

C2PC Test Report

FCC Part15 Subpart E

Product Name: Wireless Access Point

Model No. : AP630

FCC ID : WBV-AP630

Applicant: Aerohive Networks, Inc.

Address : Aerohive Networks, 1011 McCarthy Boulevard,

Milpitas, CA 95035, United States

Date of Receipt : Jul. 18, 2018

Test Date : Aug. 20, 2018 ~ Aug. 29, 2018

Issued Date : Sep. 05, 2018

Report No. : 1872112R-RF-US-P09V01

Report Version : V1.1

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF, A2LA or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification (Suzhou) Co., Ltd.

Test Report Certification

Issued Date: Sep. 05, 2018

Report No. : 1872112R-RF-US-P09V01

Product Name : Wireless Access Point Applicant : Aerohive Networks, Inc.

Address : Aerohive Networks, 1011 McCarthy Boulevard, Milpitas, CA

95035, United States

Manufacturer : Aerohive Networks, Inc.

Address : Aerohive Networks, 1011 McCarthy Boulevard, Milpitas, CA

95035, United States

Model No. : AP630

FCC ID : WBV-AP630 EUT Voltage : PoE 48V

Test Voltage : AC 120V/60Hz

Brand Name : Aerohive

Applicable Standard : FCC CFR Title 47 Part 15 Subpart E

ANSI C63.10:2013;

789033 D02 General UNII Test Procedures New Rules

v02r01

KDB 662911 D01 Multiple Transmitter Output v02r01

Test Result : Complied

Performed Location : DEKRA Testing and Certification (Suzhou) Co., Ltd.

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou,215006,

Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

FCC Designation Number: CN1199

Documented By : Kathy Feng (Project Assistant: Kathy Feng)

Sec. 1. 1

Reviewed By : Frank he

(Senior Engineer: Frank He)

Approved By : Harry Than

(Engineering Manager: Harry Zhao)

TABLE OF CONTENTS

Descr	ription	Page
1. G	General Information	6
1.1.	EUT Description	6
1.2.	Antenna information	7
1.3.	Working Frequency of Each Channel:	8
1.4.	Mode of Operation	9
1.5.	Tested System Details	10
1.6.	Configuration of Tested System	11
1.7.	EUT Exercise Software	12
2. T	echnical Test	13
2.1.	Summary of Test Result	13
2.2.	Test Frequency configuration:	13
2.3.	Power Parameter Value of the test software	14
2.4.	Power vs Data Rate	17
2.5.	Test Environment	23
2.6.	Uncertainty	23
3. C	Conducted Emission	24
3.1.	Test Equipment	24
3.2.	Test Setup	24
3.3.	Limit	25
3.4.	Test Procedure	25
3.5.	Test Result	26
4. R	Radiated Emission	28
4.1.	Test Equipment	28
4.2.	Test Setup	29
4.3.	Limit	30
4.4.	Test Procedure	33
4.5.	EUT test Axis definition	34

4.6.	Test Result	35
------	-------------	----

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
1872112R-RF-US-P09V01	V1.0	Initial Issued Report	Aug. 29, 2018
1872112R-RF-US-P09V01	V1.1	Add some description	Sep. 05, 2018

1. General Information

1.1. EUT Description

Product Name	Wire	Wireless Access Point									
Brand Name	Aero	phive									
Model No.	AP6	AP630									
EUT Voltage	PoE	PoE 48V									
Type of Modulation	OF	M-BPSK, QPSK, 16Q	AM,	64QAM, 128QAM, 2	256C	AM,1024QAM					
Data Rate	802.	11a: 6/9/12/18/24/36/4	18/54	Mbps							
	802.	11n: up to 600Mbps									
	802.	11ac: up to 1.7Gbps									
	802.11ax: up to 2.4Gbps										
Channel Control	Auto										
Transmit modes	\boxtimes	802.11a	\boxtimes	802.11n(20MHz)	\boxtimes	802.11n(40MHz)					
		802.11ac(20MHz)	\boxtimes	802.11ac(40MHz)	\boxtimes	802.11ac(80MHz)					
		802.11ax(20MHz)	\boxtimes	802.11ax(40MHz)	\boxtimes	802.11ax(80MHz)					
Support Bands				☐ Outdoor AP							
		5150MHz~5250MHz		Indoor AP							
		3130WHZ~3230WHZ		Fixed point-to-point AP							
				☐ Mobile and Portable Client							
□ 5250MHz~5350MHz											
				☐ With TDWR Channels							
	Ľ	5500MHz~5710MHz		☐ Without TDWR Channels							
		5725MHz~5850MHz									

Note: This appendix report was based on Report No. 1872112R, the differences between the two batch of samples are as follows:

There are no RF or analog changes between BCM43694 B0 and B1. Both have the same 802.11a/b/g/n/ac/ax functions with no change in RF modulation and output power. The two chip revisions are pin to pin compatible in the 12x12mm package.

The metal mask change to B1 only affects digital circuitry in the receiver. Regression evaluation should be performed to confirm compliance based on the FCC Permissive Change Policy (KDB178919 D01).

We had confirmed that RF exposure levels aren't degraded, so C2PC was applied. And we only test Conducted Emission and Radiated Emission.

1.2. Antenna information

Antenna Model No.	N/A									
Antenna Manufacturer	N/A									
Antenna Delivery		1*TX+1	1*TX+1*RX							
Antenna Technology		SISO								
				Bas	sic methodolo	ogy				
				Se	ctorized anter	nna s	systems			
		MIMO		Cro	oss-polarized	ante	nnas			
		IVIIIVIO		Un	equal antenn	a gai	ns, with equa	l tra	nsmit powers	
				Spa	Spatial Multiplexing					
			\boxtimes	Су	clic Delay Div	ersit	y (CDD)			
Antenna Type	Metal Antenna									
Antenna	Ant Gain				Directional Gain					
					(dBi)					
Technology(2*TX+2*RX)	(dBi)					For Power		For PSD		
⊠ CDD		Ant	0:4.74	Ar	nt1: 5.17		4.96		7.97	
⊠ Beam-forming							7.97		7.97	
Antono			Δ 1	0-			Direc	tiona	ıl Gain	
Antenna				Gai	ın			(dBi)	
Technology(4*TX+4*RX)		(dBi)			For Power		For PSD			
⊠ CDD		Ant	0:4.74	Ar	nt1: 5.17		5.01		11.03	
		Ant	2:5.19	Ar	nt3: 4.92		11.03		11.03	

1.3. Working Frequency of Each Channel:

802.11a/n/ac/ax(20MHz) Working Frequency of Each Channel:										
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency									
36	5180 MHz	40	5200 MHz	44	5220 MHz	48	5240 MHz			
149	5745 MHz	153	5765 MHz	157	5785 MHz	161	5805 MHz			
165 5825MHz N/A N/A N/A N/A N/A N/A										
802.11n/ac/	/ax(40MHz) V	Vorking Fred	quency of Eac	h Channel:						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency			
38	5190 MHz	46	5230 MHz	151	5755 MHz	159	5795 MHz			
802.11ac/a	802.11ac/ax(80MHz) Working Frequency of Each Channel:									
Channel Frequency Channel Frequency Channel Frequency Channel Frequency										
42	5210 MHz	155	5775 MHz	N/A	N/A	N/A	N/A			

1.4. Mode of Operation

DEKRA has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Test Mode
Mode 1: Transmit by 802.11a with CDD
Mode 2: Transmit by 802.11n(20MHz) with CDD
Mode 3: Transmit by 802.11n(40MHz) with CDD
Mode 4: Transmit by 802.11ac(20MHz) with CDD
Mode 5: Transmit by 802.11ac(40MHz) with CDD
Mode 6: Transmit by 802.11ac(80MHz) with CDD
Mode 7: Transmit by 802.11ax(20MHz) with CDD
Mode 8: Transmit by 802. 11ax(40MHz) with CDD
Mode 9: Transmit by 802. 11ax(80MHz) with CDD
Mode 10: Transmit by 802.11a with Beam-forming
Mode 11: Transmit by 802. 11n(20MHz) with Beam-forming
Mode 12: Transmit by 802. 11n(40MHz) with Beam-forming
Mode 13: Transmit by 802.11ac(20MHz) with Beam-forming
Mode 14: Transmit by 802.11ac(40MHz) with Beam-forming
Mode 15: Transmit by 802.11ac(80MHz) with Beam-forming
Mode 16: Transmit by 802.11ax(20MHz) with Beam-forming
Mode 17: Transmit by 802.11ax(40MHz) with Beam-forming
Mode 18: Transmit by 802.11ax(80MHz) with Beam-forming

Note 1: Regards to the frequency band operation: the lowest, middle and highest frequency of channel were selected to perform the test, then shown on this report.

Note 2: For portable device, radiated tests was verified over X, Y, Z axis, and shown the worst case on this report.

1.5. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Product		Manufacturer	Model No.	Serial No.	Power Cord
1	Notebook	Lenovo	Think pad x220	SUA0600195	Non-shielded
Α	USB cable	N/A	N/A	N/A	Shielded, 0.5m
В	USB cable	N/A	N/A	N/A	Shielded, 10m

Page: 10 of 35

1.6. Configuration of Tested System

1.7. EUT Exercise Software

	1	Setup the EUT and simulators as shown on above.
	2	Turn on the power of equipment.
;	٠.	Run RF software [MTool 3.0.0.6], and set the test mode and channel, then press OK to start to

Page: 12 of 35

2. Technical Test

2.1. Summary of Test Result

\boxtimes	No deviations from the test standards
	Deviations from the test standards as below description:

Performed Test Item	Normative References	Limit	Result
Conducted Emission	FCC CFR Title 47 Part 15 Subpart E:	FCC 15.207	PASS
	2015 Section 15.207		
Radiated Emission	FCC CFR Title 47 Part 15 Subpart E:	FCC 15.209	PASS
	2015 Section 15.209		

2.2. Test Frequency configuration:

Modulation Mode	Channel	Frequency	Channel	Frequency	Channel	Frequency
802.11a/n/ac/ax	36	5180MHz	44	5220MHz	48	5240MHz
(20MHz)/	149	5745MHz	157	5785MHz	165	5825MHz
802.11n/ac/ax(40MHz)	38	5190MHz	46	5230MHz	151	5755MHz
	159	5795MHz	N/A	N/A	N/A	N/A
802.11ac/ax(80MHz)	42	5210MHz	155	5775MHz	N/A	N/A

Page: 13 of 35

2.3. Power Parameter Value of the test software

TariMada	F	Power	⁻ Setting	
Test Mode	Frequency	Ant 0+1	Ant 0+1+2+3	
	5180	80	65	
	5220	80	65	
802.11a with CDD	5240	80	65	
002. Ha with CDD	5745	88	81	
	5785	88	81	
	5825	88	81	
	5180	80	64	
	5220	80	64	
802.11n(20MHz) with	5240	80	64	
CDD	5745	88	80	
	5785	88	79	
_	5825	88	79	
	5190	74	57	
802.11n(40MHz) with	5230	74	57	
CDD	5755	88	82	
	5795	88	88	
	5180	80	64	
	5220	80	64	
802.11ac(20MHz) with	5240	80	64	
CDD	5745	88	79	
	5785	88	78	
	5825	88	79	
	5190	72	56	
802.11ac(40MHz) with	5230	72	56	
CDD	5755	88	82	
-	5795	88	88	
802.11ac(80MHz) with	5210	74	52	
CDD	5775	84	67	
	5180	78	63	
802.11 ax(20MHz) with	5220	78	63	
CDD -	5240	78	63	

Page: 14 of 35

	5745	88	80
	5785	88	77
	5825	88	76
	5190	72	56
802.11ax(40MHz) with	5230	72	56
CDD	5755	88	82
	5795	88	85
802.11ax(80MHz) with	5210	74	52
CDD	5775	84	67
	5180	78	64
	5220	78	64
802.11a with with	5240	78	64
Beam-forming	5745	85	80
	5785	85	80
	5825	85	78
	5180	78	62
	5220	78	62
802.11n(20MHz) with	5240	78	62
Beam-forming	5745	85	78
	5785	85	77
	5825	85	77
	5190	71	56
802.11n(40MHz) with	5230	71	56
Beam-forming	5755	85	82
	5795	85	82
	5180	78	64
	5220	78	64
802.11ac(20MHz) with	5240	78	64
Beam-forming	5745	85	78
	5785	85	78
	5825	85	78
	5190	71	57
802.11ac(40MHz) with	5230	71	57
Beam-forming	5755	85	80
	5795	85	79
802.11ac(80MHz) with	5210	71	54
Beam-forming	5775	81	69

Page: 15 of 35

	5180	78	63
	5220	78	63
802.11 ax(20MHz) with	5240	78	63
Beam-forming	5745	85	77
	5785	85	77
	5825	85	77
	5190	71	55
802.11ax(40MHz) with	5230	71	55
Beam-forming	5755	85	80
	5795	85	80
802.11ax(80MHz) with	5210	72	50
Beam-forming	5775	81	66

2.4. Power vs Data Rate

MCC I. J.	C4'-1	Data Rate (Mbps)						
MCS Index	Î	002 111	002.11	002.11	20MHz	Bandwidth	40MHz	Bandwidth
for 802.11n	Streams	802.11b	802.11g	802.11a	800ns GI	400ns GI	800ns GI	400ns GI
0	1	1	6	6	6.5	7.2	13.5	15.0
1	1	2	9	9	13.0	14.4	27.0	30.0
2	1	5.5	12	12	19.5	21.7	40.5	45.0
3	1	11	18	18	26.0	28.9	54.0	60.0
4	1		24	24	39.0	43.3	81.0	90.0
5	1		36	36	52.0	57.8	108.0	120.0
6	1		48	48	58.5	65.0	121.5	135.0
7	1		54	54	65.0	72.2	135.0	150.0
8	2				13.0	14.4	27.0	30.0
9	2				26.0	28.9	54.0	60.0
10	2				39.0	43.3	81.0	90.0
11	2				52.0	57.8	108.0	120.0
12	2				78.0	86.7	162.0	180.0
13	2				104.0	115.6	216.0	240.0
14	2				117.0	130.0	243.0	270.0
15	2				130.0	144.0	270.0	300.0
16	3				19.5	21.6	40.5	45.0
17	3				39.0	43.2	81.0	90.0
18	3				58.5	65.1	121.5	135.0
19	3				78.0	86.7	162.0	180.0
20	3				117.0	129.9	243.0	270.0
21	3				156.0	173.4	324.0	360.0
22	3				175.5	195.0	364.5	405.0
23	3				195.0	216.6	405.0	450.0
24	4				26.0	28.8	54.0	60.0
25	4				52.0	57.6	108.0	120.0
26	4				78.0	86.8	162.0	180.0
27	4				104.0	115.6	216.0	240.0
28	4				156.0	173.2	324.0	360.0
29	4				208.0	231.2	432.0	480.0
30	4				234.0	260.0	486.0	540.0
31	4				260.0	288.8	540.0	600.0

Page: 17 of 35

Note1: The blue form is the maximum power data rate.

2: The EUT supports four spatial streams.

Page: 18 of 35

a			a			Data Ra	te(Mb/s)		
Spatial	MCS	Modulation	Codin	201	MHz	401	MHz	80	MHz
Streams	Index	type	g	Guard	Guard Interval		Interval	Guard	l Interval
(Note1)			rate	800ns	400ns	800ns	400ns	800ns	400ns
	0	BPSK	1/2	6.5	7.2	13.5	15	29.3	32.5
	1	QPSK	1/2	13	14.4	27	30	58.5	65
	2	QPSK	3/4	19.5	21.7	40.5	45	87.8	97.5
	3	16-QAM	1/2	26	28.9	54	60	117	130
	4	16-QAM	3/4	39	43.3	81	90	175.5	195
1	5	64-QAM	2/3	52	57.8	108	120	234	260
	6	64-QAM	3/4	58.5	65	121.5	135	263.3	292.5
	7	64-QAM	5/6	65	72.2	135	150	292.5	325
	8	256-QAM	3/4	78	86.7	162	180	351	390
	9	256-QAM	5/6	N/A	N/A	180	200	390	433.3
	10	BPSK	1/2	13.0	14.4	27.0	30.0	58.6	65.0
	11	QPSK	1/2	26.0	28.8	54.0	60.0	117.0	130.0
	12	QPSK	3/4	39.0	43.4	81.0	90.0	175.6	195.0
	13	16-QAM	1/2	52.0	57.8	108.0	120.0	234.0	260.0
	14	16-QAM	3/4	78.0	86.6	162.0	180.0	351.0	390.0
2	15	64-QAM	2/3	104.0	115.6	216.0	240.0	468.0	520.0
	16	64-QAM	3/4	117.0	130.0	243.0	270.0	526.6	585.0
	17	64-QAM	5/6	130.0	144.4	270.0	300.0	585.0	650.0
	18	256-QAM	3/4	156.0	173.4	324.0	360.0	702.0	780.0
	19	256-QAM	5/6	#VALUE!	#VALUE!	360.0	400.0	780.0	866.6
	20	BPSK	1/2	19.5	21.6	40.5	45.0	87.9	97.5
	21	QPSK	1/2	39.0	43.2	81.0	90.0	175.5	195.0
	22	QPSK	3/4	58.5	65.1	121.5	135.0	263.4	292.5
	23	16-QAM	1/2	78.0	86.7	162.0	180.0	351.0	390.0
	24	16-QAM	3/4	117.0	129.9	243.0	270.0	526.5	585.0
3	25	64-QAM	2/3	156.0	173.4	324.0	360.0	702.0	780.0
	26	64-QAM	3/4	175.5	195.0	364.5	405.0	789.9	877.5
	27	64-QAM	5/6	195.0	216.6	405.0	450.0	877.5	975.0
	28	256-QAM	3/4	234.0	260.1	486.0	540.0	1053.0	1170.0
	29	256-QAM	5/6	#VALUE!	#VALUE!	540.0	600.0	1170.0	1299.9
	30	BPSK	1/2	26.0	28.8	54.0	60.0	117.2	130.0
4	31	QPSK	1/2	52.0	57.6	108.0	120.0	234.0	260.0
	32	QPSK	3/4	78.0	86.8	162.0	180.0	351.2	390.0

Page: 19 of 35

33	16-QAM	1/2	104.0	115.6	216.0	240.0	468.0	520.0
34	16-QAM	3/4	156.0	173.2	324.0	360.0	702.0	780.0
35	64-QAM	2/3	208.0	231.2	432.0	480.0	936.0	1040.0
36	64-QAM	3/4	234.0	260.0	486.0	540.0	1053.2	1170.0
37	64-QAM	5/6	260.0	288.8	540.0	600.0	1170.0	1300.0
38	256-QAM	3/4	312.0	346.8	648.0	720.0	1404.0	1560.0
39	256-QAM	5/6	#VALUE!	#VALUE!	720.0	800.0	1560.0	1733.2

Note 1: The blue form is the maximum power data rate.

^{2:} The EUT supports four spatial streams.

				Data Rate(Mb/s)								
Spatial				20N	20MHz 40MHz			80N	80MHz		160MHz	
Streams	MCS	Modulation	Coding	Guard Interval		Guard Interval		Guard Interval		Guard Interval		
(Note1)	Index	туре	Index type	rate	1600 ns	800 ns	1600 ns	800 ns	1600 ns	800 ns	1600 ns	800 ns
				GI	GI	GI	GI	GI	GI	GI	GI	
	0	BPSK	1/2	4	4	8	9	17	18	34	36	
	1	QPSK	1/2	16	17	33	34	68	72	136	144	
	2	QPSK	3/4	24	26	49	52	102	108	204	216	
	3	16-QAM	1/2	33	34	65	69	136	144	272	282	
	4	16-QAM	3/4	49	52	98	103	204	216	408	432	
1	5	64-QAM	2/3	65	69	130	138	272	288	544	576	
1	6	64-QAM	3/4	73	77	146	155	306	324	613	649	
	7	64-QAM	5/6	81	86	163	172	340	360	681	721	
	8	256-QAM	3/4	98	103	195	207	408	432	817	865	
	9	256-QAM	5/6	108	115	217	229	453	480	907	961	
	10	1024-QAM	3/4	122	129	244	258	510	540	1021	1081	
	11	1024-QAM	5/6	135	143	271	287	567	600	1134	1201	
	12	BPSK	1/2	8	8	16	18	34	36	68	72	
	13	QPSK	1/2	32	34	66	68	136	144	272	288	
	14	QPSK	3/4	48	52	98	104	204	216	408	432	
	15	16-QAM	1/2	66	68	130	138	272	288	544	564	
	16	16-QAM	3/4	98	104	196	206	408	432	816	864	
2	17	64-QAM	2/3	130	138	260	276	544	576	1088	1152	
2	18	64-QAM	3/4	146	154	292	310	612	648	1226	1298	
	19	64-QAM	5/6	162	172	326	344	680	720	1362	1442	
	20	256-QAM	3/4	196	206	390	414	816	864	1634	1730	
	21	256-QAM	5/6	216	230	434	458	906	960	1814	1922	
	22	1024-QAM	3/4	244	258	488	516	1020	1080	2042	2162	
	23	1024-QAM	5/6	270	286	542	574	1134	1200	2268	2402	
	24	BPSK	1/2	12	12	24	27	51	54	102	108	
	25	QPSK	1/2	48	51	99	102	204	216	408	432	
	26	QPSK	3/4	72	78	147	156	306	324	612	648	
	27	16-QAM	1/2	99	102	195	207	408	432	816	846	
3	28	16-QAM	3/4	147	156	294	309	612	648	1224	1296	
	29	64-QAM	2/3	195	207	390	414	816	864	1632	1728	
	30	64-QAM	3/4	219	231	438	465	918	972	1839	1947	
	31	64-QAM	5/6	243	258	489	516	1020	1080	2043	2163	

Page: 21 of 35

	32	256-QAM	3/4	294	309	585	621	1224	1296	2451	2595
	33	256-QAM	5/6	324	345	651	687	1359	1440	2721	2883
	34	1024-QAM	3/4	366	387	732	774	1530	1620	3063	3243
	35	1024-QAM	5/6	405	429	813	861	1701	1800	3402	3603
	36	BPSK	1/2	16	16	32	36	68	72	136	144
	37	QPSK	1/2	64	68	132	136	272	288	544	576
	38	QPSK	3/4	96	104	196	208	408	432	816	864
	39	16-QAM	1/2	132	136	260	276	544	576	1088	1128
	40	16-QAM	3/4	196	208	392	412	816	864	1632	1728
	41	64-QAM	2/3	260	276	520	552	1088	1152	2176	2304
4	42	64-QAM	3/4	292	308	584	620	1224	1296	2452	2596
	43	64-QAM	5/6	324	344	652	688	1360	1440	2724	2884
	44	256-QAM	3/4	392	412	780	828	1632	1728	3268	3460
	45	256-QAM	5/6	432	460	868	916	1812	1920	3628	3844
	46	1024-QAM	3/4	488	516	976	1032	2040	2160	4084	4324
	47	1024-QAM	5/6	540	572	1084	1148	2268	2400	4536	4804

Note 1: The blue form is the maximum power data rate.

 ${\bf 2: The\ EUT\ supports\ four\ spatial\ streams.}$

2.5. Test Environment

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	21
Humidity (%RH)	25-75	50
Barometric pressure (mbar)	860-1060	950-1000

2.6. Uncertainty

Test Items	Uncertainty
AC Power Line Conducted Emission	± 2.02dB
Radiated Emission	Below 1GHz ±3.8 dB
	Above 1GHz ± 3.9 dB

Page: 23 of 35

3. Conducted Emission

3.1. Test Equipment

Conducted Emission / TR-1						
Instrument	Manufacturer	Type No.	Serial No.	Cal. Date	Cal. Due Date	
EMI Test Receiver	R&S	ESCI	100906	2018.03.05	2019.03.04	
Two-Line V-Network	R&S	ENV 216	101189	2018.06.16	2019.06.15	
Two-Line V-Network	R&S	ENV 216	101044	2017.09.16	2018.09.15	
50ohm Coaxial Switch	Anritsu	MP59B	6200464462	N/A	N/A	
50ohm Termination	SHX	TF2	07081402	2017.09.16	2018.09.15	
Temperature/Humidity Meter	Zhichen	ZC1-2	TR1-TH	2018.01.05	2019.01.04	

Note: All equipment are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

3.2. Test Setup

3.3. Limit

Frequency (MHz)	QP (dB µ V)	AV (dB μ V)
0.15 - 0.50	66 – 56	56 – 46
0.50 - 5.0	56	46
5.0 - 30	60	50

Note 1: The lower limit shall apply at the transition frequencies.

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

3.4. Test Procedure

Test Method						
	References Rule	Chapter	Item			
\boxtimes	ANSI C63.10-2013	6.2	Standard test method for ac power-line conducted			
			emissions from unlicensed wireless devices			

Page: 25 of 35

3.5. Test Result

Engineer: CptJack			
Site: TR1	Time: 2018/08/28		
Limit: EN55032_CE_Mains_ClassB	Margin: 0		
Probe: ENV216_101190(0.009-30MHz)	Polarity: Line		
EUT: Wireless Access Point	Power: AC 230V/50Hz		
Note: Mode 1:Transmit at 2402MHz by BLF			

80 70 60 50 40 Level(dBuV) 30 20 10 0 -10 -20 0.15 10 30 Frequency(MHz)

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Probe	Cable	Amp	Туре
		(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dB)	(dB)	(dB)	
1		0.170	42.457	32.824	-22.504	64.960	9.606	0.027	0.000	QP
2		0.170	33.651	24.018	-21.309	54.960	9.606	0.027	0.000	AV
3		0.438	39.874	30.234	4 -17.225 57.100 9.600		0.040	0.000	QP	
4	*	0.438	31.884	22.244	-15.216	47.100	9.600	0.040	0.000	AV
5		0.710	28.530	18.880	18.880 -27.470 56.000		9.600	0.050	0.000	QP
6		0.710	19.886	10.235	35 -26.114 46.000		9.600	0.050	0.000	AV
7		1.230	30.408	20.732	-25.592	56.000	9.610	0.066	0.000	QP
8		1.230	23.370	13.694	-22.630	46.000	9.610	0.066	0.000	AV
9		10.454	23.197	13.209	-36.803	-36.803 60.000		0.206	0.000	QP
10		10.454	17.509	7.521	21 -32.491 50.000		9.782	0.206	0.000	AV
11		28.806	31.809	21.058	-28.191	-28.191 60.000 10.402		0.349	0.000	QP
12		28.806	26.214	15.463	-23.786	50.000	10.402	0.349	0.000	AV

Engineer: CptJack			
Site: TR1	Time: 2018/08/28		
Limit: EN55032_CE_Mains_ClassB	Margin: 0		
Probe: ENV216_101190(0.009-30MHz)	Polarity: Neutral		
EUT: Wireless Access Point	Power: AC 230V/50Hz		
Note: Mode 1:Transmit at 2402MHz by BLE	·		

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Probe	Cable	Amp	Туре
		(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV) (dB)		(dB)	(dB)	
1		0.170	41.843	32.221	-23.118	64.960	9.594	0.027	0.000	QP
2		0.170	32.583	22.961	-22.378	54.960	9.594	0.027	0.000	AV
3		0.206	38.325	28.698	-25.040	63.365	9.599	0.029	0.000	QP
4		0.206	28.272	18.644	-25.093	53.365 9.599		0.029	0.000	AV
5		0.438	39.232	29.600	-17.867	57.100	9.592	0.040	0.000	QP
6	*	0.438	31.495	21.863	-15.605	47.100	9.592	0.040	0.000	AV
7		0.722	28.038	18.397	-27.962	56.000	9.590	0.050	0.000	QP
8		0.722	19.952	10.312	-26.048	46.000	9.590	0.050	0.000	AV
9		24.898	31.193	20.219	-28.807	60.000	10.651	0.323	0.000	QP
10		24.898	25.391	14.417	-24.609	50.000	10.651	0.323	0.000	AV
11		28.638	31.927	20.962	-28.073	60.000	10.616	0.348	0.000	QP
12		28.638	26.137	15.173	-23.863	50.000	10.616	0.348	0.000	AV

Note:

- 1. " * ", means this data is the worst emission level.
- 2. Measurement Level = Reading Level + Factor(Probe+Cable-Amp).

4. Radiated Emission

4.1. Test Equipment

Radiated Emission / AC-2							
Instrument	Manufacturer	Type No.	Serial No.	Cal. Date	Cal. Due Date		
EMI Test Receiver	R&S	ESCI	100573	2018.03.29	2019.03.28		
Loop Antenna	R&S	HFH2-Z2	833799/003	2017.11.16	2018.11.15		
Bilog Antenna	Teseq GmbH	CBL6112D	27611	2017.10.16	2018.10.15		
Coaxial Cable	Huber+Suhner	SUCOFLEX 106	AC2-C	2018.03.02	2019.03.01		
Temperature/Humidity Meter	Zhichen	ZC1-2	AC2-TH	2018.01.04	2019.01.03		

Radiated Emission / AC	Radiated Emission / AC-5							
Instrument	Manufacturer	Type No.	Serial No.	Cal. Date	Cal. Due Date			
Spectrum Analyzer	Agilent	E4446A	MY45300103	2018.01.04	2019.01.03			
Preamplifier	Miteq	NSP1800-25	1364185	2018.05.06	2019.05.05			
	DEKRA Testing							
	and Certification							
Preamplifier	(Suzhou) Co., Ltd.	AP-040G	CHM-0906001	2018.05.06	2019.05.05			
DRG Horn	ETS-Lindgren	3117	00123988	2018.01.22	2019.01.21			
Broad-Band Horn								
Antenna	Schwarzbeck	BBHA9170	294	2017.11.25	2018.11.24			
Coaxial Cable	Huber+Suhner	SUCOFLEX 106	AC5-C1	2018.03.02	2019.03.01			
Coaxial Cable	Huber+Suhner	SUCOFLEX 106	AC5-C2	2018.03.02	2019.03.01			
Coaxial Cable	Huber+Suhner	SUCOFLEX 102	AC5-C3	2018.03.02	2019.03.01			
EMI Receiver	Agilent	N9038A	MY51210196	2018.06.10	2019.06.09			
Temperature/Humidity								
Meter	Zhichen	ZC1-2	AC5-TH	2018.01.04	2019.01.03			

Note: All equipment are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

Page: 28 of 35

4.2. Test Setup

4.3. Limit

FCC Part 15 Subpart C Paragraph 15.209 (Restricted Band Emissions Limit)							
Frequency (MHz)	Distance (m)	Level (dB μ V/m)					
0.009-0.490	300	2400/F(kHz)					
0.490-1.705	30	24000/F(kHz)					
1.705-30.0	30	30					
30-88	3	100**					
88-216	3	150**					
216-960	3	200**					
Above 960	3	500					

Note 1: At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade).

Note 2: At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

FCC Part 15 Subpart C Paragraph 15.205 (Restricted Band)							
Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (GHz)				
0.090 – 0.110	16.42 – 16.423	399.9 – 410	4.5 – 5.15				
0.495 – 0.505	16.69475 –16.69525	608 – 614	5.35 – 5.46				
2.1735 – 2.1905	16.80425 – 16.80475	960 – 1240	7.25 – 7.75				
4.125 – 4.128	25.5 – 25.67	1300 – 1427	8.025 – 8.5				
4.17725 – 4.17775	37.5 – 38.25	1435 – 1626.5	9.0 – 9.2				
4.20725 – 4.20775	73 – 74.6	1645.5 – 1646.5	9.3 – 9.5				
6.215 – 6.218	74.8 – 75.2	1660 – 1710	10.6 – 12.7				
6.26775 – 6.26825	108 – 121.94	1718.8 – 1722.2	13.25 – 13.4				
6.31175 – 6.31225	123 – 138	2200 – 2300	14.47 – 14.5				
8.291 – 8.294	149.9 – 150.05	2310 – 2390	15.35 – 16.2				
8.362 – 8.366	156.52475 – 156.52525	2483.5 – 2500	17.7 – 21.4				
8.37625 – 8.38675	156.7 – 156.9	2690 – 2900	22.01 – 23.12				
8.81425 – 8.81475	162.0125 – 167.17	3260 – 3267	23.6 – 24.0				
12.29 – 12.293	167.72 – 173.2	3332 – 3339	31.2 – 31.8				
12.51975–12.52025	240 – 285	3345.8 – 3358	36.43 – 36.5				
12.57675–12.57725	322 – 335.4	3600 – 4400					
13.36 – 13.41							

FCC Part 15 Subpart C Paragraph 15.407(5)(b) (Unrestricted Band Emissions Limit)							
Operating Frequency Band (MHz)	EIRP Limit (dBm/MHz)	Equivalent Field Strength at 3m (dB μ V/m)					
5150 - 5250	-27	68.3					
5250 - 5350	-27	68.3					
5470 - 5725	-27	68.3					
Operating Frequency Band (MHz)	EIRP Limit (dBm/MHz)						
5725 - 5850		NII-3 band 5-5850 MHz)					

4.4. Test Procedure

Test	Test Method							
	Refe	rences	s Rule	Chapter	Description			
	ANSI	C63.	10	12.7.3	Emissions in non-restricted frequency bands			
\boxtimes	ANSI	C63.	10	12.7.2	Emissions in restricted frequency bands			
	\boxtimes	ANSI C63.10		12.7.5	Radiated emission measurements			
	\boxtimes	ANSI C63.10		12.7.6	Procedure for peak unwanted emissions			
					measurements above 1000 MHz			
		ANSI	C63.10	12.7.7	Procedures for average unwanted emissions			
					measurements above 1000 MHz			
			ANSI C63.10	12.7.7.2	Method AD (average detection)—primary method			
		\boxtimes	ANSI C63.10	12.7.7.3	Method VB-A (Alternative)			
	\boxtimes			6.4	Radiated emissions from unlicensed wireless			
					devices below 30 MHz			
	\boxtimes			6.5	Radiated emissions from unlicensed wireless			
					devices in the frequency range			
					of 30 MHz to 1000 MHz			
		ANSI	C63.10	6.6	Radiated emissions from unlicensed wireless			
					devices above 1 GHz			
	FCC	KDB	789033	G.2	Unwanted Emissions that fall Outside of the			
	D02v	′01r04	<u> </u>		Restricted Bands			
	FCC	KDB	789033	G.1	Unwanted Emissions in the Restricted Bands			
	D02v	01r04	<u> </u>					
		FCC	KDB 789033	G.4	Procedure for Unwanted Emissions Measurements			
		D02v	01r04		below 1000 MHz			
		FCC	KDB 789033	G.5	Procedure for Unwanted Maximum Emissions			
		D02v	01r04		Measurements above 1000 MHz			
		FCC	KDB 789033	G.6	Procedures for Average Unwanted Emissions			
		D02v	01r04		Measurements above 1000 MHz			
			FCC KDB 789033	G.6.c	Method AD (Average detection)—primary method			
			002v01r04					
		F	FCC KDB 789033	G.6.d	Method VB (Averaging using reduced video			
			002v01r04		bandwidth): Alternative method.			

Page: 33 of 35

4.5. EUT test Axis definition

Item	Radiated Emission							
		Indoor use						
Davisa Catanani		□ Outdoor use						
Device Category		☐ Fix position use						
		Client use						
Test mode	Mode	1-20						
		Radiated						
		X Axis	Y	Axis	Z Axis			
		Worst Axis ⊠ Worst Axis □		Axis 🗌	Worst Axis			
	Conducted							
To at we atte a d			Ch	nain 1				
Test method		•						
		Chain 1		Chain 2				
		• •						
		Chain 1	Ch	nain 2	Chain 3			
			•	• •				

Report No: 1872112R-RF-US-P09V01

4.6. Test Result

Appendix 1: CDD Ant 2x2 RSE
Appendix 2: CDD Ant 4x4 RSE
Appendix 3: Beam-Forming Ant 2x2 RSE
Appendix 4: Beam-Forming Ant 4x4 RSE
Appendix 5: Worst case RSE

The End

Page: 35 of 35