

Data Bases
Functional
dependencies

Laurent D'ORAZIO

Introduction

- Context
 - Constraints that apply to a relation
 - "Functional dependency" most common constraint, generalizing the idea of a key for a relation
- Notes
 - FD are based on knowledge of real word
 - All instances of relation must adhere
- Use cases
 - Data storage and compression
 - Query optimization

Introduction Running example: college application information

Relations

```
Student(SSN, SName, address, HScode, HSname, HScity, GPA, priority)
Apply(SSN, Cname, state, date, major)
```

Note

• priority is determined by GPA

```
GPA >= 18 priority 1
16 <= GPA < 18 priority 2
GPA < 16 priority 3</pre>
```

• Two tuples with same GPA have the same priority

Formalism

- $\forall t, u \in Student: t. gpa = u. gpa \Rightarrow t. priority = u. priority$
- GPA \rightarrow priority

Introduction Functional dependency

• Generalization

- $\forall t, u \in R: t. A = u. A \Rightarrow t. B = u. B$
- $A \rightarrow B$
- $\forall t, u \in R: t[A1, ..., An] = u[A1, ..., An] \Rightarrow t[B1, ..., Bm] = u[B1, ..., Bm]$
- A1, A2, ...An \rightarrow B1, B2, ..., Bm \bar{A}

$ar{A}$	B	C
ā	$\bar{\mathrm{b}}$	c 1
ā	$\bar{\mathrm{b}}$	c 2
	•••	

Running example (1)

Student (SSN, SName, address, HScode, HSname, HScity, GPA, priority)

SSN → Sname

 $SSN \rightarrow address$

HScode → HSname, HScity

HSname, HScity → HScode

 $SSN \rightarrow GPA$

 $GPA \rightarrow priority$

 $SSN \rightarrow priority$

SSN	SName	address	HScode	HSname	HScity	GPA	priority
1001	Alice	Lannion	HS01	Le Dantec	Lannion	18	1
1002	Bob	Paris	HS02	Montaigne	Paris	15	3
1003	Claire	Venissieu	HS03	Hugo	Lyon	17	2
1004	David	Trégastel	HS01	Le Dantec	Lannion	16	2
1005	Emma	Marseilles	HS04	Descartes	Marseilles	14	3

Running example (2)

```
Apply(SSN, Cname, state, date, major)
cName → date
SSN, cName -> major
SSN → state
```


FD and keys

- Definition
- \bar{A} is a key
- 😂
- Relations with no duplication
- $\bar{A} \rightarrow all \ attributes$

$ar{A}$	B	
ā	b	
ā	b	-
•••		

FD Definitions (1)

- Trivial FD
- $\bar{A} \longrightarrow \bar{B}$
- $\bar{B} \subseteq \bar{A}$
- Example
 - HSname, HScity → HSname

SSN	SName	address	HScode	HSname	HScity	GPA	priority
1001	Alice	Lannion	HS01	Le Dantec	Lannion	18	1
1002	Bob	Paris	HS02	Montaigne	Paris	15	3
1003	Claire	Venissieu	HS03	Hugo	Lyon	17	2
1004	David	Trégastel	HS01	Le Dantec	Lannion	16	2
1005	Emma	Marseilles	HS04	Descartes	Marseilles	15	3

FD Definitions (2)

- Nontrivial FD
- $\bar{A} \longrightarrow \bar{B}$
- $\bar{B} \nsubseteq \bar{A}$

Source: Jennifer Widom, Stanford

- Example
- HSname, HScity → Hsname, HScode

SSN	SName	address	HScode	HSname	HScity	GPA	priority
1001	Alice	Lannion	HS01	Le Dantec	Lannion	18	1
1002	Bob	Paris	HS02	Montaigne	Paris	15	3
1003	Claire	Venissieu	HS03	Hugo	Lyon	17	2
1004	David	Trégastel	HS01	Le Dantec	Lannion	16	2
1005	Emma	Marseilles	HS04	Descartes	Marseilles	15	3

FD Definitions (3)

- Completely nontrivial FD
- $\bar{A} \longrightarrow \bar{B}$
- $\overline{A} \cap \overline{B} = \emptyset$

Source: Jennifer Widom, Stanford

- Example
- HScode → HSname, HScity

SSN	SName	address	HScode	HSname	HScity	GPA	priority
1001	Alice	Lannion	HS01	Le Dantec	Lannion	18	1
1002	Bob	Paris	HS02	Montaigne	Paris	15	3
1003	Claire	Venissieu	HS03	Hugo	Lyon	17	2
1004	David	Trégastel	HS01	Le Dantec	Lannion	16	2
1005	Emma	Marseilles	HS04	Descartes	Marseilles	15	3

Rules on FD Splitting rule (1)

Splitting rule

- $\bar{A} \rightarrow B_1 B_2 ... B_m$
- $\bullet \implies$
- $\bar{A} \rightarrow B_i$ for i=1, 2, ..., m.

- SSN → Sname, address
- $\bullet \implies$
- SSN \rightarrow Sname
- SSN → address

SSN	SName	address	HScode	HSname	HScity	GPA	priority
1001	Alice	Lannion	HS01	Le Dantec	Lannion	18	1
1002	Bob	Paris	HS02	Montaigne	Paris	15	3
1003	Claire	Venissieu	HS03	Hugo	Lyon	17	2
1004	David	Trégastel	HS01	Le Dantec	Lannion	16	2
1005	Emma	Marseilles	HS04	Descartes	Marseilles	15	3

Rules on FD Splitting rule (2)

- Question
- Is it possible to split on the left-hand side?
- No!
- Example
 - HSname, HScity → HScode
 - #
 - HSname → HScode

SSN	SName	address	HScode	HSname	HScity	GPA	priority
1001	Alice	Lannion	HS01	Le Dantec	Lannion	18	1
1002	Bob	Paris	HS02	Montaigne	Paris	15	3
1006	Florian	Talence	HS05	Montaigne	Bordeaux	12	4

Rules on FD Combining rule

Combining rule

- $\bar{A} \rightarrow B_i$ for i=1, 2, ..., m
- $\bullet \implies$
- $\bar{A} \rightarrow B_1 B_2 ... B_m$

- SSN → Sname
- SSN → address
- $\bullet \implies$
- SSN → Sname, address

SSN	SName	address	HScode	HSname	HScity	GPA	priority
1001	Alice	Lannion	HS01	Le Dantec	Lannion	18	1
1002	Bob	Paris	HS02	Montaigne	Paris	15	3
1003	Claire	Venissieu	HS03	Hugo	Lyon	17	2
1004	David	Trégastel	HS01	Le Dantec	Lannion	16	2
1005	Emma	Marseilles	HS04	Descartes	Marseilles	15	3

Rules on FD Trivial-dependency rules (1)

- Reminder
 - $\bar{A} \longrightarrow \bar{B}$ when $\bar{B} \subseteq \bar{A}$
- Rule 1
 - $\bar{A} \longrightarrow \bar{B}$
 - $\bullet \implies$
 - $\bar{A} \longrightarrow \bar{A} \cup \bar{B}$
- Example
 - GPA → priority
 - $\bullet \implies$
 - GPA → priority, GPA

SSN	SName	address	HScode	HSname	HScity	GPA	priority
1001	Alice	Lannion	HS01	Le Dantec	Lannion	18	1
1002	Bob	Paris	HS02	Montaigne	Paris	15	3
1003	Claire	Venissieu	HS03	Hugo	Lyon	17	2
1004	David	Trégastel	HS01	Le Dantec	Lannion	16	2
1005	Emma	Marseilles	HS04	Descartes	Marseilles	15	3

Rules on FD Trivial-dependency rules (2)

- Reminder
 - $\bar{A} \longrightarrow \bar{B}$ when $\bar{B} \subseteq \bar{A}$
- Rule 2
 - $\bar{A} \longrightarrow \bar{B}$
 - $\bullet \implies$
 - $\bar{A} \longrightarrow \bar{A} \cap \bar{B}$
- Example
 - HSname, HScity → HScode, Hscity
 - $\bullet \implies$
 - HSname, HScity → HScity

SSN	SName	address	HScode	HSname	HScity	GPA	priority
1001	Alice	Lannion	HS01	Le Dantec	Lannion	18	1
1002	Bob	Paris	HS02	Montaigne	Paris	15	3
1003	Claire	Venissieu	HS03	Hugo	Lyon	17	2
1004	David	Trégastel	HS01	Le Dantec	Lannion	16	2
1005	Emma	Marseilles	HS04	Descartes	Marseilles	15	3

Rules on FD Trivial-dependency rules (3)

- Reminder
 - $\bar{A} \longrightarrow \bar{B}$ when $\bar{B} \subseteq \bar{A}$
- Rule 2 (also implied by splitting rule)
 - $\bar{A} \longrightarrow \bar{B}$
 - $\bullet \implies$
 - $\bar{A} \longrightarrow \bar{A} \cap \bar{B}$
- Example
 - HSname, HScity → HScode, Hscity
 - $\bullet \implies$
 - HSname, HScity → HScity
 - (HSname, HScity → HScode)

SSN	SName	address	HScode	HSname	HScity	GPA	priority
1001	Alice	Lannion	HS01	Le Dantec	Lannion	18	1
1002	Bob	Paris	HS02	Montaigne	Paris	15	3
1003	Claire	Venissieu	HS03	Hugo	Lyon	17	2
1004	David	Trégastel	HS01	Le Dantec	Lannion	16	2
1005	Emma	Marseilles	HS04	Descartes	Marseilles	15	3

Rules on FD Transitive rule (1)

- Transitive rule
 - $\bar{A} \longrightarrow \bar{B}$
 - $\overline{B} \longrightarrow \overline{C}$
 - $\bullet \implies$
 - $\overline{A} \longrightarrow \overline{C}$
- Demonstration

$ar{A}$	$\overline{\mathrm{B}}$	C	$\overline{\mathrm{D}}$
ā	b	c	
ā	b	c	

Rules on FD Transitive rule (2)

Transitive rule

- $\bar{A} \longrightarrow \bar{B}$
- $\overline{B} \longrightarrow \overline{C}$
- $\bullet \implies$
- $\overline{A} \longrightarrow \overline{C}$

• Example

- SSN \rightarrow GPA
- GPA \rightarrow priority
- $\bullet \implies$
- SSN \rightarrow priority

SSN	SName	address	HScode	HSname	HScity	GPA	priority
1001	Alice	Lannion	HS01	Le Dantec	Lannion	18	1
1002	Bob	Paris	HS02	Montaigne	Paris	15	3
1003	Claire	Venissieu	HS03	Hugo	Lyon	17	2
1004	David	Trégastel	HS01	Le Dantec	Lannion	16	2
1005	Emma	Marseilles	HS04	Descartes	Marseilles	15	3

Closure of attributes Definition and notation

- Definition
 - Given a relation, FDs and a set of attributes $ar{A}$
- Set of all attributes B such that $\bar{A} \longrightarrow B$
- Notation
 - \bar{A}^{+}

Closure of attributes Example 1

- Example
 - A \longrightarrow C, D
 - $C \longrightarrow E$

```
Start with {A1, ..., An} Repeat until no change  if \ A \longrightarrow B \ and \ A \ in \ set \ then \ add \ B \ in \ set
```

- {A1, ..., AN, C, D}
- {A1, ..., AN, C, D, E}

Closure of attributes Example 2

- FDs
- SSN \rightarrow sName, address, GPA
- GPA \rightarrow priority
- HScode → HSname, HScity
- Closure of {SSN, HScode}, {SSN, HScode}⁺
 - {SSN, HScode, sName, address, GPA} with SSN → sName, address, GPA
 - {SSN, HScode, sName, address, GPA, priority} with GPA → priority
 - {SSN, HScode, sName, address, GPA, priority, Hsname, HScity} with HScode → HSname, HScity
 - Thus {SSN, HScode}+ = all attributes
 - Thus {SSN, HScode} is a key

Closure and keys

- Is \overline{A} a key for R?
 - Compute \bar{A}^+
- If \bar{A}^+ = all attributes then \bar{A} is a key
- How can we find all keys given a set of FDs?
 - Consider every subsets of attributes and check if they determine all attributes
 - Start with single attribute

Specifying FDs for a relation (1)

- Definition
- S₁ and S₂ sets of FDs
- S₂ follows from S₁ if every relation instance satisfying S₁ also satisfies S₂
- Example
- S_2 : {SSN \rightarrow priority}
- S_1 : {SSN \rightarrow GPA, GPA \rightarrow priority}
- S₂ follows from S₁

Specifying FDs for a relation (2)

- Questions
- How to test (that S₂ follows from S₁)?
- Does $\overline{A} \rightarrow \overline{B}$ follow from S?
- Method 1
 - Compute \bar{A}^+ based on S check if B in set
- Method 2
 - Armstrong's axioms

Specifying FDs for a relation (3)

- Questions
- How to test (that S₂ follows from S₁)?
- Does $\overline{A} \rightarrow \overline{B}$ follow from S?
- Method 1
 - Compute \bar{A}^+ based on S check if B in set
- Example
 - S_1 : {SSN \rightarrow GPA, GPA \rightarrow priority}
 - S_2 : {SSN \rightarrow priority}
 - SSN⁺ based on S₁ = {SSN, GPA, priority}
 - Priority is in SSN⁺ based on S₁
 - S₂ follows from S₁

Specifying FDs for a relation (4)

- Questions
 - How to test (that S₂ follows from S₁)?
 - Does $\overline{A} \rightarrow \overline{B}$ follow from S?
- Method 2
 - Armstrong's axioms
- Example
 - S_1 : {SSN \rightarrow GPA, GPA \rightarrow priority}
 - S_2 : {SSN \rightarrow priority}
 - Transitivity rule: SSN \rightarrow GPA and GPA \rightarrow priority thus SSN \rightarrow priority
 - S₂ follows from S₁

Specifying FDs for a relation (5)

- Objective
 - Minimal set of completely nontrivial FDs such that all FDs that hold on the relation follow from the dependencies in this set

BCNF decomposition algorithm (1)

- Input
 - Relation R
 - FSs for R
- Output
 - Decomposition of R intro BCNF relations

Algorithm

```
Compute keys for R

Repeat until all relations are in BCNF:

Pick any R' with A -> B that violates BCNF

Decompose R' into R1(A,B) and R2(A, rest)

Compute FDs for R1 and R2

Compute keys for R1 and R2
```


BCNF decomposition algorithm (2)

```
Student (SSN, HScode, SName, address, HSname, HScity, GPA, priority)
SSN \rightarrow SName, address, GPA, priority
HScode → HSname, HScity
GPA \rightarrow priority
1NF?
Yes
2NF?
No
SSN \rightarrow SName, address, GPA, priority
and
\mathsf{HScode} \rightarrow \mathsf{HSname}, \mathsf{HScity}
```


BCNF decomposition algorithm (3)

```
Step 1
Student (SSN, HScode, SName, address, HSname, HScity, GPA, priority)
with SSN \rightarrow SName, address, GPA, priority
StudentInfo(SSN, Sname, address, GPA, priority)
GPA \rightarrow priority
2NF? No
StudentRest (SSN, HScode, HSname, HScity)
\mathsf{HScode} \rightarrow \mathsf{HSname}, \mathsf{Hscity}
2NF? No
```


BCNF decomposition algorithm (4)

```
Step 2
StudentRest(SSN, HScode, HSname, HScity)
With HScode → HSname, HScity

HighSchool(HScode, HSname, HScity)
HScode → HSname, Hscity
2NF? Yes 3NF? Yes BCNF? Yes

HSRest(SSN, HScode)
2NF? Yes 3NF? Yes BCNF? Yes
```


BCNF decomposition algorithm (5)

```
Step 3
StudentInfo(SSN, Sname, address, GPA, priority)
with GPA → priority

GPAandPriority(GPA, priority)
2NF? Yes3NF? Yes BCNF? Yes

StudentInfo2(SSN, Sname, address, GPA)
2NF? Yes 3NF? Yes BCNF? Yes
```


BCNF decomposition algorithm (6)

Example

Synthesis

HighSchool(<u>HScode</u>, HSname, HScity)

Application (<u>SSN, HScode</u>)

GPAandPriority(GPA, priority)

Student(SSN, Sname, address, GPA)

HScode	HSname	HScity
HS01	Le Dantec	Lannion
HS02	Montaigne	Paris
HS03	Hugo	Lyon
HS04	Descartes	Marseilles

SSN	HScode	GPA	priority
1001	HS01	18	1
1002	HS02	15	3
1003	HS03	17	2
1004	HS01	16	2
1005	HS04	14	3

SSN	SName	address	GPA
1001	Alice	Lannion	18
1002	Bob	Paris	15
1003	Claire	Venissieu	17
1004	David	Trégastel	16
1005	Emma	Marseilles	14

Bibliography

• Database Systems: The Complete Book: International Edition: Garcia-Molina, Hector, Ullman, Jeffrey D., Widom, Jennifer

Questions?

