Problem 1. Let $U \subset \mathbb{C}^n$ be a domain (i.e., a non-empty connected subset) and let $f: U \to \mathbb{C}$ be a holomorphic function.

- 1. Prove that f satisfies analytic continuation: if it vanishes on an open subset of U, then it vanishes everywhere.
- 2. Prove that f satisfies the maximum principle: if |f| admits a local maximum in U, then f is constant.
- 3. Let M be a compact complex manifold. Prove that any holomorphic function on M is constant.

Problem 2.

- 1. Show that the assignment $L \mapsto (L_{\mathbb{R}}, \operatorname{mult}(i))$ gives an equivalence between the category of complex vector spaces and the category of pairs (V, J), where V is a real vector space, $J: V \to V$ is an \mathbb{R} -linear operator satisfying $J^2 = -\operatorname{Id}_{L_{\mathbb{R}}}$, and a morphism $(V, J) \to (W, K)$ is defined as an \mathbb{R} -linear map $f: V \to W$ that intertwines J and K, i.e., such that $K \circ f = f \circ J$.
- 2. Let (V, J) be a pair as above:
 - (a) Let $\iota: v \mapsto v$ be the \mathbb{R} -linear automorphism of $V \otimes_{\mathbb{R}} \mathbb{C}$ induced from conjugation on the second factor. Show that V, seen inside $V \otimes_{\mathbb{R}} \mathbb{C}$ via $v \mapsto v \otimes 1$, is isomorphic to the fixed locus of ι .
 - (b) By diagonalizing J over $V \otimes_{\mathbb{R}} \mathbb{C}$, show that we have a decomposition $V_{\mathbb{C}} = W \oplus \bar{W}$ where J acts on W by multiplication by i and $\bar{W} = \iota(W)$.
 - (c) Show that the projection map $V \to W$ is an \mathbb{R} -linear isomorphism that intertwines J and multiplication by i on W.
 - (d) Each element $v \in V_{\mathbb{C}}$ can be written as $v = v_1 + v_2$ along the above decomposition. Show that $v \in V$ if and only if $v_2 = \bar{v}_1$.

Problem 3. Let E, F be real vector spaces and let G be a complex vector space, all finite-dimensional.

- 1. Show that $E \otimes_{\mathbb{R}} G$ admits a natural structure of a complex vector space. Construct a basis in terms of bases of E and G. Show that $E \otimes_{\mathbb{R}} G = (E \otimes_{\mathbb{R}} \mathbb{C}) \otimes_{\mathbb{C}} G$.
- 2. Show that $\operatorname{Hom}_{\mathbb{R}}(E,G) = \operatorname{Hom}_{\mathbb{C}}(E \otimes \mathbb{C},G)$.
- 3. Show that

$$(E \oplus F) \otimes_{\mathbb{R}} \mathbb{C} = (E \otimes_{\mathbb{R}} \mathbb{C}) \oplus (F \otimes_{\mathbb{R}} \mathbb{C}), \quad (E \otimes_{\mathbb{R}} F) \otimes_{\mathbb{R}} \mathbb{C} = (E \otimes_{\mathbb{R}} \mathbb{C}) \otimes_{\mathbb{C}} (F \otimes_{\mathbb{R}} \mathbb{C})$$
 and

$$\Lambda^n E \otimes_{\mathbb{R}} \mathbb{C} = \Lambda^n (E \otimes_{\mathbb{R}} \mathbb{C}).$$

4. Let $f: E \to F$ be a linear map and let $f_{\mathbb{C}} = f \otimes_{\mathbb{R}} \mathbb{C} : E \otimes_{\mathbb{R}} \mathbb{C} \to F \otimes_{\mathbb{R}} \mathbb{C}$ be the induced map. Show that

$$\ker(f_{\mathbb{C}}) = \ker(f) \otimes_{\mathbb{R}} \mathbb{C}, \quad \operatorname{Im}(f_{\mathbb{C}}) = \operatorname{Im}(f) \otimes_{\mathbb{R}} \mathbb{C}.$$

Problem 4. Let $U \subset \mathbb{C}$ be an open subset and let $D \subset \Omega$ be a closed disk.

1. Let $f: U \to \mathbb{C}$ be a \mathcal{C}^1 function. Show that for all $z \in D$, we have:

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\xi)}{\xi - z} d\xi + \frac{1}{2\pi i} \int_{D} \frac{\partial f}{\partial \bar{z}}(\xi) \frac{d\xi \wedge d\bar{\xi}}{\xi - z}.$$

Hint: Apply Stokes' theorem to $\frac{f(\xi)}{\xi-z}d\xi$ on $D\setminus B(z,\varepsilon)$ and let $\varepsilon\to 0$.

2. Let g be a \mathcal{C}^1 function on $\mathbb C$ with compact support and define

$$f(z) = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{g(\xi)}{\xi - z} d\xi \wedge d\bar{\xi}.$$

Show that f is C^1 and $\frac{\partial f}{\partial \bar{z}} = g$. Hint: Differentiate under the integral sign after substituting $\xi' = \xi - z$.

- 3. Show that for any function g on U which is \mathcal{C}^1 , there exists a function f on U, also \mathcal{C}^1 , such that $\frac{\partial f}{\partial \bar{z}} = g$ on D.
- 4. In the previous question, show that if g is \mathcal{C}^{∞} , then f can also be chosen to be \mathcal{C}^{∞} .

Problem 5. Let E and F be two holomorphic vector bundles on a complex manifold X. Given an open cover $\{U_{\alpha}\}$ of X that trivializes E, the vector bundle E is described on overlaps $U_{\alpha} \cap U_{\beta}$ by holomorphic transition functions:

$$\rho_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \mathrm{GL}_n(\mathbb{C}).$$

- 1. Prove the cocycle condition: $\rho_{\alpha\gamma} = \rho_{\beta\gamma} \circ \rho_{\alpha\beta}$.
- 2. Let E' be the quotient of $\bigsqcup_{\alpha} U_{\alpha} \times \mathbb{C}^n$ by the equivalence relation on $U_{\alpha} \cap U_{\beta} \times \mathbb{C}^n$ given by

$$(x, v) \sim (x, \rho_{\alpha\beta}(x)(v)).$$

Prove that E' is a holomorphic vector bundle and that it is isomorphic to E as vector bundles over X, i.e., there exists a biholomorphism $f: E \to E'$ commuting with projection to X.

- 3. Conversely, assume that E and F are isomorphic as holomorphic vector bundles. How are their transition functions related?
- 4. Using the transition maps of E and F, construct the following vector bundles by writing down explicitly their transition functions: $E \otimes_{\mathbb{C}} F$, $E \oplus F$, $\Lambda^n E$.

Solution.

- 1. If suffices to show the condition over fibers, as the transition functions preserve fibers. Let $x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$ and let $E_x = \pi^{-1}(a)$ be the fiber over x in E. Thoughts on this: Perhaps pick basis in each of the three trivializations. Then the transition functions are change of basis matrices. Then the change of basis matrices satisfy the cocycle condition.
- 2. What do we need to prove that E' is a holomorphic vector bundle? We need to show that E' has a projection map π' to X and that there are local trivializations $\tau_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{C}^n$ whose transition maps are holomorphic. To show that these vector bundles are E' and E are isomorphic, we need to find a biholomorphism $f: E \to E'$ such that:

$$\pi' \circ f = \pi \qquad \qquad \pi \circ f^{-1} = \pi'$$

and also that f and f' are holomorphic.

3. If E and F are isomorphic as holomorphic vector bundles. Then there exists a biholomorphism $f: E \to F$ with $\pi' \circ f = \pi$. Take charts U_{α} and U_{β} . Then, we have the following to compare:

$$(x,v)$$
 $(x,f(v)),$ $(x,f(\rho(x)(v)))$ $(x,\rho(x)(f(v)))$

Do f and ρ commute? We need to think about the biholomorphism for this.

- 4. Suppose I have the transition functions ρ and ρ' for E and F respectively. What would the transition functions for each of those look like?
 - (a) Apply ρ to the first components of the bundle and ρ' to the second components of each coordinate of the bundle.
 - (b) Wait, I think you can just take the ρ on each component. But what if there is any intersection? Does direct sum have any intersection?
 - (c) Apply to each and then take the wedge product of them?