Formelblatt — Wahrscheinlichkeit und Statistik

Produktregel

k Positionen müssen unabhängig von einadner markiert werden, wo- $n_1n_2\cdots n_k=\prod^k n_i$ bai n_i verschiedene Markierungen zur Verfügung stehen

$$n_1 n_2 \cdots n_k = \prod_{i=1}^k n_i$$

Auf wie viele Arten lassen sich n verschiedene Objekte anordnen?

$$P_n = n(n-1)(n-2)\cdots 1 = n!$$

Kombination

Auf wie vielen Arten kann man k aus n verschiedenen Objekte auswählen?

$$C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Variation

Auf wie viele Arten kann man k mal unter n verschiedenen Objekten $V_{n,k} = n^k$ auswählen?

Ereignis $\Omega = (\text{sicheres Ereignis}) \quad \emptyset = (\text{unmögliches Ereignis}) \quad A, B \subseteq \Omega$

$$A \cap B = (A \text{ und } B)$$
 $A \cup B = (A \text{ oder } B)$ $\bar{A} = \Omega \setminus A = (\text{nicht } A)$

$$P:\Omega\to [0;1] \quad P(\emptyset)=0 \quad P(\Omega)=1 \quad P(\bar{A})=1-P(A)$$
 Wahrscheinlichkeit

$$A$$
 und B unabhängig \iff $P(A \cap B) = P(A) \cdot P(B)$

Bedingte Wahrscheinlichkeit

Wahrscheinlichkeit von A wenn B bereits eingetreten ist

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \stackrel{\text{unabh.}}{=} P(A) \qquad P(\bar{A} \mid B) = 1 - P(A \mid B)$$

Totale Wahrscheinlichkeit
$$\mathrm{P}(A) = \sum_i \mathrm{P}(A \,|\, B_i) \qquad A \subset \bigcup_i B_i$$

Satz von Bayes
$$\mathrm{P}(A\,|\,B)\cdot\mathrm{P}(B) = \mathrm{P}(B\,|\,A)\cdot\mathrm{P}(A) = \mathrm{P}(A\cap B)$$

Experimente

In einem Laplace Experiment haben alle Elementarereignisse die gleiche Wahrscheinlichkeit. In einem Bernoulli Experiment es gibt nur 2 Ereignisse A und \bar{A} mit Wahrscheinlichkeiten p und 1-p.

Zufallsvariable
$$X: \Omega \to U \subseteq \mathbb{R}$$
 Ereignisse $\subset \Omega$ wie $\{X = k\}, \{X \le x\}, \{X > x\}$

Erwartungswert
$$\mathrm{E}(X) = \sum_{x \in U} x \cdot \mathrm{P}(X = x) \qquad \mathrm{E}(X + Y) = \mathrm{E}(X) + \mathrm{E}(Y)$$

$$E(\lambda X) = \lambda E(X)$$
 $E(XY) \stackrel{\mathsf{unabh.}}{=} E(X)E(Y)$

Varianz

 $Var(X) = E((X - E(X))^2) = E(X^2) - E(X)^2$ Mass für Streuung der Werte

$$\operatorname{Var}(\lambda X) = \lambda^2 \operatorname{Var}(X) \qquad \operatorname{Var}(X+Y) \stackrel{\mathsf{unabh.}}{=} \operatorname{Var}(X) + \operatorname{Var}(Y)$$

Covarianz
$$\operatorname{Cov}(X,Y) = \operatorname{E}(XY) - \operatorname{E}(X)\operatorname{E}(Y) \stackrel{\mathsf{unabh.}}{=} 0$$

Satz von Tschebyscheff

	Verteilungsfunktion	ZV ist verteilt $X \sim \mathcal{V}$ mit $F: \mathbb{R} \rightarrow [0,1]$ monoton steigend $F(x) = \mathrm{P}(X \leq x)$ $F(x \rightarrow \infty) = 1$ $F(x \rightarrow -\infty) = 0$				
W'keitsverteliung	Median	$\text{med } X = \inf\{x : F(x) = 0.5\}$				
	Dichtefunktion	$\varphi(x) = \frac{dF}{dx}$ $P(a \le X \le b) = \int_a^b \varphi dx$ $1 = \int_{\mathbb{R}} \varphi dx$				
	Erwartungswert	$E(X) = \int_{\mathbb{R}} x \varphi(x) dx$ $E(X^n) = \int_{\mathbb{R}} x^n \varphi(x) dx$				
	Variablentransformation	$Y = g(X)$ $\varphi_Y = \frac{\varphi_X}{g'} \circ g^{-1}$				
	Standardisierung	$X \sim \mathcal{N}(\mu, \sigma)$ $Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$				
	Rechenregeln					

	Name	$X \sim$	$\varphi(x)$ oder $P(X=k)$	$\mathrm{E}(X)$	$\operatorname{Var}(X)$	
	Gleichverteilung Laplace Experimente	$\mathcal{U}(a,b)$	$\frac{1}{b-a} \cdot \mathbb{1}_{[a,b]}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
	Exponentialverteilung Halbwertszeit $t_{\frac{1}{2}} = \log(2)/a$	$\mathcal{E}(a)$	$ae^{-ax} \cdot \mathbb{1}_{[0,\infty)}$	$\frac{1}{a}$	$\frac{1}{a^2}$	
gen	Normalverteilung Viele unabh. ZV	$\mathcal{N}(\mu,\sigma)$	$\frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-(x-\mu)^2/2\sigma^2}$	μ	σ^2	
erteliun	Potenzverteilung Pareto Verteilung	$\mathrm{Pow}(x_{\mathrm{m}},\alpha)$		$x_{\rm m} \cdot \frac{\alpha - 1}{\alpha - 2}$		
W'keitsverteliungen		$\mathcal{X}^2(k)$				
Katalog von	Geometrische V.	$\mathcal{G}(p)$	$p(1-p)^k$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	
Katalo	Hypergeometrische V.	$\mathcal{H}(N,R,n)$	$\binom{R}{k}\binom{N-R}{n-k}/\binom{N}{n}$	$\frac{nR}{N}$	$\frac{nR}{N}\left(1-\frac{R}{N}\right)\frac{N-n}{N-1}$	
	Poissonverteilung Seltener Ereignisse	$\mathcal{P}(\lambda)$	$\frac{\lambda^k}{k!}e^{-\lambda}$	λ	λ	
	Binomialverteilung Bernoulli Experimente	$\mathcal{B}(n,p)$	$\binom{n}{k}p^k(1-p)^{n-k}$	np	np(1-p)	
	Für grosse n wird $\mathcal{B}(n,p) \approx \mathcal{N}\left(\mu = np, \sigma = \sqrt{np(1-p)}\right)$ und für kleine p (selten) ist $\approx \mathcal{P}\left(\lambda = np\right)$.					

Regression Lineares Modell	$ZVX,Y \qquad y pprox ax + b$	$a = \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}$ $b = \operatorname{E}(Y) - a\operatorname{E}(X)$
Regressionskoeffizient	$r = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$	$r^2 pprox 1 \implies$ gute Approx.
Le:		
Schätzen		

n			
tester			
potesenteste			
Hypot			