

Федеральное государственное автономное образовательное учреждение высшего образования «Российский университет транспорта» (РУТ (МИИТ)) Кафедра «Физика» им. П.Н. Лебедева Академия базовой подготовки

Институт, группа	К работе допущен	
		(дата, подпись преподавателя)
Студент	Работа выполнена	
•		(дата, подпись преподавателя)
Преподаватель	Отчет принят	
-	<u> </u>	(дата, подпись преподавателя)

РАБОЧАЯ ТЕТРАДЬ ПО ЛАБОРАТОРНОЙ РАБОТЕ № Т-4

ОПРЕДЕЛЕНИЕ ОТНОШЕНИЙ ТЕПЛОЕМКОСТЕЙ ПРИ ПОСТОЯННОМ ДАВЛЕНИИ И ПОСТОЯННОМ ОБЪЕМЕ

Лабораторная установка: 1 — основание; 2 — колба; 3 — спускной электромагнитный клапан; 4 — измерительный модуль; 5 — кнопка включения питания «СЕТЬ»; 6 — измеритель температуры, °С; 7 — измеритель давления, кПа; 8 — кнопка включения электромагнитного спускного клапана «СБРОС»; 9 — кнопка включения компрессора «ПУСК»; 10 — датчик температуры

1. Запишите цель проводимого эксперимента:
2. Дайте определение молярной и удельной теплоемкостей:
3. Дайте определение показателя адиабаты идеального газа:
4. Дайте определение степени свободы. Какие бывают степени свободы? Сколько степеней свободы у одно-, двух- и трехатомных молекул?
5. Почему воздух можно считать двухатомным газом?
6. Дайте определение адиабатического процесса и запишите для этого процесса первос начало термодинамики. Сформулируйте его физический смысл:

			_	
7	Геометрия баллон	о с гором: D —	м: <i>h</i> . =	3.7
/ .	т сомстрия баллон	a C I asom. D —	M. 11 —	IVI.

8. Приборные погрешности приборов.

8.1. Цифровой термометр:
$$\Delta T_{\text{пр}} =$$
_____ К.

8.2. Цифровой манометр:
$$\Delta p_{\rm пр} = _{___}$$
 кПа.

9. Определение показателя адиабаты:

Экспериментальные данные

No	Δ <i>p</i> ₁ , кПа	<i>t</i> ₁ , ⁰ C	<i>T</i> ₁ , К	Δ <i>p</i> ₂ , кПа	t₂, ⁰ C	<i>Т</i> ₂ , К	γ_i	А, мДж
1								
2								
3								
4								
5								

Подпись преподавателя	Лата
Trodinies in enrodusareisi	Autu

10. Вычислить среднее значение показателя адиабаты, как среднее арифметическое:

$$\langle \gamma \rangle = \frac{\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4 + \gamma_5}{5} =$$

11. Вычислить среднее квадратичное отклонение:

$$\sigma_{\langle \gamma \rangle} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (\gamma_i - \langle \gamma \rangle)^2} =$$

12. Вычислить абсолютную погрешность ($t_{p,n}$ — коэффициент Стьюдента, который определяют по таблице при следующих условиях: p = 0.95; n = 5):

$$\Delta \gamma = t_{p,n} \cdot \sigma_{\langle \gamma \rangle} =$$

13. Записать окончательный результат в стандартном виде:

$$\gamma = \langle \gamma \rangle \pm \Delta \gamma$$

$$\gamma =$$

14. Сравнить полученное экспериментальное значение с теоретическим показателем адиабаты. Вычислить степень несовпадения:

$$\delta_{\gamma} = \frac{|\gamma_{\rm T} - \langle \gamma \rangle|}{\langle \gamma \rangle} \cdot 100 \% =$$

15. Вычислить объем баллона: $V_1 = \frac{\pi D^2 h}{4} =$
16. Определить абсолютную погрешность объема по правилу определения погрешностей
постоянных величин: $\Delta V = \underline{\hspace{1cm}} M^3$.
17. Вычислить работу в адиабатическом процессе по формуле, подставляя вычисленное значение показателя адиабаты в каждом опыте. Для опыта № 1 показать вычисление.
$A_1 = \frac{\Delta p_1 V_1}{\gamma_1 - 1} \left[1 - \frac{T_2}{T_1} \right] =$
18. Вычислить среднее значение работы как среднее арифметическое:
$\langle A \rangle = \frac{A_1 + A_2 + A_3 + A_4 + A_5}{5} =$
19. Вычислить относительную погрешность определения работы в адиабатическом
процессе для опыта № 1:
$\delta_A = rac{\Delta p_{ m np}}{\Delta p_1} + rac{\Delta V}{V_1} + rac{\Delta T_{ m np}}{T_1} + rac{\Delta T_{ m np}}{T_2} + rac{\Delta \gamma}{\gamma_1} =$
20. Вычислить абсолютную погрешность определения работы в адиабатическом процессе: $\Delta A = \delta_A \cdot \langle A \rangle =$
21. Записать окончательный результат в стандартном виде:
$A = \langle A angle \pm \Delta A$ ед. изм.
A =
19. Сформулируйте общие выводы по выполненной лабораторной работе. В выводе отметьте, выполняются или нет в данной лабораторной работе законы сохранения:

Подпись студента ______ Дата _____