Расчёт выделения тепла в бухте-удлинителе

Бенкевич Л. В.

12 марта 2025 г.

 $3a\partial a 4a$. Нагреватель воды мощностью $P=2200{
m Bt}$ подсоединён к сети напряжением $U=220{
m B}$ через удлинитель, длинный двужильный кабель длиной $l=50{
m m}$ и сечением каждой из двух жил $a=0.75{
m mm}^2$. Кабель-удлинитель смотан в бухту (размеры и число витков не имеют значения, пусть будет диаметр $20\text{-}30{
m cm}$).

Найти тепловую мощность, выделяемую в бухте кабеля.

Рис. 1: Сопротивления одной жилы кабеля, $\frac{1}{2}R_{\rm B}$, нагрузки (нагревателя воды), $R_{\rm H}$, и другой жилы кабеля, $\frac{1}{2}R_{\rm B}$, в бухте.

Рис. 2: Сопротивления обеих жил кабеля в бухте, $R_{\rm B}$, и нагрузки (нагревателя воды), $R_{\rm H}$.

Решение. Заметим, что ток последовательно протекает через три сопротивления (Рис. 1): жилу кабеля, $\frac{1}{2}R_{\rm B}$, сопротивление нагревателя воды, $R_{\rm H}$, и возвращается через другую жилу кабеля, $\frac{1}{2}R_{\rm B}$. Сначала найдём все сопротивления, затем ток через них, а потом – мощность $P_{\rm B}$, выделяемую этим током в бухте.

Поскольку последовательные сопротивления складываются, мы можем эту схему упростить, заменив эквивалентной, состоящей из полного сопротивления бухты, $R_{\rm B}$, и нагревателя, $R_{\rm H}$ (Рис. 2):

Полное сопротивление кабеля в бухте, то есть последовательное сопротивление обеих жил $R_{\rm B}$ определяется удельным сопротивлением меди, $\rho=0.0172\frac{{\rm Om}\;{\rm mm}^2}{{\rm M}}$, его сечением a и длиной l:

$$R_{\rm B} = \rho \frac{l}{a}.\tag{1}$$

$$I = \frac{U_{220 \text{ B}}}{R_{\text{B}} + R_{\text{H}}} \tag{2}$$

Здесь $U_{220~\mathrm{B}}$ обозначает напряжение, R_b — сопротивление бухты сетевого кабеля, а R_H — сопротивление нагрузки