

Multi-fidelity modeling using DGPs: Improvements and a generalization to varying input space dimensions

Ali Hebbal^{1, 2}, Mathieu Balesdent¹, Loic Brevault¹, El-Ghazali Talbi², Nouredine Melab²

ONERA, DTIS, Université Paris Saclay | ²Université de Lille, CNRS/CRIStAL, Inria Lille

Improvements of DGPs for multi-fidelity modeling

Context: using Gaussian Process for multi-fidelity modeling

- High-fidelity (HF) models \rightarrow accurate data but on a limited dataset.
- Low-fidelity (LF) models → large amount of data of approximated data.
- Use of multi-fidelity model to exhibit correlations between datasets of s increasing levels of fidelity $(X^t, \mathbf{y}^t), \forall 1 \leq t \leq s$, to improve prediction accuracy.
- Multi-fidelity models based on Gaussian Processes (GPs):
- Auto-Regressive model (AR1):

 $f_t(\mathbf{x}) = \rho f_{t-1}(\mathbf{x}) + \gamma_t(\mathbf{x})$

- | Scaling factor $\rho \to \text{capture only linear correlations}$ between fidelities.
- Non-linear Autoregressive model (NARGP):

 $f_t(\mathbf{x}) = g_t\left(f_{t-1}^*(\mathbf{x})\right) + \gamma_t(\mathbf{x})$

- | The posterior GP f_{t-1}^* is used \to Sequential optimization of each fidelity \to overfitting.
- Multi-fidelity Deep Gaussian Process model (MF-DGP):

 $f_t(\mathbf{x}) = g_t \left(f_{t-1}(\mathbf{x}) \right) + \gamma_t(\mathbf{x})$

| Keeping the prior f_{t-1} comes back to a Deep Gaussian Process.

Use of stochastic variational inference to obtain the Evidence Lower Bound (ELBO):

Figure 1:MF-DGP graphical representation

First improvement of MF-DGP: combining natural and stochastic gradient for training

 \nearrow Issue: Parameter space not euclidian $(q(\mathbf{u})) \to \text{stochastic ordinary gradient may not be adapted}$

✓ Proposed optimization process adapted to the parameter space: Loop between:

• step using stochastic ordinary gradient (Adam Optimizer) with respect to $(\{\Theta\}_{l=1}^s, \{Z_l\}_{l=1}^s)$ • step using natural gradient with respect to all the variational distributions $(q(\mathbf{u}_l))_{l=1}^s$.

Second improvement of MF-DGP: Optimization of inducing points

X Issue: The augmented input space induces a dependency between $Z_{l,1:d}$ and $Z_{l,d+1} \to \text{Free}$ optimization of the inducing inputs is not appropriate.

 $\{Z_l\}_{l=2}^s$ are constrained as follows:

$$Z_l = [Z_{l,1:d}, f_{l-1}^*(Z_{l,1:d})]; \forall 2 \le l \le s$$

where $f_{l-1}^*(\cdot)$ corresponds to the prediction at the previous layer. \checkmark Optimization with respect to $Z_{l,1:d}$ instead of Z_l .

Results MF-DGP improved

Figure 2:Performance of the different multi-fidelity models with different DoE. RMSE refers to the root mean squared error and MNLL to the mean negative test log likelihood.

References

- [1] H. Salimbeni and M. Deisenroth, "Doubly stochastic variational inference for deep gaussian processes," in *Advances in Neural Information Processing Systems*, pp. 4588–4599, 2017. [2] K. Cutajar, M. Pullin, A. Damianou, N. Lawrence, and J. González, "Deep gaussian processes for multi-fidelity modeling," arXiv preprint arXiv:1903.07320, 2019.
- [3] P. Perdikaris, M. Raissi, A. Damianou, N. Lawrence, and G. E. Karniadakis, "Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling," *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, vol. 473, no. 2198, p. 20160751, 2017.
- [4] A. Paleyes, M. Pullin, M. Mahsereci, N. Lawrence, and J. González, "Emulation of physical processes with emukit," in Second Workshop on Machine Learning and the Physical Sciences, NeurIPS, 2019.
 [5] M. C. Konnedy and A. O'Hagan, "Payesian calibration of computer models," Journal of the Payel Statistical Society: Series B. (Statistical Methodology), vol. 63, no. 3, pp. 425, 464.
- [5] M. C. Kennedy and A. O'Hagan, "Bayesian calibration of computer models," Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 63, no. 3, pp. 425–464, 2001.
- [6] S. Tao, D. W. Apley, W. Chen, A. Garbo, D. J. Pate, and B. J. German, "Input mapping for model calibration with application to wing aerodynamics," AIAA Journal, pp. 2734–2745,

Multi-fidelity with varying input spaces

In some industrial problems each fidelity can be characterized by its own input space due to:

- Different modeling approaches in each fidelity,
- Omission of some variables in the lower fidelities.

Example: A launch vehicle thrust frame can be modeled in the low fidelity with one average thickness parameter for all the thrust frame, while in high fidelity, a thickness for each element of the system can be considered.

Figure 3:Model of launch vehicle thrust frame.

Existing approaches

- Nominal mapping between input spaces based on physics of the problem.
- * Potentially better calibrated input mapping,
- X Not applicable to black-box problems.
- Input mapping calibration (IMC) finds a parametric mapping $g_{\beta}(\cdot)$ with the parameters β estimated as follows:

$$\boldsymbol{\beta}^* = \operatorname{argmin}_{\boldsymbol{\beta}} \left(\sum_{i=1}^{n_{hf}} \left(f_{hf}(\mathbf{x}^{hf,(i)}) - f_{lf} \left(g_{\boldsymbol{\beta}}(\mathbf{x}^{hf,(i)}) \right) \right)^2 + R_{\boldsymbol{\beta_0}}(\boldsymbol{\beta}) \right)$$

Disjoint optimization of the mapping parameters and the multi-fidelity model,

X Training only on the lower fidelity input space.

Proposed method: MF-DGP integrated projection

- MF-DGP integrated projection (MF-DGP-IP) is a two levels DGP with:
 - First level contains multi-output GPs $\{H_l(\cdot)\}_{l=1}^{s-1}$ that are used as non-linear mappings between the different fidelity input spaces,
- Second level contains single-output GPs $\{f_l(\cdot)\}_{l=1}^s$ used to propagate the fidelities evaluations.

✓ Uncertainty quantification on the input space mapping,

✓ Joint optimization of the mapping and the multi-fidelity model,

✓ Correlation computed in the original input space of each fidelity.

Figure 4:MF-DGP-IP graphical representation

The ELBO is obtained using a similar variational approximation as in MF-DGP:

$$\mathcal{L} = \sum_{t=1}^{s} \sum_{i=1}^{n_t} \mathbb{E}_{q(f_t^{(i),t})} \left[\log p(y^{(i),t}|f_t^{(i),t}) \right] - \sum_{l=1}^{s} KL \left[q(\mathbf{u}_l) || p(\mathbf{u}_l; Z_{l-1}) \right] - \sum_{l=1}^{s-1} KL \left[q(V_l) || p(V_l; Z_{l+1}) \right]$$

Results MF-DGP-IP

Problem 1:

- Four-dimensions HF function $f_{hf}(x_1, x_2, x_3, x_4)$: Park HF function
- Two-dimensions LF function $f_{lf}(x_1, x_2)$: Park LF function with $x_3 = 0.5, x_4 = 0.5$.

Problem 2:

• Three-dimensions HF function $f_{hf}(r, \theta, \phi)$:

$$3.5\left(r\cos\left(\frac{\pi}{2}\theta\right)\right) + 2.2\left(r\sin\left(\frac{\pi}{2}\theta\right)\right) + 0.85\left(\left|r\cos\left(\frac{\pi}{2}\theta\right) - 2r\sin\left(\frac{\pi}{2}\theta\right)\right|\right)^{2.2} + \frac{2\cos(\pi\phi)}{1 + 3r^2 + 10\theta^2}$$

• Two-dimensions LF function $f_{lf}(x_1, x_2)$:

$$3x_1 + 2x_2 + 0.7(|x_1 - 1.7x_2|)^{2.35}$$

Table 1:Performance using 20 repetitions with different DoE (30 inputs data on LF and 5 inputs data on HF)

	Problem 1			Problem 2		
Algorithms	MNLL	RMSE	std RMSE	MNLL	RMSE	std RMSE
HF model	2.1e3	2.785	1.242	86.96	0.829	0.382
MF-DGP-IP	16.84	1.787	0.692	1.02	0.663	0.11
MF-DGP IMC	33.7	2.54	0.9560	5.562	0.7632	0.167
MF-DGP nominal	40.034	2.367	1.248	2.701	0.8996	0.196
AR1	1.6e5	2.7801	0.8975	98.31	0.736	0.148
NARGP	1383	2.6754	1.023	2221.	0.81	0.272

Contributions

- Improvement of MF-DGP in term of prediction accuracy and robustness to DoE,
- Proposition of a MF-DGP model for varying input spaces,
- Numerical simulations to assess the performance with respect to classical methods.