

Efficient Learning of Safe Driving Policy via Human-Al Copilot Optimization

Quanyi Li^{1*}, Zhenghao Peng^{2*}, Bolei Zhou³

¹Centre for Perceptual and Interactive Intelligence, ²The Chinese University of Hong Kong, ³University of California, Los Angeles * indicates joint first author

Human-in-the-loop RL

 $a_{m h} \sim \pi_{m h}$ Human policy $a_{m n} \sim \pi_{m n}$ Learner policy \hat{a} Behavior action

We authorize human expert to take over or intervene, when Reinforcement Learning (RL) agents are in training. This paradigm is referred as **Human-in-the loop RL**.

When training with the learner policy, human's duties are:

- 1. Protecting the agent as a guardian
- 2. Teaching the agent by providing demonstration

Human-Al-Copilot Optimization (HACO)

1. Learning from Demonstration

HACO learns from human-provided demonstrations by applying CQL loss to train proxy value function:

$$\min_{\phi} \mathbb{E}[I(s, a_n)(Q(s, a_n; \phi) - Q(s, a_h; \phi))]$$

which is updated through the TD-target.

2. Intervention Minimization

To minimize intervention, HACO additionally learns a intervention cost value function to estimate expected accumulative intervention cost:

$$Q^{I}(s, a_n) = C(s, a_n) + \gamma \mathbb{E}_{a' \sim \pi_n(\cdot | s')}[Q^{I}(s', a')]$$

The intervention cost is calculated by cosine similarity:

$$C(s, a_n) = 1 - \frac{a_n a_h}{||a_n|| ||a_h||}, \ a_h \sim \pi_h(\cdot |s)$$

3. Policy Optimization

The policy optimization goal is to maximize proxy value and minimize the intervention cost:

$$\max_{\theta} \mathbb{E}[Q(s, a_n) - Q^I(s, a_n)], \quad a_n \sim \pi_n(\cdot | s; \theta)$$

Experiment Results

MetaDrive Safe RL Environment

We evaluate HACO on safe RL suite of MetaDrive:

Comparison with RL baselines

		Total Training	Training	Test	Test Safety	Test
Category	Method	Safety Violation	Data Usage	Return	Violation	Success Rate
RL	SAC-RS	$2.76K \pm 0.95K$	1 M	386.77 ±35.1	0.73 ± 1.18	0.82 ± 0.18
	PPO-RS	$24.34K~\pm 3.56K$	1 M	335.39 ± 12.41	3.41 ± 1.11	$0.69{\scriptstyle\pm0.08}$
Safe RL	SAC-Lag	$1.84 ext{K} \pm 0.49 ext{K}$	1 M	351.96 ±101.88	0.72 ±0.49	0.73 ± 0.29
	PPO-Lag	$11.64K \pm 4.16K$	1 M	299.99 ± 49.46	1.18 ± 0.83	0.51 ± 0.17
	CPO	$4.36K \pm 2.22K$	1 M	194.06 ± 108.86	1.71 ± 1.02	0.21 ± 0.29
Ours	HACO	30.14 ± 11.36	30K *	349.25 ± 11.45	0.79 ± 0.31	0.83 ± 0.04

Comparison with IL/Offline RL, CARLA Experiments and videos is availabe at: https://decisionforce.github.io/HACO/