Data Scientist Role Play:

Profiling and Analyzing the Yelp Dataset Coursera Worksheet This is a 2-part assignment. In the first part, you are asked a series of questions that will help you profile and understand the data just like a data scientist would. For this first part of the assignment, you will be assessed both on the correctness of your findings, as well as the code you used to arrive at your answer. You will be graded on how easy your code is to read, so remember to use proper formatting and comments where necessary. In the second part of the assignment, you are asked to come up with your own inferences and analysis of the data for a particular research question you want to answer. You will be required to prepare the dataset for the analysis you choose to do. As with the first part, you will be graded, in part, on how easy your code is to read, so use proper formatting and comments to illustrate and communicate your intent as required. For both parts of this assignment, use this "worksheet." It provides all the questions you are being asked, and your job will be to transfer your answers and SQL coding where indicated into this worksheet so that your peers can review your work. You should be able to use any Text Editor (Windows Notepad, Apple TextEdit, Notepad ++, Sublime Text, etc.) to copy and paste your answers. If you are going to use Word or some other page layout application, just be careful to make sure your answers and code are lined appropriately. In this case, you may want to save as a PDF to ensure your formatting remains intact for you reviewer.

Part 1:

Yelp Dataset Profiling and Understanding

1. Profile the data by finding the total number of records for each of the tables below:

table_name	COUNT (*)
Attribute	10000
Business	10000
Category	10000

Checkin	10000
elite_years	10000
friend	10000
hours	10000
photo	10000
Review	10000
tip	10000
user	10000

SQL:

SELECT COUNT(*) FROM <table_name>

2. Find the total distinct records by either the foreign key or primary key for each table. If two foreign keys are listed in the table, please specify which foreign key.

table_name	column_name	records
Business	id	10000
Hours	Business_id	1562
Category	Business_id	2643
Attribute	Business_id	1115
Review	id	10000
	Business_id	8090
	user_id	9581
Checkin	Business_id	493
Photo	Business_id	6493
	Id	10000
Tip	User_id	537
	Business_id	3979
User	Id	10000
Friend	User_id	11
Elite_years	User_id	2780

SQL:

SELECT COUNT(DISTINCT(<column_name>)) FROM <table_name>

Note: Primary Keys are denoted in the ER-Diagram with a yellow key icon.

3. Are there any columns with null values in the Users table?

Answer: no

SQL code used to arrive at answer:

SELECT COUNT(*)

FROM USER

WHERE id is null OR name is null OR review_count is null OR yelping since is null OR

 $useful \ is \ null \ OR \ funny \ is \ null \ OR \ cool \ is \ null \ OR \\ fans \ is \ null \ OR$

average_stars is null OR compliment_hot is null OR
compliment more is null OR

compliment_profile is null OR compliment_cute is null
OR compliment list is null OR

compliment_note is null OR compliment_plain is null
OR compliment cool is null OR

compliment_funny is null OR compliment_writer is null
OR compliment photos is null;

- 4. For each table and column listed below, display the smallest (minimum), largest (maximum), and average (mean) value for the following fields:
 - i. Table: Review, Column: Stars min: max: avg: a.min: 1 max: 5 avg: 3.7082
 - ii. Table: Business, Column: Stars min: max: avg: a.min: 1.0 max: 5.0 avg: 3.6549
 - iii. Table: Tip, Column: Likes min: max: avg: a.min: 0 max: 2 avg: 0.0144

 - v. Table: User, Column: Review_count min: max: avg: a.min: 0 max: 2000 avg: 24.2995

SQL:

```
SELECT MIN(<column_name>), MAX(<column_name>),
AVG(<column_name>)
FROM ;
```

5. List the cities with the most reviews in descending order:

```
SQL code used to arrive at answer:

SELECT b.city, SUM(b.review_count) as review_total

FROM Business b

GROUP BY b.city

ORDER BY review count DESC;
```

Copy and Paste the Result Below:

+	+		-+
city		review_total	
Las Vega	ıs	82854	
Phoenix		34503	
Toronto	I	24113	
Scottsda	ile	20614	
Charlott	ie	12523	
Henderso	n	10871	
Tempe	I	10504	
Pittsbur	gh	9798	
Montréal	.	9448	
Chandler	:	8112	
Mesa	I	6875	
Gilbert	I	6380	
Clevelar	nd	5593	
Madison	I	5265	
Glendale	;	4406	
Mississa	iuga	3814	
Edinburg	ſh	2792	
Peoria	I	2624	
North La	ıs Vegas	2438	
Markham	I	2352	
Champaig	ın	2029	
Stuttgar	t	1849	
Surprise	,	1520	
Lakewood	l	1465	-

- 6. Find the distribution of star ratings to the business in the following cities:
 - i. Avon SQL code used to arrive at answer: SQL code used to arrive at answer:

```
SELECT b.stars, COUNT(review_count) as count
FROM business b
WHERE b.city == 'Avon'
GROUP BY b.stars
ORDER BY b.stars DESC;
```

Copy and Paste the Resulting Table Below (2 columns $\hat{a} \in \mathbb{N}$ star rating and count):

+		+		+
-	stars		count	
+		+		+
	5.0		1	
	4.5		1	
	4.0		2	
	3.5		3	
	2.5		2	
	1.5		1	
+		+		+

ii. Beachwood SQL code used to arrive at answer:

```
SELECT b.stars, COUNT(review_count) as count

FROM business b

WHERE b.city == 'Beachwood'

GROUP BY b.stars

ORDER BY b.stars DESC;
```

Copy and Paste the Resulting Table Below (2 columns $\hat{a} \in \mathbb{N}$ star rating and count):

+----+

1	stars		count	
+		+-		+
- 1	5.0	1	5	
- 1	4.5		2	
- 1	4.0		1	
- 1	3.5		2	
- 1	3.0		2	
- 1	2.5		1	
- 1	2.0		1	
+	+-		+	

7. Find the top 3 users based on their total number of reviews: SQL code used to arrive at answer:

```
SELECT id, name, review_count
FROM user
ORDER BY review_count DESC
LIMIT 3;
```

Copy and Paste the Result Below:

+	+	+
name	re	view count
+	+	+
Gera	ld	2000
Sara		1629
Yuri		1339
+	+	

8. Does posing more reviews correlate with more fans?

SQL:

```
SELECT name, review_count, fans, strftime('%Y-%m-%d',
yelping_since) Since
FROM user
ORDER BY fans DESC;
```

Please explain your findings and interpretation of the results:

It's not correlated. Because Amy has 503 fans and only 609 reviews, while Gerald has only 253 fans and has 2000 reviews. Gerald has a little bit more than 50% fans and 328% more of reviews than Amy.

	·	+	+
name 	review_count 	fans +	Since +
Amy	609	503	2007-07-19
Mimi	968	497	2011-03-30
Harald	1153	311	2012-11-27
Gerald	2000	253	2012-12-16
Christine	930	173	2009-07-08
Lisa	813	159	2009-10-05
Cat	377	133	2009-02-05
William	1215	126	2015-02-19
Fran	862	124	2012-04-05
Lissa	834	120	2007-08-14
Mark	861	115	2009-05-31
Tiffany	408	111	2008-10-28
bernice	255	105	2007-08-29
Roanna	1039	104	2006-03-28
Angela	694	101	2010-10-01
.Hon	1246	101	2006-07-19
Ben	307	96	2007-03-10
Linda	584	89	2005-08-07
Christina	842	85	2012-10-08
Jessica	220	84	2009-01-12
Greg	408	81	2008-02-16
Nieves	178	80	2013-07-08
Sui	754	78	2009-09-07
Yuri	1339	76	2008-01-03
Nicole	161	73	2009-04-30
		+	+

(Output limit exceeded, 25 of 10000 total rows shown)

9. Are there more reviews with the word "love" or with the word "hate" in them?

Answer: Yes, there are 1780 reviews with the word 'love' and 232 with the word 'hate'.

```
Answer: SQL code used to arrive at answer:
  SELECT COUNT (id)
  FROM review
  WHERE UPPER (TEXT) LIKE '%LOVE%';
Result: 1780
  SELECT COUNT (id)
  FROM review
  WHERE UPPER (TEXT) LIKE '%HATE%';
Result: 232
10. Find the top 10 users with the most fans: SQL code
used to arrive at answer:
SELECT name, fans, strftime('%Y-%m-%d', yelping since)
Since
  FROM user
  ORDER BY fans DESC
  LIMIT 10;
Copy and Paste the Result Below:
+----+
| name | fans | Since
+----+
       | 503 | 2007-07-19 |
| Amy
| Gerald | 253 | 2012-12-16 |
| Christine | 173 | 2009-07-08 |
| Lisa | 159 | 2009-10-05 |
| Cat | 133 | 2009-02-05 |
| William | 126 | 2015-02-19 |
| Fran | 124 | 2012-04-05 |
| Lissa | 120 | 2007-08-14 |
```

Part 2:

Inferences and Analysis 1.

Pick one city and category of your choice and group the businesses in that city or category by their overall star rating. Compare the businesses with 2-3 stars to the businesses with 4-5 stars and answer the following questions.

I am choosing: City: Toronto and Category: Restaurants.

Include your code.

SQL To pick the city and category with more choices:
Select b.city, category, COUNT(b.id) total
FROM Business b
INNER JOIN category c ON b.id = c.business_id
GROUP BY b.city, c.category
HAVING COUNT(b.id) > 4;

Result:

+-		-+-		-+-		+
	-		category		total	
+-		-+-		-+-		+
	Phoenix		Restaurants		6	
	Toronto		Restaurants		10	
+-						

i. Do the two groups you chose to analyze have a different distribution of hours?

Yes. The 2-3 starts opens 7days/week and start their shift earlier than the 4-5 stars. The 5 stars beside opening late, they open 5 days/week.

ii. Do the two groups you chose to analyze have a different number of reviews?

Yes. The group with 4-5 stars (89 reviews) have almost double of reviews compared with the 2-3 stars restaurants with most reviews (47 reviews) and 1000% more reviews with the restaurants with less reviews (5).

iii. Are you able to infer anything from the location data provided between these two groups? Explain. No. They are in different neighbourhood and different and forward sortation area (FSA), FSA the 3 first letters of postal code. SQL code used for analysis: SELECT b.city, category, h.hours, b.review count, CASEWHEN stars BETWEEN 2 and 3 THEN '2-3 stars' WHEN stars BETWEEN 4 and 5 THEN '4-5 stars' END AS stars group, CASEWHEN UPPER (hours) LIKE 'SMONDAYS' THEN 'Monday' WHEN UPPER (hours) LIKE '%TUESDAY%' THEN 'Tuesday' WHEN UPPER (hours) LIKE '%WEDNESDAY%' THEN 'Wednesdav' WHEN UPPER (hours) LIKE '%THURSDAY%' THEN 'Thursday' WHEN UPPER (hours) LIKE '%FRIDAY%' THEN 'Friday' WHEN UPPER (hours) LIKE '%SATURDAY%' THEN 'Saturday' WHEN UPPER (hours) LIKE '%SUNDAY%' THEN 'Sunday' END AS week day, b.neighborhood, b.address, b.postal code FROM Business b INNER JOIN category c ON b.id = c.business id INNER JOIN hours h ON b.id = h.business id WHERE b.city = 'Toronto' and c.category = 'Restaurants' AND b.stars IN (2,3,4,5) GROUP BY b.id, h.hours ORDER BY stars group, week day; +-----

```
+----
_____
| Toronto | Restaurants | Friday|10:30-21:00
47 | 2-3 stars | Friday | Downtown Core
| 260 Yonge Street | M4B 2L9
| Toronto | Restaurants | Friday | 9:00-4:00
34 | 2-3 stars | Friday | Entertainment
District | 270 Adelaide Street W | M5H 1X6
| Toronto | Restaurants | Friday | 11:00-23:00
5 | 2-3 stars | Friday | Downtown Core
| 389 Church Street | M5B 2E5
| Toronto | Restaurants | Monday | 10:30-21:00
47 | 2-3 stars | Monday | Downtown Core
| 260 Yonge Street | M4B 2L9
| Toronto | Restaurants | Monday | 9:00-23:00
34 | 2-3 stars | Monday | Entertainment
District | 270 Adelaide Street W | M5H 1X6
| Toronto | Restaurants | Monday | 11:00-23:00
5 | 2-3 stars | Monday | Downtown Core
| 389 Church Street | M5B 2E5
| Toronto | Restaurants | Saturday | 10:30-21:00
47 | 2-3 stars | Saturday | Downtown Core
| 260 Yonge Street | M4B 2L9
| Toronto | Restaurants | Saturday | 10:00-4:00
34 | 2-3 stars | Saturday | Entertainment
District | 270 Adelaide Street W | M5H 1X6
| Toronto | Restaurants | Saturday | 11:00-23:00
5 | 2-3 stars | Saturday | Downtown Core
| 389 Church Street | M5B 2E5
| Toronto | Restaurants | Sunday | 11:00-19:00
47 | 2-3 stars | Sunday | Downtown Core
| 260 Yonge Street | M4B 2L9
| Toronto | Restaurants | Sunday | 10:00-23:00
34 | 2-3 stars | Sunday | Entertainment
District | 270 Adelaide Street W | M5H 1X6
| Toronto | Restaurants | Sunday | 11:00-23:00
5 | 2-3 stars | Sunday | Downtown Core
| 389 Church Street | M5B 2E5
| Toronto | Restaurants | Thursday|10:30-21:00
47 | 2-3 stars | Thursday | Downtown Core
```

```
| Toronto | Restaurants | Thursday|9:00-23:00
34 | 2-3 stars | Thursday | Entertainment
District | 270 Adelaide Street W | M5H 1X6
| Toronto | Restaurants | Thursday|11:00-23:00
5 | 2-3 stars | Thursday | Downtown Core
| 389 Church Street | M5B 2E5
| Toronto | Restaurants | Tuesday|10:30-21:00
47 | 2-3 stars | Tuesday | Downtown Core
| 260 Yonge Street
                 | M4B 2L9
| Toronto | Restaurants | Tuesday | 9:00-23:00
34 | 2-3 stars | Tuesday | Entertainment
District | 270 Adelaide Street W | M5H 1X6
| Toronto | Restaurants | Tuesday | 11:00-23:00
5 | 2-3 stars | Tuesday | Downtown Core
| 389 Church Street | M5B 2E5
| Toronto | Restaurants | Wednesday | 10:30-21:00 |
47 | 2-3 stars | Wednesday | Downtown Core
| 260 Yonge Street | M4B 2L9
| Toronto | Restaurants | Wednesday | 9:00-23:00
34 | 2-3 stars | Wednesday | Entertainment
District | 270 Adelaide Street W | M5H 1X6
| Toronto | Restaurants | Wednesday | 11:00-23:00 |
5 | 2-3 stars | Wednesday | Downtown Core
| 389 Church Street | M5B 2E5
| Toronto | Restaurants | Friday|18:00-23:00
89 | 4-5 stars | Friday | Niagara
| 169 Niagara Street | M5V
| Toronto | Restaurants | Saturday | 18:00-23:00
89 | 4-5 stars | Saturday | Niagara
| 169 Niagara Street | M5V
| Toronto | Restaurants | Sunday | 12:00-16:00
89 | 4-5 stars | Sunday | Niagara
| 169 Niagara Street | M5V |
| Toronto | Restaurants | Thursday | 18:00-23:00
89 | 4-5 stars | Thursday | Niagara
| 169 Niagara Street | M5V
+-----
   -----
  -----+
(Output limit exceeded, 25 of 26 total rows shown)
```

2. Group business based on the ones that are open and the ones that are closed. What differences can you find between the ones that are still open and the ones that are closed? List at least two differences and the SQL code you used to arrive at your answer.

i. Difference 1:

The opened business have average stars and average funny bigger than the closed ones.

ii. Difference 2:

Closed business have average useful and cool greater than opened ones.

SQL code used for analysis:

```
SELECT
CASE WHEN b.is open = 0 THEN 'Closed'
ELSE 'Open'
END AS 'Is Open?', count (b.is open) AS 'Qty',
SUM(review count) AS 'Qty Reviews',
AVG(review count) AS 'AVG Reviews',
AVG(r.stars) AS 'AVG stars', AVG(r.useful),
AVG(r.funny), AVG(r.cool)
FROM business b
INNER JOIN review r ON b.id = r.business id
GROUP BY b.is open;
+-----
-----
----+
| Is Open? | Qty | Qty Reviews | AVG Reviews |
AVG stars | AVG(r.useful) | AVG(r.funny) |
AVG(r.cool)
+-----
-----
----+
```

- 3. For this last part of your analysis, you are going to choose the type of analysis you want to conduct on the Yelp dataset and are going to prepare the data for analysis. Ideas for analysis include: Parsing out keywords and business attributes for sentiment analysis, clustering businesses to find commonalities or anomalies between them, predicting the overall star rating for a business, predicting the number of fans a user will have, and so on. These are just a few examples to get you started, so feel free to be creative and come up with your own problem you want to solve. Provide answers, in-line, to all of the following:
- i. Indicate the type of analysis you chose to do: How the users are engaged with number of fans, review count and other attributes.
- ii. Write 1-2 brief paragraphs on the type of data you will need for your analysis and why you chose that data:

The users with most fans are not related with the numbers of review_count or how many times the user votes: useful, funny or cool or how many years as Yelp's user.

Sometimes the engagement of one user is coming from other platforms or the user is engaged in other

activities or way that it is not transparent with the data collected here at Yelp dataset.

iii. Output of your finished dataset: iv. Provide the SQL code you used to create your final dataset:

```
SELECT u.name
      ,u.fans
       ,u.review count
      ,(2017 - strftime('%Y', u.yelping since)) AS
Years at Yelp
      ,u.useful
      ,u.funny
      ,u.cool
      ,u.average stars
FROM user u
ORDER BY u.fans DESC, u.review count DESC;
+-----+----+
---+----
I name I fans I review_count I Years_at_Yelp I useful I funny I
cool | average_stars |
+-----
---+----
I Amy
         l 503 l
                      609 I
                                   10 | 3226 |
                                               2554 I
2751 I
           3.21 l
                                   6 l 257 l
l Mimi
         l 497 l
                      968 I
                                                138 I
159 I
           4.05 l
| Harald
         | 311 |
                      1153 l
                                    5 | 122921 | 122419 |
              4.4
122890 I
                      2000 l
           253 l
                                    5 | 17524 |
                                               2324 I
| Gerald
15008 I
             3.6
                                    8 | 4834 | 6646 |
| Christine |
           173 l
                      930 I
           3.69 l
4321 I
                                    8 |
                                          48 l
l Lisa
        l 159 l
                      813 I
                                                 13 l
6 I
         4.09 l
l Cat
        l 133 l
                      377 I
                                    8 | 1062 |
                                                672 I
           3.99 I
1076 I
| William
        l 126 l
                      1215 I
                                    2 | 9363 |
                                               9361 I
9370 I
           4.41 l
                                    5 | 9851 |
         l 124 l
                      862 I
                                               7606 I
l Fran
```

9344

4.1

Lissa	1	120	834	I	10	I	455	I	150	1
342 Mark		3.68 115	861	I	8	I	4008	I	570	1
2765 Tiffany	I		408	I	9	I	1366	I	984	I
1279 bernice		4.09 105	255	I	10	I	120	I	112	1
109		3.95	1020		11		2005		1100	1
l Roanna 636 l	I	104 3.71	1039	ı	11	I	2995	ı	1188	I
.Hon 5104	I	101 3.14	1246	I	11	I	7850	I	5851	1
Angela		101	694	1	7	I	158	I	164	1
105 Ben	I	3.89 l 96 l	307	1	10	I	1180		1155	1
1143 Linda	ı	3.7 l 89 l	584	ı	12	Ι	3177	ı	2736	I
3019 I		4.06 l								
Christina 102		85 4.1	842	I	5	I	158	ı	34	I
Jessica 2067		84 4.1	220	I	8	I	2161		2091	1
l Greg	I	81 I	408	I	9	I	820	1	753	1
746 Nieves	I	3.67 l 80 l	178	I	4	I	1091	I	774	1
940		3.64	75.4		0		0		10	
l Sui 2 l		78 l 3.62 l	754	I	8	I	9	ı	18	I
l Yuri 561 l		76 4.11	1339	I	9		1166	I	220	1
Nicole		73 l	161	I	8	I	13	1	10	1
6 l +				-+		-+		-+-		+
+		+			otal nows sho					

(Output limit exceeded, 25 of 10000 total rows shown)