Lecture Notes: Dot Product and Cross Product

Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk

1 Dot Product

Let us start by defining dot product:

Definition 1. Given two vectors $\mathbf{a} = [a_1, ..., a_d]$ and $\mathbf{b} = [b_1, ..., b_d]$, we define $\mathbf{a} \cdot \mathbf{b}$, which is called the **dot product** of \mathbf{a} and \mathbf{b} , as the real value $\sum_{i=1}^d a_i b_i$.

 $a \cdot b$ is also called the *inner product* of a and b. Note that its value is a scalar, as opposed to a vector. It is easy to prove by definition the following properties:

- (Commutativity) $a \cdot b = b \cdot a$.
- (Distributivity) $a \cdot (b + c) = a \cdot b + a \cdot c$, and $a \cdot (b c) = a \cdot b a \cdot c$.
- $|a| = \sqrt{a \cdot a}$.

Next, we will prove another important but less trivial property of dot product. Let $\gamma \in [0^{\circ}, 180^{\circ}]$ be the angle between the directions of two non-zero vectors \boldsymbol{a} and \boldsymbol{b} . Recall that the direction of a vector is a ray emanating from the origin of \mathbb{R}^d . Hence, γ is well defined.

Lemma 1. If $a \neq 0$ and $b \neq 0$, then $a \cdot b = |a||b| \cos \gamma$.

Proof. Let $\overrightarrow{O}, \overrightarrow{A}$ and $\overrightarrow{O}, \overrightarrow{B}$ be the default instantiations of \boldsymbol{a} and \boldsymbol{b} , respectively; see Figure 1. We know that $\overrightarrow{A}, \overrightarrow{B}$ is an instantiation of $\boldsymbol{b} - \boldsymbol{a}$. By the law of cosine, we have:

$$|\overrightarrow{A}, \overrightarrow{B}|^{2} = |\overrightarrow{O}, \overrightarrow{A}|^{2} + |\overrightarrow{O}, \overrightarrow{B}|^{2} - 2|\overrightarrow{O}, \overrightarrow{A}||\overrightarrow{O}, \overrightarrow{B}|\cos\gamma \Rightarrow \cos\gamma = \frac{|\overrightarrow{O}, \overrightarrow{A}|^{2} + |\overrightarrow{O}, \overrightarrow{B}|^{2} - |\overrightarrow{A}, \overrightarrow{B}|^{2}}{2|\overrightarrow{O}, \overrightarrow{A}||\overrightarrow{O}, \overrightarrow{B}|}$$
(1)

From

$$|\overrightarrow{O,A}|^2 = |\boldsymbol{a}|^2 = \boldsymbol{a} \cdot \boldsymbol{a}$$

$$|\overrightarrow{O,B}|^2 = |\boldsymbol{b}|^2 = \boldsymbol{b} \cdot \boldsymbol{b}$$

$$|\overrightarrow{A,B}|^2 = |\boldsymbol{b}-\boldsymbol{a}|^2 = (\boldsymbol{b}-\boldsymbol{a}) \cdot (\boldsymbol{b}-\boldsymbol{a})$$
(by distributivity) = $(\boldsymbol{b}-\boldsymbol{a}) \cdot \boldsymbol{b} - (\boldsymbol{b}-\boldsymbol{a}) \cdot \boldsymbol{a}$
(by distributivity) = $\boldsymbol{b} \cdot \boldsymbol{b} - \boldsymbol{a} \cdot \boldsymbol{b} - \boldsymbol{b} \cdot \boldsymbol{a} + \boldsymbol{a} \cdot \boldsymbol{a}$

(by commutativity and def. of scalar multiplication) $= \mathbf{b} \cdot \mathbf{b} - 2\mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{a}$

we can derive from (1)

$$\cos \gamma = \frac{a \cdot a + b \cdot b - (b \cdot b - 2a \cdot b + a \cdot a)}{2|a||b|} = \frac{a \cdot b}{|a||b|}$$

thus completing the proof.

Figure 1: Proof of Lemma 1

Figure 2: Using dot product to calculate projection lengths

We say that vectors \boldsymbol{a} and \boldsymbol{b} are orthogonal if the angle γ is 90°. Lemma 1 leads to:

Corollary 1. When $a \neq 0$ and $b \neq 0$, then $a \cdot b = 0$ if and only if a and b are orthogonal.

It may come as a bit of surprise that we managed to prove such a non-trivial geometric fact without doing any calculation on the coordinates.

Dot Product and Projection Length. Let us now see an important use of dot product: computing the projection length of a line segment on a line. Figure 2a shows 3 points P(-5,7,2) (where the numbers in the parentheses are coordinates of P), A(3,20,8), and B(1,10,5). Let \overline{PA} denote the segment connecting P and A, and $|\overline{PA}|$ be the length of the segment. Project point A onto the line passing through segment \overline{PC} . We want to know how long is \overline{PC} , namely, the value of $|\overline{PC}|$.

Next we will give an easy solution to this problem. Let \boldsymbol{a} be the vector of which the directed segment $\overrightarrow{P}, \overrightarrow{A}$ is an instantiation, and \overrightarrow{b} the vector of which the directed segment $\overrightarrow{P}, \overrightarrow{B}$ is an instantiation; see Figure 2b. Apparently, $\boldsymbol{a} = [8, 13, 6]$ and $\boldsymbol{b} = [6, 3, 3]$. It thus follows that $\boldsymbol{a} \cdot \boldsymbol{b} = [8 \cdot 6 + 13 \cdot 3 + 6 \cdot 3] = 105$. On the other hand, from Lemma 1, we know that $\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \gamma$,

where γ is the angle as shown in Figure 2b. As $|\boldsymbol{b}| = \sqrt{54}$, we know that

$$|\mathbf{a}|\sqrt{54}\cos\gamma = 105 \Rightarrow$$

 $|\mathbf{a}|\cos\gamma = 105/\sqrt{54}.$

Observe from Figure 2b $|a|\cos \gamma$ is exactly the length of segment \overline{PC} .

2 Cross Product

Unlike dot product which is defined on vectors of arbitrary dimensionality d, cross product is defined only on 3d vectors:

Definition 2. Given two 3d vectors $\mathbf{a} = [a_1, a_2, a_3]$ and $\mathbf{b} = [b_1, b_2, b_3]$, we define $\mathbf{a} \times \mathbf{b}$, which is called the **cross product** of \mathbf{a} and \mathbf{b} , as the vector $\mathbf{c} = [c_1, c_2, c_3]$ where

$$c_1 = a_2b_3 - a_3b_2$$

$$c_2 = a_3b_1 - a_1b_3$$

$$c_3 = a_1b_2 - a_2b_1.$$

The definition probably looks a bit complicated, but the next three lemmas will help us gain a geometric sense about what the cross product really is.

Lemma 2. Let $\gamma \in [0^{\circ}, 180^{\circ}]$ be the angle between the directions of two non-zero vectors \boldsymbol{a} and \boldsymbol{b} , and $\boldsymbol{c} = \boldsymbol{a} \times \boldsymbol{b}$. Then, $|\boldsymbol{c}| = |\boldsymbol{a}||\boldsymbol{b}|\sin \gamma$.

Proof. See appendix.
$$\Box$$

As an immediate corollary, we know that c = 0 in each of the following scenarios:

- a = 0 or b = 0.
- The support lines of the directions of \boldsymbol{a} and \boldsymbol{b} are the same, namely, \boldsymbol{a} and \boldsymbol{b} have the same direction ($\gamma = 0^{\circ}$) or opposite directions ($\gamma = 180^{\circ}$).

If $c \neq 0$, its length |c| has a beautiful explanation. Let O be the origin; and let $\overrightarrow{O}, \overrightarrow{A}$ and $\overrightarrow{O}, \overrightarrow{B}$ be the default instantiations of a and b, respectively. Then, |c| is twice the area of the triangle OAB, as can be verified with simple geometry; see Figure 3a (note that the length of segment BD equals $|b| \sin \gamma$).

Lemma 3. Let $c = a \times b$. Then, $a \cdot c = 0$ and $b \cdot c = 0$.

Proof. Let $\mathbf{a} = [a_1, a_2, a_3]$, $\mathbf{b} = [b_1, b_2, b_3]$, and $\mathbf{c} = [c_1, c_2, c_3]$. We will prove only $\mathbf{a} \cdot \mathbf{c} = 0$ because an analogous argument shows $\mathbf{b} \cdot \mathbf{c} = 0$.

$$\mathbf{a} \cdot \mathbf{c} = a_1c_1 + a_2c_2 + a_3c_3$$

= $a_1(a_2b_3 - a_3b_2) + a_2(a_3b_1 - a_1b_3) + a_3(a_1b_2 - a_2b_1)$
= 0.

Figure 3: Illustration of cross product

The lemma leads to the following important corollary:

Corollary 2. Let $c = a \times b$. If $c \neq 0$, then the direction of c is perpendicular to the plane determined by the default instantiations of a and b (see Figure 3b, where the plane is ρ).

Proof. Since $c \neq 0$, we know that (i) neither a nor b is 0, and (ii) the angle γ between the directions of a and b is larger than 0° but smaller than 180° . Hence, the default instantiations of a and b uniquely determine a plane ρ .

Since $\mathbf{a} \cdot \mathbf{c} = 0$ and $\mathbf{b} \cdot \mathbf{c} = 0$, we know that the direction of \mathbf{c} is orthogonal to the directions of both \mathbf{a} and \mathbf{b} . Hence, the direction of \mathbf{c} is perpendicular to ρ .

We are almost ready to explain $c = a \times b$ in a way much more intuitive than Definition 2. Recall that to unambiguously pinpoint a vector, we need to specify (i) its length, and (ii) its direction. Lemma 2 has given the length, and Corollary 1 has almost given its direction. Why did we say "almost"? Because there are two vectors that are perpendicular to the plane ρ in Figure 3b: besides the c shown, -c is also perpendicular to ρ .

We can remove this last piece of ambiguity as follows. Let us see the plane ρ from the side such that c shoots into our eyes. The direction of a should turn counter-clockwise to the direction of b by an angle less than 180° (i.e., γ in Figure 3b). Notice that if we see the plane ρ from the wrong side, then a needs to do so clockwise to reach b. We will state the next lemma without proof.

Lemma 4. The above approach of determining the direction of c is correct.

At this point, we have obtained a complete geometric description about $c = a \times b$. Interestingly, often times it suffices to hold only this view of c, and turn to Definition 2 only when necessary.

It is easy to verify by definition the following properties of cross product:

- (Anti-Commutativity) $\mathbf{a} \times \mathbf{b} = -(\mathbf{b} \times \mathbf{a})$.
- (Distributivity) $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c})$, and $(\mathbf{b} + \mathbf{c}) \times \mathbf{a} = (\mathbf{b} \times \mathbf{a}) + (\mathbf{c} \times \mathbf{a})$.

Note that in general cross product does <u>not</u> necessarily obey associativity. Here is a counter example: $i \times i \times j = 0 \times j = 0$, but $i \times (i \times j) = i \times k = -j$.

Appendix

Proof of Lemma 2

Let $\mathbf{a} = [a_1, a_2, a_3]$, $\mathbf{b} = [b_1, b_2, b_3]$, and $\mathbf{c} = [c_1, c_2, c_3]$ (remember $\mathbf{c} = \mathbf{a} \times \mathbf{b}$). We will first establish another lemma which is interesting in its own right:

Lemma 5.
$$(|a||b|)^2 = |c|^2 + (a \cdot b)^2$$
.

Proof. We will take a bruteforce approach to prove the lemma, by representing all the quantities in the target equation with coordinates.

$$(|\boldsymbol{a}||\boldsymbol{b}|)^{2} = (a_{1}^{2} + a_{2}^{2} + a_{3}^{2})(b_{1}^{2} + b_{2}^{2} + b_{3}^{2})$$

$$= a_{1}^{2}b_{1}^{2} + a_{1}^{2}b_{2}^{2} + a_{1}^{2}b_{3}^{2} + a_{2}^{2}b_{1}^{2} + a_{2}^{2}b_{2}^{2} + a_{2}^{2}b_{3}^{2} + a_{3}^{2}b_{1}^{2} + a_{3}^{2}b_{2}^{2} + a_{3}^{2}b_{3}^{2}$$

$$|\boldsymbol{a} \times \boldsymbol{b}|^{2} = c_{1}^{2} + c_{2}^{2} + c_{3}^{2}$$

$$= (a_{2}b_{3} - a_{3}b_{2})^{2} + (a_{3}b_{1} - a_{1}b_{3})^{2} + (a_{1}b_{2} - a_{2}b_{1})^{2}$$

$$= a_{2}^{2}b_{3}^{2} + a_{3}^{2}b_{2}^{2} + a_{3}^{2}b_{1}^{2} + a_{1}^{2}b_{3}^{2} + a_{1}^{2}b_{2}^{2} + a_{2}^{2}b_{1}^{2} - 2a_{2}b_{2}a_{3}b_{3} - 2a_{1}b_{1}a_{3}b_{3} - 2a_{1}b_{1}a_{2}b_{2}$$

$$(\boldsymbol{a} \cdot \boldsymbol{b})^{2} = (a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3})^{2}$$

$$= a_{1}^{2}b_{1}^{2} + a_{2}^{2}b_{2}^{2} + a_{3}^{2}b_{3}^{2} + 2a_{1}b_{1}a_{2}b_{2} + 2a_{1}b_{1}a_{3}b_{3} + 2a_{2}b_{2}a_{3}b_{3}$$

The lemma thus follows.

Now we proceed to prove Lemma 2. From Lemma 1, we know that $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \gamma$. Hence:

$$(|\boldsymbol{a}||\boldsymbol{b}|)^{2} - (\boldsymbol{a} \cdot \boldsymbol{b})^{2} = (|\boldsymbol{a}||\boldsymbol{b}|)^{2} - (|\boldsymbol{a}||\boldsymbol{b}|)^{2} \cos^{2} \gamma$$
$$= (|\boldsymbol{a}||\boldsymbol{b}|)^{2} (1 - \cos^{2} \gamma)$$
$$= (|\boldsymbol{a}||\boldsymbol{b}|)^{2} \sin^{2} \gamma.$$

By combining the above with Lemma 5, we obtain:

$$|\boldsymbol{c}|^2 = (|\boldsymbol{a}||\boldsymbol{b}|)^2 \sin^2 \gamma.$$

Since $\sin \gamma \ge 0$ (recall that $\gamma \in [0^{\circ}, 180^{\circ}]$), it follows that $|c| = |a||b| \sin \gamma$.