● 13:36

Practice problem

Suppose your savings account pays 9% interest compounded <u>quarterly</u>. If you deposit \$10,000 for one year, how much would you have at the end of the year?

(a) Interest rate per quarter:

$$i = \frac{9\%}{4} = 2.25\%$$

(b) Annual effective interest rate:

$$i_a = (1 + 0.0225)^4 - 1 = 9.31\%$$

(c) Balance at the end of one year (after 4 quarters)

$$F = \$10,000(F/P,2.25\%,4)$$
$$= \$10,000(F/P,9.31\%,1)$$
$$= \$10,931$$

Brute force method of solution

First quarter	base amount + interest (2.25%)	\$10,000 + \$225
Second quarter	= new base amount + Interest (2.25%)	= \$10,225 +\$230.06
Third quarter	= new base amount + Interest (2.25%)	= \$10,455.06 +\$235.24
Fourth quarter	= new base amount + interest (2.25 %) = value after one year	= \$10,690.30 + \$240.53 = \$10,930.83

Effective annual interest rate (9% compounded quarterly)