Глава 8

Проверка статистических гипотез

Пусть известна выборка из N независимых реализаций некоторой случайной величины $x_1, ..., x_N$, для краткости обозначаемая вектором \mathbf{x} . Предположим, что мы хотим вынести некоторое суждение о распределении этой случайной величины. Например, убедиться, что случайная величина распределена нормально, удостовериться, что случайная величина обладает нулевым средним, или проверить, что две независимые случайные величины имеют одинаковое среднее. В простейших случаях, например, когда доступная выборка имеет очень большой размер, ответ на эти вопросы может оказаться очевидным, например, после построения гистограммы или квантиль-квантильного графика. Однако, в тех случаях, когда ответ не очевиден, мы хотели бы иметь формальный математический аппарат, позволяющий вынести аргументированное суждение о статистических свойствах.

Итак, проверка статистических гипотез заключается в том, что нужно сделать выбор между двумя утверждениями, называемыми обычно нулевой гипотезой H_0 и альтернативной гипотезой H_1 . Например:

- Нулевая гипотеза H_0 : $p(x_i) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x_i^2}{2}\right)$.
- Альтернативная гипотеза H_1 : $p(x_i) = \frac{1}{4} \exp\left(-\frac{|x_i|}{2}\right)$.

Утверждения вида $p(x_i)=p_0(x_i)$ (следовательно $p(\mathbf{x})=\prod_{i=1}^N p_0(x_i)$) часто называют простой нулевой гипотезой, а утверждения $p(x_i)=p_1(x_i)-$ простой альтернативной, смысл здесь в том, что параметры распределения считаются известными и не подлежат определению. В противном случае, гипотезу называют сложсной. Например, если $p(x_i)=p_0'(x_i|\theta)$ известно с точностью до неизвестных параметров θ , которые подлежат оцениванию в рамках проверки статистической гипотезы.

С формальной точки зрения у нас в руках есть только выборка независимых реализаций случайной величины, записываемая как вектор $\mathbf{x} \in \mathbb{R}^N$.

И фактически, мы ищем способ разбить пространство \mathbb{R}^N на две части. При попадании конкретной выборки, обозначаемой вектором \mathbf{x} в одну из которых, называемую *критической областью* C, нулевая гипотеза отвергается, и, соответственно, при попадании в другую, нулевая гипотеза принимается. Кстати, в этом задача проверки статистических гипотез имеет некоторое сходство и параллели с задачей бинарной классификации из области машинного обучения.

С практической точки зрения проще всего оказывается ввести некоторую новую действительную функцию $f(\mathbf{x})$, которая затем сравнивается с некоторым пороговым значением K, и, например, если $f(\mathbf{x}) > K$, то нулевая гипотеза отклоняется, и наоборот. Функция $f(\mathbf{x})$ и порог K определяются некоторым оптимальным образом для каждой конкретной задачи, собственно, данная глава посвящена примерам выбора статистических критериев.

Основная сложность состоит в том, что чаще всего нулевая гипотеза допускает, что реализация ${\bf x}$ может принимать любые значения в ${\bf R}^N$ с ненулевой вероятностью, это значит, что даже при выполнении нулевой гипотезы вектор ${\bf x}$ может случайно оказаться в критической области, и нулевая гипотеза будет ошибочно отвергнута. Неравноправие в терминологии (нулевая и альтернативная гипотезы) во многом связано с понятием ошибок первого и второго рода:

- Ошибкой первого рода называется ситуация, когда гипотеза H_0 на самом деле верна, но была отклонена в рамках проверки.
- Ошибкой второго рода называется ситуация, когда гипотеза H_1 на самом деле верна, но была принята гипотеза H_0 .

Понятно, что стоимость последствий ошибок первого и второго рода различна, и определяется исходя из внешних соображений. Например, допустим что анализируются данные некоторого медицинского исследования, и проверяются две гипотезы. Нулевая гипотеза H_0 состоит в том, что у пациента имеется некоторое очень опасное заболевание, а альтернативная H_1 — в том, что пациент здоров. Последствия ошибки первого рода будут состоять в том, что лечение пациента не будет начато своевременно, что приведет к непоправимым последствиям для его здоровья, или даже летальному исходу. В то время как последствия ошибки второго рода будут состоять в том, что пациенту придется потратить время, пройти ряд дополнительных исследований, возможно, поволноваться, но конечном счете выяснится, что ему ничего не угрожает. В данном случае, очевидно, что последствия ошибки первого рода для данного человека будут иметь более высокую стоимость.

Итак, в рамках проверки статистических гипотез нам хотелось бы так задать критическую область C, чтобы вероятность ошибки первого рода не превосходила некоторого приемлемого для нас порога α , называемого уровнем значимости:

$$P\left\{\text{Ошибка первого рода}\right\} = \int_{C} p_{0}(\mathbf{x}) d\mathbf{x} \le \alpha. \tag{8.1}$$

Заметим, что существует вырожденный (и не интересный) случай, когда всегда принимается основная гипотеза, поэтому на практике мы фиксируем ошибку первого рода на ее верхнем допустимом уровне α .

Вероятность ошибки второго рода должна быть сделана по возможности минимальной:

$$P\left\{\text{Ошибка второго рода}\right\} = \int_{\bar{C}} p_1(\mathbf{x}) d\mathbf{x} = 1 - \int_{C} p_1(\mathbf{x}) d\mathbf{x}.$$
 (8.2)

Интеграл $\int_C p_1(\mathbf{x}) d\mathbf{x}$ часто называют мощностью критерия.

На практике, как упоминалось, большинство критериев строится с помощью статистики $f(\mathbf{x})$ и порога K, в этом случае удается определить параметрическое семейство критических областей C(K) и выбрать среди них критическую область для требуемого уровня значимости α . Иногда дополнительно удается доказать, что предложенный критерий наиболее мощный, т.е. имеет минимальную ошибку второго рода при заданном уровне значимости α .

8.1 Критерий Неймана-Пирсона

Рассмотрим отношение правдоподобий

$$\Lambda_{H_1, H_0} \equiv \frac{p_1(\mathbf{x})}{p_0(\mathbf{x})} \tag{8.3}$$

Гипотеза H_0 отвергается в том случае, когда $\Lambda_{H_1,H_0} \geq K$, некоторого порогового значения, которое по сути является функцией уровня значимости $K = K(\alpha)$. Лемма Неймана-Пирсона состоит в том, что данный критерий является наиболее мощным (минимальная вероятность ошибки второго рода), среди всех критериев с уровнем значимости (вероятностью ошибки первого рода) α .

Рассмотрим следующий пример из книги Кельберт и Сухов 2017. Пусть, для простоты рассмотрения, у нас есть одно измерение x_1 , и мы хотим найти критерий отношения правдоподобий с уровнем значимости $\alpha=0.05$. Тогда построим отношение правдоподобий:

$$\Lambda_{H_1, H_0} = \frac{\sqrt{2\pi}}{4} \frac{\exp\left(-\frac{|x_1|}{2}\right)}{\exp\left(-\frac{x_1^2}{2}\right)}.$$
 (8.4)

Понятно, что $\Lambda_{H_1,H_0} \geq K(\alpha)$ эквивалентно утверждению $x_1^2 - |x_1| \geq K'(\alpha)$, таким образом критическая область $C(\alpha)$ в нашем случае задается двумя полупрямыми:

$$|x_1| \ge \frac{1}{2} + t(\alpha),\tag{8.5}$$

$$|x_1| \le \frac{1}{2} - t(\alpha). \tag{8.6}$$

Рассчитаем вероятность ошибки первого рода, чтобы найти конкретное значение порога $t(\alpha)$.

Если $t \geq \frac{1}{2}$, тогда

$$\alpha = \int_{C} p_{0}(x_{1})dx_{1} =$$

$$= \frac{1}{\sqrt{2\pi}} \left(\int_{-\infty}^{-\frac{1}{2}-t} \exp\left(-\frac{x_{1}^{2}}{2}\right) dx_{1} + \int_{\frac{1}{2}+t}^{\infty} \exp\left(-\frac{x_{1}^{2}}{2}\right) dx_{1} \right) =$$

$$= 1 - \operatorname{erf}\left(\frac{1}{2} + t\right), \quad (8.7)$$

откуда следует, что $t=\mathrm{erf}^{-1}\left(1-\alpha\right)-\frac{1}{2},$ и для $\alpha=0.05$ получается критическая область

$$|x_1| \ge 1.38... \tag{8.8}$$

Если $t \leq \frac{1}{2}$, тогда

$$\alpha = 1 - \operatorname{erf}\left(\frac{1}{2} + t\right) + \operatorname{erf}\left(\frac{1}{2} - t\right),\tag{8.9}$$

и это уравнение не имеет решений для выбранного $\alpha = 0.05$.

В данном случае $|x_1|$ играет роль статистики критерия, и нам остается сравнить эту величину с пороговым значением, специально найденным так, чтобы гарантировать выбранный уровень значимости $\alpha = 0.05$.

8.2 Критерий Стьюдента

Рассмотрим другую задачу. Пусть известно N независимых реализаций некоторой случайной величины $x_1,...,x_N$. Гипотеза H_0 состоит в том, что случайная величина распределена согласно нормальному закону с средним μ_0 , гипотеза H_1 состоит в том, что случайная величина распределена согласно нормальному закону с некоторым другим неизвестным средним $\mu \neq \mu_0$. Подразумевается, что величина μ_0 может предсказывается нам какой-то теорией, и мы хотели бы проверить или опровергнуть теорию на основе измерений.

Понятно, что почти невероятно, что для конечного числа N выборочное среднее

$$m \equiv \frac{1}{N} \sum_{i=1}^{N} x_i, \tag{8.10}$$

в точности совпадет с величиной μ_0 , поэтому нужен критерий допускающий отклонение выборочного среднего m от ожидаемого μ_0 в разумных приделах.

Рассмотрим величину

$$T \equiv \frac{m - \mu_0}{\sqrt{\frac{\sum_{i=1}^{N} (x_i - m)^2}{N(N - 1)}}},$$
(8.11)

которая имеет смысл отношения отклонения выборочного среднего от μ_0 к ошибке выборочной оценки среднего. Иначе говоря, это относительное отклонение, заданное в единицах ошибки выборочной оценки среднего. Интуитивно понятно, что чем больше это относительно отклонение, тем менее вероятно равенство $m=\mu_0$.

Британский ученый Вильям Госсет (известный под псевдонимом Стьюдент) показал, что при выполнении H_0 такая величина T распределена в соответствии с распределением Стьюдента $p_{N-1}(T)$ с N-1 степенью свободы. Напомним, что плотность вероятности распределения Стьюдента задаётся следующим образом:

$$p_{\nu}(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}},\tag{8.12}$$

где целочисленный параметр ν называют числом степеней свободы распределения.

Значит можно вычислить вероятность ошибки первого рода для критерия |T|>a:

$$\alpha = \int_{-\infty}^{-a} p_{N-1}(T)dT + \int_{a}^{\infty} p_{N-1}(T)dT = 2\gamma_{N-1}(a).$$
 (8.13)

К несчастью, интеграл не выражается в элементарных функциях, поэтому обозначим кумулятивную функцию распределения Стьюдента как $\gamma_{N-1}(a)$, тогда решение уравнения записывается через обратную функцию, называемую квантильной функцией, как $a=t_{N-1}(\frac{\alpha}{2})$. Итак, если $|T|\geq t_{N-1}\left(\frac{\alpha}{2}\right)$, то гипотеза H_0 отклоняется на уровне значимости α . Конкретное значение функции $t_{N-1}\left(\frac{\alpha}{2}\right)$ может быть найдено численно с помощью готовых программных пакетов.

Полученный результат часто формулируют в терминах доверительных интервалов (т.е. интервал, который накрывает настоящее значение μ с вероятностью $1-\alpha$):

$$P\left\{m - \sqrt{\frac{\sum_{i=1}^{N} (x_{i} - m)^{2}}{N(N-1)}} t_{N-1} \left(\frac{\alpha}{2}\right) < \mu < m + \sqrt{\frac{\sum_{i=1}^{N} (x_{i} - m)^{2}}{N(N-1)}} t_{N-1} \left(\frac{\alpha}{2}\right)\right\} = 1 - \alpha.$$
(8.14)

Для проверки статистических гипотез часто вместо порога $t_{N-1}(\frac{\alpha}{2})$ используется так называемое p-значение¹, определяемое как значение кумулятивной функции распределения от величины статистики, в случае критерия Стьюдента $p=\gamma_{N-1}(T)$. Благодаря монотонности кумулятивной функции любого распределения, критерий Стьюдента теперь записывается в виде $p(T) \geq \alpha$. Такая система единиц позволяет использовать единый формализм для многих статистических критериев, ведь величина p принимает значения на интервале [0,1], в отличии от порога, который имеет индивидуальные характерные значения для каждого критерия.

 $^{^1}p$ -value

8.3 Критерий Пирсона

Пусть известно N независимых реализаций некоторой случайной величины $x_1, ..., x_N$. Нулевая гипотеза H_0 состоит в том, что случайная величина распределена с известным распределением $p_0(x)$.

Разобьем область значений x на K не пересекающихся интервалов, и для каждого интервала подсчитаем количество попаданий N_l в этот интервал. При нулевой гипотезе среднее число попаданий будет

$$e_l = Np_l = N \int_{D_l} p_0(x) dx,$$
 (8.15)

и может быть рассчитано тем или иным образом для выбранного разбиения D_l и $p_0(x)$. При альтернативной гипотезе число попаданий будет произвольной величиной.

Рассмотрим величину

$$P_N \equiv \sum_{l=1}^K \frac{(N_l - e_l)^2}{e_l}.$$
 (8.16)

Она имеет смысл взвешенной суммы квадратов отклонений числа попаданий в интервал от теоретических средних значений.

Британский ученый Карл Пирсон доказал, что

$$\lim_{N \to \infty} P\left\{P_N > \alpha\right\} = \int_{\alpha}^{\infty} p_{N-1}(x) dx, \tag{8.17}$$

где плотность вероятности χ^2 -распределения Пирсона с k степенями свободы задаётся выражением:

$$p_k(x) = \frac{1}{2^{k/2}\Gamma\left(\frac{k}{2}\right)} x^{k/2-1} \exp\left(-\frac{x}{2}\right),\tag{8.18}$$

где целочисленный параметр k называется числом степеней свободы.

Соответственно, гипотеза H_0 отклоняется с уровнем значимости α , если $P_N > \int_{\alpha}^{\infty} p_{\chi_{N-1}^2}(x) dx$.

8.4 Критерий Колмогорова-Смирнова

Рассмотрим предыдущую задачу, но предложим другой способ её решения. Построим эмпирическую кумулятивную функцию распределения:

$$F_N(\mathbf{x}) \equiv \frac{1}{N} \sum_{i=1}^N I_{(-\infty,x]}(x_i),$$
 (8.19)

где $I_{(-\infty,x]}$ обозначает индикаторную функцию, равную 1 для $x_i < x$ и нулю в противном случае.

Теоретическую кумулятивную функцию распределения при нулевой гипотезе мы знаем:

$$F(x) = \int_{-\infty}^{x} p_0(x)dx. \tag{8.20}$$

Рассматривается величина

$$D_N \equiv \sup_{x} |F(x) - F_N(x)|, \tag{8.21}$$

которая имеет смысл максимального отклонения между эмпирической и теоретической кумулятивными функциями. Заметим, что при $x=\pm\infty$ эти две функции всегда совпадают по построению, значит максимальное отклонение достигается где-то между этими точками.

Советский математик Андрей Николаевич Колмогоров изучил свойства распределения величины K, определяемой как:

$$K \equiv \sup_{t \in [0,1]} |B(t)|,\tag{8.22}$$

где B(t) — Броуновский мост (про Броуновский мост см., например, Степанов 2012), случайный нестационарный процесс, для которого, в частности, p(0,t=0)=p(0,t=1)=1. Полученное распределение называют распределением Колмогорова, оно показывает насколько сильно по амплитуде отклоняется Броуновский мост. Плотность вероятности и кумулятивная функция такого распределения задается в виде бесконечного ряда, и вычисляются с помощью численных методов.

Оказывается, что величина $\sqrt{N}D_N$ стремится к $\sup_x |B(F(x))|$ по распределению при $N\to\infty$. Таким образом, если $\sqrt{N}D_N>K(\alpha)$, то нулевая гипотеза отвергается, где $K(\alpha)$ находится из квантильной функции распределения Колмогорова для требуемого уровня значимости α . Асимптотически, мощность критерия стремится к единице, это значит, что он не совершает ошибок второго рода.

При попытке обобщить критерий Колмогорова-Смирнова на большие размерности случайных величин возникает интересное препятствие — ответ критерия становится не инвариантен относительно аффинных преобразований, т.е. простая линейная замена переменных влияет на результат. Поэтому, например, для проверки принадлежности выборки векторов к многомерному нормальному распределению существуют отдельные критерии, построенные исходя из принципа инвариантности относительно аффинных преобразований. Обзор различных критериев приведен, например, в работе Henze 2002.