유형 🔰 "C,의 계산

개념 10-1

①
$$_{n}C_{r} = \frac{nP_{r}}{r!} = \frac{n!}{r!(n-r)!} (E, 0 \le r \le n)$$

- ③ ${}_{n}C_{r}={}_{n}C_{n-r}$ (단, $0 \le r \le n$)
- ④ ${}_{n}C_{r} = {}_{n-1}C_{r} + {}_{n-1}C_{r-1}$ (단, $1 \le r < n$)

1234 대표문제

등식 ${}_{n}C_{2}+{}_{n-1}C_{2}={}_{n+2}C_{2}$ 를 만족시키는 자연수 n의 값 은?

- \bigcirc 6
- ② 7
- 3 8

- **4** 9
- **⑤** 10

1235 ®

등식 ${}_{s}C_{r-4}$ 를 만족시키는 자연수 r의 값을 구하시 오.

1236 69

 $_{n}P_{r}=210, _{n}C_{r}=35$ 일 때, 자연수 $n, _{r}$ 에 대하여 n+r의 값은?

- (1) 8
- ② 9
- (3) 10
- (4) 11 (5) 12

1237 📵 서술형

 $_{9-n}$ C₂=10일 때, $n \cdot _n$ P₂+ $_n$ C₃의 값을 구하시오.

유형 📭 "C,를 포함한 등식의 증명

개념 10-1

"C,를 포함한 등식은 다음을 이용하여 증명한다.

①
$$_{n}$$
C $_{r}$ = $\frac{n!}{r!(n-r)!}$ (단, $0 \le r \le n$)

1238 대표문제

다음은 $0 \le r \le n$ 일 때, 등식 ${}_{n}C_{r} = {}_{n}C_{n-r}$ 가 성립함을 증 명하는 과정이다. ⑺, ⑷에 알맞은 것을 구하시오.

$$\frac{n!}{nC_{n-r}} = \frac{n!}{(n-r)!\{n-(\lceil r \rceil)\}!}$$

$$= \frac{n!}{(n-r)! \lceil r \rceil} = {}_{n}C_{r}$$

1239 🚭

다음은 $0 \le k \le r \le n$ 일 때, 등식 ${}_{n}C_{r} \cdot {}_{r}C_{k} = {}_{n}C_{k} \cdot {}_{n-k}C_{r-k}$ 가 성립함을 증명하는 과정이다.

위의 과정에서 (개)~(래)에 알맞은 것은?

(z))

- (나)
- (다)
- (라) ① (n-r-1)! (n-1)! r! (r-1)!
- ② (n-r-1)! n!

(n-r)!

- r!
- (n-r)! (n-1)! (r-1)! (r-1)!
 - $\gamma!$ n!
- $\gamma!$

 $\gamma!$

- (5) (n-r)! n! (r-1)!
- $\gamma!$

1240 🚭

다음은 $1 \le r < n$ 일 때, 등식 ${}_{n}C_{r} = {}_{n-1}C_{r} + {}_{n-1}C_{r-1}$ 이 성립함을 증명하는 과정이다. (n), (u), (u)에 알맞은 것을 구하시오.

집중공략 🞯

유형 🕦 조합의 수

개념 10-1

- ① 서로 다른 n개에서 순서를 생각하지 않고 r개를 택하는 경우의 수 \bigcirc \square \square \square \square
- ② 서로 다른 n개에서 a개를 택한 후 나머지에서 b개를 택하는 경우의 수 \bigcirc nC $_a$ · $_{n-a}$ C $_b$

1241 대표문제

어느 학교의 합주반에는 플루트 연주자 5명, 바이올린 연주자 6명이 있다. 이 중에서 플루트 연주자 3명, 바이 올린 연주자 2명을 뽑는 경우의 수는?

- ① 120
- (2) 150
- (3) 180

- **4**) 210
- (5) 240

1242 @

어느 극단의 배우 10명 중에서 연극에 출연할 주연 1명, 조연 3명을 뽑는 경우의 수를 구하시오.

1243 ⁶⁹

디자이너 5명과 모델 n명 중에서 3명을 $\frac{8}{1}$ 을 때, 3명의 직업이 모두 같은 경우의 수가 66이다. 이때 n의 값은?

- 1 8
- **(2)** 9
- ③ 10

- (4) 11
- (5) 12

1244 @

현서는 다음 조건을 모두 만족시키도록 일주일 동안 하루에 한 가지씩 운동하는 계획을 세우려고 한다. 현서가 세울 수 있는 계획의 경우의 수는?

- (개) 3일은 요가를 한다.
- (내) 3일은 조깅을 한다.
- (대) 나머지 하루는 줄넘기, 수영 중에서 한 가지를 한다.
- 1 140
- ② 175
- ③ 210

- **(4)** 245
- **⑤** 280

1245 🗗 서술형 🖉

1부터 9까지의 자연수가 각각 하나씩 적힌 9장의 카드 중에서 동시에 3장의 카드를 뽑을 때, 뽑은 카드에 적힌 수의 총합이 홀수가 되는 경우의 수를 구하시오.

특정한 것을 포함하거나 포함하지 않는 조합의 수

개념 10-1

- ① 서로 다른 n개에서 특정한 k개를 포함하여 r개를 뽑는 경우의 수
- \bigcirc k개를 이미 뽑았다고 생각하고 나머지 (n-k)개에서 (r-k)개를 뽑는 경우의 수와 같다.
- ② 서로 다른 n개에서 특정한 k개를 제외하고 r개를 뽑는 경우의 수
- \bigcirc k개를 제외한 나머지 (n-k)개에서 r개를 뽑는 경우의 수와 같다.

1246 四里是제

A. B. C를 포함한 10명의 학생 중에서 5명의 위원을 선출할 때, A, B, C가 모두 선출되지 않는 경우의 수 는?

- 1 10
- 2 15
- ③ 21

- **4**) 35
- (5) 56

1247 B

동엽이와 다은이를 포함하여 총 8명의 농구 선수가 있 다. 이 중에서 시합에 나갈 5명의 선수를 뽑을 때, 동엽 이와 다은이가 모두 포함되도록 뽑는 경우의 수는?

- ① 16
- **(2)** 18
- ③ 20

- **(4)** 22
- (5) 24

1248 🚭

남학생 4명과 여학생 6명으로 구성된 중창단에서 남학생 3명, 여학생 4명을 뽑을 때, 특정한 남학생 1명과 여학생 2명을 반드시 포함하여 뽑는 경우의 수를 구하시오.

1249 🗗 서술형

1부터 20까지의 자연수가 각각 하나씩 적힌 20개의 공 중에서 8개의 공을 뽑을 때, 12의 약수가 적힌 공은 모 두 뽑고, 5의 배수가 적힌 공은 뽑지 않는 경우의 수를 구하시오.

1250 ®

녹차 아이스크림과 딸기 아이스크림을 포함한 서로 다른 8가지 아이스크림 중에서 서로 다른 5가지 아이스크림을 고르려고 한다. 이때 녹차 아이스크림과 딸기 아이스크 림 중에서 한 가지만을 포함하여 고르는 경우의 수는?

- 1) 20
- **(2)** 25
- ③ 30

- **(4)** 35
- (5) 40

유형 📭 '적어도'의 조건이 있는 조합의 수

개념 10-1

(사건 A) 적어도 한 번 일어나는 경우의 수)=(모든 경우의 수) - (사건 A가 일어나지 않는 경우의 수)

1251 대표문제

수상 안전 교육에 참여한 5명의 어린이가 4명의 안전 요 원과 함께 고무보트에 탑승하는 훈련을 받으려고 한다. 9명 중에서 4명이 먼저 고무보트에 탑승한다고 할 때, 안전 요원과 어린이가 적어도 1명씩 포함되도록 탑승하는 경우의 수를 구하시오.

1252 @

흰색 옷 2벌, 검정색 옷 3벌, 파란색 옷 3벌 중에서 3벌 을 고를 때, 흰색 옷이 적어도 한 벌 포함되도록 고르는 경우의 수는? (단, 옷의 종류는 모두 다르다.)

- ① 36
- 2 42
- 3 45

- **48**
- (5) 54

1253 🕑 서술형

어느 상점에서는 A 회사의 제품 2종류, B 회사의 제품 5종류, C 회사의 제품 3종류를 판매하고 있다. 이 제품 중에서 서로 다른 종류의 제품 4개를 택할 때, B 회사의 제품이 적어도 2개 포함되도록 하는 경우의 수를 구하시 오.

1254 6

12명으로 구성된 무용단에서 신문 인터뷰에 참가할 3명 의 무용수를 뽑을 때, 여자 무용수를 적어도 한 명 포함 하도록 뽑는 경우의 수가 210이다. 이 무용단의 여자 무 용수는 몇 명인가?

- ① 3명
- ② 4명
- ③ 5명

- ④ 6명
- ⑤ 7명

유형 🕕 뽑아서 나열하는 경우의 수

개념 10-1

- ① m개 중에서 r개를 뽑아 일렬로 나열하는 경우의 수
 - $\bigcirc {}_{m}C_{r} \cdot r! \bigcirc {}_{m}P_{r}$
- ② m개 중에서 r개, n개 중에서 s개를 뽑아 일렬로 나열하는 경우의 수
 - $\bigcirc {}_{m}C_{r} \cdot {}_{n}C_{s} \cdot (r+s)!$

1255 四里是제

어느 놀이공원에는 서로 다른 놀이 기구가 실내에 5개, 야외에 4개가 있다. 타는 순서를 고려할 때, 실내 놀이 기구 중 3개, 야외 놀이 기구 중 2개를 골라 타는 경우의 수는?

- (1) 3600
- 2 4800
- ③ 6000

- **4** 7200
- **(5)** 8400

1256 @

1, 2, 3, 4, 5, 6의 6개의 숫자 중에서 서로 다른 4개를 택하여 네 자리 자연수를 만들 때, 3은 포함하고 6은 포 함하지 않는 자연수의 개수를 구하시오.

1257 😈 서술형

A, B를 포함한 7명 중에서 5명을 뽑아 일렬로 세울 때, A, B를 모두 포함하고 이들이 이웃하게 세우는 경우의 수를 구하시오.

유형 07 직선과 대각선의 개수

개념 10-1

- ① 서로 다른 n개의 점 중에서 어느 세 점도 한 직선 위에 있지 않을 때, 만들 수 있는 서로 다른 직선의 개수
 - n개의 점 중에서 두 점을 택하는 경우의 수와 같다.
- ② 한 직선 위에 있는 서로 다른 n개의 점으로 만들 수 있는 서로 다른 직선은 1개이다.
- ③ n각형의 대각선의 개수
 - \bigcirc n개의 꼭짓점 중 2개를 택하여 만들 수 있는 선분의 개수에서 변 의 개수인 n을 뺀 것과 같다.
 - $\bigcirc {}_{n}C_{2}-n$

1258 대표문제

한 평면 위에 있는 서로 다른 8개의 점 중에서 어느 세 점도 한 직선 위에 있지 않을 때, 주어진 점을 이어서 만 들 수 있는 서로 다른 직선의 개수는?

- (1) 28
- 2 30
- 3 32

- **4** 34
- (5) 36

1259 ®

오른쪽 그림과 같이 원 위에 5개의 점 이 있을 때, 주어진 점을 이어서 만들 수 있는 서로 다른 직선의 개수를 구 하시오.

1260 @

오른쪽 그림과 같은 구각형에서 대각 선의 개수는?

- (1) 25
- **(2)** 27
- 3 29
- **(4)** 31
- **(5)** 33

1261 🕑 저술형

조합의 수를 이용하여 대각선의 개수가 54인 다각형의 꼭짓점의 개수를 구하시오.

1262 6

오른쪽 그림과 같이 평행한 두 선분 위에 각각 5개의 점이 있다. 주어진 점을 연결하 여 만들 수 있는 서로 다른 직선의 개수는?

- (1) 25
- (2) 27
- (3) 29
- **4**) 31
- (5) 33

집중공략 @

유형 🕕 다각형의 개수

개념 10-1

- ① 서로 다른 n개의 점 중에서 어느 세 점도 한 직선 위에 있지 않을 때 ┌ 3개의 점을 꼭짓점으로 하는 삼각형의 개수 ○ "C。 └ 4개의 점을 꼭짓점으로 하는 사각형의 개수 🔘 "C.4
- ② 한 직선 위에 있는 서로 다른 n개의 점으로 만들 수 있는 다각형은 없다.

1263 대표문제

오른쪽 그림과 같이 반원 위에 8 개의 점이 있다. 이 중에서 3개의 점을 꼭짓점으로 하는 삼각형의 개수는?

- (1) 31
- **(2)** 35
- (3) 40

- **4**) 52
- (5) 56

1264 3

오른쪽 그림과 같이 직사각형의 변 위에 8개의 점이 있다. 이 중에서 3 개의 점을 꼭짓점으로 하는 삼각형 의 개수는?

- 1 20
- ② 35
- (3) 56

- **4** 84
- **(5)** 120

1265 69

오른쪽 그림과 같이 평행한 두 직선 l, m 위에 7개의 점이 있 을 때, 이 중에서 4개의 점을 꼭 짓점으로 하는 사각형의 개수를 구하시오.

1266 @

오른쪽 그림과 같이 원에 내접하는 정팔각형의 꼭짓점과 원의 중심을 포 함한 9개의 점 중에서 3개의 점을 꼭 짓점으로 하는 삼각형의 개수는?

- (1) 76
- **(2)** 78
- ③ 80
- **4**) 82
- (5) 84

1267 🗗 서술형

오른쪽 그림과 같이 가로, 세로의 간격이 같도록 놓인 12개의 점이 있 다. 이 중에서 3개의 점을 꼭짓점으 로 하는 삼각형의 개수를 구하시오. (단, 가로 방향의 4개의 점과 세로 방향의 3개의 점은 각각 한 직선 위에 있다.)

유형 05 평행사변형의 개수

개념 10-1

m개의 평행한 직선과 n개의 평행한 직선이 서로 만날 때, 이 직선으 로 만들어지는 평행사변형의 개수

 \bigcirc $_{m}C_{2} \cdot _{n}C_{2}$

1268 明里是제

오른쪽 그림과 같이 5개의 평행한 직선 과 3개의 평행한 직선이 서로 만날 때, 이 직선으로 만들어지는 평행사변형의 개수는?

- (1) 25
- 2 30
- (3) 35
- **(4)** 40
- (5) 45

1269 📵 서술형

오른쪽 그림과 같이 각각 평행한 4개, 3개, 2개의 직선이 서로 만날 때. 이 직선으로 만들어지는 평행 사변형의 개수를 구하시오.

1270 ®

오른쪽 그림과 같이 4개의 평 행한 직선과 6개의 평행한 직 선이 서로 수직으로 만나고 있 다. 직선 사이의 간격이 1로 일정할 때, 이 직선으로 만들

어지는 정사각형이 아닌 직사각형의 개수는?

- (1) 60
- **2**) 64
- **③** 72

- **4**) 86
- (5) 90

유형 10 분할하는 경우의 수

개념 10-1

서로 다른 n개를 p개, q개, r개(p+q+r=n)의 세 묶음으로 나누는 경우의 수

① p, q, r가 모두 다른 수일 때 ○ "C_{p·n-p}C_{q·r}C_r

③ p, q, r가 모두 같은 수일 때 $\bigcirc {}_{n}C_{p} \cdot {}_{n-p}C_{q} \cdot {}_{r}C_{r} \cdot \frac{1}{31}$

1271 대표문제

서로 다른 동전 6개를 똑같은 주머니 2개에 빈 주머니가 없도록 나누어 담는 경우의 수를 구하시오.

1272 😈 서술형

서로 다른 9개의 구슬을 5개, 4개의 두 묶음으로 나누는 경우의 수를 a, 3개씩 세 묶음으로 나누는 경우의 수를 b라 할 때, a+b의 값을 구하시오.

1273 ³

선생님 3명, 학생 5명을 4명씩 두 개의 조로 나눌 때, 각 조에 적어도 한 명의 선생님이 포함되도록 나누는 경우 의 수는?

- (1) 20
- **(2)** 25
- (3) 30

- **(4)** 35
- (5) 40

1274 🕮

규현이와 유진이를 포함한 9명의 학생을 3명씩 세 개의 조로 나누려고 한다. 규현이와 유진이를 서로 다른 조에 배정하는 경우의 수를 구하시오.

유형 11 분할한 후 분배하는 경우의 수

개념 10-1

n묶음으로 분할한 후 n명에게 분배하는 경우의 수 ○ (n묶음으로 분할하는 경우의 수)·n!

1275 대표문제

서로 다른 5개의 사탕을 2개, 2개, 1개의 세 묶음으로 나누어 3명의 학생에게 나누어 주는 경우의 수는?

- (1) 85
- ② 90
- ③ 95
- **4**) 100
- (5) 105

1276 @ 서술형

서로 다른 9장의 포토카드를 3명의 학생에게 3장씩 나누 어 주는 경우의 수를 구하시오.

1277 🚭

건물 1층에서 6명이 승강기를 함께 탄 후 5층까지 올라 가는 동안 4개의 층에서 각각 2명, 2명, 1명, 1명이 내 리는 경우의 수를 구하시오.

(단, 새로 타는 사람은 없다.)

1278 😅

서로 다른 5개의 마카롱을 3명의 어린이에게 나누어 줄 때, 한 사람이 적어도 한 개씩은 받도록 나누어 주는 경우의 수는?

- (1) 140
- **②** 150
- ③ 160

- **4**) 170
- **(5)** 180

1279 🗗 서술형

다음 그림과 같이 5명이 탈 수 있는 서로 다른 자동차 2 대에 6명이 3명, 3명으로 나누어 타려고 한다. 6명 중 운전을 할 수 있는 사람이 2명이라 할 때, 2대의 자동차에 나누어 타는 경우의 수를 구하시오.

(단, 앉는 자리가 다르면 서로 다른 경우로 생각한다.)

유형 12

형 12 대진표 작성하기

개념 10-1

대진표를 작성하는 경우의 수는 대회에 참가한 팀을 몇 개의 조로 나누는 경우의 수로 생각한다. 이때 부전승으로 올라가는 팀이 있으면 이를 정하는 방법도 생각한다.

1280 四里剛

발야구 대회에 참가한 5개의 학급이 오른쪽 그림과 같은 토너먼트 방식으 로 시합을 할 때, 대진표를 작성하는 경우의 수는?

- 1 10
- **②** 30
- 3 60

- **4**) 90
- **(5)** 180

1281 69

펜성 대회에 참가한 6명이 오른쪽 그림과 같은 토너먼트 방식으로 시합을 할 때, 대진표를 작성하는 경우의 수는?

(3) 55

- (1) 45
- **②** 50
- **4** 60 **5** 65

1282 ®

탁구 대회에 참가한 8개의 팀이 다음 그림과 같은 토너 먼트 방식으로 시합을 할 때, 대진표를 작성하는 경우의 수를 구하시오.

10 조합

1219
$$_4C_2 = \frac{_4P_2}{2!} = \frac{4 \cdot 3}{2 \cdot 1} = 6$$

1220
$${}_{7}C_{3} = \frac{{}_{7}P_{3}}{3!} = \frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1} = 35$$

1221 1 1

1222 11

1223
$${}_{n}C_{2}=10$$
에서 $\frac{n(n-1)}{2\cdot 1}=10$ $n(n-1)=20=5\cdot 4$

1224
$${}_{n}C_{3}$$
=4에서 $\frac{n(n-1)(n-2)}{3 \cdot 2 \cdot 1}$ =4

$$n(n-1)(n-2) = 4 \cdot 3 \cdot 2$$

$$\therefore n = 4$$

1225
$${}_{6}C_{r}=20$$
 $|A|$ $\frac{6!}{r!(6-r)!}=20$

$$6! = 20 \cdot r! (6-r)!$$
, $6 \cdot 3 \cdot 2 \cdot 1 = r! (6-r)!$

$$3! \cdot 3! = r! (6-r)!$$

1226
$$_{8}$$
C $_{r}$ =56에서 $\frac{8!}{r!(8-r)!}$ =56

$$8! = 56 \cdot r!(8-r)!, \quad 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = r!(8-r)!$$

$$3! \cdot 5! = r! (8-r)!$$

1227
$${}_{12}C_7 = {}_{12}C_{12-7} = {}_{12}C_5$$

 $\therefore r = 5$

1228
$${}_{n}C_{9} = {}_{n}C_{6}$$
 $\triangleleft |k|$ 6=n-9
∴ n=15

1229
$${}_{5}C_{2} = \frac{5 \cdot 4}{2 \cdot 1} = 10$$

1230
$${}_{8}C_{3} = \frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1} = 56$$

1231
$$_{7}C_{4} = _{7}C_{3} = \frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1} = 35$$

1232
$$_{6}C_{3} = \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} = 20$$

1233 2, 4, 6, 8, 10이 각각 하나씩 적힌 5장의 카드 중에서 3 장의 카드를 뽑으면 되므로 구하는 경우의 수는

$$_{5}C_{3} = _{5}C_{2} = \frac{5 \cdot 4}{2 \cdot 1} = 10$$

1234
$${}_{n}C_{2}+{}_{n-1}C_{2}={}_{n+2}C_{2}$$
 $||A||$

$$\frac{n(n-1)}{2\cdot 1}+\frac{(n-1)(n-2)}{2\cdot 1}=\frac{(n+2)(n+1)}{2\cdot 1}$$

$$n(n-1)+(n-1)(n-2)=(n+2)(n+1)$$

$$n(n-1)+(n-1)(n-2)=(n+2)(n+1)$$

$$2n^2-4n+2=n^2+3n+2$$

$$n^2 - 7n = 0$$
, $n(n-7) = 0$

1235 ₈C_r=₈C_{r-4}에서

(i) r=r-4에서 $0\neq -4$ 이므로 r의 값이 존재하지 않는다.

(ii) 8-r=r-4에서

$$-2r = -12$$
 : $r = 6$

1236
$${}_{n}C_{r} = \frac{{}_{n}P_{r}}{r!}$$
이므로

$$35 = \frac{210}{r!}, \quad r! = 6 = 3 \cdot 2 \cdot 1$$

$$\therefore r=3$$

또 "P3=210=7·6·5에서

i=7

$$\therefore n+r=10$$

$$\frac{(9-n)(8-n)}{2\cdot 1} = 10, \qquad (9-n)(8-n) = 20$$

$$n^2-17n+52=0$$
, $(n-4)(n-13)=0$

$$n = 1m + 32 = 0, \qquad (n - 4)(n - 13) = 0$$

$$\therefore n = 4 \ (\because 3 \le n \le 7) \qquad \qquad 9 - n \ge 2, \ n \ge 30 \text{ M}$$

$$\therefore n \cdot {}_{n}P_{2} + {}_{n}C_{3} = 4 \cdot {}_{4}P_{2} + {}_{4}C_{3} \qquad \qquad 3 \le n \le 7$$

$$= 4 \cdot 12 + {}_{4}C_{1}$$

$$=48+4$$

$$=52$$

1238
$${}_{n}C_{n-r} = \frac{n!}{(n-r)!\{n-([n-r])\}!}$$

$$= \frac{n!}{(n-r)![r!]} = {}_{n}C_{r}$$

$$\therefore (r) n-r (u) r!$$

 $\exists (r) n-r (\downarrow) r!$

라쎈 특강

서로 다른 n개에서 r개를 택하는 조합의 수는 뽑히지 않음 (n-r)개를 택하는 조합의 수와 같으므로 ${}_{n}C_{n-r}$ 가 성립

따라서 C 의 값을 구할 때 r > n - r인 경우에는 C = C 를 이용하면 계산을 간단히 할 수 있다.

1239
$${}_{n}C_{k} \cdot {}_{n-k}C_{r-k} = \frac{n!}{k!(n-k)!} \cdot \frac{(n-k)!}{(r-k)!\{n-k-(r-k)\}!}$$

$$= \frac{n!}{k!(n-k)!} \cdot \frac{(n-k)!}{(r-k)![(n-r)!]}$$

$$= \frac{\boxed{n!}}{k!(r-k)!(n-r)!}$$

$$= \frac{n!}{\boxed{r!}(n-r)!} \cdot \frac{\boxed{r!}}{k!(r-k)!}$$

$$= {}_{n}C_{r} \cdot {}_{r}C_{k}$$

∴ (水) (n-r)! (山) n! (山) r! (山) r!

1240
$$_{n-1}C_r +_{n-1}C_{r-1}$$

$$= \frac{(n-1)!}{r!(n-1-r)!} + \frac{(n-1)!}{(r-1)!\{n-1-(r-1)\}!}$$

$$= \frac{(n-1)!}{r![(n-1-r)!]} + \frac{(n-1)!}{[(r-1)!](n-r)!}$$

$$= \frac{(n-r)(n-1)!}{r!(n-r)!} + \frac{r(n-1)!}{r!(n-r)!}$$

$$= \frac{\{(n-r)+r\}(n-1)!}{r!(n-r)!}$$

$$= \frac{n[(n-1)!]}{r!(n-r)!}$$

$$= \frac{n[(n-1)!]}{r!(n-r)!}$$

$$= \frac{n!}{r!(n-r)!} = {}_{n}C_{r}$$

$$\therefore \ \emptyset \ (n-1-r)! \ (\Theta) \ (r-1)! \ (\Theta) \ (n-1)!$$

라쎈 특강

"C,는 서로 다른 n개에서 순서를 생각하지 않고 r개를 택하는 경 우의 수이므로 r개 중에서 특정한 1개가 포함되지 않는 경우와 특정한 1개가 포함되는 경우로 나누어 다음과 같이 증명할 수도 있다.

- (i) r개 중에서 특정한 1개가 포함되지 않는 경우 특정한 1개를 제외한 (n-1)개 중에서 r개를 택하면 되므로 그 경우의 수는 "__1C,
- (ii) r개 중에서 특정한 1개가 포함되는 경우 특정한 1개를 제외한 (n-1)개 중에서 (r-1)개를 택하면 되므로 그 경우의 수는 "-1C_{r-1}
- (i), (ii)는 동시에 일어날 수 없으므로 합의 법칙에 의하여 $_{n}C_{r} = _{n-1}C_{r} + _{n-1}C_{r-1}$ 이 성립한다.
- 1241 플루트 연주자 5명 중에서 3명을 뽑는 경우의 수는 $_{5}C_{3}=_{5}C_{2}=10$

바이올린 연주자 6명 중에서 2명을 뽑는 경우의 수는

$$_{6}C_{2}=15$$

따라서 구하는 경우의 수는

1242 배우 10명 중에서 주연 1명을 뽑는 경우의 수는

$$_{10}C_{1}=10$$

나머지 배우 9명 중에서 조연 3명을 뽑는 경우의 수는

$$_{9}C_{3}=84$$

따라서 구하는 경우의 수는

배우 10명 중에서 조연 3명을 먼저 뽑고 나머지 배우 7명 중에서 주연 1 명을 뽑는 경우의 수는

$$_{10}C_{3}\cdot _{7}C_{1}=120\cdot 7=840$$

이므로 뽑는 순서와 상관없이 결과가 같다.

1243 디자이너 5명 중에서 3명을 뽑는 경우의 수는

$$_{5}C_{2}=_{5}C_{2}=10$$

모델 n명 중에서 3명을 뽑는 경우의 수는

$$_{n}C_{3}$$

(4)

따라서 10+,,C3=66이므로 ,,C3=56

$$\frac{n(n-1)(n-2)}{3\cdot 2\cdot 1}$$
=56, $n(n-1)(n-2)=8\cdot 7\cdot 6$
 $\therefore n=8$

1244 일주일 중에서 요가를 하는 3일을 택하는 경우의 수는

$$_{7}C_{3}=35$$

요가를 하는 날을 제외한 나머지 4일 중에서 조깅을 하는 3일을 택하는 경우의 수는

$$C_3 = 4$$

나머지 하루에 할 운동으로 줄넘기, 수영 중에서 하나를 택하는 경우의 수는

$$_{2}C_{1}=2$$

따라서 구하는 경우의 수는

$$35 \cdot 4 \cdot 2 = 280$$

- 1245 세 수의 합이 홀수가 되기 위해서는 세 수가 모두 홀수이 거나 한 개는 홀수, 두 개는 짝수이어야 한다.
- (i) 세 수가 모두 홀수인 경우
 - 1. 3. 5. 7. 9가 적힌 5장의 카드 중에서 3장을 뽑는 경우의 수는

$$_{5}C_{3} = _{5}C_{2} = 10$$
 0

- (ii) 한 개는 홀수, 두 개는 짝수인 경우
 - 1, 3, 5, 7, 9가 적힌 5장의 카드 중에서 1장을 뽑고, 2, 4,
 - 6, 8이 적힌 4장의 카드 중에서 2장을 뽑는 경우의 수는

$$_{5}C_{1} \cdot _{4}C_{2} = 5 \cdot 6 = 30$$
 ... 2

(i), (ii)에서 구하는 경우의 수는

채점 기준	비율
세 수가 모두 홀수인 경우의 수를 구할 수 있다.	40 %
❷ 한 개는 홀수, 두 개는 짝수인 경우의 수를 구할 수 있다.	40 %
카드에 적힌 수의 총합이 홀수가 되는 경우의 수를 구할 수 있다.	20 %

1246 구하는 경우의 수는 A, B, C를 제외한 7명의 학생 중에 서 5명의 위원을 선출하는 경우의 수와 같으므로

$$_{7}C_{5} = _{7}C_{2} = 21$$

1247 구하는 경우의 수는 동엽이와 다은이를 제외한 6명의 선 수 중에서 3명을 뽑는 경우의 수와 같으므로

$$_{6}C_{3}=20$$

1248 구하는 경우의 수는 특정한 남학생 1명을 제외한 3명의 남학생 중에서 2명을 뽑고, 특정한 여학생 2명을 제외한 4명의 여학생 중에서 2명을 뽑는 경우의 수와 같으므로

$$_{3}C_{2} \cdot _{4}C_{2} = 3 \cdot 6 = 18$$

1249 1부터 20까지의 자연수 중에서

12의 약수는 1, 2, 3, 4, 6, 12의 6개 ... 0 5의 배수는 5, 10, 15, 20의 4개 --- 12 따라서 구하는 경우의 수는 12의 약수와 5의 배수가 적힌 공을 제외한 10개의 공 중에서 2개의 공을 뽑는 경우의 수와 같으므로

 $_{10}C_{2}=45$ **3** 45

채점 기준	비율
❶ 12의 약수의 개수를 구할 수 있다.	20 %
❷ 5의 배수의 개수를 구할 수 있다.	20 %
❸ 12의 약수가 적힌 공은 모두 뽑고, 5의 배수가 적힌 공은 뽑지 않는 경우의 수를 구할 수 있다.	60%

1250 녹차 아이스크림과 딸기 아이스크림 중에서 한 가지 아이 스크림을 고르는 경우의 수는

$$_{2}C_{1}=2$$

녹차 아이스크림과 딸기 아이스크림을 제외한 6가지 아이스크림 중에서 4가지 아이스크림을 고르는 경우의 수는

$$_6C_4 = _6C_2 = 15$$

따라서 구하는 경우의 수는

1251 9명 중에서 4명을 뽑는 경우의 수는

$$_{9}C_{4}=126$$

안전 요원만 4명을 뽑는 경우의 수는

$$_{4}C_{4}=1$$

어린이만 4명을 뽑는 경우의 수는

$$_{5}C_{4}=_{5}C_{1}=5$$

따라서 구하는 경우의 수는

$$126 - (1+5) = 120$$

120

1252 8벌의 옷 중에서 3벌을 고르는 경우의 수는

$$_{8}C_{3}=56$$

검정색 옷과 파란색 옷 중에서 3벌을 고르는 경우의 수는

$$_{6}C_{3}=20$$

따라서 구하는 경우의 수는

1253 10가지 종류의 제품 중에서 4개를 택하는 경우의 수는

(i) B 회사의 제품이 하나도 포함되지 않는 경우

A 회사와 C 회사의 제품 중에서 4개를 택하는 경우의 수는

$$_{5}C_{4}=_{5}C_{1}=5$$
 \longrightarrow \bigcirc

(ii) B 회사의 제품이 1개 포함되는 경우

B 회사의 제품 중에서 1개를 택하고 A 회사와 C 회사의 제 품 중에서 3개를 택하는 경우의 수는

따라서 구하는 경우의 수는

$$210 - (5 + 50) = 155$$

.... **(**

III 155

채점 기준	비율
● 4개의 제품을 택하는 경우의 수를 구할 수 있다.	20 %
❷ B 회사의 제품이 하나도 포함되지 않는 경우의 수를 구할 수 있다.	30 %
❸ B 회사의 제품이 1개 포함되는 경우의 수를 구할 수 있다.	30 %
④ B 회사의 제품이 적어도 2개 포함되는 경우의 수를 구할 수 있다.	20 %

라쎈 특강_

.... (0)

'적어도 2개 포함한다.'는 것은 '2개 이상을 포함한다.'는 뜻이므 로 전체 경우의 수에서 하나도 포함하지 않거나 1개를 포함하는 경우의 수를 빼면 쉽게 해결할 수 있다. 유사한 표현인 '최소한' 이 있을 때도 같은 방법을 이용한다.

1254 12명의 무용수 중에서 3명을 뽑는 경우의 수는

$$_{12}C_3 = 220$$

남자 무용수가 n명이라 할 때 남자 무용수만 3명을 뽑는 경우의 수는 "C₃

이때 여자 무용수를 적어도 한 명 포함하도록 뽑는 경우의 수가 210이므로

$$220 - {}_{n}C_{3} = 210, {}_{n}C_{3} = 10$$

$$\frac{n(n-1)(n-2)}{3 \cdot 2 \cdot 1} = 10, n(n-1)(n-2) = 5 \cdot 4 \cdot 3$$

$$\therefore n=5$$

따라서 남자 무용수가 5명이므로 여자 무용수는

1255 5개의 실내 놀이 기구 중에서 3개를 고르는 경우의 수는

$$_{5}C_{3}=_{5}C_{2}=10$$

4개의 야외 놀이 기구 중에서 2개를 고르는 경우의 수는

$$_{4}C_{2}=6$$

5개의 놀이 기구를 타는 순서를 정하는 경우의 수는

$$5! = 120$$

따라서 구하는 경우의 수는

1256 3, 6을 제외한 4개의 숫자 중에서 3개를 택하는 경우의 수는

$$_{4}C_{3}=_{4}C_{1}=4$$

4개를 일렬로 나열하는 경우의 수는

4! = 24

따라서 구하는 자연수의 개수는

1257 A, B를 제외한 5명 중에서 3명을 뽑는 경우의 수는

$$_{5}C_{3} = _{5}C_{2} = 10$$
 ...

A, B를 한 사람으로 생각하여 4명을 일렬로 세우는 경우의 수는 4!=24이고, A와 B가 자리를 바꾸는 경우의 수는 2!=2이므로 A, B가 이웃하게 세우는 경우의 수는

따라서 구하는 경우의 수는

480

채점 기준	비율
♠ A, B를 포함하여 5명을 뽑는 경우의 수를 구할 수 있다.	40 %
❷ A, B가 이웃하게 세우는 경우의 수를 구할 수 있다.	40 %
⑤ 조건을 만족시키는 경우의 수를 구할 수 있다.	20 %

1258 만들 수 있는 서로 다른 직선의 개수는 8개의 점 중에서 2개를 택하는 경우의 수와 같으므로

1259 만들 수 있는 서로 다른 직선의 개수는 5개의 점 중에서 2개를 택하는 경우의 수와 같으므로

1260 구각형의 대각선의 개수는 9개의 꼭짓점 중 2개를 택하는 경우의 수에서 변의 개수인 9를 뺀 것과 같으므로

라쎈 특강 /

n각형의 대각선의 개수는 n개의 꼭짓점 중 2개를 택하여 만들수 있는 선분의 개수에서 변의 개수인 n을 뺀 것과 같으므로

$$_{n}C_{2}-n$$

이다. 이때

$$_{n}C_{2}-n=\frac{n(n-1)}{2\cdot 1}-n=\frac{n(n-3)}{2}$$

이므로 n각형의 대각선의 개수를 구하는 공식 $\frac{n(n-3)}{2}$ 과 같음을 알 수 있다.

1261 n각형의 대각선의 개수는 n개의 꼭짓점 중 2개를 택하는 경우의 수에서 변의 개수인 n을 뺀 것과 같으므로

$$_{n}$$
C₂ $-n=54$ \longrightarrow \bigcirc

$$\frac{n(n-1)}{2\cdot 1} - n = 54, \quad n^2 - 3n - 108 = 0$$

$$(n+9)(n-12)=0$$
 : $n=12$ (: $n \ge 3$)

따라서 십이각형의 꼭짓점의 개수는 12이다.

··· 2

채점 기준	비율
 n각형의 대각선의 개수를 이용하여 n에 대한 식을 세울 수 있다. 	50 %
❷ 다각형의 꼭짓점의 개수를 구할 수 있다.	50 %

1262 10개의 점 중에서 2개를 택하는 경우의 수는

$$_{10}$$
C₂=45

한 선분 위에 있는 5개의 점 중에서 2개를 택하는 경우의 수는

$$_{5}C_{2}=10$$

이때 한 선분 위에 있는 5개의 점으로 만들 수 있는 직선은 1개이고 이러한 직선이 2개 있으므로 구하는 직선의 개수는

$$45-2\cdot 10+2\cdot 1=27$$

 \triangle 한 직선 위에 있는 서로 다른 n개의 점으로 만들 수 있는 서로 다른 직선의 개수는 1임에 유의한다.

대를 풀이 두 선분 위의 점을 각각 하나씩 택하여 연결하면 한 개의 직선을 만들 수 있으므로

$$_{5}C_{1} \cdot _{5}C_{1} = 25$$

또 주어진 선분 위의 5개의 점으로 만들 수 있는 서로 다른 직선 은 각각 한 개씩이므로 구하는 직선의 개수는

$$25+2=27$$

1263 8개의 점 중에서 3개를 택하는 경우의 수는

$$_{8}C_{3}=56$$

한 직선 위에 있는 4개의 점 중에서 3개를 택하는 경우의 수는

$$_{4}C_{3}=_{4}C_{1}=4$$

이때 한 직선 위에 있는 3개의 점으로는 삼각형을 만들 수 없으므로 구하는 삼각형의 개수는

1264 주어진 8개의 점 중에서 어느 세 점도 한 직선 위에 있지 않으므로 구하는 삼각형의 개수는 8개의 점 중에서 3개를 택하는 경우의 수와 같다.

1265 직선 *l* 위의 3개의 점 중에서 2개를 택하는 경우의 수는

$$_{3}C_{2}=3$$

직선 m 위의 4개의 점 중에서 2개를 택하는 경우의 수는

$$_{4}C_{2}=6$$

따라서 구하는 사각형의 개수는

다른 30 7개의 점 중에서 4개를 택하는 경우의 수는

$$_{7}C_{4}=_{7}C_{3}=35$$

직선 l 위의 점 중에서 3개를 택하고, 직선 m 위의 점 중에서 1개를 택하는 경우의 수는

$$_{3}C_{3} \cdot _{4}C_{1} = 1 \cdot 4 = 4$$

직선 m 위의 점 중에서 3개를 택하고, 직선 l 위의 점 중에서 1 개를 택하는 경우의 수는

$$_{4}C_{3}\cdot _{3}C_{1}=4\cdot 3=12$$

직선 m 위의 점 중에서 4개를 택하는 경우의 수는

$$_{i}C_{i}=1$$

따라서 구하는 사각형의 개수는

$$35-(4+12+1)=18$$

1266 9개의 점 중에서 3개를 택하는 경우의 수는 ${}_{6}C_{3}$ =84

한 직선 위에 있는 3개의 점을 택하는 경우의 수는

$$4 \cdot {}_{3}C_{3} = 4 \cdot 1 = 4$$

이때 한 직선 위에 있는 3개의 점으로는 삼각형을 만들 수 없으므로 구하는 삼각형의 개수는

1267 12개의 점 중에서 3개를 택하는 경우의 수는

 $_{12}C_3=220$

$$3 \cdot {}_{4}C_{3} = 3 \cdot 4 = 12$$

(iii) 오른쪽 그림과 같이 대각선 방향의 한 직선 위에 있는 점 중에서 3개를 택하는 경우의 수는

220 - (12 + 4 + 4) = 200

⊕ 200

채점 기준	비율
₫ 12개의 점 중에서 3개를 택하는 경우의 수를 구할 수 있다.	20 %
② 한 직선 위에 있는 점 중에서 3개를 택하는 경우의 수를 구할 수 있다.	60 %
❸ 삼각형의 개수를 구할 수 있다.	20 %

1268 가로로 나열된 5개의 평행한 직선 중에서 2개, 세로로 나열된 3개의 평행한 직선 중에서 2개를 택하면 한 개의 평행사변형이 결정된다.

따라서 구하는 평행사변형의 개수는

$$_{5}C_{2} \cdot _{3}C_{2} = 10 \cdot 3 = 30$$

2

1269 오른쪽 그림과 같이 평행한 직선을 l_i , m_j , n_k (i=1, 2, 3, 4, j=1, 2, k=1, 2, 3)라 하자.

(i) $l_1,\ l_2,\ l_3,\ l_4$ 중에서 2개를 택하고, $m_1,\ m_2$ 를 택하는 경우의 수는

$$_{4}C_{2} \cdot _{2}C_{2} = 6 \cdot 1 = 6$$
 ...

(ii) m_1 , m_2 를 택하고, n_1 , n_2 , n_3 중에서 2개를 택하는 경우의 수는

$$_{2}C_{2} \cdot _{3}C_{2} = 1 \cdot 3 = 3$$

(iii) n_1 , n_2 , n_3 중에서 2개를 택하고, l_1 , l_2 , l_3 , l_4 중에서 2개를 택하는 경우의 수는

이상에서 구하는 평행사변형의 개수는

.... @ 1 27

채점 기준	비율
● 4개의 평행한 직선과 2개의 평행한 직선에서 만들어지는 평행사 변형의 개수를 구할 수 있다.	30 %
② 2개의 평행한 직선과 3개의 평행한 직선에서 만들어지는 명행사 변형의 개수를 구할 수 있다.	30 %
❸ 3개의 평행한 직선과 4개의 평행한 직선에서 만들어지는 평행사 변형의 개수를 구할 수 있다.	30 %
▲ 편해되변형이 개스로 그하 스 이다.	10.9%

1270 가로로 나열된 4개의 평행한 직선 중에서 2개, 세로로 나열된 6개의 평행한 직선 중에서 2개를 택하면 한 개의 직사각형이 결정되므로 직사각형의 개수는

$$_{4}C_{2} \cdot _{6}C_{2} = 6 \cdot 15 = 90$$

(i) 한 변의 길이가 1인 정사각형의 개수는

15

(ii) 한 변의 길이가 2인 정사각형의 개수는

8

(iii) 한 변의 길이가 3인 정사각형의 개수는

3

이상에서 정사각형이 아닌 직사각형의 개수는

$$90 - (15 + 8 + 3) = 64$$

(2)

1271 동전 6개를 똑같은 주머니 2개에 빈 주머니가 없도록 나 누어 담을 때, 각 주머니에 담을 수 있는 동전의 개수는

1, 5 또는 2, 4 또는 3, 3

(i) 6개를 1개, 5개로 나누는 경우의 수는

$$_{6}C_{1}\cdot _{5}C_{5}=6\cdot 1=6$$

(ii) 6개를 2개, 4개로 나누는 경우의 수는

$$_{6}C_{2}\cdot _{4}C_{4}=15\cdot 1=15$$

(iii) 6개를 3개, 3개로 나누는 경우의 수는

$$_{6}C_{3}\cdot _{3}C_{3}\cdot \frac{1}{2!}=20\cdot 1\cdot \frac{1}{2}=10$$

이상에서 구하는 경우의 수는

$$6+15+10=31$$

圖 31

1272 $a = {}_{9}C_{5} \cdot {}_{4}C_{4} = 126 \cdot 1 = 126$

··· 0

$$b = {}_{9}C_{3} \cdot {}_{6}C_{3} \cdot {}_{3}C_{3} \cdot \frac{1}{3!} = 84 \cdot 20 \cdot 1 \cdot \frac{1}{6} = 280$$

...) @

$$\therefore a+b=406$$

채점 기준	비율
◑ a의 값을 구할 수 있다.	40 %
❷ b의 값을 구할 수 있다.	40 %
ⓐ a+b의 값을 구할 수 있다.	20 %

1273 8명을 4명, 4명으로 나누는 경우의 수는

$$_{8}C_{4} \cdot _{4}C_{4} \cdot \frac{1}{2!} = 70 \cdot 1 \cdot \frac{1}{2} = 35$$

학생 5명 중에서 4명이 같은 조가 되는 경우의 수는

$$_{5}C_{4}=_{5}C_{1}=5$$

따라서 구하는 경우의 수는

35-5=30

다른물이 각 조에 적어도 한 명의 선생님이 포함되려면 선생님 1명과 학생 3명, 선생님 2명과 학생 2명 의 두 조로 나누어야 한다.

선생님 1명과 학생 3명을 뽑으면 나머지 한 조가 자동으로 결정 되므로 구하는 경우의 수는

$$_{3}C_{1} \cdot _{5}C_{3} = 3 \cdot 10 = 30$$

1274 9명을 3명, 3명, 3명으로 나누는 경우의 수는

$$_{9}C_{3} \cdot _{6}C_{3} \cdot _{3}C_{3} \cdot \frac{1}{3!} = 84 \cdot 20 \cdot 1 \cdot \frac{1}{6} = 280$$

규현이와 유진이가 같은 조가 되는 경우의 수는 규현이와 유진이를 제외한 7명을 1명, 3명, 3명으로 나누는 경우의 수와 같으므로

$$_{7}C_{1}\cdot _{6}C_{3}\cdot _{3}C_{3}\cdot \frac{1}{2!}=7\cdot 20\cdot 1\cdot \frac{1}{2}=70$$

따라서 구하는 경우의 수는

$$280 - 70 = 210$$

周 2

(3)

다른품에 규현이와 유진이를 제외한 7명을 2명, 2명, 3명으로 나누는 경우의 수는

$$_{7}C_{2}\cdot _{5}C_{2}\cdot _{3}C_{3}\cdot \frac{1}{2!}=21\cdot 10\cdot 1\cdot \frac{1}{2}=105$$

2명씩인 조에 규현이와 유진이를 배정하는 경우의 수는

$$2! = 2$$

따라서 구하는 경우의 수는

 $105 \cdot 2 = 210$

1275 5개의 사탕을 2개, 2개, 1개로 나누는 경우의 수는

$$_{5}C_{2}\cdot _{3}C_{2}\cdot _{1}C_{1}\cdot \frac{1}{2!}=10\cdot 3\cdot 1\cdot \frac{1}{2}=15$$

3개의 묶음을 3명의 학생에게 나누어 주는 경우의 수는

3! = 6

따라서 구하는 경우의 수는

1276 9장의 포토카드를 3장, 3장, 3장으로 나누는 경우의 수 는

$$_{9}C_{3} \cdot _{6}C_{3} \cdot _{3}C_{3} \cdot \frac{1}{3!} = 84 \cdot 20 \cdot 1 \cdot \frac{1}{6} = 280$$
 ...

3개의 묶음을 3명의 학생에게 나누어 주는 경우의 수는

따라서 구하는 경우의 수는

■ 1680

채점 기준	비율
3개의 묶음으로 나누는 경우의 수를 구할 수 있다.	50 %
② 3개의 묶음을 나누어 주는 경우의 수를 구할 수 있다.	30 %
● 9장을 3명의 학생에게 3장씩 나누어 주는 경우의 수를 구할 수 있다.	20 %

1277 6명을 2명, 2명, 1명, 1명으로 나누는 경우의 수는

$$_{6}C_{2} \cdot _{4}C_{2} \cdot _{2}C_{1} \cdot _{1}C_{1} \cdot \frac{1}{2!} \cdot \frac{1}{2!} = 15 \cdot 6 \cdot 2 \cdot 1 \cdot \frac{1}{2} \cdot \frac{1}{2} = 45$$

4개의 조를 4개의 층에 분배하는 경우의 수는

4! = 24

따라서 구하는 경우의 수는

$$45.24 = 1080$$

1080

1278 5개의 마카롱을 3명의 어린이가 적어도 한 개씩은 받도록 나눌 때, 각 어린이가 받을 수 있는 마카롱의 개수는

1, 1, 3 또는 1, 2, 2

(i) 5개의 마카롱을 1개, 1개, 3개로 나누는 경우의 수는

$$_{5}C_{1}\cdot _{4}C_{1}\cdot _{3}C_{3}\cdot \frac{1}{2!}=5\cdot 4\cdot 1\cdot \frac{1}{2}=10$$

(ii) 5개의 마카롱을 1개, 2개, 2개로 나누는 경우의 수는

$$_{5}C_{1}\cdot _{4}C_{2}\cdot _{2}C_{2}\cdot \frac{1}{2!}=5\cdot 6\cdot 1\cdot \frac{1}{2}=15$$

(i), (ii)에서 마카롱을 3개의 묶음으로 나누는 경우의 수는 10+15=25

3개의 묶음을 3명의 어린이에게 나누어 주는 경우의 수는 31-6

따라서 구하는 경우의 수는

1279 2대의 자동차를 각각 A, B라 하면 운전할 수 있는 두 사람이 두 자동차 A, B에 나누어 타는 경우의 수는

운전자를 제외한 4명을 2명, 2명의 두 조로 나누는 경우의 수는

$$_{4}C_{2} \cdot _{2}C_{2} \cdot \frac{1}{2!} = 6 \cdot 1 \cdot \frac{1}{2} = 3$$

두 조를 두 자동차 A, B에 배정하는 경우의 수는

........€

자동차 A에서 운전자를 제외한 2명이 자리에 앉는 경우의 수는 $_4P_2$ =12

마찬가지로 자동차 B에서 운전자를 제외한 2명이 자리에 앉는 경우의 수도 12이다.

따라서 구하는 경우의 수는

$$2 \cdot 3 \cdot 2 \cdot 12 \cdot 12 = 1728$$

··· •

채점 기준	비율
● 운전할 수 있는 두 사람을 두 자동차에 배정하는 경우의 수를 구할 수 있다.	30 %
② 운전자를 제외한 4명을 두 자동차에 배정하는 경우의 수를 구할 수 있다.	30 %
⑤ 두 자동차에서 운전자를 제외한 2명이 자리에 앉는 경우의 수를 각각 구할 수 있다.	30 %
자동차에 나누어 타는 경우의 수를 구할 수 있다.	10.%

1280 구하는 경우의 수는 먼저 5개의 학급을 2개, 3개의 두 조로 나눈 후, 3개인 조에서 부전승으로 올라가는 한 학급을 택하는 경우의 수와 같으므로

$$({}_{5}C_{2} \cdot {}_{3}C_{3}) \cdot {}_{3}C_{1} = 10 \cdot 1 \cdot 3 = 30$$

1281 구하는 경우의 수는 먼저 6명을 2명, 2명, 2명의 세 조로 나는 후, 부전승으로 올라가는 한 조를 택하는 경우의 수와 같으 므로

$$\left(_{6}C_{2}\cdot_{4}C_{2}\cdot_{2}C_{2}\cdot\frac{1}{3!}\right)\cdot_{3}C_{1}=15\cdot6\cdot1\cdot\frac{1}{6}\cdot3=45$$

다른 풀이 6명을 2명, 4명의 두 조로 나누는 경우의 수는 ${}_{6}C_{2} \cdot {}_{4}C_{4} = 15 \cdot 1 = 15$

4명인 조를 다시 2명, 2명의 두 조로 나누는 경우의 수는

$$_{4}C_{2}\cdot _{2}C_{2}\cdot \frac{1}{2!}=6\cdot 1\cdot \frac{1}{2}=3$$

따라서 구하는 경우의 수는

$$15 \cdot 3 = 45$$

1282 구하는 경우의 수는 먼저 8개의 팀을 2개, 2개, 2개, 2개의 네 조로 나눈 후, 네 조를 다시 2개, 2개의 두 조로 나누는 경우의 수와 같으므로

C분물이 8개의 팀을 4개, 4개의 두 조로 나누는 경우의 수는

$$_{8}C_{4}\cdot _{4}C_{4}\cdot \frac{1}{2!}=70\cdot 1\cdot \frac{1}{2}=35$$

4개의 팀을 다시 2개, 2개의 두 조로 나누는 경우의 수는

$$_{4}C_{2}\cdot _{2}C_{2}\cdot \frac{1}{2!}=6\cdot 1\cdot \frac{1}{2}=3$$

나머지 4개의 팀을 2개, 2개의 두 조로 나누는 경우의 수도 3이 므로 구하는 경우의 수는

 $35 \cdot 3 \cdot 3 = 315$

1283 🕮 ${}_{n}\mathrm{C}_{r} = \frac{n(n-1)(n-2)\cdots(n-r+1)}{r!}$ 임을 이용한다.

$$\begin{array}{c} \text{(a)} \quad {}_{n}C_{3} : {}_{n+1}C_{4} = 4 : 99 \text{(b)} \\ 9 \cdot {}_{n}C_{3} = 4 \cdot {}_{n+1}C_{4} \\ 9 \cdot \frac{n(n-1)(n-2)}{3 \cdot 2 \cdot 1} = 4 \cdot \frac{(n+1)n(n-1)(n-2)}{4 \cdot 3 \cdot 2 \cdot 1} \\ 9 = n+1 \quad \therefore \quad n=8 \end{array}$$

1284 (조르) a, b, c의 대소 관계가 주어졌으므로 순서를 생각하지 않는 경우임을 이용한다.

줄이 구하는 순서쌍의 개수는 2부터 9까지의 8개의 자연수 중에서 서로 다른 3개를 택하는 경우의 수와 같으므로

1285 전략 서로 다른 n개에서 a개를 택하고 서로 다른 m개에서 b개를 택하는 경우의 수는 $_{n}C_{n}$ 는 $_{n}C_{n}$ 는 이용한다.

3 주머니에는 짝수가 적힌 공이 2, 4, 6, 8의 4개, 홀수가 적 한 공이 1, 3, 5, 7, 9의 5개가 들어 있다.

짝수가 적힌 4개의 곳 중에서 2개를 꺼내는 경우의 수는

$$_{i}C_{ij}=\epsilon$$

홀수가 적힌 5개의 공 중에서 1개를 꺼내는 경우의 수는

$$_{5}C_{1}=5$$

따라서 구하는 경우의 수는

1286 ② 이웃해도 되는 수를 먼저 배열한다.

● 0끼리는 이웃하지 않아야 하고 아홉 자리의 자연수의 첫 번째 자리에는 0이 올 수 없으므로 다음과 같이 1을 먼저 일렬로 나열하면 ∨가 표시된 자리에만 0이 올 수 있다.

 $1 \lor 1 \lor 1 \lor 1 \lor 1 \lor 1 \lor 1 \lor$

따라서 1의 사이사이 및 한쪽 끝의 6개의 자리에 3개의 0을 나열 하는 경우의 수는

1287 ell 남녀 혼합 복식, 남자 복식, 여자 복식, 단식에 출전할 회원을 정하는 경우의 수를 구한 후 곱의 법칙을 이용한다.

🞒 남녀 혼합 복식에 출전함 회원 2명을 뽑는 경우의 수는

$$_{4}C_{1} \cdot _{6}C_{1} = 4 \cdot 6 = 24$$

남자 복식, 여자 복식에 출전할 회원 2명씩을 뽑는 경우의 수는

$$_{3}C_{2} \cdot _{5}C_{2} = 3 \cdot 10 = 30$$

남은 4명 중에서 단식에 출전할 회원 1명을 뽑는 경우의 수는

$$_{i}C_{i}=4$$

따라서 구하는 경우의 수는

1288 ② 9명 중에서 민정이는 이미 뽑았다고 생각하고 지훈이를 제외한 7명에 대하여 생각한다.

중에 구하는 경우의 수는 민정이와 지훈이를 제외한 7명의 회원 중에서 3명을 뽑는 경우의 수와 같으므로

$$_{7}C_{3}=35$$

1289 (적어도' 조건이 있는 경우의 수는 모든 경우의 수에서 사건이 일어나지 않는 경우의 수를 빼서 구한다.

■ 10장의 카드 중에서 4장을 뽑는 경우의 수는

$$C_{i} = 210$$

10의 약수는 1, 2, 5, 10이므로 10의 약수가 적힌 카드를 제외한 6장의 카드 중에서 4장을 뽑는 경우의 수는

$$_{6}C_{4}=_{6}C_{2}=15$$