WO 03/087065

Figure 1

HO OH 2b, AICAR

4, DDATHF

5, X = CH₂, NH, S

Figure 2

WO 03/087065

PCT/US03/10944

Figure 4

Figure 7

40021 400

GAR Tfase,	AICAR Tfase, a	and DHFR inhibition	ι (<i>K</i> _i , μΜ) ^a
compound	K _i GAR Tfase	K _i AICAR Tfase	K _i DHFR
9	17	>100	>100
10	48	>100	>100
11	>100	>100	>100
12	5	1	>100
3	6	1	>100
14	24	>100	>100
15	6	28	>100
17	16	>100	>100
21	2.7	0.26	25
22	1.9	0.20	62
25	16	16	>200
26	23	7.1	>200
Lometrexol	0.1	nd ^b	nd ^b

^a E. coli GAR Tfase, human AICAR Tfase, and E. coli DHFR

Figure 8

^bnd, not done

In Vitro Cytotoxic Activity

III VIIIO Oyu	JUXIC ACTIVITY			
		CCRF-CE	И (IC _{50,} μM)	
compound	(+) T, (+) H ^a	(-) T, (+) H	(+) T, (–) H	(-) T, (-) H
9	225	>250	80	90
10	>250	>250	>250	>250
11	50	50	50	40
12	50	50	40	50
3	150	170	0.06	0.07
14	80	80	0.20	0.10
15	>200	>200	0.04	0.03
17	>200	160	0.04	0.03
21	>100	>100	>100	>100
22	>100	>100	>100	>100
25	80	60	9	7
26	>100	>100	7	6
Lometrexol	>250	>250	0.20	0.15

^aT = Thymidine, H = Hypoxanthine

Figure 9

C170503/10744

AICAR
ਰ
Presence
the
the
.⊆
Activity
ũ
otoxi
\leq
O
Vitro
드

		CCRF-CEM (IC50, µM)	, µM)	
punodwoo	compound (-) T, (-) H, (-) A ^a (+) T, (-) H, (-) A (-) T, (+) H, (-) A (-) T, (-) H, (+) A	(+) T, (-) H, (-) A	(-) T, (+) H, (-) A	(-) T, (-) H, (+) A
9	0.07	90.0	>150	>150
4	0.10	0.20	>200	>200
15	0.03	0.04	>200	>200
17	0.03	0.04	>200	>200
Lometrexol	0.15	0.20	>200	>200

^aT = Thymidine, H = Hypoxanthine, A = AICAR monophosphate

In Vitro Cyto	toxic Activity			
	C	CRF-CEM/M	ΓΧ (IC _{50,} μM)	
compound	(+) T, (+) H ^a	(-) T, (+) H	(+) T, (-) H	(-) T, (-) H
3	130	>200	140	>200
14	>100	nd	nd	>100
15	>200	>200	>200	>200
17	>100	nd	nd	>100
Lometrexol	>200	>200	>200	>200
	С	CRF-CEM/FF	PGS¯(IC _{50,} μI	M)
compound	(+) T, (+) H ^a	(-) T, (+) H	(+) T, (-) H	(-) T, (-) H
3	>100	nd	nd	>100
14	>100	nd	nd	>100
15	>100	nd	nd	>100
17	25	nd	nd	55
Lometrexol	>100	nd	nd	>100

^aT = Thymidine, H = Hypoxanthine

Figure 11

$$R$$
 H_2N
 NH_2
 NH_2
 O
 H
 CO_2H
 CO_2H

E. coli and rhGAR Tfase inhibition (K_i , μ M).

		<u> </u>	
compound	K _i E. coli GAR Tfase	K _i rhGAR Tfase	
3 R = CHO	6	0.014	
14 R = O=	24	13	
15 R = CH=NNI	Me ₂ 6	0.17	
17 R = CH ₂ OH	16	1.7	
21 (γGlu ₅ -3)	2.7	0.013	
22 (γGlu ₅ -15)	1.9	0.032	
25 (αGlu ₅ - 3)	16	0.034	
26 (αGlu ₅ - 15)	23	0.12	
Lometrexol	0.1	nd	

Figure 12

Figure 13

WO 03/087065

PCT/US03/10944

Data Reduction

Additionally allowed

spacegroup	P3 ₁ 21
unit cell	a = b = 126.24 Å, c = 94.42 Å
no. of molecules per a.u.	2
resolution (Å)	45-1.98 (2.01-1.98) ¹
completeness (%)	99.7 (100)
multiplicity	3.9 (3.8)
average I/σ	24.9 (2.0)
² R _{sym} (%)	7.4 (60.1)
Refinement	
data cutoff	$F_o > 0\sigma$
reflections (test set)	57912 (2913)
protein atoms	3016
water molecules	251
inhibitor atoms	76
average protein B value (Å ²)	33.1
average inhibitor B value (Å ²)	32.5
average solvent B value (Ų)	36.8
RMSD from ideal	
bond length (Å)	0.014
bond angle (deg)	1.37
³ R _{cryst} (%)	22.7
⁴ R _{cryst} (%)	24.7
Ramachandran plot (%)	
most favored	92.6

Figure 14

7.4

Figure 15

GAR and AICAR Tfase Inhibition (K_i , μM)

Compound	E.coli GAR Tfase	rhGAR Tfase	rhAICAR Tfase
10-CF ₃ CO-DDACTHF (101)	1.9	0.015	>100
10-CF ₃ HCOH-DDACTHF (102)	20	0.900	>100
10-formyl-DDACTHF (3)	9	0.14	1
DDACTHF	2	1.7	not determined
Lometrexol	0.1	not determined	not determined

.=	
>	
ے.	
7	
C	
Activity	
₹,	
\circ	
•	
\sim	
totoxic/	
ytot	
\simeq	
↸	
(
$\overline{}$	
\circ	
9	
itro	
-=	
\sim	
_	
⊑	
نٺ	

In Vitro Cytotoxic Activity				
Compound	CCRF-CEM (IC50, µМ)	IC ₅₀ , µM)		
	(+) T, (+) H	(-) T, (+) H	(+) T, (-) H	(-) T, (-) H
10-CF ₃ CO-DDACTHF (101)	>100	>100	0.017	0.016
10-CF ₃ HCOH-DDACTHF (102)	>100	>100	1.4	1.1
10-formyl-DDACTHF (3)	150	170	90.0	0.07
DDACTHF	>100	>100	3.6	2.7
Lometrexol	>100	>100	0.52	0.23
Methotrexate	0.05	0.05	0.04	0.04
T = Thymidine (+ 10 μ M), H = Hypoxanthine (+ 100 μ M)	poxanthine (+ 10	00 µM)		

Figure 17

Figure 18

garison of unliganded human GAR Tfase Ecoli GAR Tfase in complex with 10-formyl-

B value comparison of un. TDAF and substrate, and l	liganded human GAK Trase numan GAR Tfase in compl Human complex with 10-	AK 1 rase, <i>E.co</i> ; in complex wit	B value comparison of unliganded human GAK Trase, <i>E. cont</i> GAK Trase in complex with 10-CF ₃ CO-DDACTHF (101) TDAF and substrate, and human GAR Trase in complex with 10- <i>E. coli</i> complex with 10- Unliganded	un 10-10myr- 101) Unliganded
	CF ₃ CO-DDACTHF (101) Molecule 1 Molecule	HF (101) Molecule 2	formyl-TDAF-β-GAR	human
	(A^2)	(A^2)	(A^2)	(A^2)
Protein	31.0	35.3	29.6	30.1
Inhibitor	25.8	39.3	43.5	ı
Residues 110-131	22.4	26.6	41.1	23.6
Residues 141-146	30.0	37.5	45.4	64.4

Figure 20

Figure 21

Figure 22

Docking of folate cofactor into	o human and E_{\cdot}	cofactor into human and E.coli GAR Tfase structures	S	
Structure of PDB code	Number of	Percentage of	Docking E	Binding E
		lowest cluster	(kcal/mol)	(kcal/mol)
Human recombinant				
101	9	49	-19.0	-15.5
apo (1MEJ)	11	15	-16.4	-13.1
E.coli				
10-Formyl-TDAF	2	38	-17.7	-14.5
+ β-GAK (1C21) BW1476U89 (1GAR)	1	100	-16.9	-13.2
Epoxide + β -GAR (1JKX)	က	89	-15.5	-12.2
apo (1CDE)	18	22	-13.9	-11.0