Likelihood ratio test

Solutions

2024-04-25

LRT set-up

Recall the coin-flipping scenario again! We have X_1, \ldots, X_n are a random sample from a Bern(θ) distribution, where θ is the probability of Heads. We have the hypotheses

$$H_0: \theta = \theta_0$$
 vs. $H_1: \theta \neq \theta_0$

We can conduct a LRT of these hypotheses. We found the likelihood ratio statistic to be:

$$\Lambda(\mathbf{X}) = \left(\frac{n\theta_0}{\sum X_i}\right)^{\sum X_i} \left(\frac{n(1-\theta_0)}{n-\sum X_i}\right)^{n-\sum X_i}$$

The LRT says reject when $\Lambda(\mathbf{x}) \leq k$ for some $k \in [0, 1]$. Notice that $\Lambda(\mathbf{x})$ depends on how many heads we see!

Specific case

Suppose we have n = 6 coin flips and $\theta_0 = 0.6$. That is,

$$H_0: \theta = 0.6$$
 vs. $H_1: \theta \neq 0.6$

Also suppose we want a level 0.08 LRT of these hypotheses, which means we need to find the value of k such that

$$Pr(\Lambda(\mathbf{x}) \le k | \theta = 0.6) \le 0.08$$

We can evaluate the test statistic for these specific values of n, θ_0 , and each possible value of $\sum_{i=1}^{6} X_i = y \in \{0, 1, \dots, 6\}$:

```
n \leftarrow 6
theta0 <- 0.6
y \leftarrow 0:n
Lambda <- ((n*theta0/y)^y) * (n*(1-theta0)/(n - y))^(n - y)
```

[1] 0.00409600 0.09172943 0.41990400 0.88473600 0.94478400 0.46438023 0.04665600

Since $\Lambda(\mathbf{x})$ is a function of $\sum X_i$, $\Pr(\Lambda(\mathbf{x}) = k | \theta = 0.6)$ can be obtained from $\Pr(\sum X_i = y | \theta = 0.6)$. For example, $\Pr(\Lambda(\mathbf{x}) = 0.004096) = \Pr(\sum X_i = 0 | \theta = 0.6)$.

We display the possible values of $\Lambda(\mathbf{x})$ below, along with their associated probabilities (which are obtained from $Pr(\sum X_i = y | \theta = 0.6))$:

		$y = 0 \parallel$	y = 1	y = 2	y = 3	y = 4	y = 5	y =
$\label{eq:condition} $$ \left(\Pr(\sum_i = y \in \mathbb{X}_i) \right) (\operatorname{Lambda}(\operatorname{Lambda}(x_i)) $$$	0)/) ($0.004096 \ 0.004096 \ $	$0.0368640 \ 0.0917294$	$\left \begin{array}{c} 0.138240 \\ 0.419904 \end{array} \right $	0.276480 0.884736	$\left \begin{array}{c} 0.311040 \\ 0.944784 \end{array} \right $	$0.1866240 \ 0.4643802$	0.0466

Now we can find the value k such that $Pr(\Lambda(\mathbf{x}) \le k | \theta = 0.6) \le 0.08!$

- $\Pr(\Lambda(\mathbf{x}) \le 0.0041|\theta = 0.6) = \Pr(\sum X_i = 0|\theta = 0.6) = 0.004 \le 0.08$ $\Pr(\Lambda(\mathbf{x}) \le 0.0467|\theta = 0.6) = \Pr(\sum X_i = \{0,6\}|\theta = 0.6) = 0.0041 + 0.0467 = 0.051 \le 0.08$ $\Pr(\Lambda(\mathbf{x}) \le 0.0917|\theta = 0.6) = \Pr(\sum X_i = \{0,6,1\}|\theta = 0.6) = 0.0041 + 0.0467 + 0.0369 = 0.088 > 0.08$

So rejecting H_0 when $\Lambda(\mathbf{x}) \leq k$ for any $k \in [0, 0.0917)$ yields a level-0.08 test.

In particular, the test that rejects H_0 when k = 0.0467 has size 0.051.

The test that rejects H_0 when k = 0.0041 has size 0.004.