Module 02: Numerical Methods

Unit 08: Partial Differential Equation: Numerical Stability of One-Dimensional PDE

Anirban Dhar

Department of Civil Engineering Indian Institute of Technology Kharagpur, Kharagpur

National Programme for Technology Enhanced Learning (NPTEL)

Learning Objective

 To analyze the numerical stability of discretized one-dimensional conservation law.

Dr. Anirban Dhar

NPTEL

General Equation

A form of differential equation with a general variable ϕ :

$$\frac{\partial(\Lambda_{\phi}\phi)}{\partial t} + \nabla \cdot (\Upsilon_{\phi}\phi\mathbf{u}) = \nabla \cdot (\Gamma_{\phi} \cdot \nabla \phi) + F_{\phi_{o}} + S_{\phi}$$
 (1)

where

 ϕ = general variable

 $\Lambda_{\phi}, \Upsilon_{\phi} = \text{problem dependent parameters}$

 $\Gamma_{\phi} = \text{tensor}$

 $F_{\phi_{\alpha}} = \text{other forces}$

 $S_{\phi} = \text{source/sink term}$

Conservative form (Guinot, 2010)

A form of one-dimensional scalar conservation law can be written as:

$$\frac{\partial \phi}{\partial t} + \frac{\partial \mathcal{F}_{\phi}}{\partial x} = S_{\phi} \tag{2}$$

where

 $\mathcal{F}_{\phi}=\operatorname{Flux}$ function (amount of ϕ that passes at the abscissa x per unit time due to displacement of ϕ). $\mathcal{F}_{\phi}(\phi,x,t)$ does not depend on derivatives of ϕ w.r.t. space/time. $\mathcal{S}_{\phi}=\operatorname{Source}$ term (amount of ϕ that appears per unit time per unit volume irrespective of the amount transported via flux).

Conservative form (Guinot, 2010)

A form of one-dimensional scalar conservation law can be written as:

$$\frac{\partial \phi}{\partial t} + \frac{\partial \mathcal{F}_{\phi}}{\partial x} = S_{\phi} \tag{2}$$

where

 $\mathcal{F}_{\phi}=$ Flux function (amount of ϕ that passes at the abscissa x per unit time due to displacement of ϕ). $\mathcal{F}_{\phi}(\phi,x,t)$ does not depend on derivatives of ϕ w.r.t. space/time. $S_{\phi}=$ Source term (amount of ϕ that appears per unit time per unit volume irrespective of the amount transported via flux).

For example,

$$\mathcal{F}_{\phi} = u\phi \Rightarrow \mathsf{Allowed}$$

Conservative form (Guinot, 2010)

A form of one-dimensional scalar conservation law can be written as:

$$\frac{\partial \phi}{\partial t} + \frac{\partial \mathcal{F}_{\phi}}{\partial x} = S_{\phi} \tag{2}$$

where

 $\mathcal{F}_\phi=\operatorname{Flux}$ function (amount of ϕ that passes at the abscissa x per unit time due to displacement of ϕ). $\mathcal{F}_\phi(\phi,x,t)$ does not depend on derivatives of ϕ w.r.t. space/time. $S_\phi=\operatorname{Source}$ term (amount of ϕ that appears per unit time per unit volume irrespective of the amount transported via flux).

For example,

$$\mathcal{F}_{\phi} = u\phi \Rightarrow \mathsf{Allowed}$$

$$\mathcal{F}_{\phi} = -\Gamma_{x} rac{\partial \phi}{\partial x} \Rightarrow \mathsf{Not} \; \mathsf{Allowed}$$

Non-Conservative form (Guinot, 2010)

$$\frac{\partial \phi}{\partial t} + \lambda \frac{\partial \phi}{\partial x} = \hat{S}_{\phi} \tag{3}$$

Non-Conservative form (Guinot, 2010)

$$\frac{\partial \phi}{\partial t} + \lambda \frac{\partial \phi}{\partial x} = \hat{S}_{\phi} \tag{3}$$

where

$$\lambda = rac{\partial \mathcal{F}_\phi}{\partial \phi}$$

$$\hat{S}_\phi = S_\phi - \left. rac{\partial \mathcal{F}_\phi}{\partial x} \right|_{\phi = \mathrm{constant}}$$

Explicit Upwind Scheme Conservative Form

Governing Equation

$$\frac{\partial \phi}{\partial t}\Big|_{i}^{n} + \frac{\partial \mathcal{F}_{\phi}}{\partial x}\Big|_{i}^{n} = S_{\phi}\Big|_{i}^{n} \tag{4}$$

Conservative Form

Governing Equation

$$\frac{\partial \phi}{\partial t}\Big|_{i}^{n} + \frac{\partial \mathcal{F}_{\phi}}{\partial x}\Big|_{i}^{n} = S_{\phi}\Big|_{i}^{n} \tag{4}$$

Time Discretization

$$\frac{\partial \phi}{\partial t} = \frac{\phi_i^{n+1} - \phi_i^n}{\Delta t} + \mathcal{O}(\Delta t)$$

Governing Equation

$$\frac{\partial \phi}{\partial t}\Big|_{i}^{n} + \frac{\partial \mathcal{F}_{\phi}}{\partial x}\Big|_{i}^{n} = S_{\phi}\Big|_{i}^{n} \tag{4}$$

Time Discretization

$$\frac{\partial \phi}{\partial t} = \frac{\phi_i^{n+1} - \phi_i^n}{\Delta t} + \mathcal{O}(\Delta t)$$

Space Discretization

$$\frac{\partial \mathcal{F}_{\phi}}{\partial x} = \begin{cases} \frac{\mathcal{F}_{\phi_{i}}^{n} - \mathcal{F}_{\phi_{i-1}}^{n}}{\Delta x} + \mathcal{O}(\Delta x) & if \quad \lambda_{i}^{n} > 0\\ \frac{\mathcal{F}_{\phi_{i+1}}^{n} - \mathcal{F}_{\phi_{i}}^{n}}{\Delta x} + \mathcal{O}(\Delta x) & if \quad \lambda_{i}^{n} \leq 0 \end{cases}$$

Dr. Anirban Dhar

NPTEL

Computational Hydraulics

Source Term

$$S_{\phi} = S_{\phi i}^{n}$$

Source Term

$$S_{\phi} = S_{\phi_i}^n$$

Final solution can be written as,

$$\phi_i^{n+1} = \begin{cases} \phi_i^n + \frac{\Delta t}{\Delta x} (\mathcal{F}_{\phi_{i-1}}^n - \mathcal{F}_{\phi_i}^n) + \Delta t S_{\phi_i}^n & if \quad \lambda_i^n > 0 \\ \phi_i^n + \frac{\Delta t}{\Delta x} (\mathcal{F}_{\phi_i}^n - \mathcal{F}_{\phi_{i+1}}^n) + \Delta t S_{\phi_i}^n & if \quad \lambda_i^n \le 0 \end{cases}$$

 The von Neumann Stability analysis can be performed for linear equations. Let us consider that the flux term can be written as,

$$\mathcal{F}_{\phi} = a\phi$$

where a is constant. Thus,

$$\lambda = \frac{\partial \mathcal{F}_{\phi}}{\partial \phi} = a$$

 The von Neumann Stability analysis can be performed for linear equations. Let us consider that the flux term can be written as,

$$\mathcal{F}_{\phi} = a\phi$$

where a is constant. Thus,

$$\lambda = \frac{\partial \mathcal{F}_{\phi}}{\partial \phi} = a$$

 The error can be represented in the form of Fourier Series and single arbitrary term can be written as,

$$\epsilon_i^n = A^n e^{\sqrt{-1}i\omega_x \Delta x}$$

where ω_x is wave number corresponding to x direction.

 The von Neumann Stability analysis can be performed for linear equations. Let us consider that the flux term can be written as,

$$\mathcal{F}_{\phi} = a\phi$$

where a is constant. Thus,

$$\lambda = \frac{\partial \mathcal{F}_{\phi}}{\partial \phi} = a$$

 The error can be represented in the form of Fourier Series and single arbitrary term can be written as,

$$\epsilon_i^n = A^n e^{\sqrt{-1}i\omega_x \Delta x}$$

where ω_x is wave number corresponding to x direction.

• In simplified form, error can be written as,

$$\epsilon_i^n = A^n e^{\sqrt{-1}i\varphi_x}$$

where φ_x is the phase value corresponding to x direction.

Dr. Anirban Dhar

NPTEL

Computational Hydraulics

$$\phi_i^{n+1} = \begin{cases} \phi_i^n + a \frac{\Delta t}{\Delta x} (\phi_{i-1}^n - \phi_i^n) + \Delta t S_{\phi_i}^n & if \ a > 0 \\ \phi_i^n + a \frac{\Delta t}{\Delta x} (\phi_i^n - \phi_{i+1}^n) + \Delta t S_{\phi_i}^n & if \ a < 0 \end{cases}$$

$$\phi_i^{n+1} = \begin{cases} \phi_i^n + a \frac{\Delta t}{\Delta x} (\phi_{i-1}^n - \phi_i^n) + \Delta t S_{\phi_i}^n & if \ a > 0 \\ \phi_i^n + a \frac{\Delta t}{\Delta x} (\phi_i^n - \phi_{i+1}^n) + \Delta t S_{\phi_i}^n & if \ a < 0 \end{cases}$$

The discretized governing equation for IVP with explicit scheme can be written as.

$$(\hat{\phi}_{i}^{n+1} + \epsilon_{i}^{n+1}) = \begin{cases} (\hat{\phi}_{i}^{n} + \epsilon_{i}^{n}) + a \frac{\Delta t}{\Delta x} [(\hat{\phi}_{i-1}^{n} + \epsilon_{i-1}^{n}) - (\hat{\phi}_{i}^{n} + \epsilon_{i}^{n})] + \Delta t S_{\phi_{i}}^{n} & if \quad a > 0 \\ (\hat{\phi}_{i}^{n} + \epsilon_{i}^{n}) + a \frac{\Delta t}{\Delta x} [(\hat{\phi}_{i}^{n} + \epsilon_{i}^{n}) - (\hat{\phi}_{i+1}^{n} + \epsilon_{i+1}^{n})] + \Delta t S_{\phi_{i}}^{n} & if \quad a < 0 \end{cases}$$

$$\phi_i^{n+1} = \begin{cases} \phi_i^n + a \frac{\Delta t}{\Delta x} (\phi_{i-1}^n - \phi_i^n) + \Delta t S_{\phi_i}^n & if \ a > 0 \\ \phi_i^n + a \frac{\Delta t}{\Delta x} (\phi_i^n - \phi_{i+1}^n) + \Delta t S_{\phi_i}^n & if \ a < 0 \end{cases}$$

The discretized governing equation for IVP with explicit scheme can be written as.

$$(\hat{\phi}_{i}^{n+1} + \epsilon_{i}^{n+1}) = \begin{cases} (\hat{\phi}_{i}^{n} + \epsilon_{i}^{n}) + a \frac{\Delta t}{\Delta x} [(\hat{\phi}_{i-1}^{n} + \epsilon_{i-1}^{n}) - (\hat{\phi}_{i}^{n} + \epsilon_{i}^{n})] + \Delta t S_{\phi_{i}}^{n} & if \quad a > 0 \\ (\hat{\phi}_{i}^{n} + \epsilon_{i}^{n}) + a \frac{\Delta t}{\Delta x} [(\hat{\phi}_{i}^{n} + \epsilon_{i}^{n}) - (\hat{\phi}_{i+1}^{n} + \epsilon_{i+1}^{n})] + \Delta t S_{\phi_{i}}^{n} & if \quad a < 0 \end{cases}$$

Thus, the discretized finite difference equation for exact solution $(\hat{\phi})$ can be written as.

$$\hat{\phi}_{i}^{n+1} = \begin{cases} \hat{\phi}_{i}^{n} + a \frac{\Delta t}{\Delta x} (\hat{\phi}_{i-1}^{n} - \hat{\phi}_{i}^{n}) + \Delta t S_{\phi_{i}}^{n} & if \ a > 0 \\ \hat{\phi}_{i}^{n} + a \frac{\Delta t}{\Delta x} (\hat{\phi}_{i}^{n} - \hat{\phi}_{i+1}^{n}) + \Delta t S_{\phi_{i}}^{n} & if \ a < 0 \end{cases}$$

Thus the error equation can be represented as,

$$\epsilon_i^{n+1} = \begin{cases} \epsilon_i^n + a \frac{\Delta t}{\Delta x} (\epsilon_{i-1}^n - \epsilon_i^n) & if \quad a > 0 \\ \epsilon_i^n + a \frac{\Delta t}{\Delta x} (\epsilon_{i}^n - \epsilon_{i+1}^n) & if \quad a < 0 \end{cases}$$

Thus the error equation can be represented as,

$$\epsilon_i^{n+1} = \begin{cases} \epsilon_i^n + a \frac{\Delta t}{\Delta x} (\epsilon_{i-1}^n - \epsilon_i^n) & if \quad a > 0 \\ \epsilon_i^n + a \frac{\Delta t}{\Delta x} (\epsilon_i^n - \epsilon_{i+1}^n) & if \quad a < 0 \end{cases}$$

$$\begin{split} \epsilon_i^{n+1} &= A^{n+1} e^{\sqrt{-1}i\varphi_x} \\ \epsilon_i^n &= A^n e^{\sqrt{-1}i\varphi_x} \\ \epsilon_{i-1}^n &= A^n e^{\sqrt{-1}(i-1)\varphi_x} \\ \epsilon_{i+1}^n &= A^n e^{\sqrt{-1}(i+1)\varphi_x} \end{split}$$

$$G = \frac{\epsilon_i^{n+1}}{\epsilon_i^n} = \begin{cases} 1 + a \frac{\Delta t}{\Delta x} \left(\frac{\epsilon_{i-1}^n}{\epsilon_i^n} - 1 \right) & if \quad a > 0 \\ 1 + a \frac{\Delta t}{\Delta x} \left(1 - \frac{\epsilon_{i+1}^n}{\epsilon_i^n} \right) & if \quad a < 0 \end{cases}$$

$$G = \frac{\epsilon_i^{n+1}}{\epsilon_i^n} = \begin{cases} 1 + a \frac{\Delta t}{\Delta x} \left(\frac{\epsilon_{i-1}^n}{\epsilon_i^n} - 1 \right) & \text{if } a > 0 \\ 1 + a \frac{\Delta t}{\Delta x} \left(1 - \frac{\epsilon_{i+1}^n}{\epsilon_i^n} \right) & \text{if } a < 0 \end{cases}$$

$$G = \frac{\epsilon_i^{n+1}}{\epsilon_i^n} = \begin{cases} 1 + a \frac{\Delta t}{\Delta x} (e^{-\sqrt{-1}\varphi_x} - 1) & \text{if } a > 0 \\ 1 + a \frac{\Delta t}{\Delta x} (1 - e^{\sqrt{-1}\varphi_x}) & \text{if } a < 0 \end{cases}$$

where $Cr = |a| \frac{\Delta t}{\Delta - 1}$.

$$G = \frac{\epsilon_i^{n+1}}{\epsilon_i^n} = \begin{cases} 1 + a \frac{\Delta t}{\Delta x} \left(\frac{\epsilon_{i-1}^n}{\epsilon_i^n} - 1 \right) & \text{if } a > 0 \\ 1 + a \frac{\Delta t}{\Delta x} \left(1 - \frac{\epsilon_{i+1}^n}{\epsilon_i^n} \right) & \text{if } a < 0 \end{cases}$$

$$G = \frac{\epsilon_i^{n+1}}{\epsilon_i^n} = \begin{cases} 1 + a \frac{\Delta t}{\Delta x} (e^{-\sqrt{-1}\varphi_x} - 1) & \text{if } a > 0 \\ 1 + a \frac{\Delta t}{\Delta x} (1 - e^{\sqrt{-1}\varphi_x}) & \text{if } a < 0 \end{cases}$$

Dr. Anirban Dhar

$$G = \frac{\epsilon_i^{n+1}}{\epsilon_i^n} = \begin{cases} 1 + a \frac{\Delta t}{\Delta x} \left(\frac{\epsilon_{i-1}^n}{\epsilon_i^n} - 1 \right) & if \quad a > 0 \\ 1 + a \frac{\Delta t}{\Delta x} \left(1 - \frac{\epsilon_{i+1}^n}{\epsilon_i^n} \right) & if \quad a < 0 \end{cases}$$

$$G = \frac{\epsilon_i^{n+1}}{\epsilon_i^n} = \begin{cases} 1 + a \frac{\Delta t}{\Delta x} (e^{-\sqrt{-1}\varphi_x} - 1) & if \quad a > 0 \\ 1 + a \frac{\Delta t}{\Delta x} (1 - e^{\sqrt{-1}\varphi_x}) & if \quad a < 0 \end{cases}$$

where $Cr = |a| \frac{\Delta t}{\Delta x}$.

$$G = \frac{\epsilon_i^{n+1}}{\epsilon_i^n} = \begin{cases} \underbrace{\left[(1-Cr) + Cr\cos\varphi_x \right]}_{\text{Re G}} + \sqrt{-1} \underbrace{\left[-Cr\sin\varphi_x \right]}_{\text{Im G}} & if \quad a > 0 \\ \underbrace{\left[(1-Cr) + Cr\cos\varphi_x \right]}_{\text{Re G}} + \sqrt{-1} \underbrace{\left[Cr\sin\varphi_x \right]}_{\text{Im G}} & if \quad a < 0 \end{cases}$$

Courant-Friedrichs-Lewy Condition

The modulus of amplification factor can be written as,

$$|G|^2 = [(1 - Cr) + Cr\cos\varphi_x]^2 + [Cr\sin\varphi_x]^2$$
$$= 1 + 4Cr(Cr - 1)\sin^2\frac{\varphi_x}{2}$$

Courant-Friedrichs-Lewy Condition

The modulus of amplification factor can be written as,

$$|G|^2 = [(1 - Cr) + Cr\cos\varphi_x]^2 + [Cr\sin\varphi_x]^2$$

= 1 + 4Cr(Cr - 1) \sin^2\frac{\varphi_x}{2}

 $\mbox{CFL Condition: } 0 < Cr \leq 1$

Explicit Scheme is Conditionally Stable.

Courant-Friedrichs-Lewy Condition

CFL Condition: $0 < Cr \le 1$

Governing Equation

$$\frac{\partial \phi}{\partial t}\Big|_{i}^{n+1} + \frac{\partial \mathcal{F}_{\phi}}{\partial x}\Big|_{i}^{n+1} = S_{\phi}\Big|_{i}^{n+1} \tag{5}$$

Governing Equation

$$\frac{\partial \phi}{\partial t} \Big|_{i}^{n+1} + \frac{\partial \mathcal{F}_{\phi}}{\partial x} \Big|_{i}^{n+1} = S_{\phi} \Big|_{i}^{n+1} \tag{5}$$

Time Discretization

$$\frac{\partial \phi}{\partial t} = \frac{\phi_i^{n+1} - \phi_i^n}{\Delta t} + \mathcal{O}(\Delta t)$$

Governing Equation

$$\frac{\partial \phi}{\partial t}\Big|_{i}^{n+1} + \frac{\partial \mathcal{F}_{\phi}}{\partial x}\Big|_{i}^{n+1} = S_{\phi}\Big|_{i}^{n+1} \tag{5}$$

Time Discretization

$$\frac{\partial \phi}{\partial t} = \frac{\phi_i^{n+1} - \phi_i^n}{\Delta t} + \mathcal{O}(\Delta t)$$

Space Discretization

$$\frac{\partial \mathcal{F}_{\phi}}{\partial x} = \begin{cases} \frac{\mathcal{F}_{\phi_i^{n+1}} - \mathcal{F}_{\phi_{i-1}^{n+1}} + \mathcal{O}(\Delta x) & if \quad \lambda_i^{n+1} > 0\\ \frac{\Delta x}{\Delta x} + \mathcal{O}(\Delta x) & if \quad \lambda_i^{n+1} \leq 0\\ \frac{\mathcal{F}_{\phi_{i+1}^{n+1}} - \mathcal{F}_{\phi_i^{n+1}}}{\Delta x} + \mathcal{O}(\Delta x) & if \quad \lambda_i^{n+1} \leq 0 \end{cases}$$

Source Term

$$S_{\phi} = S_{\phi i}^{n+1}$$

Source Term

$$S_{\phi} = S_{\phi_i}^{n+1}$$

Final solution can be written as.

$$\phi_i^{n+1} = \begin{cases} \phi_i^n + \frac{\Delta t}{\Delta x} (\mathcal{F}_{\phi_{i-1}}^{n+1} - \mathcal{F}_{\phi_i}^{n+1}) + \Delta t S_{\phi_i}^{n+1} & if \quad \lambda_i^n > 0 \\ \phi_i^n + \frac{\Delta t}{\Delta x} (\mathcal{F}_{\phi_i}^{n+1} - \mathcal{F}_{\phi_{i+1}}^{n+1}) + \Delta t S_{\phi_i}^{n+1} & if \quad \lambda_i^n \le 0 \end{cases}$$

$$\phi_i^{n+1} = \begin{cases} \phi_i^n + a \frac{\Delta t}{\Delta x} (\phi_{i-1}^{n+1} - \phi_i^{n+1}) + \Delta t S_{\phi_i}^{n+1} & if \ a > 0 \\ \phi_i^n + a \frac{\Delta t}{\Delta x} (\phi_i^{n+1} - \phi_{i+1}^{n+1}) + \Delta t S_{\phi_i}^{n+1} & if \ a < 0 \end{cases}$$

$$\phi_i^{n+1} = \begin{cases} \phi_i^n + a \frac{\Delta t}{\Delta x} (\phi_{i-1}^{n+1} - \phi_i^{n+1}) + \Delta t S_{\phi_i}^{n+1} & if \ a > 0 \\ \phi_i^n + a \frac{\Delta t}{\Delta x} (\phi_i^{n+1} - \phi_{i+1}^{n+1}) + \Delta t S_{\phi_i}^{n+1} & if \ a < 0 \end{cases}$$

The discretized governing equation for IVP with implicit scheme can be written as,

$$\hat{\phi}_i^{n+1} + \epsilon_i^{n+1} = \begin{cases} (\hat{\phi}_i^n + \epsilon_i^n) + \frac{a\Delta t}{\Delta x} [(\hat{\phi}_{i-1}^{n+1} + \epsilon_{i-1}^{n+1}) - (\hat{\phi}_i^{n+1} + \epsilon_i^{n+1})] + \Delta t S_{\phi_i}^{n+1} & if \ a > 0 \\ (\hat{\phi}_i^n + \epsilon_i^n) + \frac{a\Delta t}{\Delta x} [(\hat{\phi}_i^{n+1} + \epsilon_i^{n+1}) - (\hat{\phi}_{i+1}^{n+1} + \epsilon_{i+1}^{n+1})] + \Delta t S_{\phi_i}^{n+1} & if \ a < 0 \end{cases}$$

$$\phi_i^{n+1} = \begin{cases} \phi_i^n + a \frac{\Delta t}{\Delta x} (\phi_{i-1}^{n+1} - \phi_i^{n+1}) + \Delta t S_{\phi_i}^{n+1} & if \ a > 0 \\ \phi_i^n + a \frac{\Delta t}{\Delta x} (\phi_i^{n+1} - \phi_{i+1}^{n+1}) + \Delta t S_{\phi_i}^{n+1} & if \ a < 0 \end{cases}$$

The discretized governing equation for IVP with implicit scheme can be written as,

$$\hat{\phi}_i^{n+1} + \epsilon_i^{n+1} = \begin{cases} (\hat{\phi}_i^n + \epsilon_i^n) + \frac{a\Delta t}{\Delta x} [(\hat{\phi}_{i-1}^{n+1} + \epsilon_{i-1}^{n+1}) - (\hat{\phi}_i^{n+1} + \epsilon_i^{n+1})] + \Delta t S_{\phi_i}^{n+1} & if \ a > 0 \\ (\hat{\phi}_i^n + \epsilon_i^n) + \frac{a\Delta t}{\Delta x} [(\hat{\phi}_i^{n+1} + \epsilon_i^{n+1}) - (\hat{\phi}_{i+1}^{n+1} + \epsilon_{i+1}^{n+1})] + \Delta t S_{\phi_i}^{n+1} & if \ a < 0 \end{cases}$$

Thus, the discretized finite difference equation for exact solution $(\hat{\phi})$ can be written as,

$$\hat{\phi}_i^{n+1} = \begin{cases} \hat{\phi}_i^n + a \frac{\Delta t}{\Delta x} (\hat{\phi}_{i-1}^{n+1} - \hat{\phi}_i^{n+1}) + \Delta t S_{\phi_i^{n+1}} & if \ a > 0 \\ \hat{\phi}_i^n + a \frac{\Delta t}{\Delta x} (\hat{\phi}_i^{n+1} - \hat{\phi}_{i+1}^{n+1}) + \Delta t S_{\phi_i^{n+1}} & if \ a < 0 \end{cases}$$

$$\epsilon_i^{n+1} = \begin{cases} \epsilon_i^n + a \frac{\Delta t}{\Delta x} (\epsilon_{i-1}^{n+1} - \epsilon_i^{n+1}) & if \quad a > 0 \\ \epsilon_i^n + a \frac{\Delta t}{\Delta x} (\epsilon_i^{n+1} - \epsilon_{i+1}^{n+1}) & if \quad a < 0 \end{cases}$$

$$\epsilon_i^{n+1} = \begin{cases} \epsilon_i^n + a \frac{\Delta t}{\Delta x} (\epsilon_{i-1}^{n+1} - \epsilon_i^{n+1}) & if \quad a > 0 \\ \epsilon_i^n + a \frac{\Delta t}{\Delta x} (\epsilon_i^{n+1} - \epsilon_{i+1}^{n+1}) & if \quad a < 0 \end{cases}$$

$$G = \frac{\epsilon_i^{n+1}}{\epsilon_i^n} = \begin{cases} 1 + a \frac{\Delta t}{\Delta x} \left(\frac{\epsilon_{i-1}^{n+1}}{\epsilon_i^n} - \frac{\epsilon_i^{n+1}}{\epsilon_i^n} \right) & if \quad a > 0 \\ 1 + a \frac{\Delta t}{\Delta x} \left(\frac{\epsilon_{i-1}^{n+1}}{\epsilon_i^n} - \frac{\epsilon_{i+1}^{n+1}}{\epsilon_i^n} \right) & if \quad a < 0 \end{cases}$$

$$\epsilon_i^{n+1} = \begin{cases} \epsilon_i^n + a \frac{\Delta t}{\Delta x} (\epsilon_{i-1}^{n+1} - \epsilon_i^{n+1}) & if \quad a > 0 \\ \epsilon_i^n + a \frac{\Delta t}{\Delta x} (\epsilon_i^{n+1} - \epsilon_{i+1}^{n+1}) & if \quad a < 0 \end{cases}$$

$$G = \frac{\epsilon_i^{n+1}}{\epsilon_i^n} = \begin{cases} 1 + a \frac{\Delta t}{\Delta x} \left(\frac{\epsilon_{i-1}^{n+1}}{\epsilon_i^n} - \frac{\epsilon_i^{n+1}}{\epsilon_i^n} \right) & if \quad a > 0 \\ 1 + a \frac{\Delta t}{\Delta x} \left(\frac{\epsilon_{i-1}^{n+1}}{\epsilon_i^n} - \frac{\epsilon_{i+1}^{n+1}}{\epsilon_i^n} \right) & if \quad a < 0 \end{cases}$$

$$Cr = |a| \frac{\Delta t}{\Delta x}$$

$$G = \begin{cases} 1 + CrG(e^{-\sqrt{-1}\varphi_x} - 1) & \text{if } a > 0 \\ 1 + CrG(e^{\sqrt{-1}\varphi_x} - 1) & \text{if } a < 0 \end{cases}$$

$$\epsilon_i^{n+1} = \begin{cases} \epsilon_i^n + a \frac{\Delta t}{\Delta x} (\epsilon_{i-1}^{n+1} - \epsilon_i^{n+1}) & if \quad a > 0 \\ \epsilon_i^n + a \frac{\Delta t}{\Delta x} (\epsilon_i^{n+1} - \epsilon_{i+1}^{n+1}) & if \quad a < 0 \end{cases}$$

$$G = \frac{\epsilon_i^{n+1}}{\epsilon_i^n} = \begin{cases} 1 + a \frac{\Delta t}{\Delta x} \left(\frac{\epsilon_{i-1}^{n+1}}{\epsilon_i^n} - \frac{\epsilon_i^{n+1}}{\epsilon_i^n} \right) & if \quad a > 0 \\ 1 + a \frac{\Delta t}{\Delta x} \left(\frac{\epsilon_{i-1}^{n+1}}{\epsilon_i^n} - \frac{\epsilon_{i+1}^{n+1}}{\epsilon_i^n} \right) & if \quad a < 0 \end{cases}$$

$$Cr = |a| \frac{\Delta t}{\Delta x}$$

$$G = \begin{cases} 1 + CrG(e^{-\sqrt{-1}\varphi_x} - 1) & \text{if } a > 0\\ 1 + CrG(e^{\sqrt{-1}\varphi_x} - 1) & \text{if } a < 0 \end{cases}$$

$$G = \begin{cases} [1 - Cr(e^{-\sqrt{-1}\varphi_x} - 1)]^{-1} & \text{if } a > 0\\ [1 - Cr(e^{\sqrt{-1}\varphi_x} - 1)]^{-1} & \text{if } a < 0 \end{cases}$$

$$G = [1 - Cr(e^{-\sqrt{-1}\varphi_x} - 1)]^{-1}$$

$$G = [1 - Cr(e^{-\sqrt{-1}\varphi_x} - 1)]^{-1}$$

$$G = \frac{1}{1 - Cr(\cos\varphi_x - \sqrt{-1}\sin\varphi_x - 1)}$$

$$G = [1 - Cr(e^{-\sqrt{-1}\varphi_x} - 1)]^{-1}$$

$$G = \frac{1}{1 - Cr(\cos\varphi_x - \sqrt{-1}\sin\varphi_x - 1)}$$

$$|G|^2 = G.G^*$$

$$G = \frac{1}{1 - Cr(\cos\varphi_x - \sqrt{-1}\sin\varphi_x - 1)}$$
$$|G|^2 = G.G^*$$
$$|G|^2 = \frac{1}{(1 + Cr - Cr\cos\varphi_x) + \sqrt{-1}(Cr\sin\varphi_x)} \frac{1}{(1 + Cr - Cr\cos\varphi_x) - \sqrt{-1}(Cr\sin\varphi_x)}$$

 $G = [1 - Cr(e^{-\sqrt{-1}\varphi_x} - 1)]^{-1}$

$$G = \frac{1}{1 - Cr(\cos\varphi_x - \sqrt{-1}\sin\varphi_x - 1)}$$

$$|G|^2 = G.G^*$$

$$|G|^2 = \frac{1}{(1 + Cr - Cr\cos\varphi_x) + \sqrt{-1}(Cr\sin\varphi_x)} \frac{1}{(1 + Cr - Cr\cos\varphi_x) - \sqrt{-1}(Cr\sin\varphi_x)}$$

$$|G|^2 = \frac{1}{(1 + Cr - Cr\cos\varphi_x)^2 + (Cr\sin\varphi_x)^2}$$

 $G = [1 - Cr(e^{-\sqrt{-1}\varphi_x} - 1)]^{-1}$

$$G = \frac{1}{1 - Cr(\cos\varphi_x - \sqrt{-1}\sin\varphi_x - 1)}$$

$$|G|^2 = G.G^*$$

$$|G|^2 = \frac{1}{(1 + Cr - Cr\cos\varphi_x) + \sqrt{-1}(Cr\sin\varphi_x)} \frac{1}{(1 + Cr - Cr\cos\varphi_x) - \sqrt{-1}(Cr\sin\varphi_x)}$$

$$|G|^2 = \frac{1}{(1 + Cr - Cr\cos\varphi_x)^2 + (Cr\sin\varphi_x)^2}$$

$$|G|^2 = \frac{1}{1 + 4Cr(Cr + 1)\sin^2\frac{\varphi_x}{2}}$$

 $G = [1 - Cr(e^{-\sqrt{-1}\varphi_x} - 1)]^{-1}$

Thus |G| < 1 even for extreme conditions.

$$G = \frac{1}{1 - Cr(\cos\varphi_x - \sqrt{-1}\sin\varphi_x - 1)}$$

$$|G|^2 = G.G^*$$

$$|G|^2 = \frac{1}{(1 + Cr - Cr\cos\varphi_x) + \sqrt{-1}(Cr\sin\varphi_x)} \frac{1}{(1 + Cr - Cr\cos\varphi_x) - \sqrt{-1}(Cr\sin\varphi_x)}$$

$$|G|^2 = \frac{1}{(1 + Cr - Cr\cos\varphi_x)^2 + (Cr\sin\varphi_x)^2}$$

$$|G|^2 = \frac{1}{1 + 4Cr(Cr + 1)\sin^2\frac{\varphi_x}{2}}$$

 $G = [1 - Cr(e^{-\sqrt{-1}\varphi_x} - 1)]^{-1}$

Thus |G| < 1 even for extreme conditions. Implicit Scheme is Unconditionally Stable.

Thank You

References

Guinot, V. (2010). Scalar Hyperbolic Conservation Laws in One Dimension of Space, pages 1-53. ISTE.