Appunti di Analisi II

Jacopo Tissino

6 giugno 2017

Serie

Definite in \mathbb{C} . Se omettiamo gli estremi della somma, s'intende da un qualche naturale, generalmente 1, a $+\infty$.

1.1 Definizioni

Se la successione delle somme parziali ha limite finito o infinito, allora scriviamo:

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \sum_{k=1}^{\infty} a_k \tag{1.1.1}$$

Data una serie $\sum_{n=1}^{\infty} a_n$, (a_n) è la sua successione dei termini generali. Teorema 1.1.1. Se la serie $\sum_{n=1}^{\infty} a_n$ converge, allora $\lim_{n\to\infty} a_n = 0$

1.2 Serie notevoli

Geometrica Se $z \in \mathbb{C}, |z| < 1$, allora

$$\sum_{n=1}^{\infty} z^n = \frac{1}{1-z} \tag{1.2.1}$$

Telescopica Data $(a_n)_{n\in\mathbb{N}}$ convergente a ℓ , se $(b_n)_{n\in\mathbb{N}}$ è tale che $b_n=a_{n+1}-a_n$, allora

$$\sum_{n=0}^{\infty} b_n = \ell - a_0 \tag{1.2.2}$$

Armonica generalizzata Per $p \leq 1$, la serie

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \tag{1.2.3}$$

diverge, converge invece per p > 1.

1.3 Criteri

Confronto Date le serie $\sum a_n$ e $\sum b_n$, entrambe a termini positivi, se $a_n \leq b_n$ definitivamente

- 1. se $\sum a_n$ diverge allora $\sum b_n$ diverge;
- 2. se $\sum b_n$ converge allora $\sum a_n$ converge;

Confronto asintotico Date le serie $\sum a_n$ e $\sum b_n$, entrambe a termini positivi, se

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \ell \in \bar{\mathbb{R}}^+ \tag{1.3.1}$$

allora

- 1. se $\ell \in (0, +\infty)$, le serie hanno lo stesso carattere;
- 2. se $\ell = 0$, a_n diverge $\implies b_n$ diverge e b_n converge $\implies a_n$ converge;
- 3. se $\ell = +\infty$, b_n diverge $\implies a_n$ diverge e a_n converge $\implies b_n$ converge.

Rapporto Data $\sum a_n$ a termini positivi, se $\exists h \in (0,1)$ tale che

$$\frac{a_{n+1}}{a_n} \le h \tag{1.3.2}$$

definitivamente, allora $\sum a_n$ converge. Se $\exists h>1$ tale che per infiniti valori di n

$$\frac{a_{n+1}}{a_n} > h \tag{1.3.3}$$

allora $\sum a_n$ diverge.

Rapporto asintotico Data $\sum a_n$ a termini positivi, e $\ell = \limsup_{n \to \infty} a_{n+1}/a_n$. Allora $\ell \in [0, +\infty]$. Se $\ell < 1$, $\sum a_n$ converge. Se $\ell > 1$, $\sum a_n$ diverge.

Radice (n-esima) Data $\sum a_n$ a termini positivi, se $\exists h \in (0,1)$ tale che

$$\sqrt[n]{a_n} \le h \tag{1.3.4}$$

definitivamente, allora $\sum a_n$ converge. Se $\exists h>1$ tale che per infiniti valori di n

$$\sqrt[n]{a_n} > h \tag{1.3.5}$$

allora $\sum a_n$ diverge.

Radice asintotica Data $\sum a_n$ a termini positivi, e $\ell = \limsup_{n \to \infty} \sqrt[n]{a_n}$. Allora $\ell \in [0, +\infty]$. Se $\ell < 1$, $\sum a_n$ converge. Se $\ell > 1$, $\sum a_n$ diverge.

Teorema 1.3.1. (Indimostrato) Data una successione $(a_n)_{n\in\mathbb{N}}$ a termini positivi:

$$\liminf_{n \to \infty} \frac{a_{n+1}}{a_n} \le \liminf_{n \to \infty} \sqrt[n]{a_n} \le \limsup_{n \to \infty} \sqrt[n]{a_n} \le \limsup_{n \to \infty} \frac{a_{n+1}}{a_n}$$
 (1.3.6)

Condensazione di Cauchy Data $\sum a_n$ a termini positivi, con termine generale decrescente, le serie $\sum a_n$ e $\sum 2^n a_{2^n}$ hanno lo stesso carattere.

Leibniz Data la successione a_n a termini positivi infinitesima con $a_{n+1} \leq a_n$, la serie

$$\sum b_n = \sum (-1)^n a_n \tag{1.3.7}$$

converge, e

$$\left| \sum_{n=k}^{\infty} b_n \right| \le a_{k+1} \tag{1.3.8}$$

Convergenza assoluta Una serie $\sum z_n$ si dice assolutamente convergente se converge la serie $\sum |z_n|$. Se una serie è assolutamente convergente, allora è convergente, e vale $|\sum z_n| \leq \sum |z_n|$.

1.4 Riordinamenti

Data $\sum a_n$ a termini reali, e una biiezione $\sigma: \mathbb{N} \to \mathbb{N}$, definifiamo *riordinamento* la serie $\sum a_{\sigma(n)}$.

- Se $\sum a_n$ è assolutamente convergente, $\sum a_n = \sum a_{\sigma(n)}$;
- se $\sum a_n$ è convergente ma assolutamente divergente, $\forall L \in \mathbb{R} : \exists \sigma : \mathbb{N} \to \mathbb{N} : \sum a_{\sigma(n)} = L$.

Integrali generalizzati

Una funzione $f:[a,b)\to\mathbb{R}$, \mathbb{R} -integrabile in [a,c] $\forall c\in[a,b)$, è integrabile in senso generalizzato se:

$$\lim_{c \to b^{-}} \int_{a}^{c} f(x) \, \mathrm{d}x \in \mathbb{R}$$
 (2.0.1)

f è integrabile in senso generalizzato in (a, b) se lo è in (a, k] e in [k, b) per ogni $k \in (a, b)$.

2.1 Criteri di convergenza

Esistenza del limite Se $f:[a,b)\to\mathbb{R},\,b\in\bar{\mathbb{R}},\,f\geq0,$

$$\exists \lim_{c \to b^{-}} \int_{a}^{c} f(x) \, \mathrm{d}x \tag{2.1.1}$$

Confronto Se f e g sono \mathbb{R} -integrabili in $(a, c] \cup [c, b) \ \forall c \in (a, b)$, allora se $0 \le f \le g$, se g è integrabile in senso generalizzato lo è anche f, e se f non lo è non lo è neanche g.

Confronto asintotico Date $f, g : [a, b) \to \mathbb{R}, b \in \overline{\mathbb{R}}, \mathbb{R}$ -integrabili in $(a, c] \cup [c, b)$ $\forall c \in (a, b), \text{ allora se } \exists \lim_{x \to b^-} f/g = \ell \in [0, +\infty]$:

- 1. se $\ell \in (0, +\infty)$ i due integrali hanno lo stesso carattere;
- 2. se $\ell = 0$, g converge \implies f converge, f diverge \implies g diverge;
- 3. se $\ell = +\infty$, f converge \implies g converge, g diverge \implies f diverge;

Convergenza assoluta Data $f:[a,+\infty)\to\mathbb{R}$, se |f| è integrabile in senso generalizzato allora lo è anche f, e

$$\left| \int_{a}^{+\infty} f(x) \, \mathrm{d}x \right| \le \int_{a}^{+\infty} \left| f(x) \right| \, \mathrm{d}x \tag{2.1.2}$$

Serie e integrali – Se $f:[0,+\infty)\to\mathbb{R}$ positiva e decrescente, allora

$$\int_0^{+\infty} f(x) dx = \sum_{n=0}^{\infty} f(n) \text{ hanno lo stesso carattere.}$$
 (2.1.3)

2.2 Integrali notevoli

Se $P(x)=x^2-2px+q$ ha una o due radici reali, $\int_{\mathbb{R}}(P(x))^{-1}\,\mathrm{d}x$ diverge. Altrimenti, ovvero se $q-p^2>0$,

$$\int_{\mathbb{R}} \frac{1}{x^2 - 2px + q} \, \mathrm{d}x = \frac{\pi}{\sqrt{q - p^2}}$$
 (2.2.1)

Capitolo 3
Spazi metrici

Capitolo 4
Serie di funzioni

Calcolo differenziale multivariato

Curve e 1-forme differenziali in \mathbb{R}^n

Invertibilità locale e funzione implicita

Indice

1	Seri	e
	1.1	Definizioni
	1.2	Serie notevoli
		Geometrica
		Telescopica
		Armonica generalizzata
	1.3	Criteri
		Confronto
		Confronto asintotico
		Rapporto
		Rapporto asintotico
		Radice $(n\text{-esima})$
		Radice asintotica
		Condensazione di Cauchy
		Leibniz
		Convergenza assoluta
	1.4	Riordinamenti
2	$Int\epsilon$	grali generalizzati 4
	2.1	Criteri di convergenza
		Esistenza del limite
		Confronto
		Confronto asintotico
		Convergenza assoluta
		Serie e integrali
	2.2	Integrali notevoli
3	Spa	zi metrici 6
4	Seri	e di funzioni 7
5	Cal	olo differenziale multivariato
6	Cur	ve e 1-forme differenziali in \mathbb{R}^n
7	Inve	rtibilità locale e funzione implicita 10