Elipse

Sergio Padilla Marina Estévez Ignacio Cordón

22 de noviembre de 2016

Hipercuádricas

Un polinomio de segundo grado en \mathbb{R}^n se define como:

$$Q(x) = \sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{i < j} a_{ij} x_i x_j + \sum_{i=1}^{n} b_i x_i + c$$

donde $a_{i,j}, b_i, c \in \mathbb{R}$ y algún $a_{ij} \neq 0, x = (x_1, \dots x_n)^t \in \mathbb{R}^n x$ Se llama **hipercuádrica** asociada a Q al conjunto:

$$\mathbb{C}_Q = \{x \in \mathbb{R}^n : Q(x) = 0\}$$

 \mathbb{C}_Q puede ser vacío, p.e. $Q(x,y)=x^2+y^2+1=0$

Hipercuádrica en $\mathbb{R}^2 \to \mathbf{cónica}$ (intersecciones del cono $\left\{ (x,y,z) \in \mathbb{R}^3 : \frac{x^2}{a^2} + \frac{y^2}{b^2} - z^2c^2 = 0 \right\}$ con un plano afín) Hipercuádrica en $\mathbb{R}^3 \to \mathbf{cuádrica}$.

Otra forma de escribirlas: $Q(x) = x^t \cdot M \cdot x + b^t \cdot x + c$

$$M = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix}$$

y también de la forma
$$Q(x) = (1, x^t) \cdot \widetilde{M} \cdot \left(\begin{array}{c} 1 \\ x \end{array} \right)$$

Donde
$$\widetilde{M} = \begin{pmatrix} c & \frac{b}{2} \\ \frac{b}{2} & M \end{pmatrix}$$

Decimos que \mathbb{C}_Q es degenerada si $det(\widetilde{M}) = 0$

Elipse

Dados dos puntos $F_1, F_2, a > 0$ definimos una elipse como

$$E = \left\{ p \in \mathbb{R}^2 : d(p, F_1) + d(p, F_2) = 2a \right\}$$

Sea $p=(x,y)\in E'$ centrada en (0,0) cuyos ejes mayor y menor coinciden con los ejes cartesianos, $F_1=(-\lambda,0)$, $F_2=(\lambda,0)$

$$\begin{split} d(p,F_1) &= 2a - d(p,F_2) \Leftrightarrow d(p,F_1)^2 = (2a - d(p,F_2))^2 \Leftrightarrow \\ (x+\lambda)^2 + y^2 &= 4a^2 + (x-\lambda)^2 + y^2 - 4a \cdot d(p,F_2) \Leftrightarrow \\ x\lambda &= a^2 - a \cdot d(p,F_2) \Leftrightarrow (a^2 - x\lambda)^2 = (a \cdot d(p,F_2))^2 \Leftrightarrow \\ a^4 + \lambda^2 x^2 &= a^2 x^2 + a^2 \lambda^2 + a^2 y^2 \Leftrightarrow \\ (a^2 - \lambda^2) x^2 + a^2 \cdot y^2 &= a^2 (a^2 - \lambda^2) \end{split}$$

Llamando $b^2 = a^2 - \lambda^2$:

$$b^2 \cdot x^2 + a^2 \cdot y^2 = a^2 \cdot b^2 \Leftrightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Notación

Sea $Q \in \mathbb{P}_2[x]$. Denotamos:

- ▶ λ_i a los valores propios de $M \ \forall i = 1, ..., n$
- $ightharpoonup \widetilde{\lambda_i}$ a los valores propios de $\widetilde{M} \ \forall i=1,\ldots,n$
- $ightharpoonup r = rg(M) = n^{Q} de \lambda_i no nulos$
- $ightharpoonup \widetilde{r} = \operatorname{rg}(\widetilde{M}) = \operatorname{n}^{\mathsf{Q}} \operatorname{de} \widetilde{\lambda_i} \operatorname{no} \operatorname{nulos}$
- $ullet |\Delta| = |\mathsf{n}^{\mathsf{Q}} \mathsf{de} \; \lambda_i^+ \mathsf{n}^{\mathsf{Q}} \mathsf{de} \; \lambda_i^-$
- $ullet |\widetilde{\Delta}| = |\mathsf{n}^{\mathtt{o}} \mathsf{de} \ \widetilde{\lambda}_i^+ \mathsf{n}^{\mathtt{o}} \mathsf{de} \ \widetilde{\lambda}_i^- |$
- $\qquad \qquad \Lambda_Q = \left\{ x \in \mathbb{R}^n / G_Q(x) = 0, G_Q : \mathbb{R}^n \to \mathbb{R}^n \quad \text{con} \quad G_Q(x) = Mx + \tfrac{b}{2} \right\}$

Definición de equivalencia euclídea

Sean Q_1 y $Q_2 \in \mathbb{P}_2[x]$. Diremos que Q_1 y Q_2 son euclídeamente equivalentes $(Q_1 \approx Q_2)$ si $\exists f : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ movimiento rígido y $\exists \alpha \neq 0$ tal que $Q_2 = \alpha(Q_1 \circ f)$. Así, $\mathbb{C}_{Q_2} = f^{-1}(\mathbb{C}_{Q_1})$.

Lema

Sean Q_1 , $Q_2 \in \mathbb{P}_2[x]$. Si $Q_1 \approx Q_2$ entonces se cumple:

- $r_1 = r_2$
- $ightharpoonup \widetilde{r}_1 = \widetilde{r}_2$
- $\blacktriangleright |\Delta_1| = |\Delta_2|$
- $|\widetilde{\Delta}_1| = |\widetilde{\Delta}_2|$

Teorema de las hipercuádricas reducidas

Sea $Q \in \mathbb{P}_2[x]$. Entonces existe $Q' \in \mathbb{P}_2[x]$ tal que $Q \approx Q'$. El polinomio Q' es la expresión reducida euclídea para Q y viene dada de la siguiente forma:

- ► Si $\Lambda_Q \neq \emptyset$ y $\Lambda_Q \subseteq C_Q$, entonces: $Q'(x) = x_1^2 + ... + \alpha_s x_s^2 \alpha_{s+1} x_{s+1}^2 ... \alpha_r x_r^2$ donde r = rg(M), $\alpha_i > 0 \ \forall i \ y$ $1 \leq s \leq r$. Se cumple también que $s \geq r s$, $1 \leq \alpha_2 \leq ... \leq \alpha_s \ y$ $\alpha_{s+1} \leq ... \leq \alpha_r$. En este caso, $\widetilde{r} = r$, $|\widetilde{\Delta}| = |\Delta| = 2s r$.
- Si $\Lambda_Q \neq \emptyset$ y $\Lambda_Q \cap C_Q = \emptyset$, entonces: $Q'(x) = \alpha_1 x_1^2 + \dots + \alpha_s x_s^2 \alpha_{s+1} x_{s+1}^2 \dots \alpha_r x_r^2 \pm 1$ donde r = rg(M), $\alpha_i > 0 \ \forall i \in 1, \dots, r \ y \ 1 \le s \le r$. Se cumple también que $s \ge r s$, $\alpha_1 \le \alpha_2 \le \dots \le \alpha_s \ y \ \alpha_{s+1} \le \dots \le \alpha_r$. En este caso, $\widetilde{r} = r+1$, $|\Delta| = 2s r$, $|\widetilde{\Delta}| = \begin{cases} 2s r + 1 \\ |2s r 1| \end{cases}$
- ▶ Si $\Lambda_Q = \emptyset$, entonces: $Q'(x) = \alpha_1 x_1^2 + ... + \alpha_s x_s^2 \alpha_{s+1} x_{s+1}^2 ... \alpha_r x_r^2 x_n$ donde r = rg(M), $\alpha_i > 0 \ \forall i \in 1, ..., r \ y \ 1 \le s \le r$. Se cumple también que $s \ge r s$, $\alpha_1 \le \alpha_2 \le ... \le \alpha_s \ y \ \alpha_{s+1} \le ... \le \alpha_r$. En este caso, $\widetilde{r} = r + 2$, $|\Delta| = |\widetilde{\Delta}| = 2s r$

Tabla de cónicas reducidas

Ecuación Euclidea	r	\widetilde{r}	Δ	$ \widetilde{\Delta} $	Tipo
$x^2 = 0$	1	1	1	1	Recta doble
$\lambda x^2 + 1 = 0$	1	2	1	2	\emptyset o dos rectas paralelas
$\lambda x^2 - 1 = 0$	1	2	1	0	Dos rectas paralelas
$\lambda x^2 - y = 0$	1	3	1	1	Parábola
$x^2 + \lambda y^2 = 0$	2	2	2	2	Punto
$x^2 - \lambda y^2 = 0$	2	2	0	0	Dos rectas secantes
$\lambda x^2 - \mu y^2 + 1 = 0$	2	3	2	3	Ø
$\lambda x^2 + \mu y^2 - 1 = 0$	2	3	2	1	Elipse
$\lambda x^2 - \mu y^2 \pm 1 = 0$	2	3	0	1	Hipérbola

Corolario

Las elipses, parábolas e hipérbolas son las únicas cónicas no degeneradas.

Ecuación ejercicio

$$|z|+< z, e>=k,$$

donde $z, e \in \mathbb{R}^2$ y $k \in \mathbb{R}$, desarrollando la ecuación, tomando z = (x, y) y $e = (e_1, e_2)$ obtenemos:

$$\sqrt{x^2 + y^2} + \langle (x, y), (e_1, e_2) \rangle = k$$

$$\sqrt{x^2 + y^2} + xe_1 + ye_2 = k$$

$$\sqrt{x^2 + y^2} = k - xe_1 - ye_2$$

$$x^2 + y^2 = (k - xe_1 - ye_2)^2$$

$$(1 - e_1^2)x^2 + (1 - e_2^2)y^2 - 2e_1e_2xy + 2ke_2y + 2ke_1x - k^2 = 0$$

luego es una cónica, ya que sabemos que las cónicas nos quedan definidas por una matriz simétrica, \widetilde{M}

$$\widetilde{M} = \begin{pmatrix} -k^2 & ke_1 & ke_2 \\ ke_1 & (1 - e_1^2) & -e_1e_2 \\ ke_2 & -e_1e_2 & (1 - e_2^2) \end{pmatrix}$$

$$M = \left(egin{array}{cc} (1-e_1^2) & -e_1e_2 \ -e_1e_2 & (1-e_2^2) \end{array}
ight)$$

Observando la tabla de cónicas, y en virtud del corolario posterior, para que la ecuación defina una elipse, necesitados que sea no degenerada $(|\widetilde{M}| \neq 0)$ y además como r=2 y Δ =2, todos los λ_i tienen el mismo signo (|M| > 0).

$$|M| = (1 - e_1^2)(1 - e_2^2) - e_1^2 e_2^2 > 0 \Leftrightarrow 1 - e_2^2 - e_1^2 + e_1^2 e_2^2 - e_1^2 e_2^2 > 0 \Leftrightarrow 1 > e_2^2 - e_1^2 \Leftrightarrow 1 > ||e||^2$$

$$|\widetilde{M}| = \begin{vmatrix} -k^2 & ke_1 & ke_2 \\ ke_1 & (1 - e_1^2) & -e_1e_2 \\ ke_2 & -e_1e_2 & (1 - e_2^2) \end{vmatrix} = -k^2$$

$$|\widetilde{M}| \neq 0 \Leftrightarrow k \neq 0$$

Si k < 0

Por Cauchy-Schwarz: $|z|+< z, e> \geq |z|-|z||e|\geq 0$, y no habría solución real (es una elipse en los complejos).

Si k > 0

Supongamos y = 0 y veamos que $\exists x$ tal que (x, y) cumple la ecuación:

Buscamos un x tal que $(1-e_1^2)x^2+2ke_1x-k^2=0$, estamos ante una ecuación de segundo grado, luego tenemos dos soluciones que son:

$$x_1 = \frac{k}{e_1 + 1}$$
 $x_2 = \frac{k}{e_1 - 1}$

Luego, tanto $(x_1, 0)$ como $(x_2, 0)$ son soluciones de la ecuación.

Resumiendo, la ecuación define una elipse $\Leftrightarrow \left\{ egin{array}{l} ||e|| < 1 \\ k \geq 0 \end{array} \right.$