Discover acceleration of gradient descent

Daniil Merkulov

Optimization methods. MIPT

∌ ດ ⊘

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

 \bullet Firstly, without loss of generality we can set c=0, which will or affect optimization process.

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- \bullet Firstly, without loss of generality we can set c=0, which will or affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

Consider the following quadratic optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ where } A \in \mathbb{S}^d_{++}.$$

- Firstly, without loss of generality we can set c=0, which will or affect optimization process.
- Secondly, we have a spectral decomposition of the matrix A:

$$A = Q\Lambda Q^T$$

 Let's show, that we can switch coordinates in order to make an analysis a little bit easier. Let $\hat{x} = Q^T(x - x^*)$, where x^* is the minimum point of initial function, defined by $Ax^* = b$. At the same time $x = Q\hat{x} + x^*$.

$$f(\hat{x}) = \frac{1}{2} (Q\hat{x} + x^*)^{\top} A (Q\hat{x} + x^*) - b^{\top} (Q\hat{x} + x^*)$$

$$= \frac{1}{2} \hat{x}^T Q^T A Q \hat{x} + (x^*)^T A Q \hat{x} + \frac{1}{2} (x^*)^T A (x^*)^T - b^T Q \hat{x} - b^T x^*$$

$$= \frac{1}{2} \hat{x}^T \Lambda \hat{x}$$

Polyak Heavy ball method

Let's introduce the idea of momentum, proposed by Polyak in 1964. Recall that the momentum update is

$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1}).$$

Polyak Heavy ball method

Let's introduce the idea of momentum, proposed by Polyak in 1964. Recall that the momentum update is

$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1}).$$

Which is in our case is

$$\hat{x}_{k+1} = \hat{x}_k - \alpha \Lambda \hat{x}_k + \beta (\hat{x}_k - \hat{x}_{k-1}) = (I - \alpha \Lambda + \beta I)\hat{x}_k - \beta \hat{x}_{k-1}$$

Polyak Heavy ball method

Let's introduce the idea of momentum, proposed by Polyak in 1964. Recall that the momentum update is

$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1}).$$

Which is in our case is

$$\hat{x}_{k+1} = \hat{x}_k - \alpha \Lambda \hat{x}_k + \beta (\hat{x}_k - \hat{x}_{k-1}) = (I - \alpha \Lambda + \beta I)\hat{x}_k - \beta \hat{x}_{k-1}$$

This can be rewritten as a follows

$$\hat{x}_{k+1} = (I - \alpha \Lambda + \beta I)\hat{x}_k - \beta \hat{x}_{k-1},$$

$$\hat{x}_k = \hat{x}_k.$$

Let's use the following notation $\hat{z}_k = \begin{bmatrix} \hat{x}_{k+1} \\ \hat{x}_k \end{bmatrix}$. Therefore $\hat{z}_{k+1} = M\hat{z}_k$, where the iteration matrix M is:

$$M = \begin{bmatrix} I - \alpha \Lambda + \beta I & -\beta I \\ I & 0_d \end{bmatrix}.$$

Reduction to a scalar case

Note, that M is $2d \times 2d$ matrix with 4 block-diagonal matrices of size $d \times d$ inside. It means, that we can rearrange the order of coordinates to make M block-diagonal in the following form. Note that in the equation below, the matrix M denotes the same as in the notation above, except for the described permutation of rows and columns. We use this slight abuse of notation for the sake of clarity.

Reduction to a scalar case

Note, that M is $2d \times 2d$ matrix with 4 block-diagonal matrices of size $d \times d$ inside. It means, that we can rearrange the order of coordinates to make M block-diagonal in the following form. Note that in the equation below, the matrix M denotes the same as in the notation above, except for the described permutation of rows and columns. We use this slight abuse of notation for the sake of clarity.

Figure 1: Illustration of matrix ${\cal M}$ rearrangement

$$\begin{bmatrix} \hat{x}_{k}^{(1)} \\ \vdots \\ \hat{x}_{k}^{(d)} \\ \hat{x}_{k-1}^{(1)} \\ \vdots \\ \hat{x}_{k-1}^{(d)} \end{bmatrix} \rightarrow \begin{bmatrix} \hat{x}_{k}^{(1)} \\ \hat{x}_{k-1}^{(1)} \\ \vdots \\ \hat{x}_{k}^{(d)} \\ \hat{x}_{k-1}^{(d)} \end{bmatrix} \quad M = \begin{bmatrix} M_{1} & & & \\ & M_{2} & & \\ & & & M_{d} \end{bmatrix}$$

where $\hat{x}_k^{(i)}$ is *i*-th coordinate of vector $\hat{x}_k \in \mathbb{R}^d$ and M_i stands for 2×2 matrix. This rearrangement allows us to study the dynamics of the method independently for each dimension. One may observe, that the asymptotic convergence rate of the 2d-dimensional vector sequence of \hat{z}_k is defined by the worst convergence rate among its block of coordinates. Thus, it is enough to study the optimization in a one-dimensional case.

⊕ O @

Reduction to a scalar case

For i-th coordinate with λ_i as an i-th eigenvalue of matrix W we have:

$$M_i = \begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix}.$$

The method will be convergent if $\rho(M) < 1$, and the optimal parameters can be computed by optimizing the spectral radius

$$\alpha^*, \beta^* = \arg\min_{\alpha, \beta} \max_{\lambda \in [\mu, L]} \rho(M) \quad \alpha^* = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}; \quad \beta^* = \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2.$$

It can be shown, that for such parameters the matrix M has complex eigenvalues, which forms a conjugate pair, so the distance to the optimum (in this case, $||z_k||$), generally, will not go to zero monotonically.

Heavy ball quadratic convergence

We can explicitly calculate the eigenvalues of M_i :

$$\lambda_1^M, \lambda_2^M = \lambda \left(\begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix} \right) = \frac{1 + \beta - \alpha \lambda_i \pm \sqrt{(1 + \beta - \alpha \lambda_i)^2 - 4\beta}}{2}.$$

When α and β are optimal (α^*, β^*) , the eigenvalues are complex-conjugated pair $(1 + \beta - \alpha \lambda_i)^2 - 4\beta \le 0$, i.e. $\beta > (1 - \sqrt{\alpha \lambda_i})^2$.

$$\operatorname{Re}(\lambda_1^M) = \frac{L + \mu - 2\lambda_i}{(\sqrt{L} + \sqrt{\mu})^2}; \quad \operatorname{Im}(\lambda_1^M) = \frac{\pm 2\sqrt{(L - \lambda_i)(\lambda_i - \mu)}}{(\sqrt{L} + \sqrt{\mu})^2}; \quad |\lambda_1^M| = \frac{L - \mu}{(\sqrt{L} + \sqrt{\mu})^2}.$$

And the convergence rate does not depend on the stepsize and equals to $\sqrt{\beta^*}$.

• Ensures accelerated convergence for strongly convex quadratic problems

₩ 0 0

- Ensures accelerated convergence for strongly convex quadratic problems
- Local accelerated convergence was proved in the original paper.

- Ensures accelerated convergence for strongly convex quadratic problems
- Local accelerated convergence was proved in the original paper.
- Recently was proved, that there is no global accelerated convergence for the method.

- Ensures accelerated convergence for strongly convex quadratic problems
- Local accelerated convergence was proved in the original paper.
- Recently was proved, that there is no global accelerated convergence for the method.
- Method was not extremely popular until the ML boom

- Ensures accelerated convergence for strongly convex quadratic problems
- Local accelerated convergence was proved in the original paper.
- Recently was proved, that there is no global accelerated convergence for the method.
- Method was not extremely popular until the ML boom
- Nowadays, it is de-facto standard for practical acceleration of gradient methods, even for the non-convex problems (neural network training)

Nesterov accelerated gradient

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

$$x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1})$$

$$\begin{cases} y_{k+1} = x_k + \beta(x_k - x_{k-1}) \\ x_{k+1} = y_{k+1} - \alpha \nabla f(y_{k+1}) \end{cases}$$

(GD)

(NAG)