

Winning Space Race with Data Science

Nafis Ansari 26th November 2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection through API
 - Data Collection with Web Scraping
 - Data Wrangling
 - Exploratory Data Analysis with SQL
 - Exploratory Data Analysis with Data Visualization
 - Interactive Visual Analytics with Folium
 - Machine Learning Prediction
- Summary of all results
 - Exploratory Data Analysis result
 - Interactive analytics in screenshots
 - Predictive Analytics result

Introduction

Project background and context

 Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore, if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch. The goal of the project is to create a machine learning pipeline to predict if the first stage will land successfully.

Problems you want to find answers

- What factors determine if the rocket will land successfully?
- The interaction amongst various features that determine the success rate of a successful landing.
- What operating conditions needs to be in place to ensure a successful landing program.

Methodology

Executive Summary

- Data collection methodology:
 - Data was collected using SpaceX API and web scraping from Wikipedia.
- Perform data wrangling
 - One-hot encoding was applied to categorical features
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- The data was collected using various methods
 - Data collection was done using a get request to the SpaceX API.
 - Next we decoded the response content as a Json using .json() function call and converted it into a pandas dataframe using .json_normalize().
 - We then cleaned the data, checked for missing values and filled in the missing values where necessary.
 - In addition, we performed web scraping from Wikipedia for Falcon 9 launch records with BeautifulSoup.
 - The objective was to extract the launch records as HTML table, parse the table and convert it to a pandas dataframe for future analysis.

Data Collection - SpaceX API

- We used the get request to the SpaceX API to collect data, clean the requested data and did some basic data wrangling and formatting.
- The link to the notebook is https://github.com/NafisAnsari786 /IBM-Data-Science-Capstone-Project/blob/main/Part%201labs%20spacex%20data%20colle ction-api.ipynb

```
1. Get request for rocket launch data using API
spacex_url="https://api.spacexdata.com/v4/launches/past"
response = requests.get(spacex_url)
 2. Use json_normalize method to convert json result to dataframe
# Use json_normalize meethod to convert the json result into a dataframe
# Get the head of the dataframe
data=pd.json_normalize(response.json())
data
 3. We then performed data cleaning and filling in the missing values
# Calculate the mean value of PayloadMass column for Falcon 9 launches
mean payload mass = data falcon9['PayloadMass'].mean()
# Replace NaN values with the mean value in the 'PayloadMass' column
data falcon9['PayloadMass'].fillna(mean payload mass, inplace=True)
```

Data Collection - Scraping

- We applied web scrapping to webscrap Falcon 9 launch records with BeautifulSoup
- We parsed the table and converted it into a pandas dataframe.
- The link to the notebook is https://github.com/NafisAnsari786/IBM -Data-Science-Capstone-Project/blob/main/Part%202-Data%20Collection%20with%20Web %20Scraping%20lab.ipynb

```
1. Apply HTTP Get method to request the Falcon 9 rocket launch page
static_url = "https://en.wikipedia.org/w/index.php?title=List_of_Falcon_9_and_Falcon_Heavy_launches&oldid=1027686922"
# use requests.get() method with the provided static_url
# assign the response to a object
response=requests.get(static_url)
if response.status_code==200:
    # print(response.text)
    print(f"Error: Unable to retrieve the page. Status code:{response.status code}")
  2. Create a BeautifulSoup object from the HTML response
# Use BeautifulSoup() to create a BeautifulSoup object from a response text content
soup=BeautifulSoup(response.text, 'html.parser')
print("Title of the page:",soup.title.text)
Title of the page: List of Falcon 9 and Falcon Heavy launches - Wikipedia
  3. Extract all column names from the HTML table header
# Use the find_all function in the BeautifulSoup object, with element type `table`
# Assign the result to a list called `html_tables'
tables=soup.find_all('table')
# iterate through each table
for table in tables:
    # Find the table header (assuming it is the first row in the table)
    headers=table.find('tr').find all('th')
    # Extract and print the column names
    for header in headers:
        column names=header.text.strip()
         print("Column Names:", column_names)
  4. Create a dataframe by parsing the launch HTML tables
```

Export data to csv

Data Wrangling

- We performed exploratory data analysis and determined the training labels.
- We calculated the number of launches at each site, and the number and occurrence of each orbits
- We created landing outcome label from outcome column and exported the results to csv.
- The link to the notebook is https://github.com/NafisAnsari786/IBM-Data-Science-Capstone-Project/blob/main/Part%202-Data%20Collection%20with%20Web%20Scra ping%20lab.ipynb

EDA with Data Visualization

 We explored the data by visualizing the relationship between flight number and launch Site, payload and launch site, success rate of each orbit type, flight number and orbit type, the launch success yearly trend.

The link to the notebook is https://github.com/NafisAnsari786/IBM-Data-Science-Capstone-Project/blob/main/part%202%20jupyter-labs-eda-dataviz.ipynb.jupyterlite.ipynb

EDA with **SQL**

- We loaded the SpaceX dataset into a PostgreSQL database without leaving the jupyter notebook.
- We applied EDA with SQL to get insight from the data. We wrote queries to find out for instance:
 - The names of unique launch sites in the space mission.
 - The total payload mass carried by boosters launched by NASA (CRS)
 - The average payload mass carried by booster version F9 v1.1
 - The total number of successful and failure mission outcomes
 - The failed landing outcomes in drone ship, their booster version and launch site names.
- The link to the notebook is https://github.com/NafisAnsari786/IBM-Data-Science-Capstone-Project/blob/main/part%201%20jupyter-labs-eda-sqlcoursera_sqllite.ipynb

Build an Interactive Map with Folium

- We marked all launch sites, and added map objects such as markers, circles, lines to mark the success or failure of launches for each site on the folium map.
- We assigned the feature launch outcomes (failure or success) to class 0 and 1.i.e., 0 for failure, and 1 for success.
- Using the color-labeled marker clusters, we identified which launch sites have relatively high success rate.
- We calculated the distances between a launch site to its proximities. We answered some question for instance:
 - Are launch sites near railways, highways and coastlines.
 - Do launch sites keep certain distance away from cities.

Build a Dashboard with Plotly Dash

- We built an interactive dashboard with Plotly dash
- We plotted pie charts showing the total launches by a certain sites
- We plotted scatter graph showing the relationship with Outcome and Payload Mass (Kg) for the different booster version.
- The link to the notebook is https://github.com/NafisAnsari786/IBM-Data-Science-Capstone-Project/blob/main/Part%202-spacex_dash_app.py

Predictive Analysis (Classification)

- We loaded the data using NumPy and Pandas, transformed the data, split our data into training and testing.
- We built different machine learning models and tune different hyper parameters using GridSearchCV.
- We used accuracy as the metric for our model, improved the model using feature engineering and algorithm tuning.
- We found the best performing classification model.
- The link to the notebook is https://github.com/NafisAnsari786/IBM-Data-Science-Capstone-Project/blob/main/SpaceX_Machine_Learning_Prediction_Part_5.jupyterlite.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

• From the plot, we found that the larger the flight amount at a launch site, the greater the success rate at a launch site.

Payload vs. Launch Site

• From the plot, we can observe that as the flight number increases, the first stage is more likely to land successfully. The payload mass is also important; it seems the more massive the payload, the less likely the first stage will return.

Success Rate vs. Orbit Type

 From the plot, we can see that ES-L1, GEO, HEO, SSO, VLEO had the most success rate.

Flight Number vs. Orbit Type

• The plot below shows the Flight Number vs. Orbit type. We observe that in the LEO orbit, success is related to the number of flights whereas in the GTO orbit, there is no relationship between flight number and the orbit.

Payload vs. Orbit Type

We can observe that with heavy payloads, the successful landing are more for PO, LEO and ISS orbits

Launch Success Yearly Trend

• From the plot, we can observe that success rate since 2013 kept on increasing till 2020.

All Launch Site Names

We used the key word
 DISTINCT to show only
 unique launch sites from the
 SpaceX data.

Launch Site Names Begin with 'CCA'

We used the query above to display 5 records where launch sites begin with `CCA`

Total Payload Mass

 We calculated the total payload carried by boosters from NASA as 45596 using the query below

```
Display the total payload mass carried by boosters launched by NASA (CRS)

In [12]:

task_3 = '''

SELECT SUM(PayloadMassKG) AS Total_PayloadMass
FROM SpaceX
WHERE Customer LIKE 'NASA (CRS)'

'''

create_pandas_df(task_3, database=conn)

Out[12]:

total_payloadmass

0 45596
```

Average Payload Mass by F9 v1.1

 We calculated the average payload mass carried by booster version F9 v1.1 as 2928.4

```
Display average payload mass carried by booster version F9 v1.1

In [13]:

task_4 = '''

SELECT AVG(PayloadMassKG) AS Avg_PayloadMass
FROM SpaceX
WHERE BoosterVersion = 'F9 v1.1'

create_pandas_df(task_4, database=conn)

Out[13]:

avg_payloadmass

0 2928.4
```

First Successful Ground Landing Date

 We observed that the dates of the first successful landing outcome on ground pad was 22nd December 2015

Successful Drone Ship Landing with Payload between 4000 and 6000

 We used the WHERE clause to filter for boosters which have successfully landed on drone ship and applied the AND condition to determine successful landing with payload mass greater than 4000 but less than 6000

```
In [15]:
           task 6 =
                   SELECT BoosterVersion
                   FROM SpaceX
                   WHERE LandingOutcome = 'Success (drone ship)'
                        AND PayloadMassKG > 4000
                        AND PayloadMassKG < 6000
           create pandas df(task 6, database=conn)
Out[15]:
             boosterversion
                F9 FT B1022
                F9 FT B1026
              F9 FT B1021.2
              F9 FT B1031.2
```

Total Number of Successful and Failure Mission Outcomes

 We used wildcard like '%' to filter for WHERE MissionOutcome was a success or a failure.

```
List the total number of successful and failure mission outcomes
In [16]:
          task 7a = '''
                  SELECT COUNT(MissionOutcome) AS SuccessOutcome
                  FROM SpaceX
                  WHERE MissionOutcome LIKE 'Success%'
          task 7b = '''
                  SELECT COUNT(MissionOutcome) AS FailureOutcome
                  FROM SpaceX
                  WHERE MissionOutcome LIKE 'Failure%'
          print('The total number of successful mission outcome is:')
          display(create pandas df(task 7a, database=conn))
          print()
          print('The total number of failed mission outcome is:')
          create pandas df(task 7b, database=conn)
         The total number of successful mission outcome is:
            successoutcome
                       100
         The total number of failed mission outcome is:
Out[16]:
            failureoutcome
```

Boosters Carried Maximum Payload

 We determined the booster that have carried the maximum payload using a subquery in the WHERE clause and the MAX() function

```
List the names of the booster_versions which have carried the maximum payload mass. Use a subquery
In [17]:
           task 8 = '''
                    SELECT BoosterVersion, PayloadMassKG
                    FROM SpaceX
                    WHERE PayloadMassKG = (
                                               SELECT MAX(PayloadMassKG)
                                               FROM SpaceX
                    ORDER BY BoosterVersion
            create pandas df(task 8, database=conn)
              boosterversion payloadmasskg
Out[17]:
                F9 B5 B1048.4
                                      15600
                F9 B5 B1048.5
                                      15600
                F9 B5 B1049.4
                                      15600
                F9 B5 B1049.5
                                      15600
                F9 B5 B1049.7
                                      15600
                F9 B5 B1051.3
                                      15600
                F9 B5 B1051.4
                                      15600
                F9 B5 B1051.6
                                      15600
                F9 B5 B1056.4
                                      15600
                F9 B5 B1058.3
                                      15600
                F9 B5 B1060.2
                                      15600
                F9 B5 B1060.3
                                      15600
```

2015 Launch Records

 We used a combinations of the WHERE clause, LIKE, AND, and BETWEEN conditions to filter for failed landing outcomes in drone ship, their booster versions, and launch site names for year 2015

List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

In [18]:

task_9 = '''

SELECT BoosterVersion, LaunchSite, LandingOutcome
FROM SpaceX
WHERE LandingOutcome LIKE 'Failure (drone ship)'

AND Date BETWEEN '2015-01-01' AND '2015-12-31'

create_pandas_df(task_9, database=conn)

Out[18]:

boosterversion launchsite landingoutcome

0 F9 v1.1 B1012 CCAFS LC-40 Failure (drone ship)

1 F9 v1.1 B1015 CCAFS LC-40 Failure (drone ship)

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

- We selected Landing outcomes and the COUNT of landing outcomes from the data and used the WHERE clause to filter for landing outcomes BETWEEN 2010-06-04 to 2010-03-20.
- We applied the GROUP BY clause to group the landing outcomes and the ORDER BY clause to order the grouped landing outcome in descending order.

```
Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad))
In [19]:
           task 10 = '''
                    SELECT LandingOutcome, COUNT(LandingOutcome)
                    FROM SpaceX
                    WHERE DATE BETWEEN '2010-06-04' AND '2017-03-20'
                    GROUP BY LandingOutcome
                    ORDER BY COUNT(LandingOutcome) DESC
           create pandas df(task 10, database=conn)
Out[19]:
                 landingoutcome count
                      No attempt
                                     10
               Success (drone ship)
                Failure (drone ship)
              Success (ground pad)
                 Controlled (ocean)
              Uncontrolled (ocean)
          6 Precluded (drone ship)
                 Failure (parachute)
```


All launch sites global map markers

Markers showing launch sites with color labels

Launch Site distance to landmarks

Pie chart showing the success percentage achieved by each launch site

Pie chart showing the Launch site with the highest launch success ratio

Scatter plot of Payload vs Launch Outcome for all sites, with different payload selected in the range slider

Classification Accuracy

The decision tree classifier is the model with the highest classification accuracy

```
models = {'KNeighbors':knn cv.best score ,
               'DecisionTree':tree cv.best score ,
               'LogisticRegression':logreg cv.best score ,
               'SupportVector': svm cv.best score }
bestalgorithm = max(models, key=models.get)
print('Best model is', bestalgorithm,'with a score of', models[bestalgorithm])
if bestalgorithm == 'DecisionTree':
    print('Best params is :', tree_cv.best_params_)
if bestalgorithm == 'KNeighbors':
    print('Best params is :', knn cv.best params )
if bestalgorithm == 'LogisticRegression':
     print('Best params is :', logreg cv.best params )
if bestalgorithm == 'SupportVector':
    print('Best params is :', svm cv.best params )
Best model is DecisionTree with a score of 0.8732142857142856
Best params is : {'criterion': 'gini', 'max_depth': 6, 'max_features': 'auto', 'min_samples_leaf': 2, 'min_samples_split': 5, 'splitter': 'random'}
```

Confusion Matrix

 The confusion matrix for the decision tree classifier shows that the classifier can distinguish between the different classes. The major problem is the false positives .i.e., unsuccessful landing marked as successful landing by the classifier.

Conclusions

We can conclude that:

- The larger the flight amount at a launch site, the greater the success rate at a launch site.
- Launch success rate started to increase in 2013 till 2020.
- Orbits ES-L1, GEO, HEO, SSO, VLEO had the most success rate.
- KSC LC-39A had the most successful launches of any sites.
- The Decision tree classifier is the best machine learning algorithm for this task.

