

Mechanics of Materials I: Fundamentals of Stress & Strain and Axial Loading

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Module 21 Learning Outcome

Find the Maximum In-Plane Shear Stress

Stresses on Inclined Planes for Plane Stress in general

For any plane at an angle θ , we can find σ_n and τ_{nt}

For all structural and machine design, it is necessary to know at what planes and angles θ that the maximum values for σ_n and τ_m occur

First, let's find the angle(s) where the maximum shear stress, τ_{nt} , occurs

How should we proceed?

Stresses on Inclined Planes for Plane Stress in general

$$\frac{d\tau_{nt}}{d\theta} = 0 = -(\sigma_x - \sigma_y)\cos 2\theta - 2\tau_{xy}\sin 2\theta$$

$$\tan 2\theta_s = -\frac{\sigma_x - \sigma_y}{2\tau_{xy}}$$

Where $\, heta_{_{S}}\,$ is the angle(s) where maximum stress occurs

Stresses on Inclined Planes for Plane Stress in general

$$\tau_{nt} = -\left(\frac{\sigma_x - \sigma_y}{2}\right) \sin 2\theta + \tau_{xy} \cos 2\theta$$

$$\tan 2\theta_s = -\frac{\sigma_x - \sigma_y}{2\tau_{xy}}$$

Recall

Where $\theta_{\scriptscriptstyle S}$ is the angle(s) where maximum stress occurs

$$\tan 2\theta_P = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$$

Where θ_P is the angle(s) to what are defined as the "Principal Planes"

 $\tan 2\theta_s$ is the negative reciprical of $\tan 2\theta_p$

Therefore $2\theta_{\scriptscriptstyle S}$ and $2\theta_{\scriptscriptstyle P}$ are 90° apart

Therefore $\theta_{\scriptscriptstyle S}$ and $\theta_{\scriptscriptstyle P}$ are 45° apart

The planes on which the maximum in-plane shear stresses occur are 45° from the Principal Planes

Find Maximum In-Plane Shear Stress

$$\tau_{nt} = -\left(\frac{\sigma_x - \sigma_y}{2}\right) \sin 2\theta + \tau_{xy} \cos 2\theta$$

Similar to before, substituting the angle functions for:

$$\tan 2\theta_s = -\frac{\sigma_x - \sigma_y}{2\tau_{xy}}$$

Yields

$$\tau_{nt} = \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

$$\tau_{MAX} = \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}$$

Maximum In-Plane Shear Stress

$$\tau_{MAX} = \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}$$

Recall Principal Stresses

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

$$\sigma_{1} - \sigma_{2} = 2\sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}$$

$$\tau_{MAX} = \left(\frac{\sigma_1 - \sigma_2}{2}\right)$$

The maximum in-plane shear stress equals ½ the difference of the two in-plane principal stresses

Worksheet:

Georgia Tech

For the stress block shown:

Find:

- a) The principal stresses
- b) The maximum in-plane shear stress

Worksheet Solution:

For the stress block shown: Find:

- a) The principal stresses
- b) The maximum in-plane shear stress

$$\sigma_{1}, \sigma_{2} = \frac{\sigma_{x} + \sigma_{y}}{2} + \sqrt{(\sigma_{x} - \sigma_{y})^{2} + \sigma_{xy}^{2}}$$

$$\sigma_{1}, \sigma_{2} = \frac{2000 - 2800}{2} + \sqrt{\left[\frac{2000 - (-2800)}{2}\right]^{2} + (-1000)^{2}}$$

$$\sigma_{1} = 2200 \quad psi \quad (T) \qquad \sigma_{2} = 3000 \quad psi \quad (C)$$

$$\sigma_{1} = 2200 \quad psi \quad (T) \qquad \sigma_{2} = 3000 \quad psi \quad (C)$$
ANS
$$\tau_{MAX} = \left(\frac{\sigma_{1} - \sigma_{2}}{2}\right) = \left(\frac{2200 - (-3000)}{2}\right) = 2600 \quad psi$$
ANS
$$\tau_{MAX} = \left(\frac{\sigma_{1} - \sigma_{2}}{2}\right) = \left(\frac{2200 - (-3000)}{2}\right) = 2600 \quad psi$$
ANS

