STAT 4010 – Bayesian Learning

Tutorial 5

Spring 2022

Cheuk Hin (Andy) CHENG (Email | Homepage)

Di SU (Email | Homepage)

1 Admissibility

Definition 1. (Uniformly dominate & admissible) Given a loss function L, an estimator $\hat{\theta}'$ uniformly dominates $\hat{\theta}$ iff

- 1. $R(\theta, \hat{\theta}') \leq R(\theta, \hat{\theta})$ for all θ ; and
- 2. $R(\theta, \hat{\theta}') < R(\theta, \hat{\theta})$ for some θ .

If an estimator $\hat{\theta}$ is uniformly dominated by other estimator, then $\hat{\theta}$ is said to be <u>inadmissible</u>. If there is no such estimator uniformly dominates $\hat{\theta}$, then $\hat{\theta}$ is said to be <u>admissible</u>.

Remark 1.1. We use the (Frequentist) risk to compare the estimators, not the Bayesian risk (why?).

Theorem 1.1. (Uniqueness of Bayes estimator) A Bayes estimator $\hat{\theta}_{\pi}$ is unique if

- 1. $L(\theta, \hat{\theta})$ is strictly convex function in $\hat{\theta}$;
- 2. $R(\pi, \hat{\theta}_{\pi}) < \infty$;
- 3. Θ is open and equal to the support of $\pi(\theta)$.
- 4. $\Pr(x_1 \leq a_1, \dots, x_n \leq a_n \mid \theta)$ is continuous in θ for all a_1, \dots, a_n .

Theorem 1.2. (Admissibility of Bayes estimator) Any <u>unique</u> Bayes estimator is <u>admissible</u>.

Theorem 1.3. (Bayes risk under squared loss) Consider the squared loss. If the posterior variance is free of $x_{1:n}$, then the Bayes risk is the posterior variance, i.e. $Var(\theta \mid x_{1:n})$.

(Proof of theorem 1.3) Consider the Bayes risk and the Bayes estimator $\hat{\theta}_{\pi}$. Recall that $\hat{\theta}_{\pi} = \mathsf{E}(\theta \mid x)$. Note that $\mathsf{Var}(\hat{\theta}_{\pi} - \theta \mid x) = \mathsf{Var}(\theta \mid x)$. If the posterior variance is free of $x_{1:n}$,

we have

$$R(\pi, \hat{\theta}_{\pi}) = \int_{\mathcal{X}} \int_{\Theta} [\hat{\theta}_{\pi} - \theta]^{2} dF(\theta \mid x) dF(x)$$

$$= \int_{\mathcal{X}} \mathsf{Var}(\theta \mid x) dF(x)$$

$$= \mathsf{Var}(\theta \mid x_{1:n}) \int_{\mathcal{X}} dF(x)$$

$$= \mathsf{Var}(\theta \mid x_{1:n}).$$

Example 1.1. Consider the Normal-Normal model,

$$x_{1:n} \mid \theta \stackrel{\text{IID}}{\sim} \mathcal{N}(\theta, \sigma^2),$$

 $\theta \sim \mathcal{N}(\nu_0, \tau_0),$

where σ^2 and τ_0^2 are known and finite. Find the Bayes estimator under the squared loss. Is the Bayes estimator admissible?

SOLUTION:

We know that the posterior is $N(\nu_n, \tau_n)$ and the corresponding Bayes estimator under the squared loss is

$$\hat{\theta}_{\pi} = \mathsf{E}[\theta \mid x_{1:n}] = \frac{\tau_0^2}{\sigma^2 + \tau_0^2} \bar{x} + \frac{\sigma^2}{\sigma^2 + \tau_0^2} \nu_0.$$

We first show the uniqueness. Then by theorem 1.2, $\hat{\theta}_{\pi}$ is admissible. The squared loss function is strictly convex. Since the posterior variance

$$\operatorname{Var}(\theta \mid x_{1:n}) = \frac{\sigma^2 \tau_0^2}{\tau_0^2 + \sigma^2},$$

is free of x. By theorem 1.3, the Bayes risk is the posterior variance which is finite. Moreover, the Normal-Normal model is regular enough to satisfy the conditions 3 and 4 in theorem 1.2. Therefore, $\hat{\theta}_{\pi}$ is unique Bayes estimator and thus admissible.

Example 1.2. By previous example, we can see that the Bayes estimator is in the form of $\hat{\theta} = a\bar{X} + b$, where a and b are known constant. Find the range of a and b such that $\hat{\theta}$ is inadmissible.

SOLUTION:

We first write the Frequentist risk in terms of function of a and b.

$$\begin{split} R(\theta, \hat{\theta}) &= \mathsf{E}[L(\theta, \hat{\theta}) \mid \theta] \\ &= \mathsf{E}[(a\bar{X} + b - \theta)^2 \mid \theta] \\ &= \mathsf{Var}(a\bar{x} + b - \theta \mid \theta) + \{\mathsf{E}[(a\bar{X} + b - \theta) \mid \theta]\}^2 \\ &= a^2 \frac{\sigma^2}{n} + (\{a - 1\}\theta + b)^2 \\ &=: \rho(a, b). \end{split}$$

Let $\sigma^2 = \text{Var}(x \mid \theta)$. Consider following cases.

- (a > 1) If a > 1 and for any value of b, then $\rho(a, b) \ge a^2 \sigma^2 / n > \sigma^2 / n = \rho(1, 0)$. Therefore, $a\bar{x} + b$ is uniformly dominated by \bar{x} for any a > 1.
- $(a = 1 \text{ and } b \neq 0)$ If a = 1 and for any value of $b \neq 0$, then $\rho(1, b) = \sigma^2/n + b^2 > \sigma^2/n = \rho(1, 0)$. Again, $\bar{x} + b$ is uniformly dominated by \bar{x} for any $b \neq 0$.
- (0 < a < 1): Observe that $a\bar{x} + b$ is a convex combination of \bar{x} and b. It is a Bayes estimator with respect to some normal prior on θ . Since we are considering the squared error loss function, which is strictly convex, the Bayes estimator is unique, therefore, it is admissible.
- (a = 0): Roughly speaking, in this case, R(b, b) = 0, hence it is admissible.
- (a < 0) If a < 0, then for any value of b

$$\rho(a,b) \ge (\{a-1\}\theta + b)^2$$

$$\ge (a-1)^2(\theta + b/(a-1))^2$$

$$> (\theta + b/(a-1))^2$$

$$= \rho(0, -b/(a-1)).$$

Therefore, $a\bar{x} + b$ is uniformly dominated by -b/(a-1) for a < 0.

From above example, we can conclude that when a does not lie in [0,1] or when a=1 and $b \neq 0$, the estimator $a\bar{x} + b$ is inadmissible. Let $\hat{\theta}_0 = 1.5\bar{x}$, $\hat{\theta}_1 = \bar{x} + 1.5$ and $\hat{\theta}_2 = \bar{x}$. We can use the following figure to demonstrate that $\hat{\theta}_0$ and $\hat{\theta}_1$ are inadmissible.


```
##setting
nRep = 2^12
n = 100
a = c(1.5,1,1)
b = c(0,1.5,0)
theta.all = seq(0,10,length.out = 21)
sigma = 1

##A function to compute the risk
get_FR = function(x,a,b){
```

```
FR = a*mean(x)+b
    return (FR)
  # Simulate the risk of 1.5bar(x), bar(x) + 1.5 and bar(x).
 out =array (NA, dim=c(nRep, length(theta.all), 3))
 dimnames(out) =list(paste0("iRep=",1:nRep),paste0("theta = ",1:length(theta.
     all)), paste0("q=",0:2))
 set.seed(4010)
 for(iRep in 1:nRep){
   for(i.t in 1:length(theta.all)) {
     theta = theta.all[i.t]
     x = rnorm(n, mean=theta, sd = sigma)
     for(i.q in 1:3){
        out[iRep, i.t, i.q] = get_FR(x,a[i.q],b[i.q])
risk =apply(out, 2:3,mean)
30 head(risk)
 risk_adj = log(risk)
 windows(height = 5, width=10)
 par(mfrow = c(1,2))
matplot(theta.all, risk, type="b", pch=as.character(q), main="Risk", xlab=
     expression(theta), ylab = 'FR')
matplot(theta.all, risk_adj, type="b", pch=as.character(q), main="Risk", xlab=
     expression(theta),ylab = 'log(FR)')
```

2 Minimax Estimator

Definition 2. (Minimax risk and minimax estimator)

1. The maximum risk of an estimator θ is

$$\bar{R}(\widehat{\theta}) = \sup_{\theta \in \Theta} R(\theta, \widehat{\theta}).$$

2. The **minimax risk** for the model parameter $\theta \in \Theta$ is

$$\bar{R} := \inf_{\widehat{\theta} \in D} \sup_{\theta \in \Theta} R(\theta, \widehat{\theta}).$$

3. The minimax estimator is an estimator $\widehat{\theta}_{M}$ that achieves minimax risk, i.e.,

$$\bar{R}\left(\widehat{\theta}_{\mathrm{M}}\right) = \bar{R}.$$

Remark 2.1. Different principles have different "attention" on the risk curve $R(\theta, \hat{\theta})$.

- Minimax estimator performs well <u>at the worst case</u>.
- Bayes estimator performs well on (weighted) average.

• In STAT4003, we've learned about the uniformly minimal variance estimator (UMVUE) which performs well (w.r.t. the squared loss) for all θ .

Remark 2.2. Minimax estimator may not be admissible. (Chapter 3 Example 3.19)

Definition 3. Let $\widehat{\theta}_{\pi}, \widehat{\theta}_{\pi'}, \widehat{\theta}_{\pi_m}$ be Bayes estimators under π, π', π_m , respectively, where $m = 1, 2, \ldots$

1. The prior π is **least favorable** if for any proper prior π'

$$R\left(\pi,\widehat{\theta}_{\pi}\right) \geq R\left(\pi',\widehat{\theta}_{\pi'}\right).$$

2. The sequence of priors $\{\pi_m\}$ is <u>asymptotically least favorable</u> if for any proper prior π'

$$\lim_{m \to \infty} R\left(\pi_m, \widehat{\theta}_{\pi_m}\right) \ge R\left(\pi', \widehat{\theta}_{\pi'}\right).$$

The following theorems provide us methods of finding minimax estimators.

Theorem 2.1. If there is π such that $R\left(\theta, \widehat{\theta}_{\pi}\right)$ does not depend on θ , then $\widehat{\theta}_{\pi}$ is minimax for θ .

Theorem 2.2. If there is π such that $R\left(\pi, \widehat{\theta}_{\pi}\right) \geq R\left(\theta, \widehat{\theta}_{\pi}\right)$ for all θ , then $\widehat{\theta}_{\pi}$ is minimax for θ . And in this case, the prior π is least favorable.

Theorem 2.3. If there is $\{\pi_m\}$ and $\widehat{\theta}$ such that $R\left(\pi_m, \widehat{\theta}_{\pi_m}\right) \to \overline{R}(\widehat{\theta})$ as $m \to \infty$, then $\widehat{\theta}$ is minimax for θ . In this case, the sequence of prior $\{\pi_m\}$ is asymptotically least favorable.

Remark 2.3. The assumption in Theorem 2.2 means that a Bayes estimator has its Bayes risk equal to its maximal (frequentist) risk.

Remark 2.4. Theorem 2.1 is a special case of Theorem 2.2

Remark 2.5. We can find a minimax estimator by finding a Bayes estimator with its Bayes risk equal to its maximal risk, or with its Bayes risk being a constant. It requires us to design the prior and the support of the prior wisely.

Example 2.1. (Proof of Theorem 2.2) Consider a prior π . Assume $R\left(\pi, \widehat{\theta}_{\pi}\right) \geq R\left(\theta, \widehat{\theta}_{\pi}\right)$ for all θ , want to show that $\widehat{\theta}_{\pi}$ is minimax and that π is least favorable. Solution:

Let $\widehat{\theta}$ be another estimator of θ . We have

$$\begin{split} \sup_{\theta \in \Theta} R(\theta, \widehat{\theta}_{\pi}) &\leq R(\pi, \widehat{\theta}_{\pi}) & \text{Assumption} \\ &= \int_{\Theta} R(\theta, \widehat{\theta}_{\pi}) \pi(\theta) \mathrm{d}\theta & \text{Definition of Bayes risk} \\ &\leq \int_{\Theta} R\left(\theta, \widehat{\theta}\right) \pi(\theta) \mathrm{d}\theta & \text{Definition of Bayes Estimator} \\ &\leq \sup_{\theta \in \Theta} R\left(\theta, \widehat{\theta}\right) & \text{Average } \leq \text{ Maximum} \end{split}$$

Since $\widehat{\theta}$ is arbitrary, we have proved that $\widehat{\theta}_{\pi}$ is minimax for θ . Next, let η be another prior on θ . Then

$$\begin{split} R(\pi,\widehat{\theta}_{\pi}) &\geq \sup_{\theta \in \Theta} R(\theta,\widehat{\theta}_{\pi}) & \text{Assumption} \\ &\geq \int_{\Theta} R(\theta,\widehat{\theta}_{\pi}) \eta(\theta) \mathrm{d}\theta & \text{Maximum } \geq \text{ Average} \\ &\geq \int_{\Theta} R\left(\theta,\widehat{\theta}_{\eta}\right) \eta(\theta) \mathrm{d}\theta & \text{Definition of Bayes Estimator} \\ &= R\left(\eta,\widehat{\theta}_{\eta}\right) & \text{Definition of Bayes risk} \end{split}$$

Since η is arbitrary, π is least favorable. This completes the proof.

Example 2.2. (Minimax estimator of Binomial model) Suppose $[x_1, \ldots, x_n \mid \theta] \sim \text{Bern}(\theta)$ for some $\theta \in (0, 1)$ and $L(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$. Find a minimax estimator of θ . Solution:

• Proposal 1: The Bayes estimator under a conjugate prior. Does it have constant risk? Denote \bar{x}_n . By Example 3.24 in the lecture note, under the prior $\theta \sim \text{Beta}(\sqrt{n/4}, \sqrt{n/4})$, the Bayes estimator is given by

$$\hat{\theta}_M = \frac{n\bar{x}_n + \sqrt{n}/2}{n + \sqrt{n}},$$

and it has a constant risk $R(\theta, \hat{\theta}_M) = 1/[4(\sqrt{n}+1)^2]$. Hence $\hat{\theta}_M$ is a minimax estimator.

• Proposal 2: The sample average $\tilde{\theta} = \bar{x}_n$. Can we find a suitable prior for it? We want a prior $\pi(\theta)$ so that $\tilde{\theta}$ is the corresponding Bayes estimator and $R(\pi, \tilde{\theta}) \geq R(\theta, \tilde{\theta})$. Notice that the risk of $\tilde{\theta}$ is

$$R\left(\theta, \frac{\sum_{i=1}^{n} x_i}{n}\right) = \frac{\theta(1-\theta)}{n}.$$

The risk has a unique maximum at $\theta^* = \frac{1}{2}$. Hence the maximum risk of $\tilde{\theta}$ is:

$$\sup_{\theta \in \Omega} R\left(\theta, \tilde{\theta}\right) = R\left(\frac{1}{2}, \frac{\sum_{i=1}^{n} x_i}{n}\right) = \frac{1}{4n}.$$

If we want to use Theorem 2.2, we need the prior π to satisfy $\pi(\theta) = \mathbb{I}(\theta = 1/2)$. However, in this case, the Bayes estimator is $\hat{\theta}_{\pi} = 1/2$, and it is not equal to $\tilde{\theta}$. Therefore,

we still do not know whether the sample average $\tilde{\theta}$ is a minimax estimator. (Notice that we cannot say $\tilde{\theta}$ is not a minimax estimator at this stage, because Theorem 2.2 is a sufficient but not necessary condition for minimax estimator.)

On the other hand, observe that the maximum risk of Proposal 1 is $R(\theta, \hat{\theta}_M) = 1/[4(\sqrt{n}+1)^2]$, and $R(\theta, \hat{\theta}_M) < R(\theta, \tilde{\theta}) = 1/[4(\sqrt{n})^2]$, hence the sample average $\tilde{\theta}$ is not a minimax estimator.

Lemma 2.4. Suppose $\hat{g}(\theta)$ is an unbiased estimator of $g(\theta)$ with finite Bayesian risk and $\mathsf{E}(g(\theta)^2) < \infty$. Then under the squared loss, if $\hat{g}(\theta)$ is Bayes, the Bayes risk must be zero, i.e.,

$$\mathsf{E}_{\theta,X}\left[\left\{\hat{g}(\theta) - g(\theta)\right\}^2\right] = 0.$$

Proof. Let $\hat{\theta}$ be an unbiased estimator under the squared loss function. Then by Theorem 3.2 in the lecture,

$$\hat{\theta} = E(g(\theta) \mid X).$$

Thus,

$$E(\hat{g}(\theta)g(\theta)) = E(E(\hat{g}(\theta)g(\theta) \mid X))$$
$$= E(\hat{g}(\theta)E(g(\theta) \mid X))$$
$$= E(\hat{g}(\theta)^{2}).$$

On the other hand, due to unbiasedness,

$$E(\hat{g}(\theta)g(\theta)) = E(E(\hat{g}(\theta)g(\theta) \mid \theta))$$

$$= E(g(\theta)E(\hat{g}(\theta) \mid \theta))$$

$$= E(g^{2}(\theta))$$

Observe that

$$\begin{split} E\left(\{\hat{g}(\theta) - g(\theta)\}^2\right) &= E\left(\hat{g}(\theta)\right) - 2E(\hat{g}(\theta)g(\theta)) + E\left(g^2(\theta)\right) \\ &= E\left(\hat{g}(\theta)\right) - E(\hat{g}(\theta)g(\theta)) + E\left(g^2(\theta)\right) - E(\hat{g}(\theta)g(\theta)) \\ &= E\left(\hat{g}(\theta)\right) - E\left(\hat{g}(\theta)\right) + E\left(g^2(\theta)\right) - E\left(g^2(\theta)\right) \\ &= 0 \end{split}$$

Thus we have $E(\{\hat{g}(\theta) - g(\theta)\}^2) = 0$.

Example 2.3. (Minimax estimator of Normal model with unknown mean θ) Let $[x_1, x_2, \dots, x_n \mid \theta] \stackrel{iid}{\sim} N(\theta, \sigma^2)$ with σ^2 known. Suppose $L(\theta, \hat{\theta}) = (\theta, \hat{\theta})^2$. Find a minimax estimator of θ .

SOLUTION:

As in the previous example, consider the sample average $\bar{x}_n = \sum_{i=1}^n x_i/n$.

• Can we find a suitable prior for it?

Notice that $\mathsf{Bias}(\bar{x}_n) = 0$. The risk of \bar{x}_n is

$$R(\theta, \bar{x}_n) = \mathsf{E}_{\theta} \left[(\bar{x}_n - \theta)^2 \right] = \mathsf{MSE}(\bar{x}_n) = \mathsf{Var}(\bar{x}_n) = \frac{\sigma^2}{n},$$

which is a constant. This suggests that \bar{X} "can" be a minimax estimator. However, by Lemma 2.4, \bar{x}_n is not Bayes for any prior. Theorem 2.1 and 2.2 are not applicable in this case.

- Can we find a sequence of priors whose Bayes risk will converge to its risk? Theorem 2.3 can still be helpful. By the calculations in Example 3.22, if we consider the sequence of priors $\pi_m = N(0, m^2)$, then $R(\theta, \hat{\theta}_M) \to R(\theta, \bar{x}_n)$. Thus \bar{x}_n is indeed a minimax estimator under the squared loss.
- ✓ Takeaway: Minimax estimator is not necessarily a Bayes estimator.