Séquence: 03

Document : TD05 Lycée Dorian

Renaud Costadoat Françoise Puig

Référence S03 - TD05

Compétences A3-C6: Transmetteurs de puissance

Description Représentation et modélisation des engrenages. Formule de Willis.

Système Boite Catep, Boite Redex, Palan Eurochain VL5, Réducteur SNT, Surfaceuse élec-

trique

1 Boîte CATEP

1.1 Présentation

Une boîte de vitesses est un dispositif mécanique permettant d'adapter la transmission d'un mouvement entre un arbre moteur et un arbre récepteur. Utilisée dans de multiples contextes (machines-outils, transports routiers, etc.), son cas d'utilisation le plus fréquent est la transmission de la puissance d'un moteur thermique aux roues motrices d'un véhicule.

Figure 1 – Boîte C.A.T.E.P.

1.2 Les rapports de réduction

Figure 2 – Boîte ouverte

Question 1 : Déterminer l'ensemble des rapports de vitesse disponibles pour cette boite de vitesse.

Le réducteur S.N.T. 2

2.1 Présentation

Le réducteur SNT a la particularité d'être un réducteur à vis sans fin.

Avantages:

- Il permet d'obtenir de grands rapports de réduction,
- Il permet un renvoi d'angle (axes de rotations perpendiculaires)

Inconvénients:

— Il ne permet pas de choisir entre plusieurs rapports de réduction.

Données:

- Vis : 1 filet,
- Roue: 40 dents,
- $$\begin{split} & -\overrightarrow{\Omega_{\nu}} = \omega_{\nu}.\overrightarrow{x} \text{, avec } \omega_{\nu} > 0, \\ & -\overrightarrow{\Omega_{r}} = \omega_{r}.\overrightarrow{z} \text{.} \end{split}$$

Figure 3 - Réducteur SNT

2.2 la réduction

Question 1 : Déterminer le signe de ω_r et le rapport de réduction de ce réducteur S.N.T.

3 Palan Eurochain VL5

3.1 Présentation

L'EUROCHAIN VL est un palan électrique de la société VER-LINDE répondant à des besoins de levage industriel de petite et moyenne capacité (160 à 5000 kg).

L'EUROCHAIN VL se combine avec des chariots à déplacement manuel ou électrique installés sur monorail, potence ou pont roulant.

Figure 4 – Palan Eurochain

Caractéristiques générales :

- Réducteur à double train épicycloïdal (Rapport de transmission global : $i_{global} = 1/43$),
- Capacité de charge de 160 à 5000kg,
- Couple nominal du moteur électrique : Cn = 5,6Nm,
- Vitesse de levage de la charge : $v = 4m.mn^{-1}$ ou $0,066m.s^{-1}$,
- Hauteur de levage de 3 à 30m,
- Levage mono-vitesse ou bi-vitesse,
- Déplacement horizontal manuel ou électrique (mono-vitesse, bi-vitesse ou vitesse variable),
- Diamètre primitif d'enroulement de la chaîne sur la noix de levage 5 : $\Phi_{noix} = 41mm$,
- Rendement du mécanisme de transmission de puissance : $\eta = 0,84$.

Caractéristiques de sécurité :

- Commande très basse tension (48 V),
- Marche-arrêt de type coup de poing,
- Limiteur de couple (disque de limiteur 28 : $R_{ext} = 34mm$, $R_{int} = 22mm$, facteur de frottement : $\mu = 0, 4$),
- Frein de levage à disque,
- Matériau du ressort de freinage 32 : 50 Cr V 4,
- Disque de freinage 30 ($R_{ext} = 42,5mm, R_{int} = 30mm$, facteur de frottement : $\mu = 0,4$),
- Conforme à la directive CE relative aux machines 89/392/CEE,
- Couple maxi sur l'arbre 2 : $C_{max} = 7,3Nm$,
- Caractéristiques de l'arbre canneluré 2 (Matériau : 35 Cr Mo 4, Coefficient de sécurité adopté par le constructeur : s = 5).

Figure 5 – Sous-ensembles du Palan

R	N	Désignation	R	N	Désignation
1	2	Ecrou autofreiné M8	21	1	Anneau élastique
2	1	Arbre de transmission	22	1	Joint torique $\Phi2 \times 47$ NB70
3	1	Rotor assemblé	23	1	Roulement 6005 2NSLNR
4	3	Roulement 6004 2RS1	24	1	Joint métallique 6005 AV
5	1	Noix de levage assemblée	25	1	Frein limiteur assemblé
6	1	Roulement 6005 2RS1	26	3	Vis de fixation
7	1	Bague de limiteur	27	3	Vis de blocage
8	1	Bague d'étanchéité	27b	1	Ecrou de réglage
9	1	Ensemble satellite 2ème étage	28	1	Disque limiteur assemblé
10	1	Porte-satellite	29	1	Joint à lévre
11	2	Rondelle laiton	30	1	Disque de frein assemblé
12	3	Bague auto-lubrifiante	31	1	Disque d'ancrage
13	3	Satellite 2ème étage	32	1	Ressort de frein
14	6	Rondelle de retenue	33	1	Electo-aimant assemblé
15	1	Planétaire 2ème étage	34	3	Rondelle
16	1	Ensemble satellite 1er étage	35	1	Ressort de limiteur
17	1	Porte-satellite 1er étage	36	1	Carter assemblé (Z=86, m=1,25)
18	3	Bague auto-lubrifiante			
19	3	Satellite 1er étage (Z=35, m=1,25)			
20	1	Planétaire 1er étage(Z=16, m=1,25)			

COUPLE DE TARAGE DU LIMITEUR

- L'ensemble disque-frein (30) est en liaison glissière par rapport à l'arbre de transmission (2), grâce à des cannelures,
- Le reste du frein est lié en rotation par rapport au carter.

— FREIN :

- Le ressort (35) maintient en pression (30) sur (28). L'écrou (1) maintient l'ensemble sur (2),
- Pendant la montée ou la descente, la bobine (33) est sous tension et elle est plaquée sur le disque d'ancrage (31),
- 3. Un jeu X' est prévu à cet effet,
- 4. Les disques (28) et (30) tournent librement et peuvent entraîner en rotation le planétaire (20),
- 5. Il y a freinage lorsque la bobine n'est plus alimentée et que le ressort (32) repousse (33) et sa garniture sur le disque de frein (30) (voir figure 6),

- LIMITEUR:

- Si la charge à soulever est excessive, il se produit un glissement entre (30) et (28). Cela permet de préserver l'ensemble du système contre toute rupture intempestive,
- Le seuil de déclenchement du limiteur (couple de tarage) se règle grâce à l'écrou (1). Ce seuil est égal à 1,25 fois la charge nominale du palan (voir figure 7).

Figure 6 - Frein

Figure 7 – Limiteur

Question 1 : Expliquer le ou les fonctionnements de ce système.

Question 2 : Réaliser sur la figure 3.1 le schéma technologique de ce système.

Question 3 : Déterminer le rapport de réduction de la chaîne d'engrenage de ce système.

Détail E - Echelle 3 :1

I	BTS CPI S	Session 2000 – Sous épreuve U 41	Т	
	ECH.: 1:1	PALAN EUROCHAIN		
		VL 5 – 1000 Kg		Α

4 La surfaceuse

4.1 Présentation

Une surfaceuse est un outil qui permet grâce à la rotation d'un disque rugueux de polir une surface.

La surfaceuse étudiée dans cet exercice est une surfaceuse à béton, elle est alimentée par de l'énergie pneumatique.

Figure 8 – Surfaceuse à main

4.2 Rapport de réduction

Question 1 : Déterminer le rapport de réduction du train d'engrenage de cette surfaceuse. Est-il nécessaire de connaître le module des engrenages utilisés ?

5 Module REDEX

5.1 Présentation

La gamme des réducteurs SR est conçue autour d'un train d'engrenages épicycloïdal avec satellites multiples, et permet d'offrir un couple très élevé et une grande gamme de rapports de réduction dans un encombrement limité.

Figure 9 - Module Redex

5.2 Rapport de réduction

Question 1 : Déterminer ω_{20} pour les cas de figure suivants :

Avec $\omega_{10} = 0$ et $\omega_{30} = \omega_e$.

— Pour $Z_1 = 50 dents$, $Z_2 = 50 dents$, $Z_{51} = 25 dents$, $Z_{52} = 25 dents$,

— Pour $Z_1 = 51 dents$, $Z_2 = 49 dents$, $Z_{51} = 24 dents$, $Z_{52} = 26 dents$,

— Pour $Z_1 = 52 dents$, $Z_2 = 48 dents$, $Z_{51} = 23 dents$, $Z_{52} = 27 dents$.

Question 2: Refaire les mêmes calculs avec $\omega_{30}=0$ et $\omega_{10}=\omega_e$.

6 Correction

6.1 Boîte CATEP

Question 1:

Boite 1

100/102	1/2	101/103	1/2	1/4
100/102	1/2	107/104	7/5	7/10
109/106	1	101/103	1/2	1/2
109/106	1	107/104	7/5	7/5
108/107	5/7	101/103	1/2	5/14
108/107	5/7	107/104	7/5	1

- 1. 1/4
- 2. 5/14
- 3. 1/2
- 4. 7/10
- 5. 1
- 6. 7/5

Question 2:

Boite 2

209/205	1
-208/207	-1

- 1. 1
- 2. -1

6.2 Réducteur S.N.T

Question 1:

$$\omega_r > 0$$
 et $\frac{\omega_r}{\omega_\nu} = \frac{1}{40}$

6.3 Palan Eurochain VL5

Question 1:

Le moteur électrique entraîne un train épicycloïdal qui réduit la vitesse de rotation. Le système de frein laisse tourner le palan s'il est alimenté en énergie électrique mais le bloque en cas de coupure de courant pour éviter la chute de la charge. Lorsque le système fonctionne en limiteur, il laisse descendre doucement une charge lourde afin de ne pas endommager le système. Il limite donc le couple au niveau du moteur.

Question 2:

Question 3:

Avec 1 train :
$$\frac{\omega_c - \omega_{ps}}{\omega_p - \omega_{ps}} = -\frac{Z_p}{Z_c} = -\frac{16}{89}$$

Donc
$$\frac{\omega_{ps}}{\omega_{p}} = \frac{16}{105}$$

Question 3:
Avec 1 train:
$$\frac{\omega_c - \omega_{ps}}{\omega_p - \omega_{ps}} = -\frac{Z_p}{Z_c} = -\frac{16}{89}$$

Donc $\frac{\omega_{ps}}{\omega_p} = \frac{16}{105}$
Avec 2 trains: $\frac{\omega_s}{\omega_e} = \frac{16}{105} \cdot \frac{16}{105} = \frac{256}{11025} \simeq 0,023$

Surfaceuse 6.4

Question 1:

Le disque de la surfaceuse est monté sur le satellite. La vitesse d'entrée est celle du porte satellite, la couronne est immobile et il n'y a pas de planétaire.

$$\begin{array}{l} \overrightarrow{V_{A\in 1/0}} = \overrightarrow{0}, \overrightarrow{V_{C\in 2/1}} = \overrightarrow{0}, \overrightarrow{V_{B\in 2/0}} = \overrightarrow{0} \\ \overrightarrow{V_{B\in 2/0}} = \overrightarrow{V_{B\in 2/1}} + \overrightarrow{V_{B\in 1/0}} \\ \overrightarrow{BC} \wedge \overrightarrow{\Omega_{2/1}} + \overrightarrow{BA} \wedge \overrightarrow{\Omega_{1/0}} = \overrightarrow{0} \\ -r.\overrightarrow{y_1} \wedge \omega_{21}.\overrightarrow{x} - R.\overrightarrow{y_1} \wedge \omega_{10}.\overrightarrow{x} = \overrightarrow{0} \\ r.\omega_{21} + R.\omega_{10} = 0 \\ \overrightarrow{\omega_{21}} = -\frac{R}{r} \\ \text{Il n'est pas nécessaire de connaître le module.} \end{array}$$

6.5 Module REDEX

 $\frac{\omega_{20} - \omega_{30}}{\omega_{10} - \omega_{30}} = \frac{Z_1 \cdot Z_{52}}{Z_2 \cdot Z_{51}}$

	$\omega_{10} = 0$	$\omega_{30} = 0$
Cas 1	$\omega_{20} = 0$	$\omega_{20} = \omega_{10}$
Cas 2	$\omega_{20} = -0, 13.\omega_e$	$\omega_{20} = 1, 13.\omega_e$
Cas 3	$\omega_{20} = -0, 27.\omega_e$	$\omega_{20} = 1,27.\omega_e$

