Scilab Textbook Companion for Engineering Physics by U. Mukherji¹

Created by
Vivek Gurmukhdas Goklani
B.E(EXTC)
Others
Mumbai University
College Teacher
None
Cross-Checked by
Ganesh R

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Engineering Physics

Author: U. Mukherji

Publisher: N. K. Mehra For Narosa Publishing House, New Delhi

Edition: 2

Year: 2007

ISBN: 978-81-7319-698-0

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes		
1	Crystallography And Crystal Imperfection	5	
2	Thermoelectricity	8	
3	Thermionic Emission	11	
4	Ultrasonic	13	
5	Acoustics	16	
6	Semiconductors	19	
8	Interference Diffraction And Polarisation	35	
9	X Rays	49	
10	Motion Of Charged Particle In Electric And Magnetic Field	56	
11	Quantum Physics And Schrodinger Wave Equation	68	
12	Laser Holography And Fibre Optics	76	
13	Radioactivity And Nuclear Reactions	79	

List of Scilab Codes

Exa 1.1	density of metal	5
Exa 1.2	find intercepts along crystal axis	6
Exa 2.1	find out inversion temperature	8
Exa 2.2	thermo emf of thermocouple	9
Exa 2.3	emf of thermocouple	10
Exa 3.1	Richardson Dushman Equation	11
Exa 3.2	calculate plate voltage	12
Exa 4.1	find distance between two ships	13
Exa 4.2	calculate depth of sea	13
Exa 4.3	calculate natural frequency	14
Exa 5.1	find absorption coefficient	16
Exa 5.2	find area of wall covered by curtain	16
Exa 5.3	find reverberation time	17
Exa 6.1	final velocity of electron	19
Exa 6.2	find electric field	19
Exa 6.3	electric field intensity for silver	20
Exa 6.4	find current density current and power out	21
Exa 6.5	conductivity due to holes and electrons	22
Exa 6.6	calculate current due to Ge plate	23
Exa 6.7	find intrinsic carrier density	24
Exa 6.8	Hall Effect	24
Exa 6.9	concentration of holes in Si	26
Exa 6.10	Hall Effect	26
Exa 6.11	effect of external impurity	27
Exa 6.12	probability of electron in CB	28
Exa 6.13	Hall Effect	29
Exa 6.14	find forward bias current flow	30
Exa 6.15	find static and dynamic resistance	30

Exa 6.16	find alpha and beta
Exa 6.17	find leakage current Iceo
Exa 6.18	find alpha and beta
Exa 6.19	find current gain
Exa 6.20	find base current
Exa 8.1	distance of fringe from wedge
Exa 8.2	light reflected in visible spectrum
Exa 8.3	radius of 50th dark ring
Exa 8.4	thickness of film
Exa 8.5	find RI of oil
Exa 8.6	change in film thickness
Exa 8.7	thickness of layer
Exa 8.8	calculate RI of liquid
Exa 8.9	calculate wavelength of light
Exa 8.10	calculate change in thickness
Exa 8.11	calculate min thickness of glass plate
Exa 8.12	position of brightest and darkest spot
Exa 8.13	zone plate for point source
Exa 8.14	wavelength of spectral line
Exa 8.15	max orders visible 45
Exa 8.16	linear separation of Na lines
Exa 8.17	linear separation of spectra lines
Exa 8.18	calculate lines per cm in grating 48
Exa 9.1	highest order of reflection
Exa 9.2	find plancks constant
Exa 9.3	find wavelength and maximum order of reflection 50
Exa 9.4	find plancks constant
Exa 9.5	find wavelength of line A
Exa 9.6	find wavelength of x rays
Exa 9.7	find min wavelength and glancing angle 53
Exa 9.8	identify type of crystal
Exa 9.9	find interplannar spacing
Exa 10.1	find KE of particle
Exa 10.2	frequency of oscillation and maximum energy of particle 57
Exa 10.3	radius of electron trajectory and angular momentum . 57
Exa 10.4	vertical displacement and magnetic field of electron 58
Exa 10.5	resonance frequency and maximum energy of proton . 59
Exa 10.6	calculate force periodic time and resonance frequency. 60

Exa 10.7	calculate flux density and radius of cyclotron for proton
	and alpha particle 61
Exa 10.8	linear separation of electron beam
Exa 10.9	find potential difference 63
Exa 10.10	charge on drop
Exa 10.11	bainbridge mass spectograph
Exa 10.12	calculate flux density
Exa 10.13	electron in transverse electric field
Exa 11.1	uncertainity in velocity
Exa 11.2	find KE and velocity of proton
Exa 11.3	momentum and energy of electron and photon 69
Exa 11.4	find mass of particle
Exa 11.5	calculate debroglie wavelength of neutron
Exa 11.6	existence of electron within nucleus
Exa 11.7	calculate debroglie wavelength
Exa 11.8	calculate KE of electron
Exa 12.1	normalised frequency and guided modes
Exa 12.2	find core radius
Exa 12.3	calculate relative change in core cladding RI
Exa 12.4	find cladding RI and acceptance angle
Exa 13.1	energy of incident particle
Exa 13.2	power of explosion
Exa 13.4	mass of uranium consumed 80
Exa 13.5	energy liberated per reaction 81
Exa 13.6	calculate binding energy 82
Exa 13 7	calculate power output

Crystallography And Crystal Imperfection

Scilab code Exa 1.1 density of metal

```
//chapter -1, Example1_1, pg 40

n=4

M=65.34

N=6.023*10^23

d111=2.08*10^-8//interplannar spacing

a=d111*sqrt((1^2)+(1^2)+(1^2))

D=(n*M)/(N*(a^3))

printf("density of Cu-metal\n")

printf("D=%.2f g/cc",D)
```

Scilab code Exa 1.2 find intercepts along crystal axis

```
1 // chapter -1, Example 1_2, pg 40
3 //miller plane 231
5 a=1.2*10^-10
7 b=1.8*10^-10
9 c=2*10^-10//primitives of crystal
10
11 //intercepts of ABC plane
12
13 a1=a/2
14
15 b1=b/3
16
17 c1 = c/1
18
19 //intercept of ABC plane along X-axis = 0.6*10^{-10}
20
21 //ABC is not the reqd. plane
22
23 //intercept of DEF plane parallel to ABC
24
25 a2=a
26
27 b2 = (2*b)/3
28
29 c2 = 2 * c
30
31 //miller indices for DEF
32
```

```
33  //1:(3/2):(1/2)
34
35  printf("intercept of DEF plane\n")
36
37  printf("along x-axis=%.11f\n",a2)
38
39  printf("along y-axis=%.11f\n",b2)
40
41  printf("\nalong z-axis=%.11f",c2)
42
43  printf("\nDEF is the reqd. plane")
```

Thermoelectricity

Scilab code Exa 2.1 find out inversion temperature

```
//chapter -2, Example2_1, pg 54

Tn=285

Tc1=20

Ti1=(2*Tn)-Tc1

Ti2=(2*Tn)-Tc2

printf("higher temperature\n")

printf("Ti1=%. f deg. C", Ti1)

printf("\ntemperature of inversion\n")

printf("Ti2=%. f deg. C", Ti2)
```

Scilab code Exa 2.2 thermo emf of thermocouple

```
// chapter -2, Example 2_2, pg 54
3 \text{ aFe} = 16.65
5 \text{ aAg} = 2.86
7 \, bFe = -0.095
9 \text{ bAg} = 0.017
10
11
   aFe_Ag=aFe-aAg
12
13 bFe_Ag=bFe-bAg
14
15 a=aFe_Ag
16
17 b=bFe_Ag
18
19 Tn=-(a/b)
20
21 t = 100
22
23 EFe_Ag=(a*t)+0.5*(b*(t^2))
24
  printf("neutral temp. of Fe-Ag thermocouple\n")
25
26
27 printf("Tn=%.3 f deg. C", Tn)
29 printf("\nthermo e.m. f of thermocouple\n")
30
31 printf("EFe_Ag=%.f volts", EFe_Ag)
```

Scilab code Exa 2.3 emf of thermocouple

```
1 / \text{chapter} -2, \text{Example } 2\_3, \text{pg} 54
\frac{1}{3} //P=(dE/dt) Fe=a+b*t=1734-4.87*t
\frac{1}{2} / P = (dE/dt) Cu = a + b * t = 136 + 0.95 * t
7 a Fe_Pb = 1734 * 10^-6
9 aFe_Cu = (1734 - 136) *10^-6
10
11
   aCu_Pb=136*10^-6
12
13 bFe_Pb=-4.87*10^-6
14
15 bFe_Cu = (-4.87-0.95)*10^-6
16
17 bCu_Pb=0.95*10^-6
18
19 a=aFe_Cu
20
21 b = bFe_Cu
22
23 t = 100
24
25 EFe_Cu=(a*t)+0.5*(b*(t^2))
26
27 printf ("e.m. f of termocouple \n")
29 printf("EFe_Cu=%.4f Volt", EFe_Cu)
```

Thermionic Emission

Scilab code Exa 3.1 Richardson Dushman Equation

```
1 // chapter -3, Example 3_1, pg 67
3 S = 2 * 10^{-6}
5 T = 2000
  A = 60.2 * 10^4
9 b = 52400 / Q/K
10
11 e=1.6*10^-19
12
13 I=A*S*(T^2)*(%e^(-(b/T)))
14
15 J=A*(T^2)*(%e^(-(b/T)))
16
17 \text{ no=J/e}
18
19 printf("maximum obtainable electronic emission
      current \n")
20
```

```
21 disp(I)
22
23 printf("\nemission current density\n")
24
25 printf("J=%.3f A/m2", J)
26
27 printf("\nno. of electrons emitted per unit area per sec.\n")
28
29 disp(no)
```

Scilab code Exa 3.2 calculate plate voltage

```
//chapter -3, Example3_2, pg 67

Ip1=20*10^-3

Ip2=30*10^-3

Vp1=80

//Ip=K*(Vp^(3/2))

Vp2=((((Vp1)^(3/2))*Ip2)/Ip1)^(2/3)

printf("plate voltage for 30mA current\n")

printf("Vp2=%.2 f volts", Vp2)
```

Ultrasonic

Scilab code Exa 4.1 find distance between two ships

```
//chapter4, Example4_1, pg 84

V1=343

//S=V1*t1

V2=1372

//S=V2*t2

dt=3//time difference

S=((V1*V2)*(dt))/(V2-V1)

printf("distance between two ships\n")

printf("S=%.f m",S)
```

Scilab code Exa 4.2 calculate depth of sea

```
1 //chapter4, Example4_2, pg 84
3 V = 1700
5 t=0.65
  d=(V*t)/2
  n=0.07*10^6
10
  lam=V/n
11
12
13 printf("depth of sea\n")
14
15 printf ("d=\%.1\,\mathrm{f} m",d)
16
17 printf("\nwavelength of pulse\n")
18
19 printf("lam=\%.4 f m", lam)
```

Scilab code Exa 4.3 calculate natural frequency

```
1 //chapter4 , Example4_3 , pg 84
2
3 P=1
4
5 l=40*10^-3
6
7 E=115*10^9
8
9 D=7.25*10^3
10
11 n=(P/(2*1))*sqrt(E/D)
12
13 printf("natural frequency\n")
```

```
14
15 printf("n=%.2f Hz",n)
16
17 printf("\nfrequency of rod is more than audible
    range, rod cannot be used in magnetostriction
    oscillator\n")
```

Acoustics

Scilab code Exa 5.1 find absorption coefficient

```
//chapter5, Example5_1, pg 97

T1=1.5

T2=1

A=20

V=10*8*6

a=((0.161*V)/(2*A))*((1/T2)-(1/T1))

printf("absorption coefficient\n")

printf("a=%.3f Sabines",a)
```

Scilab code Exa 5.2 find area of wall covered by curtain

```
1 //chapter5, Example5_2, pg 97
3 V=3000
5 T1=3.5//reverberation time
7 \quad A = (0.161*V)/T1
9 1=20
10
11 b = 15
12
13 h=10
14
15 S=2*((1*b)+(b*h)+(h*l))
16
17 \text{ sum}_a=A/S
18
19 \text{ am} = 0.5
20
21 a=0.106
22
23 T2=2.5//reverberation time after cloth use
24
25 S1 = (((0.161*V)/(am-a))*((1/T2)-(1/T1)))
26
27 printf("area of wall covered by curtain cloth\n")
28
29 printf("S1=%.3 f sq.m",S1)
```

Scilab code Exa 5.3 find reverberation time

```
1 //chapter5, Example5_3, pg 98
2
3 V=1450
```

```
5 A1=112*0.03//absorption due to plastered wall
7 A2=130*0.06//absorption due to wooden floor
  A3=170*0.04//absorption due to plastd. celing
10
11 A4=20*0.06//absorption due to wooden door
12
13 A5=100*1//absorption due to cushioned chairs
14
15 \text{ sum\_as} = A1 + A2 + A3 + A4 + A5
16
17 T1=(0.161*V)/sum_as//reverberation time case-1
18
19 T2=(0.161*V)/(sum_as+(60*4.7))/persons=60,A=4.7
      case-2
20
  T3 = (0.161*V)/(sum_as + (100*4.7))//seat cushioned = 100
21
      rev. case -3
22
23 printf("rev. time for case -1\n")
24
25 printf("T1=%.3 f sec", T1)
26
27 printf("\nrev. time for case -2\n")
28
29 printf ("T2=\%.3 \, f \, sec", T2)
30
31 printf("\nrev. time for case -3\n")
32
33 printf("T3=\%.3 f sec", T3)
```

Semiconductors

Scilab code Exa 6.1 final velocity of electron

```
//chapter6, Example6_1, pg 121

e=1.6*10^-19

V=1000

m=9.1*10^-31

v=sqrt((2*e*V)/m)

printf("final velocity of electron\n")

printf("v=%.f m/sec",v)
```

Scilab code Exa 6.2 find electric field

```
\begin{array}{cc} 1 & //\operatorname{chapter6} \; , Example 6\_2 \; , pg & 121 \\ 2 & \end{array}
```

```
3 Jc=1
4
5 sig=5.8*10^7
6
7 E=(Jc)/sig
8
9 printf("electric field established\n")
10
11 disp(E)
```

Scilab code Exa 6.3 electric field intensity for silver

```
1 //chapter6, Example6_3, pg 121
3 vd=1*10^-3
5 sig=6.17*10^7
7 \text{ ue} = 0.0056
  rhoe=-(sig/ue)
10
11 Jc1 = -rhoe * vd
12
13 E1=(Jc1)/sig
14
15 I=80
16
17 \quad A = 9 * 10^{-6}
18
19 Jc2=I/A
20
21 E2=Jc2/sig
22
23 V = 0.5 * 10^{-3}
```

```
24
25 d=3*10^-3
26
27 E3=V/d
28
29 printf("E-field due to Jc1\n")
30
31 printf("E1=\%.6 f V/m", E1)
32
33 printf("\nE-field due to Jc2\n")
34
35 \text{ printf} ("E2=\%.6 f V/m", E2)
36
37 printf("\nE-field due to cube\n")
38
39 printf("E3=\%.6 f V/m", E3)
```

Scilab code Exa 6.4 find current density current and power out

```
//chapter6 , Example6_4 , pg 122
sig=3.82*10^7

L=1000*12*2.54*10^-2//converting into m

r=0.4*2.54*10^-2

V=1.2

Jc=sig*(V/L)

A=3.14*(r^2)

Ic=Jc*A
```

```
17 P=Ic*V
18
19 printf("current density\n")
20
21 printf("Jc=%. f A/m2", Jc)
22
23 printf("\ntotal current\n")
24
25 printf("Ic=%.2 f A", Ic)
26
27 printf("\npower dissipation\n")
28
29 printf("P=%.2 f watt", P)
```

Scilab code Exa 6.5 conductivity due to holes and electrons

```
//chapter6 , Example6_5 , pg 122
ni=2.5*10^19
um=0.39
um=0.39
up=0.19
e=1.6*10^-19
L=6*10^-3
R=120
A=0.5*10^-6
sigp=L/(R*A)
p=sigp/(e*up)
```

```
20
21 Na=p
22
23 n = (ni^2)/Na
24
25 \text{ sigm} = n * e * um
26
27 ratio=sigp/sigm
28
29 printf("p-type impurity concentration\n")
30
31 disp(p)
32
33 printf("\nproportion of conductivity due to hole and
        electron \n")
34
35 \text{ printf}("ratio=\%.f", ratio); printf(":1")
```

Scilab code Exa 6.6 calculate current due to Ge plate

```
1 //chapter6 , Example6_6 , pg 123
2
3 ni=2*10^19
4
5 e=1.6*10^-19
6
7 up=0.17
8
9 un=0.36
10
11 V=2
12
13 A=10^-4
14
15 d=0.3*10^-3
```

```
16
17     I = (ni*e*(up+un)*V*A)/d
18
19     printf("current produced in Ge-plate\n")
20
21     printf("I=%.4 f A",I)
```

Scilab code Exa 6.7 find intrinsic carrier density

```
//chapter6, Example6_7, pg 123

rho=6.3*10^4

e=1.6*10^-19

up=0.14

un=0.05

ni=1/(rho*e*(up+un))

printf("intrinsic carrier concentration\n")

disp(ni)
```

Scilab code Exa 6.8 Hall Effect

```
1 //chapter6, Example6_8, pg 123
2
3 L=10^-3
4
5 R=1.5
```

```
7 A = 10^{-6}
9 \text{ Ey} = 0.6
10
11 \quad w = 10^{-3}
12
13 d=10^{-3}
14
15 I=120*10^-3
16
17 Bz = 0.05
18
19 e=1.6*10^-19
20
21 \text{ sigp=L/(R*A)}
22
23 \quad Vhp = Ey * w
24
25 \text{ Rhp}=(Vhp*d)/(I*Bz)
26
27 Uhp=sigp*Rhp
28
29 theta=atan(Uhp*Bz)
30
31 theta=theta*(180/%pi)
32
33 p=1/(Rhp*e)
34
35 printf("hall voltage : Vhp=\%.4 f Volt\n", Vhp)
36
37 printf("\nhall coeff. :Rhp=\%.5 \text{ f m3/e\n"},Rhp)
38
39 printf("\nhall mobility :Uhp=%.4 f m2/VS\n",Uhp)
40
41 printf("\nhall angle : theta=\%.2 f deg.\n", theta)
42
43 printf("\ndensity of charge carrier\n")
44
```

```
45 disp(p)
```

Scilab code Exa 6.9 concentration of holes in Si

```
//chapter6, Example6_9, pg 123

n=1.4*10^24

ni=1.4*10^19

Nd=n

p=(ni^2)/Nd

nbyp=n/p

printf("electron-hole concentration ratio\n")

disp(nbyp)
```

Scilab code Exa 6.10 Hall Effect

```
1 //chapter6 , Example6_10 , pg 124
2
3 Rhp=3.66*10^-4
4
5 rho=8.93*10^-3
6
7 e=1.6*10^-19
8
9 p=1/(Rhp*e)
10
11 Uhp=Rhp/rho
```

```
12
13 Bz = 0.5
14
15 theta=atan(Uhp*Bz)
16
17 theta=theta*(180/%pi)
18
19 printf("density of charge carrier\n")
20
21 disp(p)
22
23 printf("\nhall\ angle\n")
24
25 printf("theta=\%.2 f deg.",theta)
26
27 printf("\nhall mobility\n")
28
29 printf ("Uhp=\%.4 \text{ f } \text{m2/VS}", Uhp)
```

Scilab code Exa 6.11 effect of external impurity

```
//chapter6, Example6_11, pg 124

ni=2.5*10^13

e=1.6*10^-19

un=3900

up=1900

sigin=ni*e*(un+up)//intrinsic conductivity

//1 donor atom/10^8 Ge atom dropped

//1 donor atom/10^8 Ge atom dropped
```

```
15  rhoGe=4.42*10^22//no. of Ge atom/cc
16
17  Nd=rhoGe/10^8
18
19  sigex=Nd*e*un//extrinsic conductivity
20
21  printf("extrinsic conductivity\n")
22
23  printf("sigex=%.4f ohm cm", sigex)
```

Scilab code Exa 6.12 probability of electron in CB

```
1 //chapter6, Example6_12, pg 124
3 //permeability of electron to be in C.B=F(Ec)
 5 e=1.6*10^-19
7 \text{ Eg} = 5.6
9 Ef = Eg/2
10
11 \text{ Ec=Eg}
12
13 \text{ K=1.38*10}^-23
14
15 T=27+273//converting in Kelvin
16
17 \quad KT = K * T
18
19 \text{ KT=KT/e}
20
21 //e^{(Ec-Ef/KT)}>>1
22
23 Fermi_F=e^((Ef-Ec)/KT)//fermi factor
```

```
24
25 printf("probability of electron on CB\n")
26
27 disp(Fermi_F)
28
29 printf("\nit is infinite in negative direction for an insulator like diamond, so diamond cannot take part in conduction")
```

Scilab code Exa 6.13 Hall Effect

```
1 //chapter6, Example6_13, pg 125
3 e=1.6*10^-19
5 n = 7 * 10^2 1
7 \text{ ue} = 0.39
9 V = 10^{-3}
10
11 \quad A = 10^{-6}
12
13 L=10*10^-3
14
15 I = (n * e * u e * V * A) / L
16
17 Rhe=-(1/(n*e))
18
19 Bz = 0.2
20
21 d=10^-3
22
23 Vhe=(Rhe*I*Bz)/d
24
```

```
25 printf ("current through bar I=%.7 f A\n",I) 26 27 printf ("\nhall coeff. Rhe=%.6 f m3/c\n",Rhe) 28 29 printf ("\nhall voltage Vhe=%.8 f volt\n",Vhe)
```

Scilab code Exa 6.14 find forward bias current flow

```
//chapter6, Example6_14, pg 136

J2=0.2*10^-6

e=1.6*10^-19

K=1.38*10^-23

T=300

J=J2*(e^((e*V)/(K*T)))//as e^((e*v)/KT)>>1

printf("forward bias current flow\n")

disp(J)
```

Scilab code Exa 6.15 find static and dynamic resistance

```
1 //chapter6, Example6_15, pg 148
2
3 V1=1.4
4
5 I1=60*10^-3
```

```
V2 = 1.5
  I2=85*10^-3
10
11 Rs1=V1/I1
12
13 \text{ Rs2=V2/I2}
14
15 \, dV = V2 - V1
16
17 dI=I2-I1
18
19 \text{ Rd}=dV/dI
20
21 printf("static resistance\n")
22
23 printf("Rs1=\%.2 f ohm\n",Rs1)
24
25 printf("Rs2=\%.2 \, f \, ohm \ n", Rs2)
26
27 printf("dynamic resistance\n")
28
29 printf("Rd=\%.2 f ohm", Rd)
```

Scilab code Exa 6.16 find alpha and beta

```
1 //chapter6, Example6_16, pg 148
2
3 Ie=1*10^-3
4
5 Ib=0.02*10^-3
6
7 Ic=Ie-Ib
```

```
9 B=Ic/Ib
10
11 alpha=Ic/Ie
12
13 printf("alpha=%.2 f \n",alpha)
14
15 printf("B=%.2 f \n",B)
```

Scilab code Exa 6.17 find leakage current Iceo

```
1 //chapter6 , Example6_17 , pg 148
2
3 alpha=0.99
4
5 Icbo=0.5*10^-6
6
7 B=alpha/(1-alpha)
8
9 Iceo=(1/(1-alpha))*Icbo
10
11 printf("B=%. f \n",B)
12
13 printf("Iceo=%.8 f A",Iceo)
```

Scilab code Exa 6.18 find alpha and beta

```
1 //chapter6, Example6_18, pg 148
2
3 delIc=2.5*10^-3
4
5 delIb=40*10^-6
6
7 B=delIc/delIb
```

```
8
9 alpha=B/(1+B)
10
11 printf("alpha=%.5 f\n",alpha)
12
13 printf("B=%.2 f",B)
```

${\bf Scilab~code~Exa~6.19~{\rm find~current~gain}}$

```
1 //chapter6 , Example6_19 , pg 148
2
3 Ie=1*10^-3
4
5 Ib=0.04*10^-3
6
7 Ic=Ie-Ib
8
9 alpha=Ic/Ie
10
11 printf("current gain\n")
12
13 printf("alpha=%.2f",alpha)
```

Scilab code Exa 6.20 find base current

```
1 //chapter6, Example6_20, pg 149
2
3 V=1.5
4
5 R=10^3
6
7 Ic=V/R
8
```

```
9 alpha=0.96
10
11 Ie=Ic/alpha
12
13 Ib=Ie-Ic
14
15 printf("base current\n")
16
17 printf("Ib=%.6 f A", Ib)
```

Chapter 8

Interference Diffraction And Polarisation

Scilab code Exa 8.1 distance of fringe from wedge

```
1 //chapter8, Example8_1, pg 180
2
3 alpha=0.01
4
5 n=10
6
7 lam=6000*10^-8
8
9 u=1.5
10
11 //for dark fringe 2*u*t*cos(alpha)=n*lam
12
13 //t=xtan(alpha)
14
15 //2*u*x*sin(alpha)=2*u*x*alpha=n*lam ->alpha is small, sin(alpha)=alpha
16
17 x=(n*lam)/(2*u*alpha)
```

```
19 printf("distance of 10th fringe from edge of wedge\n
    ")
20
21 printf("x=\%.2 f cm",x)
```

Scilab code Exa 8.2 light reflected in visible spectrum

```
//chapter8, Example8_2, pg 181
3 //for constructive interference of reflected light
  //2*u*t*cos(r)=(2*n+1)(lam/2), where n=0,1,2,3
  //for normal incidence
  //r = 0, \cos(r) = 1
11 t=5*10^{-5}
12
13 u=1.33
14
15
  // for n=0 lam=lam1
16
17
  lam1=4*u*t
18
  // for n=1 lam=lam2
19
20
21
  lam2=4*u*t*(1/3)
22
23 / for n=2 lam=lam3
24
25 \quad lam3 = 4*u*t*(1/5)
26
27 // for n=3 lam=lam4
28
```

```
29 lam4=4*u*t*(1/7)
30
31 printf("wavelength that is strongly reflected in
      visible spectrum\n")
32
33 disp(lam3)
```

Scilab code Exa 8.3 radius of 50th dark ring

Scilab code Exa 8.4 thickness of film

```
5  u=1.33
6
7  r=asin(sin(i)/u)
8
9  r=r*(180/%pi)
10
11  //for bright fringe 2*u*t*cos(r)=(2*n+1)(lam/2)
12
13  //for minimum thickness n=0
14
15  lam=5000*10^-8
16
17  t=lam/(4*u*t*cos(r))
18
19  printf("min. thickness of film\n")
20
21  disp(t)
```

Scilab code Exa 8.5 find RI of oil

```
//chapter8, Example8_5, pg 182
//since both reflections occur at surface of denser medium
//condition for brightness for min thickness, n=1
//for normal incidence r=0, cos(r)=1
//for normal incidence r=0, cos(r)=1
// U=0.2
A=100*100//converting into cm2
```

```
15 t=V/A

16

17 u=lam/(2*t)

18

19 printf("RI of oil\n")

20

21 printf("u=%.2f",u)
```

Scilab code Exa 8.6 change in film thickness

```
1 //chapter8, Example8_6, pg 183
3 lam = 6300 * 10^{-10}
5 u=1.5
  //condition for dark 2*u*t=n*lam
  // condition for bright 2*u*t=(2*n-1)(lam/2)
10
  //when t=0 n=0 order dark band will come and at edge
       10th bright band will come
12
13 n = 10
14
15 t=(((2*n)-1)*(lam))/(4*u)
16
17 printf("thickness of air film\n")
18
19 printf ("t=\%.12 f cm",t)
```

Scilab code Exa 8.7 thickness of layer

```
//chapter8, Example8_7, pg 183
3 \text{ ug} = 1.5
5 uo=1.3
  //here reflection occurs both time at surface of
      denser medium
  //condition for distructive interference in
      reflected side
10
11
  //2*u*t*cos(r)=(2*n-1)(lam1/2), for nth min.
12
13 r = 0
14
  //for nth min.
15
16
  //2*u*t = (2*n+1)(lam1/2), n=0,1,2,3
17
18
19
  // for (n+1)th min.
20
  ////2*u*t = (2*(n+1)+1)(lam2/2), n=0,1,2,3
21
22
   lam1 = 7000 * 10^{-10}
23
24
25
   lam2=5000*10^-10
26
  // from eq. of nth and (n+1)th min.
27
28
29 t=(2/(4*uo))*((lam1*lam2)/(lam1-lam2))
30
31 printf("thickness of layer\n")
32
33 printf ("t = \%.12 f m",t)
```

Scilab code Exa 8.8 calculate RI of liquid

```
//chapter8, Example8_8, pg 184
 3 \, Dn = 1.40
  D = 1.27
   //\text{when u=1}
   //(Dn^2) = 4*n*lam*R = (1.40^2)
10
   //\text{when u=u1}
11
12
   //(D^2) = (4*n*lam*R)/u1 = (1.27^2)
14
15
   //from above eqn's
16
17 u1=((Dn^2)/(D^2))
18
19 printf("RI of liquid\n")
20
21 \text{ printf} ("u=\%.2 f", u1)
```

Scilab code Exa 8.9 calculate wavelength of light

```
1 //chapter8, Example8_9, pg 184
2
3 alpha=((%pi*10)/(60*60*180))//converting into radian
4
5 B=0.5//fringe width
6
```

```
7 u=1.4
8
9 lam=2*B*alpha*u
10
11 printf("wavelength of light used\n")
12
13 printf("lam=%.12f m",lam)
```

Scilab code Exa 8.10 calculate change in thickness

```
//chapter8, Example8_10, pg 185
3 //condition for dark fringe is 2*t=n*lam
  //refer to fig.(e) pg 185
  //but B=(lam/(2*alpha*u))
   // delt = alpha *x
10
   lam=6000*10^-8
11
12
13 u=1.5
14
   delt = (10*lam)/(2*u)//alpha = lam/(2*B*u), B=x/10
15
16
17 printf("difference t2-t1 from fig.\n")
18
19 printf("delt=\%.4 f cm", delt)
```

Scilab code Exa 8.11 calculate min thickness of glass plate

```
1 //chapter8, Example8_11, pg 185
```

```
2
3 //condition for dark is 2*u*t*cos(r)=n*lam
4
5 lam=5890*10^-8
6
7 u=1.5
8
9 r=60*(%pi/180)
10
11 //for n=1
12
13 t=(lam)/(2*u*cos(r))
14
15 printf("smallest thickness of glass plate\n")
16
17 printf("t=%.8 f cm",t)
```

Scilab code Exa 8.12 position of brightest and darkest spot

```
//chapter8 , Example8_12 , pg 193
//for brightest spot R1=sqrt(b*lam)

R1=0.05

lam=5*10^-5

bb=(R1^2)/lam//brightest spot

//for darkest spot

bd=(R1^2)/(2*lam)//darkest spot

printf("position of brightest spot\n")

printf("position of brightest spot\n")
```

```
17 printf("b=%.2 f cm",bb)
18
19 printf("\nposition of darkest spot\n")
20
21 printf("b=%.2 f cm",bd)
```

Scilab code Exa 8.13 zone plate for point source

```
//chapter8, Example8_13, pg 193
3 \ lam=6000*10^-10
5 b1=30/for m=1
7 b2=6//for m=2
  //(1/b) - (1/a) = (n*lam)/(R1^2), b=b1, b2
10
  //from b1, b2 equations
11
12
13 a=((5*b2)-(3*b1))/2
14
15 R1=sqrt(lam/((1/b1)-(1/a)))
16
17 F1 = (R1^2) / lam
18
19 printf("distance of source from zone plate\n")
20
21 printf("a=%.2 f cm",a)
22
23 printf("\nradius of 1st zone plate\n")
24
25 printf("R1=%.4 f cm", R1)
26
27 printf("\nprincipal focal length\n")
```

Scilab code Exa 8.14 wavelength of spectral line

```
//chapter8, Example8_14, pg 209
grat=1/1250//transmission grating
n=2
theta=30*(%pi/180)//deviation angle
//(a+b)sin(theta)=n*lam
//grat=(a+b)
lam=(grat*sin(theta))/n//wavelength of spectral line
printf("wavelength of spectral line\n")
printf("lam=%.6 f cm",lam)
```

Scilab code Exa 8.15 max orders visible

```
1 //chapter8, Example8_15, pg 209
2
3 lam=5893*10^-8
4
5 grat=2.54/2540//converting into cm
6
7 //(a+b)=grat
```

```
9 //(a+b) sin (theta)=n*lam
10
11 //n=nmax, if sin (theta)=1
12
13 nmax=(grat/lam)
14
15 printf("maximum order\n")
16
17 printf("nmax=%.2f",nmax)
18
19 printf("so maximum order=16\n")
```

Scilab code Exa 8.16 linear separation of Na lines

```
1 //chapter8, Example8_16, pg 209
3 n=2
  grat=1/5000//transmission grating
  lam=5893*10^-8
   dtheta = (2.5*3.14)/(180*60)/change in angular
      displacement (in radian)
10
11
  //(a+b)=grat
12
13 //dlam = ((a+b)cos(theta)/n)dtheta
14
15 cos(theta)=sqrt(1-(((n*lam)/grat)^2))
16
17 dlam = (dtheta*grat*cos(theta))/n//difference in
      wavelength
18
19 f=30//focal length
```

Scilab code Exa 8.17 linear separation of spectra lines

```
1 //chapter8, Example8_17, pg 210
3 \text{ grat} = 1/6000
5 f = 30
7 n=2
  lam1=5770*10^-8
10
  lam2=5460*10^-8
11
12
13 \quad dlam = lam1 - lam2
14
15 \quad lam=lam2
16
17 cos(theta)=sqrt(1-(((n*lam)/grat)^2))
18
19 dl=((n*f)/(grat*cos(theta)))*dlam
21 printf("linear separation of two spectral lines\n")
```

```
22
23 printf("dl=%.4f cm",dl)
```

Scilab code Exa 8.18 calculate lines per cm in grating

```
//chapter8, Example8_18, pg 210
  //nth order of lam1 is superimposed on (n+1)th order
       of lam2 for theta=30
4
  //(a+b) \sin (30) = n*5400*10^{-8} = (n+1)*4050*10^{-8}
  lam1=5400*10^-8
  lam2 = 4050 * 10^{-8}
10
11 n=(lam2/(lam1-lam2))
12
  theta=30*(\%pi/180)
13
14
15 N=sin(theta)/(n*lam1)
16
17 printf("lines/cm in grating \n")
18
19 printf("N=\%.2 f lines/cm",N)
```

Chapter 9

X Rays

Scilab code Exa 9.1 highest order of reflection

```
//chapter9, Example9_1, pg 237
3 d=4.255*10^-10
5 lam=1.549*10^-10/wavelength of K-copper line
7 \text{ n=1//theta} is smallest when n=1
  theta=asin(lam/(2*d))//glancing angle
10
   theta=theta*(180/%pi)
11
12
  //\max value of \sin(\text{theta})=1
13
14
15 //for highest order
16
17 nmax=((2*d)/lam)//highest bragg's order
18
19 printf("smallest glancing angle\n")
20
21 printf("theta=\%.2 f deg.",theta)
```

```
22
23 printf("\nmaximum order of reflection\n")
24
25 printf("nmax=%.2f",nmax)
26
27 printf("\nsince fraction is meaningless for order nmax=5")
```

Scilab code Exa 9.2 find plancks constant

```
//chapter9, Example9_2, pg 237

V=60*10^3

c=3*10^8

e=1.6*10^-19

lam=0.194*10^-10//min. wavelength of x-rays

h=(lam*e*V)/c

printf("plancks constant\n")

disp(h)
```

Scilab code Exa 9.3 find wavelength and maximum order of reflection

```
1 //chapter9, Example9_3, pg 238
2
3 //for 110 plane
4
5 a=3*10^-10//lattice parameter
```

```
6
7 d=(a/sqrt(2))/d110=(a/sqrt((1^2)+(1^2)+0))
  theta=12.5*(\%pi/180)//glancing angle
10
11 n = 1
12
13 lam=2*d*sin(theta)//wavelength of x-ray
14
15 nmax = ((2*d)/lam)//highest order
16
17 printf("wavelength of x-ray beam\n")
18
19 disp(lam)
20
21 printf("\nhighest braggs order\n")
22
23 printf("nmax=\%.2 f",nmax)
24
25 printf("\nfraction is meaningless so nmax=4")
```

Scilab code Exa 9.4 find plancks constant

```
1 //chapter9 , Example9_4 , pg 238
2
3 d=2.81*10^-10
4
5 theta=14*(%pi/180)//glancing angle
6
7 lam=2*d*sin(theta)//min. wavelength
8
9 e=1.6*10^-19
10
11 V=9100
12
```

```
13  c=3*10^8
14
15  h=(lam*e*V)/c
16
17  printf("plancks constant\n")
18
19  disp(h)
```

Scilab code Exa 9.5 find wavelength of line A

```
//chapter9, Example9_5, pg 238
3 // \text{for line } A \rightarrow 2*d*sin(thetaA) = lamA(n=1)
   thetaA=30*(\%pi/180)//glancing angle for line A
   // for line B \rightarrow 2*d*sin(thetaB)=3*lamB(n=3)
   thetaB=60*(%pi/180)
10
   lamB = 0.97 * 10^{-10}
11
12
13 d=(3*lamB)/(2*sin(thetaB))
14
  lamA=2*d*sin(thetaA)//wavelength of line A
15
16
17 printf("wavelength of line A\n")
18
19 disp(lamA)
```

Scilab code Exa 9.6 find wavelength of x rays

```
1 //chapter9, Example9_6, pg 239
```

```
2
3 a=3.615*10^-10
4
5 d111=a/sqrt(1+1+1)//for 111 plane
6
7 theta=21.7*(%pi/180)//converting into radian
8
9 lam=2*d111*sin(theta)
10
11 printf("wavelength of X-rays\n")
12
13 disp(lam)
```

Scilab code Exa 9.7 find min wavelength and glancing angle

```
1 //chapter9, Example9_7, pg 239
 3 V = 50 * 10^3
5 \quad lam = (12400/V)*10^-10
7 \text{ n=4//FCC } \text{crystal}
9 m = 74.6
10
11 N=6.022*10^26
12
13 rho=1.99*10^3
14
15 a=(((n*m)/(N*rho))^(1/3))
16
17 // for kcl ionic crystal
18
19 d=a/2
20
```

```
theta=asin(lam/(2*d))

theta=theta*(180/%pi)

printf("min. wavelength of spectrum from tube\n")

disp(lam)

printf("glancing angle for that wavelength\n")

printf("theta=%.2f deg.",theta)
```

Scilab code Exa 9.8 identify type of crystal

```
1 //chapter9, Example9_8, pg 239
3 //from bragg's law
5 //2*d*sin(theta)=n*lam
7 n=1
  theta1=5.4*(\%pi/180)
10
  theta2=7.6*(\%pi/180)
11
12
13 theta3=9.4*(\%pi/180)
14
15 d100=lam/2*sin(theta1)
16
17 d110=lam/2*sin(theta2)
18
19 d111=lam/2*sin(theta3)
20
21 printf("ratio of interplannar spacing \ln(1/d100):(1/d100)
```

Scilab code Exa 9.9 find interplannar spacing

```
1 //chapter9, Example9_9, pg 240
3 \quad lam = 0.58 * 10^{-10}
5 theta1=6.5*(\%pi/180)
7 theta2=9.15*(\%pi/180)
9 theta3=13*(\%pi/180)
10
11
  //from bragg's law
12
13 d1=lam/(2*sin(theta1))*10^10
14
15 d2=lam/(2*sin(theta2))*10^10
16
17 d3=lam/(2*sin(theta3))*10^10
18
19 printf("interplannar spacing of crystal\n")
20
21 printf("%.2 f:",d1);printf("%.2 f:",d2);printf("%.2 f",
      d3);
```

Chapter 10

Motion Of Charged Particle In Electric And Magnetic Field

Scilab code Exa 10.1 find KE of particle

```
//chapter10, Example10_1, pg 270

L=1.33*10^-22

B=0.025

m=6.68*10^-27

q=3.2*10^-19

w=(B*q)/m

E=0.5*L*w//E=0.5I(w^2), Iw=L

E=E/(1.6*10^-19)//converting into ev

printf("KE of particle\n")

printf("E=%.2f ev", E)
```

Scilab code Exa 10.2 frequency of oscillation and maximum energy of particle

```
//chapter10, Example10_2, pg 271
3 R = 0.35
5 n=1.38*10^7
7 m=1.67*10^-27
9 q=1.6*10^-19
10
11 B = (2 * \%pi * n * m) / q
13 E=((B^2)*(q^2)*(R^2))/(2*m)
14
15 E=E/q
16
17 printf("magnetic field induction\n")
18
19 printf("B=\%.2 f wb/m2",B)
20
21 printf("\nmaximum energy of proton\n")
22
23 printf("E=\%.2 f ev", E)
```

Scilab code Exa 10.3 radius of electron trajectory and angular momentum

```
1 //chapter10, Example10_3, pg 271
```

```
3 m=9.1*10^-31
5 e=1.6*10^-19
  //due to potential difference V, electron is
      accelerated
  //eV = 0.5*m*(v^2)
10
11 //due to transverse magnetic field B electron moves
      in circular path of radius R
12
  //(m*(v^2))/R=BeV
13
14
15 B=1.19*10^{-3}
16
17 V=1000
18
19 v = sqrt((2*e*V)/m)
20
21 R = (m*v)/(B*e)
22
23 L = m * v * R
24
25 printf("radius of electron trajectory\n")
26
27 printf("R=%.2 f m",R)
28
29 printf("\nangular momentum of electron\n")
30
31 disp(L)
```

Scilab code Exa 10.4 vertical displacement and magnetic field of electron

```
//chapter10, Example10_4, pg 272
3 vx=1.7*10^7
  Ey = 3.4 * 10^4
  x = 3 * 10^{-2}
  t=x/vx
10
  //y = 0.5 * ay * (t^2)
11
12
13 ay=(e*Ey)/m
14
15 y=0.5*ay*(t^2)
16
17 Bz = Ey/vx
18
19 printf("verical displacement of electron \n")
20
21 printf("y=\%.2 f m",y)
22
23 printf("\nmagnitude of magnetic field\n")
24
25 printf ("B=\%.4 \text{ f wb/m2}", B)
26
27 printf("\ndirection of field is upward as Ey is
      downward")
```

Scilab code Exa 10.5 resonance frequency and maximum energy of proton

```
1 //chapter10, Example10_5, pg 272
2
3 m=1.67*10^-27
4
```

```
5 q=1.6*10^-19
7 B = 0.5
9 n = ((B*q)/(2*\%pi*m))
10
11 R = 1
12
13 E=((B^2)*(q^2)*(R^2))/(2*m)
15 E=E/(1.6*10^-19)
16
17 printf("frequency of oscillation voltage\n")
18
19 printf("n=\%.2 f Hz",n)
20
21 printf("\nmaximum energy of proton\n")
22
23 printf("E=%.2 f ev",E)
```

Scilab code Exa 10.6 calculate force periodic time and resonance frequency

```
1 //chapter10 , Example10_6 , pg 273
2
3 q=3.2*10^-19
4
5 m=6.68*10^-27
6
7 B=1.5
8
9 v=7.263*10^6
10
11 F=B*q*v
12
13 printf("force on particle\n")
```

```
14
15 disp(F)
16
17 T=(2*%pi*m)/(B*q)
18
19 n=1/T
20
21 printf("\nperiodic time\n")
22
23 disp(T)
24
25 printf("\nresonance frequency\n")
26
27 printf("n=%.2 f Hz",n)
```

Scilab code Exa 10.7 calculate flux density and radius of cyclotron for proton and alpha particle

```
1 //chapter10 , Example10_7 ,pg 273
2
3 n=1.2*10^7
4
5 mp=1.67*10^-27
6
7 qp=1.6*10^-19
8
9 Bp=(2*%pi*mp*n)/qp
10
11 R=0.5
12
13 Ep=((Bp^2)*(qp^2)*(R^2))/(2*mp)
14
15 Ep=Ep/qp
16
17 malp=6.68*10^-27
```

```
18
19 qalp=2*1.6*10^-19
20
21 Balp=(2*\%pi*malp*n)/qalp
22
23 Ealp=((Balp^2)*(qalp^2)*(R^2))/(2*malp)
24
25 Ealp=Ealp/qp
26
27 printf("flux density for proton\n")
28
29 printf("Bp=\%.2 f Wb/m2", Bp)
30
31 printf("\nflux density for alpha particle\n")
32
33 printf("Balp=%.2 f Wb/m2",Balp)
34
35 printf("\nenergy of proton\n")
36
37 printf ("Ep=%.2 f ev", Ep)
38
39 printf("\nenergy of alpha particle\n")
40
41 printf("Ealp=%.2 f ev", Ealp)
```

Scilab code Exa 10.8 linear separation of electron beam

```
//chapter10, Example10_8, pg 274
e=1.6*10^-19
me=9.1*10^-31//mass of electron
q=3.2*10^-19
```

```
9 malp=6.68*10^-27//mass of alpha particle
10
11 B = 0.05
12
13 \ V = 20 * 10^3
14
15 //v = sqrt((2*q*V)/m)
16
17 /R = (1/B) * s q r t ((2*m*V)/q)
18
19 Re=(1/B)*sqrt((2*me*V)/e)
20
21 Ralp=(1/B)*sqrt((2*malp*V)/q)
22
23 S=2*Ralp-2*Re//linear separation between two
      particles on common boundary wall
24
25 printf("linear separation between two particles on
      common boundary wall\n")
26
27 printf("S=%.2 f m",S)
```

Scilab code Exa 10.9 find potential difference

```
1 //chapter10, Example10_9, pg 274
2
3 V1=200
4
5 //electrostatic focusing condition
6
7 //(sini/sinr)=(v2/v1)=sqrt(V2/V1)
8
9 //0.5 mv2=eV
10
11 i=60*(%pi/180)//converting into radian
```

```
12
13 r=45*(%pi/180)//converting into radian
14
15 V2=200*((sin(i)/sin(r))^2)
16
17 pd=V2-V1//potential difference
18
19 printf("potential difference between two region\n")
20
21 printf("\npd=%.2f Volts",pd)
```

Scilab code Exa 10.10 charge on drop

```
//chapter10, Example10_10, pg 275
//F=mg=qE

E=250

R=10^-8

rho=10^3//density

m=(4/3)*%pi*(R^3)*rho//m=volume*density

W=m*9.8//weight of drop(mg)

q=W/E

printf("charge on water drop\n")

disp(q)
```

Scilab code Exa 10.11 bainbridge mass spectograph

```
//chapter10, Example10_11, pg 275
3 e=1.6*10^-19
5 v = 5 * 10^5
7 B = 0.3
  N=6.025*10^26
10
11 M72 = 72/N
12
13 R72 = (M72 * v) / (B * e)
14
15 \quad M74 = 74
16
17 R74 = (R72/72) * M74
18
19 S=2*(R74-R72)//linear separation of two line
20
21 printf("linear separation of two line\n")
22
23 printf("S=%.2 f m",S)
```

Scilab code Exa 10.12 calculate flux density

```
1 //chapter10, Example10_12, pg 276
2
3 l=5*10^-2
4
5 d=0.3//distance of screen from end of mag. field
6
7 D=d+(1/2)
```

```
8
9 y=0.01
10
11 m=9.1*10^-31
12
13 e=1.6*10^-19
14
15 Va=1000
16
17 B=(y/(D*1))*sqrt((2*m*Va)/e)
18
19 printf("flux density\n")
20
21 printf("B=%.8 f Wb/m2",B)
```

Scilab code Exa 10.13 electron in transverse electric field

```
1 //chapter10 , Example10_13 , pg 276
2
3 e=1.6*10^-19
4
5 Va=150
6
7 m=9.1*10^-31
8
9 vx=sqrt((2*e*Va)/m)
10
11 V=20
12
13 d=10^-2
14
15 ay=(e/m)*(V/d)
16
17 1=10*10^-2
18
```

```
19 vy=ay*(1/vx)
20
21 theta=atan(vy/vx)
22
23 theta=theta*(180/%pi)//converting into degree
24
25 theta=theta*(%pi/180)//converting into radian
26
27 \text{ Y=D*tan}(\text{theta})
28
29 S=(Y/V)
30
31 printf("velocity of electron reaching field vx=\%.2f
      m/sec n, vx)
32
33 printf("\nacceleration due to electric field ay=\%.2 f
       m/\sec 2 \n", ay)
34
35 printf("\nfinal velocity attained by deflecting
      field vy=\%.2 \text{ f m/sec} n", vy)
36
  printf("\nangle of deflection theta=%.2f deg.\n",
37
      theta)
38
39 printf("\ndeflection on screen Y=\%.2 \text{ f m}\n",Y)
40
41 printf("\ndeflection senstivity S=\%.2 \text{ f m/volt} \n",S)
```

Chapter 11

Quantum Physics And Schrodinger Wave Equation

Scilab code Exa 11.1 uncertainty in velocity

```
//chapter11, Example11_1, pg 298
me=9.1*10^-31//masss of electron
h=6.62*10^-34//planck's const.
delx=10^-8//uncertainity in position
delp=(h/(2*%pi*delx))//uncertainity principle
delv=(delp/me)//uncertainity in velocity
printf("uncertainity in velocity\n")
printf("delv=%.2f m/sec",delv)
```

Scilab code Exa 11.2 find KE and velocity of proton

```
//chapter11 , Example11_2 ,pg 298

lam=0.2865*10^-10//wavelength

mp=1.67*10^-27//mass of proton

h=6.625*10^-34

v=(h/(mp*lam))//debroglie's equation

KE=0.5*mp*(v^2)//kinetic energy of proton(J)

KE=KE/(1.6*10^-19)//converting into ev

rintf("kinetic energy of proton\n")

printf("KE=%.2 f ev", KE)
```

Scilab code Exa 11.3 momentum and energy of electron and photon

```
//chapter11, Example11_3, pg 299

KEnu=0.025*1.6*10^-19//kinetic energy of neutron

mn=1.676*10^-27//mass of neutron

v=sqrt((2*KEnu)/mn)

h=6.626*10^-34

lamn=h/(mn*v)//debroglie wavelength of neutron

printf("wavelength of beam of neutron\n")
```

```
14
15 printf ("lamn=%.12 f m", lamn)
16
17 p=(h/lamn)
18
19 printf("\nmomentum of electron and photon\n")
20
21 printf("p=%.26 f kgm/sec",p)
22
23 me=9.1*10^-31//mass of electron
24
25 ve=(p/me)//velocity of electron
26
27 Ee=0.5*p*ve//energy of electron
28
29 Ee=Ee/(1.6*10^-19)/convering into ev
30
31 printf("\nenergy of electron\n")
32
33 \text{ printf} ("Ee=\%.2 \text{ f ev}", Ee)
34
35 Ep=(h*3*10^8)/lamn//energy of photon
36
37 Ep=Ep/(1.6*10^-19)
38
39 printf("\nenergy of photon\n")
40
41 printf ("Ep=%.2 f ev", Ep)
```

Scilab code Exa 11.4 find mass of particle

```
1 //chapter11, Example11_4, pg 300
2
3 e=1.6*10^-19
```

```
5  V=200
6
7  lam=0.0202*10^-10//debroglie wavelength
8
9  h=6.625*10^-34
10
11  //eV=0.5*m*(v^2)
12
13  //mv=sqrt(2*m*eV)
14
15  m=((h^2)/(2*(lam^2)*e*V))//mass of particle
16
17  printf("mass of particle\n")
18
19  disp(m)
```

Scilab code Exa 11.5 calculate debroglie wavelength of neutron

```
//chapter11, Example11_5, pg 300

mn=1.676*10^-27//mass of neutron

h=6.625*10^-34

En=1.6*10^-19//energy of neutron

v=sqrt((2*En)/mn)

lam=(h/(mn*v))//de-broglie wavelength

printf("de-broglie wavelength\n")

disp(lam)
```

Scilab code Exa 11.6 existence of electron within nucleus

```
//chapter11, Example11_6, pg 300
3 //acc. to uncertainity principle
5 // delx*delp >= (h/2*\%pi)
7 rad=10^-14
  delx=2*rad
10
11 h=6.625*10^{-34}
12
13 delp=(h/(2*%pi*delx))
14
  //from einstein 's relavistic relation
15
16
17 / E = mc2 = KE + rest mass energy = 0.5 mv2 + moc2
18
19 //when velocity of particle is very high
20
  //m = (mo/ sqrt (1 - ((v/c)^2)))
21
22
  //m-mass of particle with velocity v
23
24
25 //mo-rest mass of particle
26
27 //c-velocity of particle
29 p=delp//assume
30
31 c = 3 * 10^8
32
```

```
33 mo=9.1*10^-31
34
35 E=sqrt(((p*c)^2)+((mo*(c^2))^2))
36
37 E=E/(1.6*10^-19)
38
39 printf("E=%.2f ev",E)
40
41 printf("\nthis value is much higher than experimentally obtained values of energy of electron\n")
42
43 printf("of a radioactive nuclei i.e 4 Mev this proves that electron cannot reside within nucleus ")
```

Scilab code Exa 11.7 calculate debroglie wavelength

```
//chapter11, Example11_7, pg 302

m1=60*10^-9

v1=80

p1=m1*v1

h=6.625*10^-34

lam1=h/p1//de-broglie wavelength case-1

m2=8*10^-27

v2=1.3

p2=m2*v2
```

```
18
19 lam2=h/p2//de-broglie wavelength case-2
20
21 printf("de-broglie wavelength for case-1\n")
22
23 disp(lam1)
24
25 printf("\nde-broglie wavelength for case-2\n")
26
27 disp(lam2)
28
29 printf("\nfrom case-1 it is clear that for normal particles de-broglie wavelength is not visible it is very small")
```

Scilab code Exa 11.8 calculate KE of electron

```
//chapter11, Example11_8, pg 302

h=6.634*10^-34

c=3*10^8

e=1.6*10^-19

m=9.1*10^-31

Ep=100*10^3*e//energy of photon

lamp=((h*c)/Ep)//wavelength of photon

lame=lamp//wavelength of electron

v=h/(m*lame)
```

```
19 KEe=0.5*m*(v^2)//kinetic energy of electron
20
21 KEe=KEe/(1.6*10^-19)
22
23 printf("kinetic energy of electron\n")
24
25 printf("KEe=%.2 f ev", KEe)
```

Chapter 12

Laser Holography And Fibre Optics

Scilab code Exa 12.1 normalised frequency and guided modes

```
20
21 printf("\ntotal no. of guided mode\n")
22
23 printf("M=%.2f",M)
```

Scilab code Exa 12.2 find core radius

```
//chapter12, Example12_2, pg 357

lam=1*10^-6//wavelength

n1=1.53

n2=1.5

NA=sqrt((n1^2)-(n2^2))

a=(2.405*lam)/(2*%pi*NA)

printf("core radius\n")

printf("a=%.8f m",a)
```

Scilab code Exa 12.3 calculate relative change in core cladding RI

```
1 //chapter12, Example12_3, pg 357
2
3 NA=0.5
4
5 n1=1.54
6
7 n2=sqrt((n1^2)-(NA^2))
8
```

```
9 printf("refractive index of cladding\n")
10
11 printf("n2=%.2f",n2)
12
13 n=(n1-n2)/n1//relative change in refractive index of core
14
15 printf("\nrelative change refractive index of core\n ")
16
17 printf("n=%.2f",n)
```

Scilab code Exa 12.4 find cladding RI and acceptance angle

```
//chapter12, Example12.4, pg 358

NA=0.5

n1=1.48

n2=sqrt((n1^2)-(NA^2))

printf("refractive index of cladding\n")

printf("n2=%.2f",n2)

alpha=asin(NA)

alpha=alpha*(180/%pi)

printf("\nacceptance angle\n")

printf("alpha=%.2f deg",alpha)
```

Chapter 13

Radioactivity And Nuclear Reactions

Scilab code Exa 13.1 energy of incident particle

```
//chapter13, Example13_1, pg 391
3 //xMy -> x-mass no., M-element, y-atomic no.
5 M7Li3=7.018232//mass of 7li3 (amu)
7 Malpha=4.003874//mass of alpha particle (amu)
9 Mpr=1.008145//mass of proton (amu)
10
  // reaction :- 7 li 3 + 1 H1 -> 4 He2 + 4 He2
11
12
13 delM=M7Li3+Mpr-2*Malpha//mass defect
14
15 Q=delM*931//1 amu= 931 Mev
16
17 Ey=9.15//K.E energy of product nucleus
18
19 Ex=2*Ey-Q//K.E of incident particle
```

```
20
21 printf("kinetic energy of incident proton\n")
22
23 printf("Ex=\%.2 f Mev", Ex)
```

Scilab code Exa 13.2 power of explosion

```
1 //chapter13, Example13_2, pg 391
2
3 M235U=235//at.mass of 235U
4
5 m=10^-3
6
7 N=6.023*10^23
8
9 Eperfi=200*10^6//energy per fission
10
11 E=Eperfi*1.6*10^-19//energy per fission (in joules)
12
13 T=10^-6
14
15 A=M235U
16
17 P=((m*N)/A)*(E/T)//power output
18
19 printf("power of explosion\n")
20
21 printf("P=%.2 f watt",P)
```

Scilab code Exa 13.4 mass of uranium consumed

```
1 //chapter13, Example13_4, pg 392
```

```
3 n=0.4//efficiency
5 N=6.023*10^23
7 Eperfi=200*10^6//energy per fission
9 E=Eperfi*1.6*10^-19
10
11 P=100*10^6
12
13 \quad A = 235
14
15 T=24*60*60
16
17 m = (P * A * T) / (n * N * E)
18
19 printf("mass of 235U consumed/day\n")
20
21 printf("m=\%.2 f gm",m)
```

Scilab code Exa 13.5 energy liberated per reaction

```
//chapter13, Example13_5, pg 392

M2H1=2.01474

M3H1=3.01700

M1n0=1.008986

M4He2=4.003880

//thermonuclear reaction in hydrogen bomb explosion
//2H1 + 3H1 -> 4He2 + 1n0
```

```
14
15 Mreac=M2H1+M3H1//mass of reactants
16
17 Mprod=M4He2+M1n0//mass of products
18
19 Q=Mreac-Mprod
20
21 Q=Q*931//converting in Mev
22
23 printf("energy/reaction\n")
24
25 printf("Q=%.2 f Mev",Q)
```

Scilab code Exa 13.6 calculate binding energy

```
//chapter13, Example13_6, pg 393

M7Li3=7.01818

M1H1=1.0081

M1n0=1.009

BEpernu=(1/7)*((3*M1H1)+(4*M1n0)-M7Li3)//binding energy per nucleon

BEpernu=BEpernu*931//converting in Mev

printf("binding energy per nucleon\n")

printf("BE=%.2f Mev", BEpernu)
```

Scilab code Exa 13.7 calculate power output

```
//chapter13, Example13_7, pg 394

m=10*10^3

N=6.023*10^23

Eperfi=200*10^6//energy per fission

E=Eperfi*1.6*10^-19//energy in joules

A=235

T=24*60*60

P=((m*N)/A)*(E/T)

printf("power output\n")

printf("P=%.2 f watt",P)
```