Information Theory Problem Set 04 - Symbol Codes

Luís Felipe Ramos Ferreira

lframos_ferreira@outlook.com

- 1. (a) A (binary) symbol code for an ensemble, denoted by C, is a function that maps the outcomes of the ensemble to a set os binary strings. In particular, this set of strings is a subset of $\{0,1\}^+$, which denotes the set of all binary strings of non zero length. The extended code for the ensemble, denoted by C^+ , is a function from \mathcal{A}_X^+ to $\{0,1\}^+$. More precisely, it represents the concatenation of the codewords of a ordered set of outcomes from the ensemble.
 - (b) A symbol code is uniquely decodeable when no element is mapped to the same codeword. It is easy to see that is true based on the pidgeonhole principle. More formally, a code C(x) is uniquely decodeable if, under the extended code C^+ , we have:

$$\forall x, y \in \mathcal{A}_X^+, x \neq y \Rightarrow c^+(x) \neq c^+(y)$$

A symbol code is prefix-free if no codeword is a prefix of any other codeword, as stated by McKay [1].

- (c) c
- (d) d
- 2. 2
- 3. 3
 - 4.
- 5. 5
- 6. 6

References

[1] David J. C. MacKay. Information Theory, Inference and Learning Algorithms. 7th edition, 2005.