DECISION TREE AND RANDOM FOREST

1

Decision Tree Algorithm

- Similar to how humans make many different decisions
- Decision trees look at one feature/variable at a time

Decision Tree Algorithm						
□ Training dataset						
	Day	Outlook	Temp	Humidity	\checkmark_{Wind}	Tennis?
	1 Day	Sunny	Hot	High	Weak	No
-4054	$\begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$	Sunny	Hot	High	Strong	No
~ (,	3	Overcast	Hot	High	Weak	Yes
	4	Rain	Mild	High	Weak	Yes
	/ 5	Rain	Cool	Normal	Weak	Yes
,	6	Rain	Cool	Normal	Strong	No
	7	Overcast	Cool	Normal	Strong	Yes
	8	Sunny	Mild	High	Weak	No
	9	Sunny	Cool	Normal	Weak	Yes
,	10	Rain	Mild	Normal	Weak	Yes
	11	Sunny	Mild	Normal	Strong	Yes
	12	Overcast	Mild	High	Strong	Yes
	13	Overcast	Hot	Normal	Weak	Yes
	14	Rain	Mild	High	Strong	No
					1 8	

Decision Tree Algorithm

□ How can we build a decision tree given a data set?

5

Decision Tree Algorithm

- □ We will make the best choice at each step
- □ Identify the best feature/attribute for the each node

Decision Tree Algorithm

- □ Identify the best feature/attribute for root node
 - Best split: results of each branch should be as homogeneous (or pure) as possible
 - a feature that reduces impurity as much as possible
 - How do we measure the impurity in a set of examples Entropy from information theory
 - Alternatively, use Gini Index

Decision Tree Algorithm Quantifying the information content of a feature entropy of the examples before testing the feature minus the entropy of the examples after testing the feature Information Gain

Gini Impurity to Build Decision Trees $Gini(D) = 1 - \sum_{i=1}^k p_i^2$ $Gini_A(D) = \frac{n_1}{n} Gini(D_1) + \frac{n_2}{n} Gini(D_2)$ $\triangle Gini(A) = Gini(D) - Gini_A(D)$ Gini Index and Entropy vs. Class Probability Gini Impurity to Build Decision Trees

17

