	0 . 0
Roll No.	248

Pandit Deendayal Petroleum University

End Semester Examination B. Tech. (CSE) Semester - IV

Course Name: Theory of Computation

Course Code: 20CP206T

Date: 09/05/2022 Time: 10 AM - 12 PM Max. Marks: 40

Instructions:

1. Do not write anything other than your roll number on question paper.

2. Assume suitable data wherever essential and mention it clearly.

Writing appropriate units, nomenclature, and drawing neat sketches/schematics wherever required is an integral part of

Part-A ANSWER ALL THE QUESTIONS

Question No.	Description	Marks	Course Outcome (CO)
Que-1	Construct Finite Automata for following Regular Expression (a) 0*1(1+00*1)*	10	CO2
	(b) (0+1)*1		
	(c) 0*1*1 + 11*)*1		
	, (d) ((0+1)(0+1))*		
Que-2	a. Show the context-free languages are closed under union, concatenation and kleene closure but not closed under intersection and complementation.	5	CO3
	b. Let G be the grammarS->aB/bA,A->a/aS/bAA,		
	B->b/bS/aBB. Obtain all the possible parse tree for the string 'aaabbabbba'.	5	CO4
Que-3	Simplify the following grammar S→ aAa bBb BB	5+5	CO5
	A → C B → S A C → S ϵ Remove ϵ , unit production and further remove useless production.	· ·	

Part-B

ANSWER ANY ONE QUESTION (10 Marks)

Que-4	a.	Design a Turing machine for the language	5	CO6
		$L=\{1^{n}0^{n}1^{n} n>=1\}$		
	b.	Give 3 examples for NP-complete problems and explain.	5	CO3
		OR		
0 1		In what circumstances, we can say P=NP and P≠NP. Please explain?	2.5	CO5
Que-4	a. b.	Show that languages are uncountable sets and Turing machines	2.5	CO5
	c.	(TMs) are countable. Design an LBA for the language L={WW/W€{a,b}*}	5	CO6