



# FAME Electrical, Ordnance & Harness Subsystems

**Ralph Ruth  
EPS Manager  
NRL  
202-767-6522  
[ruth@ssdd.nrl.navy.mil](mailto:ruth@ssdd.nrl.navy.mil)**



# FAME EPS Block Diagram





# Ordnance Control Subsystem Interfaces



**\* Note: Pin Pullers Are Non-Explosive Devices**



# FAME EPS Top Level Requirements (1 of 2)



- **Energy Subsystems**      **Supply Electrical Energy to All Spacecraft and Instrument During All Mission Phases**
- **System Survival**      **The EPS Shall Not Be Damaged by and Shall Recoverable From Operational and Electrical Faults**
- **Attitude**      **The EPS Shall Minimize Torque Disturbances to the Disturbances Spacecraft Attitude**
- **Telemetry**  
**Spacecraft**      **EPS Health and Status Shall Be Provided to Telemetry**
- **Control**  
**Motors**  
**Functions**      **The EPS Shall Provide Control of All Spacecraft**
- **Ordnance**  
**Activate All**      **The EPS Shall Provide Electrical Energy to Ordnance Devices**



# FAME EPS Top Level Requirements (2 of 2)



- **Harness Connectivity** **The EPS Shall Provide Signal and Power Between All Spacecraft Subsystems and Between Instrument and Spacecraft Subsystems**
- **Environment Requirements** **The EPS Shall Meet the Environmental Requirements Outlined in the FAME Test Plan NCST-TP-FM001**
- **Parts Qualified Program** **EPS EEE Parts Shall Be Selected, Screened and per GSFC 311-INST-001 Document for a Level 2**



# Derived Requirements (1 of 5)



| Requirement | Implementation                                                                                                                                                                      |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Energy      | <b>Generate Energy</b><br><b>515 W, at 30.4V, Body Mounted GaInP/GaAs/Ge Solar Array</b>                                                                                            |
|             | <b>Store Energy</b><br><b>35Ah Li-Ion Battery</b>                                                                                                                                   |
|             | <b>Limit Battery DOD</b><br><b>DOD &lt;80% for 200 Cycles</b>                                                                                                                       |
|             | <b>Charge Control</b><br><b>Automatic Battery Charge Control With Selectable Battery Voltage Levels and Charge Current Rates</b><br><b>Elimination of Excess Solar Array Energy</b> |
|             | <b>Distribute Primary Power</b><br><b>Battery Connected Directly to Critical Bus to Maintain Bus Voltage of <math>30 \pm 6\text{Vdc}</math></b>                                     |
|             | <b>Distribute Secondary Power</b><br><b><math>\pm 5\text{Vdc}</math> and <math>\pm 15\text{Vdc}</math> to IMUs</b>                                                                  |



# Derived Requirements (2 of 5)



| Requirement         | Implementation                                                                                                                        |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| EPS Survival System | <i>Operational Faults</i><br><b>Survive Operator EPS Command Misapplication</b>                                                       |
|                     | <i>Battery Overdischarge</i><br><b>UnderVoltage Detection / Load Shed</b>                                                             |
|                     | <i>Battery Cell Equalization</i><br><b>Battery Cell Bypass Circuit Limits Cell Divergence and Provides Cell Equalization</b>          |
|                     | <i>Open Battery Cell</i><br><b>Battery Cell Bypass Circuit Provides Charge and Discharge Current Path Around Open Cell</b>            |
|                     | <i>Circuit Protection</i><br><b>Fuses to Remove Harness/Load Shorts</b><br><b>Double Insulate All Connections to the Critical Bus</b> |



# Derived Requirements (3 of 5)



| Requirement           | Implementation                                                                                                                                                                                                                           |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Attitude Disturbances | <p><b>Solar Cell String Design</b></p> <ul style="list-style-type: none"><li>- Thermal Gradients Minimized</li><li>- Magnetic Moments Minimized by Layout or Backwiring</li><li>- Cell Array Flat to 2.5mm/2m Span Requirement</li></ul> |
|                       | <p><b>Harness Design</b></p> <p><b>Power Lines and Return Lines Paired and Twisted</b></p>                                                                                                                                               |
|                       | <p><b>Power Switching</b></p> <p><b>Solid State Switching to Replace Electromechanical Switching Wherever Disturbance Possible</b></p>                                                                                                   |
| Control Functions     | <p><b>Motors</b></p> <p><b>Drive Circuits Providing Command Signals to:</b></p> <ul style="list-style-type: none"><li>- Two CG Trim Mass Motors</li><li>- Three Radiation Trim Tab Motors</li><li>- Three Trim Area Motors</li></ul>     |



# Derived Requirements (4 of 5)

| Requirement | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ordnance    | <p><b>Safety</b><br/><b>Design to Meet EWR 127-1 Requirements</b></p> <p><b>Configuration</b><br/><b>Ordnance Control Cards Contain:</b></p> <ul style="list-style-type: none"><li>- Device Control Circuits</li><li>- Device Firing Circuits</li></ul> <p><b>Isolation</b></p> <ul style="list-style-type: none"><li>- Source-to-Device Electrical Isolation</li><li>- Source-to-Device Mechanical Isolation</li></ul> <p><b>Devices</b><br/><b>EEDs/Non-Explosive Devices for:</b></p> <ul style="list-style-type: none"><li>- Solid Rocket Motor Ignition</li><li>- Spacecraft/Interstage Separation</li><li>- RCS Activation</li><li>- Trim Tab Release</li></ul> |
|             | <p><b>EMI/EMC</b><br/><b>Shielded Ordnance Lines, Filter Connectors</b></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Telemetry   | <p><b>EPS Signals Provided</b></p> <ul style="list-style-type: none"><li>- Analog Currents</li><li>- Analog Voltages</li><li>- Passive Temperatures</li><li>- Digital Status</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



# Derived Requirements (5 of 5)



| Requirement        | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Harness</b>     | <p><b>Safety</b><br/><b>Turn-on-Plugs for:</b></p> <ul style="list-style-type: none"><li>- Solar Array</li><li>- Battery</li><li>- Ordnance</li><li>- RCS</li></ul> <p><b>Minimize Magnetic Moments</b><br/><b>Power and Return Lines Twisted and Paired</b></p> <p><b>EMI/EMC</b><br/><b>Power and High Speed Data Lines Separated</b></p> <p><b>Voltage Drop</b><br/><b>Wire Sizing to Meet GSFC311-INST-001, Rev A, Reqmts</b></p> <p><b>High Speed Data Lines</b><br/><b>Serial Bus and 1553 Compatible Lines</b></p> |
| <b>Environment</b> | <p><b>Temperatures</b></p> <ul style="list-style-type: none"><li>- EPS Electronic Boxes      0°C to 40°C</li><li>- Solar Array                    -80°C to +100°C</li><li>- Battery                        0°C to 30°C</li></ul> <p><b>Vibration, Shock</b><br/><b>Meet Limits As Stated in the FAME Design and Analysis Plan, NCST-D-FM017</b></p> <p><b>Radiation</b><br/><b>Meet Requirements As Stated in MRD Section 3.2.8.7.3 on Particle Radiation</b></p>                                                         |
| <b>Parts</b>       | <p><b>All EEE Parts per GSFC-311-INST-001, Rev A</b></p> <ul style="list-style-type: none"><li>- Selected                        Quality Level 2</li><li>- Screened                       Quality Level 2</li></ul>                                                                                                                                                                                                                                                                                                       |



# FAME EPS Components

- **Li-Ion Battery**
  - **8 Cells**
  - **35 Amp-Hour Capacity**
- **Solar Array**
  - **GaInP/GaAs/Ge Cells**
  - **20 Cells per String**
  - **50 Strings**
- **Power Control Unit**
  - **Battery Charging**
  - **Solar Array Control**
  - **Battery Interface**
  - **Undervoltage Detection**
  - **Ordnance Functions**
- **Power Distribution Unit**
  - **Unregulated Power to Loads**
  - **Regulated Power to IMUs**
  - **Motor Control**
  - **Signal Conditioning**
- **Battery Cell Bypass**
  - **Equalizes Cell Potential**
  - **Open Cell Bypass**
- **Solar Array J-Box**
  - **50 Strings Into 8 Segments**
- **Spacecraft Harness**



# FAME Battery and Solar Array Sizing

- **Battery Capacity Is 35Ah**
  - Supports Launch - TBD Minutes to Launch + 90 Minutes
  - Supports AKM Firing If Solar Array Is Pointed Away From Sun
  - Supports Maximum Eclipse Time
- **Solar Array EOL Power Is 515 Watts at 30.4V**
  - Supports Total Observatory Power Requirements + 20% Contingency
  - Sized With Temperature, Radiation, Life and Sun Angle Taken Into Account



# FAME EPOS Major Milestones



- **Solar Array Delivery**                           **8 Sept 2003**
- **Battery + BCB Delivery**                       **28 Nov 2003**
- **Electronic Box Deliveries**
  - **PDU, Brassboard**                               **15 Aug 2002**
  - **PCU, Proto-Flight**                               **12 May 2003**
  - **PDU, Proto-Flight**                               **12 May 2003**
  - **Solar Array J-Box, Proto-Flight**               **1 Nov 2002**
- **Flight Harness Completion**                       **15 Aug 2002**



# FAME EPS Electronics Status



| Electronic Box                 | Drawing Status                                              | Breadboard Status                     |
|--------------------------------|-------------------------------------------------------------|---------------------------------------|
| <b>Power Control Unit</b>      | <b>All 10 Preliminary Daughterboard Schematics Complete</b> | <b>60% of Circuits Tested/in-Test</b> |
| <b>Power Distribution Unit</b> | <b>All 9 Preliminary Daughterboard Schematics Complete</b>  | <b>50% of Circuits Tested/in-Test</b> |
| <b>Battery Cell Bypass Box</b> | <b>Breadboard Schematic Complete</b>                        | <b>100% of Circuits in Test</b>       |
| <b>Solar Array J-Box</b>       | <b>In Progress</b>                                          | <b>Not Required</b>                   |



# Procurement Status of EPS Long Lead Items



| Item             | Status                                      | Est. Delivery Time ARO |
|------------------|---------------------------------------------|------------------------|
| Solar Array      | <b>Not Ordered, ROMs Received</b>           | <b>12 Months</b>       |
| Battery          | <b>Not Ordered, ROMs Received</b>           | <b>5 - 12 Months</b>   |
| DC-DC Converters | <b>Not Ordered, Manufacturer Identified</b> | <b>6 - 12 Months</b>   |



# FAME EPS Major Trade Studies



| Closed Trades                                                                      | Decision             |
|------------------------------------------------------------------------------------|----------------------|
| <b>Battery Chemistry</b><br><b>Lithium-Ion vs Nickel-Hydrogen</b>                  | <b>Lithium-Ion</b>   |
| <b>Heater Control</b><br><b>Closed Loop vs Open Loop</b>                           | <b>Open Loop</b>     |
| <b>Ordnance Control Electronics</b><br><b>Separate Box vs Contained Within PCU</b> | <b>Within PCU</b>    |
| <b>Redundancy</b><br><b>Redundant vs Non-Redundant Electronics</b>                 | <b>Non-Redundant</b> |
| <b>Ongoing Trades</b>                                                              |                      |
| <b>None</b>                                                                        |                      |



# Fame EPS Test Matrix

| Component   | 200 HR Burn-In | Thermal Cycle | Random Vibration | Acoustic Vibration | EMI/EMC | Thermal Cycle |
|-------------|----------------|---------------|------------------|--------------------|---------|---------------|
| PCU         | Yes            | Yes           | Yes              | No                 | Yes     | Yes*          |
| PDU         | Yes            | Yes           | Yes              | No                 | Yes     | Yes*          |
| BCB         | Yes            | Yes           | Yes              | No                 | Yes     | Yes*          |
| S/A J-BOX   | Yes            | Yes           | Yes              | No                 | No      | Yes*          |
| Solar Array | No             | No            | No               | Yes                | No      | Yes           |
| Battery     | No             | Yes           | Yes              | No                 | No      | Yes*          |

\* At System Level



# Fame EPS Open Issues

- None Identified At PDR



# Back-Up



# Fame EPOS Peer Review

- **Peer Review Held on 10/10/01**
- **Peer Review Team**
  - Karen Stewart - NASA Goddard Power Systems Engineer
  - Joseph Bolek - NASA Goddard Systems Engineer
  - Dr George Dakermanji - Johns Hopkins Applied Physics Lab, Supervisor of Power Systems Section
- **Resulting Action Items**
  - Resize the Solar Array Taking Into Account Any Degradation Effects of Radiation in the GTO Orbit
  - Calculate Solar Array Power Output Delta for Any Temperature Variations Across the Array
  - Recalculate Solar Array Power Margin Upon Exiting Eclipse
  - Re-Examine Heater Power Profile in Eclipse



# Energy Sources & Storage Systems

**J. Christopher Garner**  
**Electrical Power Subsystem Engineer**  
**NRL**  
**202-767-9075**  
**[garner@ssdd.nrl.navy.mil](mailto:garner@ssdd.nrl.navy.mil)**



# Energy Sources/Storage Requirements



- **Provide Electrical Power to All FAME Subsystems for All Mission Phases**
  - Observatory in Sun - Solar Cell Array to Convert Sunlight to DC Power
  - Observatory in Eclipse - Electrochemical Battery to Provide DC Power
- **Support 5 Year Mission in GEO Orbit**
  - Solar Array - Use Radiation Tolerant Solar Cells, Coverglass Shielding to Minimize Radiation Degradation
  - Battery - Use Technology to Meet Support 200 Charge/Discharge Cycles Over 5 Year GEO Mission
- **Minimize Magnetic Moment Induced by EPS Components**
  - Solar Array - Use Backwiring of Strings to Cancel Magnetic Moments
  - Battery - Harness Routing to Minimize Magnetic Moments



# FAME Power Requirements

| Mission Phase<br>Instrument State                  | <i>Launch Off</i> | <i>GTO Off</i> | <i>Sub Syn</i> | <i>GEO-Early Boot, Standby</i> | <i>GEO-Science Boot, Standby</i> | <i>GEO-Science Opus</i> | <i>Safe-Hold M Survival</i> |
|----------------------------------------------------|-------------------|----------------|----------------|--------------------------------|----------------------------------|-------------------------|-----------------------------|
| <b>Spacecraft Bus</b>                              |                   |                |                |                                |                                  |                         |                             |
| CTDH                                               | <b>27.10</b>      | <b>39.50</b>   | <b>39.50</b>   | <b>39.50</b>                   | <b>39.50</b>                     | <b>39.50</b>            | <b>24.10</b>                |
| ADCS                                               | <b>1.25</b>       | <b>21.25</b>   | <b>31.25</b>   | <b>45.55</b>                   | <b>35.55</b>                     | <b>35.55</b>            | <b>25.55</b>                |
| RF                                                 | <b>8.00</b>       | <b>45.00</b>   | <b>45.00</b>   | <b>45.00</b>                   | <b>45.00</b>                     | <b>45.00</b>            | <b>45.00</b>                |
| EPS                                                | <b>15.00</b>      | <b>38.00</b>   | <b>38.00</b>   | <b>38.00</b>                   | <b>90.50</b>                     | <b>90.50</b>            | <b>18.00</b>                |
| TCS                                                | <b>0.00</b>       | <b>64.50</b>   | <b>64.50</b>   | <b>64.50</b>                   | <b>64.50</b>                     | <b>64.50</b>            | <b>64.50</b>                |
| <b>Spacecraft Power By Operational Phase</b>       | <b>85</b>         | <b>208.25</b>  | <b>218.25</b>  | <b>232.55</b>                  | <b>275.05</b>                    | <b>275.05</b>           | <b>177.15</b>               |
| <b>20% Spacecraft Contingency</b>                  | <b>10.27</b>      | <b>41.65</b>   | <b>43.65</b>   | <b>46.51</b>                   | <b>55.01</b>                     | <b>55.01</b>            | <b>35.43</b>                |
| <b>Total Spacecraft Power By Operational Phase</b> | <b>91.82</b>      | <b>249.90</b>  | <b>261.90</b>  | <b>279.06</b>                  | <b>330.06</b>                    | <b>330.06</b>           | <b>212.58</b>               |
| <b>Instrument</b>                                  |                   |                |                |                                |                                  |                         |                             |
| <b>20% Instrument Contingency</b>                  | <b>0.00</b>       | <b>60.00</b>   | <b>60.00</b>   | <b>135.50</b>                  | <b>135.50</b>                    | <b>165.50</b>           | <b>55.00</b>                |
| <b>Total Instrument Power By Operational Phase</b> | <b>0.00</b>       | <b>12.00</b>   | <b>12.00</b>   | <b>27.10</b>                   | <b>27.10</b>                     | <b>33.10</b>            | <b>11.00</b>                |
| <b>Total Observatory Power W/Contingency</b>       | <b>92</b>         | <b>321.90</b>  | <b>333.90</b>  | <b>441.66</b>                  | <b>492.66</b>                    | <b>528.66</b>           | <b>278.58</b>               |
| <b>BOL Solar Array Power Out @ 30.4 V</b>          | <b>0.00</b>       | <b>388.50</b>  | <b>525.00</b>  | <b>525.00</b>                  | <b>525.00</b>                    | <b>525.00</b>           | <b>?</b>                    |
| <b>EOL Solar Array Power Out @ 30.4 V</b>          |                   |                | <b>515.00</b>  | <b>515.00</b>                  | <b>515.00</b>                    | <b>515.00</b>           |                             |
| <b>BOL S/A Margin (W)</b>                          |                   | <b>66.60</b>   | <b>191.10</b>  | <b>83.34</b>                   | <b>32.34</b>                     | <b>-3.66</b>            |                             |
| <b>BOL S/A Margin (%)</b>                          |                   | <b>21%</b>     | <b>57%</b>     | <b>19%</b>                     | <b>7%</b>                        | <b>-1%</b>              |                             |
| <b>EOL S/A Margin (W)</b>                          |                   |                | <b>181.10</b>  | <b>73.34</b>                   | <b>22.34</b>                     | <b>-13.66</b>           |                             |
| <b>EOL S/A Margin (%)</b>                          |                   |                | <b>54%</b>     | <b>17%</b>                     | <b>5%</b>                        | <b>-3%</b>              |                             |



# Solar Array Sizing (1 of 2)

- **1 x 10<sup>14</sup> 1 mev Equivalent Electrons Fluence for 5 Year GEO Orbit, 6 Mil Coverglass, Infinite Backshielding**
  - **Radiation Degradation Factors**
    - $I_{sc}$ ,  $I_{mp}$  **1**
    - $V_{oc}$ ,  $V_{mp}$  **0.96**
- **On-Orbit Temperature 95°C**
  - **Temperature Coefficient**
    - $I_{sc}$  ( $\mu A/^\circ C$ ) **2.72E-04**
    - $I_{mp}$  ( $\mu A/^\circ C$ ) **2.18E-04**
    - $V_{oc}$  ( $mV/^\circ C$ ) **-4.20E-03**
    - $V_{mp}$  ( $mV/^\circ C$ ) **-4.60E-03**
- **Sun Angle  $35 \pm 5^\circ$** 
  - **Cosine Factor **0.766 (40° Worst Case)****
- **$V_{Solar\ Array} = V_{Battery} + V_{Diode} + V_{Wireharness} = 35.5V$**



# Solar Array Sizing (2 of 2)

- **Number of GaInP/GaAs/Ge Solar Cells in Series Required = 20**
- **Number of Solar Cell Strings in Parallel = 50**
- **Number of Strings/Segment = TBD**
- **BOL Solar Array Power = 525W @ 30.4V**
- **EOL Solar Array Power = 515W @ 30.4V**



# Preliminary Solar Cell Layout



## (3) Substrates:

- Graphite Epoxy Facesheets
- Co-Cured Kapton Insulation
- Aluminum HoneyComb





# 26.8% Efficient Solar Cells

- **GaInP/GaAs/Ge Solar Cells**
- **Width (cm)**      **3.95**
- **Length (cm)**      **6.89**
- **Isc (A)**            **0.460**
- **Imp (A)**            **0.435**
- **Voc (V)**            **2.56**
- **Vmp(V)**            **2.23**



**Typical IV Characteristic**  
AM0 (135.3 mW/cm<sup>2</sup>) 28°C, Bare Cell



\*A/R: Anti-Reflective Coating



# Triple Junction Solar Cell Comparison



| <u>Parameter</u>             | <u>Spectrolab</u> | <u>Tecstar</u> | <u>Emcore</u> |
|------------------------------|-------------------|----------------|---------------|
| <b>Width</b>                 | <b>3.95</b>       | <b>3.84</b>    | <b>3.90</b>   |
| <b>Length (cm)</b>           | <b>6.89</b>       | <b>6.32</b>    | <b>7.05</b>   |
| <b>Area (cm<sup>2</sup>)</b> | <b>27.22</b>      | <b>24.26</b>   | <b>27.50</b>  |
| <b>Thickness (mil)</b>       | <b>5.5</b>        | <b>5.5</b>     | <b>6.0</b>    |
| <b>Mass (grams)</b>          | <b>1.634</b>      | <b>2.230</b>   | <b>2.400</b>  |
| <b>Voc (V)</b>               | <b>2.56</b>       | <b>2.56</b>    | <b>2.565</b>  |
| <b>Vmp(V)</b>                | <b>2.23</b>       | <b>2.25</b>    | <b>2.27</b>   |
| <b>Isc (A)</b>               | <b>0.460</b>      | <b>0.408</b>   | <b>0.445</b>  |
| <b>Imp (A)</b>               | <b>0.435</b>      | <b>0.383</b>   | <b>0.427</b>  |
| <b>Efficiency (%)</b>        | <b>26.8</b>       | <b>26.5</b>    | <b>26.0</b>   |



# Battery Trade-Study

|                                               | NiCd                 | IPV<br>NiH2          | CPV<br>NiH2          | SPV<br>NiH2          | SPV<br>NiH2          | Li-Ion               |
|-----------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| <b>Number of Batteries</b>                    | <b>1</b>             | <b>1</b>             | <b>1</b>             | <b>1</b>             | <b>2</b>             | <b>1</b>             |
| <b>Number of Cells</b>                        | <b>23</b>            | <b>23*</b>           | <b>23*</b>           | <b>22</b>            | <b>22</b>            | <b>8</b>             |
| <b>Capacity (Ah)</b>                          | <b>30</b>            | <b>30</b>            | <b>30</b>            | <b>30</b>            | <b>15</b>            | <b>30</b>            |
| <b>Mass (kg)</b>                              | <b>30.91</b>         | <b>22.63</b>         | <b>18.33</b>         | <b>21.06</b>         | <b>19.96</b>         | <b>8.35</b>          |
| <b>Volume (cm<sup>3</sup>)</b>                | <b>3.40E+0<br/>4</b> | <b>3.92E+0<br/>4</b> | <b>2.81E+0<br/>4</b> | <b>2.06E+0<br/>4</b> | <b>3.30E+0<br/>4</b> | <b>3.16E+0<br/>3</b> |
| <b>Specific Energy<br/>(Wh/kg)</b>            | <b>29.12</b>         | <b>39.77</b>         | <b>49.10</b>         | <b>42.74</b>         | <b>22.55</b>         | <b>100</b>           |
| <b>Energy Density<br/>(WH/cm<sup>3</sup>)</b> | <b>0.0265</b>        | <b>0.0230</b>        | <b>0.0321</b>        | <b>0.0437</b>        | <b>0.0136</b>        | <b>0.266</b>         |

\* Includes 1 Spare Cell



# Energy Storage Sizing

- **Battery Must Support TBD Minutes Before Launch + 90 Minutes Until Fairing Separation and Sun Orientation**
- **Battery Must Support Apogee Kick Motor Firing If Solar Array Is Pointed Away From Sun**
- **FAME Observatory Will Experience Two Eclipse Seasons Every Year**
  - **20 Day Duration**
  - **Maximum Eclipse Is 70 Minutes on Day 10**
- **Capacity Required for Maximum Eclipse**
  - **$(468W/28V)*(70/60) = 19.50$  Ampere-Hours**
  - **Maximum Depth of Discharge Allowed 80%**
  - **Battery Capacity =  $19.50/0.8 = 24.38$  Ampere-Hours**
- **Capacity Required for AKM Firing**
  - **If Sun Angle  $\geq 90^\circ$ , Battery Can Support 1.5 Hours at 360 W**
  - **Increase Battery Capacity to 35 Ah, Battery Can Support 2.18 Hours**
- **Baseline Battery Capacity Is 35Ah**



# Lithium Ion Battery Choice

- **Li-Ion Has Highest Specific Energy, Is the Lowest Mass Choice**
- **8 Battery Cells Compared to 23 for Nickel Cadmium or Nickel Hydrogen**
- **Variety of Manufacturers Available:**
  - Eagle Picher
  - Yardney
  - MSA
  - SAFT
  - COMDEV
  - Melco
- **Charge/Discharge Cycle Life Data Available From NASA, Air Force, NRL, and Cell Manufacturers**



# Lithium Ion Battery Cells



*Voltage vs. Time  
Discharge Profile of 35Ah  
Lithium-ion Cell*



## *Performance Data*

|                           |   |                               |                      |   |              |
|---------------------------|---|-------------------------------|----------------------|---|--------------|
| Cathode                   | : | Lithiated Nickel Cobalt Oxide | Nominal Voltage      | : | 3.6V         |
| Anode                     | : | Graphite                      | Nominal Weight       | : | 870 gms      |
| Electrolyte               | : | EC:DMC:DEC                    | Cycle Life           | : | > 800 Cycles |
| Nominal Capacity          | : | 35Ah @ C/5                    | Volumetric ED        | : | 335 Wh/l     |
| Pulse Current Capability  | : | 150 Amp (5C)                  | Gravimetric ED       | : | 145 Wh/Kg    |
| Sustained Maximum Current | : | 70 Amp                        | Coulombic Efficiency | : | 99%          |
| Dimensions                | : | 3.74" x 1.096" x 5.500"       | Fade Rate            | : | 0.02%/Cycle  |

Yardney Technical Products, Inc.  
82 Mechanic Street, Pawcatuck, CT 06379 (860) 599-1100 – Fax: (860) 599-3903  
<http://www.yardney.com>



# Lithium Ion Risk Reduction

- **Yardney/JPL MSP-01 Battery**
- **30-35 Ah Li-Ion Battery Not Flown When Mission Was Cancelled**
- **On Loan to NRL From NASA/LM Denver**
- **NRL to Conduct an Accelerated GEO Cycling Program**
  - Obtain 5 Years Data in 2.5 Years



**Yardney Technical Products, Inc.**  
82 Mechanic Street, Pawcatuck, CT 06379 (860) 599-1100 – Fax: (860) 599-3903  
<http://www.yardney.com>



# NRL MSP-01 Accelerated GEO Test Results



MSP-01 1.25amp Charge





# NRL MSP-01 Accelerated GEO Test Results



MSP-01 25 Day Charge (First 16 Hours)





# NRL MSP-01 Accelerated GEO Test Results



MSP-01 25 Day Charge (First 10 Days)





# Solar Array BOL Power Upon Maximum Eclipse Exit





# Solar Array EOL Power Upon Maximum Eclipse Exit

EOL FAME Solar Array Power Upon Exiting The Maximum Eclipse





# Power Control Unit



# FAME EPS Power Control Unit





# PCU Features

- **Creates 30+/-6Vdc Critical Bus to Provide Power to All Loads**
- **Modulates S/A Current via Battery Charge Controller**
- **Charges Battery by Constant Current/Constant Voltage Modes**
- **Provides Undervoltage Detection to Protect Battery**
- **Contains All Ordnance Control Circuits**
- **Provides for T-O Umbilical Power Input**
- **Contains Single Point Ground for Entire Spacecraft**
- **Provides Regulated  $\pm 15$ Vdc to Power Distribution Unit and Battery Cell Bypass Unit**
- **Monitors Housekeeping Parameters such as Currents, Voltages and Status**



# FAME Charge Control Subsystem



# FAME Charge Control System Heritage



- **Clementine (Lunar Mapping Spacecraft)**
- **ISS ICM (Reboost, Attitude Control, Contingency)**



# FAME Comparison with ICM

**ICM:** **LEO, 1.5 Hour Period/0.5 Hour Eclipse**

**(2) 32 AH NiCd Batteries**

**Constant Current/V-T Charge Control**

**C/2 Maximum Charge Rate**

**FAME:** **GEO, 24 Hour Period/70 Minute Eclipse**

**35 AH Li-Ion Battery (8-Cell)**

**Constant Current/V-Level Charge Control**

**C/20 Maximum Charge Rate**



# FAME Charging System Requirements (1 of 2)



- **Charge Single 35 Ah Li-Ion Battery:**
  - **Provide Controlled-rate Charging With Voltage Limit (Taper Charge):**
    - **4 Selectable Rates: C/20 Nominal, C/50, C/100, C/200**
    - **4 Selectable Maximum Voltage Levels: 32.8v, 32.0v, 31.2v, 30.4v**
- **Provide Automatic Switchover From Constant Current to Constant Voltage Mode**
- **Provide Maximum Charge Rate, C/20, on Undervoltage Detection**



# FAME Charging System Requirements (2 of 2)

- **Reject Excess Solar Array Energy**
- **Prevent Li-ion Battery Overcharge/Cell Imbalance**
  - **Prevent Cell Imbalance/Overcharge Through Selective Cell Bypassing:**
    - **4 Selectable Bypass Voltage Levels**



# FAME Charging System Concept





# FAME Charge Control Block Diagram





# FAME Charger Detail





# Charger Solar Array Gate Drive Detail





# FAME Solar Array Segment Control





# Battery/UV DET Interface Circuits





# Undervoltage Detector Block Diagram





# PCU Housekeeping Power Supply Block Diagram





# Battery Cell Bypass Unit



# FAME Cell Bypass Concept





# BCB Features

- **Provides Battery Cell Overvoltage Protection and Balancing**
- **Bypasses of Up to 4Amps for Each Cell to Limit Cell Voltage; Each Cell Has a Dedicated Closed-Loop Bypass Circuit**
- **Cell Bypass Voltage Setpoints Automatically Controlled by PCU Battery Charger Voltage Control Limit/8**
- **Voltage Offsets of 0.0v, 0.1v, 0.2v, 0.3V Can Be Commanded**
- **Designed to Maintain Battery Charge and Discharge Current Path In the Event of an Open Circuit Battery Cell**
- **Power Diode Provides Discharge Current Path of 25Amps**
- **Provides Telemetry of All Cell Voltages and Bypass Currents**



# FAME Cell Bypass Detail





# FAME Cell Bypass Reference Circuit





# Power Distribution Unit



# FAME EPS Power Distribution Unit





# PDU Features

- **Provides Fused, Unswitched Power to All Redundant Critical Loads**
- **Provides Fused, Switched Power to All Non-Critical Loads**
- **Provides Fused, Switched, Regulated Power to Both IMUs**
- **Provides Motor Drive Signals and Fused Power to All Eight Motors**
- **Monitors Housekeeping Parameters Such As Currents, Voltages and Status**



# FAME EPS Load List

- **2 Instrument Feeds**
- **2 Flight Spacecraft Controller Feeds**
- **2 Remote Interface Unit Feeds**
- **2 Receivers**
- **2 Transmitters**
- **2 Star Trackers**
- **8 Motors**
- **13 Heater Circuits**
- **2 Inertial Measurement Units**
- **2 Magnetometers**
- **2 Spinning Sun Sensors**



# FAME EPS Instrument Interface



- Two Power Feeds to the Instrument Electronics
  - Both Power Inputs Can Be Active at One Time
- Separate Power Feed to the Instrument Survival Heaters
- Each Power Feed Shall Have
  - Current Monitor
  - On/Off Switches With Inrush Limiting
  - In-Line Fuses



# FAME Instrument Power Distribution Block Diagram





# FAME CT&DH Power Distribution Block Diagram





# RF Power Distribution Block Diagram





# FAME Heater Power Distribution Circuit (1 of 2)





# FAME Heater Power Distribution Circuit (2 of 2)





# IMU Power Supply Block Diagram





# PDU Motor Driver Circuit





# Ordnance Control Element



# Requirement Sources

- **Eastern and Western Range 127-1 (31 December 1999)**
  - **Section 3.3 General Design Policy**
    - Failure/Hazard Criteria
  - **Section 3.5 Operations Safety Console**
    - SRM Safe and Arm Status
  - **Section 3.13 Ordnance Systems**
    - Design Requirements
    - RF Survivability Shall Meet Requirements in MIL-STD-1576
  - **Section 6.13 Ordnance Operations**
    - Transportation, Storage, Operations, Procedures
- **MIL-STD-1576 - Electroexplosive Subsystem Safety Requirements and Test Methods for Space Systems**
  - Paragraph 6.10 EMC Verification



# 127-1 Range Safety Requirements (1 of 2)

- If a System Failure May Lead to a Catastrophic Hazard, the System Shall Have Three Inhibits (Dual Fault Tolerant)
- Hazard Classification
  - Solid Rocket Motor/Marmon Clamp Are Category “A”
  - All Other Ordnance Devices Are Category “B”
- Category A Motor Ignition Circuits Shall Include Safe and Arm Device
- Non-Explosive Initiators (NEIs) Shall Be Classified As Category A or B
  - FAME Use Is Category B
- EEDs (Electro-Explosive Devices)
  - One Amp/One Watt No Fire Survivability Is Required
- FMECA Shall Be Performed in Accordance With MIL-STD-1543
  - Bent Pin Analysis Also Required



# 127-1 Range Safety Requirements (2 of 2)

- **Safety Devices**
  - **Switches, Relays and Safe/Arm Devices Shall Be Used to Provide Electrical and Mechanical Isolation Between Power Source and the EEDs**
- **Shielding**
  - **Firing Circuits Shall Be Completely Shielded**
- **Filtering**
  - **Non-Shielded Circuits Filtered to Prevent RF Entry Into Shielded Portion of System**
- **Checkout Circuitry Shall Be Provided to Test and Monitor Critical Circuits**
- **Limit Induced EMC Power to 20 dB Below the Maximum DC No-Fire Power of the EED**



# Operational Requirements

- **Provide Control and Firing Circuits to Safely Operate All Ordnance Devices and Non-Explosive Mechanisms**
- **Provide Switching and Control Logic for the Following Functions:**
  - **RCS Pyro Valve Activation**
  - **Solid Rocket Motor Ignition**
  - **Spacecraft/Interstage Separation**
  - **Trim Tab Release**
- **Provide Monitor and Control Functions to CT&DH, GSE & ELSE**
- **Provide Interface For Payload/Booster Separation**
- **Meet Range Safety Requirements for Ordnance (127-1)**



# Key Safety Features

- Turn-On Connector
  - Provides Ability to Remove Power From Ordnance Circuits Independent From Other Subsystems
- OCS Is Dual Fault Tolerant to Inadvertent Activation of Any Device
  - Three Inhibits, Two Monitored
  - Firing Requires Two Command Sequence
  - Electrical and Mechanical Safe/Arm Devices
- Personal Safety
  - Trained Personnel
  - Ordnance GSE Is Current Limited to Prevent Inadvertent Activation While Testing
  - All Operations Performed Per Approved Procedures



# Ordnance Control Subsystem Interfaces



\* Note: PinPullers Are Non-Explosive Devices



# Interface Definitions (1 of 2)



- **Structure Interfaces**
  - **Access to Safe/Arm Connectors on Exterior of Spacecraft**
  - **Separable Connectors to Interstage**
    - **Firing Circuit Outputs to SRM**
  - **Ordnance Devices**
  - **Pin-Pullers**
- **Command and Telemetry Interfaces**
  - **CMDs (25)**
    - **Discrete CMDs for Ordnance Enabling Arming and Firing**
  - **TLM**
    - **Bi-Level Data Points (12)**
- **Power Interface**
  - **28 Volt Bus**



# Interface Definitions (2 of 2)



- **ELSE**
  - **SRM Safe and Arm Device Driven Through Umbilical**
    - **SRM Armed Just Prior to Launch**
    - **SRM Safe/Arm Status Indicator**
    - **Ordnance Inhibit Status Indicators**
    - **Inhibit Reset Ability**
- **Test Connector**
  - **Ordnance Inhibit Status Indicators**
  - **Inhibit Reset Ability**



# Ordnance Device Distribution and Type

## • Electro-Explosive Devices (EEDs)

| Usage                      | Device Type | Quantity |
|----------------------------|-------------|----------|
| MarmorClamp Separators (2) | PC-72-003   | 2        |
| RCS PyroValves (2)         | NSI         | 2        |
| Solid Motor Ignition (2)   | TBI         | 2        |
| Spares (2)                 |             |          |
| <b>TOTAL EEDs</b>          |             | <b>6</b> |

## • PinPuller NEIs

| Usage                  | Device Type    | Quantity  |
|------------------------|----------------|-----------|
| Trim Tab Release (6)   | NitinoActuator | 12        |
| <b>Total Actuators</b> |                | <b>12</b> |



LOCKHEED MARTIN

# Pyro Valve Detail



Before Actuation  
(Closed)

After Actuation  
(Open)

Prop. Holden Weller



# Clamp Separator





# Ordnance Event Sequence

| Event | Commands to Complete | Number of Devices Functioned | Comments |
|-------|----------------------|------------------------------|----------|
|-------|----------------------|------------------------------|----------|

## Launch Vehicle

|                          |   |   |                             |
|--------------------------|---|---|-----------------------------|
| Spacecraft Release       | 1 | 2 | Initiated by Launch Vehicle |
| Total LV Ordnance Events | 1 | 2 |                             |

## Space Vehicle

|                                     |   |    |                                       |
|-------------------------------------|---|----|---------------------------------------|
| RCS (Pyro) Valve Activation         | 1 | 2  |                                       |
| Solid Motor Ignition                | 1 | 2  |                                       |
| Trim Tab Release                    | 3 | 6  | 6 Pin-Pullers<br>2 Actuators Per Unit |
| Spacecraft/Interstage Separation    | 1 | 2  | Marmon Clamp                          |
| Total Space Vehicle Ordnance Events | 4 | 12 |                                       |



# Ordnance Control Circuits Description (1 of 2)



- **Located in PCU**
  - **Three Circuit Card Assemblies**
- **Contains Inhibit and Firing Relays**
- **Contains Monitor and Control Circuitry**
- **Provides Command and Status Interfaces to CT&DH System**
- **Provides Status Information and Inhibit Reset Ability Through Ground Test Connector and Umbilical**
- **Provides Outputs to Pyro Devices**
- **Provides Outputs to Pin-Puller Devices**



LOCKHEED MARTIN

# Ordnance Control Circuits Description (2 of 2)

- Two Inhibit Relays Interlocked Through Space Vehicle/Launch Vehicle (SV/LV) Interface Connector
  - Inhibit Relays Closed by Ground Command
  - Interlock Prevents Arming Before SV/LV Separation
- EED Firing Relays
  - Six 2PDT Spring Return Relays for Firing Pyros
- Six Pin-Puller Relays
  - 2 PDT Latching Relays for Pin-Puller Actuator
- Ground Test Connector
  - Monitors Inhibit Relay Positions Without System Power
  - Returns Inhibits to Safe Positions
- Umbilical Resets and Status
  - Ability to Monitor and Reset Inhibits With EAGE



# Ordnance Control Design Features



- **Zero Standby Power**
- **Inhibit Interlocks Prevent Arming Prior to SV Separation**
- **All Ordnance and Release Events Requires a Two Command Sequence**
  - **1. Enable**
  - **2. Fire**
- **Inhibits Are Resettable Via Two Paths**
  - **Test Connector Using GSE**
  - **Umbilical Using EAGE**
- **EED Firing**
  - **Fusible Resistors Provide Uniform Current to Changing Electro Explosive Devices (EED) Resistance During Initiation**
  - **Static Bleed Resistors Reference All Firing Lines to Structure Ground (WSMC-127-1 RQMT)**
- **Pin-Puller Firing**
  - **Series Resistors Limit Current to Pin-Puller Actuators**



# Ordnance Control Design Overview





# Arm and Enable Sequence



**Note: Safe & Arm Plug Not Shown**

OCS-23



# Ordnance Control Circuits





# EED Firing Circuits





# Pin-Puller Firing Circuits





# Command Enables Diagram (1 of 2)





# Command Enables Diagram (2 of 2)





# EED Firing Current Margin

**NSI "All Fire" Current: 3.5 Amps**

- **Current Limiting Resistors Sized to Provide:**

| <b><u>Bus Voltage</u></b> | <b><u>EED Firing Current</u></b> |
|---------------------------|----------------------------------|
| <b>34.0 Volts</b>         | <b>6.07 Amps</b>                 |
| <b>28.0 Volts</b>         | <b>5.00 Amps</b>                 |
| <b>22.0 Volts</b>         | <b>3.92 Amps</b>                 |

- **Maximum Current Draw @ 34V Is 12.1 Amps Peak (413 W)**
  - Occurs 3 Times
- **Peak Current Delivered Until EEDs Fire (Approx. 2 ms)**
- **Total Energy Per Firing (Max) Is 413 W x 2ms - 0.83 W/S**



# Pin-Puller Actuator Margins

**Minimum Pin-Puller Current Required:  
2.3A**

- **Redundant Actuators Used**
  - Actuator Resistance Is 1.2 ohm
- **Circuits Are Self Terminating**
- **Maximum Bus Current Draw @ 34 V Is 7.2 Amps**
  - Occurs 6 Times for 1.5 Seconds (Max)



# Ordnance Control Operation

- **Orbital Insertion**

- **MarmoClamp Separators Fired By LV**
  - **Space Vehicle Is Released**

- **Fire RCS Values**

| <u>CMD</u>                       | <u>Action</u>            |
|----------------------------------|--------------------------|
| RCS Fire                         | Opens PIEV1, PIEV2       |
| SRM Fire                         | Fires EEDs to Ignite SRM |
| Spacecraft/Interstage Separation | Releases Marmon Clamp    |
| Release Trim Tabs                | Fires Pin-Pullers        |

- **Fire SRM**

- **Spacecraft/Interstage Separation**

- **Release Trim Tabs**



# Ground Support Equipment

- **Ground Ordnance Test Set (GROTS)**
  - Interfaces With Test Connector on Spacecraft
  - Provides Ability to Monitor Inhibit Relay Positions Without System Power
  - Provides Ability to Return Inhibits to Safe Positions
- **Bridgewire Resistance Test Set (BRETS)**
  - Interfaces With EED or Safe and Arm (S/A) Receptacle
  - Measures Bridgewire Resistance
    - Current Limited to 10 mA
    - 0.001 Ohm Resolution
- **Spacecraft Ordnance Test Set (SCOTS)**
  - Interfaces With S/A Receptacle
  - Power off/on Stray Voltage Measurements



# Ordnance Safety (1 of 2)

## Ordnance Control Subsystem Safety Design Features:

- **Power on Connector**
  - **Removes Power From Ordnance Independent of Other S/C Subsystems**
- **Filter Connectors**
  - **Prevents Unwanted Electromagnetic Energy From Entering the OCS System**
- **Inhibit Interlock**
  - **Prevents Pre-Separation Arming**
- **Ground Test Connector**
  - **Provides Ability to Return Inhibits and Enables to Safe Positions**
- **EAGE (Umbilical)**
  - **Monitors Status of Inhibits and Can Return Inhibits and Enables to Safe Positions**
  - **Drives Solid Rocket Motor (SRM) Safe/Arm Device**



# Ordnance Safety (2 of 2)

- All Firing Circuits Pass Through Electrical Safe/Arm Connector
  - Safe Plug
    - Provides Positive Interruption of the Current Path From the OCB to the EEDs
    - Electrically Shorts the EEDs Across the Bridgewires
  - Static Bleed Resistors Drain Any Static Buildup to Structure
  - Safe/Arm Receptacle Provides Test Point Location for Bridgewire Resistance and Stray Voltage Tests
- SRM Ignition Circuits Interrupted by Rotatable Safe/Arm Device
  - “Out-of-Line” Mechanism Provides Additional Positive Interruption for the Explosive Train



# Solar Array Junction Box



# Solar Array Junction Box





# Box Mechanical Features



# FAME EPOS

## Size/Weight Estimates



| Component   | Length (inches) | Width (inches) | Height (inches) | Volume (cu. inches) | Weight (lbs) |
|-------------|-----------------|----------------|-----------------|---------------------|--------------|
| PCU         | 15.50           | 8.75           | 6.67            | 905                 | 21.17        |
| PDU         | 12.25           | 8.75           | 6.67            | 715                 | 17.52        |
| BCB         | 5.70            | 8.75           | 9.00            | 449                 | 8.16         |
| S/A J-Box   | 7.06            | 6.00           | 2.25            | 96                  | 1.68         |
| Battery     | 4.32            | 7.46           | 6.00            | 193                 | 18.41        |
| Solar Array |                 |                |                 |                     | 10.8         |
| Harness     |                 |                |                 |                     | 22.36        |
| Total       |                 |                |                 |                     | 100.10       |



United States Naval Observatory



LOCKHEED MARTIN

# PCU & PDU Board Complement





# Command and Telemetry



# FAME EPS Command List

- **12 Low Level Commands From the RIU**
- **8 Low Level Commands From the FSC**
- **48 High Level Commands From the RIU**
- **5 High Level Critical Command From the FSC**



# FAME EPS Telemetry List

- **83 Active Analog Signals**
- **27 Passive Analog Signals**
- **42 Bi-Level Discrete Signals**



# Harness



# Connector Types

- **Rectangular Connectors**
  - **Miniature D, Crimp**
  - **MIL-C-24308**
  
- **Circular Connectors**
  - **MIL-C-38999, Series I Through IV**



# Harness Wire

- **Wire Derating**
  - **Wire Current Carrying Capacity Shall Be Derated Per MIL-W-5088L**
- **Wire Type**
  - **Single Wire**
    - **MIL-W-22759/87, 90**
    - **19 Strands, Nickel Plated Copper (NPC)**
    - **PTFE/Polymide Insulation, Tufflite 2000**
  - **Twisted Pairs, Twisted Triplets**
    - **Components of MIL-W-22759/87, 90**
  - **Twisted Shielded Pairs**
    - **Components of MIL-W-22759/87, 90**
    - **Shield, NPC 85% Minimum Coverage**
    - **Outer Jacket, Polymide/FEP**
  - **Coax**
    - **Semi-Rigid Cable Type M17/1330-RG402**
    - **TWINAX Cable, 1553 Bus**
    - **MIL-C-17FM17/M6**



# Assembly & Mechanical Design

---

# Quality Assurance Efforts



# Critical Bus Fault Mitigation

- **All Critical Bus Harness Wires Shall Be Double Insulated**
- **All CCAs/Electrical Parts Shall Be Conformal Coated**
- **Heat Sinks Shall Be Hard Anodized and Conformal Coated**
- **Wires From I/O Connectors Shall Be Insulated, Tied in Bundles for Stress Relief, and Strain Relieved at the PWB Surface to Remove Stress From Wire to Solder Joint Junction**
- **Sharp Edges Near Connectors Shall Be Insulated and/or Staked**
- **Housing Shall Be Hard Anodized**
- **Inspections Shall Be Performed on All PWBs, Heatsinks, CCAs and Housings; All Assemblies Shall be Vacuumed to Remove Any Loose/Stray Materials**
- **NRL QC Personnel Shall Witness All Box Assembly Operations and Shall Verify That No Loose Materials Are Present Inside Any EPS Box**



# EPS Box Test Program



# Fame EPS Test Matrix

| Component   | 200 HR Burn-In | Thermal Cycle | Random Vibration | Acoustic Vibration | EMI/EMC | Thermal Cycle |
|-------------|----------------|---------------|------------------|--------------------|---------|---------------|
| PCU         | Yes            | Yes           | Yes              | No                 | Yes     | Yes*          |
| PDU         | Yes            | Yes           | Yes              | No                 | Yes     | Yes*          |
| BCB         | Yes            | Yes           | Yes              | No                 | Yes     | Yes*          |
| S/A J-BOX   | Yes            | Yes           | Yes              | No                 | No      | Yes*          |
| Solar Array | No             | No            | No               | Yes                | No      | Yes           |
| Battery     | No             | Yes           | Yes              | No                 | No      | Yes*          |

\* At System Level



# FAME EPS Box Test Flow



Example Above is For Protoflight Electronics Box