FACULTY OF ENGINEERING	Project				Job Ref.	
UNIVERSITY OF RUHUNA	Section		Sheet no./rev.			
Learning Tool for					1	
Reinforced Concrete	Calc.by	Date	Chk'd by	Date	App'd by	Date
Design					•	

SHEAR CAPACITY AND SHEAR REINFORCEMENT CALCULATION (BS8110:PART1:1997)

 $A_S = mm^2$ b =mm

f_y= Mpa d =mm

f_{vv}= Mpa $f_{cu}=$ Mpa

V = kN

STEP 1

Find the v_c referring Table 3.8

Table 3.8 — Values of v_c design concrete shear stress

$\frac{100A_s}{b_v d}$	Effective depth mm								
o _t u	125	150	175	200	225	250	300	≥ 400	
	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	N/mm ²	
≤ 0.15	0.45	0.43	0.41	0.40	0.39	0.38	0.36	0.34	
0.25	0.53	0.51	0.49	0.47	0.46	0.45	0.43	0.40	
0.50	0.67	0.64	0.62	0.60	0.58	0.56	0.54	0.50	
0.75	0.77	0.73	0.71	0.68	0.66	0.65	0.62	0.57	
1.00	0.84	0.81	0.78	0.75	0.73	0.71	0.68	0.63	
1.50	0.97	0.92	0.89	0.86	0.83	0.81	0.78	0.72	
2.00	1.06	1.02	0.98	0.95	0.92	0.89	0.86	0.80	
≥ 3.00	1.22	1.16	1.12	1.08	1.05	1.02	0.98	0.91	

NOTE 1 Allowance has been made in these figures for a $\gamma_{\rm m}$ of 1.25. NOTE 2 The values in the table are derived from the expression: $0.79\{100A_{\rm g}/(b_{\rm v}d)\}^{\frac{16}{2}}$ (400/d) $^{\frac{14}{2}}/\gamma_{\rm m}$

where

 $\frac{100A_5}{b_nd}$ should not be taken as greater than 3;

 $\frac{400}{d}$ should not be taken as less than 1.

For characteristic concrete strengths greater than 25 N/mm², the values in this table may be multiplied by $(f_{cu}/25)^{\frac{1}{12}}$. The value of $f_{\rm cu}$ should not be taken as greater than 40.

$$\frac{100A_S}{bd} =$$

$$v_c =$$

FACULTY OF ENGINEERING	Project				Job Ref.	
UNIVERSITY OF RUHUNA	Section				Sheet no./rev.	
Learning Tool for					2	
Reinforced Concrete	Calc.by	Date	Chk'd by	Date	App'd by	Date
Design						

STEP 2

Find the shear capacity;

$$v = \frac{V}{bd} =$$

NOTE

Table 3.7 — Form and area of shear reinforcement in beams

Value of v N/mm ²	Form of shear reinforcement to be provided	Area of shear reinforcement to be provided
Less than $0.5v_{\rm c}$ throughout the beam	See NOTE 1	_
$0.5v_{\rm c} < v < (v_{\rm c} + 0.4)$	Minimum links for whole length of beam	$A_{\rm sv} \ge 0.4 b_{ m v} s_{ m v} / 0.95 f_{ m yv}$ (see NOTE 2)
$(v_c + 0.4) < v < 0.8 \sqrt{f_{cu}}$ or 5 N/mm^2	Links or links combined with bent-up bars. Not more than 50 % of the shear resistance provided by the steel may be in the form of bent-up bars (see NOTE 3)	Where links only provided: $A_{sv} \ge b_v s_v (v - v_c)/0.95 f_{yv}$ Where links and bent-up bars provided: see 3.4.5.6

NOTE 1 While minimum links should be provided in all beams of structural importance, it will be satisfactory to omit them in members of minor structural importance such as lintels or where the maximum design shear stress is less than half v_c .

NOTE 2 Minimum links provide a design shear resistance of 0.4 N/mm².

NOTE 3 See 3.4.5.5 for guidance on spacing of links and bent-up bars.

STEP 3

Find the S_v by using Table 3.7;

 $S_v \leq$

• The spacing not exceed 0.75d.(0.75d =)

Therefore, shear reinforce spacing ismm.

FACULTY OF ENGINEERING	Project				Job Ref.	
UNIVERSITY OF RUHUNA	Section		Sheet no./rev.			
Learning Tool for					3	
Reinforced Concrete	Calc.by	Date	Chk'd by	Date	App'd by	Date
Design						

SHEAR CAPACITY AND SHEAR REINFORCEMENT CALCULATION (EC2)

Shear check at Support;

Maximum Shear force at the face of the support,

$$V_{Ef} = \frac{wl}{2} =$$

Crushing strength of the diagonal strut(concrete),

$$V_{Rd,max} = \frac{\alpha_{cw} b_w Z V_1 f_{cd}}{\cot \theta + \tan \theta}$$

$$V_1 = 0.6 \left(1 - \frac{f_{CK}}{250} \right)$$

$$f_{cd} = \frac{\alpha_{CC} f_{CK}}{\gamma_C}; \quad \alpha_{CW} = 1 \text{ for non prestressed members.}$$

Assume Θ =22 0 for uniformly distributed loads.

$$V_{Rd.max} =$$

$$V_{Rd,max} = V_{Ef}$$

$$\theta = 0.5 \sin^{-1} \left(\frac{2V_{Ef}}{\alpha_{CW} b_w Z V_1 f_{Cd}} \right)$$

$$\theta =$$

Find the shear capacity. $V_{Ed} =$

Design value of shear resistance of the concrete beam without links.

$$V_{Rd,max} = \left[C_{Rd,C} K (100 \rho_1 f_{CK})^{1/3} + K_1 \sigma_{CP} \right] b_w d$$

$$V_{Rd.max} = V_{Rd.C} =$$

$$V_{min} = 0.035K^{3/2}f_{CK}^{\frac{1}{2}} =$$

$$(V_{min} + K_1 \sigma_{CP}) b_w d =$$

If ,
$$V_{Ed} > \{maximum \ of \ [(V_{min} + K_1\sigma_{CP})b_w d] \ or \ V_{Rd,C} \}$$

Shear reinforcement is necessary.

$$V_{Rd,max} = V_{Ed} = \frac{A_{sw}}{S} Z f_{ywd} \cot \theta$$

$$\frac{A_{sw}}{S} =$$

It is assumed links are of T10 diameter bars with two upright arms.($A_{sw} = 157mm^2$)

 $S \leq$

So provided T10 @.....mm spacing.

Check

Maximum longitudinal spacing between links.

$$S_{I,max} = 0.75d(1 + \cot \alpha)$$
 $\alpha = 90^{\circ}$ (Vertical shear links provided)

$$S_{I,max} =$$

Therefore links T10 @mm.