Naive Bayes Exercise

Use wine dataset from sklearn.datasets to classify wines into 3 categories. Load the dataset and split it into test and train. After taht train the model using Gaussian and Multinomial classifier and find which model performs better. Use the train model to perform some predictions on test data.

```
In [2]: from sklearn import datasets
        wine = datasets.load wine()
In [3]: dir(wine)
Out[3]: ['DESCR', 'data', 'feature_names', 'frame', 'target', 'target_names']
In [4]: |wine.data[0:2]
Out[4]: array([[1.423e+01, 1.710e+00, 2.430e+00, 1.560e+01, 1.270e+02, 2.800e+00,
                 3.060e+00, 2.800e-01, 2.290e+00, 5.640e+00, 1.040e+00, 3.920e+00,
                 1.065e+03],
                [1.320e+01, 1.780e+00, 2.140e+00, 1.120e+01, 1.000e+02, 2.650e+00,
                 2.760e+00, 2.600e-01, 1.280e+00, 4.380e+00, 1.050e+00, 3.400e+00,
                 1.050e+03]])
In [5]: wine.feature_names
Out[5]: ['alcohol',
          'malic_acid',
          'ash',
          'alcalinity_of_ash',
          'magnesium',
          'total phenols',
          'flavanoids',
          'nonflavanoid_phenols',
          'proanthocyanins',
          'color_intensity',
          'hue',
          'od280/od315 of diluted wines',
          'proline']
In [6]: wine.target names
Out[6]: array(['class_0', 'class_1', 'class_2'], dtype='<U7')</pre>
In [7]: | wine.target[0:2]
Out[7]: array([0, 0])
```

```
In [8]: import pandas as pd
    df = pd.DataFrame(wine.data,columns=wine.feature_names)
    df.head()

Out[8]:
    alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols flavanoids nonflavanoid_
```

0 14.23 1.71 2.43 15.6 127.0 2.80 3.06 1 13.20 1.78 2.14 11.2 100.0 2.65 2.76 2 13.16 2.36 2.67 18.6 101.0 2.80 3.24 3 14.37 1.95 2.50 16.8 113.0 3.85 3.49 13.24 2.59 2.87 21.0 118.0 2.80 2.69

In [10]: df['target'] = wine.target
df[50:60]

Out[10]:

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoic
50	13.05	1.73	2.04	12.4	92.0	2.72	3.27	
51	13.83	1.65	2.60	17.2	94.0	2.45	2.99	
52	13.82	1.75	2.42	14.0	111.0	3.88	3.74	
53	13.77	1.90	2.68	17.1	115.0	3.00	2.79	
54	13.74	1.67	2.25	16.4	118.0	2.60	2.90	
55	13.56	1.73	2.46	20.5	116.0	2.96	2.78	
56	14.22	1.70	2.30	16.3	118.0	3.20	3.00	
57	13.29	1.97	2.68	16.8	102.0	3.00	3.23	
58	13.72	1.43	2.50	16.7	108.0	3.40	3.67	
59	12.37	0.94	1.36	10.6	88.0	1.98	0.57	
4								•

In [11]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target, test_

In [12]: from sklearn.naive_bayes import GaussianNB, MultinomialNB
model = GaussianNB()
model.fit(X_train,y_train)

Out[12]: GaussianNB()

In [13]: model.score(X_test,y_test)

Out[13]: 0.97222222222222

```
In [14]: mn = MultinomialNB()
    mn.fit(X_train,y_train)
    mn.score(X_test,y_test)
```

Out[14]: 0.80555555555556

GaussianNB has a better performan than MultinomialNB in this exercise.

	Gau	ssianNB	MultinomialNB		
Model Sco	ore(%)	97	80		
	Date	Auth	or		
-	2021-10-13	Ehsan Z	ia		