图像处理实验报告

郭一隆 (2013011189)

August 25, 2015

Contents

1	基础知识	3
2	图像压缩编码	5

List of Figures

1.1	在大礼堂中心绘制红圆
1.2	国际象棋蒙版
2.1	左右置零-小块图像测试结果
2.2	左右置零-整体图像测试结果
2.3	转置 DCT 系数 15
2.4	DCT 系数逆时针旋转 90 度 16
2.5	DCT 系数旋转 180 度
2.6	差分编码系统幅频特性
2.7	Zig-Zag 扫描示意图
List	of Tables
1.1	图像处理工具箱函数概览(部分)
2.1	()
2.2	
2.3	
2.4	亮度 AC 分量的 Run/Size 及其 Huffman 编码 (部分) 8
${f List}$	左右置零-整体图像测试结果 14 转置 DCT 系数 15 DCT 系数逆时针旋转 90 度 16 DCT 系数旋转 180 度 17 差分编码系统幅频特性 18 Zig-Zag 扫描示意图 19 of Tables 图像处理工具箱函数概览 (部分) 3 WinRar 压缩文本文件 6 JpegCoeff.mat 中所含数据 6 亮度直流分量预测误差的 Category 及其 Huffman 编码 7
1.1	draw_circle.m
1.2	chess_mask.m
2.1	mse.m
2.2	mydct2.m
2.3	imdct.m
2.4	imidct.m
2.5	zigzag1.m
2.6	zigzag2.m
2.7	quantize.m

1 基础知识

在 MATLAB 中,像素值用 uint8 类型表示,参与浮点数运算前需要转成 double 型。Section 1 中"测试图像"指的是hall.mat中的**彩色图像**。

1. MATLAB 提供了图像处理工具箱,在命令窗口输入 help images 可查看该工具箱内的所有函数。请阅读并大致了解这些函数的基本功能。

Table 1.1: 图像处理工具箱函数概览 (部分)

函数名	功能
imshow	在 figure 中显示图像
rgb2gray	将彩色图像转换为灰度值图像
imwrite	将图像矩阵写入文件

- 2. 利用 MATLAB 提供的 Image file I/O 函数分别完成以下处理:
 - (a) 以测试图像的中心为圆心,图像的长和宽中较小值的一半为半径画 一个红颜色的圆;

思路:利用 meshgrid 函数生成行列索引矩阵 I, J, 将圆内部的像素点标为**逻辑 1**, 再利用逻辑索引将测试图像圆内的部分替换为<mark>红色像素点</mark>。

```
1 %% Load images
   load('resource/hall.mat');
    imwrite(hall_color,'images/hall_color.png');
    hall_color = double(hall_color);
    %% Draw red circle
    [height,width,~] = size(hall_color);
    center = [(1+height)/2, (1+width)/2];
    radius = min(height, width)/2;
   [J,I] = meshgrid(1:width,1:height);
    % \leftarrow 1: I(x,y) = 1
    % <height-by-width matrix> J: J(x,y) equals y
    area = ((I-center(1)).^2 + (J-center(2)).^2 <= radius^2);</pre>
    % area equals 1 @ point inside circle
14
16
    cell = mat2cell(hall_color,ones(1,height),ones(1,width),3);
    cell(area) = {reshape([255,0,0],1,1,3)};
    hall_color_red_circle = cell2mat(cell);
18
19
20
    %% Write image
   hall_color_red_circle = uint8(hall_color_red_circle);
   imwrite(hall_color_red_circle, 'images/hall_color_red_circle.png');
```

Listing 1.1: draw_circle.m

(a) 处理前

(b) 处理后

Figure 1.1: 在大礼堂中心绘制红圆

(b) 将测试图像涂成国际象棋状的"黑白格"的样子, 其中"黑"即黑色, "白"则意味着**保留原图**。

思路: chess_mask 函数提供棋盘行列数接口,计算出每块的大小,同样利用 meshgrid 函数确定出 black_mask 的位置,将图像对应位置赋为黑色。

```
function masked_image = chess_mask(image,Nrow,Ncol)
    image = double(image);
    [height,width,~] = size(image);
    grid_size = [ceil(height/Nrow),ceil(width/Ncol)];
    [J,I] = meshgrid(1:width,1:height);
    black_mask = (xor(mod(ceil(I/grid_size(1)),2),...
                      mod(ceil(J/grid_size(2)),2))==0);
10
    cell = mat2cell(image,ones(1,height),ones(1,width),3);
11
    cell(black_mask) = {reshape([0,0,0],1,1,3)};
12
    masked_image = cell2mat(cell);
13
14
    masked_image = uint8(masked_image);
^{15}
16
    end
17
```

Listing 1.2: chess_mask.m

按如下代码生成 64 格和 32 格棋盘蒙版

```
1 >> imwrite(chess_mask(hall_color,8,8),'images/hall_color_masked_8_8.png')
2 >> imwrite(chess_mask(hall_color,4,8),'images/hall_color_masked_4_8.png')
```


(a) 8×8 蒙版

(b) 4×8 蒙版

Figure 1.2: 国际象棋蒙版

用看图软件浏览上述生成图片, 预览效果如图1.1和图1.2, 达到预期效果。

2 图像压缩编码

熵编码压缩比:

根据经验,对于文本文件,重复性越高,则压缩比越高,测试如下表

Table 2.1: WinRar 压缩文本文件

文件名	文本内容 (matlab 写入文件)	压缩前大小	压缩后大小	压缩比
high.txt	repmat(['1'],1,10000)	10000bytes	101bytes	99.01
normal.txt	int2str(2^1000)	302bytes	106bytes	2.85
low.txt	'ghjkl;'	6bytes	77bytes	0.08

本章练习题所用数据均可由"JpegCoeff.mat"导入,其内容如表2.2所示。本章练习题中"测试图像"指的是hall.mat中的**灰度图像**。

Table 2.2: JpegCoeff.mat 中所含数据

变量名	含义	说明
QTAB	DCT 系数的量化 步长矩阵,式 (2.1)	
DCTAB	DC 系数预测误差 的 Category 码本, 表2.3	每行对应一个 Category, 第一列对应 Huffman 编码的长度 L, 随后 L 列对应该码字, 再后全零为填充物
ACTAB	AC 系数的 (Run/Size) 的码本,完整的表2.4	每行对应一个 (Run/Size),第一列表示 Run,第二列表示 Size,第三列表示该 (Run/Size) 对应的 Huffman编码的长度 L,随后 L 列对应该码字,再后全零为填充物

$$Q = \begin{bmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\ 49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99 \end{bmatrix}$$
 (2.1)

Table 2.3: 亮度直流分量预测误差的 Category 及其 Huffman 编码

预测误差	Category	Huffman 编码
0	0	00
-1, 1	1	010
-3, -2, 2, 3	2	011
$-7, \cdots, -4, 4, \cdots, 7$	3	100
$-15, \cdots, -8, 8, \cdots, 15$	4	101
$-31, \cdots, -16, 16, \cdots, 31$	5	110
$-63, \cdots, -32, 32, \cdots, 63$	6	1110
$-127, \cdots, -64, 64, \cdots, 127$	7	11110
$-255, \dots, -128, 128, \dots, 255$	8	111110
$-511, \dots, -256, 256, \dots, 511$	9	1111110
$-1023, \cdots, -512, 512, \cdots, 1023$	10	11111110
$-2047, \dots, -1024, 1024, \dots, 2047$	11	111111110

Table 2.4: 亮度 AC 分量的 Run/Size 及其 Huffman 编码 (部分)

Run/Size	码长	码字	Run/Size	码长	码字
0/0(EOB)	4	1010			
0/1	2	00	4/1	6	111011
0/2	2	01	4/2	10	1111111000
0/3	3	100	4/3	16	111111111100101111
0/4	4	1011	4/4	16	11111111110011000
0/5	5	11010	4/5	16	11111111110011001
0/6	6	111000	4/6	16	11111111110011010
0/7	7	1111000	4/7	16	11111111110011011
0/8	10	1111110110	4/8	16	11111111110011100
0/9	16	11111111110000010	4/9	16	11111111110011101
0/A	16	11111111110000011	4/A	16	111111111100111110
1/1	4	1100	8/1	8	11111010
1/2	6	111001	8/2	15	1111111111000000
1/3	7	1111001	8/3	16	11111111110110111
1/4	9	111110110	8/4	16	11111111110111000
1/5	11	11111110110	8/5	16	11111111110111001
1/6	16	11111111110000100	8/6	16	11111111110111010
1/7	16	11111111110000101	8/7	16	11111111110111011
1/8	16	11111111110000110	8/8	16	11111111110111100
1/9	16	111111111100001111	8/9	16	11111111110111101
1/A	16	11111111110001000	8/A	16	111111111101111110
			F/0(ZRL)	11	11111111001
2/1	5	11011	F/1	16	11111111111110101
2/2	8	11111000	F/2	16	11111111111110110
2/3	10	1111110111	F/3	16	111111111111111111111111111111111111111
2/4	16	11111111110001001	F/4	16	11111111111111000
2/5	16	11111111110001010	F/5	16	11111111111111001
2/6	16	11111111110001011	F/6	16	11111111111111010
2/7	16	11111111110001100	F/7	16	1111111111111111111111
2/8	16	11111111110001101	F/8	16	11111111111111100
2/9	16	111111111100011110	F/9	16	111111111111111111111111111111111111111
2/A	16	111111111100011111	F/A	16	11111111111111111

1. 图像的预处理是将每个像素灰度值减去 128, 这个步骤是否可以在变换域 进行?

变换域与时域 (或空域) 的对应关系为

$$\mathbf{C} = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} P_{x,y} \mathbf{D}^{(2)}(x,y)$$
 (2.2)

其中 $\mathbf{D}^{(2)}(x,y)$ 表示二维 DCT 的第 (x,y) 个基矩阵, 其第 (i,j) 个分量为

$$\mathbf{D}_{i,j}^{(2)}(x,y) = \alpha_i \alpha_j \cos \frac{i(2x+1)\pi}{2N} \cos \frac{j(2y+1)\pi}{2N}$$
 (2.3)

对原图像进行预处理:

$$\bar{P}_{x,y} = P_{x,y} - 128$$

则有

$$\bar{\mathbf{C}} = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} \bar{P}_{x,y} \mathbf{D}^{(2)}(x,y)$$
$$= \mathbf{C} - 128 \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} \mathbf{D}^{(2)}(x,y)$$

而

$$\sum_{x=0}^{N-1} \sum_{y=0}^{N-1} \mathbf{D}_{i,j}^{(2)}(x,y) = \alpha_i \alpha_j \sum_{x=0}^{N-1} \cos \frac{i(2x+1)\pi}{2N} \sum_{y=0}^{N-1} \cos \frac{j(2y+1)\pi}{2N}$$

$$= \begin{cases} \alpha_i \alpha_j N^2 = N, & i = j = 0\\ 0, & elsewhere \end{cases}$$

若要在变换域进行预处理,则对应关系为

$$\bar{\mathbf{C}}_{i,j} = \mathbf{C}_{i,j} - 128N, i = j = 0$$

$$\bar{\mathbf{C}}_{i,j} = \mathbf{C}_{i,j}, \qquad elsewhere$$

因此,这个步骤可以在变换域进行,只需把变换域直流分量减去 128N 即可,取 $hall_gray$ 左上角 8×8 验证如下:

```
5 >> mse(Y1,Y2)
6
7 ans =
8
9 5.5804e-27
```

其中 mse 为自定义函数,用于计算两个矩阵的均方误差:

Listing 2.1: mse.m

由运行代码??中得到的 mse 结果可知,在变换域减去一定直流分量与预处理原图像是**等价**的。

2. 根据下式2.4自行编程实现二维 DCT:

$$\mathbf{C} = \mathbf{D}\mathbf{P}\mathbf{D}^T \tag{2.4}$$

其中

$$\mathbf{D} = \sqrt{\frac{2}{N}} \begin{bmatrix} \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & \cdots & \sqrt{\frac{1}{2}} \\ \cos \frac{\pi}{2N} & \cos \frac{3\pi}{2N} & \cdots & \cos \frac{(2N-1)\pi}{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \cos \frac{(N-1)\pi}{2N} & \cos \frac{(N-1)3\pi}{2N} & \cdots & \cos \frac{(N-1)(2N-1)\pi}{2N} \end{bmatrix}$$

Listing 2.2: mydct2.m

仍取左上角 8×8 色块进行测试:

```
1  >> A = hall_gray(1:8,1:8);
2  >> mse(mydct2(A),dct2(A))
3
4  ans =
5
6  2.6817e-26
```

说明 mydct2 与 dct2 计算结果相同。

3. 如果将 DCT 系数矩阵中右侧四列 (或左侧四列) 的系数全部置零, 逆变换 后的图像会发生什么变化?

DCT 矩阵的右侧主要是横向高频分量系数,即影响横向纹理的清晰度,右侧四列置零会使得横向纹理变模糊;左侧四列包含了左上角的全部低频分量,以及左下角的纵向高频分量,左侧四列置零会使得整个图像变黑,无法辨认,仅残留少量横向纹理。

为了便于图像处理,自定义函数 imdct 以及 imidct, 实现分块 (8×8) 应用 DCT 或 IDCT 并进行整合的功能,imdct 接受**函数句柄**作为参数,方便后续的各种处理方式。

```
function C = imdct(A, varargin)
1
    % 2-dimension DCT for image A
    A = double(A);
    [height, width] = size(A);
    % make height, width of A multiples of 8
    A(height+1:8*ceil(height/8),:) = repmat(A(height,:),8*ceil(height/8)-height,1);
    A(:,width+1:8*ceil(width/8)) = repmat(A(:,width),1,8*ceil(width/8)-width);
10
    if nargin == 2
11
        procfun = varargin{1};
12
    else
13
        procfun = @(x)(x);  % doing nothing
14
15
16
    for i = 1:ceil(height/8)
17
        for j = 1:ceil(width/8)
18
            C((i-1)*8+1:i*8,(j-1)*8+1:j*8) = procfun(dct2(A((i-1)*8+1:i*8,(j-1)*8+1:j*8)));
19
        end
20
    \verb"end"
^{21}
22
    end
```

Listing 2.3: imdct.m

Listing 2.4: imidct.m

选取一小块 8×8 图像验证:

```
>> rightzero = @(A)([A(:,1:4),zeros(8,4)]);  % Handle of process function
1
       >> A = hall_gray(97:104,153:160);
       >> I = imidct(imdct(A,rightzero));
       >> imwrite(A,'images\test_block.png');
       >> imwrite(I,'images\test_block_rightzero.png');
       >>
       >> leftzero = @(A)([zeros(8,4),A(:,5:8)]);
       >> I = imidct(imdct(A,leftzero));
       >> imwrite(I,'images\test_block_leftzero.png');
```


(b) 右四列置零

(c) 左四列置零

Figure 2.1: 左右置零-小块图像测试结果

再测试整体效果:

```
>> imwrite(hall_gray,'images\hall_gray.png');
>> I = imidct(imdct(hall_gray,rightzero));
>> imwrite(I,'images\hall_gray_rightzero.png');
>> I = imidct(imdct(hall_gray,leftzero));
>> imwrite(I,'images\hall_gray_leftzero.png');
```

图像处理结果如图2.2, 可见右四列置零后横向纹理变弱(树的部分较明 显), 左四列置零后仅剩余少量横向高频分量(轮廓), 符合预期。

(a) hall_gray

(b) 右四列置零

(c) 左四列置零

Figure 2.2: 左右置零-整体图像测试结果

- 4. 若对 DCT 系数分别做转置、旋转 90 度和旋转 180 度操作, 逆变换后恢 复的图像有何变化?
 - 转置使得行列频率信息交换,则逆变换后图像被转置

$$\mathbf{C}^T = (\mathbf{D}\mathbf{P}\mathbf{D}^T)^T = \mathbf{D}\mathbf{P}^T\mathbf{D}^T$$

```
1 >> A = hall_gray(97:104,153:160);
2 >> transpose = @(A)(A.');
3 >> I = imidct(imdct(A,transpose));
4 >> imwrite(I,'images\test_block_transpose.png');
```


Figure 2.3: 转置 DCT 系数

• 旋转 90 度使得直流分量系数变为纵向高频分量系数,则逆变换后整体图像变暗,纵向高频分量强烈

```
>> I = imidct(imdct(A,@rot90));
>> imwrite(I,'images\test_block_rot90.png');
>> 
>> 
>> I = imidct(imdct(hall_gray,@rot90));
>> imwrite(I,'images\hall_gray_rot90.png');
```


(a) test_block

(c) hall_gray

(b) 逆时针旋转 90 度

(d) 逆时针旋转 90 度

Figure 2.4: DCT 系数逆时针旋转 90 度

纵向高频分量过强导致了明显的黑白分层,原有图像轮廓还能分辨, 细节很难辨认。

• 旋转 180 度使得直流分量系数变为横纵高频分量系数,则逆变换后整体图像变暗,横纵高频分量均变强

```
1  >> rot180 = @(A)(rot90(A,2));
2  >> I = imidct(imdct(A,rot180));
3  >> imwrite(I,'images\test_block_rot180.png');
4  >>
5  >> I = imidct(imdct(hall_gray,rot180));
5  >> imwrite(I,'images\hall_gray_rot180.png');
```


(a) test_block

(c) hall_gray

(b) 旋转 180 度

(d) 旋转 180 度

Figure 2.5: DCT 系数旋转 180 度

强烈的横纵高频分量导致了明显的黑白分块,原有图像轮廓能凭借先验知识分辨,细节很难辨认。

5. 如果认为差分编码是一个系统,请绘出这个系统的频率响应,说明其滤波器类型。DC 系数先进行差分编码再进行熵编码,说明 DC 系数的哪种分量更多?

差分编码系统:

$$\hat{c}_D(n) = \begin{cases} \tilde{c}_D(n) & n = 1\\ \tilde{c}_D(n-1) - \tilde{c}_D(n) & elsewhere \end{cases}$$

不妨认为 $\tilde{c}_D(n)$ 是因果信号,则差分编码系统传递函数为

$$H(z) = z^{-1} - 1$$

是高通滤波器,幅频特性如图2.6

这说明 DC 系数中的**低频分量更多**,通过差分编码滤去大量低频分量再进行熵编码,码长缩短。直观地说,DC 系数中相邻系数一般相差不大,差分后压缩性能更佳。

Figure 2.6: 差分编码系统幅频特性

6. DC 预测误差的取值和 Category 值有何关系?如何利用预测误差计算出 其 Category?

观察表2.3容易得出:(预测误差记为 Error)

$$Error \in \{2^{Category-1} \leq |n| < 2^{Category} \mid n \in \mathbb{Z}\}$$

$$Category = \lfloor \log_2 |Error| \rfloor + 1$$

7. 实现 Zig-Zag 扫描

Figure 2.7: Zig-Zag 扫描示意图

(a) 循环实现

```
function v = zigzag1(A)
   % A is square
   % define direction
  E = 1;
   SW = 2;
   S = 3;
   NE = 4;
   v = [];
10
   N = size(A, 1);
   i = 1; j = 1;
12
  direction = NE;
14
   while i <= N && j <= N
       v = [v,A(i,j)];
15
16
      if i+j < N+1
17
          if direction == NE && i == 1 % move East
18
             direction = E;
19
              j = j + 1;
20
          elseif direction == SW && j == 1 \% move South
21
             direction = S;
             i = i + 1;
23
          direction = SW;
25
             i = i + 1;
             j = j - 1;
27
```

```
else
28
                 direction = NE;
29
                i = i - 1;
30
                 j = j + 1;
31
             end
32
        elseif i+j == N+1
33
             if direction == SW && i == N
34
                direction = E;
35
                 j = j + 1;
36
             elseif direction == NE && j == N
37
                direction = S;
38
                 i = i + 1;
39
             elseif direction == E || direction == SW
40
                 direction = SW;
41
                i = i + 1;
42
                 j = j - 1;
43
             else
                 direction = NE;
45
                i = i - 1;
                 j = j + 1;
47
             end
        else
49
            if direction == SW && i == N \% move East
50
                direction = E;
51
                 j = j + 1;
             elseif direction == NE && j == N
                                                   % move South
53
                direction = S;
                 i = i + 1;
55
             elseif direction == S \mid \mid direction == SW \% move SW
                 direction = SW;
57
                 i = i + 1;
58
                 j = j - 1;
59
             else
                 direction = NE;
61
                 i = i - 1;
62
                 j = j + 1;
63
64
             end
65
         end
    end
66
67
68
    end
```

Listing 2.5: zigzag1.m

(b) 查表实现:扫描固定 8×8 大小的矩阵可直接用查表法实现

```
function v = zigzag2(A)
    % A is 8-by-8 square
    index = [1,2,9,17,10,3,4,11,...
<sub>5</sub> 18,25,33,26,19,12,5,6,...
6 13,20,27,34,41,49,42,35,...
    28,21,14,7,8,15,22,29,...
    36,43,50,57,58,51,44,37,...
    30,23,16,24,31,38,45,52,...
   59,60,53,46,39,32,40,47,...
    54,61,62,55,48,56,63,64];
11
12
    A = reshape(A.', 1, 64);
13
14
   v = A(index);
15
16
    end
17
```

Listing 2.6: zigzag2.m

能想到的只有通用但低效的循环算法以及专用高效的查表法,在当前给定 条件下,显然查表法更具有优势。

8. 对测试图像分块、DCT 和量化,将量化后的系数写成矩阵的形式,其中每一列为一个块的 DCT 系数 Zig-Zag 扫描后形成的列矢量,第一行为各个块的 DC 系数。

```
function A = quantize(P)
   % divide P into 8*8 blocks
    % dct2(block)
    % quantize dct coefficient
   % zig-zag
   Q = [16 \ 11 \ 10 \ 16 \ 24 \ 40 \ 51 \ 61;
   12 12 14 19 26 58 60 55;
9 14 13 16 24 40 57 69 56;
10 14 17 22 29 51 87 80 62;
11 18 22 37 56 68 109 103 77;
12 24 35 55 64 81 104 113 92;
13 49 64 78 87 103 121 120 101;
   72 92 95 98 112 100 103 99];
15
    P = double(P);
   [height,width] = size(P);
```

```
A = [];
18
   % make height, width of P multiples of 8
   P(height+1:8*ceil(height/8),:) = repmat(P(height,:),8*ceil(height/8)-height,1);
22
    P(:,width+1:8*ceil(width/8)) = repmat(P(:,width),1,8*ceil(width/8)-width);
23
   for i = 1:ceil(height/8)
24
        for j = 1:ceil(width/8)
25
            A = [A,zigzag2(round(dct2(P((i-1)*8+1:i*8,(j-1)*8+1:j*8))./Q)).'];
26
27
28
    end
29
    end
```

Listing 2.7: quantize.m