

Saldainių dalijimas

Teta Khong ruošia n saldainių dėžių mokiniams iš gretimos mokyklos. Dėžės sunumeruotos nuo 0 iki n-1 ir iš pradžių yra tuščios. i-ojoje ($0 \le i \le n-1$) dėžėje telpa c[i] saldainių.

Teta Khong ruošti saldainiams skiria q dienų. j-ają ($0 \le j \le q-1$) dieną ji atlieka veiksmą, apibūdinamą trimis sveikaisiais skaičiais $l[j],\ r[j]$ ir v[j], kur $0 \le l[j] \le r[j] \le n-1$ ir $v[j] \ne 0$. Kiekvienai k-ajai dėžei, tenkinančiai $l[j] \le k \le r[j]$:

- Jei v[j]>0, teta Khong po vieną deda saldainius į k-ąją dėžę, kol įdeda lygiai v[j] saldainių arba dėžė užsipildo. Kitaip sakant, jei dėžėje prieš šį veiksmą buvo p saldainių, tai po veiksmo jų bus $\min(c[k], p+v[j])$.
- Jei v[j] < 0, teta Khong po vieną išima saldainius iš k-osios dėžės, kol išima lygiai -v[j] saldainių arba dėžė ištuštėja. Kitaip sakant, jei dėžėje prieš šį veiksmą buvo p saldainių, tai po veiksmo jų bus $\max(0, p + v[j])$.

Nustatykite, kiek saldainių bus kiekvienoje dėžėje po q dienų.

Realizacija

Parašykite tokią procedūrą:

```
int[] distribute_candies(int[] c, int[] 1, int[] r, int[] v)
```

- c: n ilgio masyvas. Kiekvienam $0 \le i \le n-1$, c[i] žymi i-osios dėžės talpą.
- $l,\ r$ ir v: trys q ilgio masyvai. j-ają dieną ($0\leq j\leq q-1$) teta Khong atlieka veiksmą, apibūdinamą skaičiais $l[j],\ r[j]$ ir v[j] kaip aprašyta aukščiau.
- Ši procedūra turi grąžinti n ilgio masyvą. Pažymėkime šį masyvą s. Kiekvienam $0 \le i \le n-1$, s[i] turi būti saldainių skaičius i-ojoje dėžėje po g dienų.

Pavyzdžiai

Pavyzdys nr. 1

Panagrinėkime tokį iškvietimą:

```
distribute_candies([10, 15, 13], [0, 0], [2, 1], [20, -11])
```

Šiuo atveju 0-inėje dėžėje telpa 10 saldainių, 1-oje dėžėje telpa 15 saldainių, o 2-oje dėžėje telpa 13 saldainių.

0-inės dienos pabaigoje 0-inėje dėžėje yra $\min(c[0],0+v[0])=10$ saldainių, 1-oje dėžėje yra $\min(c[1],0+v[0])=15$ saldainių, o 2-oje dėžėje yra $\min(c[2],0+v[0])=13$ saldainių.

1-os dienos pabaigoje 0-inėje dėžėje yra $\max(0,10+v[1])=0$ saldainių, 1-oje dėžėje yra $\max(0,15+v[1])=4$ saldainių. Kadangi 2>r[1], 2-oje dėžėje saldainių skaičius nepasikeitė. Saldainių skaičius dėžėse po kiekvienos dienos pateiktas žemiau:

Diena	0-inė dėžė	1-a dėžė	2-a dėžė
0	10	15	13
1	0	4	13

Taigi, procedūra turi grąžinti [0,4,13].

Ribojimai

- $1 \le n \le 200\,000$
- $1 \le q \le 200000$
- $1 \le c[i] \le 10^9$ (visiems $0 \le i \le n-1$)
- $0 \le l[j] \le r[j] \le n-1$ (visiems $0 \le j \le q-1$)
- $-10^9 \leq v[j] \leq 10^9, v[j]
 eq 0$ (visiems $0 \leq j \leq q-1$)

Dalinės užduotys

- 1. (3 taškai) $n,q \leq 2000$
- 2. (8 taškai) v[j]>0 (visiems $0\leq j\leq q-1$)
- 3. (27 taškai) $c[0]=c[1]=\ldots=c[n-1]$
- 4. (29 taškai) l[j]=0 ir r[j]=n-1 (visiems $0\leq j\leq q-1$)
- 5. (33 taškai) Papildomų ribojimų nėra.

Pavyzdinė vertinimo programa

Pavyzdinė vertinimo programa duomenis nuskaito tokiu formatu:

- 1-oji eilutė: n
- 2-oji eilutė: c[0] c[1] \dots c[n-1]
- 3-ioji eilutė: q
- (4+j)-oji eilutė ($0 \le j \le q-1$): $l[j] \ r[j] \ v[j]$

Pavyzdinė vertinimo programa išveda jūsų atsakymus tokiu formatu:

• 1-oji eilutė: $s[0] \; s[1] \; \dots \; s[n-1]$