Aufgabe 1: Das Phong-Beleuchtungsmodell

Teilaufgabe 1a

Abbildung 1: Skizze zu Aufgabe 1

Teilaufgabe 1b

$$I = \sum_{i=1}^{2} \overbrace{k_a \cdot I_{L_i}}^{=0} + k_d \cdot I_{L_i} \cdot (\underbrace{N \cdot L_i}_{\cos \Theta(L_i)}) + \underbrace{k_s \cdot I_{L_i} \cdot (R_{L_i} \cdot V)^n}^{=0}$$

Teilaufgabe 1c

 L_1 trägt mehr zur Intensität I von P_1 bei, weil $\cos\Theta(L_1)$ größer ist als $\cos\Theta(L_2)$.

Teilaufgabe 1d

I ändert sich nicht, weil keiner der Terme die zu I in diesem Fall beitragen vom A_1 bzw. A_2 abhängig ist.

Teilaufgabe 1e

TODO

Teilaufgabe 1f

TODO

Aufgabe 2: Raytracing

Teilaufgabe 2a

- Anstelle einen Punkt für einen Pixel abzutasten, tastet man k^2 mal in äquidistanten Intervallen ab.
- Aliasing wird dadurch verringert.

Teilaufgabe 2b

- Maximale Rekursionstiefe erreicht
- Rekursion bis der Beitrag zur Farbe vernachlässigbar wird

Teilaufgabe 2c

Was ist der Unterschied zwischen Distributed Raytracing und Whitted-Style Raytracing?

Beim Distributed Raytracing wird nicht nur ein Schattenstrahl verschickt, sondern viele. Damit sollen zu perfekte Spiegelungen / Transmissionen vermieden werden.

Welchen Lichttransport kann man durch Distributed Raytracing berechnen, den Whitted-Style Raytracing nicht erfassen kann?

Siehe Kapitel 2 (Raytracing), Folie 147ff:

- Kaustiken
- Weiche Schatten
- Tiefenunschärfe
- Bewegungsunschärfe

Teilaufgabe 2d

Nennen Sie kurz und stichpunktartig die zwei Schritte, die zur Berechnung von Vertex-Normalen bei einem Dreiecksnetz notwendig sind! Gehen Sie dabei davon aus, dass nur die Vertex-Positionen und die Topologie des Netzes gegeben sind! TODO

Aufgabe 3: Farben und Farbwahrnehmung

Teilaufgabe 3a

Teilaufgabe 3a (I)

Wie berechnet man die Sensorantwort a für ein Spektrum $S(\lambda)$?

$$a(S(\lambda)) = \int_{\lambda} E(\lambda) \cdot S(\lambda) d\lambda$$

Teilaufgabe 3a (II)

Unter einem *Metamerismus* versteht man das Phänomen, das unterschiedliche Spektren den selben Farbeindruck vermitteln können. Es muss also

$$a_1 = a_2$$

gelten, damit $S_1(\lambda)$ und $S_2(\lambda)$ bzgl. der gegebenen Kamera Metamere sind.

Teilaufgabe 3b

- 1. Das HSV-Farbmodell trennt Farbton von Helligkeit.
- \Rightarrow Richtig (Hue (Farbton), Saturation (Sättigung), Value (Hellwert)).
- 2. Der Farbeindruck einer additiv gemischten Farbe hängt nicht vom Farbeindruck der Ausgangsfarben ab.
- \Rightarrow TODO
- 3. Farbige Flächen werden unabhängig von ihrer Umgebung vom menschlichen Auge immer gleich wahrgenommen.
- \Rightarrow Falsch. (TODO: Welche Folie?)
- 4. Der Machsche Bandeffekt ist vor allem bei Phong-Shading ein Problem.
- \Rightarrow TODO

Aufgabe 4: Bézier-Kurven

Teilaufgabe 4a

Gegeben sei die Bézier-Kurve $\mathbf{b}(u) = \sum_{i=0}^{3} \mathbf{b}_{i} B_{i}^{3}(u)$ mit den Kontrollpunkten \mathbf{b}_{i} , wobei $u \in [0,1]$ und B_{i}^{3} das i-te Bernstein-Polynom vom Grad 3 ist.

Teilaufgabe 4a (I)

Werten Sie die Bézier-Kurve zeichnerisch mit dem de-Casteljau-Algorithmus an der Stelle u = 1/3 aus! Markieren Sie den Punkt $\mathbf{b}(1/3)$!

Abbildung 2: Skizze zu Aufgabe 4a und 4b

Teilaufgabe 4a (II)

vgl Abbildung 2 (da bin ich mir aber unsicher, ob das stimmt).

Teilaufgabe 4b

Siehe Nachklausur 2015, Aufgabe 11b für eine detailierte Erklärung.

- 1. Nein, da die Kontrollpunkte auf den Ecken eines Rechtecks liegen, aber die Kurve nicht symmetrisch ist.
- 2. Nein, da die Kurve nicht in der konvexen Hülle der Kontrollpunkte liegt.
- 3. Ja
- 4. Nein, da die Kurve nicht tangential an b_0b_1 ist.

Aufgabe 5: Transformationen

Der Basiswechsel ist eine Verschiebung um $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ und dann eine Rotation um 180° um die x-Achse. Daher:

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos 180^{\circ} & -\sin 180^{\circ} & 0 \\ 0 & \sin 180^{\circ} & \cos 180^{\circ} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(1)

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (2)

$$M = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (3)

Aufgabe 6: Texturierung

Teilaufgabe 6a

$$\lambda_{A} = \frac{A_{\Delta}(P, B, C)}{A_{\Delta}(A, B, C)} = \frac{3}{6} \qquad \lambda_{B} = \frac{A_{\Delta}(P, A, C)}{A_{\Delta}(A, B, C)} = \frac{1}{6} \qquad \lambda_{C} = \frac{A_{\Delta}(P, A, B)}{A_{\Delta}(A, B, C)} = \frac{2}{6}$$
(4)

$$\begin{pmatrix} u \\ v \end{pmatrix} = \lambda_A \cdot \begin{pmatrix} 4 \\ 0 \end{pmatrix} + \lambda_B \cdot \begin{pmatrix} 12 \\ 6 \end{pmatrix} + \lambda_C \cdot \begin{pmatrix} 0 \\ 12 \end{pmatrix} = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \tag{5}$$

Teilaufgabe 6b

Siehe Kapitel 4, Folie 56 TODO

Teilaufgabe 6c

Welchen Vorteil haben Summed-Area-Tables gegenüber Mipmaps bei der Texturfilterung? TODO

Teilaufgabe 6d

Das Interpolationsschema heißt Bilineare Interpolation und funktionert wie folgt:

$$t_{12} = (1 - a) \cdot t_1 + a \cdot t_2 \tag{6}$$

$$t_{34} = (1 - a) \cdot t_3 + a \cdot t_4 \tag{7}$$

$$t = (1 - b) \cdot t_{34} + b \cdot t_{12} \tag{8}$$

Aufgabe 7: Cube-Maps und Environment-Mapping

Teilaufgabe 7a

Teilaufgabe 7a (I)

Wie wird die Cube-Map-Seite bestimmt, auf die zugegriffen wird? Welche ist es für r? Es wird die betragsmäßig größte Komponente gewählt. Diese bestimmt ob es oben/unten oder links/rechts oder vorne/hinten wird. Das Vorzeichen bestimmt dann per Konvention die konkrete Fläche.

Im vorliegenden Fall ist $|r_z|$ am größten, also ist es Fläche 1.

Teilaufgabe 7a (II)

Berechnen Sie die Texturkoordinaten des Zugriffs auf der für ${\bf r}$ ausgewählten Cube-Map-Seite!

$$s = 1/2 + \frac{r_x}{2 \cdot r_z} = \frac{1}{4} \tag{9}$$

$$t = \frac{1}{2} + \frac{r_y}{2 \cdot r_z} = \frac{3}{4} \tag{10}$$

Teilaufgabe 7a (III)

Vorteile von Cube-Maps gegenüber Sphere-Maps (Quelle):

- Keine Bildverzerrung
- \bullet Unabhängigkeit vom Viewpoint P
- Schneller Berechenbar
- \Rightarrow Besser für Echtzeit-Rendering geeignet.

Teilaufgabe 7b

Teilaufgabe 7b (I)

Was wird in einer Environment-Map gespeichert?

Ein Bild der Umgebung in einer Textur.

Teilaufgabe 7b (II)

Nennen Sie ein Anwendungsbeispiel für Environment-Maps! Terminator (Reflektion auf dem Terminator im Film, vgl. Kapitel 4, Folie 97)

Teilaufgabe 7b (III)

Welche grundlegende Annahme wird bei Environment-Mapping gemacht? Das Environment ist unendlich weit weg (also: nur die Richtung r wird verwendet, nicht jedoch der Ausgangspunkt P).

Teilaufgabe 7b (IV)

Was bzw. welcher Effekt kann mit vorgefilterten Environment-Maps nicht korrekt dargestellt werden?

Selbstverschattung

Aufgabe 8: Hierarchische Datenstrukturen

Teilaufgabe 8a

Reihenfolge der Schnittests:

A B 14 15 A C 5 6 11

Teilaufgabe 8b

- 1. räumliches Mittel (Spatial Median)
- $\rightarrow\,$ Nein, daBnicht in der Mitte liegt
- 2. Objektmittel (Object Median)
- \rightarrow Nein, daBgenau 8 Objekte auf der einen Seite und nur 2 Objekte auf der anderen Seite hat.
- 3. Kostenfunktion (Surface Area Heuristic)
- \rightarrow Ja.

Teilaufgabe 8c

Nennen Sie jeweils eine Stärke und eine Schwäche der Aufteilung mittels Kostenfunktion (Surface Area Heuristic)!

Vorteil Gut konstruierte kD-Bäume können deutlich schneller sein als schlecht konstruierte Nachteil Konstruktion aufwendig

Teilaufgabe 8d

Aussage	BVH	Octree	kD-Baum	Gitter	
Datenstruktur wird an Geometrie angepasst Raum wird immer achsenparallel unterteilt Datenstruktur ist Binär-	Ja (Hüllkörper) Nein	Ja (Rekursionstiefe) Ja Nein	Ja (wo Ebenen liegen) Ja	Ja (Rekursionstiefe) Ja Nein	
baum Speicherplatz der Daten- struktur ist abhängig von der Anzahl der Pri-	Ja	Ja	Ja	Ja	
mive Bei der Konstruktuion kann die SAH sinnvoll eingesetz werden	$\mathrm{Ja^1}$	Nein	Ja	Nein	

¹Foliensatz 5 Folie 98

Aufgabe 9: Rasterisierung und OpenGL

#	Aussage	Wahr	Falsch
1	Die Präzision des Tiefenpuffers wird verringert, wenn man die Distanz	TODO	TODO
	zwischen Near-Plane und Far-Plane vergrößert.		
2	Die OpenGL-Pipeline nutzt den Vertex-Cache beim Zeichnen ohne Index-	TODO	TODO
	Puffer.		
3	OpenGL-Puffer vom Typ GL_ELEMENT_ARRAY_BUFFER werden für das Ren-	TODO	TODO
	dering mit der Shared-Vertex-Repräsentation verwendet.		
4	Ein Alpha-Test kann im Fragment-Shader mit dem Befehl discard	TODO	TODO
	implementiert werden.		
5	Die OpenGL-Funktion glBlendFunc(GL_SRC_ALPHA,	TODO	TODO
	GL_ONE_MINUS_SRC_ALPHA) kann verwendet werden, um additives		
	Blending zu implementieren.		
6	Shadow-Mapping benötigt den Stencil-Puffer.	TODO	TODO
7	Für die Transformation einer Normalen im Vertex-Shader kann immer	TODO	TODO
	dieselbe Matrix wie zur Transformation der entsprechenden Vertizes		
	verwendet werden.		
8	Beim Gouraud-Shading werden die im Vertex-Shader berechneten Farben	TODO	TODO
	pro Fragment linear interpoliert.		

Aufgabe 10: Tiefenpuffer und Transparenz

Teilaufgabe 10a

In welcher Reihenfolge müssen die drei Funktionen aufgerufen werden, um eine korrekte Darstellung des Hauses zu erhalten?

- 1. Lösche Tiefenpuffer
- 2. Zeichne Wände
- 3. Zeichne Fenster

Teilaufgabe 10b

Sortierung	keine	vorne nach hinten	hinten nach vorne	Begründung
ZeichneWände	TODO	TODO	TODO	TODO
ZeichneFenster	TODO	TODO	TODO	TODO

Teilaufgabe 10c

Sortierung	Tiefentest	EQUAL	LESS	GREATER	Tiefe schreiben	Blending
ZeichneWände ZeichneFenster		TODO TODO	TODO TODO	1020	TODO TODO	TODO TODO

Aufgabe 11: Phong-Shading und Phong-Beleuchtungsmodell

Teilaufgabe 11a

```
shader.vert
uniform mat4 matN; // Normalentransformation (Objekt -> Kamera)
2 uniform mat4 matM; // Modelltransformation
3 uniform mat4 matV; // Kameratransformation
4 uniform mat4 matP; // Projektionstransformation
_{5} uniform mat4 matMV; // Model-View-Matrix
6 uniform mat4 matMVP; // Model-View-Projection-Matrix
8 in vec3 P; // Eingabe-Vertex in Objektkoordinaten
9 in vec3 n; // Eingabenormale in Objektkoordinaten
11 out vec3 P_k; // Vertex-Position in Kamerakoordinaten
12 out vec3 n_k; // Vertex-Normale in Kamerakoordinaten
14 void main() {
     P_k = matMV * P;
      n_k = matN * n_k;
      gl_Position = matP * P_k;
17
18 }
```

Teilaufgabe 11b

```
shader.frag
uniform vec3 L; // Lichtposition in Kamerakoordinaten

// Materialparameter
uniform vec3 ka, kd, ks;
uniform float pexp; // Phong Exponent

// Intensität der Lichtquelle
uniform vec3 intensity;
```

```
10 in vec3 P_k;
11 in vec3 n_k;
13 void main()
14 {
      vec3 n = n_k;
      // Die Kamera ist im Ursprung vec3(0)
      vec3 v = normalize(-P_k);
^{17}
      vec3 l = normalize(L - P_k);
18
      vec3 r = reflect(-1, n);
19
      float cosAlpha = max(0.0, dot(v, r));
20
      vec3 diffuse = kd * max(0.0, dot(1, n));
      vec3 specular = ks * pow(cosAlpha, pexp);
      gl_FragColor = vec4(intensity * (ka + diffuse + specular), 1.0);
23
24 }
```

Aufgabe 12: Deformation mit Skelettsystemen

```
skelett.vert
in vec3 P; // Position des Vertex in Objektkoordinaten.
2 in float w[3]; // Einfluss der Knochen.

3
4 uniform mat4 matVP; // View-Projection-Matrix.
5 uniform mat4 M1; // Transformation des Fingers (Objekt -> Welt).
6 uniform mat4 M2; // Transformation von K2 relativ zu K1.
7 uniform mat4 M3; // Transformation von K3 relativ zu K2.

8
9 void main()
10 {
11     vec4 P1 = M1 * vec4(P, 1.);
12     vec4 P2 = M2 * P1;
13     vec4 P3 = M3 * P2;
14     gl_Position = matVP * (w[0] * P1 + w[1] * P2 + w[2] * P3);
15 }
```