Aplicaciones del análisis multivariante con R Estadística Multivariante - Universidad de Granada

Laura Gómez Garrido Miguel Lentisco Ballesteros Antonio Martín Ruiz Daniel Pozo Escalona Francisco Javier Sáez Maldonado

22 de enero de 2020

Contenido

- Introducción: R
- R en el análisis multivariante
 - Distribución Normal Multivariante. Ejemplos
 - Scatterplots
- Para ampliar

Introducción: R

- 2 R en el análisis multivariante
 - Distribución Normal Multivariante. Ejemplos
 - Scatterplots

Para ampliar

¿Qué es R?

R es un entorno y lenguaje de programación enfocados a la computación estadística y de gráficos. Surge como una reimplementación libre del lenguaje y entorno S. Proporciona una amplia variedad de funcionalidades estadísticas y gráficas y es altamente extensible.

R está disponible como software libre bajo los términos de la GNU General Public License de la Free Software Foundation en forma de código fuente. Puede ser compilado y ejecutado en una gran cantidad de plataformas UNIX, Windows y MacOs.

Librerías y paquetes

R forma parte de un proyecto colaborativo y abierto donde sus propios usuarios pueden publicar paquetes.

Utiliza la forja de deasarrollo R-Forge.

En Diciembre de 2019, el repositorio oficial tenía disponibles 15.315 paquetes organizados en vistas o temas.

Algunas vistas

- Bayesian
- ChemPhys
- ClinicalTrials
- Cluster
- **Databases**
- DiferrentialEquations
- Distribution
- Genetics
- MachineLearning
- Multivariate

Introducción: R

- R en el análisis multivariante
 - Distribución Normal Multivariante. Ejemplos
 - Scatterplots

Para ampliar

Nuestro dataset

Característica del data set	Multivariante	Nº de Instancias	178
Características de los atributos	Enteros, Reales	Nº de Atributos	13
Área	Física	Donado	01/07/1991

Fuente: Machine Learning Repository

Propietarios Originales:

Forina, M. et al, PARVUS -

An Extendible Package for Data Exploration, Classification and Correlation.

Institute of Pharmaceutical and Food Analysis and Technologies, Via Brigata Salerno, 16147 Genoa, Italy.

Lectura

```
wine <- read.table("http://archive.ics.uci.edu/ml
   /machine-learning-databases/wine/wine.data",
   sep=",")</pre>
```

:	wine													
A data.frame: 178 x 14														
	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14
	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<int></int>						
	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065
	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050
	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185
	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480

- read.csv o read.csv2
- read.delim

Media y desviación típica

```
sapply(wine[2:14],mean)
V2 13.0006179775281
V3 2.33634831460674
...
V13 2.61168539325843
```

V13 2.61168539325843 V14 746.893258426966 Contents split into two lines

Ejemplo de selección de datos

```
selection1 <- wine[wine$V1 == "1".]
selection3 <- wine[wine$V1 == "3".]</pre>
mean1 <- sapply(selection1[2:14],mean)</pre>
mean2 <- sapply(selection3[2:14], mean)
chemical \leftarrow c(2,3,4,5,6,7,8,9,10,11,12,13,14)
plot(chemical, mean1, col = "red")
points(chemical, mean2, col="blue", pch="*")
legend(2,1000,legend=c("Medias,en,Fabrica,1","
   Medias_en_Fabrica_2"), col=c("red","blue"),
                                      pch=c("o","*")
```


Scatterplots

Podemos realizar scatterplots de la siguiente manera

O, dibujar todas las parejas posibles a la vez, y añadir las rectas de regresión

```
pairs(USairpollution,
    panel = function(x, y, ...) {
        points(x, y, ...)
        abline(lm(y ~ x), col = "grey")
    }, pch = ".", cex = 1.5)
```


Implementación Teórica de una DNM

Introducción: R

- R en el análisis multivariante
 - Distribución Normal Multivariante. Ejemplos
 - Scatterplots

Para ampliar

Para ampliar

Computing Machinery and Intelligence Alan Turing (1950)

Artifficial Intelligence: A Modern Aproach Stuart J. Russell y Peter Norvig

Concrete Problems in Al Safety Dario Amodei, Crhis Olah, Jacob Steinahrdt, Paul Christiano, John Schulman, Dan Mané

The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation Miles Brundage, Shahar Avin et al.