Package Pricing at Mission Hospital

Adithi Mahesh Anika Gupta Archit Jaiswal Suhas Kotaki

Data Exploration

Total 248 observations across 24 (raw data) / 51 (modified data) columns

Target variable – Ln(TOTAL COST TO HOSPITAL)

Technology Acceptance Model

Health

Variables

Personal Data

Age_category
Gender

BMI = Height /

Weight
Marital Status

Past Medical
History Code

Implant

Stay Variables

Total Length of
Stay
Length of StayICU
Length of StayWard

Admission time Statistics

HR Pulse
BP- High / Low
Respiratory Rate
HB, Urea, Creatinine
Mode, State,
Admission

Target Variable: Total Cost to Hospital

Data Preparation

Removing columns

Removed columns with insufficient observations as "1"

- CAD-SVD
- CAD-VSD
- Other-general
- Confused state

Missing Values

- Removed columns with more than 10% missing values
 - Creatinine has 13% missing values

Bivariate

- T-test
- ANOVA
- Correlation Matrix

Variable Correlation

High correlation with target variable Ln(Total Cost)

- Length of Stay ICU is highly correlated with correlation coefficient of 0.74
- Body Weight 0.39
- Length of Stay Ward 0.24

Model Deployment

- Dummy variables were created to prepare data for regression model
 - Age-Category <10, 11-25, 26-50, 50 and above
 - BP-Ranges Low, Normal, High, Critical
 - BMI Underweight, Normal, Overweight, Obese
- Feature engineering
 - Hemoglobin normal range: Female-12 to 15.5, Men 13 to 17.5
 - Urea normal range: 7 to 20 mg/dl
- Null Value Handling
 - BP Ranges Imputed 'Normal' BP range for null values which were Juvenile Patients
 - Urea Imputed 'Normal' Urea level for 11 null values. Assumption: Urea measurement is not critical for that patient.

T-test: Variable Selection

T-test results showed non-significance for some variables including:

- other-heart, other-nervous, other-tetralogy, Diabetes1, hypertension3, hemoglobin
- Above variables were removed

```
> unlist(c)
```

- [1] 0.0048910945590170 0.0000000002521739 0.0013245835972240 0.0000639215371859
- [5] 0.0004589737605837 0.0000730461582812 0.3398040815335372 0.0711962023925153
- [9] 0.6247839927165020 0.3524801475678168 0.0084629667228695 0.0000400518199409
- [13] 0.1832789942884625 0.0005908182800583 0.0018282991131916 0.0378884953902841
- [17] 0.4560952732037671 0.0119428338101021 0.6207373720410457 0.1018501445772405
- [21] 0.0003227415310346 0.0003350781592980

ANOVA Test

Significant categorical variables include:

- Age Categories
- BMI
- BP Ranges

```
> summary(anova_AGE)
           Df Sum Sq Mean Sq F value
                                          Pr(>F)
md$AGE 3 10.41 3.470 17.95 0.00000000147 ***
Residuals 244 47.18 0.193
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> summary(anova_BMI)
           Df Sum Sq Mean Sq F value Pr(>F)
           3 6.79 2.2620
                             10.86 0.00000101 ***
md$BMI
Residuals 244 50.80 0.2082
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> summary(anova_BP)
             Df Sum Sq Mean Sq F value Pr(>F)
md$ BP Range 3 2.95 0.9827
                               4.388 0.00498 **
Residuals 244 54.64 0.2239
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Considered In(Total Cost) instead of Total Cost to Hospital(INR)

Our variable has a right skew. Taking the log would make the distribution of our transformed variable appear more symmetric.

Removed Stay at hospital

ICU and Ward

It is a reflective construct variable

Cannot predict length of stay accurately at the time of admission to compute total treatment cost

Variable Interaction

Several variable Interactions were significant in identifying Total cost to Hospital

Interaction	Significant (Yes/No)
Patient used Ambulance and Had impant	Yes
Age <10 and Rheumatic Heart Disease present	No
Age>50 and Coronary artery disease-TVD	Yes
Age>50 and Coronary artery disease-DVD	Yes
ACHD and Body Weight	Yes
RHD and Cost of Implant	Yes

Some variable interaction coefficients are mentioned below

```
relevel(md\$AGE, ref = "2")3 0.01184
                                        0.09698
                                                 0.122
                                                                   0.902976
md$`IMPLANT USED (Y/N)`Y
                                       0.07426
                                                 6.635
                             0.49271
                                                             0.000000000217 ***
md$`Amb*implant`1
                          0.40247
                                       0.14700
                                                 2.738
                                                                   0.006651 **
md$`juvenile*RHD`1
                           -0.43466
                                                -1.095
                                                                   0.274562
                                        0.39690
md$`juvenile*ACHD`1
                            -0.37922
                                       0.11988
                                                -3.163
                                                                   0.001763 **
md$`Age*TVD`1
                            0.37432
                                                 3.414
                                        0.10963
md$`Age*DVD`1
                            0.47069
                                                 4.368
                                       0.10775
                                                             0.000018702194
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3881 on 238 degrees of freedom
Multiple R-squared: 0.4319, Adjusted R-squared: 0.4104
F-statistic: 20.1 on 9 and 238 DF, p-value: < 0.00000000000000022
```

Impact of Body Weight on Total Cost to Hospital

Average Cost to hospital for 50Kg patient: INR198,723 Body Weight coefficient: 0.008434

For everyone unit increase in body weight, there will be 0.008 times In() value of cost.

 $(e^0.0084) = 1.0084.$

0.0084 increase from the actual value.

Likely increase in cost to hospital with increase of 1 Kg of patient weight: 198,723 * 0.0084 = INR 1669

Conclusion: A patient weighing 51Kgs is likely to spend INR 1,669 more than the patient weighing 50Kgs

```
> fit2<- lm(md$`Ln(Total Cost)` ~ md$`BODY WEIGHT`)</pre>
> summary(fit2)
call:
lm(formula = md$`Ln(Total Cost)` ~ md$`BODY WEIGHT`)
Residuals:
              10 Median
                                        Max
-1.35686 -0.28031 -0.02637 0.23793 1.51232
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                11.745585 0.056642 207.364 < 2e-16 ***
md$`BODY WEIGHT` 0.008434
                            0.001286 6.559 3.16e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.4672 on 246 degrees of freedom
Multiple R-squared: 0.1489, Adjusted R-squared: 0.1454
F-statistic: 43.03 on 1 and 246 DF, p-value: 3.162e-10
```

Interpretation

ACHD – The cost to hospital decreases by 39% for a patient with ACHD as opposed to a patient without **ACHD**

CAD-DVD – The cost to hospital increases by 60% for a patient with CAD-DVD as opposed to a patient without CAD-DVD

CAD-TVD – The cost to hospital increases by 40% for a patient with CAD-TVD as opposed to a patient without CAD-TVD

HR-Pulse – For every 1 unit increase in HR Pulse the cost to hospital increases by 0.004 units

Cost of Implant – For every 1 INR more of cost of Impant the cost to hospital increases by 0.000006 INR

```
call:
lm(formula = md$`Ln(Total Cost)` ~ md$ACHD + md$`CAD-DVD` + md$`CAD-TVD` +
    md$`BODY WEIGHT` + md$`HR PULSE` + md$Diabetes2 + md$hypertension2 +
    md$other + md$AMBULANCE + md$`COST OF IMPLANT` + relevel(md$AGE,
   ref = "2") + md$`IMPLANT USED (Y/N)` + md$ACHD:md$`BODY WEIGHT`)
Residuals:
    Min
              10 Median
                                        Max
-1.06576 -0.14241 0.00907 0.14490 1.25041
Coefficients:
                              Estimate Std. Error t value
                                                                      Pr(>|t|)
(Intercept)
                           11.49808759 0.20937641
                                                   md$ACHD1
                                                    -3.149
                           -0.48879740 0.15522234
                                                                      0.001853 **
md$`CAD-DVD`1
                            0.40810337 0.08938447
                                                    4.566
                                                                    0.00000808 ***
md$`CAD-TVD`1
                            0.34000863 0.10400582
                                                     3.269
                                                                      0.001243 **
md$`BODY WEIGHT`
                           -0.00123674 0.00254594
                                                    -0.486
                                                                      0.627587
md$`HR PULSE`
                                                                      0.004439 **
                            0.00406365 0.00141429
                                                    2.873
md$Diabetes21
                                                                      0.004163 **
                            0.40758672 0.14082687
                                                    2.894
md$hypertension21
                           -0.15452638 0.10710636
                                                   -1.443
                                                                      0.150443
md$other1
                           -0.14026401 0.10044371
                                                   -1.396
                                                                      0.163915
md$AMBULANCE1
                            0.11431894 0.08005580
                                                    1.428
                                                                      0.154639
md$`COST OF IMPLANT`
                            0.00000624 0.00000186
                                                                      0.000929 ***
                                                     3.354
relevel(md$AGE, ref = "2")0 -0.00775951 0.13457874
                                                    -0.058
                                                                      0.954071
relevel(md$AGE, ref = "2")1 -0.03875012 0.10204515
                                                    -0.380
                                                                      0.704489
relevel(md$AGE, ref = "2")3 0.18971414 0.08258392
                                                    2.297
                                                                      0.022497 *
md$`IMPLANT USED (Y/N)`Y
                                                     3.255
                                                                      0.001303 **
                            0.32176030 0.09884679
md$ACHD1:md$`BODY WEIGHT`
                            0.00970086 0.00493132
                                                    1.967
                                                                      0.050353 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.3578 on 232 degrees of freedom
Multiple R-squared: 0.5292,
                              Adjusted R-squared: 0.4987
```

F-statistic: 17.38 on 15 and 232 DF, p-value: < 0.0000000000000022

Predicting Length of Stay at ICU as it captures 68% of variation in Total cost

Step wise variable selection method was used to build a predictive model to estimate the stay of a patient in ICU for his treatment

This further helps the hospital to predict a strong variable to compute the total cost accurately

The variables choosen was same as the ones choosen to predict total cost

```
lm(formula = md$`LENGTH OF STAY - ICU` ~ md$ACHD + md$`CAD-DVD` +
    md$`CAD-TVD` + md$RHD + md$`BODY WEIGHT` + md$`HR PULSE` +
    md$Diabetes2 + md$urea + md$AMBULANCE + md$AGE + md$`IMPLANT USED (Y/N)` +
    md$RHD:md$`BODY WEIGHT`)
Residuals:
             1Q Median
-5.8769 -1.4471 -0.4298 0.6681 25.9504
Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
(Intercept)
md$ACHD1
                         -1.26810
                                              -1.653 0.099724
md$`CAD-DVD`1
md$`CAD-TVD`1
                          2.77159
                                     0.90588
                                               3.060 0.002474 **
                         -5.94232
md$RHD1
                                     2.80003
md$`BODY WEIGHT`
                         -0.03775
                                     0.01881 -2.006 0.045956
md$`HR PULSE`
                          0.03827
                                     0.01215
md$Diabetes21
                          2.28427
md$UreaNormal
                         -1.25748
                                     0.41345
                          2.24688
                                     0.70882
md$AMBULANCE1
md$AGE
                          0.03831
                                     0.01622
                                               2.362 0.018993
md$`IMPLANT USED (Y/N)`Y 2.51420
                                     0.69198
md$RHD1:md$`BODY WEIGHT`
                          0.08760
                                     0.05641
                  '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.144 on 235 degrees of freedom
Multiple R-squared: 0.3668,
                                Adjusted R-squared: 0.3344
F-statistic: 11.34 on 12 and 235 DF, p-value: < 0.00000000000000022
```

References

- http://www.bloodpressureuk.org/BloodPressureandyou/Thebasics/Bloodpressurechart
- https://www.mayoclinic.org/tests-procedures/blood-urea-nitrogen/about/pac-20384821
- https://www.quora.com/Why-do-we-log-variables-in-regression-model

THANKYOU!!