

Model Predictive Control 6. Stability and Feasibility

Jun.-Prof. Dr.-Ing. Daniel Görges
Juniorprofessur für Elektromobilität
Technische Universität Kaiserslautern

Stability of Model Predictive Control

MPC without Constraints

- Receding horizon controller is an LTI state feedback controller in the unconstrained case
- Stability can thus be addressed based on the eigenvalues of the closed-loop system
- Stability is affected by the parameters N, P, Q and R (cf. Illustrative Example on Slide 4-23ff, 4-35)
- Closed-loop and predicted input and state sequences are identical for $P = P_{LQR}$ and arbitrary N
 (cf. dual mode control on Slide 4-34f)
- Stability is guaranteed for $P = P_{LQR}$ but no formal proof has been given so far

MPC with Constraints

- Receding horizon controller is a nonlinear state feedback controller in the constrained case
- Stability must thus be addressed based on Lyapunov's direct method
- Closed-loop and predicted input and state sequences are not identical for $P = P_{LOR}$ and arbitrary N
- Stability is not guaranteed for $P = P_{\text{LQR}}$ but can be guaranteed with an additional terminal constraint

Illustrative Example

Example from Chapter 4

$$x(0) = (0.5 -0.5)^T$$

$$y(k) = (-1 \quad 1)x(k)$$

Constraint
$$-1 \le u(k) \le 1$$

Prediction horizon N=2

Terminal weight $P = P_{LQR}$

Input weight R = 0.01

Closed-loop system seems stable

Good performance

Illustrative Example

Example from Chapter 4

$$\chi(0) = (0.8 -0.8)^T$$

$$y(k) = (-1 \quad 1)x(k)$$

Constraint
$$-1 \le u(k) \le 1$$

Prediction horizon N=2

Terminal weight $P = P_{LOR}$

Input weight R = 0.01

Closed-loop system unstable

Problem 5.1 is feasible for all k,

i.e. no indication for instability

Illustrative Example

Observation

 $V_N^*(x(k))$ initially increases
Implies that energy stored in the system initially increases
Implies that closed-loop and predicted sequences differ

Conjecture

Stability guaranteed if $V_N^*(x(k))$ is strictly decreasing over time k $V_N^*(x(k))$ is then a Lyapunov fcn.

Stability Condition

Theorem 6.1 The discrete-time linear time-invariant system (4.1) with $x(k) \in \mathbb{R}^n$ and $u(k) \in \mathbb{R}^m$ under the receding horizon control law $u(k) = K_{RHC}x(k)$ is globally asymptotically stable if

- **Q** is positive definite
- **P** is positive definite and chosen such that

terminal cost

$$(A + B\widetilde{K})^{T} P(A + B\widetilde{K}) - P \leq -Q - \widetilde{K}^{T} R\widetilde{K}$$
(6.1)

where \widetilde{K} is an arbitrary matrix fulfilling $\rho(A + B\widetilde{K}) < 1$.

Proof

- Let's consider the optimal cost function $V_N^*(x(k))$ as a Lyapunov function candidate
- The optimal cost function

$$V_N^*(x(k)) = x^{*T}(k+N)Px^*(k+N) + \sum_{i=0}^{N-1} x^{*T}(k+i)Qx^*(k+i) + u^{*T}(k+i)Ru^*(k+i)$$

is positive definite and radially unbounded since

Stability Condition

Proof

$$V_N^*(\mathbf{0}) = 0 \text{ since } \boldsymbol{x}(k) = \mathbf{0} \text{ implies } \boldsymbol{x}^*(k+i) = \mathbf{0} \ \forall i \in \{1, ..., N\}, \boldsymbol{u}^*(k+i) = \mathbf{0} \ \forall i \in \{0, ..., N-1\}$$

$$V_N^*(\boldsymbol{x}(k)) \geq \boldsymbol{x}^T(k) \boldsymbol{Q} \boldsymbol{x}(k) > 0 \ \forall \boldsymbol{x}(k) \in \mathbb{R}^n \backslash \{\mathbf{0}\} \text{ since } \boldsymbol{Q} > \mathbf{0}$$

$$V_N^*(\boldsymbol{x}(k)) \to \infty \text{ as } \|\boldsymbol{x}(k)\| \to \infty$$

- We must still prove that $\Delta V_N^*(x(k)) = V_N^*(x(k+1)) V_N^*(x(k))$ is negative definite
- Consider that at time k we utilize the optimal input sequence

$$\mathbf{U}^{*}(k) = (\mathbf{u}^{*T}(k) \quad \mathbf{u}^{*T}(k+1) \quad \mathbf{u}^{*T}(k+2) \quad \cdots \quad \mathbf{u}^{*T}(k+N-2) \quad \mathbf{u}^{*T}(k+N-1))^{T}$$

- Consider further that at time k+1 we utilize a "shifted" suboptimal input sequence

$$\boldsymbol{U}^{*}(k) = (\boldsymbol{u}^{*T}(k), \boldsymbol{u}^{*T}(k+1), \boldsymbol{u}^{*T}(k+2), \dots, \boldsymbol{u}^{*T}(k+N-2), \boldsymbol{u}^{*T}(k+N-1))^{T}$$

$$\tilde{\boldsymbol{U}}(k+1) = (\boldsymbol{u}^{*T}(k+1), \boldsymbol{u}^{*T}(k+2), \dots, \boldsymbol{u}^{*T}(k+N-2), \boldsymbol{u}^{*T}(k+N-1), \boldsymbol{u}^{*T}(k+N-1$$

Stability Condition

Proof

- Note that the new tail results from the suboptimal state feedback controller $\boldsymbol{u}(k+N)=\widetilde{\boldsymbol{K}}\boldsymbol{x}^*(k+N)$
- The suboptimal cost for the suboptimal input sequence $\widetilde{\boldsymbol{U}}(k+1)$ is given by

$$V_{N}(\boldsymbol{x}(k+1), \widetilde{\boldsymbol{U}}(k+1)) =$$

$$+V_{N}^{*}(\boldsymbol{x}(k), \boldsymbol{U}^{*}(k)) \qquad \text{old optimal cost}$$

$$-\boldsymbol{x}^{*T}(k)\boldsymbol{Q}\boldsymbol{x}^{*}(k) - \boldsymbol{u}^{*T}(k)\boldsymbol{R}\boldsymbol{u}^{*}(k) \qquad \text{old first stage cost} \qquad (6.2)$$

$$-\boldsymbol{x}^{*T}(k+N)\boldsymbol{P}\boldsymbol{x}^{*}(k+N) \qquad \text{old terminal cost} \qquad (6.3)$$

$$+\boldsymbol{x}^{*T}(k+N)(\boldsymbol{Q}+\widetilde{\boldsymbol{K}}^{T}\boldsymbol{R}\widetilde{\boldsymbol{K}})\boldsymbol{x}^{*}(k+N) \qquad \text{new Nth stage cost} \qquad (6.4)$$

 $+x^{T}(k+N+1)Px(k+N+1)$ new terminal cost (6.5)

– Note that the optimal cost and the suboptimal cost at time k+1 are related by

$$V_N^*(x(k+1), U^*(k+1)) \le V_N(x(k+1), \widetilde{U}(k+1))$$

Stability Condition

Proof

- Thus it is sufficient to prove that $V_N(x(k+1), \tilde{U}(k+1)) V_N^*(x(k), U^*(k))$ is negative definite
- To this end the terms (6.2) to (6.5) must be investigated
- The term (6.2) is negative definite
- Thus it is sufficient to prove that the sum of the terms (6.3), (6.4), (6.5) is negative semidefinite, i.e.

$$-x^{*T}(k+N)Px^{*}(k+N) + x^{*T}(k+N)(Q + \widetilde{K}^{T}R\widetilde{K})x^{*}(k+N) + x^{T}(k+N+1)Px(k+N+1) \le 0 \ \forall x(k+N)$$

- Using that $x(k + N + 1) = (A + B\widetilde{K})x^*(k + N)$ leads to

$$\boldsymbol{x}^{*T}(k+N)\left(\left(\boldsymbol{A}+\boldsymbol{B}\widetilde{\boldsymbol{K}}\right)^{T}\boldsymbol{P}(\boldsymbol{A}+\boldsymbol{B}\widetilde{\boldsymbol{K}})-\boldsymbol{P}\right)\boldsymbol{x}^{*}(k+N)\leq\boldsymbol{x}^{*T}(k+N)\left(-\boldsymbol{Q}-\widetilde{\boldsymbol{K}}^{T}\boldsymbol{R}\widetilde{\boldsymbol{K}}\right)\boldsymbol{x}^{*}(k+N)\;\forall\boldsymbol{x}(k+N)$$

- This inequality is fulfilled if (6.1) is fulfilled
- This completes the proof

Stability Condition

Interpretation

- The suboptimal state feedback controller $u(k+N) = Kx^*(k+N)$ evidently corresponds to the stabilizing control law utilized in mode 2 in dual mode control (cf. Slide 4-30)
- The terminal weighting matrix P fulfilling (6.1) is used when solving Problem 4.1
- $-\hspace{0.1cm}$ The suboptimal feedback matrix $\widetilde{\pmb{K}}$ is only introduced for the proof and not used anymore $-\!\!\!\!-\!\!\!\!-\!\!\!\!-$

Remarks

- For an arbitrary $\widetilde{\pmb{K}}$ fulfilling $\rho(\pmb{A}+\pmb{B}\widetilde{\pmb{K}})<1$ we can choose \pmb{P} as the solution $\widetilde{\pmb{P}}$ of the DLE (4.8)
- For $\widetilde{\pmb{K}}=\pmb{K}_{ ext{LQR}}$ we can choose $\pmb{P}=\pmb{P}_{ ext{LQR}}$
- For a globally asymptotically stable discrete-time linear time-invariant system (4.1) we have $\rho(A) < 1$ and can thus choose $\widetilde{K} = \mathbf{0}$ and P as the solution \widetilde{P} of the DLE (4.8)
- $m{Q}$ positive definite can be replaced by $m{(Q^{1/2},A)}$ observable in Theorem 6.1
- Can we formulate a similar stability condition for model predictive control with constraints?

Feasibility Condition

Observations

- The stability condition in Theorem 6.1 in principle also applies to MPC with constraints
- The feasibility must, however, additionally be guaranteed
- Assume that the optimal input sequence $U^*(k)$ and state sequence $X^*(k)$ at time k are feasible
- The suboptimal input sequence and state sequence at time k+1 then obey

$$\widetilde{\boldsymbol{U}}(k+1) = \begin{pmatrix} \boldsymbol{u}^{*T}(k+1) & \boldsymbol{u}^{*T}(k+2) & \cdots & \boldsymbol{u}^{*T}(k+N-1) & \left(\widetilde{\boldsymbol{K}}\boldsymbol{x}^{*}(k+N)\right)^{T} \end{pmatrix}^{T}$$

$$\widetilde{\boldsymbol{X}}(k+1) = \begin{pmatrix} \boldsymbol{x}^{*T}(k+2) & \boldsymbol{x}^{*T}(k+3) & \cdots & \boldsymbol{x}^{*T}(k+N) \end{pmatrix} \qquad \underbrace{\begin{pmatrix} (\boldsymbol{A} + \boldsymbol{B}\widetilde{\boldsymbol{K}})\boldsymbol{x}^{*}(k+N) \end{pmatrix}^{T}}^{T}$$
feasible (by assumption)
$$\text{possibly infeasible}$$

- Impose terminal constraint $x^*(k+N) \in X_N$ to guarantee feasibility
- Note that the terminal constraint is related to mode 2 in dual mode control
- How must we choose the terminal constraint set X_N to guarantee feasibility?

Feasibility Condition

Assumption

- The constraints are time-invariant, i.e. $\mathbb{X}(k+i) = \mathbb{X}$, $\mathbb{U}(k+i) = \mathbb{U} \ \forall i \in \{0, ..., N-1\} \ \forall k \in \mathbb{N}_0$
- E.g. for standard form M(k+i) = M, E(k+i) = E, b(k+i) = b $\forall i \in \{0, ..., N-1\} \ \forall k \in \mathbb{N}_0$

Definition 6.1 A set $\mathbb{S} \subseteq \mathbb{R}^n$ is an invariant set for the discrete-time nonlinear time-invariant system

$$\mathbf{x}(k+1) = \mathbf{f}(\mathbf{x}(k)) \tag{6.6}$$

if

$$x(0) \in \mathbb{S} \Rightarrow f(x(k)) \in \mathbb{S} \ \forall k \in \mathbb{N}_0.$$

Definition 6.2 A set $\mathbb{S} \subseteq \mathbb{R}^n$ is an admissible set for the discrete-time nonlinear time-invariant system (6.6) under the state feedback control law $u(k) = f_{\mathbb{C}}(x(k))$, the state constraint \mathbb{X} and the input constraint \mathbb{U} if

$$x(k) \in \mathbb{S} \Rightarrow (x(k), f_{\mathbb{C}}(x(k))) \in \mathbb{X} \times \mathbb{U}$$

Feasibility Condition

Illustration

Approach

- The terminal constraint set X_N must be constructed such that

$$x^*(k+N) \in \mathbb{X}_N \Rightarrow (x^*(k+N), \widetilde{K}x^*(k+N)) \in \mathbb{X} \times \mathbb{U}$$

 $x^*(k+N) \in \mathbb{X}_N \Rightarrow (A+B\widetilde{K})x^*(k+N) \in \mathbb{X}_N$

admissible set

invariant set

– For the standard form the terminal constraint set \mathbb{X}_N is represented by $\mathbf{M}_N \mathbf{x}(k+N) \leq \mathbf{b}_N$ and must thus be constructed such that

$$M_N x^*(k+N) \le b_N \Rightarrow (M + E\widetilde{K})x^*(k+N) \le b$$

 $M_N x^*(k+N) \le b_N \Rightarrow M_N (A + B\widetilde{K})x^*(k+N) \le b_N$

admissible set

invariant set

Feasibility Condition

Theorem 6.2 Consider Problem 5.1 used for the receding horizon control law $u^*(k)$ according to (5.2). If the terminal constraint set X_N is invariant and admissible for the closed-loop system

$$x(k+1) = (A + B\widetilde{K})x(k)$$

where \widetilde{K} is an arbitrary feedback matrix fulfilling $\rho(A + B\widetilde{K}) < 1$ and Problem 5.1 is feasible for k = 0, then Problem 5.1 is feasible for all k > 0 if the receding horizon control law $u^*(k)$ is used.

Proof

The proof follows immediately from the discussion on the previous slides

Remark

- The invariant and admissible terminal constraint set \mathbb{X}_N can be constructed with efficient algorithms, see [BBM15, Chapter 11 and Section 13.2.1] for a detailed discussion
- The invariant and admissible terminal constraint set X_N can be constructed under MATLAB with the Multi-Parametric Toolbox [KGB+04]

Terminal Constraint Set for Box Constraints

Box Constraints

$$\underline{u} \le u(k+i) \le \overline{u}$$

 $x \le x(k+i) \le \overline{x}$

Approach

Recall that the constraints must be fulfilled over the entire prediction horizon for mode 2, i.e.

$$\underline{u} \le u(k+i) \le \overline{u} \quad \forall i \in \{N, N+1, ...\}$$

 $\underline{x} \le x(k+i) \le \overline{x} \quad \forall i \in \{N, N+1, ...\}$

– Using that $u(k+i) = \widetilde{K}x(k+i)$ and $x(k+i) = (A+B\widetilde{K})^{i-N}x(k+N)$ leads to

$$\underline{\boldsymbol{u}} \le \widetilde{\boldsymbol{K}} (\boldsymbol{A} + \boldsymbol{B} \widetilde{\boldsymbol{K}})^{i-N} \boldsymbol{x} (k+N) \le \overline{\boldsymbol{u}} \quad \forall i \in \{N, N+1, \dots\}$$
(6.7)

$$\underline{x} \le \left(A + B\widetilde{K} \right)^{i-N} x(k+N) \quad \le \overline{x} \quad \forall i \in \{N, N+1, \dots\}$$
(6.8)

- We must essentially check (6.7), (6.8) over an infinite horizon which is clearly intractable

Terminal Constraint Set for Box Constraints

Approach

- We can show that (6.7), (6.8) must only be checked over a constraint checking horizon $N \le N_{\rm cc} < ∞$
- This means that (6.7), (6.8) are ensured for all $i \ge N_{\rm cc}$
- The proof relies on $(\mathbf{A} + \mathbf{B}\widetilde{\mathbf{K}})^{i-N} \to \mathbf{0}$ for $i \to \infty$ since $\rho(\mathbf{A} + \mathbf{B}\widetilde{\mathbf{K}}) < 1$
- The terminal constraint set X_N can be constructed iteratively, i.e.

$$\mathbb{X}_{N}^{(0)} = \left\{ x(k+N) | \underline{u} \leq \widetilde{K} \left(A + B\widetilde{K} \right)^{0} x(k+N) \leq \overline{u}, \underline{x} \leq \left(A + B\widetilde{K} \right)^{0} x(k+N) \leq \overline{x} \right\}$$

$$\mathbb{X}_{N}^{(1)} = \mathbb{X}_{N}^{(0)} \cap \left\{ x(k+N) | \underline{u} \leq \widetilde{K} \left(A + B\widetilde{K} \right)^{1} x(k+N) \leq \overline{u}, \underline{x} \leq \left(A + B\widetilde{K} \right)^{1} x(k+N) \leq \overline{x} \right\}$$

:

$$\mathbb{X}_{N}^{(N_{\mathrm{cc}})} = \mathbb{X}_{N}^{(N_{\mathrm{cc}}-1)} \cap \left\{ x(k+N) | \underline{\boldsymbol{u}} \leq \widetilde{\boldsymbol{K}} (\boldsymbol{A} + \boldsymbol{B} \widetilde{\boldsymbol{K}})^{N_{\mathrm{cc}}-N} \boldsymbol{x}(k+N) \leq \overline{\boldsymbol{u}}, \underline{\boldsymbol{x}} \leq \left(\boldsymbol{A} + \boldsymbol{B} \widetilde{\boldsymbol{K}} \right)^{N_{\mathrm{cc}}-N} \boldsymbol{x}(k+N) \leq \overline{\boldsymbol{x}} \right\}$$

The iteration can be stopped if $X_N^{(N_{cc})} = X_N^{(N_{cc}+1)}$

Terminal Constraint Set for Box Constraints

Approach

Problem 5.1 then becomes

$$\min_{\boldsymbol{U}(k)} V_{N}(\boldsymbol{x}(k), \boldsymbol{U}(k))$$

$$\sup_{\boldsymbol{U}(k)} \left\{ \begin{aligned} &\boldsymbol{x}(k+i+1) = \boldsymbol{A}\boldsymbol{x}(k+i) + \boldsymbol{B}\boldsymbol{u}(k+i), i = 0,1,...,N-1 \\ &\underline{\boldsymbol{x}} \leq \boldsymbol{x}(k+i) & \leq \overline{\boldsymbol{x}}, & i = 1,2,...,N \\ &\underline{\boldsymbol{u}} \leq \boldsymbol{u}(k+i) & \leq \overline{\boldsymbol{u}}, & i = 0,1,...,N-1 \\ &\underline{\boldsymbol{x}} \leq \left(\boldsymbol{A} + \boldsymbol{B}\widetilde{\boldsymbol{K}}\right)^{i-N} \boldsymbol{x}(k+N) & \leq \overline{\boldsymbol{x}}, & i = N,N+1,...,N_{\text{cc}} \\ &\underline{\boldsymbol{u}} \leq \widetilde{\boldsymbol{K}} \left(\boldsymbol{A} + \boldsymbol{B}\widetilde{\boldsymbol{K}}\right)^{i-N} \boldsymbol{x}(k+N) & \leq \overline{\boldsymbol{u}}, & i = N,N+1,...,N_{\text{cc}} \end{aligned} \right.$$

Remarks

- Problem 5.1 can still be written as a quadratic program with additional constraints
- The terminal constraint set depends only on A, B, \widetilde{K} , \underline{x} , \overline{x} , \underline{u} , \overline{u} and N_{cc} but not on P, Q, R and N
- The constraint checking horizon N_{cc} can be computed by checking $\mathbb{X}_N^{(N_{cc})} = \mathbb{X}_N^{(N_{cc}+1)}$ during iteration

Terminal Constraint Set for Box Constraints

- Algorithm for the Computation of N_{cc} (for $\mathbb{X} = \mathbb{R}^n$ and m = 1)
 - 1. Set $N_{cc} := 0$

Determine
$$u_{\max} \coloneqq \max_{x(k+N)} \widetilde{K} \big(A + B \widetilde{K} \big)^{N_{\text{cc}}+1} x(k+N)$$

$$\text{subject to } \underline{u} \leq \widetilde{K} \big(A + B \widetilde{K} \big)^{i-N} x(k+N) \leq \overline{u}, i = N, N+1, \dots, N_{\text{cc}}$$

$$u_{\min} \coloneqq \min_{x(k+N)} \widetilde{K} \big(A + B \widetilde{K} \big)^{N_{\text{cc}}+1} x(k+N)$$

$$\text{subject to } \underline{u} \leq \widetilde{K} \big(A + B \widetilde{K} \big)^{i-N} x(k+N) \leq \overline{u}, i = N, N+1, \dots, N_{\text{cc}}$$

3. If $u_{\text{max}} \leq \overline{u}$ and $u_{\text{min}} \geq u$ then stop else set $N_{cc} := N_{cc} + 1$ and goto 2.

Terminal Constraint Set for Box Constraints

• Illustrative Example

- Reconsider the Illustrative Example from Chapter 4 (cf. Slide 4-11) with the input constraint $-1 \le u(k) \le 1$, the input weight R=1 and $\widetilde{\pmb K}=\pmb K_{\rm LQR}$
- The terminal constraint set X_N follows from

$$\mathbb{X}_{N}^{(0)} = \left\{ x(k+N) | -1 \le (-1.19 -7.88) x(k+N) \le 1 \right\}$$

$$\mathbb{X}_{N}^{(1)} = \mathbb{X}_{N}^{(0)} \cap \left\{ x(k+N) | -1 \le (-0.57 -4.98) x(k+N) \le 1 \right\}$$

$$\mathbb{X}_{N}^{(2)} = \mathbb{X}_{N}^{(1)} \cap \left\{ x(k+N) | -1 \le (-0.16 -2.78) x(k+N) \le 1 \right\}$$

$$\mathbb{X}_{N}^{(3)} = \mathbb{X}_{N}^{(2)} \cap \left\{ x(k+N) | -1 \le (0.08 -1.24) x(k+N) \le 1 \right\}$$

$$\mathbb{X}_{N}^{(4)} = \mathbb{X}_{N}^{(3)} \cap \left\{ x(k+N) | -1 \le (0.21 -0.25) x(k+N) \le 1 \right\}$$

– We can show that $\mathbb{X}_N^{(i)} = \mathbb{X}_N^{(4)}$ for all i > 4 and thus $N_{\mathrm{cc}} = 4$

intersection of 2 half-spaces
intersection of 4 half-spaces
intersection of 6 half-spaces
intersection of 8 half-spaces
intersection of 10 half-spaces

Terminal Constraint Set for Box Constraints

Terminal Constraint Set for Box Constraints

Stability Condition

Theorem 6.3 The discrete-time linear time-invariant system (4.1) with $x(k) \in \mathbb{X}$ and $u(k) \in \mathbb{U}$ under the receding horizon control law $u^*(k)$ according to (5.2) is asymptotically stable if

- **Q** is positive definite
- **P** is positive definite and chosen such that

terminal cost

$$(A + B\widetilde{K})^{T} P(A + B\widetilde{K}) - P \leq -Q - \widetilde{K}^{T} R\widetilde{K}$$
(6.1)

where $\widetilde{\pmb{K}}$ is an arbitrary matrix fulfilling $ho(\pmb{A}+\pmb{B}\widetilde{\pmb{K}})<1$

• $x(k+N) \in \mathbb{X}_N$ terminal constraint where \mathbb{X}_N is invariant and admissible for $x(k+1) = (A+B\widetilde{K})x(k)$.

The domain of attraction is $\mathbb{D} = \{x(0) \in \mathbb{X} | \exists U(0) : x(i) \in \mathbb{X}, u(i) \in \mathbb{U} \ \forall i \in \{0, ..., N-1\}, x(N) \in \mathbb{X}_N \}.$

Proof

The proof follows immediately from the discussion on the previous slides

Stability Condition

- Remark on the Domain of Attraction
 - The domain of attraction $\mathbb D$ increases with the prediction horizon N and terminal constraint set $\mathbb X_N$
 - For a given prediction horizon N the domain of attraction $\mathbb D$ should ideally be as large as possible
 - This is achieved for the maximal invariant and admissible terminal constraint set X_N
- Remark on the Selection of the Terminal Constraint
 - The terminal constraint x(k + N) = 0 satisfies the conditions in Theorem 6.3 trivially since then the "tail" is always feasible (cf. Slide 6-11)
 - This terminal constraint has been proposed in [KG88] and is commonly considered as the first stability condition presented for MPC with constraints
 - This terminal constraint is unfortunately very restrictive and usually impairs performance
 - This terminal constraint is still useful if the construction of a terminal constraint set is difficult,
 e.g. for nonlinear systems

Stability Condition

- Remark on the Need for a Terminal Constraint
 - The terminal constraint is not needed if $N \ge N_{\rm stab}$ for a given x(0) since then X_N is inactive
 - Computing the stabilizing prediction horizon $N_{\rm stab}$ is, however, involved and subject to research
 - Note that the stabilizing prediction horizon $N_{
 m stab}$ depends on the initial state $oldsymbol{x}(0)$
 - Note furthermore that for $N \ge N_{\rm stab}$ also the closed-loop cost does not change anymore
- Remark on the Influence of the Terminal Constraint
 - The terminal constraint influences the performance
 - We generally have that $| \text{large computation time} \Leftrightarrow | \text{large } N \iff | \text{large } \mathbb{X}_N \Leftrightarrow \text{good performance}$ $\text{small computation time} \Leftrightarrow \text{small } N \iff \text{small } \mathbb{X}_N \Leftrightarrow \text{poor performance}$
 - Constructing the maximal invariant and admissible terminal constraint set is thus crucial
- More details on stability of MPC can be found in the seminal paper [MRR+00]

Stability Condition

- Reconsider the Illustrative Example from Chapter 4 (cf. Slide 4-11) with $x(0)=(-7 \quad 0.5)^T$, $-1 \le u(k) \le 1$, R=1, $\widetilde{\pmb{K}}=\pmb{K}_{\rm LQR}$ and $\pmb{P}=\pmb{P}_{\rm LQR}$
- Compute the closed-loop cost $V_{\infty}(x(0))$ and the optimal predicted cost $V_N^*(x(0))$ for different N

N	5	6	7	10	> 10
$V_{\infty}(x(0))$	295.2	287.7	286.8	286.6	286.6
$V_N(x(0))$	286.7	286.7	286.6	286.6	286.6

- Evidently the closed-loop cost $V_{\infty}(x(0))$ and optimal predicted cost $V_N^*(x(0))$ are equal for $N \geq 10$
- This implies that the terminal constraint $x(k+N) \in X_N$ is inactive for $N \ge 10$
- This implies in turn that $N_{\rm stab} = 10$
- The receding horizon controller for $N \ge N_{\rm stab}$ is called constrained linear quadratic regulator (CLQR)

Literature

Miscellaneous

- [KG88] S. S. Keerthi and E. G. Gilbert. Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations. *Journal of Optimization Theory and Applications*, 57(2):265–293, 1988.
- [KGB+04] Michal Kvasnica, Pascal Grieder, Mato Baotić, and Manfred Morari. Multi-Parametric Toolbox (MPT). In *Proceedings of the 7th International Workshop on Hybrid Systems: Computation and Control*, pages 448–462, Philadelphia, PA, USA, 2004. control.ee.ethz.ch/~mpt/3/
- [MRR+00] David Q. Mayne, James B. Rawlings, Christopher V. Rao, and Pierre O. M. Scokaert. Constrained model predictive control: Stability and optimality. *Automatica*, 36(6):789–814, 2000.