CLAIM AMENDMENTS

Claim Amendment Summary

Claims pending

- At time of the Action: Claims 38-53.
- After this Response: Claims 38-53.

Canceled or Withdrawn claims: none.

Amended claims: 43 and 45.

New claims: none.

Claims 1-37 are CANCELLED.

1	38. (Previously Presented) A method of
2	processing first, second, and third signals for use in a
3	system having first, second, third and fourth signal
4	lines, wherein the first, second, and third signal lines
5	couple a source device to a destination device, a
6	pseudo-random number generator being contained within the
7	source device, the method comprising:
8	operating the source device to communicate with
9	the destination device so as to establish a session key
10	and synchronization information via one or all of the
11	first, second, third and fourth signal lines during a
12	vertical blanking period;

13	operating the pseudo-random number generator to
14	generate said pseudo-random output values as a function
15	of the established session key;
16	generating a fourth signal;
17	generating, using said pseudo-random number
18	generator, pseudo-random output values; and
19	for each of the first, second, third and fourth
20	signal lines, selecting, for transmission thereon, one of
21	the first, second, third, and fourth signals, the
22	selection being performed in a mutually exclusive manner
23	and as a function of at least one of said pseudo-random
24	output values, the selection also being performed by a
25	matrix multiplication operation performed on the first,
26	second, third and fourth signals utilizing matrix
27	coefficients generated from a plurality of the pseudo-
28	random output values.
^^	

29

1

2

3

4

5

6

- 39. (Previously Presented) The method of claim 38, wherein generating a fourth signal includes:

 processing at least one of the first, second or third signals to generate the fourth signal from said at least one of the first, second, or third signals.
- 1 40. (Previously Presented) The method 2 of claim 38, wherein generating a fourth signal includes 3 performing the act of:
- switching between at least two of said first and second signals to generate said fourth signal.

1	41. The method of claim 38, wherein generating a			
2	fourth signal includes:			
3	performing a high pass filtering operation			
4	on one of said first, second and third signals to produce			
5	a filtered signal; and			
6	combining the filtered signal with a			
7	modulated pedestal signal to generate said fourth signal.			
1	42. (Previously Presented) The method			
2	of claim 38, wherein the first, second and third signals			
3	are red, green and blue video signals, respectively, the			
4	method further comprising the steps of:			
5	encrypting horizontal synchronization			
6	information into at least one of said red, green and blue			
7	video signals prior to changing which ones of the first,			
8	second, third and fourth signal lines are used to			
9	transmit said first, second and third signals.			
1	43. (Currently Amended) The method of			
2	elaim 7 claim 42, further comprising:			
3	transmitting a horizontal synchronization			
4	signal over said fourth line prior to using the fourth			
5	line to transmit one of said first, second and third			
6	video signals.			
7				

2	readable medium, comprising computer instructions for				
3	controlling a computer system to perform the steps				
4	recited in claim 38.				
1	45. (Currently Amended) A method of				
2	processing first, second, and third video signals which				
3	are coupling a source device to a destination device, the				
4	method comprising:				
5	generating a fourth video signal;				
6	operating the source device to communicate				
7	with the destination device so as to establish a session				
8	key and synchronization information via one or all of the				
9	first, second, third and fourth video signal during a				
10	vertical blanking period;				
11	transmitting the first, second, third, and				
12	fourth video signals over first, second, third and fourth				
13	lines, the transmitting including periodically swapping				
14	the lines used to transmit the first, second, third and				
15	fourth video signals; <u>and</u>				
16	modifying at least one of said first,				
17	second and third signals prior to transmitting them, the				
18	modifying including modulating horizontal synchronization				

44. (Previously Presented) A machine

information on each of said first, second, and third

video signals.

1

19

20

21

1	46. (Previously Presented) The method
2	of claim 45, wherein periodically swapping the lines used
3	to transmit the first, second, third and fourth video
4	signals includes the act of:
5	performing a matrix multiplication
6	operation on the first, second, third and fourth video
7	signals to determine the line on which each of the video
8	signals are transmitted.
9	
1	47. (Previously Presented) The method
2	of claim 46, further comprising:
3	operating a pseudo random number generator
4	to generate a set of values; and
5	wherein said matrix multiplication
6	operation is performed as a function of said set of
7	generated values.
1	48. (Previously Presented) A machine
2	readable medium, comprising computer instructions for
3	controlling a computer system to perform the steps
4	recited in claim 45.

1	49. (Previously Presented) A video
2	adapter comprising:
3	a video signal generation means for
4	generating a fourth video signal;
5	a session establishing means for
6	establishing a session key and communicating
7	synchronization information via one or all of a first,
8	second, third and fourth signal lines during a vertical
9	blanking period;
10	a pseudo-random number generation means
11	for generating pseudo-random output values as a function
12	of the established session key;
13	selection means for selecting one of the
14	first, second, third, and fourth video signals for
15	transmission over each of the first, second, third and
16	fourth signal lines, the selection being performed in a
17	mutually exclusive manner and as a function of at least
18	one of said pseudo-random output values.

- The video 1 (Previously Presented) 2 adapter of claim 49, wherein the video signal generation 3 means includes means for generating said fourth video 4 signal from at least one of said first, second and third 5 video signals.
- 1 51. (Previously Presented) The 2 adapter of claim 49, wherein the selection means includes 3 of use а matrix multiplier.

7

0308051603 G.WS1-01851usUMS1-851us.m02.doc

Sorial No.: 09/608,209 Atty Docket No.: MS1-851US RESPONSE TO Final OFFICE ACTION DATED

1	52. (Previously Presented)	The	video
2	adapter of claim 49, further comprising:		
3	means for modulating	ho	rizontal
4	synchronization information on one of the	first,	second,
5	third, and fourth video signals.		
6			
1	53. (Previously Presented)	The	video
2	adapter of claim 49, wherein the first, sec	ond, t	hird and
3	fourth video signal are analog video signal	s.	