

Статистика DS-поток

Лекция 10

5.5 Ядерные оценки плотности

Определение

Пусть $X = (X_1, ..., X_n)$ — выборка из непрерывного распределения.

Рассматриваем \mathscr{P} — все абс.-непрерывные распределения на \mathbb{R}^d .

Ядерная оценка плотности

$$\widetilde{p}_h(x) = \frac{1}{nh} \sum_{i=1}^n q\left(\frac{x - X_i}{h}\right),$$

где h и q — гиперпараметры:

- ▶ q(x) ядро = некоторая "базовая" симметричная плотность;
- ightharpoonup h > 0 ширина ядра, отвечающая за масштабирование.

Пояснение: в каждую точку выборки поставили отмасштабированное ядро и усреднили.

E

Виды ядер

Гауссовское

$$q(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

Прямоугольное

$$q(x) = \frac{1}{2}I\{|x| \leqslant 1\}$$

Треугольное

$$q(x) = (1 - |x|)I\{|x| \le 1\}$$

$$q(x) = \frac{3}{4}(1 - x^2)I\{|x| \leqslant 1\}$$

Ядерной оценке плотности $\widetilde{p}_h(x)$ соответствует сглаженное эмпирическое распределение

$$\widetilde{P}_h(B) = \frac{1}{n} \sum_{i=1}^n Q\left(\frac{B - X_i}{h}\right),$$

$$\frac{B-X_i}{h} = \left\{ \left. \frac{x-X_i}{h} \right| x \in B \right\},\,$$

где Q — распределение, соотв. плотности q(x).

Утверждение

$$\widetilde{\mathsf{P}}_h = \widehat{\mathsf{P}}_n * \mathsf{Q}(\cdot/h)$$
 — свертка ЭФР $\widehat{\mathsf{P}}_n$ и $\mathsf{Q}(\cdot/h),$

Утверждение

$$\widetilde{\mathsf{P}}_h = \widehat{\mathsf{P}}_n * \mathsf{Q}(\cdot/h)$$
 — свертка ЭФР $\widehat{\mathsf{P}}_n$ и $\mathsf{Q}(\cdot/h),$

Утверждение

$$\widetilde{\mathsf{P}}_h = \widehat{\mathsf{P}}_n * \mathsf{Q}(\cdot/h)$$
 — свертка ЭФР $\widehat{\mathsf{P}}_n$ и $\mathsf{Q}(\cdot/h),$

Утверждение

$$\widetilde{\mathsf{P}}_h = \widehat{\mathsf{P}}_n * \mathsf{Q}(\cdot/h)$$
 — свертка ЭФР $\widehat{\mathsf{P}}_n$ и $\mathsf{Q}(\cdot/h),$

Утверждение

$$\widetilde{\mathsf{P}}_h = \widehat{\mathsf{P}}_n * \mathsf{Q}(\cdot/h)$$
 — свертка ЭФР $\widehat{\mathsf{P}}_n$ и $\mathsf{Q}(\cdot/h),$

Утверждение

$$\widetilde{\mathsf{P}}_h = \widehat{\mathsf{P}}_n * \mathsf{Q}(\cdot/h)$$
 — свертка ЭФР $\widehat{\mathsf{P}}_n$ и $\mathsf{Q}(\cdot/h),$

Утверждение

$$\widetilde{\mathsf{P}}_h = \widehat{\mathsf{P}}_n * \mathsf{Q}(\cdot/h)$$
 — свертка ЭФР $\widehat{\mathsf{P}}_n$ и $\mathsf{Q}(\cdot/h),$

Утверждение

$$\widetilde{\mathsf{P}}_h = \widehat{\mathsf{P}}_n * \mathsf{Q}(\cdot/h)$$
 — свертка ЭФР $\widehat{\mathsf{P}}_n$ и $\mathsf{Q}(\cdot/h),$

Утверждение

$$\widetilde{\mathsf{P}}_h = \widehat{\mathsf{P}}_n * \mathsf{Q}(\cdot/h)$$
 — свертка ЭФР $\widehat{\mathsf{P}}_n$ и $\mathsf{Q}(\cdot/h),$

Утверждение

$$\widetilde{\mathsf{P}}_h = \widehat{\mathsf{P}}_n * \mathsf{Q}(\cdot/h)$$
 — свертка ЭФР $\widehat{\mathsf{P}}_n$ и $\mathsf{Q}(\cdot/h),$

Утверждение

$$\widetilde{\mathsf{P}}_h = \widehat{\mathsf{P}}_n * \mathsf{Q}(\cdot/h)$$
 — свертка ЭФР $\widehat{\mathsf{P}}_n$ и $\mathsf{Q}(\cdot/h),$

Утверждение

$$\widetilde{\mathsf{P}}_h = \widehat{\mathsf{P}}_n * \mathsf{Q}(\cdot/h)$$
 — свертка ЭФР $\widehat{\mathsf{P}}_n$ и $\mathsf{Q}(\cdot/h),$

Утверждение

$$\widetilde{\mathsf{P}}_h = \widehat{\mathsf{P}}_n * \mathsf{Q}(\cdot/h)$$
 — свертка ЭФР $\widehat{\mathsf{P}}_n$ и $\mathsf{Q}(\cdot/h),$

Утверждение

$$\widetilde{\mathsf{P}}_h = \widehat{\mathsf{P}}_n * \mathsf{Q}(\cdot/h)$$
 — свертка ЭФР $\widehat{\mathsf{P}}_n$ и $\mathsf{Q}(\cdot/h),$

Утверждение

$$\widetilde{\mathsf{P}}_h = \widehat{\mathsf{P}}_n * \mathsf{Q}(\cdot/h)$$
 — свертка ЭФР $\widehat{\mathsf{P}}_n$ и $\mathsf{Q}(\cdot/h),$

Утверждение

$$\widetilde{\mathsf{P}}_h = \widehat{\mathsf{P}}_n * \mathsf{Q}(\cdot/h)$$
 — свертка ЭФР $\widehat{\mathsf{P}}_n$ и $\mathsf{Q}(\cdot/h),$

Утверждение

$$\widetilde{\mathsf{P}}_h = \widehat{\mathsf{P}}_n * \mathsf{Q}(\cdot/h)$$
 — свертка ЭФР $\widehat{\mathsf{P}}_n$ и $\mathsf{Q}(\cdot/h),$

Утверждение

$$\widetilde{\mathsf{P}}_h = \widehat{\mathsf{P}}_n * \mathsf{Q}(\cdot/h)$$
 — свертка ЭФР $\widehat{\mathsf{P}}_n$ и $\mathsf{Q}(\cdot/h),$

Утверждение

$$\widetilde{\mathsf{P}}_h = \widehat{\mathsf{P}}_n * \mathsf{Q}(\cdot/h)$$
 — свертка ЭФР $\widehat{\mathsf{P}}_n$ и $\mathsf{Q}(\cdot/h),$

Утверждение

$$\widetilde{\mathsf{P}}_h = \widehat{\mathsf{P}}_n * \mathsf{Q}(\cdot/h)$$
 — свертка ЭФР $\widehat{\mathsf{P}}_n$ и $\mathsf{Q}(\cdot/h),$

Утверждение

$$\widetilde{\mathsf{P}}_h = \widehat{\mathsf{P}}_n * \mathsf{Q}(\cdot/h)$$
 — свертка ЭФР $\widehat{\mathsf{P}}_n$ и $\mathsf{Q}(\cdot/h),$

Сходимость для случая $\mathscr{X} = \mathbb{R}$

Аналог теоремы Гливенко-Кантелли

$$\sup_{x\in\mathbb{R}}\left|\widetilde{F}_h(x)-F(x)\right|\xrightarrow{\text{п.н.}}0,$$

где $\widetilde{F}_h(x)$ — функция распределения, соотв. плотности $\widetilde{p}_h(x)$.

Теорема об асимптотике

Пусть

1.
$$\alpha = \int\limits_{\mathbb{R}} q^2(y) dy < \infty$$
;

- 2. плотность q(x) непрерывна и ограничена;
- 3. $h_n \to 0, nh_n \to \infty$ при $n \to \infty$.

Тогда ядерная оценка плотности представима в виде

$$\widetilde{p}_h(x) = p_h(x) + \frac{\xi_n(x)}{\sqrt{nh_n}},$$

где
$$p_h(x) = \mathsf{E}\widetilde{p}_h(x) \longrightarrow p(x),$$

 $\xi_n(x) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \alpha p(x))$

Каковы оптимальные h и q?

Рассмотрим минимизацию среднеквадратической ошибки:

$$\int\limits_{\mathbb{R}} \mathsf{E} \left(\widetilde{p}_h(x) - p(x) \right)^2 dx \to \min_h$$

Тогда оптимальные параметры

- $h_n^* \sim n^{-1/5}$
- $ightharpoonup q^*(x)$ ядро Епаничнекова
- ightharpoonup Скорость сходимости $\sim n^{-2/5}$

На практике полученными формулами пользоваться проблематично

Подбор ширины ядра по выборке

Задача: подобрать оптимальную h для конкретной выборки.

Рассмотрим h как параметр и будем искать оценку макс. правд.

$$\prod_{i=1}^n \widetilde{p}_h(X_i) \longrightarrow \max_h$$

Этой задаче соответствует h=0, что соответствует эмпирическому распределению. Это не то, что хочется.

Подбор ширины ядра по выборке

Leave-one-out оценка

Рассмотрим ядерную оценку плотности, исключив элемент X_i .

$$\widetilde{p}_h^{-i}(x) = \frac{1}{(n-1)h} \sum_{\substack{k=1\\k\neq i}}^n q\left(\frac{x-X_k}{h}\right),$$

ширина ядра выбирается из максимизации функционала

$$F(h) = \log \prod_{i=1}^n \widetilde{p}_h^{-i}(X_i) = \sum_{i=1}^n \log \sum_{\substack{k=1 \ k \neq i}}^n q\left(\frac{X_i - X_k}{h}\right) - n\log(n-1)h.$$

Поскольку h — одномерная величина, максимум можно найти по сетке.

Ô

Подбор ширины ядра по выборке

Если в точки расположены где-то достаточно плотно, а где-то — сильно разреженно, то имеет смысл брать разную шириную ядра для разных точек.

Например, $h(x) = \|x - X_{(k)}\|$, где $X_{(k)} - k$ -й ближайший сосед для x.

Подбор ширины ядра по выборке

Если в точки расположены где-то достаточно плотно, а где-то — сильно разреженно, то имеет смысл брать разную шириную ядра для разных точек.

Например, $h(x) = \|x - X_{(k)}\|$, где $X_{(k)} - k$ -й ближайший сосед для x.

Подбор ширины ядра по выборке

Если в точки расположены где-то достаточно плотно, а где-то — сильно разреженно, то имеет смысл брать разную шириную ядра для разных точек.

Например, $h(x) = \|x - X_{(k)}\|$, где $X_{(k)} - k$ -й ближайший сосед для x.

5.6 Обучение на основе ближайшего соседа

kNN

Приближенный поиск соседей Метод локального усреднения

Метод ближайших соседей (kNN)

Пусть \mathscr{X} — метрическое пространство.

 $x_1,...,x_n\in\mathscr{X}$ — обучающая выборка.

 $Y_1, ..., Y_n$ — соответствующая целевая переменная.

Предположение:

свойства объекта меняются не сильно в его окрестности.

Тогда давайте смотреть на свойства k ближайших соседей.

Примеры.

Пусть $x\in\mathscr{X}$ — исследуемый объект. $x_{(1)},...,x_{(k)}$ — k его соседей в порядке удаления от x.

- 1. *Классификация*. Предсказание наиболее часто встречаемый класс.
- Регрессия.
 Предсказание усреднение отклика по соседям.

Взвешенный метод ближайших соседей

Пусть $x \in \mathscr{X}$ — исследуемый объект.

 $x_{(1)},...,x_{(k)}-k$ его соседей в порядке удаления от x.

 $Y_1, ..., Y_k$ — соответствующий отклик.

 $w_1,...,w_k$ — вклад k-го соседа, определяемый пользователем.

Способы определения веса:

- $ightharpoonup w_j = 1 j/k$ зависящий от номера соседа;
- $ightharpoonup w_j = \left\| x x_{(j)}
 ight\|^{-1}$ зависящий от расстояния до соседа.

$$\widehat{y}(x) = rg \max_{y} \sum_{j=1}^{k} w_{j} I\{Y_{j} = k\}$$
 — классификация

$$\widehat{y}(x) = rac{\sum_{j=1}^k w_j Y_j}{\sum_{j=1}^k w_j}$$
 — регрессия

Свойства

- 1. k гиперпараметр модели;
- 2. Не редко на практике показывает хорошие результаты.
- 3. Дорогое применение: для каждого x результат вычисляется за $O(n \ln n)$.

Способы решения проблемы:

- ▶ Хранение данных в виде дерева: K-D Tree, Ball Tree.
- Приближенный поиск: Locality-sensitive hashing —
 вероятностный метод понижения размерности многомерных данных.
 Подбирает хеш-функций так, чтобы похожие объекты
 с высокой степенью вероятности попадали в одну корзину.

5.6 Обучение на основе ближайшего соседа

kNN

Приближенный поиск соседей Метод локального усреднения

Locality-Sensitive Hashing (LSH)

Идея: если две точки расположены близко, то после некоторой проекции они тоже будут близко.

Пусть h(x) — дискретная проекция. Будем искать такую проекцию, что для некоторых чисел $R_1 < R_2$ и $p_1 > p_2$ выполнено

- 1. если $||x y|| \leqslant R_1$, то $P(h(x) = h(y)) \geqslant p_1$;
- 2. если $||x y|| \geqslant R_2$, то $P(h(x) = h(y)) \leqslant p_2$;

Смысл условия:

если точки близки друг к другу, то с большой вероятностью они окажутся в одной корзине. Иначе — с малой вероятность. Хотим выбрать такую h, что $p_1\gg p_2$

Выбор проекций

Рассмотрим функцию $h(x) = \big(h_1(x),...,h_K(x)\big),$ порожденную независимыми случайными проекциями

$$h_k(x) = \left\lfloor \frac{a_k^T x - b_k}{w} \right\rfloor,$$

где $a_k \sim \mathcal{N}(0, I_d)$, $b_k \sim \mathit{U}(0, w)$, w — ширина корзин.

Выбор проекций

Имеем:

Все пространство разделено на непересекающиеся пространства.

Поиск соседей:

В каждом подпространстве выполним полный поиск ближайших соседей.

Влияние ширины корзин w:

при увеличении *w* увеличивается количество точек, которые попадают в корзину. Соответственно, повышается точность поиска, но и увеличивается требуемое время на поиск.

Комбинирование проекций

Пусть
$$\|x-y\|\leqslant R_1$$
 и пусть $\mathsf{P}(h_k(x)=h_k(y))=\rho.$
Тогда из независимости $\mathsf{P}(h(x)=h(y))=\rho^k$ — малое число.

Повторим процедуру определения бакетов L раз, используя независимый набор случайных процекций $h^1(x),...,h^L(x)$, где $h^\ell(x)=\big(h_1^\ell(x),...,h_K^\ell(x)\big).$

Поиск соседей для x: ищем среди всех точек y, для которых хотя бы для одного ℓ выполнено $h^{\ell}(x) = h^{\ell}(y)$. Тогда $P(\exists \ell: h^{\ell}(x) = h^{\ell}(y)) = 1 - \left(1 - \rho^{k}\right)^{L}$ — большое число.

Число L обычно определяется из допустимой вероятности ошибки: если $\mathsf{P}(\forall \ell:\ h^\ell(x) \neq h^\ell(y)) \leqslant \delta$ то берем $L = \frac{\log \delta}{\log(1-\rho^k)}$.

5.6 Обучение на основе ближайшего соседа

kNN

Приближенный поиск соседей Метод локального усреднения

Метод локального усреднения

$$\hat{y}(x) = \sum_{i=1}^{n} w_i(x) Y_i / \sum_{i=1}^{n} w_i(x),$$

где $w_i(x) \geqslant 0$ убывает при удалении x от X_i .

Варианты:

- 1. $w_i(x) = I\{|x X_i| \le c\}$ усреднение по окрестности x;
- 2. $w_i(x) = (c |x X_i|)^k I\{|x X_i| \le c\}$ взвешенное усреднение по окрестности x;
- 3. Усреднение по k ближайшим соседям;
- 4. Ядерная оценка (см. далее).

Ядерная оценка Надарая-Ватсона

$$w_i(x) = \frac{1}{h}q\left(\frac{x-X_i}{h}\right),$$

где q — ядро (симметричная плотность),

h > 0 — ширина ядра.

Вероятностная интерпретация

Пусть
$$X_1,...,X_n$$
 случайны и $Y_i=f(X_i,\varepsilon_i)$ — отклик. Тогда $\frac{1}{n}\sum_{i=1}^n w_i(x)=\frac{1}{nh}\sum_{i=1}^n q\left(\frac{x-X_i}{h}\right)$ — ядерная оценка плотности X ; $\frac{1}{n}\sum_{i=1}^n w_i(x)Y_i=\frac{1}{nh}\sum_{i=1}^n Y_i\cdot q\left(\frac{x-X_i}{h}\right)$ — "ядерное мат. ожид." EY ; $\widehat{y}(x)=\sum_{i=1}^n w_i(x)Y_i\left/\sum_{i=1}^n w_i(x)-1\right.$ "ядерное УМО" $E(Y|X)$.

Ядерная оценка: теорема о сходимости

Пусть

- 1. $\int_{\mathbb{R}} |q(y)| dy < \infty;$
- 2. yq(y) o 0 при $|y| o \infty$;
- 3. EY² < ∞;
- 4. $h_n \to 0, nh_n \to \infty$ при $n \to \infty$.

Тогда $\widehat{y}(x) \stackrel{\mathrm{P}}{\longrightarrow} y(x)$ в точках непрерывности функции f(x), плотности $p_X(x)$ и условной дисперсии $\sigma^2(x) = \mathrm{D}(Y|X=x)$, если при этом p(x) > 0.

Наилучшая скорость сходимость квадратичного риска достигается при $h \sim n^{-1/5}$.

Ядерная оценка: выбор ширины ядра

Функционал вида leave one out:

$$F(h) = \sum_{i=1}^{n} (Y_i - \widehat{y}_{-i}(x_i))^2,$$

где $\widehat{y}_{-i}(x)$ — ядерная оценка, построенная по выборке, из которой было исключено i-е наблюдение.

Утверждение

$$F(h) = \sum_{i=1}^{n} (Y_i - \hat{y}(x_i))^2 / \left(1 - \frac{q(0)}{\sum_{k=1}^{n} q(\frac{x_i - x_k}{h})}\right)$$

Выбор
$$h: F(h) \rightarrow \min_{h}$$

Ядерная оценка: доверительная лента

Предположения:

$$\mu(x)$$
 — ожидаемый отклик;

$$Y_i = \mu(x_i) + \varepsilon_i$$
 — наблюдаемый отклик, $\mathsf{E}\varepsilon_i = 0, \mathsf{D}\varepsilon_i = \sigma^2;$ q — гауссовское ядро.

Доверительная лента уровня доверия α :

$$(\widehat{y}(x) - z_{3h}\delta(x), \widehat{y}(x) + z_{3h}\delta(x))$$

$$\delta(x) = \widehat{\sigma} \sqrt{\sum_{i=1}^n w^2(x_i)} / \sum_{i=1}^n w(x_i), \qquad p = \frac{1 + \alpha^{1/3h}}{2},$$

$$\widehat{\sigma}^2 = \frac{1}{2(n-1)} \sum_{i=1}^{n-1} (Y_{i+1} - Y_i)^2$$

Локальная линейная регрессионная модель

Модель $f(x) = x^T \theta(x)$, т.е. для каждого x свои коэффициенты. Для каждого предсказания применяется взвешенный МНК:

$$\sum_{i=1}^{n} w_i(x) \left(Y_i - X_i^T \theta(x) \right)^2 \longrightarrow \min_{\theta(x)},$$

где
$$w_i(x) = \frac{1}{h(x)} q\left(\frac{x - X_i}{h(x)}\right),$$
 $h(x) = \left\|x - X_{(k)}\right\|$, где $X_{(k)} - k$ -й ближайший сосед для x .

Взвешенный МНК:

$$\widehat{\theta}(x) = \left(X^T W(x) X\right)^{-1} X^T W(x) Y,$$

$$W(x) = \operatorname{diag}\left(w_1^2(x), ..., w_n^2(x)\right).$$

5.7 Анализ зависимостей

Даны парные выборки:

$$X = (X_1, ..., X_n)$$

$$Y=\left(Y_{1},...,Y_{n}\right)$$

Задачи:

- Зависимы ли выборки?
 - H_0 : выборки независимы vs. H_1 : выборки зависимы
- Количественная оценка степени
 неслучайности их совместного изменения.

5.7 Анализ зависимостей

Коэффициенты корреляции

Таблицы сопряженности 2×2

Таблицы сопряженности, общий случай

Коэффициент корреляции

Пусть ξ , η — случайные величины.

$$corr(\xi,\eta) = rac{cov(\xi,\eta)}{\sqrt{\mathsf{D}\xi\mathsf{D}\eta}}$$
 — коэффициент корреляции

Свойства:

- $|corr(\xi,\eta)| \leq 1;$
- $ightharpoonup |\mathit{corr}(\xi,\eta)| = 1 \Leftrightarrow \xi$ и η линейно зависимы п.н.;
- \blacktriangleright ξ и η независимы $\to corr(\xi,\eta)=0$. Обратное не верно;
- Является мерой линейной зависимости.

Коэффициент корреляции Пирсона

Метод подстановки: подставим в $corr(X_1, Y_1)$ эмпир. распр.

$$\widehat{\rho} = \frac{cov_{\mathsf{P}^*}(X_1, Y_1)}{\sqrt{\mathsf{D}_{\mathsf{P}^*}X_1\mathsf{D}_{\mathsf{P}^*}Y_1}} = \frac{\displaystyle\sum_{i=1}^n \left(X_i - \overline{X}\right) \left(Y_i - \overline{Y}\right)}{\sqrt{\displaystyle\sum_{i=1}^n \left(X_i - \overline{X}\right)^2 \sum_{i=1}^n \left(Y_i - \overline{Y}\right)^2}}$$

Коэффициент корреляции Пирсона

Свойства:

- $|\widehat{\rho}| \leqslant 1$;
- $ightharpoonup |\widehat{
 ho}| = 1 \Leftrightarrow$ точки лежат на одной прямой;
- Работает только для нормальных выборок для линейной зависимости;
- Не устойчив к выбросам.
- $ightharpoonup H_0$: выборки независимы Если $m H_0$ верна и выборки нормальные, то

$$T(X,Y) = \frac{\widehat{\rho}\sqrt{n-2}}{\sqrt{1-\widehat{\rho}^2}} \sim T_{n-2}.$$

Критерий $\{|T(X,Y)| > t_{n-2,1-\alpha/2}\}.$

Коэффициент корреляции Спирмена

Пусть R_i — ранг наблюдения X_i в выборке X, то есть $X_{(R_i)} = X_i$. Пусть S_i — ранг наблюдения Y_i в выборке Y, то есть $Y_{(S_i)} = Y_i$.

Xi	7.3	2.2	0.3	6.2	1.6	6.2	9.6
Ri	6	3	1	4.5	2	4.5	7

К.к. Спирмена = к.к. Пирсона по выборкам $(R_1,...,R_n)$ и $(S_1,...,S_n)$.

$$\rho_{S} = \frac{\sum_{i=1}^{n} (R_{i} - \overline{R}) (S_{i} - \overline{S})}{\sqrt{\sum_{i=1}^{n} (R_{i} - \overline{R})^{2} \sum_{i=1}^{n} (S_{i} - \overline{S})^{2}}} = 1 - \frac{6}{n^{3} - n} \sum_{i=1}^{n} (R_{i} - S_{i})^{2}$$

 $\rho_S = 1$

pvalue = 0

 $\rho_S = 0$

pvalue = 1

$$pvalue = 0$$
 Свойства:

 $\rho_{\mathcal{S}} = 1$

▶
$$|
ho_{S}| \leqslant 1$$
, причем $|
ho_{S}| = 1 \Leftrightarrow$ точки лежат на монотонной кривой;

▶ Если
$$H_0$$
 верна, то $E\rho_S = 0, D\rho_S = \frac{1}{n-1};$

► Если
$$H_0$$
 верна, то $\rho_S/\sqrt{D\rho_S} \stackrel{d_0}{\to} \mathcal{N}(0,1).$
Критерий $\{|\rho_S/\sqrt{D\rho_S}|>z_{1-\alpha/2}\};$

Коэффициент корреляции Кендалла

Пары (X_i, Y_i) и (X_j, Y_j) согласованы, если $\mathrm{sign}(X_i - X_i) \, \mathrm{sign}(Y_i - Y_i) = 1.$

Пусть S — число согласованных пар, R — число несогласованных.

$$\tau = \frac{S - R}{S + R} = 1 - \frac{4}{n(n-1)}R$$

$$S = \frac{n(n-1)}{2}, R = 0$$

$$\tau = 1$$

$$pvalue = 0$$

$$S = \frac{n(n-1)}{2}, R = 0$$

$$\tau = 1$$

$$pvalue = 0$$

Коэффициент корреляции Кендалла

Свойства:

- $|\tau| \leqslant 1$;
- $lacktriangleright | au|=1\Leftrightarrow$ точки лежат на монотонной кривой;
- ▶ Если H_0 верна, то $E\tau = 0, D\tau = \frac{2(2n+5)}{9n(n-1)};$
- lacktriangle Если $oldsymbol{\mathsf{H}}_0$ верна, то $au/\sqrt{\mathsf{D} au} \overset{d_0}{ o} \mathcal{N}(0,1).$ Критерий $\{| au/\sqrt{\mathsf{D} au}| > z_{1-lpha/2}\};$
- **Р** Если H_0 верна, то $corr(\rho_S, \tau) = \frac{2n+2}{\sqrt{4n^2+10n}}$;
- Менее чувствителен к большим различиям между рангами, чем ρ_S ;
- ▶ Точнее оценивается по выборкам малых размеров.

Еще раз формулы

Пирсон:

$$\widehat{\rho} = \frac{\sum_{i=1}^{n} (X_i - \overline{X}) (Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2 \sum_{i=1}^{n} (Y_i - \overline{Y})^2}}$$

Спирмен: R и S — ранги наблюдений в выборках X и Y

$$\rho_{S} = \frac{\sum_{i=1}^{n} (R_{i} - \overline{R}) (S_{i} - \overline{S})}{\sqrt{\sum_{i=1}^{n} (R_{i} - \overline{R})^{2} \sum_{i=1}^{n} (S_{i} - \overline{S})^{2}}} = 1 - \frac{6}{n^{3} - n} \sum_{i=1}^{n} (R_{i} - S_{i})^{2}$$

Кендалл: S — число соглас. пар, а R — число несоглас.

$$\tau = \frac{S - R}{S + R} = 1 - \frac{4}{n(n-1)}R$$

5.7 Анализ зависимостей

Коэффициенты корреляции

Таблицы сопряженности 2×2

Таблицы сопряженности, общий случай

Осенний семестр (2018)

Результаты решения теор. задачи:

Семинар	1	П	Ш	IV
Справились	0	5	3	2
Не справились	8	2	4	5

Факты:

- 1. Случайное разбиение на группы;
- 2. Задача на алгоритмы и методы оптимизации \implies не должна зависеть от семинариста по статистике;
- 3. Дедлайн перед семинаром;
- 4. На первом семинаре задача была разобрана.

Хотим воспользоваться методом проверки статистических гипотез.

Какие взять H_0 и H_1 ?

Презумпция невиновности: не виновны пока нет доказательств.

 H_0 : решаемость задачи не зависит от семинара

 H_1 : решаемость задачи зависит от семинара

Упростим данные

Разбиралась ли задача до семинара?	Нет	Да
Справились	0	10
Не справились	8	11

Математическая формулировка

Даны парные выборки

$$X = (X_1, ..., X_n) \sim Bern(p_1)$$

$$Y = (Y_1, ..., Y_n) \sim Bern(p_2)$$

 H_0 : выборки X и Y независимы

 H_1 : выборки X и Y зависимы

	$Y_i = 0$	$Y_i = 1$	\sum
$X_i = 0$	а	Ь	a+b
$X_i = 1$	С	d	c+d
Σ	a + c	b+d	n

Вероятность таблицы с фиксированными суммами задается гипергеометрическим распределением:

$$P(table) = \frac{C_{a+b}^{a}C_{c+d}^{c}}{C_{a}^{a+c}} = \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{n!a!b!c!d!}.$$

p-value = сумма вероятностей по всем возможным вариантам таблицы с такими же суммами по строкам и столбцам, имеющим вероятность не больше, чем у полученной таблицы.

Точный тест Фишера

Особенности:

- 1. Критерий является точным (неасимптотическим);
- 2. Вычислительно затратный \Rightarrow используется для малых выборок;
- 3. Что в сложных случаях? Увидим далее!

Пример про задачу 7 из ДЗ-12

Разбиралась ли задача до семинара?	Нет	Да
Справились	0	10
Не справились	8	11

scipy.stats.fisher_exact([[0, 8], [10, 11]]) вернет p-value = 0.0265.

Вывод: гипотеза о независимости отвергается.

Численные характеристики взаимосвязи

Даны парные выборки

$$X = (X_1,...,X_n) \sim Bern(p_1)$$

$$Y = (Y_1, ..., Y_n) \sim \textit{Bern}(p_2)$$

	$Y_i = 0$	$Y_i = 1$	\sum
$X_i = 0$	а	Ь	a+b
$X_i = 1$	С	d	c+d
Σ	a + c	b+d	n

$$Q = rac{ad-bc}{ad+bc}$$
 — коэффициент ассоциации

$$V=rac{ad-bc}{\sqrt{(a+b)(a+c)(b+d)(c+d)}}$$
 — коэффициент контингенции

В обоих случаях:

 $0\Longrightarrow$ полное отсутствие взаимосвязи

 $\pm 1 \Longrightarrow$ полная связь

Определение числа наблюдений (при a+b=c+d)

Задаем:

$$lpha$$
 — ур. значимости

 β — мощность

$$\left. egin{aligned} p_1 &= a/b \ p_2 &= c/d \end{aligned}
ight\}$$
 значимый эффект

$$egin{array}{c|cccc} Y_i = 0 & Y_i = 1 & \sum \ X_i = 0 & a & b & a+b \ X_i = 1 & c & d & c+d \ \sum & a+c & b+d & n \ \end{array}$$

Тогда необходимое число наблюдений в каждой строке равно

$$K / (\arcsin \sqrt{p_1} - \arcsin \sqrt{p_2})^2$$

K	$\beta = 0.8$	$\beta = 0.9$	$\beta = 0.99$	
$\alpha = 0.05$	12885	17250	30161	
$\alpha = 0.01$	16474	21369	35537	
$\alpha = 0.001$ 19172		24426	43945	

5.7 Анализ зависимостей

Коэффициенты корреляции

Таблицы сопряженности 2×2

Таблицы сопряженности, общий случай

Категориальные признаки

Даны парные выборки

$$X = (X_1, ..., X_n)$$
, причем $X_i \in \{1, ..., k_1\}$

$$Y = (Y_1, ..., Y_n)$$
, причем $Y_i \in \{1, ..., k_2\}$

Таблица сопряженности:

	1	 j	 k ₂	Σ
1	n ₁₁	 n_{1j}	 n_{1k_2}	n _{1•}
i	n _{i1}	 n _{ij}	 n _{ik2}	n _i •
k_1	n_{k_11}	 n_{k_1j}	 n _{k1 k2}	$n_{k_1 \bullet}$
\sum	$n_{\bullet 1}$	 n₀j	 n _{●k2}	n

Элементы таблицы:

$$n_{ij} = \#\{s \mid X_s = i, Y_s = j\}$$

 $n_{i \bullet} = \#\{s \mid X_s = i\}$
 $n_{\bullet i} = \#\{s \mid Y_s = j\}$

Вероятностные модели

Случай 1: X и Y случайны.

$$\pi_{ij} = \mathsf{P}(X_1 = i, Y_1 = j) \implies \{\pi_{ij}\}_{ij}$$
 — совместное распределение; $\pi_{iullet} = \mathsf{P}(X_1 = i) \implies \mathsf{P} = \{\pi_{iullet}\}_i$ — распределение X ; $\pi_{ullet} = \mathsf{P}(Y_1 = j) \implies \mathsf{Q} = \{\pi_{ullet}j\}_j$ — распределение Y ; Определение: X и Y независимы, если $\pi_{ij} = \pi_{iullet}\pi_{ullet}$ $\forall i,j$.

Случай 2: X неслучаен, Y случаен.

 \Longrightarrow суммы по строкам n_{iullet} фиксированы.

$$\pi_{j|i} = \mathsf{P}_i(Y_1 = j)$$
 — вероятность события $Y_1 = j$ если $X_1 = i$;

$$\mathsf{P}_i = \left\{\pi_{j|i}
ight\}_i$$
 — распределение Y если $X_1 = i$, т.е. X — параметр.

Определение: X и Y независимы, если $P_1 = ... = P_{k_1}$.

Критерий хи-квадрат (обе вер. модели)

 H_0 : выборки X и Y независимы

$$\chi^2(X,Y) = \sum_{i=1}^{k_1} \sum_{j=1}^{k_2} \frac{\left(n_{ij} - \frac{n_{i\bullet}n_{\bullet j}}{n}\right)^2}{\frac{n_{i\bullet}n_{\bullet j}}{n}}$$

Если
$$H_0$$
 верна, то $\chi^2(X,Y) \stackrel{d}{\longrightarrow} \chi^2_{(k_1-1)(k_2-1)}$ \Longrightarrow критерий $\Big\{\chi^2(X,Y) > \chi^2_{(k_1-1)(k_2-1),1-lpha}\Big\}.$

Условия применимости:

- 1. $n \ge 40$;
- $2. \ \frac{n_{i \bullet} n_{\bullet j}}{n} < 5$

не более чем в 5% ячеек.

Коэффициент корреляции Крамера

$$\varphi_{\mathcal{C}}(X,Y) = \sqrt{\frac{\chi^{2}(X,Y)}{n(\min(k_{1},k_{2})-1)}}$$

 $0 \Longrightarrow$ полное отсутствие взаимосвязи;

 $1 \Longrightarrow$ совпадение переменных.

Пример

	Вернул кредит	Не вернул кредит
Android	850	870
iOS	380	410

 H_0 : зависимости возвращаемости кредита от типа OC нет;

 H_1 : зависимость есть.

Критерий хи-квадрат: $\chi^2(X,Y) = 0.325$, pvalue = 0.569,

Численные характеристики: $arphi_{\it C}(X,Y)=0.008,\; \it Q=0.026,\; \it V=0.012$

