Практическая работа № 4

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ГИДРОЦИЛИНДРА С ОДНОСТОРОННИМ ШТОКОМ. ОБЪЕМНЫЙ РАСХОД

Цель работы: изучение соотношения скоростей при обратном и прямом ходе штока в поршневых гидроцилиндрах с односторонним штоком.

Общие сведения

В гидроцилиндрах с односторонним штоком площади поршневой и штоковой полостей различаются, и возникает эффект мультипликации давления. Данное явление приводит к тому, что давление в полостях гидроцилиндра действует неодинаково, и шток движется с разной скоростью при прямом и обратном ходе, если расход жидкости одинаков.

При прямом ходе поршня усилие на штоке несколько больше, а скорость движения штока меньше, чем при обратном ходе, за счет разницы в площадях, к которым приложена сила давления рабочей жидкости (эффективной площади поперечного сечения).

Необходимо заметить, что величина нагрузки на штоке также оказывает значительное влияние на скорость движения штока.

Так как площади поршневой и штоковой полостей различаются, то для достижения одинаковой скорости при прямом и обратном ходе штока требуется разный расход жидкости в рукавах и трубах. Расход жидкости следует выбирать с учетом производительности насоса и соотношения площадей между полостями гидроцилиндра.

Если в гидравлической системе от гидроцилиндра требуется не только создание усилия, но и перемещение штока с определенной скоростью в обе стороны, то применяются гидроцилиндры с двухсторонним штоком (рис. 4.1).

Рис. 4.1. Гидроцилиндр с двухсторонним штоком

ПРАКТИЧЕСКАЯ ЧАСТЬ

Задание

- Ознакомиться и кратко законспектировать общие сведения.
- Изучить условия задачи и спецификацию гидроаппаратов, которые потребуются для ее решения (табл. 4.1).
 - Самостоятельно разработать гидравлическую схему решения задачи.
- Разработанную гидравлическую схему сравнить с рис. 4.2 и дорисовать недостающие элементы.
 - Дать описание работы гидравлической схемы.
- Сделать выводы по результатам проведенной работы и ответить на контрольные вопросы.

Условия задачи

При включении насоса происходит выдвижение штока горизонтально ориентированного гидроцилиндра в рабочую область. При этом скорость перемещения должна регулироваться в прямом и обратном направлениях. Обратный ход осуществляется посредством переключения 4/2-гидрораспределителя с односторонним ручным управлением.

При открытом дросселе шток гидроцилиндра движется в разных направлениях с разной скоростью. Необходимо объяснить разность скоростей.

Puc. 4.2. Эскиз гидравлической схемы гидроцилиндра с регулируемой скоростью хода в прямом и обратном направлениях

Таблица 4.1 Спецификация к гидравлической схеме

Позиция	Коли- чество, шт.	Название устройства	Обозначение типа устройства	Символ
1.0	1	Гидроцилиндр двухстороннего действия	ГЦ2	A B
1.1	1	Гидрораспределитель четырехлинейный двухпозиционный с ручным управлением	P4/2-PY	A B P T
1.2	1	Предохранительный клапан с ручным управлением	КП-РУ	P
1.3	1	Дроссель двойного действия	ДР2	A [] B
0.1 0.2 0.3 0.4	4	Тройник с манометром	TM	<u> </u>

Контрольные вопросы

- 1. Назовите факторы, которые определяют скорость выдвижения штока гидроцилиндра.
- 2. Перечислите преимущества и недостатки дроссельного регулирования.
 - 3. Назовите виды регулирования гидроприводов.
 - 4. В чем суть объемно-дроссельного регулирования?