DEPARTMENT OF MATHEMATICS, IIT Guwahati

MA101: Mathematics I, July - November 2014

Solutions of Tutorial Sheet: LA - 1

- 1. Supply two examples each and explain their geometrical meaning.
 - (a) Two linear equations in two variables with exactly one solution.
 - (b) Two linear equations in two variables with infinitely many solutions.
 - (c) Two linear equations in two variables with no solutions.
 - (d) Three linear equations in two variables with exactly one solution.
 - (e) Three linear equations in two variables with no solutions.

Solution:

- (a) Take x + y = 2, x y = 0. They represent two lines in \mathbb{R}^2 intersecting at a point.
- (b) Take x + y = 2, 2x + 2y = 4. They represent the same line in \mathbb{R}^2 .
- (c) Take x + y = 2, 2x + 2y = 1. They represent two parallel lines in \mathbb{R}^2 , no intersection.
- (d) Take x + y = 2, x y = 0, 2x y = 1. They represent three lines in \mathbb{R}^2 with a single point in common.
- (e) Take x + y = 2, x y = 0, 2x + 2y = 1. They represent three lines in \mathbb{R}^2 with no point in common. \square
- 2. For what values of $\lambda \in \mathbb{R}$, the following system of equations has (i) no solution, (ii) a unique solution, and (iii) infinitely many solutions?

$$(5-\lambda)x + 4y + 2z = 4$$
, $4x + (5-\lambda)y + 2z = 4$, $2x + 2y + (2-\lambda)z = 2$.

Also, find the solutions whenever they exist.

Solution: The augmented matrix of the given system of equations is

$$\begin{bmatrix} 5 - \lambda & 4 & 2 & | & 4 \\ 4 & 5 - \lambda & 2 & | & 4 \\ 2 & 2 & 2 - \lambda & | & 2 \end{bmatrix}$$

$$\xrightarrow{R_1 \leftrightarrow R_3} \begin{bmatrix} 2 & 2 & 2 - \lambda & | & 2 \\ 4 & 5 - \lambda & 2 & | & 4 \\ 5 - \lambda & 4 & 2 & | & 4 \end{bmatrix}$$

$$\xrightarrow{R_2 \to R_2 - 2R_1} \begin{bmatrix} 2 & 2 & 2 - \lambda & | & 2 \\ 0 & 1 - \lambda & -2 + 2\lambda & | & 0 \\ 5 - \lambda & 4 & 2 & | & 4 \end{bmatrix}$$

$$\xrightarrow{R_3 \to R_3 - \frac{1}{2}(5 - \lambda)R_1} \begin{bmatrix} 2 & 2 & 2 - \lambda & | & 2 \\ 0 & 1 - \lambda & -2 + 2\lambda & | & 0 \\ 0 & \lambda - 1 & 2 - \frac{1}{2}(2 - \lambda)(5 - \lambda) & | & \lambda - 1 \end{bmatrix}$$

$$\xrightarrow{R_3 \to R_3 + R_2} \begin{bmatrix} 2 & 2 & 2 - \lambda & | & 2 \\ 0 & 1 - \lambda & -2 + 2\lambda & | & 0 \\ 0 & 0 & -\frac{1}{2}(\lambda^2 - 11\lambda + 10) & | & \lambda - 1 \end{bmatrix}.$$

- (i) No Solution: In this case, the rank of the coefficient matrix \neq the rank of the augmented matrix. Thus $\lambda^2 - 11\lambda + 10 = 0$ and $\lambda - 1 \neq 0$. That is, if $\lambda = 10$ then the given system has no solution.
- (ii) Unique Solution: In this case, the rank of the coefficient matrix = the rank of the augmented matrix = 3. Thus $\lambda^2 - 11\lambda + 10 \neq 0$. That is, if $\lambda \neq 1, 10$ then the given system has a solution. The unique solution is given by $\left\lceil \frac{4}{10-\lambda}, \frac{4}{10-\lambda}, \frac{2}{10-\lambda} \right\rceil$.
- (iii) Infinitely Many Solutions: In this case, the rank of the coefficient matrix = the rank of the augmented matrix < 3. In this case, $\lambda^2 - 11\lambda + 10 = 0$ and $\lambda - 1 = 0$, that is, $\lambda = 1$. Thus, if $\lambda = 1$ then the given system has infinitely many solutions. The solution set is given by

$$\left\{ \left[1-s-\frac{t}{2},\ s,\ t\right]^t: s,t\in\mathbb{R} \right\}.$$

3. Prove that the interchange of two rows of a matrix can be accomplished by a finite sequence of elementary row operations of the other two types.

Solution: Let A be an $m \times n$ matrix, where $m \ge 2$. Let the i-th and j-th rows of A be **u** and **v**, respectively.

Let application of $R_j o R_j + R_i$ on A transform A into A_1 , application of $R_i o R_i + (-1)R_j$ on A_1 transform A_1 into A_2 , application of $R_j o R_j + R_i$ on A_2 transform A_2 into A_3 , and application of $R_i o (-1)R_i$ on A_3 transform A_3 into A_4 . Then the i-th and j-th rows of A_1 are \mathbf{u} and $\mathbf{u} + \mathbf{v}$, respectively. The i-th and j-th rows of A_2 are $-\mathbf{v}$ and $\mathbf{u} + \mathbf{v}$, respectively. Finally, the i-th and j-th rows of A_4 are \mathbf{v} and \mathbf{u} , respectively.

Thus, we see that the *i*-th and the *j*-th row of a matrix A can be interchanged by applying the sequence $R_j \to R_j + R_i$, $R_i \to R_i + (-1)R_j$, $R_j \to R_j + R_i$ and $R_i \to (-1)R_i$ of elementary row operations on A. \square

4. Let A be an $n \times n$ matrix. If the system $A^2 \mathbf{x} = \mathbf{0}$ has a non-trivial solution then show that the system $A\mathbf{x} = \mathbf{0}$ also has a non-trivial solution.

Solution: Assume that the system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. Then for $\mathbf{y} \in \mathbb{R}^n$, we have

$$A^2\mathbf{y} = \mathbf{0} \Rightarrow A(A\mathbf{y}) = \mathbf{0}$$

 $\Rightarrow A\mathbf{y} = \mathbf{0}$, since the system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution
 $\Rightarrow \mathbf{y} = \mathbf{0}$, since the system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution
 \Rightarrow the system $A^2\mathbf{x} = \mathbf{0}$ has no non-trivial solution.

Aliter: Let \mathbf{y} be a non-trivial solution of $A^2\mathbf{x} = \mathbf{0}$. Then we have $A^2\mathbf{y} = \mathbf{0}$. Now if $A\mathbf{y} = \mathbf{0}$ then \mathbf{y} is a non-trivial solution of $A\mathbf{x} = \mathbf{0}$. If $A\mathbf{y} \neq \mathbf{0}$ then $A\mathbf{y}$ is a non-trivial solution of $A\mathbf{x} = \mathbf{0}$.

5. Let A and B be two 2×3 matrices that are in reduced row echelon form. If the systems $A\mathbf{x} = \mathbf{0}$ and $B\mathbf{x} = \mathbf{0}$ have the same solution set then show that A = B.

Solution: There are only 7 possible 2×3 matrices that are in reduced row echelon form. These are

$$A_{1} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad A_{2} = \begin{bmatrix} 1 & a & b \\ 0 & 0 & 0 \end{bmatrix}, \quad A_{3} = \begin{bmatrix} 0 & 1 & a \\ 0 & 0 & 0 \end{bmatrix}, \quad A_{4} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

$$A_{5} = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \end{bmatrix}, \quad A_{6} = \begin{bmatrix} 1 & a & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad A_{7} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \text{where } a, b \in \mathbb{R}.$$

Let $\mathbf{x} = [x, y, z]^t \in \mathbb{R}^3$. Then we have

$$A_1\mathbf{x} = \mathbf{0} \Rightarrow x, y$$
 and z are arbitrary;
 $A_2\mathbf{x} = \mathbf{0} \Rightarrow x = -ay - bz$, where y and z are arbitrary;
 $A_3\mathbf{x} = \mathbf{0} \Rightarrow y = -az$, where x and z are arbitrary;
 $A_4\mathbf{x} = \mathbf{0} \Rightarrow z = 0$, where x and y are arbitrary;
 $A_5\mathbf{x} = \mathbf{0} \Rightarrow x = -az, y = -bz$, where z is arbitrary;
 $A_6\mathbf{x} = \mathbf{0} \Rightarrow x = -ay, z = 0$, where y is arbitrary; and

We see that the above seven system of equations have seven distinct solution sets. Hence none of the above seven system of equations are equivalent. So, if A and B are two 2×3 matrices that are in reduced row echelon form and if the systems $A\mathbf{x} = \mathbf{0}$ and $B\mathbf{x} = \mathbf{0}$ are equivalent, then A must be equal to B.

 $A_7 \mathbf{x} = \mathbf{0} \Rightarrow y = z = 0$, where x is arbitrary.

6. Prove or disprove: There exist two solutions \mathbf{x}_1 and \mathbf{x}_2 of some consistent non-homogeneous system $A\mathbf{x} = \mathbf{b}$ such that $\mathbf{x}_1 + \mathbf{x}_2$ is also a solution of $A\mathbf{x} = \mathbf{b}$.

Solution: Consider a consistent non-homogeneous system $A\mathbf{x} = \mathbf{b}$. Here we have $\mathbf{b} \neq \mathbf{0}$. Let \mathbf{x}_1 and \mathbf{x}_2 be two solutions of $A\mathbf{x} = \mathbf{b}$ so that $A\mathbf{x}_1 = \mathbf{b}$ and $A\mathbf{x}_2 = \mathbf{b}$. Then we have $A(\mathbf{x}_1 + \mathbf{x}_2) = A\mathbf{x}_1 + A\mathbf{x}_2 = \mathbf{b} + \mathbf{b} \neq \mathbf{b}$, since $\mathbf{b} \neq \mathbf{0}$. Hence $\mathbf{x}_1 + \mathbf{x}_2$ can never be a solution of $A\mathbf{x} = \mathbf{b}$. Thus the given statement is disproved.

7. Prove or disprove: If two matrices of the same order have the same rank then they must be row equivalent.

Solution: Take $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Here A and B have the same rank but they are not row equivalent (why?). Thus the given statement is disproved by this counterexample.