Generative Modeling

Advanced Normalizing flows

Denis Derkach, Artem Ryzhikov, Maxim Artemev

Laboratory of methods for big data analysis

In this Lecture

- Ordering in block models.
- ► Full Jacobian models.
- Continuous time models.

Reminder: Normalizing Flows

Problem Statement

$$x_i \sim p_x(x) - \text{data}$$

$$p_{x}(x) - ?$$
Feature Space

 x^{2}
 -2
 -4
 -6
 x
 x_{1}

$$z = f(x) - ?$$

$$x = f^{-1}(z) - ?$$

$$z_i \sim p_z(z)$$

$p_z(z)$ known

- We have: real objects $\{x_i\}$
- Task: find invertible and differentiable $f: z_i = f(x_i)$, such that $z_i \sim p_z(z)$. For some known: $p_z(z)$.

Flow discussion

- It is possible to obtain $p_x(x)$ consecutively changing observables.
- The overall transformation is invertible if individual layers are invertible.
- Dimensions of each observable is the same.
- Fit is performed using ML estimate.
- Need to calculate determinant.

Block matrix for Jacobian

$$\frac{\partial \mathbf{f}(x)}{\partial x} = \begin{pmatrix} \mathbb{I}_d & 0\\ \frac{\partial z_{d+1:D}}{\partial x_{d+1:D}} & S \end{pmatrix}$$

- Randomly choose d such that we have two disjoint subsets of observables: $z_{1:d}$ and $z_{d+1:D}$.
- Insert a block transform.
- Repeat for several layers.
- If needed insert scaling layers.
- Fit simultaneously.

Real-NVP

$$z = f(x) = \begin{cases} z_{1:d} = x_{1:d} \\ z_{d+1:D} = x_{d+1:D} \odot \exp(s(x_{1:d})) + t(x_{1:d}) \end{cases}$$

- **s** $(x_{1:d})$ u $t(x_{1:d})$ **neural networks** with d inputs and D-d outputs.
- Invertible.
- $det J_k = \exp \sum_{i=d+1}^{D} (\alpha_{\theta}(z_{1:d}))_i \text{ for k-th layer.}$
- Inspired by RNADE.

https://arxiv.org/abs/1605.08803

Jacobian Choices

Planar NF Sylvester NF

Jacobian (Low rank)

1. Det Identities 2. Coupling Blocks

NICE Real NVP Glow

(Lower triangular + structured)

3. Autoregressive

Inverse AF Neural AF Masked AF

(Lower triangular)

Generative Flow with Invertible 1×1 Convolutions

Motivation

- rNVP needs permutations to include all dimensions into consideration.
- This requires additional layers and several permutations.

One step of flow

Activation normalization.

Trainable scale and bias

$$z_{i,j} = \mathbf{s} \odot x_{i:j} + \mathbf{b}$$
.

- ► Invertible 1x1 convolution.
 - Trainable weight matrix.

$$z_{i,j} = \mathbf{W} x_{i:j}$$
.

- Affine coupling layer.
 - Similar to rNVP.

$$x_a, x_b = \text{split}(x)$$

 $z_a = \mathbf{s} \odot x_a + \mathbf{t}.$
 $z_b = x_b.$

https://arxiv.org/pdf/1807.03039.pdf

1x1 convolution layer

Permutation is just a special case of a linear operator:

$$y = Wx = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} x.$$

- Convolution of an input h×w×c tensor **h** with a weight matrix W (c×c): f = conv2d(h; W).
 - Need change of variables formula:

$$\log \left| \det \left(\frac{df}{dh} \right) \right| = \log \left| \det \left(\frac{\operatorname{dconv2D}(\boldsymbol{h}; W)}{\operatorname{dh}} \right) \right| = h \cdot w \log \det |W|$$

https://arxiv.org/pdf/1807.03039.pdf

Jacobian calculations

PLU decomposition:

$$W = PL(U + \operatorname{diag}(s)).$$

$$\log |\det W| = \sum \log |s|.$$

Initiate from random W.

P is permutation (remains fixed), L, U, and s are optimized

https://arxiv.org/pdf/1807.03039.pdf

Affine coupling

- Faster to converge than additive.
- 1x1 convolution performs like better randomization.

https://slideslive.com/38917897/glow-generative-flow-with-invertible-1x1-convolutions

Sampling Temperature

- In order to get more realistic sampling, one can use a reducedtemperature model.
- In this work:

$$p_{\theta,T}(x) \sim p_{\theta}^{T^2}(x)$$

Temperature is a free parameter for sampling.

Temperature Dependence

Figure 8: Effect of change of temperature. From left to right, samples obtained at temperatures 0, 0.25, 0.6, 0.7, 0.8, 0.9, 1.0

GLOW: results

Figure 4: Random samples from the model, with temperature 0.7

GLOW: depth dependence

Figure 9: Samples from shallow model on left vs deep model on right. Shallow model has L=4 levels, while deep model has L=6 levels

Conclusions

- Addresses problem of choosing permutation with 1x1 convolutional layer.
- Uses triangular Jacobian idea.
- Quite slow.

More Linear Flows

QR Flows:

$$W = QR$$

Q is orthogonal, R is upper triangular.

$$\det W = \prod R_{ii}$$

Orthogonal flows

$$W$$
 – orthogonal, $\det W = 1$

https://arxiv.org/pdf/1912.02762.pdf

Residual Flows

Jacobian Choices

1. Det Identities

Planar NF Sylvester NF

• • •

(Low rank)

2. Coupling Blocks

NICE Real NVP Glow

...

3. Autoregressive

Inverse AF Neural AF Masked AF

...

(Lower triangular)

4. Unbiased Estimation

FFJORD Residual Flows

(Arbitrary)

Invertible Residual Networks (i-ResNet)

Residual blocks:

$$y = F(x) = x + g(x)$$

can be inverted by **fixed** point iteration:

$$x = y - \boldsymbol{g}(x)$$

and has unique inverse if

$$Lip(\mathbf{g}) < 1$$

Thus, effectively making *g* contractive.

Algorithm 1. Inverse of i-ResNet layer via fixed-point iteration.

Input: output from residual layer y, contractive residual block g, number of fixed-point iterations n

Init:
$$x^0 := y$$
for $i = 0, \dots, n$ do
 $x^{i+1} := y - g(x^i)$
end for

Invertible Residual Networks (i-ResNet)

Residual blocks:

$$y = F(x) = x + g(x)$$

can be inverted by **fixed** point iteration:

$$x = y - \boldsymbol{g}(x)$$

and has unique inverse if

$$\operatorname{Lip}(\boldsymbol{g}) < 1$$

Thus, effectively making *g* contractive.

Satisfying Lipschitz Condition on g(x)

Contruct g as a network

$$\mathbf{g} = W_3 \circ \phi \circ W_2 \circ \phi \circ W_1 \circ \phi.$$

Can construct data independent Lip-constraint:

$$\operatorname{Lip}(g) < ||W_3||_2 ||W_2||_2 ||W_1||_2$$

• Use spectral norm of weight matrices (σ the largest singular layer):

$$\widetilde{W} = \frac{cW}{\sigma}$$

https://arxiv.org/abs/1811.00995

Satisfying Lipschitz Condition on g(x)

Figure 3. Original images (top) and reconstructions from i-ResNet with c=0.9 (middle) and a standard ResNet with the same architecture (bottom), showing that the fixed point iteration does not recover the input without the Lipschitz constraint.

https://arxiv.org/abs/1811.00995

Change of Variables Formula

$$\log p_X(x) = \log p_Z(F(x)) + \log|\det J_F(x)|$$

Need a way to compute Jacobian:

$$F = (I + g)x.$$

Insert into the calculations and $\ln \det A = \operatorname{tr}(\log A)$:

$$\log p_X(x) = \log p_Z(F(x)) + \operatorname{tr} (\log (I + J_g(x))).$$

Trace of the matrix logarithm can be expressed as power series (for constrained $||J_g|| < 2$):

$$\log p_X(x) = \log p_Z(F(x)) + \sum_{k=1}^{\infty} (-1)^{k+1} \frac{tr(J_g^k)}{k}.$$

The sum can be truncated and reduced to biased Hutchinson estimate.

Invertible Residual Networks (i-ResNet)

- Performs better than glow.
- Still some troubles are visible.
- Can we estimate in a different way?

Residual Flows

Use Russian roulette estimate for infinite series:

https://arxiv.org/pdf/1906.02735.pdf

Residual Flows results

Figure 5: **Qualitative samples.** Real (left) and random samples (right) from a model trained on 5bit 64×64 CelebA. The most visually appealing samples were picked out of 5 random batches.

Table 2: Lower FID implies better sample quality. *Results taken from Ostrovski et al. (2018).

Model	CIFAR10 FID
PixelCNN*	65.93
PixelIQN*	49.46
i-ResNet	65.01
Glow	46.90
Residual Flow	46.37
DCGAN*	37.11
WGAN-GP*	36.40

- Performs better than many flow models.
- Still worse than GANs

Residual Flows Discussion

- RF has dense Jacobian, thus are more flexible than AR flows.
- Density evaluation needs to be done iteratively, thus is slow.

https://www.cs.toronto.edu/~rtqichen/pdfs/residual_flows_slides.pdf

FFJORD

Motivation

- Do we really care of having discrete steps?
- Can we change the Jacobian to something more stochastic?
- System of continuous-time dynamics.
- These ideas led to the NeuralODE model.

Continuous Normalizing Flows

Model generative process with continuous dynamics:

$$z_0 \sim p(z_0)$$

$$\frac{\partial z}{\partial t} = f_{\theta}(z_t, t)$$

$$x = z_t = z_0 + \int_{t_0}^{t_1} f_{\theta}(z_t, t) dt$$

Instantaneous Change-of-variable Formula

For f uniformly Lipschitz continuous in z and continuous in t

$$\frac{\partial \log p(\mathbf{z}(t))}{\partial t} = -\text{tr}\left(\frac{df}{d\mathbf{z}}(t)\right)$$

The complete initial value problem is then given as

$$\frac{d}{dt} \begin{bmatrix} \mathbf{z}(t) \\ \log p(\mathbf{z}(t), t) \end{bmatrix} = \begin{bmatrix} f(\mathbf{z}(t), t, \boldsymbol{\theta}) \\ -\operatorname{tr} \partial_{\mathbf{z}} f \end{bmatrix}, \quad t \in [0, T],$$

$$\mathbf{z}(0) \sim p_{\mathbf{z}_0}(\mathbf{z}(0)),$$

$$\log p(\mathbf{z}(0), 0) = \log p_{\mathbf{z}_0}(\mathbf{z}(0)).$$

Unbiased Log-Density Estimation

log-probability of the data under continuous model

$$\log(p_x) = \log(p_{z_0}) - \int\limits_0^1 \mathsf{T} r rac{\partial f(z(t))}{\partial z(t)} dt$$

- This gives $O(N^3)$ calculations.
- Need a smart trick to increase the speed of calculations.

$$\log p(\mathbf{z}(t_1)) = \log p(\mathbf{z}(t_0)) - \int_{t_0}^{t_1} \operatorname{Tr} \left(\frac{\partial f}{\partial \mathbf{z}(t)} \right) dt$$

$$= \log p(\mathbf{z}(t_0)) - \int_{t_0}^{t_1} \mathbb{E}_{p(\boldsymbol{\epsilon})} \left[\boldsymbol{\epsilon}^T \frac{\partial f}{\partial \mathbf{z}(t)} \boldsymbol{\epsilon} \right] dt$$

$$= \log p(\mathbf{z}(t_0)) - \mathbb{E}_{p(\boldsymbol{\epsilon})} \left[\int_{t_0}^{t_1} \boldsymbol{\epsilon}^T \frac{\partial f}{\partial \mathbf{z}(t)} \boldsymbol{\epsilon} dt \right]$$

FFJORD: results

Figure 2: Comparison of trained FFJORD and Glow models on 2-dimensional distributions including multi-modal and discontinuous densities.

	POWER	GAS	HEPMASS	MINIB	BSDS	MNIST	CIFAR10
Real NVP	17	-8.33	18.71	13.55	-153.28	1.06	3.49
Glow	17	-8.15	18.92	11.35	-155.07	1.05	3.35
FFJORD	46	-8.59	15.26	10.43	-157.67	0.99*	3.40
MADE	3.08	-3.56	20.98	15.59	-148.85	2.04	5.67
MAF	24	-10.08	17.70	11.75	-155.69	1.89	4.31
TAN	48	-11.19	15.12	11.01	-157.03	-	-
DDSF	62	-11.96	15.09	8.86	-157.73	-	-

Table: Density estimation experiments. Negative log-likelihood on test set.

Performs better than many flow models.

FFJORD: discussion

Advantages

- Guaranteed inverse regardless of model parameterization
- Efficient, unbiased log-probability estimation without restricting the Jacobian of the transformation
- Reversible generative models can now be defined with standard neural network architectures.

Disadvantages

- Relies on adaptive numerical ODE solvers for stable training
- Computation time determined by solver, not user
- 4-5x slower than other reversible generative models (Glow, Real-NVP)

FFJORD: discussion

	Method	Train on data	One-pass Sampling	Exact log- likelihood	Free-form Jacobian
	Variational Autoencoders	✓	✓	X	1
	Generative Adversarial Nets	✓	✓	X	✓
	Likelihood-based Autoregressive	✓	X	✓	X
Change of Variables	Normalizing Flows	×	✓	1	X
	Reverse-NF, MAF, TAN	✓	X	✓	X
	NICE, Real NVP, Glow, Planar CNF	✓	✓	1	X
	FFJORD	✓	✓	✓	✓

Table 1: A comparison of the abilities of generative modeling approaches.

Conclusions

Normalizing flows: conclusions

- Advantages:
 - Explicit likelihood.
 - Straightforward sampling.
- Disadvantages:
 - Less realistic samples than GANs.
 - Some models have suppressed one of the advantages.