Analysis of Covid-19 Mortality data: A probabilistic perspective

Hazard Function

Let T be the lifetime of a component in a system. The probability of failure of the system in $[t, t + \Delta t]$ given that it had survived up to t is

$$P(t \le T < t + \Delta t \mid T \ge t)$$

The instantaneous failure rate of the system at time point t:

$$\lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t \mid T \ge t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t)}{\Delta t \ P(T \ge t)}$$

$$= \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t)}{\Delta t \ (1 - F_T(t))}$$

$$= \frac{(F_T(t))'}{(1 - F_T(t))}$$

$$= \frac{f_T(t)}{S_T(t)}$$

Hazard Function: $h(t) = \frac{f_T(t)}{S_T(t)}$

Exponential Distribution

Parameter:

1- Rate: $\lambda > 0$

Distribution Function

$$F_X(x) = 1 - e^{-\lambda x}, \qquad x \ge 0$$

Properties:

• Memoryless: The probability of an event occurring is independent of how much time has elapsed already.

$$P(X > s + t \mid X > s) = P(X > T) \forall s, t \ge 0$$

Density Function

$$f_X(x) = \lambda e^{-\lambda x}, \quad x \ge 0$$

Limitations:

Constant hazard function

Weibull Distribution

Parameters:

1- Scale: $\alpha > 0$

2- Shape: $\beta > 0$

Distribution Function

$$F_X(x) = 1 - e^{-\alpha x^{\beta}}, \qquad x \ge 0$$

, _

Properties:

- Flexibility: captures a wide range of shapes of density function
- Shape parameter: models different patterns of the hazard function

Density Function

$$f_X(x) = \alpha \beta x^{\beta - 1} e^{-\alpha x^{\beta}}, \qquad x \ge 0$$

Limitations:

• Assumptions: assumes that the hazard function is monotonic

Generalized Exponential Distribution

Parameters:

1- Scale: $\lambda > 0$

2- Shape: $\alpha > 0$

Distribution Function

$$F_X(x) = (1 - e^{-\lambda x})^{\alpha}, \qquad x \ge 0$$

Density Function

$$f_X(x) = \alpha \lambda (1 - e^{-\lambda x})^{\alpha - 1} e^{-\lambda x}, \qquad x \ge 0$$

Lehmann Alternatives:

$$G(x) = [F(x)]^{\alpha}, \quad \alpha > 0$$

•
$$\lim_{x \to -\infty} [F(x)]^{\alpha} = 0, \lim_{x \to +\infty} [F(x)]^{\alpha} = 1$$

•
$$\lim_{y \to x^+} [F(y)]^{\alpha} = [F(x)]^{\alpha}$$

•
$$\frac{d}{dx}([F(x)]^{\alpha}) = \alpha [F(x)]^{\alpha-1} f(x) > 0$$

Australian & New Zealand Journal of Statistics

Theory & Methods: Generalized exponential distributions

Rameshwar D. Gupta, Debasis Kundu

First published: 18 December 2002 | https://doi.org/10.1111/1467-842X.00072 | Citations: 642

Generalized Exponential Distribution

Parameters:

1- Scale: $\lambda > 0$

2- Shape: $\alpha > 0$

Distribution Function

$$F_X(x) = (1 - e^{-\lambda x})^{\alpha}, \qquad x \ge 0$$

Properties:

- Flexibility: captures a wide range of shapes and patterns in the data
- Can be used to analyse skewed data

Density Function

$$f_X(x) = \alpha \lambda (1 - e^{-\lambda x})^{\alpha - 1} e^{-\lambda x}, \qquad x \ge 0$$

Limitations:

Assumptions: hazard function is constant or monotonic

Marshall Olkin Distribution Formulation

Suppose $X_1, X_2,...$ are independent and identically distributed random variables with common distribution function $F(\cdot)$ and $N \sim Geo(\theta)$, $0 < \theta < 1$.

Distribution Function :
$$P(N = n) = \theta(1 - \theta)^{n-1} \quad \forall n = 1, 2, ...$$

Consider a random variable $Y := \min\{X_1, ..., X_N\}$

Survival Function:
$$S_Y(y) = P(Y \ge y) = \sum_{n=1}^{\infty} P(y \ge y \mid N = n) P(N = n)$$

$$= \sum_{n=1}^{\infty} (1 - F(y))^n \theta (1 - \theta)^{n-1}$$

$$= \theta (1 - F(y)) \sum_{n=1}^{\infty} ((1 - F(y)) (1 - \theta))^{n-1}$$

The geometric distribution assumption is convenient as it verifies stability property unlike other extreme value distributions (limiting distributions for the minimum/maximum of a large number of identically distributed random variables)

Marshall Olkin Distribution Formulation

Survival Function:

$$S_Y(y) = \frac{\theta (1 - F(y))}{1 - (1 - \theta)(1 - F(y))}$$

Distribution Function:

$$G_Y(y) = 1 - S_Y(y) = \frac{F(y)}{1 - (1 - \theta)(1 - F(y))}$$

Density Function:

$$g_Y(y) = \frac{d}{dy} (G_Y(y)) = \frac{\theta f(y)}{(1 - (1 - \theta) (1 - F(y)))^2}$$

A New Method for Adding a Parameter to a Family of Distributions with Application to the Exponential and Weibull Families $\,$

Author(s): Albert W. Marshall and Ingram Olkin

Source: Biometrika, Sep., 1997, Vol. 84, No. 3 (Sep., 1997), pp. 641-652

Published by: Oxford University Press on behalf of Biometrika Trust

Stable URL: https://www.jstor.org/stable/2337585

Marshall-Olkin Generalized Exponential

Parameters:

Distribution Function

$$F_X(x) = \frac{(1 - e^{-\lambda x})^{\alpha}}{1 - (1 - \theta)(1 - (1 - e^{-\lambda x})^{\alpha})}, \qquad x \ge 0$$

Density Function

$$f_X(x) = \frac{\alpha \lambda \theta e^{-\lambda x} (1 - e^{-\lambda x})^{\alpha - 1}}{(1 - (1 - \theta)(1 - (1 - e^{-\lambda x})^{\alpha}))^2}, \qquad x \ge 0$$

Properties:

Flexibility: allows for various forms of dependence between the two variables, it can model positive and negative dependence

Limitations:

Complexity: relatively complex model that involves multiple parameters that need to be estimated

Marshall-Olkin Generalized Exponential DISTRIBUTION

Miroslav M. Ristić[†] & Debasis Kundu[‡]

Datasets

01

US

1st Wave: 4/2020 – 8/2020 2nd Wave: 9/2020 – 5/2021 3rd Wave: 6/2021 – 10/2021 4th Wave: 11/2021 – 3/2022 02

Brazil

1st Wave: 4/2020 – 10/2020 2nd Wave: 11/2020 – 10/2021 3rd Wave: 11/2021 – 3/2022

US Data

REF: https://www.worldometers.info/coronavirus/country/us/

Brazil Data

REF: https://www.worldometers.info/coronavirus/country/brazil/

01

United States

Minimum	302
Maximum	2598
Median	1086
Mean	1159
Standard Deviation	594.17
Coefficient of Variation	0.51

Distribution	Log Likelihood	P - Value
Exponential	-1232.44	1.42e-08
EE	-1180.31	0.9499
Gamma	-1180.07	0.8439
Weibull	-1182.62	0.2632
Lognormal	-1181.05	0.6835
MOE	-1188.73	0.4489
MOEE	-1180.20	0.8882
MOW	-1179.90	0.7956

Parameters	Exponential	EE	Gamma	Weibull	Lognormal	MOE	MOEE	MOW
1	$\lambda = 0.00086$	$\alpha = 4.608$	$\alpha = 3.80039$	k = 2.09485	$\mu = 6.91785$	$\lambda = 0.0026$	$\alpha = 4.7074$	$\alpha = 2.716$
2	NA	$\lambda = 0.00189$	$\beta = 0.00328$	$\lambda = 1314.19$	$\sigma = 0.53930$	$\theta = 15.860$	$\lambda = 0.0020$	$\lambda = 1.37e-09$
3	NA	NA	NA	NA	NA	NA	$\theta = 1.189$	$\theta = 0.24761$

Minimum	149
Maximum	4431
Median	1059
Mean	1493
Standard Deviation	1062.73
Coefficient of Variation	0.71

Distribution	Log Likelihood	P - Value
Exponential	-2268.21	7.75e-08
EE	-2228.60	0.01133
Gamma	-2230.07	0.00524
Weibull	-2236.04	0.00138
Lognormal	-2225.71	0.30485
MOE	-2246.45	0.00776
MOEE	-2225.11	0.21682
MOW	-2225.62	0.12400

Parameters	Exponential	EE	Gamma	Weibull	Lognormal	MOE	MOEE	MOW
1	$\lambda = 0.00066$	$\alpha = 2.43730$	$\alpha = 2.16526$	k = 1.50291	$\mu = 7.06010$	$\lambda = 0.00124$	$\alpha = 2.86470$	$\alpha = 2.15030$
2	NA	$\lambda = 0.00112$	$\beta = 0.00145$	$\lambda = 1665.74$	$\sigma = 0.72163$	$\theta = 3.82255$	$\lambda = 0.00085$	$\lambda = 3.039e-08$
3	NA	NA	NA	NA	NA	NA	$\theta = 0.36104$	$\theta = 0.13263$

US - Third Wave

Minimum	41
Maximum	3461
Median	546
Mean	1005
Standard Deviation	911.01
Coefficient of Variation	0.91

Distribution:

	Distribution	Log Likelihood	P - Value
	Exponential	-1210.58	0.0650
	EE	-1209.10	0.0103
	Gamma	-1209.13	0.0092
	Weibull	-1209.57	0.0088
	Lognormal	-1207.99	0.0366
1000 2000 3000	MOE	-1210.53	0.0390
Cases	MOEE	-1207.31	0.0262
Exponential — Gamma — MOE — MOW Exponentiated Exponential — Lognormal — MOEE — Weibull	MOW	-1505.84	0

Parameters	Exponential	EE	Gamma	Weibull	Lognormal	MOE	MOEE	MOW
1	$\lambda = 0.00099$	$\alpha = 1.21308$	$\alpha = 1.19584$	k = 1.09634	$\mu = 6.43915$	$\lambda = 0.00104$	$\alpha = 1.49314$	$\alpha = 0.29402$
2	NA	$\lambda = 0.00112$	$\beta = 0.00119$	$\lambda = 1041.68$	$\sigma = 1.03799$	$\theta = 1.09440$	$\lambda = 0.00088$	$\lambda = 2.220e-16$
3	NA	NA	NA	NA	NA	NA	$\theta = 0.42073$	$\theta = 2.220e-16$

Minimum	53
Maximum	4192
Median	1500
Mean	1568
Standard Deviation	1018.65
Coefficient of Variance	0.65

Distribution	Log Likelihood	P - Value
Exponential	-1261.97	0.00075
EE	-1248.81	0.08603
Gamma	-1247.76	0.12979
Weibull	-1245.01	0.48836
Lognormal	-1260.83	0.00394
MOE	-1245.70	0.80253
MOEE	-1245.36	0.75218
MOW	-2146.38	0

Parameters	Exponential	EE	Gamma	Weibull	Lognormal	MOE	MOEE	MOW
1	$\lambda = 0.00064$	$\alpha = 1.88065$	$\alpha = 1.84957$	k = 1.52427	$\mu = 7.06334$	$\lambda = 0.00129$	$\alpha = 1.28795$	$\alpha = 1.01405$
2	NA	$\lambda = 0.00092$	$\beta = 0.00118$	$\lambda = 1735.64$	$\sigma = 0.87596$	$\theta = 5.28424$	$\lambda = 0.00125$	$\lambda = 2.22e-16$
3	NA	NA	NA	NA	NA	NA	$\theta = 3.62557$	$\theta = 2.22e-16$

02

Brazil

Minimum	35
Maximum	1510
Median	750
Mean	746.6
Standard Deviation	372.37
Coefficient of Variation	0.49

Date

Combined Plot

Distribution	Log Likelihood	P - Value		
Exponential	-1629.72	1.21e-09		
EE	-1589.68	0.0089		
Gamma	-1584.98	0.0147		
Weibull	-1571.19	0.1435		
Lognormal	-1613.95	0.0009		
MOE	-1568.9583503	0.2948		
MOEE	-1568.9583500	0.2947		
MOW	-1566.17	0.2553		

Parameters	Exponential	EE	Gamma	Weibull	Lognormal	МОЕ	MOEE	MOW
1	$\lambda = 0.00133$	$\alpha = 2.695$	$\alpha = 2.670$	k = 2.0468	$\mu = 6.4167$	$\lambda = 0.00399$	$\alpha = 1.0003$	$\alpha = 1.0003$
2	NA	$\lambda = 0.0023$	$\beta = 0.0036$	$\lambda = 837.3$	$\sigma = 0.74540$	$\theta = 17.894$	$\lambda = 0.004$	$\lambda = 8.6e-05$
3	NA	NA	NA	NA	NA	NA	$\theta = 17.887$	$\theta = 4.398$

Minimum	119
Maximum	4148
Median	1014
Mean	1228
Standard Deviation	880.57
Coefficient of Variation	0.72

Distribution:

	Distribution	Log Likelihood	P - Value
	Exponential	-2961.21	1.24e-06
	EE	-2918.92	0.4458
	Gamma	-2919.35	0.3543
	Weibull	-2923.53	0.3073
	Lognormal	-2922.98	0.5165
1000 2000 3000 4000	MOE	-2933.50	0.1964
Cases	MOEE	-2918.42	0.5101
Exponential — Gamma — MOE — MOW Exponentiated Exponential — Lognormal — MOEE — Weibull	MOW	-2917.77	0.5010

Parameters	Exponential	EE	Gamma	Weibull	Lognormal	MOE	MOEE	MOW
1	$\lambda = 0.00081$	$\alpha = 2.1553$	$\alpha = 1.9914$	k = 1.46658	$\mu = 6.8413$	$\lambda = 0.00149$	$\alpha = 2.2981$	$\alpha = 1.89658$
2	NA	$\lambda = 0.0013$	$\beta = 0.0016$	$\lambda = 1362.68$	$\sigma = 0.7772$	$\theta = 3.79493$	$\lambda = 0.0012$	$\lambda = 4.6e-07$
3	NA	NA	NA	NA	NA	NA	$\theta = 0.7196$	$\theta = 0.24986$

Brazil - Third Wave - Modified

Minimum	0
Maximum	1303
Median	255
Mean	344
Standard Deviation	292.47
Coefficient of Variation	0.85

Distribution	Log Likelihood	P - Value		
Exponential	-1021.23	0.0218		
EE	-1011.26	0.1592		
Gamma	-1011.84	0.1128		
Weibull	-1014.14	0.0630		
Lognormal	-1009.08	0.8958		
MOE	-1017.61	0.1217		
MOEE	-1008.770	0.7872		
MOW	-1008.768	0.7219		

Parameters	Exponential	EE	Gamma	Weibull	Lognormal	МОЕ	MOEE	MOW
1	$\lambda = 0.00287$	$\alpha = 1.75228$	$\alpha = 1.6339$	k = 1.2816	$\mu = 5.5177$	$\lambda = 0.0041$	$\alpha = 2.1643$	$\alpha = 1.83728$
2	NA	$\lambda = 0.00403$	$\beta = 0.0047$	$\lambda = 378.61$	$\sigma = 0.8485$	$\theta = 2.0859$	$\lambda = 0.0029$	$\lambda = 4.5e-06$
3	NA	NA	NA	NA	NA	NA	$\theta = 0.3191$	$\theta = 0.13030$

Does Covid-19 mortality data follow Exponential Distribution?

Does Covid-19 mortality data follow Exponential Distribution?

Conclusion:

Similarities:

- Flexibility: capture a wide range of shapes of density function
- Right-skewed: used to model positively skewed data (6 out of 7 waves are right skewed)

Thank You!