

Examen – Automatique

Session 1, lundi 14 novembre 2022 Durée : 1h30

1 Information, Consignes

- Documents autorisés : 1 pages A4 recto-verso manuscrite;
- Un corrigé sera accessible sous le git dans la journée.
- \rhd Exercice 1. (10 points) Soit γ une constante réelle fixée. On considère le système

$$(S) \begin{cases} \dot{x}_1(t) = x_2(t) + \gamma u(t) \\ \dot{x}_2(t) = u(t) \end{cases}$$

1.1. Écrire ce système sous la forme $\dot{x}(t) = Ax(t) + Bu(t)$. On donnera les matrices A et B.

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} \gamma \\ 1 \end{pmatrix}.$$

1.2. Pour quelles valeurs de γ le système est-il contrôlable?

La matrice de contrôlabilité est

$$C = \begin{pmatrix} \gamma & 1 \\ 1 & 0 \end{pmatrix}$$

est de rang 2 quel que soit la valeur de γ . Par suite le système est contrôlable pour toutes les valeurs de γ .

1.3. Donner les points de fonctionnement de (S)?

$$\begin{cases} x_2 + \gamma u = 0 \\ u = 0 \end{cases}$$

$$\iff (x_e, u_e) = (x_{e1}, 0, 0).$$

- **1.4.** On considère un contrôle par retour d'état autour du point de fonctionnement $(x_e, u_e) = (0, 0, 0) : u(t) = Kx(t)$.
 - 1. Quels sont les dimensions de la matrice K. K est de dimension (1,2).
 - 2. Quelles conditions doivent vérifier les coefficients de la matrice K pour que l'on stabilise asymptotiquement le système contrôlé par retour d'état autour de ce point de fonctionnement.

Le système contrôlé par retour d'état s'écrit $\dot{x}(t) = (A+BK)x(t)$ avec

$$A + BK = \begin{pmatrix} \gamma k_1 & 1 + \gamma k_2 \\ k_1 & k_2 \end{pmatrix}.$$

Il faut que cette matrice ait ses valeurs propres à partie réelle strictement négative, c'est-à-dire que

- $-\det(A+BK) = -k_1 > 0;$
- $-trace(A+BK) = \gamma k_1 + k_2 < 0.$
- **1.5.** On considère maintenant un contrôle par retour d'état autour du point de fonctionnement $(x_e, u_e) = (1, 0, 0) : u(t) = u_e + K(x(t) x_e)$.
 - 1. Écrire l'équation différentielle dont est solution ce système contrôlé par retour d'état : $\dot{x}(t) = g(x(t))$. On donnera la fonction g.

$$g: \mathbf{R}^2 \longrightarrow \mathbf{R}^2$$

 $x \longmapsto g(x) = (A + BK)x - BKx_e.$

- 2. Vérifier que $x_e = (1,0)$ est un point d'équilibre de ce système. $g(x_e) = Ax_e = 0$.
- 3. Quelles conditions doivent vérifier les coefficients de la matrice K pour que l'on stabilise asymptotiquement le système contrôlé par retour d'état autour de ce point de fonctionnement.

Posons
$$y(t) = x(t) - x_e$$
, alors $\dot{y}(t) = \dot{x}(t) = (A + BK)x(t) - BKx_e = (A + BK)(x(t) - x_e) = (A + BK)y(t)$.

Par suite sous les mêmes conditions qu'à la question 1.4, y(t) convergera vers (0,0) lorsque t tend vers $+\infty$, et donc x(t) convergera vers x_e .

▷ Exercice 2. (10 points)

On considère le modèle suivant ¹

^{1.} Ce modèle vient d'un régulateur de voiture.

$$(S) \begin{cases} \dot{y}(t) = -v(t)\cos\delta(t)\cos\theta(t) \\ \dot{\theta}(t) = \frac{v(t)\sin\delta(t)}{L} \\ \dot{v}(t) = u_1(t) \\ \dot{\delta}(t) = u_2(t) \end{cases}$$

où L est une constante.

2.1. Donner la fonction f permettant d'écrire l'équation différentielle sous la forme $\dot{x}(t) = f(x(t), u(t))$. Le système est-il linéaire? Si oui, on donnera les matrices A et B.

$$f: \mathbf{R}^4 \times \mathbf{R}^2 \longrightarrow \mathbf{R}^4$$

$$(x, u) = (y, \theta, v, \delta, u_1, u_2) \longmapsto f(x, u) = \begin{pmatrix} -v\cos\delta\cos\theta \\ (v\sin\delta)/L \\ u_1 \\ u_2 \end{pmatrix}$$

2.2. Donner les points de fonctionnement (x_e, u_e) de ce système.

$$f(x,u) = 0 \Longleftrightarrow \begin{cases} v\cos\delta\cos\theta = 0\\ v\sin\delta = 0\\ u_1 = 0\\ u_2 = 0 \end{cases} \Longleftrightarrow \begin{cases} v = 0 \text{ et } u_1 = u_2 = 0\\ \text{ou } (\delta = k\pi \text{ et } \theta = \pi/2 + k'\pi \text{ et } u_1 = u_2 = 0). \end{cases}$$

Les points de fonctionnement sont donc $(y_e, \theta_e, 0, \delta_e, 0, 0)$ ou $(y_e, \pi/2 + k'\pi, v_e, k\pi, 0, 0)$.

- **2.3.** On considère le point de fonctionnement $(x_e, u_e) = (5, \pi/2, 7, 0, 0, 0)$ et un contrôle par retour d'état autour de ce point de fonctionnement (x_e, u_e) : $u(t) = u_e + K(x(t) x_e)$.
 - 1. Quels sont les dimensions de la matrice K. K est de dimension (2,4).
 - 2. Donner la matrice dont les valeurs propres doivent être à partie réelle négative stricte pour que l'on stabilise asymptotiquement le système autour de ce point de fonctionnement.

Le système par retour d'état s'écrit $\dot{x}(t) = g(x(t)) = f(x(t), u_e + K(x(t) - x_e))$ et

$$J_g(x_e) = \frac{\partial f}{\partial x}(x_e, u_e) + \frac{\partial f}{\partial u}(x_e, u_e)K.$$

$$\frac{\partial f}{\partial x}(x,u) = \begin{pmatrix} 0 & v\cos\delta\sin\theta & -\cos\delta\cos\theta & v\sin\delta\cos\theta \\ 0 & 0 & \sin\delta/L & v\cos\delta/L \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

et

$$\frac{\partial f}{\partial u}(x,u) = \begin{pmatrix} 0 & 0\\ 0 & 0\\ 1 & 0\\ 0 & 1 \end{pmatrix}$$

Par suite il faut que la matrice suivante soit à valeur propre à partie réelle strictement négative pour stabiliser asymptotiquement le système autour du point de fonctionnement.

$$J_g(5, \pi/2, 7, 0) = \begin{pmatrix} 0 & 7 & 0 & 0 \\ 0 & 0 & 0 & 7/L \\ k_{11} & k_{12} & k_{13} & k_{14} \\ k_{21} & k_{22} & k_{23} & k_{24} \end{pmatrix}$$

3. Avec une valeur de K qui vérifie la condition ci-dessus, et partant d'un point très éloigné du point de fonctionnement, que peut-on dire de la limite de x(t) lorsque t tend vers $+\infty$.

On ne peut rien dire car on est ici dans le cas non linéaire et les résultats de stabilité asymptotique ne sont que locaux.

2.4. On suppose maintenant que l'on accède en pratique qu'à la variable δ . Peut-on trouver un contrôle par retour de sortie : $u(t) = u_e + K(\delta(t) - \delta_e)$ permettant de stabiliser asymptotiquement le système autour de ce point de fonctionnement.

Par un calcul similaire on obtiendra alors la matrice

$$J_{\widetilde{g}}(5, \pi/2, 7, 0) = \begin{pmatrix} 0 & 7 & 0 & 0 \\ 0 & 0 & 0 & 7/L \\ 0 & 0 & 0 & k_{14} \\ 0 & 0 & 0 & k_{24} \end{pmatrix}$$

dont le polynôme caractéristique est

$$P(\lambda) = \lambda^3 (\lambda - k_{24}).$$

Les valeurs propres ne peuvent donc être à partie réelle strictement négative. On ne peut alors stabiliser asymptotiquement le système par ette méthode.