2022 年度京都大学微分積分学(演義)B(中安淳担当)第5回(2022年12月7日)宿題解答例

- 宿題 3

直角三角形で 3 辺の長さの和が一定の値 l>0 であるもののうち面積が最大になるものが存在する(認めてよい)。その三角形を求めてその時の面積も答えよ。

答えは直角二等辺三角形の時だと予想はつきますが、どうやって示すのかが重要です。

解答 直角をはさむ 2 辺の長さを x と y とおくと $(x>0,\ y>0)$ 、斜辺の長さは $\sqrt{x^2+y^2}$ なので 3 辺の長さの和は $x+y+\sqrt{x^2+y^2}$ で三角形の面積は $\frac{1}{2}xy$ である。よってこの問題は $x>0,\ y>0$ が条件

$$\varphi(x,y) = x + y + \sqrt{x^2 + y^2} - l = 0$$

を満たしながら動くときの $f(x,y)=\frac{1}{2}xy$ の最大を求める問題に他ならない。

ここで $\varphi_x(x,y)=1+\frac{x}{\sqrt{x^2+y^2}}>1,$ $\varphi_y(x,y)=1+\frac{y}{\sqrt{x^2+y^2}}>1$ より、 $\varphi(x,y)=0$ の点はすべて正則点であることに注意する。 よって、ラグランジュの未定乗数法(講義ノート第 8 回ページ 2)より最大となる点で次が満たされる。

$$f_x(x,y) - \lambda \varphi_x(x,y) = \frac{1}{2}y - \lambda \left(1 + \frac{x}{\sqrt{x^2 + y^2}}\right) = 0, \quad f_y(x,y) - \lambda \varphi_y(x,y) = \frac{1}{2}x - \lambda \left(1 + \frac{y}{\sqrt{x^2 + y^2}}\right) = 0,$$

ここから x = y になることを示す。第1式と第2式から λ を消去すると

$$\lambda = \frac{y\sqrt{x^2 + y^2}}{2(x + \sqrt{x^2 + y^2})} = \frac{x\sqrt{x^2 + y^2}}{2(y + \sqrt{x^2 + y^2})}$$

よって、

$$y^2 + y\sqrt{x^2 + y^2} = x^2 + x\sqrt{x^2 + y^2}.$$

ここから x=y または $x+y+\sqrt{x^2+y^2}=0$ を得るが、 $x>0,\ y>0$ なので後者はありえない。よって x=y であり、 $x+y+\sqrt{x^2+y^2}=l$ から $x=y=\frac{l}{2+\sqrt{2}}$ を得る。

以上より面積が最大になるのは直角二等辺三角形の時で、その面積は

$$\frac{1}{2} \frac{l^2}{(2+\sqrt{2})^2} = \frac{3-2\sqrt{2}}{4} l^2.$$

注意 最大の存在はいったん x=0 または y=0 の点も考慮に入れると有界閉集合上の連続関数の最大・最小なので存在しそれらの点では達成できないことから示せます。

- 宿題 4 -

2 変数関数 $\varphi(x,y)$ を C^2 級関数とする。点 (a,b) において $\varphi(a,b)=0$, $\varphi_y(a,b)\neq 0$ を仮定すると、陰関数定理より (a,b) の 近くで方程式 $\varphi(x,y)=0$ は $y=\eta(x)$ と解けるのであった。ここでさらに $\varphi_x(a,b)=0$ かつ $\varphi_{xx}(a,b)\varphi_y(a,b)<0$ (つまり $\varphi_{xx}(a,b)$ と $\varphi_y(a,b)$ が異符号)のとき、陰関数 $y=\eta(x)$ は x=a で極小になることを示せ。

基本的には陰関数の極大・極小の議論を抽象化させるだけです。

解答 陰関数定理より陰関数 $y = \eta(x)$ の微分は

$$\eta'(x) = -\frac{\varphi_x(x,\eta(x))}{\varphi_y(x,\eta(x))}.$$

ここで $\varphi_x(a,b)=0$ なので $\eta'(a)=0$ である。極小を示すために二階微分を計算すると、

$$\eta''(x) = -\frac{(\varphi_{xx}(x,\eta(x)) + \varphi_{xy}(x,\eta(x))\eta'(x))\varphi_y(x,\eta(x)) - \varphi_x(x,\eta(x))(\varphi_{yx}(x,\eta(x)) + \varphi_{yy}(x,\eta(x))\eta'(x))}{\varphi_y(x,\eta(x))^2}.$$

x=a を考えると、 $\eta'(a)=0$ であることと $\varphi_x(a,b)=0$ であることから、

$$\eta''(a) = -\frac{\varphi_{xx}(a,b)\varphi_y(a,b)}{\varphi_y(a,b)^2} = -\frac{\varphi_{xx}(a,b)}{\varphi_y(a,b)}.$$

よって、 $\varphi_{xx}(a,b)\varphi_y(a,b)<0$ のとき、 $\eta''(a)>0$ なので、 $y=\eta(x)$ は x=a で極小となる。

注意 $\varphi_{xx}(a,b)$ と $\varphi_y(a,b)$ が同符号のときは極大となり、 $\varphi_{xx}(a,b)=0$ の時はこれでは判定できません。