Energie chimique et énergie électrique : conversion et stockage

Thermodynamique des réactions d'oxydoréduction

Cinétique des réactions d'oxydoréduction

Électrochimique !!!

Cinétique des réactions électrochimiques

Vitesse d'une réaction électrochimique

Electrode: conducteur métallique en contact avec un conducteur ionique

Réaction électrochimique : - a lieu à l'interface métal-solution,

 $Ox + ne_{-(M)} = Red$ - permet le transfert du courant entre le

conducteur métallique et le conducteur ionique.

Les e- sont réellement échangés

Système électrochimique : $M_{(s)}$, Ox, Red

Electrode simple

$$E(i=0) = E_{eq}$$

 $\eta(i)$ = E(i) – E(i=0) : surtension (ou polarisation)

Electrode mixte

 $E(i=0) = E_{mixte} (ex : E_{corr})$

E(i=0) est calculable par la relation de Nernst On ne peut pas prévoir la valeur de E(i=0) par calcul

Quelle relation entre v, vitesse de la réaction électrochimique et i ou j?

Red seul

$$V_{R}$$
 Red $\Rightarrow V_{O}$ Ox $+ ne^{-}$ (1)

 $V_{OX} = \frac{1}{S} \frac{df}{dt}$ \Rightarrow
 $V_{OX} = \frac{ia}{n + S}$
 $V_{OX} =$

Thème 4 Energie chimique et électrique : conversion et stockage

Electrode simple

$$\nu_R \operatorname{Red} \Longrightarrow \nu_0 \operatorname{ox} + \operatorname{me}^-(1) - (2)$$

$$i = i_0 + i_c$$

$$v = \frac{i}{n+s} = \frac{1}{n+s}$$

J est une mesure de v

La composition N'évolue PAS

Densité de courant d'échange

Electrode mixte

Predict Red2

Red2

Red2

Red2

Red2

Red2

Même approche avec $i = i_{a2} + i_{c1}$

La composition EVOLUE

Ex : Densité de courant de corrosion

Ds les 2 cas, même à courant nul, il se produit une oxydation et une réduction

Que se passe-t-il à l'interface métal-solution ?

3 types de transfert de masse

- Electromigration (si Ai chargée)
- Diffusion convective
 (∀ Ai si agitation)
- Diffusion naturelle (si Ai électroactive)

Transfert de charge rapide / lent

5

Il faut agiter pour atteindre un régime stationnaire

Allure des courbes intensité-potentiel sur une électrode

Facteurs cinétiques T, C_{ox} ou C_{red} , $M_{(s)}$ (nature , état de surface et surface), E ou η , vitesse d'agitation

Définition

C'est la représentation de i ou j = f(E ou η) à T, C_{ox} ou C_{red} , $M_{(s)}$, agitation constants

Tracé : le montage à trois électrodes

Conditions expérimentales de tracé :

```
T constante ⇒ Durée d'enregistrement courte

Concentration constante ⇒ Condition de microélectrolyse*

Surface et état de surface de M

constantes ⇒ Surface immergée contrôlée et nettoyage
électrode entre chaque enregistrement

Agitation constante ⇒ Profondeur d'immersion et rotation du barreau
aimanté constantes (ou électrode tournante)
```

*Par exemple :

```
Concentration \approx qq mmol/L (qq 0,1 ml/L) 
I \approx qq \muA (qq mA) 
S(T) \approx qq mm<sup>2</sup> 
S(A) \approx qq 10 mm<sup>2</sup> 
Addition d'un « sel de fond » ou « électrolyte support »
```

Allure aux faibles surtensions

Système rapide (ou réversible)

EI : Red_(aq) seul

EI :Ox_(aq) seul

si Ox+Red: Pente à l'origine importante

Système lent

EI : $Red_{(aq)} + Ox_{(aq)}$ Rapide, lent, très lent

D'autant plus lent que les transformations chimiques sont importantes

Equation des courbes i-E : relations de Tafel

EI : électrode simple ou mixte

Pour des surtension suffisamment importantes mais pas trop ...!

$$\eta_a = a + b \log j$$
 $\eta_c = c + d \log/j /$

Diagramme d'Evans

Allure aux plus fortes surtensions : courant limite de diffusion

Positionnement?

Surface immergée de l'électrode : S

Surface immergée de l'électrode : S/2

$$I_a^{lim} = n F S k_{d'Red} [Red]_{\infty}$$

De même, on montre que :

$$I_c^{lim} = -n F S k_{d'Ox} [Ox]_{\infty}$$
M2 SPC Prépa agreg de physique

Intérêt en analyse?

k_{d,i}≈ cte sauf pour H⁺ et HO⁻

k_{d,i} dépend de la vitesse d'agitation

Origine du courant limite

Profil de concentration pour E > E(i=0) (modèle de Nernst)

Sous agitation régulière, on est en régime stationnaire : δ_i = cste.

La consommation de Red génère un gradient de concentration qui engendre le flux de Red vers l'électrode. Ce flux est d'autant plus important que [Red]_{el} est faible.

Quand E augmente, [Red]_{el} diminue jusqu'à être nulle. Le flux de Red vers l'électrode atteint alors sa valeur limite.

Domaine d'inertie électrochimique de l'eau

EI:
$$H^+$$
 (pH=0), H_2O

$O_{2(g)} + 4H^{+}_{(aq)} + 4e^{-} = 2H_{2}O_{(aq)}$

EI : $O_{2(g)}$ (1 bar), H_2O , (pH=0)

Le domaine d'inertie électrochimique du solvant dépend

de la nature de l'électrode de la présence de O₂ du pH M2

Allure et positionnement sont à connaitre

Thème 4 Energie chimique et électrique : conversion et stockage

$$M^{n+}_{(aq)} + ne- = M_{(s)}$$

EI : Mⁿ⁺, M_(s)

Système rapide

Système lent

Expression de E(i=0)?

Expression de i_c^{lim} ?

Allure et positionnement sont à connaitre

Représenter l'allure des courbes i-E dans les deux cas suivants :

- a) Electrode de Pt plongeant dans une solution aqueuse désaérée de sulfate de fer(III) C à mol/L et à pH=2
- b) Electrode de Pt plongeant dans une solution aqueuse désaérée de sulfate de fer(III) à C mol/L et de sulfate de fer(II) 2C mol/L et à pH=2.

Donnée à $25^{\circ}C$: E°(Fe³⁺/Fe²⁺) = 0,77 V

Tous les systèmes sont supposés rapides. Les ions sulfate sont électroinactifs.

L'électrode de référence est l'ECS (E_{ref} = 0,24 V).

2 modes de représentation sont utilisés

Utilisation des courbe i-E

Point de fonctionnement d'une cellule électrochimique

Dans une cellule électrochimique, il y a deux électrodes

Point de fonctionnement d'une pile (transformation spontanée)

Point de fonctionnement en électrolyseur (transformation forcée)

Corrosion (uniforme et différentielle)

Dosages potentiométriques à i=0 et i non nul

Utilisation des courbe i-E: transformation spontanée

Point de fonctionnement d'une pile

A quelles conditions la tension aux bornes d'une pile en fonctionnement est-elle constante ?

Comment minimiser la résistance interne de la pile?

En fonctionnement : $i_a = -i_c$

$$V_1 - V_2 = [E_1(i=0) + \eta_1(i)] - [E_2(i=0) + \eta_2(i)] - Ri$$

Pile Daniell

La pile Daniell est-elle rechargeable ?

Pour qu'une pile soit rechargeable, il faut que les réactions aux électrodes soient inversables

Et la pile Volta?

Utilisation des courbe i-E: transformation forcée

En fonctionnement : $i_a = -i_c$

$$V_2 - V_1 = [E_2(i=0) + \eta_2(i)] - [E_1(i=0) + \eta_1(i)] + Ri$$

Electrolyse d'une solution de CuSO₄

Solution de sulfate de cuivre à 0,1 mol/L à pH = 0 Anode en carbone graphite Cathode en cuivre

Allure des courbes i-E dans l'hypothèse où tous les couples sont rapides ?

Evolution de ces courbes lors de l'électrolyse ?

$$E^{\circ}(Cu^{2+}/Cu_{(s)}) = 0.34V$$

Electrolyse à I imposé, à U imposée Rendement faradique

Purification du cuivre par le procédé à anode soluble

EI : électrolyte = Cu^{2+} , Zn^{2+} (impureté), Ag^+ (impureté), anions électroinactifs, H_2O ; anode = bloc de $Cu_{(s)}$ à purifier; cathode : fil de $Cu_{(s)}$ pur

Quelle tension appliquer pour éliminer les impuretés ?

Utilisation des courbe i-E

Point de fonctionnement d'une cellule électrochimique

Corrosion

Corrosion : altération d'un métal par réaction chimique avec un oxydant.

Corrosion sèche / corrosion humide

Corrosion uniforme / Corrosion différentielle

Dosages potentiométriques à i=0 et i non nul

Utilisation des courbes i-E: corrosion humide

La corrosion uniforme

Aspect thermodynamique

Le métal est corrodé si sa concentration en solution est supérieure à 10-6 mol/L

Thème 4 Energie chimique et électrique : conversion et stockage

Un métal porté dans sa zone de passivation n'est pas toujours passif

Métaux se passivant spontanément :

Al, Cr, Ti, Pb, acier inoxydable

Mise en évidence expérimentale de la passivation du fer

Aspect cinétique

Potentiel de corrosion : $E_{corr} = E_{m}$

Vitesse de corrosion : $v_{corr} = \frac{j_{corr}}{nF}$

Courbe tracée expérimentalement?

EI : clou en fer dans de l'eau aérée à pH 7

La corrosion d'un métal est d'autant plus rapide que j_{corr} est grande

Si le métal est porté à E > E_{corr} sa corrosion est accélérée

Chap 1 : la réaction électrochimique-généralités-le transfert de charge-corrosion humide

Détermination de E_{corr} : $E_{corr} = E(i=0)$

Clou en fer dans HCl_(aq)

Détermination de j_{corr} ?

Protection contre la corrosion uniforme

Protection par revêtement protecteur

Peinture

Passivation spontanée (Cr, Ni)

Anodisation (AI)

Zincage (galvanisation ou électrozincage)

Chromage

Protection cathodique à I imposé

M est amené dans sa zone d'immunité

La corrosion différentielle

Formation de micropile

Pile de corrosion galvanique

E₁>E_{corr1} : l'oxydation de M₁ est accélérée

Clou entouré d'un fil de Cu

Exemple de corrosion galvanique pour un assemblage de tôles aluminium et cuivre par un rivet sans isolation. Le potentiel de dissolution de l'aluminium étant inférieur à celui du cuivre, il y a corrosion

M2 SPC Prépa agreg de physique

Pile à aération différentielle

Obs: L'oxydation du fer a lieu en profondeur

Corrosion par piqure Corrosion caverneuse

Utilisation des courbe i-E

Point de fonctionnement d'une cellule électrochimique

Corrosion

Dosages par méthodes potentiométriques

Titrages potentiométriques à courant nul

Titrages potentiométriques à courant imposé

Utilisation des courbes i-E : dosages par méthodes électrochimiques

Thème 4 Energie chimique et électrique : conversion et stockage

