# Поиск границ радужки методом круговых проекций

## Баженов Андрей Александрович

Московский физико-технический институт

Курс: Автоматизация научных исследований (практика, В.В. Стрижов)/Группа 821 Эксперт, консультант: И.А. Матвеев

# Поиск границ радужки

## Цель исследования

Применение метода круговых проекций яркости для понижения размерности в задаче обработки фотографий глаза.

## Задача

Построить алгоритм нахождения приблизительных границ элементов глаза на чёрно-белых фотографиях. Схема работы алгоритма: фиксируется положение центра

зрачка, вычисляются значения круговых проекций яркости. По круговым проекциям определяются радиусы зрачка и радужки.

# Круговые проекции яркости



 $ec{x}$  — точка изображения  $b(ec{x})$  — яркость в точке  $ec{g}(ec{x}) = 
abla b(ec{x})$ 



 $v_U(ec x)$  — индикатор принадлежности границе  $\Pi_U(r)$  — среднее значение  $v_U(ec x)$ 

# Литература

## Обзор алгоритмов обнаружения радужки

- 1. A. Nithya and C. Lakshmi. Iris Recognition Techniques: A Literature Survey. 2015
- K. Bowyer, K. Hollingsworth, and P. Flynn. Image Understanding for Iris Biometrics: A Survey. 2008

## Описание метода круговых проекций

1. I. A. Matveev. Detection of iris in image by interrelated maxima of brightness gradient projections. 2010

# Задача нахождения границ радужки

Задана выборка растровых изображений:

$$(M(i), P_{R}(i), I_{R}(i)), \qquad i = 1, ..., n.$$

Требуется построить алгоритм

$$f: M \mapsto \left[\widehat{P}_{\mathsf{R}} \ \widehat{I}_{\mathsf{R}}\right]^{\mathsf{T}}$$

Рассматриваются модели вида

$$f = \sigma_k \left( W_k^\mathsf{T} \sigma_{k-1} \left( \dots \sigma_1 \left( W_1^\mathsf{T} \Pi \right) \dots \right) \right),$$
$$\Pi = \left[ \Pi_U(1) \dots \Pi_U(r_\mathsf{max}) \right]^\mathsf{T}.$$

Задача оптимизации

$$f_0 = \arg\min_{f \in \mathcal{F}} \sum_{i=1}^n L\left(\widehat{P}_{\mathsf{R}}(i), P_{\mathsf{R}}(i)\right) + L\left(\widehat{I}_{\mathsf{R}}(i), I_{\mathsf{R}}(i)\right).$$

# Обработка круговых проекций

## Зависимость круговой проекции от радиуса



#### Гипотеза

Значения  $P_{\rm R}$  и  $I_{\rm R}$  являются точками локальных максимумов зависимости  $\Pi_U(r)$ .

# Архитектура нейронной сети

Задача обработки круговых проекций схожа с задачей обработки временного ряда.

## Сверточная сеть

Последовательное применение линейных фильтров.



# Вычислительный эксперимент

#### Цель

Сравнить модели по параметрам:

- 1. Точность решения;
- 2. Скорость работы.

## Обучаемые модели

Архитектуры для обработки временных рядов:

- 1. Рекурсивные сети;
- 2. Сверточные сети.

Простейшие модели:

- 1. Полносвязная сеть;
- 2. Эвристический алгоритм.

# Результаты обучения моделей





# Сравнение моделей

| Архитектура  | Число      | Средняя   | Доверительный |
|--------------|------------|-----------|---------------|
|              | параметров | ошибка, % | интервал      |
| Полносвязная | 166402     | 2,21      | 2,15-2,24     |
| Сверточная   | 56831      | 1,39      | 1,32-1,47     |
| Сверточная   | 17655      | 1,48      | 1,39-1,58     |
| Реккурентная | 14962      | 1,77      | 1,45-2,05     |

При меньшем числе параметров модели, точность сверточной и реккурентной моделей выше, чем у полносвязной модели.