GGGTGGAGAC TCAGGCTATG
                                                                           3600
       GACAAGGACA GCCCCAAGGT TGGGAAGACC TGGCCTTAGT CGTCCTCAGC CTAGGGCAGG
                                                                           3660
       GCAGTGAAGA AAGCTCTCCC CGCTCCTGCT GTAATGACCC AGAGTAGCCT CCCCAGGCCG
                                                                           3720
       GCATCTTATG TGTGTCTTCC ACCATCCTCA TGGTGGCACT TTTCTAGGCC TGTCTCCCAG
 5
                                                                           3780
       CATTGTGCAA GGCTCGGAAG AGAACCAGGA AGTGAAACTG GGTGAAAACA GAAAGCTCAA
                                                                           3840
       TGGATGGGCT AGGTTCCCAG ATCATTAGGG CAGAGTTTGC ACGTCCTCTG GTTCACTGGG
                                                                           3900
       AATCCACCCA GCCCACGAAT CATCTCCCTC TTTGAAGGAT TTTWATTTCT ACTGGGTTTT
                                                                           3960
       GGAACAAACT CCTGCTGAGA CCCCACAGCC AGAAACTGAA AGCAGCAGCT CCCCAAAGCC
                                                                            4020
10
       TGGAAAATCC CTAAGAGAAG GCCTGGGGGA MAGGAAKTGG AGTGACAGGG GACAGGTAGA
                                                                            4080
       GAGAAGGGGG CCCAATGGCC AGGGAGTGAA GGAGGTGGCG TTGCTGAGAG CAGTCTGCAC
                                                                            4140
       ATGCTTCTGT CTGAGTGCAG GAAGGTGTTC CAGGGTCGAA ATTACACTTC TCGTACCTGG
                                                                            4200
       AGACGCTGTT TGTGGGAGCA CTGGGCTCAT GCCTGGCACA CAATAGGTCT GCAATAAACC
       ATGGTTAAAT CCTGAAAAAA AAAAAAAA
15
       Seq ID NO: 333 Protein sequence
                                 NP_000011
       Protein Accession #:
20
                             21
                                                               51
                                         31
                                                    41
       MTLGSPRKGL LMLLMALVTQ GDPVKPSRGP LVTCTCESPH CKGPTCRGAW CTVVLVREEG
                                                                              60
       RHPOEHRGCG NLHRELCRGR PTEFVNHYCC DSHLCNHNVS LVLEATQPPS EQPGTDGQLA
                                                                            120
       LILGPVLALL ALVALGVLGL WHVRRRQEKQ RGLHSELGES SLILKASEQG DTMLGDLLDS
                                                                            180
25
       DCTTGSGSGL PFLVQRTVAR QVALVECVGK GRYGEVWRGL WHGESVAVKI FSSRDEQSWF
                                                                            240
       RETEIYNTVL LRHDNILGFI ASDMTSRNSS TQLWLITHYH EHGSLYDFLQ RQTLEPHLAL
                                                                            300
       RLAVSAACGL AHLHVEIFGT QGKPAIAHRD FKSRNVLVKS NLQCCIADLG LAVMHSQGSD
                                                                            360
       YLDIGNNPRV GTKRYMAPEV LDEOIRTDCF ESYKWTDIWA FGLVLWEIAR RTIVNGIVED
                                                                             420
       YRPPFYDVVP NDPSFEDMKK VVCVDQQTPT IPNRLAADPV LSGLAQMMRE CWYPNPSARL
                                                                             480
30
       TALRIKKTLQ KISNSPEKPK VIQ
       Seg ID NO: 334 DNA sequence
       Nucleic Acid Accession #: NM_004126.1
       Coding sequence: 108-329
35
                                                    41
                                                               51
                                        31
       GGCACGAGCT CGTGCCGGCC TTCAGTTGTT TCGGGACGCG CCGAGCTTCG CCGCTCTTCC
       AGCGGCTCCG CTGCCAGAGC TAGCCCGAGC CCGGTTCTGG GGCGAAAATG CCTGCCCTTC
                                                                             120
40
       ACATCGAAGA TTTGCCAGAG AAGGAAAAAC TGAAAATGGA AGTTGAGCAG CTTCGCAAAG
       AAGTGAAGTT GCAGAGACAA CAAGTGTCTA AATGTTCTGA AGAAATAAAG AACTATATTG
                                                                             240
       AAGAACGTTC TGGAGAGGAT CCTCTAGTAA AGGGAATTCC AGAAGACAAG AACCCCTTTA
       AAGAAAAGG CAGCTGTGTT ATTTCATAAA TAACTTGGGA GAAACTGCAT CCTAAGTGGA
                                                                             360
                                                                             420
       AGAACTAGTT TGTTTTAGTT TTCCCAGATA AAACCAACAT GCTTTTTAAG GAAGGAAGAA
45
       TGAAATTAAA AGGAGACTTT CTTAAGCACC ATATAGATAG GGTTATGTAT AAAAGCATAT
                                                                             480
       GTGCTACTCA TCTTTGCTCA CTATGCAGTC TTTTTTAAGA GAGCAGAGAG TATCAGATGT
                                                                             540
       ACAATTATGG AAATAAGAAC ATTACTTGAG CATGACACTT CTTTCAGTAT ATTGCTTGAT
                                                                             600
       GCTTCAAATA AAGTTTTGTC TT
50
       Seq ID NO: 335 Protein sequence
                                 NP_004117.1
       Protein Accession #:
55
       MPALHIEDLP EKEKLKMEVE QLRKEVKLQR QQVSKCSEEI KNYIEERSGE DPLVKGIPED
                                                                              60
       KNDEKEKGSC VIS
       Seq ID NO: 336 DNA sequence
60
       Nucleic Acid Accession #: NM_005795
       Coding sequence: 555-1940
                                                                51
                                         31
                              21
65
       GCACGAGGGA ACAACCTCTC TCTCTSCAGC AGAGAGTGTC ACCTCCTGCT TTAGGACCAT
       CAAGCTCTGC TAACTGAATC TCATCCTAAT TGCAGGATCA CATTGCAAAG CTTTCACTCT TTCCCACCTT GCTTGTGGGT AAATCTCTTC TGCGGAATCT CAGAAAGTAA AGTTCCATCC
       TGAGAATATT TCACAAAGAA TTTCCTTAAG AGCTGGACTG GGTCTTGACC CCTGGAATTT
                                                                             240
       AAGAAATTCT TAAAGACAAT GTCAAATATG ATCCAAGAGA AAATGTGATT TGAGTCTGGA
70
       GACAATTGTG CATATCGTCT AATAATAAAA ACCCATACTA GCCTATAGAA AACAATATTT
                                                                             360
       GAATAATAAA AACCCATACT AGCCTATAGA AAACAATATT TGAAAGATTG CTACCACTAA
                                                                             420
       AAAGAAAACT ACTACAACTT GACAAGACTG CTGCAAACTT CAATTGGTCA CCACAACTTG
                                                                             480
       ACAAGGTTGC TATAAAACAA GATTGCTACA ACTTCTAGTT TATGTTATAC AGCATATTTC
                                                                             540
                                                                             600
       ATTTGGGCTT AATGATGGAG AAAAAGTGTA CCCTGTATTT TCTGGTTCTC TTGCCTTTTT
75
       TTATGATTCT TGTTACAGCA GAATTAGAAG AGAGTCCTGA GGACTCAATT CAGTTGGGAG
                                                                             660
       TTACTAGAAA TAAAATCATG ACAGCTCAAT ATGAATGTTA CCAAAAGATT ATGCAAGACC
                                                                             720
       CCATTCAACA AGCAGAAGGC GTTTACTGCA ACAGAACCTG GGATGGATGG CTCTGCTGGA
                                                                             780
       ACGATGTTGC AGCAGGAACT GAATCAATGC AGCTCTGCCC TGATTACTTT CAGGACTTTG
                                                                             840
       ATCCATCAGA AAAAGTTACA AAGATCTGTG ACCAAGATGG AAACTGGTTT AGACATCCAG
                                                                             900
80
       CAAGCAACAG AACATGGACA AATTATACCC AGTGTAATGT TAACACCCAC GAGAAAGTGA
                                                                             960
       AGACTGCACT AAATTTGTTT TACCTGACCA TAATTGGACA CGGATTGTCT ATTGCATCAC
                                                                            1020
       TGCTTATCTC GCTTGGCATA TTCTTTTATT TCAAGAGCCT AAGTTGCCAA AGGATTACCT
                                                                            1080
       TACACAAAAA TCTGTTCTTC TCATTTGTTT GTAACTCTGT TGTAACAATC ATTCACCTCA
                                                                            1140
                                                                            1200
       CTGCAGTGGC CAACAACCAG GCCTTAGTAG CCACAAATCC TGTTAGTTGC AAAGTGTCCC
85
       AGTTCATTCA TCTTTACCTG ATGGGCTGTA ATTACTTTTG GATGCTCTGT GAAGGCATTT
                                                                            1260
       ACCTACACAC ACTCATTGTG GTGGCCGTGT TTGCAGAGAA GCAACATTTA ATGTGGTATT
                                                                            1320
       ATTTTCTTGG CTGGGGATTT CCACTGATTC CTGCTTGTAT ACATGCCATT GCTAGAAGCT
                                                                           1380
```

TACGAGGGCT CCGAGTCCAT AGCCGAGTCC CTCAGCTCCC TGGGCACCGA CTCATCCGAC

2280

PCT/US02/12476

```
TCTGACGTGG ATTACGACTT CCTTAACGAC TGGGGGACCCA GGTTTAAGAT GCTGGCTGAG
                                                                           2340
       CTGTACGGCT CGGACCCCCG GGAGGAGCTG CTGTATTAGG CGGCCGAGGT CACTCTGGGC
                                                                            2400
       CTGGGGACCC AAACCCCCTG CAGCCCAGGC CAGTCAGACT CCAGGCACCA CAGCCTCCAA
                                                                            2460
       AAATGGCAGT GACTCCCCAG CCCAGCACCC CTTCCTCGTG GGTCCCAGAG ACCTCATCAG
                                                                            2520
       CCTTGGGATA GCAAACTCCA GGTTCCTGAA ATATCCAGGA ATATATGTCA GTGATGACTA
                                                                            2580
       TTCTCAAATG CTGGCAAATC CAGGCTGGTG TTCTGTCTGG GCTCAGACAT CCACATAACC
                                                                            2640
       CTGTCACCCA CAGACCGCCG TCTAACTCAA AGACTTCCTC TGGCTCCCCA AGGCTGCAAA
                                                                            2700
       GCAAAACAGA CTGTGTTTAA CTGCTGCAGG GTCTTTTTCT AGGGTCCCTG AACGCCCTGG
                                                                            2760
       TAAGGCTGGT GAGGTCCTGG TGCCTATCTG CCTGGAGGCA AAGGCCTGGA CAGCTTGACT
                                                                            2820
10
       TGTGGGGCAG GATTCTCTGC AGCCCATTCC CAAGGGAGAC TGACCATCAT GCCCTCTCTC
                                                                            2880
       GGGAGCCCTA GCCCTGCTCC AACTCCATAC TCCACTCCAA GTGCCCCACC ACTCCCCAAC
                                                                            2940
       CCCTCTCCAG GCCTGTCAAG AGGGAGGAAG GGGCCCCATG GCAGCTCCTG ACCTTGGGTC
       CTGAAGTGAC CTCACTGGCC TGCCATGCCA GTAACTGTGC TGTACTGAGC ACTGAACCAC
       ATTCAGGGAA ATGCTTATTA AACCTTGAAG CAACTGTGAA TTCATTCTGG AGGGGCAGTG
                                                                            3120
15
       GAGATCAGGA GTGACAGATC ACAGGGTGAG GGCCACCTCC ACACCCACCC CCTCTGGAGA
                                                                            3180
       AGGCCTGGAA GAGCTGAGAC CTTGCTTTGA GACTCCTCAG CACCCCTCCA GTTTTGCCTG
                                                                            3240
       AGAAGGGGCA GATGTTCCCG GAGATCAGAA GACGTCTCCC CTTCTCTGCC TCACCTGGTC
                                                                            3300
       GCCAATCCAT GCTCTCTTC TTTTCTCTGT CTACTCCTTA TCCCTTGGTT TAGAGGAACC
                                                                            3360
       CAAGATGTGG CCTTTAGCAA AACTGACAAT GTCCAAACCC ACTCATGACT GCATGACGGA
                                                                            3420
20
       GCCGAGCATG TGTCTTTACA CCTCGCTGTT GTCACATCTC AGGGAACTGA CCCTCAGGCA
                                                                            3480
       CACCTTGCAG AAGGAAGGCC CTGCCCTGCC CAACCTCTGT GGTCACCCAT GCATCATTCC
                                                                            3540
       ACTGGAACGT TTCACTGCAA ACACACCTTG GAGAAGTGGC ATCAGTCAAC AGAGAGGGGC
                                                                            3600
       AGGGAAGGA ACACCAAGCT CACCCTTCGT CATGGACCGA GGTTCCCACT CTGGCAAAGC
                                                                            3660
       CCCTCACACT GCAAGGGATT GTAGATAACA CTGACTTGTT TGTTTTAACC AATAACTAGC
                                                                            3720
25
       TTCTTATAAT GATTTTTTA CTAATGATAC TTACAAGTTT CTAGCTCTCA CAGACATATA
                                                                            3780
       GAATAAGGGT TTTTGCATAA TAAGCAGGTT GTTATTTAGG TTAACAATAT TAATTCAGGT
                                                                            3840
       TTTTTAGTTG GAAAACAAT TCCTGTAACC TTCTATTTTC TATAATTGTA GTAATTGCTC
                                                                            3900
       TACAGATAAT GTCTATATAT TGGCCAAACT GGTGCATGAC AAGTACTGTA TTTTTTTATA
       CCTAAATAAA GAAAAATCTT TAGCCTGGGC AACAAAAAA
30
       Seg ID NO: 339 Protein sequence
                                 NP_001786
       Protein Accession #:
                                                                51
                  11
                             21
                                         31
35
       MORLMMLLAT SGACLGLLAV AAVAAAGANP AQRDTHSLLP THRRQKRDWI WNOMHIDEEK
                                                                              60
      NTSLPHHVGK IKSSVSRKNA KYLLKGEYVG KVFRVDAETG DVFAIERLDR ENISEYHLTA
VIVDKDTGEN LETPSSFTIK VHDVNDNWPV FTHRLFNASV PESSAVGTSV ISVTAVDADD
                                                                             120
                                                                             180
       PTVGDHASVM YQILKGKEYF AIDNSGRIIT ITKSLDREKQ ARYEIVVEAR DAQGLRGDSG
                                                                             240
40
       TATVLVTLQD INDNFPFFTQ TKYTFVVPED TRVGTSVGSL FVEDPDEPQN RMTKYSILRG
                                                                             300
       DYQDAFTIET NPAHNEGIIK PMKPLDYEYI QQYSFIVEAT DPTIDLRYMS PPAGNRAQVI
                                                                             360
       INITOVDEPP IFQQPFYHFQ LKENQKKPLI GTVLAMDPDA ARHSIGYSIR RTSDKGQFFR
                                                                             420
       VTKKGDIYNE KELDREVYPW YNLTVEAKEL DSTGTPTGKE SIVQVHIEVL DENDNAPEFA
                                                                             480
       KPYQPKVCEN AVHGQLVLQI SAIDKDITPR NVKFKFTLNT ENNFTLTDNH DNTANITVKY
                                                                             540
45
       GQFDREHTKV HFLPVVISDN GMPSRTGTST LTVAVCKCNE QGEFTFCEDM AAQVGVSIQA
                                                                             600
       VVAILLCILT ITVITLLIFL RRRLRKQARA HGKSVPEIHE QLVTYDEEGG GEMDTTSYDV
                                                                             660
       SVLNSVRRGG AKPPRPALDA RPSLYAQVQK PPRHAPGAHG GPGEMAAMIE VKKDEADHDG
                                                                             720
       DGPPYDTLHI YGYEGSESIA ESLSSLGTDS SDSDVDYDFL NDWGPRFKML AELYGSDPRE
                                                                             780
50 ·
       Seq ID NO: 340 DNA sequence
       Nucleic Acid Accession #: NM_003088
       Coding sequence: 112-1593
55
                              21
                                         31
                                                     41
                  11
       GCGGAGGGTG CGTGCGGGCC GCGCAGCCG AACAAAGGAG CAGGGGCGCC GCCGCAGGGA
                                                                              60
       CCCGCCACCC ACCTCCCGGG GCCGCGCAGC GGCCTCTCGT CTACTGCCAC CATGACCGCC
                                                                             120
60
       AACGGCACAG CCGAGGCGGT GCAGATCCAG TTCGGCCTCA TCAACTGCGG CAACAAGTAC
                                                                             180
       CTGACGGCCG AGGCGTTCGG GTTCAAGGTG AACGCGTCCG CCAGCAGCCT GAAGAAGAAG
                                                                             240
       CAGATCTGGA CGCTGGAGCA GCCCCCTGAC GAGGCGGGCA GCGCGGCCGT GTGCCTGCGC
                                                                             300
       AGCCACCTGG GCCGCTACCT GGCGGCGGAC AAGGACGGCA ACGTGACCTG CGAGCGCGAG
                                                                             360
       GTGCCCGGTC CCGACTGCCG TTTCCTCATC GTGGCGCACG ACGACGGTCG CTGGTCGCTG CAGTCCGAGG CGCACCGGCG CTACTTCGGC GGCACCGAGG ACCGCCTGTC CTGCTTCGCG
                                                                             420
65
                                                                             480
       CAGACGGTGT CCCCCGCCGA GAAGTGGAGC GTGCACATCG CCATGCACCC TCAGGTCAAC
                                                                             540
       ATCTACAGTG TCACCCGTAA GCGCTACGCG CACCTGAGCG CGCGGCCGGC CGACGAGATC
                                                                             600
       GCCGTGGACC GCGACGTGCC CTGGGGCGTC GACTCGCTCA TCACCCTCGC CTTCCAGGAC
                                                                             660
       CAGCGCTACA GCGTGCAGAC CGCCGACCAC CGCTTCCTGC GCCACGACGG GCGCCTGGTG
                                                                             720
70
       GCGCGCCCCG AGCCGGCCAC TGGCTACACG CTGGAGTTCC GCTCCGGCAA GGTGGCCTTC
                                                                             780
       CGCGACTGCG AGGGCCGTTA CCTGGCGCCCG TCGGGGCCCCA GCGGCACGCT CAAGGCGGGC
                                                                             840
       AAGGCCACCA AGGTGGGCAA GGACGAGCTC TTTGCTCTGG AGCAGAGCTG CGCCCAGGTC
                                                                             900
       GTGCTGCAGG CGGCCAACGA GAGGAACGTG TCCACGCGCC AGGGTATGGA CCTGTCTGCC
                                                                             960
       AATCAGGACG AGGAGACCGA CCAGGAGACC TTCCAGCTGG AGATCGACCG CGACACCAAA
                                                                            1020
75
       AAGTGTGCCT TCCGTACCCA CACGGGCAAG TACTGGACGC TGACGGCCAC CGGGGGCGTG
                                                                            1080
       CAGTCCACCG CCTCCAGCAA GAATGCCAGC TGCTACTTTG ACATCGAGTG GCGTGACCGG
                                                                            1140
       CGCATCACAC TGAGGGCGTC CAATGGCAAG TTTGTGACCT CCAAGAAGAA TGGGCAGCTG
                                                                            1200
       GCCGCCTCGG TGGAGACAGC AGGGGACTCA GAGCTCTTCC TCATGAAGCT CATCAACCGC
                                                                            1260
       CCCATCATCG TGTTCCGCGG GGAGCATGGC TTCATCGGCT GCCGCAAGGT CACGGGCACC
                                                                            1320
80
       CTGGACGCCA ACCGCTCCAG CTATGACGTC TTCCAGCTGG AGTTCAACGA TGGCGCCTAC
                                                                            1380
       AACATCAAAG ACTCCACAGG CAAATACTGG ACGGTGGGCA GTGACTCCGC GGTCACCAGC
                                                                            1440
       AGCGGCGACA CTCCTGTGGA CTTCTTCTTC GAGTTCTGCG ACTATAACAA GGTGGCCATC
                                                                            1500
       AAGGTGGGCG GGCGCTACCT GAAGGGCGAC CACGCAGGCG TCCTGAAGGC CTCGGCGGAA
                                                                            1560
       ACCGTGGACC CCGCCTCGCT CTGGGAGTAC TAGGGCCGGC CCGTCCTTCC CCGCCCCTGC
85
       CCACATGGCG GCTCCTGCCA ACCCTCCCTG CTAACCCCTT CTCCGCCAGG TGGGCTCCAG
                                                                            1680
       GGCGGGAGGC AAGCCCCCTT GCCTTTCAAA CTGGAAACCC CAGAGAAAAC GGTGCCCCCA
                                                                            1740
       CCTGTCGCCC CTATGGACTC CCCACTCTCC CCTCCGCCCG GGTTCCCTAC TCCCCTCGGG
                                                                           1800
```

```
TCAGCGGCTG CGGCCTGGCC CTGGGAGGGA TTTCAGATGC CCCTGCCCTC TTGTCTGCCA
      CGGGGCGAGT CTGGCACCTC TTTCTTCTGA CCTCAGACGG CTCTGAGCCT TATTTCTCTG
       TTTGCCTCTC CCAGCCACCT CCTCCCAGCC CCCCAGGAGA GCTGGGCACA TGTCCCAAGC
 5
       CTGTCAGTGG CCCTCCCTGG TGCACTGTCC CCGAAACCCC TGCTTGGGAA GGGAAGCTGT
                                                                        2100
       CGGGAGGGCT AGGACTGACC CTTGTGGTGT TTTTTTGGGT GGTGGCTGGA AACAGCCCCT
       CTCCCACGTG GGAGAGGCTC AGCCTGGCTC CCTTCCCTGG AGCGGCAGGG CGTGACGGCC
                                                                        2220
       ACAGGGTCTG CCCGCTGCAC GTTCTGCCAA GGTGGTGGTG GCGGGCGGGT AGGGGTGTGG
       GGGCCGTCTT CCTCCTGTCT CTTTCCTTTC ACCCTAGCCT GACTGGAAGC AGAAAATGAC
                                                                        2340
10
       CAAATCAGTA TTTTTTTAA TGAAATATTA TTGCTGGAGG CGTCCCAGGC AAGCCTGGCT
                                                                        2400
       GTAGTAGCGA GTGATCTGGC GGGGGGCGTC TCAGCACCCT CCCCAGGGGG TGCATCTCAG
                                                                        2460
       CCCCCTCTTT CCGTCCTTCC CGTCCAGCCC CAGCCCTGGG CCTGGGCTGC CGACACCTGG
                                                                        2520
       GCCAGAGCCC CTGCTGTGAT TGGTGCTCCC TGGGCCTCCC GGGTGGATGA AGCCAGGCGT
                                                                        2580
       CGCCCCTCC GGGAGCCCTG GGGTGAGCCG CCGGGGCCCC CCTGCTGCCA GCCTCCCCCG
                                                                        2640
15
       TCCCCAACAT GCATCTCACT CTGGGTGTCT TGGTCTTTTA TTTTTTGTAA GTGTCATTTG
                                                                        2700
       TATAACTCTA AACGCCCATG ATAGTAGCTT CAAACTGGAA ATAGCGAAAT AAAATAACTC
                                                                        2760
       AGTCTGC
       Seq ID NO: 341 Protein sequence
20
                               NP 003079
       Protein Accession #:
                 11
                            21
       MTANGTAEAV QIQFGLINCG NKYLTAEAFG FKVNASASSL KKKQIWTLEQ PPDEAGSAAV
                                                                           60
25
       CLRSHLGRYL AADKDGNVTC EREVPGPDCR FLIVAHDDGR WSLQSEAHRR YFGGTEDRLS
                                                                         120
       CFAQTVSPAE KWSVHIAMHP QVNIYSVTRK RYAHLSARPA DEIAVDRDVP WGVDSLITLA
                                                                         180
       FODORYSVOT ADHRFLRHDG RLVARPEPAT GYTLEFRSGK VAFRDCEGRY LAPSGPSGTL
                                                                         240
       KAGKATKVGK DELFALEQSC AQVVLQAANE RNVSTRQGMD LSANQDEETD QETFQLEIDR
                                                                         300
       DTKKCAFRTH TGKYWTLTAT GGVQSTASSK NASCYFDIEW RDRRITLRAS NGKFVTSKKN
                                                                         360
30
       GOLAASVETA GDSELFLMKL INRPIIVFRG EHGFIGCRKV TGTLDANRSS YDVFQLEFND
                                                                         420
       GAYNIKDSTG KYWTVGSDSA VTSSGDTPVD FFFEFCDYNK VAIKVGGRYL KGDHAGVLKA
                                                                         480
       SAETVDPASL WEY
35
       Seg ID NO: 342 DNA sequence
       Nucleic Acid Accession #: FGENESH predicted
       Coding sequence:660..1705
                                                  41
                                       31
40
       CGCTCCGCAC ACATTCCTG TCGCGGCCTA AGGGAAACTG TTGGCCGCTG GGCCCGCGGG
                                                                           60
       GGGATTCTTG GCAGTTGGGG GGTCCGTCGG GAGCGAGGGC GGAGGGGAAG GGAGGGGGAA
                                                                          120
       COGGGTTGGG GAAGCCAGCT GTAGAGGGCG GTGACCGCGC TCCAGACACA GCTCTGCGTC
                                                                          180
       CTCGAGCGGG ACAGATCCAA GTTGGGAGCA GCTCTGCGTG CGGGGCCTCA GAGAATGAGG
                                                                          240
       45
                                                                          300
       CACCCCACTG CCGACCGTGC TGGCTGCTCG GCCTCGGGGG CCTGCTACAG CCTGCACCAC
                                                                          360
       GCTACCATGA AGCGGCAGGC GGCCGAGGAG GCCTGCATCC TGCGAGGTGG GGCGCTCAGC
                                                                          420
       ACCGTGCGTG CGGGCGCCGA GCTGCGCGCT GTGCTCGCGC TCCTGCGGGC AGGCCCAGGG
                                                                          480
       CCCGGAGGGG GCTCCAAAGA CCTGCTGTTC TGGGTCGCAC TGGAGCGCAG GCGTTCCCAC
                                                                          540
50
       TGCACCCTGG AGAACGAGCC TTTGCGGGGT TTCTCCTGGC TGTCCTCCGA CCCCGGCGGT
                                                                          600
       CTCGAAAGCG ACACGCTGCA GTGGGTGGAG GAGCCCCAAC GCTCCTGCAC CGCGCGGAGA
                                                                          660
       TGCGCGGTAC TCCAGGCCAC CGGTGGGGTC GAGCCCGCAG CTGGAAGGAG ATGCGATGCC
                                                                          720
       ACCTGCGCGC CAACGGCTAC CTGTGCAAGT ACCAGTTTGA GGTCTTGTGT CCTGCGCCGC
                                                                          780
       GCCCGGGGC CGCCTCTAAC TTGAGCTATC GCGCGCCCTT CCAGCTGCAC AGCGCCGCTC
                                                                          840
55
       TGGACTTCAG TCCACCTGGG ACCGAGGTGA GTGCGCTCTG CCGGGGACAG CTCCCGATCT
                                                                          900
       CAGTTACTTG CATCGCGGAC GAAATCGGCG CTCGCTGGGA CAAACTCTCG GGCGATGTGT
                                                                          960
       TGTGTCCCTG CCCCGGGAGG TACCTCCGTG CTGGCAAATG CGCAGAGCTC CCTAACTGCC
                                                                         1020
       TAGACGACTT GGGAGGCTTT GCCTGCGAAT GTGCTACGGG CTTCGAGCTG GGGAAGGACG
                                                                         1080
       GCCGCTCTTG TGTGACCAGT GGGGAAGGAC AGCCGACCCT TGGGGGGACC GGGGTGCCCA
                                                                         1140
60
       CCAGGCGCCC GCCGGCCACT GCAACCAGCC CCGTGCCGCA GAGAACATGG CCAATCAGGG
                                                                         1200
       TCGACGAGAA GCTGGGAGAG ACACCACTTG TCCCTGAACA AGACAATTCA GTAACATCTA
                                                                         1260
       TTCCTGAGAT TCCTCGATGG GGATCACAGA GCACGATGTC TACCCTTCAA ATGTCCCTTC
                                                                         1320
       AAGCCGAGTC AAAGGCCACT ATCACCCCAT CAGGGAGCGT GATTTCCAAG TTTAATTCTA
       CGACTTCCTC TGCCACTCCT CAGGCTTTCG ACTCCTCCTC TGCCGTGGTC TTCATATTTG
65
       TGAGCACAGC AGTAGTAGTG TTGGTGATCT TGACCATGAC AGTACTGGGG CTTGTCAAGC
                                                                         1500
       TCTGCTTTCA CGAAAGCCCC TCTTCCCAGC CAAGGAAGGA GTCTATGGGC CCGCCGGGCC
                                                                         1560
       TGGAGAGTGA TCCTGAGCCC GCTGCTTTGG GCTCCAGTTC TGCACATTGC ACAAACAATG
       GGGTGAAAGT CGGGGACTGT GATCTGCGGG ACAGAGCAGA GGGTGCCTTG CTGGCGGAGT
       CCCCTCTTGG CTCTAGTGAT GCATAG
70
       Seq ID NO: 343 Protein sequence
       Protein Accession #: FGENESH predicted
                             21
                                                  41
75
       MGKDFMTKTP KAFATKAKID KWDLIKLKSF CTAKETIIRV NSQPTDWQKT FAIYPSDKGV
                                                                           60
       IARIYKELEQ IYKKKKPTKT LRTHFLSRPK GNCWPLGPRG DSWQLGGPSG ARAEGKGGGT
                                                                          120
       GLGKPAVEGG DRAPDTALRP RAGQIQVGSS SACGASENEA GVRPVPPLAG ALARAGRRRT
                                                                          180
       PHCRPCWLLG LGGLLQPAPR YHEAAGGRGG LHPARWGAQH RACGRRAARC ARAPAGRPRA
                                                                          240
80
       RRGLORPAVL GRTGAOAFPL HPGERAFAGF LLAVLRPRRS RKRHAAVGGG APTLLHRAEM
                                                                          300
       RGTPGHRWGR ARSWKEMRCH LRANGYLCKY QFEVLCPAPR PGAASNLSYR APFQLHSAAL
                                                                          360
       DFSPPGTEVS ALCRGQLPIS VTCIADEIGA RWDKLSGDVL CPCPGRYLRA GKCAELPNCL
                                                                          420
       DDLGGFACEC ATGFELGKDG RSCVTSGEGQ PTLGGTGVPT RRPPATATSP VPQRTWPIRV
                                                                          480
       DEKLGETPLV PEQDNSVTSI PEIPRWGSQS TMSTLQMSLQ AESKATITPS GSVISKFNST
                                                                          540
85
       TSSATPOAFD SSSAVVFIFV STAVVVLVIL TMTVLGLVKL CFHESPSSQP RKESMGPPGL
                                                                          600
       ESDPEPAALG SSSAHCTNNG VKVGDCDLRD RAEGALLAES PLGSSDA
```

Seq ID NO: 344 DNA sequence Nucleic Acid Accession #: NM_012072 Coding sequence: 149-2107

5	Coding sequ	ence: 149-2	107				
,	1 .	11	21	31	41	51	
	ì	1	1	ì	1	1	
	AAAGCCCTCA	GCCTTTGTGT	CCTTCTCTGC	GCCGGAGTGG	CTGCAGCTCA	CCCCTCAGCT	60
_	CCCCTTGGGG	CCCAGCTGGG	AGCCGAGATA	GAAGCTCCTG	TCGCCGCTGG	GCTTCTCGCC	120
.0	TCCCGCAGAG	GGCCACACAG CTGACCCAGC	AGACCGGGAT	GGCCACCTCC	ATGGGCCTGC	CCCTCCTCTC	180 240
	GCTGCTGCTC	GCCTGCTACA	CCGGGGGGGGG	CCCCNACCTC	ACCCCTCCCG	ACCUCACAA	300
	CGTGGGGACC	CAGAACGGGG	CCAACCCCACIC	CACTGTGAAG	AGCAAGGAGG	AGGCCCAGCA	360
	CCACTGCAAC	GTACTGGCCC	ACCTCCTGAG	GCGGGAGGCA	GCCCTGACGG	CGAGGATGAG	420
.5	CAACTTCTCC	ATTGGGCTCC	AGCGAGAGAA	GGGCAAGTGC	CTGGACCCTA	GTCTGCCGCT	480
	CAACCCCTTC	ACCTCCCTCC	GCGGGGGGGA	GGACACGCCT	TACTCTAACT	GGCACAAGGA	540
	COTOCCANO	TOTTOTATOT	CCAAGCGCTG	TGTGTCTCTG	CTGCTGGACC	TGTCCCAGCC	600
	COTOTTOC	AACCCCCTCC	CCAAGTGGTC	TGAGGGCCCC	TGTGGGAGCC	CAGGCTCCCC	660
	CCCDACTABC	ATTCAGGGGCT	TCGTGTGCAA	GTTCAGCTTC	AAAGGCATGT	GCCGGCCTCT	720
30	GGCCCTGGGG	GGCCCAGGTC	AGGTGACCTA	CACCACCCC	TTCCAGACCA	CCAGTTCCTC	780
	CTTGGAGGCT	GTGCCCTTTG	CCTCTGCGGC	CAATGTAGCC	TGTGGGGAAG	TCACAAGGA	840 900
	CGAGACTCAG	AGTCATTATT CCCCTCTGTG	TCCTGTGCAA	CTATCCCTCC	ADCTTCABA	ATGGGGGGCTG	960
	CAGCTCGGGC	TGCTTTGAAG	CCCCCCAA	CTCCTTCCTC	TGCGGCTGCC	GACCAGGATT	1020
25	CCCCCTCCTC	CATCACCTCC	TGACCTGTGC	CTCTCGAAAC	CCTTGCAGCT	CCAGCCCATG	1080
23	#CC#CCCCCC	CCCACCTCCC	TCCTGGGACC	CCATGGGAAA	AACTACACGT	GCCGCTGCCC	1140
	CONNECCTAC	CACCTCCACT	CCAGTCAGCT	GGACTGTGTG	GACGTGGATG	AATGCCAGGA	1200
•	CTCCCCCCCC	GCCCAGGAGT	GTGTCAACAC	CCCTGGGGGC	TTCCGCTGCG	AATGCTGGGT	1260
	TOCOTATGAG	CCGGGCGGTC	CTGGAGAGGG	GGCCTGTCAG	GATGTGGATG	AGTGTGCTCT	1320
30	GGGTCGCTCG	CCTTGCGCCC	AGGGCTGCAC	CAACACAGAT	GGCTCATTTC	ACTGCTCCTG	1380 1440
	TGAGGAGGGC	TACGTCCTGG	CCGGGGAGGA	CGGGACTCAG	AACACACAAG	TGGATGAGTG GGTCCTTCCA	1500
	TGTGGGCCCG	GGGGGCCCCC	CCCTCCTCCC	CCCADATEGG	GTCTCTTGCA	CCATGGGGCC	1560
	CTGTGGCTGC	CIGCCAGGCI	CTCCCCCCC	CGATGAGGAG	GACAAAGGAG	AGAAAGAAGG	1620
35	CACCACCGTG	CCCCCCCCCC	CAACAGCCAG	TCCCACAAGG	GGCCCCGAGG	GCACCCCCAA	1680
),	CCCTACACCC	ACCACAAGTA	CACCTTCGCT	GTCATCTGAC	GCCCCCATCA	CATCTGCCCC	1740
	A CTTCA ACATO	CTCCCCCCC	GTGGGTCCTC	AGGCGTCTGG	AGGGAGCCCA	GCATCCATCA	1800
	CCCCA CAGCT	CCCTCTCCCC	CCCAGGAGCC	TGCAGGTGGG	GACTCCTCCG	TGGCCACACA	1860
40	AAACAACGAT	GGCACTGACG	GGCAAAAGCT	GCTTTTATTC	TACATCCTAG	GCACCGTGGT	1920 1980
40	GGCCATCCTA	CTCCTGCTGG	CCCTGGCTCT	GGGGCTACTG	GTCTATCGCA	AGCGGAGAGC ACTCCTGGGT	2040
	GAAGAGGGAG	GAGAAGAAGG	CCCCCATGGA	CAGAAIGCG	AGTCCGACAC	CTGGGACAGA	2100
	TCCAGAGCGA	TGAGAGCA	CTAGAGACAC	TAGAGTCACC	AGCCACCATC	CTCAGAGCTT	2160
	ተርኔ አ ርተርርርር	ATTCCAAAGG	GGCACCCACA	TTTTTTTGAA	AGACTGGACT	GGAATCTTAG	2220
45	CAAACAAMTC	ידא א בידי בידי בידי	CCTTABAGGC	CCCTTGGAAC	ATGCAGGTAT	TTTCTACGGG	2280
	ጥርምምምርልጥርም	TCCTGAAGTG	GAAGCTGTGT	GTTGGCGTGC	CACGGTGGGG	ATTTCGTGAC	2340
	ተርተን ተል አተር አ	サイド・ファイン ス・ナー・ファイン	CCCTCCCTTT	TCAAATTCCA	ATGTGACCAA	TTCCGGATCA	2400
	GGGTGTGAGG	AGGCTGGGGC	TAAGGGGCTC	CCCTGAATAT	CTTCTCTGC1	CACTTCCACC	2460 2520
50	ATCTAAGAGG	AAAAGGTGAG	TTGCTCATGC	TGATTAGGAT	TGAAATGATI	TGTTTCTCTT GGTTTTTTGG	2580
50	CCTAGGATGA	AAACTAAATC	AATTAATTAT	TCAATTAGGI TOTOTOTOTO	гэтлолдолдаг Гээтгаээтт	CCATTTCGCC	2640
	TCAAAGGGAA	CAIGIICGGA	TCATACTCT	GACATCCTCC	AGAATGGCCA	GAAGTGCAAT	2700
	ጥል ል ርርጥርጥተል	GGTGGCAAGG	AGGCAGGAAG	TGCCTCTTTA	GTTCTTACAI	TTCTAATAGC	2760
	CTTCCCTTTT	TTTCCADAGG	AAGCTTGAAA	AATATGAGAA	AAGTTGCTTG	AAGTGCATTA	2820
55	САССТСТТТС	TGAAGTCACA	TAATCTACGG	GGCTAGGGCG	AGAGAGGCCA	GGGATTTGTT	2880
	СУСУСУТАСТ	דד ב בדד ב ברד י	CATCCAAATG	TACTGAGGTT	ACCACACACI	TGACTACGGA	2940
	TGTGATCAAC	ACTAACAAGG	AAACAAATTC	AAGGACAACC	TGTCTTTGAG	CCAGGGCAGG	3000 3060
	CCTCAGACAC	CCTGCCTGTG	GCCCCGCCTC	CACTICATCO	COTOTOTO	GCCAGTGCTC AAAGGATGTG	3120
60	CGAGCTCAGA	CAGAGGAAGC	CUTGUAGAAA	ACTICCATON TO	TTAAAGCATI	TTAGCACAGT	3180
UU	TGAACGGGAG	CACTTGATGC	CIGITITOR	GATTTTAAAT	CCTGAAGTGT	GGTGGCGCA	
	CACACCAACT	* ACCCACCTAC	TCAGGCAGTI	· TGCTTAAGG	ACTITITITI	: TCTGTCTCTT	3300
	ጥጥርርጥጥልልል፤		GCACGGAAGC	AAGAGGGAAA	GAGATGACTA	ACTAAAATCA	3360
	ጥጥጥጥልሮልርር	BAAAACTCCT	CARAGCCATI	' TAAATTATA]	CCTCATTTI	AAAGTTACAT	3420
65	TTGCAAATAT	TTCTCCCTAT	GATAATGCAG	TCGATAGTG	GCACTCTTTC	TCTCTCTCTC	3480 3540
	TCTCTCTCAC	ACACACACAC	ACACACACAC	CACACACACA	CAGAGACACGC	CACCATTCTG	3600
	CCTGGGGCA	TGGAACACAT	TCCTGGGGGT	CACCGATGG	TACCACCAC	AGAAGTTACC GTGCAGGAGA	3660
	TGAGTATCTC	CANATETET	TOCOTOON	CIGGGCIII:	CTCAGAGAA	GGGTGTTTCT	3720
70	CCTTTTTCCC	TAGCAATGC	TOGGTCTCTC	AGGTGACAC	r ctggagtgg:	TGAAGGGCCA	3780
, ,	ር አ አርርጥር ር አር	TATE ATTENT	CTTGCCAGT	' TTGAAATAT	A GATGCTATG	TTCAGATIGT	3840
	ጥኮጥጥልልጥልር፤	DAAATTAAAG	GGCAGGGGA	a gtgaaaggai	A AGATGGAGG	r Trigigogge	3900
	TOGATGGGG	TATTTGGAAC	r TCTTTTTAA	GTCATCTCA	r GGTCTCCAG	r TTTCAGTIGG	3960
76	AACTCTGGT	TTTAACACT	r aagggagac <i>i</i>	A AAGGCTGTG	r CCATTTGGC	AAACTTCCTT	4020 4080
75	GGCCACGAG	A CTCTAGGTG	TGTGTGAAG	TGGGCAGTC	r Gradiata	A GAGCAGCCAT	4140
	CTGTCTGGC	ATTCAGAGG	A TICIAAAGA(. AIGGCIGGA	CLACTOCIO	A CCAACATCAG CTTGCCCTTA	4200
	ጥሮልጥጥፕሮርርር	TCAACGAGAG	ATTTCTGTC	TTGGCTTCC	C ACAGCCCCA	A CGCAGTCTGT	4260
	GTATGATTC	C TGGGATCCA	A CGAGCCCTC	TATTTTCAC	A GTGTTCTGA	T TGCTCTCACA	4320
80	GCCCAGGCC	C ATCGTCTGT	r CTCTGAATG	C AGCCCTGTT	C TCAACAACA	G GGAGGTCATG	4380
- •	GAACCCCTC	T GTGGAACCC	A CAAGGGGAG	A AATGGGTGA	r aaagaatcc	A GTTCCTCAAA	4440
	ACCTTCCCT	G GCAGGCTGG	TCCCTCTCC	r gctgggtgg	r gettteter	T GCACACCACT	4500
	CCCACCACG	G GGGGAGAGC	C AGCAACCCA	A CCAGACAGC	T CAGGTTGIG	C ATCTGATGGA	4560
05	AACCACTGG	G CTCAAACAC	G TGCTTTATT	C TCCTGTTTA	T TTTTGCTGT	T ACTTIGAAGC	4620 4680
85	ATGGAAATT	C TTGTTTGGG	G GATCTTGGG	G CTACAGTAG	C CCCZCCLLAC	A ATGCCCACCG C TCGGGCGTGG	4740
	CACACGGG	C CAITAACAA	H ICGICCIIG	CCIGAGGGG	G CACCCTGCC	A CCTGCTAACT	4800
	CUCAGIGGG	comou	Lacacini				

```
TCTCGCTAGA CACAGTGTTT CTGCCCAGGT GACCTGTTCA GCAGCAGAAC AAGCCAGGGC
                                                                          4860
      CATGGGGACG GGGGAAGTTT TCACTTGGAG ATGGACACCA AGACAATGAA GATTTGTTGT
                                                                          4920
       CCAAATAGGT CAATAATTCT GGGAGACTCT TGGAAAAAAC TGAATATATT CAGGACCAAC
                                                                          4980
      TCTCTCCCTC CCCTCATCCC ACATCTCAAA GCAGACAATG TAAAGAGAGA ACATCTCACA
                                                                          5040
 5
      CACCCAGCTC GCCATGCCTA CTCATTCCTG AATTTCAGGT GCCATCACTG CTCTTTCTTT
                                                                          5100
       CTTCTTTGTC ATTTGAGAAA GGATGCAGGA GGACAATTCC CACAGATAAT CTGAGGAATG
                                                                          5160
       CAGAAAAACC AGGGCAGGAC AGTTATCGAC AATGCATTAG AACTTGGTGA GCATCCTCTG
                                                                          5220
      TAGAGGGACT CCACCCCTGC TCAACAGCTT GGCTTCCAGG CAAGACCAAC CACATCTGGT
                                                                          5280
       CTCTGCCTTC GGTGGCCCAC ACACCTAAGC GTCATCGTCA TTGCCATAGC ATCATGATGC
                                                                          5340
10
      AACACATCTA CGTGTAGCAC TACGACGTTA TGTTTGGGTA ATGTGGGGAT GAACTGCATG
                                                                          5400
       AGGCTCTGAT TAAGGATGTG GGGAAGTGGG CTGCGGTCAC TGTCGGCCTT GCAAGGCCAC
                                                                          5460
       CTGGAGGCCT GTCTGTTAGC CAGTGGTGGA GGAGCAAGGC TTCAGGAAGG GCCAGCCACA
                                                                          5520
       TGCCATCTTC CCTGCGATCA GGCAAAAAAG TGGAATTAAA AAGTCAAACC TTTATATGCA
       TGTGTTATGT CCATTTTGCA GGATGAACTG AGTTTAAAAG AATTTTTTT TCTCTTCAAG
15
       TTGCTTTGTC TTTTCCATCC TCATCACAAG CCCTTGTTTG AGTGTCTTAT CCCTGAGCAA
       TCTTTCGATG GATGGAGATG ATCATTAGGT ACTTTTGTTT CAACCTTTAT TCCTGTAAAT
       ATTTCTGTGA AAACTAGGAG AACAGAGATG AGATTTGACA AAAAAAAATT GAATTAAAAA
       TAACACAGTC TTTTTAAAAC TAACATAGGA AAGCCTTTCC TATTATTTCT CTTCTTAGCT
       TCTCCATTGT CTAAATCAGG AAAACAGGAA AACACAGCTT TCTAGCAGCT GCAAAATGGT
                                                                          5940
20
       TTAATGCCCC CTACATATTT CCATCACCTT GAACAATAGC TTTAGCTTGG GAATCTGAGA
                                                                          6000
       TATGATCCCA GAAAACATCT GTCTCTACTT CGGCTGCAAA ACCCATGGTT TAAATCTATA
                                                                          6060
       TGGTTTGTGC ATTTTCTCAA CTAAAAATAG AGATGATAAT CCGAATTCTC CATATATTCA
                                                                          6120
       CTAATCAAAG ACACTATTTT CATACTAGAT TCCTGAGACA AATACTCACT GAAGGGCTTG
                                                                          6180
       TTTAAAAATA AATTGTGTTT TGGTCTGTTC TTGTAGATAA TGCCCTTCTA TTTTAGGTAG
                                                                          6240
25
       AAGCTCTGGA ATCCCTTTAT TGTGCTGTTG CTCTTATCTG CAAGGTGGCA AGCAGTTCTT
                                                                          6300
       TTCAGCAGAT TTTGCCCACT ATTCCTCTGA GCTGAAGTTC TTTGCATAGA TTTGGCTTAA
                                                                          6360
       GCTTGAATTA GATCCCTGCA AAGGCTTGCT CTGTGATGTC AGATGTAATT GTAAATGTCA
                                                                          6420
       GTAATCACTT CATGAATGCT AAATGAGAAT GTAAGTATTT TTAAATGTGT GTATTTCAAA
       TTTGTTTGAC TAATTCTGGA ATTACAAGAT TTCTATGCAG GATTTACCTT CATCCTGTGC
                                                                          6540
30
       ATGTTTCCCA AACTGTGAGG AGGGAAGGCT CAGAGATCGA GCTTCTCCTC TGAGTTCTAA
       CAAAATGGTG CTTTGAGGGT CAGCCTTTAG GAAGGTGCAG CTTTGTTGTC CTTTGAGCTT
       TCTGTTATGT GCCTATCCTA ATAAACTCTT AAACACATT
       Seg ID NO: 345 Protein seguence
35
                                NP_036204
       Protein Accession #:
                             21
                                                   41
       MATSMGLLLL LLLLTOPGA GTGADTEAVV CVGTACYTAH SGKLSAAEAO NHCNONGGNL
                                                                            60
40
       ATVKSKEEAQ HVQRVLAQLL RREAALTARM SKFWIGLQRE KGKCLDPSLP LKGFSWVGGG
                                                                           120
       EDTPYSNWHK ELRNSCISKR CVSLLLDLSQ PLLPNRLPKW SEGPCGSPGS PGSNIEGFVC
                                                                           180
       KFSFKGMCRP LALGGPGOVT YTTPFOTTSS SLEAVPFASA ANVACGEGDK DETOSHYFLC
                                                                           240
       KEKAPDVFDW GSSGPLCVSP KYGCNFNNGG CHQDCFEGGD GSFLCGCRPG FRLLDDLVTC
                                                                           300
       ASRNPCSSSP CRGGATCVLG PHGKNYTCRC PQGYQLDSSQ LDCVDVDECQ DSPCAQECVN
                                                                           360
45
       TPGGFRCECW VGYEPGGPGE GACQDVDECA LGRSPCAQGC TNTDGSFHCS CEEGYVLAGE
                                                                           420
       DGTQCQDVDE CVGPGGPLCD SLCFNTQGSF HCGCLPGWVL APNGVSCTMG PVSLGPPSGP
                                                                           480
       PDEEDKGEKE GSTVPRAATA SPTRGPEGTP KATPTTSRPS LSSDAPITSA PLKMLAPSGS
                                                                           540
       SGVWREPSIH HATAASGPQE PAGGDSSVAT QNNDGTDGQK LLLFYILGTV VAILLLLALA
                                                                           600
       LGLLVYRKRR AKREEKKEKK PQNAADSYSW VPERAESRAM ENQYSPTPGT DC
50
       Seq ID NO: 346 DNA sequence
       Nucleic Acid Accession #: Z31560
       Coding sequence: <1-966
55
                                        31
                                                   41
       CACAGCGCCC GCATGTACAA CATGATGGAG ACGGAGCTGA AGCCGCCGGG CCCGCAGCAA
       ACTTCGGGG GCGCGGCGG CAACTCCACC GCGGCGGCGG CCGGCGGCAA CCAGAAAAAC
                                                                           120
       AGCCCGGACC GCGTCAAGCG GCCCATGAAT GCCTTCATGG TGTGGTCCCG CGGGCAGCGG
                                                                           180
60
       CGCAAGATGG CCCAGGAGAA CCCCAAGATG CACAACTCGG AGATCAGCAA GCGCCTGGGC
                                                                           240
       GCCGAGTGGA AACTTTTGTC GGAGACGGAG AAGCGGCCGT TCATCGACGA GGCTAAGCGG
                                                                           300
       CTGCGAGCGC TGCACATGAA GGAGCACCCG GATTATAAAT ACCGGCCCCG GCGGAAAACC
                                                                           360
       AAGACGCTCA TGAAGAAGGA TAAGTACACG CTGCCCGGCG GGCTGCTGGC CCCCGGCGGC
                                                                           420
       AATAGCATGG CGAGCGGGGT CGGGGTGGGC GCCGGCCTGG GCGCGGGCGT GAACCAGCGC
                                                                           480
65
       ATGGACAGTT ACGCGCACAT GAACGGCTGG AGCAACGGCA GCTACAGCAT GATGCAGGAC
                                                                           540
       600
       ATGCACCGCT ACGACGTGAG CGCCCTGCAG TACAACTCCA TGACCAGCTC GCAGACCTAC ATGAACGGCT CGCCCACCTA CAGCATGTCC TACTCGCAGC AGGGCACCCC TGGCATGGCT
                                                                           660
                                                                           720
       CTTGGCTCCA TGGGTTCGGT GGTCAAGTCC GAGGCCAGCT CCAGCCCCCC TGTGGTTACC
                                                                           780
70
       TCTTCCTCCC ACTCCAGGGC GCCCTGCCAG GCCGGGGACC TCCGGGACAT GATCAGCATG
                                                                           840
       TATCTCCCCG GCGCCGAGGT GCCGGAACCC GCCGCCCCCA GCAGACTTCA CATGTCCCAG
                                                                           900
       CACTACCAGA GCGGCCCGGT GCCCGGCACG GCCATTAACG GCACACTGCC CCTCTCACAC
                                                                           960
       ATGTGAGGGC CGGACAGCGA ACTGGAGGGG GGAGAAATTT TCAAAGAAAA ACGAGGGAAA
                                                                          1020
       TGGGAGGGGT GCAAAAGAGG AGAGTAAGAA ACAGCATGGA GAAAACCCGG TACGCTCAAA
                                                                          1080
75
       AAAAA
       Seq ID NO: 347 Protein sequence
       Protein Accession #:
80
                             21
                                        31
       HSARMYNMME TELKPPGPQQ TSGGGGGNST AAAAGGNQKN SPDRVKRPMN AFMVWSRGQR
       RKMAQENPKM HNSEISKRLG AEWKLLSETE KRPFIDEAKR LRALHMKEHP DYKYRPRRKT
       KTLMKKDKYT LPGGLLAPGG NSMASGVGVG AGLGAGVNOR MDSYAHMNGW SNGSYSMMQD
85
       QLGYPQHPGL NAHGAAQMQP MHRYDVSALQ YNSMTSSQTY MNGSPTYSMS YSQQGTPGMA
                                                                           240
       LGSMGSVVKS EASSSPPVVT SSSHSRAPCQ AGDLRDMISM YLPGAEVPEP AAPSRLHMSQ
       HYOSGPVPGT AINGTLPLSH M
```

5		348 DNA sec Accession lence:					
	1 CAATACAGCT	11 AAGGAATTAT	21 CCCTTGTAAA	31 TACCACAGAC	41 CCGCCCTGGA	51 GCCAGGCCAA	60
10	TGAGGGCCAG AGGCAGCTGT TCAATGGACA	ATAAAGATTG CAGCTTCTTG CACGGGAGTT AGATCCCGTT	ATCGTGGTGG CCTGTTAAAG AAAGGACAAG	TGTTCCTCAT GTCAAGACAC TTTCAGTTAA	CGCTGGGACG TGTCAAAGGC AGGTCAAGAT	CTGGTTCTAG CGTGTTCCAT AAAGTCAAAG	120 180 240 300
15	TCCGGTGCGC TCAAGAAGTG CGGTCCTTGC TGCTGCCCTT	AGTCAAAGGT CATGTTGAAT CTGTGAAGGC TGCACCTGTG CCCCTTCCCA TCTCATCCAC	CCCCTAACC TCTTGCGGGA CCGTCCCCAG CACTGTCCAT	GCTGCTTGAA TGGCCTGTTT AGCTACAGGC TCTTCCTCCC	AGATACTGAC CGTTCCCCAG CCCATCTGGT	TGCCCAGGAA TGAAGGGAGC CCTAAGTCCC	360 420 480 540 600
20	Seq ID NO: Protein Acc	349 Protein cession #:	n sequence: NP_0026	529			
	1	11	21	31	41	51	
25		VFLIAGTLVL TKPGSCPIIL					60
•				•	•	•	•
30	Nucleic Act	350 DNA sec id Accession Lence: 75-2	#: NM_0071	.83			
	1	11	21	31	41	51	
25	1	1	1	1	1	1	
35		CAGGACGTGA CGCCATGCAG					60 120
		CCTGGCGCTG					180
•	CGGAGGCCGA	GCGGCTGCGG	GCAGCCCGCG	TCCAGGAGCA	GGTCCGCGCC	CGCCTCTTGC	240
40		GCAGCCGCGG					300
40		ATCCAGGGGG TGGGGACAAG					360 420
		GTCCTCCCGC					480
		GGGCAGCGCC					540
45		CAGGCCCGTG					600 660
40		CTCCCTGCGC TGAGCAGCTG					720
		CAGCTCCAGC					780
		GAGCCGGACC					840
50		GAGCCGCGGG ATCTGTGCGC					900 960
50		GTTCAACAGC					1020
	TTGATGACAT	TGACCTGCCC	TCAGCAGTCA	AGTACCTCAT	GGCTTCAGAC	CCCAACCTGC	1080
		AGCGGCCTAC					1140
55		CCTTCAGGCC					1200 1260
		GGTGGAGGAG					1320
		TCGCAAAAAT					1380
		CCTGGCCAGA TGGGGGTCCC					1440 1500
60		CGGCTTCCTC					1560
		CCACGGGCTG					1620
		CGAGGACAAG CGACGAGATG					1680 1740
		GGGGGCGCCG					1800
65		GCTGCCCCTC					1860
		CGAGTGGCTG GCTCAACCGG				CGGCTGCTGC	1920 1980
		CCGCAGGTGG					2040
70	TTCTGAACCC	CCTGCTAGAC	CGTGTCAGGA	CCGCCGACCA	CCACCAGCTG	CGCTCACTGA	2100
70		CCGAAACCTG					2160
		CCTGATCGAG CAACATCATA					2220 2280
		GCTGTATTTT					2340
75	ACAGCCCCGA	CAGTGAGAAG	TCCTCCCGGG	CAGCATCCAG	CCTCCTGGCC	AACCTGTGGC	2400
75		GCTCCACCGT GAAGCCTTCT					2460 2520
	TCAGCTCCAG	GCTGCTTGGC	AGCCCAGCCT	GGAGGAGAAG	GCTAATGACG	GAGGGGCCCC	2520 2580
		CCTGTGTGC					2640
90	ATAGCTGGGG	ACTTGGCTTC	CGCAGGGCAG	GGGGTGGGGC	AGGGCTCAAG	GCTGCTCTGG	2700
80						GCCTGGCAGT	2760
	AAAAGGAATT	AGCCAGCACT C	GGGAATAAAG	AIGGCCAIGA	NCHO I CACAA	HARMARAMA	2820
85		351 Proteir		14 1			
S	Protein Acc	ession #:	NP_0091	14.1			
	•		0.3		4.7		

PCT/US02/12476

```
WO 02/086443
      MQDGNFLLSA LQPEAGVCSL ALPSDLQLDR RGAEGPEAER LRAARVQEQV RARLLQLGQQ
                                                                              60
      PRHNGAAEPE PEAETARGTS RGQYHTLQAG FSSRSQGLSG DKTSGFRPIA KPAYSPASWS
                                                                             120
       SRSAVDLSCS RRLSSAHNGG SAFGAAGYGG AQPTPPMPTR PVSFHERGGV GSRADYDTLS
                                                                             180
 5
      LRSLRLGPGG LDDRYSLVSE QLEPAATSTY RAFAYERQAS SSSSRAGGLD WPEATEVSPS
       RTIRAPAVRT LQRFQSSHRS RGVGGAVPGA VLEPVARAPS VRSLSLSLAD SGHLPDVHGF
                                                                             300
      NSYGSHRTLQ RLSSGFDDID LPSAVKYLMA SDPNLQVLGA AYIQHKCYSD AAAKKQARSL
                                                                             360
      QAVPRLVKLF NHANQEVQRH ATGAMRNLIY DNADNKLALV EENGIFELLR TLREQDDELR
                                                                             420
       KNVTGILWNL SSSDHLKDRL ARDTLEQLTD LVLSPLSGAG GPPLIQQNAS EAEIFYNATG
                                                                             480
       FLRNLSSASQ ATROKMRECH GLVDALVTSI NHALDAGKCE DKSVENAVCV LRNLSYRLYD
EMPPSALQRL EGRGRRDLAG APPGEVVGCF TPQSRRLREL PLAADALTFA EVSKDPKGLE
10
                                                                             540
                                                                             600
       WLWSPQIVGL YNRLLQRCEL NRHTTEAAAG ALQNITAGDR RWAGVLSRLA LEQERILNPL
                                                                             660
       LDRVRTADHH QLRSLTGLIR NLSRNARNKD EMSTKVVSHL IEKLPGSVGE KSPPAEVLVN
                                                                             720
       IIAVLNNLVV ASPIAARDLL YFDGLRKLIF IKKKRDSPDS EKSSRAASSL LANLWQYNKL
                                                                             780
15
       HRDFRAKGYR KEDFLGP
       Seq ID NO: 352 DNA sequence
       Nucleic Acid Accession #: M31469
20
       Coding sequence: 1-651
                             21
                                         31
                  11
       ATGGCTGCGC AGGGAGAGCC CCAGGTCCAG TTCAAACTTG TATTGGTTGG TGATGGTGGT
25
       ACTGGAAAAA CGACCTTCGT GAAACGTCAT TTGACTGGTG AATTTGAGAA GAAGTATGTA
                                                                             120
       GCCACCTTGG GTGTTGAGGT TCATCCCCTA GTGTTCCACA CCAACAGAGG ACCTATTAAG
                                                                             180
       TTCAATGTAT GGGACACAGC CGGCCAGGAG AAATTCGGTG GACTGAGAGA TGGCTATTAT
                                                                             240
       ATCCAAGCCC AGTGTGCCAT CATAATGTTT GATGTAACAT CGAGAGTTAC TTACAAGAAT
                                                                             300
       360
       GGCAACAAAG TGGATATTAA GGACAGGAAA GTGAAGGCGA AATCCATTGT CTTCCACCGA
30
                                                                             420
       AAGAAGAATC TTCAGTACTA CGACATTTCT GCCAAAAGTA ACTACAACTT TGAAAAGCCC
                                                                             480
       TTCCTCTGGC TTGCTAGGAA GCTCATTGGA GACCCTAACT TGGAATTTGT TGCCATGCCT
                                                                             540
       GCTCTCGCCC CACCAGAAGT TGTCATGGAC CCAGCTTTGG CAGCACAGTA TGAGCACGAC
                                                                             600
       TTAGAGGTTG CTCAGACAAC TGCTCTCCCG GATGAGGATG ATGACCTGTG A
35
       Seq ID NO: 353 Protein sequence
       Protein Accession #:
                                 AAA36546
                                                                51
40
       MAAOGEPOVO FKLVLVGDGG TGKTTFVKRH LTGEFEKKYV ATLGVEVHPL VFHTNRGPIK
                                                                              60
       FNVWDTAGQE KFGGLRDGYY IQAQCAIIMF DVTSRVTYKN VPNWHRDLVR VCENIPIVLC
                                                                             120
       GNKVDIKDRK VKAKSIVFHR KKNLQYYDIS AKSNYNFEKP FLWLARKLIG DPNLEFVAMP
                                                                             180
       ALAPPEVVMD PALAAQYEHD LEVAQTTALP DEDDDL
45
                                                            ٠,
       Seg ID NO: 354 DNA sequence
       Nucleic Acid Accession #: NM_002820
       Coding sequence: 304-831
50
                  11
                              21
                                         31
                                                                51
       CCGGTTCGCA AAGAAGCTGA CTTCAGAGGG GGAAACTTTC TTCTTTTAGG AGGCGGTTAG
       CCCTGTTCCA CGAACCCAGG AGAACTGCTG GCCAGATTAA TTAGACATTG CTATGGGAGA
                                                                             120
55
       CGTGTAAACA CACTACTTAT CATTGATGCA TATATAAAAC CATTTTATTT TCGCTATTAT
                                                                             180
       TTCAGAGGAA GCGCCTCTGA TTTGTTTCTT TTTTCCCTTT TTGCTCTTTC TGGCTGTGTG
                                                                             240
       GTTTGGAGAA AGCACAGTTG GAGTAGCCGG TTGCTAAATA AGTCCCGAGC GCGAGCGGAG
                                                                             300
       ACGATGCAGC GGAGACTGGT TCAGCAGTGG AGCGTCGCGG TGTTCCTGCT GAGCTACGCG
GTGCCCTCCT GCGGGCGCTC GGTGGAGGGT CTCAGCCGCC GCCTCAAAAG AGCTGTGTCT
                                                                             360
                                                                             420
60
       GAACATCAGC TCCTCCATGA CAAGGGGAAG TCCATCCAAG ATTTACGGCG ACGATTCTTC
                                                                             480
       CTTCACCATC TGATCGCAGA AATCCACACA GCTGAAATCA GAGCTACCTC GGAGGTGTCC
                                                                             540
       CCTAACTCCA AGCCCTCTCC CAACACAAAG AACCACCCCG TCCGATTTGG GTCTGATGAT
                                                                             600
       GAGGGCAGAT ACCTAACTCA GGAAACTAAC AAGGTGGAGA CGTACAAAGA GCAGCCGCTC
                                                                             660
       AAGACACCTG GGAAGAAAAA GAAAGGCAAG CCCGGGAAAC GCAAGGAGCA GGAAAAGAAA
                                                                             720
65
       AAACGGCGAA CTCGCTCTGC CTGGTTAGAC TCTGGAGTGA CTGGGAGTGG GCTAGAAGGG
                                                                             780
       GACCACCTGT CTGACACCTC CACAACGTCG CTGGAGCTCG ATTCACGGTA ACAGGCTTCT
                                                                             840
       CTGGCCCGTA GCCTCAGCGG GGTGCTCTCA GCTGGGTTTT GGAGCCTCCC TTCTGCCTTG
                                                                             900
       GCTTGGACAA ACCTAGAATT TTCTCCCTTT ATGTATCTCT ATCGATTGTG TAGCAATTGA
                                                                             960
       CAGAGAATAA CTCAGAATAT TGTCTGCCTT AAAGCAGTAC CCCCCTACCA CACACACCCC
                                                                            1020
70
       TGTCCTCCAG CACCATAGAG AGGCGCTAGA GCCCATTCCT CTTTCTCCAC CGTCACCCAA
                                                                            1080
       CATCAATCCT TTACCACTCT ACCAAATAAT TTCATATTCA AGCTTCAGAA GCTAGTGACC
                                                                            1140
       ATCTTCATAA TTTGCTGGAG AAGTGTATTT CTTCCCCTTA CTCTCACACC TGGGCAAACT
                                                                            1200
       TTCTTCAGTG TTTTTCATTT CTTACGTTCT TTCACTTCAA GGGAGAATAT AGAAGCATTT
                                                                            1260
       GATATTATCT ACAAACACTG CAGAACAGCA TCATGTCATA AACGATTCTG AGCCATTCAC
                                                                            1320
75
       ACTITITATI TAATTAAATG TATTTAATTA AATCTCAAAT TTATTTTAAT GTAAAGAACT
                                                                            1380
       TAAATTATGT TTTAAACACA TGCCTTAAAT TTGTTTAATT AAATTTAACT CTGGTTTCTA
                                                                            1440
       CCAGCTCATA CAAAATAAAT GGTTTCTGAA AATGTTTAAG TATTAACTTA CAAGGATATA
                                                                            1500
       GGTTTTTCTC ATGTATCTTT TTGTTCATTG GCAAGATGAA ATAATTTTTC TAGGGTAATG
       CCGTAGGAAA AATAAAACTT CACATTTAAA AAAAA
80
       Seg ID NO: 355 Protein seguence
       Protein Accession #:
                                  NM_002820
                                                                51
                              21
                                         31
85
       MORRLVOOWS VAVELLSYAV PSCGRSVEGL SRRLKRAVSE HOLLHDKGKS IODLRRRFFL
                                                                              60
       HHLIAEIHTA EIRATSEVSP NSKPSPNTKN HPVRFGSDDE GRYLTQETNK VETYKEQPLK
```

Seq ID NO: 356 DNA sequence Nucleic Acid Accession #: NM_017522 5 Coding sequence: 1-2100 21 51 ATGGGCCTCC CCGAGCCGGG CCCTCTCCGG CTTCTGGCGC TGCTGCTGCT GCTGCTGCTG 10 CTGCTGCTGC TGCGGCTCCA GCATCTTGCG GCGGCAGCGG CTGATCCGCT GCTCGGCGGC 120 CAAGGGCCGG CCAAGGAGTG CGAAAAGGAC CAATTCCAGT GCCGGAACGA GCGCTGCATC 180 CCCTCTGTGT GGAGATGCGA CGAGGACGAT GACTGCTTAG ACCACAGCGA CGAGGACGAC 240 TGCCCCAAGA AGACCTGTGC AGACAGTGAC TTCACCTGTG ACAACGGCCA CTGCATCCAC 300 GAACGGTGGA AGTGTGACGG CGAGGAGGAG TGTCCTGATG GCTCCGATGA GTCCGAGGCC 360 15 ACTTGCACCA AGCAGGTGTG TCCTGCAGAG AAGCTGAGCT GTGGACCCAC CAGCCACAAG 420 TGTGTACCTG CCTCGTGGCG CTGCGACGGG GAGAAGGACT GCGAGGGTGG AGCGGATGAG 480 GCCGGCTGTG CTACCTCACT GGGCACCTGC CGTGGGGACG AGTTCCAGTG TGGGGATGGG 540 ACATGTGTCC TTGCAATCAA GCACTGCAAC CAGGAGCAGG ACTGTCCAGA TGGGAGTGAT 600 GAAGCTGGCT GCCTACAGGG GCTGAACGAG TGTCTGCACA ACAATGGCGG CTGCTCACAC 660 20 ATCTGCACTG ACCTCAAGAT TGGCTTTGAA TGCACGTGCC CAGCAGGCTT CCAGCTCCTG 720 GACCAGAAGA CTTGTGGCGA CATTGATGAG TGCAAGGACC CAGATGCCTG CAGCCAGATC 780 TGTGTCAATT ACAAGGGCTA TTTTAAGTGT GAGTGCTACC CTGGCTGCGA GATGGACCTA 840 CTGACCAAGA ACTGCAAGGC TGCTGCTGGC AAGAGCCCAT CCCTAATCTT CACCAACCGC 900 ACGAGTGCGG AGGATCGACC TGTGAAGCGG AACTATTCAC GCCTCATCCC CATGCTCAAG 960 25 AATGTCGTGG CACTAGATGT GGAAGTTGCC ACCAATCGCA TCTACTGGTG TGACCTCTCC 1020 TACCGTAAGA TCTATAGCGC CTACATGGAC AAGGCCAGTG ACCCGAAAGA GCGGGAGGTC 1080 CTCATTGACG AGCAGTTGCA CTCTCCAGAG GGCCTGGCAG TGGACTGGGT CCACAAGCAC 1140 ATCTACTGGA CTGACTCGGG CAATAAGACC ATCTCAGTGG CCACAGTTGA TGGTGGCCGC 1200 CGACGCACTC TCTTCAGCCG TAACCTCAGT GAACCCCGGG CCATCGCTGT TGACCCCCTG 1260 30 CGAGGGTTCA TGTATTGGTC TGACTGGGGG GACCAGGCCA AGATTGAGAA ATCTGGGCTC 1320 AACGGTGTGG ACCGGCAAAC ACTGGTGTCA GACAATATTG AATGGCCCAA CGGAATCACC 1380 CTGGATCTGC TGAGCCAGCG CTTGTACTGG GTAGACTCCA AGCTACACCA ACTGTCCAGC 1440 ATTGACTTCA GTGGAGGCAA CAGAAAGACG CTGATCTCCT CCACTGACTT CCTGAGCCAC 1500 CCTTTTGGGA TAGCTGTGTT TGAGGACAAG GTGTTCTGGA CAGACCTGGA GAACGAGGCC 1560 35 ATTTTCAGTG CAAATCGGCT CAATGGCCTG GAAATCTCCA TCCTGGCTGA GAACCTCAAC 1620 AACCCACATG ACATTGTCAT CTTCCATGAG CTGAAGCAGC CAAGAGCTCC AGATGCCTGT 1680 GAGCTGAGTG TCCAGCCTAA TGGAGGCTGT GAATACCTGT GCCTTCCTGC TCCTCAGATC 1740 TCCAGCCACT CTCCCAAGTA CACATGTGCC TGTCCTGACA CAATGTGGCT GGGTCCAGAC 1800 ATGAAGAGT GCTACCGAGA TGCAAATGAA GACAGTAAGA TGGGCTCAAC AGTCACTGCC 1860 40 GCTGTTATCG GGATCATCGT GCCCATAGTG GTGATAGCCC TCCTGTGCAT GAGTGGATAC 1920 CTGATCTGGA GAAACTGGAA GCGGAAGAAC ACCAAAAGCA TGAATTTTGA CAACCCAGTC 1980 TACAGGAAAA CAACAGAAGA AGAAGATGAA GATGAGCTCC ATATAGGGAG AACTGCTCAG 2040 ATTGGCCATG TCTATCCTGC ACGAGTGGCA TTAAGCCTTG AAGATGATGG ACTACCCTGA 2100 GGATGGGATC ACCCCCTTCG TGCCTCATGG AATTCAGTCC CATGCACTAC ACTCCGGATG 2160 45 GTGTATGACT GGATGAATGG GTTTCTATAT ATGGGTCTGT GTGAGTGTAT GTGTGTGTGT 2220 GATTTTTTT TTTAAATTTA TGTTGCGGAA AGGTAACCAC AAAGTTATGA TGAACTGCAA 2280 ACATCCAAAG GATGTGAGAG TTTTTCTATG TATAATGTTT TATACACTTT TTAACTGGTT 2340 GCACTACCCA TGAGGAATTC GTGGAATGGC TACTGCTGAC TAACATGATG CACATAACCA 2400 AATGGGGGCC AATGGCACAG TACCTTACTC ATCATTTAAA AACTATATTT ACAGAAGATG 2460 50 TTTGGTTGCT GGGGGGCTTT TTTAGGTTTT GGGCATTTGT TTTTTGTAAA TAAGATGATT 2520 ATGCTTTGTG GCTATCCATC AACATAAGT Seq ID NO: 357 Protein sequence Protein Accession #: NP 059992 55 21 31 MGLPEPGPLR LLALLLLLL LLLLRLOHLA AAAADPLLGG QGPAKECEKD QFQCRNERCI 60 PSVWRCDEDD DCLDHSDEDD CPKKTCADSD FTCDNGHCIH ERWKCDGEEE CPDGSDESEA 120 60 TCTKQVCPAE KLSCGPTSHK CVPASWRCDG EKDCEGGADE AGCATSLGTC RGDEFQCGDG 180 TCVLAIKHCN QEQDCPDGSD EAGCLQGLNE CLHNNGGCSH ICTDLKIGFE CTCPAGFQLL 240 DQKTCGDIDE CKDPDACSQI CVNYKGYFKC ECYPGCEMDL LTKNCKAAAG KSPSLIFTNR 300 TSAEDRPVKR NYSRLIPMLK NVVALDVEVA TNRIYWCDLS YRKIYSAYMD KASDPKEREV 360 LIDEQLHSPE GLAVDWVHKH IYWTDSGNKT ISVATVDGGR RRTLFSRNLS EPRAIAVDPL 420 65 RGFMYWSDWG DQAKIEKSGL NGVDRQTLVS DNIEWPNGIT LDLLSQRLYW VDSKLHQLSS 480 IDFSGGNRKT LISSTDFLSH PFGIAVFEDK VFWTDLENEA IFSANRLNGL EISILAENLN 540 NPHDIVIFHE LKQPRAPDAC ELSVQPNGGC EYLCLPAPQI SSHSPKYTCA CPDTMWLGPD 600 MKRCYRDANE DSKMGSTVTA AVIGIIVPIV VIALLCMSGY LIWRNWKRKN TKSMNFDNPV 660 YRKTTEEEDE DELHIGRTAQ IGHVYPARVA LSLEDDGLP 70 Seq ID NO: 358 DNA sequence Nucleic Acid Accession #: M27826 Coding sequence: <1-503 75 11 21 31 41 51 AGCCCAAGAA ACATCTCACC AATTTCAAAT CTGATCTATT CGGCTTAGCG ACTGAAGATT GACGCTGCCC GATCGCCTCG GAAGTCCCCT GGACCATCAC AGAAGCCGAG CTTCGGGTAA 120 CTCTCACAGT GGAGGGTAAG TCCATCCCCT GTTTAATCGA TACGGGGGCT ACCCACTCCA 180 80 CGTTGCCTTC TTTTCAAGGG CCTGTTTCCC TTGCCCCCAT AACTGTTGTG GGTATTGACG 240 GCCAAGCTTC AAAACCCCTG AAAACTCCCC CACTCTGGTG CCAACTTGGA CAACACTCTT 300 TTATGCACTC TITTTTAGTT ATCCCCACCT GCCCACTTCC CTTATTAGGC CGAAATATTT 360 TAACCAAATT ATCTGCTTCC CTGACTATTC CTGGAGTACA GCTACATCTC ATTGCTGCCC 420 TTCTTCCCAA TCCAAAGCCT CCTTTGTGTC CTCTAACATC CCCACAATAT CAGCCCTTAC 480 85 CACAAGACCT CCCTTCAGCT TAATCTCTCC CACTCTAGGT TCCCACGCCG CCCCTAATCC 540 CACTTGAAGC AGCCCTGAGA AACATCGCCC ATTCTCTCTC CATACCACCC CCCAAAAATT 600

TTCGCCGCTC CAACACTTCA ACACTATTTT GTTTTATTTG TCTTATTAAT ATCAGAAGGC

660

AAGGTGCACG GGGAGTAGCT GGCAAACCAG GCCCTCGGGG TCAGCGTGGT CCAACGGGTC

CTCGAGGTTC AAGAGGTGCA AGAGGTCCCA CTGGGAAACC TGGGCCAAAG GGCACTTCAG

GTGGCGATGG CCCTCCTGGC CCTCCAGGTG AAAGAGGTCC TCAAGGACCT CAGGGTCCAG

TTGGATTCCC TGGACCAAAA GGCCCTCCTG GACCACCAGG AAGGATGGGC TGCCCAGGAC

ACCCTGGGCA ACGTGGGGAG ACTGGATTTC AAGGCAAGAC CGGCCCTCCT GGGCCAGGGG

GAGTGGTTGG ACCACAGGGA CCAACCGGTG AGACTGGTCC AATAGGGGAA CGTGGGTATC

CTGGTCCTCC TGGCCCTCCT GGTGAGCAAG GTCTTCCTGG TGCTGCAGGA AAAGAAGGTG

CAAAGGGTGA TCCAGGTCCT CAAGGTATCT CAGGGAAAGA TGGACCAGCA GGATTACGTG

GTTTCCCAGG GGAAAGAGGT CTTCCTGGAG CTCAGGGTGC ACCTGGACTG AAAGGAGGGG

AAGGTCCCCA GGGCCCACCA GGTCCAGTTG GCTCACCAGG AGAACGTGGG TCAGCAGGTA

CAGCTGGCCC AATTGGTTTA CGAGGGCGCC CGGGACCTCA GGGTCCTCCT GGTCCAGCTG

GAGAGAAAGG TGCTCCTGGA GAAAAAGGTC CCCAAGGGCC TGCAGGGAGA GATGGAGTTC

AAGGTCCTGT TGGTCTCCCA GGGCCAGCTG GTCCTGCCGG CTCCCCTGGG GAAGACGGAG

ACAAGGGTGA AATTGGTGAG CCGGGACAAA AAGGCAGCAA GGGTGGCAAG GGAGAAAATG

GCCCTCCCGG TCCCCCAGGT CTTCAAGGAC CAGTTGGTGC CCCTGGAATT GCTGGAGGTG

ATGGTGAACC AGGTCCTAGA GGACAGCAGG GGATGTTTGG GCAAAAAGGT GATGAGGGTG

CCAGAGGCTT CCCTGGACCT CCTGGTCCAA TAGGTCTTCA GGGTCTGCCA GGCCCACCTG

GTGAAAAAGG TGAAAATGGG GATGTTGGTC CATGGGGGCC ACCTGGTCCT CCAGGCCCAA

70

75

80

85

2760

2820

2880

2940

3000

3060

3120

3180

3240

3300

3360

3420

3480

3540

3600

3660

3720

3780

```
GAGGCCCTCA AGGTCCCAAT GGAGCTGATG GACCACAAGG ACCCCCAGGT TCTGTTGGTT
                                                                           3900
       CAGTTGGTGG TGTTGGAGAA AAGGGTGAAC CTGGAGAAGC AGGAAACCCA GGGCCTCCTG
                                                                           3960
       GGGAAGCAGG TGTAGGCGGT CCCAAAGGAG AAAGAGGAGA GAAAGGGGAA GCTGGTCCAC
                                                                           4020
       CTGGAGCTGC TGGACCTCCA GGTGCCAAGG GGCCGCCAGG TGATGATGGC CCTAAGGGTA
                                                                           4080
 5
       ACCCGGGTCC TGTTGGTTTT CCTGGAGATC CTGGTCCTCC TGGGGAACTT GGCCCTGCAG
                                                                           4140
       GTCAAGATGG TGTTGGTGGT GACAAGGGTG AAGATGGAGA TCCTGGTCAA CCGGGTCCTC
                                                                           4200
       CTGGCCCATC TGGTGAGGCT GGCCCACCAG GTCCTCCTGG AAAACGAGGT CCTCCTGGAG
                                                                           4260
       CTGCAGGTGC AGAGGGAAGA CAAGGTGAAA AAGGTGCTAA GGGGGAAGCA GGTGCAGAAG
                                                                           4320
       GTCCTCCTGG AAAAACCGGC CCAGTCGGTC CTCAGGGACC TGCAGGAAAG CCTGGTCCAG
10
       AAGGTCTTCG GGGCATCCCT GGTCCTGTGG GAGAACAAGG TCTCCCTGGA GCTGCAGGCC
                                                                           4440
       AAGATGGACC ACCTGGTCCT ATGGGACCTC CTGGCTTACC TGGTCTCAAA GGTGACCCTG
                                                                           4500
       GCTCCAAGGG TGAAAAGGGA CATCCTGGTT TAATTGGCCT GATTGGTCCT CCAGGAGAAC
                                                                           4560
       AAGGGGAAAA AGGTGACCGA GGGCTCCCTG GAACTCAAGG ATCTCCAGGA GCAAAAGGGG
                                                                           4620
       ATGGGGGAAT TCCTGGTCCT GCTGGTCCCT TAGGTCCACC TGGTCCTCCA GGCTTACCAG
GTCCTCAAGG CCCAAAGGGT AACAAAGGCT CTACTGGACC CGCTGGCCAG AAAGGTGACA
                                                                           4680
15
                                                                           4740
       GTGGTCTTCC AGGGCCTCCT GGGCCTCCAG GTCCACCTGG TGAAGTCATT CAGCCTTTAC
                                                                           4800
       CAATCTTGTC CTCCAAAAAA ACGAGAAGAC ATACTGAAGG CATGCAAGCA GATGCAGATG
                                                                           4860
       ATAATATTCT TGATTACTCG GATGGAATGG AAGAAATATT TGGTTCCCTC AATTCCCTGA
                                                                           4920
       AACAAGACAT CGAGCATATG AAATTTCCAA TGGGTACTCA GACCAATCCA GCCCGAACTT
                                                                           4980
20
       GTAAAGACCT GCAACTCAGC CATCCTGACT TCCCAGATGG TGAATATTGG ATTGATCCTA
                                                                           5040
       ACCAAGGTTG CTCAGGAGAT TCCTTCAAAG TTTACTGTAA TTTCACATCT GGTGGTGAGA
                                                                           5100
       CTTGCATTTA TCCAGACAAA AAATCTGAGG GAGTAAGAAT TTCATCATGG CCAAAGGAGA
                                                                           5160
       AACCAGGAAG TTGGTTTAGT GAATTTAAGA GGGGAAAACT GCTTTCATAC TTAGATGTTG
                                                                           5220
       AAGGAAATTC CATCAATATG GTGCAAATGA CATTCCTGAA ACTTCTGACT GCCTCTGCTC
                                                                           5280
25
       GGCAAAATTT CACCTACCAC TGTCATCAGT CAGCAGCCTG GTATGATGTG TCATCAGGAA
                                                                           5340
       GTTATGACAA AGCACTTCGC TTCCTGGGAT CAAATGATGA GGAGATGTCC TATGACAATA
       ATCCTTTTAT CAAAACACTG TATGATGGTT GTACGTCCAG AAAAGGCTAT GAAAAAACTG
                                                                           5460
       TCATTGAAAT CAATACACCA AAAATTGATC AAGTACCTAT TGTTGATGTC ATGATCAGTG
                                                                           5520
       ACTITGGTGA TCAGAATCAG AAGTTCGGAT TTGAAGTTGG TCCTGTTTGT TTTCTTGGCT
                                                                           5580
       AAGATTAAGA CAAAGAACAT ATCAAATCAA CAGAAAATGT ACCTTGGTGC CACCAACCCA
30
                                                                           5640
       TTTTGTGCCA CATGCAAGTT TTGAATAAGG ATGTATGGAA AACAACGCTG CATATACAGG
                                                                           5700
       TACCATTTAG GAAATACCGA TGCCTTTGTG GGGGCAGAAT CACAGACAAA AGCTTTGAAA
                                                                           5760
       ATCATAAAGA TATAAGTTGG TGTGGCTAAG ATGGAAACAG GGCTGATTCT TGATTCCCAA
                                                                           5820
       TTCTCAACTC TCCTTTTCCT ATTTGAATTT CTTTGGTGCT GTAGAAAACA AAAAAAGAAA
                                                                           5880
35
       AATATATAT CATAAAAAAT ATGGTGCTCA TTCTCATCCA TCCAGGATGT ACTAAAACAG
                                                                           5940
       TGTGTTTAAT AAATTGTAAT TATTTTGTGT ACAGTTCTAT ACTGTTATCT GTGTCCATTT
                                                                           6000
                                                                           6060
       CCAAAACTTG CACGTGTCCC TGAATTCCGC TGACTCTAAT TTATGAGGAT GCCGAACTCT
       GATGGCAATA ATATATGTAT TATGAAAATG AAGTTATGAT TTCCGATGAC CCTAAGTCCC
                                                                           6120
       TTTCTTTGGT TAATGATGAA ATTCCTTTGT GTGTGTTT
40
       Seq ID NO: 361 Protein sequence
                                 NP_001845
       Protein Accession #:
                                                    41
                                                               51
45
       MEPWSSRWKT KRWLWDFTVT TLALTFLFQA REVRGAAPVD VLKALDFHNS PEGISKTTGF
       CTNRKNSKGS DTAYRVSKQA QLSAPTKQLF PGGTFPEDFS ILFTVKPKKG IQSFLLSIYN
                                                                            120
       EHGIQQIGVE VGRSPVFLFE DHTGKPAPED YPLFRTVNIA DGKWHRVAIS VEKKTVTMIV
                                                                            180
       DCKKKTTKPL DRSERAIVDT NGITVFGTRI LDEEVFEGDI QQFLITGDPK AAYDYCEHYS
                                                                            240
50
       PDCDSSAPKA AQAQEPQIDE YAPEDIIEYD YEYGEAEYKE AESVTEGPTV TEETIAQTEA
                                                                            300
       NIVDDFQEYN YGTMESYQTE APRHVSGTNE PNPVERIFTE EYLTGEDYDS QRKNSEDTLY
       ENKEIDGRDS DLLVDGDLGE YDFYEYKEYE DKPTSPPNEE FGPGVPAETD ITETSINGHG
                                                                            420
       AYGEKGOKGE PAVVEPGMLV EGPPGPAGPA GIMGPPGLOG PTGPPGDPGD RGPPGRPGLP
       GADGLPGPPG TMLMLPFRYG GDGSKGPTIS AQEAQAQAIL QQARIALRGP PGPMGLTGRP
55
       GPVGGPGSSG AKGESGDPGP QGPRGVQGPP GPTGKPGKRG RPGADGGRGM PGEPGAKGDR
       GFDGLPGLPG DKGHRGERGP QGPPGPPGDD GMRGEDGEIG PRGLPGEAGP RGLLGPRGTP
                                                                            660
       GAPGOPGMAG VDGPPGPKGN MGPQGEPGPP GQQGNPGPQG LPGPQGPIGP PGEKGPQGKP
       GLAGLPGADG PPGHPGKEGQ SGEKGALGPP GPQGPIGXPG PRGVKGADGV RGLKGSKGEK
                                                                            780
       GEDGFPGFKG DMGLKGDRGE VGQIGPRGXD GPEGPKGRAG PTGDPGPSGQ AGEKGKLGVP
                                                                            840
60
       GLPGYPGRQG PKGSTGFPGF PGANGEKGAR GVAGKPGPRG QRGPTGPRGS RGARGPTGKP
                                                                            900
       GPKGTSGGDG PPGPPGERGP QGPQGPVGFP GPKGPPGPPG RMGCPGHPGQ RGETGFQGKT
                                                                            960
       GPPGPGGVVG PQGPTGETGP IGERGYPGPP GPPGEQGLPG AAGKEGAKGD PGPQGISGKD
                                                                           1020
       GPAGLRGFPG ERGLPGAQGA PGLKGGEGPQ GPPGPVGSPG ERGSAGTAGP IGLRGRPGPQ
                                                                           1080
       GPPGPAGEKG APGEKGPQGP AGRDGVQGPV GLPGPAGPAG SPGEDGDKGE IGEPGQKGSK
                                                                           1140
       GGKGENGPPG PPGLQGPVGA PGIAGGDGEP GPRGQQGMFG QKGDEGARGF PGPPGPIGLQ
65
                                                                           1200
       GLPGPPGEKG ENGDVGPWGP PGPPGPRGPQ GPNGADGPQG PPGSVGSVGG VGEKGEPGEA
                                                                           1260
       GNPGPPGEAG VGGPKGERGE KGEAGPPGAA GPPGAKGPPG DDGPKGNPGP VGFPGDPGPP
                                                                           1320
       GELGPAGQDG VGGDKGEDGD PGQPGPPGPS GEAGPPGPPG KRGPPGAAGA EGRQGEKGAK
                                                                           1380
       GEAGAEGPPG KTGPVGPQGP AGKPGPEGLR GIPGPVGEQG LPGAAGQDGP PGPMGPPGLP
                                                                           1440
70
       GLKGDPGSKG EKGHPGLIGL IGPPGEQGEK GDRGLPGTQG SPGAKGDGGI PGPAGPLGPP
                                                                           1500
       GPPGLPGPQG PKGNKGSTGP AGQKGDSGLP GPPGPPGPPG EVIQPLPILS SKKTRRHTEG
                                                                           1560
                                                                           1620
       MQADADDNIL DYSDGMEEIF GSLNSLKQDI EHMKFPMGTQ TNPARTCKDL QLSHPDFPDG
       EYWIDPNQGC SGDSFKVYCN FTSGGETCIY PDKKSEGVRI SSWPKEKPGS WFSEFKRGKL
                                                                           1680
       LSYLDVEGNS INMVQMTFLK LLTASARQNF TYHCHQSAAW YDVSSGSYDK ALRFLGSNDE
                                                                           1740
75
       EMSYDNNPFI KTLYDGCTSR KGYEKTVIEI NTPKIDQVPI VDVMISDFGD QNQKFGFEVG
                                                                           1800
       Seq ID NO: 362 DNA sequence
80
       Nucleic Acid Accession #: NM_003107
       Coding sequence:
                                 351-1775
                  11
                              21
                                         31
                                                                51
85
       TTCCCCAGCA TTCGAGAAAC TCCTCTCTAC TTTAGCACGG TCTCCAGACT CAGCCGAGAG
                                                                              60
                                                                            120
       ACAGCAAACT GCAGCGCGGT GAGAGAGCGA GAGAGAGGGGA GAGAGAGACT CTCCAGCCTG
                                                                            180
       GGAACTATAA CTCCTCTGCG AGAGGCGGAG AACTCCTTCC CCAAATCTTT TGGGGACTTT
```

```
TCTCTCTTTA CCCACCTCCG CCCCTGCGAG GAGTTGAGGG GCCAGTTCGG CCGCCGCGC
                                                                           240
      CGTCTTCCCG TTCGGCGTGT GCTTGGCCCG GGGAACCGGG AGGGCCCGGC GATCGCGGG
                                                                           300
       CGGCCGCCGC GAGGGTGTGA GCGCGCGTGG GCGCCCCCCC AGCCGAGGCC ATGGTGCAGC
                                                                           360
       AAACCAACAA TGCCGAGAAC ACGGAAGCGC TGCTGGCCGG CGAGAGCTCG GACTCGGGCG
                                                                           420
       CCGGCCTCGA GCTGGGAATC GCCTCCTCCC CCACGCCCGG CTCCACCGCC TCCACGGGCG
       GCAAGGCCGA CGACCCGAGC TGGTGCAAGA CCCCGAGTGG GCACATCAAG CGACCCATGA
                                                                           540
       ACGCCTTCAT GGTGTGGTCG CAGATCGAGC GGCGCAAGAT CATGGAGCAG TCGCCCGACA
       TGCACAACGC CGAGATCTCC AAGCGGCTGG GCAAACGCTG GAAGCTGCTC AAAGACAGCG
                                                                           660
       ACAAGATCCC TTTCATTCGA GAGGCGGAGC GGCTGCGCCT CAAGCACATG GCTGACTACC
10
       CCGACTACAA GTACCGGCCC AGGAAGAAGG TGAAGTCCGG CAACGCCAAC TCCAGCTCCT
                                                                            780
       CGGCCGCCGC CTCCTCCAAG CCGGGGGAGA AGGGAGACAA GGTCGGTGGC AGTGGCGGGG
                                                                           840
       GCGGCCATGG GGGCGCGGC GGCGGCGGA GCAGCAACGC GGGGGAAGAA GGCGGCGGTG
CGAGTGGCGG CGGCGCCAAC TCCAAACCGG CGCAGAAAAA GAGCTGCGGC TCCAAAGTGG
                                                                           900
                                                                           960
       CGGGCGCGC GGGCGGTGGG GTTAGCAAAC CGCACGCCAA GCTCATCCTG GCAGGCGGCG
                                                                          1020
15
       GCGGCGGCGG GAAAGCAGCG GCTGCCGCCG CCGCCTCCTT CGCCGCCGAA CAGGCGGGGG
                                                                          1080
       CCGCCGCCCT GCTGCCCCTG GGCGCCGCCG CCGACCACCA CTCGCTGTAC AAGGCGCGGA
                                                                          1140
       CTCCCAGCGC CTCGGCCTCC GCCTCCTCGG CAGCCTCGGC CTCCGCAGCG CTCGCGGCCC
                                                                          1200
       CGGGCAAGCA CCTGGCGGAG AAGAAGGTGA AGCGCGTCTA CCTGTTCGGC GGCCTGGGCA
                                                                          1260
       CGTCGTCGTC GCCCGTGGGC GGCGTGGGCG CGGGAGCCGA CCCCAGCGAC CCCCTGGGCC
                                                                          1320
20
       TGTACGAGGA GGAGGGCGCG GGCTGCTCGC CCGACGCGCC CAGCCTGAGC GGCCGCAGCA
                                                                          1380
       1440
       TGCGCGCCGC CTCGCCCGCC CCGTCCAGCG CGCCCTCGCA CGCGTCCTCC TCGGCCTCGT
                                                                          1500
       CCCACTCCTC CTCTTCCTCC TCCTCGGGCT CCTCGTCCTC CGACGACGAG TTCGAAGACG
                                                                          1560
       ACCTGCTCGA CCTGAACCCC AGCTCAAACT TTGAGAGCAT GTCCCTGGGC AGCTTCAGTT
                                                                          1620
25
       CGTCGTCGGC GCTCGACCGG GACCTGGATT TTAACTTCGA GCCCGGCTCC GGCTCGCACT
                                                                          1680
       TCGAGTTCCC GGACTACTGC ACGCCCGAGG TGAGCGAGAT GATCTCGGGA GACTGGCTCG
                                                                          1740
       AGTCCAGCAT CTCCAACCTG GTTTTCACCT ACTGAAGGGC GCGCAGGCAG GGAGAAGGGC
                                                                          1800
       CGGGGGGGGT AGGAGAGGAG AAAAAAAAG TGAAAAAAG AAACGAAAAG GACAGACGAA
       GAGTTTAAAG AGAAAAGGA AAAAAGAAAG AAAAAGTAAG CAGGGCTCGT TCGCCCGCGT
                                                                          1920
30
       TCTCGTCGTC GGATCAAGGA GCGCGGCGGC GTTTTGGACC CGCGCTCCCA TCCCCCACCT
                                                                          1980
       TCCCGGGCCG GGGACCCACT CTGCCCAGCC GGAGGGACGC GGAGGAGGAA GAGGGTAGAC
                                                                          2040
       AGGGGCGACC TGTGATTGTT GTTATTGATG TTGTTGTTGA TGGCAAAAAA AAAAAGCGAC
                                                                          2100
       TTCGAGTTTG CTCCCCTTTG CTTGAAGAGA CCCCCTCCCC CTTCCAACGA GCTTCCGGAC
                                                                          2160
       TTGTCTGCAC CCCCAGCAAG AAGGCGAGTT AGTTTTCTAG AGACTTGAAG GAGTCTCCCC
                                                                          2220
35
       CTTCCTGCAT CACCACCTTG GTTTGTTTT ATTTTGCTTC TTGGTCAAGA AAGGAGGGGA
                                                                          2280
       GAACCCAGCG CACCCCTCCC CCCCTTTTT TAAACGCGTG ATGAAGACAG AAGGCTCCGG
                                                                          2340
       GGTGACGAAT TTGGCCGATG GCAGATGTTT TGGGGGAACG CCGGGACTGA GAGACTCCAC
                                                                          2400
       GCAGGCGAAT TCCCGTTTGG GGCCTTTTTT TCCTCCCTCT TTTCCCCTTG CCCCCTCTGC
                                                                          2460
       AGCCGGAGGA GGAGATGTTG AGGGGAGGAG GCCAGCCAGT GTGACCGGCG CTAGGAAATG
                                                                          2520
40
       ACCCGAGAAC CCCGTTGGAA GCGCAGCAGC GGGAGCTAGG GGCGGGGGG GAGGAGGACA
                                                                          2580
       CGAACTGGAA GGGGGTTCAC GGTCAAACTG AAATGGATTT GCACGTTGGG GAGCTGGCGG
                                                                          2640
       CGGCGGCTGC TGGGCCTCCG CCTTCTTTC TACGTGAAAT CAGTGAGGTG AGACTTCCCA
                                                                          2700
       GACCCCGGAG GCGTGGAGGA GAGGAGACTG TTTGATGTGG TACAGGGGCA GTCAGTGGAG
                                                                          2760
       GGCGAGTGGT TTCGGAAAAA AAAAAAGAAA AAAAGGG
45
       Seq ID NO: 363 Protein sequence
                                 NP_003098
       Protein Accession #:
                                                              51
50
       MVQQTNNAEN TEALLAGESS DSGAGLELGI ASSPTPGSTA STGGKADDPS WCKTPSGHIK
       RPMNAFMVWS QIERRKIMEQ SPDMHNAEIS KRLGKRWKLL KDSDKIPFIR EAERLRLKHM
       ADYPDYKYRP RKKVKSGNAN SSSSAAASSK PGEKGDKVGG SGGGGHGGGG GGGSSNAGGG
       GGGASGGGAN SKPAQKKSCG SKVAGGAGGG VSKPHAKLIL AGGGGGGKAA AAAAASFAAE
55
       QAGAAALLPL GAAADHHSLY KARTPSASAS ASSAASASAA LAAPGKHLAE KKVKRVYLFG
       GLGTSSSPVG GVGAGADPSD PLGLYEEEGA GCSPDAPSLS GRSSAASSPA AGRSPADHRG
                                                                           360
       YASLRAASPA PSSAPSHASS SASSHSSSS SSGSSSSDDE FEDDLLDLNP SSNFESMSLG
                                                                           420
       SFSSSSALDR DLDFNFEPGS GSHFEFPDYC TPEVSEMISG DWLESSISNL VFTY
60
       Seq ID NO: 364 DNA sequence
       Nucleic Acid Accession #: U10860
       Coding sequence:
                                 123-2204
65
                             21
                                        31
                                                              51
       TGCCGGCTGC TCCTCGACCA GGCCTCCTTC TCAACCTCAG CCCGCGGCGC CGACCCTTCC
                                                                            60
       GGCACCCTCC CGCCCCGTCT CGTACTGTCG CCGTCACCGC CGCGGCTCCG GCCCTGGCCC
                                                                           120
       CGATGGCTCT GTGCAACGGA GACTCCAAGC TGGAGAATGC TGGAGGAGAC CTTAAGGATG
                                                                           180
70
       GCCACCACCA CTATGAAGGA GCTGTTGTCA TTCTGGATGC TGGTGCTCAG TACGGGAAAG
                                                                           240
       TCATAGACCG AAGAGTGAGG GAACTGTTCG TGCAGTCTGA AATTTTCCCC TTGGAAACAC
                                                                           300
       CAGCATTTGC TATAAAGGAA CAAGGATTCC GTGCTATTAT CATCTCTGGA GGACCTAATT
                                                                           360
       CTGTGTATGC TGAAGATGCT CCCTGGTTTG ATCCAGCAAT ATTCACTATT GGCAAGCCTG
                                                                           420
       TTCTTGGAAT TTGCTATGGT ATGCAGATGA TGAATAAGGT ATTTGGAGGT ACTGTGCACA
                                                                           480
75
       AAAAAAGTGT CAGAGAAGAT GGAGTTTTCA ACATTAGTGT GGATAATACA TGTTCATTAT
                                                                           540
       TCAGGGGCCT TCAGAAGGAA GAAGTTGTTT TGCTTACACA TGGAGATAGT GTAGACAAAG
                                                                           600
       TAGCTGATGG ATTCAAGGTT GTGGCACGTT CTGGAAACAT AGTAGCAGGC ATAGCAAATG
                                                                           660
       AATCTAAAAA GTTATATGGA GCACAGTTCC ACCCTGAAGT TGGCCTTACA GAAAATGGAA
                                                                           720
       AAGTAATACT GAAGAATTTC CTTTATGATA TAGCTGGATG CAGTGGAACC TTCACCGTGC
                                                                           780
80
       AGAACAGAGA ACTTGAGTGT ATTCGAGAGA TCAAAGAGAG AGTAGGCACG TCAAAAGTTT
                                                                           840
       TGGTTTTACT CAGTGGTGGA GTAGACTCAA CAGTTTGTAC AGCTTTGCTA AATCGTGCTT
                                                                           900
       TGAACCAAGA ACAAGTCATT GCTGTGCACA TTGATAATGG CTTTATGAGA AAACGAGAAA
                                                                           960
       GCCAGTCTGT TGAAGAGGCC CTCAAAAAGC TTGGAATTCA GGTCAAAGTG ATAAATGCTG
                                                                          1020
       CTCATTCTTT CTACAATGGA ACAACAACCC TACCAATATC AGATGAAGAT AGAACCCCAC
                                                                          1080
85
       GGAAAAGAAT TAGCAAAACG TTAAATATGA CCACAAGTCC TGAAGAGAAA AGAAAAATCA
                                                                          1140
       TTGGGGATAC TTTTGTTAAG ATTGCCAATG AAGTAATTGG AGAAATGAAC TTGAAACCAG
       AGGAGGTTTT CCTTGCCCAA GGTACTTTAC GGCCTGATCT AATTGAAAGT GCATCCCTTG
```

PCT/US02/12476 WO 02/086443 TTGCAAGTGG CAAAGCTGAA CTCATCAAAA CCCATCACAA TGACACAGAG CTCATCAGAA 1320 AGTTGAGAGA GGAGGGAAAA GTAATAGAAC CTCTGAAAGA TTTTCATAAA GATGAAGTGA 1380 GAATTTTGGG CAGAGAACTT GGACTTCCAG AAGAGTTAGT TTCCAGGCAT CCATTTCCAG 1440 GTCCTGGCCT GGCAATCAGA GTAATATGTG CTGAAGAACC TTATATTTGT AAGGACTTTC 1500 CTGAAACCAA CAATATTTTG AAAATAGTAG CTGATTTTTC TGCAAGTGTT AAAAAGCCAC 5 1560 ATACCCTATT ACAGAGAGTC AAAGCCTGCA CAACAGAAGA GGATCAGGAG AAGCTGATGC 1620 AAATTACCAG TCTGCATTCA CTGAATGCCT TCTTGCTGCC AATTAAAACT GTAGGTGTGC 1680 AGGGTGACTG TCGTTCCTAC AGTTACGTGT GTGGAATCTC CAGTAAAGAT GAACCTGACT 1740 GGGAATCACT TATTTTTCTG GCTAGGCTTA TACCTCGCAT GTGTCACAAC GTTAACAGAG 1800 10 TTGTTTATAT ATTTGGCCCA CCAGTTAAAG AACCTCCTAC AGATGTTACT CCCACTTTCT 1860 TGACAACAGG GGTGCTCAGT ACTTTACGCC AAGCTGATTT TGAGGCCCAT AACATTCTCA 1920 GGGAGTCTGG GTATGCTGGG AAAATCAGCC AGATGCCGGT GATTTTGACA CCATTACATT 1980 TTGATCGGGA CCCACTTCAA AAGCAGCCTT CATGCCAGAG ATCTGTGGTT ATTCGAACCT 2040 TTATTACTAG TGACTTCATG ACTGGTATAC CTGCAACACC TGGCAATGAG ATCCCTGTAG 2100 15 AGGTGGTATT AAAGATGGTC ACTGAGATTA AGAAGATTCC TGGTATTTCT CGAATTATGT 2160 ATGACTTAAC ATCAAAGCCC CCAGGAACTA CTGAGTGGGA GTAATAAACT TC Seq ID NO: 365 Protein sequence Protein Accession #: AAA60331 20 21 ' 41 51 MALCNGDSKL ENAGGDLKDG HHHYEGAVVI LDAGAQYGKV IDRRVRELFV QSEIPPLETP 60 AFAIKEQGFR AIIISGGPNS VYAEDAPWFD PAIFTIGKPV LGICYGMQMM NKVFGGTVHK 120 25 KSVREDGVFN ISVDNTCSLF RGLQKEEVVL LTHGDSVDKV ADGFKVVARS GNIVAGIANE 180 SKKLYGAOFH PEVGLTENGK VILKNFLYDI AGCSGTFTVQ NRELECIREI KERVGTSKVL 240 VLLSGGVDST VCTALLNRAL NQEQVIAVHI DNGFMRKRES QSVEEALKKL GIQVKVINAA HSFYNGTTTL PISDEDRTPR KRISKTLNMT TSPEEKRKII GDTFVKIANE VIGEMNLKPE 300 EVFLAOGTLR PDLIESASLV ASGKAELIKT HHNDTELIRK LREEGKVIEP LKDFHKDEVR 30 ILGRELGLPE ELVSRHPFPG PGLAIRVICA EEPYICKDFP ETNNILKIVA DFSASVKKPH TLLQRVKACT TEEDQEKLMQ ITSLHSLNAF LLPIKTVGVQ GDCRSYSYVC GISSKDEPDW 540 ESLIFLARLI PRMCHNVNRV VYIFGPPVKE PPTDVTPTFL TTGVLSTLRQ ADFEAHNILR 600 ESGYAGKISQ MPVILTPLHF DRDPLQKQPS CQRSVVIRTF ITSDFMTGIP ATPGNEIPVE 660 VVLKMVTEIK KIPGISRIMY DLTSKPPGTT EWE 35 Seq ID NO: 366 DNA sequence Nucleic Acid Accession #: NM_004219 46-654 Coding sequence: 40 21 31 41 51 GCGGCCTCAG ATGAATGCGG CTGTTAAGAC CTGCAATAAT CCAGAATGGC TACTCTGATC 60 TATGTTGATA AGGAAAATGG AGAACCAGGC ACCCGTGTGG TTGCTAAGGA TGGGCTGAAG 120 45 CTGGGGTCTG GACCTTCAAT CAAAGCCTTA GATGGGAGAT CTCAAGTTTC AACACCACGT 180 TTTGGCAAAA CGTTCGATGC CCCACCAGCC TTACCTAAAG CTACTAGAAA GGCTTTGGGA 240 ACTGTCAACA GAGCTACAGA AAAGTCTGTA AAGACCAAGG GACCCCTCAA ACAAAAACAG 300 CCAAGCTTTT CTGCCAAAAA GATGACTGAG AAGACTGTTA AAGCAAAAAG CTCTGTTCCT 360 GCCTCAGATG ATGCCTATCC AGAAATAGAA AAATTCTTTC CCTTCAATCC TCTAGACTTT 420 50 GAGAGTTTTG ACCTGCCTGA AGAGCACCAG ATTGCGCACC TCCCCTTGAG TGGAGTGCCT 480 CTCATGATCC TTGACGAGGA GAGAGAGCTT GAAAAGCTGT TTCAGCTGGG CCCCCCTTCA CCTGTGAAGA TGCCCTCTCC ACCATGGGAA TCCAATCTGT TGCAGTCTCC TTCAAGCATT CTGTCGACCC TGGATGTTGA ATTGCCACCT GTTTGCTGTG ACATAGATAT TTAAATTTCT TAGTGCTTCA GAGTTTGTGT GTATTTGTAT TAATAAAGCA TTCTTCAACA GAAAAAAAA 55 AAAAAAA

Seq ID NO: 367 Protein sequence Protein Accession #: NP_004210 60 51 21 31 41 MATLIYVDKE NGEPGTRVVA KDGLKLGSGP SIKALDGRSQ VSTPRFGKTF DAPPALPKAT 60 120

RKALGTVNRA TEKSVKTKGP LKQKQPSFSA KKMTEKTVKA KSSVPASDDA YPEIEKFFPF NPLDFESFDL PEEHQIAHLP LSGVPLMILD EERELEKLFQ LGPPSPVKMP SPPWESNLLQ 65 SPSSILSTLD VELPPVCCDI DI

Seq ID NO: 368 DNA sequence Nucleic Acid Accession #: NM_000597 118-1104 Coding sequence:

70

21 31 ATTCGGGGCG AGGGAGGAGG AAGAAGCGGA GGAGGCGGCT CCCGCTCGCA GGGCCGTGCA 60 75 CCTGCCCGCC CGCCCGCTCG CTCGCTCGCC CGCCGCCGCC CGCCGAC CGCCAGCATG 120 CTGCCGAGAG TGGGCTGCCC CGCGCTGCCG CTGCCGCCGC CGCCGCTGCT GCCGCTGCTG 180 CCGCTGCTGC TGCTGCTACT GGGCGCGAGT GGCGGCGGCG GCGGGGCGCG CGCGGAGGTG 240 CTGTTCCGCT GCCCGCCCTG CACACCCGAG CGCCTGGCCG CCTGCGGGCC CCCGCCGGTT 300 GCGCCGCCCG CCGCGGTGGC CGCAGTGGCC GGAGGCGCCC GCATGCCATG CGCGGAGCTC 360 80 GTCCGGGAGC CGGGCTGCGG CTGCTGCTCG GTGTGCGCCC GGCTGGAGGG CGAGGCGTGC 420 GGCGTCTACA CCCCGCGCTG CGGCCAGGGG CTGCGCTGCT ATCCCCACCC GGGCTCCGAG 480 CTGCCCCTGC AGGCGCTGGT CATGGGCGAG GGCACTTGTG AGAAGCGCCG GGACGCCGAG 540 TATGGCGCCA GCCCGGAGCA GGTTGCAGAC AATGGCGATG ACCACTCAGA AGGAGGCCTG 600 GTGGAGAACC ACGTGGACAG CACCATGAAC ATGTTGGGCG GGGGAGGCAG TGCTGGCCGG 660 85 AAGCCCCTCA AGTCGGGTAT GAAGGAGCTG GCCGTGTTCC GGGAGAAGGT CACTGAGCAG 720 CACCGGCAGA TGGGCAAGGG TGGCAAGCAT CACCTTGGCC TGGAGGAGCC CAAGAAGCTG CGACCACCCC CTGCCAGGAC TCCCTGCCAA CAGGAACTGG ACCAGGTCCT GGAGCGGATC

```
WO 02/086443
       TCCACCATGC GCCTTCCGGA TGAGCGGGGC CCTCTGGAGC ACCTCTACTC CCTGCACATC
                                                                              900
       CCCAACTGTG ACAAGCATGG CCTGTACAAC CTCAAACAGT GCAAGATGTC TCTGAACGGG
                                                                              960
       CAGCGTGGGG AGTGCTGGTG TGTGAACCCC AACACCGGGA AGCTGATCCA GGGAGCCCCC
                                                                             1020
       ACCATCCGGG GGGACCCCGA GTGTCATCTC TTCTACAATG AGCAGCAGGA GGCTTGCGGG
                                                                             1080
 5
       GTGCACACCC AGCGGATGCA GTAGACCGCA GCCAGCCGGT GCCTGGCGCC CCTGCCCCCC
                                                                             1140
       GCCCCTCTCC AAACACCGGC AGAAAACGGA GAGTGCTTGG GTGGTGGGTG CTGGAGGATT
                                                                             1200
       TTCCAGTTCT GACACACGTA TTTATATTTG GAAAGAGACC AGCACCGAGC TCGGCACCTC
                                                                             1260
       CCCGGCCTCT CTCTTCCCAG CTGCAGATGC CACACCTGCT CCTTCTTGCT TTCCCCGGGG
                                                                             1320
       GAGGAAGGGG GTTGTGGTCG GGGAGCTGGG GTACAGGTTT GGGGAGGGGG AAGAGAAATT
                                                                             1380
10
       TTTATTTTG AACCCCTGTG TCCCTTTTGC ATAAGATTAA AGGAAGGAAA AGT
       Seq ID NO: 369 Protein sequence
       Protein Accession #:
                                  NP 000588
15
                                                     41
                                                                 51
       MLPRVGCPAL PLPPPPLLPL LPLLLLLGA SGGGGGARAE VLFRCPPCTP ERLAACGPPP
       VAPPAAVAAV AGGARMPCAE LVREPGCGCC SVCARLEGEA CGVYTPRCGQ GLRCYPHPGS
                                                                              120
       ELPLQALVMG EGTCEKRRDA EYGASPEQVA DNGDDHSEGG LVENHVDSTM NMLGGGGSAG
                                                                              180
20
       RKPLKSGMKE LAVFREKVTE QHRQMGKGGK HHLGLEEPKK LRPPPARTPC QQELDQVLER
                                                                              240
       ISTMRLPDER GPLEHLYSLH IPNCDKHGLY NLKQCKMSLN GQRGECWCVN PNTGKLIQGA
       PTIRGDPECH LFYNEOGEAC GVHTORMO
       Seq ID NO: 370 DNA sequence
25
       Nucleic Acid Accession #: NM_004264
       Coding sequence: 6-440
                                                                 51
                  11
                              21
                                          31
                                                     41
30
       GGAACATGGC GGATCGCTC ACGCAGCTTC AGGACGCTGT GAATTCGCTT GCAGATCAGT
                                                                               60
       TTTGTAATGC CATTGGAGTA TTGCAGCAAT GTGGTCCTCC TGCCTCTTTC AATAATATTC
                                                                              120
       AGACAGCAAT TAACAAAGAC CAGCCAGCTA ACCCTACAGA AGAGTATGCC CAGCTTTTTG
                                                                              180
       CAGCACTGAT TGCACGAACA GCAAAAGACA TTGATGTTTT GATAGATTCC TTACCCAGTG
                                                                              240
       AAGAATCTAC AGCTGCTTTA CAGGCTGCTA GCTTGTATAA GCTAGAAGAA GAAAACCATG
                                                                              300
35
       AAGCTGCTAC ATGTGTGGAG GATGTTGTTT ATCGAGGAGA CATGCTTCTG GAGAAGATAC
                                                                              360
       AAAGCGCACT TGCTGATATT GCACAGTCAC AGCTGAAGAC AAGAAGTGGT ACCCATAGCC
                                                                              420
       AGTCTCTTCC AGACTCATAG CATCAGTGGA TACCATGTGG CTGAGAAAAG AACTGTTTGA
                                                                              480
       GTGCCATTAA GAATTCTGCA TCAGACTTAG ATACAAGCCT TACCAACAAT TACAGAAACA
                                                                              540
       TTAAACACTA TGACACATTA CCTTTTTAGC TATTTTTAAT AGTCTTCTAT TTTCACTCTT
                                                                              600
40
       GATAAGCTTA TAAATCATGA TTGAATCAGC TTTAAAGCAT CATACCATCA TTTTTTAACT
                                                                              660
       GAGTGAAATT ATTAAGGCAT GTAATACATT AATGAACATA ATATAAGGAA ACATATGTAA
                                                                              720
       AATTCTGTTA TGACATAATT TATGTCTCCA TTTTGTTGTA TTGGCCAGTA CTTTTACAAT
                                                                              780
45
       Seg ID NO: 371 Protein sequence
                                  NP_004255
       Protein Accession #:
50
       MADRLTQLQD AVNSLADQFC NAIGVLQQCG PPASFNNIQT AINKDQPANP TEEYAQLFAA
                                                                               60
       LIARTAKDID VLIDSLPSEE STAALQAASL YKLEEENHEA ATCVEDVVYR GDMLLEKIQS
       ALADIAQSQL KTRSGTHSQS LPDS
       Seq ID NO: 372 DNA sequence
55
       Nucleic Acid Accession #: AJ271091
       Coding sequence: 1-1113
                                                                 51
60
       ATGGAGAATC AGGTGTTGAC GCCGCATGTC TACTGGGCTC AGCGACACCG CGAGCTATAT
                                                                               60
       CTGCGCGTGG AGCTGAGTGA CGTACAGAAC CCTGCCATCA GCATCACTGA AAACGTGCTG
                                                                              120
       CATTTCAAAG CTCAAGGACA TGGTGCCAAA GGAGACAATG TCTATGAATT TCACCTGGAG
                                                                              180
       TTCTTAGACC TTGTGAAACC AGAGCCTGTT TACAAACTGA CCCAGAGGCA GGTAAACATT
                                                                              240
       ACAGTACAGA AGAAAGTGAG TCAGTGGTGG GAGAGACTCA CAAAGCAGGA AAAGCGACCA
                                                                              300
65
       CTGTTTTTGG CTCCTGACTT TGATCGTTGG CTGGATGAAT CTGATGCGGA AATGGAGCTC
       AGAGCTAAGG AAGAAGAGCG CCTAAATAAA CTCCGACTGG AAAGCGAAGG CTCTCCTGAA
                                                                              420
       ACTCTTACAA ACTTAAGGAA AGGATACCTG TTTATGTATA ATCTTGTGCA ATTCTTGGGA
                                                                              480
       TTCTCCTGGA TCTTTGTCAA CCTGACTGTG CGATTCTGTA TCTTGGGAAA AGAGTCCTTT
                                                                              540
       TATGACACAT TCCATACTGT GGCTGACATG ATGTATTTCT GCCAGATGCT GGCAGTTGTG
70
       GAAACTATCA ATGCAGCAAT TGGAGTCACT ACGTCACCGG TGCTGCCTTC TCTGATCCAG
CTTCTTGGAA GAAATTTTAT TTTGTTTATC ATCTTTGGCA CCATGGAAGA AATGCAGAAC
                                                                              660
                                                                              720
       AAAGCTGTGG TTTTCTTTGT GTTTTATTTG TGGAGTGCAA TTGAAATTTT CAGGTACTCT
TTCTACATGC TGACGTGCAT TGACATGGAT TGGAAGGTGC TCACATGGCT TCGTTACACT
                                                                              780
                                                                              840
       CTGTGGATTC CCTTATATCC ACTGGGATGT TTGGCGGAAG CTGTCTCAGT GATTCAGTCC
                                                                              900
75
       ATTCCAATAT TCAATGAGAC CGGACGATTC AGTTTCACAT TGCCATATCC AGTGAAAATC
                                                                              960
       AAAGTTAGAT TTTCCTTTTT TCTTCAGATT TATCTTATAA TGATATTTTT AGGTTTATAC
                                                                             1020
       ATAAATTTTC GTCACCTTTA TAAACAGCGC AGACTGAAAA TGAGGGCAGG CGCAGTGGCT
                                                                             1080
       CATGCCTGTG ATCCCAGCGC TTTGGGAGGC TGA
80
       Seq ID NO: 373 Protein sequence
       Protein Accession #: CAB69070
                  11
                                          31
                                                                 51
                              21
                                                     41
85
       MENQVLTPHV YWAQRHRELY LRVELSDVQN PAISITENVL HFKAQGHGAK GDNVYEFHLE
                                                                               60
       FLDLVKPEPV YKLTQRQVNI TVQKKVSQWW ERLTKQEKRP LFLAPDFDRW LDESDAEMEL
                                                                              120
       RAKEERLNK LRLESEGSPE TLTNLRKGYL FMYNLVQFLG FSWIFVNLTV RFCILGKESF
                                                                              180
```

5	KAVVPFVFYL.	WSAIEIFRYS	ETINAAIGVT FYMLTCIDMD KVRFSFFLQI	WKVLTWLRYT	LWIPLYPLGC	LAEAVSVIQS	240 300 360
	Nucleic Aci		#: NW_0163	95			
10	Coding sequ	ience: 1-11:	21	31	41	51	
15	ATGGAGAATC CTGCGCGTGG CATTTCAAAG	AGGTGTTGAC AGCTGAGTGA CTCAAGGACA	GCCGCATGTC CGTACAGAAC TGGTGCCAAA AGAGCCTGTT	 TACTGGGCTC CCTGCCATCA GGAGACAATG	AGCGACACCG GCATCACTGA TCTATGAATT	CGAGCTATAT AAACGTGCTG TCACCTGGAG	60 120 180 240
••	ACAGTACAGA CTGTTTTTGG AGAGCTAAGG	AGAAAGTGAG CTCCTGACTT AAGAAGAGCG	TCAGTGGTGG TGATCGTTGG CCTAAATAAA	GAGAGACTCA CTGGATGAAT CTCCGACTGG	CAAAGCAGGA CTGATGCGGA AAAGCGAAGG	AAAGCGACCA AATGGAGCTC CTCTCCTGAA	300 360 420
20	ACTCTTACAA TTCTCCTGGA TATGACACAT GAAACTATCA	ACTTAAGGAA TCTTTGTCAA TCCATACTGT ATGCAGCAAT	AGGATACCTG CCTGACTGTG GGCTGACATG TGGAGTCACT	TTTATGTATA CGATTCTGTA ATGTATTTCT ACGTCACCGG	ATCTTGTGCA TCTTGGGAAA GCCAGATGCT TGCTGCCTTC	ATTCTTGGGA AGAGTCCTTT GGCAGTTGTG TCTGATCCAG	480 540 600 660
25	AAAGCTGTGG TTCTACATGC CTGTGGATTC	TTTTCTTTGT TGACGTGCAT CCTTATATCC	TTTGTTTATC GTTTTATTTG TGACATGGAT ACTGGGATGT	TGGAGTGCAA TGGAAGGTGC TTGGCGGAAG	TTGAAATTTT TCACATGGCT CTGTCTCAGT	CAGGTACTCT TCGTTACACT GATTCAGTCC	720 780 840 900
30	AAAGTTAGAT ATAAATTTTC	TTTCCTTTTT GTCACCTTTA	CGGACGATTC TCTTCAGATT TAAACAGCGC TTTGGGAGGC	TATCTTATAA AGACTGAAAA	TGATATTTTT	AGGTTTATAC	960 1020 1080
35	Seq ID NO: Protein Acc	375 Protein cession #:	n sequence NP_0574	179			
40	FLDLVKPEPV	YKLTQRQVNI	21 LRVELSDVQN TVQKKVSQWW	ERLTKQEKRP	LFLAPDFDRW	LDESDAEMEL	60 120 ·
45	YDTFHTVADM KAVVFFVFYL IPIFNETGRF	MYFCQMLAVV WSAIEIFRYS SFTLPYPVKI	TLTNLRKGYL ETINAAIGVT FYMLTCIDMD KVRFSFFLQI	TSPVLPSLIQ WKVLTWLRYT	LLGRNFILFI LWIPLYPLGC	IFGTMEEMQN LVEAVSVIQS	180 240 300 360
43	STKKKDLDGF	376 DNA se	mence				
50	Nucleic Act	id Accession uence:	1-270		41	51	
55	GTGAAACAAC TGCCAACCCA ATTCCAGAGC	CTTGCCAGCC AGGTGCCTGA CCTGCCAGCC	21 GCAGCCTTGC TCCACCCCAG GCCTGCCAC CAAGGTGCCT GCAGAAGTAA	GAACCATGCA CCCAAAGTGC GAGCCCTGCC	CTCAGCCTCA TCCCCAAAAC CTGAGCCCTG	GCAGCAGCAG CAAGGAGCCC CCAGCCCAAG	60 120 180 240
60		377 Protei: cession #:		78			
	1	11 	21 	31 	41 	51 	
65		TPPPQPQQQQ EPCPSTVTPA		EPCIPKTKEP	COPKVPEPCH	PKVPEPCQPK	60
70			quence n #: NM_0021 74-505	105			
75	CTACCTCGCT	AGCATGTCGG TCGCGCGCCG	21 GGCGTCTGTT GCCGCGGCAA GCCTCCAGTT	GACTGGCGGC CCCAGTGGGC	AAGGCCCGCG CGTGTACACC	CCAAGGCCAA GGCTGCTGCG	60 120 180
80	GGAGTACCTC GACGCGAATC GCTGCTGGGC GCTGCCCAAG CACCCAGGCC	ACCGCTGAGA ATCCCCCGCC GGCGTGACGA AAGACCAGCG TCCCAGGAGT	GCGTTGGCGC TCCTGGAGCT ACCTGCAGCT TCGCCCAGGG CCACCGTGGG ACTAAGAGGG	GGCGGGCAAT GGCCATCCGC AGGCGTCCTG GCCGAAGGCG CCCGCGCCGC	GCGGCCCGCG AACGACGAGG CCCAACATCC CCCTCGGGCG GGCCGGCCGC	ACAACAAGAA AGCTCAACAA AGGCCGTGCT GCAAGAAGGC CCCAGCTCCC	240 300 360 420 480 540
85	CATGCCACCA CTTCAGACTG TCGCCGCCCG CGGCCTCGGG	CAAAGGCCCT CGGGGCAAGC GCCTCGAGTC CCTGCCCTGT	TTTAAGGGCC GGGCCGCGGC CCCGCCCGCC	ACCACCGCCC TCCCTTCCCC CCCGCTCCCG CCCTCCGGTA	TCATGGAAAG TCCCCTCCCC TCCCGCACCG GGGTTCGGGC	AGCTGAGCCG TCGCCCGCCT CCTGCCGCGT CTTCCGGATG	600 660 720 780 840

		//080443					
				GTTCGTGACT TTCTGGAAGA			900
				GCCGGCGGCC			960 1020
_				CCCCGGCGTG			1080
5				GAGAGACGCG			1140
_				CACATCAGCT			1200
•				TGGTAACAGG CAGAGGCCTG			1260 1320
				ACGCGACTGG			1380
10				CTCAACTCGG			1440
				TGAGCCTCCG			1500
				TAGGCATTGG	GGAGTTTTAG	ATGGACTAAT	1560
	TTTATTAAAG	GATTGTTTTT	TTTT				
15	Sea ID NO:	379 Proteir	sequence				
	-	cession #:	_	96			
•	1	11	21	31	41	51	
20	MEGREKTECK	VDVKVK6D66	PAGLOFPUGE	VHRLLRKGHY	AERVGAGAPV	I YI.AAVI.EYI.T	60
20				DEBLNKLLGG			120
		SGGKKATQAS			~	-	
25	0 ID NO:	300 PNN	m.ongo				
43	-	380 DNA sec id Accession	- -	2			
_	Coding sequ		184-864				
20	1	11	21	31	41	51	
30) NOOCCERCOGG	CACAACCTCC	 CACCTCTCCC	GGTATCGAGG	 ACCCACCCCC	GOGGGGGGAC	60
				AGGAGCCGGC			120
	CAGGCGAGGC	GGTCGACGCT	CCTGAAAACT	TGCGCGCGCG	CTCGCGCCAC	TGCGCCCGGA	180
25	GCGATGAAGA	TGGTCGCGCC	CTGGACGCGG	TTCTACTCCA	ACAGCTGCTG	CTTGTGCTGC	240
35				GTCTGGTATC CCGGATCAGT			300 360
				GCCAACATGT			420
				ACTTACGGAG			480
40				TTTGACTTTG			540
40				CAGGAATACA			600
				AATCCTACCT GGTTACTTGA			660 . 720
				GATGTCCTGG			780
				GCCACTGTGA			840
45				AAGTGGGCGG			900
				ATTTCACTTT			960 1020
				ATTTAGATGT AGATTAACTG			1020
				CTAGGCATTG			1140
50	GGACCTAGAA	GTCTGCTTTT	GTACCTGCTG	GGCCCCAAAG	TTGGGCATTT	TTCTCTCTGT	1200
				CAAAAATAGA			1260
				AGGAATGTCA TTACAAGAAT			1320 1380
				GTGGTAAAGG			1440
55				AGCAGTGACC			1500
				GCCTCGTATG			1560
				CTCTTCTCCT			1620
				ATTGGTTCAA ACTTCTGCCT			1680 1740
60				TTGAACTTCC			1800
	TAAAATGTAA	ACATTTTCAG	AAAAATGAGG	ATTGCCTTCC	TTGTATGCGC	TTTTTACCTT	1860
						GCAACTCTCC	1920
		AAAAAAAAAA		TAAGTCGTTT	GCAATTAAAA	CAAGGIIIGC	1980
65	calancan	10000000000	754551				
	Seq ID NO:	381 Protein	n sequence				
	Protein Acc	cession #:	CAB6687	'6			
					41	51	
70	1 1	11	21 I	31 i	41	1	
, ,	MKMVAPWTRF	YSNSCCLCCH	VRTGTILLGV	WYLIINAVVL	LILLSALADP	DQYNFSSSEL	60
						DFALNMLVAI	
						YLISCVWNCY	180
75	KIINGKNSSD	VLVYVTSNDT	LAPPARADDY	TVNGAAKEPP	PPIVSA		
, 5	Seg ID NO:	382 DNA sec	mence				
		id Accession		10			
	Coding sequ	uence:	92-1774	l .			
80	,	11	21	21	41	51	
50	1	11 	21 1	31 1	41	Ĩ.	
	CAGATGCCAG		TTGCTCTTGG	TGGACGGGCC	CAGAGGAATT	CAGAGTTAAA	60
	CCTTGAGTGC	CTGCGTCCGT	GAGAATTCAG	CATGGAATGT	CTCTACTATT	TCCTGGGATT	120
85				TGCCGCCAAA			180
03				GCACAATCAA AGTGTGGAAG			240 300
				GGTCCTGACC			360
						/	

```
GGGCTCAAAT ATAACATTTG CGGTGAACCT GATATTCCCT AGATGCCAAA AGGAAGATGC
                                                                             420
      CAATGGCAAC ATAGTCTATG AGAAGAACTG CAGAAATGAG GCTGGTTTAT CTGCTGATCC
                                                                             480
      ATATGTTTAC AACTGGACAG CATGGTCAGA GGACAGTGAC GGGGAAAATG GCACCGGCCA
                                                                             540
      AAGCCATCAT AACGTCTTCC CTGATGGGAA ACCTTTTCCT CACCACCCCG GATGGAGAAG
                                                                             600
 5
                                                                             660
      ATGGAATTTC ATCTACGTCT TCCACACACT TGGTCAGTAT TTCCAGAAAT TGGGACGATG
      TTCAGTGAGA GTTTCTGTGA ACACAGCCAA TGTGACACTT GGGCCTCAAC TCATGGAAGT
                                                                             720
      GACTGTCTAC AGAAGACATG GACGGGCATA TGTTCCCATC GCACAAGTGA AAGATGTGTA
                                                                             780
       CGTGGTAACA GATCAGATTC CTGTGTTTGT GACTATGTTC CAGAAGAACG ATCGAAATTC
                                                                             840
      ATCCGACGAA ACCTTCCTCA AAGATCTCCC CATTATGTTT GATGTCCTGA TTCATGATCC
10
       TAGCCACTTC CTCAATTATT CTACCATTAA CTACAAGTGG AGCTTCGGGG ATAATACTGG
                                                                             960
       CCTGTTTGTT TCCACCAATC ATACTGTGAA TCACACGTAT GTGCTCAATG GAACCTTCAG
       CCTTAACCTC ACTGTGAAAG CTGCAGCACC AGGACCTTGT CCGCCACCGC CACCACCACC
                                                                            1080
       CAGACCTTCA AAACCCACCC CTTCTTTAGG ACCTGCTGGT GACAACCCCC TGGAGCTGAG
                                                                            1140
       TAGGATTCCT GATGAAAACT GCCAGATTAA CAGATATGGC CACTTTCAAG CCACCATCAC
                                                                            1200
15
      AATTGTAGAG GGAATCTTAG AGGTTAACAT CATCCAGATG ACAGACGTCC TGATGCCGGT
                                                                            1260
      GCCATGGCCT GAAAGCTCCC TAATAGACTT TGTCGTGACC TGCCAAGGGA GCATTCCCAC GGAGGTCTGT ACCATCATTT CTGACCCCAC CTGCGAGATC ACCCAGAACA CAGTCTGCAG
                                                                            1320
                                                                            1380
      CCCTGTGGAT GTGGATGAGA TGTGTCTGCT GACTGTGAGA CGAACCTTCA ATGGGTCTGG
GACGTACTGT GTGAACCTCA CCCTGGGGGA TGACACAAGC CTGGCTCTCA CGAGCACCCT
                                                                            1440
                                                                            ·1500
20
      GATTTCTGTT CCTGACAGAG ACCCAGCCTC GCCTTTAAGG ATGGCAAACA GTGCCCTGAT
                                                                            1560
       CTCCGTTGGC TGCTTGGCCA TATTTGTCAC TGTGATCTCC CTCTTGGTGT ACAAAAAACA
                                                                            1620
       CAAGGAATAC AACCCAATAG AAAATAGTCC TGGGAATGTG GTCAGAAGCA AAGGCCTGAG
                                                                            1680
       TGTCTTTCTC AACCGTGCAA AAGCCGTGTT CTTCCCGGGA AACCAGGAAA AGGATCCGCT
                                                                            1740
       ACTCAAAAAC CAAGAATTTA AAGGAGTTTC TTAAATTTCG ACCTTGTTTC TGAAGCTCAC
                                                                            1800
25
       TTTTCAGTGC CATTGATGTG AGATGTGCTG GAGTGGCTAT TAACCTTTTT TTCCTAAAGA
                                                                            1860
       TTATTGTTAA ATAGATATTG TGGTTTGGGG AAGTTGAATT TTTTATAGGT TAAATGTCAT
                                                                            1920
       TTTAGAGATG GGGAGAGGGA TTATACTGCA GGCAGCTTCA GCCATGTTGT GAAACTGATA
                                                                            1980
       AAAGCAACTT AGCAAGGCTT CTTTTCATTA TTTTTTATGT TTCACTTATA AAGTCTTAGG
                                                                            2040
       TAACTAGTAG GATAGAAACA CTGTGTCCCG AGAGTAAGGA GAGAAGCTAC TATTGATTAG
                                                                            2100
30
       AGCCTAACCC AGGTTAACTG CAAGAAGAGG CGGGATACTT TCAGCTTTCC ATGTAACTGT
                                                                            2160
       ATGCATAAAG CCAATGTAGT CCAGTTTCTA AGATCATGTT CCAAGCTAAC TGAATCCCAC
                                                                            2220
       TTCAATACAC ACTCATGAAC TCCTGATGGA ACAATAACAG GCCCAAGCCT GTGGTATGAT
                                                                            2280
       GTGCACACTT GCTAGACTCA GAAAAAATAC TACTCTCATA AATGGGTGGG AGTATTTTGG
                                                                            2340
       TGACAACCTA CTTTGCTTGG CTGAGTGAAG GAATGATATT CATATATTCA TTTATTCCAT
                                                                            2400
35
       GGACATTTAG TTAGTGCTTT TTATATACCA GGCATGATGC TGAGTGACAC TCTTGTGTAT
                                                                            2460
       ATTTCCAAAT TTTTGTATAG TCGCTGCACA TATTTGAAAT CATATATAA GACTTTCCAA
                                                                            2520
       AGATGAGGTC CCTGGTTTTT CATGGCAACT TGATCAGTAA GGATTTCACC TCTGTTTGTA
                                                                            2580
       ACTAAAACCA TCTACTATAT GTTAGACATG ACATTCTTTT TCTCTCCTTC CTGAAAAATA
                                                                            2640
       AAGTGTGGGA AGAGACAAAA AAAAAAAAA
40
       Seq ID NO: 383 Protein sequence
       Protein Accession #:
                                 NP_002501
45
       MECLYYFLGF LLLAARLPLD AAKRFHDVLG NERPSAYMRE HNQLNGWSSD ENDWNEKLYP
       VWKRGDMRWK NSWKGGRVQA VLTSDSPALV GSNITFAVNL IFPRCQKEDA NGNIVYEKNC
                                                                             120
       RNEAGLSADP YVYNWTAWSE DSDGENGTGQ SHHNVFPDGK PFPHHPGWRR WNFIYVFHTL
                                                                             180
       GOYFOKLGRC SVRVSVNTAN VTLGPQLMEV TVYRRHGRAY VPIAQVKDVY VVTDQIPVFV
                                                                             240
50
       TMFQKNDRNS SDETFLKDLP IMFDVLIHDP SHFLNYSTIN YKWSFGDNTG LFVSTNHTVN
                                                                             300
       HTYVLNGTFS LNLTVKAAAP GPCPPPPPPP RPSKPTPSLG PAGDNPLELS RIPDENCQIN
                                                                             360
       RYGHFQATIT IVEGILEVNI IQMTDVLMPV PWPESSLIDF VVTCQGSIPT EVCTIISDPT
                                                                             420
       CEITONTVCS PVDVDEMCLL TVRRTFNGSG TYCVNLTLGD DTSLALTSTL ISVPDRDPAS
                                                                             480
       PLRMANSALI SVGCLAIFVT VISLLVYKKH KEYNPIENSP GNVVRSKGLS VFLNRAKAVF
                                                                             540
55
       FPGNQEKDPL LKNQEFKGVS
       Seg ID NO: 384 DNA sequence
       Nucleic Acid Accession #: NM 001134
       Coding sequence:
                                 48-1877
60
                              21
       TCCATATTGT GCTTCCACCA CTGCCAATAA CAAAATAACT AGCAACCATG AAGTGGGTGG
                                                                              60
       AATCAATTTT TTTAATTTTC CTACTAAATT TTACTGAATC CAGAACACTG CATAGAAATG
                                                                             120
65
       AATATGGAAT AGCTTCCATA TTGGATTCTT ACCAATGTAC TGCAGAGATA AGTTTAGCTG
                                                                             180
       ACCTGGCTAC CATATTTTTT GCCCAGTTTG TTCAAGAAGC CACTTACAAG GAAGTAAGCA
                                                                             240
       AAATGGTGAA AGATGCATTG ACTGCAATTG AGAAACCCAC TGGAGATGAA CAGTCTTCAG
                                                                             300
       GGTGTTTAGA AAACCAGCTA CCTGCCTTTC TGGAAGAACT TTGCCATGAG AAAGAAATTT
                                                                             360
       TGGAGAAGTA CGGACATTCA GACTGCTGCA GCCAAAGTGA AGAGGGAAGA CATAACTGTT
                                                                             420
70
       TTCTTGCACA CAAAAAGCCC ACTCCAGCAT CGATCCCACT TTTCCAAGTT CCAGAACCTG
                                                                             480
       TCACAAGCTG TGAAGCATAT GAAGAAGACA GGGAGACATT CATGAACAAA TTCATTTATG
                                                                             540
       AGATAGCAAG AAGGCATCCC TTCCTGTATG CACCTACAAT TCTTCTTTGG GCTGCTCGCT
                                                                             600
       ATGACAAAAT AATTCCATCT TGCTGCAAAG CTGAAAATGC AGTTGAATGC TTCCAAACAA
                                                                             660
       AGGCAGCAAC AGTTACAAAA GAATTAAGAG AAAGCAGCTT GTTAAATCAA CATGCATGTG
                                                                             720
75
       CAGTAATGAA AAATTTTGGG ACCCGAACTT TCCAAGCCAT AACTGTTACT AAACTGAGTC
                                                                             780
       AGAAGTTTAC CAAAGTTAAT TTTACTGAAA TCCAGAAACT AGTCCTGGAT GTGGCCCATG
                                                                             840
       TACATGAGCA CTGTTGCAGA GGAGATGTGC TGGATTGTCT GCAGGATGGG GAAAAAATCA
                                                                             900
       TGTCCTACAT ATGTTCTCAA CAAGACACTC TGTCAAACAA AATAACAGAA TGCTGCAAAC
                                                                             960
       TGACCACGCT GGAACGTGGT CAATGTATAA TTCATGCAGA AAATGATGAA AAACCTGAAG
                                                                            1020
80
       GTCTATCTCC AAATCTAAAC AGGTTTTTAG GAGATAGAGA TTTTAACCAA TTTTCTTCAG
                                                                            1080
       GGGAAAAAA TATCTTCTTG GCAAGTTTTG TTCATGAATA TTCAAGAAGA CATCCTCAGC
                                                                            1140
       TTGCTGTCTC AGTAATTCTA AGAGTTGCTA AAGGATACCA GGAGTTATTG GAGAAGTGTT
                                                                            1200
       TCCAGACTGA AAACCCTCTT GAATGCCAAG ATAAAGGAGA AGAAGAATTA CAGAAATACA
                                                                            1260
       TCCAGGAGAG CCAAGCATTG GCAAAGCGAA GCTGCGGCCT CTTCCAGAAA CTAGGAGAAT
                                                                            1320
85
       ATTACTTACA AAATGCGTTT CTCGTTGCTT ACACAAAGAA AGCCCCCCAG CTGACCTCGT
                                                                            1380
       CGGAGCTGAT GGCCATCACC AGAAAAATGG CAGCCACAGC AGCCACTTGT TGCCAACTCA
                                                                            1440
       GTGAGGACAA ACTATTGGCC TGTGGCGAGG GAGCGGCTGA CATTATTATC GGACACTTAT
                                                                            1500
```

WO 02/086443 PCT/US02/12476 GTATCAGACA TGAAATGACT CCAGTAAACC CTGGTGTTGG CCAGTGCTGC ACTTCTTCAT ATGCCAACAG GAGGCCATGC TTCAGCAGCT TGGTGGTGGA TGAAACATAT GTCCCTCCTG 1620 CATTCTCTGA TGACAAGTTC ATTTTCCATA AGGATCTGTG CCAAGCTCAG GGTGTAGCGC 1680 TGCAAACGAT GAAGCAAGAG TTTCTCATTA ACCTTGTGAA GCAAAAGCCA CAAATAACAG 1740 AGGAACAACT TGAGGCTGTC ATTGCAGATT TCTCAGGCCT GTTGGAGAAA TGCTGCCAAG 1800 GCCAGGAACA GGAAGTCTGC TTTGCTGAAG AGGGACAAAA ACTGATTTCA AAAACTCGTG 1860 CTGCTTTGGG AGTTTAAATT ACTTCAGGGG AAGAGAAGAC AAAACGAGTC TTTCATTCGG 1920 TGTGAACTTT TCTCTTTAAT TTTAACTGAT TTAACACTTT TTGTGAATTA ATGAAATGAT 1980 AAAGACTTTT ATGTGAGATT TCCTTATCAC AGAAATAAAA TATCTCCAAA TG 10 Seq ID NO: 385 Protein sequence Protein Accession #: NP_001125 21 31 15 MKWVESIFLI FLLNFTESRT LHRNEYGIAS ILDSYQCTAB ISLADLATIF FAQFVQEATY 60 KEVSKMVKDA LTAIEKPTGD EQSSGCLENQ LPAFLEELCH EKEILEKYGH SDCCSQSEEG 120 RHNCFLAHKK PTPASIPLFQ VPEPVTSCEA YEEDRETFMN KFIYEIARRH PFLYAPTILL 180 WAARYDKIIP SCCKAENAVE CFQTKAATVT KELRESSLLN QHACAVMKNF GTRTFQAITV 240 20 TKLSQKPTKV NFTEIQKLVL DVAHVHEHCC RGDVLDCLQD GEKIMSYICS QQDTLSNKIT 300 ECCKLTTLER GQCIIHAEND EKPEGLSPNL NRFLGDRDFN QFSSGEKNIF LASFVHEYSR 360 RHPQLAVSVI LRVAKGYQEL LEKCFQTENP LECQDKGEEE LQKYIQESQA LAKRSCGLFQ 420 KLGEYYLQNA FLVAYTKKAP QLTSSELMAI TRKMAATAAT CCQLSEDKLL ACGEGAADII 480 IGHLCIRHEM TPVNPGVGQC CTSSYANRRP CFSSLVVDET YVPPAFSDDK FIFHKDLCQA 540 25 QGVALQTMKQ EFLINLVKQK PQITEEQLEA VIADFSGLLE KCCQGQEQEV CFAEEGQKLI 600 Seq ID NO: 386 DNA sequence Nucleic Acid Accession #: NM_002205.1 30 Coding sequence: 1..3149 ATGGGGAGCC GGACGCCAGA GTCCCCTCTC CACGCCGTGC AGCTGCGCTG GGGCCCCCGG 35 CGCCGACCCC CGCTSSTGCC GCTGCTGTTG CTGCTSSTGC CGCCGCCACC CAGGGTCGGG 120 GGCTTCAACT TAGACGCGGA GGCCCCAGCA GTACTCTCGG GGCCCCCGGG CTCCTTCTTC 180 GGATTCTCAG TGGAGTTTTA CCGGCCGGGA ACAGACGGGG TCAGTGTGCT GGTGGGAGCA 240 CCCAAGGCTA ATACCAGCCA GCCAGGAGTG CTGCAGGGTG GTGCTGTCTA CCTCTGTCCT 300 TEGGGTGCCA GCCCCACACA GTGCACCCCC ATTGAATTTG ACAGCAAAGG CTCTCGGCTC 360 40 CTGGAGTCCT CACTGTCCAG CTCAGAGGGA GAGGAGCCTG TGGAGTACAA GTCCTTGCAG 420 TGGTTGGGG CAACAGTTCG AGCCCATGGC TCCTCCATCT TGGCATGCGC TCCACTGTAC AGCTGGCGCA CAGAGAAGGA GCCACTGAGC GACCCCGTGG GCACCTGCTA CCTCTCCACA 480 540 GATAACTTCA CCCGAATTCT GGAGTATGCA CCCTGCCGCT CAGATTTCAG CTGGGCAGCA 600 GGACAGGGTT ACTGCCAAGG AGGCTTCAGT GCCGAGTTCA CCAAGACTGG CCGTGTGGTT 660 45 TTAGGTGGAC CAGGAAGCTA TTTCTGGCAA GGCCAGATCC TGTCTGCCAC TCAGGAGCAG 720 ATTGCAGAAT CTTATTACCC CGAGTACCTG ATCAACCTGG TTCAGGGGCA GCTGCAGACT 780 CGCCAGGCCA GTTCCATCTA TGATGACAGC TACCTAGGAT ACTCTGTGGC TGTTGGTGAA 840 TTCAGTGGTG ATGACACAGA AGACTTTGTT GCTGGTGTGC CCAAAGGGAA CCTCACTTAC 900 GGCTATGTCA CCATCCTTAA TGGCTCAGAC ATTCGATCCC TCTACAACTT CTCAGGGGAA 960 50 CAGATGGCCT CCTACTTTGG CTATGCAGTG GCCGCCACAG ACGTCAATGG GGACGGGCTG 1020 GATGACTTGC TGGTGGGGGC ACCCCTGCTC ATGGATCGGA CCCCTGACGG GCGGCCTCAG GAGGTGGGCA GGGTCTACGT CTACCTGCAG CACCCAGCCG GCATAGAGCC CACGCCCACC 1140 CTTACCCTCA CTGGCCATGA TGAGTTTGGC CGATTTGGCA GCTCCTTGAC CCCCCTGGGG 1200 GACCTGGACC AGGATGGCTA CAATGATGTG GCCATCGGGG CTCCCTTTGG TGGGGAGACC 1260 55 CAGCAGGGAG TAGTGTTTGT ATTTCCTGGG GGCCCAGGAG GGCTGGGCTC TAAGCCTTCC 1320 CAGGTTCTGC AGCCCCTGTG GGCAGCCAGC CACACCCCAG ACTTCTTTGG CTCTGCCCTT 1380 CGAGGAGGCC GAGACCTGGA TGGCAATGGA TATCCTGATC TGATTGTGGG GTCCTTTGGT 1440 GTGGACAAGG CTGTGGTATA CAGGGGCCGC CCCATCGTGT CCGCTAGTGC CTCCCTCACC 1500 ATCTTCCCCG CCATGTTCAA CCCAGAGGAG CGGAGCTGCA GCTTAGAGGG GAACCCTGTG 1560 60 GCCTGCATCA ACCTTAGCTT CTGCCTCAAT GCTTCTGGAA AACACGTTGC TGACTCCATT 1620 GGTTTCACAG TGGAACTTCA GCTGGACTGG CAGAAGCAGA AGGGAGGGGT ACGGCGGGCA 1680 CTGTTCCTGG CCTCCAGGCA GGCAACCCTG ACCCAGACCC TGCTCATCCA GAATGGGGCT 1740 CGAGAGGATT GCAGAGAGAT GAAGATCTAC CTCAGGAACG AGTCAGAATT TCGAGACAAA 1800 CTCTCGCCGA TTCACATCGC TCTCAACTTC TCCTTGGACC CCCAAGCCCC AGTGGACAGC 1860 65 CACGGCCTCA GGCCAGCCCT ACATTATCAG AGCAAGAGCC GGATAGAGGA CAAGGCTCAG 1920 ATCTTGCTGG ACTGTGGAGA AGACAACATC TGTGTGCCTG ACCTGCAGCT GGAAGTGTTT 1980 GGGGAGCAGA ACCATGTGTA CCTGGGTGAC AAGAATGCCC TGAACCTCAC TTTCCATGCC 2040 CAGAATGTGG GTGAGGGTGG CGCCTATGAG GCTGAGCTTC GGGTCACCGC CCCTCCAGAG 2100 GCTGAGTACT CAGGACTCGT CAGACACCCA GGGAACTTCT CCAGCCTGAG CTGTGACTAC 2160 70 TTTGCCGTGA ACCAGAGCCG CCTGCTGGTG TGTGACCTGG GCAACCCCAT GAAGGCAGGA 2220

GCCAGTCTGT GGGGTGGCCT TCGGTTTACA GTCCCTCATC TCCGGGACAC TAAGAAAACC

ATCCAGTTTG ACTTCCAGAT CCTCAGCAAG AATCTCAACA ACTCGCAAAG CGACGTGGTT

TCCTTTCGGC TCTCCGTGGA GGCTCAGGCC CAGGTCACCC TGAACGGTGT CTCCAAGCCT

GAGGCAGTGC TATTCCCAGT AAGCGACTGG CATCCCCGAG ACCAGCCTCA GAAGGAGGAG

GACCTGGGAC CTGCTGTCCA CCATGTCTAT GAGCTCATCA ACCAAGGCCC CAGCTCCATT

AGCCAGGGTG TGCTGGAACT CAGCTGTCCC CAGGCTCTGG AAGGTCAGCA GCTCCTATAT

GTGACCAGAG TTACGGGACT CAACTGCACC ACCAATCACC CCATTAACCC AAAGGGCCTG

GAGTTGGATC CCGAGGGTTC CCTGCACCAC CAGCAAAAAC GGGAAGCTCC AAGCCGCAGC

TCTGCTTCCT CGGGACCTCA GATCCTGAAA TGCCCGGAGG CTGAGTGTTT CAGGCTGCGC

TGTGAGCTCG GGCCCCTGCA CCAACAAGAG AGCCAAAGTC TGCAGTTGCA TTTCCGAGTC TGGGCCAAGA CTTTCTTGCA GCGGGAGCAC CAGCCATTTA GCCTGCAGTG TGAGGCTGTG

TACAAAGCCC TGAAGATGCC CTACCGAATC CTGCCTCGGC AGCTGCCCCA AAAAGAGCGT

CAGGTGGCCA CAGCTGTGCA ATGGACCAAG GCAGAAGGCA GCTATGGCGT CCCACTGTGG

ATCATCATCC TAGCCATCCT GTTTGGCCTC CTGCTCCTAG GTCTACTCAT CTACATCCTC

TACAAGCTTG GATTCTTCAA ACGCTCCCTC CCATATGGCA CCGCCATGGA AAAAGCTCAG

CTCAAGCCTC CAGCCACCTC TGATGCCTGA

75

80

85

2280

2340

2400

2460

2520

2580

2640

2700

2760

2820

2880

2940

Seq ID NO: 387 Protein sequence Protein Accession #: NP_002196.1

```
5
                                        31
                  11
      MGSRTPESPL HAVOLRWGPR RRPPLLPLLL LLLPPPPRVG GFNLDAEAPA VLSGPPGSFF
                                                                            60
      GFSVEFYRPG TDGVSVLVGA PKANTSQPGV LQGGAVYLCP WGASPTQCTP IEFDSKGSRL
                                                                           120
      LESSLSSEG EEPVEYKSLQ WFGATVRAHG SSILACAPLY SWRTEKEPLS DPVGTCYLST
                                                                           180
      DNFTRILEYA PCRSDFSWAA GQGYCQGGFS AEFTKTGRVV LGGPGSYFWQ GQILSATOEO
10
                                                                           240
       IAESYYPEYL INLVQGQLQT RQASSIYDDS YLGYSVAVGE FSGDDTEDFV AGVPKGNLTY
                                                                           300
      GYVTILNGSD IRSLYNFSGE QMASYFGYAV AATDVNGDGL DDLLVGAPLL MDRTPDGRPQ
                                                                           360
      EVGRVYVYLQ HPAGIEPTPT LTLTGHDEFG RFGSSLTPLG DLDQDGYNDV AIGAPFGGET
                                                                           420
      QQGVVFVFPG GPGGLGSKPS QVLQPLWAAS HTPDFFGSAL RGGRDLDGNG YPDLIVGSFG
                                                                           480
15
       VDKAVVYRGR PIVSASASLT IFPAMFNPEE RSCSLEGNPV ACINLSFCLN ASGKHVADSI
                                                                           540
       GFTVELQLDW QKQKGGVRRA LFLASRQATL TQTLLIQNGA REDCREMKIY LRNESEFRDK
                                                                           600
      LSPIHIALNF SLDPQAPVDS HGLRPALHYQ SKSRIEDKAQ ILLDCGEDNI CVPDLQLEVF
                                                                           660
      GEONHVYLGD KNALNLTFHA ONVGEGGAYE AELRVTAPPE AEYSGLVRHP GNFSSLSCDY
                                                                           720
      PAVNQSRLLV CDLGNPMKAG ASLWGGLRFT VPHLRDTKKT IQFDFQILSK NLNNSQSDVV
20
       SFRLSVEAQA QVTLNGVSKP EAVLFPVSDW HPRDQPQKEE DLGPAVHHVY ELINQGPSSI
                                                                           840
      SOGVLELSCP QALEGOOLLY VTRVTGLNCT TNHPINPKGL ELDPEGSLHH QQKREAPSRS
                                                                           900
       SASSGPQILK CPEAECFRLR CELGPLHQQE SQSLQLHFRV WAKTFLQREH QPFSLQCEAV
                                                                           960
      YKALKMPYRI LPRQLPQKER QVATAVQWTK AEGSYGVPLW IIILAILFGL LLLGLLIYIL
                                                                          1020
      YKLGFFKRSL PYGTAMEKAO LKPPATSDA
25
       Seq ID NO: 388 DNA sequence
      Nucleic Acid Accession #: NM_002425
      Coding sequence: 26..1453
30
                                                   41
                                                              51
                  11
                             21
      AAAGAAGGTA AGGGCAGTGA GAATGATGCA TCTTGCATTC CTTGTGCTGT TGTGTCTGCC
                                                                            60
      AGTCTGCTCT GCCTATCCTC TGAGTGGGGC AGCAAAAGAG GAGGACTCCA ACAAGGATCT
                                                                           120
      TGCCCAGCAA TACCTAGAAA AGTACTACAA CCTCGAAAAG GATGTGAAAC AGTTTAGAAG
                                                                           180
35
       AAAGGACAGT AATCTCATTG TTAAAAAAAT CCAAGGAATG CAGAAGTTCC TTGGGTTGGA
                                                                           240
      GGTGACAGGG AAGCTAGACA CTGACACTCT GGAGGTGATG CGCAAGCCCA GGTGTGGAGT
      TCCTGACGTT GGTCACTTCA GCTCCTTTCC TGGCATGCCG AAGTGGAGGA AAACCCACCT
                                                                           360
      TACATACAGG ATTGTGAATT ATACACCAGA TTTGCCAAGA GATGCTGTTG ATTCTGCCAT
                                                                           420
       TGAGAAAGCT CTGAAAGTCT GGGAAGAGGT GACTCCACTC ACATTCTCCA GGCTGTATGA
                                                                           480
40
      AGGAGAGGCT GATATAATGA TCTCTTTCGC AGTTAAAGAA CATGGAGACT TTTACTCTTT
                                                                           540
       TGATGGCCCA GGACACAGTT TGGCTCATGC CTACCCACCT GGACCTGGGC TTTATGGAGA
                                                                           600
      TATTCACTTT GATGATGATG AAAAATGGAC AGAAGATGCA TCAGGCACCA ATTTATTCCT
                                                                           660
       CGTTGCTGCT CATGAACTTG GCCACTCCCT GGGGCTCTTT CACTCAGCCA ACACTGAAGC
                                                                           720
      TTTGATGTAC CCACTCTACA ACTCATTCAC AGAGCTCGCC CAGTTCCGCC TTTCGCAAGA
                                                                           780
45
       TGATGTGAAT GGCATTCAGT CTCTCTACGG ACCTCCCCCT GCCTCTACTG AGGAACCCCT
                                                                           840
      GGTGCCCACA AAATCTGTTC CTTCGGGATC TGAGATGCCA GCCAAGTGTG ATCCTGCTTT
                                                                           900
       GTCCTTCGAT GCCATCAGCA CTCTGAGGGG AGAATATCTG TTCTTTAAAG ACAGATATTT
                                                                           960
       TTGGCGAAGA TCCCACTGGA ACCCTGAACC TGAATTTCAT TTGATTTCTG CATTTTGGCC
                                                                          1020
       CTCTCTTCCA TCATATTTGG ATGCTGCATA TGAAGTTAAC AGCAGGGACA CCGTTTTTAT
                                                                          1080
50
       TTTTAAAGGA AATGAGTTCT GGGCCATCAG AGGAAATGAG GTACAAGCAG GTTATCCAAG
                                                                          1140
       AGGCATCCAT ACCCTGGGTT TTCCTCCAAC CATAAGGAAA ATTGATGCAG CTGTTTCTGA
                                                                          1200
       CAAGGAAAAG AAGAAAACAT ACTTCTTTGC AGCGGACAAA TACTGGAGAT TTGATGAAAAA
                                                                          1260
       TAGCCAGTCC ATGGAGCAAG GCTTCCCTAG ACTAATAGCT GATGACTTTC CAGGAGTTGA
                                                                          1320
       GCCTAAGGTT GATGCTGTAT TACAGGCATT TGGATTTTTC TACTTCTTCA GTGGATCATC
                                                                          1380
55
       ACAGTTTGAG TTTGACCCCA ATGCCAGGAT GGTGACACAC ATATTAAAGA GTAACAGCTG
                                                                          1440
       GTTACATTGC TAGGCGAGAT AGGGGGAAGA CAGATATGGG TGTTTTTAAT AAATCTAATA
                                                                          1500
       ATTATTCATC TAATGTATTA TGAGCCAAAA TGGTTAATTT TTCCTGCATG TTCTGTGACT
                                                                          1560
       GAAGAAGATG AGCCTTGCAG ATATCTGCAT GTGTCATGAA GAATGTTTCT GGAATTCTTC
                                                                          1620
       ACTTGCTTTT GAATTGCACT GAACAGAATT AAGAAATACT CATGTGCAAT AGGTGAGAGA
60
       ATGTATTTC ATAGATGTGT TATTACTTCC TCAATAAAAA GTTTTATTTT GGGCCTGTTC
                                                                          1740
       Seq ID NO: 389 Protein sequence
       Protein Accession #: NP_002416
65
                                        31
       MHLAFLVLLC LPVCSAYPLS GAAKEEDSNK DLAQQYLEKY YNLEKDVKQF RRKDSNLIVK
       KIQGMQKFLG LEVTGKLDTD TLEVMRKPRC GVPDVGHFSS FPGMPKWRKT HLTYRIVNYT
                                                                           120
70
       PDLPRDAVDS AIEKALKVWE EVTPLTFSRL YEGEADIMIS FAVKEHGDFY SFDGPGHSLA
                                                                           180
      HAYPPGPGLY GDIHFDDDEK WTEDASGTNL FLVAAHELGH SLGLFHSANT EALMYPLYNS
                                                                           240
       FTELAQFRLS QDDVNGIQSL YGPPPASTEE PLVPTKSVPS GSEMPAKCDP ALSFDAISTL
                                                                           300
      RGEYLFFKDR YFWRRSHWNP EPEFHLISAF WPSLPSYLDA AYEVNSRDTV FIFKGNEFWA
                                                                           360
       IRGNEVQAGY PRGIHTLGFP PTIRKIDAAV SDKEKKKTYF FAADKYWRFD ENSOSMEOGF
                                                                           420
75
      PRLIADDFPG VEPKVDAVLO AFGFFYFFSG SSQFEFDPNA RMVTHILKSN SWLHC
       Seq ID NO: 390 DNA sequence
      Nucleic Acid Accession #: NM_002421.2
      Coding sequence: 1..1409
80
                                                              51
      ATGCACAGCT TTCCTCCACT GCTGCTGCTG CTGTTCTGGG GTGTGGTGTC ACACAGCTTC
                                                                            60
       CCAGCGACTC TAGAAACACA AGAGCAAGAT GTGGACTTAG TCCAGAAATA CCTGGAAAAA
                                                                           120
85
       TACTACAACC TGAAGAATGA TGGGAGGCAA GTTGAAAAGC GGAGAAATAG TGGCCCAGTG
                                                                           180
       GTTGAAAAAT TGAAGCAAAT GCAGGAATTC TTTGGGCTGA AAGTGACTGG GAAACCAGAT
                                                                           240
       GCTGAAACCC TGAAGGTGAT GAAGCAGCCC AGATGTGGAG TGCCTGATGT GGCTCAGTTT
                                                                           300
```

```
GTCCTCACTG AGGGGAACCC TCGCTGGGAG CAAACACATC TGACCTACAG GATTGAAAAT
                                                                            360
       TACACGCCAG ATTTGCCAAG AGCAGATGTG GACCATGCCA TTGAGAAAGC CTTCCAACTC
                                                                            420
       TGGAGTAATG TCACACCTCT GACATTCACC AAGGTCTCTG AGGGTCAAGC AGACATCATG
                                                                            480
       ATATCTTTTG TCAGGGGAGA TCATCGGGAC AACTCTCCTT TTGATGGACC TGGAGGAAAT
                                                                            540
 5
       CTTGCTCATG CTTTTCAACC AGGCCCAGGT ATTGGAGGGG ATGCTCATTT TGATGAAGAT
                                                                            600
       GAAAGGTGGA CCAACAATTT CAGAGAGTAC AACTTACATC GTGTTGCGGC TCATGAACTC
                                                                            660
       GGCCATTCTC TTGGACTCTC CCATTCTACT GATATCGGGG CTTTGATGTA CCCTAGCTAC
                                                                            720
       ACCTTCAGTG GTGATGTTCA GCTAGCTCAG GATGACATTG ATGGCATCCA AGCCATATAT
                                                                            780
       GGACGTTCCC AAAATCCTGT CCAGCCCATC GGCCCACAAA CCCCAAAAGC ATGTGACAGT
10
       AAGCTAACCT TTGATGCTAT AACTACGATT CGGGGAGAAG TGATGTTCTT TAAAGACAGA
       TTCTACATGC GCACAAATCC CTTCTACCCG GAAGTTGAGC TCAATTTCAT TTCTGTTTTC
       TEGCCACAAC TECCAAATEG ECTTEAAGCT ECTTACEAAT TTECCEACAE AGATEAAGTC
                                                                           1020
       CGGTTTTTCA AAGGGAATAA GTACTGGGCT GTTCAGGGAC AGAATGTGCT ACACGGATAC
                                                                           1080
       CCCAAGGACA TCTACAGCTC CTTTGGCTTC CCTAGAACTG TGAAGCATAT CGATGCTGCT
                                                                           1140
       CTTTCTGAGG AAAACACTGG AAAAACCTAC TTCTTTGTTG CTAACAAATA CTGGAGGTAT
15
                                                                           1200
       GATGAATATA AACGATCTAT GGATCCAGGT TATCCCAAAA TGATAGCACA TGACTTTCCT
                                                                           1260
       GGAATTGGCC ACAAAGTTGA TGCAGTTTTC ATGAAAGATG GATTTTTCTA TTTCTTTCAT
                                                                          1320
       GGAACAAGAC AATACAAATT TGATCCTAAA ACGAAGAGAA TTTTGACTCT CCAGAAAGCT
                                                                          1380
       AATAGCTGGT TCAACTGCAG GAAAAATTAG
20
       Seq ID NO: 391 Protein sequence
                                 NP_002412.1
       Protein Accession #:
25
       MHSFPPLLLL LFWGVVSHSF PATLETQEQD VDLVQKYLEK YYNLKNDGRQ VEKRRNSGPV
       VEKLKOMOEF FGLKVTGKPD AETLKVMKQP RCGVPDVAQF VLTEGNPRWE QTHLTYRIEN
                                                                            120
       YTPDLPRADV DHAIEKAFQL WSNVTPLTFT KVSEGQADIM ISFVRGDHRD NSPFDGPGGN
                                                                            180
       LAHAFQPGPG IGGDAHFDED ERWINNFREY NLHRVAAHEL GHSLGLSHST DIGALMYPSY
                                                                            240
30
       TFSGDVOLAQ DDIDGIQAIY GRSQNPVQPI GPQTPKACDS KLTFDAITTI RGEVMPFKDR
                                                                            300
       FYMRTNPFYP EVELNFISVF WPQLPNGLEA AYEFADRDEV RFFKGNKYWA VQGQNVLHGY
                                                                            360
       PKDIYSSFGF PRTVKHIDAA LSEENTGKTY FFVANKYWRY DEYKRSMDPG YPKMIAHDFP
       GIGHKVDAVF MKDGFFYFFH GTRQYKFDPK TKRILTLQKA NSWFNCRKN
35
       Seq ID NO: 392 DNA sequence
       Nucleic Acid Accession #: NM 002421.2
       Coding sequence: 1..1409
                  11
                             21
                                         31
                                                               51
40
       ATGCACAGCT TTCCTCCACT GCTGCTGCTG CTGTTCTGGG GTGTGGTGTC ACACAGCTTC
                                                                             60
       CCAGCGACTC TAGAAACACA AGAGCAAGAT GTGGACTTAG TCCAGAAATA CCTGGAAAAA
                                                                            120
       TACTACAACC TGAAGAATGA TGGGAGGCAA GTTGAAAAGC GGAGAAATAG TGGCCCAGTG
                                                                            180
       GTTGAAAAAT TGAAGCAAAT GCAGGAATTC TTTGGGCTGA AAGTGACTGG GAAACCAGAT
                                                                            240
45
       GCTGAAACCC TGAAGGTGAT GAAGCAGCCC AGATGTGGAG TGCCTGATGT GGCTCAGTTT
                                                                            300
       GTCCTCACTG AGGGGAACCC TCGCTGGGAG CAAACACATC TGACCTACAG GATTGAAAAT
                                                                            360
       TACACGCCAG ATTTGCCAAG AGCAGATGTG GACCATGCCA TTGAGAAAGC CTTCCAACTC
                                                                            420
       TGGAGTAATG TCACACCTCT GACATTCACC AAGGTCTCTG AGGGTCAAGC AGACATCATG
                                                                            480
       ATATCTTTTG TCAGGGGAGA TCATCGGGAC AACTCTCCTT TTGATGGACC TGGAGGAAAT
                                                                            540
50
       CTTGCTCATG CTTTTCAACC AGGCCCAGGT ATTGGAGGGG ATGCTCATTT TGATGAAGAT
                                                                            600
       GAAAGGTGGA CCAACAATTT CAGAGAGTAC AACTTACATC GTGTTGCGGC TCATGCCCTC
                                                                            660
       GGCCATTCTC TTGGACTCTC CCATTCTACT GATATCGGGG CTTTGATGTA CCCTAGCTAC
                                                                            720
       ACCTTCAGTG GTGATGTTCA GCTAGCTCAG GATGACATTG ATGGCATCCA AGCCATATAT
                                                                            780
       GGACGTTCCC AAAATCCTGT CCAGCCCATC GGCCCACAAA CCCCAAAAGC ATGTGACAGT
                                                                            840
55
       AAGCTAACCT TTGATGCTAT AACTACGATT CGGGGAGAAG TGATGTTCTT TAAAGACAGA
                                                                            900
       TTCTACATGC GCACAAATCC CTTCTACCCG GAAGTTGAGC TCAATTTCAT TTCTGTTTTC
                                                                            960
       TGGCCACAAC TGCCAAATGG GCTTGAAGCT GCTTACGAAT TTGCCGACAG AGATGAAGTC
                                                                           1020
       CGGTTTTTCA AAGGGAATAA GTACTGGGCT GTTCAGGGAC AGAATGTGCT ACACGGATAC
       CCCAAGGACA TCTACAGCTC CTTTGGCTTC CCTAGAACTG TGAAGCATAT CGATGCTGCT
                                                                           1140
60
       CTTTCTGAGG AAAACACTGG AAAAACCTAC TTCTTTGTTG CTAACAAATA CTGGAGGTAT
                                                                           1200
       GATGAATATA AACGATCTAT GGATCCAGGT TATCCCAAAA TGATAGCACA TGACTTTCCT
                                                                           1260
       GGAATTGGCC ACAAAGTTGA TGCAGTTTTC ATGAAAGATG GATTTTCTA TTTCTTTCAT
                                                                           1320
       GGAACAAGAC AATACAAATT TGATCCTAAA ACGAAGAGAA TTTTGACTCT CCAGAAAGCT
                                                                          1380
       AATAGCTGGT TCAACTGCAG GAAAAATTAG
65
       Seg ID NO: 393 Protein seguence
       Protein Accession #:
                                 NP_002412.1
70
                             21
                                         31
                                                               51
       MHSFPPLLLL LFWGVVSHSF PATLETQEQD VDLVQKYLEK YYNLKNDGRQ VEKRRNSGPV
                                                                             60
       VEKLKOMOEF FGLKVTGKPD AETLKVMKQP RCGVPDVAQF VLTEGNPRWE QTHLTYRIEN
                                                                            120
       YTPDLPRADV DHAIEKAFQL WSNVTPLTFT KVSEGQADIM ISFVRGDHRD NSPFDGPGGN
                                                                            180
75
       LAHAFQPGPG IGGDAHFDED ERWTNNFREY NLHRVAAHAL GHSLGLSHST DIGALMYPSY
                                                                            240
       TFSGDVQLAQ DDIDGIQAIY GRSQNPVQPI GPQTPKACDS KLTFDAITTI RGEVMFFKDR
                                                                            300
       FYMRTNPFYP EVELNFISVF WPQLPNGLEA AYEFADRDEV RFFKGNKYWA VQGQNVLHGY
                                                                            360
       PKDIYSSFGF PRTVKHIDAA LSEENTGKTY FFVANKYWRY DEYKRSMDPG YPKMIAHDFP
                                                                            420
       GIGHKVDAVF MKDGFFYFFH GTRQYKFDPK TKRILTLQKA NSWFNCRKN
80
       Seq ID NO: 394 DNA sequence
       Nucleic Acid Accession #: NM_014331.2
       Coding sequence: 1..1506
85
```

```
ATGGTCAGAA AGCCTGTTGT GTCCACCATC TCCAAAGGAG GTTACCTGCA GGGAAATGTT
                                                                             60
       AACGGGAGGC TGCCTTCCCT GGGCAACAAG GAGCCACCTG GGCAGGAGAA AGTGCAGCTG
                                                                             120
       AAGAGGAAAG TCACTTTACT GAGGGGAGTC TCCATTATCA TTGGCACCAT CATTGGAGCA
                                                                             180
       GGAATCTTCA TCTCTCCTAA GGGCGTGCTC CAGAACACGG GCAGCGTGGG CATGTCTCTG
                                                                             240
 5
       ACCATCTGGA CGGTGTGTGG GGTCCTGTCA CTATTTGGAG CTTTGTCTTA TGCTGAATTG
                                                                             300
       GGAACAACTA TAAAGAAATC TGGAGGTCAT TACACATATA TTTTGGAAGT CTTTGGTCCA
                                                                             360
       TTACCAGCTT TTGTACGAGT CTGGGTGGAA CTCCTCATAA TACGCCCTGC AGCTACTGCT
                                                                             420
       GTGATATCCC TGGCATTTGG ACGCTACATT CTGGAACCAT TTTTTATTCA ATGTGAAATC
                                                                             480
       CCTGAACTTG CGATCAAGCT CATTACAGCT GTGGGCATAA CTGTAGTGAT GGTCCTAAAT
                                                                             540
10
       AGCATGAGTG TCAGCTGGAG CGCCCGGATC CAGATTTTCT TAACCTTTTG CAAGCTCACA
                                                                             600
       GCAATTCTGA TAATTATAGT CCCTGGAGTT ATGCAGCTAA TTAAAGGTCA AACGCAGAAC
                                                                             660
       TTTAAAGACG CGTTTTCAGG AAGAGATTCA AGTATTACGC GGTTGCCACT GGCTTTTTAT
                                                                             720
       TATGGAATGT ATGCATATGC TGGCTGGTTT TACCTCAACT TTGTTACTGA AGAAGTAGAA
                                                                             780
       AACCCTGAAA AAACCATTCC CCTTGCAATA TGTATATCCA TGGCCATTGT CACCATTGGC
                                                                             840
15
       TATGTGCTGA CAAATGTGGC CTACTTTACG ACCATTAATG CTGAGGAGCT GCTGCTTTCA
                                                                             900
       AATGCAGTGG CAGTGACCTT TTCTGAGCGG CTACTGGGAA ATTTCTCATT AGCAGTTCCG
       ATCTTTGTTG CCCTCTCCTG CTTTGGCTCC ATGAACGGTG GTGTGTTTGC TGTCTCCAGG
                                                                            1020
       TTATTCTATG TTGCGTCTCG AGAGGGTCAC CTTCCAGAAA TCCTCTCCAT GATTCATGTC
                                                                           1080
       CGCAAGCACA CTCCTCTACC AGCTGTTATT GTTTTGCACC CTTTGACAAT GATAATGCTC
                                                                           1140
20
       TTCTCTGGAG ACCTCGACAG TCTTTTGAAT TTCCTCAGTT TTGCCAGGTG GCTTTTTATT
                                                                           1200
       GGGCTGGCAG TTGCTGGGCT GATTTATCTT CGATACAAAT GCCCAGATAT GCATCGTCCT
                                                                           1260
       TTCAAGGTGC CACTGTTCAT CCCAGCTTTG TTTTCCTTCA CATGCCTCTT, CATGGTTGCC
                                                                           1320
       CTTTCCCTCT ATTCGGACCC ATTTAGTACA GGGATTGGCT TCGTCATCAC TCTGACTGGA
                                                                           1380
       GTCCCTGCGT ATTATCTCTT TATTATATGG GACAAGAAAC CCAGGTGGTT TAGAATAATG
                                                                           1440
25
       TCAGAGAAAA TAACCAGAAC ATTACAAATA ATACTGGAAG TTGTACCAGA AGAAGATAAG
                                                                           1500
       TTATGAACTA ATGGACTTGA GATCTTGGCA ATCTGCCCAA GGGGAGACAC AAAATAGGGA
                                                                           1560
       TTTTTACTTC ATTTTCTGAA AGTCTAGAGA ATTACAACTT TGGTGATAAA CAAAAGGAGT
                                                                           1620
       CAGTTATTTT TATTCATATA TTTTAGCATA TTCGAACTAA TTTCTAAGAA ATTTAGTTAT
                                                                           1680
       AACTCTATGT AGTTATAGAA AGTGAATATG CAGTTATTCT ATGAGTCGCA CAATTCTTGA
                                                                           1740
30
       GTCTCTGATA CCTACCTATT GGGGTTAGGA GAAAAGACTA GACAATTACT ATGTGGTCAT
                                                                           1800
       TCTCTACAAC ATATGTTAGC ACGGCAAAGA ACCTTCAAAT TGAAGACTGA GATTTTTCTG
                                                                           1860
       TATATATGGG TTTTGTAAAG ATGGTTTTAC ACACTACAGA TGTCTATACT GTGAAAAGTG
                                                                           1920
       TTTTCAATTC TGAAAAAAG CATACATCAT GATTATGGCA AAGAGGAGAG AAAGAAATTT
                                                                           1980
       ATTITACATI GACATIGCAT IGCITCCCCI TAGATACCAA ITTAGATAAC AAACACTCAT
                                                                           2040
35
       GCTTTAATGG ATTATACCCA GAGCACTTTG AACAAAGGTC AGTGGGGATT GTTGAATACA
                                                                           2100
       TTAAAGAAGA GTTTCTAGGG GCTACTGTTT ATGAGACACA TCCAGGAGTT ATGTTTAAGT
                                                                           2160
       AAAAATCCTT GAGAATTTAT TATGTCAGAT GTTTTTTCAT TCATTATCAG GAAGTTTTAG
                                                                           2220
       TTATCTGTCA TTTTTTTTT TCACATCAGT TTGATCAGGA AAGTGTATAA CACATCTTAG
                                                                           2280
       AGCAAGAGTT AGTTTGGTAT TAAATCCTCA TTAGAACAAC CACCTGTTTC ACTAATAACT
                                                                           2340
40
       TACCCCTGAT GAGTCTATCT AAACATATGC ATTTTAAGCC TTCAAATTAC ATTATCAACA
                                                                           2400
       TGAGAGAAAT AACCAACAAA GAAGATGTTC AAAATAATAG TCCCATATCT GTAATCATAT
                                                                           2460
       CTACATGCAA TGTTAGTAAT TCTGAAGTTT TTTAAATTTA TGGCTATTTT TACACGATGA
TGAATTTTGA CAGTTTGTGC ATTTTCTTTA TACATTTTAT ATTCTTCTGT TAAAATATCT
                                                                           2520
                                                                           2580
       CTTCAGATGA AACTGTCCAG ATTAATTAGG AAAAGGCATA TATTAACATA AAAATTGCAA
                                                                           2640
45
       AAGAAATGTC GCTGTAAATA AGATTTACAA CTGATGTTTC TAGAAAATTT CCACTTCTAT
                                                                           2700
       ATCTAGGCTT TGTCAGTAAT TTCCACACCT TAATTATCAT TCAACTTGCA AAAGAGACAA
                                                                           2760
       CTGATAAGAA GAAAATTGAA ATGAGAATCT GTGGATAAGT GTTTGTGTTC AGAAGATGTT
                                                                           2820
       GTTTTGCCAG TATTAGAAAA TACTGTGAGC CGGGCATGGT GGCTTACATC TGTAATCCCA
                                                                           2880
       GCACTTTGGG AGGCTGAGGG GGTGGATCAC CTGAGGTCGG GAGTTCTAGA CCAGCCTGAC
                                                                           2940
50
       CAACATGGAG AAACCCCATC TCTACTAAAA ATACAAAATT AGCTGGGCAT GGTGGCACAT
                                                                           3000
       GCTGGTAATC TCAGCTATTG AGGAGGCTGA GGCAGGAGAA TTGCTTGAAC CCGGGAGGCG
                                                                           3060
       GAGGTTGCAG TGAGCCAAGA TTGCACCACT GTACTCCAGC CTGGGTGACA AAGTCAGACT
                                                                           3120
       CCATCTCCAA AAAAAAAAAA AAAA
55
       Seq ID NO: 395 Protein sequence
       Protein Accession #: NP_055146.1
60
       MVRKPVVSTI SKGGYLQGNV NGRLPSLGNK EPPGQEKVQL KRKVTLLRGV SIIIGTIIGA
                                                                             60
       GIFISPKGVL QNTGSVGMSL TIWTVCGVLS LFGALSYAEL GTTIKKSGGH YTYILEVFGP
                                                                            120
       LPAFVRVWVE LLIIRPAATA VISLAFGRYI LEPFFIQCEI PELAIKLITA VGITVVMVLN
                                                                            180
       SMSVSWSARI QIFLTFCKLT AILIIIVPGV MQLIKGQTQN FKDAFSGRDS SITRLPLAFY
                                                                            240
       YGMYAYAGWP YLNFVTEEVE NPEKTIPLAI CISMAITIGV YVLTNVAYFT TINAEELLLS
                                                                            300
65
       NAVAVTFSER LLGNFSLAVP IFVALSCFGS MNGGVFAVSR LFYVASREGH LPEILSMIHV
                                                                            360
                                                                             420
       RKHTPLPAVI VLHPLTMIML FSGDLDSLLN FLSFARWLFI GLAVAGLIYL RYKCPDMHRP
       FKVPLFIPAL FSFTCLFMVA LSLYSDPFST GIGFVITLTG VPAYYLFIIW DKKPRWFRIM
                                                                            480
       SEKITRTLQI ILEVVPEEDK L
70
       Seg ID NO: 396 DNA sequence
       Nucleic Acid Accession #: NM 006528
       Coding sequence: 57..764
75
                                                               51
                  11
                             21
                                         31
                                                    41
       GCCGCCAGCG GCTTTCTCGG ACGCCTTGCC CAGCGGGCCG CCCGACCCCC TGCACCATGG
                                                                             60
       ACCCCGCTCG CCCCTGGGG CTGTCGATTC TGCTGCTTTT CCTGACGGAG GCTGCACTGG
                                                                            120
       GCGATGCTGC TCAGGAGCCA ACAGGAAATA ACGCGGAGAT CTGTCTCCTG CCCCTAGACT
                                                                            180
80
       ACGGACCCTG CCGGGCCCTA CTTCTCCGTT ACTACTACGA CAGGTACACG CAGAGCTGCC
                                                                            240
       GCCAGTTCCT GTACGGGGGC TGCGAGGGCA ACGCCAACAA TTTCTACACC TGGGAGGCTT
                                                                            300
       GCGACGATGC TTGCTGGAGG ATAGAAAAAG TTCCCAAAGT TTGCCGGCTG CAAGTGAGTG
                                                                            360
       TGGACGACCA GTGTGAGGGG TCCACAGAAA AGTATTTCTT TAATCTAAGT TCCATGACAT
                                                                            420
                                                                            480
       GTGAAAAATT CTTTTCCGGT GGGTGTCACC GGAACCGGAT TGAGAACAGG TTTCCAGATG
85
       AAGCTACTTG TATGGGCTTC TGCGCACCAA AGAAAATTCC ATCATTTTGC TACAGTCCAA
                                                                            540
       AAGATGAGGG ACTGTGCTCT GCCAATGTGA CTCGCTATTA TTTTAATCCA AGATACAGAA
                                                                            600
                                                                            660
       CCTGTGATGC TTTCACCTAT ACTGGCTGTG GAGGGAATGA CAATAACTTT GTTAGCAGGG
```

```
AGGATTGCAA ACGTGCATGT GCAAAAGCTT TGAAAAAGAA AAAGAAGATG CCAAAGCTTC
       GCTTTGCCAG TAGAATCCGG AAAATTCGGA AGAAGCAATT TTAAACATTC TTAATATGTC
                                                                                780
       ATCTTGTTTG TCTTTATGGC TTATTTGCCT TTATGGTTGT ATCTGAAGAA TAATATGACA
GCATGAGGAA ACAATCATT GGTGATTTAT TCACCAGTTT TTATTAATAC AAGTCACTTT
                                                                                840
                                                                                900
       TTCAAAAATT TGGATTTTTT TATATATAAC TAGCTGCTAT TCAAATGTGA GTCTACCATT
                                                                                960
       TTTAATTTAT GGTTCAACTG TTTGTGAGAC GAATTCTTGC AATGCATAAG ATATAAAAGC
                                                                               1020
       AAATATGACT CACTCATTTC TTGGGGTCGT ATTCCTGATT TCAGAAGAGG ATCATAACTG
                                                                               1080
       AAACAACATA AGACAATATA ATCATGTGCT TTTAACATAT TTGAGAATAA AAAGGACTAG 1140
10
       Seq ID NO: 397 Protein sequence
       Protein Accession #: NP_006519
15
       MDPARPLGLS ILLLFLTEAA LGDAAQEPTG NNAEICLLPL DYGPCRALLL RYYYDRYTQS
                                                                                 60
       CROFLYGGCE GNANNFYTWE ACDDACWRIE KVPKVCRLQV SVDDQCEGST EKYFFNLSSM
                                                                                120
       TCEKFFSGGC HRNRIENRFP DEATCMGFCA PKKIPSFCYS PKDEGLCSAN VTRYYFNPRY
                                                                                180
       RTCDAFTYTG CGGNDNNFVS REDCKRACAK ALKKKKMPK LRFASRIRKI RKKQF
20
       Seq ID NO: 398 DNA sequence
       Nucleic Acid Accession #: NM_001508.1
       Coding sequence: 1..1361
25
                                                       41
                                                                  51
                               21
                                           31
                   11
       ATGGCTTCAC CCAGCCTCCC GGGCAGTGAC TGCTCCCAAA TCATTGATCA CAGTCATGTC
       CCCGAGTTTG AGGTGGCCAC CTGGATCAAA ATCACCCTTA TTCTGGTGTA CCTGATCATC
TTCGTGATGG GCCTTCTGGG GAACAGCGTC ACCATTCGGG TCACCCAGGT GCTGCAGAAG
                                                                                120
                                                                                180
30
       AAAGGATACT TGCAGAAGGA GGTGACAGAC CACATGGTGA GTTTGGCTTG CTCGGACATC
                                                                                240
                                                                                300
       TTGGTGTTCC TCATCGGCAT GCCCATGGAG TTCTACAGCA TCATCTGGAA TCCCCTGACC
       ACGTCCAGCT ACACCCTGTC CTGCAAGCTG CACACTTTCC TCTTCGAGGC CTGCAGCTAC
                                                                                360
       GCTACGCTGC TGCACGTGCT GACGCTCAGC TTTGAGCGCT ACATCGCCAT CTGTCACCCC
                                                                                420
       TTCAGGTACA AGGCTGTGTC GGGACCTTGC CAGGTGAAGC TGCTGATTGG CTTCGTCTGG
                                                                                480
35
       GTCACCTCCG CCCTGGTGGC ACTGCCCTTG CTGTTTGCCA TGGGTACTGA GTACCCCCTG
                                                                                540
       GTGAACGTGC CCAGCCACCG GGGTCTCACT TGCAACCGCT CCAGCACCCG CCACCACGAG
                                                                                600
       CAGCCCGAGA CCTCCAATAT GTCCATCTGT ACCAACCTCT CCAGCCGCTG GACCGTGTTC
                                                                                660
       CAGTCCAGCA TCTTCGGCGC CTTCGTGGTC TACCTCGTGG TCCTGCTCTC CGTAGCCTTC
                                                                                720
       ATGTGCTGGA ACATGATGCA GGTGCTCATG AAAAGCCAGA AGGGCTCGCT GGCCGGGGGC
                                                                                780
40
       ACGCGGCCTC CGCAGCTGAG GAAGTCCGAG AGCGAAGAGA GCAGGACCGC CAGGAGGCAG
                                                                                840
       ACCATCATCT TCCTGAGGCT GATTGTTGTG ACATTGGCCG TATGCTGGAT GCCCAACCAG
                                                                                900
       ATTCGGAGGA TCATGGCTGC GGCCAAACCC AAGCACGACT GGACGAGGTC CTACTTCCGG
                                                                                960
       GCGTACATGA TCCTCCTCCC CTTCTCGGAG ACGTTTTTCT ACCTCAGCTC GGTCATCAAC
                                                                               1020
       CCGCTCCTGT ACACGGTGTC CTCGCAGCAG TTTCGGCGGG TGTTCGTGCA GGTGCTGTGC
                                                                               1080
       TGCCGCCTGT CGCTGCAGCA CGCCAACCAC GAGAAGCGCC TGCGCGTACA TGCGCACTCC ACCACCGACA GCGCCCGCTT TGTGCAGCGC CCGTTGCTCT TCGCGTCCCG GCGCCAGTCC
45
        TCTGCAAGGA GAACTGAGAA GATTTTCTTA AGCACTTTTC AGAGCGAGGC CGAGCCCCAG
       TCTAAGTCCC AGTCATTGAG TCTCGAGTCA CTAGAGCCCA ACTCAGGCGC GAAACCAGCC 1320
        AATTCTGCTG CAGAGAATGG TTTTCAGGAG CATGAAGTTT GA
50
        Seg ID NO: 399 Protein sequence
        Protein Accession #: NP_001499.1
                                                                  51
                               21
                                           31
                                                       41
55
        MASPSLPGSD CSQIIDHSHV PEFEVATWIK ITLILVYLII FVMGLLGNSV TIRVTQVLQK
                                                                                 60
       KGYLOKEVTD HMVSLACSDI LVFLIGMPME FYSIIWNPLT TSSYTLSCKL HTFLFEACSY
ATLLHVLTLS FERYIAICHP FRYKAVSGPC QVKLLIGFVW VTSALVALPL LFAMGTEYPL
                                                                                120
                                                                                180
        VNVPSHRGLT CNRSSTRHHE QPETSNMSIC TNLSSRWTVF QSSIFGAFVV YLVVLLSVAF
                                                                                240
60
        MCWNMMQVLM KSQKGSLAGG TRPPQLRKSE SEESRTARRQ TIIFLRLIVV TLAVCWMPNQ
                                                                                300
        IRRIMAAAKP KHDWTRSYFR AYMILLPFSE TFFYLSSVIN PLLYTVSSQQ FRRVFVQVLC
                                                                                360
        CRLSLQHANH EKRLRVHAHS TTDSARFVQR PLLFASRRQS SARRTEKIFL STFQSEAEPQ
                                                                                420
        SKSQSLSLES LEPNSGAKPA NSAAENGFQE HEV
65
        Seq ID NO: 400 DNA sequence
        Nucleic Acid Accession #: NM_006475.1
        Coding sequence: 28..2538
70
        AACAGAACTG CAACGGAGAG ACTCAAGATG ATTCCCTTTT TACCCATGTT TTCTCTACTA
        TTGCTGCTTA TTGTTAACCC TATAAACGCC AACAATCATT ATGACAAGAT CTTGGCTCAT
                                                                                120
        AGTCGTATCA GGGGTCGGGA CCAAGGCCCA AATGTCTGTG CCCTTCAACA GATTTTGGGC
        ACCAAAAAGA AATACTTCAG CACTTGTAAG AACTGGTATA AAAAGTCCAT CTGTGGACAG
                                                                                240
75
        AAAACGACTG TTTTATATGA ATGTTGCCCT GGTTATATGA GAATGGAAGG AATGAAAGGC
        TGCCCAGCAG TTTTGCCCAT TGACCATGTT TATGGCACTC TGGGCATCGT GGGAGCCACC
                                                                                360
        ACAACGCAGC GCTATTCTGA CGCCTCAAAA CTGAGGGAGG AGATCGAGGG AAAGGGATCC
                                                                                420
        TTCACTTACT TTGCACCGAG TAATGAGGCT TGGGACAACT TGGATTCTGA TATCCGTAGA
                                                                                480
        GGTTTGGAGA GCAACGTGAA TGTTGAATTA CTGAATGCTT TACATAGTCA CATGATTAAT
80
        AAGAGAATGT TGACCAAGGA CTTAAAAAAT GGCATGATTA TTCCTTCAAT GTATAACAAT
                                                                                600
        TTGGGGCTTT TCATTAACCA TTATCCTAAT GGGGTTGTCA CTGTTAATTG TGCTCGAATC
                                                                                660
        ATCCATGGGA ACCAGATTGC AACAAATGGT GTTGTCCATG TCATTGACCG TGTGCTTACA
                                                                                 720
        CAAATTGGTA CCTCAATTCA AGACTTCATT GAAGCAGAAG ATGACCTTTC ATCTTTTAGA
                                                                                780
        GCAGCTGCCA TCACATCGGA CATATTGGAG GCCCTTGGAA GAGACGGTCA CTTCACACTC
                                                                                 840
85
        TTTGCTCCCA CCAATGAGGC TTTTGAGAAA CTTCCACGAG GTGTCCTAGA AAGGTTCATG
                                                                                900
        GGAGACAAAG TGGCTTCCGA AGCTCTTATG AAGTACCACA TCTTAAATAC TCTCCAGTGT
                                                                                960
        TCTGAGTCTA TTATGGGAGG AGCAGTCTTT GAGACGCTGG AAGGAAATAC AATTGAGATA
```

WO 02/086443

```
GGATGTGACG GTGACAGTAT AACAGTAAAT GGAATCAAAA TGGTGAACAA AAAGGATATT 1080
       GTGACAAATA ATGGTGTGAT CCATTTGATT GATCAGGTCC TAATTCCTGA TTCTGCCAAA
       CAAGTTATTG AGCTGGCTGG AAAACAGCAA ACCACCTTCA CGGATCTTGT GGCCCAATTA
       GGCTTGGCAT CTGCTCTGAG GCCAGATGGA GAATACACTT TGCTGGCACC TGTGAATAAT
                                                                            1260
 5
       GCATTTTCTG ATGATACTCT CAGCATGGTT CAGCGCCTCC TTAAATTAAT TCTGCAGAAT
                                                                            1320
       CACATATTGA AAGTAAAAGT TGGCCTTAAT GAGCTTTACA ACGGGCAAAT ACTGGAAACC
                                                                            1380
       ATCGGAGGCA AACAGCTCAG AGTCTTCGTA TATCGTACAG CTGTCTGCAT TGAAAATTCA
                                                                            1440
       TGCATGGAGA AAGGGAGTAA GCAAGGGAGA AACGGTGCGA TTCACATATT CCGCGAGATC
                                                                            1500
       ATCAAGCCAG CAGAGAAATC CCTCCATGAA AAGTTAAAAC AAGATAAGCG CTTTAGCACC
                                                                            1560
10
       TTCCTCAGCC TACTTGAAGC TGCAGACTTG AAAGAGCTCC TGACACAACC TGGAGACTGG
                                                                            1620
       ACATTATTTG TGCCAACCAA TGATGCTTTT AAGGGAATGA CTAGTGAAGA AAAAGAAATT
                                                                            1680
       CTGATACGGG ACAAAAATGC TCTTCAAAAC ATCATTCTTT ATCACCTGAC ACCAGGAGTT
                                                                            1740
       TTCATTGGAA AAGGATTTGA ACCTGGTGTT ACTAACATTT TAAAGACCAC ACAAGGAAGC
                                                                            1800
       AAAATCTTTC TGAAAGAAGT AAATGATACA CTTCTGGTGA ATGAATTGAA ATCAAAAGAA
                                                                            1860
15
       TCTGACATCA TGACAACAAA TGGTGTAATT CATGTTGTAG ATAAACTCCT CTATCCAGCA
                                                                            1920
       GACACACCTG TTGGAAATGA TCAACTGCTG GAAATACTTA ATAAATTAAT CAAATACATC
                                                                            1980
       CAAATTAAGT TTGTTCGTGG TAGCACCTTC AAAGAAATCC CCGTGACTGT CTATACAACT
                                                                            2040
       AAAATTATAA CCAAAGTTGT GGAACCAAAA ATTAAAGTGA TTGAAGGCAG TCTTCAGCCT
                                                                            2100
       ATTATCAAAA CTGAAGGACC CACACTAACA AAAGTCAAAA TTGAAGGTGA ACCTGAATTC
                                                                            2160
20
       AGACTGATTA AAGAAGGTGA AACAATAACT GAAGTGATCC ATGGAGAGCC AATTATTAAA
       AAATACACCA AAATCATTGA TGGAGTGCCT GTGGAAATAA CTGAAAAAGA GACACGAGAA GAACGAATCA TTACAGGTCC TGAAATAAAA TACACTAGGA TTTCTACTGG AGGTGGAGAA
                                                                            2280
                                                                            2340
       ACAGAAGAAA CTCTGAAGAA ATTGTTACAA GAAGAGGTCA CCAAGGTCAC CAAATTCATT
                                                                            2400
       GAAGGTGGTG ATGGTCATTT ATTTGAAGAT GAAGAAATTA AAAGACTGCT TCAGGGAGAC
                                                                            2460
       ACACCCGTGA GGAAGTTGCA AGCCAACAAA AAAGTTCAAG GTTCTAGAAG ACGATTAAGG
25
                                                                            2520
       GAAGGTCGTT CTCAGTGAAA ATCCAAAAAC CAGAAAAAA TGTTTATACA ACCCTAAGTC
                                                                            2580
       AATAACCTGA CCTTAGAAAA TTGTGAGAGC CAAGTTGACT TCAGGAACTG AAACATCAGC
                                                                            2640
       ACAAAGAAGC AATCATCAAA TAATTCTGAA CACAAATTTA ATATTTTTT TTCTGAATGA
                                                                            2700
       GAAACATGAG GGAAATTGTG GAGTTAGCCT CCTGTGGTAA AGGAATTGAA GAAAATATAA
                                                                            2760
30
       CACCTTACAC CCTTTTCAT CTTGACATTA AAAGTTCTGG CTAACTTTGG AATCCATTAG
                                                                            2820
       AGAAAAATCC TTGTCACCAG ATTCATTACA ATTCAAATCG AAGAGTTGTG AACTGTTATC
                                                                            2880
       CCATTGAAAA GACCGAGCCT TGTATGTATG TTATGGATAC ATAAAATGCA CGCAAGCCAT
                                                                            2940
       TATCTCTCCA TGGGAAGCTA AGTTATAAAA ATAGGTGCTT GGTGTACAAA ACTTTTTATA
                                                                            3000
       TCAAAAGGCT TTGCACATTT CTATATGAGT GGGTTTACTG GTAAATTATG TTATTTTTTA
                                                                            3060
35
       CAACTAATTT TGTACTCTCA GAATGTTTGT CATATGCTTC TTGCAATGCA TATTTTTTAA
                                                                            3120
       TCTCAAACGT TTCAATAAAA CCATTTTTCA GATATAAAGA GAATTACTTC AAATTGAGTA
                                                                            3180
       ATTCAGAAAA ACTCAAGATT TAAGTTAAAA AGTGGTTTGG ACTTGGGAA
       Seq ID NO: 401 Protein sequence
40
       Protein Accession #: NP 006466.1
                                          31
                   11
                              21
       MIPFLPMFSL LLLLIVNPIN ANNHYDKILA HSRIRGRDQG PNVCALQQIL GTKKKYFSTC
45
       KNWYKKSICG OKTTVLYECC PGYMRMEGMK GCPAVLPIDH VYGTLGIVGA TTTQRYSDAS
       KLREEIEGKG SFTYFAPSNE AWDNLDSDIR RGLESNVNVE LLNALHSHMI NKRMLTKDLK
                                                                             180
       NGMIIPSMYN NLGLFINHYP NGVVTVNCAR IIHGNQIATN GVVHVIDRVL TQIGTSIQDF
                                                                             240
       IEAEDDLSSF RAAAITSDIL EALGRDGHFT LFAPTNEAFE KLPRGVLERF MGDKVASEAL
                                                                             300
       MKYHILNTLQ CSESIMGGAV FETLEGNTIE IGCDGDSITV NGIKMVNKKD IVTNNGVIHL
                                                                             360
50
       IDQVLIPDSA KQVIELAGKQ QTTFTDLVAQ LGLASALRPD GEYTLLAPVN NAFSDDTLSM
                                                                             420
       VQRLLKLILQ NHILKVKVGL NELYNGQILE TIGGKQLRVF VYRTAVCIEN SCMEKGSKQG
                                                                             480
       RNGAIHIFRE IIKPAEKSLH EKLKQDKRFS TFLSLLEAAD LKELLTQPGD WTLFVPTNDA
                                                                             540
       FKGMTSEEKE ILIRDKNALQ NIILYHLTPG VFIGKGFEPG VTNILKTTQG SKIFLKEVND
                                                                             600
       TLLVNELKSK ESDIMTTNGV IHVVDKLLYP ADTPVGNDQL LEILNKLIKY IQIKFVRGST
                                                                             660
55
       FKEIPVTVYT TKIITKVVEP KIKVIEGSLQ PIIKTEGPTL TKVKIEGEPE FRLIKEGETI
                                                                              720
       TEVIHGEPII KKYTKIIDGV PVEITEKETR EERIITGPEI KYTRISTGGG ETEETLKKLL
                                                                             780
       OEEVTKVTKF IEGGDGHLFE DEEIKRLLQG DTPVRKLQAN KKVQGSRRRL REGRSQ
       Seq ID NO: 402 DNA sequence
60
       Nucleic Acid Accession #: NM 002416
       Coding sequence: 40..417
                                                                51
65
       ATCCAATACA GGAGTGACTT GGAACTCCAT TCTATCACTA TGAAGAAAAG TGGTGTTCTT
       TTCCTCTTGG GCATCATCTT GCTGGTTCTG ATTGGAGTGC AAGGAACCCC AGTAGTGAGA
                                                                             120
       AAGGGTCGCT GTTCCTGCAT CAGCACCAAC CAAGGGACTA TCCACCTACA ATCCTTGAAA
                                                                             180
       GACCTTAAAC AATTTGCCCC AAGCCCTTCC TGCGAGAAAA TTGAAATCAT TGCTACACTG
                                                                             240
       AAGAATGGAG TTCAAACATG TCTAAACCCA GATTCAGCAG ATGTGAAGGA ACTGATTAAA
                                                                             300
70
       AAGTGGGAGA AACAGGTCAG CCAAAAGAAA AAGCAAAAGA ATGGGAAAAA ACATCAAAAA
                                                                             360
       AAGAAAGTTC TGAAAGTTCG AAAATCTCAA CGTTCTCGTC AAAAGAAGAC TACATAAGAG
                                                                              420
       ACCACTTCAC CAATAAGTAT TCTGTGTTAA AAATGTTCTA TTTTAATTAT ACCGCTATCA
                                                                              480
       TTCCAAAGGA GGATGGCATA TAATACAAAG GCTTATTAAT TTGACTAGAA AATTTAAAAC
                                                                             540
       ATTACTCTGA AATTGTAACT AAAGTTAGAA AGTTGATTTT AAGAATCCAA ACGTTAAGAA
75
       TTGTTAAAGG CTATGATTGT CTTTGTTCTT CTACCACCCA CCAGTTGAAT TTCATCATGC
       TTAAGGCCAT GATTTTAGCA ATACCCATGT CTACACAGAT GTTCACCCAA CCACATCCCA
       CTCACAACAG CTGCCTGGAA GAGCAGCCCT AGGCTTCCAC GTACTGCAGC CTCCAGAGAG
       TATCTGAGGC ACATGTCAGC AAGTCCTAAG CCTGTTAGCA TGCTGGTGAG CCAAGCAGTT
       TGAAATTGAG CTGGACCTCA CCAAGCTGCT GTGGCCATCA ACCTCTGTAT TTGAATCAGC
80
       CTACAGGCCT CACACAAT GTGTCTGAGA GATTCATGCT GATTGTTATT GGGTATCACC
                                                                             960
       ACTGGAGATC ACCAGTGTGT GGCTTTCAGA GCCTCCTTTC TGGCTTTGGA AGCCATGTGA
                                                                            1020
       TTCCATCTTG CCCGCTCAGG CTGACCACTT TATTTCTTTT TGTTCCCCTT TGCTTCATTC
                                                                            1080
       AAGTCAGCTC TTCTCCATCC TACCACAATG CAGTGCCTTT CTTCTCTCCA GTGCACCTGT
                                                                            1140
       CATATGCTCT GATTTATCTG AGTCAACTCC TTTCTCATCT TGTCCCCAAC ACCCCACAGA
                                                                            1200
85
       AGTGCTTTCT TCTCCCAATT CATCCTCACT CAGTCCAGCT TAGTTCAAGT CCTGCCTCTT AAATAAACCT TTTTGGACAC ACAAATTATC TTAAAACTCC TGTTTCACTT GGTTCAGTAC
                                                                            1260
                                                                            1320
       CACATGGGTG AACACTCAAT GGTTAACTAA TTCTTGGGTG TTTATCCTAT CTCTCCAACC
                                                                            1380
```

WO 02/086443 AGATTGTCAG CTCCTTGAGG GCAAGAGCCA CAGTATATTT CCCTGTTTCT TCCACAGTGC 1440 CTAATAATAC TGTGGAACTA GGTTTTAATA ATTTTTTAAT TGATGTTGTT ATGGGCAGGA 1500 TGGCAACCAG ACCATTGTCT CAGAGCAGGT GCTGGCTCTT TCCTGGCTAC TCCATGTTGG 1560 CTAGCCTCTG GTAACCTCTT ACTTATTATC TTCAGGACAC TCACTACAGG GACCAGGGAT 1620 5 GATGCAACAT CCTTGTCTTT TTATGACAGG ATGTTTGCTC AGCTTCTCCA ACAATAAGAA 1680 GCACGTGGTA AAACACTTGC GGATATTCTG GACTGTTTTT AAAAAATATA CAGTTTACCG 1740 AAAATCATAT AATCTTACAA TGAAAAGGAC TTTATAGATC AGCCAGTGAC CAACCTTTTC 1800 CCAACCATAC AAAAATTCCT TTTCCCGAAG GAAAAGGGCT TTCTCAATAA GCCTCAGCTT 1860 TCTAAGATCT AACAAGATAG CCACCGAGAT CCTTATCGAA ACTCATTTTA GGCAAATATG 1920 10 AGTTTTATTG TCCGTTTACT TGTTTCAGAG TTTGTATTGT GATTATCAAT TACCACACCA 1980 TCTCCCATGA AGAAAGGGAA CGGTGAAGTA CTAAGCGCTA GAGGAAGCAG CCAAGTCGGT 2040 TAGTGGAAGC ATGATTGGTG CCCAGTTAGC CTCTGCAGGA TGTGGAAACC TCCTTCCAGG 2100 GGAGGTTCAG TGAATTGTGT AGGAGAGGTT GTCTGTGGCC AGAATTTAAA CCTATACTCA 2160 CTTTCCCAAA TTGAATCACT GCTCACACTG CTGATGATTT AGAGTGCTGT CCGGTGGAGA 2220 15 TCCCACCCGA ACGTCTTATC TAATCATGAA ACTCCCTAGT TCCTTCATGT AACTTCCCTG 2280 AAAAATCTAA GTGTTTCATA AATTTGAGAG TCTGTGACCC ACTTACCTTG CATCTCACAG 2340 GTAGACAGTA TATAACTAAC AACCAAAGAC TACATATTGT CACTGACACA CACGTTATAA 2400 TCATTTATCA TATATACA TACATGCATA CACTCTCAAA GCAAATAATT TTTCACTTCA 2460 AAACAGTATT GACTTGTATA CCTTGTAATT TGAAATATTT TCTTTGTTAA AATAGAATGG 20 TATCAATAAA TAGACCATTA ATCAG Seg ID NO: 403 Protein seguence Protein Accession #: NP_002407 25 11 21 31 41 51 MKKSGVLFLL GIILLVLIGV OGTPVVRKGR CSCISTNOGT IHLOSLKDLK OFAPSPSCEK 60 IEIIATLKNG VQTCLNPDSA DVKELIKKWE KQVSQKKKQK NGKKHQKKKV LKVRKSQRSR 120 OKKTT 30 Seq ID NO: 404 DNA sequence Nucleic Acid Accession #: NM_006670 Coding sequence: 85..1347 35 21 31 11 41 CCGGCTCGCG CCCTCCGGGC CCAGCCTCCC GAGCCTTCGG AGCGGGCGCC GTCCCAGCCC AGCTCCGGGG AAACGCGAGC CGCGATGCCT GGGGGGTGCT CCCGGGGCCC CGCCGCGGG 120 GACGGGCGTC TGCGGCTGGC GCGACTAGCG CTGGTACTCC TGGGCTGGGT CTCCTCGTCT 40 TCTCCCACCT CCTCGGCATC CTCCTTCTCC TCCTCGGCGC CGTTCCTGGC TTCCGCCGTG TCCGCCCAGC CCCCGCTGCC GGACCAGTGC CCCGCGCTGT GCGAGTGCTC CGAGGCAGCG CGCACAGTCA AGTGCGTTAA CCGCAATCTG ACCGAGGTGC CCACGGACCT GCCCGCCTAC 360 GTGCGCAACC TCTTCCTTAC CGGCAACCAG CTGGCCGTGC TCCCTGCCGG CGCCTTCGCC 420 CGCCGGCCGC CGCTGGCGGA GCTGGCCGCG CTCAACCTCA GCGGCAGCCG CCTGGACGAG 480 45 GTGCGCGCG GCGCCTTCGA GCATCTGCCC AGCTGCGCC AGCTCGACCT CAGCCACAAC 540 CCACTGGCCG ACCTCAGTCC CTTCGCTTTC TCGGGCAGCA ATGCCAGCGT CTCGGCCCCC 600 AGTCCCCTTG TGGAACTGAT CCTGAACCAC ATCGTGCCCC CTGAAGATGA GCGGCAGAAC 660 CGGAGCTTCG AGGGCATGGT GGTGGCGGCC CTGCTGGCGG GCCGTGCACT GCAGGGGCTC 720 CGCCGCTTGG AGCTGGCCAG CAACCACTTC CTTTACCTGC CGCGGGATGT GCTGGCCCAA 780 CTGCCCAGCC TCAGGCACT GGACTTAAGT AATAATTCGC TGGTGAGCCT GACCTACGTG
TCCTTCCGCA ACCTGACACA TCTAGAAAGC CTCCACCTGG AGGACAATGC CCTCAAGGTC 50 840 900 CTTCACAATG GCACCCTGGC TGAGTTGCAA GGTCTACCCC ACATTAGGGT TTTCCTGGAC 960 AACAATCCCT GGGTCTGCGA CTGCCACATG GCAGACATGG TGACCTGGCT CAAGGAAACA 1020 GAGGTAGTGC AGGGCAAAGA CCGGCTCACC TGTGCATATC CGGAAAAAAT GAGGAATCGG 1080 55 GTCCTCTTGG AACTCAACAG TGCTGACCTG GACTGTGACC CGATTCTTCC CCCATCCCTG 1140 CAAACCTCTT ATGTCTTCCT GGGTATTGTT TTAGCCCTGA TAGGCGCTAT TTTCCTCCTG 1200 GTTTTGTATT TGAACCGCAA GGGGATAAAA AAGTGGATGC ATAACATCAG AGATGCCTGC 1260 AGGGATCACA TGGAAGGGTA TCATTACAGA TATGAAATCA ATGCGGACCC CAGATTAACA 1320 AACCTCAGTT CTAACTCGGA TGTCTGAGAA ATATTAGAGG ACAGACCAAG GACAACTCTG 1380 60 CATGAGATGT AGACTTAAGC TTTATCCCTA CTAGGCTTGC TCCACTTTCA TCCTCCACTA 1440 TAGATACAAC GGACTTTGAC TAAAAGCAGT GAAGGGGATT TGCTTCCTTG TTATGTAAAG 1500 TTTCTCGGTG TGTTCTGTTA ATGTAAGACG ATGAACAGTT GTGTATAGTG TTTTACCCTC 1560 TTCTTTTCT TGGAACTCCT CAACACGTAT GGAGGGATTT TTCAGGTTTC AGCATGAACA 1620 TGGGCTTCTT GCTGTCTGTC TCTCTCAG TACAGTTCAA GGTGTAGCAA GTGTACCCAC 1680 65 ACAGATAGCA TTCAACAAAA GCTGCCTCAA CTTTTTCGAG AAAAATACTT TATTCATAAA 1740 TATCAGTTTT ATTCTCATGT ACCTAAGTTG TGGAGAAAAT AATTGCATCC TATAAACTGC 1800 CTGCAGACGT TAGCAGGCTC TTCAAAATAA CTCCATGGTG CACAGGAGCA CCTGCATCCA 1860 AGAGCATGCT TACATTTTAC TGTTCTGCAT ATTACAAAAA ATAACTTGCA ACTTCATAAC 1920 TTCTTTGACA AAGTAAATTA CTTTTTTGAT TGCAGTTTAT ATGAAAATGT ACTGATTTTT 1980 70 ATTCTTAAAA GAA Seq ID NO: 405 Protein sequence Protein Accession #: NP 006661 75 31 41 51 MPGGCSRGPA AGDGRLRLAR LALVLLGWVS SSSPTSSASS FSSSAPFLAS AVSAQPPLPD QCPALCECSE AARTVKCVNR NLTEVPTDLP AYVRNLFLTG NQLAVLPAGA FARRPPLAEL 120 80 AALNLSGSRL DEVRAGAFEH LPSLRQLDLS HNPLADLSPF AFSGSNASVS APSPLVELIL 180 NHIVPPEDER QNRSFEGMVV AALLAGRALQ GLRRLELASN HFLYLPRDVL AQLPSLRHLD 240 LSNNSLVSLT YVSFRNLTHL ESLHLEDNAL KVLHNGTLAE LOGLPHIRVP LDNNPWVCDC 300

Seq ID NO: 406 DNA sequence Nucleic Acid Accession #: Eos sequence

85

HMADMVTWLK ETEVVQGKDR LTCAYPEKMR NRVLLELNSA DLDCDPILPP SLOTSYVFLG

IVLALIGAIF LLVLYLNRKG IKKWMHNIRD ACRDHMEGYH YRYEINADPR LTNLSSNSDV

360

PCT/US02/12476

WO 02/086443 Coding sequence: 1..927 41 5 ATGCCTGGGG GGTGCTCCCG GGGCCCCGCC GCCGGGGACG GGCGTCTGCG GCTGGCGCGA CTAGCGCTGG TACTCCTGGG CTGGGTCTCC TCGTCTTCTC CCACCTCCTC GGCATCCTCC TTCTCCTCCT CGGCGCCGTT CCTGGCTTCC GCCGTGTCCG CCCAGCCCCC GCTGCCGGAC 180 CAGTGCCCCG CGCTGTGCGA GTGCTCCGAG GCAGCGCGCA CAGTCAAGTG CGTTAACCGC 240 AATCTGACCG AGGTGCCCAC GGACCTGCCC GCCTACGTGC GCAACCTCTT CCTTACCGGC 300 10 AACCAGCTGG CCAGCAACCA CTTCCTTTAC CTGCCGCGGG ATGTGCTGGC CCAACTGCCC 360 AGCCTCAGGC ACCTGGACTT AAGTAATAAT TCGCTGGTGA GCCTGACCTA CGTGTCCTTC 420 CGCAACCTGA CACATCTAGA AAGCCTCCAC CTGGAGGACA ATGCCCTCAA GGTCCTTCAC 480 AATGGCACCC TGGCTGAGTT GCAAGGTCTA CCCCACATTA GGGTTTTCCT GGACAACAAT 540 CCCTGGGTCT GCGACTGCCA CATGGCAGAC ATGGTGACCT GGCTCAAGGA AACAGAGGTA 600 15 GTGCAGGGCA AAGACCGGCT CACCTGTGCA TATCCGGAAA AAATGAGGAA TCGGGTCCTC 660 TTGGAACTCA ACAGTGCTGA CCTGGACTGT GACCCGATTC TTCCCCCATC CCTGCAAACC 720 TCTTATGTCT TCCTGGGTAT TGTTTTAGCC CTGATAGGCG CTATTTTCCT CCTGGTTTTG 780 TATTTGAACC GCAAGGGGAT AAAAAAGTGG ATGCATAACA TCAGAGATGC CTGCAGGGAT 840 CACATGGAAG GGTATCATTA CAGATATGAA ATCAATGCGG ACCCCAGATT AACAAACCTC 900 20 AGTICTAACT CGGATGTCCT CGAGTGA Seq ID NO: 407 Protein sequence Protein Accession #: Eos sequence 25 31 51 21 MPGGCSRGPA AGDGRLRLAR LALVLLGWVS SSSPTSSASS FSSSAPFLAS AVSAQPPLPD OCPALCECSE AARTVKCVNR NLTEVPTDLP AYVRNLFLTG NQLASNHFLY LPRDVLAQLP 120 SLRHLDLSNN SLVSLTYVSF RNLTHLESLH LEDNALKVLH NGTLAELQGL PHIRVFLDNN 180 30 PWVCDCHMAD MVTWLKETEV VQGKDRLTCA YPEKMRNRVL LELNSADLDC DPILPPSLQT 240 SYVPLGIVLA LIGAIFLLVL YLNRKGIKKW MHNIRDACRD HMEGYHYRYE INADPRLTNL 300 SSNSDVLE Seq ID NO: 408 DNA sequence 35 Nucleic Acid Accession #: NM_000095.1 Coding sequence: 26..2299 21 31 41 51 11 40 CAGCACCCAG CTCCCCGCCA CCGCCATGGT CCCCGACACC GCCTGCGTTC TTCTGCTCAC 60 CCTGGCTGCC CTCGGCGCGT CCGGACAGGG CCAGAGCCCG TTGGGCTCAG ACCTGGGCCC 120 GCAGATGCTT CGGGAACTGC AGGAAACCAA CGCGGCGCTG CAGGACGTGC GGGACTGGCT 180 GCGGCAGCAG GTCAGGGAGA TCACGTTCCT GAAAAACACG GTGATGGAGT GTGACGCGTG 240 CGGGATGCAG CAGTCAGTAC GCACCGGCCT ACCCAGCGTG CGGCCCCTGC TCCACTGCGC 300 45 GCCCGGCTTC TGCTTCCCCG GCGTGGCCTG CATCCAGACG GAGAGCGGCG GCCGCTGCGG 360 CCCCTGCCCC GCGGGCTTCA CGGGCAACGG CTCGCACTGC ACCGACGTCA ACGAGTGCAA 420 CGCCCACCC TGCTTCCCCC GAGTCCGCTG TATCAACACC AGCCCGGGGT TCCGCTGCGA 480 GGCTTGCCCG CCGGGGTACA GCGGCCCCAC CCACCAGGGC GTGGGGCTGG CTTTCGCCAA 540 GGCCAACAAG CAGGTTTGCA CGGACATCAA CGAGTGTGAG ACCGGGCAAC ATAACTGCGT 600 50 CCCCAACTCC GTGTGCATCA ACACCCGGGG CTCCTTCCAG TGCGGCCCGT GCCAGCCCGG 660 720 CTTCGTGGGC GACCAGGCGT CCGGCTGCCA GCGCGGCGCA CAGCGCTTCT GCCCCGACGG CTCGCCCAGC GAGTGCCACG AGCATGCAGA CTGCGTCCTA GAGCGCGATG GCTCGCGGTC 780 GTGCGTGTGT CGCGTTGGCT GGGCCGGCAA CGGGATCCTC TGTGGTCGCG ACACTGACCT 840 AGACGGCTTC CCGGACGAGA AGCTGCGCTG CCCGGAGCCG CAGTGCCGTA AGGACAACTG 900 55 CGTGACTGTG CCCAACTCAG GGCAGGAGGA TGTGGACCGC GATGGCATCG GAGACGCCTG CGATCCGGAT GCCGACGGGG ACGGGGTCCC CAATGAAAAG GACAACTGCC CGCTGGTGCG 1020 GAACCCAGAC CAGCGCAACA CGGACGAGGA CAAGTGGGGC GATGCGTGCG ACAACTGCCG 1080 GTCCCAGAAG AACGACGACC AAAAGGACAC AGACCAGGAC GGCCGGGGCG ATGCGTGCGA 1140 CGACGACATC GACGGCGACC GGATCCGCAA CCAGGCCGAC AACTGCCCTA GGGTACCCAA 1200 60 CTCAGACCAG AAGGACAGTG ATGGCGATGG TATAGGGGAT GCCTGTGACA ACTGTCCCCA 1260 GAAGAGCAAC CCGGATCAGG CGGATGTGGA CCACGACTTT GTGGGAGATG CTTGTGACAG 1320 CGATCAAGAC CAGGATGGAG ACGGACATCA GGACTCTCGG GACAACTGTC CCACGGTGCC 1380 TAACAGTGCC CAGGAGGACT CAGACCACGA TGGCCAGGGT GATGCCTGCG ACGACGACGA 1440 CGACAATGAC GGAGTCCCTG ACAGTCGGGA CAACTGCCGC CTGGTGCCTA ACCCCGGCCA 1500 65 GGAGGACGCG GACAGGGACG GCGTGGGCGA CGTGTGCCAG GACGACTTTG ATGCAGACAA 1560 GGTGGTAGAC AAGATCGACG TGTGTCCGGA GAACGCTGAA GTCACGCTCA CCGACTTCAG 1620 GGCCTTCCAG ACAGTCGTGC TGGACCCGGA GGGTGACGCG CAGATTGACC CCAACTGGGT 1680 GGTGCTCAAC CAGGGAAGGG AGATCGTGCA GACAATGAAC AGCGACCCAG GCCTGGCTGT 1740 GGGTTACACT GCCTTCAATG GCGTGGACTT CGAGGGCACG TTCCATGTGA ACACGGTCAC 1800 70 GGATGACGAC TATGCGGGCT TCATCTTTGG CTACCAGGAC AGCTCCAGCT TCTACGTGGT 1860 CATGTGGAAG CAGATGGAGC AAACGTATTG GCAGGCGAAC CCCTTCCGTG CTGTGGCCGA 1920 GCCTGGCATC CAACTCAAGG CTGTGAAGTC TTCCACAGGC CCCGGGGAAC AGCTGCGGAA 1980 CGCTCTGTGG CATACAGGAG ACACAGAGTC CCAGGTGCGG CTGCTGTGGA AGGACCCGCG 2040 AAACGTGGGT TGGAAGGACA AGAAGTCCTA TCGTTGGTTC CTGCAGCACC GGCCCCAAGT 2100 75 GGGCTACATC AGGGTGCGAT TCTATGAGGG CCCTGAGCTG GTGGCCGACA GCAACGTGGT 2160 CTTGGACACA ACCATGCGGG GTGGCCGCCT GGGGGTCTTC TGCTTCTCCC AGGAGAACAT 2220 CATCTGGGCC AACCTGCGTT ACCGCTGCAA TGACACCATC CCAGAGGACT ATGAGACCCA 2280 TCAGCTGCGG CAAGCCTAGG GACCAGGGTG AGGACCCGCC GGATGACAGC CACCCTCACC 2340 GCGGCTGGAT GGGGGCTCTG CACCCAGCCC AAGGGGTGGC CGTCCTGAGG GGGAAGTGAG 2400 80 AAGGGCTCAG AGAGGACAAA ATAAAGTGTG TGTGCAGGG Seq ID NO: 409 Protein sequence Protein Accession #: NP_000086.1 85

MVPDTACVLL LTLAALGASG QGQSPLGSDL GPQMLRELQE TNAALQDVRD WLRQQVREIT

```
FLKNTVMECD ACGMQQSVRT GLPSVRPLLH CAPGFCPPGV ACIQTESGGR CGPCPAGFTG
                                                                            120
       NGSHCTDVNE CNAHPCFPRV RCINTSPGFR CEACPPGYSG PTHQGVGLAF AKANKQVCTD
       INECETGOHN CVPNSVCINT RGSFQCGPCQ PGFVGDQASG CQRGAQRFCP DGSPSECHEH
                                                                            240
       ADCVLERDGS RSCVCRVGWA GNGILCGRDT DLDGFFDEKL RCPEPQCRKD NCVTVPNSGQ
 5
       EDVDRDGIGD ACDPDADGDG VPNEKDNCPL VRNPDQRNTD EDKWGDACDN CRSQKNDDQK
                                                                            360
       DTDQDGRGDA CDDDIDGDRI RNQADNCPRV PNSDQKDSDG DGIGDACDNC PQKSNPDQAD
                                                                            420
       VDHDFVGDAC DSDQDQDGDG HQDSRDNCPT VPNSAQEDSD HDGQGDACDD DDDNDGVPDS
                                                                            480
       RDNCRLVPNP GQEDADRDGV GDVCQDDFDA DKVVDKIDVC PENAEVTLTD FRAFQTVVLD
                                                                            540
       PEGDAQIDPN WVVLNQGREI VOTMNSDPGL AVGYTAFNGV DFEGTFHVNT VTDDDYAGFI
                                                                            600
       FGYQDSSSFY VVMWKQMEQT YWQANPFRAV AEPGIQLKAV KSSTGPGEQL RNALWHTGDT
.10
                                                                            660
       ESQVRLLWKD PRNVGWKDKK SYRWFLQHRP QVGYIRVRFY EGPELVADSN VVLDTTMRGG
                                                                            720
       RLGVFCFSQE NIIWANLRYR CNDTIPEDYE THQLRQA
       Seq ID NO: 410 DNA sequence
15
       Nucleic Acid Accession #: NM_001565.1
       Coding sequence: 67..363
                                                               51
20
       GAGACATTCC TCAATTGCTT AGACATATTC TGAGCCTACA GCAGAGGAAC CTCCAGTCTC
       AGCACCATGA ATCAAACTGC GATTCTGATT TGCTGCCTTA TCTTTCTGAC TCTAAGTGGC
       ATTCAAGGAG TACCTCTCTC TAGAACCGTA CGCTGTACCT GCATCAGCAT TAGTAATCAA
                                                                            180
       CCTGTTAATC CAAGGTCTTT AGAAAAACTT GAAATTATTC CTGCAAGCCA ATTTTGTCCA
                                                                            240
       CGTGTTGAGA TCATTGCTAC AATGAAAAAG AAGGGTGAGA AGAGATGTCT GAATCCAGAA
                                                                            300
25
       TCGAAGGCCA TCAAGAATTT ACTGAAAGCA GTTAGCAAGG AAATGTCTAA AAGATCTCCT
                                                                            360
       TAAAACCAGA GGGGAGCAAA ATCGATGCAG TGCTTCCAAG GATGGACCAC ACAGAGGCTG
                                                                            420
       CCTCTCCCAT CACTTCCCTA CATGGAGTAT ATGTCAAGCC ATAATTGTTC TTAGTTTGCA
                                                                            480
       GTTACACTAA AAGGTGACCA ATGATGGTCA CCAAATCAGC TGCTACTACT CCTGTAGGAA
                                                                            540
       GGTTAATGTT CATCATCCTA AGCTATTCAG TAATAACTCT ACCCTGGCAC TATAATGTAA
                                                                            600
30
       GCTCTACTGA GGTGCTATGT TCTTAGTGGA TGTTCTGACC CTGCTTCAAA TATTTCCCTC
                                                                            660
       ACCTTTCCCA TCTTCCAAGG GTACTAAGGA ATCTTTCTGC TTTGGGGTTT ATCAGAATTC
                                                                            720
       TCAGAATCTC AAATAACTAA AAGGTATGCA ATCAAATCTG CTTTTTAAAG AATGCTCTTT
                                                                            780
       ACTTCATGGA CTTCCACTGC CATCCTCCCA AGGGGCCCAA ATTCTTTCAG TGGCTACCTA
                                                                            840
       CATACAATTC CAAACACATA CAGGAAGGTA GAAATATCTG AAAATGTATG TGTAAGTATT
                                                                            900
35
       CTTATTTAAT GAAAGACTGT ACAAAGTATA AGTCTTAGAT GTATATATTT CCTATATTGT
                                                                            960
       TTTCAGTGTA CATGGAATAA CATGTAATTA AGTACTATGT ATCAATGAGT AACAGGAAAA
                                                                           1020
       TTITAAAAAT ACAGATAGAT ATATGCTCTG CATGTTACAT AAGATAAATG TGCTGAATGG
                                                                           1080
       TTTTCAAATA AAAATGAGGT ACTCTCCTGG AAATATTAAG
40
       Seq ID NO: 411 Protein sequence
       Protein Accession #: NP 001556.1
                                                               51
                  11
45
       MNOTAILICC LIFLTLSGIQ GVPLSRTVRC TCISISNQPV NPRSLEKLEI IPASQFCPRV
       EIIATMKKKG EKRCLNPESK AIKNLLKAVS KEMSKRSP
       Seq ID NO: 412 DNA sequence
       Nucleic Acid Accession #: XM_057014
50
       Coding sequence: 143..874
                                                               51
                              21
                                         31
                                                    41
       GGGAGGGAGA GAGGCGCGCG GGTGAAAGGC GCATTGATGC AGCCTGCGGC GGCCTCGGAG
                                                                             60
55
       CGCGGCGGAG CCAGACGCTG ACCACGTTCC TCTCCTCGGT CTCCTCCGCC TCCAGCTCCG
                                                                            120
       CGCTGCCCGG CAGCCGGGAG CCATGCGACC CCAGGGCCCC GCCGCCTCCC CGCAGCGGCT
                                                                            180
       CCGCGGCCTC CTGCTGCTCC TGCTGCTGCA GCTGCCCGCG CCGTCGAGCG CCTCTGAGAT
                                                                            240
       CCCCAAGGGG AAGCAAAAGG CGCAGCTCCG GCAGAGGGAG GTGGTGGACC TGTATAATGG
                                                                            300
       AATGTGCTTA CAAGGGCCAG CAGGAGTGCC TGGTCGAGAC GGGAGCCCTG GGGCCAATGG
                                                                            360
60
       CATTCCGGGT ACACCTGGGA TCCCAGGTCG GGATGGATTC AAAGGAGAAA AGGGGGAATG
                                                                            420
       TCTGAGGGAA AGCTTTGAGG AGTCCTGGAC ACCCAACTAC AAGCAGTGTT CATGGAGTTC
                                                                            480
       ATTGAATTAT GGCATAGATC TTGGGAAAAT TGCGGAGTGT ACATTTACAA AGATGCGTTC
                                                                            540
       AAATAGTGCT CTAAGAGTTT TGTTCAGTGG CTCACTTCGG CTAAAATGCA GAAATGCATG
                                                                            600
       CTGTCAGCGT TGGTATTTCA CATTCAATGG AGCTGAATGT TCAGGACCTC TTCCCATTGA
                                                                            660
65
       AGCTATAATT TATTTGGACC AAGGAAGCCC TGAAATGAAT TCAACAATTA ATATTCATCG
                                                                            720
       CACTTCTTCT GTGGAAGGAC TTTGTGAAGG AATTGGTGCT GGATTAGTGG ATGTTGCTAT
                                                                            780
       CTGGGTTGGC ACTTGTTCAG ATTACCCAAA AGGAGATGCT TCTACTGGAT GGAATTCAGT
                                                                            840
       TTCTCGCATC ATTATTGAAG AACTACCAAA ATAAATGCTT TAATTTTCAT TTGCTACCTC
                                                                            900
       TTTTTTTATT ATGCCTTGGA ATGGTTCACT TAAATGACAT TTTAAATAAG TTTATGTATA
                                                                            960
70
       CATCTGAATG AAAAGCAAAG CTAAATATGT TTACAGACCA AAGTGTGATT TCACACTGTT
                                                                           1020
       TTTAAATCTA GCATTATTCA TTTTGCTTCA ATCAAAAGTG GTTTCAATAT TTTTTTTAGT
                                                                           1080
       TGGTTAGAAT ACTTTCTTCA TAGTCACATT CTCTCAACCT ATAATTTGGA ATATTGTTGT
                                                                           1140
       GGTCTTTTGT TTTTTCTCTT AGTATAGCAT TTTTAAAAAA ATATAAAAGC TACCAATCTT
                                                                           1200
       TGTACAATTT GTAAATGTTA AGAATTTTTT TTATATCTGT TAAATAAAAA TTATTTCCAA
                                                                           1260
75
       СААССТТААА ААААААААА АААА
       Seg ID NO: 413 Protein seguence
       Protein Accession #: XP_057014
80
                                                    41
                  11
                              21
                                         31
       MRPQGPAASP QRLRGLLLLL LLQLPAPSSA SEIPKGKQKA QLRQREVVDL YNGMCLQGPA
                                                                             60
       GVPGRDGSPG ANGIPGTPGI PGRDGFKGEK GECLRESFEE SWTPNYKQCS WSSLNYGIDL
                                                                            120
       GKIAECTFTK MRSNSALRVL FSGSLRLKCR NACCQRWYFT FNGAECSGPL PIEAIIYLDQ
                                                                            180
85
       GSPEMNSTIN IHRTSSVEGL CEGIGAGLVD VAIWVGTCSD YPKGDASTGW NSVSRIIIEE
                                                                            240
```

WO 02/086443

Nucleic Acid Accession #: XM_084007 Coding sequence: 138..2405 5 41 51 CTCGTGCCGA ATTCGGCACG AGACCGCGTG TTCGCGCCTG GTAGAGATTT CTCGAAGACA CCAGTGGGCC CGTGTGGAAC CAAACCTGCG CGCGTGGCCG GGCCGTGGGA CAACGAGGCC GCGGAGACGA AGGCGCAATG GCGAGGAAGT TATCTGTAAT CTTGATCCTG ACCTTTGCCC 180 10 TCTCTGTCAC AAATCCCCTT CATGAACTAA AAGCAGCTGC TTTCCCCCAG ACCACTGAGA AAATTAGTCC GAATTGGGAA TCTGGCATTA ATGTTGACTT GGCAATTTCC ACACGGCAAT ATCATCTACA ACAGCTTTTC TACCGCTATG GAGAAAATAA TTCTTTGTCA GTTGAAGGGT 300 360 TCAGAAAATT ACTTCAAAAT ATAGGCATAG ATAAGATTAA AAGAATCCAT ATACACCATG 420 ACCACGACCA TCACTCAGAC CACGAGCATC ACTCAGACCA TGAGCGTCAC TCAGACCATG 480 15 AGCATCACTC AGACCACGAG CATCACTCTG ACCATGATCA TCACTCCCAC CATAATCATG CTGCTTCTGG TAAAAATAAG CGAAAAGCTC TTTGCCCAGA CCATGACTCA GATAGTTCAG 540 600 GTAAAGATCC TAGAAACAGC CAGGGGAAAG GAGCTCACCG ACCAGAACAT GCCAGTGGTA 660 GAAGGAATGT CAAGGACAGT GTTAGTGCTA GTGAAGTGAC CTCAACTGTG TACAACACTG 720 TCTCTGAAGG AACTCACTTT CTAGAGACAA TAGAGACTCC AAGACCTGGA AAACTCTTCC 780 20 CCAAAGATGT AAGCAGCTCC ACTCCACCCA GTGTCACATC AAAGAGCCGG GTGAGCCGGC 840 TGGCTGGTAG GAAAACAAAT GAATCTGTGA GTGAGCCCCG AAAAGGCTTT ATGTATTCCA 900 GAAACACAAA TGAAAATCCT CAGGAGTGTT TCAATGCATC AAAGCTACTG ACATCTCATG 960 GCATGGGCAT CCAGGTTCCG CTGAATGCAA CAGAGTTCAA CTATCTCTGT CCAGCCATCA 1020 TCAACCAAAT TGATGCTAGA TCTTGTCTGA TTCATACAAG TGAAAAGAAG GCTGAAATCC 1080 25 CTCCAAAGAC CTATTCATTA CAAATAGCCT GGGTTGGTGG TTTTATAGCC ATTTCCATCA 1140 TCAGTTTCCT GTCTCTGCTG GGGGTTATCT TAGTGCCTCT CATGAATCGG GTGTTTTTCA 1200 AATTTCTCCT GAGTTTCCTT GTGGCACTGG CCGTTGGGAC TTTGAGTGGT GATGCTTTTT 1260 TACACCTTCT-TCCACATTCT CATGCAAGTC ACCACCATAG TCATAGCCAT GAAGAACCAG 1320 CAATGGAAAT GAAAAGAGGA CCACTTTCA GTCATCTGTC TTCTCAAAAC ATAGAAGAAA 1380 30 GTGCCTATTT TGATTCCACG TGGAAGGGTC TAACAGCTCT AGGAGGCCTG TATTTCATGT 1440 TTCTTGTTGA ACATGTCCTC ACATTGATCA AACAATTTAA AGATAAGAAG AAAAAGAATC 1500 AGAAGAAACC TGAAAATGAT GATGATGTGG AGATTAAGAA GCAGTTGTCC AAGTATGAAT 1560 CTCAACTTTC AACAAATGAG GAGAAAGTAG ATACAGATGA TCGAACTGAA GGCTATTTAC 1620 GAGCAGACTC ACAAGAGCCC TCCCACTTTG ATTCTCAGCA GCCTGCAGTC TTGGAAGAAG 1680 35 AAGAGGTCAT GATAGCTCAT GCTCATCCAC AGGAAGTCTA CAATGAATAT GTACCCAGAG 1740 GGTGCAAGAA TAAATGCCAT TCACATTTCC ACGATACACT CGGCCAGTCA GACGATCTCA 1800 TTCACCACCA TCATGACTAC CATCATATTC TCCATCATCA CCACCACCAA AACCACCATC 1860 CTCACAGTCA CAGCCAGCGC TACTCTCGGG AGGAGCTGAA AGATGCCGGC GTCGCCACTT 1920 TGGCCTGGAT GGTGATAATG GGTGATGGCC TGCACAATTT CAGCGATGGC CTAGCAATTG 1980 40 GTGCTGCTTT TACTGAAGGC TTATCAAGTG GTTTAAGTAC TTCTGTTGCT GTGTTCTGTC 2040 ATGAGTTGCC TCATGAATTA GGTGACTTTG CTGTTCTACT AAAGGCTGGC ATGACCGTTA 2100 AGCAGGCTGT CCTTTATAAT GCATTGTCAG CCATGCTGGC GTATCTTGGA ATGGCAACAG 2160 GAATTTTCAT TGGTCATTAT GCTGAAAATG TTTCTATGTG GATATTTGCA CTTACTGCTG 2220 GCTTATTCAT GTATGTTGCT CTGGTTGATA TGGTACCTGA AATGCTGCAC AATGATGCTA 2280 45 GTGACCATGG ATGTAGCCGC TGGGGGTATT TCTTTTTACA GAATGCTGGG ATGCTTTTGG 2340 GTTTTGGAAT TATGTTACTT ATTTCCATAT TTGAACATAA AATCGTGTTT CGTATAAATT 2400 TCTAGTTAAG GTTTAAATGC TAGAGTAGCT TAAAAAGTTG TCATAGTTTC AGTAGGTCAT 2460 AGGGAGATGA GTTTGTATGC TGTACTATGC AGCGTTTAAA GTTAGTGGGT TTTGTGATTT TTGTATTGAA TATTGCTGTC TGTTACAAAG TCAGTTAAAG GTACGTTTTA ATATTTAAGT 2580 50 TATTCTATCT TGGAGATAAA ATCTGTATGT GCAATTCACC GGTATTACCA GTTTATTATG TAAACAAGAG ATTTGGCATG ACATGTTCTG TATGTTTCAG GGAAAAATGT CTTTAATGCT TTTTCAAGAA CTAACACAGT TATTCCTATA CTGGATTTTA GGTCTCTGAA GAACTGCTGG 2760 TGTTTAGGAA TAAGAATGTG CATGAAGCCT AAAATACCAA GAAAGCTTAT ACTGAATTTA 2820 AGCAAAGAAA TAAAGGAGAA AAGAGAAGAA TCTGAGAATT GGGGAGGCAT AGATTCTTAT 2880 55 2940 AAAAATCACA AAATTTGTTG TAAATTAGAG GGGAGAAATT TAGAATTAAG TATAAAAAGG CAGAATTAGT ATAGAGTACA TTCATTAAAC ATTTTTGTCA GGATTATTTC CCGTAAAAAC 3000 GTAGTGAGCA CTCTCATATA CTAATTAGTG TACATTTAAC TTTGTATAAT ACAGAAATCT 3060 AAATATATTT AATGAATTCA AGCAATATAC ACTTGACCAA GAAATTGGAA TTTCAAAATG 3120 TTCGTGCGGG TTATATACCA GATGAGTACA GTGAGTAGTT TATGTATCAC CAGACTGGGT 3180 60 TATTGCCAAG TTATATATCA CCAAAAGCTG TATGACTGGA TGTTCTGGTT ACCTGGTTTA 3240 CAAAATTATC AGAGTAGTAA AACTTTGATA TATATGAGGA TATTAAAACT ACACTAAGTA 3300 TCATTTGATT CGATTCAGAA AGTACTTTGA TATCTCTCAG TGCTTCAGTG CTATCATTGT 3360 GAGCAATTGT CTTTATATAC GGTACTGTAG CCATACTAGG CCTGTCTGTG GCATTCTCTA 3420 GATGTTTCTT TTTTACACAA TAAATTCCTT ATATCAGCTT G 65 Seq ID NO: 415 Protein sequence Protein Accession #: XP_084007 70 MARKLSVILI LTFALSVTNP LHELKAAAFP QTTEKISPNW ESGINVDLAI STRQYHLQQL 60 FYRYGENNSL SVEGFRKLLQ NIGIDKIKRI HIHHDHDHHS DHEHHSDHER HSDHEHHSDH 120 EHHSDHDHHS HHNHAASGKN KRKALCPDHD SDSSGKDPRN SQGKGAHRPE HASGRRNVKD 180 SVSASEVTST VYNTVSEGTH FLETIETPRP GKLFPKDVSS STPPSVTSKS RVSRLAGRKT 240 75 NESVSEPRKG FMYSRNTNEN PQECFNASKL LTSHGMGIQV PLNATEFNYL CPAIINQIDA 300 RSCLIHTSEK KAEIPPKTYS LQIAWVGGFI AISIISFLSL LGVILVPLMN RVFFKFLLSF 360 420 LVALAVGTLS GDAFLHLLPH SHASHHHSHS HEEPAMEMKR GPLFSHLSSQ NIEESAYFDS TWKGLTALGG LYFMFLVEHV LTLIKQFKDK KKKNQKKPEN DDDVEIKKQL SKYESQLSTN 480 EEKVDTDDRT EGYLRADSQE PSHFDSQQPA VLEEEEVMIA HAHPQEVYNE YVPRGCKNKC 540 80 HSHFHDTLGQ SDDLIHHHHD YHHILHHHHH QNHHPHSHSQ RYSREELKDA GVATLAWMVI 600 MGDGLHNFSD GLAIGAAFTE GLSSGLSTSV AVFCHELPHE LGDFAVLLKA GMTVKQAVLY 660 NALSAMLAYL GMATGIFIGH YAENVSMWIF ALTAGLFMYV ALVDMVPEML HNDASDHGCS 720 RWGYFFLONA GMLLGFGIML LISIFEHKIV FRINF 85 Seg ID NO: 416 DNA seguence

Nucleic Acid Accession #: NM_015419.1

Coding sequence: 1..8487

WO 02/086443

Seq ID NO: 414 DNA sequence

	1	11	21	31 1	41 I	51 1	
	ATGCCCAAGC	GOGGCACTG	GGGGGCCCTC	TCCGTGGTGC	TGATCCTGCT	TTGGGGCCAT	60
5	CCGCGAGTGG	CGCTGGCCTG	CCCGCATCCT	TGTGCCTGCT	ACGTCCCCAG	CGAGGTCCAC	120
•	TGCACGTTCC	GATCCCTGGC	TTCCGTGCCC	GCTGGCATTG	CTAGACACGT	GGAAAGAATC	180
	AATTTGGGGT	TTAATAGCAT	ACAGGCCCTG	TCAGAAACCT	CATTTGCAGG	ACTGACCAAG	240
	TTGGAGCTAC	TTATGATTCA	CGGCAATGAG	ATCCCAAGCA	TCCCCGATGG	AGCTTTAAGA	300
10	GACCTCAGCT	CTCTTCAGGT	TTTCAAGTTC	AGCTACAACA	AGCTGAGAGT	GATCACAGGA	360
10	CAGACCCTCC	AGGGTCTCTC	TAACTTAATG	AGGCTGCACA	TTGACCACAA	CAAGATCGAG	420
	TTTATCCACC	CTCAAGCTTT	CAACGGCTTA	ACGTCTCTGA	GGCTACTCCA	TTTGGAAGGA	480
	AATCTCCTCC	ACCAGCTGCA	CCCCAGCACC	TTCTCCACGT GCAGAGAACA	TCCTTACAAC	TOTTO	540 600
	AGACTETECA	CCATAAGGCA	CCTCTACTTA	AATCTTTACT	TGCAGGGAAA	TCCGTGGACC	660
15	TGCGATTGTG	AGATGAGATG	GTTTTTGGAA	TGGGATGCAA	AATCCAGAGG	AATTCTGAAG	720
	TGTAAAAAGG	ACAAAGCTTA	TGAAGGCGGT	CAGTTGTGTG	CAATGTGCTT	CAGTCCAAAG	780
	AAGTTGTACA	AACATGAGAT	ACACAAGCTG	AAGGACATGA	CTTGTCTGAA	GCCTTCAATA	840
	GAGTCCCCTC	TGAGACAGAA	CAGGAGCAGG	AGTATTGAGG	AGGAGCAAGA	ACAGGAAGAG	900
20	GATGGTGGCA	GCCAGCTCAT	CCTGGAGAAA	TTCCAACTGC	CCCAGTGGAG	CATCTCTTTG	960 1020
20	AATATGACCG	ACGAGCACGG	GAACATGGTG	AACTTGGTCT GATCCTCCAG	ATATTGACAT	DARACCARIG	1080
	GRIGIGIACA	AGATICACTI	TCCAATGACC	CGAGAAAACT	ATGAAAAGCT	ATGGAAATTG	1140
	ATAGCATACT	ACAGTGAAGT	TCCCGTGAAG	CTACACAGAG	AGCTCATGCT	CAGCAAAGAC	1200
	CCCAGAGTCA	GCTACCAGTA	CAGGCAGGAT	GCTGATGAGG	AAGCTCTTTA	CTACACAGGT	1260
25	GTGAGAGCCC	AGATTCTTGC	AGAACCAGAA	TGGGTCATGC	AGCCATCCAT	AGATATCCAG	1320
	CTGAACCGAC	GTCAGAGTAC	GGCCAAGAAG	GTGCTACTTT	CCTACTACAC	CCAGTATTCT	1380
				GCTCGGGGCA			1440 1500
	TCCA ACCTCA	AACCTTCTCA	GACTCCATCT	GTCCTGGAAG ATCTTCTGGG	TOCTTCCAGA	TEGETTOAGE	1560
30				AAGTTCTCCA			1620
50	AGGATCAAGT	CCATGGAGCC	ATCTGACTCA	GGCTTGTACC	AGTGCATTGC	TCAAGTGAGG	1680
	GATGAAATGG	ACCGCATGGT	ATATAGGGTA	CTTGTGCAGT	CTCCCTCCAC	TCAGCCAGCC	1740
				CCAGGGGAGT			1800
25				TGGATTCTTC			1860
35				TTGCCAAATG TGTGTGGCTG			1920 1980
	CATTTTACCC	TCCCAATCAC	AGTGACCAAG	AAAGGGTCTG	GCTTGCCATC	CAAAAGAGGC	2040
	AGACGCCCAG	GTGCAAAGGC	TCTTTCCAGA	GTCAGAGAAG	ACATCGTGGA	GGATGAAGGG	2100
				TCAAGGAGAC			2160
40				ATCAATGGAG			2220
				GAAAAAGAAC			2280
	GGTCGCAGAG	TGTTTGAATC	TAGACGAAGG	ATAAACATGG	CAAACAAACA	GATTAATCCG	2340 2400
				CGTGGGAAAA CCATCCTTGA			2460
45				CCTGTGCAGA			2520
				GAAGAGCACG			2580
	GCCAGCATGG	GGCTAGAACA	CAACCACAAT	GGAGTTATTC	TTGTTGAACC	TGAAGTAACA	2640
	AGCACACCTC	TGGAGGAAGT	TGTTGATGAC	CTTTCTGAGA	AGACTGAGGA	GATAACTTCC	2700
50				CCTACACTTA			2760
30				TATGAAAAGC TCGTCACCAG			2820 2880
	GAGCCTCCAT	TEGATECTET	CTCCTTGGCT	GAGTCTGAGC	CCATGCAATA	CTTTGACCCA	2940
				GATAAGATGA			3000
				GACTCCAGTA			3,060
55	TCTACTATAG	GGGAACCAGG	TGTCCCAGGC	CAATCACATC	TACAAGGACT	GACAGACAAC	3120
	ATCCACCTTG	TGAAAAGTAG	TCTAAGCACT	CAAGACACCT	TACTGATTAA	AAAGGGTATG	3180
				AATATGCTAG	AGGGAGACCC	CACACACTCC	
	CCTATATCA	AGAG I GAGGG	LUANDAGAGL			CTCCACACTC	
60		CCACTATCTC	TCCAGTTAAG	AAAICCAICA	CTTTGCCTGA	CTCCACACTG	3300
	CTAGACAAAG	GCAGTATGTC	TCCAGTTAAG	AAGCCTGCGG	CTTTGCCTGA AAACCACAGT	TGGTACCCTC	3300 3360
	CTAGACAAAG ACCATGAGCA	ACACCACAAC CTCACCCTTC	TCCAGTTAAG AGTAACAACA TCGAAGGAGA	AAGCCTGCGG ACACCAAGGC CCCAACGGGA	CTTTGCCTGA AAACCACAGT AAAAAGTTGC GAAGGAGATT	TGGTACCCTC TCCGTCATCC ACGCCCCAAC	3300 3360 3420 3480
	CTAGACAAAG ACCATGAGCA AAATTCCGCC	ACACCACAAC CTCACCCTTC ACCGGCACAA	TCCAGTTAAG AGTAACAACA TCGAAGGAGA GCAAACCCCA	AAGCCTGCGG ACACCAAGGC CCCAACGGGA CCCACAACTT	CTTTGCCTGA AAACCACAGT AAAAAGTTGC GAAGGAGATT TTGCCCCATC	TGGTACCCTC TCCGTCATCC ACGCCCCAAC AGAGACTTTT	3300 3360 3420 3480 3540
	CTAGACAAAG ACCATGAGCA AAATTCCGCC TCTACTCAAC	ACACCACAAC CTCACCCTTC ACCGGCACAA CAACTCAAGC	TCCAGTTAAG AGTAACAACA TCGAAGGAGA GCAAACCCCA ACCTGACATT	AAGCCTGCGG ACACCAAGGC CCCAACGGGA CCCACAACTT AAGATTTCAA	CTTTGCCTGA AAACCACAGT AAAAAGTTGC GAAGGAGATT TTGCCCCATC GTCAAGTGGA	TGGTACCCTC TCCGTCATCC ACGCCCCAAC AGAGACTTTT GAGTTCTCTG	3300 3360 3420 3480 3540 3600
65	CTAGACAAAG ACCATGAGCA AAATTCCGCC TCTACTCAAC GTTCCTACAG	ACACCACAAC CTCACCCTTC ACCGGCACAA CAACTCAAGC CTTGGGTGGA	TCCAGTTAAG AGTAACAACA TCGAAGGAGA GCAAACCCCA ACCTGACATT TAACACAGTT	AAGCCTGCGG ACACCAAGGC CCCAACGGGA CCCACAACTT AAGATTTCAA AATACCCCCA	CTTTGCCTGA AAACCACAGT AAAAAGTTGC GAAGGAGATT TTGCCCCATC GTCAAGTGGA AACAGTTGGA	TGGTACCCTC TCCGTCATCC ACGCCCCAAC AGAGACTTTT GAGTTCTCTG AATGGAGAAG	3300 3360 3420 3480 3540 3600 3660
65	CTAGACAAAG ACCATGAGCA AAATTCCGCC TCTACTCAAC GTTCCTACAG AATGCAGAAC	ACACCACAAC CTCACCCTTC ACCGGCACAA CAACTCAAGC CTTGGGTGGA CCACATCCAA	TCCAGTTAAG AGTAACAACA TCGAAGGAGA GCAAACCCCA ACCTGACATT TAACACAGTT GGGAACACCA	AAGCCTGCGG ACACCAAGGC CCCACACGGA CCCACAACTT AAGATTTCAA AATACCCCCA CGGAGAAAAC	CTTTGCCTGA AAACCACAGT AAAAAGTTGC GAAGGAGATT TTGCCCCATC GTCAAGTGGA AACAGTTGGA ACGGGAAGAG	TGGTACCCTC TCCGTCATCC ACGCCCCAAC AGAGACTTTT GAGTTCTCTG AATGGAGAAG GCCAAACAAA	3300 3360 3420 3480 3540 3600 3660 3720
65	CTAGACAAAG ACCATGAGCA AAATTCCGCC TCTACTCAAC GTTCCTACAG AATGCAGAAC CATCGATATA	ACACCACAAC CTCACCCTTC ACCGGCACAA CAACTCAAGC CTTGGGTGGA CCACATCCAA CCCCTTCTAC	TCCAGTTAAG AGTAACAACA TCGAAGGAGA GCAAACCCCA ACCTGACATT TAACACAGTT GGGAACACCA AGTGAGCTCA	AAGCCTGCGG ACACCAAGGC CCCACACTT AAGATTTCAA AATACCCCCA CGGAGAAAAC AGAGCGTCCG	CTTTGCTGA AAACCACAGT AAAAAGTTGC GAAGGAGATT TTGCCCCATC GTCAAGTTGGA AACAGTTGGA ACGGAAGAG GATCCAAGCC	TGGTACCCTC TCCGTCATCC ACGCCCCAAC AGAGACTTTT GAGTTCTCTG AATGGAGAAG GCCAAACAAA CAGCCCTTCT	3300 3360 3420 3480 3540 3600 3660 3720 3780
65	CTAGACAAAG ACCATGAGCA AAATTCCGCC TCTACTCAAC GTTCCTACAG AATGCAGAAC CATCGATATA CCAGAAAATA	ACACCACAAC CTCACCCTTC ACCGGCACAA CAACTCAAGC CTTGGGTGGA CCACATCCAA CCCCTTCTAC AACATAGAAA	TCCAGTTAAG AGTAACAACA TCGAAGGAGA GCAAACCCCA ACCTGACATT TAACACAGTT GGGAACACCA AGTGAGCTCA CATTGTTACT	AAGCCTGCGG ACACCAAGGC CCCAACGGGA CCCACAACTT AAGATTTCAA AATACCCCCA CGGAGAAAAC AGAGCGTCCG CCCAGTTCAG	CTTTGCCTGA AAACCACAGT AAAAAGTTGC GAAGGAGATT TTGCCCCATC GTCAAGTGGA AACAGTTGGA ACGGGAAGAG GATCCAAGCC AAACTATACT	TGGTACCCTC TCCGTCATCC ACGCCCAAC AGAGACTTT GAGTTCTCTG AATGGAGAAG GCCAAACAAA CAGCCCTTCT TTTGCCTAGA	3300 3360 3420 3480 3540 3600 3720 3780 3840
	CTAGACAAAG ACCATGAGCA AAATTCCGCC TCTACTCAAC GTTCCTACAG AATGCAGAAC CATCGATATA ACTGTTTCTC AAAATAATT	ACACCACAAC CTCACCCTTC ACCGGCACAA CCACTCCAAGC CTTGGGTGGA CCACATCCAA CCCCTTCTAC AACATAGAAA TGAAAACTGA CATCTTACCC	TCCAGTTAAG AGTACAACA TCGAAGGAGA GCAAACCCCA ACCTGACATT TAACACAGTT GGGAACACCA AGTGAGGTCA CATTGTTACT GGGCCTTAT TAAAGTCCAA	AAGCCTGCGG ACACCAAGGCA CCCAACGGCA CCCACAACTT AAGATTTCAA AATACCCCCA CGGAGAAAAC AGAGCGTCCG CCCAGTTCAG GATTCCTTAG GAGACACTT	CTTTGCTGA AAACCACAGT AAAAAGTTGC GAAGGAGATT TTGCCCCATC GTCAAGTGGA ACAGTTGGA ACGGGAAGAG GATCCAAGCC AAACTATACT ATTACATGAC CAGTCACATA	TGGTACCTC TCCGTCATCC ACGCCCAAC AGAGACTTTT GAGTTCTCTG AATGGAGAAG GCCAAACAAA CAGCCCTTCT TTTGCCTAGA AACCACCAGA TAAACCCACA	3300 3360 3420 3480 3540 3660 3720 3780 3840 3900 3960
65 70	CTAGACAAAG ACCATGAGCA AAATTCCGCC TCTACTCAAC GTTCCTACAGA AATGCAGAAAC CATCGATATA CCAGAAAATA ACTGTTTCTC TCAGATGGAA	ACACCACAAC CTCACCCTTC ACCGGCCACA ACCACTCAAGC CTTGGGTGGA CCACATCCAA CCCCTTCTAC AACATAGAAA TGAAAACTGA CATCTTACCC AAGAAATTAA	TCCAGTTAAG AGTACACAA TCGAAGGAGA GCAAACCCCA ACCTGACATT TAACACAGTT GGGAACACCA AGTGAGCTCA CATTGTTACT GGGCCCTTAT TAAAGTCCAA GGATGATGTT	AAGCCTGCGG ACACCAAGGC CCCAACGGGT AAGATTTCAA AATACCCCCA CGGAGAAAAC AGAGCGTCCG CCCAGTTCAG GATTCCTTAG GAGACACTTC GCCACAAATG	CTTTGCTGA AAACCACAGT AAAAAGTTGC GAAGGAGATT TTGCCCCATC GTCAAGTGGA ACAGTTGGA ACAGGAAGAG GATCCAAGCC AAACTATACT ATTACATACT TTGCACATA TTGACAAACA	TGGTACCCTC TCCGTCATCC ACGCCCAAA AGAGACTTTT GAGTTCTCTG AATGGAGAAG GCCAAACAAA CAGCCCTTCT TTTGCCTAGA AACCACCAGA TAAACCCACA TAAAAGTGAC	3300 3360 3420 3480 3540 3600 3720 3780 3840 3900 3960 4020
	CTAGACAAAG ACCATGAGCA AAATTCCGCC TCTACTCAAC GTTCCTACAGA AATGCAGAAAC CATCGATATA CCAGAAAATA ACTGTTTCTC AAAATATATT TCAGATGGAA ATTTTAGTCA	ACACCACAAC CTCACCCTTC ACCGGCACAA ACAACTCAAGC CTTGGGTGGA CCACATCCAA CCCCTTCTAC AACATAGAAA TGAAAACTGA CATCTTACCC AAGAAATTAA CTGGTGAATC	TCCAGTTAAG AGTAACAACA TCGAAGGAGA GCAAACCCCA ACCTGACATT TAACACAGTT GGGAACACCA AGTGAGCTCA CATTGTTACT GGGCCCTTAT TAAAGTCCAA GGATGATGATGTTAAT AATTACTAAT	AAGCCTGCGG ACACCAAGGGA CCCAAACGGGA CCCACAACTT AAGATTTCAA AATACCCCCA CGGAGAAAAC CGGAGAAAC CCCAGTTCAG GATTCCTTAG GAGACACTTC GCCACAATG GCCACAAATG GCCATACCAA	CTTTGCCTGA AAACCACAGT AAAAAGTTGC GAAGGAGATT TTGCCCCATC GTCAAGTGGA ACAGTTGGA ACAGTTGGA ACAGTAGACAACAGTCACAACACACACACC CAGTCACAACACACCC CTTCTCGCTC	TGGTACCTTC TCCGTCATCC ACGCCCCAAC AGAGACTTTT GAGTTCTCTG AATGGAGAAG GCCAAACAAA CAGCCCTTCT TTTGCCTAGA AACCCCAGA TAAAACCCACA TAAAAGTGAC CTTGGTCTCC	3300 3360 3420 3480 3540 3660 3720 3780 3840 3900 3960 4020 4080
	CTAGACANAG ACCATGAGCA ANATTCCGCC TCTACTCANC GTTCCTACAG ANTGCAGANAC CCAGGANANTA ACTGTTTCTC ANANTATATT TCAGATGGAA ATTTTAGTCA ACTATGGGAG ACTATGGGAGA	ACACCACAAC CTCACCCTTC ACCGGCACAA CAACTCAAGC CTTGGGTGGA CCACATCCAA ACCATAGAAA TGAAAACTGA CATCTTACCC AAGAAATTAA CTGGTGAATC AATTTAAGGA	TCCAGTTAAG AGTACAACA TCGAAGGAGA GCAAACCCCA ACCTGACATT TAACACAGTT GGGAACACCA AGTGAGCTCA CATTGTTACT GGGCCCTTAT TAAAGTCCAA GGATGATGTT AATTACTAAT AGAATCCTCT	AAGCCTGCGG ACACCAAAGGGA CCCAAAAGGGA CCCAAAACTT AAGATTTCAA AATACCCCCA AGAGCAAAAC CCCAGTTCAG GATTCCTTAG GAGACACTT GCCACAAATG GCCACAAATG GCCACAAAAC CCTGTAGGCT CCGGCACAAAC CCTGTAGGCT CCCAGTTCCAAAC CCTGTAGGCT CCCAGTTACCAA CCTGTAGGCT	CTTTGCCTGA AAACCACAGT AAAAAGTTGC GAAGGAGATT TTGCCCCATC GTCAAGTGGA AACAGTTGGA ACGGGAAGAG GATCCAAGCC AAACTATACT ATTACATGAC CAGTCACATA TTGACAAACA CTTCTCGCTC TTCCAGGAAC	TGGTACCCTC TCCGTCATCC ACGCCCCAAC AGAGACTTTT GAGTTCTCTG AATGGAGAAG CCCAAACAAA CAGCCCTTCT TTTGCCTAGA AACCACCAGA TAAAACCCACA TAAAAGTGAC CTTGGTCTCC TCCAACCTGG	3300 3360 3420 3480 3540 3660 3720 3780 3840 3900 3960 4020 4080 4140
	CTAGACAAAG ACCATGAGCA AAATTCCGCC TCTACTCAAC GTTCCTACAG AATGCAGAAAC CATCGATATA ACTGTTTCTC AAAATATATT TCAGATGGAA ACTTTTAGTCA ACTATGGGAG AATCCCTCAA	ACACCACAAC CTCACCCTTC ACCGGCACAA CCACCTCCAAC CCACATCCAA CCCCTTCTAC AACATAGAAA TGAAAACTGA CATCTTACCC AAGAAATTAA CTGGTGAATC AATTTAACGC AAGTATAAAC CTGGTGAATC AATTTAACGC GGACGGCCCA	TCCAGTTAAG AGTAACACCA TCGAAGGAGA GCAAACCCCA ACCTGACATT TAACACAGTT GGGAACACCA ACTTGACATCA CATTGTTACT GGGCCCTTAT TAAAGTCCAA GGATGATGTT AAATTACTAAT AGAATCCTCT GCCTGGGAGG	AAGCCTGCGG ACACCAAAGGC CCCAAACGGGA CCCACAACTT AAGATTTCAA AATACCCCA CGGAGAAAAC CCCAGTTCAG GATTCCTTAG GAGACACTT GCCACAAATG CCCTACCACACCAC	CTTTGCCTGA AAACCACAGT AAAAAGTTGC GAAGGAGATT TTGCCCCATC GTCAAGTGGA ACCAGTTGGA ACCAGTTGGA ACCAGTAGAGCC AAACTATACCT ATTACATGAC CTGCACATA TTGACAAACCA CTTCTCGCTC TTCCAGGAACC ACCATACCTGT	TGGTACCCTC TCCGTCATCC ACGCCCCAAC AGAGACTTTT GAGTTCTCTG AATGGAGAAG GCCAAACAAA CAGCCCTTCT TTTGCCTAGA AACCACCAGA TAAAACTGAC TCCAACCTGG TCCAACCTTGT TACACCTTCT	3300 3360 3420 3480 3540 3600 3720 3780 3840 3900 4020 4020 4140 4200
70	CTAGACAAAG ACCATGAGCA AAATTCCGCC TCTACTCAAC GTTCCTACAG AATGCAGAAA CCATCGATATA ACTGTTTCTC AAAATATATT TCAGATGGAA ATTTTAGTCA ACTATTGGAA ACTGTTCCCAA ACTGCCACAAAATCA ACTGTTCCCACAAAATCA ACTGTTCCCAAAACAACCACAACCACAACACACAACACA	ACACCACAAC CTCACCCTTC ACCGGCACAA CCACTCCAAG CCACATCCAA CCCCTTCTAC AACATAGAAA TGAAAACTGA CATCTTACCC AAGAAATTAA CTGGTGAATC AATTTAACGC AATTTAACGC TTACAGACCCC TTACAGACCCC	TCCAGTTAAG AGTACACAC TCGAAGGAGA GCAAACCCCA ACCTGACATT TAACACAGTT GGGAACACCA ACTGAGCTCA CATTGTTACT GGGCCCTTAT TAAAGTCCAA GGATGATGTT AAATCACTA AGAATCCTCT GCCTGGGAGG TCCCCTTCTT	AAGCCTGCGG ACACCAAAGGC CCCAACAGGCA CCCACAACTT AAGATTTCAA AATACCCCA CGGAGAAAAC CCCAGTTCAG GATTCCTTAG GAGACATTC GCCACAAATG GCCACAAATG GCCATACCAA CCTGTAGGCT CTACAGACAG AAAGAGCTTC	CTTTGCTGA AAACCACAGT GAAGGAGATT TTGCCCCATC GTCAAGTGGA AACAGTTGGA ACGGAAGAG GATCCAAGCC AAACTATACT ATTACATGAC CTGCACATAC TTGCAGAACA CTTCTCGGTC TTCCAGGAAC ACATACCTGT ACGATACCTGT ACGATACTGT ACGATACTGGA	TGGTACCTC TCCGTCATCC ACGCCCAAC AGAGACTTTT GAGTTCTCTG AATGGAGAAG GCCAAACAAA CAGCCCTTCT TTTGCCTAGA AACCACCAGA TAAAAGTGAC TCCAACCTGG TCCAACCTGG TACCACTTCT TTTCACTTCC	3300 3360 3420 3480 3540 3600 3720 3780 3840 3900 4020 4020 4040 4140 4200 4260
	CTAGACANAG ACCATGAGCA ANATTCCGCC TCTACTCANC GTTCCTACAG ANTGCAGANATA CCAGANANTA ACTGTTTCTC ANANTATATT TCAGATGGAA ATTTTAGTCA ACTATGGAGGA AATCCCTCAA GGGGANANTC GAGTTTTTGT ACACTCTCT	ACACCACAAC CTCACCCTTC ACCGGCACAA CAACTCAAGC CTTGGGTGGA CCACATCCAA ACCATAGAAA TGAAAACTGA ACATAGAAAC AACTTAACC AAGAAATTAA CTGGTGAATC AATTTAAGGA GGACGGCCCA TTACAGACCC CCTCTTTGAC CAAGCATAAA	TCCAGTTAAG AGTAACACAA TCGAAGGAGA GCAAACCCCA ACCTGACATT TAACACAGTT GGGAACACCA CATTGTTACT GGGCCCTTAT TAAAGTCCAA GGATGATGTT AATTACTAAT AGAATCCTCT GCCTGGGAGG TCCCCTTCTT AGTCTCCACA AGTGGAGGTG AGTCTCCACA AGTGGAGGTG	AAGCCTGCGG ACACCAAAGGA CCCAAACGGA CCCACAACTT AAGATTTCAA AATACCCCA CGGAGAAAAC AGAGCGTCCG CCCAGTTCAG GATTCCTTAG GACACATTC GCCACAAATG GCCATACCAA CCTGTAGGCT CTACAGACAG CATACCAA AAGAGCTTC CTACAGACAG CATACCAA CCTGTAGGCT CTACAGACAG CCATTTCACC GCTTCAAGTC GCTTCAAGTC	CTTTGCCTGA AAACCACAGT AAAAAGTTGC GAAGGAGATT TTGCCCCATC GTCAAGTGGA ACAGTTGGA ACAGTTGGA ACAGTTGAC AAACTATACT ATTACATGAC CAGTCACATA TTGACAAACA CTTCTCGCTC TTCCAGGAAC ACATACCTGT AGGATGAGAC AGGATGAGAC AGGATGAGAC AGGATGAGAC AGGATGAGAC	TGGTACCTTC TCCGTCATC ACGCCCCAAC AGAGACTTTT GAGTTCTCTG AATGGAGAAG CCCAAACAAA CAGCCCTTCT TTTGCCTAGA AACCACCAGA TAAAACCCACA TAAAAGTGAC CTTGGTCTCC TCCAACCTGG TACCACTTCT TTTCACTTCC TGGTTCTTCC CACCACCCTT	3300 3360 3420 3540 3660 3720 3780 3940 3960 4020 4080 4140 4260 4320 4380
70	CTAGACANAG ACCATGAGCA ANATTCCGCC TCTACTCANC GTTCCTACAG AATGCAGAAAC CATCGATATA ACTGTTTCTC ANAATATATT TCAGATGGAA ACTTTTAGTCA ACTATGGAGGAG ANTCCCTCAA GGGGAAAATC GAGTTTTTGT GACACTCTCT GATCAACATCT	ACACCACAAC CTCACCCTTCA ACCGGCACAA ACAGCTCAAG CCACATCCAA CCACTTCTAC ACAATAGAAA TGAAAACTGA CTGTGAATC AACTTAACC AAGAAATTAA CTGTGAATC TACAGACCC TTACAGACCC CCTCTTTGAC CCTCTTTGAC AATTTAAAA ATCTTGAAAA ATCTTGAAAA	TCCAGTTAAG AGTAACACCA TCGAAGGAGA GCAAACCCCA ACCTGACATT TAACACAGTT GGGAACACCA AGTGAGCTCA CATTGTTACT GAGCCCTTAT TAAAGTCCAA GGATGATGTTA TAAAGTCCAA GCATGATGTT AATTACTAAT ACAATCCTCT GCCTGGGAGG TCCCCTTCTT AGTCTCACA AGTGGAGGTG CACTGTGGCC	AAGCCTGCGG ACACCAAAGGC CCCAAACGGGA CCCACAACTT AAGATTTCAA AATACCCCA CGGAGAAAAAC CCCAGTTCAG GATTCCTTAG GAGACACTTC GCCACAAATG GCCACAAATG GCCATACCAA CCTGTAGGCT CTACAGACAG CAATTCCATAG CCATTCAGC AAAGAGCTTG CCATTCACG AAAGAGCTTG CCATTCACTC ATTCTCATT	CTTTGCCTGA AAACCACAGT AAAAAGTTGC GAAGGAGATT TTGCCCCATC GTCAAGTGGA AACAGTTGGA ACGGGAAGAG GATCCAAGCC AAACTATACT ATTACATGAC CTTCACACATA TTGACAAACC TTCCAGGAAC ACATACCTGT AGGATGTGGA AGGAGAGAC AGGAGAAAC CTGAAACTAG CTGAAACTAC	TGGTACCTTC TCCGTCATCT ACGCCCCAAC AGAGACTTTT GAGTTCTCTG AATGGAGAAG CCAAACAAA CAGCCCTTCT TTTGCCTAGA AACCACCAGA TAAAACTGAC TCCAAACTAC TCCAACCTGG TACCACTTCT TTTCACTTCT TGGTCTTCC TGCACCCCTT ACCACACAGAAT	3300 3360 3480 3540 3660 3720 3780 3840 3960 4020 4020 4140 4260 4320 4380 4340
70	CTAGACANAG ACCATGAGCA ANATTCCGCC TCTACTCANC GTTCCTACAG AATGCAGAAA CCATCGATATA ACTGTTTCTC ANAATATATT TCAGATGGAA ACTTTTAGTCA ACTATGGGAG AATCCCTCAA GGGGAAAATC GAGTTTTTGT ACAACTCTCT CACACCCCTA	ACACCACAAC CTCACCCTTCA ACCGGCACAA ACAGCTCAAG CCACATCCAA CCCCTTCTAC AACATAGAAA CTGTGAATCAA CTGTGAATTAAC CTGTGAATTAAC CTGTGAATC AATTTAACG TTACAGACCC CCTCTTTGAC CAGCATAAAA CTGTTTTAACC CTGTTTTAAC CTGTTTTAAC CTGTTTTAAC CTGTTTTAAC CTGTTTTAAC CTGTTTTAAC CTGTTTTAAC CTGTTTTTAAC CTGTTTTTAAC CTGTTTTGAC CAAGCATAAAA CTTGTGACCC	TCCAGTTAAG AGTAACACCA TCGAAGGAGA GCAAACCCCA ACCTGACATT TAACACAGTT GGGAACACCA AGTGAGCTCA CATTGTTACT GGGCCCTTAT TAAAGTCCAA GGATGATGTT AATTACTAAT AGAATCCTCT GCCTGGGAGG TCCCCTTCTT AGTCTCCACA AGTGAAGGAGGT GATGAAGGAGGT GATGAAGGAG	AAGCCTGCGG ACACCAAAGGC CCCAAACGGGA CCCACAACTT AAGATTTCAA AATACCCCA CGGAGAAAAAC CCCAGTTCAG GATTCCTTAG GAGACACTT GCCACAAATG GCCATACCAG CCTGTAGGCT CTACAGACAG AAAGAGCTTC CCATTCACC GCTTCAAGT CCATTCACC GCTTCAAGT CCATTCACT CCACCATCCT CCACCATCCCT CCACCATCCCT CCACCATCCCT CCACCATCCCT CCACCATCCCT CCACCATCCCT CCACCATCCT CCACCATCT CCACCATCCT CCACCATCT CCACCATCCT CCACCATCCT CCACCATCCT CCACCATCCT CCACCATCT CCACCATCCT CCACCATCT CCAC	CTTTGCTGA AAACCACAGT AAAAAGTTGC GAAGGAGATT TTGCCCCATC GTCAAGTGGA ACAGTTGGA ACAGTTGGA ACAGTACAC CATCCAAGCC AAACTATACT ATTACATGAC TTGCACATAC TTCCAGGAAC TTCCAGGAAC ACATACCTGT ACGATACCTGT AGGATGTGGA AGGAAGAACA CTGCACATAC CTGCACATACCTGT CGCAGAACC CTGAAACTACCTGT AGGATGTGGA AGGAAGAACC CTGAAACTAC CTGAAACTAC CTGAAACTAC CTGCACATCCCCATC	TGGTACCTC TCCGTCATC ACGCCCAAC ACGCCCCAAC AGAGACTTTT GAGTTCTCTG AATGGAGAAG GCCAAACAAA AACCACCAGA TAAAACTGAC TTTGGTCTCC TCCAACCTGG TACCACTTCT TTTCACTTCC TGGTTCTCC CACCACCAGA TCACCACCAC TGGTCTCC TCCAACCTCC TCCAACCTCC TCCACCACCAC TACCACCTCT TTTCACTTCC TCCACCACCACCTCT TCCACCACCACCTCT TCCACCACCACCTCT TCCACCACCACCTCT ACCACACCACCTCT ACCACCACCACCTCT ACCACACACA	3300 3360 3420 3480 3540 3720 3780 3840 3960 4020 4080 4140 4260 4320 4380 4440 4500
70 75	CTAGACAAAG ACCATGAGCA AAATTCCGCC GTTCCTCACAC GTTCCTCACAC GTTCCTCACAC CATCGATATA ACTGTTTCTC AAAATATACT TCAGATGGAA ATTTTAGTCA ACTATGCACAC GGGGAAAATC GAGTTTTTGT ACAACTCTCT GATCAACACCCTA ATGCCCTCA ACTCACCCCTA ATGCCTTTGG	ACACCACAAC CTCACCCTTC ACCGGCACAA CCACTCCAAA CCACTCCAAA CCCCTTCTAC AACATAGAAA CAACTTAACCC AAGAAATTAA CTGGTGAATC AATTTAACGC TTACAGACCC CCTCTTTGAC CCTCTTTGAC CAAGCATAAA ATCTTGAAC CTGCTGCCCG GACAAACCAC	TCCAGTTAAG AGTAACAACA TCGAAGGAGA GCAAACCCCA ACCTGACATT TAACACAGTT TGGAACACCA CATTGTTACT GGGCCCTTAT TAAGTCCAA GGATGATGTTAAT AGAATCCTCT GCCTGGGAGG TCCCCTTCTT AGTCTCCACA AGTGGAGGTG CACTGTGGAGG TCCCCTTCTCT AGTCTCCACA AGTGGAGGTG CACTGGAGGG	AAGCCTGCGG ACACCAAGGGA CCCACAACGTC AAGATTCAA AATACCCCA ACGGGAAACC ACGGGAAAAC ACGGCGTCCG CCCAGTTCAG GATTCCTTAG GACACTTC GCCACAAATG GCCATACCAA CCTGTAGGCT CTACAGACAC AAGAGCTTCC GCTTCAGGCT CCATTCAC CCATTCACC GCTTCAAGTC CCATTCACT CCAGCATCCT CCAGCACCTT CCAGCACCTT CCAGCACCTT CCAGCACCTT CCAGCACCTT	CTTTGCTGA AAACCACAGT AAAAAGTTGC GAAGGAGATT TTGCCCCATC GTCAAGTGGA ACAGTTGGA ACAGTTGGA ACAGTAGAC CAGTCAAGCC AAACTATACT ATTACATACT ATTACATAC CTTCCAGGAAC CTTCCAGGAAC ACATACCTGT ACATACCTGT AGGATGTGGA AGGAGAGAC AGGCAGAAAC CTGAAACTAC CTGAAACTAC CTGAAACTAC CCGCCCCATC CCCACCCATC	TGGTACCTTC TCCGTCATCT ACGCCCCAAC AGAGACTTTT GAGTTCTCTG AATGGAGAAG CAGCCCTTCT TTTGCCTAGA AACACCACACA TAAAACCCACA TAAAAGTGAC CTTGGTCTCC TCCAACCTGG TACCACTTCT TTTCACTTCC TGGTTCTTCC CACACCCTT ACCACCCTT ACCACACCATA ACACACTTCT ACCACACACA	3300 3480 3480 3540 3600 3720 3780 3840 3900 4020 4080 4140 4260 4320 4380 4440 4500 4560
70	CTAGACANAG ACCATGAGCA ANATTCCGCC TCTACTCANC GTTCCTACAG GATCCGATATA ACTGATATATA ACTGTTTCTC ANATATATAT TCAGATGGAA ATTCTGCAGA ATCCCTCAA GGGGAANATC GAGTTTTGT GACACTCTCT GATCAAGATCAA ACTTTTGT ACAACTCTCT GATCAAGATC ACTCTTTGG GATCTTTGG GCATCTTAGG GCATCTTAGG	ACACCACAAC CTCACCCTTC ACGGCACAA ACAGTCAAGC CTTGGGTGA CCACATCCAA ACATAGAAA TGAAAACTGA ACATTAACCA AAGTTAACGA CTTTACCA AGAAATTAA GGACGGCCCA TTACAGACC CCTCTTTGCC CCACTTTGCA CAAGCATAAA ATCTGAAAC ATCTGAACC ATGCAACAC ATTCAAGGAC ATTCAAGGAC ATTCAAGGAC ATTCAAGGAC	TCCAGTTAAG AGTAACAACA TCGAAGGAGA GCAAACCCCA ACCTGACATT TAACACAGTT GGGAACACCA CATTGTTACT GGGCCCTTAT TAAAGTCCAA GGATGATGTTACT AGCTGAGGTG TCCCTTCTT AGTCTCCACA AGTGGAGGT CACTGTGGCT CACTGGAGGT CACTGTGTT AGTCTCCACA AGTGGAGGT CACTGTGCACA AGTGAAGGAG AAATGTTTC	AAGCCTGCGG ACACCAAGGGA CCCAACAGGGA CCCACAACTT AAGATTTCAA AATACCCCCA CGGAGAAAAC ACGAGGTCCG CCCAGTTCAG GATTCCTTAG GACACTTC GCCACAATG GCCATACCAA CCTGTAGGCT CTACAGACAG CATTCAGCAC AAAGAGCTTC CCAGTTCACC GCTTCAAGTC ATTCTCCTTT CCAGCATCCT TCAGCATCT TCAGCATTC TCAGCACTTC TCAGCACTTC TTGAATTATG	CTTTGCTGA AAACCACAGT AAAAAGTTGC GAAGGAGATT TTGCCCCATC GTCAAGTGGA ACAGTTGGA ACAGTTGGA ACAGTACACACACACACACACACACACACACACACACACA	TGGTACCTTC TCCGTCATCT ACGCCCCAAC AGAGACTTTT GAGTTCTCTG AATGGAGAAG GCCAAACAAA CAGCCCTTCT TTTGCCTAGA AACCACCAGA TAAAAGTGAC CTTGGTCTCC TCCAACCTGG TACCACTTCT TTTCACTTCC TGGTTCTTCC CACCACCCTT ACCACACCTT ACCACACATTCT ACCACAGAAT	3300 3360 3420 3480 3540 3600 3720 3780 3960 4020 4020 4140 4250 4380 4440 4560 4562
70 75	CTAGACAAAG ACCATGAGCA AAATTCCGCC TCTACTCAAC GTTCCTACAG GATCCATATA CCAGAAAATA CCAGAAAATA TCAGATGATAT TCAGATGGAA ATTTTAGTCA ACTATCTCAC GGGGAAAATC GAGTTTTCTC GATCAAGAT CACACCCCTA ATGCTCTTCT GATCAAGAT ATTTAGTCA ACACTCTCT GATCAAGAT ATGCTCTTGGACACCCCTA ATGCTTTTGG	ACACCACAAC CTCACCCTTCA ACCGGCACAA ACACTCAAGC CTTGGGTGGA CCACTTCTAC AACATAGAAA TGAAAACTGA CTGTGAATCAA ACTGTGAATCAA ACTGTGAATCAA GGACGGCCCA TTACAGACCC CCTCTTTGCC CCACCTTTTGCAC CCAGCATAAA ATCTTGAAAC CTGCTGCCCG GACAAACCAC ATCACAATGA TCAACAATGA	TCCAGTTAAG AGTAACACAA TCGAAGGAGA GCAAACCCCA ACCTGACATT TAACACAGTT GGGAACACCA AGTGAGCTCA CATTGTTACT GGGCCCTTAT TAAAGTCCAA GGATGATGTT AATTACTAAT AGAATCCTCT GCCTGGGAGG TCCCCTTCTT AGTCTCCACA CACTGGGCT CACTGTGGCT GATGAAGGAG CACCACTAAG AAATGTTTTC AGGAACACAG	AAGCCTGCGG ACACCAAAGGC CCCAAACGGA CCCACAACTT AAGATTTCAA AATACCCCA AGAGCGTCCG CCCAGTTCAG GATTCCTTAG GACACATT GCCACAAATG GCCATACCAA CCTGTAGGCT CTACAGACAG CCATTCACC CTACAGACAT CCAGCACTT CCAGCATTC ATTCTCCTTT CCAGCATCCT CTAAGTCC CTTCAAGTCC TTCAAGTCC CTTCAAGTCC CTTCAAGTCC CCAGCACTTC CCAGCACTTC CCAGCACTTC CCAGCACTTC CCAGCACTTC CCAGCACTCAC CATATGTCAG CATATGTCAG CACATGTCAC	CTTTGCCTGA AAACCACAGT AAAAAGTTGC GAAGGAGATT TTGCCCCATC GTCAAGTGGA AACAGTTGGA ACGGGAAGAG GATCCAAGCC AAACTATACT ATTACATGAC CTTCCAGGAAC ACATACCTGT TCCAGGAAC ACATACCTGT AGGATGGGA AGGATGAGAC CTGTCCCATC CGGTCCCCATC CCAGTCCCATC CCAGCAATCA CGGCGAATCC GGCCAAATGA	TGGTACCCTC TCCGTCATCC ACGCCCCAAC AGAGACTTTT GAGTTCTCTG AATGGAGAAG CCCAAACAAA CAGCCCTTCT TTTGCCTAGA AACCACCAGA TAAAAGTGAC CTTGGTCTCC TCCAACCTGG TACCACTTCT TTTCACTTCC TGGTTCTCC CACCACCCTT ACCACACCTTC ACCACCCTT ACCACACCTTC ACCACCCTT ACCACACCTT ACCACACCCTT ACCACACCTT ATTATCTCACA	3300 3360 3480 3540 3540 3780 3780 3980 4020 4080 4140 4260 4380 4440 4500 4560 4680
70 75	CTAGACAAAG ACCATGAGCA AAATTCCGCC TCTACTCAAC GTTCCTACAG AATGCAGAAA CCATCGATATA ACTGTTTCTC AAAATATATT TCAGATGGAA ACTTTTAGTCA ACTATGGGAG AATCCCTCAA GGGGAAAATC GAGTTTTTGT ACAACTCTTCA GATCAAGCCCTA ATGTCATGGAG ATGTCATGGAG CCCTCTTCCG TTTGGTAGTA	ACACCACAAC CTCACCCTTCA ACCGGCACAA ACCAGTGGA CCACATCCAA CCCCTTCTAC AACATAGAAA TGAAAACTGA CATCTTACCC AAGAAATTAA CTGGTGAATC AATTTAACGC CATCAGACCC CCTCTTGAC TTACAGACCC CCTCTTGAC CAAGCATAAA ATCTTGAC GACGATAAA ATCTTGACACATGA ATTCCAAGGA TCCAACAATGA ACCGGGATGC GGAGTCCACC	TCCAGTTAAG AGTAACAACA TCGAAGGAGA GCAAACCCCA ACCTGACATT TAACACAGTT TGGAACACCA CATTGTTACT GGGCCCTTAT TAAAGTCCAA GGATGATGTTAAT AGAATCCTCA AGTGAGGT AGTTCTCACA AGTGGAGG TCCCCTTCTT AGTCTCCACA AGTGGAGGT CACTTGTGGCC GATGAAGGAG ATTTACTTAA AGAATCTTTC CACTAGGAG ATTTACTTAA AGATGATGAGAG ATTTACTTAA AGATGATTTTC AGGAACACAG ATTTAACTTA	AAGCCTGCGG ACACCAAGGGA CCCACAACGTC AAGATTCAA AATACCCCA AATACCCCA CGGAGAAAC AGAGGTCCG CCCAGTTCAG GATTCCTTAG GACACTTC GCCACAAATG GCCACAAATG GCCATACCAA CCTGTAGGCT CTACAGACAG CCATTCACC GCTTCAAGTC ATTCTCCTTT CCAGCACTC TCCAGCACTC TCCAGCACTC TCAGACTC TCCAGCACTTC TTGAATTATG CATATGTCAG TCTACAAAGC TCTACAAAGC	CTTTGCTGA AAACCACAGT AAAAAGTTGC GAAGGAGATT TTGCCCCATC GTCAAGTGGA AACAGTTGGA AACAGTTGGA AACGGAAGAG GATCCAAGCC AAACTATACT ATTACATAGAC CTGCAGAACA CTTCCAGGAAC ACATACCTGT AGGAAGAGA AGGAAGAGAC CTGAAACTA CGGCCAATAC CGGCCAACGA TGGGAATCC CGAGCCCAATG GGCCAATGG	TGGTACCTTC TCCGTCATCT ACGCCCAAC AGAGACTTTT GAGTTCTCTG AATGGAGAAG CAGCCCTTCT TTTGCCTAGA AACCCACAC TAAAAGTGAC TCCAACCTCC TCCAACCTCC TCCAACCTCC TCCAACCTCC TCCAACCTCC TCCAACCTCC TCCACCCTTT ACCACCCTT ACCACCCTT ACCACACACA	3300 3360 3420 3480 3540 3720 3780 3840 3960 4020 4080 4140 4260 4380 4440 4560 4560 4620 4680 4740 4800
70 75 80	CTAGACANAG ACCATGAGCA ANATTCCGCC TCTACTCANC GTTCCTACAG GTTCCTACAG ANTGCAGANATA ACTGTTTCTC ANATATATT TCAGATGGAN ATTCTGCAGA ATCCCTCAA GGGAANATC GAGTTTTGT GATCAGATGAT ACACTCTCT GATCAAGATC CACACCCCTA ATGTCTTTGG GCATCTTCGG GCATCTTCGG GCATCTTCGG GCATCTTCGG GCATCTTCGG GCATCTTCCAG	ACACCACAAC CTCACCCTTC ACCGGCACAA ACAGCTCAAG CCTTGGGTGA CCACATCCAA TGAAAACTGA ACATTAACGA CATCTTACC AAGAAATTA ATTTAAGGAC CCTCTTTGCA CATCTACAGACC CCTCTTTGCA CAAGCATAAA ATCTGAAAC ATCTGAAC ATCTAAGA ATCTGAAC ATCCAAGGA TCAACATGA ACCGGGATGC ACCGGGATGC AACTAACCAC	TCCAGTTAAG AGTAACAACA TCGAAGGAGA GCAAACCCCA ACCTGACATT TAACACAGTT TGGAACACCA CATTGTTACT GGGCCCTTAT TAAAGTCCAA AGTGAGGTCA AGTAATGATTACTAAT AGAATCCTCT GCCTGGGAGG TCCCCTTCTT AGTCTCACA AGTGGAGGTG CACTGTGGCT GATGAAGGAG CACCACTAAG AAATGTTTTC AGGAACACAG ATTTAACTTG AGGACACAG ATTTAACTTG ACGTGGCCT AGGACACAG ATTTAACTTG ACGTGGCCCTCCCC	AAGCCTGCGG ACACCAAGGGA CCCACACGGGA CCCACACGTT AAGATTTCAA AATACCCCCA CGGAGAAAC CCCAGTTCAG GATTCCTTAG GACACTTC GCCACAACGT GCCACAATG GCCATACCAA CCTGTAGGCT CTACAGACAC CCAGTTCAC AAAGAGCTTC CCAGCACTCT CCAGCACTCT TCAAGTC TTAAATATC CCATTCACC TTACAATATC CCATTCACC TTACAATATC CCATTCACC TTACAATATC CATATGTCAG TCTACAAAGC TATAGCCAAC AAACCCATCC	CTTTGCTGA AAACACACAT AAAAAGTTGC GAAGGAGATT GTCAAGTGGA AACAGTTGGA ACAGTTGGA ACAGTACACACACACACACACACACACACACACACACACA	TGGTACCTTC TCCGTCATCT ACGCCCCAAC AGAGACTTTT GAGTTCTCTG AATGGAGAAG GCCAAACAAA CAGCCCTTCT TTTGCCTAGA AACCACCAGA TAAAAGTGAC CTTGGTCTCC TCCAACCTGG TACCACTTCT TTTCACTTCC TGGTTCTTCC CACCACCTT ACCACAGAAT CACAATTCTC AATATCTCAA AATATCTCAA AATATCTCAA AAAGCAAGAA ATTATCAACA AAAGCAAGTA AAAGCAAGTA AAAGCAAGTA AAAGCAAGTA AAAGCAAGTA AAAGCAAGTA AAAGCAAGGA AAAGCAAGTA AAAGGGAGGG	3300 3480 3480 3540 3600 3720 3780 3960 4020 4080 4140 4220 4380 4440 4500 4620 4680 4740 4860
70 75	CTAGACAAAG ACCATGAGCA AAATTCCGCC TCTACTCAAC GTTCCTACAG GTTCCTACAG CATCGATATA CCAGAAAATA ACTGTTTCTC AAAATATATT TCAGATGGAG AATCCCTCAA GGGGAAAATC GAGTTTTTGT ACACTCTCT GATCAAGATC CACCCCTA ATGTCTTTGT ACACTCTCT GATCAAGATC CACCCCTA ATGTCTTTGG GCATCTTAGG GCATCTTCGG TTTGGTAGTAG CCTTCTCGG TTTGGTAGTAG CCTTCTCTCG CTTCCTAAA	ACACCACAAC CTCACCCTTC ACCGGCACAA ACCGGCACAA CACATCAAA CCCTTCTAC AACATAGAAA TGAAAACTGA CTGTGTGAATC AACATAGAAC GGACAGCCCA TTACAGACCC CCTCTTTGAC CAAGCATAAA ATCTTGAAAC CTGTGACCC GACAAACCAC GACAAACCAC ATCCAAGGA TCAACAATGA ACCGGGATGC GAGTCTACCA ACCTAACCAC ACTAACCAC ACTAACCAC ACTAACCAC	TCCAGTTAAG AGTAACAACA TCGAAGGAGA GCAAACCCCA ACCTGACATT TAACACAGTT GGGAACACCA CATTGTTACT GGGCCCTTAT TAAAGTCCAA GGATGATGTTACT GCCTGGGAGG TCCCCTTCTT AGTACTCACA AGTGAGGTG CACTGAGGAGGT CACCACTAAG CACCACTAAG AATGTTTAC AGGAACACAG ATTTAACTG AGTGGAGGT CACCACTAG CACCACTAG ATTTAACTG AGGACACAG ATTTAACTG AGGACCCGC AGTCCCTGCC AGGCCTTCCC	AAGCCTGCGG ACACCAAGGGA CCCACAACGGA CCCACAACTT AAGATTTCAA AATACCCCCA CGGAGAAAAC AGAGCGTCCG CCCAGTTCAG GATTCCTTAG GACACATTC GCCACAATG GCCATACCAA CCTGTAGGCT CCAGTTCACG CCATTCACG AAAGAGCTTC CCAGTTCACC GCTTCAAGTC ATTCTCCTTT CCAGCATCCT TCAGCATCCT TCAAGTCCT TCAAGTCCT TCAAGTCCT TCAAGTCCT CCAGCACTTC CCAGCACTTC CCAGCACTCC ATACAAAGC TCTACAAAGC AAACCCATCC AGATACCTTTG AGATACTTTG AGATACTTTG AGATACTTTG AGATACTTTTA	CTTTGCCTGA AAACCACAGT AAAAAGTTGC GAAGGAGATT TTGCCCCATC GTCAAGTGGA AACAGTTGGA ACAGTTGGA ACAGTACACACACACACACACACACACACACACACACACA	TGGTACCTTC TCCGTCATCT ACGCCCCAAC AGAGACTTTT GAGTTCTCTG AATGGAGAAG CCCAAACAAA CAGCCCTTCT TTTGCCTAGA AACCACCAGA TAAAACCCACA TAAAACCCACC TCCAACCTTCT TTTCACTTCC TGGTTCTCC CACCACCTTT ACCACACTTCT ACCACACTTCT ACCACACTTCA AGAAATTCTC AATATCTCAA AGAAACAGAA ATTATCAACA AAAGCAAGAT AAGAAGTTCAA AAAGCAAGTTAA AAAGTGAGG GTCACCTCGT	3300 3360 3420 3540 3540 3720 3780 3780 3960 4020 4080 4140 4260 4320 4380 4440 4560 4680 4740 4860 4860 4860 4920
70 75 80	CTAGACANAG ACCATGAGCA ANATTCCGCC TCTACTCANC GTTCCTACAG GTTCCTACAG CATCGATATA ACTGTTTCTC ANAATATATT TCAGATGGAA ACTTTTAGTCA ACTATGGAGGA AATCCCTCAA GGGGAANATC GAGTTTTTG CACACCCCTA ATGTCTTTTGG GCATCTAGAG GCAACCCCGA CCCCTTTCCG TTTGGTAGTA ACTTCTCCG CCCTTCCGG CCCTCTCCGC TTTGGTAGTAC CCACCCAAC CCACCCAAC CCACCCAAC CCACCCAAC CCACCCAAC CCACCCCAAC CCACCCAAC CCACCCCAAC CCACCCAAC CCACCCCAAC CCACCCCACAC CCACCCCACAC CCACCCCACAC CCACCCCACAC CCACCCCCACAC CCACCCCACAC CCACCCCCACAC CCACCCCCACAC CCACCCCCACAC CCACCCCCACAC CCACCCCACAC CCACCCCCACAC CCACCCCCC	ACACCACAAC CTCACCCTTCA ACCGGCACAA ACCGGCACAA CCACTTCAAC CCACTTCTAC ACACATAGAAA TGAAAACTGA CTGTGAATC AACTATAAGA CTGTGAATC AATTTAAGGA GGACGGCCCA TTACAGACCC CCTCTTTGAC CAAGCATAAA ATCTTGAAAC CTGCTGCCG GACAAACCAC ATTCAAGA ATCTAGAAC ATCAAGAA ATCTAGAAC ATCAAGAACAAC ATCAAGAACAAC ACCAGGATCC AACTAACCAG ACCAACCAG ATCCACGGATGC CGAGTCTACC AACTAACCAG ACCAACCAG	TCCAGTTAAG AGTAACAACA TCGAAGGAGA GCAAACCCCA ACCTGACATT TAACACAGTT GGGAACACCA AGTGAGCTCA CATTGTTACT GGGCCCTTAT TAAAGTCCAA GGATGATGTT ACTTACTT ACTTACTT GCCTGGGAGG TCCCCTTCTT AGTCTCCCAC GATGAAGGAG CACTGTGGCT GATGAAGGAG AATGTTTTA AGTATACTAT AGAACACAG AATGTATTAC ACGTGGCCCA AGTCCCTGCC AGGCCCTAGC AGGCCCTC AGGCCCTACT AGTCCCTGCC AGGCGCTTCC AGGCGCTTCC AGGCGCTTCC AGGCGCTTCC AGGCGCTTCC AGGCGCTTCC AATAACTACA	AAGCCTGCGG ACACCAAGGGA CCCACACGGGA CCCACACGTT AAGATTTCAA AATACCCCCA CGGAGAAAC CCCAGTTCAG GATTCCTTAG GACACTTC GCCACAACGT GCCACAATG GCCATACCAA CCTGTAGGCT CTACAGACAC CCAGTTCAC AAAGAGCTTC CCAGCACTCT CCAGCACTCT TCAAGTC TTAAATATC CCATTCACC TTACAATATC CCATTCACC TTACAATATC CCATTCACC TTACAATATC CATATGTCAG TCTACAAAGC TATAGCCAAC AAACCCATCC	CTTTGCCTGA AAACCACAGT AAAAAGTTGC GAAGGAGATT TTGCCCCATC GTCAAGTGGA AACAGTTGGA ACGGGAAGAG GATCCAAGCC AAACTATACT ATTACATGAC ACTTCAGCTC TTCCAGGAAC ACATACCTGT AGGATGAGAC ACATACCTGT AGGATGAGAC CTGAAACAC CTGAACACAC CTGAACTGGAAC CCAGTCCCATC CCAGTCCCATC CCAGTCCAGG TGGGGAATCG GGCCAAATGA TGGAATTGGA GCCAGATGG TGGGAATTGGA GCCAGATGG TGGGAATTGC GGCCAACTGC GGCCTTCCCCA GGGCTTTGCC	TGGTACCCTC TCCGTCATCC ACGCCCCAAC AGAGACTTTT GAGTTCTCTG AATGGAGAAG GCCAAACAAA TACACCAGA TAAAACCCACA TAAAAGTGAC TTCCCTCT TTCACTTCT TTTCACTTCT TTTCACTTCT TTTCACTTCT CACCACCCTT ACCACACCTTT ACCACACCTTCT ACCACACCTTCT ACCACACCTTC AATATCTACA AATATCTCA AATATCTCA AATATCAACA AATATCAACA AAAGCAAGTA AAAGCAAGTTCAT AACAGTGAGG GTCACCTCGG AGAGACAAA	3300 3360 3480 3540 3540 3780 3780 3980 4020 4140 4260 4380 4440 4500 4560 4680 4740 4800 4980

TOTTTEGAA ATAACAACAT CCCTGAGGCA AGAAACCCAG TTGGAAAGCC AGAATTCCTC ATTATTCCAA TGGAAGACTC CCTTTCTTTA CCAACAAGAC CCACAGTTEG GAGTCACCCG GAGACCCCAG ATACCCACTT CCCCTGCCCC GAGAGAAAAG TTATTCCAGG TTCCTTACAAC AGGATACATT CCCATAGCAC GACTTTGGCC CTCCGGCACC TCCGTTGTTG CACACTCCGC AGACCACGG ACTAACTTAC AGAATATCCC TATGGTCTCT TCCACCCAGA GTTCTATCTC TCTTCTGTCC AGTCCTCAGG AAGCTTCCAC CAGAGCAGCT CAAAGTTCTT CCACACTGCAT CCAAATTCTG GTCTCTTGG GAAAAGCCCC AAATCCTCAC CAGACCGTT CCGTCACCGC TGAGACAGAC ACTGTGTTCC CCTGTGAGGC CCAAAGCCTT TCGTTACTTG GACAAAGGTT TCCACAGGAG CTCTTATCAC		
5 CCACAGTTGG GAGTCACCCG GAGACCCCAG ATACCCACTT CTCCTGCCCC GAGAGAAAAG TTATTCCAGG TTCCTACAAC AGGATACATT CCCATAGCAC GACTTTGGCC CTCCGGCACC TCGGTTGTTG CACACTCCGC AGACCACGGG ACTAACTTAC AGAATATCCC TATGGTCTCT TCCACCAGA GTTCTATCTC TCTTCTGTCC AGTCCTCAGG AAGCTTCCAC CAGAGCAGCT CAAAGTTCTT CCTCCTGCAT CCAAATTCTG GTCTCTTGGG GAAAAGCCCC AAATCCTCAC CAGACTGTGT CCGCTCACCGC TGAGACAGAC ACTGTGTTCC CCTGTGAGGC	The state of the s	5160
5 GAGAGAAAAG TTATTCCAGG TTCCTACAAC AGGATACATT CCCATAGCAC GACTTTGGCC CTCCGGCACC TCCGTTGTTG CACACTCCGC AGACCACGGG ACTAACTTAC AGAATATCCC TATGGTCTCT TCCACCCAGA GTTCTATCTC TCTTCTGTCC AGTCCTCAGG AAGCTTCCAC CAGAGCAGCT CAAAAGTTCTT CCCTCCTGCAT CCAAATTCTTG GTCTCTTGGG GAAAAGCCCC AAATCCTCAC CAGACTGTGT CCCTCACCGC TGAGACAGAC ACTGTGTTCC CCTGTGAGGC		5220
GACTTTGGCC CTCCGGCACC TCCGTTGTTG CACACTCCGC AGACCACGGG ACTAACTTAC AGAATATCCC TATGGTCTCT TCCACCCAGA GTTCTATCTC TCTTCTGTCC AGTCCTCAGG AAGCTTCCAC CAGAGGAGCAGCT CAAAGTTCTT CCTCCTGCAT CCAAATTCTG GTCTCTTGGG GAAAAGCCCC AAATCCTCAC CAGACTGTGT CCGTCACCGC TGAGACAGAC ACTGTGTTCC CCTGTGAGGC		5280 5340
ACTAACTTAC AGAATATCCC TATGGTCTCT TCCACCCAGA GTTCTATCTC TCTTCTGTCC AGTCCTCAGG AAGCTTCCAC CAGAGCAGCT CAAAGTTCTT CCTCCTGCAT CCAAATTCTG GTCTCTTGGG GAAAAGCCCC AAATCCTCAC CAGACTGTGT CCGTCACCGC TGAGACAGAC ACTGTGTTCC CCTGTGAGGC		5400
10 CCTCCTGCAT CCAAATTCTG GTCTCTTGGG GAAAAGCCCC AAATCCTCAC CCGAGACTGTGT CCGTCACCGC TGAGACAGAC ACTGTGTTCC CCTGTGAGGC		5460
10 CAGACTGTGT CCGTCACCGC TGAGACAGAC ACTGTGTTCC CCTGTGAGGC		5520
		5580
		5640
AGGATACAAC GGTTTGAGGT TCTCAAGAAC GGTACCTTAG TGATACGGAA		5700 5760
CAAGATCGAG GCCAGTATAT GTGCACCGCC AGCAACCTGC ACGGCCTGGA		5820
CTCTTCCTTT CCCTCACCCT CCACCCAACCT CAAATCCTAG CCTCCCACTA		5880
15 ACTGTCTACC TGGGAGACAC CATTGCAATG GAGTGTCTGG CCAAAGGGAC		5940
CAAATTTCCT GGATCTTCCC TGACAGGAGG GTGTGGCAAA CTGTGTCCCC		6000
CGCATCACCC TGCACGAAAA CCGGACCCTT TCCATCAAGG AGGCGTCCTT		6060
GGCGTCTATA AGTGCGTGGC CAGCAATGCA GCCGGGGCGG ACAGCCTGGC CACGTGGCGG CACTGCCCCC CGTTATCCAC CAGGAGAAGC TGGAGAACAT		6120
20 CCGGGGCTCA GCATTCACAT TCACTGCACT GCCAAGGCTG CGCCCCTGCC		6180 6240
TEGETECTCE GEGACEGTAC CCAGATCCEC CCCTCGCAGT TCCTCCACGE		6300
GTTTTCCCCA ACGGGACGCT CTACATCCGC AACCTCGCGC CCAAGGACAG		6360
GAGTGCGTGG CCGCCAACCT GGTAGGCTCC GCGCGCAGGA CGGTGCAGCT		6420
CGTGCAGCAG CCAACGCGCG CATCACGGGC ACCTCCCCGC GGAGGACGGA		6480
25 GGAGGAACCC TCAAGCTGGA CTGCAGCGCC TCGGGGGGACC CCTGGCCGCG		6540
AGGCTGCCGT CCAAGAGGAT GATCGACGCG CTCTTCAGTT TTGATAGCAG ATTTGCCAATG GGACCCTGGT GGTGAAATCA GTGACGGACA AAGATGCCGG A		6600
TETGCCAATG GGACCCTGGT GGTGAAATCA GTGACGGACA AAGATGCCGG A		6660 6720
AAACCGGCCA AGATTGAACA CAAGGAGGAG AACGACCACA AAGTCTTCTA		6780
30 CTGAAAGTGG ACTGTGTGGC CACCGGGCTT CCCAATCCCG AGATCTCCTG		6840
GACGGGAGTC TGGTGAACTC CTTCATGCAG TCGGATGACA GCGGTGGACG	CACCAAGCGC	6900
TATGTCGTCT TCAACAATGG GACACTCTAC TTTAACGAAG TGGGGATGAG		6960
GACTACACCT GCTTTGCTGA AAATCAGGTC GGGAAGGACG AGATGAGAGT		7020
35 GTGGTGACAG CGCCCGCCAC CATCCGGAAC AAGACTTACT TGGCGGTTCA GGAGACGTGG TCACTGTAGC CTGTGAGGCC AAAGGAGAAC CCATGCCCAA		7080 7140
TTGTCCCCAA CCAACAAGGT GATCCCCACC TCCTCTGAGA AGTATCAGAT		7200
GGCACTCTCC TTATTCAGAA AGCCCAGCGT TCTGACAGCG GCAACTACAC		7260
AGGAACAGCG CGGGAGAGGA TAGGAAGACG GTGTGGATTC ACGTCAACGT		7320
AAGATCAACG GTAACCCCAA CCCCATCACC ACCGTGCGGG AGATAGCAGC		7380
40 CGGAAACTGA TTGACTGCAA AGCTGAAGGC ATCCCCACCC CGAGGGTGTT		7440
CCCGAGGGTG TGGTTCTGCC AGCTCCATAC TATGGAAACC GGATCACTGT (GGTTCCCTGG ACATCAGGAG TTTGAGGAAG AGCGACTCCG TCCAGCTGGT)		7500 7560
CGCAACGAGG GAGGGGAGGC GAGGTTGATC GTGCAGCTCA CTGTCCTGGA		7620
AAACCCATCT TCCACGACCC GATCAGCGAG AAGATCACGG CCATGGCGGG (7680
45 AGCCTCAACT GCTCTGCCGC GGGGACCCCG ACACCCAGCC TGGTGTGGGT		7740
GGCACCGATC TGCAGAGTGG ACAGCAGCTG CAGCGCTTCT ACCACAAGGC		7800
CTACACATTA GCGGTCTCTC CTCGGTGGAC GCTGGGGCCT ACCGCTGCGT		7860
GCCGCTGGCC ACACGGAGAG GCTGGTCTCC CTGAAGGTGG GACTGAAGCC AAGCAGTATC ATAACCTGGT CAGCATCATC AATGGTGAGA CCCTGAAGCT		7920 7980
50 CCTCCGGGG CTGGGCAGGG ACGTTTCTCC TGGACGCTCC CCAATGGCAT		8040
GGCCCCAAA CCCTGGGACG CGTTTCTCTT CTGGACAATG GCACCCTCAC		8100
400M000M0M MM03 03 0000 M3 00M3 M0M3 M003 003	CGGCCCTTCG	
GCCTCGGTGT TTGACAGGGG TACCTATGTA TGCAGGATGG AGACGGAGTA	CONCOCON CO	8160
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG		8160 8220
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGGAACACC GTGAAACTGA ACTGCATGGC	TATGGGGATT	8220 8280
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGGAACACC GTGAAACTGA ACTGCATGGC CCCAAAGCTG ACATCACGTG GGAGTTACCG GATAAGTCGC ATCTGAAGGC 2	TATGGGGATT AGGGGTTCAG	8220 8280 8340
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGGAACACC GTGAAACTGA ACTGCATGGC CCCAAAGCTG ACATCACGTG GGAGTTACCG GATAAGTCGC ATCTGAAGGC GGTCGTCTGT ATGGAAACAG ATTTCTTCAC CCCCAGGGAT CACTGACCAT	TATGGGGATT AGGGGTTCAG CCAGCATGCC	8220 8280 8340 8400
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGGAACACC GTGAAACTGA ACTGCATGGC CCCAAAGGTG ACATCACGTG GGAGTTACCG GATAAGTCGC ATCTGAAGGC ACCCAGGGAT CACTGACCAT ACACAGAGAG ATGCCGGCTT CTACAAGTGC ATGGCAAAAA ACATTCTCGG	TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC	8220 8280 8340 8400 8460
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGGAACACC GTGAAACTGA ACTGCATGGC CCCAAAGCTG ACACCACGTG GGAGTTACCG GATAAGTCGC ATCTGAAGGC ACACAAAAAAAAAA	TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG	8220 8280 8340 8400
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGGAACACC GTGAAACTGA ACTGCATGGC CCCCAAGGCT ACACCAGTG GGAGTTACCG GATAAGTCGC ATCTGAAGGC GCTCGTCTGT ATGGAAACAG ATTTCTTCAC CCCCAGGGAT CACTGACCAT ACACAGAGAG ATGCCGGCTT CTACAAGTGC ATGGCAAAAA ACATTCTCGG AAAACAACTT ACATCCACGT CTTCTGAAAT GTGGATTCCA GAATGATTGC ACAACAAAAC GGGGTTTGTA AGGGAAGCCA GGTTGGGGAA TAGGAGCTCT ACAACAAGC GTCACAGTGC ATGGTGGCTT TCAAGTTGAG GTTGATCTTG GTCACAGTGC ATGGTGGCCT CTGGTGGGTT TCAAGTTGAG GTTGATCTTG ACACCAGTGC ATGGTGGCCT CTGGTGGGTT TCAAGTTGAG GTTGATCTTG ACACCACAGTGC ATGGTGGCCT CTGGTGGGTT TCAAGTTGAG GTTGATCTTG ACACCACACACACACACACACACACACACACACACACA	TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT	8220 8280 8340 8400 8460 8520
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGGAACACC GTGAAACTGA ACTGCATGGC CCCAAAGCTG ACACCAGGGC GGGATCACCG GATTAGTCGC ATCTGAAGGC ACACCAGAGGA ATGCCGGCTT CTACAAGTGC ATGGCAAAAA ACATTCTCGG AAAACAACTT ACATCCACGT CTTCTGAAAT GTGGATTCCA GAATGATTGC ACACCAAAGC GGGGTTTGTA AGGGAAGCCA GGTTGGGGAA TAGGAGCTCT CTGCACAGTGC ATGGCAAAAA GCATCCTCG GTCACAGTGC ATGGTGGCCT CTGGTGGGTT TCAAGTTGAG GTTGATCTTG GTTGGGAAAA GGAAGCATG CAGACACGAG AAGGAGGGCT CAGCCTTGCT CTGTGGGAAAA AGGAGGGCT CAGCCTTGCT CTGTGGGAAAAA ACAATCTTGAG GTTGATCTTG CTGTGGGAAAAA ACAATCTTGAG GTTGATCTTG CTGTGGGAAAAA ACAATCTGAGAGCAACGAAAAAAAAAA	TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTTT	8220 8280 8340 8400 8460 8520 8580 8640 8700
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGGAACACC GTGAAACTGA ACTGCATGGC CCCAAAGCTG ACTACACCGG CGGGAACACC GATAAGTCGC ATCGCAAGGC GCTCGTCTGT ATGGAACAG ATTCTTCAC CCCCAGGGAT CACTGACCAT ACACAGAGAG ATGCCGGCTT CTACAAGTGC ATGGCAAAAA ACATTCTCGG AAAACAACT ACATCCACGT CTTCTGAAAT GTGGATTCCA GAATGATTGC ACAACAAAGC GGGGTTTGTA AGGGAAGCCA GGTTGGGGAA TAGGAGCTCT GTCACAAGTGC ATGGGAAGCA TAGGAGCTCT GTCACAAGTGC ATGGTGGGTT TCAAGTTGAG GTTGATCTTG GTTGACAGTGC ATGGTGGGTT CAGACACGAG AAGGAGGCT CAGCCTTGCT CTTTTTGTGTT TACATCATGC CAGGGGCTTC ATTCAGGGTG TCTGTGCTCT	TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTTT GAGACACTTT	8220 8280 8340 8400 8460 8520 8580 8640 8700 8760
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGC CGGGAACACC GTGAAACTGA ACTGCATGGC CCCAAAGCTG ACACCACGT GGAGTTACCG GATAAGTCGC ATCTGAAGCC ACACAGAGAG ATGCCGGCTT CTACAAGTGC ATGGCAAAAA ACATTCTTCGG AAAACAACT ACATCCACGT CTTCTGAAAT GTGGATTCCA GAATGATTCC ACACACAGAG ATGGCGAAAAA ACATTCTTCGG GTCACAAGTGC ATGGTGGCT CTGGTGGGTT TCAAGTTGAG TTGATCTTG GTTGGAAAA GGAAGCAAT CAGGCACAGA AAGGAAGCA GTTGATCTTG GTTGGAAAA GAACAATG CAGACACGAG AAGGAGGGCT CAGCCTTGCT CTTTTTGTGTT TACATCATGC CAGGGGGCTT ATTCAGGGTG TCTGTGCTCT TTTCTTTTTT TGCAAATGCC ACTCGACTGC CTTCATAAGC GTCCATAGGA	TATGGGGATT AGGGGTTCAG CCAGCTGACTCC CTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTTT GACTGCAATT TATCTGAGGA	8220 8280 8340 8400 8460 8520 8580 8640 8700 8760 8820
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGGAACACC GTGAAACTGA ACTGCATGGC CCCAAAGCTG ACATCACGTG GGAGTTACCG GATAAGTCGC ATCTGAAGGC GCTCGTCTGT ATGGAAACAG ATTTCTTCAC CCCCCAGGGAT CACTGACCAT ACACAGAGAG ATGCCGGCTT CTACAAGTGC ATGGCAAAAA ACATTCTCGG AAAACAACTT ACATCCACGT CTTCTGAAAT GTGGATTCCA GAATGATTGC ACAACAAACA GGGGTTTGTA AGGAAGCCA GGTTGGGGAA TAGGAGCTCT GTCACAGTGC ATGGTGGGAT TCAAGTTGA GTTGATCTTG GTTGGGAAAA GGAAGCATT CAGACACGAG AAGGAGGGCT CAGCCTTGCT CTTTTGTGTT TACATCATGC CAGGGGCTTC ATTCAGAGGG TCGGAATGAACACTCA CACACCCAT ATGACACCATCA AAAAAAAACCC ATCGACATGA CTTCATAAGC GTCCATAGGA	TATGGGGATT AGGGGTTCAG CCAGCTGACTCC CTTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTTT GACTGCAATT TATCTGAGGA TGAAGACGCA	8220 8280 8340 8400 8460 8520 8580 8640 8700 8760 8820 8880
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGC CGGGAACACC GTGAAACTGA ACTGCATGGC CCCAAAGCTG ACACCACGT GGAGTTACCG GATAAGTCGC ATCTGAAGCC ACACAGAGAG ATGCCGGCTT CTACAAGTGC ATGGCAAAAA ACATTCTTCGG AAAACAACT ACATCCACGT CTTCTGAAAT GTGGATTCCA GAATGATTCC ACACACAGAG ATGGCGAAAAA ACATTCTTCGG GTCACAAGTGC ATGGTGGCT CTGGTGGGTT TCAAGTTGAG TTGATCTTG GTTGGAAAA GGAAGCAAT CAGGCACAGA AAGGAAGCA GTTGATCTTG GTTGGAAAA GAACAATG CAGACACGAG AAGGAGGGCT CAGCCTTGCT CTTTTTGTGTT TACATCATGC CAGGGGGCTT ATTCAGGGTG TCTGTGCTCT TTTCTTTTTT TGCAAATGCC ACTCGACTGC CTTCATAAGC GTCCATAGGA	TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGCACATTT GACTGCAATT TATCTGAGGA TGACACGCA TGACAAGTCA	8220 8280 8340 8400 8460 8520 8580 8640 8700 8760 8820
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGC CGGGAACACC GTGAAACTGA ACTGCATGGC CCCAAAGCTG ACTGCACGGC CGGGAACACC GATAAGTCGC ATCTGAAGGC GCTCGTCTGT ATGGAAACAG ATTCTTCAC CCCCAGGGAT CACTGACCAT ACACCAGAGAG ATGCCGGCTT CTACAAGTGC ATGGCAAAAA ACATTCTCGG AAAACAAACCT ACATCCACGT CTTCTGAAAT GTGGATTCCA GAATGATTGC ACAACAAAAC GGGGTTTGTA AGGGAAGCCA GGTTGGGGAA TAGGAGGCTC GTGTGGGTT TCAAGTTGAG GTTGATCTTG GTTGGGAAAA GGAAGCAAT CAGGAACACGAG AAGGAGGGCT CAGCCTTGCT CTTTTTTTTTT	TATGGGGATT AGGGGTTCAG CCAGCTACTCC CTAGGAACTG TAAATAATGT ATCTACAATT GACTCCAATT TATCTGAGGA TGAAAGACGCA TGACAAGTCA GATTTAGAAC CAGCTACCAT CAGCTACCAT CAGCTACCAT CAGCTACCAT CAGCTACCAT CAGCTACCAT CAGCTACCAT CAGCTACCAT CAGCTACCAT	8220 8280 8340 8460 8520 8580 8640 8760 8860 8820 8880 8940 9000 9060
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGAACACC GTGAAACTGA ACTGCATGGC CCCAAAGCTG ACACCAGGC GGGATCACCG GATAAGTCGC ATCTGAAGGC ACACAGAGAG ATGCCGGCTT CTACAAGTGC ATGGCAAAAA ACATTCTTCGG AAAACAACACTT ACATCCACGT CTTCTGAAAT GTGGATTCCA GAATGATTCC ACACACAGAGA AGGGAAAAA ACATTCTTCGG GTCACAAGTGC ATGGTGGCT CTGGTGGGTT TCAAGTTGAG TTGAAGTTCAG GTTGAAATCATCT CAGGACACAGA AGGAGGGCT CAGCCTTGCT GTTGGTAAAA GGAACACACACACACACACACACACACACACACAC	TATGGGGATT AGGGGTTCAG CCAGCTGACTCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTTT TATCTGAGGA TGAAGACGCA TGACAAGTCA GATTTAGAAC CAGCTACCAT ATGTTTTATA	8220 8280 8340 8460 8520 8580 8640 8760 8820 8880 8940 9000 9060 9120
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGGACACCC GTGAAACTGA ACTGCATGGC CCCCAAAGCTG ACACCCGGCC CGGGACACCC GTGAAACTGA ACTGCATGGC GGCTCGTCTGT ATGGAAACAG ATTTCTTCAC CCCCAGGGAT CACTGACCAT ACACAGAGAG ATGCCGGCTT CTACAAGTGC ATGGCAAAAA ACATTCTCGG AAAACAACACTT ACATCCACGT CTTCTGAAAT GTGGATTCCA GAATGATTGC ACACACAGGC ATGGCAAAAA ACATTCTCGG GTCACAGTGC ATGGTGGCT CTGGTGGGTT TCAAGTTGAG GTTGATCTTG GTTGGGAAA GGAAGCAATG CAGACACCAG AAGGAGGGCT CTTTTTGTGTT TACATCATCC CAGAGCACCAG AAGGAGGGCT CTTTTCTTCTT TGCAAATGCC ACTCGACTGC CTTCATAAGC GTCCATAGGA ACACACCCTC ACTACCCCAT TCCTTCAGATT ACACTCCGTC AGTTTTACA TGATAGACTT TGTTCAGATTG CAGAGTGACA ACACACCTC ACTACCCCAT TCTTTCATAAA AAAACAACACCTC ACTACCCCAT TCTTTCATAAA AAAACAACACCTC ACTACCCCAT TCTTTCAGAT ATTTCCTCTT TCACTTCAAA ACTCCAGCTT GCCCAATAAG CAGAGTGACT GATATATATA TATAATTTT AAATTCAGAGT TACATACATA ATTTCATAAAA AAAAGAAAAAA CATTTCTTCC TGGAACTCAC TTTTTATATAA ATTACATACAT GAGACACCAC TTTTTTATATAA AATTCAGAGAT GAGACAACACC TTTTTTATATAA AATTCAGAACTAC TTTTTTATATAA AATTCAGAACTAC TTTTTTATATAA AAAAGAAAAAA CATTTCTCC TGGAACTCAC TTTTTTATATAA TTTTATATATAT TATAATTTT TTCCTTTCAA AACACCAC TTTTTTATATAA TTTTATATATA	TATGGGGATT AGGGGTTCAG CCAGCTAGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTTT TATCTGAGGA TGAAGACGCA TGACAAGTCA GATTTAGAAC CAGCTACCAT ATGTTTATA	8220 8280 8340 84400 8460 8520 8640 8700 8760 8820 8880 89400 9060 9120 9180
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGGAACACC GTGAAACTGA ACTGCATGGC CCCCAAAGCTG ACATCACGTG GGAGTTACCG GATAAGTCGC ATCTGAAGGC ACCCAAAGCTG ACACCAGCAT CTACAAGTGC ATGCCAAAGAC ATTCTCTCAC CCCCAGGGAT CACTGACCAT ACACCAGAGA ATGCCGCTT CTACAAGTGC ATGCCAAAAA ACATTCTCGG AAAAAAAACACTT ACATCCACCT CTTCTGAAAT GTGGATTCCA GAATGATTCC GTCACAGTGC ATGGGGCCT CTGTGGGTT TCAAGTTGAG GTTGATCTTG GTTGGGAAAA GCAACACAGA AAGGAAGCAAT CAGACACCAG AAAGGAAGCCT CTTTTTTTTTT	TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTTT GACTGCAATT TATCTGAGGA TGAAGACGCA TGACAAGTCA GATTTAGAAC CAGCTACCAT ATGTTTATAT TTTCTGTCTT AGACATGGAA	8220 8280 8340 8460 8460 8520 8580 8700 8760 8820 8880 8940 9000 9060 9120 9180 9240
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGGAACACC GTGAAACTGA ACTGCATGGC GCCCAAAGCTG ACACCAGGG GATCACCTG GATAAGTCGC ATCTGAAGGC ACACCAGGAGA ATGCCAGAGA ATGCCAGCTT CTACAAGTGC ATGGCAAAAA ACATTCTCGG AAAACAAACCT ACACCACGT CTTCTGAAAT GTGGATTCCA GAATGATTCC GTCACAAGAGC ATGGCAAAAA ACATTCTCGG GTCACAAGAGC ATGGGAAGCCA GGTTGGGGAA TAGGAGCTCT CTGTGGAAT GTGCACATGC ATGGCAAGAA ACACTCTCTGG GTTGGGAAAA GCAACCACGA AAGGAAGCCA ATGGTGGAAT TCACACTCT CTGTGGGTT TCAAGTTGAG GTGTGGGAAAA GCAACCACGA AAGGAAGCCA ATGGTAGACTTC CTTTTTTTT TACATCATGC ACTCGACTGC CTTCATAAGC GTCCATAGGA ACACACCTC ACTACCCAT TCATTCAGTA AAAAAAAACCA ATAGACATGA ACACACCTC ACTACCCAT TCTTTCAGTT ATTTCCTCTG TCACTTCAAA ACTCCAGCTT GGTCCAGAT TCACCTAGTAA AAAAAAAAAA	TATGGGGATT AGGGGTTCAG CCAGCTAGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GACTGCAATT TATCTGAGGA TGAAGACGCA TGACAAGTCA GATTTTAGAAC CAGCTACCAT ATGTTTAGAAC CAGCTACCAT ATGTTTTATA TTTCTGTCTT AGACATGGAA TGTTATATA	8220 8280 8340 84400 8460 8520 8580 8640 8700 8760 8880 9900 9900 9180 9180 9300
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGGAACACC GTGAAACTGA ACTGCATGGC CCCCAAAGCTG ACATCACGTG GGAGTTACCG GATAAGTCGC ATCTGAAGGC ACCCAAAGCTG ACACCAGCAT CTACAAGTGC ATGCCAAAGAC ATTCTCTCAC CCCCAGGGAT CACTGACCAT ACACCAGAGA ATGCCGCTT CTACAAGTGC ATGCCAAAAA ACATTCTCGG AAAAAAAACACTT ACATCCACCT CTTCTGAAAT GTGGATTCCA GAATGATTCC GTCACAGTGC ATGGGGCCT CTGTGGGTT TCAAGTTGAG GTTGATCTTG GTTGGGAAAA GCAACACAGA AAGGAAGCAAT CAGACACCAG AAAGGAAGCCT CTTTTTTTTTT	TATGGGGATT AGGGGTTCAG CCAGCTACTCC CTTAGGAACTG TAAATAATGT ATCTACAATT GACGCACTTT GACTCCAATT TATCTGAGGA TGACAGCAC TGACAGTCA GACTTTAGAAC CAGCTACCAT ATGTTTATA ATGTTTTATA TTTCTGTCTT AGACACTGCAT TGACATGCAT TGACATGCAA TGTTTTATA TTTCTGTCTT AGACATGCAA TGTTATATTA GTATGCAAAG	8220 8280 8340 8460 8460 8520 8580 8700 8760 8820 8880 8940 9000 9060 9120 9180 9240
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGGAACACC GTGAAACTGA ACTGCATGGC CCCCAAAGCTG ACATCACGTG GGAGTACCG GATAAGTCGC ATCTGAAGGC GCCCAAAGCTG ACATCACGTG GGAGTACCG GATAAGTCGC ATCTGACACA ACACCAGAGAG ATGCCGCTT CTACAAGTGC ATGGCAAAAA ACATTCTCGG AAAACAACCT ACATCACACGT CTTCTGAAAT GTGGAATCAC GAATGATTCCA GAACACACAG GGTTGGGAAAA GCATTCTCGG GTTCACGAGCC ATGGTGGCT CTGGTGGGTT TCAAGTTGAG GTTGAGATTGC GTTCACACGT ATCATCATCA ACACACACA ACACCCTA ATGGTGGCCT CTGTGGGGTT TCAAGTTGAG GTTGATCTTG GTTGGGAAAA GGAAGCAATG CAGACACCAG AAGGAGGGCT CAGCCTTGCT ATTCTTCTTT TGCAAATGCC ACTCGACTGC CTTCATAAGC GTCCATAGGA ACAATCATCA AAAAATAAGCC ACTCGACTGC CTTCATAAGC GTCCAATAGAA ACACCCCAT TCTTTCAGTT ATTCCTCTG AATTATATATTT AACCTGCTGC ACTTCTCCAAA ACCCCCAT GCCCAATAAGA ACACCCCCAT TTTTATATGAA AAAAGAAAAA CATTCCTCC TGGAACTCC TTTTTATATAA ATAAAATTAT TATATATTTT TGGAACTCCA TTTTTATATAA ATAAAAATTC TCTCCAACCT CCTTCAAAAT CAGTCACCCAC CCTTCCTCCAGAAT ACACCCCCA TTTTTTATATAA ATAAAAATTT TCCTTTCAA ATCAGACGAT GAGACTCAA TTTTTTATATAA ATAAAATTAT TCCTTTCCAA ACACCCCC CCTTCAAAAT CAGTCACCAC CCTTCCTCCCAG GAACCCCCCA GAGAACTCC CCTTCCAAAAT CAGTCACCAC CCTTCCTCCCAG GAACCCTC ACGCGATATT ACATTCCTC CCTTCCAAAAT ACACTCCACC CCTTCCAAAAT ACATTCCTC CCTTCCAAAAT ACACTCCACC CCTTCCAAAAT ACACTCCACC CCTTCCAAAAT ACACTCCACC CCTTCCAAAAT ACACTCCACC CCTTCCAAAAT ACACTCCACC CCTTCCAAAAT ACACTCCACCAC CCTTCCCAAATT ACATTCCTTC CCTTCCAAATT AAAAAATTCCTT CCTCCAACCT CCTTCCAAAAT ACACTCCACCAC TTTTTTTGTTGA AACCCTCCA GTGGGAAGG CTGCGATATT ACATTCCTTC CCTTCCAAAACCC CAGAAACTTC CCGGAAAACCC CAGAAACTTC CCGGAAAAGCC CAGAAACTTC CCGGAAAACCC CAGAAACTTC CCGGAAAAGCC CAGAAACTTC CCGGAAAACCCCCAGAAACTTC CCGGAAAAGCC CAGAAACTTC CCGGAAAACCCCCAGAAACTTC CCGGAAAAGCC CAGAAACTTC CCGGAAAACCCCCCAGAAACTTC CCGGAAAAGCC CAGAAACTTC CCGGAAAACCCCCCAGAAAAAAAACCTC CCGGAAAAAAAACCTC CCGGAAAAAAAACCTC AACACCTCA AACACCTC AACACCTCA	TATGGGGATT AGGGGTTCAG CCAGCTAGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTTT TATCTGAGGA TGAAGACGCA TGACAAGTCA GATTTAGAAC CAGCTACCAT ATGTTTATA TTTCTGTCTT AGACATGGAA TGTTTATATA TTTCTGTCTT AGACATGGAA TGTTATATTA GTATACAAGA ACTGCAATAT TCTGCAGTAT TCTGCAGTAT	8220 8280 8340 8460 8520 8580 8640 8760 8820 8880 8940 9060 9120 9180 9240 9360
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGAAACACC GTGAAACTGA ACTGCATGGC GCCAAAGCTG ACACCAGGGC CGGAAACACC GTGAAACTGA ACTGCATGGC GCCCAAAGCTG ACTGCACAGG ATTCTTCAC CCCCCAGGGAT CACTGCACCAT ACACCAGAGAG ATGCCGGCTT CTACAAGTGC ATGGCAAAAA ACATTCTCGG AAAACAACACT ACACCACGT CTTCTGAAAT GTGGATCCA GAATGATTGC GTCACAGTGC ATGGTGGCCT CTGGTGGGTT TCAAGTTGAG GTTGAGCCT GTTGGGAAAA GCAATCATCG CTGTGGGAT TACAACACACG ATGGTGGAAA ACAACACCTG CTTTTCTTCTT TACATCATGC CAGGGGCTC ATTCAGAGT TCACCTATGAA ACAATCACACA AAAAAAAACACCT ACAACACCTC ACTCACCAGT TCACCTAGTAA AAAAAAAACACC ACTCGACCGA ACAACACCCT ACTCACCAGT TCACCTAGAAA ACAACACCTC ACTCACCCAT TCACCTAGAAA AAAAAAAAAA	TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT TATCTGAGGA TGACACACTT TATCTGAGGA TGACACACTC AGGTTTTAGAAC CAGCTACCAT ATGTTTAGAAC CAGCTACCAT ATGTTTTATA TTTCTGTCTT AGACATGGAA TGTTATATA TGTTATATA TGTTATATA TGTTATATA TGTTATATA TGTATCAT TCTGCATCAT TCTGCATCAT TCTGCAGTAT CAGTTTTGTGC	8220 8280 8340 8440 8520 8520 8640 8760 8820 8880 9000 9120 9180 9360 9360 9440 9540
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGGAACACC GTGAAACTGA ACTGCATGGC GCCAAAGCTG ACTCCACGGC CGGGAACACC GTGAAACTGA ACTGCAAGGC ACCCACAGAGA ATGCCACAG ATGCCAAAGA ATTCTTCAC CCCCAGGGAT CACTGACCAT ACACCAGAGA ATGCCACAT CTCACAAGTGC ATGGCAAAAA ACATTCTCGG AAAACAACACT ACATCCACGT CTTCTGAAAT GTGGATTCCA GAATGATTCCC GTCACAAGACA ATGGCAAAAA ACATTCTCGG GTCACAAGACA ATGGGGAGCCA GGTTGGGGAA TAGGAGCTCT CTGTGGAAT GCACACAGA AAGGAGGCCT CTGTTGGAAT GCACACACGA AAGGAGGCCT CAGCCTTGCT CTTTTTTTTTT	TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT TATCTGAGGA TGACACACTT TATCTGAGGA TGACACACTC AGGTTTTAGAAC CAGCTACCAT ATGTTTAGAAC CAGCTACCAT ATGTTTTATA TTTCTGTCTT AGACATGGAA TGTTATATA TGTTATATA TGTTATATA TGTTATATA TGTTATATA TGTATCAT TCTGCATCAT TCTGCATCAT TCTGCAGTAT CAGTTTTGTGC	8220 8280 8340 8440 8520 8520 8580 8760 8820 8880 9000 9060 9120 9380 9340 9340 9340 9340 9340
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGAAACACC GTGAAACTGA ACTGCATGGC GCCAAAGCTG ACACCAGGGC CGGAAACACC GTGAAACTGA ACTGCATGGC GCCCAAAGCTG ACTGCACAGG ATTCTTCAC CCCCCAGGGAT CACTGCACCAT ACACCAGAGAG ATGCCGGCTT CTACAAGTGC ATGGCAAAAA ACATTCTCGG AAAACAACACT ACACCACGT CTTCTGAAAT GTGGATCCA GAATGATTGC GTCACAGTGC ATGGTGGCCT CTGGTGGGTT TCAAGTTGAG GTTGAGCCT GTTGGGAAAA GCAATCATCG CTGTGGGAT TACAACACACG ATGGTGGAAA ACAACACCTG CTTTTCTTCTT TACATCATGC CAGGGGCTC ATTCAGAGT TCACCTATGAA ACAATCACACA AAAAAAAACACCT ACAACACCTC ACTCACCAGT TCACCTAGTAA AAAAAAAACACC ACTCGACCGA ACAACACCCT ACTCACCAGT TCACCTAGAAA ACAACACCTC ACTCACCCAT TCACCTAGAAA AAAAAAAAAA	TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT TATCTGAGGA TGACACACTT TATCTGAGGA TGACACACTC AGGTTTTAGAAC CAGCTACCAT ATGTTTAGAAC CAGCTACCAT ATGTTTTATA TTTCTGTCTT AGACATGGAA TGTTATATA TGTTATATA TGTTATATA TGTTATATA TGTTATATA TGTATCAT TCTGCATCAT TCTGCATCAT TCTGCAGTAT CAGTTTTGTGC	8220 8280 8340 8440 8520 8520 8640 8760 8820 8880 9000 9120 9180 9360 9360 9440 9540
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGGAACACC GTGAAACTGA ACTGCATGGC GCCAAAGCTG ACTCCACGGC CGGGAACACC GTAAACTGA ACTGCAAGGC ACCCACAGGGA ATGCCAAGGC ATCGCAAGAG ATTCCTCAC CCCCAGGGAT CACTGACCAT ACACCAGAGAG ATGCCAAGTC CTCTCAAAGTC ATGGCAAAAA ACATTCTCGG AAAACAACACT ACATCCACGT CTTCTGAAAT GTGGATTCCA GAATGATTCCC GTCACAAGTCC ATGGCAAAAA ACATTCTCGG GTCACAGTGC ATGGTGGCCT CTGTGGAAT GTGCAAATAA ACATTCTCGG GTCACAGTGC ATGGTGGCCT CTGTGGGTT TCAAGTTGAG GTGGGAACACGG ATGGGGAACACGG ATGGGGAAAAA ACATTCTCGG GTTGGGAAAA GGAAGCAATG CAGACACGAG AAGGAGGGGCT CAGCCTTGCT GTTGTGTTT TACATCATGC CAGGGGCTTC ATTCATCAGC CACCCACTGACTC CTTCATAAGC GTCCATAGGA ACACACCTC ACTACCCCAT TTCTTCTCATT TGCAAATGCC ACTACCACATGA ACACACCTC ACTACCCCAT TCATTCAGTAT AACACTACCTG TCATTTACA TATTTCCTCTG TCACTTCAAA ACTCCAGCTT GCCCAATAAG CAGAGTGACT GAACACACCC TCTTTATATAT TTCCTTTCAA ACTCCAGCAT GAGACTCAC TTTTATATATA TTCCTTTCAA ATCAGACGAT GAGACTCAC TTTTATATATA TTCCTTTCAA ATCAGACGAT GAGACTCAC TTTTATATATA TTCCTTTCAA ATCAGACGAT GAGACTCAC TTTTATATATA ATTAAATTTT TCCTTTCAA ATCAGACGAT GAGACTAGAA GAGACACCC CCTTCCAGAT CAGTCTCCCAGAT ACATTACAATA ATCAGACGAT GAGACTAGAA GAGACACACC CCTTCCAAATA CAGTCTCCCCATCAAAAAAAAAA	TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT TATCTGAGGA TGACACACTT TATCTGAGGA TGACACACTC AGGTTTTAGAAC CAGCTACCAT ATGTTTAGAAC CAGCTACCAT ATGTTTTATA TTTCTGTCTT AGACATGGAA TGTTATATA TGTTATATA TGTTATATA TGTTATATA TGTTATATA TGTATCAT TCTGCATCAT TCTGCATCAT TCTGCAGTAT CAGTTTTGTGC	8220 8280 8340 8440 8520 8520 8640 8760 8820 8880 9000 9120 9180 9360 9360 9440 9540
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGGAACACC GTGAAACTGA ACTGCATGGC GCCAAAGCTG ACTCCACGGC CGGGAACACC GTGAAACTGA ACTGCAAGGC ACCCACAGAGA ATGCCACAG ATGCCAAAGA ATTCTTCAC CCCCAGGGAT CACTGACCAT ACACCAGAGA ATGCCACAT CTCACAAGTGC ATGGCAAAAA ACATTCTCGG AAAACAACACT ACATCCACGT CTTCTGAAAT GTGGATTCCA GAATGATTCCC GTCACAAGACA ATGGCAAAAA ACATTCTCGG GTCACAAGACA ATGGGGAGCCA GGTTGGGGAA TAGGAGCTCT CTGTGGAAT GCACACAGA AAGGAGGCCT CTGTTGGAAT GCACACACGA AAGGAGGCCT CAGCCTTGCT CTTTTTTTTTT	TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT TATCTGAGGA TGACACACTT TATCTGAGGA TGACACACTC AGGTTTTAGAAC CAGCTACCAT ATGTTTAGAAC CAGCTACCAT ATGTTTTATA TTTCTGTCTT AGACATGGAA TGTTATATA TGTTATATA TGTTATATA TGTTATATA TGTTATATA TGTATCAT TCTGCATCAT TCTGCATCAT TCTGCAGTAT CAGTTTTGTGC	8220 8280 8340 8440 8520 8520 8640 8760 8820 8880 9000 9120 9180 9360 9360 9440 9540
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGGAACACC GTGAAACTGA ACTGCATGGC GCCAAAGCTG ACTCCAGGC CGGGAACACC GTAAACTGA ACTGCATGGC ACCCAAGGGA ATTCCTCAC GATAAGTCG ACCCGAGGAG ATTCCCGGCT CTCACAAGTCC ACCCAGGGAT CACTGACCAT ACACCAGAGAG ATTCCCACGT CTCTCGAAAT GTGGAAAAA ACATTCTCGG GAAAACAACACT ACATCCACGT CTTCTGAAAT GTGGATTCCA GAATGATTCCC GTTGGGAAAA GCATCCACGT CTGTGGGTT TCAAGTTCA GAATGACAAGC GTTGGGAAAA GCATCCTCG GTTGGGAAAA GCAACCACGA ATGGCAAAAA GCAACCACGA ATGGCAAAAA GCAACCACGA AAGGAGGGCT CAGCCTTGCT GTTGGGAAAA GGAAGCAATG CAGACACGAG AAGGAGGGCT CAGCCTTGCT TTTCTTCTTT TGCAAATGCC ACTCGACTGC CTTCATAAGC GTCCATAGGA ACATCACCAA AAAATAAACCC ACTCGACTGC CTTCATAAGC GTCCATAGGA ACACACCCCA TTCTTCAGTT ATTCCCTGT TCACTTCAAA ACTCCAGCTT GCCCAATAAGC ACACACCCT ACTACCCACT TTTTATATATA AATACATATA TATATATTTT AAATCAGAGT TACATCAATA AAAAAAAAAA	TATGGGGATT AGGGGTTCAG CCAGCTACCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GACACACTTT GACACACTT TATCTGAGGA TGACAAGTCA GACTACCAT ATGTTTATAA ATGTTATATA ATGTTTATAA TTTCTGTCTT AGACATGCAT AGACATGCAT AGACATGCAT AGACTACCAT AGACTACCAT AGACTACCAT AGACTACCAT AGACTACCAT AGACTACCAT CAGCTACAT CTGCAGTAT CCAGCTACAT TCTGCAGTAT TCAGCTCAAT	8220 8280 8340 8440 8520 8520 8640 8760 8820 8880 9000 9120 9180 9360 9360 9440 9540
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGGAACACC GTGAAACTGA ACTGCATGGC GCCAAAGCTG ACTCCACGGC CGGGAACACC GTAAACTGA ACTGCATGGC ACCCAAGGGG ATCACCAG GATAACTGA ACTGCATGGC ACCCAAGAGGA ATGCCAGGCT CTACAAGTGC ATGGCAAAAA ACATTCTCGG AAAACAAACA ATTCCACGT CTTCTGAAAT GTGGATTACC GAATGATTCCA GAACACAAGC GGGGTTTOTA AGGGAAGCCA GGTTGGGGAA TAGGAGCTC ACACACAGAG ATGGGGAACAC GGTTGGGGAA TAGGAGCTC CTGTGGGTT TCAAGTTGA GTGGAACTCT GTTGGGAAAA GCAATCATCATGC CAGGGAGCCA AAGGAGGGGCT CAGCCTTGCT CTTTTTTTTTT	TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT TATCTGAGGA TGACACACTT TATCTGAGGA TGACACACTC AGGTTTTAGAAC CAGCTACCAT ATGTTTAGAAC CAGCTACCAT ATGTTTTATA TTTCTGTCTT AGACATGGAA TGTTATATA TGTTATATA TGTTATATA TGTTATATA TGTTATATA TGTATCAT TCTGCATCAT TCTGCATCAT TCTGCAGTAT CAGTTTTGTGC	8220 8280 8340 8440 8520 8520 8640 8760 8820 8880 9000 9120 9180 9360 9360 9440 9540
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGAAACACC GTGAAACTGA ACTGCATGGC CCCAAAGCTG ACACCCGGCC CGGAAACACC GATAAGTCGC ATCTGAAGGC GCTCGTCTGT ATGGAAACAG ATTTCTTCAC CCCCCAGGGAT CACTGACCAT ACACAGAGAG ATGCCGGCTT CTACAAGTGC ATGGCAAAAA ACATTCTCGG AAAACAACCT ACACCACGT CTTCTGAAAT GTGGAATCAC GATGACTCAC GGTCACAGGC ATGGTGGCCT CTGGTGGGTT TCAAGTTGC GAACACAAAA ACATTCTCGG GTCACAGTGC ATGGTGGCCT CTGGTGGGGTT TCAAGTTGA GTTGGAAAT GAGAACACAG ATGGTGGCCT CTGGTGGGTT TCAAGTTGA GTTGACATTG CAGACACAGA AAGGAAGCACA ATGGTGGCCT CTGTTGGAAAT GAGACACGA AAGGAAGCACA AAAAAAAAAA	TATGGGGATT AGGGGTTCAG CCAGCTAGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTTACAATT GAGACACTTT TATCTGAGGA TGACAAGTCA GATTTAGAAC GATTTAGAAC CAGCTTACCAT ATGTTTTATA TTTCTGTCTT AGACATGGAA TGTTTATAT TGTTATATTA GGTATCAAG ACTGCATCAT TCTGCAGTAT CAGTTTTGTGC TAAGGTCAAT	8220 8280 8340 8460 8520 8580 8760 8820 88840 9000 9180 9340 9340 9340 9440 9540 9600
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGAAACCCC GTGAAACTGA ACTGCATGGC GCCAAAGCTG ACACCAGGCC CGGAAACCC GTGAAACTGA ACTGCATGGC GCCCAAAGCTG ACACCAGGAG ATGCCGGCT CTACAAGTGC ATGGCAAAAA ACACTCACGT CTACAAGTGC ATGGCAAAAA ACACTCTCGG AAAACAACACT ACACCAGCT CTTCTGAAAT GTGGATTCCA GAATGATTCCC GTCACAAGAC GGGGGTTTOTA AGGGAAGCCA GGTTGAGGCT TCAAAGTGC ATGGCAAAAA ACATCTCGG GTCACAGTGC ATGGTGGCT CTGTGGAGT TCAAGTTGA GTTGATCTTG GTTGGGAAAA GCAACCAGGA AAGGAAGCCA ATGGTGAGCCT CTGTTGGATT TCAACTCTG CAGGGGGTT TCAAGTTGAG GTTGATCTTG GTTGGGAAAA GCAACACCGA AAGGAGGCT CACCCTTGCT CTTTCTTCTTT TGCAAATGCC ACTCGACCGC CTTCATAAGC GTCCAATAGGA ACAATCACACAA AAAATAAGCC ACTCGACTGC CTTCATAAGC GTCCATAGGA ACAATCACACACACACACACACACACACACACACACAC	TATGGGGATT AGGGGTTCAG CCAGCTAGCC CCAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GACTGCAATT TATCTGAGGA TGAAGACGCA TGACAGTCA GATTTTAGAAC CAGCTACCAT ATGTTTTATA ATGTTTTATA TTTCTGTCTT AGACATGGAA TGTTATATTA GTATGCAAAG ACTGCATCAT ATGTTATATA CTATTGCATCAT ATGTTTTATA TCTGCATCAT ACGTTTGTGC TAAGGTCAAT	8220 8280 8340 8460 8520 8520 8640 8760 8820 8880 9000 9120 9180 9360 9440 9540 9600
GTCACCAGCA TCCCCGTGAT TGTGATCGCC TATCCTCCCC GGATCACCAG CCGGTCATCT ACACCCGGCC CGGAAACACC GTGAAACTGA ACTGCATGGC CCCAAAGCTG ACACCCGGCC CGGAAACACC GATAAGTCGC ATCTGAAGGC GCTCGTCTGT ATGGAAACAG ATTTCTTCAC CCCCCAGGGAT CACTGACCAT ACACAGAGAG ATGCCGGCTT CTACAAGTGC ATGGCAAAAA ACATTCTCGG AAAACAACCT ACACCACGT CTTCTGAAAT GTGGAATCAC GATGACTCAC GGTCACAGGC ATGGTGGCCT CTGGTGGGTT TCAAGTTGC GAACACAAAA ACATTCTCGG GTCACAGTGC ATGGTGGCCT CTGGTGGGGTT TCAAGTTGA GTTGGAAAT GAGAACACAG ATGGTGGCCT CTGGTGGGTT TCAAGTTGA GTTGACATTG CAGACACAGA AAGGAAGCACA ATGGTGGCCT CTGTTGGAAAT GAGACACGA AAGGAAGCACA AAAAAAAAAA	TATGGGGATT AGGGGTTCAG CCAGCTACCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GACTCCAATT TATCTGAGGA TGAAGACGCA TGACAAGTCA GATTTTATA ATGTTATATA ATGTTATATA ATGTTATATA ATGTTATATA TTTCTGTCTT TTTCTGTCTT TCTGCATT TCTGCATAT TCTGCATCAT AGACATGGAA ACTGCATCAT ACGTTTGTGC TAAGGTCAAT 51 AGGIARHVERI SYNKLRVITG	8220 8280 8340 8460 8520 8580 8760 8820 88840 9000 9180 9340 9340 9340 9440 9540 9600

	WO 02	/086443					
	CKKDKAYEGG	QLCAMCFSPK	KLYKHEIHKL	KDMTCLKPSI	ESPLRONRSR	SIEEEQEOEE	300
	DGGSQLILEK	FQLPQWSISL	NMTDEHGNMV	NLVCDIKKPM	DVYKIHLNOT	DPPDIDINAT	360
	VALDFECPMT	RENYEKLWKL	IAYYSEVPVK	LHRELMLSKD	PRVSYQYRQD	ADEBALYYTG	420
_	VRAQILAEPE	WVMQPSIDIQ	LNRRQSTAKK	VLLSYYTQYS	QTISTKDTRQ	ARGRSWVMIE	480
5				IFWVLPDGSI			540
	RIKSMEPSDS	GLYQCIAQVR	DEMDRMVYRV	LVQSPSTQPA	EKDTVTIGKN	PGESVTLPCN	600
				LPNGTLSIPK			660
	HFTVGITVTK	KGSGLPSKRG	RRPGAKALSR	VREDIVEDEG	GSGMGDEENT	SRRLLHPKDQ	720
10				EKEPETNVAE			780
10				PSLSLEVTPP			840
				GVILVEPEVT			900
				YEKPTHEETA			960
				DKMKEDTFAH			1020
1.5				QDTLLIKKGM			1080
15				KPAETTVGTL			1140
				PTTFAPSETF			1200
				RRKHGKRPNK			1260
				DSLDYMTTTR			1320
20				AIPTSRSLVS			1380
20				KELEDVDFTS			1440
	TTLSSIKVEV	ASSQAETTTL	DODHLETTVA	ILLSETRPQN	HTPTAARMKE	PASSSPSTIL	1500
	MSLGQTTTTK	PALPSPRISQ	ASRDSKENVF	LNYVGNPETE	ATPVNNEGTQ	HMSGPNELST	1560
	PSSDRDAFNL	STKLELEKQV	FGSRSLPRGP	DSQRQDGRVH	ASHQLTRVPA	KPILPTATVR	1620
25				YPSGALPENK			1680
25	PSIPSKFTDR	RTDQFNGYSK	VFGNNNIPEA	RNPVGKPPSP	RIPHYSNGRL	PFFTNKTLSF	1740
	PQLGVTRRPQ	IPTSPAPVMR	ERKVIPGSYN	RIHSHSTFHL	DFGPPAPPLL	HTPQTTGSPS	1800
	TNLQNIPMVS	STOSSISFIT	SSVQSSGSFH	QSSSKFFAGG	PPASKFWSLG	EKPQILTKSP	1860
	OTVSVTAETD	TVFPCEATGK	PKPFVTWTKV	STGALMTPNT	RIQRFEVLKN	GTLVIRKVQV	1920
20				QILASHYQDV			1980
30	QISWIFPDRR	VWQTVSPVES	RITLHENRTL	SIKEASPSDR	GVYKCVASNA	AGADSLAIRL	2040
				AKAAPLPSVR			2100
				ARRTVQLNVQ			2160
				LFSFDSRIKV			2220
35	CVARNKVGDD	AAAPKADAAW	KPAKIEHKEE	NDHKVFYGGD	LKVDCVATGL	PNPEISWSLP	2280
22	DGSLVNSFMQ	SDDSGGRTKR	YVVFNNGTLY	FNEVGMREEG	DYTCFAENQV	GKDEMRVKVK	2340
				KGEPMPKVTW			2400 2460
				VWIHVNVQPP			2520
				YGNRITVHGN KITAMAGHTI			2520 2580
40							2640
40	GTDLQSGQQL	QRFYHKADGM	PHISGUSSVD	AGAYRCVARN WTLPNGMHLE	CROWN CRUCK	LENGUAPEAN	2700
				YPPRITSEPT			2760
				PQGSLTIQHA			2820
	KTTYIHVF	DVSUTVAGAÕ	MULUNKEDH	EAGSD1 IAUN	1 AKDWGL 1VC	LITTINITY TO SO S	2020
45	KITIINAR.						
73	Con ID NO.	418 DNA sec	mience				
		id Accession		mience			
	Nucleic AC.	ra waccessto	T #: EVO 55	drence			

Coding sequence: 1..5001

50	1	11	21	31	41	51	
	1 .	1	1	1	1	1	
	ATGCCAGGCA	CAAAACTAAC	CCGAACAGGC	GCCCCAGCAG	ACTACAGAGT	GATATTGAAG	60
	ACCTCTCAAG	AGGACGAATT	GGATGTACCT	GACGACATCA	GCGTCCGGGT	TATGTCATCT	120
	CAGTCTGTGC	TTGTGTCCTG	GGTGGATCCT	GTTCTGGAAA	AACAGAAGAA	AGTTGTTGCA	180
55	TCAAGACAGT	ACACCGTGCG	CTATCGAGAG	AAGGGGGAAT	TGGCCAGGTG	GGATTATAAG	240
	CAGATCGCTA	ACAGGCGTGT	GCTGATTGAG	AACCTGATTC	CAGACACTGT	GTATGAATTT	300
	GCAGTCCGTA	TTTCACAGGG	TGAAAGAGAT	GGCAAATGGA	GTACGTCAGT	CTTCCAAAGA	360
	ACACCAGAAT	CTGCCCCTAC	CACAGCTCCT	GAAAACTTGA	ACGTCTGGCC	AGTCAATGGC	420
	AAACCTACAG	TTGTCGCTGC	ATCTTGGGAT	GCGCTACCAG	AGACTGAGGG	GAAAGTGAAA	480
60	GTCTGTCTGC	TGGACACAGG	ACTGTTTTCA	GTTTCCTCCT	TCCAACCATC	TGCCAAATCA	540
	TTTCAGAATA	CATTCTTTCA	TACGCCCCGG	CTCTCAAACC	ATTTGGAGCA	AAGTCCCTCA	600
	CCTATCCTGG	AGACACTACT	TCTGCCCTGG	TGGATGGTCT	GCAGCCTGGG	GAACGCTATC	660
	TTTTCAAAAT	CCGGGCCACA	AACAGGAGAG	GCCTGGGACC	TCACTCCAAA	GCCTTCATTG	720
	TCGCTATGCC	AACAAGAATG	CAGCTGTACC	CAGAAGGATT	TCAGTTGTCT	AGCTTACCTG	780
65	ATCGATATCC	AAACCAAACA	AGTTAATAAA	GATCCACAAC	TGGAAGGGAG	TGTTTTTGGA	840
	CCATGTTTTC	TTTTCTACTT	CCTCACATTT	ATGCTGGATA	TTGGCGGCTT	TTCCTTCATT	900
	ATGTGCTATG	AAGACCCANN	TGTTTCTTCT	TTGACAGGCA	ATTCTTTAAA	ATCTGTTGCA	960
	GCCAGTAAGG	CGGATGTTCA	GCAGAACACG	GAGGACAATG	GGAAACCCGA	AAAACCTGAG	1020
5 0	CCTTCCTCAC	CTTCTCCCAG	AGCTCCAGCT	TCCTCCCAAC	ACCCCTCTGT	GCCTGCTTCT	1080
70	CCCCAAGGGA	GAAATGCCAA	GGACCTTCTT	CTTGACTTGA	AGAACAAAAT	ATTGGCTAAT	1140
	GGTGGGGCGC	CCCGAAAACC	CCAGCTTCGC	GCCAAGAAGG	CAGAGGAGCT	GGATCTTCAG	1200
	TCGACAGAAA	TCACTGGGGA	GGAGGAGCTG	GGTTCCCGGG	AGGACTCGCC	CATGTCACCC	1260
	TCAGACACCC	AAGACCAGAA	ACGGACCCTG	AGGCCGCCAA	GTAGACACGG	CCACTCGGTG	1320
<i></i>	GTTGCTCCCG	GCAGGACTGC	AGTGAGGGCC	CGGATGCCAG	CGCTGCCCCG	AAGGGAAGGC	1380
75	GTAGATAAGC	CTGGCTTTTC	CCTGGCCACG	CAGCCCCGCC	CAGGGGCGCC	CCCCTCGGCT	1440
	TCGGCCTCTC	CTGCCCACCA	CGCGTCCACC	CAGGGCACCT	CTCATCGTCC	TTCCCTGCCT	1500
				TCAGACGAAG			1560
	CTCCACCCCA	AGGGCGCCTT	CGCCCAGCCC	CGGCCAGCCC	TGTCCCCCAG	CCGCCAGTCC	1620
00				GTGCACCCCG			1680
80				GAGGAAGATT			1740
	TCAAGACTTT	CTCCACCCCA	TGGGGGATCA	TCTCGGCTGC	TGCCCACCCA	GCCACACCTG	1800
	AGCTCTCCAC	TTTCCAAGGG	CGGGAAGGAT	GGTGAGGACG	CCCCAGCCAC	CAACTCCAAT	1860
				GTCTCTTCTC			1920
0.5				GAAAGCCACG			1980
85				ACGCTGCGGG			2040
				GCCAACGGGA			2100
	ATTGGGCGGG	GACCTCGGCT	GCAGCCCTCC	AGCTCCCCAC	AGTCGACTGT	GCCCTCCCGA	2160

	WUUZ	/000443					
	GCCCACCCCA	GGGTTCCCTC	TCACTCTGAT	TCCCACCCTA	AGCTTAGCTC	AGGTATCCAT	2220
	CCACACCACC	AGGATGAGAA	CCCCCTTCCTT	GCCACCGTTG	TCAATGACCA	CGTGCCTTCC	2280
	GGAGACGAGG	AGCCCATCTC	0000011001	CACCACTTAA	GGAGAAGCCC	GCACACACCC	
	TCCTCCAGGC	AGCCCATCTC	CCGGGGCTGG	GAGGACTIAA	CONGRAGOCCC	GCAGAGAGGG	2340
_	GCCAGCCTGC	ATCGGAAGGA	ACCCATCCCA	GAGAACCCCA	AATCCACAGG	GGCAGATACA	2400
5	CATCCTCAGG	GCAAGTACTC	CTCCCTGGCC	TCCAAGGCTC	AGGATGTTCA	ACAGAGCACA	2460
_	CACCCCCACA	CGGAGGGTCA	TTCTCCCAAA	GCACAGCCAG	GGTCCACAGA	CCCCCACCCC	2520
	GACGCGGACA	COGAGGGICA	TICICCCAAA		CCACMOMMOO	Clarace	
	TCCCCTGCTC	GTCCTCCCGC	AGCACGGTCA	CAGCAGCATC	CCAGIGITICC	CAGAAGGATG	2580
•	ACACCCGGCC	GGGCCCCAGA	ACAGCAGCCC	CCTCCTCCCG	TCGCCACGTC	CCAGCACCAC	2640
	CCCCCACCCC	AGAGCAGAGA	COCCCCTCGG	TCACCTTCCC	AGCCCAGGCT	CTCACTGACC	2700
10	CCGGGACCCC	GGCCCGCCC	0000001000	COCCCCCCCC	A COTO COTO COTO	CCACCOOMBAC	2760
10	CAGGCCGGGC	GGCCCCGCCC	CACGTCGCAG	GGCCGCTCCC	ACTOCICCIC	GOACCCITAC	
	ACGGCGAGCT	CCAGAGGGAT	GCTCCCCACG	GCCCTCCAGA	ACCAGGACGA	GGATGCCCAG	2820
	GGCAGCTACG	ACGACGACAG	CACAGAAGTC	GAGGCCCAGG	ATGTGCGGGC	CCCCGCGCAC	2880
	CCCCCCCCCC	CCAAGGAGGC	NO CTROCCTOC	CTTCCCAAGC	ACCAGCAGGT	GGAGTCTCCC	2940
	GCCGCGCG	CCAAGGAGGC	AGCIGCGICC	C11CCC110C	CACAMOOGO	001010100	
1.5	ACAGGCGCAG	GGGCAGGTGG	CGACCACAGG	TCCCAGCGCG	GACAIGCGGC	Crececede	3000
15	AGGCCCAGCC	GACCCGGCGG	CCCCCAGTCC	CGCGCCCGGG	TCCCCAGCAG	GGCAGCGCCG	3060
	CCCAACTCCC	AGCCTCCTTC	CAAGCGGCCC	CTGTCCTCCA	AGTCCCAGCA	GTCGGTCTCA	3120
	000770100	7.000.700.700		CONTRIBUTE A A A C	COCCCARACA	3 C 3 C C C C C C C C C C C C C C C C C	
	GCCGAGGACG	AGGAGGAGGA	GGACGCGGG	TITITIAAAG	GCGGGAAAGA	AGACCITCIG	3180
	TCTTCCTCTG	TGCCAAAGTG	GCCCTCTTCC	TCCACTCCCA	GGGGCGGCAA	AGACGCCGAT	3240
	GGGAGCCTCG	CCAAGGAAGA	GAGGGAGCCT	GCCATCGCGC	TTGCCCCTCG	CGGAGGGAGC	3300
20	OGG10CC1CC	TGAAGCGACC	moreoccocca.	COTCCACCCA	COTOCOCO	CCCCTCCCAC	3360
20	CIGGCICCIG	TGAAGCGACC	TETECCCCCCA	CCICCAGGCA	GCTCCCCAG	GGCCICCCAC	
	GTCCCTTCCC	GACCGCCGCC	TCGCAGCGCT	GCCACCGTGA	GCCCCGTCGC	GGGCACCCAC	3420
	CCCTGGCCGC	GGTACACCAC	GCGCGCCCCV	CCTGGCCACT	TCTCCACCAC	CCCGATGCTG	3480
	mccommccccc	AGAGGATGAT	CCATCCCACA	TTCCCTAACC	CTCTCTCCC	ACAGCCTGCC	3540
	TCCTTGCGCC	AGAGGAIGAI	GCATGCCAGA	1100017700	CICICICCCO	ACAGCCIGCC	
0.5	AGACCCTCTT	ACAGACAAGG	TTATAATGGC	AGACCAAATG	TAGAAGGGAA	AGTCCTTCCT	3600
25	GGTAGTAATG	GAAAACCGAA	TGGACAGAGA	ATTATCAATG	GCCCTCAAGG	AACAAAGTGG	3660
	GTTGTGGACC	TTGATCGTGG	CTTACTATTC	AATGCAGAAG	GAAGGTACCT	CCAAGATTCA	3720
	CITCIOGACC		mom.co.	CONCORCORC	CAACCAMMCT	A CATOTICCA A	
	CATGGAAATC	CTCTTCGGAT	TAAACTAGGA	GGAGATGGTC	GAACCATIGI	AGATCIGGAA	3780
		TGGTGAGTCC					3840
	CCTCTGGCCA	ATGCCCAAGA	TAAGCCAATT	TTGAGTCTTG	GAGGAAAGCC	GCTGGTGGGC	3900
30	WWGG A GOWGA	TCAAAAAAAC	CA CCCA TCCC	COTTA CCA OTTA	CCATCCACCC	CACCACTACT	3960
50							
		TGCCTACCAC					4020
	ACCACTACTA	CGACGCCCCT	GCCTACCACT	ACACCGAGGC	CCACCACTGC	CACCACCCGC	4080
	CCCACCACCA	CCAGGCGTCC	AACAACCACA	CTCCCAACCA	CTACGCGGAC	AACCACCACC	4140
	CGCACGACCA	CCAGGCGICC	MACMACCACA	GICCOMCCA	CIACOCOGAC	and a control	
25	ACCACCCCCA	AACCCACCAC	TCCCATCCCC	ACCTGTCCCC	CTGGGACCTT	GGAACGGCAC	4200
35	GACGATGATG	GCAACCTGAT	AATGAGCTCC	AATGGGATCC	CAGAGTGCTA	CGCTGAAGAA	4260
	CATCACTTOT	CAGGCTTGGA	GACTGACACT	GCAGTACCTA	CGGAAGAGGC	CTACGTTATA	4320
							4380
		ATTATGAATT					
		CACCGAGGGT					4440
	GAATTTGATC	TGGCTGGAAG	GAAACGATTT	GTTGCTCCTT	ACGTGACGTA	CCTAAATAAA	4500
40		CCCCGTGCTC					4560
70							
		TCCCCAATGA					4620
	AACATCACCG	TGGTGGCCGT	GGAAGGTTGC	CACTCATTTG	TCATTGTGGA	TTGGGACAAA	4680
	GCCACCCCAG	GAGATTTGGT	CACAGGTTAT	TTGGTTTACA	GTGCATCCTA	TGAAGATTTC	4740
		AGTTTTCCAC					4800
15							
45	AAGCCCAACA	CGAGGTATTA	TTTTAAAGTG	CAAGCACAAA	ATCCTCATGG	CTACGGACCT	4860
	ATCAGCCCTT	CGGTCTCATT	TGTCACCGAA	TCAGATAATC	CTCTGCTTGT	TGTGAGGCCC	4920
		AGCTATCTGG					4980
		GCAATATGTG					5040
	GTAATTCACT	GAGGTATAAA	ATCTACCTCA	GTGACAACCT	GAAAGATACA	TTCTACAGCA	5100
50	ттссасасасас	CTGGGGAAGA	GGTGAAGACC	ATTGCCAATT	TGTGGATTCA	CACCTTGATG	5160
•		GCCTCAGTCC					5220
	AGTATCGTCA	GGAGCCTGTC	AGGTTTGGGA	ACATCGGCTT	CGGAACCCCC	TACTACTATG	5280
	TGGGCTGGTA	CGAGTGTGGG	GTCTCCATCC	CTGGAAAGTG	GTAATCACAG	GACCGTCATG	5340
		GCCCTGCCCA					5400
<i>5 </i>							
55	CAGCCAGCAT	GCTCAGCCCC	GCTGCCCTAG	GTGCCAGGAA	GGTCACAGAT	GGACACTGGC	5460
	CATTCTGGTC	ATCTCAGTCT	GGAACTCAGT	CCCACTTCTT	GGCCTGGACA	ATGAACAGGA	5520
							5580
		CTGTTAACTT					
	CCAGAGACAT	CAGAAACCAG	CAACTGATTC	AGTGTGATTT	CCCAGACTTT	TTAGGCATGA	5640
	AATTCCCACA	CTTCAGTATT	TCCAGGAATA	GCATATGCAC	GCTGTTCTTG	CTTCATGGAA	5700
60							
00		TTTCTGTTTT					5760
		TTGTATGCAG					5820
	ATATCCTACT	TGAAATTTAC	TCTATGGACT	TACCCACTGC	TAGAATAAAT	GTATCAAATC	5880
		ATTCTCAATT					5940
CE		AATATTGATT	AAAATTGCTA	AATTTGTACT	TGTTCACCAA	AAAAAAAAA	6000
65	ааааааа						
	Com TD MO	410 D					•
		419 Protein					
	Protein Acc	cession #: P	os sequence	•			
70	1	11	21	31	41	51	
, ,	Ţ	1	1	1	ī	1	
	1	1	1	1	1	1	

70	1	11	21	31	41	51	
	1	1	1	1	l	1	
	MPGTKLTRTG	APADYRVILK	TSQEDELDVP	DDISVRVMSS	QSVLVSWVDP	VLEKOKKVVA	60
	SRQYTVRYRE	KGELARWDYK	QIANRRVLIE	NLIPDTVYEF	AVRISQGERD	GKWSTSVFQR	120
76	TPESAPTTAP	ENLNVWPVNG	KPTVVAASWD	ALPETEGKVK	VCLLDTGLFS	VSSFQPSAKS	180
/3	FONTFFHTPR	LSNHLEQSPS	PILETLLLPW	WMVCSLGNAI	FSKSGPQTGE	AWDLTPKPSL	240
	SLCQQECSCT	QKDFSCLAYL	IDIQTKQVNK	DPQLEGSVFG	PCFLPYFLTF	MLDIGGPSFI	300
	MCYEDPVSSL	TGNSLKSVAA	SKADVQQNTE	DNGKPEKPEP	SSPSPRAPAS	SQHPSVPASP	360
	QGRNAKDLLL:	DLKNKILANG	GAPRKPQLRA	KKAEELDLQS	TEITGEEELG	SREDSPMSPS	420
00	DTQDQKRTLR	PPSRHGHSVV	APGRTAVRAR	MPALPRREGV	DKPGPSLATQ	PRPGAPPSAS	480
80	ASPAHHASTQ	GTSHRPSLPA	SLNDNDLVDS	DEDERAVGSL	HPKGAPAQPR	PALSPSRQSP	540
	SSVLRDRSSV	HPGAKPASPA	RRTPHSGAAE	EDSSASAPPS	RLSPPHGGSS	RLLPTQPHLS	600
	SPLSKGGKDG	EDAPATNSNA	PSRSTMSSSV	SSHLSSRTQV	SEGAEASDGE	SHGDGDREDG	660
	GRQAEATAQT	LRARPASGHF	HLLRHKPFAA	NGRSPSRFSI	GRGPRLQPSS	SPQSTVPSRA	720
0.5	HPRVPSHSDS	HPKLSSGIHG	DEEDEKPLPA	TVVNDHVPSS	SRQPISRGWE	DLRRSPQRGA	780
85	SLHRKEPIPE	NPKSTGADTH	PQGKYSSLAS	KAQDVQQSTD	ADTEGHSPKA	QPGSTDRHAS	840
	PARPPAARSQ	QHPSVPRRMT	PGRAPEQQPP	PPVATSQHHP	GPQSRDAGRS	PSQPRLSLTQ	900
	AGRPRPTSQG	RSHSSSDPYT	ASSRGMLPTA	LQNQDEDAQG	SYDDDSTEVE	AQDVRAPAHA	960

```
ARAKEAAASL PKHOOVESPT GAGAGGDHRS QRGHAASPAR PSRPGGPQSR ARVPSRAAPG 1020
       KSEPPSKRPL SSKSQOSVSA EDEEEEDAGF FKGGKEDLLS SSVPKWPSSS TPRGGKDADG
                                                                            1080
       SLAKEEREPA IALAPRGGSL APVKRPLPPP PGSSPRASHV PSRPPPRSAA TVSPVAGTHP
                                                                            1140
       WPRYTTRAPP GHFSTTPMLS LRQRMMHARF RNPLSRQPAR PSYRQGYNGR PNVEGKVLPG
                                                                            1200
 5
       SNGKPNGQRI INGPQGTKWV VDLDRGLVLN AEGRYLQDSH GNPLRIKLGG DGRTIVDLEG
                                                                            1260
      TPYVSPDGLP LFGQGRHGTP LANAQDKPIL SLGGKPLVGL EVIKKTTHPP TTTMQPTTTT TPLPTTTTPR PTTATTMQPT TTTTPLPTTT PRPTTATTRR TTTRRPTTTV RTTTRTTTTT
                                                                            1320
                                                                            1380
       TPKPTTPIPT CPPGTLERHD DDGNLIMSSN GIPECYAEED EFSGLETDTA VPTEEAYVIY DEDYEFETSR PPTTTEPSTT ATTPRVIPEE GAISSPPEEE FDLAGRKRFV APYVTYLNKD
                                                                            1440
                                                                            1500
10
       PSAPCSLTDA LDHFQVDSLD EIIPNDLKKS DLPPQHAPRN ITVVAVEGCH SFVIVDWDKA
                                                                            1560
       TPGDLVTGYL VYSASYEDFI RNKFSTQASS VTHLPIENLK PNTRYYFKVQ AQNPHGYGPI
                                                                            1620
       SPSVSFVTES DNPLLVVRPP GGELSGSHSL SNMIPATRTA MDGNM
       Seg ID NO: 420 DNA sequence
15
       Nucleic Acid Accession #: NM_022743
       Coding sequence: 128..1237
                                                                51
                                         31
                                                     41
                  11
                             21
       GTGGATTTTA GAGATACCTC CCCTCCTTCT GCTCAGCTGC CTTGCAGTAA TTAAACTCTT
20
                                                                               60
       TCTCTGCTGC AACACCCCTA CTGTTCTCCG TGTATTGGCT TTTCTGGGCA GCAGGAAGGA
                                                                             120
       AAAGCTGATG CGATGCTCTC AGTGCCGCGT CGCCAAATAC TGTAGTGCTA AGTGTCAGAA
                                                                             180
       AAAAGCTTGG CCAGACCACA AGCGGGAATG CAAATGCCTT AAAAGCTGCA AACCCAGATA
                                                                             240
       TCCTCCAGAC TCCGTTCGAC TTCTTGGCAG AGTTGTCTTC AAACTTATGG ATGGAGCACC
                                                                             300
25
       TTCAGAATCA GAGAAGCTTT ACTCATTTTA TGATCTGGAG TCAAATATTA ACAAACTGAC
                                                                             360
       TGAAGATAAG AAAGAGGGCC TCAGGCAACT CGTAATGACA TTTCAACATT TCATGAGAGA
                                                                             420
       AGAAATACAG GATGCCTCTC AGCTGCCACC TGCCTTTGAC CTTTTTGAAG CCTTTGCAAA
                                                                              480
       AGTGATCTGC AACTCTTTCA CCATCTGTAA TGCGGAGATG CAGGAAGTTG GTGTTGGCCT
                                                                             540
       ATATCCCAGT ATCTCTTTGC TCAATCACAG CTGTGACCCC AACTGTTCGA TTGTGTTCAA
                                                                              600
30
       TGGGCCCCAC CTCTTACTGC GAGCAGTCCG AGACATCGAG GTGGGAGAGG AGCTCACCAT
       CTGCTACCTG GATATGCTGA TGACCAGTGA GGAGCGCCGG AAGCAGCTGA GGGACCAGTA
       CTGCTTTGAA TGTGACTGTT TCCGTTGCCA AACCCAGGAC AAGGATGCTG ATATGCTAAC
       TGGTGATGAG CAAGTATGGA AGGAAGTTCA AGAATCCCTG AAAAAAATTG AAGAACTGAA
       GGCACACTGG AAGTGGGAGC AGGTTCTGGC CATGTGCCAG GCGATCATAA GCAGCAATTC
       TGAACGCTT CCCGATATCA ACATCTACCA GCTGAAGGTG CTCGACTGCG CCATGGATGC
35
                                                                             960
       CTGCATCAAC CTCGGCCTGT TGGAGGAAGC CTTGTTCTAT GGTACTCGGA CCATGGAGCC
                                                                            1020
       ATACAGGATT TTTTTCCCAG GAAGCCATCC CGTCAGAGGG GTTCAAGTGA TGAAAGTTGG
                                                                            1080
       CAAACTGCAG CTACATCAAG GCATGTTTCC CCAAGCAATG AAGAATCTGA GACTGGCTTT
                                                                            1140
       TGATATTATG AGAGTGACAC ATGGCAGAGA ACACAGCCTG ATTGAAGATT TGATTCTACT
                                                                            1200
       TTTAGAAGAA TGCGACGCCA ACATCAGAGC ATCCTAAGGG AACGCAGTCA GAGGGAAATA
40
                                                                            1260
       CGGCGTGTGT CTTTGTTGAA TGCCTTATTG AGGTCACACA CTCTATGCTT TGTTAGCTGT
                                                                            1320
       GTGAACCTCT CTTATTGGAA ATTCTGTTCC GTGTTTGTGT AGGTAAATAA AGGCAGACAT
                                                                            1380
       GGTTTGCAAA CCACAAGAAT CATTAGTTGT AGAGAAGCAC GATTATAATA AATTCAAAAC
       ATTTGGTTGA GGATGCCAAA AAAAAAAAA AAAAAAA
45
       Seg ID NO: 421 Protein sequence
       Protein Accession #: NP_073580
                                         31
                                                     41
                                                                51
50
       MRCSOCRVAK YCSAKCOKKA WPDHKRECKC LKSCKPRYPP DSVRLLGRVV FKLMDGAPSE
       SEKLYSFYDL ESNINKLTED KKEGLRQLVM TFQHFMREEI QDASQLPPAF DLFEAFAKVI
                                                                             120
       CNSFTICNAE MOEVGVGLYP SISLLNHSCD PNCSIVFNGP HLLLRAVRDI EVGEELTICY
                                                                             180
       LDMLMTSEER RKQLRDQYCF ECDCFRCQTQ DKDADMLTGD EQVWKEVQES LKKIEELKAH
                                                                             240
55
       WKWEQVLAMC QAIISSNSER LPDINIYQLK VLDCAMDACI NLGLLEEALF YGTRTMEPYR
                                                                             300
       IFPPGSHPVR GVQVMKVGKL QLHQGMFPQA MKNLRLAFDI MRVTHGREHS LIEDLILLLE
       Seq ID NO: 422 DNA sequence
60
       Nucleic Acid Accession #: NM 003014.2
       Coding sequence: 238..648
                              21
                                         31
65
       GGCGGGTTCG CGCCCCGAAG GCTGAGAGCT GGCGCTGCTC GTGCCCTGTG TGCCAGACGG
       CGGAGCTCCG CGGCCGGACC CCGCGGCCCC GCTTTGCTGC CGACTGGAGT TTGGGGGAAG
                                                                             120
       AAACTCTCCT GCGCCCCAGA AGATTTCTTC CTCGGCGAAG GGACAGCGAA AGATGAGGGT
       GGCAGGAAGA GAAGGCGCTT TCTGTCTGCC GGGGTCGCAG CGCGAGAGGG CAGTGCCATG
       TTCCTCTCCA TCCTAGTGGC GCTGTGCCTG TGGCTGCACC TGGCGCTGGG CGTGCGCGGC
                                                                             300
70
       GCGCCCTGCG AGGCGGTGCG CATCCCTATG TGCCGGCACA TGCCCTGGAA CATCACGCGG
                                                                             360
       ATGCCCAACC ACCTGCACCA CAGCACGCAG GAGAACGCCA TCCTGGCCAT CGAGCAGTAC
                                                                              420
       GAGGAGCTGG TGGACGTGAA CTGCAGCGCC GTGCTGCGCT TCTTCTTCTG TGCCATGTAC
                                                                             480
       GCGCCCATTT GCACCCTGGA GTTCCTGCAC GACCCTATCA AGCCGTGCAA GTCGGTGTGC
                                                                              540
       CAACGCGCGC GCGACGACTG CGAGCCCCTC ATGAAGATGT ACAACCACAG CTGGCCCGAA
                                                                             600
75
       AGCCTGGCCT GCGACGAGCT GCCTGTCTAT GACCGTGGCG TGTGCATTTC GCCTGAAGCC
                                                                              660
       ATCGTCACGG ACCTCCCGGA GGATGTTAAG TGGATAGACA TCACACCAGA CATGATGGTA
                                                                             720
       CAGGAAAGGC CTCTTGATGT TGACTGTAAA CGCCTAAGCC CCGATCGGTG CAAGTGTAAA
                                                                              780
       AAGGTGAAGC CAACTTTGGC AACGTATCTC AGCAAAAACT ACAGCTATGT TATTCATGCC
                                                                             840
       AAAATAAAAG CTGTGCAGAG GAGTGGCTGC AATGAGGTCA CAACGGTGGT GGATGTAAAA
                                                                             900
80
       GAGATCTTCA AGTCCTCATC ACCCATCCCT CGAACTCAAG TCCCGCTCAT TACAAATTCT
                                                                             960
       TCTTGCCAGT GTCCACACAT CCTGCCCCAT CAAGATGTTC TCATCATGTG TTACGAGTGG
                                                                            1020
       CGTTCAAGGA TGATGCTTCT TGAAAATTGC TTAGTTGAAA AATGGAGAGA TCAGCTTAGT
                                                                            1080
       AAAAGATCCA TACAGTGGGA AGAGAGGCTG CAGGAACAGC GGAGAACAGT TCAGGACAAG
                                                                            1140
       AAGAAAACAG CCGGGCGCAC CAGTCGTAGT AATCCCCCCA AACCAAAGGG AAAGCCTCCT
                                                                            1200
85
       GCTCCCAAAC CAGCCAGTCC CAAGAAGAAC ATTAAAACTA GGAGTGCCCA GAAGAGAACA
                                                                            1260
       AACCCGAAAA GAGTGTGAGC TAACTAGTTT CCAAAGCGGA GACTTCCGAC TTCCTTACAG
                                                                            1320
       GATGAGGCTG GGCATTGCCT GGGACAGCCT ATGTAAGGCC ATGTGCCCCT TGCCCTAACA 1380
```

```
CTAGAAGAGT AGGGAAAATA ATGCTTGTTA CAATTCGACC TAATATGTGC ATTGTAAAAT
                                                                          1620
5
      AAATGCCATA TTTCAAACAA AACACGTAAT TTTTTTTACAG TATGTTTTAT TACCTTTTGA
       TATCTGTTGT TGCAATGTTA GTGATGTTTT AAAATGTGAT GÁAAATATAA TGTTTTTAAG
                                                                          1740
       AAGGAACAGT AGTGGAATGA ATGTTAAAAG ATCTTTATGT GTTTATGGTC TGCAGAAGGA
                                                                         1800
       TTTTTGTGAT GAAAGGGGAT TTTTTGAAAA ATTAGAGAAG TAGCATATGG AAAATTATAA
                                                                          1860
       TGTGTTTTTT TACCAATGAC TTCAGTTTCT GTTTTTAGCT AGAAACTTAA AAACAAAAAT
                                                                         1920
10 ·
       AATAATAAAG AAAAATAAAT AAAAAGGAGA GGCAGACAAT GTCTGGATTC CTGTTTTTTG
                                                                          1980
       GTTACCTGAT TTCCATGATC ATGATGCTTC TTGTCAACAC CCTCTTAAGC AGCACCAGAA
                                                                          2040
       ACAGTGAGTT TGTCTGTACC ATTAGGAGTT AGGTACTAAT TAGTTGGCTA ATGCTCAAGT
                                                                          2100
       ATTTTATACC CACAGAGAG GTATGTCACT CATCTTACTT CCCAGGACAT CCACCCTGAG
                                                                          2160
       AATAATTTGA CAAGCTTAAA AATGGCCTTC ATGTGAGTGC CAAATTTTGT TTTTCTTCAT
                                                                          2220
       TTAAATATTT TCTTTGCCTA AATACATGTG AGAGGAGTTA AATATAAATG TACAGAGAGG
15
                                                                          2280
       AAAGTTGAGT TCCACCTCTG AAATGAGAAT TACTTGACAG TTGGGATACT TTAATCAGAA
                                                                          2340
       AAAAAGAACT TATTTGCAGC ATTTTATCAA CAAATTTCAT AATTGTGGAC AATTGGAGGC
                                                                         2400
       ATTTATTTTA AAAAACAATT TTATTGGCCT TTTGCTAACA CAGTAAGCAT GTATTTTATA
                                                                          2460
       AGGCATTCAA TAAATGCACA ACGCCCAAAG GAAATAAAAT CCTATCTAAT CCTACTCTCC
                                                                          2520
20
       ACTACACAGA GGTAATCACT ATTAGTATTT TGGCATATTA TTCTCCAGGT GTTTGCTTAT
                                                                          2580
       GCACTTATAA AATGATTTGA ACAAATAAAA CTAGGAACCT GTATACATGT GTTTCATAAC
                                                                          2640
       CTGCCTCCTT TGCTTGGCCC TTTATTGAGA TAAGTTTTCC TGTCAAGAAA GCAGAAACCA
                                                                          2700
       TCTCATTTCT AACAGCTGTG TTATATTCCA TAGTATGCAT TACTCAACAA ACTGTTGTGC
                                                                          2760
       TATTGGATAC TTAGGTGGTT TCTTCACTGA CAATACTGAA TAAACATCTC ACCGGAATTC
25
```

Seq ID NO: 423 Protein sequence Protein Accession #: NP_003005.1

	1	11	21	31	41	51	
30	Ī	1	1	1	1	1	
	MFLSILVALC	LWLHLALGVR	GAPCEAVRIP	MCRHMPWNIT	RMPNHLHHST	QENAILAIEQ	60
	YEELVDVNCS	AVLRFFFCAM	YAPICTLEFL	HDPIKPCKSV	CQRARDDCEP	LMKMYNHSWP	120
	ESLACDELPV	YDRGVCISPE	AIVTDLPEDV	KWIDITPDMM	VQERPLDVDC	KRLSPDRCKC	180
	KKVKPTLATY	LSKNYSYVIH	AKIKAVQRSG	CNEVTTVVDV	KEIFKSSSPI	PRTQVPLITN	240
35	SSCOCPHILP	HQDVLIMCYE	WRSRMMLLEN	CLVEKWRDQL	SKRSIQWEER	LQEQRRTVQD	300
-	KKKTAGRTSR	SNPPKPKGKP	PAPKPASPKK	NIKTRSAQKR	TNPKRV		

Seq ID NO: 424 DNA sequence
Nucleic Acid Accession #: BC010423
Coding sequence: 248..1780

45

50

55

60

65

70

75

80

85

	1	11 	21 	31 	41	51 	
	CACAGCGTGG	GAAGCAGCTC	TGGGGGAGCT	CGGAGCTCCC	GATCACGGCT	TCTTGGGGGT	60
	AGCTACGGCT	GGGTGTGTAG	AACGGGGCCG	GGGCTGGGGC	TGGGTCCCCT	AGTGGAGACC	120
	CAAGTGCGAG	AGGCAAGAAC	TCTGCAGCTT	CCTGCCTTCT	GGGTCAGTTC	CTTATTCAAG	180
	TCTGCAGCCG	GCTCCCAGGG	AGATCTCGGT	GGAACTTCAG	AAACGCTGGG	CAGTCTGCCT	240
	TTCAACCATG	CCCCTGTCCC	TGGGAGCCGA	GATGTGGGGG	CCTGAGGCCT	GGCTGCTGCT	300
	GCTGCTACTG	CTGGCATCAT	TTACAGGCCG	GTGCCCCGCG	GGTGAGCTGG	AGACCTCAGA	360
ı	CGTGGTAACT	GTGGTGCTGG	GCCAGGACGC	AAAACTGCCC	TGCTTCTACC	GAGGGGACTC	420
			TGGCATGGGC				480
			AATACGGGCT				540
			GCAACCCCCT				600
	GCAGGCGGAT	GAGGGCGAGT	ACGAGTGCCG	GGTCAGCACC	TTCCCCGCCG	GCAGCTTCCA	660
1	GGCGCGGCTG	CGGCTCCGAG	TGCTGGTGCC	TCCCCTGCCC	TCACTGAATC	CTGGTCCAGC	720
			TGACCCTGGC				780
	CCCCAGCGTG	ACCTGGGACA	CGGAGGTCAA	AGGCACAACG	TCCAGCCGTT	CCTTCAAGCA	840
	CTCCCGCTCT	GCTGCCGTCA	CCTCAGAGTT	CCACTTGGTG	CCTAGCCGCA	GCATGAATGG	900
	GCAGCCACTG	ACTTGTGTGG	TGTCCCATCC	TGGCCTGCTC	CAGGACCAAA	GGATCACCCA	960
)	CATCCTCCAC	GTGTCCTTCC	TTGCTGAGGC	CTCTGTGAGG	GGCCTTGAAG	ACCAAAATCT	1020
	GTGGCACATT	GGCAGAGAAG	GAGCTATGCT	CAAGTGCCTG	AGTGAAGGGC	AGCCCCCTCC	1080
	CTCATACAAC	TGGACACGGC	TGGATGGGCC	TCTGCCCAGT	GGGGTACGAG	TGGATGGGGA	1140
	CACTTTGGGC	TTTCCCCCAC	TGACCACTGA	GCACAGCGGC	ATCTACGTCT	GCCATGTCAG	1200
	CAATGAGTTC	TCCTCAAGGG	ATTCTCAGGT	CACTGTGGAT	GTTCTTGACC	CCCAGGAAGA	1260
1	CTCTGGGAAG	CAGGTGGACC	TAGTGTCAGC	CTCGGTGGTG	GTGGTGGGTG	TGATCGCCGC	1320
			TGGTGGTGGT				1380
	GGCCCAGCAG	ATGACCCAGA	AATATGAGGA	GGAGCTGACC	CTGACCAGGG	AGAACTCCAT	1440
	CCGGAGGCTG	CATTCCCATC	ACACGGACCC	CAGGAGCCAG	CCGGAGGAGA	GTGTAGGGCT	1500
	GAGAGCCGAG	GGCCACCCTG	ATAGTCTCAA	GGACAACAGT	AGCTGCTCTG	TGATGAGTGA	1560
)			ACTCCACGCT				1620
			CTGGGCGGGC				1680
			TTGTTCAGGA				1740
			GGCGGGGACA				1800
			TGACATGGGA				1860
			AGATGCTCCC				1920
	AACCCTTCTG	TTCATCGGGA	GGGCTCCACC	AATTGAGTCT	CTCCCACCAT	GCATGCAGGT	1980
	CACTGTGTGT	GTGCATGTGT	GCCTGTGTGA	GTGTTGACTG	ACTGTGTGTG	TGTGGAGGGG	2040
			ACTGTGTCCG				2100
			GCCACGGGAT				2160
}	GTTTGGCGTG	TGTGTCATGT	GGCTGTGTGT	GACCTCTGCC	TGAAAAAGCA	GGTATTTTCT	2220
	CAGACCCCAG	AGCAGTATTA	ATGATGCAGA	GGTTGGAGGA	GAGAGGTGGA	GACTGTGGCT	2280
	CAGACCCAGG	TGTGCGGGCA	TAGCTGGAGC	TGGAATCTGC	CTCCGGTGTG	AGGGAACCTG	2340
	TCTCCTACCA	CTTCGGAGCC	ATGGGGGCAA	GTGTGAAGCA	GCCAGTCCCT	GGGTCAGCCA	2400
	GAGGCTTGAA	CTGTTACAGA	AGCCCTCTGC	CCTCTGGTGG	CCTCTGGGCC	TGCTGCATGT	2460
	ACATATTTTC	TGTAAATATA	CATGCGCCGG	GAGCTTCTTG	CAGGAATACT	GCTCCGAATC	2520
			TTTTTTCTTG				2580
			* C * COURT C * C				2640

TTTTATTTTT ATTTTTTTTT AGAGTTTGAG TCCAGCCTGG ACGATATAGC CAGACCCTGT 2640

Seq ID NO: 425 Protein sequence Protein Accession #: AAH10423 5 31 MPLSLGAEMW GPEAWLLLLL LLASFTGRCP AGELETSDVV TVVLGQDAKL PCFYRGDSGE 60 QVGQVAWARV DAGEGAQELA LLHSKYGLHV SPAYEGRVEQ PPPPRNPLDG SVLLRNAVQA 120 10 DEGEYECRVS TFPAGSFQAR LRLRVLVPPL PSLNPGPALE EGQGLTLAAS CTAEGSPAPS 180 VTWDTEVKGT TSSRSFKHSR SAAVTSEFHL VPSRSMNGQP LTCVVSHPGL LQDQRITHIL 240 HVSFLAEASV RGLEDONLWH IGREGAMLKC LSEGOPPPSY NWTRLDGPLP SGVRVDGDTL 300 GPPPLTTERS GIYVCHVSNE FSSRDSQVTV DVLDPQEDSG KQVDLVSASV VVVGVIAALL 360 FCLLVVVVVL MSRYHRRKAQ QMTQKYEEEL TLTRENSIRR LHSHHTDPRS QPEESVGLRA 420 15 EGHPDSLKDN SSCSVMSEEP EGRSYSTLTT VREIETQTEL LSPGSGRAEE EEDODEGIKO 480 AMNHFVOENG TLRAKPTGNG IYINGRGHLV Seg ID NO: 426 DNA seguence Nucleic Acid Accession #: NM_003474.2 20 Coding sequence: 37..3036 41 21 31 51 CACTAACGCT CTTCCTAGTC CCCGGGCCAA CTCGGACAGT TTGCTCATTT ATTGCAACGG 60 25 TCAAGGCTGG CTTGTGCCAG AACGGCGCGC GCGCGACGCA CGCACACACA CGGGGGGAAA 120 CTTTTTTAAA AATGAAAGGC TAGAAGAGCT CAGCGGCGGC GCGGGCCGTG CGCGAGGGCT 180 CCGGAGCTGA CTCGCCGAGG CAGGAAATCC CTCCGGTCGC GACGCCCGGC CCCGCTCGGC 240 GCCCGCGTGG GATGGTGCAG CGCTCGCCGC CGGGCCCGAG AGCTGCTGCA CTGAAGGCCG 300 GCGACGATGG CAGCGCGCC GCTGCCCGTG TCCCCCGCCC GCGCCCTCCT GCTCGCCCTG 360 30 GCCGGTGCTC TGCTCGCGCC CTGCGAGGCC CGAGGGGTGA GCTTATGGAA CGAAGGAAGA 420 GCTGATGAAG TTGTCAGTGC CTCTGTTCGG AGTGGGGACC TCTGGATCCC AGTGAAGAGC 480 TTCGACTCCA AGAATCATCC AGAAGTGCTG AATATTCGAC TACAACGGGA AAGCAAAGAA 540 CTGATCATAA ATCTGGAAAG AAATGAAGGT CTCATTGCCA GCAGTTTCAC GGAAACCCAC 600 TATCTGCAAG ACGGTACTGA TGTCTCCCTC GCTCGAAATT ACACGGTAAT TCTGGGTCAC 660 35 TGTTACTACC ATGGACATGT ACGGGGATAT TCTGATTCAG CAGTCAGTCT CAGCACGTGT 720 TCTGGTCTCA GGGGACTTAT TGTGTTTGAA AATGAAAGCT ATGTCTTAGA ACCAATGAAA 780 AGTGCAACCA ACAGATACAA ACTCTTCCCA GCGAAGAAGC TGAAAAGCGT CCGGGGATCA 840 TGTGGATCAC ATCACAACAC ACCAAACCTC GCTGCAAAGA ATGTGTTTCC ACCACCCTCT 900 CAGACATGGG CAAGAAGGCA TAAAAGAGAG ACCCTCAAGG CAACTAAGTA TGTGGAGCTG 960 40 GTGATCGTGG CAGACAACCG AGAGTTTCAG AGGCAAGGAA AAGATCTGGA AAAAGTTAAG 1020 CAGCGATTAA TAGAGATTGC TAATCACGTT GACAAGTTTT ACAGACCACT GAACATTCGG 1080 ATCGTGTTGG TAGGCGTGGA AGTGTGGAAT GACATGGACA AATGCTCTGT AAGTCAGGAC 1140 CCATTCACCA GCCTCCATGA ATTTCTGGAC TGGAGGAAGA TGAAGCTTCT ACCTCGCAAA 1200 TCCCATGACA ATGCGCAGCT TGTCAGTGGG GTTTATTTCC AAGGGACCAC CATCGGCATG 1260 45 GCCCCAATCA TGAGCATGTG CACGGCAGAC CAGTCTGGGG GAATTGTCAT GGACCATTCA 1320 GACAATCCCC TTGGTGCAGC CGTGACCCTG GCACATGAGC TGGGCCACAA TTTCGGGATG 1380 AATCATGACA CACTGGACAG GGGCTGTAGC TGTCAAATGG CGGTTGAGAA AGGAGGCTGC 1440 ATCATGAACG CTTCCACCGG GTACCCATTT CCCATGGTGT TCAGCAGTTG CAGCAGGAAG 1500 GACTTGGAGA CCAGCCTGGA GAAAGGAATG GGGGTGTGCC TGTTTAACCT GCCGGAAGTC 50 AGGGAGTCTT TCGGGGGCCA GAAGTGTGGG AACAGATTTG TGGAAGAAGG AGAGGAGTGT 1620 GACTGTGGGG AGCCAGAGGA ATGTATGAAT CGCTGCTGCA ATGCCACCAC CTGTACCCTG 1680 AAGCCGGACG CTGTGTGCGC ACATGGGCTG TGCTGTGAAG ACTGCCAGCT GAAGCCTGCA 1740 GGAACAGCGT GCAGGGACTC CAGCAACTCC TGTGACCTCC CAGAGTTCTG CACAGGGGCC 1800 AGCCCTCACT GCCCAGCCAA CGTGTACCTG CACGATGGGC ACTCATGTCA GGATGTGGAC 1860 55 GGCTACTGCT ACAATGGCAT CTGCCAGACT CACGAGCAGC AGTGTGTCAC ACTCTGGGGA 1920 CCAGGTGCTA AACCTGCCCC TGGGATCTGC TTTGAGAGAG TCAATTCTGC AGGTGATCCT 1980 TATGGCAACT GTGGCAAAGT CTCGAAGAGT TCCTTTGCCA AATGCGAGAT GAGAGATGCT 2040 AAATGTGGAA AAATCCAGTG TCAAGGAGGT GCCAGCCGGC CAGTCATTGG TACCAATGCC 2100 GTTTCCATAG AAACAACAT CCCCCTGCAG CAAGGAGGCC GGATTCTGTG CCGGGGGACC 2160 60 CACGTGTACT TGGGCGATGA CATGCCGGAC CCAGGGCTTG TGCTTGCAGG CACAAAGTGT 2220 GCAGATGGAA AAATCTGCCT GAATCGTCAA TGTCAAAATA TTAGTGTCTT TGGGGTTCAC 2280 GAGTGTGCAA TGCAGTGCCA CGGCAGAGGG GTGTGCAACA ACAGGAAGAA CTGCCACTGC 2340 GAGGCCCACT GGGCACCTCC CTTCTGTGAC AAGTTTGGCT TTGGAGGAAG CACAGACAGC 2400 GGCCCCATCC GGCAAGCAGA TAACCAAGGT TTAACCATAG GAATTCTGGT GACCATCCTG 2460 65 TGTCTTCTTG CTGCCGGATT TGTGGTTTAT CTCAAAAGGA AGACCTTGAT ACGACTGCTG 2520 TTTACAAATA AGAAGACCAC CATTGAAAAA CTAAGGTGTG TGCGCCCTTC CCGGCCACCC 2580 CGTGGCTTCC AACCCTGTCA GGCTCACCTC GGCCACCTTG GAAAAGGCCT GATGAGGAAG 2640 CCGCCAGATT CCTACCCACC GAAGGACAAT CCCAGGAGAT TGCTGCAGTG TCAGAATGTT 2700 GACATCAGCA GACCCCTCAA CGGCCTGAAT GTCCCTCAGC CCCAGTCAAC TCAGCGAGTG 2760 70 CTTCCTCCCC TCCACCGGGC CCCACGTGCA CCTAGCGTCC CTGCCAGACC CCTGCCAGCC 2820 AAGCCTGCAC TTAGGCAGGC CCAGGGGACC TGTAAGCCAA ACCCCCCTCA GAAGCCTCTG 2880 2940 CCTGCAGATC CTCTGGCCAG AACAACTCGG CTCACTCATG CCTTGGCCAG GACCCCAGGA CAATGGGAGA CTGGGCTCCG CCTGGCACCC CTCAGACCTG CTCCACAATA TCCACACCAA 3000 GTGCCCAGAT CCACCCACAC CGCCTATATT AAGTGAGAAG CCGACACCTT TTTTCAACAG 3060 75 TGAAGACAGA AGTTTGCACT ATCTTTCAGC TCCAGTTGGA GTTTTTTGTA CCAACTTTTA 3120 GGATTTTTT TAATGTTTAA AACATCATTA CTATAAGAAC TTTGAGCTAC TGCCGTCAGT 3180 GCTGTGCTGT GCTATGGTGC TCTGTCTACT TGCACAGGTA CTTGTAAATT ATTAATTTAT 3240 GCAGAATGTT GATTACAGTG CAGTGCGCTG TAGTAGGCAT TTTTACCATC ACTGAGTTTT 3300 CCATGGCAGG AAGGCTTGTT GTGCTTTTAG TATTTTAGTG AACTTGAAAT ATCCTGCTTG 3360 80 ATGGGATTCT GGACAGGATG TGTTTGCTTT CTGATCAAGG CCTTATTGGA AAGCAGTCCC CCAACTACCC CCAGCTGTGC TTATGGTACC AGATGCAGCT CAAGAGATCC CAAGTAGAAT 3480 CTCAGTTGAT TTTCTGGATT CCCCATCTCA GGCCAGAGCC AAGGGGCTTC AGGTCCAGGC 3540 TGTGTTTGGC TTTCAGGGAG GCCCTGTGCC CCTTGACAAC TGGCAGGCAG GCTCCCAGGG 3600 ACACCTGGGA GAAATCTGGC TTCTGGCCAG GAAGCTTTGG TGAGAACCTG GGTTGCAGAC 3660 85 AGGAATCTTA AGGTGTAGCC ACACCAGGAT AGAGACTGGA ACACTAGACA AGCCAGAACT TGACCCTGAG CTGACCAGCC GTGAGCATGT TTGGAAGGGG TCTGTAGTGT CACTCAAGGC 3720

GGTGCTTGAT AGAAATGCCA AGCACTTCTT TTTCTCGCTG TCCTTTCTAG AGCACTGCCA

3780

```
CCAGTAGGTT ATTTAGCTTG GGAAAGGTGG TGTTTCTGTA AGAAACCTAC TGCCCAGGCA
       CTGCAAACCG CCACCTCCCT ATACTGCTTG GAGCTGAGCA AATCACCACA AACTGTAATA
       CAATGATCCT GTATTCAGAC AGATGAGGAC TTTCCATGGG ACCACAACTA TTTTCAGATG
       TGAACCATTA ACCAGATCTA GTCAATCAAG TCTGTTTACT GCAAGGTTCA ACTTATTAAC
                                                                            4080
 5
       AATTAGGCAG ACTCTTTATG CTTGCAAAAA CTACAACCAA TGGAATGTGA TGTTCATGGG
                                                                            4140
       TATAGTTCAT GTCTGCTATC ATTATTCGTA GATATTGGAC AAAGAACCTT CTCTATGGGG
                                                                            4200
       CATCCTCTT TTCCAACTTG GCTGCAGGAA TCTTTAAAAG ATGCTTTTAA CAGAGTCTGA
                                                                            4260
       ACCTATTTCT TANACACTTG CAACCTACCT GTTGAGCATC ACAGAATGTG ATAAGGAAAT
                                                                            4320
       CAACTTGCTT ATCAACTTCC TAAATATTAT GAGATGTGGC TTGGGCAGCA TCCCCTTGAA
                                                                            4380
       CTCTTCACTC TTCAAATGCC TGACTAGGGA GCCATGTTTC ACAAGGTCTT TAAAGTGACT
10
                                                                            4440
       AATGGCATGA GAAATACAAA AATACTCAGA TAAGGTAAAA TGCCATGATG CCTCTGTCTT
                                                                            4500
       CTGGACTGGT TTTCACATTA GAAGACAATT GACAACAGTT ACATAATTCA CTCTGAGTGT
                                                                            4560
       TTTATGAGAA AGCCTTCTTT TGGGGTCAAC AGTTTTCCTA TGCTTTGAAA CAGAAAAATA
                                                                            4620
       TGTACCAAGA ATCTTGGTTT GCCTTCCAGA AAACAAAACT GCATTTCACT TTCCCGGTGT
                                                                            4680
15
       TCCCCACTGT ATCTAGGCAA CATAGTATTC ATGACTATGG ATAAACTAAA CACGTGACAC
                                                                            4740
       AAACACACAC AAAAGGGAAC CCAGCTCTAA TACATTCCAA CTCGTATAGC ATGCATCTGT
                                                                            4800
       TTATTCTATA GTTATTAAGT TCTTTAAAAT GTAAAGCCAT GCTGGAAAAT AATACTGCTG
                                                                            4860
       AGATACATAC AGAATTACTG TAACTGATTA CACTTGGTAA TTGTACTAAA GCCAAACATA
                                                                            4920
       TATATACTAT TAAAAAGGTT TACAGAATTT TATGGTGCAT TACGTGGGCA TTGTCTTTTT
                                                                            4980
20
       AGATGCCCAA ATCCTTAGAT CTGGCATGTT AGCCCTTCCT CCAATTATAA GAGGATATGA
       АССАЛАЛАЛА АЛАЛАЛАЛАЛ АЛ
       Seq ID NO: 427 Protein sequence
       Protein Accession #: NP_003465
25
                                                                51
                                         31
                              21
       MAARPLPVSP ARALLLALAG ALLAPCEARG VSLWNEGRAD EVVSASVRSG DLWIPVKSFD
                                                                              60
       SKNHPEVLNI RLQRESKELI INLERNEGLI ASSFTETHYL QDGTDVSLAR NYTVILGHCY
                                                                             120
30
       YHGHVRGYSD SAVSLSTCSG LRGLIVFENE SYVLEPMKSA TNRYKLFPAK KLKSVRGSCG
                                                                             180
       SHHNTPNLAA KNVFPPPSQT WARRHKRETL KATKYVELVI VADNREFQRQ GKDLEKVKQR
                                                                             240
       LIEIANHVDK FYRPLNIRIV LVGVEVWNDM DKCSVSQDPF TSLHEFLDWR KMKLLPRKSH
                                                                             300
       DNAOLVSGVY FOGTTIGMAP IMSMCTADQS GGIVMDHSDN PLGAAVTLAH ELGHNFGMNH
                                                                             360
       DTLDRGCSCQ MAVEKGGCIM NASTGYPFPM VFSSCSRKDL ETSLEKGMGV CLFNLPEVRE
                                                                              420
35
       SFGGQKCGNR FVEEGEECDC GEPEECMNRC CNATTCTLKP DAVCAHGLCC EDCQLKPAGT
                                                                              480
       ACRDSSNSCD LPEFCTGASP HCPANVYLHD GHSCQDVDGY CYNGICQTHE QQCVTLWGPG
                                                                              540
       AKPAPGICFE RVNSAGDPYG NCGKVSKSSF AKCEMRDAKC GKIQCQGGAS RPVIGTNAVS
                                                                             600
       IETNIPLQQG GRILCRGTHV YLGDDMPDPG LVLAGTKCAD GKICLNRQCQ NISVFGVHEC
                                                                              660
       AMQCHGRGVC NNRKNCHCEA HWAPPFCDKF GFGGSTDSGP IRQADNQGLT IGILVTILCL
                                                                              720
40
       LAAGFVVYLK RKTLIRLIFT NKKTTIEKLR CVRPSRPPRG FQPCQAHLGH LGKGLMRKPP
                                                                             780
       DSYPPKDNPR RLLQCQNVDI SRPLNGLNVP QPQSTQRVLP PLHRAPRAPS VPARPLPAKP
                                                                              840
       ALROAGGICK PNPPQKPLPA DPLARITRLI HALARIPGQW ETGLRLAPLR PAPQYPHQVP
                                                                             900
       RSTHTAYIK
45
       Seq ID NO: 428 DNA sequence
       Nucleic Acid Accession #: NM_003714
       Coding sequence: 135..1043
                                                                51
                                          31
                                                     41
50
       GAGGAGGAGG GAAAAGGCGA GCAAAAAGGA AGAGTGGGAG GAGGAGGGGA AGCGGCGAAG
       GAGGAAGAGG AGGAGGAGGA AGAGGGGAGC ACAAAGGATC CAGGTCTCCC GACGGGAGGT
                                                                              120
        TAATACCAAG AACCATGTGT GCCGAGCGGC TGGGCCAGTT CATGACCCTG GCTTTGGTGT
                                                                              180
       TGGCCACCTT TGACCCGGCG CGGGGGACCG ACGCCACCAA CCCACCCGAG GGTCCCCAAG
                                                                              240
55
       ACAGGAGCTC CCAGCAGAAA GGCCGCCTGT CCCTGCAGAA TACAGCGGAG ATCCAGCACT
                                                                              300
        GTTTGGTCAA CGCTGGCGAT GTGGGGTGTG GCGTGTTTGA ATGTTTCGAG AACAACTCTT
                                                                              360
        GTGAGATTCG GGGCTTACAT GGGATTTGCA TGACTTTTCT GCACAACGCT GGAAAATTTG
                                                                              420
       ATGCCCAGGG CAAGTCATTC ATCAAAGACG CCTTGAAATG TAAGGCCCAC GCTCTGCGGC
                                                                              480
       ACAGGTTCGG CTGCATAAGC CGGAAGTGCC CGGCCATCAG GGAAATGGTG TCCCAGTTGC
                                                                              540
60
       AGCGGGAATG CTACCTCAAG CACGACCTGT GCGCGGCTGC CCAGGAGAAC ACCCGGGTGA
                                                                              600
        TAGTGGAGAT GATCCATTTC AAGGACTTGC TGCTGCACGA ACCCTACGTG GACCTCGTGA
                                                                              660
       ACTTGCTGCT GACCTGTGGG GAGGAGGTGA AGGAGGCCAT CACCCACAGC GTGCAGGTTC
                                                                              720
       AGTGTGAGCA GAACTGGGGA AGCCTGTGCT CCATCTTGAG CTTCTGCACC TCGGCCATCC
                                                                              780
       AGAAGCCTCC CACGGCGCCC CCCGAGCGCC AGCCCCAGGT GGACAGAACC AAGCTCTCCA
                                                                              840
65
        GGGCCCACCA CGGGGAAGCA GGACATCACC TCCCAGAGCC CAGCAGTAGG GAGACTGGCC
                                                                              900
       GAGGTGCCAA GGGTGAGCGA GGTAGCAAGA GCCACCCAAA CGCCCATGCC CGAGGCAGAG
                                                                              960
        TCGGGGGCCT TGGGGCTCAG GGACCTTCCG GAAGCAGCGA GTGGGAAGAC GAACAGTCTG
                                                                             1020
       AGTATTCTGA TATCCGGAGG TGAAATGAAA GGCCTGGCCA CGAAATCTTT CCTCCACGCC
                                                                            1080
       GTCCATTTTC TTATCTATGG ACATTCCAAA ACATTTACCA TTAGAGAGGG GGGATGTCAC
                                                                            1140
70
       ACGCAGGATT CTGTGGGGAC TGTGGACTTC ATCGAGGTGT GTGTTCGCGG AACGGACAGG
                                                                             1200
       TGAGATGGAG ACCCTGGGG CCGTGGGGTC TCAGGGGTGC CTGGTGAATT CTGCACTTAC ACGTACTCAA GGGAGCGCGC CCGCGTTATC CTCGTACCTT TGTCTTCTTT CCATCTGTGG
                                                                             1260
        AGTCAGTGGG TGTCGGCCGC TCTGTTGTGG GGGAGGTGAA CCAGGGAGGG GCAGGGCAAG
       GCAGGGCCCC CAGAGCTGGG CCACACAGTG GGTGCTGGGC CTCGCCCCGA AGCTTCTGGT
75
       GCAGCAGCCT CTGGTGCTGT CTCCGCGGAA GTCAGGGCGG CTGGATTCCA GGACAGGAGT
GAATGTAAAA ATAAATATCG CTTAGAATGC AGGAGAAGGG TGGAGAGGAG GCAGGGGCCG
        AGGGGGTGCT TGGTGCCAAA CTGAAATTCA GTTTCTTGTG TGGGGCCTTG CGGTTCAGAG
                                                                             1620
        CTCTTGGCGA GGGTGGAGGG AGGAGTGTCA TTTCTATGTG TAATTTCTGA GCCATTGTAC
                                                                             1680
        TGTCTGGGCT GGGGGGGACA CTGTCCAAGG GAGTGGCCCC TATGAGTTTA TATTTTAACC
                                                                             1740
80
        ACTGCTTCAA ATCTCGATTT CACTTTTTT ATTTATCCAG TTATATCTAC ATATCTGTCA
                                                                             1800
        TCTAAATAAA TGGCTTTCAA ACAAAGCAAC TGGGTCATTA AAACCAGCTC AAAGGGGGTT
                                                                             1860
        TAAAAAAAAA AAAACCAGCC CATCCTTTGA GGCTGATTTT TCTTTTTTTT AAGTTCTATT
                                                                             1920
        TTAAAAGCTA TCAAACAGCG ACATAGCCAT ACATCTGACT GCCTGACATG GACTCCTGCC
                                                                             1980
        CACTTGGGGG AAACCTTATA CCCAGAGGAA AATACACACC TGGGGAGTAC ATTTGACAAA
                                                                             2040
85
        TTTCCCTTAG GATTTCGTTA TCTCACCTTG ACCCTCAGCC AAGATTGGTA AAGCTGCGTC
                                                                             2100
        CTGGCGATTC CAGGAGACCC AGCTGGAAAC CTGGCTTCTC CATGTGAGGG GATGGGAAAG
                                                                             2160
        GAAAGAAGAG AATGAAGACT ACTTAGTAAT TCCCATCAGG AAATGCTGAC CTTTTACATA
```

```
AAATCAAGGA GACTGCTGAA AATCTCTAAG GGACAGGATT TTCCAGATCC TAATTGGAAA 2280
      TTTAGCAATA AGGAGAGGAG TCCAAGGGGA CAAATAAAGG CAGAGAGAGA GAGAGAGAGA 2340
      GGGAGAGGAA GAAAAGAGAG AGAGAAAAGA GCCTCGTGCC
 5
      Seq ID NO: 429 Protein sequence
      Protein Accession #: NP_003705
                                        31
                                                              51
10
      MCAERLGQFM TLALVLATFD PARGTDATNP PEGPQDRSSQ QKGRLSLQNT AEIQHCLVNA
                                                                            60
      GDVGCGVFEC FENNSCEIRG LHGICMTPLH NAGKFDAQGK SFIKDALKCK AHALRHRFGC
                                                                           120
       ISRKCPAIRE MVSQLQRECY LKHDLCAAAQ ENTRVIVEMI HFKDLLLHEP YVDLVNLLLT
                                                                           180
      CGEEVKEAIT HSVQVQCEQN WGSLCSILSF CTSAIQKPPT APPERQPQVD RTKLSRAHHG
       EAGHHLPEPS SRETGRGAKG ERGSKSHPNA HARGRVGGLG AQGPSGSSEW EDEQSEYSDI
15
      Seg ID NO: 430 DNA seguence
      Nucleic Acid Accession #: NM_005940
      Coding sequence: 23..1489
20
                                                   41
                                                              51
                                        31
       AAGCCCAGCA GCCCCGGGGC GGATGGCTCC GGCCGCCTGG CTCCGCAGCG CGGCCGCGC
                                                                            60
       CGCCCTCCTG CCCCCGATGC TGCTGCTGCT GCTCCAGCCG CCGCCGCTGC TGGCCCGGGC
                                                                           120
25
       TCTGCCGCCG GACGTCCACC ACCTCCATGC CGAGAGGAGG GGGCCACAGC CCTGGCATGC
                                                                           180
       AGCCCTGCCC AGTAGCCCGG CACCTGCCCC TGCCACGCAG GAAGCCCCCC GGCCTGCCAG
                                                                           240
       CAGCCTCAGG CCTCCCCGCT GTGGCGTGCC CGACCCATCT GATGGGCTGA GTGCCCGCAA
                                                                           300
       CCGACAGAAG AGGTTCGTGC TTTCTGGCGG GCGCTGGGAG AAGACGGACC TCACCTACAG
                                                                           360
       GATCCTTCGG TTCCCATGGC AGTTGGTGCA GGAGCAGGTG CGGCAGACGA TGGCAGAGGC
                                                                           420
30
       CCTAAAGGTA TGGAGCGATG TGACGCCACT CACCTTTACT GAGGTGCACG AGGGCCGTGC
                                                                           480
       TGACATCATG ATCGACTTCG CCAGGTACTG GCATGGGGAC GACCTGCCGT TTGATGGGCC
                                                                           540
       TGGGGGCATC CTGGCCCATG CCTTCTTCCC CAAGACTCAC CGAGAAGGGG ATGTCCACTT
                                                                           600
       CGACTATGAT GAGACCTGGA CTATCGGGGA TGACCAGGGC ACAGACCTGC TGCAGGTGGC
                                                                           660
       AGCCCATGAA TTTGGCCACG TGCTGGGGCT GCAGCACACA ACAGCAGCCA AGGCCCTGAT
                                                                           720
35
       GTCCGCCTTC TACACCTTTC GCTACCCACT GAGTCTCAGC CCAGATGACT GCAGGGGCGT
                                                                           780
       TCAACACCTA TATGGCCAGC CCTGGCCCAC TGTCACCTCC AGGACCCCAG CCCTGGGCCC
       CCAGGCTGGG ATAGACACCA ATGAGATTGC ACCGCTGGAG CCAGACGCCC CGCCAGATGC
       CTGTGAGGCC TCCTTTGACG CGGTCTCCAC CATCCGAGGC GAGCTCTTTT TCTTCAAAGC
       GGGCTTTGTG TGGCGCCTCC GTGGGGGCCA GCTGCAGCCC GGCTACCCAG CATTGGCCTC
                                                                          1020
40
       TCGCCACTGG CAGGGACTGC CCAGCCCTGT GGACGCTGCC TTCGAGGATG CCCAGGGCCA
                                                                          1080
       CATTTGGTTC TTCCAAGGTG CTCAGTACTG GGTGTACGAC GGTGAAAAGC CAGTCCTGGG
                                                                          1140
       CCCCGCACCC CTCACCGAGC TGGGCCTGGT GAGGTTCCCG GTCCATGCTG CCTTGGTCTG
                                                                          1200
       GGGTCCCGAG AAGAACAAGA TCTACTTCTT CCGAGGCAGG GACTACTGGC GTTTCCACCC
                                                                          1260
       CAGCACCCGG CGTGTAGACA GTCCCGTGCC CCGCAGGGCC ACTGACTGGA GAGGGGTGCC
                                                                          1320
45
       CTCTGAGATC GACGCTGCCT TCCAGGATGC TGATGGCTAT GCCTACTTCC TGCGCGGCCG
                                                                          1380
       CCTCTACTGG AAGTTTGACC CTGTGAAGGT GAAGGCTCTG GAAGGCTTCC CCCGTCTCGT
                                                                          1440
       GGGTCCTGAC TTCTTTGGCT GTGCCGAGCC TGCCAACACT TTCCTCTGAC CATGGCTTGG
                                                                          1500
       ATGCCCTCAG GGGTGCTGAC CCCTGCCAGG CCACGAATAT CAGGCTAGAG ACCCATGGCC
                                                                          1560
       ATCTTTGTGG CTGTGGGCAC CAGGCATGGG ACTGAGCCCA TGTCTCCTGC AGGGGGATGG
                                                                          1620
50
       GGTGGGGTAC AACCACCATG ACAACTGCCG GGAGGGCCAC GCAGGTCGTG GTCACCTGCC
                                                                          1680
       AGCGACTGTC TCAGACTGGG CAGGGAGGCT TTGGCATGAC TTAAGAGGAA GGGCAGTCTT
                                                                          1740
       GGGACCCGCT ATGCAGGTCC TGGCAAACCT GGCTGCCCTG TCTCATCCCT GTCCCTCAGG
                                                                          1800
       GTAGCACCAT GGCAGGACTG GGGGAACTGG AGTGTCCTTG CTGTATCCCT GTTGTGAGGT
                                                                          1860
       TCCTTCCAGG GGCTGGCACT GAAGCAAGGG TGCTGGGGCC CCATGGCCTT CAGCCCTGGC
                                                                          1920
55
       TGAGCAACTG GGCTGTAGGG CAGGGCCACT TCCTGAGGTC AGGTCTTGGT AGGTGCCTGC
                                                                          1980
       ATCTGTCTGC CTTCTGGCTG ACAATCCTGG AAATCTGTTC TCCAGAATCC AGGCCAAAAA
                                                                          2040
       GTTCACAGTC AAATGGGGAG GGGTATTCTT CATGCAGGAG ACCCCAGGCC CTGGAGGCTG
                                                                          2100
       CAACATACCT CAATCCTGTC CCAGGCCGGA TCCTCCTGAA GCCCTTTTCG CAGCACTGCT
                                                                          2160
       ATCCTCCAAA GCCATTGTAA ATGTGTGTAC AGTGTGTATA AACCTTCTTC TTCTTTTTTT
60
       TTTTTAAACT GAGGATTGTC ATTAAACACA GTTGTTTTCT
       Seq ID NO: 431 Protein sequence
       Protein Accession #: NP_005931
65
                                        31
                                                              51
       MAPAAWLRSA AARALLPPML LLLLQPPPLL ARALPPDVHH LHAERRGPQP WHAALPSSPA
       PAPATQEAPR PASSLRPPRC GVPDPSDGLS ARNRQKRFVL SGGRWEKTDL TYRILRFPWQ
                                                                           120
       LVQEQVRQTM AEALKVWSDV TPLTFTEVHE GRADIMIDFA RYWHGDDLPF DGPGGILAHA
70
       FFPKTHREGD VHFDYDETWT IGDDQGTDLL QVAAHEFGHV LGLQHTTAAK ALMSAFYTFR
       YPLSLSPDDC RGVQHLYGQP WPTVTSRTPA LGPQAGIDTN EIAPLEPDAP PDACEASFDA
       VSTIRGELFF FKAGFVWRLR GGQLQPGYPA LASRHWQGLP SPVDAAFEDA QGHIWFFQGA
                                                                           360
       QYWYYDGEKP VLGPAPLTEL GLVRFPVHAA LVWGPEKNKI YFFRGRDYWR FHPSTRRVDS
                                                                           420
       PVPRRATDWR GVPSEIDAAF ODADGYAYFL RGRLYWKFDP VKVKALEGFP RLVGPDFFGC
                                                                           480
75
       AEPANTFL
       Seq ID NO: 432 DNA sequence
       Nucleic Acid Accession #: NM_024022
       Coding sequence: 202..1563
80
                                                              51
                                        31
                                                   41
       ACCEGGCACC GGACGCTCG GGTACTTTCG TTCTTAATTA GGTCATGCCC GTGTGAGCCA
       GGAAAGGGCT GTGTTTATGG GAAGCCAGTA ACACTGTGGC CTACTATCTC TTCCGTGGTG
                                                                           120
85
       CCATCTACAT TTTTGGGACT CGGGAATTAT GAGGTAGAGG TGGAGGCGGA GCCGGATGTC
                                                                           180
       AGAGGTCCTG AAATAGTCAC CATGGGGGAA AATGATCCGC CTGCTGTTGA AGCCCCCTTC
                                                                           240
       TCATTCCGAT CGCTTTTTGG CCTTGATGAT TTGAAAATAA GTCCTGTTGC ACCAGATGCA
```

ACCGGGCCAC CAGGGCCTCC AGGTCCAAGA GGCCACTCTG GAGAGCCTGG TCTTCCAGGG

CCCCCTGGGC CTCCAGGCCC ACCAGGTCAA GCAGTCATGC CTGAGGGTTT TATAAAGGCA

GGCCAAAGGC CCAGTCTTTC TGGGACCCCT CTTGTTAGTG CCAACCAGGG GGTAACAGGA 1740

1620

1680

PCT/US02/12476

PCT/US02/12476

```
ATGCCTGTGT CTGCTTTTAC TGTTATTCTC TCCAAAGCTT ACCCAGCAAT AGGAACTCCC
                                                                       1800
      ATACCATTTG ATAAAATTTT GTATAACAGG CAACAGCATT ATGACCCAAG GACTGGAATC
      TTTACTTGTC AGATACCAGG AATATACTAT TTTTCATACC ACGTGCATGT GAAAGGGACT
      CATGITIGGG TAGGCCIGTA TAAGAATGGC ACCCCTGTAA TGTACACCTA TGATGAATAC
      ACCAAAGGCT ACCTGGATCA GGCTTCAGGG AGTGCCATCA TCGATCTCAC AGAAAATGAC
 5
                                                                        2040
      CAGGTGTGGC TCCAGCTTCC CAATGCCGAG TCAAATGGCC TATACTCCTC TGAGTATGTC
                                                                        2100
      CACTCCTCTT TCTCAGGATT CCTAGTGGCT CCAATGTGAG TACACCCCAC AGAGCTAATC
                                                                        2160
      TARATCTTGT GCTAGAAAAA GCATTCTCTA ACTCTACCCC ACCCTACAAA ATGCATATGG
                                                                        2220
      AGGTAGGCTG AAAAGAATGT AATTTTTATT TTCTGAAATA CAGATTTGAG CTATCAGACC
                                                                        2280
      AACAAACCTT CCCCCTGAAA AGTGAGCAGC AACGTAAAAA CGTATGTGAA GCCTCTCTTG
10
                                                                        2340
      AATTTCTAGT TAGCAATCTT AAGGCTCTTT AAGGTTTTCT CCAATATTAA AAAATATCAC
                                                                        2400
       2460
      2520
       ATTTCCTTTT TAAAAAAGCC TGTTTCTAAC TATGAATATG AGAACTTCTA GGAAACATCC
                                                                        2580
15
      AGGAGGTATC ATATAACTTT GTAGAACTTA AATACTTGAA TATTCAAATT TAAAAGACAC
                                                                        2640
       TGTATCCCCT AAAATATTTC TGATGGTGCA CTACTCTGAG GCCTGTATGG CCCCTTTCAT
                                                                        2700
      CAATATCTAT TCAAATATAC AGGTGCATAT ATACTTGTTA AAGCTCTTAT ATAAAAAAGC
                                                                        2760
       CCCAAAATAT TGAAGTTCAT CTGAAATGCA AGGTGCTTTC ATCAATGAAC CTTTTCAAAA
                                                                        2820
       CTTTTCTATG ATTGCAGAGA AGCTTTTTAT ATACCCAGCA TAACITGGAA ACAGGTATCT
                                                                        2880
       GACCTATTCT TATTTAGTTA ACACAAGTGT GATTAATTTG ATTTCTTTAA TTCCTTATTG
20
                                                                        2940
       AATCTTATGT GATATGATTT TCTGGATTTA CAGAACATTA GCACATGTAC CTTGTGCCTC
       CCATTCAAGT GAAGTTATAA TTTACACTGA GGGTTTCAAA ATTCGACTAG AAGTGGAGAT
                                                                        3060
       ATATTATTTA TTTATGCACT GTACTGTATT TTTATATTGC TGTTTAAAAC TTTTAAGCTG
       TGCCTCACTT ATTAAAGCAC AAAATGTTTT ACCTACTCCT TATTTACGAC ACAATAAAAT
                                                                        3180
       AACATCAATA GATTTTTAGG CTGAATTAAT TTGAAAGCAG CAATTTGCTG TTCTCAACCA
25
       TTCTTTCAAG GCTTTTCATT CGACACAATA AAATAACATC AATAG
       Seq ID NO: 435 Protein sequence
       Protein Accession #: NP_000484.2
30
                                                             51
                                                  41
       MLPQIPFLLL VSLNLVHGVF YAERYQMPTG IKGPLPNTKT QFFIPYTIKS KGIAVRGEQG
       TPGPPGPAGP RGHPGPSGPP GKPGYGSPGL QGEPGLPGPP GPSAVGKPGV PGLPGKPGER
                                                                         120
35
       GPYGPKGDVG PAGLPGPRGP PGPPGIPGPA GISVPGKPGQ QGPTGAPGPR GFPGEKGAPG
                                                                         180
       VPGMNGOKGE MGYGAPGRPG ERGLPGPQGP TGPSGPPGVG KRGENGVPGQ PGIKGDRGFP
                                                                         240
       GEMGPIGPPG POGPPGERGP EGIGKPGAAG APGOPGIPGT KGLPGAPGIA GPPGPPGFGK
                                                                         300
       PGLPGLKGER GPAGLPGGPG AKGEQGPAGL PGKPGLTGPP GNMGPQGPKG IPGSHGLPGP
                                                                         360
       KGETGPAGPA GYPGAKGERG SPGSDGKPGY PGKPGLDGPK GNPGLPGPKG DPGVGGPPGL
                                                                         420
       PGPVGPAGAK GMPGHNGEAG PRGAPGIPGT RGPIGPPGIP GFPGSKGDPG SPGPPGPAGI
40
                                                                         480
       ATKGLNGPTG PPGPPGPRGH SGEPGLPGPP GPPGPPGQAV MPEGFIKAGQ RPSLSGTPLV
                                                                         540
       SANOGVIGMP VSAFTVILSK AYPAIGTPIP FDKILYNRQQ HYDPRIGIFI CQIPGIYYFS
       YHVHVKGTHV WVGLYKNGTP VMYTYDEYTK GYLDQASGSA IIDLTENDQV WLQLPNAESN
       GLYSSEYVHS SFSGFLVAPM
45
       Seq ID NO: 436 DNA sequence
       Nucleic Acid Accession #: XM_062811
       Coding sequence: 1..888
50
                             21
                                       31
                                                  41
                                                             51
       ATGTGGGGGG CTCGCCGCTC GTCCGTCTCC TCATCCTGGA ACGCCGCTTC GCTCCTGCAG
       CTGCTGCTGG CTGCGCTGCT GGCGGCGGGG GCGAGGGCCA GCGGCGAGTA CTGCCACGGC
                                                                         120
       TGGCTGGACG CGCAGGGCGT CTGGCGCATC GGCTTCCAGT GTCCCGAGCG CTTCGACGGC
                                                                          180
55
       GGCGACGCCA CCATCTGCTG CGGCAGCTGC GCGTTGCGCT ACTGCTGCTC CAGCGCCGAG
                                                                          240
       GCGCGCCTGG ACCAGGGCGG CTGCGACAAT GACCGCCAGC AGGGCGCTGG CGAGCCTGGC
                                                                          300
       CGGGCGGACA AAGACGGCCC CGACGGCTCG GCAGTGCCCA TCTACGTGCC GTTCCTCATT
                                                                          360
       GTTGGCTCCG TGTTTGTCGC CTTTATCATC TTGGGGTCCC TGGTGGCAGC CTGTTGCTGC
                                                                          420
       AGATGTCTCC GGCCTAAGCA GGATCCCCAG CAGAGCCGAG CCCCAGGGGG TAACCGCTTG
                                                                          480
60
       ATGGAGACCA TCCCCATGAT CCCCAGTGCC AGCACCTCCC GGGGGTCGTC CTCACGCCAG
                                                                          540
       TCCAGCACAG CTGCCAGTTC CAGCTCCAGC GCCAACTCAG GGGCCCGGGC GCCCCCAACA
                                                                          600
       AGGTCACAGA CCAACTGTTG CTTGCCGGAA GGGACCATGA ACAACGTGTA TGTCAACATG
                                                                          660
       CCCACGAATT TCTCTGTGCT GAACTGTCAG CAGGCCACCC AGATTGTGCC ACATCAAGGG
                                                                          720
       CAGTATCTGC ATCCCCCATA CGTGGGGTAC ACGGTGCAGC ACGACTCTGT GCCCATGACA
                                                                          780
65
       GCTGTGCCAC CTTTCATGGA CGGCCTGCAG CCTGGCTACA GGCAGATTCA GTCCCCCTTC
                                                                          840
       CCTCACACCA ACAGTGAACA GAAGATGTAC CCAGCGGTGA CTGTATAA
       Seq ID NO: 437 Protein sequence
       Protein Accession #: XP_062811
70
                                       31
       MWGARRSSVS SSWNAASLLQ LLLAALLAAG ARASGEYCHG WLDAQGVWRI GFQCPERFDG
                                                                           60
       GDATICCGSC ALRYCCSSAE ARLDQGGCDN DRQQGAGEPG RADKDGPDGS AVPIYVPFLI
                                                                          120
75
       VGSVFVAFII LGSLVAACCC RCLRPKQDPQ QSRAPGGNRL METIPMIPSA STSRGSSSRQ
                                                                          180
       SSTAASSSSS ANSGARAPPT RSQTNCCLPE GTMNNVYVNM PTNFSVLNCQ QATQIVPHQG
                                                                          240
       QYLHPPYVGY TVQHDSVPMT AVPPFMDGLQ PGYRQIQSPF PHTNSEQKMY PAVTV
       Seq ID NO: 438 DNA sequence
80
       Nucleic Acid Accession #: NM_004004.1
       Coding sequence: 1..681
                             21
                                        31
                                                   41
                                                             51
                  11
       ATGGATTGGG GCACGCTGCA GACGATCCTG GGGGGTGTGA ACAAACACTC CACCAGCATT
 85
                                                                           60
       GGAAAGATCT GGCTCACCGT CCTCTTCATT TTTCGCATTA TGATCCTCGT TGTGGCTGCA
                                                                          120
       AAGGAGGTGT GGGGAGATGA GCAGGCCGAC TTTGTCTGCA ACACCCTGCA GCCAGGCTGC
```

WO 02/086443

CGGGATTCCC TGATCCACGT GGCAGCTTAC GCCGACCTGC GGTACCACCA GGACGTGCTC 2220 ATTGAGTGGC TGTGTGGAGA AGCCAAGCAG CCAGTCAACC TCTGCAAACC CAGCCCGTGC 65 ATGAATGAGG GCAGCTGCGT CCTGCAGAAT GGGAGCTACC GCTGCAAGTG TCGGGATGGC 2280 TGGGAGGGCC CCCACTGCGA GAACCGTGAG TGGAGCTCTT GCTCTGTATG TGTGAGCCAG 2340 GGATGGATTC TTGAGACGCC CCTGAGGCAC ATGGCTCCCG TGCAGGAGGG CAGCAGCCGT 2400 ACCCCTCCCA GCAACTACAG AGAAGGCCTG GGCACTGAAA TGGTGCCTAC CTTCTGGAAT 2460 GTCTGTGCCC CAGGTCCTTA G 70 Seg ID NO: 441 Protein sequence Protein Accession #: XP_061091.1 75 MPNTSGTTRI EIWLLOEPPG HRALVAALLP VSPSPELALA PGYPPVPAAD DRFTLPMIGG 60 QMHGEKVDLW SLGVLCYEFL VGKPPFEANE VHVSKETIGK ISAASKMMWC SAAVDIMFLL 120 DGSNSVGKGS FERSKHFAIT VCDGLDISPE RVRVGAFQFS STPHLEFPLD SFSTQQEVKA 180 RIKRMVFKGG RTETELALKY LLHRGLPGGR NASVPQILII VTDGKSQGDV ALPSKQLKER 240 80 GVTVFAVGVR FPRWEELHAL ASEPRGOHVL LAEQVEDATN GLFSTLSSSA ICSSATPAGS 300 PELVFMERLM GISLIGPCDS QPCQNGGTCV PEGLDGYQCL CPLAFGGEAN CALKLSLECR 360 VDLLFLLDSS AGTTLDGFLR AKVFVKRFVR AVLSEDSRAR VGVATYSREL LVAVPVGEYQ 420 DVPDLVWSLD GIPFRGGPTL TGSALRQAAE RGFGSATRTG QDRPRRVVVL LTESHSEDEV 480 AGPARHARAR ELLLLGVGSE AVRAELEEIT GSPKHVMVYS DPQDLFNQIP ELQGKLCSRQ 540 85 RPGCRTQALD LVFMLDTSAS VGPENFAQMQ SFVRSCALQF EVNPDVTQVG LVVYGSQVQT 600 AFGLDTKPTR AAMLRAISQA PYLGGVGSAG TALLHIYDKV MTVQRGARPG VPKAVVVLTG 660

GRGAEDAAVP AQKLRNNGIS VLVVGVGPVL SEGLRRLAGP RDSLIHVAAY ADLRYHQDVL

```
WO 02/086443
      IEWLCGEAKQ PVNLCKPSPC MNEGSCVLQN GSYRCKCRDG WEGPHCENRE WSSCSVCVSQ
      GWILETPLRH MAPVQEGSSR TPPSNYREGL GTEMVPTFWN VCAPGP
      Seq ID NO: 442 DNA sequence
 5
      Nucleic Acid Accession #: Eos sequence
      Coding sequence: 1..2424
                            21
                                       31
                                                             51
10
      ATGCCCCCTT TCCTGTTGCT GGAGGCCGTC TGTGTTTTCC TGTTTTCCAG AGTGCCCCCA
      TCTCTCCCTC TCCAGGAAGT CCATGTAAGC AAAGAAACCA TCGGGAAGAT TTCAGCTGCC
                                                                         120
      AGCAAAATGA TGTGGTGCTC GGCTGCAGTG GACATCATGT TTCTGTTAGA TGGGTCTAAC
                                                                         180
      AGCGTCGGGA AAGGGAGCTT TGAAAGGTCC AAGCACTTTG CCATCACAGT CTGTGACGGT
                                                                         240
      300
15
      CTGGAATTCC CCTTGGATTC ATTTTCAACC CAACAGGAAG TGAAGGCAAG AATCAAGAGG
                                                                         360
      ATGGTTTTCA AAGGAGGGCG CACGGAGACG GAACTTGCTC TGAAATACCT TCTGCACAGA
                                                                         420
      GGGTTGCCTG GAGGCAGAAA TGCTTCTGTG CCCCAGATCC TCATCATCGT CACTGATGGG
                                                                         480
      AAGTCCCAGG GGGATGTGGC ACTGCCATCC AAGCAGCTGA AGGAAAGGGG TGTCACTGTG
                                                                         540
      TTTGCTGTGG GGGTCAGGTT TCCCAGGTGG GAGGAGCTGC ATGCACTGGC CAGCGAGCCT
                                                                         600
20
      AGAGGGCAGC ACGTGCTGTT GGCTGAGCAG GTGGAGGATG CCACCAACGG CCTCTTCAGC
                                                                          660
      ACCCTCAGCA GCTCGGCCAT CTGCTCCAGC GCCACGCCAG ACTGCAGGGT CGAGGCTCAC
                                                                         720
      CCCTGTGAGC ACAGGACGCT GGAGATGGTC CGGGAGTTCG CTGGCAATGC CCCATGCTGG
      AGAGGATCGC GGCGGACCCT TGCGGTGCTG GCTGCACACT GTCCCTTCTA CAGCTGGAAG
                                                                          840
      AGAGTGTTCC TAACCCACCC TGCCACCTGC TACAGGACCA CCTGCCCAGG CCCCTGTGAC
                                                                         900
25
      TCGCAGCCCT GCCAGAATGG AGGCACATGT GTTCCAGAAG GACTGGACGG CTACCAGTGC
      CTCTGCCCGC TGGCCTTTGG AGGGGAGGCT AACTGTGCCC TGAAGCTGAG CCTGGAATGC
      AGGGTCGACC TCCTCTTCCT GCTGGACAGC TCTGCGGGCA CCACTCTGGA CGGCTTCCTG
                                                                         1080
      CGGGCCAAAG TCTTCGTGAA GCGGTTTGTG CGGGCCGTGC TGAGCGAGGA CTCTCGGGCC
                                                                        1140
       CGAGTGGGTG TGGCCACATA CAGCAGGGAG CTGCTGGTGG CGGTGCCTGT GGGGGAGTAC
                                                                        1200
30
      CAGGATGTGC CTGACCTGGT CTGGAGCCTC GATGGCATTC CCTTCCGTGG TGGCCCCACC
                                                                        1260
      CTGACGGGCA GTGCCTTGCG GCAGGCGGCA GAGCGTGGCT TCGGGAGCGC CACCAGGACA
                                                                        1320
      GGCCAGGACC GGCCACGTAG AGTGGTGGTT TTGCTCACTG AGTCACACTC CGAGGATGAG
                                                                        1380
      GTTGCGGGCC CAGCGCGTCA CGCAAGGGCG CGAGAGCTGC TCCTGCTGGG TGTAGGCAGT
                                                                        1440
      GAGGCCGTGC GGGCAGAGCT GGAGGAGATC ACAGGCAGCC CAAAGCATGT GATGGTCTAC
                                                                        1500
35
      TCGGATCCTC AGGATCTGTT CAACCAAATC CCTGAGCTGC AGGGGAAGCT GTGCAGCCGG
                                                                        1560
       CAGCGGCCAG GGTGCCGGAC ACAAGCCCTG GACCTCGTCT TCATGTTGGA CACCTCTGCC
                                                                        1620
      TCAGTAGGGC CCGAGAATTT TGCTCAGATG CAGAGCTTTG TGAGAAGCTG TGCCCTCCAG
                                                                        1680
      TTTGAGGTGA ACCCTGACGT GACACAGGTC GGCCTGGTGG TGTATGGCAG CCAGGTGCAG
                                                                        1740
      ACTGCCTTCG GGCTGGACAC CAAACCCACC CGGGCTGCGA TGCTGCGGGC CATTAGCCAG
                                                                        1800
40
      GCCCCTACC TAGGTGGGT GGGCTCAGCC GGCACCGCCC TGCTGCACAT CTATGACAAA
                                                                        1860
      GTGATGACCG TCCAGAGGGG TGCCCGGCCT GGTGTCCCCA AAGCTGTGGT GGTGCTCACA
                                                                        1920
      GGCGGGAGAG GCGCAGAGGA TGCAGCCGTT CCTGCCCAGA AGCTGAGGAA CAATGGCATC
                                                                        1980
      TCTGTCTTGG TCGTGGGCGT GGGGCCTGTC CTAAGTGAGG GTCTGCGGAG GCTTGCAGGT
                                                                        2040
       CCCCGGGATT CCCTGATCCA CGTGGCAGCT TACGCCGACC TGCGGTACCA CCAGGACGTG
                                                                        2100
45
       CTCATTGAGT GGCTGTGTGG AGAAGCCAAG CAGCCAGTCA ACCTCTGCAA ACCCAGCCCG
                                                                        2160
       TGCATGAATG AGGGCAGCTG CGTCCTGCAG AATGGGAGCT ACCGCTGCAA GTGTCGGGAT
                                                                        2220
       GGCTGGGAGG GCCCCCACTG CGAGAACCGT GAGTGGAGCT CTTGCTCTGT ATGTGTGAGC
       CAGGGATGGA TTCTTGAGAC GCCCCTGAGG CACATGGCTC CCGTGCAGGA GGGCAGCAGC
       CGTACCCCTC CCAGCAACTA CAGAGAAGGC CTGGGCACTG AAATGGTGCC TACCTTCTGG
50
       AATGTCTGTG CCCCAGGTCC TTAG
       Sec ID NO: 443 Protein sequence
       Protein Accession #: Eos sequence
```

55	1	11	21	31	41	51	
	Ī	1	1	1	1	1	
	MPPFLLLEAV	CVFLFSRVPP	SLPLQEVHVS	KETIGKISAA	SKMMWCSAAV	DIMFLLDGSN	60
	SVGKGSFERS	KHFAITVCDG	LDISPERVRV	GAFQFSSTPH	LEFPLDSFST	QQEVKARIKR	120
	MVFKGGRTET	ELALKYLLHR	GLPGGRNASV	PQILIIVTDG	KSQGDVALPS	KQLKERGVTV	180
60			RGQHVLLAEQ				240
			RGSRRTLAVL				300
			LCPLAFGGEA				360
			RVGVATYSRE				420
~ ~			GODRPRRVVV				480
65			SDPQDLFNQI				540
			FEVNPDVTQV				600
			VMTVQRGARP				660
			PRDSLIHVAA				720
70	CMNEGSCVLQ	NGSYRCKCRD	GWEGPHCENR	EWSSCSVCVS	QGWILETPLR	HMAPVQEGSS	780
70	RTPPSNYREG	LGTEMVPTFW	NVCAPGP				

Seq ID NO: 444 DNA sequence Nucleic Acid Accession #: Eos sequence Coding sequence: 89..2356

/3							
	1	11	21	31	41	51	
	1	1	1	1	1	1	
	GCCCCCTGGC	CCGAGCCGCG	CCCGGGTCTG	TGAGTAGAGC	CGCCCGGGCA	CCGAGCGCTG	60
00	GTCGCCGCTC	TCCTTCCGTT	ATATCAACAT	GCCCCCTTTC	CTGTTGCTGG	AAGCCGTCTG	120
80	TGTTTTCCTG	TTTTCCAGAG	TGCCCCCATC	TCTCCCTCTC	CAGGAAGTCC	ATGTAAGCAA	180
	AGAAACCATC	GGGAAGATTT	CAGCTGCCAG	CAAAATGATG	TGGTGCTCGG	CTGCAGTGGA	240
	CATCATGTTT	CTGTTAGATG	GGTCTAACAG	CGTCGGGAAA	GGGAGCTTTG	AAAGGTCCAA	300
	GCACTTTGCC	ATCACAGTCT	GTGACGGTCT	GGACATCAGC	CCCGAGAGGG	TCAGAGTGGG	360
0.5	AGCATTCCAG	TTCAGTTCCA	CTCCTCATCT	GGAATTCCCC	TTGGATTCAT	TTTCAACCCA	420
85			TCAAGAGGAT				480
	ACTTGCTCTG	AAATACCTTC	TGCACAGAGG	GTTGCCTGGA	GGCAGAAATG	CTTCTGTGCC	540
	CCAGATCCTC	ATCATCGTCA	CTGATGGGAA	GTCCCAGGGG	GATGTGGCAC	TGCCATCCAA	600

```
GCAGCTGAAG GAAAGGGGTG TCACTGTGTT TGCTGTGGGG GTCAGGTTTC CCAGGTGGGA
                                                                               660
       GGAGCTGCAT GCACTGGCCA GCGAGCCTAG AGGGCAGCAC GTGCTGTTGG CTGAGCAGGT
                                                                               720
       GGAGGATGCC ACCAACGGCC TCTTCAGCAC CCTCAGCAGC TCGGCCATCT GCTCCAGCGC
                                                                               780
       CACGCCAGAC TGCAGGGTCG AGGCTCACCC CTGTGAGCAC AGGACGCTGG AGATGGTCCG
                                                                               840
 5
       GGAGTTCGCT GGCAATGCCC CATGCTGGAG AGGATCGCGG CGGACCCTTG CGGTGCTGGC
       TGCACACTGT CCCTTCTACA GCTGGAAGAG AGTGTTCCTA ACCCACCCTG CCACCTGCTA
       CAGGACCACC TGCCCAGGCC CCTGTGACTC GCAGCCCTGC CAGAATGGAG GCACATGTGT
       TCCAGAAGGA CTGGACGGCT ACCAGTGCCT CTGCCCGCTG GCCTTTGGAG GGGAGGCTAA
                                                                              1080
       CTGTGCCCTG AAGCTGAGCC TGGAATGCAG GGTCGACCTC CTCTTCCTGC TGGACAGCTC
                                                                              1140
10
       TGCGGGCACC ACTCTGGACG GCTTCCTGCG GGCCAAAGTC TTCGTGAAGC GGTTTGTGCG
                                                                              1200
       GGCCGTGCTG AGCGAGGACT CTCGGGCCCG AGTGGGTGTG GCCACATACA GCAGGGAGCT
                                                                              1260
       GCTGGTGGCG GTGCCTGTGG GGGAGTACCA GGATGTGCCT GACCTGGTCT GGAGCCTCGA
TGGCATTCCC TTCCGTGGTG GCCCCACCCT GACGGGCAGT GCCTTGCGGC AGGCGGCAGA
                                                                              1320
                                                                              1380
       GCGTGGCTTC GGGAGCGCCA CCAGGACAGG CCAGGACCGG CCACGTAGAG TGGTGGTTTT
                                                                              1440
15
       GCTCACTGAG TCACACTCCG AGGATGAGGT TGCGGGCCCA GCGCGTCACG CAAGGGCGCG
                                                                              1500
       AGAGCTGCTC CTGCTGGGTG TAGGCAGTGA GGCCGTGCGG GCAGAGCTGG AGGAGATCAC
                                                                              1560
       AGGCAGCCCA AAGCATGTGA TGGTCTACTC GGATCCTCAG GATCTGTTCA ACCAAATCCC
                                                                              1620
       TGAGCTGCAG GGGAAGCTGT GCAGCCGGCA GCGGCCAGGG TGCCGGACAC AAGCCCTGGA
                                                                              1680
       CCTCGTCTTC ATGTTGGACA CCTCTGCCTC AGTAGGGCCC GAGAATTTTG CTCAGATGCA
                                                                              1740
20
       GAGCTTTGTG AGAAGCTGTG CCCTCCAGTT TGAGGTGAAC CCTGACGTGA CACAGGTCGG
       CCTGGTGGTG TATGGCAGCC AGGTGCAGAC TGCCTTCGGG CTGGACACCA AACCCACCCG
       CACCGCCCTG CTGCACATCT ATGACAAAGT GATGACCGTC CAGAGGGGTG CCCGGCCTGG
                                                                              1980
       TGTCCCCAAA GCTGTGGTGG TGCTCACAGG CGGGAGAGGC GCAGAGGATG CAGCCGTTCC
                                                                              2040
       TGCCCAGAAG CTGAGGAACA ATGGCATCTC TGTCTTGGTC GTGGGGTGG GGCCTGTCCT AAGTGAGGGT CTGCAGGAGC TTGCAGGTCC CCGGGATTCC CTGATCCACG TGGCAGCTTA
25
                                                                              2100
                                                                              2160
       CGCCGACTG CGGTACCACC AGGACGTGCT CATTGAGTGG CTGTGTGGAG AAGCCAAGCA
GCCAGTCAAC CTCTGCAAAC CCAGCCCGTG CATGAATGAG GGCAGCTGCG TCCTGCAGAA
                                                                              2220
                                                                              2280
       TGGGAGCTAC CGCTGCAAGT GTCGGGATGG CTGGGAGGGG CCCCACTGCG AGAACCGATT CTTGAGACGC CCCTGAGGCA CATGGCTCCC GTGCAGGAGG GCAGCAGCCG TACCCCTCCC
                                                                              2340
30
                                                                              2400
       AGCAACTACA GAGAAGGCCT GGGCACTGAA ATGGTGCCTA CCTTCTGGAA TGTCTGTGCC
                                                                              2460
       CCAGGTCCTT AGAATGTCTG CTTCCCGCCG TGGCCAGGAC CACTATTCTC ACTGAGGGAG
                                                                              2520
       GAGGATGTCC CAACTGCAGC CATGCTGCTT AGAGACAAGA AAGCAGCTGA TGTCACCCAC
                                                                              2580
       AAACGATGTT GTTGAAAAGT TTTGATGTGT AAGTAAATAC CCACTTTCTG TACCTGCTGT
                                                                              2640
35
       GCCTTGTTGA GGCTATGTCA TCTGCCACCT TTCCCTTGAG GATAAACAAG GGGTCCTGAA
                                                                              2700
       GACTTAAATT TAGCGGCCTG ACGTTCCTTT GCACACAATC AATGCTCGCC AGAATGTTGT
                                                                              2760
       TGACACAGTA ATGCCCAGCA GAGGCCTTTA CTAGAGCATC CTTTGGACGG
       Seq ID NO: 445 Protein sequence
40
       Protein Accession #: Eos sequence
                                          31
       MPPFLLLEAV CVFLFSRVPP SLPLQEVHVS KETIGKISAA SKMMWCSAAV DIMFLLDGSN
45
       SVGKGSFERS KHFAITVCDG LDISPERVRV GAFQFSSTPH LEFPLDSFST QQEVKARIKR
                                                                               120
       MVFKGGRTET ELALKYLLHR GLPGGRNASV PQILIIVTDG KSQGDVALPS KQLKERGVTV
                                                                               180
       FAVGVRFPRW EELHALASEP RGQHVLLAEQ VEDATNGLFS TLSSSAICSS ATPDCRVEAH
                                                                               240
       PCEHRTLEMV REFAGNAPCW RGSRRTLAVL AAHCPFYSWK RVFLTHPATC YRTTCPGPCD
                                                                               300
       SOPCONGGTC VPEGLDGYOC LCPLAFGGEA NCALKLSLEC RVDLLFLLDS SAGTTLDGFL
                                                                               360
50
       RAKVFVKRFV RAVLSEDSRA RVGVATYSRE LLVAVPVGEY QDVPDLVWSL DGIPFRGGPT
                                                                               420
       LTGSALRQAA ERGFGSATRT GODRPRRVVV LLTESHSEDE VAGPARHARA RELLLLGVGS
                                                                               480
       EAVRAELEEI TGSPKHVMVY SDPQDLFNQI PELQGKLCSR QRPGCRTQAL DLVFMLDTSA
                                                                               540
       SVGPENFAQM QSFVRSCALQ FEVNPDVTQV GLVVYGSQVQ TAFGLDTKPT RAAMLRAISQ
                                                                               600
       APYLGGVGSA GTALLHIYDK VMTVQRGARP GVPKAVVVLT GGRGAEDAAV PAQKLRNNGI
                                                                               660
55
       SVLVVGVGPV LSEGLRRLAG PRDSLIHVAA YADLRYHQDV LIEWLCGEAK QPVNLCKPSP
                                                                               720
       CMNEGSCVLO NGSYRCKCRD GWEGPHCENR FLRRP
       Seg ID NO: 446 DNA seguence
       Nucleic Acid Accession #: NM_031942.1
60
       Coding sequence: 145..1260
                              21
                                          31
                                                      41
                                                                 51
       CCCGAGCCCC GCCCCTCCGG GCCCGGGTCG GCGCCCCAG CCTGCCAGCC GCGCTGCTGC
65
       TGCTCCTCCT GCTGTGGGAC CGCTGACCGC GCGGCTGCTC CGCTCTCCCC GCTCCAAGCG
                                                                               120
       CCGATCTGGG CACCCGCCAC CAGCATGGAC GCTCGCCGCG TGCCGCAGAA AGATCTCAGA
                                                                               180
       GTAAAGAAGA ACTTAAAGAA ATTCAGATAT GTGAAGTTGA TTTCCATGGA AACCTCGTCA
                                                                               240
       TCCTCTGATG ACAGTTGTGA CAGCTTTGCT TCTGATAATT TTGCAAACAC GAGGCTGCAG
                                                                               300
       TCAGTTCGGG AAGGCTGTAG GACCCGCAGC CAGTGCAGGC ACTCTGGACC TCTCAGGGTG
                                                                               360
70
       GCGATGAAGT TTCCAGCGCG GAGTACCAGG GGAGCAACCA ACAAAAAAGC AGAGTCCCGC
                                                                               420
       CAGCCCTCAG AGAATTCTGT GACTGATTCC AACTCCGATT CAGAAGATGA AAGTGGAATG
                                                                               480
       AATTTTTTGG AGAAAAGGGC TTTAAATATA AAGCAAAACA AAGCAATGCT TGCAAAACTC
       ATGTCTGAAT TAGAAAGCTT CCCTGGCTCG TTCCGTGGAA GACATCCCCT CCCAGGCTCC
       GACTCACAAT CAAGGAGACC GCGAAGGCGT ACATTCCCGG GTGTTGCTTC CAGGAGAAAC
75
       CCTGAACGGA GAGCTCGTCC TCTTACCAGG TCAAGGTCCC GGATCCTCGG GTCCCTTGAC
       GCTCTACCCA TGGAGGAGGA GGAGGAAGAG GATAAGTACA TGTTGGTGAG AAAGAGGAAG
       ACCGTGGATG GCTACATGAA TGAAGATGAC CTGCCCAGAA GCCGTCGCTC CAGATCATCC
       GTGACCCTTC CGCATATAAT TCGCCCAGTG GAAGAAATTA CAGAGGAGGA GTTGGAGAAC
       GTCTGCAGCA ATTCTCGAGA GAAGATATAT AACCGTTCAC TGGGCTCTAC TTGTCATCAA
80
       TGCCGTCAGA AGACTATTGA TACCAAAACA AACTGCAGAA ACCCAGACTG CTGGGGCGTT
       CGAGGCCAGT TCTGTGGCCC CTGCCTTCGA AACCGTTATG GTGAAGAGGT CAGGGATGCT
                                                                              1080
       CTGCTGGATC CGAACTGGCA TTGCCCGCCT TGTCGAGGAA TCTGCAACTG CAGTTTCTGC
                                                                              1140
       CGGCAGCGAG ATGGACGGTG TGCGACTGGG GTCCTTGTGT ATTTAGCCAA ATATCATGGC
                                                                              1200
       TTTGGGAATG TGCATGCCTA CTTGAAAAGC CTGAAACAGG AATTTGAAAT GCAAGCATAA
                                                                              1260
85
       TATCTGGAAA ATTTGCTGCC TGCCTTCTAC TTCTCAAATC TTTCTTGTAA AAGTTTCCAA
TTTTTTCACT GAAACCTGAG TTAAAAATCT TGATGATCAG CCTGTTTCAT AAGAAACTCC
                                                                              1320
                                                                              1380
       AATCAAGTTA ATCTTAGCAG ACATGTGTTT CTGGAGCATC ACAGAAGGTA TATTGCTAGT 1440
```

WO 02/086443 TACACTTTGC CCTCCTGCAG TTTCTTCTCT GCTCCCAACC CCCATCTCAT AGCATCCCCC 1500 TCTATTTCCA ATGCTCCTCT CCAACCGCTT AGTTTCTGAA TTTCTTTAA ATTACAGTTT 1560 TATGAAAGCA TATTTTATTT ACTTGGTGTT GAAATAGCCC TCATAAAACC TAAGCACTTG 1620 GAAACACAAT AATAGTATTA ACTAACTAGA TCTATTGAAT TTCAGAGAAG AGCCTTCTAA 1680 CTTGTTTACA CAAAAACGAG TATGATTTAG CACTCATACT AGTTGAAATT TTTAATAGAA 5 1740 TCAAGGCACA AAAGTCTTAA AACCATGTGG AAAAATTAGG TAATTATTGC AGATTGATGT 1800 CTCTCAATCC CATGTATTGC GCTTATGTTA CAAGTTGTTG TCACAGTTGA GACTTAATTT 1860 CTCCTAATTT CTTCTGCCCG AAGGGTAAGT GGTGCGTCCA GCTTACACGA TCATAATTCA 1920 AAGGTTGGTG GGCAATGTAA TACTTAATTA AAATAATGAT GGAAGAGCTA TCTGGAGATT 1980 10 ATGAGTAAGC TGATTTGAAT TTTCAGTATA AAACTTTAGT ATAATTGTAG TTTGCAAAGT 2040 TTATTTCAGT TCACATGTAA GGTATTGCAA ATAAATTCTT GGACAATTTT GTATGGAAAC 2100 TTGATATTAA AAACTAGTCT GTGGTTCTTT GCAGTTTCTT GTAAATTTAT AAACCAGGCA 2160 CAAGGTTCAA GTTTAGATTT TAAGCACTTT TATAACAATG ATAAGTGCCT TTTTGGAGAT 2220 GTAACTTTTA GCAGTTTGTT AACCTGACAT CTCTGCCAGT CTAGTTTCTG GGCAGGTTTC 2280 15 CTGTGTCAGT ATTCCCCCTC CTCTTTGCAT TAATCAAGGT ATTTGGTAGA GGTGGAATCT 2340 AAGTGTTTGT ATGTCCAATT TACTTGCATA TGTAAACCAT TGCTGTGCCA TTCAATGTTT 2400 GATGCATAAT TGGACCTTGA ATCGATAAGT GTAAATACAG CTTTTGATCT GTAATGCTTT 2460 TATACAAAAG TTTATTTTAA TAATAAAATG TTTGTTCTAA AAAAAAAAA 20 Seq ID NO: 447 Protein sequence Protein Accession #: NP_114148.1 51 25 MDARRYPOKO LRVKKNIKKY RYVKLISMET SSSSDDSCDS FASDNYANTR LOSVREGCRT RSOCRHSGPL RVAMKFPARS TRGATNKKAE SRQPSENSVT DSNSDSEDES GMNFLEKRAL 120 NIKONKAMLA KLMSELESFP GSFRGRHPLP GSDSQSRRPR RRTFPGVASR RNPERRARPL 180 TRSRSRILGS LDALPMEEEE EEDKYMLVRK RKTVDGYMNE DDLPRSRRSR SSVTLPHIIR PVEEITEEEL ENVCSNSREK IYNRSLGSTC HQCRQKTIDT KTNCRNPDCW GVRGQFCGPC LRNRYGEEVR DALLDPNWHC PPCRGICNCS FCRQRDGRCA TGVLVYLAKY HGFGNVHAYL 30 KSLKOEFEMQ A Seq ID NO: 448 DNA sequence Nucleic Acid Accession #: NM_019894 35 Coding sequence: 1..1314 21 31 ATGTTACAGG ATCCTGACAG TGATCAACCT CTGAACAGCC TCGATGTCAA ACCCCTGCGC 60 40 AAACCCCGTA TCCCCATGGA GACCTTCAGA AAGGTGGGGA TCCCCATCAT CATAGCACTA 120 CTGAGCCTGG CGAGTATCAT CATTGTGGTT GTCCTCATCA AGGTGATTCT GGATAAATAC 180 TACTTCCTCT GCGGGCAGCC TCTCCACTTC ATCCCGAGGA AGCAGCTGTG TGACGGAGAG 240 CTGGACTGTC CCTTGGGGGA GGACGAGGAG CACTGTGTCA AGAGCTTCCC CGAAGGGCCT 300 GCAGTGGCAG TCCGCCTCTC CAAGGACCGA TCCACACTGC AGGTGCTGGA CTCGGCCACA 360 45 GGGAACTGGT TCTCTGCCTG TTTCGACAAC TTCACAGAAG CTCTCGCTGA GACAGCCTGT 420 AGGCAGATGG GCTACAGCAG CAAACCCACT TTCAGAGCTG TGGAGATTGG CCCAGACCAG 480 GATCTGGATG TTGTTGAAAT CACAGAAAAC AGCCAGGAGC TTCGCATGCG GAACTCAAGT 540 GGGCCCTGTC TCTCAGGCTC CCTGGTCTCC CTGCACTGTC TTGCCTGTGG GAAGAGCCTG 600 AAGACCCCCC GTGTGGTGGG TGGGGAGGAG GCCTCTGTGG ATTCTTGGCC TTGGCAGGTC 660 50 AGCATCCAGT ACGACAAACA GCACGTCTGT GGAGGGAGCA TCCTGGACCC CCACTGGGTC 720 CTCACGGCAG CCCACTGCTT CAGGAAACAT ACCGATGTGT TCAACTGGAA GGTGCGGGCA 780 GGCTCAGACA AACTGGGCAG CTTCCCATCC CTGGCTGTGG CCAAGATCAT CATCATTGAA 840 TTCAACCCCA TGTACCCCAA AGACAATGAC ATCGCCCTCA TGAAGCTGCA GTTCCCACTC ACTITCTCAG GCACAGTCAG GCCCATCTGT CTGCCCTTCT TTGATGAGGA GCTCACTCCA 960 GCCACCCCAC TCTGGATCAT TGGATGGGGC TTTACGAAGC AGAATGGAGG GAAGATGTCT 55 GACATACTGC TGCAGGCGTC AGTCCAGGTC ATTGACAGCA CACGGTGCAA TGCAGACGAT GCGTACCAGG GGGAAGTCAC CGAGAAGATG ATGTGTGCAG GCATCCCGGA AGGGGGTGTG 1140 GACACCTGCC AGGGTGACAG TGGTGGGCCC CTGATGTACC AATCTGACCA GTGGCATGTG 1200 GTGGGCATCG TTAGCTGGGG CTATGGCTGC GGGGGCCCGA GCACCCCAGG AGTATACACC 60 AAGGTCTCAG CCTATCTCAA CTGGATCTAC AATGTCTGGA AGGCTGAGCT GTAA Seg ID NO: 449 Protein sequence NP_063947.1 Protein Accession #: 65 51 MLQDPDSDQP LNSLDVKPLR KPRIPMETFR KVGIPIIIAL LSLASIIIVV VLIKVILDKY YFLCGQPLHF IPRKQLCDGE LDCPLGEDEE HCVKSFPEGP AVAVRLSKDR STLQVLDSAT 120 GNWFSACFDN FTEALAETAC ROMGYSSKPT FRAVEIGPDQ DLDVVEITEN SQELRMRNSS 180 70 GPCLSGSLVS LHCLACGKSL KTPRVVGGEE ASVDSWPWQV SIQYDKQHVC GGSILDPHWV 240 LTAAHCFRKH TDVFNWKVRA GSDKLGSFPS LAVAKIIIIE FNPMYPKDND IALMKLQFPL 300 TFSGTVRPIC LPFFDEELTP ATPLWIIGWG FTKQNGGKMS DILLQASVQV IDSTRCNADD 360 AYQGEVTEKM MCAGIPEGGV DTCQGDSGGP LMYQSDQWHV VGIVSWGYGC GGPSTPGVYT 420 75 Seg ID NO: 450 DNA sequence Nucleic Acid Accession #: XM_051860.2 Coding sequence: 52..3042 80 11 51 GCTCACCCAG GAAAAATATG CAATCGTCCC ATTGATATAC AGGCCACTAC AATGGATGGA GTTAACCTCA GCACCGAGGT TGTCTACAAA AAAGGCCAGG ATTATAGGTT TGCTTGCTAC 120 GACCGGGGCA GAGCCTGCCG GAGCTACCGT GTACGGTTCC TCTGTGGGAA GCCTGTGAGG 180

CCCAAACTCA CAGTCACCAT TGACACCAAT GTGAACAGCA CCATTCTGAA CTTGGAGGAT

AATGTACAGT CATGGAAACC TGGAGATACC CTGGTCATTG CCAGTACTGA TTACTCCATG

TACCAGGCAG AAGAGTTCCA GGTGCTTCCC TGCAGATCCT GCGCCCCCAA CCAGGTCAAA

85

240

300

360

PCT/US02/12476

		/086443					
	GTGGCAGGGA	AACCAATGTA	CCTGCACATO	GGGGAGGAGA	TAGACGGCGT	GGACATGCGG	420
	GCGGAGGTTG	GGCTTCTGAG	CCGGAACATC	ATAGTGATGG	GGGAGATGGA	GGACAAATGC	480
	TACCCCTACA	GAAACCACAT	CTGCAATTTC	TTTGACTTCG	ATACCTTTGG	GGGCCACATC	540
5	AAGTTTGCTC	TGGGATTTAA	GGCAGCACAC	TTGGAGGGCA	CGGAGCTGAA	GCATATGGGA	600
5	CAGCAGCTGG	TGGGTCAGTA ACCCACCCAC	ATAGATTCAC	CACCACCAGG	CCGGTGATGT	AGACGAAAGG	660
	TCCCTCACAC	TCCATGGCTC	CAATCAGG	TTCATCAACC	ACCATCATAC	ATTCTCTCGC	720
	TTCCCCCCACT	GCTTCTTCAC	GGAAGATGGG	CCCCACCAACC	CCVVCVCCCC	CTATAACTCT	780
	CTTGGCCTCC	TTGTCAAGTC	TGGAACCCTC	CICCCCCCCC	ACCGTGACAC	CARCACTGT	840 900
10	AAGATGATCA	CAGGAGACTC	CTACCCAGGG	TACATCCCCA	AGCCCAGGCA	ACACTECAAT	960
	GCTGTGTCCA	CCTTCTGGAT	GGCCAATCCC	AACAACAACC	TCATCAACTG	TECCECTECA	1020
	GGATCTGAGG	AAACTGGATT	TTGGTTTATT	TTTCACCACG	TACCAACGGG	CCCCTCCGTG	1080
		CCCCAGGTTA					1140
	GCACATTCCA	ACTACCGGGC	TGGCATGATC	ATAGACAACG	GAGTCAAAAC	CACCGAGGCC	1200
15		ACAAGCGGCC					1260
		CGCTGAAGCC					1320
		ACGGGGCCTG					1380
		GCATTGGCCT					1440
20		AGATAAAGAA					1500
20		ATAGGATCTG					1560
		ATTTTCCAAT					1620
		TCCGAAAGTT ATGCCTGGCA					1680
		TTACTTCCAG					1740 1800
25		GGGATAAGAC					1860
		ACCTCACGAA					1920
		GGAGAGGGGC					1980
•		GTAACCTGCG					2040
		GGGCGCTCAC					2100
30		GCTACACCAT					2160
	CTCATCAACT	TCAACAAGGG	CGACTGGATC	CGAGTGGGGC	TCTGCTACCC	GCGAGGCACC	2220
		TCCTCTCGGA					2280
		GGACCTTGCA					2340
25		ACGAGGACTC					2400
35		CTTTCTGCTC					2460
		CAGGCGTCAG					2520
		ACGTGCCGAT AGGTGAAGAT					2580
		TTGAAGTGGA					2640 2700
40		ACGGGAACCA					2760
		TACCATGGCA					2820
		CATCAAAGGG					2880
		CAGACAGGGG					2940
4.5	GGCAGCTTCC	GGCCCATCTG	GGTGACACTG	GACACTGAGG	ATCACAAAGC	CAAAATCTTC	3000
45	CAAGTTGTGC	CCATCCCTGT	GGTGAAGAAG	AAGAAGTTGT	GAGGACAGCT	GCCGCCCGGT	3060
		GGTAGACTAT					3120
		CCCTGCCAGC					3180
		TCAGAGACCC					3240
50		GGTGCTGGCC					3300
50		TCTGTGCCTC CAAAGATCCA					3360 3420
		TTCACAGATC			_		3480
		CTTGGCCTTA					3540
	GATTAGGAGC	TGGGGTAGAA	CTGGCTATCC	TTGGGGAAGA	GGCAAGCCCT	GCCTCTGGCC	3600
55	GTGTCCACCT	TTCAGGAGAC	TTTGAGTGGC	AGGTTTGGAC	TTGGACTAGA	TGACTCTCAA	3660
						CCTGGAACCC	3720
	AACAGTTCAT	GGATATCCAC	TGATATCCAT	GATGCTGGGT	GCCCCAGCGC	ACACGGGATG	3780
						AGGCAGTCAG	
60						GAGGCCAGTG	
60						CTGGGGGCAT	
						CTCCCTGCCG	
						TGGCCCACTC GCACAGAGGA	
						AGAAGTGAGC	
65						GGCCTCCAGG	
						ATATAGAAAA	
						GATGGGAAAG	
						CCACACCACA	
7 0						TGGAAATGGG	
70	GACAAGTCCC	CTCGAAGGAA	AGGAAATGAC	TAGAGTAGAA	TGACAGCTAG	CAGATCTCTT	4560
	CCCTCCTGCT	CCCAGCGCAC	ACAAACCCGC	CCTCCCCTTG	GTGTTGGCGG	TCCCTGTGGC	4620
	CTTCACTTTG	TTCACTACCT	GTCAGCCCAG	CCTGGGTGCA	CAGTAGCTGC	AACTCCCCAT	4680
						AGAGGGAGTA	
75	GGGCTCGCCA	TGTTTCTGGT	GAGCCAATTT	GGCTGATCTT	GGGTGTCTGA	ACAGCTATTG	4800
15	GGTCCACCCC	AGTCCCTTTC	AGCTGCTGCT	TAATGCCCTG	CTCTCTCCCT	GGCCCACCTT	4860
						ATAATCTTGC	
	CAACCACCACC	CTCTTCCC	CANACACCCC	CTCCCTCCC	ATTTATCCCC	TTTCCTGCCC AACTGCACCC	4980
	ATCACACHAA	GTCCAACACA	CHAMGAGGGC	COTOCCTGGCT	A A CTROTTOR CO.	AACTGCACCC GAGGTCTTTC	5140
80	CCTCCVVVCV	TOTOTOTOTO	CCTGCGACGT	CACCATACCC	AACIGICAGG	AAAGATATGG	2140
	CTGCTTCAAA	GGCCAGAGTC	ACAGGAAGGA	CTTCTTCCAC	CCTCCCTTTL	GGTGATGGAG	2200
	AGGAGAGTTA	AAATGACCTC	ATGTCCTTCT	TGTCCACGGT	TTTGTTCAGT	TTTCACTCTT	5280
	CTAATGCAAG	GGTCTCACAC	TGTGAACCAC	TTAGGATGTG	ATCACTTTCA	GGTGGCCAGG	5340
0.4	AATGTTGAAT	GTCTTTGGCT	CAGTTCATTT	AAAAAAGATA	TCTATTTGAA	AGTTCTCAGA	5400
85	GTTGTACATA	TGTTTCACAG	TACAGGATCT	GTACATAAAA	GTTTCTTTCC	TAAACCATTC	5460
	ACCAAGAGCC	AATATCTAGG	CATTTTCTTG	GTAGCACAAA	TTTTCTTATT	GCTTAGAAAA	5520
	TTGTCCTCCT	TGTTATTTCT	GTTTGTAAGA	CTTAAGTGAG	TTAGGTCTTT	AAGGAAAGCA	5580

GTTAGATGTA TAGAGTGTTT GTATGTAAAC ATTTCTTGTA GGCATCACCA TGAACAAGA TATATTTTCT ATTTATTTAT TATATGTGCA CTTCAAGAAG TCACTGTCAG AGAAATAAAG 5 Seg ID NO: 451 Protein seguence Protein Accession #: XP_051860.2 10 41 51 31 MDGVNLSTEV VYKKGODYRF ACYDRGRACR SYRVRFLCGK PVRPKLTVTI DTNVNSTILN LEDNYQSWKP GDTLVIASTD YSMYQAEEFQ VLPCRSCAPN QVKVAGKPMY LHIGEEIDGV 120 DMRAEVGLLS RNIIVMGEME DKCYPYRNHI CNFFDFDTFG GHIKFALGFK AAHLEGTELK 180 15 HMGQQLVGQY PIHPHLAGDV DERGGYDPPT YIRDLSIHHT FSRCVTVHGS NGLLIKDVVG 240 YNSLGHCFFT EDGPEERNTF DHCLGLLVKS GTLLPSDRDS KMCKMITGDS YPGYIPKPRQ 300 DCNAVSTFWM ANPHNNLINC AAAGSEETGF WFIFHHVPTG PSVGMYSPGY SEHIPLGKPY NNRAHSNYRA GMIIDNGVKT TEASAKDKRP FLSIISARYS PHQDADPLKP REPAIIRHFI 420 AYKNODHGAW LRGGDVWLDS CRFADNGIGL TLASGGTFPY DDGSKQBIKN SLFVGESGNV 20 GTEMMONRIW GPGGLDHSGR TLPIGQNFPI RGIQLYDGPI NIQNCTFRKF VALEGRHTSA 540 LAFRLINNAWQ SCPHNNVTGI AFEDVPITSR VFFGEPGPWF NQLDMDGDKT SVFHDVDGSV SEYPGSYLTK NDNWLVRHPD CINVPDWRGA ICSGCYAQMY IQAYKTSNLR MKIIKNDFPS 660 HPLYLEGALT RSTHYQQYQP VVTLQKGYTI HWDQTAPAEL AIWLINFNKG DWIRVGLCYP 720 RGTTFSILSD VHNRLLKQTS KTGVFVRTLQ MDKVEQSYPG RSHYYWDEDS GLLFLKLKAQ 780 25 NEREKFAFCS MKGCERIKIK ALIPKNAGVS DCTATAYPKF TERAVVDVPM PKKLFGSQLK 840 TKDHFLEVKM ESSKQHFFHL WNDFAYIEVD GKKYPSSEDG IQVVVIDGNQ GRVVSHTSFR 900 NSILQGIPWQ LFNYVATIPD NSIVLMASKG RYVSRGPWTR VLEKLGADRG LKLKEQMAFV 960 GFKGSFRPIW VTLDTEDHKA KIFQVVPIPV VKKKKL 30 Seq ID NO: 452 DNA sequence Nucleic Acid Accession #: Eos sequence Coding sequence: 261..2861 21 31 41 51 35 GAGCTAGCGC TCAAGCAGAG CCCAGCGCGG TGCTATCGGA CAGAGCCTGG CGAGCGCAAG CGGCGCGGG AGCCAGCGGG GCTGAGCGCG GCCAGGGTCT GAACCCAGAT TTCCCAGACT 120 AGCTACCACT CCGCTTGCCC ACGCCCCGGG AGCTCGCGGC GCCTGGCGGT CAGCGACCAG ACGTCCGGGG CCGCTGCGCT CCTGGCCCGC GAGGCGTGAC ACTGTCTCGG CTACAGACCC 240 40 AGAGGGAGCA CACTGCCAGG ATGGGAGCTG CTGGGAGGCA GGACTTCCTC TTCAAGGCCA TGCTGACCAT CAGCTGGCTC ACTCTGACCT GCTTCCCTGG GGCCACATCC ACAGTGGCTG CTGGGTGCCC TGACCAGAGC CCTGAGTTGC AACCCTGGAA CCCTGGCCAT GACCAAGACC ACCATGTGCA TATCGGCCAG GGCAAGACAC TGCTGCTCAC CTCTTCTGCC ACGGTCTATT 480 CCATCCACAT CTCAGAGGGA GGCAAGCTGG TCATTAAAGA CCACGACGAG CCGATTGTTT 540 45 TGCGAACCCG GCACATCCTG ATTGACAACG GAGGAGAGCT GCATGCTGGG AGTGCCCTCT 600 GCCCTTTCCA GGGCAATTTC ACCATCATTT TGTATGGAAG GGCTGATGAA GGTATTCAGC 660 CGGATCCTTA CTATGGTCTG AAGTACATTG GGGTTGGTAA AGGAGGCGCT CTTGAGTTGC 720 ATGGACAGAA AAAGCTCTCC TGGACATTTC TGAACAAGAC CCTTCACCCA GGTGGCATGG 780 CAGAAGGAGG CTATTTTTT GAAAGGAGCT GGGGCCACCG TGGAGTTATT GTTCATGTCA 840 50 TOGACCCCAA ATCAGGCACA GTCATCCATT CTGACCGGTT TGACACCTAT AGATCCAAGA 900 AAGAGAGTGA ACGTCTGGTC CAGTATTTGA ACGCGGTGCC CGATGGCAGG ATCCTTTCTG 960 TTGCAGTGAA TGATGAAGGT TCTCGAAATC TGGATGACAT GGCCAGGAAG GCGATGACCA 1020 AATTGGGAAG CAAACACTTC CTGCACCTTG GATTTAGACA CCCTTGGAGT TTTCTAACTG 1080 TGAAAGGAAA TCCATCATCT TCAGTGGAAG ACCATATTGA ATATCATGGA CATCGAGGCT 1140 55 1200 CTGCTGCTGC CCGGGTATTC AAATTGTTCC AGACAGAGCA TGGCGAATAT TTCAATGTTT CTTTGTCCAG TGAGTGGGTT CAAGACGTGG AGTGGACGGA GTGGTTCGAT CATGATAAAG 1260 TATCTCAGAC TAAAGGTGGG GAGAAAATTT CAGACCTCTG GAAAGCTCAC CCAGGAAAAA 1320 TATGCAATCG TCCCATTGAT ATACAGGCCA CTACAATGGA TGGAGTTAAC CTCAGCACCG 1380 AGGTTGTCTA CAAAAAAGGC CAGGATTATA GGTTTGCTTG CTACGACCGG GGCAGAGCCT 60 GCCGGAGCTA CCGTGTACGG TTCCTCTGTG GGAAGCCTGT GAGGCCCAAA CTCACAGTCA CCATTGACAC CAATGTGAAC AGCACCATTC TGAACTTGGA GGATAATGTA CAGTCATGGA AACCTGGAGA TACCCTGGTC ATTGCCAGTA CTGATTACTC CATGTACCAG GCAGAAGAGT TCCAGGTGCT TCCCTGCAGA TCCTGCGCCC CCAACCAGGT CAAAGTGGCA GGGAAACCAA TGTACCTGCA CATCGGGGAG GAGATAGACG GCGTGGACAT GCGGGCGGAG GTTGGGCTTC 1740 65 TGAGCCGGAA CATCATAGTG ATGGGGGAGA TGGAGGACAA ATGCTACCCC TACAGAAACC ACATCTGCAA TTTCTTTGAC TTCGATACCT TTGGGGGCCA CATCAAGTTT GCTCTGGGAT 1860 TTAAGGCAGC ACACTTGGAG GGCACGGAGC TGAAGCATAT GGGACAGCAG CTGGTGGGTC AGTACCCGAT TCACTTCCAC CTGGCCGGTG ATGTAGACGA AAGGGGAGGT TATGACCCAC CCACATACAT CAGGGACCTC TCCATCCATC ATACATTCTC TCGCTGCGTC ACAGTCCATG 70 GCTCCAATGG CTTGTTGATC AAGGACGTTG TGGGCTATAA CTCTTTGGGC CACTGCTTCT 2100 TCACGGAAGA TGGGCCGGAG GAACGCAACA CTTTTGACCA CTGTCTTGGC CTCCTTGTCA 2160 AGTCTGGAAC CCTCCTCCCC TCGGACCGTG ACAGCAAGAT GTGCAAGATG ATCACAGAGG 2220 ACTCCTACCC AGGGTACATC CCCAAGCCCA GGCAAGACTG CAATGCTGTG TCCACCTTCT 2280 GGATGGCCAA TCCCAACAAC AACCTCATCA ACTGTGCCGC TGCAGGATCT GAGGAAACTG 2340 75 GATTTTGGTT TATTTTCAC CACGTACCAA CGGGCCCCTC CGTGGGAATG TACTCCCCAG 2400 GTTATTCAGA GCACATTCCA CTGGGAAAAT TCTATAACAA CCGAGCACAT TCCAACTACC 2460 GGGCTGGCAT GATCATAGAC AACGGAGTCA AAACCACCGA GGCCTCTGCC AAGGACAAGC 2520 GGCCGTTCCT CTCAATCATC TCTGCCAGAT ACAGCCCTCA CCAGGACGCC GACCCGCTGA 2580 AGCCCCGGGA GCCGGCCATC ATCAGACACT TCATTGCCTA CAAGAACCAG GACCACGGGG 2640 80 CCTGGCTGCG CGGCGGGGT GTGTGGCTGG ACAGCTGCCA TTTCAGAGGG GAGGCTCAGG 2700 AAGGCTTCTT GCTTACAGGA ATGAAGGCTG GGGGCATTTT GCTGGGGGGA GATGAGGCAG 2760 CCTCTGGAAT GGCTCAGGGA TTCAGCCCTC CCTGCCGCTG CCTGCTGAAG CTGGTGACTA 2820 CGGGGTCGCC CTTTGCTCAC GTCTCTCTGG CCCACTCATG ATGGAGAGT GTGGTCAGAG 2880 GGGAGCAATG GGCTTTGCTG CTTATGAGCA CAGAGGAATT CAGTCCCCAG GCAGCCCTGC 2940 85 CTCTGACTCC AAGAGGGTGA AGTCCACAGA AGTGAGCTCC TGCCTTAGGG CCTCATTTGC 3000 TCTTCATCCA GGGAACTGAG CACAGGGGGC CTCCAGGAGA CCCTAGATGT GCTCGTACTC 3060 CCTCGGCCTG GGATTTCAGA GCTGGAAATA TAGAAAATAT CTAGCCCAAA GCCTTCATTT 3120

```
WO 02/086443
       TAACAGATGG GGAAAGTGAG CCCCCAAGAT GGGAAAGAAC CACACAGCTA AGGGAGGGCC 3180
       TGGGGAGCCC CACCCTAGCC CTTGCTGCCA CACCACATTG CCTCAACAAC CGGCCCCAGA
                                                                          3240
       GTGCCCAGGC ACTCCTGAGG TAGCTTCTGG AAATGGGGAC AAGTCCCCTC GAAGGAAAGG
                                                                          3300
       AAATGACTAG AGTAGAATGA CAGCTAGCAG ATCTCTTCCC TCCTGCTCCC AGCGCACACA
                                                                          3360
 5
       AACCCGCCCT CCCCTTGGTG TTGGCGGTCC CTGTGGCCTT CACTTTGTTC ACTACCTGTC
                                                                          3420
       AGCCCAGCCT GGGTGCACAG TAGCTGCAAC TCCCCATTGG TGCTACCTGG CTCTCCTGTC
                                                                          3480
       TCTGCAGCTC TACAGGTGAG GCCCAGCAGA GGGAGTAGGG CTCGCCATGT TTCTGGTGAG
                                                                          3540
       CCAATTTGGC TGATCTTGGG TGTCTGAACA GCTATTGGGT CCACCCCAGT CCCTTTCAGC
                                                                          3600
       TGCTGCTTAA TGCCCTGCTC TCTCCCTGGC CCACCTTATA GAGAGCCCAA AGAGCTCCTG
                                                                          3660
10
       TAAGAGGGAG AACTCTATCT GTGGTTTATA ATCTTGCACG AGGCACCAGA GTCTCCCTGG
                                                                          3720
       GTCTTGTGAT GAACTACATT TATCCCCTTT CCTGCCCCAA CCACAAACTC TTTCCTTCAA
                                                                          3780
       AGAGGGCCTG CCTGGCTCCC TCCACCCAAC TGCACCCATG AGACTCGGTC CAAGAGTCCA
       TTCCCCAGGT GGGAGCCAAC TGTCAGGGAG GTCTTTCCCA CCAAACATCT TTCAGCTGCT
       GGGAGGTGAC CATAGGGCTC TGCTTTTAAA GATATGGCTG CTTCAAAGGC CAGAGTCACA
15
       GGAAGGACTT CTTCCAGGGA GATTAGTGGT GATGGAGAGG AGAGTTAAAA TGACCTCATG
       TCCTTCTTGT CCACGGTTTT GTTGAGTTTT CACTCTTCTA ATGCAAGGGT CTCACACTGT
       GAACCACTTA GGATGTGATC ACTTTCAGGT GGCCAGGAAT GTTGAATGTC TTTGGCTCAG
                                                                          4140
       TTCATTTAAA AAAGATATCT ATTTGAAAGT TCTCAGAGTT GTACATATGT TTCACAGTAC
                                                                          4200
       AGGATCTGTA CATAAAAGTT TCTTTCCTAA ACCATTCACC AAGAGCCAAT ATCTAGGCAT
                                                                          4260
20
       TTTCTTGGTA GCACAAATTT TCTTATTGCT TAGAAAATTG TCCTCCTTGT TATTTCTGTT
                                                                          4320
       TGTAAGACTT AAGTGAGTTA GGTCTTTAAG GAAAGCAACG CTCCTCTGAA ATGCTTGTCT
                                                                          4380
       TTTTTCTGTT GCCGAAATAG CTGGTCCTTT TTCGGGAGTT AGATGTATAG AGTGTTTGTA
                                                                          4440
       TGTAAACATT TCTTGTAGGC ATCACCATGA ACAAAGATAT ATTTTCTATT TATTTATTAT
                                                                          4500
       ATGTGCACTT CAAGAAGTCA CTGTCAGAGA AATAAAGAAT TGTCTTAAAT GTCATGATTG
                                                                          4560
25
       GAGATGTCCT TTGCATTGCT TGGAAGGGGT GTACCTAGAG CCAAGGAAAT TGGCTCTGGT
                                                                          4620
       4680
       AA AAAAAAAA AAAAAAAA
       Seg ID NO: 453 Protein sequence
30
       Protein Accession #: Eos sequence
                                        31
       MGAAGRODFL FKAMLTISWL TLTCPPGATS TVAAGCPDQS PELQPWNPGH DQDHHVHIGQ
35
       GKTLLLTSSA TVYSIHISEG GKLVIKDHDE PIVLRTRHIL IDNGGELHAG SALCPFQGNF
       TIILYGRADE GIQPDPYYGL KYIGVGKGGA LELHGQKKLS WTFLNKTLHP GGMAEGGYPP
       ERSWGHRGVI VHVIDPKSGT VIHSDRFDTY RSKKESERLV QYLNAVPDGR ILSVAVNDEG
       SRNLDDMARK AMTKLGSKHF LHLGFRHPWS FLTVKGNPSS SVEDHIEYHG HRGSAAARVF
                                                                           300
       KLFOTEHGEY FNVSLSSEWV QDVEWTEWFD HDKVSQTKGG EKISDLWKAH PGKICNRPID
                                                                           360
40
       IQATTMDGVN LSTEVVYKKG QDYRFACYDR GRACRSYRVR FLCGKPVRPK LTVTIDTNVN
                                                                           420
       STILNLEDNV QSWKPGDTLV IASTDYSMYQ AEEFQVLPCR SCAPNQVKVA GKPMYLHIGE
                                                                           480
       EIDGVDMRAE VGLLSRNIIV MGEMEDKCYP YRNHICNFFD FDTFGGHIKF ALGFKAAHLE
                                                                           540
       GTELKHMGQQ LVGQYPIHFH LAGDVDERGG YDPPTYIRDL SIHHTFSRCV TVHGSNGLLI
                                                                           600
       KDVVGYNSLG HCFFTEDGPE ERNTFDHCLG LLVKSGTLLP SDRDSKMCKM ITEDSYPGYI
                                                                           660
45
       PKPRQDCNAV STFWMANPNN NLINCAAAGS EETGFWFIFH HVPTGPSVGM YSPGYSEHIP
                                                                           720
       LGKFYNNRAH SNYRAGMIID NGVKTTEASA KDKRPFLSII SARYSPHQDA DPLKPREPAI
                                                                           780
       IRHFIAYKNQ DHGAWLRGGD VWLDSCHFRG EAQEGFLLTG MKAGGILLGG DEAASGMAQG
                                                                           840
       FSPPCRCLLK LVTTGSPFAH VSLAHS
50
       Seq ID NO: 454 DNA sequence
       Nucleic Acid Accession #: NM_013282.2
       Coding sequence: 85..2466
                             21
                                        31
55
       CGACTCCTTA GAGCATGGCA TGGCTCAGAG GTGCTGGTAA AACTGATGGG GGTTTTTGCT
       GTCCCTCCCC TCAGCGCCGA CACCATGTGG ATCCAGGTTC GGACCATGGA CGGGAGGCAG
       ACCCACACGG TGGACTCGCT GTCCAGGCTG ACCAAGGTGG AGGAGCTGAG GCGGAAGATC
       CAGGAGCTGT TCCACGTGGA GCCAGGCCTG CAGAGGCTGT TCTACAGGGG CAAACAGATG
60
       GAGGACGGCC ATACCCTCTT CGACTACGAG GTCCGCCTGA ATGACACCAT CCAGCTCCTG
       GTCCGCCAGA GCCTCGTGCT CCCCCACAGC ACCAAGGAGC GGGACTCCGA GCTCTCCGAC
       ACCGACTCCG GCTGCTGCCT GGGCCAGAGT GAGTCAGACA AGTCCTCCAC CCACGGCGAG
       GCGGCCGCCG AGACTGACAG CAGGCCAGCC GATGAGGACA TGTGGGATGA GACGGAATTG
                                                                           480
       GGGCTGTACA AGGTCAATGA GTACGTCGAT GCTCGGGACA CGAACATGGG GGCGTGGTTT
65
       GAGGCGCAGG TGGTCAGGGT GACGCGGAAG GCCCCCTCCC GGGACGAGCC CTGCAGCTCC
                                                                           600
       ACGTCCAGGC CGGCGCTGGA GGAGGACGTC ATTTACCACG TGAAATACGA CGACTACCCG
                                                                           660
       GAGAACGGCG TGGTCCAGAT GAACTCCAGG GACGTCCGAG CGCGCGCCCG CACCATCATC
                                                                           720
       AAGTGGCAGG ACCTGGAGGT GGGCCAGGTG GTCATGCTCA ACTACAACCC CGACAACCCC
                                                                           780
       AAGGAGCGGG GCTTCTGGTA CGACGCGGAG ATCTCCAGGA AGCGCGAGAC CAGGACGGCG
                                                                           840
70
       CGGGAACTCT ACGCCAACGT GGTGCTGGGG GATGATTCTC TGAACGACTG TCGGATCATC
                                                                           900
       TTCGTGGACG AAGTCTTCAA GATTGAGCGG CCGGGTGAAG GGAGCCCCAT GGTTGACAAC
                                                                           960
       CCCATGAGAC GGAAGAGCGG GCCGTCCTGC AAGCACTGCA AGGACGACGT GAACAGACTC
                                                                          1020
       TGCCGGGTCT GCGCCTGCCA CCTGTGCGGG GGCCGGCAGG ACCCCGACAA GCAGCTCATG
TGCGATGAGT GCGACATGGC CTTCCACATC TACTGCCTGG ACCCGCCCCT CAGCAGTGTT
                                                                          1080
                                                                          1140
75
       CCCAGCGAGG ACGAGTGGTA CTGCCCTGAG TGCCGGAATG ATGCCAGCGA GGTGGTACTG
                                                                          1200
       GCGGGAGAGC GGCTGAGAGA GAGCAAGAAG AAGGCGAAGA TGGCCTCGGC CACATCGTCC
                                                                          1260
       TCACAGCGGG ACTGGGGCAA GGGCATGGCC TGTGTGGGCC GCACCAAGGA ATGTACCATC
                                                                          1320
       GTCCCGTCCA ACCACTACGG ACCCATCCCG GGGATCCCCG TGGGCACCAT GTGGCGGTTC
                                                                          1380
       CGAGTCCAGG TCAGCGAGTC GGGTGTCCAT CGGCCCCACG TGGCTGGCAT ACACGGCCGG
                                                                          1440
80
       AGCAACGACG GAGCGTACTC CCTAGTCCTG GCGGGGGGCT ATGAGGATGA CGTGGACCAT
                                                                          1500
       GGGAATTTTT TCACATACAC GGGTAGTGGT GGTCGAGATC TTTCCGGCAA CAAGAGGACC
                                                                          1560
       GCGGAACAGT CTTGTGATCA GAAACTCACC AACACCAACA GGGCGCTGGC TCTCAACTGC
                                                                          1620
       TTTGCTCCCA TCAATGACCA AGAAGGGGCC GAGGCCAAGG ACTGGCGGTC GGGGAAGCCG
                                                                          1680
       GTCAGGGTGG TGCGCAATGT CAAGGGTGGC AAGAATAGCA AGTACGCCCC CGCTGAGGGC
                                                                          1740
85
       AACCGCTACG ATGGCATCTA CAAGGTTGTG AAATACTGGC CCGAGAAGGG GAAGTCCGGG
                                                                          1800
       TTTCTCGTGT GGCGCTACCT TCTGCGGAGG GACGATGATG AGCCTGGCCC TTGGACGAAG
                                                                          1860
       GAGGGGAAGG ACCGGATCAA GAAGCTGGGG CTGACCATGC AGTATCCAGA AGGCTACCTG 1920
```

```
CAGGAGGGGG GCTTCGCGTC CCCCAGGACG GGCAAGGGCA AGTGGAAGCG GAAGTCGGCA
                                                                            2040
       GGAGGTGGCC CGAGCAGGGC CGGGTCCCCG CGCCGGACAT CCAAGAAAAC CAAGGTGGAG
                                                                            2100
       CCCTACAGTC TCACGGCCCA GCAGAGCAGC CTCATCAGAG AGGACAAGAG CAACGCCAAG
                                                                            2160
 5
       CTGTGGAATG AGGTCCTGGC GTCACTCAAG GACCGGCCGG CGAGCGGCAG CCCGTTCCAG
                                                                            2220
       TTGTTCCTGA GTAAAGTGGA GGAGACGTTC CAGTGTATCT GCTGTCAGGA GCTGGTGTTC
                                                                            2280
       CGGCCCATCA CGACCGTGTG CCAGCACAAC GTGTGCAAGG ACTGCCTGGA CAGATCCTTT
                                                                            2340
       CGGGCACAGG TGTTCAGCTG CCCTGCCTGC CGCTACGACC TGGGCCGCAG CTATGCCATG
                                                                            2400
       CAGGTGAACC AGCCTCTGCA GACCGTCCTC AACCAGCTCT TCCCCGGCTA CGGCAATGGC
10
       CGGTGATCTC CAAGCACTTC TCGACAGGCG TTTTGCTGAA AACGTGTCGG AGGGCTCGTT
       CATCGGCACT GATTTGTTC TTAGTGGGCT TAACTTAAAC AGGTAGTGTT TCCTCCGTTC
                                                                            2580
       CCTAAAAAGG TTTGTCTTCC TTTTTTTTTA TTTTTATTTT TCAAATCTAT ACATTTTCAG
                                                                            2640
       GAATTTATGT ATTCTGGCTA AAAGTTGGAC TTCTCAGTAT TGTGTTTAGT TCTTTGAAAA
                                                                            2700
       CATAAAAGCC TGCAATTTCT CGACAAAACA ACACAAGATT TTTTAAAGAT GGAATCAGAA
                                                                            2760
15
       ACTACGTGGT GTGGAGGCTG TTGATGTTTC TGGTGTCAAG TTCTCAGAAG TTGCTGCCAC
                                                                            2820
       CAACTCTTTA AGAAGGCGAC AGGATCAGTC CTTCTCTAGG GTTCTGGCCC CCAAGGTCAG
                                                                            2880
      AGCAAGCATC TTCCTGACAG CATTTTGTCA TCTAAAGTCC AGTGACATGG TTCCCCGTGG TGGCCCGTGG CAGCCCGTGG CATGGCGTGG CTCAGCTGTC TGTTGAAGTT GTTGCAAGGA
                                                                            2940
                                                                            3000
       AAAGGAAA CATCTCGGGC CTAGTTCAAA CCTTTGCCTC AAAGCCATCC CCCACCAGAC
TGCTTTGCGT CTGAGATCCG CGTGAAAAGT CCTCTGCCCA CGAGAGCAGG GAGTTGGGG
                                                                            3060
20
                                                                            3120
       CACGCAGAAA TGGCCTCAAG GGGACTCTGC TCCACGTGGG GCCAGGCGTG TGACTGACGC
TGTCCGACGA AGGCGGCCAC GGACGGACGC CAGCACACGA AGTCACGTGC AAGTGCCTTT
                                                                            3180
                                                                            3240
       GATTCGTTCC TTCTTTCTAA AGACGACAGT CTTTGTTGTT AGCACTGAAT TATTGAAAAT
                                                                            3300
       GTCAACCAGA TTCTAGAAAC TGCGGTCATC CAGTTCTTCC TGACACCGGA TGGGTGCTTG
                                                                            3360
25
       GGAACCGTTT GAGCCTTATA GATCATTTAC ATTCAATTTT TTTAACTCAG CAAGTGAGAA
                                                                            3420
       CTTACAAGAG GGTTTTTTT TAATTTTTTT TTCTCTTAAT GAACACATTT TCTAAATGAA
                                                                            3480
       TTTTTTTGT AGTTACTGTA TATGTACCAA GAAAGATATA ACGTTAGGGT TTGGTTGTTT
                                                                            3540
       TTGTTTTTGT ATTTTTTTC TTTTGAAAGG GTTTGTTAAT TTTTCTAATT TTACCAAAGT
                                                                            3600
       TTGCAGCCTA TACCTCAATA AAACAGGGAT ATTTTAAATC ACATACCTGC AGACAAACTG
30
       GAGCAATGTT ATTTTTAAAG GGTTTTTTTC ACCTCCTTAT TCTTAGATTA TTAATGTATT
                                                                            3720
       AGGGAAGAAT GAGACAATTT TGTGTAGGCT TTTTCTAAAG TCCAGTACTT TGTCCAGATT 3780
       TTAGATTCTC AGAATAAATG TTTTTCACAG ATTGAAAAAA AAAAAAAA
       Seg ID NO: 455 Protein sequence
35
       Protein Accession #: NP_037414.2
                              21
                                         31
                                                     41
                                                                51
                  11
       MWIQVRTMDG ROTHTVDSLS RLTKVEELRR KIQELFHVEP GLQRLFYRGK OMEDGHTLFD
                                                                              60
40
       YEVRLNDTIQ LLVRQSLVLP HSTKERDSEL SDTDSGCCLG QSESDKSSTH GEAAAETDSR
                                                                             120
       PADEDMWDET ELGLYKVNEY VDARDTNMGA WFEAQVVRVT RKAPSRDEPC SSTSRPALEE
                                                                             180
       DVIYHVKYDD YPENGVVQMN SRDVRARART IIKWQDLEVG QVVMLNYNPD NPKERGFWYD
                                                                             240
       AEISRKRETR TARELYANVV LGDDSLNDCR IIFVDEVFKI ERPGEGSPMV DNPMRRKSGP
                                                                             300
       SCKHCKDDVN RLCRVCACHL CGGRQDPDKQ LMCDECDMAF HIYCLDPPLS SVPSEDEWYC
                                                                             360
45
       PECRNDASEV VLAGERLRES KKKAKMASAT SSSQRDWGKG MACVGRTKEC TIVPSNHYGP
                                                                             420
                                                                             480
       IPGIPVGTMW RFRVQVSESG VHRPHVAGIH GRSNDGAYSL VLAGGYEDDV DHGNFFTYTG
       SGGRDLSGNK RTAEQSCDQK LTNTNRALAL NCFAPINDQE GAEAKDWRSG KPVRVVRNVK
                                                                             540
       GGKNSKYAPA EGNRYDGIYK VVKYWPEKGK SGFLVWRYLL RRDDDEPGPW TKEGKDRIKK
                                                                             600
       LGLTMQYPEG YLEALANRER EKENSKREEE EQQEGGFASP RTGKGKWKRK SAGGGPSRAG
                                                                             660
50
       SPRRTSKKTK VEPYSLTAQQ SSLIREDKSN AKLWNEVLAS LKDRPASGSP FQLFLSKVEE
       TFQCICCQEL VFRPITTVCQ HNVCKDCLDR SFRAQVFSCP ACRYDLGRSY AMQVNQPLQT
       Seq ID NO: 456 DNA sequence
       Nucleic Acid Accession #: NM_001200.1
55
       Coding sequence: 325..1514
                                                                51
                  11
                              21
                                         31
                                                     41
       GGGGACTTCT TGAACTTGCA GGGAGAATAA CTTGCGCACC CCACTTTGCG CCGGTGCCTT
60
       TGCCCCAGCG GAGCCTGCTT CGCCATCTCC GAGCCCCACC GCCCCTCCAC TCCTCGGCCT
                                                                             120
       TGCCCGACAC TGAGACGCTG TTCCCAGCGT GAAAAGAGAG ACTGCGCGGC CGGCACCCGG
                                                                             180
       GAGAAGGAGG AGGCAAAGAA AAGGAACGGA CATTCGGTCC TTGCGCCAGG TCCTTTGACC
                                                                             240
       AGAGTTTTTC CATGTGGACG CTCTTTCAAT GGACGTGTCC CCGCGTGCTT CTTAGACGGA
                                                                             300
       CTGCGGTCTC CTAAAGGTCG ACCATGGTGG CCGGGACCCG CTGTCTTCTA GCGTTGCTGC
                                                                             360
65
       TTCCCCAGGT CCTCCTGGGC GGCGCGGCTG GCCTCGTTCC GGAGCTGGGC CGCAGGAAGT
                                                                             420
       TCGCGGCGGC GTCGTCGGGC CGCCCCTCAT CCCAGCCCTC TGACGAGGTC CTGAGCGAGT
                                                                             480
       TCGAGTTGCG GCTGCTCAGC ATGTTCGGCC TGAAACAGAG ACCCACCCCC AGCAGGGACG
                                                                             540
       CCGTGGTGCC CCCCTACATG CTAGACCTGT ATCGCAGGCA CTCAGGTCAG CCGGGCTCAC
                                                                             600
       CCGCCCCAGA CCACCGGTTG GAGAGGGCAG CCAGCCGAGC CAACACTGTG CGCAGCTTCC
                                                                             660
70
       ACCATGAAGA ATCTTTGGAA GAACTACCAG AAACGAGTGG GAAAACAACC CGGAGATTCT
                                                                             720
       TCTTTAATTT AAGTTCTATC CCCACGGAGG AGTTTATCAC CTCAGCAGAG CTTCAGGTTT
                                                                             780
       TCCGAGAACA GATGCAAGAT GCTTTAGGAA ACAATAGCAG TTTCCATCAC CGAATTAATA
                                                                             B40
       TTTATGAAAT CATAAAACCT GCAACAGCCA ACTCGAAATT CCCCGTGACC AGACTTTTGG
                                                                             900
       ACACCAGGTT GGTGAATCAG AATGCAAGCA GGTGGGAAAG TTTTGATGTC ACCCCCGCTG
                                                                             960
75
       TGATGCGGTG GACTGCACAG GGACACGCCA ACCATGGATT CGTGGTGGAA GTGGCCCACT
                                                                            1020
       TGGAGGAGAA ACAAGGTGTC TCCAAGAGAC ATGTTAGGAT AAGCAGGTCT TTGCACCAAG
                                                                            1080
       ATGAACACAG CTGGTCACAG ATAAGGCCAT TGCTAGTAAC TTTTGGCCAT GATGGAAAAG
                                                                            1140
       GGCATCCTCT CCACAAAAGA GAAAAACGTC AAGCCAAACA CAAACAGCGG AAACGCCTTA
                                                                            1200
       AGTCCAGCTG TAAGAGACAC CCTTTGTACG TGGACTTCAG TGACGTGGGG TGGAATGACT
                                                                            1260
80
       GGATTGTGGC TCCCCCGGGG TATCACGCCT TTTACTGCCA CGGAGAATGC CCTTTTCCTC
                                                                            1320
       TGGCTGATCA TCTGAACTCC ACTAATCATG CCATTGTTCA GACGTTGGTC AACTCTGTTA
                                                                            1380
       ACTCTAAGAT TCCTAAGGCA TGCTGTGTCC CGACAGAACT CAGTGCTATC TCGATGCTGT
                                                                            1440
       ACCTTGACGA GAATGAAAAG GTTGTATTAA AGAACTATCA GGACATGGTT GTGGAGGGTT
       GTGGGTGTCG CTAGTACAGC AAAATTAAAT ACATAAATAT ATATATA
85
       Seq ID NO: 457 Protein sequence
```

WO 02/086443

Seq ID NO: 457 Protein sequence Protein Accession #: NP_001191.1

	W O 02/	000443							
	1	11	21	31	41	51			
	1	1	1	} .	1	}			
_		LLLPQVLLGG					60		
5		RDAVVPPYML					120		
		RPFFNLSSIP	TEEFITSAEL	QVFREQMQDA	LGNNSSPHHR	INIYEIIKPA	180		
	TANSKFPVTR	PPDL							
	Seg ID NO: 458 DNA sequence								
10	Seq 1D NO: 456 DNA sequence Nucleic Acid Accession #: NM_001999.2 Coding sequence: 18736								
	1	11	21	31	41	51			
15	1	010001000	-	A COURT COURT CO	TOTOGOMOGO				
13		GACGGAGGCT AGGGCACGGC					60 120		
	_	CGCAACAGGT					180		
		GCGAGGAGGG					240		
		GAGGGCCCAA					300		
20		TCCCTGGAGG					360		
		GTTCCCGTCC					420		
		AATCAATTCA					480		
		GCCAGTGCCA GTCAGAATGG					540 600		
25		CACAGTGTGA					660		
		GCCAAGGGCA					720		
	ACCACTGGAC	GGGCGTGGGG	CCATCCCTGT	GAGATGTGTC	CAGCCCAGCC	TCAGCCCTGC	780		
		TCATCCCCAA					840		
20		GGATATGCCA					900		
30	AGATGCCCTG	CTGGTCACAA TTCCTGGGAT	ACAGAGTGAA	ACTACTCAGA	AATGTGAAGA	CCCAACCTAT	960 1020		
	TUCAGCATCA	GTCCACGTGG	ATGTGAAACT	TCAACAGATG	GCTCTCGATG	CATCGATCAG	1080		
	AGAACAGGCA	TGTGTTTCTC	GGGCCTGGTG	AATGGCCGCT	GTGCACAAGA	GCTCCCGGG	1140		
		AAATGCAGTG					1200		
35		GTCCTGTCAG					1260		
		GAATTCCAGG					1320		
		GTGGCAATGG ATGGCTTTTC					1380 1440		
		TCACTGGACT					1500		
40		GTTTAAATGG					1560		
• •		ATAAGCAGGA					1620		
	AATCCCTGCA	CTAATGGAGA	TTGTGTTAAC	ACACCTGGTT	CCTATTATTG	TAAATGTCAT	1680		
		AGAGGACTCC					1740		
45		TTTGTAAAAA					1800		
45		GCTTTGAATT ACATGTGTTT				TGATGAATGT	1860 1920		
		CAGGATTTGT					1980		
		CAGGAATCTG					2040		
	TGTGACTGTC	CCCCAGGCCT	GGCTGTGGGC	ATGGATGGAC	GTGTGTGTGT	TGATACTCAC	2100		
50		CCTGCTATGG					2160		
		AGTCCGAATG					2220		
		CTGCAAAAAA ATGGAAGAGA					2280 2340		
		AAAACTTACG					2400		
55		GAAGAAACTG					2460		
		TGTGCCGAAA					2520		
	GTGTTCAGGA	CTGAGACAGA	GACCTGTGAA	GATATAAATG	AATGTGAAAG	CAACCCATGT	2580		
						GCCCGGCAGC			
60						TTGGCTCAAC TGAATGCTGT	2700 2760		
00						TACAGCTTGC	2820		
						GTGTGAGGTG	2880		
	TTCCCTGGCG	TTTGTCCAAA	TGGACGCTGT	GTCAACAGTA	AGGGATCTTT	TCATTGCGAG	2940		
65						TCGCATGGAG	3000		
65						AAAGTTCCGC	3060		
						GGAGTGCCCC TGCTAACCGA	3120 3180		
	GGGGATGTTC	TTACTGGGGG	GCCATTTTAC	AAAGACATCA	ATGAATGCAA	AGCATTTCCT	3240		
						CCGTTGCAAT	3300		
70	AGTGGCTTTG	CTCTAGACAT	GGAGGAAAGA	AACTGCACGG	ACATCGACGA	GTGCAGGATT	3360		
						TGAGTGCGAG	3420		
						CATTGACGGA	3480		
						GGGCAGCTTT TGTGGATATT	3540 3600		
75						CATGATTGGA	3660		
, ,						GGGCTGTACA	3720		
	GATATTGATG	AATGTATGAT	AATGAACGGA	GGCTGTGACA	CCCAGTGCAC	AAATTCAGAG	3780		
	GGAAGCTACG	AATGCAGCTG	CAGTGAGGGT	TATGCCCTGA	TGCCAGATGG	GAGATCGTGT	3840		
80						GTGTACCAAC	3900		
80						GGACATGAAA	3960		
						TGGGGAATGT GAAGAAGGGG	4020 4080		
						CGACATGCAT	4140		
^-						CTGGATTGGA	4200		
85	AACGGCATCA	AGTGTATTGA	TCTGGACGAA	TGTTCTAATG	GAACCCACCA	GTGTAGCATC	4260		
						AGGTTTCACT	4320		
	GGTGATGGCT	TTACCTGCTC	AGATGTTGAT	GAGTGTGCAG	AAAACATAAA	CCTCTGTGAG	4380		

		/080443					
	AACGGACAGT	GCCTTAATGT	CCCGGGTGCA	TATCGCTGCG	AGTGTGAGAT	GGGCTTCACT	4440
	CCAGCCTCAG	ACAGCAGATC	CTGCCAAGAT	ATTGATGAAT	GCTCCTTCCA	AAACATTTGT	4500
	GTCTCTGGAA	CATGTAATAA	CCTGCCTGGA	ATGTTTCATT	GCATCTGCGA	TGATGGTTAT	4560
_	GAATTGGACA	GAACAGGAGG	GAACTGTACA	GATATTGATG	AGTGTGCAGA	TCCTATAAAC	4620
5	TGTGTCAATG	GCCTATGTGT	CAACACGCCT	GGTCGCTATG	AGTGTAACTG	CCCACCCGAT	4680
	TTTCAGTTGA	ACCCAACTGG	TGTGGGTTGT	GTTGACAACC	GTGTGGGCAA	CTGCTACCTG	4740
	AAGTTTGGAC	CTCGAGGAGA	TGGGAGTCTG	TCTTGCAACA	CCGAGATCGG	GGTGGGCGTC	4800
	AGTCGCTCTT	CATGCTGCTG	CTCTCTGGGA	AAGGCCTGGG	GAAACCCCTG	TGAGACATGC	4860
10	CCCCCTGTCA	ATAGCACTGA	ATATTACACC	CTGTGTCCCG	GAGGTGAAGG	CTTCAGACCT	4920
10	AACCCCATCA	CAATCATTTT	AGAAGACATT	GACGAATGCC	AGGAGTTACC	AGGTCTCTGC	4980
		ACTGCATCAA					5040
		AGGATACCCG					5100
		CTGGGACCTG					5160
1.5		AGGTCAATGG					5220
15		ATGGAACCAC					5280
	TGCTGCTGCA	CATATAATGT	GGGCAAAGCT	GGGAACAAAC	CTTGTGAACC	ATGCCCAACT	5340
		CTGACTTTAA					5400
		AAGCTGTTGA					5460
20		TTAACCAGAT					5520
20		TGTTGGTTTG					5580
		CAGACTGCAT					5640
	TTCAAACTTT	CACCCAATGG	GGCCTGTGTA	GATCGCAATG	AATGTTTAGA	AATTCCTAAC	5700
	GTTTGCAGTC	ATGGCTTGTG	TGTTGATCTG	CAAGGAAGTT	ACCAGTGCAT	CTGCCACAAT	5760
0.5		CTTCTCAGGA					5820
25		ATGGAACTTG					5880
		TCACTCATAA					5940
		GÇAGAAATGG					6000
	AACGAAGGTT	ATGAACTTAC	CCCAGATGGC	AAAAACTGTA	TAGACACTAA	TGAGTGTGTC	6060
20		GCTCTTGCTC					6120
30		CAGGGTATGA					6180
	GAAGATCCCA	ACATTTGTCT	TTTTGGTTCC	TGTACTAATA	CTCCAGGGGG	CTTCCAGTGC	6240
	CTCTGCCCCC	CTGGCTTTGT	ACTATCTGAT	AATGGACGGA	GATGCTTTGA	TACTCGCCAG	6300
		TCACAAATTT					6360
26		AATGCTGCTG					6420
35		AAGACGATGA					6480
	GTCCCTAGTC	TTCATGATAC	ACGTGAAGAT	GTCAATGAGT	GTCTTGAGAG	CCCAGGCATT	6540
	TGTTCAAATG	GTCAATGTAT	CAACACCGAC	GGATCTTTTC	GCTGTGAATG	TCCAATGGGC	6600
		ACTACACTGG					6660
40	CCGTGTGGAA	ATGGTACATG	CACCAATGTT	ATTGGGAGTT	TTGAATGCAA	TTGCAATGAA	6720
40	GGCTTTGAGC	CAGGGCCCAT	GATGAATTGT	GAAGATATCA	ACGAATGTGC	CCAGAACCCA	6780
		CTTTACGCTG					6840
	GGCTATGCCC	TCAGGGAAGA	TCAAAAGATG	TGCAAAGATC	TGGATGAATG	TGCTGAAGGG	6900
		GTGAATCTAG					6960
15		CTGGAATGGC					7020
45		AGCCAGGAAT					7080
	AGATGTGAGT	GTAATGAAGG	ATTCCAGTCA	AGTTCTTCAG	GCACTGAATG	CCTTGACAAT	7140
		TCTGCTTTGC					7200
	CGCAATCTCG	TCACTAAGTC	AGAATGCTGC	TGTGATGGTG	GGCGAGGCTG	GGGCCACCAG	7260
50	TGCGAGCTTT	GCCCACTTCC	TGGAACTGCC	CAGTACAAAA	AGATATGTCC	TCATGGCCCA	7320
30		CTGATGGAAG					7380 7440
	AATGGTCAGT	GCATCAATAC GTGGAACCTC	CATGGGCTCA	CONCARCAN	COTOCOLOGI	CCCCNAACCA	7500
,	ACAGACATCA	TCTGCAAGAA	TIGIATAGAC	ACCURACIONAL	CONTRACTOR	CACCCCCCTAT	7560
	TGCAACTACA	TCTGCAAGAA	CACTGAGGGG	AGITATCAGI CA COMMCANO	DITCATGICC	AAACCACCAT	7620
55	GTCCTGCAAG	AGGATGGAAA TCCTCTGTGT	GACATGCAAA	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCTCTANAC	TOCA COTOCAL	7680
55	AACTGCCAGT	ATCACACTGC	TROPA DOCA	DOGGGGIIIA	CCIGIAAAIG	1 CCACCIGGI	7740
	TTCACACAGC	ATCACACTGC	TOTALCOAC	CCACCCACTT	TCACCTCTCA	ATGCCAAAGA	7800
:	TGTGGAGGAA	MUGGAATCIG	TCAMAACACI	CCAGGCAGII	TORGOTTON	TGATGGGAAC	7860
	GGGTTCTCTC	TIGATGCCAC	CCACAACAAC	CTCCCTCCCT	ACACATCTCC	CTGCCCCCAA	7920
60 -	CACAGGIGCC	AACACGGCIG	CURGARCAIC	TOTOTOTOTO	ACADATCAATC	CTCCAATCCC	7980
UU	A A TO COTTOTO	MOCMUTACCA	CTCCTACAAC	ACCCTGGGGA	GTTACAAGTG	CGCCTGCCCC	
	TOCCCOTTO	CCTTCGACCA	GTTCTCCAGT	GCCTGCCACG	ACGTGAATGA	GTGCTCGTCC	8100
	TCCDGGIICI	CCTCCACCA	CGGCTGCTCT	AACACGGAGG	GGGGCTACCT	CTGTGGCTGC	8160
	CCCCCCCCC	ATTACACACT	GGGACAAGGC	CACTGTGTCT	CAGGAATGGG	ATTTAACAAG	
65	GGGCAGTACC	TGTCACTGGA	TACAGAGGTC	GATGAGGAAA	ATGCTCTGTC	CCCAGAAGCA	8280
	TGCTACGAGT	GCAAAATCAA	CGGCTATCCT	AAGAAAGACA	GCAGGCAGAA	GAGAAGTATT	8340
	CATGAACCTG	ATCCCACTGC	TGTTGAACAG	ATCAGCCTAG	AGAGTGTCGA	CATGGACAGC	8400
	CCCGTCAACA	TGAACTTCAA	CCTCTCCCAC	CTCGGCTCTA	AGGAGCACAT	CCTGGAACTA	8460
	AGGCCCGCCA	TCCAGCCCCT	CAACAACCAC	ATCCGTTATG	TCATCTCTCA	AGGGAACGAT	8520
70	GACAGCGTCT	TCCCCATCCA	CCAAAGGAAT	GGGCTCAGCT	ACTTGCACAC	GGCCAAGAAG	8580
. •	AAGCTCATGC	CCGCCACATA	CACACTGGAA	ATCACTAGCA	TCCCTCTCTA	CAAGAAGAAG	8640
	GAGCTTAAGA	AACTGGAAGA	GAGCAATGAG	GATGACTACC	TCCTAGGGGA	GCTTGGGGAG	8700
	GCTCTCAGAA	TGAGGCTGCA	GATTCAGCTC	TATTAACCGT	TCACAGACTT	GGGCCCAGGC	8760
	TCAAATCCTA	GCACAGCCAG	TCTGCAGAAG	CATTTGAAAA	GTCAAGGACT	AATTTTAAAG	8820
75	AGGAAAAATA	ATAATAACTC	TTGTTTCTTT	CCTCCCTGTC	TTAGACTTTG	AATGTTGACC	8880
	CTCACAGGGA	GGGATAATTT	AGACTCTGGT	ATGGCCAAAG	ATTTGAGCTC	AAAGGCAACC	8940
	GTGGTTACTC	TATTTTTAT	ATAACTTCAT	TTTAAAATAT	ATTAAAAGAA	ACCTAAATGT	9000
	TCAAGATATC	AGCATATGGC	ACTAAATGCA	CAAAAATAAT	GTGAGCTTTT	TTTTTTTTT	9060
	CCTGTTAGCA	GTCTGTAACA	CTTTGGGTAT	TTTGCTATAG	TTGCTAATTA	AAAAAATATA	9120
80	GATGTTTATT	TATTTTTAAT	GCAGTAATAT	ATGGAGAAAT	GAACAAACTA	TGTAAACAAA	9180
	AAGGGAAACT	CACTTGTTTT	TCTTTAGATT	TATAAATTTG	AGCTATTTTT	TTTAGAGGTG	9240
						AGTCATCCAG	
						GCAGTGCTAA	
	TCAATAATTT	AAAAGACATG	AATGTCATTA	GATCCTTTAT	AACGTAGATC	GAAGCCAAAG	9420
85						AGTTGAAGCA	
	CAACCACTGT	AGCAAAATAC	CTTGACTGCT	TGTGAGACCA	TTAGCATTGC	AGGCCAAACC	9540
						ACACCTCATT	

```
CTTACCCAGG GTGCGCTGCG TCCTCATGGT ACTGTAGGCA GCTGAAGAAC CGCCGTTCCC 9660
       TTGAAAGGGA ACACCTGGCA TTCTGTGGTG TTTCGTGCTG TCTTAAATAA TGGTGCATTT
       ATTATGTTCA AGTTATTTCA GGATTGCCAT ATGTGCAAAC AAATCATGCA ATGCAGCCAA
       GGAATATATG TIGITGTIGT TGTTTTAAAC CCATTTTTTT TTTAGAATTT TCATTAATAC
                                                                          9840
 5
       TGTAGTTATA CACCATATGC CTCATTTTAT CATAGCCTAT TGTGTATGAA AGATGTTTGT
       ACAATGAATT GATGTTTAGT TTGCTTTAGT CATTTAAAAA GATATTGTAC CAGGATGTGC
                                                                          9960
       TATTAAGAGC ACGTATCCAT TATTCTTCTC AACCCAAGAA CCTGTTTCCT GGACCAGTGA 10020
       CCAAACCTCA TATGTGAAAT GGCCAAAGCA CATGCAGGCT CCTGGTTGTT CCTCTCAAAC 10080
       CTGTGCTGAC CAAGATTAG TAACCAGTTA TACCCAGTAT TTTGAGGTTT TATTGTTTTT 10140.
10
       TTAATAACTA AAAAAAAACT CGTGCC
       Sea ID NO: 459 Protein sequence
       Protein Accession #: NP_001990.1
15
                             21
                                        31
                                                    41
                                                              51
       MGRRRRLCLQ LYFLWLGCVV LWAQGTAGQP QPPPPKPPRP QPPPQQVRSA TAGSEGGFLA
       PEYREEGAAV ASRVRRRGQQ DVLRGPNVCG SRFHSYCCPG WKTLPGGNQC IVPICRNSCG
       DGFCSRPNMC TCSSGQISST CGSKSIQQCS VRCMNGGTCA DDHCQCQKGY IGTYCGQPVC
20
       ENGCONGGRC IAOPCACVYG FTGPQCERDY RTGPCFTQVN NQMCQGQLTG IVCTKTLCCA
       TTGRAWGHPC EMCPAOPOPC RRGFIPNIRT GACQDVDECQ AIPGICQGGN CINTVGSFEC
                                                                           300
       RCPAGHKQSE TTQKCEDIDE CSIIPGICET GECSNTVGSY FCVCPRGYVT STDGSRCIDQ
                                                                           360
       RTGMCFSGLV NGRCAQELPG RMTKMQCCCE PGRCWGIGTI PEACPVRGSE EYRRLCMDGL
                                                                           420
       PMGGIPGSAG SRPGGTGGNG FAPSGNGNGY GPGGTGFIPI PGGNGFSPGV GGAGVGAGGQ
                                                                           480
       GPIITGLTIL NQTIDICKHH ANLCLNGRCI PTVSSYRCEC NMGYKQDANG DCIDVDECTS
25
                                                                           540
       NPCTNGDCVN TPGSYYCKCH AGFQRTPTKQ ACIDIDECIQ NGVLCKNGRC VNSDGSFQCI
                                                                           600
       CNAGPELTTD GKNCVDHDEC TTTNMCLNGM CINEDGSFKC ICKPGFVLAP NGRYCTDVDE
                                                                           660
       COTPGICMNG HCINSEGSFR CDCPPGLAVG MDGRVCVDTH MRSTCYGGIK KGVCVRPFPG
                                                                           720
       AVTKSECCCA NPDYGFGEPC QPCPAKNSAE FHGLCSSGVG ITVDGRDINE CALDPDICAN
                                                                           780
30
       GICENLRGSY RONCNSGYEP DASGRNCIDI DECLVNRLLC DNGLCRNTPG SYSCTCPPGY
                                                                           840
       VFRTETETCE DINECESNPC VNGACRNNLG SFNCECSPGS KLSSTGLICI DSLKGTCWLN
                                                                           900
       IQDSRCEVNI NGATLKSECC ATLGAAWGSP CERCELDTAC PRGLARIKGV TCEDVNECEV
                                                                           960
       PPGVCPNGRC VNSKGSFHCE CPEGLTLDGT GRVCLDIRME QCYLKWDEDE CIHPVPGKFR
                                                                          1020
       MDACCCAVGA AWGTECEECP KPGTKEYETL CPRGAGPANR GDVLTGRPFY KDINECKAFP
                                                                          1080
35
       GMCTYGKCRN TIGSFKCRCN SGFALDMEER NCTDIDECRI SPDLCGSGIC VNTPGSFECE
                                                                          1140
       CPEGYESGFM MMKNCMDIDG CERNPLLCRG GTCVNTEGSF QCDCPLGHEL SPSREDCVDI
       NECSLSDNLC RNGKCVNMIG TYQCSCNPGY QATPDRQGCT DIDECMIMNG GCDTQCTNSE
       GSYECSCSEG YALMPDGRSC ADIDECENNP DICDGGQCTN IPGEYRCLCY DGFMASMDMK
       TCIDVNECDL NSNICMFGEC ENTKGSFICH CQLGYSVKKG TTGCTDVDEC EIGAHNCDMH
40
       ASCLNIPGSF KCSCREGWIG NGIKCIDLDE CSNGTHQCSI NAQCVNTPGS YRCACSEGFT
                                                                          1440
       GDGFTCSDVD ECAENINLCE NGQCLNVPGA YRCECEMGFT PASDSRSCQD IDECSFONIC
                                                                          1500
       VSGTCNNLPG MFHCICDDGY ELDRTGGNCT DIDECADPIN CVNGLCVNTP GRYECNCPPD
                                                                          1560
       FOLNPTGVGC VDNRVGNCYL KFGPRGDGSL SCNTEIGVGV SRSSCCCSLG KAWGNPCETC
                                                                          1620
       PPVNSTEYYT LCPGGEGFRP NPITIILEDI DECQELPGLC QGGNCINTFG SFQCECPQGY
                                                                          1680
45
       YLSEDTRICE DIDECFAHPG VCGPGTCYNT LGNYTCICPP EYMQVNGGHN CMDMRKSFCY
                                                                          1740
       RSYNGTTCEN ELPFNVTKRM CCCTYNVGKA GNKPCEPCPT PGTADFKTIC GNIPGFTFDI
                                                                          1800
       HTGKAVDIDE CKEIPGICAN GVCINQIGSF RCECPTGFSY NDLLLVCEDI DECSNGDNLC
                                                                          1860
       QRNADCINSP GSYRCECAAG FKLSPNGACV DRNECLEIPN VCSHGLCVDL QGSYQCICHN
                                                                          1920
       GFKASQDQTM CMDVDECERH PCGNGTCKNT VGSYNCLCYP GFELTHNNDC LDIDECSSFF
                                                                          1980
50
       GOVCRNGRCF NEIGSFKCLC NEGYELTPDG KNCIDTNECV ALPGSCSPGT CQNLEGSFRC
                                                                          2040
       ICPPGYEVKS ENCIDINECD EDPNICLFGS CTNTPGGFQC LCPPGFVLSD NGRRCFDTRQ
                                                                          2100
       SFCFTNFENG KCSVPKAFNT TKAKCCCSKM PGEGWGDPCE LCPKDDEVAF QDLCPYGHGT
                                                                          2160
       VPSLHDTRED VNECLESPGI CSNGQCINTD GSFRCECPMG YNLDYTGVRC VDTDECSIGN
                                                                          2220
       PCGNGTCTNV IGSFECNCNE GFEPGPMMNC EDINECAQNP LLCALRCMNT FGSYECTCPI
                                                                          2280
55
       GYALREDOKM CKDLDECAEG LHDCESRGMM CKNLIGTFMC ICPPGMARRP DGEGCVDENE
                                                                          2340
       CRTKPGICEN GRCVNIIGSY RCECNEGFQS SSSGTECLDN RQGLCFAEVL QTICQMASSS
                                                                          2400
       RNLVTKSECC CDGGRGWGHQ CELCPLPGTA QYKKICPHGP GYTTDGRDID ECKVMPNLCT
                                                                          2460
       NGQCINTMGS FRCFCKVGYT TDISGTSCID LDECSQSPKP CNYICKNTEG SYQCSCPRGY
                                                                          2520
       VLQEDGKTCK DLDECQTKQH NCQFLCVNTL GGFTCKCPPG FTQHHTACID NNECGSQPLL
                                                                          2580
60
       CGGKGICONT PGSFSCECOR GFSLDATGLN CEDVDECDGN HRCQHGCQNI LGGYRCGCPQ
                                                                          2640
       GYIQHYQWNQ CVDENECSNP NACGSASCYN TLGSYKCACP SGFSFDQFSS ACHDVNECSS
                                                                          2700
       SKNPCNYGCS NTEGGYLCGC PPGYYRVGQG HCVSGMGFNK GQYLSLDTEV DEENALSPEA
                                                                          2760
       CYECKINGYP KKDSRQKRSI HEPDPTAVEQ ISLESVDMDS PVNMKFNLSH LGSKEHILEL
                                                                          2820
       RPAIOPLNNH IRYVISQGND DSVPRIHQRN GLSYLHTAKK KLMPGTYTLE ITSIPLYKKK
65
       ELKKLEESNE DDYLLGELGE ALRMRLQIQL Y
       Seq ID NO: 460 DNA sequence
       Nucleic Acid Accession #: NM 013372.1
       Coding sequence: 63..617
70
                                                              51
                  11
                             21
                                        3.1
                                                   41
       GCGGCCGCAC TCAGCGCCAC GCGTCGAAAG CGCAGGCCCC GAGGACCCGC CGCACTGACA
                                                                            60
       GTATGAGCCG CACAGCCTAC ACGGTGGGAG CCCTGCTTCT CCTCTTGGGG ACCCTGCTGC
                                                                           120
75
       CGGCTGCTGA AGGGAAAAAG AAAGGGTCCC AAGGTGCCAT CCCCCCGCCA GACAAGGCCC
                                                                           180
       AGCACAATGA CTCAGAGCAG ACTCAGTCGC CCCAGCAGCC TGGCTCCAGG AACCGGGGGC
                                                                           240
       GGGGCCAAGG GCGGGGCACT GCCATGCCCG GGGAGGAGGT GCTGGAGTCC AGCCAAGAGG
                                                                           300
       CCCTGCATGT GACGGAGCGC AAATACCTGA AGCGAGACTG GTGCAAAACC CAGCCGCTTA
                                                                           360
       AGCAGACCAT CCACGAGGAA GGCTGCAACA GTCGCACCAT CATCAACCGC TTCTGTTACG
                                                                           420
80
       GCCAGTGCAA CTCTTTCTAC ATCCCCAGGC ACATCCGGAA GGAGGAAGGT TCCTTTCAGT
                                                                           480
       CCTGCTCCTT CTGCAAGCCC AAGAAATTCA CTACCATGAT GGTCACACTC AACTGCCCTG
                                                                           540
       AACTACAGCC ACCTACCAAG AAGAAGAGAG TCACACGTGT GAAGCAGTGT CGTTGCATAT
                                                                           600
       CCATCGATTT GGATTAAGCC AAATCCAGGT GCACCCAGCA TGTCCTAGGA ATGCAGCCCC
                                                                           660
       AGGAAGTCCC AGACCTAAAA CAACCAGATT CTTACTTGGC TTAAACCTAG AGGCCAGAAG
                                                                           720
85
       AACCCCCAGC TGCCTCCTGG CAGGAGCCTG CTTGTGCGTA GTTCGTGTGC ATGAGTGTGG
                                                                           780
       ATGGGTGCCT GTGGGTGTTT TTAGACACCA GAGAAAACAC AGTCTCTGCT AGAGAGCACT
                                                                           840
       CCCTATTTTG TAAACATATC TGCTTTAATG GGGATGTACC AGAAACCCAC CTCACCCCGG
                                                                           900
```

WO 02/086443

	07C1017C				THE PROPERTY OF THE PARTY.	CTCCCCCCC	
	CICACATCIA	AAGGGGCGGG	GCCGTGGTCT	GGTTCTGACT	ACCUTCTCT	CACCCCTCCT	960
	GGGGACCAGA	ATCTCCTTTC AGTGCTGCAT	GGAATGAATG	TICATGGAAG	TAACCTCTCC	TTCCATCCTC	1020 1080
	GACCIGITIT	AGTGCTGCAT	TCGACATGGA	AAAGTCCIII	ATACTCACTA	TOTCACCCC	
5	CITTCCTCCT	CCTCCTCACA	ATCCATCTCT	TCTTAAGTIG	CARCARCIA	ADCOMMONO	1140
5	ATCTCTTGTT	TGCCAAGGTT	CCTAAATTAA	TTCACTTAAC	CAIGAIGCAA	AIGITITICA	1200
	TTTTGTGAAG	ACCCTCCAGA	CTCTGGGAGA	GGCTGGTGTG	GGCAAGGACA	AGCAGGATAG	1260
	TGGAGTGAGA	AAGGGAGGGT	GGAGGGTGAG	GCCAAATCAG	GTCCAGCAAA	AGTCAGTAGG	1320
	GACATTGCAG	AAGCTTGAAA	GGCCAATACC	AGAACACAGG	CIGATGCTTC	TGAGAAAGTC	1380
10	TTTTCCTAGT	ATTTAACAGA	ACCCAAGTGA	ACAGAGGAGA	AATGAGATIG	CCAGAAAGTG	1440
10	ATTAACTTTG	GCCGTTGCAA	TCTGCTCAAA	CCTAACACCA	AACTGAAAAC	ATAAATACTG	1500
	ACCACTCCTA	TGTTCGGACC	CAAGCAAGTT	AGCTAAACCA	AACCAACTCC	TCTGCTTTGT	1560
	CCCTCAGGTG	GAAAAGAGAG	GTAGTTTAGA	ACTCTCTGCA	TAGGGGTGGG	AATTAATCAA	1620
	AAACCKCAGA	GGCTGAAATT	CCTAATACCT	TTCCTTTATC	GTGGTTATAG	TCAGCTCATT	1680
	TCCATTCCAC	TATTTCCCAT	AATGCTTCTG	AGAGCCACTA	ACTTGATTGA	TAAAGATCCT	1740
15	GCCTCTGCTG	AGTGTACCTG	ACAGTAAGTC	TAAAGATGAR	AGAGTTTAGG	GACTACTCTG	1800
	TTTTAGCAAG	ARATATTKTG	GGGGTCTTTT	TGTTTTAACT	ATTGTCAGGA	GATTGGGCTA	1860
	RAGAGAAGAC	GACGAGAGTA	AGGAAATAAA	GGGRATTGCC	TCTGGCTAGA	GAGTAAGTTA	1920
	GGTGTTAATA	CCTGGTAGAA	ATGTAAGGGA	TATGACCTCC	CITTCITTAT	GTGCTCACTG	1980
		GGGACCCTGT					2040
20	ORN OTCOTTO	GATGGACATA	A CTA TTCTA A	CTATTCACTA	ጥጥልርጥል	GGCACTGTCC	2100
20	CIMCIGGIIG	CTTGGCCTAC	MCIAIIGIAA	CINITCAGIA	TCATCTAACC	CCCAAAGTCC	2160
	TCTGATTAAA	2.1 COURTE AMO	TOGCAATGGC	TACTIAGGAI	TONICIANOG	AACCCTCACC	2220
	AGGGTGGGTG	AACTTTATTG	TACTITIGGAT	TIGGITAACC	morror CO	CTCCTCAGG	
		AAACTCCCTG					2280
25		AATATGGAAA					2340
25	TCTGGCATTC	AGAGAACCCT	TGCAACTCGA	GAAGCTGTTT	TTATTTCGTT	TITGTTTGA	2400
	TCCAGTGCTC	TCCCATCTAA	CAACTAAACA	GGAGCCATTT	CAAGGCGGGA	GATATITTAA	2460
	ACACCCAAAA	TGTTGGGTCT	GATTTTCAAA	CTTTTAAACT	CACTACTGAT	GATTCTCACG	2520
		TTGTCCAAAC					2580
	CCAAATCTTT	GTATTGTCCA	CATTCTCCAA	CAATAAAGCA	CAGAGTGGAT	TTAATTAAGC	2640
30	ACACAAATGC	TAAGGCAGAA	TTTTGAGGGT	GGGAGAGAAG	AAAAGGGAAA	GAAGCTGAAA	2700
	ATGTAAAACC	ACACCAGGGA	GGAAAAATGA	CATTCAGAAC	CAGCAAACAC	TGAATTTCTC	2760
		AACTCTGCCA					2820
		TTCTTTTAGG					2880
		GAATTTCCTC					2940
35		TCACTAGCCA					3000
55	GACTAGTACA	AATGTGGTGT	GTCTTCCAAC	TTTCATTGAA	AATGCCATAT	CTATACCATA	3060
	TTTTATTCA	GTCACTGATG	ATGTAATGAT	ATATTTTTC	ATTATTATAG	TAGAATATTT	3120
		ATATTTGTGG					3180
		GATGTACACT					3240
40		TGTTTTTTGT					3300
70		GATAATTTCC					3360
	TGGAGGAGAG	GATAATTTCC	ACIGIGIGGA	AIGIGAAIAG	ADDEDCARCO	AGIIAIGGII	3420
		ATTATTACTT					3480
		TATGACTTTC					3540
45		TTATCTGGTC					
43		CTGAATCTTT					3600
		AAGAAAGACT					3660
		GATAATGATG					3720
		GGATAAACAG					3780
50	AGTTCTATTG	ACATTCCTCA	AGATATTTAA	TATCAACTGC	ATTATGTATT	ATGTCTGCTT	3840
50						GTGTAGGAGG	
						TGAATCTGTA	3960
•	ACTAGAATTT	AATTTTCACC	CCAATAATGT	TCTATATAGC	CTTTGCTAAA	GAGCAACTAA	4020
		CTATTCTTTC		•			
55	Sea ID NO:	461 Protein	n sequence				
		cession #: 1					
	1	11	21	31	41	51	
	ī	ī	î .	ĭ	i	Ĭ	
60	MODERNATION	ITTTTCTTT	NAPCYKYCEO	CATEDEDENA	UNDEFOTOED	QQPGSRNRGR	60
00						RTIINRFCYG	
						TRVKQCRCIS	
		IKKEEGSFQS	CSPCKPKKFI	Third A TIME E	DOFFIKKKK	INVINGENCIS	100
	IDLD						
65							
U.J	A	4.60					
	-	462 DNA se	•				
	Nucleic Ac	id Accession	n#: Eos se	equence			
	Nucleic Ac		n#: Eos se	equence			
	Nucleic Ac	id Accession	n #: Eos se 733	-			
70	Nucleic Ac	id Accession	n#: Eos se	equence	41	51	
70	Nucleic Act Coding sequent	id Accession Lence: 12	n #: Eos se 733 21	31	1)	
70	Nucleic Act Coding sequence 1 ATGAAAGTTG	id Accession lence: 12 11 GAGTGCTGTG	n #: Eos se 733 21 GCTCATTCT	31) TTCTTCACCT) TCACTGACGG) CCACGGTGGC	60
70	Nucleic According sequents of the control of the co	id Accession lence: 12 11 GAGTGCTGTG AAAATGATGG	n #: Eos se 733 21 GCTCATTCT CATCAAAACA	31) TTCTTCACCT AAAAAAGAAC	TCACTGACGG TCATTGTGAA	CCACGGTGGC TAAGAAAAA	120
70	Nucleic According sequents of the control of the co	id Accession lence: 12 11 GAGTGCTGTG AAAATGATGG	n #: Eos se 733 21 GCTCATTCT CATCAAAACA	31) TTCTTCACCT AAAAAAGAAC	TCACTGACGG TCATTGTGAA	CCACGGTGGC TAAGAAAAA	
	Nucleic According sequents of the control of the co	id Accession lence: 12 11 GAGTGCTGTG AAAATGATGG CAGTCGAAGA	n #: Eos se 733 21 GCTCATTTCT CATCAAAACA ATATCAGCTG	31) TTCTTCACCT AAAAAAGAAC CTGCTTCAGG	TCACTGACGG TCATTGTGAA TGACCTATAG	CCACGGTGGC TAAGAAAAA AGATTCCAAG	120
70 75	Nucleic According sequents of the sequents of	id Accession lence: 12 11) GAGTGCTGTG AAAATGATGG CAGTCGAAGA ATTTGAGAAA	n #: Eos se 733 21 GCTCATTTCT CATCAAAACA ATATCAGCTG TTTTCTGAAG	31) TTCTTCACCT AAAAAAGAAC CTGCTTCAGG CTCTTGAAGC	TCACTGACGG TCATTGTGAA TGACCTATAG CTCCATTATT	CCACGGTGGC TAAGAAAAA AGATTCCAAG ATGGTCACAT	120 180
	Nucleic Ac: Coding sequence 1 ATGAAAGTTG TTCCTGGGGA CATCTAGGCC GAGAAAGAG GGGCTAATTA	id Accession lence: 12° 11) GAGTGCTGTG AAAATGATGG CAGTCGAAGA ATTTGAGAAA GAATTATCAG	n #: Eos se 733 21 GCTCATTTCT CATCAAACA ATATCAGCTG TTTTCTGAAG AGCAAAGGCT	31) TTCTTCACCT AAAAAGAAC CTGCTTCAGG CTCTTGAAGC ACCACAGACT	TCACTGACGG TCATTGTGAA TGACCTATAG CTCCATTATT GCAACAGCCT	CCACGGTGGC TAAGAAAAAA AGATTCCAAG ATGGTCACAT GAATGGAGTC	120 180 240 300
	Nucleic Ac: Coding sequence 1 ATGAAAGTTG TTCCTGGGGA CATCTAGGCC GAGAAAAGGC GGGCTAATTA CTGCAGTGTA	id Accession lence: 12* 11 GAGTGCTGTG AAAATGATGG CAGTCGAAGA ATTTGAGAAA GAATTATCAG CCTGTGAAGA	n #: Eos se 733 21 GCTCATTTCT CATCAAACA ATATCAGCTG TTTTCTGAAG AGCAAAGGCT CAGCTACACC	31) TTCTTCACCT AAAAAGAAC CTGCTTCAGG CTCTTGAGG TCCACAGACT TGGTTTCCTC	TCACTGACGG TCATTGTGAA TGACCTATAG CTCCATTATT GCAACAGCCT CCTCATGCCT	CCACGGTGGC TAAGAAAAA AGATTCCAAG ATGGTCACAT GAATGGAGTC TGATCCCCAG	120 180 240 300 360
	Nucleic According sequents of the sequents of	id Accession lence: 12 11 	n #: Eos se 733 21 GCTCATTTCT CATCAAAACA ATATCAGCTG TTTTCTGAAG AGCAAAGGCT AGCTACACC TGGAGCACTC	31) TTCTTCACCT AAAAAGAAC CTGCTTCAGG CTCTTGAAGCT ACCACAGACT TGGTTTCCTC CCAAGCTGTG	TCACTGACGG TCATTGTGAA TGACCTATAG CTCCATTATT GCAACAGCCT CCTCATGCCT AATGTCATCT	CCACGGTGGC TAAGAAAAA AGATTCCAAG ATGGTCACAT GAATGGAGTC TGATCCCCAG CAACAACCTC	120 180 240 300 360 420
	Nucleic According sequence of the control of the co	id Accession lence: 12* 11 GAGTGCTGTG AAAATGATGG CAGTCGAAGA ATTTGAGAAA GAATTATCAG CCTGTGAAGA TTCACACGGC TCAATTCTG	n #: Eos se 733 21 GCTCATTTCT CATCAAAACA ATATCAGCTG TTTCTGAAG AGCAAAGGCT CAGCTACACC TGGAGCACTC TGGAGCACACC TGGAGCACACAC	31) TTCTTCACCT AAAAAGAAC CTGCTTCAGG CTCTTGAAGC ACCACAGACT TGGTTTCCTC CCAAGCTGTG AAGATTTGGG	J TCACTGACGG TCATTGTGAA TGACCTATATG CTCCATTATT GCAACAGCCT CCTCATGCCT AATGTCATCT GCACTTTCAA	CCACGGTGGC TAAGAAAAA AGATTCCAAG ATGGTCACAT GAATGGAGTC TGATCCCCAG CAACAACCTC AATTAATGAA	120 180 240 300 360 420 480
75	Nucleic Ac: Coding sequ 1 J ATGAAAGTTG TTCCTGGGGA TTCCTGGGGC GAGAAAGAG GGGCTAATTA CTGCAGTGTA AACTGCTACC AGCCAGAGTG AGGTTTACAA	id Accession lence: 12' 11) GAGTGCTGTG AAAATGATGG CAGTCGAAGA ATTTGAGAAGA GAATTATCAG CCTGTGAAGA TTCACACGGC TCAATTTCTG ATGACCTTTT	#: Eos se 733 21 GCTCATTTCT CATCAAACA ATATCAGCTG TTTTCTGAAG AGCAAAGGCT CAGCTACACC TGGAGGACACT TGAGAGAACA GAATTCATCT	31) TTCTTCACCT AAAAAAGAAC CTGCTTCAGG CTCTTGAAGC ACCACAGACT TGGTTTCCTC CCAAGCTGTG AAGATTTGGG TCTGCTATAT	TCACTGACGG TCATTGTGA TGACCTATAG CTCCATTATT GCAACAGCCT CCTCATGCCT AATGTCATCT GCACTTTCAA ACTCCAAATA	CCACGGTGGC TAAGAAAAAA AGATTCCAAG ATGGTCACAT GAATGGAGTC TGATCCCCAG CAACAACCTC AATTAATGAA TGCAAATGGA	120 180 240 300 360 420 480 540
	Nucleic Ac: Coding sequence Transparence ATGAAAGTTG TTCCTGGGGA CATCTAGGGC GAGAAAGAG GGGCTAATTA CTGCAGTGTA AACTGCTACC AGCCAGAGTC AGCCAGAGTC AGTTACAA ATTGAAATTC	id Accession lence: 12* 11 GAGTGCTGTG AAAATGATGG CAGTCGAAGA ATTTGAGAAA GAATTATCAG CCTGTGAAGA TTCACACGGC TCAAATTCTTT AACTTAAAAA	n #: Eos se 733 21 GCTCATTTCT CATCAAAACA ATATCAGCTA ATATCAGCTA AGCAAAGGCT CAGCTACACC TGAGGCACTC TGAGGGACACTC TGAGGGACACTC AGCATATGAA	31) TTCTTCACCT AAAAAGAAC CTGCTTCAGG CTCTTGAAGCT TGGTTTCCTC CCAAGCTGTG AAGATTTGGG TCTGCTATAT AGAATTCAAG	TCACTGACGG TCATTGTGAA TGACCTATAGT CTCCATTATT GCAACAGCCT CCTCATGCCT AATGTCATCT GCACTTTCAA ACTCCAAATA GTTTTGAGTC	CCACGGTGGC TAAGAAAAA AGATTCCAAG ATGGTCACAT GAATGGAGTC TGATCCCCAG CAACAACCTC AATTAATGAA TGCAAATGGA GGTTCAGGTC	120 180 240 300 360 420 480 540
75	Nucleic Accoding sequence of the control of the con	id Accession lence: 12° 11) GAGTGCTGTG AAAATGATGG CAGTCGAAGA ATTTGAGAAA GAATTATCAG CCTGTGAAGA TTCACACGGC TCAATTTCTG ATGACCTTTT AACTTAAAAA GAAATGGAAG	#: EOS SE 733 21 GCTCATTTCT CATCAAACA ATATCAGCTG TTTTCTGAAG ACCAAAGGCT CAGCTACACC TGGAGCACTC TGAGAGAACA GAATTCATCT AGCATATCAA CATCGTTGCT	31) TTCTTCACCT AAAAAGAAC CTGCTTCAGG CTCTTGAAGC TCGTTTCCTC CCAAGCTGTG AAGATTTGGG TCTGCTATAT AGAATTCAAG GGGTATGAAG	J TCACTGACGG TCATTGTGAA TGACCTATATG CTCCATTATT GCAACAGCCT CCTCATGCCT AATGTCATCT GCACTTTCAA ACTCCAAATA GTTTTGAGTC TTGTTGGCTC	CCACGGTGGC TAAGAAAAAA AGATTCCAAG ATGGTCACAT GAATGGAGTC TGATCCCAG CAACAACCTC AATTAATGAA TGCAAATGGA GGTTCAGGTC CAGCAGTGCA	120 180 240 300 360 420 480 540 600
75	Nucleic Accordance Sequence Se	id Accession lence: 12* 11 GAGTGCTGTG AAAATGATGG CAGTCGAAGA ATTTGAGAAAA GAATTATCAG CCTGTGAAGA TTCACACGGC TCAATTTCTG ATGACCTTTT AACTTAAAAA GAAATGGAAG TGTCAGCCAT	#: EOS SE 733 21 GCTCATTTCT CATCAAAACA ATATCAGCTG TTTTCTGAAGCT AGCAAAGGCT CAGCTACACC TGGAGCACTC TGAGAGAACA GAATTCATCT AGCATATGAA CATCGTTGCT TGAACATGTT	31) TTCTTCACCT AAAAAGAAC CTGCTTCAGG CTCTTGAAGC TCGCTTCCTC CCAAGCTGTG AAGATTTCGG TCTGCTATAT AGAATTCAAG GGGTATGAAG GCCGAGAAGG	J TCACTGACGG TCATTGTGAA TGACCTATATAG CTCCATTATT GCAACAGCCT CCTCATGCCT AATGTCATCT GCACTTTCAA ACTCCAAATA GTTTTGAGTC TTGTTGGCTC CTAAGACAGC	CCACGGTGGC TAAGAAAAAA AGATTCCAAG ATGGTCACAT GAATGGAGTC TGATCCCAG CAACAACCTC AATTAATGAA TGCAAATGGA GGTTCAGGTC CAGCAGTGCA CCTTCACAAG	120 180 240 300 360 420 480 540 600 660 720
75	Nucleic Ac: Coding sequ 1 ATGANAGTTG TTCCTGGGGA CATCTAGGCC GAGANAGAG GGGCTAATTA CTGCAGTGTA AACTGCTACC AGCCAGAGTG AGGTTACAA ATTGANATTC ACCANTTTC TCTGAACTGC CTGTTTCCAT	id Accession lence: 12' 11 GAGTGCTGTG ANANTGATGG CAGTCGAAGA ATTTGAGAAA GAATTATCAG CCTGTGAAGA TTCACACGGC TCAATTTCTG ATGACCTTTT AACTTAAAAA GAAATGGAAG TGTCAGCCAT TAGAAGACGG	#: EOS SE 733 21 GCTCATTTCT CATCAAAACA TTTTCTGAAG AGCAAAGGCT CAGCTACACC TGAGAGAACA GAATTCATCT AGCATATGAA CATCGTTGCT TGAACATGTT TGAACATGTT CTCTTTCAGA	31) TTCTTCACCT AAAAAGAAC CTGCTTCAGG CTCTTGAAGC ACCACAGACT CCCAAGCTGTG AAGATTTGGG TCTGCTATAT AGAATTCAAG GGGTATGAAG GCCAAGAAGG GTGTTCGGAA	TCACTGACGG TCATTGTGAA TGACCTATAGT CTCCATTATT GCAACAGCCT CCTCATGCCT AATGTCATCT GCACTTTCAA ACTCCAAATA GTTTTGAGTC TTGTTGGCTC TTAGACAGC AAGCCCAGTG	CCACGGTGGC TAAGAAAAA AGATTCCAAG ATGGTCACAT GAATGGAGTC TGATCCCCAG CAACAACCTC AATTAATGAA TGCAAATGGA GGTTCAGGTC CAGCAGTGCA CCTTCACAAG TAATGACATT	120 180 240 300 360 420 480 540 600 660 720 780
75 80	Nucleic Ac: Coding sequence 1 ATGANAGTTG TTCCTGGGGA CATCTAGGCC GAGANANGAG GGCTAATTA CTGCAGTGTA AACTGCTACC AGCCAGAGTG AGGTTTACAA ATTGANATTC ACCCANTTC TCTGAACTG CTGTTTCGAT GTCTTTGGAT GTCTTTGGAT	id Accession lence: 12° 11) GAGTGCTGTG ANANTGATGG CAGTCGAAGA ATTTGAGAAA GAATTATCAG CCTGTGAAGA TTCACACGGC TCAATTTCTG ATGACCTTTT AACTTAAAAA GAAATGGAAG TGTCAGCAC TTGAGCAC	#: EOS SE 733 21 GCTCATTTCT CATCAAACA ATATCAGCTG AGCAAAGGCT CAGCTACACC TGAGGACACTC TGAGGAGCACTC AGATTCATCT AGCATATGAT CATCGTTGCT TGAACATGTT TCATCTTCAGA CATGATGAT CATCGTTGCT TCATTCAGA GGATGATGAA	31) TTCTTCACCT AAAAAAGAAC CTGCTTCAGG ACCACAGACT TGGTTTCCTC CCAAGCTGTG AAGATTTGGG ATCTCATAT AGAATTCAAG GGCTATGAAG GCCGAGAAGG GTGTTCGGAA TATACCCTGC	TCACTGACGG TCATTGTGAA TGACCTATAGT GCAACAGCCT CCTCATGCCT AATGTCATCT GCACTTTCAA ACTCCAAATA GTTTTGAGTC TTGTTGGCTC CTAAGACAGC AAGCCCAGTG CCTGCAGCAG	CCACGGTGGC TAAGAAAAA AGATTCCAAG ATGGTCACAT GAATGGAGTC TGATCCCCAG CAACAACCTC AATTAATGAA TGCAAATGGA GGTTCAGGTC CAGCAGTGCA CCTTCACAAG TAATGACAT TGGCTACAGG	120 180 240 300 360 420 480 540 600 720 780 840
75	Nucleic Ac: Coding sequence Transparence ATGAAAGTTG TTCCTGGGGA CATCTAGGCC GAGAAAGAG GGGCTAATTA CTGCAGTGTA AACTGCTACC AGCCAGAGTG AGGTTTACAA ATTGAAATTC ACCCAATTTC TCTGAACTGC TCTGTTTCGAT GGTATTTGGAT GGAAACATCA	id Accession lence: 12° 11) GAGTGCTGTG AAAATGATGG CAGTCGAAGA GAATTATCAG CCTGTGAAGA TTCACACGGC TCAATTCTTT AACTTAAAAA GAAATGGAAG TGTCAGCCAT TAGAAGACG TTGGGTCCAA CAGCCAAGTG	#: EOS SE 733 21 GCTCATTTCT CATCAAACA ATATCAGCTG AGCTACACC TGAGGACACTC TGAGGAGCACTC TGAGGAGCACTC AGCATATCATCT AGCATATGAA CATCGTTGCT TCACATGTT CTCTTTCAGT TCACATGTT CTCTTTCTTCAGT TCACATGTA TCACATGTAGAA TGAGTACCCTT	31) TTCTTCACCT AAAAAGAAC CTGCTTCAGG CTCTTGAAGC ACCACAGACT TGGTTTCCTC CCAAGCTGTG AAGATTTGGG TCTGCTATAT AGAATTCAAG GGGTATGAAG GTGTTCCGAAGAGG GTGTTCCGGAAAGG GTGTTCCGGAAAGG GTGTTCCGGAAAGG GTGTTCCGGAGAAGG GTGTTCCGGAGAAGG	TCACTGACGG TCATTGTGAA TGACCTATATG CTCCATTATT GCAACAGCCT CCTCATGCCT AATGTCATCT GCACTTTCAA ACTCCAAATA GTTTTGAGTC TTGTTGGCTC CTAGACAGC CAAGCCCAGTG CCTCAGCAGC TCATCAGCAGC TCATCAGCAGC	CACGGTGGC TAAGAAAAA AGATTCCAAG ATGGTCACAT GAATGGAGTC TGATCCCAG CAACAACCTC AATTAATGAA TGCAAATGGA GGTTCAGGTC CAGCAGTGCA CCTTCACCAG TAATGACAT TGGCTACAGG GACTTGTGTG	120 180 240 300 360 420 480 540 600 720 780 840 900
75 80	Nucleic According sequence of the control of the co	id Accession lence: 12° 11) GAGTGCTGTG AAAATGATGG CAGTCGAAGA ATTTGAGAAA GAATTATCAG CCTGTGAAGA TTCACACGGC TCAATTTCTG ATGACCTTTT AACTTAAAAA GAAATGGAAG TGTCAGCCAT TAGAAGACGG TTGGGTCCAA CAGCCAAGTG TTGAAGAACT	#: EOS SE 733 21 GCTCATTTCT CATCAAACA ATATCAGCTG TTTTCTGAAG AGCAAAGGCT CAGCTACACC TGAGGAACA GAATTCATCT TAGAGTATCT TGAAGTATCT TGACATGTT TGAACATGTT CTCTTTCAGA GGATGATGAA GGATGATGAA TGAGTCCTCT GAACAAGAAT GAACAAGAAT	31) TTCTTCACCT AAAAAGAAC CTGCTTCAGG CTCTTGAAGC ACCACAGACT TGGTTTCCTC CCAAGCTGTG AAGATTTGGT ATGATTCAAG GCGTATGAAG GCCAGAAGG GTTTCGGAA TATACCCTGC GGGTGGCAGG TTCAGTATGA	J TCACTGACGG TCATTGTGAA TGACCTATTG GCAACAGCCT CCTCATGCCT AATGTCATCT GCACTTTCAA ACTCCAAATA GTTTTGAGTC TTGTTGGCTC CTAAGACAGC AAGCCCAGTG CCTGCAGCAG TCATCAGGGAA TTGTAGGCAA	CACCGGTGGC TAAGAAAAAA AGATTCCAAG ATGGTCACAT GAATGGAGTC TGATCCCAG CAACAACCTC AATTAATGAA TGCAAATGGA GGTTCAGGTC CAGCAGTGCA CCTTCACAAG TAATGACAT TAGCTACAAG TAATGACATT TGGCTACAAG GACTTGTGTG TGCCACTGAG	120 180 240 300 360 420 480 540 660 720 780 840 900
75 80	Nucleic According sequence of the control of the co	id Accession lence: 12° 11) GAGTGCTGTG AAAATGATGG CAGTCGAAGA ATTTGAGAAA GAATTATCAG CCTGTGAAGA TTCACACGGC TCAATTTCTG ATGACCTTTT AACTTAAAAA GAAATGGAAG TGTCAGCCAT TAGAAGACGG TTGGGTCCAA CAGCCAAGTG TTGAAGAACT	#: EOS SE 733 21 GCTCATTTCT CATCAAACA ATATCAGCTG TTTTCTGAAG AGCAAAGGCT CAGCTACACC TGAGGAACA GAATTCATCT TAGAGTATCT TGAAGTATCT TGACATGTT TGAACATGTT CTCTTTCAGA GGATGATGAA GGATGATGAA TGAGTCCTCT GAACAAGAAT GAACAAGAAT	31) TTCTTCACCT AAAAAGAAC CTGCTTCAGG CTCTTGAAGC ACCACAGACT TGGTTTCCTC CCAAGCTGTG AAGATTTGGT ATGATTCAAG GCGTATGAAG GCCAGAAGG GTTTCGGAA TATACCCTGC GGGTGGCAGG TTCAGTATGA	J TCACTGACGG TCATTGTGAA TGACCTATTG GCAACAGCCT CCTCATGCCT AATGTCATCT GCACTTTCAA ACTCCAAATA GTTTTGAGTC TTGTTGGCTC CTAAGACAGC AAGCCCAGTG CCTGCAGCAG TCATCAGGGAA TTGTAGGCAA	CACGGTGGC TAAGAAAAA AGATTCCAAG ATGGTCACAT GAATGGAGTC TGATCCCAG CAACAACCTC AATTAATGAA TGCAAATGGA GGTTCAGGTC CAGCAGTGCA CCTTCACCAG TAATGACAT TGGCTACAGG GACTTGTGTG	120 180 240 300 360 420 480 540 660 720 780 840 900

	WO 02/0						
	TGGAGAAGAG	TCTGGCATTT	CCTCAAAATG	TTAACCTGGA	TTTACCATAT	GACCCAGCGA	1800
	TTTCATTCAT	AGGTTTATAC	TCAAAAGAAA	TGAAGAAATA	TGCCATGCAA	AAAAATGTAC	1860
	ATGAAAGGTC	ACAACATCAT	TATTCATAAT	AGTAAAAGGA	TGGAAACAAC	ACAAATGTCC	1920
_	ATCAACTTAT	GATTAAAGAA	AATCTGGTCT	ATTCATAGAA	TGGAATATTA	TTCGACCACA	1980
5	AAAAGGAATG	ATGTACTGAT	CCATGCAATG	ATGTGGACAA	ACCATGAAAA	TAACACTAGA	2040
	TTAAAGAAGC	CAGTCACAAA	AGGACTTACT	GTATGATTCC	ATTTACCTGA	AATGTTTGGA	2100
	ATAGGCAAAT	CCATAGAAAC	AGGAGGTAGA	TTCCTGGTTT	CCAGGGTCTC	CAGGAAGGGA	2160
	AGAATGAAGT	ACANGATTTC	TTTTGGAGGT	AGTGAAATTG	TTGTGGAATG	AGATCATGAT	2220
	CATGATAGCA	CAACTTTGTG	ΔΑΤΑΔΤΑΔΑ	AATCATTGAA	TTGTACAGTT	GAATTTATGG	2280
10	TATATA A ATT	CARCITIGIG	ANIAIANIAA	TCCACAAAAC	AAACAGCCCC	CCACTCTCCT	2340
10	TATATAAATT	ATATGTTAAT	AAAAAGGGGG	TCCACAAAAC	CCCTCTCCCCC	CCCCTCTGGT	2400
	TGTCAGGGAG	ATATTGGATT	AAATGGCCTT	GGACAACAAC	CCCTCTCCCT	GGCCACAGAC	
	ATTCTTCAGA	TTACAAGATA	TTCCAGGGGA	AACACTGGAA	TGAGTCTGAA	GCCAGGTGCT	2460
	AAACAGAAGG	ACCATTGAGA	AATGTTGTGA	TCCTGACAGG	TCAAGCAATT	TATTTTTCGG	2520
	CTTCATTTTT	AAATGTAAAA	TTAGAAAGCT	GCCATTTAAA	ATGGCCCGTC	TGTTTCAATT	2580
15	GCTCTTCTCA	GTGTCAGCCT	GTTAACTCAA	TGTGTTAGTC	TGTTTTCATG	CTGCTGATAA	2640
	AAACATACCT	GAGACTGGCA	AGAAAAAGAG	GTTTAATTGG	GCTTAGAGTT	CCACGTGATT	2700
	CCCCACCCCT	CAGAATCACA	CTACCACCCA	AAAGTTATTC	TTACATGGTG	GCTGCAAGAG	2760
	ANCATCACCA	ACAACCAAAA	CARCARACCC	CTGATAAACC	CATCGGATCT	CCTGAGGCTT	2820
	AMUNICAGGA	AGAAGCAAAA	CARGARACCC	PACCACACACA	ATCATTCAAT	TACCTCTACC	2880
20	ATTAACTATC	ATGAGAATAG	CACAAGAAAG	ACCGGCCCCC	AIGAIICAAI	ACAMMONAGE	
20	TGGGTCCCTC	CAATAACATG	TGGAAATTCT	GGTAGATACA	ATTCAAGTTG	AGATTTGGGT	2940
				AGGCAGATAA			3000
				GGCACAGGAA			3060
	CAAAGCTGAG	CACTCAGGAG	AAGGCAATAG	AATCCTATTC	TCCATAGTAT	GCTATAAGAT	3120
	ACTGAAGTAC	ACTTCTTCAC	TATCTCTTTG	GACTTAGAAT	TAGCACTACA	TTCCTTGTTA	3180
25	TACAGAAAAA	TTACTAAGGA	AATTCATAGG	ATGACAAAAA	CTTTCAGAAC	TGAAAAACAG	3240
	CANATGTANG	CTTTTTACTT	CTTTCCTATT	CGAAGTATGC	CTAAAAGACA	ATGCAAAATC	3300
	CANCANANCA	MOGTGGGGT	THE PROPERTY OF THE PROPERTY O	TTGGTTTTGT	Tuhani Jahana	CAGCTGGAGT	3360
	CAAGAAAAGA	AIGGIGGGI	mannan	CACACCAAAG	mccaammona	N N COMPANYOR	3420
	AGAATACAAA	GGGATGGAGT	TGAAACAAAT	GAGAGGAAAT	1GGAATICIA	AMCITATICI	
20	CATTGGCATT	AGAAAGGCAC	CTACATGTAT	TTCACATGAG	CCGGTGACTG	CIGACITGCA	3480
30				AGGTACAATG			3540
	TTTGTCATAA	ATTTTCATAT	TCATAAAGGT	GAGTGTTAGC	CCGCTTGTGA	AATCTGAAGT	3600
	TGAGTAACTT	CAAATACTAA	CCACAGAGGG	AAAGGCAGCA	AGAGGAGAGG	CATAAATTTA	3660
	GGATCTCACC	CTTCATTCCA	CAGACACACA	CAGCCTCTCT	GCCCACCTCT	GCTTCCTCTA	3720
				AGCTTAATAA			3780
35				CTCCTGCATT			3840
55	TATTOTOCO	CACCAAAATT	аватасста Страстасста	TTTCATCTGA	THEFT	ATCTABATTG	3900
				GGAACACAGA			3960
							4020
				TCTTAACAGC			
40				ATCCTACCTA			4080
40				TTTACAATAG			4140
				TAATATATGC			4200
	CGTTAAAAAT	AAGAGAAAAA	CTTTAAATGT	CAAAATCTCA	CAACCCAGAT	ATATCATTTC	4260
	TTTAAGAAAA	TTGTACTACA	AAATACCATT	CCATTTATTA	AAGTCATTCT	GACAGGAATC	4320
	TGATGCTTTT	CCAGGAGTTC	CAGATCACAT	CGAGTTCACC	ATGAATTCAC	TCAGTGAAGC	4380
45				ACAGTTCAGA			4440
				ATTAGGGATG			4500
				TATCAGCATC			4560
							4620
				GATGGTAATA			
50				ACTGTGAGAC			4680
50				TCTCTTCCAG			4740
	CACAGAGAAC	ACCACAGAAA	AAGCTGCAAC	ATATCATGTG	AGTCACAGAG	CACTCTGATT	4800
	CAGCTTTAGA	TCCCTGAACA	GGTCATAGTT	TAAACCTGGA	ACTTCACAAA	AACTAAGAAA	4860
	AGGCCAGTTT	TAGGGAAAAT	CTTGGACACA	AAGATTGAGA	CATACAGAGT	GGGTTGGCAT	4920
	TTCATGGCAC	ATAATTATTA	TTCCTCATTT	CTGCGTTACT	AAAAGACAGT	CAGCACTGTA	4980
55	CCTCAGAGCA	ТАССТСТССА	TCAGGATAGG	CTGGGTTCAG	ACTCCAGCTT	TGCTCTTCAC	5040
-	NA ATCATCAN	TANCACCACC	ACACAACTCC	TCGGAGTCCC	AGTGACCTCA	TCCCAGAAAA	5100
				ATGCAAATAC			5160
				ATTATTATTA			5220
<i>6</i> 0				TTCATTGAGT			5280
60	ATAAGCACAA	GTCCAAGTAT	ATTTTGGAAA	ATGATTGCTA	TGGAATATAT	TGGTTTAGAG	5340
	CCTTAATAGT	GCAAAATGCT	TTGCTGGAAG	GTAGAAAGTT	CTAGATTTAA	ACAGGCTTAG	5400
				TCTATAAACA			5460
				TAAAGACTTA			5520
	TTAGCCATGG	ACCTGGCATA	CACTCTTCTT	ACGTGCAGAG	AATGACCATC	ATGAGGAAAG	5580
65	AGCCACAGAT	CAGTCAATGT	GTCCTACAAG	ATAATAGCAC	CAACAGGTAT	AACAGGGCTT	5640
	CCTGGCATAA	TOTATTAAA	ATATCCAACC	TTCAACATAC	TCGTATCCTT	GATGACTGTT	5700
	ACADOCALA	TATCOTOTO	CCCCATAACG	ACCTCACACT	TTAACTCCCA	AGCTAAACCT	
							5820
	AACCCIIIAA	ACCAACAAGG	AGAAAAICIA	CIGGIAGACA	GCGCIGCAIC	TTTAGTTCAG	
70	AAGAGAAAAG	ATTGCAGTAC	GTTAGAGCAA	GAAGAATTT	CIGGAAGAAG	TCAAATATAA	
70				TACACCAATT			5940
	GTCCTCAATG	AGACTACCAG	CATTTAGGGA	CTGATCTAAC	AGACTTAGCA	TGGGTTTAGT	6000
	ATTTACATTG	ATACAGCAAT	TGAATGATCT	CCTTTTTTGA	TGTTTGAAGG	TTGATAGGTC	6060
	AGGAAATGTT	CATCACCAGT	TTCAAAAGCT	TCTGACTGAA	TTCAACAAAT	CCACTGATGC	6120
_	ATATGAGCTG	AAGATCGCCA	ACAAGCTCTT	CGGAGAAAAG	ACGTATCAAT	TTTTACAGGT	6180
75	AATTTCACCT	GGCCTACCCA	CPAMALCVANA	GCATCCTGAT	GTCTGTGTCT	CTGAGTGGCC	6240
	**********	PAGGARGGGA	CHILD COMO	CCCCCCCC	CACCOLOTE	TTTACTCAGA	
	GIGCATTAGC	TCCATTTCCA	CAACTCTCCC	CCACTGGAGT	GICCCAGACC	MODE AND CO.	6360
	ATCACTGAAG	TGTGGATTTA	GGGATAATCT	TGTGATAAAA	GAGGAGGTTG	TGTAATAGAG	6420
00	TGAGTAAGAG	TAATAAGTAA	TAAGATACCA	TCGATAAACT	GGCACTGACT	CAGTCACATA	
80	CGATACATCT	TGGTGGGAAA	TGTATGACTA	ATGGGATATT	ATTGGAATGG	GCAGGCTTGG	6540
	GTGAGTTCCT	GAGAATAGTT	GAGGAAGTAC	CAGGAAATAT	TGAATGCACA	GGATGAAAGA	6600
	CAAAAACAAA	GATCAGAAAC	ATCATGGTTA	AAATTACTGG	AGAGAAGTCT	GAGAAGCAAT	6660
	GAATCTCCTT	CAGGGAAGCC	TGCTCTGCAG	TTTGCAAACC	ACAGCCTCTT	CTGCTTCTGC	6720
	CTTTTCCCDA	GATCATATTO	VCCL-C7C-TC	ACCTOTTTO	TGTGCCAGCC	CACATTCCCC	6780
85	Transcourse of the second	CCTACATALIG	VCCTICWIG	AAATATCCAT	GGACAGGAGA	TACTGCATCT	6840
00	TITIOCHILL	TCIACAIGAC	ACCIGIATAA	TACAAATAAG	AP VCALACCIA	AATATATACT	6900
	ATTCAGGGTC	*GGATTCAGC	TACIGTTGT	JACARATARO	TURGITION	Public Succession of the Contract of the Contr	6060
	TACATAAATT	ACTCCTAATT	CCTACTTCTT	CCTTCATATC	TCAAAGGAAT	ATTTAGATGC	6960

WO 02/086443 PCT/US02/12476
TCAAGAAA TTTTACCAGA CCAGTGTGGA ATCTACTGAT TTTGCAAATG CTCCAGAAGA 7020

		TTTTACCAGA					7020
		AAGATTAACT					7080
		ACCTTTGAGA					7140
5		GGGGATTGAG CAAATGAATA					7200 7260
,		TGGAAACACA					7320
		CCCTGTCTCC					7380
		TTTTATGATG					7440
	TTTACTAATT	GGGAAACAAG	CAGCTCTCTG	GTAAATCACC	CTTTTGTCTC	TGAGCTGGAG	7500
10		CACATCTGTA					7560
		AAGAGCTTGA					7620
		GGCCAAACTT					7680
	GAAGTAGTGT	CTGACAGCAC	AGGACATGCG	TITCATATTA	COCTACTTA	GTCACTCATC	7740
15	ANCTACANO	ATCAGGGCCT AGGAGGGAGG	COTTCCTCTG	AGICACATCT	TGGAAGAGTA	CACAAAAAAAAAAAA	7800 7860
13		ATTCCAAATC					7920
		CAAGAAGTGA					7980
		ATCTGGTGAA					8040
	GTGAGTCTCA	AGCAGGGATT	TGGGTCAATA	ATTAACGATC	AGTCACGAAC	ATTTGCAAAG	8100
20	CATCTTCCAG	ACAAGCCATT	TGTAGCTTGT	GTAAAAGACT	CTTTTATTCT	TTCCCTTGCA	8160
		AAAACCTATT					8220
	GTGAACGCAA	TCTATTTCAA	AGGGCAGTGG	GAGAATAAAT	TTAAAAAAAGA	AAACACTAAA	8280
		TTTGGCCAAA					8340
25		AATGTTAAAC					B400
23		CTGTTATTTT					8460
		TGTTTCTAAC TCAATAATAT					8520 8580
		ATTGCAGAAT					8640
		CTTGCTGGAG					8700
30		CATGATTGTG					8760
50 .		CAACTCTTCC					8820
	CAAGGTAAAA	GCTTATGACC	GAGTTGCCTC	AAAATGATGA	AAAATTCTAA	ATGAGGAATG	8880
		TTCATATTAC					8940
26		GTTTGTTTGT					9000
35		TGTGCAGGTT					9060
		ATCATTTAGC					9120
		CAGTCCTCAG					9180
		TCTATGATTT TGGATATCAA					9240 9300
40	AGAAATATAT	ACCAATGTGA	CCDDACTTTA	CAAATAGGCC	GAGTAGAAAA	GGGAATACAA	9360
40		TTAGGGAATT					9420
		ATGAGCCTAT					9480
		ACAGTTCATT					9540
	ACAGTTGTAT	ACATACATAT	GTACACATAT	ACATATACGT	AAAAACATGA	TTCTGTTTTT	9600
45	ACATACATGT	ATATACATAT	ACACATATAA	CCCAATGTAT	TTATATATTC	AGGACTCATA	9660
		TAGAATAATA					9720
		GAATCTCCAC					9780
		AGTTTCTTTT					9840
50		TGGACAAGTT					9900
30		ATGGAAGAGA AATGGGGATG					9960
		CTACACAAGG					
		GTAGTAGTAG					
		TTCCTATTCT					
55		TCCCCATAGA					
		GGTAAACTGA					
		TTGATGATGA					
		CTCTTAATAA					
60		AATGTCCAAG					
OU		GTTTCTGACC					
		CTAGAAACAC TTTGTGATTC					
		CCTGTTTTCT					
		TATATTAATC					
65		GAAGGCATAT					
		CTAAAGGGAT					
	GGGGCATAAA	ATTATCATAT	CCACATCTAG	AAAATACATC	TCTGGCTACG	CTGATATCAA	10980
		GAAAGAACAG					
70		ATGGAGAGAA					
70		CTAAGTTGCT					
		AAGACTTTGG					
		TTGCCTGGCA					
		CTCTAAATTT GTAGCTAAAA					
75		CTAGAATTGA					
, ,		TTCCAGAAAG					
	TCCC	TTCCAGAAAG	INGCITITE	INCOCTICEN	Intilactor	CHINGHIACI	11310
00	Seq ID NO:	465 Protei	n sequence				
80		cession #: 1					
	_						
	1	11	21	31	41	51	
	MATOL CENTIME	PMEDI POOTE		DISTRESTOR	MITCH ADVISE	UUI GRAM mad	60
85		FMFDLFQQFR ATYHVDRSGN					
		VESTDFANAP					
		KKENTKEEKF					

LSMIVLLPNE IDGLQKLEEK LTAEKLMEWT SLQNMRETCV DLHLPRFKME ESYDLKDTLR TMGMVNIFNG DADLSGMTWS HGLSVSKVLH KAFVEVTEEG VEAAAATAVV VVELSSPSTN 360 EEFCCNHPFL FFIRQNKTNS ILFYGRFSSP 5 Seq ID NO: 466 DNA sequence Nucleic Acid Accession #: NM_001910.1 Coding sequence: 50..1240 31 21 10 GGAGAGAAGA AAGGAGGGG CAAGGGAGAA GCTGCTGGTC GGACTCACAA TGAAAACGCT CCTTCTTTTG CTGCTGGTGC TCCTGGAGCT GGGAGAGGCC CAAGGATCCC TTCACAGGGT 120 GCCCCTCAGG AGGCATCCGT CCCTCAAGAA GAAGCTGCGG GCACGGAGCC AGCTCTCTGA 180 GTTCTGGAAA TCCCATAATT TGGACATGAT CCAGTTCACC GAGTCCTGCT CAATGGACCA 240 GAGTGCCAAG GAACCCCTCA TCAACTACTT GGATATGGAA TACTTCGGCA CTATCTCCAT 15 300 TGGCTCCCCA CCACAGAACT TCACTGTCAT CTTCGACACT GGCTCCTCCA ACCTCTGGGT CCCCTCTGTG TACTGCACTA GCCCAGCCTG CAAGACGCAC AGCAGGTTCC AGCCTTCCCA 360 420 GTCCAGCACA TACAGCCAGC CAGGTCAATC TTTCTCCATT CAGTATGGAA CCGGGAGCTT 480 GTCCGGGATC ATTGGAGCCG ACCAAGTCTC TGTGGAAGGA CTAACCGTGG TTGGCCAGCA 540 20 GTTTGGAGAA AGTGTCACAG AGCCAGGCCA GACCTTTGTG GATGCAGAGT TTGATGGAAT 600 TCTGGGCCTG GGATACCCCT CCTTGGCTGT GGGAGGAGTG ACTCCAGTAT TTGACAACAT 660 GATGGCTCAG AACCTGGTGG ACTTGCCGAT GTTTTCTGTC TACATGAGCA GTAACCCAGA 720 AGGTGGTGCG GGGAGCGAGC TGATTTTTGG AGGCTACGAC CACTCCCATT TCTCTGGGAG 780 CCTGAATTGG GTCCCAGTCA CCAAGCAAGC TTACTGGCAG ATTGCACTGG ATAACATCCA 840 25 GGTGGGAGGC ACTGTTATGT TCTGCTCCGA GGGCTGCCAG GCCATTGTGG ACACAGGGAC 900 TTCCCTCATC ACTGGCCCTT CCGACAAGAT TAAGCAGCTG CAAAACGCCA TTGGGGCAGC 960 CCCCGTGGAT GGAGAATATG CTGTGGAGTG TGCCAACCTT AACGTCATGC CGGATGTCAC 1020 CTTCACCATT AACGGAGTCC CCTATACCCT CAGCCCAACT GCCTACACCC TACTGGACTT 1080 CGTGGATGGA ATGCAGTTCT GCAGCAGTGG CTTTCAAGGA CTTGACATCC ACCCTCCAGC 1140 30 TGGGCCCCTC TGGATCCTGG GGGATGTCTT CATTCGACAG TTTTACTCAG TCTTTGACCG 1200 TGGGAATAAC CGTGTGGGAC TGGCCCCAGC AGTCCCCTAA GGAGGGGCCT TGTGTCTGTG 1260 CCTGCCTGTC TGACAGACCT TGAATATGTT AGGCTGGGGC ATTCTTTACA CCTACAAAAA 1320 GTTATTTTCC AGAGAATGTA GCTGTTTCCA GGGTTGCAAC TTGAATTAAG ACCAAACAGA 1380 ACATGAGAAT ACACACACAC ACACACATAT ACACACACA ACACTTCACA CATACACACC 1440 ACTCCCACCA COGTCATGAT GGAGGAATTA CGTTATACAT TCATATTTTG TATTGATTTT TGATTATGAA AATCAAAAAAT TTTCACATTT GATTATGAAA ATCTCCAAAC ATATGCACAA 35 1500 1560 GCAGAGATCA TGGTATAATA AATCCCTTTG CAACTCCACT CAGCCCTGAC AACCCATCCA CACACGGCCA GGCCTGTTTA TCTACACTGC TGCCCACTCC TCTCTCCAGC TCCACATGCT 1620 1680 GTACCTGGAT CATTCTGAAG CAAATTCCGA GCATTACATC ATTTTGTCCA TAAATATTTC 1740 40 TAACATCCTT AAATATACAA TCGGAATTCA AGCATCTCCC ATTGTCCCAC AAATGTTTGG 1800 CTGTTTTTGT AGTTGGATTG TTTGTATTAG GATTCAAGCA AGGCCCATAT ATTGCATTTA 1860 TTTGAAATGT CTGTAAGTCT CTTTCCATCT ACAGAGTTTA GCACATTTGA ACGTTGCTGG 1920 TTGAAATCCC GAGGTGTCAT TTGACATGGT TCTCTGAACT TATCTTTCCT ATAAAATGGT 1980 AGTTAGATCT GGAGGTCTGA TTTTGTGGCA AAAATACTTC CTAGGTGGTG CTGGGTACTT 2040 45 CTTGTTGCAT CCTGTCAGGA GGCAGATAAT GCTGGTGCCT CTCTATTGGT AATGTTAAGA 2100 CTGCTGGGTG GGTTTGGAGT TCTTGGCTTT AATCATTCAT TACAAAGTTC AGCATTTT Seq ID NO: 467 Protein sequence Protein Accession #: NP_001901.1 50 21 31 MKTLLLLLLV LLELGEAGGS LHRVPLRRHP SLKKKLRARS QLSEFWKSHN LDMIQFTESC SMDQSAKEPL INYLDMEYFG TISIGSPPQN FTVIFDTGSS NLWVPSVYCT SPACKTHSRF 120 55 QPSQSSTYSQ PGQSFSIQYG TGSLSGIIGA DQVSVEGLTV VGQQFGESVT EPGQTFVDAE FDGILGLGYP SLAVGGVTPV FDNMMAQNLV DLPMFSVYMS SNPEGGAGSE LIFGGYDHSH 240 PSGSLNWVPV TKQAYWQIAL DNIQVGGTVM FCSEGCQAIV DTGTSLITGP SDKIKQLQNA 300 IGAAPVDGEY AVECANLNVM PDVTFTINGV PYTLSPTAYT LLDFVDGMQF CSSGFQGLDI HPPAGPLWIL GDVFIRQFYS VFDRGNNRVG LAPAVP 60 Seg ID NO: 468 DNA seguence Nucleic Acid Accession #: NM_018058.1 Coding sequence: 319..1575 65 31 41 TACGCGCTGC GGGACCGGCA GGGGAACGCC ATCGGGGTCA CAGCCTGCGA CATCGACGGG GACGGCCGGG AGGAGATCTA CTTCCTCAAC ACCAATAATG CCTTCTCGGG GGTGGCCACG 120 TACACCGACA AGTTGTTCAA GTTCCGCAAT AACCGGTGGG AAGACATCCT GAGCGATGAG 180 70 GTCAACGTGG CCCGTGGTGT GGCCAGCCTC TTTGCCGGAC GCTCTGTGGC CTGTGTGGAC AGAAAGGGCT CTGGACGCTA CTCTATCTAC ATTGCCAATT ACGCCTACGG TAATGTGGGC 240 300 CCTGATGCCC TCATTGAAAT GGACCCTGAG GCCAGTGACC TCTCCCGGGG CATTCTGGCG CTCAGAGATG TGGCTGCTGA GGCTGGGGTC AGCAAATATA CAGGGGGCCG AGGCGTCAGC 360 420 GTGGGCCCCA TCCTCAGCAG CAGTGCCTCG GATATCTTCT GCGACAATGA GAATGGGCCT 480 75 AACTTCCTTT TCCACAACCG GGGCGATGGC ACCTTTGTGG ACGCTGCGGC CAGTGCTGGT 540 GTGGACGACC CCCACCAGCA TGGGCGAGGT GTCGCCCTGG CTGACTTCAA CCGTGATGGC 600 AAAGTGGACA TCGTCTATGG CAACTGGAAT GGCCCCCACC GCCTCTATCT GCAAATGAGC 660 ACCCATGGGA AGGTCCGCTT CCGGGACATC GCCTCACCCA AGTTCTCCAT GCCCTCCCCT 720 GTCCGCACGG TCATCACCGC CGACTTTGAC AATGACCAGG AGCTGGAGAT CTTCTTCAAC 780 80 AACATTGCCT ACCGCAGCTC CTCAGCCAAC CGCCTCTTCC GCGTCATCCG TAGAGAGCAC 840 GGAGACCCCC TCATCGAGGA GCTCAATCCC GGCGACGCCT TGGAGCCTGA GGGCCGGGGC 900 ACAGGGGGTG TGGTGACCGA CTTCGACGGA GACGGGATGC TGGACCTCAT CTTGTCCCAT 960 GGAGAGTCCA TGGCTCAGCC GCTGTCCGTC TTCCGGGGCA ATCAGGGCTT CAACAACAAC 1020 TGGCTGCGAG TGGTGCCACG CACCCGGGTT GGGGCCTTTG CCAGGGGAGC TAAGGTCGTG 85 CTCTACACCA AGAAGAGTGG GGCCCACCTG AGGATCATCG ACGGGGGCTC AGGCTACCTG 1140 TGTGAGATGG AGCCCGTGGC ACACTTTGGC CTGGGGAAGG ATGAAGCCAG CAGTGTGGAG GTGACGTGGC CAGATGGCAA GATGGTGAGC CGGAACGTGG CCAGCGGGGA GATGAACTCA

```
GTGCTGGAGA TCCTCTACCC CCGGGATGAG GACACACTTC AGGACCCAGC CCCACTGGAG 1320
      ACACCAATGA ATGCATCCAG TTCCCATTCG TGTGCCCTCG AGACAAGCCC GTATGTGTCA
                                                                         1380
      ACACCTATGG AAGCTACAGG TGCCGGACCA ACAAGAAGTG CAGTCGGGGC TACGAGCCCA
                                                                         1440
       ACGAGGATGG CACAGCCTGC GTGGGGACTC TCGGCCAGTC ACCGGGCCCC CGCCCCACCA
                                                                         1500
 5
       CCCCCACCGC TECTGCTGCC ACTGCCGCTG CTGCTGCCGC TGCTGGAGCT GCCACTGCTG
                                                                         1560
       CACCGGTCCT CGTAGATGGA GATCTCAATC TGGGGTCGGT GGTTAAGGAG AGCTGCGAGC
                                                                         1620
       CCAGCTGCTG AGCAGGGGTG GGACATGAAC CAGCGGATGG AGTCCAGCAG GGGAGTGGGA
                                                                         1680
       AAGTGGGCTT GTGCTGCTGC CTAGACAGTA GGGATGTAAA GGCCTGGGAG CTAGACCCTC
                                                                         1740
       1800
10
       CTGTGCTGGG CACATAGCTG TGATCACAGC AGACAGGGTC GCTGCCCTGA TGGCGCTTAC
                                                                         1860
       ATTCCAGTGG GTCTAATGAC CATATCTTAG GACACAGATG TGCCCAGGGA GGTGGTGTCA
       CTGCACAGGA AGTATGAGGA CTTTAGTGTC CTGAGTTCAA ATCCTGATTC AGGAACTCAC
                                                                         1980
       AAAGCTATGT GACCTTACAC CAGTCACTTA ACTTGTTAGC CATCCATTAT CGCATCTGCA
                                                                         2040
       AAATGGGGAT TAAGAATAGA ATCTTGGGGT TAGTGTGGAG ATTAGATTAA ATGTATGTAA
                                                                         2100
15
       GACACTTGGC ACAAACCTG GCACATAGTA AAGGCTCAAT AAAAACAAGT GCCTCTCACT
                                                                         2160
       GGGCTTTGTC AACACGTG
       Seq ID NO: 469 Protein sequence
       Protein Accession #: NP_060528:1
20
                            21
                                        31
                                                   41
                                                              51
       MDPEASDLSR GILALROVAA EAGVSKYTGG RGVSVGPILS SSASDIFCDN ENGPNFLFHN
                                                                           60
       RGDGTFVDAA ASAGVDDPHQ HGRGVALADF NRDGKVDIVY GNWNGPHRLY LQMSTHGKVR
                                                                          120
25
       FRDIASPKFS MPSPVRTVIT ADFONDQELE IFFNNIAYRS SSANRLFRVI RREHGDPLIE
                                                                          180
       ELNPGDALEP EGRGTGGVVT DFDGDGMLDL ILSHGESMAQ PLSVFRGNQG FNNNWLRVVP
                                                                          240
      RTRVGAFARG AKVVLYTKKS GAHLRIIDGG SGYLCEMEPV AHFGLGKDEA SSVEVTWPDG
       KMVSRNVASG EMNSVLEILY PRDEDTLODP APLETPMNAS SSHSCALETS PYVSTPMEAT
       GAGPTRSAVG ATSPTRMAQP AWGLSASHRA PAPPPPPLLL PLPLLPLLE LPLLHRSS
30
       Seg ID NO: 470 DNA seguence
       Nucleic Acid Accession #: AJ279016
       Coding sequence: 1..1962
35
                 11
                             21
                                        31
       ATGTCCAGGA TGTTACCGTT CCTGCTGCTG CTCTGGTTTC TGCCCATCAC TGAGGGGTCC
                                                                           60
       CAGCGGGCTG AACCCATGTT CACTGCAGTC ACCAACTCAG TTCTGCCTCC TGACTATGAC
                                                                          120
       AGTAATCCCA CCCAGCTCAA CTATGGTGTG GCAGTTACTG ATGTGGACCA TGATGGGGAC
                                                                          180
40
       TTTGAGATCG TCGTGGCGGG GTACAATGGA CCCAACCTGG TTCTGAAGTA TGACCGGGCC
                                                                          240
       CAGAAGCGGC TGGTGAACAT CGCGGTCGAT GAGCGCAGCT CACCCTACTA CGCGCTGCGG
                                                                          300
       GACCGGCAGG GGAACGCCAT CGGGGTCACA GCCTGCGACA TCGACGGGGA CGGCCGGGAG
                                                                          360
       GAGATCTACT TCCTCAACAC CAATAATGCC TTCTCGGGGG TGGCCACGTA CACCGACAAG
                                                                          420
       TTGTTCAAGT TCCGCAATAA CCGGTGGGAA GACATCCTGA GCGATGAGGT CAACGTGGCC
                                                                          480
45
       CGTGGTGTGG CCAGCCTCTT TGCCGGACGC TCTGTGGCCT GTGTGGACAG AAAGGGCTCT
                                                                          540
       GGACGCTACT CTATCTACAT TGCCAATTAC GCCTACGGTA ATGTGGGCCC TGATGCCCTC
                                                                          600
       ATTGAAATGG ACCCTGAGGC CAGTGACCTC TCCCGGGGCA TTCTGGCGCT CAGAGATGTG
       GCTGCTGAGG CTGGGGTCAG CAAATATACA GGGGGCCGAG GCGTCAGCGT GGGCCCCATC
                                                                          720
       CTCAGCAGCA GTGCCTCGGA TATCTTCTGC GACAATGAGA ATGGGCCTAA CTTCCTTTTC
                                                                          780
50
       CACAACCGGG GCGATGGCAC CTTTGTGGAC GCTGCGGCCA GTGCTGGTGT GGACGACCCC
                                                                          840
       CACCAGCATG GGCGAGGTGT CGCCCTGGCT GACTTCAACC GTGATGGCAA AGTGGACATC
       GTCTATGGCA ACTGGAATGG CCCCCACCGC CTCTATCTGC AAATGAGCAC CCATGGGAAG
       GTCCGCTTCC GGGACATCGC CTCACCCAAG TTCTCCATGC CCTCCCCTGT CCGCACGGTC
       ATCACCGCCG ACTITGACAA TGACCAGGAG CTGGAGATCT TCTTCAACAA CATTGCCTAC
                                                                         1080
55
       CGCAGCTCCT CAGCCAACCG CCTCTTCCGC GTCATCCGTA GAGAGCACGG AGACCCCCTC
                                                                         1140
       ATCGAGGAGC TCAATCCCGG CGACGCCTTG GAGCCTGAGG GCCGGGGCAC AGGGGGTGTG
                                                                         1200
       GTGACCGACT TCGACGGAGA CGGGATGCTG GACCTCATCT TGTCCCATGG AGAGTCCATG
                                                                         1260
       GCTCAGCCGC TGTCCGTCTT CCGGGGCAAT CAGGGCTTCA ACAACAACTG GCTGCGAGTG
                                                                         1320
       GTGCCACGCA CCCGGTTTGG GGCCTTTGCC AGGGGAGCTA AGGTCGTGCT CTACACCAAG
                                                                         1380
60
       AAGAGTGGGG CCCACCTGAG GATCATCGAC GGGGGCTCAG GCTACCTGTG TGAGATGGAG
                                                                         1440
       CCCGTGGCAC ACTTTGGCCT GGGGAAGGAT GAAGCCAGCA GTGTGGAGGT GACGTGGCCA
                                                                         1500
       GATGGCAAGA TGGTGAGCCG GAACGTGGCC AGCGGGGAGA TGAACTCAGT GCTGGAGATC
                                                                         1560
       CTCTACCCCC GGGATGAGGA CACACTTCAG GACCCAGCCC CACTGGAGTG TGGCCAAGGA
                                                                         1620
       TTCTCCCAGC AGGAAAATGG CCATTGCATG GACACCAATG AATGCATCCA GTTCCCATTC
                                                                         1680
65
       GTGTGCCCTC GAGACAAGCC CGTATGTGTC AACACCTATG GAAGCTACAG GTGCCGGACC
                                                                         1740
       AACAAGAAGT GCAGTCGGGG CTACGAGCCC AACGAGGATG GCACAGCCTG CGTGGGGACT
                                                                         1800
       CTCGGCCAGT CACCGGGCCC CCGCCCCACC ACCCCCACCG CTGCTGCTGC CACTGCCGCT
                                                                         1860
       GCTGCTGCCG CTGCTGGAGC TGCCACTGCT GCACCGGTCC TCGTAGATGG AGATCTCAAT
                                                                         1920
                                                                         1980
       CTGGGGTCGG TGGTTAAGGA GAGCTGCGAG CCCAGCTGCT GAGCAGGGGT GGGACATGAA
70
       CCAGCGGATG GAGTCCAGCA GGGGAGTGGG AAAGTGGGCT TGTGCTGCTG CCTAGACAGT
                                                                         2040
       AGGGATGTAA AGGCCTGGGA GCTAGACCCT CCCCAAGCCC ATCCATGCAC ATTACTTAGC
                                                                         2100
       TAACAATTAG GGAGACTCGT AAGGCCAGGC CCTGTGCTGG GCACATAGCT GTGATCACAG
                                                                         2160
       CAGACAGGGT CGCTGCCCTG ATGGCGCTTA CATTCCAGTG GGTCTAATGA CCATATCTTA
                                                                         2220
       GGACACAGAT GTGCCCAGGG AGGTGGTGTC ACTGCACAGG AAGTATGAGG ACTTTAGTGT
                                                                         2280
75
       CCTGAGTTCA AATCCTGATT CAGGAACTCA CAAAGCTATG TGACCTTACA CCAGTCACTT
                                                                         2340
       AACTTGTTAG CCATCCATTA TCGCATCTGC AAAATGGGGA TTAAGAATAG AATCTTGGGG
                                                                         2400
       TTAGTGTGGA GATTAGATTA AATGTATGTA AGACACTTGG CACAAAACCT GGCACATAGT
                                                                         2460
       AAAGGCTCAA TAAAAACAAG TGCCTCTCAC TGGGCTTTGT CAACACG
80
       Seg ID NO: 471 Protein sequence
       Protein Accession #: CAC08451
                                        31
                                                              51
                             21
                                                   41
85
       MSRMLPFLLL LWPLPITEGS QRAEPMFTAV TNSVLPPDYD SNPTQLNYGV AVTDVDHDGD
                                                                           60
       FEIVVAGYNG PNLVLKYDRA QKRLVNIAVD ERSSPYYALR DRQGNAIGVT ACDIDGDGRE
                                                                          120
       EIYFLNTNNA FSGVATYTDK LFKFRNNRWE DILSDEVNVA RGVASLFAGR SVACVDRKGS
```

	WO 02/	086443					
	GRYSIYIANY	AYGNVGPDAL	IEMDPEASDL	SRGILALRDV	AAEAGVSKYT	GGRGVSVGPI	240
	LSSSASDIFC	DNENGPNFLF	HNRGDGTFVD	AAASAGVDDP	HQHGRGVALA	DFNRDGKVDI	300
	VYGNWNGPHR	LYLQMSTHGK	VRFRDIASPK	FSMPSPVRTV	ITADFONDQE	LEIPPNNIAY	360
_	RSSSANRLFR	VIRREHGDPL	IEELNPGDAL	EPEGRGTGGV	VTDFDGDGML	DLILSHGESM	420
5	AQPLSVFRGN	QGFNNNWLRV	VPRTRFGAFA	RGAKVVLYTK	KSGAHLRIID	GGSGYLCEME	480
	PVAHFGLGKD	EASSVEVTWP	DGKMVSRNVA	SGEMNSVLEI	LYPRDEDTLQ	DPAPLECGQG	540
	FSQQENGHCM	DTNECIQFPF	VCPRDKPVCV	NTYGSYRCRT	NKKCSRGYEP	NEDGTACVGT	600
	LGOSPGPRPT	TPTAAAATAA	AAAAAGAATA	APVLVDGDLN	LGSVVKESCE	PSC	
10			_				
10	-	472 DNA sec	_	nt			
		id Accessior uence: 147		ın			
	couring sequ	ience. i	, , ,				
_	1	11	21	31	41	51	
15	I	1	Ī	1	1	ŀ	
	ATGGCGTGTC	CGGGAGGACT	CCCAGCCCGT	TGCTCTGGTT	GGATGGGACT	GGGTGGGCCC	60
	AGCGGCTCCT	CCCCAGCATC	CCCTCCCCAT	TCCTCCTCCA	GGTACAATGG	ACCCAACCTG	120
	GTTCTGAAGT	ATGACCGGGC	CCAGAAGCGG	CTGGTGAACA	TCGCGGTCGA	TGAGCGCAGC	180
20		ACGCGCTGCG					240
20		ACGGCCGGGA					300
		CAGCGCAGGT					360
		CCCCTGCAGG					420
		GTCAGGCTTC GACTGAGACC					480 540
25		CGTACACCGA					600
23		AGGTCAACGT					660
		ACAGAAAGGG					720
		GCCCTGATGC					780
		CGCTCAGAGA					840
30		CTGCCTCTCC					900
		CAGAGGAGGC					960
		GCTGGAAGGA					1020
		CTGGGGCAGC					1080
35	TCCAAAAGCC	ATTTGGCTGA	CAAGAACCTA	TTTGGCCCAC	CATGITACTA	TTCTGTCTGC	1140
33		CAGCCCACCC					1200
		CTCAGCTAAT GAGCCCCAGG					1260 1320
		AGGCTTTGGG					1380
		GGGAGGAAAG					1440
40		GTCCCTGGAG					1500
. •		CTCCCATTTT					1560
		CACAGGAGTG					1620
	GGCCCCGGGA	GGGTGGCCAA	GCGAGAGATT	GGGAGAGAGA	CTGGGGCAGT	AGGAAGACCA	1680
4.5		CCCTGGTCCC					1740
45		CTGCCCTGCC					1800
		ACCAGATGGA					1860
		GGAAAGCACG					1920
		CCTCAGGCCT					1980 2040
50		ACTGTGGGTC GCAGTGCCTC					2100
50		GGGGCGATGG					2160
		TTCACCTCAA					2220
		CTGGTCCTTC					2280
	CCACATTGCC	ATCATGGTTT	GTCTATGAGC	TTTACAAGGA	CCGGGTCACG	GTTCTATTCA	2340
55		AAGGCTTGGC					2400
		CACCCTGCCT					2460
						CCACAGCTAT	
						GCGAGGTGTC	
60						CTGGAATGGC	
00		TCTATCTGCA				CTTTGACAAT	2700 2760
		TGGAGATCTT					2820
		GCTCCATCCT					2880
<i>-</i> -		AAGGTTTAAG					2940
65	AAGGTCAACA	CAGGTCCCCT	GATGAAGAAA	CAGAAAGGAA	GGAAGGACGA	GGACTGGGCA	3000
	AGAGGCTGTG	GGAATGCAGG	GCAAAGCCTG	GCCAAGGAGC	CGGCCTCTGC	TATTGCAGGG	3060
						AGATACAAAG	3120
						GGGCTACGGG	
70						AAAGGGGCTA	
70						AGGAAAAGGG TACCAGGAAA	3300
						TCACTACCAC	
						CCAATCACTA	3480
		GGGCTACAGG					3540
75						TACGGGGTCC	
-						GGGCTACAGG	
	GTCCAATCAC	TACCACAGAA	AGGGGCTACG	GGCTCCAATC	ACTACCAGGA	AAAGGGGCTA	
		TCACTACCAG					3780
00						TACCAGGAAA	3840
80		GGGTCCAATC					3900
		GAGACCCCCT					3960
		CAGGGGGTGT					4020
		GAGAGTCCAT				CAGGGGAGCT	4080
85						CGGGGGCTCA	
						TGAAGCCAGC	
						CAGCGGGGAG	

21

31

41

51

```
CTCCTGGACA CCCACAGGGG GCTGCTGTAT GCGGCCTCAC ACTCGGGCGT AGTCCAGGTG
       CCCATGGCCA ACTGCAGCCT GTACAGGAGC TGTGGGGACT GCCTCCTCGC CCGGGACCCC
       TACTGTGCTT GGAGCGGCTC CAGCTGCAAG CACGTCAGCC TCTACCAGCC TCAGCTGGCC
       ACCAGGCCGT GGATCCAGGA CATCGAGGGA GCCAGCGCCA AGGACCTTTG CAGCGCGTCT
                                                                               1980
 5
       TCGGTTGTGT CCCCGTCTTT TGTACCAACA GGGGAGAAGC CATGTGAGCA AGTCCAGTTC
                                                                               2040
       CAGCCCAACA CAGTGAACAC TTTGGCCTGC CCGCTCCTCT CCAACCTGGC GACCCGACTC
                                                                               2100
       TGGCTACGCA ACGGGGCCCC CGTCAATGCC TCGGCCTCCT GCCACGTGCT ACCCACTGGG
                                                                               2160
       GACCTGCTGC TGGTGGGCAC CCAACAGCTG GGGGAGTTCC AGTGCTGGTC ACTAGAGGAG
                                                                               2220
       GGCTTCCAGC AGCTGGTAGC CAGCTACTGC CCAGAGGTGG TGGAGGACGG GGTGGCAGAC
                                                                               2280
       CAAACAGATG AGGGTGGCAG TGTACCCGTC ATTATCAGCA CATCGCGTGT GAGTGCACCA
10
                                                                               2340
       GCTGGTGGCA AGGCCAGCTG GGGTGCAGAC AGGTCCTACT GGAAGGAGTT CCTGGTGATG
                                                                               2400
       TGCACGCTCT TTGTGCTGGC CGTGCTGCTC CCAGTTTTAT TCTTGCTCTA CCGGCACCGG
                                                                               2460
       AACAGCATGA AAGTCTTCCT GAAGCAGGGG GAATGTGCCA GCGTGCACCC CAAGACCTGC
                                                                               2520
       CCTGTGGTGC TGCCCCCTGA GACCCGCCCA CTCAACGGCC TAGGGCCCCC TAGCACCCCG
                                                                               2580
15
       CTCGATCACC GAGGGTACCA GTCCCTGTCA GACAGCCCCC CGGGGTCCCG AGTCTTCACT
                                                                               2640
       GAGTCAGAGA AGAGGCCACT CAGCATCCAA GACAGCTTCG TGGAGGTATC CCCAGTGTGC
                                                                               2700
       CCCCGGCCCC GGGTCCGCCT TGGCTCGGAG ATCCGTGACT CTGTGGTGTG AGAGCTGACT
                                                                               2760
       TCCAGAGGAC GCTGCCCTGG CTTCAGGGGC TGTGAATGCT CGGAGAGGGT CAACTGGACC
                                                                               2820
       TCCCCTCCGC TCTGCTCTTC GTGGAACACG ACCGTGGTGC CCGGCCCTTG GGAGCCTTGG
                                                                               2880
20
       GGCCAGCTGG CCTGCTGCTC TCCAGTCAAG TAGCGAAGCT CCTACCACCC AGACACCCAA
       ACAGCCGTGG CCCCAGAGGT CCTGGCCAAA TATGGGGGCC TGCCTAGGTT GGTGGAACAG TGCTCCTTAT GTAAACTGAG CCCTTTGTTT AAAAAACAAT TCCAAATGTG AAACTAGAAT
       GAGAGGGAAG AGATAGCATG GCATGCAGCA CACACGGCTG CTCCAGTTCA TGGCCTCCCA
                                                                               3120
       GGGGTGCTGG GGATGCATCC AAAGTGGTTG TCTGAGACAG AGTTGGAAAC CCTCACCAAC
                                                                               31,80
       TGGCCTCTTC ACCTTCCACA TTATCCCGCT GCCACCGGCT GCCCTGTCTC ACTGCAGATT
25
                                                                               3240
       CAGGACCAGC TTGGGCTGCG TGCGTTCTGC CTTGCCAGTC AGCCGAGGAT GTAGTTGTTG
                                                                               3300
       CTGCCGTCGT CCCACCACCT CAGGGACCAG AGGGCTAGGT TGGCACTGCG GCCCTCACCA
GGTCCTGGGC TCGGACCCAA CTCCTGGACC TTTCCAGCCT GTATCAGGCT GTGGCCACAC
                                                                               3360
                                                                               3420
       GAGAGGACAG CGCGAGCTCA GGAGAGATTT CGTGACAATG TACGCCTTTC CCTCAGAATT
                                                                               3480
30
       CAGGGAAGAG ACTGTCGCCT GCCTTCCTCC GTTGTTGCGT GAGAACCCGT GTGCCCCTTC
                                                                               3540
       CCACCATATC CACCCTCGCT CCATCTTTGA ACTCAAACAC GAGGAACTAA CTGCACCCTG
                                                                               3600
       GTCCTCTCCC CAGTCCCCAG TTCACCCTCC ATCCCTCACC TTCCTCCACT CTAAGGGATA
                                                                               3660
       TCAACACTGC CCAGCACAGG GGCCCTGAAT TTATGTGGTT TTTATACATT TTTTAATAAG
       ATGCACTITA TGTCATTITT TAATAAAGTC TGAAGAATTA CTGTTT
35
       Sec ID NO: 479 Protein sequence
       Protein Accession #: XP_044533.3
                                           31
40
       MLRTAMGLRS WLAAPWGALP PRPPLLLLLL LLLLLQPPPP TWALSPRISL PLGSEERPFL
       RFEAEHISNY TALLLSRDGR TLYVGAREAL FALSSNLSFL PGGEYQELLW GADAEKKQQC
       SFKGKDPQRD CQNYIKILLP LSGSHLFTCG TAAFSPMCTY INMENFTLAR DEKGNVLLED
        GKGRCPFDPN FKSTALVVDG ELYTGTVSSF QGNDPAISRS QSLRPTKTES SLNWLQDPAF
        VASAYIPESL GSLQGDDDKI YFFFSETGQE FEFFENTIVS RIARICKGDE GGERVLQQRW
45
       TSFLKAQLLC SRPDDGFPFN VLQDVFTLSP SPQDWRDTLF YGVFTSQWHR GTTEGSAVCV
FTMKDVQRVF SGLYKEVNRE TQQWYTVTHP VPTPRPGACI TNSARERKIN SSLQLPDRVL
       NFLKDHFLMD GQVRSRMLLL QPQARYQRVA VHRVPGLHHT YDVLFLGTGD GRLHKAVSVG
PRVHIIEELQ IFSSGQPVQN LLLDTHRGLL YAASHSGVVQ VPMANCSLYR SCGDCLLARD
                                                                                 480
                                                                                 540
        PYCAWSGSSC KHVSLYQPQL ATRPWIQDIE GASAKDLCSA SSVVSPSFVP TGEKPCEQVQ
50
                                                                                 600
        FQPNTVNTLA CPLLSNLATR LWLRNGAPVN ASASCHVLPT GDLLLVGTQQ LGEFQCWSLE
                                                                                 660
        EGFQQLVASY CPEVVEDGVA DQTDEGGSVP VIISTSRVSA PAGGKASWGA DRSYWKEFLV
                                                                                 720
        MCTLFVLAVL LPVLFLLYRH RNSMKVFLKQ GECASVHPKT CPVVLPPETR PLNGLGPPST
                                                                                 780
        PLDHRGYQSL SDSPPGSRVF TESEKRPLSI QDSFVEVSPV CPRPRVRLGS EIRDSVV
55
        Seg ID NO: 480 DNA sequence
        Nucleic Acid Accession #: NM_004217.1
        Coding sequence: 58..1092
60
                                                                   51
        GGCCGGGAGA GTAGCAGTGC CTTGGACCCC AGCTCTCCTC CCCCTTTCTC TCTAAGGATG
        GCCCAGAAGG AGAACTCCTA CCCCTGGCCC TACGGCCGAC AGACGGCTCC ATCTGGCCTG
                                                                                 120
        AGCACCCTGC CCCAGCGAGT CCTCCGGAAA GAGCCTGTCA CCCCATCTGC ACTTGTCCTC
                                                                                 180
65
        ATGAGCCGCT CCAATGTCCA GCCCACAGCT GCCCCTGGCC AGAAGGTGAT GGAGAATAGC
                                                                                 240
        AGTGGGACAC CCGACATCTT AACGCGGCAC TTCACAATTG ATGACTTTGA GATTGGGCGT
                                                                                 300
        CCTCTGGGCA AAGGCAAGTT TGGAAACGTG TACTTGGCTC GGGAGAAGAA AAGCCATTTC
                                                                                 360
        ATCGTGGCGC TCAAGGTCCT CTTCAAGTCC CAGATAGAGA AGGAGGGCGT GGAGCATCAG
                                                                                 420
        CTGCGCAGAG AGATCGAAAT CCAGGCCCAC CTGCACCATC CCAACATCCT GCGTCTCTAC
                                                                                 480
70
        AACTATTTTT ATGACCGGAG GAGGATCTAC TTGATTCTAG AGTATGCCCC CCGCGGGGAG
       CTCTACAAGG AGCTGCAGAA GAGCTGCACA TTTGACGAGC AGCGAACAGC CACGATCATG
GAGGAGTTGG CAGATGCTCT AATGTACTGC CATGGGAAGA AGGTGATTCA CAGAGACATA
        AAGCCAGAAA ATCTGCTCTT AGGGCTCAAG GGAGAGCTGA AGATTGCTGA CTTCGGCTGG
        TCTGTGCATG CGCCCTCCCT GAGGAGGAAG ACAATGTGTG GCACCCTGGA CTACCTGCCC
        CCAGAGATGA TTGAGGGGCG CATGCACAAT GAGAAGGTGG ATCTGTGGTG CATTGGAGTG
75
        CTTTGCTATG AGCTGCTGGT GGGGAACCCA CCCTTTGAGA GTGCATCACA CAACGAGACC
        TATCGCCGCA TCGTCAAGGT GGACCTAAAG TTCCCCGCTT CTGTGCCCAC GGGAGCCCAG
        GACCTCATCT CCAAACTGCT CAGGCATAAC CCCTCGGAAC GGCTGCCCCT GGCCCAGGTC
        TCAGCCCACC CTTGGGTCCG GGCCAACTCT CGGAGGGTGC TGCCTCCCTC TGCCCTTCAA
                                                                                1080
        TCTGTCGCCT GATGGTCCCT GTCATTCACT CGGGTGCGTG TGTTTGTATG TCTGTGTATG
80
                                                                                1140
        TATAGGGGAA AGAAGGGATC CCTAACTGTT CCCTTATCTG TTTTCTACCT CCTCCTTTGT
        TTAATAAAGG CTGAAGCTTT TTGT
        Seq ID NO: 481 Protein sequence
85
        Protein Accession #: NP_004208
                                                                   51
                                           31
                                                        41
```

10	Seq ID NO: 482 DNA sequence
10	Nucleic Acid Accession #: AK055663
	Coding sequence: 381423

70

	1	11	21	31	41	51	
15)	CCGGCGGGAG		CCTTATCATC	CCCACAATTC	y decalectation	60
13	AGAACGGCII	AGATCCTTTT	TTCCCS ACTO	CTTACGGAA	TTTAGACTTG	TACCACCTCA	120
		TGGAAGATAC					180
	CCGAMGGICC	TGCAGTTCTA	CTAATACTAT	ACCTTTAACT	GCCTATACTT	ACCTGACCAT	240
		TTTAGTTTAA					300
20	TACCOCTCTC	TATTCATTTG	CCTTTCAAAA	ATTAGAAGTC	CTGGCTGTAT	TTCCCTCCAC	360
20	ACTOTOGO	CAGTTGGGAG	COLLIGATIO	ATTABABAGAA	AGTGCAGAAC	COTTTTTCCA	420
		ATACACACGG					480
	CCTCTTCAC	ATGCTTTCTA	TTCCCAATAA	ACCTTTCCT	TATCTCTCAG	AAGCTGCTAG	540
		CTTCAAGAGC					600
25		AGTATCTTCC					660
23		CTTTGTATTA					720
	CACALLIGGE	GCTATAGCTA	THE CONTROL OF	CALICADURE	ΔΟΨΔΤΩΤΆΤΟ	CCATGAGTGT	780
		AAAGTCTTAC					840
	ACTCATCAGA	GAGGTATCTA	CCTTAGATGG	ACTITITAGAA	GTCCGAAATG	AACATTTTTG	900
30		TTTGGCTCAT					960
50		GTTCTTGCTC					1020
		TTCAAGGATG					1080
	CAATGTCCTA	AACTTTTCAG	ATCATCACGT	AATCCCAATG	CCTCTTTTAA	AGGGTACTGA	1140
		CCAGTTACAT					1200
35		CCTGGGAAAA					1260
		GGTCTCAATC					1320
		GGAATTGGAG					1380
		ACTAATAATA					1440
		TATTGACTCC					1500
40		TTTACTCTAA					1560
		TATTTTTGTA					1620
	GCTTTAAATA	GGCTTCCTTT	AGAAAATGTG	TTTCTTTAAA	TTTGGATTTT	GGTATCTTTG	1680
	GTTTTGTAGT	TGACTGCAGT	GTGATGTGAC	CTTACCTTTA	TAAGAGCCAC	TTGATGGAGT	1740
	AGATCTGTCA	CATTACTAAG	ATACGATATT	TCTTTTTTT	TCCGAGACGG	AGTCTTGCTC	1800
45	TGCCACTGTG	CCCGGCCAAT	ACATTATTAT	TAACTTAAGG	CTGTACTTTA	TTAAGGCTTC	1860
	CTTAGTTTTT	GTTTTGTTTT	GTTTTTTGAG	ATGGAGTCTC	ACTCTGTCGC	CCAGGCTGGA	1920
	ATGCAGTGGC	ATGATCTCAG	CTCACTGCAA	CCTCTGCCTC	CTGAGTTCAA	ATGATTCTCC	1980
		TCCCGAGTAG					2040
~~	TGTATTTTTA	GTAAAGACGG	GGGATTTCAC	CATGTTGGCC	AGGCTGGTCT	TGAACTCCTG	2100
50		CCACCCACCT					2160
		ATTTTCTTTA					2220
		AAAATGTCTG					2280
		TTTTTCTTTG					2340
		AAATTTTGGA				TAATTATCAA	2400
55	GATTTTTGTT	AAAGTTTCTC	TCCTTTAAAA	ATTTTAGTAC	ATTTGTAAAT		
	Sea ID NO:	483 Protein	n semience				
	July 12 110.						

Seq ID NO: 483 Protein sequence Protein Accession #: BAB70980.1

60	1	11	21	31	41	51	
•	ī	ī	ī	Ī	Ī	Ī	
	MGTIHLFRKP	QRSFFGKLLR	EFRLVAADRR	SWKILLFGVI	NLICTGFLLM	WCSSTNSIAL	60
	TAYTYLTIFD	LFSLMTCLIS	YWVTLRKPSP	VYSFGFERLE	VLAVFASTVL	AQLGALFILK	120
	ESAERFLEQP	EIHTGRLLVG	TFVALCFNLF	TMLSIRNKPF	AYVSEAASTS	WLQEHVADLS	180
65	RSLCGIIPGL	SSIFLPRMNP	FVLIDLAGAF	ALCITYMLIE	INNYFAVDTA	SAIAIALMTF	240
	GTMYPMSVYS	GKVLLQTTPP	HVIGQLDKLI	REVSTLDGVL	EVRNEHFWTL	GFGSLAGSVH	300
	VRIRRDANEQ	MVLAHVTNRL	YTLVSTLTVQ	IFKDDWIRPA	LLSGPVAANV	LNFSDHHVIP	360
	MPLLKGTDDL	NPVTSTPAKP	SSPPPEFSFN	TPGKNVNPVI	LLNTQTRPYG	FGLNHGHTPY	420

Seq ID NO: 484 DNA sequence Nucleic Acid Accession #: FGENESH predicted Coding sequence: 1..900

SSMLNQGLGV PGIGATQGLR TGFTNIPSRY GTNNRIGQPR P

75	_			•	4.5		
15	†	†1	21	31	41	51	
		j	1	J	ı		
	ATGCCGCCGC	GGGAGCTGAG	CGAGGCCGAG	CCCCCCCCCC	TCCGGGCCCC	GACCCCTCCC	60
	CCGCGGCGGC	GTAGCGCGCC	CCCAGAGCTG	GGCATCAAGT	GCGTGCTGGT	GGGCGACGGC	120
00	GCCGTGGGCA	AGAGCAGCCT	CATCGTCAGC	TACACCTGCA	ATGGGTACCC	CGCGCGCTAC	180
80	CGGCCCACTG	CGCTGGACAC	CTTCTCTGGT	ACGTACGTTC	AATCGCCCGT	GCGGCCGCGT	240
	GGCTGCGGCG	GGGCTGTGCA	CCGGGGAGCT	GGGGCGGCG	TCTCGGCGGG	AGGGCGCAGA	300
	GGACCCCGGG	GAGGAGACTG	GAGCAGGCCC	CGAGGTGGCG	CTGGTGCGGC	CCAGGACGCT	360
	CTTCCTAACT	CAGGCTCTCC	CCGCCCCGCC	CCTGCAGTGC	AAGTCCTGGT	GGATGGAGCT	420
~ -	CCGGTGCGCA	TTGAGCTCTG	GGACACAGCG	GGACAGGAGG	ATTTTGACCG	ACTTCGTTCC	480
85	CTTTGCTACC	CGGATACCGA	TGTCTTCCTG	GCGTGCTTCA	GCGTGGTGCA	GCCCAGCTCC	540
	TTTCAAAACA	TCACAGAGAA	ATGGCTGCCC	GAGATCCGCA	CGCACAACCC	CCAGGCGCCT	600

GTGCTGCTGG TGGGCACCCA GGCCGACCTG AGGGACGATG TCAACGTACT AATTCAGCTG

5	ATCCGAGCCT TTTGACTCGG	GCCGGGAGGG GCTGCTACCT CTATTCTCAG TGCGCACCCT	TGAGTGCTCA TGCCATTGAG	GCCTTGACGC CACAAAGCCC	AGAAGAACTT GGCTGGAGAA	GAAGGAAGTA GAAACTGAAT	720 780 840
		485 Protein cession #: 1		licted			
10	RPTALDTFSG LPNSGSPRPA	11 PPPLRAPTPP TYVQSPVRPR PAVQVLVDGA EIRTHNPQAP	GCGGAVHRGA PVRIELWDTA	GAGVSAGGRR GQEDFDRLRS	GPRGGDWSRP LCYPDTDVFL	RGGAGAAQDA ACFSVVQPSS	60 120 180 240
15	IRACCYLECS Seq ID NO:	ALTOKNLKEV 486 DNA second	FDSAILSAIE quence	HKARLEKKLN			
••		ence: 17		,032.2		-	
20	•	11	21	31	41	51	
*	1	11 	1	1	1	1	
		GGGAGCTGAG					60
25		GTAGCGCGCC					120
25		AGAGCAGCCT CGCTGGACAC					180 240
		GGGACACAGC					300
•		ATGTCTTCCT					360
30		AATGGCTGCC					420
30		AGGCCGACCT GCCCCGTGCC					480 540
		TTGAGTGCTC					600
		GTGCCATTGA					660
35	GTGCGCACCC	TCTCCCGCTG	CCGCTGGAAG	AAGTTCTTCT	GCTTCGTTTG	A ,	
33	Sea ID NO:	487 Protein	seguence				
		cession #: 2					
40	1	11	21	31	41	51	
40			 		AVOKOCI TUC	VEGNOVDARY	60
		PPPLRAPTPP QVLVDGAPVR					60 120
		THNPQAPVLL					180
	COVERCENT TO	A-DIT 1/17/17/17			TIDEL ODGESTIC	TOTAL COLUMN	
AE	CCIDECSALI	OKNUKEALDS	AILSAIEHKA	RLEKKLNAKG	VKTLSKCKWK	KEECEA	
45				RLEKKLNAKG	VRTLSRCRWR	REFCEV	
45	Seq ID NO:	488 DNA sec	quence		VRILSRCRWK	KFFCFV	
45	Seq ID NO: Nucleic Ac:		quence n #: NM_014		VRIDSRCRWA		
	Seq ID NO: Nucleic Ac: Coding sequ	488 DNA sec id Accession Lence: 64	quence n #: NM_014 1314	398.1	,		
45 50	Seq ID NO: Nucleic Ac:	488 DNA sec id Accession	quence n #: NM_014			51	
	Seq ID NO: Nucleic Ac: Coding sequ 1 GGCACCGATT	488 DNA secid Accession mence: 64	quence n #: NM_014 1314 21 CCGGACTTCG	31 CCGCACGCTG	41 CAGAACCTCG	51 CCCAGCGCCC	60
	Seq ID NO: Nucleic Ac: Coding sequ 1 GGCACCGATT ACCATGCCCC	488 DNA secid Accession nence: 64	quence n #: NM_014 1314 21 CCGGACTTCG CGCGGCGGCC	31 CCGCACGCTG	41 CAGAACCTCG CGTCCCTGGC	51 CCCAGCGCCC CGTAATTTTG	120
50	Seq ID NO: Nucleic Ac: Coding sequents GGCACCGATT ACCATGCCCC CACGATGGCA	488 DNA secid Accession Lence: 64 11 CGGGGGCCTGC GGCAGCTCAG GTCAAATGAG	quence n #: NM_014 1314 21 CCGGACTTCG CGCGGCGGCC AGCAAAAGCA	31 	41 CAGAACCTCG CGTCCCTGGC CCAGAGATTA	51 CCCAGCGCCC CGTAATTTTG TTCTCAACCT	
	Seq ID NO: Nucleic Ac: Coding sequ 1 GGCACCGATT ACCATGCCC CACGATGCCC ACTGCAGCAG CCTCACCAAA	488 DNA second Accession Lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CAACAGTACA CTTTAGCAGC	quence n #: NM_014 1314 21 CCGGACTTCG CGCGGCGGCC AGCAAAAGC AGGACATAAAA AAGATTCATG	31 CCGCACGCTG GCGCTCTTCCAGAAAACCTGTCC GATGGTCATA	41 CAGAACCTCG CGTCCCTGGC CCAGAGATTA AGCAACCAGC TCACCTTTCA	51 CCCAGCGCCC CGTAATTTTC TTCTCAACCT TAAGCAAGCA AACAGCGGCC	120 180 240 300
50	Seq ID NO: Nucleic Ac: Coding sequ 1 GGCACCGATT ACCATGCCC CACGATGCCC ACTGCAGCAG CCTCACCAAA ACAGTAAAAA	488 DNA second Accession Lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CAACAGTACA CTTTAGCAGC TTCCAACAAC	quence 1 #: NM_014 1314 21 CCGGACTTCG CGCGGCGCC AGCAAAAGC GGACATAAAA AAGATTCATG TACCCCAGCA	31 CCGCACGCTG GCGCTCTTCCAGAAAAACCTGTCC GATGGTCATA ACTACAAAAA	41 CAGAACCTCG CGTCCCTGGC CCAGAGGATGA AGCAACCAGC TCACCTTTCA ACACTGCAAC	51 CCCAGCGCCC CGTAATTTTG TTCTCAACCT TAAGCAAGCA AACAGCGGCC CACCAGCCCA	120 180 240 300 360
50	Seq ID NO: Nucleic Ac: Coding sequence GGCACCGATT ACCATGCCC CACGATGGCA ACTGCAGCA ACTGCAGAAA ACAGTAAAAA ATTACCTACA	488 DNA secid Accession lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CAACAGTACA CTTTAGCAGC CTTCCAACAAC CCCTGGTCAC	quence n #: NM_014 1314 21 CCGGACTTCG CGCGGCGGCC AGCAAAAGCA GGACATAAAA AAGATTCATG TACCCCAGCA AACCCAGGCC	31 CCGCACGCTG GCGCTCTTCG TTTCCAGAAA AAACCTGTCC GATGGTCATA ACTACAAAAA ACACCCAACA	41 CAGAACCTCG CGTCCCTGGC CCAGAGATTA AGCACCACCTTCA ACACTGCAAC ACTCACACAC	51. CCCAGCGCCC CGTAATTTTG TTCTCAACCT TAAGCAAGCA AACAGCGCC CACCAGCCCA AGCTCCTCCA	120 180 240 300 360 420
50	Seq ID NO: Nucleic Ac: Coding sequence GGCACCGATT ACCATGCCCC CACGATGGCA ACTGCAGCAG ACTGCAGCAA ACTACACAAAAAA ATTACCTACA	488 DNA secid Accession Lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CAACAGTACA CTTTAGCAGC TTCCAACAAC TTCCAACAAC TTTAGGTCAC TTACAGTCGG	Quence 1 #: NM_014 1314 21 CCGGACTTCG CGCGGCGCC AGCANANGCA AGCATANAN ANGATTCATG TACCCCAGCC CCCTAGCTTA	31 CCGCACGCTG GCGCTCTTCG TTTCCAGAAA AAACCTGTCC GATGGTCATA ACTACAAAAA ACACCCAACA	41 CAGAACCTCG CGTCCCTGGC CCAGAGATTA AGCAACCAGC TCACCTTTCA ACACTGCAAC ACTCACACAC CACTGCCACC	51 CCCAGGGCCC CGTAATTTG TTCTCAACCT TAAGCAAGCA AACAGCGGC CACCAGCCCA AGCTCCTCCA CACCATCACC	120 180 240 300 360
50	Seq ID NO: Nucleic Ac: Coding sequence I GGCACCGATT ACCATGCCCC CACGATGGCA ACTGCAGCAG CCTCACCAAA ACAGTAAAAA ATTACCTACA GTTACTGAAG CCACCAGCTC ACTCAACCCA	488 DNA second accession acces: 64 11 CGGGGCCTGC GGCAGCTCAG GGCAAATGAG CAACAGTACA CTTTAGCAGC TTCCAACAAC CTTTAGCAGC TTACAGTCAG ATACAGTCGG ATACAGCTGG GTAACCAGAC	quence 1 #: NM_014 1314 21 CCGGACTTCG CGCGGCGCC AGCAAAAGCA GGACATAAAA AAGATTCATG TACCCCAGCA AACCCAGCCC CCCTAGGCTTA AACCAGGTTC CACCCTTCCA CACCCTTCCA	31 CCGCACGCTG GCGCTCTTCG TTTCCAGAAA AAACCTGTCC GATGGTCATA ACTACAAAAA ACACCCAACA GCCCCTTATT TCAACCGTCA GCAACTTTAT	41 CAGAACCTCG CGTCCCTGGC CCAGAGATTA AGCAACCAGC TCACCTTCA ACACTGCAAC ACTCACCACA CACTGCCACC CGCACACAAC CGATAGCACC	51 CCCAGCGCCC CGTAATTTG TTCTCAACCT TAAGCAAGCA AACAGCGGCC CACCAGCCCA AGCTCCTCCA CACCATCACC TGGGAACACC GCACAAAAGC	120 180 240 300 360 420 480 540
50	Seq ID NO: Nucleic Ac: Coding sequ GGCACCGATT ACCATGCCC CACGATGGCA ACTGCAGCAG CCTCACCAAA ACAGTAAAAA ATTACCTACA GTTACTGAAG CCACCAGCTC ACCAACCCA ACAACCGGTC	488 DNA set id Accession lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CTAACAGTACA CTTTAGCAGC TTCCAACAAC CCCTGGTCAC TTACAGTCGG ATACAGCTGG ATACAGCTGG ATACAGCTGA AGAAGCCTGA AGAAGCCTGA	Quence n #: NM_014 1314 21 CCGGACTTCG CGCGGCGGCC AGCAAAAGCA GGACATAAAA AAGATTCATG TACCCCAGCC AACCCAGCCC CCCTAGCTTA AACCAGTTCA CACCCGTTCCA TCAACCCACC	31 CCGCACGCTG GCGCTCTTCG TTTCCAGAAA AAACCTGTCC GATGGTCATA ACTACAAAAA ACACCCAACA GCCCCTTATT TCAACCGTCA GCAACTTTAT CATGCCCAG	41 CAGAACCTCG CGTCCCTGGC CCAGAGATTA AGCAACCAGC TCACCTTTCA ACACTGCAAC ACTCACACAC CACTGCCACC GCCACACAAC CGATAGCACC GAACAACGGC GAACAACGGC	51 CCCAGCGCCC CGTAATTTG TTCTCAACCT TAAGCAGCCC AACAGCCCCA AGCTCCCCA CACCATCACC TGGGAACACC GCACAAAAAGC AGCTGCCCAC	120 180 240 300 360 420 480 540 600 660
50 55 60	Seq ID NO: Nucleic Ac: Coding sequence GGCACCGATT ACCATGCCC CACGATGGCA ACTGCAGCA ACTGCAGCA ACTGCAGCA ACTGCAGCA GTTACTGAACC GTTACTGAACC ACTCAACCCA ACACCGGTC AATACCACCC	488 DNA secid Accession lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CAACAGTACA CTTTAGCAGC CTTCCAACAAC CCCTGGTCAC TTACAGTCGG ATACAGCTGG GTAAACCAGC GTAAACCAGC GGAAACCAGC	Quence n #: NM_014 1314 21 CCGGACTTCG CGCGGCGCC AGCAAAAGCA AGGATCATA AAGATTCATG AACCCAGCC CCCTAGCTTA AACCAGTTCA AACCAGTTCA CACCCTTCCA CACCCTTCCA ACCTGCCC ACCTGCCTCC	31 CCGCACGCTG GCGCTCTTCG TTTCCAGAAA AAACCTGTCC GATGGTCATA ACTACAAAAA ACACCCAACA GCCCCTTATT TCAACCGTCA GCAACTTTAT CATGCCCAG ACGGTTCCTG	41 CAGAACCTCG CGTCCCTGGC CCAGAGATTA AGCACCATTCA ACACTGCAAC ACTCACACAC CACTGCCACC GCCACACACA CGATAGCACT GACAACGGC GGCCCACCCT	51. CCCAGCGCCC CGTAATTTTG TTCTCAACCT TAAGCAAGCGCC CACCAGCCCA AGCTCCTCCA CACCATCACC TGGGAACACC GCACAAAAGC AGCTGCCCAC TGCACCTCAG	120 180 240 300 360 420 480 540 600 660 720
50	Seq ID NO: Nucleic Ac: Coding sequ 1	488 DNA sec id Accession Lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CAACAGTACA CTTTAGCAGC TTCCAACAAC CCCTGGTCAG TTACAGCTGG GTAACCAGAC AGAAGCCTGA GCACAGCTGG GCACAGCTGG GCACAGCTGG GCACAGCTGG GCACAGCTGG	Quence 1 #: NM_014 1314 21 CCGGACTTCG CGCGGCGCC AGCAAAAGCA AGATTCATG TACCCCAGCA AACCCAGGCC CCCTAGCTTA AACCAGTTCA ACCGTTCCA CACCTTCCA CACCTTCCA CACCTTCCA CACTTCCA CACTTCCA CACTTCCA CACTTCACACCTCCA AATTATCAG GATTGTTCAA	31 CCGCACGCTG GCGCTCTCG TTTCCAGAAA AAACCTGTCC GATGGTCATA ACACCCAACA ACACCCAACA GCCCCTTATT TCAACCGTCA GCAACTTAT CATGCCCAG GCTCCTG GTTCTAAACG GTCTAAACG	41 CAGAACCTCG CGTCCCTGGC CCAGAGATTA AGCAACCAGC TCACCTTCA ACACTGCAAC ACTCACACAC GCACACAAC GGCACACAC GGAACAACGGC GGCCCACCCT GAAGCAGAC CGGTTTTTTC	51 CCCAGCGCCC CGTAATTTG TTCTCAACCT TAAGCAAGCA AACAGCGCCCA AGCTCCTCCA CACCATCACC TGGGAACACC GCACAAAAGC AGCTGCCCAC TGCACCTCAG CTGTATAAAA ACCTCGGAGA	120 180 240 300 360 420 480 540 600 660
50 55 60	Seq ID NO: Nucleic Ac: Coding sequ GGCACCGATT ACCATGCCCC CACGATGGCA ACTGCAGCAG CCTCACCAAA ACAGTAAAAA ATTACCTACA GTTACTGAAG CACCAGGTC AACACCGGTC AATACCACCC CCATCGTCAG GCAGAGATGG TACTTCAACA	488 DNA set id Accession lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CTACAGCAGC TTCCAACAAC CTTTAGCAGC TTCCAACAAC GTACAGCG ATACAGCTGG ATACAGCTGG GTAACCAGAC AGAAGCCTGA GCACAGCTGC TCAAGACTGG GCACAGCTGG TCAAGACTGG	Quence n #: NM_014 1314 21 CCGGACTTCG CGCGGCGCC AGCAAAAGCA AAGATTCATG TACCCCAGCA AACCCAGCC CCCTAGCTTA AACCAGTTCA CACCCTTCCA TCAACCAGTCA ACCAGTCCA CACCTTCCA CACCTTCCA CACCTTCCA CACCTTCCA CACTTCCA CACCTTCCA CACCTTCCA CACCTTCCA CACCTTCCA CCTAGCTTCA CACCTTCCA CCTAGCTCCA CCTAGCTCCA CCTAGCTCCA CCTAGCTCCA CCTAGCTCCA CCTAGCTCCA CCTACCCACC CATTTATCAG CGCAACGCAA	31	41 CAGAACCTCG CGTCCTGGC CCAGAGATTA AGCAACCAGC TCACCTTCA ACACTGCAAC ACTCACACC GCCACACAC GGCACACAC GATAGCACC GAACACC GGCACCCT GAACACC GACCACC CGATAGCACC CGTTTTTTC ACTGTGGCAC	51 CCCAGCGCCC CGTAATTTTG TTCTCAACCT TAAGCAAGCC CACCAGCCCA AGCTCCTCCA CACCATCACC GCACAAAAGC AGCTGCCCAC TGGGACACT GCACCATCAGC TGCACCTCAG CTGTATAAAA ACCTCGGAGA CCGAAAATCC	120 180 240 300 360 420 480 540 600 660 720 780 840 900
50 55 60	Seq ID NO: Nucleic Ac: Coding sequence 1	488 DNA secid Accession lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CTTAGCAGC CTTCCAACAAC CTTAGCAGC TTACAGTCG ATACAGCTGG GTAACCAGCA AGAAGCCTGA GCACAGCTGG GGATACAGCTGC TCAAGACTGG TCAAGACTGG TCAAGACTGC TCAAGACTGC	Quence n #: NM_014 1314 21 CCGGACTTCG CGCGGCGCC AGCAAAAGCA AGGATCATG TACCCCAGCA AACCCAGCA CACCTTCCA CACCTTCCA CACCTTCCA ACCTGCCTC AATTATCAG GATTGTTCAA GGACGCAA GGGCGAACGCAA GGGCGGATTT	31 CCGCACGCTG GCGCTCTTCG TTTCCAGAAA AAACCTGTCC GATGGTCATA ACACCCAACA GCCCCTTATT TCAACCGTCA GCAACTTTAT CATGCCCAG ACGGTTCCTG GTTCTAAACG GACAAGGAGT GCCCTCTGGGA GCCCTCTGGGA GCCCTCTGGGA GCCCTCTGGGA GCCCTCTGGGA GCCCTCTGGGA	41 CAGAACCTCG CGTCCCTGGC CCAGAGATTA AGCACCAGC TCACCTTCACACAC ACTCACACAC CGATAGCACC GGCACACACA GGATAGCACT GAACAACGC GGCCCACCCT GAAGCAGACT GAAGCAGACT CGGTTTTTTC CGTTTTTCC CATTTACCACA	51. CCCAGCGCCC CGTAATTTTG TTCTCAACCT TAAGCAAGCAC AACAGCGCCC AGCTCCTCCA CACCATCACC TGGGAACACC GCACAAAAGC GCTCCTCAG CTGTATAAAA ACCTCGGAGA ACCTCGGAGA CCGAAAAATC GGATGAAGAA	120 180 240 300 420 480 540 600 660 720 780 840 900
50 55 60 65	Seq ID NO: Nucleic Ac: Coding sequence 1	488 DNA secid Accession lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CAACAGTACA CTTTAGCAGC TTCCAACAG TTACAGTCG ATACAGCTGG GTAACCAGAC GGAAGCCTGA GCACAGCTGC TCAAGACTGG GGATACAGCT TCAAGACTGG TCAAGACTGG TCAAGACTGC TCAAGACTGC TCAAGACTGC TCAAGACTGC TCAAGACTGC TCAAGACTGC TCAAGACTGC	Quence 1 #: NM_014 1314 21 CCGGACTTCG CGCGGCGCC AGCAAAAGCA AGATTCATG TACCCCAGCC CCCTAGCTTA AACCAGTTCA ACCAGTTCA ACCAGTTCA ACCAGTTCA ACCAGTTCA ACCAGTTCA ACCAGTTCA ACCAGTTCA ACCAGTTCA ACCAGCC ACTTGCTCC AATTTATCAG GATTGTTCAA GGCAACCCAA GGGCGGATTT GGGAGCCTAT	31 CCGCACGCTG GCGCTCTTCG TTTCCAGAAA AAACCTGTCC GATGGTCATA ACTACAAAAA ACACCCAACA GCCCTTATT TCAACCGTCA GCAACTTTAT CATGCCCCAG GACATTTAAACG GTTCTAAACG GACAAGGAGT GCCTCTGG GTCTCTGA GCCCTCTGG GTCTCTCAACG	41 CAGAACCTCG CCTCCCTGGC CCAGAGATTA AGCAACCAGC TCACTTCA ACTCCAAC ACTCACACAC CCATGCCACC GCCACACAAC GGACACACC GACACACCC GAAGCACT CAGTTTTTTC CATTGCGCAC CCTTTCCCAC CCTTTCCCAC CAGTTTTTCC ACTGTGCCAC CAGTTTCCAAC CAGATCCAGA	51 CCCAGCGCCC CGTAATTTG TTCTCAACCT TAAGCAAGCGCC CACCAGCCCA CACCAGCCCA CACCATCACC TGGGAACACC GCACAAAAGC TGCACCTCAG CTGTATAAAA ACCTCGGAGA ACCTCGGAGA GCAGAAAATC CGGATAAGAA GACAGTTTAC	120 180 240 300 360 420 480 540 600 660 720 780 840 900
50 55 60	Seq ID NO: Nucleic Ac: Coding sequitary GGCACCGATT ACCATGCCCC CACGATGGCA ACTGCAGCAG CCTCACCAAA ACAGTAAAAA ATTACCTACA GTTACTGAAG CACCAGGTC AACACCGGTC AATACCACCC CCATCGTCAG GCAGAGATGG TACTTCAACA AACCTTCTGT TCATATTATTA CAAGGGAATCA GTGAGTGAAC GTGAGTGAAC GTGAGTGAAC	488 DNA set id Accession lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CTACAGCAGC CTTCCAACAAC CTTTACAGTCAG ATACAGCTGA GTAACAGCTGA GTAACAGCTGA GCACAGCTGA GCACAGCTGA GCACAGCTGA TCAAGACTGA GCATACAGCT TCAAGACTGA TCAAGACTGA TCAAGACTGA TCAAGACTGA TCAAGACTGA TCAAGACTGA TCAAGACTGA TCAAGACTGA TCAAGACTGA TCAAGACTGAAGACTGAAGACTGAAGACTGCAAAC TCAAGACTGAAGACTGAAGACTGAAGACCTCAA	Quence #: NM_014 1314 21 CGGGACTTCG CGCGGCGGCC AGCAAAAGCA AAGATTCATG TACCCCAGCA AACCCAGGCC CCCTAGCTTA AACCAGTTCA CACCCTTCCA TCAACCCACC ACTTGCTCCA ACCTGCTCCA ACCTGCTCCA TCAACCCACC ACTTGCTCCA GGTGCTCCA GGTGCTCCA GGTGGTTCAG GGTGACCTAG GGGAGCCTAT GGGAGCCTAT GGGAGCCTAT GGGAGCCTAT GGTGATGTTC GTTGTTCAGC GTTGTTCAGC GTTGTTCAGC GTTGTTCAGC GTTGTTCAGC GTTGTTCAGCC	31	41 CAGAACCTCG CGTCCTGGC CGTCCTGGC CCAGAGATTA AGCACCAGC ACTGCAAC ACTCACACC CCACTGCAAC GCCACACAC GGCACACAC GGATAGCACT GAACAACGGC GGCCACCCT GAAGCAGAC CGGTTTTTTC ACTGTGGCAC CATTTACCAA CAGATCCAGA TCGGGCATTC TGAAAACAAC	51 CCCAGCGCCC CGTAATTTTG TTCTCAACCT TAAGCAAGCA AACAGCGCCC CACCAGCCCA AGCTCCTCCA CACCATCACC GCACAAAAGC AGCTGCCCAC TGGGAACACC GCACAAAAGC AGCTGCCCAC TGGAACATCC GGATGAAGAA ACCTCGGAGA CCGAAAATCC GGATGAAGAA GACAGTTTAA CTTCAAGTGC CGATGTCCAA	120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140
50 55 60 65	Seq ID NO: Nucleic Ac: Coding sequence GGCACCGATT ACCATGCCCC CACGATGGCA ACTGCAGCAG CCTCACCAAA ACTACTGCAGCAG GTTACTGAAG ACACCAGCTC ACTCAACCCC CCATCGTCAG GCAGGATGG GCAGGATGG TACTTCTACA AACCTTCTGT TCATATTATA CAAGGAATCA GTGAGGTAAC CTTCAAGCCC CTTCAAGCCC	488 DNA set id Accession lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CTAACAGTACA CTTTAGCAGC TTCCAACAAC CCCTGGTCAC TTACAGTCGG ATACAGCTGG GTAACCAGAC AGAAGCCTGA GCACAGCTGC TCAAGACTGC TCAAGACTGC TCAAGACTGC TCAAGACTGC TCAAGACTGC TCAAGACTGC TCAAGACTGC ATACAGCTCAA TGAATTTTCA TCAGTGAAGT AACATGCGCT AGAGCCTCA TGAATTTTGA	Quence #: NM_014 1314 CCGGACTTCG CCGGACTTCG CGCGGCGCC AGCANAAGCA AGATTCATG TACCCCAGCC ACCCAGCTTA AACCAGTTCA ACCAGTTCA ACCCATTCCA CCCTTCCCA CCCTTCCCA ACCTTCCCA ACCTTCCA ACCTTCCA ACCTTCCA ACCTTCCA ACCTTCCA ACCTTCCA ACTTCACC ACTTGCTCC AGTTGTTCAG GGAGCCTAT GGGAGCCTAT GGTAGTGTCC AGATGACCAC AGATGACCAC AGATGACCAC ACGTAGCCAC AGATGACCAC AGATGACCAC AGATGACCAC	31 GCGCACGCTG GGGCTCTTCG TTTCCAGAAA AAACCTGTCC GATGGTCATA ACACCCAACA GCCCCTTATT TCAACCGTCA GCACTTATC CATGCCCAG ACGGTTCCTG GTCTAAACG GACAAGGAGT GTCATAACC GACAAGCAGCA CTGAAACTTCA CATGCCCCAG ACGGTTCCTC GACAAGCAGCA CTGAACTCCAC CTGAACTCCAC CTGAACAGCAGC TTGACACGCAC TTGACCGCAC TTTGACCGCAC TTTGACAGCACC TTTGACAGCACC TTTGACAGC	41 CAGAACCTCG CGTCCCTGGC CCAGAGATTA AGCACCAGC TCACCTTCA ACTCACACA ACTCACACAC CGATAGCACC GGACACACAC GGACACACC GAACAACGGC GGCCCACCCT GAAGCAGCT CAGGTTTTTC ACTGTGGCAC CATTACCAA CAGATCCAGA TCGGGCATC TGAAAACAC TGGAACACC TGAAAACAC TGGATGAGTG	51. CCCAGCGCCC CGTAATTTG TTCTCAACCT TAAGCAAGCGCC AACAGCGCCCA AGCTCCTCCA CACCATCACC TGGGAACAC GGACAAAAGC AGCTGCCCAC TGCACCTCAG CTGTATAAAA ACCTCGGAGA CCGAAAATCC GGATGAACAC CGATGACAC GCACTTAC CTCAAGTC CTCAAGTC CGATGTCCAA	120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140 1200
50 55 60 65	Seq ID NO: Nucleic Ac: Coding sequence 1	488 DNA set id Accession lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CTTAGCAGC CTTCCAACAAC CTTAGCAGC TTACAGTCG ATACAGCTGG GTAAACAGCTGG GCAAGCCTGA GCACAGCTGC TCGACCCCAA TCGACCCCAA TCAAGACTGC TCAAGACTTCATTCATTCATTCATTCATTCATTCATTCAT	Quence n #: NM_014 1314 21 CCGGACTTCG CGCGGCGCC AGCAAAAGCA AGATCATG TACCCCAGCA AACCCAGCA CACCTTCCA CACCTTCCA ACCTGCTCA AACCAGTTCA CACCTTCCA ACTGCTTCA CGCACCAC CACTGCTTC CATTATCAG GATTGTTCAA CGCAACGCAA	31 CCGCACGCTG GCGCTCTTCG TTTCCAGAAA AAACCTGTCC GATGGTCATA ACACCCAACA GCCCCTTATT TCAACCGTCA GCAACTTTAT CATGCCCAG ACGGTTCCTG GTTCTAAACG GACAGGAGG GTGAATCTCA TCGACGCCCTCTGGG TTGACCGCCC CACCCTCAGCA TTGACCGTCT CAGACAGCAG CACCTCCAGC ACTGCAGC ACTGCAGC ACTGCAGC ACCTGCAGC ATCGCAGCAGC ATCGCAGCAGC ATCGTGGTTG	41 CAGAACCTCG CGTCCCTGGC CCAGAGATTA AGCACCAGC TCACCTTCACACAC ACTCACACAC CGATAGCACT GGACACACC GGATAGCACT GAACAACGC GGCCACACACT GAAGCAGACT CGGTTTTTCC CATTTACCAC CAGTTGCAC CATTTACCAC CAGTTGCAC CAGTTCCACAC CAGTTCCACAC CTGGCACT TGGAAACACGC TGGGCATTC TGAAAACACG TGGATGAGTG GTCTCTGCCT	51. CCCAGCGCCC CGTAATTTTG TTCTCAACCT TAAGCAAGCGCCC CACCAGCCCCA AGCTCCTCCA CACCATCACC TGGGACACAC TGCACCACACC TGCACCACAC CCTCAGC CTGTATAAAA ACCTCGGAGA ACCTCGGAGA GACAGTTTAC CGTTCAAGTGC CGATGTCCCAC CGATGTCCCAC CTGTTCAACTGC CTTCAACTGC CTTCAACTGC CTTCAACTGC CTTCAACTGC CTTCAACTGC CTTCAACTGC CTTCTAACTGC CTTCTAACTGC CTTCTACTTCACTTC	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200
50 55 60 65 70	Seq ID NO: Nucleic Ac: Coding sequity GGCACCGATT ACCATGCCCC CACGATGGCA ACTGCAGCAG CCTCACCAAA ACAGTAAAAA ATTACCTACA GTTACTGAAG CCACCAGCTC AATACCACCC CATCGTCA GATACCACCC CATCGTCA ACACCGGTC AATACCACCC CATCGTCA ACACCGGTC TACTTCATATTATA CAAGGAATCA GTGAGTGAAC CTTCAAGCCT TACACAATTG GGTGTCTATA CCCGGGGGGA	488 DNA set id Accession lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CTACAGCTCAC CTTAGCAGC TTCCAACAAC CTTAGCTGG ATACAGCTGA GTACAGCTGA GCACAGCTGA GCACAGCTGA GCACAGCTGC TCAAGACTGC TCAACAGCT TCAAGACTGC TCAAGACTGC TCAAGACTGC TCAAGACTGC TCAACCCCAA TGAATTTTCA TCAGTGAAGT AACATGCGGT AACATGCGT AGAGCTCCCA TGATTTTGA TGCTCCTGT TGATTTTGA TGCTTCCTGT ATGAAAATAA	Quence #: NM_014 1314 CCGGACTTCG CGCGGCGGCC AGCAAAAGCA AAGATTCATG TACCCCAGCC ACCTAGCTTA AACCAGTTCA ACCCAGCC ACTTCACCACC ACTTCACCACC ACTTCACCACC ACTTCACCACC ACTTCACCCACC	31	41 CAGAACCTCG CGTCCTGGC CGTCCTGGC CCAGAGATTA AGCAACCAGC ACTGCAAC ACTCACACC GCCACACAAC CGATAGCACCT GAACAACGGC GGCCACCCT GAAGCAGACT CAGTTTTTC ACTGTGGCAC CATTTACCAA CAGATCCAGA TCGGGCATTC TGAAAACAAC TGGATGAGT GTCTCTGCCT ACAGAGAAT CATCCCTTCC	51 CCCAGCGCCC CGTAATTTTG TTCTCAACCT TAAGCAAGCA AACAGCGCCC CACCAGCCCA AGCTCCTCCA CACCATCACC GCACAAAAGC AGCTGCCCAC GCACAAAAGC AGCTGCCCAC GGATGAACAC GGATGAAGAA CCTCAGAGAC CTTCAAGTGC CTTCAAGTGC CTTCAAGTGC CGATGTCCAA CTCGTCTGAC TATGGGTATG AGGATGCAATTTG	120 180 240 300 360 420 480 540 660 720 780 960 1020 1080 1140 1200 1250 1320 1380
50 55 60 65	Seq ID NO: Nucleic Ac: Coding sequity GGCACCGATT ACCATGCCC CACGATGCA ACTGCAGCAG CCTCACCAAA ACAGTAAAAA ATTACCTACA GTTACTGAGGG CACCAGCTC AACACCGGTC AATACCACCC CATCGTCAG GCAGAGATG TCATATTATA CAAGGAATCA GTGATGAAC CCTCAGCAC CCTCATGTT CATATTATTA CAAGGAATCA GTGAGTGAAC CTTCAAGCT TACACAATTG GGTGTCTATG CCCGGGGGGA TTGGGAAATT	488 DNA set id Accession lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CAACAGTACA CTTTAGCAGC TTCCAACAAC CCCTGGTCAC TTACAGTCGG GTAACCAGAC AGAAGCCTGA GCAAGACTGG GTAACCAGAC TCAAGACTGG TCAAGACTGC TCAAGACTGC TCAACACTGA TCAAGACTGC TCAAGACTGC TCAAGACTGC TCAACCCCAA TGAATTTCA TCAGTGAAGT ACAGTGCGT ACAGTCCCA TGATTTTGA TGCTTCCTGT AAAATCAGCCT ATGAAAATAA CCCTCAGAGT	Quence #: NM_014 1314 CCGGACTTCG CGCGGCGCC AGCAAAAGCA GGACATAAAA AAGATTCATG TACCCCAGCC ACCCAGCTTCA AACCAGTTCA ACCCATCCA CCCTAGCTTA ACCCATCCA CCCTACCTCCA CCCTACCTCCA ATTATCAG GATTTATCAG GGTGCTCC ACTTGCTCC ACTTGCTCC ACTTGCTCC ACTTGCTCC ACTTGCTCC AATTTTTCAG GGTGGTGTTC GGTAGTTC GGTAGTTC AGGTAGTTC AGGTGTCAGC AAGGTGTCAG GTTGGGGCC AAGGTGTCAG GTTGGGGCC TGGATTTAG GTGGTGTCTT GGTAGTTCAGCC AGGTGTCAGCC AGGTGTCAGCC AGGTGTCAGCC TGGATTTAG GTGGGTCCTT	31 CCGCACGCTG GGGCTCTTCG TTTCCAGAAA AAACCTGTCC GATGGTCATA ACACCCAACA GCCCCTTATT TCAACCGTCA GCAACTTTAT CATGCCCAG ACGGTTCCTG GTCATAACG GCCCTTATT CATGCCCAG ACGGTTCTAACCG TCTGAACG TTGACGGT TTGACGGT TTGACGGT TTGGCGAG TTTGGAATG ATCGTGGTG ATCGTGGTT CAGACACCAG ATCGTGTT CAGACACTT CAGACACT TCAGACAT TCAACTTT CAAACATGT	41 CAGAACCTCG CGTCCCTGGC CCAGAGATTA AGCAACCAGC TCACCTTTCA ACACTGCAAC ACTCACACC GCCACACAAC GGATAGCACC GAACAACGGC GAACAACGGC GAACAACGGC GAACAACGGC GAACAACGGC TGAACACCT TGAAACAAC CATTTACCAA CAGATCCAGA TCGGGCATTC TGAAAACAAC TGGATGAGTG GTCTCTGCCT ACCAGAGAAT CATCCCTTCC AAACCACAT	51. CCCAGCGCCC CGTAATTTG TTCTCAACCT TAAGCAAGCAC CACAGCCCA AGCTCCTCCA CACCATCACC TGGGAACACC GCACAAAAGC AGCTGCCCAC TGCACCTCAG ACCTCAGA ACCTCAGAG ACCTCAGAC CTGTATAAAA ACCTCGGAGA CCGAAAATCC GGATGAAGAA CCTCAAGTCCTAAG CTTCAAGTGC CGATGTCCAA CTCGTCTGAC TATGGTTTGA CTAATTGTTG AGGATGGCTGC CTAATTGTTG AGGATGGCTTC	120 180 240 300 360 420 480 540 660 720 780 960 1020 1140 1200 1260 1320 1380 1440
50 55 60 65 70	Seq ID NO: Nucleic Ac: Coding sequence 1	488 DNA set id Accession lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CAACAGTACA CTTCAACAAC CCCTGGTCAC AGAAGCTGG GTAACAGCTGG GTAACAGCTGA GCACAGCTGA GCACAGCTGA TCAAGACTGG ATACAGCTGA TCAAGACTGC ACAGACCTCAA TCAGTGAAGTTCA TCAGTGAAGTTCA ACAGCCCCA ATGAATTTCA TGCTTCCTGT AAATCCGCCT ATGAAATTGATTGATTGAACCCCTA ATGAAATTAGAGCCTCCTAAGAAATAA CCCCTCAGAGT GTCATGTGTG	Quence #: NM_014 1314 CCGGACTTCG CGCGGCGCC AGCANAAGCA GGACATAANA ANGATTCATG AACCCAGCA AACCCAGCC CCCTAGCTTA AACCAGTTCA CACCCTTCCA TCAACCCACC ACTTGCTCCA GGTGTTCAA GGGAGGATTT GGGAGCCTAT GGGAGCCTAT GGTGATGTTCAC GGTGATGTTCCA CGCAGCAA CGCAACGCAA	31 CCGCACGCTG GCGCTCTTCG TTTCCAGAAA AAACCTGTCC GATGGTCATA ACACCAACA GCCCTTATT TCAACCGTCA GCAACTTTAT CATGCCCAG ACGGTTCCTG GTCTAAACG GACAAGGAGC GCCTCTGGGA TTGACCGTCA TTGACCGTCT CAGACAGCAG CACCTCCAGGA ACGCTCT CAGACAGCAG CACCTGCAGG ACCTGCAGG CACCTGCAGG ACCTGCAGG ACCAGCACACACACACACACACACACACACACAC	41 CAGAACCTCG CGTCCCTGGC CCAGAGATTA AGCACCAGC TCACCTTTCA ACTCACACA ACTCACACAC CGATAGCACT GAACACACC GGATAGCACT GAACACGGC GGCCACCCT GAAGCAGAC CATTTACCAA CAGATCCAGA CAGATCCAGA TCGGGCATTC TGAAAACAGC TGGATGGGT GTCTCTGCCT ACCAGAGAAT CATCCCTTC AACCACCAT TCAATTCTA	51. CCCAGCGCCC CGTAATTTTG TTCTCAACCT TAAGCAAGCGCCC AGCTCCCCA AGCTCCTCCA CACCATCACC TGGGACCAC AGCTCCTCAC CTGTATAAAA ACCTCGGAGA ACCTCGGAGA CCGATGACAAAGC CTGTATAAAA CCTCAAGTC CGATGTCCAC TGTCAACTC TATGGGTATC TATGGGTATG CTAATTCTTT AGGGTATC AGGATGACTAC CTAATTCTTT AGGATGACT AATACTTTTT	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1140 1200 1260 1320 1380 1440 1500
50 55 60 65 70	Seq ID NO: Nucleic Ac: Coding sequence 1	488 DNA secid Accession lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CAACAGTACA CTTCAACAAC TTCAACAGCTGG GTAACAGCTGG GTAACAGCTGG GATACAGCTGC TCAAGACCTAA TCAATTTCA TCAGTGAGT AACATGCGT AACATGCGT AACATGCGT AACATGCGT AACATCAGTTCTA TCAGTGAAGT CCCCCT ATGAATTTCA TCCTCTT TAATCCCCCT ATGAAATAA CCCTCAAGAGT GTCATGTGTG TGAAAGATAT GTCATGTGTG TGAAAGATAT TGATTTCATGTGTG TGCTCATGTGTG TGAAAGATAT	Quence 1 #: NM_014 1314 21 CCGGACTTCG CGCGGCGCC AGCAAAAGCA GGACATAAAA AAGATTCATG TACCCCAGCC CCCTAGCTTA AACCAGTCA AACCCACCA CACCACCACC ACTGCCTCC AATTATCAG GATTGTCAA CGCAACCCAC GGGGGGCTAT GGGAGCCTAT GGGAGCCTAT GGTGATGTC AGATGACCA CCTGCTCC AGATGACCA CCTGCTCC AATTATCAG GATTGTCAA CGCAACCCAA CGCAACCCAA CGCAACCCAA CGCAACCCAA CGGAGGTTTA GGGAGCCTAT GGTGATGTCC AGATGACCAC AGGTGTCAA TGGAATTTAG GTGGGTCCTT ATTTAAGTTC AGTGAGCTGT AGTGAGCTGT	31 CCGCACGCTG GCGCTCTTCG TTTCCAGAAA AAACCTGTCC GATGGTCATA ACACCAACA GCCCTTATT TCAACCGTCA GCAACTTTAT TCAACGTCAG ACGGTTCCTG GTTCTAAACG GCCCTTCTGG GTCTCTAGACAG ACGGTTCCTG GTCTCTGAACG TTGACCGTCT CAGACAGCAG TTGACCGTCT CAGACAGCAG TTGGCAGG TTTGGAATG TCATCTGGAT ACGACTCTTT CAAACAATG TCATCTGGAT AGAACATCTT CAAACAATG TCATCTGAT AGAACATCTT CAAACAATG TCATCTGAT AGGACACA TTATTTTCTA	41 CAGAACCTCG CCTCCCTGGC CCAGAGATTA AGCAACCAGC TCACTTCAA ACACTGCAC ACTGCACC GCCACACAAC GGCACACACC GAAGACAC GGCCACCCT GAAGACAC CCATTTTTTC ACTGTGCAC CATTTACCAA CAGATCCAGA TCGGCATTC TGAAAACAAC TGGGCATTC TGAAAACAAC AGATCCAGA TCGGCATTC TGAAAACAAC TCGGCATTC TGAAAACAC TGGATGATG TCCTTCC ACACACTTCC ACACACTTCC TCAAATTTCTA GTTTCCTTTA	51 CCCAGCGCCC CGTAATTTG TTCTCAACCT TAAGCAAGCGCC CACCAGCCCA AACAGCGCCC AGCATCACC TGGGAACACC GCACAAAAGC CTGTATAAAA ACCTCGGAGA ACCTCGGAGA CCGATCACC TGCACTTAC CGATTTAC CTTCAAGTGC CGATGTCCAA CTCGGTATGC CGATGTCCAA CTCTCAGTCC CGATGTCCAA CTCTCAGTCC CGATGTCCAA CTCTCAGTCT CGATTTCC CGATGTCTTAC CTTCTATTCA AGTACTTTTT GAATATTTTT GAATATTTTA	120 180 240 300 360 420 480 540 660 720 780 960 1020 1140 1200 1260 1320 1380 1440
50 55 60 65 70	Seq ID NO: Nucleic Ac: Coding sequitorial GGCACCGATT ACCATGCCC CACGATGGCA ACTGCAGCAG CCTCACCAAA ACAGTAAAAA ATTACCTACA GTTACTGAGC GCACCAGCTC AATACCACCC CATCGTCA GCAGAGATG TCATATTATA CAAGGAATCA GTGAGTCAACA ACCTTCTGT TCATATTATA CAAGGAATCA GTGAGTGAAC TTCAACATTG GGTGTCTATA TCACAATTG GGTGTCTATA TCACGAGTT AATGAAGTGA TTGGGAAATT ATTGAAGTGA TTGGGAAATT ATTGAAGTGA GCTTTATTTTA AGCCTTCAAA	488 DNA set id Accession lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CTAACAGTACA CTTTAGCAGC TTCCAACAAC CCCTGGTCAC ATACAGCTGG GTAACAGCTGG GTAACAGCTGA GCACAGCTGA GCACAGCTGA GCACAGCTGC TCGACCCCAA TGAATTTCA TCGACCCCAA TGAATTTTCA TCGACCCCAA TGAATTTTCA TCGACCTCAA TGATTTTGA TGCTTCCTGT AAAACAGCTG TGATTCTGT TGATTTTGA TGCTCCAGAGT GTCAACATTT TGAAAAATAA CCCTCAGAGT TGAAAGATAT TTATAAACCA	Quence #: NM_014 1314 21 CCGGACTTCG CGCGGCGGCC AGCAAAAGCA AAGATTCATG TACCCCAGCC ACCTAGCTTA AACCAGTTCA ACCCAGCC CCCTAGCTTA AACCAGTTCA CGCACCACC ACTTCCA TCAACCCACC ACTTGCTCCA GGTGTTCA GGGAGCTAT GGGAGCTAT GGGAGCTAT GGTGATGTTC AGTGGGTCCA ATTGGGCC AATTGGGCC AATTGGGCC AATTGGGCC AAGGGAATTTA GGTGATGTTC GGTGATCTTC GGTGATCTTC AGTGAGCTGT ATTTAAGTTC AGTGAGCTGT AGGATATGTT AGGGTCAATT AGGGTCAATT	31 CCGCACGCTG GCGCTCTTCG TTTCCAGAAA AAACCTGTCC GATGGTCATA ACACCCAACA GCCCCTTATT TCAACCGTCA GCAACTTAT CATGCCCAG ACGGTTCTG GTTCTAAACG GCACTTATT CAAGCAGCAG GCACTGCAGG GTGAATCTCA TTGACCGTCT CAGACAGCAG CACCTGCAGG TTTGGACATCT ATTGTGGTTC TCAACCTCTT CAAACATGT AGACTCTTT CAAACATGT AGGCAGCACA TTATTTTCTA GAATTAACAT GTAACTAATA	41 CAGAACCTCG CGTCCTGGC CGTCCCTGGC CCAGAGATTA AGCAACCAGC TCACCTTCA ACACTGCAAC ACTGCAAC CGCTACAAC GGCACAAC GGATAGCACT GAACAACGGC GGCCACCAT CAGTTTTTC ACTGTGGCAC CATTTACCAA CAGATCCAGA TCGGATAC TGAAAACAAC TGGATGAGT GTCTTGCCT ACACCAGACAT CATCCTTCC AAACCACAT CATCCTTCC AAACCACT TCAATTTCTTA ATTTCCTTTA ATTATCTTA CTACTGTGTG CTACTGTGTG CTACTGTGTG CTACTGTGTG CTACTGTGTG CTACTGTGTG CTACTGTGT CTACTGTGTG CTACTGTGT CTACTGTGT CTACTGTGT CTACTGTGT CTACTGTGT CTACTGT CTA	51 CCCAGCGCCC CGTAATTTG TTCTCAACCT TAAGCAAGCA AACAGCGGCC CACAGCCCA AGCTCCTCA CACCATCACC GCACAAAAGC AGCTGCCAC GCACAAAAGC AGCTGCCAC GCACAAAAGC CTGTATAAAA ACCTCGGAGA CCGAAAATCC GGATGAAGAA CCTCAAGTTTAC CTTCAAGTGC CGATGTCCAA CTCGTCTGAC TATGGGTATG CTAATTGTT AGGATGGATG CTTCTATTCA AAGTATGATTT GAATATTTTT GAATATTTTT GAATATTTT GAATATTTTA AAGTAGAATA TGCATTGAAG	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1020 1140 1200 1320 1320 1340 1440 1500 1560
50 55 60 65 70	Seq ID NO: Nucleic Ac: Coding sequence 1	488 DNA set id Accession lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CAACAGTACA CTTCAACAAC CCCTGGTCAC AGAAGCTGG GTAACAGCTGA GCACAGCTGAACACCCCAA TGAATTTCA TCAGTGAGT AACAGCGT AACAGCCT ATGAATTTCA TGATTCATGAAATAA TGCTCACAGT TGAAATTTCA TGCTCCTGT AAATCCGCT ATGAAATAT TGCTCCTGT CAACACTTGATTTTAAAACCA ACCCTTGATCA ACCCTTAAACCA ACCCTTGATCA ACCCTTAAAACCA ACCCTTGATCACACATTT	Quence #: NM_014 1314 CCGGACTTCG CGCGGCGCC AGCANAAGCA GGACATAANA AGATTCATG TACCCCAGCA AACCAGCC CCCTAGCTTA AACCAGTTCA CACCTTCCA CACCTTCCA CACCTTCCA CACCTTCCA CACCTTCCA CACCTTCCA CACTGCCTC AATTATCAG GATTGTTCAGC GATTGTCAGC GATTGTCAGC GATTGTCAGC GATTGCGCCC GATTGGGGCC CACTGCCTTC CACTGCTTTA GGGAGCTTT GGGAGCCTAT GGGAGCTCTT GGTGATTTAGCTCC GATGGGGCC AAGGTGTCAT ATTTAAGTTC AGTGAGCTGT AGGGAATTTT AGGGTCATT AGGGTCATT AGGGTCATT AGGGTCATT AGGGTCATT ATTTAACAAAGC	31 CCGCACGCTG GCGCTCTTCG TTTCCAGAAA AAACCTGTCC GATGGTCATA ACACCCAACA GCCCCTTATT TCAACCGTCA GCAACTTAT CATGCCCAG ACGGTTCCTG GTCTAAACG GACAAGGAG GCCCTCTGGGA GTGAATCTCA TTGACCGTCT CAGACAGCAG CACCTGCAGG CACCTGCAGG ATCGTGGTTG TCATCTGGATT CAACAAGTGT AGGCAGCAC ATCGTGGTTG TCATCTGGAT AGGCAGCACA TTATTTTCTA GAATTAACAT GTATTTTCTA GAATTAACAT CTTTGCTTTG	41 CAGAACCTCG CGTCCCTGGC CCAGAGATTA AGCACCAGC TCACCTTTCA ACTCACACA ACTCACACAC CGCTACACAC CGATAGCACT GAACAACGGC GGCCACCCT GAAGCAGTTTC ACTGTGGCAC CATTTACCAA CAGATCCAGA TCGGGCATTC CAGATAGCAT TGAAAACAAC GGTCTCTGCCT ACCAGAGAAT CTGCATCC TCAATTCTA GTTTCCTTTA AATATATGTT CTACTGTGC CTACTGTGCT CTACTGTGCT TCAATTCTA AATATATGTT CTACTGTGTG CTTACCAATG	51. CCCAGCGCCC CGTAATTTTG TTCTCAACCT TAAGCAAGCGCCC AGCTCCCCA AGCTCCTCCA CACCATCACC TGGGACACC GGCACAAAGC AGCTGCCCAC TGCACCTCAG CTGTATAAAA ACCTCGGAGA CCGATGACAA GCTGTCCAC CGATGTCCAC TTCAAGTTC TTCAAGTTC TAATTGTTG AGGATGACTAC AGTTTAC CTTCATTCAC TATGGGTATG CTAATTCTTT AGGTATTATT AAGTAGAAT AATACTTTTT GAATACTTTTT GAATACTTTTA AAGTAGAATA TGCATTGAAG GACTTTCAGT TGCATTGAAG GACTTTCAGT	120 180 240 300 360 420 480 660 720 780 840 900 960 1020 1140 1200 1260 1380 1440 1500 1560 1680 1740
50 55 60 65 70	Seq ID NO: Nucleic Ac: Coding sequence 1	488 DNA secid Accession lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CAACAGTACA CTTCAACAAC CCCTGGTCAC TTACAGTGG GTAACAGCTGA GCACAGCTGA GCACAGCTGA ACAGCTGA TGAATTTCA TCAGTGAGATTCA TGATTTGA TGCTCCTGT AAACCGCT ATGAAATATAA CCCTCAGAGT GTAACAGTTG TGAAATATTTATAAACCA TCAGTGTGT TGAAATTT TTATAAACCT TCTGTGTTTT	Quence n #: NM_014 1314 21 CCGGACTTCG CGCGGCGCC AGCAAAAGCA AGATCATG TACCCCAGCA AACCCAGCA AACCCAGCA CACCTTCCA CACCTTCCA ATTATCAG GATTGTTCAA CGCAACGCAA	31 CCGCACGCTG GCGCTCTTCG TTTCCAGAAA AAACCTGTCC GATGGTCATA ACACCAACA GCCCCTTATT TCAACCGTCA GCAACTTTAT CATGCCCAG ACGGTTCCTG GTTCTAAACG GACAAGGAGT TCGACGTCA TGACCGTCA TTGACCGTCA TTGACCGTCT CAGACAGCAG TTGACGTCT CAGACAGCAG TTGGAATCTCA ACGGTTCTCAACAGCAG TTGGAATCTTT CAAACAATGT AGGCAGCACA TTATTTTCTA GAATTAACAT GTAACTATA CTTTGCTTTG	41 CAGAACCTCG CGTCCCTGGC CCAGAGATTA AGCACCACC TCACCTTCA ACTCACACA ACTCACACA CCACTGCAC CGATAGCACT GAACACGC GGCACACACA CGATAGCACT GAAGCAGACT CGGTTTTTC CAGATCCAGA CAGATCCAGA CAGATCCAGA CAGATCCAGA CAGATCCAGA TCGAGATAGCACT TCGAGATAGCACT TCGAGATAGCACT TCAATTCCTTTA AATATATGTTA CTACTGTGTG TTATCAAATG TTATCCAGT TTATCAAATG TATTCCTGGT TTATCAAATG TATTCCTGGT TTATCAAATG TATTCCTGGT TTATCAAATG TATTCCTGGT	51. CCCAGCGCCC CGTAATTTTG TTCTCAACCT TAAGCAAGCGCCC CACCAGCCCCA AGCTCCTCCA CACCATCACC TGGGACCAC GCACAAAAGC GCCCCAC TGCACCTCAG CTGTATAAAA ACCTCGGAGA GACAGTTTAC CTTCAAGTGC CGATGTCCCAA CTGGTTCACTGC TATGGGTATG CTATTCATTTT AGGTATGTTTTT GAATATTTTT GAATATTTTA AAGTAGAATA GCATTCAGT GGATGAAGAA ACTTTTTT GAATATTTTA AAGTAGAATA TGCATTCAGT GTAGCACTTA	120 180 240 300 360 420 480 540 660 720 780 960 1020 1020 1140 1260 1320 1380 1440 1560 1680 1740 1800
50 55 60 65 70	Seq ID NO: Nucleic Ac: Coding sequence 1 GGCACCGATT ACCATGCCC CACGATGGCA ACTGCAGCA ACTGCAGCA GTTACTGAG GTTACTGAG CCACCAGCTC ACTCAACCCA ACACCGGTC AATACCACCC CCATCGTCAG GCAGAGATGA ACACTTCAACC CTTCAAGCCT TCATATTATA CAAGGAATCA GTGATGAAC TCAACCATTCAGCT TCAAGCCT TACACCAATTG GGTGTCTATA CCCCGGGGGGA TTGGGAAATTA ACTCATCAAA AGCCTTCAAA AGCCTTCAAA AGCCTTCAAA AGCCTTCAAA AGCCTTCAAA ACCTTCTATA TTTATTTTT GCTTTTACTTA ACTCCTTTTC ACTCCTTTTC ACTCCTTTTC CCTTCTTTC ACTCCTTTTTTTT	488 DNA seid Accession lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CACAGTACA CTTCAACAGC TTACAGTGG ATACAGCTGG GTAACAGCTGC GCACAGCTGC TCAAGACCTTACAGCTTCAACACCTTCATTCATTCATTCA	Quence n #: NM_014 1314 21 CCGGACTTCG CGCGGCGCC AGCAAAAGCA GGACATAAAA AAGATTCATG TACCCAGCC CCCTAGCTTA AACCAGTCA AACCCATCCA ACCCATCCA ACCAGCCC AATTATCAG GATTGTTCAA CGCAACCCAC ACTGCTTCC AATTATCAG GATTGTCAA CGCAACCCAC CGAACGCAA CGCAACCCAC ACTGCTTC AATTATCAG GATTGTCAA CGCAACCCAC CGATGGCTCT AGGAGCCTAT GGGAGCCTAT GGGAGCCTAT GGGAGCCTAT GGTGATGTTC AGTGATGTCAA TGGATTTAAGTTC AGTGAGCTCT AGTGAGCTCT AGTGACTCT ATTAACAAAGC ATGGTTCTAT TTAACAAAGC ATGGTTCAT TTGTTTTTGT	31 CCGCACGCTG GCGCTCTCG TTTCCAGAAA AAACCTGTCC GATGGTCATA ACACCCAACA GCCCCTTATT TCAACCGTCA GCAACTTTAT TCAACCGTCA GCACTTCAG GACAAGGAGT GCTCTCTGGAAT GTGACAGCAG TTGGCCGTCT CAGACAGCAG CACCTGCAGG TTTGGAAATC TTGGAAATG TCATCTGGAT AGAACATTT CAAACAATGT CAACACATGT TCATCTGGAT AGACACATGT TCATCTGAT AGACACATGT TCATCTGAT TCATCTGAT AGACACATGT TCATCTGAT TCATCTGAT TCATCTGAT TCATCTTTG GTAACTATAT CTTTGCTTTG	41 CAGAACCTCG CCTCCCTGGC CCAGAGATTA AGCAACCAGC TCACCTTCA ACTCCACACAC ACTCCACAC CCATGCCACC GCCACACAC GCCACACAC GGCCACCCT GAAGCAGC CATTTTTC ACTGTGCAC CATTTACCAA CAGATCCAGA TCGGCATTC TGAAAACAAC CAGATCAGA TCGGGCATTC TGAAAACAAC TCGGTATTT TCAATTCTA CATCCTTCC AAACCACCAT ACTCCTTCC TCACTGTGTG TCACTGTTT TCAATTCTTA ATTTCTTA ATTTCTTA TTACCTGTTT TTACCTGTTT GTACTGTTT GGAGTTTCCTGCT TTATCAATT TTACTATTCTA GTTTCCTTTA ATTCCTGGT TTATCAATT GTACTGTGT GGAGTTTCCC GGAGTTTCAC	51 CCCCAGCGCCC CGTAATTTTG TTCTCAACCT TAAGCAAGCAC AACAGCGCCC AGCTCCTCCA CACCATCACC TGGGAACACC GCACAAAAGC CTGTATAAAA ACCTCGGAGA CCGAAAATC CGATGACTCAC CGATGACACC CGATGACACC TGCACTCAG CTGTATAAAA ACTCGCTCAC CTTCAACTGC CGATGTCCAC TATGGGTATG CTATTCATTCA AATACTTTT GAGTATTTTA AAGTAGATA TGCATTCAAGT GCTTCTATCA TTCTATTCA TTCTATTCA TTCTTTTT TGATTTTTA AGTAGATTA TGCATTCAAGT TTCTATCAAGT CTTCTATTCA TTCTTTTTT TGATTTTTT TGATTTTTA TGCATTCAAGT TTCTTTTAACT TCTTTTTTTT TTTTTTAACTTTTT TTTTTTTT	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1240 1320 1320 1320 1440 1560 1620 1680 1740 1800 1860
50 55 60 65 70 75	Seq ID NO: Nucleic Ac: Coding sequitary GGCACCGATT ACCATGCCC CACGATGGCA ACTGCAGCAG GCTCACCAAA ACTACTACAG GTTACTGAGG GCTCACCAGCTC ACTCACCAGCTC ACTCACCAGCTC ACTCACCAGCTC ACTCACCC CCATCGTCAG GCAGGATGG TACTTCAACA AACCTTCTGT TCATATTATA CAAGGAATTC GGTGTCTATA CCTCGGGGGGA TTGGGAAATT ACTGAGCAT AATGAAGTA ACCTTCAAAC ATTTATTTA GCTTTATTTTA GCCTTCAAA ATTTTATTTT	488 DNA set id Accession lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CAACAGTACA CTTAGCAGC GTAACAGCTGG GTAACAGCTGA GCACAGCTGAACAGCTGAACAGCTGAACACCCCAA GCACACCCCAA TGAATTTCA TCAGTGAAGT TAGAATTTGA TGCTTCCTGT AAATCCGCT TGAATTTGA TGCTCCTGT AAATCCGCTA TGAATTTGA TGCTCCTGT AAATCCGCT TGAATTTTAAACCA ACCCTTGATC TCAACATTT TATAAACCA ACCCTTGATC TCAACATTT ATGAAATATA CCCTCAGAGT TGCAACATTT TATAAACCA ACCCTTGATC TCAACATTT AAAACCA ACCCTTGATC TCAGTGTTTT TATAAACCA ACCCTTGATC TCTGTGTTTT TACAGTGGCA GCTTCAGTGTTT TACAGTGGCA GCTTCAGCTTT	Quence #: NM_014 1314 CCGGGACTTCG CCGGGCGCC AGCANAAGCA GGACATAANA AGATTCATG TACCCCAGCC ACCCAGCCA AACCCAGCC ACCTGCCTTCA ACCCATCCA ACCCATCCA ACCCATCCA ACCCATCCA ACCCATCCA ACCCATCCA ACCCATCCA ACCCATCCA ACCCATCCA ACCTGCCTCC AGTTGTTCAC AGGTGATGTTCAC GGTGATGTTCAC GATTGGGCC AGATGACCAC GATTGGGCC AGGTGTCAA GTGGGTCAA GTGGGTCAT ATTTAAGTTC AGGGTCATT ATTTAACANAGC ATGGTTTCAT TTGTTTTTGT TTGTTTTTGT CCATCTGCCCCCCGGCTAGCCCCCCGGCTAGCCCCCCGGCTAGCCCCCCAGGTAGCCCCCCAGGTAGCCCCCCAGGTAGCCCCCCAGGTACCCCCCAGGTACCCCCAGGCCCCCAGCTACCCCCAGCACCCCACCCCACCCCCACCCCCCCACCCCCC	31 CCGCACGCTG GGGCTCTTCG TTTCCAGAAA AAACCTGTCC GATGGTCATA ACACCCAACA GCCCCTTATT TCAACCGTCA GCACTTAT CAACCGTCA GCACTTAT CATGCCCAG ACGGTTCCTG GTCTAAACG GACAAGGAGT TTGACCGTCT CAGACAGCAG TTGGAATCT ATGCTGGT TCAACCGTCT CAGACAGCAG TTTGGAATG ATCGTGGTT CAACCATTA CAACCATTA CATCTGGAA TTTTTCTA GAATTAACA TTTTTCTT GTAACTATT CTAACCATA CTTTTGCTTTG GTAACTACT TTTTTGAACA TTTTTTGAAC TTTTTGCTTTG GTAACTACA TTTTTGAACA TTTTTTGAAC TTTTTGCTTTG GTAACATACA TTTTTGAACA TTTTTGCTTTG GTAACATACA TTTTTGGAAC TTGGGAATACA	41 CAGAACCTCG CGTCCCTGGC CCAGAGATTA AGCACCAGC TCACCTTCA ACTCACACC CCCACCACACAC CGATAGCACC GGACACCAG GGACACCAG GAACAACGGC GAACAACGGC GAACAACGGC GAACAACGGC GAACAACGGC GAACAACGGC TGATTTTC ACTGTGGCAC CATTTACCAA CAGATCAGA TCGGATGAGT CATCCCTTC ACCAGAGAAT CATCCCTTC TCAATTTCTA GTTTCCTTTA AATATATGTA CTACTGTGTG TTATCAATT CATCTGGTT GGAGTTTCCCT GGAGTTTCCCT GGAGTTTCCCT CACCACACACCT CCACCCCCCCCCC	51. CCCAGCGCCC CGTAATTTG TTCTCAACCT TAAGCAAGCGCC CACCAGCCCCA AGCTCCTCCA CACCATCACC TGGGACACC GCACAAAAGC AGCTGCCCAC TGCACCTCAG CTGTATAAAA ACCTCGGAGA CCGATGACAC CGATGTTCAAGTG CTTCAAGTGC CTATCAGTGC CTAATTGTTG AGGATGCCTAA TCTGTCTAATTCTTG AAGTATTTTT GAATATTTTT GAATATTTTT GAATATTTTT GAATATTTTA AGGAGATG CTTCTAATTCTT GAATATTTTA AGTAGAATA TGCATTCAAG GCCTGTCTAAC CTCTCTATTCA TGCATTTTT CAATTGTTT CAATTGTTT CAATTGTTT CAATTGTTT CTTTTTTCAC CTCTTTTTTT CAATTGTTT CAATTGTTT CAATTGTTT CAATTGTTT CAATTGTTT CAATTGTAAG CCCGGTTTCAAG GCCTTTCAAC CCGGGTTCAAG ACCACGCCTG	120 180 240 300 360 420 480 660 720 780 840 900 960 1020 1140 1200 1380 1440 1500 1560 1680 1740 1860 1740 1800 1900 1920 1980
50 55 60 65 70	Seq ID NO: Nucleic Ac: Coding sequence 1	488 DNA secid Accession lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CTACAACAGTACA CTTTAGCAGC TTACAGTCGG ATACAGCTGG GTAAACAGTACA GCACAGCTGC GGAACAGCTGC GTAACAGCTGG GTAACAGCTGG GCAACAGCTGC TCAAGACTGG GCAACAGCTGC TCAAGACTGG GGATACAGCT TCAAGACTGG TCAAGACTGC TCAGTGAAGT ACAGTGCGT AAATCTCAT TGATTTTCA TGCTCCTGT AAATCCGCT ATGAAATTAT TCCACAGTGTG GTCAACATTT TTATAAACC TCTGTGTTTT CACTTTAAAT TACAGTGGCT TCAGTTTTTATATTCACTTCAGCTTT	Quence #: NM_014 1314 CCGGACTTCG CGCGGCGCC AGCANAAGCA GGACATAANA AGGATCATG CACCCAGCA AACCAGCCA AACCAGCCA CACCTTCCA ACCCATCCA AACCAGTTCA CACCTTCCA ACCCATCCA ACCCATCCA ACCCATCCA ACCCATCCA ACCCATCCA ACCTGCCTCC AATTATCAG GATTGTTCAG GGGAGGATTT GGGAGCCTAT GGTGATGTCC GATTGGGGCC AAGGTGTCAC GATTGGGGCC AAGGTGTCAT ATTTAAGTTC AGTGAGCTGT AGGGTCATT AGGGTCATT AGGGTCATT AGGGTCATT ATTTAAGTTC ATTTAAGTTC ATTTACAAAGC ATTGTTTTGT TGGTTTCAT TTGTTTTTGT CGATTACGGC CCCGAGTAGC CCCGAGTAGC TATAGACGGG	31 CCGCACGCTG GCGCTCTTCG TTTCCAGAAA AAACCTGTCC GATGGTCATA ACACCAACA GCCCTTATT TCAACCGTCA GCAACTTAT CATGCCCAG ACGGTTCCTG GTCTAAACG GCACTTATT TCAACGTCA ACGGTCCTG GTCTAAACG TTCTAAACG ACGGTTCTC GAACAGGAG TTGGAATCTCA TTGACCGTCT CAGACAGCAG CACCTGCAGG ACCTGCAGG TTGGGAATG TCATCTGGAT AGGACACACA TTATTTCTA GAATTAACAT TTATGCTTG GTAACTATC TTATGCTTTG GTAACTACA TTTTTGAGAC TTATTGGAAC TTATTTGCTTTG GTAACTACA TTTTTGAGAC TTATTGCATC TGGGATTACA TTTTTGAGAC TTTTTGACACAT TTTTCACCATG	41 CAGAACCTCG CGTCCCTGGC CCAGAGATTA AGCACCAGC TCACCTTTCA ACTCACACA ACTCACACAC CGATAGCACC GGCACACACAC GGATAGCACT GAACACGGC GGCCCACCCT GAAGCAGACT CAGTTTTC ACTTTCACAA CAGATCCAGA TCGGGCATTC CGGTTTTTC AGTACCACA TGGATGGGT TCTCTGCCT ACCAGAGAAT CATCCCTTCC AACCACCAT TCAATTCTA GTTTCCTTTA AATATATTCT AATATATGTG TATTCCAGCT CTCCGCCTCC GGCACACACT TCGGCTACC TTGGCCAGAC TTGGCCAGAC	51. CCCAGCGCCC CGTAATTTTG TTCTCAACCT TAAGCAAGCGCCC CACCAGCCCCA AGCTCCTCCA CACCATCACC TGGGACACA AGCTGCCCAC GGCACAAAAGC AGCTCCCAC CTGTATAAAA ACCTCGGAGA ACCATCAGC CGATGACAAATCC GGATGAAGAA CCTCAAGTC CTCAACTCC TATGGGTTCAA CTCATTCTTG AGGATGCACA ACTCTTTTT GAATATTTTT GAATATTTTT GAATATTTTT GAATATTTTA AGGTAGAAT TCCTTCAACTC CTCTTCACTCC CTTCTTCACTCC CTTCTTCTTCACTC CTTCTTCTTCACTC CTTCTTCTTCACTC CTTCTTCACTC CTTCTTCACTC CTTCTTCACTC CTTCTTCACTC CTTCTTCACTC CTCTTCACTC CTCTTCACTC CTCTTCACTC CTCTTCACTC CTCTTCACTC CTCTTCACC CCCCTTC TGGTCTTGAA	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1140 1200 1140 1200 1140 1200 1140 1200 1140 1200 1380 1440 1500 1680 1740 1880 1980 2040
50 55 60 65 70 75	Seq ID NO: Nucleic Ac: Coding sequence GGCACCGATT ACCATGCCC CACGATGCCA ACTGCAGCA ACTGCAGCA GCTCACCAAA ACAGCTAAAAA ACATCAACCA ACACCGGTC AATACCACCC CCATCGTCAG GCAGAGATGG TACTTCAACC CTTCAACCA ACACCTCTTCAC GTACTTCAAC TCATATTATA CAAGGAATCA GTGTCTCAAC TCATACTATA CCTCCGGGGGGA TTGCACAATTG GGTGTCTATA CCCGGGGGGA TTGCACAATTG GCTTTATTTTA CCCGGTGGGAA ATTTTATTTT	488 DNA secid Accession lence: 64 11 CGGGGCCTGC GGCAGCTCAG GTCAAATGAG CAACAGTACA CTTCAACAAC CTTACAGTGG ATACAGCTGG GATACAGCTGG GATACAGCTGC TCAAGACTGC TCAAGACTGC TCAAGACTTCACTCACACACTTCACTCACACACTTCACTCAGATTCAACTCAGTAAATCAACTTGATTTCATTGATTCATTGATTCATTC	Quence #: NM_014 1314 CCGGACTTCG CGCGGCGCC AGCANAAGCA GGACATAAAA AAGATTCATG TACCCCAGCC AACCCAGCA AACCCATCCA AACCCATCCA ACCTGCCTC AATTATCAG GATTGTCAGA GGGAGGATTT GGGAGCTAT GGGAGTGTCA AGGTGTCAA TGGATTTAAGTTC AGTGAGCTGT AGGGTCAATT TTAACAAAGC ATGGTTTCAT TTATTTTTTT TTACTAGGGC CCCGAGTAGC CCCAGCTCAC ACCCACCTCA	31 CCGCACGCTG GCGCTCTTCG TTTCCAGAAA AAACCTGTCC GATGGTCATA ACACCCAACA GCCCCTTATT TCAACCGTCA GCAACTTTAT CATGCCCAG ACGGTTCCTG GTTCTAAACG GACATGTAT TCAACGTCA ACGGTTCCTG GTTCTAAACG GTCATGGTCC CAGACAGCAG TTGACCGTCT CAGACAGCAG TTGACAGCAG ATCGTGGTTG TCATCTGGAATG TCATCTGGAATG TCATCTGGAACATTT CAAACAATGT AGGCAGCACA TTTTTCTA GAATTAACAT TTTTGCTTTG GTAACATACA TTTTTGCTTTG GTAACATACA TTTTTGAGAC TTTTGAGAC TTTTGAGAC TTTTTGAGAC TTTTTGAGAC TTTTTGAGAC TTTTTGAGAC TTTTCACCATG GCCTCCCAAA	41 CAGAACCTCG CGTCCCTGGC CCAGAGATTA AGCAACCAGC TCACCTTCA ACTCTCACACAC ACTCACACAC CGATAGCACT GGCACACACC GGCACACACAC GGCCACACACC GAAGCAGCT GAAGCAGCT GAAGCAGCT GAAGCAGCT GATTTTTC CATTTTACCAA CAGATCCAGA TCGGGCATTC TGAAAACAAC GTCTCTGCCT ACCAGAGAAT CATCCCTTCC AAACCACCAT TCAATTTCTA GTTTCCTTTA ATATATGTA CTACTGTGT TTATCAATG TTATCAATG TTATCATGGT TTATCAATG TTATCATGGT TTATCACGT TTATCACGT TTATCACGT TTTCCTGCT TCCGCCTCC GGCACACACT TTGGCCAGAC GTGCTGGGAT	51. CCCAGCGCCC CGTAATTTG TTCTCAACCT TAAGCAAGCGCC CACCAGCCCCA AGCTCCTCCA CACCATCACC TGGGACACC GCACAAAAGC AGCTGCCCAC TGCACCTCAG CTGTATAAAA ACCTCGGAGA CCGATGACAC CGATGTTCAAGTG CTTCAAGTGC CTATCAGTGC CTAATTGTTG AGGATGCCTAA TCTGTCTAATTCTTG AAGTATTTTT GAATATTTTT GAATATTTTT GAATATTTTT GAATATTTTA AGGAGATG CTTCTAATTCTT GAATATTTTA AGTAGAATA TGCATTCAAG GCCTGTCTAAC CTCTCTATTCA TGCATTTTT CAATTGTTT CAATTGTTT CAATTGTTT CAATTGTTT CTTTTTTCAC CTCTTTTTTT CAATTGTTT CAATTGTTT CAATTGTTT CAATTGTTT CAATTGTTT CAATTGTAAG CCCGGTTTCAAG GCCTTTCAAC CCGGGTTCAAG ACCACGCCTG	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1140 1200 1320 1380 1440 1500 1620 1680 1740 1800 1860 1920 1980 2040 2100

```
WO 02/086443
       GTTGTCTAAG TGTTTTTATG TAAAACCAAC AAAAAGAACA AATCAGCTTA TATTTTTTAT
                                                                           2220
       CTTGATGACT CCTGCTCCAG AATTGCTAGA CTAAGAATTA GGTGGCTACA GATGGTAGAA
                                                                           2280
       CTAAACAATA AGCAAGAGAC AATAATAATG GCCCTTAATT ATTAACAAAG TGCCAGAGTC
                                                                           2340
       TAGGCTAAGC ACTITATCTA TATCTCATTT CATTCTCACA ACTTATAAGT GAATGAGTAA
                                                                           2400
       ACTGAGACTT AAGGGAACTG AATCACTTAA ATGTCACCTG GCTAACTGAT GGCAGAGCCA
 5
                                                                           2460
       GAGCTTGAAT TCATGTTGGT CTGACATCAA GGTCTTTGGT CTTCTCCCTA CACCAAGTTA
                                                                           2520
       CCTACAAGAA CAATGACACC ACACTCTGCC TGAAGGCTCA CACCTCATAC CAGCATACGC
                                                                           2580
       TCACCTTACA GGGAAATGGG TTTATCCAGG ATCATGAGAC ATTAGGGTAG ATGAAAGGAG
                                                                           2640
       AGCTTTGCAG ATAACAAAAT AGCCTATCCT TAATAAATCC TCCACTCTCT GGAAGGAGAC
                                                                           2700
10
       TGAGGGGCTT TGTAAAACAT TAGTCAGTTG CTCATTTTTA TGGGATTGCT TAGCTGGGCT
                                                                           2760
       GTAAAGATGA AGGCATCAAA TAAACTCAAA GTATTTTTAA ATTTTTTTGA TAATAGAGAA
                                                                           2820
       ACTTCGCTAA CCAACTGTTC TTTCTTGAGT GTATAGCCCC ATCTTGTGGT AACTTGCTGC
                                                                           2880
                                                                           2940
       TTCTGCACTT CATATCCATA TTTCCTATTG TTCACTTTAT TCTGTAGAGC AGCCTGCCAA
       GAATTTTATT TCTGCTGTTT TTTTTGCTGC TAAAGAAAGG AACTAAGTCA GGATGTTAAC
                                                                           3000
15
       AGAAAAGTCC ACATAACCCT AGAATTCTTA GTCAAGGAAT AATTCAAGTC AGCCTAGAGA
                                                                           3060
       CCATGTTGAC TITCCTCATG TGTTTCCTTA TGACTCAGTA AGTTGGCAAG GTCCTGACTT
                                                                           3120
       TAGTCTTAAT AAAACATTGA ATTGTAGTAA AGGTTTTTGC AATAAAAACT TACTTTGG
       Sea ID NO: 489 Protein sequence
20
                                 NP_055213.1
       Protein Accession #:
                             21
                                         31
                  11
       MPRQLSAAAA LFASLAVILH DGSQMRAKAF PETRDYSQPT AAATVQDIKK PVQQPAKQAP
                                                                             60
25
       HQTLAARFMD GHITFQTAAT VKIPTTTPAT TKNTATTSPI TYTLVTTQAT PNNSHTAPPV
                                                                            120
       TEVTVGPSLA PYSLPPTITP PAHTAGTSSS TVSHTTGNTT QPSNQTTLPA TLSIALHKST
                                                                            180
       TGQKPDQPTH APGTTAAAHN TTRTAAPAST VPGPTLAPQP SSVKTGIYQV LNGSRLCIKA
                                                                            240
       EMGIQLIVQD KESVFSPRRY FNIDPNATQA SGNCGTRKSN LLLNFQGGFV NLTFTKDEES
                                                                            300
       YYISEVGAYL TVSDPETVYQ GIKHAVVMFQ TAVGHSFKCV SEQSLQLSAH LQVKTTDVQL
                                                                            360
30
       OAFDFEDDHF GNVDECSSDY TIVLPVIGAI VVGLCLMGMG VYKIRLRCQS SGYQRI
       Seg ID NO: 490 DNA sequence
       Nucleic Acid Accession #: NM_005409.3
       Coding sequence: 94..378
35
                                                               51
                                         31
       TTCCTTTCAT GTTCAGCATT TCTACTCCTT CCAAGAAGAG CAGCAAAGCT GAAGTAGCAG
       CAACAGCACC AGCAGCAACA GCAAAAAACA AACATGAGTG TGAAGGGCAT GGCTATAGCC
                                                                            120
40
       TTGGCTGTGA TATTGTGTGC TACAGTTGTT CAAGGCTTCC CCATGTTCAA AAGAGGACGC
       TGTCTTTGCA TAGGCCCTGG GGTAAAAGCA GTGAAAGTGG CAGATATTGA GAAAGCCTCC
                                                                            240
       ATAATGTACC CAAGTAACAA CTGTGACAAA ATAGAAGTGA TTATTACCCT GAAAGAAAAT
                                                                            300
       AAAGGACAAC GATGCCTAAA TCCCAAATCG AAGCAAGCAA GGCTTATAAT CAAAAAAGTT
                                                                            360
       GAAAGAAGA ATTTTTAAAA ATATCAAAAC ATATGAAGTC CTGGAAAAGG GCATCTGAAA
                                                                            420
       AACCTAGAAC AAGTTTAACT GTGACTACTG AAATGACAAG AATTCTACAG TAGGAAACTG
45
                                                                            480
       AGACTTTTCT ATGGTTTTGT GACTTTCAAC TTTTGTACAG TTATGTGAAG GATGAAAGGT
                                                                            540
       GGGTGAAAGG ACCAAAAACA GAAATACAGT CTTCCTGAAT GAATGACAAT CAGAATTCCA
                                                                            600
       CTGCCCAAAG GAGTCCAGCA ATTAAATGGA TTTCTAGGAA AAGCTACCTT AAGAAAGGCT
                                                                            660
       GGTTACCATC GGAGTTTACA AAGTGCTTTC ACGTTCTTAC TTGTTGTATT ATACATTCAT
                                                                            720
50
       GCATTTCTAG GCTAGAGAAC CTTCTAGATT TGATGCTTAC AACTATTCTG TTGTGACTAT
                                                                            780
       GAGAACATTT CTGTCTCTAG AAGTTATCTG TCTGTATTGA TCTTTATGCT ATATTACTAT
                                                                            840
       CTGTGGTTAC AGTGGAGACA TTGACATTAT TACTGGAGTC AAGCCCTTAT AAGTCAAAAG
                                                                            900
       CATCTATGTG TCGTAAAGCA TTCCTCAAAC ATTTTTTCAT GCAAATACAC ACTTCTTTCC
                                                                            960
       CCAAATATCA TGTAGCACAT CAATATGTAG GGAAACATTC TTATGCATCA TTTGGTTTGT
                                                                           1020
55
       TTTATAACCA ATTCATTAAA TGTAATTCAT AAAATGTACT ATGAAAAAAA TTATACGCTA
                                                                           1080
       TGGGATACTG GCAACAGTGC ACATATTTCA TAACCAAATT AGCAGCACCG GTCTTAATTT
                                                                           1140
       GATGTTTTTC AACTTTTATT CATTGAGATG TTTTGAAGCA ATTAGGATAT GTGTGTTTAC
                                                                           1200
       TGTACTTTTT GTTTTGATCC GTTTGTATAA ATGATAGCAA TATCTTGGAC ACATTTGAAA
                                                                           1260
       TACAAAATGT TTTTGTCTAC CAAAGAAAAA TGTTGAAAAA TAAGCAAATG TATACCTAGC
                                                                           1320
60
       AATCACTTTT ACTTTTTGTA ATTCTGTCTC TTAGAAAAAT ACATAATCTA ATCAATTTCT
                                                                           1380
       TTGTTCATGC CTATATACTG TAAAATTTAG GTATACTCAA GACTAGTTTA AAGAATCAAA
       Seq ID NO: 491 Protein sequence
65
       Protein Accession #: NP_005400.1
                                         31
                  11
                             21
       MSVKGMAIAL AVILCATVVQ GFPMFKRGRC LCIGPGVKAV KVADIEKASI MYPSNNCDKI
70
       EVIITLKENK GQRCLNPKSK QARLIIKKVE RKNF
       Seq ID NO: 492 DNA sequence
       Nucleic Acid Accession #: NM_000577.1
       Coding sequence: 41..520
75
                  11
                             21
                                         31
                                                    41
                                                               51
       GGCACGAGGG GAAGACCTCC TGTCCTATCA GGCCCTCCCC ATGGCTTTAG ÂGACGATCTG
CCGACCCTCT GGGAGAAAAT CCAGCAAGAT GCAAGCCTTC AGAATCTGGG ATGTTAACCA
                                                                             60
                                                                            120
80
       GAAGACCTTC TATCTGAGGA ACAACCAACT AGTTGCCGGA TACTTGCAAG GACCAAATGT
                                                                            180
       CAATTTAGAA GAAAAGATAG ATGTGGTACC CATTGAGCCT CATGCTCTGT TCTTGGGAAT
                                                                           . 240
       CCATGGAGGG AAGATGTGCC TGTCCTGTGT CAAGTCTGGT GATGAGACCA GACTCCAGCT
                                                                            300
       GGAGGCAGTT AACATCACTG ACCTGAGCGA GAACAGAAAG CAGGACAAGC GCTTCGCCTT
                                                                            360
       CATCCGCTCA GACAGTGGCC CCACCACCAG TTTTGAGTCT GCCGCCTGCC CCGGTTGGTT
                                                                            420
85
       CCTCTGCACA GCGATGGAAG CTGACCAGCC CGTCAGCCTC ACCAATATGC CTGACGAAGG
                                                                            480
       CGTCATGGTC ACCAAATTCT ACTTCCAGGA GGACGAGTAG TACTGCCCAG GCCTGCCTGT
                                                                            540
       TCCCATTCTT GCATGGCAAG GACTGCAGGG ACTGCCAGTC CCCCTGCCCC AGGGCTCCCG
                                                                            600
```

```
TCTGCATTCA GGATCAAACC CCGACCACCT GCCCAACCTG CTCTCCTCTT GCCACTGCCT
 5
      CTTCCTCCCT CATTCCACCT TCCCATGCCC TGGATCCATC AGGCCACTTG ATGACCCCCA
      TTTAAGGGTT TGTGGAAAAT GAAAATTAGG ATTTCATGAT TTTTTTTTT CAGTCCCCGT
      GAAGGAGAGC CCTTCATTTG GAGATTATGT TCTTTCGGGG AGAGGCTGAG GACTTAAAAT
                                                                     1080
      ATTCCTGCAT TTGTGAAATG ATGGTGAAAG TAAGTGGTAG CTTTTCCCTT CTTTTCTTC
                                                                     1140
10
      TTTTTTTGTG ATGTCCCAAC TTGTAAAAAT TAAAAGTTAT GGTACTATGT TAGCCCCATA
                                                                     1200
      ATTTTTTTT TCCTTTTAAA ACACTTCCAT AATCTGGACT CCTCTGTCCA GGCACTGCTG
                                                                     1260
      CCCAGCCTCC AAGCTCCATC TCCACTCCAG ATTTTTTACA GCTGCCTGCA GTACTTTACC
                                                                     1320
      TCCTATCAGA AGTTTCTCAG CTCCCAAGGC TCTGAGCAAA TGTGGCTCCT GGGGGTTCTT
                                                                     1380
      TCTTCCTCTG CTGAAGGAAT AAATTGCTCC TTGACATTGT AGAGCTTCTG GCACTTGGAG
                                                                     1440
15
      ACTTGTATGA AAGATGGCTG TGCCTCTGCC TGTCTCCCCC ACCAGGCTGG GAGCTCTGCA
                                                                     1500
      GAGCAGGAAA CATGACTCGT ATATGTCTCA GGTCCCTGCA GGGCCAAGCA CCTAGCCTCG
                                                                     1560
      CTCTTGGCAG GTACTCAGCG AATGAATGCT GTATATGTTG GGTGCAAAGT TCCCTACTTC
                                                                     1620
      CTGTGACTTC AGCTCTGTTT TACAATAAAA TCTTGAAAAT GCCTAAAAAA AAAAAAAAA
      ААААА ААААААААА АААААААА АААААААА
20
```

Seq ID NO: 493 Protein sequence Protein Accession #: NP_000568.1

25 | 1 11 21 31 41 51
| MALETICRPS GRKSSKMQAF RIWDVNQKTF YLRNNQLVAG YLQGPNVNLE EKIDVVPIEP 60
| HALFLGIHGG KMCLSCVKSG DETRLQLEAV NITDLSENRK QDKRFAFIRS DSGPTTSFES 120
| AACPGWFLCT AMEADQPVSL TNMPDEGVMV TKFYFQEDE

30 Seq ID NO: 494 DNA sequence
Nucleic Acid Accession #: NM_002081.1
Coding sequence: 222..1898

21 31 41 51 35 GGCTGCCCGA GCGAGCGTTC GGACCTCGCA CCCCGCGCGCC CCCCGCGCCGCC CGCCGCCGCC GGCTTTTGTT GTCTCCGCCT CCTCGGCCGC CGCCGCCTCT GGACCGCGAG CCGCGCGCGC 120 CGGGACCTTG GCTCTGCCCT TCGCGGGCGG GAACTGCGCA GGACCCGGCC AGGATCCGAG 180 AGAGGCGCGG GCGGGTGGCC GGGGGCGCCG CCGGCCCCGC CATGGAGCTC CGGGCCCGAG 240 40 GCTGGTGGCT GCTATGTGCG GCCGCAGCGC TGGTCGCCTG CGCCCGCGGG GACCCGGCCA 300 GCAAGAGCCG GAGCTGCGGC GAGGTCCGCC AGATCTACGG AGCCAAGGGC TTCAGCCTGA 360 GCGACGTGCC CCAGGCGGAG ATCTCGGGTG AGCACCTGCG GATCTGTCCC CAGGGCTACA 420 CCTGCTGCAC CAGCGAGATG GAGGAGAACC TGGCCAACCG CAGCCATGCC GAGCTGGAGA CCGCGCTCCG GGACAGCAGC CGCGTCCTGC AGGCCATGCT TGCCACCCAG CTGCGCAGCT 540 45 TCGATGACCA CTTCCAGCAC CTGCTGAACG ACTCGGAGCG GACGCTGCAG GCCACCTTCC CCGGCGCCTT CGGAGAGCTG TACACGCAGA ACGCGAGGGC CTTCCGGGAC CTGTACTCAG AGCTGCGCCT GTACTACCGC GGTGCCAACC TGCACCTGGA GGAGACGCTG GCCGAGTTCT GGGCCCGCCT GCTCGAGCGC CTCTTCAAGC AGCTGCACCC CCAGCTGCTG CTGCCTGATG ACTACCTGGA CTGCCTGGGC AAGCAGGCCG AGGCGCTGCG GCCCTTCGGG GAGGCCCCGA 50 GAGAGCTGCG CCTGCGGGCC ACCCGTGCCT TCGTGGCTGC TCGCTCCTTT GTGCAGGGCC 900 TGGGCGTGGC CAGCGACGTG GTCCGGAAAG TGGCTCAGGT CCCCCTGGGC CCGGAGTGCT CGAGAGCTGT CATGAAGCTG GTCTACTGTG CTCACTGCCT GGGAGTCCCC GGCGCCAGGC 1020 CCTGCCCTGA CTATTGCCGA AATGTGCTCA AGGGCTGCCT TGCCAACCAG GCCGACCTGG 1080 ACGCCGAGTG GAGGAACCTC CTGGACTCCA TGGTGCTCAT CACCGACAAG TTCTGGGGTA 1140 55 CATCGGGTGT GGAGAGTGTC ATCGGCAGCG TGCACACGTG GCTGGCGGAG GCCATCAACG 1200 CCCTCCAGGA CAACAGGGAC ACGCTCACGG CCAAGGTCAT CCAGGGCTGC GGGAACCCCA 1260 AGGTCAACCC CCAGGGCCCT GGGCCTGAGG AGAAGCGGCG CCGGGGCAAG CTGGCCCCGC 1320 GGGAGAGGCC ACCTTCAGGC ACGCTGGAGA AGCTGGTCTC TGAAGCCAAG GCCCAGCTCC 1380 GCGACGTCCA GGACTTCTGG ATCAGCCTCC CAGGGACACT GTGCAGTGAG AAGATGGCCC 1440 60 TGAGCACTGC CAGTGATGAC CGCTGCTGGA ACGGGATGGC CAGAGGCCGG TACCTCCCCG 1500 AGGTCATGGG TGACGGCCTG GCCAACCAGA TCAACAACCC CGAGGTGGAG GTGGACATCA 1560 CCAAGCCGGA CATGACCATC CGGCAGCAGA TCATGCAGCT GAAGATCATG ACCAACCGGC 1620 TGCGCAGCGC CTACAACGGC AACGACGTGG ACTTCCAGGA CGCCAGTGAC GACGGCAGCG 1680 GCTCGGGCAG CGGTGATGGC TGTCTGGATG ACCTCTGCGG CCGGAAGGTC AGCAGGAAGA 1740 65 GCTCCAGCTC CCGGACGCCC TTGACCCATG CCCTCCCAGG CCTGTCAGAG CAGGAAGGAC 1800 AGAAGACCTC GGCTGCCAGC TGCCCCCAGC CCCCGACCTT CCTCCTGCCC CTCCTCCTCT 1860 TCCTGGCCCT TACAGTAGCC AGGCCCCGGT GGCGGTAACT GCCCCAAGGC CCCAGGGACA 1920 GAGGCCAAGG ACTGACTTTG CCAAAAATAC AACACAGACG ATATTTAATT CACCTCAGCC 1980 TGGAGAGGCC TGGGGTGGGA CAGGGAGGGC CGGCGCTCT GAGCAGGGGC AGGCGCAGAG 2040 70 GTCCCAGCCC CAGGCCTGGC CTCGCCTGCC TTTCTGCCTT TTAATTTTGT ATGAGGTCCT 2100 CAGGTCAGCT GGGAGCCAGT GTGCCCAAAA GCCATGTATT TCAGGGACCT CAGGGGCACC 2160 TCCGGCTGCC TAGCCCTCCC CCCAGCTCCC TGCACCGCCG CAGAAGCAGC CCCTCGAGGC 2220 CTACAGAGGA GGCCTCAAAG CAACCCGCTG GAGCCCACAG CGAGCCTGTG CCTTCCTCCC 2280 CGCCTCCTCC CACTGGGACT CCCAGCAGAG CCCACCAGCC AGCCCTGGCC CACCCCCCAG 75 CCTCCAGAGA AGCCCCGCAC GGGCTGTCTG GGTGTCCGCC ATCCAGGGTC TGGCAGAGCC 2400 TCTGAGATGA TGCATGATGC CCTCCCCTCA GCGCAGGCTG CAGAGCCCGG CCCCACCTCC CTGCGCCCTT GAGGGGCCCC AGCGTCTGCA GGGTGACGCC TGAGACAGCA CCACTGCTGA GGAGTCTGAG GACTGTCCTC CCACAGACCC TGCAGTGAGG GGCCCTCCAT GCGCAGATGA GGGGCCACTG ACCCACCTGC GCTTCTGCTG GAGGAGGGGA AGCTGGGCCC AAAGGCCCAG 80 GGAGGCAGCG TGGGCTCTGC CAATGTGGGC TGCCCCTCGC ACACAGGGCT CACAGGGCAG GCCTTGCTGG GGTCCAGGGC TGTTGGAGGA CCCCGAGGGC TGAGGAGCAG CCAGGACCCG CCTGCTCCCA TCCTCACCCA GATCAGGAAC CAGGGCCTCC CTGTTCACGG TGACACAGGT CAGGGCTCAG AGTGACCCTC GGCTGTCACC TGCTCACAGG GATGCTGGTG GCTGGTGAGA CCCCGCACTG CACACGGGAA TGCCTAGGTC CCTTCCCGAC CCAGCCAGCT GCACTGCAGG 85 GCACGGGGAC CTGGATAGTT AAGGGCTTTT CCAAACATGC ATCCATTTAC TGACACTTCC TGTCCTTGTT CATGGAGAGC TGTTCGCTCC TCCCAGATGG CTTCGGAGGC CCGCAGGGCC

CACCTTGGAC CCTGGTGACC TCCTGTCACT CACTGAGGCC ATCAGGGCCC TGCCCCAGGC

480

35

40

65

TTTGGCCATA TCAGCGGTGG CCACATCAAC CCTGCAGTGA CTGTGGCCAT GGTGTGCACC AGGAAGATCA GCATCGCCAA GTCTGTCTTC TACATCGCAG CCCAGTGCCT GGGGGCCATC

ATTGGAGCAG GAATCCTCTA TCTGGTCACA CCTCCCAGTG TGGTGGGAGG CCTGGGAGTC ACCATGGTTC ATGGAAATCT TACCGCTGGT CATGGTCTCC TGGTTGAGTT GATAATCACA 540 TTTCAATTGG TGTTTACTAT CTTTGCCAGC TGTGATTCCA AACGGACTGA TGTCACTGGC TCAATAGCTT TAGCAATTGG ATTTTCTGTT GCAATTGGAC ATTTATTTGC AATCAATTAT 660 ACTGGTGCCA GCATGAATCC CGCCCGATCC TTTGGACCTG CAGTTATCAT GGGAAATTGG 45 GAAAACCATT GGATATATTG GGTTGGGCCC ATCATAGGAG CTGTCCTCGC TGGTGGCCTT TATGAGTATG TCTTCTGTCC AGATGTTGAA TTCAAACGTC GTTTTAAAGA AGCCTTCAGC AAAGCTGCCC AGCAAACAAA AGGAAGCTAC ATGGAGGTGG AGGACAACAG GAGTCAGGTA GAGACGGATG ACCTGATTCT AAAACCTGGA GTGGTGCATG TGATTGACGT TGACCGGGGA GAGGAGAAGA AGGGGAAAGA CCAATCTGGA GAGGTATTGT CTTCAGTATG ACTAGAAGAT 1020 50 CGCACTGAAA GCAGACAAGA CTCCTTAGAA CTGTCCTCAG ATTTCCTTCC ACCCATTAAG 1080 GAAACAGATT TGTTATAAAT TAGAAATGTG CAGGTTTGTT GTTTCATGTC ATATTACTCA 1140 GTCTAAACAA TAAATATTTC ATAATTTACA AAGGAGGAAC GGAAGAAACC TATTGTGAAT 1200

TCCAAATCTA AAAAAAGAAA TATTTTTAAG ATGTTCTTAA GCAAATATAT ACCTATTTTA TCTAGTTACC TTTCATTAAC AACCAATTTT AACCGTGTGT CAAGATTTGG TTAAGTCTTG 1260 1320 55 CCTGACAGAA CTCAAAGACA CGTCTATCAG CTTATTCCTT CTCTACTGGA ATATTGGTAT 1380 AGTCAATTCT TATTTGAATA TTTATTCTAT TAAACTGAGT TTAACAATGG C

Seq ID NO: 497 Protein sequence Protein Accession #: NP_001641.1 60

31 41 51 MSDRPTARRW GKCGPLCTRE NIMVAFKGVW TQAFWKAVTA EFLAMLIFVL LSLGSTINWG 60 GTEKPLPVDM VLISLCFGLS IATMVQCFGH ISGGHINPAV TVAMVCTRKI SIAKSVFYIA 120 AQCLGAIIGA GILYLVTPPS VVGGLGVTMV HGNLTAGHGL LVELIITFQL VFTIFASCDS 180 KRTDVTGSIA LAIGFSVAIG HLFAINYTGA SMNPARSFGP AVIMGNWENH WIYWVGPIIG 240 AVLAGGLYEY VFCPDVEFKR RFKEAFSKAA QQTKGSYMEV EDNRSQVETD DLILKPGVVH

70 Seq ID NO: 498 DNA sequence Nucleic Acid Accession #: AB020684.1 Coding sequence: 1..1744

VIDVDRGEEK KGKDOSGEVL SSV

21 31 75 CCCCCTTGTC ATTAATACAT TAAAAAGATT CAATCTTTAC CCTGAGGTAA TTTTGGCCAG TTGGTACCGG ATTTATACCA AAATAATGGA CTTGATTGGT ATTCAAACCA AGATATGTTG GACGGTTACC AGAGGAGAAG GACTCAGTCC TATTGAAAGC TGTGAAGGAT TGGGAGATCC 180 TGCTTGCTTT TATGTTGCTG TAATTTTTAT TTTAAATGGA CTAATGATGG CATTATTCTT 80 CATATATGGC ACATATTTAA GTGGCAGCCG ATTAGGAGGC CTGGTTACAG TGTTGTGCTT CTTTTTCAAT CATGGAGAGT GTACCCGTGT AATGTGGACA CCACCTCTCC GTGAAAGCTT 360 CTCATATCCA TTTCTTGTTC TTCAGATGTT GCTAGTGACT CATATTCTCA GGGCTACAAA 420 ACTITATAGA GGAAGCITGA TIGCACICIG CATITCCAAT GIATITITCA IGCITCCITG 480 GCAGTTTGCT CAGTTTGTAC TTCTTACTCA GATTGCATCA TTATTTGCAG TATATGTTGT 540 85 CGGGTACATT GATATATGTA AATTACGGAA GATCATTTAT ATACACATGA TTTCTCTTGC 600 ACTITGITIT GITTIGATGI TIGGGAACTC AATGITATTA ACTICITATI ATGCTTCTTC 660

TTTGGTAATT ATTTGGGGTA TTCTGGCAAT GAAACCACAT TTCCTGAAAA TAAATGTATC

WO 02/086443 TGAACTTAGT TTATGGGTTA TTCAAGGATG TTTTTGGTTA TTTGGAACTG TCATACTTAA ATACTTGACA TCTAAAATTT TTGGTATTGC AGATGACGCT CATATTGGCA ACTTACTAAC 840 ATCAAAATTC TITAGTTATA AGGATTTTGA TACTTTATTG TATACCTGTG CAGCGGAGTT TGACTTTATG GAAAAAGAGA CTCCACTGAG ATACACAAAG ACATTATTGC TTCCAGTTGT 5 TCTTGTAGTG TTTGTTGCTA TTGTTAGAAA GATTATTAGT GATATGTGGG GTGTCTTAGC TAAACAACAG ACACATGTAA GAAAACACCA GTTTGATCAT GGAGAGCTGG TTTACCATGC 1080 ATTGCAATTG TTAGCATATA CAGCCCTTGG TATTTTAATT ATGAGACTAA AACTCTTCTT 1140 GACACCACAC ATGTGTGTTA TGGCATCACT GATCTGCTCA AGACAGCTAT TTGGATGGCT 1200 CTTTTGCAAA GTACATCCTG GTGCTATTGT GTTTGCTATA TTAGCAGCAA TGTCAATACA 1260 10 AGGTTCAGCA AATCTGCAAA CCCAGTGGAA TATTGTAGGG GAGTTCAGCA ATTTGCCCCA 1320 AGAAGAACTT ATAGAATGGA TCAAATATAG TACTAAACCA GATGCAGTGT TTGCGGGTGC 1380 CATGCCCACG ATGGCAAGTG TTAAGCTCTC TGCACTTCGG CCCATTGTGA ATCATCCACA 1440 TTATGAAGAC GCAGGCTTGA GAGCCAGAAC AAAAATAGTA TACTCAATGT ATAGTCGGAA 1500 AGCAGCCGAA GAAGTGAAGC GAGAACTGAT AAAGTTAAAA GTGAACTATT ACATTCTAGA 15 AGAGTCATGG TGTGTAAGAA GATCCAAGCC TGGTTGCAGT ATGCCTGAAA TTTGGGATGT AGAAGATCCT GCCAATGCTG GGAAAACTCC CTTATGTAAC CTCTTGGTGA AGGATTCCAA ACCTCACTTC ACCACTGTAT TCCAGAACAG TGTTTACAAA GTCCTAGAAG TTGTAAAAGA 1740 ATGACTGCTA CATGACCTGC TGCCTACGGA GAACTACATC TGTAATGGTT TTAATGTTTT GCTAAGTCAT GTGTTGTTCA TATCCCAAAA ACTTTTATAG GTAACTGTTT TCAAATAGAA 1860 20 AACGTTTTAT TTGGTCAATT TGAATGTCAT TCTAATTATA AAAATGACTT ACACCTTTAT 1920 CAATTGGTTA CTATTTCAAT GCACCCTTTA AAATTTGCTA TGCAAATGAG TATATGCTTG 1980 TACTTGACTT TAATATTTGT GCTAAAGTGA GCAAAGCTAC CTGTATAAAG AAAACACAGT 2040 GGGTTGTGAC AAGGATGACA TGAAAATACA GGACAATTCT GACAATGTAG GGGCTGATTT 2100 TATAGTGTAA GAACTATTAA TGCCCCTTGC TTCTTTTTC TGCCTCTTGC TCTTGTCTTT 2160 25 TGGACATTTC AGTGATTGTA AGTTCTTCGG TCATGTCAGC CCCTGTCATC AACTTGAGTT 2220 ACAGTAGATG GGGCAGACAT GGAGTGTTTG CTATATAAAA CTATCTGTTT GTTTTACTTC 2280 CTTGTGCGCT TTTTGTTCTC TGTTCTCTTG TTAATGAAGC TTTTCCTGCC CATTATTAAT 2340 CCAAACTCTT GGACCTTGTG GTTAGGAAAT TCCCTTAACT TCCAGCCATA TGGCATTATC 2400 GTGTCTCTTT CTCTCTCTCT CTTGCTCTCT CTCTCTCCT CTTCCCCATA TTTTCTGTCA 2460 30 AATAAGTACT GTTTACTCAT TTAGTTGCTT ATCAAGTACT TATTCTTGGT TTTAAAAAAA 2520 ATTAATGGTA ACTGTATTTT TCTCATTTTT AGCATTATTC AAATGTTTAT ATTTTAATAC CTTTAAACCA CTTTAAAGTT TTTTCATGTT TAATTATAGT TTTAAGAAAA ACTATTTTGA ACAACCCCAA ATATAGTGCA TCTAGAAACT AATGTATATT TGATTAGACA TCATTTATAG TGGAACAGTA GACTGTAGTA CATGGTAATT TTTCTTTTAC TATTAAGATA CAATAAAACA 2760 35 TGACTAATTT TGCTGTCAAA AATGTAAAGA ATAATGATAA ATGGAGTTTT TTATATTTTA CTTTTAAGAT TGCCTGTCTT TAATAAGACA AAGCCTTAAG CCTTATGTTA TAATTTTGGT TCTAAAAACC ATCATTTCAG TATAAGGAAT AAGTATATTT CGTCCTCCTC TTTAGTTTTT TTCTTCCTAT TTATTTTAT TTTGAAAAAT TTCTACACCT TCTTTGAATT CCTTGTATGA 3000 ATTTTGTTT CTTAGAAGTT AATTTGTGTG AAATGAGATT CTTCAAAACG ATGAAACCTC 3060 40 3120 ATAGCTCTGA GAAAAGGTTT TAGGGTTTTA AATTCTAAGC AAAGCGTGAC TATGGCTGAC AGACTACACA TTTAATTATA CAGCTTCTCT TTCTTAACCA CAGGCAGATT AACCTCATTG 3180 TGGATTGTCC TTCAGACCTT AGTCCTCAGG CATGGTTTCT GGTGCCCACT CCTGGAAGCC GCTGTTCCCT TTCTACCTTC TTACCAGAGC CCAAGGGCAG GCCTGGTCCC GGGGAAGCAG 3240 3300 CAGCTTGCTG ACATAAGTCA GCTGCAAAGG CTGAGGAGTG TGCCCTCAGA GAAGCACCGC 3360 45 CCCCCAGTCT TGTGCCAGCG CCTAGAGCCG CAGCTCCCAG GGATGCTCCT TCCCTGGAGG 3420 CAGCCCAGGA GAGGGACTCT GGCAGCGTTC TTCAGATTTG TGGCCACTGT TTCTCATTTG 3480 CTGGTTGACT GTTTTTATTT CTTAGGCTTT TGCTAGTTTT AGAAAATAGG GAAGCAGCCC 3540 TTGATTTGTG GATTAAAAGC AACATTTGAG CGATGATGCA CAACAGTCCA GGAAAATGGG 3600 CGGTGGACAC TTGAGGCTGA GGATGGGAGT TGACATGAGC AGGGAGAGGG AGGTGCGCGC 3660 50 TGCTTATCTG TGATTGTTGC TCACCTGAGT GTGGCTGATT GTGTACATCC AGCAGTTACA 3720 ATTTTTAAAA ATTATACTTT TACATTTATT TTATATTTTT CTCACCCCA GTAATTTCCT 3780 TCCAAAGAAG TTCACATGTA ATAAGTAGAA ATTCTGTATA GGAAAAAAGC ATTAAAAATA 3840 CTATTATAAC TGCTTCATTT GCTGGGAACC ATTAAAAGTA ATATAAATTA GCTTTTTCCA 3900 GAAGGATCCT TTTGTAGCAG TGTTTATGAA TGTAACCCCC AGCAAAATAT GGCTATATAT 3960 55 TAGGGGAGCC AGTTTGGAGC AGAGGCCTGA AGGTCCCTGC TATGCAGCCG TGGCCACAGC 4020 TCGCAGCCCA AGCACTGTGG AGCATCCACA CCTTTGATGG CAATGCAGAT TGGTAGCAGG 4080 TTCCATAGGC GTACAAAACA GTATTAAAGC TCAGTGTTTT GCATATTGTT AGCATTTACA 4140 AATATTTTTG CTTTAGTATG AGGAAAGTAA GGATGGGCAA AGAAGCGATC AAAATAGCTA 4200 TTGCTACAAC ATTTTCGAAA ACAAAGTTGG GGCTGTATTT CTTTAAAAAG ATAAGCCTCT 4260 60 AAAAATGCTT GGCAAAAAA ATATAGTGTT AAAATAGGCC AGTGATATTA ATGAGAAAAT 4320 GAAAGTATGT ATCAGGAATA AAGTGATATT GCATAGGAGT ATTGTATTTT TATGAATTTT ATGCCAGTTG TTTACATGTA CTATATATGT TAAATTAAAA AAAATCATGA GAAATG Seg ID NO: 499 Protein sequence 65 Protein Accession #: BAA74900.1 21 31 51 PLVINTLKRF NLYPEVILAS WYRIYTKIMD LIGIQTKICW TVTRGEGLSP IESCEGLGDP 70 ACFYVAVIFI LNGLMMALFF IYGTYLSGSR LGGLVTVLCF FFNHGECTRV MWTPPLRESF SYPFLVLQML LVTHILRATK LYRGSLIALC ISNVFFMLPW QFAQFVLLTQ IASLFAVYVV GYIDICKLRK IIYIHMISLA LCFVLMFGNS MLLTSYYASS LVIIWGILAM KPHFLKINVS ELSLWVIQGC FWLFGTVILK YLTSKIFGIA DDAHIGNLLT SKFFSYKDFD TLLYTCAAEF 300 DFMEKETPLR YTKTLLLPVV LVVFVAIVRK IISDMWGVLA KQQTHVRKHQ FDHGELVYHA 360 75 LQLLAYTALG ILIMRLKLFL TPHMCVMASL ICSROLFGWL FCKVHPGAIV FAILAAMSIQ 420 GSANLQTQWN IVGEFSNLPQ EELIEWIKYS TKPDAVFAGA MPTMASVKLS ALRPIVNHPH 480 YEDAGLRART KIVYSMYSRK AAEEVKRELI KLKVNYYILE ESWCVRRSKP GCSMPEIWDV 540 EDPANAGKTP LCNLLVKDSK PHFTTVFONS VYKVLEVVKE 80 Seg ID NO: 500 DNA seguence Nucleic Acid Accession #: NM_001276.1 Coding sequence: 127..1278 21 31 41 51 85 AGTGGAGTGG GACAGGTATA TAAAGGAAGT ACAGGGCCTG GGGAAGAGGC CCTGTCTAGG 60 120

TGAAGGCGGC CATCTCGCAA CTTACAAGCA GCTAGAGGCA GCCAGAAAAA TTGGATTTCA

```
TGTCTGTGCT GCTGGATGGA TGGCTAAGGG CAGAGTTGGA TACCCCATTG TGAAGCCAGG
                                                                            360
       GCCCAACTGT GGATTTGGAA AAACTGGCAT TATTGATTAT GGAATCCGTC TCAATAGGAG
                                                                            420
       TGAAAGATGG GATGCCTATT GCTACAACCC ACACGCAAAG GAGTGTGGTG GCGTCTTTAC
                                                                            480
       AGATCCAAAG CAAATTTTTA AATCTCCAGG CTTCCCAAAT GAGTACGAAG ATAACCAAAT
                                                                            540
  5
       CTGCTACTGG CACATTAGAC TCAAGTATGG TCAGCGTATT CACCTGAGTT TTTTAGATTT
                                                                            600
       TGACCTTGAA GATGACCCAG GTTGCTTGGC TGATTATGTT GAAATATATG ACAGTTACGA
                                                                            660
       TGATGTCCAT GGCTTTGTGG GAAGATACTG TGGAGATGAG CTTCCAGATG ACATCATCAG
                                                                            720
       TACAGGAAAT GTCATGACCT TGAAGTTTCT AAGTGATGCT TCAGTGACAG CTGGAGGTTT
                                                                            780
       CCAAATCAAA TATGTTGCAA TGGATCCTGT ATCCAAATCC AGTCAAGGAA AAAATACAAG
                                                                            840
10
       TACTACTTCT ACTGGAAATA AAAACTTTTT AGCTGGAAGA TTTAGCCACT TATAAAAAAA
                                                                            900
       AAAAAAGGA TGATCAAAAC ACACAGTGTT TATGTTGGAA TCTTTTGGAA CTCCTTTGAT
       CTCACTGTTA TTATTAACAT TTATTTATTA TTTTTCTAAA TGTGAAAGCA ATACATAATT
       TAGGGAAAAT TGGAAAATAT AGGAAACTTT AAACGAGAAA ATGAAACCTC TCATAATCCC
       ACTGCATAGA AATAACAAGC GTTAACATTT TCATATTTTT TTCTTTCAGT CATTTTCTA
                                                                           1140
15
       TTTGTGGTAT ATGTATATAT GTACCTATAT GTATTTGCAT TTGAAATTTT GGAATCCTGC
                                                                           1200
       TCTATGTACA GTTTGTATT ATACTTTTTA AATCTTGAAC TTTATAAACA TTTTCTGAAA
                                                                           1260
       TCATTGATTA TTCTACAAAA ACATGATTTT AAACAGCTGT AAAATATTCT ATGATATGAA
                                                                           1320
       TGTTTTATGC ATTATTTAAG CCTGTCTCTA TTGTTGGAAT TTCAGGTCAT TTTCATAAAT
       20
       Seq ID NO: 505 Protein sequence
       Protein Accession #: Eos sequence
                                         31
25
       MIILIYLFLL LWEDTQGWGF KDGIFHNSIW LERAAGVYHR EARSGKYKLT YAEAKAVCEF
                                                                             60
       EGGHLATYKO LEAARKIGFH VCAAGWMAKG RVGYPIVKPG PNCGFGKTGI IDYGIRLNRS
                                                                            120
       ERWDAYCYNP HAKECGGVFT DPKQIFKSPG FPNEYEDNQI CYWHIRLKYG QRIHLSFLDF
       DLEDDPGCLA DYVEIYDSYD DVHGFVGRYC GDELPDDIIS TGNVMTLKFL SDASVTAGGF
30
       QIKYVAMDPV SKSSOGKNTS TTSTGNKNFL AGRFSHL
       Seq ID NO: 506 DNA sequence
       Nucleic Acid Accession #: NM_007115.1
       Coding sequence: 69..902
35
                                         31
                                                               51
                                                    41
       GAATTCGCAC TGCTCTGAGA ATTTGTGAGC AGCCCCTAAC AGGCTGTTAC TTCACTACAA
       CTGACGATAT GATCATCTTA ATTTACTTAT TTCTCTTGCT ATGGGAAGAC ACTCAAGGAT
                                                                            120
40
       GGGGATTCAA GGATGGAATT TITCATAACT CCATATGGCT TGAACGAGCA GCCGGTGTGT
                                                                            180
       ACCACAGAGA AGCACGGTCT GGCAAATACA AGCTCACCTA CGCAGAAGCT AAGGCGGTGT
                                                                            240
       GTGAATTTGA AGGCGGCCAT CTCGCAACTT ACAAGCAGCT AGAGGCAGCC AGAAAAATTG
                                                                            300
       GATTTCATGT CTGTGCTGCT GGATGGATGG CTAAGGGCAG AGTTGGATAC CCCATTGTGA
                                                                            360
       AGCCAGGGCC CAACTGATGA TTTGGAAAAA CTGGCATTAT TGATTATGGA ATCCGTCTCA
                                                                            420
45
       ATAGGAGTGA AAGATGGGAT GCCTATTGCT ACAACCCACA CGCAAAGGAG TGTGGTGGCG
       TCTTTACAGA TCCAAAGCGA ATTTTTAAAT CTCCAGGCTT CCCAAATGAG TACGAAGATA
                                                                            540
       ACCAAATCTG CTACTGGCAC ATTAGACTCA AGTATGGTCA GCGTATTCAC CTGAGTTTTT
       TAGATTTTGA CCTTGAAGAT GACCCAGGTT GCTTGGCTGA TTATGTTGAA ATATATGACA
       GTTACGATGA TGTCCATGGC TTTGTGGGAA GATACTGTGG AGATGAGCTT CCAGATGACA
50
       TCATCAGTAC AGGAAATGTC ATGACCTTGA AGTTTCTAAG TGATGCTTCA GTGACAGCTG
       GAGGTTTCCA AATCAAATAT GTTGCAATGG ATCCTGTATC CAAATCCAGT CAAGGAAAAA
                                                                            840
       ATACAAGTAC TACTTCTACT GGAAATAAAA ACTTTTTAGC TGGAAGATTT AGCCACTTAT
                                                                            900
       AAAAAAAAA AAGGATGATC AAAACACACA GTGTTTATGT TGGAATCTTT TGGAACTCCT
                                                                            960
       TTGATCTCAC TGTTATTATT AACATTTATT TATTATTTTT CTAAATGTGA AAGAAATACA
                                                                           1020
55
       TAATTTAGGG AAAATTGGAA AATATAGGAA ACTTTAAACG AGAAAATGAA ACCTCTCATA
                                                                           1080
       ATCCCACTGC ATAGAAATAA CAAGCGTTAA CATTTTCATA TTTTTTTCTT TCAGTCATTT
TTGTATTTGT GGTATATGTA TATATGTACC TATATGTATT TGCATTTGAA ATTTTGGAAT
                                                                           1140
                                                                           1200
       CCTGCTCTAT GTACAGTTTT GTATTATACT TTTTAAATCT TGAACTTTAT GAACATTTTC
                                                                          1260
       TGAAATCATT GATTATTCTA CAAAAACATG ATTTTAAACA GCTGTAAAAT ATTCTATGAT
                                                                          1320
60
       ATGAATGTTT TATGCATTAT TTAAGCCTGT CTCTATTGTT GGAATTTCAG GTCATTTTCA
                                                                          1380
       TAAATATTGT TGCAATAAAT ATCCTTCGGA ATTC
       Seg ID NO: 507 Protein seguence
       Protein Accession #: NP_009046.1
65
                                        31
                             21
                                                   41
       MIILIYLFLL LWEDTQGWGF KDGIFHNSIW LERAAGVYHR EARSGKYKLT YAEAKAVCEF
                                                                            60
       EGGHLATYKQ LEAARKIGFH VCAAGWMAKG RVGYPIVKPG PNXXFGKTGI IDYGIRLNRS
                                                                           120
70
       ERWDAYCYNP HAKECGGVFT DPKRIFKSPG FPNEYEDNQI CYWHIRLKYG QRIHLSFLDF
                                                                           180
       DLEDDPGCLA DYVEIYDSYD DVHGFVGRYC GDELPDDIIS TGNVMTLKFL SDASVTAGGF
                                                                           240
       QIKYVAMDPV SKSSOGKNTS TTSTGNKNFL AGRFSHL
75
       Seq ID NO: 508 DNA sequence
       Nucleic Acid Accession #: NM_001044.1
       Coding sequence: 129..1991
                                        31
80
       ACCGCTCCGG AGCGGGAGGG GAGGCTTCGC GGAACGCTCT CGGCGCCAGG ACTCGCGTGC
                                                                            60
       AAAGCCCAGG CCCGGGCGGC CAGACCAAGA GGGAAGAAGC ACAGAATTCC TCAACTCCCA
                                                                           120
       GTGTGCCCAT GAGTAAGAGC AAATGCTCCG TGGGACTCAT GTCTTCCGTG GTGGCCCCGG
                                                                           180
       CTAAGGAGCC CAATGCCGTG GGCCCGAAGG AGGTGGAGCT CATCCTTGTC AAGGAGCAGA
                                                                           240
85
       ACGGAGTGCA GCTCACCAGC TCCACCCTCA CCAACCCGCG GCAGAGCCCC GTGGAGGCCC
                                                                           300
       AGGATCGGGA GACCTGGGGC AAGAAGATCG ACTTTCTCCT GTCCGTCATT GGCTTTGCTG
                                                                           360
       TGGACCTGGC CAACGTCTGG CGGTTCCCCT ACCTGTGCTA CAAAAATGGT GGCGGTGCCT
                                                                           420
```

	WO 02	/086443					
	TCCTGGTCCC	CTACCTGCTC					480
	TGGCCCTCGG	CCAGTTCAAC	AGGGAAGGGG	CCGCTGGTGT	CTGGAAGATC	TGCCCCATAC	540
	TGAAAGGTGT	GGGCTTCACG	GTCATCCTCA	TCTCACTGTA	TGTCGGCTTC	TTCTACAACG	600
5	TCATCATCGC	CTGGGCGCTG CAACTCCTGG	CACTATCTCT	ACTOCTOCIA	TECCCATCCT	CICCCCTGGA	660 720
,	GTGGAGACAG	CTCGGGCCTC	AACAGCCCCA	TTGGGACCAC	ACCTGCTGCC	GAGTACTTTG	780
	AACGTGGCGT	GCTGCACCTC	CACCAGAGCC	ATGGCATCGA	CGACCTGGGG	CCTCCGCGGT	840
	GGCAGCTCAC	AGCCTGCCTG	GTGCTGGTCA	TCGTGCTGCT	CTACTTCAGC	CTCTGGAAGG	900
1.0	GCGTGAAGAC	CTCAGGGAAG	GTGGTATGGA	TCACAGCCAC	CATGCCATAC	GTGGTCCTCA	960
10	CTGCCCTGCT	CCTGCGTGGG	GTCACCCTCC	CTGGAGCCAT	AGACGGCATC	AGAGCATACC	1020
	TGAGCGTTGA	CTTCTACCGG	CTCTGCGAGG	CGTCTGTTTG	GATTGACGCG	GCCACCCAGG	1080
	TCACCAACAA	CCTGGGCGTG CTGCTACAGG	CACCCCATTC	TCACCACCTC	CATCAACTCC	CTGACGAGCT	1140 1200
	TCTCCTCCGG	CTTCGTCGTC	TTCTCCTTCC	TGGGGTACAT	GGCACAGAAG	CACAGTGTGC	1260
15	CCATCGGGGA	CGTGGCCAAG	GACGGGCCAG	GGCTGATCTT	CATCATCTAC	CCGGAAGCCA	1320
	TCGCCACGCT	CCCTCTGTCC	TCAGCCTGGG	CCGTGGTCTT	CTTCATCATG	CTGCTCACCC	1380
		CAGCGCCATG					1440
		GCACAGACAC					1500
20		GTTCTGCGTC					1560
20		CACGTCCATC TGGGCAGTTC					1620 1680
		GCTGTGCTGG					1740
		GACCTTCAGA					1800
		CTGGGTCATC					1860
25		CAGCCTGCCT					1920
	AGAAGGACCG	TGAGCTGGTG	GACAGAGGGG	AGGTGCGCCA	GTTCACGCTC	CGCCACTGGC	1980
		GAGGGAGCAG					2040
		CAAGGAAATC					2100
30		AACACAAACA GAGCGCACCT					2160
30		CCACCCCGTT	_				2220 2280
		GCTCCCTCCC					2340
		TCAGGCGGGG					2400
	CTCACAGTAG	CTTCCTAGAC	CATTTACTTT	GCCCATATTA	AAAAGCCAAG	TGTCCTGCTT	2460
35		TGCAGAAGGT					2520
		TCCCAGCAGA					2580
		AGGCATTGGA					2640
		AGCAGAGAGA GGGTCCTTGT					2700 2760
40		GGGCCCCCAC					2820
		CCTATCCCTG					2880
		GGGCCCCCAC					2940
		ACTACCCCAG					3000
15		ATGCAGGGCC					3060
45		CGTGTACTAC					3120
		ATGCAGGGCC					3180
		CCTCCAGGAA AACAGTTTTT					3240 3300
		ATTCAAGAAT					3360
50		TAATTAGCAA					3420
	CACACTGCCC	TCTGCCACTG	ACAGGAAAGT	GGATGCCATA	GTTTGAATTC	ATGCCTCAAG	3480
		TGCCTACGTG					3540
		GTGGACGTGG					3600
55		TGCCAGGCAG					3660
55		CAGAGGACGG CATTGCCTTC					3720 3780
						GGCTCCGTGT	
						TGTGGGTCCC	
		AAAAGACATC					
60							
		509 Proteir					
•	Protein Acc	cession #: 1	NP_001035.1				
	1	11	21	31	41	51	
65	ī	Ī	Ī	ī	Ī	ì	
	MSKSKCSVGL	MSSVVAPAKE	PNAVGPKEVE	LILVKEONGV	QLTSSTLTNP	RQSPVEAQDR	60
		LSVIGFAVDL					120
		VWKICPILKG					180
70		DAHPGDSSGD					240
70		LYFSLWKGVK WIDAATQVCF					300 360
		MAQKHSVPIG					420
		ITGLIDEFQL					480
		EAIGVAWFYG					540
75	VTFRPPHYGA	YIFPDWANAL	GWVIATSSMA	MVPIYAAYKF	CSLPGSFREK	LAYAIAPEKD	600
	RELVDRGEVR	QFTLRHWLKV					
	Com ID NO.	F10 DVV			•		
		510 DNA sec id Accession		216 1		•	
80		ence: 431		220.1			
	1	11	21	31	41	51	
		1	000101000	1		00000000	
85		ACCGTGTGCT TCCCTCTGTT					60 120
~~		TCCCTCTGTT					180
		GAGGAGGCTC					240

```
AGTGAAGAGG ATTCACCCAG AGAGGAGGAT CCACCCGGAG AGGAGGATCT ACCTGGAGAG
                                                                              300
       GAGGATCTAC CTGGAGAGGA GGATCTACCT GAAGTTAAGC CTAAATCAGA AGAAGAGGGC
                                                                              360
       TCCCTGAAGT TAGAGGATCT ACCTACTGTT GAGGCTCCTG GAGATCCTCA AGAACCCCAG
                                                                              420
       AATAATGCCC ACAGGGACAA AGAAGGGGAT GACCAGAGTC ATTGGCGCTA TGGAGGCGAC
                                                                              480
       COGCCCTGGC CCCGGGTGTC CCCAGCCTGC GCGGGCCGCT TCCAGTCCCC GGTGGATATC CGCCCCCAGC TCGCCGCCTT CTGCCCGGCC CTGCGCCCCC TGGAACTCCT GGGCTTCCAG
 .5
                                                                              540
                                                                              600
       CTCCCGCCGC TCCCAGAACT GCGCCTGCGC AACAATGGCC ACAGTGTGCA ACTGACCCTG
                                                                              660
       CCTCCTGGGC TAGAGATGGC TCTGGGTCCC GGGCGGGAGT ACCGGGCTCT GCAGCTGCAT
                                                                              720
       CTGCACTGGG GGGCTGCAGG TCGTCCGGGC TCGGAGCACA CTGTGGAAGG CCACCGTTTC
                                                                              780
10
       CCTGCCGAGA TCCACGTGGT TCACCTCAGC ACCGCCTTTG CCAGAGTTGA CGAGGCCTTG
                                                                              840
       GGGCGCCCGG GAGGCCTGGC CGTGTTGGCC GCCTTTCTGG AGGAGGGCCC GGAAGAAAAC
                                                                              900
       AGTGCCTATG AGCAGTTGCT GTCTCGCTTG GAAGAAATCG CTGAGGAAGG CTCAGAGACT
                                                                              960
       CAGGTCCCAG GACTGGACAT ATCTGCACTC CTGCCCTCTG ACTTCAGCCG CTACTTCCAA
                                                                             1020
       TATGAGGGGT CTCTGACTAC ACCGCCCTGT GCCCAGGGTG TCATCTGGAC TGTGTTTAAC
                                                                             1080
15
       CAGACAGTGA TGCTGAGTGC TAAGCAGCTC CACACCCTCT CTGACACCCT GTGGGGACCT
       GGTGACTCTC GGCTACAGCT GAACTTCCGA GCGACGCAGC CTTTGAATGG GCGAGTGATT
       GAGGCCTCCT TCCCTGCTGG AGTGGACAGC AGTCCTCGGG CTGCTGAGCC AGTCCAGCTG
       AATTCCTGCC TGGCTGCTGG TGACATCCTA GCCCTGGTTT TTGGCCTCCT TTTTGCTGTC
                                                                             1320
       ACCAGCGTCG CGTTCCTTGT GCAGATGAGA AGGCAGCACA GAAGGGGAAC CAAAGGGGGT
                                                                             1380
       GTGAGCTACC GCCCAGCAGA GGTAGCCGAG ACTGGAGCCT AGAGGCTGGA TCTTGGAGAA
20
                                                                             1440
       TGTGAGAAGC CAGCCAGAGG CATCTGAGGG GGAGCCGGTA ACTGTCCTGT CCTGCTCATT
                                                                            1500
       ATGCCACTTC CTTTTAACTG CCAAGAAATT TTTTAAAATA AATATTTATA AT
       Seg ID NO: 511 Protein seguence
25
       Protein Accession #: NP_001207.1
                                                     41
                              21
       MAPLCPSPWL PLLIPAPAPG LTVQLLLSLL LLMPVHPQRL PRMQEDSPLG GGSSGEDDPL
                                                                               60
30
       GEEDLPSEED SPREEDPPGE EDLPGEEDLP GEEDLPEVKP KSEEEGSLKL EDLPTVEAPG
                                                                              120
       DPQEPQNNAH RDKEGDDQSH WRYGGDPPWP RVSPACAGRF QSPVDIRPQL AAFCPALRPL
                                                                              180
       ELLGFOLPPL PELRLRNNGH SVOLTLPPGL EMALGPGREY RALOLHLHWG AAGRPGSEHT
                                                                              240
       VEGHRFPAEI HVVHLSTAFA RVDEALGRPG GLAVLAAFLE EGPEENSAYE QLLSRLEEIA
                                                                              300
       EEGSETOVPG LDISALLPSD FSRYFQYEGS LTTPPCAQGV IWTVFNQTVM LSAKQLHTLS
35
       DTLWGPGDSR LQLNFRATQP LNGRVIEASF PAGVDSSPRA AEPVQLNSCL AAGDILALVF
       GLLFAVTSVA FLVQMRRQHR RGTKGGVSYR PAEVAETGA
       Seq ID NO: 512 DNA sequence
       Nucleic Acid Accession #: Eos sequence
40
       Coding sequence: 1..3978
                                                                 51
                              21
                                          31
                                                     41
       ATGGTGGGTG AAGGACCCTA CCTTATCTCA GATCTGGACC AGCGAGGCCG GCGGAGATCC
45
       TTTGCAGAAA GATATGACCC CAGCCTGAAG ACCATGATCC CAGTGCGACC CTGTGCAAGG
                                                                              120
       TTAGCACCCA ACCCGGTGGA TGATGCCGGG CTACTCTCCT TCGCCACATT TTCCTGGCTC
                                                                              180
       ACGCCGGTGA TGGTGAAAGG CTACCGGCAA AGGCTGACCG TAGACACCCT GCCCCCATTG
                                                                              240
       TCGACATATG ACTCATCTGA CACCAATGCC AAAAGATTTC GAGTCCTTTG GGATGAAGAG
                                                                              300
       GTAGCAAGGG TGGGTCCTGA GAAGGCCTCT CTGAGCCACG TGGTGTGGAA ATTCCAGAGG
                                                                              360
50
       ACACGCGTGT TGATGGACAT CGTGGCCAAC ATCCTGTGCA TCATCATGGC AGCCATAGGG
                                                                              420
       CCGACAGTTC TCATTCACCA AATCCTCCAG CAGACTGAGA GGACCTCTGG GAAAGTCTGG
                                                                              480
       GTTGGCATTG GACTGTGCAT AGCCCTTTTT GCCACCGAGT TTACCAAAGT CTTCTTTTGG
                                                                              540
       GCCCTTGCCT GGGCCATCAA CTACCGCACG GCCATCCGGT TGAAGGTGGC GCTCTCCACC
                                                                              600
       TTGGTTTTTG AAAACCTAGT GTCCTTCAAG ACATTGACCC ACATCTCTGT TGGCGAGGTG
                                                                              660
55
       CTCAATATAC TGTCAAGTGA TAGCTATTCT TTGTTTGAAG CTGCCTTGTT TTGTCCTTTG
                                                                              720
       CCAGCCACCA TCCCGATCCT AATGGTCTTT TGTGCGGCGT ACGCCTTTTT CATTCTGGGG
                                                                              780
       CCCACAGCTC TCATCGGGAT ATCAGTGTAT GTCATATTCA TACCCGTCCA GATGTTTATG
                                                                              840
       GCCAAGCTCA ATTCAGCTTT CCGAAGGTCA GCAATTTTGG TGACAGACAA GCGAGTTCAG
                                                                              900
       ACAATGAATG AGTTTCTGAC CTGCATCAGG CTGATCAAAA TGTATGCCTG GGAGAAATCT
                                                                              960
       TTTACCAACA CTATCCAAGA TATAAGAAGG AGGGAAAGAA AATTACTGGA AAAAGCTGGA
TTTGTCCAAA GTGGAAACTC TGCCCTGGCC CCCATCGTGT CCACCATAGC CATCGTGCTG
60
                                                                             1020
                                                                             1080
       ACATTATCCT GCCACATCCT CCTGAGACGC AAACTCACCG CACCCGTGGC ATTTAGTGTG
                                                                             1140
       ATTGCCATGT TTAATGTAAT GAAGTTTTCC ATTGCAATCT TGCCCTTCTC CATCAAAGCA
                                                                             1200
       ATGGCTGAAG CGAATGTCTC TCTAAGGAGA ATGAAGAAAA TTCTCATAGA TAAAAGCCCC
CCATCTTACA TCACCCAACC AGAAGACCCA GATACTGTCT TGCTTTTAGC AAATGCCACC
                                                                             1260
65
       TTGACATGGG AGCATGAAGC CAGCAGGAAA AGTACCCCAA AGAAATTGCA GAACCAGAAA
                                                                             1380
       AGGCATTTAT GCAAGAAACA GAGGTCAGAG GCATACAGTG AGAGGAGTCC ACCAGCCAAG
       GGAGCCACTG GCCCAGAGGA GCAAAGTGAC AGCCTCAAAT CGGTTCTGCA CAGCATAAGC
       TTTGTGGTGA GAAAGTTATG TCGTTATCCC GAAGCCCAGC TCCTGGCTTG GAGGTGGCCA
       GCAGTGTTTG TTGGGAGAAT CATCAGAGGA TACAGGCCTC ATGGATTTTC TGCTAAAGAC
70
                                                                             1620
       AAGGATGAAT CTAGAAGGCT TCTTACTTGG CCCCAAGAAG TGGATAGGAC TCAAAGGGCA
       GCCAAATACC TGGGGAAGAT CTTGGGAATA TGTGGGAATG TGGGAAGTGG AAAGAGCTCC
                                                                             1740
       CTCCTTGCAG CTCTCCTAGG ACAGATGCAG CTGCAGAAAG GGGTGGTGGC AGTCAATGGA
                                                                             1800
       ACTITIGGCCT ACGITICACA GCAGGCATGG ATCTITCATG GAAATGTGAG AGAAAACATA
                                                                             1860
75
       CTCTTTGGAG AAAAGTATGA TCACCAAAGG TATCAGCACA CAGTCCGCGT CTGTGGCCTC
                                                                             1920
       CAGAAGGACC TGAGCAACCT CCCCTATGGA GACCTGACTG AGATTGGGGA GCGGGGCCTC
                                                                             1980
       AACCTCTCTG GGGGGCAGAG GCAGAGGATT AGCCTGGCCC GCGCTGTCTA CTCCGACCGT
                                                                             2040
       CAGCTCTACC TGCTGGACGA CCCCCTGTCG GCCGTGGACG CCCACGTGGG GAAGCACGTC
                                                                             2100
       TTTGAGGAGT GCATTAAGAA GACGCTCAGG GGAAAGACAG TCGTCCTGGT GACCCACCAG
                                                                             2160
80
       CTACAGTTCT TAGAGTCTTG TGATGAAGTT ATTTTATTAG AAGATGGAGA GATTTGTGAA
                                                                             2220
       AAGGGAACCC ACAAGGAGTT AATGGAGGAG AGAGGGCGCT ATGCAAAACT GATTCACAAC
                                                                             2280
       CTGCGAGGAT TGCAGTTCAA GGATCCTGAA CACCTTTACA ATGCAGCAAT GGTGGAAGCC
                                                                             2340
       TTCAAGGAGA GCCCTGCTGA GAGAGAGGAA GATGCTGGTA TAATCGGGTA CCTCCTTTCT
                                                                             2400
       CTCTTCACTG TGTTCCTCTT CCTCCTGATG ATTGGCAGCG CTGCCTTCAG CAACTGGTGG
                                                                             2460
85
       CTGGGTCTCT GGTTGGACAA GGGCTCACGG ATGACCTGTG GGCCCCAGGG CAACAGGACC
                                                                             2520
       ATGTGTGAGG TCGGCGCGGT GCTGGCAGAC ATCGGTCAGC ATGTGTACCA GTGGGTGTAC
                                                                             2580
       ACTGCAAGCA TGGTGTTCAT GCTGGTGTTT GGCGTCACCA AAGGCTTCGT CTTCACCAAG
```

```
ACCACACTGA TGGCATCCTC CTCTCTGCAT GACACGGTGT TTGATAAGAT CTTAAAGAGC
                                                                          2700
      CCAATGAGTT TCTTTGACAC GACTCCCACT GGCAGGCTAA TGAACCGTTT TTCCAAGGAT
                                                                          2760
      ATGGACGAGC TGGATGTGAG GCTGCCGTTT CACGCAGAGA ACTTTCTGCA GCAGTTTTTT
                                                                          2820
      ATGGTGGTGT TTATTCTCGT GATCTTGGCT GCTGTGTTTC CTGCTGTCCT TTTAGTCGTG
                                                                          2880
      GCCAGCCTTG CTGTAGGCTT CTTCATTCTG TTACGCATTT TCCACAGAGG AGTCCAGGAG
                                                                          2940
      CTCAAGAAGG TGGAGAATGT CAGCCGGTCA CCCTGGTTCA CCCACATCAC CTCCTCCATG
                                                                          3000
       CAGGGCCTGG GCATCATTCA CGCCTATGGC AAGAAGGAGA GCTGCATCAC CTATACTTCA
                                                                          3060
       TCCAAAGGCC TGTCATTGTC ATACATCATC CAGCTGAGCG GACTGCTCCA AGTGTGTGTG
                                                                          3120
       CGAACGGGAA CAGAGACGCA AGCCAAATTC ACCTCCGTGG AGCTGCTCAG GGAATACATT
                                                                          3180
10
       TCGACCTGTG TTCCTGAATG CACTCATCCC CTCAAAGTGG GGACCTGTCC CAAGGACTGG
                                                                          3240
       CCCAGCTGTG GGGAGATCAC CTTCAGAGAC TATCAGATGA GATACAGAGA CAACACCCCC
                                                                          3300
       CTTGTTCTCG ACAGCCTGAA CTTGAACATA CAAAGTGGGC AGACAGTCGG GATTGTTGGA
                                                                          3360
       AGAACAGGTT CCGGAAAGTC ATCGTTAGGA ATGGCTTTGT TTCGTCTGGT GGAGCCAGCC
                                                                           3420
       AGTGGCACAA TCTTTATTGA TGAGGTGGAT ATCTGCATTC TCAGCTTGGA AGACCTCAGA
15
       ACCAAGCTGA CTGTGATCCC ACAGGATCCT GTCCTGTTTG TAGGTACAGT AAGGTACAAC
       TTGGATCCCT TTGAGAGTCA CACCGATGAG ATGCTCTGGC AGGTTCTGGA GAGAACATTC
                                                                           3600
       ATGAGAGACA CAATAATGAA ACTCCCAGAA AAATTACAGG CAGAAGTCAC AGAAAATGGA
                                                                          3660
       GAAAACTICT CAGTAGGGGA ACGTCAGCTG CTTTGTGTGG CCCGAGCTCT TCTCCGTAAT
                                                                          3720
       TCAAAGATCA TTCTCCTTGA TGAAGCCACC GCCTCTATGG ACTCCAAGAC TGACACCCTG
                                                                          3780
20
       GTTCAGAACA CCATCAAAGA TGCCTTCAAG GGCTGCACTG TGCTGACCAT CGCCCACCGC
                                                                          3840
       CTCAACACAG TTCTCAACTG CGATCACGTC CTGGTTATGG AAAATGGGAA GGTGATTGAG
                                                                          3900
       TTTGACAAGC CTGAAGTCCT TGCAGAGAAG CCAGATTCTG CATTTGCGAT GTTACTAGCA
                                                                          3960
       GCAGAAGTCA GATTGTAG
25
       Seq ID NO: 513 Protein sequence
       Protein Accession #: Eos sequence
                             21
                                        31
                                                   41
                                                              51
30
       MVGEGPYLIS DLDORGRRRS FAERYDPSLK TMIPVRPCAR LAPNPVDDAG LLSFATFSWL
                                                                            60
       TPVMVKGYRQ RLTVDTLPPL STYDSSDTNA KRFRVLWDEE VARVGPEKAS LSHVVWKFQR
                                                                            120
       TRVLMDIVAN ILCIIMAAIG PTVLIHQILQ QTERTSGKVW VGIGLCIALF ATEFTKVFFW
       ALAWAINYRT AIRLKVALST LVFENLVSFK TLTHISVGEV LNILSSDSYS LFEAALFCPL
       PATIPILMVF CAAYAFFILG PTALIGISVY VIFIPVQMFM AKLNSAFRRS AILVTDKRVQ
35
       TMNEFLTCIR LIKMYAWEKS FTNTIQDIRR RERKLLEKAG FVQSGNSALA PIVSTIAIVL
                                                                            360
       TLSCHILLRR KLTAPVAFSV IAMFNVMKFS IAILPFSIKA MAEANVSLRR MKKILIDKSP
       PSYITOPEDP DTVLLLANAT LTWEHEASRK STPKKLQNQK RHLCKKQRSE AYSERSPPAK
                                                                            480
       GATGPEEQSD SLKSVLHSIS FVVRKLCRYP EAQLLAWRWP AVFVGRIIRG YRPHGFSAKD
                                                                           540
       KDESRRLLTW POEVDRTORA AKYLGKILGI CGNVGSGKSS LLAALLGQMQ LQKGVVAVNG
                                                                            600
40
       TLAYVSOOAW IFHGNVRENI LFGEKYDHQR YQHTVRVCGL QKDLSNLPYG DLTEIGERGL
                                                                           660
       NLSGGQRQRI SLARAVYSDR QLYLLDDPLS AVDAHVGKHV FEECIKKTLR GKTVVLVTHQ
                                                                            720
       LQFLESCDEV ILLEDGEICE KGTHKELMEE RGRYAKLIHN LRGLQFKDPE HLYNAAMVEA
                                                                            780
       FKESPAEREE DAGIIGYLLS LFTVFLFLLM IGSAAFSNWW LGLWLDKGSR MTCGPOGNRT
                                                                           840
       MCEVGAVLAD IGQHVYQWVY TASMVFMLVF GVTKGFVFTK TTLMASSSLH DTVFDKILKS
                                                                           900
45
       PMSFFDTTPT GRLMNRFSKD MDELDVRLPF HAENFLOOFF MVVFILVILA AVFPAVLLVV
                                                                           960
       ASLAVGFFIL LRIFHRGVQE LKKVENVSRS PWFTHITSSM QGLGIIHAYG KKESCITYTS
                                                                          1020
       SKGLSLSYII QLSGLLQVCV RTGTETQAKF TSVELLREYI STCVPECTHP LKVGTCPKDW
                                                                          1080
       PSCGEITFRD YOMRYRDNTP LVLDSLNLNI QSGQTVGIVG RTGSGKSSLG MALFRLVEPA
                                                                          1140
       SGTIFIDEVD ICILSLEDLR TKLTVIPQDP VLFVGTVRYN LDPFESHTDE MLWQVLERTF
                                                                          1200
50
       MRDTIMKLPE KLQAEVTENG ENFSVGERQL LCVARALLRN SKIILLDEAT ASMDSKTDTL
                                                                          1260
       VQNTIKDAFK GCTVLTIAHR LNTVLNCDHV LVMENGKVIE FDKPEVLAEK PDSAFAMLLA 1320
       Seq ID NO: 514 DNA sequence
55
       Nucleic Acid Accession #: Z31560
       Coding sequence: 1-966
                             21
                                        31
60
       CACAGCGCCC GCATGTACAA CATGATGGAG ACGGAGCTGA AGCCGCCGGG CCCGCAGCAA
       ACTTCGGGGG GCGGCGGCGG CAACTCCACC GCGGCGGCGG CCGGCGGCAA CCAGAAAAAC
                                                                           120
       AGCCCGGACC GCGTCAAGCG GCCCATGAAT GCCTTCATGG TGTGGTCCCG CGGGCAGCGG
                                                                            180
       CGCAAGATGG CCCAGGAGAA CCCCAAGATG CACAACTCGG AGATCAGCAA GCGCCTGGGC
                                                                           240
       GCCGAGTGGA AACTTTTGTC GGAGACGGAG AAGCGGCCGT TCATCGACGA GGCTAAGCGG
                                                                            300
65
       CTGCGAGCGC TGCACATGAA GGAGCACCCG GATTATAAAT ACCGGCCCCG GCGGAAAACC
                                                                           360
       AAGACGCTCA TGAAGAAGGA TAAGTACACG CTGCCCGGCG GGCTGCTGGC CCCCGGCGGC
                                                                           420
       AATAGCATGG CGAGCGGGT CGGGGTGGGC GCCGGCCTGG GCGCGGGCGT GAACCAGCGC
                                                                           480
       ATGGACAGTT ACGCGCACAT GAACGGCTGG AGCAACGGCA GCTACAGCAT GATGCAGGAC
                                                                           540
       600
70
      ATGCACCGCT ACGACGTGAG CGCCCTGCAG TACAACTCCA TGACCAGCTC GCAGACCTAC ATGAACGGCT CGCCCACCTA CAGCATGTCC TACTCGCAGC AGGGCACCCC TGGCATGGCT
                                                                           660
                                                                           720
       CTTGGCTCCA TGGGTTCGGT GGTCAAGTCC GAGGCCAGCT CCAGCCCCCC TGTGGTTACC
                                                                           780
       TCTTCCTCCC ACTCCAGGGC GCCCTGCCAG GCCGGGGACC TCCGGGACAT GATCAGCATG
                                                                           840
       TATCTCCCCG GCGCCGAGGT GCCGGAACCC GCCGCCCCCA GCAGACTTCA CATGTCCCAG
                                                                           900
75
       CACTACCAGA GCGGCCCGGT GCCCGGCACG GCCATTAACG GCACACTGCC CCTCTCACAC
                                                                           960
       ATGTGAGGGC CGGACAGCGA ACTGGAGGGG GGAGAAATTT TCAAAGAAAA ACGAGGGAAA
                                                                          1020
       TGGGAGGGT GCAAAAGAGG AGAGTAAGAA ACAGCATGGA GAAAACCCGG TACGCTCAAA
                                                                          1080
       AAAAA
80
       Seq ID NO: 515 Protein sequence
       Protein Accession #: CAA83435
                  11
                             21
                                        31
                                                   41
                                                              51
85
       HSARMYNMME TELKPPGPQQ TSGGGGGNST AAAAGGNQKN SPDRVKRPMN AFMVWSRGQR
                                                                            60
       RKMAQENPKM HNSEISKRLG AEWKLLSETE KRPFIDEAKR LRALHMKEHP DYKYRPRRKT
                                                                           120
       KTLMKKDKYT LPGGLLAPGG NSMASGVGVG AGLGAGVNQR MDSYAHMNGW SNGSYSMMQD
                                                                           180
```

300

LGSMGSVVKS EASSSPPVVT SSSHSRAPCQ AGDLRDMISM YLPGAEVPEP AAPSRLHMSO HYQSGPVPGT AINGTLPLSH M Seq ID NO: 516 DNA sequence Nucleic Acid Accession #: U91618 Coding sequence: 29..541 31 10 CGGACTTGGC TTGTTAGAAG GCTGAAAGAT GATGGCAGGA ATGAAAATCC AGCTTGTATG CATGCTACTC CTGGCTTTCA GCTCCTGGAG TCTGTGCTCA GATTCAGAAG AGGAAATGAA 120 AGCATTAGAA GCAGATTTCT TGACCAATAT GCATACATCA AAGATTAGTA AAGCACATGT 180 TCCCTCTTGG AAGATGACTC TGCTAAATGT TTGCAGTCTT GTAAATAATT TGAACAGCCC 240 15 AGCTGAGGAA ACAGGAGAAG TTCATGAAGA GGAGCTTGTT GCAAGAAGGA AACTTCCTAC 300 TGCTTTAGAT GGCTTTAGCT TGGAAGCAAT GTTGACAATA TACCAGCTCC ACAAAATCTG 360 TCACAGCAGG GCTTTTCAAC ACTGGGAGTT AATCCAGGAA GATATTCTTG ATACTGGAAA 420 TGACAAAAAT GGAAAGGAAG AAGTCATAAA GAGAAAAATT CCTTATATTC TGAAACGGCA 480 GCTGTATGAG AATAAACCCA GAAGACCCTA CATACTCAAA AGAGATTCTT ACTATTACTG 540 20 AGAGAATAAA TCATTTATTT ACATGTGATT GTGATTCATC ATCCCTTAAT TAAATATCAA 600 ATTATATTG TGTGAAAATG TGACAAACAC ACTTATCTGT CTCTTCTACA ATTGTGGTTT 660 ATTGAATGTG TTTTTCTGCA CTAATAGAAA TTAGACTAAG TGTTTTCAAA TAAATCTAAA 720 TCTTCAAAAA AAAAAAAAAA AAATGGGGCC GCAATT. 25 Seq ID NO: 517 Protein sequence Protein Accession #: AAB50564 31 51 30 MMAGMKIQLV CMLLLAFSSW SLCSDSEEEM KALEADFLTN MHTSKISKAH VPSWKMTLLN 60 VCSLVNNLNS PAEETGEVHE EELVARRKLP TALDGFSLEA MLTIYQLHKI CHSRAFQHWE 120 LIQEDILDTG NDKNGKEEVI KRKIPYILKR QLYENKPRRP YILKRDSYYY Seq ID NO: 518 DNA sequence 35 Nucleic Acid Accession #: NM_006536.2 Coding sequence: 109..2940 11 21 31 41 51 40 ACCTAAAACC TTGCAAGTTC AGGAAGAAAC CATCTGCATC CATATTGAAA ACCTGACACA ATGTATGCAG CAGGCTCAGT GTGAGTGAAC TGGAGGCTTC TCTACAACAT GACCCAAAGG 120 AGCATTGCAG GTCCTATTTG CAACCTGAAG TTTGTGACTC TCCTGGTTGC CTTAAGTTCA 180 GAACTCCCAT TCCTGGGAGC TGGAGTACAG CTTCAAGACA ATGGGTATAA TGGATTGCTC ATTGCAATTA ATCCTCAGGT ACCTGAGAAT CAGAACCTCA TCTCAAACAT TAAGGAAATG 45 ATAACTGAAG CTTCATTTTA CCTATTTAAT GCTACCAAGA GAAGAGTATT TTTCAGAAAT ATAAAGATTT TAATACCTGC CACATGGAAA GCTAATAATA ACAGCAAAAT AAAACAAGAA TCATATGAAA AGGCAAATGT CATAGTGACT GACTGGTATG GGGCACATGG AGATGATCCA 480 TACACCCTAC AATACAGAGG GTGTGGAAAA GAGGGAAAAT ACATTCATTT CACACCTAAT 540 TTCCTACTGA ATGATAACTT AACAGCTGGC TACGGATCAC GAGGCCGAGT GTTTGTCCAT 600 50 GAATGGGCCC ACCTCCGTTG GGGTGTGTTC GATGAGTATA ACAATGACAA ACCTTTCTAC 660 ATAAATGGGC AAAATCAAAT TAAAGTGACA AGGTGTTCAT CTGACATCAC AGGCATTTTT 720 GTGTGTGAAA AAGGTCCTTG CCCCCAAGAA AACTGTATTA TTAGTAAGCT TTTTAAAGAA 780 GGATGCACCT TTATCTACAA TAGCACCCAA AATGCAACTG CATCAATAAT GTTCATGCAA 840 AGTTTATCTT CTGTGGTTGA ATTTTGTAAT GCAAGTACCC ACAACCAAGA AGCACCAAAC 900 55 CTACAGAACC AGATGTGCAG CCTCAGAAGT GCATGGGATG TAATCACAGA CTCTGCTGAC 960 TTTCACCACA GCTTTCCCAT GAATGGGACT GAGCTTCCAC CTCCTCCCAC ATTCTCGCTT 1020 GTACAGGCTG GTGACAAAGT GGTCTGTTTA GTGCTGGATG TGTCCAGCAA GATGGCAGAG 1080 GCTGACAGAC TCCTTCAACT ACAACAAGCC GCAGAATTTT ATTTGATGCA GATTGTTGAA 1140 ATTCATACCT TCGTGGGCAT TGCCAGTTTC GACAGCAAAG GAGAGATCAG AGCCCAGCTA 1200 60 CACCAAATTA ACAGCAATGA TGATCGAAAG TTGCTGGTTT CATATCTGCC CACCACTGTA 1260 TCAGCTAAAA CAGACATCAG CATTTGTTCA GGGCTTAAGA AAGGATTTGA GGTGGTTGAA 1320 AAACTGAATG GAAAAGCTTA TGGCTCTGTG ATGATATTAG TGACCAGCGG AGATGATAAG 1380 CTTCTTGGCA ATTGCTTACC CACTGTGCTC AGCAGTGGTT CAACAATTCA CTCCATTGCC 1440 CTGGGTTCAT CTGCAGCCCC AAATCTGGAG GAATTATCAC GTCTTACAGG AGGTTTAAAG 1500 65 TTCTTTGTTC CAGATATATC AAACTCCAAT AGCATGATTG ATGCTTTCAG TAGAATTTCC 1560 TCTGGAACTG GAGACATTTT CCAGCAACAT ATTCAGCTTG AAAGTACAGG TGAAAATGTC 1620 AAACCTCACC ATCAATTGAA AAACACAGTG ACTGTGGATA ATACTGTGGG CAACGACACT 1680 ATGTTTCTAG TTACGTGGCA GGCCAGTGGT CCTCCTGAGA TTATATTATT TGATCCTGAT 1740 GGACGAAAAT ACTACACAAA TAATTTTATC ACCAATCTAA CTTTTCGGAC AGCTAGTCTT 1800 70 TGGATTCCAG GAACAGCTAA GCCTGGGCAC TGGACTTACA CCCTGAACAA TACCCATCAT 1860 TCTCTGCAAG CCCTGAAAGT GACAGTGACC TCTCGCGCCT CCAACTCAGC TGTGCCCCCA 1920 GCCACTGTGG AAGCCTTTGT GGAAAGAGAC AGCCTCCATT TTCCTCATCC TGTGATGATT 1980 TATGCCAATG TGAAACAGGG ATTTTATCCC ATTCTTAATG CCACTGTCAC TGCCACAGTT 2040 GAGCCAGAGA CTGGAGATCC TGTTACGCTG AGACTCCTTG ATGATGGAGC AGGTGCTGAT 2100 75 GTTATAAAAA ATGATGGAAT TTACTCGAGG TATTTTTTCT CCTTTGCTGC AAATGGTAGA 2160 TATAGCTTGA AAGTGCATGT CAATCACTCT CCCAGCATAA GCACCCCAGC CCACTCTATT 2220 CCAGGGAGTC ATGCTATGTA TGTACCAGGT TACACAGCAA ACGGTAATAT TCAGATGAAT 2280 GCTCCAAGGA AATCAGTAGG CAGAAATGAG GAGGAGCGAA AGTGGGGCTT TAGCCGAGTC 2340 AGCTCAGGAG GCTCCTTTTC AGTGCTGGGA GTTCCAGCTG GCCCCCACCC TGATGTGTTT 2400 80 CCACCATGCA AAATTATTGA CCTGGAAGCT GTAAAAGTAG AAGAGGAATT GACCCTATCT 2460 TGGACAGCAC CTGGAGAGA CTTTGATCAG GGCCAGGCTA CAAGCTATGA AATAAGAATG 2520 AGTAAAAGTC TACAGAATAT CCAAGATGAC TTTAACAATG CTATTTTAGT AAATACATCA 2580 AAGCGAAATC CTCAGCAAGC TGGCATCAGG GAGATATTTA CGTTCTCACC CCAGATTTCC 2640 ACGAATGGAC CTGAACATCA GCCAAATGGA GAAACACATG AAAGCCACAG AATTTATGTT 2700 85 GCAATACGAG CAATGGATAG GAACTCCTTA CAGTCTGCTG TATCTAACAT TGCCCAGGCG 2760 CCTCTGTTTA TTCCCCCCAA TTCTGATCCT GTACCTGCCA GAGATTATCT TATATTGAAA 2820 GGAGTTTTAA CAGCAATGGG TTTGATAGGA ATCATTTGCC TTATTATAGT TGTGACACAT 2880

```
CATACTAACA AAGTCAAATT AACATCAAAA CTGTATTAAA ATGCATTGAG TTTTTGTACA
                                                                          3060
      ATACAGATAA GATTTTTACA TGGTAGATCA ACAATTCTTT TTGGGGGTAG ATTAGAAAAC
                                                                          3120
 5
       CCTTACACTT TGGCTATGAA CAAATAATAA AAATTATTCT TTAAAGTAAT GTCTTTAAAG
                                                                          3180
      GCAAAGGGAA GGGTAAAGTC GGACCAGTGT CAAGGAAAGT TTGTTTTATT GAGGTGGAAA
                                                                          3240
      AATAGCCCCA AGCAGAGAAA AGGAGGGTAG GTCTGCATTA TAACTGTCTG TGTGAAGCAA
       TCATTTAGTT ACTITGATTA ATTITTCTTT TCTCCTTATC TGTGCAGTAC AGGTTGCTTG
                                                                          3360
      TTTACATGAA GATCATGCTA TATTTTATAT ATGTAGCCCC TAATGCAAAG CTCTTTACCT
                                                                          3420
10
       CTTGCTATTT TGTTATATAT ATTTCAGATG ACATCTCCCT GCTAATGCTC AGAGATCTTT
                                                                          3480
      TTTCACTGTA AGAGGTAACC TTTAACAATA TGGGTATTAC CTTTGTCTCT TCATACCGGT
                                                                          3540
       TTTATGACAA AGGTCTATTG AATTTATTTG TNTGTAAGTT TCTACTCCCA TCAAAGCAGC
                                                                          3600
      TTTCTAAGTT TATTGCCTTG GGTTATTATG GAATGATAGT TATAGCCCCN TATAATGCCT
                                                                          3660
      TACCTAGGAA A
15
```

Seq ID NO: 519 Protein sequence
Protein Accession #: NP_006527.1

	1	11	21	31	41	51	
20	1	1	1		1	Ì	
	MTQRSIAGPI	CNLKFVTLLV	ALSSELPFLG	AGVQLQDNGY	NGLLIAINPQ	VPENQNLISN	60
	IKEMITEASF	YLFNATKRRV	FFRNIKILIP	ATWKANNNSK	IKQESYEKAN	VIVTDWYGAH	120
	GDDPYTLQYR	GCGKEGKYIH	FTPNFLLNDN	LTAGYGSRGR	VFVHEWAHLR	WGVFDEYNND	180
~~		IKVTRCSSDI					240
25	MFMQSLSSVV	EFCNASTHNQ	EAPNLQNQMC	SLRSAWDVIT	DSADPHHSFP	MNGTELPPPP	300
		VVCLVLDVSS					360
: .	RAQLHQINSN						420
		PTVLSSGSTI					480
~ ^	SRISSGTGDI	FQQHIQLEST	GENVKPHHQL	KNTVTVDNTV	GNDTMFLVTW	QASGPPEIIL	540
30		NNFITNLTFR					600
	AVPPATVEAF	VERDSLHFPH	PVMIYANVKQ	GFYPILNATV	TATVEPETGD	PVTLRLLDDG	660
		IYSRYFFSFA					720
	IQMNAPRKSV	GRNEEERKWG	FSRVSSGGSF	SVLGVPAGPH	PDVFPPCKII	DLEAVKVEEE	780
~ ~		DFDQGQATSY					840
35		QPNGETHESH				NSDPVPARDY	900
	LILKGVLTAM	GLIGIICLII	VVTHHTLSRK	KRADKKENGT	Κ̈́ГГ		

Seq ID NO: 520 DNA sequence Nucleic Acid Accession #: NM_000228.1 Coding sequence: 82..3600

40

31 41 51 GCTTTCAGGC GATCTGGAGA AAGAACGGCA GAACACACAG CAAGGAAAGG TCCTTTCTGG 45 GGATCACCCC ATTGGCTGAA GATGAGACCA TTCTTCCTCT TGTGTTTTGC CCTGCCTGGC CTCCTGCATG CCCAACAAGC CTGCTCCCGT GGGGCCTGCT ATCCACCTGT TGGGGACCTG CTTGTTGGGA GGACCCGGTT TCTCCGAGCT TCATCTACCT GTGGACTGAC CAAGCCTGAG ACCTACTGCA CCCAGTATGG CGAGTGGCAG ATGAAATGCT GCAAGTGTGA CTCCAGGCAG 300 CCTCACAACT ACTACAGTCA CCGAGTAGAG AATGTGGCTT CATCCTCCGG CCCCATGCGC 360 50 TGGTGGCAGT CCCAGAATGA TGTGAACCCT GTCTCTCTGC AGCTGGACCT GGACAGGAGA 420 TTCCAGCTTC AAGAAGTCAT GATGGAGTTC CAGGGGCCCA TGCCCGCCGG CATGCTGATT 480 GAGCGCTCCT CAGACTTCGG TAAGACCTGG CGAGTGTACC AGTACCTGGC TGCCGACTGC 540 ACCTCCACCT TCCCTCGGGT CCGCCAGGGT CGGCCTCAGA GCTGGCAGGA TGTTCGGTGC 600 CAGTCCCTGC CTCAGAGGCC TAATGCACGC CTAAATGGGG GGAAGGTCCA ACTTAACCTT 660 55 ATGGATTTAG TGTCTGGGAT TCCAGCAACT CAAAGTCAAA AAATTCAAGA GGTGGGGGAG 720 ATCACAAACT TGAGAGTCAA TTTCACCAGG CTGGCCCCTG TGCCCCAAAG GGGCTACCAC 780 CCTCCCAGCG CCTACTATGC TGTGTCCCAG CTCCGTCTGC AGGGGAGCTG CTTCTGTCAC 840 GGCCATGCTG ATCGCTGCGC ACCCAAGCCT GGGGCCTCTG CAGGCCCCTC CACCGCTGTG 900 CAGGTCCACG ATGTCTGTGT CTGCCAGCAC AACACTGCCG GCCCAAATTG TGAGCGCTGT 960 60 GCACCCTTCT ACAACAACCG GCCCTGGAGA CCGGCGGAGG GCCAGGACGC CCATGAATGC 1020 CAAAGGTGCG ACTGCAATGG GCACTCAGAG ACATGTCACT TTGACCCCGC TGTGTTTGCC 1080 GCCAGCCAGG GGGCATATGG AGGTGTGTGT GACAATTGCC GGGACCACAC CGAAGGCAAG 1140 AACTGTGAGC GGTGTCAGCT GCACTATTTC CGGAACCGGC GCCCGGGAGC TTCCATTCAG 1200 GAGACCTGCA TCTCCTGCGA GTGTGATCCG GATGGGGCAG TGCCAGGGGC TCCCTGTGAC 1260 65 CCAGTGACCG GGCAGTGTGT GTGCAAGGAG CATGTGCAGG GAGAGCGCTG TGACCTATGC 1320 AAGCCGGGCT TCACTGGACT CACCTACGCC AACCCGCAGG GCTGCCACCG CTGTGACTGC 1380 AACATCCTGG GGTCCCGGAG GGACATGCCG TGTGACGAGG AGAGTGGGCG CTGCCTTTGT 1440 1500 CTGCCCAACG TGGTGGGTCC CAAATGTGAC CAGTGTGCTC CCTACCACTG GAAGCTGGCC AGTGGCCAGG GCTGTGAACC GTGTGCCTGC GACCCGCACA ACTCCCCTCA GCCCACAGTG 1560 70 CAACCAGTTC ACAGGGCAGT GCCCTGTCGG GAAGGCTTTG GTGGCCTGAT GTGCAGCGCT 1620 GCAGCCATCC GCCAGTGTCC AGACCGGACC TATGGAGACG TGGCCACAGG ATGCCGAGCC 1680 1740 TGTGACTGTG ATTTCCGGGG AACAGAGGCC CCGGGCTGCG ACAAGGCATC AGGCCGCTGC CTCTGCCGCC CTGGCTTGAC CGGGCCCCGC TGTGACCAGT GCCAGCGAGG CTACTGCAAT 1800 CGCTACCCGG TGTGCGTGGC CTGCCACCCT TGCTTCCAGA CCTATGATGC GGACCTCCGG 75 GAGCAGGCCC TGCGCTTTGG TAGACTCCGC AATGCCACCG CCAGCCTGTG GTCAGGGCCT 1920 GGGCTGGAGG ACCGTGGCCT GGCCTCCCGG ATCCTAGATG CAAAGAGTAA GATTGAGCAG ATCCGAGCAG TTCTCAGCAG CCCCGCAGTC ACAGAGCAGG AGGTGGCTCA GGTGGCCAGT 2040 GCCATCCTCT CCCTCAGGCG AACTCTCCAG GGCCTGCAGC TGGATCTGCC CCTGGAGGAG 2100 GAGACGTTGT CCCTTCCGAG AGACCTGGAG AGTCTTGACA GAAGCTTCAA TGGTCTCCTT 2160 80 ACTATGTATC AGAGGAAGAG GGAGCAGTTT GAAAAAATAA GCAGTGCTGA TCCTTCAGGA 2220 GCCTTCCGGA TGCTGAGCAC AGCCTACGAG CAGTCAGCCC AGGCTGCTCA GCAGGTCTCC 2280 GACAGCTCGC GCCTTTTGGA CCAGCTCAGG GACAGCCGGA GAGAGGCAGA GAGGCTGGTG 2340 CGGCAGGCGG GAGGAGGAGG AGGCACCGGC AGCCCCAAGC TTGTGGCCCT GAGGCTGGAG 2400 ATGTCTTCGT TGCCTGACCT GACACCCACC TTCAACAAGC TCTGTGGCAA CTCCAGGCAG 2460 85 ATGGCTTGCA CCCCAATATC ATGCCCTGGT GAGCTATGTC CCCAAGACAA TGGCACAGCC 2520 TGTGGCTCCC GCTGCAGGGG TGTCCTTCCC AGGGCCGGTG GGGCCTTCTT GATGGCGGGG 2580

CAGGTGGCTG AGCAGCTGCG GGGCTTCAAT GCCCAGCTCC AGCGGACCAG GCAGATGATT

2640

```
AGGGCAGCCG AGGAATCTGC CTCACAGATT CAATCCAGTG CCCAGCGCTT GGAGACCCAG
                                                                          2700
       GTGAGCGCCA GCCGCTCCCA GATGGAGGAA GATGTCAGAC GCACACGGCT CCTAATCCAG
                                                                          2760
       CAGGTCCGGG ACTTCCTAAC AGACCCCGAC ACTGATGCAG CCACTATCCA GGAGGTCAGC
                                                                           2820
       GAGGCCGTGC TGGCCCTGTG GCTGCCCACA GACTCAGCTA CTGTTCTGCA GAAGATGAAT
                                                                          2880
. 5
       GAGATCCAGG CCATTGCAGC CAGGCTCCCC AACGTGGACT TGGTGCTGTC CCAGACCAAG
                                                                           2940
       3000
       CATGCAGTGG AGGGCCAGGT GGAAGATGTG GTTGGGAACC TGCGGCAGGG GACAGTGGCA
                                                                           3060
       CTGCAGGAAG CTCAGGACAC CATGCAAGGC ACCAGCCGCT CCCTTCGGCT TATCCAGGAC
                                                                          3120
       AGGGTTGCTG AGGTTCAGCA GGTACTGCGG CCAGCAGAAA AGCTGGTGAC AAGCATGACC
                                                                          3180
       AAGCAGCTGG GTGACTTCTG GACACGGATG GAGGAGCTCC GCCACCAAGC CCGGCAGCAG
10
                                                                          3240
       GGGGCAGAGG CAGTCCAGGC CCAGCAGCTT GCGGAAGGTG CCAGCGAGCA GGCATTGAGT
                                                                          3300
       GCCCAAGAGG GATTTGAGAG AATAAAACAA AAGTATGCTG AGTTGAAGGA CCGGTTGGGT
       CAGAGTTCCA TGCTGGGTGA GCAGGGTGCC CGGATCCAGA GTGTGAAGAC AGAGGCAGAG
       GAGCTGTTTG GGGAGACCAT GGAGATGATG GACAGGATGA AAGACATGGA GTTGGAGCTG
15
       CTGCGGGGCA GCCAGGCCAT CATGCTGCGC TCGGCGGACC TGACAGGACT GGAGAAGCGT
                                                                          3540
       GTGGAGCAGA TCCGTGACCA CATCAATGGG CGCGTGCTCT ACTATGCCAC CTGCAAGTGA
       TGCTACAGCT TCCAGCCCGT TGCCCCACTC ATCTGCCGCC TTTGCTTTTG GTTGGGGGCA
       GATTGGGTTG GAATGCTTTC CATCTCCAGG AGACTTTCAT GCAGCCTAAA GTACAGCCTG
                                                                           3720
       GACCACCCCT GGTGTGTAGC TAGTAAGATT ACCCTGAGCT GCAGCTGAGC CTGAGCCAAT
                                                                          3780
20
       GGGACAGTTA CACTTGACAG ACAAAGATGG TGGAGATTGG CATGCCATTG AAACTAAGAG
                                                                          3840
       CTCTCAAGTC AAGGAAGCTG GGCTGGGCAG TATCCCCCGC CTTTAGTTCT CCACTGGGGA
                                                                          3900
       GGAATCCTGG ACCAAGCACA AAAACTTAAC AAAAGTGATG TAAAAATGAA AAGCCAAATA
       AAAATCTTTG G
25
       Seq ID NO: 521 Protein sequence
       Protein Accession #: NP_000219.1
                             21
                                        31
                                                   41
                                                              51
30
       MRPFFLLCFA LPGLLHAQQA CSRGACYPPV GDLLVGRTRF LRASSTCGLT KPETYCTQYG
       EWOMKCCKCD SROPHNYYSH RVENVASSSG PMRWWQSQND VNPVSLQLDL DRRFQLQEVM
                                                                           120
       MEFQGPMPAG MLIERSSDFG KTWRVYQYLA ADCTSTFPRV RQGRPQSWQD VRCQSLPQRP
       NARLNGGKVQ LNLMDLVSGI PATQSQKIQE VGEITNLRVN FTRLAPVPQR GYHPPSAYYA
       VSQLRLQGSC FCHGHADRCA PKPGASAGPS TAVQVHDVCV CQHNTAGPNC ERCAPFYNNR
35
       PWRPAEGQDA HECORCDCNG HSETCHFDPA VFAASQGAYG GVCDNCRDHT EGKNCERCQL
                                                                           360
       HYFRNRRPGA SIQETCISCE CDPDGAVPGA PCDPVTGQCV CKEHVQGERC DLCKPGFTGL
       TYANPOGCHR CDCNILGSRR DMPCDEESGR CLCLPNVVGP KCDQCAPYHW KLASGQGCEP
                                                                           480
       CACDPHNSPQ PTVQPVHRAV PCREGFGGLM CSAAAIRQCP DRTYGDVATG CRACDCDFRG
                                                                           540
       TEGPGCDKAS GRCLCRPGLT GPRCDQCQRG YCNRYPVCVA CHPCFQTYDA DLREQALRFG
                                                                           600
40
       RLRNATASLW SGPGLEDRGL ASRILDAKSK IEQIRAVLSS PAVTEQEVAQ VASAILSLRR
                                                                           660
       TLOGLOLDLP LEEETLSLPR DLESLDRSFN GLLTMYORKR EOFEKISSAD PSGAFRMLST
                                                                           720
       AYEQSAQAAQ QVSDSSRLLD QLRDSRREAE RLVRQAGGGG GTGSPKLVAL RLEMSSLPDL
                                                                           780
       TPTFNKLCGN SROMACTPIS CPGELCPODN GTACGSRCRG VLPRAGGAFL MAGOVAEOLR
                                                                           840
       GFNAQLQRTR QMIRAAEESA SQIQSSAQRL ETQVSASRSQ MEEDVRRTRL LIQQVRDFLT
                                                                           900
45
       DPDTDAATIQ EVSEAVLALW LPTDSATVLQ KMNEIQAIAA RLPNVDLVLS QTKQDIARAR
                                                                           960
       RLQAEAEEAR SRAHAVEGQV EDVVGNLRQG TVALQEAQDT MQGTSRSLRL IQDRVAEVQQ
                                                                          -1020
       VLRPAEKLVT SMTKQLGDFW TRMEELRHQA RQQGAEAVQA QQLAEGASEQ ALSAQEGFER
                                                                          1080
       IKQKYAELKD RLGQSSMLGE QGARIQSVKT EAEELFGETM EMMDRMKDME LELLRGSQAI
                                                                          1140
       MLRSADLTGL EKRVEQIRDH INGRVLYYAT CK
50
       Seq ID NO: 522 DNA sequence
       Nucleic Acid Accession #: NM_001944.1
       Coding sequence: 84..3083
55
                                        31
       TTTTCTTAGA CATTAACTGC AGACGGCTGG CAGGATAGAA GCAGCGGCTC ACTTGGACTT
       TTTCACCAGG GAAATCAGAG ACAATGATGG GGCTCTTCCC CAGAACTACA GGGGCTCTGG
       CCATCTTCGT GGTGGTCATA TTGGTTCATG GAGAATTGCG AATAGAGACT AAAGGTCAAT
                                                                           180
60
       ATGATGAAGA AGAGATGACT ATGCAACAAG CTAAAAGAAG GCAAAAACGT GAATGGGTGA
                                                                           240
       AATTTGCCAA ACCCTGCAGA GAAGGAGAAG ATAACTCAAA AAGAAACCCA ATTGCCAAGA
                                                                           300
       TTACTTCAGA TTACCAAGCA ACCCAGAAAA TCACCTACCG AATCTCTGGA GTGGGAATCG
                                                                           360
       ATCAGCCGCC TTTTGGAATC TTTGTTGTTG ACAAAAACAC TGGAGATATT AACATAACAG
                                                                           420
       CTATAGTCGA CCGGGAGGAA ACTCCAAGCT TCCTGATCAC ATGTCGGGCT CTAAATGCCC
                                                                           480
65
       AAGGACTAGA TGTAGAGAAA CCACTTATAC TAACGGTTAA AATTTTGGAT ATTAATGATA
                                                                           540
       ATCCTCCAGT ATTITCACAA CAAATTITCA TGGGTGAAAT TGAAGAAAAT AGTGCCTCAA
ACTCACTGGT GATGATACTA AATGCCACAG ATGCAGATGA ACCAAACCAC TTGAATTCTA
                                                                           600
                                                                           660
       AAATTGCCTT CAAAATTGTC TCTCAGGAAC CAGCAGGCAC ACCCATGTTC CTCCTAAGCA
                                                                           720
       GAAACACTGG GGAAGTCCGT ACTTTGACCA ATTCTCTTGA CCGAGAGCAA GCTAGCAGCT
                                                                           780
70
       ATCGTCTGGT TGTGAGTGGT GCAGACAAAG ATGGAGAAGG ACTATCAACT CAATGTGAAT
                                                                           840
       GTAATATTAA AGTGAAAGAT GTCAACGATA ACTTCCCAAT GTTTAGAGAC TCTCAGTATT
                                                                           900
       CAGCACGTAT TGAAGAAAAT ATTTTAAGTT CTGAATTACT TCGATTTCAA GTAACAGATT
                                                                           960
       TGGATGAAGA GTACACAGAT AATTGGCTTG CAGTATATTT CTTTACCTCT GGGAATGAAG
                                                                          1020
       GAAATTGGTT TGAAATACAA ACTGATCCTA GAACTAATGA AGGCATCCTG AAAGTGGTGA
                                                                          1080
75
       AGGCTCTAGA TTATGAACAA CTACAAAGCG TGAAACTTAG TATTGCTGTC AAAAACAAAG
                                                                          1140
       CTGAATTTCA CCAATCAGTT ATCTCTCGAT ACCGAGTTCA GTCAACCCCA GTCACAATTC
                                                                          1200
       AGGTAATAAA TGTAAGAGAA GGAATTGCAT TCCGTCCTGC TTCCAAGACA TTTACTGTGC
                                                                          1260
       AAAAAGGCAT AAGTAGCAAA AAATTGGTGG ATTATATCCT GGGAACATAT CAAGCCATCG
                                                                          1320
       ATGAGGACAC TAACAAAGCT GCCTCAAATG TCAAATATGT CATGGGACGT AACGATGGTG
                                                                          1380
80
       GATACCTAAT GATTGATTCA AAAACTGCTG AAATCAAATT TGTCAAAAAT ATGAACCGAG
                                                                          1440
       ATTCTACTTT CATAGTTAAC AAAACAATCA CAGCTGAGGT TCTGGCCATA GATGAATACA
                                                                          1500
       CGGGTAAAAC TTCTACAGGC ACGGTATATG TTAGAGTACC CGATTTCAAT GACAATTGTC.
                                                                          1560
       CAACAGCTGT CCTCGAAAAA GATGCAGTTT GCAGTTCTTC ACCTTCCGTG GTTGTCTCCG
                                                                          1620
       CTAGAACACT GAATAATAGA TACACTGGCC CCTATACATT TGCACTGGAA GATCAACCTG
85
       TAAAGTTGCC TGCCGTATGG AGTATCACAA CCCTCAATGC TACCTCGGCC CTCCTCAGAG
                                                                          1740
       CCCAGGAACA GATACCTCCT GGAGTATACC ACATCTCCCT GGTACTTACA GACAGTCAGA
                                                                          1800
       ACAATCGGTG TGAGATGCCA CGCAGCTTGA CACTGGAAGT CTGTCAGTGT GACAACAGGG
                                                                         1860
```

```
GCATCTGTGG AACTTCTTAC CCAACCACAA GCCCTGGGAC CAGGTATGGC AGGCCGCACT 1920
      CAGGGAGGET GGGGCCTGCC GCCATCGGCC TGCTGCTCCT TGGTCTCCTG CTGCTGCTGT
                                                                          1980
      TGGCCCCCCT TCTGCTGTTG ACCTGTGACT GTGGGGCAGG TTCTACTGGG GGAGTGACAG
                                                                          2040
      GTGGTTTTAT CCCAGTTCCT GATGGCTCAG AAGGAACAAT TCATCAGTGG GGAATTGAAG
                                                                          2100
 5
      GAGCCCATCC TGAAGACAAG GAAATCACAA ATATTTGTGT GCCTCCTGTA ACAGCCAATG
                                                                          2160
      GAGCCGATTT CATGGAAAGT TCTGAAGTTT GTACAAATAC GTATGCCAGA GGCACAGCGG
                                                                          2220
      TGGAAGGCAC TTCAGGAATG GAAATGACCA CTAAGCTTGG AGCAGCCACT GAATCTGGAG
                                                                          2280
      GTGCTGCAGG CTTTGCAACA GGGACAGTGT CAGGAGCTGC TTCAGGATTC GGAGCAGCCA
                                                                          2340
       CTGGAGTTGG CATCTGTTCC TCAGGGCAGT CTGGAACCAT GAGAACAAGG CATTCCACTG
                                                                          2400
      GAGGAACCAA TAAGGACTAC GCTGATGGGG CGATAAGCAT GAATTTTCTG GACTCCTACT
10
       TTTCTCAGAA AGCATTTGCC TGTGCGGAGG AAGACGATGG CCAGGAAGCA AATGACTGCT
                                                                          2520
      TGTTGATCTA TGATAATGAA GGCGCAGATG CCACTGGTTC TCCTGTGGGC TCCGTGGGTT
                                                                          2580
      GTTGCAGTTT TATTGCTGAT GACCTGGATG ACAGCTTCTT GGACTCACTT GGACCCAAAT
                                                                          2640
      TTAAAAAACT TGCAGAGATA AGCCTTGGTG TTGATGGTGA AGGCAAAGAA GTTCAGCCAC
                                                                          2700
      CCTCTAAAGA CAGCGGTTAT GGGATTGAAT CCTGTGGCCA TCCCATAGAA GTCCAGCAGA
15
                                                                          2760
      CAGGATTTGT TAAGTGCCAG ACTTTGTCAG GAAGTCAAGG AGCTTCTGCT TTGTCCGCCT
                                                                          2820
      CTGGGTCTGT CCAGCCAGCT GTTTCCATCC CTGACCCTCT GCAGCATGGT AACTATTTAG
                                                                          2880
      TAACGGAGAC TTACTCGGCT TCTGGTTCCC TCGTGCAACC TTCCACTGCA GGCTTTGATC
                                                                          2940
       CACTTCTCAC ACAAAATGTG ATAGTGACAG AAAGGGTGAT CTGTCCCATT TCCAGTGTTC
                                                                          3000
20
       CTGGCAACCT AGCTGGCCCA ACGCAGCTAC GAGGGTCACA TACTATGCTC TGTACAGAGG
                                                                          3060
       ATCCTTGCTC CCGTCTAATA TGACCAGAAT GAGCTGGAAT ACCACACTGA CCAAATCTGG
                                                                          3120
      ATCTTTGGAC TAAAGTATTC AAAATAGCAT AGCAAAGCTC ACTGTATTGG GCTAATAATT
                                                                          3180
       TGGCACTTAT TAGCTTCTCT CATAAACTGA TCACGATTAT AAATTAAATG TTTGGGTTCA
                                                                          3240
       TACCCCAAAA GCAATATGTT GTCACTCCTA ATTCTCAAGT ACTATTCAAA TTGTAGTAAA
                                                                          3300
25
       TCTTAAAGTT TTTCAAAACC CTAAAATCAT ATTCGC
       Seg ID NO: 523 Protein seguence
       Protein Accession #: NP_001935.1
30
                                                              51
                  11
                             21
                                        31
                                                   41
       MMGLFPRTTG ALAIFVVVIL VHGELRIETK GQYDEEEMTM QQAKRRQKRE WVKFAKPCRE
                                                                             60
       GEDNSKRNPI AKITSDYQAT QKITYRISGV GIDQPPFGIP VVDKNTGDIN ITAIVDREET
                                                                            120
       PSFLITCRAL NAQGLDVEKP LILTVKILDI NDNPPVFSQQ IFMGEIEENS ASNSLVMILN
                                                                            180
35
       ATDADEPNHL NSKIAFKIVS QEPAGTPMFL LSRNTGEVRT LTNSLDREQA SSYRLVVSGA
                                                                            240
       DKDGEGLSTQ CECNIKVKDV NDNFPMFRDS QYSARIEENI LSSELLRFQV TDLDEEYTDN
                                                                            300
       WLAVYFFTSG NEGNWFEIQT DPRTNEGILK VVKALDYEQL QSVKLSIAVK NKAEFHQSVI
                                                                            360
       SRYRVOSTPV TIOVINVREG IAFRPASKTF TVQKGISSKK LVDYILGTYQ AIDEDTNKAA
                                                                            420
       SNVKYVMGRN DGGYLMIDSK TAEIKFVKNM NRDSTFIVNK TITAEVLAID EYTGKTSTGT
                                                                            480
40
       VYVRVPDFND NCPTAVLEKD AVCSSSPSVV VSARTLNNRY TGPYTFALED QPVKLPAVWS
                                                                            540
       ITTLNATSAL LRAQEQIPPG VYHISLVLTD SQNNRCEMPR SLTLEVCQCD NRGICGTSYP
                                                                            600
       TTSPGTRYGR PHSGRLGPAA IGLLLLGLLL LLLAPLLLLT CDCGAGSTGG VTGGFIPVPD
                                                                            660
       GSEGTIHOWG IEGAHPEDKE ITNICVPPVT ANGADFMESS EVCTNTYARG TAVEGTSGME
                                                                            720
       MTTKLGAATE SGGAAGFATG TVSGAASGFG AATGVGICSS GQSGTMRTRH STGGTNKDYA
                                                                            780
45
       DGAISMNFLD SYFSOKAFAC AEEDDGQEAN DCLLIYDNEG ADATGSPVGS VGCCSFIADD
                                                                            840
       LDDSFLDSLG PKFKKLAEIS LGVDGEGKEV QPPSKDSGYG IESCGHPIEV QQTGFVKCQT
                                                                            900
       LSGSQGASAL SASGSVQPAV SIPDPLQHGN YLVTETYSAS GSLVQPSTAG FDPLLTQNVI
       VTERVICPIS SVPGNLAGPT QLRGSHTMLC TEDPCSRLI
50
       Seq ID NO: 524 DNA sequence
       Nucleic Acid Accession #: XM 058069.2
       Coding sequence: 1..1413
                                                               51
                                                    41
                             21
                                        31
                  11
55
       ATGAAGTTTC TTCTAATACT GCTCCTGCAG GCCACTGCTT CTGGAGCTCT TCCCCTGAAC
                                                                             60
       AGCTCTACAA GCCTGGAAAA AAATAATGTG CTATTTGGTG AAAGATACTT AGAAAAATTT
                                                                            120
       TATGGCCTTG AGATAAACAA ACTTCCAGTG ACAAAAATGA AATATAGTGG AAACTTAATG
                                                                            180
       AAGGAAAAA TCCAAGAAAT GCAGCACTTC TTGGGTCTGA AAGTGACCGG GCAACTGGAC
                                                                            240
60
       ACATCTACCC TGGAGATGAT GCACGCACCT CGATGTGGAG TCCCCGATGT CCATCATTTC
                                                                            300
                                                                            360
       AGGGAAATGC CAGGGGGGCC.CGTATGGAGG AAACATTATA TCACCTACAG AATCAATAAT
       TACACACCTG ACATGAACCG TGAGGATGTT GACTACGCAA TCCGGAAAGC TTTCCAAGTA
                                                                            420
       TGGAGTAATG TTACCCCCTT GAAATTCAGC AAGATTAACA CAGGCATGGC TGACATTTTG
                                                                            480
       GTGGTTTTTG CCCGTGGAGC TCATGGAGAC TTCCATGCTT TTGATGGCAA AGGTGGAATC
                                                                            540
65
       CTAGCCCATG CTTTTGGACC TGGATCTGGC ATTGGAGGGG ATGCACATTT CGATGAGGAC
                                                                            600
       GAATTCTGGA CTACACATTC AGGAGGCACA AACTTGTTCC TCACTGCTGT TCACGAGATT
                                                                            660
       GGCCATTCCT TAGGTCTTGG CCATTCTAGT GATCCAAAGG CCGTAATGTT CCCCACCTAC
                                                                            720
       AAATATGTTG ACATCAACAC ATTTCGCCTC TCTGCTGATG ACATACGTGG CATTCAGTCC
                                                                            780
       CTGTATGGAG ACCCAAAAGA GAACCAACGC TTGCCAAATC CTGACAATTC AGAACCAGCT
                                                                            840
70
       CTCTGTGACC CCAATTGAG TTTTGATGCT GTCACTACCG TGGGAAATAA GATCTTTTTC
                                                                            900
       TTCAAAGACA GGTTCTTCTG GCTGAAGGTT TCTGAGAGAC CAAAGACCAG TGTTAATTTA
                                                                            960
       ATTTCTTCCT TATGGCCAAC CTTGCCATCT GGCATTGAAG CTGCTTATGA AATTGAAGCC
                                                                           1020
       AGAAATCAAG TTTTTCTTTT TAAAGATGAC AAATACTGGT TAATTAGCAA TTTAAGACCA
                                                                           1080
       GAGCCAAATT ATCCCAAGAG CATACATTCT TTTGGTTTTC CTAACTTTGT GAAAAAAATT
                                                                           1140
75
       GATGCAGCTG TTTTTAACCC ACGTTTTTAT AGGACCTACT TCTTTGTAGA TAACCAGTAT
                                                                           1200
       TGGAGGTATG ATGAAAGGAG ACAGATGATG GACCCTGGTT ATCCCAAACT GATTACCAAG
                                                                           1260
       AACTTCCAAG GAATCGGGCC TAAAATTGAT GCAGTCTTCT ACTCTAAAAA CAAATACTAC
                                                                           1320
       TATTTCTTCC AAGGATCTAA CCAATTTGAA TATGACTTCC TACTCCAACG TATCACCAAA
                                                                           1380
       ACACTGAAAA GCAATAGCTG GTTTGGTTGT TGA
80
       Seq ID NO: 525 Protein sequence
       Protein Accession #: P39900
                             21
                                        31
                                                    41
85
       MKFLLILLLQ ATASGALPLN SSTSLEKNNV LFGERYLEKF YGLEINKLPV TKMKYSGNLM
        KEKIQEMQHP LGLKVTGQLD TSTLEMMHAP RCGVPDVHHF REMPGGPVWR KHYITYRINN
```

WO 02/086443 YTPDMNREDV DYAIRKAFQV WSNVTPLKFS KINTGMADIL VVFARGAHGD FHAFDGKGGI 180 LAHAFGPGSG IGGDAHFDED EFWTTHSGGT NLFLTAVHEI GHSLGLGHSS DPKAVMFPTY 240 KYVDINTFRL SADDIRGIQS LYGDPKENQR LPNPDNSEPA LCDPNLSFDA VTTVGNKIFF 300 PKDRFFWLKV SERPKTSVNL ISSLWPTLPS GIEAAYEIEA RNQVFLFKDD KYWLISNLRP 360 EPNYPKSIHS FGFPNPVKKI DAAVFNPRFY RTYFFVDNQY WRYDERROMM DPGYPKLITK 5 420 NFQGIGPKID AVFYSKNKYY YFFQGSNQFE YDFLLQRITK TLKSNSWFGC Seq ID NO: 526 DNA sequence Nucleic Acid Accession #: NM_024423.1 10 Coding sequence: 64..2590 41 51 21 31 11 GGCAGGTCTC GCTCTCGGCA CCCTCCCGGC GCCCGCGTTC TCCTGGCCCT GCCCGGCATC 15 CCGATGGCCG CCGCTGGGCC CCGGCGCTCC GTGCGCGGAG CCGTCTGCCT GCATCTGCTG CTGACCCTCG TGATCTTCAG TCGTGATGGT GAAGCCTGCA AAAAGGTGAT ACTTAATGTA CCTTCTAAAC TAGAGGCAGA CAAAATAATT GGCAGAGTTA ATTTGGAAGA GTGCTTCAGG TCTGCAGACC TCATCCGGTC AAGTGATCCT GATTTCAGAG TTCTAAATGA TGGGTCAGTG 300 TACACAGCCA GGGCTGTTGC GCTGTCTGAT AAGAAAAGAT CATTTACCAT ATGGCTTTCT 360 GACAAAAGGA AACAGACACA GAAAGAGGTT ACTGTGCTGC TAGAACATCA GAAGAAGGTA 20 420 TCGAAGACAA GACACACTAG AGAAACTGTT CTCAGGCGTG CCAAGAGGAG ATGGGCACCT 480 ATTCCTTGCT CTATGCAAGA GAATTCCTTG GGCCCTTTCC CATTGTTTCT TCAACAAGTT 540 GAATCTGATG CAGCACAGAA CTATACTGTC TTCTACTCAA TAAGTGGACG TGGAGTTGAT 600 AAAGAACCTT TAAATTTGTT TTATATAGAA AGAGACACTG GAAATCTATT TTGCACTCGG 660 25 CCTGTGGATC GTGAAGAATA TGATGTTTTT GATTTGATTG CTTATGCGTC AACTGCAGAT 720 GGATATTCAG CAGATCTGCC CCTCCCACTA CCCATCAGGG TAGAGGATGA AAATGACAAC 780 CACCCTGTTT TCACAGAAGC AATTTATAAT TTTGAAGTTT TGGAAAGTAG TAGACCTGGT 840 ACTACAGTGG GGGTGGTTTG TGCCACAGAC AGAGATGAAC CGGACACAAT GCATACGCGC 900 CTGAAATACA GCATTTTGCA GCAGACACCA AGGTCACCTG GGCTCTTTTC TGTGCATCCC 960 30 AGCACAGGCG TAATCACCAC AGTCTCTCAT TATTTGGACA GAGAGGTTGT AGACAAGTAC 1020 TCATTGATAA TGAAAGTACA AGACATGGAT GGCCAGTTTT TTGGATTGAT AGGCACATCA 1080 ACTTGTATCA TAACAGTAAC AGATTCAAAT GATAATGCAC CCACTTCAG ACAAAATGCT 1140 TATGAAGCAT TTGTAGAGGA AAATGCATTC AATGTGGAAA TCTTACGAAT ACCTATAGAA 1200 GATAAGGATT TAATTAACAC TGCCAATTGG AGAGTCAATT TTACCATTTT AAAGGGAAAT 35 GAAAATGGAC ATTTCAAAAT CAGCACAGAC AAAGAAACTA ATGAAGGTGT TCTTTCTGTT 1320 GTAAAGCCAC TGAATTATGA AGAAAACCGT CAAGTGAACC TGGAAATTGG AGTAAACAAT GAAGCGCCAT TTGCTAGAGA TATTCCCAGA GTGACAGCCT TGAACAGAGC CTTGGTTACA GTTCATGTGA GGGATCTGGA TGAGGGGCCT GAATGCACTC CTGCAGCCCA ATATGTGCGG ATTAAGAAA ACTTAGCAGT GGGGTCAAAG ATCAACGGCT ATAAGGCATA TGACCCCGAA 1560 40 AATAGAAATG GCAATGGTTT AAGGTACAAA AAATTGCATG ATCCTAAAGG TTGGATCACC ATTGATGAAA TTTCAGGGTC AATCATAACT TCCAAAATCC TGGATAGGGA GGTTGAAACT 1680 CCCAAAAATG AGTTGTATAA TATTACAGTC CTGGCAATAG ACAAAGATGA TAGATCATGT 1740 ACTGGAACAC TTGCTGTGAA CATTGAAGAT GTAAATGATA ATCCACCAGA AATACTTCAA 1800 GAATATGTAG TCATTTGCAA ACCAAAAATG GGGTATACCG ACATTTTAGC TGTTGATCCT 1860 45 GATGAACCTG TCCATGGAGC TCCATTTTAT TTCAGTTTGC CCAATACTTC TCCAGAAATC 1920 AGTAGACTGT GGAGCCTCAC CAAAGTTAAT GATACAGCTG CCCGTCTTTC ATATCAGAAA 1980 AATGCTGGAT TTCAAGAATA TACCATTCCT ATTACTGTAA AAGACAGGGC CGGCCAAGCT 2040 GCAACAAAAT TATTGAGAGT TAATCTGTGT GAATGTACTC ATCCAACTCA GTGTCGTGCG 2100 ACTTCAAGGA GTACAGGAGT AATACTTGGA AAATGGGCAA TCCTTGCAAT ATTACTGGGT 2160 50 ATAGCACTGC TCTTTCTGT ATTGCTAACT TTAGTATGTG GAGTTTTTGG TGCAACTAAA 2220 GGGAAACGTT TTCCTGAAGA TTTAGCACAG CAAAACTTAA TTATATCAAA CACAGAAGCA 2280 CCTGGAGACG ATAGAGTGTG CTCTGCCAAT GGATTTATGA CCCAAACTAC CAACAACTCT 2340 AGCCAAGGTT TTTGTGGTAC TATGGGATCA GGAATGAAAA ATGGAGGGCA GGAAACCATT 2400 GANATGATGA AAGGAGGANA CCAGACCTTG GAATCCTGCC GGGGGGCTGG GCATCATCAT 2460 55 ACCCTGGACT CCTGCAGGGG AGGACACACG GAGGTGGACA ACTGCAGATA CACTTACTCG 2520 GAGTGGCACA GTTTTACTCA ACCCCGTCTC GGTGAAGAAT CCATTAGAGG ACACACTGGT 2580 TAAAAATTAA ACATAAAAGA AATTGCATCG ATGTAATCAG AATGAAGACC GCATGCCATC 2640 CCAAGATTAT GTCCTCACTT ATAACTATGA GGGAAGAGGA TCTCCAGCTG GTTCTGTGGG 2700 CTGCTGCAGT GAAAAGCAGG AAGAAGATGG CCTTGACTTT TTAAATAATT TGGAACCCAA 2760 60 ATTTATTACA TTAGCAGAAG CATGCACAAA GAGATAATGT CACAGTGCTA CAATTAGGTC 2820 TTTGTCAGAC ATTCTGGAGG TTTCCAAAAA TAATATTGŢA AAGTTCAATT TCAACATGTA TGTATATGAT GATTTTTTC TCAATTTTGA ATTATGCTAC TCACCAATTT ATATTTTAA 2940 AGCCAGTTGT TGCTTATCTT TTCCAAAAAG TGAAAAATGT TAAAACAGAC AACTGGTAAA TCTCAAACTC CAGCACTGGA ATTAAGGTCT CTAAAGCATC TGCTCTTTTT TTTTTTTACG 3060 65 GATATTTTAG TAATAAATAT GCTGGATAAA TATTAGTCCA ACAATAGCTA AGTTATGCTA 3120 ATATCACATT ATTATGTATT CACTTTAAGT GATAGTTTAA AAAATAAACA AGAAATATTG 3180 AGTATCACTA TGTGAAGAAA GTTTTGGAAA AGAAACAATG AAGACTGAAT TAAATTAAAA ATGTTGCAGC TCATAAAGAA TTGGGACTCA CCCCTACTGC ACTACCAAAT TCATTTGACT 3300 TTGGAGGCAA AATGTGTTGA AGTGCCCTAT GAAGTAGCAA TTTTCTATAG GAATATAGTT GGAAATAAAT GTGTGTGTGT ATATTATTAT TAATCAATGC AATATTTAAA ATGAAATGAG AACAAAGAGG AAAATGGTAA AAACTTGAAA TGAGGCTGGG GTATAGTTTG TCCTACAATA 70 GAAAAAAGAG AGAGCTTCCT AGGCCTGGGC TCTTAAATGC TGCATTATAA CTGAGTCTAT 3540 GAGGAAATAG TTCCTGTCCA ATTTGTGTAA TTTGTTTAAA ATTGTAAATA AATTAAACTT

TTCTGGTTTC TGTGGGAAGG AAATAGGGAA TCCAATGGAA CAGTAGCTTT GCTTTGCAGT

CTGTTTCAAG ATTTCTGCAT CCACAAGTTA GTAGCAAACT GGGGAATACT CGCTGCAGCT GGGGTTCCCT GCTTTTGGT AGCAAGGGTC CAGAGATGAG GTGTTTTTTT CGGGGAGCTA

ATAACAAAAA CATTTTAAAA CTTACCTTTA CTGAAGTTAA ATCCTCTATT GCTGTTTCTA

TTCTCTCTTA TAGTGACCAA CATCTTTTTA ATTTAGATCC AAATAACCAT GTCCTCCTAG

AGTTTAGAGG CTAGAGGGAG CTGAGGGGAG GATCTTACTG AAAGCACCCT GGGGAGATTG

ATTGTCCTTA AACCTAAGCC CCACAAACTT GACACCTGAT CAGGTCTGGG AGCTACAAAA

TTTCATTTTT CTCCTCACTG CCCTTCTTCT GAGTGGCATT GGCCTGAATC AAGGAAAGCC

AGGCCTTGTG GGCCCCCTTC TTTCGGCTTT CTGCTAAAGC AACACCTCCA GCAGAGATTC

CCTTAAGTGA CTCCAGGTTT TCCACCATCC TTCAGCGTGA ATTAATTTTT AATCAGTTTG

CTTTCTCCAG AGAAATTTTA AAATAATAGA AGAAATAGAA ATTTTGAATG TATAAAAGAA

AAAGATCAAG TTGTCATTTT AGAACAGAGG GAACTTTGGG AGAAAGCAGC CCAAGTAGGT

TATTTGTACA GTCAGAGGGC AACAGGAAGA TGCAGGCCTT CAAGGGCAAG GAGAGGCCAC

AAGGAATATG GGTGGGAGTA AAAGCAACAT CGTCTGCTTC ATACTTTTTC CTAGGCTTGG

75

80

85

3660

3780

3840

3900

3960

4020

4080

4140

4200

4260

4320

4380

4440

```
CACTGCCTTT TCCTTTCTCA GGCCAATGGC AACTGCCATT TGAGTCCGGT GAGGGATCAG
                                                                               4500
       CCAACCTCTT CTCTATGGCT CACCTTATTT GGAGTGAGAA ATCAAGGAGA CAGAGCTGAC
                                                                               4560
        TGCATGATGA GTCTGAAGGC ATTTGCAGGA TGAGCCTGAA CTGGTTGTGC AGAACAAACA
                                                                               4620
       AGGCATTCAT GGGAATTGTT GTATTCCTTC TGCAGCCCTC CTTCTGGGCA CTAAGAAGGT
                                                                               4680
       CTATGAATTA AATGCCTATC TAAAATTCTG ATTTATTCCT ACATTTTCTG TTTTCTAATT
                                                                               4740
       TGACCCTAAA ATCTATGTGT TTTAGACTTA GACTTTTTAT TGCCCCCCCC CCCTTTTTT
                                                                               4800
        TTGAGACGGA GTCTCGCTCT GACGCACAGG CTGGAGTGCA GTGGCTCCGA TCTCTGCTCA
                                                                               4860
        CTGAAAGCTC CGCCTCCCGG GTTCATGCCA TTCTCCTGCC TCAGCCTCCT GAGTAGCTGG
                                                                               4920
       GACTACAGGC GCCCACCACC ACGCCCGGCT AATTTTTTGT ATTTTTAATA GAGACGGGGT
10
        TTCACTGTGT TAGCCAGGAT GGTCTCGATC TCCTGACCTC GTGATCCGCC TGCCTCGGCC
                                                                               5040
        TCCCAAAGTG CTGGGATTAC AGGCATGACC CACCGCTCCC GGCCTTGTTT TCCGTTTAAA
        GTCGTCTTCT TTTAATGTAA TCATTTTGAA CATGTGTGAA AGTTGATCAT ACGAATTGGA
       TCAATCTTGA AATACTCAAC CAAAAGACAG TCGAGAAGCC AGGGGGAGAA AGAACTCAGG
       GCACAAAATA TIGGTCTGAG AATGGAATTC TCTGTAAGCC TAGTTGCTGA AATTTCCTGC
TGTAACCAGA AGCCAGTTTT ATCTAACGGC TACTGAAACA CCCACTGTGT TTTGCTCACT
                                                                               5280
15
                                                                               5340
       CCCACTCACC GATCAAAACC TGCTACCTCC CCAAGACTTT ACTAGTGCCG ATAAACTTTC
TCAAAGAGCA ACCAGTATCA CTTCCCTGTT TATAAAACCT CTAACCATCT CTTTGTTCTT
                                                                               5400
                                                                               5460
        TGAACATGCT GAAAACCACC TGGTCTGCAT GTATGCCCGA ATTTGTAATT CTTTTCTCTC
                                                                               5520
       AAATGAAAAT TTAATTTTAG GGATTCATTT CTATATTTTC ACATATGTAG TATTATTATT
                                                                               5580
        TCCTTATATG TGTAAGGTGA AATTTATGGT ATTTGAGTGT GCAAGAAAAT ATATTTTTAA
20
                                                                               5640
        AGCTTTCATT TTTCCCCCAG TGAATGATTT AGAATTTTTT ATGTAAATAT ACAGAATGTT
                                                                               5700
       TTTTCTTACT TTTATAAGGA AGCAGCTGTC TAAAATGCAG TGGGGTTTGT TTTGCAATGT
TTTAAACAGA GTTTTAGTAT TGCTATTAAA AGAAGTTACT TTGCTTTTAA AGAAACTTGG
                                                                               5760
                                                                               5820
        CTGCTTAAAA TAAGCAAAAA TTGGATGCAT AAAGTAATAT TTACAGATGT GGGGAGATGT
                                                                               5880
25
        AATAAAACAA TATTAACTTG GCTGCTTAAA ATAAGCAAAA ATTGGATGCA TAAAGTAATA
                                                                               5940
        TTTACAGATG TGGGGAGATG TAATAAAACA ATATTAACTT GGTTTCTTGT TTTTGCTGTA
                                                                               6000
        TTTAGAGATT AAATAATTCT AAGATGATCA CTTTGCAAAA TTATGCTTAT GGCTGGCATG
                                                                               6060
        GAAATAGAAA TACTCAATTA TGTCTTTGTT GTATTAATGG GGAATATTTT GGACAATGTT
                                                                               6120
        TCATTATCAA ATTGTCGACA TCATTAATAT ATATTGTAAT GTTGGGAAGA GATCACTATT
                                                                               6180
30
        TTGAAGCACA GCTTTACAGA TGAGTATCTA TGATACATAT GTATAATAAA TTTTGATCGG
        GTATTAAAAG TATTAGAAGG TGGTTATAAT TGCAGAGTAT TCCATGAATA GTACACTGAC
                                                                               6300
        6360
        CAGGCAATAT TGCAGTCTTG ATTCTGCCAC TTACAGGATA GATAATGCCT GAACTTTAAT
                                                                               6420
        GACAAGATGA TCCAACCATA AAGGTGCTCT GTGCTTCACA GTGAATCTTT TCCCCATGCA
                                                                               6480
35
        GGAGTGTGCT CCCCTACAAA CGTTAAGACT GATCATTTCA AAAATCTATT AGCTATATCA
                                                                               6540
        AAAGCCTTAC ATTTTAATAT AGGTTGAACC AAAATTTCAA TTCCAGTAAC TTCTATTGTA
                                                                               6600
       ACCATTATTT TTGTGTATGT CTTCAAGAAT GTTCATTGGA TTTTTGTTTG TAATAGTAAA ATACCGGATA CATTTCACGT GTCCTTCAGT ATTGATTTGG TTGAATATTG GGTCATAATG
                                                                               6660
                                                                               6720
       GTTGAGAAGC ATGGACACTA GAGCCAGAAT GCTTGGATAT GAATCCTGGA TCTGTCACTT ACTTCTGTGT GACCTTTGAA AGGCTACTTA TTTCCTCTCT TAGCTTTCTC ATTAAAATCA
                                                                               6780
40
                                                                               6840
        ATGAACAATG CCAGCCTCAT GGGGTTGTTG AATGATTAAA TTAGTTAATA TACCTAAAGT
                                                                               6900
       ACATAGAACA CTGCCTGCAC ATAGTAAAAG AATTATAAGT GTGAGGTAGT TGGTAAAATT
                                                                               6960
        ATGTAGTTGG ATATACTACC GAACAATATC TAATCTCTTT TTAGGGAAAT AAAGTTTGTG
                                                                               7020
        CATATATATA ATCCCGAAAC ATG
45
        Seq ID NO: 527 Protein sequence
        Protein Accession #: NP 077741.1
                               21
                                           31
                                                                  51
                                                       41
50
        MAAAGPRRSV RGAVCLHLLL TLVIFSRDGE ACKKVILNVP SKLEADKIIG RVNLEECFRS
        ADLIRSSDPD FRVLNDGSVY TARAVALSDK KRSFTIWLSD KRKQTQKEVT VLLEHQKKVS
                                                                                120
        KTRHTRETVL RRAKRRWAPI PCSMQENSLG PFPLFLQQVE SDAAQNYTVF YSISGRGVDK
                                                                                180
        EPLNLFYIER DTGNLFCTRP VDREEYDVFD LIAYASTADG YSADLPLPLP IRVEDENDNH
                                                                                240
55
        PVFTEAIYNP EVLESSRPGT TVGVVCATDR DEPDTMHTRL KYSILQQTPR SPGLFSVHPS
        TGVITTVSHY LDREVVDKYS LIMKVQDMDG QFFGLIGTST CIITVTDSND NAPTFRQNAY
                                                                                360
        EAFVEENAFN VEILRIPIED KOLINTANWR VNFTILKGNE NGHFKISTOK ETNEGVLSVV
        KPLNYEENRO VNLEIGVNNE APFARDIPRV TALNRALVTV HVRDLDEGPE CTPAAQYVRI
        KENLAVGSKI NGYKAYDPEN RNGNGLRYKK LHDPKGWITI DEISGSIITS KILDREVETP
60
        KNELYNITVL AIDKDDRSCT GTLAVNIEDV NDNPPEILQE YVVICKPKMG YTDILAVDPD
        EPVHGAPFYF SLPNTSPEIS RLWSLTKVND TAARLSYQKN AGFQEYTIPI TVKDRAGQAA
        TKLLRVNLCE CTHPTQCRAT SRSTGVILGK WAILAILLGI ALLFSVLLTL VCGVFGATKG
                                                                                720
        KRFPEDLAQO NLIISNTEAP GDDRVCSANG FMTQTTNNSS QGFCGTMGSG MKNGGQETIE
        MMKGGNQTLE SCRGAGHHHT LDSCRGGHTE VDNCRYTYSE WHSFTQPRLG EESIRGHTG
65
        Seg ID NO: 528 DNA seguence
        Nucleic Acid Accession #: NM_001941.2
        Coding sequence: 64..2754
70
                               21
                                                                  51
                   11
                                           31
                                                      41 .
        GGCAGGTCTC GCTCTCGGCA CCCTCCCGGC GCCCGCGTTC TCCTGGCCCT GCCCGGCATC
                                                                                 60
        CCGATGGCCG CCGCTGGGCC CCGGCGCTCC GTGCGCGGAG CCGTCTGCCT GCATCTGCTG
                                                                                120
        CTGACCCTCG TGATCTTCAG TCGTGATGGT GAAGCCTGCA AAAAGGTGAT ACTTAATGTA
                                                                                180
75
        CCTTCTAAAC TAGAGGCAGA CAAAATAATT GGCAGAGTTA ATTTGGAAGA GTGCTTCAGG
                                                                                240
        TCTGCAGACC TCATCCGGTC AAGTGATCCT GATTTCAGAG TTCTAAATGA TGGGTCAGTG
                                                                                300
        TACACAGCCA GGGCTGTTGC GCTGTCTGAT AAGAAAAGAT CATTTACCAT ATGGCTTTCT
                                                                                360
        GACAAAAGGA AACAGACACA GAAAGAGGTT ACTGTGCTGC TAGAACATCA GAAGAAGGTA
                                                                                420
        TCGAAGACAA GACACATAG AGAAACTGTT CTCAGGCGTG CCAAGAGGAG ATGGGCACCT
                                                                                480
80
        ATTCCTTGCT CTATGCAAGA GAATTCCTTG GGCCCTTTCC CATTGTTTCT TCAACAAGTT
                                                                                540
        GAATCTGATG CAGCACAGAA CTATACTGTC TTCTACTCAA TAAGTGGACG TGGAGTTGAT
                                                                                600
        AAAGAACCTT TAAATTTGTT TTATATAGAA AGAGACACTG GAAATCTATT TTGCACTCGG
                                                                                660
        CCTGTGGATC GTGAAGAATA TGATGTTTTT GATTTGATTG CTTATGCGTC AACTGCAGAT
                                                                                720
        GGATATTCAG CAGATCTGCC CCTCCCACTA CCCATCAGGG TAGAGGATGA AAATGACAAC
                                                                                780
85
        CACCCTGTTT TCACAGAAGC AATTTATAAT TTTGAAGTTT TGGAAAGTAG TAGACCTGGT
                                                                                840
        ACTACAGTGG GGGTGGTTTG TGCCACAGAC AGAGATGAAC CGGACACAAT GCATACGCGC
                                                                                900
        CTGAAATACA GCATTTTGCA GCAGACACCA AGGTCACCTG GGCTCTTTTC TGTGCATCCC
                                                                                960
```

	W O 02/	000,110	•				
	AGCACAGGCG	TAATCACCAC	AGTCTCTCAT	TATTTGGACA	GAGAGGTTGT	AGACAAGTAC	1020
	TCATTGATAA	TGAAAGTACA	AGACATGGAT	GGCCAGTTTT	TIGGATTGAT	AGGCACATCA	1080
	ACTTGTATCA	TAACAGTAAC	AGATTCAAAT	GATAATGCAC	CCACTTTCAG	ACAAAATGCT	1140
_	TATGAAGCAT	TTGTAGAGGA	AAATGCATTC	AATGTGGAAA	TCTTACGAAT	ACCTATAGAA	1200
5	GATAAGGATT	TAATTAACAC	TGCCAATTGG	AGAGTCAATT	TTACCATTTT	AAAGGGAAAT	1260
	GAAAATGGAC	ATTTCAAAAT	CAGCACAGAC	AAAGAAACTA	ATGAAGGTGT	TCTTTCTGTT	1320
			AGAAAACCGT				1380
	GAAGCGCCAT	TTGCTAGAGA	TATTCCCAGA	GTGACAGCCT	TGAACAGAGC	CTTGGTTACA	1440
10	GTTCATGTGA	GGGATCTGGA	TGAGGGGCCT	GAATGCACTC	CTGCAGCCCA	ATATGTGCGG	1500
10	ATTAAAGAAA	ACTTAGCAGT	GGGGTCAAAG	ATCAACGGCT	ATAAGGCATA	TGACCCCGAA	1560
	AATAGAAATG	GCAATGGTTT	AAGGTACAAA	AAATTGCATG	ATCCTAAAGG	TTGGATCACC	1620
	ATTGATGAAA	TTTCAGGGTC	AATCATAACT	TCCAAAATCC	TGGATAGGGA	GGTTGAAACT	1680
	CCCAAAAATG	AGTTGTATAA	TATTACAGTC	CTGGCAATAG	ACAAAGATGA	TAGATCATGT	1740
			CATTGAAGAT				1800
15			ACCAAAAATG				1860
10			TCCATTTTAT				1920
•			CAAAGTTAAT				1980
			TACCATTCCT				2040
20	GCAACAAAAT	TATTGAGAGT	TAATCTGTGT	GAATGTACTC	ATCCAACTCA	GIGICGIGCG	2100
20			AATACTTGGA				2160
			ATTGCTAACT				2220
			TTTAGCACAG				2280
			CTCTGCCAAT				2340
00			TATGGGATCA				2400
25			CCAGACCTTG				2460
	ACCCTGGACT	CCTGCAGGGG	AGGACACACG	GAGGTGGACA	ACTGCAGATA	CACTTACTCG	2520
· · ·			ACCCCGTCTC				2580
	GAAGACCGCA	TGCCATCCCA	AGATTATGTC	CTCACTTATA	ACTATGAGGG	AAGAGGATCT	2640
	CCAGCTGGTT	CTGTGGGCTG	CTGCAGTGAA	AAGCAGGAAG	AAGATGGCCT	TGACTTTTTA	2700
30			TATTACATTA				2760
			GTCAGACATT				2820
			ATATGATGAT				2880
			CAGTTGTTGC				2940
			CAAACTCCAG				3000
35			ATTTTAGTAA				3060
55			TCACATTATT				3120
			ATCACTATGT				3180
			TTGCAGCTCA				3240
							3300
40			GAGGCAAAAT				
40			AATAAATGTG				3360
			AAAGAGGAAA				3420
			AAAAGAGAGA				3480
			GAAATAGTTC				3540
. 45		-	TGGTTTCTGT				3600
45			TTTCAAGATT				3660
			GTTCCCTGCT				3720
			ACAAAAACAT				3780
	CTCTATTGCT	GTTTCTATTC	TCTCTTATAG	TGACCAACAT	CTTTTTAATT	TAGATCCAAA	3840
	TAACCATGTC	CTCCTAGAGT	TTAGAGGCTA	GAGGGAGCTG	AGGGGAGGAT	CTTACTGAAA	3900
50	GCACCCTGGG	GAGATTGATT	GTCCTTAAAC	CTAAGCCCCA	CAAACTTGAC	ACCTGATCAG	3960
	GTCTGGGAGC	TACAAAATTT	CATTTTTCTC	CTCACTGCCC	TTCTTCTGAG	TGGCATTGGC	4020
	CTGAATCAAG	GAAAGCCACG	CCTTGTGGGC	CCCCTTCTTT	CGGCTTTCTG	CTAAAGCAAC	4080
	ACCTCCAGCA		TAAGTGACTC	CAGGITTICC	ACCATCCTTC	AGCGTGAATT	4140
		GAGATTCCCT	TAAGTGACTC TCTCCAGAGA				
55	AATTTTTAAT	GAGATTCCCT CAGTTTGCTT	TCTCCAGAGA	AATTTTAAAA	TAATAGAAGA	AATAGAAATT	4200
55	AATTTTTAAT TTGAATGTAT	GAGATTCCCT CAGTTTGCTT AAAAGAAAAA	TCTCCAGAGA GATCAAGTTG	AATTTTAAAA TCATTTTAGA	TAATAGAAGA ACAGAGGGAA	AATAGAAATT CTTTGGGAGA	4200 4260
55	AATTTTTAAT TTGAATGTAT AAGCAGCCCA	GAGATTCCCT CAGTTTGCTT AAAAGAAAAA AGTAGGTTAT	TCTCCAGAGA GATCAAGTTG TTGTACAGTC	AATTTTAAAA TCATTTTAGA AGAGGGCAAC	TAATAGAAGA ACAGAGGGAA AGGAAGATGC	AATAGAAATT CTTTGGGAGA AGGCCTTCAA	4200 4260 4320
55	AATTTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG	TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT	AATTTTAAAA TCATTTTAGA AGAGGGCAAC GGGAGTAAAA	TAATAGAAGA ACAGAGGGAA AGGAAGATGC GCAACATCGT	AATAGAAATT CTTTGGGAGA AGGCCTTCAA CTGCTTCATA	4200 4260 4320 4380
55	AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG CTTTTTCCTA	GAGATTCCCT CAGTTTGCTT AAAAGAAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC	TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTTCC	AATTTTAAAA TCATTTTAGA AGAGGGCAAC GGGAGTAAAA TTTCTCAGGC	TAATAGAAGA ACAGAGGGAA AGGAAGATGC GCAACATCGT CAATGGCAAC	AATAGAAATT CTTTGGGAGA AGGCCTTCAA CTGCTTCATA TGCCATTTGA	4200 4260 4320 4380 4440
	AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG CTTTTTCCTA GTCCGGTGAG	GAGATTCCCT CAGTTTGCTT AAAAGAAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA	TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTTCC ACCTCTTCTC	AATTTTAAAA TCATTTTAGA AGAGGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC	TAATAGAAGA ACAGAGGGAA AGGAAGATGC GCAACATCGT CAATGGCAAC CTTATTTGGA	AATAGAAATT CTTTGGGAGA AGGCCTTCATA CTGCTTCATA TGCCATTTGA GTGAGAAATC	4200 4260 4320 4380 4440 4500
5560	AATTTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG	GAGATTCCCT CAGTTTGCTT AAAAGAAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC	TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTTCC ACCTCTTCTC ATGATGAGTC	AATTTTAAAA TCATTTTAGA AGAGGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT	TAATAGAAGA ACAGAGGGAA AGGAAGATGC GCAACATCGT CAATGGCAAC CTTATTTGGA TGCAGGATGA	AATAGAAATT CTTTGGGAGA AGGCCTTCAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG	4200 4260 4320 4380 4440 4500 4560
	AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC ACAAACAAGG	TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTTCC ACCTCTTCTC ATGATGAGTC CATTCATGGG	AATTTTAAAA TCATTTTAGA AGAGGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA	TAATAGAAGA ACAGAGGGAA AGGAAGATGC GCAACATCGT CAATGGCAAC CTTATTTGGA TGCAGGATGA TTCCTTCTGC	AATAGAAATT CTTTGGGAGA AGGCCTTCAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT	4200 4260 4320 4380 4440 4500 4560 4620
	AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA CTGGGCACTA	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC ACAACAAGG AGAAGGTCTA	TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTTCC ACCTCTTCTC ATGATGAGTC CATTCATGGG TGAATTAAAT	AATTTAAAA TCATTTTAGA AGAGGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA GCCTATCTAA	TAATAGAAGA ACAGAGGGAA AGGAAGATGC GCAACATCGT CAATGGCAA CTTATTTGGA TCCAGGATGA TTCCTTCTGC AATTCTGATT	AATAGAAATT CTTTGGGAGA AGGCCTTCAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA	4200 4260 4320 4380 4440 4500 4560 4620 4680
	AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG GTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA CTGGCACTA TTTTCTGTTT	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC ACAACAAGG ACAAACAAGG ACAAACATGT TCTAATTTGA	TCTCCAGAGA GATCAAGTTG TTGTACAGTT GAATATGGGT TGCCTTTTCC ACCTCTTCCC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC	AATTTAAAA TCATTTTAGA AGAGGGCAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA TATGTGTTA TATGTGTTTA	TAATAGAAGA ACAGAGGGAA AGGAAGATGC GCAACATCGT CAATGGCAAC CTTATTTGGA TGCAGGATGA TTCCTTCTGC AATTCTGATT AGACTTAGAC	AATAGAAATT CTTTGGGAGA AGGCCTTCAAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC	4200 4260 4320 4380 4440 4500 4560 4620 4680 4740
60	AATTTTAAT TTGAATGTAT AAGCAGCCCA GGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA CTGGGCACTA TTTTCTGTTT CCCCCCCCCC	GAGATTCCCT CAGTTTGCTT AAAAGAAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC ACAAACAAGG AGAAGGTCTA TCTAATTTGA TTTTTTTTTT	TCTCCAGAGA GATCAAGTTC GAATATGGGT TGCCTTTTCC ACCTCTTCTC ATGATGAGTC CATCATGAGT TGAATTAAGA TCCCTAAAATC AGACGGAGTC	AATTTAAAA TCATTTTAGA AGAGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTTGTA GCCTATCTAA TATGTGTTTT TCGCTCTGAC	TAATAGAAGA ACAGAGGGAA AGGAAGATGC GCAACATCGT CAATGGCAAC CTTATTTGGA TGCAGGATGA TTCCTTCTGC TTCTTCTGT AGACTTAGAC GCACAGGCTG	AATAGAAATT CTTTGGGAGA AGGCCTTCAA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG	4200 4260 4320 4380 4440 4500 4560 4620 4680 4740 4800
	AATTTTAAT TTGAATGTAT AAGCAGCCCA GGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA TTTTCTGTTT CCCCCCCCCC	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC ACAAACAAGG AGAAGGTCTA TCTAATTTGA TTTTTTTTTT	TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTTCC ATGATGAGTC CATTCATGGG TGAATTAAATC CCCTAAAATC AGACGGAGTC AAAGCTCCGC	AATTTAAAA TCATTTTAGA AGAGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA ACCTATCTAA TATGTGTTTT TCGCTCTGAC CTCCCGGGTT	TAATAGAAGA ACAGAGGGAA AGGAACATCGT CAATGGCAAC CTTATTTGGA TGCAGGATGA TTCCTTCTGC AATTCTGATT AGACTTAGAC GCACAGGCTG CATGCCATTC	AATAGAAATT CTTTGGGAGA AGGCCTTCAA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCACTG	4200 4260 4320 4380 4440 4500 4560 4620 4680 4740 4800 4860
60	AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG CTTTTTCCTA GTCGGTGAG GTTGTGCAGA CTGGGCACTA TTTTCTGTTT CCCCCCCCCC	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC ACAAACAAGG AGAAGGTCTA TCTAATTTGA TTTTTTTTTG TTGCTCACTG TAGCTGGGAC	TCTCCAGAGA GATCAAGTTG GATTACAGTC GAATATGGGT TGCCTTTTCC ACCTCTTCTC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGCTCCGC TACAGGCGCC	AATTTAAAA TCATTTTAGA AGAGGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA GCCTATCTAA TATGTGTTT TCGCTCTGAC CTCCCGGGT CACCACCAC	TAATAGAAGA ACAGAGGGAA AGGAAGATGC GCAACATCGT CAATGGCAAC CTTATTTGGA TTCCTTCTGC AATTCTGATT AGACTTAGAC GCACAGGCTAT CCCGGCTAAT CCCGGCTAAT	AATAGAAATT CTTTGGGGGA AGGCCTTCAAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTTGTATT	4200 4260 4320 4380 4440 4500 4660 4680 4740 4860 4920
60	AATTTTAAT TTGAATGTAT AAGCAGCCA GGGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA CTGGGCACTA TTTTCTGTTT CCCCCCCCCC	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC ACAAACAAGG ACAACAAGG TCTAATTTGA TCTTATTTTTTTTTT	TCTCCAGAGA GATCAAGTTG TTGTACAGTT TGCCTTTTCC ACCTCTTCTC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGCTCCGC TACAGGCCCC ACTGTGTTAG	AATTTAAAA TCATTTTAGA AGAGGCAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA TATTGTTAT TCGCTCTAA TATCTGTTT TCGCTCTGAC CTCCCGGGTT CACCACCACG CCAGGATGGT	TAATAGAAGA ACAGAGGGAA AGGAAGATGC CAATGGCAAC CTTATTTGGA TCCATGTTTCTGC AATTCTGATT AGACTTAGAC GCACAGGCTG CATGCCATTC CCCGGCTAAT CTCGATCTCC	AATAGAAATT CTTTGGGAGA AGGCCTTCAAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTTGTATT TGACCTCGTG	4200 4260 4320 4380 4440 4500 4660 4680 4740 4860 4920 4980
60	AATTTTAAT TTGAATGTAT AAGCAGCCA GGGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA CTGGGCACTA TTTTCTGTTT CCCCCCCCCC	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC ACAAACAAGG ACAACAAGG TCTAATTTGA TCTTATTTTTTTTTT	TCTCCAGAGA GATCAAGTTG GATTACAGTC GAATATGGGT TGCCTTTTCC ACCTCTTCTC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGCTCCGC TACAGGCGCC	AATTTAAAA TCATTTTAGA AGAGGCAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA TATTGTTAT TCGCTCTAA TATCTGTTT TCGCTCTGAC CTCCCGGGTT CACCACCACG CCAGGATGGT	TAATAGAAGA ACAGAGGGAA AGGAAGATGC CAATGGCAAC CTTATTTGGA TCCATGTTTCTGC AATTCTGATT AGACTTAGAC GCACAGGCTG CATGCCATTC CCCGGCTAAT CTCGATCTCC	AATAGAAATT CTTTGGGAGA AGGCCTTCAAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTTGTATT TGACCTCGTG	4200 4260 4320 4380 4440 4500 4660 4680 4740 4860 4920
60	AATTTTAAT TTGAATGTAT AAGCAGCCA GGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG ATTTTCTGTTT CCCCCCCCC GCTCCGATCT GCCTCCTGAG TTTAATAGAG ATCCGCCTGC CTTGTTTCC	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC ACAAACAAGG AGAAGGTCTA TCTAATTTG CTGCTCACTG TAGCTGGGAC CTCGGCTCC GTTTAAAGTC	TCTCCAGAGA GATCAAGTTC GAATATGGGT TGCCTTTTCC ACCTCTTCTC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGCTCCGC TACAGGCGCC ACTGTGTTAG CAAAGTGCTG GACTTCTTTT	AATTTAAAA TCATTTTAGA AGAGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTTGTA GCCTATCTAA TATGTGTTTT TCGCTCTGAC CTCCGGGTT CACCACCAC CCAGGATGGT GGATTACAGG AATGTAATCA	TAATAGAAGA ACAGAGGGAA AGGAACATCGT CAATGGCAAC CTTATTTGGA TGCAGGATGA TACTTCTGGT AGACTTAGAC GCACAGGCTG CATGCCATTC CCGGCTAAT CTCGGTCATC CATGACCCAC TTTTGAACAT	AATAGAAATT CTTTGGGAGA AGGCCTTCAA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTTGTATT TGACCTCGTG CGCTCCAGC GTGTGAAAGT	4200 4260 4320 4380 4440 4500 4660 4680 4740 4860 4920 4980
60	AATTTTAAT TTGAATGTAT AAGCAGCCA GGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG ATTTTCTGTTT CCCCCCCCC GCTCCGATCT GCCTCCTGAG TTTAATAGAG ATCCGCCTGC CTTGTTTCC	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC ACAAACAAGG AGAAGGTCTA TCTAATTTG CTGCTCACTG TAGCTGGGAC CTCGGCTCC GTTTAAAGTC	TCTCCAGAGA GATCAAGTTG GAATATGGGT TGCCTTTCC ACCTCTTCC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGCTCCGC TACAGGCGCC TACAGGCGCC ACTGTGTTAG CAAAGTGCTG	AATTTAAAA TCATTTTAGA AGAGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTTGTA GCCTATCTAA TATGTGTTTT TCGCTCTGAC CTCCGGGTT CACCACCAC CCAGGATGGT GGATTACAGG AATGTAATCA	TAATAGAAGA ACAGAGGGAA AGGAACATCGT CAATGGCAAC CTTATTTGGA TGCAGGATGA TACTTCTGGT AGACTTAGAC GCACAGGCTG CATGCCATTC CCGGCTAAT CTCGGTCATC CATGACCCAC TTTTGAACAT	AATAGAAATT CTTTGGGAGA AGGCCTTCAA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTTGTATT TGACCTCGTG CGCTCCAGC GTGTGAAAGT	4200 4260 4320 4380 4440 4500 4560 4620 4620 4740 4860 4920 4980 5040
60	AATTTTAAT TTGAATGTAT AAGCAGCCA GGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA TTTTCTGTTT CCCCCCCCC GCTCCGATCT GCCTCCTGAG TTTAATAGAG ATCCGCCTGC CTTGTTTTCC TGATCATACC	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA ACAACAAGG ACAAACAAGG ACAAACAAGG TTTTTTTTTT	TCTCCAGAGA GATCAAGTTC GAATATGGGT TGCCTTTTCC ACCTCTTCTC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGCTCCGC TACAGGCGCC ACTGTGTTAG CAAAGTGCTG GACTTCTTTT	AATTTAAAA TCATTTTAGA AGAGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA GCCTATCTAA TATGTGTTTT TCGCTCTGAC CTCCCGGGTT CACCACCACG CCAGGATGGT GGATTACAGG AATGTAATCA ACTCAACCAA	TAATAGAAGA ACAGAGGGAA AGGAACATCGT CAATGGCAAC CTTATTTGGA TGCAGGATGA TTCCTTCTGC AATTCTGATT AGACTTAGAC GCACAGGCTG CATGCCATTC CCCGGCTAAT CTCGATCTC CATGACCCAC TTTTGAACAT AAGACAGTCG	AATAGAAATT CTTTGGGAGA AGGCCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTTGTATT TGACCTCGTG TCGCTCCA GCGCTCCCGGC GTGTGAAAGT AGAAGCCAGG	4200 4260 4320 4380 4440 4560 4680 4740 4860 4980 5040 5100
60	AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA CTGGGCACTA TTTTCTGTTT CCCCCCCCCC	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCAGACAGCG ACAAACAAGG ACAAACAAGG AGAAGGTCTA TCTAATTTGA TTTTTTTTTG TAGCTCACTG TAGCTGGGAC ACGGGGTTTC CTCGGCCTCC GTTTAAAGTCA ACTCAGGGCA ACTCAGGGCA	TCTCCAGAGA GATCAAGTTG GAATATGGGT TGCCTTTTCC ACCTCTTCTC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC ATAGGGCCC ACTGTGTTAG CAAAGTCCTGG GTCTTCTTTT ATCTTGAAAT CAAAATATTG	AATTTAAAA TCATTTTAGA AGAGGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA TATGTGTTA TATGTGTTT TCGCTCTGAC CACCACCACG CCAGGATGGT GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT	TAATAGAAGA ACAGAGGGAA AGGAAGATGC GCAACATCGT CAATGGCAAC CTTATTTGGA TTCCTTCTGC AATTCTGATT AGACTTAGAC GCACAGGCTG CATGCCATTC CCCGGCTAAT CTCGATCTCC CATGACCCAC TTTTGAACAC TATTGAACAC TATGAACACT AAGACAGTCG GGAATTCTCT	AATAGAAATT CTTTGGGAGA AGGCCTTCAAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCACTG TCCTGCCTCA TTTTTGTATT TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG	4200 4260 4320 4380 4440 4560 4680 4740 4860 4980 4980 5040 5160
60	AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG GTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA TTTTCTGTTT CCCCCCCCC GCTCCGATCT GCCTCCTGAG TTTAATAGAG ATCCGCCTGC TGTTTTCC TGTTTTCC TGATCATACA TTGTTTTCC TGATCATACA TTGTTTTCC TGATCATACA TGCTGAAAT	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGA ACAACAAGG ACAACAAGG TTTTTTTTTT	TCTCCAGAGA GATCAAGTTG GATTACAGTT TGCCTTTTCC ACCTCTTCTC ACCTCTTCTC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGCTCCGC TACAGGGCC ACAGGGCC ACAGGGCC GTCTTCTTTA ATCTTGAAAT AACCAGAAGT AACAGAAGG	AATTTAAAA TCATTTTAGAA AGAGGCAAA GTTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA TATGTGTTA TATGTGTTT TCGCTCTGAC CTCCAGCGT CCACGACG CCAGGATGGT GGATTACAGG AATGTAATCA ACTCAACCAC CTCAACCACAC CTCAACCACAC CAGGATGGT GGATTACAGG AATGTAATCA CAGTTTTATC	TAATAGAAGA ACAGAGGGAA AGGAAGATGC GCAACATCGT CAATGGCAAC CTTATTTGGA TGCAGGATGA ATTCTGATT AGACTTAGAC GCACAGGCTG CATGCCATTC CCCGGCTAAT CTCGATCTCC CATGACCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC	AATAGAAATT CTTTGGGAGA AGGCCTTCAAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTTGTATT TGACCTCCTG GTGTGAAAGT AGAAGCCAGG GTAGGCCTAG GTAGACCCCG TGAAACCCC	4200 4260 4320 4380 44500 4560 4620 4680 4740 4860 4920 4980 50100 5160 5220 5280
60	AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA TTTTCTGTTT CCCCCCCCC GCTCCGATCT GCCTCCTAATAGAG ATCCGCTTGC CTTGTTTCC TGATCATACAG TTGTTTTCC TGATCATACA TTGTTTTCC TGATCATACA TTGTTTTTC	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC ACAAACAAGG AGAAGGTCTA TCTAATTTGA TTTTTTTTTG CTGCTCACTG TAGGTGGGC ACTGGGCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGGTGTG GCTCACTCCG	TCTCCAGAGA GATCAAGTTG GAATATGGGT TGCCTTTTCC ACCTCTTCTC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGCTCCGC TACAGGCGCC TACAGGCGCT GCAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTC AAACTACGC TACCGGAGGCC TCCACGAAGC	AATTTAAAA TCATTTTAGA AGAGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA TATGTGTTT TCGCTCTGAC CTCCCGGGTT CACCACCAC CCAGGATGGT GGATTACAG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTTTC ACTCAACAAA CTCTAAAACCT ATCAAAAACCT	TAATAGAAGA ACAGAGGGAA AGGAAGATGC CCAATGGCAAC CTTATTTGGA TGCAGGATGA ATTCTGATT AGACTTAGAC CATGCCATTC CCCGGCTAAT CTGGATCTC CATGACCCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TTTGAACAT AAGACAGTCG GGAATTCTCT TTACGGCTACC CTTACCCCC CATGCCCAC	AATAGAAATT CTTTGGGAGA AGGCCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTTGTATT TGACCTCCTGC CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG GTAAGCCTAG TGAAACACCC CAAGACTTTA	4200 4260 4320 4380 4560 4660 4680 4740 4860 4980 5040 5100 5160 5280 5340
60 65 70	AATTTTAAT TTGAATGTAT AAGCAGCCA GGGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA TTTTCTGTTT CCCCCCCCC GCTCCGATCT GCCTCCTGAG TTTAATAGAG TTTAATAGAG CTTGTTTTCC TGATCATACC GGGAGAAAGA TTGCTGAAAA TTGCTGAATT CCTGATTTTC TGATCATACC TTGTTTTC TAGTGCCGA	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCAC ACAACAAGG AGAAGACAAGG TTTTTTTTTT	TCTCCAGAGA GATCAAGTTG GTATACAGTC GAATATGGGT TGCCTTTTCC ACCTCTTCTC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGCTCCGC ACTGTGTTAG CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC CCAAAGAGCA CAAAGAGCA	AATTTAAAA TCATTTTAGA AGAGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA GCCTATCTAA TCTGTCTGAC CTCCGGGTT CACCACCAC CCAGGATGGT GGATTACAGG AATGTAATCA ACTCAACCAA GCTTGAGAAT CAGTTTTATC ATCAAAACCT CCAGTATCAC CCAGTATCAC	TAATAGAAGA ACAGAGGGAA AGGAAGATGC GCAACATCGT CAATGGCAAC CTTATTTGGA TGCAGGATGA TACTTCTGGT AGACTTAGAC GCACAGGCTG CATGCCATTC CCCGGCTAAT CTCGGATCTC CATGACCCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TAACGGTTAC GGAATTCTCT TAACGGTTAC TTAGACCTCC CTTCCCTCTT TACCCTCT	AATAGAAATT CTTTGGGAGA AGGCCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTTGATT TGACCTCCTGC GTGTGAAAGT AGAAGCCTAG GTAAAGCCTAG TGAAACACCC CAAGACCTTTA ATAAAACCTC	4200 4260 4320 4380 4560 4560 4620 4680 4860 4920 4980 5040 5160 5220 5280 5340 5400
60	AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG CTTTTTCCTA GTCGGTGAG AAGGAGACA CTTGGCACTA TTTTCTGTTT CCCCCCCCCC	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCAGACAGCA ACAAACAAGG AGAAGGTCTA TCTAATTTGA TTTTTTTTTT	TCTCCAGAGA GATCAAGTTG GAATATGGGT TGCCTTTTCC ACCTCTTCTC ATGATGAGT TGAATTAAAT CCCTAAAATC AGACGGAGT AAAGCTCCGC ACTGTGTTAG GATTTATAG CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAGTACTC TACAGGAGC CTAAAATTG AACCAGAAGC TCAACAGAAGC CAAAGAGCAA GAACATGCTG	AATTTAAAA TCATTTTAGA AGAGGCAAC GGGAGTAAAA TTTCTCAGGC TAAGGCATT AATTGTTGTA GCCTATCTAA TATGTGTTT CGCTCTAC CTCCCGGGT CACCACCAC CCAGGATGGATACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAACCT CCAGAACCC AAAACCCC AAAACCCC	TAATAGAAGA ACGAGGGAA ACGAAGCGCAAC CCTAATTGGAA TCCAGCATGC AATTCTGAT AGACTTAGAC CCACGCCTAAT CCCGGCTAAT CTCGATCTCC CATGACCCAC TTTTGAACAT AAGACAGTCC GGAATTCTCT TTTGAACAT TAGACAGTCC GGAATTCTCT TAACAGCTAC TTACCGCTAC TTACCGCTAC TTACCGCTAC TTCCCTGTTT GGTCTCCC	AATAGAAATT CTTTGGGAGA AGGCCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTGTATT TGACCTCGTG GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCC CAAGACTTTA ATAAAACCTC TATGCCCGAA	4200 4260 4380 4340 4500 4680 4740 4880 4740 4880 5040 5160 5160 5220 5280 5340 5460
60 65 70	AATTTTAAT TTGAATGTAT AAGCAGCCA GGGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA CTGGGCACTA TTTTCTGTTT CCCCCCCCC GCTCCGATCT GCCTCCTGAG TTTAATAGAG ATCCGCCTGC TGATCATACG GGGAGAAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCTG TTAGTGCCCCC TGATCATACT TTGTGTTTT CTAGTGCCCG TTTGTTTTT CTAGTGCCCCC TTTGTAATTC	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC ACAAACAAGG AGAAGGTCTA TCTAATTTGA TTTTTTTTTG CTGCTCACTG TAGCTGGGAC ACTGGGAC ACTGGGAC ACTGGGAC ACTGGGCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCCT TAAACTTCT TTTTTCTCTCA	TCTCCAGAGA GATCAAGTTC TTGTACAGTC GAATATGGGT TGCCTTTTCC ACCTCTTCTC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGCTCCGC ACTGTGTTAG CAAAGTCCTG TACAGGCGCC ACTGTGTTAG CAAAGTCCTG TCTCTTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC TCACTCACCG CAAAGAGCAAG GAACATGCTG AATGAAAATT	AATTTAAAA TCATTTTAGA AGAGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA TATGTGTTT TCGCTCTGAC CTCCCGGGTT CACCACCAC CCAGGATGGT GGATTACAGG AATGTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAAACCT CCAGTATTCAC AAAACCACCT TAATTTAGG	TAATAGAAGA ACAGAGGGAA AGGAAGATGC CAATGGCAAC CTTATTTGGA TTCCTTCTGC AATCTGATT AGACTTAGAC GCACAGGCTG CATGCCATTC CCCGGCTAAT CTCGATCTCC CATGACCCAC TTTTGAACAC GGAATCTCC TAACAGCTG GGAATTCTC TAACGGCTAC TTCCCTGTTC TACCGGTTAC GCTACTCC GCTACTCC GGTACTTCT GGATTCTCT GACTTCT TACCGGTTAC GCTACCTCCT TTCCCTGTTT GGATTCTT GGATTCTT GGATTCTT	AATAGAAATT CTTTGGGAGA AGGCCTTCAAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCACTG TCCTGCCTCA TTTTTGTATT TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCC CAAGACTTTA ATAAAACCTT ATAGACCCAAA TATATTTCA	4200 4260 4320 4380 4500 4560 4620 4740 4860 4740 4860 5040 5160 5220 5280 5340 5460 5520
60 65 70	AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG CTTGTGCAGA TTTTCTGTTT CCCCCCCCC GCTCCGATCT GCTCCTACTG CTTCTTTCC TTTAATAGAG ATCCGCTGC CTTGTTTCC TGATCATACA GGGAGAAAGA TTGCTGAAAT ACTGTGTTT CTAGTGCCGA TAACCATCTC TTTTAATTCC CATATGTAGTG CATATGTAGTG CATATGTAGTT	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGA TCTAATTTGA TCTAATTTGA TCTGCTCACTG CTCGCGCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TCCTGCTGCTGT GCTCACTCCC TTAAACTTCT TTTGTTCTTT TTTTCTCTCA ATTATTATTT	TCTCCAGAGA GATCAAGTTG TTGTACAGTT TGACTTTCC GAATATGGGT TGCCTTTCC ACCTCTTCTC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGCTCCGC TACAGGCGCC TACAGGCGCC ACTGTGTTAG CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATT CAAAATATT CAAAATATC CAAAGAGCA GACATGCTG CAAGAGCAA GAACATGCTG AATGAAAATT CCTTATATGT	AATTTAAAA TCATTTTAGA AGAGGCAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA TATGTGTTT TCGCTCTGAC CTCCCGGGTT CACCACCACG CCAGGATGAATCAACAC ACTCAACCAA ACTCAACCAA TCTGAGAAT CAGTTTATC ATCAAAACCACT CAGTATCACCA AAAACCACCT CAGTATCACCA AAAACCACCT CAGTATCACC TAAATTTAGG GTAAGGTGAA	TAATAGAAGA ACAGAGGGAA AGGAAGATGC CCAATGGCAAC CTTATTTGGA TGCAGGATGA AGACTTAGTT AGACTTAGAC CCAGGCTG CATGCCATTC CCCGGCTAAT CTCGATCTCC CATGACCAC TTTTGAACAT TAAGACAGTCC TTAACAGTCC TAACGGCTAC TAACGCTCC TAACGGCTAC GCTACTCC TAACGGCTAC GCTACTCCC TTCCCTGTTT GGTTTCATTTC ATTTATGGTA	AATAGAAATT CTTTGGGAGA AGGCCTTCAAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTTGTATT TGACCTCCTG GTGTGAAAGT AGAAGCCAGG GTAAGCCAGG GTAAGCCTAG TGAAAACCTC CAAGACTTTA ATAAAACCTC TATGCCCGAC TATGCCCCGAC TATGCCCCGAC TATGCCCCGAC TATGCCCCGAC TATATTTTCA TTTGAGTGTG	4200 4260 4320 4380 4560 4620 4680 4740 4860 4980 5040 5100 5120 5280 5340 5460 5520 5580
60 65 70	AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA TTTTCTGTTT CCCCCCCCC GCTCCGATCT GCCTCCTAGAG ATCCGCTGC CTTGTTTCC TGATCATACAG ATCCGCTGC CTTGTTTTC TCAGTGCCTG CTTGTTTTC TGATCATACA ACTGTGTTTT CTAGTGCCGA TAACCATCT CTTGTAATTC CTAGTGCCGA TAACCATCT CTATGTAATTC CATATGTAGTT CAAGAAAAATA	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA ACAGCCA ACAGCCA ACAGCCA ACAGCCA ACAGCCTC TTTTTTTTTT	TCTCCAGAGA GATCAAGTTG GAATATGGGT TGCCTTTTCC ACCTCTTCTC ACCTCTTCC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGCTCCGC TACAGGCGCC CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTC AACCAGAAGC TCACCACAGAAGC TACAGAAGC TACAGAAGC TACAGAAGC TACAGAAGC TACATCACCG CAAAGAGCAA GAACATGCTG AATGAAAATT CCTTATATGT GCTTTCATTT	AATTTAAAA TCATTTTAGA AGAGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA TATGTGTTT TCGCTCTGAC CTCCGGGTTT CACCACCACG GGATTACAG AATGTAATCA ACTCAACCAA ACTCAACCAA ACTCTGAGAAT CAGTTTTATC ATCAAAACCT CAGTATCAC AAAACCAC TCAGTATCAC AAAACCAC TTAATTTTAGG GTAAGGTGAA TTCCCCCAGT	TAATAGAAGA ACAGAGGGAA AGGAAGATGC CCAATGGCAAC CTTATTTGGA TGCAGGATGA AGCATAGAT AGACTTAGAC CATGCCATT AGACTTAGAC CATGCCATT CCCGGCTAAT CTCGATCTCC CATGACCCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC CTTCCCTGTTT GGTCTCCC TTCCCTGTTT GGTCTCCCTTTCCATG GATTCATTTC ATTTATGGTA GAATGATTTA	AATAGAAATT CTTTGGGAGA AGGCCTTCAAA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTTGTATT TGACCTCCTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG GTAAGCCTAG TGAAACACCC CAAGACTTTA ATAAAACCTC TATGCCCGAA TATATTTCA TTTTGAGTGTG GAAATTTTTA	4200 4260 4320 4380 4560 4660 4680 4740 4860 4980 5100 5160 5280 5340 5400 5520 5520 5640
60 65 70 75	AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG CTTTTTCCTA GTCGGTGAG AAGGAGACA CTGGCACTA TTTTCTGTTT CCCCCCCCCC	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCAC ACAAACAAGG AGAAGGTCTA TCTAATTTGA TTTTTTTTTT	TCTCCAGAGA GATCAAGTTG GATTATAGGGT TGCCTTTTCC ACCTCTTCTC ACGTCTTCTC ATGATGAGT TGAATTAAT CCCTAAAATC AGACGGAGT AAAGGCGCC ACTGTGTAG GTCTTCTTT ATCTTGAAAT CAAAGTGCTG GTCTTCTTTT AACCAGAAGC TCAACAGAGC CAAAGAGCAA GAACATGCTG AATGAAAT CTATATTG AACTACCG CAAAGAGCAA GAACATGCTG AATGAAAATT CCTTATATT CCTTATATT TTTCTTACTT	AATTTAAAA TCATTTTAGA AGAGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGCATT AATTGTTGTA ACCTATCTAA TATGTGTTT CGCTCTAC CCACGGCT CCACGACG CCAGGATGGT AATTGAACCA GTCTGAGAAT CAGTTTATC ATCAAACCT CACAACCAC TAATTTTAGG GTAAGCT TAATTTTAGG TTCCCCAGT TTATAAGGAA	TAATAGAAGA ACAGAGGGAA AGGAAGATGC GCAACATCGT CAATGGCAAC CTTATTTGGA TCCAGGATGA TTCCTTCTGC AATTCTGATT AGACTTAGAC CCAGGCTAAT CTCGATCTCC CATGACCCAC TTTTGAACAT TAGACAGTCC GGAATTCTCT TAACGGCTAC TACCTCCC GTACCTCCC TTCCCTGTTT GGTCTCCCATTCCT TTCCTGCATC GATTCATTC GGTACTCCC ATTTATGGTA GAATGATTTA GCAGCTGCT GAATTCATTT GGATTCATTT	AATAGAAATT CTTTGGGAGA AGGCCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTGTATT TGACCTCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCAGG GTAAGCCTAG TGAAACACCC CAAGACTTTA ATAAAACCTC TATGCCGGAA TATTTTGATTT ATTGATGTG GAATTTTTA AAAATGCAGT	4200 4260 4320 4380 4560 4620 4680 4860 4920 5160 5280 5280 5340 5460 5580 5580 5700
60 65 70	AATTTTAAT TTGAATGTAT AAGCAGCCCT GGGCAAGGAG GTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA TTTTCTGTTT CCCCCCCCC GCTCCGATCT GCCTCCTGAG TTTAATAGAG ATCGCCTGC TGATCATACG GGGAGAAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGTCTT CTAGTGCTCT TTTGTATTC CTAGTGCTCT TTTGTAATTC CATATGTAGT CAAGAAAAT GCGGTTTGTT TGTAATTC CATATGTAGT CAAGAAAATA GGGGTTTGTT TGTAAATATA GGGGTTTGTT	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGA TCTAATTTGA TCTAATTTGA TCTCACTG TAGCTGGGAC ACAGGGTTTC CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT GCTCACTCC TTAGCTGTTTTTTTTTT	TCTCCAGAGA GATCAAGTTG GATTATACAGTC GAATATGGGT TGCCTTTTCC ACCTCTTCTC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC ATGTGTTAG CAAAGTCCGC ACTGTGTTAG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC TCACTCACCG AATGAAATT CAAAATATTG AACCAGAAGC TCACTCACCG AATGAAAATT CCTTATATGT CCTTATATGT TTTCTTTACTT TTTAAACAGAG	AATTTAAAA TCATTTTAGA AGAGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTT GCCTATCTAA TATGTGTTT TCGCTCTGAC CTCCCGGGTT CACCACCACG CCAGGATGATACAGG AATTAATCA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ATCAAAACCT CAGTATCAC AAACCAC TAATTTAGG TTAAAGGTGA TTCCCCCAGT TTATTAAGGAA TTCCCCCAGT	TAATAGAAGA ACAGAGGGAA ACGAAGATGC CCAATGGCAAC CTTATTTGGA TTCCATCTGC AATCTGATT AGACTTAGAC CCACAGATGC CATGCCATTC CCAGGCTG CATGCCATC CTCGATCTC CATGACCCAC TTTGAACAC TATAGACAG GGAATTCTC TAACGCTAC CTTCCCTGTT GGTCTGCATG GATTCATTC GATTCATTC GATTCATTC GATTCATTC GATTCATTC TTCACTCCT TTCACTCTC TTCCCTGTTT GATTCATTTC AATTCATTTC AATTCATTTC AATTCATTTA	AATAGAAATT CTTTGGGAGA AGGCCTTCAAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCACTG TCCTGCCTCA TTTTTGTATT TGACCTCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TTAGACTCC CAAGACTTTA ATAAAACCTC TATGCCCGAA TATATTTCA TTTGAGTGTG GAATTTTTA AAAATGCAGT GAAGTTACTT GAAGTTACTT	4200 4260 4320 4340 4500 4620 4740 4860 4740 4860 5160 5160 5160 5160 5160 5160 5160 51
60 65 70 75	AATTTTAAT TTGAATGTAT AAGCAGCCA AGGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA CTGGGCACTA TTTTCTTTT CCCCCCCCC GCTCCGATCT GCCTCCGATC TTAATAGAG ATCCGCTGC TGATCATCC GGAAAAAA ACTGTGTTT CTAGAATT CTAGTGCCGA TTAGTGCCGA TTAGTGCCGA TTAGTGCTGAAT ACTGTGTTT CATATGTAATTC CATATGTAATT CATATAATATA	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC ACAAACAAGG AGAAGGTCTA TCTAATTTGA TCTAATTTTTT CTGCTCACTG TAGCTGGGAC ACTGGGGAC ACTGGGGCTCC GTTTAAAGTC AATTGGATCA ACTCAGGCA TCCTGCTGT GCTCACTCCT TAGATTCTTT TTTTCTCTCA ATTATTTTT TATTTTTAAA CAGAATGTTT TTTGCAATGTT TTTGCAATGTT GAAACTTTGG	TCTCCAGAGA GATCAAGTTG TTGTACAGTT TGCTTTTCC ACCTCTTTCC ACCTCTTCC ACCTCTTCTC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC ACAGGCGCC ACTGGTTAG CAAAGTCCGC ACTGTGTTAG TCTTCTTTT ATCTTGAAATTTG AACCAGAAGC TCACTCACCG CAAAGAGCAG AATGAAAATTTC CCTAATATTT CCTTATTTT TTTCTTACTTT TTTCTTACTT TTTATACAGAG TGCTTAAAAT TTTAAACAGAG TGCTTAAAAT	AATTTAAAA TCATTTTAGAA TCATTTTAGAA AGAGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA TATGTGTTT TCGCTCTGAC CTCCCGGGTT CACCACCACG CCAGCACGG CCAGCATGGT GGATTACAGG AATGTAATCAA ACTCAACCAA CTCAACCAA CTCAACCAA TTCAACACC TAATTTATC ATCAAAACCT TAATTTAGG GTAAGGTGAA TTCCCCAGGT TTAATTTAGG TTAATAAGGAA TTTTAGGTATT AAGCAAAAAT	TAATAGAAGA ACAGAGGGAA AGGAAGATGC GCAACATCGT CAATGGCAAC CTTATTTGGA TTCCTTCTGC AATTCTGATT AGACTTAGAC GCACAGGCTG CATGCATTC CCGGCTAAT CTCGATCTC CATGACCAC TTTTGAACAT TAAGACAGTCG GGAATTCTC TAACGGCTAC TTCCCTGTTC TAACGGCTAC GCTACTCC TTCCCTGTTT AGATCTCC ATTCATTC ATTTATGGTA GATTCATTTC ATTTATGGTA GCAAGTCTTC GCTATTCTC TATTATGGTA GCAAGTCTCT GCTATTCT TTCTTCT TTCTTCT TTCTTCT TTCTTCT TTCTTC	AATAGAAATT CTTTGGGAGA AGGCCTTCAAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCACTG TCCTGCCTCA TTTTTGTATT TGACCTCGTG GGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCAGG GTAAGCCTAG TGAAAACCCC CAAGACTTTA ATAAAACTC TTTGGGTG GAATTTTTCA TTTGAGTGTG GAATTATTT AAGATACTT AAGTAATATT	4200 4260 4320 4380 4560 4620 4620 4740 4860 5040 5100 5120 5280 5340 5460 5520 5580 5760 5820
60 65 70 75	AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG CTTGTGCAGA TTTTCTGTTT CCCCCCCCC GCTCCGATCT GCCTCCGATCT GCCTCCTACT GCTTCTTTCC TTAATAGAG ATCCGCTGC CTTGTTTTCC TGATCATCA GGGAGAAAGA TTGCTGAATT CTAGTGCCGA TAACCATCTC CATATGTAGT CAAGAAAAATA TGTAAATTAAA GGGGTTTGTT TGCTTTTAAA TACAGATGTG TAACAGTGTG TAACAGTGTGTT TGCTTTTAAA TACAGATGTGT TAACAGTGTGT	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AAGAGATTA AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC ACAAACAAG AGAAGGTCTA TTTTTTTTTT	TCTCCAGAGA GATCAAGTTG TTGTACAGTT TAGATATGGGT TAGCTTTTCC ACCTCTTCTC ACCTCTTCTC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGCTCCGC TACAGGCGCC TACAGGCGCC TACAGGCGCC TACAGGAGTC GTCTTCTTT ATCTTGAAAT CAAAATATT CAAAATATT CAAAATATT CAAAGAGCAG GAACATGCTG CAAGGAGCA GAACATGCTG CATGAAAATT CCTTATATGT GCTTTCATTT TTTCTTACTT TTTAAACAGG TGCTTAAAAT ATAAAACAAT	AATTTAAAA TCATTTTAGA AGAGGCAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA TATGTGTTT TCGCTCTGAC CTCCCGGGTT CACCACCACG CCAGGATGAATCAA ACTCAACCAC ACTCAACCAA ACTCAACCAA TCTGAGAAT TCGCTTAATTATC TCAAAACCAC CAGTATTATC ATAAAACCAC TAAATTTAGG TTAATGGGAA TTCCCCAGT TTATAAGGAA TTTTAGTATT AGCAAAAAT ATTAACTTGG	TAATAGAAGA ACAGAGGGAA AGGAAGATGC CCAATGGCAAC CTTATTTGGA TGCAGGATGA AGCATCATTAGAC GCACAGGCTG CATGCCATTC CCCGGCTAAT CTCGATCTC CATGACCAC TTTTGAACAT TAACAGTCC TTAGACAT TAACAGTCC TAACGGCTAC TAACAGCTCC TAACGGCTAC TAACGGCTAC GCTACTCC TAACGGCTAC GCTACTCC TAACGGTAT GGATTTCATTTC	AATAGAAATT CTTTGGGAGA AGGCCTTCAAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTTGTATT TGACCTCCTG GTGAAAGT AGAAGCCAGG GTAAGCCAGG GTAAGCCTCC CAAGACTTTA ATAAAACCTC TATGCCCGAA TATATTTTCA TTTTGAGTGTG GAATTTTTTA AAAATGCAGT GAAGTTACTT AAAAATGCAGT GAAGTTACTT AAGATAATATT TTGCTGTATT	4200 4260 4320 4380 4560 4660 4740 4860 4920 5040 5100 5120 5280 5340 5400 5520 5520 5580 5760 5820 5880
60 65 70 75	AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA CTGGCACTA TTTTCTGTTT CCCCCCCCC GCTCCGATCT GCCTCCTAATAGAG ATCCGCTTGC CTTGTTTCC TGATCATACA GGGAGAAAGA ATCGGCTTGT TCTGTTTT CTAGTGCCGA TTACTGTGTTT CTAGTGCCGA TAACCATCTC TTTGTAATTC CATATGTAGT CATATGTAGT CATATGTAGT CATATGTAGT CATATGTAGT TGAAATATA TGTAAATATA TGTAAATATA TGTAAATATA TGTAAATATA TGCGTTTTT TGCTTTTTATT TGCTTTTTATT TGCATTTTT TGCATTTTTATT TGCATTTTTATT TGCATATATATATATATATATATATATATATATATATATA	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCAC ACAACAAGG AGAAGATCAG ACAAACAAGG AGAAGGTCTA TCTAATTTGA TCTCACTCG TAGCTGGACC ACAGGGTTTC CTCGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TCCTGCTGT TCTTCTTCT TTTTCTCTCA ATTATTTTT TTTTCTCTCA ATTATTATTT TTTTTTTT	TCTCCAGAGA GATCAAGTTG GATCAAGTTC GAATATGGGT TGCCTTTTCC ACCTCTTCC ACCTCTTCC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGCTCCGC TACAGGCGCC TACAGGCGCC TACAGGAGTC GTCTTCTTT ATCTTGAAAT CAAAATATTC AAACAGCAGC CAAAGAGCA GAACATGCTG AATGAAATT TCTTAATTG TTTAATTG TTTAATTG TTTAAACAGAG TGCTTAAATT TTTACTTACTT TTAAACAGAA TATAAAAAT GATGATCACT GATGATCACT	AATTTAAAA TCATTTTAGA AGAGGCAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA TATGTGTTT TCGCTCTGAC CTCCGGGTTT CACCACCACG GGATTACAGG AATGTAATCA ACTCAACCAA ACTCAACCAA ACTCAACCAA ACTCAACCAC TCAGGATTTATC ATCAAAACCAC TCAAAACCAC TAATTTTAGG GTAAGGTGAA TTCCCCCAGT TTATTTAGGAA TTTAGGAAA TTTAGGAAA TTTAGGAAA TTTAGGAAA TTTAGGAAA TTTAGGAAA TTTAGGAAAATT AATGAAAATT	TAATAGAAGA ACAGAGGGAA AGGAAGATGC CCAATGGCAAC CTTATTTGGA TGCAGGATGA AGCATAGAT AGACTTAGAC CATGCATT AGACTTAGAC CATGCATT CCCGGCTAAT CTCGATCTCC CATGACCCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TTACAGGCTAC CTCCTGTTT GGTCTCCC TTCCCTGTTT GGTCTCCC TTCCTGTTT GGATCTCCC TTCCTGTTT GGATCTCCC TTCCTGTTT GGATCTCTCT TAACGGCTAC TTCCTGTTT GGTTCTCTT TATCGATG CAATTCATTTC GTTATTAAGAT TGTATTATAGTAT TGTATTATGGTA TGGATGCATA TGGATGCATA TTTCTTGTTT ATGCTTATGG	AATAGAAATT CTTTGGGAGA AGGCCTTCAAA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTTGTATT TGACCTCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TTAAAACCCC CAAGACTTTA ATAAAACCTC TATGCCCGAA TATATTTCA TTTTGCTGTG GAATTTTTA AAAATGCAGT GAAGTTACTT AGGAGTATT AGGAGTATT AGGAGTATT ATGAGTATT TTGCTGTATT TGCCGTATT AGGAATATTT TTGCTGTATT TGCCGTATT CTGGCATGGA	4200 4260 4380 4500 4560 4680 4740 4860 4920 5100 5160 5280 5340 5400 5520 5580 5700 5760 5760 5780 5780 5780 5780 5780 5780 5780 578
60 65 70 75	AATTTTAAT TTGAATGTAT AAGCAGCCCT GGGCAAGGAG GTTTTTCCTA GTCGGTGAG AAGGAGACAG CTTGTGCAGA GTTGTGCAGA TTTTCTGTTT CCCCCCCCC GCTCCGATCT GCCTCCTGAG TTTAATAGAG ATCGGCTGC TGATCATACG GGGAGAAAGA TTGCTGATTTC TCTAGTGCTGA TAACATACT CTAGTGCTTT TCTAGTGCTTT TCTAGTGCTTT TCTAGTGCTAATTC CATATGTAGTT TCTAGTAGTTTT TCTAGTAGTAGT TAGAGAAATA TGTAAATTA GGGGTTTGTT TGCTTTTTAAA TACAGATGTGT TAGAGATTAA AATAGAAATA	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGA TCTAATTTGA TTTTTTTTTT	TCTCCAGAGA GATCAAGTTG GATTATACAGTC GAATATGGGT TGCCTTTTCC ACCTCTTCTC ACGATCAAAATC CCATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC TACAGGCGCC ACTGTGTTAG CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC CAAAGAGCAA GAACATGCTG AATGAAAATT CCTTATATGT TCTTTACTT TTAAACAGAG TGCTTAAAAT ATAAAACAAT ATAAAACACT TCTTTGTTGT TTCTTTGTTGTT	AATTTAAAA TCATTTTAGA AGAGGCAAC GGGAGTAAAA TTTCTCAGGC TAAGGCATT AATTGTTGTA GCCTATCTAA TATGTGTTT TCGCTCTGAC CCACCACG CCAGGATGAAC GCACACACG CCAGGATGAAC ACTCAACCAC GCAGATGAT ACTCAACCAC GTCTGACCAC GTCTGAGAAT CAGTTTTATCA ATCAAACCT TAATTTAGG GTAAGGTGAA TTCCCCAGT TTATAAGGAA TTTTAGTATT AAGCAAAAAT ATTAACTTGG TTGCAAAAATT ATTAACTTGG TTGCAAAAATT TTAACTTGG TTGCAAAAATT TTAACTTGG	TAATAGAAGA ACGAGGGAA ACGAGGGAA ACGAACATCGT CAATGGCAAC CTTATTTGGA TCCAGGATGA TTCCTTCTGC AATTCTGATT AGACTTAGAC CCAGGCTG CATGCCATTC CCCGGCTAAT CTCGATCTCC CATGACCCAC TTTTGAACAT TAACGGCTAC GCAACTCTC GCTACTCCT TTCCTGTTT GATTCATTC GATTCATTC GATTCATTC GATTCATTC GATTCATTC GATTCATTC GATTCATTTC ATTTATGGTA ACAGCTGTCT GCAGTCTCT GCAGTCTCT GCATTCTTT ACAGCTGCTT TAACGCTTTT TTCTTGTTT TTCTTGTTT TTCTTGTTT TTCTTGTTT TTCTTGTTT TTCTTGTTT TTCTTGTTT	AATAGAAATT CTTTGGGAGA AGGCCTTCAAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTTGTATT TGACCTCGTG GTGTGAAAGT AGAAGCCTAG TGAAACACCC CAAGACTTTA ATAAACCTC TATGCCGAA TATATTTCA TTTGAGTGTG GAATTTTTTA AAAATGCAGT GAAGTTACTT AAGATGATATT TCGCTGTATT TTGGCTGTA CAAGATTTTTA AAAATGCAGT GAAGTTACTT CTGGCATGGA ACAATGTTTC	4200 4260 4320 4380 4560 4660 4740 4860 4920 5040 5100 5120 5280 5340 5400 5520 5520 5580 5760 5820 5880
60 65 70 75	AATTTTAAT TTGAATGTAT AAGCAGCCCT GGGCAAGGAG GTTTTTCCTA GTCGGTGAG AAGGAGACAG CTTGTGCAGA GTTGTGCAGA TTTTCTGTTT CCCCCCCCC GCTCCGATCT GCCTCCTGAG TTTAATAGAG ATCGGCTGC TGATCATACG GGGAGAAAGA TTGCTGATTTC TCTAGTGCTGA TAACATACT CTAGTGCTTT TCTAGTGCTTT TCTAGTGCTTT TCTAGTGCTAATTC CATATGTAGTT TCTAGTAGTTTT TCTAGTAGTAGT TAGAGAAATA TGTAAATTA GGGGTTTGTT TGCTTTTTAAA TACAGATGTGT TAGAGATTAA AATAGAAATA	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGA TCTAATTTGA TTTTTTTTTT	TCTCCAGAGA GATCAAGTTG TTGTACAGTT GAATATGGGT TGCCTTTTCC ACCTCTTCC ACCTCTTCC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGCTCCGC TACAGGCGCC TACAGGCGCC TACAGGAGTC GTCTTCTTT ATCTTGAAAT CAAAATATTC AAACATATC AAACATGCTG AATGAAAT GTTAAACAGA GTCTTCATTT TTTACTTTTTTTTTT	AATTTAAAA TCATTTTAGA AGAGGCAAC GGGAGTAAAA TTTCTCAGGC TAAGGCATT AATTGTTGTA GCCTATCTAA TATGTGTTT TCGCTCTGAC CCACCACG CCAGGATGAAC GCACACACG CCAGGATGAAC ACTCAACCAC GCAGATGAT ACTCAACCAC GTCTGACCAC GTCTGAGAAT CAGTTTTATCA ATCAAACCT TAATTTAGG GTAAGGTGAA TTCCCCAGT TTATAAGGAA TTTTAGTATT AAGCAAAAAT ATTAACTTGG TTGCAAAAATT ATTAACTTGG TTGCAAAAATT TTAACTTGG TTGCAAAAATT TTAACTTGG	TAATAGAAGA ACGAGGGAA ACGAGGGAA ACGAACATCGT CAATGGCAAC CTTATTTGGA TCCAGGATGA TTCCTTCTGC AATTCTGATT AGACTTAGAC CCAGGCTG CATGCCATTC CCCGGCTAAT CTCGATCTCC CATGACCCAC TTTTGAACAT TAACGGCTAC GCAACTCTC GCTACTCCT TTCCTGTTT GATTCATTC GATTCATTC GATTCATTC GATTCATTC GATTCATTC GATTCATTC GATTCATTTC ATTTATGGTA ACAGCTGTCT GCAGTCTCT GCAGTCTCT GCATTCTTT ACAGCTGCTT TAACGCTTTT TTCTTGTTT TTCTTGTTT TTCTTGTTT TTCTTGTTT TTCTTGTTT TTCTTGTTT TTCTTGTTT	AATAGAAATT CTTTGGGAGA AGGCCTTCAAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTTGTATT TGACCTCGTG GTGTGAAAGT AGAAGCCTAG TGAAACACCC CAAGACTTTA ATAAACCTC TATGCCGAA TATATTTCA TTTGAGTGTG GAATTTTTTA AAAATGCAGT GAAGTTACTT AAGATGATATT TCGCTGTATT TTGGCTGTA CAAGATTTTTA AAAATGCAGT GAAGTTACTT CTGGCATGGA ACAATGTTTC	4200 4260 4380 4500 4560 4680 4740 4860 4920 5100 5160 5280 5340 5400 5520 5580 5700 5760 5760 5780 5780 5780 5780 5780 5780 5780 578
60 65 70 75	AATTTTAAT TTGAATGTAT AAGCAGCCA GCGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA CTGGGCACTA TTTTCTTTT CCCCCCCCC GCTCCGATCT GCCTCCTGAG TTTAATAGAG ATCCGCTGC TGATCATACG GGGAGAAAGA TTGCTGAAT ACTGTGTTT CATATGTGCTC TATTTCTTT CATATGTGCTC TATTTAATTC CATATGTAGT CATATGTAGT CATATGTAGT CATATGTAGT CATATGTAGT CATATGTAGT CATATGTAGT TAGAAAATT TACAGATTAA AATAGAAATA AATTAGAAATA	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGA AGCAGTGACTGA TCTAATTTGA TTTTTTTTT TAGCTCACTG TAGCTGGGAC ACTGGGGCTCC TAGATGGGAC ACTCAGGGCA TCCTGCTGT GCTCCTTTAAGTC TAGTTGGATCA ACTCAGGGCA TTCTGCTGT TTTTTCTCTCA ATTATTATA TATTTTTAA CAGAATGTT TAGAATGTT GAAACTTGC GGAGATGTT ATTATTTTAA TTGCAATGTT GAAACTTGC GGAGATGTT ATTATTATA TTGCAATGTT GAAACTTCA ATTATTATA TTGCAATGTT ATTATTATA TTGCAATGTT GAAACTTCA TTGCAATTAT TGCAATTATA TGTCGACATC	TCTCCAGAGA GATCAAGTTG GATTATACAGTC GAATATGGGT TGCCTTTTCC ACCTCTTCTC ACGATCAAAATC CCATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC TACAGGCGCC ACTGTGTTAG CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT CAAAATATTG AACCAGAAGC CAAAGAGCAA GAACATGCTG AATGAAAATT CCTTATATGT TCTTTACTT TTAAACAGAG TGCTTAAAAT ATAAAACAAT ATAAAACACT TCTTTGTTGT TTCTTTGTTGTT	AATTTAAAA TCATTTTAGAA AGAGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA ATTGTTGTT TCGCTCTGAC CTCCCGGGTT CACCACCAC CCAGGATGGT GGATTACAGG AATGTAACAA ACTCAACCAA GTCTGAGAAT CAGTTTATC ATCAAAACCT TAATTTATGG GTAAGGTGAA TTCCCCCAGGT TTAATTAACGAA TTTTAGTATT AAGCAAAAAT ATTAACTGG ATTGCAAAAT ATTAACTGG ATTGCAAAAT ATTAACTGGG ATTGCAAAAT ATTAACTGGG ATTGCAAAAT ATTAACTGGG ATTGTAATGT	TAATAGAAGA ACAGAGGGAA ACGAAGGCAAC CTTATTTGGA TGCAAGGATGA TTCCTTCTGC AATTCTGATT AGACTTAGAC GCACAGGCTG CATGCATTCC CATGCATTCC CATGCATTCC CATGACCAC TTTTGAACAT CTCGATCTC TAACAGCATC TAACAGCTTC TAACAGCTC TTCCTGTT TAACAGCTTC TAACAGCTCT TAACAGCTAC GCTACTCC TTCCTGTTT AGATTATAGAT GCAAGTATTATAGCAATTTA TGCATCTCT TATTATTGTAAAA TGGATGCATA TTCTTGTTTT ATGCTTATTG AATTTTTTTTTT	AATAGAAATT CTTTGGGAGA AGGCCTTCAAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCACTG TCCTGCCTCA TTTTTGTATT TGACCTCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TTAGACTTGA ATAAAACCTC CAAGACTTTA ATAAAACTT TTTGAGTGTG GAATTTTTCA TTTGAGTGTG GAATTATTT AGGATGATT TTGCTGTATT TTGCTGTATT TTGCTGTATT CTGGCATCGA AACAATGTTTC TCACTATTTT	4200 4260 4320 4340 4500 4560 4680 4740 4860 4980 5040 5160 5160 5220 5340 5520 5520 5520 5520 5520 5520 5520 55
60 65 70 75	AATTTTAAT TTGAATGTAT AAGCAGCCA GGGCAAGGAG GGGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG CTGGGCACTA TTTTCTTTT CCCCCCCCC GCTCCGATCT GCCTCCGATC TTTAATAGAG ATCCGCTGC TGATCATACC GGGAGAAGA TTGCTGAAT ACTGTGTTT CATATGTCC CATATGTATT CATATGTAATTC CATATGTAATT TGAATATT TGCTTTAATT TGCTTTAATT TGCTTTAATT TGCTGAATT ACTGTGTTT TGCTTTAATT TGCTGAATT TGCTGTAATT TGCTGTATT TGCTTTTAAA TATAAATTA TACAGATGT TAGAGATTAA AATAGAAATA AATAGAAATA GAAGCACAGC	GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC ACAAACAAGG AGAAGGTCTA TCTAATTTGA TCTAATTTTAT CTGCTCACTG TAGCTGGGAC ACTGGGGAC ACTGGGGAC ACTGGGGAC ACTGGGGTTCC TAATTGGATCA ACTCAGGCA TTCCTGCTGT GCTCACTCCT TAGTTCTTT TTTTCTCTCA ATTATTTTT TATTTTTAAA CAGAATGTTT TAGATCTTT TAGATCTTT TAGATCTTT TAGAATTTTT TAGAATTTTT GAAACTTTCT GAAATTTCTAA ATAATTCTAA ATAATTCTAA ATAATTCTAA ATAATTCTAA ATCAATTATT TGTCGACATC TTTACAGATGT TTTACAGATGT TTTACAGATGT TTTACAGATGT TTTACAGATGT TTTACAGATGT	TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTTCC ACCTCTTCTC ACCTCTTCTC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGCTCCGC TACAGGCGCC ACTGTGTTAG CAAAGTCCTG TACTTCTTTTA ATCTTGAAAT CAAAATATTG AACCAGAAGC TCACTCACCG CAAAGAGCAA GACAAGCTCG AATGAAAAT CCTTATATGT GCTTTCATTT TTTCTTACTT TTTAAACAGAG TGCTTAAAAT ATAAAACAAT CATGATCACT CTTTGTTGTT ATTTAATATAT	AATTTAAAA TCATTTTAGAA TCATTTTAGAA AGAGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA TATGTGTTT TCGCTCTGAC CTCCCGGGTT CACCACCAC CCAGCACG CCAGCATGAT GGATTAATCAA ACTCAACCAA ACTCAACCAC TCAGCAATTATCA ACTCAACCAC TCAGTATCAC AAAACCACCT TAATTTTAGG GTAAGGTGAA TTCCCCAGT TTAATTTAGGT TTATAGGAAAAT AATCAACATG TTGCAAAAAT ATTAATGGGG ATTGTAATGT ATTAATGGGG ATTGTAATGT ATTAATGGGG ATTGTAATGT ATTAATGTGT ATTAATGTGT ATTAATGTGT ATACATATGT	TAATAGAAGA ACAGAGGGAA AGGAAGATGC GCAACATCGT CAATGGCAAC CTTATTTGGA TCCATCTGC AATTCTGATT AGACTTAGAC GCACAGGCTG CATGCATTC CCGGCTAAT CTCGATCTC CATGACCAC TTTTGAACAT AGACAGTCG GGAATTCTC TAACGGCTAC TTCCTGTTT GGATCTCC TTACTGTT GGATCTCT GATCTCT TAACGGCTAC TTTATGGTA GAATGATTT GATTCATTT ATTATTTT ACAGCTGTT TACTTTT ATGCTTATT TGCATCTCT TTCTTTT ATGCTTATTT ATGCTTATTT ATGCTTATTG AATTTTTGTT ATTCTTTTT ATGCTTATTG AATTTTTGTT ATGCTTATTG AATTTTTGG AATATTTTGG AATATATTTTGG AATATATTTTGG AATATATTTTGG AATATATAT	AATAGAAATT CTTTGGGAGA AGGCCTTCAAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTTGTATT TGACCTCGTG GGCTCCCGGC GTGTGAAAGT AGAAGCCTAG TGAAACCCC CAAGACTTTA ATAAAACCCC TATGCCCGA TATATTTTCA TTTGAGTGTG GAATTTTTCA TTTGAGTGTG GAATTATTT AGAATTATT TGAGTATT TTGCTGTATT CTGGCATGGA ACAATGTTTC TCACTATTTT TTGATCGGGT	4200 4260 4320 4340 4500 4620 4740 4860 4740 4860 5040 5160 5220 5340 5520 5520 5580 5760 5760 5880 5760 5880 5900 6060

```
AGGGGTTTTA CTTTGAGGAC CAGTGTAGTC AAGGGAAAAC ATGAGTTAAA AAGAAAAGCA
       GGCARTATTG CAGTCTTGAT TCTGCCACTT ACAGGATAGA TAATGCCTGA ACTTTAATGA CAAGATGATC CAACCATAAA GGTGCTCTGT GCTTCACAGT GAATCTTTTC CCCATGCAGG
                                                                             6300
                                                                             6360
       AGTGTGCTCC CCTACAAACG TTAAGACTGA TCATTTCAAA AATCTATTAG CTATATCAAA
 5
       AGCCTTACAT TTTAATATAG GTTGAACCAA AATTTCAATT CCAGTAACTT CTATTGTAAC
                                                                             6480
       CATTATTTTT GTGTATGTCT TCAAGAATGT TCATTGGATT TTTGTTTGTA ATAGTAAAAT
                                                                             6540
       ACCEGATACA TITCACETET CCTTCAGTAT TGATTTEGTT GAATATTEGG TCATAATGGT
       TGAGAAGCAT GGACACTAGA GCCAGAATGC TTGGATATGA ATCCTGGATC TGTCACTTAC
       TTCTGTGTGA CCTTTGAAAG GCTACTTATT TCCTCTCTTA GCTTTCTCAT TAAAATCAAT
10
       GAACAATGCC AGCCTCATGG GGTTGTTGAA TGATTAAATT AGTTAATATA CCTAAAGTAC
       ATAGAACACT GCCTGCACAT AGTAAAAGAA TTATAAGTGT GAGGTAGTTG GTAAAATTAT
                                                                             6840
       GTAGTTGGAT ATACTACCGA ACAATATCTA ATCTCTTTTT AGGGAAATAA AGTTTGTGCA
       TATATATAAT CCCGAAACAT G
15
       Seq ID NO: 529 Protein sequence
       Protein Accession #: NP 001932.1
                                                                51
                                          31
20
       MAAAGPRRSV RGAVCLHLLL TLVIFSRDGE ACKKVILNVP SKLEADKIIG RVNLEECFRS
       ADLIRSSDPD FRVLNDGSVY TARAVALSDK KRSFTIWLSD KRKQTQKEVT VLLEHQKKVS
                                                                              120
       KTRHTRETVL RRAKRRWAPI PCSMQENSLG PFPLFLQQVE SDAAQNYTVF YSISGRGVDK
                                                                              180
       EPLNLFYIER DTGNLFCTRP VDREEYDVFD LIAYASTADG YSADLPLPLP IRVEDENDNH
       PVFTEAIYNF EVLESSRPGT TVGVVCATDR DEPDTMHTRL KYSILQQTPR SPGLFSVHPS
25
       TGVITTVSHY LDREVVDKYS LIMKVQDMDG QFFGLIGTST CIITVTDSND NAPTFRQNAY
       EAFVEENAFN VEILRIPIED KOLINTANWR VNFTILKGNE NGHFKISTOK ETNEGVLSVV
                                                                              420
       KPLNYEENRO VNLEIGVNNE APFARDIPRV TALNRALVTV HVRDLDEGPE CTPAAQYVRI
                                                                              480
       KENLAVGSKI NGYKAYDPEN RNGNGLRYKK LHDPKGWITI DEISGSIITS KILDREVETP
                                                                              540
       KNELYNITVL AIDKDDRSCT GTLAVNIEDV NDNPPEILQE YVVICKPKMG YTDILAVDPD
                                                                              600
30
       EPVHGAPFYF SLPNTSPEIS RLWSLTKVND TAARLSYQKN AGFQEYTIPI TVKDRAGQAA
                                                                              660
       TKLLRVNLCE CTHPTOCRAT SRSTGVILGK WAILAILLGI ALLFSVLLTL VCGVFGATKG
                                                                              720
       KRFPEDLAQQ NLIISNTEAP GDDRVCSANG FMTQTTNNSS QGFCGTMGSG MKNGGQETIE
                                                                              780
       MMKGGNOTLE SCRGAGHHHT LDSCRGGHTE VDNCRYTYSE WHSFTOPRLG EKLHRCNONE
                                                                              840
       DRMPSQDYVL TYNYEGRGSP AGSVGCCSEK QEEDGLDFLN NLEPKFITLA EACTKR
35
       Seq ID NO: 530 DNA sequence
       Nucleic Acid Accession #: NM_016583.2
       Coding sequence: 72..842
40
                  11
                              21
                                         31
                                                                51
                                                     41
       GGAGTGGGGG AGAGAGAGA GACCAGGACA GCTGCTGAGA CCTCTAAGAA GTCCAGATAC
       TAAGAGCAAA GATGTTTCAA ACTGGGGGCC TCATTGTCTT CTACGGGCTG TTAGCCCAGA
                                                                              120
45
       CCATGGCCCA GTTTGGAGGC CTGCCCGTGC CCCTGGACCA GACCCTGCCC TTGAATGTGA
                                                                              180
       ATCCAGCCT GCCCTTGAGT CCCACAGGTC TTGCAGGAAG CTTGACAAAT GCCCTCAGCA
       ATGGCCTGCT GTCTGGGGGC CTGTTGGGCA TTCTGGAAAA CCTTCCGCTC CTGGACATCC
                                                                              300
       TGAAGCCTGG AGGAGGTACT TCTGGTGGCC TCCTTGGGGG ACTGCTTGGA AAAGTGACGT
       CAGTGATTCC TGGCCTGAAC AACATCATTG ACATAAAGGT CACTGACCCC CAGCTGCTGG
                                                                              420
50
       AACTTGGCCT TGTGCAGAGC CCTGATGGCC ACCGTCTCTA TGTCACCATC CCTCTCGGCA
       TAAAGCTCCA AGTGAATACG CCCCTGGTCG GTGCAAGTCT GTTGAGGCTG GCTGTGAAGC
                                                                              540
       TGGACATCAC TGCAGAAATC TTAGCTGTGA GAGATAAGCA GGAGAGGATC CACCTGGTCC
       TTGGTGACTG CACCCATTCC CCTGGAAGCC TGCAAATTTC TCTGCTTGAT GGACTTGGCC
                                                                              660
       CCCTCCCCAT TCAAGGTCTT CTGGACAGCC TCACAGGGAT CTTGAATAAA GTCCTGCCTG
                                                                              720
55
       AGTTGGTTCA GGGCAACGTG TGCCCTCTGG TCAATGAGGT TCTCAGAGGC TTGGACATCA
                                                                              780
       CCCTGGTGCA TGACATTGTT AACATGCTGA TCCACGGACT ACAGTTTGTC ATCAAGGTCT
                                                                              840
       AGCCTTCCA GGAAGGGGT GGCCTCTGCT GAGCTGCTTC CCAGTGCTCA CAGATGGCTG
GCCCATGTGC TGGAAGATGA CACAGTTGCC TTCTCTCCGA GGAACCTGCC CCCTCTCCTT
                                                                              900
                                                                              960
       TCCCACCAGG CGTGTGTAAC ATCCCATGTG CCTCACCTAA TAAAATGGCT CTTCTTCTGC
60
       AAAAAAAA AAAAAAAAA AAAAAAAA
       Seg ID NO: 531 Protein seguence
       Protein Accession #: NP 057667.1
65
                  11
                              21
                                         31
                                                     41
       MFQTGGLIVF YGLLAQTMAQ FGGLPVPLDQ TLPLNVNPAL PLSPTGLAGS LTNALSNGLL
                                                                               60
       SGGLIGILEN LPLLDILKPG GGTSGGLLGG LLGKVTSVIP GLNNIIDIKV TDPOLLELGL
                                                                              120
       VQSPDGHRLY VTIPLGIKLQ VNTPLVGASL LRLAVKLDIT AEILAVRDKQ ERIHLVLGDC
                                                                              180
70
       THSPGSLQIS LLDGLGPLPI QGLLDSLTGI LNKVLPELVQ GNVCPLVNEV LRGLDITLVH
                                                                             240
       DIVNMLIHGL OFVIKV
       Seq ID NO: 532 DNA sequence
75
       Nucleic Acid Accession #: NM_004363.1
       Coding sequence: 115..2223
                  11
                              21
                                         31
80
       CTCAGGGCAG AGGGAGGAAG GACAGCAGAC CAGACAGTCA CAGCAGCCTT GACAAAACGT
       TCCTGGAACT CAAGCTCTTC TCCACAGAGG AGGACAGAGC AGACAGCAGA GACCATGGAG
                                                                              120
       TCTCCCTCGG CCCCTCCCCA CAGATGGTGC ATCCCCTGGC AGAGGCTCCT GCTCACAGCC
                                                                              180
       TCACTTCTAA CCTTCTGGAA CCCGCCCACC ACTGCCAAGC TCACTATTGA ATCCACGCCG
                                                                              240
       TTCAATGTCG CAGAGGGGAA GGAGGTGCTT CTACTTGTCC ACAATCTGCC CCAGCATCTT
                                                                              300
85
       TTTGGCTACA GCTGGTACAA AGGTGAAAGA GTGGATGGCA ACCGTCAAAT TATAGGATAT
       GTAATAGGAA CTCAACAAGC TACCCCAGGG CCCGCATACA GTGGTCGAGA GATAATATAC
                                                                              420
       CCCAATGCAT CCCTGCTGAT CCAGAACATC ATCCAGAATG ACACAGGATT CTACACCCTA
```

WO 02/086443

PCT/US02/12476 WO 02/086443 CACGTCATAA AGTCAGATCT TGTGAATGAA GAAGCAACTG GCCAGTTCCG GGTATACCCG GAGCTGCCCA AGCCCTCCAT CTCCAGCAAC AACTCCAAAC CCGTGGAGGA CAAGGATGCT 600 GTGGCCTTCA CCTGTGAACC TGAGACTCAG GACGCAACCT ACCTGTGGTG GGTAAACAAT 660 CAGAGCCTCC CGGTCAGTCC CAGGCTGCAG CTGTCCAATG GCAACAGGAC CCTCACTCTA 5 TTCAATGTCA CAAGAAATGA CACAGCAAGC TACAAATGTG AAACCCAGAA CCCAGTGAGT 780 GCCAGGCGCA GTGATTCAGT CATCCTGAAT GTCCTCTATG GCCCGGATGC CCCCACCATT 840 TCCCCTCTAA ACACATCTTA CAGATCAGGG GAAAATCTGA ACCTCTCCTG CCACGCAGCC 900 TCTAACCCAC CTGCACAGTA CTCTTGGTTT GTCAATGGGA CTTTCCAGCA ATCCACCCAA 960 GAGCTCTTTA TCCCCAACAT CACTGTGAAT AATAGTGGAT CCTATACGTG CCAAGCCCAT 1020 10 AACTCAGACA CTGGCCTCAA TAGGACCACA GTCACGACGA TCACAGTCTA TGCAGAGCCA 1080 CCCAAACCCT TCATCACCAG CAACAACTCC AACCCCGTGG AGGATGAGGA TGCTGTAGCC 1140 TTAACCTGTG AACCTGAGAT TCAGAACACA ACCTACCTGT GGTGGGTAAA TAATCAGAGC 1200 CTCCCGGTCA GTCCCAGGCT GCAGCTGTCC AATGACAACA GGACCCTCAC TCTACTCAGT 1260 GTCACAAGGA ATGATGTAGG ACCCTATGAG TGTGGAATCC AGAACGAATT AAGTGTTGAC 1320 15 CACAGCGACC CAGTCATCCT GAATGTCCTC TATGGCCCAG ACGACCCCAC CATTTCCCCC 1380 TCATACACCT ATTACCGTCC AGGGGTGAAC CTCAGCCTCT CCTGCCATGC AGCCTCTAAC 1440 CCACCTGCAC AGTATTCTTG GCTGATTGAT GGGAACATCC AGCAACACAC ACAAGAGCTC TTTATCTCCA ACATCACTGA GAAGAACAGC GGACTCTATA CCTGCCAGGC CAATAACTCA GCCAGTGGCC ACAGCAGGAC TACAGTCAAG ACAATCACAG TCTCTGCGGA GCTGCCCAAG 1620 20 CCCTCCATCT CCAGCAACAA CTCCAAACCC GTGGAGGACA AGGATGCTGT GGCCTTCACC 1680 TGTGAACCTG AGGCTCAGAA CACAACCTAC CTGTGGTGGG TAAATGGTCA GAGCCTCCCA 1740 GTCAGTCCCA GGCTGCAGCT GTCCAATGGC AACAGGACCC TCACTCTATT CAATGTCACA 1800 AGAAATGACG CAAGAGCCTA TGTATGTGGA ATCCAGAACT CAGTGAGTGC AAACCGCAGT 1860 GACCCAGTCA CCCTGGATGT CCTCTATGGG CCGGACACCC CCATCATTTC CCCCCCAGAC 1920 25 TCGTCTTACC TTTCGGGAGC GAACCTCAAC CTCTCCTGCC ACTCGGCCTC TAACCCATCC 1980 CCGCAGTATT CTTGGCGTAT CAATGGGATA CCGCAGCAAC ACACACAGT TCTCTTTATC 2040 GCCAAAATCA CGCCAAATAA TAACGGGACC TATGCCTGTT TTGTCTCTAA CTTGGCTACT 2100 GGCCGCAATA ATTCCATAGT CAAGAGCATC ACAGTCTCTG CATCTGGAAC TTCTCCTGGT 2160 CTCTCAGCTG GGGCCACTGT CGGCATCATG ATTGGAGTGC TGGTTGGGGT TGCTCTGATA 2220 30 TAGCAGCCCT GGTGTAGTTT CTTCATTTCA GGAAGACTGA CAGTTGTTTT GCTTCCTT 2280 TAAAGCATTT GCAACAGCTA CAGTCTAAAA TTGCTTCTTT ACCAAGGATA TTTACAGAAA 2340 AGACTCTGAC CAGAGATCGA GACCATCCTA GCCAACATCG TGAAACCCCA TCTCTACTAA 2400 AAATACAAAA ATGAGCTGGG CTTGGTGGCG CGCACCTGTA GTCCCAGTTA CTCGGGAGGC 2460 TGAGGCAGGA GAATCGCTTG AACCCGGGAG GTGGAGATTG CAGTGAGCCC AGATCGCACC 35 TCTGACCTGT ACTCTTGAAT ACAAGTTTCT GATACCACTG CACTGTCTGA GAATTTCCAA AACTTTAATG AACTAACTGA CAGCTTCATG AAACTGTCCA CCAAGATCAA GCAGAGAAAA TAATTAATTT CATGGGACTA AATGAACTAA TGAGGATTGC TGATTCTTTA AATGTCTTGT TTCCCAGATT TCAGGAAACT TTTTTTCTTT TAAGCTATCC ACTCTTACAG CAATTTGATA 2820 40 AAATATACTT TTGTGAACAA AAATTGAGAC ATTTACATTT TCTCCCTATG TGGTCGCTCC 2880 AGACTTGGGA AACTATTCAT GAATATTTAT ATTGTATGGT AATATAGTTA TTGCACAAGT TCAATAAAAA TCTGCTCTTT GTATAACAGA AAAA Seq ID NO: 533 Protein sequence 45 Protein Accession #: NP_004354.1 31 51 21 MESPSAPPHR WCIPWORLLL TASLLTFWNP PTTAKLTIES TPFNVAEGKE VLLLVHNLPQ 50 HLFGYSWYKG ERVDGNRQII GYVIGTQQAT PGPAYSGREI IYPNASLLIQ NIIQNDTGFY 120 TLHVIKSDLV NEEATGQFRV YPELPKPSIS SNNSKPVEDK DAVAFTCEPE TQDATYLWWV 180 NNQSLPVSPR LQLSNGNRTL TLFNVTRNDT ASYKCETQNP VSARRSDSVI LNVLYGPDAP 240 TISPLNTSYR SGENLNLSCH AASNPPAQYS WFVNGTFQQS TQELFIPNIT VNNSGSYTCQ 300 AHNSDTGLNR TTVTTITVYA EPPKPFITSN NSNPVEDEDA VALTCEPEIQ NTTYLWWVNN 360

55 QSLPVSPRLQ LSNDNRTLTL LSVTRNDVGP YECGIQNELS VDHSDPVILN VLYGPDDPTI 420 SPSYTYYRPG VNLSLSCHAA SNPPAQYSWL IDGNIQQHTQ ELFISNITEK NSGLYTCQAN 480 NSASGHSRTT VKTITVSAEL PKPSISSNNS KPVEDKDAVA FTCEPEAQNT TYLWWVNGQS 540 LPVSPRLOLS NGNRTLTLFN VTRNDARAYV CGIQNSVSAN RSDPVTLDVL YGPDTPIISP 600 PDSSYLSGAN LNLSCHSASN PSPQYSWRIN GIPQQHTQVL FIAKITPNNN GTYACFVSNL 60 ATGRNNSIVK SITVSASGTS PGLSAGATVG IMIGVLVGVA LI

Seq ID NO: 534 DNA sequence Nucleic Acid Accession #: NM_006952.1 Coding sequence: 11..793

65 21 31 AATCCCGACA ATGGCGAAAG ACAACTCAAC TGTTCGTTGC TTCCAGGGCC TGCTGATTTT 60 TGGAAATGTG ATTATTGGTT GTTGCGGCAT TGCCCTGACT GCGGAGTGCA TCTTCTTTGT 120 70 ATCTGACCAA CACAGCCTCT ACCCACTGCT TGAAGCCACC GACAACGATG ACATCTATGG 180 GGCTGCCTGG ATCGGCATAT TTGTGGGCAT CTGCCTCTTC TGCCTGTCTG TTCTAGGCAT 240 TGTAGGCATC ATGAAGTCCA GCAGGAAAAT TCTTCTGGCG TATTTCATTC TGATGTTTAT 300 AGTATATGCC TTTGAAGTGG CATCTTGTAT CACAGCAGCA ACACAACGAG ACTTTTTCAC 360 ACCCAACCTC TTCCTGAAGC AGATGCTAGA GAGGTACCAA AACAACAGCC CTCCAAACAA 420 75 TGATGACCAG TGGAAAAACA ATGGAGTCAC CAAAACCTGG GACAGGCTCA TGCTCCAGGA 480 CAATTGCTGT GGCGTAAATG GTCCATCAGA CTGGCAAAAA TACACATCTG CCTTCCGGAC 540 TGAGAATAAT GATGCTGACT ATCCCTGGCC TCGTCAATGC TGTGTTATGA ACAATCTTAA 600 AGAACCTCTC AACCTGGAGG CTTGTAAACT AGGCGTGCCT GGTTTTTATC ACAATCAGGG 660 CTGCTATGAA CTGATCTCTG GTCCAATGAA CCGACACGCC TGGGGGGTTG CCTGGTTTGG 720 80

ATTTGCCATT CTCTGCTGGA CTTTTTGGGT TCTCCTGGGT ACCATGTTCT ACTGGAGCAG

Seq ID NO: 535 Protein sequence Protein Accession #: NP_008883.1

85

780

	WU 02/	080443			HOL ADLIES	D1777777777							
	MAKDNSTVRC	FOGLLIFGNV	IIGCCGIALT	AECIFFVSDQ YFILMFIVYA	PEVASCITAA	TODDU YGAAW	60 120						
	FLKOMLERYO	NNSPPNNDDO	WKNNGVTKTW	DRLMLQDNCC	GVNGPSDWQK	YTSAFRTENN	180						
_	DADYPWPRQC	CVMNNLKEPL	NLEACKLGVP	GFYHNQGCYE	LISGPMNRHA	WGVAWFGFAI	240						
5		TMFYWSRIEY											
	Seq ID NO: 536 DNA sequence Nucleic Acid Accession #: NM 002638.1												
	Coding sequence: 120473												
10)												
	1	11	21	31	41	51							
	1]	1		COCCOCCA	0001000011							
				TACCACAGAC AGCTCTTAGC			60 120						
15	TGAGGGCCAG	CAGCTTCTTG	ATCGTGGTGG	TGTTCCTCAT	CGCTGGGACG	CTGGTTCTAG	180						
				GTCAAGACAC			240						
				TTTCAGTTAA			300						
	CGCAAGAGCC	AGTCAAAGGT	CCAGTCTCCA	CTAAGCCTGG	CTCCTGCCCC	ATTATCTTGA	360						
20	TCCGGTGCGC	CATGTTGAAT	CCCCCTAACC	GCTGCTTGAA TGGCCTGTTT	AGATACTGAC	TGCCCAGGAA	420 480						
20				AGCTACAGGC			540						
				TCTTCCTCCC			600						
	GAGCTGCCTC	TCTCATCCAC	TTTCCAATAA	A									
25													
4 3	Seq ID NO: 537 Protein sequence Protein Accession #: NP 002629.1												
	riocein Acc		002023.1										
	1	11	21	31	41	51	•						
30	1				 	haincobran							
30				GQDTVKGRVP RCLKDTDCPG			60						
	AGEFVAGEVS		I KCA I LIVI I II	NCDIDIDE: 0	Interested	.u.c. vig							
•	Seq ID NO:	538 DNA sec	quence										
25			n #: NM_001	793.2									
35	Coding sequ	uence: 71:	2560										
	1	11	21	31	41	51							
	Ī	ī	Ī	1	1	1							
40				CCGCCGTCGC			60						
40				TCTCGCGTCT			120						
				CCGGGCGGTC			180 240						
				CACTGATAAT			300						
4.5				GAAGGAAAGG			360						
45				AGATTGGGTG			420						
				ACTGAATCAG			480						
				GCCGGGGGCA GTTGTTGAAT			540 600						
				TGTGTCAGAG			660						
50				CCAGAATGAC			720						
				AGTCCTACCA			780						
				CACCTACAAT			840 900						
				CCGGGAAAAA			960						
55				CTCCACCACC			1020						
				GTTTGACCCC			1080						
				GAGGCTGACG			1140						
				TATCATGGGC GGGCATCCTG			1200 1260						
60				CGTTGAAGTG			1320						
-	GCTGAAGCTC	CCAACCTCCA	CAGCCACCAT	AGTGGTCCAC	GTGGAGGATG	TGAATGAGGC	1380						
				TGAGGTCCAG			1440						
				TGACAAGGAG CATGGACCCA			1500 1560						
65				GTTTGTGAGG			1620						
	GGTCTTGGCC	ATGGACAATG	GAAGCCCTCC	CACCACTGGC	ACGGGAACCC	TTCTGCTAAC	1680						
				CCCTGAGCCC			1740						
				CACGGACAAG AGACATCTAC			1800 1860						
70				GAAGTTCCTG			1920						
				AGAGCAGCTG			1980						
				CCCTGGACCC			2040						
				GTTCCTCCTG CCTACTCCCA			2100 2160						
<i>75</i> .				CGAAGAGGAC			2220						
						TGGCACCAAC	2280						
	CATCATCCCG	ACACCCATGT	ACCGTCCTCG	GCCAGCCAAC	CCAGATGAAA	TCGGCAACTT	2340						
				AGACCCCACA			2400						
80	CITGGIGITC			CGACGCCGCG			2460 2520						
	CALCAGACACA	GACCAAGACC	AACIAI TACTE										
	CTCCGCCTCC GAAGCTGGCA						2580						
	GAAGCTGGCA GGGACCAAAC	GACATGTACG GTCAGGCCAC	GTGGCGGGGA AGAGCATCTC	GGACGACTAG CAAGGGGTCT	GCGGCCTGCC CAGTTCCCCC	TGCAGGGCTG TTCAGCTGAG	2580 2640						
	GAAGCTGGCA GGGACCAAAC GACTTCGGAG	GACATGTACG GTCAGGCCAC CTTGTCAGGA	GTGGCGGGA AGAGCATCTC AGTGGCCGTA	GGACGACTAG CAAGGGGTCT GCAACTTGGC	GCGGCCTGCC CAGTTCCCCC GGAGACAGGC	TGCAGGGCTG TTCAGCTGAG TATGAGTCTG	2640 2700						
	GAAGCTGGCA GGGACCAAAC GACTTCGGAG ACGTTAGAGT	GACATGTACG GTCAGGCCAC CTTGTCAGGA GGTTGCTTCC	GTGGCGGGA AGAGCATCTC AGTGGCCGTA TTAGCCTTTC	GGACGACTAG CAAGGGGTCT GCAACTTGGC AGGATGGAGG	GCGGCCTGCC CAGTTCCCCC GGAGACAGGC AATGTGGGCA	TGCAGGGCTG TTCAGCTGAG TATGAGTCTG GTTTGACTTC	2640 2700 2760						
85	GAAGCTGGCA GGGACCAAAC GACTTCGGAG ACGTTAGAGT AGCACTGAAA	GACATGTACG GTCAGGCCAC CTTGTCAGGA GGTTGCTTCC ACCTCTCCAC	GTGGCGGGA AGAGCATCTC AGTGGCCGTA TTAGCCTTTC CTGGGCCAGG	GGACGACTAG CAAGGGGTCT GCAACTTGGC AGGATGGAGG GTTGCCTCAG	GCGGCCTGCC CAGTTCCCCC GGAGACAGGC AATGTGGGCA AGGCCAAGTT	TGCAGGGCTG TTCAGCTGAG TATGAGTCTG GTTTGACTTC	2640 2700 2760 2820						
	GAAGCTGGCA GGGACCAAAC GACTTCGGAG ACGTTAGAGT AGCACTGAAA TCTTACCTGC	GACATGTACG GTCAGGCCAC CTTGTCAGGA GGTTGCTTCC ACCTCTCCAC CGTAAAATGC	GTGGCGGGA AGAGCATCTC AGTGGCCGTA TTAGCCTTTC CTGGGCCAGG TCAACCCTGT	GGACGACTAG CAAGGGGTCT GCAACTTGGC AGGATGGAGG GTTGCCTCAG GTCCTGGGCC	GCGGCCTGCC CAGTTCCCCC GGAGACAGGC AATGTGGGCA AGGCCAAGTT TGGGCCTGCT	TGCAGGGCTG TTCAGCTGAG TATGAGTCTG GTTTGACTTC TCCAGAAGCC	2640 2700 2760 2820						

```
TTTTTTTAAT GCTATCTTCA AAACGTTAGA GAAAGTTCTT CAAAAGTGCA GCCCAGAGCT 3000
       GCTGGGCCCA CTGGCCGTCC TGCATTTCTG GTTTCCAGAC CCCAATGCCT CCCATTCGGA 3060
       TGGATCTCTG CGTTTTTATA CTGAGTGTGC CTAGGTTGCC CCTTATTTTT TATTTTCCCT
                                                                           3120
       GTTGCGTTGC TATAGATGAA GGGTGAGGAC AATCGTGTAT ATGTACTAGA ACTTTTTAT
 5
       TAAAGAAACT TTTCCCAGAA AAAAA
       Seq ID NO: 539 Protein sequence
       Protein Accession #: NP 001784.2
10
                                                               51
                                         31
       MGLPRGPLAS LLLLQVCWLQ CAASEPCRAV FREAEVTLEA GGAEQEPGQA LGKVFMGCPG
       OEPALFSTON DDFTVRNGET VOERRSLKER NPLKIFPSKR ILRRHKRDWV VAPISVPENG
                                                                            120
       KGPFPQRLNQ LKSNKDRDTK IFYSITGPGA DSPPEGVFAV EKETGWLLLN KPLDREEIAK
                                                                            180
       YELFGHAVSE NGASVEDPMN ISIIVTDQND HKPKFTQDTF RGSVLEGVLP GTSVMQVTAT
15
                                                                            240
       DEDDAIYTYN GVVAYSIHSQ EPKDPHDLMF TIHRSTGTIS VISSGLDREK VPEYTLTIQA
TDMDGDGSTT TAVAVVEILD ANDNAPMFDP QKYEAHVPEN AVGHEVQRLT VTDLDAFNSP
                                                                            300
                                                                            360
       AWRATYLING GDDGDHFTIT THPESNQGIL TTRKGLDFEA KNQHTLYVEV TNEAPFVLKL
                                                                            420
       PTSTATIVVH VEDVNEAPVF VPPSKVVEVQ EGIPTGEPVC VYTAEDPDKE NQKISYRILR
                                                                            480
20
       DPAGWLAMDP DSGQVTAVGT LDREDEQFVR NNIYEVMVLA MDNGSPPTTG TGTLLLTLID
                                                                            540
       VNDHGPVPEP RQITICNQSP VRQVLNITDK DLSPHTSPFQ AQLTDDSDIY WTAEVNEEGD
                                                                            600
       TVVLSLKKPL KQDTYDVHLS LSDHGNKEQL TVIRATVCDC HGHVETCPGP WKGGFILPVL
                                                                            660
       GAVLALLFLL LVLLLLVRKK RKIKEPLLLP EDDTRDNVFY YGEEGGGEED QDYDITQLHR
                                                                            720
       GLEARPEVVL RNDVAPTIIP TPMYRPRPAN PDEIGNFIIE NLKAANTDPT APPYDTLLVF
                                                                            780
25
       DYEGSGSDAA SLSSLTSSAS DQDQDYDYLN EWGSRFKKLA DMYGGGEDD
      Seg ID NO: 540 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 1..672
30
                                                               51
                  11
                                         31
       ATGAGGCTCC AAAGACCCCG ACAGGCCCCG GCGGGTGGGA GGCGCGCGCC CCGGGGCGGG
                                                                             60
       CGGGGCTCCC CCTACCGGCC AGACCCGGGG AGAGGCGCGC GGAGGCTGCG AAGGTTCCAG
                                                                            120
35
       AAGGGCGGGG AGGGGGCGCC GCGCGCTGAC CCTCCCTGGG CACCGCTGGG GACGATGGCG
                                                                            180
       CTGCTCGCCT TGCTGCTGGT CGTGGCCCTA CCGCGGGTGT GGACAGACGC CAACCTGACT
                                                                            240
       GCGAGACAAC GAGATCCAGA GGACTCCCAG CGAACGGACG AGGGTGACAA TAGAGTGTGG
                                                                            300
       TGTCATGTTT GTGAGAGAGA AAACACTTTC GAGTGCCAGA ACCCAAGGAG GTGCAAATGG
                                                                            360
       ACAGAGCCAT ACTGCGTTAT AGCGGCCGTG AAAATATTTC CACGTTTTTT CATGGTTGCG
                                                                            420
40
       AAGCAGTGCT CCGCTGGTTG TGCAGCGATG GAGAGCCCA AGCCAGAGGA GAAGCGGTTT
                                                                            480
       CTCCTGGAAG AGCCCATGCC CTTCTTTTAC CTCAAGTGTT GTAAAATTCG CTACTGCAAT
                                                                            540
       TTAGAGGGGC CACCTATCAA CTCATCAGTG TTCAAAGAAT ATGCTGGGAG CATGGGTGAG
                                                                            600
       AGCTGTGGTG GGCTGTGGCT GGCCATCCTC CTGCTGCTGG CCTCCATTGC AGCCGGCCTC
                                                                            660
45
       Seg ID NO: 541 Protein sequence
       Protein Accession #: Eos sequence
50
       MRLORPROAP AGGRRAPRGG RGSPYRPDPG RGARRLRRFQ KGGEGAPRAD PPWAPLGTMA
       LLALLLVVAL PRVWTDANLT ARORDPEDSQ RTDEGDNRVW CHVCERENTF ECONPRRCKW
       TEPYCVIAAV KIFPRFFMVA KQCSAGCAAM ERPKPEEKRF LLEEPMPFFY LKCCKIRYCN
       LEGPPINSSV FKEYAGSMGE SCGGLWLAIL LLLASIAAGL SLS
55
       Seg ID NO: 542 DNA sequence
       Nucleic Acid Accession #: XM_035292.2
       Coding sequence: 53..1576
60
                             21
                                         31
                                                               51
       GCTCGCTGGG CCGCGGCTCC CGGGTGTCCC AGGCCCGGCC GGTGCGCAGA GCATGGCGGG
                                                                             60
       TGCGGGCCCG AAGCGGCGCG CGCTAGCGGC GCCGGCGGCC GAGGAGAAGG AAGAGGCGCG
                                                                            120
       GGAGAAGATG CTGGCCGCCA AGAGCGCGGA CGGCTCGGCG CCGGCAGGCG AGGGCGAGGG
                                                                            180
65
       CGTGACCCTG CAGCGGAACA TCACGCTGCT CAACGGCGTG GCCATCATCG TGGGGACCAT
                                                                            240
       TATCGGCTCG GGCATCTTCG TGACGCCCAC GGGCGTGCTC AAGGAGGCAG GCTCGCCGGG
                                                                            300
       GCTGGCGCTG GTGGTGTGGG CCGCGTGCGG CGTCTTCTCC ATCGTGGGCG CGCTCTGCTA
                                                                            360
       CGCGGAGCTC GGCACCACCA TCTCCAAATC GGGCGGCGAC TACGCCTACA TGCTGGAGGT
                                                                            420
       CTACGGCTCG CTGCCCGCCT TCCTCAAGCT CTGGATCGAG CTGCTCATCA TCCGGCCTTC
                                                                            480
70
       ATCGCAGTAC ATCGTGGCCC TGGTCTTCGC CACCTACCTG CTCAAGCCGC TCTTCCCCAC
                                                                            540
       CTGCCCGGTG CCCGAGGAGG CAGCCAAGCT CGTGGCCTGC CTCTGCGTGC TGCTGCTCAC
                                                                            600
       GGCCGTGAAC TGCTACAGCG TGAAGGCCGC CACCCGGGTC CAGGATGCCT TTGCCGCCGC
                                                                            660
       CAAGCTCCTG GCCCTGGCCC TGATCATCCT GCTGGGCTTC GTCCAGATCG GAAAGGGTGA
                                                                            720
       TGTGTCCAAT CTAGATCCCA ACTTCTCATT TGAAGGCACC AAACTGGATG TGGGGAACAT
                                                                            780
75
       TGTGCTGGCA TTATACAGCG GCCTCTTTGC CTATGGAGGA TGGAATTACT TGAATTTCGT
                                                                            840
       CACAGAGGAA ATGATCAACC CCTACAGAAA CCTGCCCCTG GCCATCATCA TCTCCCTGCC
                                                                            900
       CATCGTGACG CTGGTGTACG TGCTGACCAA CCTGGCCTAC TTCACCACCC TGTCCACCGA
                                                                            960
       GCAGATGCTG TCGTCCGAGG CCGTGGCCGT GGACTTCGGG AACTATCACC TGGGCGTCAT
                                                                           1020
       GTCCTGGATC ATCCCCGTCT TCGTGGGCCT GTCCTGCTTC GGCTCCGTCA ATGGGTCCCT
                                                                           1080
80
       GTTCACATCC TCCAGGCTCT TCTTCGTGGG GTCCCGGGAA GGCCACCTGC CCTCCATCCT
                                                                           1140
       CTCCATGATC CACCCACAGC TCCTCACCCC CGTGCCGTCC CTCGTGTTCA CGTGTGTGAT
                                                                           1200
       GACGCTGCTC TACGCCTTCT CCAAGGACAT CTTCTCCGTC ATCAACTTCT TCAGCTTCTT
                                                                           1260
       CAACTGGCTC TGCGTGGCCC TGGCCATCAT CGGCATGATC TGGCTGCGCC ACAGAAAGCC
                                                                           1320
       TGAGCTTGAG CGGCCCATCA AGGTGAACCT GGCCCTGCCT GTGTTCTTCA TCCTGGCCTG
85
       CCTCTTCCTG ATCGCCGTCT CCTTCTGGAA GACACCCGTG GAGTGTGGCA TCGGCTTCAC
                                                                           1440
       CATCATCCTC AGCGGGCTGC CCGTCTACTT CTTCGGGGTC TGGTGGAAAA ACAAGCCCAA
                                                                           1500
       GTGGCTCCTC CAGGGCATCT TCTCCACGAC CGTCCTGTGT CAGAAGCTCA TGCAGGTGGT
                                                                          1560
```

CCCCCAGGAG ACATAGCCAG GAGGCCGAGT GGCTGCCGGA GGAGCATGC

PCT/US02/12476

Seq ID NO: 543 Protein sequence Protein Accession #: XP_035292.2 5 51 MAGAGPKRRA LAAPAAEEKE EAREKMLAAK SADGSAPAGE GEGVTLQRNI TLLNGVAIIV ·60 GTIIGSGIFV TPTGVLKEAG SPGLALVVWA ACGVPSIVGA LCYAELGTTI SKSGGDYAYM 120 10 LEVYGSLPAF LKLWIELLII RPSSQYIVAL VFATYLLKPL FPTCPVPEEA AKLVACLCVL 180 LLTAVNCYSV KAATRVQDAF AAAKLLALAL IILLGFVQIG KGDVSNLDPN FSFEGTKLDV GNIVLALYSG LFAYGGWNYL NFVTEEMINP YRNLPLAIII SLPIVTLVYV LTNLAYFTTL STEQMLSSEA VAVDFGNYHL GVMSWIIPVF VGLSCFGSVN GSLFTSSRLF FVGSREGHLP SILSMIHPQL LTPVPSLVFT CVMTLLYAFS KDIFSVINFF SFFNWLCVAL AIIGMIWLRH 420 15 RKPELERPIK VNLALPVFPI LACLFLIAVS PWKTPVECGI GFTIILSGLP VYFFGVWWKN 480 KPKWLLQGIF STTVLCQKLM QVVPQET Seg ID NO: 544 DNA seguence Nucleic Acid Accession #: NM_005268.1 20 Coding sequence: 168..989 11 21 31 TAAAAAGCAA AAGAATTCGC GGCCGCGTCG ACACGGGCTT CCCCGAAAAC CTTCCCCGCT 60 25 TCTGGATATG AAATTCAAGC TGCTTGCTGA GTCCTATTGC CGGCTGCTGG GAGCCAGGAG 120 AGCCCTGAGG AGTAGTCACT CAGTAGCAGC TGACGCGTGG GTCCACCATG AACTGGAGTA 180 TCTTTGAGGG ACTCCTGAGT GGGGTCAACA AGTACTCCAC AGCCTTTGGG CGCATCTGGC 240 TGTCTCTGGT CTTCATCTTC CGCGTGCTGG TGTACCTGGT GACGGCCGAG CGTGTGTGGA ' 300 GTGATGACCA CAAGGACTTC GACTGCAATA CTCGCCAGCC CGGCTGCTCC AACGTCTGCT 360 30 TTGATGAGTT CTTCCCTGTG TCCCATGTGC GCCTCTGGGC CCTGCAGCTT ATCCTGGTGA 420 CATGCCCCTC ACTGCTCGTG GTCATGCACG TGGCCTACCG GGAGGTTCAG GAGAAGAGGC ACCGAGAAGC CCATGGGGAG AACAGTGGGC GCCTCTACCT GAACCCCGGC AAGAAGCGGG GTGGGCTCTG GTGGACATAT GTCTGCAGCC TAGTGTTCAA GGCGAGCGTG GACATCGCCT TTCTCTATGT GTTCCACTCA TTCTACCCCA AATATATCCT CCCTCCTGTG GTCAAGTGCC 35 ACGCAGATCC ATGTCCCAAT ATAGTGGACT GCTTCATCTC CAAGCCCTCA GAGAAGAACA 720 TTTTCACCCT CTTCATGGTG GCCACAGCTG CCATCTGCAT CCTGCTCAAC CTCGTGGAGC 780 TCATCTACCT GGTGAGCAAG AGATGCCACG AGTGCCTGGC AGCAAGGAAA GCTCAAGCCA 840 TGTGCACAGG TCATCACCCC CACGGTACCA CCTCTTCCTG CAAACAAGAC GACCTCCTTT 900 CGGGTGACCT CATCTTCTG GGCTCAGACA GTCATCCTCC TCTCTTACCA GACCGCCCCC 960 40 GAGACCATGT GAAGAAAACC ATCTTGTGAG GGGCTGCCTG GACTGGTCTG GCAGGTTGGG 1020 CCTGGATGGG GAGGCTCTAG CATCTCTCAT AGGTGCAACC TGAGAGTGGG GGAGCTAAGC 1080 CATGAGGTAG GGGCAGGCAA GAGAGAGGAT TCAGACGCTC TGGGAGCCAG TTCCTAGTCC 1140 TCAACTCCAG CCACCTGCCC CAGCTCGACG GCACTGGGCC AGTTCCCCCT CTGCTCTGCA 1200 GCTCGGTTTC CTTTTCTAGA ATGGAAATAG TGAGGGCCAA TGC 45 Seq ID NO: 545 Protein sequence Protein Accession #: NP_005259.1 21 31 50 MNWSIFEGLL SGVNKYSTAF GRIWLSLVFI FRVLVYLVTA ERVWSDDHKD FDCNTRQPGC 60 SNVCFDEFFP VSHVRLWALQ LILVTCPSLL VVMHVAYREV QEKRHREAHG ENSGRLYLNP 120 GKKRGGLWWT YVCSLVFKAS VDIAFLYVFH SFYPKYILPP VVKCHADPCP NIVDCFISKP 180 SEKNIFTLFM VATAAICILL NLVELIYLVS KRCHECLAAR KAQAMCTGHH PHGTTSSCKQ 240 55 DDLLSGDLIF LGSDSHPPLL PDRPRDHVKK TIL Seq ID NO: 546 DNA sequence Nucleic Acid Accession #: NM 002391.1 Coding sequence: 26..457 60 CGGGCGAAGC AGCGCGGGCA GCGAGATGCA GCACCGAGGC TTCCTCCTCC TCACCCTCCT CGCCCTGCTG GCGCTCACCT CCGCGGTCGC CAAAAAGAAA GATAAGGTGA AGAAGGGCGG 120 65 CCCGGGGAGC GAGTGCGCTG AGTGGGCCTG GGGGCCCTGC ACCCCCAGCA GCAAGGATTG CGGCGTGGGT TTCCGCGAGG GCACCTGCGG GGCCCAGACC CAGCGCATCC GGTGCAGGGT GCCCTGCAAC TGGAAGAAGG AGTTTGGAGC CGACTGCAAG TACAAGTTTG AGAACTGGGG TGCGTGTGAT GGGGGCACAG GCACCAAAGT CCGCCAAGGC ACCCTGAAGA AGGCGCGCTA 360 CAATGCTCAG TGCCAGGAGA CCATCCGCGT CACCAAGCCC TGCACCCCCA AGACCAAAGC 420 70 AAAGGCCAAA GCCAAGAAAG GGAAGGGAAA GGACTAGACG CCAAGCCTGG ATGCCAAGGA 480 GCCCCTGGTG TCACATGGGG CCTGGCCACG CCCTCCCTCT CCCAGGCCCG AGATGTGACC 540 CACCAGTGCC TTCTGTCTGC TCGTTAGCTT TAATCAATCA TGCCCTGCCT TGTCCCTCTC 600 ACTCCCCAGC CCCACCCCTA AGTGCCCAAA GTGGGGAGGG ACAAGGGATT CTGGGAAGCT 660 TGAGCCTCCC CCAAAGCAAT GTGAGTCCCA GAGCCCGCTT TTGTTCTTCC CCACAATTCC ATTACTAAGA AACACATCAA ATAAACTGAC TTTTTCCCCC CAATAAAAGC TCTTCTTTT 720 75 780 Seq ID NO: 547 Protein sequence Protein Accession #: NP_002382.1 80 41 MOHRGFLLLT LLALLALTSA VAKKKDKVKK GGPGSECAEW AWGPCTPSSK DCGVGFREGT 60 CGAQTQRIRC RVPCNWKKEF GADCKYKFEN WGACDGGTGT KVRQGTLKKA RYNAQCQETI 85 RVTKPCTPKT KAKAKAKKGK GKD Seg ID NO: 548 DNA sequence

Nucleic Acid Accession #: NM_006783.1 Coding sequence: 1..786

<u>.</u>	1	11	21	31	41	51						
5	ATTCGATTCGG	GGACGCTGCA	CACTTTCATC	 GCCCCTCTCA	ACABACACTC	CACCAGCATC	60					
		GGATCACAGT					120					
	CAGGAAGTGT	GGGGTGACGA	GCAAGAGGAC	TTCGTCTGCA	ACACACTGCA	ACCGGGATGC	180					
10		GCTATGACCA					240					
10		TCTCCACCCC					300					
		ACAAGGTTCAG					360 420					
		TCATCTTTGA					480					
		CCTGGGTGTT					540					
15		GGCCAACAGA					600					
		TGCTTAACGT					660					
		GAGCACAGAC TGAATGAGCT					720 780					
	AGCTAA	TGAATGAGCT	GATTICAGAI	AGIGGICAAA	AIGCAAICAC	AGGITICCCA	780					
20	AGCIAA											
	Seq ID NO: 549 Protein sequence											
	Protein Accession #: NP_006774.1											
	1 11 21 31 41 51											
25	ì	i	ī	ī	ī	ĵ.						
	MDWGTLHTFI	GGVNKHSTSI	GKVWITVIFI	FRVMILVVAA	QEVWGDEQED	FVCNTLQPGC	60					
		VSHIRLWALQ.					120					
		SLWWTYTSSI					180					
30		FTIFMISASV SGQNAITGFP		CAPPPKACEK	KSKKAQIQKN	HPNHALKESK	240					
50	QETHER HEDIO	SOUNTIEFF	3	•								
	Seq ID NO:	550 DNA sec	quence									
		id Accession		571.1								
35	Coding sequ	lence: 99	587									
33	1	11	21	31	41	51						
	Ī	1	ī	1	1	1.						
		GCTCCAGAGC					60					
40		CGTGGCCCTG					120 180					
40		GCTCCCAAAG CATGGCGACA					240					
		GGACAACCTG					300					
		CCTTGGAGAG					360					
A 5		GGCCACGCTG					420					
45		CACCCCCATC					480					
		GATCATGCAG GGACTTGAAA					540 600					
		CAGACTCCCA					660					
5 0		TAACCACAGC					720					
50		CACCTGCACC			CCCTGGGGGC	AGAGTCTCTG	780					
	GCAGAGGTTA	TTAATAAACC	CTTGGAGCAT	G.								
	Seg ID NO:	551 Protein	n sequence									
		cession #: 1										
55												
	1	11	21	31	41	51						
	MOTPOTRODI.	I ELPKLAGTWH	I STANTANAMS	LMATT.KADI.P	UHITSIJ.PTP	FONTETVIAR	60					
						TTPIQSMMCQ	120					
60		EIMQGFIRAF										
		552 DNA sec id Accession		500 1								
		lence: 27		.500.1								
65												
	1	11	21	31	41	51						
	ACTIGCGTCT	CGCCCTCCGG	CCAAGCATGG	GGCTTCCCAG	 GCTGGTCTGC	GCCTTCTTGC	60					
		CTGCTGCTGT					120					
70		GGTGGAGGTG					180					
.*		CAACCTCAGC					240					
		TGTGCGCCAG					300 360					
		GGACAGAGGG				CAGGTCCGCG						
75		TCCGGAGGAG					480					
	GTAAGGAGCC	TGAGGAGGTC	GCTACCTGTG	TAGGGAGGAA	CGGGTACCCC	ATTCCTCAAG	540					
		CAAGAATGGC					600					
		TGTGGAGTCG AGACAAAGAT					660 720					
80		GAAGGAGTCC					780					
	TGTGGCTGGA	AGTGGAGCCC	GTGGGAATGC	TGAAGGAAGG	GGACCGCGTG	GAAATCAGGT	840					
		TGGCAACCCT					900					
		GGAAGAGACA					960 1020					
85		TGGGCGCTAT ACAGGAACTA					1080					
	CCCCTGAGAG						1140					
		CCAGTGGCTG					1200					

```
TTCAGTTGCA TGACCTGAAA CGGGAGGCAG GAGGCGGCTA TCGCTGCGTG GCGTCTGTGC 1260
      CCAGCATACC CGGCCTGAAC CGCACACAGC TGGTCAAGCT GGCCATTTTT GGCCCCCCTT
                                                                         1320
      GGATGGCATT CAAGGAGAG AAGGTGTGGG TGAAAGAGAA TATGGTGTTG AATCTGTCTT
                                                                         1380
      GTGAAGCGTC AGGGCACCCC CGGCCCACCA TCTCCTGGAA CGTCAACGGC ACGGCAAGTG
                                                                         1440
 5
      AACAAGACCA AGATCCACAG CGAGTCCTGA GCACCCTGAA TGTCCTCGTG ACCCCGGAGC
                                                                         1500
      TGTTGGAGAC AGGTGTTGAA TGCACGGCCT CCAACGACCT GGGCAAAAAC ACCAGCATCC
      TCTTCCTGGA GCTGGTCAAT TTAACCACCC TCACACCAGA CTCCAACACA ACCACTGGCC
      TCAGCACTTC CACTGCCAGT CCTCATACCA GAGCCAACAG CACCTCCACA GAGAGAAAGC
      TGCCGGAGCC GGAGAGCCGG GGCGTGGTCA TCGTGGCTGT GATTGTGTGC ATCCTGGTCC TGGCGGTGCT GGGCGCTGTC CTCTATTTCC TCTATAAGAA GGGCAAGCTG CCGTGCAGGC
10
                                                                         1800
      GCTCAGGGAA GCAGGAGATC ACGCTGCCCC CGTCTCGTAA GACCGAACTT GTAGTTGAAG
                                                                         1860
      TTAAGTCAGA TAAGCTCCCA GAAGAGATGG GCCTCCTGCA GGGCAGCAGC GGTGACAAGA
                                                                         1920
      GGGCTCCGGG AGACCAGGGA GAGAAATACA TCGATCTGAG GCATTAGCCC CGAATCACTT
                                                                         1980
      CAGCTCCCTT CCCTGCCTGG ACCATTCCCA GCTCCCTGCT CACTCTTCTC TCAGCCAAAG
                                                                         2040
       CCTCCAAAGG GACTAGAGAG AAGCCTCCTG CTCCCCTCAC CTGCACACCC CCTTTCAGAG
15
                                                                         2100
       GGCCACTGGG TTAGGACCTG AGGACCTCAC TTGGCCCTGC AAGCCGCTTT TCAGGGACCA
                                                                         2160
       GTCCACCACC ATCTCCTCCA CGTTGAGTGA AGCTCATCCC AAGCAAGGAG CCCCAGTCTC
                                                                         2220
       CCGAGCGGGT AGGAGAGTTT CTTGCAGAAC GTGTTTTTTC TTTACACACA TTATGGCTGT
                                                                         2280
       AAATACCTGG CTCCTGCCAG CAGCTGAGCT GGGTAGCCTC TCTGAGCTGG TTTCCTGCCC
                                                                         2340
20
       CAAAGGCTGG CTTCCACCAT CCAGGTGCAC CACTGAAGTG AGGACACACC GGAGCCAGGC
                                                                         2400
       GCCTGCTCAT GTTGAAGTGC GCTGTTCACA CCCGCTCCGG AGAGCACCCC AGCGGCATCC
                                                                         2460
       AGAAGCAGCT GCAGTGTTGC TGCCACCACC CTCCTGCTCG CCTCTTCAAA GTCTCCTGTG
                                                                         2520
       ACATTTTTC TTTGGTCAGA AGCCAGGAAC TGGTGTCATT CCTTAAAAGA TACGTGCCGG
       GGCCAGGTGT GGTGGCTCAC GCCTGTAATC CCAGCACTTT GGGAGGCCGA GGCGGGCGGA
                                                                         2640
25
       TCACAAAGTC AGGACGAGAC CATCCTGGCT AACACGGTGA AACCCTGTCT CTACTAAAAA
       TACAAAAAA AATTAGCTAG GCGTAGTGGT TGGCACCTAT AGTCCCAGCT ACTCGGAAGG
       CTGAAGCAGG AGAATGGTAT GAATCCAGGA GGTGGAGCTT GCAGTGAGCC GAGACCGTGC
       ACGCGTACCT GCGGTGAGGA AGCTGGGCGC TGTTTTCGAG TTCAGGTGAA TTAGCCTCAA
30
       TCCCCGTGTT CACTTGCTCC CATAGCCCTC TTGATGGATC ACGTAAAACT GAAAGGCAGC
                                                                         3000
       GGGGAGCAGA CAAAGATGAG GTCTACACTG TCCTTCATGG GGATTAAAGC TATGGTTATA
                                                                         3060
       TTAGCACCAA ACTTCTACAA ACCAAGCTCA GGGCCCCAAC CCTAGAAGGG CCCAAATGAG
                                                                         3120
       AGAATGGTAC TTAGGGATGG AAAACGGGGC CTGGCTAGAG CTTCGGGTGT GTGTGTCTGT
                                                                         3180
       CTGTGTGTAT GCATACATAT GTGTGTATAT ATGGTTTTGT CAGGTGTGTA AATTTGCAAA
                                                                         3240
35
       3300
       AAAGCTTAAT TGTCCCAGAA AATCATACAT TGCTTTTTTA TTCTACATGG GTACCACAGG
                                                                         3360
       AACCTGGGGG CCTGTGAAAC TACAACCAAA AGGCACACAA AACCGTTTCC AGTTGGCAGC
                                                                         3420
       AGAGATCAGG GGTTACCTCT GCTTCTGAGC AAATGGCTCA AGCTCTACCA GAGCAGACAG
                                                                         3480
       CTACCCTACT TTTCAGCAGC AAAACGTCCC GTATGACGCA GCACGAAGGG CCTGGCAGGC 3540
40
       TGTTAGCAGG AGCTATGTCC CTTCCTATCG TTTCCGTCCA CTT
       Seq ID NO: 553 Protein sequence
       Protein Accession #: NP 006491.1
45
                                        31
                                                   41
       GLPRLVCAFL LAACCCCPRV AGVPGEAEQP APELVEVEVG STALLKCGLS QSQGNLSHVD
       WFSVHKEKRT LIFRVROGOG OSEPGEYEOR LSLQDRGATL ALTQVTPQDE RIFLCQGKRP
       RSOEYRIOLR VYKAPEEPNI QVNPLGIPVN SKEPEEVATC VGRNGYPIPQ VIWYKNGRPL
50
       KEEKNRYHIO SSOTVESSGL YTLOSILKAO LVKEDKDAOF YCELNYRLPS GNHMKESREV
       TVPVFYPTEK VWLEVEPVGM LKEGDRVEIR CLADGNPPPH FSISKQNPST REAEEETTND
       NGVLVLEPAR KEHSGRYECQ AWNLDTMISL LSEPQELLVN YVSDVRVSPA APERQEGSSL
                                                                          360
       TLTCEAESSQ DLEFQWLREE TDQVLERGPV LQLHDLKREA GGGYRCVASV PSIPGLNRTQ
                                                                          420
       LVKLAIFGPP WMAFKERKVW VKENMVLNLS CEASGHPRPT ISWNVNGTAS EQDQDPQRVL
                                                                          480
55
       STLNVLVTPE LLETGVECTA SNDLGKNTSI LFLELVNLTT LTPDSNTTTG LSTSTASPHT
                                                                          540
       RANSTSTERK LPEPESRGVV IVAVIVCILV LAVLGAVLYF LYKKGKLPCR RSGKQEITLP
       PSRKTELVVE VKSDKLPEEM GLLQGSSGDK RAPGDQGEKY IDLRH
       Seq ID NO: 554 DNA sequence
60
       Nucleic Acid Accession #: NM_003183.3
       Coding sequence: 165..2639
                             21
                                        31
                                                   41
                                                             51
65
       TCGAGCCTGG CGGTAGAATC TTCCCAGTAG GCGGCGCGGG AGGGAAAAGA GGATTGAGGG
       GCTAGGCCGG GCGGATCCCG TCCTCCCCCG ATGTGAGCAG TTTTCCGAAA CCCCGTCAGG
                                                                          120
       CGAAGGCTGC CCAGAGAGGT GGAGTCGGTA GCGGGGCCGG GAACATGAGG CAGTCTCTCC
                                                                          180
       TATTCCTGAC CAGCGTGGTT CCTTTCGTGC TGGCGCCGCG ACCTCCGGAT GACCCGGGCT
                                                                          240
       TCGGCCCCCA CCAGAGACTC GAGAAGCTTG ATTCTTTGCT CTCAGACTAC GATATTCTCT
                                                                          300
70
       CTTTATCTAA TATCCAGCAG CATTCGGTAA GAAAAAGAGA TCTACAGACT TCAACACATG
                                                                          360
       TAGAAACACT ACTAACTTTT TCAGCTTTGA AAAGGCATTT TAAATTATAC CTGACATCAA
                                                                          420
       GTACTGAACG TTTTTCACAA AATTTCAAGG TCGTGGTGGT GGATGGTAAA AACGAAAGCG
                                                                          480
       AGTACACTGC AAAATGGCAG GACTTCTTCA CTGGACACGT GGTTGGTGAG CCTGACTCTA
                                                                          540
       GGGTTCTAGC CCACATAAGA GATGATGATG TTATAATCAG AATCAACACA GATGGGGCCG
                                                                          600
75.
       AATATAACAT AGAGCCACTT TGGAGATTTG TTAATGATAC CAAAGACAAA AGAATGTTAG
       TTTATAAATC TGAAGATATC AAGAATGTTT CACGTTTGCA GTCTCCAAAA GTGTGTGGTT
                                                                          720
       ATTTAAAAGT GGATAATGAA GAGTTGCTCC CAAAAGGGTT AGTAGACAGA GAACCACCTG
       AAGAGCTTGT TCATCGAGTG AAAAGAAGAG CTGACCCAGA TCCCATGAAG AACACGTGTA
                                                                          840
       AATTATTGGT GGTAGCAGAT CATCGCTTCT ACAGATACAT GGGCAGAGGG GAAGAGAGTA
80
       CAACTACAAA TTACTTAATA GAGCTAATTG ACAGAGTTGA TGACATCTAT CGGAACACTT
                                                                          960
       CATGGGATAA TGCAGGTTTT AAAGGCTATG GAATACAGAT AGAGCAGATT CGCATTCTCA
                                                                         1020
       AGTCTCCACA AGAGGTAAAA CCTGGTGAAA AGCACTACAA CATGGCAAAA AGTTACCCAA
                                                                         1080
       ATGAAGAAAA GGATGCTTGG GATGTGAAGA TGTTGCTAGA GCAATTTAGC TTTGATATAG
                                                                         1140
       CTGAGGAAGC ATCTAAAGTT TGCTTGGCAC ACCTTTTCAC ATACCAAGAT TTTGATATGG
                                                                         1200
85
       GAACTCTTGG ATTAGCTTAT GTTGGCTCTC CCAGAGCAAA CAGCCATGGA GGTGTTTGTC
                                                                         1260
       CAAAGGCTTA TTATAGCCCA GTTGGGAAGA AAAATATCTA TTTGAATAGT GGTTTGACGA
                                                                         1320
       GCACAAAGAA TTATGGTAAA ACCATCCTTA CAAAGGAAGC TGACCTGGTT ACAACTCATG
```

WO 02/086443

TGAAGAAAAG GATGCTTGGG ATGTGAAGAT GTTGCTAGAG CAATTTAGCT TTGATATAGC

TGAGGAAGCA TCTAAAGTTT GCTTGGCACA CCTTTTCACA TACCAAGATT TTGATATGGG

AACTCTTGGA TTAGCTTATG TTGGCTCTCC CAGAGCAAAC AGCCATGGAG GTGTTTGTCC

AAAGGCTTAT TATAGCCCAG TTGGGAAGAA AAATATCTAT TTGAATAGTG GTTTGACGAG

CACAAAGAAT TATGGTAAAA CCATCCTTAC AAAGGAAGCT GACCTGGTTA CAACTCATGA

ATTGGGACAT AATTTTGGAG CAGAACATGA TCCGGATGGT CTAGCAGAAT GTGCCCCGAA

85

1140

1200

1260

1320

1380

```
TGAGGACCAG GGAGGGAAAT ATGTCATGTA TCCCATAGCT GTGAGTGGCG ATCACGAGAA
      CAATAAGATG TTTTCAAACT GCAGTAAACA ATCAATCTAT AAGACCATTG AAAGTAAGGC
                                                                          1560
      CCAGGAGTGT TTTCAAGAAC GCAGCAATAA AGTTTGTGGG AACTCGAGGG TGGATGAAGG
       AGAAGAGTGT GATCCTGGCA TCATGTATCT GAACAACGAC ACCTGCTGCA ACAGCGACTG
 5
       CACGTTGAAG GAAGGTGTCC AGTGCAGTGA CAGGAACAGT CCTTGCTGTA AAAACTGTCA
                                                                          1740
       GTTTGAGACT GCCCAGAAGA AGTGCCAGGA GGCGATTAAT GCTACTTGCA AAGGCGTGTC
                                                                          1800
       CTACTGCACA GGTAATAGCA GTGAGTGCCC GCCTCCAGGA AATGCTGAAG ATGACACTGT
                                                                          1860
       TTGCTTGGAT CTTGGCAAGT GTAAGGATGG GAAATGCATC CCTTTCTGCG AGAGGGAACA
                                                                          1920
       GCAGCTGGAG TCCTGTGCAT GTAATGAAAC TGACAACTCC TGCAAGGTGT GCTGCAGGGA
                                                                          1980
10
       CCTTTCCGGC CGCTGTGTGC CCTATGTCGA TGCTGAACAA AAGAACTTAT TTTTGAGGAA
                                                                          2040
       AGGAAAGCCC TGTACAGTAG GATTTTGTGA CATGAATGGC AAATGTGAGA AACGAGTACA
                                                                          2100
       GGATGTAATT GAACGATTTT GGGATTTCAT TGACCAGCTG AGCATCAATA CTTTTGGAAA
                                                                          2160
       GTTTTTAGCA GACAACATCG TTGGGTCTGT CCTGGTTTTC TCCTTGATAT TTTGGATTCC
                                                                          2220
       TTTCAGCATT CTTGTCCATT GTGTGTAACG TCGAAATGCT GAGCAGCATG GATTCTGCAT
                                                                          2280
15
       CGGTTCGCAT TATCAAACCC TTTCCTGCGC CCCAGACTCC AGGCCGCCTG CAGCCTGCCC
                                                                          2340
       CTGTGATCCC TTCGGCGCCA GCAGCTCCAA AACTGGACCA CCAGAGAATG GACACCATCC
                                                                          2400
       AGGAAGACCC CAGCACAGAC TCACATATGG ACGAGGATGG GTTTGAGAAG GACCCCTTCC
                                                                          2460
       CAAATAGCAG CACAGCTGCC AAGTCATTTG AGGATCTCAC GGACCATCCG GTCACCAGAA
                                                                          2520
       GTGAAAAGGC TGCCTCCTTT AAACTGCAGC GTCAGAATCG TGTTGACAGC AAAGAAACAG
                                                                          2580
20
       AGTGCTAATT TAGTTCTCAG CTCTTCTGAC TTAAGTGTGC AAAATATTTT TATAGATTTG
       ACCTACAATC AATCACAGCT TATATTTTGT GAAGACTGGG AAGTGACTTA GCAGATGCTG
       GTCATGTGTT TGAACTTCCT GCAGGTAAAC AGTTCTTGTG TGGTTTGGCC CTTCTCCTTT
                                                                          2760
       TGAAAAGGTA AGGTGAAGGT GAATCTAGCT TATTTTGAGG CTTTCAGGTT TTAGTTTTTA
                                                                          2820
       AAATATCTTT TGACCTGTGG TGCAAAAGCA GAAAATACAG CTGGATTGGG TTATGAGTAT
                                                                          2880
25
       TTACGTTTTT GTAAATTAAT CTTTTATATT GATAACAGGC ACTGACTAGG GAAATGATCA
                                                                          2940
       GTTTTTTTT ATACACTGTA ATGAACCGCT GAATATGAAG CATTTGGCAT TTATTTGTGA
                                                                          3000
       3060
       GATAAATTTA GTATACATTG TATCTAAATT GTGGGTCTAT TTCTAGTTAT TACCCAGAGT
                                                                          3120
       TTTTATGTAG CAGGGAAAAT ATATATCTAA ATTTAGAAAT CATTTGGGTT AATATGGCTC
                                                                          3180
30
       TTCATAATTC TAAGACTAAT GCTCAGAACC TAACCACTAC CTTACAGTGA GGGCTATACA
                                                                          3240
       TGGTAGCCAG TTGAATTTAT GGAATCTACC AACTGTTTAG GGCCCTGATT TGCTGGGCAG
                                                                          3300
       TTTTTCTGTA TTTTATAAGT ATCTTCATGT ATCCCTGTTA CTGATAGGGA TACATGTCTT
                                                                          3360
       AGAAAATTCA CTATTGGCTG GGAGTGGTGG CTCATGCCTG TAATCCCAGC ACTTGGAGAG
                                                                          3420
        3421 GCTGAGGTTG CGCCACTACA CTCCAGCCTG GGTGACAGAG TGAGATCTGC CTC
35
       Seq ID NO: 557 Protein sequence
       Protein Accession #: NP_068604.1
                                        31
40
       MRQSLLFLTS VVPFVLAPRP PDDPGFGPHQ RLEKLDSLLS DYDILSLSNI QQHSVRKRDL
       OTSTHVETLL TFSALKRHFK LYLTSSTERF SQNFKVVVVD GKNESEYTVK WQDFFTGHVV
                                                                           120
       GEPDSRVLAH IRDDDVIIRI NTDGAEYNIE PLWRFVNDTK DKRMLVYKSE DIKNVSRLQS
       PKVCGYLKVD NEELLPKGLV DREPPEELVH RVKRRADPDP MKNTCKLLVV ADHRFYRYMG
45
       RGEESTTTNY LIELIDRVDD IYRNTSWDNA GFKGYGIQIE QIRILKSPQE VKPGEKHYNM
       AKSYPNEEKD AWDVKMLLEQ FSFDIAEEAS KVCLAHLFTY QDFDMGTLGL AYVGSPRANS
                                                                           360
       HGGVCPKAYY SPVGKKNIYL NSGLTSTKNY GKTILTKEAD LVTTHELGHN FGAEHDPDGL
       AECAPNEDQG GKYVMYPIAV SGDHENNKMF SNCSKQSIYK TIESKAQECF QERSNKVCGN
                                                                           480
       SRVDEGEECD PGIMYLNNDT CONSDCTLKE GVQCSDRNSP CCKNCQFETA QKKCQEAINA
                                                                           540
50
       TCKGVSYCTG NSSECPPPGN AEDDTVCLDL GKCKDGKCIP FCEREQQLES CACNETDNSC
                                                                           600
       KVCCRDLSGR CVPYVDAEOK NLFLRKGKPC TVGFCDMNGK CEKRVQDVIE RFWDFIDQLS
                                                                           660
       INTFGKFLAD NIVGSVLVFS LIFWIPFSIL VHCV
       Seq ID NO: 558 DNA sequence
55
       Nucleic Acid Accession #: NM 004994.1
       Coding sequence: 20..2143
                                        31
60
       AGACACCTCT GCCCTCACCA TGAGCCTCTG GCAGCCCCTG GTCCTGGTGC TCCTGGTGCT
                                                                            60
       GGGCTGCTGC TTTGCTGCCC CCAGACAGCG CCAGTCCACC CTTGTGCTCT TCCCTGGAGA
                                                                           120
       CCTGAGAACC AATCTCACCG ACAGGCAGCT GGCAGAGGAA TACCTGTACC GCTATGGTTA
                                                                           180
       CACTCGGGTG GCAGAGATGC GTGGAGAGTC GAAATCTCTG GGGCCTGCGC TGCTGCTTCT
                                                                           240
       CCAGAAGCAA CTGTCCCTGC CCGAGACCGG TGAGCTGGAT AGCGCCACGC TGAAGGCCAT
                                                                           300
65
       GCGAACCCCA CGGTGCGGGG TCCCAGACCT GGGCAGATTC CAAACCTTTG AGGGCGACCT
                                                                           360
       CAAGTGGCAC CACCACAACA TCACCTATTG GATCCAAAAC TACTCGGAAG ACTTGCCGCG
                                                                           420
       GGCGGTGATT GACGACGCCT TTGCCCGCGC CTTCGCACTG TGGAGCGCGG TGACGCCGCT
                                                                           480
       CACCTTCACT CGCGTGTACA GCCGGGACGC AGACATCGTC ATCCAGTTTG GTGTCGCGGA
                                                                           540
       GCACGGAGAC GGGTATCCCT TCGACGGGAA GGACGGGCTC CTGGCACACG CCTTTCCTCC
                                                                           600
70
       TGGCCCCGGC ATTCAGGGAG ACGCCCATTT CGACGATGAC GAGTTGTGGT CCCTGGGCAA
       GGGCGTCGTG GTTCCAACTC GGTTTGGAAA CGCAGATGGC GCGGCCTGCC ACTTCCCCTT
                                                                           720
       CATCTTCGAG GGCCGCTCCT ACTCTGCCTG CACCACCGAC GGTCGCTCCG ACGCCTTGCC
       CTGGTGCAGT ACCACGGCCA ACTACGACAC CGACGACCGG TTTGGCTTCT GCCCCAGCGA
       GAGACTCTAC ACCCGGGACG GCAATGCTGA TGGGAAACCC TGCCAGTTTC CATTCATCTT
75
       CCAAGGCCAA TCCTACTCCG CCTGCACCAC GGACGGTCGC TCCGACGGCT ACCGCTGGTG
       CGCCACCACC GCCAACTACG ACCGGGACAA GCTCTTCGGC TTCTGCCCGA CCCGAGCTGA
                                                                          1020
       CTCGACGGTG ATGGGGGGCA ACTCGGCGGG GGAGCTGTGC GTCTTCCCCT TCACTTTCCT
                                                                          1080
       GGGTAAGGAG TACTCGACCT GTACCAGCGA GGGCCGCGGA GATGGGCGCC TCTGGTGCGC
                                                                          1140
       TACCACCTCG AACTTTGACA GCGACAAGAA GTGGGGCTTC TGCCCGGACC AAGGATACAG
                                                                          1200
80
       TTTGTTCCTC GTGGCGGCGC ATGAGTTCGG CCACGCGCTG GGCTTAGATC ATTCCTCAGT
                                                                          1260
       GCCGGAGGCG CTCATGTACC CTATGTACCG CTTCACTGAG GGGCCCCCCT TGCATAAGGA
                                                                          1320
       CGACGTGAAT GGCATCCGGC ACCTCTATGG TCCTCGCCCT GAACCTGAGC CACGGCCTCC
                                                                          1380
       AACCACCACC ACACCGCAGC CCACGGCTCC CCCGACGGTC TGCCCCACCG GACCCCCCAC
                                                                          1440
       TGTCCACCC TCAGAGCGCC CCACAGCTGG CCCCACAGGT CCCCCCTCAG CTGGCCCCAC
                                                                          1500
85
       AGGTCCCCC ACTGCTGGCC CTTCTACGGC CACTACTGTG CCTTTGAGTC CGGTGGACGA
TGCCTGCAAC GTGAACATCT TCGACGCCAT CGCGGAGATT GGGAACCAGC TGTATTTGTT
                                                                          1560
                                                                          1620
       CAAGGATGGG AAGTACTGGC GATTCTCTGA GGGCAGGGGG AGCCGGCCGC AGGGCCCCTT
                                                                          1680
```

```
CCTTATCGCC GACAAGTGGC CCGCGCTGCC CCGCAAGCTG GACTCGGTCT TTGAGGAGCC
        GCTCTCCAAG AAGCTTTCT TCTTCTCTGG GCGCCAGGTG TGGGTGTACA CAGGCGCGTC
                                                                            1800
        GGTGCTGGGC CCGAGGCGTC TGGACAAGCT GGGCCTGGGA GCCGACGTGG CCCAGGTGAC
                                                                            1860
        CGGGGCCCTC CGGAGTGGCA GGGGGAAGAT GCTGCTGTTC AGCGGGCGGC GCCTCTGGAG
                                                                            1920
        GTTCGACGTG AAGGCGCAGA TGGTGGATCC CCGGAGCGCC AGCGAGGTGG ACCGGATGTT
                                                                            1980
        CCCCGGGGTG CCTTTGGACA CGCACGACGT CTTCCAGTAC CGAGAGAAAG CCTATTTCTG
                                                                            2040
        CCAGGACCGC TTCTACTGGC GCGTGAGTTC CCGGAGTGAG TTGAACCAGG TGGACCAAGT
                                                                            2100
        GGGCTACGTG ACCTATGACA TCCTGCAGTG CCCTGAGGAC TAGGGCTCCC GTCCTGCTTT
                                                                            2160
        GCAGTGCCAT GTAAATCCCC ACTGGGACCA ACCCTGGGGA AGGAGCCAGT TTGCCGGATA
                                                                            2220
10
        CAAACTGGTA TTCTGTTCTG GAGGAAAGGG AGGAGTGGAG GTGGGCTGGG CCCTCTCTTC 2280
        TCACCTTTGT TTTTTGTTGG AGTGTTTCTA ATAAACTTGG ATTCTCTAAC CTTT
        Seq ID NO: 559 Protein sequence
        Protein Accession #: NP_004985.1
15
                                         31
                                                     41
        MSLWQPLVLV LLVLGCCFAA PRQRQSTLVL FPGDLRTNLT DRQLAEEYLY RYGYTRVAEM
        RGESKSLGPA LLLLQKQLSL PETGELDSAT LKAMRTPRCG VPDLGRFQTF EGDLKWHHHN
                                                                             120
20
        ITYWIQNYSE DLPRAVIDDA FARAFALWSA VTPLTFTRVY SRDADIVIQF GVAEHGDGYP
                                                                             180
        FDGKDGLLAH AFPPGPGIQG DAHFDDDELW SLGKGVVVPT RFGNADGAAC HFFFIFEGRS
                                                                             240
        YSACTTDGRS DGLPWCSTTA NYDTDDRFGF CPSERLYTRD GNADGKPCQF PFIFQGQSYS
                                                                             300
        ACTTDGRSDG YRWCATTANY DRDKLFGFCP TRADSTVMGG NSAGELCVFP FTFLGKEYST
                                                                             360
        CTSEGRGDGR LWCATTSNFD SDKKWGFCPD QGYSLFLVAA HEFGHALGLD HSSVPEALMY
                                                                             420
25
        PMYRFTEGPP LHKDDVNGIR HLYGPRPEPE PRPPTTTTPQ PTAPPTVCPT GPPTVHPSER
                                                                             480
        PTAGPTGPPS AGPTGPPTAG PSTATTVPLS PVDDACNVNI FDAIAEIGNQ LYLFKDGKYW
                                                                             540
        RFSEGRGSRP QGPFLIADKW PALPRKLDSV FEEPLSKKLF FFSGRQVWVY TGASVLGPRR
                                                                             600
        LDKLGLGADV AQVTGALRSG RGKMLLFSGR RLWRFDVKAQ MVDPRSASEV DRMFPGVPLD
                                                                             660
        THOVFQYREK AYFCODRFYW RVSSRSELNQ VDQVGYVTYD ILQCPED
30
        Seq ID NO: 560 DNA sequence
       Nucleic Acid Accession #: NM_000213.1
       Coding sequence: 127..5385
35
                  11
                              21
                                         31
                                                    41
                                                               51
        CGCCCGCGCG CTGCAGCCCC ATCTCCTAGC GGCAGCCCAG GCGCGGAGGG AGCGAGTCCG
       CCCCGAGGTA GGTCCAGGAC GGGCGCACAG CAGCAGCCGA GGCTGGCCGG GAGAGGGAGG
       AAGAGGATGG CAGGGCCACG CCCCAGCCCA TGGGCCAGGC TGCTCCTGGC AGCCTTGATC
40
       AGCGTCAGCC TCTCTGGGAC CTTGGCAAAC CGCTGCAAGA AGGCCCCAGT GAAGAGCTGC
                                                                             240
       ACGGAGTGTG TCCGTGTGGA TAAGGACTGC GCCTACTGCA CAGACGAGAT GTTCAGGGAC
       CGGCGCTGCA ACACCCAGGC GGAGCTGCTG GCCGCGGGCT GCCAGCGGGA GAGCATCGTG
                                                                             360
       GTCATGGAGA GCAGCTTCCA AATCACAGAG GAGACCCAGA TTGACACCAC CCTGCGGCGC
                                                                             420
       AGCCAGATGT CCCCCCAAGG CCTGCGGGTC CGTCTGCGGC CCGGTGAGGA GCGGCATTTT
                                                                             480
45
       GAGCTGGAGG TGTTTGAGCC ACTGGAGAGC CCCGTGGACC TGTACATCCT CATGGACTTC
                                                                             540
       TCCAACTCCA TGTCCGATGA TCTGGACAAC CTCAAGAAGA TGGGGCAGAA CCTGGCTCGG
                                                                             600
       GTCCTGAGCC AGCTCACCAG CGACTACACT ATTGGATTTG GCAAGTTTGT GGACAAAGTC
                                                                             660
       AGCGTCCCGC AGACGGACAT GAGGCCTGAG AAGCTGAAGG AGCCCTGGCC CAACAGTGAC
                                                                             720
       CCCCCCTTCT CCTTCAAGAA CGTCATCAGC CTGACAGAAG ATGTGGATGA GTTCCGGAAT
                                                                             780
50
       AAACTGCAGG GAGAGCGGAT CTCAGGCAAC CTGGATGCTC CTGAGGGCGG CTTCGATGCC
                                                                             840
       ATCCTGCAGA CAGCTGTGTG CACGAGGGAC ATTGGCTGGC GCCCGGACAG CACCCACCTG
                                                                            900
       CTGGTCTTCT CCACCGAGTC AGCCTTCCAC TATGAGGCTG ATGGCGCCAA CGTGCTGGCT
                                                                            960
       GGCATCATGA GCCGCAACGA TGAACGGTGC CACCTGGACA CCACGGGCAC CTACACCCAG
                                                                           1020
       TACAGGACAC AGGACTACCC GTCGGTGCCC ACCCTGGTGC GCCTGCTCGC CAAGCACAAC
                                                                           1080
55
       ATCATCCCCA TCTTTGCTGT CACCAACTAC TCCTATAGCT ACTACGAGAA GCTTCACACC
                                                                           1140
       TATTTCCCTG TCTCCTCACT GGGGGTGCTG CAGGAGGACT CGTCCAACAT CGTGGAGCTG
                                                                           1200
       CTGGAGGAGG CCTTCAATCG GATCCGCTCC AACCTGGACA TCCGGGCCCT AGACAGCCCC
                                                                           1260
       CGAGGCCTTC GGACAGAGGT CACCTCCAAG ATGTTCCAGA AGACGAGGAC TGGGTCCTTT
                                                                           1320
       CACATCCGGC GGGGGAAGT GGGTATATAC CAGGTGCAGC TGCGGGCCCT TGAGCACGTG
                                                                           1380
60
       GATGGGACGC ACGTGTGCCA GCTGCCGGAG GACCAGAAGG GCAACATCCA TCTGAAACCT
                                                                           1440
       TCCTTCTCCG ACGGCCTCAA GATGGACGCG GGCATCATCT GTGATGTGTG CACCTGCGAG
                                                                           1500
       CTGCAAAAAG AGGTGCGGTC AGCTCGCTGC AGCTTCAACG GAGACTTCGT GTGCGGACAG
                                                                           1560
       TGTGTGTGCA GCGAGGGCTG GAGTGGCCAG ACCTGCAACT GCTCCACCGG CTCTCTGAGT
                                                                           1620
       GACATTCAGC CCTGCCTGCG GGAGGGCGAG GACAAGCCGT GCTCCGGCCG TGGGGAGTGC
65
       CAGTGCGGGC ACTGTGTGT CTACGGCGAA GGCCGCTACG AGGGTCAGTT CTGCGAGTAT
                                                                           1740
       GACAACTTCC AGTGTCCCCG CACTTCCGGG TTCCTCTGCA ATGACCGAGG ACGCTGCTCC
       ATGGGCCAGT GTGTGTGA GCCTGGTTGG ACAGGCCCAA GCTGTGACTG TCCCCTCAGC
       AATGCCACCT GCATCGACAG CAATGGGGGC ATCTGTAATG GACGTGGCCA CTGTGAGTGT
       GGCCGCTGCC ACTGCCACCA GCAGTCGCTC TACACGGACA CCATCTGCGA GATCAACTAC
                                                                           1980
70
       TCGGCGATCC ACCCGGGCCT CTGCGAGGAC CTACGCTCCT GCGTGCAGTG CCAGGCGTGG
                                                                           2040
       GGCACCGGCG AGAAGAAGGG GCGCACGTGT GAGGAATGCA ACTTCAAGGT CAAGATGGTG
                                                                           2100
       GACGAGCTTA AGAGAGCCGA GGAGGTGGTG GTGCGCTGCT CCTTCCGGGA CGAGGATGAC
                                                                           2160
       GACTGCACCT ACAGCTACAC CATGGAAGGT GACGGCGCCC CTGGGCCCAA CAGCACTGTC
                                                                           2220
       CTGGTGCACA AGAAGAAGGA CTGCCCTCCG GGCTCCTTCT GGTGGCTCAT CCCCCTGCTC
                                                                           2280
75
       CTCCTCCTCC TGCCGCTCCT GGCCCTGCTA CTGCTGCTAT GCTGGAAGTA CTGTGCCTGC
                                                                           2340
       TGCAAGGCCT GCCTGGCACT TCTCCCGTGC TGCAACCGAG GTCACATGGT GGGCTTTAAG
                                                                           2400
       GAAGACCACT ACATGCTGCG GGAGAACCTG ATGGCCTCTG ACCACTTGGA CACGCCCATG
                                                                           2460
       CTGCGCAGCG GGAACCTCAA GGGCCGTGAC GTGGTCCGCT GGAAGGTCAC CAACAACATG
                                                                           2520
       CAGCGGCCTG GCTTTGCCAC TCATGCCGCC AGCATCAACC CCACAGAGCT GGTGCCCTAC
                                                                           2580
80
       GGGCTGTCCT TGCGCCTGGC CCGCCTTTGC ACCGAGAACC TGCTGAAGCC TGACACTCGG
                                                                           2640
       GAGTGCGCCC AGCTGCGCCA GGAGGTGGAG GAGAACCTGA ACGAGGTCTA CAGGCAGATC
                                                                           2700
       TCCGGTGTAC ACAAGCTCCA GCAGACCAAG TTCCGGCAGC AGCCCAATGC CGGGAAAAAG
                                                                           2760
       CAAGACCACA CCATTGTGGA CACAGTGCTG ATGGCGCCCC GCTCGGCCAA GCCGGCCCTG
                                                                           2820
       CTGAAGCTTA CAGAGAAGCA GGTGGAACAG AGGGCCTTCC ACGACCTCAA GGTGGCCCCC
                                                                           2880
85
       GGCTACTACA CCCTCACTGC AGACCAGGAC GCCCGGGGCA TGGTGGAGTT CCAGGAGGGC
GTGGAGCTGG TGGACGTACG GGTGCCCCTC TTTATCCGGC CTGAGGATGA CGACGAGAAG
                                                                           2940
                                                                           3000
       CAGCTGCTGG TGGAGGCCAT CGACGTGCCC GCAGGCACTG CCACCCTCGG CCGCCGCCTG
                                                                          3060
```

```
GTAAACATCA CCATCATCAA GGAGCAAGCC AGAGACGTGG TGTCCTTTGA GCAGCCTGAG
                                                                            3120
       TTCTCGGTCA GCCGCGGGA CCAGGTGGCC CGCATCCCTG TCATCCGGCG TGTCCTGGAC
                                                                             3180
       GGCGGGAAGT CCCAGGTCTC CTACCGCACA CAGGATGGCA CCGCGCAGGG CAACCGGGAC
                                                                             3240
       TACATCCCCG TGGAGGGTGA GCTGCTGTTC CAGCCTGGGG AGGCCTGGAA AGAGCTGCAG
                                                                             3300
       GTGAAGCTCC TGGAGCTGCA AGAAGTTGAC TCCCTCCTGC GGGGCCGCCA GGTCCGCCGT
                                                                             3360
       TTCCACGTCC AGCTCAGCAA CCCTAAGTTT GGGGCCCACC TGGGCCAGCC CCACTCCACC
                                                                             3420
       ACCATCATCA TCAGGGACCC AGATGAACTG GACCGGAGCT TCACGAGTCA GATGTTGTCA
       TCACAGCCAC CCCCTCACGG CGACCTGGGC GCCCCGCAGA ACCCCAATGC TAAGGCCGCT
                                                                             3540
       GGGTCCAGGA AGATCCATTT CAACTGGCTG CCCCCTTCTG GCAAGCCAAT GGGGTACAGG
10
       GTAAAGTACT GGATTCAGGG TGACTCCGAA TCCGAAGCCC ACCTGCTCGA CAGCAAGGTG
                                                                             3660
       CCCTCAGTGG AGCTCACCAA CCTGTACCCG TATTGCGACT ATGAGATGAA GGTGTGCGCC
                                                                             3720
       TACGGGGCTC AGGGCGAGGG ACCCTACAGC TCCCTGGTGT CCTGCCGCAC CCACCAGGAA
                                                                             3780
       GTGCCCAGCG AGCCAGGGCG TCTGGCCTTC AATGTCGTCT CCTCCACGGT GACCCAGCTG
                                                                             3840
       AGCTGGGCTG AGCCGGCTGA GACCAACGGT GAGATCACAG CCTACGAGGT CTGCTATGGC
                                                                             3900
15
       CTGGTCAACG ATGACAACCG ACCTATTGGG CCCATGAAGA AAGTGCTGGT TGACAACCCT
                                                                             3960
       AAGAACCGGA TGCTGCTTAT TGAGAACCTT CGGGAGTCCC AGCCCTACCG CTACACGGTG
                                                                             4020
       AAGGCGCGCA ACGGGGCCGG CTGGGGGGCCT GAGCGGGAGG CCATCATCAA CCTGGCCACC
                                                                             4080
       CAGCCCAAGA GGCCCATGTC CATCCCCATC ATCCCTGACA TCCCTATCGT GGACGCCCAG
                                                                             4140
       AGCGGGGAGG ACTACGACAG CTTCCTTATG TACAGCGATG ACGTTCTACG CTCTCCATCG
                                                                             4200
20
       GGCAGCCAGA GGCCCAGCGT CTCCGATGAC ACTGAGCACC TGGTGAATGG CCGGATGGAC
                                                                             4260
       TTTGCCTTCC CGGGCAGCAC CAACTCCCTG CACAGGATGA CCACGACCAG TGCTGCTGCC
                                                                             4320
       TATGGCACCC ACCTGAGCCC ACACGTGCCC CACCGCGTGC TAAGCACATC CTCCACCCTC
       ACACGGGACT ACAACTCACT GACCCGCTCA GAACACTCAC ACTCGACCAC ACTGCCGAGG
                                                                             4440
       GACTACTCCA CCCTCACCTC CGTCTCCTCC CACGACTCTC GCCTGACTGC TGGTGTGCCC
                                                                             4500
25
       GACACGCCCA CCCGCCTGGT GTTCTCTGCC CTGGGGCCCA CATCTCTCAG AGTGAGCTGG
                                                                             4560
       CAGGAGCCGC GGTGCGAGCG GCCGCTGCAG GGCTACAGTG TGGAGTACCA GCTGCTGAAC
       GGCGGTGAGC TGCATCGGCT CAACATCCCC AACCCTGCCC AGACCTCGGT GGTGGTGGAA
                                                                             4680
       GACCTCCTGC CCAACCACTC CTACGTGTTC CGCGTGCGGG CCCAGAGCCA GGAAGGCTGG
                                                                             4740
       GGCCGAGAGC GTGAGGGTGT CATCACCATT GAATCCCAGG TGCACCCGCA GAGCCCACTG
                                                                             4800
30
       TGTCCCCTGC CAGGCTCCGC CTTCACTTTG AGCACTCCCA GTGCCCCAGG CCCGCTGGTG
                                                                             4860
                                                                             4920
       TTCACTGCCC TGAGCCCAGA CTCGCTGCAG CTGAGCTGGG AGCGGCCACG GAGGCCCAAT
       GGGGATATCG TCGCTACCT GGTGACCTGT GAGATGGCCC AAGGAGGAGG GCCAGCCACC
                                                                             4980
       GCATTCCGGG TGGATGGAGA CAGCCCCGAG AGCCGGCTGA CCGTGCCGGG CCTCAGCGAG
                                                                             5040
       AACGTGCCT ACAAGTTCAA GGTGCAGGCC AGGACCACTG AGGGCTTCGG GCCAGAGCGC
                                                                             5100
35
       GAGGGCATCA TCACCATAGA GTCCCAGGAT GGAGGACCCT TCCCGCAGCT GGGCAGCCGT
                                                                             5160
       GCCGGGCTCT TCCAGCACCC GCTGCAAAGC GAGTACAGCA GCATCACCAC CACCCACACC
                                                                             5220
       AGCGCCACCG AGCCCTTCCT AGTGGATGGG CCGACCCTGG GGGCCCAGCA CCTGGAGGCA
                                                                             5280
       GGCGGCTCCC TCACCCGGCA TGTGACCCAG GAGTTTGTGA GCCGGACACT GACCACCAGC
                                                                             5340
       GGAACCCTTA GCACCCACAT GGACCAACAG TTCTTCCAAA CTTGACCGCA CCCTGCCCCA
                                                                             5400
40
       CCCCGCCAT GTCCCACTAG GCGTCCTCCC GACTCCTCTC CCGGAGCCTC CTCAGCTACT
                                                                             5460
       CCATCCTTGC ACCCCTGGGG GCCCAGCCCA CCCGCATGCA CAGAGCAGGG GCTAGGTGTC
                                                                             5520
       TCCTGGGAGG CATGAAGGG GCAAGGTCCG TCCTCTGTGG GCCCAAACCT ATTTGTAACC
                                                                             5580
       AAAGAGCTGG GAGCAGCACA AGGACCCAGC CTTTGTTCTG CACTTAATAA ATGGTTTTGC
                                                                             5640
45
       Seq ID NO: 561 Protein sequence
       Protein Accession #: NP 000204.1
50
       MAGPRPSPWA RLLLAALISV SLSGTLANRC KKAPVKSCTE CVRVDKDCAY CTDEMFRDRR
       CNTQAELLAA GCQRESIVVM ESSFQITEET QIDTTLRRSQ MSPQGLRVRL RPGEERHFEL
       EVFEPLESPV DLYILMDFSN SMSDDLDNLK KMGQNLARVL SQLTSDYTIG FGKFVDKVSV
       PQTDMRPEKL KEPWPNSDPP FSFKNVISLT EDVDEFRNKL QGERISGNLD APEGGFDAIL
55
       QTAVCTRDIG WRPDSTHLLV FSTESAFHYE ADGANVLAGI MSRNDERCHL DTTGTYTQYR
       TODYPSVPTL VRLLAKHNII PIFAVTNYSY SYYEKLHTYF PVSSLGVLOE DSSNIVELLE
                                                                              360
       EAFNRIRSNL DIRALDSPRG LRTEVTSKMF QKTRTGSFHI RRGEVGIYQV QLRALEHVDG
                                                                              420
       THYCOLPEDO KGNIHLKPSF SDGLKMDAGI ICDVCTCELO KEVRSARCSF NGDFYCGOCV
                                                                              480
       CSEGWSGOTC NCSTGSLSDI QPCLREGEDK PCSGRGECQC GHCVCYGEGR YEGQFCEYDN
                                                                              540
60
       FQCPRTSGFL CNDRGRCSMG QCVCEPGWTG PSCDCPLSNA TCIDSNGGIC NGRGHCECGR
                                                                              600
       CHCHQQSLYT DTICEINYSA IHPGLCEDLR SCVQCQAWGT GEKKGRTCEE CNFKVKMVDE
LKRABEVVVR CSFRDEDDDC TYSYTMEGDG APGPNSTVLV HKKKDCPPGS FWWLIPLLLL
                                                                              660
                                                                              720
       LLPLLALLLL LCWKYCACCK ACLALLPCON RGHMVGFKED HYMLRENLMA SDHLDTPMLR
                                                                              780
       SGNLKGRDVV RWKVTNNMQR PGFATHAASI NPTELVPYGL SLRLARLCTE NLLKPDTREC
                                                                              840
65
       AQLRQEVEEN LNEVYRQISG VHKLQQTKFR QQPNAGKKQD HTIVDTVLMA PRSAKPALLK
                                                                              900
       LTEKQVEQRA FHDLKVAPGY YTLTADQDAR GMVEFQEGVE LVDVRVPLFI RPEDDDEKQL
LVEAIDVPAG TATLGRRLVN ITIIKEQARD VVSFEQPEFS VSRGDQVARI PVIRRVLDGG
                                                                              960
                                                                             1020
       KSQVSYRTQD GTAQGNRDYI PVEGELLFQP GEAWKELQVK LLELQEVDSL LRGRQVRRFH
                                                                             1080
       VQLSNPKFGA HLGQPHSTTI IIRDPDELDR SFTSQMLSSQ PPPHGDLGAP QNPNAKAAGS
                                                                             1140
70
       RKIHFNWLPP SGKPMGYRVK YWIQGDSESE AHLLDSKVPS VELTRLYPYC DYEMKVCAYG
AQGEGPYSSL VSCRTHQEVP SEPGRLAFNV VSSTVTQLSW AEPAETNGEI TAYEVCYGLV
                                                                             1200
                                                                             1260
       NDDNRPIGPM KKVLVDNPKN RMLLIENLRE SQPYRYTVKA RNGAGWGPER EAIINLATQP
                                                                             1320
       KRPMSIPIIP DIPIVDAQSG EDYDSFLMYS DDVLRSPSGS QRPSVSDDTE HLVNGRMDFA
                                                                             1380
       FPGSTNSLHR MTTTSAAAYG THLSPHVPHR VLSTSSTLTR DYNSLTRSEH SHSTTLPRDY
                                                                             1440
75
       STLTSVSSHD SRLTAGVPDT PTRLVFSALG PTSLRVSWQE PRCERPLQGY SVEYQLLNGG
                                                                             1500
       ELHRLNIPNP AQTSVVVEDL LPNHSYVFRV RAQSQEGWGR EREGVITIES QVHPQSPLCP
                                                                             1560
       LPGSAFTLST PSAPGPLVFT ALSPDSLQLS WERPRRPNGD IVGYLVTCEM AQGGGPATAF
                                                                             1620
       RVDGDSPESR LTVPGLSENV PYKFKVQART TEGFGPEREG IITIESQDGG PFPQLGSRAG
                                                                             1680
       LFQHPLQSEY SSITTTHTSA TEPFLVDGPT LGAQHLEAGG SLTRHVTQEF VSRTLTTSGT
                                                                             1740
80
       LSTHMDQQFF QT
       Seq ID NO: 562 DNA sequence
       Nucleic Acid Accession #: NM_013332.1
       Coding sequence: 1..63
85
                                                                51
```

WO 02/086443 PCT/US02/12476 GCACGAGGGC GCTTTTGTCT CCGGTGAGTT TTGTGGCGGG AAGCTTCTGC GCTGGTGCTT 60 AGTAACCGAC TTTCCTCCGG ACTCCTGCAC GACCTGCTCC TACAGCCGGC GATCCACTCC 120 CGGCTGTTCC CCCGGAGGGT CCAGAGGCCT TTCAGAAGGA GAAGGCAGCT CTGTTTCTCT 180 GCAGAGGAGT AGGGTCCTTT CAGCCATGAA GCATGTGTTG AACCTCTACC TGTTAGGTGT 240 5 GGTACTGACC CTACTCTCCA TCTTCGTTAG AGTGATGGAG TCCCTAGAAG GCTTACTAGA 300 GAGCCCATCG CCTGGGACCT CCTGGACCAC CAGAAGCCAA CTAGCCAACA CAGAGCCCAC 360 CAAGGGCCTT CCAGACCATC CATCCAGAAG CATGTGATAA GACCTCCTTC CATACTGGCC 420 ATATTTTGGA ACACTGACCT AGACATGTCC AGATGGGAGT CCCATTCCTA GCAGACAAGC 480 TGAGCACCGT TGTAACCAGA GAACTATTAC TAGGCCTTGA AGAACCTGTC TAACTGGATG 540 10 CTCATTGCCT GGGCAAGGCC TGTTTAGGCC GGTTGCGGTG GCTCATGCCT GTAATCCTAG 600 CACTTTGGGA GGCTGAGGTG GGTGGATCAC CTGAGGTCAG GAGTTCGAGA CCAGCCTCGC CAACATGGCG AAACCCCATC TCTACTAAAA ATACAAAAGT TAGCTGGGTG TGGTGGCAGA 720 GGCCTGTAAT CCCAGTTCCT TGGGAGGCTG AGGCGGGAGA ATTGCTTGAA CCCGGGGACG GAGGTTGCAG TGAACCGAGA TCGCACTGCT GTACCCAGCC TGGGCCACAG TGCAAGACTC 840 15 CATCTCAAAA AAAAAAAGAA AAGAAAAAGC CTGTTTAATG CACAGGTGTG AGTGGATTGC TTATGGCTAT GAGATAGGTT GATCTCGCCC TTACCCCGGG GTCTGGTGTA TGCTGTGCTT 900 960

20	TCCTCAGCAG TGATATTTTC TATGCTCAAT CAGTTGAAGA TTCTCATTTT GGTGGGATGC	ACATTTTAAA	ACATCTCTTA CCTAAACATC TGAGCCTCTC GTGGGCTGTT GTCGTTCCTC TCAAGTTATG	GATGTCCCAA TGTCTGGGGT TTCCACAAGA GGGAGTGAGG CAACATAGTG GACATTGTGG	CTTCAGCTGT TCCTTTAGTC GCTCCTCCAT ATGGAGTGTT TGTATTGGTC CCACCATGTG	TGGGAGATGG TTGAATGTCT GTTTGGATAG CAGTGCCCAT TGAAGGGGGT GCTTAAATGA	1260
25		563 Protei cession #: 1				•	
30	1 MKHVLNLYLL RSM	11 GVVLTLLSIF	21 VRVMESLEGL	31 LESPSPGTSW	41 TTRSQLANTE	51 PTKGLPDHPS	60
35	Nucleic Aci	564 DNA se id Accession lence: 250.	ı#: NM_023	915.1			
	1	11	21	31	41	51	
	 	TTTCGTTTTC	ATGCTTANACC	i AGAAAATCCA	CHALCCALCCC.	 GACCTTAGTT	60
40		TTCTTAATTA					120
	GTGAATGGAC	AGCCAGCCAC	CACAATGAAA	GAAATCAAAC	CAGGAATAAC	CTATGCTGAA	180
		AATCGTCCCC					240
		TGGGGTTCAA ACAATTCAGG					300 360
45		ACACAATTGT					420
						CAGCTTCATA	
		AAAACATAGT					540
		ATGCAGGATT TTTATGCAAA					600 660
50		TGAAGGTGGT					720
	ACGAAGGTTT	TATCTGTTTG	TGTTTGGGTG	ATCATGGCTG	TTTTGTCTTT	GCCAAACATC	780
		ATGGTCAGCC					840
		TCAAATGGCA					900
55		TTCTGATCGG TAAGTCAGTC					960 1020
7,5		TTTTTACCTG					1080
		ACAGGCTTTT					1140
		TCTTGTCTGC					1200
60		TTTCAAGAAG					1260
00	GTGTAGGCCT	TGCAAAGTGT TTTATTGTTT TTAAAAAAAA	GTTGGAATCG				1320 1380
65		565 Protes cession #: 1					•
	1	11	21	31	41	51	
	1	1	1	1	l	1	
70		PNNELHGQES					60
70		RNKTSFIFYL FLGLISIDRY					120 180
		DCSKLKSPLG					240
		NOSIRVVVAV					300
75	FLSACNVCLD	PIIYFFMCRS	FSRRLFKKSN	IRTRSESIRS	LQSVRRSEVR	IYYDYTDV	
• •	Seq ID NO:	566 DNA se	equence				
	Nucleic Act	id Accession Jence: 194	1#: NM_005	365.1			
οΛ	5 4						
80	1	11	21	31	41	51	
	VACACACACA I	AGCAGAGGAG	TCCCCCCCCCC	AAGCCTCATC	 AAGACCTTGA	AGCCCAAGGA	60
	23222222		7200010100		1.001.001.001	42 CM2 CCMCC	120

GAGGACTTGG GCCTGATGGG TGCACAGGAA CCCACAGGCG AGGAGGAGGA GACTACCTCC 120 TCCTCTGACA GCAAGGAGGA GGAGGTGTCT GCTGCTGGGT CATCAAGTCC TCCCCAGAGT 180 85 CCTCAGGGAG GCGCTTCCTC CTCCATTTCC GTCTACTACA CTTTATGGAG CCAATTCGAT 240 GAGGGCTCCA GCAGTCAAGA AGAGGAAGAG CCAAGCTCCT CGGTCGACCC AGCTCAGCTG 300 GAGTTCATGT TCCAAGAAGC ACTGAAATTG AAGGTGGCTG AGTTGGTTCA TTTCCTGCTC 360

5	AATTACAAGC TTTGGCACTG CTTGGCCTCT CTGATCATTG TGGGAAGCGT CCCAGGAAGC CCCGGCAGTG AGCTATGAGA	GCTACTTTCC ATGTGAAGGA CGTGCGATAG TCCTGGGTGT TGAGTGTGAT TGCTCACCCA ATCCTGCGCA AGGTCATAAA	GCCGGTCACA TGTGATCTTC GGTGGACCCC CATGCTGGGT GATCCTAACC GGGGTGTAT AGATTGGGTG CTACGAGTTC TTATTTGGTC TTTGGGAGAG	GGCAAAGCCT GCCGGCCACT GATGGTCATA AAAGACAACT GTTGGGAAGG CAGGAAAACT CTGTGGGGTT ATGCTCAATG	CCGAGTTCAT CCTACATCCT GCATGCCCAA GCGCCCCTGA AGCACATGTT ACCTGGAGTA CCAAGGCCCA CAAGAGAGCC	GCAGGTGATC TGTCACTGCT GGCCGCCCTC AGAGGTTATC CTACGGGGAG CCGGCAGGTG CGCTGAAACC	420 480 540 600 660 720 780 840 900
	Seq ID NO: Protein Acc	567 Protei ession #: 1	in sequence				
15	1	11	21	31	41	51	
20	PQGGASSSIS HKYRVKEPVT LGLSCDSMLG	VYYTLWSQFD KAEMLESVIK DGHSMPKAAL QENYLEYRQV	EDLGLMGAQE EGSSSQEEEE NYKRYFPVIF LIIVLGVILT PGSDPAHYEF	PSSSVDPAQL GKASEFMQVI KDNCAPEEVI	EFMFQEALKL FGTDVKEVDP WEALSVMGVY	KVAELVHFLL AGHSYILVTA VGKEHMFYGE	60 120 180 240 300
25		568 DNA seid Accession lence: 86	ı#: NM_014	400			
	1	11	21	31	41	51	
30	CCTTA CTCAT	CCTCCCCTCA	GGTAAGAGGG	CCCCACCTCC	GAGGGGGCAC	ACCCAGGGGG	60
, "	GACGCCAAGG GATCTGGACT GTGCTACAGC	GAGCAGGACG GCAGGCTGGC TGCGTGCAGA	GAGCCATGGA TGCTGCTGCT AAGCAGATGA ACGTCTGCAC	CCCCGCCAGG GCTGCTTCGC CGGATGCTCC	AAAGCAGGTG GGAGGAGCGC CCGAACAAGA	CCCAĠGCCAT AGGCCCTGGA TGAAGACAGT	120 180 240 300
35	CGGACAATTC	TCGCTGGCAG	TGCSGGGTTG	CGGTTCGGGA	CTCCCCGGCA	AGAATGACCG	360
			TTCTGGCGTT				420 480
			AGTGCTACAG				540
40			TGAGCTGCTA				600
40			TGACGGCAGC GCACTCGGGA				660 720
			CCCGCTGTAA				780
			TCCGGCTGCC				840 900
45	GCCAGCGCCA	ACCACTTCTA	CCTCGGCCCC	GGGAGTAGAA	CACGAGGCCT	CCCGGGGATGA	960
	GGAGCCCAGG	TTGACTGGAG	GCGCCGCTGG	CCACCAGGAC	CGCAGCAATT	CAGGGCAGTA	1020
			AGCAGCCCCA CCGTGGCTGC				1080 1140
			TCTCTGGCCC				1200
50			GCCCAGCCCC				1260
			GGCTTTGGGA GACAGCTCCT				1320 1380
	TCCTCTTGTG	ATGTTAGGAC	AGAGTGAGAG	AAGTCAGCTG	TCACGGGGAA	GGTGAGAGAG	1440
55			CACTTTCTCC				1500 1560
33						GGGACCGTGC	
			GTTTCTGGCA	CATAAATGCC	TCAATAAAGA	TTTAATTACT	1680
	TTGTATAGTG	AAAAAAA					
60		569 Prote cession #: 1					
	1	11	21 	31 	41 1	51 	
65			 LLLLRGGAQA				60
			GCGSGLPGKN				120
						GCFDGNVTLT FSPRIPPLVR	180 240
70	LPPPEPTTVA	STTSVTTSTS	APVRPTSTTK	PMPAPTSQTP	RQGVEHEASR	DEEPRLTGGA	300
70	AGHQDRSNSG	QYPAKGGPQQ	PHNKGCVAPT	AGLAALLLAV	AAGVLL		
75	Nucleic Ac	570 DNA se id Accession lence: 116	ว#: NM_0053	29.1			
	1	11	21	31	41	51	
)	JCCTC ACCAC	yeccanca.	GTGGTGGGG	CONCOMOTO	TGCCCTCCCA	60
00			AGCCCTGCGT AGCCTATGTG				120
80	CACTACCTGT	CCTTCGGCCT	GTACGGCGCC	ATCCTGGGCC	TGCACCTGCT	CATTCAGAGC	180
			CCGGCGCATG GGCACTGTGC			GAAGCTGCCC	240 300
						GGTGGTCATG	360
85						CGAGGTGCTG	420
0,5			CTTCTTTGTG GCAGGAGGGC			GGCAGGCGAG	480 540
			GCAGAAGTGG				600

```
GATCCAGCCT GCACCATCGA GATGCTTCGA GTCCTGGAGG AGGATCCCCA AGTAGGGGGA
                                                                             720
       GTCGGGGGAG ATGTCCAGAT CCTCAACAAG TACGACTCAT GGATTTCCTT CCTGAGCAGC
                                                                             780
       GTGCGGTACT GGATGGCCTT CAACGTGGAG CGGGCCTGCC AGTCCTACTT TGGCTGTGTG
                                                                             840
 5
       CAGTGTATTA GTGGGCCCTT GGGCATGTAC CGCAACAGCC TCCTCCAGCA GTTCCTGGAG
                                                                             900
       GACTGGTACC ATCAGAAGTT CCTAGGCAGC AAGTGCAGCT TCGGGGATGA CCGGCACCTC
                                                                             960
       ACCAACCGAG TCCTGAGCCT TGGCTACCGA ACTAAGTATA CCGCGCGCTC CAAGTGCCTC
                                                                            1020
       ACAGAGACCC CCACTAAGTA CCTCCGGTGG CTCAACCAGC AAACCCGCTG GAGCAAGTCT
                                                                            1080
       TACTTCCGGG AGTGGCTCTA CAACTCTCTG TGGTTCCATA AGCACCACCT CTGGATGACC
                                                                            1140
10
       TACGAGTCAG TGGTCACGGG TTTCTTCCCC TTCTTCCTCA TTGCCACGGT TATACAGCTT
                                                                            1200
       TTCTACCGGG GCCGCATCTG GAACATTCTC CTCTTCCTGC TGACGGTGCA GCTGGTGGGC
                                                                            1260
       ATTATCAAGG CCACCTACGC CTGCTTCCTT CGGGGCAATG CAGAGATGAT CTTCATGTCC
                                                                            1320
       CTCTACTCCC TCCTCTATAT GTCCAGCCTT CTGCCGGCCA AGATCTTTGC CATTGCTACC
                                                                            1380
       ATCAACAAAT CTGGCTGGGG CACCTCTGGC CGAAAAACCA TTGTGGTGAA CTTCATTGGC
                                                                            1440
15
       CTCATTCCTG TGTCCATCTG GGTGGCAGTT CTCCTGGGAG GGCTGGCCTA CACAGCTTAT
                                                                            1500
       TGCCAGGACC TGTTCAGTGA GACAGAGCTA GCCTTCCTTG TCTCTGGGGC TATACTGTAT
                                                                            1560
       GGCTGCTACT GGGTGGCCCT CCTCATGCTA TATCTGGCCA TCATCGCCCG GCGATGTGGG
       AAGAAGCCGG AGCAGTACAG CTTGGCTTTT GCTGAGGTGT GA
20
       Seq ID NO: 571 Protein sequence
       Protein Accession #: NP_005320.1
                                                               51
25
       MPVQLTTALR VVGTSLFALA VLGGILAAYV TGYQPIHTEK HYLSPGLYGA ILGLHLLIQS
       LFAFLEHRRM RRAGQALKLP SPRRGSVALC IAAYQEDPDY LRKCLRSAQR ISPPDLKVVM
                                                                            120
       VVDGNRQEDA YMLDIFHEVL GGTEQAGFFV WRSNFHEAGE GETEASLQEG MDRVRDVVRA
                                                                             180
       STFSCIMQKW GGKREVMYTA FKALGDSVDY IQVCDSDTVL DPACTIEMLR VLEEDPQVGG
                                                                             240
       VGGDVQILNK YDSWISFLSS VRYWMAFNVE RACQSYFGCV QCISGPLGMY RNSLLQQFLE
                                                                             300
30
       DWYHQKFLGS KCSFGDDRHL TNRVLSLGYR TKYTARSKCL TETPTKYLRW LNQQTRWSKS
                                                                             360
       YFREWLYNSL WFHKHHLWMT YESVVTGFFP FFLIATVIQL FYRGRIWNIL LFLLTVQLVG
                                                                             420
       IIKATYACFL RGNAEMIFMS LYSLLYMSSL LPAKIFAIAT INKSGWGTSG RKTIVVNFIG
       LIPVSIWVAV LLGGLAYTAY CODLFSETEL AFLVSGAILY GCYWVALLML YLAIIARRCG
                                                                             540
35
       Seq ID NO: 572 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 148-7095
40
       CACACATACG CACGCACGAT CTCACTTCGA TCTATACACT GGAGGATTAA AACAAACAAA
                                                                             60
       CAAAAAAAAC ATTTCCTTCG CTCCCCCTCC CTCTCCACTC TGAGAAGCAG AGGAGCCGCA
                                                                            120
       CGGCGAGGGG CCGCAGACCG TCTGGAAATG CGAATCCTAA AGCGTTTCCT CGCTTGCATT
                                                                            180
45
       CAGCTCCTCT GTGTTTGCCG CCTGGATTGG GCTAATGGAT ACTACAGACA ACAGAGAAAA
                                                                            240
       CTTGTTGAAG AGATTGGCTG GTCCTATACA GGAGCACTGA ATCAAAAAAA TTGGGGAAAG
                                                                            300
       AAATATCCAA CATGTAATAG CCCAAAACAA TCTCCTATCA ATATTGATGA AGATCTTACA
                                                                            360
       CAAGTAAATG TGAATCTTAA GAAACTTAAA TTTCAGGGTT GGGATAAAAC ATCATTGGAA
                                                                            420
       AACACATTCA TTCATAACAC TGGGAAAACA GTGGAAATTA ATCTCACTAA TGACTACCGT
                                                                            480
50
       GTCAGCGGAG GAGTTTCAGA AATGGTGTTT AAAGCAAGCA AGATAACTTT TCACTGGGGA
                                                                            540
       AAATGCAATA TGTCATCTGA TGGATCAGAG CATAGTTTAG AAGGACAAAA ATTTCCACTT
                                                                            600
       GAGATGCAAA TCTACTGCTT TGATGCGGAC CGATTTTCAA GTTTTGAGGA AGCAGTCAAA
                                                                            660
       GGAAAAGGGA AGTTAAGAGC TTTATCCATT TTGTTTGAGG TTGGGACAGA AGAAAATTTG
                                                                            720
       GATTTCAAAG CGATTATTGA TGGAGTCGAA AGTGTTAGTC GTTTTGGGAA GCAGGCTGCT
                                                                            780
55
       TTAGATCCAT TCATACTGTT GAACCTTCTG CCAAACTCAA CTGACAAGTA TTACATTTAC
       AATGGCTCAT TGACATCTCC TCCCTGCACA GACACAGTTG ACTGGATTGT TTTTAAAGAT
       ACAGTTAGCA TCTCTGAAAG CCAGTTGGCT GTTTTTTGTG AAGTTCTTAC AATGCAACAA
       TCTGGTTATG TCATGCTGAT GGACTACTTA CAAAACAATT TTCGAGAGCA ACAGTACAAG
                                                                           1020
       TTCTCTAGAC AGGTGTTTTC CTCATACACT GGAAAGGAAG AGATTCATGA AGCAGTTTGT
                                                                           1080
60
       AGTTCAGAAC CAGAAAATGT TCAGGCTGAC CCAGAGAATT ATACCAGCCT TCTTGTTACA
                                                                           1140
       TGGGAAAGAC CTCGAGTCGT TTATGATACC ATGATTGAGA AGTTTGCAGT TTTGTACCAG
                                                                           1200
       CAGTTGGATG GAGAGGACCA AACCAAGCAT GAATTTTTGA CAGATGGCTA TCAAGACTTG
                                                                           1260
       GGTGCTATTC TCAATAATTT GCTACCCAAT ATGAGTTATG TTCTTCAGAT AGTAGCCATA
                                                                           1320
       TGCACTAATG GCTTATATGG AAAATACAGC GACCAACTGA TTGTCGACAT GCCTACTGAT
                                                                           1380
65
       AATCCTGAAC TTGATCTTTT CCCTGAATTA ATTGGAACTG AAGAAATAAT CAAGGAGGAG
                                                                           1440
       GAAGAGGGAA AAGACATTGA AGAAGGCGCT ATTGTGAATC CTGGTAGAGA CAGTGCTACA
                                                                           1500
       AACCAAATCA GGAAAAAGGA ACCCCAGATT TCTACCACAA CACACTACAA TCGCATAGGG
                                                                           1560
       ACGAAATACA ATGAAGCCAA GACTAACCGA TCCCCAACAA GAGGAAGTGA ATTCTCTGGA
                                                                           1620
       AAGGGTGATG TTCCCAATAC ATCTTTAAAT TCCACTTCCC AACCAGTCAC TAAATTAGCC
                                                                           1680
70
       ACAGAAAAAG ATATTTCCTT GACTTCTCAG ACTGTGACTG AACTGCCACC TCACACTGTG
                                                                           1740
       GAAGGTACTT CAGCCTCTTT AAATGATGGC TCTAAAACTG TTCTTAGATC TCCACATATG
                                                                           1800
       AACTTGTCGG GGACTGCAGA ATCCTTAAAT ACAGTTTCTA TAACAGAATA TGAGGAGGAG
                                                                           1860
       AGTTTATTGA CCAGTTTCAA GCTTGATACT GGAGCTGAAG ATTCTTCAGG CTCCAGTCCC
                                                                           1920
      GCAACTTCTG CTATCCCATT CATCTCTGAG AACATATCCC AAGGGTATAT ATTTTCCTCC
GAAAACCCAG AGACAATAAC ATATGATGTC CTTATACCAG AATCTGCTAG AAATGCTTCC
                                                                           1980
75
                                                                           2040
       GAAGATTCAA CTTCATCAGG TTCAGAAGAA TCACTAAAGG ATCCTTCTAT GGAGGGAAAT
                                                                           2100
       GTGTGGTTTC CTAGCTCTAC AGACATAACA GCACAGCCCG ATGTTGGATC AGGCAGAGAG
                                                                           2160
       AGCTTTCTCC AGACTAATTA CACTGAGATA CGTGTTGATG AATCTGAGAA GACAACCAAG
                                                                           2220
       TCCTTTTCTG CAGGCCCAGT GATGTCACAG GGTCCCTCAG TTACAGATCT GGAAATGCCA
                                                                           2280
80
       CATTATTCTA CCTTTGCCTA CTTCCCAACT GAGGTAACAC CTCATGCTTT TACCCCATCC
                                                                           2340
       TCCAGACAAC AGGATTTGGT CTCCACGGTC AACGTGGTAT ACTCGCAGAC AACCCAACCG
                                                                           2400
       GTATACAATG GTGAGACACC TCTTCAACCT TCCTACAGTA GTGAAGTCTT TCCTCTAGTC
                                                                           2460
      ACCCCTTTGT TGCTTGACAA TCAGATCCTC AACACTACCC CTGCTGCTTC AAGTAGTGAT
                                                                           2520
       TCGGCCTTGC ATGCTACGCC TGTATTTCCC AGTGTCGATG TGTCATTTGA ATCCATCCTG
85
       TCTTCCTATG ATGGTGCACC TTTGCTTCCA TTTTCCTCTG CTTCCTTCAG TAGTGAATTG
                                                                           2640
       TTTCGCCATC TGCATACAGT TTCTCAAATC CTTCCACAAG TTACTTCAGC TACCGAGAGT
                                                                           2700
      GATAAGGTGC CCTTGCATGC TTCTCTGCCA GTGGCTGGGG GTGATTTGCT ATTAGAGCCC
```

	WO 02	/086443					
	AGCCTTGCTC	AGTATTCTGA	TGTGCTGTCC	ACTACTCATG	CTGCTTCAGA	GACGCTGGAA	2820
	TTTGGTAGTG	AATCTGGTGT	TCTTTATAAA	ACGCTTATGT	TTTCTCAAGT	TGAACCACCC	2880
	AGCAGTGATG	CCATGATGCA	TGCACGTTCT	TCAGGGCCTG	AACCTTCTTA	TGCCTTGTCT	2940
_	GATAATGAGG	GCTCCCAACA	CATCTTCACT	GTTTCTTACA	GTTCTGCAAT	ACCTGTGCAT	3000
5	GATTCTGTGG	GTGTAACTTA	TCAGGGTTCC	TTATTTAGCG	GCCCTAGCCA	TATACCAATA	3060
	CCTAAGTCTT	CGTTAATAAC	CCCAACTGCA	TCATTACTGC	AGCCTACTCA	TGCCCTCTCT	3120
	GGTGATGGGG	AATGGTCTGG	AGCCTCTTCT	GATAGTGAAT	TTCTTTTACC	TGACACAGAT	3180
	GGGCTGACAG	CCCTTAACAT	TTCTTCACCT	GTTTCTGTAG	CTGAATTTAC	ATATACAACA	3240
	TCTGTGTTTTG	GTGATGATAA	TAAGGCGCTT	TCTAAAAGTG	AAATAATATA	TGGAAATGAG	3300
10	ACTGAACTGC	AAATTCCTTC	TTTCAATGAG	ATGGTTTACC	CTTCTGAAAG	CACAGTCATG	3360
•	CCCAACATGT	ATGATAATGT	AAATAAGTTG	AATGCGTCTT	TACAAGAAAC	CTCTGTTTCC	3420
	ATTTCTAGCA	CCAAGGGCAT	GTTTCCAGGG	TCCCTTGCTC	ATACCACCAC	TAAGGTTTTT	3480
	GATCATGAGA	TTAGTCAAGT	TCCAGAAAAT	AACTTTTCAG	TTCAACCTAC	ACATACTGTC	3540
	TCTCAAGCAT	CTGGTGACAC	TTCGCTTAAA	CCTGTGCTTA	GTGCAAACTC	AGAGCCAGCA	3600
15	TCCTCTGACC	CTGCTTCTAG	TGAAATGTTA	TCTCCTTCAA	CTCAGCTCTT	ATTTTATGAG	3660
	ACCTCAGCTT	CTTTTAGTAC	TGAAGTATTG	CTACAACCTT	CCTTTCAGGC	TTCTGATGTT	3720
	GACACCTTGC	TTAAAACTGT	TCTTCCAGCT	GTGCCCAGTG	ATCCAATATT	GGTTGAAACC	3780
	CCCAAAGTTG	ATAAAATTAG	TTCTACAATG	TTGCATCTCA	TTGTATCAAA	TTCTGCTTCA	3840
	AGTGAAAACA	TGCTGCACTC	TACATCTGTA	CCAGTTTTTG	ATGTGTCGCC	TACTTCTCAT	3900
20	ATGCACTCTG	CTTCACTTCA	AGGTTTGACC	ATTTCCTATG	CAAGTGAGAA	ATATGAACCA	3960
	GTTTTGTTAA	AAAGTGAAAG	TTCCCACCAA	GTGGTACCTT	CTTTGTACAG	TAATGATGAG	4020
	TTGTTCCAAA	CGGCCAATTT	GGAGATTAAC	CAGGCCCATC	CCCCAAAAGG	AAGGCATGTA	4080
	TTTGCTACAC	CTGTTTTATC	AATTGATGAA	CCATTAAATA	CACTAATAAA	TAAGCTTATA	4140
		AAATTTTAAC					4200
25	ATTCCAACAG	TTGCTTCTGA	TACATTTCTA	TCTACTGATC	ATTCTGTTCC	TATAGGAAAT	4260
20	CCCCATCTTC	CCATTACAGC	TOTTOTA	CACAGAGATG	GTTCTGTAAC	CTCAACAAAG	4320
		CTTCTAAGGC					4380
	TIGGIGITE	GTGGTGAAGA	TOCTO	CATCATCATC	GTGATGATGA	TGATGATGAC	4440
	ACACCTACTC	ATGGCTTATC	CATTCATARG	TCTATCTCAT	GCTCATCCTA	TAGAGAATCA	4500
30		TAATGAATGA					4560
50		ACTCACTATC					4620
		AAACTGGTAT					4680
		ACAATGATGG					4740
		CTGAATCTAA					4800
35		CCTCAGATAG					4860
55		AAAAAGATGC					4920
		AGTCCCCAAC					4980
		AGGCCAGTAA					5040
		AGAAGGCAGT					5100
40		TTGTGGGTAT					5160
₩.		ACAGTACATC					5220
		ATGTCGGAGC					5280
		GTGGGTTTAC					5340
		CTGTTGACTT					5400
45		GATACATAAA					5460
77		AGGATGGCAA					5520
							5580
		AAGCTTATAT TATGGGAACA					5640
							5700
50 .		GAAAATGTGA					
<i>J</i> U .		CTCAGAAGAG					5760
		CAAAAATAAA					5820
		ACTACÁCGCA					5880
		TGAGAAAGGC					5940
55		CTGGAGTTGG					6000
55		ACGAAGGAAC					6060 6120
		TGGTACAAAC					6180
						TGTTAATGCA	
						GCTCCTGAGC	
60						CAGGGAAAAG	
UU						ATCCCTGAGT	
						GAGCAATGAA	6420
						GATGATATGG	
						AGAAGATGAA GGTCACTCTT	
65							
UJ						GGACTTTATC	
						TCCTAAATGG	
						AAAAGAAGAA	6780
						GACGGCAGGA	
70						CGTGGATGTT	
70						CATTGAGCAG	
						AGAGAATCCA	7020
						TGAGAGCTTA	7080
		TTTAACACAG					7140
75						CCCATCACCT	7200
75						CAATGTGTGC	7260
		GACTTGTAAT					7320
						AAAATTTCAA	7380
		TTAGGAATTC					7440
00		TAGCAATTAT					7500
80						CACCTAAAGT	7560
						CAAATTTATA	7620
		TAGATTTTTA					7680
		ATGACGTAGT					7740
05		TAAGTCATTA					7800
85		CATTTTGAAA					7860
		ATCCAAGGAA		TAAATATAAAT	ATTGCCATTA	ааааааааа	7920
	AAAAAAAAA	AAAAAAAAA	AAAA		-		

Seq ID NO: 573 Protein sequence: Protein Accession #: Eos sequence

```
5
                                                               51
       MRILKRFLAC IOLLCVCRLD WANGYYROOR KLVEEIGWSY TGALNOKNWG KKYPTCNSPK
       QSPINIDEDL TOVNVNLKKL KFQGWDKTSL ENTFIHNTGK TVEINLTNDY RVSGGVSEMV
                                                                            120
       FKASKITFHW GKCNMSSDGS EHSLEGOKFP LEMQIYCFDA DRFSSFEEAV KGKGKLRALS
                                                                            180
10
       ILFEVGTEEN LDPKAIIDGV ESVSRFGKQA ALDPFILLNL LPNSTDKYYI YNGSLTSPPC
                                                                            240
       TDTVDWIVFK DTVSISESQL AVFCEVLTMQ QSGYVMLMDY LQNNFREQQY KFSRQVFSSY
                                                                            300
       TGKEEIHEAV CSSEPENVQA DPENYTSLLV TWERPRVVYD TMIEKFAVLY QQLDGEDQTK
                                                                            360
       HEFLTDGYQD LGAILNNLLP NMSYVLQIVA ICTNGLYGKY SDQLIVDMPT DNPELDLFPE
                                                                            420
       LIGTEEIIKE EEEGKDIEEG AIVNPGRDSA TNQIRKKEPQ ISTTTHYNRI GTKYNEAKTN
                                                                            480
15
       RSPTRGSEFS GKGDVPNTSL NSTSQPVTKL ATEKDISLTS QTVTELPPHT VEGTSASLND
                                                                            540
       GSKTVLRSPH MNLSGTAESL NTVSITEYEE ESLLTSFKLD TGAEDSSGSS PATSAIPFIS
                                                                            600
       ENISQGYIFS SENPETITYD VLIPESARNA SEDSTSSGSE ESLKDPSMEG NVWFPSSTDI
                                                                            660
       TAQPDVGSGR ESFLQTNYTE IRVDESEKTT KSFSAGPVMS QGPSVTDLEM PHYSTFAYFP
                                                                            720
       TEVTPHAPTP SSRQQDLVST VNVVYSQTTQ PVYNGETPLQ PSYSSEVFPL VTPLLLDNQI
                                                                            780
20
       LNTTPAASSS DSALHATPVF PSVDVSFESI LSSYDGAPLL PFSSASFSSE LFRHLHTVSQ
                                                                            840
       ILPQVTSATE SDKVPLHASL PVAGGDLLLE PSLAQYSDVL STTHAASETL EFGSESGVLY
                                                                            900
       KTLMFSQVEP PSSDAMMHAR SSGPEPSYAL SDNEGSQHIF TVSYSSAIPV HDSVGVTYQG
       SLFSGPSHIP IPKSSLITPT ASLLOPTHAL SGDGEWSGAS SDSEFLLPDT DGLTALNISS
                                                                           1020
       PVSVAEFTYT TSVFGDDNKA LSKSEIIYGN ETELQIPSFN EMVYPSESTV MPNMYDNVNK
                                                                           1080
25
       LNASLOETSV SISSTKGMFP GSLAHTTTKV FDHEISOVPE NNFSVOPTHT VSQASGDTSL
                                                                           1140
       KPVLSANSEP ASSDPASSEM LSPSTQLLFY ETSASFSTEV LLQPSFQASD VDTLLKTVLP
                                                                           1200
       AVPSDPILVE TPKVDKISST MLHLIVSNSA SSENMLHSTS VPVFDVSPTS HMHSASLQGL
                                                                           1260
       TISYASEKYE PVLLKSESSH QVVPSLYSND ELFQTANLEI NQAHPPKGRH VFATPVLSID
                                                                           1320
       EPLNTLINKL IHSDEILTST KSSVTGKVFA GIPTVASDTF VSTDHSVPIG NGHVAITAVS
                                                                           1380
30
       PHRDGSVTST KLLFPSKATS ELSHSAKSDA GLVGGGEDGD TDDDGDDDDD DRGSDGLSIH
                                                                           1440
       KCMSCSSYRE SQEKVMNDSD THENSLMDQN NPISYSLSEN SEEDNRVTSV SSDSQTGMDR
                                                                           1500
       SPGKSPSANG LSQKHNDGKE ENDIQTGSAL LPLSPESKAW AVLTSDEESG SGQGTSDSLN
                                                                           1560
       ENETSTDFSF ADTNEKDADG ILAAGDSEIT PGFPQSPTSS VTSENSEVFH VSEAEASNSS
                                                                           1620
       HESRIGLAEG LESEKKAVIP LVIVSALTFI CLVVLVGILI YWRKCFOTAH FYLEDSTSPR
                                                                           1680
35
       VISTPPTPIF PISDDVGAIP IKHFPKHVAD LHASSGFTEE FETLKEFYQE VQSCTVDLGI
                                                                           1740
       TADSSNHPDN KHKNRYINIV AYDHSRVKLA QLAEKDGKLT DYINANYVDG YNRPKAYIAA
                                                                           1800
       QGPLKSTAED FWRMIWEHNV EVIVMITNLV EKGRRKCDQY WPADGSEEYG NFLVTQKSVQ
                                                                           1860
       VLAYYTVRNF TLRNTKIKKG SQKGRPSGRV VTQYHYTQWP DMGVPEYSLP VLTFVRKAAY
                                                                           1920
       AKRHAVGPVV VHCSAGVGRT GTYIVLDSML QQIQHEGTVN IFGFLKHIRS QRNYLVQTEE
                                                                           1980
40
       QYVFIHDTLV EAILSKETEV LDSHIHAYVN ALLIPGPAGK TKLEKQFQLL SQSNIQQSDY
                                                                           2040
       SAALKQCNRE KNRTSSIIPV ERSRVGISSL SGEGTDYINA SYIMGYYQSN EFIITQHPLL
                                                                           2100
       HTIKDFWRMI WDHNAQLVVM IPDGQNMAED EFVYWPNKDE PINCESFKVT LMAEEHKCLS
                                                                           2160
       NEEKLIIQDF ILEATQDDYV LEVRHFQCPK WPNPDSPISK TFELISVIKE EAANRDGPMI
                                                                           2220
       VHDEHGGVTA GTFCALTTLM HQLEKENSVD VYQVAKMINL MRPGVFADIE QYQFLYKVIL
                                                                           2280
45
       SLVSTRQEEN PSTSLDSNGA ALPDGNIAES LESLV
       Seq ID NO: 574 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 148-4518
50
                  11
                             21
                                        31
                                                    41
                                                               51
       CACACATACG CACGCACGAT CTCACTTCGA TCTATACACT GGAGGATTAA AACAAACAAA
       CAAAAAAAC ATTTCCTTCG CTCCCCCTCC CTCTCCACTC TGAGAAGCAG AGGAGCCGCA
                                                                            120
55
       CGGCGAGGGG CCGCAGACCG TCTGGAAATG CGAATCCTAA AGCGTTTCCT CGCTTGCATT
                                                                            180
       CAGCTCCTCT GTGTTTGCCG CCTGGATTGG GCTAATGGAT ACTACAGACA ACAGAGAAAA
                                                                            240
       CTTGTTGAAG AGATTGGCTG GTCCTATACA GGAGCACTGA ATCAAAAAAA TTGGGGAAAG
                                                                            300
       AAATATCCAA CATGTAATAG CCCAAAACAA TCTCCTATCA ATATTGATGA AGATCTTACA
                                                                            360
       CAAGTAAATG TGAATCTTAA GAAACTTAAA TTTCAGGGTT GGGATAAAAC ATCATTGGAA
                                                                            420
60
       AACACATTCA TTCATAACAC TGGGAAAACA GTGGAAATTA ATCTCACTAA TGACTACCGT
                                                                            480
       GTCAGCGGAG GAGTTTCAGA AATGGTGTTT AAAGCAAGCA AGATAACTTT TCACTGGGGA
                                                                            540
       AAATGCAATA TGTCATCTGA TGGATCAGAG CATAGTTTAG AAGGACAAAA ATTTCCACTT
                                                                            600
       GAGATGCAAA TCTACTGCTT TGATGCGGAC CGATTTTCAA GTTTTGAGGA AGCAGTCAAA
                                                                            660
       GGAAAAGGGA AGTTAAGAGC TTTATCCATT TTGTTTGAGG TTGGGACAGA AGAAAATTTG
                                                                            720
65
       GATTTCAAAG CGATTATTGA TGGAGTCGAA AGTGTTAGTC GTTTTGGGAA GCAGGCTGCT
                                                                            780
       TTAGATCCAT TCATACTGTT GAACCTTCTG CCAAACTCAA CTGACAAGTA TTACATTTAC
                                                                            840
       AATGGCTCAT TGACATCTCC TCCCTGCACA GACACAGTTG ACTGGATTGT TTTTAAAGAT
                                                                            900
       ACAGTTAGCA TCTCTGAAAG CCAGTTGGCT GTTTTTTGTG AAGTTCTTAC AATGCAACAA
                                                                           960
       TCTGGTTATG TCATGCTGAT GGACTACTTA CAAAACAATT TTCGAGAGCA ACAGTACAAG
                                                                          1020
70
       TTCTCTAGAC AGGTGTTTTC CTCATACACT GGAAAGGAAG AGATTCATGA AGCAGTTTGT
                                                                          1080
       AGTTCAGAAC CAGAAAATGT TCAGGCTGAC CCAGAGAATT ATACCAGCCT TCTTGTTACA
                                                                           1140
                                                                          1200
       TGGGAAAGAC CTCGAGTCGT TTATGATACC ATGATTGAGA AGTTTGCAGT TTTGTACCAG
       CAGTTGGATG GAGAGGACCA AACCAAGCAT GAATTTTTGA CAGATGGCTA TCAAGACTTG
                                                                           1260
       GGTGCTATTC TCAATAATTT GCTACCCAAT ATGAGTTATG TTCTTCAGAT AGTAGCCATA
                                                                          1320
75
       TGCACTAATG GCTTATATGG AAAATACAGC GACCAACTGA TTGTCGACAT GCCTACTGAT
                                                                          1380
       AATCCTGAAC TTGATCTTTT CCCTGAATTA ATTGGAACTG AAGAAATAAT CAAGGAGGAG
                                                                           1440
       GAAGAGGGAA AAGACATTGA AGAAGGCGCT ATTGTGAATC CTGGTAGAGA CAGTGCTACA
                                                                           1500
       AACCAAATCA GGAAAAAGGA ACCCCAGATT TCTACCACAA CACACTACAA TCGCATAGGG
       ACGAAATACA ATGAAGCCAA GACTAACCGA TCCCCAACAA GAGGAAGTGA ATTCTCTGGA
80
       AAGGGTGATG TTCCCAATAC ATCTTTAAAT TCCACTTCCC AACCAGTCAC TAAATTAGCC
       ACAGAAAAG ATATTTCCTT GACTTCTCAG ACTGTGACTG AACTGCCACC TCACACTGTG
                                                                           1740
       GAAGGTACTT CAGCCTCTTT AAATGATGGC TCTAAAACTG TTCTTAGATC TCCACATATG
                                                                          1800
       AACTTGTCGG GGACTGCAGA ATCCTTAAAT ACAGTTTCTA TAACAGAATA TGAGGAGGAG
                                                                           1860
       AGTTTATTGA CCAGTTTCAA GCTTGATACT GGAGCTGAAG ATTCTTCAGG CTCCAGTCCC
                                                                          1920
85
       GCAACTTCTG CTATCCCATT CATCTCTGAG AACATATCCC AAGGGTATAT ATTTTCCTCC
                                                                           1980
       GAAAACCCAG AGACAATAAC ATATGATGTC CTTATACCAG AATCTGCTAG AAATGCTTCC
                                                                          2040
```

GAAGATTCAA CTTCATCAGG TTCAGAAGAA TCACTAAAGG ATCCTTCTAT GGAGGGAAAT

2100

	WO 02	/086443					
		CTAGCTCTAC	AGACATAACA	GCACAGCCCG	ATGTTGGATC	AGGCAGAGAG	2160
	AGCTTTCTCC	AGACTAATTA	CACTGAGATA	CGTGTTGATG	AATCTGAGAA	GACAACCAAG	2220
	TCCTTTTCTG	CAGGCCCAGT	GATGTCACAG	GGTCCCTCAG	TTACAGATCT	GGAAATGCCA	2280
_	CATTATTCTA	CCTTTGCCTA	CTTCCCAACT	GAGGTAACAC	CTCATGCTTT	TACCCCATCC	2340
5	TCCAGACAAC	AGGATTTGGT	CTCCACGGTC	AACGTGGTAT	ACTCGCAGAC	AACCCAACCG	2400
	GTATACAATG	CAGAGGCCAG	TAATAGTAGC	CATGAGTCTC	GTATTGGTCT	AGCTGAGGGG	2460
	TTGGAATCCG	AGAAGAAGGC	AGTTATACCC	CTTGTGATCG	TGTCAGCCCT	GACTTTTATC	2520
	TGTCTAGTGG	TTCTTGTGGG	TATTCTCATC	TACTGGAGGA	AATGCTTCCA	GACTGCACAC	2580
10	TTTTACTTAG	AGGACAGTAC	ATCCCCTAGA	GTTATATCCA	CACCTCCAAC	ACCTATCTTT	2640
10		ATGATGTCGG					2700
		GTAGTGGGTT					2760
		GTACTGTTGA					2820
		ATCGATACAT					2880
15		AAAAGGATGG					2940
13	TACAACAGAC	CAAAAGCTTA	TATTGCTGCC	CAAGGCCCAC	TGAAATCCAC	AGCIGAAGAT	3000
		TGATATGGGA					3060
		GGAGAAAATG					3120
		TCACTCAGAA ACACAAAAAT					3180 3240
20		ATCACTACAC					3300
20		TTGTGAGAAA					3360
		GTGCTGGAGT					3420
		AACACGAAGG					3480
		ATTTGGTACA					3540
25		TTAGTAAAGA					3600
		TTCCTGGACC					3660
	AGCCAGTCAA						3720
		CTTCTTCTAT					3780
••	AGTGGAGAAG	GCACAGACTA	CATCAATGCC	TCCTATATCA	TGGGCTATTA	CCAGAGCAAT	3840
30	GAATTCATCA	TTACCCAGCA	CCCTCTCCTT	CATACCATCA	AGGATTTCTG	GAGGATGATA	3900
	TGGGACCATA	ATGCCCAACT	GGTGGTTATG	ATTCCTGATG	GCCAAAACAT	GGCAGAAGAT	3960
		ACTGGCCAAA					4020
		AAGAACACAA					4080
25		CTACACAGGA					4140
35		CAGATAGCCC					4200
		ATAGGGATGG					4260
		GTGCTCTGAC					4320
		TAGCCAAGAT					4380
40		TTCTCTACAA					4440
TU		CTCTGGACAG TAGTTTAACA					4500 4560
		AATTAGGCAG					4620
		ACTITICATGA					4680
		CAAGACTTGT					4740
45		AAGAATGGAA					4800
		AGGTTAGGAA					4860
		TTGTAGCAAT					4920
	TGTAAATAAA	ACACTCTTCC	ATATGATATT	CAACATTTTA	CAACTGCAGT	ATTCACCTAA	4980
		ATCTGTTACT					5040
50	ATATTTATAA	TTGTAGATTT	TTATATTTTA	CTACTGAGTC	AAGTTTTCTA	GTTCTGTGTA	5100
	ATTGTTTAGT	TTAATGACGT	AGTTCATTAG	CTGGTCTTAC	TCTACCAGTT	TTCTGACATT	5160
		ACCTAAGTCA					5220
		CTTCATTTTG					5280
EE		TTTATCCAAG		AATAAATATA	AATATTGCCA	AAAAAAATT	5340
55	AAAAAAAAA	AAAAAAAAA	AAAAAA				
60		575 Protein cession #: I		•			
	1	11	21	31	41	51	
	1 .	1	1	I	1	1	
		IQLLCVCRLD					60
65		TOVNVNLKKL					120
O)		GKCNMSSDGS					180
		LDFKAIIDGV DTVSISESQL					240 300
	TOTADUTARY	~****	*** CPATIM	52GI ALITHINI	-Americand	*** OWA & E 39 I	500

UU							
	1	11	21	31	41	51	
	<u> </u>	1					
		IQLLCVCRLD			-		60
65	-	TOVNVNLKKL	-				120
65		GKCNMSSDGS					180
		LDFKAIIDGV					240
	TDTVDWIVFK	DTVSISESQL	AVFCEVLTMQ	QSGYVMLMDY	LQNNFREQQY	KFSRQVFSSY	300
	TGKEEIHEAV	CSSEPENVQA	DPENYTSLLV	TWERPRVVYD	TMIEKFAVLY	QQLDGEDQTK	360
70	HEFLTDGYQD	LGAILNNLLP	NMSYVLQIVA	ICTNGLYGKY	SDQLIVDMPT	DNPELDLFPE	420
70	LIGTEEIIKE	EEEGKDIEEG	AIVNPGRDSA	TNQIRKKEPQ	ISTTTHYNRI	GTKYNEAKTN	480
	RSPTRGSEFS	GKGDVPNTSL	NSTSQPVTKL	ATEKDISLTS	QTVTELPPHT	VEGTSASLND	540
	GSKTVLRSPH	MNLSGTAESL	NTVSITEYEE	ESLLTSFKLD	TGAEDSSGSS	PATSAIPFIS	600
	ENISQGYIFS	SENPETITYD	VLIPESARNA	SEDSTSSGSE	ESLKDPSMEG	NVWFPSSTDI	660
	TAQPDVGSGR	ESFLQTNYTE	IRVDESEKTT	KSFSAGPVMS	QGPSVTDLEM	PHYSTFAYFP	720
75	TEVTPHAFTP	SSRQQDLVST	VNVVYSQTTQ	PVYNAEASNS	SHESRIGLAE	GLESEKKAVI	780
	PLVIVSALTF	ICLVVLVGIL	IYWRKCFQTA	HFYLEDSTSP	RVISTPPTPI	FPISDDVGAI	840
	PIKHFPKHVA	DLHASSGFTE	EPETLKEFYQ	EVQSCTVDLG	ITADSSNHPD	NKHKNRYINI	900
	VAYDHSRVKL	AQLAEKDGKL	TDYINANYVD	GYNRPKAYIA	AQGPLKSTAE	DFWRMIWEHN	960
	VEVIVMITNL	VEKGRRKCDQ	YWPADGSEEY	GNFLVTQKSV	QVLAYYTVRN	FTLRNTKIKK	1020
80	GSQKGRPSGR	VVTOYHYTOW	PDMGVPEYSL	PVLTFVRKAA	YAKRHAVGPV	VVHCSAGVGR	1080
	TGTYIVLDSM	LOOIQHEGTV	NIFGFLKHIR	SQRNYLVQTE	EQYVFIHDTL	VEAILSKETE	1140
	VLDSHIHAYV	NALLIPGPAG	KTKLEKQFQL	LSQSNIQQSD	YSAALKOCNR	EKNRTSSIIP	1200
	VERSRVGISS	LSGEGTDYIN	ASYIMGYYQS	NEFIITOHPL	LHTIKDFWRM	IWDHNAOLVV	1260
	MIPDGONMAE	DEFVYWPNKD	EPINCESFKV	TLMAEEHKCL	SNEEKLIIOD	FILEATODDY	1320
85		KWPNPDSPIS					1380
		DVYOVAKMIN					1440
	AALPDGNIAE						

Seq ID NO: 576 DNA sequence Nucleic Acid Accession #: EOS sequence Coding sequence: 148-4494

5	Coding sequ	lence: 148-4	1494				
,	1	11	21	31	41	51	
	1	1	1	ł	1	1	
		CACGCACGAT					60
10		ATTTCCTTCG CCGCAGACCG					120 180
10		GTGTTTGCCG					240
	CTTGTTGAAG	AGATTGGCTG	GTCCTATACA	GGAGCACTGA	АТСАААААА	TTGGGGAAAG	300
		CATGTAATAG					360
15		TGAATCTTAA TTCATAACAC					420 480
13		GAGTTTCAGA					540
		TGTCATCTGA					600
		TCTACTGCTT					660
20		AGTTAAGAGC CGATTATTGA					720 780
20		TCATACTGTT					840
		TGACATCTCC					900
		TCTCTGAAAG					960
25		TCATGCTGAT					1020 1080
23		AGGTGTTTTC CAGAAAATGT					1140
		CTCGAGTCGT					1200
	CAGTTGGATG	GAGAGGACCA	AACCAAGCAT	GAATTTTTGA	CAGATGGCTA	TCAAGACTTG	1260
20		TCAATAATTT					1320
30		GCTTATATGG TTGATCTTTT					1380 1440
		AAGACATTGA					1500
		GGAAAAAGGA					1560
25		ATGAAGCCAA					1620
35		TTCCCAATAC					1680
		ATATTTCCTT CAGCCTCTTT					1740 1800
		GGACTGCAGA					1860
		CCAGTTTCAA					1920
40		CTATCCCATT					1980
		AGACAATAAC					2040
		CTTCATCAGG CTAGCTCTAC					2100 2160
		AGACTAATTA					2220
45		CAGGCCCAGT					2280
		CCTTTGCCTA					2340
		AGGATTTGGT					2400 2460
		AGGCCAGTAA AGAAGGCAGT					2520
50´		TTGTGGGTAT					2580
		ACAGTACATC					2640
		ATGTCGGAGC					2700 2760
		GTGGGTTTAC CAGACAGCTC					2820
55		ATGATCATAG					2880
	CTGACTGATT	ATATCAATGC	CAATTATGTT	GATGGCTACA	ACAGACCAAA	AGCTTATATT	2940
		GCCCACTGAA					3000
		TTATTGTCAT CTGCCGATGG					3060 3120
60		TTGCCTATTA					3180
	AAGGGCTCCC	AGAAAGGAAG	ACCCAGTGGA	CGTGTGGTCA	CACAGTATCA	CTACACGCAG	
						GAGAAAGGCA	3300
		AGCGCCATGC CATATATTGT					3360 3420
65		TTGGCTTCTT					3480
		ATGTCTTCAT					3540
		ACAGTCATAT					3600
		AGCTAGAGAA					3660
70		CAGCCCTAAA GATCAAGGGT					3720 3780
, 0		ATATCATGGG					3840
		CCATCAAGGA					3900
		CTGATGGCCA					3960
75		TAAATTGTGA					4020 4080
75		AGGAAAAACT AAGTGAGGCA					4140
		TTGAACTTAT					4200
	ATGATTGTTC	ATGATGAGCA	TGGAGGAGTG	ACGGCAGGAA	CTTTCTGTGC	TCTGACAACC	4260
80						CAAGATGATC	
ou		GGCCAGGAGT TTGTGAGCAC				CTACAAAGTG	4380 4440
						TTAACACAGA	
						AGGCAGGAAA	4560
05	ATCAGTCTAG	TTCTCTTATC	TGTTGATTTC	CCATCACCTG	ACAGTAACTT	TCATGACATA	4620
85	GGATTCTGCC	GCCAAATTTA	TATCATTAAC	AATGTGTGCC	TTTTTGCAAG	ACTIGIAATT	4680 4740
	CCTATTAT	TCTGTATTGA	MAATGATTGA TTTTT ACACA	ALITIACAGI	TTATAGAGGT	ATGGAATTGT TAGGAATTCC	4800
	COINTILLI	-crointigh	* 11 INNUM	. augustumit			

```
WO 02/086443
       AAACTACAGA AAATGTTTGT TTTTAGTGTC AAATTTTTAG CTGTATTTGT AGCAATTATC 4860
       AGGTTTGCTA GAAATATAAC TTTTAATACA GTAGCCTGTA AATAAAACAC TCTTCCATAT
                                                                             4920
       GATATTCAAC ATTTTACAAC TGCAGTATTC ACCTAAAGTA GAAATAATCT GTTACTTATT
       GTAAATACTG CCCTAGTGTC TCCATGGACC AAATTTATAT TTATAATTGT AGATTTTTAT
                                                                             5040
       ATTTTACTAC TGAGTCAAGT TTTCTAGTTC TGTGTAATTG TTTAGTTTAA TGACGTAGTT
       CATTAGCTGG TCTTACTCTA CCAGTTTTCT GACATTGTAT TGTGTTACCT AAGTCATTAA
                                                                             5160
       CTTTGTTTCA GCATGTAATT TTAACTTTTG TGGAAAATAG AAATACCTTC ATTTTGAAAG
                                                                             5220
       AAGTTTTTAT GAGAATAACA CCTTACCAAA CATTGTTCAA ATGGTTTTTA TCCAAGGAAT
                                                                             5280
       ТССАВАВАТА ВАТАТАВАТА ТТСССАТТАВ ВАВАВАВАВА ВАВАВАВАВА ВАВАВАВАВА
10
       Seq ID NO: 577 Protein sequence:
       Protein Accession #: EOS sequence
15
                                          31
                                                                51
       MRILKRPLAC IQLLCVCRLD WANGYYRQOR KLVEEIGWSY TGALNQKNWG KKYPTCNSPK
                                                                               60
       QSPINIDEDL TQVNVNLKKL KFQGWDKTSL ENTFIHNTGK TVEINLTNDY RVSGGVSEMV
                                                                              120
       FKASKITFHW GKCNMSSDGS EHSLEGQKPP LEMQIYCFDA DRFSSFEEAV KGKGKLRALS
                                                                              180
20
       ILFEVGTEEN LDFKAIIDGV ESVSRFGKQA ALDPFILLNL LPNSTDKYYI YNGSLTSPPC
                                                                              240
       TDTVDWIVFK DTVSISESQL AVFCEVLTMQ QSGYVMLMDY LQNNFREQQY KFSRQVFSSY
                                                                              300
       TGKEEIHEAV CSSEPENVQA DPENYTSLLV TWERPRVVYD TMIEKFAVLY QQLDGEDQTK
       HEFLTDGYQD LGAILNNLLP NMSYVLQIVA ICTNGLYGKY SDQLIVDMPT DNPBLDLFPE
                                                                              420
       LIGTEEIIKE EEEGKDIEEG AIVNPGRDSA TNQIRKKEPQ ISTTTHYNRI GTKYNEAKTN
25
       RSPTRGSEFS GKGDVPNTSL NSTSQPVTKL ATEKDISLTS QTVTELPPHT VEGTSASLND
                                                                              540
       GSKTVLRSPH MNLSGTAESL NTVSITEYEE ESLLTSFKLD TGAEDSSGSS PATSAIPPIS
                                                                              600
       ENISQGYIFS SENPETITYD VLIPESARNA SEDSTSSGSE ESLKOPSMEG NVWFPSSTDI
                                                                              660
       TAQPDVGSGR ESFLQTNYTE IRVDESEKTT KSFSAGPVMS QGPSVTDLEM PHYSTPAYFP
                                                                              720
       TEVTPHAFTP SSRQQDLVST VNVVYSQTTQ PVYNEASNSS HESRIGLAEG LESEKKAVIP
                                                                              780
30
       LVIVSALTFI CLVVLVGILI YWRKCFQTAH FYLEDSTSPR VISTPPTPIF PISDDVGAIP
                                                                              840
       IKHFPKHVAD LHASSGFTEE FEEVQSCTVD LGITADSSNH PDNKHKNRYI NIVAYDHSRV
                                                                              900
       KLAQLAEKDG KLTDYINANY VDGYNRPKAY IAAOGPLKST AEDFWRMIWE HNVEVIVMIT
                                                                              960
       NLVEKGRRKC DQYWPADGSE EYGNFLVTQK SVOVLAYYTV RNFTLRNTKI KKGSQKGRPS
                                                                             1020
       GRVVTQYHYT QWPDMGVPEY SLPVLTFVRK AAYAKRHAVG PVVVHCSAGV GRTGTYIVLD
                                                                             1080
35
       SMLQQIQHEG TVN1FGFLKH IRSQRNYLVQ TEEQYVFIHD TLVEAILSKE TEVLDSHIHA
YVNALLIPGP AGKTKLEKQF QLLSQSNIQQ SDYSAALKQC NREKNRTSSI IPVERSRVGI
                                                                             1140
                                                                            1200
       SSLSGEGTDY INASYIMGYY QSNEFIITQH PLLHTIKDFW RMIWDHNAQL VVMIPDGQNM
                                                                             1260
       AEDEFVYWPN KDEPINCESF KVTLMAEEHK CLSNEEKLII ODFILEATOD DYVLEVRHFO
                                                                            1320
       CPKWPNPDSP ISKTPELISV IKEEAANRDG PMIVHDEHGG VTAGTFCALT TIMHQLEKEN
SVDVYQVAKM INLMRPGVFA DIEQYQFLYK VILSLVSTRQ EENPSTSLDS NGAALPDGNI
                                                                            1380
40
                                                                            1440
       AESLESLV
       Seq ID NO: 578 DNA sequence
45
       Nucleic Acid Accession #: EOS sequence
       Coding sequence: 501-4514
                              21
                                          31
50
       CACACATACG CACGCACGAT CTCACTTCGA TCTATACACT GGAGGATTAA AACAAACAAA
       CAAAAAAAC ATTTCCTTCG CTCCCCCTCC CTCTCCACTC TGAGAAGCAG AGGAGCCGCA
       CGGCGAGGGG CCGCAGACCG TCTGGAAATG CGAATCCTAA AGCGTTTCCT CGCTTGCATT
                                                                             180
       CAGCTCCTCT GTGTTTGCCG CCTGGATTGG GCTAATGGAT ACTACAGACA ACAGAGAAAA
       CTTGTTGAAG AGATTGGCTG GTCCTATACA GGAGCACTGA ATCAAAAAAT TGGGGAAAGA
                                                                             300
55
       AATATCCAAC ATGTAATAGC CCAAAACAAT CTCCTATCAA TATTGATGAA GATCTTACAC
                                                                             360
       AAGTAAATGT GAATCTTAAG AAACTTAAAT TTCAGGGTTG GGATAAAACA TCATTGGAAA
                                                                             420
       ACACATTCAT TCATAACACT GGGAAAACAG TGGAAATTAA TCTCACTAAT GACTACCGTG
                                                                             480
       TCAGCGGAGG AGTTTCAGAA ATGGTGTTTA AAGCAAGCAA GATAACTTTT CACTGGGGAA
                                                                             540
       AATGCAATAT GTCATCTGAT GGATCAGAGC ATAGTTTAGA AGGACAAAAA TTTCCACTTG
                                                                             600
60
       AGATGCAAAT CTACTGCTTT GATGCGGACC GATTTTCAAG TTTTGAGGAA GCAGTCAAAG
                                                                             660
       GAAAAGGGAA GTTAAGAGCT TTATCCATTT TGTTTGAGGT TGGGACAGAA GAAAATTTGG
                                                                             720
       ATTTCAAAGC GATTATTGAT GGAGTCGAAA GTGTTAGTCG TTTTGGGAAG CAGGCTGCTT
                                                                             780
       TAGATCCATT CATACTGTTG AACCTTCTGC CAAACTCAAC TGACAAGTAT TACATTTACA
                                                                             840
       ATGGCTCATT GACATCTCCT CCCTGCACAG ACACAGTTGA CTGGATTGTT TTTAAAGATA
                                                                             900
65
       CAGTTAGCAT CTCTGAAAGC CAGTTGGCTG TTTTTTGTGA AGTTCTTACA ATGCAACAAT
                                                                             960
       CTGGTTATGT CATGCTGATG GACTACTTAC AAAACAATTT TCGAGAGCAA CAGTACAAGT
                                                                            1020
       TCTCTAGACA GGTGTTTTCC TCATACACTG GAAAGGAAGA GATTCATGAA GCAGTTTGTA
                                                                            1080
       GTTCAGAACC AGAAAATGTT CAGGCTGACC CAGAGAATTA TACCAGCCTT CTTGTTACAT
                                                                            1140
       GGGAAAGACC TCGAGTCGTT TATGATACCA TGATTGAGAA GTTTGCAGTT TTGTACCAGC
                                                                            1200
70
       AGTTGGATGG AGAGGACCAA ACCAAGCATG AATTTTTGAC AGATGGCTAT CAAGACTTGG
                                                                            1260
       GTGCTATTCT CAATAATTTG CTACCCAATA TGAGTTATGT TCTTCAGATA GTAGCCATAT
                                                                            1320
       GCACTAATGG CTTATATGGA AAATACAGCG ACCAACTGAT TGTCGACATG CCTACTGATA
                                                                            1380
       ATCCTGAACT TGATCTTTTC CCTGAATTAA TTGGAACTGA AGAAATAATC AAGGAGGAGG
                                                                            1440
       AAGAGGGAAA AGACATTGAA GAAGGCGCTA TTGTGAATCC TGGTAGAGAC AGTGCTACAA
                                                                            1500
75
       ACCAAATCAG GAAAAAGGAA CCCCAGATTT CTACCACAAC ACACTACAAT CGCATAGGGA
                                                                            1560
       CGAAATACAA TGAAGCCAAG ACTAACCGAT CCCCAACAAG AGGAAGTGAA TTCTCTGGAA
                                                                            1620
       AGGGTGATGT TCCCAATACA TCTTTAAATT CCACTTCCCA ACCAGTCACT AAATTAGCCA
                                                                            1680
       CAGAAAAAGA TATTTCCTTG ACTTCTCAGA CTGTGACTGA ACTGCCACCT CACACTGTGG
                                                                            1740
       AAGGTACTTC AGCCTCTTTA AATGATGGCT CTAAAACTGT TCTTAGATCT CCACATATGA
                                                                            1800
80
       ACTTGTCGGG GACTGCAGAA TCCTTAAATA CAGTTTCTAT AACAGAATAT GAGGAGGAGA
                                                                            1860
       GTTTATTGAC CAGTTTCAAG CTTGATACTG GAGCTGAAGA TTCTTCAGGC TCCAGTCCCG
                                                                            1920
       CAACTTCTGC TATCCCATTC ATCTCTGAGA ACATATCCCA AGGGTATATA TTTTCCTCCG
                                                                            1980
```

AAAACCCAGA GACAATAACA TATGATGTCC TTATACCAGA ATCTGCTAGA AATGCTTCCG

AAGATTCAAC TTCATCAGGT TCAGAAGAAT CACTAAAGGA TCCTTCTATG GAGGGAAATG

TGTGGTTTCC TAGCTCTACA GACATAACAG CACAGCCCGA TGTTGGATCA GGCAGAGAGA

GCTTTCTCCA GACTAATTAC ACTGAGATAC GTGTTGATGA ATCTGAGAAG ACAACCAAGT

CCTTTTCTGC AGGCCCAGTG ATGTCACAGG GTCCCTCAGT TACAGATCTG GAAATGCCAC

85

2040

2100

2160

2220

21

11

31

41

51

	, WO 02	/086443			1	1	
	Ch Ch Ch Ch Ch		 CTCACTTCGA	HOWN THE CACT	CCACCATTAA	7767776777	60
	CACACATACG	ATTTCCTTCC	CTCCCCCTCC	CTCTCCACTC	TGAGAAGCAG	AGGAGCCCCA	120
	CCCCACCC	CCCCAGACCG	TCTGGAAATG	CICICCICIO	AACGTTTCCT	CGCTTCCATT	180
5	CACCTCCTCT	GTGTTTGCCG	CCTGGATTGG	CCTAATGGAT	ACTACAGACA	ACAGAGAAAA	240
	CTTGTTGAAG	AGATTGGCTG	GTCCTATACA	GGAGCACTGA	ATCAAAAAA	TTGGGGAAAG	300
	AAATATCCAA	CATGTAATAG	CCCAAAACAA	TCTCCTATCA	ATATTGATGA	AGATCTTACA	360
	CAAGTAAATG	TGAATCTTAA	GAAACTTAAA	TTTCAGGGTT	GGGATAAAAC	ATCATTGGAA	420
4.0	AACACATTCA	TTCATAACAC	TGGGAAAACA	GTGGAAATTA	ATCTCACTAA	TGACTACCGT	480
10	GTCAGCGGAG	GAGTTTCAGA	AATGGTGTTT	AAAGCAAGCA	AGATAACTTT	TCACTGGGGA	540
	AAATGCAATA	TGTCATCTGA	TGGATCAGAG	CATAGTTTAG	AAGGACAAAA	ATTTCCACTT	600
	GAGATGCAAA	TCTACTGCTT	TGATGCGGAC	CGATTTTCAA	GTTTTGAGGA	AGCAGTCAAA	660
			TTTATCCATT				720
15	GATTTCAAAG	CGATTATTGA	TGGAGTCGAA	AGTGTTAGTC	COCACACCA	GCAGGCTGCT	780
15	AATCCAT	TCATACTGTT	GAACCTTCTG TCCCTGCACA	CAAACICAA	ACTGGATTGT	TTTTTANCATTAC	840 900
	AATGGCTCAT	TOTOTONAR	CCAGTTGGCT	CHUMENTUTCITC	ACTOGRITGE	DATECARCAS	960
	TCTCCTTATC	TCATGCTGAT	GGACTACTTA	CAAAACAATT	TTCGAGAGCA	ACAGTACAAG	1020
	TTCTCTAGAC	AGGTGTTTTC	CTCATACACT	GGAAAGGAAG	AGATTCATGA	AGCAGTTTGT	1080
20	AGTTCAGAAC	CAGAAAATGT	TCAGGCTGAC	CCAGAGAATT	ATACCAGCCT	TCTTGTTACA	1140
			TTATGATACC				1200
			AACCAAGCAT				1260
	GGTGCTATTC	TCAATAATTT	GCTACCCAAT	ATGAGTTATG	TTCTTCAGAT	AGTAGCCATA	1320
0.5			AAAATACAGC				1380
25			CCCTGAATTA				1440
	GAAGAGGGAA	AAGACATTGA	AGAAGGCGCT	ATTGTGAATC	CTGGTAGAGA	CAGTGCTACA	1500
			ACCCCAGATT				1560
			GACTAACCGA ATCTTTAAAT				1620 1680
30	AAGGGTGATG	ATATTTCCCAATAC	GACTTCTCAG	ACTOTOACTO	AACCAGICAC	TCACACTCTC	1740
50	CARCETACTT	CACCCTCTTT	AAATGATGGC	TOTABACTO	TTCTTAGATC	TCCACATATG	1800
			ATCCTTAAAT				1860
	AGTTTATTGA	CCAGTTTCAA	GCTTGATACT	GGAGCTGAAG	ATTCTTCAGG	CTCCAGTCCC	1920
			CATCTCTGAG				1980
35			ATATGATGTC				2040
			TTCAGAAGAA				2100
			AGACATAACA				2160
			CACTGAGATA				2220
40			GATGTCACAG				2280 2340
40			CTTCCCAACT CTCCACGGTC				2400
	CTATACAATC	AGGCCAGTAA	TAGTAGCCAT	GAGTCTCGTA	TTGGTCTAGC	TGAGGGGTTG	2460
			TATACCCCTT				2520
			TCTCATCTAC				2580
45			CCCTAGAGTT				2640
			AATTCCAATA				2700
			TGAAGAATTT				2760
			AGGTATTACA				2820
50			TATCGTTGCC				2880
50			ACTGACTGAT				2940
			TGCTGCCCAA TAATGTGGAA				3000 3060
			TCAGTACTGG				3120
			TGTGCAAGTG				3180
55			AAAGGGCTCC				3240
			GTGGCCTGAC				3300
	CTGACCTTTG	TGAGAAAGGC	AGCCTATGCC	AAGCGCCATG	CAGTGGGGCC	TGTTGTCGTC	3360
			AAGAACAGGC				3420
C O			TGTCAACATA				3480
60	AGAAATTATT	TGGTACAAAC	TGAGGAGCAA	TATGTCTTCA	TTCATGATAC	ACTGGTTGAG	
						TGTTAATGCA	3600 3660
						GGGTCTCACT TCCTCTCCCT	
	CIGICACCCA	ATCCTCCTAC	CTCAGCCTCC	CGAGTGGCTG	GGACTATACT	CCTGAGCCAG	3780
65						GGAAAAGAAT	
	CGAACTTCTT	CTATCATCCC	TGTGGAAAGA	TCAAGGGTTG	GCATTTCATC	CCTGAGTGGA	3900
	GAAGGCACAG	ACTACATCAA	TGCCTCCTAT	ATCATGGGCT	ATTACCAGAG	CAATGAATTC	3960
	ATCATTACCC	AGCACCCTCT	CCTTCATACC	ATCAAGGATT	TCTGGAGGAT	GATATGGGAC	4020
70	CATAATGCCC	AACTGGTGGT	TATGATTCCT	GATGGCCAAA	ACATGGCAGA	AGATGAATTT	4080
70	GTTTACTGGC	CAAATAAAGA	TGAGCCTATA	AATTGTGAGA	GCTTTAAGGT	CACTCTTATG	4140
						CTTTATCTTA	
						TAAATGGCCA	4260 4320
			TAAAACTTTT GATTGTTCAT				4320
75			TATGCACCAA				4440
			TCTGATGAGG				4500
			CCTCAGCCTT				4560
						GAGCTTAGAG	
00			GGGGTGGGG				4680
80	CTAAAATTAG	GCAGGAAAAT	CAGTCTAGTT	CTGTTATCTG	TTGATTTCCC	ATCACCTGAC	4740
			ATTCTGCCGC				4800
						TTTACAGTAT	
						ATTTCAATTT	
85						ATTTTTAGCT AGCCTGTAAA	
						CTAAAGTAGA	
			AAATACTGCC				5160

	5	TAGTTTAATG TGTTACCTAA ATACCTTCAT GGTTTTTATC	ACGTAGTTCA GTCATTAACT TTTGAAAGAA	TTAGCTGGTC TTGTTTCAGC GTTTTTATGA CAAAAATAAA	AGTCAAGTTT TTACTCTACC ATGTAATTTT GAATAACACC TATAAATATT	AGTTTTCTGA AACTTTTGTG TTACCAAACA	CATTGTATTG GAAAATAGAA TTGTTCAAAT	5220 5280 5340 5400 5460
	•		581 Protein	n sequence: SOS sequence	:			
1	0			_		43		
		1	11	21	31 1	41	51 	
		MRILKRFLAC	IOLLCVCRLD	WANGYYROOR	KLVEEIGWSY	TGALNQKNWG	KKYPTCNSPK	60
٠,	_	OSPINIDEDL	TOVNVNLKKL	KFOGWDKTSL	ENTFIHNTGK	TVEINLTNDY	RVSGGVSEMV	120
I	.5	PKASKITFHW	GKCNMSSDGS	EHSLEGOKFP	LEMQIYCFDA ALDPFILLNL	DRFSSFEEAV	KGKGKLRALS VMGSLTSDDC	180 240
·		TDTVDWIVFK	DTVSISESOL	AVFCEVLTMO	QSGYVMLMDY	LONNFREQOY	KFSRQVFSSY	300
		TGKEEIHEAV	CSSEPENVQA	DPENYTSLLV	TWERPRVVYD	TMIEKPAVLY	QQLDGEDQTK	360
2	20	HEFLTDGYQD	LGAILNNLLP	NMSYVLQIVA	ICTNGLYGKY	SDQLIVDMPT	DNPELDLPPE	420 480
4	.0	RSPTRGSEFS	GKGDVPNTSL	NSTSOPVTKL	TNQIRKKEPQ ATEKDISLTS	OTVTELPPHT	VEGTSASLND	540
		GSKTVLRSPH	MNLSGTAESL	NTVSITEYEE	ESLLTSFKLD	TGAEDSSGSS	PATSAIPPIS	600
					SEDSTSSGSE			660 720
2	2.5	TAQPDVGSGR	SSROODLVST	VNVVYSOTTO	KSFSAGPVMS PVYNEASNSS	HESRIGLAEG	LESEKKAVIP	780
_		LVIVSALTFI	CLVVLVGILI	YWRKCFQTAH	FYLEDSTSPR	VISTPPTPIF	PISDDVGAIP	B40
		IKHFPKHVAD	LHASSGFTEE	PETLKEFYQE	VOSCTVDLGI	TADSSNHPDN	KHKNRYINIV	900
		AYDHSRVKLA	QLAEKDGKLT	DYINANYVDG	YNRPKAYIAA NFLVTQKSVQ	QGPLKSTAED	TLRNTKIKKG	960 1020
3	30	SQKGRPSGRV	VTQYHYTQWP	DMGVPEYSLP	VLTFVRKAAY	AKRHAVGPVV	VHCSAGVGRT	1080
		GTYIVLDSML	QQIQHEGTVN	IFGFLKHIRS	QRNYLVQTEE	QYVFIHDTLV	EAILSKETEV .	1140
		LDSHIHAYVN	ALLIPGPAGK	TKLEKQFQGL	TLSPRLECRG NRTSSIIPVE	TISAHCNLPL PCDVGTCCI.C	GEGTDVINAS	1200 1260
_	_	YIMGYYOSNE	FIITOHPLLH	TIKDFWRMIW	DHNAQLVVMI	PDGQNMAEDE	FVYWPNKDEP	1320
3	35	INCESFKVTL	MAEEHKCLSN	EEKLIIQDFI	LEATQDDYVL	EVRHFQCPKW	PNPDSPISKT	1380
		FELISVIKEE	AANRDGPMIV	HDEHGGVTAG	TFCALTTLMH STSLDSNGAA	QLEKENSVDV	YQVAKMINLM	1440
		RPGVPADIEQ	IQFDIKVIDS	растира	SISEDOMGAN	HI DOMINED	1021	
	ın							
4	10		582 DNA Be	equence n #: NM 002	851.1			
			ence: 148.					
				21	31	41	51	
		1	11					
4	15	1	1	ī	ĭ	i	Ĭ	
4	15		CACGCACGAT	 CTCACTTCGA	 TCTATACACT	 GGAGGATTAA	AACAAACAAA	60
4	15	CAAAAAAAAC	CACGCACGAT	CTCACTTCGA CTCCCCCTCC	 TCTATACACT CTCTCCACTC	GGAGGATTAA TGAGAAGCAG	AACAAACAAA AGGAGCCGCA	120
		CAAAAAAAAC CGGCGAGGGG	CACGCACGAT ATTTCCTTCG CCGCAGACCG	CTCACTTCGA CTCCCCCTCC TCTGGAAATG	 TCTATACACT	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT	AACAAACAAA AGGAGCCGCA CGCTTGCATT	
	15 50	CAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG	CTCACTTCGA CTCCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG	120 180 240 300
		CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG	CTCACTTCGA CTCCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA	120 180 240 300 360
		CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA	CTCACTTCGA CTCCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA	120 180 240 300
5	50	CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TTCATAACAC GAGTTTCAGA	CTCACTTCGA CTCCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTTT	TCTATACACT CTCTCCACT CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGGA	120 180 240 300 360 420 480 540
5		CAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AACAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAATA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TTCATAACAC GAGTTTCAGA TGTCATCTGA	CTCACTTCGA CTCCCCCTCC CTCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAACAA GAAACTTAAA TGGGAAACA AATGGTTTT TGGATCAGAG	TCTATACACT CTCTCCACT CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TCTCAGGGTT TTTCAGGGTT TGTGGAAATTA AAAGCAAGCA CATAGTTTAG	GGAGGATTAA TGAGAAGCAG ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGA TGACTACCGT TCACTGGGGA ATTTCCACTT	120 180 240 300 360 420 480 540
5	50	CAAAAAAAC CGGCGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAATA GAGATGCAAAA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCATC TGATCATCTGAT TCTACTGAT	CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG TGATCCGGAC	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG CGATTTTCAA	GGAGGATTAA TCAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGGA ATTTCCACTT AGCAGTCAAA	120 180 240 300 360 420 480 540
5	50	CAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAATA GAGAATGCAATA GGAAAAGGGA GATTCCAAGG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGCTT AGTTAAGAGC CGATTATTGA	CTCACTTCGA CTCCCCCTCC TCTGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG TGATCCGAT TTTATCCATT TGGAGTCGAA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG CGATTTTCAG AGTGTTTGAGG AGTGTTAGTC	GAGGATTAA TGAGAAGCAG ACGTTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAAAC ATCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGAA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGGA ATTTCCACTT AGCAGATCAAA AGAAAATTTG GCAGGCTGCT	120 180 240 300 360 420 480 540 660 720 780
5	55	CAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG ACACATTCA ACCACATTCA ACTCACCGGAG AAATGCAATA GAGATGCAAA GAAAAGGGA GATTTCAAAG TTAGATCCAT	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TTCATAACAC GAGTTTCAGA TGTCATCTGA TCTACTGCTT AGTTAAGAGC TCTACTGCTT AGTTAAGAGC TCTACTGCTT AGTTAACTGT TCATACTGTT	CTCACTTCGA CTCCCCCTCC CTCTGGAATG CCTGGATTGG GTCCTATACA CCCAAACAA GAAACTTAAA ATGGGAAACA AATGGTTTT TGGATCAGAG TGATGCGGAC TTTATCCATT TGGAGTCGAA GAACCTTCTG	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TCTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG CGATTTTCAA TTGTTTGAGG AGTGTTTGAGG AGTGTTAGTC CCAAACTCAA	GGAGGATTAA TGAGAAGCAG ACCATTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGATAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGACAGA CTGACAAGTA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TCACTGGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTC GCAGGCTGCT TTACATTTAC	120 180 240 300 360 420 480 540 660 720 780 840
5	50	CAAAAAAAC CGGCGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAATA GAGATGCAAA GGAAAAGGGA GTTTCAAAG GTTTCAAAA TTTCAATAAAA AATGGTCAT AATGGCTCAT	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TTCATAACAC GAGTTTCAGA TGTCATCTGA TCTACTGCTT AGTTAAGAGC CGATTATGAGAC TCTACTGCTT TGACATCTTCT TCACTGCTT TGACATCTCT TGACATCTCC	CTCACTTCGA CTCCCCCTCC CTCTGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA TGGGAAACA TAGGAAACA TGGATCAGAG TGATCAGAG TGATCAGAG TGATCAGAG TGATCAGAT TGGACTCTT TGGACTCTT TCCCTGCACA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG CGATTTTCAG AGTGTTTGAGG AGTGTTAGTC	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA TTGGGACAGA CTGACAAGTA ACTGGATTGT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA ATCACTGGT TCACTGGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAAGAT	120 180 240 300 360 420 480 540 660 720 780
5	55	CAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAATA GGAAAAGGGA GAATACAAT TTAGATCAAT AATGCATCAT ACAGTTAGCA TCTCGTTATG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGCTT AGTTAAGAGC CGATTATTGA TCATACTGTT TCACACTCTT TCACACTCTT TCACACTCTT TCACACTCTT TCACACTCTT TCACACTCTCT TCACACTCTC	CTCACTTCGA CTCCCCTCC CTCTGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAACAC AATGGTGTTT TGGATCGGAC TTTATCCATT TGGAGTCGAA GAACCTTCTG TCCCTGCACA CCAGTTGGCT GGACTACTTA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAG GGTTTTGAGG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTTGTG CAAACAATT	GAGGATTAA TGAGAAGCA ACGATTCCT ACTACAGACA ATCAAAAAA ATATTGATGA AGGATAAAC ATCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA GTTTTGAGGA GTTTTGGGAA CTGACTAGA ACTGGATTGT ACTGGATTGT ACTGGATAGT ACTGGATTGT ACTGGATAGCA TTCGAGAGCA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGCGT TCACTGGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAA	120 180 240 300 360 480 540 660 720 780 840 900 960 1020
5	50 55	CAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG ACACATTCA GTCAGCGGAG AAATGCAATA GGAAAAGGGAA GGAATGCAATA ATGATTCAAAG TTAGATCCAT AATGGCTCAT ACAGTTAGT TCTCTAGAC TTCTCTAGAC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TGTCATCTGA TCTACTGCTT AGTTAAGAGC CCATTATTGA TCATACTGTT TGACATCTC TCTCTGAAAG TCATCTCTCTAAGAT TCATGCTGTT TCACGCTTT TCAGCATCTC	CTCACTTCGA CTCCCCTCC CTCTGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAACA AATGGTGTTT TGGATCGGAC TTTATCCATT TGGATCGGAC TCATGCGAC GAACCTTCTG TCCCTGCACA CCAGTTGGCT CGACTACTTA CTCATACACT CTCATACACT CTCATACACT	TCTATACACT CTCTCCACT CGAATCCTAA GCTAATGGAT GGAGCACTGA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG CGATTTCAG AGTGTTGAGG AGTGTTGAGG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTTTGG GTTTTTTTTTT	GAGGATTAA TGAGAAGCAG ACCATTCCT ACTACAGACA ATCAAAAAA ATATTGATGA AGATAACTTA AGATAACTTT AAGGACAAAA TTTTGAGGA GTTTTTGAGGA GTTTTTGAGGA CTGACAAGTA ACTGGATAGA CTGACAAGTA ACTGGATTGT AAGTTCTTGA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAACAT AATGCAACAA ACAGTACAAG AGCAGTTTGT	120 180 240 300 360 480 540 660 720 780 840 900 960 1020 1080
5	55	CAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAATA GAGATGCAAAA GGAAAAGGGA GTTTCCAAAG TTAGATCCAT ACAGTTAGCA TCTGGTTTATC TCTCTAGAAC AGTTCAGAAC	CAGGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TTCATAACAC GAGTTTCAGA TCTACTGCTT AGTTAATAGAGC CGATTATGGTT TGACATCTCT TGACATCTCC TCTCTGAAAG TCTTCTGAAAG TCATGCTGAT TCATGCTGTT TGACATCTCC TCTGAAAG TCATGCTGAT CAGAAAATGT	CTCACTTCGA CTCCCCTCC CTCTGGAATG CCTGGATTGG GTCCTATACA CCCAAACAA GAAACTTAAA AATGGTTTT TGGATCAGAG TGATGCGAC TTTATCCAT TTGGAGTCTGA GAACCTCTG TCCCTGCACA CCAGTTGGCT GCACTACACCT TTCAGCCTAC CTCATACACT TCAGCCTGAC TTCAGCCTGAC	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAG GGTTTTGAGG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTTGTG CAAACAATT	GGAGGATTAA TGAGAAGCAG ACCACTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGATAAACT AGGACAAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGACAGA CTGACAGT ACTGGATTGT AAGTTCTTC	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TCACTGGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAA ACAGTACAAA ACAGTACAACAA ACAGTACAACAA ACAGTACAACAA ACAGTTTTAC TCTTGTTACACTTACA	120 180 240 300 360 480 540 660 720 780 840 900 960 1020
5	50 55	CAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAATA GGGAAGGGA GATTTCAAAG GTTTAGATCCAT AATGGCTCAT ACAGTTAGCA TCTGGTTATG TCTCTAGAC AGTTCAGAC AGTTCAGAC CAGTTCAGAC CAGTTCAGAC CAGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC CAGTTGGATG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAA TTCATAACAC GAGTTTCATCAGA TCTACTGCTT AGATTATAAGAC CGATTATAGA TCTACTGCTT TGACATCTCC TCTCTGAAAG TCATGCTT TGACATCTCC TCTCTGAAAG TCATGCTGAT AGGTGTTTTC CAGAAAAATG CTGAGTCGT GAGAGGACCA	CTCACTTCGA CTCCCCTCC CTCTGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA ATGGTGTTT TGGATCAGAG TGATCCGGAC TTTATCCATT TGGAGTCGAA GAACCTTCTG TCCCTGCAC CCAGTTGGCT GGACTACTT TCAGGCTGAC TCAGGCTGAC TCAGGCTGAC TCAGGCTGAC TCAGGCTGAC TCAGGCTGAC TATGATACC TATGATACC AACCAAGCAT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA GTTGGAAATTA AAAGCAAGCA CGATTTTGAG CGATTTTGAG AGTGTTAGTC CCAAACTCAA GACACGTTG GTTTTTTGTG CAAAACAATT GGAAAGGAAG CCAGAGAATT ATGATTGAG GAATTTTGAG GAAACAATT GGAAAGGAAG CCAGAGAATT ATGATTGAGA GAATTTTTGA GAAATTTTGAG GAAATTTTTGA	GAGGATTAA TGAGAAGCA ACATACAGACA ATCAAAAAA ATATTGATGA GGGATAAACT AGGATAACTT AAGGACAAAC GTTTTGACGA GTTTTGAGGA GTTTTGGGAA ACTGGATTGT ACTGGATATT ACTGGATGA ACTGGATTGT ACTGGATGA ACTGGATTGT ACTGGATGT ACTGGATGACAGTA ACTGGATTGT ACTGGAGCA AGATTCATGA AGATTGAGGTA	ACAAACAAA AGGAGCCCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAATTTG GCAGGCTGCT TTACATTTA ATTTAAAGAT AATGCAACAA ACAGTACAAA ACAGTACAAG ATTTGTTACA TTTGTTACA TTTGTTACATTT	120 180 240 360 420 480 540 660 720 780 840 960 1020 1080 1140 1200 1260
5	50 55	CAAAAAAAC CGGCGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATC ACACATTCA GTCAGCGGAG AAATGCAATA GGGAAAAGGGA GATTTCAAAG TTAGATCCAT ACAGTTACAT ACAGTTACAT ACAGTTAGAC TCTGGTTATG TTCTCTAGAC AGTTCAGAAC CGGAAAAGC CGGAAAAGC CGGTCATTC GGTCTATTC GGTCTATTC GGTCTATTC GGTCTATTC GGTCTATTC GGTCTATTC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATACACT AGTTAACACT CATACTGCTT AGTTAAGAGC CCATTATTGAT TCATACTGTT TCACATCTCT TCACACTCT TCACTGCTT TCACACTCT TCACACTCT CCTCTGAAAA TCATGCTGAT AGGTGTTTTC CAGAAAATGT CTCAGGTCGT TCAGGACCA TCAATAATTT	CTCACTTCGA CTCCCCTCC CTCTGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAACAC AATGGTGTTT TGGATCGGAC TTTATCCATT TGGAGTCGAA GAACCTTCTG TCCCTGCACA CCAGTTGGCT CGACTACTAC CTCATACACT TCAGGCTGAC TTATGATACA CTCATACACT TCAGGCTGAC TATAGATACA CTATAGATACA GACCAAGCAT GCTACCAAT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TTTCAGGGTT AAAGCAAGCA CATAGTTTAG CGATTTTCAG AGTGTTAGT CCAAACTCAA GACACAGTTG GTTTTTTGTG GAAACAATT GGAAACAATT GGAAACAATT GGAAACAATT ATGATTGAG ACTATTTTTGAG ATTTTTTTGTG AAACAATT ATGATTGAG AAATTTTTGAA ATGATTAGAA AAATTTTTGAAAACAATT ATGAATTAGAA AAATTTTTGAAAACAATT ATGAATTGAAAAAATT	GAGGATTAA TGAGAAGCA ATGACACA ATCACAGACA ATCACACACA ATCACACACA ATCACACACA ATCACACACA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAACAT AATGCAACAA ACAGTACAAG AGCAGTTTACT TCTTGTTACA TCTTGTTACAT TCTTGTTACAAG TCAAGACTTG AGTAGCCTTA	120 180 240 360 480 540 660 780 840 960 1020 1080 11400 1260 1320
5	50 55 50	CAAAAAAAC CGGCGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GCAACACATAAA GGAAAAGGGA TTACAAAG TTACACATAAAG TTACATTCAAAC TTACGTTATG ACTCTTATGCA TCTCGTTATG AGTTCAGAAC TGTCTAGAC AGTTCAGAAC CGGAAAAGAC CGGTATCAGAAC TGGCTATTCTAGAC AGTTCAGAAC TGGCAATTCAGAAC TGGCAATTCAGAAC TGGCAATTCAGAT CACTTAGTATG	CAGGCACGAT ATTTCCTTCG CCGGAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TGTCATCTGA TCTACTGCTT AGTTAATGG TCATCTGT TGACATCTCC TCTCTGAAAG TCATGCTGAT TCATGCTGT TCAGGTTTTC CAGAAAATGT CTGAGTCTC GAGAGGACCT TCAGAGGACCT TCAATAATTT GCTTATATGG	CTCACTTCGA CTCCCCCTCC CTCTGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG TTATCCATT TGGATCAGAT GAACCTTCTG TCCCTGCACA CCAGTTGGCT GGACTACTT TCAGGTCGAC TTATACACT TCAGGCTGAC TCAGTTGGCT ACCAACAACAA AAATACAGC	TCTATACACT CTCTCCACT CGAATCCTAA GCTAATGGAT GGAGCACTGA TTTCAGGGTT GTGGAAATTAA AAAGCAAGCA CATAGTTTAG CGATTTCAA ATTGTTGAGG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTATATTTTTTTGTG GTAAAACAATT CGAAAGGAAG CCAGAGAATT ATGATTGAGA ATGATTTTGAG CAAATTTTGAG CAAATTTTTGAG CAAATTTTTGAG ATGATTTTGAG ATGATTTTGAG ATGATTTTGAG GACAACTGA	GGAGGATTAA TGAGAAGCAG ACCATTCCT ACTACAGACA ATCAAAAAA ATATTGATGA AGATAACTTT AAGGACAAAA TTGGGACAGA GTTTTGAGGA CTGACAAGA CTGACAAGA ACTGGATGT AAGTTCTTA AGGTTTTTGAGGA ACTGGATGT AAGTTCTTAC AGATTCTTAC AGATTCTTAC AGATTCTTAC AGATTCTTAC AGATTCTTAC AGATTCTTACAGACT AGATTCTTACAGACT TTGAGAGCT TTGTCAGATT TTGTCAGATT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA ATCATTGGAA ATTATCCACTT TCACTGGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTTGT TCTTGTTACA TTGTACCAG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG AGTAGCCATA GCCTACTGAT	120 180 240 360 420 480 540 660 720 780 840 960 1020 1080 1140 1200 1260
5	50 55	CAAAAAAAC CGGCGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGA GAATTCAAAA GGAAAAGGGA TTAGATCCAT AATGGCTCAT ACAGTTAGCA TCTCGTTATG TCTCTAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC TGGGAAAGAC CAGTTGGAT CAGTTCAGAC AGTTCAGAC AATCCTGAAC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATACAC GAGTTCATCAGA TCTCATCAGA TCTACTGCTT AGATACTGTT TGACATCTGTA TGACATCTCC TCTCTGAAAG TCATCTCC TCTCTGAAAG TCATGCTT TCACATCTCC TCTCTGAAAG TCATGCTGAT AGGTGTTTTC CAGAAAATGT CTGAGAGCCA TCAATAATTT GCTTATATTG TTGACTCTT TTAATTTG TTGATCTTTT AAGACATTTG TTGATCTTTT AAGACATTTG	CTCACTTCGA CTCCCCTCC CTCGGATTGG GTCCTATACA CCCAAAACAA ATGGTGTTT TGGGAAAACA AATGGTGTTT TGGATCGAGA GAACCTTCTG TCCCTGCACA CCAGTTCCTG TCCCTGCACA CCAGTTGGCT TCAGCGTGCT TCAGGCTGAC TCATACACT TCAGGCTGAC TCATACACT TCAGGCTGAC ACCAAGCAT GCTACCCAAT AAAATACAGC CCCTGAATTA AGAAGGCGCT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAA CGATTTTCAA GTTTTGAGG AGTGTTAGTC CCAAACTCAA GACACGTTG GTTTTTTTGTG CAAAACAATT GGAAAGGAAG CCAGGAATT ATGATTTGAG ATTGGTATTTGAG ATTGGTATTTGAG ATTGGACTGA ATTGGAACTGA ATTGGAACTGA ATTGTGAATC	GGAGGATTAA TGAGAAGCAG ACCAGACA ATCAAAAAA ATATTGATGA GGATAAACA AGATAACTTT AAGGACAAAA GTTTTGAGGA GTTTTGAGGA TTGGGACAGA ACTGACAAGA ACTGACAAGTA ACTGGATTGT AAGTTCATTA ACTGATTGAGAA ACTGACAAGTA ACTTGAGAGCA ACTTCATGA ACATTCATGA ATACCAGCCT AGTTTGCAGT TTGTCAGAT TTTTCAGAT TTGTCAGAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT AGAAATAAT CTGGTAGAGA	ACAAACAAA AGGAGCCCCC CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA ATCATCGGGA ATTTCCACTT TCACTGGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTGTT TCTTGTTACA TTTGTACCAG TCAAGACTTG AGTAGCCATA GCCTACTGAT CAAGGAGGAG CAGTGCTACA	120 180 240 360 420 480 540 660 720 780 960 1020 1140 1200 1260 1320 1320 1440 1500
5	50 55 50	CAAAAAAAC CGGCGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG GAATGCAATA GGGAAAGGGA GATTCAAAG TTAGATCAT AATGGCTCAT ACAGTTAGAT TCTGGTTATG TCTCTAGAC TCTGGTTATG TCTCTAGAC CAGTTAGATC GGGAAAGAG GATTCAGAAC CGGTCATTC GGTCTATTC TGCACTAATG AATCCTGAAC CAGAGGGGAA AACCAAATCA AACCAAATCA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATTAACAC GAGTTTCATGAT TCATACTGCTT AGTTAAGAGC TCATACTGCTT TCACACTCTT TCACACTCTT TCACACTCTT CCATTATTGA TCATACTGTT TCACACTCTC TCTCTGAAAC TCATGCTGAT AGGTGTTTTC CAGAAAATGT CTCAGAGTCGT TCAGAGTCGT TCAGAGTCGT TCAGAGTCGT TCAGAGTCGT TCAGAAAATTT GCTTATATGG TTGAATATTT AAGACATTTT AAGACATTTT AAGACATTTT AAGACATTTT AGGAAAAAGGA	CTCACTTCGA CTCCCCTCC CTCGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAACAC AATGGTGTTT TGGATCGGAC TTTATCCATT TGGAGTCGAC GAACCTTCG TCCCTGCACA CCAGTTGGCT CGACTACTTA CTCATACACT TCAGGCTGAC TTATGATACC CAGTTGGCT ACCAAGCAT GCTACCCAAT AAAATACAGC CCCTGAATTA AGAAGGCGCT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCCAGAT ACCCCAGATT ACCCCCAGATT ACCCCCAGATT ACCCCCAGATT ACCCCCAGATT ACCCCCAGATT ACCCCCAGATT ACCCCCAGATT ACCCCCAGATT ACCCCCAGATT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TTTCAGGGTT AAAGCAAGCA CATAGTTTAG CGAATTTCAG ACTGTTAGGT TTGTTGAGG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTGTG GAAACAATT GGAAAGGAAT ATGATTTGTG AATTTTTGAG AATGTTAGT CAAACTATTTTTGAG ATGATTAGT ATGATTGAG ATTGTTGAACT ATGATTTTTGA ATGAGTTATG ATTGGAACT TTGGAACT ATTGGAACT ATTGGAACT TTTGGAACT TTTGGAACT TTTTTGGAACT TTTTTTGAACC TTTTTTTTTT	GAGGATTAA TGAGAAGCAG ACCATTCCT ACTACAGACA ATCAAAAAA ATATTGATGA AGGATAAACCTTT AAGGACAAAA TTTGACTAA AGATAACTTT AAGGACAAAA CTTTTGAGGA CTGACAAGTA ACTGATTAT ACTGATTAT ACTGATTAT ACTGATTAT ACTGATTAT ACTGATTAT ACTGATTAT ATCCAGCCT ACTTTGAGAT ATTCCAGAT TTCTCAGAT CAGATAGAT AAGAAATAAT CTGGTAGAG CACACTACAA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGCATT TCACTGGGA ATTTCCACTT AGCAGTCCAA AGAAAATTTC TTACATTTAC TTTTAAACAT AATGCAACAA ACAGTACAAG AGCAGTTACA TCTTGTTACA TCTTGTTACA TCTTGTTACAG TCAAGACTTG AGTAGCCATA GCCTACTGAT CAAGGAGGAG CAGTGCTACA TCAGGAGCATA CAAGGAGGAG CAGTGCTACA TCGCATACAG TCGCATACAG TCGCATACGGC	120 180 240 360 420 480 540 660 720 780 840 960 1020 1080 11200 1260 1320 1320 1440 1500 1560
5	50 55 50	CAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GAGATGCAATA GAGATGCAATA GAGATGCAATA GAGATGCAATA GAGATGCAAT AATGCTCAT AATGCTCAT AATGCTCAT ACAGTTAGCA TCTGGTTATG TTCTAGAC AGTTCAGAAC CGGTAGAGC CAGTTGGAT GGGGATGGATG GGTGCTATTC TGCACTAATG AATCCTGAAC AACAAATACA ACGAAATACA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATACACT GAGTTTCAGA TCTACTGCTT AGATTATAGAC CCATTATTGATT CCATACTGCTT TCACACTCTC TCTCTGAAAG TCATGCTGAT TCATGCTGAT AGGTGTTTTC CAGAAAATGT CTGAGAGGACCA TCAATAATTT GCTTATATGG TTGATCTTTTAAGACCTTTT AAGACATTGA AGGACATTTT AAGACATTGA ATGAAAAAGGA ATGAAAAAGGA ATGAAAGGAA	CTCACTTCGA CTCCCCTCC CTCTGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAACAC AATGGTGTTT TGGATCGGAC TTTATCCATT TGGATCGGAC GAACCTTCTG TCCCTGCACA CCAGTTGGCT CGACTACTTA CTCATACACT TCAGGCTGAC CAGTTGGCT CAACCAACAT AAAATACAGC CCCTGAATT AGAAGGCGT ACCCCAGATT AGAAGGCGT ACCCCAGATT AGAAGGCCT CCCTGAATTA AGAAGGCCT CCCTGAATTA AGAAGGCCT CCCCAGATT ACCCCAGATT ACCCCAGATT CACCCAGATT CACCCAGAT CACCCAGATT CACCCAGAT CACCACAC CACCAGAT CACCCAGAT CACCACAC CACCAC CACCAC CACCACAC CACCACAC CACCAC	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TTTCAGGGTT GTGGAAATTAA AAAGCAAGCA CATAGTTTAG CGATTTCAA GACTATTCAG ACTAGTTTGAGG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTTGG GTTTTTTTGG CAAACAATT GGAAAGGAAT ATGATTGAG AATGATTATGA ATGATTATGA ATGAGTATG ATTGATTG	GAGGATTAA TGAGAAGCA ATGAGAACA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA AGATAACTTT AAGGACAAAA GTTTTGAGGA CTGACAGGA GTTTTGGGACAGA ACTGGATTGT AAGTTCATGA ACTGGATTGT AAGTTCATGA ATTCACGAC AGATTCATGA ATTCACGAC TTCGAGAGCA AGATTCATGA ATTCCAGAT TTCAGAT TTCAGAT TTCTCAGAT TTCTCAGAT CTGGTAGAGC TTGTCAGAT CTGGTAGAGC AGAGAATAAT CTGGTAGAGA CACACTACAA GAGGAAGTGA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGCATT TCACTGGGA ATTTCCACTT AGCAGTCCAA AGAAAATTTC TTACATTTAC TTTTAAACAT AATGCAACAA ACAGTACAAG AGCAGTTACA TCTTGTTACA TCTTGTTACA TCTTGTTACAG TCAAGACTTG AGTAGCCATA GCCTACTGAT CAAGGAGGAG CAGTGCTACA TCAGGAGCATA CAAGGAGGAG CAGTGCTACA TCGCATACAG TCGCATACAG TCGCATACGGC	120 180 240 360 420 480 540 660 720 780 960 1020 1140 1200 1260 1320 1320 1440 1500
5	55 50 55 70	CAAAAAAAC CGGCGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAAAA GGAAAAGGGA TTAGATCCAT AATGCTCAT ACAGTTAGCA TCTCGTTATG TTCTCAGAC TCTCTAGAAC CAGTTCAGAAC CAGTTCAGAAC CAGTTGGATC TGGCAAAAAC CAGAAATCA AACGAAAAAAAAAA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG AGATTGACTG TGAATCTTAA TTCATAACAC GAGTTCATCGAT AGTTAATAGAC CGATTATAGAGC CGATTATTGA TCATCTGTT TGACATCTCT TGACATCTCC TCTCTGAAAG TCATGCTT TCACATCTCC TCTCTGAAAG TCATGCTGAT AGGTGTTTTC CAGAAAATGT CTGAGTCGT GAGAGGACCA TCAATAATTT GCTTATATGG TTGATCTTTT AAGACATTGA GGAAAAAGGA ATGAAGCCAA ATGCATACC ATATTTCCTT	CTCACTTCGA CTCCCCTCC CTCGGATTGG GTCCTATACA CCCAAAACAA AGAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG GTACCTCTG TCACTCTCTG TCCCTGCACA CCAGTTGGCT TCAGCGTTCTG GGACTACTTA CTCATACACT TCAGGCTGAC ACCAAGCAT GAAATACAGAT GCTACCCAAT AAAATACAGC ACCAGGCTT AGCAGGCTT AGCAGGCTT ACCCAGATT AGAAGGCGCT ACCCAGATT AGAAGGCGCT ACCCAGATT AGAAGCCT ACCCAGATT AGAAGCGCT ACCCAGATT AGAAGCGCT ACCCAGATT AGAAGCGCT ACCCAGATT AGAAGCGCT ACCCAGATT AGAAGCGCT ACCCAGATT AGAAGCGCT ACCCAGATT ACCTAACCGA ATCTTAAAT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAA CGATTTTCAA GCTATTTAGAG AGTGTTAGTC CCAAACTCAA GACACGTTG GTTTTTTTGTG CAAAACAATT GGAAGGAAG ATTGTGAGT ATGAGTTAGT ATGAGTTAGT ATGAGTTAGT ATGAGTATT CACCAACTGA ATTGGAACTG ATTGTGAATC TCTACCACAA TCCCCAACAA TCCCCAACAA TCCCCCAACATC ACTGTGACTG	GGAGGATTAA TGAGAAGCA ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAACC ATCACTAA AGATAACTT AAGGACAAAAC GTTTTGAGGA GTTTTGAGGA GTTTTGGGAA ACTGGATTAT AGTACATGA ACTGGATTTT TCGAGAGCA AGATTCTTAC TCGAGAGCA AGATTCATGA ATTCTCACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT AGATGCAC AGATGCAC AGATGCAC AGATGCAC AGATGCAC AGATGCAC AACTACAA GAGGAAGTGA AACCAGCCC AACTGCAC AACTGCAC	ACAAACAAA AGGAGCCCCC CCCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGCAGT TCACTGGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGTCAAA AGAAAATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG ACCAGTACAAG TCTGTTACA TTTGTACCAG TCAAGACTTG AGTAGCCATA CAGGAGACTTG AGTAGCCATA CAGGAGAGACTT CAAGACTTG AGTAGCAAT CAAGACTTG AGTAGCAAT CAAGACTTG AGTAGCAAT CAAGACTTG CAAGACTTG CAAGACTTGA TCTGTACCA TCTGCATAGGG ATTCTCTGGA ATTCTCTGGA ATTACTCGGA ATAAATTAGCC TCACACTGTG	120 180 240 300 360 420 480 540 660 720 780 900 960 1020 1140 1200 1140 1500 1560 1560 1680 1740
5	50 55 50	CAAAAAAAC CGGCGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGA AAATGCAATA GAGATGCAAAA GGAAAAGGGA TTAGATCCAT ACAGTTAGCA TCTCGTTAGCA TCTGGTTATG TCTCTAGAC AGTTCAGAC AAGCACAATCA ACGAAATCA ACGAAATCA ACGAAAAAG GAAGGGAC ACAGAAAAAG GAAGGTACTT	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG AGATTGGCTG AGATTGACTAC ATTCATCACAC GAGTTTCAGA TCTCATCTGA TCTACTGCTT AGATCTTAA TCATACTGCTT TCACTGCTT TCACTGCTT TCACACTCTC TCTCTGAAAG TCATCTCGA TCATGCTGAT AGGTGTTTTC CAGAAAATGT CTCAGAGTCGT GAGAGGACCA TCATACTGTT GCTTATATGG TTGATCTTT AGACATTTT GCTTATATTG TCAGATACTTT GCTTATATTG TTGATCTTTT AGACATTTT AGACATTTT CTCAAAAGGA ATGAAACGA ATGAAACCAA ATGAAACCAT TCCCAATAC ATATTTCCTTT CAGCCTCTTT	CTCACTTCGA CTCCCCTCC CTCGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAACAC AATGGTGTTT TGGATCGGAC TTTATCCATT TGGAGTCGAA GAACCTTCTG TCCCTGCACA CCAGTTGGCT TCATACACT TCAGGCTGAC TATGATACACT TCAGGCTGAC TATGATACC TACCAAGCAT AAAATACAGC CCCTGAATTA AGAAGGCGT ACCCCAGATT GACTACCGA ATCTTTAAAT GACTTCTCACG AAATGATGGC	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCAA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAG GCTAATCTAG ACTAGTTTAG GCAAACTCAA GACACAGTT GGAAAGGAAG CCAGAGAATT ATGATTTTGAG GAATTTTTGAG ATGATTTTTGAG ATGATTTTTGAG ATTGTATTGAACT ATGATTTTGA ATGACTAA ATTGAACTG ATTGGAACTG ATTGGAACTG ATTGGAACT TCTACCACAA TCCCCAACAA TCCACACTCAC ACTGTGACTG TCTAAAACTG TCTAAAACTG	GAGGATTAA TGAGAAGCA ATGACAGACA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA AGGATAAACC AGGATAACCTTT AAGGACAAGA GTTTTGAGGA GTTTTGGGAA ACTGGATTGT AAGTTCTTAC TTCGAGAGCA AGATTCATGA ATCACAGCCT AGTTTGCAGT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT AGAAATAAT CTGGTAGAGA CACAGTCAC AACCAGTCAC AACTGCACC TTCTTAGATC	ACAAACAAA AGGAGCCCCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA TTACACTTTGCAT TCACTGGGA ATTTCCACTT TCACTGGAA AGAAATTTG GCAGGCTGCT TTACATTTAA ACAGTACAAA ACAGTACAAA ACAGTACAAG AGCAGTTTACA TCTTGTTACA TCTTGTTACA TCTTGTTACA TCTTGTACCAG TCAAGACTTG AGTAGCCATA GCCATAGGAGAC CAGTGCTACTACA TCACACTACAC TCACACATAGC ATTCTCTCGCA TCACACTTGCACACAC TCACACCTGCG TCACACTTGCT TCCACACTTGT TCCACACTATG	120 180 240 360 420 480 540 660 720 780 840 960 1020 1180 1260 1320 1320 1560 1560 1620 1620 1740 1800
5	55 50 55 70	CAAAAAAAC CGGCGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GGATGCAGAG AAATGCAAAA GGAAAAGGGA GATTCAAAG GTTAGGCTCAT ACAGTTAGCA TTTGATCAT ACAGTTAGCA TCTGGTTTATG TTTCTAGAC AGTTCAGAAC CGGTAGAAC CGGTAGTGCTATT GGCACTATG AATCCTGAAC GAAGAGGGAA ACCAAATACA AACGGTGATG AACGAAAAAC AAGGGTGATG AACGAAAAAC AAGGGTGATG AACGAAAAAC AAGGGTGATG AACTTGTCTGAAC AAGGGTGATG AACTAATCA AAGGGTGATG AACTAATCA AAGGGTGATG AACTTGTCGG AGTTTATTGA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TGTCATCTGA TCATACTGCTT AGTTAAGAC TCATACTGTT TGACATCTCC TCTCTGAAAG TCATGCTGAT TCATGCTGT TCAGACTGTTTC CAGAAAATGT CTGAGTCGT GAGAGGACCT TCATATTGA TCATATTTT AAGACATTTA AGGAAAATGT TCATATTTT AAGACATTTT CTCCAATAC ATATTTCCTT CAGCCTCTTT GGACTGCAGA CCAGTTTCAA	CTCACTTCGA CTCCCCCTCC CTCTGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG TTATCCATT TGGATCAGAC TTATCCATT TCCCTGCACA GAACCTTCTG GCACTACTT TCAGGTCGAC CTATACACT TCAGGCTGAC TCAGCTACAC TTATGATAC TCAGGCTGAC AACAAGCAC AACAAGCAC CCCTGAATTA AGAAGGCGCT ACCCCAGATT CACTTAAAC CATCTTAAAT CATCTTAAAT CGTTGATACCT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TTTCAGGGTT GTGGAAATTAA AAAGCAAGCA CATAGTTTAG CGATTTCAA TTGTTGAGG ACTAGTTAGT CCAAACTCAA GACACAGTTG GCAAACTAAT ATGATTTGTG CAAAACAATT ATGATTAGAG AATGATTTAGAG AATGATTTAGAG AAACAATT ACAACAGTTAG CAAACTCAA ATGATTTTAGAG AATGAACTAAT ATGATTATG GAACACTGA ATTGGAACTG ATTGGAACTG ATTGTGAATC TCTACAACAA TCCCCAACAA TCCACTTCCC ACTGTGACTG ACAGTTTCTA GCAGCTGAAACTG ACAGTTTCTA	GAGGATTAA TGAGAAGCA ATCACAGACA ATCACACA ATCACACA ATCACACA ATCACACA ATCACACA ATCACACA ATCACACA ATCACACA ATCACACA AGATAACTT AAGGACAAAA ATTTTGAGGA ATGGGACAGA GTTTTGGGACAGA ACTGCACTA AGATTCACTA ACTTCACTAC ACTTCACTAC ACTTCACACA ACTTCACACA ACTTCACACA TTCTTCAGAT TTGTCGACACT AGATTCCTCACAT TTGTCGACACT ACTGCACACT ACACACACACA ACACTACACA ACACTACCA ACTGCCACC TTCTTAGACT TTACTCACCC TTCTTAGATT AACCAGACTA AACCAGACTA AACTGCCACC TTCTTAGACT TTACACACA AACTGCCACC TTCTTAGACT TAACAGAATA ATTCTTCAGG	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA ATCATTGGAA ATCATTGGAA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTTGT TCTTGTTACA TTGTACCAG TCAAGACTTG AGTAGCCATA GCCTACTGAT CAAGGGAGGAG CAGTGCTACA TCGCATAGGG ATTCTCTGGA TCACACTTGT TCACACTTGT TCACACTTGT TCACACTTGT TCACACTTGT TCACACTTGT TCACACTTGT TCACACTTGT TCACACATTGT TCACACATTGT TCACACATTGT TCACACATTGT TCACACTTCCC TCACACTTCC TCACACTTCC TCACACTTCC TCACACTTCC TCACACTTCC TCACACTCCC	120 180 240 300 360 420 480 540 660 720 780 900 960 1020 1140 1200 1140 1500 1560 1560 1680 1740
5	55 50 55 70	CAAAAAAAC CGGCGAGGG CAGCTCCTCT CTTGTTGAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGGG GAATGCAAA GGAAAAGGGA TTAGATCCAT ACAGTTAGC TTTCTAGAC TTTGATCAT ACAGTTAGC TTCTAGAC TTCTAGAC TTCTAGAC TGGCATATC AGGTCATT AGGTCATT AGGTCATAT GAGTCATAT GAACCAAATCA AACGAAATCA AACGAAATCA AACGGTGATG AACGAAAAAG GAAGTACTG AACGTTGTTG AACCAAATCA AACGGTGATG AACGAAAAAG CAGAAAAAG CAGAAAAAG CAGAAAAAG CAGAAAAAG AACGAAAAAG CAGAAAAAG CAGAAATCTGTCG ACGAACTTCTG GCAACTTCTG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG AGATTGGCTG AGATTCATAAA TTCATAACAC GAGTTTCAGA TCTACTGCTT AGTAATAGT AGTTAATGAT TCATACTGCTT TGACATCTCA TCATACTGCT TCATCTGAT TCATACTGCT TCATCTCC TCTCTGAAAG TCATGCTGAT AGGTGTTTTC CAGAAAATGT CTGAGTCGT GAGAGCCAA TCAATAATTT AAGACCTTAATAGG ATGAACCATT AAGACCAATAC ATATTTCCTT CAGCCTCTTT CGGACTGCAGA CCAGTTCAAT CCAGTTCAAT ATATTTCCTT CAGCCTCTTT CAGCCTCTTT CAGCCTCTTC CAGCTCTCAAT CCAGTTCCAAT CCAGTTCCAT CTATCCCATT	CTCACTTCGA CTCCCCCTCC CTCTGGAATG CCTGGATTGG GTCCTATACA CCCAAACAA GAAACTTAAA AATGGTGTTT TGGATCAGAG TGATCAGAG TGATCAGAG TGATCAGAG TGATCAGAC TCATCAGAC TCATCACCAAT AAAATACAGC CCCTGAATTA AGAAGGCGT ACCCCAGATT GACTAACCA AACTACCAA AATGATACC AACTACCAA AATGATACC AACTACCAA AATGATACAC AATGATCAC AATGATCAC CATCTTAAAT GACTTCTCAG AATGATCAC CATCTTCAGA	TCTATACACT CTCTCCACT CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TCTCCTATCA TCTCAGGGT AAAGCAAGCA CATAGTTTAG GCATTTCAAG TCTCTTCAGGT CCAAACTCAA GACACGTTG GTTTTTGTG GACAAGTAG CCAAACTAT ATGATTAGT CCAAACTAT ATGATTAG AATGATT ATGATTAG GACAACTGA ATTGGAACT ATTGGAACT ATTGGAACT ATTGGAACT ATTGGAACT ATTGGAACT ATTGGAACT ATTGGAACT CCACACAA TCCACACAA TCCACCACAA TCCACTCCC ACTGTGACTG CACTTCCC ACTGTGACTG CACTTCCC ACTGTGACTG ACAGTTCCT ACAGCTACA ACACTTCCC ACTGTGACTG ACAGTTCCTAAAACCTG CGAGCTGAAG AACATATCCC	GGAGGATTAA TGAGAAGCA ATCAAAAAA ATATTGATGA GGATAAACTAT AGGACAAAAAA ATATTGATGA GGATAAACTT AAGGACAAAA GTTTTGAGGA ACTGACAGA ACTGACAGA ACTGACAGA ACTGACAG ATCTCACTAA AGATACTTT AAGGACAAAA GTTTTGAGGA ACTGACAAGTA ACTGGATGT AGATTCATGA ATACCAGCCT AGTTTCAGAT TTCTTCAGAT TTCTTCAGAT TTGTTCACAT TTGTTCACAT AGAAATAAT CTGGTAGGAA CAACTACAA GAGGAAGTGA AACCAGCCC TTCTTAGATC TAACAGAATCAC AACTGCCAC ACTGCCAC TTCTTAGATC TAACAGAATTAT TAGATCACAA AACAGACTAC AACTGCCAC TTCTTAGATC TAACAGAATTAT TTCTTCAGG AAGGGTATAT	ACAAACAAA AGGAGCCCCC CCCCCCCCCCCCCCCCCC	120 180 240 300 360 420 480 660 720 780 900 960 1020 1140 1200 1140 1500 1500 1620 1680 1740 1800 1920 1980
5 6 6 7 7 7	50 55 50 55 70	CAAAAAAAC CGGCGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG GAATGCAAA GGAAAGGGA TTAGATCCAT AATGCTCAT AATGCTCAT ACAGTTAGCA TCTGGTTATG TTCTCAGAC TGGGAAAGAC CAGTTGGATC TGGCAAATCA AATGCTCATATC GAACACACAC GAAGAGGGAA AACCAAATCA AACGGAAATCA AACGGAAAATCA AACGGAAAATCA AACGGAAAAC AACGGAAAAC GAAGTTGGTG GAAACCCAG GGAAATCTG CGAAATCTG CGAGGAAAAC CAGTTGTTGTCGG CAGTTTGTCGG AGTTTATTG GAAAACCCAG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG AGATTGACTG TCATCATAACAC GAGTTCATCAGA TCTCATCATGAT ACTTAAGAGC CGATTATAGA TCATCTGTA TCATCTGTT TGACATCTCC TCTCTGAAAG TCATCTCC TCTCTGAAAG TCATGCTGAT AGGTGTTTC CAGAAAATTC CTGAGAGCCA TCAATACTTT AGACATTTC GCTTATATGG TTGATCTTT AGACATTTC AGAAAAATTT CCTATATTGG TTGATCTTTT AGACATTTC AGAAAAATTT CAGACATTTC CAGCTCTTT CAGCCTCTTT CAGCCTCTTT AGACAATAAC CTATCCCATT AGACAATAAC	CTCACTTCGA CTCCCCTCC CTCGGAATGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG TGATCCGGAC TTTATCCATT TGGAGTCGAA GAACCTTCTG GCACTACTAC CCATGACAC CCATGACAC AATGGTGCT TCAGGCTGAC CCAGTTGGCT ACCAAGCAT AAAATACAGC CCCTGAATTA AGAAGGCGCT ACCCAGATT AGAAGGCGCT ACCCAGATT GACTTACCA ATCTTAAAT GACTTCTCAG AATCATCAC AATCATACAC AATCATCACA CCCTGAATTA CCCCAGATT GACTTACCCA ATCTTAAAT GACTTCTCAG AATGATGCC ATCCTTAAAT CCTTGATACT CATCTCTGAG ATTCTTCAGG ATATGATGCT ATTGATACT CATCTCTGAG ATTGATACT CATCTCTGAG ATATGATGCT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA GTGGAAATTA AAAGCAAGCA CGATTTTCAG CGATTTTCAG CGATTTTGAG ACTTTTGAG ACTTTTGAG ACTTTTGAG ACTTTTTGAG ACACACTCA ACACACACA ATGGAACACTT GGAAACAATT GGACAACTGA ATTGGACT CCCCAACAA TCCCCAACAA TCCCCAACAA TCCACTCCC ACTGGACTG ACTGCC ACTGGACTG ACTGGACTG ACTGGACTG ACTGGACTG ACTGGACTG ACTGGACTG ACTGTAAACTG ACAGTTTCTA GGAGCTGAC ACAGTTCTA ACAGTTTCTA GGAGCTGAC CCTTATACCAC CCTTATACCAC CCTTATACCAC CCTTATACCAC CCTATATACCAC CCTATATACCAC CCTATATACCAC CCTATATACCAC CCTATATACCAC CCTATATACCAC CTATATACCAC CCTATATACCAC CCTATATACCAC CCTATATACCAC CCTATATACCAC CTATATACCAC CCTATATACCAC CCTATATACCAC CCTATATACCAC CCTATATACCAC CTATATCACAC CCTATATACCAC CCTATATACCAC CCTATATACCAC CCTATATACCAC CTATATCACAC CCTATATACCAC CCTATATACCAC CCTATATACCAC CCTATATACCAC CTATATACCAC CCTATATACCAC CCTATATACCAC CCTATATACCAC CCTATATCACAC CCACACACA	GAGGATTAA TGAGAAGCA ATGAGAACA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA AGGATAAACA AGATAACTTT AAGGACAAGA GTTTTGAGGA GTTTTGAGGA GTTTTGAGAA ACTGGATTGT TCGAGAGCA AGATTCATGA AGTTCTTAC TTCGAGACCT AGTTTGCAGAT TTGTCGACAT AAGAATAAT CTGGTAGAGA AACAGTCAC TTCTTAGATC TAACAGAATTA ATTCTTCAGG AAGGGTATAT AATTCTCAGG	ACAAACAAA AGGAGCCCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA TTGACTTGCAT TCACTGGGA ATTTCCACTT TCACTGGGA ATTTCCACTT TACAGTTACA AGAAAATTTG GCAGGCTGCT TTACATTTAA AGAAATTTAC ATTTGTTACA TCTTGTTACA TCTGTTACA CCTACTGAT CAAGACTTG AGCAGCATA GCCATAGGA ACAGTACAG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCACACTTGT TCCCACATAGC TCACACTTGT TCCACACTTGT TCACACTTGT TCACACTTGT TCACACTTGT TCACACTTGT TCACACTTGT TCACACTTGT TCACACTTGT TCACACTTGT TCACACTTGT TCACACTTCC AAATGCTTCC AAATGCTTCC	120 180 240 360 420 480 540 660 720 780 960 1020 1140 1200 1140 1500 1560 1680 1740 1800 1980 2040
5 6 6 7 7 7	55 50 55 70	CAAAAAAAC CGGCGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG ACACATTCA GTCAGCGGAG AAATGCAATA GAGATGCAATA GAGATGCAATA ATGCTCAT TTAGCAT TTAGCAT TTAGCAT TTAGCAT TCTCTAGAC TCTCTTCTAGAC TCTCTAGAC TCTCTAGAC TCTCTAGAC TGGCAAAGAC CAGTTGGAT GAGTCCTATT CAGACTTGAAC CAGTTGAAC CAGTTGAAC CAGTTGAAC GAGAGGGAA ACCAAATCA ACGAAAACCA CAGAAAAAC CAGTTTCTGG CAACTTCTG GCAACTTCTG GCAACTTCTG GCAACTTCTG GCAACTTCTG GCAAACCCAG GAAGATCAA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG AGATTGGCTG AGATTGACTAC TGTATAACAC GAGTTTCAGA TGTCATCTGA TCATCATCTTT AGTTAAGAGC CGATTATTGA TCATACTGCTT TCACACTCTT TCACACTCTC TCTCTGAAAA TCATACTGCT TCATGCTGAT AGGTGTTTTC CAGAAAATGT CTCAGATCGT TGAACATTTTC GAGAGGACCA TCAATAATTT GCTTATATGG TTGATCTTTT AGGAAAAATGT AGGAAAAAGGA ATGAAGCCAA TTCCCAATAC TCAGCTCTTT CAGCCTCTTT CAGCCTCTTT CAGCTCCTTT CAGCCTCTTT CAGCCTCTTT CAGCACATAAC CTAATCCCATTA AGACAATAAC CTTCATCAGC CTTCATCAGC	CTCACTTCGA CTCCCCTCC CTCGGAATGG CTCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAACAA AATGGTGTTT TGGATCGGAG TTTATCCATT TGGAGTCGAA GAACCTTCTG TCCCTGCACA CCAGTTGGCT CGACTACTTA CTCATACACT TCAGGCTGAC GAACCAACAAT AAAATACAGC CCCTGAATTA AGAAGGAT GCTACCCAAT ACCAAGCAT GCTACCCAAT AACAAGCAT GCTACCCAAT AACAAGCAT GCTACCCAAT AACATACAC GCTACTTAAAT GACTTCTCAGA AACTTCTTAAAT GCTTGATACT CATCTCTGAATAA CATCTCTTGAATAC CATCTCTTGAATAC CATCTCTTGAATAC CATCTCTTGAATAC CATCTCTTGAATAC CATCTCTTGAATAC CATCTCTTGAATAC CATCTCTTGAATAC TTCAGAAGAAAA	TCTATACACT CTCTCCACT CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TCTCCTATCA TCTCAGGGT AAAGCAAGCA CATAGTTTAG GCATTTCAAG TCTCTTCAGGT CCAAACTCAA GACACGTTG GTTTTTGTG GACAAGTAG CCAAACTAT ATGATTAGT CCAAACTAT ATGATTAG AATGATT ATGATTAG GACAACTGA ATTGGAACT ATTGGAACT ATTGGAACT ATTGGAACT ATTGGAACT ATTGGAACT ATTGGAACT ATTGGAACT CCACACAA TCCACACAA TCCACCACAA TCCACTCCC ACTGTGACTG CACTTCCC ACTGTGACTG CACTTCCC ACTGTGACTG ACAGTTCCT ACAGCTACA ACACTTCCC ACTGTGACTG ACAGTTCCTAAAACCTG CGAGCTGAAG AACATATCCC	GAGGATTAA TGAGAAGCA ATGACAGACA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA ATGATGACACA AGGATAAAC AGGATAACTTT AAGGACAAGA GTTTTGAGGA GTTTTGGGAA CTGACAGGA TTGGGACAGA ACTGCATTAC AGGATTCATGA ATCACCAGT AGTTCTCAGAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT CAGATGCTA ACAGATACAC CAGATGCCAC CAGATGCCAC CAGATGCCAC CACATGCACA CACACTACAA CACACTACAA CACACTACAA CACACTACAC CACATTCACAC CACATTCACAC CACATCACAC	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAACAT AATGCAACAA ACAGTACAAG AGCAGTTACA TCTTGTTACA TTTGTACCAG TCAAGACTTG AGTAGCCATA GCCTACTGAT CAAGGAGCTGA TCAGGAGCTGA TCAGGACTTG AGTAGCCATA GCCTACTGAT CCACTGTG TCACACTGTG TCCACACTATG TCCACATATG TCCACATATG TGAGGAGGAG CTCCAGTCCC ATTTTCCTCC GAAGGGGAAAT	120 180 240 300 360 420 480 660 720 780 900 960 1020 1140 1200 1140 1500 1500 1620 1680 1740 1800 1920 1980
5 6 6 7 7 7	50 55 50 55 70	CAAAAAAAC CGGCGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GAGATGCAAA GGAAAAGGGA GATTCCAAG GTTAGCTCAT ACAGTTAGC TTTGTTGAAG TTAGATCAT ACAGTTAGCA TTTCAAAG TTTCAGAC TCTGGTTATG TTCTCAGAC AGTTCAGAAC CGGTAGAC GGAAAGAC GGAAGATC AACCAAATC AACGAAATACA AACGGTACTG AACCAAATCA AACGGTACTG AACTTGTCTG GAAATCCTGAAC GAGATCCTG CGAAATACA ACGAAATACA ACGAAATACA ACGAAATACA ACGAAATACA ACGAAATACA CAGAATACA CAGAATCTGTCTG GAAACCCCAG GAGTTTCTCC GAAAACCCAA GCGTGGTTTCTCAGCTTTCTCC CGAAACCCCAG GAGATTCCTCC GAAAACCCCAG GAGATTCCTCC GAAAACCCCAG GAGTTTCTCC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATACAC GAGTTTCAGA TGTCATCTGA TCTACTGCTT AGTTAAGAC CCATTATTAGA TCATACTGT TGACATCTCC TCTCTGAAGA TCATGCTGT TCAGAGACT TCAGAGACT CAGAAAATGT CTGAGTCTT GAGAGACCT TCATATTGA TCATATTT AAGACATTTA AGGAAAATGT TCATATTT CAGCATCTTT AAGACATTTA AGGAAAATGT TCATATTT CAGCATCTTT CAGCCTCTTT GGACTCCTAC AGACAATAAC CTTATCCCATT AGACAATAAC CTTATCCCATT AGACAATAAC CTTATCCCATT AGACAATAAC CTTATCCCATT AGACAATAAC CTTATCCCATT AGACAATAAC CTTATCCCATT AGACAATAAC CTTACTCACA CTACCCTTAC AGACTAATTA AGACTAATTA AGACTAATTA AGACTAATTA AGACTAATTA AGACTAATTA AGACTAATTA AGACTAATTA	CTCACTTCGA CTCCCCTCC CTCTGGAATG CCTGGATTGG GTCCTATACA CCCAAACAA GAAACTTAAA TGGGAAACA AATGGTGTT TGGATCAGAG TTATACAT TTGGATCAGAG TTATACAT TGGATCAGAC TTATACAT TGGATCAGAC TTATACAT TCCCTGCACA GAACCTTCTG TCCCTGCACA TCAGTTGCT TCAGGTCGAC TTATGATACC TTATGATACC AACAAGCAT AAAATACAGC CCCTGAATTA AGAAGGCGCT ACCCCAGATT ACCCCAGAT ACCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT CACCCAGATT CACTTAAAT GACTTCTCAG AAATGATGGC CTTCAGAATACC CATCTTCAGAATACC CATCTTCAGAATACAC CACTGAGATA	TCTATACACT CTCTCCACT CTCTCCACT CGAATCCTAA GCTAATGGAT GGAGCACTGA TTTCAGGGT TTTCAGGGT AAAGCAAGCA CATAGTTTAG CGATTTCAA ATTGTTGAGG ACACAGTTG GTAAACCAAT GCAAACTCAA GACACAGTTG GCAAACTCAA GACACAGTTG GAAACTAAT ATGATTAGAG AATTTTAGAG AATTTTGAG AATTTTGAG AATTTTGAG AATTTTTGAG AATTTTTGAG ATTGAAACTA ATTGTGAATC TCTACACCAA TCCCCAACAA TCCCCAACAA TCCCCAACAA TCCACTTCCC ACTGTGACTG CACATTCCC ACTGTGACTG CACATTCCC CTTAAAACCT GAGCTGAAG ACATTCCC CTTATACCAC CCTTATACCAC TCACACACC CCTTATACCCC CCTTATACCCC CCTGTTGATC CCCAGCCCC CCTGTTGATC	GGAGGATTAA TGAGAAGCA ATCACAGACA ATCACAGACA ATCACACA ATCACACA ATCACACAC ATCACACAC ATCACACAC ATCACACAC ATCACACAC ATCACACAC ATCACTAC AGGATAACTTT AAGGACAAAA GTTTTGAGGA CTGACAAGTA ACTGGATGT AAGTTCTTAC AGATTCATGA ATCCACCC AGTTTCAGAAC TTCTTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT CAGATGCTA ACACTACAC ACACTACAC ACACTACAC AACTGCCAC TTCTTAGACAC AACTGCCAC TTCTTAGACAC AACTGCCAC TTCTTAGACAC AACTGCCAC TTCTTAGACAC AACTGCCAC AACTACAC AACTGCCAC AACTGCAC AACTGCCAC AACTACAC AACTGCCAC AACTACAC AACTGCCAC AACTACAC AACTACA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA ATCATTGCAA TTACTGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTTGT TCTTGTTACA TTGTACCAG TCAAGACTTG TCAAGACTTG AGTAGCCATA GCCTACTGAT CAAGGGGAGAG CAGTGCTACA TCGCATAGGG ATTCTCTGGA TCACACTTGT TCACACTTGT TCACACTTGT TCACACTTGGA TCACACTTCC GAGGGAGAG CTCCAGTCCC AAATGCTTCC GAGGGGAAAT AGGCAGAGAG GACACCAAG	120 180 240 300 360 420 480 540 660 720 780 960 1020 1140 1200 1260 1320 1440 1500 1680 1740 1860 1980 2040 2160 2220
5 6 6 7 7 7	50 55 50 55 70	CAAAAAAAC CGGCGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG GAATGCAAA GGAAAGGGA TTAGATCCAT AATGCTCAT AATGCTCAT ACAGTTAGC TTCTCAGAG TTCTCAGAC TGGGAAAGAC CAGTTGGATC TGGCAAATCA AGTCAGAAC CAGTTGGAT GAACCAGAAATCA AACGAAATCA AACGGAAAATCA AACGGAAAATCA AACGGAAAAC GAGGTAGT GAAACCCAG GAGGTACTT CGCTTTTCTG GAAACCCAG CGAAATCCA ACGAAATCA ACGGAAAAC CAGTTGGTG CGAACTCTG CGAACTCTG CGAACTCTG CGAACTCTG CGAACTCTG CGAACTCTG CGAACTCTCTG CCTTTCTCC TCCTTTTCTCG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG AGATTGGCTG AGATTGATAATAG TCTATATACAC GAGTTTCATCAGA TCTACTGCTT AGATATTGA TCATCTGTA TCATCTGTT TGACATCTCC TCTCTGAAAG TCATGCTGAT TCATGCTTT CAGAAAATTC CTCAGAGTCTT CAGAAAAATTT GCTTATATGG TTGATCTTTT AAGACATTTC AGAAAAATTT GCTTATATGG TCATGTTTT AAGACATTTC AGAAAAATTT CCCAATAC TCATCCATTT AGACATCTT CAGCTCTTT AGACTCTTT AGACTCTTT AGACTCTTT AGACTCATCATCACAGA CTTCCAT AGACAATAAC CTTCATCAGG CTAGCTCTAT AGACAATAAT AGACCAGTTTTA AGACAATAAC CTTCATCAGG CTAGCTCTAT AGACAATAAC CTTCATCAGG CTAGCTCTAT AGACAATAAT ACAGCCCAGT	CTCACTTCGA CTCCCCTCC CTCGGAATGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAACAT AATGGTGTTT TGGATCAGAG GTACCCAGAC GTACCAGAG GTACCTCTG TCCCTGCAC CCAGATCAC GCACTACT CCAGCAC GCACTACTA CTCATACACT TCAGGCTGAC TTATGATAC CTATACACT TCAGGCTGAC CCCTGAATT AAAATACAGC CCCTGAATT ACACCAAT AAAATACAGC CCCTGAATT GCTACCCAGT ACCAGGCT ACCAGGTT GACTTACCAG ATCTTAAAT GCTTCTCAG AATGATGC ATCTTAAAT CCTTGATACT CATCTCTGAG ATCTTTAAAT CATTCTCTGAG ATCTTAAAT CATTCTCTGAG ATATGATACT CATCTCTGAG ATATGATACT CATCTCTGAG ATATGATACT CATCTCTGAG ATATGATACT CATCTCTGAG ATCTTAAAT CATTCTCTGAG ATATGATGTC CACTCTGAGAAA AGACATAACA AGACATAACA CATTGAGAGAA AGACATAACA CATTGAGAGAA CACTGAGATA CATTGCACAG	TCTATACACT CTCTCCACTC CGGATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA GTGGAAATTA AAAGCAAGCA CGATTTTGAGGT ATTTTGAGGT ATTTTGAGGT ATTTTTGAGG AGTTTTGAG ACTATTTTGAG ACACACTCA GACACACTGA ATGATTTTTGTG CAAAACAATT GGAAAGGAAG ACTGATTTTTTGAG ATGATTATGA ATGATTATGA ATGACTACACAA ACTCAACAA ACTCACACAA TCCCCAACAA TCCACACACA	GAGGATTAA TGAGAAGCA ATGAGAAGCA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA AGGATAAACC AGGATAAACC AGGATAACCTTT AAGGACAAGA ACTTTGAGGA GTTTTGGGAA ACTGGATTGT AAGTTCTTAC TTCGAGAGCA AGATTCATGA ATTCTCAGAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT AGAAATAAT CTGGTAGGCA AACTGCCACC TTCTTAGATC TTACAGATTA ATTCTTCAGG ATCCTTCAGAT ATTCTTCAGAT ATTCTTCAGAT ATTCTTCAGAT ATTCTTCAGAT ATTCTTCAGAT ATTCTTCAGAT ATTCTTCAGAT ATTCTTCAGAT ATTCTTCAGAT ATTCTCAGAT ATTCTTCAGAT ATTCTTCAGAT ATTCTTCAGAT ATTCTTCAGAT ATTCTTCAGAT ATTCTTCAGAT ATTCTTCAGAT ATTCTTCAGAT ATTCTCAGATA ATTCTGATC ATTCTCAGAATA ATTCTCAGATA ATTCTGATC ATTCTCAGAATA ATTCTAGATA ATTCTAGAGAATA ATTCTGATC ATTCTCAGAATA ATTCTAGATA ATTCTAGAGAATA ATTCTGATC ATTCTAGATA ATTCTAGAGAA TTACAGATCT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA TTGACTTGCAT TCACTGGGA ATTTCCACTT TCACTGGGA ATTTCCACTT TACAGTCAAA AGAAAATTG GCAGGCTGCT TTACATTTAA AGAAATTTG TTTTAAAGAT TCTTGTTACA TCTTGTTACA TCTTGTTACA TCTTGTTACAG TCAAGACCTG AGTAGCCATA GCCATAGGAGAG CAGTGCTACT TCGCATAGG TCAAGACTTG AGTAGCATA TCTCTGAT CAAGACTTC CAGTCCC TCACACTTG TCACACTTCC GAAGGGGAAAT AGGCAGAGG GCACAACCAAG GGAAATGCCA	120 180 240 360 420 480 540 660 720 780 960 1020 1140 1200 1140 1560 1560 1680 1740 1800 1800 1980 2040 2100 2100 2220 2280
5 6 6 7 7 7 8	50 55 50 55 70	CAAAAAAAC CGGCGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGA GAATGCAAA GGAAAGGGA TTAGATCCAT ACAGTTAGAC TCTCTTAGAC TCTCTAGAC TCTCTAGAC TCTCTAGAC AGTTAGAC TCTCTAGAC AGTTAGAC TGGAAAAGGC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AAGCAAATCA AAGGGGGAA AACCAAATCA AAGGGTGAT GAAAACCAG GAAGATCTTTCTCG GAAACCTCTG GAAACCTCTG GAAACTCTCTC GAAACCCAG GCACTTCTCC GAAACCCAG TCTCTTCTCT	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG AGATTGGCTG AGATTGACTAC TCTATAACAC GAGTTTCATCAT TCATCATCTAA TCATCATCTGA TCATCATCTGA TCATCATCTTA AGTTAAGAGC CGATTATTGA TCATACTGTT TGACATCTCC TCTCTGAAAG TCATGCTGAT AGGTGTTTC CAGAAAATGT CTCAGAGTCGT GAGAGGACCA TCATACTGTT GGATACTTT GCTTATATGA TCATACTGTT GGAGACCAA TCACCAATA TCCCAATA CTATCCCATT GGACTGCAGA CCAGTTCAC CTTCATCAG CCTTCATCAG CCTTTTCCCAATA CAGCCCCAGT CCGCCTCTT CAGCCCCTCT CAGCCCCAGT CCCTTTGCCTA	CTCACTTCGA CTCCCCTCC CTCGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAACAT AATGGTGTTT TGGATCGGAC TTTATCCATT TGGAGTCGAC GAACCTTCTG TCCCTGCACA CCAGTTGGTT CTCATACACT TCAGGCTGACT AACACTACTA CTCATACACT TAGGATCGAC TATAGATAC CTATACACT TAGGCTGAC TATCATACACT TCAGGCTGAC TACCAAGCAT GCTACCCAAT AAAATACAGC CCCTGAATTA ACCAGGAT GCTACCCAAT ACCAGGTT GACTACCGA TCTTTAAAT GACTTCTCAG AATGTGATCC CATCTCTCAGA TCTTCTCAGA ATATGATGC CTTCCAACT TCAGAAGAA AGACATAACA CACTGAGATA AGATGACACAC CTTCCCAACT	TCTATACACT CTCTCCACTC CGGATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA GTGGAAATTA AAAGCAAGCA CGATTTTGAGGT ATTTTGAGGT ATTTTGAGGT ATTTTTGAGG AGTTTTGAG ACTATTTTGAG ACACACTCA GACACACTGA ATGATTTTTGTG CAAAACAATT GGAAAGGAAG ACTGATTTTTTGAG ATGATTATGA ATGATTATGA ATGACTACACAA ACTCAACAA ACTCACACAA TCCCCAACAA TCCACACACA	GAGGATTAA TGAGAAGCA ATGAGAAGCA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA ATCACAGACA AGGATAACTTT AAGGACAAAA CTTTTGAGGA CTGACAGGA CTGACAGTA ACTGGATGG ATCCACTAC AGATTCACTAC AGATTCATGA ACTGGATGG ATCCATGA ATCACAGCT TCGAGAGCA AGATTCATGA TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT ACAGACTACAA GAGGAAGTGA CACACTACAA GAGGAAGTGA AACCAGTCAC TTCTTAGATC TTACAGATT TAACAGAATA ATCTTCAGAT ATCTTCAGAT ATCTTCAGAT TTACTGCACA TTCTTAGATC TTACTCAGAT ATCTTCAGAT TTACTGCACA TTCTTCAGAT TTACTGCACA TTCTTAGATC TTACTGCACA TTCTTCAGATC TTACTGCAGATCA TTACTGCAGATCA TTACAGATCT CTCATGCTTT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA TTACATTGGAA TGACTGCAT TCACTGGGGA ATTTCCACTT TCACTTGCAT AGCAGTCAAA AGAAAATTG GCAGGCTGCT TTATAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTACA TCTTGTTACA TTTGTACCAG TCAAGACTTG AGTAGCCATA GCCTACTGAT CAGGAGGAG CAGTGCTACAG TCAAGACTTG TCACATTGT CAGGAGGAG TCACACTGT TCACATTGT TCACATTGT CAGGAGGAG ATTCTCTCGGA TCACACTGT TCACACTGT TCACACTTCC CAAATGCTTCC CAAATGCTTCC GAGGGGAAAT AGGCAGAGG GACAACCAGG GACAACCAGG GGAAACCACA TACCCCATCC TACCCCATCC TACCCCATCC TACCCCATCC ATCCCCATCC AAATGCTCC AAATGCTTCC GGAGGGAAAT AGGCAGAGAG GACAACCAGG GGAAATGCCCA TACCCCATCC	120 180 240 360 420 480 540 660 720 780 960 1020 1140 1200 1140 1560 1560 1680 1740 1800 1800 1980 2040 2100 2100 2220 2280
5 6 6 7 7 7 8	50 55 50 55 70 75	CAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAAAA GGAAAAGGGA GATTCAAAG TTAGATCCAT ACAGTTAGCA TCTGGTTTATG TCTGGTTATG AGTTCAGAAC TGGGAAAGAC TGGGAAAGAC AGGTCATATG AATCCTGAAC GAAGAGGAA ACCAAATCA AAGGGTATT AATCCTGAC GAAGATCCG GAAGATCCG GAAGATCCG GAAGTTCTGCCTTTCTG CATTTATTG ACTTTGTTTCTG GAAAACCCAG GAAGTTCCG GAAGATTCCTC GAAAACCCAG GAAGTTCTCC CCTTTTCTCC CCTTTTCTCC CTTTTCTCC CTTTTTCTCC CTTTTTCTACAATC CTTTTCTACAATC CTTTTCTACAATC CTTTTCTACAATC CTTTTCTACAATC CTTTTCTACAATC CTTTTCTACAATC CTTTTCTACAATC CTTTTCTACAATC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATACAC GAGTTTCAGA TGTCATCTGAT TCATCTGTT AGTTAAGAC CCATTATTAGA TCATACTGTT TGACATCTC TCTCTGAAA TCATACTGTT CAGAAATGT CTGAGTCGT TCAGAGTCGT TCAGAGTCGT GAGAGGACCT TCATATTT AGGAAAATGT CCTATATTG TCATATTT AGGACATTTA AGGACATTTA AGGACATTTA AGGACATTTA AGGACATTTA CAGCCCTTTT CAGCCCTTTT CAGCCCCTTT CAGCCATTC AGACAATAAC CTTCATCAG CTAGCTCAC AGACTAATTA CAGCCCCTT CAGCCCCTTT CAGCCCCTT CAGCCCCTT CAGCCCCTT CAGCCCCTT CAGCCCCTT CAGCCCCTT CAGCCCCTT CAGCCCCTT CCAGCCCCTT CCAGCCCCTT CCTCATCAGC CTAGCTCTAC AGACTAATTA CAGCCCCAGT CCTTTGCCTA AGGACTACC CTTGCCTAC AGGCTCTTCC AGGCCCAGT CCTTTGCCTA AGGACTACC CTTGCCTAC AGGCTCTTGCCTA AGGACTACC CTTGGCTCTAC AGGACTACC CTTGGCTCTAC AGGACTACC CTTGGCTAC AGGACTACC CTTGGCTAC AGGACACC	CTCACTTCGA CTCCCCTCC CTCTGGAATG CTCGGATTGG GTCCTATACA CCCAAACAA GAAACTTAAA TGGGAAACA AATGGTGTTT TGGATCGGAC TTTATCCATT TGGATCGGAC TTTATCCATT TGGATCGGAC CAGTTGGCT GGACTACTA CTCATACACT TCAGGCTGAC AACAACAAC AAATGATGT AAAATACAC CACTGAATTA AAATACAC CACTGAATTA GAATTCCCAAC ACCAGCATT GCTCACCAAT AAATACAC CTTAAACCT TCAGACGAT GACTTCTCAAC CATCTCTGAC AACTTCTCAAC CATCTGAGAA ATCTTTAAAT GACTTCTCAG CATCTCAGACA CACTGAGATA CTCCCACGTC CTCCCACGTC CTCCCACGTC CTCCACGCTC CTCTCAACCT	TCTATACACT CTCTCCACT CTCTCCACT CGAATCCTAA GCTAATGGAT GGAGCACTGA TTTCAGGGT TTTCAGGGTT AAAGCAAGCA CATAGTTTAG GATTTCAA ATTGTTGAGG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTTGGG GACACAGTT GGAAACAATT ATGATTGAGA GAATTTTTGA GACACAGTT GGAAACAATT ATGATTGAGA AATGATTAGA AATGATTAGA ATTGTGAAT TCCAACACA TCCCCAACAA TCCCCAACAA TCCCCAACAA TCCCCAACAA TCCCCAACAA TCCACTTCCC ACTGTGACTG TCTAAAACTG ACAGTTTCTA GGAGCTGAAG ACATTCCC CTTAAACCG CTTAAACCG CGTGTTGATG GCACAGCCCG CGTGTTGATG GAGCTACAG AACGTACCC CACTGGTATT TCCTACAGTA TCCTCACGTAT TCCTACAGTA TCCTCACGTAT TCCTACAGTA	GGAGGATTAA TGAGAAGCA ATCACAGACA ATCACAGACA ATCACACACA ATCACACACA ATCACACACA ATCACACACA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGCATT TCACTGGGA ATTTCCACTT AGCAGTCCAA ACAGTCAAA ACAGTACAA CCATACTGAT CAAGGAGGAA TCACACTGTG TCACACTATG TCACCACTACC AATGCTACC AATGCTACC AATGCTACC AATGCTACC AACCCAACCC	120 180 240 360 420 480 540 660 720 780 960 1020 1140 1200 1320 1320 1340 1560 1680 1680 1740 1860 1980 2040

		/000443					
			TGTATTTCCC				2580
	TCTTCCTATG	ATGGTGCACC	TTTGCTTCCA	TTTTCCTCTG	CTTCCTTCAG	TAGTGAATTG	2640
			TTCTCAAATC				2700
_			TTCTCTGCCA				2760
5	AGCCTTGCTC	AGTATTCTGA	TGTGCTGTCC	ACTACTCATG	CTGCTTCAGA	GACGCTCGAA	2820
	TTTCGTAGTG	AATCTGGTGT	TCTTTATAAA	ACGCTTATGT	TTTCTCAAGT	TGAACCACCC	2880
			TGCACGTTCT				2940
	GATAATGAGG	GCTCCCAACA	CATCTTCACT	GITTCTTACA	GTTCTGCAAT	ACCTGTGCAT	3000
	GATTCTGTGG	GTGTAACTTA	TCAGGGTTCC	TTATTTAGCG	GCCCTAGCCA	TATACCAATA	3060
10			CCCAACTGCA				3120
10							
	GGTGATGGGG	AATGGTCTGG	AGCCTCTTCT	GATAGTGAAT	TTCTTTTACC	TGACACAGAT	3180
	GGGCTGACAG	CCCTTAACAT	TTCTTCACCT	GTTTCTGTAG	CTGAATTTAC	ATATACAACA	3240
			TAAGGCGCTT				3300
15			TTTCAATGAG				3360
15	CCCAACATGT	ATGATAATGT	AAATAAGTTG	AATGCGTCTT	TACAAGAAAC	CTCTGTTTCC	3420
	ATTTCTAGCA	CCAAGGGCAT	GTTTCCAGGG	TOCOTTGCTC	ATACCACCAC	TAAGGTTTTT	3480
			TCCAGAAAAT				3540
	TCTCAAGCAT	CTGGTGACAC	TTCGCTTAAA	CCTGTGCTTA	GTGCAAACTC	AGAGCCAGCA	3600
	TCCTCTGACC	CTGCTTCTAG	TGAAATGTTA	TCTCCTTCAA	CTCAGCTCTT	ATTTTATGAG	3660
20			TGAAGTATTG				3720
20							
			TCTTCCAGCT				3780
	CCCAAAGTTG	ATAAAATTAG	TTCTACAATG	TTGCATCTCA	TTGTATCAAA	TTCTGCTTCA	3840
	ACTCAAAACA	TGCTGCACTC	TACATCTGTA	CCACALALAIG	ATGTGTCGCC	TACTTCTCAT	3900
			AGGTTTGACC				3960
25							
25	GTTTTGTTAA	AAAGTGAAAG	TTCCCACCAA	GTGGTACCTT	CTTTGTACAG	TAATGATGAG	4020
	TTGTTCCAAA	CGGCCAATTT	GGAGATTAAC	CAGGCCCATC	CCCCAAAAGG	AAGGCATGTA	4080
			AATTGATGAA				4140
						•	
			CTCCACCAAA				4200
	ATTCCAACAG	TTGCTTCTGA	TACATTTGTA	TCTACTGATC	ATTCTGTTCC	TATAGGAAAT	4260
30			TGTTTCTCCC				4320
50							4380
			AACTTCTGAG				
	TTAGTGGGTG	GTGGTGAAGA	TGGTGACACT	GATGATGATG	GTGATGATGA	TGATGACAGA	4440
	GATAGTGATG	GCTTATCCAT	TCATAAGTGT	ATGTCATGCT	CATCCTATAG	AGAATCACAG	4500
			AGACACCCAC				4560
35							
33			GAATTCTGAA				4620
	GACAGTCAAA	CTGGTATGGA	CAGAAGTCCT	GGTAAATCAC	CATCAGCAAA	TGGGCTATCC	4680
	CANANGCACA	ATGATGGAAA	AGAGGAAAAT	GACATTCAGA	CTGGTAGTGC	TCTGCTTCCT	4740
			ATGGGCAGTT				4800
40	CAAGGTACCT	CAGATAGCCT	TAATGAGAAT	GAGACTTCCA	CAGATTTCAG	TTTTGCAGAC	4860
40	ACTAATGAAA	AAGATGCTGA	TGGGATCCTG	GCAGCAGGTG	ACTCAGAAAT	AACTCCTGGA	4920
			ATCTGTTACT				4980
			TAGCCATGAG				5040
	TCCGAGAAGA	AGGCAGTTAT	ACCCCTTGTG	ATCGTGTCAG	CCCTGACTTT	TATCTGTCTA	5100
	CTCCTTTCTTC	TGGGTATTCT	CATCTACTGG	AGGAAATGCT	TCCAGACTGC	ACACTTTTAC	5160
45			TAGAGTTATA				5220
TJ							
	TCAGATGATG	TCGGAGCAAT	TCCAATAAAG	CACTTTCCAA	AGCATGTTGC	AGATTTACAT	5280
	GCAAGTAGTG	GGTTTACTGA	AGAATTTGAG	ACACTGAAAG	AGTTTTACCA	GGAAGTGCAG	5340
			TATTACAGCA				5400
50			CGTTGCCTAT				5460
50	GCTGAAAAGG	ATGGCAAACT	GACTGATTAT	ATCAATGCCA	ATTATGTTGA	TGGCTACAAC	5520
	AGACCAAAAG	CTTATATTGC	TGCCCAAGGC	CCACTGAAAT	CCACAGCTGA	AGATTTCTGG	5580
			TGTGGAAGTT				5640
			GTACTGGCCT				5700
	CTGGTCACTC	AGAAGAGTGT	GCAAGTGCTT	GCCTATTATA	CTGTGAGGAA	TTTTACTCTA	5760
55			GGGCTCCCAG				5820
00							
			GCCTGACATG				5880
	ACCTTTGTGA	GAAAGGCAGC	CTATGCCAAG	CGCCATGCAG	TGGGGCCTGT	TGTCGTCCAC	5940
	TGCAGTGCTG	GAGTTGGAAG	AACAGGCACA	TATATTGTGC	TAGACAGTAT	GTTGCAGCAG	6000
			CAACATATTT				6060
60							
60			GGAGCAATAT				6120
	ATACTTAGTA	AAGAAACTGA	GGTGCTGGAC	AGTCATATTC	ATGCCTATGT	TAATGCACTC	6180
			CAAAACAAAG				6240
			CTATTCTGCA				6300
CE			TGTGGAAAGA				6360
65	GAAGGCACAG	ACTACATCAA	TGCCTCCTAT	ATCATGGGCT	ATTACCAGAG	CAATGAATTC	6420
			CCTTCATACC				6480
			TATGATTCCT				6540
			TGAGCCTATA				6600
	GCTGAAGAAC	ACAAATGTCT	ATCTAATGAG	GAAAAACTTA	TAATTCAGGA	CTTTATCTTA	6660
70			TGTACTTGAA				6720
, 0							
			TAAAACTTTT				6780
	GCCAATAGGG	ATGGGCCTAT	GATTGTTCAT	GATGAGCATG	GAGGAGTGAC	GGCAGGAACT	6840
			TATGCACCAA				6900
75			TCTGATGAGG				6960
75	CAGTTTCTCT	ACAAAGTGAT	CCTCAGCCTT	GTGAGCACAA	GGCAGGAAGA	GAATCCATCC	7020
			TGCAGCATTG				7080
							7140
			GGGGTGGGG				
			CAGTCTAGTT				7200
			ATTCTGCCGC				7260
80			CTTATTATGT				7320
-							
			TATTTTTTTC				7380
	ATAGAGGTTA	GGAATTCCAA	ACTACAGAAA	ATGTTTGTTT	TTAGTGTCAA	ATTTTTAGCT	7440
			GTTTGCTAGA				7500
0.5			TATTCAACAT				7560
85	AATAATCTGT	TACTTATTGT	AAATACTGCC	CTAGTGTCTC	CATGGACCAA	ATTTATATTT	7620
_			TTTACTACTG				7680
	TAGTTTAATG	ACGTAGTTCA	TTAGCTGGTC	TIACTUTACC	AGI ITTCTGA	CALIGIATIG	7740

	W U U2/				* * 00000000000		
	TGTTACCTAA	GTCATTAACT	TTGTTTCAGC	ATGTAATTTT	AACTTTTGTG	GAAAATAGAA	7800
			GTTTTTATGA				7860
			CAAAAATAAA	TATAAATATT	GCCATTAAAA	AAAAAAAAA	7920
~	AAAAAAAAA	ААААААААА	A				
5							
	Seq ID NO:	583 Prote	in sequence	•			
	Protein Acc	cession #: 1	NP_002842.1				
			_				
	1	11	21	31	41	51	
10	ī	ī	ī	Ī	1	1	
- •		TOTACVCRIA	WANGYYRQQR		TGALNOKNWG	KKYPTCNSPK	60
	CODINITORNI	TOURCYCKED	KFQGWDKTSL	DAMBLINGCA	TUPTAIL TAINV	Buccarder	120
			EHSLEGQKFP				180
15			ESVSRFGKQA				240
15			AVFCEVLTMQ				300
	TGKEEIHEAV	CSSEPENVQA	DPENYTSLLV	TWERPRVVYD	TMIEKFAVLY	QQLDGEDQTK	360
	HEFLTDGYOD	LGAILNNLLP	NMSYVLQIVA	ICTNGLYGKY	SDQLIVDMPT	DNPBLDLFPE	420
			AIVNPGRDSA				480
			NSTSQPVTKL				540
20			NTVSITEYEE				600
20							
			VLIPESARNA				660
			IRVDESEKTT				720
			VNVVYSQTTQ				780
~ ~	LNTTPAASSS	DSALHATPVF	PSVDVSFESI	LSSYDGAPLL	PFSSASFSSE	LFRHLHTVSQ	840
25	ILPOVTSATE	SDKVPLHASL	PVAGGDLLLE	PSLAQYSDVL	STTHAASETL	EFGSESGVLY	900
			SSGPEPSYAL				960
			ASLLQPTHAL				1020
			LSKSEIIYGN				1080
30			GSLAHTTTKV				1140
30			LSPSTQLLFY				1200
			MLHLIVSNSA				1260
	TISYASEKYE	PVLLKSESSH	QVVPSLYSND	ELFQTANLEI	NQAHPPKGRH	VFATPVLSID	1320
	EPLNTLINKL	IHSDEILTST	KSSVTGKVFA	GIPTVASDTF	VSTDHSVPIG	NGHVAITAVS	1380
	PHRDGSVTST	KLLFPSKATS	ELSHSAKSDA	GLVGGGEDGD	TDDDGDDDDD	RDSDGLSIHK	1440
35			HENSLMDONN				1500
-			NDIOTGSALL				1560
			LAAGDSEITP				1620
			VIVSALTFIC				
					_		1680
40			KHFPKHVADL				1740
40			YDHSRVKLAQ				1800
	GPLKSTAEDF	WRMIWEHNVE	VIVMITNLVE	KGRRKCDQYW	PADGSEEYGN	FLVTQKSVQV	1860
	LAYYTVRNFT	LRNTKIKKGS	QKGRPSGRVV	TQYHYTQWPD	MGVPEYSLPV	LTFVRKAAYA	1920
	KRHAVGPVVV	HCSAGVGRTG	TYIVLDSMLQ	QIQHEGTVNI	FGFLKHIRSQ	RNYLVOTEEQ	1980
	YVFIHDTLVE	AILSKETEVL	DSHIHAYVNA	LLIPGPAGKT	KLEKOFOLLS	OSNIOOSDYS	2040
45		AILSKETEVL					2040
45	AALKQCNREK	NRTSSIIPVE	RSRVGISSLS	GEGTDYINAS	YIMGYYQSNE	FIITQHPLLH	2100
45	AALKQCNREK TIKDFWRMIW	NRTSSIIPVE DHNAQLVVMI	RSRVGISSLS PDGQNMAEDE	GEGTDYINAS FVYWPNKDEP	YIMGYYQSNE INCESFKVTL	FIITQHPLLH MAEEHKCLSN	2100 2160
45	AALKQCNREK TIKDFWRMIW EEKLIIQDFI	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL	RSRVGISSLS PDGQNMAEDE EVRHFQCPKW	GEGTDYINAS FVYWPNKDEP PNPDSPISKT	YIMGYYQSNE INCESFKVTL FELISVIKEB	FIITQHPLLH MAEEHKCLSN AANRDGPMIV	2100 2160 2220
45	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH	RSRVGISSLS PDGQNMAEDE EVRHFQCPKW QLEKENSVDV	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM	YIMGYYQSNE INCESFKVTL FELISVIKEB	FIITQHPLLH MAEEHKCLSN AANRDGPMIV	2100 2160
	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH	RSRVGISSLS PDGQNMAEDE EVRHFQCPKW	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM	YIMGYYQSNE INCESFKVTL FELISVIKEB	FIITQHPLLH MAEEHKCLSN AANRDGPMIV	2100 2160 2220
45 50	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH	RSRVGISSLS PDGQNMAEDE EVRHFQCPKW QLEKENSVDV	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM	YIMGYYQSNE INCESFKVTL FELISVIKEB	FIITQHPLLH MAEEHKCLSN AANRDGPMIV	2100 2160 2220
	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH	RSRVGISSLS PDGQNMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM	YIMGYYQSNE INCESFKVTL FELISVIKEB	FIITQHPLLH MAEEHKCLSN AANRDGPMIV	2100 2160 2220
	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO:	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA 86	RSRVGISSLS PDGQNMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV	YIMGYYQSNE INCESFKVTL FELISVIKEB	FIITQHPLLH MAEEHKCLSN AANRDGPMIV	2100 2160 2220
	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA 86 id Accession	RSRVGISSLS PDGQNMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence n #: NM_005	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV	YIMGYYQSNE INCESFKVTL FELISVIKEB	FIITQHPLLH MAEEHKCLSN AANRDGPMIV	2100 2160 2220
50	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA 86	RSRVGISSLS PDGQNMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence n #: NM_005	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV	YIMGYYQSNE INCESFKVTL FELISVIKEB	FIITQHPLLH MAEEHKCLSN AANRDGPMIV	2100 2160 2220
50	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Acc Coding sequ	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession Lence: 126.	RSRVGISSLS PDGQNMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence 1 #: NM_005	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV	YIMGYYQSNE INCESFKVTL FELISVIKEE RPGVFADIEQ	PIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS	2100 2160 2220
	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA 86 id Accession	RSRVGISSLS PDGQNMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence n #: NM_005	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV	YIMGYYQSNE INCESFKVTL FELISVIKEB	FIITQHPLLH MAEEHKCLSN AANRDGPMIV	2100 2160 2220
50	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac: Coding sequ	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession Lence: 126.	RSRVGISSLS PDGQNMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence 1 #: NM_005 4439	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1	YIMGYYQSNE INCESFKVTL FELISVIKEE RPGVFADIEQ	PIITQHPLLH MAEEHKCLSN AANRDGPMIV YQFLYKVILS	2100 2160 2220 2280
50	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac: Coding sequ 1 CCGGGCAGGT	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession pence: 126.	RSRVGISSLS PDGQNMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence n #: NM_005 .4439 21 CGGGAGCGTG	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1	YIMGYYQSNE INCESFKVTL FELISVIKEE RPGVFADIEQ 41 TGGCGCGGTT	PIITQHPLLH MAEEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC	2100 2160 2220 2280
50	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Acc Coding sequ 1 CCGGGCAGGT AGGGCGCAG	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession tence: 126. 11 GGCTCATGCT GAATTCTGAT	RSRVGISSLS PDGQNMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence 1 #: NM_005 .4439 21 CGGGGAGCGTG GTGAAACTAA	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 688.1 31 GTTGAGCGGC CAGTCTGTGA	YIMGYYQSNE INCESFKVTL PELISVIKEB RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC	PIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG	2100 2160 2220 2280 60 120
50 55	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Acc Coding sequ 1 CCGGGCAGGT AGGGCGCAG	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession tence: 126. 11 GGCTCATGCT GAATTCTGAT	RSRVGISSLS PDGQNMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence n #: NM_005 .4439 21 CGGGAGCGTG	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 688.1 31 GTTGAGCGGC CAGTCTGTGA	YIMGYYQSNE INCESFKVTL PELISVIKEB RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC	PIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG	2100 2160 2220 2280
50	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac: Coding sequ 1 	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession Lence: 126. 11 GGCTCATGCT GGATTCTGAT GGATATCGAC	RSRVGISSLS PDGQNMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence 1 #: NM_005 .4439 21 CGGGGAGCGTG GTGAAACTAA	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT	YIMGYYQSNE INCESFKVTL PELISVIKEB RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC CCCCAGTCCT	PIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA	2100 2160 2220 2280 60 120
50 55	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac: Coding sequ 1 CCGGGCAGGT AGGGGCGCAG AGAAGATGAA GTGTGAGGGA	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA 86 id Accession Lence: 126. 11 GGCTCATGCT GGATTCTGAT GGATATCGAC GGGAACCAGC	RSRVGISSLS PDGQNMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence n #: NM_005 .4439 21 CGGGGAGCGTG GTGAAACTAA ATAGGAAAAG	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 TGGCGCGGGTT GCCCTGGAAC CCCCAGTCCT CCGTGAAGAT	PIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA	2100 2160 2220 2280 60 120 180
50 55	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac: Coding sequ 1 CCGGGCAGGT AGGGGCGCAG AGAAGATGAA GTGTGAGGGA GGAGAACTCG	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession Lence: 126 11 GGCTCATGCT GAATTCTGAT GGATATCGAC GGAGAACCAGC ACCGTTGGAA	RSRVGISSLS PDGQNMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence 1 #: NM_005 .4439 21 CGGGAGCGTG GTGAAACTAA ATAGGAAAAG ACTICTGGGA TGCCAAGATG	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAAC	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC CCGTAAGAT AGCAGCCCGA	PIITQHPLLH MAEEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGGCC	2100 2160 2220 2280 60 120 180 240
50 55	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac: Coding sequ	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA 86 id Accession lence: 126. 11 GGCTCATGCT GAATTCTGAT GGATATCGAC GAGAACCAGC ACCGTTGGAA TGCCTCCATG	RSRVGISSLS PDGQNMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence 1 #: NM_005 .4439 21 CGGGAGCGTG GTGAAACTAA ATAGGAAAAG ACTTCTGGGA TGCCAAGATG CATTCTCAGC	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAAC TCAGAATCCT	YIMGYYQSNE INCESFKVTL PELISVIKEB RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC CCCCAGTCCT CCGTGAAGAT AGCAGCCCGA GGATGAGGAG	FIITQHPLLH MAEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGGCC CATCCCAAGG	2100 2160 2220 2280 60 120 180 240 300
50 55 60	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Acc Coding sequ	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTILMH STSLDSNGAA 584 DNA se id Accession lence: 126. 11 GGCTCATGCT GAATTCTGAT GGATATCGAC GAGAACCAGC ACCGTTGGAA TGCCTCCATG TCATGGCTTG	RSRVGISSLS PDGONMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence n #: NM_005 .4439 21 CGGGGAGCGTG GTGAAACTAA ATAGGAAAAG ACTICTGGGA TGCCAAGAT CATTCTCAGC AGTGCTCTGA	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAAC TCAGAATCCT AGCCCATCCG	YIMGYYQSNE INCESFKVTL PELISVIKEB RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC CCCCAGTCCT CCGTGAAGAT AGCAGCAGCA AGCAGCCGA GGATGAGGAG GACTACTTCC	PIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA TCCAAGGTTCA GCCGAGGGC CATCCCAAGG AAACACCAGC	2100 2160 2220 2280 60 120 180 240 300 360 420
50 55 60	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac: Coding sequ 1 CCGGGCAGGT AGAGGCGCAG AGAAGATGAA GTGTGAGGGA GGAAGATCGA ACACAGTGGA ACCCAGTGGA	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession Lence: 126. 11 GGCTCATGCT GGATATCTGAT GGATATCGAC GAGAACCAGC ACCGTTGGAA TGCCTCCATG TCATGGCTTG CAATGCTTGG	RSRVGISSLS PDGQNMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence 1 #: NM_005 .4439 21 CGGGAGCGTG GTGAAACTAA ATAGGAAAAG ACTTCTGGGA TGCCAAGATG CATTCTCAGC CATTCTTCAG CATTCTCAGC CTTTTTTCCT	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAACCT TCAGAATCCT AGCCCATCCG GTATGACTTT	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 GCCTGGAAC CCCAGTCCT CCGTGAAGAT AGCAGCCCGA GGATAGCGAC GGATAGTTCC TTCGTGGCTT	PIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGGCC CATCCCAAGG CATCCCAAGG TCTCTCCAGG TCTCTCTGG	2100 2160 2220 2280 60 120 180 240 300 360 420 480
50 55	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac: Coding sequent CCGGGCAGGT AGGGGCGCAG AGAAGATGAA GTGTGAGGGA GGAGAACTCG TCTCTCTTGA GAAGTACCA ACCCAGTGGA CCCGTGTGGC	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA 86 id Accession Lence: 126. 11 GGCTCATGCT GAATTCTGAT GGATATCTGAT GGATATCGAC ACCGTTGGAA TGCCTCCATG TCATGGCTTG CAATGCTTGG CAATGCTGGG CCACAAGAAG	RSRVGISSLS PDGQNMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence 1 #: NM_005 .4439 21 CGGGAGCGTG GTGAAACTAA ATAGGAAAAG ACTTCTGGGA TGCCAAGATG CATTCTCAGC AGTGCTCTGA CTTTTTCCT GGGGAGCTCT GGGGAGCTCT	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1 31 GTTGAGCGGC CAGTCTGTAA AGTATATCAT CGCACAGAGA CCTTGGAAAC TCAGAATCCT AGCCCATCCG GTATGACTTT CAATGGAAGA	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC CCCCAGTCCT CCGTGAAGAT AGCAGCCCGA GGATGAGGAG GACTACTTCC TTCGTGGCTT CGTGTGGTCT	PIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGGCC CATCCCAAGG AAACACCAGC TCTTCTCTGG CTGTCCAAGC	2100 2160 2220 2280 60 120 180 240 300 360 420 480 540
50 55 60	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac: Coding sequent	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA 86 id Accession Lence: 126. 11 GGCTCATGCT GAATTCTGAT GGATATCGAC GAGAACCAGC ACCGTTGGAA TGCCTCCATG TCATGCTTG CAATGCTTGG CAATGCTGGG CCACAAGAAG TGACGTGAA TGACGTGGA	RSRVGISSLS PDGQNMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence n #: NM_005 .4439 21 CGGGAGCGTG GTGAAACTAA ATAGGAAAAGA ACTTCTGGGA ACTTCTGGGA CTTTTTTCCT GGGGAGCTCTT TGCAGAAAGAC TGCAGAAAGAC	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAAC TCAGAATCCT AGCCCATCCG GTATGACTTT CAATGGAAGA TCAGAGAGA	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 TGGCGCGGTT GCCTGGAAC CCCCAGTCCT CCGTGAAGAT AGCAGCCCGA GGATGAGGAG GACTACTTCC TTCGTGGCTT CGTGTGGTCT CGTGTGGTCT GTGGCAAGAA	FIITQHPLLH MAEEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGGCC CATCCCAAGG AAACACCAGC TCTTCTCTGG CTGTCCAAGC GGGTGAATG GAGCTGAATG	2100 2160 2220 2280 60 120 180 240 360 420 480 600
50 55 60	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Acc Coding sequ	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession Lence: 126. 11 GGCTCATGCT GAATTCTGAT GGATATCGAC GAGAACCAGC ACCGTTGGAA TGCCTCCATG TCATGCTTG CAATGCTGG CCACAGAAC AGACGCTGGAA AGACGCTGCAA AGACGCTGCT	RSRVGISSLS PDGONMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence n #: NM_005 .4439 21 CGGGGAGCGTG GTGAAACTAA ATAGGAAAAG ACTICTGGGA ACTICTGGGA TGCCAAGATG CATTCTCAGC AGTGCTCTGA CTTTTTCCT GGGAGCTCT GGGAGCTCT TGCAGAACTA CTTTTTCCT CGGGAGCTCT TGCAGAACTA CTTCTCAGC CTCTCTGAGC CTCTCTGAGC TCCCTGCGAA	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAGC CTTGGAACCT TCAGAATCCT AGCCCATCCG GTATGACTTT CAATGGAAGA TAGAGAACT TGGAAGACT GGGTTGTGTG GGGTTGTGTG	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC CCCCAGTCCT CCGTGAAGAT AGCAGCCCGA GGATGAGGAG GACTACTTCC TTCGTGGCTT CGTGGTGTCT GTGGCAAGA GATCTTCTGC	PIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGGC CATCCCAAGG AACACCAGC TCTTCTCTGG CTGTCCAAGC GAGCTGAATG CGGACTGAATG CGCACCAGGC CTGTCCAAGC	2100 2160 2220 2280 60 120 180 240 300 480 540 660
50 55 60	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Acc Coding sequ	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession Lence: 126. 11 GGCTCATGCT GAATTCTGAT GGATATCGAC GAGAACCAGC ACCGTTGGAA TGCCTCCATG TCATGGCTTG CAATGCTGG CCACAGAAG AGACGTTGGA TGACGTGGG CCACAGAAG AGACGCTGCT CATCGTGTGC CATCGTGTGC CATCGTGTGC	RSRVGISSLS PDGONMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence n #: NM_005 .4439 21 CGGGGAGCGTG GTGAAACTAA ATAGGAAAAG ACTICTGGGA ACTICTGGGA CTTTTTCCT GGGAGCTCTGA CTTTTTCCT GGGAGCTCT GCGGAGCTCT CTGCGAAACTA CTGCGAAACTA CTCTGCGAA CTCTCTCAGC CTGCTGAACTA CTCCTGCGAA CTGCTGCGAA CTGATGATCA	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAGC CTTGGAACCT TCAGAATCCT AGCCCATCCG GTATGACTTT CAATGGAAGA TAGAGAACT TAGAGAACT GGGTTGTGG CGCAGCTGGC CGCAGCTGGC	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC CCCCAGTCCT CCGTGAAGAT AGCAGCCCGA GGATGAGGAG GACTACTTCC TTCGTGGCTT CGTGGTGTCT GTGGCAAGAT GATCTTCTCC TGGGCAAGAT TGGCCAGAGT TGGCAAGAT TGGCCAGGT TGGCCAGGT TGGCCAGGT TGGCCAGGT TGGCCAGGT TGGCCAGGT TGGCCAGGT TGGCCAGGT TGGCCAGGT	PIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGGC CATCCCAAGG AACACCAGC TCTTCTCTGG CTGTCCAAGC CTGTCCAAGC GAGCTGAATG CGCACCAGGC GGACCAGCC GGACCAGCC GGACCAGCC GGACCAGCC	2100 2160 2220 2280 2280 600 120 180 240 300 420 480 540 600 720
50 55 60 65	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Acc Coding sequ	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession Lence: 126. 11 GGCTCATGCT GAATTCTGAT GGATATCGAC GAGAACCAGC ACCGTTGGAA TGCCTCCATG TCATGGCTTG CAATGCTGG CCACAGAAG AGACGTTGGA TGACGTGGG CCACAGAAG AGACGCTGCT CATCGTGTGC CATCGTGTGC CATCGTGTGC	RSRVGISSLS PDGONMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence n #: NM_005 .4439 21 CGGGGAGCGTG GTGAAACTAA ATAGGAAAAG ACTICTGGGA ACTICTGGGA TGCCAAGATG CATTCTCAGC AGTGCTCTGA CTTTTTCCT GGGAGCTCT GGGAGCTCT TGCAGAACTA CTTTTTCCT CGGGAGCTCT TGCAGAACTA CTTCTCAGC CTCTCTGAGC CTCTCTGAGC TCCCTGCGAA	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAGC CTTGGAACCT TCAGAATCCT AGCCCATCCG GTATGACTTT CAATGGAAGA TAGAGAACT TAGAGAACT GGGTTGTGG CGCAGCTGGC CGCAGCTGGC	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC CCCCAGTCCT CCGTGAAGAT AGCAGCCCGA GGATGAGGAG GACTACTTCC TTCGTGGCTT CGTGGTGTCT GTGGCAAGAT GATCTTCTCC TGGGCAAGAT TGGCCAGAGT TGGCAAGAT TGGCCAGGT TGGCCAGGT TGGCCAGGT TGGCCAGGT TGGCCAGGT TGGCCAGGT TGGCCAGGT TGGCCAGGT TGGCCAGGT	PIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGGC CATCCCAAGG AACACCAGC TCTTCTCTGG CTGTCCAAGC CTGTCCAAGC GAGCTGAATG CGCACCAGGC GGACCAGCC GGACCAGCC GGACCAGCC GGACCAGCC	2100 2160 2220 2280 60 120 180 240 300 480 540 660
50 55 60	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac: Coding seq 1 CCGGGCAGGT AGGGGCGCAG AGAAGATGAA GTGTGAGGGA GGAGAACTCG TCTCTCTTGA ACCCAGTGGA CCCGTGTGGC ACGAGTCTTC AAGTTGGGCC TCATCCTGTC TCATGGTGAA	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession Lence: 126. 11 GGCTCATGCT GGATATCTGAT GGATATCTGAT GGATATCGAT TCATGGCTTGAA TGCCTCCATG CAATGCTTGGAT TCATGGCTTG CAATGCTGG CCACAGAAG TGACCTCTTG AGACCTCTTG ACACCTCTTG ACACCTCTTG ACACCTCTTG ACACCTCTTG	RSRVGISSLS PDGONMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence n #: NM_005 .4439 21 i CGGGAGCGTG GTGAAACTAA ATAGGAAAAG ACTTCTGGGA TGCCAAGATG CATTCTCAG CATTCTCAG CATTCTCAG CTTTTTCCT GGGGAGCTCT TGCAGAAAGAC CTCCTGCAA CTGATGATCA GAGTATACCC	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAACCT TCAGAATCCT AGCCCATCCG GTATGACTT CAATGGAGA TAGAGAGACT CGGTTGTG GGGTTGTG GGGTTGTG GGCACAGGA AGGCAACAGA	YIMGYYQSNE INCESFKVTL PELISVIKEB RPGVFADIEQ 41 TGGCGCGGGTT GCCCTGGAAC CCCCAGTCCT CCGTGAAGAT AGCAGCCCGA GGATTACTTCC TTCGTGGCTT CGTGTGGTCT CGTGTGGCAAGAA GATCTTCTGC TGGCTTCAGCT GTGCCAAGTCT TGGCTTCAGCT GTGTCTCAGT GTCTAACCTG	PIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGGC CATCCCAAGG AACACCAGC TCTTCTCTGG CTGTCCAAGC CTGTCCAAGC GAGCTGAATG CGCACCAGGC GGACCAGCC GGACCAGCC GGACCAGCC GGACCAGCC	2100 2160 2220 2280 2280 60 120 180 240 300 360 480 540 600 600 720 780
50 55 60 65	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac: Coding sequent CCGGGCAGGT AGGGGCAGGT AGGGGCGCAG AGAAGATGAA GTGTGAGGGA GGAGAACTCG TCTCTCTTGA ACCCAGTGGA CCCAGTGGC ACGAGTCTTC AAGTTGGGCC TCATCCTGTC TCATCGTGAA TGTTGTTAGT	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA 86 id Accession Lence: 126. 11 GGCTCATGCT GAATTCTGAT GGATATCGAC GAGAACCAGC ACCGTTGGAA TGCCTCCATG TCATGCTTG CAATGCTTG CAATGCTGG CCACAAGAAG TGACGTGGAA TGACGTGGAA TGACGTGGG TGACGTGGAA AGACGTGTG CAATGCTTGG AGACGTGGAA AGACGTCTTG ACACCTCTTG GCTGGGCCTC	RSRVGISSLS PDGONMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence n #: NM_005 .4439 21 CGGGAGCGTG GTGAAACTAA ATAGGAAAAGA ACTTCTGGGA ACTTCTGGGA CTTTTTCCT GGGGAGCTCT TGCAGAAGAC TCCTGCGAA CTGATGATCA CTGATGATCA CAGATGATCA CGGTGATCATCA CGGTGATCATCA CGGTGATCATCA CGGTGATCATCA CGGTGATCATCA CGGTGATCATCA CGGTGATCATCA CGGTGATCATCA CGGTGATCATCA CTCCTGACGG	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAAC TCAGAATCCT AGCCCATCCG GTATGACTTT CAATGGAAGA TCAGAGAGACT GGGTTGTGG TAGAGTTGTGG GGCAGCTGGC AGGCAACAGA AAATCGTGCG	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 TGGCGCGGTT GCCTGGAAC CCCCAGTCCT CCGTGAAGAT AGCAGCCCGA GGATGAGGAG GACTACTTCC CTTCGTGGCTT CGTGTGGTCT GTGTGGTCT GTGTGCTCT GTGTGCTCT GTGTAACCTG GTCTTAGCT GTCTTAGCTG	FIITQHPLLH MAEEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGGCC CATCCCAAGG AAACACCAGC TCTTCTCTGG CTGTCCAAGC GGACTGAATG CGCACCAGCC CGACCAGCC CGGACCAGCC CAGTACAGCT CTTGCACTGA	2100 2160 2220 2280 60 120 180 240 300 360 420 480 540 660 720 780 840
50 55 60 65	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Acc Coding sequ	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA 86 id Accession lence: 126. 11 GGCTCATGCT GAATTCTGAT GGATATCGAC GAGAACCAGC ACGGTTGGAA TGCCTCCATG TCATGGCTTG CAATGCTGGA TGACTGGAA TGACGTGGAA TGACGTGGAA TGACGTGGAA CACAGAAGAG CCACAAGAAG CACAAGAAG CACACGTGTGC CATCGTGTGC CACACGTGTGC CACACCTCTTG GCTGGGCCTC GAATTACCGA	RSRVGISSLS PDGONMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence 1 #: NM_005 .4439 21 CGGGGAGCGTG GTGAAACTAA ATAGGAAAAG ACTTCTGGGA ACTTCTGGGA ACTTCTCAGC AGTGCTCTG GGGAGCTCT GGGGAGCTCT TGCAGAAGAC CTTTTTTCCT TGCAGAAGAC TCCTGCGAA CTGATGATCA CAGGTATACC CAGCTGACGG ACCGGTGTCC ACCGGTGTCC	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAAC TCAGAATCCT AGCCCATCCG GTATGACTT CAATGGAAGA TTAGAGAGAT TGAGAGACT GGGTTGTGTG GGGAGCTGGC AGGCAACAGG AGGCAACAGG AGGCAACAGG GCTTGCGGG GCTTGCGGG	YIMGYYQSNE INCESFKVTL PELISVIKEB RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC CCCAGTCCT CCGTGAAGAT AGCAGCCCGA GGATGAGGAG GACTACTTCC TTCGTGGCTT CGTGGCTCT GTGGCAAGAA GATCTTCTGC TGGCTTCAGTC GTCTAACCTG GTCTTAGCTCG GGCTTAACCTG	FIITQHPLLH MAEEHKCLSM AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCAGGGCC CATCCCAAGG AACACCAGC TCTTCTCTGG CAGCTGAATG CGACCAGCC CAGCAGCCT CAGTACAGCT CAGTACAGCT CAGTACAGCT CTTGCACTGA ACCATGGAT	2100 2160 2220 2280 60 120 180 240 300 360 420 480 540 660 720 780 840 900
50 55 60 65	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Acc Coding sequ 1 CCGGGCAGGT AGGGGCGCAG AGAAGATGAA GTTTGAGGGA GGAGAACTCG TCTTCTTGA GAAAGTACCA ACCCAGTGGA CCCGTGTGGC ACGAGTCTC TAAGTTGGGCC TCATCCTGTC TCATGTGTAA TGTTGTTAAGTAAGTTTAAGAAGAT	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession lence: 126. 11 GGCTCATGCT GAATTCTGAT GGATATCGAT GGATATCGAT GGATATCGAT TCATGGCTTGAT TCATGGCTTGAT TCATGGCTTG TCATGGCTTGAT TCATGGCTTG TCATGGCTTG CAATGCTGGG CCACAAGAAC AGACGCTGCT CATCGTGTGC ACACCTCTTG CATCGTGTGC ACACCTCTTG GCTGGGCCTC GAATTACCGA CCTTAAGTTA	RSRVGISSLS PDGONMAEDE EVRHFQCPW QLEKENSVDV LPDGNIAESL PDGNIAESL PD	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAGC CTTGGAAAC TCAGAATCCT AGCCCATCCG GTATGACTTT CAATGGAAGA TTAGAGAGACT GGGTTGTG CGCAGCTGGC AGGATCGTG AGCAACAGA AAATCGTGGC AGGAACAGA AAATCGTGGC AGGAACAGA AAATCGTGGC AGGAGAAAATC	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC CCCCAGTCCT CCGTGAAGAT AGCAGCAGAC GGATACTTCC TTCGTGGCTT CGTGTGGTCT GTGGCAAGAA GATCTTCTGC TGGCTAACTT CCTGGCTTCAGT GTCTTAACCTG GTCTTAACCTG GTCTTGGTCG GTCTTGGTCG GCCATCCTA CCTGGGTGAG	PIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGGC CTTCTCTGG AACACCAGC TCTTCTAGG CGACCAGCC CAGCCCC CAGCCCC CAGCCCC CAGCCCC CAGCCCC CAGCCCC CTGCAAGG CCACCAGCC CTGCAAGC CTCTCCAAGC GACCTGAATG CCACCAGCC CTGCACTGACC CTGCACTGACC CTGCACTGACC CTTGCACTGA ACCATGGCAT CTCATCAACA	2100 2160 2220 2280 60 120 180 240 300 480 540 660 720 780 840 900 960
50 55 60 65 70	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac: Coding seq 1 CCGGGCAGGT AGGGGCGCAG AGAAGATGAA GTGTGAGGGA GCAGAACTCG TCTCCTTGA ACCCAGTGGA CCCGTGTGGC ACGAGTCTTC TCATGGTGAA TGTTGTTAGT CTTGGGCATT TTTAGGAGATT TTTAGCAGAT TTTGCTCCAA	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession Lence: 126. 11 GGCTCATGCT GGATTCTGAT GGATATCGAT GGATATCGAT TCATGGCTTGAA ACGCTTGAA TCATGGCTTG CAATGCTGGG CCACAGAAG TGACGTGGAC CACAGTGGC CACAGTGGC CACAGTGGC CACAGTGGC CACAGTGGC CACAGTGGC CACAGTGGC CACAGTGTGC CACCTCTG GCTGGGCCTC GAATTACCGA CCTTAAGTTA CGATGGCAG	RSRVGISSLS PDGONMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence n #: NM_005 .4439 21 CGGGAGCGTG GTGAAACTAA ATAGGAAAAG ACTTCTGGGA ACTTCTCAGC AGTGCTCTGACG CTGATGATCA CTGATGATCA GAGTATCC CTCCTGACG ACGGTGTCC AGAACATTA AGAACTTTA AGAATGTTTG AGAACATTA	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAAC CTAGAATCCT AGCCATCCG GTATGACTT CAATGGAGA TAGAGAGACT CGGTGTGTG CGCAGCTGGC AGGCACAGA AAATCGTGCG GCTTGCGGG CTTGCGGGG AAGAGAAATC AGGCAGCAGC	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 GCCTGGAAC CCCAGTCCT CCGTGAAGAT AGCAGCCCGA GGATACGTCC TTCGTGGCTT CGTGGCATCAT CTGTGCAAGAA GATCTTCCC TTCGTGCAAGAC TGCCTAACCTC GGCCATCAC CCTCTGCAGCAC CCTCTCGCAGCAC CCTCTCGCAGCAC CCTCTCGCAGCAC CCTTCGCAGCAC CCTTCAGCTCAC CCTCGGCAGCAC CCTTGGCAGCAC CCTTGGCAGCAC CCTTGGCAGCAC CCTGGGTGAG	PIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGGTCAG GGGTATAGAA TCCAAGGTCA GCCGAGGGCC CATCCCAAGG TCTTCTCTGG GAGCTGAATC GCGCACCAGC GGACCAGCC TCGCACGC TCGCTGCATGC TCCTGCATGCATG TCCATCAACA CTGCTGGCTG	2100 2160 2220 2280 2280 600 120 180 240 300 420 480 540 600 720 780 840 900 1020
50 55 60 65 70	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac: Coding sequ 1 CCGGGCAGGT AGAGGACCAG AGAAGATGAA GTGTGAGGA GGAGACTCG TCTCTCTTGA ACCCAGTGGA CCCGTGTGGC ACCAGTCTC AAGTTGGGCC TCATCCTGTC TCATGGTGAA TGTTGTTAGT TTTAGAGAAGAT TTTGGCCCTAA	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession Lence: 126. 11 GGCTCATGCT GGATATCTGAT GGATATCTGAT GGATATCGAT TCATGGCTTG CAAGGCTGGA ACGCTTGGAA TGCCTCCATG CAAGAGAG TGACGTGGAC AGACGTTGGAC AGACGTTGGAC AGACGTTGGAC AGACGTTGGAC AGACGTTGAC AGACGTTGAC AGACGTTGAC AGACGTTGC ACACTCTTG GCTGGGCCTC GAATTACCGA CCTTAAGTTA CGATGGGCAG TGTTGCCATC	RSRVGISSLS PDGONMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence 1 #: NM_005 .4439 21 CGGGAGCGTG GTGAAACTAA ATAGGAAAAG ACTTCTGGGA ACTTCTGGGA CCTTTTTCCT GGGGAGCTCT TGCAGAAGAC CTTTTTTCCT GGGGAGCTCT TGCAGAAGAC CTGATGATCA CTGATGATCA CAGATTAACCC CTCCTGACGA ACCGGTGTCC AGAACATTA AGAATGTTTG TTAGGCATGA	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAACCT CAGAATCCT GGCTTGGAGACT CAATGGAGACT CAGAGTCTGGG GTATGACTT CAATGGAGA TAGAGAGACT GGGTTGTG GGCACGGC AGGCACGG AGACGGC AGGCACGG AGACGAGA AAATCGTGCG GCTTGCGGG CTTGCGGGG CTTGCGGGG CTTGCGGGG TTGCGGGG TTGCGGGG TTGCGGGC TTTATAATGT	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 GCCTGGAAC CCCCAGTCCT CCGTGAAGAT AGCAGCCCGA GGATACTTCC TTCGTGGCTT CGTGTGGTCT CGTGTGGTCT CGTGTGGCTCT CGTGTCGTCT CGTGTCGTCT CGTGCAAGAA CATCTTCTGC GCCTTCAGT GCCTTCAGT GCCTTCAGT GCCTTCAGT GTCTTACCTG GCCTTCGGTCG GCCATCCTA CCTGGGTGAG CGTTGGCAGC AATTATTCTG	FIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGGTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGGCC CATCCCAAGG GAGCTGAATG CGGACCAGCC GGACCAGCC TCTTCTCTGG CTGTCCAAGC CGCACCAGC CGCACCAGCC TCTTCTCTGG CGCACCAGCC TCTTCTCTGG CGCACCAGCC TCTGCACAGC GGACCAGCCT CAGTACAGCT CTTGCACTGA ACCATGGCAT CTCATCAACA CTGCTGGCTG GGACCACAG	2100 2160 2220 2280 60 120 180 240 300 360 420 480 540 600 720 780 840 900 1020 1080
50 55 60 65	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac: Coding sequence 1 CCGGGCAGGT AGGGCAGGT AGGGGCAGG AGAAGATGAA GTGTGAGGGA GGAGAACTCG TCTCTCTTGA GAAAGTACCA ACCCAGTGGA ACCCAGTGGC ACGAGTCTC TCATCCTTC AGTTGGGCC TCATCGTGT CTTGTTAGT TTTAGAAAGAT TTTGCTCCAG GAGAGCCCGT GCTTCCTGGG GCTTCCTGGG GCTTCCTGGG GCTTCCTGGG GCTTCCTGGG	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA 86 id Accession lence: 126. 11 GGCTCATGCT GAATTCTGAT GGATATCGAC GAGAACCAGC ACGCTTGGAA TGCCTCCATG TCATGGCTTG CAATGCTGGC CCACAGAAG AGACCTGCT CATGGTGTGC CACCTCTTG GCTGGGCCTC GAATTACCGA CCTTAAGTTA CGATGGCCAC ATGTGGCCAC TGTTGCCATC TGTTGCCATC TGTTGGCCTCT ATCAGCTGTT ATCAGCTGTT ATCAGCTGTT ATCAGCTGTT ATCAGCTGTT ATCAGCTGTT ATCAGCTGTT ATCAGCTGTT	RSRVGISSLS PDGONMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence 1 #: NM_005 .4439 21 CGGGAGCGTG GTGAAACTAA ATAGGAAAACA ATAGGAAAACA ATTCTGAGGA ACTCTCAGC AGTGCTCTGAC CTCTTTTTCCT TGCAGAAGAC TCCCTGCGAA CTGATGATCA GAGTATACCC CTCCTGACGG ACCGGTGTCC AAGAACATTA AGAACATTA AGAACATTTA AGAACATTTA TTAGCCATCT TTAGCCATGAT ATTATCCTCT	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAAC TCAGAATCCT AGCCCATCCG GTATGACTTT CAATGAAGA TCAGAATCT GGCAGCTGGC AGGCACAGG AGGAACAG AGGAACAG AGGAACAG AGGAACAG AGGAACAG AGGAACAG AGGAACAGC AGGCACAGG CTTGCGGGG AAGAGAATC TTTACCCAGC	YIMGYYQSNE INCESFKVTL PELISVIKEB RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC CCCAGTCCT CCGTGAAGAT AGCAGCCCGA GGATGAGGAG GACTACTTCC TTCGTGGCTT CGTGGCTGT GTCTAGCTC GTCTAACCT GTCTAACCT GTCTAACCT GCTTAACCT GCCTTAGTCC GCCATCCTA CCTGGGTGAC CCTTGGTCAG AATTATTCTG AATGATGTTT	FIITQHPLLH MAEEHKCLSM AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGCC CATCCCAAGG AACACCAGC TCTTCTCTGG GGACTGAATG CGCACCAGCC CAGCCAGCC CAGCCAGCC CAGCCAGC	2100 2160 2220 2280 60 120 180 240 480 540 660 720 780 960 1020 1080 1140
50 55 60 65 70	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Accoding sequence CCGGGCAGGT AGGGCGCAG AGAAGATGAA GTATGAGGA AGAAGATCAA ACCCAGTGGA ACCCAGTGGA ACCCAGTGGA ACCCAGTGGA ACCCAGTGGA ACCCAGTGGA TCATCCTGTC TCATCGTGT TTAAGAAGAT TTTGTTAAGTAAGAT TTTGCTCCAGT GGTTCCCAGT GGTTCCCAGT TCAAGCATA	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession lence: 126. 11 GGCTCATGCT GAATTCTGAT GGATATCGAT GGATATCGAT GCATCGTGGAA TGCCTCCATG TCATGGCTTG CAATGCTGGA TGACGTGGAA TGACGTGGAA TGACGTGGT CATCGTGTG CATCGTGTG CATCGTGTG CATCGTGTG CATCGTGTGC ACACCTCTTG GCTGGGCCTC GAATTACCGA CCTTAAGTTA CGATGGCAG TGTTGCCATC TGTTGCCATC TTTCAGGAGA	RSRVGISSLS PDGONMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL PDGNIAESL P	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAAC TCAGAATCCT AGCCCATCCG GTATGACTT CAATGGAAGA TGAGAGATCT GGCAGCTGTG AGGTGTGTG CGCAGCTGGC AGGTGTGTG CGCAGCTGGC AGGAAAC GTTTGGAGC TTTGGAGCGC CTTGCGGGG AGAGAAATC TTTACCCAGC CCGCCACGGA	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC CCCCAGTCCT CGTGAAGAT AGCAGCCCGA GGATGAGGAG GACTACTTCC TTCGTGGCTT TGGCCAAGAA GATCTTCTGC GTCTTAACCTG GTCTTAACCTG GTCTTAGTCG GTCTTAGTCG GTCTTAGTCG GTCTTAGTTGTCAACTG GTCTTAGTTGTCAACTGT CCTGGGTGAG CATTGTCTAACTTT CCTGGTGAG CATTGTCTT CAACATGTTT TGAACGTGTCT	FIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCAGGGCC CATCCCAAGG AACACCAGC TCTTCTCAGG GAGCTGAATG CGACCAGGC CGACCAGGC CTGTCCAAGC TCTTCCAAGC TCTTCCAAGC CTGTCCAAGC CTGTCCAAGC CTGTCCAAGC GGACCAGCCT CAGTACAGCT CTTGCACTG ACCATGCATTG ACCATGCATTG CTTGCACTG GCACCACGC CTGCTGCTGCTG GGACCAACAC CTGCTGCTGCTG CGACCACCG CAGAAGATGA	2100 2160 2220 2280 60 120 180 240 300 420 480 540 660 720 780 840 900 960 1020 1080 1140 1200
50 55 60 65 70	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Acc Coding sequ 1 CCGGGCAGGT AGGGCGCAG AGAAGATGAA GTTGAGGGA GGAAACTCA ACCCAGTGGA CCCGTGTGGC ACGAGTCTTC TCATTGTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCT	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession lence: 126. 11 GGCTCATGCT GAATTCTGAT GGATATCGAC GAGAACCAGC ACCGTTGGAA TGCCTCCATG TCATGGCTTG CAATGCTGGG CCACAGAAA AGACGCTGCT CATCGTGTG ACACCTCTTG CATCGTGTGC ACACCTCTTG CCTTGGGCCTC CATCGTGCCTC GCATTGGCCTC CATCGTGCCTC CATCGTGCCTC CATCGTGCCTC CATCTGTGCCTC CATCTGGCCTTC ATCAGCTGTT TTTCAGGAGA TATTACCATT	RSRVGISSLS PDGONMAEDE EVRHFQCPW QLEKENSVDV LPDGNIAESL equence n #: NM_005 .4439 21 CGGGGAGCGTG GTGAAACTAA ATAGGAAAAG ACTICTGGGA ACTICTGAGC AGTGCTCTGA CTTTTTCCT GGGAGCTCT GGGAGACTC TCCCTGACC TCCCTGACC TCCCTGACC AGGTATACC CTCCTGACC AGGTATACC TCCTGACC AGGACATTA AGAATGTTTG TTAGCCATGA TTTATCCTCT AATGCCTGG AAATTTATCA	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAGC TCAGAATCCT AGCCCATCCG GTATGACTT CAATGGAAGA TAGAGAGACT TAGAGAGACT GGGTTGTG GGGTTGTGT CGCAGCTGGC AGGCACAGGA AAATCGTGC AGGCACACAG AGGAACAGA TTTACCCAGC CCGCCACGGA AAATGTATGC	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC CCCCAGTCCT CCGTGAAGAT AGCAGCCCGA GGATACTTCC TTCGTGGCTT GTGGCAAGA GATCTTCTGC GTCTTAACTG GTCTTAACTG GTCTTAACTG GTCTTAACTG GTCTTAACTG GTCTTAACTG GTCTTAACTT GTCTTGGTCA ATGATGTTC CCTGGGTGAG CGTTGGCAGA AATTATTCTG AATGATGTTT TGAACGTGTC CTGGGTCAAA	FIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGGCC CATCCCAAGG AACACCAGC TCTTCTCTGG CGGACCAGCCT CAGTCCAAGC GAGCTGAATG CGCACCAGGC TCTTCTCTGG CTGCACGC CTGTCCAAGC GACCAGCCT CATGCACTAC CTGCACTAC CTGCACTAC CTGCACTAC CTGCACTAC CTGCACTAC CTGCACTAC CTGCTGCATTAC CTGCTGCATC CAGAAGATGA GCATTTTCTC	2100 2160 2220 2280 60 120 180 240 300 480 540 660 720 780 840 960 1020 1080 1140 1200 1260
50 55 60 65 70	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac: Coding seq 1 CCGGGCAGGT AGGGCGCAG AGAAGATGAA GTGTGAGGGA GCAGAGACTCG TCTCCTTGA ACCCAGTGGA CCCGTGTGGC ACGAGTCTTC TCATGGTGAA TCTTGTTAGT CTTGGCCATT TTTAGGAGATT TTTGGCCATT TTTAGAAGAT TTTGCTCCAA GAGGACCCGT GCTTCCTGGG TCACAGGTTCAA GAGGACCCGT TCATGGGCATA TTTGCTCCAA GAGGACCCGT TCACAGGTTCAAAGTTCT AGAGGTTCCAAGGTGTCAAAGTTCT AGAGTGTTCA	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession Lence: 126. 11 GGCTCATGCT GGATTCTGAT GGATATCGAT GGATATCGAT TCATGGCTTGAA TCATGGCTTGAA TCATGGCTTGC CAATGCTGGG CCACAGAAG TGACGTGGC CACAGTGGC CACCGTTGGA TGACGTGTGC CATCGTGGC CACCGTTGGC CACCGTTGGC CACCGTTGGC CACCGTTGGC CACCGTTGGC ACCCTCTTG GCTGGGCCTC CAATTACCGA CCTTAAGTTA CTATGGCAG TGTTGCCATC TTTCAGGAGA TACTTACATT AAAAATCCGC	RSRVGISSLS PDGONMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence n #: NM_005 .4439 21 CGGGAGCGTG GTGAAACTAA ATAGGAAAAG ACTTCTGGGA TGCCAAGATG CATTCTCAGC AGTGCTCTGA CTTTTTCCT GGGGAGCTCT TGCAGAAAGA CTCGTGCAG CTCCTGACG ACTGATGATCA GAGTATACCC CTCCTGACG ACCGGTGTCC AAGAACATTA AGAATGTTTG TTAGGCATGA TTATACCTCT AATGCGTGG AAATTTATCCTCT AATGCGTGG AAATTTATCCAC GAGGAGGAGC GAGGAGGAGC GAGGAGGAGC GAGGAGGAGGAGC	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA ACTATATCAT CGCACAGAGA CCTTGGAAAC CTAGAATCCT AGCCATCCG GTATGACTT CAATGGAGA AATCGTGGC GCTTGCGGG AGAACAGA AAATCGTGCC GCTTGCGGG TTTACCCAGC CTTTACCCAGC CTTTACCAGC CCGCCACGGA AAATGTATGC GTCGGATATT	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 GCCTGGAAC CCCAGTCCT CCGTGAAGAT AGCAGCCCGA GGATGAGGAG GGATGAGGAG GGATGACTTC TTCGTGGCTT CTGTGGCATCAT TCGTGCATCAT TCGTGCATCAT CCTTCGTGCATCAT CTTCTTCGTGCACAC GATCTTCTCTC GTCTTACCTG GTCTTACCTG GTCTTACCTG GTCTTACCTG GTCTTACCTG ATTATTCTG AATTATTCTG AATTATTCTG CTGGGTCAAA GGAAAAAGCC	FIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGGTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGGCC CATCCCAAGC CATCCCAAGC GGACTGAATC CGCACCAGC GGACTGAATC CTGCTGCATGC GGACCAGCC TCTTGCACTGA CTGCTGCATGC CATCACAGC CAGTACAGCT CATGCATA CTCATGCATA CTCATCAACA CTGCTGGCTG GGACCACAG GCATTACAGCA CTGCTGGCTG GGACAACAG GCATTTTCTC GGGTACTTCC GGGTACTTCC	2100 2160 2220 2280 2280 600 120 180 240 300 420 480 540 600 720 780 840 900 1020 1080 1140 1260 1320
505560657075	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac: Coding seq 1 CCGGGCAGGT AGGGCGCAG AGAAGATGAA GTGTGAGGGA GCAGAGACTCG TCTCCTTGA ACCCAGTGGA CCCGTGTGGC ACGAGTCTTC TCATGGTGAA TCTTGTTAGT CTTGGCCATT TTTAGGAGATT TTTGGCCATT TTTAGAAGAT TTTGCTCCAA GAGGACCCGT GCTTCCTGGG TCACAGGTTCAA GAGGACCCGT TCATGGGCATA TTTGCTCCAA GAGGACCCGT TCACAGGTTCAAAGTTCT AGAGGTTCCAAGGTGTCAAAGTTCT AGAGTGTTCA	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession Lence: 126. 11 GGCTCATGCT GGATTCTGAT GGATATCGAT GGATATCGAT TCATGGCTTGAA TCATGGCTTGAA TCATGGCTTGC CAATGCTGGG CCACAGAAG TGACGTGGC CACAGTGGC CACCTCTG GCTGGGCCTC CATCGTGGC CACCTCTTG GCTGGGCCTC GAATTACCGA CCTTAAGTTA CGATGGCATG TCATGGCATG TCATGGCATG TCATGGCCTC TATCGGCTTTT TTTCAGGAGA TACTTACATT AAAAATCCGC	RSRVGISSLS PDGONMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence n #: NM_005 .4439 21 CGGGAGCGTG GTGAAACTAA ATAGGAAAAG ACTTCTGGGA TGCCAAGATG CATTCTCAGC AGTGCTCTGA CTTTTTCCT GGGGAGCTCT TGCAGAAAGA CTCGTGCAG CTCCTGACG ACTGATGATCA GAGTATACCC CTCCTGACG ACCGGTGTCC AAGAACATTA AGAATGTTTG TTAGGCATGA TTATACCTCT AATGCGTGG AAATTTATCCTCT AATGCGTGG AAATTTATCCAC GAGGAGGAGC GAGGAGGAGC GAGGAGGAGC GAGGAGGAGGAGC	GEGTDYINAS FVYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA ACTATATCAT CGCACAGAGA CCTTGGAAAC CTAGAATCCT AGCCATCCG GTATGACTT CAATGGAGA AATCGTGGC GCTTGCGGG AGAACAGA AAATCGTGCC GCTTGCGGG TTTACCCAGC CTTTACCCAGC CTTTACCAGC CCGCCACGGA AAATGTATGC GTCGGATATT	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 GCCTGGAAC CCCAGTCCT CCGTGAAGAT AGCAGCCCGA GGATGAGGAG GGATGAGGAG GGATGACTTC TTCGTGGCTT CTGTGGCATCAT TCGTGCATCAT TCGTGCATCAT CCTTCGTGCATCAT CTTCTTCGTGCACAC GATCTTCTCTC GTCTTACCTG GTCTTACCTG GTCTTACCTG GTCTTACCTG GTCTTACCTG ATTATTCTG AATTATTCTG AATTATTCTG CTGGGTCAAA GGAAAAAGCC	FIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGGCC CATCCCAAGG AACACCAGC TCTTCTCTGG CGGACCAGCCT CAGTCCAAGC GAGCTGAATG CGCACCAGGC TCTTCTCTGG CTGCACGC CTGTCCAAGC GACCAGCCT CATGCACTAC CTGCACTAC CTGCACTAC CTGCACTAC CTGCACTAC CTGCACTAC CTGCACTAC CTGCTGCATTAC CTGCTGCATC CAGAAGATGA GCATTTTCTC	2100 2160 2220 2280 2280 600 120 180 240 300 420 480 540 600 720 780 840 900 1020 1080 1140 1260 1320
50 55 60 65 70	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac: Coding sequence 1 CCGGGCAGGT AGGGCGCAG AGAAGATGAA GTGTGAGGGA GGAGAACTCG TCTCTCTTGA GAAAGTACCA ACCCAGTGGC ACCAGTGGC ACGAGTCTTC AAGTTGGGCC TCATCGTTC TCATGGTGAA TCTTGTTAGT TTTAGAAAGTT TTTAGCACAA AGGGACCCGT GCTTCCTGGG TCACAGCGTA ATGAAGTTCA AGGGGATTCA AGGGTATCAC AGGGTATCAC	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA 86 id Accession lence: 126. 11 GGCTCATGCT GAATTCTGAT GGATATCGAC GAGAACCAGC ACCGTTGGAA TGCCTCCATG TCATGGCTG CAATGCTGGA TGACGTGTG CAATGCTGGG TGACGTGTGC CATCGTGTGC CATCGTGTGC CATCGTGTGC CATCGTGTGC TCATGGGCTT GAATTACCGA CCTTAAGTTA CGATGGGCAG TGTTGCCATC TTTCAGGAGA TACTTACATT AAAAATCCGC TGTGGGTGTG TGTGGGTGTG TGTGGGTGTG TGTGGGTGTG TGTGGGTGTG TGTGGGTGTG TGTGGGTGTG	RSRVGISSLS PDGONMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence n #: NM_005 .4439 21 CGGGAGCGTG GTGAAACTAA ATAGGAAAAG ACTTCTGGGA TGCCAAGATG CATTCTCAGC AGTGCTCTGA CTTTTTCCT GGGGAGCTCT TGCAGAAAGA CTCGTGCAG CTCCTGACG ACTGATGATCA GAGTATACCC CTCCTGACG ACCGGTGTCC AAGAACATTA AGAATGTTTG TTAGGCATGA TTATACCTCT AATGCGTGG AAATTTATCCTCT AATGCGTGG AAATTTATCCAC GAGGAGGAGC GAGGAGGAGC GAGGAGGAGC GAGGAGGAGGAGC	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAAC TCAGAATCCT AGCCCATCCG GTATGACTT CAATGGAAGA TCAGAGACCT GGGTTGTGTG GGCAGCTGGC GGCACCGGG AGGAAACCT AGGCAACAGA AAATCGTGCG GCTTGCGGGG AAGAGAAATC TTTACCCAGC CCGCACCGGA AAATGTATGC GTCGGATATT TGGTGGTGAT TGGTGGTGAT	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC CCCCAGTCCT CCGTGAAGAT AGCAGCCCGA GGATGAGGAG GACTACTTCTC CTGTGGCTC GTGGCAAGAA GATCTTCTGC GTCTTAACCTG GTCTTAGTCG GTCTTAGTCT GTCTAACCTG ATTATCTG AATGATGTTT TGAACGTGTC CCTGGGTGAG AATTATTCTG AATGATGTTT TGAACGTGTC CTGGGTCAG CTTGGGTCAG CTTGGCAGC TGCCAGCGTG TGCCAGCGTC TGCCAGCTC TGCCAGCT	FIITQHPLLH MAEEHKCLSM AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGGCC CATCCCAAGG AACACCAGC TCTTCTCTGG GGACCAGCC CAGCCAGCC CAGCCAGCC CAGCCAGC	2100 2160 2220 2280 2280 600 120 180 240 300 420 480 540 600 720 780 840 900 1020 1080 1140 1260 1320
505560657075	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Accoding sequence 1 CCGGGCAGGT AGGGCAGGT AGGGGCGCAG AGAAGATGAA GTGTGAGGGA GGAGACTCG TCTCTTTGA GAAAGTACCA ACCCAGTGGGC ACCAGTGGGC TCATCCTGTC TCATCGTGTC TCATCGTGTC TCATGGTGAT TTTAGGAGGAT TTTGCTCAAA TGTTGTTCAGG TCACAGCATA ATGAAGTTCT AGGGGACTCT AGGGGACCCGT GCTTCCTGGG TCACAGCATA ATGAAGTTCT AGGGTGTTCAAAGTTCT AGGGTGTTCAACCCTTCATAT	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA 86 id Accession lence: 126. 11 GGCTCATGCT GAATTCTGAT GGATATCGAC GAGAACCAGC ACCGTTGGAA TGCCTCCATG TCATGGCTTG CAATGCTGGA TGACTGTGC CACAGAAGA GCACAAGAAG GCACAAGAAG CCACAGAGAG CCACAGAGAG CCACAGTGTGC ACACCTCTTG GAATTACCGA CCTTAAGTTA CGATGGCATC TTTCAGGAGA TGTTGCCATC TTTCAGGAGA TACTTACATT TTTCAGGAGA TACTTACATT TTTCAGGAGA TACTTACATT TTTCAGGAGA TACTTACATT TTTCAGGAGG TACTTACATT T	RSRVGISSLS PDGONMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL QLEKENSVDV LPDGNIAESL QLEKENSVDV 21 CGGGAGCGTG GTGAAACTAA ATAGGAAAAG ACTTCTGGGG ACTCTGAGCA ACTCTCTGAC AGTGCTCTG GGGAGCTCT TGCAGAAGAC CTCTTTTTCCT TGCAGAAGAC CTCTGCGAA CTGATGATCA CAGATATACCC CTCCTGCGAA CTGATGATCA CAGAGTATACCC CTCCTGACGG ACCGGTGTCC AAGAACATTA AGAACATTA AGAACATTA AGAACATTA AGAACATTA AGAACATTA AGAACATTA CTCGATCGCG AAATTTATCCA AGAGAGAGAC GCTCCCATTG TTCGATCTGA TTCGATCTGA	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAAC CTTGGAAAC TCAGAATCCT AGCCCATCCG GTATGACTTT CAATGGAAGA TGAGGAGACT GGGTTGTGTG GGCAGCTGGC AGGCACAGG AGGAACACT GGCTTGCGGG AGGCACAGC CCCCCCGCACGGA AAATCGTACC TTTACCCAGC CCGCCACGGA AAATGTATAT TGGTGGATAT TGGTGGTAT CAGCAGCACAC CAGCAGCACAC	YIMGYYQSNE INCESFKVTL PELISVIKEB RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC CCCAGTCCT CCGTGAAGAC GACCCGA GGATACTTCC TTCGTGGCTT CGTGGCTC GTGCAAGAA GATCTTCTGC GGCCATCCTA CCTGGGTGA GTCTTAGCTG GTCTTAGCTG GTCTTAGCTG GTCTTAGCTT CCTGGGTGAA CGTTGGCAGC AATTATTCTG AATGATGTTT TGAACGTGTC CTGCAGCGTG CGCATCCTA CCTGGGTCAAA GGAAAAAGCC TGCCAGCGTG GGCTTTCACA	FIITQHPLLH MAEEHKCLSM AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGGCC CATCCCAAGG AACACCAGC TCTTCTCTGG GGACCAGCC CAGCCAGCC CAGCCAGCC CAGCCAGC	2100 2160 2220 2280 60 120 180 240 360 420 480 540 960 1020 1080 1140 1200 1260 1380 1440
505560657075	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Acc Coding sequ 1 CCGGGCAGGT AGGGGCGCAG AGAAGATGAA GTGTGAGGGA GGAGACTCG TCTCTTGA GAAAGTACCA ACCCAGTGGA CCCGGTGTGGC TCATCCTGTC TCATGGTGAA TGTTGTTAGT TTAAGAAGAT TTTGCTCCAG GCTCCCGG TCACCAGT TCTCCTGGG TCACCAGT TTAAGAAGAT TTTGCTCCAA AGGGACCCT TCACAGCATA ATGAAGTTCT AGAGTGTTCA AGGGTATCAC CCTGTTCATATT TCTTCAATTC	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession lence: 126. 11 GGCTCATGCT GAATTCTGAT GGATATCGAT GGATATCGAC GAGAACCAGC ACCGTTGGAA TGCCTCCATG TCATGGCTTG TCATGGCTG CAATGCTGGC CAACGAACA AGACGCTGCT CATCGTGTGC ACACCTCTTG GCTGGGCCTC GAATTACCGA CCTTAAGTTA CGATGGCAG TGTTGCCATC TTTCAGGAGA TACTGCTTT TTTCAGGAGA TACTTACATT AAAAATCCGC TGTGGGTTG TGTGGGTTG TGCGGTCT TGTGGGTTG TGTGGGTTTT	RSRVGISSLS PDGONMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL PDGNIAESL P	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA ACTATGATCAT CGCACAGAGA CCTTGGAAAC TAGAGAGACT TGAGAATCCT AGCCCATCCG GTATGACTTT CAATGGAAGA TAGAGAGACT GGGTTGTGTG CGCAGCTGGC AGGAAATCGTGGC AGGAAAATCATGCGGG AAGAGAAATC TTTACCCAGC CCGCCACGGA AAATGTATGC GTCGGATATT TGGGGTGGTATT TGGGGTGGTATT TGGTGGTGTAT TGGTGGTATAT TGGTGGTATAT TGGTGGTATAT TGGTGGTATAT TGAGAGCACA TAACACCGTT	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC CCCCAGTCCT CGTGAAGAT AGCAGCAGCCGA GGATACTTCC TTCGTGGCTT GTGGCAAGAA GATCTTCTGC GTCTTAACCTG GTCTTAACCTG GTCTTAACCTG GTCTTGGCAGAC CGTTGGCAGAC CGTTGGCAGAC CGTTGGCAGC CGTTGGCAGC CGTTGGCAGCT CCTGGGTGAC CGTTGGCAGC CGTTGCAGCT TGAACGTGTC CTGGGTCAAA GGAAAAAGCC TTCAGTTAAAG TTCAGTAAAG	FIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGGC CATCCCAAGG AACACCAGC TCTTCTCAGG GGACCAGCCT CAGTACAGC GAGCCAGCCT CATGCACTGA ACCATGCATCA CTGCACTGA GCATCCAAGC GGACCAGCCT CTTGCACTGA CTGCACTGA CTGCTGCATGA GCATCACAGC GGACCACCT CTGCACTGA GCATCACAC GGACCATC CTGCACTGC GGACCATC GGGTACTTCC GGGTACTTCC GGGTACTTCC GTGGTGACAG TCCCTCTCAG	2100 2160 2220 2280 60 120 180 240 300 480 540 660 720 780 840 900 960 1020 1140 1200 1260 1320 1320 1320 1340 1500
505560657075	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac: Coding seq 1 CCGGGCAGGT AGGGCGCAG AGAAGATGAA GTGTGAGGGA GCAGAACTCG TCTCTTGA ACCCAGTGGA CCGGTGGC ACGAGTCTTC TCATGGTGAA TCTTGTTAGT CTTGGGCATT TTAGGAGAT TTTGGCCCAA GAGACCCGT GCTTCCTGG TCACCGGT GCTTCCTGA TCATCCTGT AGAGTATCA ACGGTATCA TCTTCAATTC AGGGTATCAC AGGGTATCAC TCTTCAATTC AGGGTATCAC TCTTCAATTC AAGCCTCAGT AGGCCTCAGT	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession Lence: 126. 11 GGCTCATGCT GGATTCTGAT GGATATCTGAT GGATATCTGAT GGATATCGAT GCAGACCAGC ACCGTTGGAA ACGGTTGGAA TGCTTGGAT TCATGGCTTG CAATGCTGGG CCACAAGAAG TGACGTGTGC AGACCTCTTG GCTGGGCCTC GAATTACCGA TGATGCCAT CGATTACCTT TTTCAGGAGA TGTTGCATC TTTCAGGAGT TTTCAGGAGT TACTTACATT AAAAATCCGC TGTGGGTTTG CACCTTGTT CCATGGGTTTG CACCTGTTG CACCTTGTTACATT CACTGGTTTACATT CACTGGTTTACATT CACTGGGTTTG CACCTGGGC CATGACTTTT CGCTGTTGAC	RSRVGISSLS PDGONMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence n #: NM_005 .4439 21 CGGGAGCGTG GTGAAACTAA ATAGGAAAAG ACTTCTGGGA ACTTCTGGGA CTTTTTCCT GGGGAGCTCT TGCAGAAAGA CTGATGATCA GAGTATCA CTGATGATCA GAGTATCC CTCCTGACG ACCGGTGTC AAGAACATTA AGAATTTA AGAATGTTG TTAGCCTT TAAGCATGA CTTATCCTCT TAAGCATGA AGAACATTA AGAATGTTG AAGACTTA AGAATGTTG TTAGCCTC TCCTGATGA AGAACTTA AGAATGTTG TTAGCTCT TTAGCTCTG AATTTATCCTC TTCGATCTGA AGAGTTTGAAAG AGATTTAAAAG AGATTTAAAAG AGATTTAAAAG	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 31 GTTGAGCGGC CAGTCTGGAAAC CCTTGGAAAC CCTAGAATCCT AGCCATCCG GTATGACTTT CAATGGAGAC TCAGAATCCT AGCCATCCG GCTTGCAGC GCTTGCGGC AAATCGTGG AAATCGTGC GCTTGCGGG AAAATCGTGC GCTTACACGG CTTTACCCAGC CCGCCACGG AAATGTATAC AGGCAGCAC TTTACCCAGC CCGCCACGGA AAATGTATG TTTACCAGC CCGCCACGGA TTTACCAGC CCGCCACGGA TTTACCAGC TTTGTTTCT TGTTGTTTCT	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC CCCCAGTCCT CCGTGAAGAT AGCAGCCCGA GGATACTTCC TTCGTGGCTT GTGGCATGAT GTCTACTT GTCTAGT GTCTAGCTG GTCTAGCTG GCCATCCTA CCTGGGTGAG AATTATTCTG AATGATGTTT TGAACGTGTC CTGGGTCAAA GGAAAAAGCC TGCAGCGTG GCCTTCAGT TGAACGTGTC TGACTGTC TGACTGTC TGACTGTC TGACTGTC TGACTGTC TGAACGTGT TGAACGTGT TGAACGTGT TGAACGTGT TGAACGTGT TGCAGCGTAAA GGAAAAAGCC TGCCAGCGTAAA TTCAGTAAAG AATGAAAAGAA	FIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA TCCAAGGTCA GCCGAGGGCC CATCCCAAGG AAACACCAGC TCTTCTCTGG CGGACCAGCCT CAGTACAGC GGACCAGCCT CAGTACAGCT CATGCATGA ACCATGCAT CTCATGCACTGA CTGCTGACTG GGACCAACAG GCATCACGGC CAGAAGATGA GCATTACTCC GGGACCTCCTCC GTGGCCTTCT GTGGTGCACAG GCATTCCCTCTCAG GCATCACAGA GCATTCTCT GTGGTGACAGA TCCCCTCCAG GTTCACCATGA	2100 2160 2220 2280 60 120 180 240 300 480 540 600 720 780 840 900 1020 1080 1140 1200 1200 1320 1380 1440 1500 1560
505560657075	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Ac: Coding sequity CCGGGCAGGT AGGGGCGCAG AGAAGATGAA GTGTGAGGGA GGAGAACTCG TCTCTTTGA GAAGTCTC TCATCGTGC TCATCGTGT TCATGGTGAA TCTTGTTAGT TTTAGAGAGTT TTAAGAAGAT ATGAAGTTCA AGGGTATCA AGGGTATCA AGGGTATCA AGGGTATCA ATGAAGTTCA AGGGTATCA TCTTCAATTC AAGCCTCAGT TAAAGAACAA	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA 86 id Accession lence: 126. 11 GGCTCATGCT GAATTCTGAT GGATATCGAC GAGAACCAGC ACGGTTGGAA TGCCTCCATG TCATGGTTG CAATGCTGGA TGACTGTGGAA TGACGTGTGG CCATAAGAAG TGACGTGTGG ACACTCTTG GCTGGGCCTC GAATTACCGA TGTTGAGCTTT CGATGGCAT TTTCAGGAGA TACATTACAT	RSRVGISSLS PDGONMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL equence n #: NM_005 .4439 21 CGGGAGCGTG GTGAAACTAA ATAGGAAAAGA ACTTCTGGGA ACTTCTGGGA CTTCTTCCT TGCAGAAGAC TGCAGAAGAC TGCAGAAGAC TGCAGAGATC TCCTGCGAA CTGATGATCA TGCAGAAGAC TTATCCT TGCAGAAGAC TTATCCT TGCAGAAGAC TTATCCT AAATGCTGG ACGGTGTCC AAGAACATTA TTAGGCATGA TTAGGCATGA TTAGGCATGA TTAGGCATGA TTATCCTCT AAATGCTGG GAAATTTATCA GAGGAGGAGC GCTCCCATTG TTCGATCAGA GCTTTGAACAG GCTTCCAATCA	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAAC TCAGAATCCT AGCCCATCCG GTATGACTT CAATGGAAGA TCAGAATCCT AGGCAACAGA AAATCGTGCG GCTTGCGGG AGAACAGA AAATCGTGCG GCTTGCGGG TTTATAATGT TTTACCCAGC CCGCACCGGA AAATGTATGC GTCGCACGGA AAATGTATGC TTTACCCAGC CCGCACCGA TAGACACCCT TGCGGGATATT TGGTGGTGAT CAGCAGCACA TAACACCGTT GTTGTTTCT AGATAGAGAT	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 TGGCGCGGTT GCCTGGAAC CCCCAGTCCT CCGTGAAGAT AGCAGCCCGA GGATGAGGAG GATCATTCC CTGTGGCTC GTGTGGTCT GTGTGGTCT GTCTAACCTG GTCTTAGCT GCTTGGTCAG GATCATCTC CCTGGGTGAA AATGATGTT TGAACGTGTC CTGGGTCAAA GGAAAAAGCC TGCCAGCGTG GGCATTCACA AATGATGTT TGAACGTGTC TGCAGCGTG AATGATGTT TGAACGTGTC CTGGGTCAAA AGGAACACC GGCATCCTA AATGATGTT TGAACGTGTC CTGGGTCAAA AGGAACACC GGCAGCGTG GGCATTCACA AATGAACAC TTCAGTAAAA GAAAAAAGCC GGCAGCAGGGGAAAAAATGCC	FIITQHPLLH MAEEHKCLSM AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGGCC CATCCCAAGG AAACACCAGC TCTTCTCTGG GGACCAGCC CAGTCAAGT CTGACTGAATG CTGCATGCATGC CAGTACAGCAT CTCATCAACA CTGCATGCATGC GGACCACCT CTTGCACTGA ACCATGGCAT CTCATCAACA GCATCACCAG GCATCACGGC CAGGAAGATGA GCATTCTCT GGGTACTTCT GTGGTGACAG GCATCACGG CCCTCTCAG GCTCCCTCTCAG GCTCCCTCTCAG GCTCACATGA ACCTTGGCAT	2100 2160 2220 2280 2280 60 120 180 240 480 660 720 660 780 840 900 900 1020 1140 1260 1320 1380 1440 1560 1560 1620
50 55 60 65 70 75	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Acc Coding sequ	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA 86 id Accession lence: 126. 11 GGCTCATGCT GAATTCTGAT GGATATCGAC GGAAACCAGC ACCGTTGGAA TGCCTCCATG TCATGGCTTG CCATGGTGGC CCACAGAAG GCACCAGCTGTGC ACACCTCTTG GCTGGGCCTC GAATTACCGA CCTTAAGTTA CGATGGCAGC ACACCTCTTG GCTGGGCCTC GAATTACCGA TGTTGCCATC TTTCAGGAGA TGTTGCCATC TTTCAGGAGA TACAGCTGTT TTTCAGGAGA TACTACATT TTTCAGGAGA TACTACATT CGATGGCTGT CACCTCTGGC CATGACTTTT CGCTGTTGC ACACCTCTGGC CATGACTTTT CGCTGTTGGC ACCACCAGT CCACTCCAGT CCACTCCAGT	RSRVGISSLS PDGONMAEDE EVRHFQCPKW QLEKENSVDV LPDGNIAESL QLEKENSVDV LPDGNIAESL QLEKENSVDV LPDGNIAESL QUENCE 1 #: NM_005 .4439 21 CGGGGGCGTG GTGAAACTAA ATAGGAAAACA ATAGGAAAACA ATCTCTGAGGA ACTCTCTGAGGA ACTCTCTGAGCA AGTGCTCTGA CTGATGATCAC CTCCTGCGAA CTGATGATCAC CTCCTGCGAA CTGATGATCAC AGAGATATACCC CTCCTGACGG ACCGGTGTCC AAGAACATTA AGAACATTA AGAACATTA AGAACATTA AGAACATTA CTGACTGA CTGATCACA AGAGAGAGC GCTCCCATTG TTCGATCTGA AGATTTAACA CCCCACATCA ATCCAGAACT	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAAC TCAGAATCCT AGCCCATCCG GTATGACTTT CAATGGAAGA TCAGAACCTT GGCAGCTGGC AGGCACAGGA AGGAACACT GGCTTGCGGG AGGCACAGG AGGCACAGG TTTATACTGT TTTACCAGC CCGCCACGGA AAATGTATAT TGGTGGTAT TGGTGGTAT CAGCACCCT TGGACCCT TGGTGGTAT CAGCACCCC TAACACCGTT GTTTGTTTCT TTTTTTTTTT	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC CCCCAGTCCT CGTGAAGAC GACTACTTCC TTCGTGGCTT GTGGCAAGAA GATCTTCTG GGCTTCAGTC GTCTTAGCTG AATGATTT TGAACGTGTC CTGGGTCAAA GGAAAAAGCC TGCCAGCGTG GGCTTTCACA TTCAGTAAAG AATGAAAAG GAAAAATGCC GAACCCCCAAA	FIITQHPLLH MAEEHKCLSM AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGGCC CATCCCAAGG AAACACCAGC TCTTCTCTGG GGACCAGCCT CAGTACAGCT CAGTACAGCT CAGTACAGCT CAGTACAGCT CTGCACTGA ACCATGGCAT CTCATCAACA CTGCTGCCTG GGACCAACAG GCATCACGGC GGACCAACAG GCATCACGGC TCGTGACTGC TCGCTGCTG TCGCTTCT GTGGTGACTG TCCTCACATGA TCCCTCTCAG GTTCACATGA ACCTTGGCAT ATGAAAAAAG	2100 2160 2220 2280 60 120 180 240 480 540 660 720 780 960 1020 1140 1200 1140 1200 1380 1440 1500 1500 1500 1620 1680
505560657075	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Accoding sequence 1 CCGGGCAGGT AGGGCAGGT AGGGGCGCAG AGAAGATGAA GGAGACTCG TCTCTTGA GAAAGTACCA ACCCAGTGGA ACCCAGTGGC TCATCCTGTC TCATGGTGAA TGTTGTGAGT TTAAGAAGAT TTTGCTCCAG GGTTCCAGT GGTTCCTGGG TCACAGCATA ATGAGTTCT AGAGTGTTCA AGGGTATCCT AGAGTGTCA AGGGTATCAC TCTCTCATGT AGAGTTCAAAGACATA TCTTCAATTC AAGCCTCAGT TAAAGAACACT TCATCATTC AAAGACACT TCAAAGACGCT TAAAGACACT TCAAAGACCTCACT ACAAGAGGGCCCTC ACAAGAGGGCCCTC ACAAGAGGGCCCTC ACAAGAGGGCCCTC ACAAGAGGGCCCTC ACAAGAGGGCCCCTC ACAAGAGGGCCCCCCACACCACCACCACCACCACCACCAC	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA 86 id Accession lence: 126. 11 GGCTCATGCT GAATTCTGAT GGATATCGAT GGATATCGAT GGATATCGAT TCATGGCTTGAT TCATGGCTTGAT TCATGGCTTGC ACACTCTTG CCATGGTAAC TGACGTGTGC ACACCTCTTG GCTGGGAAC CCTTAAGTTA CGATGCCTG CGATTACCGA TGTTGCCAT TTTCAGGAGA TACTTACATT AAAAATCCGC TGTGGGTTG GACCTCTTG GACCTCTTT TTTCAGGAGA TACTTACATT AAAAATCCGC CATGACTTTT GGCTGTTGC CATGACTTTT TGCAGGGC CATGACTTTT TCACAGGGC CCATGACTTTT TCCAGGGGC CCATCAGTT TTCCAGGGGC TTCCAGGGC TTCCAGGGC TTCCAGGGGC TTCCAGGCGC TTCCAGGGGC	RSRVGISSLS PDGONMAEDE EVRHFQCPKW QLEKENSVDV LEKENSVDV LPDGNIAESL PQUENCE 1 #: NM_005 .4439 21 CGGGGAGCGTG GTGAAACTAA ATAGGAAAAG ACTICTGGGA ACTICTGGGA ACTICTGGGA CTITTTCCTG GGGAGCTCT GCGGAGCTCT TGCAGAAGAC CTGATGATCA CTGATGATCA CTGCTGAGA ACTGATGATCA CATCCTGACGA ACTGATGATCA CTGATGATCA GAGGAGTCC AAGAACATTA AGAATGTTG TTAGCATGA TTTATCCTT AAATGCTTG AGAGGAGGAG CCTCCCATTG TTCGATCTGA GCTTCCATTG TCGATCTGA GCTTTGAAAG AGATTTAAGA AGAAAGAGA ATCCAGAACT AAGAAAGAGA	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA CCTTGGAAAC TCAGAATCCT AGCCCATCCG GTATGACTTC AGCCATCCG GTATGACTT CAATGGAAGC TGGAAAC TGGGAAAC GGCTGGC AGGAACAGA AGCACAGGA AGAATCGTGGC GCTTGCGGGG AGGAACAGA AGCACAGCAC	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC CCCCAGTCCT CGTGAAGAT AGCAGCCCGA GGATACTTCC TTCGTGGCTT CGTGGTGTCT CGTGGTCT GTGCCAAGAA GATCTTCTGC GGCCATCCTA CCTGGGTGAG GTCTTACCTG GGCATCCTA CCTGGGTGAG CGTTGGCAG CGTTGGCAG CGTTGGCAG CGTTGGCAG CGTTGGCAG CGTTGGCAG CGTTGCAAA CGAAAAAATGT TCAGTAAAG AATGAAAAA AATGAAAAG GAACCCCCAAA GCTGCAGCGC	FIITQHPLLH MABEHKCLSM AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCAGGGCC CATCCCAAGG AACACCAGC TCTTCTCAGG GGACCAGGC CTGTCCAAGG CAGCTGATGCAAGC CTGTCCAAGC GGACCAGCCT CAGTACAGCT CTGCACTGA ACCATGCATGA ACCATGCATTC GGGACCACAGG GGACCACAG GCATCACAGC CTGCTGGCTG GGACCACAG GCATTTTCTC GGGTACTTCC GTGACTACAG TCCCTCTCAG GTTCACATGA ACCTTCACATGA ACCTTCACATGA ACCTTCACATGA ACTGAGCAT ATGAAAAAAG ACTGAGCATC	2100 2160 2220 2280 60 120 180 240 300 420 480 540 660 720 780 900 960 1020 1140 1200 1380 1440 1500 1560 1560 1680 1740
50 55 60 65 70 75	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Accoding sequence CCGGGCAGGT AGGGGCGCAG AGAAGATGAA GTTGAGGGA GGAAACTCG GCAGGTGGC CCGTGTGGC CCGTGTGGC CCGTGTGGC TCATCCTGT TCATGGGAAT TTTGTTAGT TTAAGAAGAT TTTGCTCCAA GAGGACCCGT GCTTCCTGGG TCATCCTGGG TCATCCTGGG TCATCCTGGG TCATCCTGGG TCATCCTGGG TCATCCTGGG TCATCCTGGG TCATCCTGGG TCACAGCATA ATGAAGTTCT AGGGACCCGT TCACAGCATA TCTTCAATTC AGGGTATCA TCTTCAATTC AGGCTCTCC ACAGGACCCTC TAAAGAACAA TCTTCAATTC AGCCTCAGT TAAAGAACAA GGGACCCCTC ACAGGAGGCC ACAGGAGGGC ACAGGAGGGC ACAGGAGGGCC ACAGGAGGGCC ACAGGAGGGCC ACAGGAGGGCC ACAGGAGGGCC ACAGGAGGGCC ACAGGAGGGCC ACAGGAGGGCC ACAGGAGGGCC ACGCGGTGCT	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession lence: 126. 11 GGCTCATGCT GAATTCTGAT GGATATCGAC GAGAACCAGC ACCGTTGGAA TCCATGGCTTG TCATGGCTTG TCATGGCTTG CAATGCTGGG CCACAGAGAC AGACGCTGGAA AGACGCTGCT CATCGTGTGC ACACCTCTTG CATCGTGTGC ACACCTCTTG CATTGCCTC CATCGTGCCTC GAATTACCGA TGTTGCCATC TTTCAGGAGA TACTTACATT AAAAATCCGC TGTGGGTCT CACCTGGTC CATCAGCTGTT TTCAGGAGA TACTTACATT AAAAATCCGC CATGACTTTT GGCTGTTGCAC CATGACTTTT TGCAGGGGC CATGACTTTT TGCAGGGGC CATCAGGT TTCCAGGGGC GCCAGACCAGT TTCCAGGGGC GCCAGACCAG	RSRVGISSLS PDGONMAEDE EVRHFQCPW QLEKENSVDV LPDGNIAESL EQUENCE # : NM_005 .4439 21 CGGGGAGCGTG GTGAAACTAA ATAGGAAAAG ACTTCTGGGA ACTTCTCAGC AGTGCTCTGA CTTTTTCCT GGGAGCTCT TGCAGAAGTA CTCCTGAGC TCCCTGCGAA CTGATGATCA GAGTATACC CTCCTGACGA ATAGGAAGAC TTATCCTT AGAACATTA AGAACATTA AGAACATTA AGAACATTA AGAACATTA AGAACATTA TTAGCCTGC AAGTTTATCA GAGGAGGAGC CTCCCATCA ATCCAGAAC ATCCAGAAC ATCCAGAAC ATCCAGAAC ATCCAGAAC ATCCAGAACA ATCCAGAACA ATCCAGAACAC AAGAACACA ACCAGAACAC AAGAACACA AAGAACACA AAGAACACA AAGAACACA AAAGGCCACC	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA ACTATGATCCT AGCCCATCCG GTATGACTT CAATGGAAGA TAGAGACT GGGTTGTGT GGGAGCACAG AAATCGTGC GGAGCAGCA AAATCGTGC AGGCACAGC AGGCACACA AAATCGTGC GCTTGCAGC AGGCACAC AGGCACAC TTTATAATGT TTTACCCAGC CCGCCACGGA AAATGTATGC GTCGGTGGTATATATGT TGTTGGTGTGT CAGCACCACT TAGACACCTT GTTTGTTTCT AGATAGAGAT CCCCCCAGC AGGTAGGCAC TAACACCGTT GTTTGTTTCT AGGTAGGGCA TCCCCCAGG TCCCCCAGGCA TCCCCCAGGCAC TCCCCCAGGCAC TCCCCCAGGCAC TCCCCCAGCCAC TCCCCCAGGCAC TCCCCCCAGCCC TCCCCCCAGCCC TCCCCCCAGCCC TCCCCCCCGCACCC TCCCCCCCACGCC TCCCCCCCCCC	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC CCCCAGTCCT CGTGAAGAT AGCAGCCCGA GGATACTTCC TTCGTGGCTT GTGGCAAGAA GATCTTCTGC GTCTTAACCTG GTCTTAACCTG GTCTTAACCTG GTCTTAACCTG GTCTTAACCTG GTCTTAACCTG CTGGGTGAG CGTTGGCAGC CATCCTA CCTGGGTGAG CGTCAGCTC TGCAGCGTC AATGATTTCTC TGAACAGTGTC TGCAGCGTC TGCAGCGTC TGCAGCGTC TGCAGCGTC TTCAGTAAAG GAAAAAGCC TGCCAGCGTC GCCTTCACA TTCAGTAAAG AATGGAAGAG GAAAAATGCC GACCCCCAAA	FIITQHPLLH MABEHKCLSN AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCGAGGGC CTCTCCAAGC AACACCAGC TCTTCTCTGG CTGTCCAAGC GAGCTGAATG CGCACCAGCCT CATGCAAGC GACCAGCCT CATGCACAGC GGACCAGCCT CTTGCACTGA TCTATCAACA CTGCTGCATGA GCATCACGGC GGACCAACAG GGACCAACAG GGATCACGGC TCCTCTCAG GTGACTTCC GTGGACTACA TCCTCTCAG GTTCACATGA ACCTTCTCAG GTTCACATGA ACCTTCTCAG GTTCACATGA ACCTTCTCAG GTTCACATGA ACCTTCTCAG GTTCACATGA ACCTTCTCAG GTTCACATGA ACCTTCGCAT ACCTTCTCAG GTTCACATGA ACCTTCGCAT CCGCCCAGTC CGGCCCAGTC	2100 2160 2220 2280 60 120 180 240 300 480 540 660 720 780 840 960 1020 1140 1200 1320 1320 1320 1340 1560 1560 1560 1680 1740 1800
50 55 60 65 70 75	AALKQCNREK TIKDFWRMIW EEKLIIQDFI HDEHGGVTAG LVSTRQEENP Seq ID NO: Nucleic Accoding sequence CCGGGCAGGT AGGGGCGCAG AGAAGATGAA GTTGAGGGA GGAAACTCG GCAGGTGGC CCGTGTGGC CCGTGTGGC CCGTGTGGC TCATCCTGT TCATGGGAAT TTTGTTAGT TTAAGAAGAT TTTGCTCCAA GAGGACCCGT GCTTCCTGGG TCATCCTGGG TCATCCTGGG TCATCCTGGG TCATCCTGGG TCATCCTGGG TCATCCTGGG TCATCCTGGG TCATCCTGGG TCACAGCATA ATGAAGTTCT AGGGACCCGT TCACAGCATA TCTTCAATTC AGGGTATCA TCTTCAATTC AGGCTCTCC ACAGGACCCTC TAAAGAACAA TCTTCAATTC AGCCTCAGT TAAAGAACAA GGGACCCCTC ACAGGAGGCC ACAGGAGGGC ACAGGAGGGC ACAGGAGGGCC ACAGGAGGGCC ACAGGAGGGCC ACAGGAGGGCC ACAGGAGGGCC ACAGGAGGGCC ACAGGAGGGCC ACAGGAGGGCC ACAGGAGGGCC ACGCGGTGCT	NRTSSIIPVE DHNAQLVVMI LEATQDDYVL TFCALTTLMH STSLDSNGAA 584 DNA se id Accession lence: 126. 11 GGCTCATGCT GAATTCTGAT GGATATCGAC GAGAACCAGC ACCGTTGGAA TCCATGGCTTG TCATGGCTTG TCATGGCTTG CAATGCTGGG CCACAGAGAC AGACGCTGGAA AGACGCTGCT CATCGTGTGC ACACCTCTTG CATCGTGTGC ACACCTCTTG CATTGCCTC CATCGTGCCTC GAATTACCGA TGTTGCCATC TTTCAGGAGA TACTTACATT AAAAATCCGC TGTGGGTCT CACCTGGTC CATCAGCTGTT TTCAGGAGA TACTTACATT AAAAATCCGC CATGACTTTT GGCTGTTGCAC CATGACTTTT TGCAGGGGC CATGACTTTT TGCAGGGGC CATCAGGT TTCCAGGGGC GCCAGACCAGT TTCCAGGGGC GCCAGACCAG	RSRVGISSLS PDGONMAEDE EVRHFQCPW QLEKENSVDV LPDGNIAESL EQUENCE # : NM_005 .4439 21 CGGGGAGCGTG GTGAAACTAA ATAGGAAAAG ACTTCTGGGA ACTTCTCAGC AGTGCTCTGA CTTTTTCCT GGGAGCTCT TGCAGAAGTA CTCCTGAGC TCCCTGCGAA CTGATGATCA GAGTATACC CTCCTGACGA ATAGGAAGAC TTATCCTT AGAACATTA AGAACATTA AGAACATTA AGAACATTA AGAACATTA AGAACATTA TTAGCCTGC AAGTTTATCA GAGGAGGAGC CTCCCATCA ATCCAGAAC ATCCAGAAC ATCCAGAAC ATCCAGAAC ATCCAGAAC ATCCAGAACA ATCCAGAACA ATCCAGAACAC AAGAACACA ACCAGAACAC AAGAACACA AAGAACACA AAGAACACA AAGAACACA AAAGGCCACC	GEGTDYINAS FYYWPNKDEP PNPDSPISKT YQVAKMINLM ESLV 6688.1 31 GTTGAGCGGC CAGTCTGTGA AGTATATCAT CGCACAGAGA ACTATGATCCT AGCCCATCCG GTATGACTT CAATGGAAGA TAGAGACT GGGTTGTGT GGGAGCACAG AAATCGTGC GGAGCAGCA AAATCGTGC AGGCACAGC AGGCACACA AAATCGTGC GCTTGCAGC AGGCACAC AGGCACAC TTTATAATGT TTTACCCAGC CCGCCACGGA AAATGTATGC GTCGGTGGTATATATGT TGTTGGTGTGT CAGCACCACT TAGACACCTT GTTTGTTTCT AGATAGAGAT CCCCCCAGC AGGTAGGCAC TAACACCGTT GTTTGTTTCT AGGTAGGGCA TCCCCCAGG TCCCCCAGGCA TCCCCCAGGCAC TCCCCCAGGCAC TCCCCCAGGCAC TCCCCCAGCCAC TCCCCCAGGCAC TCCCCCCAGCCC TCCCCCCAGCCC TCCCCCCAGCCC TCCCCCCCGCACCC TCCCCCCCACGCC TCCCCCCCCCC	YIMGYYQSNE INCESFKVTL PELISVIKEE RPGVFADIEQ 41 TGGCGCGGTT GCCCTGGAAC CCCCAGTCCT CGTGAAGAT AGCAGCCCGA GGATACTTCC TTCGTGGCTT GTGGCAAGAA GATCTTCTGC GTCTTAACCTG GTCTTAACCTG GTCTTAACCTG GTCTTAACCTG GTCTTAACCTG GTCTTAACCTG CTGGGTGAG CGTTGGCAGC CATCCTA CCTGGGTGAG CGTCAGCTC TGCAGCGTC AATGATTTCTC TGAACAGTGTC TGCAGCGTC TGCAGCGTC TGCAGCGTC TGCAGCGTC TTCAGTAAAG GAAAAAGCC TGCCAGCGTC GCCTTCACA TTCAGTAAAG AATGGAAGAG GAAAAATGCC GACCCCCAAA	FIITQHPLLH MABEHKCLSM AANRDGPMIV YQFLYKVILS 51 GTCCTGGAGC CTCCGCTCAG GGGTATAGAA TCCAAGTTCA GCCAGGGCC CATCCCAAGG AACACCAGC TCTTCTCAGG GGACCAGGC CTGTCCAAGG CAGCTGATGCAAGC CTGTCCAAGC GGACCAGCCT CAGTACAGCT CTGCACTGA ACCATGCATGA ACCATGCATTC GGGACCACAGG GGACCACAG GCATCACAGC CTGCTGGCTG GGACCACAG GCATTTTCTC GGGTACTTCC GTGACTACAG TCCCTCTCAG GTTCACATGA ACCTTCACATGA ACCTTCACATGA ACCTTCACATGA ACTGAGCAT ATGAAAAAAG ACTGAGCATC	2100 2160 2220 2280 60 120 180 240 300 480 540 660 720 780 840 960 1020 1140 1200 1320 1320 1320 1340 1560 1560 1560 1680 1740 1800

	ACAGCATCGA	TCTGGAGATC	CAAGAGGGTA	AACTGGTTGG	AATCTGCGGC	AGTGTGGGAA	1920
	GTGGAAAAAC	CTCTCTCATT	TCAGCCATTT	TAGGCCAGAT	GACGCTTCTA	GAGGGCAGCA	1980
	TTGCAATCAG	TGGAACCTTC	GCTTATGTGG GGGAAGGAAT	CCCAGCAGGC	CTGGATCCTC	AATGCTACTC	2040
5			GACCTGGCCA				2100 2160
,			AGCGGTGGGC				2220
			TACATCCTGG				2280
			AGTGCTATCC				2340
10			TACCTGGTTG				2400
10			ACCCATGAGG				2460
			CTGGGAGAGA				2520
			AAGTCACAAG GAGGAAGGGC				2580 2640
			TATGGTGTCT				2700
15			TTCATGCTGA				2760
	GGTTGAGTTA	CTGGATCAAG	CAAGGAAGCG	GGAACACCAC	TGTGACTCGA	GGGAACGAGA	2820
			AAGGACAATC				2880
			CTGATCCTGA				2940
20			CGGCTGCATG				3000
20			ACCCCCACAG CTGCCGTTCC				3060 3120
			ATGATCGCAG				3180
			TCAGTCCTGC				3240
0.5	TGAAGCGTCT	GGACAATATC	ACGCAGTCAC	CTTTCCTCTC	CCACATCACG	TCCAGCATAC	3300
25			GCCTACAATA				3360
			GCTCCTTTTT				3420
			AGCATCGCCC CCAGCCTATG				3480 3540
			ACGGTCAGAC				3600
30			TACATTAAGA				3660
			GACTGGCCCC				3720
			CTCCCTCTTG				3780
			GTGGGGCGGA				3840
35			TTATCTGGAG				3900
33			CTCCGAAGCA TCAAATTTGG				3960 4020
		-	ACACACATGA	,			4020
			AATGGGGATA				4140
			CGCCACTGTA				4200
40			TTATTGATTC				4260
			CATCGCCTGC				4320
			GTGGAGTTTG				4380
			TTTGCTGCTG				4440 4500
45			CCGAAACCTT				4560
			TTTCACTTTT				4620
	ATTCCATATT	CATGTAAACA	AAATTTAGTT	TTTGTTCTTA	ATTGCACTCT	AAAAGGTTCA	4680
			TATCAGAGGC				4740
50			TAGCCTATAT				4800
50			TAATAACAGT				4860 4920
			GTGCCAGGTT				4980
			CCCCTCTGCC				5040
~ ~			GACCATGCAG				5100
55			GTTTCTGTCA				5160
			ATGGGGATCA				5220
			GCTGTTGTTT ATGGCTGGCC				5280 5340
			CCAACTGCTG				5400
60			CAGTGGCAGG				5460
						CAACTTTAAG	5520
			CTCACACTGG				5580
			GTGTGGTTTG				5640
65			GCGTGGTCAC TTCTGTCGCC				5700 5760
03			TAAAATTATT				5820
	AAAAAAAA		***********	1100111110			3020
			•				
70	Seq ID NO:	585 Prote	in sequence				
70	Protein Acc	cession #: 1	NP_005679,1				
	•						
	1	11	21	31 I	41	51 1	
	MKDIDIGKEY	IIPSPGYRSV	RERTSTSGTH	RDREDSKERP	TRPLECODAT.	ETAARAFGLS	60
75			YHHGLSALKP				120
	VAHKKGELSM	EDVWSLSKHE	SSDVNCRRLE	RLWQEELNEV	GPDAASLRRV	VWIFCRTRLI	180
			VKHLLEYTQA				240
			KILKLKNIKE				300
80		MALICIA DAGE	LGSAVFILFY				360 420
OU.			MUKIDESSES				
80	VLTYIKFIKM	YAWVKAFSQS	VQKIREEERR NSMTFALKVT				
80	VLTYIKFIKM HMTLGFDLTA	YAWVKAFSQS AQAFTVVTVF	NSMTFALKVT	PFSVKSLSEA	SVAVDRFKSL	FLMEEVHMIK	480 540
80	VLTYIKFIKM HMTLGFDLTA NKPASPHIKI	YAWVKAFSQS AQAFTVVTVF EMKNATLAWD		PFSVKSLSEA KLTPKMKKDK	SVAVDRFKSL RASRGKKEKV	FLMEEVHMIK RQLQRTEHQA	480
	VLTYIKFIKM HMTLGFDLTA NKPASPHIKI VLAEQKGHLL KTSLISAILG	YAWVKAFSQS AQAFTVVTVF EMKNATLAWD LDSDERPSPE QMTLLEGSIA	NSMTFALKVT SSHSSIQNSP EEEGKHIHLG ISGTFAYVAQ	PFSVKSLSEA KLTPKMKKDK HLRLQRTLHS QAWILNATLR	SVAVDRFKSL RASRGKKEKV IDLEIQEGKL DNILFGKEYD	FLMEEVHMIK RQLQRTEHQA VGICGSVGSG EERYNSVLNS	480 540 600 660
85	VLTYIKFIKM HMTLGFDLTA NKPASPHIKI VLAEQKGHLL KTSLISAILG CCLRPDLAIL	YAWVKAFSQS AQAFTVVTVF EMKNATLAWD LDSDERPSPE QMTLLEGSIA PSSDLTEIGE	NSMTFALKVT SSHSSIQNSP EEEGKHIHLG ISGTFAYVAQ RGANLSGGQR	PFSVKSLSEA KLTPKMKKDK HLRLQRTLHS QAWILNATLR QRISLARALY	SVAVDRFKSL RASRGKKEKV IDLEIQEGKL DNILFGKEYD SDRSIYILDD	FLMEEVHMIK RQLQRTEHQA VGICGSVGSG EERYNSVLNS PLSALDAHVG	480 540 600 660 720
	VLTYIKFIKM HMTLGFDLTA NKPASPHIKI VLAEQKGHLL KTSLISAILG CCLRPDLAIL NHIFNSAIRK	YAWVKAFSQS AQAFTVVTVF EMKNATLAWD LDSDERPSPE QMTLLEGSIA PSSDLTEIGE HLKSKTVLFV	NSMTFALKVT SSHSSIQNSP EEEGKHIHLG ISGTFAYVAQ	PFSVKSLSEA KLTPKMKKDK HLRLQRTLHS QAWILNATLR QRISLARALY DEVIFMKEGC	SVAVDRFKSL RASRGKKEKV IDLEIQEGKL DNILFGKEYD SDRSIYILDD ITERGTHEEL	FLMEEVHMIK RQLQRTEHQA VGICGSVGSG EERYNSVLNS PLSALDAHVG MNLNGDYATI	480 540 600 660

```
VPWSVYGVYI QAAGGPLAFL VIMALFMLNV GSTAFSTWWL SYWIKQGSGN TTVTRGNETS
                                                                             900
       VSDSMKDNPH MQYYASIYAL SMAVMLILKA IRGVVFVKGT LRASSRLHDE LFRRILRSPM
                                                                             960
      KFFDTTPTGR ILNRFSKDMD EVDVRLPFQA EMFIQNVILV FFCVGMIAGV FPWFLVAVGP
LVILFSVLHI VSRVLIRELK RLDNITQSPF LSHITSSIQG LATIHAYNKG QEFLHRYQEL
                                                                            1020
                                                                           1080
       LDDNQAPFFL FTCAMRWLAV RLDLISIALI TTTGLMIVLM HGQIPPAYAG LAISYAVOLT
                                                                           1140
       GLFQPTVRLA SETEARFTSV ERINHYIKTL SLEAPARIKN KAPSPDWPQE GEVTFENAEM
                                                                           1200
       RYRENLPLVL KKVSFTIKPK EKIGIVGRTG SGKSSLGMAL FRLVELSGGC IKIDGVRISD
                                                                           1260
       IGLADLRSKL SIIPQEPVLF SGTVRSNLDP FNQYTEDQIW DALERTHMKE CIAQLPLKLE
                                                                           1320
       SEVMENGDNF SVGERQLLCI ARALLRHCKI LILDEATAAM DTETDLLIQE TIREAFADCT 1380
10
       MLTIAHRLHT VLGSDRIMVL AQGQVVEFDT PSVLLSNDSS RFYAMFAAAE NKVAVKG
       Seq ID NO: 586 DNA sequence
       Nucleic Acid Accession #: NM 001327.1
       Coding sequence: 89..631
15
       AGCAGGGGGC GCTGTGTGTA CCGAGAATAC GAGAATACCT CGTGGGCCCT GACCTTCTCT
                                                                              60
       CTGAGAGCCG GGCAGAGGCT CCGGAGCCAT GCAGGCCGAA GGCCGGGGCA CAGGGGGTTC
                                                                             120
20
       GACGGGCGAT GCTGATGGCC CAGGAGGCCC TGGCATTCCT GATGGCCCAG GGGGCAATGC
                                                                             180
       TGGCGGCCCA GGAGAGGCGG GTGCCACGGG CGGCAGAGGT CCCCGGGGCG CAGGGGCAGC
                                                                             240
       AAGGGCCTCG GGGCCGGGAG GAGGCGCCCC GCGGGGTCCG CATGGCGGCG CGGCTTCAGG
                                                                             300
       GCTGAATGGA TGCTGCAGAT GCGGGGCCAG GGGGCCGGAG AGCCGCCTGC TTGAGTTCTA
                                                                             360
       CCTCGCCATG CCTTTCGCGA CACCCATGGA AGCAGAGCTG GCCCGCAGGA GCCTGGCCCA
                                                                             420
25
       GGATGCCCCA CCGCTTCCCG TGCCAGGGGT GCTTCTGAAG GAGTTCACTG TGTCCGGCAA
                                                                             480
       CATACTGACT ATCCGACTGA CTGCTGCAGA CCACCGCCAA CTGCAGCTCT CCATCAGCTC
                                                                             540
       CTGTCTCCAG CAGCTTTCCC TGTTGATGTG GATCACGCAG TGCTTTCTGC CCGTGTTTTT
                                                                             600
       GGCTCAGCCT CCCTCAGGGC AGAGGCGCTA AGCCCAGCCT GGCGCCCCTT CCTAGGTCAT
                                                                             660
       GCCTCCTCCC CTAGGGAATG GTCCCAGCAC GAGTGGCCAG TTCATTGTGG GGGCCTGATT
                                                                             720
30
       GTTTGTCGCT GGAGGAGGAC GGCTTACATG TTTGTTTCTG TAGAAAATAA AACTGAGCTA
       Seq ID NO: 587 Protein sequence
       Protein Accession #: NP_001318.1
35
                                         31
                  11
       MOAEGRGTGG STGDADGPGG PGIPDGPGGN AGGPGEAGAT GGRGPRGAGA ARASGPGGGA
                                                                              60
       PRGPHGGAAS GLNGCCRCGA RGPESRLLEF YLAMPFATPM EAELARRSLA QDAPPLPVPG
                                                                             120
       VLLKEFTVSG NILTIRLTAA DHRQLQLSIS SCLQQLSLLM WITQCFLPVF LAQPPSGQRR
40
       Seq ID NO: 588 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 52..459
45
       CCTCGTGGGC CCTGACCTTC TCTCTGAGAG CCGGGCAGAG GCTCCGGAGC CATGCAGGCC
                                                                              60
       GAAGGCCAGG GCACAGGGGG TTCGACGGGC GATGCTGATG GCCCAGGAGG CCCTGGCATT
                                                                             120
       CCTGATGGCC CAGGGGGCAA TGCTGGCGGC CCAGGAGAGG CGGGTGCCAC GGGCGGCAGA
                                                                             180
50
       GGTCCCCGGG GCGCAGGGGC AGCAAGGGCC TCGGGGCCGA GAGGAGGCGC CCCGCGGGGT
                                                                             240
       CCGCATGGCG GTGCCGCTTC TGCGCAGGAT GGAAGGTGCC CCTGCGGGGC CAGGAGGCCG
                                                                             300
       GACAGCCGCC TGCTTCAGTT CCGACTGACT GCTGCAGACC ACCGCCAACT GCAGCTCTCC
                                                                             360
       ATCAGCTCCT GTCTCCAGCA GCTTTCCCTG TTGATGTGGA TCACGCAGTG CTTTCTGCCC
       GTGTTTTTGG CTCAGGCTCC CTCAGGGCAG AGGCGCTAAG CCCAGCCTGG CGCCCCTTCC
                                                                             480
55
       TAGGTCATGC CTCCTCCCCT AGGGAATGGT CCCAGCACGA GTGGCCAGTT CATTGTGGGG
                                                                             540
       GCCTGATTGT TTGTCGCTGG AGGAGGACGG CTTACATGTT TGTTTCTGTA GAAAATAAAG
                                                                             600
       CTGAGCTA
       Seq ID NO: 589 Protein sequence
60
       Protein Accession #: Eos sequence
                                                               51
                              21
                                         31
       MQAEGQGTGG STGDADGPGG PGIPDGPGGN AGGPGEAGAT GGRGPRGAGA ARASGPRGGA
                                                                              60
65
       PRGPHGGAAS AQDGRCPCGA RRPDSRLLQF RLTAADHRQL QLSISSCLQQ LSLLMWITQC
       FLPVFLAQAP SGQRR
       Seq ID NO: 590 DNA sequence
       Nucleic Acid Accession #: NM_005562.1
70
       Coding sequence: 90..3671
                                         31
                              21
       ACAGCGGAGC GCAGAGTGAG AACCACCAAC CGAGGCGCCG GGCAGCGACC CCTGCAGCGG
75
       AGACAGAGAC TGAGCGGCCC GGCACCGCCA TGCCTGCGCT CTGGCTGGGC TGCTGCCTCT
                                                                             120
       GCTTCTCGCT CCTCCTGCCC GCAGCCCGGG CCACCTCCAG GAGGGAAGTC TGTGATTGCA
                                                                             180
       ATGGGAAGTC CAGGCAGTGT ATCTTTGATC GGGAACTTCA CAGACAAACT GGTAATGGAT
                                                                             240
       TCCGCTGCCT CAACTGCAAT GACAACACTG ATGGCATTCA CTGCGAGAAG TGCAAGAATG
                                                                             300
       GCTTTTACCG GCACAGAGAA AGGGACCGCT GTTTGCCCTG CAATTGTAAC TCCAAAGGTT
80
       CTCTTAGTGC TCGATGTGAC AACTCTGGAC GGTGCAGCTG TAAACCAGGT GTGACAGGAG
                                                                             420
       CCAGATGCGA CCGATGTCTG CCAGGCTTCC ACATGCTCAC GGATGCGGGG TGCACCCAAG
                                                                             480
       ACCAGAGACT GCTAGACTCC AAGTGTGACT GTGACCCAGC TGGCATCGCA GGGCCCTGTG
                                                                             540
       ACGCGGGCCG CTGTGTCTGC AAGCCAGCTG TTACTGGAGA ACGCTGTGAT AGGTGTCGAT
                                                                             600
       CAGGTTACTA TAATCTGGAT GGGGGGAACC CTGAGGGCTG TACCCAGTGT TTCTGCTATG
                                                                             660
85
       GGCATTCAGC CAGCTGCCGC AGCTCTGCAG AATACAGTGT CCATAAGATC ACCTCTACCT
                                                                             720
       TTCATCAAGA TGTTGATGGC TGGAAGGCTG TCCAACGAAA TGGGTCTCCT GCAAAGCTCC
                                                                             780
       AATGGTCACA GCGCCATCAA GATGTGTTTA GCTCAGCCCA ACGACTAGAC CCTGTCTATT
```

	TTGTGGCTCC	TGCCAAATTT	CTTGGGAATC	AACAGGTGAG	CTATGGGCAA	AGCCTGTCCT	900
	TTGACTACCG	TGTGGACAGA	GGAGGCAGAC GCTCCCTTGA	ACCCATCTGC	CATGATGTG	ATTCTGGAAG	960 1020
_	TCACCAAGAC	TTACACATTC	AGGTTAAATG	AGCATCCAAG	CAATAATTGG	AGCCCCCAGC	1080
5	TGAGTTACTT	TGAGTATCGA	AGGTTACTGC	GGAATCTCAC	AGCCCTCCGC	ATCCGAGCTA	1140
			GGGTACATTG TGGGTTGAAC				1200 1260
	AATTCTGCCA						1320
	GCACCTGTAT	TCCTTGTAAC	TGTCAAGGGG	GAGGGGCCTG	TGATCCAGAC	ACAGGAGATT	1380
10	GTTATTCAGG	GGATGAGAAT	CCTGACATTG	AGTGTGCTGA	CTGCCCAATT	GGTTTCTACA	1440 1500
	CAGTGATGCC	GGAGACGGAG	AGCTGCAAGC GAGGTGGTGT	GCAATAACTG	CCCTCCCGGG	GTCACCGGTG	1560
	CCCGCTGTGA	GCTCTGTGCT	GATGGCTACT	TTGGGGACCC	CTTTGGTGAA	CATGGCCCAG	1620
15	TGAGGCCTTG	TCAGCCCTGT	CAATGCAACA	ACAATGTGGA	CCCCAGTGCC	TCTGGGAATT	1680
13	GTGACCGGCT	AGCAGGCAGG	TGTTTGAAGT TTCGGGGACC	CATTCCACAA	CACAGCCAGCA	GACAAGTGTC	1740 1800
	GAGCTTGCAA	CTGTAACCCC	ATGGGCTCAG	AGCCTGTAGG	ATGTCGAAGT	GATGGCACCT	1860
	GTGTTTGCAA	GCCAGGATTT	GGTGGCCCCA	ACTGTGAGCA	TGGAGCATTC	AGCTGTCCAG	1920
20			ATTCAGATGG CAGGGTGGTG				1980 2040
20			CAGGCCCTTC				2100
	AAGGTGCTAG	CAGATCCCTT	GGTCTCCAGT	TGGCCAAGGT	GAGGAGCCAA	GAGAACAGCT	2160
			CTCAAGATGA				2220
25	AGTACCAGAA	AGCTTCCTTG	GATACTCACA GGAAACACTA	ACATTCCTGC	CTCAGACCAC	TACGTGGGGC	2280 2340
23	CAAATGGCTT	TAAAAGTCTG	GCTCAGGAGG	CCACAAGATT	AGCAGAAAGC	CACGTTGAGT	2400
	CAGCCAGTAA	CATGGAGCAA	CTGACAAGGG	AAACTGAGGA	CTATTCCAAA	CAAGCCCTCT	2460
	CACTGGTGCG	CAAGGCCCTG	CATGAAGGAG GAAAAATTGG	TCGGAAGCGG	AAGCGGTAGC	CCGGACGGTG	2520 2580
30	CAAGGGAGGC	CACTCAAGCG	GAAATTGAAG	CAGATAGGTC	TTATCAGCAC	AGTCTCCGCC	2640
	TCCTGGATTC	AGTGTCTCGG	CTTCAGGGAĠ	TCAGTGATCA	GTCCTTTCAG	GTGGAAGAAG	2700
			GCGGATTCAC				2760
	AGTTCAAGCG	TACACAAAAG	AATCTGGGAA GAGAAATCAG	ACTGGAAAGA	TTCCCGTGCC	AATCTTGCTA	2820 2880
35	AAAGCAGAGC	ACAAGAAGCA	CTGAGTATGG	GCAATGCCAC	TTTTTTATGAA	GTTGAGAGCA	2940
			TTTGACCTGC				3000
			TACATCAGCC GGGAGCGCTG				3060 3120
			TCCAGTGAGA				3180
40			GGAGCCTTGG				3240
			GGAGAGCTGG ATTACAGAAG				3300 3360
			ACACTCAACA				3420
15	AGCCTCTCAG	TGTAGATGAA	GAGGGGCTGG	TCTTACTGGA	GCAGAAGCTT	TCCCGAGCCA	3480
45			CTGCGGCCCA TTGCTGGAGA				3540 3600
			GACAACCTGC				3660
	AGCAACAGTG	AAGCTGCCAT	AAATATTTCT	CAACTGAGGT	TCTTGGGATA	CAGATCTCAG	3720
50			TGAGTGGGTG				3780 3840
50	TATGCTCAGG	TCAACTGACC	TGACCCCATT CTGATGCTGG	GCAATGAGGC	AGATAGCACT	GGGTGTGAGA	3900
•	ATGATCAAGG	ATCTGGACCC	CAAAGAATAG	ACTGGATGGA	AAGACAAACT	GCACAGGCAG	3960
-			GTAAGTGGAG				4020
.55			GTAATGTGAC AGAACAGAGT				4080 4140
. 55	ACTATTGCCT	CATATTGTCC	TCTGCAAGCT	TCTTGCTGAT	CAGAGTTCCT	CCTACTTACA	4200
	ACCCAGGGTG	TGAACATGTT	CTCCATTTTC	AAGCTGGAAG	AAGTGAGCAG	TGTTGGAGTG	4260
	AGGACCTGTA	AGGCAGGCCC	ATTCAGAGCT ATCCTTTCTT	ATGGTGCTTG	CIGGIGCCIG	TAGAGATTGC	4320 4380
60	ATTTTTATTA	AAGCATTTCC	TACCAGCAAA	GCAAATGTTG	GGAAAGTATT	TACTTTTTCG	4440
	GTTTCAAAGT	GATAGAAAAG	TGTGGCTTGG	GCATTGAAAG	AGGTAAAATT	CTCTAGATTT	4500
	ATTAGTCCTA	ATTCAATCCT	ACTTTTCGAA TCTCTCTTTC	CACCAAAAAT	GATGCGCATC	AATGTATTTT	4560 4620
	CACACTTCAG	CTGGGTCACA	TCCATCCCTC	CATTCATCCT	TCCATCCATC	TTTCCATCCA	4680
65	TTACCTCCAT	CCATCCTTCC	AACATATATT	TATTGAGTAC	CTACTGTGTG	CCAGGGGCTG	4740
	GTGGGACAGT	GGTGACATAG	TCTCTGCCCT TTAAACTTAC	CATAGAGTTG	ATTGTCTAGT	GAGGAAGACA	4800 4860
	AGCATTTTTA CCANTANCCG	CTTCCTTTCC	AACCTCTTTG	CTCAACAGAA	CATATGTTGC	AAGACCCTCC	4920
70	CATGGGGGCA	CTTGAGTTTT	GGCAAGGCTG	ACAGAGCTCT	GGGTTGTGCA	CATTTCTTTG	4980
70	CATTCCAGCT	GTCACTCTGT	GCCTTTCTAC	AACTGATTGC	AACAGACTGT	TGAGTTATGA	5040 5100
	TAACACCAGT	TTCCTTCTCT	GGAGGAACCA ATTTCCTTGG	ATTTTCCTGA	AAGTGTTTTT	AAATAAAGAA	5160
	CAATTGTTAG		ATTICCTION	7		,	
75	Seq ID NO:	591 Prote cession #: 1					
	1	11	21	31	41	51	
QΛ	1	1			 	7	
80			ATSRREVCDC CLPCNCNSKG				60 120
			CDPAGIAGPC				180
	PEGCTQCFCY	GHSASCRSSA	EYSVHKITST	FHQDVDGWKA	VQRNGSPAKL	QWSQRHQDVF	240
85			QQVSYGQSLS EHPSNNWSPQ				300 360
U	DNVTLICARD	VSGAPAPWVE	QCICPVGYKG	QFCQDCASGY	KRDSARLGPF	GTCIPCNCQG	420
	GGACDPDTGD	CYSGDENPDI	ECADCPIGFY	NDPHDPRSCK	PCPCHNGFSC	SVMPETEEVV	480

PCT/US02/12476 WO 02/086443 CNNCPPGVTG ARCELCADGY FGDPFGEHGP VRPCQPCQCN NNVDPSASGN CDRLTGRCLK 540 CIHNTAGIYC DQCKAGYFGD PLAPNPADKC RACNCNPMGS EPVGCRSDGT CVCKPGFGGP 600 NCEHGAFSCP ACYNQVKIQM DQFMQQLQRM EALISKAQGG DGVVPDTELE GRMQQAEOAL 660 QDILRDAQIS EGASRSLGLQ LAKVRSQENS YQSRLDDLKM TVERVRALGS QYQNRVRDTH 720 RLITOMOLSL AESEASIGNT NIPASDHYVG PNGFKSLAQE ATRLAESHVE SASNMEQLTR 5 780 ETEDYSKQAL SLVRKALHEG VGSGSGSPDG AVVQGLVEKL EKTKSLAQQL TREATQAEIE 840 ADRSYQHSLR LLDSVSRLQG VSDQSFQVEE AKRIKQKADS LSTLVTRHMD EFKRTQKNLG 900 NWKEEAQQLL QNGKSGREKS DQLLSRANLA KSRAQEALSM GNATFYEVES ILKNLREFDL 960 QVDNRKAEAE EAMKRLSYIS QKVSDASDKT QQAERALGSA AADAQRAKNG AGEALEISSE 1020 10 IEOEIGSLNL EANVTADGAL AMEKGLASLK SEMREVEGEL ERKELEFDTN MDAVQMVITE 1080 AOKVDTRAKN AGVTIODTLN TLDGLLHLMD QPLSVDEEGL VLLEQKLSRA KTQINSQLRP MMSELEERAR QORGHLHLLE TSIDGILADV KNLENIRDNL PPGCYNTQAL EQQ Sea ID NO: 592 DNA sequence 15 Nucleic Acid Accession #: AP101051.1 Coding sequence: 221.856

41

31

GAGCAACCTC AGCTTCTAGT ATCCAGACTC CAGCGCCGCC CCGGGCGCGG ACCCCAACCC

CGACCCAGAG CTTCTCCAGC GGCGGCGCAG CGAGCAGGGC TCCCCGCCTT AACTTCCTCC

GCGGGGCCCA GCCACCTTCG GGAGTCCGGG TTGCCCACCT GCAAACTCTC CGCCTTCTGC

ACCTGCCACC CCTGAGCCAG CGCGGGCGCC CGAGCGAGTC ATGGCCAACG CGGGGCTGCA

GCTGTTGGGC TTCATTCTCG CCTTCCTGGG ATGGATCGGC GCCATCGTCA GCACTGCCCT

GCCCCAGTGG AGGATTTACT CCTATGCCGG CGACAACATC GTGACCGCCC AGGCCATGTA

CGAGGGGCTG TGGATGTCCT GCGTGTCGCA GAGCACCGGG CAGATCCAGT GCAAAGTCTT

TGACTCCTTG CTGAATCTGA GCAGCACATT GCAAGCAACC CGTGCCTTGA TGGTGGTTGG

CATCCTCCTG GGAGTGATAG CAATCTTTGT GGCCACCGTT GGCATGAAGT GTATGAAGTG

CTTGGAAGAC GATGAGGTGC AGAAGATGAG GATGGCTGTC ATTGGGGGTG CGATATTTCT

TCTTGCAGGT CTGGCTATTT TAGTTGCCAC AGCATGGTAT GGCAATAGAA TCGTTCAAGA

ATTCTATGAC CCTATGACCC CAGTCAATGC CAGGTACGAA TTTGGTCAGG CTCTCTTCAC

TEGCTEGECT GCTECTTCTC TCTECCTTCT GEGAGETECC CTACTTTECT GTTCCTETCC CCGAAAAACA ACCTCTTACC CAACACCAAG GCCCTATCCA AAACCTECAC CTTCCAGCEG GAAAGACTAC GTGTGACACA GAGGCAAAAG GAGAAAATCA TGTTGAAACA AACCGAAAAT

GGACATTGAG ATACTATCAT TAACATTAGG ACCTTAGAAT TTTGGGTATT GTAATCTGAA

GTATGGTATT ACAAAACAAA CAAACAAACA AAAAACCCAT GTGTTAAAAT ACTCAGTGCT

AAACATGGCT TAATCTTATT TTATCTTCTT TCCTCAATAT AGGAGGGAAG ATTTTACCAT

TTGTATTACT GCTTCCCATT GAGTAATCAT ACTCAAATGG GGGAAGGGGT GCTCCTTAAA

TATATATAGA TATGTATATA TACATGTTTT TCTATTAAAA ATAGACAGTA AAATACTATT

CTCATTATGT TGATACTAGC ATACTTAAAA TATCTCTAAA ATAGGTAAAT GTATTTAATT

CCATATTGAT GAAGATGTTT ATTGGTATAT TTTCTTTTTC GTCCTTATAT ACATATGTAA

CAGTCAAATA TCATTTACTC TTCTTCATTA GCTTTGGGTG CCTTTGCCAC AAGACCTAGC

CTAATTTACC AAGGATGAAT TCTTTCAATT CTTCATGCGT GCCCTTTTCA TATACTTATT

TTATTTTTTA CCATAATCTT ATAGCACTTG CATCGTTATT AAGCCCTTAT TIGTTTTGTG

TTTCATTGGT CTCTATCTCC TGAATCTAAC ACATTTCATA GCCTACATTT TAGTTTCTAA

AGCCAAGAAG AATTTATTAC AAATCAGAAC TTTGGAGGCA AATCTTTCTG CATGACCAAA

GTGATAAATT CCTGTTGACC TTCCCACACA ATCCCTGTAC TCTGACCCAT AGCACTCTTG

TTTGCTTTGA AAATATTTGT CCAATTGAGT AGCTGCATGC TGTTCCCCCA GGTGTTGTAA

CACAACTTTA TTGATTGAAT TTTTAAGCTA CTTATTCATA GTTTTATATC CCCCTAAACT

ACCTITITGT TCCCCATTCC TTAATIGTAT TGTTTTCCCA AGTGTAATTA TCATGCGTTT

TATATCTTCC TAATAAGGTG TGGTCTGTTT GTCTGAACAA AGTGCTAGAC TTTCTGGAGT GATAATCTGG TGACAAATAT TCTCTCTGTA GCTGTAAGCA AGTCACTTAA TCTTTCTACC

TCTTTTTCT ATCTGCCAAA TTGAGATAAT GATACTTAAC CAGTTAGAAG AGGTAGTGTG
AATATTAATT AGTTTATATT ACTCTCATTC TTTGAACATG AACTATGCCT ATGTAGTGTC

TTTATTTGCT CAGCTGGCTG AGACACTGAA GAAGTCACTG AACAAAACCT ACACACGTAC CTTCATGTGA TTCACTGCCT TCCTCTCTCT ACCAGTCTAT TTCCACTGAA CAAAACCTAC ACACATACCT TCATGTGGTT CAGTGCCTTC CTCTCTCTAC CAGTCTATTT CCACTGAACA AAACCTACGC ACATACCTTC ATGTGGCTCA GTGCCTTCCT CTCTCTACCA GTCTATTTCC

ATTCTTTCAG CTGTGTCTGA CATGTTTGTG CTCTGTTCCA TTTTAACAAC TGCTCTTACT

TTTCCAGTCT GTACAGAATG CTATTTCACT TGAGCAAGAT GATGTATGGA AAGGGTGTTG

GCACTGGTGT CTGGAGACCT GGATTTGAGT CTTGGTGCTA TCAATCACCG TCTGTGTTTG

AGCAAGGCAT TTGGCTGCTG TAAGCTTATT GCTTCATCTG TAAGCGGTGG TTTGTAATTC

CTGATCTTCC CACCTCACAG TGATGTTGTG GGGATCCAGT GAGATAGAAT ACATGTAAGT GTGGTTTTGT AATTTGAAAA GTGCTATACT AAGGGAAAGA ATTGAGGAAT TAACTGCATA

CGTTTTGGTG TTGCTTTTCA AATGTTTGAA AATAAAAAAA TGTTAAGAAA TGGGTTTCTT

GCCTTAACCA GTCTCTCAAG TGATGAGACA GTGAAGTAAA ATTGAGTGCA CTAAACGAAT

AAGATTCTGA GGAAGTCTTA TCTTCTGCAG TGAGTATGGC CCAATGCTTT CTGTGGCTAA

ACAGATGTAA TGGGAAGAAA TAAAAGCCTA CGTGTTGGTA AATCCAACAG CAAGGGAGAT

TTTTGAATCA TAATAACTCA TAAGGTGCTA TCTGTTCAGT GATGCCCTCA GAGCTCTTGC

TGTTAGCTGG CAGCTGACGC TGCTAGGATA GTTAGTTTGG AAATGGTACT TCATAATAAA

CTACACAAGG AAAGTCAGCC ACCGTGTCTT ATGAGGAATT-GGACCTAATA AATTTTAGTG

TGCCTTCCAA ACCTGAGAAT ATATGCTTTT GGAAGTTAAA ATTTAAATGG CTTTTGCCAC

ATACATAGAT CTTCATGATG TGTGAGTGTA ATTCCATGTG GATATCAGTT ACCAAACATT

ACAAAAAAT TTTATGGCCC AAAATGACCA ACGAAATTGT TACAATAGAA TTTATCCAAT

TTTGATCTTT TTATATTCTT CTACCACACC TGGAAACAGA CCAATAGACA TTTTGGGGTT

TTATAATGGG AATTTGTATA AAGCATTACT CTTTTTCAAT AAATTGTTTT TTAATTTAAA

QIQCKVFDSL LNLSSTLQAT RALMVVGILL GVIAIFVATV GMKCMKCLED DEVQKMRMAV

IGGAIFLLAG LAILVATAWY GNRIVQEFYD PMTPVNARYE FGQALFTGWA AASLCLLGGA

21

11

20

25

30

35

40

45

50

55

60

65

70

75

80

85

АЛААССАЛАА АЛААЛАЛАА АЛА

Seq ID NO: 593 Protein sequence

LLCCSCPRKT TSYPTPRPYP KPAPSSGKDY V

Protein Accession #: AAD16433.1

51

60

120

180

240

300

360

420

480

540

600

660

720

960

1020

1080

1140

1200

1260

1320

1380

1440

1500

1560

1620

1680

1740

1800

1860

1980

2100

2340

2460

2520

2580

2700

2760

2820

2880

2940

3000

3060

3120

3180

3240

3300

3360

60

120

Seq ID NO: 594 DNA sequence Nucleic Acid Accession #: NM_006180.1 Coding sequence: 352..2820

5	couring sequ	rence: 332.	2020				
	1	11	21	31 .	41	51	
	1	1	1	1	1	l	
		CATCTAACAA					60
10		GCCGGGCCAT					120
10	CCCCCTGTAA	AGCGGTTCGC	TATGCCGGGA	CCACTGTGAA	TOCCONOCCO	TGCCGGAACA	180
	ACCCACGACT	CGGACCAGCT TAAGAGAGCC	CAGCCTCTGA	CONNECCTO	CCCCCACGCC	TGGGGGAAAGC	240 300
	ACCOMOGNO!	AGCGCGGGGA	CARGUGUAG	CCTCCCACT	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GATCTCCTCC	360
		GGCATGGACC					420
15		GGGCCGCTTT					480
	TGGTGCAGCG	ACCCTTCTCC	TGGCATCGTG	GCATTTCCGA	GATTGGAGCC	TAACAGTGTA	540
	GATCCTGAGA	ACATCACCGA	AATTTTCATC	GCAAACCAGA	AAAGGTTAGA	AATCATCAAC	600
	GAAGATGATG	TTGAAGCTTA	TGTGGGACTG	AGAAATCTGA	CAATTGTGGA	TTCTGGATTA	660
20	AAATTTGTGG	CTCATAAAGC	ATTTCTGAAA	AACAGCAACC	TGCAGCACAT	CAATTTTACC	720
20		TGACGAGTTT					780
		GCAATCCATT					840
		CCAGTCCAGA CAAACCTGCA					900 960
		CTGTGGAGGA					1020
25		ATATGTATTG					1080
		AGGGCTCCTT					1140
		TGGCGGAAAA					1200
	CATTTTGCAC	CAACTATCAC	ATTTCTCGAA	TCTCCAACCT	CAGACCACCA	CTGGTGCATT	1260
••		TGAAAGGCAA					1320
-30		CCAAATACAT					1380
		AGCTGGATAA					1440
		ATGGGAAGGA					1500
	*	GTGCAAACCC TCGGGGACAC					1560 1620
35		GTCGGGAACA					1680
<i>J J</i>		TTTTGGTAAT					1740
		CAGCCTCCGT					1800
		GGAGTAACAC					1860
40		AGATCCCTGT					1920
40		ACACATTTGT					1980
		GAGCCTTTGG					2040
		TCTTGGTGGC					2100
		GTGAGGCCGA					2160 2220
45		GCGTGGAGGG AGTTCCTCAG					2220
73						CGCCGCGGGC	2340
		TGGCGTCCCA					2400
		ACTTGCTGGT					2460
		ACAGGGTCGG					2520
50		ACAGGAAATT					2580
		TCACCTATGG					2640
		CTCAGGGCCG					2700
		TGGGGTGCTG					2760 2820
55		,TTCAGAACTT				AGAGGATGAA	
<i>J J</i>		CTGCCGCTGG					2940
		CCGAGAAGCT					3000
		CTTTTTGGCA					3060
	TTTCTTTTTT	TAAATTTTCT	TTTTCTTCTT	TTTTTTCGTC	TTCCCTGCTT	CACGATTCTT	3120
60		TTGAATCAAT					3180
						CAACTAACAA	
						ATATTTCACT	
						CTTCTATTTA TAAAAAAGAA	
65						GAGAAAGAAG	
00						GCTGGTGTCA	
						GGCACCTTCC	
						ATGATTCTTT	
70	TCCCATCACC	AGAAATGATA	GCGTGCAGTA	GAGAGCAAAG	ATGGCTT		
70							
		595 Protei cession #: N					
	_					F.1	
75	1	11	21	31	41	51 1	
15	MOCHITALINGS	AMARI MOROW	LINICONDANO) ACDTECTION	PRIMOGRAP	CTUAPRRIER	cn
		AMARLWGFCW IFIANQKRLE					60 120
		SRKHFRHLDL					180
		IPNCGLPSAN					240
80		RITNISSDDS					300
		PKPALQWFYN					360
	LIAKNEYGKD	EKQISAHFMG	WPGIDDGANP	NYPDVIYEDY	GTAANDIGDT	TNRSNEIPST	420
		LSVYAVVVIA					480
Q.E		PSSSEGGPDA					540
85		KVFLAECYNL					600
		DPLIMVFEYM					660
	ANGRI I VEGEN	HFVHRDLATR	14CTAGEMETA	WIGHT GWRYD	VIBIDIYKVG	GUIMPLIKMM	720

PPESIMYRKF TTESDVWSLG VVLWEIFTYG KQPWYQLSNN EVIECITQGR VLQRPRTCPQ 780 EVYELMLGCW QREPHMRKNI KGIHTLLQNL AKASPVYLDI LG

Seq ID NO: 596 DNA sequence
Nucleic Acid Accession #: AF410899
Coding sequence: 483..2999

	Coaing sequ	tence: 405.	. 2333				
	1	11	21	31	41	51	
10	1	1	1	1	ł	1	
10		GCCTCGCTGG					60
		GGACCCAGGC ACCCCCATTC					120
		GTGCCCGGCG					180 240
		CCCCCTGTA					300
15	CTGCCGGAAC	ACTCTTCGCT	CCGGACCAGC	TCAGCCTCTG	ATAAGCTGGA	CTCGGCACGC	360
		CACCGAGGAG					420
		GCGGCCGGTG					480
	GGATGTCGTC	CTGGATAAGG	TGGCATGGAC	CCGCCATGGC	GCGGCTCTGG	GGCTTCTGCT	540
20	GGCTGGTTGT	GGGCTTCTGG	AGGGCCGCTT	TCGCCTGTCC	CACGTCCTGC	AAATGCAGTG	600
20		CTGGTGCAGC					660
		AGATCCTGAG CGAAGATGAT					720 780
		AAAATTTGTG					840
		CCGAAACAAA					900
25		GATCCTGGTG					960
		AGAGGCTAAA					1020
	GCAGCAAGAA	TATTCCCCTG	GCAAACCTGC	AGATACCCAA	TTGTGGTTTG	CCATCTGCAA	1080
		ACCTAACCTC					1140
20	TGGCAGGTGA	TCCGGTTCCT	AATATGTATT	GGGATGTTGG	TAACCTGGTT	TCCAAACATA	1200
30		AAGCCACACA					1260
		GATCTCTTGT					1320 1380
		GCATTTTGCA TCCATTCACT					1440
	ACTGGTGCAT	ATTGAATGAG	TCCAAATACA	TOTGTACTAA	AATACATGTT	ACCAATCACA	1500
35		CGGCTGCCTC					1560
55	CTCTAATAGC	CAAGAATGAG	TATGGGAAGG	ATGAGAAACA	GATTTCTGCT	CACTTCATGG	1620
		AATTGACGAT					1680
	ATGGAACTGC	AGCGAATGAC	ATCGGGGACA	CCACGAACAG	AAGTAATGAA	ATCCCTTCCA	1740
40		TGATAAAACC					1800
40	CGTCTGTGGT	GGGATTTTGC	CTTTTGGTAA	TGCTGTTTCT	GCTTAAGTTG	GCAAGACACT	1860
	CCAAGTTTGG	CATGAAAGAT AGCCTCCGTT	TTCTCATGGT	TTGGATTTGG	GAAAGTAAAA	CTCCATCACA	1920 1980
		GAGTAACACT					2040
		GATCCCTGTC					2100
45		CACATTTGTT					2160
		AGCCTTTGGA					2220
	AGGACAAGAT	CTTGGTGGCA	GTGAAGACCC	TGAAGGATGC	CAGTGACAAT	GCACGCAAGG	2280
	ACTTCCACCG	TGAGGCCGAG	CTCCTGACCA	ACCTCCAGCA	TGAGCACATC	GTCAAGTTCT	2340
50	ATGGCGTCTG	CGTGGAGGĢC	GACCCCCTCA	TCATGGTCTT	TGAGTACATG	AAGCATGGGG	2400
50		GTTCCTCAGG					2460
		ACTGACGCAG					2520 2580
		GGCGTCCCAG CTTGCTGGTG					2640
		CAGGGTCGGT					2700
55		CAGGAAATTC					2760
	GGGAGATTTT	CACCTATGGC	AAACAGCCCT	GGTACCAGCT	GTCAAACAAT	GAGGTGATAG	2820
	AGTGTATCAC	TCAGGGCCGA	GTCCTGCAGC	GACCCCGCAC	GTGCCCCCAG	GAGGTGTATG	2880
	AGCTGATGCT	GGGGTGCTGG	CAGCGAGAGC	CCCACATGAG	GAAGAACATC	AAGGGCATCC	2940
60		TCAGAACTTG					3000
60	GCCCTTTTCC	CCAGACCGAT	CCTTCCCAAC	GTACTCCTCA	GACGGGCTGA	GAGGATGAAC	3060
	ATCTTTTAAC	TGCCGCTGGA CGAGAAGCTC	GGCCACCAAG	CIGCICICCI	TCACTCTGAC	AGIATIAACA	3120 3180
*		TTTTTGGCAT					3240
_		AAATTTTCTT					3300
65						GACAAAGGCC	3360
						AACTAACAAT	
		ATTCCTGCCT					3480
		ACTTCTGCTG					3540
70		TACTGTTCTT					3600 3660
70		AATCTGTGAA ACCGCAATAT					3720
		GGAAATACTC					3780
		TTCTGAGGAG					3840
						GAGACACAAG	3900
75						TAGCACTGGT	3960
		AGCGCTATCC			AGTTGAAAAG	AGGTGGATTC	4020
	ATGTCCAGAG	CTCATTTCGG	GGTCAGGTGG	GAAAGCC			
80		597 Protei					
	PIOCEIU AC	cession #: /	7 · CO4 / OUT				
	1	11	21	31	41	51	
	J	1	Ĩ	1 .	Ĩ	1	
0.5		AMARLWGFCW					60
85		IFIANQKRLE					120
		SRKHFRHLDL					180
	SKNIPLANLQ	IPNCGLPSAN	LAAPNLTVEE	GKSITLSCSV	AGDPVPNMYW	DAGNTARKHW	240

WO 02/086443 NETSHTQGSL RITNISSDDS GKQISCVAEN LVGEDQDSVN LTVHFAPTIT FLESPTSDHH 300 WCIPFTVKGN PKPALQWFYN GAILNESKYI CTKIHVTNHT EYHGCLQLDN PTHMNNGDYT 360 LIAKNEYGKO EKQISAHFMG WPGIDDGANP NYPDVIYEDY GTAANDIGDT TNRSNEIPST 420 DVTDKTGREH LSVYAVVVIA SVVGFCLLVM LFLLKLARHS KFGMKDPSWF GFGKVKSROG 480 VGPASVISND DDSASPLHHI SNGSNTPSSS EGGPDAVIIG MTKIPVIENP QYFGITNSOL 540 KPDTFVQHIK RHNIVLKREL GEGAFGKVPL AECYNLCPEQ DKILVAVKTL KDASDNARKD 600 FHREAELLTN LQHEHIVKFY GVCVEGDPLI MVFEYMKHGD LNKFLRAHGP DAVLMAEGNP 660 PTELTQSQML HIAQQIAAGM VYLASQHFVH RDLATRNCLV GENLLVKIGD FGMSRDVYST 720 DYYRVGGHTM LPIRWMPPES IMYRKFTTES DVWSLGVVLW EIFTYGKQPW YQLSNNEVIE 10 CITQGRVLQR PRTCPQEVYE LMLGCWQREP HMRKNIKGIH TLLQNLAKAS PVYLDILG Seq ID NO: 598 DNA sequence Nucleic Acid Accession #: AB052906 Coding sequence: 74..814 15 31 41 AAAACCTTGA GGTGATTCAT CTTCCAGGCT CTCCTTCCAT CAAGTCTCTC CTCCCTAGCG 60 CTCTGGGTCC TTAATGGCAG CAGCCGCCGC TACCAAGATC CTTCTGTGCC TCCCGCTTCT 120 20 GCTCCTGCTG TCCGGCTGGT CCCGGGCTGG GCGAGCCGAC CCTCACTCTC TTTGCTATGA 180 CATCACCGTC ATCCCTAAGT TCAGACCTGG ACCACGGTGG TGTGCGGTTC AAGGCCAGGT 240 GGATGAAAAG ACTITICTIC ACTATGACTG TGGCAACAAG ACAGTCACAC CTGTCAGTCC 300 CCTGGGGAAG AAACTAAATG TCACAACGGC CTGGAAAGCA CAGAACCCAG TACTGAGAGA 360 GGTGGTGGAC ATACTTACAG AGCAACTGCG TGACATTCAG CTGGAGAATT ACACACCCAA 420 25 GGAACCCCTC ACCCTGCAGG CCAGGATGTC TTGTGAGCAG AAAGCTGAAG GACACAGCAG 480 TGGATCTTGG CAGTTCAGTT TCGATGGGCA GATCTTCCTC CTCTTTGACT CAGAGAAGAG 540 AATGTGGACA ACGGTTCATC CTGGAGCCAG AAAGATGAAA GAAAAGTGGG AGAATGACAA 600 GGTTGTGGCC ATGTCCTTCC ATTACTTCTC AATGGGAGAC TGTATAGGAT GGCTTGAGGA 660 CTTCTTGATG GGCATGGACA GCACCCTGGA GCCAAGTGCA GGAGCACCAC TCGCCATGTC 720 30 CTCAGGCACA ACCCAACTCA GGGCCACAGC CACCACCCTC ATCCTTTGCT GCCTCCTCAT CATCCTCCCC TGCTTCATCC TCCCTGGCAT CTGAGGAGAG TCCTTTAGAG TGACAGGTTA 840 AAGCTGATAC CAAAAGGCTC CTGTGAGCAC GGTCTTGATC AAACTCGCCC TTCTGTCTGG CCAGCTGCCC ACGACCTACG GTGTATGTCC AGTGGCCTCC AGCAGATCAT GATGACATCA TGGACCCAAT AGCTCATTCA CTGCCTTGAT TCCTTTTGCC AACAATTTTA CCAGCAGTTA TACCTAACAT ATTATGCAAT TTTCTCTTGG TGCTACCTGA TGGAATTCCT GCACTTAAAG
TTCTGGCTGA CTAAACAAGA TATATCATTT TCTTCTTCT CTTTTTGTTT GGAAAATCAA 35 1080 1140 GTACTTCTTT GAATGATGAT CTCTTTCTTG CAAATGATAT TGTCAGTAAA ATAATCACGT 1200 TAGACTTCAG ACCTCTGGGG ATTCTTTCCG TGTCCTGAAA GAGAATTTTT AAATTATTTA 1260 ATAAGAAAAA ATTTATATTA ATGATTGTTT CCTTTAGTAA TTTATTGTTC TGTACTGATA 40 Seq ID NO: 599 Protein sequence Protein Accession #: BAB61048.1 45 MAAAAATKIL LCLPLLLLLS GWSRAGRADP HSLCYDITVI PKFRPGPRWC AVQGQVDEKT 60 FLHYDCGNKT VTPVSPLGKK LNVTTAWKAQ NPVLREVVDI LTEQLRDIQL ENYTPKEPLT 120 LQARMSCEQK AEGHSSGSWQ FSFDGQIFLL FDSEKRMWTT VHPGARKMKE KWENDKVVAM 180 50 SFHYPSMGDC IGWLEDFLMG MDSTLEPSAG APLAMSSGTT QLRATATTLI LCCLLIILPC 240 Seq ID NO: 600 DNA sequence Nucleic Acid Accession #: NM 001898.1 55 Coding sequence: 57..482 31 GGCTCTCACC CTCCTCTCCT GCAGCTCCAG CTTTGTGCTC TGCCTCTGAG GAGACCATGG 60 CCCAGTATCT GAGTACCCTG CTGCTCCTGC TGGCCACCCT AGCTGTGGCC CTGGCCTGGA 120 GCCCCAAGGA GGAGGATAGG ATAATCCCGG GTGGCATCTA TAACGCAGAC CTCAATGATG 180 AGTGGGTACA GCGTGCCCTT CACTTCGCCA TCAGCGAGTA TAACAAGGCC ACCAAAGATG 240 ACTACTACAG ACGTCCGCTG CGGGTACTAA GAGCCAGGCA ACAGACCGTT GGGGGGGTGA ATTACTTCTT CGACCTAGAG GTGGGCCGCA CCATATGTAC CAAGTCCCAG CCCAACTTGG ACACCTGTGC CTTCCATGAA CAGCCAGAAC TGCAGAAGAA ACAGTTGTGC TCTTTCGAGA 360 65 420 TCTACGAAGT TCCCTGGGAG AACAGAAGGT CCCTGGTGAA ATCCAGGTGT CAAGAATCCT 480 AGGGATCTGT GCCAGGCCAT TCGCACCAGC CACCACCCAC TCCCACCCCC TGTAGTGCTC 540 CCACCCTGG ACTGGTGGCC CCCACCCTGC GGGAGGCCTC CCCATGTGCC TGCGCCAAGA 600 GACAGACAGA GAAGGCTGCA GGAGTCCTTT GTTGCTCAGC AGGGCGCTCT GCCCTCCCTC 660 70 CTTCCTTCTT GCTTCTAATA GCCCTGGTAC ATGGTACACA CCCCCCCACC TCCTGCAATT 720 AAACAGTAGC ATCGCC Seq ID NO: 601 Protein sequence Protein Accession #: NP_001889.1 75 31 41 51 MAQYLSTLLL LLATLAVALA WSPKEEDRII PGGIYNADLN DEWVQRALHF AISEYNKATK 60 DDYYRRPLRV LRARQQTVGG VNYFFDVEVG RTICTKSQPN LDTCAFHEQP ELQKKQLCSF 120 80 EIYEVPWENR RSLVKSRCQE S Seq ID NO: 602 DNA sequence Nucleic Acid Accession #: NM_003976.2 Coding sequence: 299.961 85

WO 02/086443 CTCTGAGCTT CTCTGAGCCT TGTTTGCTCA TCTGGAAAAA GGGGATTAAA CCATTTACCT CATGGAGTTG TGAAAGAATA GCTGCAAAGC ACCTAACACA TAGTAAGGTT CCCAGTGCAG CTACTTCTGC TGGGTTGAGT CTAGCTGTGT AGGCCCCTTG TTCCTCACCT GGAGAAACTG 180 GGGTGGCAGG CCGGTCCCCC ACAAAAGATA ACTCATCTCT TAATTTGCAA GCTGCCTCAA 240 CAGGAGGTG GGGAACAGC TCAACAATGG CTGATGGGCG CTCCTGGTGT TGATAGAGAT 300 GGAACTTGGA CTTGGAGGCC TCTCCACGCT GTCCCACTGC CCCTGGCCTA GGCGGCAGCC 360 TGCCCTGTGG CCCACCCTGG CCGCTCTGGC TCTGCTGAGC AGCGTCGCAG AGGCCTCCCT 420 GGGCTCCGCG CCCCGCAGCC CTGCCCCCCG CGAAGGCCCC CCGCCTGTCC TGGCGTCCCC 480 CGCCGGCCAC CTGCCGGGGG GACGCACGGC CCGCTGGTGC AGTGGAAGAG CCCGGCGGCC 540 10 GCCGCCGCAG CCTTCTCGGC CCGCGCCCCC GCCGCCTGCA CCCCCATCTG CTCTTCCCCG 600 CGGGGGCCGC GCGCGCGGG CTGGGGGCCC GGGCAGCCGC GCTCGGGCAG CGGGGGCGCG 660 GGGCTGCCGC CTGCGCTCGC AGCTGGTGCC GGTGCGCGCG CTCGGCCTGG GCCACCGCTC 720 CGACGAGCTG GTGCGTTTCC GCTTCTGCAG CGGCTCCTGC CGCCGCGCGC GCTCTCCACA 780 CGACCTCAGC CTGGCCAGCC TACTGGGCGC CGGGGCCCTG CGACCGCCCC CGGGCTCCCG 840 15 GCCCGTCAGC CAGCCCTGCT GCCGACCCAC GCGCTACGAA GCGGTCTCCT TCATGGACGT 900 CAACAGCACC TGGAGAACCG TGGACCGCCT CTCCGCCACC GCCTGCGGCT GCCTGGGCTG 960 AGGGCTCGCT CCAGGGCTTT GCAGACTGGA CCCTTACCGG TGGCTCTTCC TGCCTGGGAC CCTCCCGCAG AGTCCCACTA GCCAGCGGCC TCAGCCAGGG ACGAAGGCCT CAAAGCTGAG 1080 AGGCCCCTAC CGGTGGGTGA TGGATTATCAT CCCCGAACAG GTGAAGGGAC AACTGACTAG CAGCCCCAGA GCCCTCACCC TGCGGATCCC AGCCTAAAAG ACACCAGAGA CCTCAGCTAT GGAGCCCTTC GGACCCACTT CTCACAGACT CTGGCACTGG CCAGGCCTCG AACCTGGGAC 1140 20 1200 1260 CCCTCCTCTG ATGAACACTA CAGTGGCTGA GGCATCAGCC CCCGCCCAGG CCCTGTAGGG 1320 ACAGCATTTG AAGGACACAT ATTGCAGTTG CTTGGTTGAA AGTGCCTGTG CTGGAACTGG 1380 CCTGTACTCA CTCATGGGAG CTGGCCCC 25 Seq ID NO: 603 Protein sequence Protein Accession #: NP_003967.1 51 31 30 MELGLGGLST LSHCPWPRRQ PALWPTLAAL ALLSSVAEAS LGSAPRSPAP REGPPPVLAS 60 PAGHLPGGRT ARWCSGRARR PPPQPSRPAP PPPAPPSALP RGGRAARAGG PGSRARAAGA RGCRLRSQLV PVRALGLGHR SDELVRFRFC SGSCRRARSP HDLSLASLLG AGALRPPPGS RPVSOPCCRP TRYEAVSFMD VNSTWRTVDR LSATACGCLG 35 Seq ID NO: 604 DNA sequence Nucleic Acid Accession #: NM_057091.1 Coding sequence: 783..1445 40 ACTGGCCGCT GAGAGAAGAA TCGGGTGGAG CAGAGAGCAG CTGCTGCAGG GCAGACAGCC GGACCCCCAA ATCTGCACGT ACCAGCAGTC AGCCGCCCCA CGCAGGGACC GGCTTACCCC 120 TCGCTCCCCG CCCTCACTCA CTTTCTCCCG CCCTCGGCCC GGCCTCCCAG CTCTCTACTT 180 45 CGCGTGTCTA CAAACTCAAC TCCCGGTTTC CGTGCCTCTC CACCGCTCGA GTTCTCTACT 240 CTCCATATCC GAGGGGCCCC TCCCAGCATC TACCCCCCTC CCAACCTCGG GGGACCTAGC 300 CAAGCTAGGG GGGACTGGAT CCGACGGGTG GAGCAGCCAG GTGAGCCCCG AAAGGTGGGG 360 CGGGGCAGGG GCGCTCCCAG CCCCACCCCG GGATCTGGTG ACGCTGGGGC TGGAATTTGA 420 CACCGGACGG CTGCGGCGGC GGGCAGGAGG CTGCTGAGGG ATGGAGTTGG GCCCGGCCCC 480 50 CAGACAAGGC CCGGGGGCTC CGCCAGCAGC AGGTCCCTCG GGCCCCAGCC CTCGCTGCCA 540 CCCGGGCCTG GAGCCCCACA CCCGAGGGTG CAGACTGGCT GCCAAGGCCA CACTTTTGGC TAAAAGAGGC ACTGCCAGGT GTACAGTCCT GGGCATGCGC TGTTTGAGCT TCGGGGGAGA 660 GCCCAGCACT GGTCCCCGGA AAGGTGCCTA GAAGAACAAG GTGCAGGACC CCGTGCTGCC TCAACAGGAG GGTGGGGGAA CAGCTCAACA ATGGCTGATG GGCGCTCCTG GTGTTGATAG 55 AGATGGAACT TGGACTTGGA GGCCTCTCCA CGCTGTCCCA CTGCCCCTGG CCTAGGCGGC AGCCTGCCCT GTGGCCCACC CTGGCCGCTC TGGCTCTGCT GAGCAGCGTC GCAGAGGCCT 900 CCCTGGGCTC CGCGCCCCGC AGCCCTGCCC CCCGCGAAGG CCCCCCGCCT GTCCTGGCGT CCCCCGCCG CCACCTGCCG GGGGGACGCA CGGCCCGCTG GTGCAGTGGA AGAGCCCGGC 1020 GGCCGCCGCC GCAGCCTTCT CGGCCCGCGC CCCCGCCGCC TGCACCCCCA TCTGCTCTTC 1080 60 CCCGCGGGGG CCGCGCGGCG CGGGCTGGGG GCCCGGGCAG CCGCGCTCGG GCAGCGGGGG 1140 CGCGGGGCTG CCGCCTGCGC TCGCAGCTGG TGCCGGTGCG CGCGCTCGGC CTGGGCCACC 1200 GCTCCGACGA GCTGGTGCGT TTCCGCTTCT GCAGCGGCTC CTGCCGCCGC GCGCGCTCTC 1260 CACACGACCT CAGCCTGGCC AGCCTACTGG GCGCCGGGGC CCTGCGACCG CCCCCGGGCT 1320 CCCGGCCCGT CAGCCAGCCC TGCTGCCGAC CCACGCGCTA CGAAGCGGTC TCCTTCATGG 1380 65 ACGTCAACAG CACCTGGAGA ACCGTGGACC GCCTCTCCGC CACCGCCTGC GGCTGCCTGG 1440 GCTGAGGGCT CGCTCCAGGG CTTTGCAGAC TGGACCCTTA CCGGTGGCTC TTCCTGCCTG
GGACCCTCCC GCAGAGTCCC ACTAGCCAGC GGCCTCAGCC AGGGACGAAG GCCTCAAAGC 1500 1560 TGAGAGGCCC CTACCGGTGG GTGATGGATA TCATCCCCGA ACAGGTGAAG GGACAACTGA 1620 CTAGCAGCCC CAGAGCCCTC ACCCTGCGGA TCCCAGCCTA AAAGACACCA GAGACCTCAG 1680 70 CTATGGAGCC CTTCGGACCC ACTTCTCACA GACTCTGGCA CTGGCCAGGC CTCGAACCTG 1740 GGACCCCTCC TCTGATGAAC ACTACAGTGG CTGAGGCATC AGCCCCCGCC CAGGCCCTGT 1800 AGGGACAGCA TTTGAAGGAC ACATATTGCA GTTGCTTGGT TGAAAGTGCC TGTGCTGGAA CTGGCCTGTA CTCACTCATG GGAGCTGGCC CC Seq ID NO: 605 Protein sequence Protein Accession #: NP 003967.1 21 31 41 80 MELGLGGLST LSHCPWPRRQ PALWPTLAAL ALLSSVAEAS LGSAPRSPAP REGPPPVLAS PAGHLPGGRT ARWCSGRARR PPPQPSRPAP PPPAPPSALP RGGRAARAGG PGSRARAAGA RGCRLRSQLV PVRALGLGHR SDELVRFRPC SGSCRRARSP HDLSLASLLG AGALRPPPGS RPVSQPCCRP TRYEAVSFMD VNSTWRTVDR LSATACGCLG 85

Seq ID NO: 606 DNA sequence Nucleic Acid Accession #: NM 057160.1

WO 02/086443 Coding sequence: 1..714

```
5
      ATGCCCGGCC TGATCTCAGC CCGAGGACAG CCCCTCCTTG AGGTCCTTCC TCCCCAAGCC
       CACCTGGGTG CCCTCTTTCT CCCTGAGGCT CCACTTGGTC TCTCCGCGCA GCCTGCCCTG
                                                                           120
       TGGCCCACCC TGGCCGCTCT GGCTCTGCTG AGCAGCGTCG CAGAGGCCTC CCTGGGCTCC
                                                                           180
       GCGCCCCGCA GCCCTGCCCC CCGCGAAGGC CCCCCGCCTG TCCTGGCGTC CCCCGCCGGC
                                                                           240
       CACCTGCCGG GGGGACGCAC GGCCCGCTGG TGCAGTGGAA GAGCCCGGCG GCCGCCGCCG
                                                                           300
       CAGCCTTCTC GGCCCGCGCC CCCGCCGCCT GCACCCCCAT CTGCTCTTCC CCGCGGGGGC
10
                                                                           360
       CGCGCGGCGC GGGCTGGGGG CCCGGGCAGC CGCGCTCGGG CAGCGGGGGC GCGGGGCTGC
                                                                           420
       CGCCTGCGCT CGCAGCTGGT GCCGGTGCGC GCGCTCGGCC TGGGCCACCG CTCCGACGAG
                                                                           480
       CTGGTGCGTT TCCGCTTCTG CAGCGGCTCC TGCCGCCGCG CGCGCTCTCC ACACGACCTC
                                                                           540
       AGCCTGGCCA GCCTACTGGG CGCCGGGGCC CTGCGACCGC CCCCGGGCTC CCGGCCCGTC
                                                                           600
15
       AGCCAGCCCT GCTGCCGACC CACGCGCTAC GAAGCGGTCT CCTTCATGGA CGTCAACAGC
                                                                           660
       ACCTGGAGAA CCGTGGACCG CCTCTCCGCC ACCGCCTGCG GCTGCCTGGG CTGAGGGCTC
                                                                           720
       GCTCCAGGGC TTTGCAGACT GGACCCTTAC CGGTGGCTCT TCCTGCCTGG GACCCTCCCG
                                                                           780
       CAGAGTCCCA CTAGCCAGCG GCCTCAGCCA GGGACGAAGG CCTCAAAGCT GAGAGGCCCC
                                                                           840
       TACCGGTGGG TGATGGATAT CATCCCCGAA CAGGTGAAGG GACAACTGAC TAGCAGCCCC
                                                                           900
20
       AGAGCCCTCA CCCTGCGGAT CCCAGCCTAA AAGACACCAG AGACCTCAGC TATGGAGCCC
       TTCGGACCCA CTTCTCACAG ACTCTGGCAC TGGCCAGGCC TCGAACCTGG GACCCCTCCT
                                                                          1020
       CTGATGAACA CTACAGTGGC TGAGGCATCA GCCCCCGCCC AGGCCCTGTA GGGACAGCAT
                                                                          1080
       TTGAAGGACA CATATTGCAG TTGCTTGGTT GAAAGTGCCT GTGCTGGAAC TGGCCTGTAC
                                                                          1140
       TCACTCATGG GAGCTGGCCC C
25
       Seq ID NO: 607 Protein sequence
       Protein Accession #: NP_476501.1
                                        31
30
       MPGLISARGO PLLEVLPPQA HLGALFLPEA PLGLSAQPAL WPTLAALALL SSVAEASLGS
                                                                             60
       APRSPAPREG PPPVLASPAG HLPGGRTARW CSGRARRPPP QPSRPAPPPP APPSALPRGG
                                                                           120
                                                                           180
       RAARAGGPGS RARAAGARGC RLRSQLVPVR ALGLGHRSDE LVRFRFCSGS CRRARSPHDL
       SLASLIGAGA LRPPPGSRPV SQPCCRPTRY EAVSFMDVNS TWRTVDRLSA TACGCLG
35
       Seq ID NO: 608 DNA sequence
       Nucleic Acid Accession #: NM_057090.1
       Coding sequence: 29..715
40
                             21
                                        31
       CTGATGGGCG CTCCTGGTGT TGATAGAGAT GGAACTTGGA CTTGGAGGCC TCTCCACGCT
       GTCCCACTGC CCCTGGCCTA GGCGGCAGGC TCCACTTGGT CTCTCCGCGC AGCCTGCCCT
                                                                           120
       GTGGCCCACC CTGGCCGCTC TGGCTCTGCT GAGCAGCGTC GCAGAGGCCT CCCTGGGCTC
                                                                           180
45
       CGCGCCCCGC AGCCCTGCCC CCCGCGAAGG CCCCCCGCCT GTCCTGGCGT CCCCCGCCGG
                                                                           240
       CCACCTGCCG GGGGGACGCA CGGCCCGCTG GTGCAGTGGA AGAGCCCGGC GGCCGCCGCC
                                                                           300
       GCAGCCTTCT CGGCCCGCGC CCCCGCCGCC TGCACCCCCA TCTGCTCTTC CCCGCGGGGG
                                                                           360
       CCGCGCGGGG CGGGCTGGGG GCCCGGGCAG CCGCGCTCGG GCAGCGGGGG CGCGGGGCTG
                                                                           420
       CCGCCTGCGC TCGCAGCTGG TGCCGGTGCG CGCGCTCGGC CTGGGCCACC GCTCCGACGA
                                                                           480
50
       GCTGGTGCGT TTCCGCTTCT GCAGCGGCTC CTGCCGCCGC GCGCGCTCTC CACACGACCT
                                                                           540
       CAGCCTGGCC AGCCTACTGG GCGCCGGGGC CCTGCGACCG CCCCCGGGCT CCCGGCCCGT
                                                                           600
       CAGCCAGCCC TGCTGCCGAC CCACGCGCTA CGAAGCGGTC TCCTTCATGG ACGTCAACAG
                                                                           660
       CACCTGGAGA ACCGTGGACC GCCTCTCCGC CACCGCCTGC GGCTGCCTGG GCTGAGGGCT
                                                                           720
       CGCTCCAGGG CTTTGCAGAC TGGACCCTTA CCGGTGGCTC TTCCTGCCTG GGACCCTCCC
                                                                           780
55
       GCAGAGTCCC ACTAGCCAGC GGCCTCAGCC AGGGACGAAG GCCTCAAAGC TGAGAGGCCC
                                                                           840
       CTACCGGTGG GTGATGGATA TCATCCCCGA ACAGGTGAAG GGACAACTGA CTAGCAGCCC
                                                                           900
       CAGAGCCCTC ACCCTGCGGA TCCCAGCCTA AAAGACACCA GAGACCTCAG CTATGGAGCC
                                                                           960
       CTTCGGACCC ACTTCTCACA GACTCTGGCA CTGGCCAGGC CTCGAACCTG GGACCCCTCC
                                                                          1020
       TCTGATGAAC ACTACAGTGG CTGAGGCATC AGCCCCCGCC CAGGCCCTGT AGGGACAGCA
                                                                          1080
60
       TTTGAAGGAC ACATATTGCA GTTGCTTGGT TGAAAGTGCC TGTGCTGGAA CTGGCCTGTA 1140
       CTCACTCATG GGAGCTGGCC CC
       Seq ID NO: 609 Protein sequence
       Protein Accession #: NP_476431.1
65
       MELGLGGLST LSHCPWPRRQ APLGLSAQPA LWPTLAALAL LSSVAEASLG SAPRSPAPRE
                                                                             60
       GPPPVLASPA GHLPGGRTAR WCSGRARRPP PQPSRPAPPP PAPPSALPRG GRAARAGGPG
                                                                           120
70
       SRARAAGARG CRLRSQLVPV RALGLGHRSD ELVRFRFCSG SCRRARSPHD LSLASLLGAG
       ALRPPPGSRP VSQPCCRPTR YEAVSFMDVN STWRTVDRLS ATACGCLG
       Seg ID NO: 610 DNA seguence
       Nucleic Acid Accession #: Eos sequence
75
       Coding sequence: 1..1746
                                        31
                  11
                             21
       ATGCCACTGA AGCATTATCT CCTTTTGCTG GTGGGCTGCC AAGCCTGGGG TGCAGGGTTG
80
       GCCTACCATG GCTGCCCTAG CGAGTGTACC TGCTCCAGGG CCTCCCAGGT GGAGTGCACC
                                                                           120
       GGGGCACGCA TTGTGGCGGT GCCCACCCCT CTGCCCTGGA ACGCCATGAG CCTGCAGATC
                                                                           180
       CTCAACACGC ACATCACTGA ACTCAATGAG TCCCCGTTCC TCAATATCTC AGCCCTCATC
                                                                           240
       GCCCTGAGGA TTGAGAAGAA TGAGCTGTCG CGCATCACGC CTGGGGCCTT CCGAAACCTG
                                                                           300
                                                                           360
       GGCTCGCTGC GCTATCTCAG CCTCGCCAAC AACAAGCTGC AGGTTCTGCC CATCGGCCTC
85
                                                                           420
       TTCCAGGGCC TGGACAGCCT TGAGTCTCTC CTTCTGTCCA GTAACCAGCT GTTGCAGATC
                                                                           480
       CAGCCGGCCC ACTTCTCCCA GTGCAGCAAC CTCAAGGAGC TGCAGTTGCA CGGCAACCAC
                                                                           540
       CTGGAATACA TCCCTGACGG AGCCTTCGAC CACCTGGTAG GACTCACGAA GCTCAATCTG
```

	WO 02/	086443					
	GGCAAGAATA	GCCTCACCCA	CATCTCACCC	AGGGTCTTCC	AGCACCTGGG	CAATCTCCAG	600
	GTCCTCCGGC	TGTATGAGAA	CAGGCTCACG	GATATCCCCA	TGGGCACTTT	TGATGGGCTT	660
	GTTAACCTGC	AGGAACTGGC	TCTACAGCAG	AACCAGATTG	GACTGCTCTC	CCCTGGTCTC	720
5	TTCCACAACA	ACCACAACCT	CCAGAGACTC	TACCTGTCCA	ACAACCACAT	CTCCCAGCTG	780
)	CCACCCAGCA	TCTTCATGCA	GCTGCCCCAG	CTCAACCGTC	TTACTCTCTT	TGGGAATTCC	840
	CTGAAGGAGC	TCTCTCTGGG	GATCTTCGGG	CCCATGCCCA	ACCIGCGGGA	GCTTTGGCTC	900
	TATGACAACC	ACATCTCTTC	TCTACCCGAC	AATGTCTTCA	GCAACCTCCG	CCAGITGCAG	960
	GTCCTGATTC	TTAGCCGCAA	TCAGATCAGC	TICATCICCC	CGGGIGCCIT	CAACGGGCTA	1020
10			CCTCCACACC GCAGAACATC				1080
10			CGTCAATGGC				1140
			CATCTTCGAT				1200 1260
			TGACTCAGAC				1320
			GGACACTGTA				1380
15			CAATGTCAAC				1440
10			ACCATGGTAC				1500
			GCTAACCAGC				1560
	ATTCAGGTCA	CTGATGACCG	CAGCGTTTGG	GGCATGACCC	AGGCCCAGAG	CGGGCTGGCC	1620
	ATTGCCGCCA	TTGTAATTGG	CATTGTCGCC	CTGGCCTGCT	CCCTGGCTGC	CTGCGTCGGC	1680
20			GAGCCAAGCT				1740
			GCAGGGCTGG				1800
			CTGGGTCCAT				1860
			CTCTTCCTGA				1920
			TCAGGAAGAT				1980
25	GGATTTCCGA	TTCATACCCC	TGGGCTTCCT	TCGAGAGGGC	TCTTCCTCCA	AATCCTCCCC	2040
	ACCTGTCCTC	CAAGAACAGC	CTTCCCTGCG	CCCAGGCCCC	CTCCGGGCCT	CTGTAGACTC	2100
	AGTTAGTCCA	CAGCCTGCTC	ACTTCGTGGG	AATAGTTCTC	CGCTGAGATA	GCCCCTCTCG	2160
	CCTAAGTATT	ATGTAAGTTG	ATTTCCCTTC	TTTTGTTTCT	CTTGTTTGTG	CTATGGCTTG	2220
20			TGAAAGTTCT				2280
30			GACTTCAAAC				2340
			TATGAAAGAG				2400
			GTGTCTCACT				2460
			CCTTTTAGAG				2520
35	TGAAAAGTTT	AGCCCTTTAA	GGAATGAAAT	CATGTAGAAT	TTTGGACTTC	TAAAAACATT	2580
33			GGATAGAGAA AAATTTTTAA				2640 2700
			GGCTTGGTGG				2760
	CACCATCTAC	ACCCAGACCC	AGAGCATCAC	ATTITUACAA	CATCCTCCCC	TTTTCCCAGA	2820
			ATGGACTTAC				2880
40 ·			GCAAAGGCCC				2940
10			GTGGCCTGAA				3000
			CACCATGGCT				3060
			TTCCCTGCCA				3120
			GACGTGATAT				3180
45			CTCAGAGATG				3240
			GTGGTAAAAT				3300
	TGAACTTCAG	AATCTCACTT	ACAGCAGGCG	ACACGGGGGT	ACACCGATGG	GTCACACTGG	3360
	GTCTGGGGGC	TCCCTGGAGC	TCCTCCTGCG	TGTGGTCTGG	TTAGGAGTTG	AGTTGTTTGC	3420
	TCCAGGGTTA	TTCTCCTCCT	CGAGTCACAG	TCACACGAAT	ACCTGCCTTC	TCTGGCTTTC	3480
50			TGGCGCTCAA				3540
			TTACAGTGAA				3600
			TCCACGGGGA				3660
			ACAAGACACC				3720
55	TCGGCTCTTA	TTAGCTCCCC	GCTCCACAAG	ACACCTGTGA	TCTGGAAATC	TACCACCAAT	3780
55			TCCCCGCTCC				3840
			TTTTCCCTTC				3900
						AATCTAGGAG	
						GCATTTCCAC	4020
60						GGAAGTGAGC GGTGCCAACA	
00						AGACCTGTCG	
						GCCAGGGCTG	
						AGAACCCTTA	
						AGGCTGACCT	
65						GTGAGGGCCC	
						GGAGCCATTG	
	GCCTCCTTTT	CTTCAGCGGG	CCCTTCAACC	TCTCTGCACC	ATGTTGTCTG	GCTGAGGAGC.	4560
						TCAATTCTCA	
						GTTCAGTTTT	
70						CTGGGAGTTA	
						GTGCTTACTG	
	TGCACAGATA	CTCTTCAAGC	ACTGGACGTG	GATTCTCTCT	CTAGCCCTCA	GCACCCCTGC,	4860
						TCTTCTGCAT	4920
75						AGCTCATGGC	4980
75						GTTGCTCTCC	
						TGTAACCACA	
						TCATGGGAAT	
						TTCTACTTAG	
80						TATTGGGAAA	
80						CGGGACCCAG	
						CAAAGATTCA	
						AGTGGCCTTG	
						CCGGGGAAAA AACCCGCTGC	
85						CTGCAAATCA	
00						GTAGAGTGTG	
						TAATCCATTT	
		OCUGGG I IG	200012161				
						•	

60

120

180

240

300

360

420

480

540

GGTGTACAGA ATCAACAATA AATAATATAC ATGTAT Seq ID NO: 611 Protein sequence Protein Accession #: BAB84587.1 5 MPLKHYLLLL VGCQAWGAGL AYHGCPSECT CSRASQVECT GARIVAVPTP LPWNAMSLQI LNTHITELNE SPFLNISALI ALRIEKNELS RITPGAFRNL GSLRYLSLAN NKLQVLPIGL 10 FQGLDSLESL LLSSNQLLQI QPAHFSQCSN LKELQLHGNH LEYIPDGAFD HLVGLTKLNL GKNSLTHISP RVFQHLGNLQ VLRLYENRLT DIPMGTFDGL VNLQELALQQ NQIGLLSPGL FHNNHNLQRL YLSNNHISQL PPSIFMQLPQ LNRLTLFGNS LKELSLGIFG PMPNLRELWL YDNHISSLPD NVFSNLRQLQ VLILSRNQIS FISPGAFNGL TELRELSLHT NALQDLDGNV FRMLANLQNI SLQNNRLRQL PGNIFANVNG LMAIQLQNNQ LENLPLGIFD HLGKLCELRL 15 YDNPWRCDSD ILPLRNWLLL NQPRLGTDTV PVCFSPANVR GQSLIIINVN VAVPSVHVPE VPSYPETPWY PDTPSYPDTT SVSSTTELTS PVEDYTDLTT IQVTDDRSVW GMTQAQSGLA IAAIVIGIVA LACSLAACVG CCCCKKRSQA VLMQMKAPNE C Seq ID NO: 612 DNA sequence 20 Nucleic Acid Accession #: XM_098151 Coding sequence: 1..447

31 41 51 25 ATGATGCATT TGCTCAATTC TCAGGGCTGG AATGAGCCGG CTGGTCCCCC AGAAAGCTGG AGTGGGGTAC AGAGTTCAGT TTTCCTCTCT GTTTACAGCT CCTTGACAGT CCCACGCCCA 120 TCTGGAGTGG GAGCTGGGAG TCAGTGTTGG AGAAGAACA ACAAAAGCCA ATTAGAACCA 180 CTATTTTTAA AAAGTGCTTA CTGTGCACAG ATACTCTTCA AGCACTGGAC GTGGATTCTC 24Ô TCTCTAGCCC TCAGCACCCC TGCGGTAGGA GTGCCGCCTC TACCCACTTG TGATGGGGTA 300 30 CAGAGGCACT TGCTCTTCTG CATGGTGTTC AATAGGCTGG GAGTTTTATT TATCTCTTCA AACTTTGTAC AAGAGCTCAT GGCTTGTCTT GGGCTTTCGT CATTAAACCA AAGGAAATGG

Seq ID NO: 613 Protein sequence 35 Protein Accession #: XP_098151

AAGCCATTCC CCTGTTGCTC TCCTTAG

11 MMHLLNSOGW NEPAGPPESW SGVQSSVFLS VYSSLTVPRP SGVGAGSQCW RRNNKSQLEP 60 40 LFLKSAYCAQ ILFKHWTWIL SLALSTPAVG VPPLPTCDGV QRHLLFCMVF NRLGVLFISS 120 NFVQELMACL GLSSLNQRKW KPFPCCSP

Seq ID NO: 614 DNA sequence Nucleic Acid Accession #: NM_002658.1

ATCAATAAAA TGTGATTTTT CTGA

45 Coding sequence: 77..1372 .

	ļ	11	21	31	41	51	
	1	1	j	1		000000000000000000000000000000000000000	
50		CGCCGTCGCG					60
20		GCCACCATGA					120
		AAAGGCAGCA					180
		TGTGTGTCCA					240
		GGGCAGCACT					300
<i>5 5</i>		CGAGGAAAGG					360
55		GTCCTTCAGC					420
		CATAATTACT					480
		CTAAAGCCGC					540
		TCTCCTCCAG					600
C 0		ATTATTGGGG					660
60		AGGCACCGGG					720
		GTGATCAGCG					780
		CTGGGTCGCT					840
		CTCATCCTAC					900
6		CTGAAGATCC					960
65		TGCCTGCCCT					1020
		GGAAAAGAGA					1080
		CTGATTTCCC					1140
		ATGCTATGTG					1200
70		CCCCTCGTCT					1260
70		GGATGTGCCC					1320
		ATCCGCAGTC					1380
		CGGGCACCAC					1440
		GTAAGAAGAG					1500
75		GTGAACGACA					1560
75		GGCCAGGATG					1620
		TGGACTGAAG					1680
		GAGAGCCAGC					1740
•	AATGAATAAT	TTCCCAATTA	GGAAGTGTAA	GCAGCTGAGG	TCTCTTGAGG	GAGCTTAGCC	1800
00	AATGTGGGAG	CAGCGGTTTG	GGGAGCAGAG	ACACTAACGA	CTTCAGGGCA	GGGCTCTGAT	1860
80	ATTCCATGAA	TGTATCAGGA	AATATATATG	TGTGTGTATG	TTTGCACACT	TGTTGTGTGG	1920
	GCTGTGAGTG	TAAGTGTGAG	TAAGAGCTGG	TGTCTGATTG	TTAAGTCTAA	ATATTTCCTT	1980
	AAACTGTGTG	GACTGTGATG	CCACACAGAG	TGGTCTTTCT	GGAGAGGTTA	TAGGTCACTC	2040
		TTGGGTCCCC					2100
0.5	ACCTGTGACC	AGCACTGTCT	CAGTTTCACT	TTCACATAGA	TGTCCCTTTC	TTGGCCAGTT	2160
85	ATCCCTTCCT	TTTAGCCTAG	TTCATCCAAT	CCTCACTGGG	TGGGGTGAGG	ACCACTCCTT	2220
	ACACTGAATA	TTTATATTTC	ACTATTTTA	TTTATATTTT	TGTAATTTTA	AATAAAAGTG	2280

Seq ID NO: 615 Protein sequence Protein Accession #: NP_002649.1

5	1	11	21	31	41	51	
		CAFANSD2KG	ENET HOUSEN	CDCL NGGTCV	 CNEALTH	CMCBKKEGGO	60
		YEGNGHFYRG					120
10	YCRNPDNRRR	PWCYVQVGLK	PLVQECMVHD	CADGKKPSSP	PEELKFQCGQ	KTLRPRFKII	180
10	GGEFTTIENQ	PWFAAIYRRH EMKFEVENLI	RGGSVTYVCG	GSLISPCWVI	SATHCFIDYP	KKEDYIVYLG	240 300
	PSMYNDPQFG	TSCEITGFGK	ENSTDYLYPE	QLKMTVVKLI	SHRECQQPHY	YGSEVTTKML	360
		SCQGDSGGPL	VCSLQGRMTL	TGIVSWGRGC	ALKDKPGVYT	RVSHFLPWIR	420
15	SHTKEENGLA	ь					
15	Seq ID NO:	616 DNA 86	equence				
		d Accession		422.1			
	Coding sequ	ence: 202	. 290 7				
20	1	11	21	31	41	51	
	0000111001	AAAGCCCCTT	CCATCACACC	CACCCCCCTTC	ACAGAAGCTA) DCAAAAGCAC	60
		GCCCCACCTC					120
0.5	GCTCCGGCCG	CGGCCCTCGC	CCCGCGGAGC	CCTCCTACCC	CGGCCCGACG	CTCGGCCCGC	180
25		GAGCCCTCTC TGCTCCTGCT					240 300
	AATGTGACAT	TACATGTTCC	CTCCAAACTA.	GATGCCGAGA	AACTTGTTGG	TAGAGTTAAC	360
	CTGAAAGAGT	GCTTTACAGC	TGCAAATCTA	ATTCATTCAA	GTGATCCTGA	CTTCCAAATT	420
30		GTTCAGTCTA TACTTTCCAA					480 540
50	GAGCATCAAA	CAAAGGTCCT	AAAGAAAAGA	CATACTAAAG	AAAAAGTTCT	AAGGCGCGCC	600
		GGGCTCCAAT					660 720
		AACAGGTTCA GAGTTGACCA					720 780
35	AACTTGTATT	GTACTCGTCC	TGTAGATCGT	GAGCAGTATG	AATCTTTTGA	GATAATTGCC	840
		CTCCAGATGG ATGATAACTA					900 960
		GAGTGGGCAC					1020
40	GACACGATGC	ACACACGCCT	GAAGTACTCC	ATCATTGGGC	AGGTGCCACC	ATCACCCACC	1080
40	CTATTTTCTA	TGCATCCAAC ACAAGTACCA	TACAGGCGTG	ATCACCACAA	CATCATCTCA	TCAGTATTT	1140 1200
	GGTCTACAGA	CAACTTCAAC	TTGTATCATT	AACATTGATG	ATGTAAATGA	CCACTTGCCA	1260
		GTACTTCTTA					1320
45	TTACGAGTTA	CTGTTGAGGA AGGGCAATGA	TAAGGACTTA	GTGAATACTG	TAACAGATGC	CAAAACCAAT	1380 1440
••	GAAGGAGTTC	TTTGTGTAGT	TAAGCCTTTG	AATTATGAAG	AAAAGCAACA	GATGATCTTG	1500
		TAGTTAATGA					1560 1620
	CCAATACAGA	CAGTTACTGT CTGTTCGCAT	GAAAGAAAAT	GCAGAAGTGG	GAACAACAAG	CAATGGATAT	1680
50	AAAGCATATG	ACCCAGAAAC	AAGAAGTAGC	AGTGGCATAA	GGTATAAGAA	ATTAACTGAT	1740
	CCAACAGGGT	GGGTCACCAT CAGAGACCAT	TGATGAAAAT	ACAGGATCAA	TCAAAGTTTT	CAGAAGCCTG	1800 1860
	CAAGGAGGGA	GAACATGTAC	GGGGACACTG	GGCATTATAC	TTCAAGACGT	GAATGATAAC	1920
55		TACCTAAAAA					1980 2040
33	ATTGTTGCGG	TTGATCCTGA CAGAAGTACA	GAGAATGTGG	AGACTGAAAG	CAATTAATGA	TACAGCAGCA	2100
	CGTCTTTCCT	ATCAGAATGA	TCCTCCATTT	GGCTCATATG	TAGTACCTAT	AACAGTGAGA	2160
		GCATGTCTAG GCACACATCG					2220 2280
60		TCCTTGCAAT					2340
	CTGGTCTGTG	GGGCTTCTGG	GACGTCTAAA	CAACCAAAAG	TAATTCCTGA	TGATTTAGCC	2400
	CAGCAGAACC	CAACCCAAAC	AAACACAGAA	TCTGCTCAGG	GAGTTTGTGG	GTATTCTGCG CACCGTGGGA	2460 2520
	TCAGGAATCA	AAAACGGAGG	TCAGGAGACC	ATCGAAATGG	TGAAAGGAGG	ACACCAGACC	2580
65	TCGGAATCCT	GCCGGGGGGC ACAACTGCAG	TGGCCACCAT	CACACCCTGG	ACTCCTGCAG	GGGAGGACAC	2640 2700
	CTTGGTGAAA	ACAACTGCAG	GTGTAATCAA	GATGAAAATC	ACAAGCATGC	CCAAGACTAT	2760
	GTCCTGACAT	ATAACTATGA	AGGAAGAGGA	TCGGTGGCTG	GGTCTGTAGG	TTGTTGCAGT	2820
70	GAACGACAAG	AAGAAGATGG CATGCATGAA	GCTTGAATTT	TTGGATAATT	TGGAGCCCAA	AGCCAGTGGC	2880 2940
, 0	TTTATGACTT	TTAAAAAAAA	TTACAAACCA	AGAATTTTTT	AAAGCAGAAG	ATGCTATTTG	3000
	TGGGGGTTTT	TCTCTCATTA	TTTGGATGGA	ATCTCTTTGG	TCAAATGCAC	ATTTACAGAG	3060
	AGACACTATA	AACAAGTACA GAGGTCTACA	GAGAAATTTTC	AGTCTGCCTT	ATTTGTTACA	TTTGGGTATA	3120 3180
75	ATGACAACAG	CCAATTTATA	GTGCAATAAA	ATGTAATTAA	TTCAAGTCCT	TATTATAGAC	3240
						ATCTCCAGTT	3300 3360
						AAGTGTGTAG CAAAGGGAGA	3420
٥٥		GGCATTGACT					
80	Sec ID NO.	617 Prote	in gemieree	•			
		cession #: 1					
05	1	11	21	31	41	51	
85	MENADECCE	 NGALCOLLI	TI.ATI.TEACD	ACKMUTT.HVD	SKIDVERING	 RVNLKECFTA	60
	ANLIHSSDPD	FQILEDGSVY	TINTILLSSE	KRSFTILLSN	TENQEKKKIF	VFLEHQTKVL	120
		-					

WO 02/086443 KKRHTKEKVL RRAKRRWAPI PCSMLENSLG PFPLFLQQVQ SDTAQNYTIY YSIRGPGVDO EPRNLFYVER DTGNLYCTRP VDREQYESFE IIAFATTPDG YTPELPLPLI IKIEDENDNY 240 PIPTEETYTF TIFENCRYGT TYGQYCATDK DEPDTMHTRL KYSIIGQYPP SPTLFSMHPT 300 TGVITTTSSQ LDRELIDKYQ LKIKVQDMDG QYFGLQTTST CIINIDDVND HLPTFTRTSY 360 VTSVEENTVD VEILRVTVED KDLVNTANWR ANYTILKGNE NGNFKIVTDA KTNEGVLCVV KPLNYEBKQQ MILQIGVVNE APPSREASPR SAMSTATVTV NVEDQDEGPE CNPPIQTVRM 480 KENAEVGTTS NGYKAYDPET RSSSGIRYKK LTDPTGWVTI DENTGSIKVF RSLDREAETI KNGIYNITVL ASDQGGRTCT GTLGIILQDV NDNSPFIPKK TVIICKPTMS SAEIVAVDPD EPIHGPPFDF SLESSTSEVQ RMWRLKAIND TAARLSYQND PPFGSYVVPI TVRDRLGMSS 660 10 VTSLDVTLCD CITENDCTHR VDPRIGGGGV QLGKWAILAI LLGIALLFCI LFTLVCGASG 720 TSKQPKVIPD DLAQQNLIVS NTEAPGDDKV YSANGFTTQT VGASAQGVCG TVGSGIKNGG 780 QETIEMVKGG HQTSESCRGA GHHHTLDSCR GGHTEVDNCR YTYSEWHSFT QPRLGEKVYL 840 CNODENHKHA ODYVLTYNYE GRGSVAGSVG CCSERQEEDG LEFLDNLEPK FRTLAEACMK 900 15 Seq ID NO: 618 DNA sequence Nucleic Acid Accession #: NM_004949.1 Coding sequence: 202..2745 20 21 31 41 51 CGCCAAAGGA AAAGCCCCTT GGATGAGAGG CAGGCGCTTC AGAGAAGCTA AGAAAAGCAC CTCTCCGCGC GCCCCACCTC CTCCGCCTCG CGCTCCTCCT GAGCAGCGGG CCCAGACTGC GCTCCGGCCG CGGCCCTCGC CCCGCGGAGC CCTCCTACCC CGGCCCGACG CTCGGCCCGC 25 GACCTGCCCC GAGCCCTCTC CATGGAGGCA GCCCGCCCCT CCGGCTCCTG GAACGGAGCC 240 CTCTGCCGGC TGCTCCTGCT GACCCTCGCG ATCTTAATAT TTGCCAGTGA TGCCTGCAAA AATGTGACAT TACATGTTCC CTCCAAACTA GATGCCGAGA AACTTGTTGG TAGAGTTAAC 360 CTGAAAGAGT GCTTTACAGC TGCAAATCTA ATTCATTCAA GTGATCCTGA CTTCCAAATT 420 TTGGAGGATG GTTCAGTCTA TACAACAAAT ACTATTCTAT TGTCCTCGGA GAAGAGAAGT 480 30 TTTACCATAT TACTTTCCAA CACTGAGAAC CAAGAAAAGA AGAAAATATT TGTCTTTTTG 540 GAGCATCAAA CAAAGGTCCT AAAGAAAAGA CATACTAAAG AAAAAGTTCT AAGGCGCGCC 600 AAGAGAAGAT GGGCTCCAAT TCCTTGTTCG ATGCTAGAAA ACTCCTTGGG TCCTTTTCCA 660 CTTTTCCTTC AACAGGTTCA ATCTGACACG GCCCAAAACT ATACCATATA CTATTCCATA 720 AGAGGTCCTG GAGTTGACCA AGAACCTCGG AATTTATTTT ATGTGGAGAG AGACACTGGA 780 35 AACTTGTATT GTACTCGTCC TGTAGATCGT GAGCAGTATG AATCTTTTGA GATAATTGCC 840 TTTGCAACAA CTCCAGATGG GTATACTCCA GAACTTCCAC TGCCCCTAAT AATCAAAATA 900 GAGGATGAAA ATGATAACTA CCCAATTTTT ACAGAAGAAA CTTATACTTT TACAATTTTT 960 GAAAATTGCA GAGTGGGCAC TACTGTGGGA CAAGTGTGTG CTACTGACAA AGATGAGCCT 1020 GACACGATGC ACACACGCCT GAAGTACTCC ATCATTGGGC AGGTGCCACC ATCACCCACC 1080 40 CTATTTTCTA TGCATCCAAC TACAGGCGTG ATCACCACAA CATCATCTCA GCTAGACAGA 1140 GAGTTAATTG ACAAGTACCA GTTGAAAATA AAAGTACAAG ACATGGATGG TCAGTATTTT 1200 GGTCTACAGA CAACTTCAAC TTGTATCATT AACATTGATG ATGTAAATGA CCACTTGCCA 1260 ACATTTACTC GTACTTCTTA TGTGACATCA GTGGAAGAAA ATACAGTTGA TGTGGAAATC TTACGAGTTA CTGTTGAGGA TAAGGACTTA GTGAATACTG CTAACTGGAG AGCTAATTAT 45 ACCATTTTAA AGGGCAATGA AAATGGCAAT TTTAAAATTG TAACAGATGC CAAAACCAAT GAAGGAGTTC TTTGTGTAGT TAAGCCTTTG AATTATGAAG AAAAGCAACA GATGATCTTG 1500 CAAATTGGTG TAGTTAATGA AGCTCCATTT TCCAGAGAGG CTAGTCCAAG ATCAGCCATG 1560 1620 AGCACAGCAA CAGTTACTGT TAATGTAGAA GATCAGGATG AGGGCCCTGA GTGTAACCCT CCAATACAGA CTGTTCGCAT GAAAGAAAAT GCAGAAGTGG GAACAACAAG CAATGGATAT 1680 50 AAAGCATATG ACCCAGAAAC AAGAAGTAGC AGTGGCATAA GGTATAAGAA ATTAACTGAT 1740 CCAACAGGGT GGGTCACCAT TGATGAAAAT ACAGGATCAA TCAAAGTTTT CAGAAGCCTG 1800 GATAGAGAGG CAGAGACCAT CAAAAATGGC ATATATAATA TTACAGTCCT TGCATCAGAC CAAGGAGGGA GAACATGTAC GGGGACACTG GGCATTATAC TTCAAGACGT GAATGATAAC 1860 1920 AGCCCATTCA TACCTAAAAA GACAGTGATC ATCTGCAAAC CCACCATGTC ATCTGCGGAG 1980 55 ATTGTTGCGG TTGATCCTGA TGAGCCTATC CATGGCCCAC CCTTTGACTT TAGTCTGGAG 2040 AGTTCTACTT CAGAAGTACA GAGAATGTGG AGACTGAAAG CAATTAATGA TACAGCAGCA 2100 CGTCTTTCCT ATCAGAATGA TCCTCCATTT GGCTCATATG TAGTACCTAT AACAGTGAGA 2160 GATAGACTTG GCATGTCTAG TGTCACTTCA TTGGATGTTA CACTGTGTGA CTGCATTACC 2220 GAAAATGACT GCACACATCG TGTAGATCCA AGGATTGGCG GTGGAGGAGT ACAACTTGGA 2280 60 AAGTGGGCCA TCCTTGCAAT ATTGTTGGGC ATAGCATTGC TCTTTTGCAT CCTGTTTACG 2340 CTGGTCTGTG GGGCTTCTGG GACGTCTAAA CAACCAAAAG TAATTCCTGA TGATTTAGCC 2400 CAGCAGAACC TAATTGTATC AAACACAGAA GCTCCTGGAG ATGACAAAGT GTATTCTGCG 2460 AATGGCTTCA CAACCCAAAC TGTGGGCGCT TCTGCTCAGG GAGTTTGTGG CACCGTGGGA 2520 TCAGGAATCA AAAACGGAGG TCAGGAGACC ATCGAAATGG TGAAAGGAGG ACACCAGACC 2580 65 TCGGAATCCT GCCGGGGGC TGGCCACCAT CACACCCTGG ACTCCTGCAG GGGAGGACAC 2640 2700 ACGGAGGTGG ACAACTGCAG ATACACTTAC TCGGAGTGGC ACAGTTTTAC TCAGCCCCGT CTTGGTGAAG AATCCATTAG AGGACACACT CTGATTAAAA ATTAAACAAT GAAAGAAAGT 2760 GTATCTGTGT AATCAAGATG AAAATCACAA GCATGCCCAA GACTATGTCC TGACATATAA 2820 CTATGAAGGA AGAGGATCGG TGGCTGGGTC TGTAGGTTGT TGCAGTGAAC GACAAGAAGA 2880 70 AGATGGGCTT GAATTTTTGG ATAATTTGGA GCCCAAATTT AGGACACTAG CAGAAGCATG 2940 CATGAAGAG TGAGTGTGT CTAATAAGTC TCTGAAAGCC AGTGGCTTTA TGACTTTTAA 3000 AAAAAATTAC AAACCAAGAA TTTTTTAAAG CAGAAGATGC TATTTGTGGG GGTTTTTCTC TCATTATTTG GATGGAATCT CTTTGGTCAA ATGCACATTT ACAGAGAGAC ACTATAAACA 3120 AGTACACAAA TTTTTCAATT TTTACATATT TTTAAATTAC TTATCTTCTA TCCAAGGAGG 75 TCTACAGAGA AATTAAAGTC TGCCTTATTT GTTACATTTG GGTATAATGA CAACAGCCAA TTTATAGTGC AATAAAATGT AATTAATTCA AGTCCTTATT ATAGACTATT TGAAGCACAA CCTAATGGAA AATTGTAGAG ACCTTGCTTT AACATTATCT CCAGTTAATT AAGTGTTCAT 3360 GTGGTGCTTG GAAACTGTTG TTTTCCTGAA CATCTAAAGT GTGTAGACTG CATTCTTGCT 3420 ATTATTTAT TCTTGTAATG TGACCTTTTC ACTGTGCAAA GGGAGATTTC TAGCCAGGCA 80 TTGACTATTA CAATTTCATT Seg ID NO: 619 Protein seguence

Protein Accession #: NP_004940.1

85 51 11 21 31 MEAARPSGSW NGALCRLLLL TLAILIFASD ACKNVTLHVP SKLDAEKLVG RVNLKECPTA 60

CCTTCACCTG TGAACCTGAG GTTCAGAACA CAACCTACCT GTGGTGGGTA AATGGTCAGA

GCCTCCCGGT CAGTCCCAGG CTGCAGCTGT CCAATGGCAA CATGACCCTC ACTCTACTCA

600

660

```
GCGTCAAAAG GAACGATGCA GGATCCTATG AATGTGAAAT ACAGAACCCA GCGAGTGCCA
      ACCGCAGTGA CCCAGTCACC CTGAATGTCC TCTATGGCCC AGATGTCCCC ACCATTTCCC
                                                                           780
                                                                           840
       CCTCAAAGGC CAATTACCGT CCAGGGGAAA ATCTGAACCT CTCCTGCCAC GCAGCCTCTA
      ACCCACCTGC ACAGTACTCT TGGTTTATCA ATGGGACGTT CCAGCAATCC ACACAAGAGC
                                                                           900
 5
       TCTTTATCCC CAACATCACT GTGAATAATA GCGGATCCTA TATGTGCCAA GCCCATAACT
                                                                           960
       CAGCCACTGG CCTCAATAGG ACCACAGTCA CGATGATCAC AGTCTCTGGA AGTGCTCCTG
                                                                          1020
       TCCTCTCAGC TGTGGCCACC GTCGGCATCA CGATTGGAGT GCTGGCCAGG GTGGCTCTGA
                                                                          1080
       TATAGCAGCC CTGGTGTATT TTCGATATTT CAGGAAGACT GGCAGATTGG ACCAGACCCT
                                                                          1140
       GAATTCTTCT AGCTCCTCCA ATCCCATTTT ATCCCATGGA ACCACTAAAA ACAAGGTCTG
                                                                          1200
10
       CTCTGCTCCT GAAGCCCTAT ATGCTGGAGA TGGACAACTC AATGAAAATT TAAAGGGAAA
                                                                          1260
       ACCCTCAGGC CTGAGGTGTG TGCCACTCAG AGACTTCACC TAACTAGAGA CAGTCAAACT
                                                                          1320
       GCAAACCATG GTGAGAAATT GACGACTTCA CACTATGGAC AGCTTTTCCC AAGATGTCAA
                                                                          1380
       AACAAGACTC CTCATCATGA TAAGGCTCTT ACCCCCTTTT AATTTGTCCT TGCTTATGCC
                                                                          1440
       TGCCTCTTC GCTTGGCAGG ATGATGCTGT CATTAGTATT TCACAAGAAG TAGCTTCAGA
                                                                          1500
15
      GGGTAACTTA ACAGAGTGTC AGATCTATCT TGTCAATCCC AACGTTTTAC ATAAAATAAG
                                                                          1560
       AGATCCTTTA GTGCACCCAG TGACTGACAT TAGCAGCATC TTTAACACAG CCGTGTGTTC
                                                                          1620
       AAATGTACAG TGGTCCTTTT CAGAGTTGGA CTTCTAGACT CACCTGTTCT CACTCCCTGT
                                                                          1680
       TTTAATTCAA CCCAGCCATG CAATGCCAAA TAATAGAATT GCTCCCTACC AGCTGAACAG
                                                                          1740
       GGAGGAGTCT GTGCAGTTTC TGACACTTGT TGTTGAACAT GGCTAAATAC AATGGGTATC
                                                                          1800
20
       GCTGAGACTA AGTTGTAGAA ATTAACAAAT GTGCTGCTTG GTTAAAATGG CTACACTCAT
                                                                          1860
       CTGACTCATT CTTTATTCTA TTTTAGTTGG TTTGTATCTT GCCTAAGGTG CGTAGTCCAA
                                                                          1920
       CTCTTGGTAT TACCCTCCTA ATAGTCATAC TAGTAGTCAT ACTCCCTGGT GTAGTGTATT
       CTCTAAAAGC TTTAAATGTC TGCATGCAGC CAGCCATCAA ATAGTGAATG GTCTCTCTTT
                                                                          2040
       GGCTGGAATT ACAAAACTCA GAGAAATGTG TCATCAGGAG AACATCATAA CCCATGAAGG
                                                                          2100
25
       ATAAAAGCCC CAAATGGTGG TAACTGATAA TAGCACTAAT GCTTTAAGAT TTGGTCACAC
                                                                          2160
       TCTCACCTAG GTGAGCGCAT TGAGCCAGTG GTGCTAAATG CTACATACTC CAACTGAAAT
                                                                          2220
       2280
       ACACAGGAGA TTCCAGTCTA CTTGAGTTAG CATAATACAG AAGTCCCCTC TACTTTAACT
                                                                          2340
       TTTACAAAAA AGTAACCTGA ACTAATCTGA TGTTAACCAA TGTATTTATT TCTGTGGTTC
                                                                          2400
30
       TGTTTCCTTG TTCCAATTTG ACAAAACCCA CTGTTCTTGT ATTGTATTGC CCAGGGGGAG
                                                                          2460
       CTATCACTGT ACTTGTAGAG TGGTGCTGCT TTAATTCATA AATCACAAAT AAAAGCCAAT
                                                                          2520
       TAGCTCTATA ACT
       Seq ID NO: 625 Protein sequence
35
       Protein Accession #: AAA59907.1
       MGPPSAPPCR LHVPWKEVLL TASLLTFWNP PTTAKLTIES TPFNVAEGKE VLLLAHNLPQ
40
       NRIGYSWYKG ERVDGNSLIV GYVIGTQQAT PGPAYSGRET IYPNASLLIQ NVTQNDTGFY
                                                                           120
       TLQVIKSDLV NEEATGQFHV YPELPKPSIS SNNSNPVEDK DAVAFTCEPE VQNTTYLWWV
       NGOSLPVSPR LQLSNGNMTL TLLSVKRNDA GSYECEIQNP ASANRSDPVT LNVLYGPDVP
                                                                           240
       TISPSKANYR PGENLNLSCH AASNPPAQYS WFINGTFQQS TQELFIPNIT VNNSGSYMCQ
       AHNSATGLNR TTVTMITVSG SAPVLSAVAT VGITIGVLAR VALI
45
       Seq ID NO: 626 DNA sequence
       Nucleic Acid Accession #: M18728.1
       Coding sequence: 1355..1657
50
                                                              51
                  11
                             21
       GGAGCTCAAG CTCCTCTACA AAGAGGTGGA CAGAGAAGAC AGCAGAGACC ATGGGACCCC
                                                                            60
       CCTCAGCCCC TCCCTGCAGA TTGCATGTCC CCTGGAAGGA GGTCCTGCTC ACAGCCTCAC
                                                                           120
       TTCTAACCTT CTGGAACCCA CCCACCACTG CCAAGCTCAC TATTGAATCC ACGCCATTCA
                                                                           180
55
       ATGTCGCAGA GGGGAAGGAG GTTCTTCTAC TCGCCCACAA CCTGCCCCAG AATCGTATTG
                                                                           240
       GTTACAGCTG GTACAAAGGC GAAAGAGTGG ATGGCAACAG TCTAATTGTA GGATATGTAA
                                                                           300
       TAGGAACTCA ACAAGCTACC CCAGGGCCCG CATACAGTGG TCGAGAGACA ATATACCCCA
                                                                           360
       ATGCATCCCT GCTGATCCAG AACGTCACCC AGAATGACAC AGGATTCTAT ACCCTACAAG
                                                                           420
       TCATAAAGTC AGATCTTGTG AATGAAGAAG CAACCGGACA GTTCCATGTA TACCCGGAGC
                                                                           480
60
       TGCCCAAGCC CTCCATCTCC AGCAACAACT CCAACCCCGT GGAGGACAAG GATGCTGTGG
                                                                           540
       CCTTCACCTG TGAACCTGAG GTTCAGAACA CAACCTACCT GTGGTGGGTA AATGGTCAGA
                                                                           600
       GCCTCCCGGT CAGTCCCAGG CTGCAGCTGT CCAATGGCAA CATGACCCTC ACTCTACTCA
                                                                           660
       GCGTCAAAAG GAACGATGCA GGATCCTATG AATGTGAAAT ACAGAACCCA GCGAGTGCCA
                                                                           720
       ACCGCAGTGA CCCAGTCACC CTGAATGTCC TCTATGGCCC AGATGTCCCC ACCATTTCCC
                                                                           780
65
       CCTCAAAGGC CAATTACCGT CCAGGGGAAA ATCTGAACCT CTCCTGCCAC GCAGCCTCTA
                                                                           840
                                                                           900
       ACCCACCTGC ACAGTACTCT TGGTTTATCA ATGGGACGTT CCAGCAATCC ACACAAGAGC
       TCTTTATCCC CAACATCACT GTGAATAATA GCGGATCCTA TATGTGCCAA GCCCATAACT
                                                                           960
       CAGCCACTGG CCTCAATAGG ACCACAGTCA CGATGATCAC AGTCTCTGGA AGTGCTCCTG
                                                                          1020
       TCCTCTCAGC TGTGGCCACC GTCGGCATCA CGATTGGAGT GCTGGCCAGG GTGGCTCTGA
                                                                          1080
70
       TATAGCAGCC CTGGTGTATT TTCGATATTT CAGGAAGACT GGCAGATTGG ACCAGACCCT
                                                                          1140
       GAATTCTTCT AGCTCCTCCA ATCCCATTTT ATCCCATGGA ACCACTAAAA ACAAGGTCTG
                                                                          1200
       CTCTGCTCCT GAAGCCCTAT ATGCTGGAGA TGGACAACTC AATGAAAATT TAAAGGGAAA
                                                                          1260
       ACCCTCAGGC CTGAGGTGTG TGCCACTCAG AGACTTCACC TAACTAGAGA CAGTCAAACT
                                                                          1320
       GCAAACCATG GTGAGAAATT GACGACTTCA CACTATGGAC AGCTTTTCCC AAGATGTCAA
                                                                          1380
75
       AACAAGACTC CTCATCATGA TAAGGCTCTT ACCCCCTTTT AATTTGTCCT TGCTTATGCC
                                                                          1440
       TGCCTCTTTC GCTTGGCAGG ATGATGCTGT CATTAGTATT TCACAAGAAG TAGCTTCAGA
                                                                          1500
       GGGTAACTTA ACAGAGTGTC AGATCTATCT TGTCAATCCC AACGTTTTAC ATAAAATAAG
AGATCCTTTA GTGCACCCAG TGACTGACAT TAGCAGCATC TTTAACACAG CCGTGTGTTC
                                                                          1560
                                                                          1620
       AAATGTACAG TGGTCCTTTT CAGAGTTGGA CTTCTAGACT CACCTGTTCT CACTCCCTGT
                                                                          1680
80
       TTTAATTCAA CCCAGCCATG CAATGCCAAA TAATAGAATT GCTCCCTACC AGCTGAACAG
                                                                          1740
       GGAGGAGTCT GTGCAGTTTC TGACACTTGT TGTTGAACAT GGCTAAATAC AATGGGTATC
                                                                          1800
       GCTGAGACTA AGTTGTAGAA ATTAACAAAT GTGCTGCTTG GTTAAAATGG CTACACTCAT
                                                                          1860
       CTGACTCATT CTTTATTCTA TTTTAGTTGG TTTGTATCTT GCCTAAGGTG CGTAGTCCAA
                                                                          1920
       CTCTTGGTAT TACCCTCCTA ATAGTCATAC TAGTAGTCAT ACTCCCTGGT GTAGTGTATT
                                                                          1980
85
       CTCTAAAAGC TTTAAATGTC TGCATGCAGC CAGCCATCAA ATAGTGAATG GTCTCTCTTT
                                                                          2040
       GGCTGGAATT ACAAAACTCA GAGAAATGTG TCATCAGGAG AACATCATAA CCCATGAAGG
                                                                          2100
       ATAAAAGCCC CAAATGGTGG TAACTGATAA TAGCACTAAT GCTTTAAGAT TTGGTCACAC
                                                                          2160
```

```
TCTCACCTAG GTGAGCGCAT TGAGCCAGTG GTGCTAAATG CTACATACTC CAACTGAAAT 2220
      2280
      ACACAGGAGA TTCCAGTCTA CTTGAGTTAG CATAATACAG AAGTCCCCTC TACTTTAACT
                                                                       2340
      TTTACAAAAA AGTAACCTGA ACTAATCTGA TGTTAACCAA TGTATTTATT TCTGTGGTTC
                                                                       2400
 5
      TGTTTCCTTG TTCCAATTTG ACAAAACCCA CTGTTCTTGT ATTGTATTGC CCAGGGGGAG
                                                                       2460
      CTATCACTGT ACTTGTAGAG TGGTGCTGCT TTAATTCATA AATCACAAAT AAAAGCCAAT
                                                                       2520
      TAGCTCTATA ACT
      Seg ID NO: 627 Protein sequence
10
      Protein Accession #: AAA59908.1
                           21
                                      31
                                                           51
                 11
      MDSFSQDVKT RLLIMIRLLP PFNLSLLMPA SPAWQDDAVI SISQEVASEG NLTECQIYLV
15
      NPNVLHKIRD PLVHPVTDIS SIFNTAVCSN VQWSFSELDF
      Seg ID NO: 628 DNA sequence
      Nucleic Acid Accession #: M18728.1
      Coding sequence: 2370..2501
20
                                                 41
                                                           51
                 11
                           21
                                      31
      GGAGCTCAAG CTCCTCTACA AAGAGGTGGA CAGAGAAGAC AGCAGAGACC ATGGGACCCC
                                                                         60
      CCTCAGCCCC TCCCTGCAGA TTGCATGTCC CCTGGAAGGA GGTCCTGCTC ACAGCCTCAC
                                                                        120
25
      TTCTAACCTT CTGGAACCCA CCCACCACTG CCAAGCTCAC TATTGAATCC ACGCCATTCA
                                                                        180
      ATGTCGCAGA GGGGAAGGAG GTTCTTCTAC TCGCCCACAA CCTGCCCCAG AATCGTATTG
                                                                        240
      GTTACAGCTG GTACAAAGGC GAAAGAGTGG ATGGCAACAG TCTAATTGTA GGATATGTAA
                                                                        300
      TAGGAACTCA ACAAGCTACC CCAGGGCCCG CATACAGTGG TCGAGAGACA ATATACCCCA
                                                                        360
      ATGCATCCCT GCTGATCCAG AACGTCACCC AGAATGACAC AGGATTCTAT ACCCTACAAG
                                                                        420
30
      TCATAAAGTC AGATCTTGTG AATGAAGAAG CAACCGGACA GTTCCATGTA TACCCGGAGC
                                                                        480
      TGCCCAAGCC CTCCATCTCC AGCAACAACT CCAACCCCGT GGAGGACAAG GATGCTGTGG
                                                                        540
      CCTTCACCTG TGAACCTGAG GTTCAGAACA CAACCTACCT GTGGTGGGTA AATGGTCAGA
                                                                        600
      GCCTCCCGGT CAGTCCCAGG CTGCAGCTGT CCAATGGCAA CATGACCCTC ACTCTACTCA
      GCGTCAAAAG GAACGATGCA GGATCCTATG AATGTGAAAT ACAGAACCCA GCGAGTGCCA
                                                                        720
35
      ACCGCAGTGA CCCAGTCACC CTGAATGTCC TCTATGGCCC AGATGTCCCC ACCATTTCCC
                                                                        780
      CCTCAAAGGC CAATTACCGT CCAGGGGAAA ATCTGAACCT CTCCTGCCAC GCAGCCTCTA
      ACCCACCTGC ACAGTACTCT TGGTTTATCA ATGGGACGTT CCAGCAATCC ACACAAGAGC
                                                                        900
      TCTTTATCCC CAACATCACT GTGAATAATA GCGGATCCTA TATGTGCCAA GCCCATAACT
                                                                        960
      CAGCCACTGG CCTCAATAGG ACCACAGTCA CGATGATCAC AGTCTCTGGA AGTGCTCCTG
                                                                       1020
40
      TCCTCTCAGC TGTGGCCACC GTCGGCATCA CGATTGGAGT GCTGGCCAGG GTGGCTCTGA
                                                                       1080
      TATAGCAGCC CTGGTGTATT TTCGATATTT CAGGAAGACT GGCAGATTGG ACCAGACCCT
                                                                       1140
      GAATTCTTCT AGCTCCTCCA ATCCCATTT ATCCCATGGA ACCACTAAAA ACAAGGTCTG
                                                                       1200
      CTCTGCTCCT GAAGCCCTAT ATGCTGGAGA TGGACAACTC AATGAAAATT TAAAGGGAAA
                                                                       1260
      ACCCTCAGGC CTGAGGTGTG TGCCACTCAG AGACTTCACC TAACTAGAGA CAGTCAAACT
                                                                       1320
45
      GCAAACCATG GTGAGAAATT GACGACTTCA CACTATGGAC AGCTTTTCCC AAGATGTCAA
                                                                       1380
      AACAAGACTC CTCATCATGA TAAGGCTCTT ACCCCCTTTT AATTTGTCCT TGCTTATGCC
                                                                       3440
       TGCCTCTTTC GCTTGGCAGG ATGATGCTGT CATTAGTATT TCACAAGAAG TAGCTTCAGA
                                                                       1500
      GGGTAACTTA ACAGAGTGTC AGATCTATCT TGTCAATCCC AACGTTTTAC ATAAAATAAG
                                                                       1560
      AGATCCTTTA GTGCACCCAG TGACTGACAT TAGCAGCATC TTTAACACAG CCGTGTGTTC
                                                                       1620
50
      AAATGTACAG TGGTCCTTTT CAGAGTTGGA CTTCTAGACT CACCTGTTCT CACTCCCTGT
                                                                       1680
                                                                       1740
      TTTAATTCAA CCCAGCCATG CAATGCCAAA TAATAGAATT GCTCCCTACC AGCTGAACAG
      GGAGGAGTCT GTGCAGTTTC TGACACTTGT TGTTGAACAT GGCTAAATAC AATGGGTATC
                                                                       1800
      GCTGAGACTA AGTTGTAGAA ATTAACAAAT GTGCTGCTTG GTTAAAATGG CTACACTCAT
                                                                       1860
      CTGACTCATT CTTTATTCTA TTTTAGTTGG TTTGTATCTT GCCTAAGGTG CGTAGTCCAA
                                                                       1920
55
      CTCTTGGTAT TACCCTCCTA ATAGTCATAC TAGTAGTCAT ACTCCCTGGT GTAGTGTATT
                                                                       1980
      CTCTAAAAGC TTTAAATGTC TGCATGCAGC CAGCCATCAA ATAGTGAATG GTCTCTCTTT
                                                                       2040
      GGCTGGAATT ACAAAACTCA GAGAAATGTG TCATCAGGAG AACATCATAA CCCATGAAGG
                                                                       2100
      ATAAAAGCCC CAAATGGTGG TAACTGATAA TAGCACTAAT GCTTTAAGAT TTGGTCACAC
      TCTCACCTAG GTGAGCGCAT TGAGCCAGTG GTGCTAAATG CTACATACTC CAACTGAAAT
60
      2280
      ACACAGGAGA TTCCAGTCTA CTTGAGTTAG CATAATACAG AAGTCCCCTC TACTTTAACT
                                                                       2340
      TTTACAAAAA AGTAACCTGA ACTAATCTGA TGTTAACCAA TGTATTTATT TCTGTGGTTC
                                                                       2400
      TGTTTCCTTG TTCCAATTTG ACAAAACCCA CTGTTCTTGT ATTGTATTGC CCAGGGGGAG
                                                                       2460
      CTATCACTGT ACTTGTAGAG TGGTGCTGCT TTAATTCATA AATCACAAAT AAAAGCCAAT
65
      TAGCTCTATA ACT
      Seg ID NO: 629 Protein seguence
      Protein Accession #: AAA59909.1
70
                           21
                                      31
                                                           51
                 11
      MLTNVFISVV LFPCSNLTKP TVLVLYCPGG AITVLVEWCC FNS
75
      Seq ID NO: 630 DNA sequence
      Nucleic Acid Accession #: NM_016639.1
      Coding sequence: 40..429
                           21
                                      31
                                                           51
80
      GCGGCGGGG CAGACAGCGG CGGGCGCAGG ACGTGCACTA TGGCTCGGGG CTCGCTGCGC
                                                                         60
      120
      GAGCAAGCGC CAGGCACCGC CCCCTGCTCC CGCGGCAGCT CCTGGAGCGC GGACCTGGAC
                                                                        180
      AAGTGCATGG ACTGCGCGTC TTGCAGGGCG CGACCGCACA GCGACTTCTG CCTGGGCTGC
                                                                        240
85
      GCTGCAGCAC CTCCTGCCCC CTTCCGGCTG CTTTGGCCCA TCCTTGGGGG CGCTCTGAGC
                                                                        300
      CTGACCTTCG TGCTGGGGCT GCTTTCTGGC TTTTTGGTCT GGAGACGATG CCGCAGGAGA
                                                                        360
      GAGAAGTTCA CCACCCCAT AGAGGAGACC GGCGGAGAGG GCTGCCCAGC TGTGGCGCTG
                                                                        420
```

	WO 02	/086443								
		AATGTGCCCC					480			
		AGTCTCTGCC					540			
		GCGGTGAATC					600 660			
5		TGACACTGAC					720			
_		GACCTGGGGG					780			
		GTCCTGAAAT					840			
		GGGCTGGCCC GGAGGAGATA					900			
10		TCTTTAACTT			GAGGGGAGGG	AGAATITATI	960			
••										
	Seq ID NO: 631 Protein sequence									
	Protein Acc	ession #: 1	IP_057723.1							
15	1	11	21	31	41	51				
	1	1	}]				
		RLLVLGLWLA PPAPFRLLWP				DCASCRARPH	· 60 120			
	GCPAVALIO	PPACTABBAT	·	V BOBBBBB BV	macada		120			
20										
		632 DNA se			•					
		id Accession mence: 79		316.1						
25	cours seq.									
25	1	11	21	31	41	51				
	 CCCCACCCTT	 GGAAAATGAT	GGAAGAGGCG	GAGGTGGAGG	CGACCGAGTG	CTGAGAGGAA	60			
		CGGCCGAGAT					120			
20	CGGTGGTTGC	TGTTGCTTGG	CCTGGTGGGC	CCAGTCCTCG	GTGCGGCGCG	GCCAGGCTTT	180			
30		CACATCTTTC					240			
		CCCCTAGGCC					300 360			
		ACAAGGAAGG					420			
0.5	CATTATCGGG	GCTATGTGGA	GGGAGTTCAT	AATTCATCCA	TTGCTCTTAG	CGACTGTTTT	480			
35		GATTGCTGCA					540			
		TTGAGCACAT CCAACAAGGA					600 660			
		CTCAGCTACT					720.			
40	GAGCTGTTCA	TTGTCGTAGA	CAAGGAAAGG	TATGACATGA	TGGGAAGAAA	TCAGACTGCT	780			
40		AGATGATTCT					840			
		TGCTAGTTGG GTGATGTGCT					900 960			
		ATGACAGTGC					1020			
45		TGGGAACAGT					1080			
45		TGGAGACATT					1140			
		ATGATGGGAG GTTCCAGAAA					1200 1260			
		GAGGAAACTG					1320			
50		GTAATAAGTT					1380			
50		TGGACCCTTG 'GTGACTGTTG					1440 1500			
		GTGAGTGTGA					1560			
,	CCAGATGTTT	TTATTCAGAA	TGGATATCCT	TGCCAGAATA	ACAAAGCCTA	TTGCTACAAC	1620			
55		AGTATTATGA					1680			
22						CAATTGTGGT AAAGCTTCAG				
						TCAAACGCCT				
						TCCAGATCCT				
60						CTTCCAGTGT TGGACATGGG				
00						AAATTGTGAG				
						GAATACTGCA				
						CTGTGCTATT				
65						GAGATCACAA GAGTGTTCCT				
00						CAGATTTGCA				
•	GTACCAACCT	ATGCAGCCAA	GCAACCTCAG	CAGTTCCCAT	CAAGGCCACC	TCCACCACAA	2460			
						ACCTCCTTTA				
70						GGGAACTGAG AACTATGAAT				
, ,						TGAGTGTGAG				
						TTTCCGTTTC				
						ATGGATTTTT				
75						TTTGTCATTA TTCCTCATTG				
						ATATCTAATA				
						TCACTCACTA				
						AGATGTCATA GTTACTCGCT				
80						TTTAATATTA				
	GAATTTCTAT	TATGAATCAT	GTGAAAGCAT	GACATTCGTT	CACAATAGCA	CTATTTTAAA	3300			
						GTTGATTCAT				
						TACAAAACCA TAAATCATTT				
85						CTAATATTTT				
-	CATAGAAATT	AGGCTGGAGA	AAGAAGGAAG	AAATGGTTTT	CTTAAATACC	TACAAAAAAG	3600			
	TTACTGTGGT	ATCTATGAGT	TATCATCTTA	GCTGTGTTAA	AAATGAATTT	TTACTATGGC	3660			

5	AGATATGGTA AAAGTTTAAT TGTGTATATA	AATAGGTTTA	TTAACTGAAT AATACAACAT	ACTAAAAATT TTCATTAGTT TTACAATAAA	TTTTAAAAGT	GITTTTGGTT	3720 3780 3840
	Seq ID NO: Protein Acc	633 Prote cession #: 1	in sequence VP_003807.1				
10	PYSKQVSYVI EGVHNSSIAL	QAEGKEHIIH SDCFGLRGLL	LERNKOLLPE HLENASYGIE	31 RPGFQQTSHL DFVVYTYNKE PLQNSSHFEH	GTLITDHPNI IIYRMDDVYK	QNHCHYRGYV EPLKCGVSNK	60 120 180
15	LLANYLDSMY AQLVLKKGFG RDCSCGAKSC LVDAGEECDC	IMLNIRIVLV GTAGMAFVGT IMNSGASGSR GTPKECELDP	GLEIWTNGNL VCSRSHAGGI NFSSCSAEDF CCEGSTCKLK	TRYVELFIVV INIVGGAGDV NVFGQITVET EKLTLNKGGN SFAECAYGDC	LGNFVQWREK FASIVAHELG CLLNIPKPDE CKDCRFLPGG	FLITRRHDS HNLGMNHDDG AYSAPSCGNK TLCRGKTSEC	240 300 360 420 480
20	IEVNSKGDRF WGVDFQLGSD NCHCENGWAP DQLWRSYFRK	GNCGPSGNEY VPDPGMVNEG PNCETKGYGG KRSQTYESDG	KKCATGNALC TKCGAGKICR SVDSGPTYNE KNQANPSRQP	YCYNGMCQYY GKLQCENVQE NFQCVDASVL MNTALRDGLL GSVPRHVSPV	IPVFGIVPAI NYDCDVQKKC VFFFLIVPLI	IQTPSRGTKC HGHGVCNSNK VCAIFIFIKR	540 600 660 720 780
25	Seq ID NO: Nucleic Aci	PPPQPKVSSQ 634 DNA se id Accession nence: 56!	equence 1 #: NM_002				
30	1	11	21	31	41	51	
35	CGGCAGTGAG AGCGGTCCCG CCACTGGGCG TGAGAGAGGG	CTCCCGCTGG CTGCCTGCGG GTGGGGCACT AGCCTGAAGC	TCCTGCTGGC GCGGAGGGAC TAATGGGGAA AGCAGCTGAG	GCTCCAAGGG GCTGGTCCTC CGTGCTGACC AAAGAGCACA AGAGTACATC GAACAGAAAC	TGCCTAGCGC AAGATGTACC GGGGAGTCTT AGGTGGGAAG	CCCGGGGGCG CGCGCGGCAA CTTCTGTTTC AAGCTGCAAG	60 120 180 240 300 360
40	AGGTTCAAAA CCCCCAGCTG TAAGAGACTG AAATATTTGA CTTCTGGTTT	GGCAAAGTTG AACCAGCAAT AGTTCTGCAA CTATTCTGTA AAACTTGTTT	GTAGACTCTC GATAATGATG GCATCAGTTC TCTTTCATCC GCTGTGAACA	TTCAGAGGAT TGCTCCAGGT GCCTCTCTCA TACGGATCAT TTGACTAAAT ATTGTCGAAA TTCAAGGCCC	TCTCAACGTG AAAGAGAAAA CAACAAGATT TCGTGATTTT AGAGTCTTCC	AAGGAAGGAA ACAAAACCCC TCCTTGTGCA CAAGCAGCAT AATTAATGCT	420 480 540 600 660 720 780
45	TAAAAGCTTA Seq ID NO:		in sequence	TTCAAGGCCC	,	CONTINUEN	750
50	1	11	21	31	41	51	
	VSERGSLKQQ	 LALVLCLAPR	 GRAVPLPAGG ARNLLGLIEA	GTVLTKMYPR KENRNHQPPQ			60 120
55	Nucleic Act	636 DNA se ld Accession lence: 265.	#: NM_016	522.1			
60				31 GCCGTCCTCC GGAATATTAG			60 120
65	TTTTCTCCTC CCGCACCCCA TCGGGGAAGT TGCCTCGTGG AGCGGAGATG	CCCGCGCCTC CCCACTTCCT TGTGGCTGTC TCGTGTCTCT CCACCTTCCC	CCGGTCGCCG GTGCTCGCCC GAGAATGGGG CAGGCTGCTG CAAAGCTATG	CGGGTTCACC GGGGGGCGTG GTCTGTGGGT TTCCTTGTAC GACAACGTGA	GCTCAGTCCC TGCCGTGCGG ACCTGTTCCT CCACAGGAGT CGGTCCGGCA	CGCGCTCGCT CTGCCGGAGT GCCCTGGAAG GCCCGTGCGC GGGGGAGAGC	180 240 300 360 420
70	ACCATCCTCT AACACCCAAA TACACCTGCT CAAGTATCTC	ATGCTGGGAA CGCAGTACAG CGGTGCAGAC CCAAAATTGT	TGACAAGTGG CATCGAGATC AGACAACCAC AGAGATTTCT	GTCACCCGGG TGCCTGGATC CAGAACGTGG CCAAAGACCT TCAGATATCT	CTCGCGTGGT ATGTGTATGA CTAGGGTCCA CCATTAATGA	CCTTCTGAGC CGAGGGCCCT CCTCATTGTG AGGGAACAAT	480 540 600 660 720
75	TCTCCCAAAG CGGGAACAGT CGGAGAGTAA GTCCCCGTGG	CGGTTGGCTT CAGGGGACTA AGGTCACCGT GACAAAAGGG	TGTGAGTGAA CGAGTGCAGT GAACTATCCA GACACTGCAG	CCAGAGCCTA GACGAATACT GCCTCCAATG CCATACATTT TGTGAAGCCT	TGGAAATTCA ACGTGGCCGC CAGAAGCCAA CAGCAGTCCC	GGGCATCACC GCCCGTGGTA GGGTACAGGT CTCAGCAGAA	780 840 900 960 1020
80	AACAGACCTT TACACTTGCG CCAGGCGCCG	TCCTCTCAAA TGGCCTCCAA TCAGCGAGGT	ACTCATCTTC CAAGCTGGGC GAGCAACGGC	ATTGAAGGAA TTCAATGTCT CACACCAATG ACGTCGAGGA AAATTTTGAT	CTGAACATGA CCAGCATCAT GGGCAGGCTG	CTATGGGAAC GCTATTTGGT CGTCTGGCTG	1080 1140 1200 1260 1320
85	CGGGAAAGGC CCAATCAGAT GGGAGGGGAA	TGCCGCCACC ATATACAAAT CAAAGAATAC	ACCACCACCA GAAATTAGAA TTTGGGGGGA	ACACAACAGC GAAACACAGC AAAGAGTTTT TCTTTTCCCA	AATGGCAACA CTCATGGGAC AAAAAAGAAA	CCGACAGCAA AGAAATTTGA TTGAAAATTG	1380 1440 1500 1560

WO 02/086443 PCT/US02/12476 CCCGGCTTGG ACCCACTGCA AGCTGCATCG TGCAACCTCT TTGGTGCCAG TGTGGGCAAG 1620

			AGCTGCATCG				1620
			AGACTGCCCC GACGAACAGA				1680 1740
_			CGGGCACTTT				1800
5	GAAACGTGAA	ATAAAAAGAG	CAAAAAAAA	AAAAAAA			
	Sea ID NO.	637 Protei	n semience				•
		ession #: 1		•			
10			_				
10	1	11	21 1	31	41 1	51 1	
	MGVCGYLFLP	WKCLVVVSLR	LLFLVPTGVP	VRSGDATFPK	AMDNVTVROG	ESATLRCTID	60
			KWCLDPRVVL				120
15			ISSDISINEG				180
13			CSASNDVAAP RLIEGKKGVK				240 300
			NGTSRRAGCV			GNIICVASNK	300
20	Seq ID NO:			261 1			
20		ence: 203.	1 #: NM_012 .1045	201.1	•		
	1	11	21	31	41	51	
25	GATTTGCTCT	GCCAGCAGCT	GTCGGTGCCG	CGCTCGACAC	CGAGTCCTAG	CTAGGCGCTC	60
			CTCCCCCTTC				120
••			GGGATTCCCT				180
			GTATGGATCT TGTTCCATAC				240 300
30			CCACTAACCC				360
			CAGAGTTTGC				420
			TGATCACAGA				480
			GCCACAGCCA TCTTTGTAAA				540 600
35			AAGTGCAGTT				660
	CAAAGACGCA	GTCAGTGCTG	GGAAGCACAC	AGCCAACTCG	CACCACCTCT	CTGCCTTGGT	720
			ATGAGTGTCA				780
			CCATGATCCT				840 900
40			TTTTGGGGCT				960
			ACAAAATGAC				1020
			GCTAGAGGCC AACAAAAGCA				1080 1140
			CCTGGGTATC				1200
45			TCTTTCGGAT				1260
			AGGGTCTCAG				1320
			AATGCCACTT GGAGGAAACC				1380
			GCTTATCCTA				1440 1500
50			CCCCTGAAAG				1560
			ATGTTTCACT				1620
			GCAGAGTTGT CTGTGTGAGT				1680 1740
	TTCTCTGGC	ANGANICANI	CIGIGIGAGI	CIGITITICA	MAIGAAAIA	MACACACIA	1740
55							
		639 Protei ession #: 1					
	11000111 1101		0000000				
60	1	11	21	31	41	51	
UU	MDI OCEGUES	TODI.DUI.IMI.	 FHTMAQIMAE	OFVENI.CGI.S	MADERULEAN	PENGTTCI.MA	60
			ITEQADIALT				120
			VQFVYDSSEK				180
65			MILSAVHIQP		EEHKCPVDER	EQLEETLPLI	240
4 2		- vrus TUAUU	KMTANQVQIP	WWW I KONGN			
		640 DNA se					
		id Accession Lence: 644	1 #: NM_002	993.1			
70	couring sequ	rence: 04	100				
	1	11	21	31	41	51	
		1000000000	200000		0000011000	morrowach co	
			CCTCCACCCA				60 120
75			CCTGCTGACG				180
	GTCTCTGCTG	TGCTGACAGA	GCTGCGTTGC	ACTTGTTTAC	GCGTTACGCT	GAGAGTAAAC	240
			GCAGGTGTTC				300 360
			CGGGAAGCAA TTTGGACAGT				420
80	ACCATGCATC	ATAAAATTGC	CCAGTCTTCA	GCGGAGCAGT	TTTCTGGAGA	TCCCTGGACC	480
			GGTTGGTTTT				540
			TACGCTTCTC TTTACTGTTA				600 660
			AAAGAATCAC				720
85	TGAAGATAAC	TATTGTATTT	CTATCATACA	TTCCTTAAAG	TCTTACCGAA	AAGGCTGTGG	780
			TTTATTAGTG				840
	ACTUACICTY	TARARITA	AGGAAATATT	TAGTTCTGT	TITCTIGGGG	AMINIGITAC	900

	WO 02	/086443					
5	TTATCTGTGC CTAATATATT CATGATTTAC ATTCTGGTCA TGATTGCTAA AATGATCTGT	AGAATATATT CTCTTCCTAT TCATTAAACT CTAAATATAC TTTACATAGA GCTCTGCAAA	TTAAGTTGTA TCCTTATTCA GGTTTTAGAT TTGATTTTGT ACTTTAGATA AATGTATTCT GTTTTGAAAA TACAGCATTG	GAATTTCTAA GTTTGATGTC ATGCTATTTT GATGAAGAAG CTTGGTTTTT TATATTTGAA	AAATTTAAGT TTCTTAGTAT TTCACTATAG CCCAAAAACA TAAATAAAAG CAATTTGAAT	TCTGTAAGGG GGCATAATGT GATGACTATA GATAAATTCC CAAAATTAAC ATAAATTCAT	960 1020 1080 1140 1200 1260 1320 1380
10	AAATTGCACT	TTTATTTTTT	TGTTATGAGG CCTGTGTGTC TCTAAACCAA	ATGTTGGTTT	TTGGTACTTG		1440 1500
15	Seq ID NO: Protein Acc	641 Proteicession #: 1	in sequence NP_002984.1	31	41	51	
20	 MSLPSSRAAR	 VPGPSGSLCA	 LLALLLLLTP VASLKNGKQV	 PGPLASAGPV	SAVLTELRCT	 CLRVTLRVNP	60
20	Nucleic Ac	642 DNA seid Accession lence: 278	1 #: NM_013	271.1			
25	CCGGGGGCGT	CGGCCTTTTG	21 GGCAGCATGG GTGCTGCTGC	TGCTCGGCCT	GTTTCGGCCG	CCCCCCCCCC	60 120
30	AGACTGGCGC TGCAGGAGCT GGGCCGAGGC TCTGGGGCGC	TCCTCGCCGC GGCGCGGGCG GCAGGAGGCT CCCCCGCAAC	GAACCCCGCG TTCCGGCGGT CTGGCGCATC GAGGATCAGC TCTGATCCGG	CAGTGCCCCG TGCTGGAGGC AGGCGCGCGT CTCTGGGCCT	AGGTGAGGCG CGAACGTCAG CCTGGCGCAG GGACGACGAC	GCGGGGGCGC GAGCGGGCGC CTGCTGCGCG CCCGACGCGC	180 240 300 360 420
35	CCCAGCTTGT ACGACGGCCC CCGAGCTGTT TGGCAGCCCC	CCCCGCGCCC CGCGGGCCCG GAGGTACTTG GCGCCGCCTC	GCTCTGCTCC GTCCCCGCCG GATGCTGAGG CTGGGACGGA CGCCGTGCCG	CGGCGCTCCG AGGCAGGCGA TTCTTGCGGG CCGACCACGA	ACCCCGGCCC CGAGACACCC AAGCGCGGAC TGTGGGCTCT	CCGGTCTACG GACGTGGACC TCCGAGGGGG GAGCTGCCCC	480 540 600 660 720
40	TGCCTGCACG CAGAAGTGCC	CCGCCTCTTG CCCGCCATCC	CTGCTGCGTG CCACCCTGAG CGCCACCAGG TCTCACCCGA	CACTGCCCGG ACTTCTCCCC	ATCCCGTGCA GCCAGCACGT	CCCTGGGACC CCAGAGCAAC	780 840 900 960
45	Seq ID NO: Protein Acc	643 Protei cession #: 1	in sequence NP_037403.1				
455055	Protein Acc 1 MAGSPLLWGP RSVPRGEAAG PALGLDDDPD EEAGDETPDV	cession #: 1 11 RAGGVGLLVL AVQELARALA APAAQLARAL	- ,	ARAEAQEAED AAQLVPAPVP	QQARVLAQLL AAALRPRPPV	RVWGAPRNSD YDDGPAGPDA	60 120 180 240
50 55	Protein Acc 1 MAGSPLLWGP RSVPRGEAAG PALGLDDDPD EEAGDETPDV RVKRLETPAP Seq ID NO: Nucleic Ac:	11 RAGGVGLLVL AVQELARALA APAAQLARAL DPELLRYLLG QVPARRLLPP 644 DNA 86	NP_037403.1 21 LLLGLFRPPP HLLEAERQER LRARLDPAAL RILAGSADSE equence d#: NM_002	ALCARPVKEP ARAEAQEAED AAQLVPAPVP GVAAPRRLRR	 RGLSAASPPL QQARVLAQLL AAALRPRPPV	AETGAPRRFR RVWGAPRNSD YDDGPAGPDA	120 180
50	Protein Acc 1	11	NP_037403.1 21 LLLGLFRPPP HLLEAERQER LRARLDPAAL RILAGSADSE equence 1 #: NM_002 21 TTGCTGGCAT GCTGCTCCGC	ALCARPVKEP ARAEAQEAED AAQLVPAPVP GVAAPRRLRR 214 31 CCCGAGCTTC AGACGGGGCT	RGLSAASPPL QQARVLAQLL AAALRPRPPV AADHDVGSEL 41 CTCCCTTGCC GCAAAGCTGC	AETGAPRRPR RVWGAPRNSD YDDGPAGPDA PPEGVLGALL 51 AGCCAGGACG AACTAATGGT	120 180 240
50 55	Protein Acc 1 MAGSPLLWGP RSVPRGEAAG PALGLDDDPD EEAGDETPDV RVKRLETPAP Seq ID NO: Nucleic Ac: Coding sequ 1 CCCAGAGCCG CTGCCGACTT GTTGGCCTCC TCCCCTCGAC TAGGGTGGTT TGTCCCGGAGT TGTCCCGGAGT TGTCCCGGAGT TGTCCCGGAGT TGTCCCGGAGT TGTCCCGGAGT TGTCCCGGAGT	11	NP_037403.1 21 LLLGLFRPPP HLLEAERQER LRARLDPAAL RILAGSADSE equence 1 #: NM_002 .2990 21 TTGCTGGCAT GCTGCTCCGC GTGGAAGCAA TACCTTCCGGCTT GAAGCCCCAC AGCCCTTGCA	ALCARPVKEP ARAEAQEAED AAQLVPAPVP GVAAPRRLRR 214 31 CCCGAGCTTC AGACGGGGT CTGCGCTGAT CAGATCCAGC TGTTTGGGT TGTTTGGGT TGGTTTGGGT GGGTGGAGA GAGCCCTCTC	RGLSAASPPL QQARVLAQLL AAALRPRPPV AADHDVGSEL 41 CTCCCTTGCC GCAAAGCTGC TGATGCGCCA ATCACCCAGT TGAATTGTGT TGAAACAAAAG TCCAGTCGCC	AETGAPRRPR RVWGAPRNSD YDDGPAGPDA PPEGVLGALL 51 AGCCAGGACG AACTAATGGT CAGACTTTTT GAATGTACAT TGGCTCTTCG CTCTTTTCTT GCCGGCCCT	120 180 240 60 120 180 240 300 360 420
50 55 60	Protein Acc 1 MAGSPLLWGP RSVPRGEAAG PALGLDDDPD EEAGDETPDV RVKRLETPAP Seq ID NO: Nucleic Ac: Coding sequ 1 CCCAGAGCCG CTGCCGACTT GTTGGCCTCC TCCCCTCGAC TAGGGTGGTT CTAAGCTGAT TGTCCCGGAG GGCCGTCGA GGCCGTCGA GGCCGTCGA GGCCGTCGAG GGCCCCCAGGC GGGCCGCGGG GGGCCCCCAGG GGGCCGCGGG GGGCCGCGGG GGGCGGGGCT	11 RAGGVGLLVL AVQELARALA APAAQLARAL DPELLRYLLG QVPARRLLPP 644 DNA se id Accession Hence: 681. 11 CCTCCCCCTG GTCTTTGCCC CTGCCCACCT CTCGCCGGCG TCACCCCCCACCT CTCGCCGGCG TCACCCCCCACCT CTCGCCGCGCG TCACCCCCCACCT TCGCCCGCG	NP_037403.1 21 LLLGLFRPPP HLLEAERQER LRARLDPAAL RILAGSADSE equence 1 #: NM_002 .2990 21 TTGCTGGCAT GCTGCTCCCA CTTCGGGCTT GAAGCCCCAC AGCCCTTGCA GCCCTTGCA GCCGAGGGGT GCTAGGCCT GCTAGGCCT GCTAGGCCCA ATGTGCCGCC ATGTGCGCCC ATGTGCGCCC ATGTGCGCCC	ALCARPVKEP ARAEAQEAED AAQLVPAPVP GVAAPRRLRR 214 31 CCCGGAGCTTC AGACGGGGCT CTGCGCTGAT CAGATCCAGC TGTTTGGGTT CGGCTGAGA GAGCCCTCTC ACCGCGGAC GCCCGGGAC GCCCGGGCCC CGGAAAACGT GCGTCCGGA	RGLSAASPPL QQARVLAQLL AAALRPRPPV AADHDVGSEL 41 CTCCCTTGCC GCAAAGCTGC TGATGCGCCA ATCACCCAGT TGATAGGTTGTT GAAACAAAAG TCCAGTCGCC CCGCCGTGCC GCTTACCTGC CCTAGCGACA GGCAGCCAGG	AETGAPRRPR RVWGAPRNSD YDDGPAGPDA PPEGVLGALL 51 AGCCAGGACG AACTAATGGT CAGACTTTTT GAATGTACAT TGGCTCTTCG CTCTTTTCTT GCCGGGCCCT GAGCCGGAG ACCGCTTGCT CTCGCCCGCG CGGCGGGCCC CGGCGGGCCC CGGCGGCCC CGGCGG	120 180 240 60 120 180 240 300 360 420 480 540 600 660 720
50556065	Protein Acc 1 MAGSPLLWGP RSVPRGEAAG PALGLDDDPD EEAGDETPDV RVKRLETPAP Seq ID NO: Nucleic Ac: Coding sequ 1 CCCAGAGCCG CTGCCGACTT GTTGGCCTCC TCCCCTCGAC TAGGTGGT TGTCCCGGAG GGCCGTCGA GGCCGTCGA GGCCGTCGA GGCCGTCGA GGCCGTCGA CCTTGCCTGCA CACTTGTTCT CTAGGTGG GTTCAGGTGG GTTCAGGTGG GTTTCAGGTGG GCTCAGTTGA	11 RAGGVGLLVL AVQELARALA APAAQLARAL DPELLRYLLG QVPARRLLPP 644 DNA seid Accession dence: 681. CCTCCCCCTG GTCTTTGCCC CTGCCACCT CTCGCCGCG TCACCCCCACG TCACCCCCACG AGGAGTGCT GCCTGGCAGAT AACGACTGCCCTGCC	NP_037403.1 21 LLLGLFRPPP HLLEAERQER LRARLDPAAL RILAGSADSE equence #: NM_002 NM_002	ALCARPVKEP ARAEAQEAED ARAEAQEAED ARQUVPAPVP GVAAPRRLRR 2114 31 CCCGAGCTTC CTGCGCTGAT CAGATCCAGC TGTTTGGGTT CGGCTGAGAG ACGCGGGCC CGGAAAACGT GCCCGGGCCC CGGAAAACGT CGCCCTGGC CCTCGTTCCT ACAATAGATG AATGTGGATT TGCATGTTAT	RGLSAASPPL QQARVLAQLL AAALRPRPPV AADHDVGSEL 41 CTCCCTTGCC GCAAAGCTGC TGATGCCCAGT TGATTGTGT TGAACAAAAG TCCAGTCGCC CCTAGCGACA GCCAGCC CCTAGCGACA GTTTTTTACC CTGGGCAGC TTGTTTTACC CTGGGCAGC TGCATCTTCA CTGGTCATCA ATACCCACT	AETGAPRRPR RVWGAPRNSD YDDGPAGPDA PPEGVLGALL 51 AGCCAGGACG AACTAATGGT CAGACTTTTT GAATGTACAT TGGCTCTTCG GAGCCGGGCCCT GAGCCGGGCCCT CTCGCCCGCG CGGCGCGCCCT CTCGCCCCCC CGGCGCCCT CGCCCCCCC CGGCGCGCCCT CGCCCCCCC CGGCGCCCT CGCCCCCCC CGGCGCCCC CGCGCGCTTTT AATGCAGCAT CAGCATTCC AAGCATTCC AAGCATTCC GAAAATGAAA	120 180 240 60 120 180 240 300 360 660 720 780 840 900 1020
5055606570	Protein Acc 1 MAGSPLLWGP RSVPRGEAAG PALGLDDDPD EEAGDETPDV RVKRLETPAP Seq ID NO: Nucleic Ac: Coding sequ 1 CCCAGAGCCG CTGCCGACTT GTTGGCCTCC TCCCTCGAC TAGGTGGT TGTCCCGGAG GGCCGTCGAG GGCCGTCGAG GGCCGTCGAG GGCCGTCGAG TCTCCCTGCA CACTTGTTCT CTTGCCAG GTTCAGTGG TTCAGTGG TTCAGTGG TTCAGTTGA TTAATACCCA ATTTTATGCT ATGTTCTAGAAAAT AAACAGTTTC	11 RAGGVGLLVL AVQELARALA APAAQLARAL DPELLRYLLG QVPARRLLPP 644 DNA se id Accession hence: 681. 11 CCTCCCCCTG GTCTTTGCCC CTGCCCACCT CTGCCGGCG TCACCCCCCGGG TCACCCCCCGGG TTATGCAGCA TATGCAGCA GGGAGTGCT GCCCTGGGG AGGAGGTGCT GCCCTGGGG TTGCGC TGGCCGGGA TTGCAT TAAACGACCG TGGCCTTGCG TGGCCTTGCG TGGCCTTGCG TGGCCTTGCG TGGCCTTGCG TGGACTGGC TTCAAAGAAGT TTCAATAGAA GGTGACACCA GAAAGTTCAT ACCATACATT ACCATACATT	NP_037403.1 21 LLLGLFRPPP HLLEAERQER LRARLDPAAL RILAGSADSE equence # #: NM_002 .2990 21 TTGCTGGCAT GCTGCAGCCT GCGCCAGGCCT GAGCCCTGCA GCCCTGCA GCCCATGCCC CTGGGTCAGCCC CTGGGTCAGCCC CTGGGTCAG GCCAGCCC CTGGGTCAG GCCAGCCC CTGGTCAGCCC GAGGTCAG GCCAGCCC CTGGGTCCAG GCCAGCTCCG GCCAGCTCCAGCCC CTGGTCAGACT CTGCGTCCAC CTGGTCAGACTTG GAACGTTGTG TACCCATCTG GGAGAACTTGT CCTCTGAAGA AATAATATAA	ALCARPVKEP ARAEAQEAED ARAEAQEAED ARQUVPAPVP GVAAPRRLRR 2114 31 CCCGAGCTTC AGACGGGGCT CTGCGCTGAT CAGATCCAGC TGTTTGGGTGAT CAGATCCAGC GCCCGGGCCC CGGAAAACGT GCCCTCGTCCT ACAGTGATC ATATGTTTTC TGCATGATTTTC TGCATGATTTTC TGCATGATTTTC TGCATGATTTTC TGCATGATTTTTC TGCATGATTTTTC TGCATGATTTTTC TATCCAGCT AAAAATTAAA TTCGTCTTGG CCGAAAGGAT	RGLSAASPPL QQARVLAQLL AAALRPRPPV AADHDVGSEL 41 CTCCCTTGCC GCAAGCTGCC TGATGCGCCA TGATTGTGTT GAAACAAAG TCCAGTCGCC CCTAGCGGCA GCTACCTGC CCTAGCGACA GGCAGCCAGG TTTTTTACC CTGGGCAGCC TGCATCTCA GTGTTCAA CAATTTAATA AATACCCACT GCGTCCAGGA GGATCTTTAT TTCCGTTGGA GTTCTTGAT AATTTAATA AATACCCACT TCCGTTGGA GGATCTTTAT TTCCGTTTGGA TTCCTTTGCA TTCATAATCAA	AETGAPRRPR RVWGAPRNSD YDDGPAGPDA PPEGVLGALL 51 AGCCAGGACG AACTAATGGT CAGACTTTTT GCAGGCTTTCT GCCGGGCCCT GAGCCGGGGG CCTGCATTTG TGGCTCTTG TGGCTGTTTT AGTGCAGCAT AATGCAGCAT AATGCAGCAT AATGCAGCAT AATGCAGCAT AAGCAAAAGGCT AAGCAAAAGGCT	120 180 240 240 120 180 240 300 480 540 660 720 780 840 900 960

```
GCAAATTGGC AGGCATAGTG GTGCCCAATG ACGGAAACTG TCATCTGAAA AACAACGTCT
                                                                           1620
       ACGTCAAATC GACAACCATG GAACACCCCT CACTAGGCCA ACTTTCAGAG AAATTAATAG
                                                                            1680
       ACAACAACAT TAATGTCATC TTTGCAGTTC AAGGAAAACA ATTTCATTGG TATAAGGATC
       TTCTACCCCT CTTGCCAGGC ACCATTGCTG GTGAAATAGA ATCAAAGGCT GCAAACCTCA.
                                                                            1800
 5
       ATAATTTGGT AGTGGAAGCC TATCAGAAGC TCATTTCAGA AGTGAAAGTT CAGGTGGAAA
       ACCAGGTACA AGGCATCTAT TTTAACATTA CCGCCATCTG TCCAGATGGG TCCAGAAAGC
       CAGGCATGGA AGGATGCAGA AACGTGACGA GCAATGATGA AGTTCTTTTC AATGTAACAG
                                                                            1980
       TTACAATGAA AAAATGTGAT GTCACAGGAG GAAAAAACTA TGCAATAATC AAACCTATTG
                                                                            2040
       GTTTTAATGA AACCGCTAAA ATTCATATAC ACAGAAACTG CAGCTGTCAG TGTGAGGACA
                                                                            2100
10
       ACAGAGGACC TAAAGGAAAG TGTGTAGATG AAACTTTTCT AGATTCCAAG TGTTTCCAGT
                                                                            2160
       GTGATGAGAA TAAATGTCAT TTTGATGAAG ATCAGTTTTC TTCTGAGAGT TGCAAGTCAC
                                                                            2220
       ACAAGGATCA GCCTGTTTGC AGTGGTCGAG GAGTTTGTGT TTGTGGGAAA TGTTCATGTC
                                                                            2280
       ACAAAATTAA GCTTGGAAAA GTGTATGGAA AATACTGTGA AAAGGATGAC TTTTCTTGTC
                                                                            2340
       CATATCACCA TGGAAATCTG TGTGCTGGGC ATGGAGAGTG TGAAGCAGGC AGATGCCAAT
                                                                            2400
15
       GCTTCAGTGG CTGGGAAGGT GATCGATGCC AGTGCCCTTC AGCAGCAGCC CAGCACTGTG
                                                                            2460
       TCAATTCAAA GGGCCAAGTG TGCAGTGGAA GAGGCACGTG TGTGTGTGGA AGGTGTGAGT
                                                                           2520
       GCACCGATCC CAGGAGCATC GGCCGCTTCT GTGAACACTG CCCCACCTGT TATACAGCCT
                                                                            2580
       GCAAGGAAAA CTGGAATTGT ATGCAATGCC TTCACCCTCA CAATTTGTCT CAGGCTATAC
       TTGATCAGTG CAAAACCTCA TGTGCTCTCA TGGAACAACA GCATTATGTC GACCAAACTT
                                                                            2700
20
       CAGAATGTTT CTCCAGCCCA AGCTACTTGA GAATATTTTT CATCATTTTC ATAGTTACAT
       TCTTGATTGG GTTGCTTAAA GTCCTGATCA TTAGACAGGT GATACTACAA TGGAATAGTA
                                                                            2820
       ATAAAATTAA GTCCTCATCA GATTACAGAG TGTCAGCCTC AAAAAAGGAT AAGTTGATTC
                                                                            2880
       TGCAAAGTGT TTGCACAAGA GCAGTCACCT ACCGACGTGA GAAGCCTGAA GAAATAAAAA
                                                                            2940
       TGGATATCAG CAAATTAAAT GCTCATGAAA CTTTCAGGTG CAACTTCTAA AAAAAGATTT
                                                                            3000
25
       TTAAACACTT AATGGGAAAC TGGAATTGTT AATAATTGCT CCTAAAGATT ATAATTTAA
                                                                            3060
       AAGTCACAGG AGGAGACAAA TTGCTCACGG TCATGCCAGT TGCTGGTTGT ACACTCGAAC
                                                                            3120
       GAAGACTGAC AAGTATCCTC ATCATGATGT GACTCACATA GCTGCTGACT TTTTCAGAGA
                                                                            3180
       AAAATGTGTC TTACTACTGT TTGAGACTAG TGTCGTTGTA GCACTTTACT GTAATATATA
                                                                            3240
       ACTTATTTAG ATCAGCATAG AATGTAGATC CTCTGAAGAG CACTGATTAC ACTTTACAGG
                                                                            3300
30
       TACCTGTTAT CCCTACGCTT CCCAGAGAGA ACAATGCTGT GAGAGAGTTT AGCATTGTGT
                                                                            3360
       CACTACAAGG GTACAGTAAT CCCTGCACTG GACATGTGAG GAAAAAAATA ATCTGGCAAG
                                                                            3420
       TATATTCTAA GGTTGCCAAA CACTTCAACA GTTGGTGGTT GAATAGACAA GAACAGCTAG
                                                                            3480
       ATGAATAAAT GATTCGTGTT TCACTCTTTC AAGAGGTGAA CAGATACAAC CTTAATCTTA
                                                                            3540
       AAAGATTATT GCTTTTTAAA GTGTGTAGTT TTATGCATGT GTGTTTATGG TTTGCTTATT
                                                                            3600
35
       TTTGCAAGAT GGATACTAAT TCCAGCATTC TCTCCTCTTT GCCTTTATGT TTTGTTTTCT
                                                                            3660
       TTTTTACAGG ATAAGTTTAT GTATGTCACA GATGACTGGA TTAATTAAGT GCTAAGTTAC
                                                                            3720
       TACTGCCATA AAAAACTAAT AATACAATGT CACTTTATCA GAATACTAGT TTTAAAAGCT
       GAATGTTAA
40
       Seg ID NO: 645 Protein seguence
       Protein Accession #: NP_002205
                              21
                                         31
                                                    41
                                                               51
                  11
45
       MCGSALAFFT AAFVCLONDR RGPASFLWAA WVFSLVLGLG OGEDNRCASS NAASCARCLA
                                                                              60
       LGPECGWCVQ EDFISGGSRS ERCDIVSNLI SKGCSVDSIE YPSVHVIIPT ENEINTQVTP
                                                                             120
       GEVSIOLRPG AEANFMLKVH PLKKYPVDLY YLVDVSASMH NNIEKLNSVG NDLSRKMAFF
                                                                             180
       SRDFRLGFGS YVDKTVSPYI SIHPERIHNQ CSDYNLDCMP PHGYIHVLSL TENITEPEKA
                                                                             240
       VHRQKISGNI DTPEGGFDAM LQAAVCESHI GWRKEAKRLL LVMTDQTSHL ALDSKLAGIV
                                                                             300
50
       VPNDGNCHLK NNVYVKSTTM EHPSLGQLSE KLIDNNINVI FAVQGKQFHW YKDLLPLLPG
                                                                             360
       TIAGEIESKA ANLNNLVVEA YQKLISEVKV QVENQVQGIY FNITAICPDG SRKPGMEGCR
                                                                             420
       NVTSNDEVLF NVTVTMKKCD VTGGKNYAII KPIGFNETAK IHIHRNCSCQ CEDNRGPKGK
                                                                             480
       CVDETFLDSK CFQCDENKCH FDEDQFSSES CKSHKDQPVC SGRGVCVCGK CSCHKIKLGK
                                                                             540
       VYGKYCEKDD FSCPYHHGNL CAGHGECEAG RCQCFSGWEG DRCQCPSAAA QHCVNSKGQV
                                                                             600
55
       CSGRGTCVCG RCECTDPRSI GRFCEHCPTC YTACKENWNC MQCLHPHNLS QAILDQCKTS
                                                                             660
       CALMEQOHYV DOTSECFSSP SYLRIFFIIF IVTFLIGLLK VLIIRQVILQ WNSNKIKSSS
                                                                             720
       DYRVSASKKD KLILQSVCTR AVTYRREKPE EIKMDISKLN AHETFRCNF
       Seq ID NO: 646 DNA sequence
60
       Nucleic Acid Accession #: NM 003318.1
       Coding sequence: 1..2574
                             21
                                         31
65
       ATGGAATCCG AGGATTTAAG TGGCAGAGAA TTGACAATTG ATTCCATAAT GAACAAAGTG
                                                                             60
       AGAGACATTA AAAATAAGTT TAAAAATGAA GACCTTACTG ATGAACTAAG CTTGAATAAA
                                                                             120
       ATTTCTGCTG ATACTACAGA TAACTCGGGA ACTGTTAACC AAATTATGAT GATGGCAAAC
                                                                             180
       AACCCAGAGG ACTGGTTGAG TTTGTTGCTC AAACTAGAGA AAAACAGTGT TCCGCTAAGT
                                                                             240
       GATGCTCTTT TAAATAAAFT GATTGGTCGT TACAGTCAAG CAATTGAAGC GCTTCCCCCA
                                                                             300
70
       GATAAATATG GCCAAAATGA GAGTTTTGCT AGAATTCAAG TGAGATTTGC TGAATTAAAA
                                                                             360
       GCTATTCAAG AGCCAGATGA TGCACGTGAC TACTTTCAAA TGGCCAGAGC AAACTGCAAG
AAATTTGCTT TTGTTCATAT ATCTTTTGCA CAATTTGAAC TGTCACAAGG TAATGTCAAA
                                                                             420
                                                                             480
       AAAAGTAAAC AACTTCTTCA AAAAGCTGTA GAACGTGGAG CAGTACCACT AGAAATGCTG
                                                                             540
       GAAATTGCCC TGCGGAATTT AAACCTCCAA AAAAAGCAGC TGCTTTCAGA GGAGGAAAAG
                                                                             600
75
       AAGAATTTAT CAGCATCTAC GGTATTAACT GCCCAAGAAT CATTTTCCGG TTCACTTGGG
                                                                             660
       CATTTACAGA ATAGGAACAA CAGTTGTGAT TCCAGAGGAC AGACTACTAA AGCCAGGTTT
                                                                             720
       TTATATGGAG AGAACATGCC ACCACAAGAT GCAGAAATAG GTTACCGGAA TTCATTGAGA
                                                                             780
       CAAACTAACA AAACTAAACA GTCATGCCCA TTTGGAAGAG TCCCAGTTAA CCTTCTAAAT
                                                                             840
       AGCCCAGATT GTGATGTGAA GACAGATGAT TCAGTTGTAC CTTGTTTTAT GAAAAGACAA
                                                                             900
80
       ACCTCTAGAT CAGAATGCCG AGATTTGGTT GTGCCTGGAT CTAAACCAAG TGGAAATGAT
                                                                             960
       TCCTGTGAAT TAAGAAATTT AAAGTCTGTT CAAAATAGTC ATTTCAAGGA ACCTCTGGTG
                                                                            1020
       TCAGATGAAA AGAGTTCTGA ACTTATTATT ACTGATTCAA TAACCCTGAA GAATAAAACG
                                                                            1080
       GAATCAAGTC TTCTAGCTAA ATTAGAAGAA ACTAAAGAGT ATCAAGAACC AGAGGTTCCA
                                                                            1140
       GAGAGTAACC AGAAACAGTG GCAATCTAAG AGAAAGTCAG AGTGTATTAA CCAGAATCCT
                                                                            1200
85
       GCTGCATCTT CAAATCACTG GCAGATTCCG GAGTTAGCCC GAAAAGTTAA TACAGAGCAG
                                                                           1260
       AAACATACCA CTTTTGAGCA ACCTGTCTTT TCAGTTTCAA AACAGTCACC ACCAATATCA
                                                                            1320
       ACATCTAAAT GGTTTGACCC AAAATCTATT TGTAAGACAC CAAGCAGCAA TACCTTGGAT
```

TATGACATCA AAGATAGACT TTTGCCTAAG TGGCTTAGCT GGGTCTTTCA TAGCCAAACT

2340

PCT/US02/12476

```
Seq ID NO: 649 Protein sequence
 5
       Protein Accession #: NP_056322
                  11
                             21
                                         31
                                                    41
                                                               51
       MPLPWSLALP LLLSWVAGGF GNAASARHHG LLASARQPGV CHYGTKLACC YGWRRNSKGV
                                                                             60
10
       CEATCEPGCK FGECVGPNKC RCFPGYTGKT CSQDVNECGM KPRPCQHRCV NTHGSYKCFC
                                                                            120
       LSGHMLMPDA TCVNSRTCAM INCQYSCEDT EEGPQCLCPS SGLRLAPNGR DCLDIDECAS
                                                                            180
       GKVICPYNRR CVNTFGSYYC KCHIGFELQY ISGRYDCIDI NECTMDSHTC SHHANCFNTQ
                                                                            240
       GSFKCKCKQG YKGNGLRCSA IPENSVKEVL RAPGTIKDRI KKLLAHKNSM KKKAKIKNVT
                                                                            300
       PEPTRTPTPK VNLQPFNYEE IVSRGGNSHG GKKGNEEKMK EGLEDEKREE KALKNDIEER
                                                                            360
15
       SLRGDVFFPK VNEAGEFGLI LVQRKALTSK LEHKDLNISV DCSFNHGICD WKQDREDDFD
                                                                            420
       WNPADRDNAI GFYMAVPALA GHKKDIGRLK LLLPDLQPQS NFCLLFDYRL AGDKVGKLRV
                                                                             480
       FVKNSNNALA WEKTTSEDEK WKTGKIQLYQ GTDATKSIIF EAERGKGKTG EIAVDGVLLV
       SGLCPDSLLS VDD
20
       Seg ID NO: 650 DNA sequence
       Nucleic Acid Accession #: NM_003506.1
       Coding sequence: 259..2379
                                         31
                                                               51
25
       GCAGCTCCAG TCCCGGACGC AACCCCGGAG CCGTCTCAGG TCCCTGGGGG GAACGGTGGG
                                                                             60
       TTAGACGGGG ACGGGAAGGG ACAGCGGCCT TCGACCGCCC CCCGAGTAAT TGACCCAGGA
                                                                            120
       CTCATTTCA GGAAAGCCTG AAAATGAGTA AAATAGTGAA ATGAGGAATT TGAACATTTT
                                                                            180
       ATCTTTGGAT GGGGATCTTC TGAGGATGCA AAGAGTGATT CATCCAAGCC ATGTGGTAAA
                                                                            240
30
       ATCAGGAATT TGAAGAAAAT GGAGATGTTT ACATTTTTGT TGACGTGTAT TTTTCTACCC
                                                                            300
       CTCCTAAGAG GGCACAGTCT CTTCACCTGT GAACCAATTA CTGTTCCCAG ATGTATGAAA
                                                                            360
       ATGGCCTACA ACATGACGTT TTTCCCTAAT CTGATGGGTC ATTATGACCA GAGTATTGCC
                                                                            420
       GCGGTGGAAA TGGAGCATTT TCTTCCTCTC GCAAATCTGG AATGTTCACC AAACATTGAA
                                                                            480
       ACTITICATOR GCAAAGCATT TGTACCAACC TGCATAGAAC AAATTCATGT GGTTCCACCT
                                                                            540
35
       TGTCGTAAAC TTTGTGAGAA AGTATATTCT GATTGCAAAA AATTAATTGA CACTTTTGGG
                                                                            600
       ATCCGATGGC CTGAGGAGCT TGAATGTGAC AGATTACAAT ACTGTGATGA GACTGTTCCT
                                                                            660
       GTAACTTTTG ATCCACACAC AGAATTTCTT GGTCCTCAGA AGAAAACAGA ACAAGTCCAA
       AGAGACATTG GATTTTGGTG TCCAAGGCAT CTTAAGACTT CTGGGGGACA AGGATATAAG
       TTTCTGGGAA TTGACCAGTG TGCGCCTCCA TGCCCCAACA TGTATTTTAA AAGTGATGAG
                                                                            840
40
       CTAGAGTTTG CAAAAAGTTT TATTGGAACA GTTTCAATAT TTTGTCTTTG TGCAACTCTG
                                                                            900
       TTCACATTCC TTACTTTTTT AATTGATGTT AGAAGATTCA GATACCCAGA GAGACCAATT
                                                                            960
       ATATATTACT CTGTCTGTTA CAGCATTGTA TCTCTTATGT ACTTCATTGG ATTTTTGCTG
                                                                           1020
       GGCGATAGCA CAGCCTGCAA TAAGGCAGAT GAGAAGCTAG AACTTGGTGA CACTGTTGTC
                                                                           1080
       CTAGGCTCTC AAAATAAGGC TTGCACCGTT TTGTTCATGC TTTTGTATTT TTTCACAATG
                                                                           1140
45
       GCTGGCACTG TGTGGTGGGT GATTCTTACC ATTACTTGGT TCTTAGCTGC AGGAAGAAAA
TGGAGTTGTG AAGCCATCGA GCAAAAAGCA GTGTGGTTTC ATGCTGTTGC ATGGGGAACA
                                                                           1200
                                                                           1260
       CCAGGTTTCC TGACTGTTAT GCTTCTTGCT CTGAACAAG TTGAAGGAGA CAACATTAGT
                                                                           1320
       GGAGTTTGCT TTGTTGGCCT TTATGACCTG GATGCTTCTC GCTACTTTGT ACTCTTGCCA
                                                                           1380
       CTGTGCCTTT GTGTGTTTGT TGGGCTCTCT CTTCTTTTAG CTGGCATTAT TTCCTTAAAT
                                                                           1440
50
       CATGTTCGAC AAGTCATACA ACATGATGGC CGGAACCAAG AAAAACTAAA GAAATTTATG
                                                                           1500
       ATTCGAATTG GAGTCTTCAG CGGCTTGTAT CTTGTGCCAT TAGTGACACT TCTCGGATGT
                                                                           1560
       TACGTCTATG AGCAAGTGAA CAGGATTACC TGGGAGATAA CTTGGGTCTC TGATCATTGT
                                                                           1620
                                                                           1680
       CGTCAGTACC ATATCCCATG TCCTTATCAG GCAAAAGCAA AAGCTCGACC AGAATTGGCT
       TTATTTATGA TAAAATACCT GATGACATTA ATTGTTGGCA TCTCTGCTGT CTTCTGGGTT
                                                                           1740
55
                                                                           1800
       GGAAGCAAAA AGACATGCAC AGAATGGGCT GGGTTTTTTA AACGAAATCG CAAGAGAGAT
       CCAATCAGTG AAAGTCGAAG AGTACTACAG GAATCATGTG AGTTTTTCTT AAAGCACAAT
                                                                           1860
       TCTAAAGTTA AACACAAAAA GAAGCACTAT AAACCAAGTT CACACAAGCT GAAGGTCATT
                                                                           1920
       TCCAAATCCA TGGGAACCAG CACAGGAGCT ACAGCAAATC ATGGCACTTC TGCAGTAGCA
                                                                           1980
       ATTACTAGCC ATGATTACCT AGGACAAGAA ACTTTGACAG AAATCCAAAC CTCACCAGAA
                                                                           2040
60
       ACATCAATGA GAGAGGTGAA AGCGGACGGA GCTAGCACCC CCAGGTTAAG AGAACAGGAC
                                                                           2100
       TGTGGTGAAC CTGCCTCGCC AGCAGCATCC ATCTCCAGAC TCTCTGGGGA ACAGGTCGAC
                                                                           2160
       GGGAAGGCC AGGCAGCAG TGTATCTGAA AGTGCGCGGA GTGAAGGAAG GATTAGTCCA
                                                                           2220
       AAGAGTGATA TTACTGACAC TGGCCTGGCA CAGAGCAACA ATTTGCAGGT CCCCAGTTCT
                                                                           2280
       TCAGAACCAA GCAGCCTCAA AGGTTCCACA TCTCTGCTTG TTCACCCAGT TTCAGGAGTG
                                                                           2340
65
       AGAAAAGAGC AGGGAGGTGG TTGTCATTCA GATACTTGAA GAACATTTTC TCTCGTTACT
                                                                           2400
       CAGAAGCAAA TTTGTGTTAC ACTGGAAGTG ACCTATGCAC TGTTTTGTAA GAATCACTGT
                                                                           2460
       TACGTTCTTC TTTTGCACTT AAAGTTGCAT TGCCTACTGT TATACTGGAA AAAATAGAGT
       TCAAGAATAA TATGACTCAT TTCACACAAA GGTTAATGAC AACAATATAC CTGAAAACAG
                                                                           2580
       AAATGTGCAG GTTAATAATA TTTTTTTAAT AGTGTGGGAG GACAGAGTTA GAGGAATCTT
                                                                           2640
70
       CCTTTTCTAT TTATGAAGAT TCTACTCTTG GTAAGAGTAT TTTAAGATGT ACTATGCTAT
                                                                           2700
       TTTACCTTTT TGATATAAAA TCAAGATATT TCTTTGCTGA AGTATTTAAA TCTTATCCTT
                                                                           2760
       GTATCTTTT ATACATATTT GAAAATAAGC TTATATGTAT TTGAACTTTT TTGAAATCCT
                                                                           2820
       ATTCAAGTAT TTTTATCATG CTATTGTGAT ATTTTAGCAC TTTGGTAGCT TTTACACTGA
                                                                           2880
       ATTTCTAAGA AAATTGTAAA ATAGTCTTCT TTTATACTGT AAAAAAAGAT ATACCAAAAA
                                                                           2940
75
       GTCTTATAAT AGGAATTTAA CTTTAAAAAC CCACTTATTG ATACCTTACC ATCTAAAATG
                                                                           3000
       TGTGATTTTT ATAGTCTCGT TTTAGGAATT TCACAGATCT AAATTATGTA ACTGAAATAA
                                                                           3060
       GGTGCTTACT CAAAGAGTGT CCACTATTGA TTGTATTATG CTGCTCACTG ATCCTTCTGC
                                                                           3120
       ATATTTAAAA TAAAATGTCC TAAAGGGTTA GTAGACAAAA TGTTAGTCTT TTGTATATTA
                                                                           3180
       GGCCAAGTGC AATTGACTTC CCTTTTTTAA TGTTTCATGA CCACCCATTG ATTGTATTAT
                                                                           3240
80
       AACCACTTAC AGTTGCTTAT ATTTTTTGTT TTAACTTTTG TTTCTTAACA TTTAGAATAT
                                                                           3300
       TACATTTGT ATTATACAGT ACCTTTCTCA GACATTTTGT AG
       Seq ID NO: 651 Protein sequence
       Protein Accession #: NP_003497.1
85
                             21
                                                               51
```

WO 02/086443 PCT/US02/12476

FFFFLLTC IFLPLLEGHS LFTCEPITVP RCMKMAYNMT FPPNLMGHYD QSIAAVEMEH 60

		IFLPLLRGHS					60
		PNIETFLCKA ETVPVTFDPH					120 180
_	CAPPCPNMYF	KSDELEFAKS	FIGTVSIFCL	CATLFTFLTF	LIDVRRFRYP	ERPIIYYSVC	240
5		GFLLGDSTAC AGRKWSCEAI					300
		VLLPLCLCVF					360 420
		LLGCYVYEQV					480
10		VFWVGSKKTC					540
10		LKVISKSMGT REQDCGEPAS					600 660
		VPSSSEPSSL					000
	O TD NO.	CEO DWA					
15		652 DNA so id Accession	-	1791.1			
		uence: 171.				•	
	,	11	21	31	41	51	
	1	i i	1	1	1]	
20		GAAGCGGCCA					60
		TCAGGACAGC					120
		AGGTTCTTTT TCTCAAATAT					180 240
0.5	AGGTCAAACT	TGCCTGCCAT	ATCCTTACTG	GAGAGATGGT	AGCTATAAAA	ATCATGGATA	300
25		AGGGAGTGAT					360
		GCATATATGT GTACTGCCCT					420 480
		GGAGACCCGG					540
30		CTATGCTCAC					600
50		GCTGATTGAC ATGCTGTGGG					660 720
		ATCAGAGGCA					780
		ACCATTTGAT					840
35		TGTTCCCAAG CCCAAAGAAA					900 960
-		CAACTATCCT					1020
		AACAGAACTT					1080
		GTGGCAGTAT AAAACCAGTT					1140 1200
40		CACAGACATC					1260
		TGTGGCGGGA					1320
		TCCCCGAACA ATTAACTCCA					1380 1440
		TACTCCTAAG					1500
45		AGTTAATAAG					1560
		CTCAAAAGCT AGGAACAGAC					1620 1680
		ATTGGATCTC					1740
50		TGGGAGCCTT					1800
30		GGGTTCTGCC ATTAGTGAAT					1860 1920
		TGACTTTGTA					1980
		GACAATGCAA					2040
55		GAGGCAGCGG TAGCTGCAAG					2100 2160
		AGCCTACATA					2220
		GTTTCTAAAG					2280
						CTGTCTTTTT TCCATATGTG	2340 2400
60						ATAAAACCAT	2460
	TTGTGAATAT						
	Sea ID NO:	653 Protei	n sequence				
65		ession #: N					
65	1	11	21	31	41	51	
	î	Î	1	1	Ī]	
		YELHETIGTG					60
70		QLYHVLETAN RDLKPENLLF					120 180
, ,		DVWSMGILLY					240
	QQMLQVDPKK	RISMKNLLNH	PWIMQDYNYP	VEWQSKNPFI	${\tt HLDDDCVTEL}$	SVHHRNNRQT	300
		DHLTATYLLL					360 420
75		SAVKNEEYFM					480
	KIPVNSTGTD	KLMTGVISPE	RRCRSVELDL	NQAHMEETPK	RKGAKVFGSL	ERGLDKVITV	540
		RDGPRRLKLH FELEVCQLQK					600
•	QSDFGKVIMQ	PEDEACOROK	PDVVGIRRQR	DRGDAWVIKK	DARDIDSSCK	•	
80		654 DNA 86					
		id Accession Lence: 889		82			
	coursed sed	rence: 00;					
85	1	11	21	31	41	51	
02	 GCAGAGCACA	GCATCGTCGG	GACCAGACTC	GTCTCACCCC	ACTTCC>CCC	TTCTCAGCCA	60
		AAGGAAAACT					120

```
GGCATCACCT GTGCCATACC AGTTAAACAG GCTGATTCTG GAAGTTCTGA GGAAAAGCAG
                                                                             180
       CTTTACAACA AATACCCAGA TGCTGTGGCC ACATGGCTAA ACCCTGACCC ATCTCAGAAG
                                                                             240
       CAGAATCTCC TAGCCCCACA GACCCTTCCA AGTAAGTCCA ACGAAAGCCA TGACCACATG
                                                                             300
       GATGATATGG ATGATGAAGA TGATGATGAC CATGTGGACA GCCAGGACTC CATTGACTCG
                                                                             360
 5
       AACGACTCTG ATGATGTAGA TGACACTGAT GATTCTCACC AGTCTGATGA GTCTCACCAT
                                                                             420
       TCTGATGAAT CTGATGAACT GGTCACTGAT TTTCCCACGG ACCTGCCAGC AACCGAAGTT
                                                                             480
       TTCACTCCAG TTGTCCCCAC AGTAGACACA TATGATGGCC GAGGTGATAG TGTGGTTTAT
                                                                             540
       GGACTGAGGT CAAAATCTAA GAAGTTTCGC AGACCTGACA TCCAGTACCC TGATGCTACA
                                                                             600
       GACGAGGACA TCACCTCACA CATGGAAAGC GAGGAGTTGA ATGGTGCATA CAAGGCCATC
10
       CCCGTTGCCC AGGACCTGAA CGCGCCTTCT GATTGGGACA GCCGTGGGAA GGACAGTTAT
                                                                             720
       GAAACGAGTC AGCTGGATGA CCAGAGTGCT GAAACCCACA GCCACAAGCA GTCCAGATTA
       TATAAGCGGA AAGCCAATGA TGAGAGCAAT GAGCATTCCG ATGTGATTGA TAGTCAGGAA
       CTTTCCAAAG TCAGCCGTGA ATTCCACAGC CATGAATTTC ACAGCCATGA AGATATGCTG
       GTTGTAGACC CCAAAAGTAA GGAAGAAGAT AAACACCTGA AATTTCGTAT TTCTCATGAA
                                                                             960
15
       TTAGATAGTG CATCTTCTGA GGTCAATTAA AAGGAGAAAA AATACAATTT CTCACTTTGC
                                                                            1020
       ATTTAGTCAA AAGAAAAAT GCTTTATAGC AAAATGAAAG AGAACATGAA ATGCTTCTTT
                                                                            1080
       CTCAGTTTAT TGGTTGAATG TGTATCTATT TGAGTCTGGA AATAACTAAT GTGTTTGATA
                                                                            1140
       ATTAGTITAG TITGTGGCTT CATGGAAACT CCCTGTAAAC TAAAAGCTTC AGGGTTATGT
CTATGTTCAT TCTATAGAAG AAATGCAAAC TATCACTGTA TTTTAATATT TGTTATTCTC
                                                                            1200
                                                                            1260
20
       TCATGAATAG AAATTTATGT AGAAGCAAAC AAAATACTTT TACCCACTTA AAAAGAGAAT
                                                                            1320
       ATAACATTTT ATGTCACTAT AATCTTTTGT TTTTTAAGTT AGTGTATATT TTGTTGTGAT
                                                                            1380
                                                                            1440
       TATCTTTTTG TGGTGTGAAT AAATCTTTTA TCTTGAATGT AATAAGAATT TGGTGGTGTC
       AATTGCTTAT TTGTTTTCCC ACGGTTGTCC AGCAATTAAT AAAACATAAC CTTTTTTACT
                                                                            1500
       ССТАВАВА ВАВАВАВАВА ВВВА
25
       Seq ID NO: 655 Protein sequence
       Protein Accession #: NP_000573
                                         31
                              21
30
       MRIAVICECL LGITCAIPVK QADSGSSEEK QLYNKYPDAV ATWLNPDPSQ KQNLLAPQTL
       PSKSNESHDH MDDMDDEDDD DHVDSODSID SNDSDDVDDT DDSHQSDESH HSDESDELVT
                                                                             120
       DFPTDLPATE VFTPVVPTVD TYDGRGDSVV YGLRSKSKKF RRPDIQYPDA TDEDITSHME
SEELNGAYKA IPVAQDLNAP SDWDSRGKDS YETSQLDDQS AETHSHKQSR LYKRKANDES
                                                                             180
                                                                             240
35.
       NEHSDVIDSQ ELSKVSREFH SHEFHSHEDM LVVDPKSKEE DKHLKFRISH ELDSASSEVN
       Seg ID NO: 656 DNA sequence
       Nucleic Acid Accession #: NM_003108.1
       Coding sequence: 76..1401
40
                                                                51
                              21
                                         31
                                                     41
                  11
       GGGGTGGGAG GGGGAGGGGG ACCTCCGCAC GAGACCCAGC GGCCCGGGTT GGAGCGTCCA
                                                                               60
45
       GCCCTGCAAC GGATCATGGT GCAGCAGGCG GAGAGCTTGG AAGCGGAGAG CAACCTGCCC
                                                                             120
       CGGGAGGCGC TGGACACGGA GGAGGGCGAA TTCATGGCTT GCAGCCCGGT GGCCCTGGAC
                                                                             180
       GAGAGCGACC CAGACTGGTG CAAGACGGCG TCGGGCCACA TCAAGCGGCC GATGAACGCG
                                                                             240
       TTCATGGTAT GGTCCAAGAT CGAACGCAGG AAGATCATGG AGCAGTCTCC GGACATGCAC
                                                                             300
       AACGCCGAGA TCTCCAAGAG GCTGGGCAAG CGCTGGAAAA TGCTGAAGGA CAGCGAGAAG
                                                                             360
50
       ATCCCGTTCA TCCGGGAGGC GGAGCGGCTG CGGCTCAAGC ACATGGCCGA CTACCCCGAC
                                                                             420
       TACAAGTACC GGCCCCGGAA AAAGCCCAAA ATGGACCCCT CGGCCAAGCC CAGCGCCAGC
                                                                             480
       CAGAGCCCAG AGAAGAGCGC GGCCGGCGGC GGCGGCGGGA GCGCGGGCG AGGCGCGGGC
                                                                             540
       GGTGCCAAGA CCTCCAAGGG CTCCAGCAAG AAATGCGGCA AGCTCAAGGC CCCCGCGGCC
                                                                              600
       GCGGGCGCCA AGGCGGGCGC GGGCAAGGCG GCCCAGTCCG GGGACTACGG GGGCGCGGGC
                                                                              660
55
       GACGACTACG TGCTGGGCAG CCTGCGCGTG AGCGGCTCGG GCGGCGGCGG CGCGGGCAAG
                                                                              720
       ACGGTCAAGT GCGTGTTTCT GGATGAGGAC GACGACGACG ACGACGACGA CGACGAGCTG
       CAGCTGCAGA TCAAACAGGA GCCGGACGAG GAGGACGAGG AACCACCGCA CCAGCAGCTC
       CTGCAGCCGC CGGGGCAGCA GCCGTCGCAG CTGCTGAGAC GCTACAACGT CGCCAAAGTG
       CCCGCCAGCC CTACGCTGAG CAGCTCGGCG GAGTCCCCCG AGGGAGCGAG CCTCTACGAC
                                                                             960
60
       GAGGTGCGGG CCGGCGCGAC CTCGGGCGCC GGGGGCGGCA GCCGCCTCTA CTACAGCTTC
                                                                             1020
       AAGAACATCA CCAAGCAGCA CCCGCCGCCG CTCGCGCAGC CCGCGCTGTC GCCCGCGTCC
                                                                             1080
       TCGCGCTCGG TGTCCACCTC CTCGTCCAGC AGCAGCGGCA GCAGCAGCGG CAGCAGCGGC
                                                                             1140
       GAGGACGCCG ACGACCTGAT GTTCGACCTG AGCTTGAATT TCTCTCAAAG CGCGCACAGC
                                                                             1200
       GCCAGCGAGC AGCAGCTGGG GGGCGGCGCG GCGGCCGGGA ACCTGTCCCT GTCGCTGGTG
                                                                             1260
65
       GATAAGGATT TGGATTCGTT CAGCGAGGGC AGCCTGGGCT CCCACTTCGA GTTCCCCGAC
                                                                             1320
       TACTGCACGC CGGAGCTGAG CGAGATGATC GCGGGGGGACT GGCTGGAGGC GAACTTCTCC
                                                                             1380
       GACCTGGTGT TCACATATTG AAAGGCGCCC GCTGCTCGCT CTTTCTCTCG GAGGGTGCAG
                                                                             1440
       AGCTGGGTTC CTTGGGAGGA AGTTGTAGTG GTGATGATGA TGATGATGAT AATGATGATG
                                                                             1500
       ATGATGGTGG TGTTGATGGT GGCGGTGGTA GGGTGGAGGG GAGAGAAGAA GATGCTGATG
                                                                            1560
70
       ATATTGATAA GATGTCGTGA CGCAAAGAAA TTGGAAAACA TGATGAAAAT TTTGGTGGAG
                                                                            1620
       TTAAAGTGAA ATGAGTAGTT TTTAAACATT TTTCCTGTCC TTTTTTTGTC CCCCCTCCCT
                                                                            1680
       TCCTTTATCG TGTCTCAAGG TAGTTGCATA CCTAGTCTGG AGTTGTGATT ATTTTCCCAA
                                                                             1740
       AAAATGTGTT TTTGTAATTA CTATTTCTTT TTCCTGAAAT TCGTGATTGC AACAAAGGCA
                                                                            1800
       GAGGGGGCGG CGCGGCGGAG GGGAGGTAGG ACCCGCTCCG GAAGGCGCTG TTTGAAGCTT
                                                                             1860
75
       GTCGGTCTTT GAAGTCTGGA AGACGTCTGC AGAGGACCCT TTTGGCAGCA CAACTGTTAC
                                                                             1920
       TCTAGGGAGT TGGTGGAGAT ATTTTTTTT CTTAAGAGAA CTTAAAGAAC TGGTGATTTT
                                                                            1980
        TTTTTAACAA AAAAAGGG
       Seq ID NO: 657 Protein sequence
80
       Protein Accession #: NP_003099.1
       MVQQAESLEA ESNLPREALD TEEGEFMACS PVALDESDPD WCKTASGHIK RPMNAFMVWS
                                                                               60
85
       KIERRKIMEQ SPDMHNAEIS KRLGKRWKML KDSEKIPFIR EAERLRLKHM ADYPDYKYRP
                                                                             120
       RKKPKMDPSA KPSASQSPEK SAAGGGGGSA GGGAGGAKTS KGSSKKCGKL KAPAAAGAKA
                                                                             180
       GAGKAAQSGD YGGAGDDYVL GSLRVSGSGG GGAGKTVKCV FLDEDDDDDD DDDELQLQIK
```

300

ATSGAGGGSR LYYSFKNITK QHPPPLAQPA LSPASSRSVS TSSSSSSGSS SGSSGEDADD 360 LMFDLSLNFS QSAHSASEQQ LGGGAAAGNL SLSLVDKDLD SFSEGSLGSH FEFPDYCTPE LSEMIAGDWL EANFSDLVFT Y 5 Seg ID NO: 658 DNA sequence Nucleic Acid Accession #: NM 001719 Coding sequence: 123..1418 10 21 51 31 41 GGGCGCAGCG GGGCCCGTCT GCAGCAAGTG ACCGACGGCC GGGACGGCCG CCTGCCCCCT CTGCCACCTG GGGCGGTGCG GGCCCGGAGC CCGGAGCCCG GGTAGCGCGT AGAGCCGGCG 120 CGATGCACGT GCGCTCACTG CGAGCTGCGG CGCCGCACAG CTTCGTGGCG CTCTGGGCAC 180 15 CCCTGTTCCT GCTGCGCTCC GCCCTGGCCG ACTTCAGCCT GGACAACGAG GTGCACTCGA 240 GCTTCATCCA CCGGCGCCTC CGCAGCCAGG AGCGGCGGGA GATGCAGCGC GAGATCCTCT 300 CCATTTTGGG CTTGCCCCAC CGCCCGCGCC CGCACCTCCA GGGCAAGCAC AACTCGGCAC CCATGTTCAT GCTGGACCTG TACAACGCCA TGGCGGTGGA GGAGGGCGGC GGGCCCGGCG 420 GCCAGGGCTT CTCCTACCCC TACAAGGCCG TCTTCAGTAC CCAGGGCCCC CCTCTGGCCA 480 20 GCCTGCAAGA TAGCCATTTC CTCACCGACG CCGACATGGT CATGAGCTTC GTCAACCTCG 540 TGGAACATGA CAAGGAATTC TTCCACCCAC GCTACCACCA TCGAGAGTTC CGGTTTGATC 600 TTTCCAAGAT CCCAGAAGGG GAAGCTGTCA CGGCAGCCGA ATTCCGGATC TACAAGGACT ACATCCGGGA ACGCTTCGAC AATGAGACGT TCCGGATCAG CGTTTATCAG GTGCTCCAGG 660 720 AGCACTTGGG CAGGGAATCG GATCTCTTCC TGCTCGACAG CCGTACCCTC TGGGCCTCGG 780 25 AGGAGGGCTG GCTGGTGTTT GACATCACAG CCACCAGCAA CCACTGGGTG GTCAATCCGC 840 GGCACAACCT GGGCCTGCAG CTCTCGGTGG AGACGCTGGA TGGGCAGAGC ATCAACCCCA 900 AGTTGGCGGG CCTGATTGGG CGGCACGGGC CCCAGAACAA GCAGCCCTTC ATGGTGGCTT 960 TCTTCAAGGC CACGGAGGTC CACTTCCGCA GCATCCGGTC CACGGGGAGC AAACAGCGCA 1020 GCCAGAACCG CTCCAAGACG CCCAAGAACC AGGAAGCCCT GCGGATGGCC AACGTGGCAG 1080 30 AGAACAGCAG CAGCGACCAG AGGCAGGCCT GTAAGAAGCA CGAGCTGTAT GTCAGCTTCC 1140 GAGACCTGGG CTGGCAGGAC TGGATCATCG CGCCTGAAGG CTACGCCGCC TACTACTGTG 1200 AGGGGGAGTG TGCCTTCCCT CTGAACTCCT ACATGAACGC CACCAACCAC GCCATCGTGC 1260 AGACGCTGGT CCACTTCATC AACCCGGAAA CGGTGCCCAA GCCCTGCTGT GCGCCCACGC 1320 AGCTCAATGC CATCTCCGTC CTCTACTTCG ATGACAGCTC CAACGTCATC CTGAAGAAAT 35 ACAGAAACAT GGTGGTCCGG GCCTGTGGCT GCCACTAGCT CCTCCGAGAA TTCAGACCCT 1440 TTGGGGCCAA GTTTTTCTGG ATCCTCCATT GCTCGCCTTG GCCAGGAACC AGCAGACCAA CTGCCTTTTG TGAGACCTTC CCCTCCCTAT CCGCAACTTT AAAGGTGTGA GAGTATTAGG 1560 AAACATGAGC AGCATATGGC TTTTGATCAG TTTTTCAGTG GCAGCATCCA ATGAACAAGA 1620 TCCTACAAGC TGTGCAGGCA AAACCTAGCA GGAAAAAAA ACAACGCATA AAGAAAAATG 1680 40 GCCGGCCAG GTCATTGGCT GGGAAGTCTC AGCCATGCAC GGACTCGTTT CCAGAGGTAA 1740 TTATGAGCGC CTACCAGCCA GGCCACCCAG CCGTGGGAGG AAGGGGGCGT GGCAAGGGGT 1800 GGGCACATTG GTGTCTGTGC GAAAGGAAAA TTGACCCGGA AGTTCCTGTA ATAAATGTCA 1860 CAATAAAACG AATGAATG 45 Seq ID NO: 659 Protein sequence Protein Accession #: NP_001710 50 MHVRSLRAAA PHSFVALWAP LFLLRSALAD FSLDNEVHSS FIHRRLRSQE RREMQREILS ILGLPHRPRP HLQGKHNSAP MFMLDLYNAM AVEEGGGPGG QGFSYPYKAV FSTQGPPLAS 120 LQDSHFLTDA DMVMSFVNLV EHDKEFFHPR YHHREFRFDL SKIPEGEAVT AAEFRIYKDY 180 IRERFDNETF RISVYQVLQE HLGRESDLFL LDSRTLWASE EGWLVFDITA TSNHWVVNPR HNLGLQLSVE TLDGQSINPK LAGLIGRHGP QNKQPFMVAF FKATEVHFRS IRSTGSKQRS 300 55 QNRSKTPKNQ EALRMANVAE NSSSDQRQAC KKHELYVSFR DLGWQDWIIA PEGYAAYYCE GECAFPLNSY MNATNHAIVO TLVHFINPET VPKPCCAPTO LNAISVLYFD DSSNVILKKY RNMVVRACGC H Seq ID NO: 660 DNA sequence 60 Nucleic Acid Accession #: Eos sequence Coding sequence: 211..1895 51 11 21 31 65 GGATCTGAGG GGCGCCCAGT CACTTCCTCC ACGTTCTCGT GCTGGGCGGG AGGAGCGGAT GGGGCTTGGG AGGCAGCCTG CTCTCCAGTC CCTATCCACC CACAGGTTTT TTGGGTCGGA 120 GAGGAATTAT CTGATAAAAT TCCTGGGTTA ATATTTTTAA AAACGGAGAG TTTTTAAAAA 180 TGATTTTTT CCCTCGAAAA TGACCTTTTT ATGCTTCGAA GCAGTTTGTC AACCAGCATA 240 GTGCTTTTTC TTTTCTCTTC TTTTTCTACG ATAAATGAAA GCATTTCTTC AAGAAAAAGG 300 70 CACAGGTTCC TTGAACAGCT GGATTCTGAT GGCACCATTA CTATAGAGGA GCAGATTGTC 360 CTTGTGCTGA AAGCGAAAGT ACAATGTGAA CTCAACATCA CAGCTCAACT CCAGGAGGGA 420 GAAGGTAATT GTTTCCCTGA ATGGGATGGA CTCATTTGTT GGCCCAGAGG AACAGTGGGG 480 AAAATATCGG CTGTTCCATG CCCTCCTTAT ATTTATGACT TCAACCATAA AGGAGTTGCT 540 TTCCGACACT GTAACCCCAA TGGAACATGG GATTTTATGC ACAGCTTAAA TAAAACATGG 600 75 GCCAATTATT CAGACTGCCT TCGCTTTCTG CAGCCAGATA TCAGCATAGG AAAGCAAGAA 660 TTCTTTGAAC GCCTCTATGT AATGTATACC GTTGGCTACT CCATCTCTTT TGGTTCCTTG 720 GCTGTGGCTA TTCTCATCAT TGGTTACTTC AGACGATTGC ATTGCACTAG GAACTATATC 780 CACATGCACT TATTTGTGTC TTTCATGCTG AGAGCTACAA GCATCTTTGT CAAAGACAGA 840 GTAGTCCATG CTCACATAGG AGTAAAGGAG CTGGAGTCCC TAATAATGCA GGATGACCCA 900 80 CAAAATTCCA TTGAGGCAAC TTCTGTGGAC AAATCACAAT ATATCGGGTG CAAGATTGCT GTTGTGATGT TTATTTACTT CCTGGCTACA AATTATTATT GGATCCTGGT GGAAGGTCTC 1020 TACCTGCATA ATCTCATCTT TGTGGCTTTC TTTTCGGACA CCAAATACCT GTGGGGCTTC 1080 ATCTTGATAG GCTGGGGGTT TCCAGCAGCA TTTGTTGCAG CATGGGCTGT GGCACGAGCA 1140 ACTCTGGCTG ATGCGAGGTG CTGGGAACTT AGTGCTGGAG ACATCAAGTG GATTTATCAA 1200 85 GCACCGATCT TAGCAGCTAT TGGGCTGAAT TTTATTCTGT TTCTGAATAC GGTTAGAGTT 1260 CTAGCTACCA AAATCTGGGA GACCAATGCA GTTGGGCATG ACACAAGGAA GCAATACAGG 1320 AAACTGGCCA AATCGACACT GGTCCTGGTC CTAGTCTTTG GAGTGCATTA CATCGTGTTC 1380

OEPDEEDEEP PHOOLLOPPG QOPSOLLRRY NVAKVPASPT LSSSAESPEG ASLYDEVRAG

```
GTATGCCTGC CTCACTCCTT CACTGGGCTC GGGTGGGAGA TCCGCATGCA CTGTGAGCTC 1440
       TTCTTCAACT CCTTTCAGGG TTTCTTTGTG TCTATCATCT ACTGCTACTG CAATGGAGAG
                                                                             1500
       GTTCAGGCAG AGGTGAAGAA GATGTGGAGT CGGTGGAATC TCTCCGTGGA CTGGAAAAGG
                                                                             1560
       ACACCGCCAT GTGGCAGCCG CAGATGCGGC TCAGTGCTCA CCACCGTGAC GCACAGCACC
                                                                             1620
 5
       AGCAGCCAGT CACAGGTGGC GGCCAGCACA CGCATGGTGC TTATCTCTGG CAAAGCTGCC
                                                                             1680
       AAGATCGCCA GCAGACAGCC TGACAGCCAC ATCACTTTAC CTGGCTATGT CTGGAGTAAC
                                                                             1740
       TCAGAGCAGG ACTGCCTGCC ACACTCTTTC CACGAGGAGA CCAAGGAAGA TAGTGGGAGG
                                                                             1800
       CAGGGAGATG ATATTCTAAT GGAGAAGCCT TCCAGGCCTA TGGAATCTAA CCCAGACACT
                                                                             1860
       GAAGGATGCC AAGGAGAAAC TGAGGATGTT CTCTGA
10
       Seg ID NO: 661 Protein sequence
       Protein Accession #: Eos sequence
                   11
                              21
                                          31
15
       MLRSSLSTSI VLFLFSSPST INESISSRKR HRFLEQLDSD GTITIEEQIV LVLKAKVQCE
                                                                               60
       LNITAQLQEG EGNCFPEWDG LICWPRGTVG KISAVPCPPY IYDFNHKGVA FRHCNPNGTW
                                                                              120
       DFMHSLNKTW ANYSDCLRFL QPDISIGKQE FFERLYVMYT VGYSISFGSL AVAILIIGYF
                                                                              180
       RRLHCTRNYI HMHLFVSFML RATSIFVKDR VVHAHIGVKE LESLIMQDDP QNSIEATSVD
                                                                              240
20
       KSQYIGCKIA VVMFIYFLAT NYYWILVEGL YLHNLIFVAF FSDTKYLWGF ILIGWGFPAA
                                                                              300
       FVAAWAVARA TLADARCWEL SAGDIKWIYQ APILAAIGLN FILFLNTVRV LATKIWETNA
                                                                              360
       VGHDTRKQYR KLAKSTLVLV LVFGVHYIVF VCLPHSFTGL GWEIRMHCEL FFNSFQGFFV
                                                                              420
       SIIYCYCNGE VOAEVKKMWS RWNLSVDWKR TPPCGSRRCG SVLTTVTHST SSQSQVAAST
                                                                              480
       RMVLISGKAA KIASROPDSH ITLPGYVWSN SEQDCLPHSF HEETKEDSGR QGDDILMEKP
25
       SRPMESNPDT EGCOGETEDV L
       Seg ID NO: 662 DNA seguence
       Nucleic Acid Accession #: NM_005048 .
       Coding sequence: 143..1795
30
                                          31
                                                     41
                                                                 51
                              21
       GGCCGGTGGC CCGGGCCCGA CCACCCCAGC TGCGCGTCGT TACTGGCCAC AAGTTTGCTC
                                                                               60
       TGGGCCAGCC AAGTTGGCAA CTTGGAAGCT TCTCCCGGGC TCTGGAGGAG GGTCCCTGCT
                                                                              120
35
       TCTTCCTACA GCCGTTCCGG GCATGGCCGG GCTGGGGGCG TCGCTCCACG TCTGGGGTTG
                                                                              180
       GCTAATGCTC GGCAGCTGCC TCCTGGCCAG AGCCCAGCTG GATTCTGATG GCACCATTAC
                                                                              240
       TATAGAGGAG CAGATTGTCC TTGTGCTGAA, AGCGAAAGTA CAATGTGAAC TCAACATCAC
                                                                              300
       AGCTCAACTC CAGGAGGGAG AAGGTAATTG TTTCCCTGAA TGGGATGGAC TCATTTGTTG
                                                                              360
       GCCCAGAGGA ACAGTGGGGA AAATATCGGC TGTTCCATGC CCTCCTTATA TTTATGACTT
                                                                              420
40
       CAACCATAAA GGAGTTGCTT TCCGACACTG TAACCCCAAT GGAACATGGG ATTTTATGCA
                                                                              480
       CAGCTTAAAT AAAACATGGG CCAATTATTC AGACTGCCTT CGCTTTCTGC AGCCAGATAT
                                                                              540
       CAGCATAGGA AAGCAAGAAT TCTTTGAACG CCTCTATGTA ATGTATACCG TTGGCTACTC
                                                                              600
       CATCTCTTTT GGTTCCTTGG CTGTGGCTAT TCTCATCATT GGTTACTTCA GACGATTGCA
       TTGCACTAGG AACTATATCC ACATGCACTT ATTTGTGTCT TTCATGCTGA GAGCTACAAG
                                                                              720
45
       CATCTTTGTC AAAGACAGAG TAGTCCATGC TCACATAGGA GTAAAGGAGC TGGAGTCCCT
       AATAATGCAG GATGACCCAC AAAATTCCAT TGAGGCAACT TCTGTGGACA AATCACAATA
       TATCGGGTGC AAGATTGCTG TTGTGATGTT TATTTACTTC CTGGCTACAA ATTATTATTG
       GATCCTGGTG GAAGGTCTCT ACCTGCATAA TCTCATCTTT GTGGCTTTCT TTTCGGACAC
                                                                              960
       CAAATACCTG TGGGGCTTCA TCTTGATAGG CTGGGGGTTT CCAGCAGCAT TTGTTGCAGC
                                                                              1020
       ATGGGCTGTG GCACCAGCAA CTCTGGCTGA TGCGAGGTGC TGGGAACTTA GTGCTGGAGA
CATCAAGTGG ATTTATCAAG CACCGATCTT AGCAGCTATT GGGCTGAATT TTATTCTGTT
50
                                                                             1080
                                                                             1140
       TCTGAATACG GTTAGAGTTC TAGCTACCAA AATCTGGGAG ACCAATGCAG TTGGGCATGA
                                                                             1200
       CACAAGGAAG CAATACAGGA AACTGGCCAA ATCGACACTG GTCCTGGTCC TAGTCTTTGG
                                                                             1260
       AGTGCATTAC ATCGTGTTCG TATGCCTGCC TCACTCCTTC ACTGGGCTCG GGTGGGAGAT CCGCATGCAC TGTGAGCTCT TCTTCAACTC CTTTCAGGGT TTCTTTGTGT CTATCATCTA
                                                                             1320
55
                                                                             1380
       CTGCTACTGC AATGGAGAGG TTCAGGCAGA GGTGAAGAAG ATGTGGAGTC GGTGGAATCT
                                                                             1440
       CTCCGTGGAC TGGAAAAGGA CACCGCCATG TGGCAGCCGC AGATGCGGCT CAGTGCTCAC
                                                                             1500
       CACCGTGACG CACAGCACCA GCAGCCAGTC ACAGGTGGCG GCCAGCACAC GCATGGTGCT
                                                                             1560
       TATCTCTGGC AAAGCTGCCA AGATCGCCAG CAGACAGCCT GACAGCCACA TCACTTTACC
                                                                             1620
60
       TGGCTATGTC TGGAGTAACT CAGAGCAGGA CTGCCTGCCA CACTCTTTCC ACGAGGAGAC
                                                                             1680
       CAAGGAAGAT AGTGGGAGGC AGGGAGATGA TATTCTAATG GAGAAGCCTT CCAGGCCTAT
                                                                             1740
       GGAATCTAAC CCAGACACTG AAGGATGCCA AGGAGAAACT GAGGATGTTC TCTGAATGGA
                                                                             1800
       CATTTGTGGC TGACTTTCAT GGGCTGGTCC AATGGCTGGT TGTGTGAGAG GGCTTGGCTG
                                                                             1860
                                                                             1920
       ATACTCCTAT GCTTGAGTTC AAAGGCTGAA AATTCAGTTA AGGTGTTACT TAATAATAGT
65
       TTTTAGGCTC CATGAATTGG CTCCTGTAAA TACTAACGAC ATGAAAATGC AAGTGTCAAT
                                                                             1980
       GGAGTAGTTT ATTACCTTCT ATTGGCATCA AGTTTTCCTC TAAATTAATG TATGGTATTT
                                                                             2040
       GCTCTGTGAT TGTTCATTTT TTTCTGCTAC TTTTGGGTAG AAAAAAGATT CAATTGCTTG
                                                                             2100
       GCTGTAGCTT TCTCTCATAT ATATCACCCT AAATATAATG AAGATCTTTT AGTGTGTATC
                                                                             2160
       ATTITCCTTT TAGAAACTAG TATTCTCTTA TTTCTTACTT TAATGTACTT CTATCACTGC
                                                                             2220
70
       ATTTATTTTG CCTGTGCATA GGAGCAATTA GGATCTAAAA AAATATATGG GAAGATAAAA
                                                                             2280
       GATCTAAGAA CAAGTACTTG CTGGAAAATT AGTTGGCTGG ACATTGATAA AATAATGCAT
                                                                             2340
       TTATAACAAT TACATGTGTT TTTGGGAACA AGGAAAATTT CTCAAAAAAG AATATTTCAC
                                                                             2400
       ACATCCCTTC TTTTGAATGG CCTCTTTGTG ACCAGCCAGA CCTCAGGTCT TCACTCTTTC
                                                                             2460
       TTCTTTGTAA ACCATGTCAT GTGGAAAGAT TTCCTCAGTT AGTGAGCTTG TGTCTGCAAA
                                                                             2520
75
       TTGATTTTGT TTGTAATGTA TTTTGATAGC AAATCATGCT GCATCTATAT CTTTTCTTG
                                                                             2580
       TTTGAGCTGT TACTACATTG TACATGGCAT GTGGGATCAA TTAAAAATTT GTTTTAAAAA
       Seg ID NO: 663 Protein seguence
80
       Protein Accession #: NP 005039
                                          31
       MAGLGASLHV WGWLMLGSCL LARAQLDSDG TITIEBQIVL VLKAKVQCEL NITAQLQEGE
                                                                               60
85
       GNCFPEWDGL ICWPRGTVGK ISAVPCPPYI YDFNHKGVAF RHCNPNGTWD FMHSLNKTWA
NYSDCLRFLQ PDISIGKQEF FERLYVMYTV GYSISPGSLA VAILIIGYFR RLHCTRNYIH
                                                                              120
                                                                              180
       MHLFVSFMLR ATSIFVKDRV VHAHIGVKEL ESLIMQDDPQ NSIEATSVDK SQYIGCKIAV
                                                                              240
```

```
VMFIYFLATN YYWILVEGLY LHNLIFVAFF SDTKYLWGFI LIGWGFPAAF VAAWAVARAT
       LADARCWELS AGDIKWIYQA PILAAIGLNP ILFLNTVRVL ATKIWETNAV GHDTRKQYRK
                                                                           360
       LAKSTLVLVL VFGVHYIVFV CLPHSFTGLG WEIRMHCELF FNSFQGFFVS IIYCYCNGEV
       QAEVKKMWSR WNLSVDWKRT PPCGSRRCGS VLTTVTHSTS SQSQVAASTR MVLISGKAAK
                                                                           480
 5
       IASROPDSHI TLPGYVWSNS EQDCLPHSFH EETKEDSGRQ GDDILMEKPS RPMESNPDTE
                                                                           540
       GCOGETEDVI.
       Seq ID NO: 664 DNA sequence
       Nucleic Acid Accession #: NM_012152
10
       Coding sequence: 43..1104
                                                              51
                                                   41
                             21
                                        31
       CTTCTTTAAA TTTCTTTCTA GGATGTTCAC TTCTTCTCCA CAATGAATGA GTGTCACTAT
                                                                            60
15
       GACAAGCACA TGGACTTTTT TTATAATAGG AGCAACACTG ATACTGTCGA TGACTGGACA
                                                                           120
       GGAACAAGC TTGTGATTGT TTTGTGTGTT GGGACGTTTT TCTGCCTGTT TATTTTTTT
                                                                           180
       TCTAATTCTC TGGTCATCGC GGCAGTGATC AAAAACAGAA AATTTCATTT CCCCTTCTAC
                                                                           240
       TACCTGTTGG CTAATTTAGC TGCTGCCGAT TTCTTCGCTG GAATTGCCTA TGTATTCCTG
                                                                           300
       ATGTTTAACA CAGGCCCAGT TTCAAAAACT TTGACTGTCA ACCGCTGGTT TCTCCGTCAG
                                                                           360
20
       GGGCTTCTGG ACAGTAGCTT GACTGCTTCC CTCACCAACT TGCTGGTTAT CGCCGTGGAG
                                                                            420
       AGGCACATGT CAATCATGAG GATGCGGGTC CATAGCAACC TGACCAAAAA GAGGGTGACA
                                                                            480
       CIGCTCATTT TGCTTGTCTG GGCCATCGCC ATTTTTATGG GGGCGGTCCC CACACTGGGC
       TGGAATTGCC TCTGCAACAT CTCTGCCTGC TCTTCCCTGG CCCCCATTTA CAGCAGGAGT
                                                                            600
       TACCTTGTTT TCTGGACAGT GTCCAACCTC ATGGCCTTCC TCATCATGGT TGTGGTGTAC
                                                                            660
       CTGCGGATCT ACGTGTACGT CAAGAGGAAA ACCAACGTCT TGTCTCCGCA TACAAGTGGG
25
                                                                            720
       TCCATCAGCC GCCGGAGGAC ACCCATGAAG CTAATGAAGA CGGTGATGAC TGTCTTAGGG
                                                                            780
       GCGTTTGTGG TATGCTGGAC CCCGGGCCTG GTGGTTCTGC TCCTCGACGG CCTGAACTGC
                                                                            840
       AGGCAGTGTG GCGTGCAGCA TGTGAAAAGG TGGTTCCTGC TGCTGGCGCT GCTCAACTCC
                                                                           900
       GTCGTGAACC CCATCATCTA CTCCTACAAG GACGAGGACA TGTATGGCAC CATGAAGAAG
                                                                           960
       ATGATCTGCT GCTTCTCTCA GGAGAACCCA GAGAGGCGTC CCTCTCGCAT CCCCTCCACA
30
                                                                          1020
       GTCCTCAGCA GGAGTGACAC AGGCAGCCAG TACATAGAGG ATAGTATTAG CCAAGGTGCA
                                                                          1080
       GTCTGCAATA AAAGCACTTC CTAAACTCTG GATGCCTCTC GGCCCACCCA GGTGATGACT
                                                                          1140
35
       Seq ID NO: 665 Protein sequence
       Protein Accession #: NP_036284
                                                    41
                                                               51
                  11
                             21
                                        31
40
       MNECHYDKHM DFFYNRSNTD TVDDWTGTKL VIVLCVGTFF CLFIFFSNSL VIAAVIKNRK
                                                                            60
       FHFPFYYLLA NLAAADFFAG IAYVFLMFNT GPVSKTLTVN RWFLRQGLLD SSLTASLTNL
                                                                            120
       LVIAVERHMS IMRMRVHSNL TKKRVTLLIL LVWAIAIFMG AVPTLGWNCL CNISACSSLA
                                                                           180
       PIYSRSYLVF WTVSNLMAFL IMVVVYLRIY VYVKRKTNVL SPHTSGSISR RRTPMKLMKT
                                                                           240
       VMTVLGAFVV CWTPGLVVLL LDGLNCRQCG VQHVKRWFLL LALLNSVVNP IIYSYKDEDM
                                                                           300
45
       YGTMKKMICC FSOENPERRP SRIPSTVLSR SDTGSQYIED SISQGAVCNK STS
       Seg ID NO: 666 DNA sequence
       Nucleic Acid Accession #: NM_002821
       Coding sequence: 150..3362
50
                  11
                             21
                                        31
                                                    41
                                                               51
       AACTCCCGCC TCGGGACGCC TCGGGGTCGG GCTCCGGCTG CGGCTGCTGC TGCGGCGCCC
                                                                             60
       GCGCTCCGGT GCGTCCGCCT CCTGTGCCCG CCGCGGAGCA GTCTGCGGCC CGCCGTGCGC
                                                                            120
55
       CCTCAGCTCC TTTTCCTGAG CCCGCCGCGA TGGGAGCTGC GCGGGGATCC CCGGCCAGAC
                                                                            180
       CCCGCCGGTT GCCTCTGCTC AGCGTCCTGC TGCTGCCGCT GCTGGGCGGT ACCCAGACAG
                                                                            240
       CCATTGTCTT CATCAAGCAG CCGTCCTCCC AGGATGCACT GCAGGGGCGC CGGGCGCTGC
                                                                            300
       TTCGCTGTGA GGTTGAGGCT CCGGGCCCGG TACATGTGTA CTGGCTGCTC GATGGGGCCC
                                                                            360
       CTGTCCAGGA CACGGAGCGG CGTTTCGCCC AGGGCAGCAG CCTGAGCTTT GCAGCTGTGG
                                                                            420
60
       ACCGGCTGCA GGACTCTGGC ACCTTCCAGT GTGTGGCTCG GGATGATGTC ACTGGAGAAG
                                                                            480
       AAGCCCGCAG TGCCAACGCC TCCTTCAACA TCAAATGGAT TGAGGCAGGT CCTGTGGTCC
                                                                            540
       TGAAGCATCC AGCCTCGGAA GCTGAGATCC AGCCACAGAC CCAGGTCACA CTTCGTTGCC
                                                                            600
       ACATTGATGG GCACCCTCGG CCCACCTACC AATGGTTCCG AGATGGGACC CCCCTTTCTG
                                                                            660
       ATGGTCAGAG CAACCACACA GTCAGCAGCA AGGAGCGGAA CCTGACGCTC CGGCCAGCTG
                                                                            720
65
       GTCCTGAGCA TAGTGGGCTG TATTCCTGCT GCGCCCACAG TGCTTTTGGC CAGGCTTGCA
                                                                            780
       GCAGCCAGAA CTTCACCTTG AGCATTGCTG ATGAAAGCTT TGCCAGGGTG GTGCTGGCAC
                                                                            840
       CCCAGGACGT GGTAGTAGCG AGGTATGAGG AGGCCATGTT CCATTGCCAG TTCTCAGCCC
                                                                            900
       AGCCACCCC GAGCCTGCAG TGGCTCTTTG AGGATGAGAC TCCCATCACT AACCGCAGTC
                                                                            960
       GCCCCCACA CCTCCGCAGA GCCACAGTGT TTGCCAACGG GTCTCTGCTG CTGACCCAGG
                                                                          1020
70
       TCCGGCCACG CAATGCAGGG ATCTACCGCT GCATTGGCCA GGGGCAGAGG GGCCCACCCA
                                                                          1080
       TCATCCTGGA AGCCACACTT CACCTAGCAG AGATTGAAGA CATGCCGCTA TTTGAGCCAC
                                                                          1140
       GGGTGTTTAC AGCTGGCAGC GAGGAGCGTG TGACCTGCCT TCCCCCCAAG GGTCTGCCAG
                                                                          1200
       AGCCCAGCGT GTGGTGGGAG CACGCGGGAG TCCGGCTGCC CACCCATGGC AGGGTCTACC
                                                                          1260
       AGAAGGGCCA CGAGCTGGTG TTGGCCAATA TTGCTGAAAG TGATGCTGGT GTCTACACCT
                                                                          1320
75
       GCCACGCGGC CAACCTGGCT GGTCAGCGGA GACAGGATGT CAACATCACT GTGGCCACTG
                                                                          1380
       TGCCCTCCTG GCTGAAGAAG CCCCAAGACA GCCAGCTGGA GGAGGGCAAA CCCGGCTACT
                                                                          1440
       TGGATTGCCT GACCCAGGCC ACACCAAAAC CTACAGTTGT CTGGTACAGA AACCAGATGC
                                                                          1500
       TCATCTCAGA GGACTCACGG TTCGAGGTCT TCAAGAATGG GACCTTGCGC ATCAACAGCG
                                                                          1560
       TGGAGGTGTA TGATGGGACA TGGTACCGTT GTATGAGCAG CACCCCAGCC GGCAGCATCG
                                                                           1620
80
       AGGCGCAAGC CCGTGTCCAA GTGCTGGAAA AGCTCAAGTT CACACCACCA CCCCAGCCAC
                                                                          1680
       AGCAGTGCAT GGAGTTTGAC AAGGAGGCCA CGGTGCCCTG TTCAGCCACA GGCCGAGAGA
                                                                          1740
       AGCCCACTAT TAAGTGGGAA CGGGCAGATG GGAGCAGCCT CCCAGAGTGG GTGACAGACA
                                                                          1800
       ACGCTGGGAC CCTGCATTTT GCCCGGGTGA CTCGAGATGA CGCTGGCAAC TACACTTGCA
                                                                          1860
       TTGCCTCCAA CGGGCCGCAG GGCCAGATTC GTGCCCATGT CCAGCTCACT GTGGCAGTTT
                                                                           1920
85
       TTATCACCTT CAAAGTGGAA CCAGAGCGTA CGACTGTGTA CCAGGGCCAC ACAGCCCTAC
                                                                           1980
       TGCAGTGCGA GGCCCAGGGG GACCCCAAGC CGCTGATTCA GTGGAAAGGC AAGGACCGCA
                                                                          2040
       TCCTGGACCC CACCAAGCTG GGACCCAGGA TGCACATCTT CCAGAATGGC TCCCTGGTGA
```

```
TCCATGACGT GGCCCCTGAG GACTCAGGCC GCTACACCTG CATTGCAGGC AACAGCTGCA
                                                                         2160
       ACATCAAGCA CACGGAGGCC CCCCTCTATG TCGTGGACAA GCCTGTGCCG GAGGAGTCGG
                                                                          2220
       AGGGCCCTGG CAGCCCTCCC CCCTACAAGA TGATCCAGAC CATTGGGTTG TCGGTGGGTG
                                                                          2280
       CCGCTGTGGC CTACATCATT GCCGTGCTGG GCCTCATGTT CTACTGCAAG AAGCGCTGCA
                                                                          2340
 5
       AAGCCAAGCG GCTGCAGAAG CAGCCCGAGG GCGAGGAGCC AGAGATGGAA TGCCTCAACG
                                                                          2400
       GAGGGCCTTT GCAGAACGGG CAGCCCTCAG CAGAGATCCA AGAAGAAGTG GCCTTGACCA
                                                                          2460
       GCTTGGGCTC CGGCCCCGCG GCCACCAACA AACGCCACAG CACAAGTGAT AAGATGCACT
                                                                          2520
       TCCCACGGTC TAGCCTGCAG CCCATCACCA CGCTGGGGAA GAGTGAGTTT GGGGAGGTGT
                                                                          2580
       TCCTGGCAAA GGCTCAGGGC TTGGAGGAGG GAGTGGCAGA GACCCTGGTA CTTGTGAAGA
                                                                          2640
10
       GCCTGCAGAC GAAGGATGAG CAGCAGCAGC TGGACTTCCG GAGGGAGTTG GAGATGTTTG
                                                                          2700
       GGAAGCTGAA CCACGCCAAC GTGGTGCGGC TCCTGGGGCT GTGCCGGGAG GCTGAGCCCC
                                                                          2760
       ACTACATGGT GCTGGAATAT GTGGATCTGG GAGACCTCAA GCAGTTCCTG AGGATTTCCA
                                                                          2820
       AGAGCAAGGA TGAAAAATTG AAGTCACAGC CCCTCAGCAC CAAGCAGAAG GTGGCCCTAT
                                                                          2880
       GCACCCAGGT AGCCCTGGGC ATGGAGCACC TGTCCAACAA CCGCTTTGTG CATAAGGACT
                                                                         2940
15
       TGGCTGCGCG TAACTGCCTG GTCAGTGCCC AGAGACAAGT GAAGGTGTCT GCCCTGGGCC
                                                                          3000
       TCAGCAAGGA TGTGTACAAC AGTGAGTACT ACCACTTCCG CCAGGCCTGG GTGCCGCTGC
                                                                          3060
       GCTGGATGTC CCCCGAGGCC ATCCTGGAGG GTGACTTCTC TACCAAGTCT GATGTCTGGG
                                                                          3120
       CCTTCGGTGT GCTGATGTGG GAAGTGTTTA CACATGGAGA GATGCCCCAT GGTGGGCAGG
                                                                          3180
       CAGATGATGA AGTACTGGCA GATTTGCAGG CTGGGAAGGC TAGACTTCCT CAGCCCGAGG
                                                                          3240
20
       GCTGCCCTTC CAAACTCTAT CGGCTGATGC AGCGCTGCTG GGCCCTCAGC CCCAAGGACC
                                                                          3300
       GGCCCTCCTT CAGTGAGATT GCCAGCGCCC TGGGAGACAG CACCGTGGAC AGCAAGCCGT
                                                                          3360
       GAGGAGGAG CCCGCTCAGG ATGGCCTGGG CAGGGGAGGA CATCTCTAGA GGGAAGCTCA
                                                                          3420
       CAGCATGATG GGCAAGATCC CTGTCCTCCT GGGCCCTGAG GTGCCCTAGT GCAACAGGCA
                                                                          3480
       TTGCTGAGGT CTGAGCAGGG CCTGGCCTTT CCTCCTCTTC CTCACCCTCA TCCTTTGGGA
                                                                          3540
25
       GGCTGACTTG GACCCAAACT GGGCGACTAG GGCTTTGAGC TGGGCAGTTT CCCCTGCCAC
                                                                          3600
       CTCTTCCTCT ATCAGGGACA GTGTGGGTGC CACAGGTAAC CCCAATTTCT GGCCTTCAAC
                                                                          3660
       TTCTCCCCTT GACCGGGTCC AACTCTGCCA CTCATCTGCC AACTTTGCCT GGGGAGGGCT
                                                                          3720
       AGGCTTGGGA TGAGCTGGGT TTGTGGGGAG TTCCTTAATA TTCTCAAGTT CTGGGCACAC
                                                                          3780
       AGGGTTAATG AGTCTCTTGC CCACTGGTCC ACTTGGGGGT CTAGACCAGG ATTATAGAGG
                                                                         3840
30
       ACACAGCAAG TGAGTCCTCC CCACTCTGGG CTTGTGCACA CTGACCCAGA CCCACGTCTT
                                                                          3900
       CCCCACCCTT CTCTCCTTTC CTCATCCTAA GTGCCTGGCA GATGAAGGAG TTTTCAGGAG
                                                                          3960
       CTTTTGACAC TATATAAACC GCCCTTTTTG TATGCACCAC GGGCGGCTTT TATATGTAAT
                                                                          4020
       TGCAGCGTGG GGTGGGTGGG CATGGGAGGT AGGGGTGGGC CCTGGAGATG AGGAGGGTGG
                                                                          4080
       4140
35
       TGTTTTTGTT TTTACACTCG CTGCTCTCAA TAAATAAGCC TTTTTTA
       Seq ID NO: 667 Protein sequence
       Protein Accession #: NP_002812
40
       MGAARGSPAR PRRLPLLSVL LLPLLGGTQT AIVFIKQPSS QDALQGRRAL LRCEVEAPGP
                                                                            60
       VHVYWLLDGA PVQDTERRFA QGSSLSFAAV DRLQDSGTFQ CVARDDVTGE EARSANASFN
                                                                          120
       IKWIEAGPVV LKHPASEAEI QPQTQVTLRC HIDGHPRPTY QWFRDGTPLS DGQSNHTVSS
45
       KERNLTLRPA GPEHSGLYSC CAHSAFGQAC SSQNFTLSIA DESFARVVLA PQDVVVARYE
                                                                           240
       EAMFHCQFSA QPPPSLQWLF EDETPITNRS RPPHLRRATV FANGSLLLTQ VRPRNAGIYR
       CIGQGQRGPP IILEATLHLA EIEDMPLFEP RVFTAGSEER VTCLPPKGLP EPSVWWEHAG
                                                                          360
       VRLPTHGRVY QKGHELVLAN IAESDAGVYT CHAANLAGOR RODVNITVAT VPSWLKKPOD
                                                                           420
       SQLEEGKPGY LDCLTQATPK PTVVWYRNQM LISEDSRFEV FKNGTLRINS VEVYDGTWYR
                                                                           480
50
       CMSSTPAGSI EAQARVQVLE KLKFTPPPQP QQCMEFDKEA TVPCSATGRE KPTIKWERAD
                                                                          540
       GSSLPEWVTD NAGTLHFARV TRDDAGNYTC IASNGPQGQI RAHVQLTVAV FITFKVEPER
                                                                          600
       TTVYQGHTAL LQCEAQGDPK PLIQWKGKDR ILDPTKLGPR MHIFQNGSLV IHDVAPEDSG
                                                                          660
       RYTCIAGNSC NIKHTEAPLY VVDKPVPEES EGPGSPPPYK MIQTIGLSVG AAVAYIIAVL
                                                                           720
       GLMFYCKKRC KAKRLOKOPE GEEPEMECLN GGPLONGOPS AEIQEEVALT SLGSGPAATN
                                                                          780
55
       KRHSTSDKMH FPRSSLQPIT TLGKSEFGEV FLAKAQGLEE GVAETLVLVK SLQTKDEQQQ
                                                                          840
       LDFRRELEMF GKLNHANVVR LLGLCREAEP HYMVLEYVDL GDLKOFLRIS KSKDEKLKSO
                                                                          900
       PLSTKOKVAL CTQVALGMEH LSNNRFVHKD LAARNCLVSA QRQVKVSALG LSKDVYNSEY
                                                                          960
       YHFROAWVPL RWMSPEAILE GDFSTKSDVW AFGVLMWEVF THGEMPHGGQ ADDEVLADLQ
                                                                         1020
       AGKARLPQPE GCPSKLYRLM QRCWALSPKD RPSFSEIASA LGDSTVDSKP
60
       Seq ID NO: 668 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 1..1389
65
                  11
                             21
                                        31
                                                   41
                                                              51
       ATGGGCTACC AGAGGCAGGA GCCTGTCATC CCGCCGCAGA GAGATTTAGA TGACAGAGAA
                                                                           60
       ACCCTTGTTT CTGAACATGA GTATAAAGAG AAAACCTGTC AGTCTGCTGC TCTTTTTAAT
                                                                          120
       GTTGTCAACT CGATTATAGG ATCTGGTATA ATAGGATTGC CTTATTCAAT GAAGCAAGCT
                                                                          180
70
       GGGTTTCCTT TGGGAATATT GCTTTTATTC TGGGTTTCAT ATGTTACGGA CTTTTCCCTT
                                                                          240
       GTTTTATTGA TAAAAGGAGG GGCCCTCTCT GGAACAGATA CCTACCAGTC TTTGGTCAAT
                                                                          300
       AAAACTTTCG GCTTTCCAGG GTATCTGCTC CTCTCTGTTC TTCAGTTTTT GTATCCTTTT
                                                                          360
       ATAGCAATGA TAAGTTACAA TATAATAGCT GGAGATACTT TGAGCAAAGT TTTTCAAAGA
                                                                          420
       ATCCCAGGAG TIGATCCTGA AAACGTGTTT ATTGGTCGCC ACTTCATTAT TGGACTTTCC
                                                                          480
75
       ACAGTTACCT TTACTCTGCC TTTATCCTTG TACCGAAATA TAGCAAAGCT TGGAAAGGTC
                                                                          540
                                                                          600
       TCCCTCATCT CTACAGGTTT AACAACTCTG ATTCTTGGAA TTGTAATGGC AAGGGCAATT
       TCACTGGGTC CACACATACC AAAAACAGAA GACGCTTGGG TATTTGCAAA GCCCAATGCC
                                                                           660
       ATTCAAGCGG TCGGGGTTAT GTCTTTTGCA TTTATTTGCC ACCATAACTC CTTCTTAGTT
                                                                          720
       TACAGTTCTC TAGAAGAACC CACAGTAGCT AAGTGGTCCC GCCTTATCCA TATGTCCATC
                                                                          780
80
       GTGATTTCTG TATTTATCTG TATATTCTTT GCTACATGTG GATACTTGAC ATTTACTGGC
                                                                          840
       TTCACCCAAG GGGACTTATT TGAAAATTAC TGCAGAAATG ATGACCTGGT AACATTTGGA
                                                                          900
       AGATTTTGTT ATGGTGTCAC TGTCATTTTG ACATACCCTA TGGAATGCTT TGTGACAAGA
                                                                           960
       GAGGTAATTG CCAATGTGTT TTTTGGTGGG AATCTTTCAT CGGTTTTCCA CATTGTTGTA
                                                                         1020
       ACAGTGATGG TCATCACTGT AGCCACGCTT GTGTCATTGC TGATTGATTG CCTCGGGATA
                                                                          1080
85
       GTTCTAGAAC TCAATGGTGT GCTCTGTGCA ACTCCCCTCA TTTTTATCAT TCCATCAGCC
                                                                         1140
       TGTTATCTGA AACTGTCTGA AGAACCAAGG ACACACTCCG ATAAGATTAT GTCTTGTGTC
                                                                         1200
       ATGCTTCCCA TTGGTGCTGT GGTGATGGTT TTTGGATTCG TCATGGCTAT TACAAATACT
```

WO 02/086443

CAAGACTGCA CCCATGGGCA GGAAATGTTC TACTGCTTTC CTGACAATTT CTCTCTCACA 1320 AATACCTCAG AGTCTCATGT TCAGCAGACA ACACAACTTT CTACTTTAAA TATTAGTATC 1380 TTTCAATGA 5 Seq ID NO: 669 Protein sequence Protein Accession #: Eos sequence 31 41 51 10 MGYOROEPVI PPORDLDDRE TLVSEHEYKE KTCQSAALFN VVNSIIGSGI IGLPYSMKQA 60 GFPLGILLLF WVSYVTDFSL VLLIKGGALS GTDTYQSLVN KTFGFPGYLL LSVLQFLYPF 120 IAMISYNIIA GDTLSKVFQR IPGVDPENVF IGRHFIIGLS TVTPTLPLSL YRNIAKLGKV 180 SLISTGLTTL ILGIVMARAI SLGPHIPKTE DAWVFAKPNA IQAVGVMSFA FICHHNSFLV 240 YSSLEEPTVA KWSRLIHMSI VISVFICIFF ATCGYLTFTG FTQGDLFENY CRNDDLVTFG 300 15 RFCYGVTVIL TYPMECFVTR EVIANVFFGG NLSSVPHIVV TVMVITVATL VSLLIDCLGI 360 VLELNGVUCA TPLIFIIPSA CYLKLSEEPR THSDKIMSCV MLPIGAVVMV FGFVMAITNT 420 QDCTHGQEMF YCFPDNFSLT NTSESHVQQT TQLSTLNISI FQ Seg ID NO: 670 DNA sequence 20 Nucleic Acid Accession #: Eos sequence Coding sequence: 1..1284 51 31 41 25 ATGGGCTACC AGAGGCAGGA GCCTGTCATC CCGCCGCAGA GAGGATTGCC TTATTCAATG AAGCAAGCTG GGTTTCCTTT GGGAATATTG CTTTTATTCT GGGTTTCATA TGTTACAGAC 120 TTTTCCCTTG TTTTATTGAT AAAAGGAGGG GCCCTCTCTG GAACAGATAC CTACCAGTCT 180 TTGGTCAATA AAACTTTCGG CTTTCCAGGG TATCTGCTCC TCTCTGTTCT TCAGTTTTTG 240 TATCCTTTTA TAGCAATGAT AAGTTACAAT ATAATAGCTG GAGATACTTT GAGCAAAGTT 300 30 TTTCAAAGAA TCCCAGGAGT TGATCCTGAA AACGTGTTTA TTGGTCGCCA CTTCATTATT 360 GGACTITCCA CAGTIACCTI TACTCTGCCT TTATCCTTGT ACCGAAATAT AGCAAAGCTT 420 GGAAAGGTCT CCCTCATCTC TACAGGTTTA ACAACTCTGA TTCTTGGAAT TGTAATGGCA 480 AGGGCAATTT CACTGGGTCC ACACATACCA AAAACAGAAG ACGCTTGGGT ATTTGCAAAG 540 CCCAATGCCA TTCAAGCGGT CGGGGTTATG TCTTTTGCAT TTATTTGCCA CCATAACTCC 600 35 TTCTTAGTTT ACAGTTCTCT AGAAGAACCC ACAGTAGCTA AGTGGTCCCG CCTTATCCAT 660 ATGTCCATCG TGATTTCTGT ATTTATCTGT ATATTCTTTG CTACATGTGG ATACTTGACA 720 TTTACTGGCT TCACCCAAGG GGACTTATTT GAAAATTACT GCAGAAATGA TGACCTGGTA 780 ACATTTGGAA GATTTTGTTA TGGTGTCACT GTCATTTTGA CATACCCTAT GGAATGCTTT 840 GTGACAAGAG AGGTAATTGC CAATGTGTTT TTTGGTGGGA ATCTTTCATC GGTTTTCCAC 900 40 ATTGTTGTAA CAGTGATGGT CATCACTGTA GCCACGCTTG TGTCATTGCT GATTGATTGC 960 CTCGGGATAG TTCTAGAACT CAATGGTGTG CTCTGTGCAA CTCCCCTCAT TTTTATCATT 1020 CCATCAGCCT GTTATCTGAA ACTGTCTGAA GAACCAAGGA CACACTCCGA TAAGATTATG 1080 TCTTGTGTCA TGCTTCCCAT TGGTGCTGTG GTGATGGTTT TTGGATTCGT CATGGCTATT 1140 ACAAATACTC AAGACTGCAC CCATGGGCAG GAAATGTTCT ACTGCTTTCC TGACAATTTC 45 TCTCTCACAA ATACCTCAGA GTCTCATGTT CAGCAGACAA CACAACTTTC TACTTTAAAT 1260 ATTAGTATCT TTCAACTCGA GTAA Seq ID NO: 671 Protein sequence Protein Accession #: Eos sequence 50 11 21 31 MGYORQEPVI PPORGLPYSM KOAGFPLGIL LLFWVSYVTD PSLVLLIKGG ALSGTDTYQS 60 LVNKTFGFPG YLLLSVLQFL YPFIAMISYN IIAGDTLSKV FQRIPGVDPE NVFIGRHFII 120 55 GLSTVTFTLP LSLYRNIAKL GKVSLISTGL TTLILGIVMA RAISLGPHIP KTEDAWVFAK 180 PNAIQAVGVM SFAFICHHNS FLVYSSLEEP TVAKWSRLIH MSIVISVFIC IFFATCGYLT 240 FTGFTQGDLF ENYCRNDDLV TFGRFCYGVT VILTYPMECF VTREVIANVF FGGNLSSVFH 300 IVVTVMVITV ATLVSLLIDC LGIVLELNGV LCATPLIFII PSACYLKLSE EPRTHSDKIM 360 SCVMLPIGAV VMVPGFVMAI TNTQDCTHGQ EMFYCFPDNF SLTNTSESHV QQTTQLSTLN 420 60 Seq ID NO: 672 DNA sequence Nucleic Acid Accession #: Eos sequence Coding sequence: 1..1203 65 41 51 21 31 ATGGGCTACC AGAGGCAGGA GCCTGTCATC CCGCCGCAGT TTTCCCTTGT TTTATTGATA AAAGGAGGG CCCTCTCTGG AACAGATACC TACCAGTCTT TGGTCAATAA AACTTTCGGC 120 70 TTTCCAGGGT ATCTGCTCCT CTCTGTTCTT CAGTTTTTGT ATCCTTTTAT AGCAATGATA 180 240 AGTTACAATA TAATAGCTGG AGATACTTTG AGCAAAGTTT TTCAAAGAAT CCCAGGAGTT GATCCTGAAA ACGTGTTTAT TGGTCGCCAC TTCATTATTG GACTTTCCAC AGTTACCTTT 300 ACTCTGCCTT TATCCTTGTA CCGAAATATA GCAAAGCTTG GAAAGGTCTC CCTCATCTCT 360 ACAGGTTTAA CAACTCTGAT TCTTGGAATT GTAATGGCAA GGGCAATTTC ACTGGGTCCA 420 75 CACATACCAA AAACAGAAGA CGCTTGGGTA TTTGCAAAGC CCAATGCCAT TCAAGCGGTC GGGGTTATGT CTTTTGCATT TATTTGCCAC CATAACTCCT TCTTAGTTTA CAGTTCTCTA 540 GAAGAACCCA CAGTAGCTAA GTGGTCCCGC CTTATCCATA TGTCCATCGT GATTTCTGTA TTTATCTGTA TATTCTTTGC TACATGTGGA TACTTGACAT TTACTGGCTT CACCCAAGGG GACTTATTTG AAAATTACTG CAGAAATGAT GACCTGGTAA CATTTGGAAG ATTTTGTTAT 720 80 GGTGTCACTG TCATTTTGAC ATACCCTATG GAATGCTTTG TGACAAGAGA GGTAATTGCC 780 AATGTGTTTT TTGGTGGGAA TCTTTCATCG GTTTTCCACA TTGTTGTAAC AGTGATGGTC ATCACTGTAG CCACGCTTGT GTCATTGCTG ATTGATTGCC TCGGGATAGT TCTAGAACTC
AATGGTGTGC TCTGTGCAAC TCCCCTCATT TTTATCATTC CATCAGCCTG TTATCTGAAA 960 CTGTCTGAAG AACCAAGGAC ACACTCCGAT AAGATTATGT CTTGTGTCAT GCTTCCCATT 1020 85 GGTGCTGTGG TGATGGTTTT TGGATTCGTC ATGGCTATTA CAAATACTCA AGACTGCACC 1080

CATGGGCAGG AAATGTTCTA CTGCTTTCCT GACAATTTCT CTCTCACAAA TACCTCAGAG

TCTCATGTTC AGCAGACAAC ACAACTTTCT ACTTTAAATA TTAGTATCTT TCAACTCGAG

1140

TAA

```
Seq ID NO: 673 Protein sequence
       Protein Accession #: Eos sequence
 5
       MGYORQEPVI PPQFSLVLLI KGGALSGTDT YQSLVNKTFG FPGYLLLSVL QPLYPFIAMI
       SYNIIAGDTL SKVFQRIPGV DPENVFIGRH FIIGLSTVTF TLPLSLYRNI AKLGKVSLIS
                                                                             120
10
       TGLTTLILGI VMARAISLGP HIPKTEDAWV FAKPNAIQAV GVMSFAFICH HNSFLVYSSL
                                                                             180
       EEPTVAKWSR LIHMSIVISV PICIFFATCG YLTFTGFTQG DLFENYCRND DLVTFGRFCY
                                                                             240
       GYTVILTYPM ECFYTREVIA NVFFGGNLSS VFHIVVTVMV ITVATLVSLL IDCLGIVLEL
                                                                             300
       NGVLCATPLI FIIPSACYLK LSEEPRTHSD KIMSCVMLPI GAVVMVFGFV MAITNTQDCT
                                                                             360
       HGQEMFYCFP DNFSLTNTSE SHVQQTTQLS TLNISIFQLE
15
       Seq ID NO: 674 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 1..1140
20
                              21
       ATGGGCTACC AGAGGCAGGA GCCTGTCATC CCGCCGCAGG TCAATAAAAC TTTCGGCTTT
       CCAGGGTATC TGCTCCTCTC TGTTCTTCAG TTTTTGTATC CTTTTATAGC AATGATAAGT
       TACAATATAA TAGCTGGAGA TACTITGAGC AAAGTTTTTC AAAGAATCCC AGGAGTTGAT
                                                                             180
25
       CCTGAAAACG TGTTTATTGG TCGCCACTTC ATTATTGGAC TTTCCACAGT TACCTTTACT
                                                                             240
       CTGCCTTTAT CCTTGTACCG AAATATAGCA AAGCTTGGAA AGGTCTCCCT CATCTCTACA
                                                                             300
       GGTTTAACAA CTCTGATTCT TGGAATTGTA ATGGCAAGGG CAATTTCACT GGGTCCACAC
                                                                             360
       ATACCAAAAA CAGAAGACGC TTGGGTATTT GCAAAGCCCA ATGCCATTCA AGCGGTCGGG
GTTATGTCTT TTGCATTTAT TTGCCACCAT AACTCCTTCT TAGTTTACAG TTCTCTAGAA
                                                                             420
                                                                             480
30
       GAACCCACAG TAGCTAAGTG GTCCCGCCTT ATCCATATGT CCATCGTGAT TTCTGTATTT
                                                                             540
       ATCTGTATAT TCTTTGCTAC ATGTGGATAC TTGACATTTA CTGGCTTCAC CCAAGGGGAC
                                                                             600
       TTATTTGAAA ATTACTGCAG AAATGATGAC CTGGTAACAT TTGGAAGATT TTGTTATGGT
                                                                             660
       GTCACTGTCA TTTTGACATA CCCTATGGAA TGCTTTGTGA CAAGAGAGGT AATTGCCAAT
                                                                             720
       GTGTTTTTTG GTGGGAATCT TTCATCGGTT TTCCACATTG TTGTAACAGT GATGGTCATC
                                                                             780
35
       ACTGTAGCCA CGCTTGTGTC ATTGCTGATT GATTGCCTCG GGATAGTTCT AGAACTCAAT
                                                                             840
       GGTGTGCTCT GTGCAACTCC CCTCATTTTT ATCATTCCAT CAGCCTGTTA TCTGAAACTG
                                                                             900
       TCTGAAGAAC CAAGGACACA CTCCGATAAG ATTATGTCTT GTGTCATGCT TCCCATTGGT
                                                                             960
       GCTGTGGTGA TGGTTTTTGG ATTCGTCATG GCTATTACAA ATACTCAAGA CTGCACCCAT
                                                                            1020
       GGGCAGGAAA TGTTCTACTG CTTTCCTGAC AATTTCTCTC TCACAAATAC CTCAGAGTCT
                                                                            1080
40
       CATGTTCAGC AGACAACACA ACTTTCTACT TTAAATATTA GTATCTTTCA ACTCGAGTAA
       Seq ID NO: 675 Protein sequence
       Protein Accession #: Eos sequence
45
       MGYQRQEPVI PPQVNKTFGF PGYLLLSVLQ FLYPFIAMIS YNIIAGDTLS KVFQRIPGVD
                                                                              60
       PENVFIGRHF IIGLSTVTFT LPLSLYRNIA KLGKVSLIST GLTTLILGIV MARAISLGPH
                                                                             120
       IPKTEDAWVF AKPNAIQAVG VMSFAFICHH NSFLVYSSLE EPTVAKWSRL IHMSIVISVF
                                                                             180
50
       ICIFFATCGY LTFTGFTOGD LFENYCRNDD LVTFGRFCYG VTVILTYPME CFVTREVIAN
                                                                             240
       VFFGGNLSSV FHIVVTVMVI TVATLVSLLI DCLGIVLELN GVLCATPLIF IIPSACYLKL
                                                                             300
       SEEPRTHSDK IMSCVMLPIG AVVMVFGFVM AITNTQDCTH GQEMFYCFPD NFSLTNTSES
                                                                             360
       HVOOTTOLST LNISIFOLE
55
       Seq ID NO: 676 DNA sequence
       Nucleic Acid Accession #: NM_006853.1.
       Coding sequence: 26..874
                  11
                              21
                                         31
60
       AGGAATCTGC GCTCGGGTTC CGCAGATGCA GAGGTTGAGG TGGCTGCGGG ACTGGAAGTC
       ATCGGGCAGA GGTCTCACAG CAGCCAAGGA ACCTGGGGCC CGCTCCTCCC CCCTCCAGGC
                                                                             120
       CATGAGGATT CTGCAGTTAA TCCTGCTTGC TCTGGCAACA GGGCTTGTAG GGGGAGAGAC
                                                                             180
       CAGGATCATC AAGGGGTTCG AGTGCAAGCC TCACTCCCAG CCCTGGCAGG CAGCCCTGTT
                                                                             240
65
       CGAGAAGACG CGGCTACTCT GTGGGGCGAC GCTCATCGCC CCCAGATGGC TCCTGACAGC
                                                                             300
       AGCCCACTGC CTCAAGCCCC GCTACATAGT TCACCTGGGG CAGCACAACC TCCAGAAGGA
                                                                             360
       GGAGGGCTGT GAGCAGACCC GGACAGCCAC TGAGTCCTTC CCCCACCCCG GCTTCAACAA
                                                                             420
       CAGCCTCCCC AACAAGACC ACCGCAATGA CATCATGCTG GTGAAGATGG CATCGCCAGT
                                                                             480
                                                                             540
       CTCCATCACC TGGGCTGTGC GACCCCTCAC CCTCTCCTCA CGCTGTGTCA CTGCTGGCAC
70
       CAGCTGCCTC ATTTCCGGCT GGGGCAGCAC GTCCAGCCCC CAGTTACGCC TGCCTCACAC
                                                                             600
       CTTGCGATGC GCCAACATCA CCATCATTGA GCACCAGAAG TGTGAGAACG CCTACCCCGG
                                                                             660
       CAACATCACA GACACCATGG TGTGTGCCAG CGTGCAGGAA GGGGGCAAGG ACTCCTGCCA
                                                                             720
                                                                             780
       GGGTGACTCC GGGGGCCCTC TGGTCTGTAA CCAGTCTCTT CAAGGCATTA TCTCCTGGGG
       CCAGGATCCG TGTGCGATCA CCCGAAAGCC TGGTGTCTAC ACGAAAGTCT GCAAATATGT
                                                                             840
75
       GGACTGGATC CAGGAGACGA TGAAGAACAA TTAGACTGGA CCCACCCACC ACAGCCCATC
                                                                             900
       ACCCTCCATT TCCACTTGGT GTTTGGTTCC TGTTCACTCT GTTAATAAGA AACCCTAAGC
                                                                             960
       CAAGACCCTC TACGAACATT CTTTGGGCCT CCTGGACTAC AGGAGATGCT GTCACTTAAT
       AATCAACCTG GGGTTCGAAA TCAGTGAGAC CTGGATTCAA ATTCTGCCTT GAAATATTGT
                                                                            1080
       GACTCTGGGA ATGACAACAC CTGGTTTGTT CTCTGTTGTA TCCCCAGCCC CAAAGACAGC
80
       TCCTGGCCAT ATATCAAGGT TTCAATAAAT ATTTGCTAAA TGAGTG
       Seg ID NO: 677 Protein seguence
       Protein Accession #: NP 006844.1
85
                                                               51
       MRILOLILLA LATGLVGGET RIIKGFECKP HSQPWQAALF EKTRLLCGAT LIAPRWLLTA
```

5		HLGQHNLQKE LSSRCVTAGT VQEGGKDSCQ	CCL T CCWGST	SSPOPKPBHI	DKCWATITIE	NUNCENAIPG	120 180 240
J	Seq ID NO: Nucleic Aci Coding sequ	678 DNA se ld Accession Lence: 193	#: Eos se	quence			
10	1	11	21	31	41	51	
	TTCGACAAGA	ATGGACGGTG GTGATGAGAA CCAGCGGCAT	GGAGTGCCCC	AAGGCTAAGT	TCCGGTGCAA	TGGGTTTGAG	60 120 180 240
15	GACTGTCCCG GCCCGCTACC AATAACTGTC	ATGCAGCAA ACTGCAAGAA AAGACAACAG TTGTGACTTC GCTCCGTCAT	TGAAGAGAAC CGGCCTCTGT TGATGAGGAA	TGCACAGCAA ATTGACAAGA AGCTGTGAAA CTTGTGTATT	GCTTCATCTG GTTCTCAAGA ACCCCAGCAT	CGATGGACAG ACCCGGCAGT CACCTATGCC	300 360 420 480
20	CACCAGCGGA CTGCTGTCCC AATAATGGCA	AGCGGAACAA GCCTGGTGGT TCCAGTATGT	CCTCATGACG CCTGGACCAC GGCCAGCCAG	CTGCCCGTGC CCCCACCACT GCGGAGCAGA CAGAGGCCTG	GCAACGTCAC ATGCGTCGGA CGTGGTATGA	CTACAACGTC AGTAGGCTCC CCTTCCTCCA	540 600 660 720
25	CCGCCCTACT CGGTCCGGGA GACACCAGCC	CTTCTGACAC GTGCCAACAG ACAGCCCGGG GCCAGGGCAC	GGAATCTCTG TGCCAGCTCC GCAGCCTGGC	AACCAAGCCG CAGGCAGCCA CCCCAGGAGG	GCAGCCTCCT	GAGCGTGGAA	780 840 900
30	Seq ID NO: Protein Ac	. 679 Prote cession #: 1	in sequence Sos sequence	e			
	1	<u>1</u> 1	21	31	41	51 I	
	 MCSNGRCIPG	 AWQCDGLPDC	FDKSDEKECP	KAKSKCGPTF	FPCASGIHCI	IGRFRCNGFE	60
35	DODDCCDEEN	CTANPLLCST LVYYPSITYA	ARVHCKNGLC	IDKSFICDGO	NNCQDNSDEE	SCESSQEPGS	120 180
	T T CRITITION	PHHCNVTYNV NQADLPPYRS	NNGTOYVASO	AEONASEVGS	PPSYSEALLD	OKPAMIDDEE	240 300
40							
	Nucleic Ac	680 DNA s id Accessio puence: 12	n #: S78203	.1			
45	1	11	21	31	41	51	
	ATCA ATCCTT	. TCCAGAAAAA	TGAGTCCAAG	 GAAACTCTTT	TTTCACCTGT	CTCCATTGAA	60
	CACCEACCAC	TO CONCINE	TAGCCCTCCA	AAGAAGCCAT	CTCCGACAAT	CIGIGGCICC	120
50	AACTATCCAC	TGAGCATTGC A AAGCTGTGCT	CTTCATTGTG	GTGAATGAAT	TCTGCGAGCG	GAATGAAGAT	180 240
50	አ ርርጥርር እር እባ	ር ርጥልሞልሞልርር	TGCCTTCAGC	AGCCTCTGTT	ATTTTACTCC	CATCCIGGGA	300
	CCACCCATTC	2 CTC2CTCCTC	GTTGGGAAAA	TTCAAGACAA	TCATCTATCI	CICCIIGGIG	360 420
	TATGTGCTTC	GCCATGTGAT TCCTATCATT	CAAGTCCTTG	GGTGCCTTAC	CAATACTGGG	AGGACAAGIG	480
55	N N N COCCOCCOTO	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TECTECAGAC	CAGTTTGAAG	AAAAACATGO	AGAGGAACGG	540
	3 Cm2 C2 m2 C						
		TCTCAGTCT1	· CTACCTGTCC	: ATCAATGCAG	GGAGCTTGAT	TTCTACATTT	600
	ATCACACCC	A TGCTGAGAGG	CTACCTGTCC GAGATGTGCAA CATGGTAATT	: ATCAATGCAG . TGTTTTGGAG : GCACTTGTTG	GGAGCTTGAT AAGACTGCTA TGTTTGCAAT	TICTACATTT TGCATTGGCT GGGAAGCAAA	
	ATCACACCCA TTTGGAGTTC	A TGCTGAGAGG C CAGGACTGCT	CTACCTGTCC AGATGTGCAA CATGGTAATT TGAAGGAAAC	: ATCAATGCAG . TGTTTTGGAG : GCACTTGTTG : ATAGTGGCTC	GGAGCTTGAT AAGACTGCTA TGTTTGCAAT AAGTTTTCAA	TTCTACATTT TGCATTGGCT GGGAAGCAAA ATGTATCTGG	600 660 720 780
60	ATCACACCCA TTTGGAGTTC ATATACAATA	A TGCTGAGAGC C CAGGACTGCT A AACCACCCCC	CTACCTGTCC GAGATGTGCAA CATGGTAATT CTGAAGGAAAC CAAGAACCGT	: ATCAATGCAG . TGTTTTGGAG . GCACTTGTTG . ATAGTGGCTC . TCTGGAGACA	GGAGCTTGAT AAGACTGCTAT TGTTTGCAAT AAGTTTTCAA TTCCAAAGCC	TGCATTGCT TGCATTGGCT GGGAAGCAAA ATGTATCTGG ACAGCACTGG	600 660 720 780 840
60	ATCACACCCA TTTGGAGTTC ATATACAATA TTTGCTATTC CTAGACTGC	TGCTGAGAGG CAGGACTGCT AAACCACCCCC CCAATCGTTT CCAATCGTTT CCACTGAGAA	CTACCTGTCC AGATGTGCAA CATGGTAATT TGAAGGAAAC CAAGAACCGT ATATCCAAAG	: ATCAATGCAG . TGTTTTGGAG . GCACTTGTTG . ATAGTGGCTC . TCTGGAGACA . CAGCTCATTA . ATGTTCTGGG	GGAGCTTGAT AAGACTGCTA TGTTTGCAAT AAGTTTTCAA TTCCAAAGCC TGGATGTAAA CTCTTTTGGA	TTCTACATTT TGCATTGGCT GGGAAGCAAA ATGTATCTGG ACAGCACTGG ACAGCACTGACC TCAGCAGGGT	600 660 720 780 840 900 960
60	ATCACACCO TTTGGAGTTO ATATACAATI TTTGCTATT' CTAGACTGGG AGGGTACTA'	TGCTGAGAGG CAGGACTGCT AACCACCCCC CCAATCGTTT GCAGCTGAGAI TCCTTTATAT	CTACCTGTCC AGATGTCAAT CATGGTAAT TGAAGGAAAC CAAGAACCGT AATATCCAAAG CCATTGCCC	ATCAATGCAG TGTTTTTGAG GCACTTGTTG ATAGTGGCTC TCTGGAGACA CAGCTCATTA ATGTTCTGGG	GGAGCTTGAT AGACTGCTA TGTTTGCAAT AAGTTTTCAA TTCCAAAGCC TGGATGTAAA CTCTTTTTGGA	TTCTACATTT TGCATTGGCT GGGAAGCAAA ATGTATCTGG ACAGCACTGG GGCACTGACC TCAGCAGGGT TCAGCATCAGCT TCAGCAGGGT	600 660 720 780 840 900 960
	ATCACACCCI TTTGGAGTTC ATATACAATI TTTGCTATT' CTAGACTGG AGGGTACTA' TCACGATCGG CCGGACCAGG	A TGCTGAGAGG C CAGGACTGCTA AACCACCCCC C CCAATCGTTT G CAGCTGAGAA T TCCTTTATAT A CTTTGCAAGC T TGCAGGTTCT T TGCAGGTTCT T TGCAGGTTCT	CTACCTGTCC GAGAGGAAAC CTAGGAAACCCGT ATATCCAAAG CCCATTGCCC CATCAGGATCC CATCAGGATCC CATCAGGATCC CATCAGGATCC CTCCAAGGATCC	ATCAATGCAG TGTTTTGAG GCACTTGTTG ATAGTGGCTC TCTGGAGACA CAGCTCATTA ATGTTCTGGG AATAGGAATT CTGGTTCTTA	GGAGCTTGAT AAGACTGCTTATGCAAT AAGTTTTCAAAGCC TGGATGTAAA CTCTTTTTGGAT TGCGGTTTTT TCTTCATCCC TCTCATCACCC TCTCATCACCC	TTCTACATTI TGCATTGCT GGGAAGCAAA ATGTATCTGG ACAGCACTGG GGCACTGACC TCAGCAGGGT TGTGCTTCGA GTTGTTTGAC	600 660 720 780 840 900 960
60 65	ATCACACCC TTTGGAGTT ATATACAAT! TTTGCTATT CTAGACTGG AGGGTACTA' TCACGATGGA CCGGACCAGA TTTGTCATT	A TGCTGAGAGC CAGGACTGCT AACCACCCCC CAACCATCGTTT G CAGCTGAGAA T TCCTTTATAT A CTTTGCAAGC A TGCAGGTTCT T ATCGTCTGCA	CTACCTGTCC AGAGGAAAC CAGGGAAAC CAGGAACCGT ATATCCAAGA CCATTGCCC CATCAGGATG AAATCCCTTT CTCCAAGTT CTCCAAGTT	ATCAATGCAG GCACTTTTGGAG ATAGTGGCTC TCTGGAGACA AGGTCATTA ATGTTCTGGG AATAGGAATTA CGGATTCATA TTTGCAGTTCTTA	GGAGCTTGATA AAGACTGCTTA AAGACTGCTTTGCAAA AAGTTTTCAAAGCC TGGATGTAAA CTCTTTTTGGA TGGGGTTTTT TCTCATCACC TCTCATCACCC	TICHCATTI TGCATTGCT GGGAAGCAAA ATGTATCTGG ACAGCACTGG GGCACTGACC TCAGCAGGGT TGTGCTTCAG GTTGTTTTGAC TAGGAAAATG AGAGATAAAA	600 660 720 780 840 900 960 1020 1080 1140 1200
	ATCACACCC TTTGGAGTTT ATATACAATI TTTGCTATTC CTAGACTGG AGGGTACTAC TCACGATGG CCGGACCAG TTTGTCATT GCTGTTGGT	A TGCTGAGAGG C AGGACTGC C CAGCCCCC C CCATCGTT G CAGCTGAGAA T TCCTTTATAA A CTTTGCAAGG A TGCAGGTTCT T ATCGTCTGGT A TGATCCTAGGT C TGATCCTAGGT C TGATCCTAGGCAGCCACCCACCCACCCACCCACCCACCCA	CARCTGTCA CAGGAGGAAAC CAGGAACCGT ATATCCAAAG CCCATTGCCC CATCAGGATG AAATCCTTT CTCCAAGTGT CTCCAAGTGT CTCCAAGTGT	ATCAATGCAG GCACTTGTTGGAG TGTATGGAGACA TCTGGAGACA CAGCTCATTA ATGTTCTGGG AATAGGAATT CTGGTTCTTA GGAATTAACT TTTGCAGTGAGAGC	GGAGCTTGAT AAGACTGCTF TGTTTGCAAT AAGTTTTCAF TTCCAAAGCC TGGATGTAAC TGGGGTTTTT TCTTCATCCC TCTCATCACCT TCTCATCACCT TCTCATCACCT TCTCATCACCT TCTCATCACCT TCTCATCACCT TCTCATCACCT TTTTCCTACCT	TICHACATTI TGCATTGGCT GGGAAGCAAA ATGTATCTGG ACAGCACTGG TCAGCACTGACC TCAGCAGGGT TGTGCTTCAG GTTGTTTGAC TAGGAAAAAA AGTCTTGAAT	600 660 720 780 840 900 960 1020 1080 1140 1200 1260
	ATCACACCC TTTGGAGTTT ATATACAAT TTTGCTATT' CTAGACTGG AGGGTACTA' TCACGATGG CCGGACCAG TTTGTCATT' GCTGTTGGT ATAAATGAA CTGGCAGAT	A TGCTGAGAGG C CAGGACTGCT A AACCACCCC C CCAATCGTTT G CAGCTGAGAA T TCCTTTATATA A CTTTGCAAGG A TGCAGGTTCT T ATCGTCTGGT A TGATCCTAGG A TGACCCCAGG G ATGAGGTGAA	CTACCTGTCC AGATGTCAAT CATGGTAAT CTGAGGAACCGT ATATCCAAAG CCCATTGCCC AATACCCTTT CTCCAAGTGT CTCCAAGTGT CTCCAAGTGT CTCCAAGTGT CTCCAAGTGT CCCAGTCAGGTAAGGTA	TCTATTCAG TGTTTTGAG GCACTTGTTG ATAGTGGCTC TCTGGAGACA CAGCTCATTA ATAGTATTGGAG ATAGGAATT CTGGTTCTTA GGAATTAACT TTTGCAGTTG CCCCAGGAGA CCCCAGGAATT ATAGGAATT	GGAGCTTGAT AAGACTGCTAT AAGTTTTCAA TTCCAAAGCC TGGATGTAAA CTCTTTTGGA TGGGTTTTT TCTTCATCAC CGGCAGCTG TTTTCCTAC AAAACAATTC AACTGCACCC	TICHACATHI TGCATTGGCT GGGAAGCAAA ATGTATCTGG ACAGCACTGACC TCAGCAGGGT TGTGCTTCAG GTTGTTTGAC TAGGAAAATG AGGCATAAAA AGTCTTGAAA TCTGTTGATA	600 660 720 780 840 900 960 1020 1080 1140 1200
	ATCACACCC TTTGGAGTT ATATACAATI TTTGCTATT CTGACTGG AGGGTACTA TCACGATGG CCGGACCAG TTTGTCATT GCTGTTGGT ATAAATGAA CTGGCAGAT GAGTCCATC	A TGCTGAGAGG C CAGGACTGCT C CAATCGTTT G CAGCTGAGAA T TCCTTTATATA C CTTTGCAAGG A TGCAGGTTCT T ATCGTCTGGT A TGATCCTAGG A TGCCCCAGG A TGAGGTGAA A AATCCTTCC	CTACCTGTCC AGATGTCATA CATGGTAAT CATGGTAAT CATGGTAAT CATGGTAAT CATGGTAAT CATGGTAAT CATGGTAAT CATGGTAAT CATGGTAAT CATGAAACCCTTT CATCAAGTGT CATGCTGCAAGTGT CATGCTGCAAGTGT CATGAAACACCTCAAGTGT CATGAAAACACCCTCAAGTGT CATGAAAACACCTCAAGTGTAACCCTTTA	ATCAATGCAG TGTTTTGGAG GCACTTGTTG ATAGTGGCTC TCTGGAGACA CAGCTCATTA ATAGTATTCTGGG AATAGGAATT CTGGTTCTTA GGAATTAACT TTTGCAGTTG CCCCAGGAGG GTGGGAAATC	GGAGCTTGAT AAGACTGCTTA AAGTTTTCAA TTCCAAAGCC TGGATGTATA TGTCTTTTGAT TCTTCATCAC CGGCAGCTGT TTTCCTACCC AAAACAATT AACTGCACCC CTCTCTACACCC CTCTCTACACCCC CTCTCTCACACCCC CTCTCTCACACCCC CACTGCACCCCC CCCCTCTACACC	TICHCATTI TGCATTGCT GGGAAGCAAA ATGTATCTGG ACAGCACTGG GGCACTGACC TCAGCAGGGT TGTGCTTCAG TGTGCTTCAG AGAGAAAATG AGAGATAAAA AGTCTTGAAT TCTGTTGAAT TGAGAAACAAAA	600 660 720 780 840 900 960 1020 1140 1200 1260 1320 1380
65	ATCACACCC TTTGGAGTT ATATACAATI TTTGCTATT CTAGACTGG AGGGTACTA TCACGATGG CCGGACCAG TTTGTCATT GCTGTTGGT ATAAATGAA CTGGCAGAT AGGCAGGAT AGCCAGGAT AGCCAGGAT	A TGCTGAGAGG C CAGGACTGCT AACCACCCCC C CAATCGTTT G CAGCTGAGAA T TCCTTTATATA A CTTTGCAAGG T TACGTCTGGT T ATCGTCTGGT A TGACCCCAGG G ATGAGGTGAA A ATCCTTTCC T TTCACTTCC T TTCACTTCC C ACGGACTGCT C ATCACTCCCT C ACGGACGAGA C ACCTCCCT C ACGGACGAGAGAGAGAGAGAGAGAAATCCTTCCCT C ACGGACCCCAGGAGAGAGAGAGAGAGAGAGAGAGAGAG	CTACCTGTAC CATACTATA CATAGAAAAAAAAAAAAAA	ATCAATGCAG GCACTTGTTGGAG TGTATGGAGACA TCTGGAGACA ATGTCTCTGG ATAGGGATCATT CAGCTCATTA ATAGGAATT CTGGTTCTA TTTGCAGTTCT CCCCAGGAGG GTGGGAAATC ACACTATTCA ATCGTGAACA	GGAGCTTGAT AAGACTGCTF TGTTTGCAAT TCCAAAGCC TCCATCATCAC TCTCATCAC TCTCATCAC TCTCATCAC TCTCATCAC TCTCATCAC TTTCCATCC TTTTCATCC TCTCATCAC TTTTCCTACC TTTTCCTACC TTTTCCTACC TCTCACCAC AAACAATTC AACTGCACCC TCTCTCTACCAC ATGGGAACAC	TICHCATTI TGCATTGCT GGGAAGCAAA ATGTATCTGG ACAGCACTGG TCAGCAGGGT TGTGCTTCAG GTTGTTTGAC TAGGAAAATG AGGCATAAAA AGTCTTGAAT TCTGTTGAT TCTGTTGATA TGAAAACAAAA TGAGCATTCT TAGCCATCAGC	600 660 720 780 840 900 960 1020 1140 1200 1320 1380 1440 1500
65	ATCACACCC TTTGGAGTTT ATATACAAT TTTGCTATT CTAGACTGG AGGGTACTA TCACGATGGG CCGGACCAG TTTGTCATT GCTGTTGGT ATAAATGAA CTGGCAGAT GAGTCCATC AGCCAGGAT GTGCAGGAT	A TGCTGAGAGG C CAGGACTGCT A AACCACCCC C CCAATCGTTT G CAGCTGAGAA T TCCTTTATATA A CTTTGCAAGG A TGCAGGTTCT A TGATCCTAGG A TGATCCTAGG A TGACCCCAGG A TGAGCTGAA A AATCCTTTCL T TTCACTTCC A AGAACTGGT A AGGATACAGG A TGAGCTGAG A CAGCATACAGG A CAGCATACAGG A CAGCATACAGG A CAGCATACAGG A CAGCATACAGG A CACACAGG	CTACCTGTCA CAGGAACCGT CAGGAACCGT CAGGAACCGT CAGGAACCGT CACATGCCATTCCCAGGATG CTCCAAGGATG CTCCAAGGATG CTCCAAGGATG CTCCAAGGATG CTCCAAGTGT CTCCAAGTGT CTCCAAGTGT CTCCAAGTGT CTCCAAGTGT CTCCAAGTGT CTCCAAGTGT CTCCAAGTGT CTCCAAGTGT CTCCAAGTCAGGT AGGAAACACCCAACCGT CAACAACTCTCCACACCTCCACACCTCCACACCTCACCTCACCTACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTACCTCACCTCACCTCACCTCACACCTCACCTCACCTCACCTCACACCAC	ATCANTGCAG GCACTTGTTGGAGACA CAGCTCATTA ATAGTGCTCT TCTGGAGACA CAGCTCATTA ATAGTTCTGGG ATATGGAGTTCTA GGAATTAACT ATTTGCAGTTCTA CCCCAGGAGG GCGGGAAATC ACCAATTTCCA ACCAATTTGCATTGCA	GGAGCTTGAT AAGACTGCAAA TTCCAAAGCC TGGATGTAAA CTCTTTTGGA TGCTGTTTTGAT CTCTTTTGGT TCTCATCAC TCTCATCAC TTTTCCTAC TTTTCCTAC TTTTCTAC TTTTCCTAC AAACAATT AACTGCACC ATGGAACAA TGGAACAC TGACAACCG	TICHCACATH TGCATTGGCT GGGAAGCAAA ATGTATCTGG ACAGCACTGGC TCAGCAGGGT TGTGCTTCAG GTTGTTTGAC TAGGAAAATA AGTCTTGAAT TCTGTTGATA GAAAACAAAA TGAGCATTTG TATCTCCAGC GAGGTTTGTT TATCTCCAGC GAGGTTTGTT CAATGTTGGT	600 660 720 780 840 900 960 1020 1140 1200 1320 1380 1440 1500 1560
65 70	ATCACACCC TTTGGAGTT ATATACAATI ATATACAATI CTAGACTGG AGGGTACTA' TCACGATGGI TTTGTCATT GCTGTTGGTI ATAAATGAA CTGGCAGATC AGCCAGGAT GAGTCCATC AGCCAGGAT ATGATGGTA ATGATGGTA ATGATGGTA ATGATGGTA	A TGCTGAGAGG C CAGGACTGCT AAACCACCCC C CAATCGTTTA G CAGCTGAGAA T TCCTTTATATA A CTTTGCAAGG T TGCAGGTTCT T ATCGTCTGG A TGATCCTAGG A TGAGCCCAGG G ATGAGGTGAA TTTTCCTTTCC T TTCACTTCC A AGAACTGGTT A AGAACTGGT A AGAACTGGT A AGAACTGGT C ATGAGGTGAA C ATGAGGTGAA C ATAAAGATGCT C ATAAAGATGCC C CTAGACTGGT C ATAAAGATGCT C ATAAAGATGCC C CTAGACTGGT C C CTAGACTGGT C C CTAGACTGCT C C CTAGACTGCT C C CTAGACTGCT C C C C C C C C C C C C C C C C C C C	CTACCTGTCC AGATGTCATA CATGGTAAT CTGAAGAACCGT ATATCCAAAG CCCATTGCCC AAAACCCTTT CTCCAAGTGT CTCCAAGTGT CTCCAAGTGT CTCCAAGTGT CTCCAAGTGT CTCCAAGTGT CCAGTCAGGT AGGAAAACCCCAACCTCT AAACCCCTAAATAT AAACACCCCAAAACCCCCAAAACCCCCAAAAACCCCCCAAAA	ATCANTGCAG GCACTTGTTGGAG TGTTTTGGAG TCTGGAGACA CAGCTCATTA ATAGTATTCTGG AATAGGAATT CTGGTTCTTA GGAATTAACT ATTTGCAGTTG GTGGGAAATC CACCAGAGG GTGGGAAATT CACCATTTGT ATTCGTGAACA ACCAATTGGA	GGAGCTTGAT AAGACTGCTAT AAGTTTTCAAAGCC TGGATGTAAA CTCTTTTGGAT TGCGGTTTTT TCTCATCACC CGGCAGCTGC TTTTCCTACC AAAACAATTC AACTGCACCC ATGGAAACACCG ATGGAAACCCC ATGACAACCCC ATGCACCCCC AAACACCCCC ATGCACCCCCCCCCC	TICHACATTI TIGCATTIGGCT GGGAAGCAAA ATGTATCTGG ACAGCACTGG GGCACTGACC TIGTGTTCAG TIGTGTTTGAC TAGGAAAATG AGGTATAAA AGTCTTGAAT TCTGTTGATA TGAAACAAAA TGAGCATTCT TGAGCATTCT TGAGCATTCT TGAGCATTCT TGAATCAGC TGAGCTTTGT TCAGTGTGT CAATGTTGGT CAATGTTGGT	600 660 720 780 840 900 960 1020 1140 1200 1320 1380 1440 1500 1620 1680
65	ATCACACCC TTTGGAGTTT ATATACAATI ATATACAATI TTTGCTATTC CTAGACTGGC AGGGTACTAC TCACGATGGG TTTGTCATT GCTGTTGGT ATAAATGAA CTGGCAGGAT GAGTCCATC AGCCAGGAT GTGTAGGAC ATGATGGTA AACACTTTG GAAGACTAT TGTAGAACA	A TGCTGAGAGE C CAGGACTGCT A AACCACCCC T CCAATCGTTT G CAGCTGAGAF T TCCTTTATATA A CTTTGCAAG A TGCAGGTTCT T ATCGTCTGGT A TGATCCTAGG A TGACCCTAGG A TGACCCTAGG A TGACCCTAGG A TGACCTTCC T TTCACTTCC T AACACTGGT A AGGATACAG C ATAAAGATG G GTGTGTCTG G AAGATAAGAT C ATAAAGATG G GTGTGTCTG G AAGATAAGAT C ATAAAGATAC C ATAAAACAC C ATAAAACAC C ATAAAACAC C ATAAAACAC C ATAAACAC C ATAAAACAC C ATAAAACAC C ATAAAACAC C ATAAAACAC C ATAAACAC C ATAAAACAC C	CARCATORICA CARGARACA CARGARACA CARGARACA CARGARACA CARGARACA CARGARACA CARCAGARACA CARCAGACACA CARCAGACACA CARCACACACACA CARCACACACACACACACAC	ATCAATGCAG GCACTTTTGGAG TGTTTTGGAG TCTGGAGACA CAGCTCATTA ATAGTGTTCTGG ATAGTACTTCTGG ATAGTACTTCTGG CAGATTAACT CCCCAGGAGG GTGGGAAATG ACCAATTTCCA ACCAATTCGT ATTCGTAGAG ACCAATGGAC CTGAGTACAG CTGAGGTCTTT	GGAGCTTGAT AAGACTGCTF TGTTTGCAAAGCC TGGATGTAAA TTCCAAAGCC TGGATGTTT TCTTCATCCC TCTCATCACC AAAACAATTC AAACAATTC AACTGCACC TCTCTCTACACC TCTCTCTACCC TTCTCTCTCC AAAACAATTC AACTGCACCC TTCTCTCTCCC TTCTCTCTCCC TTCTCTCCCC TTCTCTCCCC TTCTCTCCCCC	TICHACATTI TIGCATTGGCT GGGAAGCAAA ATGTATCTGG ACAGCACTGG TCAGCACGGGT TGTGCTTCAG GTTGTTTGAC TAGGAAAAAA AGTCTTGAAT TCTGTTGATA TCTGTTGATA TGAGCATTCT TATCTCCAGC GAGGTTTGTT CAATGTTGTT CAATGTGGAC TGAGTGCAC TGAGTGCAC AGATTCAAGA	600 660 720 780 840 900 960 1020 1140 1200 1320 1380 1440 1500 1560
65 70	ATCACACCC TTTGGAGTT ATATACAAT TTTGCTATT CTAGACTGG AGGGTACTA TCACGATGGL CCGGACCAG TTTGTCATT GCTGTTGGT ATAAATGAA GAGTCCATC GAGCAGGAT GTGCAGGAG ATGATGGTA AACACTTTG GAAGACTAT TGTAGAACA TATCTGTTT	A TGCTGAGAGG C CAGGACTGCT A AACCACCCC C CCAATCGTTT G CAGCTGAGAA T TCCTTTATATA A CTTTGCAAGG A TGCAGGTTCT A TGGTCTGGT A TGGTCCTAGG A TGGCCCCAGG G ATGAGGTGAA A AATCCTTTCL T TTCACTTCCL A AGAACTGGT A AGGATACAG G GTGTGTCTGG G AAGATAAGAT G GTTTTCTCTGG G AAGATAAGAT G TTATTACTTACTA A AGATAACAG G TTATTACTACA A AACCATGGT G AAGATAAGAAG G TTATTACTACA A AACCATGGT G AAGATAAGAAG G TTATTACTACA A AACCATGAG A AAGATAAGAAG A TTATTACTACA A AACCATGAG A AAGATAAGAAG A TTATTACTACA A AACCATGAG A AACCATGAG A AAGATAAGAAG A TTATTACTACA A AACCACCATGAG A AACCATGAG A TTATTACTACA A AACCACCATGAG A AACCATGAG A TTATTACTACA A AACCACCATGAG A TGCATGAG A TTATTACTACA A TTATTATTACTACA A TTATTACTACA A TTATTATTACTACA A TTATTATTACTACA A TTATTACTACA A TTATTATTACTACA A TTATTACTACA A TTATTATTATTACTACA A TTATTATTATTACTACA A TTATTATTACTACA A TTATTATTATTATTATTACTACA A TTATTATTATTATTATTACTACA A TTATTATT	CTACCTGTCC CAGGAACCGT AAATCCAAGGAACC CAGGAACCGT AAATCCCATGCC CATCAGGATG CAGGATG CAGGATG CAGGATG CAGGATG CAGGATG CAGGATG CAGGATG CAGGAACACCC CAGCAGGT CAGGAACACCC CAGCAGGATG CAGGAAAACACCCC CAGCAGAACACCCCCCTTATAGAACCCCCCCTTATAGAACCACACCCCCCCTCACCACCCCCCTTATAGAACCCCCCCTTATAGAACCCCCCCTTATAGAACCCCCCCTTATAGAACCCCCCCTTATAGAACCCCCCCTTATAGAACCCCCCCTTATAGAACCCCCCCTTATAGAACCCCCCCTTATAGAACCCCCCTTATAGAACCCCCCCTTATAGAACCCCCCCTTATAGAACCCCCCCTTATAGAACCCCCCCTTATAGAACCCCCCCTAGCACCCCCTACCCTACCCCTACCCTACCCCTACCCCTACCCCTACCCCTACCCCTACCCCTACCCCTACCCCTACCCTACCCTACCCCTACCCTACCCTACCCCTACCTACCTACCCTACCCTACCCTACCCTACCCTACCCTACCACC	ATCANTGCAG GCACTTGTTGGAGACA CAGCTCATTA ATAGTGGCTC TCTGGAGACA CAGCTCATTA CTGGTTCTTA GGAATTAACT TTTGCAGTTCTA GGAATTAACT CCCCAGGAGC GTGGGAAAT CACTATTCCA ACCAATTGGA ACCAATTGGA CTGAGTACAA ACCAATGGGAACA CTGAGTACAA ACCAATGGGF CTGAGTACAA CAGGGTCTTC CAGGGTCTTC CAGGGTCTTC CAGGGTCTTC CAGGGTCTTC	GGAGCTTGAT AAGACTGCATTGCATTTCCAAAGCC TGGATGTAAT TCTCATCACC TCTCATCACC TCTCATCACC TCTCATCACC TCTCATCACC TCTCATCACC TCTCATCACC TATTCCATCACC TTTTCCATCACC TTTTCCATCACC TTTTCCATCACC TTTTCCATCACC TTTTCCATCACC TTTTCCATCACC TTTTCCATCACC TTTTCCATCACC TTTTTCCATCACC TTTTTCCATCACC TTCTACACC TGACAACCAC TTCTAGACT TCTTAGACT AATAGCCC AATACCTCC TTCTAGACT AATATGCCCC AATACCCCC TTCTAGACT AATATGCCCC	TICHACATIT TGCATTGGCT GGGAAGCAAA ATGTATCTGG ACAGCACTGGC TGGCAGGGT TGTGCTTCAG GTTGTTTGAC TAGGAAAAAA AGTCTTGAAT TCTGTTGATA GAAAACAAAA TGAAGCATTGT TATCTCCAGC GAGGTTTGTT CAATGTTGT CAATGTTGGT TGAGGACACAC GAGGTTGAAT	600 660 720 780 840 900 960 1020 1140 1200 1320 1380 1440 1550 1620 1680 1740 1800
65 70	ATCACACCC TTTGGAGTT ATATACAAT TTTGCTATT CTAGACTGG AGGGTACTA TCACGATGGC CCGGACCAG TTTGTCATT GCTGTTGGT ATAAATGAA CTGGCAGGAT GAGTCCATC AGCCAGGAT GTGCAGGAT GTGCAGGAT ATAATGAA ACACTTTG GAAGACTAT TGTAGAACA TATCCAGCC	A TGCTGAGAGG C CAGGACTGCT A AACCACCCC C CCAATCGTTT G CAGCTGAGAA TTTTGCAAGG A TGCAGGTTCT A TGATCCTAGG A TGACCCCAGG G ATGAGGTGAA A AATCCTTCC A AGAACTGGT A AGGATACAG G GTGATCCTAG G GTGATCCTAG G ATGACTTCC A AGAACTGGT A AGGATACAG C ATAAAGATG G TTATTACTA A ACAAAATGTT A ACAAAATGTT A ACAAAATGTC C TATTACTAC A ACAAAATGTC A CACAAAATGTC C C CACACACCC C C C C C C C C C C C C	CTACCTGTCC CAGGACCGT CAGGACCGT CAGGACCGT CAGGACCGT CACCATTGCCC CATCAGGACCGT CACCATTGCCT CACCAGGACCGT CACCAGGACCGT CACCAGGACCGC CACCAGGACCGC CACCAGGACCGC CACCAGGACCGC CACCAGGACCGC CACCAGGACCCC CACCAGCCAG	ATCAATGCAG GCACTTGTTGGAG TGTTTTGGAG TGTGTGGAGACA CAGCTCATTA ATGTTCTGGG AATAGGAATT CTGGTTCTTA TTGCAGTTCTA TTTGCAGTGG GTGGGAAATG ACACTATTCCA TCACAATTGGA CACCAATTGGA CTGGTAAAGAA CACCAATTGGAAAGAA CACCAATTGGAAAGAA CACCAATGGGT CTGGGAAAGAA CACCAATTGGGT CTGAGAAGAA CACCAATGGGT CTGAGAAGAA CACCAATGGGT CTGAGAAGAA CACCAATGGGT CTGAGAAGAA CACCAATGGGT CTGAGAAGAA	GGAGCTTGAT AAGACTGCATA AAGTTTTCAAAGCC TGGATGTAAA CTCTTTTGGATTTTCATCAC TCTCATCACC TCTCATCACC TTTTCCTACCC TTTTCCTACCC TTTTCCTACCC TTTTCCTACCC AAACAATTC AACTGCACCC TGCACACCCC TTCTTTACACCC TTCTTTCACCC TTCTTACACCC TTCTTACACCC TTCTTACACCC TTCTTACACCC TTCTTACACCC TTCTTACACCC TTCTTAGACT AAATATGCCC ATTCTCAGGCC ATTCTCAGGCC TTCTTACACCC TTCTTAGACCC TTCTTCTCAGGCC TTCTTCTCAGGCC TTCTTCTCAGGCC TTCTTCTCAGGCC TTCTTCAGACCC TTCTTCAGCC TTCTTCAGACCC TTCTTCAGACC TTCTTCAGACCC TTCTTCAGACCC TTCTTCTCAGCC TTCTTCTCAGCC TTCTTCAGACC TTCTTCAGACCC TTCTTCAGACC TTCTTCAGACC TTCTTCAGACC TTCTTCAGACC TTCTTCAGACC TTCTTCTTCAGCC TTCTTCTTCAGCC TTCTTCTTCAGACC TTCTTTCTCAGCC TTCTTTCTTCAGCC TTCTTCTTCAGACC TTCTTTCTTCAGCC TTCTTTCTTCAGACC	TICHCACHTI TIGCATTIGGCT GGGAAGCAAA ATGTATCTGG ACAGCACTGGC GGCACTGACC TIGTCTTCAG GTTGTTTGAC TAGGAAAATG AGTCTTGAAT TCTCTTGATA GAAAACAAAA TGAGCATTTG TATCTCCAGC GAGGTTTGTT CAATGTTGTT CAATGTTGGT TGCAGTGCAC TGGTGCAGCA GATTCAAGAC GGTTTACAGCAC TGGTGCAGCAC TGGTGCAGCAC GGTTTACAGCC TGGTGCAGCAC GGTTACAGCC TGGTGCAGCAC GGTTACAGCC TGGTGCAGCAC GGTTACAGCC TCCCTCTAGC	600 660 720 780 840 900 900 1020 1080 1140 1200 1320 1380 1440 1500 1660 1620 1680 1740 1860 1920
65 70 75	ATCACACCC TTTGGAGTTT ATATACAAT TTTGCTATT* CTAGACTGG AGGGTACTA* TCACGATGGI CCGGACCAG TTTGTCATT* GCTGTTGGT ATAAATGAA CTGGCAGAT GAGTCCATC AGCCAGGAT GAGTCCATC AGCCAGGAT GTGAAGAC ATGATGGTA TATCTGTTT ATTCCAGCC GGGGAGGTC ATGAAATCTT CTGTAGACCA TATCTGTTT ATTCCAGCC ATGAAAATCT ATGAAAAATCT ATGAAAAATCT ATGAAAAATCT ATGAAAAATCT ATGAAAAATCT ATGAAAAATCT ATGAAAAAATCT ATGAAAAATCT ATGAAAAATCT ATGAAAAATCT ATGAAAAATCT ATGAAAAATCT ATGAAAAATCT ATGAAAAATCT ATGAAAAAATCT ATGAAAAATCT ATGAAAAAATCT ATGAAAAAATCT ATGAAAAAATCT ATGAAAAAATCT ATGAAAAATCT ATGAAAAAATCT ATGAAAAAAAAAA	A TGCTGAGAGE C CAGGACTGCT A AACCACCCC C CAGGACTGCT C CAATCGTTT G CAGCTGAGA A CTTTGCAAG A TGCAGGTTCT T ATCGTCTGGT A TGATCCTAGG A TGCACGTA A AATCCTTCC T TTCACTTCC A AGAACTGGT A AGACTGGT C ATAAGATG G GTGTGTCTG G AAGATAAGAT G TTATTACTA A ACAAAATGT A TGTCTCTGG G TGCTCCAGG C CACACTCCA	CATACATTACA CATAGACA CATAGCACA	ATCAATGCAG GCACTTGTTGGAGACA TGTTTTGGAGACA TGTGTTCTGGAGACA ATAGTGTTCTGGAGACA ATAGTATTCTGGG ATAGGAATTACT CCCCAGGAGG GTGGGAAATA ACCAATTTCA ACCAATTTCA ACCAATTGGAGACA CTGGTCAAAGAACA CTGGTCAAAGAACA ACCAATTGGGT CTGAGTACAACAACAACAACAACAACAACAACAACAACAACAACA	GGAGCTTGAT AAGACTGCTF TGTTTGCAAAGCC TTCCAAAGCC TGGTGTAAA TGGTGTATA TCTCATCATCATCATCATCATCATCATCATCATCATCATC	TICHACATI TGCATTGGCT GGGAAGCAAA ATGTATCTGG ACAGCACTGG TCAGCAGGGT TGTGCTTCAG TGTGCTTCAG TAGGAAAAT AGTCTTGAAT TCTGTTGAT TCTGTTGAT TGAGCATTGAT TGAGCATTGAT TGAGCATTCT GAAAACAAA AGTCTTGATA TGAGCATTCT GAGTTTGAT TGAGTGTGA TGAGTGAGC TGGTGCAGCA GGTTACAGCT TGCTCCAGC TGGTTCAGC TGGTTCAGC TGGTTCAGC TGGTTCAGC TGGTTCAGC TGGTTCAGC TGGTTCAGCT TCCCTCTAGC TCCCTCTAGC TTCCCTCTAGC TTCCTTAGC TTCCTTAGC TTCCTTAGC TTCCTTAGC TTCCTCTGC	600 660 720 780 840 900 960 1020 1140 1200 1320 1380 1440 1550 1620 1680 1740 1800
65 70	ATCACACCC TTTGGAGTT ATATACAAT TTTGCTATT CTAGACTGG AGGGTACTA; TCACGATGG CCGGACCAG TTTGTCATT GCTGTTGGT ATAAATGAA. CTGGCAGGAT GAGTCCATC AGCCAGGAT GTGCAGAGAT GTAGATGTA AACACTTTG GAAGACTAT TGTAGAACA TATCCAGCC GGGGAGGTC ATGAAATCT CTTGTTGTTGT CTTGTTGTTGTT	A TGCTGAGAGE C CAGGACTGCI A AACCACCCC T CCAATCGTTI G CAGCTGAGAI T TCCTTTATATA A CTTTGCAAGG A TGCAGGTTCI T ATCGTCTGGT A TGATCCTAGG A TGCACCGGT T TTCACTTCCI T TTCACTTCCI T AACGATACAG G GTGTGTCTGG G AAGATACAG G TTATTACTAG G TTATTACTAG A TGATCCTGGT A TGATCCTGG G AAGATAGAA C ATAAAGATG G TTATTACTAG A TGATCCTGG G TGCTCCAGG G TGCTCCAGG G CACAGTTCAG C TCACTTCCC C CACAGTTCAG C CCACAGTTCAG C CACAGTTCAG C CACAGTTCAG C CACAGTTCAC C C CACAGTTCAC C C CACAGTTCAC C C CACAGTTCAC C C C C C C C C C C C C C C C C C C	CTACCTGTCC CAGGACC CAGGACC CAGGACC CACAGGACC CACAGCACC CACAGCACC CACAGCACC CACACACCC CACACACCC CACACCCC CACACCCC CACACCCC CACACCCC CACACCCC CACACCCCC CACACCCCC CACACCCCC CACACCCCC CACACCCCCC	ATCAATGCAG GCACTTTTGGAG CAGCTCATTA ATAGTGGCTC TCTGGAGACA CAGCTCATTA ATAGTGTTCTGG AATAGGAATT CTGGTTCTTA CCCCAGGAGG GTGGGAAATG ACCAATTTGT ATTCGTGAACA ACCAATTGAAC ACCAATTGAAC CTGAGTACAC CTGAGTACAC CTGAGTACAC CAGGGTCTTC CAGGGTCTC CAGGGTCTC CAGGGTCTC CAGGGTCTC CAGGGTCTC CAGGGTCTC CAGGGTCTC ATGACAATTCT ATTGACAATTC CAGGTTCTC ATGACAATTC ATGACGACC ATCATGGGCC ATCATGGGC ATCATGGGCC ATCATGGGC ATCATGGGCC ATCATGGGC ATCATGGGCC ATCATGGCC ATCATGGCC ATCAT	GGAGCTTGAT AAGACTGCTTTTGCAT TTCCAAAGCC TGGATGTATA TCTCTTTTGGG TGGGGTTTTT TCTTCATCCC TCTCATCACC AAAACAATTC AACTGCACC ATGCACCC TTTTCTACACC AAAACAATTC AACTGCACCC TTTTTCATCCC ATGCACCCC TTTTTCTACAC ATGCACCCC ATACCTCTC AAAACAATTC ATGCACCCC ATACCTCTCC AAAACAATTCCACCCC ATACCTCTCC AATACCTCTCC AATATGCCCC AATATGCCCC AATATGCCCCC AATATCATGGACT AATTCTAGGACT AATATCATGTCACACCCCCCCCCC	TICHCACHTI TIGCATTGGCT GGGAAGCAAA ATGTATCTGG ACAGCACTGG TCAGCACGGGT TGTGCTTCAG GTTGTTTGAC TAGGAAAAAA AGTCTTGAAT TCTGTTGAT TCTGTTGAT TCTGTTGAT GAAAACAAAA TGAGCATTCT GAGTTTTCT TCAGTGTGT CAATGTGCAC TGGGCACTGCAC TGGTTCAGCAC TGGTTCAGCAC TGGTTCAGCAC TGGTTCAGCAC TGGTTCAGCAC TGGTTCAGCAC TGGTTCAGCAC TGGTTCAGCAC TGGTTACAGCT TCCCTCTAGCC TCCCTCTAGCC TCCTTTAAAAA	600 660 720 780 840 900 960 1020 1140 1200 1320 1440 1500 1680 1740 1800 1860 1980 2040 2100
65 70 75	ATCACACCC TTTGGAGTT ATATACAAT TTTGCTATT CTAGACTGG AGGGTACTA; TCACGATGG CCGGACCAG TTTGTCATT GCTGTTGGT ATAAATGAA. ATGAAAT AGACCTTGG AGACCATC GAGACCATC GAGACCATC GAGACCATC GAGACCATC TGTAGAACA TATCCAGCC GGGGAGGTC ATGAAATCT CTTGTTGTG CTCCTGCTGTG ACAGAGGAT CCTGTGTGTG ACAGAGGAT	A TGCTGAGAGE C CAGGACTGCI A AACCACCCC I CCAATCGTTI G CAGCTGAGAI I TCCTTTATATA A CTTTGCAAGG A TGCAGGTTCI T ATCGTCTGGT A TGATCCTAGG A TGCACCGGG A TGACCCTAGG A TGCCCCAGG A TGCCCCAGG C ATGAGGTGAI A AACCTTTCI T TTCACTTCCI G AGAACTGGTI A AGGATAAGAI G TTATTACTAG A TGATCTCGG G TGCTCCAGG G TGCTCCAGG G TGCTCCAGG G TGCTCCAGG G TGACTTCAC TGACTGGC TGATCTGCC A TGCTGCGGGTCA A TGGTGCCC A TGCTGGGGTCA A TGGTGCCC A TGCTGGGGGTCA A TGGTGCCC A TGCTGGGGGTCA A TGGTGCCC A TGCTGGGGGTCA A TGGTGGCC A TGCTGGGGGTCA A TGGTGGCC A TGCTGGGGGTCA A TGGTGGCC A TGCTGGGGGTCA A TGGTGGCC A TGCTGGGGGTCA A TGCTGGGGGTCA A TGCTGGCGGGGTCA A TGCTGGGGGTCA A TGCTGGGGGTCA A TGCTGGCC A TGCTGGGGGTCA A TGCGGGGGTCA A TGCGGGGTCA A TGCGCGGGTCA A TGCGGGGTCA A TGCGGGGTCA A TGCGGGGTCA A TGCTGCCC A TGCGGGGTCA A TGCGCGGGTCA A TGCGCGGGTCA A TGCGCGGGTCA A TGCTGCGCGGGTCA A TGCTGGGGGTCA A TGCTGGCGGGTCA A TGCGCGGGTCA A TGCTGGCGGGTCA A TGCGCGGGTCA A TGCTGGCGGGTCA A TGCTGGCTA A TGCTGGGGTCA A TGCTGGCTA A TGCTGGGGTCA A TGCGCGGGTCA A TGCTGGGGGTCA A TGCTGGCTA A TGCTGCGCGGGTCA A TGCTGGGGGTCA A TGCTGGGGGTCA A TGCTGGGGGTCA A TGCTGGCTA A TGCTGGGGGTCA A TGCTGGGGGTCA A TGCTGGGGGTCA A TGCTGGGGGTCA A TGCTGGCGGGGTCA A TGCTGGCTA A TGCTGGGGGTCA A TGCGGGGTCA A TGCTGGCTA A TGCTGGGGGTCA A TGCTGGGGGTCA A TGCTGGGGGGTCA A TGCTGGGGGGTCA A TGCTGGGGGGTCA A TGCTGGGGGGTCA A TGCTGGGGGGTCA	CTACCTGTCC CAGGATGTCAAAAAAAAAAAAAAAAAAAA	ATCAATGCAG GCACTTTTGGAG CAGCTCATTA ATAGTGGCTC TCTGGAGACA CAGCTCATTA ATAGTGTTCTGG AATAGGAATT CTGGTTCTTA CCCCAGGAGG GTGGGAAATG ACCAATTCCA ACCAATTCGA CTGAGTACAA ACCAATGGAC CTGAGTACAA ACCAATTGGAGAC CTGAGTACAA CAGTGGGCT CAGGGTACCAA CAGTGGGCT CAGGGTACCAA CAGTGGGCT CAGGTACCAA CAGTGGGCCCC CAGGTGCCCC CACATTCCT CAGGTGCCCC CAGGTGCCCC CACATTCCT CAGGTGCCCC CACATTCCT CAGTGGGCCCC CACATTCCTC	GGAGCTTGAT AAGACTGCTTTTGCAT TTCCAAAGCC TGGATGTATA TCTCTTTTGGG TGGGGTTTTT TCTTCATCCC TCTCATCACC AAAACAATTC AACTGCACC ATGCACCC TTTTCTACACC AAAACAATTC AACTGCACCC TTTTTCATCCC ATGCACCCC TTTTTCTACAC ATGCACCCC ATACCTCTC AAAACAATTC ATGCACCCC ATACCTCTCC AAAACAATTCCACCCC ATACCTCTCC AATACCTCTCC AATATGCCCC AATATGCCCC AATATGCCCCC AATATCATGGACT AATTCTAGGACT AATATCATGTCACACCCCCCCCCC	TICHCACHTI TGCATTGGCT GGGAAGCAAA ATGTATCTGG ACAGCACTGG TCAGCAGGGT TGTGCTTCAG TGTGCTTCAG TGTGCTTCAG AGAGAAAAT AGTCTTGATA AGTCTTGATA TGAGAAAAAAA TGAGAAAAAA TGAGGATTGTT TCAATGTTGGT CAATGTTGGT TGAGGTTGTT CAATGTTGGT TGAGGAAAAAAAAAA	600 660 720 780 840 900 960 1080 1140 1200 1380 1380 1440 1500 1680 1740 1800 1860 1920 1980 2040
65 70 75	ATCACACCC TTTGGAGTT ATATACAAT TTTGCTATT CTAGACTGG AGGGTACTA; TCACGATGG CCGGACCAG TTTGTCATT GCTGTTGGT ATAAATGAA. ATGAAAT AGACCTTGG AGACCATC GAGACCATC GAGACCATC GAGACCATC GAGACCATC TGTAGAACA TATCCAGCC GGGGAGGTC ATGAAATCT CTTGTTGTG CTCCTGCTGTG ACAGAGGAT CCTGTGTGTG ACAGAGGAT	A TGCTGAGAGE C CAGGACTGCI A AACCACCCC T CCAATCGTTI G CAGCTGAGAI T TCCTTTATATA A CTTTGCAAGG A TGCAGGTTCI T ATCGTCTGGT A TGATCCTAGG A TGCACCGGT T TTCACTTCCI T TTCACTTCCI T AACGATACAG G GTGTGTCTGG G AAGATACAG G TTATTACTAG G TTATTACTAG A TGATCCTGGT A TGATCCTGG G AAGATAGAA C ATAAAGATG G TTATTACTAG A TGATCCTGG G TGCTCCAGG G TGCTCCAGG G CACAGTTCAG C TCACTTCCC C CACAGTTCAG C CCACAGTTCAG C CACAGTTCAG C CACAGTTCAG C CACAGTTCAC C C CACAGTTCAC C C CACAGTTCAC C C CACAGTTCAC C C C C C C C C C C C C C C C C C C	CTACCTGTCC CAGGATGTCAAAAAAAAAAAAAAAAAAAA	ATCAATGCAG GCACTTTTGGAG CAGCTCATTA ATAGTGGCTC TCTGGAGACA CAGCTCATTA ATAGTGTTCTGG AATAGGAATT CTGGTTCTTA CCCCAGGAGG GTGGGAAATG ACCAATTCCA ACCAATTCGA CTGAGTACAA ACCAATGGAC CTGAGTACAA ACCAATTGGAGAC CTGAGTACAA CAGTGGGCT CAGGGTACCAA CAGTGGGCT CAGGGTACCAA CAGTGGGCT CAGGTACCAA CAGTGGGCCCC CAGGTGCCCC CACATTCCT CAGGTGCCCC CAGGTGCCCC CACATTCCT CAGGTGCCCC CACATTCCT CAGTGGGCCCC CACATTCCTC	GGAGCTTGAT AAGACTGCTTTTGCAT TTCCAAAGCC TGGATGTATA TCTCTTTTGGG TGGGGTTTTT TCTTCATCCC TCTCATCACC AAAACAATTC AACTGCACC ATGCACCC TTTTCTACACC AAAACAATTC AACTGCACCC TTTTTCATCCC ATGCACCCC TTTTTCTACAC ATGCACCCC ATACCTCTC AAAACAATTC ATGCACCCC ATACCTCTCC AAAACAATTCCACCCC ATACCTCTCC AATACCTCTCC AATATGCCCC AATATGCCCC AATATGCCCCC AATATCATGGACT AATTCTAGGACT AATATCATGTCACACCCCCCCCCC	TICHCACHTI TIGCATTGGCT GGGAAGCAAA ATGTATCTGG ACAGCACTGG TCAGCACGGGT TGTGCTTCAG GTTGTTTGAC TAGGAAAAAA AGTCTTGAAT TCTGTTGAT TCTGTTGAT TCTGTTGAT GAAAACAAAA TGAGCATTCT GAGTTTTCT TCAGTGTGT CAATGTGCAC TGGGCACTGCAC TGGTTCAGCAC TGGTTCAGCAC TGGTTCAGCAC TGGTTCAGCAC TGGTTCAGCAC TGGTTCAGCAC TGGTTCAGCAC TGGTTCAGCAC TGGTTACAGCT TCCCTCTAGCC TCCCTCTAGCC TCCTTTAAAAA	600 660 720 780 840 900 960 1020 1140 1200 1320 1440 1500 1680 1740 1800 1860 1980 2040 2100

```
WO 02/086443
                 11
      MNPFOKNESK ETLFSPVSIE EVPPRPPSPP KKPSPTICGS NYPLSIAFIV VNEFCERFSY
       YGMKAVLILY PLYPLHWNED TSTSIYHAFS SLCYPTPILG AAIADSWLGK FKTIIYLSLV
 5
       YVLGHVIKSL GALPILGGQV VHTVLSLIGL SLIALGTGGI KPCVAAFGGD QFEEKHARER
                                                                          180
       TRYFSVFYLS INAGSLISTF ITPMLRGDVQ CFGEDCYALA FGVPGLLMVI ALVVFAMGSK
                                                                          240
       IYNKPPPEGN IVAQVFKCIW FAISNRFKNR SGDIPKRQHW LDWAAEKYPK QLIMDVKALT
                                                                          300
       RVLFLYIPLP MFWALLDQQG SRWTLQAIRM NRNLGFFVLQ PDQMQVLNPF LVLIFIPLFD
                                                                          360
       FVIYRLVSKC GINFSSLRKM AVGMILACLA PAVAAAVBIK INEMAPAQSG PQEVFLQVLN
                                                                          420
       LADDEVKVTV VGNENNSLLI ESIKSFQKTP HYSKLHLKTK SQDFHFHLKY HNLSLYTEHS
10
                                                                          480
       VQEKNWYSLV IREDGNSISS MMVKDTESKT TNGMTTVRFV NTLHKDVNIS LSTDTSLNVG
                                                                          540
       EDYGVSAYRT VQRGEYPAVH CRTEDKNFSL NLGLLDFGAA YLFVITNNTN QGLQAWKIED
                                                                          600
       IPANKMSIAW QLPQYALVTA GEVMFSVTGL EFSYSQAPSS MKSVLQAAWL LTIAVGNIIV
                                                                          660
       LVVAQFSGLV QWAEFILFSC LLLVICLIFS IMGYYYVPVK TEDMRGPADK HIPHIQGNMI
                                                                          720
15
       KLETKKTKL
       Seq ID NO: 682 DNA sequence
       Nucleic Acid Accession #: NM_016077.1
       Coding sequence: 128..667
20
                                                   41
                                        31
       TCGCTTTGTG ATTCTTGATC CGGAACTTTG TCACCCAGGA ACCCCGGAAG AGGTAGCTCA
                                                                           60
       120
25
       ACTGTAGATG CCCTCCAAAT CCTTGGTTAT GGAATATTTG GCTCATCCCA GTACACTCGG
                                                                          180
       CTTGGCTGTT GGAGTTGCTT GTGGCATGTG CCTGGGCTGG AGCCTTCGAG TATGCTTTGG
                                                                          240
       GATGCTCCCC AAAAGCAAGA CGAGCAAGAC ACACACAGAT ACTGAAAGTG AAGCAAGCAT
                                                                          300
       CTTGGGAGAC AGCGGGGAGT ACAAGATGAT TCTTGTGGTT CGAAATGACT TAAAGATGGG
                                                                          360
       AAAAGGGAAA GTGGCTGCCC AGTGCTCTCA TGCTGCTGTT TCAGCCTACA AGCAGATTCA
                                                                           420
30
       AAGAAGAAAT CCTGAAATGC TCAAACAATG GGAATACTGT GGCCAGCCCA AGGTGGTGGT
                                                                           480
       CAAAGCTCCT GATGAAGAAA CCCTGATTGC ATTATTGGCC CATGCAAAAA TGCTGGGACT
                                                                           540
       GACTGTAAGT TTAATTCAAG ATGCTGGACG TACTCAGATT GCACCAGGCT CTCAAACTGT
                                                                           600
       CCTAGGGATT GGGCCAGGAC CAGCAGACCT AATTGACAAA GTCACTGGTC ACCTAAAACT
                                                                           660
       TTACTAGGTG GACTTTGATA TGACAACAAC CCCTCCATCA CAAGTGTTTG AAGCCTGTCA
                                                                           720
35
       GATTCTAACA ACAAAGCTG AATTTCTTCA CCCAACTTAA ATGTTCTTGA GATGAAAATA
       AAACCTATTC CCATGTTCTA AAAAAA
       Seq ID NO: 683 Protein sequence
       Protein Accession #: NP_057161.1
40
                                                              51
                                        31
       MPSKSLVMEY LAHPSTLGLA VGVACGMCLG WSLRVCFGML PKSKTSKTHT DTESEASILG
                                                                            60
       DSGEYKMILV VRNDLKMGKG KVAAQCSHAA VSAYKQIQRR NPEMLKQWEY CGQPKVVVKA
                                                                           120
45
       PDEETLIALL AHAKMLGLTV SLIQDAGRTQ IAPGSQTVLG IGPGPADLID KVTGHLKLY
       Seq ID NO: 684 DNA sequence
       Nucleic Acid Accession #: NM 004864.1
       Coding sequence: 26..952
50
                             21
                                        31
                                                   41
                                                              51
                  11
       CGGAACGAGG GCAACCTGCA CAGCCATGCC CGGGCAAGAA CTCAGGACGG TGAATGGCTC
                                                                            60
       TCAGATGCTC CTGGTGTTGC TGGTGCTCTC GTGGCTGCCG CATGGGGGGCG CCCTGTCTCT
                                                                           120
55
       GGCCGAGGCG AGCCGCGCAA GTTTCCCGGG ACCCTCAGAG TTGCACTCCG AAGACTCCAG
                                                                           180
       ATTCCGAGAG TTGCGGAAAC GCTACGAGGA CCTGCTAACC AGGCTGCGGG CCAACCAGAG
                                                                           240
       CTGGGAAGAT TCGAACACCG ACCTCGTCCC GGCCCCTGCA GTCCGGATAC TCACGCCAGA
                                                                           300
       AGTGCGGCTG GGATCCGGCG GCCACCTGCA CCTGCGTATC TCTCGGGCCG CCCTTCCCGA
                                                                           360
       GGGGCTCCCC GAGGCCTCCC GCCTTCACCG GGCTCTGTTC CGGCTGTCCC CGACGGCGTC
                                                                           420
60
       AAGGTCGTGG GACGTGACAC GACCGCTGCG GCGTCAGCTC AGCCTTGCAA GACCCCAAGC
                                                                           480
       GCCCGCGCTG CACCTGCGAC TGTCGCCGCC GCCGTCGCAG TCGGACCAAC TGCTGGCAGA
                                                                           540
       ATCTTCGTCC GCACGGCCCC AGCTGGAGTT GCACTTGCGG CCGCAAGCCG CCAGGGGGCG
                                                                           600
       CCGCAGAGCG CGTGCGCGCA ACGGGGACGA CTGTCCGCTC GGGCCCGGGC GTTGCTGCCG
                                                                           660
       TCTGCACACG GTCCGCGCGT CGCTGGAAGA CCTGGGCTGG GCCGATTGGG TGCTGTCGCC
                                                                           720
65
       ACGGGAGGTG CAAGTGACCA TGTGCATCGG CGCGTGCCCG AGCCAGTTCC GGGCGGCAAA
                                                                           780
       CATGCACGCG CAGATCAAGA CGAGCCTGCA CCGCCTGAAG CCCGACACGG AGCCAGCGCC
                                                                           840
       CTGCTGCGTG CCCGCCAGCT ACAATCCCAT GGTGCTCATT CAAAAGACCG ACACCGGGGT
                                                                           900
       GTCGCTCCAG ACCTATGATG ACTTGTTAGC CAAAGACTGC CACTGCATAT GAGCAGTCCT
                                                                           960
       GGTCCTTCCA CTGTGCACCT GCGCGGGGGA GGCGACCTCA GTTGTCCTGC CCTGTGGAAT
                                                                          1020
70
       GGGCTCAAGG TTCCTGAGAC ACCCGATTCC TGCCCAAACA GCTGTATTTA TATAAGTCTG
                                                                          1080
       TTATTTATTA TTAATTTATT GGGGTGACCT TCTTGGGGAC TCGGGGGCTG GTCTGATGGA
                                                                          1140
       ACTGTGTATT TATTTAAAAC TCTGGTGATA AAAATAAAGC TGTCTGAACT GTTAAAAAAA
75
       Seg ID NO: 685 Protein seguence
       Protein Accession #: NP_004855.1
                                                              51
       MPGQELRTVN GSQMLLVLLV LSWLPHGGAL SLAEASRASF PGPSELHSED SRFRELRKRY
80
                                                                            60
       EDLLTRLRAN QSWEDSNTDL VPAPAVRILT PEVRLGSGGH LHLRISRAAL PEGLPEASRL
                                                                           120
       HRALFRLSPT ASRSWDVTRP LRRQLSLARP QAPALHLRLS PPPSQSDQLL AESSSARPQL
                                                                           180
       ELHLRPQAAR GRRRARARNG DDCPLGPGRC CRLHTVRASL EDLGWADWVL SPREVQVTMC
                                                                           240
       IGACPSQFRA ANMHAQIKTS LHRLKPDTEP APCCVPASYN PMVLIQKTDT GVSLQTYDDL
                                                                           300
85
       LAKDCHCI
```

Seq ID NO: 686 DNA sequence

Nucleic Acid Accession #: NM_002423.2 Coding sequence: 48..851

_	1	11	21	31	41	51	
5	1	1	1		1	1	
			AAGAACAATT CTGCCTGGCA				60
			TGGGAACAGG				120 · 180
			GCCAACAGTT				240
10			GGAATGTTAA				300
			GTTGCAGAAT				360
	CTTCCAAAGT	GGTCACCTAC	AGGATCGTAT	CATATACTCG	AGACTTACCG	CATATTACAG	420
			GCTTTAAACA				480
1.5			GCTGACATCA				540
15			CCAGGAAACA				600
			TTCGATGAGG				660
•			GCAACTCATG ATGTATCCAA				720 780
			AAAGGCATTC				840
20			GCAGAACATC				900
			TAAGCACTGT				960
	CTTTTTTATT	GCAGTTGGTT	TTTGAATGTC	TTTCACTCCT	TTTATTGGTT	AAACTCCTTT	1020
			TCCATCTATG			ATGTCAATAA	1080
25	ATGTTACATA	CACAAATAAA	TAAAATGTTT	ATTCCATGGT	ATTTA		
25	a - m	505 Buch -					
	Seq ID NO:	ession #: 1	n sequence				
	Process Acc	.6881011 #: 1	·F_002414.1				•
	1	11	21	31	41	51	
30	1	1	1	1	j]	
	MRLTVLCAVC	LLPGSLALPL	PQEAGGMSEL	OMEGYODATK	RPYLYDSETK	NANSLEAKLK	60
			IMQKPRCGVP				120
			PLHFRKVVWG				180
35		IKGIQKLYGK	GSSLGINFLY	AATHELGHSL	GMGHSSDPNA	VMYPTYGNGD	240
20	E GIAL KEDOGOD	TIGITATOR					
	Seq ID NO:	688 DNA 86					
	Nucleic Act	id Accession	equence n #: NM_005	221.3			
40	Nucleic Act		equence n #: NM_005	221.3			
40	Nucleic Act	d Accession Lence: 187	equence n #: NM_005 70		41	c1	
40	Nucleic Act	id Accession	equence n #: NM_005	31	41	51 }	
40	Nucleic Act Coding sequent	d Accession mence: 187	equence n #: NM_005 70 21	31 	1	1	60
	Nucleic Act Coding sequence 1 ATGACAGGAG	id Accession uence: 18' 11 TGTTTGACAG	equence n #: NM_005 70	31 AGCATCCGAT	CCGGCGACTT	CCAAGCTCCG	60 120
40 45	Nucleic Aci Coding sequ 1 ATGACAGGAG TTCCAGACGT	id Accession mence: 187 11 TGTTTGACAG CCGCAGCTAT	equence 1 #: NM_005 70 21 AAGGGTCCCC	31 AGCATCCGAT TCTCAGGAAT	CCGGCGACTT CGCCAACTTT	CCAAGCTCCG GCCCGAGTCT	
	Nucleic Aci Coding sequents 1 ATGACAGGAG TTCAGACGT TCAGCTACCG CCTACCTCGG	dd Accession aence: 18" 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG	equence #: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCCT CAAAGCTCTC	31 AGCATCCGAT TCTCAGGAAT ACGGGGGGAG AACCCCTACC	CCGGCGACTT CGCCAACTTT CCCCGCACGG AGTATCAGTA	CCAAGCTCCG GCCCGAGTCT CTACTGCTCT TCACGGCGTG	120 180 240
	Nucleic Act Coding sequ 1 ATGACAGGAG TTCCAGACGT TCAGCTACCG CCTACCTCGG AACGGCTCCG	dd Accession ence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGGAGCTA	equence #: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCCT CAAAGCTCTC CCCAGCCAAA	31 AGCATCCGAT TCTCAGGAAT ACGGGGGGAG AACCCCTACC GCTTATGCCG	CCGGCGACTT CGCCAACTTT CCCCGCACGG AGTATCAGTA ACTATAGCTA	CCAAGCTCCG GCCCGAGTCT CTACTGCTCT TCACGGCGTG CGCTAGCTCC	120 180 240 300
	Nucleic Aci Coding sequence 1 ATGACAGGAG TTCCAGACGT TCAGCTACC CCTACCTCGG AACGGCTCCG TACCACCAGT	dd Accession ence: 18' 11 } TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGGAGCTA ACGCCGCGCGC	equence #: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCCT CAAAGCTCTC CCCAGCCAAA CTACAACCGC	31 AGCATCCGAT TCTCAGGAAT ACGGGGGGAG AACCCCTACC GCTTATGCCG GTTCCCAAGCG	CCGGCGACTT CGCCAACTTT CCCCGCACGG AGTATCAGTA ACTATAGCTA CCACCAACCA	CCAAGCTCCG GCCCGAGTCT CTACTGCTCT TCACGGCGTG CGCTAGCTCC GCCAGAGAAA	120 180 240 300 360
45	Nucleic Aci Coding sequents of the coding seq	d Accession ence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGGAGCTA ACGGCGGAGCTA ACGGCGGCGC AGCCCGAGGT	equence 1 #: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCCT CAAAGCTCTC CCCAGCCAAA CTACAACCGC GAGAATGGTG	31 AGCATCCGAT TCTCAGGAAT ACGGGGGGAG AACCCTACC GCTCTATGCCG GTCCCAAGCG AATGGCAAAC	CCGGCGACTT CGCCAACTTT CCCCGCACGG AGTATCAGTA ACTATAGCTA CCACCAACCA CAAAGAAAGT	CCAAGCTCCG GCCCGAGTCT CTACTGCTCT TCACGGCGTG CGCTAGCTCC GCCAGAGAAA TCGTAAACCC	120 180 240 300 360 420
	Nucleic Aci Coding sequents of the coding seq	dd Accession ence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGAGCTA ACGGCGGAGCTA ACGCCGAGGT ATTCCAGCTT	equence 1 #: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCCT CAAAGCTCTC CCCAGCCAAA CCTACAACCGC GAGAATGGTG TCAGCTGGCC	31 AGCATCCGAT TCTCAGGAAT ACGGGGGGAG AACCCCTACC GCTTATGCC GTCCCAAGCG AATGGCAAAC GCATTACAGA	CCGGCGACTT CCCCGCACGG AGTATCAGTA ACTATAGCTA CCACCAACCA CAAAGAAAGT GAAGGTTTCA	CCAAGCTCCG GCCGAGTCT CTACTGCTCT TCACGGCGTG GCCTAGCTCC GCCAGAGAAA TCGTAAACCC GAAGACTCAG	120 180 240 300 360 420 480
45	Nucleic Aci Coding sequents of the coding seq	dd Accession ence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGGAGCTA ACGCCGAGCTA ACGCCGAGCTA ATTCCAGCTT TGCCGGAACG	equence 1 #: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCCT CCAAGCTCTC CCAGCCAAA CTACAACCGC GAGAATGGTG TCAGCTGGCC CGCCGAGCTG	31 AGCATCCGAT TCTCAGGAAT ACGGGGGGAG AACCCCTACC GCTTATGCCG GTCCCAAGCG GTCCCAAGC GCATTACAGA GCATTACAGA GCCGCCTCGC	CCCGCACTT CCCCGCACGG AGTATCAGTA ACTATAGCTA CCACCAACCA CCAAGGAAGGT GAAGGTTTCA TGGGATTGAC	CCAAGCTCCG GCCCGAGTCT CTACTGCTCT TCACGGCGTG CGCTAGCTCC GCCAGAGAAA TCGTAAACCC GAAGACTCAG ACAAACACAG	120 180 240 300 360 420 480 540
45	Nucleic Aci Coding sequ 1 ATGACAGGAG TTCCAGACGAT TCAGCTACCG CCTACCTCCG AACGGCTCCG TACCACCAGT GAAGTGACCG GGACTATT TACCTCGCCT GTGAAAATCT	dd Accession ence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGGAGCTA ACGGCGGCGC AGCCCGAGGT ATTCCAGCTT TGCCGGAACG	equence 1 #: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCCT CAAAGCTCTC CCCAGCCAAA CCTACAACCGC GAGAATGGTG TCAGCTGGCC	31 AGCATCCGAT TCTCAGGAAT ACGGGGGAG GACCCCTACC GCTTATGCCG GTCCCAAGCG AATGGCAAAC GCATTACAGA GCCGCCTCGC AAGATCAAGA	CCGGCGACTT CGCCAACTTT CCCCGCACGG AGTATCAGTA ACTATAGCTA CCACCAACCA CAAAGAAAGT GAAGGTTTCA TGGGATTGAC AGATCATGAA	CCAAGCTCCG GCCCGAGTCT CTACTGCTCT TCACGGCGTG CGCTAGCTCC GCCAGAGAAA TCGTAAACCC GAAGACTCAG ACAACACAG AAACGGGGAG	120 180 240 300 360 420 480
45 50	Nucleic Aci Coding sequ 1 ATGACAGGAG TTCCAGACGT TCAGCTACCT CCTACCTCGG AACGGCTCCG TACCACCAGT GAAGTGACCG AGGACTATTT TACCTCCGCCT ATGACATCCTCGCCT ATGCCCCCGG	dd Accession ence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGGAGCTA ACGCCGCAGCTA ACGCCGCAGCT ATCCAGCT GCTTCCAGCT GGTTTCAGAA AGCACAGTCC	equence #: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCCT CCAAGCTCTC CCCAGCCAAA CTACAACCGC GAGAATGGT TCAGCTGGC CGCCGAGCTG CAAAAGATCC	31 AGCATCCGAT TCTCAGGAAT ACGGGGGAG AACCCCTACC GCTCAAGCG AATGGCAAAC GCATTACAGA GCCGCCTCGC AAGATCAAGA GACCCAATGG	CCGGCGACTT CGCCAACTTT CCCCGCACGG AGTATCAGTA ACTATAGCTA CCACCAACCA CAAAGAAAGT GAAGGTTTCA TGGGATTGAC AGATCATGAA CGTGTAACTC	CCAAGCTCCG GCCCGAGTCT CTACTGCTCT TCACGGCGTG CGCTAGCTCC GCCAGAGAAA TCGTAAACCC GAAGACTCAG AAACACAG AAACGGGGAG GCCGCAGTCT	120 180 240 300 360 420 480 540
45	Nucleic Aci Coding sequ 1 ATGACAGGAG TTCCAGACGT TCAGCTACCG CATACCTCCG AACGGCTCCG TACCACCAGT GAAGTGACCG AGGACTATTT TACCTCGCCT GTGAAAATCT ATGCCCCCGG CCAGCGGTGT CCTCCGACCT	dd Accession ence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGGAGCTA ACGGCGGCGC AGCCCGAGGTT ATTCCAGCTT TGCCGGAACG GGTTTCAGAA AGGACAGTC AGCACAGTCC CCAACCAGTC	equence #: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCCT CAAAGCTCTC CACCAGCCAAA CTACAACCGC GAGAATGGTG TCAGCTGGCC CAGCTGAGCTGCC CAGCTCCAGCCAGCTGCC CAGCTCCAGCCCCCAGCTCCCCCCCCCCCCCCCCCCCCC	31 AGCATCCGAT TCTCAGGAAT ACGGGGGGAG AACCCTACC GCTTATGCCG AATGGCAAAC GCATTACAGA GCCGCCTCGC AAGATCAAGA GCCCCAATGG GACCCAATGG GACCCAATGG CGCTCGCTCA AGCTACCTGG	CCGGCGACTT CGCCAACTTT CCCCGCACGG AGTATCAGTA ACTATAGCTA CCACCAACCA CAAAGAAAGT GAAGGTTTCA TGGGATTGAC AGATCATGAC AGATCATGAC CGCACCACCC AGAACTCTGC	CCAAGCTCCG GCCCAGCTCT TCACGGCGTG CGCTAGCTCC GCCAGAGAAA TCGTAAACCC GAAGACTCAG ACAACACAG AAACGGGGAG CCGCAGTCT TCATGCCCAC ATCCTGGTAC	120 180 240 300 360 420 480 540 600 660 720 780
45 50	Nucleic Aci Coding sequ 1 ATGACAGGAG TTCCAGACGT TCAGCTACCG CCTACCTCCG AACGGCTCCG TACCACCAGT TACCTCGCCT TACCTCGCCT TACCTCGCCT TACCTCGCCT GTGAAAATCT ATGCCCCCGG CCAGCGGTGT CCTCCGACCT ACAAGTGCAG	dd Accession ence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGGAGCTA ACGCCGAGCTA ACGCCGAGCTA ATTCCAGCTT TGCCGGAACG GGTTTCAGAA AGCACAGTC GGGAGCCCCA CCGACCACT CCAACCAGTC CCAACCAGTC CCAACCAGTC	equence 1 #: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCCT CAAAGCTCTC CCAGCCAAA CTACAACCGC GAGAATGGTG TCAGCTGGCC CGCCGAGCTG CAAAAGATCC CAGCTCCAG CGGCTCGTC CCCAGCTCCC CCCAGCTCCC CCCAGCTCCC CCCAGCTCCC CCCAGCTCCC CCCAGCTCC	31 AGCATCCGAT TCTCAGGAAT ACGGGGGGAG AACCCTACC GCTTATGCCG AATGGCAAAC GCATTACAGA GCCGCCTCGC AAGATCAAGA GCCCCAATGG GACCCAATGG GACCCAATGG CGCTCGCTCA AGCTACCTGG	CCGGCGACTT CGCCAACTTT CCCCGCACGG AGTATCAGTA ACTATAGCTA CCACCAACCA CAAAGAAAGT GAAGGTTTCA TGGGATTGAC AGATCATGAC AGATCATGAC CGCACCACCC AGAACTCTGC	CCAAGCTCCG GCCCAGCTCT TCACGGCGTG CGCTAGCTCC GCCAGAGAAA TCGTAAACCC GAAGACTCAG ACAACACAG AAACGGGGAG CCGCAGTCT TCATGCCCAC ATCCTGGTAC	120 180 240 300 360 420 480 540 600 660 720
45 50	Nucleic Aci Coding sequ 1 ATGACAGGAG TTCCAGACGT TCAGCTACCG CCTACCTCCG AACGGCTCCG TACCACCAGT TACCTCGCCT TACCTCGCCT TACCTCGCCT TACCTCGCCT GTGAAAATCT ATGCCCCCGG CCAGCGGTGT CCTCCGACCT ACAAGTGCAG	dd Accession ence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGGAGCTA ACGGCGGCGC AGCCCGAGGTT ATTCCAGCTT TGCCGGAACG GGTTTCAGAA AGGACAGTC AGCACAGTCC CCAACCAGTC	equence 1 #: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCCT CAAAGCTCTC CCAGCCAAA CTACAACCGC GAGAATGGTG TCAGCTGGCC CGCCGAGCTG CAAAAGATCC CAGCTCCAG CGGCTCGTC CCCAGCTCCC CCCAGCTCCC CCCAGCTCCC CCCAGCTCCC CCCAGCTCCC CCCAGCTCC	31 AGCATCCGAT TCTCAGGAAT ACGGGGGGAG AACCCTACC GCTTATGCCG AATGGCAAAC GCATTACAGA GCCGCCTCGC AAGATCAAGA GCCCCAATGG GACCCAATGG GACCCAATGG CGCTCGCTCA AGCTACCTGG	CCGGCGACTT CGCCAACTTT CCCCGCACGG AGTATCAGTA ACTATAGCTA CCACCAACCA CAAAGAAAGT GAAGGTTTCA TGGGATTGAC AGATCATGAC AGATCATGAC CGCACCACCC AGAACTCTGC	CCAAGCTCCG GCCCAGCTCT TCACGGCGTG CGCTAGCTCC GCCAGAGAAA TCGTAAACCC GAAGACTCAG ACAACACAG AAACGGGGAG CCGCAGTCT TCATGCCCAC ATCCTGGTAC	120 180 240 300 360 420 480 540 600 660 720 780
45 50	Nucleic Aci Coding sequ 1 ATGACAGGAG TTCCAGCTACCT CCCTACCTCGG AACGGCTCCG TACCACCAGT GAAGTGACCG AGGACTATT TACCTCGCCT ATGCCCCGG CCAGCGGTGT CCTCGGACT ACAGTGCCG CTGGCGTGG CTGGCGCTGG	dd Accession ence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA ACTTCCTATGG CCGGAGCTA ACGCCGGAGCTA ACGCCGGAGCTA ACGCCGGAGCT ACCCGGAGCT ATTCCAGCTT TGCCGGAACG GGTTTCAGAA AGCACAGTCC GGGAGCCCCA CCAACCAGTC CCAGCTCAAT CCTCCGGGAC	equence 1 #: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCCT CCAGCCAAC CTACAACCGC GAGAATGGTG TCAGCTGGCC CGCCGAGCTG CAAAAGATCC CACCTCAGC CAGCTCCAGC CAGCTCCAGC CAGCTCCAGC CAGCTCCAGC CCCAGCGTCC CCCAGCGTCC CAATTCCCAC ACTCTATTAG	31 AGCATCCGAT TCTCAGGAAT ACGGGGGGAG AACCCTACC GCTTATGCCG AATGGCAAAC GCATTACAGA GCCGCCTCGC AAGATCAAGA GCCCCAATGG GACCCAATGG GACCCAATGG CGCTCGCTCA AGCTACCTGG	CCGGCGACTT CGCCAACTTT CCCCGCACGG AGTATCAGTA ACTATAGCTA CCACCAACCA CAAAGAAAGT GAAGGTTTCA TGGGATTGAC AGATCATGAC AGATCATGAC CGCACCACCC AGAACTCTGC	CCAAGCTCCG GCCCAGCTCT TCACGGCGTG CGCTAGCTCC GCCAGAGAAA TCGTAAACCC GAAGACTCAG ACAACACAG AAACGGGGAG CCGCAGTCT TCATGCCCAC ATCCTGGTAC	120 180 240 300 360 420 480 540 600 660 720 780
45 50 55	Nucleic Aci Coding sequ 1 ATGACAGGAG TTCCAGACGT TCAGCTACCTCG AACGGCTCCG TACCACCAGT TACCACCAGT TACCTCGCCT GCAAAATCT ATGCCCCCGG CCAGCGGTGT CCTCCGACCT ACAGTGCAC Seq ID NO:	Id Accession ence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGGAGCTA ACCGCGGCGC AGCCCGAGCTA TGCCGGAACG TGCCGGAACG GGTTTCAGAA AGCACAGTC CCAGCTCAACCAGTC CCAGCTCAACCAGTC CCAGCTCAAT CCTCCGGGAC 689 Protei	equence #: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCTC CAAAGCTCTC CCAGCCAAA CTACAACCGC GAGAATGGTG TCAGCTGGCC CAAAAGATCC CAAAAGATCC CAGCTAGC GGGCTCCTCC CCCAGCTTCC CCCAGCTTCC CCCAGCTTCC CCCAGCTTCC CCCAGCTTCC CAATTCCCAC ACTCTATTAG	31 AGCATCCGAT TCTCAGGAAT ACGGGGGGAG AACCCTACC GCTTATGCCG AATGGCAAAC GCATTACAGA GCCGCCTCGC AAGATCAAGA GCCCCAATGG GACCCAATGG GACCCAATGG CGCTCGCTCA AGCTACCTGG	CCGGCGACTT CGCCAACTTT CCCCGCACGG AGTATCAGTA ACTATAGCTA CCACCAACCA CAAAGAAAGT GAAGGTTTCA TGGGATTGAC AGATCATGAC AGATCATGAC CGCACCACCC AGAACTCTGC	CCAAGCTCCG GCCCAGCTCT TCACGGCGTG CGCTAGCTCC GCCAGAGAAA TCGTAAACCC GAAGACTCAG ACAACACAG AAACGGGGAG CCGCAGTCT TCATGCCCAC ATCCTGGTAC	120 180 240 300 360 420 480 540 600 660 720 780
45 50	Nucleic Aci Coding sequ 1 ATGACAGGAG TTCCAGACGT TCAGCTACCTCG AACGGCTCCG TACCACCAGT TACCACCAGT TACCTCGCCT GCAAAATCT ATGCCCCCGG CCAGCGGTGT CCTCCGACCT ACAGTGCAC Seq ID NO:	dd Accession ence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA ACTTCCTATGG CCGGAGCTA ACGCCGGAGCTA ACGCCGGAGCTA ACGCCGGAGCT ACCCGGAGCT ATTCCAGCTT TGCCGGAACG GGTTTCAGAA AGCACAGTCC GGGAGCCCCA CCAACCAGTC CCAGCTCAAT CCTCCGGGAC	equence #: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCTC CAAAGCTCTC CCAGCCAAA CTACAACCGC GAGAATGGTG TCAGCTGGCC CAAAAGATCC CAAAAGATCC CAGCTAGC GGGCTCCTCC CCCAGCTTCC CCCAGCTTCC CCCAGCTTCC CCCAGCTTCC CCCAGCTTCC CAATTCCCAC ACTCTATTAG	31 AGCATCCGAT TCTCAGGAAT ACGGGGGGAG AACCCTACC GCTTATGCCG AATGGCAAAC GCATTACAGA GCCGCCTCGC AAGATCAAGA GCCCCAATGG GACCCAATGG GACCCAATGG CGCTCGCTCA AGCTACCTGG	CCGGCGACTT CGCCAACTTT CCCCGCACGG AGTATCAGTA ACTATAGCTA CCACCAACCA CAAAGAAAGT GAAGGTTTCA TGGGATTGAC AGATCATGAC AGATCATGAC CGCACCACCC AGAACTCTGC	CCAAGCTCCG GCCCAGCTCT TCACGGCGTG CGCTAGCTCC GCCAGAGAAA TCGTAAACCC GAAGACTCAG ACAACACAG AAACGGGGAG CCGCAGTCT TCATGCCCAC ATCCTGGTAC	120 180 240 300 360 420 480 540 600 660 720 780
45 50 55	Nucleic Aci Coding sequ 1 ATGACAGGAG TTCCAGACGT TCAGCTACCTCG AACGGCTCCG TACCACCAGT TACCACCAGT TACCTCGCCT GCAAAATCT ATGCCCCCGG CCAGCGGTGT CCTCCGACCT ACAGTGCAC Seq ID NO:	Id Accession ence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGGAGCTA ACCGCGGCGC AGCCCGAGCTA TGCCGGAACG TGCCGGAACG GGTTTCAGAA AGCACAGTC CCAGCTCAACCAGTC CCAGCTCAACCAGTC CCAGCTCAAT CCTCCGGGAC 689 Protei	equence #: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCTC CAAAGCTCTC CCAGCCAAA CTACAACCGC GAGAATGGTG TCAGCTGGCC CAAAAGATCC CAAAAGATCC CAGCTAGC GGGCTCCTCC CCCAGCTTCC CCCAGCTTCC CCCAGCTTCC CCCAGCTTCC CCCAGCTTCC CAATTCCCAC ACTCTATTAG	31 AGCATCCGAT TCTCAGGAAT ACGGGGGGAG AACCCTACC GCTTATGCCG AATGGCAAAC GCATTACAGA GCCGCCTCGC AAGATCAAGA GCCCCAATGG GACCCAATGG GACCCAATGG CGCTCGCTCA AGCTACCTGG	CCGGCGACTT CGCCAACTTT CCCCGCACGG AGTATCAGTA ACTATAGCTA CCACCAACCA CAAAGAAAGT GAAGGTTTCA TGGGATTGAC AGATCATGAC AGATCATGAC CGCACCACCC AGAACTCTGC	CCAAGCTCCG GCCCAGCTCT TCACGGCGTG CGCTAGCTCC GCCAGAGAAA TCGTAAACCC GAAGACTCAG ACAACACAG AAACGGGGAG CCGCAGTCT TCATGCCCAC ATCCTGGTAC	120 180 240 300 360 420 480 540 600 660 720 780
45 50 55	Nucleic Aci Coding sequ 1 ATGACAGGAG TTCCAGACGT TCAGCTACCGG AACGGCTCCG TACCACCAGT TACCACCAGT TACCTCGCCT GTGAAAATCT ATGCCCCCGG CCAGCGGTGT CCTCCGACCT ACAGTGCAG Seq ID NO: Protein Acc	id Accession ence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGGAGCTA ACCGCGGCGC AGCCCGAGCTA TGCCGGAACG GGTTTCAGAA AGCACAGTC CGGAGCCCA CCAACCAGTC CCAGCTCAAT CCTCCGGGAC 689 Proteinession #: N	equence #: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCCT CAAAGCTCTC CTACAACCGC GAGAATGGTG CTACAACCGC GAGAATGGTC CCCAGCCAAA CTACAACCGC CAAATCCCAC CAATTCCCAC CACTCTATTAG In sequence IP_005212.1	31 AGCATCCGAT TCTCAGGAAT ACGGGGGAG AACCCCTACC GCTTATGCCG GTCCCAAGCG AATGGCAAAC GCATTACAGA GCCGCCTCG AAGATCAAGA GACCAATGG CGCTCGCTCA AGCTACCTGG CTGCCGCCCGC	CCGGCGACTT CGCCAACTTT CCCCGACTGG AGTATCAGTA ACTATAGCTA ACTATAGCTA CCACCAACCA CAAAGAAAGT GAAGGTTTCA TGGGATTGAC AGATCATGAC AGATCATGAC GCCACCACCC AGAACTCTGC CGGGCTCCTT	CCAAGCTCCG GCCCGAGTCT CTACTGCTCT TCACGGCGTG CGCTAGCTCC GCCAGAGAAAA TCGTAAACCC GAAGACTCAG ACAACACAG ACAACACAG ACACGCAGTCT TCATGCCCAC ATCCTGGTAC ACAGCACCCG	120 180 240 300 360 420 480 540 600 660 720 780 840
45 50 55 60	Nucleic Aci Coding sequ 1 ATGACAGGAG TTCCAGACGT TCAGCTACCG CCTACCTCGG AACGGCTCCG TACCACCAGT TACCTCGCCT GTGAAAATCT ATGCCCCCGG CCAGCGGTGT CCTCCGACCT ACAGTGCAC Seq ID NO: Protein Acc 1 MTGVFDRRVP	dd Accession ence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGGAGCTA ACGGCGGCTA ACGGCGGACTA ACGCCGAGCTA TGCCGGAACG GGTTTCAGAA AGCACAGTC CCAACCAGTC CCAACCAGTC CCAGCTCAAT CCTCCGGGAC 689 Protein ession #: N	equence #: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCCT CAAAGCTCTC CAAAGCTCTC CAGCCAAA CTACAACCGC GAGAATGGTG CAGAAGGATC CAGAAGGATC CAGCTCGTCC CAGCTCGTCC CAGCTCGTCC CAGCTCTCC CAATTCCCAC ACTCTATTAG In sequence In	31 AGCATCCGAT TCTCAGGAAT ACGGGGGGG AACCCCTACC GCTTATGCCG GTCCCAAGCG AATACAGA GCCGCCTCGC AAGATCAAGA GACCCAATGG CGCTCGCTCA CGCTCGCTCA CGCTCGCCTCA AGCTACCTGG CTGCCGCCGC 31 SQESPTLPES	CCGGCGACTT CGCCAACTTT CCCCGCACGG AGTATCAGTA ACTATAGCTA ACTATAGCTA CCACCAACCA CAAAGAAAGT GAAGGTTTCA TGGGATTGAC AGATCATGAC AGATCATGAC AGATCATGAC AGATCATGAC AGATCATGC AGAACTCTGC CGGGCTCCTT 41 SATDSDYYSP	CCAAGCTCCG GCCCGAGCTCT TCACGGCGTG CGCTAGCTCC GCCAGACAAAA TCGTAAACCC GAAGACTCAG AAACGGGGAG AAACGGGAGC TCATGCCCAC ATCCTGGTAC ACAGCACCCG	120 180 240 300 360 420 480 540 600 720 780 840
45 50 55	Nucleic Aci Coding sequ 1 ATGACAGGAG TTCCAGACGT TCAGCTACCG CCTACCTCCG AACGGCTCCG TACCACCAGT TACCTCGCCT TACCTCGCCT GTGAAAATCT ATGCCCCCGG CCAGCGGTGT CCTCCGACCT ACAAGTGCAC Seq ID NO: Protein Acc 1 MTGVFDRRVP PTSASYGKAL	dd Accession ence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGGAGCTA ACGCCGAGCTA ACGCCGAGCTA ACGCCGAGCTA ACGCCGAGCTA ACGCCGAGCTA ACGCCGAGCTA TGCCGGAACG GGTTTCAGAA AGCACAGTC CCAACCAGTC CCAACCAGTC CCAGCTCAAT CCTCCGGGAC 689 Protein ession #: N 11 SIRSGDFQAP NPYQYQYHGV	equence 1 #: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCCT CCAAGCCCTA CTACAACCGC GAGAATGGTG CCAGCTGGCC CGCCGAGCTG CCAAAGATTCC CACTCCAC CCAGCTCAC ACTCTATTAG in sequence ip_005212.1 FQTSAAMHHP NGSAGSYPAK	31 AGCATCCGAT TCTCAGGAAT ACGGGGGAG GACCCCTACC GCTTATGCCG GTCCCAAGCG AATGGCAAAC GCATTACAGA GCCGCCTCGCC AAGATCAAGA GACCCAATGG CGCTCGCTCG CTGCCGCCGC 31 SQESPTLPES AYADYSYASS	CCGGCGACTT CCCCGCACCTT CCCCGCACGA ACTATAGCTA ACTATAGCTA CCACCAACCA CAAAGAAAGT GAAGGTTTCA TGGGATTGAC AGATCATGAC CGCACCACCA CGCACCACCA CGCACCACCC CGCGCTCCTT 41 SATDSDYYSP YHQYGGAYNR	CCAAGCTCCG GCCCGAGTCT CTACTGCTCT TCACGGCGTG CGCTAGCTCC GCCAGAGAAA TCGTAAACCAG AAACACAG AAACGGGAG GCCAGTCT TCATGCCCAC ATCCTGGTAC ACAGCACCCG	120 180 240 300 360 420 480 540 660 720 780 840
45 50 55 60	Nucleic Aci Coding sequ 1 ATGACAGGAG TTCCAGACGT TCAGCTACCG CCTACCTCCG TACCACCAGT GAAGTGACCG GAGGACTATTT TACCTCGCCT GTGAAAATCT ATGCCCCCGG CCAGCGGTGCT ACCAGCGGTGCT ACCAGCGGTGCT ACCAGCGGTGCT ACCAGCGGTGCT ACCAGCGGTGCT ACCAGCGGTGCT ACCAGCGGTGCT ACCAGCGGTGCT Seq ID NO: Protein Acc 1 MTGVFDRRVP PTSASYGKAL EVTEPEVRMV	Id Accession ence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGGAGCTA ACGCCGAGGTA ACGCCGAGGTA ACGCCGAGGTA ACGCCGAGGT ATTCCAGCT ATTCCAGCT ACCAGGT CCCGGAACC GGTTTCAGAA AGCACAGTC CCAGCTCAAT CCTCCGGGAC 689 Protei ession #: N 11 SIRSGDFQAP NPYQYQYHGV NGKPKKVRKP	equence 1 #: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCCT CCAAGCCTCA CTACAACCGC GAGAATGGTG CCAGCTGAGC CAAAGATCCC CCAGCTCAGC CAAATTCCCAC CAATTCCCAC CAATTCCCAC CAATTCCCAC ACTCTATTAG in sequence IP_005212.1 21 FQTSAAMHIP NGSAGSYPAK RTIYSSFQLA	31 AGCATCCGAT TCTCAGGAAT ACGGGGGGAG AACCCCTACC GCTCATACCG ATGCCAACC AATGCAAAC GCATTACAGA GCCGCCTCGC AAGATCAAGA GACCCAATG GCTCGCTCA AGCTACCTGG CTGCCGCCGC 31 SQESPTLPES AYADYSYASS ALQRRFQKTQ	CCGGCGACTT CCCCGCACCTT CCCCGCACCGA ACTATCAGTA ACTATAGCTA CCACCAACCA CAAAGAAAAA TGGGATTGAC AGATCATGAA CGTGTAACTC AGAACTCTC AGAACTCTC CCACCACCC AGAACTCTC AGAACTCTC AGAACTCTC SGGGCTCCTT 41 SATDSDYYSP YHQYGGAYNR YLALPERAEL	CCAAGCTCCG GCCCGAGTCT CTACTGCTCT TCACGGCGTG CGCTAGCTCC GCCAGAGAAA TCGTAAACCC GAAGACTCAG ACAACACAG AAACGGGGAG CCCCATCT TCACTGCTCC ATCCTGGTAC ACAGCACCCG	120 180 240 300 360 420 480 540 660 720 780 840
45 50 55 60	Nucleic Aci Coding sequ 1 ATGACAGGAG TTCCAGACGT TCAGCTACCTCG AACGGCTCCG TACCACCAGT TACCACCAGT TACCTCGCCT GTGAAAATCT ATGCCCCCGG CCAGCGGTGT CCTCCGACCT ACAGTGCAC Seq ID NO: Protein Acc 1 MTGVFDRRVP PTSASYGKAL EVTEPEVRMV VKIWFQNKRS	Id Accession ence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTAT ATTCTGACTAT ATTCTGACTAT ACCGGGAGCTA ATTCCAGCTT TGCCGGAACG GGTTTCCAGAT AGCACAGTC CGAGCACCAC CCAACCAGTC CCAGCTCAAT CCTCCGGGAC 689 Protein ession #: N 11 SIRSGDFQAP NPYQYQYHGV NGKPKKVRKP KIKKIMKNGE	equence 1 #: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCCT CCAAGCCCTA CTACAACCGC GAGAATGGTG CCAGCTGGCC CGCCGAGCTG CCAAAGATTCC CACTCCAC CCAGCTCAC ACTCTATTAG in sequence ip_005212.1 FQTSAAMHHP NGSAGSYPAK	31 AGCATCCGAT TCTCAGGAAT ACGGGGGAG AACCCCTACC GCTCACAGCG AATGCAAAC GCATTACAGA GCCGCCTCGC AAGATCAAGA GACCCAATGG GACCCAATGG CGCTCGCTCA AGCTACCTGG CTGCCGCCGC 31 SQESPTLPES AYADYSYASS ALQRRFQKTQ DPMACNSPQS	CCGGCGACTT CCCCGCACCTT CCCCGCACCGA ACTATCAGTA ACTATAGCTA CCACCAACCA CCAACCA CCAAGCAACCA AGAATCATGAA CGTGTAACTC GCCACCACCC AGAACTCTGC CGGGCTCCTT 41 SATDSDYYSP YHQYGGAYNR YLALPERAEL PAVWEPQGSS	CCAAGCTCCG GCCCGAGTCT CTACTGCTCT TCACGGCGTG CGCTAGCTCC GCCAGAGAAA TCGTAAACCC GAAGACTCAG ACAACACAG AAACGGGGAG CCCCATCT TCACTGCTCC ATCCTGGTAC ACAGCACCCG	120 180 240 300 360 420 480 540 660 720 780 840

It is understood that the examples described above in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes. All publications, sequences of accession numbers, and patent applications cited in this specification are herein neorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

WHAT IS CLAIMED IS:

1	. 1.	A method of detecting a lung cancer-associated transcript in a cell
2	from a patient, the	e method comprising contacting a biological sample from the patient with a
3	polynucleotide th	at selectively hybridizes to a sequence at least 80% identical to a sequence
4	as shown in Table	es 1A-16.
_		
1	2.	The method of claim 1, wherein the polynucleotide selectively
2	hybridizes to a see	quence at least 95% identical to a sequence as shown in Tables 1A-16.
1	3.	The method of claim 1, wherein the biological sample is a tissue
2	sample.	
1	, 4.	The method of claim 1, wherein the biological sample comprises
	isolated nucleic a	
2	isolated nucleic a	cias.
1	5.	The method of claim 4, wherein the nucleic acids are mRNA.
1	6.	The method of claim 4, further comprising the step of amplifying
2	nucleic acids befo	ore the step of contacting the biological sample with the polynucleotide.
1	7.	The method of claim 1, wherein the polynucleotide comprises a
2	sequence as show	n in Tables 1A-16.
•	0	
1	8.	The method of claim 1, wherein the polynucleotide is labeled.
1	9.	The method of claim 8, wherein the label is a fluorescent label.
1	10	The method of claim 1, wherein the polynucleotide is immobilized on
2	a solid surface.	
•		
1	11.	The method of claim 1, wherein the patient is undergoing a therapeutic
2	regimen to treat lu	ang cancer.
1	. 12.	The method of claim 1, wherein the patient is suspected of having lung
2	cancer.	
1	13.	A method of monitoring the efficacy of a therapeutic treatment of lung
^ ^		d comprising the steps of

	WO 02/086443 PCT/US02/12476
3	(i) providing a biological sample from a patient undergoing the therapeutic
4	treatment; and
5	(ii) determining the level of a lung cancer-associated transcript in the
6	biological sample by contacting the biological sample with a polynucleotide that selectively
7	hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16,
8	thereby monitoring the efficacy of the therapy.
1	14. The method of claim 13, further comprising the step of: (iii) comparing
2	the level of the lung cancer-associated transcript to a level of the lung cancer-associated
3	transcript in a biological sample from the patient prior to, or earlier in, the therapeutic
4	treatment.
1	15. The method of claim 13, wherein the patient is a human.
1	16. A method of monitoring the efficacy of a therapeutic treatment of lung
2	cancer, the method comprising the steps of:
3	(i) providing a biological sample from a patient undergoing the therapeutic
4	treatment; and
5	(ii) determining the level of a lung cancer-associated antibody in the biological
6	sample by contacting the biological sample with a polypeptide encoded by a polynucleotide
7	that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in
8	Tables 1A-16, wherein the polypeptide specifically binds to the lung cancer-associated
9	antibody, thereby monitoring the efficacy of the therapy.
1	17. The method of claim 16, further comprising the step of: (iii) comparing
2	the level of the lung cancer-associated antibody to a level of the lung cancer-associated
3	antibody in a biological sample from the patient prior to, or earlier in, the therapeutic
4	treatment.
1	18. The method of claim 16, wherein the patient is a human.
1	19. A method of monitoring the efficacy of a therapeutic treatment of lung
2	cancer, the method comprising the steps of:
3	(i) providing a biological sample from a patient undergoing the therapeutic

treatment; and

5	(11)	determining the level of a lung cancer-associated polypeptide in the			
6	biological sample by contacting the biological sample with an antibody, wherein the antibody				
7	specifically binds to a polypeptide encoded by a polynucleotide that selectively hybridizes to				
8	a sequence at least 80% identical to a sequence as shown in Tables 1A-16, thereby				
9	monitoring the efficacy of the therapy.				
1	20.	The method of claim 19, further comprising the step of: (iii) comparing			
2	the level of the lun	g cancer-associated polypeptide to a level of the lung cancer-associated			
3	polypeptide in a bi	ological sample from the patient prior to, or earlier in, the therapeutic			
4	treatment.				
1	21.	The method of claim 19, wherein the patient is a human.			
1	22.	An isolated nucleic acid molecule consisting of a polynucleotide			
2	sequence as shown	in Tables 1A-16.			
1	23.	The nucleic acid molecule of claim 22, which is labeled.			
1	24.	The nucleic acid of claim 23, wherein the label is a fluorescent label			
1	25.	An expression vector comprising the nucleic acid of claim 22.			
1	26.	A host cell comprising the expression vector of claim 25.			
1	27.	An isolated polypeptide which is encoded by a nucleic acid molecule			
2	having polynucleo	tide sequence as shown in Tables 1A-16.			
1	28.	An antibody that specifically binds a polypeptide of claim 27.			
1	29.	The antibody of claim 28, further conjugated to an effector component.			
1	30.	The antibody of claim 29, wherein the effector component is a			
2	fluorescent label.				
1	31.	The antibody of claim 29, wherein the effector component is a			
2	radioisotope or a c	ytotoxic chemical.			
1	32.	The antibody of claim 29, which is an antibody fragment.			

The antibody of claim 29, which is a humanized antibody

33.

1

			•
1		34.	A method of detecting a lung cancer cell in a biological sample from a
2	patient, the m	ethod c	omprising contacting the biological sample with an antibody of claim
3	28.		
1		35.	The method of claim 34, wherein the antibody is further conjugated to
2	an effector co	mponer	nt.
1		36.	The method of claim 35, wherein the effector component is a
2	fluorescent la	bel.	
		•	
1		37.	A method of detecting antibodies specific to lung cancer in a patient,
2	the method co	mprisir	ng contacting a biological sample from the patient with a polypeptide
3	encoded by a	nucleic	acid comprises a sequence from Tables 1A-16.
1		38.	A method for identifying a compound that modulates a lung cancer-
2	accordated no		de, the method comprising the steps of:
	associated po		
3		• •	ntacting the compound with a lung cancer-associated polypeptide, the
4			by a polynucleotide that selectively hybridizes to a sequence at least
5	80% identical		quence as shown in Tables 1A-16; and
6		(ii) de	termining the functional effect of the compound upon the polypeptide.
1		39.	The method of claim 38, wherein the functional effect is a physical
2	effect.		
1		40.	The method of claim 38, wherein the functional effect is a chemical
1	CC.	40.	The memory of claim 38, wherein the functional effect is a chemical
2	effect.		
1		41.	The method of claim 38, wherein the polypeptide is expressed in a
2	eukaryotic ho	st cell c	or cell membrane.
1		42.	The method of claim 38, wherein the functional effect is determined by
	mooguring lig		•
2	measuring ng	מונע טווו	iding to the polypeptide.
1		43.	The method of claim 38, wherein the polypeptide is recombinant.

1	44.	A method of inhibiting proliferation of a lung cancer-associated cell to			
2	treat lung cancer in a patient, the method comprising the step of administering to the subject a				
3	therapeutically effect	etive amount of a compound identified using the method of claim 38.			
1	45.	The method of claim 44, wherein the compound is an antibody.			
1	46.	The method of claim 45, wherein the patient is a human.			
1	47.	A drug screening assay comprising the steps of			
2	(i) ad	ministering a test compound to a mammal having lung cancer or a cell			
3	isolated therefrom;				
4	(ii) co	omparing the level of gene expression of a polynucleotide that selectively			
5	hybridizes to a sequ	ence at least 80% identical to a sequence as shown in Tables 1A-16 in a			
6	treated cell or mamr	nal with the level of gene expression of the polynucleotide in a control			
7	cell or mammal, wh	erein a test compound that modulates the level of expression of the			
8	polynucleotide is a c	candidate for the treatment of lung cancer.			
1	48.	The assay of claim 47, wherein the control is a mammal with lung			
2	cancer or a cell there	efrom that has not been treated with the test compound.			
1	49.	The assay of claim 47, wherein the control is a normal cell or mammal.			
1	50.	A method for treating a mammal having lung cancer comprising			
2	administering a com	pound identified by the assay of claim 47.			
1	51.	A pharmaceutiPcal composition for treating a mammal having lung			
2	cancer, the composi	tion comprising a compound identified by the assay of claim 47 and a			
3	physiologically acce	eptable excipient.			