8051 系列单片机指令速查表

编 号	指令名称	指令助记符	指令说明		
	数据传送类指令				
1		MOV A, #data	将立即数#data 送累加器 A		
2		MOV direct,	将立即数#data 送片内 RAM		
		#data	direct 地址单元内		
3		Mov Rn, #data	将立即数#data送寄存器 Rn		
4		Mov @Ri, #data	寄存器 Ri 内为 RAM 地址, 将立即数#data 送该地址单 元内		
_		Mov direct2,	将 direct1 地址单元的数据		
5		direct1	送 direct2 地址单元内		
6		Mov direct, rn	将 Rn 的数据送 direct 地址 单元内		
7		Mov Rn, direct	将 direct 地址单元内的数据送 Rn 寄存器		
8	一般传送	Mov direct, @Ri	寄存器 Ri 内为 RAM 地址, 将该地址单元内的数据送 direct 地址单元内		
9		Mov @Ri, direct	寄存器 Ri 内为 RAM 地址, 将 direct 地址单元内的数 据送该地址单元内		
10		Mov A, Rn	将寄存器 Rn 内的数据送累加器 A		
11		Mov Rn, A	将累加器 A 内的数据送寄存器 Rn		
12		Mov A, direct	将 direct 地址单元内的数 据送累加器 A		
13		Mov direct, A	将累加器 A 内的数据送 direct 地址单元内		
14		Mov A, @Ri	寄存器 Ri 内为 RAM 地址, 将该地址单元内的数据送 累加器 A		
15		Mov @Ri , A	寄存器 Ri 内为 RAM 地址, 将累加器 A 的数据送该地址 单元内		
16	目的地址 传送	Mov DPTR, #data16	将 16 位立即数送数据指针 DPTR 寄存器		

17		SWAP A	累加器 A 高低 4 位数据交换	
18		XCH A, Rn	将累加器A数据和寄存器Rn 内的数据交换	
19		XCH A, direct	将累加器 A 数据和 direct 地址单元内的数据交换	
20	字节交换	XCH A, @Ri	寄存器 Ri 内为 RAM 地址, 将该地址单元内的数据与 累加器 A 的数据交换	
21		XCHD A, @Ri	寄存器 Ri 内为 RAM 地址, 将该地址单元内的数据低 4 位与的低 4 位交换	
22		MOVX @DPTR, A	将累加器 A 的数据送数据指针 DPTR 寄存器所指外部 RAM 地址单元内	
23	与外部	MOVX A , @DPTR	将 DPTR 寄存器所指外部 RAM 地址单元内的数据送累加 器 A	
24	RAM 传送	MOVX A, @Ri	寄存器 Ri 内为片外 RAM 地址,将该地址单元内的数据送累加器 A	
25		MOVX @Ri, A	寄存器 Ri 内为片外 RAM 地址,将该地址单元内的数据送累加器 A	
26	与 ROM 传 送	MOVC A, @A+DPTR	A+DPTR 构成 ROM 地址,将该 地址内的数据送累加器 A 内	
27		MOVC A, @A+PC	A+PC 构成 ROM 地址, 将该地址内的数据送累加器 A 内	
28	栈操作	PUSH direct	堆栈指针 SP 自加 1 后,将 direct 地址单元的数据压 进堆栈,	
29		POP direct	堆栈的数据送 direct 地址 单元中,后堆栈指针减 1,	
算术运算指令				
30	加法指令	ADD A, Rn	将寄存器 Rn 与累加器 A 的数据相加后,结果保存到累加器 A	
31		ADD A, direct	将 direct 地址单元内的数据与累加器 A 的数据相加后结果保存到累加器 A	
32		ADD A, @Ri	寄存器 Ri 内位地址,将该 地址单元内的数据与累加	

			器A的数据相加后结果保存
			到累加器 A
33		ADD A, #data	将立即数与累加器A的数据
			相加后结果保存到累加器A
			将寄存器 Rn 与累加器 A 的
34		ADDC A, Rn	数据相加,再加上进位标志
			内的值后, 结果保存到累加 器 A
			将 direct 地址单元内的数
			据与累加器 A 的数据相加,
35		ADDC A, direct	据与系加备A的数据相加, 再加上进位标志内的值后,
	世 一 帯 进 位 加		结果保存到累加器 A
	法		寄存器 Ri 内为 RAM 地址,
	14		将该地址单元内的数据与
36		ADDC A, @Ri	累加器 A 的数据相加,再加
30		ADDC A, WKI	上进位标志内的值后,结果
			保存到累加器 A
			将立即数与累加器A的数据
37		ADDC A, #data	相加,再加上进位标志内的
01			值后结果保存到累加器 A
		SUBB A, Rn	将与累加器A的数据减去寄
			存器 Rn 的数据,再减去进
38			位标志内的值,结果保存到
			累加器 A
	#借位减 法		将与累加器 A 的数据减去
			direct 地址单元内的数据,
39		SUBB A, direct	再减去进位标志内的值,结
			果保存到累加器 A
		SUBB A, @Ri	寄存器 Ri 内为 RAM 地址,
			将累加器A的数据减去该地
40			业单元内的数据, 再减去进
			位标志内的值后,结果保存
			到累加器 A
		SUBB A, #data	将累加器A的数据减去立即
41			数,再减去进位标志内的值
			后,结果保存到累加器 A
42	加1指令	INC A	累加器 A 的值自加 1
43		INC Rn	寄存器 Rn 的值自加 1
44		INC direct	direct 地址单元内值自加1
45		INC @Ri	寄存器 Ri 内为 RAM 地址,
40		TIMO @VI	该地址单元内的值自加1

46		INC DPTR	数据指针寄存器 DPTR 内的 值自加 1
47		DEC A	累加器 A 的值自减 1
48	减1指令	DEC Rn	寄存器 Rn 的值自减 1
49		DEC direct	direct 地址单元内的值自 减 1
50		DEC @Ri	寄存器 Ri 内为 RAM 地址, 该地址单元内的值自减 1
51	乘法	MUL AB	累加器 A 与寄存器 B 内的值相乘,乘积的高 8 位保存在B 寄存器,低 8 位保存在累加器 A 中
52	除法	DIV AB	累加器 A 的值除以寄存器 B 的值,商保存在累加器 A 中, 余数保存在 B 寄存器
53	二-十进 制调整	DA A	对累加器 A 的结果进行十进 制调整
		逻辑运算	指令
54	- 逻辑与	ANL A, Rn	将累加器 A 的值和寄存器 Rn 的值进行与操作,结果保存 到累加器 A 中
55		ANL A, direct	将累加器 A 的值和 direct 地址单元内的值进行与操 作,结果保存到累加器 A 中
56		ANL A, @Ri	寄存器 Ri 内为 RAM 地址,将 累加器 A 的值和该地址单元 内的值进行与操作,结果保 存到累加器 A 中
57		ANL A, #data	将累加器 A 的值和立即数进 行与操作,结果保存到累加 器 A 中
58		ANL direct, A	将累加器 A 的值和 direct 地址单元内的值进行与操 作,结果保存到 direct 地 址单元内
59		ANL direct, #data	将立即数和 direct 地址单 元内的值进行与操作,结果 保存到 direct 地址单元内
60	逻辑或	ORL A, Rn	将累加器 A 的值和寄存器 Rn 的值进行或操作,结果保存 到累加器 A 中

	7		
61		ORL A, direct	将累加器 A 的值和 direct 地址单元内的值进行或操 作,结果保存到累加器 A 中
62		ORL A, @Ri	寄存器 Ri 内为 RAM 地址,将 累加器 A 的值和该地址单元 内的值进行或操作,结果保 存到累加器 A 中
63		ORL A, #data	将累加器 A 的值和立即数进 行或操作,结果保存到累加 器 A 中
64		ORL direct, A	将累加器 A 的值和 direct 地址单元内的值进行或操 作,结果保存到 direct 地 址单元内
65		ORL direct, #data	将立即数和 direct 地址单 元内的值进行或操作,结果 保存到 direct 地址单元内
66		XRL A, Rn	将累加器 A 的值和寄存器 Rn 的值进行异或操作,结果保 存到累加器 A 中
67	逻辑异或	XRL A, direct	将累加器 A 的值和 direct 地址单元内的值进行异或 操作,结果保存到累加器 A 中
68		XRL A, @Ri	寄存器 Ri 内为 RAM 地址,将 累加器 A 的值和该地址单元 内的值进行异或操作,结果 保存到累加器 A 中
69		XRL A, #data	将累加器 A 的值和立即数进 行异或操作,结果保存到累 加器 A 中
70		XRL direct, A	将累加器 A 的值和 direct 地址单元内的值进行异或 操作,结果保存到 direct 地址单元内
71		XRL direct, #data	将立即数和 direct 地址单 元内的值进行异或操作,结 果保存到 direct 地址单元 内
72	按位取反	CPL A	累加器 A 的值按位取反
73	累加器清 零	CLR A	累加器 A 清 0

74	逻辑右移	RR A	累加器 A 的值循环右移 1 位
75	逻辑左移	RL A	累加器 A 的值循环左移 1 位
76	带进位右 移	RRC A	累加器 A 的值带进位循环右 移 1 位
77	带进位左 移	RLC A	累加器 A 的值带进位循环左 移 1 位
		控制转移	指令
78	无条件转 移	SJMP rel	rel 为地址偏移量, PC 加 2 后的地址加上 rel 作为目标地址,程序跳到目标地址继续运行
79		AJMP addr11(a10- a0)	addr11 为 11 位地址, PC 加 2 后的地址高 5 位与指令中 的低 11 位地址构成目标地址,程序跳到目标地址继续运行
80		LJMP addr16	将 addr16 的 16 位地址送程 序计数器 PC, 使机器执行下 一条指令时无条件转移到 addr16 处执行程序
81		JMP @A+DPTR	目标地址的基地址放在 DPTR中,目标地址对基地址 的偏移量放在累加器A中, 它们相加构成目标地址
82		JZ rel	If (累加器 A=0)则 PC 加 2 再加上 rel 作为目标地址
83		JNZ rel	If (累加器 A!=0)则 PC 加2 再加上 rel 作为目标地址
84	条件转移	CJNE A, direct, rel	If (累加器 A!= direct 地 址单元的值)则 PC 加 3 再 加上 rel 作为目标地址
85		CJNE A, #data, rel	If (累加器 A!= 立即数)则 PC 加 3 再加上 rel 作为目标 地址
86		CJNE Rn, #data, rel	If (寄存器 Rn 的值!= 立即数)则 PC 加 3 再加上 rel作为目标地址
87		CJNE @Ri, #data, rel	寄存器 Ri 內为 RAM 地址, If (该地址单元的值!= 立 即数)则 PC 加 3 再加上 rel 作为目标地址

88	循环转移	DJNZ Rn, rel	寄存器 Rn 的值减 1 后,If (寄存器 Rn 的值!=0)则 PC 加 2 再加上 rel 作为目标地 址
89		DJNZ direct, rel	Direct 地址单元的值減 1 后,If (该值!=0) 则 PC 加 3 再加上 rel 作为目标地址
90		JC rel	If (CY=1)则 PC 加 2 再加 上 rel 作为目标地址
91		JNC rel	If (CY=0)则PC加2再加 上 rel 作为目标地址
92	布尔条件 转移	JB bit, rel	If (bit 位=1) 则 PC 加 3 再 加上 rel 作为目标地址
93	77/19	JNB bit, rel	If (bit 位=0)则 PC 加 3 再 加上 rel 作为目标地址
94		JBC bit, rel	If (bit 位=1)则 PC 加 3 再 加上 rel 作为目标地址,且 bit 位清 0
95	调用指令	ACALL addr11	addr11 为 11 位地址, PC 加 2 后的地址 PUSH 进堆栈, 再 将 PC 的地址高 5 位与指令中的低 11 位地址构成目标地址,程序跳到目标地址继续运行
96		LCALL addr16	PC 加 3 后的地址 PUSH 进堆 栈,再将 16 位地址送 PC 作 为目标地址,程序跳到目标 地址继续运行
97	返回指令	RET	子程序返回指令, 把堆栈中的地址恢复到 PC 中使程序回到调用处
98		RETI	中断程序返回指令,把堆栈 中的地址恢复到 PC 中使程 序回到调用处
99	空操作	NOP	空操作
位操作指令			
100	布尔传送	MOV C, bit	将 bit 位地址中的值送 PSW 中的进位标志位 CY
101	小小花区	MOV bit, C	将 PSW 中的进位标志位 CY 的值送 bit 位地址中
102	位清 0	CLR C	将进位标志位 CY 清 0

103	位清 0	CLR bit	将 bit 位地址内清 0
104	公里 1	SETB C	将进位标志位 CY 置 1
105	位置1	SETB bit	将 bit 位地址内置 1
106		ANL C, bit	将 Cy 和 bit 位地址中的值 进行与操作后,结果送 Cy
107	位与	ANL C, /bit	bit 位地址中的值取反后再 与 Cy 进行与操作,结构送 Cy
108		ORL C, bit	将 Cy 和 bit 位地址中的值 进行或操作后,结果送 Cy
109	位或	ORL C, /bit	bit 位地址中的值取反后再 与 Cy 进行或操作,结构送 Cy
110	位取反	CPL C	将 Cy 取反
111		CPL bit	将 bit 位地址的值取反

说明:

Ri, Rn 指当前工作寄存器, i=0,1; n=0-7, 当前工作寄存器由程序状态字寄存器 PSW 的 2 个位 RS1, RS0 决定