de Huelva

Departamento de Tecnologías de la Información

Área de Ciencias de la Computación e Inteligencia Artificial

Modelos Avanzados de Computación Examen de septiembre

EJERCICIO 1 (1.5 puntos)

- (a) Enuncie y demuestre el Lema de Bombeo para Autómatas Finitos.
- (b) Enuncie y demuestre el Lema de Bombeo para Autómatas de Pila.

EJERCICIO 2 (1.5 puntos)

Considere la siguiente gramática libre de contexto, expresada en Forma Normal de Chomsky.

\rightarrow id	$M \rightarrow$ Iparen
$r \to O L$	$N \rightarrow rparen$
\rightarrow P F	$O \rightarrow plus$
\rightarrow E N	$P \rightarrow prod$
\rightarrow P F	
$f \to E N$	
	\rightarrow O T \rightarrow P F \rightarrow E N \rightarrow P F

Verifique que la cadena "id prod lparen id plus id rparen" pertenece al lenguaje definido por la gramática por medio del algoritmo de Cocke-Younger-Kasami.

EJERCICIO 3 (2 puntos)

Diseñar una Máquina de Turing que haga una copia de una cadena de símbolos {A,B,C}. Por ejemplo, para la entrada "#AABCAbbb..." devuelve en la cinta "#AABCAABCAbb...".

NOTA: Tenga en cuenta que no existe ningún espacio entre la cadena inicial y la copia.

EJERCICIO 4 (1.5 puntos)

Sea EQ_{TM} el lenguaje formado por las cadenas $\langle M_1, M_2 \rangle$ tales que M_1 y M_2 son codificaciones de Máquinas de Turing que reconocen el mismo lenguaje. Es decir, $L(M_1) = L(M_2)$.

Demuestre que el lenguaje EQ_{TM} es indecidible.

NOTA: Considere demostrado que los lenguajes A_{TM} (problema de la aceptación), $HALT_{TM}$ (problema de la parada) y E_{TM} (problema del lenguaje vacío) son indecidibles.

EJERCICIO 5 (2 puntos)

Considere el modelo de computación de las funciones recursivas. Asuma que las siguientes funciones ya han demostrado ser recursivas primitivas: Suma(x,y), Producto(x,y), Potencia(x,y), Decremento(x), RestaAcotada(x,y), Signo(x), SignoNegado(x), Min(x,y), Max(x,y), And(x,y), Or(x,y), Not(x), Igual(x,y), Mayor(x,y), Menor(x,y), MayorOIgual(x,y), MenorOIgual(x,y), If(x,y,z).

Demuestre que la función Division(x,y), que calcula la división entera (x / y) es una función primitiva recursiva.

EJERCICIO 6 (1.5 puntos)

Defina los siguientes conceptos:

- (a) ¿Qué es un problema de clase P?
- (b) ¿Qué es un problema de clase NP?
- (c) ¿Qué es un problema NP-completo?