

Automatic Model Monitoring for Data Streams

Pedro Bizarro Fábio Pinto **Marco O.P. Sampaio**

Based on arXiv:1908.04240 and

DSPT Meetup, 26 November 2019

Motivation

Fraud prevention

Payments processing is done in many ways ⇒ wide scope for fraud activities

- ATM, payment terminals
- Online
- Virtual and physical cards

•

© 2019 Feedzai. This presentation is proprietary and confidential.

User

name ID email address

Temporal

timestamp local time expiration date issuing date

...

Location

country city IP device

...

Purchase

amount
merchant category
product
transaction type

. .

Features

User

name ID email address

Temporal

timestamp local time expiration date issuing date

...

Location

country city IP device

Purchase

amount
merchant category
product
transaction type

- - -

Features

User

name ID email address

Temporal

timestamp local time expiration date issuing date

...

Poor Sala

Coordina

Coordina

Coordina

Coordina

Plastroig

Coordina

Plastroig

Coordina

Plastroig

Coordina

Plastroig

Coordina

Albufetras

Faro

Coordina

Coo

Location

country city IP device

Purchase

amount
merchant category
product
transaction type

...

Score

Decision

Model

0.2

Features

Model

User

name ID

email address

Temporal timestamp local time expiration date issuing date

country city IP device

Purchase
amount
merchant category
product
transaction type

Score

Decision

Features

The Fraud Landscape

Examples

- Banks
- Merchants
- Payment processors

The Fraud Landscape

Examples

- Banks
- Merchants
- Payment processors

Characteristics

- Tens of millions of transactions scored in real time daily
- Hundreds of millions of people to protect worldwide
- Non-stationary data streaming environment
- Fraudsters keep changing strategies (adversarial)
- Label collection can take from days, to weeks, to even months.

- Virtual drift: Distribution of features p(X) changes
 - \rightarrow No change in p(Y|X), i.e. relation between target Y and features X

- Virtual drift: Distribution of features p(X) changes
 - \rightarrow No change in p(Y|X), i.e. relation between target Y and features X

- Real drift: Only p(Y|X) changes
 - → Classifier decision changes

- Virtual drift: Distribution of features p(X) changes
 - \rightarrow No change in p(Y|X), i.e. relation between target Y and features X

- Real drift: Only p(Y|X) changes
 - → Classifier decision changes

Drift Detection With Delayed Labels

Most approaches in literature are supervised

Drift Detection With Delayed Labels

Most approaches in literature are supervised

But:

- Fraud labels can take weeks to arrive
- We are mostly interested in detecting sudden drifts (~ hours to days)
 E.g., new attack strategy, API changes and corrupts features.
 - → In practice, long term drift in model performance is easier to detect and deal with (re-training)

Drift Detection With Delayed Labels

Most approaches in literature are supervised

But:

- Fraud labels can take weeks to arrive
- We are mostly interested in detecting sudden drifts (~ hours to days)
 E.g., new attack strategy, API changes and corrupts features.
 - → In practice, long term drift in model performance is easier to detect and deal with (re-training)

⇒ Can we automatically monitor the model in real time without labels?

1. Solution Overview

Example: A Bot Attack as Concept Drift

Time	Customer	Email	Card	Amount USD	Score
1:19pm	John Dow	my_dow1@mail.com	А	200.00	0.72
1:20pm	John Doe	my_dow2@mail.com	А	201.60	0.75
1:20pm	Jonny Dow	my_dow3@mail.com	А	200.00	0.76
1:20pm	J. Doe	my_dow4@mail.com	А	201.00	0.73
1:20pm	J. Dow	my_dow5@mail.com	А	200.00	0.80

Example: A Bot Attack as Concept Drift

- Many transactions
 in short time period
- Similar name, e-mail, amount, and same card.
- Higher risk scores.

Time	Customer	Email	Card	Amount USD	Score
1:19pm	John Dow	my_dow1@mail.com	А	200.00	0.72
1:20pm	John Doe	my_dow2@mail.com	А	201.60	0.75
1:20pm	Jonny Dow	my_dow3@mail.com	А	200.00	0.76
1:20pm	J. Doe	my_dow4@mail.com	А	201.00	0.73
1:20pm	J. Dow	my_dow5@mail.com	А	200.00	0.80

Example: A Bot Attack as Concept Drift

- Many transactions
 in short time period
- Similar name, e-mail, amount, and same card.
- Higher risk scores.

Time	Customer	Email	Card	Amount USD	Score
1:19pm	John Dow	my_dow1@mail.com	А	200.00	0.72
1:20pm	John Doe	my_dow2@mail.com	А	201.60	0.75
1:20pm	Jonny Dow	my_dow3@mail.com	А	200.00	0.76
1:20pm	J. Doe	my_dow4@mail.com	А	201.00	0.73
1:20pm	J. Dow	my_dow5@mail.com	Α	200.00	0.80

⇒ The distribution of risk scores changes.

Data stream

- unusual events
- normal events

Time

Summary of Requirements

SAMM (Streaming system for Automatic Model Monitoring)

Monitors short term drift in an unsupervised way

Provides a threshold that allows to keep false alarms under control

Provides automatic alarm reports with an explanation

To help a data scientist or analyst in figuring out what happened

2. A Closer Look

Measure of dissimilarity between distributions:

- Jensen-Shannon Divergence (JSD)
- Kolmogorov-Smirnov
- Anderson-Darling
- Kuiper's

Measure of dissimilarity between distributions:

- Jensen-Shannon Divergence (JSD)
- Kolmogorov-Smirnov
- Anderson-Darling
- Kuiper's

Measure of dissimilarity between distributions:

- Jensen-Shannon Divergence (JSD)
- Kolmogorov-Smirnov
- Anderson-Darling
- Kuiper's

Measure of dissimilarity between distributions:

- Jensen-Shannon Divergence (JSD)
- Kolmogorov-Smirnov
- Anderson-Darling
- Kuiper's

JSD = Mutual information between model score and window label

Main ingredients

SPEAR (Streaming Percentiles EstimAtoR of past signal values)

- Stochastic approximation with single pass over the data
- Constant memory

Main ingredients

SPEAR (Streaming Percentiles EstimAtoR of past signal values)

- Stochastic approximation with single pass over the data
- Constant memory

AdaSPEAR (forgets older signal values)

Main ingredients

SPEAR (Streaming Percentiles EstimAtoR of past signal values)

- Stochastic approximation with single pass over the data
- Constant memory

AdaSPEAR (forgets older signal values)

Tukey's definition of outlier

Q1 and Q3 are percentiles 25 and 75

$$T = Q3 + K (Q3 - Q1)$$

Main ingredients

SPEAR (Streaming Percentiles EstimAtoR of past signal values)

- Stochastic approximation with single pass over the data
- Constant memory

AdaSPEAR (forgets older signal values)

Tukey's definition of outlier

Q1 and Q3 are percentiles 25 and 75

$$T = Q3 + K (Q3 - Q1)$$

Main ingredients

SPEAR (Streaming Percentiles EstimAtoR of past signal values)

- Stochastic approximation with single pass over the data
- Constant memory

AdaSPEAR (forgets older signal values)

Tukey's definition of outlier

Q1 and Q3 are percentiles 25 and 75

$$T = Q3 + K (Q3 - Q1)$$

Main ingredients

SPEAR (Streaming Percentiles EstimAtoR of past signal values)

- Stochastic approximation with single pass over the data
- Constant memory

AdaSPEAR (forgets older signal values)

Tukey's definition of outlier

Q1 and Q3 are percentiles 25 and 75

$$T = Q3 + K (Q3 - Q1)$$

Main ingredients

SPEAR (Streaming Percentiles EstimAtoR of past signal values)

- Stochastic approximation with single pass over the data
- Constant memory

AdaSPEAR (forgets older signal values)

Tukey's definition of outlier

Q1 and Q3 are percentiles 25 and 75

$$T = Q3 + K (Q3 - Q1)$$

Delayed smoothing

Delayed Adaptive Threshold

For each alarm:

- Label reference = 0, and target = 1
- Train GBDT model to learn pattern that splits transactions:
 - a. Use **drift score to rank transactions** in target window
 - b. Use feature importance to rank features

Alarm Trigger Details

Reference window start: 2/03/2017 12:34 Reference window end: 5/03/2017 08:23

Target window start: 5/03/2017 08:23 Target window end: 5/03/2017 18:23

Alarm Report

Top ranked events responsible for the alarm										
transaction id	F5	F23	F2	F120	F1	F6	F7	F24	F12	F33
234	0.13	1.24	0	-23.00	4.45	-0.29	1	1	0.00	0
3432	0.14	1.24	1	0.14	1.24	0.14	0	0	0.00	1
212	9.24	3.56	1	9.24	3.56	9.24	0	0	1.33	1
867	9.24	3.56	0	0.14	0.14	0.14	0	0	0.00	0
436	3.56	217.83	0	0.23	-3242	0.23	1	1	-1.20	0
964	999.00	0.14	1	-23.00	4.45	56345	1	1	0.00	1
748	-32.42	0.23	0	0.23	0.14	1.24	1	1	0.00	0

For each alarm:

- Label reference = 0, and target = 1
- Train GBDT model to learn pattern that splits transactions:
 - a. Use drift score to rank transactions in target window
 - b. Use feature importance to rank features

But:

- Danger of achieving perfect split due to time correlated features!
- Solution: Eliminate time-correlated features.

Cross Validation

For true alarms the drift model finds a pattern

Cross Validation

For true alarms the drift model finds a pattern whereas for valleys it does not.

	Top ranked events responsible for the alarm									
transaction id	F5	F23	F2	F120	F1	F6	F7	F24	F12	F33
234	0.13	1.24	0	-23.00	4.45	-0.29	1	1	0.00	0
3432	0.14	1.24	1	0.14	1.24	0.14	0	0	0.00	1
212	9.24	3.56	1	9.24	3.56	9.24	0	0	1.33	1
867	9.24	3.56	0	0.14	0.14	0.14	0	0	0.00	0
436	3.56	217.83	0	0.23	-3242	0.23	1	1	-1.20	0
964	999.00	0.14	1	-23.00	4.45	56345	1	1	0.00	1
748	-32.42	0.23	0	0.23	0.14	1.24	1	1	0.00	0

234	0.13	1.24	0	-23.00	4.45	-0.29	1	1	0.00	0
3432	0.14	1.24	1	0.14	1.24	0.14	0	0	0.00	1
212	9.24	3.56	1	9.24	3.56	9.24	0	0	1.33	1
867	9.24	3.56	0	0.14	0.14	0.14	0	0	0.00	0
436	3.56	217.83	0	0.23	-3242	0.23	1	1	-1.20	0
964	999.00	0.14	1	-23.00	4.45	56345	1	1	0.00	1
748	-32.42	0.23	0	0.23	0.14	1.24	1	1	0.00	0

Top ranked events responsible for the alarm										
transaction id	F5	F23	F2	F120	F1	F6	F7	F24	F12	F33
007	0.04	0.50		0.11	0.44	0.11		•	0.00	
867	9.24	3.56	0	0.14	0.14	0.14	0	0	0.00	0
436	3.56	217.83	0	0.23	-3242	0.23	1	1	-1.20	0
964	999.00	0.14	1	-23.00	4.45	56345	1	1	0.00	1

234	0.13	1.24	0	-23.00	4.45	-0.29	1	1	0.00	0
3432	0.14	1.24	1	0.14	1.24	0.14	0	0	0.00	1
212	9.24	3.56	1	9.24	3.56	9.24	0	0	1.33	1
867	9.24	3.56	0	0.14	0.14	0.14	0	0	0.00	0
436	3.56	217.83	0	0.23	-3242	0.23	1	1	-1.20	0
964	999.00	0.14	1	-23.00	4.45	56345	1	1	0.00	1
748	-32.42	0.23	0	0.23	0.14	1.24	1	1	0.00	0

Top ranked events responsible for the alarm											
transaction id	F5	F23	F2	F120	F1	F6	F7	F24	F12	F33	
3432	0.14	1.24	1	0.14	1.24	0.14	0	0	0.00	1	
212	9.24	3.56	1	9.24	3.56	9.24	0	0	1.33	1	
867	9.24	3.56	0	0.14	0.14	0.14	0	0	0.00	0	
436	3.56	217.83	0	0.23	-3242	0.23	1	1	-1.20	0	
964	999.00	0.14	1	-23.00	4.45	56345	1	1	0.00	1	
748	-32.42	0.23	0	0.23	0.14	1.24	1	1	0.00	0	

Ranking Validation

Removing top ranked transactions lowers signal for alarms

Ranking Validation

Removing top ranked transactions lowers signal for alarms but not for valleys.

3. Experiments

The Datasets

Dataset	Features	Days	Transactions	Transactions per day
A1	213	212	1,046,482	4936
A2	213	212	2,667,548	12,583
A3	213	212	4,945,509	23,328
B1	279	229	4,401,807	19,221
B2	279	229	9,229,013	40,301

Table 1: Summary statistics for each dataset-region.

Experimental Design

- We generated 100 reports (20 per dataset-regions)
- We mixed a selection of true alarms and valleys
- We had two data scientists for each dataset-region (10 reports each).

Experimental Design

- We generated 100 reports (20 per dataset-regions)
- We mixed a selection of true alarms and valleys
- We had two data scientists for each dataset-region (10 reports each).

For each report, they were asked to rate from 1 to 5:

- 1. How **confident** are you that this is a **true alarm**?
- 2. How clearly can you **identify a pattern** in the transactions?
- 3. After looking at the **validation plot**, please provide a new answer to 1. (the validation plot was hidden from the user for 1 and 2).

Experimental Design

- We generated 100 reports (20 per dataset-regions)
- We mixed a selection of true alarms and valleys
- We had two data scientists for each dataset-region (10 reports each).

For each report, they were asked to rate from 1 to 5:

- 1. How **confident** are you that this is a **true alarm**?
- 2. How clearly can you **identify a pattern** in the transactions?
- 3. After looking at the **validation plot**, please provide a new answer to 1. (the validation plot was hidden from the user for 1 and 2).

Hypothesis: Reports based on alarms have higher ratings for all questions

feedzai

Results

	Q1	Q2	Q3
Aggregated	0.037	0.220	5.6e-5
Dataset A	0.037	0.037	0.003
Dataset B	0.370	0.822	0.006

Table 2: P-values for the various Mann-Whitney U tests (with Holm-Bonferroni correction for comparisons by dataset). For all tests, the α -level was set at 0.05. Values in bold represent tests where the p-value was smaller than α .

4. Conclusions

Main Takeaways

We proposed SAMM, a system to monitor ML models for data streams.

- It detects drift in an unsupervised way, computing a signal and threshold with an efficient percentiles estimation algorithm (SPEAR/AdaSPEAR),
- It provides an explanation report that domain experts consider useful.

Future directions

- Study streams with high seasonality (not an issue for datasets in our paper)
- Study effect of contents presented in the alarm reports from a UX perspective

feedzai

Future directions

- Study streams with high seasonality (not an issue for datasets in our paper)
- Study effect of contents presented in the alarm reports from a UX perspective

THANK YOU

Topics for discussion session:

- Topics above (UX & Seasonality)
- Challenges in online concept drift detection.
- Virtual concept drift (multiple testing) and cases when it could matter.
- Supervised concept drift detection and long term drift.

Bonus Slides

2a. The Signal

Window Configurations

Contiguous Windows:

Time

- Two consecutive windows (to detect sudden drifts)
- Preferably fixed size (to control statistics) but can be fixed time
- Size chosen to monitor some period (e.g., the last 6 hours)

2a. The Signal

Window Configurations

Homologous Windows:

- One target window (fixed size or fixed time)
- Reference replicas in same periods as target but, e.g., on three previous days
- Suitable to remove seasonalities in the signal

AdaSPEAR (Adaptive SPEAR)

AdaSPEAR = SPEAR + suppress counts before bin expansion/contraction

Evolution of percentiles 0 to 100 (blue lines) in steps of 2. The red line indicates the most recent signal value.

Delayed Adaptive Threshold

Removal of Time Correlated Features

How?

- Preprocessing step for each feature that:
 - a. Shuffles feature series values several times
 - b. Computes correlation with time for each shuffle (MIC)

Removal of Time Correlated Features

Correlation of original series compared with random shuffles

