EE2100: Matrix Theory

Quiz - 3

Group 1

(One among the following set of questions)

1. (3 points) Consider a matrix $\mathbf{A} \in \mathbb{R}^{4\times4}$ given by

$$\mathbf{A} = \begin{bmatrix} 1 & a & 0 & 0 \\ 0 & 1 & b & 0 \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix} \tag{1}$$

Let $\mathbf{B} \in \mathcal{R}^{4 \times 4}$ denote the inverse of a matrix. Compute the entry B_{13} [Hint: use the idea of inverse linear transformation].

2. (3 points) Consider a matrix $\mathbf{A} \in \mathbb{R}^{4\times 4}$ given by

$$\mathbf{A} = \begin{bmatrix} 1 & a & 0 & 0 \\ 0 & 1 & b & 0 \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix} \tag{5}$$

Let $\mathbf{B} \in \mathcal{R}^{4 \times 4}$ denote the inverse of a matrix. Compute the entry B_{14} [Hint: use the idea of inverse linear transformation].

Group 2

(One among the following set of questions)

- 1. (1 point) If $\forall \mathbf{v} \in \mathbb{R}^n \mathbf{A} \mathbf{v} = \mathbf{B} \mathbf{v}$ (where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{m \times n}$), then $\mathbf{A} = \mathbf{B}$.
 - A. True
 - B. False
- 2. (1 point) If $\exists \mathbf{v} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{v} = \mathbf{B}\mathbf{v}$ (where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{m \times n}$), then $\mathbf{A} = \mathbf{B}$.
 - A. True
 - B. False

Group 3 (All the questions)

1. (2 points) Consider a matrix $\mathbf{A} \in \mathbb{R}^{4\times 4}$ whose column vectors are given by

$$\mathbf{a}_{1} = \mathbf{e}_{1}$$

$$\mathbf{a}_{2} = \mathbf{e}_{3} + x\mathbf{e}_{2}$$

$$\mathbf{a}_{3} = x\mathbf{e}_{3} - \mathbf{e}_{2}$$

$$\mathbf{a}_{4} = \mathbf{e}_{4}$$

$$(9)$$

The rank of the matrix is

2. (2 points) Consider a matrix $\mathbf{A} \in \mathbb{R}^{4 \times 4}$ whose column vectors are given by

$$\mathbf{a}_{1} = \mathbf{e}_{1}$$

$$\mathbf{a}_{2} = \mathbf{e}_{3} + x\mathbf{e}_{2}$$

$$\mathbf{a}_{3} = x\mathbf{e}_{3} - \mathbf{e}_{2}$$

$$\mathbf{a}_{4} = \mathbf{e}_{4}$$
(10)

The nullity of the matrix is

3. (4 points) Consider a matrix $\mathbf{A} \in \mathbb{R}^{4 \times 4}$ whose column vectors are given by

$$\mathbf{a}_{1} = \mathbf{e}_{1}$$

$$\mathbf{a}_{2} = \mathbf{e}_{3} + x\mathbf{e}_{2}$$

$$\mathbf{a}_{3} = x\mathbf{e}_{3} - \mathbf{e}_{2}$$

$$\mathbf{a}_{4} = \mathbf{e}_{4}$$
(11)

The second entry of the vector $\mathbf x$ such that $\mathbf A \mathbf x = \mathbf b$ (where $\mathbf b = \left[p,q,r,s \right]^t$ is

4. (4 points) Consider a matrix $\mathbf{A} \in \mathbb{R}^{4 \times 4}$ whose column vectors are given by

$$\mathbf{a}_{1} = \mathbf{e}_{1}$$

$$\mathbf{a}_{2} = \mathbf{e}_{3} + x\mathbf{e}_{2}$$

$$\mathbf{a}_{3} = x\mathbf{e}_{3} - \mathbf{e}_{2}$$

$$\mathbf{a}_{4} = \mathbf{e}_{4}$$
(14)

Let $\mathbf{C} = \mathbf{A}^T \mathbf{A}$. The entry $C_{2,2}$ is

5. (4 points) Consider a matrix $\mathbf{A} \in \mathbb{R}^{4 \times 4}$ whose column vectors are given by

$$\mathbf{a}_{1} = \mathbf{e}_{1}$$

$$\mathbf{a}_{2} = \mathbf{e}_{3} + x\mathbf{e}_{2}$$

$$\mathbf{a}_{3} = x\mathbf{e}_{3} - \mathbf{e}_{2}$$

$$\mathbf{a}_{4} = \mathbf{e}_{4}$$
(16)

Let **C** be the inverse of **A**. The entry $C_{2,2}$ is