RESPOND TO FEEDBACK ON YOUR WORK

Directions: If you have a Schoology message from Mr. Durden about Tuesday's assignment, respond to that message in the space below.

CHOICE

Choose one of the following options for completing the rest of your work in Algebra 1.1.

- Learn about systems of linear equations through lessons today (Thursday) and Friday.
- Complete a project to review linear equations (due on Tuesday).

Suggestions: If you missed one or fewer questions from Tuesday's work, I encourage you to learn about systems of linear equations (they are wonderful). If you missed two or more questions from yesterday's work, I encourage you to complete the project.

SYSTEMS OF EQUATIONS LESSON

Directions: For this lesson, you will **answer the questions on the following slides**. On each slide, please **indicate whether you worked out the answer independently or received help***.

* I ask that you try to answer the questions independently, but I will be including links to videos that you can watch if you need help.

The questions for this lesson are from brilliant.com.

INTRODUCTION TO SYSTEMS OF EQUATIONS

LEARNING GOAL

- 1. I can describe what it means to find a **solution** to a **system of equations**.
- 2. I can solve systems of linear equations by graphing each equation and finding points where the lines intersect.

Can you tell how much the cat weighs?

x= weight of the cat y= weight the rabbit

$$x + y = 10$$

Can you tell how much the cat weighs?

x= weight of the cat y= weight the rabbit

Read the slide to understand the key concepts (in bold).

This is called a **system** of two equations.

The **solutions** to a system are the values of the variables that make all of the equations true.

A solution to a system can be written using an **ordered pair**.

x= weight of the cat x+y=10

The cat weighs 6 units.

The rabbit weighs 4 units.

The **solution** to this system of equations is:

$$x = 6, y = 4$$

As an **ordered pair** the solution is:

$$(x,y) = (6,4)$$

Can you tell the weight of each animal?

Weight of cat:

$$x =$$

Weight of rabbit:

$$y =$$

Weight of dog:

$$z =$$

Challenge
(Optional): Can
you tell the
weight of each
animal?

Weight of cat:

$$x =$$

Weight of rabbit:

$$y =$$

Weight of dog:

$$z =$$

Then graph the equation y=4

You should have two lines. Where do they cross?

What is the solution to this system of equations?

A point where all graphs meet is called a **solution** to a system of equations.

A point where all graphs meet is called a **solution** to a system of equations.

Lines a,b, and c represent three different linear equations.

What is the solution for the system of a and c?

x and y are real numbers that satisfy x=7 and x+y=9. What is the value of y?

Watch the video "How many solutions" for background information before completing this question.

How many solutions are there for this system of equations?

$$x + y = 4$$

$$x + y = 6$$

0

Infinity

x and y are real numbers that satisfy 2x=50 and x+y=40. What is the value of y?

15

How many (x,y) pairs are solutions for both of these equations?

$$x + 2y = 4$$

$$3x+6y=12$$

Find xy if 2x + 4y = 2 and y - x = 5.

