Machine Learning

Overfitting - Algorithm perform well with training dataset but not with testing dataset

<u>Underfitting</u> - Algorithm does not perform well with training dataset and testing dataset

<u>Outliers</u> - Observation is either very low value or very high value in comparison to other observed values.

z-score

$$Z = \frac{x - \mu}{\sigma}$$
Mean

Gradient descent

Repeat until convergence{

$$\theta_j \coloneqq \theta_j - \alpha \; \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$

 α : Learning rate (step size)

$$\frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1)$$
: derivative (rate of change)

Gradient descent

Correct: simultaneous update

temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

temp1 :=
$$\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := \text{temp0}$$

$$\theta_1 \coloneqq \text{temp1}$$

Incorrect:

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 := \text{temp0}$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 := \text{temp1}$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

Learning rate

• $\alpha \rightarrow 0.001, \dots 0.01, \dots, 0.1, \dots, 1$

Gradient descent for linear regression

Repeat until convergence{

$$\theta_j \coloneqq \theta_j - \alpha \; \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1\text{)}$$

· Linear regression model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Computing partial derivative

$$\begin{split} \bullet \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) &= \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2} \\ &= \frac{\partial}{\partial \theta_{i}} \frac{1}{2m} \sum_{i=1}^{m} \left(\theta_{0} + \theta_{1} x^{(i)} - y^{(i)} \right)^{2} \end{split}$$

•
$$j = 0$$
: $\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$

•
$$j = 1$$
: $\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$

Gradient descent for linear regression

Repeat until convergence{

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

Update θ_0 and θ_1 simultaneously

Batch gradient descent

"Batch": Each step of gradient descent uses all the training examples
 Repeat until convergence

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

m training examples, n features

Gradient Descent

- Need to choose α
- Need many iterations
- Works well even when n is large

Normal Equation

- No need to choose α
- Don't need to iterate
- Need to compute $(X^TX)^{-1}$
- Slow if n is very large

(x_0)	Size in feet^2 (x_1)	Number of bedrooms (x ₂)	Number of floors (x_3)	Age of home (years) (x_4)	Price (\$) in 1000's (y)			
1	2104	5	1	45	460			
1	1416	3	2	40	232			
1	1534	3	2	30	315			
1	852	2	1	36	178			
ſ	1 2104 5	1 45])		[460]			

$$X = \begin{bmatrix} 1 & 2104 & 3 & 1 & 43 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$
$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

 $\theta = (X^\mathsf{T} X)^{-1} X^\mathsf{T} y$

Model Performance Evaluation -

R2 Score/ R squared/coefficient of determination -

- If the value of the R squared score is 1, it means that the model is perfect and if
 its value is 0, it means that the model will perform badly on an unseen dataset.
- This also implies that the closer the value of the R squared score is to 1, the more perfectly the model is trained.

Cross Validation -

Technique in which we train our model using the subset of the data-set and then evaluate using the complementary subset of the data-set.

K-Fold Cross Validation -

Split the data-set into k number of subsets(known as folds) then we perform training on the all the subsets but leave one(k-1) subset for the evaluation of the trained model.

K=5

Regularization -

Regularization is a technique used to reduce the errors by fitting the function appropriately on the given training set and avoid overfitting.

1. L1 regularization - LASSO(Least Absolute Shrinkage and Selection Operator)

$$Loss = Error(y, \hat{y}) + \lambda \sum_{i=1}^{N} |w_i|$$
$$||\mathbf{w}||_1 = |w_1| + |w_2| + \dots + |w_N|$$

2. L2 regularization - Ridge regression

 $Loss = Error(y, \hat{y}) + \lambda \sum_{i=1}^{N} w_i^2$ $\|\mathbf{w}\|_2 = \left(|w_1|^2 + |w_2|^2 + \ldots + |w_N|^2\right)^{\frac{1}{2}}$

Regression coding rest

Classification -

Classification algorithms are used when the output variable is categorical, not value which means there are classes such as Yes-No, Male-Female, True-false, etc.

$$y=f(x)$$

where y = categorical output x = input feature

- Binary Classifier
- Multi-class Classifier

Lazy Learners: Firstly stores the training dataset and wait until it receives the test dataset. e.g. K-NN algorithm

Eager Learners: Develop a classification model based on a training dataset before receiving a test dataset. e.g. Decision Trees

Classification -

- Logistic Regression
- Decision Trees
- Random Forest
- Support vector Machines
- K-NN
- Naïve Bayes

Logistic Regression -

Uses the concept of predictive modeling as regression, but it is used to classify samples. It predicts the output of a categorical dependent variable using a given set of independent variables.

Confusion Matrix -

A matrix used to determine the performance of the classification models for a given set of test data.

• Prediction of 2 classes classifiers, the matrix is of 2*2 table, for 3 classes, it is 3*3 table, and so on.

Error rate=
$$\frac{FP+FN}{TP+FP+FN+TN}$$

Recall = $\frac{TP}{TP+FN}$

F-measure = $\frac{2*Recall*Precision}{Recall+Precision}$

Decision Tree -

It can solve problems for both categorical and numerical data

Company	Job	Degree	Salary_more_then_100		
google	sales executive	bachelors	0		
google	sales executive	masters	0		
google	business manager	bachelors	1		
google	business manager	masters	1		
google	computer programmer	bachelors	0		
google	computer programmer	masters	1		
abc pharma	sales executive	masters	0		
abc pharma	computer programmer	bachelors	0		
abc pharma	business manager	bachelors	0		
abc pharma	business manager	masters	1		
facebook	sales executive	bachelors	1		
facebook	sales executive	masters	1		
facebook	business manager	bachelors	1		
facebook	business manager	masters	1		
facebook	computer programmer	bachelors	1		
facebook	computer programmer	masters	1		

Gini Impurity

assenger St	urvived	Pclass		Name	Sex	Age		SibSp	Parch	Tie	cket	Fare	Cabin	Embarked
1	0		3	Braund, Mr. Owen Harris	male		22		1	0 A	5 2117:	7.25		S
2	1		1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female		38		1	0 PC	17599	71.2833	C85	c
3	1		3	Heikkinen, Miss. Laina	female		26		0	O ST	ON/02.	7.925		S
4	1		1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female		35		1	0	113803	53.1	C123	S
5	0		3	Allen, Mr. William Henry	male		35		0	0	373450	8.05		S
6	0		3	Moran, Mr. James	male				0	0	330877	8.4583		Q
7	0		1	McCarthy, Mr. Timothy J	male		54		0	0	17463	51.8625	E46	S
8	0		3	Palsson, Master. Gosta Leonard	male		2		3	1	349909	21.075		5
9	1		3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female		27		0	2	347742	11.1333		S
10	1		2	Nasser, Mrs. Nicholas (Adele Achem)	female		14		1	0	237736	30.0708		C
11	1		3	Sandstrom, Miss. Marguerite Rut	female		4		1	1 PF	9549	16.7	G6	S
12	1		1	Bonnell, Miss. Elizabeth	female		58		0	0	113783	26.55	C103	S
13	0		3	Saundercock, Mr. William Henry	male		20		0	0 A/	5. 2151	8.05		S
14	0		3	Andersson, Mr. Anders Johan	male		39		1	5	347082	31.275		S
15	0		3	Vestrom, Miss. Hulda Amanda Adolfina	female		14		0	0	350406	7.8542		S
16	1		2	Hewlett, Mrs. (Mary D Kingcome)	female		55		0	0	248706	16		S
17	0		3	Rice, Master. Eugene	male		2		4	1	382652	29.125		Q
18	1		2	Williams, Mr. Charles Eugene	male				0	0	244373	13		S
19	0		3	Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)	female		31		1	0	345763	18		S
20	1		3	Masselmani, Mrs. Fatima	female				0	0	2649	7.225		C
21	0		2	Fynney, Mr. Joseph J	male		35		0	0	239865	26		S
22	1		2	Beesley, Mr. Lawrence	male		34		0	0	248698	13	D56	S
23	1		3	McGowan, Miss. Anna "Annie"	female		15		0	0	330923	8.0292		Q
24	1		1	Sloper, Mr. William Thompson	male		28		0	0	113788	35.5	A6	S
25	0		3	Palsson, Miss. Torborg Danira	female		8		3	1	349909	21.075		S
26	1		3	Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)	female		38		1	5	347077	31.3875		S
27	0		3	Emir, Mr. Farred Chehab	male				0	0	2631	7.225		C
28	0		1	Fortune, Mr. Charles Alexander	male		19		3	2	19950	263	C23 C25 C	S
29	1		3	O'Dwyer, Miss. Ellen "Nellie"	female				0	0	330959	7.8792		Q
30	0		3	Todoroff, Mr. Lalio	male				0	0	349216	7.8958		S
31	0		1	Uruchurtu, Don. Manuel E	male		40		0	0 PC	17601	27.7208		C
32	1		1	Spencer, Mrs. William Augustus (Marie Eugenie)	female				1	0 PC	17569	146.521	B78	C

Random Forest

Company Job Degree Salary_more_th en_100k google sales executive bachelors 0 google sales executive masters 0 business bachelors google manager business masters google manager computer bachelors google 0 programmer computer google masters programmer abc pharma sales executive masters 0 computer abc pharma bachelors programmer business abc pharma bachelors 0 manager business abc pharma masters manager facebook sales executive bachelors facebook sales executive masters business facebook bachelors manager business facebook masters

Salary > 100 k \$?

Decision tree based on green and red nodes

Identify hand written digits recognition

Which set is more diverse?

Gini = 0.42

Gini = 0.7

Gini Index = Probability of picking two distinct elements

	Same
	Different
	Different
	Same
	Same
	Different
	Same
	Same
	Different
	Same

Different: 4 out of 10

	15	\$2.
		Different
		Same
		Different
\bigstar		Different
		Different
		Same
		Same
Δ		Different
	*	Different
		Different

Different: 7 out of 10

Second element First element

Second element

First element

First element

Second element

Second element

First element

P(Both different) = P(Anything) - P(Both equal)
= 1 - P(Both blue) - P(Both red)
= 1 -
$$\left(\frac{7}{10}\right)^2$$
 - $\left(\frac{3}{10}\right)^2$
= 1 - 0.7² - 0.3²
= 1 - 0.49 - 0.09

= 0.42

General formula

n classes

Proportions: $p_1, p_2, ..., p_n$

Gini impurity index: $1 - p_1^2 - p_2^2 - \cdots - p_n^2$

General formula

n classes $\text{Proportions: } p_1, p_2, \dots, p_n$ $\text{Gini impurity index: } 1 - p_1^2 - p_2^2 - \dots - p_n^2$ P(Both different) P(Anything) P(Both equal)

Which set is more diverse?

Gini = 0.42

Gini = 0

$$1 - 1^2 = 0$$

$$Gini = ?$$

Introduction to K Fold Cross Validation....

Option 1: spam not a spam **Test Train**

100 math questions

Same 100 math questions as test set

Option 2:

100 samples

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)

70 math questions

Option 3:

