

Midterm 2 Review

CSCI 104

Important Rules:

- Product rule:
 - If procedure can be broken up into sequence of k tasks
 - o n1 ways to do first task, n2 ways to do second task, nk ways to do kth task
 - \circ $n_1 * n_2 * ... * n_k$ ways to do the procedure

- Sum rule:
 - If procedure can be done in n₁ ways OR n₂ ways
 - o n₁ and n₂ have zero overlap
 - \circ $n_1 + n_2$ ways to do the task

Important Rules (cont.):

- Subtraction rule:
 - If procedure can be done in n₁ ways OR n₂ ways
 - \circ n_1 and n_2 have overlap n_3
 - \circ $n_1 + n_2 n_3$ ways to do the task

- Division rule:
 - If procedure can be done in n ways
 - For each way, it is identical to d-1 other ways
 - o n/d ways to do a task

Important Rules (cont.):

• Permutation: ordered arrangement of r elements from a set of n

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

• Combination: **unordered** arrangement of r elements from a set of n (n choose r)

$$_{n}C_{r} = \binom{n}{r} = \frac{_{n}P_{r}}{_{r}P_{r}} = \frac{n!}{r! (n-r)!}$$

	Does order matter?	Is repetition allowed?	Formula
r-permutation without repetition	Yes	No	<u>n!</u> (n-r)!
r-permutation with repetition	Yes	Yes	n ^r
r-combination without repetition	No	No	n! r! (n-r)!
r-combination with repetition	No	Yes	$\begin{pmatrix} n-1+r \\ r \end{pmatrix}$

How many different ways are there to distribute 9 cookies to 4 children so that each child gets at least one cookie?

- The cookies are indistinguishable while the children are distinguishable, so Stars and Bars is a good option to use.
 - 9 stars = cookies
 - 3 bars to separate children
- Problem: Using the Stars and Bars equation will give sequences with children getting no cookies.
 - How do we make sure each child gets at least one cookie with this method?

 We can give each child a cookie, leaving us with 5 cookies (stars) remaining to distribute.

 More importantly, we now have no restrictions on how to distribute those 5 cookies since the given condition will always be fulfilled.

 We now have no restrictions on how to distribute those 5 cookies since the given condition will always be fulfilled.

Now just need to use with the remaining 5 cookies and 3 bars, giving us:
 [(5+3) CHOOSE 3] = 56 ways

Now let's say the children are indistinguishable. How many different ways are there to distribute 9 cookies to 4 children so that each child gets at least one cookie?

- We will still give each student one cookie, so now we need to distribute 5 indistinguishable cookies over the 4 indistinguishable students.
- There is no formula for this situation.
 - o (5, 0, 0, 0)
 - o (4, 1, 0, 0), (3, 2, 0, 0)
 - o (3, 1, 1, 0), (2, 2, 1, 0)
 - o (1, 1, 1, 2)
- Total: 6 ways

Important Rules:

- Probability of event E:
 - S = sample space of equally likely outcomes
 - \circ P(E) = |E| / |S|
- Complement: probability that event does not occur
 - $\circ \quad P(\bar{E}) = 1 P(E)$

Important Rules:

Conditional Probability: probability of B given A

$$P(B|A) = rac{P(A\cap B)}{P(A)}$$

o If likelihood of B occurring does not depend on A, then B is independent of A:

$$P(B \mid A) = P(B).$$

- Suppose there are two bags in a box, which contain the following marbles:
 - Bag 1: 7 red marbles and 3 green marbles.
 - o Bag 2: 2 red marbles and 8 green marbles.

 If we randomly select one of the bags and then randomly select one marble from that chosen bag, what is the probability that it's a green marble?

 Green marble could come from Bag 1 or Bag 2, which will affect the chances of drawing a green marble

- We need to use the Law of Total Probability:
 - For any partition of the sample space into disjoint events F_1 , ..., F_k :

$$p(E) = p(E|F_1) * p(F_1) + ... + p(E|F_k) * p(F_k)$$

$$p(G) = p(G|B_1) * p(B_1) + p(G|B_2) * p(B_2)$$

- $p(B_1) = p(B_2) = 0.5$
- $p(G|B_1) = 3 / (7+3) = 3/10 = 0.3$
- $p(G|B_2) = 8 / (8+2) = 8/10 = 0.8$

$$p(G) = (0.3 * 0.5) + (0.8 * 0.5)$$

 $p(G) = 0.15 + 0.40$

$$p(G) = 0.55$$

Consider a hash table of size 7 with a loading factor of 0.5, the resize function is 2n + 3, where n is the size of the hash table. (an insertion may end with the loading factor being ≥ 0.5 ; the next insertion would cause the resize).

When resizing, keys are inserted in the order they appear index-wise in the old

hashtable.

Key	HashFunc(key)	Loading Factor Before Insert	Probe Sequence
3	(9 + 4) % 7 = 6	0/7 = 0	6

Key	HashFunc(key)	Loading Factor Before Insert	Probe Sequence
3	(9 + 4) % 7 = 6	0/7 = 0	6
11	(33 + 4) % 7 = 2	1/7 = 0.14	2

Key	HashFunc(key)	Loading Factor Before Insert	Probe Sequence
3	(9 + 4) % 7 = 6	0/7 = 0	6
11	(33 + 4) % 7 = 2	1/7 = 0.14	2
10	(30 + 4) % 7 = 6	2/7 = 0.28	6 → 0

Key	HashFunc(key)	Loading Factor Before Insert	Probe Sequence
3	(9 + 4) % 7 = 6	0/7 = 0	6
11	(33 + 4) % 7 = 2	1/7 = 0.14	2
10	(30 + 4) % 7 = 6	2/7 = 0.28	6 → 0
6	(18 + 4) % 7 = 1	3/7 = 0.42	1

Key	HashFunc(key)	Loading Factor Before Insert	Probe Sequence
3	(9 + 4) % 7 = 6	0/7 = 0	6
11	(33 + 4) % 7 = 2	1/7 = 0.14	2
10	(30 + 4) % 7 = 6	2/7 = 0.28	6 → 0
6	(18 + 4) % 7 = 1	3/7 = 0.42	1
8		4/7 = 0.57	

Key	HashFu nc(key)	LF	Probe
3	6	0	6
11	2	0.14	2
10	6	0.28	6 → 0
6	1	0.42	1
8		0.57	

Move to new table	
New size is 2n + 3 = 17	=

Key	HashFunc(key)	LF	Probe
10	34 % 17 = 0	0	0
6	22 % 17 = 5	1/17	5
11	37 % 17 = 3	2/17	3
3	13 % 17=13	3/17	13
8	24 % 17 = 7	4/17	7

Key	HashFunc(key)	LF	Probe
10	34 % 17 = 0	0	0
6	22 % 17 = 5	1/17	5
11	37 % 17 = 3	2/17	3
3	13 % 17=13	3/17	13
8	24 % 17 = 7	4/17	7
23	73 % 17 = 5	5/17	5 → 6

Final hashtable:

Hashtable index	Key
0	10
3	11
5	6
6	23
7	8
13	3

More questions to consider:

- 1. What are the benefits of double hashing over things like linear or quadratic probing?
- 2. No examples of a double collision came up. If there was a double collision, what index do we go to next?
- 3. Can you explain the benefits of resizing?
- 4. Are probes ever guaranteed to go to distinct locations? If yes, what are the conditions for this to happen?

Q: What are the benefits and drawbacks of using a bloom filter?

Q: What are the benefits and drawbacks of using a bloom filter?

A:

Benefit: avoids storage of keys (better space efficiency wise)

Drawback: Can be space inefficient if not implemented correctly, not always right...

Q: Which is possible, false positives or false negatives?

Q: Which is possible, false positives or false negatives?

A: **False positives!** We may accidentally say something exists in the hashtable if all bits are set, but we'll never accidentally say something is not there when it is *Why?*

Because we would have set all the bits if we were inserting the item in the first place!

Q: Let's say we have a bloom filter with 19 indices, 3 universal hash functions. 5 of the bits are set. What is the probability of getting a false positive?

Q: Let's say we have a bloom filter with 19 indices, 3 universal hash functions. 5 of the bits are set. What is the probability of getting a false positive?

A: Product rule, since the problem can be broken up into 3 "tasks"

hash function 1, 2, 3: all 5/19 chance of hitting set bit

5/19 * 5/19 * 5/19 = 1.8% chance!

Q: Say gcd(a, b) = 1 and gcd(a, c) = 1. What is gcd(a, b*c)?

Q: Say gcd(a, b) = 1 and gcd(a, c) = 1. What is gcd(a, b*c)?

A: 1. Think about breaking a, b, and c into their prime factors. Since a is coprime with both b and c, when we multiply them together, we don't gain any factor in the product that will magically make the gcd greater than 1!

Q: Is 257 prime?

```
Q: Is 257 prime?
A: sqrt(257) = 16 (roughly)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 \rightarrow prime!
```

```
Q: Is 257 prime?
A: sqrt(257) = 16 (roughly)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 \rightarrow prime!
```

Q: What is the ones digit of 7^100?

Q: What is the ones digit of 7¹⁰⁰?

A: Let's try to find a pattern...

$$7^2 = 49 = 9$$

$$7^3 = 343 = 3$$

Q: What is the ones digit of 7¹⁰⁰?

A: Pattern repeats in groups of 4: 1 7 9 3 \rightarrow 1 7 9 3 \rightarrow etc.

Which number is 100 in the pattern? (i.e. will it be 7 9 3 or 1?)

N = exponent

If n % 4 == 0, last digit 1

If n % 4 == 1, last digit 7

If n % 4 == 2, last digit 9

If n % 4 == 3, last digit 3

 $N = 100 \rightarrow 100 \% 4 = 0$, last digit is 1

Q: Given that $5x \equiv 6 \pmod{8}$, find x.

Q: Given that $5x \equiv 6 \pmod{8}$, find x.

A: This means that 6 % 8 == 5x % 8

5x % 8 = 6. Need to find an x that will satisfy this.

Go through multiples of 5, think if remainder 8 == 6

5, 10, 15, 20, 25, 30

X = 6

Coding

Suppose you are given an integer array *nums* of unique elements. **Return all possible subsets** of the array (in other words, the power set). The solution can be in any order, and you must not include duplicate subsets.

• Example:

- Input: nums = [1,2,3]
- Output: [[], [1], [2], [1,2], [3], [1,3], [2,3], [1,2,3]]

```
// Returns all subsets of nums
vector<vector<int>>> subsets(vector<int>& nums) {
}
```

- How many subsets are possible?
 - Each element can be included or not included in the subset
 - For an array of n elements, this would be 2ⁿ total subsets

Coding

We need to explore all possible combinations of the array's elements -> backtracking!

- We will start building a subset that is initially empty
- We will iterate through the array and add the current number to our subset
 - Recursively build the subset without the letters we have already used (adjust the range of our loop)
 - Backtrack by removing the number we added and proceed to the next iteration of the loop
- In each recursive call, we will have a new subset that will be a part of our solution

Coding

Solution:

```
void dfs(vector<int>& nums, int start, vector<int>& curr, vector<vector<int>>& result) {
    result.push_back(curr);
    for (int i = start; i < nums.size(); i++) {</pre>
        curr.push_back(nums[i]);
        dfs(nums, i + 1, curr, result);
        curr.pop_back();
vector<vector<int>>> subsets(vector<int>& nums) {
    vector<int> curr;
    vector<vector<int>>> result;
    dfs(nums, 0, curr, result);
    return result;
```