Mécanique des Fluides (GTE 3F) – Évaluation 2021

1 Rendement d'une éolienne

L'éolienne est une machine à capter l'énergie du vent, constituée d'une roue à pales installée au sommet d'un pylône. Les conditions sont telles que l'écoulement peut être considéré comme stationnaire et incompressible. La densité du fluide est ρ .

Figure 1: Éolienne

La vitesse du fluide en amont de l'éolienne est notée $v_e\vec{i}$. Celle de l'air rejeté en aval de l'éolienne (ralenti par cette dernière) est noté $v_s\vec{i}$, et la vitesse moyenne de l'air au niveau de l'éolienne est notée $v\vec{i}$. v_e est une donnée (c'est la vitesse du vent), mais les autres vitesses sont a priori inconnues. La section circulaire balayée par l'hélice est S. Un tube de courant s'appuyant sur le contour de cete section est schématisé à la figure -Fig. 1. Tout se passe comme si l'air circulait dans un tuyau ayant la forme représentée. Les sections d'entrée et de sortie de ce tube de courant sont notée S_e et S_e , toutes deux inconnues.

On suppose enfin que les pressions en amont et en aval de l'éolienne valent P_0 , tandis qu'on note P_+ et P_- celles avant et après la section dans laquelle se trouve l'hélice.

- 1. Établier deux relations liant les trois aires et les trois vitesses introduites ci-dessus. Justifier l'allure du tube de courant de la figure -Fig. 1.
- 2. Trouver deux autres relations entre P_+ , P_0 , v_e , v et ρ d'une part et P_- , P_0 , v_s , v et ρ d'autre part.
- 3. En considérant un volume de contrôle étroit situé autour de l'hélice, justifier que

$$\vec{F}_{\text{hélice} \to \text{fluide}} = -(P_{+} - P_{-}) \vec{Si}$$
.

4. En faisant un bilan de quantité de mouvement sur un système bien choisi, établir un lien entre $P_+ - P_-$, $v_e, \, v_s, \, \rho$ et le débit volumique D_v .

Indication : on pourra utiliser le fait que pour toute surface fermée Σ

$$\iint_{\Sigma} P_0 \vec{n} dS = \vec{0}.$$

5. En déduire que

$$v = \frac{v_e + v_s}{2}.$$

6. Soit \mathcal{P} la puissance reçue par l'éolienne. Le théorème de l'énergie cinétique permet d'écrire

$$\mathcal{P} = \frac{1}{2}\rho D_V \left(v_s^2 - v_e^2 \right)$$

où D_V dénote le débit volumique. À partir de cette relation et des résultats des questions précédentes, montrer que

$$\mathcal{P} = \frac{1}{2}\rho \times Sv_e \times v_e^2 \times f\left(\frac{v_s}{v_e}\right)$$

où $f(v_s/v_e)$ est une fonction sans dimension de $x=v_s/v_e$ appelée rendement aérodynamique.

- 7. Chercher pour quelle valeur x_{max} ce rendement est maximum. Calculer la puissance maximale reçue par l'hélice. Que vaut-elle pour un diamètre d'hélice de 80 m et une vitesse du vent de $10 \, \text{m s}^{-1}$.
- 8. Que vaut le rapport S_s/S pour $x = x_{\text{max}}$?
- 9. Calculer la force que doit supporter le pylône pour cette valeur de x.

2 Viscosimètre de Couette

Le viscosimètre de Couette est constitué de deux cylindres coaxiaux en rotation. Le cylindre intérieur de rayon R_i tourne à la vitesse angulaire Ω_i et le cylindre extérieur de rayon R_e tourne à la vitesse angulaire Ω_e . Le fluide contenu entre les deux cylindres est un fluide newtonien, incompressible, de viscosité dynamique μ constante et de masse volumique ρ , également constante. Aucun gradient de pression n'est appliqué suivant l'axe z entre l'entrée et la sortie de l'espace annulaire.

Figure 2: Viscosimètre de Couette

Par commodité, on travaille en coordonnées cylindriques. On donne ci-dessous les équations de conservation générales dans ce système de coordonnées. L'objectif de cet exercice est de déterminer le profil de vitesse

$$\vec{V}$$
: $(r, \theta, z) \mapsto (V_r(r, \theta, z), V_\theta(r, \theta, z), V_z(r, \theta, z))$

de l'écoulement permanent dans cette géométrie, sachant que les symétries du problème imposent que \vec{V} soit invariant par translation le long de l'axe z et par rotation autour de ce même axe.

- 1. D'après les symétries du problème, de quelles variables indépendantes $(r, \theta \text{ ou } z)$ \vec{V} est-il fonction ?
- 2. Écrire les conditions aux limites en $r = R_i$ et $r = R_e$ pour V_r , V_θ et V_z .
- 3. À partir de l'équation de continuité (donnée ci-dessous), montrer que la composante radiale de la vitesse (V_r) est nulle.
- 4. En prenant en compte toutes les hypothèses du problème et les résultats des questions précédentes, et en admettant que

$$\frac{\partial p}{\partial \theta} = \frac{\partial p}{\partial z} = 0,$$

simplifier les équations de Navier-Stokes données ci-dessous.

- 5. En déduite que V_z est nulle.
- 6. Déterminer la composante azimuthale de la vitesse (V_{θ}) en fonction de R_i , R_e , Ω_i , Ω_e et r.

Indication : en coordonnées cylindrique, l'équation de continuité s'écrit

$$\frac{1}{r}\frac{\partial (rV_r)}{\partial r} + \frac{1}{r}\frac{\partial V_{\theta}}{\partial \theta} + \frac{\partial V_z}{\partial z} = 0.$$

et en ce qui concerne les équations de Navier-Stokes

$$\begin{split} &\rho\left(\frac{\partial V_r}{\partial t} + V_r\frac{\partial V_r}{\partial r} + \frac{V_\theta}{r}\frac{\partial V_r}{\partial \theta} + V_z\frac{\partial V_r}{\partial z} - \frac{V_\theta^2}{r}\right) = -\frac{\partial p}{\partial r} + \mu\left(\frac{\partial^2 V_r}{\partial r^2} + \frac{1}{r}\frac{\partial V_r}{\partial r} - \frac{V_r}{r^2} + \frac{1}{r^2}\frac{\partial^2 V_r}{\partial \theta^2} + \frac{\partial^2 V_r}{\partial z^2} - \frac{2}{r^2}\frac{\partial V_\theta}{\partial \theta}\right),\\ &\rho\left(\frac{\partial V_\theta}{\partial t} + V_r\frac{\partial V_\theta}{\partial r} + \frac{V_rV_\theta}{r} + \frac{V_\theta}{r}\frac{\partial V_\theta}{\partial \theta} + V_z\frac{\partial V_\theta}{\partial z}\right) = -\frac{1}{r}\frac{\partial p}{\partial \theta} + \mu\left(\frac{\partial^2 V_\theta}{\partial r^2} + \frac{1}{r}\frac{\partial V_\theta}{\partial r} - \frac{V_\theta}{r^2} + \frac{1}{r^2}\frac{\partial^2 V_\theta}{\partial \theta^2} + \frac{\partial^2 V_\theta}{\partial z^2} + \frac{2}{r^2}\frac{\partial V_r}{\partial \theta}\right)\\ &\text{et enfin} \end{split}$$

$$\rho\left(\frac{\partial V_z}{\partial t} + V_r \frac{\partial V_z}{\partial r} + \frac{V_\theta}{r} \frac{\partial V_z}{\partial \theta} + V_z \frac{\partial V_z}{\partial z}\right) = -\frac{\partial p}{\partial z} + \mu\left(\frac{\partial^2 V_z}{\partial r^2} + \frac{1}{r} \frac{\partial V_z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 V_z}{\partial \theta^2} + \frac{\partial^2 V_z}{\partial z^2}\right).$$