QIC 891 Topics in Quantum Safe Cryptography

Module 1: Post-Quantum Cryptography

Central candidate problems for PQC

Lecturer: Fang Song May 10, 2016

1 Lattice-based

Short Integer Solution ($SIS_{n,q,\beta,m}$). Let \mathbb{Z}_q be the additive group modulo a large integer q.

- **Given**: $A = (a_1, ..., a_m) \in \mathbb{Z}_q^{n \times m}, a_i \in \mathbb{Z}_q^n$
- **Goal**: Find $x \in \mathbb{Z}_q^m$ with $||x|| \le \beta$ s.t. $f_A(x) := Ax \pmod{q} = 0$.

Assumption 1. Let $A \in_R \mathbb{Z}_q^{n \times m}$ be uniformly at random, then $\mathsf{SIS}_{n,q,\beta,n}$ is hard to solve for poly-time algorithms (classical & quantum). Let $A \in_R \mathbb{Z}_q^{n \times m}$ and $x \leftarrow U$ for uniform distribution U on $\{x \in \mathbb{Z}_q^m : \|x\| \le \beta\}$), then $f_A(x)$ is hard to invert.

Learning With Errors (LWE_{n,q,χ,m}). Let χ be some error distribution on \mathbb{Z}_q .

• **Given**: (A, b), where $A = (a_1, \dots a_m)^T \in \mathbb{Z}_q^{m \times n}, a_i \in \mathbb{Z}_q^n$ and

$$b = g_A(s, e) := As + e \pmod{q} \in \mathbb{Z}_q^n$$
, with $s \in \mathbb{Z}_q^n$, $e \leftarrow \chi^m$.

• Goal: Find s.

Assumption 2. Let $A \in_R \mathbb{Z}_q^{n \times m}$, $s \in_R \mathbb{Z}_q^n$ and $e \leftarrow \chi^m$ for some χ (e.g. rounded Gaussian $p(z) \propto e^{-\pi |z|^2/r^2}$ with $r \geq \sqrt{n}$), then LWE $_{n,q,\chi,m}$ is hard to solve for poly-time algorithms (classical & quantum), i.e. $g_A(s,e)$ is hard to invert. This implies that g_A is also a pseudorandom generator (via a Search to Decision reduction) in the sense that $(A,b:=g_A(s,e))\approx_c U(\mathbb{Z}_q^{m \times n}\times\mathbb{Z}_q)$ (\approx_c means "computationally hard to distinguish for any poly-time algorithms").

Remark 1. For efficiency reason, there are also Ring-based SIS and LWE problems, whose hardness relate to computational problems in structured lattices called *ideal* lattices.

2 Code-based

Let $\mathscr{C} \subseteq \mathbb{F}_2^n$ be an (n, k, d) binary linear code.

Syndrome Decoding ($SD_{n,k,\beta}$). All operations are in \mathbb{F}_2 .

- **Given**: (parity check matrix) $H \in \mathbb{F}_2^{(n-k)\times n}$ and (syndrome) $s \in \mathbb{F}_2^{n-k}$.
- **Goal**: Find $e \in \mathbb{F}_2^n$ with $||e|| = \beta$ s.t. $f_H(x) := Hx = s$.

Assumption 3. let $H_0 \in \mathbb{F}_2^{(n-k)\times n}$ be the parity check matrix for some code \mathscr{C} for which syndrome decoding is efficient (e.g., binary *Goppa* code), and $P \in_R S_n$ be a random permutation matrix. Then $g_H(\cdot)$ is hard to invert where $H := H_0 P$.

Codeword Decoding ($CD_{n,k,\beta}$). (underlying McEliece PKE)

- **Given**: (generating matrix) $G \in \mathbb{F}_2^{n \times k}$ and (codeword possibly with error) $z \in \mathbb{F}_2^n$.
- **Goal**: Find $w \in \mathbb{F}_2^k$ s.t. $g_G(w) := Gw + e = z$ for some "small" error e with $||e|| = \beta$.

Assumption 4. let $G_0 \in \mathbb{F}_2^{n \times k}$ be the generating matrix for some code \mathscr{C} for which codeword decoding is efficient (e.g., binary Goppa code), $P \in \mathbb{F}_2^{n \times n}$ be the matrix of a random permutation $\pi \leftarrow S_n$ and $S \in_R \mathbb{F}_2^{k \times k}$ be a random invertible matrix. Then $g_G(\cdot)$ is hard to invert where $G := PG_0S$.

3 Multivariate-Polynomial-based

Multivariate Quadratic Polynomial Equations (MQ $_{n,k}$). All operations are in some finite field \mathbb{F} .

• **Given**: $(p_i, y_i)_{i=1}^k$ where

$$p_i = \alpha_i + \sum_{j,\ell} \lambda_{ij\ell} x_j x_\ell$$

are qudratic polynomial in variables $x_1, ..., x_n$ and $\alpha_i \in \mathbb{F}$.

• **Goal**: Find $(x_1, ..., x_n) \in \mathbb{F}^n$ s.t. $f_P(x_1, ..., x_n) := (..., p_i(x_1, ..., x_n), ...) = (..., y_i, ...)$.

Assumption 5. let P_0 be a collection of quadratic polynomials which are easy to solve. Let S and T be random affine transformations $\mathbb{F}^n \to \mathbb{F}^n$. Then $f_P(\cdot)$ is hard to invert where $P := TP_0S$.

$$\{x_i\} \to \underbrace{S \to P_0 \to T}_{P} \to \{y_i\}$$