AMENDMENTS TO THE CLAIMS

- 1. (Original) A tool for inserting a plurality of electrical wires into an electrical connector for mating with a plurality of electrical contact members fixedly mounted within the electrical connector, comprising:
- a base fixture upon which an electrical connector is to be installed;
- an insertion die holder upon which a set of insertion dies is mounted for encountering and forcing the plurality of electrical wires into the electrical connector; and
- a multi-chamber piston-cylinder driving assembly for developing an enhanced force level necessary for moving said insertion die holder toward said base fixture so as to cause said set of insertion dies mounted upon said insertion die holder to force the plurality of electrical wires into the electrical connector and mate with the electrical contact members of the electrical connector.

2. (Original) The tool as set forth in Claim 1, wherein said multi-chamber piston-cylinder driving assembly comprises:

- a cylinder housing;
- a plurality of members dividing said cylinder housing into a plurality of piston chambers;
 - a single piston rod;
- a plurality of piston members fixedly mounted upon said single piston rod and respectively disposed within said plurality of piston chambers;

means for conducting an actuating fluid into a first region of each one of said plurality of piston chambers disposed upon a first side of each one of said plurality of piston members so as to actuate said plurality of piston members in a first direction; and

means for exhausting fluid from a second region of each one of said plurality of piston chambers disposed upon a second side of each one of said plurality of piston members so as to permit said plurality of piston members to be moved in said first direction.

3. (Original) The tool as set forth in Claim 2, wherein said

means for conducting the actuating fluid into said first region of each one of said plurality of piston chambers comprises:

an axial bore defined within said single piston rod, and a plurality of transverse bores respectively fluid-ically connecting said axial bore with said plurality of piston chambers.

4. (Original) The tool as set forth in Claim 3, wherein said means for exhausting fluid from said second region of each one of said plurality of piston chambers comprises:

a plurality of exhaust passages defined within each one of said plurality of dividing members and extending through said cylinder housing for respectively fluidically connecting said second region of each one of said plurality of piston chambers to atmosphere.

5. (Original) The tool as set forth in Claim 3, further comprising:

an air fitting connector mounted upon said cylinder housing for supplying actuating pneumatic air fluid into said cylinder housing; and

a pair of two-position flow control valves mounted upon said cylinder housing both of which must be simultaneously actuated in order to supply the actuating pneumatic air fluid into said cylinder housing.

6. (Original) A tool for inserting a plurality of electrical wires into an electrical connector for mating with a plurality of electrical contact members fixedly mounted within the electrical connector, comprising:

a base fixture upon which an electrical connector is to be installed;

an insertion die holder upon which a set of insertion dies is mounted for encountering and forcing the plurality of electrical wires into the electrical connector;

a piston-cylinder driving assembly, comprising a piston rod and at least one piston mounted upon said piston rod, for moving said insertion die holder toward said base fixture so as to cause said set of insertion dies mounted up-

on said insertion die holder to force the plurality of electrical wires into the electrical connector and mate with the electrical contact members of the electrical connector; and

single quick-release/quick-lock means for releasing and mounting said insertion die holder upon said piston rod of said piston-cylinder driving assembly so as to permit different insertion die holders, having different sets of insertion dies mounted thereon, to be exchanged in a relatively rapid manner.

- 7. (Original) A tool as set forth in Claim 6, wherein said single quick-release means for mounting said insertion die holder upon said piston rod of said piston-cylinder assembly, comprises:
 - a key-hole shaped aperture, comprising a narrow slot entrance portion and a circular portion connected to said narrow slot entrance portion, formed within said piston rod; and
 - a pin member, comprising a shaft section having a substantially circular cross-sectional configuration with flat regions formed upon side surface portions of said shaft

member, rotatably mounted upon said insertion die holder between a first rotational position at which said substantially circular cross-sectional shaft section of said pin member is disposed within said circular portion of said key-hole shaped aperture whereby said insertion die holder is disposed in a LOCKED state upon said piston rod, and a second rotational position at which said flat regions of said pin member are aligned with said narrow slot entrance portion of said key-hole shaped aperture whereby said insertion die holder is disposed in a RELEASED state upon said piston rod.

8. (Original) The tool as set forth in Claim 7, wherein:
said pin member has a handle portion integrally
connected to said shaft section for facilitating rotation of
said pin member between said first LOCKED state and said second RELEASED state.

9. (Original) The tool as set forth in Claim 7, wherein: said single quick-release/quick-lock means for re-

leasing and mounting said insertion die holder upon said piston rod of said piston-cylinder driving assembly comprises a quarter-turn fastener wherein said LOCKED and RELEASED states are disposed 90° apart.

10. (Original) A tool for inserting a plurality of electrical wires into an electrical connector for mating with a plurality of electrical contact members fixedly mounted within the electrical connector, comprising:

a base fixture upon which an electrical connector is to be installed;

an insertion die holder upon which a set of insertion dies is mounted for encountering and forcing the plurality of electrical wires into the electrical connector;

a driving assembly for moving said insertion die holder toward said base fixture so as to cause said set of insertion dies mounted upon said insertion die holder to force the plurality of electrical wires into the electrical connector and mate with the electrical contact members of the electrical connector;

means for fixedly mounting said insertion die hold-

er upon said driving assembly so as to comprise an integral insertion die holder and driving assembly unit; and

means for permitting axial insertion of a first end of said integral insertion die holder and driving assembly unit into a first end of said base fixture and for permitting angular rotation of said integral insertion die holder and driving assembly unit with respect to said base fixture such that a second end of said integral insertion die holder and driving assembly unit engages a second end of said base fixture so as to fixedly mount said integral insertion die holder and driving assembly unit upon said base fixture.

- 11. (Original) The tool as set forth in Claim 10, wherein said means for mounting said integral insertion die holder and driving assembly unit upon said base fixture, comprises:
 - a first socket defined within said base fixture;
- a first set screw mounted upon said base fixture and operatively associated with said first socket;
 - a second socket defined within said base fixture;
- a second set screw mounted upon said base fixture and operatively associated with said second socket;

a first guide rod mounted upon said integral insertion die holder and driving assembly unit and having structure incorporated thereon for permitting said first guide rod to bypass said first set screw when said first guide rod is axially inserted into said first socket and for engaging said first set screw when said integral insertion die holder and driving assembly unit is angularly rotated such that said first guide rod is axially retained within said first socket; and

a second guide rod mounted upon said integral insertion die holder and driving assembly unit and having
structure incorporated thereon for engaging said second set
screw when said integral insertion die holder and driving assembly unit is angularly rotated such that said second guide
rod is axially retained within said first socket.

12. (Original) The tool as set forth in Claim 11, wherein:

said first guide rod comprises a flat peripheral

portion for axially bypassing said first set screw, and a

first annular recessed portion for operatively engaging said

first set screw; and

said second guide rod comprises a second annular recessed portion for operatively engaging said second set screw.

- 13. (Original) The tool as set forth in Claim 12, further comprising:
- a detent recess formed within said second guide rod; and

spring-biased plunger latching means disposed within said second socket for engaging said detent recess of said second guide rod so as to latchingly retain said second guide rod within said second socket at a fully angularly rotated position.

14. (Original) The tool as set forth in Claim 11, wherein:
said first guide rod fixedly mounted upon said integral insertion die holder and driving assembly unit, and
said first socket defined within said base fixture, have
first predetermined diametrical extents, and said second

guide rod fixedly mounted upon said integral insertion die holder and driving assembly unit, and said second socket defined within said base fixture, have second predetermined diametrical extents which are different from said first predetermined diametrical extents of said first guide rod and said first socket such that said integral insertion die holder and driving assembly unit can only be mounted upon said base fixture in a single predetermined orientation.

15. (Original) The tool as set forth in Claim 13, further comprising:

an aperture defined within said insertion die holder at a predetermined angular position; and

a tooth integrally formed upon said base fixture at a predetermined angular position for insertion within said aperture defined within said insertion die holder so as to ensure that said integral insertion die holder and driving assembly unit has been rotated to said fully angularly rotated position.

16. (Original) A tool for inserting a plurality of electrical wires into an electrical connector for mating with a plurality of electrical contact members fixedly mounted within the electrical connector, comprising:

a base fixture upon which an electrical connector is to be installed;

an insertion die holder upon which a set of insertion dies is mounted for encountering and forcing the plurality of electrical wires into the electrical connector;

a driving assembly for moving said insertion die holder toward said base fixture so as to cause said set of insertion dies mounted upon said insertion die holder to force the plurality of electrical wires into the electrical connector and mate with the electrical contact members of the electrical connector; and

means mounted upon said base fixture for engaging said electrical connector so as to precisely locate and laterally immobilize said electrical connector upon said base fixture such that said set of insertion dies can accurately insert the electrical wires into said electrical connector.

- 17. (Original) The tool as set forth in Claim 16, wherein:

 said means mounted upon said base fixture for engaging said electrical connector so as to precisely locate
 and laterally immobilize said electrical connector upon said
 base fixture comprises a plurality of locator pins for engaging grooved sections of said electrical connector.
- 18. (Original) The tool as set forth in Claim 16, wherein:

 said means mounted upon said base fixture for engaging said electrical connector so as to precisely locate
 and laterally immobilize said electrical connector upon said
 base fixture comprises a header having a plurality of pins
 wherein first portions of said plurality of pins operatively
 engage said electrical connector.
- 19. (Original) The tool as set forth in Claim 18, wherein:
 said plurality of pins of said header comprise second portions for electrical connection to testing equipment
 by means of which the proper electrical connection between

the electrical wires and said electrical contact members of said electrical connector can be verified.

20. (Original) The tool as set forth in Claim 16, further comprising:

a retainer mounted upon said insertion die holder for engaging and retaining said electrical connector upon said base fixture while said set of insertion dies are being moved toward said electrical connector during insertion of the electrical wires into said electrical connector, and for engaging and retaining said electrical connector upon said base fixture while said set of insertion dies are being moved away from said electrical connector after said set of insertion dies have inserted the electrical wires into said electrical connector.

21. (Original) A tool for inserting a plurality of electrical wires in-to an electrical connector for mating with a plurality of electrical contact members fixedly mounted within the

electrical connector, comprising:

a base fixture upon which an electrical connector is to be installed;

an insertion die holder upon which a set of insertion dies and a cutter die are mounted for encountering and forcing the plurality of electrical wires into the electrical connector;

a driving assembly for moving said insertion die holder toward said base fixture so as to cause said set of insertion dies mounted upon said insertion die holder to force the plurality of electrical wires into the electrical connector and mate with the electrical contact members of the electrical connector; and

cutter means movably mounted upon said base fixture for permitting said electrical connector to be mounted
upon and removed from said base fixture and for operatively
cooperating with said cutter die for severing the electrical
wires when an end-type electrical connector is being fabricated.

22. (Original) The tool as set forth in Claim 21, further comprising:

trunnion means pivotally mounting said cutter means upon said base fixture.

23. (Original) The tool as set forth in Claim 21, wherein:

said cutter means comprises a cutter blade element

comprising a substantially arcuate cut-out section for per
mitting the discharge of severed pieces of the electrical

wires so as to prevent the accumulation of severed pieces of

the electrical wires and jamming of said tool.

24. (Original) The tool as set forth in Claim 23, further comprising:

a cutter blade holder fixedly mounted upon said base fixture; and

spring biasing means interposed between said cutter blade holder and said cutter blade element for normally
biasing said cutter blade element toward said operatively

cooperative position with respect to said cutter die.

25. (New) A tool for inserting a plurality of electrical wires into an electrical connector for mating with a plurality of electrical contact members fixedly mounted within the electrical connector, comprising:

a base fixture upon which an electrical connector is to be installed;

an insertion die holder upon which a set of insertion dies is mounted for encountering and forcing the plurality of electrical wires into the electrical connector;

a piston-cylinder driving assembly for moving said insertion die holder toward said base fixture so as to cause said set of insertion dies mounted upon said insertion die holder to force the plurality of electrical wires into the electrical connector and mate with the electrical contact members of the electrical connector; and

means mounted upon said base fixture for engaging the electrical connector so as to precisely locate and laterally immobilize the electrical connector upon said base fixture such that said set of insertion dies can accurately in-

sert the electrical wires into the electrical connector.