- Espaces vectoriels

Seuls les espaces vectoriels \mathbb{R}^n sont au programme.

I - Systèmes d'équations linéaires

Définition 1 - Système linéaire

Soient $a_{1,1},\ldots,a_{1,p},\ldots,a_{n,1},\ldots,a_{n,p},b_1,\ldots,b_n$ des réels. Le système (\mathcal{S})

$$(\mathscr{S}) \begin{cases} a_{1,1}x_1 + \dots + a_{1,p}x_p &= b_1 \\ a_{2,1}x_1 + \dots + a_{2,p}x_p &= b_2 \\ &\vdots &= \vdots \\ a_{n,1}x_1 + \dots + a_{n,p}x_p &= b_n \end{cases}$$

est un système linéaire d'inconnues x_1, \ldots, x_p .

- Un p-uplet (x_1, \ldots, x_p) est solution de (\mathcal{S}) s'il est solution de chacune des lignes du système.
- Deux systèmes sont dits équivalents s'ils ont le même ensemble de solutions.

Exemple 1

Les systèmes suivants sont des systèmes d'équations linéaires :

$$\begin{cases}
2x + 3y + z = 0 \\
x + 5y + 2z = 1
\end{cases}$$

$$\begin{cases}
2x + 3y = 1 \\
2x + y = 3 \\
x + 5y = 2
\end{cases}$$

$$\bullet \ \left\{ 2x + 3y + 5z = 2 \right.$$

$$\bullet \ \Big\{ 2x + 3y = 1$$

$$\begin{cases}
2x + y = 3
\end{cases}$$

Géométrie

• Soit $(a, b, c) \in \mathbb{R}^3$ tel que $(a, b) \neq (0, 0)$. L'ensemble suivant est une droite en dimension 2:

$$\mathscr{D} = \{(x,y) \in \mathbb{R}^2 ; ax + by + c = 0\}.$$

Lorsque c=0, l'ensemble \mathcal{D} est un espace vectoriel.

• Soit $(a, b, c, d) \in \mathbb{R}^3$ tel que $(a, b, c) \neq (0, 0, 0)$. L'ensemble suivant est un plan en dimension 3:

$$\mathscr{P} = \{(x, y, z) \in \mathbb{R}^3 : ax + by + cz + d = 0\}.$$

Lorsque d = 0, l'ensemble \mathscr{P} est un espace vectoriel.

Définition 2 - Opérations élémentaires

Nous noterons L_1, \ldots, L_n les lignes du système et appellerons opérations élémentaires sur les lignes du système les transformations suivantes:

- Pour $i \neq j$, l'échange des lignes L_i et L_j , symbolisé par $L_i \leftrightarrow L_i$.
- Pour $\alpha \neq 0$, la multiplication de la ligne L_i par α , symbolisée par $L_i \leftarrow \alpha L_i$.
- Pour $i \neq j$ et $\beta \in \mathbb{R}$, l'ajout à L_i de la ligne L_i multipliée par β , symbolisé par $L_i \leftarrow L_i + \beta L_i$.

Théorème 1

39

Le système obtenu par application d'opérations élémentaires sur les lignes est équivalent au système initial.

Principe de l'algorithme du pivot de Gauss : On utilise les opérations élémentaires pour transformer le système en un système échelonné.

Algorithme:

- On cherche une ligne où le coefficient α de x_1 est non nul et simple. Notons cette ligne L_{i_0} .
- On échange les lignes 1 et $i_0, L_1 \leftrightarrow L_{i_0}$.
- On utilise la nouvelle ligne L_1 pour éliminer les occurrences de x_1 dans les lignes suivantes, c'est la ligne pivot. Par exemple, si à la ligne L_2 le coefficient de x_1 est a, on effectue $L_2 \leftarrow \alpha L_2 a L_1$.
- On reprend ensuite les étapes de l'algorithme en travaillant sur toutes les lignes sauf la première de manière à éliminer x_2 ...
- Enfin, on exprime les solutions en fonction des variables libres.

Définition 3 - Rang d'un système linéaire

Le rang du système est le nombre d'équations non triviales du système échelonné.

Théorème 2 - Ensemble de solutions

Soit S l'ensemble des solutions du système (\mathscr{S}).

- Soit $S = \emptyset$, les équations sont *incompatibles*.
- ullet Soit S est un singleton, le rang est alors égal au nombre d'inconnues.
- ullet Soit S est infini, le rang est alors strictement inférieur au nombre d'inconnues.

Exemple 2 - Résolution de système

• Résolvons le système suivant avec l'algorithme du pivot de Gauss :

$$(\mathscr{S}) \begin{cases} 2x + 3y + z &= 7 \\ x - y + 2z &= -3 \\ 3x + y - z &= 6 \end{cases}$$

$$(x, y, z) \in \mathbb{R}^3$$
 est solution de (\mathscr{S})

$$\Leftrightarrow \begin{cases} x - y + 2z &= -3 & \iota_{1} \leftrightarrow \iota_{2} \\ 2x + 3y + z &= 7 \\ 3x + y - z &= 6 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - y + 2z &= -3\\ 5y - 3z &= 13 \quad L_2 \leftarrow L_2 - 2L_1\\ 4y - 7z &= 15 \quad L_3 \leftarrow L_3 - 3L_1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - y + 2z &= -3\\ 5y - 3z &= 13\\ -23z &= 23 \quad L_3 \leftarrow 5L_3 - 4L_2 \end{cases}$$

Le système (\mathscr{S}) possède une unique solution. L'ensemble des solutions est $\{(1,2,-1)\}$.

• Résolvons le système suivant avec l'algorithme du pivot de Gauss :

$$(\mathscr{S}) \begin{cases} x+y &= 2\\ x-2y &= 5 \end{cases}.$$

 $(x,y) \in \mathbb{R}^2$ est solution de (\mathscr{S})

$$\Leftrightarrow \begin{cases} x+y = 2 \\ x-2y = 5 \end{cases} \Leftrightarrow \begin{cases} x+y = 2 \\ 3y = -3 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 3 \\ y = -1 \end{cases}$$

Le système (\mathcal{S}) possède une unique solution. L'ensemble des solutions est $\{(3,-1)\}$.

• Résolvons le système

$$(\mathscr{S}) \left\{ x + 2y + 3z = 1 \right.$$

Ce système est déjà échelonné. Ainsi, (x, y, z) est solution de (\mathcal{S})

$$\Leftrightarrow \exists \lambda, \mu \in \mathbb{R} ; \begin{cases} x = 1 - 2\lambda - 3\mu \\ y = \lambda \\ z = \mu \end{cases}$$

Le système (\mathcal{S}) possède une infinité de solutions. L'en-

semble des solutions est

$$\{(1 - 2\lambda - 3\mu, \lambda, \mu), (\lambda, \mu) \in \mathbb{R}^2\}$$

= $\{(1, 0, 0) + \lambda(-2, 1, 0) + \mu(-3, 0, 1), (\lambda, \mu) \in \mathbb{R}^2\}$.

II - Espaces vectoriels

On note $\overrightarrow{0_n} = (0, \dots, 0) \in \mathbb{R}^n$. Les lettres n et p désignent des entiers naturels non nuls.

Définition 4 - L'espace vectoriel \mathbb{R}^n

On définit sur \mathbb{R}^n l'addition et la multiplication par un réel de la manière suivante :

Addition. Si
$$(x_1, \ldots, x_n) \in \mathbb{R}^n$$
 et $(y_1, \ldots, y_n) \in \mathbb{R}^n$,

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n).$$

Multiplication par un réel. Si $(x_1, \ldots, x_n) \in \mathbb{R}^n$ et $\alpha \in \mathbb{R}$,

$$\alpha \cdot (x_1, \dots, x_n) = (\alpha x_1, \dots, \alpha x_n).$$

Exemple 3 - Cas où n=2, 3

• Si n = 2.

$$(1,2) + (3,4) = (4,6)$$

 $(1,5) + (-1,0) = (0,5)$
 $3 \cdot (4,2) = (12,6)$

• Si n = 3.

$$(1,-1,2) + (4,5,-5) = (5,4,-3)$$

 $(1,0,-1) + (3,1,2) = (4,1,1)$
 $2 \cdot (4,1,-2) = (8,2,-4)$

Proposition 1 - Structure d'espace vectoriel

- Propriétés de l'addition. Soit x, y, z des vecteurs de \mathbb{R}^n .
 - * Associativité : x + (y + z) = (x + y) + z.
 - * Élément neutre : $x + \overrightarrow{0_n} = \overrightarrow{0_n} + x = x$.
 - * Existence d'un opposé : $x+(-1)\cdot x=(-1)\cdot x+x=\overrightarrow{0_n}$.
 - \star Commutativité : x + y = y + x.
- Propriétés de la multiplication par un réel. Soit $x, y \in \mathbb{R}^n$ et $\alpha, \beta \in \mathbb{R}$.

$$\alpha \cdot (\beta \cdot x) = (\alpha \beta) \cdot x \mid (\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$$
$$1 \cdot x = x \quad \alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$$

 \mathbb{R}^n est un espace vectoriel. Les éléments de \mathbb{R}^n sont des vecteurs.

III - Familles de vecteurs

Dans tout ce chapitre, p désigne un entier naturel non nul.

III.1 - Sous-espace vectoriel

Définition 5 - Sous-espace vectoriel

Une parție A de \mathbb{R}^n est un sous-espace vectoriel si

- $\bullet \overrightarrow{0_n} \in A$,
- pour tout $u, v \in A$ et $\alpha, \beta \in \mathbb{R}, \alpha u + \beta v \in A$.

Exemple 4 - Exemples classiques de sous-espaces vectoriels

- \mathbb{R}^n est un sous-espace vectoriel de \mathbb{R}^n .
- $\left\{\overrightarrow{0_n}\right\}$ est un sous-espace vectoriel de \mathbb{R}^n .
- Géométriquement,
 - \star les droites sont des sous-espaces vectoriels de \mathbb{R}^2 .
 - \star les droites sont des sous-espaces vectoriels de \mathbb{R}^3 .
 - \star les plans sont des sous-espaces vectoriels de \mathbb{R}^3 .

Exemple 5 - Exemples de sous-espaces vectoriels

- Soit $F = \{(x, y, z) \in \mathbb{R}^3 ; x + y + z = 0, 2x + 3y + 5z = 0\}$. Alors, F est un sous-espace vectoriel de \mathbb{R}^3 . En effet,
 - $\star 0 + 0 + 0 = 0$ et $2 \times 0 + 3 \times 0 + 5 \times 0 = 0$. Ainsi, $\overrightarrow{0_3} \in F$.
 - \star Soient $u=(x_1,y_1,z_1),$ $v=(x_2,y_2,z_2)$ deux vecteurs de F et $\alpha,$ β deux réels. Alors,

$$\begin{cases} x_1 + y_1 + z_1 &= 0 \\ 2x_1 + 3y_1 + 5z_1 &= 0 \end{cases} \text{ et } \begin{cases} x_2 + y_2 + z_2 &= 0 \\ 2x_2 + 3y_2 + 5z_2 &= 0 \end{cases}.$$

De plus, $\alpha u + \beta v = (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha z_1 + \beta z_2)$. Ainsi,

$$\begin{cases} (\alpha x_1 + \beta x_2) + (\alpha y_1 + \beta y_2) + (\alpha z_1 + \beta z_2) \\ = \alpha (x_1 + y_1 + z_1) + \beta (x_2 + y_2 + z_2) = 0 \\ 2(\alpha x_1 + \beta x_2) + 3(\alpha y_1 + \beta y_2) + 5(\alpha z_1 + \beta z_2) \\ = \alpha (2x_1 + 3y_1 + 5z_1) + \beta (2x_2 + 3y_2 + 5z_2) = 0 \end{cases}$$

Donc $\alpha u + \beta v$ appartient à F.

Finalement, F contient le vecteur nul et est stable par combinaisons linéaires, donc F est un sous-espace vectoriel de \mathbb{R}^3 .

• Soit $\mathscr{F} = \{(x, y, z) \in \mathbb{R}^3 ; x + y + z = 1, 2x + 3y + 5z = 3\}$. Alors, \mathscr{F} n'est pas un sous-espace vectoriel de \mathbb{R}^3 . En effet, $0 + 0 + 0 = 0 \neq 1$, donc $\overrightarrow{0_3}$ n'appartient pas à \mathscr{F} .

Définition 6 - Combinaison linéaire

Soit (u_1, \ldots, u_p) une famille de vecteurs de \mathbb{R}^n .

- si $\alpha_1, \ldots, \alpha_p \in \mathbb{R}$, le vecteur $\alpha_1 u_1 + \cdots + \alpha_p u_p$ est une combinaison linéaire des vecteurs (u_1, \ldots, u_p) .
- L'ensemble des combinaisons linéaires de (u_1, \ldots, u_p) est noté :

$$\operatorname{Vect}\{u_1,\ldots,u_p\} = \left\{ \sum_{i=1}^p \alpha_i u_i, \, (\alpha_1,\ldots,\alpha_p) \in \mathbb{R}^p \right\}.$$

Proposition 2

Soit (u_1, \ldots, u_p) une famille de vecteurs de \mathbb{R}^n . Alors, Vect $\{u_1, \ldots, u_p\}$ est un sous-espace vectoriel de \mathbb{R}^n .

Exemple 6 - Un peu de géométrie

- $D = \text{Vect}\{(1,2)\} = \{\alpha(1,2), \alpha \in \mathbb{R}\}$ est un sous-espace vectoriel de \mathbb{R}^2 . L'ensemble D est une droite de \mathbb{R}^2 .
- $D = \text{Vect}\{(1,0)\} = \{\alpha(1,0), \alpha \in \mathbb{R}\}$ est un sous-espace vectoriel de \mathbb{R}^2 . L'ensemble D est une droite de \mathbb{R}^2 .
- $D = \text{Vect}\{(1,0,1)\} = \{\alpha(1,0,1), \alpha \in \mathbb{R}\}$ est un sous-espace vectoriel de \mathbb{R}^3 . L'ensemble D est une droite de \mathbb{R}^2 .
- $P = \text{Vect}\{(1,0,0),(0,0,1)\} = \{(\alpha,0,\beta), \alpha,\beta \in \mathbb{R}\}$ est un sous-espace vectoriel de \mathbb{R}^3 . L'ensemble P est un plan de \mathbb{R}^3 .

Exemple 7 - Équation cartésienne \rightarrow Combinaison linéaire

Cette transformation repose sur la résolution d'un système linéaire via l'algorithme du pivot de Gauss.

Soit $F = \{(x, y, z) \in \mathbb{R}^3 ; x + y + z = 0 \text{ et } 2x + 3y + 5z = 0\}$. Écrivons F comme un ensemble de combinaisons linéaires.

$$(x, y, z) \in F \Leftrightarrow \begin{cases} x + y + z &= 0\\ 2x + 3y + 5z &= 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + y + z = 0 \\ y + 3z = 0 \end{cases} \Leftrightarrow \exists \lambda \in \mathbb{R} ; \begin{cases} x = 2\lambda \\ y = -3\lambda \\ z = \lambda \end{cases}$$

Ainsi,

$$F = \{\lambda \cdot (2, -3, 1), \lambda \in \mathbb{R}\} = \text{Vect}\{(2, -3, 1)\}.$$

Exemple 8 - Combinaison linéaire \rightarrow Équation cartésienne

Cette transformation repose sur l'existence d'une solution d'un système linéaire via l'algorithme du pivot de Gauss.

Soit $F = \text{Vect}\{(1, 2, 3), (1, 0, 1), (2, 2, 4)\}.$

Déterminons une équation cartésienne de F.

 $(x, y, z) \in F$ si et seulement s'il existe $(\lambda, \mu, \nu) \in \mathbb{R}^3$ tel que $(x, y, z) = \lambda(1, 2, 3) + \mu(1, 0, 1) + \nu(2, 2, 4)$

si et seulement si le système suivant admet une solution :

$$\begin{cases} \lambda + \mu + 2\nu &= x \\ 2\lambda + 2\nu &= y \Leftrightarrow \begin{cases} \lambda + \mu + 2\nu &= x \\ -2\mu - 2\nu &= y - 2x & L_2 \leftarrow L_2 - 2L_1 \\ -2\mu - 2\nu &= z - 3x & L_3 \leftarrow L_3 - 3L_1 \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda + \mu + 2\nu &= x \\ -2\mu - 2\nu &= y - 2x \\ 0 &= x - 2y + z & L_3 \leftarrow L_3 - L_2 \end{cases}$$

Ainsi, une description de F via une équation cartésienne est

$$\{(x, y, z) \in \mathbb{R}^3 ; x - 2y + z = 0\}.$$

Proposition 3

Soit (u_1, \ldots, u_p) une famille de vecteurs de \mathbb{R}^n , $(\alpha_2, \ldots, \alpha_p) \in \mathbb{R}^p$ et $\alpha_1 \neq 0$. Alors,

- Vect $\{u_1, \dots, u_p\}$ = Vect $\left\{\alpha_1 u_1 + \sum_{i=2}^p \alpha_i u_i, u_2, \dots, u_p\right\}$.
- Si $u_p \in \text{Vect}\{u_1, \dots, u_{p-1}\}$, alors

$$\text{Vect } \{u_1, \dots, u_p\} = \text{Vect } \{u_1, \dots, u_{p-1}\}.$$

III.2 - Bases

Dans cette partie, (u_1, \ldots, u_p) désigne une famille de vecteurs de \mathbb{R}^n .

Définition 7 - Famille libre

La famille (u_1, \ldots, u_p) est *libre* si, pour tout $\alpha_1, \ldots, \alpha_p \in \mathbb{R}$,

$$\sum_{i=1}^{p} \alpha_i u_i = \overrightarrow{0_n} \implies \forall i \in [[1, p]], \ \alpha_i = 0.$$

La famille (u_1, \ldots, u_n) est une famille de vecteurs linéairement indépendants.

Exemple 9

• La famille ((1,2),(3,4)) est une famille libre de \mathbb{R}^2 . En effet, soit $\alpha, \beta \in \mathbb{R}$ tels que $\alpha(1,2) + \beta(3,4) = (0,0)$. Alors,

$$(\alpha + 3\beta, 2\alpha + 4\beta) = (0, 0)$$

Ainsi,

$$\begin{cases} \alpha + 3\beta &= 0 \\ 2\alpha + 4\beta &= 0 \end{cases} \Leftrightarrow \begin{cases} \alpha + 3\beta &= 0 \\ -2\beta &= 0 \end{cases} \Leftrightarrow \begin{cases} \alpha &= 0 \\ \beta &= 0 \end{cases}$$

• La famille ((1,2,-1),(2,1,1)) est une famille libre de \mathbb{R}^3 . En effet, soit $\alpha, \beta, \gamma \in \mathbb{R}$ tels que

$$\alpha(1,2,-1) + \beta(2,1,1) = (0,0,0).$$

Alors,

$$(\alpha + 2\beta, 2\alpha + \beta, -\alpha + \beta) = (0, 0, 0).$$

Ainsi,

$$\begin{cases} \alpha + 2\beta &= 0 \\ 2\alpha + \beta &= 0 \\ -\alpha + \beta &= 0 \end{cases} \Leftrightarrow \begin{cases} \alpha + 2\beta &= 0 \\ -3\beta &= 0 \\ 3\beta &= 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} \alpha &= 0 \\ \beta &= 0 \end{cases}$$

Définition 8 - Vecteurs colinéaires

Soit $u, v \in \mathbb{R}^n$. Les vecteurs u et v sont colinéaires s'il existe $\lambda \in \mathbb{R}$ tel que

$$u = \lambda v$$
 ou $v = \lambda u$.

Proposition 4 - Colinéarité et liberté

Soit $u, v \in \mathbb{R}^n$. La famille (u, v) est liée si et seulement si les vecteurs u et v sont colinéaires.

Définition 9 - Famille génératrice

Soit F un sous-espace vectoriel de \mathbb{R}^n . La famille (u_1, \ldots, u_p) est une famille $g\acute{e}n\acute{e}ratrice$ de F si, pour tout $x \in F$, il existe $\alpha_1, \ldots, \alpha_p \in \mathbb{R}$ tels que $x = \sum_{i=1}^p \alpha_i u_i$.

Exemple 10 - Famille génératrice

La famille ((1,2),(3,4)) est une famille génératrice de \mathbb{R}^2 . Soit $u=(x,y)\in\mathbb{R}^2$. Recherchons α,β réels tels que

$$u = \alpha(1, 2) + \beta(3, 4).$$

Alors,

$$\begin{cases} x &= \alpha + 3\beta \\ y &= 2\alpha + 4\beta \end{cases} \Leftrightarrow \begin{cases} \alpha + 3\beta &= x \\ -2\beta &= y - 2x \end{cases} \Leftrightarrow \begin{cases} \alpha &= -2x + \frac{3}{2}y \\ \beta &= x - \frac{1}{2}y \end{cases}$$

Définition 10 - Base

Soit F un sous-espace vectoriel de \mathbb{R}^n . La famille (u_1, \ldots, u_p) est une *base* de F si elle est génératrice et que ses vecteurs sont linéairement indépendants.

Exemple 11 - Bases canoniques

- ((1,0),(0,1)) est une base de \mathbb{R}^2 .
- ((1,0,0),(0,1,0),(0,0,1)) est une base de \mathbb{R}^3 .

Proposition 5 - Dimension

Soit F un sous-espace vectoriel de \mathbb{R}^n . Si (u_1,\ldots,u_p) et (v_1,\ldots,v_q) sont des bases de F, alors p=q. L'entier p est la dimension de l'espace vectoriel F, noté dim F. Par convention, dim $\left\{\overrightarrow{O_n}\right\}=0$.

Exemple 12 - Dimensions

- Comme ((1,0),(0,1)) est une base de \mathbb{R}^2 , alors dim $\mathbb{R}^2=2$.
- Comme ((1,0,0),(0,1,0),(0,0,1)) est une base de \mathbb{R}^3 , alors dim $\mathbb{R}^3 = 3$.
- Plus généralement, dim $\mathbb{R}^n = n$.
- Soit $F = \{(x, y, z) \in \mathbb{R}^3 ; x + 2y + z = 0\}$. Alors, $(x, y, z) \in F$ si et seulement si

$$\begin{cases} x + 2y + z = 0 \iff \exists \lambda, \mu \in \mathbb{R} ; \begin{cases} x = -2\lambda - \mu \\ y = \lambda \\ z = \mu \end{cases}$$

$$\Leftrightarrow (x, y, z) \in \text{Vect} \{(-2, 1, 0), (-1, 0, 1)\}.$$

Ainsi, ((-2,1,0),(-1,0,1)) est une base de F et $\dim F = 2$.

Définition 11 - Un peu de géométrie

Soit E un espace vectoriel de dimension n et F un sous-espace vectoriel de E. Alors, F est de dimension finie.

- Si dim F = 1, alors F est une droite.
- Si dim F = 2, alors F est un plan.
- Si dim F = n 1, alors F est un hyperplan.

Proposition 6 - Caractérisation des bases

Soit F un sous-espace vectoriel de dimension q de \mathbb{R}^n et (u_1, \ldots, u_p) une famille de vecteurs de F. Il y a équivalence entre :

- (i). (u_1, \ldots, u_p) est une base de F.
- (ii). (u_1, \ldots, u_p) est une famille de vecteurs linéairement indépendants et p = q.
- (iii). (u_1, \ldots, u_p) est une famille génératrice de F et p = q.

Exemple 13

La liberté d'une famille est souvent plus facile à montrer que le caractère générateur. Si la dimension de l'espace vectoriel est connue, on montrera qu'une famille est une base en étudiant sa liberté et son nombre d'éléments.

Montrons que la famille $\mathscr{B} = ((1,2,3),(1,0,1),(0,1,-1))$ est une base de \mathbb{R}^3 .

- La famille \mathscr{B} est une famille de 3 vecteurs de \mathbb{R}^3 , espace vectoriel de dimension 3.
- Montrons que \mathcal{B} est une famille libre. Soit $\alpha, \beta, \gamma \in \mathbb{R}$ tels que

$$\alpha(1,2,3) + \beta(1,0,1) + \gamma(0,1,-1) = (0,0,0).$$

Alors,

$$\begin{cases} \alpha + \beta &= 0 \\ 2\alpha + \gamma &= 0 \\ 3\alpha + \beta - \gamma &= 0 \end{cases} \Leftrightarrow \begin{cases} \alpha + \beta &= 0 \\ -2\beta + \gamma &= 0 \\ -2\beta - 4\gamma &= 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} \alpha + \beta &= 0 \\ -2\beta + \gamma &= 0 \\ 5\gamma &= 0 \end{cases}$$

soit
$$\alpha = \beta = \gamma = 0$$
.

Finalement, \mathcal{B} est une famille libre constituée 3 vecteurs dans un espace vectoriel de dimension 3, donc \mathcal{B} est une base.

Théorème 3 - Théorème de la base incomplète

Soit F un sous-espace vectoriel de \mathbb{R}^n et (u_1, \ldots, u_p) une famille libre de F. Il existe une famille (v_{p+1}, \ldots, v_q) telle que $(u_1, \ldots, u_p, v_{p+1}, \ldots, v_q)$ soit une base de F.

Définition 12 - Coordonnées

Soit F un sous-espace vectoriel de \mathbb{R}^n , (u_1, \ldots, u_p) une base de F et $u \in F$. Il existe un unique $(\lambda_1, \ldots, \lambda_p) \in \mathbb{R}^p$ tel que $u = \sum_{i=1}^p \lambda_i u_i$.

Exemple 14 - Calcul de coordonnées

Déterminons les coordonnées de (3,1,2) dans la base ((1,2,3),(1,0,1),(0,1,-1)).

On cherche $(\lambda, \mu, \nu) \in \mathbb{R}^3$ tel que

$$(3,2,1) = \lambda(1,2,3) + \mu(1,0,1) + \nu(0,1,-1)$$

$$\Leftrightarrow \begin{cases} \lambda + \mu &= 3 \\ 2\lambda + \nu &= 2 \\ 3\lambda + \mu - \nu &= 1 \end{cases} \Leftrightarrow \begin{cases} \lambda + \mu &= 3 \\ -2\mu + \nu &= -4 \\ -2\mu - \nu &= -8 \end{cases} \underset{L_3 \leftarrow L_3 - 3L_1}{L_2 \leftarrow L_2 - 2L_1}$$

$$\Leftrightarrow \begin{cases} \lambda + \mu &= 3 \\ -2\mu + \nu &= -4 \\ -4\mu &= -12 \end{cases} \Leftrightarrow \begin{cases} \lambda &= 0 \\ \nu &= 2 \\ \mu &= 3 \end{cases}$$
Ainsi,

$$(3,2,1) = 0 \cdot (1,2,3) + 3 \cdot (1,0,1) + 2 \cdot (0,1,-1).$$

IV - Matrices

L'ensemble des matrices est un espace vectoriel. Aborder les matrices sous cet angle est hors programme.

IV.1 - Définitions

Définition 13 - Matrices

Soit n, p deux entiers naturels non nuls.

- Une matrice de taille (n, p) est un tableau de nombres réels constitué de n lignes et p colonnes.
- Le coefficient d'indice (i, j) d'une matrice est le coefficient situé à la i^e ligne et j^e colonne.
- L'ensemble des matrices de réels à n lignes et p colonnes est noté $\mathcal{M}_{n,p}(\mathbb{R})$.
- Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$. On note généralement

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,p} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,p} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,p} \end{pmatrix} = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$

Exemple 15 - Matrices

$$\begin{pmatrix} 1 & 3 & 2 \\ 0 & -1 & 1 \end{pmatrix} \in \mathcal{M}_{2,3}(\mathbb{R}).$$

Définition 14 - Matrices lignes / colonnes

Soit $A \in \mathscr{M}_{n,p}(\mathbb{R})$.

- Si n = 1, alors A est une matrice lique (ou vecteur ligne).
- Si p = 1, alors A est une matrice colonne (ou vecteur colonne).

Définition 15 - Égalité entre matrices

Deux matrices $A=(a_{i,j})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant p}}$ et $B=(b_{i,j})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant p}}$ sont égales si elles ont même taille et si, pour tout $i\in\{1,\ldots,n\}$ et $j\in\{1,\ldots,p\},\ a_{i,j}=b_{i,j}.$

IV.2 - Opérations

Définition 16 - Somme, Multiplication par un réel

Soit
$$A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$$
, $B = (b_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in \mathscr{M}_{n,p}(\mathbb{R})$ et $\alpha \in \mathbb{R}$.

- L'addition de matrices de mêmes tailles est obtenue en additionnant les éléments de mêmes indices. Ainsi, la matrice A + B est la matrice de taille (n, p) et de coefficients $(c_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le n}}$ définis par $c_{i,j} = a_{i,j} + b_{i,j}$.
- La multiplication d'une matrice par un réel est obtenue en multipliant chacun des coefficients de la matrice par ce réel. Ainsi, la matrice αA est la matrice de taille (n, p) et de coefficients $(d_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ définis par $d_{i,j} = \alpha a_{i,j}$.

Exemple 16 - Opérations sur les matrices

Soit
$$A = \begin{pmatrix} 1 & 0 & \frac{3}{2} \\ 0 & 2 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 3 & 1 & -\frac{1}{2} \\ \frac{2}{3} & 1 & -2 \end{pmatrix}$. Alors,
$$A + B = \begin{pmatrix} 4 & 1 & 1 \\ \frac{2}{3} & 3 & -1 \end{pmatrix}, 3A = \begin{pmatrix} 3 & 0 & \frac{9}{2} \\ 0 & 6 & 3 \end{pmatrix}.$$

Définition 17 - Matrice nulle

La matrice de taille (n, p) dont tous les coefficients sont nuls est la matrice nulle. Elle est notée $0_{n,p}$.

Proposition 7 - Propiétés de l'addition et de la multiplication par un réel

Soit $A, B, C \in \mathcal{M}_{n,p}(\mathbb{R})$ et $\alpha, \beta \in \mathbb{R}$.

- Commutativité. A + B = B + A.
- Associativité. A + (B + C) = (A + B) + C.
- $\alpha(A+B) = \alpha A + \beta B$.
- $(\alpha + \beta)A = \alpha A + \beta A$.
- $A + (-1)A = 0_{n,p}$.

L'ensemble $\mathcal{M}_{n,p}(\mathbb{R})$ muni de l'addition et de la mutliplictaion par un réel est un espace vectoriel.

Définition 18 - Produit de matrices de tailles compatibles

Soit $A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} \in \mathscr{M}_{n,p}(\mathbb{R}), \ B = (b_{i,j})_{\substack{1 \leq i \leq p \\ 1 \leq j \leq q}} \in \mathscr{M}_{q,p}(\mathbb{R}).$ La matrice $C = A \times B$ est la matrice de taille (n,q) dont le coefficient d'indice (i,j) est donné par

$$c_{i,j} = \sum_{k=1}^{p} a_{i,k} b_{k,j}.$$

Exemple 17 - Représentation du produit matriciel

Pour effectuer un produit matriciel on représente souvent les matrices sur deux étages :

Exemple 18 - Calculs de produits

$$\bullet \ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & -1 \end{pmatrix} \times \begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & 0 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 3 & 10 \\ 0 & 1 & 2 \end{pmatrix}.$$

$$\bullet \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & -1 \end{pmatrix} \times \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ -2 \end{pmatrix}.$$

$$\bullet \ \begin{pmatrix} 2 & 5 & 1 \\ 3 & -2 & 1 \end{pmatrix} \times \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x + 5y + z \\ 3x - 2y + z \end{pmatrix}.$$

Exemple 19 - Systèmes linéaires

On considère trois suites $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ définies par $x_0=1, y_0=1, z_0=1$ et

$$\forall n \in \mathbb{N}, \begin{cases} x_{n+1} = 3x_n + y_n - z_n \\ y_{n+1} = -2x_n + 2z_n \\ z_{n+1} = z_n \end{cases}$$

Pour tout $n \in \mathbb{N}$, on note $U_n = \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}$.

D'une part,
$$U_0 = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
.

D'autre part,

$$U_{n+1} = \begin{pmatrix} x_{n+1} \\ y_{n+1} \\ z_{n+1} \end{pmatrix} = \begin{pmatrix} 3x_n + y_n - z_n \\ -2x_n + 2z_n \\ z_n \end{pmatrix} = \underbrace{\begin{pmatrix} 3 & 1 & -1 \\ -2 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix}}_{A} \times \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}.$$

On montre ensuite par récurrence que, pour tout n entier naturel, $U_n = A^n U_0$.

Proposition 8 - Propriétés du produit matriciel

Soit A, B, C trois matrices dont les tailles sont compatibles et $\alpha \in \mathbb{R}$.

- Associativité. (AB)C = A(BC).
- $\alpha(AB) = (\alpha A)B = A(\alpha B)$.
- Distributivité. (A+B)C = AC + BC et A(B+C) = AB + AC.

Définition 19 - Transposée

Soit $M \in \mathcal{M}_{n,p}(\mathbb{R})$. La transposée de la matrice M, notée M^T , est la matrice de $M^T = (\widetilde{m}_{i,j})_{1 \leq i \leq p, 1 \leq j \leq n} \in \mathcal{M}_{p,n}(\mathbb{R})$ définie par :

$$\widetilde{m}_{i,j} = m_{j,i}$$
.

Exemple 20 - Une transposition

Si
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
, alors $A^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$.

Proposition 9 - Transposée et opérations

Soit A, B, C trois matrices de tailles compatibles et $\alpha \in \mathbb{R}$. Alors,

- $\bullet \ (\alpha A + B)^T = \alpha A^T + B^T.$
- $\bullet (AB)^T = B^T A^T.$

IV.3 - Matrices carrées

Définition 20 - Matrices carrées

Une matrice carrée M d'ordre p est une matrice dont le nombre de lignes et le nombre de colonnes est égal à p. L'ensemble des matrices carrées d'ordre p est noté $\mathcal{M}_p(\mathbb{R})$.

Définition 21 - Triangulaires, Diagonales, Identité, Symétriques

- Une matrice est *triangulaire supérieure* si les coefficients en dessous de sa diagonale sont nuls.
- Une matrice est *triangulaire inférieure* si les coefficients au dessus de sa diagonale sont nuls.
- Une matrice est *diagonale* si les coefficients en dehors de sa diagonale sont nuls.
- La matrice identité est la matrice diagonale dont tous les coefficients diagonaux valent 1. La matrice identité d'ordre p est notée I_p .
- La matrice nulle est la matrice dont tous les éléments valent 0. La matrice nulle d'ordre p est notée 0_p .
- La matrice M est symétrique si $M^T = M$.

IV.4 - Opérations sur les matrices carrées

Proposition 10

Si A est une matrice carrée d'ordre p, alors

- $\bullet \ AI_p = I_p A = A.$
- $A0_p = 0_p A = 0_p$.

Définition 22 - Puissance d'une matrice

Soit A une matrice carrée d'ordre p et n un entier naturel. Alors,

•
$$A^0 = I_p$$
.

•
$$A^n = \underbrace{A \times A \times \cdots \times A}_{n \text{ fois}}$$
.

Exemple 21

Nous avons vu précédemment que le calcul de puissances peut être utile pour étudier les suites récurrentes linéaires.

Proposition 11 - Puissance d'une matrice diagonale

Soit D une matrice diagonale d'ordre p et n un entier naturel. La matrice D^n est une matrice diagonale dont les coefficients diagonaux sont ceux de D élevés à la puissance n.

Exemple 22 - Matrices diagonales

•
$$I_p^n = I_p$$
.

$$\bullet \ 0_p^n = 0_p.$$

$$\bullet \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}^n = \begin{pmatrix} 2^n & 0 & 0 \\ 0 & (-1)^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}.$$

Définition 23 - Matrices qui commutent

Soit A et B deux matrices d'ordre p. Les matrices A et B commutent si AB = BA.

Exemple 23 - Commutativité

•
$$I_2$$
 et $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ commutent.

•
$$A = \begin{pmatrix} 1 & 9 & 3 \\ -1 & 1 & 2 \\ 1 & 2 & -1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 2 & 0 & 1 \\ -3 & 4 & 2 \\ 9 & 8 & -1 \end{pmatrix}$ ne commutent pas.

Théorème 4 - Formule du binôme de Newton

Soit A et B deux matrices d'ordre p qui commutent. Alors, pour tout n entier naturel,

$$(A+B)^{n} = \sum_{k=0}^{n} \binom{n}{k} A^{k} B^{n-k} = \sum_{k=0}^{n} \binom{n}{k} A^{n-k} B^{k}.$$

Exemple 24 - Application de la formule du binôme 🐾

Soit
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 et $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

- D'une part, $A = I_2 + N$.
- D'autre part, $I_2N = NI_2 = N$. Ainsi, I_2 et N commutent.
- On remarque ensuite que $N^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

D'après la formule du binôme de Newton,

$$A^{n} = \sum_{k=0}^{n} \binom{n}{k} I_{2}^{n-k} N^{k} = \sum_{k=0}^{n} \binom{n}{k} N^{k}, \text{ car } I_{2}^{n-k} = I_{2}$$
$$= \binom{n}{0} N^{0} + \binom{n}{1} N^{1} + 0_{2} + \dots + 0_{2}$$
$$= I_{2} + nN = \binom{1}{0} \binom{n}{1}.$$

IV.5 - Matrices inversibles

Définition 24 - Matrice inversible

Une matrice A d'ordre p est inversible s'il existe une matrice B telle que $AB = I_p$. La matrice B est l'inverse de A et notée A^{-1} .

Exemple 25 - Matrices inversibles et non inversibles

- On pose $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. Comme $AB = I_2$, alors A est inversible et $A^{-1} = B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$.
- Comme $I_p \times I_p = I_p$, alors I_p est inversible et son inverse est I_p .
- Comme $0_p \times A = 0_p \neq I_p$ pour toute matrice carrée A, alors la matrice nulle n'est pas inversible.
- Soit $M = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Un simple calcul montre que $M^2 2M + I_3 = 0_3$. Ainsi,

$$M^2 - 2M = -I_3$$

 $M(M - 2I_3) = -I_3$
 $M(2I_3 - M) = I_3$.

Ainsi, M est inversible et $M^{-1} = 2I_3 - M$.

Proposition 12 - Inversibilité et produit

Soit A et B deux matrices carrées d'ordre p.

- Si A est inversible, alors A^{-1} est inversible et $(A^{-1})^{-1} = A$.
- Si A et B sont inversibles, alors AB est inversible et $(AB)^{-1} = B^{-1}A^{-1}$.

IV.6 - Critères d'inversibilité

Proposition 13 - Inversibilité des matrices diagonales

Soit D une matrice diagonale. La matrice D est inversible si et seulement si tous ses coefficients diagonaux sont non nuls. Alors, D^{-1} est la matrice diagonale dont les coefficients diagonaux sont les inverses de ceux de D.

Exemple 26 - Matrices diagonales

- Soit $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. La matrice D est diagonale et ses coefficients diagonaux sont 1, 2 et 3. Comme ils sont tous non nuls, la matrice D est inversible et $D^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}$.
- Soit $D = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. La matrice D est diagonale et ses coefficients diagonaux sont 1 et 0. La matrice D n'est pas inversible.

Proposition 14 - Inversibilité des matrices triangulaires

Soit T une matrice triangulaire. La matrice T est inversible si et seulement si tous ses coefficients diagonaux sont non nuls.

Proposition 15 - Inversibilité des matrices d'ordre 2

Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice d'ordre 2. La matrice A est inversible si et seulement si $ad - bc \neq 0$. Alors,

$$A^{-1} = \frac{1}{ad - cb} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Exemple 27 - Matrices d'ordre 2, 🗱

Soit $A = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$. Comme $2 \times 4 - 3 \times 1 = 5$ est non nul, alors A est inversible et

$$A^{-1} = \frac{1}{5} \begin{pmatrix} 4 & -1 \\ -3 & 2 \end{pmatrix}.$$

Proposition 16

Soit A une matrice inversible d'ordre p et B, C deux matrices carrées d'ordre p.

- Si AB = AC, alors B = C.
- Si BA = CA, alors B = C.

Exemple 28 - Preuve de non inversibilité 🛩

- Soit $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$ et $C = \begin{pmatrix} 1 & 1 \\ 3 & 2 \end{pmatrix}$. On remarque que AB = AC. Supposons par l'absurde que A soit inversible. Alors, B = C. Cependant, $B \neq C$. Ainsi, A n'est pas inversible.
- Soit $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. On remarque que $N \times N = 0_2$. Supposons par l'absurde que N soit inversible. Comme $N \times N = N \times 0_2$, alors $N = 0_2$. On obtient ainsi une contradiction et N n'est pas inversible.

IV.7 - Inversion par résolution de systèmes

Théorème 5 - Inverse & Système linéaire

Soit A une matrice carrée d'ordre p. La matrice A est inversible si et seulement s'il existe une matrice B telle que pour toutes X, Y matrices colonnes, le système X = AY s'écrit Y = BX. Alors, $A^{-1} = B$.

Exemple 29 - Inverse par résolution de AX = Y, \clubsuit

Soit $A=\begin{pmatrix}1&1&1\\-1&1&1\\1&0&1\end{pmatrix}$. On pose $X=\begin{pmatrix}x\\y\\z\end{pmatrix}$ et $Y=\begin{pmatrix}a\\b\\c\end{pmatrix}$. En utilisant la méthode du pivot de Gauss,

$$AX = Y$$

$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} x+y+z &= a \\ -x+y+z &= b \\ x+z &= c \end{cases} \Leftrightarrow \begin{cases} x+y+z &= a \\ 2y+2z &= a+b \\ y &= a-c \end{cases}$$

$$\Leftrightarrow \begin{cases} x+z+y &= a \\ 2z+2y &= a+b \\ y &= a-c \end{cases} \Leftrightarrow \begin{cases} x &= \frac{1}{2}a - \frac{1}{2}b \\ z &= -\frac{1}{2}a + \frac{1}{2}b + c \\ y &= a-c \end{cases}$$

En posant
$$B=\begin{pmatrix}1/2&-1/2&0\\1&0&-1\\-1/2&1/2&1\end{pmatrix}$$
, alors $X=BY$. D'où,

$$A^{-1} = \begin{pmatrix} 1/2 & -1/2 & 0\\ 1 & 0 & -1\\ -1/2 & 1/2 & 1 \end{pmatrix}.$$

Exemple 30 - Inverse par pivot sur I_n , $\mathbf{Q}_{\mathbf{k}}^{\mathbf{s}}$

On place les matrices A et I_n côte à côte. On transforme la matrice A en la matrice I_n à l'aide d'opérations élémentaires sur les lignes. On effectue les mêmes opérations sur I_n .

On obtient ainsi

$$A^{-1} = \begin{pmatrix} 1/2 & -1/2 & 0\\ 1 & 0 & -1\\ -1/2 & 1/2 & 1 \end{pmatrix}$$