D.P.I (Driving Pattern Identification) 🦻

Team ND-12

진교훈, 오훈지, 이재원

Index 01. 서론(Introduction)

현황 파악 및 문제제기

Index 02. 본론(Data Analysis Idea)

데이터 분석 아이디어

활용방안 및 기대효과

시로 〈문제제기〉

Status

OECD국가의 10억KM 당 교통사고 사망률

01 Index 01. Introduction

Drowsy Driving Status

교통사고의 주요 원인 '졸음운전'

현실적으로 불가능한 졸음운전 단속

Drunk Driving Status

높은 음주운전 재범율

How About?

전국에 있는 수 많은 영상으로 위험 주행군을 찾아낼 수 있지 않을까?

Human Resource Monitoring

감독관이 직접 할 경우 "높은 오류율"과 "실시간 적용"에 취약

Deeplearning

- 자가학습으로 강건화
- 실시간으로 적용 가능

Deeplearning Status

한국 전자통신연구원

감시 카메라 기반 범죄행위 발견 알고리즘 화재 영상 인식 알고리즘 개발

본론 (데이터 분석 방향)

Data Source

루프검지기

□ 구성 및 수집데이터

- 대부분 루프 검지기를 사용(쌍루프 원형검지기) / 일부 영상검지기 및 레이더 검지기로 구성
- •교통량, 점유율(헤드별측정값), 속도산출
- · 30초 주기(Polling Cycle) 수집 / 개별차량(Event) 방식 자료는 미 수집

설치기를

- 차로별 설치
- · 평균 1km에 1개소씩설치(터널 200~250m)
- · 고속도로 전체 약 4,000개소 운영 중

*출처: e-나라지표

전국 약 4000개소의 VDS 중 비디오 검지기와 도로 CCTV 활용

Driving Pattern

Possible?

- 1. 졸음, 음주운전만의 특정한 주행 패턴?
 - 2. 주행패턴 인식?

Driving Pattern

다. 정상 운전 대비 두 운전 상태 모두 종방향에 대해 기준속도에서 변동이 심한 패턴을 보였으며 사행 운전 등으로 인해 횡방향 데이터의 변화량 및 분산 값 등이 크게 나왔다. 음주와 졸음의 경우 횡방향으로는 유사한 경향성을 보였으나, 종방향에 대해서 음주 운전의 경우 더 큰 분산 및 변동폭을 갖는 등의 특징을 확인 할 수 있었다.

졸음운전과 음주운전을 분류할 수 있었다. 정상과 졸음상태 감지의 경우 오차율 14.3%로 정확성 85.6%를 보였으며 졸음과 음주운전에 대해서는 오차율 3.5%, 정확성 96.5%의 높은 정확성을 나타내었다.

2016&2017년 연구 논문

→ 위험 운전군(졸음/음주)은 정상운전 대비 종방향에 심한 변동 → 실제 조향각센서, 횡/종 가속도 데이터를 이용, 높은 예측률로 분류

Driving Pattern

Min Li et al, 2017

Figure 2. Comparison of vehicle speed characteristic curves.

Figure 4. Comparison of engine speed characteristic curves.

Figure 3. Comparison of acceleration characteristic curves.

Figure 5. Comparison of accelerator position characteristic

2017년 SAGE저널 수록된 연구자료

→ 위험운전군과 정상운전군의 큰 운전패턴 차이

Video Classification

CNN + HB-RNN

Video Classification

Idea Structure

D.P.I (Driving Pattern Identification)

패턴 축적 및 활용 ← 위험 운전군 분류 ← 운전자 주행 패턴화

결론 〈활용방안 및 기대효과〉

Utilization Plan (1)

- 인건비 절약
- 기존 CCTV 활용

 교통사고의 주 원인이나 사실상 단속 불가능하던 졸음운전 단속 가능

Utilization Plan (2)

졸음 운전시 실시간 알림

이상주행 과빈 시 벌점 부과

Utilization Plan (3)

• D.P.I시스템의 알고리즘을 활용하여 기존의 졸음방지 앱과 졸음방지 시스템간의 연계

Utilization Plan (4)

운전 패턴을 인식하니 종속변수 변경을 통하여 교통량 예측, 교통사고 인식, 등 다양한 활용방안이 존재

Conclusion

ZIAILICI.