Contents			Geometry 12 6.1 Point
1	Misc 1.1 Contest 1.1.1 Makefile 1.2 How Did We Get Here? 1.2.1 Macros	2 2 2 2 2	6.1.1 Spherical Coordinates 12 6.2 Segments 13 6.3 Pick's theorem 13 6.4 Convex Hull 13 6.5 Angular Sort 13
	1.2.2 constexpr	2 2	6.6 Convex Polygon Minkowski Sum 13 6.7 Point In Polygon 13
	1.3 Tools	3 3 3	6.7.1 Convex Version 13 6.7.2 Offline Multiple Points Version 13 6.8 Closest Pair 14
	1.4 Algorithms 1.4.1 Bit Hacks 1.4.2 DP opt	3 3 7 3	Strings 14 7.1 Knuth-Morris-Pratt Algorithm 14
2	1.4.3 Mo's Algorithm on Tree	3	7.2 Suffix Array 14 7.3 Z Value 14
2	2.1 GNU PBDS	3 3 4	7.4 Manacher's Algorithm 14 7.5 Minimum Rotation 15 7.6 Palindromic Tree 15
	2.4 Li-Chao Tree	4	Debug List 15 Tech 15
	2.7 Dynamic MST	$\stackrel{\circ}{5}$ $\stackrel{\circ}{-}$ 1	
3	Graph 3.1 Modeling	5	.1. Contest
	3.2 Low link	6 –	.1.1. Makefile
	3.3.1 Dial's algorithm	6 3 9	.PRECIOUS: ./p% %: p% ulimit -s unlimited && ./\$<
	3.4.1 Bipartite Matching	$\begin{bmatrix} 6 & 5 \\ 7 & 7 \end{bmatrix}$	p%: p%.cpp g++ -o \$@ \$< -std=c++17 -Wall -Wextra -Wshadow \ -fsanitize=address,undefined
	3.4.4 Minimum Cost Flow	8	.2. How Did We Get Here?
	3.4.6 Global Minimum Cut	8 U 8 F 9 C 9 in	Jes vectorizations and math optimizations at your own peril. For gcc > 9, there are [[likely]] and [[unlikely]] attributes. Call gcc with -fopt-info-optimized-missed-optall for optimization of the control of the cont
	3.6 Manhattan Distance MST	9 3	#define _GLIBCXX_DEBUG
4	Math 4.1 Number Theory	9 5 4 9 7 4	<pre>#pragma GCC target("avx,avx2,abm,bmi,bmi2") // tip: `lscpu` // before a loop #pragma GCC unroll 16 // 0 or 1 -> no unrolling #pragma GCC ivdep</pre>
		10 S	
	4.2 Combinatorics	10 10 10	constexpr loop iteration per function: 262 144 constexpr operation count per function: 33 554 432 template recursion depth: 900 (gcc might segfault first)
	4.2.3 Extended Lucas	$\begin{bmatrix} 10 & & & \\ 11 & & 1 \\ 11 & & 3 \end{bmatrix}$.2.3. Bump Allocator // global bump allocator char mem[256 << 20]; // 256 MB size_t rsp = sizeof mem; void *operator new(size_t s) {
	4.3.3 Cayley's Formula	11 5 11 7 11 7	assert(s < rsp); // MLE return (void *)8mem[rsp -= s];
5	5.1 Fast Fourier Transform	11 11 0 11 5	<pre>// bump allocator for STL / pbds containers char mem[256 << 20]; size_t rsp = sizeof mem; template <typename t=""> struct bump {</typename></pre>
	5.4 Linear Recurrences	11 15 1 11 15 1 11 17	<pre>typedef T value_type; bump() {} template <typename u=""> bump(U,) {} T *allocate(size_t n) {</typename></pre>
	5.5 Matrices	12 19 12 21 12	<pre>rsp -= n * sizeof(T); rsp &= 0 - alignof(T); return (T *)(mem + rsp); } void deallocate(T *, size_t n) {}</pre>
		12 23	

1.3. Tools

1.3.1. SplitMix64

```
using ull = unsigned long long;
inline ull splitmix64(ull x) {
   // change to `static ull x = SEED; ` for DRBG
  ull z = (x += 0x9E3779B97F4A7C15);
z = (z ^ (z >> 30)) * 0xBF58476D1CE4E5B9;
z = (z ^ (z >> 27)) * 0x94D049BB133111EB;
return z ^ (z >> 31);
```

1.3.2. x86 Stack Hack

```
constexpr size_t size = 200 << 20; // 200MiB</pre>
int main() {
  register long rsp asm("rsp");
  char *buf = new char[size];
asm("movq %0, %%rsp\n" ::"r"(buf + size));
  // do stuff
  asm("movq %0, %%rsp\n" :: "r"(rsp));
  delete[] buf;
```

1.4. Algorithms

1.4.1. Bit Hacks

```
// next permutation of x as a bit sequence
ull next_bits_permutation(ull x) {
  ull c = __builtin_ctzll(x), r = x + (1ULL << c);
  return (r ^ x) >> (c + 2) | r;
// iterate over all (proper) subsets of bitset s
void subsets(ull s) {
   for (ull x = s; x;) { --x δ= s; /* do stuff */ }
```

1.4.2. DP opt

Aliens

```
// min dp[i] value and its i (smallest one)
pll get_dp(int cost);
ll aliens(int k, int l, int r) {
  while (l != r) {
    int m = (l + r) / 2;
    auto [f, s] = get_dp(m);
    if (s == k) return f - m * k;
  if (s <= k) re_m;
}</pre>
        if (s < k) r = m;
       else l = m + 1;
   return get_dp(l).first - l * k;
```

DnC DP

Given $a[i] = \min_{lo(i) \le k < hi(i)} (f(i,k))$ where the (minimal) optimal kincreases with i, computes a[i] for i = L..R - 1. Time: $O((N + (hi - lo)) \log N)$

```
struct DP { // Modify at will:
  int lo(int ind) { return 0; }
  int hi(int ind) { return ind; }
  ll f(int ind, int k) { return dp[ind][k]; }
   void store(int ind, int k, ll v) { res[ind] = pii(k, v); }
   void rec(int L, int R, int LO, int HI) {
     if (L >= R) return;
     int mid = (L + R) >> 1;
pair<ll, int> best(LLONG_MAX, LO);
rep(k, max(LO, lo(mid)), min(HI, hi(mid))) best =
     min(best, make_pair(f(mid, k), k));
      store(mid, best.second, best.first);
      rec(L, mid, L0, best.second + 1);
     rec(mid + 1, R, best.second, HI);
   void solve(int L, int R) { rec(L, R, INT_MIN, INT_MAX); }
```

Knuth's Opt

When doing DP on intervals:

 $a[i][j] = \min_{i < k < j} (a[i][k] + a[k][j]) + f(i,j),$ where the (minimal) optimal k increases with both i and j, one can solve intervals in increasing order of length, and search k = p[i][j] for a[i][j] only between p[i][j-1]and p[i+1][j]. This is known as Knuth DP. Sufficient criteria for this are if $f(b,c) \leq f(a,d)$ and $f(a,c) + f(b,d) \leq f(a,d) + f(b,c)$ for all $a \le b \le c \le d$.

Consider also: LineContainer (ch. Data structures), monotone queues, ternary search.

Time: $O(N^2)$

1.4.3. Mo's Algorithm on Tree

```
1 void MoAlgoOnTree() {
          Dfs(0, -1);
          vector<int> euler(tk);
          for (int i = 0; i < n; ++i) {
  euler[tin[i]] = i;</pre>
              euler[tout[i]] = i;
          vector<int> l(q), r(q), qr(q), sp(q, -1);
          for (int i = 0; i < q; ++i) {
  if (tin[u[i]] > tin[v[i]]) swap(u[i], v[i]);
  9
11
              int z = GetLCA(u[i], v[i]);
              sp[i] = z[i];
              if (z == u) l[i] = tin[u[i]], r[i] = tin[v[i]];
else l[i] = tout[u[i]], r[i] = tin[v[i]];
13
15
              qr[i] = i;
          sort(qr.begin(), qr.end(), [8](int i, int j) {
  if (l[i] / kB == l[j] / kB) return r[i] < r[j];
  return l[i] / kB < l[j] / kB;</pre>
17
19
21
          vector<bool> used(n);
          vector<book used(n);
// Add(v): add/remove v to/from the path based on used[v]
for (int i = 0, tl = 0, tr = -1; i < q; ++i) {
  white (tl < l[qr[i]]) Add(euler[tl++]);
  while (tl > l[qr[i]]) Add(euler[--tl]);
  while (tr > r[qr[i]]) Add(euler[tr--]);
  while (tr < r[qr[i]]) Add(euler[++tr]);
// add/remove LCA(u, v) if pacessary</pre>
23
25
27
              // add/remove LCA(u, v) if necessary
29
      }
```

Data Structures 2.

2.1. GNU PBDS

```
#include <ext/pb_ds/assoc_container.hpp>
    #include <ext/pb_ds/priority_queue.hpp>
   #include <ext/pb_ds/tree_policy.hpp>
    using namespace __gnu_pbds;
   // useful tags: rb_tree_tag, splay_tree_tag
11
    template <typename T> struct myhash {
      size_t operator()(T x) const; // splitmix, bswap(x*R), ...
13
   };
// most of std::unordered_map, but faster (needs good hash)
template <typename T, typename U = null_type>
using hash_table = gp_hash_table<T, U, myhash<T>>;
   // most std::priority_queue + modify, erase, split, join
using heap = priority_queue<int, std::less<>>;
// useful tags: pairing_heap_tag, binary_heap_tag,
                         (rc_)?binomial_heap_tag, thin_heap_tag
```

```
using namespace __gnu_pbds;
 3
    template <class T>
     using Tree = tree<T, null_type, less<T>, rb_tree_tag,
                                    tree_order_statistics_node_update>;
    void example() {
        Tree<int> t, t2;
        t.insert(8);
       t.insert(8);
auto it = t.insert(10).first;
assert(it == t.lower_bound(9));
assert(t.order_of_key(10) == 1);
assert(t.order_of_key(11) == 2);
assert(*t.find_by_order(0) == 8);
t.join(t2); // assuming T < T2 or T > T2, merge t2 into t
11
13
15
```

2.2. Persistent seg tree

```
struct Node {
  ll val;
  Node(ll x) : val(x), l(nullptr), r(nullptr) {}
  Node(Node *ll, Node *rr) {
   l = ll, r = rr;
    val = 0;
    if (l) val += l->val;
    if (r) val += r->val;
  Node(Node *cp) : val(cp->val), l(cp->l), r(cp->r) {}
```

```
int n, cnt = 1;
   ll a[200001];
17
   Node *roots[200001];
19
   Node *build(int l = 1, int r = n) {
     if (l == r) return new Node(a[l]);
int mid = (l + r) / 2;
      return new Node(build(l, mid), build(mid + 1, r));
23
25
   Node *update(Node *node, int val, int pos, int l = 1, int r = n) {
27
      if (l == r) return new Node(val);
      int mid = (l + r) / 2;
29
      if (pos > mid)
        return new Node(node->l,
31
                          update(node->r, val, pos, mid + 1, r));
33
        return new Node(update(node->l, val, pos, l, mid),
35
                          node->r);
   il query(Node *node, int a, int b, int l = 1, int r = n) {
  if (l > b || r < a) return 0;</pre>
39
      if (l >= a \delta \delta r <= b) return node->val;
      int mid = (l + r) / 2;
      return query(node->l, a, b, l, mid)
              query(node->r, a, b, mid + 1, r);
43 }
```

2.3. Line Container

```
struct Line {
      mutable ll k, m, p;
       bool operator<(const Line 80) const { return k < o.k; }
       bool operator<(ll x) const { return p < x; }</pre>
   struct LineContainer : multiset<Line, less<>>> {
      // (for doubles, use inf = 1/.0, div(a,b) = a/b)
static const ll inf = LLONG_MAX;
ll div(ll a, ll b) { // floored division
  return a / b - ((a ^ b) < 0 && a % b);
11
13
      bool isect(iterator x, iterator y) {
         if (y == end()) return x->p = inf, 0;
if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
else x->p = div(y->m - x->m, x->k - y->k);
15
         return x->p >= y->p;
17
      19
21
         isect(x, y = erase(y));
while ((y = x) != begin() && (--x)->p >= y->p)
23
25
           isect(x, erase(y));
      il query(ll x) {
         assert(!empty());
         auto l = *lower_bound(x);
return l.k * x + l.m;
31
    };
```

2.4. Li-Chao Tree

```
constexpr ll MAXN = 2e5, INF = 2e18;
    struct Line {
       ll m, b;
      Line() : m(0), b(-INF) {}
Line(ll _m, ll _b) : m(_m), b(_b) {}
ll operator()(ll x) const { return m * x + b; }
   };
    struct Li_Chao {
      Line a[MAXN * 4];
       void insert(Line seg, int l, int r, int v = 1) {
   if (l == r) {
11
            if (seg(l) > a[v](l)) a[v] = seg;
            return;
13
15
         int mid = (l + r) >> 1;
         if (a[v].m > seg.m) swap(a[v], seg);
         if (a[v](mid) < seg(mid)) {</pre>
         swap(a[v], seg);
insert(seg, l, mid, v << 1);
} else insert(seg, mid + 1, r, v << 1 | 1);</pre>
19
      ll query(int x, int l, int r, int v = 1) {
         if (l == r) return a[v](x):
```

```
int mid = (l + r) >> 1;
if (x <= mid)
    return max(a[v](x), query(x, l, mid, v << 1));
else
    return max(a[v](x), query(x, mid + 1, r, v << 1 | 1));
};
};</pre>
```

```
2.5. Wavelet Matrix
    #pragma GCC target("popcnt,bmi2")
#include <immintrin.h>
        T is unsigned. You might want to compress values first
    template <typename T> struct wavelet_matrix {
       static_assert(is_unsigned_v<T>, "only unsigned T");
       struct bit_vector {
          static constexpr uint W = 64;
          uint n, cnt0;
          vector<ull> bits;
11
          vector<uint> sum;
          bit_vector(uint n_)
          : n(n_), bits(n / W + 1), sum(n / W + 1) {}
void build() {
13
            for (uint j = 0; j != n / W; ++j)
  sum[j + 1] = sum[j] + _mm_popcnt_u64(bits[j]);
15
17
             cnt0 = rank0(n);
          void set_bit(uint i) { bits[i / W] |= 1ULL << i % W; }</pre>
19
         bool operator[](uint i) const {
  return !!(bits[i / W] & 1ULL << i % W);</pre>
21
23
          uint rank1(uint i) const {
            return sum[i / W]
                       _mm_popcnt_u64(_bzhi_u64(bits[i / W], i % W));
25
27
          uint rank0(uint i) const { return i - rank1(i); }
       }:
29
       uint n, lg;
vector<bit_vector> b;
       wavelet_matrix(const vector<T> δa) : n(a.size()) {
31
33
            _lg(max(*max_element(a.begin(), a.end()), T(1))) + 1;
          b.assign(lg, n);
35
          vector<T> cur = a, nxt(n);
          for (int h = lg; h--;) {
  for (uint i = 0; i < n; ++i)
    if (cur[i] & (T(1) << h)) b[h].set_bit(i);</pre>
37
             b[h].build();
39
             int il = 0, ir = b[h].cnt0;
for (uint i = 0; i < n; ++i)
   nxt[(b[h][i] ? ir : il)++] = cur[i];</pre>
41
43
             swap(cur, nxt);
45
       T operator[](uint i) const {
          T res = 0;
for (int h = lg; h--;)
47
            if (b[h][i])
49
               i += b[h].cnt0 - b[h].rank0(i), res |= T(1) << h;
51
             else i = b[h].rank0(i);
          return res;
53
       // query k-th smallest (0-based) in a[l, r)
       T kth(uint l, uint r, uint k) const {
55
          T res = 0;
         if is = 0;
for (int h = lg; h--;) {
  uint tl = b[h].rank0(l), tr = b[h].rank0(r);
  if (k >= tr - tl) {
    k -= tr - tl;
}
57
59
               l += b[h].cnt0 - tl;
61
               r += b[h].cnt0 - tr;
               res |= T(1) << h;
            } else l = tl, r = tr;
65
          return res;
67
       // count of i in [l, r) with a[i] < u
       uint count(uint l, uint r, T u) const {
  if (u >= T(1) << lg) return r - l;</pre>
69
         if (u >= 1(1) << ug, recur. -
uint res = 0;
for (int h = lg; h--;) {
  uint tl = b[h].rank0(l), tr = b[h].rank0(r);
  if (u & (T(1) << h)) {
    l += b[h].cnt0 - tl;
    r += b[h].cnt0 - tr;
    res += tr - tl;</pre>
71
73
75
77
            } else l = tl, r = tr;
79
          return res:
81
    };
```

2.6. Link-Cut Tree

```
#define 1 ch[0]
    #define r ch[1]
    template <class M> struct LCT {
      using T = typename M::T;
      struct node;
      using ptr = node *;
      struct node {
         node(int i = -1) : id(i) \{\}
         static inline node nil{};
ptr p = &nil, ch[2]{&nil, &nil};
T val = M::id(), path = M::id();
         T heavy = M::id(), light = M::id();
         bool rev = 0;
         int id;
17
         T sum() { return M::op(heavy, light); }
19
           path = M::op(M::op(l->path, val), r->path);
           heavy = M::op(M::op(l->sum(), val), r->sum());
21
         void push() {
23
           if (exchange(rev, 0)) l->reverse(), r->reverse();
25
         void reverse() {
           swap(l, r), path = M::flip(path), rev ^= 1;
27
         }
29
      static inline ptr nil = &node::nil;
bool dir(ptr t) { return t == t->p->r; }
bool is_root(ptr t) {
31
33
         return t->p == nil || (t != t->p->l && t != t->p->r);
      void attach(ptr p, bool d, ptr c) {
  if (c) c->p = p;
35
         p->ch[d] = c, p->pull();
37
      void rot(ptr t) {
         bool d = dir(t);
         ptr p = t->p;
41
         t->p = p->p;
         if (!is_root(p)) attach(p->p, dir(p), t);
attach(p, d, t->ch[!d]);
attach(t, !d, p);
45
      void splay(ptr t) {
  for (t->push(); !is_root(t); rot(t)) {
47
49
           ptr p = t->p;
           if (p->p != nil) p->p->push();
51
            p->push(), t->push();
           if (!is_root(p)) rot(dir(t) == dir(p) ? p : t);
53
      void expose(ptr t) {
  ptr cur = t, prv = nil;
  for (; cur != nil; cur = cur->p) {
55
57
           splay(cur);
           cur->light = M::op(cur->light, cur->r->sum());
cur->light = M::op(cur->light, M::inv(prv->sum()));
59
           attach(cur, 1, exchange(prv, cur));
61
63
         splay(t);
65
       vector<ptr> vert;
      LCT(int n = 0) {
67
         for (int i = 0; i < n; i++) vert.push_back(new node(i));</pre>
69
       void expose(int v) { expose(vert[v]); }
71
      void evert(int v) { expose(v), vert[v]->reverse(); }
void link(int v, int p) {
         evert(v), expose(p);
75
         assert(vert[v]->p == nil)
         attach(vert[p], 1, vert[v]);
      void cut(int v) {
79
         expose(v);
         assert(vert[v]->l != nil);
attach(vert[v], 0, vert[v]->l->p = nil);
81
83
      T get(int v) { return vert[v]->val; }
      void set(int v, const T δx) {
85
         expose(v), vert[v]->val = x, vert[v]->pull();
      void add(int v, const T &x) {
  expose(v), vert[v]->val = M::op(vert[v]->val, x),
87
89
                       vert[v]->pull();
      int lca(int u. int v) {
```

```
if (u == v) return u;
93
         expose(u), expose(v);
         if (vert[u]->p == nil) return -1;
splay(vert[u]);
 95
         return vert[u]->p != nil ? vert[u]->p->id : u;
97
      T path_fold(int u, int v) {
99
         evert(u), expose(v)
         return vert[v]->path;
101
      T subtree_fold(int v, int p) {
103
         evert(p), cut(v);
        T ret = vert[v]->sum();
link(v, p);
105
         return ret;
107
109 #undef l
    #undef r
```

2.7. Dynamic MST

```
struct Edge {
       int l, r, u, v, w;
       bool operator<(const Edge &o) const { return w < o.w; }</pre>
   struct DynamicMST {
       int n, time = 0;
       vector<array<int, 3>> init;
       vector<Edge> edges;
vector<int> lab, lst;
       vector<int64_t> res;
       DSU dsu1, dsu2;
       DynamicMST(vector<array<int, 3>> es, int _n)
    : n(_n), init(es), lab(n), lst(es.size()), dsu1(n),
              dsu2(n) {}
15
17
       void update(int i, int nw) {
         time-
19
         auto δ[u, v, w] = init[i];
         edges.push_back({lst[i], time, u, v, w});
21
         lst[i] = time, w = nw;
       23
         auto tmp = stable_partition(all(es), [=](auto δe) {
  return !(e.r <= l || r <= e.l);</pre>
25
         });
27
         es.erase(tmp, es.end());
dsu1.reset(cnt), dsu2.reset(cnt);
29
         for (auto \delta e : es) if (l < e.l || e.r < r) dsu1.merge(e.u, e.v);
31
         for (auto &e : es)
  if (e.l <= l && r <= e.r && dsu1.merge(e.u, e.v))</pre>
33
              weight += e.w, dsu2.merge(e.u, e.v);
35
37
         if (r - l == 1) return void(res[l] = weight);
         int id = 0;
for (int i = 0; i < cnt; i++)
   if (i == dsu2.find(i)) lab[i] = id++;</pre>
41
         dsu1.reset(cnt);
         for (auto &e : es) {
            e.u = lab[dsu2.find(e.u)], e.v = lab[dsu2.find(e.v)];
43
            if (e.l <= l && r <= e.r && !dsu1.merge(e.u, e.v))
45
         int m = (l + r) / 2;
         solve(l, m, es, id, weight);
solve(m, r, es, id, weight);
49
       auto run() { // original mst weight at res[0]
  res.resize(++time);
51
         for (int i = 0; i < init.size(); i++) {
  auto δ[u, v, w] = init[i];
  edges.push_back({lst[i], time, u, v, w});</pre>
53
55
57
         sort(begin(edges), end(edges));
         solve(0, time, edges, n, 0);
59
         return res:
61 };
```

3. Graph

3.1. Modeling

- Maximum/Minimum flow with lower bound / Circulation problem 1. Construct super source S and sink T.
 - 2. For each edge (x, y, l, u), connect $x \to y$ with capacity u l.

- 3. For each vertex v, denote by in(v) the difference between the sum of incoming lower bounds and the sum of outgoing lower bounds.
- 4. If in(v) > 0, connect $S \to v$ with capacity in(v), otherwise, connect $v \to T$ with capacity -in(v).
 - To maximize, connect $t \to s$ with capacity ∞ (skip this in circulation problem), and let f be the maximum flow from S to T. If $f \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, the
 - maximum flow from s to t is the answer. To minimize, let f be the maximum flow from S to T. Connect $t \to s$ with capacity ∞ and let the flow from S to T be f'. If $f + f' \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, f'
- is the answer. 5. The solution of each edge e is l_e+f_e , where f_e corresponds to the flow of edge e on the graph.
- \bullet Construct minimum vertex cover from maximum matching M on bipartite graph (X, Y)
- 1. Redirect every edge: $y \to x$ if $(x, y) \in M$, $x \to y$ otherwise. 2. DFS from unmatched vertices in X. 3. $x \in X$ is chosen iff x is unvisited. 4. $y \in Y$ is chosen iff y is visited. Minimum cost cyclic flow
- - 1. Consruct super source S and sink T
 - 2. For each edge (x, y, c), connect $x \to y$ with $(\cos t, cap) = (c, 1)$ if c > 0, otherwise connect $y \to x$ with (cost, cap) = (-c, 1)
 - 3. For each edge with c < 0, sum these cost as K, then increase d(y)by 1, decrease d(x) by 1
 - 4. For each vertex v with d(v) > 0, connect $S \to v$ with $(\cos t, cap) =$ (0,d(v))
 - 5. For each vertex v with d(v) < 0, connect $v \to T$ with $(\cos t, cap) =$ (0, -d(v))
 - 6. Flow from S to T, the answer is the cost of the flow C + K
- Maximum density induced subgraph
 - 1. Binary search on answer, suppose we're checking answer T
 - 2. Construct a max flow model, let K be the sum of all weights 3. Connect source $s \to v, v \in G$ with capacity K

 - 4. For each edge (u, v, w) in G, connect $u \to v$ and $v \to u$ with
 - capacity w 5. For $v \in G$, connect it with sink $v \to t$ with capacity K + 2T - $(\sum_{e \in E(v)} w(e)) - 2w(v)$ 6. T is a valid answer if the maximum flow f < K|V|
- Minimum weight edge cover 1. For each $v \in V$ create a copy v', and connect $u' \to v'$ with weight
 - 2. Connect $v \to v'$ with weight $2\mu(v)$, where $\mu(v)$ is the cost of the cheapest edge incident to v.
- 3. Find the minimum weight perfect matching on G'.
- Project selection problem
 - 1. If $p_v > 0$, create edge (s, v) with capacity p_v ; otherwise, create ¹¹ edge (v,t) with capacity $-p_v$
 - 2. Create edge (u, v) with capacity w with w being the cost of choos $ing \ u$ without choosing v
 - 3. The mincut is equivalent to the maximum profit of a subset of ¹⁵
- 0/1 quadratic programming

$$\sum_{x} c_{x}x + \sum_{y} c_{y}\bar{y} + \sum_{xy} c_{xy}x\bar{y} + \sum_{xyx'y'} c_{xyx'y'}(x\bar{y} + x'\bar{y'})$$

can be minimized by the mincut of the following graph:

- 1. Create edge (x,t) with capacity c_x and create edge (s,y) with capacity c_y .
- 2. Create edge (x, y) with capacity c_{xy} .
- 3. Create edge (x, y) and edge (x', y') with capacity $c_{xyx'y'}$.
- Hall's Marriage Theorem
 - 1. A bipartite graph G=(X,Y,E) has a perfect matching covering X iff for all $S \subseteq X$:

$$|N(S)| \ge |S|$$

where $N(S) = \{ y \in Y \mid \exists x \in S \land (x, y) \in E \}$

- 2. Equivalent flow construction:
 - Add source s, connect $s \to x$ for each $x \in X$ with capacity 1. Connect $y \to t$ for each $y \in Y$ with capacity 1. For each $(x,y) \in E$, connect $x \to y$ with capacity 1. Run max flow; perfect matching exists iff flow = |X|.
- 11 3. Useful for checking existence of perfect assignment or matching
- constraints.
- Kőnig's Theorem (Bipartite Graphs)
 - 1. In any bipartite graph G = (X, Y, E):

Maximum Matching Size = Minimum Vertex Cover Size

- 2. Construction of minimum vertex cover from maximum matching 19
- M:
 (a) Redirect every edge: $y \to x$ if $(x, y) \in M$, $x \to y$ otherwise.
 (b) DFS from unmatched vertices in X.
- (c) $x \in X$ is chosen iff x is unvisited.
- (d) $y \in Y$ is chosen iff y is visited.
- 3. Minimum edge cover:

 $|E_{\min_cover}| = |V| - |M|$

3.2. Low link

```
void dfs(int v, int p) {
  low[v] = ord[v] = k++;
       bool is_articulation = false, checked = false;
       int cnt = 0;
       for (int c : G[v]) {
          if (c == p && !checked) {
  checked = true;
             continue;
          if (ord[c] == -1) {
             dfs(c, v);
low[v] = min(low[v], low[c]);
if (p != -1 88 ord[v] <= low[c])
  is_articulation = true;</pre>
             if (ord[v] < low[c]) bridge.push_back(minmax(v, c));</pre>
17
             low[v] = min(low[v], ord[c]);
19
       if (p == -1 && cnt > 1) is_articulation = true;
21
       if (is_articulation) articulation.push_back(v);
    void build() {
  for (int i = 0; i < G.size(); ++i)
    if (ord[i] == -1) dfs(i, -1);</pre>
    bool is_bridge(int u, int v) const {
  if (ord[u] > ord[v]) swap(u, v);
       return ord[u] < low[v];</pre>
```

3.3. Shortest paths

3.3.1. Dial's algorithm

```
template <typename Graph>
   auto dial(Graph &graph, int src, int lim) {
      vector<vector<int>> qs(lim);
      vector<int> dist(graph.size(), -1);
      dist[src] = 0;
      qs[0].push_back(src);
      for (int d = θ, maxd = θ; d <= maxd; ++d) {
  for (auto δq = qs[d % lim]; q.size();) {</pre>
           int node = q.back();
           q.pop_back();
           if (dist[node] != d) continue;
           for (auto [vec, cost] : graph[node]) {
  if (dist[vec] != -1 && dist[vec] <= d + cost)</pre>
                continue;
             dist[vec] = d + cost;
             qs[(d + cost) % lim].push_back(vec);
17
             maxd = max(maxd, d + cost);
19
        }
21
      return dist;
23 }
```

Matching/Flows

3.4.1. Bipartite Matching

```
1 // source: tko919
  // g: L->R, directed
// returns L[i]'s mate
  vector<int> bip_match(int n, int m,
                               vector<vector<int>> &g) {
     vector<int> L(n, -1), R(m, -1), d(n);
     queue<int> que;
auto dfs = [8](auto 8dfs, int v) -> bool {
        int nd = exchange(d[v], 0) + 1;
        for (auto &u : g[v]) {
   if (R[u] == -1 || (d[R[u]] == nd && dfs(dfs, R[u]))) {
             L[v] = u, R[u] = v;
             return 1;
          }
        return 0;
     for (;;) {
       d.assign(n, 0);
queue<int> dummy;
        swap(que, dummy);
bool ch = 0;
        for (int i = 0; i < n; i++)
  if (L[i] == -1) que.push(i), d[i] = 1;</pre>
        while (!que.emptv()) {
```

15

17

23

27

```
int v = que.front();
29
            que.pop();
             for (auto &u : g[v]) {
               if (R[u] == -1) ch =
else if (!d[R[u]]) {
   d[R[u]] = d[v] + 1;
33
                  que.push(R[u]);
35
            }
37
         if (!ch) break;
for (int i = 0; i < n; i++)
39
            if (L[i] == -1) dfs(dfs, i);
41
       return L;
43 }
```

```
3.4.2. General Matching
   struct Graph {
  vector<int> G[MAXN];
       int pa[MAXN], match[MAXN], st[MAXN], S[MAXN], vis[MAXN];
 5
       void init(int _n) {
        n = _n;
for (int i = 1; i <= n; i++) G[i].clear();</pre>
 9
       void add_edge(int u, int v) {
11
         G[u].push_back(v);
         G[v].push_back(u);
13
      int lca(int u, int v) {
         for (++t;; swap(u, v)) {
  if (u == 0) continue;
15
           if (vis[u] == t) return u;
17
           vis[u] = t:
           u = st[pa[match[u]]];
19
      }
21
      void flower(int u, int v, int l, queue<int> &q) {
  while (st[u] != l) {
    pa[u] = v;
    if (S[v = match[u]] == 1) {
23
25
              q.push(v);
27
              S[v] = 0;
           st[u] = st[v] = l;
29
           u = pa[v];
31
      bool bfs(int u) {
33
         for (int i = 1; i <= n; i++) st[i] = i;
35
         memset(S, -1, sizeof(S));
         queue<int> q;
37
         q.push(u);
         S[u] = 0;
while (!q.empty()) {
39
           u = q.front();
41
           q.pop();
           int i = 0; i < (int)G[u].size(); i++) {
  int v = G[u][i];
  if (S[v] == -1) {
    pa[v] = u;
    S[v] = 1;
}</pre>
43
45
                if (!match[v]) {
47
                   for (int lst; u; v = lst, u = pa[v]) {
                     lst = match[u];
                     match[u] = \bar{v};
                     match[v] = u;
                   return 1:
                q.push(match[v]);
              57
                flower(v, u, l, q);
59
                flower(u, v, l, q);
61
           }
63
         return 0;
65
      int solve() {
         memset(pa, 0, sizeof(pa));
67
         memset(match, 0, sizeof(match));
         int ans = 0;
for (int i = 1; i <= n; i++)
  if (!match[i] && bfs(i)) ans++;</pre>
69
71
         return ans;
73
    } graph;
```

3.4.3. Dinic's Algorithm

```
1 struct Dinic {
      struct edge {
         int to, cap, flow, rev;
      static constexpr int MAXN = 1000, MAXF = 1e9;
 5
      vector<edge> v[MAXN];
      int top[MAXN], deep[MAXN], side[MAXN], s, t;
void make_edge(int s, int t, int cap, int rcap = 0) {
  v[s].push_back({t, cap, 0, (int)v[t].size()});
 7
 9
         v[t].push_back({s, rcap, 0, (int)v[s].size() - 1});
11
      int dfs(int a, int flow) {
  if (a == t || !flow) return flow;
13
         for (int &i = top[a]; i < v[a].size(); i++) {
  edge &e = v[a][i];</pre>
15
           if (deep[a] + 1 == deep[e.to] \delta \delta e.cap - e.flow) {
17
              int x = dfs(e.to, min(e.cap - e.flow, flow));
              if (x) {
19
                e.flow += x, v[e.to][e.rev].flow -= x;
                return x;
21
              }
           }
23
         deep[a] = -1;
25
         return 0;
27
      bool bfs() {
         queue<int> q;
         fill_n(deep, MAXN, 0);
29
         q.push(s), deep[s] = 1;
31
         int tmp;
         while (!q.empty()) {
           tmp = q.front(), q.pop();
for (edge e : v[tmp])
33
35
              if (!deep[e.to] && e.cap != e.flow)
                deep[e.to] = deep[tmp] + 1, q.push(e.to);
37
         return deep[t];
39
      int max_flow(int _s, int _t) {
         s = _s, t = _t;
int flow = 0, tflow;
while (bfs()) {
41
43
           fill_n(top, MAXN, 0);
           while ((tflow = dfs(s, MAXF))) flow += tflow;
45
47
         return flow:
49
      void reset() {
         fill_n(side, MAXN, 0);
51
         for (auto &i : v) i.clear();
53 };
```

3.4.4. Minimum Cost Flow

```
1 struct MCF {
       struct edge {
       ll to, from, cap, flow, cost, rev;
} *fromE[MAXN];
      vector<edge> v[MAXN];
ll n, s, t, flows[MAXN], dis[MAXN], pi[MAXN], flowlim;
void make_edge(int s, int t, ll cap, ll cost) {
 5
         if (!cap) return;
         v[s].pb(edge{t, s, cap, 0LL, cost, v[t].size()});
v[t].pb(edge{s, t, 0LL, 0LL, -cost, v[s].size() - 1});
 g
11
       bitset<MAXN> vis
       void dijkstra() {
13
         vis.reset();
15
           _gnu_pbds::priority_queue<pair<ll, int>> q;
         vector<decltype(q)::point_iterator> its(n);
         q.push({0LL, s});
         while (!q.empty()) {
            int now = q.top().second;
19
            q.pop();
21
            if (vis[now]) continue;
            vis[now] = 1;
ll ndis = dis[now] + pi[now];
23
            for (edge &e : v[now]) {
  if (e.flow == e.cap || vis[e.to]) continue;
25
              if (dis[e.to] > ndis + e.cost - pi[e.to]) {
   dis[e.to] = ndis + e.cost - pi[e.to];
27
                 flows[e.to] = min(flows[now], e.cap - e.flow);
                 fromE[e.to] = &e;
29
                 if (its[e.to] == q.end())
                    its[e.to] = q.push({-dis[e.to], e.to});
31
                 else q.modify(its[e.to], {-dis[e.to], e.to});
33
           }
         }
35
```

```
37
      bool AP(ll &flow) {
        fill_n(dis, n, INF);
39
        fromE[s] = 0;
        dis[s] = 0;
flows[s] = flowlim - flow;
41
        dijkstra();
        if (dis[t] == INF) return false;
43
        v[e->to][e->rev].flow -= flows[t];
47
        for (int i = 0; i < n; i++)
49
           pi[i] = min(pi[i] + dis[i], INF);
51
        return true:
      pll solve(int _s, int _t, ll _flowlim = INF) {
   s = _s, t = _t, flowlim = _flowlim;
   pll re;
53
        while (re.F != flowlim && AP(re.F));
        for (int i = 0; i < n; i++)
           for (edge &e : v[i])
             if (e.flow != 0) re.S += e.flow * e.cost;
        re.S /= 2;
61
        return re;
63
      void init(int _n) {
        fill_n(pi, n, 0);
for (int i = 0; i < n; i++) v[i].clear();</pre>
65
67
      void setpi(int s) {
        fill_n(pi, n, INF);
pi[s] = 0;
69
71
        for (ll it = 0, flag = 1, tdis; flag \delta\delta it < n; it++) {
           flag = 0;
for (int i = 0; i < n; i++)
  if (pi[i] != INF)</pre>
73
               for (edge &e : v[i])
  if (e.cap && (tdis = pi[i] + e.cost) < pi[e.to])
75
                    pi[e.to] = tdis, flag = 1;
77
79
      }
   };
```

3.4.5. Gomory-Hu Tree

Requires: Dinic's Algorithm 37

```
int e[MAXN][MAXN];
int p[MAXN];
Dinic D; // original graph
void gomory_hu() {
  fill(p, p + n, 0);
  fill(e[0], e[n], INF);
  for (int s = 1; s < n; s++) {
    int t = p[s];
    Dinic F = D;
    int tmp = F.max_flow(s, t);
  for (int i = 1; i < s; i++)
        e[s][i] = e[i][s] = min(tmp, e[t][i]);
  for (int i = s + 1; i <= n; i++)
        if (p[i] == t && F.side[i]) p[i] = s;
}
</pre>
```

3.4.6. Global Minimum Cut

```
// weights is an adjacency matrix, undirected
   pair<int, vi> getMinCut(vector<vi> &weights) {
  int N = sz(weights);
     vi used(N), cut, best_cut;
int best_weight = -1;
      for (int phase = N - 1; phase >= 0; phase--) {
        vi w = weights[0], added = used;
        int prev, k = 0;
        rep(i, 0, phase) {
 prev = k;
          k = -1;
13
          rep(j, 1, N) if (!added[j] δδ
                               (k == -1 \mid \mid w[j] > w[k])) k = j;
          if (i == phase - 1) {
             rep(j, 0, N) weights[prev][j] += weights[k][j];
             rep(j, 0, N) weights[j][prev] = weights[prev][j];
used[k] = true;
             cut.push_back(k);
19
             if (best_weight == -1 || w[k] < best_weight) {</pre>
21
               best_cut = cut;
               best_weight = w[k];
23
          } else {
```

3.4.7. Bipartite Minimum Cover

Requires: Dinic's Algorithm

```
1 // maximum independent set = all vertices not covered
    // x : [0, n), y : [0, m]
struct Bipartite_vertex_cover {
        Dinic D:
        int n, m, s, t, x[maxn], y[maxn];
void make_edge(int x, int y) { D.make_edge(x, y + n, 1); }
        int matching() {
           int re = D.max_flow(s, t);
for (int i = 0; i < n; i++)
  for (Dinic::edge &e : D.v[i])</pre>
                 if (e.to != s && e.flow == 1) {
                    x[i] = e.to - n, y[e.to - n] = i;
13
                    break:
                 }
15
           return re;
        // init() and matching() before use
void solve(vector<int> &vx, vector<int> &vy) {
17
           bitset<maxn * 2 + 10> vis;
19
           queue<int> q;
for (int i = 0; i < n; i++)
   if (x[i] == -1) q.push(i), vis[i] = 1;
while (!q.empty()) {</pre>
21
23
              int now = q.front();
25
              q.pop();
if (now < n) {</pre>
                 for (Dinic::edge &e : D.v[now])

if (e.to != s && e.to - n != x[now] && !vis[e.to])

vis[e.to] = 1, q.push(e.to);
27
29
              } else {
                 if (!vis[y[now -_n]])
31
                    vis[y[now - n]] = 1, q.push(y[now - n]);
33
           for (int i = 0; i < n; i++)
   if (!vis[i]) vx.pb(i);
for (int i = 0; i < m; i++)</pre>
35
              if (vis[i + n]) vy.pb(i);
39
        void init(int _n, int _m) {
           n = _n, m = _m, s = n + m, t = s + 1;

for (int i = 0; i < n; i++)
41
           x[i] = -1, D.make_edge(s, i, 1);
for (int i = 0; i < m; i++)
43
45
              y[i] = -1, D.make_edge(i + n, t, 1);
47 };
```

3.5. Strongly Connected Components

```
1 template <class G> auto find_scc(G δg) {
   int n = g.size();
      vector<int> val(n),
      vector<char> added(n);
      vector<basic_string<int>> scc;
      int time = 0;
      auto dfs = [δ](auto f, int v) -> int {
  int low = val[v] = time++;
         z.push_back(v);
         for (auto u : g[v])
   if (!added[u]) low = min(low, val[u] ?: f(f, u));
11
         if (low == val[v]) {
           scc.emplace_back();
15
           do {
             x = z.back(), z.pop_back(), added[x] = true;
              scc.back().push_back(x);
17
           } while (x != v);
19
         return val[v] = low;
21
      for (int i = 0; i < n; i++)
  if (!added[i]) dfs(dfs, i)</pre>
23
      reverse(begin(scc), end(scc));
25
      return scc;
27
   template <class G> auto condense(G &g) {
      auto scc = find_scc(g);
29
      int n = scc.size();
      vector<int> rep(g.size());
for (int i = 0; i < n; i++)</pre>
31
```

```
for (auto v : scc[i]) rep[v] = i;
vector<basic_string<int>> gd(n);
for (int v = 0; v < g.size(); v++)

for (auto u : g[v])
    if (rep[v] != rep[u]) gd[rep[v]].push_back(rep[u]);

for (auto &v : gd) {
        sort(begin(v), end(v));
        v.erase(unique(begin(v), end(v)), end(v));
}

return make_tuple(move(scc), move(rep), move(gd));
}</pre>
```

3.5.1. 2-Satisfiability

```
struct TwoSAT {
        int n:
        vector<basic_string<int>> g;
       TwoSAT(int_n): n(_n), g(2 * n) {}
       void add_if(int x, int y) { // x => y
  g[x] += y, g[neg(y)] += neg(x);
        void add_or(int x, int y) { add_if(neg(x), y); }
       void add_nand(int x, int y) { add_if(x, neg(y)); }
void set_true(int x) { add_if(x, neg(x)); }
void set_false(int x) { add_if(neg(x), x); }
11
13
        vector<bool> run() {
           vector<bool> res(n);
           auto [scc, id, gd] = condense(g);
for (int i = 0; i < n; i++) {
  if (id[i] == id[neg(i)]) return {};</pre>
19
              res[i] = id[i] > id[neg(i)];
           return res;
23
25
       int neg(int x) { return x < n ? x + n : x - n; }</pre>
```

3.6. Manhattan Distance MST

```
// returns [(dist, from, to), ...]
// then do normal mst afterwards
    typedef Point<int> P;
    vector<array<int, 3>> manhattanMST(vector<P> ps) {
      vi id(sz(ps));
      iota(all(id), 0);
      vector<array<int, 3>> edges;
      rep(k, 0, 4) {
         sort(all(id), [8](int i, int j) {
  return (ps[i] - ps[j]).x < (ps[j] - ps[i]).y;</pre>
11
         map<int, int> sweep;
for (int i : id) {
13
           for (auto it = sweep.lower_bound(-ps[i].y);
                  it != sweep.end(); sweep.erase(it++)) {
              int j = it->second;
P d = ps[i] - ps[j];
              if (d.y > d.x) break;
              edges.push_back({d.y + d.x, i, j});
           sweep[-ps[i].y] = i;
21
         for (P &p : ps)
if (k & 1) p.x = -p.x;
25
           else swap(p.x, p.y);
      return edges;
```

3.7. Functional graph

3.7.1. Loops

```
struct Loop {
    int dist, lp_v, len;
};

template <class G> auto loops(G &f) {
    int n = f.size();
    vector<int> vis(n, n), dep(n);

vector<Loop> res(n);
    int time = 0;

auto dfs = [&](auto self, int v) -> int {
       vis[v] = time;
    int u = f[v];
    if (vis[u] == vis[v]) {
       int len = dep[v] - dep[u] + 1;
       res[v] = {0, v, len};
    return len - 1;
    } else if (vis[u] < vis[v]) {</pre>
```

```
res[v] = res[u], res[v].dist++;
            return 0;
19
         } else {
            dep[u] = dep[v] + 1;
            int c = self(self, u);
if (c > 0) {
21
              res[v] = res[u], res[v].lp_v = v;
23
              return c - 1;
25
            } else
              res[v] = res[u], res[v].dist++;
27
              return \theta;
29
         }
      for (int i = 0; i < n; i++, time++)
  if (vis[i] == n) dfs(dfs, i);</pre>
31
33
      return res;
```

4. Math

4.1. Number Theory

4.1.1. Theorems

```
• Euler's Totient Function \phi(n)

1. \phi(p) = p-1 if p is prime.

2. \phi(p^a) = p^a - p^{a-1} = p^{a-1}(p-1)

3. If \gcd(a,b) = 1, \phi(ab) = \phi(a)\phi(b)

4. \sum_{d|n} \phi(d) = n

5. a^{\phi(n)} \equiv 1 \pmod{n}

• Möbius Function \mu(n)

1. If \gcd(a,b) = 1, \mu(ab) = \mu(a)\mu(b)

2. If f(n) = \sum_{d|n} g(d) then g(n) = \sum_{d|n} \mu(d) f(n/d)

• Count coprime pairs

1. \sum_{i=1}^{n} \sum_{i=1}^{n} [gcd(i,j) = 1] = \sum_{i=1}^{n} \mu(d) \left\lfloor \frac{n}{d} \right\rfloor^2
```

4.1.2. Euler's Totient Function

```
long long totient(long long n) {
      long long ret = n;
      if (n % 2 == 0) {
ret -= ret / 2;
         while (n % 2 == 0) n /= 2;
 5
      for (long long i = 3; i * i <= n; i += 2) {
        if (n % i == 0) {
 ret -= ret / i;
           while (n % i == 0) n /= i;
        }
11
13
      if (n != 1) ret -= ret / n;
      return ret;
15
17
   vector<int> totient_table(int n) {
      vector<int> ret(n + 1);
19
      iota(ret.begin(), ret.end(), 0);
      for (int i = 2; i <= n; ++i) {
  if (ret[i] == i)</pre>
21
           for (int j = i; j <= n; j += i)
  ret[j] = ret[j] / i * (i - 1);</pre>
23
25
      return ret;
```

4.1.3. Möbius Function

```
int mobius(long long n) {
       long long ret = 1;
if (n % 4 == 0) return 0;
       if (n % 2 == 0) ret *= -1, n /= 2;
for (long long i = 3; i * i <= n; i += 2) {
   if (n % (i * i) == 0) return 0;</pre>
          if (n % i == 0) ret *= -1, ret /= i;
       if (n != 1) ret *= -1;
       return ret;
11 }
    vector<int> mobius_table(int n) {
13
       vector<bool> prime(n + 1, true);
       vector<int> ret(n + 1, 1);
       for (int i = 2; i \le n; ++i) {
          if (!prime[i]) continue;
          for (int j = i; j <= n; j += i) {
   if (j > i) prime[j] = false;
   if ((j / i) % i == 0) ret[j] = 0;
17
             else ret[j] *= -1;
21
23
       return ret;
```

4.1.4. Mod Struct

A list of safe primes: 26003, 27767, 28319, 28979, 29243, 29759, 30467, 910927547, 919012223, 947326223, 990669467, 1007939579, 1019126699, 929760389146037459, 975500632317046523, 989312547895528379

```
1 array<int, 2> extgcd(int a, int b);
     template <typename T> struct M {
         static T MOD; // change to constexpr if already known
         M(T x = 0) \{
             v = (-MOD \le x \&\& x < MOD) ? x : x % MOD;
             if (v < 0) v \neq MOD;
         explicit operator T() const { return v; }
         bool operator==(const M &b) const { return v == b.v; }
bool operator!=(const M &b) const { return v != b.v; }
         M operator-() { return M(-v); }
M operator-() { return M(v + b.v); }
M operator-(M b) { return M(v - b.v); }
M operator-(M b) { return M((_int128)v * b.v % MOD); }
M operator-(M b) { return *this * b.inv(); }
// characteristic for this if MOD is not not presented.
          // change above implementation to this if MOD is not prime
         M inv() {
19
            auto [x, g] = extgcd(v, MOD);
return assert(g == 1), x < \theta ? x + MOD : x;
21
23
         friend M operator^(M a, ll b) {
             M ans(1);
             for (; b; b >>= 1, a *= a)
if (b & 1) ans *= a;
25
27
             return ans;
         friend M \deltaoperator+=(M \deltaa, M b) { return a = a + b; } friend M \deltaoperator-=(M \deltaa, M b) { return a = a - b; } friend M \deltaoperator*=(M \deltaa, M b) { return a = a * b; } friend M \deltaoperator/=(M \deltaa, M b) { return a = a / b; }
29
31
     }:
33
     using Mod = M<int>:
     template <> int Mod::MOD = 1'000'000'007;
      int &MOD = Mod::MOD;
```

4.1.5. Miller-Rabin

Requires: Mod Struct $_{17}$

```
1  // checks if Mod::MOD is prime
bool is_prime() {
3    if (MOD < 2 || MOD % 2 == 0) return MOD == 2;
    Mod A[] = {2, 7, 61}; // for int values (< 2^31)
5    // ll: 2, 325, 9375, 28178, 450775, 9780504, 1795265022
    int s = __builtin_ctzll(MOD - 1), i;
6    for (Mod a : A) {
        Mod x = a ^ (MOD >> s);
        for (i = 0; i < s && (x + 1).v > 2; i++) x *= x;
        if (i && x != -1) return 0;
11    }
12    return 1;
13 }
```

4.1.6. Pollard's Rho

```
1  ll f(ll x, ll mod) { return (x * x + 1) % mod; }
  // n should be composite
3  ll pollard_rho(ll n) {
    if (!(n & 1)) return 2;
    while (1) {
        ll y = 2, x = RNG() % (n - 1) + 1, res = 1;
        for (int sz = 2; res == 1; sz *= 2) {
            for (int i = 0; i < sz && res <= 1; i++) {
                x = f(x, n);
                res = __gcd(abs(x - y), n);
        }
        y = x;
    }
    if (res != 0 && res != n) return res;
}
</pre>
```

4.2. Combinatorics

4.2.1. Formulas

Derangements: !n = (n-1)(!(n-1)+!(n-2))

4.2.2. Stirling

```
template <class T> auto stirling1(int n) {
        vector dp(n + 1, vector<T>{});
for (int i = 0; i <= n; ++i) {</pre>
            dp[i].resize(i + 1)
           dp[i][0] = 0, dp[i][i] = 1;
           for (int j = 1; j < i; ++j)
  dp[i][j] = dp[i - 1][j - 1] + (i - 1) * dp[i - 1][j];</pre>
 9
        return dp;
11 template <class T> auto stirling2(int n) {
    vector dp(n + 1, vector<T>{});
13 for (int i = 0; i <= n; ++i) {</pre>
           dp[i].resize(i + 1);
           dp[i][0] = 0, dp[i][i] = 1;
for (int j = 1; j < i; ++j)
  dp[i][j] = dp[i - 1][j - 1] + j * dp[i - 1][j];</pre>
15
17
19
        return dp;
21 template <class T> auto bell(int n) {
        vector<T> dp(n + 1, 0);
        auto S = stirling2<T>(n);
for (int i = 0; i <= n; ++i)
  for (int k = 0; k <= i; ++k) dp[i] += S[i][k];</pre>
```

4.2.3. Extended Lucas

```
1 | ll crt(vector<ll> &x, vector<ll> &mod) {
        int n = x.size();
        ll M = 1;
        for (ll m : mod) M *= m;
        ll res = 0;
        for (int i = 0; i < n; i++) {
    ll out = M / mod[i];</pre>
           res += x[i] * inv(out, mod[i]) * out;
 9
        return res;
11
    }
    ful f(ll n, ll k, ll p, ll q) {
  auto fac = [](ll n, ll p, ll q) {
    ll x = 1, y = powi(p, q);
    for (int i = 2; i <= n; i++)
        if (i % p != 0) x = x * i % y;
        verse x % y.</pre>
13
            return x % y;
        };
ll r = n - k, x = powi(p, q);
ll e0 = 0, eq = 0;
ll mul = (p == 2 && q >= 3) ? 1 : -1;
cm = k. car = 0, cnt = 0;
19
21
        ll cr = r, cm = k, car = 0, cnt = 0;
while (cr || cm || car) {
23
           ll rr = cr % p, rm = cm % p;
cnt++, car += rr + rm;
25
           if (car >= p) {
27
              if (cnt >= q) eq++;
29
           car /= p, cr /= p, cm /= p;
31
        mul = powi(p, e0) * powi(mul, eq);
ll ret = (mul % x + x) % x;
33
         ll tmp = 1;
         for (;; tmp *= p) {
                   = ret * fac(n / tmp % x, p, q) % x;
           ret = ret * inv(fac(n / tmp % x, p, q), x) % x;
ret = ret * inv(fac(n / tmp % x, p, q), x) % x;
if (tmp > n / p && tmp > k / p && tmp > r / p) break;
37
39
        return (ret % x + x) % x;
41
43 int comb(ll n, ll k, int m) {
   int _m = m; // can use better factorization
        vector<ll> x, mod;
45
        for (int p = 2; p * p <= _m; p += 1 + (p & 1)) {
           if (_m % p == 0) {
47
              int q = 0;
for (; _m % p == 0; _m /= p) q++;
x.push_back(f(n, k, p, q));
49
              mod.push_back(powi(p, q));
51
53
        if (_m > 1)
        x.push_back(f(n, k, _m, 1)), mod.push_back(_m);
return crt(x, mod) % m;
55
57 }
```

4.3. Theorems

4.3.1. Kirchhoff's Theorem

Denote L be a $n \times n$ matrix as the Laplacian matrix of graph G, where $L_{ii} = d(i), \ L_{ij} = -c$ where c is the number of edge (i,j) in G.

- The number of undirected spanning in G is $|\det(\tilde{L}_{11})|$.
- The number of directed spanning tree rooted at r in G is $|\det(\tilde{L}_{rr})|$.

4.3.2. Tutte's Matrix

Let D be a $n \times n$ matrix, where $d_{ij} = x_{ij}$ (x_{ij} is chosen uniformly at random) if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $\frac{rank(D)}{2}$ is the maximum matching on G.

4.3.3. Cayley's Formula

• Given a degree sequence d_1, d_2, \ldots, d_n for each labeled vertices, there are

$$\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$$

spanning trees

• Let $T_{n,k}$ be the number of *labeled* forests on n vertices with k components, such that vertex $1,2,\ldots,k$ belong to different components. Then $T_{n,k}=kn^{n-k-1}$.

4.3.4. Erdős–Gallai Theorem

A sequence of non-negative integers $d_1 \ge d_2 \ge ... \ge d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if $d_1 + d_2 + ... + d_n$ is even and

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k)$$

holds for all $1 \le k \le n$.

4.3.5. Burnside's Lemma

Let X be a set and G be a group that acts on X. For $g \in G$, denote by X^g the elements fixed by g:

$$X^g = \{ x \in X \mid gx \in X \}$$

Then

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

5. Numeric

5.1. Fast Fourier Transform

```
template <typename T>
void fft_(int n, vector<T> &a, vector<T> &rt, bool inv) {
    vector<int> br(n);
    for (int i = 1; i < n; i++) {
        br[i] = (i & 1) ? br[i - 1] + n / 2 : br[i / 2] / 2;
        if (br[i] > i) swap(a[i], a[br[i]]);
}

for (int len = 2; len <= n; len *= 2)
    for (int i = 0; i < n; i += len)
        for (int j = 0; j < len / 2; j++) {
            int pos = n / len * (inv ? len - j : j);
            T u = a[i + j], v = a[i + j + len / 2] * rt[pos];
            a[i + j] = u + v, a[i + j + len / 2] = u - v;
}

if (T minv = T(1) / T(n); inv)
    for (T &x : a) x *= minv;
}</pre>
```

Requires: Mod Struct

```
void ntt(vector<Mod> &a, bool inv, Mod primitive_root) {
    int n = a.size();

    Mod root = primitive_root ^ (MOD - 1) / n;
    vector<Mod> rt(n + 1, 1);

    for (int i = 0; i < n; i++) rt[i + 1] = rt[i] * root;
    fft_(n, a, rt, inv);
}

void fft(vector<complex<double>> &a, bool inv) {
    int n = a.size();
    vector<complex<double>> rt(n + 1);
    double arg = acos(-1) * 2 / n;
    for (int i = 0; i <= n; i++)
    rt[i] = {cos(arg * i), sin(arg * i)};

fft_(n, a, rt, inv);
}</pre>
```

5.2. Fast Walsh-Hadamard Transform

Requires: Mod Struct

```
void fwht(vector<Mod> &a, bool inv) {
    int n = a.size();
    for (int d = 1; d < n; d <<= 1)
        for (int m = 0; m < n; m++)
        if (!(m & d)) {
            inv ? a[m] -= a[m | d] : a[m] += a[m | d]; // AND
            inv ? a[m | d] -= a[m] : a[m | d] += a[m]; // OR
            Mod x = a[m], y = a[m | d]; // XOR
            a[m] = x + y, a[m | d] = x - y; // XOR
        }
    if (Mod iv = Mod(1) / n; inv) // XOR
        for (Mod &i : a) i *= iv; // XOR
}</pre>
```

5.3. Subset Convolution

Requires: Mod Struct

```
#pragma GCC target("popcnt")
     #include <immintrin.h>
     void fwht(int n, vector<vector<Mod>>> &a, bool inv) {
  for (int h = 0; h < n; h++)
    for (int i = 0; i < (1 << n); i++)
      if (!(i & (1 << h)))
      for (int k = 0; k <= n; k++)
        inv ? a[i | (1 << h)][k] -= a[i][k]
            : a[i | (1 << h)][k] += a[i][k];
}</pre>
    // c[k] = sum(popcnt(i & j) == sz & i | j == k) a[i] * b[j]
vector<Mod> subset_convolution(int n, int sz,
                                                         const vector<Mod> &a_
                                                          const vector<Mod> &b_) {
        int len = n + sz + 1, N = 1 << n;</pre>
17
         vector<vector<Mod>> a(1 << n, vector<Mod>(len, 0)), b = a;
         for (int i = 0; i < N; i++)
            a[i][_mm_popcnt_u64(i)] = a_[i],
        b[i][_mm_popcnt_u64(i)] = b_[i];
fwht(n, a, 0), fwht(n, b, 0);
for (int i = 0; i < N; i++) {
            vector<Mod> tmp(len);
            for (int j = 0; j < len; j++)
  for (int k = 0; k <= j; k++)</pre>
25
                  tmp[j] += a[i][k] * b[i][j - k];
27
            a[i] = tmp;
        fwht(n, a, 1)
29
        vector<Mod> c(N);
for (int i = 0; i < N; i++)</pre>
31
            c[i] = a[i][_mm_popcnt_u64(i) + sz];
33
        return c;
```

5.4. Linear Recurrences

5.4.1. Berlekamp-Massey Algorithm

```
template <typename T>
vector<T> berlekamp_massey(const vector<T> &s) {
    int n = s.size(), l = 0, m = 1;
    vector<T> r(n), p(n);
    r[0] = p[0] = 1;
    T b = 1, d = 0;
    for (int i = 0; i < n; i++, m++, d = 0) {
        for (int j = 0; j <= l; j++) d += r[j] * s[i - j];
        if ((d /= b) == 0) continue; // change if T is float auto t = r;
        for (int j = m; j < n; j++) r[j] -= d * p[j - m];
        if (l * 2 <= i) l = i + 1 - l, b *= d, m = 0, p = t;
}
return r.resize(l + 1), reverse(r.begin(), r.end()), r;
</pre>
```

5.4.2. Linear Recurrence Calculation

```
poly r(m.size());
r[0] = 1;
for (; k; k >>= 1, p = mul(p, p, m))
    if (k & 1) r = mul(r, p, m);
    return r;
}

Calc(poly t, poly r, ll k) {
    int n = r.size();
    poly p(n);
    p[1] = 1;
    poly q = pow(p, k, r);
    T ans = 0;
    for (int i = 0; i < n; i++) ans += t[i] * q[i];
    return ans;
}

1 };</pre>
```

5.5. Matrices

5.5.1. Determinant

Requires: Mod Struct

```
double det(vector<vector<double>> a) {
       int n = a.size();
       double ans = 1;
       for (int i = 0; i < n; i++) {
          int b = i;
          for (int j =
            or (<mark>int</mark> j = i + 1; j < n; j++)
if (fabs(a[j][i]) > fabs(a[b][i])) b = j;
          if (i != b) swap(a[i], a[b]), ans = -ans;
ans *= a[i][i];
          if (ans == 0) return 0;
for (int j = i + 1; j < n; j++) {
   double v = a[j][i] / a[i][i];</pre>
            if (v != 0)
               for (int k = i + 1; k < n; k++)
                  a[j][k] -= v * a[i][k];
15
       }
17
       return ans;
19 }
```

5.5.2. Solve Linear Equation

```
typedef vector<double> vd;
    const double eps = 1e-12;
    // solves for x: A * x = b
   int solveLinear(vector<vd> δA, vd δb, vd δx) {
  int n = sz(A), m = sz(x), rank = θ, br, bc;
  if (n) assert(sz(A[θ]) == m);
       vi col(m);
 9
      iota(all(col), 0);
      rep(i, 0, n) {
         double v, bv = 0;
13
         rep(r, i, n) rep(c, i, m) if ((v = fabs(A[r][c])) > bv)
         bc = c, bv = v;
15
         if (bv <= eps) {
            rep(j, i, n) if (fabs(b[j]) > eps) return -1;
17
            break;
19
         swap(A[i], A[br]);
21
         swap(b[i], b[br]);
         swap(col[i], col[bc]);
rep(j, θ, n) swap(A[j][i], A[j][bc]);
bv = 1 / A[i][i];
23
```

```
rep(j, i + 1, n) {
    double fac = A[j][i] * bv;
    b[j] -= fac * b[i];
    rep(k, i + 1, m) A[j][k] -= fac * A[i][k];
}
rank++;
}

x.assign(m, 0);
for (int i = rank; i--;) {
    b[i] /= A[i][i];
    x[col[i]] = b[i];
    rep(j, 0, i) b[j] -= A[j][i] * b[i];
}
return rank; // (multiple solutions if rank < m)
}</pre>
```

5.5.3. Freivalds' algo

Checks if $A \times B = C$ in $O(kn^2)$ with failure rate $\approx 2^{-k}$ Generate random $n \times 1$ 0/1 vector \vec{r} and check: $A \times (B\vec{r}) = C\vec{r}$

5.6. Polynomial Interpolation

```
// returns a, such that a[0]x^0 + a[1]x^1 + a[2]x^2 + ...
// passes through the given points
typedef vector<double> vd;
vd interpolate(vd x, vd y, int n) {
    vd res(n), temp(n);
    rep(k, 0, n - 1) rep(i, k + 1, n) y[i] =
    (y[i] - y[k]) / (x[i] - x[k]);
    double last = 0;
    temp[0] = 1;
    rep(k, 0, n) rep(i, 0, n) {
        res[i] += y[k] * temp[i];
        swap(last, temp[i]);
        temp[i] -= last * x[k];
    }
    return res;
}
```

6. Geometry

6.1. Point

```
template <typename T> struct P {
  1
           T x, y;
P(T x = 0, T y = 0) : x(x), y(y) {}
bool operator<(const P &p) const {
  3
  5
                return tie(x, y) < tie(p.x, p.y);</pre>
  7
            bool operator==(const P &p) const {
                return tie(x, y) == tie(p.x, p.y);
  9
          P operator-() const { return {-x, -y}; }
P operator+(P p) const { return {x + p.x, y + p.y}; }
P operator-(P p) const { return {x - p.x, y - p.y}; }
P operator*(T d) const { return {x * d, y * d}; }
P operator/(T d) const { return {x / d, y / d}; }
11
13
            T dist2() const { return x * x + y * y
15
           double len() const { return x * X + y * y; }
double len() const { return sqrt(dist2()); }
P unit() const { return *this / len(); }
friend T dot(P a, P b) { return a.x * b.x + a.y * b.y; }
friend T cross(P a, P b) { return a.x * b.y - a.y * b.x; }
friend T cross(P a, P b, P o) {
    return cross(P a, P b, P o) {
17
21
                return cross(a - o, b - o);
23
      };
       using pt = P<ll>;
```

6.1.1. Spherical Coordinates

```
struct car_p {
    double x, y, z;
};
struct sph_p {
    double r, theta, phi;
};

sph_p conv(car_p p) {
    double r = sqrt(p.x * p.x + p.y * p.y + p.z * p.z);
    double theta = asin(p.y / r);
    double phi = atan2(p.y, p.x);
    return {r, theta, phi};
}

car_p conv(sph_p p) {
    double x = p.r * cos(p.theta) * sin(p.phi);
    double y = p.r * cos(p.theta) * cos(p.phi);
    double z = p.r * sin(p.theta);
    return {x, y, z};
}
```

6.2. Segments

```
// for non-collinear ABCD, if segments AB and CD intersect
bool intersects(pt a, pt b, pt c, pt d) {
    if (cross(b, c, a) * cross(b, d, a) > 0) return false;
    if (cross(d, a, c) * cross(d, b, c) > 0) return false;
    return true;
}

// the intersection point of lines AB and CD
pt intersect(pt a, pt b, pt c, pt d) {
    auto x = cross(b, c, a), y = cross(b, d, a);
    if (x == y) {
        // if(abs(x, y) < 1e-8) {
        // is parallel
    } else {
        return d * (x / (x - y)) - c * (y / (x - y));
    }
}</pre>
```

6.3. Pick's theorem

i: number of integer points inside the polygon *b*: number of integer points on the boundary

$$Area = i + \frac{b}{2} - 1$$

6.4. Convex Hull

```
// returns a convex hull in counterclockwise order
// for a non-strict one, change cross >= to >
vector<pt> convex_hull(vector<pt> p) {
    sort(ALL(p));
    if (p[0] == p.back()) return {p[0]};
    int n = p.size(), t = 0;
    vector<pt> h(n + 1);
    for (int _ = 2, s = 0; _--; s = --t, reverse(ALL(p)))
    for (pt i : p) {
        while (t > s + 1 && cross(i, h[t - 1], h[t - 2]) >= 0)
        t --;
        h[t++] = i;
}
return h.resize(t), h;
}
```

6.5. Angular Sort

6.6. Convex Polygon Minkowski Sum

```
// O(n) convex polygon minkowski sum
     // must be sorted and counterclockwise
     vector<pt> minkowski_sum(vector<pt> p, vector<pt> q) {
       auto diff = [](vector<pt> &c) {
          auto rcmp = [](pt a, pt b) {
  return pt{a.y, a.x} < pt{b.y, b.x};</pre>
           rotate(c.begin(), min_element(ALL(c), rcmp), c.end());
           c.push_back(c[0]);
          vector<pt> ret;
for (int i = 1; i < c.size(); i++)</pre>
             ret.push_back(c[i] - c[i - 1]);
13
          return ret;
       auto dp = diff(p), dq = diff(q);
pt cur = p[0] + q[0];
       vector = p[o] + q[o],
vector < pt> d(dp.size() + dq.size()), ret = {cur};
// include angle_cmp from angular-sort.cpp
merge(ALL(dp), ALL(dq), d.begin(), angle_cmp);
// optional: make ret strictly convex (UB if degenerate)
17
       int now = 0;
          or (int i = 1; i < d.size(); i++) {
  if (cross(d[i], d[now]) == 0) d[now] = d[now] + d[i];
  else d[++now] = d[i];</pre>
       for (int i =
       d.resize(now + 1);
        // end optional part
        for (pt v : d) ret.push_back(cur = cur + v);
       return ret.pop_back(), ret;
```

6.7. Point In Polygon

```
bool on_segment(pt a, pt b, pt p) {
    return cross(a, b, p) == 0 && dot((p - a), (p - b)) <= 0;
}

// p can be any polygon, but this is O(n)
bool inside(const vector<pt> &p, pt a) {
    int cnt = 0, n = p.size();

    for (int i = 0; i < n; i++) {
        pt l = p[i], r = p[(i + 1) % n];
        // change to return 0; for strict version
        if (on_segment(l, r, a)) return 1;
        cnt ^= ((a.y < l.y) - (a.y < r.y)) * cross(l, r, a) > 0;
}
return cnt;
}
```

6.7.1. Convex Version

```
// no preprocessing version
    // p must be a strict convex hull, counterclockwise
// if point is inside or on border
    T a = cross(c[0], c[m], p);

if (a > 0) l = m;

else if (a < 0) r = m;

else return dot(c[0] - p, c[m] - p) <= 0;
11
13
       if (l == r) return dot(c[\theta] - p, c[l] - p) <= \theta; else return cross(c[l], c[r], p) >= \theta;
15
17 }
    // with preprocessing version
     vector<pt> vecs;
    pt center;
         p must be a strict convex hull, counterclockwise
     // BEWARE OF OVERFLOWS!!
     void preprocess(vector<pt> p) {
       for (auto &v : p) v = v * 3;
center = p[0] + p[1] + p[2];
        center.x /= 3, center.y /= 3;
for (auto &v : p) v = v - center;
27
29
        vecs = (angular_sort(p), p);
31 bool intersect_strict(pt a, pt b, pt c, pt d) {
   if (cross(b, c, a) * cross(b, d, a) > 0) return false;
33 if (cross(d, a, c) * cross(d, b, c) >= 0) return false;
        return true;
35 }
     // if point is inside or on border
37
    bool query(pt p) {
  p = p * 3 - center;
        auto pr = upper_bound(ALL(vecs), p, angle_cmp);
if (pr == vecs.end()) pr = vecs.begin();
auto pl = (pr == vecs.begin()) ? vecs.back() : *(pr - 1);
39
41
        return !intersect_strict({0, 0}, p, pl, *pr);
43 }
```

6.7.2. Offline Multiple Points Version

Requires: Point, GNU PBDS

```
using Double = _
                        _float128;
    using Point = pt<Double, Double>;
   int n, m;
vector<Point> poly;
    vector<Point> query;
   vector<int> ans;
   struct Segment {
      Point a, b;
      int id;
   vector<Segment> segs;
   Double Xnow;
    inline Double get_y(const Segment &u, Double xnow = Xnow) {
      const Point &a = u.a;
const Point &b = u.b;
17
      return (a.y * (b.x - xnow) + b.y * (xnow - a.x)) /
               (b.x - a.x);
21
    bool operator<(Segment u, Segment v) {</pre>
      Double yu = get_y(u);
Double yv = get_y(v);
23
      if (yu != yv) return yu < yv;
return u.id < v.id;</pre>
```

```
ordered_map<Segment> st;
29
    struct Event {
  int type; // +1 insert seg, -1 remove seg, 0 query
31
       Double x, y;
33
       int id;
    bool operator<(Event a, Event b) {
  if (a.x != b.x) return a.x < b.x;
  if (a.type != b.type) return a.type < b.type;
  return a.y < b.y;</pre>
35
37
39
    }
     vector<Event> events;
 41
     void solve() {
 43
       set<Double> xs;
       set<Point> ps;
for (int i = 0; i < n; i++) {
    xs.insert(poly[i].x);</pre>
 45
         ps.insert(poly[i]);
 49
       for (int i = 0; i < n; i++) {
          Segment s\{poly[i], poly[(i + 1) % n], i\};
          if (s.a.x > s.b.x |
               (s.a.x == s.b.x && s.a.y > s.b.y)) {
 53
            swap(s.a, s.b);
         segs.push_back(s);
 55
         if (s.a.x != s.b.x) {
  events.push_back({+1, s.a.x + 0.2, s.a.y, i});
 57
 59
            events.push_back(\{-1, s.b.x - 0.2, s.b.y, i\});
         }
61
       for (int i = 0; i < m; i++) {
         events.push_back({0, query[i].x, query[i].y, i});
 63
       sort(events.begin(), events.end());
 65
       int cnt = 0;
for (Event e : events) {
 67
          int i = e.id;
          Xnow = e.x;
 69
          if (e.type == 0) {
            Double x = e.x;
            Double y = e.y;
Segment tmp = {{x - 1, y}, {x + 1, y}, -1};
 73
            auto it = st.lower_bound(tmp);
            if (ps.count(query[i]) > 0) {
            ans[i] = 0;
} else if (xs.count(x) > 0) {
            ans[i] = -2;
} else if (it != st.end() &&
 81
                          get_y(*it) == get_y(tmp)) {
              ans[i] = 0;
            } else if (it != st.begin() &&
83
                          get_y(*prev(it)) == get_y(tmp)) {
              ans[i] = 0:
 85
            } else {
              int rk = st.order_of_key(tmp);
if (rk % 2 == 1) {
87
                 ans[i] = 1;
89
              } else {
 91
                 ans[i] = -1;
 93
          } else if (e.type == 1) {
            st.insert(segs[i]);
 95
            assert((int)st.size() == ++cnt);
          } else if (e.type == -1) {
            st.erase(segs[i]);
            assert((int)st.size() == --cnt);
 99
101
       }
```

6.8. Closest Pair

```
vector<pll> p; // sort by x first!
bool cmpy(const pll &a, const pll &b) const {
    return a.y < b.y;
}

ll sq(ll x) { return x * x; }
    // returns (minimum dist)^2 in [l, r)

ll solve(int l, int r) {
    if (r - l <= 1) return 1e18;
    int m = (l + r) / 2;
    ll mid = p[m].x, d = min(solve(l, m), solve(m, r));
    auto pb = p.begin();
    inplace_merge(pb + l, pb + m, pb + r, cmpy);
    vector<pll> s;
    for (int i = l; i < r; i++)</pre>
```

7. Strings

7.1. Knuth-Morris-Pratt Algorithm

```
vector<int> pi(const string &s) {
    vector<int> p(s.size());
    for (int i = 1; i < s.size(); i++) {
        int g = p[i - 1];
        while (g && s[i] != s[g]) g = p[g - 1];
        p[i] = g + (s[i] == s[g]);
    }
    return p;
}
vector<int> match(const string &s, const string &pat) {
    vector<int> p = pi(pat + '\0' + s), res;
    for (int i = p.size() - s.size(); i < p.size(); i++)
    if (p[i] == pat.size())
        res.push_back(i - 2 * pat.size());
return res;
}</pre>
```

7.2. Suffix Array

```
1 \mid //  sa[i]: starting index of suffix at rank i
     // 0-indexed, sa[0] = n (empty string)

// lcp[i]: lcp of sa[i] and sa[i - 1], lcp[0] = 0
      struct SuffixArray {
         vector<int> sa, lcp;
         SuffixArray(string &s,
int lim = 256) { // or basic_string<int>
             int n = sz(s) + 1, k = 0, a, b;
vector<int> x(all(s) + 1), y(n), ws(max(n, lim)),
 9
             sa = lcp = y, iota(all(sa), 0);
for (int j = 0, p = 0; p < n;
    j = max(1, j * 2), lim = p) {</pre>
13
                 p = j, iota(all(y), n - j);
for (int i = θ; i < n; i++)
  if (sa[i] >= j) y[p++] = sa[i] - j;
15
                 fill(all(ws), 0);
for (int i = 0; i < n; i++) ws[x[i]]++;</pre>
17
                 for (int i = 1; i < lim; i++) ws[i] += ws[i - 1];
19
                for (int i = n; i--;) sa[--ws[x[y[i]]]] = y[i];
swap(x, y), p = 1, x[sa[0]] = 0;
for (int i = 1; i < n; i++)
    a = sa[i - 1], b = sa[i],</pre>
21
23
                    x[b] = (y[a] == y[b] && y[a + j] == y[b + j])
? p - 1 : p++;
25
27
             for (int i = 1; i < n; i++) rank[sa[i]] = i;
for (int i = 0, j; i < n - 1; lcp[rank[i++]] = k)
  for (k &&-, j = sa[rank[i] - 1];
    s[i + k] == s[j + k]; k++);</pre>
29
31
33
     };
```

7.3. Z Value

```
int z[n];
void zval(string s) {
    // z[i] => longest common prefix of s and s[i:], i > 0
    int n = s.size();
    z[0] = 0;
    for (int b = 0, i = 1; i < n; i++) {
        if (z[b] + b <= i) z[i] = 0;
        else z[i] = min(z[i - b], z[b] + b - i);
        while (s[i + z[i]] == s[z[i]]) z[i]++;
        if (i + z[i] > b + z[b]) b = i;
}
}
```

7.4. Manacher's Algorithm

```
for (int b = 0, i = 1; i < n; i++) {
    if (z[b] + b >= i)
        z[i] = min(z[2 * b - i], b + z[b] - i);
    else z[i] = 0;
    while (i + z[i] + 1 < n & i - z[i] - 1 >= 0 & s[i + z[i] + 1] == s[i - z[i] - 1])
    z[i]++;
    if (z[i] + i > z[b] + b) b = i;
}
```

7.5. Minimum Rotation

```
int min_rotation(string s) {
   int a = 0, n = s.size();
   s += s;
   for (int b = 0; b < n; b++) {
      for (int k = 0; k < n; k++) {
        if (a + k == b || s[a + k] < s[b + k]) {
            b += max(0, k - 1);
            break;
      }
      if (s[a + k] > s[b + k]) {
            a = b;
            break;
      }
}
return a;
}
```

7.6. Palindromic Tree

```
struct palindromic_tree {
       struct node {
          int next[26], fail, len;
         num; // cnt: appear times, num: number of pal. suf.
node(int l = 0) : fail(0), len(l), cnt(0), num(0) {
  for (int i = 0; i < 26; ++i) next[i] = 0;</pre>
 9
       };
       vector<node> St;
       vector<char> s;
11
       int last. n:
       palindromic_tree() : St(2), last(1), n(0) {
   St[0].fail = 1, St[1].len = -1, s.pb(-1);
13
15
       inline void clear() {
         St.clear(), s.clear(), last = 1, n = 0;
St.pb(0), St.pb(-1);
St[0].fail = 1, s.pb(-1);
17
19
       inline int get_fail(int x) {
  while (s[n - St[x].len - 1] != s[n]) x = St[x].fail;
21
23
       inline void add(int c) {
  s.push_back(c -= 'a'), ++n;
25
          int cur = get_fail(last);
          if (!St[cur].next[c]) {
            int now = SZ(St);
29
            St.pb(St[cur].len + 2);
            St[now].fail_=_St[get_fail(St[cur].fail)].next[c];
31
            St[cur].next[c] = now;
            St[now].num = St[St[now].fail].num + 1;
33
35
         last = St[cur].next[c], ++St[last].cnt;
       inline void count() { // counting cnt
37
         auto i = St.rbegin();
for (; i != St.rend(); ++i) {
39
            St[i->fail].cnt += i->cnt;
         }
41
       inline int size() { // The number of diff. pal.
43
         return SZ(St) - 2;
45
    };
```

8. Debug List

```
- Pre-submit:
- Did you make a typo when copying a template?
- Test more cases if unsure.
- Write a naive solution and check small cases.
- Submit the correct file.

- General Debugging:
- Read the whole problem again.
- Have a teammate read the problem.
```

```
- Have a teammate read your code.
11
         - Explain you solution to them (or a rubber duck).
       - Print the code and its output / debug output.
13
       - Go to the toilet.
15
    - Wrong Answer:
       - Any possible overflows?
               __int128` ?
/ `-ftrapv` or `#pragma GCC optimize("trapv")`
17
         - Try
       - Floating point errors?
19
         - > `long double`
      - turn off math optimizations
- check for `==`, `>=`, `acos(1.000000001)`,
- Did you forget to sort or unique?
- Generate large and worst "corner" cases.
- Check your `m` / `n`, `i` / `j` and `x` / `y
21
                                        `acos(1.000000001)`, etc.
         Are everything initialized or reset properly?
27
         Are you sure about the STL thing you are using?
         - Read cppreference (should be available).
29
       - Print everything and run it on pen and paper.
31
    - Time Limit Exceeded:
         Calculate your time complexity again.
33
      Does the program actually end?Check for `while(q.size())`
        Test the largest cases locally.
35
       - Did you do unnecessary stuff?
37
         - e.g. pass vectors by value
- e.g. `memset` for every test case
39
       - Is your constant factor reasonable?
      Runtime Error:
         Check memory usage.
43
         - Forget to clear or destroy stuff?
           > `vector::shrink_to_fit()
45
       Stack overflow?
      - Bad pointer / array access?
- Try `-fsanitize=address`
      - Division by zero? NaN's?
```

9. Tech

```
- Recursion
     Divide and conquer
      - Finding interesting points in N log N
    - Algorithm analysis
     - Master theorem
       Amortized time complexity
     Greedy algorithm
        Scheduling
        Max contiguous subvector sum
        Invariants
       Huffman encoding
    - Graph theory
     - Dynamic graphs (extra book-keeping)
- Breadth first search
13
15
       Depth first search
        **Normal trees / DFS trees**
       Dijkstra's algorithm MST: Prim's algorithm
17
19
        Bellman-Ford
        Konig's theorem and vertex cover
21
        Min-cost max flow
        Lovasz toggle
        Matrix tree theorem
23
        Maximal matching, general graphs
        Hopcroft-Karp
        Hall's marriage theorem
27
        Graphical sequences
        Floyd-Warshall
29
        Euler cycles
        Flow networks
31
        **Augmenting paths**
        **Edmonds-Karp**
33
        Bipartite matching
       Min. path cover
Topological sorting
35
        Strongly connected components
        Cut vertices, cut-edges and biconnected components
        Edge coloring
        **Trees*
41
       Vertex coloring
        **Bipartite graphs (=> trees)**
        **3<sup>n</sup> (special case of set cover)**
       Diameter and centroid
        K'th shortest path
45
       Shortest cycle
   - Dynamic programming
47
     - Knapsack
49
       Coin change
        Longest common subsequence
51
        Longest increasing subsequence
```

Number of paths in a dag Shortest path in a dag Dynprog over intervals 55 Dynprog over subsets Dynprog over probabilities Dynprog over trees 3ⁿ set cover 59 Divide and conquer Knuth optimization 61 Convex hull optimizations RMQ (sparse table a.k.a 2^k-jumps) 63 Bitonic cvcle Log partitioning (loop over most restricted) Combinatorics Computation of binomial coefficients Pigeon-hole principle Inclusion/exclusion 69 Catalan number Pick's theorem Number theory Integer parts Divisibility 73 Euclidean algorithm Modular arithmetic **Modular multiplication** **Modular inverses** 77 **Modular exponentiation by squaring** Chinese remainder theorem Fermat's little theorem 81 Euler's theorem Phi function 83 Frobenius number Quadratic reciprocity 85 Pollard-Rho Miller-Rabin Hensel lifting 87 Vieta root jumping Game theory 89 Combinatorial games 91 Game trees Mini-max Nim 93 Games on graphs Games on graphs with loops Grundy numbers 97 Bipartite games without repetition General games without repetition 90 Alpha-beta pruning Probability theory 101 - Optimization Binary search 103 Ternary search Unimodality and convex functions - Binary search on derivative - Numerical methods 105 Numeric integration Newton's method 107 Root-finding with binary/ternary search 109 Golden section search 111 - Matrices Gaussian elimination 113 Exponentiation by squaring - Sorting 115 - Radix sort Geometry 117 Coordinates and vectors **Cross product**
Scalar product 119 Convex hull 121 Polygon cut Closest pair Coordinate-compression 123 Quadtrees 125 KD-trees All segment-segment intersection 127 Sweeping Discretization (convert to events and sweep) 129 Angle sweeping Line sweeping Discrete second derivatives 131 Strings 133 Longest common substring Palindrome subsequences Knuth-Morris-Pratt 135 Tries 137 Rolling polynomial hashes Suffix array Suffix tree Aho-Corasick Manacher's algorithm 141 Letter position lists 143 Combinatorial search Meet in the middle

145

Brute-force with pruning

Best-first (A*) 147 Bidirectional search Iterative deepening DFS / A* 149 Data structures LCA (2^k-jumps in trees in general) 151 Pull/push-technique on trees Heavy-light decomposition 153 Centroid decomposition Lazy propagation Self-balancing trees 155 Convex hull trick (wcipeg.com/wiki/Convex_hull_trick) Monotone queues / monotone stacks / sliding queues 157 Sliding queue using 2 stacks 159 Persistent segment tree