EE 2000 Logic Circuit Design Semester A 2021/22A

Tutorial 1

- 1. Simplify the following expressions using boolean algebra
 - (i) f(x, y, z) = xz + yz + xyz + xy = x'z(1+y') + yz' + xy = x'z(1) + (x + x')yz' + xy = x'z + xyz' + x'yz' + xy = x'(z + yz') + xy(1 + z') = x'(z + y) + xy = x'z + x'y + xy = x'z + y(x + x') = x'z + y
 - (ii) $F(A, B, C) = A\overline{B}(\overline{B} + \overline{C})(A + C)$ = AB'(AB' + AC' + B'C + CC')= AB' + AB'C' + AB'C= AB'
- 2. Simplify the following expressions using k-map.
 - (a) f = abc + bcd + acd + abc + abcd
 - (b) f = wxy + yz + xyz + xy
 - (c) $f(a,b,c,d) = \Sigma m(4,6,7,15)$
 - (d) $f(a,b,c,d) = \sum m(3,7,11,13,14,15)$
 - (e) $f(a,b,c,d) = \sum m(0,6,8,13,14) + \sum d(2,4,10)$
 - (f) $f(a,b,c,d) = \sum m(1,3,5,7,9,15) + \sum d(4,6,12,13)$

Answer:

- (a) ac + b'd' + a'bd + b'c or ac + b'd' + a'bd + cd
- (b) xz + wy + x'y
- (c) BCD + A'BD'
- (d) CD + ABC + ABD
- (e) B'D' + CD' + ABC'D
- (f) A'D + BD + C'D
- 3. <u>Map</u> the following SOP expression on a K-map. BC+AB+ABC+ABCD+ABCD+ABCD

Ans:

- 4. A simple locker system that has a output signal Z = 1 when the hexadecimal keypad input is either 0, 1, 2, 3, 4, 5, 8, 9, or A; otherwise Z = 0. Assume that $A_0 A_1 A_2 A_3$ represent a 4-digit binary number output from the keypad. Block A decodes these singals and outputs the signal Z.
 - (i) Write down the truth table of Block A.
 - (ii) Find the SOP and POS expression of Block A.
 - (iii) Design the circuit of Block A using minimum number of AND, OR and NOT gates.

(The answer can be different if $A_0 A_1 A_2 A_3$ represent by Gary Code, and others.)

(i) Assume a conventional BCD for A₀ A₁ A₂ A₃.

Hexadecimal	A ₀	A ₁	A ₂	A ₃	Z
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	1
Α	1	0	1	0	1
В	1	0	1	1	0

С	1	1	0	0	0
D	1	1	0	1	0
Е	1	1	1	0	0
F	1	1	1	1	0

(ii)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ A_{2}A_{3} \\ 00 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	A						A						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 4	00	01	11	10		1 1	00	01	11	10		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A ₂ A ₃	1	1		1					0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	01	1	1		1	-	01			0			
SOP: $f = A'_0A'_1 + A'_0A'_2 + A'_1A'_2 + A'_1A'_3$ $f' = A_0A_1 + A_1A_2 + A_0A_2A_3$ POS: $f = (A'_0+A'_1)(A'_1+A'_2)(A'_0+A'_2+A'_3)(A'_0+A'_1+A'_2)(A'_0+A'_2+A'_3)(A'_0+A'_1+A'_2)(A'_0+A'_1+A'_2)(A'_0+A'_1+A'_2)(A'_0+A'_1+A'_2)(A'_0+A'_1+A'_1+A'_2)(A'_0+A'_1+A'_1+A'_1+A'_1+A'_1+A'_1+A'_1+A'_1$	11	1					11		0	0	0		
POS: $f = (A'_0 + A'_1)(A'_1 + A'_2)(A'_0 + A'_2 + A'_3)$	10	1			1	-	10		0	0			
	SOP: <i>f</i> =	A' ₀ A' ₁	+ A' ₀ A	' ₂ + A'	₁ A' ₂ +	A'1A'3							
								POS: $f = (A'_0 + A'_1)(A'_1 + A'_2)(A'_1 + A'_3)$					
I (By DeMorgan)							(By DeMorgan)						

(iii) Simplify the answer from SOP:

$$f = A'_0A'_1 + A'_0A'_2 + A'_1A'_2 + A'_1A'_3$$

$$= A'_0(A'_1 + A'_2) + A'_1(A'_2 + A'_3)$$

$$= A'_0(A_1 A_2)' + A'_1(A_2 A_3)'$$

(Please draw the circuit.)

- 5. (a) Draw the logic circuit of the following Boolean function without simplification: Y(A, B, C) = ABC + AB'(A'C')'
 - (b) Simplify the logic function in (a) and, hence, re-draw the logic circuit.

Ans:

(a)

6. (a) Derive Boolean functions to describe the operations of the logic circuit as follow:

- (b) Hence, simply and draw a new logic circuit.
- 7. (a) Use a K-map to convert the following canonical SOP expression into a minimum POS expression. $f(a,b,c,d) = \Sigma m (0,1,2,5,7,8,10,13,14,15)$

$$f(a,b,c,d) = (b'+c+d)(a'+b+d')(a+b'+d)(b+c'+d')$$

(b) Use a K-map to convert the following canonical POS expression into a minimum SOP expression. $f(a,b,c,d) = \prod M (0,2,5,7,8,9,13)$

$$f(a,b,c,d) = ac + bd' + a'b'd$$

