陣列(Array)

陣列依其維度可分爲一維、二維以及多維。若陣列只有一維,稱之爲向量 (vector); 陣列爲二維,則稱之爲矩陣(matrix)。

壹、向量

一、建立向量的基本函數

指令	說明
[]	建立陣列
-3:3	從-3到3,間距1,建立一個列向量
-3:0.1:3	從-3到3,間距0.1,建立一個列向量
linspace(-3,3)	從-3到3,建立100個元素的列向量
linspace(-3,3,100)	從-3到3,建立100個元素的列向量
length(x)	查詢向量x的元素個數
X'	將向量x轉置

```
>> []
ans =
    []
>> -3:3
ans =
   -3 -2 -1 0 1 2 3
>> -3:0.5:3
ans =
-3.0000 -2.5000 -2.0000 -1.5000
                                -1.0000 -0.5000 0
                                                    0.5000
                                                             1.0000
1.5000
        2.0000
                2.5000
                         3.0000
```

```
>> x=linspace(-3,3);
>> length(x)
ans =
100
```

二、向量的基本處理函數

指令	說明
min(x)	計算向量最小値
max(x)	計算向量最大値
sum(x)	計算向量總和
cumsum(x)	計算向量累積和
prod(x)	計算向量乘積
cumprod(x)	計算向量累積乘積和
sort(x)	將向量中的元素由小而大排序
sort(x, 'descend')	將向量中的元素由大而小排序

```
>> sum(x)
ans =
15
>> cumsum(x)
ans =
2 3 7 10 15
>> prod(x)
ans =
120
>> cumprod(x)
ans =
2 2 8 24 120
>> sort(x)
ans =
1 2 3 4 5
>> sort(x, 'descend')
ans =
5 4 3 2 1
```

三、向量元素的擷取與刪除

A=[1,3,5,7,9]	
B=A*2	
A(2)	% 取出向量第二個元素
A(2:4)	% 取出向量第二至四個元素
A([2,5])	% 取出向量第二、五個元素
A(3)=100	%將向量第三個元素以100取代
A(3:5)=0	%將向量第三至五個元素以 0 取代
A(end)	% 取出向量最後一個元素
A(5)=[]	% 刪除第五個元素

貳、矩陣

一、常用陣列建立函數

指令	說明
zeros(n)	建立n×n的全零矩陣
zeros(m,n,p)	建立 m×n×p全零矩陣
ones(n)	建立 n×n 的全 1 矩陣
eye(n)	建立n×n的單位矩陣
eye(m,n)	建立m×n的單位矩陣
diag(v)	建立以向量v爲對角元素的矩陣
magic(n)	建立n×n的魔術方陣

```
>> zeros(3)
ans =
  0 0 0
   0 0 0
   0 0 0
>> zeros(3,2)
ans =
   0 0
      0
   0 0
>> ones(3)
ans =
   1 1 1
   1 1 1
```

```
>> eye(3)
ans =
  1
      0 0
  0
      1 0
   0 0 1
>> eye(3,2)
ans =
  1
      0
  0
      1
  0
>> diag( [1 2 3] )
ans =
   1 0 0
   0
       2 0
       0 3
  0
>> magic(3)
ans =
  8
      1 6
       5
          7
   3
          2
   4
       9
```

二、以亂數建立陣列之函數

指令	說明
rand	產生 0~1 間的齊一分配亂數
rand(n)	建立 0~1 間的 n×n 齊一分配
rand(m,n,p)	建立 0~1 間的 m×n齊一分配
randn	產生平均數爲 0,標準差爲 1 的常態分配亂數
randn(n)	建立n×n的常態分配
randn(m,n,p)	建立m×n的常態分配

```
>> rand
ans =
   0.7482
>> rand(3)
ans =
   0.1622 0.5285
                      0.2630
   0.7943 0.1656
                      0.6541
   0.3112
            0.6020
                      0.6892
>> rand(3,2)
ans =
             0.9133
   0.4505
             0.1524
   0.0838
   0.2290
             0.8258
>> randn
ans =
  -0.4326
```

三、矩陣元素的操作

>> A=[1,2	2,3 ; 4,5	5,6 ; 7,8,9]	
A =			
1	2	3	
4	5	6	
7	8	9	
>> A(2 , 2	2)		
ans =			
5			
>> A(2, 2	2:3)		
ans =			
5	6		
>> A'			% 將矩陣 A 轉置
ans =			
1	4	7	
2	5	8	
3	6	9	
>> B=A			% (:)代表一整列或一整行
>> B(:, 2	2:3)=[]		% 刪除 2、3 直行
B =			
1			
4			
7			
>> C=A			
>> C([1,3	3] , :) =	[]	%刪除 1、3 <u>横</u> 列
C =			
4	5	6	

四、取出最大值與最小值所在位置

指令	說明
[val, ind]=max(x)	取出陣列 x 中的元素最大值 val 及其所在位置 ind
[val, ind]=min(x)	取出陣列 x 中的元素最小值 val 及其所在位置 ind
[mx col]=max(val)	找出 val 最大值及其位置

	I			
>> A=[1,3,2;8,1,9;10,3,2]				
	A =			
	1	l	3	2
	8	3	1	9
	10)	3	2
>> [val, ind]=max(A)	% 以正	直行爲	單位取	汉得數值
	val =			
	10)	3	9
	ind =			
		3	1	2
>> [val,ind]=min(A)				
	val =			
			1	2
	'	•	'	2
	: al			
	ind =		0	
	1		2	1
>> [mx col]=max(val)				
	mx =			
	2	2		
	col =			
	3	3		

五、其他陣列元素相關函數

(一) 提取矩陣特定元素

指令	說明
diag(A)	取出矩陣A主對角線元素
diag(A, k)	取出矩陣 A 第 k 個主對角線元素(k=2,-1,0,1,2)
triu(A)	取出矩陣 A 主對角線以上元素,其他元素設為 0
triu(A, k)	取出矩陣 A 第 k 個主對角線以上(upper)元素,其他元素設為 0
tril(A)	取出矩陣 A 主對角線以下(lower)元素,其他元素設為 0
tril(A, k)	取出矩陣 A 第 k 個主對角線以下元素,其他元素設為 0

	A =				
	1	2	3		
>> A=[1,2,3;4,5,6;7,8,9]					
	4	Ŭ	6		
	7	8	9		
	ans =	•			
>> diag(A)	1				
>> diag(A)	5				
	9				
	ans =				
andiag(A.O)	1				
>> diag(A,0)	5				
	9				
	ans =	:			
and Amine (A.)		1	3	2	
>> triu(A)		0	1	9	
		0	0	2	
	ans =				
		1	0	0	
>> tril(A)		8	1	0	
	1	0	3	2	

(二) 重排矩陣元素

指令	說明
flipIr(A)	將陣列 A 元素左右翻轉(left/right)
flipud(A)	將陣列 A 元素上下翻轉(up/down)
flipdim(A, n)	將陣列 A 元素依第 n 個維度翻轉
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	將陣列 A 元素由上而下,由左而右重新排列成 m×n×p
reshape(A,m,n,p)	矩陣
repmat(A,m,n,p)	將陣列 A 類似排磁磚方式排成 m×n×p 矩陣
rot90(A)	將矩陣逆時鐘旋轉 90 度
rot90(A, k)	將矩陣逆時鐘旋轉 k×90 度, k 為整數

```
>> A=magic(3)
A =
  8 1 6
   3
      5 7
   4
      9 2
>> flipIr(A)
ans =
  6
      1 8
   7
      5 3
   2
      9
        4
>> flipud(A)
ans =
   4 9 2
   3
      5
          7
   8 1 6
>> reshape(A, 1, 9)
ans =
   8 3 4 1 5 9 6 7 2
```

```
>> repmat(A, 2, 2)
ans =
   8
      1 6
              8 1
                     6
   3
      5
          7
                 5
                     7
              3
      9
              4
                 9
                     2
          2
   8
      1
          6
              8 1
                    6
                   7
   3
      5
          7
              3 5
   4
      9
          2
             4 9
                     2
>> rot90(A)
ans =
  6
     7 2
  1
      5
          9
  8
      3 4
>> rot90(A, 3)
ans =
   4
      3
          8
   9
      5
          1
   2 7
          6
```

(三) 合併陣列

指令	說明
[A,B]	横向合併
[A;B]	垂直合併
cat(1,A,B,)	以第一個維度方向排列合併(相當垂直合併)
cat(2,A,B,)	以第二個維度方向排列合併(相當水平合併)
cat(3,A,B)	以第三個維度(頁)方向排列合併
cat(4,A,B)	以第四個維度方向排列合併

```
>> A=[1 2 3 ; 4 5 6]
A =
 1 2 3
 4 5 6
>> B=2*A
B =
 2 4 6
8 10 12
>> [A, B]
ans =
 1 2 3 2 4 6
 4 5 6 8 10 12
>> [A; B]
ans =
     2 3
  1
     5 6
     4 6
  2
 8 10 12
```

六、矩陣基本運算函數

指令	說明
A+B	
A-B	
A*B	
A/B	
Α'	計算 A 矩陣的共軛矩陣(但當元素爲實數時,將等於轉置矩陣)
inv(A)	計算矩陣反矩陣(inverse)
det(A)	計算矩陣行列式(determinate)
expm(A)	計算矩陣的指數
logm(A)	計算矩陣的對數
sqrtm(A)	計算矩陣的開平方根

七、矩陣左除與右除

指令	說明
A∖B	A 左除 B,相當於 $A^{-1} \times B$ 或 AX=B 的解。
B/A	B右除 A,相當於 $B \times A^{-1}$ 或 $XA = B$ 的解。

八、矩陣內的元素對元素之運算

指令	說明
A.*B	將A矩陣每一個元素乘以B矩陣每一個相對應的元素
A.^n	計算方陣 A 每一個元素的 n 次方
A. '	計算矩陣A的轉置矩陣
A./B	將A矩陣每一個元素除以B矩陣每一個相對應的元素
A.\B	將B矩陣每一個元素除以A矩陣每一個相對應的元素

九、查詢陣列資訊相關函數

指令	說明
size(x)	查詢陣列維度(2X3)
length(x)	查詢陣列行數(3行數)
ndims(x)	查詢陣列維數(2維)
numel(x)	查詢陣列元素總數(number of element)(6 個)

```
>> A=[1 2 3 ; 4 5 6]
A =
  1 2 3
  4 5 6
>> size(A)
ans =
 2 3
>> length(A)
ans =
 3
>> ndims(A)
ans =
  2
>> numel(A)
ans =
   6
```