PH 712 Probability and Statistical Inference

Part X: Confidence Set/Interval

Zhiyang Zhou (zhou67@uwm.edu, zhiyanggeezhou.github.io)

2024/12/09 10:46:05

Confidence set (CB Sec 9.2.1 & 9.3.1)

- Called a confidence interval (CI) If the set is an interval
- True (but unknown) value of parameter θ , say θ_0
- $(1-\alpha) \times 100\%$ confidence set, say $C(X_1, \dots, X_n)$: $C(X_1, \dots, X_n)$ covers θ_0 with probability AT LEAST $(1-\alpha) \times 100\%$, i.e., $\Pr\{\theta_0 \in C(X_1, \dots, X_n)\}$
 - $-C(X_1,\ldots,X_n)$ is a set defined on sample X_1,\ldots,X_n and hence is randomized, while θ_0 is fixed
 - $(1-\alpha) \times 100\%$ is called coverage probability

Construction of a confidence set by inverting a level α test

- (CB Thm 9.2.2) Implementation
 - 1. For each $\theta^* \in \Theta$, find the rejection region, say $R(\theta^*)$, of a level α test of hypotheses $H_0: \theta = \theta^*$ vs. $H_1: \theta \neq \theta^*$
 - 2. $C(x_1, \ldots, x_n) = \{\theta : (x_1, \ldots, x_n) \in \operatorname{supp}(X_1, \ldots, X_n) / R(\theta)\},$ - $\operatorname{supp}(X_1, \ldots, X_n) / R(\theta)$: the complementary set of $R(\theta)$.
- $(1 \alpha) \times 100\%$ confidence set $C(X_1, \dots, X_n)$ does not cover $\theta_0 \Leftrightarrow \text{reject } H_0 : \theta = \theta_0 \text{ (vs. } H_1 : \theta \neq \theta_0)$ at level α
- Special cases:
 - $\ (1-\alpha) \times 100\% \ (\text{asymptotic}) \ \text{LRT confidence set for } \theta \colon \left\{\theta : -2(\ell(\theta) \ell(\hat{\theta}_{\text{ML}}))\right\} < \chi^2_{1,1-\alpha} \right\}$
 - $-(1-\alpha) \times 100\%$ Wald confidence set for θ : $\{\theta : |\hat{\theta}_{\mathrm{ML}} \theta| / \sqrt{\widehat{\mathrm{var}}(\hat{\theta}_{\mathrm{ML}})} < \Phi_{1-\alpha/2}^{-1}\}$
 - $-(1-\alpha)\times 100\%$ score confidence set for θ : $\{\theta: |\ell'(\theta)|/\sqrt{I_n(\theta)} < \Phi_{1-\alpha/2}^{-1}\}$

CB Examples 10.4.2, 10.4.3 & 10.4.5

• $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bernlli}(p)$, construct $(1 - \alpha) \times 100\%$ confidence set for p.

Bootstrap method

- Implementation
 - 1. For b in 1 : B, do steps 2–3.
 - 2. Draw the bth resample x_b^* of size n from the empirical CDF (nonparametric bootstrap) OR a fitted parametric model (parametric bootstrap).
 - 3. Let $\hat{\theta}_{h}^{*} = \hat{\theta}(x_{h}^{*})$.

4. $(1-\alpha)$ bootstrap confidence interval for θ is $(q_{\alpha/2}, q_{1-\alpha/2})$, where $q_{\alpha/2}$ and $q_{1-\alpha/2}$ are $\alpha/2$ and $1-\alpha/2$ sample quantiles of $\{\hat{\theta}_1^*, \ldots, \hat{\theta}_B^*\}$, respectively.

CB Examples 10.4.2, 10.4.3 & 10.4.5

• $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bernlli}(p)$, construct $(1 - \alpha)$ confidence set for p.

```
options(digits = 4)
set.seed(1)
B = 1e4L
n = 1e3L
alpha = .05
x = rbinom(n, 1, prob = .6)
theta_ml = mean(x)
theta_star_np = numeric(B)
theta_star_p = numeric(B)
# Nonparametric bootstrap
for (b in 1:B){
  x_star = sample(x, size = n, replace = T)
 theta_star_np[b] = mean(x_star)
quantile(theta_star_np, probs = c(alpha/2, 1-alpha/2))
# Parametric bootstrap
for (b in 1:B){
  x_star = rbinom(n, size = 1, prob = theta_ml)
  theta_star_p[b] = mean(x_star)
quantile(theta_star_p, probs = c(alpha/2, 1-alpha/2))
```