Variables aléatoires discrètes

Lois de probabilité discrètes

Exercice 1 (Loi valide?)

1. On pose : $\forall n \in \mathbb{N}, \ p_n = a \left(\frac{3}{4}\right)^n$.

Pour quelle valeur de $a \in \mathbb{R}^*$ la suite $(p_n)_{n \in \mathbb{N}}$ définitelle une loi de probabilité?

(C'est à dire qu'en posant $\forall n \in \mathbb{N}, \ P(X = n) = p_n,$ on définit bien une loi de probabilité pour X)

2. Même question avec : $\forall n \in \mathbb{N}, \ p_n = \frac{1}{8} \left(\frac{2+a^n}{n!} \right)$.

Exercice 2 (Loi à partir d'une relation de récurrence)

1. Soit X une variable aléatoire discrète de support $X(\Omega)=\mathbb{N}$ satisfaisant, pour tout $n\in\mathbb{N}$:

$$P(X = n + 1) = \frac{2}{n+1}P(X = n).$$

Déterminer la loi de X et reconnaître une loi usuelle.

2. Soit X une variable aléatoire discrète de support $X(\Omega)=\mathbb{N}^*$ satisfaisant, pour tout $n\geqslant 1$:

$$4P(X = n + 2) = 5P(X = n + 1) - P(X = n).$$

Déterminer la loi de X et reconnaître une loi usuelle.

3. On fixe un $a \in]0,1[$.

Soit X une variable aléatoire discrète de support $X(\Omega)=\mathbb{N}^*$ satisfaisant, pour tout $n\in\mathbb{N}^*$:

$$P(X = n) = aP(X \geqslant n).$$

Déterminer la loi de X et reconnaître une loi usuelle. Indication : calculer P(X=1), P(X=2),P(X=3), puis généraliser par récurrence...

Espérances et variances

Exercice 3 (Variance ou pas?)

On considère la variable aléatoire discrète X dont la loi de probabilité est donnée par :

$$\forall k \in \mathbb{N}^*, \ P(X = k) = \frac{4}{k(k+1)(k+2)}.$$

1. Vérifier que c'est une loi de probabilité "valide". Indication : repérer une série télescopique.

2. Montrer que X admet une espérance et la calculer. Indication : repérer une série télescopique.

2. (a) On pose Y = X(X + 1).

La variable Y admet-elle une espérance?

(b) X admet-elle une variance?

Exercice 4 (Une variable à valeurs dans \mathbb{Z})

Soit X une variable aléatoire avec $X(\Omega) = \mathbb{Z}$ et :

$$\forall n \in \mathbb{N}^*, \ P(X=n) = P(X=-n) = \frac{1}{2^{n+2}}.$$

1. Déterminer P(X=0).

2. Montrer que X admet une espérance et la calculer. Aurait-on pu prévoir cette valeur?

Variables discrètes dans des énoncés en français

Exercice 5 (High score)

Un jeu comporte une infinité niveaux $1, 2, 3, \ldots$

- Lorsque le joueur démarre le niveau numéro k, il parvient à le compléter avec la probabilité $\frac{1}{k}.$
- Si le joueur échoue pendant un niveau, la partie est terminée.

Soit X le nombre de niveaux complétés par le joueur.

- 1. Montrer que $\forall k \geqslant 1$, $P(X = k) = \frac{k}{(k+1)!}$.
- 2. Calculer E(X+1) et en déduire le nombre de niveaux complétés par le joueur en moyenne.

Exercice 6 (Premier "Pile-Face" pour une pièce biaisée)

On effectue une suite infinie de lancers d'une pièce équilibrée. À chaque lancer, la probabilité d'obtenir Pile est $p \in]0,1[$, celle d'obtenir Face est q=(1-p). On se place dans le cas $p\neq \frac{1}{2}$, de sorte que $p\neq q$.

On note X la variable aléatoire égale au nombre de lancers à effectuer pour obtenir pour la première fois "Pile puis Face" (à la suite). On pose X=0 si cette séquence n'apparaît jamais.

1. Quel est le support de X?

- 2. (a) Calculer P(X = 2), P(X = 3), P(X = 3).
- (b) En généralisant le raisonnement, montrer que :

$$\forall n \ge 2, \ P(X=n) = \sum_{k=1}^{n-1} p^{n-k} q^k.$$

On pourra écrire [X = n] comme réunion de n - 1 évènements 2 à 2 disjoints.

(c) Obtenir l'expression :

$$\forall n \ge 2, \ P(X = n) = \frac{pq}{p-q} (p^{n-1} - q^{n-1})$$

- 3. En déduire que P(X=0)=0.
- 4. Montrer que E(X) existe et vaut $\frac{1}{pq}$.
- 5. Montrer que E(X(X-1)) existe et

$$E(X(X-1)) = \frac{2(p^3 + p^2q + pq^2 + q^3)}{p^2q^2}.$$

En déduire que X admet une variance.

Utilisation des lois usuelles

Exercice 7 (Faces précédant Pile)

On lance indéfiniment une pièce équilibrée.

Soit X la variable aléatoire égale au nombre de Faces précédant le premier Pile.

- 1. Déterminer le support et la loi de X.
- 2. On pose Y = X + 1. Reconnaître la loi de Y. En déduire l'espérance et la variance de X.

Exercice 8 (Poule pondeuse)

Une poule pond chaque semaine N oeufs, où N est une variable aléatoire discrète de loi $\mathcal{P}(3)$.

Pour chaque oeuf pondu, la probabilité d'obtenir un poussin est $p \in]0,1[$, indépendamment des autres oeufs. On note X le nombre de poussins obtenus en une semaine.

- 1. (a) Soit $n \in \mathbb{N}$ fixé. Conditionnellement à [N=n], quelle est la loi de probabilité de X? En déduire $P_{[N=n]}(X=k)$ pour tout $k \in \mathbb{N}$.
- (b) Déterminer la loi de probabilité de X. On reconnaitra une loi usuelle dont on précisera le paramètre.
- 2. En déduire l'espérance et la variance de X.

Exercice 9 (Autour de la loi géométrique)

Soit X une variable de loi $\mathcal{G}(p)$ pour un $p \in]0,1[$.

1. Montrer que $P("X \text{ est pair"}) = \frac{1-p}{2-p}$.

X a-t-il plus de chance d'être pair ou impair?

2. Déterminer la (ou les) valeur(s) que prend X avec la plus grande probabilité.

On étudiera donc les variations de la suite de terme général $u_n = P(X = n)$.

3. A quelle condition sur a > 0 l'espérance $E(a^X)$ existe-t-elle? Calculer alors sa valeur.

Exercice 10 (Autour de la loi de Poisson)

Soit X une variable de loi $\mathcal{P}(\lambda)$ pour un $\lambda > 0$.

1. Montrer que $P("X \text{ est pair"}) = \frac{1+e^{-2\lambda}}{2}.$ X a-t-il plus de chance d'être pair ou impair?

2. Déterminer la (ou les) valeur(s) que prend X avec la plus grande probabilité.

On étudiera donc les variations de la suite de terme $g\acute{e}n\acute{e}ral\ u_n=P(X=n).$

3. Soit a > 0. Montrer que $E(a^X)$ existe et calculer sa valeur.

Oral HEC 2012

Soit $n \ge 2$. Une urne contient des boules numérotées de 1 à n.

On effectue dans cette urne une infinité de tirages successifs d'une boule avec remise.

On note X_1, X_2, \ldots les numéros successifs obtenus.

On note enfin Y le rang du premier tirage (supérieur ou égal à 2) pour lequel le numéro de la boule tirée est supérieur ou égal à celui de la première boule X_1 (sous réserve qu'un tel numéro existe!)

- 1. Pour tout $k \ge 2$, on pose l'évènement $B_k = [X_k < X_1]$.
- (a) À l'aide de la formule des probabilités totales, montrer que $\forall k \geqslant 2, \ P(B_2 \cap \ldots \cap B_k) = \frac{1}{n} \sum_{i=0}^{n-1} \left(\frac{i}{n}\right)^{k-1}$.

Indication: "Distinguer" selon les valeurs prises par X_1 .

- (b) En déduire que $P\left(\bigcap_{k=2}^{+\infty}B_k\right)=0$. En déduire que la variable Y est presque-sûrement bien définie.
- 2. (a) Similairement au 1.(a), montrer que pour tout $m \ge 2$, $P(Y = m) = \frac{1}{n} \sum_{i=0}^{n-1} \left(\left(\frac{i}{n} \right)^{m-2} \times \left(1 \frac{i}{n} \right) \right)$.
- (b) Montrer que Y admet une espérance et que $E(Y) = 1 + \sum_{i=1}^{\infty} \frac{1}{i}$.

Indication: montrer au préalable que pour tout $i \in [0, n-1]$, $\sum_{m=2}^{+\infty} m \left(\frac{i}{n}\right)^{m-2} = \frac{1}{(1-\frac{i}{n})^2} + \frac{1}{1-\frac{i}{n}}.$