Stable Menus of Public Goods

EC 2025

Sara Fish, Yannai Gonczarowski, Sergiu Hart

July 8, 2025

Motivation

Decision makers often select "public goods" to provide to unit-demand agents:

- Which electives should an online school offer?
- Where should a vending machine company locate identical machines?
- When should I schedule my office hours?

Motivation

Decision makers often select "public goods" to provide to unit-demand agents:

- Which electives should an online school offer?
- Where should a vending machine company locate identical machines?
- When should I schedule my office hours?

Common themes in these problems:

- View as matching problem: agents match to favorite available good.
- Each good needs minimum usage to justify existence.
- No capacity constraints (unlike much of the assignment literature).

Motivation

Decision makers often select "public goods" to provide to unit-demand agents:

- Which electives should an online school offer?
- Where should a vending machine company locate identical machines?
- When should I schedule my office hours?

Common themes in these problems:

- View as matching problem: agents match to favorite available good.
- Each good needs minimum usage to justify existence.
- No capacity constraints (unlike much of the assignment literature).

This talk:

- How to define stability for a matching in this setting?
- Existence of stable outcomes? Strategic considerations?

Related Work

Public projects (e.g. Papadimitriou + Schapira + Singer '08)

Committee selection (e.g. Aziz et al. '14, Jiang + Mungala + Wang '20)

Facility location (e.g. Hotelling '29, Procaccia + Tennenholtz '13)

Matching (e.g. Hatfield + Kojima '08, Dubins + Freedman '81, Roth '82)

Cooperative game theory / NTU games (e.g. Scarf '67)

Related Work

```
Public projects (e.g. Papadimitriou + Schapira + Singer '08) This work: no cardinal valuations
```

Committee selection (e.g. Aziz et al. '14, Jiang + Mungala + Wang '20) This work: no budget

This work. No budget

Facility location (e.g. Hotelling '29, Procaccia + Tennenholtz '13)

This work: no geometry

Matching (e.g. Hatfield + Kojima '08, Dubins + Freedman '81, Roth '82)

Cooperative game theory / NTU games (e.g. Scarf '67)

Related Work

```
Public projects (e.g. Papadimitriou + Schapira + Singer '08) This work: no cardinal valuations
```

Committee selection (e.g. Aziz et al. '14, Jiang + Mungala + Wang '20) This work: no budget

Facility location (e.g. Hotelling '29, Procaccia + Tennenholtz '13) This work: no geometry

Matching (e.g. Hatfield + Kojima '08, Dubins + Freedman '81, Roth '82) This work: no capacity constraints, yes complementarities

Cooperative game theory / NTU games (e.g. Scarf '67) This work: tighter bounds than those yielded by balancedness

- n agents, denoted $N = \{1, \ldots, n\}$.
- g public goods, denoted $G = \{1, \dots, g\}$.
- Each agent $i \in \{1, ..., n\}$ has **complete preferences** \succ_i over G.
- A **menu** $M \subseteq G$ induces a **matching**: agent i uses their favorite good in M

- n agents, denoted $N = \{1, \ldots, n\}$.
- g public goods, denoted $G = \{1, \dots, g\}$.
- Each agent $i \in \{1, ..., n\}$ has **complete preferences** \succ_i over G.
- A **menu** $M \subseteq G$ induces a **matching**: agent i uses their favorite good in M

Preliminary Defn. A menu $M \subseteq G$ of public goods is *t*-**stable** if:

- *t*-feasibility: each provided public good $\gamma \in M$ is used by $\geq t$ agents.
- t-uncontestability: there do not exist t "unhappy" agents, and an unprovided public good $\gamma \in G \setminus M$, such that each of these agents prefers γ over all provided public goods in M.

- n agents, denoted $N = \{1, \ldots, n\}$.
- g public goods, denoted $G = \{1, \dots, g\}$.
- Each agent $i \in \{1, ..., n\}$ has **complete preferences** \succ_i over G.
- A **menu** $M \subseteq G$ induces a **matching**: agent *i* uses their favorite good in M

Preliminary Defn. A menu $M \subseteq G$ of public goods is *t*-**stable** if:

- *t*-feasibility: each provided public good $\gamma \in M$ is used by $\geq t$ agents.
- t-uncontestability: there do not exist t "unhappy" agents, and an unprovided public good $\gamma \in G \setminus M$, such that each of these agents prefers γ over all provided public goods in M.
- ullet Feasibility o provide fewer public goods
- ullet Uncontestability o provide more public goods

- n agents, denoted $N = \{1, \ldots, n\}$.
- g public goods, denoted $G = \{1, \dots, g\}$.
- Each agent $i \in \{1, ..., n\}$ has **complete preferences** \succ_i over G.
- A **menu** $M \subseteq G$ induces a **matching**: agent *i* uses their favorite good in M

Preliminary Defn. A menu $M \subseteq G$ of public goods is *t*-**stable** if:

- *t*-feasibility: each provided public good $\gamma \in M$ is used by $\geq t$ agents.
- t-uncontestability: there do not exist t "unhappy" agents, and an unprovided public good $\gamma \in G \setminus M$, such that each of these agents prefers γ over all provided public goods in M.
- ullet Feasibility o provide fewer public goods
- ullet Uncontestability o provide more public goods
- Menu selection problem = (agents, public goods, preferences).

- t-feasibility: each provided good $\gamma \in M$ used by $\geq t$ agents. t-uncontestability: $\not\exists t$ "unhappy" agents who prefer $\gamma \in G \setminus M$ t-stable

- *t*-feasibility: each provided good $\gamma \in M$ used by $\geq t$ agents. *t*-uncontestability: $\not\exists t$ "unhappy" agents who prefer $\gamma \in G \setminus M$

Example

$$t = 4$$

n = 9 agents

g = 3 goods

Agents

$$\mathbf{3} \times 1 \succ 2 \succ 3$$

$$\textbf{3}\times 2 \succ 3 \succ 1$$

$$3 \times 3 \succ 1 \succ 2$$

- *t*-feasibility: each provided good $\gamma \in M$ used by $\geq t$ agents. *t*-uncontestability: $\not\exists t$ "unhappy" agents who prefer $\gamma \in G \setminus M$

```
t = 4
n = 9 agents
g = 3 goods
Agents
3 \times 1 \succ 2 \succ 3
```

$$3 \times 1 \succ 2 \succ 3$$

 $3 \times 2 \succ 3 \succ 1$

$$\mathbf{3} \times \mathbf{3} \succ \mathbf{1} \succ \mathbf{2}$$

- t-feasibility: each provided good $\gamma \in M$ used by $\geq t$ agents.
- t-uncontestability: $\not\exists t$ "unhappy" agents who prefer $\gamma \in G \setminus M$

```
t = 4

n = 9 agents

g = 3 goods

Agents

3 \times 1 \succ 2 \succ 3

3 \times 2 \succ 3 \succ 1

3 \times 3 \succ 1 \succ 2
```

- *t*-feasibility: each provided good $\gamma \in M$ used by $\geq t$ agents.
- t-uncontestability: $\not\exists t$ "unhappy" agents who prefer $\gamma \in G \setminus M$

```
t = 4

n = 9 agents

g = 3 goods

Agents

3 \times 1 \succ 2 \succ 3

3 \times 2 \succ 3 \succ 1

3 \times 3 \succ 1 \succ 2
```

```
\emptyset not t-stable: \hookrightarrow t-contestable: 9 \ge t agents prefer 1 over \emptyset {1} not t-stable: \hookrightarrow t-contestable: 6 \ge t agents prefer 3 over 1 \{1,2\} \{1,2,3\}
```

- t-feasibility: each provided good γ ∈ M used by ≥ t agents.
 t-uncontestability: ∄ t "unhappy" agents who prefer γ ∈ G \ M

```
t = 4
n = 9 agents
g = 3 goods
Agents
3 \times 1 \succ 2 \succ 3
3 \times 2 \succ 3 \succ 1
3 \times 3 \succ 1 \succ 2
```

```
not t-stable:
      \hookrightarrow t-contestable: 9 \ge t agents prefer 1 over \emptyset
  \{1\} not t-stable:
      \hookrightarrow t-contestable: 6 > t agents prefer 3 over 1
 \{1,2\} not t-stable:
      \hookrightarrow t-infeasible: only 3 < t agents use 2
\{1, 2, 3\}
```

- t-feasibility: each provided good $\gamma \in M$ used by $\geq t$ agents.
- t-uncontestability: ot B t "unhappy" agents who prefer $\gamma \in G \setminus M$

t-stable

```
t = 4

n = 9 agents

g = 3 goods

\frac{\text{Agents}}{3 \times 1} \succ 2 \succ 3

3 \times 2 \succ 3 \succ 1

3 \times 3 \succ 1 \succ 2
```

```
\emptyset not t-stable: \hookrightarrow t-contestable: 9 \ge t agents prefer 1 over \emptyset {1} not t-stable: \hookrightarrow t-contestable: 6 \ge t agents prefer 3 over 1 {1,2} not t-stable: \hookrightarrow t-infeasible: only 3 < t agents use 2 {1,2,3} not t-stable: \hookrightarrow t-infeasible: only 3 < t agents use each good
```

- t-feasibility: each provided good $\gamma \in M$ used by $\geq t$ agents.
- t-uncontestability: $\not\exists t$ "unhappy" agents who prefer $\gamma \in G \setminus M$

```
t = 4

n = 9 agents

g = 3 goods

\frac{\text{Agents}}{3 \times 1} \succ 2 \succ 3

3 \times 2 \succ 3 \succ 1

3 \times 3 \succ 1 \succ 2
```

```
\emptyset not t-stable: \hookrightarrow t-contestable: 9 \ge t agents prefer 1 over \emptyset {1} not t-stable: \hookrightarrow t-contestable: 6 \ge t agents prefer 3 over 1 {1,2} not t-stable: \hookrightarrow t-infeasible: only 3 < t agents use 2 {1,2,3} not t-stable: \hookrightarrow t-infeasible: only 3 < t agents use each good No t-stable menu exists!
```

- t-feasibility: each provided good $\gamma \in M$ used by $\geq t$ agents.
- *u*-uncontestability: $\not\exists \ u$ "unhappy" agents who prefer $\gamma \in G \setminus M$ $\left. \begin{cases} (t,u)\text{-stable} \end{cases} \right.$

Example

$$t = 4$$
, $u = 7$
 $n = 9$ agents
 $g = 3$ goods
 $\frac{\text{Agents}}{3 \times 1} \succ 2 \succ 3$
 $\frac{3}{3} \times 2 \succ 3 \succ 1$

 $3 \times 3 \succ 1 \succ 2$

- t-feasibility: each provided good $\gamma \in M$ used by $\geq t$ agents.
- *u*-uncontestability: $\not\exists u$ "unhappy" agents who prefer $\gamma \in G \setminus M$ (t, u)-stable

```
t = 4, u = 7

n = 9 agents

g = 3 goods

\frac{\text{Agents}}{3 \times 1} \succ 2 \succ 3

3 \times 2 \succ 3 \succ 1

3 \times 3 \succ 1 \succ 2
```

• t-feasibility: each provided good $\gamma \in M$ used by $\geq t$ agents. • u-uncontestability: $\not\exists u$ "unhappy" agents who prefer $\gamma \in G \setminus M$ (t, u)-stable

Example

```
n = 9 agents

g = 3 goods

Agents

3 \times 1 \succ 2 \succ 3

3 \times 2 \succ 3 \succ 1

3 \times 3 \succ 1 \succ 2
```

t = 4. u = 7

- t-feasibility: each provided good γ ∈ M used by ≥ t agents.
 u-uncontestability: ∄ u "unhappy" agents who prefer γ ∈ G \ M

```
t = 4, u = 7
n = 9 agents
g = 3 goods
Agents
3 \times 1 \succ 2 \succ 3
3 \times 2 \succ 3 \succ 1
3 \times 3 > 1 > 2
```

```
not (t, u)-stable:
     \hookrightarrow u-contestable: 9 > u agents prefer 1 over \emptyset
 \{1\}
 \{1,2\} not (t,u)-stable:
      \hookrightarrow t-infeasible: only 3 < t agents use 2
\{1, 2, 3\} not (t, u)-stable:
      \hookrightarrow t-infeasible: only 3 < t agents use each good
```

- t-feasibility: each provided good γ ∈ M used by ≥ t agents.
 u-uncontestability: ∄ u "unhappy" agents who prefer γ ∈ G \ M

```
t = 4, u = 7
n = 9 agents
g = 3 goods
Agents
3 \times 1 \succ 2 \succ 3
3 \times 2 \succ 3 \succ 1
3 \times 3 > 1 > 2
```

```
\emptyset not (t, u)-stable:
      \hookrightarrow u-contestable: 9 > u agents prefer 1 over \emptyset
 \{1\} (t, u)-stable.
 \{1,2\} not (t,u)-stable:
      \hookrightarrow t-infeasible: only 3 < t agents use 2
\{1, 2, 3\} not (t, u)-stable:
      \hookrightarrow t-infeasible: only 3 < t agents use each good
```

• t-feasibility: each provided good $\gamma \in M$ used by $\geq t$ agents. • u-uncontestability: $\not\supseteq u$ "unhappy" agents who prefer $\gamma \in G \setminus M$ (t, u)-stable

Example

```
t = 4, u = 7

n = 9 agents

g = 3 goods

Agents

3 \times 1 \succ 2 \succ 3

3 \times 2 \succ 3 \succ 1

3 \times 3 \succ 1 \succ 2
```

When u/t sufficiently large, (t, u)-stable menus exist.

We are interested in questions of:

Existence

 \hookrightarrow For which t, u do (t, u)-stable menus exist for all menu selection problems?

Strategyproofness

 \hookrightarrow When existence guaranteed, for which g, t, u is there a SP mechanism?

5

We are interested in questions of:

Existence

- \hookrightarrow For which t, u do (t, u)-stable menus exist for all menu selection problems?
- When $u = \infty$ and t = 0, all menus trivially (t, u)-stable.

Strategyproofness

 \hookrightarrow When existence guaranteed, for which g, t, u is there a SP mechanism?

We are interested in questions of:

Existence

- \hookrightarrow For which t, u do (t, u)-stable menus exist for all menu selection problems?
- When $u = \infty$ and t = 0, all menus trivially (t, u)-stable.
- How much closer can u, t get to guarantee existence?

Strategyproofness

 \hookrightarrow When existence guaranteed, for which g, t, u is there a SP mechanism?

5

We are interested in questions of:

Existence

- \hookrightarrow For which t, u do (t, u)-stable menus exist for all menu selection problems?
- When $u = \infty$ and t = 0, all menus trivially (t, u)-stable.
- How much closer can u, t get to guarantee existence? We provide:
 - Tight characterization for $g \le 6$

Strategyproofness

 \hookrightarrow When existence guaranteed, for which g, t, u is there a SP mechanism?

5

We are interested in questions of:

Existence

- \hookrightarrow For which t, u do (t, u)-stable menus exist for all menu selection problems?
- When $u = \infty$ and t = 0, all menus trivially (t, u)-stable.
- How much closer can u, t get to guarantee existence? We provide:
 - Tight characterization for g < 6
 - Lower & upper bounds for $g \ge 7$

Strategyproofness

 \hookrightarrow When existence guaranteed, for which g, t, u is there a SP mechanism?

We are interested in questions of:

Existence

- \hookrightarrow For which t, u do (t, u)-stable menus exist for all menu selection problems?
- When $u = \infty$ and t = 0, all menus trivially (t, u)-stable.
- How much closer can u, t get to guarantee existence? We provide:
 - Tight characterization for g < 6
 - Lower & upper bounds for $g \ge 7$

Strategyproofness

- \hookrightarrow When existence guaranteed, for which g, t, u is there a SP mechanism?
- g = 2: simple anonymous stable SP mechanism

We are interested in questions of:

Existence

- \hookrightarrow For which t, u do (t, u)-stable menus exist for all menu selection problems?
- When $u = \infty$ and t = 0, all menus trivially (t, u)-stable.
- How much closer can u, t get to guarantee existence? We provide:
 - Tight characterization for g < 6
 - Lower & upper bounds for $g \ge 7$

Strategyproofness

- \hookrightarrow When existence guaranteed, for which g, t, u is there a SP mechanism?
- g = 2: simple anonymous stable SP mechanism
- g = 3, 4, 5, 6: impossibility result (no anonymous stable SP mechanism)

Existence

Simple bounds

Lower bound

Upper bound

Simple bounds

Lower bound

Theorem. Let $g \ge 3$ and $u \le 2t-2$. Then there exists a menu selection problem with no (t, u)-stable menu.

Upper bound

Simple bounds

Lower bound

Theorem. Let $g \ge 3$ and $u \le 2t-2$. Then there exists a menu selection problem with no (t, u)-stable menu.

Proof sketch. One can check these agents have no (t, u)-stable menu:

- $t-1 \times 1 \succ 2 \succ 3$
- $t-1 \times 2 \succ 3 \succ 1$
- $t-1 \times 3 \succ 1 \succ 2$

Upper bound

Simple bounds

Lower bound

Theorem. Let $g \ge 3$ and $u \le 2t-2$. Then there exists a menu selection problem with no (t, u)-stable menu.

Proof sketch. One can check these agents have no (t, u)-stable menu:

- $t-1 \times 1 \succ 2 \succ 3$
- $t-1 \times 2 \succ 3 \succ 1$
- $t-1 \times 3 \succ 1 \succ 2$

Upper bound

Proposition. Let $g \ge 2$ and u > g(t-1). Then for all menu selection problems, there exists a (t, u)-stable menu.

Simple bounds

Lower bound

Theorem. Let $g \ge 3$ and $u \le 2t-2$. Then there exists a menu selection problem with no (t, u)-stable menu.

Proof sketch. One can check these agents have no (t, u)-stable menu:

- $t-1 \times 1 \succ 2 \succ 3$
- $t-1 \times 2 \succ 3 \succ 1$
- $t-1 \times 3 \succ 1 \succ 2$

Upper bound

Proposition. Let $g \ge 2$ and u > g(t-1). Then for all menu selection problems, there exists a (t, u)-stable menu.

Proof sketch. Let $M := \{ \gamma \in G : \exists t \text{ agents with favorite good } \gamma \}$. One can check M is (t, u)-stable.

To guarantee existence of stable menus, simple bounds say:

- Necessary: $u \ge 2t-1$. Sufficient: $u \ge g(t-1)+1$. $\bigg\}$ gap of factor of $\sim g$

To guarantee existence of stable menus, simple bounds say:

• Necessary: $u \ge 2t-1$. • Sufficient: $u \ge g(t-1)+1$. $\bigg\}$ gap of factor of $\sim g$

This simple lower bound is tight for g = 3, 4, 5, 6:

Theorem. Let $g \in \{3,4,5,6\}$ and $u \ge 2t-1$. Then every menu selection problem has a (t,u)-stable menu.

7

To guarantee existence of stable menus, simple bounds say:

• Necessary: $u \ge 2t-1$. • Sufficient: $u \ge g(t-1)+1$. $\}$ gap of factor of $\sim g$

This simple lower bound is tight for g = 3, 4, 5, 6:

Theorem. Let $g \in \{3,4,5,6\}$ and $u \ge 2t-1$. Then every menu selection problem has a (t,u)-stable menu.

(We'll talk about $g \ge 7$ later...)

7

To guarantee existence of stable menus, simple bounds say:

• Necessary: $u \geq 2t-1$. • Sufficient: $u \geq g(t-1)+1$. $\bigg\}$ gap of factor of $\sim g$

This simple lower bound is tight for g = 3, 4, 5, 6:

Theorem. Let $g \in \{3,4,5,6\}$ and $u \ge 2t-1$. Then every menu selection problem has a (t,u)-stable menu.

(We'll talk about $g \ge 7$ later...)

Proof sketch.

- $\bullet \ \ g=3,4$: analyze **greedy algorithm**. Analyzing cycle reveals stable menu.
- \bullet g=5,6: solve **computationally**. Using structural insights, reduce to polyhedra covering problem $\hookrightarrow 1$ week on Harvard cluster using SMT solver.

• Encode menu selection problem as

$$x \in \mathbb{R}^{g!}$$
.

Example

- $2 \times 1 \succ 2 \succ 3$
- $3 \times 2 \succ 1 \succ 3$
- \hookrightarrow gives vector x = (2, 0, 0, 3, 0, 0).

• Encode menu selection problem as

$$x \in \mathbb{R}^{g!}$$
.

• Construct polyhedron $P_M^{t,u,g}$ s.t.

$$M$$
 is (t, u) -stable $\Leftrightarrow x \in P_M^{t,u,g}$.

Example

- $2 \times 1 \succ 2 \succ 3$
- $3 \times 2 > 1 > 3$
- \hookrightarrow gives vector x = (2, 0, 0, 3, 0, 0).

Encode menu selection problem as

$$x \in \mathbb{R}^{g!}$$
.

• Construct polyhedron $P_M^{t,u,g}$ s.t.

$$M$$
 is (t, u) -stable $\Leftrightarrow x \in P_M^{t, u, g}$.

ullet There exists a stable menu M for a menu selection problem x if and only if

$$x \in \bigcup_{M \subset G} P_M^{t,u,g}$$
.

Example

- $2 \times 1 \succ 2 \succ 3$
- $3 \times 2 \succ 1 \succ 3$
- \hookrightarrow gives vector x = (2, 0, 0, 3, 0, 0).

• Encode menu selection problem as

$$x \in \mathbb{R}^{g!}$$
.

• Construct polyhedron $P_M^{t,u,g}$ s.t.

$$M$$
 is (t, u) -stable $\Leftrightarrow x \in P_M^{t,u,g}$.

• There exists a stable menu M for a menu selection problem x if and only if

$$x \in \bigcup_{M \subset G} P_M^{t,u,g}$$
.

 All menu selection problems have stable menus if and only if

$$\mathbb{Z}_{\geq 0}^{g!} \subseteq \bigcup_{M \subseteq G} P_M^{t,u,g}.$$

Example

- $2 \times 1 \succ 2 \succ 3$
- $3 \times 2 \succ 1 \succ 3$
- \hookrightarrow gives vector x = (2, 0, 0, 3, 0, 0).

Encode menu selection problem as

$$x \in \mathbb{R}^{g!}$$
.

• Construct polyhedron $P_M^{t,u,g}$ s.t.

$$M$$
 is (t, u) -stable $\Leftrightarrow x \in P_M^{t,u,g}$.

• There exists a stable menu M for a menu selection problem x if and only if

$$x \in \bigcup_{M \subset G} P_M^{t,u,g}$$
.

• All menu selection problems have stable menus if and only if

$$\mathbb{Z}_{\geq 0}^{g!} \subseteq \bigcup_{M \subset G} P_M^{t,u,g}.$$

Example

Menu selection problem:

- $2 \times 1 \succ 2 \succ 3$
- $3 \times 2 \succ 1 \succ 3$
- \hookrightarrow gives vector x = (2, 0, 0, 3, 0, 0).

How to test if $\{1,2\}$ is (t,u)-stable? t-feasibility:

•
$$\langle \underbrace{(1,1,0,0,1,0)}, x \rangle \geq t$$

types using 1

• $\langle (0,0,1,1,0,1), x \rangle \geq t$

types using 2 *u*-defendability:

$$\bullet \ \langle \underbrace{(0,0,0,0,1,1)}_{},x\rangle < u.$$

types demanding 3

• Encode menu selection problem as

$$x \in \mathbb{R}^{g!}$$
.

• Construct polyhedron $P_M^{t,u,g}$ s.t.

$$M$$
 is (t, u) -stable $\Leftrightarrow x \in P_M^{t,u,g}$.

• There exists a stable menu M for a menu selection problem x if and only if

$$x \in \bigcup_{M \subseteq G} P_M^{t,u,g}$$
.

• All menu selection problems have stable menus if and only if

$$\mathbb{Z}^{g!}_{\geq 0} \subseteq \bigcup_{M \subseteq G} P^{t,u,g}_M.$$

Example

Menu selection problem:

- $2 \times 1 \succ 2 \succ 3$
- $3 \times 2 \succ 1 \succ 3$
- \hookrightarrow gives vector x = (2, 0, 0, 3, 0, 0).

$$\underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & -1 \end{pmatrix}}_{A} x \ge \underbrace{\begin{pmatrix} t \\ t \\ -u+1 \end{pmatrix}}_{b}$$

 $P_{\{1,2\}}^{\mathfrak{r},u,g}:=\{v: Av\geq b\}$ encodes for which menu selection problems $\{1,2\}$ is stable.

Theorem. Let $g \ge 7$ and $u \le 23 \lfloor \frac{t-1}{11} \rfloor$. Then there exists a menu selection problem with no (t, u)-stable menu. (cf. $u \ge 2t-1 \Leftrightarrow$ existence when $g \le 6$)

9

Theorem. Let $g \ge 7$ and $u \le 23 \lfloor \frac{t-1}{11} \rfloor$. Then there exists a menu selection problem with no (t, u)-stable menu. (cf. $u \ge 2t-1 \Leftrightarrow$ existence when $g \le 6$)

Set $x := \lfloor \frac{t-1}{11} \rfloor$. Then the following 70x agents have no (t, u)-stable menu:

#	Preference	#	Preference	#	Preference	#	Preference
5 <i>x</i>	1 ≻ 2 ≻ 3	3 <i>x</i>	$1 \succ 2 \succ 4 \succ 5$	X	$1 \succ 4 \succ 2 \succ 5$	X	$1 \succ 6 \succ 4 \succ 2$
5 <i>x</i>	$2 \succ 3 \succ 4$	3 <i>x</i>	$2 \succ 3 \succ 5 \succ 6$	X	$2 \succ 5 \succ 3 \succ 6$	X	$2 \succ 7 \succ 5 \succ 3$
5 <i>x</i>	$3 \succ 4 \succ 5$	3 <i>x</i>	$3 \succ 4 \succ 6 \succ 7$	X	$3 \succ 6 \succ 4 \succ 7$	X	$3 \succ 1 \succ 6 \succ 4$
5 <i>x</i>	4 ≻ 5 ≻ 6	3 <i>x</i>	$4 \succ 5 \succ 7 \succ 1$	X	$4 \succ 7 \succ 5 \succ 1$	X	$4 \succ 2 \succ 7 \succ 5$
5 <i>x</i>	5 ≻ 6 ≻ 7	3 <i>x</i>	$5 \succ 6 \succ 1 \succ 2$	X	$5 \succ 1 \succ 6 \succ 2$	X	$5 \succ 3 \succ 1 \succ 6$
5 <i>x</i>	$6 \succ 7 \succ 1$	3 <i>x</i>	$6 \succ 7 \succ 2 \succ 3$	X	$6 \succ 2 \succ 7 \succ 3$	X	$6 \succ 4 \succ 2 \succ 7$
5 <i>x</i>	$7 \succ 1 \succ 2$	3 <i>x</i>	$7 \succ 1 \succ 3 \succ 4$	X	$7 \succ 3 \succ 1 \succ 4$	X	$7 \succ 5 \succ 3 \succ 1$
							1

Simplified and cleaned from counterexample found by SMT solver.

Theorem. Let $g \ge 7$ and $u \le 23 \lfloor \frac{t-1}{11} \rfloor$. Then there exists a menu selection problem with no (t, u)-stable menu. (cf. $u \ge 2t-1 \Leftrightarrow$ existence when $g \le 6$)

Set $x := \lfloor \frac{t-1}{11} \rfloor$. Then the following 70x agents have no (t, u)-stable menu:

#	Preference	#	Preference	#	Preference	#	Preference
5 <i>x</i>	1 ≻ 2 ≻ 3	3 <i>x</i>	$1 \succ 2 \succ 4 \succ 5$	X	$1 \succ 4 \succ 2 \succ 5$	X	$1 \succ 6 \succ 4 \succ 2$
5 <i>x</i>	$2 \succ 3 \succ 4$	3 <i>x</i>	$2 \succ 3 \succ 5 \succ 6$	X	$2 \succ 5 \succ 3 \succ 6$	X	$2 \succ 7 \succ 5 \succ 3$
5 <i>x</i>	$3 \succ 4 \succ 5$	3 <i>x</i>	$3 \succ 4 \succ 6 \succ 7$	X	$3 \succ 6 \succ 4 \succ 7$	X	$3 \succ 1 \succ 6 \succ 4$
5 <i>x</i>	4 ≻ 5 ≻ 6	3 <i>x</i>	$4 \succ 5 \succ 7 \succ 1$	X	$4 \succ 7 \succ 5 \succ 1$	X	$4 \succ 2 \succ 7 \succ 5$
5 <i>x</i>	5 ≻ 6 ≻ 7	3 <i>x</i>	$5 \succ 6 \succ 1 \succ 2$	X	$5 \succ 1 \succ 6 \succ 2$	X	$5 \succ 3 \succ 1 \succ 6$
5 <i>x</i>	$6 \succ 7 \succ 1$	3 <i>x</i>	$6 \succ 7 \succ 2 \succ 3$	X	$6 \succ 2 \succ 7 \succ 3$	X	$6 \succ 4 \succ 2 \succ 7$
5 <i>x</i>	$7 \succ 1 \succ 2$	3 <i>x</i>	$7 \succ 1 \succ 3 \succ 4$	X	$7 \succ 3 \succ 1 \succ 4$	X	$7 \succ 5 \succ 3 \succ 1$

- Simplified and cleaned from counterexample found by SMT solver.
- Also have somewhat improved upper bound: $u \ge (g-2)(t-1) + 1$.

Theorem. Let $g \ge 7$ and $u \le 23 \lfloor \frac{t-1}{11} \rfloor$. Then there exists a menu selection problem with no (t, u)-stable menu. (cf. $u \ge 2t-1 \Leftrightarrow$ existence when $g \le 6$)

Set $x := \lfloor \frac{t-1}{11} \rfloor$. Then the following 70x agents have no (t, u)-stable menu:

#	Preference	#	Preference	#	Preference	#	Preference
5 <i>x</i>	1 ≻ 2 ≻ 3	3 <i>x</i>	$1 \succ 2 \succ 4 \succ 5$	X	$1 \succ 4 \succ 2 \succ 5$	X	$1 \succ 6 \succ 4 \succ 2$
5 <i>x</i>	2 ≻ 3 ≻ 4	3 <i>x</i>	$2 \succ 3 \succ 5 \succ 6$	X	$2 \succ 5 \succ 3 \succ 6$	X	$2 \succ 7 \succ 5 \succ 3$
5 <i>x</i>	3 ≻ 4 ≻ 5	3 <i>x</i>	$3 \succ 4 \succ 6 \succ 7$	X	$3 \succ 6 \succ 4 \succ 7$	X	$3 \succ 1 \succ 6 \succ 4$
5 <i>x</i>	4 ≻ 5 ≻ 6	3 <i>x</i>	$4 \succ 5 \succ 7 \succ 1$	X	$4 \succ 7 \succ 5 \succ 1$	X	$4 \succ 2 \succ 7 \succ 5$
5 <i>x</i>	5 ≻ 6 ≻ 7	3 <i>x</i>	$5 \succ 6 \succ 1 \succ 2$	X	$5 \succ 1 \succ 6 \succ 2$	X	$5 \succ 3 \succ 1 \succ 6$
5 <i>x</i>	$6 \succ 7 \succ 1$	3 <i>x</i>	$6 \succ 7 \succ 2 \succ 3$	X	$6 \succ 2 \succ 7 \succ 3$	X	$6 \succ 4 \succ 2 \succ 7$
5 <i>x</i>	$7 \succ 1 \succ 2$	3 <i>x</i>	$7 \succ 1 \succ 3 \succ 4$	X	$7 \succ 3 \succ 1 \succ 4$	X	$7 \succ 5 \succ 3 \succ 1$
	'		'				

- Simplified and cleaned from counterexample found by SMT solver.
- Also have somewhat improved upper bound: $u \ge (g-2)(t-1) + 1$.
- When $g \ge 7$, existence question open for $23 \left\lfloor \frac{t-1}{11} \right\rfloor < u \le (g-2)(t-1)$.

 \sim g ga

Improved Upper Bound

Theorem. Let $g \ge 7$ and $u \ge (g-2)(t-1)+1$. Then every menu selection problem has a (t,u)-stable menu.

Proof relies on lemma:

Lemma. Fix $g \ge 2$ and $u \ge 2t - 1$. Then at least one is true:

- (1) $\exists M \subseteq G$ with |M| = 1 such that M is u-uncontestable.
- (2) $\exists M \subseteq G$ with |M| = 2 such that M is t-feasible.

Proof sketch of lemma. Let x_{ij} denote the number of agents who prefer i over j. Assume both (1) and (2) are false.

- $\neg (1)$ says $\forall i \in G$ that $\bigvee_{j \neq i} (x_{ji} \geq u)$.
- \neg (2) says $\forall \{i,j\} \subset G$ that $(x_{ij} < t) \lor (x_{ji} < t)$.

Solve this "2SAT instance" by hand, using repeatedly the fact $\forall i, j, k \in G, \ x_{ii} \geq u \land x_{ki} < t \implies x_{ik} \geq t.$

Improved Upper Bound

Theorem. Let $g \ge 7$ and $u \ge (g-2)(t-1)+1$. Then every menu selection problem has a (t,u)-stable menu.

Proof relies on lemma:

Lemma. Fix $g \ge 2$ and $u \ge 2t - 1$. Then at least one is true:

- (1) $\exists M \subseteq G$ with |M| = 1 such that M is u-uncontestable.
- (2) $\exists M \subseteq G$ with |M| = 2 such that M is t-feasible.

Proof sketch of theorem.

- If (1), then either some such M is also t-feasible, or \emptyset is stable.
- Otherwise, if (2), then the maximum possible lobby size is (g-2)(t-1) < u. (Using other machinery, suffices to assume that each good is top-ranked by $\leq t-1$ agents.)

What about large numbers of goods?

When
$$g \ge 7$$
, existence question open for $\underbrace{23 \left\lfloor \frac{t-1}{11} \right\rfloor < u \le (g-2)(t-1)}_{\sim g \text{ gap}}$.

- Consider online university with 600 possible electives.
- Absent further assumptions, we only guarantee a (11, 5981)-stable menu.
- But: suppose there are 100 departments, each with 6 possible electives. And assume each student only likes electives in their department.
- Then, due to "block structure" of students' preferences, we guarantee a (11,21)-stable menu.

Fix g, t, u such that every menu selection problem has a stable menu.

Does there exist an anonymous strategyproof mechanism

 \mathcal{M} : (menu selection problem) \mapsto (t, u)-stable menu?

Fix g, t, u such that every menu selection problem has a stable menu.

Does there exist an anonymous strategyproof mechanism

 \mathcal{M} : (menu selection problem) \mapsto (t, u)-stable menu?

Theorem. For g = 2, there exists an anonymous stable SP mechanism.

Fix g, t, u such that every menu selection problem has a stable menu.

Does there exist an anonymous strategyproof mechanism

 \mathcal{M} : (menu selection problem) \mapsto (t, u)-stable menu?

Theorem. For g = 2, there exists an anonymous stable SP mechanism.

Proof sketch. Do a majority vote (paying attention when to offer two or zero goods instead).

Fix g, t, u such that every menu selection problem has a stable menu.

Does there exist an anonymous strategyproof mechanism

 \mathcal{M} : (menu selection problem) \mapsto (t, u)-stable menu?

Theorem. For g = 2, there exists an anonymous stable SP mechanism.

Proof sketch. Do a majority vote (paying attention when to offer two or zero goods instead).

Theorem. For g = 3, 4, 5, 6, there is no anonymous stable SP mechanism.

Fix g, t, u such that every menu selection problem has a stable menu.

Does there exist an anonymous strategyproof mechanism

 \mathcal{M} : (menu selection problem) \mapsto (t, u)-stable menu?

Theorem. For g = 2, there exists an anonymous stable SP mechanism.

Proof sketch. Do a majority vote (paying attention when to offer two or zero goods instead).

Theorem. For g = 3, 4, 5, 6, there is no anonymous stable SP mechanism.

Proof sketch. Given voting problem, carefully transform into menu selection problem and invoke Gibbard–Statterthwaite (transform so that unanimity implied by stability). Challenge: menu selection problem should only have singletons as stable menus.

Strategyproofness: technicalities

Formally, we consider mechanisms that work on subsets of stability parameters.

A set of stability parameters $S \subseteq \mathbb{N}^2$ guarantees existence if $\forall (t, u) \in S$, every menu selection problem has a (t, u)-stable solution.

E.g. when $g \in \{3, 4, 5, 6\}$, then $S = \{(t, u) : u \ge 2t - 1\}$ guarantees existence.

We're actually looking for anonymous stable strategyproof mechanisms with respect to the set of stability parameters S:

 \mathcal{M} : (menu selection problem) \times (t, u) \mapsto (t, u)-stable menu?

Theorem (again). For g=3,4,5,6, and $\mathcal{S}=\{(t,u):\ u\geq 2t-1\}$, there is no anonymous stable SP mechanism.

Future work:

- For $g \in \{3,4,5,6\}$, can we get positive results by restricting to smaller S?
- What happens for $g \ge 7$?
- What about incomplete preference lists?

Takeaways

- We introduce a new model for a matching market, with complementarities and no capacity constraints.
- ullet For $g \leq 6$, we provide a tight characterization for when stable menus exist.
- For $g \ge 7$, we provide lower and upper bounds for when stable menus exist.
- For $3 \le g \le 6$, there are fundamental barriers for strategyproofness.

Takeaways

- We introduce a new model for a matching market, with complementarities and no capacity constraints.
- For $g \le 6$, we provide a tight characterization for when stable menus exist.
- For $g \ge 7$, we provide lower and upper bounds for when stable menus exist.
- For $3 \le g \le 6$, there are fundamental barriers for strategyproofness.

Thank you! Questions?