Queens' College Cambridge

Foundations Of Computer Science

Alistair O'Brien

Department of Computer Science

April 7, 2020

Contents

1	OC	aml		4
	1.1	OCam	al and Functional Programming	4
		1.1.1	Concrete Data Types	5
		1.1.2	Operators	6
		1.1.3	Local declarations	8
		1.1.4	Pattern Matching	8
		1.1.5	Control Structures	9
	1.2	Functi	ions	11
		1.2.1	Function Definitions	11
		1.2.2		11
		1.2.3		12
		1.2.4	Currying and Partial Application	12
		1.2.5		13
		1.2.6	Polymorphic Functions	13
		1.2.7		13
	1.3	Imper	ative Features	14
		1.3.1	References	14
		1.3.2	Control Structures	14
2	Cor	cepts	in OCaml	16
_	2.1	-		16
		2.1.1		16
		2.1.2		17
		2.1.3	Tuples	20
		2.1.4	Binary Trees	20
		2.1.5		23
	2.2		v	$\frac{23}{24}$
	2.2	2.2.1		$\frac{24}{24}$
		2.2.1 $2.2.2$	Traversals	27

Alistair O'Brien							Foundations Of Comput										ıt€	er Science											
	~																												
2.3	Sequences	•		•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	31

1 OCaml

1.1 OCaml and Functional Programming

- OCaml is a functional programming language, tasks can be approached **mathematically**.
- OCaml provides **imperative** features such as
 - mutable arrays and variables (which are updated using the assignment command)
 - input and output commands

Reason: pure functional methods such as *monads* reduce the clarity of the language.

Features

• Lists. Supports sequential access (scanning left from right).

- Balanced tree. In theory, same efficiency as arrays, but in practice slower.
- First class objects: Objects that support all the operations generally available to other objects (such as being returned / applied to functions)
- Pattern matching: Pattern matching is the matching of objects against algebraic data type constructors.
- OCaml's type system is **polymorphic**

- Higher order functions: A function that either (or both) takes a function as an argument or returns a function. e.g. List.map, List.fold
- Exceptions can be raised and handled, \implies OCaml cannot crash but enter an error state (which is contained).

Evaluation Of Expressions

- Call-by-value (strict evaluation):
 - Evaluation rule in OCaml.
 - Rule: To evaluate f E, first evaluate E then substitute the value into the body of f.
 - Conditionals have the rule: if E_1 is true, evaluate E_2 otherwise evaluate E_3.

• Call-by-name:

- Rule: To evaluate f E, substitute E into the body of f. Then evaluate the body.
- Good at reducing f if f doesn't dependent on E, but can lead to multiple evaluations of E.
- Call-by-need (lazy evaluation):
 - Similar to **call-by-name** but ensures **E** is evaluated at most once.
 - Substitutes pointers into the function body, if E is evaluated then the value is shared by the other pointers.
 - Pointer structure forms a directed graph.

1.1.1 Concrete Data Types

OCaml Type	Range
int	32 (or 64) bit two's complement integer
float	IEEE double-precision floating point
bool	A boolean, with literals true and false
char	An 8-bit character. Represented using ''
string	A string. Represented using ""
unit	Written as (). Used as a null value. unit is often
	returned by functions that produce side-effect e.g.
	<pre>print_string : string -> unit.</pre>

1.1.2 Operators

Operator	Meaning							
+	Integer addition							
-(infix)	Integer subtraction							
*	Integer multiplication							
/	Integer division							
mod	Integer modulo							
-(prefix)	Negation							
+.	Floating-point addition							
	Floating-point negation							
*.	Floating-point multiplication							
/.	Floating-point division							
**	Floating-point exponentiation							
0	List concatenation							
^	String concatenation							
=	Equality							
<>	Inequality							
<	Less than							
<=	Less than or equals							
>	Greater than							
>=	Greater than or equals							
&&	Boolean and							
11	Boolean or							
not(prefix)	Boolean not							

1.1.3 Local declarations

- A **declaration** is the process of assigning a name to an expression.
- Local declarations in OCaml begin with the let keyword followed by the identifiers of the value. e.g.

```
let \langle pat1 \rangle = e1 and ... and \langle patn \rangle = en [in u]
```

- Value identifiers are referred to as **variables** (bad use of the word...).
- A variable can be redeclared but not updated.
- The primitive types of values are int, float, bool, char, string.
- Identifiers can be
 - alphabetic: Starts with a letter, followed by zero or more letters, digits, underscores or aspostrophe.
 - symbolic: One or more of !,\%,\&,\\$,\#,+,-,*,\/,:,<,=,\>,?\,\\\^\,\\^\,\^\,\^\,\^\

1.1.4 Pattern Matching

- A **pattern** is defined as an expression consisting of variables, constructors and wildcards. Constructors are
 - literals (e.g. ints, floats, strings, etc)
 - algebraic data type value constructors
- Pattern matching is the processed of checking whether a value matches a given pattern. (they are usually matched using FSMs).
- e.g. Consider matching on a maybe value, then

• Patterns have the general grammar

1.1.5 Control Structures

Sequence

• The sequence expression has the form

- The expression first evaluates E_1 , then E_2 , ..., then E_n and returns the value of E_n .
- The type of (E_1 : t1); ...; (E_n : tn) is tn.

Conditional

• Conditional expressions have the form

```
if E_1 then E_2 else E_3
```

where E_1 is an expression of type bool, and E_2, E_3 are expressions of type 'a. The type of conditional is 'a.

• else E_3 can be omitted, in which case it defaults to else () (useful for imperative programming)

Match Expression

• The match expression has the form

Exception Handling

- An **exception** is an datatype, that once **raised**, disrupts the normal flow of the program's execution
- They are defined using the following syntax:

```
exception E [of t]
```

where E is an exception constructor name and t is some optional type. e.g.

```
exception Problem of string
```

- To raise an exception value e, use the raise function. e.g. raise \$ Invalid_argument "foldr1"
- To handle an exception, we use the following syntax

where E_0 is some expression that might raise an exception. If no exception is raised, then the try expression evaluates to E_0 . Otherwise, if it does raise some exception value v, the value v is matched against the patterns. e.g.

1.2 Functions

1.2.1 Function Definitions

• Non-recursive functions are defined as:

let f x1 x2 ...
$$xn = e$$

Recursive functions require the rec keyword:

let rec f x1 x2 ...
$$xn = e$$

- Wee can use type annotations to explicitly denote types. e.g.
 let f (x : int) : int = x + 2.
- Multually recursive functions are defined with the and keyword e.g.

let rec even
$$n = n = 0 \mid \mid \text{ odd } (n - 1)$$

and odd $n = n = 1 \mid \mid \text{ even } (n - 1)$

• Function types are

where $x1:t1, \ldots, xn:tn$ are the metavariables indicating types and e:u.

• The type operator -> is right associative (curried functions).

1.2.2 Anonymous Functions

- An anonymous function is a function definition that is not bound to an identifier.
- In OCaml, there are two different types of syntax for anonymous functions:
 - 1. **function** creates an anonymous function that can match 1 variable to n patterns using

```
function
| <pat1> [when cond1] -> E_1
.
.
.
| <patn> [when condn] -> E_n
```

2. fun creates an anonymous function that can match n variables to 1 pattern each

• They're often arguments being passes to higher-order functions, or used for constructing the results of a higher-order function.

1.2.3 First-Class Objects

- A first-class object is an entity which supports all the operations generally available to other objects. e.g. being passes as an argument, returned from a function, etc.
- OCaml functions are first-class objects.

1.2.4 Currying and Partial Application

- Currying is the process of transforming a function that takes multiple arguments in a tuple, into a function that takes a single argument and returns another function. e.g. f : a -> (b -> c) is the curried form of g : (a,b) -> c
- Note that -> is right associative.
- Curried functions are more convenient because it allows partial application.
- Partial application is where less arguments than the full number of arguments are applied to a function. e.g.

```
let add x y = x + y
let add_one = add 1
```

Note that function application is left associative e.g.

$$f E_1 E_2 \dots E_n = (\dots ((f E_1) E_2) \dots) E_n$$

1.2.5 Higher Order Functions

• A **higher-order function** is a function that takes other functions as arguments or returns a function as a result. e.g.

```
(* curry : ('a * 'b -> 'c) -> 'a -> 'b -> 'c *)
let curry f a b = f (a, b)
(* uncurry : ('a -> 'b -> 'c) -> ('a * 'b -> 'c) *)
let uncurry f (a, b) = f a b
```

1.2.6 Polymorphic Functions

- OCaml's functions and abstract data types support parametric polymorphism (and subtype polymorphism).
- Parametric polymorphism refers to when the type of a value contains one or more type parameters. e.g.

```
let id x = x
- val id : 'a -> 'a = <fun>
```

1.2.7 Operators as Functions

• In OCaml, infix operators can be used as prefix functions by surrounding them with parentheses:

```
( + );;
- : int -> int -> int = <fun>
```

• We can define our own infix operators using the same syntax:

let (
$$<.>$$
) f g = fun x -> f (g x)

1.3 Imperative Features

1.3.1 References

- In OCaml we use a data abstraction of the computer's memory, via references to memory cells. A reference with initial contents of E is created using ref E. ref is a function of type 'a -> 'a ref.
- The function! applied to the reference p is used to return the current contents of the reference p. This operation is known as dereferencing. It has the type 'a ref -> 'a.
- To update the contents of a reference, the assignment operator := is used. p := E assigns the contents of p to the value of E. := has the type 'a ref -> 'a -> ().
- Two references are said to be equal if and only if they have the same contents.

1.3.2 Control Structures

- There are two iterative control structures in OCaml:
 - The for loop, with the syntax

```
for <name> = E_1 to E_2 do
    E_3
done
```

where E_1 is the initial value <name>. The body of the for loop E_3 is evaluated until <name> = E_2 . The entire type of the for loop structure is (). e.g.

for x = 1 to 4 do print_int x; print_newline () done

prints the integers 1,2,3,4.

- The while loop, with syntax

This evaluates the Boolean expression B. E is evaluated zero or more times until B evaluates to false.

• For branching structures, we if - then - else and the match constructs.

2 Concepts in OCaml

2.1 Data Structures

2.1.1 Algebraic Data Types

• An algebraic data type in OCaml has the following form:

where alg_data_type is the name of the type of arity > 0, 'a, 'b, ..., 'c are distinct type parameters and Constructor1, ... are the value constructors that describe the ways in which the values of the alg_data_type type can be constructed.

• Algebraic data types can be polymorphic, via the use of type parameters.

e.g. Consider the maybe type (often called option).

```
type 'a maybe = Nothing | Just of 'a
```

We can then have int maybe, float maybe, string maybe, ... types.

• All non-recursive algebraic data types can be represented using the disjoint_sum data type.

```
type ('a, 'b) disjoint_sum = Ln1 of 'a | Ln2 of 'b
```

Consider the type maybe, then

```
let nothing = Ln1 ()
let just x = Ln2 x
```

Provided we use a unique disjoin_sum value in each of our value constructor representation functions then we can represent the original non-recursive type.

• Algebraic data types can be recursive. e.g. list type.

2.1.2 Lists

- In OCaml, "lists" are singly-linked lists consisting of a finite sequence of elements.
- They are defined as

```
type 'a list = [] | (::) of 'a * 'a list
```

• There are three syntactic forms for building lists:

```
[] (*nil*)
e1 :: (* cons *) e2
[e1; e2; ...; en] <=> e1 :: e2 :: ... :: en :: []
```

- The cons operation is right associative.
- All elements in a list must have the same type. (However, the use of ADTs may subvert this condition).

```
module type List = sig
    exception Empty
    type 'a list
    val hd : 'a list -> 'a
    val tl : 'a list -> 'a list
   val is_empty : 'a list -> bool
   val empty : 'a list
   val foldl : ('b -> 'a -> 'b) -> 'b -> 'a list -> 'b
   val foldr : ('a -> b' -> 'b) -> 'b -> 'a list -> 'b
   val zip : 'a list -> 'b list -> ('a * 'b) list
   val unzip : ('a * 'b) list -> 'a list * 'b list
   val length : 'a list -> int
    val rev : 'a list -> 'a list
    val (0) : 'a list -> 'a list -> 'a list
   val map : ('a -> 'b) -> 'a list -> 'b list
    val filter : ('a -> bool) -> 'a list -> 'a list
end
module List : List = struct
    type 'a list = [] | (::) of 'a * 'a list
    exception Empty
    let hd xs = match xs with
        | x :: _ -> x
        | _ -> raise Empty
```

end

```
let tl xs = match xs with
        | _ :: xs -> xs
        | _ -> raise Empty
    let empty = []
    let is_empty = match xs with
        | [] -> true
        -> false
    let rec foldl f acc xs = match xs with
        | [] -> acc
        | x :: xs \rightarrow foldl f (f acc x) xs
    let rec foldr f acc xs = match xs with
        | [] -> acc
        | x :: xs \rightarrow f x (foldr f acc xs)
    let rec zip xs ys = match xs, ys with
        | x :: xs, y :: ys \rightarrow (x, y) :: zip xs ys
        | _, _ -> []
    let unzip = foldr (fun (x, y) (xs, ys) \rightarrow (x :: xs, y :: ys)) ([], [])
    let length = foldl (fun acc _ -> acc + 1) 0
    let cons x xs = x :: xs
    let rev = fold cons []
    let (0) xs ys = foldr cons ys xs
    let map f = foldr (fun x xs \rightarrow f x :: xs) []
    let filter f = foldr (fun x xs -> if f x then x :: xs else xs) []
(* useful list functions *)
let rec nth xs n = match xs, n with
```

```
| [], _ -> raise Empty
| _, n when n < 0 -> raise (Invalid_argument "nth")
| x :: _, 0 -> x
| x :: xs, n -> nth xs (n - 1)

let flatten = foldr (0) []
let exists f = foldl (fun acc x -> f x || acc) false
let all f = foldl (fun acc x -> f x && acc) true
let member x = exists ((=) x)
let partition f = foldr (fun x (xs, ys) -> if f x then ) ([], [])
```

2.1.3 Tuples

- Pairs are tuples of 2 values e.g. (e1, e2) : 'a * 'b
- *n*-tuples are created by an expression of the form (e1, e2, ..., en).

 In ML, tuples have the form (e1, ..., en) = (e1, (e2, (..., (en-1, en) ...))).

 Hence *n*-tuples can be implemented as extended pairs.
- A 0-tuple (denoted ()) is a null value of type unit. Often used in function that produce side-effects, such as print_string: string -> unit.

2.1.4 Binary Trees

- A binary tree is a rooted tree (a connected simple graph with no cycles) where each vertex has at most two *children* (the left and right child).
- The number of nodes n on a binary tree of height $h \ge 0$ is

$$h + 1 \le n \le 2^{h+1} - 1.$$

```
| Vertex (_, _, r) -> max r
let rec min t = match t with
    | EmptyTree -> raise Empty
    | Vertex (v, EmptyTree, _) -> v
    | Vertex (_, 1, _) -> min 1
let rec insert t v = match t with
    | EmptyTree -> Vertex (v, EmptyTree, EmptyTree)
    | Vertex (u, 1, r) when v = u \rightarrow Vertex (v, 1, r)
    | Vertex (u, l, r) when v < u \rightarrow Vertex (u, insert l v, r)
    | Vertex (u, 1, r) -> Vertex (u, 1, insert r v)
let rec delete t v = match t with
    | EmptyTree -> EmptyTree
    | Vertex (u, l, r) when v < u -> Vertex (u, delete l v, r)
    | Vertex (u, l, r) when v > u \rightarrow Vertex (u, l, delete r v)
    | Vertex (u, l, r) -> match t with
        | Vertex (_, EmptyTree, EmptyTree) -> EmptyTree
        | Vertex (_, EmptyTree, r) -> r
        | Vertex (_, 1, EmptyTree) -> 1
        | Vertex (_, 1, r) ->
            let v' = min r in
            let r' = delete r v'
            in Vertex (v', l, r')
let rec search t v = match t with
    | EmptyTree -> raise Empty
    | Vertex (u, _, _) when v = u \rightarrow t
    | Vertex (u, 1, _{-}) when v < u \rightarrow search 1 v
    | Vertex (u, _, r) -> search r v
```

end

• A dictionary is a collection of key-value pairs, such that each key appears at most once in the collection. An ordered dictionary is a dictio-

nary in which keys have some total ordering.

```
module type Dictionary = sig
    type key
    type 'a dict
    exception NotFound

val empty : 'a dict

val insert : 'a dict -> key -> 'a -> 'a dict
    val search : 'a dict -> key -> 'a
end
```

- A binary search tree is a binary tree in which each vertex stores a keyvalue pair (k, v), such that for all keys k_l in the left subtree l satisfies $k_l < k$ (and vice-versa).
- A binary search tree implements an ordered dictionary.

end

2.1.5 Queues

- A queue is a first in first out (FIFO) data structure, where elements are removed from the head and inserted at the tail.
- Functional queue $x_1, \ldots, x_m, y_n, \ldots, y_1$ represented by a pair of lists

$$(\underbrace{[x_1,\ldots,x_m]}_{\text{front}},\underbrace{[y_1,\ldots,y_n]}_{\text{rear}}).$$

- Enqueue to the rear of the queue and dequeue from the front.
- Amortized time per operation is O(1).
- Implementation:

```
module type Queue = sig
    exception Empty

type 'a queue
val empty : 'a queue

val is_empty : 'a queue -> bool

val enqueue : 'a queue -> 'a -> 'a queue
val dequeue : 'a queue -> 'a queue

val hd : 'a queue -> 'a
end
```

```
module FunctionalQueue : Queue = struct
    exception Empty
    type 'a queue = 'a list * 'a list
    let empty = ([], [])
    let is_empty q = match q with
        | ([], []) -> true
        | _ -> false
    let norm q = match q with
        | ([], ys) -> (List.rev ys, [])
        | q -> q
    let enqueue (xs, ys) y = norm (xs, y :: ys)
    let dequeue q = match q with
        | (x :: xs, ys) \rightarrow norm (xs, ys)
        | _ -> raise Empty
    let hd q = match q with
        | (x :: _, _) -> x
        | _ -> raise Empty
end
```

2.2 Algorithms

2.2.1 Sorting

- Problem Of Sorting: Given sequence $\langle x_1, x_2, \ldots, x_n \rangle$. Return permutation of sequence $\langle x'_1, x'_2, \ldots, x'_n \rangle$ such that $x'_1 \leq x'_2 \leq \cdots \leq x'_n$ (monotonically increasing)
- Insertion Sort:
 - Tail recursive (or iterative) comparison sorting algorithm.
 - At each recursive call, we remove an element (the head) and insert it in the correct position in the sorted sublist.

– Analysis:

* Worst Case: Occurs when the list xs is reverse sorted. insert takes $\Theta(j)$ time for list xs of size j (in worst case). Hence

$$T(n) = \sum_{j=1}^{n} \Theta(j) = \Theta(n^{2}).$$

- * Average Case: Average case time complexity is $\Theta(n^2)$. See algorithms notes for analysis.
- Variants such as binary insertion sort exist, reducing # of comparisons, but still have time complexity of $O(n^2)$

• Quicksort:

- Divide and conquer comparison sorting algorithm:
 - * **Divide**: Partition the list to be sorted into two sublists around a pivot x, such that elements in the lower sublist satisfy $\leq x$ and elements in the upper sublist satisfy > x.
 - * Conquer: Recursively sort the lower and upper sublists using quicksort
 - * Combine: Combine the sorted sublists by appending them together.

- Analysis:
 - * Worst Case: Partition produces one sublist of length n-1 and one of length 0. partition takes $\Theta(n)$ time. So we have

$$T(n) = T(n-1) + T(0) + \Theta(n)$$
$$= T(n-1) + \Theta(n)$$

Hence $T(n) \in \Theta(n^2)$. See algorithms notes for formal analysis.

- * Average Case: The average case time complexity is $O(n \log_2 n)$. See algorithms notes for formal analysis.
- A tail recursive variant

• Merge Sort:

- Divide and conquer comparison sorting algorithm:
 - * Divide: Divide the n element list xs into two sublists 1, r of sizes $\lfloor n/2 \rfloor$ and $\lfloor n/2 \rfloor$ respectively.
 - * Conquer: Recursively sort the two sublists using merge sort.
 - * Combine: Merge the two sorted sublists using merge.

```
let k = length xs / 2
and l = merge_sort (take xs k)
and r = merge_sort (drop xs k) in
merge l r
```

- Analysis:

* Let T(n) be the time cost function of merge_sort where n is the length of xs. We have

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T\left(\frac{n}{2}\right) + \underbrace{\Theta(n)}_{\text{merge}} & \text{otherwise} \end{cases}.$$

since merge performs m' + n' - 1 comparisons (in the worst case) where m' and n' are the lengths of xs and ys respectively. Hence $\Theta(n)$ time.

So by master theorem, we have

$$T(n) \in \Theta(n \log_2 n).$$

 Merge sort's worst case doesn't depend on the initial permutation of xs, whereas quicksort does.

2.2.2 Traversals

- Tree Traversal: A form of graph traversal in which each vertex of the tree data structure is visited exactly *once*. Classified by order in which vertices are visited.
- **Depth-first Searches**. A depth-first search (DFS) starts at a root vertex and explores as far as possible along each branch of the tree before backtracking. General recursive pattern (for a binary tree) with root x:
 - (L) Recursively traverse x's left subtree l.
 - (V) Process the current vertex x.
 - (R) Recursively traverse x's right subtree r.

Common DFS traversals:

```
- Pre-order (VLR):
```

- * Process current vertex, recursively traverse l then recursively traverse r.
- * Produces a topologically sorted list

* Tail-recursive variant removes append

- **In-order** (LVR):

- * Recursively traverse l, process current vertex x then recursively traverse r.
- * In BST, in-order traversal produces a sorted list of vertex keys.

* Tail-recursive variant

- Post-order (LRV):

* Recursively traverse l, recursively traverse r then process current vertex x.

* Tail-recursive variant

- Analysis: Worst case time complexity of implementations using \mathfrak{O} are $O(|V|^2)$ (due to append). Tail-recursive variants have a worst-case complexity of $\Theta(|V|)$.
- Breadth-first Searches. A Breadth-first search (BFS) starts at a root vertex and explores all of the neighbours at the current depth prior to moving onto the next depth level.

Implementations:

 Naïve Implementation. Use a list xs to store all vertices that will be visited. Each iteration removes a vertex from the head of the list and appends it's subtrees at the end of the list (FIFO ordering).

- Queue Implementation. We use a functional queue implementation with enqueue and dequeue operations with amortized costs O(1).

open FunctionalQueue

v :: bfs (enqueue (enqueue (dequeue q) 1) r)

bfs : 'a tree queue -> 'a list

Analysis: BFS to depth d with branching factor b (average degree) examines $O(b^d)$ vertices

$$n = 1 + b + \dots + b^d = \frac{b^{d+1} - 1}{b - 1} = \frac{b}{b - 1}(b^2 - b^{-1}) \in O(b^d),$$

with time factor $\frac{b}{b-1}$.

• Iterative deepening DFS. Iterative deepening DFS (IDDFS) is a search algorithm in which DFS depth-limited algorithm is repeatedly run until the search goal (solution) is found. "

Analysis: The vertices at depth d are explored once, the vertices at d-1 are explored twice, ..., the root vertex is explored d+1 times. So we have the following arithmetic-geometric sequence

$$b^{d} + 2b^{d-1} + 3b^{d-2} + \cdots db + (d+1) = \sum_{k=0}^{d} (d+1-k)d^{k}$$

$$= b^{d} \sum_{k=0}^{d} (d+1-k)d^{k-d}$$

$$\leq b^{d} \sum_{k=1}^{\infty} k(b^{-1})^{k-1}$$

$$= b^{d} \frac{d}{d(b^{-1})} \sum_{k=0}^{\infty} (b^{-1})^{k}$$

$$= b^{d} \left(1 - \frac{1}{b}\right)^{-2} \in O(b^{d})$$

For the space complexity, the dfs function stores a stack of maximum depth d, hence space complexity of IDDFS is O(d).

Advantages:

- BFS complete search on infinite trees while having DFS space complexity.
- Despite revisiting vertices, IDDFS is extremely efficient.

2.3 Sequences

- Implement lazy lists (sequences) in OCaml using delayed evaluation on the tail of the list.
- Delayed evaluation is implemented using a function fun () -> e : () -> 'a , delayed under a closure (not a lazy block). e is not evaluated until the function is called, thus delaying the evaluation of e.

```
module type Seq = sig
    type 'a seq
    exception Empty
    val hd : 'a seq \rightarrow 'a
    val tl : 'a seq -> 'a seq
    val empty: 'a seq
    val is_empty : 'a seq -> bool
    val map : ('a -> 'b) -> 'a seq -> 'b seq
    val filter : ('a -> bool) -> 'a seq -> 'a seq
    val (0) : 'a seq -> 'a seq -> 'a seq
    val interleave : 'a seq -> 'a seq -> 'a seq
end
module Seq : Seq = struct
    type 'a seq = Nil | Cons of 'a * (unit -> 'a seq)
    exception Empty
    let hd xs = match xs with
        | Cons (x, _) \rightarrow x
        | _ -> raise Empty
    let tl xs = match xs with
        | Cons (_, xf) -> xf ()
        | _ -> raise Empty
```

end

```
let empty = Nil
let is_empty xs = match xs with
    | Nil -> true
    | _ -> false
let rec map f xs = match xs with
     | Nil -> Nil
     | Cons (x, xf) \rightarrow Cons (f x, fun () \rightarrow map f (xf ()))
let rec filter f xs = match xs with
    | Nil -> Nil
     | Cons (x, xf) when f x \rightarrow Cons (x, fun () \rightarrow filter f (xf ()))
     | Cons (x, xf) \rightarrow filter f <math>(xf ())
let rec (0) xs ys = match xs with
    | Nil -> ys
     | Cons (x, xf) -> Cons (x, fun () -> (xf ()) @ ys)
let rec interleave xs ys = match xs with
     | Nil -> ys
     | Cons (x, xf) \rightarrow Cons (x, fun () \rightarrow interleave ys (xf ()))
```