Projection operators

Kristian Wichmann

July 26, 2017

1 Orthogonal complement

Let V be a finite-dimensional vector space with an inner product $\langle \cdot, \cdot \rangle$. Let U be a subspace of V. Then we define the *orthogonal complement* of U as:

$$U^{\perp} = \{ v \in V | \forall u \in U : \langle u, v \rangle = 0 \}$$

$$\tag{1.1}$$

Theorem 1.1. U^{\perp} is a subspace of V.

Proof. According to the subspace theorem, we need to show three things:

- U^{\perp} is not empty: Clearly $0 \in U^{\perp}$.
- Closed under addition: If $v_1, v_2 \in U^{\perp}$, then for all $u \in U^{\perp}$:

$$\langle v_1 + v_2, u \rangle = \langle v_1, u \rangle + \langle v_2, u \rangle = 0 \tag{1.2}$$

• Closed under scalar multiplication: If $v \in U^{\perp}$ and $c \in \mathbb{R}$ then for all $u \in U^{\perp}$:

$$\langle cv, u \rangle = c \langle v, u \rangle = 0$$
 (1.3)

Since the only vector perpendicular to itself is 0, we further conclude that $U \cap U^{\perp} = \{0\}.$

Theorem 1.2. If e_1, e_2, \ldots, e_m is an orthonormal basis for U, then for any $v \in V$:

$$v - \sum_{i=1}^{m} \langle v, e_i \rangle e_i \in U^{\perp}$$
 (1.4)

Proof. Let $u \in U$. Then we can write $u = \sum_{j=1}^{m} \lambda_j e_j$ for some coefficients λ_j . Now calculate the inner product with the vector above:

$$\langle v - \sum_{i=1}^{m} \langle v, e_i \rangle e_i , \sum_{j=1}^{m} \lambda_j e_j \rangle = \sum_{i=j}^{m} \lambda_j \langle v, e_j \rangle - \sum_{i=1}^{m} \sum_{j=1}^{m} \lambda_j \langle v, e_i \rangle \langle e_i, e_j \rangle$$
 (1.5)

Since $\langle e_i, e_j \rangle = \delta_{ij}$ this vanishes.

This means that we may write any $v \in V$ as a sum of vectors from U and U^{\perp} respectively:

$$v = \underbrace{\sum_{i=1}^{m} \langle v, e_i \rangle e_i}_{\in U} + \underbrace{v - \sum_{i=1}^{m} \langle v, e_i \rangle e_i}_{\in U^{\perp}}$$

$$(1.6)$$

Theorem 1.3. The decomposition into elements from U and U^{\perp} from equation 1.6 is unique.

Proof. Let $v=u_1+u_1^{\perp}$ and $v=u_2+u_2^{\perp}$ be two such decompositions. Then $u_1+u_1^{\perp}=u_2+u_2^{\perp}$ and hence $u_1-u_2=u_2^{\perp}-u_1^{\perp}$. But this means that this vector is a member of both U and U^{\perp} , and hence it must be 0. This means $u_1=u_2$ and $u_1^{\perp}=u_2^{\perp}$.

2 The orthogonal projection

The previous section motivates the following:

Definition 2.1. Let V be a finite-dimensional inner product vector space and U a subspace of V. The orthogonal projection from V onto U is the map $p:V \to V$ which satisfies:

$$\forall v \in V: \quad p(v) \in U, \quad v - p(v) \in U^{\perp} \tag{2.1}$$

As we see, one could also define the co-domain of p to be U. Usually, the distinction will not matter much.

Theorem 2.1. The orthogonal projection operator is linear.

Proof. We need to show additivity and homogeneity:

• Additivity: Let $v_1, v_2 \in V$. Then $p(v_1) + p(v_2) \in U$ and:

$$v_1 - p(v_1) + v_2 - p(v_2) = v_1 + v_2 - (p(v_1) + p(v_2)) \in U^{\perp}$$
 (2.2)

Adding the two we get $v_1 + v_2$. So $p(v_1 + v_2) = p(v_1) + p(v_2)$.

• Homogeneity. Let $v \in V$ and $c \in \mathbb{R}$. Then $cp(v) \in U$ and $c(v - p(v)) = cv - cp(v) \in U^{\perp}$. Adding the two we get cv, so p(cv) = cp(v).

Theorem 2.2. The orthogonal projection operator $p: V \to V$ is idempotent. *I.e.* $p \circ p = p$.

Proof. Let $v \in V$. Then $p(v) \in U$. But this means that the decomposition of p(v) is p(v) + 0. So $p \circ p(v) = p(v)$.

3 Orthogonal subspaces

Two subspaces $L_1, L_2 \subseteq V$ of an inner product space are said to be *orthogonal* if every vector from L_1 is orthogonal to every vector from L_2 . We may characterize this property through the orthogonal projection operators of the spaces:

Theorem 3.1. Let V be a finite dimensional vector space with inner product $\langle \cdot, \cdot \rangle$. Let L_1 and L_2 be subspaces of V with associated orthogonal projection operators p_1 and p_2 . Then, the following are equivalent:

- L_1 and L_2 are orthogonal.
- $\bullet \ p_1 \circ p_2 = 0$
- $p_2 \circ p_1 = 0$

Proof. First, assume L_1 and L_2 to be orthogonal, and let $v \in V$. First, $p_2(v) \in L_2$. But because of the orthogonality we also have $p_2(v) \in L_1^{\perp}$. So $p_1(p_2(v)) = 0$. By a totally symmetric argument, $p_2(p_1(v)) = 0$.

Conversely, assume $p_1 \circ p_2 = 0$. Let $v_1 \in L_1$ and $v_2 \in L_2$. This means that $p_1(v_1) = v_1$, and $p_2(v_2) = v_2$. Then:

$$\langle v_1, v_2 \rangle = \langle p_1(v_1), p_2(v_2) \rangle \tag{3.1}$$

But p_1 is symmetric, so:

$$\langle p_1(v_1), p_2(v_2) \rangle = \langle v_1, p_1(p_2(v_2)) \rangle = \langle v_1, 0 \rangle = 0$$
 (3.2)

So L_1 and L_2 are orthogonal. Again, a symmetrical proof can be made starting from $p_2 \circ p_1 = 0$.

We can also use it to tell when subspaces are contained in each other:

Theorem 3.2. Let V be a finite dimensional vector space with inner product $\langle \cdot, \cdot \rangle$. Let L_1 and L_2 be subspaces of V with associated orthogonal projection operators p_1 and p_2 . Then, the following are equivalent:

- $L_1 \subseteq L_2$
- $\bullet \ p_1 \circ p_2 = p_2$
- $\bullet \ p_2 \circ p_1 = p_2$

Proof. Assume $L_1 \subseteq L_2$. Then L_2 and L_1^{\perp} must be orthogonal. From theorem 3.1 we know this means p_2 and the orthogonal projection on L_1^{\perp} , $1-p_1$, must be zero when combined either way:

$$p_2 \circ (1 - p_1) = p_2 - p_2 \circ p_1 = 0 \Leftrightarrow p_2 \circ p_1 = p_2$$
 (3.3)

$$(1-p_1) \circ p_2 = p_2 - p_1 \circ p_2 = 0 \Leftrightarrow p_1 \circ p_2 = p_2$$
 (3.4)

Conversely, assume $p_1 \circ p_2 = p_2$. Then $(1 - p_1) \circ p_2 = p_2$. According to theorem 3.1 L_1^{\perp} and L_2 are orthogonal. But then $L_2 \subseteq L_1$. A completely analogous argument can be made for $p_2 \circ p_1 = p_2$.

4 Relative, orthogonal complement

Let V be a finite dimensional vector space with inner product $\langle \cdot, \cdot \rangle$. Let L_1 and L_2 be subspaces of V, such that $L_2 \subseteq L_1$. Then we define the *orthogonal* complement of L_2 relative to L_1 as:

$$L_1 \ominus L_2 = \{ v \in V | v \in L_1 \text{ and } \forall w \in L_2 : \langle v, w \rangle = 0 \}$$
 (4.1)

In other words, $L_1 \ominus L_2 = L_1 \cap L_2^{\perp}$. But we still view this as a subspace of V rather than L_1 .

Theorem 4.1. Let V be a finite dimensional vector space with inner product $\langle \cdot, \cdot \rangle$. Let $L_2 \subseteq L_1$ be subspaces of V with associated orthogonal projection operators p_2 and p_1 . Then $p_1 - p_2$ is the orthogonal projection operator of $L_1 \ominus L_2$.

Proof. Start by noting, that since $L_2 \subseteq L_1$, for any $v \in V$, $p_1(v), p_2(v) \in L_1$ and hence $(p_1 - p_2)v \in L_1$. Now let $w \in L_2$. Then, using the symmetry of p_1 and p_2 :

$$\langle (p_1 - p_2)(v), w \rangle = \langle p_1(v), w \rangle - \langle p_2(v), w \rangle = \tag{4.2}$$

$$\langle v, p_1(w) \rangle - \langle v, p_2(w) \rangle = \tag{4.3}$$

$$\langle v, w \rangle - \langle v, w \rangle = 0 \tag{4.4}$$

So $(p_1 - p_2)(v) \in L_2^{\perp}$ as well, and so we conclude $(p_1 - p_2)(v) \in L_1 \ominus L_2$. Now, let $v \in V$ and $w \in L_1 \ominus L_2$. Then we calculate:

$$\langle v - (p_1 - p_2)(v), w \rangle = \langle v, w \rangle - \langle p_1(v), w \rangle + \langle p_2(v), w \rangle =$$
(4.5)

$$\langle v, w \rangle - \langle v, p_1(w) \rangle + \langle v, p_2(w) \rangle =$$
 (4.6)

$$\langle v, w \rangle - \langle v, w \rangle + \langle v, 0 \rangle = 0$$
 (4.7)

This is exactly the condition an orthogonal projection operator must satisfy.

5 Geometric orthogonality

Let V be a finite dimensional vector space with inner product $\langle \cdot, \cdot \rangle$. Let L_1 and L_2 be subspaces of V, and let $L_0 = L_1 \cap L_2$. We now call L_1 and L_2 geometrically orthogonal iff:

$$L_1 \ominus L_0 \perp L_2 \ominus L_0 \tag{5.1}$$

We will use the following notation:

$$L_1 \perp_G L_2 \tag{5.2}$$

Theorem 5.1. Let V be a finite dimensional vector space with inner product $\langle \cdot, \cdot \rangle$. Let L_1 and L_2 be subspaces of V, and let $L_0 = L_1 \cap L_2$. et p_0, p_1 , and p_2 be the orthogonal projections of L_0, L_1 , and L_2 . The following three statements are then equivalent:

- $L_1 \perp_G L_2$
- $\bullet \ p_1 \circ p_2 = p_2 \circ p_1$
- $\bullet \ p_1 \circ p_2 = p_0$

Proof. From theorem 4.1 we know that $p_1 - p_0$ and $p_2 - p_0$ are the orthogonal projections into $L_1 \ominus L_0$ and $L_2 \ominus L_0$ respectively. According to theorem 3.1 $L_1 \ominus L_0$ and $L_2 \ominus L_0$ are orthogonal if and only if:

$$(p_1 - p_0) \circ (p_2 - p_0) = 0 (5.3)$$

Expanding the left side:

$$p_1 \circ p_2 - p_1 \circ p_0 - p_0 \circ p_2 + p_0 \circ p_0$$
 (5.4)

Since $L_0 \subseteq L_1$, according to theorem 3.2 $p_1 \circ p_0 = 0_0$. And likewise, because $L_0 \subseteq L_2$, we must have $p_0 \circ p_2 = p_0$. Finally, because of idempotence, $p_0 \circ p_0 = p_0$. So:

$$(p_1 - p_0) \circ (p_2 - p_0) = p_1 \circ p_2 - p_0 - p_0 + p_0 = p_1 \circ p_2 - p_0 \tag{5.5}$$

This is zero exactly when $p_1 \circ p_2 = p_0$. So we've shown that the first and third statements are equivalent.

Next, assume $p_1 \circ p_2 = p_0$, and let $v, w \in V$. Then:

$$\langle (p_1 \circ p_2)(v), w \rangle = \langle p_0(v), w \rangle = \tag{5.6}$$

$$\langle v, p_0(w) \rangle = \tag{5.7}$$

$$\langle v, (p_1 \circ p_2)(w) \rangle = \tag{5.8}$$

$$\langle v, p_1(p_2(w)) \rangle = \tag{5.9}$$

$$\langle p_1(v), p_2(w), \rangle = \langle (p_2 \circ p_1)(v), w \rangle$$
 (5.10)

Here, we've repeated used the symmetry of projection operators. Since this is true for arbitrary $v, w \in V$ we must have $p_1 \circ p_2 = p_2 \circ p_1$.

Finally, assume $p_1 \circ p_2 = p_2 \circ p_1$. For any $v \in V$, $p_1(v) \in L_1$ and $p_2(v) \in L_2$. So $p_2(p_1(v)) \in L_1$ and $p_1(p_2(v)) \in L_2$. But since the two are equal, they must lie in $L_1 \cap L_2$. Now assume $v \in V$, $w \in L_1 \cap L_2$. Then we calculate:

$$\langle v - p_1(p_2(v)), w \rangle = \langle v, w \rangle - \langle p_1(p_2((v)), w \rangle = \langle v, w \rangle - \langle v, p_2(p_1(w)) \rangle$$
 (5.11)

In the last step, we repeated used the symmetry of the p's. Now, since $p_2(p_1(w)) \in L_1 \cap L_2$ it is simply w and we get:

$$\langle v - p_1(p_2(v)), w \rangle = \langle v, w \rangle - \langle v, w \rangle = 0$$
 (5.12)

This shows that $p_1 \circ p_2$ is the orthogonal projection operator on $L_1 \cap L_2$, and therefore equal to p_0 .

6 Projections on sums of subspaces

Recall, that if L_1 and L_2 are both subspaces of the vector space V, we can form a new subspace as follows:

$$L_1 + L_2 = \{v_1 + v_2 | v_1 \in L_1, v_2 \in L_2\}$$

$$(6.1)$$

We now wish to consider orthogonal projections on such spaces. It will turn out that we can only express it in terms of the orthogonal projection operators of L_1 and L_2 in certain cases.

Theorem 6.1. Let V be a finite dimensional vector space with inner product $\langle \cdot, \cdot \rangle$. Let L_1 and L_2 be subspaces of V with associated orthogonal projection operators p_1 and p_2 . If L_1 and L_2 are orthogonal then:

$$dim(L_1 + l_2) = dim(L_1) + dim(L_2)$$
(6.2)

And the orthogonal projection on $L_1 + L_2$ is:

$$p_{1+2} = p_1 + p_2 \tag{6.3}$$

Furthermore:

$$\forall v \in V: ||p_{1+2}v||^2 = ||p_1v||^2 + ||p_2v||^2$$
(6.4)

Proof. The dimensionality follows trivially from the orthogonality, since the union of a basis for L_1 and L_2 respectively will be a basis for the sum.

Let $v \in V$. Since $p_1v \in L_1$ and $p_2v \in L_2$, it follows that $(p_1 + p_2)(v) \in L_1 + L_2$. If $w \in L_1 + L_2$ we can decompose it as $w = w_1 + w_2$, where $w_1 \in L_1$ and $w_2 \in L_2$. Now calculate:

$$\langle v - (p_1 + p_2)(v), w \rangle = \langle v - p_1 v - p_2 v, w_1 + w_2 \rangle =$$

$$(6.5)$$

$$\langle v - p_1 v - p_2 v, w_1 \rangle + \langle v - p_1 v - p_2 v, w_2 \rangle = (6.6)$$

$$\langle v - p_1 v, w_1 \rangle - \langle p_2 v, w_1 \rangle + \tag{6.7}$$

$$\langle v - p_2 v, w_2 \rangle - \langle p_1 v, w_2 \rangle \tag{6.8}$$

Because p_1 and p_2 are projection operators, the first term on each line is zero by definition. And because L_1 and L_2 are orthogonal, so are the other two terms. So the total is zero, which proves that $p_1 + p_2$ is the orthogonal projection operator of $L_1 + L_2$.

Finally, the norm relation follows directly from Pythagoras' theorem. \Box

We will now extend this result to the case where L_1 and L_2 are geometrically orthogonal rather than strictly so. To do so we need a result about sums of such subspaces:

Theorem 6.2. Let V be a finite dimensional vector space with inner product $\langle \cdot, \cdot \rangle$. Let L_1 and L_2 be geometrically orthogonal subspaces of V. Then $L_0 = L_1 \cap L_2$ is orthogonal to both $L_1 \ominus L_0$ and $L_1 \ominus L_0$. In addition:

$$L_1 + L_2 = L_1 \ominus L_0 + L_2 \ominus L_0 + L_0 \tag{6.9}$$

Proof. Remember that $L_1 \ominus L_0 = L_1 \cap L_0^{\perp}$. Hence any vector $v \in L_1 \ominus L_0$ is also in L_0^{\perp} . And so is orthogonal to L_0 . Similarly for $L_2 \ominus L_0$.

Now, let $B_0 = \{e_1, e_2, \dots, e_{n_0}\}$ be as basis for L_0 . Since $L_1 \subseteq L_0$ we can expand this into a basis for L_1 : $B_1 = B_0 \cup \{e_{n_0+1}, \dots, e_{n_1}\}$. Now, the basis for $L_1 \ominus L_0$ must then be $\{e_{n_0+1}, \dots, e_{n_1}\}$. Similarly, we can construct a basis $B_2 = B_0 \cup \{f_{n_0+1}, \dots, f_{n_2}\}$ for L_2 , which leads to the basis $\{f_{n_0+1}, \dots, f_{n_1}\}$ for $L_1 \ominus L_0$. Now consider the sum:

$$L_1 \ominus L_0 + L_2 \ominus L_0 + L_0 \tag{6.10}$$

This is spanned by $\{e_{n_0+1}, \dots, e_{n_1}\} \cup \{f_{n_0+1}, \dots, f_{n_2}\} \cup B_0 = B_1 \cup B_2$. Which means that it is exactly equal to $L_1 + L_2$.

Theorem 6.3. Let V be a finite dimensional vector space with inner product $\langle \cdot, \cdot \rangle$. Let L_1 and L_2 be subspaces of V with associated orthogonal projection operators p_1 and p_2 . If L_1 and L_2 are geometrically orthogonal the orthogonal projection on the sum space is:

$$p_{1+2} = p_1 + p_2 - p_1 \circ p_2 \tag{6.11}$$

Furthermore:

$$\forall v \in V: ||p_{1+2}v||^2 = ||p_1v||^2 + ||p_2v||^2 - ||p_1 \circ p_2v||^2$$
 (6.12)

Note: With the notation from theorem 5.1 we could also write these equations as:

$$p_{1+2} = p_1 + p_2 - p_0, \quad ||p_{1+2}v||^2 = ||p_1v||^2 + ||p_2v||^2 - ||p_0v||^2$$
 (6.13)

Proof. Since $L_1 \perp_G L_2$, we know from theorem 5.1 that $L_1 \ominus L_0$ and $L_2 \ominus L_0$, where $L_0 = L_1 \cap L_2$, are (properly) orthogonal. And L_0 is orthogonal to both according to theorem 6.2, which also states that:

$$L_1 + L_2 = (L_1 \ominus L_0) + (L_2 \ominus L_0) + L_0 \tag{6.14}$$

According to theorem 6.1 we can now find the projection operator as:

$$p_{1+2} = (p_1 - p_0) + (p_2 - p_0) + p_0 = p_1 + p_2 - p_0$$

$$(6.15)$$

The norm identity from the same theorem now states:

$$||p_{1+2}v||^2 = ||(p_1 - p_0)v||^2 + ||(p_2 - p_0)v||^2 + ||p_0v||^2$$
(6.16)

Consider the first term:

$$||p_1v - p_0v||^2 = ||p_1v||^2 + ||p_0v||^2 - 2\langle p_1v, p_0v\rangle$$
(6.17)

We can rewrite the inner product using the symmetry of projections, theorem 3.2, and the idempotency of p_0 :

$$\langle p_1 v, p_0 v \rangle = \langle v, p_1 \circ p_0 v \rangle =$$
 (6.18)

$$\langle v, p_0 v \rangle = \tag{6.19}$$

$$\langle v, p_0 \circ p_0 v \rangle = \tag{6.20}$$

$$\langle p_0 v, p_0 v \rangle = ||p_0 v|| \tag{6.21}$$

(6.22)

This means that:

$$||p_1v - p_0v||^2 = ||p_1v||^2 - ||p_0v||^2$$
(6.23)

Similarly:

$$||p_2v - p_0v||^2 = ||p_2v||^2 - ||p_0v||^2$$
(6.24)

Now equation 6.16 becomes:

$$||p_{1+2}v||^2 = ||p_1v||^2 - ||p_0v||^2 + ||p_2v||^2 - ||p_0v||^2 + ||p_0v||^2$$

$$||p_1v||^2 + ||p_2v||^2 - ||p_0v||^2$$
(6.25)
$$(6.26)$$

$$||p_1v||^2 + ||p_2v||^2 - ||p_0v||^2 (6.26)$$