1 Būtina žinoti

2 Dešimtainės begalinės periodinės trupmenos

1,36(24) = 1,3624242424242424... arba

Vienas sveikas, 36-ios šimtosios ir 24-ios dešimttūkstantosios periodu.

$$x = 0, (2)$$

$$10x = 2, (2)$$

$$100x = 52, (42) = 52, 4(24)$$

$$10x - x = 2, (2) - 0, (2)$$

$$100x - 1x = 52, 4(24) - 0, 5(24)$$

$$9x = 2$$

$$99x = 51, 9$$

$$x = \frac{2}{9}$$

$$x = \frac{519}{990}$$

2.1 Pratimai

Paverskite šias dešimtaines trupmenas paprastosimis:

c)
$$6, (72)$$

$$x = -1, 234(5)$$

$$10x = -12, 345(5)$$

$$9x = -12, 345(5) - -1, 234(5)$$

$$9x = -11, 111$$

$$x = -\frac{11111}{9000}$$

2.2 Daugiau

0 sveikų, $\frac{9}{10}$ periodu yra lygu 1:

$$0, (9) = 1, nes: 9, (9) - 0, (9) = 10x - 1x; 9x = 9; x = 1$$

3 Logaritmai

4 Šaknys

$$\begin{array}{l} \sqrt{a}*\sqrt{b}=\sqrt{a*b}\\ (\sqrt{a})^n=\sqrt{a^n}\\ \sqrt[n]{\sqrt[k]{a}}=\sqrt[n*k]{a}\\ \sqrt[n]{\sqrt[k]{a}}=\sqrt[n*k]{a}\\ \sqrt[2^n]{a^{2n}}=|a|, \ ^{2n+1}\sqrt[n]{a^{2n+1}}=a\\ a^{\frac{n}{k}}=\sqrt[k]{a^n} \end{array}$$

5 Raidiniai reiškiniai

$$(a - b)(a + b) = a^{2} + b^{2}$$

$$(a \pm b)^{2} = a^{2} \pm 2ab + b^{2}$$

$$(a \pm b)^{3} = a^{3} \pm 3a^{2}b + 3ab^{2} \pm b^{3}$$

$$(a \pm b)(a^{2} \mp 1ab + b^{2}) = a^{3} \pm b^{3}$$

5.1 Pratimai

a)
$$\log_2(8)$$
 b) $x(x+1)$ c) $(x-y)(x-y)$ d) $\frac{2}{x-y} + \frac{x+y}{1}$ e) $\frac{x^2-y^2}{x+y}$ f) $(\frac{x+y}{\sqrt{x+y}})^2$

6 Moduliai

$$|x| = \begin{cases} x, & kai \ x \ge 0, \\ -x, & kai \ x < 0 \end{cases}$$

$$|x| + 2 = 4$$
 $|x| = 2$ $x = 2$ arba $x = -2$, nes $|2| = 2$ ir $|-2| = 2$

Lygt
į |-x+5|=4 galima išspręsti taip:

$$5-x=4$$

$$-x=-1$$

$$x=1 (Tinka)$$

$$|-1+5|=4$$

$$x-5=4$$

$$x=9 (Tinka)$$

$$|-9+5|=4$$

7 Lygčių sistemos

Lygtis su dviem nežinomaisiais galima išspręsti grafiškai (bet taip nespręskit) sudėties ir keitimo būdu.

7.1 Lygtys su dviem nežinomaisiais

$$\begin{cases} x + y &= 8, \\ x - y &= -4 \end{cases} \Rightarrow \begin{cases} x + y &= 8, \\ x &= y - 4 \end{cases} \Rightarrow \begin{cases} (y - 4) + y &= 8, \\ x &= y - 4 \end{cases} \Rightarrow \begin{cases} y &= 6, \\ x &= 2 \end{cases}$$

$$\begin{cases} x + y = = 8, \\ x - y = = -4 \end{cases} \Rightarrow + \begin{cases} x + y = = 8, \\ \frac{x - y = = -4}{2x} \Rightarrow \begin{cases} x = 2, \\ y = 6 \end{cases} \end{cases}$$

Be to galima padauginti vieną lygti(eilutę) iš -1, -2, 3...

Sudėties metodas kartais neveikia, vienas iš kintamųjų TURI pradingti, sudėjus lygtis:

$$\begin{cases} x+y=8 \\ x\cdot y=-4 \end{cases} \Rightarrow + \begin{cases} x+y=8 \\ \frac{x\cdot y=-4}{x+y+xy=4} \end{cases} \Rightarrow x+y+xy=4$$

7.2 Lygtys su trimis nežinomaisiais

$$\begin{cases} x+y+z &= 6 \\ x-y+z &= 2 \Rightarrow \begin{cases} x+y+z &= 6 \\ x-y+z &= 2 \end{cases} \Rightarrow \begin{cases} x+y+(x+y) &= 6 \\ x-y+(x+y) &= 2 \\ z &= x+y \end{cases}$$

$$\Rightarrow \begin{cases} 2x+2y &= 6 \\ 2x &= 2 \\ z &= x+y \end{cases} \Rightarrow \begin{cases} x &= 1 \\ y &= 2 \\ z &= 3 \end{cases}$$

 $\check{C}ia$ sudėties būdas irgi galimas, tik jis veikia daug rečiau. Dažnai gali būti naudojamas mišrus būdas, dvi lygtis sudedame ir rezultatą (keitimo būdu) įstatome į trečią.

8 Trikampiai

9 Kitos Figūros

Vėliau padarysiu...

10 Vektoriai

11 Geometrija

11.1 Kampai

Visų figūros kampų suma = $(n-2) \cdot 180^{\circ}$, n-kampų skaičius

11.2 Įbrėžtinės ir Apibrėžtinės figūros

12 Daugiau

Apskritimas gali būti vaizduojamas kaip lygtis su dviem kintamaisiais:

3

12.1 Lygties sprendimas įvedant naują kintamąjį

$$ax^{4} + bx^{2} + c = 0$$

$$jei \ t = x^{2},$$

$$at^{2} + at + c = 0$$

$$x_{1} = \sqrt{t}, x_{2} = -\sqrt{t}$$

$$a \log_{p}^{2} x + b \log_{p} x + c = 0$$

$$at^{2} + b \log_{p} x + c = 0$$

$$at^{2} + at + c = 0$$

$$x = p^{t}$$

 $\log_p x, p-pagrindas,\ man\ nebe\ užteko\ raidžių: (,\ z-ne,\ d-negraži,\ o\log_e\ yra\ natūrinis\ logaritmas(Angl.\ natural\ logarithm).\ ..$

13 12 Klasė

14 Sekos

Seka - tai, tiesiog, skaičių, kurie turi savo numerį/indeksą, sąrašas. Seka gali būti išreikšta:

- Pagal kiekviena skaičių: 10, 20, 30, 40...
- n-ojo nario formule: $a_n = n \cdot 10, n \in \mathbb{N}$
- rekurentiškai: $a_1 = 10, a_{n+1} = a_n + 10, n \in \mathbb{N}$

Sekos indeksas turi būti natūralus skaičius!

14.1 Aritmetinė progresija

Aritmetinės progresijos yra sekos sekančios: $a_n = a_1 + (n-1)d$ formulę. a_1 – pirmas sekos narys, n – nario numeris, d – skirtumas, S – suma.

$$a_{1} = a_{n} - (n-1)d$$

$$n = \frac{a_{n} - a_{1}}{d} + 1$$

$$d = \frac{a_{n} - a_{1}}{n-1} = a_{n+1} - a_{n}$$

$$S_{n} = \frac{a_{1} + a_{n}}{2}n = \frac{2a_{1} + (n-1)d}{2}n$$

$$a_{\frac{x+y}{2}} = \frac{a_{x} + a_{y}}{2}, (Vidurkis)$$

14.2 Geometrinė progresija

Geometrinės progresijos yra sekos sekančios: $b_n = b_1 q^{n-1}$ formulę. b_1 – pirmas sekos narys, n – nario numeris, q – vardiklis, S – suma.

$$b_{1} = b_{n} : q^{n-1}$$

$$n = \log_{q} \left(\frac{b_{n}}{b_{1}} + q\right)$$

$$q = \left(\frac{b_{1}}{b_{n}}\right)^{n-1} = \frac{b_{n+1}}{b_{n}}$$

$$S_{n} = \frac{b_{1} - b_{n}q}{1 - q} = \frac{b_{1}(1 - q^{n})}{1 - q}$$

$$S = \frac{b_{1}}{1 - q}$$

$$a_{\frac{x+y}{2}} = \sqrt{a_{x} + a_{y}}, (Vidurkis)$$

14.3 Mišrių progresijų uždaviniai

Sėkmės.

14.4 Daugiau

Kiek mačiau, Amerikoje beveik visad Aritmetinė ir Geometrinė progresijos sutrumpinamos į AP ir GP.

15 Nelygybės

16 Išvestinės

16.1 Funkcijos vidutinis greitis intervale

$$\frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a}$$

$$f(x) = 10x - 5, x \in [-5; 5]$$
 $\frac{\Delta y}{\Delta x} = \frac{f(5) - f(-5)}{5 + 5}$ $\frac{\Delta y}{\Delta x} = \frac{45 + 55}{10} = 10$

16.2 Funkcijos greitis taške

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x} = f'(a)$$

$$f(x) = 5x^2 - 5, x = 5$$

$$\frac{f(5+\Delta x) - f(5)}{\Delta x} = \frac{5(5+\Delta x)^2 - 5 - 125 + 5}{\Delta x} = \frac{5(25+2\Delta x + (\Delta x)^2) - 125}{\Delta x} = \frac{5(25+2\Delta x + (\Delta x)^2)$$

$$\frac{125 + 10\Delta x + 5(\Delta x)^{2} - 125}{\Delta x} = \frac{10\Delta x + 5(\Delta x)^{2}}{\Delta x} = \frac{\Delta x(10 + 5\Delta x)}{\Delta x} = 10 + 5\Delta x$$

16.3 Funkcijos išvestinė funkcija

Likusi šio skyriaus dalis aiškina kaip šito nenaudoti:

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$\lim_{\Delta x \to 0} \Delta x = 0$$

Nesu tikras ar tikrai galima dauginti funkciją iš Δx ... Turėtų būti galima...

$$y = f(x) = x^2 + 3$$

$$\lim_{\Delta x \to 0} \Delta x * f'(x) = \lim_{\Delta x \to 0} (f(x + \Delta x) - f(x)) = \lim_{\Delta x \to 0} ((x + \Delta x)^2 + 3 - x^2 - 3) =$$

$$\lim_{\Delta x \to 0} (x^2 + 2x\Delta x + (\Delta x)^2 + 3 - x^2 - 3) = \lim_{\Delta x \to 0} ((\Delta x)^2 + 2x\Delta x) = \lim_{\Delta x \to 0} (\Delta x(\Delta x + 2x))$$

$$f(x) = \lim_{\Delta x \to 0} \frac{\Delta x(\Delta x + 2x)}{\Delta x} = 2x$$

16.4 Liestinė

$$y = f'(x_0)x + f(a_0) - af'(x_0) = f'(x_0)(x - x_0) + f(x_0)$$

 $\check{C}ia \ x_0 \ da\check{z}nai \ duodamas/surandamas.$

Funkcijos liestinė visada turės y = kx + b pavidalą, todėl:

$$f'(x_0) = \operatorname{tg} \alpha \qquad \qquad f'(x_0) = k$$

16.5 Daugianario išvestinė

$$(af'(x)) = af'(x)$$

$$a' = 0 \Rightarrow (x^a)' = a x^{a-1}$$

$$\sqrt[n]{x} = x^{\frac{1}{n}}$$

$$(3x^7)' = 3 \cdot 7x^6 = 21x^6$$
 $(\sqrt{3 \cdot x})' = (\sqrt{3} \cdot x^{\frac{1}{2}})' = \sqrt{3} \cdot \frac{1}{2}x^{-\frac{1}{2}} = \dots = \frac{1}{2}\sqrt{\frac{3}{x}}$

5

16.6 Kitos išvestinių formulės

$$(a^{x})' = a^{x} \ln a, \quad (a > 0, a \neq 1)$$

$$(\log_{a} x)' = \frac{1}{x \ln a}, \quad (a > 0, a \neq 1)$$

$$(\sin x)' = \cos x; \qquad (\cos x)' = -\sin x$$

$$(\operatorname{tg} x)' = \frac{1}{\cos^{2} x}; \qquad (\operatorname{ctg} x)' = -\frac{1}{\sin^{2} x}$$

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'x$$

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'x}{g^{2}(x)}$$

$$\left(f(g(x))\right)' = f'(g(x)) \cdot g'(x)$$

16.6.1 Daugiau

$$\ln x = \log_e x \quad \Rightarrow \quad (e^x)' = e^x, \qquad (\ln x)' = \frac{1}{r}$$

16.7 Funkcijos reikšmių kitimas

Beje, išvestinės nedraugauja su netolydžiomis (nutrūkstančiomis/šokinėjančiomis) funkcijomis, nes, pavyzdžiui: tokios funkcijos gali turėti ir teigiamas, ir neigiamas reikšmes, bet niekad nekirsti OX (abscisių) ašies.

$$f'(x) = 0 \Rightarrow \text{funkcijos reikšmė} - \text{pastovi}$$

 $f'(x) > 0 \Rightarrow \text{funkcijos reikšmė} - \text{didėja}$
 $f'(x) < 0 \Rightarrow \text{funkcijos reikšmė} - \text{mažėja}$

Ekstremumo taškai — minimumo ir maksimumo taškai. Minimumo taškas — pastovumo taškas kai mažėjanti funkcijos dalis pradės augti. Maksimumo taškas turi atvirkščią apibrėžimą minimumo taškui.

Beje, jei funkcija yra uždarame intervale, intervalo kraštai veikia taip pat kaip ekstremumo taškai.

$$f(x) = 2x^3 - x^2$$
 $f'(x) = 6x^2 - 2x$
 $6x^2 - 2x = 0$ $x(6x - 2) = 0$ $x = 0$ arba $x = 1/3$

16.8 Funkcijų tirimas

1. Apibrėžimo sritis: D_f

2. Funkcijos lyginumas: $f(x) = f(-x), |f(x)| = |f(-x)|, f(x) \neq f(-x)$

3. Kur kerta OX aši: f(x) = 0

4. Kur kerta OY ašį: f(0) = y

5. Kritiniai taškai: f'(x) = 0

6. Reikšmės kitimo intervalai: $f'(x) \leq 0$

7. Ekstremumo taškai: $f_{min}, f_{max}; f'(x) = 0 \Rightarrow f(x) = y$

16.9 Daugiau

Tekstiniai uždaviniai, kurie reikalauja išvestinių dažnai prašo surasti su kokiais parametrais, rezultatas bus dižiausias/mažiausias. Be to, šie uždaviniai **dažnai** neduos užtektinai dydžių, kad būtų galima apkaičiuoti, koks dalykas yra pateiktu atveju.

17 Integralai

Integralai dažniausia naudojami gauti plotą po tarp kelių funkcijų.

17.1 Pirmykštė funkcija

Taip kaip sudėtis yra atvirkščia atimčiai, skačiaus kėlimas laipsniu atvirkščias šaknies traukimui ar sin yra atvirkščias arcsin, apie pirmykštę funkciją galima mąstyti kaip atvirkščią išvestinėms.

Pirmykštė funkcija $F(x)$	Paprasta funkcija $f(x)$	Funkcijos išvestinė $f'(x)$
x+C	1	0
$x^2 : 2 + C$	x	1
$x^3 : 3 + C$	$ x^2 $	2x
$2x^2 + 5x + C$	$\begin{vmatrix} 4x + 5 \\ 4^x \end{vmatrix}$	4
$4^x: \ln 4$	4^x	$4^x \cdot \ln 4$
$-\cos x$	$\sin x$	$\cos x$
$(\log_4 x)x - \frac{x}{\ln 4} + C$	$\log_4 x$	$1:(x\cdot \ln 4)$

18 Tikimybės

 $P(A) = \frac{1}{2}$, kai A – yra koks nors įvykis ir P(A) – tikimybė, kad jis įvyks

18.1 "Ir" ir "arba"

Kai naudojamas (arba norėtųsi naudoti) žodį "Ir", tikimybes reikia dauginti vieną iš kitos: C yra A ir B, taigi: P(C) = P(A) * P(B)

Pvz.: Tris kartus metama moneta, kokia yra tikimybė, kad visus tris kartus iškris herbas? H – iškrito herbas. A – iškrito herbas ir herbas ir herbas. $P(H) = \frac{1}{2}$. $P(A) = P(H) * P(H) * P(H) = \frac{1}{8}$.

19 Dar daugiau

19.1 Įsivaizduojamieji skaičiai(\mathbb{C}):

Šie skaičiai turi tikrają ir įsivaizduojamają dalis. Atrodo taip: -12 + 2i. Tikroji dalis yra paprastas skačiius, be vieneto, kol įsivaizduojamoji turi i. Jei jums patinka, galite i laikyti: obuolys arba knyga...

Nors, svarbiausia: $i = \sqrt{-1}$ ir $i^2 = -1$.

Šie skaičiai taip pat veikia kaip plokštumos(2D) vektoriai, su kuriais daug lengviau daryti algebrą. Galite laikyti tikrają skaičiaus dalį \vec{a}_x komponentu ir netrikrają \vec{a}_y komponentu. Beje, $\vec{i}(1,0,0...)$ ir $\vec{j}(0,1,0...)$ tai vienetiniai vektoriai!

19.2 Sudėties apibrėžimas:

$$3^2 = 3 * 3 = 3 + 3 + 3 = ?$$

$$Jei \ a+0=a, a^+=a+1, \\ a+1=a+0^+=(a+0)^+=a^+ \\ a+b=a^+ \ \}^b \ {\rm kart} \ \emptyset$$