FBA QUANTITATIVE FINANCE RESEARCH GROUP

Presentation Title: HFT session 1

Stochastic Calculus for Finance Chapter 1~6 & Dynamic Programming

13.08.2023

Presenter Name HTF Team 1

Email address

Outline

1	Lebesgue Measure and Lebesgue Integral
2	Conditional Expectation
3	Martingales, Risk-Neutral Probability Measure
4	Markov Process, Stopping Time
5	Dynamic Programming

Lebesgue Measure and Lebesgue Integral

Def Let Ω be a set and $\mathcal{P}(\Omega) := \{A | A \subset \Omega\}$ its power set. $A \in \mathcal{P}$ is called a σ -algebra if

- (i) $\Omega \in \mathcal{A}$
- (ii) $A \in \mathcal{A}$ implies $A^C := \Omega \setminus A \in \mathcal{A}$
- (iii) $A_i \in \mathcal{A}, i \in \mathbb{N}$ implies $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{A}$

Def Let $\Omega \neq \emptyset$ and $\mathcal{A} \subset \mathcal{P}(\Omega)$ be a σ -algebra. A mapping $\mathbb{P} : \mathcal{A} \to [0, \infty]$ is called a measure on (Ω, \mathcal{A}) if :

- (i) $\mathbb{P}(\emptyset) = 0$
- (ii) $\mathbb{P}(\bigcup_{i\in\mathbb{N}}A_i)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$ for all pairwise disjoint $A_i\in\mathcal{A}, i\in\mathbb{N}$

Def Lebesgue measure $\mu: \mathfrak{B}(\mathbb{R}) \to [0, \infty]$ is a measure on $(\mathbb{R}, \mathfrak{B}(\mathbb{R}))$ which assigns the measure of each interval to be its length. $\mathfrak{B}(\mathbb{R})$ is the σ -algebra of Borel subsets of \mathbb{R} .

Def

(i) Indicator function $\chi: \mathbb{R} \to \mathbb{R}$ is a function which takes only the values 0 and 1.

Let $A = \{x \in \mathbb{R} : \chi(x) = 1\}$. Then Lebesgue integral of χ is defined as

$$\int_{\mathbb{R}} \chi d\mu = \mu(A)$$

(ii) Simple function $s: \mathbb{R} \to \mathbb{R}$ is a linear combination of indicators :

$$s(x) = \sum_{k=1}^{n} c_k \chi_k(x)$$

Then we define the Lebesgue interal of s as :

$$\int_{\mathbb{R}} s d\mu = \sum_{k=1}^{n} c_k \mu(A_k)$$

(iv) Let f be a function defined on \mathbb{R} , we define :

$$f^+(x) = \max\{f(x), 0\}, \quad f^-(x) = \max\{-f(x), 0\}$$

and defined Lebesgue Integral of f as:

$$\int_{\mathbb{R}} f d\mu = \int_{\mathbb{R}} f^+ d\mu + \int_{\mathbb{R}} f^- d\mu$$

(v) Let f be a function defined on \mathbb{R} and $A \subset \mathbb{R}$. We define :

$$\int_A f d\mu = \int_{\mathbb{R}} \mathbb{I}_A f d\mu$$

Conditional Expectation

Def $(\Omega, \mathcal{A}, \mathbb{P})$ is called a measure space, (Ω, \mathcal{A}) is called a measurable space and $A \in \mathcal{A}$ is called a measurable set. \mathbb{P} is called a probability measure if $\mathbb{P}(\Omega) = 1$. In this case $(\Omega, \mathcal{A}, \mathbb{P})$ is called a probability space.

Def Let (Ω, \mathcal{A}) and (Ω', \mathcal{A}') be measurable spaces. A map $X : \Omega \to \Omega'$ is called \mathcal{A}/\mathcal{A}' -measurable if

$${X \in A'} := {\omega \in \Omega | X(\omega) \in A'} \in \mathcal{A}, \quad \forall A' \in \mathcal{A}'$$

A Random Variable on (Ω, \mathcal{A}) is a $\mathcal{A}/\mathfrak{B}(\mathbb{R})$ -measurable map $X : \Omega \to \mathbb{R}$.

Problem Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and \mathcal{A} be a given sub- σ -algebra. Let $X \in \mathfrak{L}^2(\Omega, \mathcal{F}, \mathbb{P})$, we want to find the random variable $Y \in \mathfrak{L}^2(\Omega, \mathcal{A}, \mathbb{P})$ that minimizes the mean squared error, i.e.

$$\mathbb{E}(X - Y)^2 \le \mathbb{E}(X - Y_0)^2, \quad \forall Y_0 \in \mathfrak{L}^2(\Omega, \mathcal{A}.\mathbb{P})$$

Def Let $X \in \mathfrak{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. The conditional expectation of X given \mathcal{A} is any r.v. Y with

- (i) Y is \mathcal{A} -measurable
- (ii) $\mathbb{E}(X1_A) = \mathbb{E}(Y1_A), \forall A \in \mathcal{A}$

Prop Tower property: Let A_1, A_2 be two sub- σ -algebras of \mathcal{F} with $A_1 \subset A_2$. Then we have

$$\mathbb{E}(\mathbb{E}(X|\mathcal{A}_1)|\mathcal{A}_2) = \mathbb{E}(\mathbb{E}(X|A_2)|A_1) = \mathbb{E}(X|A_1)$$

Prop Jensen's Inequality : let ϕ is convex function and $\phi(X) \in \mathfrak{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Then we have following property :

$$\phi(E(X|\mathcal{A}) \le \mathbb{E}(\phi(X)|\mathcal{A})$$

Martingales, Risk-Neutral Probability Measure

Def A map $X: \Omega \times \mathbb{T} \to \mathbb{R}$, $(X = (X_t)_{x \in \mathbb{T}})$ is called a stochastic process and (i) with fixed $\omega \in \Omega$, $X.(\omega): \mathbb{T} \to \mathbb{R}$ is a sequence

(ii) with fixed $t \in \mathbb{T}$, $X_t(.): \Omega \to \mathbb{R}$ is a random variable

Def With measurable space (Ω, \mathcal{F}) , filtration $(\mathcal{F}_t)_{t\in\mathbb{T}}$ is a family of σ -algebras with

- (i) $\mathcal{F}_t \subseteq \mathcal{F} \quad \forall t \in \mathbb{T}$
- (ii) $\mathcal{F}_t \subseteq \mathcal{F}_{t+1} \quad \forall t \in \mathbb{T}$

Also we call $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{T}}, \mathbb{P})$ a filtered probability space.

Def With filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{T}}, \mathbb{P})$ and $X : \Omega \times \mathbb{T} \to \mathbb{R}$ be a stochastic process. We say X is adapted if $X_t : \Omega \to \mathbb{R}$ is \mathcal{F}_t -measurable.

Def With filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{T}}, \mathbb{P})$ and $M : \Omega \times \mathbb{T} \to \mathbb{R}$ be a stochastic process. We say M is a Martingale if

- (i) M is adapted
- (ii) $\mathbb{E}^P(M_{t+1}|F_t) = M_t \quad \forall t \in \mathbb{T}$

Def With filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{T}}, \mathbb{P})$ and $G, S : \Omega \times \mathbb{T} \to \mathbb{R}$ be two adapted & positive stochastic process. A Risk-Neutral measure is a probability measure Q on Ω s.t.

- (i) $Q(\{\omega\}) > 0 \quad \forall \omega \in \Omega$
- (ii) $\left(\frac{S_t}{G_t}\right)_{t\in\mathbb{T}}$ is martingale under Q

Remark For binomial model, a pair of probabilities (q_u, q_d) is a risk-neutral measure if

- (i) $q_u > 0$, $q_d > 0$, $q_u + q_d = 1$
- (ii) $S = q_u * \frac{S_u}{1+R} + q_d * \frac{S_d}{1+R}$

(expectation of present value of future price equals to present price)

Markov Process, Stopping Times

Def Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

A Brownian motion is a stochastic process $B: \Omega \times [0, \infty) \to \mathbb{R}$ s.t.

- (i) $B_0 = 0$
- (ii) $0 = t_0 \le t_1 \le \cdots \le t_m \Rightarrow B_{t_1} B_{t_0}, \cdots, B_{t_m} B_{t_{m-1}}$ are mutually independent
- (iii) $0 \le s < t \Rightarrow B_t B_s \sim N(0, t s)$
- (iv) sample paths are continuous (i.e. $t \mapsto B_t(\omega)$ is continuous $\forall \omega \in \Omega$)

Def Consider the shift transformations $\theta_s: \Omega \to \Omega, s \geq 0$ defined by

$$\theta_s(\omega)(t) := \omega(s+t), t \ge 0$$

and let $Y: \Omega \to \mathbb{R}$ then we can say $Y \circ \theta_s$ is a function of the future after time s. For instance, if $f: \mathbb{R} \to \mathbb{R}$ is bounded and measurable and $Y = f(B_t)$ then $Y(\theta_s(\omega)) = f(B_{t+s}(\omega))$ and so $Y \circ \theta_s = f(B_{t+s})$, similarly we have $B_t \circ \theta_s = B_{t+s} \quad \forall s, t \geq 0$.

Brownian motion $((B_t)_{t\geq 0}, \Omega, \mathcal{F}, (\mathbb{P}_x)_{x\in\mathbb{R}})$ has the following Markov Property :

$$\mathbb{E}(Y \circ \theta_s | \mathcal{F}_s) = \mathbb{E}_{B_s}(Y) (= \mathbb{E}(Y | B_s)) \quad \forall s \ge 0, x \in \mathbb{R}$$

or in sense of probability, we can write as : $\mathbb{P}(X_{t+s} \in A | \mathcal{F}_s) = \mathbb{P}(X_{t+s} \in A | X_s) \quad \forall A \in \mathfrak{B}(\mathbb{R})$

Def We say X is Time-homogeneous Markov Process if : $\mathbb{E}(f(X_{t+s})|X_s=x)$ is independent of s (only depends on time-difference)

Def A map $T:\Omega \to [0,\infty]$ is called an (\mathcal{F}_t) -stopping time if

$$\{T \le t\} \in \mathcal{F}_t \quad \forall t \ge 0$$

Example $\sigma_{\{a\}} := \inf\{t > 0 | B_t > a\}$ is a stopping time.

Dynamic Programming; Category: 최적화이론, 알고리즘 ...

큰 문제를 작은 문제로 나누어 푸는 것

ex) 수학적 귀납법

$$F(0) \land (\forall n, F(n) \Rightarrow F(n+1)) \Rightarrow \forall n, F(n+1)$$

Def. DP := 목적함수(Optimal Object, W(x))를 최대화/최소화하는 관계식을 찾아내는 것

$$W_n = \sup_{W_n} \{ f(W_{n+1}, a_{n+1}) \} : \text{top-down}$$

$$W_n = \max\{f(W_{n-1}, a_{n-1})\}$$
: bottom-up

Find f that maximizes W

Def. Plant eq.

- $x_t \in X$: state at time t
- $a_t \in A_t$: action at time t

$$f_t: X \times A_t \to X \text{ that is } f_t(x_t, a_t) = x_{t+1}$$

Def. DP

- r_t : reward at time t
- $\widetilde{a} \in (a_0, ... a_T)$: path of actions through time

Maximize sum of rewards

$$R(\tilde{a}) = \sum_{t=0}^{T} r_t(x_t, a_t)$$

$$R_{\tau}(\tilde{a}_{\tau}) = \sum_{t=\tau}^{T} r_{t}(x_{t}, a_{t}) = r_{t}(x_{t}, a_{t}) + R_{\tau+1}(x_{\tau+1}, a_{\tau+1})$$

Maximize

$$W_{\tau}(\tilde{a}_{\tau}) = \max_{\tilde{a}_{\tau}} R_{\tau}(\tilde{a}_{\tau})$$

Def. Bellman eq.

• $W_T(x) = r_T(x)$ • $W_t(x_t) = \sup_{a_t \in A_t} \{r_t(x_t, a_t) + W_{t+1}(x_{t+1})\}$ where $x_t \in X \land x_{t+1} = f_t(x_t, a_t)$

Maximize

$$W_{t}(\tilde{a}_{t}) = \max_{\tilde{a}_{t}} R_{t}(\tilde{a}_{t})$$

$$W_{t}(x_{t}) = \max_{\tilde{a}_{t}} R_{t}(\tilde{a}_{t})$$

$$= \max_{a_{t}} \max_{\tilde{a}_{t+1}} \{r_{t}(x_{t}, a_{t}) + R_{t+1}(x_{t+1}, a_{t+1})\}$$

$$= \max_{a_{t}} r_{t}(x_{t}, a_{t}) + \max_{\tilde{a}_{t+1}} R_{t+1}(x_{t+1}, a_{t+1})$$

$$= \max_{a_{t}} r_{t}(x_{t}, a_{t}) + W_{t+1}(x_{t+1})$$

Problem.

Plant eq.

$$x_{t+1} = x_t + rx_t(1 - a_t)$$

- $x_0 = x$, r: constant
- $0 \le a_t \le 1$: variable

Total Rewards

$$W_0 = ra_0 + ra_1 + \dots + ra_{T-1} = \sum_{t=0}^{T-1} ra_t = R(\tilde{a})$$

Maximize

$$W_{\tau}(\tilde{a}_{\tau}) = \max_{\tilde{a}_{\tau}} R_{\tau}(\tilde{a}_{\tau})$$

Partial Total Rewards

$$W_{\tau} \coloneqq \sum_{t=t}^{T-1} r a_t = R_{\tau}(\tilde{a}_{\tau}) = r_t(x_t, a_t) + R_{\tau+1}(x_{\tau+1}, a_{\tau+1})$$

•
$$t = T - 1$$
,
$$W_{T-1} = \max\{rx_{T-1}a_{T-1}\}, \text{ so } a_{T-1} = 1$$
• $t = T - 2$,
$$W_{T-2} = \max_{0 \le a_{T-2} \le 1}\{rx_{T-1}a_{T-1} + W_{T-1}(X_{T-1})\}$$

$$= \max\{rx_{T-1}a_{T-1} + r[x_{T-2} + rx_{T-2}(1 - a_{T-2})]\}$$

$$= rx_{T-2}\max\{(1 + r) + (1 - r)a_{T-2}\}$$

$$= rx_{T-2}\max(1 + r, 2)$$

Partial Total Rewards

$$W_{\tau} \coloneqq \sum_{t=t}^{T-1} r a_t = R_{\tau}(\tilde{a}_{\tau}) = r_t(x_t, a_t) + R_{\tau+1}(x_{\tau+1}, a_{\tau+1})$$

• t = T - S, Assume, $W_{T-S+1}(x_{T-S+1}) = rx_{T-S+1} \cdot \rho_{T-S+1}$

$$\begin{split} W_{T-S}(x_{T-S}) &= \max_{a_{T-S}} \{rx_{T-S}a_{T-S} + rx_{T-S+1}\rho_{T-S+1}\} \\ &= \max\{rx_{T-S}a_{T-S} + r\rho_{T-S+1}[x_{T-S} + rx_{T-S}(1 - a_{T-S})]\} \\ &= rx_{T-S} \max\{(1 + r)\rho_{T-S+1} + (1 - r\rho_{T-S+1})a_{T-S}\} \\ &= rx_{T-S} \max((1 + r)\rho_{T-S+1}, 1 + \rho_{T-S+1}) \end{split}$$

Thus,

$$: \rho_{T-S} = \max((1+r)\rho_{T-S+1}, 1+\rho_{T-S+1})$$

FBA QUANTITATIVE FINANCE RESEARCH GROUP