AI24BTECH11016 - Jakkula Adishesh Balaji

Intersection Of Conics(Chords)

Question:

9.2.13 Find the area of the region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ Equation of curve in Matrix form is

$$\vec{x}^{\mathsf{T}} \vec{V} \vec{x} + 2 \vec{u}^{\mathsf{T}} \vec{x} + f = 0 \tag{1}$$

For the given ellipse, The values of \vec{V}, \vec{u}, f are

$$\vec{V} = \begin{pmatrix} 9 & 0 \\ 0 & 16 \end{pmatrix} \tag{.2}$$

$$\vec{u} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{.3}$$

$$\vec{f} = 0 \tag{.4}$$

The area under the curve is given by

$$A = 4 \int_0^4 3\sqrt{1 - \frac{x^2}{16}} \, dx \tag{.5}$$

$$A = 12\pi \tag{.6}$$

(.7)

Parameter	Description	Values
V	$\begin{pmatrix} 1 - e^2 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 9 & 0 \\ 0 & 16 \end{pmatrix}$
A	Area under Curve	12π

TABLE .1 Parameters Used

Fig. .1. Plot of ellipse