Variants of squarability problem

17. listopadu 2015

In all versions let \mathcal{R} denote a set of axis-parallel rectangles in \mathbb{R}^2 and S be a mapping from \mathcal{R} to axis-parallel squares in \mathbb{R}^2 satisfying certain restrictions (note that S might not exist). Then $S(\mathcal{R})$ is a set of squares obtained from \mathcal{R} in a way specific to the particular variant and S(R) is the square representing the rectangle $R \in \mathcal{R}$. In each variant we explain the restrictions placed on the input set of rectangles \mathcal{R} and on the output set of squares $S(\mathcal{R})$.

There are four intersection types: Corner intersection, side-piercing, cross intersection and containment. We say \mathcal{R} and $S(\mathcal{R})$ are combinatorially equivalent if the intersection types are preserved and these intersection happen exactly on the same sides (and corners). For example, if $R_1, R_2 \in \mathcal{R}$ have corner intersection that is in upper left corner on R_1 and lower right corner of R_2 , the same must hold for $S(R_1)$ and $S(R_2)$.

In all the variants here, we assume that the input set \mathcal{R} contains no two rectangles with sidepiercing or cross intersections.

- 1 Preserve order of all sides. The output $S(\mathcal{R})$ has to be combinatorially equivalent to \mathcal{R} and the respective order of sides on both axes has to be preserved. On a chosen axis, we can contruct the sequence of sides of rectangles \mathcal{R} from left to right as they appear, i.e. every rectangle will appear exactly twice. Then the same sequence of sides has to be realized in $S(\mathcal{R})$.
- **2** Combinatorial equivalence. The output $S(\mathcal{R})$ has to be combinatorially equivalent.

We say that \mathcal{R} and $S(\mathcal{R})$ are order equivalent, if the cyclical order of intersecting rectangles around each rectangle is preserved in their images. Moreover, they are fixed-north-order equivalent if the sequences of sides of intersecting rectangles constructed for each rectangle by starting in the upper right corner and walking counter-clockwise around the border of the rectangle and recording every side are also preserved in their images.

- **3 Fixed north.** We require that \mathcal{R} and $S(\mathcal{R})$ are fixed-north-order equivalent.
- 4 Preserve order. We require that \mathcal{R} and $S(\mathcal{R})$ are order equivalent.
- 5 Intersection types. The output $S(\mathcal{R})$ has to keep the intersection types.

We say that \mathcal{R} and $S(\mathcal{R})$ are intersection-pattern equivalent if the following holds: $R_1 \cap R_2 \neq \emptyset$ if and only if $S(R_1) \cap S(R_2) \neq \emptyset$ for all $R_1, R_2 \in \mathcal{R}$. Note that both combinatorial equivalence and order equivalence imply intersection-pattern equivalence.

- **6 Keep intersections, forbid side-piercing.** We require intersection-pattern equivalence. Squares in the output set $S(\mathcal{R})$ must only have corner intersections or containment.
- 7 Keep intersections, allow side-piercing. We only require intersection-pattern equivalence.