

The building blocks of deep learning models - part 1

A light overview

Filippo Biscarini Senior Scientist CNR, Milan (Italy) Nelson Nazzicari Research fellow CREA, Lodi (Italy)

Deep learning: the building blocks

- 1. Function approximation
- 2. The neural network model:
 - a. the "neuron"
 - b. the network
- 3. Activation functions
- 4. Cost functions
- 5. Gradient descent (and solvers/optimizers)
- 6. Forward propagation and the backward propagation algorithm

This session

Through the logistic regression example

Function approximation

Function approximation?

unknown function that maps input data to output results (answers):

$$y = f(x) \leftarrow [mapping function] =$$

Function approximation?

unknown function that maps input data to output results (answers):

$$y = f(x)$$
 ← [mapping function]

- learn this function → function approximation
- f(x) can be nonlinear and quite complex

Function approximation - intuition

- (known) quadratic function (blue line)
- approximated with a neural network model [2 hidden layers with 10 nodes each] (orange line)

The universal approximation theorem

neural networks can approximate **any function**: "no matter what the function, there is guaranteed to be a neural network so that for every possible input, x, the value f(x) (or some close approximation) is output from the network"

- naming a piece of music based on a short sample of the piece
- predicting a future phenotype (e.g. disease risk) from genomic data
- translating an Italian text into English (many possible functions, since there are often many acceptable translations of a given text)

powerful learning algorithms + universality → success of DL!

Function approximation

- NNs are goodexcellent at finding functions that accurately map x to y
- deep neural networks (NNs) are powerful function approximators

$$y = f(x)$$

¡complex highly non-linear functions can lead to problems with generalization!

The neural network model

- Mc Culloch & Pitts (1943)
- **perceptron** ("neuron"):
 - dendrites
 - neuron
 - axon

- Mc Culloch & Pitts (1943)
- perceptron ("neuron"):
 - dendrites
 - neuron
 - axon

- Mc Culloch & Pitts (1943)
- **perceptron** ("neuron"):
 - dendrites
 - neuron
 - axon

- Mc Culloch & Pitts (1943)
- perceptron ("neuron"):
 - dendrites
 - neuron
 - axon
- learning the weights

- e.g. linear combination of weights*features + bias
- fancy way to perform linear regression
- solved through NN rather than OLS or ML

Anatomy of a neural network

- two-layer NN (not strictly "deep"):
 - input layer: [0]
 - hidden layer: [1]
 - output layer: [2]

IMPORTANT!

- each hidden unit takes in input all x features
- replicates the predictive model as many times as there are units ("neurons")
- if the approximated function is linear regression, each unit will fit a different linear regression model
 - e.g.: 3 units → 3 regression models

IMPORTANT!

- each hidden unit takes in input all x features
- replicates the predictive model as many times as there are units ("neurons")
- if the approximated function is linear regression, each unit will fit a different linear regression model
 - e.g.: 3 units \rightarrow 3 regression models

- two-layer NN (not strictly "deep"):
 - input layer: [0]
 - hidden layer: [1]
 - output layer: [2]
- all features connected to all "neurons" in the hidden layer
- the NN will decide which variables to use (and how) in each node (by learning the weights)

Activation functions

Activation functions: what?

g(z): activation function

Activation functions: what?

"neuron" (unit)

- g(z): activation function
- the unit actually processes both the combination of weights and features and the activation function
- the output can be i) the final prediction, or ii) the intermediate output of a hidden layer

Activation functions: when and where?

- when: each time a unit is activated: input data (initial features, intermediate output) is processed and output is transferred to the next layer (or final output) through an activation function
- where: hidden layers and output layer

Activation functions: which one?

- Identity function
- Logistic function
- Hyperbolic tangent function
- ReLU (Rectified Linear Unit) function
- Softmax function

Activation functions: identity function

- identity function: a.k.a. linear activation function
- returns the value z that comes from the combination of input features and learned weights
- never used, except for the output layer in regression problems

Activation functions: logistic function

Activation functions: logistic function

- historically very popular
- now less popular → problems with gradient descent (solution of the model)
- when z is very large or very small derivatives are close to 0 → slow descent
- still used for the output layer in binary classification problems (and also for specialised hidden layers/units)

Activation functions: tanh

- hyperbolic tangent function
- rescaling of the logistic function:

$$tanh = 2\sigma(2z)-1$$
 [proof here]

 output in [-1,+1], mean 0, ~ "centering of the data"

Activation functions: tanh

- hyperbolic tangent function
- rescaling of the logistic function:

$$tanh = 2\sigma(2z)-1$$
 [proof here]

- output in [-1,+1], mean 0, ~ "centering of the data"
- more efficient learning in the intermediate hidden layers
- still suffers from similar limitations as $\sigma(z)$ when z is very large or small
- used in specialized layers/units (e.g. RNN)

Activation functions: ReLU

- derivative is 0 for z < 0, 1 for z > 0
- most common activation function (default choice in many cases)
- much faster and efficient learning of DL models

Activation functions: ReLU

Pros of ReLU activation:

- easy to compute
- sparse representation: many output values will be exactly 0 (unlike sigmoid and tanh, which tends asymptotically to 0)
 - reduces vanishing gradients → faster learning (training of multi-layered NNs)
 - → ReLU is one of the ingredients that made deep learning possible

Activation functions: leaky ReLU

- uses a slight slope for z < 0
- can help when there are too many flat neurons (0 slopes, "dying neurons"), e.g.:
 - large negative bias
 - learning rate is too large

Activation functions: softmax

- returns a probability distribution over the target classes in a multiclass classification problem
- k classes
- negative inputs converted to non-negative values (exponential function)
- each output will be in the interval [0,1]
- same denominator → normalization (sum to 1)
- Softmax is used in the output layer of multinomial classification problems
- Softmax is differentiable → backpropagation for optimization of the weights (parameters of the deep learning model)

Activation functions: why not linear?

- the linear (identity) activation function is never used: why?

Activation functions: why not linear?

- the linear (identity) activation function is never used: why?
- has to do with function approximation: NNs (deep learning) are excellent at finding complex non-linear relationships in the data (e.g. between features and target variables)
- with the identity activation function, the intermediate output of each layer will just be a linear combination of the input, and so no matter how many hidden layers you have, the final output $\hat{\mathbf{y}}$ will be a **linear combination** of the initial features \mathbf{X}
- deep learning would then just be a very expensive way of doing linear regression!

$$\left\{egin{array}{ll} y_1=w_1x+b_1\ y_2=w_2y_1+b_2 \end{array}
ight.
ightarrow y_2=w_2(w_1x+b_1)+b_2=(w_2w_1)x+(w_2b_1+b_2) \
ight.
ight.
ight.$$