Dr. Joshua L. Pughe-Sanford

joshuapughesanford

☐ I pughesanford@gmail.com ☐ ☐ ipughesanford.github.io

1

Education

2023-Present	Flatiron Institute, Center for Computational Neuroscience Flatiron Research Fellow (Post-Doc)
2017-2023	Georgia Institute of Technology, Center for Non-Linear Dynamics Ph.D. in Physics M.S. in Mathematics GPA: 3.9
2015-2017	Emory University, B.S. in Physics with Highest Honors (Summa Cum Laude) Minor in Mathematics GPA: 3.9
2013-2015	Oxford College, A.A. with Honors GPA: 3.9

Honors and Awards

2022	Herbert P. Haley Fellowship, Georgia Institute of Technology	\$4,000
2022	Emelio Fellowship Nominee, Georgia Institute of Technology	
2022	Travel Grant, Georgia Institute of Technology	\$1,000
2017-2021	Presidential Fellow, Georgia Institute of Technology	\$20,000
2017-Present	Phi Beta Kappa, Honors Society	
2016	Travel Grant, Princeton University	\$1,500
2016-Present	Sigma Phi Sigma, Physics Honors Society	
2015-Graduation	Dean's List, Emory University	
2013-Present	Phi Eta Sigma, National Honors Society	
2013-2015	Honors List, Oxford College	

Publications

† co-first authorship

- P1. J. L. Pughe-Sanford and R. O. Grigoriev, "Point vortices predict extended vortex interactions in two-dimensional turbulence," (in preparation)
- P2. J. L. Pughe-Sanford, S. Quinn, L. L. Balabanski, and R. O. Grigoriev, "Computing Chaotic Time-Averages from Few Periodic or Non-Periodic Orbits," (submitted)
- P3. J. J. Moore, A. Genkin, M. Tournoy, J. L. Pughe-Sanford, R. R. de Ruyter van Steveninck, and D. B. Chklovskii, "The Neuron as a Direct Data-Driven Controller," Proceedings of the National Academy of Sciences, vol. 121, no. 27, 2024
- P4. C. J. Crowley, J. L. Pughe-Sanford[†], W. Toler, R. O. Grigoriev, and M. F. Schatz, "Observing a dynamical skeleton of turbulence in Taylor-Couette flow experiments," Philosophical

- Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 381, no. 2243, p. 20220137, 2023
- P5. C. J. Crowley, **J. L. Pughe-Sanford**[†], W. Toler, M. C. Krygier, R. O. Grigoriev, and M. F. Schatz, "Turbulence tracks recurrent solutions," *Proceedings of the National Academy of Sciences*, vol. 119, no. 34, p. e2120665119, 2022
- P6. M. C. Krygier, J. L. Pughe-Sanford, and R. O. Grigoriev, "Exact coherent structures and shadowing in turbulent Taylor-Couette flow," *Journal of Fluid Mechanics*, vol. 923, p. A7, 2021
- P7. S. Boettcher and J. L. Pughe-Sanford, "Renormalization of Discrete-Time Quantum Walks with non-Grover Coins," *Journal of Statistical Mechanics: Theory and Experiment*, vol. 2018, p. 033103, 2017
- P8. J. L. Pughe-Sanford, "Properties of Quantum Walks within Various One Dimensional Media," Honors Thesis, 2017

Conference Talks

- C1. J. L. Pughe-Sanford, S. Quinn, L. L. Balabanski, and R. O. Grigoriev, "Computing Chaotic Time-Averages from a Small Number of Periodic Orbits." APS DFD Washington DC, 2023 (recorded)
- C2. J. L. Pughe-Sanford and R. O. Grigoriev, "Vortex Interactions: a Low-Dimensional Approach to the Inverse Cascade." APS DFD Indianapolis, 2022 (recorded)
- C3. W. Toler, C. J. Crowley, **J. L. Pughe-Sanford**, R. O. Grigoriev, and M. F. Schatz, "Simultaneous shadowing of multiple Exact Coherent Structures in experimental Taylor-Couette flow." APS DFD Indianapolis, 2022
- C4. J. L. Pughe-Sanford, M. C. Krygier, and R. O. Grigoriev, "Can We Connect a Dynamical Description and a Statistical Description of Turbulence?." APS DFD Phoenix, 2021
- C5. C. J. Crowley, **J. L. Pughe-Sanford**, W. Toler, R. O. Grigoriev, and M. F. Schatz, "Time evolution of turbulent Taylor-Couette flow is robustly captured by Exact Coherent Structures." APS DFD Phoenix, 2021
- C6. W. Toler, C. J. Crowley, J. L. Pughe-Sanford, R. O. Grigoriev, and M. F. Schatz, "Transition to turbulence in experimental small-aspect Taylor-Couette flow." APS DFD Phoenix, 2021
- C7. J. L. Pughe-Sanford and R. O. Grigoriev, "Dynamics and statistics of weakly turbulent Taylor-Couette flow in terms of exact coherent structures." APS DFD Chicago, 2020
- C8. W. Toler, C. J. Crowley, **J. L. Pughe-Sanford**, K. Sands, M. F. Schatz, and R. O. Grigoriev, "Experimental tests of dynamical and statistical relevance of exact coherent structures in turbulent small-aspect-ratio Taylor-Couette flow." APS DFD Chicago, 2020
- C9. C. J. Crowley, W. Toler, **J. L. Pughe-Sanford**, K. Sands, R. O. Grigoriev, and M. F. Schatz, "Identifying turbulent shadowing of 3D Exact Coherent Structures from measurements of 2D-2C velocity measurements in small-aspect-ratio Taylor-Couette flow." APS DFD Chicago, 2020
- C10. **J. L. Pughe-Sanford** and R. O. Grigoriev, "Heteroclinic Connections as Predictors of Extreme Events in Weakly Turbulent Flow." APS DFD Seattle, 2019 (recorded)
- C11. **J. L. Pughe-Sanford**, "Numerical Methods for Determining the Walk Dimension of Quantum Walks." Emory University SIRE Symposium, 2017

Teaching Experience

Georgia Institute of Technology

Advised undergraduate students

2020-2023

- Resulted in publishable results for advisees.

Lectured Graduate Level Courses (not as TA)

2019, 2022

- PHYS 7224, Non-Linear Dynamics
- PHYS 8823, Math Methods

Teaching Assistant

2017-2019

- Earned 4.9/5.0 on my student teacher evaluations
- Was promoted to head TA; managed a team of TAs and taught them to effectively communicate material to students.
- Helped design an online forum where students could crowdsource help form peers and professors.

Service

Simons Foundation

Diversity, Equity, and Inclusion Committee

2024

Georgia Institute of Technology

Physics Allies for Wellness (PAW)

2022

- Founding member of an association that addresses social injustices and inequities in the physics department.

Graduate Association of Physics (GAP)

2017-2018

- Led and coordinated Physics Forum, disseminating graduate research throughout specialties in the department.

Research Experience

Georgia Institute of Technology, with R. Grigoriev

2017-2023

Derived insightful models and decompositions of high-dimensional chaotic systems. My approaches often ground rigorous theoretical results within data-driven methods, balancing rigor and insight with methods that are practical.

- Developed expertise in numerical methods including quantitative data analysis, data visualization, non-linear optimization, statistical analysis, model simulation and machine learning.
- Produced groundbreaking results in forecasting extremal behavior.
- Constructed a predictive, 6-dimensional model of binary vortex interactions.
- Constructed dynamics and long-time statistics of chaotic systems using invariant sets.
- Created a fast numerical scheme for computing distances is systems with continuous symmetry.

Emory University, with S. Boettcher

2015-2017

Contrasted quantum dynamics over self-similar lattices with their classical analogs: random walks with memory. These investigations provide insight into how quantum algorithms (such as the Grover search algorithm) can traverse large data sets faster than their classical counterparts.

- Developed code suite for simulating, visualizing, and analyzing random and quantum walks.
- Derived novel results for quantum walks on the line.

- Used renormalization group to relate dynamics at different length scales.
- Derived a universality class of dynamics in certain lattice topologies.

Princeton University, with F. Calaprice

2013-2017

Worked with Princeton's SABRE and Borexino collaborations, conducting experiments investigating the existence of dark matter candidate particles.

- Helped design and construct the SABRE scintillating-crystal detector and insertion system. Stringent specifications included hermeticity, chemical resistance, and precise control of the detector.
- Managed internal and external relations, sourcing materials and occasionally mediating conflicts.
- Optimized and automated polonium measurement techniques. Reported on the efficiency of distillation columns at the National Underground Laboratory at Gran Sasso, Italy.

Oxford College, with R. Conceicao

2013-2015

Studied the Collatz conjecture, which is a dynamical system defined over positive integers *conjectured* but not proven to have a globally attracting fixed point at x = 1. I also studied a polynomial corollary of the Collatz conjecture.

- Well-approximated the total stopping time (i.e. iterations required to reach x=1) for all monic polynomials in $(\mathbb{Z}/n\mathbb{Z})[x]$.

Work Experience

B-Line Logic, Atlanta, GA

2014-2016

I was the lead backend engineer and developer for B-Line Logic, developing efficient AI-based tools for distilling Big Data into a small set of optimal actions plans.

- Created predictive-analytics engine for supply chain management.
- Developed a distributed event synchronization system.
- Managed relations with clients such as Delta Airlines and Cardinal Health.

Interests and Skills

Language (Native)

Language (Conversational)

Coding Languages

Java, MATLAB, Python, Assembly, C++

Machine Learning, big data, PDE simulation, objective function optimization, high-dimensional datasets, data visualization, pattern recognition

Robotics

Built a miniature self balancing, Segway-like robot piloted by an Arduino.

Built a robotic hand that tracks the motion of a user-worn glove

Created a 3D, single-player game with AI-controlled enemies