Appendix 1

Useful Formulae

BASIC SYMBOLS AND UNITS*

 ω_n = undamped natural frequency (rad/s)

 $\omega_d = \omega = \text{damped natural frequency (rad/s)}$

ζ = damping ratio

 β = damped frequency ratio

 τ = time constant (s)

 λ = period of sinusoid (s)

 γ = frequency ratio

 ϕ = phase angle (rad)

a = decay coefficient (1/s)

r =first order term (rad/s)

SYSTEM ELEMENTS AND UNITS

 $M = \text{mass (kg or N} \cdot \text{s}^2/\text{m})$

 $D = \text{damper} (N \cdot s/m)$

K = spring (N/m)

 $J = \text{mass moment of inertia } (\text{kg} \cdot \text{m or } \text{N} \cdot \text{m} \cdot \text{s}^2)$

 $D_r = \text{torsional damper } (N \cdot m \cdot s/\text{rad})$

 $K_r = \text{torsional spring } (N \cdot m/\text{rad})$

C = electrical capacitance (F or farad)

R =electrical resistance (Ω or ohm)

L = electrical inductance (H or henry)

^{*}Note: In Appendices 1 and 3, whenever the symbol ω appears without a subscript, subscript d will be understood. If no units are shown, the term is dimensionless.

 $1/C_f$ = reciprocal fluid capacitance (N/m⁵) R'_f = fluid resistance (N · s/m⁵) I = inertance (N · s²/m⁵)

VIBRATION FORMULAE*

1.
$$\omega_n^2 = K/M = K_t/J = 1/LC = 1/C_f I$$

2. $\zeta = D/D_c = D/2M\omega_n = D/2J\omega_n = R/2L\omega_n = R_f/2I\omega_n$
3. $a = \zeta\omega_n = D/2M = D_t/2J = R/2L = R_f/2I$
4. $\omega = \omega_d = \omega_n \beta$
5. $\beta = \sqrt{1 - \zeta^2}$, $\beta^2 + \zeta^2 = 1$
6. $\omega_n^2 = a^2 + \omega^2$
7. $r^2 = (c - a)^2 + \omega^2$
8. $\tau = 1/a = 1/\zeta\omega_n$
9. $\lambda = 2\pi/\omega$
10. $\gamma = \omega/\omega_n$
11. e^{-at} , decay envelope
12. $s^2 + 2as + \omega_n^2$, underdamped quadratic $(1/s^2)$

PHASE ANGLES

13.
$$\phi = \sin^{-1} \beta = \cos^{-1} \zeta = \tan^{-1} \omega/a$$

14. $\phi_r = \sin^{-1} \omega/r$

15. $\sin \phi = \beta = \omega/\omega_n$

16. $\sin 2\phi = 2\beta \zeta = 2a\omega/\omega_n^2$

17. $\sin 3\phi = \beta(4\zeta^2 - 1)$

18. $\sin 4\phi = 4\zeta\beta(2\zeta^2 - 1)$

19. $\cos \phi = a/\omega_n = \zeta$

20. $\cos 2\phi = 2\zeta^2 - 1 = (a^2 - \omega^2)/\omega_n^2$

21. $\cos 3\phi = \zeta(4\zeta^2 - 3)$

22. $\cos 4\phi = 1 + 8\zeta^2(\zeta^2 - 1)$

23. $\tan \phi = \omega/a = \beta/\zeta$

24. $\tan(\pi - \phi) = \omega/-a$

25. $\tan 2\phi = \frac{2a\omega}{a^2 - \omega^2} = \frac{2\beta\zeta}{2\zeta^2 - 1}$

26. $\sin \phi_r = \omega/r$

27. $\cos \phi_r = (c - a)/r$

28. $\tan \phi_r = \omega/(c - a)$

^{*}Note: See footnotes on page 679.

EULER'S IDENTITIES

$$29. e^{jx} = \cos x + j \sin x$$

29.
$$e^{jx} = \cos x + j \sin x$$

30. $e^{-jx} = \cos x - j \sin x$

31.
$$\cos x = \frac{e^{jx} + e^{-jx}}{2}$$

32.
$$\sin x = \frac{e^{jx} - e^{-jx}}{2j}$$

33
$$e^x = \cosh x + \sinh x$$

33.
$$e^x = \cosh x + \sinh x$$

34. $e^{-x} = \cosh x - \sinh x$

35.
$$\cosh x = \frac{e^x + e^{-x}}{2}$$

36.
$$\sinh x = \frac{e^x - e^{-x}}{2}$$

Appendix 3

Laplace Transform Pairs

For definition of terms and symbols, see Appendix 1. The entry numbers in the following table of Laplace transform pairs are arranged as follows:

hundreds place: family or type of system;

tens place: group within a family;

units place: ascending numerical value indicates derivative, descending value indicate an integration.

Note that certain entries have been deliberately omitted to provide exercises to the student.

	Laplace domain	Time domain
100	General Operators	
110	Basics	
111	F	$\int_0^\infty e^{-st} f(t) \ dt \text{Definition}$
112	F + C	f(t) + g(t) Sum
113	aF	af(t) Multiplication by constant
114	F(s+a)	$e^{-at}f(t)$ Shifting theorem
115	F(s)G(s)	$\int_0^t f(t-\tau)g(\tau) d\tau \text{Convolution theorem}$
		$= \int_0^t f(\tau)g(t-\tau)d\tau$
116	$\lim_{s\to 0} sF$	$\lim_{t\to\infty} f(t)$ Final value theorem
117	$\lim_{s\to\infty} sF$	$\lim_{t\to 0} f(t)$ Initial value theorem
694		

	Laplace domain	Time domain
120	Integrals and Derivatives in the	e Time Domain
122	$\frac{F}{s^n}$	$\int \int_{0^+}^n \int_{0^+}^t f(t) \ dt^n$
123	$\frac{F}{s^2}$	$\int_{0^+}^t \int_{0^+}^t f(t) \ dt^2$
124	$\frac{F}{s}$	$\int_{0^+}^t f(t) \ dt$
125	F	f(t) (also listed as entry 111)
126	$sF - f(0^-)$ $s^2F - sf(0^-) - \dot{f}(0^-)$	$df(t)/dt$ $d^2f(t)/dt^2$
127 128	$s^{n}F - \sum_{k=1}^{n} s^{n-k} \frac{d^{k-1}f(0^{-})}{dt^{k-1}}$	$\frac{d^n f(t)}{dt^n}$
130	Integrals and Derivatives in the	he Laplace Domain
134	$\int_{s}^{\infty} F ds$	$\frac{1}{\iota}f(\iota)$
135	F	f(t) (also listed as entry 111)
136	$\frac{dF}{ds}$	-tf(t)
137	$\frac{d^2F}{ds^2}$	$t^2f(t)$
138	$\frac{d^n F}{ds^n}$	$(-1)^n t^n f(t)$
140	Jump Functions	
141	$\frac{1}{s^{n+1}}$	$\frac{t^n}{n!} n=0,1,2,\ldots$
142	$\frac{1}{s^4}$	$\frac{t^3}{3!}$
143	$\frac{1}{s^5}$	$\frac{t^2}{2!}$ parabolic function
144	$\frac{1}{s^2}$	t ramp function
145	$\frac{1}{s}$	1 step function
146	1	$\delta(t)$ impulse function
147	S	$\delta'(t)$ doublet impulse
148	s ²	$\delta''(t)$ triplet impulse

1.7	Laplace domain	Time don	nain
150 151	Delayed Functions $e^{-\alpha s}F(s)$	$f(t - \alpha)$ Function delayed by time (also listed as entry 115)	α
152	$\frac{e^{-as}}{s^2}$	$(t-\alpha)v(t-\alpha)$ Delayed ramp	<u>-α -</u>
153	$\frac{1-e^{-\alpha s}}{s^2}$	$vt - \{(t - \alpha)v(t - \alpha)\}$ Ramp step	1 -α
154	$\frac{e^{-\alpha s}}{s}$	$U(t-\alpha)$ Delayed step	t - α t
155	$\frac{1-e^{-as}}{s}$	$U(t) - U(t - \alpha)$ Rectangular pulse	t - α - 1
156	e ^{-as}	$\delta(t-\alpha)$ Delayed impulse	1
			1.
157	se ^{-as}	$\delta'(t-\alpha)$ Delayed doublet	τ.
200 210 211	First Order Factors Single Factor $\frac{a^5}{s^5(s+a)}$	$\frac{a^4t^4}{4!} - \frac{a^3t^3}{3!} +$	$\frac{a^2t^2}{2!} - at + 1 - e^{-at}$
212	$\frac{a^4}{s^4(s+a)}$	$\frac{a^3t^3}{3!} - \frac{a^2t^2}{2!} +$	$at-1+e^{-at}$

	Laplace domain	Time domain
214	$\frac{a^2}{s^2(s+a)}$	$ai-1+e^{-ai}$
215	$\frac{a}{s(s+a)}$	$1-e^{-at}$
216	$\frac{1}{s+a}$	e ^{-ai} 8
217	$\frac{s}{a(s+a)}$	$\frac{\delta}{a} - e^{-at}$ $\delta' = \delta$
218	$\frac{s^2}{a^2(s+a)}$	$\frac{\delta'}{a^2} - \frac{\delta}{a} + e^{-at}$
219	$\frac{s^3}{a^3(s+a)}$	$\frac{\delta''}{a^3} - \frac{\delta'}{a^2} + \frac{\delta}{a} - e^{-at}$
220	Two First Order Factors (If the damping ratio & o must be factored into tw	f a quadratic is greater than unity, the quasi- o first order factors). $a \neq b$.
222	$\frac{a^3b^3}{s^3(s+a)(s+b)}$	$\frac{a^2b^2t^2}{2!} - \frac{(b^2 - a^2)abt}{b - a} + \frac{b^3 - a^3}{b - a}$
	s (s + u)(s + o)	$-\left[\frac{b^3e^{-at}-a^3e^{-bt}}{b-a}\right]$
223	$\frac{a^2b^2}{s^2(s+a)(s+b)}$	$abt - \frac{b^2 - a^2}{b - a} + \left[\frac{b^2 e^{-at} - a^2 e^{-bt}}{b - a} \right]$
224	$\frac{ab}{s(s+a)(s+b)}$	$1 - \left[\frac{be^{-at} - ae^{-bt}}{b - a}\right]$
225	$\frac{1}{(s+a)(s+b)}$	$\frac{e^{-at}-e^{-bt}}{b-a}$
226	$\frac{s}{(s+a)(s+b)}$	$-\left[\frac{ae^{-at}-be^{-bt}}{b-a}\right]$
227	$\frac{s^2}{(s+a)(s+b)}$	$\delta + \left[\frac{a^2 e^{-at} - b^2 e^{-bt}}{b - a} \right]$
228	$\frac{s^3}{(s+a)(s+b)}$	$\delta' - \frac{(b^2 - a^2)\delta}{b - a} - \left[\frac{a^3 e^{-at} + b^3 e^{-bt}}{b - a}\right]$
229	$\frac{s^4}{(s+a)(s+b)}$	$\delta'' - \frac{(b^2 - a^2)\delta'}{b - a} + \frac{(b^3 - a^3)\delta}{b - a}$
		$+\left[\frac{a^4e^{-at}-b^4e^{-bt}}{b-a}\right]$

Laplace domain

Time domain

240 Three First Order Factors

The cubic can be factored into first and quadratic factors. (If the damping ratio ζ of the quadratic is greater than unity, then it *must* be factored. In that case, there will be three first order factors.) $a \neq b \neq c$.

$$\frac{abc}{s(s+a)(s+b)(s+c)} \qquad 1 - \frac{bce^{-at}}{(b-a)(c-a)} - \frac{ace^{-bt}}{(a-b)(c-b)}$$

$$\frac{1}{(s+a)(s+b)(s+c)} \qquad \frac{e^{-at}}{(b-a)(c-a)} + \frac{e^{-bt}}{(a-b)(c-b)}$$

$$+\frac{e^{-ct}}{(a-c)(b-c)}$$

245
$$\frac{s}{(s+a)(s+b)(s+c)} - \frac{ae^{-at}}{(b-a)(c-a)} - \frac{be^{-bt}}{(a-b)(c-b)} - \frac{ce^{-ct}}{(a-c)(b-c)}$$

246
$$\frac{s^2}{(s+a)(s+b)(s+c)} \qquad \frac{a^2e^{-at}}{(b-a)(c-a)} + \frac{b^2e^{-bt}}{(a-b)(c-b)}$$

$$+\frac{c^2e^{-ct}}{(a-c)(b-c)}$$

$$-\delta - \frac{a^{3}e^{-at}}{(s+a)(s+b)(s+c)} - \delta - \frac{a^{3}e^{-at}}{(b-a)(c-a)} - \frac{b^{3}e^{-bt}}{(a-b)(c-b)} - \frac{c^{3}e^{-ct}}{(a-c)(b-c)}$$

260 Two Repeated First Order Factors

Note: If the damping ratio ζ is equal to unity, the quadratic is a perfect square, yielding two identical or repeated factors.

$$\frac{a^5}{s^4(s+a)^2} \qquad \frac{a^3t^3}{3!} - a^2t^2 + 3at - 4 + (a: : 4)e^{-at}$$

$$\frac{a^4}{s^3(s+a)^2} \qquad \frac{a^2t^2}{2} - 2at + 3 - (at+3)e^{-at}$$

$$\frac{a^3}{s^2(s+a)^2} \qquad at - 2 + (at+2)e^{-at}$$

$$\frac{a^2}{s(s+a)^2} \qquad 1 - (at+1)e^{-at}$$

	Laplace domain	Time domain
265	a	ate ^{-at}
200	$\overline{(s+a)^2}$	
266	$\frac{s}{(s+a)^2}$	$-(at-1)e^{-at}$
		8
267	$\frac{s^2}{a(s+a)^2}$	$\frac{\delta}{a} + (at - 2)e^{-at}$
268	$\frac{s^3}{a^2(s+a)^2}$	$\frac{\delta'}{a^2} - \frac{2\delta}{a} - (at - 3)e^{-at}$
269	$\frac{s^4}{a^3(s+a)^2}$	$\frac{\delta''}{a^3}-\frac{2\delta'}{a^2}+\frac{3\delta}{a}+(at-4)e^{-at}$
280	N Repeated First Order Factors	.n.n ai
285	$\frac{a^n}{(s+a)^{n+1}}$	$\frac{a^n t^n e^{-at}}{n!} n > -1$
286	$\frac{s}{(s+a)^{n+1}}$	$\frac{(n-at)t^{n-1}e^{-at}}{n!} n>0$
300	Undamped Quadratics	
310	Single Quadratic ω ⁵	$\omega^3 t^3$
311	$\frac{\omega}{s^4(s^2+\omega^2)}$	$\frac{\omega^3 t^3}{3!} - \omega t + \sin \omega t$
312	$\frac{\omega^4}{s^3(s^2+\omega^2)}$	$\frac{\omega^2 t^2}{2!} - 1 + \cos \omega t$
313	$\frac{\omega^3}{s^2(s^2+\omega^2)}$	$\omega t - \sin \omega t$
314	$\frac{\omega^2}{s(s^2+\omega^2)}$	$1-\cos\omega t$
315	$\frac{\omega}{s^2 + \omega^2}$	$\sin \omega t$
316	$\frac{s}{s^2+\omega^2}$	cos ω <i>t</i>
317	$\frac{s^2}{\omega(s^2+\omega^2)}$	$\frac{\delta}{\omega} - \sin \omega t$
318	$\frac{s^3}{\omega^2(s^2+\omega^2)}$	$\frac{\delta'}{\omega^2} - \cos \omega t$
319	$\frac{s^4}{\omega^3(s^2+\omega^2)}$	$\frac{\delta''}{\omega^3} - \frac{\delta}{\omega} + \sin \omega t$

	Laplace domain	Time domain
320	Two Undamped Quadratics, α ≠ ω	
321	$\frac{\alpha^3\omega^3}{s^2(s^2+\omega^2)(s^2+\alpha^2)}$	$t - \left[\frac{\alpha^3 \sin \omega t - \omega^3 \sin \alpha t}{\alpha^2 - \omega^2}\right]$
322	$\frac{\alpha^2\omega^2}{s(s^2+\omega^2)(s^2+\alpha^2)}$	$1 - \left[\frac{\alpha^2 \cos \omega t - \omega^2 \cos \alpha t}{\alpha^2 - \omega^2} \right]$
323	$\frac{\alpha\omega}{(s^2+\omega^2)(s^2+\alpha^2)}$	$\frac{\alpha \sin \omega t - \omega \sin \alpha t}{\alpha^2 - \omega^2}$
324	$\frac{s}{(s^2+\omega^2)(s^2+\alpha^2)}$	$\frac{\cos \omega t - \cos \alpha t}{\alpha^2 - \omega^2}$
325	$\frac{s^2}{(s^2+\omega^2)(s^2+\alpha^2)}$	$-\left[\frac{\omega\sin\omega t - \alpha\sin\alpha t}{\alpha^2 - \omega^2}\right]$
326	$\frac{s^3}{(s^2+\omega^2)(s^2+\alpha^2)}$	$-\left[\frac{\omega^2\cos\omega t-\alpha^2\cos\alpha t}{\alpha^2-\omega^2}\right]$
327	$\frac{s^4}{(s^2+\omega^2)(s^2+\alpha^2)}$	$\delta + \left[\frac{\omega^3 \sin \omega t - \alpha^3 \sin \alpha t}{\alpha^2 - \omega^2} \right]$
328	$\frac{s^5}{(s^2+\omega^2)(s^2+\alpha^2)}$	$\delta' + \left[\frac{\omega^4 \cos \omega t - \alpha^4 \cos \alpha t}{\alpha^2 - \omega^2} \right]$
329	$\frac{s^6}{(s^2+\omega^2)(s^2+\alpha^2)}$	$\delta'' + \frac{(\omega^4 - \alpha^4)\delta}{\alpha^2 - \omega^2}$
		$-\left[\frac{\omega^5 \sin \omega t - \alpha^5 \sin \alpha t}{\alpha^2 - \omega^2}\right]$
330	Repeated Undamped Quadratics	
332	$\frac{2\omega^5}{s^2(s^2+\omega^2)^2}$	$2\omega t + \omega t \cos \omega t - 3 \sin \omega t$
333	$\frac{2\omega^4}{s(s^2+\omega^2)^2}$	$2-\omega t\sin\omega t-2\cos\omega t$
334	$\frac{2\omega^3}{\left(s^2+\omega^2\right)^2}$	$-\omega t \cos \omega t + \sin \omega t$
335	$\frac{2\omega^2s}{\left(s^2+\omega^2\right)^2}$	ωt sin ωt

	Laplace domain	Time domain
336	$\frac{2\omega s^2}{\left(s^2+\omega^2\right)^2}$	$\omega t \cos \omega t + \sin \omega t$
337	$\frac{2s^3}{\left(s^2+\omega^2\right)^2}$	$-\omega t \sin \omega t + 2 \cos \omega t$
338	$\frac{2s^4}{\omega(s^2+\omega^2)^2}$	$\frac{2\delta}{\omega} + \omega t \cos \omega t - 3 \sin \omega t$
340	Undamped Modulation	
341	$\frac{4\omega\alpha}{s^{2}\left\{s^{2}+\left(\omega+\alpha\right)^{2}\right\}\left\{s^{2}+\left(\omega-\alpha\right)^{2}\right\}}$	$-\frac{4\omega\alpha t}{\left(\omega^2-\alpha^2\right)^2}+\frac{\sin(\omega+\alpha)t}{\left(\omega+\alpha\right)^3}$
		$-\frac{\sin(\omega-\alpha)t}{(\omega-\alpha)^3}$
342	$\frac{4\omega\alpha}{s\left\{s^2+(\omega+\alpha)^2\right\}\left\{s^2+(\omega-\alpha)^2\right\}}$	$-\frac{4\omega\alpha}{\left(\omega^2-\alpha^2\right)^2}+\frac{\cos(\omega+\alpha)t}{\left(\omega+\alpha\right)^2}$
		$-\frac{\cos(\omega-\alpha)t}{(\omega-\alpha)^2}$
343	$\frac{4\omega\alpha}{\left\{s^2+(\omega+\alpha)^2\right\}\left\{s^2+(\omega-\alpha)^2\right\}}$	$-\frac{\sin(\omega+\alpha)t}{(\omega+\alpha)} + \frac{\sin(\omega-\alpha)t}{(\omega-\alpha)}$
344	$\frac{4\omega\alpha s}{\left\{s^2+\left(\omega+\alpha\right)^2\right\}\left\{s^2+\left(\omega-\alpha\right)^2\right\}}$	$-\cos(\omega + \alpha)t + \cos(\omega - \alpha)t$
345	$\frac{4\omega\alpha s^2}{\left\{s^2+(\omega+\alpha)^2\right\}\left\{s^2+(\omega-\alpha)^2\right\}}$	$(\omega + \alpha)\sin(\omega + \alpha)t$
346	$\frac{4\omega\alpha s^{3}}{\left\{s^{2}+\left(\omega+\alpha\right)^{2}\right\}\left\{s^{2}+\left(\omega-\alpha\right)^{2}\right\}}$	$-(\omega - \alpha)\sin(\omega - \alpha)t$ $(\omega + \alpha)^2\cos(\omega + \alpha)t$
		$-(\omega-\alpha)^2\cos(\omega-\alpha)t$
347	$\frac{4\omega\alpha s^4}{\left\{s^2+\left(\omega+\alpha\right)^2\right\}\left\{s^2+\left(\omega-\alpha\right)^2\right\}}$	$4\omega\alpha\delta-(\omega+\alpha)^3\sin(\omega+\alpha)t$
		$+(\omega-\alpha)^3\sin(\omega-\alpha)t$

 $\frac{s}{s^2 + 2as + \omega^2}$

(See notes for entry 400.)

416

417
$$\frac{s^2}{\omega_n(s^2 + 2as + \omega_n^2)} \qquad \frac{\delta}{\omega_n} + \frac{\omega_n}{\omega_d} e^{-at} \sin(\omega_d t - 2\phi)$$
418
$$\frac{s^3}{\omega_n^2(s^2 + 2as + \omega_n^2)} \qquad \frac{\delta'}{\omega_n^2} - \frac{2\zeta\delta}{\omega_n} - \frac{\omega_n}{\omega_d} e^{-at} \sin(\omega_d t - 3\phi)$$
419
$$\frac{s^4}{\omega_n^3(s^2 + 2as + \omega_n^2)} \qquad \frac{\delta''}{\omega_n^3} - \frac{2\zeta\delta'}{\omega_n^2} + (4\zeta^2 - 1)\frac{\delta}{\omega_n} + \frac{\omega_n}{\omega_d} e^{-at} \sin(\omega_d t - 4\phi)$$

 $-\frac{\omega_n}{\omega_n}e^{-at}\sin(\omega_d t - \phi)$

$$\omega_n^* (s^2 + 2as + \omega_n^*) \qquad \omega_n^* \qquad \omega_n^* \qquad \omega_n \qquad \omega_d$$
420 Numerator Contains First Two Terms of Quadratic

422
$$\frac{\omega_n^2(s+2a)}{s^2(s^2+2as+\omega_n^2)} \qquad 2at - (4\zeta^2 - 1) + \frac{\omega_n}{\omega_d} e^{-at} \sin(\omega_d t + 3\phi)$$
423
$$\frac{\omega_n(s+2a)}{s(s^2+2as+\omega_n^2)} \qquad 2\zeta - \frac{\omega_n}{\omega_d} e^{-at} \sin(\omega_d t + 2\phi)$$
424
$$\frac{s+2a}{s^2+2as+\omega_n^2} \qquad \frac{\omega_n}{\omega_d} e^{-at} \sin(\omega_d t + \phi)$$

	Laplace domain	Time domain
425	$\frac{s(s+2a)}{\omega_n(s^2+2as+\omega_n^2)}$	$\frac{\delta}{\omega_n} - \frac{\omega_n}{\omega_d} e^{-at} \sin \omega_d t$
426	$\frac{s^2(s+2a)}{\omega_n^2(s^2+2as+\omega_n^2)}$	$\frac{\delta'}{\omega_n^2} + \frac{\omega_n}{\omega_d} e^{-at} \sin(\omega_\omega t - \phi)$
427	$\frac{s^3(s+2a)}{\omega_n^3(s^2+2as+\omega_n^2)}$	$\frac{\delta''}{\omega_n^3} - \frac{\delta}{\omega_n} - \frac{\omega_n}{\omega_d} e^{-at} \sin(\omega_d t - 2\phi)$
430	Numerator Contains First and I (See notes for entry 400.)	Last Terms of Quadratic
432	$\frac{\omega_n^4(s^2+\omega_n^2)}{2as^4(s^2+2as+\omega_n^2)}$	$\frac{\omega_n^4 t^3}{(2a)3!} - \frac{\omega_n^2 t^2}{2} + 2at - (4\zeta^2 - 1)$
		$+\frac{\omega_n}{\omega_d}e^{-at}\sin(\omega_dt+3\phi)$
433	$\frac{\omega_n^3(s^2 + \omega_n^2)}{2as^3(s^2 + 2as + \omega_n^2)}$	$\frac{\omega_n^3 t^2}{4a} - \omega_n t + \frac{2a}{\omega_n} - \frac{\omega_n}{\omega_d} e^{-at} \sin(\omega_d t + 2\phi)$
434	$\frac{\omega_n^2(s^2+\omega_n^2)}{2as^2(s^2+2as+\omega_n^2)}$	$\frac{\omega_n^2 t}{2a} - 1 + \frac{\omega_n}{\omega_d} e^{-at} \sin(\omega_d t + \phi)$
435	$\frac{\omega_n(s^2+\omega_n^2)}{2as(s^2+2as+\omega_n^2)}$	$\frac{\omega_n}{2a} - \frac{\omega_n}{\omega_d} e^{-at} \sin \omega_d t$
436	$\frac{s^2 + \omega_n^2}{2a(s^2 + 2as + \omega_n^2)}$	$\frac{\delta}{2a} + \frac{\omega_n}{\omega_d} e^{-at} \sin(\omega_d t - \phi)$
437	$\frac{s(s^2+\omega_n^2)}{2a\omega_n(s^2+2as+\omega_n^2)}$	$\frac{\delta'}{2a\omega_n} - \frac{\delta}{\omega_n} - \frac{\omega_n}{\omega_d} e^{-at} \sin(\omega_d t - 2\phi)$
438	$\frac{s^2(s^2+\omega_n^2)}{2a\omega_n^2(s^2+2as+\omega_n^2)}$	$\frac{\delta''}{2a\omega_n^2} - \frac{\delta'}{\omega_n^2} + \frac{2\xi\delta}{\omega_n} + \frac{\omega_n}{\omega_d}e^{-at}\sin(\omega_d t - 3\phi)$
440	Numerator Contains Last Two (See notes for entry 400.)	Terms of Quadratic
442	$\frac{\omega_n^4(2as+\omega_n^2)}{s^5(s^2+2as+\omega_n^2)}$	$\frac{\omega_n^4 t^4}{4!} - \frac{\omega_n^2 t^2}{2!} + 2at - (4\zeta^2 - 1)$
		$+\frac{\omega_n}{\omega_d}e^{-at}\sin(\omega_dt+3\phi)$
443	$\frac{\omega_n^3(2as+\omega_n^2)}{s^4(s^2+2as+\omega_n^2)}$	$\frac{\omega_n^3 t^3}{3!} - \omega_n t + 2\zeta - \frac{\omega_n}{\omega_d} e^{-at} \sin(\omega_d t + 2\phi)$

	Laplace domain	Time domain
444	$\frac{\omega_n^2(2as+\omega_n^2)}{s^3(s^2+2as+\omega_n^2)}$	$\frac{\omega_n^2 t^2}{2!} - 1 + \frac{\omega_n}{\omega_d} e^{-at} \sin(\omega_d t + \phi)$
445	$\frac{\omega_n(2as+\omega_n^2)}{s^2(s^2+2as+\omega_n^2)}$	$\omega_n t - \frac{\omega_n}{\omega_d} e^{-at} \sin \omega_d t$
446	$\frac{2as + \omega_n^2}{s(s^2 + 2as + \omega_n^2)}$	$1 + \frac{\omega_n}{\omega_d} e^{-at} \sin(\omega_d t - \phi)$
447	$\frac{2as + \omega_n^2}{\omega_n(s^2 + 2as + \omega_n^2)}$	$-\frac{\omega_n}{\omega_d}e^{-at}\sin(\omega_d t-2\phi)$
448	$\frac{s(2as + \omega_n^2)}{\omega_n^2(s^2 + 2as + \omega_n^2)}$	$\frac{2\zeta\delta}{\omega_n} + \frac{\omega_n}{\omega_d} e^{-at} \sin(\omega_d t - 3\phi)$
449	$\frac{s^2(2as+\omega_n^2)}{\omega_n^3(s^2+2as+\omega_n^2)}$	$\frac{2\zeta\delta'}{\omega_n^2} - \frac{(4\zeta^2 - 1)\delta}{\omega_n} - \frac{\omega_n}{\omega_d}e^{-at}\sin(\omega_d t - 4\phi)$
460	Numerator Contains s F (See notes for entry 400.	
	Note that, generally, da	mping produces the term 2a. Thus, the appearance alf-damping. See Appendix 1 for definition of symbol
	$\omega_n^3(s+a)$	$a\omega_n t^2$ (2 t^2 1) $t + t(At^2 - 3)$

$$\frac{\omega_{n}^{3}(s+a)}{s^{3}(s^{2}+2as+\omega_{n}^{2})} \qquad \frac{a\omega_{n}t^{2}}{2} - (2\zeta^{2}-1)\omega_{n}t + \zeta(4\zeta^{2}-3) \\
-e^{-at}\cos(\omega t + 3\phi)$$

$$463 \qquad \frac{\omega_{n}^{2}(s+a)}{s^{2}(s^{2}+2as+\omega_{n}^{2})} \qquad at - (2\zeta^{2}-1) + e^{-at}\cos(\omega t + 2\phi)$$

$$464 \qquad \frac{\omega_{n}(s+a)}{s(s^{2}+2as+\omega_{n}^{2})} \qquad \zeta - e^{-at}\cos(\omega t + \phi)$$

$$465 \qquad \frac{s+a}{s^{2}+2as+\omega_{n}^{2}} \qquad e^{-at}\cos(\omega t + \phi)$$

$$466 \qquad \frac{s(s+a)}{\omega_{n}(s^{2}+2as+\omega_{n}^{2})} \qquad \frac{\delta}{\omega_{n}} - e^{-at}\cos(\omega t - \phi)$$

$$467 \qquad \frac{s^{2}(s+a)}{\omega_{n}^{2}(s^{2}+2as+\omega_{n}^{2})} \qquad \frac{\delta'}{\omega_{n}^{2}} + \frac{\zeta\delta}{\omega_{n}} + e^{-at}\cos(\omega t - 2\phi)$$

$$468 \qquad \frac{s^{3}(s+a)}{\omega_{n}^{3}(s^{2}+2as+\omega_{n}^{2})} \qquad \frac{\delta''}{\omega_{n}^{2}} + \frac{\zeta\delta'}{\omega_{n}} + \frac{(2\zeta^{2}-1)\delta}{\omega_{n}} - e^{-at}\cos(\omega t - \phi)$$

	Laplace domain	Time domain
170	Half-Damping Plus ω_n^2 in Nu (See notes for entry 400.) See note for entry 460.	
472	$\frac{\omega_n^3 \left(as + \omega_n^2\right)}{s^4 \left(s^2 + 2as + \omega_n^2\right)}$	$\frac{\omega_n^3 t^2}{3!} - \frac{a\omega_n t^2}{2} + (2\zeta^2 - 1)\omega_n t - \zeta(4\zeta^2 - 3) + e^{-at}\cos(\omega t + 3\phi)$
473	$\frac{\omega_n^2(as+\omega_n^2)}{s^3(s^2+2as+\omega_n^2)}$	$\frac{\omega_n^2 t^2}{2!} - at + (2\zeta^2 - 1) - e^{-at} \cos(\omega t + 2\phi)$
474	$\frac{\omega_n(as+\omega_n^2)}{s^2(s^2+2as+\omega_n^2)}$	$\omega_n t - \zeta + e^{-at} \cos(\omega t + \phi)$
475	$\frac{as + \omega_n^2}{s(s^2 + 2as + \omega_n^2)}$	$1 - e^{-at} \cos \omega t$
476	$\frac{as + \omega_n^2}{\omega_n \left(s^2 + 2as + \omega_n^2\right)}$	$e^{-at}\cos(\omega t - \phi)$
477	$\frac{s(as + \omega_n^2)}{\omega_n^2(s^2 + 2as + \omega_n^2)}$	$-\frac{\xi\delta}{\omega_n}-e^{-at}\cos(\omega t-2\phi)$
478	$\frac{s^2(as+\omega_n^2)}{\omega_n^3(s^2+2as+\omega_n^2)}$	$-\frac{\zeta\delta'}{\omega_n^2} + \frac{(2\zeta^2 - 1)\delta}{\omega_n} + e^{-at}\cos(\omega t - 3\phi)$
490	General First Degree Facto Note: The constant c is n For the special constant a	ot related to any other constant in the system.
493	$\frac{\omega_n^2(s+c)}{s^2(s^2+2as+\omega_n^2)}$	$ct + \left[2\zeta^2 - 1 + 2\zeta\frac{(c-a)}{\omega}\right]$
		$+\frac{r}{\omega_d}e^{-at}\sin(\omega t+\phi_r+2\phi)$
494	$\frac{\omega_n(s+c)}{s(s^2+2as+\omega_n^2)}$	$\frac{c}{\omega_n} - \frac{r}{\omega_d} e^{-at} \sin(\omega t + \phi_r + \phi)$
495	$\frac{s+c}{s^2+2as+\omega_n^2}$	$\frac{r}{\omega_d}e^{-at}\sin(\omega t+\phi_r)$
496	$\frac{s(s+c)}{\omega_n(s^2+2as+\omega_n^2)}$	$\frac{\delta}{\omega_n} - \frac{r}{\omega_d} e^{-at} \sin(\omega t + \phi_r - \phi)$
497	$\frac{s^2(s+c)}{\omega_n^2(s^2+2as+\omega_n^2)}$	$\frac{\delta'}{\omega_n^2} + \left[\frac{(c-a)}{\omega} - \zeta \right]$
•		$\frac{\delta}{\omega_n} + \frac{r}{\omega_d} e^{-at} \sin(\omega t + \phi_r - 2\phi)$

Laplace domain

Time domain

500 Underdamped Cubics

Note: The 500 family can be used only if the damping ratio ζ of the quadratic factor is greater than zero but less than unity (see notes for entry 400). For overdamped cubics, see group 240. $\omega = \omega_d$

510 Numerator is Single Term

513
$$\frac{\omega_{n}^{2}r^{2}}{s^{2}(s+c)(s^{2}+2as+\omega_{n}^{2})} \qquad \frac{c^{2}}{\omega_{n}^{2}} + \frac{c^{2}+2(a^{2}-\omega^{2})}{\omega_{n}^{2}} - \frac{\omega_{n}^{2}}{c^{2}} + \frac{\omega_{n}^{2}e^{-ct}}{c^{2}} + \frac{r}{\omega_{d}}e^{-at}\sin(\omega t - \phi_{r} + 2\phi)$$

514
$$\frac{\omega_n r^2}{s(s+c)(s^2+2as+\omega_n^2)} \qquad \frac{r^2}{c\omega_n} - \frac{\omega_n e^{-ct}}{c} - \frac{r}{\omega_d} e^{-at} \sin(\omega t - \phi_r + \phi)$$

515
$$\frac{r^2}{(s+c)(s^2+2as+\omega_n^2)} \qquad e^{-ct}+\frac{r}{\omega_d}e^{-at}\sin(\omega t-\phi_r)$$

516
$$\frac{r^2s}{\omega_n(s+c)(s^2+2as+\omega_n^2)} - \frac{ce^{-ct}}{\omega_n} - \frac{r}{\omega_d}e^{-at}\sin(\omega t - \phi_r - \phi)$$

517
$$\frac{r^2s^2}{\omega_n^2(s+c)(s^2+2as+\omega_n^2)} \qquad \frac{c^2e^{-ct}}{\omega_n^2} + \frac{r}{\omega_d}e^{-at}\sin(\omega t - \phi_r - 2\phi)$$

518
$$\frac{r^2s^3}{\omega_n^3(s+c)(s^2+2as+\omega_n^2)} \qquad \frac{(c-\omega_n)^2\delta}{\omega_n^3} - \frac{c^3e^{-ct}}{\omega_n^3} - \frac{r}{\omega_n^3} - \frac{r}{\omega_n^3}$$
$$-\frac{r}{\omega_d}e^{-at}\sin(\omega t - \phi_r - 3\phi)$$

520 Numerator Contains First Two Terms of Quadratic (See notes for entry 400.)

524
$$\frac{r^2(s+2a)}{\omega_n(s+c)(s^2+2as+\omega_n^2)} \qquad \frac{2r^2}{c\omega_n} - \frac{(\omega_n^2+r^2)e^{-ct}}{c\omega_n} - \frac{r}{\omega_d}e^{-at}\sin(\omega t - \phi_r + \phi)$$

525
$$\frac{r^2s(s+2a)}{\omega_n^2(s+c)(s^2+2as+\omega_n^2)} \qquad 2e^{-ct} + \frac{r}{\omega_d}e^{-at}\sin(\omega t - \phi_r)$$

526
$$\frac{r^2s^2(s+2a)}{\omega_n^3(s+c)(s^2+2as+\omega_n^2)} \qquad \frac{r^2\delta}{\omega_n^3} - \frac{c(\omega_n^2+r^2)e^{-ct}}{\omega_n^3} - \frac{r^2\delta}{\omega_n^3} - \frac{r^2\delta}{$$

	Laplace domain	Time domain
530	Numerator Contains First and Last (See notes for entry 400.)	Terms of Quadratic
534	$\frac{\omega_n r^2 (s^2 + \omega_n^2)}{2as^2 (s+c)(s^2 + 2as + \omega_n^2)}$	$\frac{\omega_n r^2 t}{2ac} - \frac{r^2 \left(\omega_n^2 - 2ac\right)}{2ac^2 \omega_n}$
		$+\frac{\omega_n(r^2-2ac)e^{-ct}}{2ac^2}$
		$-\frac{r}{\omega_d}e^{-at}\sin(\omega t-\phi_r+\phi)$
535	$\frac{r^2(s^2+\omega_n^2)}{2as(s+c)(s^2+2as+\omega_n^2)}$	$\frac{r^2}{2ac} - \frac{(r^2 - 2ac)e^{-ct}}{2ac}$
		$+\frac{r}{\omega_d}e^{-at}\sin(\omega t-\phi_r)$
536	$\frac{r^2(s^2+\omega_n^2)}{2a\omega_n(s+c)(s^2+2as+\omega_n^2)}$	$\frac{(r^2 - 2ac)e^{-ct}}{2a\omega_n} - \frac{r}{\omega}e^{-at}\sin(\omega t - \phi_r - \phi)$
540	Numerator Contains Last Two Tes (See notes for entry 400.)	rms of Quadratic
544	$\frac{\omega_n r^2 (2as + \omega_n^2)}{s^3 (s+c) (s^2 + 2as + \omega_n^2)}$	$\frac{\omega_n r^2 t^2}{2c} - \frac{\omega_n r^2 t}{c^2} + \frac{r^2 \left(\omega_n^2 + c^2\right)}{c^3 \omega_n}$
		$-\frac{\omega_n(r^2+c^2)e^{-ct}}{c^3}$
		$-\frac{r}{\omega_d}e^{-at}\sin(\omega t-\phi_r+\phi)$
545	$\frac{r^2(2as+\omega_n^2)}{s^2(s+c)(s^2+2as+\omega_n^2)}$	$\frac{r^2t}{c} - \frac{r^2}{c^2} + \frac{(r^2 + c^2)e^{-ct}}{c^2}$
		$+\frac{r}{\omega_d}e^{-at}\sin(\omega t-\phi_r)$
546	$\frac{r^2(2as+\omega_n^2)}{\omega_n s(s+c)(s^2+2as+\omega_n^2)}$	$\frac{r^2}{c\omega_n}-\frac{\left(r^2+c^2\right)e^{-ct}}{c\omega_n}$
		$-\frac{r}{\omega_d}e^{-at}\sin(\omega t-\phi_r-\phi)$

ANALYSIS AND DESIGN OF DYNAMIC SYSTEMS

Second Edition

IRA COCHIN

New Jersey Institute of Technology

HAROLD J. PLASS, JR.

University of Miami