Seminario 2. Representación de información multimedia.

TECNOLOGÍA Y ORGANIZACIÓN DE COMPUTADORES

1º Grado en Ingeniería Informática.

Seminario 2. Representación de información multimedia.

RFSUMFN:

- En este seminario trata de cómo se representa la información en el interior de los computadores.
- Se va a considerar la representación de la información multimedia, es decir, textos, sonidos, imágenes y vídeos.
- Para poder comprender esta representación, es necesario conocer previamente los sistemas de numeración desde el punto de vista de su aplicación en informática, tal y como se ha visto en el Seminario 1.

OBJETIVOS:

 Conocer las distintas formas básicas de representación de la información multimedia en un computador.

Seminario 2. Representación de la información multimedia en los computadores.

CONTENIDOS:

- 1. Introducción
- 2. Representación de textos
- 3. Representación de sonidos
- 4. Representación de imágenes
- 5. Representación de video

BIBLIOGRAFÍA:

[PRI05]: Capítulo 2 (excepto algoritmos de compresión)

[PRI06]: Capítulo 4 (excepto algoritmos de compresión)

Seminario 2. Representación de la información multimedia en los computadores.

Contenidos:

1. Introducción

- 2. Representación de textos
- 3. Representación de sonidos
- 4. Representación de imágenes
- 5. Representación de video

- Un computador es una máquina que procesa, memoriza y transmite información.
- La información se representa en el interior de la máquina de acuerdo con un código binario.
- La información se utiliza principalmente bajo las formas de:
 - Textos
 - Sonidos
 - Imágenes
 - Vídeos
 - Valores numéricos

COMPRESIÓN

Un **CODEC** (COmprime ó COdifica/DEsComprime ó DECodifica): es software, hardware o mezcla de ambos que codifica en binario las muestras de la señal según el formato del fichero de salida y aplica un algoritmo de compresión (si es el caso), y a la inversa.

¿Qué quiere decir una compresión de 3:1? (fc:1)

Esta expresión indica que la capacidad antes (C.)

Esta expresión indica que la capacidad antes (C_a) es 3 veces la de después de comprimirlo (C_d) .

factor de compresión
$$\rightarrow$$
 $f_C = \frac{C_a}{C_d}$

Otra forma de representar la compresión es mediante el porcentaje de compresión:

porcentaje de compresión
$$\Rightarrow p_C = \left[1 - \frac{C_d}{C_a}\right] \cdot 100 \% = \left[1 - \frac{1}{f_C}\right] \cdot 100 \%$$

NOTA: Sólo para estos dos conceptos, seguir lo indicado en esta transparencia, independientemente de lo indicado en [PRI05] o [PRI06].

• Ejercicios:

- S 2.49 ¿Qué factor de compresión habría que utilizar para grabar Rigoletto de Giuseppe Verdi en un disquete de 1,44 MBytes?; ¿y en un CD de 600 MBytes?, ¿y en dos CD? (Ayuda: la versión a grabar de la opera indicada tiene una duración de 1 hora 55 minutos, el fichero está en calidad CD estéreo).
- S 2.47 ¿Qué tamaño ocuparía un archivo de imagen de 2,5
 Mbytes si se utilizase un algoritmo básico compresión JPEG?
 (Ayuda: compresión básica JPEG 2:1)
- S 2.48 ¿Qué tamaño ocuparía un archivo de sonido de 2,5
 Mbytes si se utilizase un algoritmo básico compresión MP3?
 (Ayuda: compresión típica MP3 12:1)

Nota: Sx se refiere a los problemas que aparecen en el libro [PRI05]

Seminario 2. Representación de la información multimedia en los computadores.

Contenidos:

- 1. Introducción
- 2. Representación de textos
- 3. Representación de sonidos
- 4. Representación de imágenes
- 5. Representación de video

- La información se suele introducir en el computador utilizando el lenguaje escrito:
 - Caracteres alfabéticos: {A, B, C, D, E,..., X, Y, Z, a, b, c, d,..., x, y, z}
 - Caracteres numéricos: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
 - Caracteres especiales: símbolos no incluidos en los grupos anteriores. Por ejemplo: $\{\ \ \ \ \ \ \ \ \ \ \ \ \ \}$: + \tilde{N} \tilde{n} =
 - Caracteres geométricos y gráficos:

$$\bullet \bullet \bullet \alpha \beta \cap J \vdash \Sigma$$

 Caracteres de control: representan órdenes de control, como salto de línea, sincronización de una transmisión, pitido en un terminal, etc.

 En el ordenador toda la información se almacena en forma de 0s y 1s, así que hay que traducir ó codificar ó establecer una correspondencia entre los dos conjuntos:

$$\alpha = \{A, B, C, D, \dots, Z, a, b, \dots, z, 0, 1, 2, 3, \dots, 9, /, +, (,), \dots\} \rightarrow \beta = \{0, 1\}^n$$

de forma tal que a cada elemento de α le corresponda un elemento distinto de β .

 Si tenemos que codificar o traducir un conjunto de m símbolos (α) ¿cuántos bits, n, necesitaremos?

$$2^{n-1} < m \le 2^n$$

También se puede calcular con

$$n \ge \log_2(m) = 3.32 \log(m)$$

Ejemplo: si se tiene un teclado de m = 100 teclas ¿cuántos bits (n) se necesitan para codificarlo?.

Con n=7 se pueden codificar $2^7 = 128$ teclas, sin embargo con $2^6 = 64$ es insuficiente.

$$64 = 2^{7-1} < 100 \le 128 = 2^7$$

- Los códigos que llevan a cabo esta codificación se denominan códigos de E/S o códigos externos o códigos-texto, y pueden definirse de forma arbitraria.
- No obstante, existen códigos de E/S normalizados que son utilizados por diferentes constructores de computadores. Por ejemplo: BCD de intercambio normalizado, Fieldata, EBCDIC, ASCII, etc.

- Código ASCII (American Standard Code for Information Interchange).
 - La mayor parte de las transmisiones de datos entre dispositivos se realizan en esta codificación.
 - Hay distintas versiones.
 - La versión ASCII ANSI-X3.4 (1968) utiliza 7 bits y ha sido de los más usuales.
 - Existen numerosas versiones ampliadas que utilizan 8 bits y respetan los códigos del ASCII básico.
 - Los caracteres utilizados en Europa Occidental son los del ASCII ampliado Latin-1.

ASCII (Ampliaciones)

Denominación	Estándar	Área geográfica
Latín-1	ISO 8859-1	Europa Occidental (España, Alemania, etc.)
Latín-2	ISO 8859-2	Europa central y del este
Latín-3	ISO 8859-3	Europa sur, maltés y esperanto
Latín-4	ISO 8859-4	Europa norte
Alfabeto latín/cirílico	ISO 8859-5	Lenguajes eslavos
Alfabeto latín/árabe	ISO 8859-6	Lenguajes arábigos
Alfabeto latín/griego	ISO 8859-7	Griego moderno
Alfabeto latín/hebraico	ISO 8859-8	Hebreo y Yiddish
Latín-5	ISO 8859-9	Turco
Latín-6	ISO 8859-10	Nórdico (Sámi, Inuit e islandés)
Alfabeto Latín/Thai	ISO 8859-11	Lenguaje Thai
Latín-7	ISO 8859-13	Báltico <i>Rim</i>
Latín-8	ISO 8859-14	Céltico
Latín-9 (alias Latín-0)	ISO 8859-15	Latín 1 con ligeras modificaciones (símbolo €)

							AS	SCI		SO 8	8859	9-1,	Lat	tín 1	1)		
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	Ε	F
		0	1	2	3	4	5	6	1	8	9	10	11	12	13	14	15
00	0	NUL	SOH	STX	ETX	EOT	ENQ	AC K	BEL	BS	HT	LF	VT	FF	CR	so	SI
10	16	DLE	DC1	DC2	DC3	DC4	NA K	SYN	ETB	CA N	EM	SUB	ESC	FS	GS	RS	US
20	32	SP	ļ	11	#	\$	%	&	0	()	*	+	,	-		1
30	48	0	1	2	3	4	5	6	₩	8	9	:	;	<	=	>	?
40	-64	@	A	B	С	D	E	F	G	Н	I	J	K	L	M	И	0
50	80	P	Q	R	S	T	Ū	Ÿ	W	X	Y	Ż	[1]	^	
60	96	` `	a	b	С	d	е	f	\$	h	i	j	k	L	m	n	•
70	112	p	q	r	\$	t	ц	ų	w	Z	У	z	{	1	}	~	DEL
80	128																
90	144																
A0	160		1	¢	£	ð	¥	1 1	ş		0	3	«	-	-	₽	
BO	176	۰	±	2	3	′	h	1			1	۰	»	1/4	1/2	3/4	i
C0	192	À	À	Â	Ã	A	Â	Æ	Ç	È	É	Ê	E	Ì	Í	Î	I
D0	208	Ð	Ñ	Ò	Ó	Ô	Ô	0	×	Ø	Ù	Ú	Û	υ	Ý	¢	ß
EO	224	à	á	â	ã	ā	å	æ	ç	è	é	ક	ė	Ì	í	î	ì

$$G = 40 + 7 = 47)_{16} = 0100 \ 0111)_2$$

- Inconvenientes de los códigos anteriores (sobre todo con Internet):
 - Los símbolos codificados son **insuficientes** para representar los caracteres especiales que requieren numerosas aplicaciones.
 - Los símbolos y códigos añadidos en las versiones ampliadas a 8 bits no están normalizados.
 - Están basados en los caracteres latinos, existiendo otras culturas que utilizan otros símbolos muy distintos.
 - Los lenguajes escritos de diversas culturas orientales, como la china, japonesa y coreana se basan en la utilización de **ideogramas** o símbolos que representan palabras, frases o ideas completas, siendo, por tanto, inoperantes los códigos que sólo codifican letras individuales.

- Unicode (ISO/IEC 10646) es propuesto por un consorcio de empresas y entidades que trata de hacer posible escribir aplicaciones que sean capaces de procesar texto de muy diversas culturas. Trata de conseguir:
 - Universalidad, trata de cubrir la mayoría de lenguajes escritos existentes en la actualidad,
 - Unicidad, a cada carácter se le asigna exactamente un único código y
 - Uniformidad, ya que todos los símbolos se representan con un número fijo de bits (16).
 - http://en.wikipedia.org/wiki/UNICODE

DETECCIÓN DE ERRORES:

- A veces, al codificar, se introducen **redundancias** (bits extras) de acuerdo con algún algoritmo predeterminado par que los códigos pueden ser verificados automáticamente.
- Por ejemplo, en ASCII, se suele incluir un octavo bit de paridad.
- Uno de estos algoritmos añade al código inicial de cada carácter un nuevo bit: el **bit de paridad**. Existen dos criterios para introducir este bit:
 - Bit de paridad, criterio par: se añade un bit (0 ó 1) de forma tal que el número total de unos de código que resulte sea par.
 - Bit de paridad, criterio impar: se añade un bit (0 ó 1) de forma tal que el número total de unos del código que resulte sea impar.

Ejercicios:

- S 2.1 ¿Cuántos bits se necesitarían, como mínimo para codificar un conjunto de 108 caracteres?.
- Un fichero de texto en ASCII Latín 1 ocupa 1 MB. ¿Qué tamaño ocuparía si se pasara a un fichero de texto UNICODE?.
- El siguiente mensaje está escrito en UNICODE (representación interna), el texto que se está transmitiendo: 0050 0045 0050 0045)_H
- S 2.43 Un computador recibe de un terminal los siguientes caracteres ASCII, que contienen un bit de paridad (criterio impar):

Indicar cuáles de estos caracteres deben ser rechazados por ser erróneos.

Seminario 2. Representación de la información multimedia en los computadores.

Contenidos:

- 1. Introducción
- 2. Representación de textos
- 3. Representación de sonidos
- 4. Representación de imágenes
- 5. Representación de video

• ¿Cómo se graba, almacena y reproduce una señal de audio en un computador?

Grabación de una señal de audio:

- 1. Una señal de audio **se capta** por medio de un micrófono que produce una **señal analógica** (señal que puede tomar cualquier valor dentro de un determinado intervalo continuo).
- La señal analógica se amplifica para encajarla dentro de dos valores límites,
 (Ej. Entre –5V y +5V)

- 3. Por medio de un conversor A/D se muestrea y digitaliza
 - Frecuencia de muestreo: Fs (22,05 KHz); periodo de muestreo:

$$T_s = \frac{1}{F_s} = 0.045 \ ms$$

 En la figura: muestras de la 4050 a la 4100 (0,184 a 0,186 segundos)

4. Se codifica/comprime con un **CODEC**

Almacenamiento de la señal de audio:

 La señal de sonido queda representada por una serie de valores binarios (por ejemplo de 8 bits) que corresponden a cada muestra de la señal analógica y que se almacenan en un archivo.

		<u> </u>	<u> </u>
Posición	contenido	posición	contenido
1	2	4057	20
2	2	4058	6
3	2	4059	3
4	2	4060	-23
		4061	-71
		4062	-118
4050	63		l .
4051	58		.
4052	48	19996	1
4053	35	19997	1
4054	29	19998	1
4055	24	19999	1
4056	24	20000	1
		(c)	

- Los valores obtenidos en la conversión (muestras) se almacenan en posiciones consecutivas.
- Metadatos: Antes de las muestras se incluye una cabecera, con información sobre el tipo de fichero y sus parámetros.

- La **calidad y capacidad** necesaria para almacenar una señal de audio dependen de los siguientes parámetros:
 - Frecuencia de muestreo (suficiente para no perder la forma de la señal original)
 - Número de bits por muestra (precisión)
- Tasa de datos o bit-rate (R_{bps}) : $R_{bps} = fs \times N \times canales$

N: bits o Bytes/muestra, fs: frecuencia de muestreo

Aplicación	F _s (KHz)	N B/muestra	Nº de canales	R _{bps} (Kbps)	Capacidad 1 minuto
Telefonía	8	1	1	62,5 Kbps	468,7 KB
Radio AM	11	1	1	85,9 Kbps	644,5 KB
Radio FM	22,05	2	2	689,1 Kbps	5,05 MB
CD	44,1	2	2	1,35 Mbps	10,1 MB
TDT	48	2	2	1,46 Mbps	10,99 MB

FORMATOS DE AUDIO				
Sin compresión	Con compresión			
Sin compresión	Sin pérdidas	Con pérdidas		
Audio-CD, WAV, AU, AIFF,	ALAC, DST, FLAC, LA, LPAC, LTAC, MPL, MPEG-4,	MP1, MP2, MP3, DTS, OGG, WMA, AAC, AC3, ADPCM, 		

PetShopBoys-BlueSky.aiff	41.176 KB	Sonido en formato AIFF
PetShopBoys-BlueSky.au	41.176 KB	Sonido en formato AU
PetShopBoys-BlueSky.mp3	3.731 KB	Sonido en formato MP3
🔳 PetShopBoys-BlueSky.raw	41.175 KB	Archivo RAW
PetShopBoys-BlueSky.wav	41.176 KB	Archivo de sonido
PetShopBoys-BlueSky.wma	3,761 KB	Archivo de audio de Windows Media

Ejercicios:

- S 2.4. Obtener la capacidad necesaria para almacenar 1 minuto de una señal de audio estereofónico con calidad CD.
- S 2.24. ¿Qué tiempo de música en calidad CD estéreo y sin comprimir se puede almacenar en un CD-ROM de 650 MB?, ¿y en un DVD de 4,7 GB?
- S 2.25. En un sistema de audio tetrafónico se muestrean las señales de sonido a una frecuencia de 44,1 KHz, y cada muestra se representa por uno entre 256 niveles posibles. Obtener:
 - El ancho de banda mínimo que necesita el bus que lleva la información de sonido (suponer que la información de los cuatro canales se transmite por un único bus).
 - La capacidad de memoria necesaria para almacenar una

Seminario 2. Representación de la información multimedia en los computadores.

Contenidos:

- 1. Introducción
- 2. Representación de textos
- 3. Representación de sonidos
- 4. Representación de imágenes
- 5. Representación de video

- Las **imágenes** se adquieren por medio de periféricos tales como escáneres, cámaras de video o cámaras fotográficas.
- Una imagen se representa por patrones de bits, generados por el periférico correspondiente.
- Formas básicas de representación:
 - Mapa de bits
 - Mapa de vectores

MAPAS DE BITS

- La imagen se divide en una fina retícula de celdas o elementos de imagen (e.i.) o píxeles (PICTure ELements).
- La resolución es el número de pixeles horizontales x nº pixeles verticales.
- A cada pixel se le asocia un valor, atributo, que se corresponde con su nivel de gris (b/n) o color (RGB), medio en la celda.

 La imagen se memoriza, almacenando de forma ordenada y sucesiva los atributos de los distintos elementos de imagen, precedidos de una cabecera con información sobre la imagen.

La **calidad** de la imagen depende de:

- La resolución y
- Codificación del atributo (número de bits)

La **capacidad** de una imagen en Bytes es:

$$C_{imagen} = \frac{n_{pix/imagen} \cdot n_{bits/pixel}}{8}$$

• Resoluciones usuales para codificar imágenes:

		Resolución
Convencionales	Fax (A4)	(100,200,400)x(200,300,400) pixel/pulgada
	Foto (8" x 11")	128,400,1200 pixel/pulgada
	Videoconferencia	176 x 144 pixel
Televisión	TV	720 x 480 NTSC; 720 x 576 PAL
1 313131	HDTV (alta definición) 16:9	1920 x 1080; 1280 x 720

TV: Resolución en pixeles

Formatos de Mapas de bits:

FORMATOS DE IMÁGENES					
Sin compresión	Con compresión				
	Sin pérdidas	Con pérdidas			
BMP, TIFF	GIF, PNG	JPEG			

Gráficos vectoriales o gráficos orientados a objetos

- Se descompone la imagen en una colección de **objetos** tales como líneas, polígonos y textos con sus respectivos atributos o detalles (grosor, color, etc.) modelables por medio de vectores y ecuaciones matemáticas que determinan tanto su forma como su posición dentro de la imagen.
- Se almacena el código del objeto y sus parámetros (no los puntos)
- Para visualiza una imagen, un programa evalúa las ecuaciones y escala los vectores generando la imagen concreta a ver.
- Ocupa menos que un mapa de bits, y
- Es más rápido hacer cambios de escala y representarlos en pantalla (rastrering).
- Adecuada para gráficos de tipo geométrico (no imágenes reales): CAD/CAM, esquemas, logotipos, etc.

• Ejemplos de imágenes con primitivas geométricas:

Formato	Origen	Descripción
IGES (Initial Ghaphics Exchange Specification)	ASME/ANSI	Estándar para intercambio de modelos y datos CAD (usable en AutoCAD, etc.)
DXF (Document eXchange Format)		Formato original del AutoCAD
PICT (PICTure)	Apple Comp.	Imágenes vectoriales que pueden incluir objetos que son imágenes en mapa de bits
EPS (Encapsulated Poscript)	Adobe Sys.	Ampliación para imágenes del lenguaje de impresión Poscript, con la que se pueden insertar imágenes en distintos formatos como TIFF, WMF, PICT o EPSI
TrueType	Apple comp	Alternativa de Apple y Microsoft para el EPS

Ejercicios:

- S 2.5. Obtener la capacidad de memoria que ocupará una imagen en blanco y negro con una resolución de 640x350 elementos de imagen y con 16 niveles de grises.
- S 2.27. Una pantalla de TV está compuesta de 720 x 480 píxeles, y cada uno de ellos tiene un color elegido en una paleta compuesta de 256 colores. Por otra parte la imagen se actualiza a una velocidad de 30 imágenes/segundo, para dar sensación de movimiento. Determinar:
 - La capacidad de memoria necesaria para almacenar una imagen.
 - El ancho de banda mínimo que necesita el bus que lleva la información de imagen a la pantalla.

Ejercicios:

- S 2.28. Cuántas imágenes BMP (sin compresión) caben en un CD de 600 MB, suponiendo (8 bits de atributo para cada color básico):
 - Resolución VGA (600x480)
 - Resolución SVGA (800x600)
 - Resolución XVGA (1024x768)

Seminario 2. Representación de la información multimedia en los computadores.

Contenidos:

- 1. Introducción
- 2. Representación de textos
- 3. Representación de sonidos
- 4. Representación de imágenes
- 5. Representación de video

 Vídeo: sucesión de imágenes a una determinada frecuencia (fotogramas por segundo, fps), con sonido.

	fps
Imagen en movimiento	15
Cine	24
TV	25 (PAL) 30 (NTFS)
HDTV	60

Todos los formatos de vídeo llevan compresión.

Caudal de datos de las imágenes (bit rate), en (b/s) o bps:

$$R_{bps} = f_{ps} \cdot n_{pixel/imagen} \cdot n_{bits/pixel}$$

 Capacidad (C) ocupada por imágenes de video en función del tiempo (t) en Bytes:

$$C = \frac{f_{ps} \cdot n_{pixel/imagen} \cdot n_{bits/pixel} \cdot t}{8}$$

• Formatos de vídeo:

DV (Digital Video)	Estándar internacional 1996
MPEG (Motion JPEG)	estándar de codificación de audio y vídeo normalizado
MPEG-1, MPEG-2, MPEG-4	estándares ISO evolucionados del MPEG
WMV (Windows media video)	CODEC de Microsoft
DivX	Compresión de audio MP3, codifica y comprime de forma que ocupa un DVD de 80 min.
XviD	CODEC libre basado en MPEG-4
SWF (ShockWaveFlash)	Formato completo para multimedia muy extendido en la web desarrollado por Adobe.

- Los vídeos no sólo contienen imágenes en movimiento sino audio, subtítulos, etc.
- Metafichero: un fichero compuesto por varios ficheros de distintos tipos (audio, vídeo, subtítulos, etiquetas, etc.) así como metadatos con información.
- Contenedor: contiene la descripción de un metafichero.

	Contenedores de vídeo				
MP4	Contenedor del formato MPEG-4				
3GP	Adaptación de MP4 para servicios multimedia UMTS				
AVI	Contenedor de Microsoft (1992)				
ASF	Microsoft. Diseñado para streaming				
FLV	Contenedor de Adobe Flash				
Matroska	Estándar de código abierto				
Ogg	Contendor libre de Xiph.org				
QuickTime	Desarrollado por Apple				

Ejemplo: Uchida conducts Mozart's Piano Concerto 20 Allegro

- Almacenado: Programa: aTube Catcher
 - Duracción: 00:08:42
 - Tamaño: 159 MB
 - Velocidad fotogramas: 30 f/s
 - Velocidad de datos (fotogramas): 193 Kbps
 - Velocidad de datos (audio): 128 kbps
 - Velocidad total de bits: 321 kbps
 - Fotograma: 540 x 360 píxeles
 - Formato: wmv
- Internet (streaming)

http://www.youtube.com/watch?v=3dkK1iw2SMk

- Fotogramas: 640 x 360
- Velocidad media: 487 kbps
- Velocidad de fotogramas: 30 f/s

Ejercicios:

- S 2.30. Qué tiempo se puede almacenar en un CD de 600
 MB:
 - de imágenes de TV (sin compresión) (PAL, 25 imágenes por segundo, 720x576), con 8 bits para cada atributo de color básico
 - de imágenes de HDTV (sin compresión) (60 imágenes por segundo 1920x1080), con 8 bits para cada atributo de color básico.
- Un fichero de video, de 1 minuto de duración, grabado a 24 imágenes por segundo, con una resolución VGA (640x480 y 1 Byte por cada uno de los tres colores básicos). ¿Qué tamaño (expresado en MBytes) ocuparía dicho fichero?.

Seminario 2. Representación de información multimedia.

TECNOLOGÍA Y ORGANIZACIÓN DE COMPUTADORES

1º Grado en Ingeniería Informática.