Laplace Transform Table and Properties

$$F(s) = \int_0^\infty f(t)e^{-st} dt$$

Property/Rule	Mathematical Expression
Linearity	$\mathcal{L}\{af(t) + bg(t)\} = aF(s) + bG(s)$
Shifting in Time (t-translation)	$\mathcal{L}\{u(t-a)f(t-a)\} = e^{-as}F(s)$
s-shift (Frequency Shift)	$\mathcal{L}\{e^{at}f(t)\} = F(s-a)$
Differentiation (First Derivative)	$\mathcal{L}\lbrace f'(t)\rbrace = sF(s) - f(0^{-})$
Differentiation (Second Derivative)	$\mathcal{L}\{f''(t)\} = s^2 F(s) - s f(0^-) - f'(0^-)$
Differentiation (nth Derivative)	$\mathcal{L}\{f^{(n)}(t)\} = s^n F(s) - s^{n-1} f(0^-) - \dots - f^{(n-1)}(0^-)$
t-Multiplication	$\mathcal{L}\{tf(t)\} = -F'(s)$
t-Multiplication (nth power)	$\mathcal{L}\lbrace t^n f(t)\rbrace = (-1)^n F^{(n)}(s)$
Integration of f(t)	$\mathcal{L}\left\{\int_0^t f(\tau) d\tau\right\} = \frac{F(s)}{s}$
Convolution	$\mathcal{L}\{(f*g)(t)\} = F(s)G(s), \text{ where } (f*g)(t) = \int_0^t f(\tau)g(t-\tau) d\tau$
Integration with $\frac{f(t)}{t}$	$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\sigma) d\sigma$

Function $f(t)$	Transform $F(s)$	ROC
1	$\frac{1}{s}$	$\Re(s) > 0$
e^{at}	$\frac{1}{s-a}$	$\Re(s) > \Re(a)$
t	$\frac{1}{s^2}$	$\Re(s) > 0$
t^n	$\frac{n!}{s^{n+1}}$	$\Re(s) > 0$
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$	$\Re(s) > 0$
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$	$\Re(s) > 0$
$e^{at}\cos(\omega t)$	$\frac{s-a}{(s-a)^2+\omega^2}$	$\Re(s) > \Re(a)$
$e^{at}\sin(\omega t)$	$\frac{\omega}{(s-a)^2+\omega^2}$	$\Re(s) > \Re(a)$
$\delta(t)$	1	All s
$\delta(t-a)$	e^{-as}	All s
$\cosh(kt)$	$\frac{s}{s^2-k^2}$	$\Re(s) > k $
$\sinh(kt)$	$\frac{k}{s^2-k^2}$	$\Re(s) > k $
$\frac{1}{2\omega^3}\left(\sin(\omega t) - \omega t \cos(\omega t)\right)$	1	$\Re(s) > 0$
$\frac{t}{2\omega}\sin(\omega t)$	$\frac{(s^2 + \omega^2)^2}{s}$ $\frac{s}{(s^2 + \omega^2)^2}$ $\frac{s^2}{(s^2 + \omega^2)^2}$	$\Re(s) > 0$
$\frac{1}{2\omega}\left(\sin(\omega t) + \omega t \cos(\omega t)\right)$	$\frac{s^2}{(s^2+\omega^2)^2}$	$\Re(s) > 0$
u(t-a)	$\frac{e^{-as}}{s}$	$\Re(s) > 0$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$	$\Re(s) > \Re(a)$
$\frac{1}{\sqrt{\pi t}}$	$\frac{1}{\sqrt{s}}$	$\Re(s) > 0$
t^a	$\frac{\Gamma(a+1)}{s^{a+1}}$	$\Re(s) > 0$
$\cos(\omega t) - \omega t \sin(\omega t)$	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$	$\Re(s) > 0$

1