Mastering Modern IV

Master Joshway

ASSA Continuing Ed: January 2020

Sometimes You Get What You Need

- Modern IV distinguishes internal from external validity
- A good instrument by definition captures an internally valid causal effect: treatment effects on subjects for whom the instrument changes treatment
- External validity is the predictive value of internally valid estimates in a new context
- Examples
 - Draft-lottery estimates of effects of Vietnam-era military service
 - Quarter-of-birth estimates of the economic returns to schooling
 - Fertility experiments TBD
- The theory of a heterogeneous world
 - Quasi-experimental designs capture causal effects for a well-defined subpopulation, usually a proper subset of the treated
 - In models with variable treatment intensity, we get effects over a limited but knowable range

Children and Their Parents Labor Supply

 A causal model for the impact of a third child on mothers with at least two:

$$Y_i = Y_{0i} + D_i(Y_{1i} - Y_{0i}) = \alpha + \rho D_i + \eta_i$$

Constant FX? Parameter ρ is the thing that must be named

- Dependent variables = employment, hours worked, weeks worked, earnings
 - ullet $\mathrm{D}_i=1[\mathit{kids}>2]$ for samples of mothers with at least two children
 - Zi indicates twins or same-sex sibships at second birth
- With a single Bernoulli instrument and no covariates, the IV estimand is the Wald formula

$$\rho = \frac{Cov(Y_i, Z_i)}{Cov(D_i, Z_i)} = \frac{E[Y_i|Z_i = 1] - E[Y_i|Z_i = 0]}{E[D_i|Z_i = 1] - E[D_i|Z_i = 0]}$$

Instruments ready?

Effects for Whom?

The LATE Framework

- $Y_i(d, z)$ denotes the potential outcome for i when treatment status $D_i = d$ and instrument $Z_i = z$
- Double-indexed potentials mean instrumental variables might change outcomes directly
- We assume, however, that IV initiates a causal chain: the instrument, Z_i , affects D_i , which in turn affects Y_i
- To build these links, define potential treatment status, indexed by values of Z_i:
 - D_{1i} is i's treatment status when $\mathrm{Z}_i=1$
 - D_{0i} is i's treatment status when $Z_i = 0$
- Observed treatment status is therefore

$$\mathbf{D}_i = \mathbf{D}_{0i} + (\mathbf{D}_{1i} - \mathbf{D}_{0i})\mathbf{Z}_i$$

• The causal effect of Z_i on D_i is $D_{1i} - D_{0i}$

Independence and First Stage

Independence. The instrument is as good as randomly assigned:

$$[\{Y_i(d,z); \forall d,z\}, D_{1i}, D_{0i}] \coprod Z_i$$

- Sibling sex mix and multiple births are independent of potential outcomes and potential treatments
- Independence implies that the first-stage is the average causal effect of Z_i on D_i:

$$E[D_i|Z_i = 1] - E[D_i|Z_i = 0] = E[D_{1i}|Z_i = 1] - E[D_{0i}|Z_i = 0]$$
$$= E[D_{1i} - D_{0i}]$$

 Independence is likewise sufficient for a causal interpretation of the reduced form:

$$E[Y_i|Z_i = 1] - E[Y_i|Z_i = 0] = E[Y_i(D_{1i}, 1) - Y_i(D_{0i}, 0)]$$

Exclusion

Our journey from causal RF to treatment effect starts with:

Exclusion. The instrument affects Y_i only through D_i , that is,

$$Y_i(1,1) = Y_i(1,0) \equiv Y_{1i}$$

 $Y_i(0,1) = Y_i(0,0) \equiv Y_{0i}$

• The exclusion restriction means Y; can be written

$$Y_i = Y_i(0, Z_i) + [Y_i(1, Z_i) - Y_i(0, Z_i)]D_i$$

= $Y_{0i} + (Y_{1i} - Y_{0i})D_i$,

for single-index potentials Y_{1i} and Y_{0i} that satisfy independence

 Exclusion means quarter of birth affects earnings only through schooling; sex mix affects labor supply only by changing family size

Monotonicity

A useful technical assumption:

Monotonicity. $D_{1i} \ge D_{0i}$ for everyone (or vice versa).

- By virtue of monotonicity, $E\left[\mathrm{D}_{1i}-\mathrm{D}_{0i}
 ight]=P\left[\mathrm{D}_{1i}>\mathrm{D}_{0i}
 ight]$
- Consider a latent-index model

$$\mathrm{D}_i = egin{array}{ll} 1 & ext{if } \gamma_0 + \gamma_1 \mathrm{Z}_i > v_i \\ 0 & ext{otherwise} \end{array}$$

where v_i is "random utility"

• This model characterizes potential treatment assignments as

$$D_{0i} = 1[\gamma_0 > v_i]$$
 $D_{1i} = 1[\gamma_0 + \gamma_1 > v_i],$

clearly satisfying monotonicity

Better LATE . . .

- The independence assumption says the instrument is as good as randomly assigned
- The exclusion restriction means that causal effects of the instrument on outcomes are due solely to effects of the instrument on D_i
 - Exclusion is usually more controversial than independence
- We also assume there's a first-stage; by virtue of monotonicity, this is the share of the population for which D_i is changed by Z_i
- Given these assumptions, we have:

THE LATE THEOREM

$$\frac{E[Y_i|Z_i = 1] - E[Y_i|Z_i = 0]}{E[D_i|Z_i = 1] - E[D_i|Z_i = 0]} = E[Y_{1i} - Y_{0i}|D_{1i} > D_{0i}]$$

Proof - See MHE 4.4.1

The Compliant Subpopulation

LATE compliers have $D_{1i} > D_{0i}$

- This language comes from randomized trials where Z_i is treatment assigned and D_i is treatment received (an apt analogy)
- LATE assumptions partition the world:
 - Compliers $D_{1i} > D_{0i}$ Always-takers $D_{1i} = D_{0i} = 1$ Never-takers $D_{1i} = D_{0i} = 0$
- IV says nothing about always-takers and never-takers because treatment status for these types is unchanged by the instrument
 - An analogy: panel models with fixed effects identify effects only for "changers"
- Assuming effects are the same for all three groups returns us to the constant-effects model

The Compliant Subpopulation (cont.)

From

$${f D}_i = {f D}_{0i} + ig({f D}_{1i} - {f D}_{0i} ig) {f Z}_i,$$
 we see that $ig\{ {f D}_{0i} = {f D}_{1i} = {f 1} ig\} \cup \{ \{ {f D}_{1i} - {f D}_{0i} = {f 1} \} \cap \{ {f Z}_i = {f 1} \} \}$

• In other words . . .

$$\{\mathsf{treated}\} = \{\mathsf{always\text{-}takers}\} + \{\mathsf{compliers} \ \mathsf{assigned} \ \mathrm{z}_i = 1\}$$

- Effects on the treated average those for always-takers and compliers
 - $z_i = 1$ compliers are representative of all
- Characterizing compliers
 - How many? The first stage!
 - What are their X's? See MHE 4.4.4

IV in Randomized Trials (An Analogy Realized)

RCTs are beset by noncompliance: Some randomly assigned to the treatment group are untreated

- Intention-to-treat analysis (contrasts by treatment assigned) preserve independence but is diluted by non-compliance
- Per-protocol analysis (contrasts by treatment received) are contaminated by selection bias
- IV solves this problem: Z_i indicates random assignment to the treatment group; D_i indicates treatment received
- No always-takers! (no controls are treated), so LATE = TOT:

$$\frac{E[\mathbf{Y}_i|\mathbf{Z}_i=1] - E[\mathbf{Y}_i|\mathbf{Z}_i=0]}{E[\mathbf{D}_i|\mathbf{Z}_i=1]} = \frac{\mathsf{ITT \ effect}}{\mathsf{compliance \ rate}}$$
$$= E[\mathbf{Y}_{1i} - \mathbf{Y}_{0i}|\mathbf{D}_i=1]$$

• Direct proof (Bloom, 1984; See MHE 4.4.3)

Are we there yet?

Bloom Waits for Superman

The Charter Conundrum

- Charter schools (featured in Waiting for Superman) are publicly-funded private schools with a time-limited warrant to operate in public school districts
 - Host districts pay their PPE to charters for each pupil enrolled
 - Charters are granted conditional on good governance and good performance; many are lost or revoked
 - Unlike public sector teachers, charter teachers typically aren't unionized; many are inexperienced and uncredentialed
- Urban charter students do better than traditional public school peers: causal effect or selection bias?
 - Charter applicants often have better baseline (pre-enrollment scores)
- MIT's SEII researchers answer the charter causal challenge by playing the lottery
- Over-subscribed Massachusetts charters admit by random assignment

The KIPP Lottery Does the Heavy Lifting (MM Chpt 3)

FIGURE 3.2

IV in school: the effect of KIPP attendance on math scores

Offered a seat (253)

Average score:
-.003

Average score:
-.358

Proportion
enrolled in KIPP:
.787

Proportion
enrolled in KIPP:
.046

Note: The effect of Knowledge Is Power Program (KIPP) enrollment described by this figure is $.48\sigma = .355\sigma/.741$.

The Four Types of Children

TABLE 3.2 The four types of children

		Lottery losers $Z_i = 0$			
		Doesn't attend KIPP $D_i = 0$	Attends KIPP $D_i = 1$		
Lottery winners	Doesn't attend KIPP $D_i = 0$	Never-takers (Normando)	Defiers		
$Z_i = 1$	Attends KIPP $D_i = 1$	Compliers (Camila)	Always-takers (<i>Alvaro</i>)		

Note: KIPP = Knowledge Is Power Program.

• With few like Alvaro, LATE=TOT:

$$E[Y_{1i} - Y_{0i}|D_{1i} > D_{0i}]$$

$$= E[Y_{1i} - Y_{0i}|D_{1i} = 1] = E[Y_{1i} - Y_{0i}|D_{1i} = 1, Z_i = 1]$$

$$= E[Y_{1i} - Y_{0i}|D_i = 1]$$

Remember O.J.?

Abuse Busters

The police were called to O.J.'s Rockingham mansion 9 times; he was arrested only once. The Minneapolis Domestic Violence Experiment (MDVE; Sherman and Berk, 1984) boldly evaluated the police response to domestic violence . . .

- Police were randomly assigned to advise, separate, or arrest
- Substantial compliance problems as officers reacted in the field:

Table 1: Assigned and Delivered Treatments in Spousal Assault Cases

Assigned	De				
Treatment		_			
	Arrest	Advise	Separate	Total	
Arrest	98.9 (91)	0.0 (0)	1.1 (1)	29.3 (92)	
Advise	17.6 (19)	77.8 (84)	4.6 (5)	34.4 (108)	
Separate	22.8 (26)	4.4 (5)	72.8 (83)	36.3 (114)	
Total	43.4 (136)	28.3 (89)	28.3 (89)	100.0(314)	

MDVE First-Stage and Reduced Forms

• IV analysis in Angrist (2006)

Table 2: First Stage and Reduced Forms for Model 1

Endogenous Variable is Coddled								
	First-	Stage	Reduced F	Reduced Form (ITT)				
	(1)	(2)*	(3)	(4)*				
Coddled-assigned	0.786 (0.043)	0.773 (0.043)	0.114 (0.047)	0.108 (0.041)				
Weapon		-0.064 (0.045)		-0.004 (0.042)				
Chem. Influence	-0.088 (0.040)			0.052 (0.038)				
Dep. Var. mean	0.567 (coddled-delivered)		0.1 (fai	.78 led)				

MDVE OLS and 2SLS

Table 3: OLS and 2SLS Estimates for Model 1

Endogenous Variable is Coddled									
	Ol	LS	IV/2SLS						
	(1)	(3)	(4) [*]						
Coddled-delivered	0.087 (0.044)	0.070 (0.038)	0.145 (0.060)	0.140 (0.053)					
Weapon		0.010 (0.043)		0.005 (0.043)					
Chem. Influence		0.057 (0.039)		0.064 (0.039)					

- Columns 3 and 4 estimate the effect of coddling on the coddled (those assigned to be arrested are arrested: there are no "coddling always-takers")
- Selective compliance attenuates OLS, but IV (2SLS) fixes this

Superman Returns!

Distribution Treatment Effects (ACR)

Abadie (2002) shows that for any function, $g(Y_i)$

$$\frac{E[D_i g(Y_i)|Z_i = 1] - E[D_i g(Y_i)|Z_i = 0]}{E[D_i|Z_i = 1] - E[D_i|Z_i = 0]} = E[g(Y_{1i})|D_{1i} > D_{0i}]$$

$$\frac{E[(1-D_i)g(Y_i)|Z_i=1]-E[(1-D_i)g(Y_i)|Z_i=0]}{E[1-D_i|Z_i=1]-E[1-D_i|Z_i=0]}=E[g(Y_{0i})|D_{1i}>D_{0i}]$$

- Set $g(Y_i) = Y_i$ to estimate marginal potential outcome means
- Set $g(Y_i) = 1[Y_i < c]$ to capture

$$E\{1[Y_{ji} < c]|D_{1i} > D_{0i}\} = P[Y_{ji} < c|D_{1i} > D_{0i}],$$

the distributions of Y_{1i} and Y_{0i}

 Angrist et al. (JOLE 2016) used this to study charter school effects on achievement distributions

Superman Distributes Achievement Gains

at Boston Charter High Schools

First-attempt scaled grade 10 MCAS ELA score distribution

K-S test stat: 7.698
K-S p-value: <0.001

First-attempt scaled grade 10 MCAS math score distribution

First-attempt scaled grade 10 MCAS math score distribution

W-S p-value: <0.001

Schooling IV

Questions of Variable Intensity (summary)

Variable S_i takes on values in the set $\{0, 1, ..., \bar{s}\}$, generating \bar{s} unit causal effects, $Y_{si} - Y_{s-1,i}$

- A linear model assumes these are the same for all s and for all i, obviously unrealistic
- Fear not! 2SLS generates a weighted average of unit causal effects
 - Suppose dummy instrument, \mathbf{Z}_i (indicating late quarter births) is used to estimate the returns to schooling
 - Let s_{1i} denote the schooling i gets if $z_i = 1$; let s_{0i} denote the schooling i gets if $z_i = 0$
 - We observe $S_i = S_{0i}(1-Z_i) + Z_i S_{1i}$
- Assumptions:
 - Independence and Exclusion
 - First Stage
 - Monotonicity

$$\{Y_{0i}, Y_{1i}, ..., Y_{\bar{s}i}; s_{0i}, s_{1i}\} \quad \coprod \quad z_i$$

$$E[\mathbf{s}_{1i} - \mathbf{s}_{0i}] \neq 0$$

$$s_{1i} - s_{0i} \ge 0 \quad \forall i \text{ (or vice versa)}$$

Average Causal Response (ACR)

Angrist and Imbens (1995) show

$$\frac{E[Y_i|Z_i = 1] - E[Y_i|Z_i = 0]}{E[S_i|Z_i = 1] - E[S_i|Z_i = 0]} = \sum_{s=1}^{\bar{s}} \omega_s E[Y_{si} - Y_{s-1,i}|S_{1i} \ge s > S_{0i}]$$

where

$$\omega_s = \frac{P[\mathbf{S}_{1i} \ge s > \mathbf{S}_{0i}]}{\sum_{j=1}^{\bar{s}} P[\mathbf{S}_{1i} \ge j > \mathbf{S}_{0i}]}$$

Weights ω_s are non-negative and sum to 1.

- The ACR is a weighted average of the unit causal response along the length of a potentially nonlinear causal relation
- $E[Y_{si} Y_{s-1,i}|S_{1i} \ge s > S_{0i}]$, is the average difference in potential outcomes for *compliers at point s*
- Here, compliers are those the instrument moves from treatment intensity less than s to at least s

The ACR Weighting Function

• By Monotonicity, the group of compliers at point s has size:

$$P\left[\mathbf{S}_{1i} \geq s > \mathbf{S}_{0i}\right] = P\left[\mathbf{S}_{1i} \geq s\right] - P\left[\mathbf{S}_{0i} \geq s\right]$$
$$= P\left[\mathbf{S}_{0i} < s\right] - P\left[\mathbf{S}_{1i} < s\right]$$

• By Independence, this is a difference in treatment CDFs given Z_i:

$$P[S_{0i} < s] - P[S_{1i} < s] = P[S_i < s | Z_i = 0] - P[S_i < s | Z_i = 1]$$

The mean of a non-negative random variable is one minus the CDF:

$$E[s_{i}|z_{i} = 1] - E[s_{i}|z_{i} = 0]$$

$$= \sum_{j=1}^{\bar{s}} (P[s_{i} < j|z_{i} = 0] - P[s_{i} < j|z_{i} = 1]) = \sum_{j=1}^{\bar{s}} P[s_{1i} \ge j > s_{0i}]$$

ACR weights are normalized by the first-stage

QOB IV Reprise

The ACR weighting function shows us where the action is . . .

- Al-95 version of AK-91 Wald
- S_i is years of schooling
- Z_i compares men born in 1st and 4th quarters
- Diffs in CDFs by QOB (first vs. fourth quarter births)⇒

Table 1. Compulsory School Attendance							
	(1) Born in 1st quarter of year	(2) Born in 4th quarter of year	(3) Difference (std. error) (1) – (2)				
Panel A: Wald Estima	tes for 1970 Cen	sus-Men Born 1	920-1929ª				
In (weekly wage)	5.1485	5.1578	00935 (.00374)				
Education	11.3996	11.5754	1758 (.0192)				
Wald est. of return to education			.0531 (.0196)				
OLS est. of return to education ^b			.0797 (.0005)				
Panel B: Wald Estima	ates for 1980 Cer	nsus—Men Born	1930–1939				
In (weekly wage)	5.8916	5.9051	01349 (.00337)				
Education	12.6881	12.8394	1514 (.0162)				
Wald est. of return to education			.0891 (.0210)				
OLS est. of return to education			.0703 (.0005)				

Empirical Weighting Function

For men born 1920-29 in the 1970 Census

Angrist and Imbens: Estimation of Average Causal Effects

Figure 3. First-Fourth Quarter Difference in Schooling CDF (Men Born 1920–1929, Data From the 1970 Census). Dotted lines are 95% confide intervals.

More Variable Treatment Intensities

- Returns to schooling identified using compulsory attendance and child labor laws (Acemoglu and Angrist, 2000)
- Class size (Angrist and Lavy, 1999; Krueger, 1999)
 - Y_i is a test score; S_i is class size
 - Z_i is Maimonides Rule or random assignment
- GRE test preparation (Powers and Swinton, 1984)
 - Y_i is GRE analytical score; S_i is hours of study
 - Z_i is randomly assigned letter of encouragement
- Maternal smoking (Permutt and Hebel, 1989)
 - Y_i is birth weight; S_i is mother's pre-natal smoking
 - ullet Z_i is randomly assigned offer of anti-smoking counseling
- Quantity-quality trade-offs (Angrist, Lavy, and Schlosser, 2010)
 - Y_i is schooling, earnings, etc.; S_i is sibship size
 - \bullet Z_i is derived from twins and sibling-sex composition

Validating External Validity (summary)

- MM Chpt 3 (ALS 2010) compares 2SLS estimates of the quantity-quality trade-off using twins and sex-mix instruments
 - Twins take no never-takers! Twins LATE is therefore

$$E[Y_{1i} - Y_{0i}|D_i = 0]$$
; where D_i indicates more than two

Twins compliers want to stop at two; they're highly educated

- Angrist (2004) shows same-sex LATE is close to ATE by virtue of a symmetric first stage
- Twinning mostly causes a one-child shift; while sex-composition increases childbearing at high parities:
 - QQ twins 1st stage
 - QQ samesex 1st stage
- Yet the answer always comes out: no (or positive) effects. That's one kinda external validity!
 - Angrist and Fernandez-Val (2013) propose another

Summary

- IV provides a powerful and flexible framework for causal inference
 - An alternative to random assignment with a strong claim on internal validity when the instruments are good
 - A solution to the compliance problem in randomized trials
 - A strategy for the analysis of many observational designs
- Distribution treatment effects? Identified!
 - kappa-weighting (Abadie 2003) extends LATE to nonlinear and quantile models
- IV produces weighted averages of ordered and continuous treatment effects, a generalized LATE
 - The weighting function describes the range of variation covered
- LATE spec tests: No first stage? No reduced form! (Kitagawa 2015)

TABLE 5-WALD ESTIMATES OF LABOR-SUPPLY MODELS

		1980 PUMS		1990 PUMS			1980 PUMS		
Variable	Mean	Wald estimate using as covariate:		Mean	Wald estimate using as covariate:			Wald estimate using as covariate:	
	difference by Same sex	More than 2 children	Number of children	difference by Same sex	More than 2 children	Number of children	Mean difference by Twins-2	More than 2 children	Number of children
More than 2 children	0.0600 (0.0016)			0.0628 (0.0016)			0.6031 (0.0084)		***************************************
Number of children	0.0765 (0.0026)		_	0.0836 (0.0025)			0.8094 (0.0139)		
Worked for pay	-0.0080 (0.0016)	-0.133 (0.026)	-0.104 (0.021)	-0.0053 (0.0015)	-0.084 (0.024)	-0.063 (0.018)	-0.0459 (0.0086)	-0.076 (0.014)	-0.057 (0.011)
Weeks worked	-0.3826 (0.0709)	-6.38 (1.17)	-5.00 (0.92)	-0.3233 (0.0743)	-5.15 (1.17)	-3.87 (0.88)	-1.982 (0.386)	-3.28 (0.63)	-2.45 (0.47)
Hours/week	-0.3110 (0.0602)	-5.18 (1.00)	-4.07 (0.78)	-0.2363 (0.0620)	-3.76 (0.98)	-2.83 (0.73)	-1.979 (0.327)	-3.28 (0.54)	-2.44 (0.40)
Labor income	-132.5 (34.4)	-2208.8 (569.2)	-1732.4 (446.3)	-119.4 (42.4)	-1901.4 (670.3)	-1428.0 (502.6)	-570.8 (186.9)	-946.4 (308.6)	-705.2 (229.8)
ln(Family income)	-0.0018 (0.0041)	-0.029 (0.068)	-0.023 (0.054)	-0.0085 (0.0047)	-0.136 (0.074)	-0.102 (0.056)	-0.0341 (0.0223)	-0.057 (0.037)	-0.042 (0.027)

Notes: The samples are the same as in Table 2. Standard errors are reported in parentheses.

Figure 1: First borns in the 2+ sample, first stage effects of twins-2 (top panel). First and second borns in the 3+ sample, first stage effects of twins-3 (bottom panel).

Figure 3: First and second borns 3+ sample. First stage effects by ethnicity and type of sex-mix.

 \bigcirc

Table 3.3: Estimates of the Quantity-Quality Trade-off

	0	LS	2SLS Instrument list					
								Twins,
								TwinsAA,
	Basic	All		Twins,		Samesex,	Twins,	Samesex,
	controls	controls	Twins	TwinsAA	Samesex	SamesexAA	Samesex	SamesexAA
Outcome	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Highest grade completed	-0.252	-0.145	0.174	0.105	0.318	0.315	0.237	0.186
	(0.005)	(0.005)	(0.166)	(0.131)	(0.210)	(0.210)	(0.128)	(0.112)
Years of schooling ≥ 12	-0.037	-0.029	0.030	0.024	0.001	0.002	0.017	0.016
· ·	(0.001)	(0.001)	(0.028)	(0.021)	(0.033)	(0.033)	(0.021)	(0.018)
Some College (age ≥ 24)	-0.049	-0.023	0.017	0.026	0.078	0.080	0.048	0.049
Joine Conege (age 2 24)	(0.001)	(0.001)	(0.052)	(0.046)	(0.054)	(0.055)	(0.037)	(0.035)
	(0.00-)	(0.00-)	(0.00_)	(0.0.0)	(5.55.7)	(=====)	(5.55.)	(0.000)
College graduate (age ≥ 24)	-0.036	-0.015	-0.021	-0.006	0.125	0.127	0.052	0.049
	(0.001)	(0.001)	(0.045)	(0.041)	(0.053)	(0.053)	(0.032)	(0.031)

Notes: This table reports OLS estimates of the coefficient on sibship size in columns 1-2. 2SLS estimates appear in columns 3-8. Instruments with an 'AA' suffix are interaction terms with an AA dummy. The sample includes first borns from families with 2 or more births. OLS estimates for column 2 include indicators for age and sex. Estimates for columns 2-8 are from models that include the controls used for first stage models reported in the previous table. Robust standard errors are reported in parenthesis.