Baltian tie 2004, Vilna, 7.11.2004

- 1. Epänegatiivisten kokonaislukujen jono a_1, a_2, a_3, \ldots toteuttaa ehdot
 - 1. $a_n + a_{2n} \geqslant 3n$.
 - 2. $a_{n+1} + n \leqslant 2\sqrt{a_n \cdot (n+1)}$

kaikilla indeksien arvoilla $n = 1, 2, \ldots$

- (a) Todista, että epäyhtälö $a_n \geqslant n$ pätee kaikilla positiivisilla kokonaisluvuilla n.
- (b) Anna esimerkki ehdot 1 ja 2 toteuttavasta positiivisten kokonaislukujen jonosta.
- 2. Olkoon P(x) polynomi, jonka kertoimet ovat epänegatiivisia. Osoita, että jos $P\left(\frac{1}{x}\right)P(x)\geqslant 1$, kun x=1, niin sama epäyhtälö on voimassa kaikilla positiivisilla luvuilla x.
- 3. Olkoot p, q ja r posiitivisia lukuja ja n positiivinen kokonaisluku. Osoita, että jos pqr=1, niin

$$\frac{1}{p^n+q^n+1}+\frac{1}{q^n+r^n+1}+\frac{1}{r^n+p^n+1}\leqslant 1.$$

- 4. Reaalilukujen x_1, x_2, \ldots, x_n aritmeettinen keskiarvo on X. Osoita, että on olemassa sellainen positiivinen kokonaisluku K, että jokaisen jonon (x_1, x_2, \ldots, x_K) , (x_2, x_3, \ldots, x_K) , (x_3, \ldots, x_K) , \ldots , (x_{K-1}, x_K) ja (x_K) aritmeettinen keskiarvo on pienempi tai sama kuin X.
- 5. Määritä, mitä arvoja voi saada kokonaisluvuille k määritelty funktio

$$f(k) = (k)_3 + (2k)_5 + (3k)_7 - 6k,$$

missä $(k)_{2n+1}$ on se luvun 2n+1 monikerta, joka on lähinnä lukua k.

- 6. Kuution kullekin tahkolle on kirjoitettu positiivinen kokonaisluku. Jokaista kuution kärkeä kohti lasketaan kolmella viereisellä tahkolla sijaitsevien lukujen tulo. Näiden tulojen summa on 1001. Mikä on tahkoilla sijaitsevien kuuden luvun summa?
- 7. Etsi kaikki sellaiset vähintään kaksialkioiset kokonaislukujoukot X, että kaikilla $m, n \in X$, missä n > m, on olemassa $k \in X$, jolle $n = mk^2$.
- 8. Olkoon f(x) kokonaiskertoiminen polynomi, joka ei ole vakio. Todista, että on olemassa sellainen kokonaisluku n, että luvulla f(n) on vähintään 2004 eri alkutekijää.
- 9. Olkoon S joukko, jossa on n-1 luonnollista lukua $(n \ge 3)$. Tässä joukossa on kaksi alkiota, joiden erotus ei ole jaollinen luvulla n. Todista, että on mahdollista valita joukon S epätyhjä osajoukko, jonka alkioiden summa on jaollinen luvulla n.
- 10. Onko olemassa päättymätön alkulukujen jono $p_1, p_2, \ldots, p_n, \ldots$, jolle $|p_{n+1} 2p_n| = 1$ jokaisella positivisella kokonaisluvulla n?
- 11. Annettuna on $m \times n$ -taulukko lukuja +1 ja -1. Aluksi taulukossa on vain yksi -1, kaikki muut taulukkoalkiot ovat lukuja +1. Yhdellä kerralla taulua saa muuttaa niin, että jokin luvuista -1 muutetaan luvuksi 0 ja samalla viereiset luvut kerrotaan luvulla -1. (Viereisiä alkioita ovat ne, jotka ovat suoraan yläpuolella, alapuolella, vasemmalla tai oikealla.) Etsi kaikki (m,n), joilla mikä tahansa alkuehdon täyttävä taulukko voidaan muuntaa tällaisilla muunnoksilla vain nollia sisältäväksi taulukoksi riippumatta siitä, miten -1 aluksi sijaitsee.

- 12. Rivissä on 2n eri lukua. Yhdellä siirrolla voidaan joko vaihtaa kaksi lukua keskenään tai kierrättää kolmea lukua syklisesti (valitaan luvut a, b ja c sekä korvataan b luvulla a, c luvulla b ja a luvulla c.) Mikä on pienin mahdollinen määrä siirtoja, joka aina riittää lukujen järjestämiseen kasvavaan järjestykseen?
- 13. Euroopan unionin 25 jäsenmaata muodostavat seuraavien sääntöjen mukaisesti toimivan komitean: 1) Komitea kokoontuu päivittäin. 2) Jokaisessa kokouksessa ainakin yhden jäsenmaan on oltava edustettuna. 3) Missään kahdessa kokouksessa ei ole edustettuina täsmälleen samoja jäsenmaita. 4) n:nnessä kokouksessa läsnä olevien maiden joukossa on jokaisella k < n oltava ainakin yksi, joka oli läsnä myös k:nnessa kokouksessa. Kuinka monena päivänä komitea voi kokoontua?
- 14. Kasalla tarkoitetaan neljän tai useamman pähkinän joukkoa. Kaksi pelaajaa pelaa seuraavaa peliä. Aluksi heillä on yksi kasa, jossa on $n \ge 4$ pähkinää. Siirto tarkoittaa, että pelaaja valitsee yhden kasan ja jakaa sen kahdeksi epätyhjäksi joukoksi (joiden ei välttämättä tarvitse olla kasoja, vaan ne voivat sisältää mielivaltaisen määrän pähkinöitä.) Pelaajat siirtävät vuorotellen, ja jos pelaaja ei voi siirtää, hän häviää. Millä luvuilla n aloittavalla on voittostrategia?
- 15. Ympyrän kehä on jaettu 13 kaareen, jotka on numeroitu järjestyksessä yhdestä kolmeentoista. Viisi kirppua A, B, C, D ja E istuvat kaarilla 1, 2, 3, 4 ja 5. Kirppu saa hypätä vain kaarelle, joka on jompaankumpaan suuntaan viiden kaaren päässä lähtökaaresta. Vain yksi kirppu voi hypätä kerrallaan, ja kaksi kirppua ei voi sijaita samalla kaarella. Muutamien hyppyjen jälkeen kirput ovat jälleen kaarilla 1, 2, 3, 4 ja 5, mutta mahdollisesti eri järjestyksessä kuin aluksi. Mitkä järjestykset ovat mahdollisia?
- 16. Piste P on kiinteän ympyrän ulkopuolella. P:n kautta piirretään ympyrälle sekantti, joka leikkaa ympyrän pisteissä A ja B sekä tangentti, joka sivuaa ympyrää pisteessä C. Piste C on samalla puolella P:n ja ympyrän keskipisteen kautta kulkevaa suoraa kuin A ja B. Pisteen C kohtisuora projektio P:n ja ympyrän keskipisteen kautta kulkevalla suoralla on Q. Osoita, että QC puolittaa kulman $\angle AQB$.
- 17. Suorakaiteen sivujen pituudet ovat 3 ja 4. Valitaan jokaiselta sivulta umpimähkäinen sisäpiste. Olkoot x, y, z ja u sen nelikulmion sivut, joiden kärjet ovat valitut neljä pistettä. Osoita, että $25 \leqslant x^2 + y^2 + z^2 + u^2 \leqslant 50$.
- 18. Kolmion ABC kärjestä A alkava puolisuora leikkaa sivun BC pisteessä X ja kolmion ABC ympäri piirretyn ympyrän pisteessä Y. Osoita, että

$$\frac{1}{AX} + \frac{1}{XY} \geqslant \frac{4}{BC}.$$

- 19. Kolmion ABC sivun BC keskipiste on D. Sivun BC pisteelle M pätee $\angle BAM = \angle DAC$. AB leikkaa kolmion CAM ympäri piirretyn ympyrän myös pisteessä L ja AC leikkaa kolmion BAM ympäri piirretyn ympyrän myös pisteessä K. Todista, että $KL \parallel BC$.
- **20.** Ympyrän kaarilla w_1 , w_2 ja w_3 on samat päätepisteet A ja B ja kaikki ovat samalla puolella suoraa AB; w_2 on w_1 :n ja w_3 :n välissä. Kaksi B:stä alkavaa puolisuoraa leikkaavat kaaret, toinen pisteissä M_1 , M_2 ja M_3 , toinen pisteissä K_1 , K_2 ja K_3 . Osoita, että

$$\frac{M_1 M_2}{M_2 M_3} = \frac{K_1 K_2}{K_2 K_3}.$$