Simulated Annealing

Estrutura Cristalina

- Os sólidos são classificados em Cristalinos e Amorfos.
 - Sólidos cristalinos são compostos por átomos, moléculas ou íons que se arranjam de forma periódica, apresentando ordenamento de longo alcance.
 - Sólidos amorfos não apresentam ordenamento de longo alcance. Podem apresentar ordenamento de curto alcance.

Estrutura Cristalina

• Devido à competição entre ordem e desordem mediada pela temperatura (F = U - TS), surgem **grãos cristalinos** e defeitos como **deslocações**

• Tratamentos térmicos e/ou mecânicos podem modificar a estrutura cristalina e a distribuição de grãos e defeitos, modificando as propriedades mecânicas do material (maleabilidade, dureza, ductilidade, rigidez, etc)

Annealing (Recozimento)

- Técnica em Metalurgia que permite modificar a estrutura cristalina e, consequentemente, as propriedades mecânicas de metais através de um tratamento térmico
- O material é aquecido, até próximo ou acima da temperatura de fusão e resfriado lentamente, modificando assim suas propriedades
- Idealmente, reduzindo a temperatura de forma lenta e controlada até temperaturas muito baixas, seria possível obter um monocristal, minimizando a energia interna do material

Simulated Annealing

- Método estocástico de otimização inspirado no processo de annealing da metalurgia
 - Utiliza o algoritmo de Metropolis, simulando o sistema partindo de uma temperatura alta e resfriando-o lentamente
 - F = U TS
 - Em altas temperaturas o termo de entropia é mais relevante, permitindo explorar todo espaço de configurações
 - Em baixas temperaturas o termo de energia interna deve ser minimizado
 - Neste processo a energia é minimizada e esperamos que o estado de menor energia seja atingido ao final da simulação

Simulated Annealing

- Devemos definir uma função a ser minimizada (Energia)
 - Estabelecer a temperatura inicial (alta suficiente para explorar o espaço de configurações)
 - Definir um protocolo de redução da temperatura
 - Verificar se a solução encontrada é consistente (repetir o experimento)

Paisagem de energia (Energy Landscape)

 Dado um conjunto de cidades, devemos encontrar o menor caminho que passe uma única vez por cada cidade e retorne à cidade inicial

 A grandeza minimizada é a distância total percorrida (fará o papel da energia no algoritmo de Metropolis)

• Escolheremos N pontos aleatoriamente no intervalo (0,1)

 O Caminho inicial pode ser na própria ordem em que os pontos foram escolhidos

• Escolheremos N pontos aleatoriamente no intervalo (0,1)

 O Caminho inicial pode ser na própria ordem em que os pontos foram escolhidos

Proposta de modificação do caminho

índice	caminho inicial	caminho final
0	5	5
1	6	6
2	8	2
3	1	9
4	3	3
5	9	1
6	2	8
7	4	4
8	7	7
9	0	0

Proposta de modificação do caminho

índice	caminho inicial	caminho final
0	5	5
1	6	6
2	8	2
3	1	9
4	3	3
5	9	1
6	2	8
7	4	4
8	7	7
9	0	0

Proposta de modificação do caminho

índice	caminho inicial	caminho final
0	5	5
1	6	6
2	8	2
3	1	9
4	3	3
5	9	1
6	2	8
7	4	4
8	7	7
9	0	0

- O Algoritmo:
 - 1. Entre com as posições das cidades e determine as distância entre elas
 - 2. Proponha um caminho a ser percorrido e determine a distância total percorrida (energia)
 - 3. Proponha uma modificação no caminho e determine a diferença de energia (ΔE)
 - 4. Escolha um número aleatório $r \in [0,1)$ e calcule $P = \exp(-\beta \Delta E)$
 - A. Se $r \leq P$ aceite o novo caminho e volte ao passo 3
 - B. Se r > P mantenha o caminho atual e volte ao passo 3
 - 5. Após um determinado número de passos reduza a temperatura e continue até não haver mais alterações no caminho

• Evolução da energia numa simulação

• Evolução da energia numa simulação

