155ADKG: Geometrické vyhledávání bodu

Datum odevzdání: 13.11.2017

Petra Millarová, Bc. Oleksiy Maybrodskyy

Contents

$\mathbf{R}_{\mathbf{c}}$	eferences	4
	8.1 Náměty na vylepšení	4
8	Závěr	4
7	Ukázka aplikace	4
	6.2 Popis dat	
	6.1 Formát výstupních dat	4
6	Výstupní data	4
	5.2 Popis dat	
	5.1 Formát vstupních dat	4
5	Vstupní data	4
4	Problematické situace a singularity	4
3	Popisy algoritmů	4
2	Popis a rozbor problému	4
1	Zadání	3

1 Zadání

Následuje kopie oficiálního zadání úlohy. Autoři z nepovinných bodů zadání implementovali všechny kromě algoritmu pro automatcké generování nekonvexních polygonů.

Úloha č. 1: Geometrické vyhledávání bodu

 $\textit{Vstup: Souvislá polygonová mapa n polygonů} \ \{P_1,...,P_n\}, \ \textit{analyzovaný bod} \ q.$

Výstup: P_i , $q \in P_i$.

Nad polygonovou mapou implementujete následující algoritmy pro geometrické vyhledávání:

- Ray Crossing Algorithm (varianta s posunem těžiště polygonu).
- Winding Number Algorithm.

Nalezený polygon obsahující zadaný bod q graficky zvýrazněte vhodným způsobem (např. vyplněním, šrafováním, blikáním). Grafické rozhraní vytvořte s využitím frameworku QT.

Pro generování nekonvexních polygonů můžete navrhnout vlastní algoritmus či použít existující geografická data (např. mapa evropských států).

Polygony budou načítány z textového souboru ve Vámi zvoleném formátu. Pro datovou reprezentaci jednotlivých polygonů použijte špagetový model.

Hodnocení:

Krok	Hodnocení
Detekce polohy bodu rozlišující stavy uvnitř, vně na hranici polygonu.	10b
Ošetření singulárního případu u Winding Number Algorithm: bod leží na hraně polygonu.	+2b
Ošetření singulárního případu u obou algoritmů: bod je totožný s vrcholem jednoho či více polygonů.	+2b
Zvýraznění všech polygonů pro oba výše uvedené singulární případy.	+2b
Algoritmus pro automatické generování nekonvexních polygonů.	+5b
Max celkem:	21 b

2 Popis a rozbor problému

Strana 4 - 4

3 Popisy algoritmů

Strana 5 - 4

4 Problematické situace a singularity

Strana 6 - 4

5 Vstupní data

Strana 7 - 4

5.1 Formát vstupních dat

Strana 8 - 4

5.2 Popis dat

Strana 9 - 4

- 6 Výstupní data
- 6.1 Formát výstupních dat
- 6.2 Popis dat

7 Ukázka aplikace

Strana 11 - 4

- 8 Závěr
- 8.1 Náměty na vylepšení