FICHE 08-01: $Tr(A^p)$

Yvann Le Fay

Novembre 2019

Enoncé

Soit $A \in \mathcal{M}_n(\mathbb{K})$, montrer que

 $\forall p \in \mathbb{N}^*, \operatorname{Tr} A^p = 0 \iff A \text{ est nilpotente.}$

Solution

Si A est nilpotente alors A est semblable à une matrice triangulaire supérieure et le résultat est vrai. Supposons que pour tout $p \in \mathbb{N}^*$, $\operatorname{Tr} A^p = 0$ et que A n'est pas nilpotente. Notons $\lambda_1, \ldots, \lambda_r$ ses valeurs propres distinctes non nulles et $\alpha_1, \ldots, \alpha_r$ les multiplicités associées. La trigonalisation de A montre que A^p admet $\lambda_1^p, \ldots, \lambda_r^p$ comme valeurs propres et alors A^p est semblable à

$$\begin{pmatrix} \operatorname{diag}\{\lambda_1^p, \ldots\} & B_p \\ 0 & L^p \end{pmatrix}$$

avec L une matrice triangulaire supérieure stricte, donc Tr $A^p = \sum_{i=1}^r \lambda_i^p \alpha_i = 0$, ceci pour tout $p \in \mathbb{N}^*$. Ce système est un système de Vandermonde (et donc en vérité, pour $p \in [\![1;n+1]\!]$ suffit), on en déduit que $\alpha_1 = \ldots = \alpha_p = 0$ et donc A n'a que des valeurs propres nulles, i.e A est nilpotente.