PW PACKAGE (TOP VIEW)

IN-2 Γ

E/O2 **1** 2

V_{CC} **[**] 3

OUT2 | 4

OUT3 [5

OUT1 **1** 6

GND **∏** 7

SCP 1 8

16 TE/O3

15 ∏ IN-3

14 | IN-1

13 TE/O1

12 CT/RT

11 **□** DTC2

10 DTC1/3

9 VREF

SLVS169 - JANUARY 2000

- Low Voltage Operation . . . 2.5 V to 7 V
- Low Power . . . 3. 5 mA (f = 500 kHz, Duty = 50%)
- Internal Undervoltage Lockout Protection
- Internal Short Circuit Protection
- Wide Operating Frequency . . . 50 kHz to 1 MHz
- Internal Precision Reference . . . 1.25 V ±1% (25°C)
- On/Off Switch for CH1/3 Pair and Ch2 (see Function Table)
- 0 to 100% Dead Time Control
- Totem Pole Output Stage
- Smal I Package . . . 16 Pin TSSOP

description

The TPS5100 is a triple PWM control circuit, primarily designed to compose the power supply for LCD display. Each PWM channel has own error amplifier, PWM comparator, dead-time control and output driver. The trimmed voltage reference, oscillator, undervoltage lockout and short circuit protection are common for all channels.

This device includes two boost exclusive circuits (ch1,3) and a buck-boost exclusive circuit (ch2). The operating frequency is set with external resister and capacitor, and dead time is continuously adjustable form 0% to 100% duty cycle with resistive divider network. Soft start function can be implemented by adding a capacitor to dead time divider network. Two dead time control inputs are assigned for ch1,3 pair and ch2 individually and each dead time control input can be used to control on/off operation. TPS5100 can operate from 2.5 V supply voltage and ch1,3 pair and ch2 operate with reverse phase switching each other to achieve efficient operation in low power and battery powered system.

The TPS5100 is characterized for operation from -20°C to 85°C.

FUNCTION TABLE

CONDITION		OUTPUT	
CONDITION	CH-1	CH-2	CH-3
DTC1/3 >. 0.3 V, DTC2 > 0.3 V	ON H	ON L	ON H
DTC1/3 > 0.3 V, DTC2 <. 0.2 V	ON H	OFF H	ON H
DTC1/3 < 0.2 V, DTC2 > 0.3 V	OFF L	ON L	OFF L
DTC1/3 < 0.2 V, DTC2 < 0.2 V	OFF L	OFF H	OFF L

AVAILABLE OPTIONS

	PACKAGE
TA	TSSOP
	(PW)
-20°C to 85°C	TPS5100PW

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

functional block diagram

NOTE A: All voltages and currents listed are nominal.

SLVS169 - JANUARY 2000

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 3.3 \text{ V}$ (unless otherwise noted) (see Note 1)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
VREF	Reference voltage	$I_{REF} = -1 \text{ mA},$	T _A = 25°C	1.237	1.250	1.263	V
VREF(dev)	Reference voltage change with TA	$I_{REF} = -1 \text{ mA},$	See Note 2		15	25	mV
REGIN	Input regulation	$I_{REF} = -1 \text{ mA},$	$V_{CC} = 2.5 \text{ V to 7 V}$		2	5	mV
REGL	Output regulation	I _{REF} = -0.1 mA to -1 mA			1	5	mV
los	Short-circuit output current	$V_{REF} = 0$		-2	-10	-30	mA

NOTES: 1. Typical values of all parameters except for $V_{REF(dev)}$ and f_{dT} are specified at $T_A = 25$ °C.

2. The deviation parameter V_{REF(dev)} is defined as the difference between the maximum and minimum values obtained over the recommended free-air temperature range (–20°C to 85°C).

undervoltage lockout section

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VTH	Upper threshold voltage	T _A = 25°C	2.2	2.3	2.4	V
VTL	Lower threshold voltage	T _A = 25°C	2	2.1	2.2	V
V _{hys}	Hysteresis (V _{TH} – V _{TL})	T _A = 25°C	0.1	0.2	0.3	V

NOTE 1: Typical values of all parameters except for $V_{REF(dev)}$ and f_{dT} are specified at $T_A = 25^{\circ}C$.

protection control section

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ISCP	Input terminal source current		-1.4	-2	-2.6	μΑ
V _{T2}	Input threshold voltage	CH-1, 3	1.10	1.15	1.20	V
V _{T3}		CH-2	0.20	0.25	0.30	V
٧R	Latch reset threshold voltage	T _A = 25°C	0.8	1.5		V
V _{T5}	Threshold voltage		1.20	1.25	1.30	V

NOTE 1: Typical values of all parameters except for $V_{REF(dev)}$ and f_{dT} are specified at $T_A = 25$ °C.

oscillator section

	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
fosc	Frequency	$C_T = 130 pF$,	$R_T = 7 \text{ k}\Omega$	400	500	600	kHz
fdV	Frequency change with V _{CC}	$V_{CC} = 2.5 \text{ V},$ $C_{T} = 130 \text{ pF},$	$T_A = 25^{\circ}C$, $R_T = 7 \text{ k}\Omega$		1%	2%	
fdT	Frequency change with TA	$C_T = 130 pF$,	$R_T = 7 \text{ k}\Omega$		5%	10%	
I _{CT/RT}	Output source current			-180	-200	-220	μΑ
Vosch	H level output voltage			0.95	1	1.05	V
Voscl	L level output voltage			0.35	0.40	0.45	V

NOTE 1: Typical values of all parameters except for $V_{REF(dev)}$ and f_{dT} are specified at $T_A = 25^{\circ}C$.

dead time control section

dodd tillio dollari doddoll								
	PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT	
I _{BDT1/3}	lament biog summer	V _{DTC1/3} = 0.35 V to 1.05 V				200	nA	
I _{BDT2}	Input bias current	V _{DTC2} = 0.35 \	= 0.35 V to 1.05 V		±2	±20	IIA	
V _{T1}	Comparator threshold voltage			0.2	0.25	0.3	V	
V _{T0} (DTC1/3)	Input throubold voltage (DTC1/2) (see Note 2)	Duty = 0%	fo.co - 500 kHz	0.3	0.4	0.5	V	
VT100(DTC1/3)	Input threshold voltage (DTC1/3) (see Note 3)	Duty = 100%	fOSC = 500 kHz	0.9	1	1.1	V	
V _{T0} (DTC2)	Input threshold voltage (DTC2) (see NOte 2)	Duty = 0%	fo.co - 500 kHz	0.3	0.4	0.5	V	
VT100(DTC2)	Input threshold voltage (DTC2) (see NOte 3)	Duty = 100%	fosc = 500 kHz	0.9	1	1.1	V	

NOTES: 1: Typical values of all parameters except for $V_{REF(dev)}$ and f_{dT} are specified at $T_A = 25^{\circ}C$.

3. These specifications are not production tested. They are specified as ensured values on circuit design.

SLVS169 – JANUARY 2000

electrical characteristics over recommended operating free-air temperature range, $V_{CC} = 3.3 \text{ V}$ (unless otherwise noted) (see Note 1) (continued)

error amplifier section

	PARAMETER	TES	ST CONDITIONS	MIN	TYP	MAX	UNIT
۷ıO	Input offset voltage	CH1, 3,	A _V = 1			15	mV
1	Input bias current	CH1, 3,	$V_{I} =95 \text{ V to } 1.55 \text{ V}$		±10	±20	nA
ΙΒ	input bias current	CH2,	$V_{I} = 0.4 \text{ V to 1 V}$		±10	±20	IIA
\/.=	lanut voltage renge	CH1, 3,		0.95		1.55	V
VIR	Input voltage range	CH2		0.4		1	V
A _{VD}	Open-loop voltage amplification	R _{FB} = 200 kΩ			60		dB
B ₁	Unity-gain bandwidth				1		MHz
V _{OM+}	Output voltage swing	V _{ID} = 0.1 V	ΙΟ = 60 μΑ	1.2			V
V _{OM} –	Output voltage swing	$V \mid D = 0.1 \text{ A}$	I _O = 0.2 mA			0.2	V
I _{OM+}	Output sink current	$V_{ID} = 0.1 V$,	V _O = 0.2 V	0.2	1		mA
I _{OM} _	Output source current	$V_{ID} = 0.1 V$,	V _O = 1.2 V	-60	-100		μΑ
\/	Input bigg voltage	CH2,	$A_V = 1$, $T_A = 25^{\circ}C$	678	700	722	mV
V _{T4}	Input bias voltage	CH2,	A _V = 1	665	700	735	IIIV

NOTE 1: Typical values of all parameters except for $V_{REF(dev)}$ and f_{dT} are specified at $T_A = 25$ °C.

output section

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VOH	High-level output voltage	I _O = 20 mA (CH2)	2.9	3.05		V
		$I_O = -40 \text{ mA (CH1, 3)}$	1.9	2.2	2.6	V
\/	Low-level output voltage	I _O = 20 mA (CH1, 3)		0.2	0.4	V
VOL		I _O = 40 mA (CH2)	0.2	0.3	0.6	V
t _r	Rise time	CL = 1000 pF		130		ns
tf	Fall time	I _O = 1000 pF		50		ns

NOTE 1: Typical values of all parameters except for $V_{REF(dev)}$ and f_{dT} are specified at $T_A = 25^{\circ}C$.

total device

	PARAMETER	TEST CONDITIONS		TYP	MAX	UNIT
ICC	Supply current	Output OFF state		2.5	4	mA
ICCA	Average supply current	FOSC = 500 kHz, Duty = 50%, No load		3.5	5	mA

NOTE 1: Typical values of all parameters except for $V_{REF(dev)}$ and f_{dT} are specified at $T_A = 25$ °C.

Figure 7

INPUT THRESHOLD VOLTAGE (DTC)

SLVS169 - JANUARY 2000

MECHANICAL DATA

PW (R-PDSO-G**)

14 PIN SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated