FCT/Unesp – Presidente Prudente Departamento de Matemática e Computação

Introdução à Visualização Parte 2

Prof. Danilo Medeiros Eler danilo.eler@unesp.br

Sumário

- O que é Visualização?
- Porque Visualização
- História da Visualização
- Visualização nos Dias Atuais
- O Processo de Visualização
- Referências

 Propor uma nova visualização requer, primeiramente, uma análise do tipo de dado disponível e o tipo de informação que o usuário espera extrair

- Geralmente, o usuário utiliza a visualização para
 - Explorar
 - Procurar algo interessante nos dados
 - Confirmar uma hipótese
 - Validar conjecturas ou resultados de análises quantitativas
 - Apresentar resultados
 - Apresentar uma análise para um público específico

- Exemplos interessantes de exploração são
 - Anomalias
 - Dados que não possuem um comportamento consistente

- Exemplos interessantes de exploração são
 - Agrupamentos
 - Dados que possuem um comportamento similar

- Exemplos interessantes de exploração são
 - Tendências
 - Mudanças nos dados que podem ser caracterizadas

- Exemplos interessantes de exploração são
 - Tendências
 - Mudanças nos dados que podem ser caracterizadas

- Exemplos interessantes de exploração são
 - Tendências
 - Mudanças nos dados que podem ser caracterizadas

- Para visualizar dados, é necessário definir como eles serão mapeados para uma representação gráfica
- O processo de iniciar com os dados e gerar uma imagem (representação gráfica) é conhecido como pipeline
 - Uma sequencia de etapas que podem ser estudadas de forma independente em termos de algoritmos e estruturas

 O pipeline de visualização é composto por diferentes estágios

- Modelagem dos dados
 - Obtenção dos dados a serem visualizados
 - Sua preparação e organização
 - Em arquivo, banco de dados, estruturação

- Tratamento dos dados
 - Identificação do subconjunto de dados que será utilizado no processo de exploração

- Mapeamento Visual
 - Mapear valores de dados para entidades gráficas e seus atributos
 - Cor, posição, tamanho, forma, etc

- Configuração de Parâmetros
 - Definição de parâmetros para a representação gráfica gerada
 - Escala de cores, dimensões, iluminação, etc.

- Rendering ou Geração da Visualização
 - Técnicas utilizadas para criar a representação visual que será explorada pelo usuário
 - Tonalização, mapeamento de textura, desenho de eixos, anotações, etc.

- O pipeline de visualização difere do pipeline gráfico e do pipeline de descoberta de conhecimento
 - Apesar de todos iniciarem com dados e terminarem com o usuário

Pipeline de Computação Gráfica

- O pipeline de Computação Gráfica tem como objetivo a síntese de imagens, com as seguinte etapas
 - Modelagem
 - Transformações Geométricas
 - Recorte
 - Remoção de Superfícies
 - Projeção
 - Rendering

Pipeline de Descoberta de Conhecimento

- O pipeline de Descoberta de Conhecimento também inicia com os dados, mas o foco são os modelos gerados para análise
 - O núcleo desse processo exploratório são os algoritmos de mineração de dados
 - O usuário explora e avalia os modelos gerados com o propósito de adquirir conhecimento sobre os dados

Pipeline de Descoberta de Conhecimento

 A visualização pode ser utilizada em qualquer uma das etapas desse pipeline

Exemplo de Visualização

Exemplo de Visualização

- Conjunto de dados Iris
 - Contém 150 amostras de flores (*iris*) de 3 espécies: *setosa*, *versicolor*, e *virginica*, coletadas por <u>Anderson (1935)</u>
 - inclui 50 observações de cada espécie, sendo registrados 4 atributos para cada observação: sepal length, sepal width, petal length, petal width (em cm)
 - Três espécies = três classes

Conjunto de Dados Iris

■ 150 flores – 4 atributos – 3 classes

Instância	Comp Sépala	Larg Sépala	Comp Pétala	Larg Pétala	Classe
FLOR 0	5.1	3.5	1.4	0.2	1
FLOR 1	4.4	3	1.3	0.2	1
FLOR 2	6.5	2.8	4.6	1.5	2
FLOR 3	6.4	2.9	4.3	1.3	2
FLOR 4	6.8	2.8	4.8	1.4	2
FLOR 5	5.5	2.4	3.8	1.1	2
FLOR 6	6.4	3.2	5.3	2.3	3
FLOR 7	6.3	2.7	4.9	1.8	3
•					
FLOR 145	5.5	2.4	3.7	1	2
FLOR 146	5.5	2.6	4.4	1.2	2
FLOR 147	5.8	2.6	4	1.2	2
FLOR 148	5.7	2.8	4.1	1.3	2
FLOR 149	7.7	3.8	6.7	2.2	3

Exemplo de Visualização

Objetivo: analisar as relações de similaridade entre as instâncias dos dados

Exploração do Iris com Redução de Dimensionalidade

Exemplo de Visualização

Objetivo: analisar o relacionamento e comportamento dos atributos das instâncias dos dados

Exploração do Iris com Coordenadas Paralelas

Referências

- Ward, M., Grinstein, G. G., Keim, D. Interactive data visualization foundations, techniques, and applications. Natick, Mass., A K Peters, 2010.
 - Capítulo 1
- Robert Spence. Information Visualization:
 Design for Interaction. 2nd Edition. Pearson:
 Prentice Hall, 2007
- Alexandru C Telea. Data visualization: principles and practice. Boca Raton: CRC Press, 2015.

Referências

- [Lyman & Hal, 2003] [Lyman & Varian, 2003] Peter Lyman and Hal R. Varian, How Much Information, 2003; ww2.sims.berkeley.edu/research/projects/howmuch-info/
- Michael Friendly's web site
 - http://www.datavis.ca/
- [TAN, 1999] Text mining: The state of the art and challenges. 1999. Disponível em citeseer.ist.psu.edu/tan99text.html (acessado em 2006.08.10)
- [Tanaka, 1998] Jennifer Tanaka, Drowning in Data, Newsweek,4/28/98, p. 85

Referências

[Williams et al. 95] J. G. Williams, K. M. Sochats, and E. Morse. "Visualization." Annual Review of Information Science and Technology (ARIST) 30 (1995), 161–207

- Aulas de visualização da wiki.icmc.usp.br
 - Prof. Dr. Fernando Paulovich (ICMC/USP)
 - Profa. Dra. Maria Cristina Ferreira de Oliveira (ICMC/USP)
 - Profa. Dra. Rosane Minghim (ICMC/USP)

Visualização x Computação Gráfica

- Qual é a diferença entre visualização e computação gráfica?
 - Originalmente, ela era considerada um campo da computação gráfica
 - A visualização utiliza computação gráfica para gerar representações gráficas dos dados
 - Há uma conexão entre as representações e os dados

Visualização x Computação Gráfica

- A computação gráfica é focada na síntese de imagens, animação e entretenimento (e.g. vídeo grames)
- A visualização não enfatiza o realismo, mas sim a comunicação da informação presente nos dados
- A Computação Gráfica é uma ferramenta utilizada pela visualização

Visualização x Computação Gráfica

- Qual é a diferença entre visualização e computação gráfica?
 - A visualização também engloba outras disciplinas
 - Interação homem máquina
 - Percepção
 - Banco de dados
 - Estatística
 - Mineração de dados
 - Entre outras

Visualização Científica x Visualização de

Informação

Visualização Científica x Visualização de Informação

Visualização Científica x Visualização de Informação

 Visualização de um coração, com visualizações de informações adicionais que não são facilmente representadas em um modelo 3D

