7.5 Integrals of Scalar functions over surpaces. E.g. the mass of a thin set sheet of metal $S = \overline{\Phi}(D)$ where $D \in \mathbb{R}^2$ and $\overline{\Phi}: \mathbb{R}^2 \to \mathbb{R}^3$ where the density of the metal is given by f(x,y,z).

Dep: The integral of a scalar function over a surface $\iint f(x,y,z) dS = \iint f(\overline{\Phi}(u,v)) ||T_v \times T_v|| dudv$.

 $= \iint_{\mathcal{S}} \mathcal{S}(\chi(u, \sigma), y(u, \sigma), \overline{z}(u, \sigma)) \left(\frac{\chi(\chi, y)^{2}}{\chi(u, \sigma)} + \left(\frac{\chi(\chi, z)}{\chi(u, \sigma)} \right)^{2} + \left(\frac{\chi(\chi, z)}{\chi(u, \sigma)} \right)^{2} \right) du du$

E.g. $f(x,y,z) = \sqrt{x^2 + y^2 + 4^2}$ (helicoid $S = (r\cos\theta, r\sin\theta, \theta)$ Example 2 D: $0 \le \theta \le 2\pi$, $0 \le r \le 1$ Section 7.4.).

Compute S gds

 $\iint_{S} f dS = \iint_{D} f(r\cos\theta, r\sin\theta, \theta) \|T_{r} \times T_{\theta}\| dr d\theta$ $= \iint_{D} r^{2} + 1 \|T_{r} \times T_{\theta}\| dr d\theta.$

 $T_r = (\cos\theta, \sin\theta, 0)$ $T_\theta = (-r\sin\theta, r\cos\theta, 1)$ $T_r \times T_\theta = \sin\theta \vec{i} - \cos\theta \vec{j} + r\vec{k}$ $\|T_r \times T_\theta\| = \sqrt{r^2 + 1}$

 $\Rightarrow \iint_{S} dS = \iint_{0}^{2\pi} \sqrt{r^{2}+1} \cdot \sqrt{r^{2}+1} \, dr \, d\theta$

$$= 2\pi \left(r + \frac{r^3}{3}\right)\Big|_{0}^{1} = \frac{8\pi}{3}$$

* Surgace integrals over graphs of functions: Suppose S is the graph of a differentiable function $z = g(x_{iy})$

Then $\|T_u \times T_v\| = \sqrt{1 + \left(\frac{2g}{2u}\right)^2 + \left(\frac{2g}{2u}\right)^2}$

So $\iint g(x,y,z) dS = \iint g(u,v,g(u,v)) \sqrt{1+\left(\frac{\partial g}{\partial u}\right)^2 + \left(\frac{\partial g}{\partial v}\right)^2} du dv$

E.g. Compute $\int \frac{\chi}{\sqrt{4x^2+4y^2+1}} ds$

where S is the hyperbolic paraboloid $z=y^2-z^2$ over the negion $-1 \le y \le 1$, $-1 \le x \le 1$. we parametrize $(\chi, y, y^2 - \chi^2)$

 $\iint_{S} \varphi dS = \iint_{A} \frac{\chi}{\sqrt{4x^{2}+4y^{2}+1}} \sqrt{1+(-2x)^{2}+(2y)^{2}} dxdy$ $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx dy = 0.$

* Integrals over graphs:

$$S:(x,y,g(x,y))$$
 Disimple region.

here $\vec{n} = \frac{\vec{N}}{|\vec{n}|}$ is the unit normal and

N = - 29 7 - 29 3 + R is normal to the

Since $\vec{N} \cdot \vec{k} = |\vec{N}| |\vec{k}| \cos \theta = |\vec{N}| \cos \theta$.

Then $\cos \theta = |\vec{N}| \cos \theta = |\vec{N}| \cos \theta$.

Then $\cos \theta = |\vec{N}| \cdot |\vec{k}| = (-\frac{\partial q}{\partial x} \vec{r} - \frac{\partial q}{\partial y} \vec{r} + |\vec{k}|) \cdot |\vec{k}|$

$$=\frac{1}{\sqrt{\left(\frac{\partial g}{\partial x}\right)^2+\left(\frac{\partial g}{\partial y}\right)^2+1}}$$

So $\iint f dS = \iint f(x,y,g(x,y), \left(\frac{\partial g}{\partial x}\right)^2 + \left(\frac{\partial g}{\partial y}\right)^2 + 1 dxdy$ $= \iint f(x,y,g(x,y)) \cdot \frac{1}{\cos \theta} dxdy.$

of depends on x ky.

(52)

Surpace integrals of vector pields

Deg: The surpace integral of Fover D:

SF. B:= SF. (TaxTv) dudv.

Example: $\vec{F}(x, y, z) = (x, y, z)$ S: sphere of radius 1.

Find SF. ds

Sol. Parametrize S by using spherical coordinates (cososind, sinosind, coso).

Then $T_{\phi} = (-\sin\theta\sin\phi, \cos\theta\sin\phi, 0)$ $T_{\phi} = (\cos\theta\cos\phi, \sin\theta\cos\phi, -\sin\phi)$

 $\overrightarrow{T}_{0} \times \overrightarrow{T}_{0} = \left(-\cos\theta\sin\theta - \sin\theta\sin\theta - \sin\theta\sin\theta\cos\phi - \cos\theta\sin\theta\cos\phi\right)$ $= \left(-\cos\theta\sin\theta - \sin\theta\sin\theta - \sin\theta\cos\phi\right).$

On the sphere, $\vec{F} = (\cos\theta \sin\phi, \sin\theta \sin\phi, \cos\phi)$.

 $= -\sin^{3}\phi - \sin^{2}\theta \sin^{3}\phi - \sin^{2}\theta \cos^{2}\phi.$ $= -\sin^{3}\phi - \sin\phi \cos^{2}\phi.$ $= -\sin\phi.$

=> SSF. (ToxTo) dodd

 $= \int_{0}^{\infty} \int_{0}^{2\pi} - \sin \phi \, d\theta \, d\phi$

 $=-2\pi \int_{0}^{\pi} \sin \phi \, d\phi = +2\pi \cos \phi \Big|_{0}^{\pi} = -4\pi.$

E.g. the volume of water per unit of time flowing "through a surface" S with velocity given by the field $\vec{F} = \iint \vec{F} \cdot d\vec{S}$

Interpret

Remark: We implicitly chose an orientation for the surface when we used to x to instead of to x to.

> orientation?

An oriented surface is one where at each $(x, y, z) \in S$ there are 2 unit normal vectors \overrightarrow{n}_1 and \overrightarrow{n}_2 with $\overrightarrow{n}_1 = -\overrightarrow{n}_2$. and each can be associated with a side of the surface.

Not every surpace is orientable: e.g. Mobius strip is not.

E.g. The unit sphere can be given an oriented orientation by selecting $\vec{n} = \frac{3\vec{k}\vec{i} + y\vec{j} + z\vec{k}}{\|\vec{G}_{ij} + \vec{J}_{ij}\|}$

This is an orientation preserving (i.e. points cutwards.)

But in the previous example with the sphere, aur parametrized on gave $\overrightarrow{T}_0 \times \overrightarrow{T}_0 = -\overrightarrow{n} \sin \phi$ (0: $\phi \le \overline{u} \Rightarrow \sin \phi > 0$).

This parametrization was a <u>orientation</u> reversing.

Thm: Surpace integrals are independent of parametrization, provided they are orientation preserving.

E.g. Heat glow

If T(x,y,z) is the temperature at $(x,y,z)_{\eta}$ Then $\nabla T = \underbrace{\partial T}_{\partial x} + \underbrace{\partial T}_{\partial z} + \underbrace{\partial T}_{\partial z} \hat{k}$ is the temperature gradient; $\vec{F} = -k\nabla T$ is a vector field associated with heat flow and $\iint \vec{F} \cdot d\vec{S}$ is the glux (or total rate of heat glow) accross S.

Suppose $T(x,y,z) = x^2 + y^2 + z^2$. Find the heat plux accross the unit sphere oriented with the outward normal. (use k=1).

$$\vec{n} = x\vec{i} + y\vec{j} + z\vec{k}$$
 adward normal.
 $\vec{F} = -\nabla T = -2x\vec{i} - 2y\vec{j} - 2z\vec{k}$

$$= \iint (2x\vec{l} + 2y\vec{j} + 2z\vec{k}) \cdot (x\vec{l} + y\vec{j} + z\vec{k}) ds$$

$$= -3(x^2 + y^2 + z^2) dS$$

$$= -2A(S).$$

$$= -2(4\pi)$$

* Surface integrals over graphs:

Suppose S is the graph of a function, so S: (x, y, g(x,y))Additionally, suppose S is oriented with upward pointing normal (i.e. F component F since F ince F i

Then $\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{D} (F_{1}\vec{i} + F_{2}\vec{j} + F_{3}\vec{k}) \cdot (-\frac{\partial g}{\partial x}\vec{i} - \frac{\partial g}{\partial y}\vec{j} + \vec{k}) dxdy$ $\Rightarrow \iint_{S} \vec{F} \cdot d\vec{S} = \iint_{D} (-F_{1}\frac{\partial g}{\partial x} + -F_{2}\frac{\partial g}{\partial y} + F_{3}) dxdy.$

E.g. $z = x^2 + y^2 + x^2 + y^2 \le 4$ Suppose $F = -y^2 + x^2 + x^2 + x^2$ Compute SF. dS.

> S is the graph of a function. $\iint_{S} \vec{r} \cdot d\vec{s} = \iint_{S} (+y \cdot 2x - x \cdot 2y + 1) dxdy.$ $= \iint_{S} dxdy.$ $= 4\pi.$