Key Database Selection Considerations

Scalability

Critical Factors:

- Assess required throughput
- Evaluate potential for future scaling
- o Prevent performance bottlenecks

Challenges with Traditional Databases:

- o Unpredictable performance during scaling
- Potential downtime
- o Risk of over/under provisioning resources

Storage Requirements

Data Volume Considerations:

- o Determine storage needs: gigabytes, terabytes, or petabytes
- Match database architecture to data capacity requirements

Architectural Implications:

- o Different databases optimized for specific use cases
- o Consider traditional applications vs. caching needs

Data Characteristics

Key Evaluation Criteria:

- Data model type (relational, structured, semi-structured)
- Data access patterns
- Latency requirements
- Record size considerations

Durability and Availability

• Critical Aspects:

- Ensure data preservation
- o Guarantee data accessibility
- o Implement redundancy strategies

Recommended Approaches:

- Multiple redundant data copies
- Geographically separated storage locations
- Balance cost with business criticality

Amazon RDS Architecture

Database Engine Options

Supported Engines:

- Amazon Aurora (MySQL/PostgreSQL)
- o RDS for MySQL
- o RDS for PostgreSQL
- o RDS for MariaDB
- o RDS for Oracle
- o RDS for SQL Server

Key RDS Features

- Managed EC2 instance for database hosting
- Isolated database environments
- Scalable EBS volume storage
- Automated administrative tasks

Database Security Best Practices

Security Implementation Strategies

Network Security:

- Utilize VPC for network access control
- o Implement security groups
- o Control connecting IP addresses

Authentication:

- Use IAM policies
- Enforce SSL/TLS connections
- Leverage database engine security features

Encryption:

- Encrypt instances and snapshots
- Utilize AWS Key Management Service (KMS)

Database Scaling Approaches

Scaling Methodologies

Vertical Scaling:

- Upgrade existing server resources
- o Increase memory, storage, processing power
- Potential downtime during upgrades

Horizontal Scaling:

- Add more servers to distribute load
- o Minimize downtime
- Increase overall system capacity

Backup and Recovery Strategies

Backup Options

- Automated Backups:
 - Daily snapshots during backup window
 - o Transaction log capture every 5 minutes
 - o Retention period: 7-35 days
- Manual Snapshots:
 - User-initiated backups
 - Indefinite retention
 - o Shareable across AWS accounts

Cross-Region Backup Capabilities

- Replicate snapshots to different AWS regions
- Improve disaster recovery
- Enable read replicas in alternative regions

Database Encryption

Encryption Mechanisms

- Data at Rest:
 - o AWS KMS key management
 - Encrypt underlying storage
- Data in Transit:
 - SSL/TLS connections
 - Automatic certificate provisioning

Comparative Database Services

Relational Databases

- Amazon RDS
- Structured data storage
- Transactional application support

Non-Relational Databases

- Amazon DynamoDB (Key-value)
- Amazon Neptune (Graph databases)
- Amazon ElastiCache (In-memory)

Performance Optimization

Capacity Planning Framework

- 1. Analyze current storage capacity
- 2. Predict future requirements
- 3. Determine optimal scaling strategy

Key Takeaways

- Carefully evaluate database requirements
- Understand scaling and performance implications
- Leverage AWS managed services for reduced administrative overhead
- Implement robust security and backup strategies