

Neural Discrete Representation Learning

Aaron van den Oord, Oriol Vinyals, Koray Kavukcuoglu

Generative Models

Goal: Estimate the probability distribution of high-dimensional data

Such as images, audio, video, text, ...

Motivation:

Learn the underlying structure in data.

Capture the dependencies between the variables.

Generate new data with similar properties.

Learn useful features from the data in an unsupervised fashion.

Autoregressive Models

$$p(\mathbf{x}) = \prod_{i=1}^{n^2} p(x_i|x_1, ..., x_{i-1})$$

Recent Autoregressive models at DeepMind

van den Oord et al, 2016ab

WaveNet

Video Pixel Networks

van den Oord et al, 2016c Kalchbrenne

Modeling Audio

1 Second

Multiple Stacks

Sampling

Speaker-conditional Generation

Text-To-Speech samples

https://deepmind.com/blog/wavenet-generative-model-raw-audio/

Speaker-conditional samples

(but not conditioned on text)

Piano Music samples

- Towards modeling a latent space
 - Learn meaningful representations.
 - Abstract away noise and details.
 - Model what's important in a compressed latent representation.
- Why discrete?
 - Many important real-world things are discrete.
 - Arguably easier to model for the prior (e.g., softmax vs RNADE)
 - Continuous representations are often inherently discretized by encoder/decoder.

PixelVAE (Gulrajani et al, 2016) Variational Lossy AutoEncoder (Chen et al, 2016)

Images

32 x 32 x 1 ∈ [0,512[

128 x 128 x 3 ∈ [0, 256]

ImageNet reconstructions

Original 128x128 images

Reconstructions

VQ-VAE - Sample

ImageNet samples

DM-Lab Samples

3 Global Latents Reconstruction

3 Global Latents Reconstruction

Originals

Reconstructions from compressed representations (27 bits per image).

Video Generation in the latent space

Speech

Speech - reconstruction

Speech - Sample from prior

Speech - speaker conditional

https://avdnoord.github.io/homepage/vqvae/

Unsupervised Learning of phonemes

Unsupervised Learning of phonemes

41-way classification
49.3% accuracy fully unsupervised

References and related work

Pixel Recurrent Neural Networks - van den Oord et al, ICML 2016

Conditional Image Generation with PixelCNN Decoders - van den Oord et al, NIPS 2016

WaveNet: A Generative Model For Raw Audio - van den Oord et al, Arxiv 2016

Neural Machine Translation in Linear Time - Kalchbrenner et al, Arxiv 2016

Video Pixel Networks - Kalchbrenner et al, ICML 2017

Neural Discrete Representation Learning - van den Oord et al, NIPS 2017

Related work:

The Neural Autoregressive Distribution Estimator - Larochelle et al, AISTATS 2011

Generative image modeling using spatial LSTMs - Theis et al, NIPS 2015

SampleRNN: An Unconditional End-to-End Neural Audio Generation Model - Mehri et al, ICLR 2017

PixelVAE: A Latent Variable Model for Natural Images - Gulrajani et al, ICLR 2017

Variational Lossy Autoencoder - Chen et al, ICLR 2017

Soft-to-Hard Vector Quantization for End-to-End Learning Compressible Representations - Agustsson et al, NIPS 2017

Thank you!

