République du Cameroun
Paix-Travail-Patrie
Université de Yaoundé I
Ecole Nationale Supérieure Polytechnique de Yaoundé
Département du génie informatique

Republic of Cameroon
Peace-Work-Fatherland
University of Yaoundé I
National Advanced School Of Engineering of Yaoundé
Department of computer science

RAPPORT SEMAINE N°1 D'ELECTRONIQUE SUIVEUR SOLAIRE

Redigé par:

SIBEFEU CHIMBAEmmanuel Carlos 21P275

SINGHE PENKA Hendrix Donavan -- 21P050

SIMO Alan Sorel -- 21P024

DJONGO FOKOU Ariel Sharon -- 21P360

CESSU CHOUMESSI Maxime -- 21P033

DJOKO DJODOM Syntia Loana -- 21P038

NEGOUM WOUATEDEM Yves Arthur -- 21P273

NGEUKEU MELI Audain -- 21P149

Antoine Emmanuel ESSOMBA ESSOMBA -- 23P750

NGUIFFO NGAKOU Rick Varnel -- 21P373

4ème Année Génie Informatique

SUPERVISEUR:

Dr CHANA & Dr Ngounou

Table des matières

1.	Introduction	. 2
2.	Diagrammes d'analyse	. 3
2.1.	Diagramme de cas d'utilisation	. 3
2.2.	Diagrammes de séquence système	. 4
2.3.	Diagrammed deactivate	. 7
3.	Diagrammes de conception	. 8
3.1.	Diagrammes de séquence technique	. 8
4	Conclusion	10

1. Introduction

La semaine dernière nous avons eu à travailler sur le contexte de notre projet, le problème résolu, la démarche à adopter, donner la liste du matériel requis, faire une organisation de l'équipe et établir un planning. Cette semaine nous somme passés a la conception du projet en réalisant les diagrammes d'analyse et de conception de notre suiveur solaire.

2. Diagrammes d'analyse

2.1. Diagramme de cas d'utilisation

Acteur principal: l'utilisateur.

Acteurs secondaires: le soleil et la batterie.

Cas d'utilisation :

- Mettre en marche : l'utilisateur appuie sur le bouton on pour mettre en marche le dispositif
- Détecter le capteur ayant l'intensité maximale : le microcontrôleur va se charger de comparer les valeurs des capteurs et déterminer celui qui reçoit plus de rayonnement
- Ajuster la position des panneaux : après avoir détecter le capteur on va diriger le panneau en sa direction jusqu'à ce que tous les capteurs retournent la même valeur
- Transférer l'énergie emmagasinée dans un support de stockage : l'énergie captée par le panneau sera stockée dans une batterie
- Arrêter : l'utilisateur appuie sur le bouton on pour arrêter le dispositif.

2.2. Diagrammes de séquence système

> Mettre en marche

> Détecter le capteur ayant l'intensité maximale

> Ajuster la position des panneaux

> Transférer l'énergie emmagasinée dans un support de stockage

> Arrêter

2.3. Diagrammes d'activité

> Détecter le capteur ayant l'intensité maximale

> Transférer l'énergie emmagasinée dans un support de stockage

3. Diagrammes de conception

3.1. Diagrammes de séquence technique

> Détecter le capteur ayant l'intensité maximale

> Ajuster la position des panneaux

> Transférer l'énergie emmagasinée dans un support de stockage

4. Conclusion

En somme, cette semaine marque l'accomplissement d'une étape de plus de notre planning qui était celle de la conception. Nous entamerons prochainement le développement électronique c'est-à-dire le l'implémentation du code ardin et le montage électronique.