问题 第 5 周 5.5.1:控制/传感器的建模

阅读关于家庭作业2的讲义。

System Function

在下面为组合传感器/控制器系**统**输入系统功能。输入 分别输入分子和分母。您必须同时输入两者(如果分母为空,请输入一个"₁"。分子和分母不 必与我们的解决方案完全匹配,但比率必须相同。

您可以使用"标准"记法输入代数表达式;检查器会尝试将您的输入转换为有效的 Python 表达式。示例答案类似于:

2(x + 3)

如果您在语法方面遇到问题,您总是可以输入一个合法的 Python 表达式,完全加上括号,并包含所有运算符,包括 $_*$ 和 $_{**}$

关于语法的几个额外的快速注释:

- 这些表达式是区分大小写的。A和 a是不一样的。请记住,按照惯例,信号用大写字母命名,样本用小写字母命名。
- \bullet 若要输入下标(例如),请在变量名和下标之间使用下划线(例如 $_{k_s}$)) 要输入希腊字母,只需输入字母的名称。请注意大写和小写字母的区别。例如, Δ (Delta)
- ullet 变为,而 $_{
 m delta}$ 变为。 使用大写字母 " $_{
 m R}$ " 作为延迟运算符。 Δ

例如,以下是讲义中定义的一些变量的列表,以及您应在辅导中为每个变量输入的 ASCII 表示形式:

可变 ASCII 码	
k_s	k_s
k_m	k_m
k_b	k_b
r_m	r_m
k_c	k_c
T	T
Ω_h	欧米茄_h
Θ_h	Theta_h

"分子:"	
<i>r</i> : →	
分母:	

Block Diagram

上传一份包含该系统框图的 PDF 文件。请在上传前仔细检查您的文件是否为有效的 PDF 格式。您将能够检查文件是否上传正确。

Browse... Upload File

Code

请在下面的 " $_{controllerAndSensorModel}$ " 中输入您的代码。在 $_{hw2Work.py}$ 中定义的全局 变量可以在您的定义中使用;请勿在此重新定义它们。您的代码可以使用 $_{sf}$ 模块中的 函数,例如 $_{sf.Gain(...)}$;无需 $_{\rm F}$ 入语句。

def	<pre>controllerAndSensorModel(k_c): pass #your code here</pre>

问题 第 5 周 5.5.2: 对工厂进行建模

阅读关于家庭作业2的讲义。

Integra	tor System Function Θ_h		
请根据以下内? 延迟运算符	字,以的形式输入积分器的系统函数。使用大写字母 _R 表示。 R	T	
"分子:"			
分母:			
Motor S	System Function Ω_h		
请根据以下内容延迟算符用大学	字输入电机的系统 功 能,包括、、和。使用 k,	$_{n}$ k_{b} r_{m}	T
"分子:"			
分母:			
Plant S	ystem Function Θ_h		
请根据以下植物延迟算符用大空	物的情况,输入系统功能,包括、、和。使用 km	$k_b r_m$	T
"分子:"			
分母:			
Block D	iagram		
上传一份包含组	您工厂方块图的 PDF 文件。请 确保您已清晰地标注 出 哪一部分	对应电机,	哪一部分对应

积分器。在上传之前请仔细检查您的文件是否为有效的 PDF 格式。您将能够检查文件是否上传正确。

Browse... Upload File

Code

为下面的植物模型输入您的代码。请将您的代码用于 $_{\rm R}$ $_{
m R}$ $_{
m$

```
def integrator(T):
    pass #your code here

def motorModel(T):
    pass #your code here

def plantModel(T):
    pass #your code here
```

问题 第 5 周 5.5.3 节: 整合

阅读关于家庭作业2的讲义。

System Function

在下面为整个光跟踪系统输入系统功能。

"分子:"	
分母:	

Block Diagram

上传一份包含该系统框图的 PDF 文件。请**确保您已标注**了手稿**中提到**的**所有信号**。在上传之前,请再次检查您的文件是否为有效的 PDF 格式。

Browse... Upload File

Poles

将系统的极点(作为包含 和 的代数表达式)输入到下面的框中。假设常数的值为($\mathbf{f}_{hw2Work.py}$):中的相同)

变量	价值
k_s	5 伏/弧度
k_m	1000(弧度/秒²)/安培
k_b	0.5 伏/(弧度/秒)
r_m	20 欧姆

如果一个杆子出现多次,将其输入到方框中。如果方框数量多于杆子数量,则在剩余的方框中输入无(不加引号)。

这个问题要么被标记为完全正确,要么被标记为完全错误。要被标记为正确,你必须把**所有**杆子都 正确放置,且不能多放杆子。这意味着,即使你的部分答案正确,如果没有给出完整的答案,你也 不会看到任何绿色勾选。

如果你需要对一个量取平方根,	你可以	通过以	下两种	方式之一来进行操作:	
sqrt () 函数,或者将其提升到sqrt(3),3**(0.5),或者3**(1/2)。	[(1/2)	次幂。	例如,	输入以下任意一项	

	_
	Г.
	/ • J
 •/	-
¥	•

波兰人:

Code

请在下面的" $_{lightTrackerModel}$ "中输入您的代码。您可以假定您已经输入的所有部分(积分器、控制器和传感器模型、电机模型、植物模型)以及 $_{hw2Work.py}$ 中定义的常量都已为您定义;无需重新定义它们。您的代码可以使用 $_{sf}$ 模块中的函数,例如 $_{sf.Gain(...)}$;无需 $_{\rm F}$,语句。

def	lightTrackerModel(T,k_c): pass #your code here

问题第5周5.5.4:系统分析

阅读关于家庭作业2的讲义。

-			
	-	-	-
u	•		-

最佳增益	
输入您在 t = 0.005 秒时找到的最佳值。请确保您的答案在理论最佳增益的 0.0001 以内是准何	确的。
当时间 = 0.005 秒时的最佳值:	
输入与这些 和 值相关的极点。如果一个极点出现多次 k 。将其输入方框中。如果方框数量数量,则在剩余的方框中输入 "none"。	多于极点
根本原因	
使用以下文本框回答这些问题:	
为什么收益必须是正数呢?你是如何找到最佳收益的?	

地区

回答以下关于系统的行为如何取决于的问题 收益, 当你使用实证**为法时**,要确保你的答案是 精确到理论最佳答案的 0.0001 以内。

• 对于什么范围,该系统是单调收敛的?

		$< k_c \le$		
•	对于什么范围		统是振荡的上	1收敛的?
•	该系统不稳定	< k _c < 它的最低	正值是多少?	$=$ k_c

情节

上传一份单独的 PDF 文档,其中包含以下图表。请清晰地标注每个图表所使用的生成值。

最佳的非振荡响应

- 一种振荡但稳定的响应
- 一种振荡的、不稳定的响应

•

Browse... Upload File

Effect of T

在下面的文本框中, 回答这些问题:

当你增加/减少的时候,为什么?	发生了什么?	T