Importing libraries

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Reading the csv File

In [2]:

```
df=pd.read_csv("Covid19_July1-July 7th.csv")
```

In [3]:

df

Out[3]:

	Entry_ID	State Patient Number	Date Announced	Age Bracket	Gender	Detected City	Detected District	Detected State	Stat coc
0	94849	NaN	01/07/2020	NaN	NaN	NaN	Unassigned	State Unassigned	U
1	94850	NaN	01/07/2020	NaN	NaN	NaN	NaN	Nagaland	٨
2	94851	NaN	01/07/2020	NaN	NaN	NaN	Angul	Odisha	0
3	94852	NaN	01/07/2020	NaN	NaN	NaN	Balasore	Odisha	0
4	94853	NaN	01/07/2020	NaN	NaN	NaN	Bargarh	Odisha	0
22790	117831	NaN	07/07/2020	NaN	NaN	NaN	Dadra and Nagar Haveli	Dadra and Nagar Haveli and Daman and Diu	D
22791	118420	NaN	07/07/2020	NaN	NaN	NaN	NaN	Sikkim	S
22792	118421	NaN	07/07/2020	NaN	NaN	NaN	NaN	Sikkim	S
22793	121323	NaN	07/07/2020	NaN	NaN	NaN	Kozhikode	Kerala	k
22794	121324	NaN	07/07/2020	NaN	NaN	NaN	Wayanad	Kerala	k
22795 rows × 20 columns									

```
In [ ]:
In [ ]:
In [ ]:
```

Inspecting the dataframe

<class 'pandas.core.frame.DataFrame'>

```
In [4]:

df.info()
```

0 non-null

0 non-null

0 non-null

float64

float64

float64

RangeIndex: 22795 entries, 0 to 22794 Data columns (total 20 columns): # Column Non-Null Count Dtype -----0 Entry ID 22795 non-null int64 1 State Patient Number 14924 non-null object 22795 non-null object 2 Date Announced 3 Age Bracket 12538 non-null float64 4 Gender 12583 non-null object 5 Detected City 772 non-null object 6 Detected District 22556 non-null object 7 Detected State 22795 non-null object 8 State code 22795 non-null object 9 Num Cases 22795 non-null int64 Current Status 22795 non-null object Contracted from which Patient (Suspected) float64 0 non-null 12 Notes 12408 non-null object 13 Source 1 22618 non-null object 14 Source 2 97 non-null object Source 3 0 non-null float64 15 Nationality 0 non-null float64 16

dtypes: float64(7), int64(2), object(11)

memory usage: 3.5+ MB

19 Patient Number

Type of transmission

Status Change Date

Inspecting null values in each columns

```
In [5]:
```

```
df.isnull().sum().sort_values(ascending=False)/len(df)*100
```

Out[5]:

Patient Number	100.000000
Status Change Date	100.000000
Type of transmission	100.000000
Nationality	100.000000
Source_3	100.000000
Contracted from which Patient (Suspected)	100.000000
Source_2	99.574468
Detected City	96.613292
Notes	45.567010
Age Bracket	44.996710
Gender	44.799298
State Patient Number	34.529502
Detected District	1.048476
Source_1	0.776486
Entry_ID	0.000000
Num Cases	0.000000
State code	0.000000
Detected State	0.000000
Date Announced	0.000000
Current Status	0.000000
dtype: float64	

Inspecting null values in rows

```
In [6]:
```

```
df.isnull().sum(axis=1).sort_values(ascending=False)
Out[6]:
12453
         14
8790
         14
8789
         14
16725
         13
16796
         13
11557
11558
          8
11559
11397
          8
19383
Length: 22795, dtype: int64
```

```
In [7]:
```

```
df_nonHosp=df[df['Current Status']=="Hospitalized"]
```

Total number of cases on average per day

In [8]:

```
D=df_nonHosp.groupby('Date Announced')['Num Cases'].sum()
D
```

Out[8]:

Date Announc	ed	
01/07/2020	19429	
02/07/2020	21947	
03/07/2020	22718	
04/07/2020	24018	
05/07/2020	23942	
06/07/2020	22500	
07/07/2020	23147	
11/06/2020	0	
12/06/2020	0	
13/06/2020	0	
14/06/2020	0	
15/06/2020	0	
16/06/2020	0	
17/06/2020	0	
19/06/2020	0	
20/06/2020	0	
21/06/2020	0	
22/06/2020	0	
23/06/2020	0	
25/06/2020	0	
26/06/2020	0	
28/06/2020	0	
29/06/2020	0	
30/06/2020	0	
Name: Num Ca	ses dtyne:	int6

Name: Num Cases, dtype: int64

In [9]:

```
D.plot.bar()
```

Out[9]:

<AxesSubplot:xlabel='Date Announced'>

Total Number of Male/Female Affected percent vise

This shows that 50 % of the people affected with the corona virus are men

Which age group is mostly affected

```
In [11]:
df_nonHosp.groupby('Age Bracket')['Num Cases'].sum().sort_values(ascending=False).head(10)
Out[11]:
Age Bracket
30.0
        393
28.0
        362
40.0
        355
32.0
        354
35.0
        346
45.0
        344
26.0
        300
27.0
        292
50.0
        291
        290
25.0
Name: Num Cases, dtype: int64
```

In [12]:

df_nonHosp.groupby('Age Bracket')['Num Cases'].sum().sort_values(ascending=False).head(10).

Out[12]:

<AxesSubplot:xlabel='Age Bracket'>

This concludes that the age affected the most rely between 25 to 50

Total cases state vise

In [13]:

df_nonHosp.groupby('Detected State')['Num Cases'].sum().sort_values(ascending=False).plot.b

Out[13]:

<AxesSubplot:xlabel='Detected State'>

This shows that Maharashtra is the state that has mostly been affected

Number of people deceased

```
In [14]:

df['Num Cases'][df['Current Status']=='Deceased'].sum()

Out[14]:
3243
```

Number of People Deceased per state

In [15]: df[df['Current Status']=='Deceased'].groupby('Detected State')['Num Cases'].sum().sort_valu Out[15]: Detected State Maharashtra 1395 Tamil Nadu 435 Delhi 423 Karnataka 171 West Bengal 136 Uttar Pradesh 130 Gujarat 130 Andhra Pradesh 65 Rajasthan 59 Telangana 53 Madhya Pradesh 50 Haryana 43 Jammu and Kashmir 42 31 Punjab Bihar 30 **Odisha** 22 Jharkhand 7 5 Goa Assam 4 3 Kerala Puducherry 2 2 Uttarakhand Dadra and Nagar Haveli and Daman and Diu 1 Chhattisgarh 1 Arunachal Pradesh 1 Himachal Pradesh 1

1

Chandigarh

Name: Num Cases, dtype: int64

In [16]:

Out[16]:

<AxesSubplot:xlabel='Detected State'>

With this we can conclude that most of the deaths has been in Maharashtra

In []: