Problemas de Teoría de Cuerpos

Rodrigo Raya Castellano

Universidad de Granada

1. Problema 3

EJERCICIO 1.1: Sea $\frac{E}{K}$ una extensión de cuerpos algebraica y normal y $f \in K[X]$ un polinomio irreducible. Si $f = f_1 f_2$ es una factorización en dos irreducibles de E[X]. Entonces:

- 1. Prueba que existe un automorfismo $\sigma: \frac{E}{K} \to \frac{E}{K}$ tal que $\overline{\sigma}(f_1) = f_2$ y por tanto $\sigma(f_2) = f_1$.
- 2. Considera el polinomio $f = X^4 2 \in \mathbb{Q}[X]$ y el cuerpo $E = \mathbb{Q}(\sqrt{2})$ En $\frac{E}{K}$ tenemos la factorización en irreducibles $f = (X^2 \sqrt{2})(X^2 + \sqrt{2}) = f_1 f_2$. Describe σ en este caso.
- 3. Justifica que $\frac{\mathbb{Q}(\sqrt{2})}{\mathbb{Q}}$, $\frac{\mathbb{Q}(\sqrt[4]{2})}{\mathbb{Q}(\sqrt{2})}$ son extensiones normales y que $\frac{\mathbb{Q}(\sqrt[4]{2})}{\mathbb{Q}}$ no lo es.
- 4. Determina la clausura normal $\frac{F}{\mathbb{Q}}$ de $\frac{\mathbb{Q}(\sqrt[4]{2})}{\mathbb{Q}}.$
- 5. Calcular el grupo $Aut(\frac{\mathbb{Q}(\sqrt[4]{2})}{\mathbb{Q}})$ y los automorfismos que dejan fijo a $\mathbb{Q}(\sqrt{2})$.

Solución:

1. Con las mismas ideas con las que se prueba la unicidad del cuerpo de descomposición es fácil ver el siguiente resultado.

Corolario 1.1 (Elementos conjugados en cuerpos de descomposición).

Sea $p \in K[X]$ irreducible con cuerpo de descomposición F. Sean $\alpha, \beta \in F$ raíces de p. Entonces existe un isomorfismo $\sigma : F \to F$ sobre K tal que $\alpha \mapsto \beta$.

En nuestro caso para f podemos considerar que en la clausura algebraica descompone como

$$f = \prod (x - \alpha_i) \prod (x - \beta_i) \prod (x - \gamma_i)$$

donde α_i son raíces del polinomio f_1 y β_i son raíces del polinomio f_2 . Seleccionamos dos de estas raíces, sean α_1, β_1 . Por el corolario existe un isomorfismo $\sigma: F \to F$ sobre K tal que $\alpha_1 \mapsto \beta_1$ donde F es un cuerpo de descomposición de f.

Como $\frac{F}{K}$ es algebraica y $\frac{E}{K}$ es normal, $\frac{FE}{F}$ es normal. Extendemos el codominio de $\sigma: F \to FE$ y obtenemos un homomorfismo sobre K.

Extiendo σ a un automorfismo $\sigma_1: FE \to FE$ sobre K y restringimos su dominio a $\sigma_2: E \to FE$ obteniendo un homomorfismo sobre K. Observamos que $FE \subseteq \overline{F}$ ya que $\frac{FE}{F}$ es normal. También observamos que $\overline{F} = \overline{K}$ por la transitividad de la clausura. Esto permite ver σ_2 con codominio \overline{K} y aplicar la caracterización de normalidad sobre K.

Como $\frac{E}{K}$ es normal se tendrá que $\sigma_2(E) = E$ de modo que tenemos un automorfismo en E sobre K.

Este automorfismo verifica $\sigma_2(f_1) = f_2$ ya que como α_1 es raíz de f_1 entonces

$$0 = \sigma_2(f_1(\alpha_1)) = \sigma_1(f_1(\alpha_1)) = \overline{\sigma_1}(f)(\sigma_1(\alpha_1)) = \overline{\sigma_2}(f)(\beta_1)$$

es decir que el polinomio imagen, que es irreducible, tiene a β_1 como raíz. Luego tiene que ser $Irr(\beta_1, E)$ que es igual a f_2 .

2. Podemos representar $\mathbb{Q}(\sqrt{2})$ por expresiones de la forma $a + b\sqrt{2}$. Como todo los σ hallados fijaban K determinaremos el homomorfismo si determinamos $\sigma(\sqrt{2})$.

Consideramos el cuerpo de descomposición del polinomio $X^4 - 2$. De forma natural este sería

$$\mathbb{Q}(\sqrt[4]{2}, -\sqrt[4]{2}, i\sqrt[4]{2}, -i\sqrt[4]{2}) = \mathbb{Q}(i, \sqrt[4]{2})$$

donde la igualdad se comprueba viendo que la inclusión de los generadores en cada dirección. Por otro lado, en el cuerpo de descomposición

$$X^{2} + \sqrt{2} = (X - i\sqrt[4]{2})(X + i\sqrt[4]{2})$$

$$X^2 - \sqrt{2} = (X - \sqrt[4]{2})(X + \sqrt[4]{2})$$

Simplemente elegimos que llevaremos $\sqrt[4]{2} \mapsto i\sqrt[4]{2}$ y entonces obtenemos que

$$\sigma(\sqrt{2}) = \sigma((\sqrt[4]{2})^2) = (\sigma(\sqrt[4]{2}))^2 = (i\sqrt[4]{2})^2 = -\sqrt{2}$$

esto determina completamente el homomorfismo y comprobaciones rutinarias muestran que $\sigma(f_1) = f_2$.

3. Usamos que la extensiones finitas y normales se pueden caracterizar por ser cuerpo de descomposición de algún polinomio.

Proposición 1.2.

Toda extensión $\frac{F}{K}$ de grado dos de un cuerpo es normal.

Si la extensión es de grado primo, en particular, es finita. Si es finita es algebraica. Tomo $u \in F \setminus K$ por el teorema del grado se verifica que

$$[F:K] = [F:K(u)][K(u):K]$$

Si [K(u):K]=1 entonces K(u)=K pero $u\notin K$. Contradicción. Por tanto, [K(u):K] es dos. Como la extensión es algebraica existe Irr(u,K) y gr(Irr(u,K))=2. Este polinomio tendrá dos raíces en su cuerpo de descomposición, claramente K(u) contiene una raíz pero por las ecuaciones de Cardano-Vieta

$$(X - \alpha)(X - \beta) = X^2 - (\alpha + \beta)X + \alpha\beta$$

y sabemos que $\alpha + \beta \in K$ luego teniendo u tengo la otra raíz. De modo K(u) es precisamente el cuerpo de descomposición de Irr(u,K) y por tanto, $\frac{F}{K}$ es normal.

- a) $\frac{\mathbb{Q}(\sqrt{2})}{\mathbb{Q}}$ es normal ya que X^2-2 es irreducible sobre \mathbb{Q} por el criterio de Eisenstein y por tanto la extensión tiene grado 2.
- b) $\frac{\mathbb{Q}(\sqrt[4]{2})}{\mathbb{Q}(\sqrt{2})}$ es normal ya que $X^2 \sqrt{2}$ es irreducible sobre $\mathbb{Q}(\sqrt{2})$ con lo cual la extensión tiene grado 2. En efecto, será irreducible si y solo si no tiene raíces. Las raíces son de la forma $a + b\sqrt{2}$ y operando se llega a la ecuación

$$a^2 + 2b^2 = \sqrt{2}(1 - 2ab)$$

Por distinción de casos, si 1-2ab=0 entonces se llega a $\sqrt{2}=0$ y si $1-2ab\neq 0$ entonces $\sqrt{2}=\frac{a^2+2b^2}{1-2ab}\in\mathbb{Q}$ ambos casos son contradicciones.

- c) $\frac{\mathbb{Q}(\sqrt[4]{2})}{\mathbb{Q}}$ no es normal. Si la extensión normal todo polinomio irreducible con una raíz en el cuerpo extensión descompondría en factores lineales. Pero X^4-2 es un polinomio irreducible sobre \mathbb{Q} por el criterio de Eisenstein y $\sqrt[4]{2}$ es una raíz que está en el cuerpo extensión y sin embargo, no puede descomponer en polinomios lineales ya que este cuerpo sólo contiene las raíces reales y hay dos complejas.
- 4. La clausura normal de una extensión de generación finita está caracterizada como el cuerpo de descomposición del producto de los irreducibles asociados a los generadores. En este caso sólo hay un generador y el cuerpo de descomposición del polinomio mínimo $X^4 2$ es conocido como $\mathbb{Q}(\sqrt[4]{2},i)$.

5. Claramente, $\mathbb{Q}(\sqrt[4]{2})$ es el cuerpo de descomposición del polinomio X^4-2 y como las extensiones finitas de \mathbb{Q} son separables $\frac{\mathbb{Q}(\sqrt[4]{2})}{\mathbb{Q}}$ es una extensión de Galois. Por tanto,

$$Aut(\frac{\mathbb{Q}(\sqrt[4]{2})}{\mathbb{Q}}) = [\mathbb{Q}(\sqrt[4]{2}) : \mathbb{Q}] = 8$$

Los candidatos para ser imagen de $\sqrt[4]{2}$ son $\sqrt[4]{2}$, $-\sqrt[4]{2}$, $i\sqrt[4]{2}$, $-i\sqrt[4]{2}$ y los candidatos para ser imagen de i son i, -i. Luego en efecto, todas estas posibilidades se dan.

La correspondencia de Galois viene expresada mediante los siguientes diagrmas:

 ${\rm donde}$

$$\sigma(\sqrt[4]{2}) = i\sqrt[4]{2}$$
$$\sigma(i) = i$$
$$\tau(i) = -i$$
$$\tau(\sqrt[4]{2}) = \sqrt[4]{2}$$

Realizando los cálculo en una tabla, tenemos que τ deja fijo a $\alpha = \sqrt[4]{2}$ por tanto, también deja fijo a α^2 . Por otro lado, σ^2 lleva α^2 a α^2 . Por tanto, el subgrupo que deja fijo a $\mathbb{Q}(\sqrt{2})$ será $\langle \sigma^2, \tau \rangle$.