Задача 8

а) Дефинераме азбуката $\Sigma_2 = \{ab | \forall a, b \in \Sigma\}$

Нека
$$\psi:\Sigma_2^*\to\Sigma^*$$
 е хоморфизъм такъв че $\psi(ab)=a\cdot b$ ($\forall ab\in\Sigma_2$) Нека $\varphi:\Sigma_2^*\to\Sigma^*$ е хоморфизъм такъв че $\varphi(ab)=a$ ($\forall ab\in\Sigma_2$)

 $\Rightarrow L_1=\varphi(\psi^{-1}(L\cap w:|w|=2k))$ е регулярен, защото ψ^{-1},φ запазват регулярността.

б) Дефинераме азбуката $\Sigma_2 = \{ab | \forall a, b \in \Sigma\}$

Нека
$$\psi:\Sigma_2^*\to\Sigma^*$$
 е хоморфизъм такъв че $\psi(ab)=a\cdot b$ ($\forall ab\in\Sigma_2$) Нека $\varphi:\Sigma_2^*\to\Sigma_2^*$ е хоморфизъм такъв че $\varphi(ab)=ba$ ($\forall ab\in\Sigma_2$)

 $\Rightarrow L_2=\psi(\varphi(\psi^{-1}(L\cap w:|w|=2k)))$ е регулярен, защото ψ^{-1},φ,ψ запазват регулярността.

в) Нека $\psi: \Sigma * \to \Sigma^* x \Sigma^*$ е хоморфизъм такъв че $\psi(x) = (x,\emptyset \ (\forall x \in \Sigma^*)$

Нека $\varphi: \Sigma*x\Sigma* \to \Sigma^*x\Sigma^*$ е хоморфизъм такъв че $\varphi(x,y)=(y,x)$ $(\forall x,y\in\Sigma^*)$

Нека $\sigma: \Sigma^*x\Sigma^* \to \Sigma^*$ е хоморфизъм такъв че $\sigma(x,y) = x \; (\forall x,y \in \Sigma^*)$

 $\Rightarrow L_2 = \sigma(\varphi(\psi(L\cap w:|w|=2k)))$ е регулярен, защото ψ,φ,σ запазват регулярността.