Lógicas Modales

Algoritmos efectivos

Carlos Areces

1er cuatrimestre de 2012

Repaso

Estuvimos viendo...

- Complejidad de distintas lógicas modales
- En particular, algoritmos óptimos, pero imprácticos!

Hoy vamos a ver

- Algoritmos con peor complejidad
- Pero buen comportamiento empírico en casos promedio

Satisfacibilidad modal adivinando buscando modelos

Tableaux modales

Algoritmo $\mathsf{NTIME}(f)$ para lógicas con modelos f-acotados

- Dada una fórmula φ :
 - lacktriangledown Adivinar un modelo $\mathcal M$ de tamaño a lo sumo f(|arphi|)
 - 2 Adivinar un w en el dominio de \mathcal{M}
 - **3** Devolver 1 sii $\mathcal{M}, w \models \varphi$
- Obviamente, no sirve como algoritmo efectivo

Satisfacibilidad modal adivinando buscando modelos

Tableaux modales

Algoritmo $\mathsf{NTIME}(f)$ para lógicas con modelos f-acotados

- Dada una fórmula φ :
 - **4** Adivinar un modelo $\mathcal M$ de tamaño a lo sumo $f(|\varphi|)$
 - ② Adivinar un w en el dominio de \mathcal{M}
 - **1** Devolver 1 sii $\mathcal{M}, w \models \varphi$
- Obviamente, no sirve como algoritmo efectivo

Algoritmo de Tableaux

- ullet Dada una fórmula φ
 - lacktracking'') sistemáticamente un modelo de φ
 - 2 Devolver 1 sii se encuentra tal modelo
- Es la base de muchos razonadores para lógicas modales
- Varios tipos de tableaux, vamos a ver sólo tableaux etiquetados

• Reglas de tableaux: definen un árbol de posibilidades.

- Reglas de tableaux: definen un árbol de posibilidades.
- Los nodos de un árbol son, en general:
 - Fórmulas "etiquetadas" $w:\psi$, donde w es una etiqueta.
 - ullet "Relaciones" Rwv donde w y v son etiquetas.

- Reglas de tableaux: definen un árbol de posibilidades.
- Los nodos de un árbol son, en general:
 - Fórmulas "etiquetadas" $w:\psi$, donde w es una etiqueta.
 - "Relaciones" Rwv donde w y v son etiquetas.
- Cada rama del árbol codifica de alguna manera un modelo.

- Reglas de tableaux: definen un árbol de posibilidades.
- Los nodos de un árbol son, en general:
 - Fórmulas "etiquetadas" $w:\psi$, donde w es una etiqueta.
 - "Relaciones" *Rwv* donde *w* y *v* son etiquetas.
- Cada rama del árbol codifica de alguna manera un modelo.
- Las reglas nos dicen:
 - Cómo expandir una rama.
 - Oómo detectar que una rama no nos sirve (reglas de clash).

- Reglas de tableaux: definen un árbol de posibilidades.
- Los nodos de un árbol son, en general:
 - Fórmulas "etiquetadas" $w:\psi$, donde w es una etiqueta.
 - "Relaciones" *Rwv* donde *w* y *v* son etiquetas.
- Cada rama del árbol codifica de alguna manera un modelo.
- Las reglas nos dicen:
 - 1 Cómo expandir una rama.
 - ② Cómo detectar que una rama no nos sirve (reglas de clash).
- *Algoritmo*: Dada φ , explorar (backtracking) el árbol de $w:\varphi$.

Ejemplo de tableaux etiquetado

Lógica modal con pasado

Reglas de expansión

Reglas de clash

clash
$$\frac{w:p,w:\neg p}{\mid}$$

- Asumimos fórmulas en negation normal form.
- Las reglas \Diamond y \Diamond^{-1} se usan sólo si no existe tal v en la rama.

Ejemplo

Ejercicio

Decidir si $\varphi = p_1 \land \Diamond p_2 \land \Diamond \Box^{-1} \Box (\neg p_2 \lor \Box^{-1} \neg p_1)$ es satisfacible.

Teorema (Completitud)

Si Γ es una rama abierta y saturada para φ , φ es satisfacible.

Teorema (Completitud)

Si Γ es una rama abierta y saturada para φ , φ es satisfacible.

Demostración

$$W_{\Gamma} = \{ w \mid w : \varphi \in \Gamma \}$$

$$R_{\Gamma} = \{ (w, v) \mid Rwv \in \Gamma \}$$

$$V_{\Gamma}(p) = \{ w \mid w : p \in \Gamma \}$$

Teorema (Completitud)

Si Γ es una rama abierta y saturada para φ , φ es satisfacible.

Demostración

$$W_{\Gamma} = \{ w \mid w : \varphi \in \Gamma \}$$

$$R_{\Gamma} = \{ (w, v) \mid Rwv \in \Gamma \}$$

$$V_{\Gamma}(p) = \{ w \mid w : p \in \Gamma \}$$

• Sea
$$\psi$$
 la fórmula más pequeña t.g. $w:\psi \in \Gamma$ y $\mathcal{M}_{\Gamma}, w \not\models \psi$.

Teorema (Completitud)

Si Γ es una rama abierta y saturada para φ , φ es satisfacible.

Demostración

• Extraemos un modelo de Γ . Sea $\mathcal{M}_{\Gamma} = \langle W_{\Gamma}, R_{\Gamma}, V_{\Gamma} \rangle$ donde

$$W_{\Gamma} = \{ w \mid w : \varphi \in \Gamma \}$$

$$R_{\Gamma} = \{ (w, v) \mid Rwv \in \Gamma \}$$

$$V_{\Gamma}(p) = \{ w \mid w : p \in \Gamma \}$$

• Sea
$$\psi$$
 la fórmula más pequeña t.q. $w:\psi \in \Gamma$ y $\mathcal{M}_{\Gamma}, w \not\models \psi$.

• $\psi \neq p$ (porque en ese caso $w \in V(p)$) y $\psi \neq \neg p$ (habría clash)

Teorema (Completitud)

Si Γ es una rama abierta y saturada para φ , φ es satisfacible.

Demostración

$$W_{\Gamma} = \{ w \mid w : \varphi \in \Gamma \}$$

$$R_{\Gamma} = \{ (w, v) \mid Rwv \in \Gamma \}$$

$$V_{\Gamma}(p) = \{ w \mid w : p \in \Gamma \}$$

- Sea ψ la fórmula *más pequeña* t.q. $w:\psi \in \Gamma$ y $\mathcal{M}_{\Gamma}, w \not\models \psi$.
 - $\psi \neq p$ (porque en ese caso $w \in V(p)$) y $\psi \neq \neg p$ (habría clash)
 - $\psi \neq \psi_1 \lor \psi_2$ porque tendríamos $w : \psi_i \in \Gamma$ y no sería mínima

Teorema (Completitud)

Si Γ es una rama abierta y saturada para φ , φ es satisfacible.

Demostración

$$W_{\Gamma} = \{ w \mid w : \varphi \in \Gamma \}$$

$$R_{\Gamma} = \{ (w, v) \mid Rwv \in \Gamma \}$$

$$V_{\Gamma}(p) = \{ w \mid w : p \in \Gamma \}$$

- Sea ψ la fórmula *más pequeña* t.q. $w:\psi \in \Gamma$ y $\mathcal{M}_{\Gamma}, w \not\models \psi$.
 - $\psi \neq p$ (porque en ese caso $w \in V(p)$) y $\psi \neq \neg p$ (habría clash)
 - $\psi \neq \psi_1 \lor \psi_2$ porque tendríamos $w:\psi_i \in \Gamma$ y no sería mínima
 - $\psi \neq \psi_1 \wedge \psi_2$ por razones análogas

Teorema (Completitud)

Si Γ es una rama abierta y saturada para φ , φ es satisfacible.

Demostración

$$W_{\Gamma} = \{ w \mid w : \varphi \in \Gamma \}$$

$$R_{\Gamma} = \{ (w, v) \mid Rwv \in \Gamma \}$$

$$V_{\Gamma}(p) = \{ w \mid w : p \in \Gamma \}$$

- Sea ψ la fórmula *más pequeña* t.q. $w:\psi \in \Gamma$ y $\mathcal{M}_{\Gamma}, w \not\models \psi$.
 - $\psi \neq p$ (porque en ese caso $w \in V(p)$) y $\psi \neq \neg p$ (habría clash)
 - $\psi \neq \psi_1 \lor \psi_2$ porque tendríamos $w:\psi_i \in \Gamma$ y no sería mínima
 - $\psi \neq \psi_1 \wedge \psi_2$ por razones análogas
 - $\psi \neq \Diamond \chi$ porque tendríamos $\mathit{Rwv}, v : \chi \in \Gamma$ y no sería mínima

Teorema (Completitud)

Si Γ es una rama abierta y saturada para φ , φ es satisfacible.

Demostración

$$W_{\Gamma} = \{ w \mid w : \varphi \in \Gamma \}$$

$$R_{\Gamma} = \{ (w, v) \mid Rwv \in \Gamma \}$$

$$V_{\Gamma}(p) = \{ w \mid w : p \in \Gamma \}$$

- Sea ψ la fórmula *más pequeña* t.q. $w:\psi \in \Gamma$ y $\mathcal{M}_{\Gamma}, w \not\models \psi$.
 - $\psi \neq p$ (porque en ese caso $w \in V(p)$) y $\psi \neq \neg p$ (habría clash)
 - $\psi \neq \psi_1 \lor \psi_2$ porque tendríamos $w : \psi_i \in \Gamma$ y no sería mínima
 - $\psi \neq \psi_1 \wedge \psi_2$ por razones análogas
 - $\psi \neq \Diamond \chi$ porque tendríamos $Rwv, v: \chi \in \Gamma$ y no sería mínima
 - $\psi \neq \Box \chi$, $\psi \neq \Box^{-1} \chi$ y $\psi \neq \Diamond^{-1} \chi$ por razones análogas.

Teorema (Completitud)

Si Γ es una rama abierta y saturada para φ , φ es satisfacible.

Demostración

$$W_{\Gamma} = \{ w \mid w : \varphi \in \Gamma \}$$

$$R_{\Gamma} = \{ (w, v) \mid Rwv \in \Gamma \}$$

$$V_{\Gamma}(p) = \{ w \mid w : p \in \Gamma \}$$

- Sea ψ la fórmula *más pequeña* t.q. $w:\psi \in \Gamma$ y $\mathcal{M}_{\Gamma}, w \not\models \psi$.
 - $\psi \neq p$ (porque en ese caso $w \in V(p)$) y $\psi \neq \neg p$ (habría clash)
 - $\psi \neq \psi_1 \lor \psi_2$ porque tendríamos $w:\psi_i \in \Gamma$ y no sería mínima
 - $\psi \neq \psi_1 \wedge \psi_2$ por razones análogas
 - $\psi \neq \Diamond \chi$ porque tendríamos $Rwv, v: \chi \in \Gamma$ y no sería mínima
 - $\psi \neq \Box \chi$, $\psi \neq \Box^{-1} \chi$ y $\psi \neq \Diamond^{-1} \chi$ por razones análogas.
- Luego, no existe tal fórmula; $w:\psi \in \Gamma$ implica $\mathcal{M}, w \models \psi$

Teorema

Toda rama saturada de un tableaux para φ es finita.

Teorema

Toda rama saturada de un tableaux para φ es finita.

Demostración

Teorema

Toda rama saturada de un tableaux para φ es finita.

Demostración

Sea Γ una rama saturada y LABEL $(w) = \{\psi \mid w: \psi \in \Gamma\}$.

1 LABEL(w) es finito porque son todas subfórmulas de φ .

Teorema

Toda rama saturada de un tableaux para φ es finita.

Demostración

- **1** LABEL(w) es finito porque son todas subfórmulas de φ .
- **2** Luego, $\{v \mid Rwv \in \Gamma\}$ es finito (ver nota sobre \Diamond y \Diamond^{-1}).

Teorema

Toda rama saturada de un tableaux para φ es finita.

Demostración

- **1** LABEL(w) es finito porque son todas subfórmulas de φ .
- **2** Luego, $\{v \mid Rwv \in \Gamma\}$ es finito (ver nota sobre $\Diamond y \Diamond^{-1}$).
- **3** Entonces, Γ es infinito sii existe una cadena w_1, w_2, \ldots tal que w_i generó a w_{i+1} usando la regla \diamond 6 la regla \diamond^{-1} .

Teorema

Toda rama saturada de un tableaux para φ es finita.

Demostración

- **1** LABEL(w) es finito porque son todas subfórmulas de φ .
- **2** Luego, $\{v \mid Rwv \in \Gamma\}$ es finito (ver nota sobre $\Diamond y \Diamond^{-1}$).
- **3** Entonces, Γ es infinito sii existe una cadena w_1, w_2, \ldots tal que w_i generó a w_{i+1} usando la regla \diamond 6 la regla \diamond^{-1} .
- **9** Pero si w genera a v, $d(\mathsf{LABEL}(w)) > d(\mathsf{LABEL}(v))$ (sale por inducción en la derivación de Γ , d es profundidad modal).

Teorema

Toda rama saturada de un tableaux para φ es finita.

Demostración

- **1** LABEL(w) es finito porque son todas subfórmulas de φ .
- **2** Luego, $\{v \mid Rwv \in \Gamma\}$ es finito (ver nota sobre \Diamond y \Diamond^{-1}).
- **3** Entonces, Γ es infinito sii existe una cadena w_1, w_2, \ldots tal que w_i generó a w_{i+1} usando la regla \diamond 6 la regla \diamond^{-1} .
- **9** Pero si w genera a v, $d(\mathsf{LABEL}(w)) > d(\mathsf{LABEL}(v))$ (sale por inducción en la derivación de Γ , d es profundidad modal).
- **o** Por lo tanto, para algún j, $d(LABEL(w_j)) = 0$.

¿Importa el orden en que aplicamos las reglas?

¿Importa el orden en que aplicamos las reglas?

• No afecta la terminación del algoritmo.

¿Importa el orden en que aplicamos las reglas?

- No afecta la terminación del algoritmo.
- Sí afecta el tamaño del árbol generado!
 - Considerar: $(p_1 \lor p_2) \land ((p_3 \lor p_4) \land ((p_5 \lor p_6) \land (p \land \neg p)))$
 - ¿Qué sucede si siempre preferimos aplicar \land antes que \lor ?
 - ¿Qué sucede si siempre preferimos aplicar \vee antes que \wedge ?

¿Importa el orden en que aplicamos las reglas?

- No afecta la terminación del algoritmo.
- Sí afecta el tamaño del árbol generado!
 - Considerar: $(p_1 \lor p_2) \land ((p_3 \lor p_4) \land ((p_5 \lor p_6) \land (p \land \neg p)))$
 - ¿Qué sucede si siempre preferimos aplicar \land antes que \lor ?
 - ¿Qué sucede si siempre preferimos aplicar ∨ antes que ∧?

Heurísticas básicas

- Usar reglas sin branching (e.g., ∧) antes que aquellas con branching (como ∨)
- Usar reglas proposicionales (e.g., \land y \lor) antes que reglas modales (como \diamondsuit y \Box)

Optimizaciones

- Las reglas \land , \lor y *clash* son un tableaux proposicional
- Pero es preferible DPLL para razonamiento proposicional
- Los demostradores basados en tableaux incorporan elementos de DPLL:
 - Branching semántico (una forma de splitting)
 - Backjumping
 - Caching

Terminación en casos más complejos

Un tableaux para K sobre la clase de modelos transitivos (K4)

Terminación en casos más complejos

Un tableaux para K sobre la clase de modelos transitivos (K4)

Teorema

Este tableaux es completo para K4.

Terminación en casos más complejos

Un tableaux para K sobre la clase de modelos transitivos (K4)

Teorema

Este tableaux es completo para K4.

Demostración

Ejercicio!

• ¿Podemos repetir el argumento de terminación?

- ¿Podemos repetir el argumento de terminación?
- ¿Qué sucede al ejecutar este tableaux sobre $w:(\Diamond p \land \Box \Diamond p)$?

- ¿Podemos repetir el argumento de terminación?
- ¿Qué sucede al ejecutar este tableaux sobre $w:(\Diamond p \land \Box \Diamond p)$?
- Conclusión: una rama abierta saturada puede no ser finita!

- ¿Podemos repetir el argumento de terminación?
- ¿Qué sucede al ejecutar este tableaux sobre $w:(\Diamond p \land \Box \Diamond p)$?
- Conclusión: una rama abierta saturada puede no ser finita!

Técnicas de blocking

- Se usan para garantizar terminación en implementaciones
- Idea:
 - $\bullet\,$ Algunas $w{:}\varphi$ pueden "bloquearse" o "desbloquearse"
 - Algunas reglas no se aplican sobre fórmulas bloqueadas
- Muchos tipos de blocking
 - subset blocking
 - dynamic blocking
 - ...
- En cada caso se debe probar terminación... y completitud!