Digital Electronics and Microprocessor Systems (ELEC211)

Dave McIntosh and Valerio Selis

dmc@liv.ac.uk

v.selis@liv.ac.uk

Digital 7: Simple registers and counters

Outline

- Registers
- Parallel adder (with accumulator)
- Counters

Previous material

Flip-flops ✓

Karnaugh maps ✓

Use VITAL!:

- Stream lectures
- Handouts
- Notes and Q&A each week
- Discussion Board
- Exam resources

www.liv.ac.uk/vital

Learning Resources

Course textbook – please borrow and use it!

Registers

 Several D-Type flip-flops may be grouped with a common clock to form a register.

• Each flip-flop stores 1 bit

• This register stores 4 bits

Registers

The flip-flops in the register can have a common asynchronous clear input, *CLR*.

O is required to clear the flip-flops.

When Load is 1 the clock is enabled (CE) and the data applied to the D inputs will be loaded into the flip-flops. When Load is 0 the register holds its data (memory).

Register symbol is the same as the D-type flip-flop except for the bus input and output.

Data Transfer between Registers

If En = 1 and Load = 1 the output of register A is enabled onto the tri-state bus and will be stored in Q register on the rising-edge of the clock.

If En = 0 and Load = 1 the output of register B is stored in Q register.

Data Transfer using a Three State Bus

32 bits of data are transferred in parallel from register r0, r1, r2 or r3 to register r8 or r9. If YZ = 00 and Ld8 = 1 data in r0 is stored in r8. ARM instruction: MOV r8, r0

Remember the 1-bit adder?

X	Y	C_{in}	Cout	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- Adds two bits and a carry (C_{in})
- Generates a Sum and another carry (C_{out})

- Can connect 4 together to form a 4-bit (parallel) adder
- C_{out} from first, becomes C_{in} of second, etc...

Adding binary numbers – an aside

Consider the binary operation $0101_2 + 0111_2$ (equivalent to 5 + 7 in decimal form). To formally add the two binary numbers, we have to carry in the same way as we would using column addition of decimal numbers:

The red 1s are "carried" 1s. The answer is 1100_2 , or $12_{(10)}$ in decimal form.

Adding binary numbers – an aside

- With a 4-bit adder, we are trying to automate the process above.
- The truth table in the previous slide lists the eight possible combinations that could occur in a given column (except the first or right-hand column, which in the example here, has no possibility of a carry-in.)
- X and Y each represent a 4-bit number i.e. one of the top two rows in the calculation above.

In computer circuits, it's often desirable to add a number to the already-stored content of a register of flip-flops (which is called an accumulator)

e.g. the ARM instruction: ADD rx, rx, ry

In the adder circuit, the output of the accumulator, $X = x_3...x_0$ is added to the input number, $Y = y_3...y_0$

After the carry has propagated through the adders, the sum, $S_3...S_0$, will be stabilised.

If Add = 1, the number in $X = x_3...x_0$ in the accumulator is replaced with $S = S_3...S_0$ at the next active clock edge.

Shift Registers

A shift register is a register in which binary data can be stored, and shifted to the right or left.

When Shift = 1, the clock is enabled and shifting to the right occurs on the rising clock edge.

When Shift = 0 no shifting occurs.

* Serial in: Data is 'shifted' onto the first FF one bit, then the next, etc.; FFs not loaded in parallel Serial out: data can only be read out of the last FF (no other FF connections to IC terminals)

Block diagram:

<u>Shift = 1, Load = 1 or 0:</u>

Serial input is shifted into first FF

Shift = 0, Load = 1:

The 4 data inputs are loaded in parallel

Shift = 0, Load = 0:

No change of state with the clock edge

Inp	outs	Next state		Action		
Shift	Load	Q^+_3	Q^+_2	$Q^+{}_I$	$Q^+{}_0$	
0	0	Q_3	Q_2	Q_1	Q_{o}	no change
0	1	D_3	D_2	Q_1 D_1	D_0	load
1	X	SI	Q_3	Q_2	Q_{I}	right shift

Inputs		Next state				Action
Shift	Load	Q^+_3	Q^+_2	$Q^+{}_1$	$Q^+{}_0$	
0	0	Q_3	Q_2	Q_{I}	Q_0	no change
0	1	D_3	D_2	D_1	D_{θ}	load
1	X	SI	Q_3	Q_2	Q_{I}	right shift

Inp	outs	Next state		Action		
Shift	Load	Q^+_3	Q^+_2	$Q^+{}_1$	$Q^+{}_0$	
0	0	Q_3	Q_2	Q_{I}	Q_0	no change
0	1	D_3	D_2	$egin{array}{c} Q_1 \ D_1 \end{array}$	D_0	load
1	X	SI	Q_3	Q_2	Q_1	right shift

Synchronous Binary Counters using D-type Flip-Flops

Outputs of flip-flops determine the state of the counter.

Binary counter restarts at zero after it reaches all one state.

A 3-bit counter can be designed as follows...

Present State			Next state		
\boldsymbol{C}	\boldsymbol{B}	\boldsymbol{A}	$C^{\scriptscriptstyle +}$	B^+	A^+
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Binary Counter using D-type FF

Present State			Next state		
C	B	\boldsymbol{A}	C^+	B^+	A^+
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

B +, C		
BA	0	1
00	0	0
01	1	1
11	0	0
10	1	1

$$D_{C} = C^{+} = \overline{C}.B.A + C.\overline{B} + C.\overline{A}$$

$$= C \oplus (A.B)$$

$$D_{B} = B^{+} = \overline{B}.A + B.\overline{A} = A \oplus B$$

$$D_{A} = A^{+} = \overline{A}$$

Binary Counter using D-type FF

Counters for other sequences using D-type Flip-Flops

In some applications the sequence of states of a counter is not in strict binary order.

Present State			Ne	ext sta	ate
\boldsymbol{C}	$\boldsymbol{\mathit{B}}$	\boldsymbol{A}	C^+	B^+	A^+
0	0	0	1	0	0
0	0	1	_	-	-
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	<u>-</u>	-	_
1	1	0	<u>-</u>	-	-
1	1	1	0	1	0

Counters for other sequences using D-type flip-flops

Present State			Next state			
C	B	\boldsymbol{A}	C^+	B^+	A^+	
0	0	0	1	0	0	
0	0	1	_	-	-	
0	1	0	0	1	1	
0	1	1	0	0	0	
1	0	0	1	1	1	
1	0	1	_	-	-	
1	1	0	_	-	-	
1	1	1	0	1	0	
			-			

$$C^{+}$$
 C^{-} C^{+} C^{-} C^{-

$$D_C = C^+ = B'$$

$$D_B = B^+ = C + BA'$$

$$D_A = A^+ = CA' + BA' = A'(C + B)$$

Counters for other sequences using D-type flip-flops

Counters: unused states

After power-on, the initial state of the flip-flops is unpredictable. If the initial state is CBA =101 then according to the circuit the next state value will be 110 which is not one of the valid states. Fortunately after the next clock pulse the output will become 011 which is a valid state.

Counters: unused states

All don't care states should be checked to make sure that they eventually lead into the main counting sequence.

Question

Design a synchronous counter using D-type flip-flops for the following sequence (known as Gray code).

Answer

Present State			Next state			
C	В	\boldsymbol{A}	C^+	B^+	A^+	
0	0	0	1	0	0	
0	0	1	0	0	0	
0	1	0				
0	1	1	0	0	1	
1	0	0	1	1	0	
1	0	1				
1	1	0	1	1	1	
1	1	1	0	1	1	
			-			

C^+ _C	. 0	4	
BA	0	1	
00	1	1	
01	0	Х	
11	0	0	
10	X	1	

3+C	0	1	
BA			
00	0	<u> </u>	
01	0	Х	
11	0	1	
10	X	1	

$$D_C = C^+ = A'$$

 $D_B = B^+ = C$
 $D_A = A^+ = B$

$$D_{\scriptscriptstyle B}=B^{\scriptscriptstyle +}=C$$

$$D_A = A^+ = B$$

T or Toggle Flip-Flop – reminder:

T	Q	Q^+
0	0	0
0	1	1
1	0	1
1	1	0

T	Action at next clock pulse
0	No change, $Q^+ = Q$
1	Toggle, $Q^+ = Q'$

Synchronous Binary Counters using Toggle flip-flops

Outputs of flip-flops determine the state of the counter.

Counter rolls back to zero when it reaches all one state.

A 3-bit counter can be designed.

Present State			Next state			Flip-flop Inputs		
C	В	A	C^+	B^+	A^+	T_C	T_B	T_A
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

Binary Counter using T flip-flops

	Present State			Nex state		Flip-flop Inputs		
C	B	\boldsymbol{A}	C^+	$B^{\scriptscriptstyle +}$	A^+	T_C	T_B	T_{A}
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

A changes state every time a clock pulse is received therefore $T_A = 1$.

B changes only if A = 1, so $T_B = A$.

C changes only if A = 1 & B = 1 , so $T_C = AB$.

Counters using T flip-flops

In some applications the sequence of states of a counter is not in strict binary order.

State graph

Present State			Next state			Flip-flop Inputs		
\boldsymbol{C}	\boldsymbol{B}	\boldsymbol{A}	C^+	B^{+}	A^+	T_C	T_B	T_{A}
0	0	0	1	0	0	1	0	0
0	0	1				Χ	X	X
0	1	0	0	1	1	0	0	1
0	1	1	0	0	0	0	1	1
1	0	0	1	1	1	0	1	1
1	0	1				X	X	X
1	1	0				X	X	X
1	1	1	0	1	0	1	0	1

Counters using T flip-flops

Present State			Next state			Flip-flop Inputs		
C	В	A	C^+	B^+	A^+	T_C	T_B	T_A
0	0	0	1	0	0	1	0	0
0	0	1				X	X	X
0	1	0	0	1	1	0	0	1
0	1	1	0	0	0	0	1	1
1	0	0	1	1	1	0	1	1
1	0	1				X	X	Χ
1	1	0				X	X	X
1	1	1	0	1	0	1	0	1

$$T_{C} = C'B' + CB$$

$$T_{B} = C'A + CB'$$

$$T_{A} = C + B$$

Counters using T flip-flops

$$T_C = C'B' + CB$$

$$T_B = C'A + CB'$$

$$T_A = C + B$$

Question

??

Design a synchronous counter for the following sequence (Gray code) using T flip-flops.

Answer

Present]	Nex	t	Flip-flop		
S	State	e		state	•	Inputs		
C	В	A	C^+	$B^{\scriptscriptstyle +}$	A^+	T_C	T_B	T_A
0	0	0	1	0	0	1	0	0
0	0	1	0	0	0	0	0	1
0	1	0				X	X	X
0	1	1	0	0	1	0	1	0
1	0	0	1	1	0	0	1	0
1	0	1				X	X	X
1	1	0	1	1	1	0	0	1
1	1	1	0	1	1	1	0	0

$$T_{C} = C'A' + CA = \overline{C \oplus A}$$

$$T_{B} = CB' + C'B = C \oplus B$$

$$T_{A} = B'A + BA' = B \oplus A$$

J-K Flip-Flop - reminder

J	K	Q	Q^+
0	0	0	0
0	0	1	1
0	~	0	0
0	1	1	0
1	0	0	~
1	0	1	1
1	1	0	~
1	1	1	0

J	K	Action at next clock pulse
0	0	No change, $Q^+ = Q$
0	1	Reset, $Q^+=0$
1	0	Set, $Q^{+}=1$
1	1	Reset, $Q^+=0$ Set, $Q^+=1$ Toggle, $Q^+=Q$

J-K flip-flop excitation table

Q	$Q^{\scriptscriptstyle +}$	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	Χ	0

	rese State		Next state			
C	В	\boldsymbol{A}	C^+	B^+	A^+	
0	0	0	1	0	0	
0	0	1				
0	1	0	0	1	1	
0	1	1	0	0	0	
1	0	0	1	1	1	
1	0	1				
1	1	0				
1	1	1	0	1	0	

	rese State			Next state		Flip-flop inputs					
C	\boldsymbol{B}	\boldsymbol{A}	C^+	$B^{\scriptscriptstyle +}$	A^+	J_C	K_C	J_B	K_{B}	J_A	K_{A}
0	0	0	1	0	0	1	X	0	X	0	X
0	0	1				Χ	X	X	X	X	X
0	1	0	0	1	1	0	X	X	0	1	X
0	1	1	0	0	0	0	X	X	1	X	1
1	0	0	1	1	1	X	0	1	X	1	X
1	0	1				Χ	X	X	X	X	X
1	1	0				Χ	X	X	X	X	X
1	1	1	0	1	0	X	1	X	0	X	1

Q	$Q^{\scriptscriptstyle +}$	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

J-K flip-flop excitation table

$$J_C = B'$$
$$K_C = A$$

$$K_C = A$$

$$J_{P} = C$$

$$J_B = C$$
$$K_B = C'A$$

$$J_A = B + C$$

$$K_A = 1$$

Question

??

Design a synchronous counter for the following sequence (Gray code) using JK-type flip-flops.

Method

			Next								
Present State			state		Flip-flop inputs						
C	В	\boldsymbol{A}	$C^{\scriptscriptstyle +}$	B^+	A^+	J_C	K_C	J_{B}	K_B	J_A	K_A
0	0	0	1	0	0	1	X	0	X	0	X
0	0	1	0	0	0	0	X	0	X	X	1
0	1	0				X	X	X	X	X	X
0	1	1	0	0	1	0	X	X	1	X	0
1	0	0	1	1	0	X	0	1	X	0	X
1	0	1				X	X	X	X	X	X
1	1	0	1	1	1	X	0	X	0	1	X
1	1	1	0	1	1	X	1	X	0	X	0

Answer...

(The next-state logic statements we have arrived at here will now allow us to implement this counter design simply, in a similar way to three slides ago...)

Summary and suggested reading

Section 11.4 Edge-Triggered D Flip-Flop Section 11.7 T Flip-Flop Section 11.6 J-K Flip-Flop Section 11.8 Additional inputs / Clock Enable **Chapter 12 Registers and Counters** Section 12.1 Parallel adder with accumulator

Roth and Kinney Fundamentals of Logic Design

Next lecture:

State machines...

