Today

Classification case

Regression & classification

Regression:

- numerical response variable
- predict a numerical value given x
- e.g. number of species given latitude

Classification:

- categorical response variable
- predict the category given x
- e.g. is it a bird, deer, tree, or mountain lion?
- e.g. is it dead or alive?; present or absent?

 X_1

KNN k = 3 KNN decision boundary

$$\widehat{\Pr}(Y = j | X) = 0.5$$

 X_1 ISLR 2.15

Classification

As before: out-of-sample accuracy

One common, simple measure is the error rate. If we have a *test* dataset of $i = 1 \dots n$ observations, the out-of-sample error rate is:

$$\frac{1}{n}\sum_{i}^{n}I(y_{i}\neq\hat{y}_{i})=\mathrm{mean}\big(I(y_{i}\neq\hat{y}_{i})\big)\qquad =\mathrm{proportion\ incorrect}$$

 \hat{y}_i is the predicted category for test case i. I() is an indicator function that equals 1 if the prediction is *incorrect* (i.e. if $y_i \neq \hat{y}_i$) and 0 if the prediction is correct.

