请扫码登记

微电子器件实验

彭守仲

北京航空航天大学 微电子学院

第一馆203办公室 shouzhong.peng@buaa.edu.cn

2020年11月11日

直流和频率特性测量与分析

- 直流特性实验内容
 - 1、二极管的直流特性测量与分析
 - 2、双极型晶体管的直流特性测量与分析
 - 3、场效应晶体管的直流特性测量与分析

■ 频率特性实验内容

- 1、双极型晶体管的频率特性测量与分析
- 2、场效应晶体管的频率特性测量与分析

- 实验一:直流跨导测量
- 1.调节*E_D*使*E_D*=6V
- 2.调节*E*。使

 $E_G = 0.1 - 6V(3 - 5V$ 多取点)

- 3.测量 V_{GS} 和 $I_{D}(I_{D}$ <300mA)
- 4. 计算跨导 $g_m = \Delta i_D / \Delta V_{GS}$

电压源 产生电压*E*₀和*E*₆

手持式万用表1 测量电压*V_{cs}*

手持式万用表2 测量电压*V*₀。

台式万用表 测量电流*i*。

- 实验二: 低频跨导测量 IRFU214
- 1.调节 E_{G} 使 E_{G} =4.5V左右
- 2.调节 E_D 使 E_D =6V左右
- 3.任意波形发生器输出 1KHz、1V(0.1V,0.3V,
 - 0.5V,0.7V,2V)信号 v_g
- 4.用示波器分别测量 R₁和Rp上方的交流波形
- 5. 计算跨导 $g_m = \Delta i_D / \Delta v_{qs}$

任意波形发生器 产生交流信号*v_。*

数字示波器 测量R₁和R_D电压波形

- 示波器地线夹如何接?
- 工频干扰(50Hz)

- 漏电流和跨导随电压变化情况
 - 测量的是整个电路的性质,不是单器件的性质

幅频特性

■ MOS管的功能:放大和开关

MOS管的频率特性

■ 频率特性测量

- 1. 使 E_D =10V左右, E_G =3.9-4.3V, v_g 峰峰值100mV
- 2.改变vg的频率(1kHz,10kHz, 100kHz,250kHz,1MHz,2MHz, 5MHz,10MHz)测量电容和R_D上方的交流波形和电压有效值
- 3. 计算 v_{ds}/v_{qs} 和跨导 g_m
- 4. V_{ds}/V_{gs} 下降0.7时为截止频率 f_{β}
- 5.特征频率 f_T = 电压增益 $\times f_B$

任意波形发生器 产生交流信号 v_e

数字示波器 测量 v_{gs} 和 R_D 电压波形

思考题

■思考题:

- 1. 分析直流跨导随输入电压的变化趋势及其原因。
- 2. 电流源内阻和负载电阻R_D对转移特性曲线和跨导具有什么影响?

MOS管的频率特性

■ 频率特性测量

- 1. 使 E_D =10V左右, E_G =3.9-4.3V, v_g 峰峰值100mV
- 2.改变vg的频率(1kHz,10kHz, 100kHz,250kHz,1MHz,2MHz, 5MHz,10MHz)测量电容和R_D上方的交流波形和电压有效值
- 3. 计算 v_{ds}/v_{gs} 和跨导 g_m
- 4. V_{ds}/V_{gs} 下降0.7时为截止频率 f_{β}
- 5.特征频率 f_T = 电压增益 $\times f_B$

任意波形发生器 产生交流信号*v*_ø

数字示波器 测量vgs和RD电压波形

t京旅客旅天大學 東京旅客旅天大學 東京旅客旅天大學

谢谢!