Formulário de Física II

1. Campo elétrico

$$F = \frac{k|q_1||q_2|}{K r^2} \qquad \qquad \vec{E} = \frac{\vec{F}}{q_0}$$

2. Voltagem e corrente

$$V_{A} - V_{B} = \int_{A}^{B} E \, ds \qquad U_{e} = q \, V \qquad \qquad \frac{m}{2} v^{2} + q \, V = \frac{m}{2} v_{0}^{2} + q \, V_{0} \qquad I = \lim_{\Delta t \to 0} \frac{\Delta Q}{\Delta t}$$

$$\Delta Q = \int_{t}^{t_{2}} I \, dt \qquad \qquad P = \lim_{\Delta t \to 0} \frac{\Delta U_{e}}{\Delta t} \qquad P = I \Delta V \qquad \qquad P_{f.e.m.} = I \, \varepsilon$$

3. Resistência

$$\Delta V = R I \qquad \Delta V_{\text{gerador}} = \varepsilon - r I \quad \Delta V_{\text{recetor}} = \varepsilon + r I \qquad R = \rho \frac{L}{A}$$

$$R = R_{20} \left(1 + \alpha_{20} (T - 20) \right) \qquad R_{\text{s}} = R_1 + \dots + R_n \qquad R_{\text{p}} = \left(\frac{1}{R_1} + \dots + \frac{1}{R_n} \right)^{-1}$$

4. Capacidade

$$C_{\text{condutor}} = \frac{Q}{V_{\text{sup}}} \qquad C = \frac{Q}{\Delta V} \qquad V_{\text{máx}} = E_{\text{máx}} d \qquad U = \frac{1}{2} Q \Delta V$$

$$C_{\text{esf}} = \frac{K R_1 R_2}{k (R_2 - R_1)} \qquad C_{\text{plano}} = \frac{K A}{4 \pi k d} \qquad C_{\text{p}} = C_1 + \dots + C_n \qquad C_{\text{s}} = \left(\frac{1}{C_1} + \dots + \frac{1}{C_n}\right)^{-1}$$

5. Circuitos de corrente contínua

$$I_1 + \ldots + I_n = 0$$

$$\Delta V_1 + \ldots + \Delta V_n = 0$$

$$\sum_{j=1}^n R_{ij} I_j = \varepsilon_i \quad (i = 1, \ldots, n)$$

6. Fluxo elétrico

$$\begin{split} \vec{E} &= \sum_{i=1}^{n} \frac{k \, q_i (\vec{r} - \vec{r}_i)}{|\vec{r} - \vec{r}_i|^3} \quad \varPhi = AE \cos \theta \\ E_{\text{fio}} &= \frac{2 \, k \, \lambda}{R} \end{split} \qquad E_{\text{esf}} &= \frac{k \, Q}{r^2} \quad (r > R) \end{split}$$

7. Potencial

$$\mathrm{d}V = -\vec{E} \cdot \mathrm{d}\vec{r} \qquad E_s = -\frac{\mathrm{d}V}{\mathrm{d}s} \qquad V = -\int\limits_{-\infty}^{\mathrm{P}} \vec{E} \cdot d\vec{r} \qquad V = \sum\limits_{i=1}^{n} \frac{k \, q_i}{|\vec{r} - \vec{r}_i|}$$

$$V_{\mathrm{esf}} = \frac{k \, Q}{r} \qquad (r > R)$$

8. Campo magnético

$$\vec{F} = L \vec{I} \times \vec{B} \qquad \vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right) \qquad \vec{M} = \vec{m} \times \vec{B} \qquad \vec{m} = A I \hat{n}$$

$$r = \frac{m \, v}{q \, B} \qquad \omega = \frac{q \, B}{m} \qquad \oint_{C} \vec{B} \cdot d\vec{r} = 4 \, \pi \, k_m \, I_{\text{int}} \quad B_{\text{fio reto}} = \frac{2 \, k_{\text{m}} \, I}{r}$$

$$F_{\text{fios retos}} = \frac{2 \, k_{\text{m}} \, L \, I_1 \, I_2}{r} \quad \frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z} = 0$$

9. Indução eletromagnética

Prefixos das unidades

Fator	Prefixo	Símbolo	Fator	Prefixo	Símbolo
10^{18}	exa	Е	10^{-1}	deci	d
10^{15}	peta	P	10^{-2}	centi	c
10^{12}	tera	T	10^{-3}	mili	m
10^{9}	giga	G	10^{-6}	micro	μ
10^{6}	mega	M	10^{-9}	nano	n
10^{3}	quilo	k	10^{-12}	pico	p
10^{2}	heto	h	10^{-15}	femto	f
10^{1}	deca	da	10^{-18}	ato	a

Constantes fundamentais

Constante	Símbolo	Valor	Unidades
Constante de Coulomb	k	9.00×10^{9}	m/F (ou: $N \cdot m^2/C^2$)
Constante magnetostática	k_m	1.00×10^{-7}	N/A^2
Velocidade da luz no vácuo	c	3.00×10^8	m/s
Carga elementar	e	1.60×10^{-19}	С
Massa do eletrão	$m_{ m e}$	9.11×10^{-31}	kg
Massa do protão	$m_{ m p}$	1.67×10^{-27}	kg