

دورة الأساسيات لمنهج كامبردج لمادة الكيمياء

CAMBRIDGE UNIVERSITY PRESS

محتويات الكتاب

الوحدة الأولى

- 🗶 الأحماض والقواعد 🗶
- 🧩 الأحماض والقواعد القوية والضعيفة 🧏
- پ ثابت تأین الماء K_w وحسابات الرقم \star الهیدروجیني
 - ۲ ثابت تأین الأحماض الضعیفة К_а
 ۱ والقواعد الضعیفة
 - 🔀 معايرة الأحماض والقواعد 🔀
 - 🗴 الاتزان والذوبانية 🗴
 - 🗴 المحاليل المنظمة 🗴

الدورة		المجموعة																
	ı	II											H	IV	V	VI	VII	VIII
1			_		المفتاح			H ميدروجين hydrogen 1.0										He میلیو helium 4.0
2	3 Li ئيٹيوم Bhan 6.9	4 Be بریلیوم beryllum 9.0		ي	المفتاح مدد الذرة الرمز الاسم	N							5 B ்று அ beren 10.8	کربون carban 12.0	7 N نیتروجین mbragen 14.0	8 0 اکسجین عورویه 16.0	9 F شلور fuerine 19.0	10 Ne نیون معدد 20.2
3	11 Na صبودیوم sodiem 23.0	12 Mg ماغیسیوم magnesium 24.3		نسبية	ة الذريّة ال	الكتلا							13 Al Iteniage Aminiae 27.0	14 Si سیلیکون silicon 28.1	15 P فوسفور phospharus 31.0	16 S کبریت کبریت 32.1	17 CI کلور dilarine 35.5	18 Ar ارغون argen 39.9
4	19 K بوتاسيوم potassium 39.1	20 Ca کالسیوم caldium 40.1	21 Sc سکاندیوم scandum 45.0	22 Ti تيتانيوم Stanium 47.9	23 V فتاديوم vanadium 50.9	24 Cr کروم dromium 52.0	25 Mn منفتیز manganese 54.9	ور پر اور 1558ء 1558ء	27 Co کوبائت مهما 58.9	28 Ni شکک nidel 58.7	29 Cu نحاس مهووه 63.5	30 Zn خارصین خاد 65.4	31 Ga غاليوم pallium 69.7	52 Ge چير مانيوم پورسيونس 72.6	As As خرربيخ assenic 74.9	34 Se سیلینیوم sekrium 79.0	35 Br بروم bromine 79.9	36 Kr کریبتون krypton 83.8
5	37 Rb روپيانيوم ration 85.5	38 Sr مشروشیوم streetion 87.6	39 Y [urcuen yttrium 88.9	40 Zr زيركونيوم attentum 91.2	A1 Nb ietum nietum 92.9	Mo Mo nothernom 35.9	43 TC تکیشیوم tedneticm	44 Ru روٹینروم ruthenium 101.1	45 Rh دوديوم rhedum 102.9	46 Pd بالاديوم polladium 106.4	47 Ag فضية silver 107.9	48 Cd کاد میوم cadmium 112.4	49 In الديوم indian 114.8	50 Sn قصلير 118.7	51 Sb انتيمون antimony 121.8	52 Te تيلوريوم tellurium 127.6	53 يود iedine 126.9	Xe زيدون xenon 131.3
6	S5 CS سين بيوم coenium 132.9	56 Ba باریوم terium 137.3	57-71 lawheneids	72 Hf ماھيوم hatrium 178.5	73 Ta تانتالوم tentaken 180.9	74 W تدنستن Jungsten 183.8	75 Re negation thenium 186.2	76 Os اوزمیوم emium 190.2	77 أريديوم iridum 192.2	78 Pt بلاتین platinum 195.1	79 Au ذهب gold 197.0	80 Hg رئيق nercury 200.6	81 TI خاليوم Halium 204.4	82 Pb رصاص kad 207.2	83 Bi بيزموث bimuth 209.0	84 PO بولونيوم polenium	85 At استاتین artyine	86 Rn رادون raden
7	67 Fr شرانسيوم francken	88 Ra راديوم radium	89-103 activaids	104 Rf ريدر طور ديوم rutherfection	Db cesses debatem	Sg sabergian	107 Bh palase bahrium	108 Hs هاسيوم hassium	109 Mt مقیریوم meknerium	110 Ds دارمستادیوه arestation	111 Rg رونٽجينوم reenterview	112 Cn کوپرزنیسیوم copemidum	113 Nh isaeisen nhooism	ا114 Fl فليروفيوم ferovium	115 Mc موسکوفیوم messavium	116 Lv ليفرموريوم التحصولات	117 Ts تقنیسین tennession	118 Og آوغانيسون آوغانيسون
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			La لانتشوم Ianthanum 138.9	Ce مسيريوم cerium 140.1	Pr برازیودیسوم providence 140.9	Nd نیودیمیوم nesdymium 144.4	Pm برومیٹیوم promethism	Sm ساماریوم samarium 150.4	Eu rosessori europiem 152.0	Gd غادوليټيوم sədəilədəm 157.3	Tb تيربيوم terbum 158.9	Dy despresium 162.5	Ho شولميوم holmism 164.9	Er ايربيوم etvium 167.3	Tm تولیوم عطامه 168.9	Yb ایتربیوم ytterblum 173.1	Lu ئوتىشيوم lutetion 175.0	
			89 Ac اکتینیوم actinium	90 Th موريوم thorium 232.0	91 Pa بروتاخینیوم protectinium 231.0	92 U يورانيوم uraniura 238.0	93 Np نیتونیوم nepturium	94 Pu بلوتونيوم platenian –	95 Am أميرسيوم americium	96 Cm کونوم ourium	97 Bk بيركيليوم berkelium	98 Cf کالیفورنیوم califamium	99 Es اینشتاچیو einsteinium	Fm Fermium	101 Md مائنیایشیو، mendelvium	102 No نوبيليوم nobelium	103 Lr لاورنسيور Iawrencum	

سلسلة جهود الاختزال القياسية

نصف-المعادلة	E°N	دلة
F ₂ (g) + 2e ⁻ ⇌ 2F ⁻ (aq)	+ 2.87	SO ₄ ²⁻ (aq) + 4H*
$S_2O_8^{2^-}(aq) + 2e^- \rightleftharpoons 2SO_4^{2^-}(aq)$	+ 2.01	
$H_2O_2(I) + 2H^*(aq) + 2e^- \rightleftharpoons 2H_2O(I)$	+ 1.77	Cu²*(aq) + e⁻ =
$Pb^{4*}(aq) + 2e^- \rightleftharpoons Pb^{2*}(aq)$	+ 1.69	Sn ⁴⁺ (aq) + 2e ⁻
$MnO_{4}^{-}(aq) + 8H^{*}(aq) + 5e^{-} \rightleftharpoons Mn^{2*}(aq) + 4H_{2}O(I)$	+ 1.52	S ₄ O ₆ ²⁻ (aq) + 2e ³
$PbO_2(s) + 4H^*(aq) + 2e^- \rightleftharpoons Pb^{2*}(aq) + 2H_2O(l)$	+ 1.47	2H*(aq) + 2e⁻ ₹
Cl₂(g) + 2e" ⇌ 2Cl"(aq)	+ 1.36	Fe ³⁺ (aq) + 3e ⁻ =
$Cr_2O_7^{2^-}(aq) + 14H^*(aq) + 6e^- \rightleftharpoons 2Cr^{3^+}(aq) + 7H_2O(l)$	+ 1.33	Pb ²⁺ (aq) + 2e
$O_2(g) + 4H^*(aq) + 4e^- \rightleftharpoons 2H_2O(l)$	+ 1.23	Sn2+ (aq) + 2e-
$Br_2(aq) + 2e^- \rightleftharpoons 2Br^-(aq)$	+ 1.07	Ni ²⁺ (aq) + 2e ⁻ ∓
$VO_{2}^{+}(aq) + 2H^{+}(aq) + e^{-} \rightleftharpoons VO^{2+}(aq) + H_{2}O(I)$	+ 1.00	V ³⁺ (aq) + e ⁻ ←
$VO_3^-(aq) + 4H^+(aq) + e^- \rightleftharpoons VO^{2+}(aq) + 2H_2O(l)$	+ 1.00	Co2*(aq) + 2e-3
CIO ⁻ (aq) + H ₂ O(l) + 2e ⁻ ⇌ Cl ⁻ (aq) + 2OH ⁻ (aq)	+ 0.89	Fe ²⁺ (aq) + 2e ⁻ =
NO_3^- (aq) + 10H*(aq) + 8e ⁻ \rightleftharpoons NH ₄ * (aq) + 3H ₂ O(I)	+ 0.87	Cr3*(aq) + 3e ⁻ -
$NO_3^-(aq) + 2H^*(aq) + e^- \rightleftharpoons NO_2(g) + H_2O(l)$	+ 0.81	Zn ²⁺ (aq) + 2e ⁻
$Ag^{*}(aq) + e^{-} \rightleftharpoons Ag(s)$	+ 0.80	2H ₂ O(I) + 2e ⁻ =
$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$	+ 0.77	Cr2*(aq) + 2e = =
I ₂ (s) + 2e ⁻ ⇌ 2l ⁻ (aq)	+ 0.54	Mn ^{2*} (aq) + 2e
Cu*(aq) + e⁻ ⇌ Cu(s)	+ 0.52	V ²⁺ (aq) + 2e ⁻ =
$O_2(g) + 2H_2O(l) + 4e^- \rightleftharpoons 4OH^-(aq)$	+ 0.40	Mg ^{2*} (aq) + 2e
$Cu^{2*}(aq) + 2e^- \rightleftharpoons Cu(s)$	+ 0.34	Na*(aq) + e⁻ <
$VO^{2*}(aq) + 2H^*(aq) + e^- \rightleftharpoons V^{3*}(aq) + H_2O(I)$	+ 0.34	Ca ² *(aq) + 2e ⁻ 3
		K*(aq) + e⁻ ⇌

نصف-المعادلة	E°N
SO ₄ ²⁻ (aq) + 4H* (aq) + 2e ⁻ ←	+ 0.17
$SO_2(g) + 2H_2O(I)$	
$Cu^{2*}(aq) + e^{-} \rightleftharpoons Cu^{*}(aq)$	+ 0.15
Sn ⁴⁺ (aq) + 2e ⁻ ⇌ Sn ²⁺ (aq)	+ 0.15
$S_4O_6^{2-}(aq) + 2e^- \rightleftharpoons 2S_2O_3^{2-}(aq)$	+ 0.09
$2H^*(aq) + 2e^- \rightleftharpoons H_2(g)$	0.00
$Fe^{3+}(aq) + 3e^- \rightleftharpoons Fe(s)$	- 0.04
$Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s)$	- 0.13
$Sn^{2+}(aq) + 2e^- \rightleftharpoons Sn(s)$	- 0.14
Ni ²⁺ (aq) + 2e ⁻ ⇌ Ni(s)	- 0.25
$V^{3+}(aq) + e^- \rightleftharpoons V^{2+}(aq)$	- 0.26
$Co^{2*}(aq) + 2e^- \rightleftharpoons Co(s)$	- 0.28
Fe ²⁺ (aq) + 2e ⁻ ⇌ Fe(s)	- 0.44
$Cr^{3+}(aq) + 3e^- \rightleftharpoons Cr(s)$	- 0.74
$Zn^{2+}(aq) + 2e^- \rightleftharpoons Zn(s)$	- 0.76
$2H_2O(I) + 2e^- \rightleftharpoons H_2(g) + 2OH^-(aq)$	- 0.83
$Cr^{2*}(aq) + 2e^- \rightleftharpoons Cr(s)$	- 0.91
$Mn^{2*}(aq) + 2e^- \rightleftharpoons Mn(s)$	- 1.18
$V^{2*}(aq) + 2e^- \rightleftharpoons V(s)$	- 1.20
$Mg^{2*}(aq) + 2e^- \rightleftharpoons Mg(s)$	- 2.38
Na*(aq) + e⁻ ⇌ Na(s)	- 2.71
Ca ^{2*} (aq) + 2e ⁻ ⇌ Ca(s)	- 2.87
K*(aq) + e" ⇌ K(s)	- 2.92

مفهوم الحمض والقاعدة وفق نظرية أرهينيوس:

المادة التي تنتج أيونات هيدروجين موجبة $\left(H^{+}
ight)$ أو هيدرونيوم $\left(H_{3}O^{+}
ight)$ عند

أمثلت على أحماض أرهينيوس:

الأيونات الناتجة من تأيّن جزيء واحد من الحمض في الماء	الصيغة الكيميائية	اسم الحمض
H⁺ ، CI⁻	HCI	حمض الهيدروكلوريك
H⁺ · NO₃	HNO ₃	حمض النيتريك
H+ + HSO ₄ + SO ₄ ²⁻	H ₂ SO ₄	حمض الكبريتيك
CH₃COO⁻ ، H⁺	CH₃COOH	حمض الإيثانويك
C.H.COO ⁻ · H+	C.H.COOH	حمض البنندراي

اعد	لموا	Ia	اص	רם	ш	-	
	•	•					

المادة التي تنتج أيونات هيدروكسيد سالبة OH^{-} عند ذوبانها في الماء.

أمثلة على قواعد أرهينيوس:

* القاعدة

الأيونات الناتجة من تأين القاعدة في الماء	الصيغة الكيميائية	اسم القاعدة
Ca²+ ⋅ 2OH-	CaO	أكسيد الكالسيوم
2K⁺ ، 2OH⁻	K ₂ O	أكسيد البوتاسيوم
Na⁺ ، OH⁻	NaOH	هيدروكسيد الصوديوم
Ca²+ ، 2OH⁻	Ca(OH) ₂	هيدروكسيد الكالسيوم

- أ. اكتب معادلة كيميائية توضح ذوبان هيدروكسيد الباريوم ($(Ba(OH)_2)$ في الماء.
- ب. اكتب معادلة كيميائية توضح ذوبان حمض النيتريك السائل (HNO3) في الماء.

اشترط أرهينوس وجود (H+) في الحمض ووجود (OH-) في القاعدة بعد ذوبانهما في الماء. تتأين الحموض في الماء (وفق مفهوم أرهينوس) وفق المعادلة الآتية:

$$HX \xrightarrow{H_2O} H^+ + X^ HCI \xrightarrow{H_2O} H^+ + CI^-$$

تتأين القواعد في الماء وفق المعادة الآتية:

هام: لا يعتبر المركب حمضا أو قاعدة إلااذا كان ذائبا في الـماء ag) وفق مفهوم أرهينيوس.

$$\blacksquare$$
 ایون اٹھیدرونیوم (\bullet (\bullet (\bullet (\bullet (\bullet (\bullet)): وهو أیون ینتج من ارتباط أیون \bullet (بروتون) بجزيء ماء (\bullet (\bullet) برابطة تناسقیة:
$$H^+_{(aq)} + H^+_{(aq)} + H^+_{(aq)} + H^+_{(aq)}$$

القاعدة مركب يحتوي على أكسيد فلزي أو أيونات هيدروكسيد. والقلويات قواعد قابلة للذوبان في الماء.

ملاحظة:

الماء يسلك سلوك الحمض (منح البروتون) عند تفاعله مع القاعدة ، ويسلك سلوك القاعدة (يستقبل البروتون) عند تفاعله مع الحمض .

تـمرين:

لديك المعادلتين التاليتين:

$$HCN + H_2O \rightleftharpoons H_3O^+ + CN^-$$
 (i)

$$S^{2-} + H_2O \rightleftharpoons HS^- + OH^- ()$$

1- حدد الحمض والقاعدة حسب مفهوم برونستد- لوري؟

2- وضح سلوك الماء (كحمض أو قاعدة) في كل منهما؟

أ. اللحمض:......القاعدة :.....

ب الحمض :......القاعدة :.....

٧.المعادلة الأولى:......المعادلة الثانية :......

مفهوم الحمض والقاعدة وفق نظرية برونستد – لوري:

حمض برونستد-لوري Brønsted-Lowry acid مادة تمنح البروتون. قاعدة برونستد-لوري Brønsted-Lowry base مادة تستقبل البروتون.

أمثلة توضيحية :

عند تفاعل الحمض HBr مع الماء، فإن HBr يعتبر حمضًا لأنه يمنح بروتون H^+ للماء بينما يعتبر الماء قاعدة لأنه يستقبل ذلك البروتون.

$$H^{*}$$
 H^{*}
 H^{*}

أما في حالة تفاعل الهيدرازين (NH_2NH_2) مع الماء فإن الماء هو الذي يمنح بروتون، لذلك يعتبر هو الحمض بينما الهيدرازين يستقبل البروتون فيعتبر هو القاعدة:

سؤال

😯 حدد الحمض والقاعدة بناءً على نظرية برونستد-لورى في التفاعلين الآتيين:

 $NH_4^+(aq) + H_2O(I) \rightleftharpoons NH_3(aq) + H_3O^+(aq)$

HCOOH + HCIO₂ ⇒ HCOOH₂ + CIO₂ ...

تمرين : في المعادلات التالية حدد كلا من الحمض والقاعدة حسب نظرية برونستد – لورى :

$$HCN_{(aq)} + H_2O_{(l)} \Longrightarrow H_3O_{(aq)}^+ + CN_{(aq)}^-$$
 (1)

$$F_{(aq)}^{-} + H_2 O_{(l)} \rightleftharpoons HF_{(aq)}^{-} + OH_{(aq)}^{-} \quad (Y)$$

$$C_5H_5N_{(aq)} + H_2O_{(l)} \iff C_5H_5NH_{(aq)}^+ + OH_{(aq)}^-$$
 (*)

$$HNO_{3(aq)} + H_2O_{(l)} \longrightarrow H_3O_{(aq)}^+ + NO_{3(aq)}^-$$
 (£)

ا**لزوج المترافق (حمض–قاعدة) C**onjugate pair؛ زوج من حمض وقاعدة يرتبط أحدهما بالآخر عن طريق انتقال بروتون

القاعدة المرافقة Conjugate base؛ مادة تتكوّن بعد فقد الحمض لبروتون.

الحمض المرافق Conjugate acid؛ مادة تتكوّن بعد إكتساب القاعدة لبروتون.

تمرين:

حدُّد الحمض المرافق والقاعدة المرافقة في التفاعل الأمامي في كل من تفاعلي الاتزان الآتيين:

$$HCIO_2 + HCOOH \rightleftharpoons CIO_2 + HCOOH_2$$
.

$$H_2S(aq) + H_2O(I) \rightleftharpoons HS^-(aq) + H_3O^+(aq)$$

زوج مترافق

في التفاعل الكيميائي الآتي :

$$X_{(aq)}+H_2O_{(l)}$$
 \longleftrightarrow $C_4H_9NH_{3(aq)}^++Y_{(aq)}^+$ أي البدائل الآتية عَثْل (X) و (X)

X	Y	
$C_4H_9NH^-$	H_3O +	أ)
C_4H_9NH -	ОН -	ب)
$C_4H_9NH_2$	H_3O $^+$	(ح
$C_4H_9NH_2$	OH ⁻	(7

ما المادة التي تمثل حمضاً مرافقاً في التفاعل:

$$NH_{4(aq)}^+ + H_2O_{(l)} \Longrightarrow NH_{3(aq)} + H_3O_{(aq)}^+$$

$$H_3O^+$$
 (s) NH_3 (e) H_2O (e)

$$NH_3$$

$$H_2O$$

$$NH_4^+$$
 (†)

أ - ما الحمض المرافق لكل من الصيغ التالية:

$$H_{2}O$$
 , OH^{-} $(NH_{2}CH_{2}CH_{2}NH_{3})^{+}$, NH_{3} , NH_{2}^{-} , $H_{2}PO_{4}^{-}$

ب- ما القاعدة المرافقة لكل من الصيغ التالية:

$$NH_{3}$$
, $H_{2}PO_{4}^{-}$, $\left(NH_{2}CH_{2}CH_{2}NH_{3}\right)^{+}$, HCO_{3}^{-} , HS^{-} , $H_{2}O$, $\left[Cu\left(H_{2}O\right)_{4}\right]^{+2}$

92763166

ويمكن تبسيط ذلك بالمعادلة التالية:

$$H_2O_{(L)}$$
 \Longrightarrow $H^+_{(aq)}+OH^-_{(aq)}$: ثابت الاتزان للماء رمزه K_W ويمكن كتابته كالآتي: $K_W=\Big[H^+\Big]\Big[OH^-\Big]$

.298 K الحاصل الأيوني للماء وتعتمد قيمته على درجة الحرارة ويساوي عند $K_{\rm W} = 10^{-14}~{
m M}$

وفي الماء النقي والمحاليل المتعادلة:

$$[H^+][OH^-] = 10^{-14}$$

 $[H^+] = [OH^-] = 10^{-7}$

pH ثابت تأين الماء K_{w} وحسابات الرقم الهيدروجينر K_{w}

ثابت تأين الماء ٢

السماء النقي موصل ضعيف للتيار الكهربائي لأن يتأين بصورة ضئيلة جداً حيث أن :
 تركيز التفاعلات (السماء) أكبر من تركيز النواتج "H و OH طبقاً للمعادلة :

$$H_2O_{(L)}$$
 + $H_2O_{(L)}$ \Longrightarrow $H_3O_{(aq)}^+$ + $OH_{(aq)}^-$

سؤال: ما المقصود بالتأين الذاتي للماء؟

هي العملية التي يقوم فيها جزيء ماء بمنح بروتون إلى جزيء ماء آخر حيث ينتج عنها أيون موجب (+H3O) وأيون سالب (-OH) كما بالمعادلة التالية:

$$H_2O_{(1)} + H_2O_{(1)} \rightleftharpoons H_3O^+_{(aq)} + OH^-_{(aq)}$$

كالآتي pH كالآتي) من خلال مقياس pH كالآتي

معلومـة : هالـة الاتـزان ثـابـتة بين أيونات "H و أيونات "OH وجرئيات الماء في المحاليل المائيـة سـواء كانت متعادلة أو عمضية أو قاعدية .

. فعند إضافة حمض إلى الماء، يزيد تركيز " H فيسير النظام في الاتجاه العكسي حسب قاعدة لوتشاتيلييه وبالتالي يقل تركيـز أيونـات OH^- لتظل قيمـة K_w ثابتة. أما عنـد إضافة القاعدة إلى الماء فإن تركيز OH^- يزيد فيسير النظام في الاتجاه العكسي وبالتالي يقل تركيز فتظل قيمة K_W ثابتة. يمكن مقارنة تراكيز هذه الأيونات في المحاليل المختلفة $\left[H^{+}
ight]$

: يوضح الجدول الآتي قيم الحاصل الأيوني للماء $(K_{
m W})$ باختلاف درجات الحرارة

${ m K}_{ m W}$ قيمة	$\binom{\circ}{C}$ درجة الحرارة
1.0×10^{-14}	25
2.7×10^{-14}	37
9.6×10^{-14}	60

أ. هل التأين الذاتي للماء ماص أم طارد للحرارة ؟ فسر إجابتك .

$$(37\,^{\circ}C)$$
 ب. احسب تركيز كل من أيونات (H^{+}) وأيونات (OH^{-}) في الماء النقي عند

ج. هل تتغير قيمة pH للماء عند تغير درجة الحرارة $\ref{eq:phi}$ فـسّر إجابتك .

mr.hisham007

حسابات الرقم الهيدروجيني pH

العلاقة عكســـية بين قيمة pH وتركيز أيو نات الهيدرونيوم $\left(H_{3}O^{+}
ight)$ وطرد ية مع تركيز أيو نات * (OH^-) الهيدروكسيد

$$pH \alpha \frac{1}{\left[H_3O^+\right]}$$

$$pH \alpha \left[OH^-\right]$$

العلاقة عكسية بين قيمة pOH وتركيز أيونات الهيدروكسيد $\left(OH^{-}\right)$ وطردية مع تركيز أيونات pOH $:(H_3O^+)$ الهيدرونيوم

$$pOH \alpha \frac{1}{[OH^-]}$$

$$pOH \alpha [H^+]$$

pH العلاقة عكسية بين قيمة st $pH \alpha \frac{1}{pOH}$: pOH وقيمة

مثال

احسب تركيز أيونات الهيدروجين في محلول قيمة pH له تساوي 10.50.

مثال

۱. احسب قيمة pH لمحلول تركيز أيونات $^+$ H فيه يساوي pH لمحلول تركيز أيونات $^+$

تـمرين ٢ : رتب المحاليل التالية حسب قوتها الحمضية :

(4)
$$(3)$$
 (3) (4) (4) (5) (5) (5) (5) (5) (5) (5) (7) (7) (7) (7) (8) (8) (8) (1)

تمرين ١ : اكمل الجدول التالي :

اكمل الفراغات في الجدول التالي:

pOH قيمة	pH قيمة	[OH -]	$\left[H_3O^+\right]$
			6.7×10^{-8}
		2.5×10^{-14}	
	4.5		
11.2			

أحماض قويت ثنائية البروتون:

أحماض قويت أحادية البروتون:

الحمض القوي هو الكتروليت قوي يتأين كلياً عند ذوبانه في الماء

- في حالة الحمض أحادي البروتون : $HA + H_2O \longrightarrow H_3O^+ + A^-$

$$HA \longrightarrow H^+ + A^- : b$$

$$\left[H_3O^+\right] = \left[H^+\right] = \left[HA\right]$$
 : With the second constant H^+

امثلة: HClO4 , HNO3 , HI , HBr , HCl

مثال

احسـب قيمة كل من :
$$\left[H_3O^+\right]$$
 , $\left[NO_3^-\right]$, $\left[H_3O^+\right]$, من حمض النيتريك $\left(HNO_3\right)$ ؟

92763166

تـمرين:

اذيب $(3.43\ g)$ من حمض الكبريتيك (H_2SO_4) في الماء بحيث أصبح حجم المحلول pOH , pH , $\left\lceil OH^{-} \right\rceil$, $\left\lceil SO_4^{\ 2-} \right\rceil$, $\left\lceil H_3O^{\ +} \right\rceil$ احسبقیمهٔ کلمن (200 mL) في هذا المحلول ؟

القواعد ثنائية الهيدروكسيل:

القواعد أحادية الهيدروكسيل:

القاعدة القوية هي الكتروليت قوي تتأين كلياً عند ذوبانها في الماء

في حالة القاعدة أحادية الهيدروكسيل:

$$BOH \longrightarrow B^+ + OH^-$$

$$[OH^-] = [BOH]$$
 : نذلك

أمثلة:

CsOH, RbOH, KOH, NaOH, LiOH

- في حالة القاعدة ثنائية الهيدروكسيل : $B(OH)_2 \longrightarrow B^{2+} + 2OH^{-}$

لذلك :

$$\left[OH^{-}\right] = 2 \times \left[B\left(OH\right)_{2}\right]$$

 $Ca(OH)_2$, $Sr(OH)_2$, $Ba(OH)_2$: أمثلة

مثال

احسب قيمة pH لمحلول من هيدروكسيد الصوديوم تركيزه 0.0500 mol/L.

.(298 K عند درجة الحرارة $K_{\rm w} = 1.00 \times 10^{-14} \, {\rm mol^2/L^2}$

تمرين

اذيب (2.6~g) من هيدروكسيد الباريوم $Ba(OH)_2$ في الماء وأصبح حجم المحلول $Ba(OH)_2$ من هيدروكسيد الباريوم $Ba(OH)_2$ نساوي $Ba(OH)_2$ ، احسب قيمة $Ba(OH)_2$ لهذا المحلول. علماً بأن الكتلة المولية لـ $(pH)_2$ تساوي . $(1.00 \times 10^{-14}~mol^2/L^2)$ تساوي (298~K) عند درجة حرارة (298~K) تساوي (171.33~g/mol)

ملاااااحظااااااتمهمت:

الأسئلة الموضوعية:

- * الأحماض القوية والقواعد القوية تتأين كلياً (بنسبة % 100) في الماء ، ويُشار إلى تأينها باستخدام سهم في إتجاه واحد (----) ، أي في إتجاه المواد الناتجة .
 - * محاليل الأحماض والقواعد القوية تحتوى فقط على الأيونات الموجبة والسالبة ولا يوجد بها جزيئات غير متأينة ، لذلك فهي جيدة التوصيل للكهرباء .

- فإن تركيز $\left(HNO_{3} \;,\; HClO_{4} \;,\; HI \;,\; HBr \;,\; HCl \right)$ فإن تركيز * أيونات الهيدرونيوم $\left(H_{3}O^{+}
 ight)$ الناتجة من التأين يساوي تركيز الحمض قبل التأين .
- في الأحــماض القوية ثنائية البروتون مثل $({H_2SO_4})$ فإن تركيز أيونات الهيد \sim ونيوم $({H_3O^+})$ الناتجة من * التأين يساوى ضعف تركيز الحمض قبل التأين.
- فإن $(CsOH\ ,RbOH\ ,KOH\ ,NaOH\ ,LiOH\)$ فإن * . تركيز أيونات الهيدوكسيل $\left(OH^{-}
 ight)$ الناتجة من التأين يساوي تركيز القاعدة قبل التأين
- فإن تركيز $\left(Ca\left(OH\right)_{2}\;,\;Sr\left(OH\right)_{2}\;,\;Ba\left(OH\right)_{2}
 ight)$ فإن تركيز * في القواعد القوية ثنائية الهيدروكســيل مثل أيونات الهيدوكسيل $\left(OH^{-}
 ight)$ الناتجة من التأين يساوي ضعف تركيز القاعدة قبل التأين .

ف الشكل المقابل ، تركيز محلول (KOH) بوحدة (mol/L) يساوى :

$$1.58 \times 10^{-1}$$
 (ج

 1.58×10^{-14} (1)

درجة القلوية

(1)