NM Lab Sheet II Year / II Part Faculty: Computer/Electrical

Labsheet#10

Objective

 To Implement Numerical Integration techniques (Trapezoidal, Simpson's 1/3rd & Simpson's 3/8th Methods).

Trapezoidal Method [Let $\int_4^{5.2} \log x \, dx$]

Algorithm

- 1. Start
- 2. Define function f(x)
- 3. Read lower limit of integration, upper limit of integration and number of sub interval
- 4. Calculate: step size = (upper limit lower limit)/number of sub interval
- 5. Set: integration value = f(lower limit) + f(upper limit)
- 6. Set: i = 1
- 7. If i > number of sub interval then goto
- 8. Calculate: k = i * h
- 9. Calculate: Integration value = Integration Value + 2* f(k)
- 10. Increment i by 1 i.e. i = i+1 and go to step 7
- 11. Calculate: Integration value = Integration value * step size/2
- 12. Display Integration value as required answer
- 13. Stop

Simpson's 1/3rd Method [Let $\int_0^2 \{e^x + \sin(2x)\} dx$]

Algorithm

- 1. Start
- 2. Define function f(x)
- 3. Read lower limit of integration, upper limit of integration and number of sub interval
- 4. Calculate: step size = (upper limit lower limit)/number of sub interval
- 5. Set: integration value = f(lower limit) + f(upper limit)
- 6. Set: i = 1
- 7. If i > number of sub interval then goto
- 8. Calculate: k = i * h
- 9. If i mod 2 = 0 then

Integration value = Integration Value + 2* f(k)

Otherwise

Integration Value = Integration Value + 4 * f(k)

End If

- 10. Increment i by 1 i.e. i = i+1 and go to step 7
- 11. Calculate: Integration value = Integration value * step size/3
- 12. Display Integration value as required answer
- 13. Stop

Simpson's 1/3rd Method [Let $\int_0^{0.5} \frac{x}{\sin x} dx$]

Algorithm

- 1. Start
- 2. Define function f(x)
- 3. Read lower limit of integration, upper limit of integration and number of sub interval
- 4. Calculate: step size = (upper limit lower limit)/number of sub interval
- 5. Set: integration value = f(lower limit) + f(upper limit)
- 6. Set: i = 1
- 7. If i > number of sub interval then goto
- 8. Calculate: k = i * h
- 9. If $i \mod 3 = 0$ then

Integration value = Integration Value + 2* f(k)

Otherwise

Integration Value = Integration Value + 3 * f(k)

End If

- 10. Increment i by 1 i.e. i = i+1 and go to step 7
- 11. Calculate: Integration value = Integration value * step size*3/8
- 12. Display Integration value as required answer
- 13. Stop

Lab Assignment#10

- 1. Evaluate $\int_0^3 (\sin(x) + \cos(x) + 12) dx$ using **Simpson's 3/8th** rule taking h = **0.5**, Determine the **percent error** by comparing the result with the result with **exact solution**.
- 2. Evaluate $\int_0^1 \frac{1}{1+x^2} dx$ using
 - a. Trapezoidal rule taking $h = \frac{1}{4} = 0.25$
 - b. Simpson's $1/3^{rd}$ rule taking n=4, h = $\frac{1}{4}$ = 0.25
 - c. Simpson's $3/8^{th}$ rule taking n=6, h = 1/6

Hence compute an approximate value of π in each case. [Hint: generate two tables]

3. The velocity v of a particle at a distance s from a point on its path is given in the table below:

s (ft)	0	10	20	30	40	50	60
v (ft/sec)	47	58	64	65	61	52	38

Estimate the time taken to travel a distance of 60ft by using Simpson's $1/3^{\text{rd}}$ rule. Compare the result with Simpson's $3/8^{\text{th}}$ rule. [Ans: $I_{1/3} = 1.06352$, $I_{3/8} = 1.06445$]