Poznámky

14. března 2021

1 Degenerace

Stavy systému číslujeme čísly N, n, l (grupy U(3),U(2),O(2)). Změna parametru ξ odpovídá přechodu od symetrie grupy U(2) ($\xi=0$ - každý podprostor s daným l je reprezentací U(2)) k O(2) ($\xi=1$ - každý podprostor s daným n je reprezentací O(2)).

Obrázek 1: Spektra pro N=0 bez vnější poruchy. Na ose x je pořadí hladiny, na ose y je energie.

Míra degenerace (počet degenerovaných hladin - rozdíl počtu hladin v původním spektru a počtu hladin ve spektru, kde se každé dvě hladiny liší alespoň o 10^{-13}) v závislosti na ξ i síle vnější poruchy ϵ je na obrázku 2.

Obrázek 2: Počet degenerovaných hladin (počet degenerovaných hladin = rozdíl počtu hladin v původním spektru a počtu hladin ve spektru, kde se každé dvě hladiny liší alespoň o 10^{-13}) v závislosti na ξ i síle vnější poruchy ϵ . N=75

- Krajní body výrazná degenerace v bodech $\epsilon=0$ a $\xi=0$ a 1 je kvůli dodatečné symetrii (obrázek 1)
- Mezioblast pro $\epsilon = 0$ máme mezi krajními body ξ degeneraci v párech l a -l. V hamiltoniánu je \hat{l}^2 . Jen l = 0 netvoří páry, takže počet degenerovaných hladin je

$$\frac{1}{2} \left(\frac{(N+1)(N+2)}{2} - \left(\left\lfloor \frac{N}{2} \right\rfloor + 1 \right) \right),\,$$

kde $\lfloor x \rfloor$ je spodní celá část.

S rostoucím ϵ dochází k rozbití degenerace. Velikost oblasti s degenerací ale závisí na N, viz obrázek 3.

• Krajní oblast - se změnou poruchy se objevují spárované hladiny ve spektru

Obrázek 3: Porovnání oblastí s degenerací (nalevo sahá až do $\epsilon \approx 0.28 \pm 0.04$ a napravo do $\epsilon \approx 0.20 \pm 0.01$) Pár spekter jen v příloze (interaktivní z Plotly).