Вычислительный центр им. А.А. Дородницына Федерального исследовательского центра «Информатика и управление» Российской академии наук

Представление на соискание учёной степени кандидата физико-математических наук по специальности 05.13.17 Теоретические основы информатики

Мезоскопическое моделирование транспортных потоков и управление въездами на основе данных из разнородных источников

Выступающий: В. М. Старожилец Руководитель: к. ф., м. н. Ю. В. Чехович

Москва, 2022

Положения, выносимые на защиту

- Мезоскопическая математическая модель транспортных потоков на основе групп АТС с использованием фундаментальной диаграммы поток-плотность для расчёта скорости групп на основе комплексированных данных
- Алгоритм комплексирования данных
- Результаты вычислительного эксперимента по адаптивному управлению въездами на МКАД на основе созданной мезоскопической модели

Содержание

Введение

Актуальность задач моделирования транспортных потоков Моделирование транспортных потоков Мотивация

2 Математическая модель

Транспортная сеть Свойства группы АТС Процедура расчёта

- 3 Фундаментальная диаграмма потока
- 4 Комплексирование данных

Комплексирование данных

Необходимость комплексирования данных

Функциональная зависимость реального числа ATC от трекового Преобразование скорости

5 Вычислительные эксперименты

Проверка работоспособности модели

Моделирование МКАД Обычные въезды

Длинные въезды

Моделирование МКАД с вычислением всех фундаментальных

Актуальность задач моделирования транспортных потоков

Задачи решаемые с помощью моделирования:

- Принятие решений о необходимости прокладывания дополнительных дорог, изменения структуры дорожных перекрестков.
- Настройка работы светофоров в том числе координированное управлением ими.
- Обративное управление въездами на автомагистраль с целью недопустить возникновение пробок на ней.
- Оптимизация работы светофоров с целью минимизации выхлопов в окружающую среду.

Подходы к моделированию транспортных потоков

Два подхода к моделированию:

- Макроскопические модели нелинейные системы гиперболических уравнений для плотности и скорости потока.
- Микроскопические модели ускорение каждого автомобиля это функция скорости, расстояния до впереди идущего автомобиля (лидера) и скорости лидера.

Типичные пробки на МКАД

Рис.: Типичные пробки по понедельникам в 18:15 на основе статистики сервиса «Яндекс-пробки» транспортной сети Москвы и МКАД, в частности по состоянию на 16.05.21.

Мотивация к данной работе

- Планы ЦОДД по управляемому въезду на МКАД,
- Микроскопические модели вычислительно тяжёлые,
- Макроскопическим моделям возможно не хватает точности;

Компромисс — рассматривать вместо движения каждого отдельного автомобильно-транспортного средства (АТС) движение их групп.

Математическая модель

Транспортная сеть

Транспортная сеть представляет собой связный ориентированный граф ${f G}=({f V},{f E})$, где ${f V}$ - множество вершин, ${f E}=\{(i,j)\}$ - множество ветвей графа.

Ограничения накладываемые на граф:

- $\min(d(i)) = 1$,
- $\max(d(i)) = 3$,
- $\forall i: d(i) > 1 \rightarrow \exists j, l \in \mathbf{V}: (j, i), (i, l) \in \mathbf{E};$

Свойства группы АТС

Свойства группы АТС на ветви (i, j) : $\mathbf{A}_k^t = \{ \operatorname{Pos}_k, V_k, N_k \}$:

- $\mathbf{1} \; \mathrm{Pos}_k$ позиция начала группы относительно начала ветви на которой она расположена,
- $\mathbf{2}\ V_k$ скорость группы АТС,
- $oldsymbol{3}\ N_k$ размер группы ATC из $\mathbb{R}_{\geq 0}=\mathbb{R}_+$;

Пусть теперь $\mathbf{A}_{i,j}^t = \{\mathbf{A}_k^t\}$ — упорядоченное множество автомобильных групп на ветви (i,j).

Состояние системы в момент времени t

$$\mathbf{A}^t = \{\mathbf{A}_{i,j}^t\} \cup \{A_{\mathsf{out},i,j}^t\}$$

Расчёт характеристик группы АТС

- Скорость группы рассчитывается на основе плотности автомобилей на ветви автомагистрали и фундаментальной диаграммы поток-плотность.
- 2) Длинна группы АТС считается линейно зависящей от ее скорости по формуле $L = L_{
 m avg} + a \cdot V$.

Необходимые алгоритмы

- Движение групп АТС по ветви,
- Объединение двух групп АТС,
- Перемещение групп АТС между ветвями,
- Расчёта потенциала трансфера между ветвями;

Расчётный цикл

- Генерируем АТС всеми источниками в модели.
- Движение групп АТС на всех сегментах автомагистрали в порядке удалённости от конца магистрали.
- **3** Очистка всех сегментов-стоков в модели от транспортных средств. Возврат к п.1.

Фундаментальная диаграмма

потока

Три фазы Кернера

- **1** Свободный поток $Q(\rho) = \alpha_2 \rho^2 + \alpha_1 \rho, \ 0 \le \rho \le \rho_1$,
- **2** Синхронизованный поток $Q(\rho) = \beta_2 \rho^2 + \beta_1 \rho + \beta_0, \ \rho_1 \le \rho \le \rho_2$,
- **3** Заторный поток $Q(\rho) = c_*(\rho_* \rho), \, \rho_1 \le \rho \le \rho_*;$

Kerner, B. S. Introduction to modern traffic flow theory and control [Tekct]. T. 700 / B. S. Kerner. — Springer, 2009.

Пример фундаментальных диаграмм

Рис.: Фундаментальные диаграммы для двух разных участков МКАД. Слева для данных со второй полосы (детектор № 1), справа с пятой полосы (детектор №2)

Расчет скорости волны торможения

Рис.: Нахождение значений скорости волн торможения на пространственно-временной структуре значений скорости транспортного потока на внешней стороне МКАД

Итоговая скорость волны торможения равна -15.8 км/ч.

Необходимость комплексирования данных

- Дорожные датчики относительно точны, но не покрывают всю транспортную сеть.
- GPS-треки имеют низкую точность, но покрывают большой объём транспортной сети.

Функциональная зависимость реального числа АТС от трекового

$$N_{\text{real}} = a_0 + a_1 N_{\text{track}} + a_2 \log (N_{\text{track}}) + a_3 V + a_4 N_{\text{track}} / V$$

В. М. Старожилец, ВЦ РАН

Москва, 2022

Преобразование скорости

$$V_{\rm est} = 12.34 + 0.639 V_{\rm track}$$

 \mathbf{I}

17

			V _{est}	V track	
	Среднеквадратич	ная ошибі	ka 0.03	0.042	
0.35		0.5			
0.3	1.	0.45	M		
0.25		6.8		I	
0.2		0.3			
0.25		Vardes 0.2	N M		— Outsctor — Yardex
0.1	Tomando Was	0.25			
0.05	MA OSAMAN CONTRACTOR	0.1	Many	Markeymor	
0 00.02.12 0:00	H82114-88 H82119-28 H622119-29 H622119-21 D22219-39 1702121-44	10.02.12.000 10.02.1	24	BRUIRU URURAN URUK	

Рис.: Восстановленные значения плотности АТС с (слева) и без (справа) преобразования скорости

Проверка работоспособности

модели

Простая дорога

Простая дорога без перекрестков с линейно нарастающим вплоть до 150 ATC/мин потоком.

Дорога с сужением, синусоидальный поток

Пятиполосная дорога с сужением до двух полос. Входной поток — синусоида с периодом равным времени моделирования и амплитудой 85 ATC/мин.

Дорога с пропадающим сужением

Пятиполосная дороге без перекрестков с пропадающим сужением до двух полос. Входной поток 100 ATC/мин.

Пятиполосная дорога со съездом. Поток на автомагистрали 65 ATC/мин с линейно нарастающей долей съезжающих автомобилей с 20% до 60%.

Пятиполосная дорога с въездом. Поток на автомагистрали 140 ATC/мин, поток на въезде линейно растет с 20 до 50 ATC/мин.

Прямая дорога между дорожными датчиками

Рис.: График полученного с помощью модели числа съехавших АТС (красная линия) в сравнении с числом съехавших АТС зафиксированных дорожным датчиком (синяя линия) за один день. Среднеквадратичная ошибка S=18.4.

Прямая дорога между дорожными датчиками. Перекрытая полоса

Рис.: График полученного с помощью модели числа съехавших АТС (красная линия) в сравнении с числом съехавших АТС зафиксированных дорожным датчиком (синяя линия) за один день с перекрытием полосы.

Моделирование МКАД

Дорожный датчик на въезде

Рис.: Данные с дорожного датчика за один день. Пиковая нагрузка 45 ATC/мин в 8:20.

Графики загрузки двух типов въездов — с утренней и вечерней пиковыми загрузками

Число автомобилей на автомагистрали

а) Без управления въездами b) С управлением въездами Количество автомобилей на 200 метров в модели транспортной сети МКАД за день

Число въехавших автомобилей

а) Без управления въездами b) С управлением въездами Графики суммарно въехавшего на МКАД со всех въездов числа автомобилей

Временные потери на проезд по МКАД

а) Без управления въездами Временные потери на проезд по МКАД относительно пустой

b) C управлением въездами автомагистрали

Число автомобилей на автомагистрали

а) Без управления въездами b) С управлением въездами Количество автомобилей на 200 метров в модели транспортной сети МКАД за день

Число въехавших автомобилей

а) Без управления въездами Графики суммарно въехавшего на МКАД со всех въездов числа

b) C управлением въездами автомобилей

Временные потери на проезд по МКАД

а) Без управления въездами b) С управлением въездами Временные потери на проезд по МКАД относительно пустой автомагистрали

вычислением всех

фундаментальных диаграмм

Число автомобилей на автомагистрали

а) Без управления въездами b) С управлением въездами Количество автомобилей на 200 метров в модели транспортной сети МКАД за день

Число въехавших автомобилей

а) Без управления въездами b) С управлением въездами Графики суммарно въехавшего на МКАД со всех въездов числа автомобилей

Временные потери на проезд по МКАД

а) Без управления въездами b) С управлением въездами Временные потери на проезд по МКАД относительно пустой автомагистрали

Научная новизна

- Впервые была построена мезоскопическая модель на основе групп АТС с использованием фундаментальной диаграммы поток-плотность на основе комплексированных данных.
- Проведено исследование на адекватность моделирования на модельных и реальных данных.
- Было выполнено оригинальное исследование о применимости предложенной модели к адаптивному управлению выделенной автомагистрали с целью потенциального увеличения её пропускной способности.
- Предложен алгоритм комплексирования данных с дорожных датчиков и GPS-треков.

Основные публикации 1

- 1. Старожилец, В. М. Комплексирование данных из разнородных источников в задачах моделирования транспортных потоков. /. В. М. Старожилец, Ю. В. Чехович // Машинное обучение и анализ данных. 2016.
- 2. Старожилец, В. М. Об идентификации статистической модели транспортных потоков с использованием групп автомобильно-транспортных средств. /. В. М. Старожилец, Ю. В. Чехович // Машинное обучение и анализ данных. 2017.
- 3. *Старожилец, В. М.* Об одном подходе к статистическому моделированию транспортных потоков на МКАД и управлению въездами. /. В. М. Старожилец, Ю. В. Чехович // Автоматика и телемеханика. 2021.
- 4. Старожилец, В. М. Об одном подходе к статистическому моделированию транспортных потоков. /. В. М. Старожилец, Ю. В. Чехович // Журнал вычислительной математики и математической физики. 2021.

Основные публикации П

- Разработка, калибровка и верификация модели движения трафика в городских условиях. Часть І. — [Текст]. /. — А. Е. Алексеенко [и др.] // Компьютерные исследования и моделирование. — 2015. — Т. 7, № 6. — С. 1185—1203.
- 6. Adaptive traffic light control on highway entrances. [Текст]. /. A. Alekseenko [и др.] // 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). IEEE. 2017. С. 1—6.

Участие в конференциях

- 11-я Международная конференция «Интеллектуализация обработки информации», 2016;
- 18-я Всероссийская конференция с международным участием «Математические методы распознавания образов», 2017;
- 19-я Всероссийская конференция с международным участием «Математические методы распознавания образов», 2019;
- XXVII Международной конференции студентов, аспирантов и молодых учёных «Ломоносов», 2020;
- 13-я Международная конференция «Интеллектуализация обработки информации», 2020;
- XXVIII Международной конференции студентов, аспирантов и молодых учёных «Ломоносов», 2020;
- 20-я Всероссийская конференция с международным участием «Математические методы распознавания образов», 2021;

Спасибо за внимание!