Université Mohammed V Faculté des Sciences Département d'Informatique

Cours M6 pour SMIA Introduction à l'Informatique

M. El Marraki

N. El Khattabi

2020 - 2021

Cours N°9

Sommaire

- I. La Filière SMIA (SMI / SMA)
- II. Histoire de l'informatique et Structure des ordinateurs
- III. Histoires des Langages de programmation
- IV. Algèbre de Boole

v. Le codage

- Introduction
- Système de numération décimale, binaire, octale et hexadécimale
- Codage des nombres entiers
- Codage des nombres réels
- Codage des caractères
- Codages des images et du son
- VI. Le langage HTML

Conversion décimale - IEEE754 (Codage d'un réel)

Nombre positif, donc SM = 0

$$35,5_{(10)} = 100011,1_{(2)}$$
 (virgule fixe)
= $1,000111.2_{(2)}^{5}$ (virgule flottante)
 $E_b = E + 127 = 5 + 127$, donc $E_b = 132$

$$1,M = 1,000111 \text{ donc } M = 00011100...$$

Conversion décimale - IEEE754 (Codage d'un réel)


```
-240.125_{(10)} = ?_{(SP)}
Nombre négatif, donc SM = 1
  240,125_{(10)} = 11110000,001_{(2)} (virgule fixe)
               0,125 \times 2 = 0,25 \rightarrow 0
                0.25 \times 2 = 0.5 \rightarrow 0
                 0.5 \times 2 = 1.0 \rightarrow 1
 240,125_{(10)} = 1,1110000001 \cdot 2_{(2)}^{7} (virgule flottante)
Exposant : E_b = 127+7 = 134 = 128 + 6 = 10000110_{2}.
SM
```

Conversion IEEE754 - décimale (Évaluation d'un réel)

0100000111100000000000000000_(SP)

Conversion IEEE754 - décimale (Évaluation d'un réel)

1 10000101 10011111000000000000000

```
E_b = 10000101_2 = 128 + 5 = 133,
donc E = 133 - 127 = 6
x = -1,100111111 \cdot 2^6 = -1100111,111
11001111_2 = 103 \text{ et } 0,11_2 = 0,75
donc x = -103,75
```

Convertir le nombres réel -193.125 dans le format IEEE 754 simple précision.

Le nombre est négatif donc SM=1 $193 = 96x2+1 = 3x64+1 = 11_{2}x1000000_{2}+1_{2}$ =11000001₂ $0,125=0,001_2$ ($0,125\times2=0,25 \rightarrow 0$ $0.25 \times 2 = 0.5 \rightarrow 0$ $0.5 \times 2 = 1.0 \rightarrow 1$ $193,125 = 11000001,001_2 = 1,1000001001x2^7$ $E_b = 7 + 127 = 134 = 10000110_2$ -193,125 = 1 10000110 100000100100...0

Conversion IEEE754 - décimale (Évaluation d'un réel)

$$E_b = 011111101_2 = 125,$$
donc $E = E_b - 127 = 125 - 127 = -2$
 $x = -1, 10101 \cdot 2^{-2}$
 $= -0,0110101_2 = -(2^{-2} + 2^{-3} + 2^{-5} + 2^{-7})$
 $= -0,4140625$

Sommaire

- I. La Filière SMIA (SMI / SMA)
- II. Histoire de l'informatique et Structure des ordinateurs
- III. Histoires des Langages de programmation
- IV. Algèbre de Boole

v. Le codage

- Introduction
- Système de numération décimale, binaire, octale et hexadécimale
- Codage des nombres entiers
- Codage des nombres réels
- Codage des caractères
- Codages des images et du son
- VI. Le langage HTML

V. Le codage

Introduction
Système d'énumération
Codage des nombres réels
Codage des caractères

Caractères : Alphabétique (A-Z, a-z), numérique (0,..., 9), ponctuation, spéciaux (&, \$, %,...) ... etc.

Données non numérique (addition n'a pas de sens)

Comparaison ou tri → très utile

Codage revient à créer une Table de correspondance entre les caractères et des nombres.

Codage des caractères Les standards

Code (ou Table) **ASCII** (American Standard Code for Information Interchange)

- 7 bits pour représenter 128 caractères (0 à 127)
- 48 à 57 : chiffres dans l'ordre (0,1,...,9)
- 65 à 90 : les alphabets majuscules (A ,..., Z)
- 97 à 122 : les alphabets minuscule (a ,..., z)

Codage des caractères Les standards

Table ASCII Etendu

- 8 bits pour représenter 256 caractères (0 à 255)
- Code les caractères accentués : à, è,...etc.
- Compatible avec ASCII

Code Unicode (mis au point en 1991)

- 16 bits pour représenter 65 536 caractères (0 à 65 535)
- Compatible avec ASCII
- Code la plupart des alphabets : Arabe, Chinois,
- On en a défini environ 50 000 caractères pour l'instant

Code ASCII Etendu

OE CIMAL VALUE	•	0	16	32	48	64	80	96	112	128	144	160	176	192	208	224	240
-	DE CIMAL VALUE	0	ı	2	3	4	5	6	7	8	9	А	В	C	D	E	F
0	0	BLANK	-	SP	0	@	P	٤	p	Ç	É	á				∞	=
l	1		1		1	A	Q	a	q	ü	8	í				β	土
2	2	•	1	11	2	\mathbf{B}	R	b	r	é	Æ	ó	***		П	Ι,	\geq
3	3	*	!!	#	3	C	S	С	S	â	ŶO	ú				π	\leq
4	4	♦	TP	\$	4	D	T	d	t	ä	:0	ñ				Σ	
5	5	*	8	%	5	E	U	e	u	à	ò	Ñ			F	σ	\mathcal{J}
6	6	^	-	&	6	F	V	f	V	å	û	<u>a</u>			П	Դ	÷
7	7	BEL	1	,	7	G	W	g	w	Ų	ù	Ō	П			τ	\approx
8	8	BS	1	(8	H	X	h	x	ê	ÿ	ં				Φ	. O
9	9	НТ	Ţ)	9	I	Y	i	У	ë	Ö					Ө	•
10	Α	LF		*	• •	J	Z	j	Z	è	Ü					Ω	•
11	В	VT	•	+	•	K	[k	{	1	¢	1/2				δ	7
12	C	FF	FS	,	\ \	L	\	1	1	î	£	1/4				8	n
13	D	CR	GS		=	M]	m	}	ì	¥	i				φ	2
14	Ε	47	RS	•	>	7	^	n	7	Ä	R	~ <				\in	
1.5	F	ф	US	/	?	O		O	Δ	Å	£	>>				\cap	91 AWK

Unicode

پ 0880	<u>ځ</u>	640 لـ در د	S	\$ 0500	ې ‱	.∴ 0680	06FD
خ 0681	ر 0691	و 06A1	ھَ کُ	4 0601	دي 65	€ 06E1	\ 06F1
<u>ځ</u>	ز 0092	y 8	ڀ کا	\$ 8602	J 882	-(` 88	∀ 06FZ

E 0404	Д	Ф 0424	Д 0434	ф	€ 0454	E	V 0474
S	E 0415	X 0425	e 0435	X 0445	S 0455	Æ □485	V 0475
I 0406	Ж	Щ 0426	Ж	Щ 0445	i 0456	A 0466	$\overset{\sim}{\mathrm{V}}_{_{0476}}$

** 2600	261D	9-50 9-60 2620	2630	Q	₹ 2650	\$ 2660
•	[]	Z	Ш	Q+	У,	8
2601	2612	2622	2631	2641 O ⁷ 2642	2651 2652	2661 \$\bigc\} 2662

Caractères codés en ASCII Etendu (8 bits)

INFORMATIQUE

Entiers codés en binaire pur sur 1 octets

```
73; 78; 70; 79; 82; 77; 65; 84; 73; 81; 85; 69 (base 10)
```


Entiers codés en binaire pur sur 2 octets

01001001 01001110 01000110 01001111 **01010010 01001101** 01000001 01010100 **01001001 01010001** 01010101 01000101

```
18766; 17999; 21069;
```

16724; 18769; 21829 (base 10)

Entiers codés en binaire pur sur 4 octets

```
1 229 866 575;
1 380 794 708;
1 230 067 013 (base 10)
```


Nombres en flottant simple précision (32 bits)

01000001 01010100 01001001 01010001 01010101 01000101

```
+(1,10011100100011001001111).2^{19};
+(1,10011010100000101010100).2^{37};
+(1,1010001010101010101010101).2^{19};
      844 900,9375;
       220 391 079 936;
      857 428,3125 (base 10)
```


Codage de la musique

Signal analogique

Définition

Un signal **analogique** est un signal **continu** au cours du temps.

Définition

Un signal **numérique** est une suite de 0 et de 1 logiques.

$$F_e = \frac{1}{T_e}$$

Pour que le signal puisse être entièrement reconstruit à partir des échantillons, il faut et il suffit que : La fréquence d'échantillonnage doit être strictement supérieure à deux fois la plus grande fréquence présente dans le spectre du signal continu (condition de Nyquist-Shannon).

$$F_e \ge 2F_{Max}$$

Codé sur 2 bits :

On obtient les correspondances:

tension (V)	Décimal	Binaire
0	0	00
1,25	1	01
2,5	2	10
3,75	3	11

On obtient

Fin du cours