КАНТРОЛЬНАЯ РАБОТА № 1

ВАРЫЯНТ ЗАДАННЯ ВЫЗНАЧАЕЦЦА ДЗВУМА АПОШНІМІ ЛІЧБАМІ ЗАЛІКОЎКІ; X – НУМАР ГРУПЫ; Y – НУМАР ПА ЖУРНАЛУ У СТАРАСТЫ У ПЕРШУЮ НЯДЗЕЛЮ СЕМЕСТРА

Задача 1. Па зададзеных ў табл.1 крыніцах з ЭРС Е і прымальніках з супраціўленнем **R** вычарціць электрычную схему і выканаць наступнае:

- 1) скласці сістэму ўраўненняў неабходных для вызначэння токаў па першым і другім законах Кірхгофа;
- 2) знайсці ўсе токі, выкарыстоўваючы метад контурных токаў;
- 3) метадам эквівалентнага геніратара вызначыць ток, зазначаны ў калонцы 21;
- 4) метадам суперпазіцыі (метадам накладання), заўвага: пры разліку токаў абавязкова выкарыстоўваць метад эквівалентных пераўтварэння);
 - 5) вызначыць паказанне вальтметра, уключанага паміж пунктамі схемы, зазначаннымі ў калонцы 20;
 - 6) скласці баланс магутнасці для зададзенай схемы;
 - 7) пабудаваць ў масштабе патэнцыяльную дыяграму для знешняга контуру.

Табліца 1

№ ва-	Н	Гумар	э гал	іны і	і яе "	пача	так"	i	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8			Вызна	чыць
рыянта				"кан	нец"												Крыніцы	ЭРС, В		
	1	2	3	4	5	6	7	8	Ом			U, B	I, A							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
00	23	35	56	64	41	12	52	34	140	460	650	530	320	230	350	560(1+0.5X)	$E_2 = 500(1 + 0.05Y)$	$E_8 = 500 + 10X$	13	I_1
01	34	46	62	21	15	53	63	41	510	120	260	640	430	340	460	620(1+0.5X)	$E_3=200(1+0.04Y)$	E ₅ =600+10X	54	I ₂
02	34	45	52	21	16	63	53	41	610	120	250	540	430	340	450	520(1+0.5X)	$E_4=200(1+0.05Y)$	$E_6 = 500 + 10X$	64	I_5
03	34	45	52	21	16	63	53	41	610	120	250	540	430	340	450	520(1+0.5X)	$E_5=200(1+0.04Y)$	$E_7 = 500 + 10X$	64	I_8
04	35	56	61	12	24	43	63	52	420	210	160	650	530	350	560	610(1+0.5X)	$E_6=100(1+0.05Y)$	$E_8 = 600 + 10X$	45	I_3
05	34	45	51	12	26	63	53	42	620	210	150	540	430	340	450	510(1+0.5X)	$E_1 = 500(1 + 0.04Y)$	$E_7 = 100 + 10X$	64	I_6
06	34	45	51	12	26	63	53	42	620	210	150	540	430	340	450	510(1+0.5X)	$E_2 = 500(1 + 0.05Y)$	$E_8 = 100 + 10X$	64	I_1
07	35	56	61	14	42	23	63	54	240	410	160	650	530	350	560	610(1+0.5X)	$E_1=100(1+0.04Y)$	$E_2 = 600 + 10X$	25	I_4
08	24	46	61	13	35	52	62	43	530	310	160	640	420	460	240	610(1+0.5X)	$E_1 = 100(1 + 0.05Y)$	$E_4 = 600 + 10X$	54	I_7
09	24	45	51	13	36	62	52	43	630	310	150	540	420	240	450	510(1+0.5X)	$E_3=100(1+0.04Y)$	$E_5 = 500 + 10X$	64	I_2
10	34	46	62	25	51	13	63	45	150	520	260	640	430	340	460	620(1+0.5X)	$E_4 = 200(1 + 0.05Y)$	$E_6 = 600 + 10X$	14	I_5
11	24	46	63	31	15	52	62	41	510	130	360	640	420	240	460	530(1+0.5X)	$E_4 = 300(1 + 0.04Y)$	$E_6 = 600 + 10X$	54	I_7
12	24	45	53	31	16	62	52	41	610	130	350	540	420	240	450	530(1+0.5X)	$E_5=300(1+0.05Y)$	$E_7 = 500 + 10X$	64	I_2
13	24	45	53	31	16	62	52	41	610	130	350	540	420	240	450	530(1+0.5X)	$E_6=300(1+0.04Y)$	$E_8 = 500 + 10X$	64	I_5
14	25	56	63	31	14	42	62	51	410	130	360	650	520	250	560	630(1+0.5X)	$E_1 = 600(1 + 0.05Y)$	$E_7 = 300 + 10X$	45	I_8
15	24	45	53	31	16	62	52	41	610	130	350	540	420	240	450	530(1+0.5X)	$E_2 = 500(1 + 0.04Y)$	$E_8 = 300 + 10X$	64	I_3

Працяг табліцы 1

№ ва-	Н	Іумар	э гал	іны і "кан		пача	так"	i	R_1	R ₂	R ₃	R ₄	R_5	R ₆	R ₇	R ₈	V.ai.v.	•	Вызна	
рыянта	1	2	3	4	5	6	7	8	Ом	Ом	Ом	Ом	Ом	Ом	Ом	Ом	Крыніцы	ЭРС, В	U, B	I, A
16	14	46	62	23	35	51	61	43	230	340	450	430	_	610	150	120(1+0.5X)	$E_2=300(1+0.05Y)$	E ₇ =600+10X	63	I_7
17	13	34	45	52	26	61	41	31	230	340	450	430	320	610	150	120(1+0.5X)	E ₄ =200(1+0.06Y)	E ₈ =500+10X	34	I ₅
18	24	46	63	35	51	12	62	45	240	450	560	540	420	310	160	210(1+0.5X)	$E_2 = 400(1 + 0.07Y)$	E ₇ =500+10X	63	I_3
19	23	35	54	41	16	62	52	31	230	340	450	430	320	610	150	210(1+0.5X)	E ₈ =300(1+0.05 Y)	E ₇ =600+10X	53	I_1
20	24	46	65	51	13	32	62	41	240	450	560	540	420	160	360	210(1+0.5X)	E ₅ =400(1+0.04Y)	E ₈ =500+10X	13	I_7
21	23	35	54	41	16	62	52	31	130	350	560	530	310	420	260	410(1+0.5X)	$E_1 = 600(1 + 0.06Y)$	$E_3 = 400 + 10X$	63	I_4
22	24	46	56	63	31	12	62	43	410	130	360	650	520	250	560	310(1+0.5X)	$E_5=300(1+0.07Y)$	$E_4 = 500 + 10X$	34	I_2
23	24	45	56	61	13	32	52	41	530	320	260	640	410	140	460	310(1+0.5X)	E ₈ =400(1+0.06Y)	$E_5 = 400 + 10X$	63	I_8
24	23	34	45	51	62	16	42	31	130	340	450	430	310	620	350	520(1+0.5X)	$E_5=700(1+0.05Y)$	$E_6 = 600 + 10X$	14	I_3
25	24	45	56	63	31	12	52	43	150	530	360	640	420	240	460	630(1+0.5X)	$E_1 = 400(1 + 0.06Y)$	$E_7 = 500 + 10X$	13	I_7
26	23	35	54	41	16	62	52	31	610	140	450	530	320	230	350	540(1+0.5X)	$E_4 = 400(1 + 0.05Y)$	$E_4 = 500 + 10X$	54	I_2
27	24	46	65	53	31	12	62	43	130	350	560	640	420		460	650(1+0.5X)	$E_3 = 500(1 + 0.07Y)$	$E_5 = 600 + 10X$	14	I_6
28	13	36	64	42	25	51	61	32	520	240		630			360	640(1+0.5X)	$E_6=400(1+0.05Y)$	$E_6 = 600 + 10X$	53	I_1
29	13	35	54	42	26	61	51	32	620	240		530			350	540(1+0.5X)	$E_1 = 400(1 + 0.04Y)$	$E_7 = 500 + 10X$	63	I_4
30	23	36	64	45	51	12	62	35	150	540		630			360	640(1+0.5X)	$E_8=400(1+0.05Y)$	$E_8 = 600 + 10X$	13	I_7
31	23	36	65	51	14	42	62	31	410			630		230	360	650(1+0.5X)	$E_2 = 500(1 + 0.04Y)$	$E_8 = 600 + 10X$	43	I_1
32	23	35	54	41	16	62	52	31	610	140		530		230	350	540(1+0.5X)	$E_1 = 500(1 + 0.05Y)$	$E_7 = 400 + 10X$	63	I_4
33	23	35	54	41	16	62	52	31	610	140		530			350	540(1+0.5X)	$E_2 = 500(1 + 0.06Y)$	$E_8 = 600 + 10X$	63	I_7
34	24	46	65	51	13	32	62	41	310	150		640			460	650(1+0.5X)	$E_1 = 500(1 + 0.05Y)$	$E_3 = 600 + 10X$	34	I_2
35	23	35	54	41	16	62	52	31	610	140	450				350	540(1+0.5X)	$E_2 = 400(1 + 0.07Y)$	$E_4 = 500 + 10X$	63	I_5
36	23	35	54	41	16	62	52	31	610	140		510			350	540(1+0.5X)	$E_3=400(1+0.05Y)$	$E_5 = 500 + 10X$	63	I_8
37	24	46	56	63	31	12	62	43		350		640			460	650(1+0.5X)	$E_4=500(1+0.07Y)$	$E_6 = 600 + 10X$	14	I_3
38	13	36	64	42	25	51	61	32	520	240		630			360	640(1+0.5X)	$E_5 = 400(1 + 0.05Y)$	$E_7 = 600 + 10X$	53	I_6
39	13	35	54	42	26	61	51	32	620	240		530			350	540(1+0.5X)	$E_6 = 400(1 + 0.07Y)$	$E_8 = 500 + 10X$	63	I_1
40	23	36	65	54	41	12	62	34	140	450	560				360	650(1+0.5X)	$E_1 = 400(1 + 0.05Y)$	$E_7 = 500 + 10X$	13	I_4
41	23	35	56	61	14	42	52	31	410	160		530			350	560(1+0.5X)	$E_1 = 500(1 + 0.07Y)$	$E_7 = 600 + 10X$	43	I_6
42	32	34	45	51	16	62	42	31	610	150		430		230	340	450(1+0.5X)	$E_2 = 400(1 + 0.05Y)$	$E_8 = 500 + 10X$	63	I_1
43	23	34	45	51	16	62	42	31	610	150		430		230	-	450(1+0.5X)	$E_1 = 500(1 + 0.07Y)$	$E_3 = 400 + 10X$	63	I ₄
44	24	45	56	61	13	32	52	41	310			540			450	560(1+0.5X)	$E_2 = 600(1 + 0.05Y)$	$E_4 = 500 + 10X$	34	I_7
45	23	34	45	51	16	42	31	62	610	150		430			340	450(1+0.5X)	$E_3 = 500(1 + 0.07Y)$	$E_5 = 400 + 10X$	63	I_2
46	23	34	45	51	62	16	42	31	610	150					340	450(1+0.5X)	$E_4 = 500(1 + 0.05Y)$	$E_6 = 600 + 10X$	63	I_5
47	24	45	56	63	31	12	52	43	160	360	560	540	420	240	450	560(1+0.5X)	$E_5 = 600(1 + 0.07Y)$	$E_7 = 500 + 10X$	14	I_8

Працяг табліцы 1

№ ва- рыянта	а "канец"		'ni	R_1	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	Крыніцы		Вызна						
P	1	2	3	4	5	6	7	8	Ом	Ом	Ом	Ом	Ом	Ом	Ом	Ом	Түринды	31 C, B	U, B	I, A
48	13	35	56	62	24	41	51	32	420	260	650	530	310	130	350	560(1+0.5X)	$E_6 = 600(1 + 0.05Y)$	$E_8 = 500 + 10X$	43	I_3
49	13	34	45	52	26	61	41	31	620	350	540	430	310	130	340	450(1+0.5X)	$E_1 = 400(1 + 0.07Y)$	$E_7 = 500 + 10X$	63	I_6
50	34	45	51	12	26	63	53	42	230	350	540	530	320	610	140	450(1+0.5X)	E ₅ =400(1+0.06Y)	$E_8 = 500 + 10X$	63	I_4
51	34	45	51	12	26	63	53	42	240	460	650	640	420	310	150	560(1+0.5X)	$E_1 = 600(1 + 0.07Y)$	$E_8 = 500 + 10X$	63	I_7
52	35	56	61	14	42	23	63	54	230	350	540	510	320	610	140	450(1+0.5X)	$E_5=400(1+0.05Y)$	$E_4 = 500 + 10X$	34	I_2
53	24	46	61	13	35	52	62	43	240	460	650	640	420	130	350	560(1+0.5X)	E ₈ =400(1+0.06Y)	$E_6 = 600 + 10X$	63	I_5
54	24	45	51	13	36	62	52	43	610	140	350	540	630	320	150	460(1+0.5X)	$E_5=400(1+0.07Y)$	E ₈ =600+10X	63	I_8
55	34	46	62	25	51	13	63	45	610	140	350	540	630	320	410	120(1+0.5X)	$E_2 = 500(1 + 0.05Y)$	E ₇ =400+10X	14	I_3
56	24	46	63	31	15	52	62	41	310	150	460	650	530	320	610	120(1+0.5X)	$E_2 = 500(1 + 0.06Y)$	$E_3 = 600 + 10X$	53	I_6
57	24	45	53	31	16	62	52	41	610	140	350	540	530	320	610	120(1+0.5X)	E ₄ =400(1+0.05Y)	E ₅ =500+10X	63	I_1
58	24	45	53	31	16	62	52	41	610	140	350	540	640	420	310	210(1+0.5X)	$E_3 = 500(1 + 0.07Y)$	$E_6 = 600 + 10X$	13	I_4
59	25	56	63	31	14	42	62	51	130	350	460	650	510	320	610	210(1+0.5X)	$E_6 = 400(1 + 0.06Y)$	E ₇ =600+10X	43	I_6
60	24	45	53	31	16	62	52	41	520	240	360	640	510	320	610	210(1+0.5X)	$E_1 = 400(1 + 0.05Y)$	$E_8 = 500 + 10X$	63	I_1
61	24	45	53	31	16	62	52	41	130	350	240	450	640	420	130	410(1+0.5X)	E ₈ =400(1+0.07Y)	E ₇ =500+10X	63	I_4
62	25	56	63	34	41	12	62	54	230	360	540	460	630	310	520	310(1+0.5X)	$E_2 = 500(1 + 0.05Y)$	$E_7 = 600 + 10X$	34	I_7
63	14	46	62	23	35	51	61	43	230	360	150	560	530	310	620	310(1+0.5X)	$E_3 = 400(1 + 0.06Y)$	$E_8 = 500 + 10X$	63	I_5
64	24	46	63	35	51	12	62	45	230	350	140	450	630	320	140	520(1+0.5X)	$E_2 = 500(1 + 0.05Y)$	$E_3 = 400 + 10X$	14	I_8
65	23	36	64	41	15	52	62	31	231	350	140	450	530	320	410	130(1+0.5X)	$E_5 = 600(1 + 0.06Y)$	$E_4 = 500 + 10X$	43	I_3
66	14	45	52	23	36	61	51	43	240	460	150	560	430	320	610	130(1+0.5X)	$E_3=500(1+0.05Y)$	$E_6 = 600 + 10X$	45	I_8
67	23	35	54	41	16	62	52	31	230	350	140	450	430	320	610	130(1+0.5X)	$E_4 = 600(1 + 0.05Y)$	$E_7 = 500 + 10X$	64	I_6
68	23	35	54	41	16	62	52	31	230	350	140	450	540	420	310	410(1+0.5X)	$E_5 = 600(1 + 0.06Y)$	$E_8 = 500 + 10X$	54	I_4
69	24	46	65	51	13	32	62	41	240	460	350	560	430	320	610	310(1+0.5X)	$E_2 = 600(1 + 0.05Y)$	$E_7 = 300 + 10X$	63	I_6
70	23	35	54	41	16	62	52	31	130	360	240	460	540	420	160	310(1+0.5X)	$E_2=300(1+0.05Y)$	$E_3 = 500 + 10X$	14	I_2
71	23	35	54	41	16	62	52	31	130	350	640	410	530	310	420	460(1+0.5X)	$E_4=200(1+0.06Y)$	$E_5 = 600 + 10X$	13	I_1
72	24	46	65	53	31	12	62	43	230	360	430	310	650	520	250	410(1+0.5X)	$E_2 = 400(1 + 0.07Y)$	$E_7 = 500 + 10X$	54	I_2
73	13	36	64	42	25	51	61	32	230	350	640	420	540	420	240	460(1+0.5X)	E ₈ =300(1+0.05Y)	E ₇ =600+10X	64	I_5
74	13	35	54	42	26	61	51	32	610	140	450	530	320	230	350	540(1+0.5X)	$E_5=400(1+0.04Y)$	$E_8 = 500 + 10X$	64	I_8
75	23	36	64	45	51	12	62	35	310	150	560	640	420	240	460	650(1+0.5X)	$E_1 = 600(1 + 0.06Y)$	E ₈ =500+10X	45	I_3
76	23	36	65	51	14	42	62	31	610	140	450	530	320	230	350	540(1+0.5X)	$E_5=300(1+0.07Y)$	$E_4 = 500 + 10X$	64	I_6
77	23	35	54	41	16	62	52	31	520	240	460	630	310	130	360	640(1+0.5X)	E ₈ =400(1+0.06Y)	$E_6 = 600 + 10X$	64	I_1
78	23	35	54	41	16	62	52	31	230	360	640	630	320	150	540	460(1+0.5X)	$E_5=700(1+0.05Y)$	$E_8 = 600 + 10X$	25	I_4
79	24	46	65	51	13	32	62	41	610	140	450	530	320	230	350	540(1+0.5X)	$E_1 = 400(1 + 0.06Y)$	$E_4 = 500 + 10X$	54	I_7

Заканчэнне табліцы 1

№ ва-	H	Іумар	э гал			'пача	так"	i	R_1	R ₂	R ₃	R ₄	R_5	R_6	R ₇	R_8			Вызна	чыць
рыянта				"кан	нец"												Крыніцы	ЭРС, В		
	1	2	3	4	5	6	7	8	Ом	Ом	Ом	Ом	Ом	Ом	Ом	Ом			U, B	I, A
80	23	35	54	41	16	62	52	31	610	140	450	530	320	230	350	540(1+0.5X)	$E_4 = 400(1 + 0.05Y)$	$E_5 = 500 + 10X$	64	I_2
81	23	35	54	41	16	62	52	31	310	150	560	640	420	240	460	650(1+0.5X)	$E_3 = 500(1 + 0.07Y)$	E ₆ =600+10X	14	I_5
82	24	46	56	63	31	12	62	43	610	140	450	530	320	230	350	540(1+0.5X)	$E_6=400(1+0.05Y)$	$E_7 = 600 + 10X$	54	I_7
83	13	36	64	42	25	51	61	32	610	140	450	530	320	230	350	540(1+0.5X)	$E_1 = 400(1 + 0.04Y)$	$E_8 = 500 + 10X$	64	I_2
84	13	35	54	42	26	61	51	32	130	350	560	640	420	240	460	650(1+0.5X)	$E_8=400(1+0.05Y)$	$E_7 = 500 + 10X$	64	I_5
85	23	36	65	54	41	12	62	34	520	240	460	630	310	130	360	640(1+0.5X)	$E_2 = 500(1 + 0.04Y)$	$E_7 = 600 + 10X$	45	I_8
86	23	35	56	61	14	42	52	31	130	350	540	530	310	620	240	450(1+0.5X)	$E_3 = 400(1 + 0.06Y)$	$E_8 = 500 + 10X$	64	I_3
87	32	34	45	51	16	62	42	31	230	360	640	630	320	150	540	460(1+0.5X)	$E_2 = 500(1 + 0.07Y)$	$E_3 = 400 + 10X$	64	I_6
88	23	34	45	51	16	62	42	31	230	360	650	630	320	410	150	560(1+0.5X)	$E_5 = 600(1 + 0.06Y)$	$E_4 = 500 + 10X$	15	I_1
89	24	45	56	61	13	32	52	41	230	350	540	530	320	610	140	450(1+0.5X)	$E_3=500(1+0.05Y)$	$E_6 = 600 + 10X$	54	I_4
90	23	34	45	51	62	16	42	31	231	350	540	530	320	610	140	450(1+0.5X)	$E_4 = 600(1 + 0.07Y)$	$E_7 = 500 + 10X$	34	I_5
91	24	45	56	63	31	12	52	43	240	460	650	640	420	310	150	560(1+0.5X)	$E_5 = 700(1 + 0.04Y)$	$E_8 = 500 + 10X$	63	I_8
92	13	35	56	62	24	41	51	32	230	350	540	510	320	610	140	450(1+0.5X)	$E_2 = 600(1 + 0.06Y)$	$E_7 = 300 + 10X$	63	I_3
93	25	56	63	31	14	42	62	51	230	350	540	510	320	610	140	450(1+0.5X)	$E_5=400(1+0.05Y)$	$E_8 = 500 + 10X$	14	I_6
94	24	45	53	31	16	62	52	41	240	460	650	640	420	130	350	560(1+0.5X)	$E_2 = 500(1 + 0.06Y)$	$E_7 = 400 + 10X$	53	I_1
95	23	35	54	41	16	62	52	31	130	360	640	630	310	520	240	460(1+0.5X)	$E_1 = 600(1 + 0.07Y)$	$E_8 = 500 + 10X$	14	I_2
96	24	46	65	51	13	32	62	41	130	350	540	530	310	620	240	450(1+0.5X)	E_2 =400(1+0.04Y)	$E_3 = 500 + 10X$	53	I_4
97	23	35	54	41	16	62	52	31	230	360	650	630	320	140	450	560(1+0.5X)	$E_5=400(1+0.05Y)$	$E_4 = 500 + 10X$	64	I_7
98	13	36	64	42	25	51	61	32	230	350	560	530	320	410	160	650(1+0.5X)	$E_3=400(1+0.06Y)$	$E_7 = 500 + 10X$	63	I_4
99	23	36	64	45	51	12	62	35	510	130	360	640	420	240	460	530(1+0.5X)	$E_5 = 400(1 + 0.07Y)$	$E_8 = 600 + 10X$	13	I_7

Прыклад пры нумары супраціўленняў 4+5

Прыклад: пры нумары супраціўленняў 2+3

Прыклад: пры нумары супраціўленняў 2+8

Нумары супраціўленняў паралельна, якім уключана крыніца току і яе знацэнне. X – нумар групы; Y – нумар па журналу у старасты у

першую нядзелю семестра

№ варыян-	Нумары	Значэнне кріыніцы	№ ва-	Нумары	Значэнне кріыніцы	№ ва-	Нумары	Значэнне кріыніцы
та	супраціўленняў	току, Ј, А	рыянта	супраціўленняў	току, Ј, А	рыян-та	супраціўленняў	току, Ј, А
00		$1+X\cdot0,15+Y\cdot0,025$	34	8+1	$1.7 - X \cdot 0, 15 + Y \cdot 0, 035$	67	7+6	$1+X\cdot0,15+Y\cdot0,035$
01		$1.6-X\cdot0,15+Y\cdot0,025$	35	4+5	1.6-X·0,15+Y·0,025	68	8+1	$1.7 - X \cdot 0, 15 + Y \cdot 0,035$
02		$1+X\cdot0,15+Y\cdot0,025$	36	7+6	1+X·0,15+Y·0,025	69	5+4	$1+X\cdot0,15+Y\cdot0,035$
03		1.6-X·0,15+Y·0,025	37	8+1	1.6-X·0,15+Y·0,025	70	2+3	$1+X\cdot0,15+Y\cdot0,025$
04		1+X·0,15+Y·0,025	38	5+4	1+X·0,15+Y·0,025	71	6+7	$1.6-X\cdot0,15+Y\cdot0,025$
05		1.6-X·0,15+Y·0,025	39	8+2	1.6-X·0,15+Y·0,025	72	8+4	$1+X\cdot0,15+Y\cdot0,025$
06		1+X·0,15+Y·0,025	40	2+3	1+X·0,15+Y·0,025	73	1+6	$1.6-X\cdot0,15+Y\cdot0,025$
07		1.6-X·0,15+Y·0,025	41	6+7	1.6-X·0,15+Y·0,025	74	2+8	$1+X\cdot0,15+Y\cdot0,025$
08	8+4	1+X·0,15+Y·0,025	42	8+4	1+X·0,15+Y·0,025	75	8+4	$1.6 - X \cdot 0, 15 + Y \cdot 0, 025$
09	1+6	1.6-X·0,15+Y·0,025	43	1+6	$1+X\cdot0,15+Y\cdot0,025$	76	4+5	$1+X\cdot0,15+Y\cdot0,025$
10	2+8	1+X·0,15+Y·0,025	44	2+8	$1.6 - X \cdot 0, 15 + Y \cdot 0, 025$	77	7+6	$1.6 - X \cdot 0, 15 + Y \cdot 0, 025$
11	8+4	1.6-X·0,15+Y·0,025	45	8+4	$1+X\cdot0,15+Y\cdot0,025$	78	7+3	$1+X\cdot0,15+Y\cdot0,025$
12	4+5	1+X·0,15+Y·0,025	46	4+5	1.6-X·0,15+Y·0,025	79	2+3	$1.6 - X \cdot 0, 15 + Y \cdot 0, 025$
13	7+6	1.6-X·0,15+Y·0,025	47	7+6	1+X·0,15+Y·0,025	80	4+5	1+X·0,15+Y·0,025
14	7+3	1+X·0,15+Y·0,025	48	7+3	$1.6 - X \cdot 0, 15 + Y \cdot 0, 025$	81	7+6	$1.6 - X \cdot 0, 15 + Y \cdot 0, 025$
15	5+8	1.6-X·0,15+Y·0,025	49	5+8	1+X·0,15+Y·0,025	82	8+1	1+X·0,15+Y·0,025
16	7+6	1+X·0,15+Y·0,025	50	7+6	$1.6 - X \cdot 0, 15 + Y \cdot 0, 025$	83	5+4	$1.6 - X \cdot 0, 15 + Y \cdot 0, 025$
17	2+3	$1+X\cdot0,15+Y\cdot0,02$	51	2+3	$1+X\cdot0,15+Y\cdot0,02$	84	7+6	$1+X\cdot0,15+Y\cdot0,025$
18	6+7	$1.7 - X \cdot 0, 15 + Y \cdot 0, 02$	52	4+5	$1.7 - X \cdot 0, 15 + Y \cdot 0, 02$	85	7+3	$1.6 - X \cdot 0, 15 + Y \cdot 0, 025$
19	8+4	1+X·0,15+Y·0,02	53	7+6	$1+X\cdot0,15+Y\cdot0,02$	86	5+8	$1+X\cdot0,15+Y\cdot0,025$
20	1+6	$1.7 - X \cdot 0, 15 + Y \cdot 0, 02$	54	8+1	$1.7 - X \cdot 0, 15 + Y \cdot 0, 02$	87	4+5	$1+X\cdot0,15+Y\cdot0,02$
21	2+8	$1+X\cdot0,15+Y\cdot0,02$	55	5+4	$1+X\cdot0,15+Y\cdot0,02$	88	7+6	$1.7 - X \cdot 0, 15 + Y \cdot 0, 02$
22	8+4	1.7-X·0,15+Y·0,02	56	8+2	$1.7 - X \cdot 0.15 + Y \cdot 0.02$	89	8+1	$1+X\cdot0,15+Y\cdot0,02$
23	4+5	$1+X\cdot0,15+Y\cdot0,02$	57	2+3	1+X·0,15+Y·0,02	90	5+4	$1.7 - X \cdot 0, 15 + Y \cdot 0, 02$
24	7+6	$1.7 - X \cdot 0, 15 + Y \cdot 0, 02$	58	6+7	$1.7 - X \cdot 0, 15 + Y \cdot 0, 02$	91	8+2	$1+X\cdot0,15+Y\cdot0,02$
25	7+3	$1+X\cdot0,15+Y\cdot0,02$	59	8+4	$1+X\cdot0,15+Y\cdot0,02$	92	2+3	$1.7 - X \cdot 0, 15 + Y \cdot 0, 02$
26	2+3	1.7-X·0,15+Y·0,025	60	1+6	$1.7 - X \cdot 0, 15 + Y \cdot 0, 025$	93	6+7	$1+X\cdot0,15+Y\cdot0,02$
27		1+X·0,15+Y·0,025	61	2+8	1+X·0,15+Y·0,025	94	8+4	1.7-X·0,15+Y·0,02
28		$1.7 - X \cdot 0, 15 + Y \cdot 0, 025$	62	8+4	1.7-X·0,15+Y·0,025	95	1+6	1+X·0,15+Y·0,02
29	8+1	$1+X\cdot0,15+Y\cdot0,025$	63	4+5	1+X·0,15+Y·0,025	96	2+8	1.7-X·0,15+Y·0,025
30	5+4	$1.7 - X \cdot 0, 15 + Y \cdot 0, 025$	64	7+6	1.7-X·0,15+Y·0,025	97	8+4	1+X·0,15+Y·0,025
31	7+6	$1+X\cdot0,15+Y\cdot0,025$	65	7+3	$1+X\cdot0,15+Y\cdot0,025$	98	4+5	1.7-X·0,15+Y·0,025
32	7+3	$1.7 - X \cdot 0, 15 + Y \cdot 0, 025$	66	5+8	1.7-X·0,15+Y·0,025	99	7+6	1+X·0,15+Y·0,025
33		1+X·0,15+Y·0,035			, , ,			

Задача 2. Па зададзенных ў табл. 2 амплітудным значэнні напружання крыніцы сілкавання. **Vm**, пачатковай фазе напружання Φ **u**, параметрах элементаў галін электрычнага ланцуга вычарціць схему замяшчэння з уключанымі ватметрам і вальтметрам згодна з варыянтам. Частата $f = 50\Gamma$ ц.

Выканаць наступнае:

- 1) вызначыць супраціўленне рэактыўных элементаў ланцуга X_l, X_c; дзейныя значэнні токаў галін **I**, запісаць іх імгненнае значэнне **i**;
- 2)вызначыць паказанні ватметра і вальтметра Uv;
- 3) скласці баланс актыўных і рэактыўных магутнасцей;
- 4) пабудаваць у масштабе сумешчаную вектарную дыяграму токаў і напружанняў на комплекснай плоскасці.

Заўвага: крыніца сілкавання ўключана паміж пунктамі 1, 3; Ватметр падключан такім чынам, каб яго паказанне раўнялась актыўнай магутнасці ўсяго ланцуга; галіны 12, 1'2'; 23, 2'3' уключаны паралельна; вальтметр ўключаны паміж пунктамі схемы з калонцы 20.

Табліца 2

№ ва-	U _m	Ψu			галіны		R_1	L_1	\mathbf{C}_1	R ₂	L_2	C_2	R ₃	L_3	C_3	R ₄	L_4	C ₄	U_{V}
рыян-			"па	ачатан	с" i "ка	нец''							<u> </u>						
та	В	град	1	2	3	4	Ом	мГн	мкФ	Ом	мГн	мкФ	Ом	мГн	мкФ	Ом	мГн	мкФ	В
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
0	141	0	12	23	2'3'	1'2'	25	96	200	_	127	106	10	_	53	30	_	_	12
1	71	30	12	23	2'3'	_	60	_	106	100	509	20	30	191	_	_	_	_	23
2	282	45	12	23	_	1'2'	30	191	250	50	_	53	_	_	_	10	127	106	13
3	282	60	12	23	2'3'	1'2'	_	32	320	20	191	_	15	159	40	_	127	_	12
4	339	-45	12	23	2'3'	1'2'	80	191	_	_	238	106	40	159	_	25	32	_	12
5	71	-30	12	23	2'3'	_	30	_	315	100	_	20	70	251	_	_	_	_	23
6	282	-60	12	_	2'3'	1'2'	100	127	400	_	_	_	20	_	53	30	64	53	2'3'
7	100	0	12	_	2'3'	1'2'	50	_	320	_	_	_	50	16	106	50	_	53	13
8	564	45	12	23	_	1'2'	10	16	250	45	238	106	_	_	_	_	64	_	12
9	128	30	12	23	2'3'	_	70	127	_	25	64	53	25	_	20	_	_	_	23
10	141	-30	12	_	2'3'	1'2'	2	_	637	_	_	_	4	15,9	_	3	_	300	2'3'
11	71	-45	12	23	2'3'	_	40	19,1	_	_	637	_	40	31,8	_	_	_	_	23
12	85	0	12	23	_	1'2'	8	15,9	_	10	_	318	_	_	_	4	_	_	13
13	282	-60	12	23	_	1'2'	_	8	637	3	15,9	300	_	_	_	4	_	_	13
14	180	45	12	_	2'3'	1'2'	10	15,9	_	_	_	_	100	115	100	4	1000	_	13
15	114	-30	12	23	2'3'	_	35	_	_	20	15,9	159	_	31,8	_	_	_	_	12
16	71	0	12	23	2'3'	_	10	31,8	_	8	_	1600	10	95	_	_	_	_	12
17	141	-60	12	_	2'3'	1'2'	15	_	637	_	_	_	10	_	159	_	95	_	2'3'
18	564	45	12	23	_	1'2'	15	_	637	10	_	159	_	_	_	_	95	_	23

Заканчэнне табліцы 2

№ ва- рыян-	U _m	Ψu		- 1	галіны с" і "каї		R_1	L_1	C_1	R ₂	L ₂	C_2	R ₃	L ₃	C ₃	R ₄	L_4	C_4	$U_{ m V}$
та	В	град	1	2	3	4	Ом	мГн	МкФ	Ом	МΓн	мкФ	Ом	мГн	мкФ	Ом	мГн	мкФ	В
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
19	71	30	12	23	2'3'	_	4	9,55	_	40	_	318	4	_	_	_	_	_	13
20	86	60	12	_	2'3'	1'2'	35	15,9	_	_	_	_	20	_	_	_	31,8	_	12
21	71	60	12	_	2'3'	1'2'	2	_	637	_	_	_	33	_	300	4	15,9	_	12
22	86	-30	12	23	2'3'	_	10	15,9	_	4	1000	_	100	115	100	_	_	_	23
23	114	45	12	23	2'3'	1'2'	10	15,9	637	4	1000	_	100	115	_	10	_	_	13
24	34	0	12	23	_	1'2'	5	15,9	637	10	_	_	_	_	_	8	6,37	_	23
25	141	30	12	23	2'3'	_	5	_	637	10	15,9	_	8	6,37	_	_	_	_	13
26	114	-60	12	_	2'3'	1'2'	10	31,8	_	_	_	_	2	_	1600	10	95	_	2'3'
27	141	-45	12	23	_	1'2'	15	_	_	10	_	159	_	_	_	_	95	_	23
28	128	0	12	_	2'3'	1'2'	15	_	637		_	_	10	_	159	_	95	_	12
29	141	60	12	23	_	1'2'	6	25	_	4	9	_	_	_	_	_	_	159	23
30	564	-30	12	23	2'3'	1'2'	_	96	200	_	127	106	_	_	53	_	95	_	13
31	100	30	12	23	_	1'2'	8	15,9	_	10	_	318	_	_	_	4	_	_	23
32	71	0	12	-	2'3'	1'2'	40	15,9	_	-	_	-	_	_	637	10	31,8	_	13
33	71	60	12	23	-	1'2'	8	15,9	_	10	_	637	_	-	- 150	4	-	_	12
34	282	45	_	23	2'3'	1'2'	_	_	-	15	-	-	6	10	159	_	95	_	23
35	71	-60	12	23	_	1'2'	5	15.0	637	10	15,9	318	_	_	_	8	6,37	_	12
36	142	-45	12	23	- 222	1'2'	5	15,9	_	10	-	637	_	107	_	- 10	31,8	- 52	23
37	180	-45	10	23	2'3'	1'2' 1'2'	_	150	106	25	96	_	100	127	20	10	_	53	13
38	141 71	-30 30	12 12	23	_	1'2'	50	159	106 320	_	127	_	100	_	20	50	_	43 53	12
40	282	0	12	23	2'3'	1'2'	30	_	320	60	238	_	40	106	_	25	32		13
41	34	0	12	23		1'2'	50	64	_	70	-	20	40	100	_	50	32		23
42	564	30	12		2'3'	1'2'	10	-	250	-	_	20	45	238	_	-	127		12
43	128	-60	12	23		1'2'	10	31,8		2	_	1600	4 3		_	10	95		23
44	141	-45	12	23	2'3'	1'2'	-	-	_	6	25	-	4	9	_	-	-	637	1'2'
45	71	0		23	2'3'	1'2'			_	8		_	10	15,9	318	4		-	23
46	100	60	12	23	2'3'	1'2'	6	25	_	4	9	_	_	-	637	_	_	159	13
47	564	-30	12	23	_	1'2'	40	19,2	_	<u> </u>	_	637	_	_	-	40	31,8	_	23
48	282	0		23	2'3'	1'2'	_	-	_	35	15,9	_	20	_	159	_	31,8	_	13
49	114	45		23	2'3'	1'2'	_	_	_	5	15,9	318	10	31,8	_	_		_	23

Задача 3. Па зададзеных у табліцы 3 лінейным напружанні U_л, пачатковай фазе фазнага Ψа, або лінейнага Ψав напружання, схеме злученняў фаз прымальніка ("зорка"-Y, "зорка з нейтральным провадам"-X, "трохвугольнік"-Δ) і іх супраціўленнем па фазах Za(Zab), Zb(Zbc), Zc(Zca), вычарціць электрычную схему прымальніка, падключаннага да сеткі трохфазнага току, і вызначыць фазныя і лінейныя токі, ток у нейтральным провадзе (для чатырохправоднага ланцуга), актыўную, рэактыўную і поўную магутнасць прымальніка, каэфіцыент магутнасці. Пабудаваць у маштабе сумешчаную вектарную дыяграму токаў і напружанняў на комплекснай плоскасці.

Табліца 3

№№ ва-	Схема злучення	U л.	Ψ,	<u>Z</u> a(<u>Z</u> a	b), Ом	<u>Z</u> b(<u>Z</u> b	с), Ом	<u>Z</u> c(<u>Z</u> c	а), Ом
рыянтаў	прымальніка	В	град	R	±jx	R	±jx	R	±jx
1	2	3	4	5	6	7	8	9	10
0.	Δ	127	$\psi_{ab} = 0$	0	+ <i>j</i> 16.8	8	0	14,2	<i>-j</i> 6
1.	Δ	127	$\psi_{ab} = 30^{\circ}$	4	+ <i>j</i> 6	0	- <i>j</i> 10	12	+ <i>j</i> 16
2.	Δ	220	$\psi_{ab} = 0$	16	+ <i>j</i> 12	8	+ <i>j</i> 14,2	0	+j14,2
3.	Δ	380	$\psi_{ab} = 0$	20	0	4	+ <i>j</i> 10	20	+ <i>j</i> 14,2
4.	Δ	380	$\psi_{ab} = 30^{\circ}$	8	<i>-j</i> 15	8	+ <i>j</i> 12	16,2	+ <i>j</i> 14,2
5.	Δ	220	$\psi_{ab} = 30^{\circ}$	12	+ <i>j</i> 10	0	<i>-j</i> 10	12	+ <i>j</i> 10
6.	X	380	$\psi_a = 0$	0	+ <i>j</i> 8	12	+ <i>j</i> 14	14	0
7.	Y	127	$\psi_a = 30^{\circ}$	8	+ <i>j</i> 6	10	0	12	<i>-j</i> 15
8.	X	220	$\psi_{ab}=0$	9	+ <i>j</i> 8	0	+ <i>j</i> 10	24	+ <i>j</i> 18
9.	Y	220	$\psi_{ab} = 30^{\circ}$	16	<i>-j</i> 15	4	+ <i>j</i> 16,2	15	<i>-j</i> 16
10.	X	380	$\psi_{ab} = 30^{\circ}$	0	+ <i>j</i> 10	12	+ <i>j</i> 16,2	0	- <i>j</i> 10
11.	Y	127	$\psi_a = 0$	16,8	+ <i>j</i> 14	6	+ <i>j</i> 12	14	- <i>j</i> 16,2
12.	Δ	220	$\psi_{ab} = 0$	7	+ <i>j</i> 15	14,2	+ <i>j</i> 20	20	+ <i>j</i> 24
13.	Δ	380	$\psi_{ab} = 0$	4	0	8	+ <i>j</i> 6	10	0
14.	Δ	127	$\psi_{ab} = 30^{\circ}$	18	- <i>j</i> 12	6	+ <i>j</i> 6	4	+ <i>j</i> 3
15.	Δ	220	$\psi_{ab} = 30^{\circ}$	24	+ <i>j</i> 30	22	0	8	+ <i>j</i> 6
16.	Y	220	$\psi_a = 0$	6	+ <i>j</i> 8	8	+ <i>j</i> 9	3	+ <i>j</i> 4
17.	Y	220	$\psi_a = 30^{\circ}$	6	0	8	+ <i>j</i> 10	4	+ <i>j</i> 3
18.	X	220	$\psi_{ab} = 0$	8	+ <i>j</i> 6	8	+ <i>j</i> 6	6	+ <i>j</i> 8
19.	X	220	$\psi_{ab} = 30^{\circ}$	10	+ <i>j</i> 8	5	<i>-j</i> 16	3	0
20.	Δ	220	$\psi_{ab} = 0$	5	+ <i>j</i> 7	0	- <i>j</i> 12	8	+ <i>j</i> 6
21.	Δ	220	$\psi_{ab} = 30^{\circ}$	0	+ <i>j</i> 5	8	<i>-j</i> 6	3	+ <i>j</i> 4
22.	X	380	$\psi_a = 0$	10	0	12	<i>-j</i> 16	10	+ <i>j</i> 20
23.	X	380	$\psi_a = 30^{\circ}$	4	+ <i>j</i> 6	0	- <i>j</i> 12	5	+ <i>j</i> 8

Працяг табліцы 3

№№ ва-	Схема злучення	U л.	Ψ,	<u>Z</u> a(<u>Z</u> a	b), Ом	<u>Z</u> b(<u>Z</u> b	с), Ом	<u>Z</u> c(<u>Z</u> ca	а), Ом
рыянтаў	прымальніка	В	град	R	±jx	R	<u>±</u> jx	R	±jx
1	2	3	4	5	6	7	8	9	10
24.	Y	380	$\psi_{ab} = 0$	16	- <i>j</i> 12	8	- <i>j</i> 6	6	+j8
25.	Y	380	$\psi_{ab} = 30^{\circ}$	6	+ <i>j</i> 8	3	- <i>j</i> 4	15	+ <i>j</i> 8
26.	Δ	380	$\psi_{ab} = 0$	8	+ <i>j</i> 15	6	-j8	4	+j3
27.	Δ	380	$\psi_{ab} = 30^{\circ}$	8	<i>-j</i> 6	15	-j8	3	+j5
28.	Δ	220	$\psi_{ab} = 0$	10	+ <i>j</i> 4	3	+ <i>j</i> 4	9	- <i>j</i> 12
29.	Δ	380	$\psi_{ab} = 30^{\circ}$	10	+ <i>j</i> 3	4	- <i>j</i> 3	12	+ <i>j</i> 9
30.	Y	380	$\psi_a = 0$	20	0	0	+ <i>j</i> 12	0	- <i>j</i> 12
31.	Δ	220	$\psi_{ab} = 0$	11	+ <i>j</i> 13	6	+ <i>j</i> 8	18	-j24
32.	Δ	380	$\psi_{ab}=0$	19	+ <i>j</i> 16	8	-j8	24	+ <i>j</i> 18
33.	Y	220	$\psi_{ab} = 0$	20	0	12	+ <i>j</i> 16	18	-j24
34.	X	380	$\psi_a = 30^{\circ}$	20	+ <i>j</i> 16	16	- <i>j</i> 12	12	+ <i>j</i> 9
35.	X	380	$\psi_{ab} = 30^{\circ}$	22	+ <i>j</i> 17	3	+ <i>j</i> 2	9	-j12
36.	Y	380	$\psi_{ab} = 30^{\circ}$	0	+ <i>j</i> 38	2	-j2	6	+ <i>j</i> 8
37.	X	220	$\psi_a = 30^{\circ}$	0	+ <i>j</i> 20	18	+ <i>j</i> 24	4	<i>-j</i> 3
38.	Y	380	$\psi_a = 0$	24	- <i>j</i> 18	0	+ <i>j</i> 19	3	+ <i>j</i> 4
39.	Δ	127	$\psi_{ab} = 0$	8	+ <i>j</i> 8	8	+ <i>j</i> 6	6	<i>-j</i> 6
40.	Δ	220	$\psi_{ab} = 30^{\circ}$	8	<i>-j</i> 8	8	+ <i>j</i> 6	6	+ <i>j</i> 8
41.	Δ	380	$\psi_{ab}=0$	8	+ <i>j</i> 4	6	<i>-j</i> 4	3	+ <i>j</i> 8
42.	Δ	127	$\psi_{ab} = 0$	16,8	+ <i>j</i> 8	3	<i>-j</i> 14,2	6	+ <i>j</i> 4
43.	Δ	220	$\psi_{ab} = 30^{\circ}$	6	- <i>j</i> 4	14,2	+ <i>j</i> 3	16,8	+ <i>j</i> 8
44.	Δ	380	$\psi_{ab} = 0$	4	+ <i>j</i> 8	6	+j3	4	+ <i>j</i> 8
45.	Y	127	$\psi_a = 30^{\circ}$	16,8	+ <i>j</i> 8	8	+ <i>j</i> 14,2	6	+ <i>j</i> 4
46.	X	220	$\psi_a = 0$	8	- <i>j</i> 16,8	14,2	+ <i>j</i> 8	4	+ <i>j</i> 6
47.	X	380	$\psi_{ab} = 0$	16,8	+j14,2	8	- <i>j</i> 8	6	- <i>j</i> 4
48.	X	127	$\psi_{ab} = 30^{\circ}$	16	+ <i>j</i> 8	8	+ <i>j</i> 6	14,2	+ <i>j</i> 8
49.	Y	380	$\psi_a = 0$	4	+ <i>j</i> 8	6	+ <i>j</i> 3	4	+ <i>j</i> 8