TD 9:

Julien BESTARD Paul Dufour Quentin Robert

Contents

1	Exe	Exercice 1 : .1 128																											
	1.1	128																											
	1.2	-32,	75																										
	Exe			-																									
	2.1	1. :	10	11	110	1	010	00	000	0 (000	00 (000	0	000	00	00	00											
	2.2	2. :																											
	2.3	3. :																											
	2.4	4. :																											
	2.5	5.																											

1 Exercice 1:

Donnez la représentation flottante, en simple précision des nombres suivants :

1.1 128

- 1. S = 0
- 2. $128 = (10000000)_2 = (1,0) \times 2^7$
- 3. M = 0 et e = 7
- 4. E = e + biais = 7 + 127 = 6 + 128 $E = (10000110)_2$

1.2 -32,75

- 1. S = 1
- 2. $|-32.75| = (00100000, 11)_2 = (1,0000011)x2^4$
- 3. M = 0000011 et e = 4
- 4. $E = 4 + 127 = (10000100)_2$
- 5. $-32.75 \implies (1100001000000011000000000000000000)_2 = (C2060000)_{16}$

2 Exercice 3:

Donc : S = 1 E = 0111 1010 e = E - biais =
$$(01111010)_2 - (01111111)_2 = -5$$

 $m_2 = (1, M)_2 = (1, 1)_2 = (11)_2 \times 2^{-1}$
Cl : $-m_2 \times 2^e = -(1, 1)_2 \times 2^{-5} = -(11)_2 \times 2^{-6} = -3 \times 2^{-6} = -0,046875$

2.2 2.:

Donc : S = 0 E =
$$(10101010)_2 - 127 = 43$$

 $m_2 = (1, M)_2 = (1, 11)_2 = (111)_2 \times 2^2$
Cl : $m_2 = (1, 11)_2 \times 2^{43} = (111)_2 \times 2^2 \times 2^{41} = 7 \times 2^{41} = -0,046875$

2.3 3.:

Donc :
$$m_2 = -1111 \times 2 = -30$$

2.4 4. :

Donc : S = 1 E = que des 1 donc si M = 0 alors ∞ sinon $-\infty$

2.5 5. :

Donc : S = 0 E = 0 donc si M = 0 alors 0 sinon nb denormalisé donc e = 1 - biais = - 126 et m = $(0,M)_2 = (0,1)_2 = (1,0)_2 \times 2^{-1}$ CL $(1,0)_2 = 2^{-1} \times 2^{-126} = 2^{-127}$