Topo Orders	Anyons	Basis of the Ground States	Modular Matrices
Z ₂ toric code	1 e m ε	$W_1 = (000\rangle + 011\rangle)/2, W_e = (000\rangle - 011\rangle)/2,$ $W_m = (101\rangle + 110\rangle)/2, W_{\varepsilon} = (101\rangle - 110\rangle)/2.$	$T = \text{Diag}\{1,1,1,-1\}$ $S = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1\\ 1 & 1 & -1 & -1\\ 1 & -1 & 1 & -1\\ 1 & -1 & -$
Doubled semion	$\begin{array}{cc} 1 & s \\ \bar{s} & s\bar{s} \end{array}$	$W_1 = (000\rangle + 011\rangle)/2, W_S = (101\rangle + i 110\rangle)/2,$ $W_{\bar{S}} = (000\rangle - 011\rangle)/2, W_{S\bar{S}} = (101\rangle - i 110\rangle)/2.$	$T = \text{Diag}\{1, i, -i, 1\}$ $S = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1\\ 1 & -1 & 1 & -1\\ 1 & 1 & -1 & -$
Doubled Fibonacci	$egin{array}{ccc} 1 & au \ ar{ au} & au ar{ au} \end{array}$	$\begin{split} W_1 &= (000\rangle + 011\rangle)/\sqrt{5}\varphi, \\ W_{\tau} &= (101\rangle + e^{-i\frac{4\pi}{5}} 110\rangle + \sqrt{\varphi}e^{i\frac{3\pi}{5}} 111\rangle)/\sqrt{5}\varphi, \\ W_{\overline{\tau}} &= (101\rangle + e^{i\frac{4\pi}{5}} 110\rangle + \sqrt{\varphi}e^{-i\frac{3\pi}{5}} 111\rangle)/\sqrt{5}\varphi, \\ W_{\tau\overline{\tau}} &= (\varphi^2 000\rangle - \varphi 011\rangle + \varphi^2 101\rangle + \varphi^2 110\rangle + \sqrt{\varphi} 111\rangle)/\sqrt{5}\varphi. \end{split}$	$T = \text{Diag}\{1, e^{i\frac{4\pi}{5}}, e^{-i\frac{4\pi}{5}}, 1\}$ $S = \frac{1}{\sqrt{5}\phi} \begin{pmatrix} 1 & \phi & \phi & \phi^2 \\ \phi & -1 & \phi^2 & -\phi \\ \phi & \phi^2 & -1 & -\phi \\ \phi^2 & -\phi & -\phi & 1 \end{pmatrix}$