4.2.3. Метод секущих

Альтернативным подходом является полное устранение необходимости вычисления производной в классическом методе Ньютона, для этого производная заменяется (аппроксимируется) конечно-разностным выражением. Для приближенного вычисления производной $f'(x_k)$ в окрестности точки x_k применяется следующее выражение

$$f'(x_k) = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$
.

Таблица 12 – Уточнение решения нелинейного уравнения модифицированным методом Ньютона

<i>k</i>	X_k	$f(x_k)$	$f(x_k)$
0	1,5	1,425	5,95
1	1,26050	0,23290	5,95
2	1,22136	0,07931	5,95
3	1,20803	0,02945	5,95
4	1,20308	0,01125	5,95
5	1,20119	0,00434	5,95
6	1,20046	0,00168	5,95
7	1,20018	0,00065	5,95

Подставляя представленное выражение в формулу Ньютона, получаем

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}.$$

Полученное выражение определяет итерационный процесс метода секущих.

Название метода связано с его геометрической интерпретацией.

Секущая, проведенная через точки $(x_0, f(x_0))$ и $(x_1, f(x_1))$, пересекает ось абсцисс в точке x_2 , значение которой определяется как

$$x_2 = x_1 - \frac{f(x_1)(x_1 - x_0)}{f(x_1) - f(x_0)}.$$

Для начала итерационного процесса в методе секущих необходимо задать два начальных приближения: нулевое x_0 и первое x_1 (см. рис. 31).

Рис. 31 – Первое приближение по методу секущих

На практике, как правило, поступают следующим образом: нулевое приближение выбирают аналогично выбору начального приближения в методе Ньютона, а в качестве первого приближения выбирают величину $x_1 = x_0 \pm \varepsilon$, где ε – заданная погрешность. Эти значения используются для нахождения последующего (второго) приближения x_2 . Затем, значения x_1 и x_2 используют для определения третьего приближения x_3 (см. рис. 32) и т.д.

Альтернативно, в качестве нулевого и первого приближений могут быть выбраны границы отрезка локализации корня, если они известны. В этом случае первая итерация метода секущий даст результат, аналогичный методу хорд.

Для завершения итерационного процесса используется стандартное условие.

Метод секущих несколько уступает методу Ньютона в скорости сходимости, однако он не требует вычисления производной $f'(x_k)$ и поэтому оказывается особенно полезным в тех случаях, когда получение аналитического выражения для производной $f'(x_k)$ затруднено или невозможно.

Рис. 32 – Второе приближение по методу секущих

По алгоритму метод секущих близок к методу хорд, однако в отличие от последнего начальные приближения в методе секущих могут располагаться как с разных сторон от корня, так и с одной стороны; кроме того, при уточнении корня не проверяются знаки функции f(x).

Пример. Уточнить решение нелинейного уравнения

$$x^3 - \frac{x^2 + x}{5} = 1,2$$

используя метода секущих на интервале [1; 1,5] с точностью $\varepsilon = \delta = 10^{-3}$.

<u>Решение.</u> Для запуска итерационного процесса по методу секущих необходимо задать две начальных точки. В качестве первой x_0 выбирается правая граница интервала, точка b = 1,5, а вторая x_1 , вычисляется с помощью выражения

$$x_1 = x_0 - \varepsilon = 1.5 - 0.001 = 1.499.$$

В каждой начальной точке проводится вычисление значений функции

$$f(1,5) = 1,5^3 - \frac{1,5^2 + 1,5}{5} - 1,2 = 1,425,$$

 $f(1,499) = 1,499^3 - \frac{1,499^2 + 1,499}{5} - 1,2 = 1,41905.$

Определенные значения используются для вычисления координаты новой точки x_2 , определяющей место пересечения секущей с осью абсцисс

$$x_2 = 1,499 - \frac{1,41905 \cdot (1,499 - 1,5)}{1,41905 - 1,425} = 1,26033.$$

Вычисленное значение x_2 сравнивается с x_1 и проверяется на достижение заданной точности

$$|x_2 - x_1| \le \varepsilon$$
 или $|1,26033 - 1,499| = 0,23867 < 0,001$.

Требуемая точность после первой итерации не достигнута, следовательно, процедура уточнения корня должна быть продолжена.

На второй итерации проводится вычисление, только значения функции в точке x_2

$$f(1,26033) = 1,26033^3 - \frac{1,26033^2 + 1,26033}{5} - 1,2 = 0,2322$$

Определенное значение функции в точке x_2 подставляются в выражение для определения координаты следующей точки x_3 пересечения хорды с осью абсцисс

$$x_3 = 1,26033 - \frac{0,2322 \cdot (1,26033 - 1,499)}{0,2322 - 1,41905} = 1,21364$$
.

Вновь найденная координата x_3 сравнивается с координатой, вычисленной на предыдущем шаге x_2 , для оценки точности вычислений

$$|1,21364-1,26033| = 0,04669 < 0,001$$
.

Видно, что погрешность уменьшилась почти в пять раз, но требуемой точности достигнуть не получилось, значит, итерационный процесс следует продолжить.

Последующие итерации метода секущих представлены в табл. 13.

Таблица 13 — Уточнение решения нелинейного уравнения методом секущих

<i>k</i>	x_{k-1}	$f(x_{k-1})$	x_k	$f(x_k)$
0	1,5	1,425	1,499	1,41905
1	1,499	1,41905	1,26033	0,2322
2	1,26033	0,2322	1,21364	0,05027
3	1,21364	0,05027	1,20073	0,00267
4	1,20073	0,00267	1,20001	0,00003

Анализируя данные в табл. 13 видно, что после четвертой итерации получено решение, удовлетворяющее заданной точности $|1,20001-1,20073|=0,00072<0,001\;.$

Кроме того, найденное значение функции во вновь вычисленной точке, также меньше заданной точности.

<u>Ответ.</u> Найдено численное решение методом секущих заданного нелинейного уравнения с точностью $\varepsilon = \delta = 10^{-3}$ после четвертой итерации и равно x = 1,20001.