Algebra Lineare e Geometria Analitica Ingegneria dell'Automazione Industriale

Ayman Marpicati

A.A. 2022/2023

Indice

Chapter 1	Nozioni preliminari	Page 2
1.1	Relazioni su un insieme	2
1.2	Strutture algebriche	2
Chapter 2	Spazi vettoriali	Page 4
2.1	Generalità	4
2.2	Sottospazi di uno spazio vettoriale	4
2.3	Indipendenza e dipendeva lineare	5

Capitolo 1

Nozioni preliminari

1.1 Relazioni su un insieme

Definizione 1.1.1: Relazione su un insieme

Una **relazione** su un insieme A è un qualunque sottoinsieme di \mathcal{R} del prodotto cartesiano $A \times A$. Una relazione \mathcal{R} su un insieme A si dice:

- riflessiva se, per ogni $a \in A$, $a\mathcal{R}a$;
- simmetrica se, per ogni $a, b \in A$, aRb allora a = b;
- antisimmetrica se, per ogni $a, b \in A$, $aRb \in bRa$ allora a = b;
- transitiva se, per ogni $a, b, c \in A$, $aRb \in bRc$ allora aRc;

Definizione 1.1.2: Relazione d'ordine totale

Una relazione d'ordine \mathcal{R} su un insieme A si dice **relazione d'ordine** se è riflessiva, antisimmetrica e transitiva. Se inoltre, gli elementi di A sono a due a due confrontabili, cioè, per ogni $a, b \in A$, risulta $a\mathcal{R}b$ oppure $b\mathcal{R}a$, la relazione \mathcal{R} si dice **relazione d'ordine totale**.

1.2 Strutture algebriche

Definizione 1.2.1: Gruppo

Sia (G, \star) un insieme con un'operazione \star . La struttura (G, \star) si dice **gruppo** se:

- l'operazione ★ è associativa;
- esiste in G l'elemento neutro;
- \bullet ogni elemento di $g \in G$ è simmetrizzabile.

Se l'operazione \star soddisfa anche la proprietà commutativa, il gruppo si dice abeliano.

Definizione 1.2.2: Campo

Sia A un insieme sul quale sono definite due operazioni che indichiamo con i simboli "+" e "·" e che chiamiamo somma e prodotto rispettivamente. La struttura $(A, +, \cdot)$ è un **campo** se sussistono le condizioni seguenti:

- (A, +) è un gruppo abeliano il cui elemento neutro è indicato con 0;
- $(A \setminus \{0\}, \star)$ è un gruppo abeliano con elemento neutro $e \neq 0$;
- \bullet valgono le proprietà distributive (sinistra e destra) del prodotto rispetto alla somma, cioè per ogni $a,b,c\in A$

$$a \cdot (b+c) = a \cdot b + a \cdot c; (a+b) \cdot c = a \cdot c + b \cdot c$$

Capitolo 2

Spazi vettoriali

2.1 Generalità

Definizione 2.1.1: Spazio vettoriale

Siano K un campo e V un insieme. Si dice che V è uno **spazio vettoriale** sul campo K, se sono definite due operazioni: un'operazione interna binaria su V, detta somma, $+: V \times V \to V$ e un'operazione estrema detta prodotto esterno o prodotto per scalari, $\cdot: K \times V \to V$, tali che

- (V, +) sia un gruppo abeliano;
- $\bullet\,$ il prodotto esterno \cdot soddisfi le seguenti proprietà:
 - $-\ (h\cdot k)\cdot v = h\cdot (k\cdot v) \quad \forall h,k\in K \quad e \quad \forall v\in V$
 - $-(h+k)\cdot v = h\cdot v + k\cdot v \quad \forall h, k \in K \quad e \quad \forall v \in V$
 - $-h \cdot (v+w) = h \cdot v + h \cdot w \quad e \quad \forall v, w \in V$
 - $-1 \cdot v = v \quad \forall v \in V$

Gli elementi dell'insieme V sono detti **vettori**, gli elementi del campo K sono chiamati **scalari**. L'elemento neutro di (V, +) è detto **vettor nullo** e indicato $\underline{0}$ per distinguerlo da 0, zero del campo K. L'opposto di ogni vettore \mathbf{v} viene indicato con $-\mathbf{v}$.

Teorema 2.1.1

Sia V uno spazio vettoriale sul campo K, siano $k \in K$ e $v \in V$. Allora

$$kv = 0 \iff k = 0 \text{ oppure } v = 0$$

Dimostrazione: Se k = 0

$$0v = (0+0)v = 0v + 0v$$

e sommando -0v ad ambo i membri si ottiene appunto $\underline{0} = 0v$. Se è $v = \underline{0}$, si procede nel modo analogo. Viceversa, se $kv = \underline{0}$ e $k \neq 0$ dimostriamo che $v = \underline{o}$. Dato che $k \neq 0$, esiste l'inverso $k^{-1} \in K$ e, moltiplicando ambo i membri della precedente uguaglianza per k^{-1} si ottiene $k^{-1}(kv) = k^{-1}\underline{0}$ che, per quanto dimostrato in precedenza dà il $\underline{0}$. Dato che $k^{-1}(kv) = (k^{-1}k)v = 1v = v$, per la proprietà 4, si ha v = 0.

2.2 Sottospazi di uno spazio vettoriale

Definizione 2.2.1

Sia $\emptyset \neq U \subseteq V$, diremo che U è **sottospazio vettoriale** di V se è esso stesso uno spazio vettoriale rispetto alla restrizione delle stesse operazioni.

Proposizione 2.2.1 Primo criterio di riconoscimento

Sia V(K) uno spazio vettoriale e sia $\emptyset \neq U \subseteq V$ un suo sottoinsieme. Il sottoinsieme U è uno spazio vettoriale di V se, e soltanto se, sono verificate le seguenti condizioni:

- 1. $\forall u, u' \in U \quad u + u' \in U$
- $2. \ \forall k \in K, \ \forall u \in U \quad ku \in U$

Proposizione 2.2.2 Secondo criterio di riconoscimento

Sia V(K) uno spazio vettoriale sul campo K e sia $\emptyset \neq U \subseteq V, U$ è sottospazio di V(K) se e soltanto se

$$hv_1 + kv_2 \in U \quad \forall v_1, v_2 \in U \quad e \quad h, k \in K$$

2.3 Indipendenza e dipendeva lineare

Definizione 2.3.1: Combinazione lineare

Siano $v_1,v_2,...,v_n \in V(K)$ si dice combinazione lineare di vettori $v_1,v_2,...,v_n$ ogni vettore v:

$$v = k_1 \cdot v_1 + k_2 \cdot v_2 + \dots + k_n \cdot v_n \quad \text{con } k_1, k_2, \dots, k_n \in K$$