Tim Pengajar IF2250

IF2250 – Rekayasa Perangkat Lunak

Perancangan Terstruktur

(Structured Design)

SEMESTER II TAHUN AJARAN 2023/2024

Pemodelan Secara Terstruktur (Structured Approach Modeling)

Model Analisis Terstruktur

Model Analisis Terstruktur

Elemen-elemen pada Perancangan

Dari Analisis ke perancangan

Model Analisis

Model Disain

Perancangan Arsitektur (Terstruktur)

Tujuan

Membentuk arsitektur program

Pendekatan

- DFD dipetakan menjadi arsitektur program
- PSPEC dan STD memberikan indikasi isi dari setiap modul

Notasi

Structure Chart (Diagram Terstruktur)

Panduan Umum Pembuatan Structure Chart

- Isolasi incoming flow dan outgoing flow, berikan batas
 - Untuk flow transaksi, isolasi bagian transaksinya
- Dari batas tadi, petakan DFD, transformasikan menjadi modul yang sesuai
- Tambahkan modul 'antara' jika diperlukan
- Perbaiki hasil program struktur dengan memperhatikan modularitas dari struktur hirarki modul

Pemetaan Tranformasi (contoh I)

IF2250 Pemodelan Terstruktur

Pemetaan Transaksi (contoh 2)

KNOWLEDGE & SOFTWARE ENGINEERING

Diagram Konteks SafeHome

DFD Level 2 dari Proses "Monitor Sensor"

DFD level 2 dari monitor sensor' dengan flow boundary

Iterasi
Faktoring
pertama untuk
"monitor sensor"

Iterasi Faktoring kedua

Hasil Structured Chart (SC) untuk SafeHome (Iterasi I)

KNOWLEDGE & SOFTWARE ENGINEERING

Hasil Structured Chart (SC) untuk SafeHome (Iterasi 2)

Pemetaan Transaksi

DFD untuk proses "User Interaction System"

SC untuk User Interaction System (Iterasi I)

SC untuk User Interaction System (Iterasi 2)

Perancangan Antarmuka

Perancangan Antarmuka (Interface Design)

Mudah dipelajari?

Mudah digunakan?

Mudah di mengerti

Kesalahan umum dalam perancangan antarmuka

Tidak konsisten

Kurangi objek yang harus diingat

Tidak ada panduan (help menu)

Respon lambat

Tidak mudah digunakan

Golden Rules

- Pengguna harus menjadi pengendali
- Kurangi hal-hal yang mengharuskan pengguna harus mengingat-ingat (less memory load)
- Buat tampilan yang konsisten

Pengguna sebagai Pengendali

- Buat interaksi yang tidak memaksa pengguna harus melakukan aksi yang tidak perlu atau yang tidak diinginkan
- Interaksi dibuat sefleksibel mungkin
- Interaksi pengguna dapat di interrupt (interruptible) atau di batalkan (undoable)
- Interaksi dapat di buat lebih fleksibel ketika kemampuannya makin meningkat, dan memungkinkan interaksi dapat dicustomized
- Hindari pengguna biasa untuk mengerti masalah-masalah tekniks
- perancangan dibuat untuk memungkinkan interaksi langsung dengan objek yang ada di layar

Kurangi Objek yang Harus diingat

- Kurangi kebutuhan pengguna untuk mengingat
 - Short-term memory reduction
- Buat perancangan yang praktis/default
- Buat shortcut yang intuitif
- Tataletak visual dari interaksi harus berdasarkan metafora dunia nyata
- Informasi ditampilkan secara progresif

Buat antarmuka yang konsisten

- Perancangan antarmuka perlu memperhatikan konteks yang dilakukan oleh Pengguna
- Konsistensi sepanjang aplikasi dijalankan
- Jika model interaksi sebelumnya telah membentuk apa yang diinginkan pengguna, maka hati-hati dalam melakukan perubahan, kecuali jika ada alasan yang kuat

Model Perancangan Interaksi Pengguna User Interface Design Models

- Persepsi Sistem
 - Melihat sistem dari sudut pandang pengguna (end-user)
- Model Pengguna (User model)
 - Buat profile dari setiap end-user dari sistem
- System image
 - Bentuk 'presentasi' dari sistem dengan interface yang lengkap
- Model perancangan (Design model)
 - Representasi software dalam bentuk perancangan data, arsitektural, interface and procedural

Proses Perancangan Antarmuka Pengguna

Analisis dan Pemodelan Task

- Semua task yang harus dilakukan harus terdefinisi dan terklasifikasi dengan jelas
- Objek (yang akan dimanipulasi) dan aksi (fungsi yang dilakukan pada objek) harus jelas teridentifikasi untuk setiap task
- Task harus di perbaiki secara iteratif hingga terdefinisi lengkap

Aktivitas Perancangan Antarmuka

- 1.Buat tujuan (goal) untuk setiap task
- 2.Petakan tujuan tadi menjadi sekumpulan aksi
- 3. Tentukan urutan aksi untuk setiap task/subtask
 - Disebut juga sebagai user-scenario (skenario pengguna) yang akan dieksekusi di level antarmuka
- 4. Tentukan 'state' dari sistem
 - Apa bentuk interface yang harus ditampilkan jika suatu user-scenario di jalankan
- 5. Definisikan mekanisme kendali
 - Objek/aksi yang harus ada saat pengguna mengubah 'state' dari sistem
- 6.Tunjukkan bagaimana mekanisme kendali akan berefek pada state dari sistem
- 7.Berikan indikasi bagaimana pengguna mengartikan 'state' dari sistem melalui interface

Masalah pada Perancangan Antarmuka

- Waktu respon sistem
 - Ketika pengguna memberikan suatu aksi dan waktu sistem memberikan respon
- Fasilitas panduan pengguna
 - Terintegrasi, context-sensitive help
- Penanganan terjadinya kesalahan
 - Pesan tidak bersifat 'mengadili', masalah dijelaskan dengan rinci dan juga berikan solusinya
- Nama Istilah Perintah
 - Penamaan menggunakan istilah yang dapat dimengerti pengguna, dan termasuk penggunaan singkatan yang konsisten.

Daur Evaluasi Perancangan Antarmuka

Kriteria mengevaluasi perancangan antarmuka

- Spesifikasi antarmuka yang panjang dan kompleks memberikan indikasi kompleksitas yang akan dipelajari oleh pengguna
- Jumlah task dari pengguna dan jumlah rata-rata aksi/task memberikan indikasi waktu interaksi dan juga efisiensi dari sistem
- Jumlah task, aksi dan state dari sistem dalam perancangan memberikan indikasi jumlah hal yang harus diingat oleh pengguna (memory load dari pengguna akan besar)
- Gaya antarmuka, fasilitas panduan, dan protokol penanganan error memberikan indikasi kompleksitas sistem dan tingkat acceptance dari user.

