

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

0547390929

CO-ORDINATED SCIENCES

0654/31

Paper 3 Theory (Core)

May/June 2022

2 hours

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 120.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 (a) An athlete monitors her pulse rate during different types of activity.

Fig. 1.1 shows the results.

Fig. 1.1

Use Fig. 1.1 to complete these sentence	es
---	----

The activity with the highest pulse rate is	
Two activities have the same pulse rate. They are	

and	l

The athlete's pulse rate was 54 beats per minute when the activity

is

[3]

(b) Fig. 1.2 is a diagram of the heart.

Fig. 1.2

	(i)	Draw an X on Fig. 1.2 to identify the position of one ventricle.	[1]
	(ii)	State the function of the part labelled Y in Fig. 1.2.	
	(iii)	Identify the part labelled Z in Fig. 1.2.	
			[1]
	(iv)	Name the type of tissue the wall of the heart is made from.	
			[1]
	(v)	State the function of the heart.	
			[1]
(c)	Nan	ne one of the main blood vessels to or from the:	
	lung	JS	
	kidn	ey	
			[2]

(a)	Pet	roleum is a fossil fuel.			
	Nar	ne two other fossil fuels.			
	1				
	2				[2]
(b)	Cor	nplete the sentences using words	or phrases from	the list.	
	Eac	h word or phrase may be used or	nce, more than or	ice or not at all.	
	bitu	men chromatography	filtration	fractional di	stillation
	gase	s hydrocarbons	naphtha	refinery gas	solids
	Pet	roleum is a mixture of			
	The	fractions in petroleum are separa	ated using		
	The	fraction used as a feedstock for	making chemicals	is the	
			fraction.		[3]
(c)	Oct	ane, C ₈ H ₁₈ , is a hydrocarbon fuel			
	(i)	State the number of different ele	ments in one mo	lecule of octane.	
					[1]
	(ii)	State the total number of atoms	in one molecule	of octane.	
					[1]
	(iii)	When fuels burn, the reaction pr	oduces a tempera	ature increase.	
		State the name given to all react	tions that produce	a temperature incre	ase.
					[1]
	(iv)	State the chemical test for carbo	n dioxide and the	observation for a po	sitive result.
		test			
		observation			[2]
					ا ^ے] [Total: 10]
					[TOTAL TO]

- 3 A student uses her laptop computer.
 - (a) The laptop screen acts as a plane mirror.

Fig. 3.1 shows a ray of light reflected by the laptop screen.

Fig. 3.1

(i)	Name the line labelled XY .	
		[1]
(ii)	Label the angle of incidence with the letter <i>i</i> .	[1]
(iii)	The angle of incidence is 40°.	
	State the angle of reflection.	
		' [1]

- (b) The laptop contains two speakers each with a resistance of 8Ω .
 - (i) The current in one speaker is 3A.Calculate the potential difference (p.d.) across this speaker.

(ii)	The two speakers are connected in parallel.

The combined resistance of the two speakers is one of the following values.

 4Ω 8Ω 16Ω 64Ω

State the correct value of the combined resistance.

Explain your answer.

resistance = Ω

explanation

(iii) Fig. 3.2 shows circuit symbols for four electrical components found in the laptop.

Identify the four electrical components.

Fig. 3.2

[2]

[2]

(c) Fig. 3.3 shows the laptop being closed.

Fig. 3.3

Calculate the moment of the force about the pivot in Nm.

moment =		Nm	[3]
----------	--	----	-----

[Total: 12]

- 4 (a) The inheritance of smooth or wrinkled skin in pea plants is controlled by a single gene.
 - The allele for smooth skin is R.
 - The allele for wrinkled skin is **r**.

Fig. 4.1 is a photograph of two peas.

- Pea A has wrinkled skin.
- Pea B has smooth skin.

Fig. 4.1

(i) Table 4.1 shows the genotypes and genotype descriptions of the peas shown in Fig. 4.1.

Complete Table 4.1.

Table 4.1

pea	genotype	description of genotype
Α		homozygous recessive
В	Rr	

[2]

(ii) A scientist crossed two pea plants and observed the results.

Complete the genetic diagram in Fig. 4.2 to identify the parental gametes.

	parental gametes		
parental	 RR	Rr	
parental gametes	 Rr	rr	

Fig. 4.2

[2]

	(iii)	State the ratio of smooth peas to wrinkled peas from Fig. 4.2.	
		smooth: wrinkled	[1]
(b)	Fer	tilisation in plants occurs when the nuclei of the male and female gametes fuse.	
	Nar	ne these two gametes.	
	1		
	2		
			[2]
(c)	Sta	te the name of the female gamete in humans.	
			[1]
(d)	Tab	le 4.2 contains one term and two definitions linked to inheritance.	
	Cor	mplete Table 4.2.	

Table 4.2

term	definition
	A thread-like structure of DNA, carrying genetic information in the form of genes.
gene	
	A version of a gene.

[4]

[Total: 12]

(a)	Aluminium is a metal.		
		p physical properties of metals are that they are good thermal conductors and getrical conductors.	ood
	Stat	te two other physical properties of metals.	
	1		
	2		 [2]
(b)	Dur	alumin is an alloy of 95% aluminium and 5% copper.	
	(i)	Calculate the mass of aluminium used in 1000 kg of duralumin.	
		mass =kg	· [1]
	(ii)	State why aluminium alloys are used in aircraft parts.	
			[1]
(c)	Aluı	minium is extracted from its ore by electrolysis.	
	(i)	State the name of the ore of aluminium used.	
			[1]
	(ii)	Define electrolysis.	
	/ii:\	Aluminium cannot be extracted from its are by heating with carbon	[2]
	(iii)	Aluminium cannot be extracted from its ore by heating with carbon. Name one metal which can be extracted from its ore by heating with carbon.	
		Name one metal which can be extracted from its ore by heating with carbon.	[1]
			F.1

(d)	Aluı	minium ores must be conserved.
	(i)	State why aluminium ores must be conserved.
		[1]
	(ii)	Suggest how aluminium ores may be conserved.
		[1]
		[Total: 10]

- 6 Many types of radiation are used in hospitals.
 - (a) Fig. 6.1 shows an infrared thermometer used to measure body temperature.

Fig. 6.1

(i) Place infrared radiation in the correct place in the incomplete electromagnetic spectrum shown in Fig. 6.2.

Fig. 6.2

[1]

(ii) Electromagnetic radiation is used in hospitals.

On Fig. 6.3, draw one straight line from each radiation to its correct medical use.

One line has been drawn for you.

Fig. 6.3

[1]

(b)	lonising radiation from radioactive sources is used in hospitals.			
	(i)	Place α -radiation, β -radiation	and γ-radiation in order of their relative ionising effect.	
		greatest ionising effect		
		least ionising effect		[1]
	(ii)	State one harmful effect of io	nising radiation on the human body.	
				[1]
(c)	The	isotope iodine-131 is used in	nospitals.	
	(i)	State the meaning of the term	isotope.	
				[1]
	(ii)	The half-life of iodine-131 is 8	days.	
		A sample of iodine-131 is left	for 16 days.	
		The mass of iodine-131 rema	ining is 0.05 g.	
		Calculate the mass of iodine-	131 in the sample at the start.	
			mass = g	[2]
(d)	In th	ne hospital, the audible frequer	ncy range of a patient's hearing is measured.	
	The	result is a range from 100 Hz	to 15 000 Hz.	
	State		verage range of audible frequencies for a healthy huma	an
				[2]

(e) A power station supplies electricity to the hospital. The power station uses petroleum as a fuel.

Complete Fig. 6.4 to show the energy transformations that occur in the power station.

Fig. 6.4

[2]

[Total: 11]

BLANK PAGE

7 Fig. 7.1 is a diagram of the male reproductive system.

Fig. 7.1

(a) The boxes on the left show the letters of some of the parts in Fig. 7.1.

The boxes on the right show the functions of these parts.

Draw lines to link each letter to its correct function.

(c)	Sperm is an example of a type of animal cell.			
	The list shows some components of cells.			
	Circle two components that you would expect	to find in a	sperm cell.	
	cell membrane cell wa	all	chloroplast	
	cytoplasm	vacuole		[1]
(d)	State the name of the cell that is formed when	ı gametes fu	se.	
				[1]
(e)	Name the part of the cell that contains the ger	netic materia	l.	
				[1]
]	Total: 8]

8 (a) Table 8.1 shows the names of eight gases.

Table 8.1

name of gas
ammonia
carbon monoxide
chlorine
helium
hydrogen
methane
nitrogen
oxygen

(i)	One of the gases in Table 8.1 has molecules with the formula $\mathrm{C}\mathit{l}_2$.
	State the name of this gas.
	[1]
(ii)	State the name of the gas from Table 8.1 that is a product of the incomplete combustion of carbon-containing substances.
	[1]
iii)	State the name of the gas from Table 8.1 that is 78% of clean air.
iv)	State the name of the gas from Table 8.1 that is a greenhouse gas.
	[1]
(v)	State the name of the gas from Table 8.1 that is a noble gas.
	[1]

(b) Fig. 8.1 shows apparatus a student uses to investigate the rate of reaction between calcium carbonate and dilute hydrochloric acid.

Fig. 8.1

The student adds a single piece of calcium carbonate to the dilute hydrochloric acid.

(i)	State the name of the gas collected in the measuring cylinder.
	[1]
(ii)	Predict how the pH of the water changes as the gas bubbles through it.
	Explain your answer.
	pH change
	explanation
	[2]
(iii)	The student repeats the experiment using the same mass of calcium carbonate and the same volume of dilute hydrochloric acid.
	Suggest two changes the student can make to their experiment to increase the rate of reaction.
	1
	2
	[2]

9 (a) Fig. 9.1 shows a wind surfer on a surfboard, driven by the wind, sailing at a constant speed across the water.

Four forces J, K, L and M acting on the surfboard are shown.

Fig. 9.1

(i)	Explain why force K and force M must be equal and opposite.
	[1]
(ii)	Identify force L.
	[1]
(iii)	Work is done by the wind to move the surfboard across the water.
	State the two quantities needed to calculate the work done by the wind.
	1
	2
	[2

(b) Fig. 9.2 represents a water wave.

Fig. 9.2

		9. 0	
	(i)	On Fig. 9.2, label the amplitude of the wave with a double headed arrow (\leftrightarrow or \updownarrow).	[1]
	(ii)	The waves have a frequency of 0.1 Hz.	
		Explain what is meant by a frequency of 0.1 Hz.	
			[1]
(c)	Wat	er molecules in the sea are able to form water vapour above the sea.	
	Duri	ing this process, the more energetic molecules escape from the surface of the sea.	
	(i)	Suggest the effect this will have on the energy of the water molecules remaining in the sea water.	the
			[1]
	(ii)	Suggest the effect this will have on the temperature of the sea water.	
			[1]
(d)	Son	ne sea water has a volume of 5.0 m ³ and a mass of 5120 kg.	
	Cald	culate the density of the sea water.	

density =		kg/m ³	[2]
-----------	--	-------------------	-----

[Total: 10]

10 (a) Water is lost from leaves by transpiration. This causes a loss in mass.

A student records the mass of leaves from a plant.

He places the leaves under a heat lamp.

He records the mass of the leaves every 24 hours for 5 days.

The results are shown in Table 10.1.

Table 10.1

day	mass of leaves/g
1	115
2	100
3	85
4	65
5	58

(i) Calculate the total decrease in mass between day 1 and day 5.

 g	[1]

(ii) The investigation is repeated at a **lower** temperature.

The statements show some predictions.

Tick (\checkmark) one box to show the correct prediction.

The decrease in mass will be less than in the first investigation.	
The decrease in mass will be more than in the first investigation.	
The mass will increase not decrease.	
The decrease in mass will be the same as in the first investigation.	

[1]

(b)	State the transpirati	•	by	which	water	is	lost	from	the	surfaces	of	the	mesophyll	cells	during
															[1]

(c) State the name of the part of the leaf where water exits the plant.

......[1]

(d)	A pl	ant obtains water from the soil.
	Des	scribe how water enters the plant and is transported to the mesophyll cells in the leaves.
		[3]
(e)	One	e use of water in a plant is for photosynthesis.
	(i)	State one other use of water in a plant.
		[1]
	(ii)	State two other requirements of photosynthesis.
		1
		2
		[2]
		[Total: 10]

11 (a) Fig. 11.1 shows part of Group I of the Periodic Table.

3
Li
lithium
7
11
Na
sodium
23
19
K
potassium
39
37
Rb
rubidium
85

Fig. 11.1

(1)	State the electronic structure of a potassium atom.	
		[1]
(ii)	Describe how the electronic structure of potassium is related to its group number.	
		[1]
(iii)	The proton number of a potassium atom is 19.	
	The nucleon number of this potassium atom is 39.	
	State the numbers of electrons and neutrons in this potassium atom.	
	electrons	
	neutrons	נכז
		[4]

(iv) Complete Table 11.1 to show the charges and approximate relative masses of an electron and a neutron.

Table 11.1

particle	charge	relative mass
proton	+1	1
electron		
neutron		

		[2]
(b)	Potassium, K, is an element. Potassium hydroxide, KOH, is a compound.	
	Explain the difference between an element and a compound.	
	element	
	compound	
		[2]

(c) Balance the symbol equation for the reaction between potassium and water.

.....K +
$$H_2O \rightarrow$$
KOH + H_2 [2]

[Total: 10]

12 (a) Fig. 12.1 shows a large snow tractor used in Antarctica.

Fig. 12.1

The snow tractor has large continuous tracks.

These tracks allow the snow tractor to move across the snow without sinking.

Explain why a tractor with normal wheels would sink into the snow.

.....[2

(b) When gasoline (petrol) burns in the engine of the snow tractor, carbon dioxide gas and water vapour are produced.

State which of the diagrams, **X**, **Y** or **Z** in Fig. 12.2, shows the arrangement of gaseous carbon dioxide molecules.

Give a reason for your answer.

Fig. 12.2

reason

(c)	(1)	The snow tractor accelerates.	
		State the form of energy gained as the tractor accelerates.	
			[1]
	(ii)	The snow tractor moves up a hill at constant speed.	

(d) Fig. 12.3 shows a distance-time graph for the snow tractor moving at constant speed.

State the form of energy gained as the tractor moves up the hill.

Fig. 12.3

Calculate this constant speed.

speed =m/s [2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

	 	Z H	helium 4	10	Ne	neon 20	18	Ą	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon			
	=			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	П	iodine 127	85	¥	astatine -			
	5			8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ро	polonium –	116	^	livermorium —
	>			7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	E	bismuth 209			
	2			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium -
	=			2	М	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	<i>1</i> L	thallium 204			
										30	Zu	zinc 65	48	g	cadmium 112	80	Нg	mercury 201	112	ű	copernicium —
										29	J.	copper 64	47	Ag	silver 108	79	Αu	gold 197	111	Rg	roentgenium -
dn										28	Z	nickel 59	46	Pd	palladium 106	78	പ	platinum 195	110	Ds	darmstadtium -
Group										27	ပိ	cobalt 59	45	R	modium 103	77	'n	indium 192	109	₩	meitnerium -
		- I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	9/	Os	osmium 190	108	Hs	hassium
				,						25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
					loc	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	Q Q	niobium 93	73	<u>ra</u>	tantalum 181	105	Ср	dubnium -
					ato	rels				22	F	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿒	rutherfordium -
										21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ва	barium 137	88	Ra	radium —
	_			3	:=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	μ̈	francium -

71 Lu	lutetium 175	103	۲	lawrencium	I
[∞] Y	ytterbium 173	102	8 8	nobelium	I
e9 Tm	thulium 169	101	Md	mendelevium	I
88 F	erbium 167	100	Fm	fermium	I
67 H0	holmium 165	66	Es	einsteinium	I
。 Dv	dysprosium 163	86	ర్	californium	I
65 Tb	terbium 159	6	番	berkelium	I
² Gd	gadolinium 157	96	CB	curium	I
63 Eu	europium 152	92	Am	americium	I
Sm	samarium 150	94	Pu	plutonium	I
61 Pm	promethium -	93	ď	neptunium	I
99 09	neodymium 144	92	\supset	uranium	238
59 Pr	praseodymium 141	91	Ра	protactinium	231
S8 Ce	cerium 140	06	드	thorium	232
57 La	lanthanum 139	89	Ac	actinium	I

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).