1 座標とベクトル

問題 1.1.

問題 1.2.

(1)
$$\vec{u} = -\vec{a} + \vec{b} = (-2, -1) + (1, -2) = (-1, -3)$$
. $\|\vec{u}\| = \sqrt{1+9} = \sqrt{10}$.

(2)
$$\vec{u} = \vec{b} + 3\vec{a} = (1, -2) + (6, 3) = (7, 1)$$
. $\|\vec{u}\| = \sqrt{49 + 1} = \sqrt{50}$.

(3)
$$\vec{u} = 2\vec{a} - \vec{b} = (4,2) + (-1,2) = (3,4)$$
. $\|\vec{u}\| = \sqrt{9+16} = \sqrt{25} = \underline{5}$.

問題 1.3. ベクトル \vec{a} と実数 c に対し, $\|c\vec{a}\|=|c|\|\vec{a}\|$ が成り立つ.例えば,平面ベクトル $\vec{a}=(a_1,a_2)$ に対しては,以下のように確かめられる;

$$||c\vec{a}|| = \sqrt{\langle c\vec{a}, c\vec{a} \rangle} = \sqrt{c^2 a_1^2 + c^2 a_2^2} = |c|\sqrt{a_1^2 + a_2^2} = |c| ||\vec{a}||.$$

ここで,|c| は実数の絶対値を表し, $\|\vec{a}\|$ はベクトルのノルムを表すことに注意せよ.したがって, $\|c\vec{a}\|=1$ となるためには $c=\pm\frac{1}{\|\vec{a}\|}$ とすればよい.

(1)
$$\|\vec{a}\| = \sqrt{9+25} = \sqrt{34}$$
. したがって, $c = \pm \frac{1}{\sqrt{34}}$.

(2)
$$\|\vec{a}\| = \sqrt{1+1} = \sqrt{2}$$
. $\forall t : b^{\sharp} \supset \tau$, $c = \pm \frac{1}{\sqrt{2}}$.

$$(3) \ \|\vec{a}\| = \sqrt{\frac{1}{4} + 4} = \sqrt{\frac{17}{4}} = \frac{\sqrt{17}}{2}. \quad したがって, \quad c = \pm \frac{2}{\sqrt{17}}.$$

(4)
$$\|\vec{a}\| = \sqrt{3+9} = \sqrt{12} = 2\sqrt{3}$$
. したがって, $c = \pm \frac{1}{2\sqrt{3}}$.

問題 **1.4.** (iii) $\cos \theta$ の値は内積の定義(性質) $\langle \vec{a}, \vec{b} \rangle = \|\vec{a}\| \|\vec{b}\| \cos \theta$ を用いて求める.

- (1) (i) $\|\vec{u}\| = \sqrt{1+3} = 2$, $\|\vec{v}\| = \sqrt{4+12} = 4$, (ii) $\langle \vec{u}, \vec{v} \rangle = -2+6 = 4$, (iii) $\cos \theta = \frac{4}{2 \cdot 4} = \frac{1}{2}$ ($\theta = \frac{\pi}{3}$ である).
- (2) $\vec{u}=(5,3)+(-4,0)=(1,3),\ \vec{v}=(-5,-3)+(14,0)=(9,-3).$ (i) $\|\vec{u}\|=\sqrt{1+9}=\sqrt{10},\|\vec{v}\|=\sqrt{81+9}=\sqrt{90}=3\sqrt{10},$ (ii) $\langle\vec{u},\vec{v}\rangle=9-9=0,$ (iii) $\cos\theta=\frac{0}{\sqrt{10}\cdot 3\sqrt{10}}=0$ (\vec{u} と \vec{v} は直交する).

問題 **1.5.** $\langle \vec{a}, \vec{b} \rangle = 0$ を満たす c を求める. $\langle \vec{a}, \vec{b} \rangle = 3 - 2c - c = 3 - 3c$ より, $\underline{c = 1}$.

問題 1.6. 内積 $\langle \vec{a} \times \vec{b}, \vec{a} \rangle$ および $\langle \vec{a} \times \vec{b}, \vec{b} \rangle$ は共に 0 である.

- (1) $\vec{a} \times \vec{b} = (1, -5, -2)$
- (2) $\vec{a} \times \vec{b} = (-3, -3, 1)$

問題 1.7. 空間ベクトルの外積は一般に結合法則を満たさないので (1) と (2) の計算結果は異なる. しかし、一般に $\vec{a} \times (\vec{b} \times \vec{c}) = \langle \vec{a}, \vec{c} \rangle \vec{b} - \langle \vec{a}, \vec{b} \rangle \vec{c}$ が成り立つ.

- (1) $\vec{b} \times \vec{c} = (1,7,5) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \vec{a} \times (\vec{b} \times \vec{c}) = (-11,-2,5).$
- (3) $\langle \vec{a}, \vec{c} \rangle \vec{b} \langle \vec{a}, \vec{b} \rangle \vec{c} = -\vec{b} 3\vec{c} = (-11, -2, 5).$

問題 1.8. 外積 $\vec{a} \times \vec{b}$ は $\vec{a} \times \vec{b}$ の両方に直交する。したがって、求めるベクトルは $\vec{a} \times \vec{b}$ に平行な単位ベクトルである(問題 1.3 を参照)。

- (1) $\vec{a} imes \vec{b} = (1,2,-3)$, $\|\vec{a} imes \vec{b}\| = \sqrt{1+4+9} = \sqrt{14}$. したがって,求めるベクトルは $\pm (\frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},-\frac{3}{\sqrt{14}})$.
- (2) $\vec{a} \times \vec{b} = (-2, -5, 6)$, $\|\vec{a} \times \vec{b}\| = \sqrt{4 + 25 + 36} = \sqrt{65}$. したがって、求めるベクトルは $\pm (\frac{2}{\sqrt{65}}, \frac{5}{\sqrt{65}}, -\frac{6}{\sqrt{65}})$.

問題 **1.9.** $\vec{a} = \overrightarrow{OA}, \vec{b} = \overrightarrow{OB}$ とする.このとき,三角形 OAB の面積 S は

$$S = \frac{1}{2} \|\vec{a}\| \|\vec{b}\| \sin \theta$$

と書ける(ただし, $\theta=\angle AOB, 0\leq \theta\leq \pi$)。 $\sin\theta\geq 0$ であるから, $\sin\theta=\sqrt{1-\cos^2\theta}$ と書きなおすと

$$\begin{split} S = & \frac{1}{2} \|\vec{a}\| \|\vec{b}\| \sqrt{1 - \cos^2 \theta} \\ = & \frac{1}{2} \sqrt{\|\vec{a}\|^2 \|\vec{b}\|^2 - \|\vec{a}\|^2 \|\vec{b}\|^2 \cos^2 \theta} \end{split}$$

となる.内積の定義 $\langle \vec{a}, \vec{b} \rangle = \|\vec{a}\| \, \|\vec{b}\| \cos \theta$ を代入することにより, $S = \frac{1}{2} \sqrt{\|\vec{a}\|^2 \, \|\vec{b}\|^2 - \langle \vec{a}, \vec{b} \rangle^2}$ を得る.

問題 **1.10.** 問題 **1.9** より, \vec{a} と \vec{b} を 2 辺とする平行四辺形の面積は $\sqrt{\|\vec{a}\|^2 \|\vec{b}\|^2 - \langle \vec{a}, \vec{b} \rangle^2}$ に等しい(三角形の面積の 2 倍). $\vec{a} = (a_1, a_2, a_3)$, $\vec{b} = (b_1, b_2, b_3)$ と成分表示し, $\|\vec{a} \times \vec{b}\|^2$ と $\|\vec{a}\|^2 |\vec{b}\|^2 - \langle \vec{a}, \vec{b} \rangle^2$ を計算し,等しくなることを示せばよい(計算の詳細は省略).

問題 **1.11.** (1)
$$\det \begin{pmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{pmatrix} = \det \begin{pmatrix} 1 & -1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & -1 \end{pmatrix} = -6 \neq 0$$
. したがって, $\{\vec{a}, \ \vec{b} \ \vec{c}\}$ は空間の

基底である.

(2) 求めるものは $\vec{p}=x\vec{a}+y\vec{b}+z\vec{c}$ を満たす数 x,y,z である. これは連立 1 次方程式

$$\begin{cases} x - y + 2z = 1\\ 2x + 3y + z = 2\\ x + 2y - z = -1 \end{cases}$$
 ①

の解である. 拡大係数行列を行基本変形を用いて簡約化すると,

$$\begin{pmatrix}
1 & -1 & 2 & | & 1 \\
2 & 3 & 1 & | & 2 \\
1 & 2 & -1 & | & -1
\end{pmatrix}
\xrightarrow{\text{ft-Example}}
\begin{pmatrix}
1 & 0 & 0 & | & -\frac{4}{3} \\
0 & 1 & 0 & | & 1 \\
0 & 0 & 1 & | & \frac{5}{3}
\end{pmatrix}$$

となり、①の解が $x=-\frac{4}{3},\ y=1,\ z=\frac{5}{3}$ であることがわかる.したがって, $\underline{\vec{p}=-\frac{4}{3}\vec{a}+\vec{b}+\frac{5}{3}\vec{c}}$ と表すことができる.