Costruzione omotopica della coomologia Enunciato

Teorema

Siano X un CW-complesso, G un gruppo abeliano, $n \geq 0$ un intero. Allora esiste una biiezione

$$T: \langle X, K(G, n) \rangle \longrightarrow \widetilde{H}^n(X; G)$$

naturale in X.

- ▶ Esiste una struttura canonica di gruppo abeliano su $\langle X, K(G, n) \rangle$ che rende T un isomorfismo di gruppi.
- T è della forma

$$T([f]) = f^*(\alpha)$$

dove α è la "classe fondamentale" di $H^n(K(G, n); G)$.

Categoria **CW**.

Lavoreremo prevalentemente nella categoria CW.

- ▶ Gli oggetti sono i CW-complessi puntati (X, x_0) .
- ▶ I morfismi sono

$$\mathsf{Hom}((X,x_0),(Y,y_0))=\langle X,Y\rangle\,,$$

funzioni continue $f:(X,x_0)\to (Y,y_0)$ a meno di omotopia che fissa il punto base.

► La composizione

$$\circ: \langle Y, Z \rangle \times \langle X, Y \rangle \longrightarrow \langle X, Z \rangle$$

è ben definita.

Esempio

Abbiamo l'uguaglianza (per ora solo insiemistica)

$$\pi_n(X) = \langle S^n, X \rangle$$
.

Definizione

Una funzione $f\colon X\to Y$ si dice *equivalenza omotopica debole* se per ogni $n\ge 0$ la mappa indotta

$$f_*: \pi_n(X) \longrightarrow \pi_n(Y)$$

è un isomorfismo.

Proposizione

Siano X un CW-complesso, $f\colon Y\to Z$ un'equivalenza omotopica debole di spazi topologici. Allora

$$f \circ -: \langle X, Y \rangle \longrightarrow \langle X, Z \rangle$$

è una bijezione.

Teorema (Approssimazione CW)

Per ogni spazio topologico X esistono un CW-complesso Z e un'equivalenza omotopica debole $f\colon Z\to X$.

Categoria **CW**_•

ightharpoonup La sospensione SX di uno spazio topologico X è

$$SX = X \times [0,1]/\sim$$
, $X \times \{0\}$ e $X \times \{1\}$ collassati a due punti.

Per un CW-complesso puntato (X, x_0) , è conveniente considerare la sospensione ridotta

$$\Sigma X = SX/\{x_0\} \times [0,1],$$
 con punto base $[x_0]$.

▶ Ogni $f \in \langle X, Y \rangle$ induce $\Sigma f \in \langle \Sigma X, \Sigma Y \rangle$; la sospensione ridotta è dunque un funtore

$$\Sigma \colon \text{CW}_{\bullet} \longrightarrow \text{CW}_{\bullet}.$$

Categoria CW_{\bullet} Funtore Ω

content...