Лекции по Висша Алгебра

Силвия Бумова

Съдържание

1	Делимост при цели числа. Най-голям общ делител, тъждество на					
		у. Прости числа и основна теорема на аритметиката. Функция на пер. Числови сравнения.	1			
	1.1	Алгоритъм на Евклид.	3			
	1.2	Сравнения	7			
2	$\Gamma \mathrm{p}$	упи - определение, примери, основни свойства.	11			
3	Ред	, на елемент. Циклична група. Групата Zn.	19			
	3.1	Ред на елемент	19			
	3.2	Циклична група	23			
	3.3	Групата \mathbb{Z}_n	26			
4	Сим	метрична група. Алтернативна група. Теорема на Кейли.	27			
	4.1	Пермутации, цикли, транспозиции. Симетричната група	27			
	4.2	Четни и нечетни пермутации	36			
	4.3	Алтернативна група	37			
	4.4	Теорема на Кейли	37			
5	Със	седни класове. Теорема на Лагранж.	39			
6	Нормални подгрупи. Факторгрупи. Теорема за хомоморфизмите					
	при	групи.	47			
	6.1	Нормални подгрупи	47			
	6.2	Факторгрупи	50			
	6.3	Хомоморфизъм	52			
	6.4	Изоморфизъм	56			
	6.5	Теорема за хомоморфизмите	59			
7	Дей	Действие на група върху множество. Орбити и стабилизатори. Фор-				
	MyJ	а за класовете на спрегнатост.	63			

	7.1	Действие чрез спрягяне			
	7.2	Орбити	66		
8	Пръстени				
9	Xap	актеристика на поле. Просто поле. Поле от частни.	85		
	9.1	Характеристика на поле. Просто поле	85		
	9.2	Поле от частни	89		
10	Идеали и факторпръстени. Теорема за хомоморфизмите при пръстени. 95				
	Tehi				
		Идеали. Главни идеали			
		Прости и максимални идеали			
	10.3	Факторпръстен	100		
11	Пръ	стенът на полиномите на една променлива	107		
	11.1	Схема на Хорнер	112		
12	Дел	имост на полиноми над поле	115		
	12.1	Алгоритъм на Евклид	116		
13	Нер	азложими полиноми над поле	121		
14	Нер	азложими полиноми над $\mathbb Q.$	125		
15	Kop	ени на полиномите. Формули на Виет.	131		
	15.1	Корени на полиномите	131		
	15.2	Формули на Виет.	139		
16	Сим	иетрични полиноми над поле.	143		
	16.1	Симетрични полиноми	146		
	16.2	Формули на Нютон	150		
17	Teo	рема на Даламбер (основна теорема на алгебрата)	153		
18	Kpa	йни полета.	159		

Глава 1

Делимост при цели числа. Най-голям общ делител, тъждество на Безу. Прости числа и основна теорема на аритметиката. Функция на Ойлер. Числови сравнения.

Теорема 1.1: Теорема за деление с остатък

За всеки $a,b,\in\mathbb{Z},b\neq 0$ съществуват еднозначно определени числа p и q:

$$a = bq + r \ u \ 0 \le r < |b|.$$

Доказателство. Разглеждаме случая $a \geq 0, b > 0.$

Съществуване.

- 1. a < b Полагаме $q = 0, r = a \Rightarrow a = bq + r$ и $0 \le r < b$.
- 2. Нека $a \ge b \ q, q \in \mathbb{N}$ и е максималното естествено число такова, че

$$qb \le a < (q+1)b \Rightarrow 0 \le r = a - qb < b$$

и a = qb + r.

Единственост. Нека

$$\begin{vmatrix} a &= q_1b + r_1, & 0 \le r_1 < b \\ a &= q_2b + r_2, & 0 \le r_2 < b \end{vmatrix}$$

Изваждаме ги и получаваме

$$0 = (q_1 - q_2)b + r_1 - r_2$$

$$r_2 - r_1 = (q_1 - q_2)b.$$

Глава 1. Делимост при цели числа. Най-голям общ делител, тъждество на Безу. Прости числа и основна теорема на аритметиката. Функция на 2 Ойлер. Числови сравнения.

 $H_0^2 b > |r_2 - r_1| \Rightarrow$ е възможно само, ако

$$q_1 - q_2 = 0 r_2 - r_1 = 0,$$

T.e.
$$q_1 = q_2, r_1 = r_2$$
.

q - частно при деление на $a \, {
m c} \, b. \, r$ - остатък.

Дефиниция 1.2

Ненулевото число b "дели" a (или a се дели на b), $b \mid a$, ако $\exists q \in \mathbb{Z}$:

$$a = bq$$
.

Твърдение 1.3

$$b \mid a \Leftrightarrow r = 0.$$

 $b \nmid a$

Свойства на делимостта.

- 1. $a \neq 0, a \in \mathbb{Z} \Rightarrow a \mid a$.
- 2. Ако $b \mid a$ и $a \neq 0 \Rightarrow |b| \leq |a|$. (В частност, ако $b \mid a$ и $a \mid b \Rightarrow |a| = |b|$, т.е. $a = \pm b$.)
- **3.** Ако $c \mid b$ и $b \mid a \Rightarrow c \mid a$.
- 4. Ако $b \mid a_1, \dots, b \mid a_k \Rightarrow$ за произволни $t_1, \dots, t_k \in \mathbb{Z}$ е в сила

$$b \mid t_1 a_1 + \cdots + t_k a_k$$
.

5. Ако $b \mid (a_1 + a_2)$ и $b \mid a_1 \Rightarrow b \mid a_2$. (В частност, ако $a_1 + a_2 = 0$ и $b \mid a_1 \Rightarrow b \mid a_2$.)

Твърдение 1.4

Hека $p \geq 2$ е фиксирано естествено число. Тогава всяко естествено число а може да се представи по единствен начин във вида:

$$a = c_n p^n + c_{n-1} p^{n-1} + \dots + c_1 p + c_0,$$

където $c_n > 0$ и $0 \le c_i < p, \forall i = 0, \ldots, n.$ (Това е p-ичния запис на числото а или а в p-ична бройна система с p-ични цифри c_0, c_1, \ldots, c_n .)

Доказателство. (Схематично) Съществуване.

Индукция $a = pq + r, 0 \le r < p$ и ИП за q.

$$q = b_k p^k + b_{k-1} p^{k-1} + \dots + b_0, 0 \le b_i \le p, b_k > 0 \Rightarrow$$

 $a = b_k p^{k+1} + b_{k-1} p^k + dots + b_0 p + r$, т.е. е представяне от вида:

$$a = c_n p^n + \dots c_0.$$

Единственост.

$$\begin{vmatrix} a = c_n p^n + \dots c_0, & 0 \le c_i < p, c_n > 0 \\ a = b_n p^n + \dots b_0, & 0 \le b_i < p, b_n > 0 \end{vmatrix}$$

$$\Rightarrow p/b_0 - c_0 \Rightarrow b_0 = c_0$$

$$\Rightarrow c_n p^n + \dots c_1 = b_n p^n + \dots b_1 \Rightarrow p/b_1 - c_1 \Rightarrow b_1 = c_1$$
 и т.н.

Твърдение 1.5

Нека $m, n, p \in \mathbb{N}, p > 1$.

$$m \mid n \Leftrightarrow p^m - 1 \mid p^n - 1$$
.

Доказателство. $n = mq + r, 0 \le r < m$

$$p^{n} - 1 = p^{mq+r} - 1 =$$

$$= p^{mq+r} - p^{r} + p^{r} - 1 =$$

$$= p^{r}(p^{mq} - 1) + (p^{r} - 1) =$$

$$= (p^{m} - 1)A + (p^{r} - 1),$$

където $A = p^r(p^{m(q-1)} + \dots + p^m + 1) \in \mathbb{Z}.$

Дефиниция 1.6: НОД (най-голям общ делител)

Нека $a, b \in \mathbb{Z}$ и $(a, b) \neq (0, 0)$, т.е. поне едното число е различно от нула. **Най-голям общ делител (НОД)** на числата $a \in b \in d$:

- 1) $d \mid a, d \mid b$
- 2) Aro $d_1 \mid a \ u \ d_1 \mid b \Rightarrow d_1 \mid d$

$$d = (a, b) \ (d = HOД(a, b).)$$

Аналогично се дефинира $HOД(a_1, a_2, \ldots, a_k), d = (a_1, a_2, \ldots, a_k).$

НОД е еднозначно определен, ако е положителен.

1.1 Алгоритъм на Евклид.

Алгоритъмът на Евклид е едновременно доказателство и практическо правило за намирането на $\mathrm{HOД}(a,b).$

Глава 1. Делимост при цели числа. Най-голям общ делител, тъждество на Безу. Прости числа и основна теорема на аритметиката. Функция на Ойлер. Числови сравнения.

Нека за определеност a > 0, b > 0 и

$$a=bq_1+r_1, \qquad 0 \leq r_1 < b$$
 ako $r_1 \neq 0, \qquad b=r_1q_2+r_2, \qquad 0 \leq r_2 < r_1$ ako $r_2 \neq 0, \qquad r_1=r_2q_3+r_3, \qquad 0 \leq r_3 < r_2$
$$\cdots$$
 ako $r_{n-1} \neq 0, \qquad r_{n-2}=r_{n-1}q_n+r_n, \qquad 0 \leq r_n < r_{n-1}$ ako $r_n \neq 0, \quad r_{n-1}=r_nq_{n+1}+r_{n+1}, \quad r_{n+1}=0$

Т.к. $r_1 > r_2 > r_3 > \dots$ процесът е краен, следователно след краен брой стъпки остатъка е равен на нула, т.е. $\Rightarrow r_{n+1} = 0$.

Връщаме се назад: $\Rightarrow r_n \mid a, r_n \mid b$.

Нека $d_1 \mid a, d_1 \mid b \Rightarrow d_1 \mid r_1$ и продължавайки надолу по равенствата $\Rightarrow d_1 \mid r_n$. Следователно $r_n = (a, b)$.

Дефиниция 1.7:

 $A\kappa o\ (a,b)=1\Rightarrow a\ u\ b\ ca$ взаимно прости.

Твърдение 1.8:

 $A\kappa o$

$$(a,b) = d \Rightarrow \exists u, v \in \mathbb{Z} : ua + vb = d.$$

 $(B \ частност, \ aко \ (a,b) = 1 \Rightarrow \exists \ u,v \in \mathbb{Z} : ua + vb = 1.)$

Доказателство.

$$r_{n-1} = r_n q_{n+1}$$
 $\Rightarrow r_n = d$
 $r_{n-2} = r_{n-1} q_n + r_n$ $\Rightarrow d = r_n = r_{n-2} - r_{n-1} q_n$
 $r_{n-3} = r_{n-2} q_n + r_{n-1}$ $\Rightarrow r_{n-1} = r_{n-3} - r_{n-2} q_{n-2}$
 \cdots
 $a = bq_1 + r_1$ $\Rightarrow r_1 = a - bq_1$,

т.е d = ua + vb за подходящи цели числа u, v.

Твърдение 1.9:

Ако $a, b \in \mathbb{Z}$, $(a, b) \neq (0, 0)$, $(a, b) = d \ d = ua + vb \Rightarrow (u, v) = 1.???$ Числата от тъждеството на Безу u, v са взаимно прости.

Доказателство.

$$(a,b)=d$$
 $\Rightarrow d=ua+vb/:d$ $\Rightarrow ua_1+vb_1=1$ Да допуснем, че $(u,v)=t$ $\Rightarrow u=u_1t,v=v_1t$ $\Rightarrow t(u_1a_1+v_1b_1)=1$ $\Rightarrow t\mid 1$ $\Rightarrow (u,v)=1.$

Твърдение 1.10:

$$A\kappa o \ b \mid a_1 a_2 \ u \ (b, a_1) = 1 \Rightarrow b \mid a_2.$$

Доказателство.

$$(b, a_1) = 1 \Rightarrow \exists u, v \in \mathbb{Z} : ub + va_1 = 1/.a_2$$
$$\Rightarrow uba_2 + va_1a_2 = a_2$$
$$\Rightarrow b \mid uba_2, b \mid va_1a_2 \qquad \Rightarrow b \mid a_2.$$

Твърдение 1.11:

$$A \kappa o \ b_1 \ | \ a, \ b_2 \ | \ a \ u \ (b_1, b_2) = 1 \Rightarrow b_1 b_2 \ | \ a.$$

Доказателство. Нека $a = b_1 q$.

$$b_2 \mid a = b_1 q$$
 и $(b_1, b_2) = 1 \Rightarrow b_2 \mid q \Rightarrow b_1 b_2 \mid b_1 q = a$.

Дефиниция 1.12: НОК (най-малко общо кратно

Най-малко общо кратно (НОК) на a u b $(a \neq 0 \ u \ b \neq 0)$ e числото $k = HOK(a,b), \ a\kappa o$

1)
$$a \mid k, b \mid k;$$

2)
$$a\kappa o \ a \mid k_1 \ u \ b \mid k_1 \Rightarrow k \mid k_1$$
.

k = [a, b]. Аналогично $k = [a_1, a_2, \dots, a_n]$.

Твърдение 1.13:

В сила е

$$(a,b)[a,b] = ab.$$

$$(A\kappa o\ (a,b)=1\Rightarrow [a,b]=ab.)$$

Глава 1. Делимост при цели числа. Най-голям общ делител, тъждество на Безу. Прости числа и основна теорема на аритметиката. Функция на 6 Ойлер. Числови сравнения.

Доказателство. ???

Дефиниция 1.14: Просто число

Естественото число p>1 е просто, ако единствените му делители са ± 1 и $\pm p$.

Ако p е просто число и (p, a) = 1, то е еквивалентно на $p \nmid a$.

Твърдение 1.15:

Ако p е просто число, $p \mid a_1 a_2 \ u \ p \nmid a_1 \Rightarrow p \mid a_2$.

Доказателство. Тв. 1.10

Теорема 1.16: Основна лема на аритметиката

Всяко естествено число n > 1 се представя по единствен начин (с точност до реда на множителите) като произведение на прости числа.

Доказателство. Съществуване. Ако е просто число $\Rightarrow OK$.

n - не е просто $\Rightarrow n = n_1 n_2$

ИП за n_1 и n_2 и оттам за $n = \prod p_i$.

Единственост.

Hека $n = p_1 \dots p_k = q_1 \dots q_s$.

 $\Rightarrow p_1 \mid q_1 \dots q_s \Rightarrow p_1 \mid q_1$ (например) q_1 - просто

 $\Rightarrow p_1 = q_1$ съкращаваме на $p_1 \Rightarrow$

 $p_2 \dots p_k = q_2 \dots q_s$ и продължаваме по същия начин $k = s, p_2 = q_2, \dots, p_k = q_s$.

Дефиниция 1.17: Канонично разлагане п на прости множители

Каноничното разлагане на числото п **на прости множители** е представянето му във вида:

$$n = p_1^{\alpha_1} \cdots p_k^{\alpha_k},$$

като p_1, \ldots, p_k са две по две различни прости числа и $\alpha_i > 0$ $(i = 1, \ldots, k)$.

Теорема 1.18:

Съществуват безброй много прости числа.

Доказателство.

1.2. Сравнения

1.2 Сравнения

Дефиниция 1.19:

Hека $n \in \mathbb{N}, a, b \in \mathbb{Z}$. Казваме, че а **е сравнимо с** b **по модул** n,

$$a \equiv b \pmod{n}$$
, and $a = b$.

Ясно е, че $a \equiv b \pmod{n} \Leftrightarrow a$ и b имат равни остатъци при деление на n.

Свойства

- **1.** $a \equiv a \pmod{n} \ \forall a \in \mathbb{Z}$. (Рефлексивност)
- **2.** Ако $a \equiv b \pmod{n}$, то $b \equiv a \pmod{n}$. (Симетричност).
- **3.** Ако $a \equiv b \pmod{n}$ и $b \equiv c \pmod{n}$, то $a \equiv c \pmod{n}$. (Транзитивност).
- 4. Ако $a_1 \equiv b_1 \pmod n$ и $a_2 \equiv b_2 \pmod n$, то $a_1 \pm a_2 \equiv b_1 \pm b_2 \pmod n$ и $a_1 a_2 \equiv b_1 b_2 \pmod n$.
- **5.** Ако $am \equiv bm \pmod{n}$ и (m,n) = 1, то $a \equiv b \pmod{n}$.

 $\mathbb Z$ се разбива на непресичащи се класове от сравними помежду си числа по модул n - това са елементите на пръстена $\mathbb Z_n$

Дефиниция 1.20: Функцията на Ойлер $\varphi(n)$

Нека $n \in \mathbb{N}$. Функцията на Ойлер означаваме с $\varphi(n)$ и равна на броя на естествените числа, ненадминаващи n и взаимно прости c n, m.e.

$$\varphi(n) = |\{a \mid a \in \mathbb{N}, \ a < n, \ (a, n) = 1\}|.$$

ПРИМЕРИ:

$$\varphi(1) = \varphi(2) = 1$$

$$\varphi(3) = \varphi(4) = 2$$

$$\varphi(5) = 4$$

$$\varphi(6) = 2$$

$$\varphi(p) = p - 1, p$$
 - просто число

Твърдение 1.21:

Ако р е просто число и $\alpha \in \mathbb{N}$, то

$$\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha - 1} = p^{\alpha - 1}(p - 1).$$

Глава 1. Делимост при цели числа. Най-голям общ делител, тъждество на Безу. Прости числа и основна теорема на аритметиката. Функция на Ойлер. Числови сравнения.

Доказателство. От всички числа трябва да извадим тези, които не са взаимно прости с p, т.е числата ($p^{\alpha-1}$ на брой):

$$1.p, 2.p, \ldots, p.p, \ldots, p^{\alpha-1}.p$$

Дефиниция 1.22: Мултипликативна функция

 $E \partial$ на аритметична функция f наричаме **мултипликативна**, ако f(mn) = f(m)f(n), когато m u n ca взимно прости.

Теорема 1.23:

 Φ ункцията на Ойлер е мултипликативна, т.е. ако (a,b)=1, то

$$\varphi(ab) = \varphi(a)\varphi(b).$$

Доказателство. Да разположим числата 1, 2, ..., ab в следната матрица:

$$A = \begin{pmatrix} 1 & 2 & \cdots & i & \cdots & a \\ a+1 & a+2 & \cdots & a+i & \cdots & 2a \\ \vdots & \vdots & & & & & \\ (b-1)a+1 & (b-1)a+2 & \cdots & (b-1)a+i & \cdots & ba \end{pmatrix}$$

Твърдение: Свойство 1

Матрицата A притежава $\varphi(a)$ на брой стълба, състоящи се от числа взаимно прости с a.

В 1-вия ред има $\varphi(a)$ на брой числа взаимно прости с a. Числата, в кой и да е стълб на A са сравними по модул a, т.е. да разгледаме i -тия стълб

$$ka + i \equiv la + i \pmod{a}$$
.

Твърдение: Свойство 2

Всеки стълб на матрицата A съдържа точно $\varphi(b)$ на брой числа, взаимно прости с b.

Числата в кой и да е стълб на A са две по две несравними по модул b. Нека разгледаме l-тия стълб и съответно i-тия и j-тия ред.

$$\begin{pmatrix} l \\ a+l \\ \vdots \\ (i-1)a+l \\ \vdots \\ (j-1)a+l \\ \vdots \\ (b-1)a+l \end{pmatrix}$$

Числата в този стълб (в кой и да е стълб) са две по две несравними по модул b.

$$a_{il} - a_{jl} = (i - j)a$$
 и $b \nmid (i - j)a$.

(Ако $b \mid (i-j)a, (a,b) = 1 \Rightarrow b \mid i-j$ - противоречие!)

Но числата в този стълб са b на брой и значи дават всички остатъци по модул $b-(1,2,\ldots,b-1)$ - в някакъв ред. Следователно точно $\varphi(b)$ са взаимно прости с b. От Св.1 и Св. 2 следва, че броя на естествените числа по-малки от ab и взаимно прости както с a, така и с b е равен на $\varphi(a)\varphi(b)$.

Но едно число е взаимно просто както с a, така и с b, точно когато е взаимно просто с ab. Следователно

$$\varphi(a)\varphi(b) = \varphi(ab).$$

Твърдение 1.24:

Нека $n\in\mathbb{N}, n>1$ и $n=p_1^{\alpha_1}\cdots p_k^{\alpha_k}$ е каноничното му разлагане в произведение на прости множители. Тогава

$$\varphi(n) = p_1^{\alpha_1 - 1} \cdots p_k^{\alpha_k - 1} (p_1 - 1) \cdots (p_k - 1) = n \left(1 - \frac{1}{p_1} \right) \cdots \left(1 - \frac{1}{p_k} \right),$$

Доказателство.

Теорема 1.25: Теорема на Ойлер-Ферма

Нека $n \in \mathbb{N}, r \in \mathbb{Z}$ и (r,n) = 1. Тогава

$$r^{\varphi(n)} \equiv 1 \pmod{n}$$
.

B частност, ако p е просто число u $p \nmid r$, то $r^{p-1} \equiv 1 \pmod{n}$.

Доказателство.

Глава 1. Делимост при цели числа. Най-голям общ делител, тъждество на Безу. Прости числа и основна теорема на аритметиката. Функция на 10 Ойлер. Числови сравнения.

Теорема 1.26: Теорема на Уйлсън

Ако р е просто число, то

$$(p-1)! \equiv -1 \pmod{n}.$$

Доказателство.

Глава 2

Групи - определение, примери, основни свойства.

Дефиниция 2.1: Бинарна операция

Нека G е непразно множество. Всяко изображение $G \times G \to G$ се нарича **бинарна операция** в G.

С други думи бинарната операция е правило, което можем да прилагаме на всяка наредена двойка от елементи от множеството G и получаваме нов елемент от G.

примери:

Нека F е числово поле. Бинарни операции $F \times F \to F$ са

- събирането : $(a, b) \to a + b$;
- умножението : $(a,b) \rightarrow ab$.

Дефиниция 2.2: Група

Непразното множество G се нарича **група** спрямо бинарната операция \star , ако

- G1) $a \star b \in G$, $\forall a, b \in G$ (затворено относно бинарната операция);
- G2) $(a \star b) \star c = a \star (b \star c)$ за всяко $a, b, c \in G$ (асоциативност);
- G3) Съществува такъв елемент $e \in G$, че $a \star e = e \star a = a, \forall a \in G$ (съществуване на единица);
- $G4) \ \forall a \in G \ c$ тществува такъв елемент $x \in G$, че $a \star x = x \star a = e$ (съществуване на обратен елемент).

Бележим $c(G,\star)$ или $G(\star)$.

Дефиниция 2.3: Ред на група

Нека е група. G е **крайна група**, ако има краен брой елементи, в противен случай - **безкрайна група**. Броят на елементите в G (бележи се с |G|), се нарича **ред** на G.

Дефиниция 2.4: Комутиращи елементи и абелева група

Нека (G, \star) е група и а и в са елементи от G. Казваме, че а и в комутират, ако

$$a \star b = b \star a$$

Групата G е абелева, ако всяка двойка елементи комутира, т.е.

$$a \star b = b \star a, \ \forall a, b \in G.$$

За удобство операциата, когато не е изрично уточнена ще записваме като умножение. Операцията в група е асоциативна, т.е.

$$(ab)c = a(bc) = abc.$$

Това важи и за повече елементи, т.е.

$$\underbrace{a\cdots a}_{\mathbf{n}}=a^n$$

По определение $a^0 = e$. Важат обичайните правила за действие със степени ... $a^{-n} = (a^{-1})^n = (a^n)^{-1}$.

. . .

Твърдение 2.5

Нека G е група. Тогава

- (а) единичният елемент е е единствен.
- (b) всеки елемент $a \in G$ има единствен обратен.
- (c) за всеки елемент $a \in G$ имаме $(a^{-1})^{-1} = a$.
- (d) ако а и в са елементи от G, то $(ab)^{-1} = b^{-1}a^{-1}$.

 \square оказателство. (a) Нека e' и e'' са единици в групата G. Тогава

$$e'e'' = \begin{cases} e', e'' - \text{единица} \\ e'', e' - \text{единица} \end{cases} \Rightarrow e' = e''.$$

(b) Нека a' и a'' са обратни елементи на a. Тогава

$$a'aa'' = \begin{cases} \underbrace{a'\underbrace{(aa'')}_{e}} = a' \\ \underbrace{(a'a)}_{e}a'' = a'' \end{cases} \Rightarrow a' = a''.$$

(c) За всеки елемент $a \in G$ имаме

$$a^{-1}a = aa^{-1} = e$$
.

Това означава, че a е обратния елемент на a^{-1} , т.е. $(a^{-1})^{-1}=a$.

(d) За да покажем, че обратния елемент на ab е $b^{-1}a^{-1}$ трябва да проверим, че произведението им дава единица. Имаме, че

$$(ab)(b^{-1}a^{-1})=e$$
, както и $(b^{-1}a^{-1})(ab)=e$

и следователно ab и $b^{-1}a^{-1}$ са обратни един на друг $\Rightarrow (ab)^{-1} = b^{-1}a^{-1}$.

Аналогично $(a_1 a_2 \dots a_n)^{-1} = a_n^{-1} a_{n-1}^{-1} \dots a_1^{-1}$.

(G,+)	(G,.)
мултипликативен запис	адитивен запис
произведение: ab	сума: $a+b$
единичен елемент	нулев елемент
e = 1	e = 0
$a^0 = 1$	0a = 0
обратен елемент	противоположен елемент
a^{-1}	-a
a(bc) = (ab)c	a + (b+c) = (a+b) + c
a^n	na
степен	кратно
$a^{-n} = (a^n)^{-1}$	(-n)a = n(-a)

ПРИМЕРИ:

- Адитивните групи на целите, рационалните, реалните и комплексните числа, т.е. $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +)$ (Абелеви групи).
- Нека $n \in \mathbb{N}$ е естествено число и $n\mathbb{Z} = \{na|a \in \mathbb{Z}\}$. Тогава $(n\mathbb{Z}, +)$ е абелева група.
- Мултипликативните групи на целите, рационалните, реалните и комплексните числа, т.е. $(\mathbb{Z}^*,.), (\mathbb{Q}^*,.), (\mathbb{R}^*,.), (\mathbb{C}^*,.)$ са абелеви групи. Ако F е поле, то $F^* = F \setminus \{0\}$ се нарича мултипликативна група на полето F.
- Нека $\mathbb{C}_n = \{x \in \mathbb{C} | x^n = 1\}$ са n -ти корени на единицата и $w_k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}, k = 0, 1, \dots, n.$ $w_k = w_1^k$ Тогава $(\mathbb{C}_n, .)$ е абелева група.
- Нека V е линейно пространство, то (V, +) относно операциата събиране на вектори е абелева група.
- Общата линейна група от степен n над полето F, т.е. множеството от всички неособени квадратни матрици от ред n с елементи от поле F

$$GL_n(F) = \{ A \in M_n(F) | \det(A) \neq 0 \}.$$

Тази група не е абелева, при $n \geq 2$.

• Специалната линейна група от степен n над полето F, т.е. множеството от всички квадратни матрици от ред n с елементи от поле F с детеминанта 1,

$$SL_n(F) = \{ A \in M_n(F) | \det(A) = 1 \}.$$

Тази група не е абелева, при $n \ge 2$.

• Нека Ω е множество и да означим с S_{Ω} множеството от всички биекции на Ω , т.е.

$$S_{\Omega} = \{ f : \Omega \to \Omega | f - \text{биекция} \}.$$

 $(S_{\Omega}, .)$ с операцията произведение на изображения образува група. Ако Ω е крайно множество с n елемента, то пишем S_n вместо S_{Ω} . Това е защото не се интересуваме от самите елементи на множеството $\Omega = \{a_1, a_2, \ldots, a_n\}$, а от номерата им, т.е. $\Omega_n = \{1, 2, \ldots, n\}$. Групата S_n се нарича **симетрична група от степен** n. Групата не е абелева при $n \geq 3$. Под произведение fg на две такива изображения f и g се нарича резултатът от тяхното последователно изпълнение (тяхната композиция), т.е.

$$fg(x) = f(g(x)), \forall x \in \Omega.$$

Дефиниция 2.6

Hека G е група u H е непразно подмножество на G. H е подгрупа на G, ако

- 1) $\forall a, b \in H \Rightarrow ab \in H$;
- 2) $\forall a \in H \Rightarrow a^{-1} \in H$.

 Π ишем $H \leq G$ или H < G.

Твърдение 2.7

Нека H е погрупа на G, m.е. $H \leq G$. Тогава:

- 1) $e \in H$;
- 2) H е група относно операцията в G;
- 3) $H_i \leq G \Rightarrow \cap H_i \leq G$;
- 4) are $a, b \in H \Rightarrow ab^{-1} \in H$.

Доказателство. 1) $e \in H$;

- 2) H е група относно операцията в G;
- 3) $H_i \leq G \Rightarrow \cap H_i \leq G$;
- 4) ако $a, b \in H \Rightarrow ab^{-1} \in H$.

ПРИМЕРИ:

- Тривиални подгрупи на G са $\{e\} < G$ и $G \le G$.
- $(n\mathbb{Z}_n, +) < (\mathbb{Z}, +) < (\mathbb{Q}, +)(\mathbb{R}, +) < (\mathbb{C}, +)$
- $(\mathbb{Q}^*,.) < (\mathbb{R}^*,.) < (\mathbb{C}^*,.)$ $(n\mathbb{C}_n,.) < (\mathbb{C}^*,.)$
- $SL_n(F) < GL_nF$, операцията е умножение на матрици.

Дефиниция 2.8: Център на група

Център на групата G, наричаме множеството:

$$Z(G) = \{ z \in G | zg = gz \ \forall g \in G \}.$$

 $Z(G) \Leftrightarrow G$ е абелева група.

Твърдение 2.9

 $Z(G) \leq G$, т.е. центърът на групата G е подгрупа на G.

Доказателство. 1) $a, b \in Z(G)$

$$(ab)g = a(bg) = a(gb) = (ag)b = (ga)b = g(ab) \Rightarrow ab \in Z(G)$$

 $a \in Z(G)$

$$ag = ga / a^{-1}$$

 $a^{-1}ag = a^{-1}ga/a^{-1}$
 $g = a^{-1}ga/a^{-1}$
 $ga^{-1} = a^{-1}g$

 $\Rightarrow a^{-1} \in Z(G)$.

Дефиниция 2.10: Хомоморфизъм на групи

 $Hека (G, \star) \ u (G', \circ) \ ca \ групи. \ Kазваме, че \ \varphi \ e \ xomomopфизъм на групи, ако$

- 1) $\varphi: G \to G'$ е изображение;
- 2) $\forall a, b \in G$ е изпълнено:

$$\varphi(a \star b) = \varphi(a) \circ \varphi(b),$$

 $m.e.\ arphi$ запазва груповата операция.

 $A \kappa o \varphi e биекция, наричаме \varphi изоморфизъм.$

Твърдение 2.11

 $A\kappa o \ \varphi: G \to G' \ e \ хомоморфизъм на групи, то$

- 1) $\varphi(e) = e';$
- 2) $\varphi(a^{-1}) = \varphi(a)^{-1}, \ a \in G.$

Доказателство.

примери:

- $\varphi:\mathbb{C}_n \to \mathbb{C}^\star, \varphi(z)=z, z\in \mathbb{C}_n$ хомоморфизъм на групи.
- $\varphi: \mathbb{Z} \to \mathbb{Z}_n, \varphi(z) = nz, z \in \mathbb{Z}$ измоморфизъм на групи.
- Нека F е числово поле.

 $\det:GL_n(F)\to F^\star, \det:A\to \det(A)$, хомоморфизъм на групи.

Глава 3

Ред на елемент. Циклична група. Групата Zn.

3.1 Ред на елемент

Нека G е група и $g \in G$.

Дефиниция 3.1

Нека n е положително цяло число. Нека (G,.) е група и $g \in G$. Дефинираме:

$$g^n = \underbrace{g \cdots g}_{n}, \ g^0 = e \ u \ g^{-n} = (g^{-1})^n.$$

Твърдение 3.2

Нека G е група, $g \in G$, $m, n \in \mathbb{Z}$. Тогава:

$$a) \ g^m g^n = g^{m+n};$$

b)
$$(g^n)^{-1} = g^{-n};$$

c)
$$(g^m)^n = g^{mn}$$
.

Доказателство. a) $g^m g^n = g^{m+n}$;

Ако m = 0, то $g^{0+n} = g^n = eg^n = g^0g^n$.

Аналогично, ако n=0.

Нека $m,n\in Z\setminus\{0\}$. Нека m>0,n>0, тогава

$$g^m g^n = \underbrace{g \cdots g}_{m} \underbrace{g \cdots g}_{n} = \underbrace{g \cdots g}_{m+n} = g^{m+n},$$

Ако m < 0, n < 0, тогава

$$g^m g^n = \underbrace{g^{-1} \cdots g^{-1}}_{|m|} \underbrace{g^{-1} \cdots g^{-1}}_{|n|} = \underbrace{g^{-1} \cdots g^{-1}}_{|m|+|n|} = g^{m+n},$$

Нека $m,n\in\mathbb{Z}\setminus\{0\}$ са с различни знаци и $|m|\geq |n|$. Ако означим с $\varepsilon=sign(m)$

$$\left($$
 където $sign(m) = \begin{cases} 1, & m > 0 \\ -1, & m < 0 \end{cases}$, тогава $sign(n) = -\varepsilon$ и

$$g^m g^n = \underbrace{g^{\varepsilon} \cdots g^{\varepsilon}}_{|m|} \underbrace{g^{-\varepsilon} \cdots g^{-\varepsilon}}_{|n|} = \underbrace{g^{\varepsilon} \cdots g^{\varepsilon}}_{|m|-|n|} = g^{m+n}.$$

b) За целта трябва да покажем, че g^{-n} е обратен на g^n , т.е.

$$g^{-n}g^n = g^ng^{-n} = e.$$

Това е директно следствие от а).

с) $(g^m)^n = g^{mn}$ Ако n = 0, то $g^m.0 = g^0 = e = (g^m)^0$.

Ако $n \in \mathbb{N}$, то

$$(g^m)^n = \underbrace{g^m \dots g^m}_n = g^{\underbrace{m + \dots + m}_n} = g^{mn}.$$

Aко $n \in \mathbb{Z}, n < 0$, то

$$(g^m)^n = \underbrace{(g^m)^{-1} \dots (g^m)^{-1}}_{|n|} = \underbrace{g^{-m} \dots g^{-m}}_{|n|} = g\underbrace{(-m) + \dots + (-m)}_{|n|} = g^{(-m)|n|} = g^{mn},$$

като използвахме, че $(g^m)^{-1} = g^{-m}$ и вече доказаното в а) за умножение на степени с равни основи.

Дефиниция 3.3

Нека G е група и $g \in G$. Да означим множеството от всички степени на g с

$$\langle q \rangle = \{ q^k | k \in \mathbb{Z} \} \subset G.$$

Твърдение 3.4

 $\langle g \rangle$ е подгрупа на G.

Доказателство. 1) $a, b \in \langle g \rangle \Rightarrow a = g^m, b = g^n, m, n \in \mathbb{Z}$ $\Rightarrow ab = g^m g^n = g^{m+n} \in \langle g \rangle.$

2)
$$a \in \langle g \rangle \Rightarrow a = g^n, n \in \mathbb{Z} \Rightarrow a^{-1} = (g^n)^{-1} = g^{-n} \in \langle g \rangle$$
.

Дефиниция 3.5: Циклична подгрупа

Подгрупата $\langle g \rangle$ се нарича **циклична подгрупа** на групата G, породена от елемента g.

Елементът g се нарича **образуващ** или **пораждащ елемент** на цикличната подгрупа $\langle g \rangle$.

ПРИМЕРИ:

- $(\mathbb{Z},+)=\langle 1\rangle=\langle -1\rangle.$
- $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ поражда подгрупа в $SL_2(\mathbb{Z})$

Твърдение 3.6

Групата $\langle g \rangle$ е абелева група. (Дори в случая, когато G не е абелева.)

Доказателство.
$$a, b \in \langle g \rangle$$

 $a = g^m, b = g^n, m, n \in \mathbb{Z}$
 $\Rightarrow ab = g^m g^n = g^{m+n} = g^n g^m = ba$.

Да рагледаме подгрупите породени от числото 5 и i в групата (\mathbb{C}^* , .).

$$\langle 5 \rangle = \{ 5^0 = 1, 5^1, 5^{-1}, 5^2, 5^{-2} \dots \}$$
 - всички степени са различни

$$\langle i \rangle = \{i, i^2 = -1, i^3 = -i, i^4 = 1\}$$
 - само 4 степени са различни

За елементите на $\langle g \rangle$ има 2 възможности:

- 1. Всички степени на g са различни, т.е. $\forall m,n\in\mathbb{Z}, m\neq n$ е в сила $g^m\neq g^n$. Следавателно реда на групата $\langle g \rangle$ е безкраен.
- 2. Поне две степени на елемента q са равни.

$$\exists m, n \in \mathbb{Z}, m \neq n : (m > n)$$
$$g^m = g^n / g^{-n} \Rightarrow g^{m-n} = e.$$

Т.е съществуват положителни степени на g, които са равни на e, т.е. съществува естествено число $r=m-n: g^r=e$.

Твърдение 3.7

Нека n е най-малкото естествено число, за което $g^n = e$. Тогава подгрупата има краен ped, m.e. $|\langle g \rangle| = n$ и и се изчерпва с елементите:

$$\langle g \rangle = \{e, g, g^2, \dots, g^{n-1}\},\$$

които са различни помежду си.

Доказателство. Ще докажем, че елементите $e, g, g^2, \dots, g^{n-1}$ са

1. два по два различни;

Нека
$$0 \le k < m \le n-1$$
 и да допуснем, че $g^k = g^m \ /.g^{-k}$ $g^{m-k} = e \Rightarrow 0 < m-k < n \Rightarrow$ противоречие с избора на $n.$

2. всяка цяла степен на q е равна на някой от тях, т.е.

$$\forall m \in \mathbb{Z} \Rightarrow g^m = g^i, i = 0, 1, \dots, n - 1.$$

 $k \in \mathbb{Z}$ -произволен

$$k = nq + r, \ 0 \le r < n$$

$$\Rightarrow g^k = g^{nq+r} = (g^n)^q g^r = g^r.$$

Дефиниция 3.8: Ред на елемент

Казваме, че елементът $g \in G$ има **безкраен ред**, ако всички негови степени са различни помежду си, т.е. ако $g^m = e$ е възможно, само тогава когато m = 0. ($\forall m, n \in \mathbb{Z} (m \neq n) \Rightarrow g^m \neq g^n$ $g^m = e \Leftrightarrow m = 0$.)

Казваме, че g има **краен** ped n, ако n e най-малкото естествено число, за което $g^n = e$.

Бележим реда на $g \ c \ |g|, r(g), o(g), ord(g)$.

Ако (G,.) е група, то G притежава единствен елемент от ред 1, а именно e и

$$\langle e \rangle \equiv$$
 единичната подгрупа.

Твърдение 3.9

Ako
$$r(g) = n < \infty \Rightarrow |\langle g \rangle| = n$$
.

Доказателство. Всички елементи на цикличната група $\langle g \rangle$ в този случай са $e, g, g^2, \ldots, g^{n-1}$ и са различни помежду си.

Твърдение 3.10

Ako
$$r(g) = n < \infty$$
, mo $g^m = e \Leftrightarrow n/m$.

Доказателство.
$$\Rightarrow$$
) $g^m = e$ и $m = nq + r$, $0 \le r < n$
 $\Rightarrow e = g^m = g^{nq+r} = (g^n)^q g^r = g^r$
 $\Rightarrow r = 0 \Rightarrow n/m$.

 \Leftarrow) n/m T.e. $m = nq \Rightarrow q^m = e$.

Дефиниция 3.11

Групата G се нарича **периодична**, ако всички нейни елементи имат крайни редове и **група без торзии**, ако всички нейни елементи имат безкраен ред. G е **смесена**, ако тя притежава, както елементи от безкраен ред, така и неединични елементи от крайни редове.

примери:

- Всяка крайна група е периодична.
- Без торзии са $(\mathbb{R}^+, .), (\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +).$
- Смесени са $(\mathbb{Q}^*,.), (\mathbb{R}^*,.), (\mathbb{C}^*,.)$. Съдържат както елементи от безкраен ред, така неединични и от краен ред (елемента -1).

3.2 Циклична група

Дефиниция 3.12: Циклична група

 Γ рупата G се нарича **циклична**, ако тя се състои от степените на един от свойте елементи g, т.е. ако съвпада с някоя своя цикличната подгрупа,

$$G \equiv \langle q \rangle$$
.

Елементът д се нарича образуващ или пораждащ елемент на G.

ПРИМЕРИ:

- $(G, +) \Rightarrow G = \langle g \rangle = \{ ng | n \in \mathbb{Z} \}.$
- $(G,.) \Rightarrow G = \langle g \rangle = \{g^n | n \in \mathbb{Z}\}.$
- G циклична, следователно абелева.
- $(\mathbb{Z},+)=\langle 1\rangle=\langle -1\rangle.$
- *n*-ти те корени на единицата

$$(\mathbb{C}_n, .) = \langle w_1 \rangle = \{1, w_1, w_1^2, \dots, w_1^{n-1}\},\$$

където $w_1 = \cos\frac{2\pi}{n} + i\sin\frac{2\pi}{n}$.

Теорема 3.13

Нека G е циклична група.

- a) $A\kappa o |G| = \infty$, $mo (G, .) \cong (\mathbb{Z}, +)$.
- b) Ako $|G| = n < \infty$, mo $(G, .) \cong (\mathbb{C}_n, .)$.

Доказателство. a) $G = \langle g \rangle$ и $|G| = \infty$.

Разглеждаме изображението: $\varphi: G \to \mathbb{Z}, \ \varphi(g^k) = k$.

- $1. \ \varphi$ биекция;
- $2. \varphi$ хомоморфизъм

$$\varphi(g^kg^l)=\varphi(g^{k+l})=k+l=\varphi(g^k)+\varphi(g^l)\Rightarrow \varphi$$
 - изоморфизъм.

- b) $G = \langle g \rangle = \{e, g, g^2, \dots, g^{n-1}\}$ циклична група от ред n Разглеждаме изображението: $\varphi: G \to \mathbb{C}_n, \ \varphi(g^k) = w_1^k, \ k = 0, 1, \dots n-1.$
 - 1. φ биекция;
 - 2. φ хомоморфизъм Ако $0 \le l, k < n$ и $k+l = nq+r, \ 0 \le r < n,$

$$\varphi(g^kg^l)=\varphi(g^{k+l})=\varphi(g^{nq+r})=\varphi(g^r)=w_1^r=w_1^{nq+r}=w_1^{k+l}=w_1^kw_1^l=\varphi(g^k)\varphi(g^l)$$
 \Rightarrow φ - изоморфизъм.

Благодарение на тази теорема може да говорим за безкрайната циклична група и крайната циклична група от ред n.

Твърдение 3.14

Всяка подгрупа на циклична група е циклична.

Доказателство. Нека (G,.) е циклична група, т.е. $G=\langle g \rangle$ и $H \leq G$.

- 1) Ако $H = \{e\}$, то H е циклична група.
- 2) Нека $H \neq \{e\}$.
 - H съдържа и положителни степени на g, защото ако $g^t \in H \Rightarrow g^{-t} \in H$.
 - Нека k е най-малкото естествено число, такова че $g^k \in H$.
 - Ще докажем, че H е циклична група с образуващ елемент g^k , т.е. $H = \langle g^k \rangle$. Нека g^l е произволен $g^l \in H$ и $l = kq + r, \ 0 \le r < k$. Тогава $g^l = (g^k)^q g^r \Rightarrow g^r = (g^k)^{-q} g^l \in H, ((g^k)^{-q} \in H, g^l \in H)$. Ако допуснем, че $r \ne 0, g^r \in H$ при 0 < r < k противоречи с избора на k. $\Rightarrow r = 0$ и l = kq, т.е. $g^l = (g^k)^q$ и $H = \langle g^k \rangle$.

Теорема 3.15

Подгрупите на \mathbb{Z} се изчерпват с групите $r\mathbb{Z}, r \in \mathbb{N}$ или $\{0\}$.

Доказателство. $H \leq \mathbb{Z}, H \neq \{0\}$. Записвайки предната теорема на адитивен език $\Rightarrow H = \langle r \rangle = r \mathbb{Z}$, където r е минималното число с свойството $r \in H$.

Теорема 3.16

Ако $G=\langle g \rangle$ е циклична група от ред n, то нейната подгрупа $H=\langle g^m \rangle$, породена от елемента g^m е от ред $\frac{n}{d}$, където d=(n,m).

 \mathcal{A} оказателство. $|H|=|g^m|\Rightarrow$ трябва да докажем, че $|g^m|=rac{n}{d}$.

Ако $|g^m| = s \Rightarrow s$ е минималното число, за което $(g^m)^s = e$.

Ho $|g|=n\Rightarrow n/ms\Rightarrow \frac{sm}{n}$ е цяло число.

Нека $d=(n,m)\Rightarrow n=n_1d, m=m_1d$

$$\Rightarrow \frac{sm}{n} = \frac{sdm_1}{dn_1} = \frac{sm_1}{n_1} \in \mathbb{Z}$$

s е минималното такова число $\Rightarrow s = n_1 = \frac{n}{d}$.

Следствие 3.17

Ако $G=\langle g \rangle$ е циклична група от ред n, то елемента g^m $(m\in\mathbb{Z})$ е също образуващ елемент на $G\Leftrightarrow (m,n)=1.$

Теорема 3.18

Подгрупите на \mathbb{C}_n се изчерпват с групите \mathbb{C}_q , q/n.

3.3 Групата \mathbb{Z}_n

Глава 4

Симетрична група. Алтернативна група. Теорема на Кейли.

4.1 Пермутации, цикли, транспозиции. Симетричната група.

Нека Ω е множество и да означим с S_{Ω} множеството от всички взаимно еднозначни преобразувания на S_{Ω} (биекции) на Ω , т.е.

$$S_{\Omega} = \{ f : \Omega \to \Omega | f - \text{биекция} \}.$$

Нека $f, g \in S_{\Omega}$ са две взимно еднозначни изображения от Ω върху Ω . Въвеждаме операция произведение на изображения fg, т.е. резултатът от тяхното последователно изпълнение (тяхната композиция), т.е.

$$fg(x) = f(g(x)), \forall x \in \Omega.$$

 $(S_{\Omega},.)$ с въведената бинарна операция (произведение на изображения) образува група.

• Асоциативност.

$$(fg)h = f(gh), f, g, h \in S_{\Omega}$$

По определение:

$$(fg)h)(x) = fg(h(x)) = f(g(h(x)))$$

$$(f(gh))(x) = f(gh(x)) = f(g(h(x)))$$

следователно $(fg)h(x)=f(gh)(x), \forall x\in\Omega,$ т.е. (fg)h=f(gh), тъй като те съвпадат върху всяко $x\in\Omega.$

• В S_{Ω} съществува единствен елемент. Тъждественото изображение (бележи се с: e, (1), id), което оставя всеки елемент на място, т.е. $e(x) = x, x \in \Omega$, е биекция. Това преобразувание е единицата на S_{Ω} , т.е.

$$fe = ef = f, \ \forall f \in S_{\Omega}$$

Това следва от

$$fe(x) = f(e(x)) = f(x)$$

 $ef(x) = e(f(x)) = f(x)$.

• Всеки елемент $f \in S_{\Omega}$ притежава обратен от S_{Ω} .

Нека $f \in S_{\Omega}$ е биекция, то за произволен елемент $x \in \Omega$ съществува единствен първообраз $y \in \Omega$, за който f(y) = x. Да разгледаме изображението f', където $f'(x) = y \Leftrightarrow f(y) = x$. Тогава $f' \in S_{\Omega}$ и

$$ff' = f'f = e,$$

т.е. f' е обратен елемент на f.

Следователно S_{Ω} е група, която се нарича група от взаимно еднозначните преобразувания на множеството Ω или симетричната група на Ω .

Групата не е абелева, ако множеството има повече от два елемента. Нека a,b и c са 3 различни елемента от Ω . Нека f оставя всички елементи на място освен a и b т.е f(a) = b и f(b) = a. Нека g размества само a и c, а останали са неподвижни под действието на g, т.е g(a) = c и g(c) = a. Тогава $f,g \in S_{\Omega}$ и

$$fq \neq qf$$

защото gf(b) = c, fg(b) = a и $a \neq c$.

Нека множеството Ω съдържа краен брой елементи, т.е. $\Omega = \{a_1, a_2, \dots, a_n\}$. Преобразуванието $f \in S_{\Omega}$ означаваме с:

$$f = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ a'_1 & a'_2 & \dots & a'_n \end{pmatrix},$$

където $a'_i = f(a_i)$. Но не е важно какви са елементите на множеството Ω , можем да считаме, че Ω се състои от числата $1, 2, \ldots, n$ и тогава

$$f = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix},$$

където $i_k = f(k)$. Наричаме f субституция, субституция от степен n или пермутация (защото f е биекция и $i_1i_2...i_n$ е пермутация на числата 12...n). Групата S_{Ω} бележим с S_n и наричаме симетрична група от степен n. Елементите на S_n са n! на брой, т.к. това са всички пермутации на n елемента.

Тъждествената субституция и обратната субституция f^{-1} са съответно:

$$e = \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}, \quad \mathbf{u} \quad f^{-1} = \begin{pmatrix} i_1 & i_2 & \dots & i_n \\ 1 & 2 & \dots & n \end{pmatrix}.$$

Ако $g \in S_n$ е друга субституция и $g(i_k) = j_k, \ k = 0, 1, \dots, n$, то

$$gf(k) = g(f(k)) = g(i_k) = j_k$$
, T.e.:

$$gf = \begin{pmatrix} i_1 & i_2 & \dots & i_n \\ j_1 & j_2 & \dots & j_n \end{pmatrix} \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix} = \begin{pmatrix} 1 & 2 & \dots & n \\ j_1 & j_2 & \dots & j_n \end{pmatrix}.$$

Дефиниция 4.1: Цикъл

Нека i_1, i_2, \ldots, i_m са различни елементи от $\Omega_n = \{1, 2, \ldots, n\}$ и изображението $\sigma: \Omega_n \to \Omega_n$ е дефинирано по следното правило:

$$\sigma: \begin{cases} i_1 \to i_2 \\ i_2 \to i_3 \\ \dots \\ i_{m-1} \to i_m \\ i_m \to i_1 \\ k \to k, \forall k \in \Omega_n \setminus \{i_1, i_2, \dots, i_m\}. \end{cases}$$

Тогава σ е елемент на S_n , означава се с $(i_1 \ i_2 \ \dots \ i_m)$ и се нарича **цикъл с** дължина m или m - **цикъл**.

Очевидно всеки цикъл с дължина 1 е тъждествената субституция.

Дефиниция 4.2: Транспозиция

Цикъл с дължина 2 се нарича транспозиция.

Твърдение 4.3

Bceки m-цикъл в S_n има ped m.

Доказателство. Нека $\sigma = (i_1 \ i_2 \ \dots \ i_m)$ е m-цикъл. Тогава трябва да покажем, че $\sigma^m = id$, т.е. $\sigma^m(i_k) = i_k$, за всяко $k, 1 \le k \le m$.

$$\sigma(i_1) = i_2$$

$$\sigma^2(i_1) = \sigma(\sigma(i_1)) = \sigma(i_2) = i_3$$

$$\cdots$$

$$\sigma^m(i_1) = \sigma^{m-1}(\sigma(i_1)) = \cdots = i_1$$

Аналогично за всяко i_k , $2 \le k \le m$.

Дефиниция 4.4: Независими цикъла

Два цикъла $(i_1 \ i_2 \ \dots \ i_k)$ и $(j_1 \ j_2 \ \dots \ j_s)$ се наричат **независими**, ако

$$\{i_1, i_2, \dots, i_k\} \cap \{j_1, j_2, \dots, j_s\} = \emptyset.$$

Теорема 4.5

Нека n е естествено число и S_n е симетричната група от степен n.

- (a) Ако f и g са независими цикли от S_n , то те комутират, т.е. fg = gf.
- (b) Всеки елемент от S_n можее да бъде представен като произведение на независими цикли и това представяне е единствено с точност до реда на множителите.
- (c) Всеки елемент на S_n може да бъде представен като произведение на транспозиции.

 \mathcal{A} оказателство. (a) Нека $k \in \Omega_n = \{1, 2, \dots, n\}$ и нека f и g са независими цикли от S_n .

• Нека f и g оставят неподвижен елемента k, т.е. f(k) = k и g(k) = k. Тогава

$$f(q(k)) = f(k) = k = q(k) = q(f(k)).$$

• Понеже f и g са независими цикли, то следва, че точно единия от тях мести k. Без ограничение на общността, можем да считаме, че f оставя неподвижен елемента k, а g го мести, т.е. $f(k) = k, g(k) = k_1$. Тогава g(k) също остава неподвижен под действието на f и се мести от g следователно

$$f(g(k)) = g(k) = g(f(k)).$$

И като резултат получаваме, че fg = gf.

(b) Пример:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 1 & 7 & 6 & 2 & 3 & 8 & 4 & 9 \end{pmatrix} = (1 \ 5 \ 2)(3 \ 7 \ 8 \ 4 \ 6)$$

Да забележим, че $\sigma(1)=5, \sigma(5)=2, \sigma(2)=1$, т.е. имаме цикъл (1 5 2). Продължавайки с елемент,който не е от този цикъл: $\sigma(3)=7, \sigma(7)=8, \sigma(8)=4, \sigma(4)=6$ и $\sigma(6)=3\Rightarrow (3\ 7\ 8\ 4\ 6)$. На място остава 9.Така накрая получаваме, че $\sigma=(1\ 5\ 2)(3\ 7\ 8\ 4\ 6)$.

Съществуване. Нека $\sigma \in S_n$ и $\sigma \neq id$. Да означим с

$$Supp(\sigma) = \{ i \mid \sigma(i) \neq i, \ 1 < i < n \}$$

носителя на пермутацията σ , т.е. множеството на числата от 1 до n, които не оставят на място под действието на σ . Нека броят на елементите в това множество да означим с $n_{\sigma} = |Supp(\sigma)|$.

Индукция по броя на разместваните от σ символи, т.е. n_{σ} .

- $n_{\sigma} \neq 1$, защото $\sigma \neq id$. Следователно съществува i, такова че $\sigma(i) \neq i$. Съществува и j, такова, че $\sigma(j) = i$ (σ биекция). Пермутацията σ разсмества поне два символа, тъй като $i \neq j$. Ако σ размества само два символа (i и j), то $\sigma = (i$ j) е транспозиция. В този случай σ има посоченото разлагане.
- Индукционно предположение за $n_{\sigma} < k...$
- Нека σ размества $n_{\sigma} = k > 2$ символа. Нека $i_1 \in Supp(\sigma)$. Да разгледаме редицата от n+1 члена:

$$i_1, i_2 = \sigma(i_1), i_3 = \sigma(i_2), \dots, i_{n+1} = \sigma(i_n).$$

Тъй като числата $i_1, i_2, \ldots i_{n+1}$ са естествени и не по-големи от n, то поне два члена от тази редица ще съвпадат. Нека i_s е първият член от редицата, който съвпада с някой от следващите членове, т.е.

$$i_s = i_t, \ s < t \le n + 1$$

и s е минималното число с това свойство. Ако s>1, то

$$\sigma(i_{s-1}) = i_s = i_t = \sigma(i_{t-1}),$$

което означава, че $i_{s-1} = i_{t-1}, \ s-1 < t-1$ и това е противоречие с избора на s. Следователно $s=1 \Rightarrow i_1=i_t, \ 3 \le t \le n+1$.

Нека $\tau = (i_1 \ i_2 \ \dots i_{t-1})$ е цикъл с дължина $t-1 \ge 2$. Да разгледаме $\sigma_1 = \tau^{-1}\sigma$. Тогава σ_1 оставя неподвижни числата $\{i_1, i_2, \dots i_{t-1}\}$ и всички числа, който σ остава неподвижни, т.е.

$$Supp(\sigma_1) = Supp(\sigma) \setminus \{i_1, i_2, \dots i_{t-1}\}.$$

Следователно σ_1 размества k-t+1 символа.

- * Ако k-t+1=0, то тогава $\sigma_1=id\Rightarrow\sigma= au$, т.е. е от искания вид.
- * Ако k-t+1>0, то k>k-t+1 може да приложим индукционното предположение $\sigma_1=\tau_1\dots\tau_m$ е произведение на независими цикли $\Rightarrow \sigma=\tau\sigma_1\Rightarrow \sigma=\tau\tau_1\dots\tau_m$.

Единственост. Допускаме, че σ има две разлагания на произведение на независими цикли дължина по-голяма от 2:

$$\sigma = \pi_1 \dots \pi_t = \tau_1 \dots \tau_m.$$

Всяко число от $Supp(\sigma)$ участва в записа на някой цикъл и в двете разлагания. Нека σ размества символа i_1 , т.е. $i_1 \in Supp(\sigma)$. Следователно i_1

32 Глава 4. Симетрична група. Алтернативна група. Теорема на Кейли.

участва в един от циклите $\pi_1 \dots \pi_t$ и $\tau_1 \dots \tau_m$. Нека това да π_1 и τ_1 (ако е необходимо след преномериране). Тогава $\pi_1 = \tau_1$ (в противен случай получаваме противоречие, защото σ е биекция). Умножаваме отляво σ с τ_1^{-1} получаваме:

$$\pi_2 \dots \pi_t = \tau_2 \dots \tau_m$$
.

Аналогични разсъждения водят до факта, че $\pi_2 = \tau_2, \dots \pi_t = \tau_t, m = t$.

(c) Всеки елемент на S_n може да бъде представен като произведение на транспозиции, например по следните начини:

$$(i_1 \ i_2 \ \dots \ i_n) = (i_1 \ i_2) \ (i_2 \ i_3) \ \dots \ (i_{n-1} \ i_n)$$

 $(i_1 \ i_2 \ \dots \ i_n) = (i_1 \ i_n) \ (i_1 \ i_{n-1}) \ \dots \ (i_1 \ i_2)$

Представянето не е еднозначно, във всяко разлагане може да се добави (ij)(ji) = e. Например:

$$(1\ 2\ 3\ 4) = (1\ 4)(1\ 3)(1\ 2) = (1\ 2)(2\ 3)(3\ 4)$$

 $(i\ j) = (1\ i)(1\ j)(1\ i).$

ПРИМЕРИ:

• D_8 . Всяка симетрия на квадрата, (т.е. всеки елемент от D_8) може да бъде разглеждан като функция на множеството $\{1,2,3,4\}$ от върховете на квадрата. С други думи всеки елемент от D_8 е пермутация на $\{1,2,3,4\}$, т.е. D_n подмножество на S_n .

$$e = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$

$$a = \rho \left(\frac{2\pi}{4}\right) = (1 \ 2 \ 3 \ 4),$$

$$a^2 = (1 \ 2 \ 3 \ 4)(1 \ 2 \ 3 \ 4) = (1 \ 3)(2 \ 4)$$

$$a^3 = (1 \ 2 \ 3 \ 4)(1 \ 2 \ 3 \ 4)(1 \ 2 \ 3 \ 4) = (1 \ 4 \ 3 \ 2)$$

$$a^4 = e$$

$$b = \sigma = (1 \ 4)(2 \ 3)$$

$$D_8 = \{e, a, a^2, a^3, b, ab = (2 \ 4), a^2b = (1 \ 2)(3 \ 4), a^3b = (1 \ 3)\}$$

ПРИМЕРИ:

•

Дефиниция 4.6

Пермутациите $\sigma, \tau \in S_n$ имат **еднакъв цикличен строеж**, ако в разлаганията им в произведение на независими цикли имат един и същ брой независими цикли със (след евентуално разместване) съотвено равен брой дължини.

ПРИМЕРИ:

•

34 Глава 4. Симетрична група. Алтернативна група. Теорема на Кейли.

Лема 4.7

Hera $\sigma, \rho \in S_n$.

a) Ако $\sigma=(i_1\ i_2\ \dots,i_m)\ e\ m$ -цикъл, то

$$\rho\sigma\rho^{-1} = (\rho(i_1) \ \rho(i_2) \ \dots, \rho(i_m)).$$

b) Ако $\sigma = (i_1 \ i_2 \ \dots, i_k) \dots (j_1 \ j_2 \ \dots \ j_s)$ е разлагането на σ в произведение на независими цикли, то

$$\rho\sigma\rho^{-1} = \left(\rho(i_1) \ \rho(i_2) \ \dots, \rho(i_k)\right) \ \dots \ \left(\left(\rho(j_1) \ \rho(j_2) \ \dots, \rho(j_s)\right).$$

Доказателство. a) Нека $a = \rho(i_k)$. Тогава $\rho^{-1}(a) = i_k$ следва, че

$$\sigma(\rho^{-1}(a)) = \sigma(i_k) = \begin{cases} i_{k+1}, & k < m \\ i_1, & k = m. \end{cases}$$

Следователно $\rho\sigma\rho^{-1}(a)=\rho(\sigma\rho^{-1}(a))=\rho(i_{k+1})$ (или $\rho(i_1)$, ако k=m). Което означава, че $\rho\sigma\rho^{-1}$ е цъкъла, описан в лемата. Остава само да покажем, че ако a не е измежду числата $\rho(i_k)$, тогава $\rho^{-1}(a)$ не е равно на никои от i_k , което означава, че е фиксиран от σ . Така:

$$\rho\sigma\rho^{-1}(a) = \rho\rho^{-1}(a) = a.$$

Така твърдението е доказано.

b) Следва от a) и от

$$\rho \sigma \rho^{-1} = \rho(i_1 \ i_2 \ \dots, i_k) \rho^{-1} \rho(\dots) \rho^{-1} \dots \rho(j_1 \ j_2 \ \dots \ j_s) \rho^{-1}$$

$$= \left(\rho(i_1 \ i_2 \ \dots, i_k) \rho^{-1} \right) \left(\rho(\dots) \rho^{-1} \right) \dots \left(\rho(j_1 \ j_2 \ \dots \ j_s) \rho^{-1} \right)$$

$$= \left(\rho(i_1) \ \rho(i_2) \ \dots, \rho(i_k) \right) \dots \left((\rho(j_1) \ \rho(j_2) \ \dots, \rho(j_s) \right).$$

Дефиниция 4.8: Спрегнати пермутации

Две пермутации σ и τ се наричат **спрегнати**, ако $\tau = \rho \sigma \rho^{-1}$, за някоя пермутация $\rho \in S_n$.

Теорема 4.9

Две субституции (пермутации) са спрегнати \Leftrightarrow имат еднакъв цикличен строеж.

Доказателство. \Rightarrow) Нека σ и τ са спрегнати пермутации от S_n , т.е. $\tau = \rho \sigma \rho^{-1}$. От Лема 4.7 следва, че ако

$$\sigma = (i_1 \dots i_k) \dots (j_1 \dots j_k), \text{ TO}$$

$$\tau = \rho \sigma \rho^{-1} = \left(\rho(i_1) \dots \rho(i_k)\right) \dots \left(\rho(j_1) \dots \rho(j_k)\right).$$

⇐) Нека

$$\sigma = (i_1 \dots i_k) \dots (j_1 \dots j_m),$$

$$\tau = (i'_1 \dots i'_k) \dots (j'_1 \dots j'_m),$$

са пермутации с еднакъв цикличен строеж. Да разгледаме изображението, определено по следния начин:

$$\rho = \begin{pmatrix} i_1 \dots i_k & \dots & j_1 \dots j_m & \{1 \dots n\} \setminus Supp(\sigma) \\ i'_1 \dots i'_k & \dots & j'_1 \dots j'_m & \{1 \dots n\} \setminus Supp(\tau) \end{pmatrix}.$$

То е зададено коректно, носителите на независимите цикли от разлагането на σ не се пресичат. Освен това е и биекция, защото и τ е произведение на независими цикли. Трябва само $\{1\dots n\}\setminus Supp(\sigma)$ да се изобрази биективно върху пермутацията на числата $\{1\dots n\}\setminus Supp(\tau)$. Тогава

$$\rho\sigma\rho^{-1} = \rho(i_1 \ i_2 \ \dots, i_k) \dots (j_1 \ j_2 \ \dots \ j_s)\rho^{-1}$$

$$= \left(\rho(i_1) \ \rho(i_2) \ \dots, \rho(i_k)\right) \dots \left((\rho(j_1) \ \rho(j_2) \ \dots, \rho(j_s)\right)$$

$$= (i'_1 \ i'_2 \ \dots, i'_k) \dots (j'_1 \ j'_2 \ \dots \ j'_s) = \tau.$$

С което се доказва, че ако две пермутации от S_n са с еднакъв цикличен строеж, то те са спрегнати.

Твърдение 4.10

Нека n е естествено число и нека $\sigma \in S_n$. Тогава редът на σ е НОК от дължините на циклите във разлагането на цикли на σ .

Доказателство. Нека $\sigma = \sigma_1 \dots \sigma_k$ е разлагането на $\sigma \in S_n$ на независими цикли и редовете на $r(\sigma_i) = r_i$, а на $r(\sigma) = r$. Циклите $\sigma_i, 1 \leq i \leq k$ са независими и от Теорема 4.5 а) те комутират. Тогава

$$\sigma^r = (\sigma_1 \dots \sigma_k)^r = \sigma_1^r \dots \sigma_k^r = id$$

Тъй като σ_i , $1 \leq i \leq n$ са независими цикли следвателно те са определени върху непресичащи се подмножества на $\{1,2,\ldots n\}$. Тогава $\sigma_1^r\ldots\sigma_k^r=id \Leftrightarrow \sigma_i^r=id,\ 1\leq i\leq n$. Това се случва тогава и само тогава когато реда на всеки цикъл r_i дели r.

4.2 Четни и нечетни пермутации

Дефиниция 4.11: Четна (нечетна) пермутация

 $Heкa \ \sigma \in S_n \ u$

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}.$$

Казваме, че σ е **четна (нечетна) пермутация** (като елемент на S_n), ако вторият ред $(i_1 \ i_2 \ \dots \ i_n)$ на σ е четна (нечетна) пермутация на естествените числа от 1 до n.

Броят на четните пермутации е равен на броя на нечетните и е n!/2. Ако в една пермутация разменим местата на 2 числа, то тя сменя четността си. Ако $\tau=(i\ j)$ е транспозиция, то τ е нечетна пермутация.

Твърдение 4.12

Нека $\sigma \in S_n$ и $(i\ j)$ е транспозиция $1 \le i < j \le n$. Тогава пермутациите $\sigma(i\ j)$ и σ имат различни четности.

Доказателство. Ако

$$\sigma = \begin{pmatrix} 1 & \dots & i & \dots & j & \dots & n \\ s_1 & \dots & s_i & \dots & s_j & \dots & s_n \end{pmatrix}, \text{ To}$$

$$\sigma(i \ j) = \begin{pmatrix} 1 & \dots & i & \dots & j & \dots & n \\ s_1 & \dots & s_j & \dots & s_i & \dots & s_n \end{pmatrix},$$

т.е. $\sigma(i\ j)$ се получава от σ , като във втория ред на σ си сменят местата s_i и s_j , което променя четността.

Аналогично се разглежда произведението $(i\ j)\sigma$.

Твърдение 4.13

Eдна пермутация е четна \Leftrightarrow броят на множителите във всяко представяне като произведение на транспозиции е четно число.

Доказателство. Следва от Твърдение 4.12.

4.3 Алтернативна група

4.4 Теорема на Кейли

Теорема 4.14: Теорема на Кейли

Всяка група от ред n е изоморфна на подгрупа на симетричната група S_n от степен n.

Доказателство. Нека G е крайна група, т.е. |G| = n и да фиксираме елемент $a \in G$. Дефинираме изображението, умножение отляво с a:

$$L_a: G \to G$$

 $L_a: g \to ag$
 $L_a(g) = ag$

- 1) Ще докажем, че L_a е биекция;
 - L_a инекция; Нека $g_1 \neq g_2$ и да допуснем, че $L_a(g_1) = L_a(g_2)$. Следователно $\Rightarrow ag_1 = ag_2 /.a^{-1}$ (умножаваме отляво) $\Rightarrow g_1 = g_2$, което е противоречие. От където следва, че от $g_1 \neq g_2 \Rightarrow L_a(g_1) \neq L_a(g_2)$.
 - L_a изображение върху; Нека $g \in G$ е произволен елемент и $h = a^{-1}g$. Тогава

$$L_a(h) = ah = a(a^{-1}g) = (aa^{-1})g = eg = g,$$

т.е. всеки елемент от G си има първообраз.

С което показахме, че L_a е биекция, т.е. $L_a \in S_G = S_n$.

- 2) Ще докажем, че $G' = \{L_a | a \in G\}$ е подгрупа на S_n . (Очевидно $G' \subseteq S_n$.) За целта трябва да покажем следното:
 - От $L_a, L_b \in G'$ следва ли, че $L_{ab} \in G'$. Нека $g \in G$ е произволен елемент.

$$L_a L_b(g) = L_a(L_b(g)) = L_a(bg) = a(bg) = (ab)g = L_{ab}(g).$$

 $\Rightarrow L_aL_b = L_{ab} \in G'.$

• Ако $L_a \in G'$, то следва ли, че $(L_a)^{-1} \in G'$. Имаме

$$L_a L_{a^{-1}} = L_{aa^{-1}} = L_e = id,$$

 $L_{a^{-1}} L_a = L_{a^{-1}a} = L_e = id,$
 $\Rightarrow (L_a)^{-1} = L_{a^{-1}} \in G'.$

38 Глава 4. Симетрична група. Алтернативна група. Теорема на Кейли.

3) Ще покажем, че $G \cong G'$. Да разгледаме изображението:

$$\varphi: G \to G'$$
$$\varphi(a) = L_a.$$

Ще докажем, че φ е изоморфизъм.

 $\bullet \varphi$ е хооморфизъм.

$$L_{ab} = L_a L_b \Rightarrow \varphi(ab) = \varphi(a)\varphi(b).$$

- \bullet φ е биекция:
 - φ е изображение "върху" (очевидно).
 - φ е инекция. Нека $a,b\in G, a\neq b$. Да допуснем, че $L_a=L_b\Rightarrow L_a(e)=L_b(e)\Rightarrow ae=be\Rightarrow a=b$, което е противоречие.

Така φ е изоморфизъм и получихме, че $G \equiv G' \leq S_n$.

Глава 5

Съседни класове. Теорема на Лагранж.

Дефиниция 5.1: Ляв (десен) съседен клас

Нека G е група, $H \leq G$ е подгрупа на G и $a \in G$. Множеството

$$aH = \{ ah \mid h \in H \}$$

се нарича ляв съседен клас на G относно H с представител а, а

$$Ha = \{ ha \mid h \in H \}$$

се нарича десен съседен клас на G относно H с представител a.

примери:

$$He = H = \{e, (1\ 3)\} = H(1\ 3)$$

 $H(1\ 2) = \{(1\ 2), (1\ 2\ 3)\} = H(1\ 2\ 3)$
 $H(2\ 3) = \{(2\ 3), (1\ 3\ 2)\} = H(1\ 3\ 2)$

• Нека $G = \mathbb{Z}_{12} \ H = \{\overline{0}, \overline{4}, \overline{8}\}$

$$H = \{\overline{0}, \overline{4}, \overline{8}\}$$

$$H + \overline{1} = \{\overline{1}, \overline{5}, \overline{9}\}$$

$$H + \overline{2} = \{\overline{2}, \overline{6}, \overline{10}\}$$

$$H + \overline{3} = \{\overline{3}, \overline{7}, \overline{11}\}$$

ПРИМЕРИ:

- Heka $G = \mathbb{Z}_n$ $H = n\mathbb{Z} = \{na | a \in \mathbb{Z}\}$ $H, H + \overline{0}, \dots, H + (n-1)$
- D_8 . Всяка симетрия на квадрата, (т.е. всеки елемент от D_8) може да бъде разглеждан като функция на множеството $\{1,2,3,4\}$ от върховете на квадрата. С други думи всеки елемент от D_8 е пермутация на $\{1,2,3,4\}$, т.е. D_n подмножество на S_n .

$$e = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$

$$a = \rho \left(\frac{2\pi}{4}\right) = (1 \ 2 \ 3 \ 4),$$

$$a^{2} = (1 \ 2 \ 3 \ 4)(1 \ 2 \ 3 \ 4) = (1 \ 3)(2 \ 4)$$

$$a^{3} = (1 \ 2 \ 3 \ 4)(1 \ 2 \ 3 \ 4)(1 \ 2 \ 3 \ 4) = (1 \ 4 \ 3 \ 2)$$

$$a^{4} = e$$

$$b = \sigma = (1 \ 4)(2 \ 3)$$

$$D_{8} = \{e, a, a^{2}, a^{3}, b, ab = (2 \ 4), a^{2}b = (1 \ 2)(3 \ 4), a^{3}b = (1 \ 3)\}$$

$$H = \langle a \rangle = \{e, a, a^{2}, a^{3}\} < G$$

$$H = \{e, a, a^{2}, a^{3}\} = Ha = Ha^{2} = Ha^{3}$$

$$Hb = \{b, ab, a^{2}b, a^{3}b\} = Hab = Ha^{2}b = Ha^{3}b$$

Следователно има 2 десни съседни класа на групата D_8 по подгрупата й H породена от ротацията a и $D_8 = H \bigcup Hb$.

Подгрупата H = eH = He е едновременно и ляв и десен съседен клас.

Освен това $a \in aH$, тъй като $a = a.e \in aH$. (Аналогично $a \in Ha, \forall a \in G$). Следователно

$$G = \bigcup_{a \in G} aH = \bigcup_{a \in G} Ha$$

Лема 5.2

Нека G е група, а H е подгрупа на G.

a) Всеки ляв съседен клас на групата G по подгупата H се поражда от всеки свой елемент, т.е. ако

$$b \in aH \Rightarrow aH = bH$$
.

b) $aH = bH \Leftrightarrow a^{-1}b \in H$. (В частност $aH = H \Leftrightarrow a \in H$.)

Доказателство. a) Ако $b \in aH \Rightarrow aH = bH$.

 $h \in H, H \leq H$

 $\Rightarrow hH\subseteq H$ и $Hh\subseteq H$ (Защото всяко произведение на елементи от H остава в H)

Ако
$$b \in aH \Rightarrow b = ah$$
 и $a = bh^{-1}, h \in H$
 $\Rightarrow bH = (ah)H = a(hH) \subseteq aH = (bh^{-1})H = b(h^{-1}H) \subseteq bH \Rightarrow aH = bH$.

b) $aH = bH \Leftrightarrow a^{-1}b \in H$.

$$\Rightarrow$$
) $aH = bH / .a^{-1}$
 $a^{-1}bH = H \Rightarrow a^{-1}b \in a^{-1}bH = H \Rightarrow a^{-1}b \in H.$

$$\Leftarrow$$
) $a^{-1}b \in H \Rightarrow a^{-1}bH = H /.a \Rightarrow aH = bH.$

(Аналогично и за десни съседни класове).

Лема 5.3

Hека G е група, а H е подгрупа на G.

a) Всеки десен съседен клас на групата G по подгупата H се поражда от всеки свой елемент, т.е. ако

$$b \in Ha \Rightarrow Ha = Hb$$
.

b) $Ha = Hb \Leftrightarrow ab^{-1} \in H$. (B частност $Ha = H \Leftrightarrow a \in H$.)

Лема 5.4

Два леви (десни) съседни класа на G по H или съвпадат или нямат общи елементи.

Доказателство. Нека $c \in aH \cap bH \Rightarrow aH = cH, bH = cH \Rightarrow aH = bH$.

Лема 5.5

Hека G е група u H е подгрупа на G. Тогава H = eH = He е единственият ляв (десен) съседен клас, който е подгрупа на G.

Доказателство. Нека $gH \neq H$ от Лема 5.4 следва, че gH и H или съвпадат или нямат общи елементи $\Rightarrow gH \cap H = \emptyset$. Понеже H е подгрупа $\Rightarrow e \in H$ и оттам $e \notin gH \Rightarrow gH$ не е подгрупа.

 $G = \bigcup_{i \in I} a_i H = \bigcup_{j \in J} H b_j$, съответно ляво и дясно разлагане, т.е.

 $G=igl(\int$ непресичащи се леви (десни) съседни класове

Множеството $\{a_i|i\in I\}$ от елементи на групата G, които участат в разлагането на G, се наричат **пълна система от представители на левите съседни класове**, а множеството $\{b_j|j\in J\}$ - пълна система от представители на десните съседни класове на групата G по подгрупата H.

Лема 5.6

Aко H е подгрупа на G, то

- a) всеки два съседни класа на G по H са равномощни.
- b) множествата от леви и десни съседни класове на G по H са равномощни.

Доказателство. а) Да разгледаме изображението ():

$$\varphi: H \to aH$$
$$\varphi: h \to ah$$
$$\varphi(h) = ah$$

Ще докажем, че φ е биекция.

ullet - инекция;

Нека $h_1 \neq h_2$ и да допуснем, че $\varphi(h_1) = \varphi(h_2)$. Следователно $\Rightarrow ah_1 = ah_2 / .a^{-1}$ (умножаваме отляво) $\Rightarrow h_1 = h_2$, което е противоречие. От където следва, че от $h_1 \neq h_2 \Rightarrow \varphi(h_1) \neq \varphi(h_2)$.

• φ - изображение върху; Нека $g \in aH$ е произволен елемент и $\Rightarrow g = ah$. Тогава

$$\varphi(h) = q$$
,

т.е. всеки елемент от aH си има първообраз под действието на φ .

С което показахме, че φ е биекция.

b) Да разгледаме изображението ψ , което на всеки ляв съседен клас aH съпоставя десния съседен клас Ha^{-1} , т.е.

$$\psi: aH \to Ha^{-1}$$
$$\psi(aH) = Ha^{-1}$$

 \coprod е докажем, че ψ е биекция.

- ψ инекция; Нека $aH \neq bH$ и да допуснем, че $\psi(aH) = \psi(bH)$. Следователно $\Rightarrow \psi(aH) = Ha^{-1} = Hb^{-1} = \psi(bH)$. От Лема 5.3 b) следва, че $a^{-1}b \in H$, което според Лема 5.2 е еквивалентно на равенството aH = bH, което е противоречие.
- φ изображение върху;

С което показахме, че ψ е биекция.

Следствие 5.7

а) Ако H е крайна подгрупа на G от ред т, то броя на елементите на всеки два съседни класа е един и същ, т.е. всеки съседен клас на G по H има т елемента.

$$|gH| = |H| = |Hg| = m.$$

b) Aко G e крайна група, то броят на левите съседни класове e равен на броя на десните съседни класове на G по H

Доказателство. Следват от Лема 5.6.

Дефиниция 5.8: Индекс

Броя на левите(десните) съседни класове на групата G по подгрупата H се нарича **индекс на** H в G, |G:H|.

Казваме, че подгрупата H има краен индекс в G, ако |G:H| е крайно число, а в противен случай H има безкраен индекс в G.

ПРИМЕРИ:

• Нека $(G=\mathbb{Z}_n,+)$ и $H=n\mathbb{Z}=\{na|a\in\mathbb{Z}\}<\mathbb{Z}=G.$ Тогава всички съседни класове на G по подгрупата H са

$$H, 1 + H, \dots, (n-1) + H$$

Ако $a \in \mathbb{Z}$, то $a = nq + r, 0 \le r < n$. Следователно

$$a + H = (nq + r) + H = r + (nq + H) = r + H,$$

защото $nq \in H$. Тези класове са различни, защото от

$$r + H = k + H$$
, $0 \le r, k \le n$

следва, че $k-r\in H\Rightarrow n/(k-r)\Rightarrow k=r.$ Следователно индекса на H в G е |G:H|=n.

• Нека $(G = \mathbb{C}^*,.)$ и $U = \{x \in \mathbb{C} | |x| = 1\} < G$. Индексът на H в G - |G:H| е безкраен. (От $aU \neq bU \Leftrightarrow a^{-1}b \notin U$, т.е $a^{-1}b \neq 1$ или $|a| \neq |b|$. Така получихме, че множеството от левите съседни класове $\{aU | a \in G\}$ е безкрайно, защото съществуват безбройно много комплексни числа с различни модули.)

Теорема 5.9: Теорема на Лагранж

Нека G е крайна група и $H \leq G$. Тогава е изпълнено равенството

$$|G| = |H||G:H|.$$

Доказателство. Нека групата

$$G = \bigcup_{a \in G} aH$$

се разбива на непресичащи се леви (десни) съседни класове.

Броят на левите (десни) съседни класове е точно индексът на G по H, т.е. |G:H|. А броят на елементите във всеки един съседен клас е равен на |H|. От където следва, че |G| = |H||G:H|. (Редът на всяка подгрупа H дели реда на G, G - крайна група).

Следствие 5.10

Hека G е крайна група.

- а) ако $g \in G$, то |g|/|G|, т.е. редът на всеки елемент на една крайна група дели реда на групата.
- b) ако редът на G е просто число, то G е циклична и се поражда от всеки свой неединичен елемент.
- с) За всяко просто число р с точно до изоморфизъм, съществува единствена група от ред р, която е циклична.

Доказателство. а) Нека $g \in G$. Редът на g е равен на реда на цикличната подгрупа $|\langle g \rangle|$ и от Теоремата на Лагранж дели реда на групата.

- b) Нека |G|=p и p просто число. Ако $e\neq g\in G\Rightarrow |\langle g\rangle|/|G|\Rightarrow |\langle g\rangle|=p\Rightarrow \langle g\rangle=G.$
- с) От b) следва, че всички групи от ред p са циклични и от Теорема 3.13, ако $|G|=n<\infty$, то $(G,.)\cong(\mathbb{C}_n,.)$

https://groupprops.subwiki.org/wiki/Abelian_group_of_prime_power_order https://groupprops.subwiki.org/wiki/Subgroup_structure_of_symmetric_group: S3

http://www.math.ucsd.edu/~atparris/small_groups.html

http://homepages.math.uic.edu/~marker/math330/g6.pdf

 $\verb|https://en.wikipedia.org/wiki/List_of_small_groups|$

http://www.neverendingbooks.org/the-15-puzzle-groupoid-2

Глава 6

Нормални подгрупи. Факторгрупи. Теорема за хомоморфизмите при групи.

6.1 Нормални подгрупи.

Видяхме, че броя на левите съседни класове е равен на броя на десните съседни класове, или казано по друг начин множествата от леви и десни класове са равномощни. Въпросът е кога тези множества съвпадат и кога са различни? Ще дадем няколко примера:

ПРИМЕРИ:

• $G = D_8 = \langle a, b | a^4 = b^2 = 1, ba = a^3b \ (bab = a^3 = a^{-1}) \rangle = \{1, a, a^2, a^3, b, ab, a^2b, a^3b\}, a$ - ротация, b - симетрия. $H = \langle b \rangle < G, H = \{e, b\}$

Леви класове Десни класове
$$H = \{e, b\} \qquad H = \{e, b\}$$

$$aH = \{a, ab\} \qquad Ha = \{a, ba\}$$

$$a^2H = \{a^2, a^2b\} \qquad Ha^2 = \{a^2, ba^2\}$$

$$a^3H = \{a^3, a^3b\} \qquad Ha^3 = \{a^3, ba^3\}$$

 $bab = a^3/.b \Rightarrow b^2ab = ba^3 \Rightarrow ab = ba^3, \ a^2b = ?, a^3b = ?$ Лявото разлагане на групата G по H не съвпада с дясното разлагане.

ПРИМЕРИ:

• $G = D_8 = \langle a, b | a^4 = b^2 = 1, ba = a^3b \rangle = \langle 1, a, a^2, a^3, b, ab, a^2b, a^3b \rangle, a$ - ротация, b - симетрия.

$$H = \langle a \rangle < G, H = \{e, a, a^2, a^3\}$$

Леви класове Десни класове
$$H = \{e, a, a^2, a^3\} \qquad H = \{e, a, a^2, a^3\}$$

$$bH = \{b, ba, ba^2, ba^3\} \quad Hb = \{b, ab, a^2b, a^3b\}$$

Лявото разлагане на групата G по H съвпада с дясното разлагане.

Дефиниция 6.1: Нормална подгрупа

Нека G е група и $H \leq G$. H е **нормална подгрупа** на G, ако за всеки елемент $g \in G$ е изпълнено

$$gH = Hg$$
.

Означаваме $H \subseteq G$ или $H \triangleleft G$.

примери:

- Тривиални нормални подгрупи $e \triangleleft G$; $G \unlhd G$ $(g\{e\} = \{g\} = \{e\}g$ и gG = G = Gg).
- В абелева група всяка подгрупа е нормална.
- Центърът на $G, Z(G) \triangleleft G$.
- $G=D_8=\langle a,b|a^4=b^2=1,ba=a^3b\rangle=\{1,a,a^2,a^3,b,ab,a^2b,a^3b\},\ a$ ротация, b симетрия.

$$H = \langle a \rangle < G, H = \{e, a, a^2, a^3\}$$

Леви класове Десни класове
$$H = \{e, a, a^2, a^3\} \qquad H = \{e, a, a^2, a^3\}$$

$$bH = \{b, ba, ba^2, ba^3\} \quad Hb = \{b, ab, a^2b, a^3b\}$$

Лявото разлагане на групата G по H съвпада с дясното разлагане.

Твърдение 6.2

Нека G е група, $H \leq G$ и индексът на H в G е |G:H|=2. Тогава $H \triangleleft G$ е нормална подгрупа на G.

Доказателство. Нека G е група, $H \leq G$, |G:H| = 2 и $g \in G$.

- Ако $g \in H \Rightarrow gH = H = Hg$.
- Ако $g \in G/H \Rightarrow H \cap gH = \emptyset \Rightarrow G = H \cup gH \Rightarrow gH = G \setminus H$. Аналогично се получава, че $Hg = G \setminus H \Rightarrow gH = Hg \Rightarrow H \triangleleft G$.

Теорема 6.3

Ако $H \leq G$, то следните твърдения са еквиваленти:

- (1) $H \triangleleft G$
- $(2) \ g^{-1}Hg = H, \ \forall g \in G.$
- (3) $g^{-1}hg \in H$, $\forall g \in G$, $\forall h \in H$.

Доказателство. • (1) \Rightarrow (2) Ако $H \triangleleft G$, то $gH = Hg/.g^{-1}$ (отляво) $\Rightarrow H = g^{-1}Hg$.

• (2) \Rightarrow (3) Твърдението следва от равенствата:

$$g^{-1}Hg = H$$
, и
$$g^{-1}Hg = \{g^{-1}hg \mid h \in H\}.$$

- $(3) \Rightarrow (1)$
 - Ако $g^{-1}hg \in H$, $\forall g \in G$, $\forall h \in H$, то $g^{-1}Hg \subseteq H$, $\forall g \in G$.
 - Да разгледаме елемента $g^{-1} \in G$. Тогава ще получим:

$$\begin{split} (g^{-1})^{-1}Hg^{-1} &= gHg^{-1} \subseteq H \Rightarrow \\ H &= g(g^{-1}Hg)g^{-1} \subseteq gHg^{-1} \subseteq H \Rightarrow \\ gHg^{-1} &= H \Leftrightarrow gH = Hg \Rightarrow H \triangleleft G. \end{split}$$

Следствие 6.4

Нека $H_i \triangleleft G$, $i \in I$ са нормални подгрупи на G. Тогава сечението им е нормална подгрупа на G, m.e.

$$H_i \triangleleft G, \ i \in I \Rightarrow H = \bigcap_{i \in I} H_i \triangleleft G.$$

Доказателство. $g \in G, h \in H \Rightarrow h \in H_i (i \in I)$ $H_i \triangleleft G \Rightarrow g^{-1}hg \in H_i (\forall i \in I) \Rightarrow g^{-1}hg \in H \text{ от Тоерема 6.3 следва, че } H \triangleleft G.$

Дефиниция 6.5

Два елемента $a, b \in G$ от групата G се наричат **спрегнати**, ако

$$\exists g \in G : b = g^{-1}ag.$$

Релацията спрегнатост е релация на еквивалентност и всички елементи на G се разбиват на класове спрегнати елементи.

$$H \leq G.H \leq G \Leftrightarrow$$
 ако $h \in H$, то и $g^{-1}hg \in H, \forall g \in G.$

или с всеки свой елемент съдържа и всичките му спрегнати.

6.2 Факторгрупи.

Нека G е група и $H \triangleleft G$ е нормална подгрупа на G. Ще говорим само за съседни класове на G по H, защото всеки ляв съседен клас е и десен съседен клас. Да разгледаме множеството от всички съседни класове на G по H, т.е.

$$G/H = \{aH \mid a \in G\},\$$

т.е. елементите на G/H са подмножества на G.

Да дефинираме бинарна операция - умножение на елементи на G/H,

$$(aH)(bH) = (ab)H,$$

като aH и bH са два произволни класа от G/H.

Теорема 6.6

Нека G е група и $H \triangleleft G$. Тогава (G/H, .) е група относно операцията умножение.

Доказателство. (G1) Бинарната операция е коректно дефинирана, т.е. не зависи от избора на представител на съседния клас, т.е.

$$a_1H = aH \Rightarrow a_1^{-1}a \in H,$$

 $b_1H = bH \Rightarrow b_1^{-1}b \in H.$

Искаме да проверим, че $(a_1b_1)H = (ab)H$, т.е. $(a_1b_1)^{-1}ab \in H$.

$$\left(a_{1}b_{1}\right)^{-1}ab = b_{1}^{-1}a_{1}^{-1}ab = b_{1}^{-1}a_{1}^{-1}a\left(b_{1}b_{1}^{-1}\right)b =$$

$$= \underbrace{\left(b_{1}^{-1}\underbrace{(a_{1}^{-1}a)}_{\in H} b_{1}\right)\underbrace{(b_{1}^{-1}b)}_{\in H}}_{\in H, (H \triangleleft G)}$$

Откъдето следва, че операцията е дефинирана коректно.

(G2) Асоциативност. Следва от асоциативността на G.

$$(aHbH)cH = \left((ab)H\right)cH = \left((ab)c\right)H = (abc)H$$
$$aH(bHcH) = aH\left((bc)H\right) = \left(a(bc)\right)H = (abc)H$$

(G3) Единичен елемент. Елементът $H = eH \in G/H$ е единичен елемент в G/H, защото

$$aHeH = (ae)H = aH,$$

 $eHaH = (ea)H = aH,$

за всяко $aH \in G/H$.

(G4) Обратен елемент. Обратният елемент на $aH \in G/H$ е $a^{-1}H$, защото $a^{-1}H \in G/H$ и

$$(aH) (a^{-1}H) = (aa^{-1})H = eH = H,$$

 $(a^{-1}H) (aH) = (a^{-1}a)H = eH = H.$

С което теоремата е доказана.

Дефиниция 6.7: Фактор-група

 $\Gamma pynama\ G/H\ ce$ нарича фактор-група на групата G по нормалната й подгрупа H.

Ако $|G| < \infty$, то |G/H| = |G:H| и от Теоремата на Лагранж 5.9 се записва във вида:

$$|G| = |H|.|G/H|,$$

т.е. $G/H < \infty$ е крайна група и дели реда на G.

Ако G е абелева, то G/H също е абелева.

примери:

- $G/\{e\} \cong G$, $G/G \cong \{e\}$.
- $G = \mathbb{Z}/12\mathbb{Z} = \{0,1,2,\ldots,11\}$ абелева, следователно всички подгрупи са нормални.

Нека $H = \{0, 4, 8\}$. Какво представлява групата G/H?

$$G/H=$$
 десни съседни класове на G по H
$$=\{ \quad H=\{0,4,8\}, \\ H+1=\{1,5,9\}, \\ H+2=\{2,6,10\}, \\ H+3=\{3,7,11\} \quad \}$$

$$\Rightarrow G/H = \{H, H+1, H+2, H+3\}$$

• $G = (\mathbb{Z}, +),$ $H = n\mathbb{Z} = \{na | a \in \mathbb{Z}\}$ $G/H = \{H, H + 1, \dots, H + (n-1)\}$

6.3 Хомоморфизъм

Дефиниция 6.8: Хомоморфизъм на групи

Hека (G,\star) u (G',\circ) са групи. Казваме, че φ е **хомоморфизъм на групи**, ако

- 1) $\varphi: G \to G'$ е изображение;
- 2) $\forall a, b \in G$ е изпълнено:

$$\varphi(a \star b) = \varphi(a) \circ \varphi(b),$$

 $m.e.\ arphi$ запазва груповата операция.

 $A\kappa o \varphi e$ биекция, наричаме φ изоморфизъм.

Дефиниция 6.9: Ядро на хомоморфизъм

Нека φ е хомоморфизъм на групата G в G'. Тогава множеството

$$Ker(\varphi) = \{ a \in G \mid \varphi(a) = e' \} \subseteq G$$

наричаме **ядро** на хомоморфизма φ .

53

примери:

• Ако $n \geq 2, n \in \mathbb{N}$, тогава $\varphi : \mathbb{Z} \to \mathbb{Z}_n$, зададено чрез $\varphi(a) = \overline{a}$ е хомоморфизъм. (Наистина $\varphi(a+b) = \overline{a+b} = \overline{a} + \overline{b} = \varphi(a) + \varphi(b)$). Следователно ядрото на φ е

$$Ker(\varphi) = \{ a \in \mathbb{Z} \mid \overline{a} = \overline{0} \} = n\mathbb{Z}.$$

• Нека $G=(\mathbb{Z},+), G'=(\mathbb{Q}^{\star},.),$ тогава $\varphi:\mathbb{Z}\to\mathbb{Q}^{\star},$ зададено чрез $\varphi(a)=2^a$ е хомоморфизъм. $\varphi(a+b)=2^{a+b}=2^a.2^b=\varphi(a).\varphi(b).$ Следователно ядрото на φ е

$$Ker(\varphi) = \{ a \in \mathbb{Z} \mid 2^a = 1 \} = \{0\}.$$

• Нека G и G' са групи, тогава $\varphi:G\to G'$, зададено чрез $\varphi(a)=e'$ е хомоморфизъм. $\varphi(a.b)=e=\varphi(a).\varphi(b)$. Следователно ядрото на φ е

$$Ker(\varphi) = \{ a \in G \mid \varphi(a) = e' \} = G.$$

Твърдение 6.10

Нека $\varphi:G o G'$ е хомоморфизъм на групи и $g\in G$. Тогава

(1)
$$\varphi(e) = e'$$
.

(2)
$$\varphi(g^n) = (\varphi(g))^n, \ n \in \mathbb{Z}.$$

(3)
$$|g| = m < \infty \Rightarrow |\varphi(g)|/m$$
.

 ${\it Доказателство}.$ (1) $\varphi(e)=e'$. Да забележим, че

$$arphi(e) = arphi(ee) = arphi(e) arphi(e) \ /. arphi(e)^{-1}$$
 $e' = arphi(e), \quad e'$ е единицата в G'

(2)
$$\varphi(g^n) = (\varphi(g))^n, \ n \in \mathbb{Z}.$$

Да разгледаме случаите:

• ако n > 0, то

$$\varphi(g^n) = \varphi(\underbrace{gg\cdots g}_n) = \underbrace{\varphi(g)\cdots\varphi(g)}_n = \left(\varphi(g)\right)^n$$

- за n = 0 вече е доказано в (1).
- ако n = -1, то

$$\varphi(g^{-1})\varphi(g) = \varphi(g^{-1}g) = \varphi(e) = e'.$$

Аналогично и $\varphi(g)\varphi(g^{-1})=e'$. Следователно $\varphi(g^{-1})=\left(\varphi(g)\right)^{-1}$.

- за n < -1 комбинираме всичко доказано до тук.
- (3) $|g| = m < \infty \Rightarrow |\varphi(g)|/m$. Имаме

$$\left(\varphi(g)\right)^m = \varphi(g^m) = \varphi(e) = e'.$$

Оттук и от Твърдение 3.10 следва, че реда на $\varphi(g)$ дели m.

Лема 6.11

Нека $\varphi:G\to G'$ е хомоморфизъм на групи. Тогава $Ker(\varphi)\unlhd G$ е нормална подгрупа на G.

Доказателство. $Ker(\varphi) \leq G$.

От Твърдение 6.10 следва, че $e \in Ker(\varphi) \Rightarrow Ker\varphi \neq \emptyset$.

- $Ker(\varphi) \leq G$
 - Ако $a, b \in Ker(\varphi) \Rightarrow \varphi(ab) = \varphi(a)\varphi(b) = e'.e' = e' \Rightarrow ab \in Ker(\varphi).$

– Ако
$$a \in Ker(\varphi) \Rightarrow \varphi(a^{-1}) = \left(\varphi(a)\right)^{-1} = ()e')^{-1} = e' \Rightarrow a^{-1} \in Ker(\varphi).$$

• $Ker(\varphi) \trianglelefteq G \Leftrightarrow \forall g \in G, h \in Ker(\varphi)$ то и $g^{-1}hg \in Ker(\varphi)$.

$$\varphi(g^{-1}hg) = \varphi(g^{-1})\varphi(h)\varphi(g) = \varphi(g^{-1})e\varphi(g) = e \Rightarrow Ker(\varphi) \leq G.$$

Дефиниция 6.12: Образ на хомоморфизъм

Нека φ е хомоморфизъм на групата G в G'. Тогава множеството

$$Im(\varphi) = \{ a' \in G' \mid \exists a \in G : \varphi(a) = a' \} = \{ \varphi(a) \mid a \in G \} \subseteq G'$$

наричаме **образ** на хомоморфизма φ .

Твърдение 6.13

Нека φ е хомоморфизъм на групата G в G'. Тогава образът $Im(\varphi)$ е подгрупа на G', т.е. $Im(\varphi) \leq G'$.

Доказателство. Ако $a',b'\in Im(\varphi)$, то съществуват елементи $a,b\in G$ такива, че $\varphi(a)=a',\varphi(b)=b'.$ Тогава

• $a',b'\in Im(\varphi)\Rightarrow a'b'\in Im(\varphi)$, защото

$$\varphi(ab) = \varphi(a)\varphi(b) = a'b' \in Im(\varphi)$$

• $a' \in Im(\varphi) \Rightarrow (a')^{-1} \in Im(\varphi)$, защото

$$\varphi(a^{-1}) = \left(\varphi(a)\right)^{-1} = (a')^{-1} \in Im(\varphi).$$

примери:

- •
- •
- •

Лема 6.14

Ако $H \leq G$ е нормална подгрупа на G, то H е ядро на някакъв хомоморфизъм на G (т.е. $H = Ker(\pi)$).

Доказателство. Да дефинираме изображението:

$$\pi:G \to G/H$$
 $\pi:g \to gH, \quad g \in G$ (произволен) $\pi(g)=gH$

- π е изображение върху;
- π е хомоморфизъм:

$$\forall a, b \in G, \quad \pi(ab) = (ab)H = (aH)(bH) = \pi(a)\pi(b)$$

• $Ker(\pi) = H$;

$$g \in G \Rightarrow g \in Ker(\pi) \Leftrightarrow \pi(g) = gH = H \Leftrightarrow g \in H.$$

 π - естествен хомоморфизъм на G върху G/H.

Лема 6.11 и Лема 6.14 водят до следната теорема:

Теорема 6.15

Ядрата на всевъзможните хомоморфизми на дадена група се изчерпват с нейните нормални подгрупи.

Доказателство. Лема 6.11 - $\forall Ker(\varphi) \leq G$

Лема 6.14 - $\forall H \leq G \Rightarrow H = Ker(\pi)$ на някакъв хомоморфизъм.

6.4 Изоморфизъм

Целта ни е да определим кога две групи са всъщност едни и същи. Изоморфните групи имат една и съща структура. Изоморфизмът просто дава нови имена на елементите на групата. Елементите от едната група се изобразяват в елементи на другата.

Теорема 6.16

Изоморфизмът е релация на еквивалентност.

Доказателство. • Рефлексивност: Нека разледаме изображението $\alpha: G \to G$, зададено чрез $\alpha(g) = g, \forall g \in G$. То е изоморфизъм. (защо?)

• Симетричност. Нека $\alpha: G \to G'$ е изоморфизъм, то съществува съществува изображение $\beta: G' \to G$, зададено с $\beta(g') = g$, където $\alpha(g) = g'$ и то е биекция. Трябва само да проверим, че е хомоморфизъм. Нека $a, b \in G, \alpha(a) = a', \beta(a') = a, \alpha(b) = b', \beta(b') = b$. Тогава

$$\alpha(ab) = \alpha(a)\alpha(b) = a'b'$$

$$\beta(a'b') = ab = \beta(b')\beta(a')$$

• **Транзитивност.** Нека $\alpha: G \to G'$ и $\beta: G \to G'$ са изоморфизми. Нека $\gamma = \alpha \circ \beta$. γ е биекция. Проверяваме за хомоморфизъм, $a, b \in G$:

$$\gamma(ab) = \beta\bigg(\alpha(ab)\bigg) = \beta\bigg(\alpha(a)\alpha(b)\bigg) = \beta\bigg(\alpha(a)\bigg)\beta\bigg(\alpha(b)\bigg) = \gamma(a)\gamma(b).$$

ПРИМЕРИ:

• Да разледаме множеството $G = \{1, -1, i, -i\}$ (където $i \in \mathbb{C}$) е група относно умножението. Ще покажем, че тя (G, .) е изоморфна на $(\mathbb{Z}_4, +)$. За да докажем това, ще дефинираме изображение: $\varphi : G \to \mathbb{Z}_4$, зададено чрез

$$\varphi(0) = 1, \ \varphi(1) = i, \ \varphi(2) = -1, \ \varphi(3) = -i.$$

Това изображение е биекция и трябва да покажем, че е хомоморфизъм, т.е. че запазва груповата операция.

+	0	1	2	3			1	i	-1	-i		0	a	b	\mathbf{c}	d
0	0	1	2	3	-	1	1	i	-1	-i	-	a	a	b	c	$\overline{\mathrm{d}}$
1	1	2	3	0		i	i	-1	-i	1		b	b	\mathbf{c}	d	a
2	3	0	1	2		-1	-1	-i	1	i		\mathbf{c}	c	d	a	b
3	3	0	1	2		-i	i	1	i	-1		d	d	a	b	\mathbf{c}

Таблиците за \mathbb{Z}_4 и G са показани на таблица 1 и 2. Но може да се забележи, че те имат таблица 3, като просто елементите са преименувани.

57

Твърдение 6.17

Ако G е група u|G|=2k, k>1, то в G има елемент от ред 2.

Доказателство.

Твърдение 6.18

 $A \kappa o \ G \ e \ група \ u \ всеки нейн елемент има от <math>ped \ 2$. Тогава $G \ e \ абелева.$

Доказателство.

Както вече видяхме цикличните групи могат да се класифицират с точност до изоморфизъм. Ако G е циклична група и е има безкраен ред, то тя е изоморфна на $(\mathbb{Z}, +)$. Ако има краен ред n, то тя е изоморфна на $(\mathbb{C}_n, .)$. Както и ако имаме група от прост ред p, то тя е изоморфна на $(\mathbb{C}_p, .)$ (защо?).

Дефиниция 6.19

 $Heкa\ (G,\star)\ u\ (H,\circ)\ ca\ групи.$ За декартово произведение $G\times H$ дефинираме операция \diamond :

$$(g_1, h_1) \diamond (g_2, h_2) = (g_1 \star g_2, h_1 \circ h_2), \forall g_i \in G, h_i \in H, i = 1, 2.$$

C така въведената операция наричаме $G \times H$ директно произведение на G и H .

Твърдение 6.20

Директното произведение на две групи е група.

Доказателство.

Теорема 6.21

Нека G е група, която има два различни комутиращи елемента а и b от ред 2. Тогава G има подгрупа изоморфна на $\mathbb{C}_2 \times \mathbb{C}_2$.

Доказателство. Нека |a| = |b| = 2. Тогава $H = \{e, a, b, ab\}$ е подгрупа на G (съдържа единица, затворена е относно операцията).

H съдържа 4 различни елемента. Ясно е, че e,a и b са различни. Ако $ab=e=bb\Rightarrow a=b$ и $ab=b=eb\Rightarrow a=e$, което е невъзможно.

Твърдим, че $H \cong \mathbb{C}_2 \times \mathbb{C}_2$. Да разгледаме изображението $\varphi : H \to \mathbb{C}_2 \times \mathbb{C}_2$, дефинирано чрез

$$\varphi(e) = (1,1), \ \varphi(a) = (-1,1), \ \varphi(b) = (1,-1) \ \text{if} \ \varphi(ab) = (-1,-1).$$

Това изображение е биекция. Като сравним таблиците им (те еднозначно се попълват) се проверява, че те са еднотипни и изображението е хомоморфизъм.

Твърдение 6.22

Всяка група от ред 4 е изоморфна или на \mathbb{C}_4 или на $\mathbb{C}_2 \times \mathbb{C}_2$.

Доказателство. В група от ред 4 всеки неединичен елемент има ред 2 или 4.

- Ако има елемент от ред 4 следователно е циклична и изоморфна на \mathbb{C}_4 .
- В противен случай, всеки неединичен елемент е от ред 2. Но това означава, че групата е абелева и от предната лема следва, че групата има подгрупа изоморфна на $\mathbb{C}_2 \times \mathbb{C}_2$. Но тази подгрупа има ред 4, колкото е реда на групата, следователно съвпадат.

Теорема 6.23

Нека G е група и |G|=2p, където p е нечетно просто число. Тогава G е изоморфна или на \mathbb{C}_{2p} или на D_{2p} .

Доказателство. Възможните редове на неединични елементи от G са 2, p и 2p.

- Ако в G има елемент от ред 2p, то G е циклична и е изоморфна на \mathbb{C}_{2p} .
- Считаме, че всеки неединичен елемент е от ред 2 или р.
 - Ако всеки елемент има ред 2, това означава, че групата е абелева и има подгрупа от ред 4, което е противоречие с теоремата на Лагранж.
 - Следователно $a \in G$ има ред p и нека разгледаме елемента $b \notin \langle a \rangle$. Да допуснем, че |b| = p. Тогава $\langle a \rangle \bigcap \langle b \rangle$ е подгрупа и на $\langle a \rangle$ и на $\langle b \rangle$ и от теоремата на Лагранж може да има ред 1 или p. И понеже $b \notin \langle a \rangle$ следва, че сечението има ред 1.

Да разгледаме множеството:

$$M = \{a^i b^j \mid 0 \le i, j \le p - 1\} \subseteq G.$$

Броят на елементите в M (различните) е най-много p^2 . Ако два елемента от M са равни, т.е. $a^ib^j=a^kb^s\Rightarrow a^{i-k}=b^{s-j}\in\langle a\rangle\bigcap\langle b\rangle=\{e\}$, т.е всички елементи са различни и са p^2 на брой и освен това се съдържат в групата G, която има ред p, което е противоречие. Следователно |b|=2.

Подгрупата $\langle a \rangle$ има индекс 2, което означава, че е нормална (защо?). Така, $b^{-1}ab \in \langle a \rangle$ и нека $b^{-1}ab = a^k$. Тогава

$$a = b^{-2}ab^2 = b^{-1}\underbrace{\left(b^{-1}ab\right)}_{a^k}b = b^{-1}a^kb = (b^{-1}ab)^k = (a^k)^k = a^{k^2}.$$

Понеже a има ред p, следователно $p/(k^2-1)=(k-1)(k+1)$. Но p е просто число, а $0 \le k \le p-1 \Rightarrow k=\pm 1$. Така $b^{-1}ab=a$ или $b^{-1}ab=a^{-1}$.

Нека $b^{-1}ab=a\Rightarrow ab=ba$, т.е. комутират. Да разгледаме редът на ab. Ако $(ab)^n=e\Rightarrow a^n=b^{-n}\in\langle a\rangle\bigcap\langle b\rangle=\{e\}$. Но a и b имат различни редове, който са прости числа, съответно p и 2. Така p/n и $2/n\Rightarrow 2p/n$. Следователно ab има ред 2p, но този случай вече го изключихме.

Следователно $b^{-1}ab = a^{-1}$. И знаем всичко за тази група - $\langle a \rangle$ има индекс $2, b \notin \langle a \rangle$ и елементите на G са a^i и $ba^i, 0 \leq i < p$. Нещо повече, знаем как да намерим произведението на два елемента:

$$a^{i}a^{j} = a^{(i+j) \mod p},$$

$$ba^{i}a^{j} = ba^{(i+j) \mod p},$$

$$a^{i}ba^{j} = b\left(b^{-1}a^{i}b\right)a^{j} = b\left(b^{-1}ab\right)^{i}a^{j} = b(a^{-1})^{i}a^{j} = ba^{j-i},$$

$$ba^{i}ba^{j} = b(ba^{j-i}) = a^{j-i}.$$

Готови сме да попълним таблицата за групата и всъщност се оказва, че имаме същата групова структура както и на диедралната група. Наистина нека F е някоя симетрия в D_{2p} , а $R_{\frac{2\pi}{p}}$ е ротация на ъгъл $\frac{2\pi}{p}$. Да разгледаме изображението:

$$\varphi: G \to D_{2p}$$

$$\varphi(a^i) = R_{\frac{2i\pi}{p}}$$

$$\varphi(ba^i) = FR_{\frac{2i\pi}{p}}$$

Изображението е биекция и хомоморфизъм, с което теоремата е доказана.

6.5 Теорема за хомоморфизмите.

Теорема 6.24

Hека $\varphi:G o G'$ е хомоморфизъм на групи и $H=Ker(\varphi)$. Тогава

$$H \leq G \ u \ G/H \cong Im(\varphi).$$

Доказателство. Да разгледаме изображението:

$$\tau: G/H \to Im(G)$$

$$\tau: gH \to \varphi(g)$$

$$\tau(gH) = \varphi(g)$$

• τ е коректно дефинирано, т.е. не зависи от избора на представителя g на съседния клас gH. Нека $g_1H=gH\Rightarrow g_1=gh, h\in H$ (за някой елемент h от H).

Имаме $\tau(g_1H) = \varphi(g_1) = \varphi(gh) = \varphi(g)\varphi(h) = \varphi(g)e = \varphi(g) = \tau(gH) \Rightarrow \tau$ е коректно дефинирано изображение.

- \bullet τ е изоморфизъм на групи
 - $-\tau$ е изображение на G/H върху $Im(\varphi)$
 - $-\tau$ е инекция

Нека $a \neq b$ и да допуснем, че

$$au(aH) = au(bH) \Rightarrow$$
 $au(a) = au(b) / \cdot au(b^{-1}) \Rightarrow$
 $au(b^{-1}) au(a) = e$
 $au(b^{-1}a) = e \Rightarrow$
 $au(aH) \neq t(bH)$

Следователно au е биекция.

 $-\tau$ е хомоморфизъм

$$\tau\bigg((aH)(bH)\bigg) = \tau\bigg((ab)H\bigg) = \varphi(ab) = \varphi(a)\varphi(b) = \tau(aH)\tau(bH).$$

 τ - хомоморфизъм.

Следователно τ е изоморфизъм.

Глава 7

Действие на група върху множество. Орбити и стабилизатори. Формула за класовете на спрегнатост.

Досега разгледахме групите като множество с добре дефинирана бинарна операция. Или като структура, където много от информацията за групата може да се извлече от нейните подструктури (подгрупи), т.е. досега гледахме на групата "отвътре".

Обаче понятието за **действие на група** върху множество ще покаже, че много за групата може да се научи от това как групата си взаимодейства с "външния свят". Свойствата и структурата на групата често стават очевидни когато видим как "действа" групата. Научихме много

- ullet за D_8 от ефекта на нейните елементи върху върховете на квадрата.
- за симетричната група S_n , която беше дефинирана като пермутации на множеството $\{1, 2, \dots, n\}$.

Използването на действие на група е един от най-важните начини, по-които теория на групите се използва в други области на математиката. Например, теория на графите се интересува как група действа върху графи, топологията - върху повърхнини и възли, а теория на групите се интересува как група действа върху група.

Основната идея е много проста. Имаме действие на група върху множество, така че всеки елемент от групата размества (пермутира) елементите в множеството, но груповата операция се запазва.

примери:

- S_n действа върху Ω_n ;
- S_n въху геометрични обекти;
- D_8 -групата от симетриите на квадрата действа върху върховете на квадрата.

Дефиниция 7.1: Действие на група върху множество

Нека G е група и Ω е множество. **Действие на група върху множество** е изображение, дефинирано чрез:

$$\psi: G \times \Omega \to \Omega,$$

$$\psi: (g, x) \to g \circ x, \quad \forall g \in G, \forall x \in \Omega$$

$$\psi(g, x) = g \circ x, \quad \text{мислим като } g(x)$$

което има свойствата:

(1) за всяко $x \in \Omega$ и е е единичния елемент на G е изпълнено:

$$\psi(e,x) = x, unu$$
$$e \circ x = x$$

(2) за произволни $h, g \in G$ и $x \in \Omega$ е изпълнено:

$$\psi\left(h, \psi(g, x)\right) = \psi(hg, x)$$
$$h \circ (g \circ x) = (hg) \circ x.$$

 Ω се нарича G-множество.

ПРИМЕРИ:

ullet Естественото действие на S_n върху $\Omega_n=\{1,2\dots,n\}$.

Да разгледаме изображението:

$$\psi(\sigma, i) = \sigma \circ i = \sigma(i), \quad \sigma \in S_n, i \in \Omega_n$$

Изразът $\sigma(i)$ има смисъл и е елемент от Ω_n .

(1)
$$id \in S_n, \forall i \in \Omega_n \Rightarrow id \circ i = id(i) = i \in \Omega_n.$$

(2)
$$(\sigma\tau) \circ i = (\sigma\tau)(i) = \sigma\left(\tau(i)\right) = \sigma \circ (\tau \circ i)$$

ПРИМЕРИ:

• Разширено действие на естественото действие на S_n .

$$G=S_4$$

$$\Omega=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$$
 множеството от всички подмножества с дължина 2 на Ω_4

Дефинираме действието на G върху Ω чрез:

$$\sigma \circ \{a, b\} = \{\sigma(a), \sigma(b)\}, \ \forall \sigma \in G, \{a, b\} \in \Omega.$$

Така зададеното изображение е действие на група.

• Действие на D_8 върху диагоналите на квадрата.

$$G = D_8 = \{e, a, a^2, a^3, b, ba, ba^2, ba^3\} = \{a, b \mid a^4 = b^2 = e, bab = a^{-1} = a^3\}$$

 $\Omega = \{d_1, d_2\}$

$$a \circ d_1 = d_2, \ a \circ d_2 = d_1$$
 и т.н.

Твърдение 7.2

Действията на група върху множество са във взаимно еднозначно съотвествие с хомоморфизмите $\Phi: G \to S_M$ на G в симетричната група S_M на M. Така действието на G върху M се свежда до действието на подгрупата $\Phi(G) \leq S_M$ върху M.

7.1 Действие чрез спрягяне

Дефиниция 7.3: Действие чрез спрягяне

Нека G е група и множеството $\Omega \equiv G$. За $g \in G$ и $x \in \Omega$ дефинираме изображението:

$$q \circ x = qxq^{-1}$$

Това е действие на G върху Ω и се нарича действие чрез спрягане. Елементът gxg^{-1} се нарича спрегнат на x и се означава с x^g .

Наистина е действие:

(1)
$$e \circ x = exe = x$$
.

(2)
$$g \circ (h \circ x) = g \circ (hxh^{-1}) = g\left(hxh^{-1}\right)g^{-1} = ghx(gh)^{-1} = (gh) \circ x.$$

Нека G е група, Ω е множество и G действа върху Ω .

Дефиниция 7.4: Стабилизатор

Нека $x \in \Omega$. Стабилизатор на x в групата G наричаме множеството

$$St_G(x) = \{g \in G \mid |g \circ x = x\}.$$

Твърдение 7.5

Стабилизаторът на всеки елемент $x \in \Omega$ е подгрупа на G, т.е.

$$St_G(x) \leq G, \ \forall x \in \Omega.$$

Доказателство. (1) $g, h \in St_G(x) \Rightarrow (gh) \circ x = g \circ (h \circ x) = g \circ x = x \Rightarrow gh \in St_G(x)$.

(2)
$$g \in St_G(x) \Rightarrow x = e \circ x = (g^{-1}g) \circ x = g^{-1} \circ (g \circ x) = g^{-1} \circ x \Rightarrow g^{-1} \in St_G(x).$$

 $\Rightarrow St_G(x) \leq G.$

7.2 Орбити

Дефиниция 7.6: С-еквивалентни или еквивалентни

Hека $x,y \in \Omega$. Казваме, че x и y са **еквивалентни или** G-еквивалентни и $numem\ x \sim y,\ a$ ко

$$\exists q \in G : y = q \circ x.$$

Твърдение 7.7

Релацията G-еквививалентни е релация на еквивалентност.

Доказателство. • Рефлексивност. $x \sim x(x = e \circ x)$

- Симетричност. $x \sim y \Rightarrow y \sim x \ (y = g \circ x \Rightarrow x = g^{-1} \circ x, \text{ r.e. } y \sim x).$
- Транзитивност. $x \sim y, y \sim z \Rightarrow x \sim z$

$$y = g \circ x, z = h \circ y \Rightarrow$$

 $(hg) \circ x = h \circ (g \circ x) = h \circ y = z \Rightarrow x \sim z.$

Дефиниция 7.8: Орбити

Орбита на $x \in \Omega$ под действието на G наричаме:

$$O_G(x) = O(x) = G_x = \{ y \in \Omega \mid \exists g \in G : g \circ x = y \} = \{ g \circ x \mid g \in G \}.$$

7.2. Орбити 67

Следствие 7.9

Mножеството Ω се разбива на непресичащи се класове на еквивалентност, които се наричат G-орбити.

Доказателство. Орбитите са класове на еквивалентност следователно:

$$\Omega = O(x_1) \bigcup O(x_2) \bigcup \dots O(x_k).$$

Теорема 7.10

Нека Ω е G-множество. Тогава,

(1) and $y \in O(x)$ $u \ y = g \circ x$, mo $St_G(y) = gSt_G(x)g^{-1}$.

(2) ako $|G| < \infty$, mo

$$|O(x)| = |G: St_G(x)|, \quad |O(x)|/|G|$$

$$|\Omega| = \sum_{i=1}^k |\Omega_i| = \sum_{i=1}^k |O(x_i)| = \sum_{i=1}^k |G: St_G(x_i)|.$$

Доказателство. (1) ако $y \in O(x) \Rightarrow g \in G, y = g \circ x$, то $St_G(y) = gSt_G(x)g^{-1}$.

 \subseteq)

$$y = u \circ y = u \circ (\underbrace{g \circ x}) = (ug) \circ x$$

$$y \in O(x) \Rightarrow \exists g \in G : y = g \circ x$$

$$u \in St_G(y) \Rightarrow y = u \circ y$$

$$\Rightarrow y = g \circ x \Rightarrow$$

$$g \circ x = (ug) \circ x / \circ g^{-1}$$

$$x = (g^{-1}ug) \circ x \Rightarrow$$

$$St_G(y) \subseteq gSt_g(x)g^{-1}$$

⊇)

$$y \in O(x) \Rightarrow \exists g \in G : y = g \circ x \Rightarrow x = g^{-1} \circ y$$

$$v \in St_G(x) \Rightarrow x = v \circ x$$

$$y = g \circ x = g \circ v \circ g^{-1} \circ y = (gvg^{-1}) \circ y \Rightarrow gvg^{-1} \in St_G(y) \Rightarrow gSt_g(x)g^{-1} \subseteq St_G(y)$$

Следователно $St_G(y) = gSt_g(x)g^{-1}$.

(2) Нека $g, h \in G$. Тогава

$$h \circ x = g \circ x \Leftrightarrow (g^{-1}h) \circ x = x \Leftrightarrow g^{-1}h \in St_G(x) \Leftrightarrow gSt_G(x) = hSt_G(x).$$

Следователно броя на различните елементи в O(x) съвпада с този на различните съседни класове, т.е. $|O(x)| = |G: St_G(x)|$ и от Теоремата на Лагранж следва, че $|G| = |St_G(x)||G: St_G(x)| = |St_G(x)||O(x)| \Rightarrow |O(x)|/|G|$.

Множеството Ω се разбива на непресичащи се класове на еквивалентност (G-орбити), т.е.

$$\Omega = \Omega_1 \cup \Omega_2 \cdots \cup \Omega_k = (\Omega_i \cap \Omega_j = \emptyset)$$

$$= O(x_1) \cup O(x_2) \cdots \cup O(x_k)$$

$$= \sum_{i=1}^k |G : St_G(x_i)|,$$

където x_1, x_2, \ldots, x_k са представители на различните орбити.

7.2. Орбити 69

ПРИМЕРИ:

• $G = D_4$ действа върху $\Omega_4 = \{1, 2, 3, 4\}$. $a = (1\ 2\ 3\ 4)$ е ротация и b = (14)(23) е симетрия.

Тогава $O(1) = \{1, 2, 3, 4\} \Rightarrow |O(1)| = 4$, а стабилизатора на 1 е $St_G(1) = \{e, ab = (2 \ 4)\} |St_G(1)| = 2$.

Нека разгледаме различни подгрупи на D_8 и да намерим орбитите и стабилизаторите на елементите (тук ще разгледаме само за 1).

$$G_1 = \langle a \rangle \Rightarrow O(1) = \{1, 2, 3, 4\}, St_G(1) = \{e\}.$$

$$G_2 = \langle b \rangle \Rightarrow O(1) = \{1, 4\}, St_G(1) = \{e\}.$$

$$G_3 = \langle (2 \ 4) \rangle \Rightarrow O(1) = \{1\}, St_G(1) = \{e, (2 \ 4)\}.$$

$$G_4 = \langle (1\ 3) \rangle \Rightarrow O(1) = \{1, 3\}, St_G(1) = \{e\}.$$

- Нека $\Omega = \mathbb{R}^2(O)$, линейното пространство с точките в равнината и с фиксиран нулев вектор т.О и G е групата от ротациите с център т.О. Тогава орбитите O(x) са концентрични окръжности с център т. О и минаващи през т. x.
- $\sigma = (1\ 3\ 5)(2\ 6) \in S_6, H = \langle \sigma \rangle \leq S_6$ действа върху $\Omega = \{1, 2, \dots, 6\}.$

Тогава множеството се разбива на непресичащи се орбити:

$$O(1) = O(3) = O(5) = \{1, 3, 5\}, \quad O(2) = O(6) = \{2, 6\}, \quad O(4) = \{4\}.$$

Стабилизатора на 1 е $St_G(1) = \{e, \sigma^3\}$, а на 2 е $St_G(2) = \{e, \sigma^2, \sigma^4\}$. Това е така, σ^3 оставя неподвижен елемента 1 (както и 3 и 5), следователно пермутациите, които оставят неподвижен елемента 1 са от вида σ^{3k} . Редът на σ е 6 (защо?), следователно са само e и σ^3 са от стабилизатора на 1.

• Нека $\sigma = \pi_1 \dots \pi_k \in S_n, H = \langle \sigma \rangle \leq S_n$ действа върху Ω_n . Ако $\sigma = (i_1 \ i_2 \ \dots \ i_s) \dots (j_1 \ j_2 \ \dots \ j_t)$, то следва, че множеството се разбива на съответни орбити $O(i_1) = \{i_1, i_2, \dots i_s\}, \ O(j_1) = \{j_1, j_2, \dots j_t\}$ и единични орбити на елементите, които не са записани в произведението на независими цикли с дължина 1.

Дефиниция 7.11

Групата G действа транзитивно върху Ω , ако за всеки два елемента $x,y \in \Omega, \exists q \in G: y = q \circ x.$

Ако G действа транзитивно, следва че $\forall x \in \Omega \Rightarrow O(x) \equiv \Omega$, т.е. има единствена орбита.

ПРИМЕРИ:

• S_n, A_n действат транзитивно върху $\Omega_n = \{1, 2, ..., n\}.$

Твърдение 7.12

Ако G действа транзитивно върху $\Omega \Rightarrow |\Omega|/|G|$.

Доказателство.
$$\Omega = O(x), \forall x \in \Omega \Rightarrow |O(x)| = |\Omega| \Rightarrow |\Omega|/|G|$$
.

Дефиниция 7.13

Нека групата G действа върху множеството $\Omega = G$ чрез спрягане $u \ x \in G$. **Клас спрегнати елементи с** x наричаме

П

$$O(x) = Cl_x = \{gxg^{-1} \mid g \in G\}.$$

Централизатор на х в G наричаме

$$Z(x) = Z_G(x) = St_G(x) = \{g \in G \mid gxg^{-1} = x\}.$$

Тъй като $gxg^{-1} = x \Leftrightarrow gx = xg \Rightarrow Z_G(x) \leq G$ и се състои от всички елементи, които комутират с x.

$$\Rightarrow |G| = \sum_{i=1}^{s} Cl_{x_i} = \sum_{i=1}^{s} |G : Z_G(x_i)|.$$

Дефиниция 7.14: Център на G

Център на G наричаме

$$Z(G) = \{x \in G \mid xq = qx, \forall q \in G\}.$$

Нека
$$x \in Z(G)$$

 $\Rightarrow xg = gx, \forall g \in G,$
 $\Rightarrow gxg^{-1} = x$
 $\Rightarrow Cl_x = \{gxg^{-1} \mid g \in G\} = \{x\},$

т.е. Z(G) се състои от всички елементи $x \in G$, такива, че класа спрегнати елементи с x да се състои само от един елемент x, т.е. $Cl_x = \{x\}$.

Нека $Z(G) = \{x_1, x_2, \dots, x_t\}$ следователно $|Cl_{x_i}| = 1, \ x_i \in Z(G)$. Тогава

$$|G| = \sum_{i=1}^{t} |Cl_{x_i}| + \sum_{i=t}^{k} |Cl_{x_i}| = |Z(G)| + \sum_{i=t}^{k} |Cl_{x_i}| = |Z(G)| + \sum_{i=t}^{k} |G: Z_G(x_i)|$$
(1)

7.2. Орбити 71

и се нарича формула за класовете.

Твърдение 7.15

Нека p е просто число, $n \in \mathbb{N}$ и $|G| = p^n$. Тогава центърът на групата е нетривиален, т.е. $Z(G) \neq \{e\}$.

Доказателство. От формулата за класовете (1) следва, че:

$$|G: Z(x_i)| / |G| (= p^n)$$

$$|G: Z(x_i)| > 1, (x_i \notin Z(G))$$

$$|G| = |Z(G)| + \sum_{i=t}^k |G: Z_G(x_i)|$$

$$\Rightarrow p/|Z(G)| \Rightarrow |Z(G)| > 1 \Rightarrow Z(G) \neq \{e\}.$$

Следствие 7.16

Ако G е крайна група от ред $|G|=p^2$, където p е просто число, то групата е абелева.

 $oxed{\it Доказателство}.$

ПРИМЕРИ:

• S_3 действа на S_3 чрез спрягане. $S_3 = \{e, (1\ 2\ 3), (1\ 3\ 2), (1\ 2), (1\ 3), (2\ 3)\}.$ За всеки елемент $x \in S_3$ трябва да намерим множеството от елементи от групата във вида qxq^{-1} .

Ако g и x комутират, следва че $gxg^{-1}=x$, т.е. няма какво да пресмятаме. С други думи при действие спрягане елементите от централизатора на x, т.е $Z_G(x)$ не местят x (оставят го неподвижен).

Единичният елемент остава неподвижен при това действие. Следователно $Cl_e = O(e) = \{e\}$ е един клас спрегнати елементи.

Нека $x=(1\ 2\ 3)$. За да намерим орбитата на x трябва да пресметнем всички gxg^{-1} за всяко $g\in S_3$. Ясно е, че e,x,x^2 комутират с x, т.е. оставят го неподвижен при това действие. За другите елементи имаме:

$$(1\ 2)x(1\ 2)^{-1} = (1\ 3\ 2), \quad (1\ 3)x(1\ 3)^{-1} = (1\ 3\ 2), \quad (2\ 3)x(2\ 3)^{-1} = (1\ 3\ 2).$$

Можем да продължим по този начин и получаваме, че има три класа спрегнати елементи:

$${e}, {(1 2 3), (1 3 2)}, {(1 2), (1 3), (2 3)}.$$

Теорема 7.17

Броят N на елементите на S_n , които се представят като произведение на a_1 цикли с дължина 1, a_2 цикли с дължина 2, и т.н. a_n цикли с дължина n, се дава с формулата

$$N = \frac{n!}{1^{a_1} 2^{a_2} \dots n^{a_n} a_1! a_2! \dots a_n!}.$$

Доказателство. Нека $\pi \in S_n$ е с исканата структура, т. е. с точност до наредба разлагането на π в произведение от независими цикли е следното:

$$\pi = \underbrace{(*)\dots(*)}_{a_1} \underbrace{(**)\dots(**)}_{a_2} \dots \underbrace{(*\dots*)\dots(*\dots*)}_{a_n}.$$

Общият брой на горните записи е n! - толкова колкото са пермутациите на числата от 1 до n. Но всеки цикъл с дължина k има k различни записа (циклични премествания). Следователно за всеки цикъл (те са a_k на брой) с дължина k възможните записи за π се групират по k и всяка група представя една и съща субституция. Следователно n! трябва да разделим на $1^{a_1}2^{a_2}\dots n^{a_n}$. Освен това, ако разместим два цикъла с дължина k субституцията π не се променя. Следователно за да получим различните π трябва да разделим n! и на $a_1!a_2!\dots a_n!$.

7.2. Орбити 73

Теорема 7.18: Лема на Коши

Ако G е крайна група, p е просто число и p/|G|, то G съдържа елемент от $ped\ p$.

Доказателство. • Да разгледаме множеството:

$$M = \{(a_1, a_2, \dots, a_p) \mid a_1 a_2 \dots a_p = e\} \subset \underbrace{G \times G \cdots \times G}_{p}$$

Такава p-орка е еднозначно определена от първите (p-1) елемента, а p-тия е обратен на произведението на $a_1a_2\ldots a_{p-1}$, т.е $a_p=(a_1a_2\ldots a_{p-1})^{-1}$. Вижда се, че тези p-1 елемента могат да бъдат избрани свободно от G, така $|M|=|G|^{p-1}$. Понеже $p/|G| \Rightarrow p/|M|$.

• Цикличната групата от ред p, т.е. \mathbb{C}_p действа върху множеството M посредством циклична пермутация (преместване надясно) на елементите.

Нека
$$\sigma = (1 \ 2 \dots p)$$
, то $\mathbb{C}_p = \langle \sigma \rangle$.

С други думи разглеждаме изображението

$$\psi: \mathbb{C}_p \times M \to M,$$

$$\psi: (\tau, (a_1, a_2, \dots, a_p)) \to \tau \circ (a_1, a_2, \dots, a_p), \quad \forall \tau \in \mathbb{C}_p, \forall (a_1 \dots a_p) \in M$$

$$\psi: (\tau, (a_1, a_2, \dots, a_p)) \to (a_{\tau(1)}, a_{\tau(2)}, \dots, a_{\tau(p)}), \quad \forall \tau \in \mathbb{C}_p, \forall (a_1 \dots a_p) \in M$$

Да разгледаме $a_1 \underbrace{(a_2 \dots a_p)}_{a_1^{-1}} = e \Rightarrow \sigma \circ (a_1, \dots, a_p) = (a_2, \dots, a_p, a_1)$, т.е. е изпълнено $\underbrace{(a_2 \dots a_p)}_{a_2^{-1}} a_1 = e$.

Или по-общо
$$\underbrace{(a_1 \dots a_i)}_a \underbrace{(a_{i+1} \dots a_p)}_b = e$$

$$\Rightarrow \sigma^i \circ (a_1, \dots, a_p) = (a_{i+1}, \dots, a_i)$$
 и е изпълнено $\underbrace{(a_{i+1} \dots a_p)}_b \underbrace{(a_1 \dots a_i)}_a = e$, т.е.

всяка циклична пермутация на компонентите на M дава елемент на M.

- (1) $e \circ (a_1, a_2, \dots, a_p) = (a_1, a_2, \dots, a_p)$.
- (2) Трябва да проверим, че $h \circ (g \circ x) = (hg) \circ x$, където $h, g \in \mathbb{C}_p \Rightarrow h = \sigma^i, g = \sigma^j$.

$$\sigma^{i} \circ (\sigma^{j} \circ (a_{1}, a_{2}, \dots, a_{p})) = \sigma^{i} \circ (a_{\sigma^{j}(1)}, a_{\sigma^{j}(2)}, \dots, a_{\sigma^{j}(p)})$$

$$= (a_{\sigma^{i}(\sigma^{j}(1))}, a_{\sigma^{i}(\sigma^{j}(2))}, \dots, a_{\sigma^{i}(\sigma^{j}(p))})$$

$$= (a_{\sigma^{i+j}(1)}, a_{\sigma^{i+j}(2)}, \dots, a_{\sigma^{i+j}(p)}).$$

C това показахме, че \mathbb{C}_p действа върху M.

• Групата \mathbb{C}_p има ред p.

За действие на (циклична) група от прост ред p единствените възможни мощности на орбити са 1 и p, което следва от Теорема 7.10 б) следва, че $|O(x)| = |G: St_G(x)| = |G|/|St_G(x)|$ (редът на групата в случая е p).

Орбитата на един елемент $x \in M$ е с дължина 1, ако

$$|O(x)| = 1 \Leftrightarrow \sigma^{i} \circ x = x, \forall i \in 0, \dots, p-1 \Leftrightarrow$$

$$(a_{1}, a_{2}, \dots, a_{p}) = (a_{2}, a_{3}, \dots, a_{p}, a_{1}) \Leftrightarrow$$

$$a_{1} = a_{2} = \dots = a_{p} = y \Leftrightarrow$$

$$y^{p} = e.$$

Знаем, че множеството е обединение на непресичащи се орбити и нека x_1, \ldots, x_s са по един представител от всички орбити, т.е.

$$M=O(x_1)\cup O(x_2)\cdots\cup O(x_s)$$

$$|M|=\underbrace{|O(x_1)|+\cdots+|O(x_t)|}_{\text{орбити с дължина 1}}+\underbrace{|O(x_{t+1})|+\cdots+|O(x_s)|}_{\text{орбити с дължина }p}.$$

$$|M|=|G|^{p-1}=t+(s-t).p$$

Понеже $p/|M| \Rightarrow p/t$. Освен това $t \ge 1$, защото имаме поне един елемент, чиято орбита е с дължина 1 и това е единичния елемент E = (e, ..., e). Следователно има поне още p-1 елемента с орбити с дължина 1. Но това са всъщност означава, че има поне p-1 елемента q от q, такива, че $q^p = e$, т.е. от ред q.

Глава 8

Пръстени – примери и основни свойства. Обратими елементи и делители на нулата. Теорема на Ойлер - Ферма и теорема на Уилсън.

Дефиниция 8.1: Пръстен

Пръстен (R,+,.) е непразно множество R, в което са дефинирани две бинарни операции събиране

$$R \times R \to R$$
, $(a,b) \to a+b$

и умножение

$$R \times R \to R$$
, $(a,b) \to ab$,

такива че:

- (1) (R,+) е абелева група,
- (2) умножението е асоциативно, т.е.

$$(ab)c = a(bc), \ \forall a, b, c \in R$$

(3) дистрибутивните закони за събиране и умножение са изпълнени:

$$(a+b)c = ac + bc,$$

$$c(a+b) = ca + cb.$$

Дефиниция 8.2

 $A \kappa o (R, +, .)$ е пръстен, то

- (R,+) се нарича **адитивна група** на R.
- неутралния елемент на (R, +) се нарича **нула** и се бележи с 0 или 0_R .
- за всеки елемент $a \in R$, обратният се нарича **противоположен** на а и се бележи $c a \in R$.
- ако в R има неутрален елемент относно умножението ще го наричаме единичен елемент или единица, бележим $c\ 1$ или 1_G .
- ако R е пръстен с единица, то множеството R^* на обратимите относно умножението елементи на R е група (да се докаже) и се се нарича мултипликативна група на R.
- $u \ e \ u$ зпълнено $ab = ba, \ \forall a, b \in R, \ mo \ R \ наричаме комутативен пръс$ тен.

Твърдение 8.3

 $A \kappa o (R, +, .)$ е пръстен с 1, то $(R^*, .)$ е група, относно умножението дефинирано в пръстен а R.

Доказателство. Бинарната операция умножение в пръстена R е асоциативна. R е пръстен с 1, т.е. в R^* има 1.

Затворено относно умножението, т.е. произведение на обратими елементи е обратим елемент:

$$(ab)(b^{-1}a^{-1}) = 1 \Rightarrow (ab)^{-1} = b^{-1}a^{-1}$$

За всеки елемент $u \in R^*$ следва, че има u^{-1} и u^{-1} е също обратим $u^{-1} \in R^*$.

ПРИМЕРИ:

• R^{\star} -мултипликативната група на R.

$$\mathbb{Z}^{star} = \{-1, 1\} = \mathbb{C}_2.$$

$$M_n(F)^\star = GL_n(F)$$
 (F - поле)

ПРИМЕРИ:

- Множествата $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ са комутативни пръстени с 1 относно събиране и умножение на числа. Мултипликативната група на \mathbb{Z} е $\mathbb{Z}^* = \{\pm 1\}$, а на $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ са $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}, \mathbb{R}^* = \mathbb{R} \setminus \{0\}, \mathbb{C}^* = \mathbb{C} \setminus \{0\}$.
- Множеството N не е пръстен (защо?).
- Множеството $(n\mathbb{Z}, +, .)$ е комутативен пръстен и при n > 1 няма единица.
- $Z_n = \mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$ фактор група (остатъците по модул n). Въведохме събиране в това множество чрез

$$\overline{a} + \overline{b} = \overline{a+b}$$

и по подобен начин въвеждаме и умножнение:

$$\overline{a}.\overline{b} = \overline{a.b}.$$

Операциите събиране и умножение в \mathbb{Z}_n са коректно дефинирани. \mathbb{Z}_n е комутативен пръстен с единица $\overline{1}$ и се нарича пръстен от класовете остатъци по модул n.

- Нека F е числово поле, а F[x] множеството от всички полиноми на x с коефициенти от F. Тогава F[x] е комутативен пръстен с 1 относно операциите събиране и умножение на полиноми.
- Нека F е числово поле, а $M_n(F)$ са квадратните матрици от ред n с елементи от полето F. Тогава $M_n(F)$ е пръстен относно събиране и умножение на матрици. При $n \geq 2$, $M_n(F)$ не е комутативен.

Твърдение 8.4

 $Heкa\ (R,+,.)$ е пръстен. Тогава

- (1) нулевият елемент е единствен.
- (2) всеки елемент $a \in R$ има единствен противоположен $-a \in R$.
- (3) ако в R има единица, то тя е единствена.
- (4) ако R е пръстен с единица и R има повече от два елемента, то $1 \neq 0$.

Доказателство. (1) и (2) Следват от факта, че (R, +) е абелева група.

- (3) Ако допуснем, че 1 и e са единици в пръстена R, то следва, че 1 = 1.e = e.
- (4) $1 = 0 \Rightarrow 0 = r.0 = r.1 = r, \forall r \in \mathbb{R} \Rightarrow \mathbb{R} = \{0\}.$

Дефиниция 8.5: Тривиален пръстен

Нека R. Това е комутативен пръстен с 1 и се нарича **тривиален пръстен** и 0 = 1. Но за всички други пръстени с единици, нулата е различна от единицата $0 \neq 1$.

Твърдение 8.6

 $Heкa\ (R,+,.)\ e\ np$ ъстен. Тогава

(1) a.0 = 0.a = 0 за произволен елемент от R и нулата на пръстена.

(2)
$$-(a+b) = (-a) + (-b) \ u - (-a) = a \quad \forall a, b \in R.$$

(3)
$$-(ab) = (-a)b = a(-b) \quad \forall a, b \in R.$$

(4)
$$(a-b)c = ac - bc$$
 u $a(b-c) = ab - ac$ $\forall a, b, c \in R$.

Доказателство. (1) $a \in R$, a.0 = a(0+0) = a.0 + a.0/добавяме от двете страни $(-a.0) \Rightarrow a.0 = 0$. Аналогично и 0.a = 0.

(2) обратния елемент на a+b е -(a+b)=(-a)+(-b) и обратния на -a е -(-a)=a $\forall a,b\in R$. Операцията събиране в R е комутативна

$$(a+b) + \left((-a) + (-b)\right) = (b+a) + \left((-a) + (-b)\right) = b + \left(a + (-a)\right) + (-b)$$
$$= b + 0 + (-b) = b + (-b) = 0.$$

(3) $-(ab) = (-a)b = a(-b) \quad \forall a, b \in R.$

$$0 = 0.b = \left(a + (-a)\right).b = ab + (-a)b \Rightarrow (-a)b = -(ab).$$

Аналогично се доказва и -(ab) = a(-b). Вместо -(ab) пишем -ab.

 $(4) \ (a-b)c = ac - bc \ \mathsf{H} \ a(b-c) = ab - ac \quad \forall a,b,c \in R.$

$$(a-b)c = (a+(-b))c = ac + (-b)c = ac + (-b)c = ac - bc.$$

По-същия начин се доказва и второто равенство.

Дефиниция 8.7

Нека $n \in \mathbb{N}$, R е пръстен и $a \in R$. Тогава дефинираме кратно на а

$$n.a = \underbrace{a + a + \dots + a}, \quad (-n)a = -(na).$$

Дефиниция 8.8

Нека $n \in \mathbb{N}$, R е пръстен и $a \in R$. Тогава дефинираме степен на а

$$a^1 = a, a^n = a.a^{n-1}.$$

Ако R има единица, то дефинираме $a^0 = 1$. Ако елемента а има обратен a^{-1} , то $a^{-n} = (a^{-1})^n$.

Дефиниция 8.9

Ненулев елемент $0 \neq a \in R$ от пръстена R се нарича **делител на нулата**, ако съществува ненулев елемент $0 \neq b \in R$, такъв че ab = 0 или ba = 0.

Дефиниция 8.10

Комутативен пръстен с единица, в който няма делители на нулата, се нарича **област**.

B област от ab = 0 следва, че или a или $b \in 0$.

ПРИМЕРИ:

- $\mathbb{Z}_6, \overline{2}.\overline{3} = \overline{0}, \overline{3}.\overline{4} = \overline{0}$.
- Делители на нулата в $M_n(F)$ са особените, ненулеви матрици, т.е. матриците с детерминанта 0.
- При пръстени не можем да "съкращаваме", т.е. от ab=ac и $a\neq 0$ не следва, че b=c. В \mathbb{Z}_{12} имаме $\overline{3}.\overline{1}=\overline{3}.\overline{5},\ \overline{3}\neq 0,\ \overline{1}\neq \overline{5}.$ Както и $\overline{5}.\overline{3}=\overline{3}$, но $\overline{5}\neq \overline{1}$.
- В област може да "съкращаваме", т.е. от ab=ac и $a\neq 0$ следва, че b=c. Т.е. a(b-c)=0 и $a\neq 0 \Rightarrow b-c=0 \Rightarrow b=c$.

Дефиниция 8.11: Тяло

Пръстен с единица R $(1 \neq 0)$ е **тяло**, ако мултипликативната група $(R^*, .)$ се състои от всички ненулеви елементи на R, т.е. $(R \setminus \{0\}, .)$ е група. C други думи пръстен с единица R е тяло, ако всеки ненулев елемент е обратим.

Дефиниция 8.12: Поле

Комутативно тяло е **поле**, т.е. пръстен с 1 и $(R \setminus \{0\}, .)$ е абелева група. C други думи, поле е комутативен пръстен с 1, в който всеки ненулев елемент е обратим.

Всяко поле е област. F - поле, $0 \neq a \in F$ и $ab = 0 / a^{-1} \Rightarrow b = 0$.

Но не е вярно обратното - всяка област е поле !!! (напр. \mathbb{Z}).

Твърдение 8.13

Нека (R, +, .) е пръстен, $a \in R$ и $m, n \in \mathbb{Z}$. Тогава

- (1) ma + na = (m+n)a,
- (2) m(n(a)) = (mn)a, (3) $a^{-1} = a^{-n}$,
- $(4) (a^m)^n = a^{mn}.$

B общия случай $(ab)^n \neq a^n b^n$.

Дефиниция 8.14:

Eдно непразно подмножество S на пръстена R се нарича подпръстен на R, ако е затворено относно операциите събиране и умножение, т.е.

ако
$$a, b \in S \Rightarrow a \pm b, ab \in S$$
.

Ако S е подпръстен на R, то S съдържа нулата ($a \in S \Rightarrow 0 = a - a$), както и заедно с елемента a съдържа и -a $(0, a \in S \Rightarrow 0 - a = -a \in S)$.

Подпръстена S е също и пръстен относно операциите събира не и умножение, дефинирани в R. Сечение на подпръстени на R ($\bigcap S_i$) е също подпръстен на R.

Дефиниция 8.15:

 $A\kappa o R e пръстен, то множеството$

$$Z(R) = \{r \in R \mid za = az, \forall a \in R\}$$

се нарича **център** на пр $\overline{\imath}$ стена R.

- Z(R) е комутатиен подпръстен на R.
- $Z(R) = R \Leftrightarrow R$ е комутативен пръстен.

ПРИМЕРИ:

- \mathbb{Z}_6 , $A = \{0, 3\}$, $e_A = 3$, $B = \{0, 2, 4\}$, $e_B = 4$. $\mathbb{Z}_6^{\star} = \{1, 5\} \ (1 = e_A + e_B, 5 = 3 + 2) \ .$
- Поле всяко числово поле \mathbb{Q} , \mathbb{R} , \mathbb{C} .
- \bullet F числово поле, а F(x) множеството от всички рационални функции на x, т.е. частно на два полинома с коефициенти от F.
 - F(x) поле относно (+, .) на рационални функции.

Твърдение 8.16

 $A\kappa o \ n > 1, n \in \mathbb{N}, mo$

- (1) $|\mathbb{Z}_n^\star|=arphi(n),$ където arphi(n) е функцията на Ойлер.
- (2) \mathbb{Z}_n е поле, тогава и само тогава n е просто число.
- Доказателство. (1) За да докажем исканото твърдението $|\mathbb{Z}_n^*| = \varphi(n)$ ще покажем, че ако за цялото число $a \in \mathbb{Z}$, то елементът $\overline{a} \in \mathbb{Z}_n$ е обратим тогава и само тогава, когато (a,n)=1.
 - \Leftarrow) Нека $(a,n)=1 \Rightarrow$

$$\exists u,v\in\mathbb{Z}:\ au+nv=1$$
 в $\mathbb{Z}_n\Rightarrow \overline{a}.\overline{u}+\overline{n}.\overline{v}=\overline{1},$ но $\overline{n}=\overline{0}\Rightarrow$ $\overline{a}.\overline{u}=\overline{1}\Rightarrow$ \overline{a} е обратим, и обратния му е \overline{u} .

 \Rightarrow) Нека \overline{a} е обратим в $\mathbb{Z}_n \Rightarrow \overline{a}.\overline{u} = \overline{1} \ (u \in \mathbb{Z}).$ Да допуснем, че (a,n)=d>1 и

$$a=a_1d$$
 $n=n_1d, \quad 0< n_1< n \Rightarrow \overline{n_1} \neq \overline{0}$ в \mathbb{Z}_n
 $\overline{1}=\overline{a}.\overline{u}\ /.\overline{n_1}$
 $\overline{n_1}=\overline{n_1}.\overline{a}.\overline{u}=\overline{n_1au}=\overline{n_1a_1du}=\overline{na_1u}=\overline{n}.\overline{a_1u}=\overline{n}.\overline{a_1u}=\overline{0},$ Противоречие!

Следователно (a, n) = 1.

(2) \mathbb{Z}_n е поле, тогава и само тогава n е просто число.

$$\mathbb{Z}_n$$
 е поле \Leftrightarrow
 $\mathbb{Z}_n^* = \mathbb{Z}_n \setminus \{0\} \Leftrightarrow$
 $|\mathbb{Z}_n^*| = n - 1 \Leftrightarrow$
 $\varphi(n) = n - 1 \Leftrightarrow$
 $n - \text{просто.}$

Теорема 8.17: Теорема на Ойлер-Ферма

Ako $n \in \mathbb{N}, r \in \mathbb{Z} \ u \ (r, n) = 1, \ mo$

$$r^{\varphi(n)} \equiv 1 \pmod{n}$$
.

B частност, ако p е просто число и $p \nmid r$, то

$$r^{p-1} \equiv 1 \pmod{p}$$
.

Доказателство. $r^{\varphi(n)} \equiv 1 \pmod{n}$ е еквивалентно на $\overline{r}^{\varphi(n)} = \overline{1}$ в \mathbb{Z}_n . $\varphi(n)$ е реда на групата \mathbb{Z}_n^* , т.е. $|\mathbb{Z}_n^*| = \varphi(n)$. Редът на всеки елемент от групата дели реда на групата (следствие от Теоремата на Лагранж) и $\overline{r}^{\varphi(n)} = \overline{1}$.

Твърдение 8.18

 $A\kappa o p e npocmo число и <math>a \in \mathbb{Z}$, то

$$a^p \equiv a \pmod{p}$$
.

Доказателство. • $p/a \Rightarrow p/a^p \Rightarrow p/(a^p - a) \Leftrightarrow a^p \equiv a \pmod{p}$.

• $p \nmid a \Rightarrow a^{p-1} \equiv 1 \pmod{p}$ (от Теоремата на Ойлер-Ферма) и $a \equiv a \pmod{p} \Rightarrow a^p \equiv a \pmod{p}$.

Теорема 8.19: Теорема на Уилсън

 $A \kappa o \ p \ e \ npocmo \ число, \ mo$

$$(p-1)! \equiv -1 \pmod{p}$$
.

Доказателство.

$$(p-1)! \equiv -1 \pmod{p} \Leftrightarrow \overline{1}.\overline{2}...\overline{p-1} = \overline{-1} \text{ B } \mathbb{Z}_p.$$

$$\overline{-1} = -\overline{1} = \overline{p-1}.$$

Ако $a \in \mathbb{Z}_p$, то $a^{-1} = a \Leftrightarrow a = \overline{1}$ или $a = \overline{-1}$.

Да допуснем, че $a=a^{-1}$ и $a\neq \overline{1}, a\neq -\overline{1}.$

$$\overline{a}.\overline{a^{-1}}=(\overline{a})^2=\overline{1}, a\neq\pm\overline{1}\Rightarrow$$
 $a^2\equiv 1 (mod\ p)\Rightarrow$ $p/(a^2-1)\Rightarrow p/(a-1)$ или $p/(a+1)$ Но $0< a< p-1\Rightarrow a=1$ или $a=p-1$.

Произведението $\overline{1}.\overline{2}\dots\overline{p-1}$ се разбива на двуелементни подмножества от вида $\{a,a^{-1}\}$ и две едно елементни $\{1\}$ и $\{-1\}$. Следователно

$$\overline{1}.\overline{2}...\overline{p-1} = -\overline{1} = \overline{1}.\overline{2}...\overline{p-1} = \overline{-1}.$$

Глава 9

Характеристика на поле. Просто поле. Поле от частни.

9.1 Характеристика на поле. Просто поле.

Нека F е поле.

Дефиниция 9.1

Характеристика на поле е най-малкото естествено число p, за което е изпълнено p.1=0. Бележим c char F=p. Ако такова число не съществува, то char F=0.

ПРИМЕРИ:

- Всяко числово поле е с характеристика 0.
- Ако характеристиката на едно поле е p, то p е редът на адитивната група (F,+).
- $char \mathbb{Z}_p = p$.

Твърдение 9.2

Ако F е поле, то $char F = \begin{cases} 0, \\ p, & p- \end{cases}$ просто число .

число, следователно

$$p=s.t, \quad 0 < s,t < p$$
 $p.1=0 \Rightarrow$ $(s.1)(t.1)=0 /.(s.1)^{-1}(t.1)^{-1} \Rightarrow$ $s.1 \neq 0 \neq t.1$ $\Rightarrow 1=0$ Противоречие! $\Rightarrow p$ е просто число.

Дефиниция 9.3

Hека F е поле u K е подмножество на F съдържащо поне 2 елемента. Kазваме, че K е **подполе** на F, ако

$$\forall a, b \in K \Rightarrow a \pm b, \ ab \ u \ a^{-1} (a \neq 0) \in K.$$

Бележим $K \leq F$ или K < F и казваме, че F е разширение на K.

- \bullet K е поле относно операциите дефинирани в F.
- К съдържа 0 и 1.
- $K \le F \Rightarrow charK = charF$.
- $\bigcap K_i \leq F$, където $K_i \leq F$.

Дефиниция 9.4

Eдно подполе P е просто поле, ако няма собствени (т.е. различни от P) подполета.

Твърдение 9.5

Всяко поле съдържа единствено просто подполе.

Доказателство. \bigcap всички подполета на F= единственото му просто подполе. \Box

Твърдение 9.6

Полетата \mathbb{Q} и \mathbb{Z}_p , p - просто число са прости полета.

Доказателство. • Нека P е единственото просто подполе на \mathbb{Q} .

От
$$0,1\in P\Rightarrow 2=1+1\in P$$

$$3=2+1\in P$$

$$-1=0-1$$

$$-2=0-2$$

$$\cdots$$

$$\Rightarrow \mathbb{Z}\subseteq P$$
 От $m,n(n\neq 0)\in \mathbb{Z}\Rightarrow \frac{m}{n}\in P$
$$\mathbb{Q}\subseteq P\;(P\;\text{е просто поле}\;)\Rightarrow \mathbb{Q}=P.$$

• Нека P е единственото просто подполе на \mathbb{Z}_p .

$$\overline{1} \in P \Rightarrow \overline{k} = k.\overline{1} \in P \ (0 \le k \le p-1)$$

 $\Rightarrow \mathbb{Z}_p \le P \Rightarrow \mathbb{Z}_p \equiv P \Rightarrow \mathbb{Z}_p$ е просто поле.

Дефиниция 9.7: Хомоморфизъм на пръстени

Ако R, R' са пръстени и $\varphi : R \to R'$ е изображение, то φ е **хомоморфизъм** на пръстени, ако $\forall a, b \in R$ следва, че

$$\varphi(a+b) = \varphi(a) + \varphi(b)$$

 $\varphi(ab) = \varphi(a)\varphi(b).$

Ако φ е инекция, то φ е влагане. Ако φ е биекция, то φ е изоморфизъм.

ПРИМЕРИ:

- $\varphi : \mathbb{Z} \to \mathbb{Q}, \ \varphi(z) = z \ (z \in \mathbb{Z}).$
- $\phi: \mathbb{Z} \to \mathbb{Z}_p, \ \phi(z) = \overline{z} \ (z \in \mathbb{Z}).$

Теорема 9.8

Нека Р е просто поле. Тогава:

- (a) and char P = 0, mo $P \cong \mathbb{Q}$.
- (b) and char P = p, mo $P \cong \mathbb{Z}_p$.

Доказателство. (a) Ако char P=0, то $P\cong \mathbb{Q}$. За всяко $n\in \mathbb{Z}, n\neq 0, n.1$ е обратим, защото $n.1\neq 0$, където 1 е единицата на P.

Нека

$$P_0 = \{ (m.1)(n.1)^{-1} \in P | m, n \in \mathbb{Z} \}$$

Изпълнени са следните свойства:

$$(1) (m.1)(n.1)^{-1} = (k.1)(s.1)^{-1} \Leftrightarrow (m.1)(s.1) = (k.1)(n.1)$$

(2)
$$(m.1)(n.1)^{-1} \pm (k.1)(s.1)^{-1} = \left((ms \pm kn).1 \right) (ns.1)^{-1}$$

(3)
$$\left((m.1)(n.1)^{-1} \right) \left((k.1)(s.1)^{-1} \right) = \left(mk.1 \right) \left(ns.1 \right)^{-1}$$

(4)
$$m \neq 0$$
, $\left((m.1)(n.1)^{-1} \right)^{-1} = (n.1)(m.1)^{-1}$

От тези свойства следва:

- $P_0 \le P$ (свойства $(2),(3),(4)) \Rightarrow P_0 = P$ (P е просто поле).
- $\varphi: P_0 = P \to \mathbb{Q}, \ \varphi((m.1)(n.1)^{-1}) = \frac{m}{n}.$

Изображението е коректно дефинирано, т.е. образът на всеки елемент от P е еднозначно определен елемент на \mathbb{Q} (свойство (1)).

$$(m.1)(n.1)^{-1} = (k.1)(s.1)^{-1} \Leftrightarrow (m.1)(s.1) = (k.1)(n.1)$$
$$\varphi((m.1)(n.1)^{-1}) = \varphi((k.1)(s.1)^{-1})$$
$$\frac{m}{n} = \frac{k}{s} \Leftrightarrow m.s = k.n$$

- φ хомоморфизъм (свойство (2,3) и правилото за умножение на рационални числа).
- φ биекция (върху, свойство (1) различните елементи от P се изобразяват различни от \mathbb{Q})
- (b) ако $char\ P = p$, то $P \cong \mathbb{Z}_p$. Нека означим с

$$P_0 = \{0, 1, 2.1, \dots, (p-1).1\} \subseteq P$$

Ако $n \in \mathbb{N}$, то

$$n=pq+r, \quad 0 \leq r \leq p-1,$$
 то $n.1=(pq+r).1=(pq).1+r.1=q.\underbrace{(p.1)}_{=0}+r.1=r.1 \in P_0$

• P_0 е подпръстен на P:

$$- \forall a, b \in P_0 \Rightarrow (a \pm b).1 = r_{a \pm b}.1 \in P_0$$

$$- \forall a \in P_0 \ (a \neq 0) \Rightarrow a^{-1} \in P_0$$

$$\Rightarrow a^{-1} \in P : a.a^{-1} = 1$$

$$(a, p) = 1 \Rightarrow \exists u, v \in \mathbb{Z} : ua + vp = 1$$

$$\Rightarrow (ua + vp).1 = 1 \Rightarrow (u.1)(a.1) = 1.$$

 $\Rightarrow P_0 \leq P$ и P - просто поле следователно $P = P_0$.

• Разглеждаме $\varphi: P_0 = P \to \mathbb{Z}_p, \ \varphi(k.1) = \overline{k}, \ (k = 0, 1, \dots, p-1).$ φ - биекция.

Операциите събиране и умножение в P се извършват както и в $\mathbb{Z}_p \Rightarrow$ хомоморфизъм и следователно изоморфизъм.

$$\Rightarrow P \cong \mathbb{Z}_p$$
.

Следствие 9.9

- (a) Всяко поле с характеристика 0 съдържа единствено подполе изоморфно на \mathbb{Q} .
- (b) Всяко поле с характеристика p>0 съдържа единствено подполе изоморфно на \mathbb{Z}_p .

9.2 Поле от частни

Полето на рационалните числа \mathbb{Q} е изградено от пръстена на цели числа \mathbb{Z} . Рационалните числа са частно от цели числа. Можем ли да имитираме този процес и да изградим други полета, започвайки от други пръстени?

Изграждането на Q трябва да бъде малко по-фино, по-прецизно, отколкото просто да се вземе множеството от частните на цели числа. Ако множеството $\mathbb Q$ е само набор от частното на цели числа (при условие, че нулата не може да бъде в знаменателя), тогава $\frac{1}{2}$ и $\frac{3}{6}$ биха били два различни елемента на $\mathbb Q$. Очевидно, $\mathbb Q$ не е само набор от "дроби" на цели числа.

Този проблем се решава чрез определяне на рационалните числа, не като дроби (частно) на цели числа, а като класове на еквивалентност на частни на цели числа. Множеството

$$\frac{1}{2}, \frac{2}{4}, \frac{3}{6}, \dots$$

ще бъде един елемент от \mathbb{Q} и ние определяме операциите събиране и умножение за тези класове на еквивалентност. Тъй като всеки клас има безкраен брой представители - за да се гарантира, че събирането и умножението на елементи от \mathbb{Q} са добре дефинирани - е необходимо да се докаже, че операциите са независими от избора на представители.

Ще изградим строго рационални числа от целите числа и ще обобщим конструкцията на всички области. С други думи, започвайки с област R, ние искаме да изградим поле Q, наречено поле от частни и искаме това поле да има определени свойства. По-специално Q е поле, което съдържа копие на R, то е най-малкото такова поле и след като го конструираме, всеки елемент от него може да бъде представен като частно на два елемента от R.

Теорема 9.10

За всяка ненулева област Z съществува поле Q, в което P се влага. Всеки елемент на Q се записва във вида $ab^{-1},\ b\neq 0$ (считаме, че $Z\subseteq Q$).

Всеки две такива полета са изоморфни.

 Π олето Q се нарича **поле от частни** на Z.

(1) Разглеждаме множеството:

$$W = \{(a, b) | a, b \in \mathbb{Z}, \ b \neq 0\}$$

и въвеждаме релация в него:

$$(a,b) \sim (c,d) \Leftrightarrow ad = bc.$$

Това е релация на еквивалентност, защото

- рефлексивна: $(a, b) \sim (b, a)$.
- симетрична: $(a,b) \sim (c,d) \Rightarrow (c,d) \sim (a,b)$.

 \Rightarrow " \sim " е релация на еквивалентност и всички елементи от W се разбиват на непресичащи се класове на еквивалентност.

(2) Да означим

$$Q = \{$$
 класовете на еквивалентност на $W\}$.

Класът съдържащ (a,b) означаваме с $\frac{a}{b}$. Релацията \sim означава, че два съседни класа са равни, т.е. $\frac{a}{b} = \frac{c}{d} \Leftrightarrow ad = bc$.

(3) Въвеждаме операциите събиране и умножение в Q по следния начин:

$$\bullet \ \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

$$\bullet \ \frac{a}{b}.\frac{c}{d} = \frac{ac}{bd}$$

Операциите са коректно дефинирани, т.е. не зависят от избора на представител на класа на еквивалентност.

Нека
$$\frac{a}{b} = \frac{a_1}{b_1}$$
 и $\frac{c}{d} = \frac{c_1}{d_1} \Rightarrow ab_1 = a_1b$ и $cd_1 = c_1d$.

• Ше докажем, че
$$\frac{ad+bc}{bd} = \frac{a_1d_1+b_1c_1}{b_1d_1}$$
, т.е. $(ad+bc)b_1d_1 = (a_1d_1+b_1c_1)bd$ $(ab_1)(dd_1)+(cd_1)(bb_1) = (a_1b)(dd_1)+(c_1d)(bb_1)$.

•
$$\frac{ac}{bd} = \frac{a_1c_1}{b_1d_1}$$

 $ab_1 = ab_1$
 $cd_1 = c_1d$ $/. \Rightarrow (ac)(b_1d_1) = (a_1c_1)(bd) \Rightarrow \frac{ac}{bd} = \frac{a_1c_1}{b_1d_1}.$

$$(4)$$
 $(Q, +, .)$ е поле.

• асоциативност на "+"

$$\left(\frac{a}{b} + \frac{c}{d}\right) + \frac{e}{f} = \frac{ad + bc}{bd} + \frac{e}{f} = \frac{(ad + bc)f + (bd)e}{(bd)f} = \frac{a(df) + b(cf + de)}{b(df)} = \frac{a}{b} + \frac{cf + de}{df} = \frac{a}{b} + \left(\frac{c}{d} + \frac{e}{f}\right)$$

• комутативност на "+"

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} = \frac{cb + da}{db} = \frac{c}{d} + \frac{a}{b}$$

ullet нулев елемент - $\dfrac{0}{d},\;d
eq 0$ и $\dfrac{0}{d}=\dfrac{0}{f}$

$$\frac{a}{b} + \frac{0}{d} = \frac{ad}{bd} = \frac{a}{b}$$

• противоположен елемент, всеки елемент $\frac{a}{b} \in Q$ си има обратен $-\left(\frac{a}{b}\right) = \frac{(-a)}{b}$, защото

$$\frac{a}{b} + \frac{(-a)}{b} = \frac{ab + b(-a)}{b^2} = \frac{ab + (-ab)}{b^2} = \frac{0}{b^2}$$

• асоциативност на "."

$$\left(\frac{a}{b} \cdot \frac{c}{d}\right) \cdot \frac{e}{f} = \frac{(ac)e}{(bd)f} = \frac{a(ce)}{b(df)} = \frac{a}{b} \cdot \left(\frac{c}{d} \cdot \frac{e}{f}\right)$$

• комутативност на "."

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} = \frac{ca}{db} = \frac{c}{d} \cdot \frac{a}{b}$$

ullet единичен елемент - $\frac{a}{a}=\frac{b}{b}=rac{f}{f}$ за ненулеви елементи на Q

$$\frac{a}{b} \cdot \frac{f}{f} = \frac{af}{bf} = \frac{a}{b}$$

- обратен елемент на ненулевия елемент $\frac{a}{b} \in Q, a, b \neq 0$ е $\left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$.
- дистрибутивни закони

(5) Нека ε е фиксиран ненулев елемент на пръстена Z. Изображението

$$\varphi:Z\to Q$$

$$\varphi(a)=\frac{a\varepsilon}{\varepsilon},\ \forall a\in Z$$

е влагане.

• φ е хомомрфизъм:

$$\varphi(a) + \varphi(b) = \frac{a\varepsilon}{\varepsilon} + \frac{b\varepsilon}{\varepsilon} = \frac{a\varepsilon^2 + b\varepsilon^2}{\varepsilon^2} = \frac{(a+b)\varepsilon^2}{\varepsilon^2} = \frac{(a+b)\varepsilon}{\varepsilon} = \varphi(a+b)$$
$$\varphi(a)\varphi(b) = \left(\frac{a\varepsilon}{\varepsilon}\right) \cdot \left(\frac{b\varepsilon}{\varepsilon}\right) = \frac{ab\varepsilon^2}{\varepsilon^2} = \frac{ab\varepsilon}{\varepsilon} = \varphi(ab)$$

ullet влагане - различните в различни. Нека $a \neq b$ и да допуснем, че $\varphi(a) = \varphi(b)$, т.е.

$$\frac{a\varepsilon}{\varepsilon} = \frac{b\varepsilon}{\varepsilon} \Rightarrow$$

$$a\varepsilon^2 = b\varepsilon^2 / : \varepsilon^2$$

$$\Rightarrow a = b - \text{противоречие} !$$

Следователно φ е влагане, т.е. Z е изоморфен на подпръстен на Q или $Z\cong Im(\varphi)\leq Q.$

(6) $Q = \{ \varphi(a)\varphi(b)^{-1} \mid a, b \in Z, b \neq 0 \}$

Всеки елемент от Q е от вида:

$$\frac{a}{b} = \frac{a\varepsilon^2}{b\varepsilon^2} = \left(\frac{a\varepsilon}{\varepsilon}\right) \cdot \left(\frac{\varepsilon}{b\varepsilon}\right) = \left(\frac{a\varepsilon}{\varepsilon}\right) \left(\frac{b\varepsilon}{\varepsilon}\right)^{-1} = \varphi(a)\varphi(b)^{-1}$$

Изображението φ не зависи от ε , защото от $\frac{a\varepsilon}{\varepsilon}=\frac{a\varepsilon_1}{\varepsilon_1}$ следва, че

$$\varphi(a) = \frac{a\varepsilon}{\varepsilon} = \frac{a\varepsilon_1}{\varepsilon_1}.$$

(7) Нека φ и φ_1 на областа Z са влагания, съответно:

$$\varphi: Z \to Q = \{ \varphi(a)\varphi(b)^{-1} \mid a, b, b \neq 0 \}$$

$$\varphi_1: Z \to Q_1 = \{ \varphi_1(a)\varphi_1(b)^{-1} \mid a, b, b \neq 0 \}.$$

Тогава $Q \cong Q_1$. Изображението:

$$\psi: Q \to Q', \quad \psi\left(\frac{a}{b}\right) = \varphi_1(a)\varphi_1(b)^{-1}$$

е изоморфизъм. (Да се провери, че изображението е коректно дефинирано, хомоморфизъм и биекция).

Глава 10

Идеали и факторпръстени. Теорема за хомоморфизмите при пръстени.

10.1 Идеали. Главни идеали.

Идеалите в теорията на пръстените играят съща роля, както и нормалните подгрупи в теорията на групите.

Дефиниция 10.1

Нека R е пръстен и I е непразно подмножество на R. Казваме, че I е **ляв** (десен) идеал, ако са изпълнени следните условия:

- (1) $a, b \in I \Rightarrow a b \in I$,
- (2) $a \in I, r \in R \Rightarrow ra \in I \ (ar \in I)$.

Ако I е ляв (десен) идеал, то I издържа умножение умножение отляво (отдясно) с елементи от R. Ако $I \subseteq R \Leftrightarrow ra, ar \in I, \forall a \in I, r \in R$.

Дефиниция 10.2

Ако I е едновременно и ляв и десен идеал, то I е двустранен идеал или само идеал на R. Пишем $I \subseteq R$ или $I \triangleleft R$.

Дефиниция 10.3

Идеалът I на пръстена R се нарича **нетривиален**, ако $I \neq \{0\}$ и $I \neq R$. I е **тривиален** идеал, ако $I = \{0\}$ или I = R.

ПРИМЕРИ:

- $\{0\} \triangleleft R, R \unlhd R$
- $n\mathbb{Z} \leq \mathbb{Z} \ (n \in \mathbb{N})$
- Нека R е комутативен пръстен с 1 и $a \in R$, то множеството

$$(a) = \{ar \mid r \in R\},\$$

е идеал на R, съдържащ a.

• F - поле, $R = M_n(F)$.

$$I = egin{pmatrix} a_1 & 0 & \dots & 0 \\ a_2 & 0 & \dots & 0 \\ & & \dots & \\ a_n & 0 & \dots & 0 \end{pmatrix}$$
 ляв идеал, но не е десен идеал $J = egin{pmatrix} a_1 & a_2 & \dots & a_n \\ 0 & 0 & \dots & 0 \\ & & \dots & \\ 0 & 0 & \dots & 0 \end{pmatrix}$ десен идеал, но не е ляв $J = egin{pmatrix} a_1 & a_2 & \dots & a_n \\ & & \dots & & \\ & & \dots & & \\ & & \dots & & \\ & & 0 & \dots & 0 \end{pmatrix}$

$$J = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ 0 & 0 & \dots & 0 \\ & & \dots & \\ 0 & 0 & \dots & 0 \end{pmatrix}$$
 десен идеал, но не е ляв

• Всеки идеал е подпръстен, но обратното не е вярно.

$$\mathbb{Z} < \mathbb{Q}$$
 совети и подпръстен, но не е идеал

• Идеалите на $\mathbb{Z}_6 = \{0, 1, \dots, 5\}$

$$(0) = \{0\}$$

$$(1) = (5) = \mathbb{Z}_6$$

$$(2) = (4) = \{0, 2, 4\}$$

$$(3) = \{0, 3\},\$$

 $\Rightarrow \mathbb{Z}_6$ - главен идеал.

Дефиниция 10.4

Нека R е комутативен пръстен с 1 и $a \in R$. Множеството

$$(a) = \{ar \mid r \in R\}$$

е идеал и се нарича **главен идеал**, **породен от елемента** а ((1) = R). Ако $A \subseteq R$, то множеството

$$(A) = \{ \sum_{i=1}^{n} a_i r_i \mid n \in \mathbb{N}, a_i \in A, r_i \in R \}$$

е идеал на R, породен от множеството A.

Свойства:

- (1) I -идеал (ляв, десен, двустранен) на R, то $0 \in I$, ако $a,b \in I \Rightarrow -b = 0 b \in I, a+b=a-(-b) \in I \Rightarrow I$ подгрупа на (R,+). Освен това $ab \in I \Rightarrow I$ е подпръстен на R.
- (2) $\bigcap_k I_k \leq R$, където $I_k \leq R$ са идеали (ляв/ десен /двустранен)

Доказателство. $J = \bigcap I_k$

- $x, y \in J \Rightarrow x, y \in I_k(\forall k) \Rightarrow x y \in I_k(\forall k) \Rightarrow x y \in J$.
- $x \in J \Rightarrow x \in I_k(\forall k) \Rightarrow ax \in I_k(\forall k) \Rightarrow ax \in J$

(3) Ако R е комутативен пръстен всеки ляв (десен) идеал е двустранен идеал в R.

(4) Сума на идеали $I, J \triangleleft R$:

$$I+J=\{i+j\mid i\in I, j\in J\} \trianglelefteq R$$

Доказателство. $r \in R, x, y \in I + J \Rightarrow$

$$\begin{split} a &= x_1 + y_1, \ x_1, x_2 \in I, y_1, y_2 \in J \\ b &= x_2 + y_2 \\ I, J \leq R \Rightarrow \\ rx_1, rx_2 \in I \text{ if } x_1 - x_2 \in I \\ ry_1, ry_2 \in J \text{ if } y_1 - y_2 \in J \Rightarrow \\ x - y &= \underbrace{(x_1 - x_2)}_{\in I} + \underbrace{(y_1 - y_2)}_{\in J} \in I + J \\ ra &= \underbrace{rx_1}_{\in I} + \underbrace{ry_1}_{\in J} \in I + J \Rightarrow \\ I + J \lhd R. \end{split}$$

(5) Произведение:

$$IJ = \left\{ \sum_{i=1}^{n} x_i y_i \mid x_i \in I, y_i \in J, 1 \le i \le n, n \in \mathbb{N} \right\} \le R$$

(6) Частно:

$$I: J = \left\{ r \in R \mid rx \in I, \forall x \in J \right\} \leq R$$

(7) Радикал:

$$\sqrt{I} = \left\{ r \in R \mid r^n \in I, \text{ за някое цяло положително } n \right\} \unlhd R$$

Твърдение 10.5

Нека R е комутативен пръстен с 1.

R е поле $\Leftrightarrow R$ няма нетриавиални идеали (т.е. различни от $\{0\}$ и R).

Доказателство. \Rightarrow) R - поле, т.е. всеки ненулев елемент е обратим.

$$\{0\} \neq I \trianglelefteq R \text{ if } 0 \neq a \in I \Rightarrow 1 = aa^{-1} \in I \Rightarrow R = (1) \subseteq I \Rightarrow R \equiv I.$$

 \Leftarrow) R няма нетриавиални идеали (т.е. различни от $\{0\}$ и R)

$$0 \neq a \in R \Rightarrow (a) \neq (0) \Rightarrow (a) = R = (1)$$

$$\Rightarrow \exists a' \in R : aa' (=a'a) = 1$$
, т.е. a е обратим $(a^{-1} = a')$.

Следователно всеки ненулев елемент е обратим $\Rightarrow R$ е поле.

Твърдение 10.6

 $B \mathbb{Z}$ всеки идеал е главен, т.е. $I = n\mathbb{Z}, n \in \mathbb{N}$ или n = 0.

 \mathcal{A} оказателство. • Идеалите $n\mathbb{Z} \leq \mathbb{Z}, n \in \mathbb{N}$ или n=0 са главни $n\mathbb{Z}=(n)$.

• Нека $H \neq \{0\} < (\mathbb{Z}, +)$ (подгрупа).

 $(\mathbb{Z},+)$ е (безкрайна) адитивна циклична група, следователно подгрупата й H също е циклична (от Теорема 3.15), която се поражда от най-малкото $n,n\in\mathbb{N},n\in H$, т.е.

$$H = \langle n \rangle = \{kn \mid k \in \mathbb{Z}\} = \{nk \mid k \in \mathbb{Z}\} = (n).$$

Следователно всяка подгрупа H на $(\mathbb{Z},+)$ е главен идеал в \mathbb{Z} .

(Така доказахме, че всяка подгрупа на H на $(\mathbb{Z},+)$ е главен идеал в \mathbb{Z} . Т.е. всички идеали, подпръстени и подгрупи на \mathbb{Z} са главни идеали в \mathbb{Z} .)

10.2 Прости и максимални идеали

Нека R е комутативен пръстен с 1. Някои от идеалите на комутативен пръстен са доста интересни.

Дефиниция 10.7: Прост идеал

Нека R е комутативен пръстен с 1 и $P ext{ } ext$

- (1) $P \neq R$,
- (2) $u \text{ om } ab \in P \Rightarrow a \in P \text{ unu } b \in P.$

Твърдение 10.8

Ако p е просто число, то I = (p) е прост идеал в \mathbb{Z} .

Доказателство. $I \neq \mathbb{Z}$ и от $ab \in I$, то $p/ab \Rightarrow p/a$ или p/b, т.е. $a \in I$ или $b \in I$.

Дефиниция 10.9: Максимален идеал

Нека R е комутативен пръстен с 1 и $M \le R$ е идеал в R. Казваме, че M е максимален идеал, ако

- (1) $M \neq R$,
- (2) aro $I \leq R$ u $M \subseteq I \subseteq R$, mo I = M usu I = R.

Твърдение 10.10

Ако p е просто число, то I=(p) е максимален идеал в \mathbb{Z} .

Доказателство.

$$J \triangleleft \mathbb{Z}$$
 и $I \subset J$, то
$$\exists m \in J : m \notin I, \text{ т.e. } p \nmid m \Rightarrow (p,m) = 1 \Rightarrow 1 = up + vm \ (u,v \in \mathbb{Z})$$
 $p,m \in J \Rightarrow 1 \in J \Rightarrow J = \mathbb{Z}.$

Твърдение 10.11

Във всяко поле нулевият идеал е максимален.

Доказателство. Нека F е поле. Да допуснем, че $I \triangleleft F: \{0\} \subset I \Rightarrow 0 \neq a \in I$, но $aa^{-1} = 1 \in I \Rightarrow I = (1) = F$.

Твърдение 10.12

Във всяка област нулевият идеал е прост.

Доказателство. Нека R е област и $I = \{0\} \triangleleft R$ е нулевият идеал. От $ab = 0 \Rightarrow a = 0$ или b = 0. Което всъщност означава, че $I \neq R$ и от $ab \in I \Rightarrow a \in I$ или $b \in I$, т.е. е прост идеал.

Твърдение 10.13

Всеки максимален идеал в комутативен пръстен с единица е прост идеал.

Доказателство. Нека R е комутативен пръстен с единица и $I \triangleleft R$ е максимален идеал в R.

Ако $ab \in I, a \notin I$, то полагаме J = I + (a). За така конструираният идеал J е ясно, че $I \subset J \triangleleft R$ и $I \neq J$, т.к. $a \in J, a \notin I$.

От факта, че I е максимален идеал следва, че J = R, т.е. I + (a) = R.

$$1 = c + ax / b \quad c \in I, ax \in (a)$$

$$b = bc + abx = b \underbrace{c}_{\in I} + \underbrace{ab}_{\in I} x \in I$$

$$b \in I$$

Следователно максималният идеал I е прост.

10.3 Факторпръстен

R -пръстен, $I \leq R$ R - абелева група относно събирането и I е нормална подгрупа на (R,+). Да рагледаме факторгрупата (R/I,+)

$$R/I = \{a + I \mid a \in R\}$$

от съседни класове по нормалната й подгрупа I с операцията "събиране", дефинирана по-следния начин за съседните класове:

$$(a+I) + (b+I) = (a+b) + I.$$

Във факторгрупата (R/I,+) по аналогичен начин въвеждаме операцията "умножение":

$$(a+I).(b+I) = a.b + I.$$

Ще докажем, че с така въведете операции R/I образува пръстен.

Теорема 10.14

Нека R е пръстен и I е идеал в R. Тогава (R/I, +, .) е пръстен относно вече дефинираните операции за събиране и умножение.

Доказателство. • I е нормална подгрупа на (R, +) и относно операцията събиране (R/I, +) е група, наречена факторгрупа (Теорема 6.6).

• Операцията умножение е дефинирана коректно, т.е. не зависи от избора на представител на съседния клас.

Ако

$$\begin{array}{l} a+I=a_1+I\Rightarrow a-a_1\in I\\ b+I=b_1+I\Rightarrow b-b_1\in I\\ (a+I)(b+I)=ab+I\\ (a_1+I)(b_1+I)=a_1b_1+I\\ \text{трябва да докажем, че }ab+I=a_1b_1+I, \text{ т.е. }ab-a_1b_1\in I\\ ab-a_1b_1=ab-a_1b+a1b-a_1b_1=\underbrace{(a-a_1)}_{\in I}b+a_1\underbrace{(b-b_1)}_{\in I}\in I(I\trianglelefteq R) \end{array}$$

• Операцята умножение е асоциативна:

$$[(a+I)(b+I)](c+I) = (ab+I)(c+I) = (ab)c+I$$
$$(a+I)[(b+I)(c+I)] = (a+I)(bc+I) = a(bc)+I$$

• Дистрибутивните закони са изпълнени:

$$[(a+I) + (b+I)](c+I) = ((a+b)+I)(c+I) = (a+b)c+I$$

$$(a+I)(c+I) + (b+I)(c+I) = (ac+I) + (bc+I) = ac+bc+I$$

Понеже (a+b)c = ac+bc, то и десния дистрибутивен закон е изпълнен. Аналогично се проверява и левия дистрибутивен закон.

Дефиниция 10.15: Факторпръстен

Пръстенът (R/I,+,.) се нарича факторпръстен на пръстена R по идеала I.

Ако R е пръстен с 1, то и факторпръстена R/I има единица и тя е 1+I

$$(a+I)(1+I) = a.1 + I = a + I = (1+I)(a+I).$$

Hулевият елемент на R/I е I=0+I.

ПРИМЕРИ:

• Пръстен на класовете остатъци по модул n.

nZ=(n) е главен идеал в $\,$ и факторпръстена $\mathbb{Z}_n=\mathbb{Z}/(n)$ съдържа nелемента, т.е. съседните класове:

$$0 + (n) = (n), 1 + (n), \dots, n - 1 + (n).$$

Като съседният клас k+(n), $(0 \le k \le n)$ се състои от всички цели числа, които при деление на n дават остатък k.

Нека $\varphi: R \to R'$ е хомоморфизъм на пръстени (виж Дефиниция 9.7). Ще въдедем понятията ядро и образ на хомоморфизма, както и при групи.

Дефиниция 10.16

Hека $\varphi:R\to R'$ е хомоморфизъм на пръстена R в пръстена R'. Множеството

$$Ker(\varphi) = \{a \in R \mid \varphi(a) = 0 \}$$

ce нарича **ядро на хомоморфизма** φ , а

$$Im(\varphi) = \{ b \in R' \mid \exists a \in R : \varphi(a) = b \}$$

ce нарича **образ на хомоморфизма** φ .

Лема 10.17

Нека $\varphi: R \to R'$ е хомоморфизъм на пръстени. Тогава $Ker(\varphi) \leq R$ е (двустpанен) иdеал на R.

- Доказателство. $Ker(\varphi) \neq \emptyset$, защото $\varphi(0) = 0 \Rightarrow 0 \in Ker(\varphi)$.
 - Ako

$$a_1, a_2 \in Ker(\varphi) \Rightarrow \varphi(a_1) = \varphi(a_2) = 0$$

 $\varphi(a_1 - a_2) = \varphi(a_1) - \varphi(a_2) = 0 \Rightarrow$
 $a_1 - a_2 \in I = Ker(\varphi)$

- $\varphi(xa_1) = \varphi(x)\varphi(a_1) = \varphi(x).0 = 0 \Rightarrow xa_1 \in Ker(\varphi)$
- Аналогично $a_1x \in Ker(\varphi)$.

Следователно $Ker(\varphi)$ е едновременно ляв и десен идеал, т.е. двустранен идеал на R.

Лема 10.18

Ако $I \leq R$ е идеал на произволен пръстен R, то I е ядро на някакъв хомоморфизъм на R (т.е. $I = Ker(\pi)$).

Доказателство. Да разгледаме изображението π - естествен хомоморфизъм на R върху R/I. (Ще покажем, че $I=Ker(\pi)$.)

$$\pi:R o R/I$$
 $\pi:r o r+I,\quad r\in R$ (произволен) $\pi(r)=r+I$

- π е изображение върху;
- π е хомоморфизъм:

$$\forall a, b \in R, \quad \pi(a+b) = (a+b) + I = (a+I) + (b+I) = \pi(a) + \pi(b)$$

$$\forall a, b \in R, \quad \pi(ab) = (ab) + I = (a+I)(b+I) = \pi(a)\pi(b)$$

• $Ker(\pi)=\{a\in R\mid \pi(a)=I\},$ защото нулевият елемент на факторпръстена R/I е I. Но

$$\pi(a) = I \Leftrightarrow a \in I \Rightarrow Ker(\pi) = \{a \in R \mid a \in I\} = R \cap I = I.$$

Двете леми могат да бъдат обединени в една.

Теорема 10.19

Hепразното подмножество I на пръстена R е ядро на някакъв хомоморфизъм на R тогава и само тогава, когато I е идеал на R.

Теорема 10.20: Теорема за хомоморфизмите на пръстени

Hека $\varphi:R\to R'$ е хомоморфизъм на пръстени и $I=Ker(\varphi)$. Тогава

$$I \leq R$$
 e udean u $R/I \cong Im(\varphi)$.

Доказателство. От Лема 10.17 следва, че $I=Ker(\varphi)$ е идеал на R. Да разгледаме изображението:

$$\tau: R/I \to Im(\varphi)$$

$$\tau: a+I \to \varphi(a)$$

$$\tau(a+I) = \varphi(a)$$

Глава 10. Идеали и факторпръстени. Теорема за хомоморфизмите при 104

- τ е коректно дефинирано и е изоморфизъм на адитивните групи на пръстените R/I и $Im(\varphi)$.
- За да покажем, че τ е хомоморфизъм на пръстени трябва да проверим умножението:

$$\tau\bigg((a+I)(b+I)\bigg) = \tau(ab+I) = \varphi(ab) = \varphi(a)\varphi(b) = \tau(a+I)\tau(b+I).$$

• Следователно τ е изоморфизъм, т.е. $R/I \cong Im(\varphi)$.

Теорема 10.21

Нека R е комутативен пръстен с 1. Тогава

- (a) M е максимален идеал в $R \Leftrightarrow R/M$ е поле.
- (b) P e npocm $u\partial ean$ e $R \Leftrightarrow R/P$ e obvacm.

Доказателство. (a) M е максимален идеал в $R \Leftrightarrow R/M$ е поле.

 \Leftarrow) $M \max^{\triangleleft} R$.

R е комутативен пръстен с 1, следователно и R/M е комутативен пръстен с 1. $M \neq R \Rightarrow R/M$ съдържа повече от един съседен клас. (Но 0=1 ако пръстена е нулев). Така, че $0+M \neq 1+M$. Остава да докажем, че всеки ненулев елемент от R/M е обратим.

Нека $a+M \neq 0+M \Rightarrow a \notin M$. Да разгледаме

$$I = M + (a) = \{ m + ra \mid m \in M, r \in R \}.$$

I е сума на два идеала на R, следователно е идеал на R.

Ако r=0 забелязваме, че $m\in I$ за всяко $m\in M$, следователно $M\subseteq I$. Елементът $a\in I\setminus M\Rightarrow M\subset I$. Но M е максимален идеал, следователно I=R.

Rе комутативен пръстен с 1, следователно $1\in I=R.$ Съществуват $m\in M$ и $r\in R$ такива, че m+ra=1. Но тогава

$$(r+M)(a+M) = ra + M = 1 - m + M = 1 + M, \quad (m \in M)$$

което означава, че (r+M) е обратния елемент на (a+M) и R/M е поле.

 \Rightarrow) Нека R/M е поле. Трябва да покажем, че е максимален идеал.

Ако M=R, тогава R/M се състои само от един адитивен ляв съседен клас, но това е противоречие, с факта че в поле има два различни елемента 0 и $1\Rightarrow M\neq R$.

Да допуснем, че I е идеал на R такъв, че $M\subset I\subset R$. Да разгледаме елемента $a\in I\setminus M$. Понеже $a+M\neq 0+M$ следователно има обратен елемент - нека да е b+M. Тогава

$$(a+M)(b+M) = 1 + M.$$

Т.е. $1 = \underbrace{ab}_{\in I} + \underbrace{m}_{\in M \subset I} \in I$. Това означава, че I = R, което е противоречие.

- (b) P е прост идеал в $R \Leftrightarrow R/P$ е област.
 - \Leftarrow) Нека P е прост идеал в R. Ще покажем, че R/P е област. Да допуснем, че $r+P,s+P\in R/P$ и (r+P)(s+P)=0+P. Тогава

$$(r+P)(s+P) = rs + P = 0 + P \Rightarrow rs \in P.$$

Но P е прост идеал, от $rs \in P$ следва, че или $r \in P$ или $s \in P$. Т.е. или r+P=0+P или s+P=0+P е нулевия елемент на R/P. Заключаваме, че R/P няма делители на нулата.

От това, че $P \neq R$ следва, че R/P има повече от един елемент, т.е. не е тривиален R/P е област.

 \Rightarrow) Нека R/P е област. Ще покажем, че P е прост.

Първо, областта има повече от един елемент, така че $P \neq R$.

Нека $ab\in P$ тогава (a+P)(b+P)=ab+P=0+P и това означава, че a+P=0+P или b+P=0+P. Следователно $a\in P$ или $b\in P$. Т.е. P е прост идеал.

Глава 11

Пръстенът на полиномите на една променлива. Теорема за деление с частно и остатък. Схема на Хорнер. Принцип за сравняване на коефициентите.

Нека А е комутативен пръстен с единица.

Да означим с B множеството :

$$B = \{(a_0, a_1, a_2, \dots) \mid a_i \in A\}$$

от всички безкрайни редици с елементи от A, в които само краен брой членове са различни от нула, наричаме ги финитни редици. Въвеждаме операциите събиране и умножение в множеството B по следния начин:

$$f=(a_0,a_1,a_2,\dots)\in B$$

$$g=(b_0,b_1,b_2,\dots)\in B$$

$$f+g=(a_0+b_0,a_1+b_1,a_2+b_2,\dots)$$

$$fg=(c_0,c_1,c_2,\dots)$$

$$c_n=\sum_{i+j=n}a_ib_j\;(n=0,1,2,\dots)$$
 Например:
$$c_0=a_0b_0$$

$$c_1=a_0b_1+a_1b_0$$

$$c_2=a_0b_2+a_1b_1+a_2b_0,\quad \text{и т.н.}$$

Множеството B с така въведени операции събиране и умножение се превръща в комутативен пръстен с единица - $(1,0,0,\dots)$.

Асоциативност:

$$f = (a_0, a_1, a_2, \dots) \in B$$

$$g = (b_0, b_1, b_2, \dots) \in B$$

$$h = (e_0, e_1, e_2, \dots) \in B$$

$$fg = (c_0, c_1, c_2, \dots), \quad c_n = \sum_{i+j=n} a_i b_j \ (n = 0, 1, 2, \dots),$$

$$gh = (d_0, d_1, d_2, \dots), \quad d_n = \sum_{i+j=n} b_i e_j \ (n = 0, 1, 2, \dots)$$

$$(fg)h = (s_0, s_1, s_2, \dots)$$

$$f(gh) = (s'_0, s'_1, s'_2, \dots)$$

$$s_m = \sum_{n+k=m} c_n e_k = \sum_{n+k=m} \left(\sum_{i+j=n} a_i b_j\right) e_k = \sum_{i+j+k=m} a_i b_j e_k$$

$$s'_m = \sum_{i+p=m} a_i d_p = \sum_{i+p=m} a_i \left(\sum_{j+k=p} b_j e_k\right) = \sum_{i+j+k=m} a_i b_j e_k$$

$$\Rightarrow s_m = s'_m, \forall m = 0, 1, 2, \dots$$

$$\Rightarrow (fg)h = f(gh).$$

Да означим с A_0 подмножество на B от редици във вида:

$$A_0 = \{(a, 0, 0, \dots) \mid a \in A\}.$$

 $A_0 \leq B$ е подпръсен на B, относно операциите събиране и умножение въведени в B. Да разгледаме изображението:

$$arphi:A o A_0$$
 $arphi(a)=(a,0,0,\dots)$ $arphi$ - биекция $arphi(a+b)=arphi(a)+arphi(b)$ $arphi(ab)=arphi(a)arphi(b)$ $\Rightarrow arphi(a+b)$ - изоморфизъм

И по-този начин считаме, че A е подпръстен на B. Вместо $(a,0,0,\ldots)$ ще пишем a. Да означим с x редицата $(0,1,0,\ldots)$ и от дефинираното умножение получаваме:

$$x^2 = (0, 0, 1, 0, \dots)$$
 $x^3 = (0, 0, 0, 1, 0, \dots)$ \dots $x^n = (\underbrace{0, \dots, 0}_n, 1, 0, \dots)$ Ако $a \in A \Rightarrow ax^n = (\underbrace{0, \dots, 0}_n, a, 0, \dots)$

Ако $f = (a_0, a_1, \ldots, a_n, 0, \ldots)$ е ненулева редица и a_n е последния ненулев член, то

$$f = (a_0, 0, 0, \dots) + (0, a_1, 0, \dots) + \dots + (0, \dots, 0, a_n, 0, \dots) =$$

= $a_0 + a_1 x + \dots + a_n x^n$

f се записва по познатия начин, както и операциите събиране и умножение се извършват познатия начин.

Дефиниция 11.1

Пръстена B = A[x] се нарича **пръстен на полиномите на една променлива** x **с коефициенти от** A или **полиномиален пръстен над** A, а елементите **полиноми**.

Нека $f = a_0 + a_1 x + \cdots + a_n x^n$, тогава

- a_0, a_1, \ldots, a_n коефициенти на f,
- a_0 свободен член,
- a_n старши член,
- n степен на f и пишем $n = \deg(f)$,
- f -ненулев полином, ако $\deg(f) \in \mathbb{N}$ или 0,
- ако $\deg(f) = 0 \Rightarrow f$ константи,
- ако f = 0 е нулев полином, то $\deg(f) = -\infty$.

Ако f, g - полиноми, то

$$deg(f+g) \le max(deg(f), deg(g)).$$

Aко A е област, то

$$\deg(fg) = \deg(f) + \deg(g)$$

и A[x] също е област.

Полиномът f ще го записваме по следния начин:

$$f = f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n.$$

Всеки полином f определя функция:

$$f:A \to A$$
 $f:a \to f(a) = a_0 a^n + a_1 a^{n-1} + \dots + a_{n-1} a + a_n.$ $f(a)$ - стойност на f при $x=a$.

Ако f, g са полиноми, то

$$(f+g)(a) = f(a) + g(a)$$
$$(fg)(a) = f(a)g(a)$$

Два полинома съвпадат f = g, ако определените от тях функции съвпадат. Обратното в общия случай не е вярно.

ПРИМЕРИ:

•

$$f(x)=x^p\in\mathbb{Z}_p$$
 $g(x)=x\in\mathbb{Z}_p$ $a^p=a,\ \forall a\in\mathbb{Z}_p\Rightarrow f(a)=g(a)$ \Rightarrow функциите $f:\mathbb{Z}_p\to\mathbb{Z}_p,g:\mathbb{Z}_p\to\mathbb{Z}_p$ съвпадат, но полиномите $f(x)$ и $g(x)$ са различни.

• Полиномите $f = x^3 + x + 1$ и $g = x^5 + x^3 + 1$ в \mathbb{Z}_5 като функции съвпадат $f(x) = g(x), \ \forall x \in \mathbb{Z}_5$, но всъщност са различни полиноми.

Теорема 11.2: Теорема за деление с остатък

Нека F е поле u $f,g \in F[x]$. Тогава съществува единствена двойка полиноми q u $r \in F[x]$ такива, че

$$f = qq + r \ u \ \deg(r) < deq(q)$$

 $(m.e \ deлum \ f \ ha \ g \ c \ частно \ q \ u \ ocmam<math>v \kappa \ r).$

Доказателство. • (Съществуване)

Нека

$$f = a_0 x^n + \dots + a_n$$
$$q = b_0 x^m + \dots + b_n$$

Ако полиномът $g=b_0$ е константа, то е ясно. Считаме, че $\deg(g)=m>0$. Индукция по n.

- Ако $\deg(g) > \deg(f)$ полагаме g = 0, r = f.
- Ако f е константа, то q = 0, r = f (същото).
- Нека $\deg(f) \ge \deg(g)$ Да разгледаме полинома $a_0b_0^{-1}x^{n-m}g$, старшият му член е a_0x^n . Тогава полиномът

$$f_1 = f - a_0 b_0^{-1} x^{n-m} g$$

е от степен по-малка от n, т.е. $\deg(f_1) < \deg(f)$. Приламе индукционно предположение, т.е. съществуват полиноми $q_1, r_1 \in F[x]$:

$$f_1 = gq_1 + r_1, \quad \deg(r_1) < \deg(g).$$

Следователно

$$f = f_1 + a_0 b_0^{-1} x^{n-m} g =$$

$$= gq_1 + r_1 + a_0 b_0^{-1} x^{n-m} g =$$

$$= g \underbrace{(q_1 + a_0 b_0^{-1} x^{n-m})}_{q} + \underbrace{r_1}_{r}$$

$$f = gq + r, \quad \deg(r) < \deg(g).$$

• (Единственост)

Нека
$$f = gq + r = gq_1 + r_1$$
, $\deg(r), \deg(r_1) < \deg(g)$ $\Rightarrow g(q - q_1) = r_1 - r$, ако $q \neq q_1 \Rightarrow \deg(g(q - q_1)) = \deg(g) + \deg(q - q_1) \geq \deg(g)$ - противоречие! $\Rightarrow q = q_1 \Rightarrow r = r_1$.

Доказателството на Теорема за деление с чатно и остатък (съществуване) ни дава и практически алгоритъм за намиране на полиномите q и r (f = gq + r, $\deg(r) < \deg(g)$).

$$f_1 = f - a_0 b_0^{-1} x^{n-m} g = c_0 x^k + \dots + c_k,$$
ако $\deg(f_1) \geq \deg(g), \quad f_2 = f_1 - c_0 b_0^{-1} x^{k-m} g = d_0 x^k + \dots + d_k,$... и така нататък докато получим
$$\deg(f_p) < \deg(g), \quad r = f_p, \quad q = a_0 b_0^{-1} x^{n-m} + c_0 b_0^{-1} x^{k-m} + \dots$$

Полученият алгоритъм е в сила и ако F не е поле, достатъчно е само b_0 да е обратим в F или 1.

Ако F не е област, то представянето

$$f = gq + r$$
, $\deg(r) < \deg(g)$

не е единствено.

ПРИМЕРИ:

$$f = \overline{3}x^{3} \in \mathbb{Z}_{6}[x]$$

$$g = \overline{3}x^{2} - \overline{1} \in \mathbb{Z}_{6}[x]$$

$$f = \overline{3}x^{3} = (\overline{3}x^{2} - \overline{1})(x + \overline{2}) + \overline{3}x + \overline{3} = g(x + \overline{2}) + \overline{3}x + \overline{3}$$

$$= (\overline{3}x^{2} - \overline{1})(x + \overline{4}) + x + \overline{4} = g(x + \overline{4}) + x + \overline{4}$$

11.1 Схема на Хорнер

$$f = a_0 x^n + \dots + a_n \in F[x]$$

$$g = x - \alpha \in F[x]$$

$$f = gq + r, \deg(r) < \deg(g), r \in F$$

$$q = b_0 x^{n-1} + \dots + b_{n-1}$$

$$f = a_0 x^n + \dots + a_n = (x - \alpha)(b_0 x^{n-1} + \dots + b_{n-1}) + r$$

$$= b_0 x^n + (b_1 - \alpha b_0) x^{n-1} + (b_2 - \alpha b_1) x^{n-2} + \dots + a_0 = b_0$$

$$b_1 = a_1 + \alpha b_0$$

$$b_2 = a_2 + \alpha b_1$$

$$\dots$$

$$b_{n-1} = a_{n-2} + \alpha b_{n-2}$$

$$r = f(\alpha) = a_n + \alpha b_{n-1}.$$

Пример:

ПРИМЕРИ:

Твърдение 11.3

Aко F е поле, то всеки идеал I в пръстена F[x] е главен.

Доказателство. • Ако $I = \{0\}$, то I е главен идеал.

- Нека $I \neq \{0\}$ и g е ненулев полином с най-ниска степен от I. Ще докажем, че I = (g).
 - $-(g) \subseteq I$ очевидно.
 - Обратното включване. Нека $f \in I$ и f = gq + r, $\deg(r) < \deg(g) \Rightarrow r = f gq \in I$. Ако допуснем, че $r \neq 0$, то стигаме до противоречие с минималната степен на g. Следователно $r = 0 \Rightarrow f = gq \in (g) \Rightarrow I \subseteq (g) \Rightarrow I = (g)$.

Твърдение 11.4

Нека K е комутативен пръстен c 1, $f \in K[x]$ и $\alpha \in K$. Тогава

 $f(\alpha) = 0 \Leftrightarrow f = (x - \alpha)q$ за някой полином $q \in K[x]$.

Доказателство. Нека $f=(x-\alpha)q+r,\ q,r\in K[x]$ и $\deg(r)<\deg(x-\alpha),$ т.е. $r\in K.$ Като заместим x с α получаваме $f(\alpha)=r.$

$$f(\alpha) = 0 \Leftrightarrow r = 0$$
, r.e. $f = (x - \alpha)q$.

Твърдение 11.5

Нека K е област, $f \in K[x]$. Ако $\deg(f) \leq n$ и съществуват два по два различни елемента $\alpha_1, \ldots, \alpha_{n+1}$, за които $f(\alpha_i) = 0$, $i = 1, \ldots, n+1$, то f е нулевият полином.

Доказателство. Допускаме, че $f \neq 0$.

$$f(\alpha_1)=0\Rightarrow f=(x-\alpha_1)q_1,\ q_1\in K[x]$$
 $f(\alpha_2)=(\alpha_2-\alpha_1)q_1(\alpha_2)$ тъй като K е област и $\alpha_2-\alpha_1\neq 0\Rightarrow$ $q_1(\alpha_2)=0\Rightarrow q_1=(x-\alpha_2)q_2,\ q_2\in K[x]$ $\Rightarrow f=(x-\alpha_1)(x-\alpha_2)q_2$ Продължавайки по същия начин получаваме $f=(x-\alpha_1)(x-\alpha_2)\dots(x-\alpha_{n+1})q_{n+1},\ q_{n+1}\in K[x]$ но тогава $\deg(f)\geq n+1$, противоречие $!\Rightarrow f=0$.

Твърдение 11.6: Принцип за сравняване на коефициентите

Нека K е област и $g_1, g_2 \in K[x]$. Нека $\deg(g_1), \deg(g_2) \leq n$ и съществуват два по два различни елемента $\alpha_1, \ldots, \alpha_{n+1}$, за които $g_1(\alpha_i) = g_2(\alpha_i), \ i = 1, \ldots, n+1$. Тогава $g_1 = g_2$.

Доказателство. Да рагледаме полинома $f = g_1 - g_2$. От условието $\deg(f) \leq n$ и $f(\alpha_i) = 0, i = 1, \ldots, n+1$ и от Твърдение 11.5 следва, че f = 0, т.е. $g_1 = g_2$.

примери:

- Ако K не е област, Твърдения 11.5 и 11.6 не са верни в общия случай. Полиномът $f=x^2\in\mathbb{Z}_{16}$ се анулира в $x=\overline{0},\overline{4},\overline{8},\overline{12}.$
- $f = 3x^5 4x^2 + 3x + 2$, пресметнете f(-1) и разложете f(x) по степените на (x+1).

$$f(x) = 3(x+1)^5 - 15(x+1)^4 + 30(x+1)^3 - 34(x+1)^2 + 26(x+1) - 8$$

Глава 12

Делимост на полиноми над поле. Най-голям общ делител при полиноми.

F - поле, F[x] - полиномиален пръстен

Дефиниция 12.1

Нека $f,g \in F[x]$ и $g \neq 0$. Казваме, че g **дели** f, g/f, ако $\exists q \in F[x]$ такъв, че

$$f = g.q.$$

Това означава, че остатъкът от деление на f с g е 0. Ако g **не дели** f пишем $g \nmid f$.

СВОЙСТВА:

- $(1) \ g/f \ \text{и} \ a,b \in F, \ a \neq 0 \Rightarrow ag/bf$
- (2) $a,b \in F$ и $a \neq 0 \Rightarrow af/bf$
- (3) g/f и $f/g \Rightarrow g = cf, 0 \neq c \in F$ (Ако старшите коефициенти на f и g са равни, то g = f)
- (4) g/f и $f/h \Rightarrow g/h$
- (5) $g/f_1, \dots f_k \text{ if } t_1, \dots, t_k \in F[x] \Rightarrow g/t_1 f_1 + \dots + t_k f_k$
- (6) $g/f_1 + f_2$ и $g/f_1 \Rightarrow g/f_2$ $(f_1 + f_2 = 0$ и $g/f_1 \Rightarrow g/f_2)$

Дефиниция 12.2: НОД на полиноми

Нека $f,g \in F[x]$ са полиноми и поне единия е ненулев, т.е. $(f,g) \neq (0,0)$. Найголям общ делител (НОД) на f и g е полинома d, ако изпълнява следните условия:

- (1) d/f u d/g,
- (2) $a\kappa o \ d_1/f \ u \ d_1/g, \ mo \ d_1/d.$

 Π ишем d = (f, g).

Аналогично се дефинира НОД на повече от два полинома (f_1, \ldots, f_n) .

Твърдение 12.3

Всеки два полинома $f, g \in F[x]: (f, g) \neq (0, 0)$ притежават НОД.

Доказателство. Да разгледаме идеалът породен от полиномите f и g:

$$I = (f, g) = \{uf + vg \mid u, v \in F[x]\} \le F[x].$$

 $I \neq \{0\}, (f,g) \neq (0,0)$

 $\to F[x]$ всеки идеал е главен, следователно I=(d). Ще докажем, че d=(f,g).

- (1) $f,g \in (d) \Rightarrow f = df_1, g = dg_1, f_1,g_1 \in F[x] \Rightarrow d/f \text{ if } d/g.$
- (2) $d \in I \Rightarrow \exists u, v \in F[x] : d = uf + vg$. Ако d_1/f и $d_1/g \Rightarrow d_1/d$.

• Ако d и d' удовлетворяват определението за НОД следва, че d'/d и $d/d' \Rightarrow d' = ad, \ 0 \neq a \in F$.

- Ако d удовлетворява определението за НОД и $0 \neq a \in F$, то d' = ad също го удовлетворява.
- Следователно НОД на f и g е определен с точност до ненулева константа от полето F.
- Ако старшият член на HOД d е 1, т.е. полиномът е унитарен, то той е еднозначно определен.

12.1 Алгоритъм на Евклид

Доказателство за съществуване на НОД е и всъщност алгоритъм на Евклид. Той е и правило за намиране му.

Ако g = 0 (и $f \neq 0$) \Rightarrow (f, g) = f. Нека $g \neq 0$.

$$f = gq_1 + r_1,$$
 $\deg(r_1) < \deg(g)$ ако $r_1 \neq 0,$ $g = r_1q_2 + r_2,$ $\deg(r_2) < \deg(r_1)$ ако $r_2 \neq 0,$ $r_1 = r_2q_3 + r_3,$ $\deg(r_3) < \deg(r_2)$

всеки получен остатък – делим на следващият

. . .

ако
$$r_{n-1} \neq 0$$
, $r_{n-2} = r_{n-1}q_n + r_n$, $\deg(r_n) < \deg(r_{n-1})$
ако $r_n \neq 0$, $r_{n-1} = r_nq_{n+1} + r_{n+1}$, $r_{n+1} = 0$

Т.к. $\deg(g)>\deg(r_1)>\deg(r_2)>\deg(r_3)>\dots$ процесът е краен, следователно след краен брой стъпки остатъка е равен на нула, т.е. $\Rightarrow r_{n+1}=0$. $d=r_n=(f,g)$

- (1) $d/r_{n-1} \Rightarrow d/r_{n-2}$ и така нататък $\uparrow \Rightarrow d/f$ и d/g.
- (2) Ако d_1/f и $d_1/g \Rightarrow d_1/r_1, d/r_2$ и така $\downarrow d_1/d$.

Дефиниция 12.4

Два полинома са взаимно прости, ако

$$(f,g) = c, \quad c \neq 0, c \in F.$$

Може да считаме, че (f,g)=1.

От Твърдение 12.3 следва, че ако $(f,g)=d\Rightarrow \exists u,v\in F[x]$:

$$uf + vq = d$$
,

и го наричаме тъждество на Безу.

Ако $(f,g) = 1 \Rightarrow \exists u, v \in F[x] : uf + vg = 1$. Обратното също е вярно! (защо?)

Но полиномите от тъждеството на Безу не са еднозначно определени от f и g.

Твърдение 12.5

Нека $f_1, f_2, g \in F[x]$. Ако g/f_1f_2 $u(g, f_1) = 1 \Rightarrow g/f_2$.

Доказателство.

$$\exists u, v \in F[x] :$$

 $ug + vf_1 = 1 / .f_2$
 $ugf_2 + vf_1f_2 = f_2$
 $g/ugf_2, \quad g/vf_1f_2 \Rightarrow g/f_2.$

Твърдение 12.6

Нека $f, g_1, g_2 \in F[x]$. Ако $g_1/f, g_2/f$ и $(g_1, g_2) = 1 \Rightarrow g_1g_2/f$.

Доказателство.

$$f = g_1 f_1$$

$$g_2/g_1 f_1 \text{ if } (g_1, g_2) = 1 \Rightarrow g_2/f_1$$

$$\Rightarrow g_1 g_2/g_1 f_1 = f$$

$$\Rightarrow g_1 g_2/f.$$

Дефиниция 12.7: НОК на полиноми

Нека $f, g \in F[x]$ са два ненулеви полиноми, т.е. $f \neq 0$, $g \neq 0$. Най-малко общо кратно (НОК) на f и g е полинома k, ако изпълнява следните условия:

- (1) f/k u g/k,
- (2) $a\kappa o f/k_1 u g/k_1, mo k/k_1$.

 Π ишем k = [f, g].

Аналогично се дефинира НОК на повече от два полинома $[f_1, \dots, f_n]$.

Твърдение 12.8

Aко $f,g\in F[x]$ са полиноми, то е в сила

(a)
$$(f) + (g) = (f,g),$$

(b)
$$(f) \cap (g) = ([f,g])$$

Доказателство. (a) Нека $d=(f,g)\Rightarrow \exists u,v\in F[x]:uf+vg=d.$

- Ot d/f if $d/g \Rightarrow (f) \subseteq (d), (g) \subseteq (d) \Rightarrow (f) + (g) \subseteq (d)$.
- OT $d = uf + vg \Rightarrow (d) \subseteq (f) + (g)$.
- (b) Нека k = [f, g].
 - От $h \in (k) \Rightarrow h = kh_1$ и $f/k \Rightarrow h \in (f)$. Аналогично $h \in (g) \Rightarrow h \in (f) \bigcap (g) \Rightarrow (k) \subseteq (f) \bigcap (g)$.
 - $\bullet \text{ Ot } y \in (f) \bigcap (g) \Rightarrow y \in (f) \text{ m } y \in (g) \Rightarrow f/y \text{ m } g/y \Rightarrow [f,g]/y \Rightarrow y \in \left([f,g]\right) \Rightarrow (f) \bigcap (g) \subseteq \left([f,g]\right).$

Глава 13

Неразложими полиноми над поле. Разлагане на полином на неразложими множители.

F - поле, F[x] - полиномиален пръстен

Дефиниция 13.1: Неразложим полином

Нека $f \in F[x]$ и $\deg(f) > 0$. Ще казваме, че полиномът f е **неразложим над полето** F, ако не може да се представи като произведение на два полинома от F[x], чиито степени са по-малки от степента на f, т.е.

$$\nexists g,h \in F[x], \ \deg(g), \deg(h) < \deg(f): f = gh.$$

Или единствените делители на f са полиномите от вида a и af, $0 \neq a \in F$. В противен случай f е разложим над F.

ПРИМЕРИ:

- Ако $\deg(f)=1$, то f е неразложим, т.е. всеки полином от първа степен е неразложим.
- Един полином f може да е разложим над едно поле, а над друго да е разложим! $x^2 2$ неразложим над \mathbb{Q} ; $x^2 2 = (x \sqrt{2})(x + \sqrt{2})$ разложим над \mathbb{R} ;

Твърдение 13.2

Нека p и $f \in F[x]$ и p е неразложим полином. Тогава $(p,f)=1 \Leftrightarrow p \nmid f$.

Доказателство. Нека
$$(f,p)=d=egin{cases} 1, & p \ \mbox{e} \ \mbox{неразложим} \\ p, & \end{cases}$$
 .

 $\Leftarrow)$ Ако $d=p\Rightarrow d=p/f$ - противоречие! $\Rightarrow d=1.$

$$\Rightarrow$$
) $d=1 \Rightarrow p \nmid f$.

Твърдение 13.3

Нека $f_1, f_2, p \in F[x]$ и p е неразложим полином. Ако p/f_1f_2 и $p \nmid f_1$, то p/f_2 .

Доказателство. От твърдение 13.2 и 12.5 (Ако g/f_1f_2 и $(g,f_1)=1\Rightarrow g/f_2$.) твърдението следва.

Теорема 13.4: Теорема за еднозначно разлагане на неразложими множители

Нека $f \in F[x]$ и $\deg(f) > 0$. Тогава $f \in F[x]$ се разлага в произведение на неразложими над F полиноми, т.е.

$$\exists p_1, p_2, \dots, p_k \in F[x],$$
 неразложими $: f = p_1 \cdots p_k.$

Ако $f = p_1 \cdots p_k = q_1 \cdots q_s$ са две такива разлагания, то k = s и, след евентуално преномериране на множителите, за всяко $i = 1, \ldots, k$ е изпълнено

$$p_i = a_i q_i, \quad 0 \neq a_i \in F.$$

Доказателство. 1. Съществуване: Индукция по $n = \deg(f)$.

Hека $\deg(f) = n > 0$.

Ако f е неразложим полином, то f = f, т.е. произведение на един полином.

 $\deg(f) = 1$ - като неразложим полином, случаят е същият.

Ако f е разложим, то $f = f_1 f_2$, $\deg(f_1), \deg(f_2) < \deg(f)$ (от ИП) $\Rightarrow f_i = \prod$ (неразложими полиноми), $i = 1, 2 \Rightarrow$ получаваме разлагане за f.

2. Единственост:

Hека $f = p_1 \dots p_k = q_1 \dots q_s$.

Индукция по k.

- $k=1 \Rightarrow p_1=q_1\dots q_s$. Ако $s>1 \Rightarrow p_1$ разложим (което е противоречие!) $\Rightarrow s=1$ и $f=p_1=q_1$.
- ИП, k>1 и твърдението е вярно, ако в едната страна има по-малко от k множителя.
- k от $p_1\dots p_k=q_1\dots q_s\Rightarrow p_1/q_1\dots q_s$ от Твърдение 13.3 следва, че p_1 дели някой от q_1,\dots,q_s . Нека p_1/q_1 (q_1 неразложим) $\Rightarrow p_1=a_1q_1,0\neq a_1\in$

F. т.к. F-поле следва, че F[x] е област и може да се съкрати на $q_1 \Rightarrow a_1p_2\dots p_k = q_2\dots q_s.$

От ИП следва, че k-1=s-1, т.е. $k=s, p_2=a_2q_2, \ldots, p_k=a_kq_k, \ 0 \neq a_i \in F, i=1,\ldots k.$

Глава 14

Неразложими полиноми над полето на рационалните числа. Лема на Гаус и критерий на Айзенщайн.

$$f = c_0 x^n + c_1 x^{n-1} + \dots + c_n = \frac{a_0}{b_0} x^n + \frac{a_1}{b_1} x^{n-1} + \dots + \frac{a_n}{b_n} \in \mathbb{Q}[x]$$

е полином с рационални коефициенти и $q = \mathrm{HOK}(b_0, b_1, \dots, b_n) = [b_0, b_1, \dots, b_n]$. Тогава

$$g = \frac{1}{a} f$$
.

Следователно f и g са едновременно разложими или неразложими над \mathbb{Q} . Свеждаме неразложимост на полином с рационални коефициенти над \mathbb{Q} към неразложимост на полином с цели коефициенти над \mathbb{Q} .

Нека p е просто число и $\pi_p:\mathbb{Z}\to\mathbb{Z}_p$ е естествения хомоморфизъм на \mathbb{Z} върху $\mathbb{Z}_p.$

$$\pi_p: \mathbb{Z} \to \mathbb{Z}_p$$

$$\pi_p: a \to a + p\mathbb{Z}, \quad a \in \mathbb{Z}, a + p\mathbb{Z} \in \mathbb{Z}_p$$

Твърдение 14.1

Нека R е комутативен пръстен с единица, $I \triangleleft R$ е идеал в R, а

$$\pi: R \to R/I, \quad \pi(a) = a + I$$

е естествения хомоморфизъм и ядрото е $Ker \ \pi = I$, а образа е $Im \ \pi = R/I$. Тогава π индуцира изображение на пръстени Π :

$$\Pi : R[x] \to (R/I)[x], \quad \Pi\left(\sum_{i=0}^{n} a_i x^i\right) = \sum_{i=0}^{n} (a_i + I)x^i$$

и ядрото е $Ker\ \Pi = I[x]$, а образа е $Im\ \Pi = (R/I)[x]$.

Доказателство. • $\Pi: R[x] \to (R/I)[x]$ е хомоморфизъм на пръстени. Нека $f = \sum_{i=0}^n a_i x^i$ и $g = \sum_{i=0}^m b_i x^i$ са полиноми с коефициенти от R. Тогава

$$\Pi(f+g) = \Pi(f) + \Pi(g)$$

$$\Pi(fg) = \Pi(f)\Pi(g)$$

По-подробно:

$$\Pi(f) + \Pi(g) = \Pi\left(\sum_{i=0}^{n} a_i x^i\right) + \Pi\left(\sum_{j=0}^{m} b_j x^j\right) =$$

$$= \Pi\left(\sum_{i=0}^{n} (a_i + I) x^i\right) + \Pi\left(\sum_{j=0}^{m} (b_j + I) x^j\right) =$$

$$= \sum_{i=0}^{max(n,m)} (a_i + b_i + I) x^i =$$

$$= \Pi\left(\sum_{i=0}^{n} a_i x^i + \sum_{j=0}^{m} b_j x^j\right) = \Pi(f+g)$$

$$\Pi(fg) = \Pi(f)\Pi(g) \quad \text{- аналогично}$$

• Ядрото на $Ker \Pi = I[x]$ е :

$$Ker \ \Pi = \left\{ f(x) = \sum_{i=0}^{n} a_i x^i \mid \Pi(f) = \sum_{i=0}^{n} (a_i + I) x^i = I \right\} =$$

$$= \left\{ f(x) = \sum_{i=0}^{n} a_i x^i \mid a_i \in I, \ \forall \ 0 \le i \le n \right\} = I[x].$$

• Образът на $Im\ \Pi = (R/I)[x]$, тъй като всеки елемент на (R/I)[x] е от вида:

$$\sum_{i=0}^{n} (a_i + I)x^i = \prod(\sum_{i=0}^{n} a_i x^i),$$

за някакъв полином на $\sum_{i=0}^n a_i x^i \in R[x]$

Следствие 14.2

Ако р е просто число, то изображението

$$\Pi_p : \mathbb{Z}[x] \to \mathbb{Z}_p[x], \quad \Pi_p\left(\sum_{i=0}^n a_i x^i\right) = \sum_{i=0}^n (a_i + p\mathbb{Z})x^i$$

е хомоморфизъм на пръстени с ядро $Ker \Pi_p = (p\mathbb{Z})[x]$ и образ $Im \Pi_p = \mathbb{Z}_p[x]$.

Доказателство. Ако р е просто число, то

$$\pi_p: \mathbb{Z} \to \mathbb{Z}_p, \quad \pi_p(a) = a + p\mathbb{Z}$$

е естествения хомоморфизъм на \mathbb{Z} върху \mathbb{Z}_p , нарича се още редукция на целите числа по модул .

Ако $\Pi_p(f) = \overline{f}$, то

$$f = a_0 x^n + \dots + a_n \in \mathbb{Z}[x]$$
$$\overline{f} = \overline{a_0} x^n + \dots + \overline{a_n} \in \mathbb{Z}_p[x].$$

Ядрото на този хомоморфизъм е:

$$Ker \ \Pi_p = \{ f = a_0 x^n + \dots + a_n \in \mathbb{Z}[x] \mid p/a_i, i = 0, \dots, n, \}$$

Дефиниция 14.3

Нека $f = a_0 x^n + \dots + a_n \in \mathbb{Z}[x]$. Наричаме f е **примитивен полином**, ако коефициентите му са взаимно прости, т.е. $(a_0, \dots, a_n) = 1$.

Ако $g \in \mathbb{Q}[x]$, то $g = \frac{r}{q}f$, където $f \in \mathbb{Z}[x]$ е примитивен полином.

Представяме първо $g = \frac{1}{q} f_1$, където q = HOK(знаменателите на коефициентите на g).

После $g = \frac{r}{q}f$, където r = HOД(на коефициентите на $f_1)$. $f = a_0x^n + \cdots + a_n \in \mathbb{Z}[x]$.

Коефициентите на f са взаимно прости \Leftrightarrow нямат общ прост делител, т.е. когато $\forall p$: просто число, $\exists \ 0 \le i \le n : p \nmid a_i$.

f - примитивен полином $\Leftrightarrow \forall p$: просто число, $\overline{f} \neq \overline{0} \in \mathbb{Z}_p$.

Твърдение 14.4

Нека $h \in \mathbb{Z}[x]$ е примитивен полином, $c \in \mathbb{Q}$ и $ch \in \mathbb{Z}[x]$. Тогава $c \in \mathbb{Z}$.

Доказателство. Нека $h=p_0x^k+\cdots+p_k\in\mathbb{Z}[x]$ и $c=\frac{r}{q},r,q\in\mathbb{Z}$ такива, че (r,q)=1.

Ot
$$ch \in \mathbb{Z}[x] \Rightarrow \frac{rp_i}{q} \in \mathbb{Z}$$
, t.e. q/rp_i .

OT
$$(r,q) = 1 \Rightarrow q/p_i, i = 0,...,k.$$

h е примитивен полином $\Rightarrow (p_0, \dots, p_k) = 1 \Rightarrow q = \pm 1 \Rightarrow c = \pm r \in \mathbb{Z}$.

Лема 14.5: Лема на Гаус

Ако f и $g \in \mathbb{Z}[x]$ са примитивни полиноми, то произведението fg е примитивен полином.

 $\ensuremath{\mathcal{A}okasame}$ лство. Нека $f,g\in\mathbb{Z}[x]$ - примитивни полиноми и p е просто число.

$$\Rightarrow \overline{f}, \overline{g} \neq \overline{0} \in \mathbb{Z}_p.$$

$$\mathbb{Z}_p$$
 е област и $\overline{f}.\overline{g} = \overline{fg}$, защото $\Pi_p(fg) = \Pi_p(f)\Pi_p(g)$ е хомоморфизъм $\Rightarrow \overline{fg} \neq \overline{0} \Rightarrow fg$ е примитивен полином.

Следствие 14.6

Нека $f \in \mathbb{Z}[x]$ е полином с цели коефициенти.

Aко полиномът f е разложим над \mathbb{Q} , то f е разложим и над \mathbb{Z} .

 $T.e.\ f$ неразложим над $\mathbb{Q} \Leftrightarrow f$ е неразложим над \mathbb{Z} .

Доказателство. Нека $f = f_1 f_2, f_1, f_2 \in \mathbb{Q}[x]$.

$$f_1 = \frac{p_1}{q_1}h_1, \ h_1 \in \mathbb{Z}[x],$$
 примитивен полином $f_2 = \frac{p_2}{q_2}h_2, \ h_2 \in \mathbb{Z}[x],$ примитивен полином $\Rightarrow f = \frac{p_1p_2}{q_1q_2} \underbrace{h_1h_2}_{\text{примитивен}}$ $f \in \mathbb{Z}[x] \Rightarrow c = \frac{p_1p_2}{q_1q_2} \in \mathbb{Z}$ от Твърдение 14.4 $f = (ch_1)h_2, \ ch_1, h_2 \in \mathbb{Z}[x].$

Така въпроса за неразложимост над \mathbb{Q} на полином с рационални коефициенти се свежда до неразложимост над \mathbb{Z} на полином с цели коефициенти.

Твърдение 14.7: Критерий на Айзенщайн

Нека $f = a_0 x^n + a_1 x^{n-1} + \cdots + a_n \in \mathbb{Z}[x]$ е полином с цели коефициенти и съществува просто число р, за което

- (1) $p \nmid a_0$,
- (2) $p/a_1, ..., a_n,$ (3) $p^2 \nmid a_n.$

Тогава f е неразложим над \mathbb{Q} .

Доказателство. Да допуснем противното f = gh, $\deg(g), \deg(h) < \deg(f)$. Можем да считаме, че (Следствие 14.6), че $g,h \in \mathbb{Z}[x]$. Тогава $\overline{gh} = \overline{g}.\overline{h}$. От (1) и (2), следва, че $\overline{f} = \overline{a_0}x^n$, $a_0 \neq \overline{0}$.

От теоремата за еднозначно разлагане на неразложими множители следва, че

$$\overline{g}=\overline{b}x^k,$$
 $\overline{h}=\overline{c}x^l,$ където $\overline{b}\overline{c}=\overline{a_0},\ k,l< n$ и $k+l=n.$

Тогава

$$g = bx^k + pg_1,$$

$$h = cx^l + ph_1,$$

където b и c са подходящи праобрази на \bar{b} и \bar{c}

Следователно

$$f = a_0 x^n + \dots + a_n = (b x^k + p g_1)(c x^l + p h_1)$$

 $a_n = f(0) = p^2 g_1(0) h_1(0),$
 $\Rightarrow p^2 / a_n$ противоречие! .

 $\Rightarrow f$ е неразложим над \mathbb{Q} .

Твърдение 14.8

3a всяко естествено число n съществува неразложим полином от $\mathbb{Q}[x]$ от степен п.

 $\square o \kappa a \beta a men c m s o$. От критерия на Айзенщайн, такива са например полиномите $x^n + p$, където p е произволно просто число.

Дефиниция 14.9

Нека полето K е разширение на полето F, т.е. $F \leq K$ и $\alpha \in K$. Наричаме α е **корен** на f, ако $f(\alpha) = 0$.

Намирането на корените на полином с рационални коефициенти се свежда до намирането на корените на полином с цели коефициенти. Ако $g \in \mathbb{Q}[x] \Rightarrow g = \frac{1}{q}f, \ f \in \mathbb{Z}[x],$ то f и g имат едни и същи корени.

Твърдение 14.10

Нека $f = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n \in \mathbb{Z}[x]$ и $\alpha = \frac{u}{v}$ е рационален корен на f, ако $u, v \in \mathbb{Z}, (u, v) = 1$.

 $Toraea u/a_n, v/a_0.$

Доказателство.

$$f(\alpha) = f\left(\frac{u}{v}\right) = 0$$

$$\Rightarrow a_0 \left(\frac{u}{v}\right)^n + a_1 \left(\frac{u}{v}\right)^{n-1} + \dots + a_{n-1} \left(\frac{u}{v}\right) + a_n = 0 / .v^n$$

$$\Rightarrow a_0 u^n + a_1 u^{n-1} v + \dots + a_{n-1} u v^{n-1} + a_n v^n = 0$$

$$\Rightarrow u/a_n v^n \text{ if } (u, v) = 1$$

$$\Rightarrow u/a_n.$$

Аналогично v/a_0 .

Глава 15

Корени на полиномите. Кратни корени. Поле на разлагане. Формули на Виет.

15.1 Корени на полиномите.

Нека $f \in F[x]$ е полином с коефициенти от дадено поле F. Полиномът може да няма корени в F. Например $x^2 + 1 \in \mathbb{R}[x]$ няма корени в \mathbb{R} , но има в \mathbb{C} . При това \mathbb{C} е разширение на полето \mathbb{R} .

Дали за всеки полином $f, \deg(f) > 1$ със степен по-голяма от 1, може да се намери разширение на полето от коефициентите, в което полиномът да има поне един корен?

Дефиниция 15.1: Корен на полином

Нека полето K ($F \leq K$) е разширение на полето F, $\alpha \in K$ и $f \in F[x]$. Наричаме α е **корен** на полинома f, ако $f(\alpha) = 0$.

Теорема 15.2

Нека F е поле u $f \in F[x]$, $\deg(f) > 0$. Тогава f е неразложим полином $\Leftrightarrow M = (f)$ е максимален идеал.

Доказателство. Да припомним, че F[x] е област на главни идеали, т.е. ако F е поле, то всеки идеал I в пръстена F[x] е главен, Твърдение 11.3.

 \Rightarrow) Полиномът f е неразложим, $\deg(f)>0\Rightarrow f\neq 1\Rightarrow M=(f)\neq F[x].$ Да допуснем, че съществува идеал I такъв, че $M\subseteq I\subseteq F[x]$ и трябва да покажем, че I=M или I=F[x]. В F[x] всеки идеал е главен следователно I=(q).

 \Rightarrow $(f) \subseteq (g) \Rightarrow f = gh, h \in F[x]$. Но f е неразложим, т.е. или g е от степен 0 или h е от степен 0 (т.е. елемент от F).

Ако $\deg(g) = 0$ тогава g е единица в F[x] и I = F[x].

Ако $\deg(h)=0\Rightarrow f=\alpha g, \alpha\in F$ и $g=\alpha^{-1}f\in M\Rightarrow I=M$. Следователно M е максимален идеал.

 \Leftarrow) Нека M е максимален идеал. Нека $f \neq 0$ и допуснем, че е разложим полином, т.е. $f = gh, 1 \leq \deg(g), \deg(h) < \deg(f)$. И двата полинома имат степени поголеми от 1 (т.е. не са единица в F[x]) следователно $(g) \neq M \Rightarrow (g) \subset M$, аналогично за $(h) \subset M$, т.е. са собствени идеали. Тогава собствените идеали (g) и (h) съдържат M. Това противоречи на максималността на M, което се дължи на допуснатото. Следователно f е неразложим.

Теорема 15.3

Нека F е поле, $f \in F[x]$, $\deg(f) > 0$ и M = (f). Тогава F[x]/M е поле $\Leftrightarrow f$ е неразложим полином.

Доказателство. f е неразложим полином $\Leftrightarrow M = (f)$ е максимален идеал (Теорема 15.2) $\Leftrightarrow F[x]/M$ е поле (Теорема 10.21).

Да разгледаме внимателно структурата на факторпръстена F[x]/(f), където $f \in F[x]$ е произволен ненулев полином.

$$F[x]/(f) = \left\{ g + (f) \mid g \in F[x] \right\}$$

с операциите събиране и умножение дефинирани във факторпръстена:

$$(a + (f)) + (b + (f)) = a + b + (f)$$

 $(a + (f))(b + (f)) = ab + (f).$

Два съседни класа g + (f) и h + (f) са равни, т.е.

$$g+(f)=h+(f)\Leftrightarrow$$
 дават един и същи остатък при деление на $f\Leftrightarrow g-h\in (f)\Leftrightarrow f/(g-h)\Leftrightarrow g\equiv h (mod\ f).$

Това е еквивалентно g и h да дават един и същи остатък при деление на f. Така всеки съседен клас g+(f) съдържа единствен представител представител $r \in F[x]$ със свойството $\deg(r) < \deg(f)$, което е всъщност остатъка при деление на g с f.

Процесът на преминаване от g към r се нарича **редукция** по модул f. Единствеността на r следва от факта, че ако съществува $r_1 \in g + (f)$ такъв, че $\deg(r_1) < \deg(f)$, то $r - r_1$ се дели на f и $\deg(r - r_1) < \deg(f)$, което е възможно само, ако $r = r_1$.

Различните съседни класове на факторпръстена F[x]/(f) могат да бъдат описани точно, а именно това са точно съседните класове r + (f), където r пробягва всички полиноми от F[x] със $\deg(r) < \deg(f)$, т.е. ако $\deg(f) = n$, то

$$F[x]/(f) = \left\{ r + (f) \mid r \in F[x], \deg(r) < \deg(f) \right\}$$

$$= \left\{ \underbrace{r_0 x^{n-1} + r_1 x^{n-2} + \dots + r_n}_{r} + (f) \mid r_i \in F, i = 0, \dots, n-1 \right\}$$

Поле с четири елемента.

Да разгледаме полето ($\mathbb{Z}_2, +, .$) и полиномите с коефициенти от \mathbb{Z}_2 , т.е. $\mathbb{Z}_2[x]$. Полиномите от степен две са 4:

$$x^{2}$$
, $x^{2} + \overline{1}$, $x^{2} + x$, $x^{2} + x + \overline{1}$.

Проверяваме за неразложимост:

$$x^2=x.x,$$
 $x^2+\overline{1}=(x+\overline{1})^2,$ $x^2+x=x(x+\overline{1}),$ $x^2+x+\overline{1}-$ - неразложим.

Нека $f=x^2+x+\overline{1}$ и I=(f), от Теорема 15.3 следва, че $\mathbb{Z}_2[x]/I$ е поле. Елементите на $\mathbb{Z}_2[x]/I$ са:

$$\mathbb{Z}_2[x]/I = \{a + bx + I \mid a, b \in \mathbb{Z}_2\}.$$

Да означим $\mathbb{Z}_2[x]/I$ с L. Тогава елементите на полето L са 4 на брой:

$$\overline{0} = I, \quad \overline{1} = 1 + I, \quad \overline{x} = x + I, \quad \overline{x+1} = x+1 + I.$$

Таблиците за събиране и умножение на елементите на L са :

+	$\overline{0}$	$\overline{1}$	\overline{x}	$\overline{x+1}$		$\overline{0}$	$\overline{1}$	\overline{x}	$\overline{x+1}$
0		1			$\overline{0}$	$\overline{0}$	$\overline{0}$	0	0
$\overline{1}$	$\overline{1}$	$\overline{0}$	$\overline{x+1}$	\overline{x}	$\overline{1}$	$\overline{0}$	$\overline{1}$	\overline{x}	$\overline{x+1}$
\overline{x}	\overline{x}	$\overline{x+1}$	$\overline{0}$	$\overline{1}$	\overline{x}	$\overline{0}$	\overline{x}	$\overline{x+1}$	$\overline{1}$
$\overline{x+1}$	$\overline{x+1}$	\overline{x}	$\overline{1}$	$\overline{0}$	$\overline{x+1}$	$\overline{0}$	$\overline{x+1}$	$\overline{1}$	\overline{x}

Да отбележим, че $(L,+) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, докато $(L \setminus \{0\},.) \cong \mathbb{Z}_3$. Всъщност $\overline{x+1} = \overline{x}^2$ и следователно ако означим \overline{x} с α , то можем да напишем:

$$L = \{0, 1, \alpha, \alpha^2\}$$
, където $\alpha + 1 = \alpha^2$ и $\alpha^3 = 1$.

Събирането и умножението написани с това означение са:

Ако елементите на L са записани като степени на α , то умножението става лесно, но за събирането трябва да се използват допълнителни условия (съотношения).

Да отбележим, че L съдържа подполе, съдържащо елементите $\{0,1\}$. Така това подполе е изоморфно на \mathbb{Z}_2 . С други думи L е по-голямото поле съдържащо подполе изоморфно на \mathbb{Z}_2 или можем да кажем, че L съдържа \mathbb{Z}_2 . Т.е. L е разширение на \mathbb{Z}_2 . Оригиналния полином f е полином от $\mathbb{Z}_2[x]$, но също може да мислим, че е полином от L[x]. Обаче в L полиномът f не е неразложим! Всъщност има корен:

$$\alpha^2 + \alpha + 1 = 0.$$

В L[x] имаме:

$$x^{2} + x + 1 = (x - \alpha)(x - \alpha^{2}).$$

Стартирахме с поле с два елемента и неразложим полином (от степен 2) над това поле. Конструирахме разширение на това поле, в което този полином има корен!

Теорема 15.4

Нека $f \in F[x]$ и $\deg(f) > 0$. Тогава съществува разширение K на полето F, в което полиномът f има корен.

Доказателство. • Ако $f = f_1 \dots f_k$, то ако намерим разширение на F, в което един от тези множители има корен, то той ще бъде корен и на f. Така без ограничение на общността можем да считаме, че f е неразложим над F полином. Нека $\deg(f) = n$ и

$$f = a_0 x^n + a_1 x^{n-1} + \dots + a_n.$$

• Нека I = (f) и K = F[x]/I. От Теорема 15.3 следва, че K е поле. Да разгледаме естествения хомоморфизъм от F[x] върху K:

$$\pi: F[x] \to K = F[x]/I$$

$$\pi(g) = g + I, \quad g \in F[x].$$

Елементите на K=F[x]/I са:

$$K = F[x]/(f) = \left\{ r + I \mid r \in F[x], \deg(r) < \deg(f) \right\}$$

.

Да означим с

$$F_1 = \left\{ r_0 + I \mid r_0 \in F \right\}.$$

Да означим с $\varphi = \pi_{|F}$ ограничението на π върху F, т.е.

$$\varphi: F \to F_1$$

 $\varphi(a) = a + I, \quad a \in F.$

 φ е изоморфизъм.

 $Ker\varphi=\{0\} \triangleleft F$, но F е поле и единствените му идеали са $\{0\}$ и F. $Ker\varphi\neq F\Rightarrow Ker\varphi=\{0\}$.

 $Im\varphi=F_1$ и от теоремата за хомоморфизми $F/\{0\}=F\cong Im\varphi=F_1\subset K.$ Благодарение на този изоморфизъм може да отъждествяваме F и F_1 или полето K е разширение на F.

• Разглеждаме полиномът f като полином с коефициенти от K. Ще докажем, че $\alpha = x + I$ от полето K е корен f.

 $f \in F[x] = F_1[x] \subset K[x]$. Тогава полиномът

$$f = a_0 x^n + a_1 x^{n-1} + \dots + a_n$$

ще има представяне

$$f = (a_0 + I)x^n + (a_1 + I)x^{n-1} + \dots + (a_n + I),$$

разглеждан като полином от K[x]. Тогава

$$f(\alpha) = (a_0 + I)(x + I)^n + (a_1 + I)(x + I)^{n-1} + \dots + (a_n + I)$$

= $(a_0 + I)(x^n + I) + (a_1 + I)(x^{n-1} + I) + \dots + (a_n + I)$
= $f(x) + I = I$.

т.е. $f(\alpha)$ съвпада с нулевия елемент I на полето K, а това значи, че α е корен на f.

Нека $K \geq F$ е разширение на F. За всеки полином $f = a_0 x^n + a_1 x^{n-1} + \cdots + a_n \in F[x]$, дефинираме стойността на f в $x = \alpha$ по-следния начин:

$$f(\alpha) = a_0 \alpha^n + a_1 \alpha^{n-1} + \dots + a_n.$$

Дефинираме:

$$F[\alpha] = \{ f(\alpha) \mid f(x) \in F[x] \} \subseteq K$$

И

$$F(\alpha) = \left\{ \frac{f(\alpha)}{g(\alpha)} \;\middle|\; f(x), g(x) \in F[x] \text{ и } g(\alpha) \neq 0 \right\} \subseteq K.$$

Твърдение 15.5

Нека K е поле, F е подполе на K и $\alpha \in K$. Тогава $F[\alpha]$ е подпръстен на K и е област, а $F(\alpha)$ е подполе на K.

Доказателство. Нека $f(x), g(x) \in F[x] \Rightarrow f(x) \pm g(x), f(x).g(x) \in F[x]$. Следователно $f(\alpha) \pm g(\alpha) \in F[\alpha]$ и $f(\alpha).g(\alpha) \in F[\alpha]$. Ясно е, че $1 \in F[\alpha]$. Откъдето следва, че $F[\alpha]$ е подпръстен на K. Но подпръстен на поле всъщност е област.

Аналогично може да се покаже, че F(lpha) е подполе на K.

Теорема 15.6

Нека полето K е разширение на полето F и $\alpha \in K$. Нека $f \in F[x]$ е неразложим полином от степен n и $f(\alpha) = 0$.

(1) Тогава $F[\alpha]$ е подполе на K,

$$F[\alpha] = \{a_{n-1} + a_{n-2}\alpha + a_{n-3}\alpha^2 + \dots + a_0\alpha^{n-1} \mid a_i \in F, \ i = 0, 1, \dots, n-1\},\$$

и всеки елемент от $F[\alpha]$ може да се изрази еднозначно във вида:

$$a_{n-1} + a_{n-2}\alpha + a_{n-3}\alpha^2 + \dots + a_0\alpha^{n-1}$$
, където $a_0, a_1, \dots, a_{n-1} \in F$.

- (2) $F[\alpha] \cong F[x]/(f)$.
- (3) $F(\alpha) = F[\alpha]$.
- (4) Ако F е крайно поле c q елемента, то $\big|F[\alpha]\big|=q^n$.

Доказателство. (1) $F[\alpha] = \{a_{n-1} + a_{n-2}\alpha + a_{n-3}\alpha^2 + \dots + a_0\alpha^{n-1} \mid a_i \in F\}$

Включването $\{a_{n-1}+a_{n-2}\alpha+a_{n-3}\alpha^2+\cdots+a_0\alpha^{n-1}\mid a_i\in F\}\subseteq F[\alpha]$ е очевидно. (Полиномите на α от степен $\leq n-1$ с коефициенти от F се съдържат във всички полиноми на α с коефициенти от F.)

За обратното включване $F[\alpha] \subseteq \{a_{n-1} + a_{n-2}\alpha + a_{n-3}\alpha^2 + \dots + a_0\alpha^{n-1} \mid a_i \in F\}$ делим произволен полином $g \in F[x]$ на f с частно и остатък $q, r \in F[x]$, т.е.

$$g = fq + r, \ \deg(r) < \deg(f) = n \Rightarrow$$

$$g(\alpha) = r(\alpha) \in \{a_{n-1} + a_{n-2}\alpha + a_{n-3}\alpha^2 + \dots + a_0\alpha^{n-1} \mid a_i \in F\}$$

$$f(\alpha) = 0$$

Откъдето $F[\alpha] \subseteq \{a_{n-1} + a_{n-2}\alpha + a_{n-3}\alpha^2 + \dots + a_0\alpha^{n-1} \mid a_i \in F\}$. Всеки елемент от $F[\alpha]$ може да се изрази като линейна комбинация на $1, \alpha, \dots, \alpha^{n-1}$ с коефициенти от F или като полином на α от степен $\leq n-1$ с коефициенти от F.

Еднозначност на представянето. $(1, \alpha, \dots, \alpha^{n-1})$ са линейно независими) Да допуснем, че:

$$h_0\alpha^{n-1} + h_1\alpha^{n-2} + \dots + h_{n-1} = 0$$
, където $h_0, \dots, h_{n-1} \in F$.

Ако

$$h(x) = h_0 x^{n-1} + h_1 x^{n-2} + \dots + h_{n-1} = 0$$
, to $h(\alpha) = 0$.

Следователно $(x-\alpha)/h(x)$ и $(x-\alpha)/f(x)$. Следователно $(h,f) \neq 1$. Понеже полиномът f е неразложим, то (h,f)=f и f/h. Но $\deg(h)<\deg(f)=n\Rightarrow h(x)=0$ и следователно $h_0=\ldots h_{n-1}=0$. Откъдето заключаваме, че всеки елемент от $F[\alpha]$ може да бъде изразен еднозначно като полином на α от степен $\leq n-1$ с коефициенти от F.

(2) $F[\alpha] \cong F[x]/(f)$

Да означим I = (f). Да разгледаме изображението:

$$\psi: F[x]/I \to F[\alpha]$$

$$\psi: a_{n-1} + a_{n-2}x + a_{n-3}x^2 + \dots + a_0x^{n-1} + I \to a_{n-1} + a_{n-2}\alpha + a_{n-3}\alpha^2 + \dots + a_0\alpha^{n-1}$$

Изображението ψ е биекция и запазва операциите събиране и умножение. От теорема 15.3 F[x]/I е поле. Следователно и $F[\alpha]$ е поле и ψ е изоморфизъм.

(3) $F(\alpha) = F[\alpha]$

Включването $F[\alpha] \subseteq F(\alpha)$ е ясно.

Ще докажем и обратното включване. Нека $\frac{h(\alpha)}{g(\alpha)}$, където $g(\alpha) \neq 0$.

От $f(\alpha) = 0 \Rightarrow f \nmid g$. Но f е неразложим полином над F, така че (f,g) = 1. Тогава съществуват полиноми $u, v \in F[x]$ такива, че

$$u(x)f(x) + v(x)g(x) = 1.$$

Замествайки $x=\alpha$ получаваме $v(\alpha)g(\alpha)=1$. Тогава

$$\frac{h(\alpha)}{g(\alpha)} = \frac{v(\alpha)h(\alpha)}{v(\alpha)g(\alpha)} = v(\alpha)h(\alpha) \in F[\alpha].$$

Следователно $F(\alpha) \subseteq F[\alpha] \Rightarrow F(\alpha) = F[\alpha].$

ПРИМЕРИ:

- $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}, i^2 = -1\} \cong \mathbb{R}/(x^2 + 1) \cong \mathbb{R}(i) \cong \mathbb{R}[i]$
- $\mathbb{Q}(\sqrt{3}) = \{a + b\sqrt{3} \mid a, b \in \mathbb{Q}\} \cong \mathbb{Q}/(x^2 3)$
- $\mathbb{Q}(\sqrt[3]{7}) = \{a + b\sqrt[3]{7} + c(\sqrt[3]{7}^2) \mid a, b, c \in \mathbb{Q}\} \cong \mathbb{Q}/(x^3 7)$

Следствие 15.7

Hека $f \in F[x]$ и $\deg(f) = n > 0$. Тогава съществува разширение L на полето F такова, че всички корени на f са в това разширение или f се разлага в произведение на линейни множители над L, m.e.

$$f(x) = a_0(x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n).$$

Доказателство. Нека $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$. Индукция по степента на полинома $n = \deg(f) \in \mathbb{N}$.

- $n=1\Rightarrow f=a_0x+a_1\in F[x]\Rightarrow$ има корен $-\frac{a_1}{a_0}\in F.$
- ullet ИП за полиноми със степен по-малка от n.
- n

От Теорема 15.4 следва, че съществува разширение $K_1 \geq F$, в което f(x) има корен $\alpha_1 \in K_1$. Тогава

$$f(x) = (x - \alpha_1)g(x), \ g(x) \in K_1[x], \ \deg(g) = \deg(f) - 1.$$

Старшият коефициент на g е равен на старшия коефициент на f и е a_0 . От ИП съществува разширение K_2 , над което g се разлага на линейни множители, т.е.

$$q = a_0(x - \beta_1) \dots (x - \beta_{n-1}).$$

Тогава

$$f(x) = (x - \alpha_1)g(x) = a_0(x - \alpha_1)(x - \beta_1)\dots(x - \beta_{n-1}),$$

с което твърдението е доказано.

Дефиниция 15.8: Поле на разлагане

Нека $f \in F[x], \deg(f) > 0$. Поле на разлагане на полинома f над F е минималното поле, което съдържа F и всички корени на f.

ПРИМЕРИ:

- Ако $f = x^2 + 1 \in \mathbb{R}[x]$, то полето на разлагане над \mathbb{R} е \mathbb{C} .
- Ако $f=x^2+1\in\mathbb{Q}[x]$, то полето на разлагане над \mathbb{Q} е $\mathbb{Q}(i)=\{a+bi|a,b\in\mathbb{Q}\}$.
- Ако $f = x^2 7 \in \mathbb{Q}[x]$, то полето на разлагане над \mathbb{Q} е $\mathbb{Q}(\sqrt{7})$.
- Ако $f = x^2 + 7 \in \mathbb{Q}[x]$, то полето на разлагане над \mathbb{Q} е $\mathbb{Q}(i\sqrt{7})$.
- Ако $f = x^2 + 7 \in \mathbb{R}[x]$, то полето на разлагане над \mathbb{R} е \mathbb{C} .

Теорема 15.9: Теорема за единственост на полето на разлагане

Нека $f \in F[x], \deg(f) > 0$ и L_1 и L_2 са две полета на разлагане на полинома f над полето F. Тогава

$$L_1 \cong L_2$$
.

Доказателство.

15.2 Формули на Виет.

Нека $f = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n \in F[x]$ и $\alpha_1, \alpha_2, \dots, \alpha_n \in K$ са всички корени на f, лежащи в полето K разширение на полето F, т.е.

$$f = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$$
 (1)

$$= a_0(x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n) \tag{2}$$

Приравнявайки коефициентите пред съответните степени на x получаваме формулите на Виет.

<u>Дефиниция 15.10: Формули на Виет</u>

Bръзката между корените на полинома f и коефициентите му се дава с формулите на Bиет:

$$\alpha_1 + \alpha_2 + \dots + \alpha_n = -\frac{a_1}{a_0}$$

$$\alpha_1 \alpha_2 + \alpha_1 \alpha_3 + \dots + \alpha_{n-1} \alpha_n = \frac{a_2}{a_0}$$

$$\alpha_1 \alpha_2 \alpha_3 + \alpha_1 \alpha_2 \alpha_4 + \dots + \alpha_{n-2} \alpha_{n-1} \alpha_n = -\frac{a_3}{a_0}$$

$$\dots$$

$$\alpha_1 \alpha_2 \dots \alpha_n = (-1)^n \frac{a_n}{a_0}$$

Дефиниция 15.11: k-кратен корен

Нека $f \in F[x], K$ е разширение на F и $\alpha \in K$. Полиномът f има k-кратен корен α , ако

$$f(x) = (x - \alpha)^k g(x), \ g(x) \in K[x] \ u \ g(\alpha) \neq 0.$$

При k = 1, α наричаме прост корен на f, а при k > 1 - кратен корен на f.

Нека $f', f'', \dots, f^{(n)}$ производните на полинома f ($f^{(0)} = f$).

Теорема 15.12

Hека $charF = 0, f \in F[x], K$ е разширение на F и $\alpha \in K$. Тогава

 α е k-кратен корен на $f \Leftrightarrow f(\alpha) = f'(\alpha) = \cdots = f^{k-1}(\alpha) = 0$ и $f^k(\alpha) \neq 0$.

Доказателство. \Rightarrow) Нека α е k-кратен корен на f. Ще докажем, че $f(\alpha) = f'(\alpha) = \cdots = f^{k-1}(\alpha) = 0$ и $f^k(\alpha) \neq 0$.

Индукция по k.

• k = 1 (α е прост корен на f).

$$f(x) = (x - \alpha)g(x), \ g(x) \in K[x], \ g(\alpha) \neq 0$$

$$\Rightarrow f'(x) = g(x) + (x - \alpha)g'(x)$$

$$\Rightarrow f'(\alpha) = g(\alpha) \neq 0$$

$$\Rightarrow f(\alpha) = 0, \ f'(\alpha) \neq 0.$$

- \bullet ИП нека k>1 и твърдението е вярно за числа, по-малки от k.
- *k*

$$f(x) = (x - \alpha)^k g(x), \ g(x) \in K[x], \ g(\alpha) \neq 0$$

$$\Rightarrow f'(x) = k(x - \alpha)^{k-1} g(x) + (x - \alpha)^k g'(x)$$

$$\Rightarrow f'(x) = (x - \alpha)^{k-1} \underbrace{\left(kg(x) + (x - \alpha)g'(x)\right)}_{g_1(x)}$$

$$\Rightarrow f'(x) = (x - \alpha)^{k-1} g_1(x)$$

$$\Rightarrow g_1(\alpha) = kg(\alpha) \neq 0 \quad char \ F = 0$$

$$\Rightarrow \alpha \in (k-1) \text{--кратен корен на полинома } f'(x).$$

$$\Rightarrow \text{твърдението следва от ИП.}$$

- \Leftarrow) Нека $f(\alpha) = f'(\alpha) = \dots = f^{k-1}(\alpha) = 0$ и $f^k(\alpha) \neq 0$. Нека α е l-кратен корен на f.
 - ullet Ако l < k, то $l \le k-1$ и значи $f^{(l)}(lpha) = 0$ противоречие!
 - Ако k < l, то $k \le l 1$ и от първата част на теоремата следва $f^{(k)}(\alpha) = 0$ противоречие!
 - Следователно l = k, т. е. α е k-кратен корен на f.

Твърдение 15.13

Нека $f \in F[x]$, K е разширение на F и $\alpha \in K$. Тогава

$$\alpha$$
 е кратен корен $\Leftrightarrow f(\alpha) = f'(\alpha) = 0.$

Или един полином $f \in F[x]$ има кратен корен тогава и само тогава, когато има общ корен с производната си.

Доказателство. Нека характеристиката на F е произволна.

- \Rightarrow) α е k-кратен корен \Rightarrow е поне (k-1)-кратен корен на производната му f'.
- \Leftarrow) Да допуснем, че α е прост корен противоречие с $f(\alpha)=f'(\alpha)=0\Rightarrow$ е кратен корен.

Глава 16

Симетрични полиноми над поле. Основна теорема за симетричните полиноми. Формули на Нютон.

Нека A е комутативен пръстен с 1.

Пръстенът B=A[x] на полиномите на променливата x е комутативен пръстен с 1. B=A[x] съдържа A.

Продължаваме по същия начин. Да построим пръстена C=B[y] на полиномите на променливата y с коефициенти от B. C е комутативен пръстен с 1 съдържа B и следователно A. C се нарича пръстен на полиномите на две променливи x и y с коефициенти от A и се бележи с C=A[x,y]. $C=A[x,y]=B[y]=A[x][y]\Rightarrow$ всеки елемент на A[x,y] се записва като крайна сума:

$$f(x,y) = \sum_{i,j} a_{ij} x^i y^j, \ a_{ij} \in A.$$

Повтаряйки същата конструкция достигаме до пръстена $A[x_1, \ldots, x_n]$ на полиномите на n променливи с коефициенти от A. $A[x_1, \ldots, x_n]$ е комутативен пръстен с 1 и съдържа A. В сила са равенствата:

$$A[x_1, \dots, x_n] = A[x_1, \dots, x_{n-1}][x_n] = \dots = A[x_1][x_2] \dots [x_n]$$

Дефиниция 16.1: Моном, едночлен

Полином от вида $aX^I=ax_1^{i_1}\dots x_n^{i_n},\ a\in A$ се нарича **моном** или **едночлен**.

Ако $f \in A[x_1, \ldots, x_n] \Rightarrow f = f(x_1, \ldots, x_n)$ следователно всеки полином е крайна сума на едночлени, т.е.

$$f(x_1, \dots, x_n) = \sum_{I = \{i_1, \dots, i_n\}} a_I x_1^{i_1} \dots x_n^{i_n}, \ a \in A.$$

Дефиниция 16.2: Подобни едночлени

Два ненулеви едночлена

$$u = aX^{I} = ax_{1}^{i_{1}} \dots x_{n}^{i_{n}}, \ a \in A$$

 $v = bX^{J} = bx_{1}^{j_{1}} \dots x_{n}^{j_{n}}, \ b \in A$

се наричат подобни, ако

$$i_1 = j_1, \ldots, i_n = j_n$$

или всяка променлива участва с една и съща степен в двата едночлена.

Ако $f \in A[x_1, \ldots, x_n]$ е представен като сума на неподобни едночлени, то казваме че в f е извършено приведение на подобни едночлени.

Ако A е област, то $A[x_1,\ldots,x_n]$ също е област.

Дефиниция 16.3

Нека $u = aX^I = ax_1^{i_1} \dots x_n^{i_n}, \ 0 \neq a \in A$ е едночлен $u \ f \in A[x_1, \dots, x_n]$ е полином на n променливи c коефициенти от A. Наричаме

$$i_k = \deg_{x_k} u$$
 - степен на и относно x_k , $i_1 + \dots + i_n = \deg u$ - степен на u , $\deg f = \max_{\forall u \in f} \{\deg u\}$ - степен на f , $\deg_{x_k} f = \max_{\forall u \in f} \{\deg_{x_k} u\}$ - степен на f относно x_k , $f = 0 \implies \deg f = -\infty$.

Ще дефинираме старши едночлен на полином с n променливи. За съжаление, ако решим да направим аналогия с полином на една променлива веднага се натъкваме на проблем. Ако $f \in A[x]$, то старшия едночлен е едночлена с максимална степен. При полином на n променливи може да имаме повече от един едночлен с най-висока степен. За целта ще направим **лексикографска наредба на едночлени**.

Лексикографската наредба напомня подреждането на думите в речниците. Наредбата се определя от наредбата на първите букви. Ако те са еднакви разглеждаме вторите и т.н. (Алгебра, Алжир, Беда, Изпит).

Дефиниция 16.4

 $He\kappa a$

$$u = aX^{I} = ax_{1}^{i_{1}} \dots x_{n}^{i_{n}}, \ a \in A$$

 $v = bX^{J} = bx_{1}^{j_{1}} \dots x_{n}^{j_{n}}, \ b \in A$

са два неподобни едночлена. Лексикографски u>v, ако $\exists k,\ k\in\mathbb{N}:k\leq n$ такова, че

$$i_1 = j_1, \dots, i_{k-1} = j_{k-1}, \text{ no } i_k > j_k.$$

ПРИМЕРИ:

- $f(x_1, x_2, x_3) = x_1^5 + x_1 x_2 x_3 + x_1^2 x_2^2 x_3^3 \Rightarrow \deg f = 7, \deg_{x_1} f = 5, \deg_{x_2} f = 2, \deg_{x_3} f = 3.$
- $f(x_1, x_2, x_3, x_4) = x_1^2 + x_1 x_2^2 x_3 x_4^5 + x_2^2 x_3^5 x_4^2 + x_2^2 x_3^5 x_4$
- $\bullet \ x_1 > x_2^3 x_3^4 > x_2^3 x_3 > x_2^2 x_4^2$

Дефиниция 16.5: Старшия едночлен

Нека $f \in A[x_1, \ldots, x_n]$ и $f \neq 0$. Старши член на f се нарича лексикографски максималния едночлен и се бележи с LT(f) (leading term).

Лема 16.6: Лема за старшия едночлен

Нека A е област u $f, g \in A[x_1, \ldots, x_n]$ са два ненулеви полинома на n променливи. Тогава

$$LT(fg) = LT(f)LT(g).$$

Доказателство. Нека

$$u = LT(f) = ax_1^{i_1} \dots x_n^{i_n}, \ 0 \neq a \in A$$

 $v = LT(g) = bx_1^{j_1} \dots x_n^{j_n}, \ 0 \neq b \in A$

са старшите едночлени на полиномите f и g. Тогава

$$uv = abx_1^{i_1+j_1} \dots x_n^{i_n+j_n}.$$

Ще докажем, че LT(fg) = u.v. Нека

$$u' = a' x_1^{i'_1} \dots x_n^{i'_n},$$

 $v' = b' x_1^{j'_1} \dots x_n^{j'_n}$

са произволни едночлени на полиномите f и g. Ако не са изпълнени едновременно равенствата u=u' и v=v', то

$$uv > u'v'$$
.

• Нека $u \neq u'$ и $v \neq v' \Rightarrow u > u', v > v'.$ Тогава $\exists k, s \in \mathbb{N}, \ (1 \leq k, s \leq n)$ такива, че:

$$i_1 = i'_1, \dots, i_{k-1} = i'_{k-1}, \text{ Ho } i_k > i'_k,$$

 $j_1 = j'_1, \dots, j_{s-1} = j'_{s-1}, \text{ Ho } j_s > j'_s.$

Ако $k \leq s$, то

$$i_1 + j_1 = i'_1 + j'_1, \dots, i_{k-1} + j_{k-1} = i'_{k-1} + j'_{k-1}, \text{ Ho } i_k + j_k > i'_k + j'_k \Rightarrow uv > u'v'.$$

• Аналогично се разглеждат и случаите за u = u' или v = v'.

16.1 Симетрични полиноми

Дефиниция 16.7

Нека $f \in A[x_1, ..., x_n]$ е полином на n променливи. Полиномът f се нарича **симетричен**, ако за произволна пермутация $\sigma \in S_n$ е в сила равенството:

$$f(x_1,\ldots,x_n)=f(x_{\sigma(1)},\ldots,x_{\sigma(n)}).$$

Ако f и g са симетрични полиноми, то

$$f+g,\ f-g$$
 и $fg,\ {
m ca}$ симетрични полиноми.

Следователно

$$\left\{ f \in A[x_1,\ldots,x_n] \mid f \text{ е симетричен полином } \right\} \leq A[x_1,\ldots,x_n]$$

е подпръстен на $A[x_1,\ldots,x_n]$.

Нека f е симетричен полином. Тогава от равенството

$$f(x_1,\ldots,x_n)=f(x_{\sigma(1)},\ldots,x_{\sigma(n)}).$$

следва, че заедно с едночлена

$$ax_1^{k_1}\dots x_n^{k_n}$$

полиномът f съдържа всички едночлени от вида

$$ax_{\sigma(1)}^{k_1}\dots x_{\sigma(n)}^{k_n}$$
.

Ако
$$u = LT(f) = ax_1^{k_1} \dots x_n^{k_n} \Rightarrow k_1 \ge k_2 \ge \dots \ge k_n$$
.

Дефиниция 16.8

Тези полиноми се наричат елементарни симетрични полиноми.

$$\sigma_{1} = \sigma_{1}(x_{1}, \dots, x_{n}) = x_{1} + x_{2} + \dots + x_{n},$$

$$\sigma_{2} = \sigma_{2}(x_{1}, \dots, x_{n}) = x_{1}x_{2} + x_{1}x_{3} + \dots + x_{n-1}x_{n},$$

$$\sigma_{3} = \sigma_{3}(x_{1}, \dots, x_{n}) = x_{1}x_{2}x_{3} + x_{1}x_{2}x_{4} + \dots + x_{n-2}x_{n-1}x_{n},$$

$$\dots$$

$$\sigma_{n} = \sigma_{n}(x_{1}, \dots, x_{n}) = x_{1}x_{2} \dots x_{n}.$$

Нека F е поле, $f = a_0 x^n + \cdots + a_n \in F[x]$ и $\alpha_1, \alpha_2, \ldots, \alpha_n$ са всички корени на f. Тогава формулите на Виет се записват по следния начин:

$$\sigma_k(\alpha_1, \dots, \alpha_n) = (-1)^k \frac{a_k}{a_0}, \ k = 1, 2, \dots, n.$$

Ако $g(x_1, \ldots, x_n) \in A[x_1, \ldots, x_n]$ е произволен полином на n променливи, то

$$g(\sigma_1,\ldots,\sigma_n)$$

е симетричен полином на n променливи. (Сума, разлика, произведение на симетрични полиноми е симетричен полином). Вярно е и обратното!

Теорема 16.9: Основна теорема за симетричните полиноми

Нека A е област u $f = f(x_1, \ldots, x_n) \in A[x_1, \ldots, x_n]$ е симетричен полином. Тогава съществува единствен полином $g \in A[x_1, \ldots, x_n]$, такъв че

$$f(x_1,\ldots,x_n)=g(\sigma_1,\ldots,\sigma_n).$$

Доказателство. 1. Съществуване. Ако

$$u = LT(f) = ax_1^{k_1} \dots x_n^{k_n} \quad \Rightarrow \quad k_1 \ge k_2 \ge \dots \ge k_n.$$

Да разгледаме полинома:

$$\varphi_1 = a \ \sigma_1^{k_1 - k_2} \ \sigma_2^{k_2 - k_3} \ \dots \ \sigma_{n-1}^{k_{n-1} - k_n} \ \sigma_n^{k_n},$$

т.к. φ_1 е едночлен на симетрични полиноми, следователно φ_1 е симетричен полином на x_1, x_2, \ldots, x_n .

Да разгледаме старшите едночлени на :

$$LT$$

$$\sigma_1 \to x_1$$

$$\sigma_2 \to x_1 x_2$$

$$\sigma_3 \to x_1 x_2 x_3$$

$$\dots$$

$$\sigma_n \to x_1 x_2 \dots x_n$$

От Лема 16.6 следва, че старшия едночлен на φ_1 е произведение на старшите едночлени на $\sigma_1, \ldots \sigma_n$, т.е.

$$LT(\varphi_1) = a (x_1)^{k_1 - k_2} (x_1 x_2)^{k_2 - k_3} \dots (x_1 x_2 \dots x_{n-1})^{k_{n-1} - k_n} (x_1 x_2 \dots x_n)^{k_n}$$
$$= a x_1^{k_1} x_2^{k_2} \dots x_n^{k_n}.$$

 $\Rightarrow f_1 = f - \varphi_1 \in A[x_1, \dots, x_n]$ е симетричен полином и $LT(f_1) < LT(f)$.

Ако $f_1 \neq 0$ продължаваме по същия път, докато не получим нулев полином, т.е.

$$f_{1} = f - \varphi_{1}$$

$$f_{2} = f_{1} - \varphi_{2}$$

$$\dots$$

$$f_{s-1} = f_{s-2} - \varphi_{s-1}$$

$$0 = f_{s} = f_{s-1} - \varphi_{s}$$

$$(1)$$

Всички получени полиноми са симетрични на n промеливи и старшия им едночлен на всеки следващ полином е по-малък от предишния. Този процес не може да бъде безкраен. Ако

$$LT(f_k) = bx_1^{l_1} \dots x_n^{l_n} \quad \Rightarrow \quad k_1 \ge l_1 \ge l_2 \ge \dots \ge l_n,$$

за някое k, то броят на всички различни n-орки е ограничен отгоре - $(k_1+1)^n$. От (1) получаваме, че $f = \varphi_1 + \dots \varphi_s$. Но φ_i са едночлени на $\sigma_1, \dots, \sigma_n$ с коефициенти от $A \Rightarrow f$ е полином на $\sigma_1, \dots, \sigma_n$ с коефициенти от A, т.е.

$$f(x_1,\ldots,x_n)=g(\sigma_1,\ldots,\sigma_n).$$

2. Единственост.

Нека

$$g_1 = g_1(y_1, \dots, y_n) \in A[y_1, \dots, y_n]$$
 $g_2 = g_2(y_1, \dots, y_n) \in A[y_1, \dots, y_n]$ са такива, че $f(x_1, \dots, x_n) = g_1(\sigma_1, \dots, \sigma_n) = g_2(\sigma_1, \dots, \sigma_n).$

Да разгледаме полинома:

$$g = g(y_1, \dots, y_n) = g_1(y_1, \dots, y_n) - g_2(y_1, \dots, y_n)$$

 $\Rightarrow g(\sigma_1, \dots, \sigma_n) = 0.$

Ще докажем, че $g(y_1,\ldots,y_n)=0\Rightarrow g_1(y_1,\ldots,y_n)=g_2(y_1,\ldots,y_n).$ Индукция по n.

• n = 1

$$\sigma_1 = x_1 \Rightarrow g(x_1) = 0 \Rightarrow g(y_1) = 0.$$

- ИП. Нека твърдението е вярно за полином на n-1 променливи.
- *n*

Да допуснем, че съществува полином на n променливи $g(y_1,\ldots,y_n)$ такъв, че

$$g(\sigma_1,\ldots,\sigma_n)=0$$
 като полином на $x_1,\ldots x_n$ $g(y_1,\ldots,y_n)\neq 0$ като полином на y_1,\ldots,y_n

Измежду всички такива избираме полинома д с най-ниска степен.

$$g \in A[y_1, \dots, y_n] = A[y_1, \dots, y_{n-1}][y_n],$$

 $\Rightarrow g$ е полином на y_n с коефициенти от $A[y_1,\ldots,y_{n-1}]$, т.е.

$$g(y_1,\ldots,y_n)=g_0(y_1,\ldots,y_{n-1})+g_1(y_1,\ldots,y_{n-1})y_n+\cdots+g_k(y_1,\ldots,y_{n-1})y_n^k$$

(1) $g_0(y_1,\ldots,y_{n-1})=0$ $\Rightarrow g(y_1,\ldots,y_n)=y_nh(y_1,\ldots,y_n)$, т.е. $g=y_nh,\ h\neq 0$, защото $g\neq 0$ и $\deg h=\deg q-1$.

$$0 = g(\sigma_1, \dots, \sigma_n) = \sigma_n.h(\sigma_1, \dots, \sigma_n)$$

Тъй като $A[x_1,\ldots,x_n]$ е област и $\sigma_n=x_1\ldots x_n\neq 0$ следва, че

$$h(\sigma_1,\ldots,\sigma_n)=0.$$

Но $h(y_1, \ldots, y_n) \neq 0$, $h(\sigma_1, \ldots, \sigma_n) = 0$ и $\deg h < \deg g$ - противоречие с избора на g.

(2) $g_0(y_1,\ldots,y_{n-1}) \neq 0$

$$0 = g(\sigma_1, \dots, \sigma_n) =$$

$$= g_0(\sigma_1, \dots, \sigma_{n-1}) + g_1(\sigma_1, \dots, \sigma_{n-1})\sigma_n + \dots + g_k(\sigma_1, \dots, \sigma_{n-1})\sigma_n^k$$
(2)

Да положим $x_n = 0$. Тогава

$$\sigma_n = 0,$$

 $\sigma_i^0 = \sigma_i(x_1, \dots, x_{n-1}, 0), i = 1, \dots, n-1,$

това са елементарните симетрични полиноми на $x_1, \dots x_{n-1}$.

От (2) имаме, че $g_0(\sigma_1^0,\ldots,\sigma_{n-1}^0)=0$ и от ИП $\Rightarrow g_0(y_1,\ldots,y_{n-1})=0$, което е противоречие с допускането, че $g_0(y_1,\ldots,y_{n-1})\neq 0$.

Следователно допускането, че $g(y_1, ..., y_n) \neq 0$ не е вярно.

Следствие 16.10

Нека F е поле, $f = a_0 x^n + \dots + a_n \in F[x]$ и $\alpha_1, \dots, \alpha_n$ са всички корени на f $(\alpha_i \in L \geq F)$. Тогава, ако

$$h(x_1,\ldots,x_n)\in F[x_1,\ldots,x_n]$$

е симетричен полином, то

$$h(\alpha_1,\ldots,\alpha_n)\in F.$$

Доказателство. Нека $g(y_1, ..., y_n)$ е полином с коефициенти от F, за който

$$h(x_1,\ldots,x_n)=g(\sigma_1,\ldots,\sigma_n).$$

Тогава

$$h(\alpha_1,\ldots,\alpha_n)=g\bigg(\sigma_1(\alpha_1,\ldots,\alpha_n),\ldots,\sigma_n(\alpha_1,\ldots,\alpha_n)\bigg).$$

Но

$$\sigma_k(\alpha_1,\ldots,\alpha_n) = (-1)^k \frac{a_k}{a_0} \in F, k = 1,\ldots,n$$

следователно $h(\alpha_1, \ldots, \alpha_n) \in F$.

16.2 Формули на Нютон

Нека $ax_1^{i_1}x_2^{i_2}\dots x_n^{i_n}$ е едночлен на променливите x_1,x_2,\dots,x_n .

Дефиниция 16.11

Симетричната сума

$$S = \sum ax_1^{i_1}x_2^{i_2}\dots x_n^{i_n}$$

е сумата на всички различни едночлени, които се получават от едночлена $ax_1^{i_1}x_2^{i_2}\dots x_n^{i_n}$ при прилагането на всечъзможните пермутации на променливите x_1,x_2,\dots,x_n .

Hапример (n=3):

$$\sum x_1^3 x_2 = x_1^3 x_2 + x_1^3 x_3 + x_2^3 x_1 + x_2^3 x_3 + x_3^3 x_1 + x_3^3 x_2$$

Дефиниция 16.12

Симетричните полиноми

$$S_k = \sum x_1^k = x_1^k + x_2^k + \dots + x_n^k, \quad k = 0, 1, 2, \dots$$

степенни сборове. По определение $S_0 = n$.

$$S_1 = \sigma_1$$

$$S_2 = \sigma_1^2 - 2\sigma_2$$

$$\Rightarrow S_2 - \sigma_1 S_1 + 2\sigma_2 = 0.$$

При $3 \le k \le n$ имаме:

$$\sigma_1 S_{k-1} = S_k + \sum x_1^{k-1} x_2$$

$$\sigma_i S_{k-i} = \sum x_1^{k-i+1} x_2 \dots x_i + \sum x_1^{k-i} x_2 \dots x_i x_{i+1}$$
 при $1 \leq i \leq k-2$
$$\sigma_{k-1} S_1 = \sum x_1^2 x_2 \dots x_{k-1} + k \sigma_k$$

Като умножим i-тото равенство по $(-1)^i$ $(i=1,\ldots,k-1)$ и съберем, получаваме равенството

$$S_k - \sigma_1 S_{k-1} + \sigma_2 S_{k-2} + \dots + (-1)^{k-1} \sigma_{k-1} S_1 + (-1)^k k \sigma_k = 0.$$
 (1)

Ако положим $\sigma_i = 0$ при i > n, то равенството остава в сила. Формулите (1) се наричат формули на Нютон.

Нека F е поле, $f = x^n + a_1 x^{n-1} + \dots + a_n \in F[x]$ и $\alpha_1, \dots, \alpha_n$ са всички корени на f. От формулите на Виет, можем да запишем формулите на Нютон

$$S_k + a_1 S_{k-1} + a_2 S_{k-2} + \dots + a_{k-1} S_1 + k a_k = 0.$$

При i > n считаме, че $a_i = 0$.

Глава 17

Теорема на Даламбер (основна теорема на алгебрата)

Дефиниция 17.1: Алгебрически затворено поле

Eдно поле F е **алгебрически затворено**, ако всеки неконстантен полином c коефициенти от F има корен в F.

Твърдение 17.2

Полето F е алгебрически затворено \Leftrightarrow всеки неконстантен полином $f \in F[x]$ се разлага на линейни множители над F.

Доказателство. \Leftarrow) Ако неконстантния полином $f \in F[x]$ се разлага на линейни множители над F, т.е.

$$f = a_0 \prod_{i \in I} (x - \alpha_i), \ a_0, \alpha_i \in F,$$

то f има корен в F и F е алгебрически затворено поле.

- \Rightarrow) Нека F е алгебрически затворено поле. Индукция по степента на $f \in F[x]$.
 - $\deg(f) = 1$ ясно.
 - ИП за $\deg(f) < n-1$
 - $\deg(f) = n$. Тогава съществува корен $\alpha \in F$ на $f \Rightarrow \exists g \in F[x], \ \deg(g) = n-1 : f = (x-\alpha)g$. По ИП следва, че g се разлага на линейни множители над F, откъдето следва, че и f се разлага на линейни множители над F.

ПРИМЕРИ:

- ullet и $\mathbb R$ не са алгебрически затворени. Полиномът x^2+1 няма рационален и реален корен.
- \mathbb{Z}_p не е алгебрически затворено. $f = x^p x + \overline{1}$ няма корен в \mathbb{Z}_p . ($\alpha \in \mathbb{Z}_p \Rightarrow f(\alpha) = \alpha^p \alpha + \overline{1} = \overline{1} \neq 0$).
- Ако K е крайно поле и a_1, \ldots, a_n са всички елементи на полето K, то полиномът

$$f = \prod_{i=1}^{n} (x - a_i) + 1$$

няма корен в $K \Rightarrow K$ не е алгебрически затворено.

Лема 17.3: Лема на Гаус

Всеки неконстантен полином с реални коефициенти има поне един комплексен корен.

Доказателство. Нека $f = a_0 x^n + a_1 x^{n-1} + \dots + a_n \in \mathbb{R}[x]$, $\deg(f) = n > 0$, $n = 2^k m$, $k \ge 0$ и $m \in \mathbb{N}$ е нечетно число.

Индукция по k - степента на 2 в $\deg(f)$.

• $k=0 \Rightarrow$ полиномът f е от нечетна степен, т.е. n=m. Понеже корените на полиномите f и $\frac{f}{a_0}$ са едни и същи можем да считаме, че $a_0=LC(f)>0$. Тогава

$$\lim_{x \to \pm \infty} f = \lim_{x \to \pm \infty} (a_0 x^m + a_1 x^{m-1} + \dots + a_m) = \pm \infty$$

От анализа следва, че една непрекъсната функция $f: \mathbb{R} \to \mathbb{R}$ от $-\infty$ до ∞ пресича оста Ox и уравнението f=0 има реален корен.

- ИП нека k > 0 и твърдението е вярно за k 1.
- k

Нека $\deg(f) = n = 2^k m$, L е полето на разлагане на f над $\mathbb C$ и $\alpha_1, \ldots, \alpha_n \in L$ са всички корени на полинома f. За произволно фиксирано реално число r да разгледаме

$$\beta_{ij} = \beta_{ij}(r) = \alpha_i \alpha_j + r(\alpha_i + \alpha_j), \quad 1 \le i < j \le n.$$
 (1)

Да разгледаме полинома

$$g_r(x) = \prod_{1 \le i < j \le n} (x - \beta_{ij}) \in L[x].$$

Броят на елементите β_{ij} , както и $\deg(g)$ е равна на

$$n' = \binom{n}{2} = \frac{n(n-1)}{2} = \frac{2^k m(2^k m - 1)}{2} = 2^{k-1} m_0,$$

където m_0 е нечетно число. Нека

$$q_r(x) = x^{n'} + c_1 x^{n'-1} + \dots + c_0.$$

Ще покажем, че $g_r(x) \in \mathbb{R}[x]$ има реални коефициенти.

От формулите на Виет, коефициентите c_k са с точност до знак елементарните симетрични полиноми на корените $\{\beta_{ij}\}$ на полинома $g_r(x)$, т.е.

$$c_k = (-1)^k \ \sigma_k(\beta_{11}, \beta_{12}, \dots, \beta_{n-1,n}).$$

Замествайки β_{ij} чрез $\alpha_1, \ldots, \alpha_n$ от (1) получаваме, че коефициентите на $g_r(x)$ са полиноми на $\alpha_1, \ldots, \alpha_n$,

$$c_k = c_k(\alpha_1, \dots, \alpha_n) = (-1)^k \sigma_k(\dots, \alpha_i \alpha_j + r(\alpha_i + \alpha_j), \dots)$$

и освен това са **симетрични полиноми** на $\alpha_1, \ldots, \alpha_n$ с коефициенти от \mathbb{R} . Това е така, защото всяка пермутация $\tau \in S_n$ индуцира пермутация $\overline{\tau}$, действаща върху множеството $\{\beta_{ij}\}$ по следния начин:

$$\overline{\tau}(\beta_{ij}) = \alpha_{\tau(i)}\alpha_{\tau(j)} + r(\alpha_{\tau(i)} + \alpha_{\tau(j)}) = \beta_{\tau(i)\tau(j)}$$

(или $\beta_{\tau(j)\tau(i)}$,ако $\tau(i) > \tau(j)$) и следователно

$$\tau\left(c_k(\alpha_1,\ldots,\alpha_n)\right) = (-1)^k \ \sigma_k\left(\tau(\beta_{11}),\tau(\beta_{12}),\ldots,\tau(\beta_{n-1,n})\right)$$
$$= (-1)^k \ \sigma_k\left(\beta_{11},\beta_{12},\ldots,\beta_{n-1,n}\right)$$
$$= c_k(\alpha_1,\ldots,\alpha_n)$$
$$(\sigma_k \ \text{е симетричен полином}).$$

Така получихме, че коефициентите c_k на $g_r(x)$ са симетрични полиноми на $\alpha_1, \ldots, \alpha_n$ с коефициенти от \mathbb{R} . Припомняме, че $\alpha_1, \ldots, \alpha_n$ са корени на полинома f с реални коефициенти. От основната теорема за симетрични полиноми следва, че симетричния полином $c_k \in \mathbb{R}[\alpha_1, \ldots, \alpha_n]$ е полином на елементарните симетрични полиноми на $\sigma_1, \ldots, \sigma_n$, т.е.

$$c_k(\alpha_1,\ldots,\alpha_n) = h\bigg(\sigma_1(\alpha_1,\ldots,\alpha_n),\ldots,\sigma_n(\alpha_1,\ldots,\alpha_n)\bigg)$$

и $\sigma_l(\alpha_1,\ldots,\alpha_n)=(-1)^l\frac{a_l}{a_0}\in\mathbb{R},\ l=1,2,\ldots,n.$ Тогава от Следствие 16.10 имаме, че коефициентите на $g_r(x)$ са реални числа.

Доказахме, че коефициентите на $g_r(x)$ са реални числа, т.е. $g_r(x) \in \mathbb{R}[x]$. Тъй като $\deg(f) = n' = 2^{k-1}m_0$, от от ИП (обърнете внимание - индукция е малко по-странна, по степента на 2 в степента на полинома и въпреки, че $\deg(g_r) > \deg(f), n > 3$, то ИП за g_r важи!!!) следва, че $g_r(x)$ има поне един комплексен корен, който разбира се е един от β_{ij} .

Като меним реалния параметър r ще получаваме полиноми $g_r(x)$ с реални коефициенти. На всеки от тях съответства такава двойка индекси $(i,j),\ i< j$ (зависеща от r) такава, че елементът

$$\beta_{ij} = \beta_{ij}(r) = \alpha_i \alpha_j + r(\alpha_i + \alpha_j) \in \mathbb{C}.$$

Тъй като различните двойки индекси i < j са само $\binom{n}{2}$, а реалните числа са безбройно много, то може да се намерят две различни реални числа r_1 и r_2 , на които да отговаря една съща двойка индекси, за които

$$\beta_{ij}(r_1) = \alpha_i \alpha_j + r_1(\alpha_i + \alpha_j) \in \mathbb{C}$$

$$\beta_{ij}(r_2) = \alpha_i \alpha_j + r_2(\alpha_i + \alpha_j) \in \mathbb{C}$$

са комплексни числа. От където намираме

$$\alpha_i + \alpha_j = \frac{\beta_{ij}(r_1) - \beta_{ij}(r_2)}{r_1 - r_2} \in \mathbb{C}$$

$$\alpha_i \alpha_j = \beta_{ij}(r_1) - r_1 \frac{\beta_{ij}(r_1) - \beta_{ij}(r_2)}{r_1 - r_2} \in \mathbb{C}.$$

Следователно полиномът

$$x^2 - (\alpha_i + \alpha_j)x + \alpha_i\alpha_j \in \mathbb{C}[x]$$

е с комплексни коефициенти и корените му са α_i и α_j . От формулата за корените на квадратно уравнение, следва, че α_i и α_j са комплексни числа. Следователно f(x) има комплексен корен, което трябваше да се докаже.

Теорема 17.4: Основна теорема на алгебрата - теорема на Даламбер

Полето на комплексните числа $\mathbb C$ е алгебрически затворено.

Доказателство. Нека

$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n \in \mathbb{C}[x]$$

е неконстантен полином с комплексни коефициенти. Дефинираме комплексно спрегнатия на f(x) полином ппо следния начин

$$\overline{f(x)} = \overline{a_0}x^n + \overline{a_1}x^{n-1} + \dots + \overline{a_n} \in \mathbb{C}[x]$$

Да разгледаме полинома

$$F(x) = f(x)\overline{f(x)} = b_0 x^{2n} + b_1 x^{2n-1} + \dots + b_{2n},$$

където

$$b_k = \sum_{i+j=k} a_i \overline{a_j}, \quad (k = 0, 1, \dots 2n).$$

Ще покажем, че $F(\underline{x}) \in \mathbb{R}[x]$ е полином с реални коефициенти. За целта трябва да докажем, че $F(x) = \overline{F(x)}$ или $b_k = \overline{b_k}$.

$$\overline{b_k} = \overline{\sum_{i+j=k} a_i \overline{a_j}} = \sum_{i+j=k} \overline{a_i \overline{a_j}} = \sum_{i+j=k} \overline{a_i} a_j = b_k.$$

 $\Rightarrow b_k \in \mathbb{R}$.

От лемата на Гаус следва, че $F(x) \in \mathbb{R}[x]$ има комплексен корен β и

$$F(\beta) = f(\beta)\overline{f}(\beta) = 0.$$

Следователно $f(\beta)=0$ или $\overline{f}(\beta)=0$. Ако $f(\beta)=0$, то теоремата е доказана. Нека

$$\overline{f}(\beta) = \overline{a_0}\beta^n + \overline{a_1}\beta^{n-1} + \dots + \overline{a_n} = 0.$$

Да разгледаме комплексно спрегнатото на горното равенство

$$0 = \overline{\overline{f}(\beta)} = \overline{a_0}\beta^n + \overline{a_1}\beta^{n-1} + \dots + \overline{a_n}$$
$$= a_0\overline{\beta}^n + a_1\overline{\beta}^{n-1} + \dots + a_n$$
$$= f(\overline{\beta}).$$

Тогава $\overline{\beta}$ е комплексен корен на f(x).

Единствените неразложими полиноми над С са полиномите от първа степен.

От основната теорема на алгебрата следва, че всеки полином f от n-та степен и с комплексни коефициенти може да бъде записан, и то по единствен начин (с точност до разместване на множителите), във вида

$$f(x) = a_0(x - c_1)(x - c_2) \dots (x - c_n),$$

където $a_0 \neq 0$ и c_1, \ldots, c_n са комплексни числа.

Ще покажем, че единствените неразложими полиноми с реални коефициенти над \mathbb{R} са полиномите от първа степен и полиномите от 2-ра степен с отрицателна дискриминанта.

Твърдение 17.5

Hека $f(x) \in \mathbb{R}[x]$ $u \deg(f) > 0$. Тогава f(x) се разлага над \mathbb{R} в произведение

$$f(x) = a_0 \prod_{i=1}^{m} (x - \gamma_i) \prod_{j=1}^{l} (x^2 + u_j x + v_j)$$

на линейни множители $(x-\gamma_i) \in \mathbb{R}[x]$ и квадратни тричлени $(x^2+u_jx+v_j) \in \mathbb{R}[x]$ с отрицателна дискриминанта $D(x^2+u_jx+v_j) < 0$.

Това представяне е (единственото с точност до константа от \mathbb{R}) представяне на f като произведение на неразложими над \mathbb{R} полиноми.

Доказателство. Нека

$$f(x) = a_0 \prod_{i=1}^{n} (x - \gamma_i)$$

е разлагането на f(x) на линейни множители над \mathbb{C} . Нека $\gamma_1, \ldots \gamma_m$ са реалните корени на f(x), а $\gamma_{m+1}, \ldots \gamma_n$ са комплексните нереални корени на f(x). Тогава

$$f = \prod_{i=1}^{m} (x - \gamma_i)g,$$

като $g=b_0x^k+\cdots+b_k$ е полином с реални коефициенти и g няма реални корени. Нека $\gamma=a+bi\in\mathbb{C}$ $a,b\in\mathbb{R}$ е комплексен корен на g(x) следователно $\overline{\gamma}=\overline{a+bi}=a-bi$ също е комплексен корен на g(x). Да приложим комплексното спрягане

$$0 = \overline{0} = \overline{g(\gamma)} = \overline{b_0 \gamma^k + b_1 \gamma^{k-1} + \dots + b_k}$$
$$= b_0 \overline{\gamma}^k + b_1 \overline{\gamma}^{k-1} + \dots + b_k$$
$$= g(\overline{\gamma})$$

и вземем предвид, че $b_i=\overline{b_i}$, защото са реални числа. Тогава полиномът

$$h(x) = (x - \gamma)(x - \overline{\gamma}) = x^2 - (\gamma + \overline{\gamma})x + \gamma \overline{\gamma} = x^2 - 2ax + (a^2 + b^2)$$

е с реални коефициенти, h(x)/g(x) и дискриминантата му е отрицателна $D=-4b^2<0.$

Продължаваме по същия начин:

$$g = hs, \ s \in \mathbb{R}[x].$$

Ако $\deg(s) > 0$ аналогично разъждаваме, докато g се представи като произведение на полиноми от 2-ра степен с отрицателни дискриминанти.

Глава 18

Крайни полета.

Дефиниция 18.1

Поле с краен брой елементи се нарича **крайно поле**. Нарича се още и **поле** на **Галоа**.

Теорема 18.2

Hека F е крайно поле c характеристика char F = p.

- (a) Всяко крайно поле F има крайна характеристика p > 0.
- (b) Броят на елементите на полето F е степен на характеристиката, т.е. $|F| = p^n$.
- (c) Елементите на F се изчерпват с корените на уравнението $x^q = x$, къ- $\partial emo\ q = |F|$.

Доказателство. (a) Ако char F = 0, то $n1 \neq m1$ за всеки естествени $n \neq m$, което противоречи на $|F| < \infty$. Следователно char F = p > 0.

(b) Ако char F = p, то F съдържа \mathbb{Z}_p като просто подполе. Може да разглеждаме F като линейно пространство над \mathbb{Z}_p . Нека размерността на F над \mathbb{Z}_p е n, т.е. $\dim_{\mathbb{Z}_p} F = n$ и e_1, \ldots, e_n е базис на F над \mathbb{Z}_p . Тогава всеки елемент се записва и то по единствен начин като линейна комбинация

$$a = \gamma_1 e_1 + \dots \gamma_n e_n.$$

Броят на всички такива линейни комбинации е $|F| = p^n$.

(c) Мултипликативната група на полето $F^* = F \setminus \{0\}$ се състои от $p^n - 1$ елемента. Но тогава за всеки елемент $\alpha \in F^*$ е изпълнено

$$\alpha^{p^n-1} = 1.$$

Следователно $\alpha^{p^n} = \alpha$, за всяко $\alpha \in F$ (включително нулевия елемент), т.е. елементите на F изчерпват корените на $x^{|F|} = x$.

Теорема 18.3

За всяко просто число p и всяко естествено число n съществува единствено c точност до изоморфизъм поле c p^n елемента.

Доказателство. 1. Съществуване.

Нека F е полето на разлагане на полинома $f(x) = x^{p^n} - x$ над Z_p . Да разгледаме множеството от корените на полинома f(x) и да го означим с

$$F_0 = \{ \alpha \in F \mid f(\alpha) = 0 \} = \{ \alpha \in F \mid \alpha^{p^n} = \alpha \} \subseteq F.$$

Тогава F_0 е подполе на F. Наистина, ако $\alpha, \beta \in F_0$, т.е. $\alpha^{p^n} = \alpha, \beta^{p^n} = \beta \Rightarrow$

$$(\alpha \pm \beta)^{p^n} = \alpha^{p^n} \pm \beta^{p^n} = \alpha \pm \beta,$$

и при $\beta \neq 0 \Rightarrow$

$$(\alpha \beta^{-1})^{p^n} = \alpha^{p^n} \beta^{-p^n} = \alpha \beta^{-1}.$$

Да отбележим, че полиномът f(x) няма кратни корени, т.е. всичките му корени са прости. Това е така, защото f(x) няма общ корен с производната си ($f'(x) = p^n x^{p^n-1} - 1 = -1 \neq 0$). Така F_0 е поле, съдържащо всички корени на $x^{p^n} - x = 0$, откъдето и минималността на полето на разлагане следва, че $F = F_0$. Следователно $|F| = p^n$.

2. Единственост.

Нека F_1 и F_2 са две полета с по p^n елемента. Всяко поле с p^n елемента има характеристика p (защо?).

От теорема 18.2 (c) следва, че всеки елемент на поле с p^n елемента е корен на полинома $f(x) = x^{p^n} - x \in \mathbb{Z}_p[x]$. Така, че F_1 и F_2 съвпадат с множеството от корените на $f(|F_1| = |F_2| = \deg(f) = p^n)$ и съдържат \mathbb{Z}_p . Така F_1 и F_2 са полета на разлагане на f над \mathbb{Z}_p .

От теоремата за единственост на полето на разлагане всеки две такива полета са изоморфии, т.е. $F_1 \cong F_2$.

Така показахме, че единственото с точност до изоморфизъм крайно поле с p^n елемента е полето на Галоа и бележим с $GF(p^n)$ ($GF(p) = \mathbb{Z}_p$).

Лема 18.4

Нека G е група u a,b са елементи на G, с редове съответно r u s u ab = ba, m.e. комутират помежду. Тогава:

- (a) ако (r,s)=1, то елементот ав има ред rs,
- (b) в G има елемент от ped [r,s].

Доказателство. (a) ab = ba, |a| = r, |b| = s и (r,s) = 1, то |ab| = rs. Нека |ab| = t.

- Ot $ab = ba \Rightarrow (ab)^{rs} = a^{rs}b^{rs} = 1 \Rightarrow t \mid rs$.
- От $(ab)^t=1\Rightarrow a^tb^t=1\Rightarrow a^{ts}b^{ts}=1\Rightarrow r\mid ts,\ (r,s)=1\Rightarrow r\mid t.$ Аналогично $s\mid t.$ Понеже $(r,s)=1\Rightarrow rs\mid t.$

Така t = rs.

(b) Нека

$$r = p_1^{k_1} \dots p_m^{k_m}, \quad k_i \ge 0, \ i = 1, \dots, m$$

$$s = p_1^{l_1} \dots p_m^{l_m}, \quad l_i \ge 0, \ i = 1, \dots, m$$

където p_1, \ldots, p_m са различни прости числа.

Ако $u_i = max(k_i, l_i), i = 1, ..., m,$ то

$$[r,s] = p_1^{u_1} \dots p_m^{u_m}.$$

В G има елемент от ред $p_i^{u_i}$: $c_i = \begin{cases} a^{p_i^{r/k_i}}, \text{ или} \\ b^{p_i^{s/l_i}}. \end{cases}$ Числата и са две по две взаимно прости. От (а) получаваме, че елементът $c = c_1 \dots c_m$ има ред [r,s].

Теорема 18.5

Всяка крайна подгрупа G на мултипликативната група F^* на едно поле F е циклична.

Доказателство. Нека G е крайна група и $a \in G$ е такъв, че редът му |a| = r е максимален. Нека $b \in G$ е произволен и |b| = s. Ще покажем, че $|b| \mid |a|$, т.е. $s \mid r$. Нека p_1, \ldots, p_m са различни прости числа

$$r = p_1^{k_1} \dots p_m^{k_m}, \quad k_i \ge 0, \ i = 1, \dots, m$$

$$s = p_1^{l_1} \dots p_m^{l_m}, \quad l_i \ge 0, \ i = 1, \dots, m$$

$$u_i = \max(k_i, l_i), \ i = 1, \dots, m$$

$$\Rightarrow [r, s] = p_1^{u_1} \dots p_m^{u_m}.$$

Ако $s \nmid r \Rightarrow [r,s] > r \Rightarrow \exists c \in G : |c| = [r,s] > r$, което е противоречие с изобра на a. Следователно $s \mid r$.

За всяко $b \in G$ е изпълнено $b^r = 1 \Rightarrow b$ е корен на полинома $x^r - 1$. Броят на корените $x^r - 1$ от F не надминава $r = \deg(x^r - 1)$.

$$\begin{split} \langle a \rangle \subseteq G \subseteq \{\alpha \in F^{\star} \mid \alpha^{r} - 1 = 0\} \\ \Rightarrow \quad r = |\langle a \rangle| \le |G| \le \left| \{\alpha \in F^{\star} \mid \alpha^{r} - 1 = 0\} \right| = r \\ \Rightarrow \quad \langle a \rangle = G = \{\alpha \in F^{\star} \mid \alpha^{r} - 1 = 0\}. \end{split}$$

Което доказва, че G е циклична група от ред r.

Следствие 18.6

Mултипликативната група F^* на всяко крайно поле F е циклична.

Доказателство. $G = F^*$ е крайна група.

Дефиниция 18.7

Примитивен елемент на крайното поле F наричаме всеки образуващ на цикличната група F^* .

Теорема 18.8

Полето $F = GF(p^n)$ съдържа като подполе $K \cong GF(p^m)$ тогава и само тогава, когато $m \mid n$.

$$\begin{split} |F| &= |GF(p^n)| = |K|^t, \quad t \in \mathbb{N} \\ \Rightarrow & p^n = |K|^t \\ \Rightarrow & |K| = p^m, \text{ за някое } m \in \mathbb{N} \\ \Rightarrow & K \cong GF(p^m) \\ \Rightarrow & p^n = p^{mt} \\ \Rightarrow & m \mid n. \end{split}$$

 \Leftarrow) Нека $m \mid n$. Тогава $(p^n - 1) \mid (p^m - 1)$, откъдето получаваме

$$(x^{p^m-1}-1)\mid (x^{p^n-1}-1)$$
 r. e. $(x^{p^m}-x)\mid (x^{p^n}-x)$.

да разгледаме

$$K = \{ \alpha \in F \mid \alpha^{p^m} = \alpha \}.$$

K е поле с p^m елемента и следователно $GF(p^m) \leq F$.

Ще построим полето $GF(2^4)$. Съгласно Теорема 18.3

$$GF(2^4) = \left\{ a_0 + a_1 \alpha + a_2 \alpha^2 + a_3 \alpha^3 \mid a_i \in \mathbb{Z}_2 \right\} \cong \mathbb{Z}_2[x]/(m(x)),$$

където m(x) е неразложим над \mathbb{Z}_2 полином от степен 4 и α е негов корен. Да изберем $m(x) = x^4 + x + 1$. α се явява примитивен елемент на $GF(2^4)$.

Елементите на полето в мултипликативно (като степен на α) и адитивно представяне (отляво е коефициента a_0) са дадени в таблица 18.

Действията при адитивния запис се извършват като с полиноми на α , но по модул m(x), т.е. при условието $\alpha^4 + \alpha + 1 = 0$. Ако разполагаме с мултипликативния и адитивния запис, по-добре е умножението да се извърши чрез събиране на степените по модул 15, а събирането - с двоичните вектори. Например

$$(\alpha^2+\alpha^3)+(1+\alpha^2+\alpha^3)=1$$
или 0011 + 1011 = 1000,
$$(\alpha^2+\alpha^3).(1+\alpha^2+\alpha^3)=\alpha^6\alpha^{13}=\alpha^{19}=\alpha^4=1+\alpha.$$

Степен на α	Полином от α
0	0000
1	1000
α	0100
α^2	0010
α^3	0001
α^4	1100
α^5	0110
α^6	0011
α^7	1101
α^8	1010
α^9	0101
α^{10}	1110
α^{11}	0111
α^{12}	1111
α^{13}	1011
α^{14}	1001

Таблица 18.1: Елементите на полето GF(16).