Table S1. Product makeup and application information for the high-input system used during 2009 to 2014.

				Application	
Product†	Product component	Active ingredient	Growth stage	Product rate	Sprayer volume
Seed applied				mL kg seed ⁻¹	
Vault (2009-2011)	Inoculant	Bradyrhizobium japonicum	seed	2.69	
Acceleron§	fungicide	pyraclostrobin + metalaxyl	seed	1.04	_
Trilex 2000§ (2009-2012)	fungicide	trifloxystrobin + metalaxyl	seed	0.65	_
EverGol Energy + Precise§ (2013–2014)	fungicide	prothioconazole + penflufen + metalaxyl	seed	0.65	-
Acceleron	insecticide	imidacloprid	seed	2.60	-
Poncho/VOTiVO (2012- 2014)	insecticide + nematistat	clothianidin + Bacillus firmus	seed	0.64	-
Optimize (2012-2014)	LCO	lipo-chitooligosaccharide	seed	1.83	_
Soil applied				kg ha⁻¹	-
Superphosphate (2009-2011)	phosphorus	0-46-0	Pre-plant	85	-
Potassium Sulfate (2009-2011)	Potassium + Sulphur	0-0-53-178	Pre-plant	57 and 18	-
Zinc Sulfate (2009-2011)	Zinc	30% Zn	Pre-plant	0.6	_
Boron fertilizer (2009-2011)	Boron	17.5% B	Pre-plant	0.6	_
Manganese Sulfate (2009-2011)	Manganese	26% MN	Pre-plant	2.4	-
Urea¶ (2012-2014)	nitrogen	46-0-0%N-P ₂ O ₅ -K ₂ O	V4	84	-
ESN (20012-2014)	nitrogen	44-0-0%N-P ₂ O ₅ -K ₂ O	V4	84	-
Foliar applied				mL ha ⁻¹	L ha ⁻¹
Ratchet (2013-2014)	LCO	lipo-chitooligosaccharide	V4-V6	292	140
Task Force	fertilizer	11-8-5-0.1-0.05-0.04-0.04-0.02	- R1	4676	140
		0.00025-0.00025% N-P ₂ O ₅ - K ₂ O-Fe-Mn-Zn-B-Co-Mo			
Bio-Forge (2012-2014)	antioxidant	N,N'-diformyl urea	R3	1169	187
Headline (2009-2012)	fungicide	pyraclostrobin	R3	438	187
Priaxor (2013–2014)	fungicide	fluxapyroxad + pyraclostrobin	R3	585	187
Warrior II (2012)	insecticide	lambda-cyhalothrin	R3	140	187
Endigo (2013–2014)	insecticide	lambda-cyhalothrin + thiamethoxam	R3	292	187

[†] Acceleron (Monsanto Co., St. Louis, MO); Trilex 2000, EverGol Energy + Precise, Poncho/VOTiVO (Bayer Crop Science, Research Triangle Park, NC); Optimize (Novozymes, Brookfield, WI); ESN[environmentally smart nitrogen (polymer-coated urea)] (Agrium, Calgary, Alberta, Canada); Ratchet (Novozymes, Brookfield, WI); Task Force 2 (Loveland Products, Inc., Greeley, CO); Bio-Forge (Stoller USA, Inc., Houston, TX); Headline and Vault (BASF Corp., Florham Park, NJ) used in 2012; Priaxor (BASF Corp., Florham Park, NJ) used in 2013–2014; Warrior II used in 2012; Endigo used in 2013–2014 (Syngenta Crop Protection, LLC, Greensboro, NC).

[‡] For all input systems, fertilizers and herbicides were applied according to university best management recommendations.

[§] Acceleron fungicide was applied to all Monsanto Co. related cultivars [Asgrow, Channel, Kruger, Gold Country, Stewart]; Trilex 2000 used in 2009-2012 and EverGol Energy + Precise used in 2013–2014 was applied to all Pioneer Hi-Bred International, Inc. related cultivars.

[¶] Treated with Agrotain [N-(n-butyl) thiophosphoric triamide] at 3.1 mL kg urea⁻¹.

Table S2. Mean yield and posterior summaries with 95% high posterior density (HPD) intervals for the yield difference between the "high" and "low" input management systems within each state.

	Mean yield	Mean yield	Percent of	Standard			†Probability (%) for
State	(kg/ha)	difference (kg/ha)	mean yield	Deviation	95% HPD	Interval	yield difference >0
AR	4325	353	8.2	83	186	507	100
IA	4460	283	6.3	80	122	438	100
IL	4177	372	8.9	141	101	650	100
IN	4302	429	10.0	142	156	712	100
KS	3892	-191	-4.9	202	-574	204	17
KY	3792	431	11.4	80	276	584	100
LA	2930	216	7.4	119	-12	456	97
MI	3564	398	11.2	88	229	580	100
MN	4275	541	12.7	92	350	712	100
WI	4749	576	12.1	142	286	840	100

[†]Probability for yield difference > 0 in the posterior sample distribution (n=5,100).

Table S3. Posterior summaries and 95% high posterior density (HPD) intervals for the yield variance difference ($x10^3$) between the "high" and "low" input management systems within each state.

	Mean yield	Standard			†Probability (%) for yield
State	variance difference	Deviation	95% HPE) Interval	variance difference >0
AR	-46	35	-113	22	10
IA	54	34	-14	118	94
IL	42	59	-72	159	76
IN	58	60	-56	178	84
KS	-3	85	-164	163	49
KY	94	34	29	158	100
LA	-15	50	-108	88	38
MI	19	37	-52	95	70
MN	-39	39	-117	35	16
WI	21	59	-101	131	64

[†]Probability for yield variance difference > 0 in the posterior sample distribution (n=5,100).

Table S4. Posterior summaries and 95% high posterior density (HPD) intervals for the yield skewness $(x10^6)$ in the "high" and "low" input management systems within each state.

State	Input system	Mean yield skewness	Standard Deviation	95% HPI) Interval	†Probability (%) for yield skewness < 0
	high	-4	28	-59	49	56
AR	low	5	28	-49	58	42
	high	7	27	-46	59	40
IA	low	-20	27	-73	31	77
	high	22	47	-70	114	32
IL	low	6	47	-83	104	44
INI	high	7	47	-84	99	44
IN	low	-1	48	-93	94	50
KS	high	50	68	-82	182	23
K3	low	-39	67	-167	95	72
KY	high	1	27	-53	52	48
Νī	low	4	26	-49	53	44
ι Δ	high	-22	40	-99	57	71
LA	low	-4	39	-81	73	55
MI	high	-12	30	-69	49	66
IVII	low	-7	30	-65	51	59
MN	high	-1	31	-61	60	51
IVIIN	low	-28	32	-91	33	81
WI	high	-15	47	-105	79	62
VVI	low	13	48	-75	111	40

[†]Probability for yield skewness < 0 in the posterior sample distribution (n=5,100).

Table S5. Posterior summaries and 95% high posterior density (HPD) intervals for the yield kurtosis $(x10^9)$ in the "high" and "low" input management systems within each state.

		Mean yield	Standard			†Probability (%) for
State	Input system	kurtosis	Deviation	95% HPE) Interval	yield kurtosis > 0
AR	high	54	25	5	101	99
AK	low	87	25	39	135	100
IA	high	116	24	69	163	100
IA	low	63	24	15	108	100
IL	high	54	43	-29	137	90
IL	low	12	42	-67	100	62
IN	high	19	42	-63	101	68
IIN	low	1	43	-81	87	52
KS	high	77	61	-41	197	89
KS	low	89	60	-25	209	93
KY	high	188	24	139	233	100
K1	low	112	24	64	155	100
LA	high	29	36	-40	100	79
LA	low	33	35	-36	102	83
MI	high	34	27	-18	88	89
IVII	low	26	27	-27	77	84
MN	high	28	28	-26	83	84
IVIIN	low	75	28	18	128	99
WI	high	36	42	-45	121	80
VVI	low	35	43	-43	124	79

[†]Probability for yield kurtosis > 0 in the posterior sample distribution (n=5,100).

Table S6. Posterior summaries and 95% high posterior density (HPD) intervals for the total cost of yield risk (kg/ha) difference between the "high" and "low" input management systems within each state for risk-neutral farmer (r=3).

	Mean yield risk	Standard			†Probability (%) for
State	difference (kg/ha)	Deviation	95% HPC	Interval	yield risk difference >0
AR	-21	18	-55	15	13
IA	15	17	-19	50	81
IL	21	31	-37	83	76
IN	18	31	-42	79	72
KS	-3	44	-87	83	47
KY	30	17	-5	62	96
LA	-11	26	-58	43	34
MI	4	19	-32	44	60
MN	-21	20	-64	15	14
WI	6	31	-56	64	58

[†]Probability for total cost of risk yield difference > 0 in the posterior sample distribution (n=5,100).

Table S7. Posterior summaries and 95% high posterior density (HPD) intervals for the total cost of yield risk (kg/ha) difference between the "high" and "low" input management systems within each state for high level of risk (r=5).

	Mean yield	Standard			†Probability (%) for
State	difference (kg/ha)	Deviation	95% HPD	Interval	yield difference >0
AR	-36	36	-105	34	16
IA	27	35	-42	95	79
IL	39	61	-78	160	74
IN	30	61	-89	152	69
KS	-10	88	-178	160	45
KY	54	35	-16	118	94
LA	-18	51	-116	86	36
MI	8	38	-66	86	59
MN	-41	40	-124	34	15
WI	12	61	-114	126	58

[†]Probability for total cost of risk yield difference > 0 in the posterior sample distribution (n=5,100).

Table S8. Yield variance difference ($x10^3$) between the "high" and "low" input management systems within each state using the frequentist analysis approach.

	Mean yield variance			
State	difference	Standard Error	t Value	Pr > t
AR	-45	29	-1.54	0.1234
IA	53	29	1.86	0.0639
IL	42	58	0.72	0.4747
IN	58	9	6.57	<.0001
KS	-3	58	-0.05	0.9623
KY	93	44	2.12	0.0346
LA	-14	13	-1.1	0.2711
MI	20	4	4.74	<.0001
MN	-38	47	-0.8	0.4218
WI	21	21	0.99	0.3208

Table S9. Yield skewness (x 10^6) in the "high" and "low" input management systems within each state using the frequentist analysis approach.

	Input	Mean yield	Standard		
State	system	skewness	Error	t Value	Pr > t
AR	high	-4.0	20.1	-0.2	0.8436
An	low	4.4	10.9	0.4	0.6890
IA	high	6.3	35.2	0.18	0.8578
IA	low	-19.2	18.4	-1.04	0.2986
IL	high	22.9	29.2	0.78	0.4349
IL	low	7.0	6.5	1.08	0.2804
IN	high	7.7	3.8	2.01	0.0455
IIN	low	-0.8	1.4	-0.56	0.5738
KS	high	49.8	39.9	1.25	0.2129
KS	low	-38.6	60.6	-0.64	0.5241
KY	high	0.5	25.0	0.02	0.9829
Νī	low	4.1	28.2	0.15	0.8838
LA	high	-22.0	21.1	-1.04	0.2985
LA	low	-5.1	6.9	-0.74	0.4581
MI	high	-11.7	7.6	-1.54	0.1249
IVII	low	-7.7	6.4	-1.2	0.2309
MN	high	-0.9	10.4	-0.08	0.9331
IVIIN	low	-27.9	14.7	-1.9	0.0581
WI	high	-14.8	23.3	-0.63	0.5274
VVI	low	12.8	18.4	0.7	0.4868

Table S10. Yield kurtosis $(x10^9)$ in the "high" and "low" input management systems within each state using the frequentist analysis approach.

	Input	Mean yield	Standard		
State	system	kurtosis	Error	t Value	Pr > t
AR	high	53	16	3.33	0.001
An	low	84	23	3.67	0.0003
IA	high	115	38	3.05	0.0024
IA	low	62	29	2.11	0.0357
IL	high	55	38	1.44	0.1519
IL	low	13	7	1.8	0.073
IN	high	20	5	3.56	0.0004
IIN	low	2	0	3.53	0.0005
KS	high	78	45	1.74	0.0829
KS	low	89	30	2.95	0.0034
KY	high	187	41	4.62	<.0001
KI	low	111	41	2.73	0.0066
LA	high	30	15	2.05	0.0415
LA	low	33	9	3.52	0.0005
MI	high	33	16	2.08	0.0378
IVII	low	24	13	1.93	0.0548
MN	high	28	7	4.08	<.0001
IVIIN	low	74	38	1.93	0.054
WI	high	36	14	2.56	0.011
VVI	low	35	16	2.15	0.0322

Figure S1. Within each input cropping system, state-specific estimated cost of yield risk (risk-neutral farmer, r=3) as percent of average yield, and variance, skewness and kurtosis as percent of yield risk.

Figure S2. Distribution of total cost of yield risk (kg/ha) difference between high and low input cropping systems in each state and probability (P) for yield difference > 0 in the posterior sample distribution (n=5,100) for high level of risk aversion (r=5). Within each state, the red dash line shows the zero difference and the black line shows the mean difference (Yd).

Figure S3. Mean yield difference (kg/ha) between high and low input cropping systems in each state. The errors show the 95% confidence intervals using the frequentist analysis approach.

Figure S4. Mean cost of yield risk (kg/ha) difference between high and low input cropping systems in each state for moderate level of risk-neutral farmer (r=3) using the frequentist analysis approach. The errors show the 95% confidence intervals.

Figure S5. Mean cost of yield risk (kg/ha) difference between high and low input cropping systems in each state for high level of risk (r=5) using the frequentist analysis approach. The errors show the 95% confidence intervals.

