

Equations du second degré dans \mathbb{R} : $f(x) = ax^2 + bx + c$

si f(x) = 0 on peut calculer le discriminant $\Delta = b^2 - 4ac$

	a > 0 la parabole est convexe elle admet un minimum	a < 0la parabole est concaveelle admet un maximum	factorisation	signe de $f(x)$
Δ > 0	2 solutions réelles distinctes x_1 et x_2 2 intersections avec l'axe $(0x)$	2 solutions réelles distinctes x_1 et x_2 2 intersections avec l'axe (0x)	$f(x) = \mathbf{a}(x - x_1)(x - x_2)$	f(x) Signe de a signe de -a signe de a
$\Delta = 0$	1 seule solution x_0 1 seule intersection avec l'axe (0x)	1 seule solution x_0 1 seule intersection avec l'axe (0x)	$f(x) = \frac{a}{(x-x_0)^2}$	f(x) est toujours du même signe que le coefficient a
Δ < 0	Pas de solution Pas d'intersection avec l'axe (0x)	Pas de solution Pas d'intersection avec l'axe (0x)	Pas de factorisation possible	f(x) est toujours du même signe que le coefficient a