Roll	No.	

Total Pages: 4

312303

December 2022 BCA (DS) - III SEMESTER Principles of Operating System (BCA-DS-203)

Time: 3 Hours]

[Max. Marks: 75

Instructions:

- 1. It is compulsory to answer all the questions (1.5 marks each) of Part-A in short.
- 2. Answer any four questions from Part-B in detail.
- 3. Different sub-parts of a question are to be attempted adjacent to each other.

PART-A

1.	(a)	What is kernel?	(1.5)
	(b)	What are overlays?	(1.5)
	(e)	Differentiate between preemptive and non-preer	nptive
		scheduling.	(1.5)
	_(d)	Differentiate between contiguous and non-conti	guous
		memory allocation methods.	(1.5)
	(e)	What is thrashing?	(1.5)
	(f)	Write differences between process and thread.	(1.5)
	(g)	What is convoy effect?	(1.5)
312	303/1	70/111/104	P.T.O.

- (h) What is rotational latency?
- What is the need of operating system?

(1.5)(1.5)

Differentiate between logical and physical address

PART-B

- (a) Explain different types of operating system with suitable applications
- 3 What is a process scheduler? State the characteristics of schedulers. of a good process scheduler and also explain the types
- Write and explain deadlock characteristics.

 \Im

Consider the following set of processes, with the length of the CPU-burst time given in Milliseconds (ms):

1	9	P4
2	ယ	P 3
4	2	P 2
7	0	Pl
Burst Time	Arrival Time	Process

the average waiting time for both scheduling algorithms 2 ms) and Pre-emptive SJF scheduling and also find Draw the Gantt chart for RR scheduling (time-slice =

312303/170/111/104

12132141

algorithm: Consider the following questions based on the banker's What are the different methods of handling deadlock?

	PO	P1	P2	Р3	P4	P5
,	A	0	1	1	0 6 3	0
Allocation	В	0	0	1 3	6	0
	С	0 0 1 2	1 0 0 0	2	3	1
Š	B C D	2	0	4	2	0 0 1 4
	A	0	1	2	0	0 6 5 6
Max	В	0 0 1 2	1 7 5 0	3 5	6 5	6
	C	-	v			N
	B C D	2	0	0	2	6
	Α	1				
Available	B	2				
	C	1 5 2 0				
(0	D	0	1			

- (a) What is the content of the matrix Need?
- (b) Is the system in a safe state? If yes, Find the safe sequence. (15) 10 2 2 ×2
- Consider a system with byte-addressable memory, page table in the system in megabytes? table entries of 4 bytes each. What is the size of the 32-bit logical addresses, 4 kilobyte page size and page
- (b) Explain Demand paging using a diagram. Consider recently used algorithms. Also find which is best algorithm. frames. Find number of page faults for FIFO and Least page reference string 1, 3, 0, 3, 5, 6 with 3-page

312303/170/111/104

ω

b) Solo at [P.T.O.

4 872.25

- 6. (a) Explain all file allocation methods in detail with their advantage and disadvantages. (10)
 - (b) A disk queue with requests for I/O to blocks on cylinders 23, 89, 132, 42, 187 with disk head initially at 100. Calculate total head movement for SSTF and C-LOOK algorithms.

7. Write short note on following:

- (a) Disk Structure.
- (b) Segmentation.
- (c) Operating System services. (15)