Class 14: RNASeq mini-project

Grace Wang (PID: A16968688)

Table of contents

Required packages	2
Data import	2
Tidy counts to match metadata	. 3
Remove zero count genes	. 4
DESeq	5
Set up DESeq object for analysis	. 5
Run DESeq analysis	. 5
Extract results	. 5
Add gene annotations	6
Save results to CSV file	7
Result visualization	7
Pathway analysis	g
Upregulated pathways	. 9
Downregulated pathways	. 14
Gene ontology	19
Reactome analysis	20
Reactome analysis online	. 20
Here we will perform a complete RNASeq analysis from counts to pathways and bio	ological

Here we will perform a complete RNASeq analysis from counts to pathways and biological interpretation.

The data for for hands-on session comes from GEO entry: GSE37704, which is associated with the following publication:

• Trapnell C, Hendrickson DG, Sauvageau M, Goff L et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq". Nat Biotechnol 2013 Jan;31(1):46-53. PMID: 23222703

The authors report on differential analysis of lung fibroblasts in response to loss of the developmental transcription factor HOXA1. Their results and others indicate that HOXA1 is required for lung fibroblast and HeLa cell cycle progression. In particular their analysis show that "loss of HOXA1 results in significant expression level changes in thousands of individual transcripts, along with isoform switching events in key regulators of the cell cycle". For our session we have used their Sailfish gene-level estimated counts and hence are restricted to protein-coding genes only.

Required packages

```
library(DESeq2)
library(AnnotationDbi)
library(org.Hs.eg.db)
library(pathview)
library(gage)
library(gageData)
library(ggplot2)
library(ggrepel)
```

Data import

```
countData <- read.csv("GSE37704_featurecounts.csv", row.names = 1)
colData <- read.csv("GSE37704_metadata.csv", row.names = 1)</pre>
```

```
head(countData)
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212

SRR493371 ENSG00000186092 0 ENSG00000279928 0 ENSG00000279457 46 ENSG00000278566 0 ENSG00000273547 0 ENSG00000187634 258

head(colData)

condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd

Tidy counts to match metadata

Check the correspondence of colData rows and countData columns

```
rownames(colData)
```

```
[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"
```

colnames(countData)

```
[1] "length" "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" [7] "SRR493371"
```

Remove the first column so we can match the metadata

```
counts <- countData[, rownames(colData)]
head(counts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

```
all(rownames(colData) == colnames(counts))
```

[1] TRUE

Remove zero count genes

We will have rows in **counts** for genes that we cannot say anything about because they have zero expression in the particular tissue we are looking at.

If rowSums is zero for a given gene, then it has no count data and we should exclude that gene from further consideration.

```
to.keep <- rowSums(counts) != 0

cleancounts <- counts[to.keep, ]
head(cleancounts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Q: How many genes do we have left?

```
nrow(cleancounts)
```

[1] 15975

DESeq

Set up DESeq object for analysis

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

Run DESeq analysis

```
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
```

Extract results

```
res <- results(dds)
head(res)</pre>
```

```
log2 fold change (MLE): condition hoxa1 kd vs control sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 6 rows and 6 columns
baseMean log2FoldChange lfcSE sta
```

```
stat
                                                            pvalue
              <numeric>
                         <numeric> <numeric> <numeric>
                                                         <numeric>
ENSG00000279457
                29.9136
                           0.1792571 0.3248216 0.551863 5.81042e-01
                           0.4264571 0.1402658 3.040350 2.36304e-03
ENSG00000187634 183.2296
ENSG00000188976 1651.1881 -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000187961 209.6379
                          0.7297556 0.1318599 5.534326 3.12428e-08
                           ENSG00000187583 47.2551
                           0.5428105 0.5215598 1.040744 2.97994e-01
ENSG00000187642 11.9798
                    padj
                <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
ENSG00000187642 4.03379e-01
```

Add gene annotations

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

head(res)

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 9 columns

	baseMean]	Log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215598	1.040744	2.97994e-01
	pad	j symbol		name	e entrez
	<numeric></numeric>	<pre><character></character></pre>		<character></character>	<pre><character></character></pre>
ENSG00000279457	6.86555e-01	L NA		NI	NA NA
ENSG00000187634	5.15718e-03	SAMD11 s	sterile alp	oha motif	148398
ENSG00000188976	1.76549e-35	NOC2L 1	NOC2 like r	nucleolar	26155
ENSG00000187961	1.13413e-07	KLHL17	kelch like	family me	339451
ENSG00000187583	9.19031e-01	l PLEKHN1 1	pleckstrin	homology	84069
ENSG00000187642	4.03379e-01	L PERM1 H	PPARGC1 and	d ESRR ind	84808

Save results to CSV file

```
write.csv(res, file = "results.csv")
```

Result visualization

```
mycols <- rep("gray", nrow(res))
mycols[res$log2FoldChange <= -2] <- "blue"
mycols[res$log2FoldChange >= 2] <- "blue"
mycols[res$padj >= 0.05] <- "gray"</pre>
```

```
ggplot(res) +
  aes(x = log2FoldChange, y = -log(padj), label = symbol) +
  geom_point(col = mycols) +
  geom_vline(xintercept = c(-2, 2), col = "red") +
  geom_hline(yintercept = -log(0.05), col = "red") +
  labs(x = "Log2(Fold Change)", y = "-Log(adjusted p-value)") +
  geom_text_repel() +
  theme_bw()
```

Warning: Removed 1237 rows containing missing values or values outside the scale range (`geom_point()`).

Warning: Removed 1409 rows containing missing values or values outside the scale range (`geom_text_repel()`).

Warning: ggrepel: 14563 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Pathway analysis

```
data("kegg.sets.hs")
data(sigmet.idx.hs)

kegg.sets.hs <- kegg.sets.hs[sigmet.idx.hs]

foldchanges <- res$log2FoldChange
names(foldchanges) <- res$entrez</pre>
```

```
keggres <- gage(foldchanges, gsets = kegg.sets.hs)</pre>
```

Upregulated pathways

```
keggrespathways_up <- rownames(keggres$greater)[1:5]
keggrespathways_up

[1] "hsa04640 Hematopoietic cell lineage"
[2] "hsa04630 Jak-STAT signaling pathway"
[3] "hsa00140 Steroid hormone biosynthesis"
[4] "hsa04142 Lysosome"
[5] "hsa04330 Notch signaling pathway"

keggresids_up <- substr(keggrespathways_up, start = 1, stop = 8)
keggresids_up

[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"

pathview(gene.data = foldchanges, pathway.id = keggresids_up, species = "hsa")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/grace/Desktop/UCSD/4/Spring/BIMM 143/Labs/Class14

Info: Writing image file hsa04640.pathview.png</pre>
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/grace/Desktop/UCSD/4/Spring/BIMM 143/Labs/Class14

Info: Writing image file hsa04630.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/grace/Desktop/UCSD/4/Spring/BIMM 143/Labs/Class14

Info: Writing image file hsa00140.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/grace/Desktop/UCSD/4/Spring/BIMM 143/Labs/Class14

Info: Writing image file hsa04142.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/grace/Desktop/UCSD/4/Spring/BIMM 143/Labs/Class14

Info: Writing image file hsa04330.pathview.png

Figure 1: hsa04640

Figure 2: hsa04630

Figure 3: hsa00140

Figure 4: hsa04142

Figure 5: hsa04330

Downregulated pathways

keggrespathways_down <- rownames(keggres\$less)[1:5]
keggrespathways_down</pre>

[1] "hsa04110 Cell cycle"

- "hsa03030 DNA replication"
- [3] "hsa03013 RNA transport"
- "hsa03440 Homologous recombination"
- [5] "hsa04114 Oocyte meiosis"

```
keggresids down <- substr(keggrespathways_down, start = 1, stop = 8)</pre>
keggresids down
[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"
pathview(gene.data = foldchanges, pathway.id = keggresids_down, species = "hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/grace/Desktop/UCSD/4/Spring/BIMM 143/Labs/Class14
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/grace/Desktop/UCSD/4/Spring/BIMM 143/Labs/Class14
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/grace/Desktop/UCSD/4/Spring/BIMM 143/Labs/Class14
Info: Writing image file hsa03013.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/grace/Desktop/UCSD/4/Spring/BIMM 143/Labs/Class14
Info: Writing image file hsa03440.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/grace/Desktop/UCSD/4/Spring/BIMM 143/Labs/Class14
Info: Writing image file hsa04114.pathview.png
```


Figure 6: hsa04110

Figure 7: hsa03030

Figure 8: hsa03013

Figure 9: hsa03440

Figure 10: hsa04114

Gene ontology

```
data(go.sets.hs)
data(go.subs.hs)

gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

```
p.geomean stat.mean p.val
G0:0007156 homophilic cell adhesion 8.519724e-05 3.824205 8.519724e-05
G0:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
G0:0048729 tissue morphogenesis 1.432451e-04 3.643242 1.432451e-04
G0:0007610 behavior 1.925222e-04 3.565432 1.925222e-04
G0:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
G0:0035295 tube development 5.953254e-04 3.253665 5.953254e-04
q.val set.size exp1
```

```
0.1951953
GO:0007156 homophilic cell adhesion
                                                         113 8.519724e-05
GO:0002009 morphogenesis of an epithelium 0.1951953
                                                         339 1.396681e-04
GO:0048729 tissue morphogenesis
                                          0.1951953
                                                         424 1.432451e-04
GO:0007610 behavior
                                                         426 1.925222e-04
                                          0.1967577
GO:0060562 epithelial tube morphogenesis 0.3565320
                                                         257 5.932837e-04
GO:0035295 tube development
                                                         391 5.953254e-04
                                          0.3565320
$less
                                            p.geomean stat.mean
```

```
p.val
GO:0048285 organelle fission
                                         1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                         4.286961e-15 -7.939217 4.286961e-15
GD:0007067 mitosis
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                         2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.729553e-10 -6.695966 1.729553e-10
                                                q.val set.size
                                                                       exp1
GO:0048285 organelle fission
                                         5.841698e-12
                                                           376 1.536227e-15
GO:0000280 nuclear division
                                         5.841698e-12
                                                           352 4.286961e-15
GO:0007067 mitosis
                                         5.841698e-12
                                                           352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                           362 1.169934e-14
GO:0007059 chromosome segregation
                                        1.658603e-08
                                                           142 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.178402e-07
                                                            84 1.729553e-10
```

\$stats

		stat.mean	exp1
GO:0007156	homophilic cell adhesion	3.824205	3.824205
GO:0002009	${\tt morphogenesis} \ {\tt of} \ {\tt an} \ {\tt epithelium}$	3.653886	3.653886
GO:0048729	tissue morphogenesis	3.643242	3.643242
GO:0007610	behavior	3.565432	3.565432
GO:0060562	epithelial tube morphogenesis	3.261376	3.261376
GO:0035295	tube development	3.253665	3.253665

Reactome analysis

Reactome analysis online

We need to make a file of our significant genes that we can upload to the reactome webpage (https://reactome.org/PathwayBrowser/#TOOL=AT).

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quote

Figure 11: Reactome image - cell cycle, mitotic