ABSTRACT OF THE DISCLOSURE

The present invention provides a cross-linkable polymer compound which can be developed with an aqueous developer and exhibits excellent patterning properties; a photosensitive composition containing the same; and a pattern formation method employing the composition. The polymer compound containing monomer units represented by formulas (I) to (III):

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} R_{3} \\ \\ -C \end{array} \\ \begin{array}{c} C \\ O \end{array} \\ \begin{array}{c} C \\ C \\ O \end{array} \\ \begin{array}{c} C \\ C \end{array} \\ \begin{array}{c} C \\ C \\ O \end{array} \\ \begin{array}{c} C \\ C \end{array} \\ \begin{array}{c} C \\$$

wherein each of R_1 to R_4 is hydrogen and/or a methyl group; p represents an integer between 1 to 10 inclusive; X represents hydrogen, an alkali metal, or an ammonium represented by formula (1):

$$R_{8}^{R_{5}}$$
 $R_{8}^{-N}-R_{6}$
 R_{7}
(1)

wherein each of R_5 to R_8 represents hydrogen, a C1-C3 alkyl group, or a C1-C3 alkanol group; and a plurality of Xs may be the same or different from one another, the compositional proportions of the monomer units falling within the following ranges: 2 mol% \leq 1 \leq 73 mol%; 8 mol% \leq m \leq 83 mol%; and 15 mol% \leq n \leq 80 mol%.