

INSTITUT TEKNOLOGI TELKOM PURWOKERTO UJIAN TENGAH SEMESTER GANJIL 2020 / 2021 PROGRAM STUDI S1-TEKNIK INFORMATIKA

No. Revisi: 00	1 dari 6	No. Dokumen: IT-TEL/RM/AKA/007	Tanggal: 01 Ap	oril 2020	
Mata Kuliah	: IF6TI0203 Pemrograman Paralel		Review Kaprodi		
SKS / Kelas	:	3 SKS / S1IF-05-TI1, SIF-05-TI2	Tgl	Paraf	
Semester	:	Genap	5 April 2020	Home	
Pengampu	:	YAS – Yoso Adi Setyoko, S.T., M.T.	Review BAA		
Hari/Tanggal	:		Tgl	Paraf W	
Waktu	:	120 Menit	5 April 2020		
Sifat Ujian	: Take Home				
Petunjuk Soal	 Berdoa sebelum mengerjakan. Kerjakan dengan jujur dan penuh tanggung jawab dengan menghargai proses dan usaha Anda sendiri. Jika melakukan bentuk kecurangan dan melanggar aturan pelaksanaan ujian, maka nilai E untuk ujian. 				
	4. Sifat ujian closed book, close gadget, close kalkulator.				

Jawablah pertanyaan-pertanyaan di bawah ini dengan padat dan jelas!

1. (*score* **30**) Program di bawah ini merupakan program yang memanfaatkan Multi Threading. Lakukan kompilasi dan jalankan program di bawah ini kemudian berikan analisis output running program!

```
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
/* Global variable: accessible to all threads */
int thread_count:
void* Hello(void* rank); /* Thread function */
int main(int argc, char* argv[]) {
  long
           thread: /* Use long in case of a 64-bit system */
  pthread_t* thread_handles;
   /* Get number of threads from command line */
  thread_count = strtol(argv[1], NULL, 10);
  thread_handles = malloc (thread_count*sizeof(pthread_t));
  for (thread = 0; thread < thread_count; thread++)
     pthread_create(&thread_handles[thread], NULL,
         Hello, (void*) thread);
  printf("Hello from the main thread\n");
  for (thread = 0; thread < thread_count; thread++)
     pthread_join(thread_handles[thread], NULL);
  free(thread_handles):
  return 0:
} /* main */
void* Hello(void* rank) {
  long my_rank = (long) rank
        /* Use long in case of 64-bit system */
  printf("Hello from thread %ld of %d\n", my_rank,
         thread_count);
  return NULL:
} /* Hello */
```

Langkah kompilasi program adalah sebagai berikut.

gcc -g -Wall -o thread thread.c -lpthread

(nama file program thread.c, hasil kompilasi program adalah file dengan nama "thread")

Untuk menjalankan program dengan 4 buah thread:

./thread 4

Untuk menjalankan program dengan 7 buah thread:

./thread 7

2. (*score* 30) bagaiamana jika matrix vector multiplication di bawah ini diselesaikan dengan multi threading (seperti pada soal nomor 1)? Berikan analisis terhadap output program paralel yang ada di bawah ini!

a_{00}	a_{01}	• • • •	$a_{0,n-1}$
a_{10}	a_{11}	• • • •	$a_{1,n-1}$
:	:		:
a_{i0}	a_{i1}		$a_{i,n-1}$
<i>a</i> _{i0} :	<i>a_{i1}</i> :		$a_{i,n-1}$

Perkalian matrix di atas bisa direpresentasikan dengan formula berikut.

$$y_i = \sum_{j=0}^{n-1} a_{ij} x_j.$$

Penyelesaian kasus di atas dengan program serial adalah:

```
/* For each row of A */
for (i = 0; i < m; i++) {
    y[i] = 0.0;
    /* For each element of the row and each element of x */
    for (j = 0; j < n; j++)
        y[i] += A[i][j]* x[j];
}</pre>
```

Penyelesaian kasus perkalian matrix-vector di atas secara paralel adalah sebagai berikut.

```
void* Pth_mat_vect(void* rank) {
   long my_rank = (long) rank;
   int i, j;
   int local_m = m/thread_count;
   int my_first_row = my_rank*local_m;
   int my_last_row = (my_rank+1)*local_m - 1;
   for (i = my_first_row; i <= my_last_row; i++) {</pre>
      y[i] = 0.0;
      for (j = 0; j < n; j++)
          y[i] += A[i][j]*x[j];
   return NULL;
   /* Pth_mat_vect */
```

- 3. *(score 30)* Bagian 3 MPI (Message Passing Interface)
 - a. Lakukan running program di bawah ini dan analisis jalannya program dan output program!

```
int main(void) {
   int my_rank, comm_sz, n = 1024, local_n;
   double a = 0.0, b = 3.0, h, local_a, local_b;
   double local_int, total_int;
   int source:
  MPI_Init(NULL, NULL):
  MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
  MPI_Comm_size(MPI_COMM_WORLD, &comm_sz);
                         /* h is the same for all processes */
   h = (b-a)/n:
   local_n = n/comm_sz; /* So is the number of trapezoids */
   local_a = a + my_rank*local_n*h;
   local_b = local_a + local_n*h;
   local_int = Trap(local_a, local_b, local_n, h);
   if (my_rank != 0) {
     MPI_Send(&local_int, 1, MPI_DOUBLE, 0, 0,
            MPI_COMM_WORLD):
   } else {
     total_int = local_int;
     for (source = 1; source < comm_sz; source++) {
        MPI_Recv(&local_int, 1, MPI_DOUBLE, source, 0,
               MPI_COMM_WORLD, MPI_STATUS_IGNORE);
        total_int += local_int:
     ł
   if (my_rank == 0) {
     printf("With n = %d trapezoids, our estimate\n", n);
     printf("of the integral from %f to %f = %.15e\n".
         a, b, total_int);
  MPI_Finalize();
   return 0:
} /* main */
```

- 4. (score 30) Bagian 4 OpenMP (Open Multi Processing)
 - a. Lakukan running program di bawah ini dan analisis jalannya program dan output program! (Teknik kompilasi, penamaan file, dan running program seperti **soal no.1**)

```
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
void Hello(void); /* Thread function */
int main(int argc, char* argv[]) {
   /* Get number of threads from command line */
   int thread_count = strtol(argv[1], NULL, 10);
# pragma omp parallel num_threads(thread_count)
   Hello():
   return 0:
} /* main */
void Hello(void) {
   int my_rank = omp_get_thread_num();
   int thread_count = omp_get_num_threads();
   printf("Hello from thread %d of %d\n", my_rank, thre
} /* Hello */
```

```
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
void Trap(double a, double b, int n, double* global_result_p);
int main(int argc, char* argv[]) {
   double global_result = 0.0;
   double a, b;
   int
           n:
   int
           thread_count:
   thread_count = strtol(argv[1], NULL, 10);
   printf("Enter a, b, and n\n");
   scanf("%1f %1f %d", &a, &b, &n);
# pragma omp parallel num_threads(thread_count)
  Trap(a, b, n, &global_result);
   printf("With n = %d trapezoids, our estimate\n", n);
   printf("of the integral from %f to %f = %.14e\n",
      a. b. global_result);
   return 0:
  /* main */
void Trap(double a, double b, int n, double* global_result_p)
   double h, x, my_result;
   double local_a, local_b;
   int i, local_n;
   int my_rank = omp_get_thread_num();
   int thread.count = omp_get_num_threads();
   h = (b-a)/n:
   local_n = n/thread_count;
   local_a = a + my_rank*local_n*h;
   local_b = local_a + local_n*h:
   my_result = (f(local_a) + f(local_b))/2.0;
   for (i = 1; i <= local_n-1; i++) {
     x = local_a + i*h;
     my_result += f(x):
   my_result = my_result*h;
  pragma omp critical
   *global_result_p += my_result:
   /* Trap */
```

Menggunakan OpenMP jalankan program di atas dan lakukan analisis terhadap jalannya program dan output program!

------ UJIAN TENGAH SEMESTER 2020 / 2021 ------