Métodos Computacionais em Engenharia (FIS3022) Problemas 2 DFA-FCUP 2021-22 4 de Março de 2022

1. Normalizações da fft

É importante perceber as nuances de cada implementação da FFT. Em particular, como referido na aula, a disposição das frequências no array final, mas também a periodicidade. Esta assume funções de período 2π , e é conveniente saber como relacionar as frequências quando o período é diferente. Uma maneira de o fazer é estudar uma função (de preferência periódica e ímpar!) como $f(t) = \text{sen}(t)e^{-3t}$ no intervalo $-1 \le t \le 1$, que tem uma transformada de Fourier discreta $F(\omega)$. A sua derivada pode ser calculada tomando a transformada inversa de $i\Omega F(\omega)$, onde Ω é proporcional a ω e a um factor de escala. Para determinar Ω , use as funções fft e ifft do numpy para calcular a derivada de f(t) no intervalo $-1 \le t \le 1$ e compare com a derivada calculada analiticamente.

- 2. Escreva um script python que produza um array 1D de valores amostrados em instantes discretos da função $A \operatorname{sen}(2\pi\nu t) + B$, onde A, B, ν , bem como a frequência de amostragem, ν_s , e N (número total de amostras), são parâmetros de entrada. O objectivo é criar dados para explorar nos problemas seguintes. Tenha o cuidado de garantir que os valores dos instantes de tempo discreto têm um espaçamento de exactamente $\Delta t = 1/\nu_s$. Certifique-se que a função funciona para $A = 1, B = 1, \nu = 1, \nu_s = 20$ e N = 100. Faça um gráfico dessa função.
- 3. Use o script do problema anterior para explorar o fenómeno de aliasing. Gere a curva para $N=100~{\rm com}~\nu=9.9~{\rm e}~\nu_s=10$. Qual a frequência aparente do gráfico, e como se compara com a frequência real ν ? O que se passou? Qual a frequência de amostragem mínima ν_s necessária para evitar aliasing?
- 4. Escreva um script que faça o gráfico da amplitude versus frequência para uma série temporal de dados (como é o caso do produzido no problema 1). Para além dos dados esta função vai precisar o intervalo $\Delta \nu = \nu_s/N$ de modo a fazer o gráfico adequadamente. Verifique que funciona aplicando-a ao output do problema 1. Use a função fft do numpy (ou do scipy).
- 5. Obtenha a transformada de Fourier da mesma função, agora com $\nu = 2$. Faça o plot da amplitude versus frequência e explique o que vê.
- 6. E de novo para $\nu = 2.05$. Qual a diferença agora? Como interpreta este resultado?
- 7. Refaça o último problema mas agora com N=1000. Explique o que aconteceu. Qual a diferença na gama de frequências amostrada para este valor maior de N? Qual a diferença na resolução no espaço das frequências?