Licence ISIL - 2020/2021

TD2 Cryptographie symétrique

Exercice 1

Exécuter le schéma de Feistel à deux étapes pour le chiffrement des blocs suivants : 1101, 1001, 1110, 0001, 0010

Utilisez les fonctions f1 pour le première étape et f2 pour la deuxième étape.

Exercice 2

Modes opératoires des chiffrements par blocs.

Soit le message clair m= 101100010100101. On considère le chiffrement par blocs (de longueur 4) définit par la permutation (qui fait alors a la fois office de clé et de fonction de chiffrement).

$$b_1b_2b_3b_4$$
 $b_2b_3b_4b_1$

- chiffrer m avec le mode ECB.
- 2) chiffrer m avec le mode CBC (on prendra 1010 comme vecteur d'initialisation).
- chiffrer m avec le mode CFB (on prendra des blocs de longueur r=4 et IV=1010).
- 4) chiffrer m avec le mode OFB (on prendra des blocs de longueur r=4 et IV=1010).

Exercice 3

Soit le crypto système suivant :

Sachant que les boites S1 et S2 sont données par

X	(0,0)	(1,0)	(0,1)	(1,1)
S ₁ (X)	(1,1)	(1,0)	(0,0)	(0,1)
S ₁ (X)	(1,0)	(0,1)	(1,1)	(0,0)

Que les clés de ronde se déduisent de la clé de chiffrement K= (k1, k2, k3, k4) par

K1=
$$(k1 \oplus k2,k2,k3 \oplus k4,k3),K2=(k1 \oplus k2 \oplus k3,k2 \oplus k3,k3 \oplus k4,k4)$$

Et que la permutation P est définit par

Chiffrer le message M=(0,1,1,0) avec K=(1,1,1,1) et déchiffrer le message C=(0,1,0,1) chiffré avec la même clé.