Package 'SBICgraph'

October 12, 2022
Title Structural Bayesian Information Criterion for Graphical Models
Version 1.0.0
Description This is the implementation of the novel structural Bayesian information criterion by Zhou, 2020 (under review). In this method, the prior structure is modeled and incorporated into the Bayesian information criterion framework. Additionally, we also provide the implementation of a two-step algorithm to generate the candidate model pool.
License GPL-3
Encoding UTF-8
LazyData true
Imports glmnet, MASS, network
RoxygenNote 7.1.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Quang Nguyen [cre, aut] (https://orcid.org/0000-0002-2072-3279), Jie Zhou [aut], Anne Hoen [aut], Jiang Gui [aut]
Maintainer Quang Nguyen <quang.p.nguyen.gr@dartmouth.edu></quang.p.nguyen.gr@dartmouth.edu>
Repository CRAN
Date/Publication 2021-03-02 19:10:09 UTC
R topics documented:
addition 2 comparison 2 deletion 3 mle 4

2 comparison

sbic			 																		
sggm																					
simulate			 																		

Index 9

addition

Enrichment step for constructing the model pool

Description

This is the esnrichment step in the two-step algorithm to construct the model pool (internal use only)

Usage

```
addition(data, lambda, P)
```

Arguments

data
An n by p matrix of observations

lambda
Vector of tuning parameter

P
Prior adjacency matrix

Value

A list of model objects

Author(s)

Jie Zhou

comparison

Comparing the real and estimated adjacency matrix

Description

Comparing the two adjacency matrices for false discovery rate and positive selection rate. Used for model validation

Usage

```
comparison(real, estimate)
```

deletion 3

Arguments

real The real matrix p by p adjacency matrix likely from simulated data

estimate The estimated matrix p by p adjacency matrix likely estimated using the SBIC

procedure

Value

A list of the following evaluation metrics

PSR Positive Selection Rate
FDR False Discovery rate

Author(s)

Jie Zhou

deletion

Pruning step for constructing the model pool

Description

This is the pruning step in the two-step algorithm to construct the model pool (internal use only)

Usage

```
deletion(data, lambda, P)
```

Arguments

data An n by p matrix of observations

lambda Vector of tuning parameter

P Prior adjacency matrix

Value

A list of model objects

Author(s)

Jie Zhou

4 mle

mle	Estimate the precision matrix for multivariate normal distribution with
	given adjacency matrix using maximum likelihood

Description

This function find the maximum likelihood estimate of the precision matrix with given adjacency matrix for multivariate normal distribution.

Usage

```
mle(data, priori)
```

Arguments

data An n by p dataframe representing the observations

priori A p by p matrix representing the given adjacency matrix

Details

The methods are based on the relationship between precision matrix of the multivariate normal distribution and regression coefficients.

Value

Returns a p by p matrix estimate of the precision matrix

Author(s)

Jie Zhou

```
set.seed(1)
d=simulate(n=100,p=200, m1=100, m2=30)
data=d$data
priori=d$realnetwork
precision=mle(data=data,priori=priori)
```

modelset 5

modelset	Construct model pool using the two-step algorithm

Description

For a given prior graph, the two-step algorithm, including edge enrichment and pruning, is used to construct the model pool

Usage

```
modelset(data, lambda, P)
```

Arguments

data A n by p data frame of observations

 lambda
 Tuning parameter vector

 P
 Prior adjacency matrix

Value

A list including all the candidate models in the model pool. Each model is represented by a p by p adjacency matrix

Author(s)

Jie Zhou

```
set.seed(1)
d=simulate(n=100, p=100, m1 = 100, m2 = 30)
data=d$data
P=d$priornetwork
lambda=exp(seq(-5,5,length=100))
candidates=modelset(data=data,lambda=lambda, P=P)
```

6 sbic

sbic	Structural Bayesian information criterion for multivariate normal data with a given graph structure
	aata wiin a given graph structure

Description

This function estimates the novel structural Bayesian information criterion given the data and a given graph structure

Usage

```
sbic(data, theta, prob, P)
```

Arguments

data A	An by p dataframe:	representing observations
--------	--------------------	---------------------------

theta The p by p matrix representing the given graph structure

prob The expected error rate

P The prior adjacency matrix

Value

The value of sbic with given temperature parameter and prior adjacency matrix

Author(s)

Jie Zhou

```
set.seed(1)
d=simulate(n=100, p=100, m1 = 100, m2 = 30)
data=d$data
P=d$priornetwork
theta=d$realnetwork
prob=0.15
index=sbic(data=data, theta=theta, prob=prob, P=P)
```

sggm 7

sggm

Model selection of Gaussian graphical model based on SBIC

Description

Select the model based on the SBIC criterion and the two-step algorithm

Usage

```
sggm(data, lambda, M, prob)
```

Arguments

data An n by p dataframe representing the observations

lambda A vector of tuning parameters used to build the model pool

M The prior adjacency matrix

prob The mean error rate

Value

A list of objects containing:

networkhat The final selected adjacency matrix

candidates The model pool

Author(s)

Jie Zhou

```
set.seed(1)
m1 = 100
m2 = 30
p = 100
n = 100
d=simulate(n=n,p=p, m1 = m1, m2 = m2) # simulate fake data
lambda=exp(seq(-5,5,length=100)) # tuning parameter
data=d$data # data from the simulation
M=d$priornetwork # prior network from simulation
# calculating the error rate
r1=m2/m1
r2=m2/(p*(p-1)/2-m1)
r=(r1+r2)/2
# apply sggm
result=sggm(data=data, lambda=lambda, M=M, prob=r)
# compare the final network and the true network
```

8 simulate

result\$networkhat
d\$realnetwork

simulate	Randomly generate a adjacency matrix based on which to simulate data
	aata

Description

According to a given edge density, first generate the adjacency matrix P of a graph. Based on P, the simulated multivariate normal data is generated with mean zero and a specified given precision matrix

Usage

```
simulate(n, p, m1, m2)
```

Arguments

n	Sample size
p	The number of vertices in graph or the number of variables
m1	The number of edges in the true graph
m2	The number of elements in adjacency matrix that stay in different states, i.e., $\boldsymbol{0}$ or 1, in true and prior graphs

Value

A list including the simulated data, real adjacency matrix and a prior adjacency matrix

data simulated data
realnetwork real adjacency matrix
priornetowrk prior adjacency matrix

Author(s)

Jie Zhou

```
set.seed(1)
d=simulate(n=100,p=200, m1=100, m2=30)
d$data
d$realnetwork
d$priornetwork
```

Index

```
addition, 2
comparison, 2
deletion, 3
mle, 4
modelset, 5
sbic, 6
sggm, 7
simulate, 8
```