GRAMMARS

1. Given the grammar $G = (N, \Sigma, P, S)$

$$N = \{S, C\}$$

$$\Sigma = \{a, b\}$$

$$P : S \to ab \mid aCSb$$

$$C \to S \mid bSb$$

$$CS \to b,$$

prove that $w = ab(ab^2)^2 \in L(G)$.

Sol.:

$$a^2b^2 = aabb \neq (ab)^2 = abab$$

//Oana Nourescu

$$S \Rightarrow aCSb \Rightarrow abSbSb \Rightarrow ababbabb = w$$
(2) (4) (1)

4 =>
$$S => w => w \in L(G)$$

2. Given the grammar $G = (N, \Sigma, P, S)$

$$N = \{S\}$$

$$\Sigma = \{a, b, c\}$$

$$P: S \rightarrow a^{2}S \mid bc,$$

find L(G).

// Paun Tudor

$$L = \{a^{2k}bc, where k \in N\}$$

$$L = L(G)$$
?

- **1.** $L \subseteq L(G)$
- 2. $L(G) \subseteq L$

//Ariana Hategan

1. \forall $k \in N, a^{2k}bc \in L(G)$

 $P(k): a^{2k}bc \in L(G)$ and prove that P(k) true for $\forall k \in N$

a) Verification step

$$P(0): a^0bc \in L(G) \Leftrightarrow bc \in L(G)$$

S => bc

So, P(0) is true

b) P(n) true $\rightarrow P(n+1)$ true, $n \in N$

*

$$P(n) true \Rightarrow a^{2n}bc \in L(G) \Rightarrow S \Rightarrow a^{2n}bc (induction hypothesis)$$

$$S = a^2 S = a^2 a^{2n} bc = a^{2(n+1)} bc$$

(1) (ind hypo)

=> P(n+1) true

$$a) + b) => (1)$$

//Razvan Neta

$$S \Rightarrow bc$$

$$\Rightarrow a^2S \Rightarrow a^2bc$$

$$\Rightarrow a^4S \Rightarrow a^4bc$$

$$\Rightarrow a^6S \Rightarrow \dots$$

It may be noticed that starting from S and using **all productions** in **all possible combinations**, we only get, as sequences of terminals, sequences of the shape $a^{2n}bc$, $n \in N$ It follows that the grammar generates nothing else.

3. Find a grammar that generates $L = \{0^n 1^n 2^m \mid n, m \in \mathbb{R}^*\}$

Petcu Dragos

A -> 01 | 0A1

B -> 2 | 2B

S-> AB

Oana Nourescu

S -> AB

A -> 01 | 0A1

B -> 2 | B2

Diaconu Bogdan

S->0A1B

 $A -> 0A1|\epsilon$

B->2|2B

Moldovanu Dragos

A->01|0A1

B->2|2B

S->AB

//Moldovan Vasilica

S -> 0S1C | 012

C -> 2C |epsilon

Pascotescu Iuliana

S -> 0K1 | 01 | T | ST

T -> 2T | 2

K -> 0K1 | 01

//Onita Andrei

P: S= A B

A= 0 S 1 | 01

B= S 2 | 2

$G=({S,A,B}, {0,1,2}, P, S)$

P:

S -> AB

A -> 01 | 0A1

B -> 2 | B2

$$?L(G) = L$$

1.
$$?L \subseteq L(G)$$

 $? \forall n, m \in N^*, \ 0^n 1^n 2^m \in L(G)$

Let $n, m \in N^*$ fixed

n m

$$S \Rightarrow AB \Rightarrow 0^{n}1^{n}B \Rightarrow 0^{n}1^{n}2^{m}$$

(1) (i) (ii)

$$=> S => 0^n 1^n 2^m => 0^n 1^n 2^m \in L(G)$$

n

(i)
$$A => 0^n 1^n, \ \forall n \in N^*$$

m

(ii)
$$B \Rightarrow 2^m, \forall m \in N^*$$

2.
$$?L(G) \subseteq L$$

Lol x2 - aproape ai reusit