

Contents

- What is machine learning?
- Components
 - Data
 - Features
 - Algorithms
- Classification
- Regression
- Evaluation

Contents

- What is machine learning?
- Components
 - Data
 - Features
 - Algorithms
- Classification
- Regression
- Evaluation

What is machine learning?

- Branch of Artificial Intelligence (AI)
 - Develop techniques that allow computers to learn from data
 - Generalize from experience (induction) and build a model
 - Gives support to data mining and text mining tasks

A computer program is said to learn from experience **E** with respect to some class of tasks **T** and performance measure **P**, if its performance at tasks in **T**, as measured by **P**, improves with experience **E**

Tom M. Mitchell

What is machine learning?

Contents

- What is machine learning?
- Components
 - Data
 - Features
 - Algorithms
- Classification
- Regression
- Evaluation

Components

- Components of a machine learning system
 - Data
 - Set of samples that are used to train/evaluate the system
 - Features
 - Attributes that represent each of the samples in the dataset
 - Algorithms
 - Operations that allow learning from the features obtained from the training data to generate a model

Contenidos

- What is machine learning?
- Components
 - Data
 - Features
 - Algorithms
- Classification
- Regression
- Evaluation

Data

- Data refers to collections of objects
 - Patients in a hospital
 - Customers of a telephone operator
 - Travels by train from Barcelona to Madrid
 - Access to a web server
 - Animals from a zoo
 - Houses sold in an area
 - **...**
- It is the fuel of machine learning systems
- The data available in an application is called a dataset or corpus (in the case of texts)

Data

- It is necessary to dedicate a lot of effort to be sure that the data is of quality
 - Get a broad set
 - Make it representative
 - Remove false observations
 - Clean
 - Format
 - **...**
- It doesn't matter how sophisticated the algorithms are if the data is not adequate

Data

We don't have better algorithms. We just have more data.

Peter Norving (Google Inc.)

Contents

- What is machine learning?
- Components
 - Data
 - Features
 - Algorithms
- Classification
- Regression
- Evaluation

Features

- Each data (object) is described by a number of attributes (features) that represent its properties
 - E.g., for a person: eye color, height, weight, age, ...
- Two fundamental types of features
 - Discrete
 - Contains labels that represent categories
 - E.g., color of an object, zip code, pass/fail, ...
 - Continuous
 - Takes numerical values
 - E.g., number of children, height, age, weight, ...

Features

- A dataset is typically represented as a table or a series of feature vectors
 - Each column is a feature
 - Each row is an instance (object)

Features

						1
		Id	Refund	Marital status	Salary	Fraud
	I	Yes	Single	125,000€	No	
ıces		2	No	Married	100,000€	No
Instai 		3	No	Single	70,000€	No
		4	No	Divorced	95,000€	Yes
		•••	•••	•••	•••	•••

Features

Labelled data

There is a special feature for each instance called *class*

class

ld	Refund	Marital status	Salary	Fraud
I	Yes	Single	125,000€	No
2	No	Married	100,000€	No
3	No	Single	70,000€	No
• • •	•••	•••		

Unlabelled data

No class is defined

Contents

- What is machine learning?
- Components
 - Data
 - Features
 - Algorithms
- Classification
- Regression
- Evaluation

Algorithms

- Supervised learning (predictive methods)
 - Training instances are labelled
 - Use some variables to predict future or unknown values of other variables
 - Approaches
 - Classification
 - Numeric regression
- Unsupervised learning (descriptive methods)
 - Training instances are unlabelled
 - Find human-interpretable patterns that describe the data
 - Approaches
 - Clustering
 - Association rules

Contents

- What is machine learning?
- Components
 - Data
 - Features
 - Algorithms
- **Classification**
- Regression
- Evaluation

- Most common application in data mining and text mining
- Works with labelled data (supervised learning)
- Assign a label (class) to a new unlabelled input instance based on the knowledge acquired in the training process
 - ▶ E.g., {positive, negative, neutral}, {man, woman},...
- We must find a model for the class attribute based on the values of the other attributes

ld	Refund	Marital status	Salary	Fraud
I	Yes	Single	125,000€	No
2	No	Married	100,000€	No
3	No	Single	70,000€	No
•••	•••	•••	•••	•••

Training set

- Instances with assigned labels
- Used to train and build the model

Validation set

- Instances with assigned labels
- Used to adjust parameters of the model and select the best configuration
- Not always necessary

Test set

- Instances with assigned labels
- Used to validate the model, comparing the assigned labels with the labels produced by the model

Re.	Status	Salary	Fraud
Yes	Single	125,000€	No
No	Married	100,000€	No
No	Single	70,000€	No
Yes	Married	120,000€	No
No	Divorced	95,000€	Yes
No	Married	60,000€	No
•••	•••	•••	•••

Re.	Status	Salary	Fraud
No	Single	75,000€	?
Yes	Married	50,000€	?
No	Married	150,000€	?
Yes	Divorced	90,000€	?
• • •	•••	•••	•••

Re.	Status	Salary	Fraud
Yes	Single	125,000€	No
No	Married	100,000€	No
No	Single	70,000€	No
Yes	Married	120,000€	No
No	Divorced	95,000€	Yes
No	Married	60,000€	No
•••	•••	•••	•••

Re.	Status	Salary	Fraud
No	Single	75,000€	?
Yes	Married	50,000€	?
No	Married	150,000€	?
Yes	Divorced	90,000€	?
•••	•••		•••

Re.	Status	Salary	Fraud
Yes	Single	125,000€	No
No	Married	100,000€	No
No	Single	70,000€	No
Yes	Married	120,000€	No
No	Divorced	95,000€	Yes
No	Married	60,000€	No
•••	•••	•••	•••

Re.	Status	Salary	Fraud
No	Single	75,000€	?
Yes	Married	50,000€	?
No	Married	150,000€	?
Yes	Divorced	90,000€	?
•••	•••	•••	•••

Re.	Status	Salary	Fraud
Yes	Single	125,000€	No
No	Married	100,000€	No
No	Single	70,000€	No
Yes	Married	120,000€	No
No	Divorced	95,000€	Yes
No	Married	60,000€	No
	•••	•••	•••

Re.	Status	Salary	Fraud
No	Single	75,000€	?
Yes	Married	50,000€	?
No	Married	150,000€	?
Yes	Divorced	90,000€	?
•••	•••	•••	•••

Machine learning (I)

Transform4Europe 2022

Re.	Status	Salary	Fraud
Yes	Single	125,000€	No
No	Married	100,000€	No
No	Single	70,000€	No
Yes	Married	120,000€	No
No	Divorced	95,000€	Yes
No	Married	60,000€	No
•••	•••	•••	•••

Re.	Status	Salary	Fraud
No	Single	75,000€	?
Yes	Married	50,000€	?
No	Married	150,000€	?
Yes	Divorced	90,000€	?
•••	•••	•••	•••

Machine learning (I)

Transform4Europe 2022

Re.	Status	Salary	Fraud
Yes	Single	125,000€	No
No	Married	100,000€	No
No	Single	70,000€	No
Yes	Married	120,000€	No
No	Divorced	95,000€	Yes
No	Married	60,000€	No
•••	•••	•••	•••

Re.	Status	Salary	Fraud
No	Single	75,000€	No
Yes	Married	50,000€	Yes
No	Married	150,000€	No
Yes	Divorced	90,000€	No
•••	, , , , ,	•••	•••

Example applications

- Direct marketing
 - Objective
 - Reduce the cost of sending mail by selecting a set of customers who are candidates to buy a new model of mobile phone
 - Approximation
 - ☐ Use data from a previously existing similar product
 - □ We know which customers bought it and who didn't
 - ☐ The decision {buy, not buy} constitutes the class attribute we want to predict
 - □ Collect demographic, lifestyle, business type, salary, etc. information for each potential customer
 - ☐ Use that information as input features to train the classifier

Example applications

- Customer loyalty
 - Objective
 - □ Predict when a company may lose a customer
 - Approximation
 - ☐ Use instances of past and present customer transactions
 - ☐ How often the client calls, where they calls, at what time of day, economic situation, marital status, etc.
 - □ Label customers as {loyal, disloyal} (this will be the class)
 - ☐ Find a model for predicting customer loyalty

Let's practice!

https://teachablemachine.withgoogle.com/

Algorithms

- ▶ There are numerous classification algorithms
 - Some work better for certain tasks
 - Depending on the number of instances
 - Depending on the number of features
- Types
 - Naïve Bayes
 - Decision trees
 - Neural networks
 - Example-based
 - Linear separators
 - **...**

Decision trees

- Training phase
 - There are different algorithms to build these trees (models) from the training set
 - □ Hunt
 - CHAID
 - □ CART
 - □ ID3
 - □ C4.5
 - □ ...

Decision trees

Prediction phase

New instance

Re.	Status	Salary	Fraud
No	Married	80.000€	?

Decision trees

Prediction phase

New instance

Re.	Status	Salary	Fraud
No	Married	80.000€	?

Decision trees

Prediction phase

New instance

Decision trees

Prediction phase

New instance

Decision trees

Prediction phase

Decision trees

Prediction phase

Machine learning (I)

Decision trees

Machine learning (I)

- k-Nearest Neighbors (k-NN)
 - Intuitive idea: "If it walks like a duck and quacks like a duck, it's probably a duck"

- Support Vector Machines (SVM)
 - Linear classifiers provide high performance
 - Work well in high dimensional spaces
 - Slow building the model but fast classifying

Find the optimal hyperplane (boundary) that maximizes the

margin between two classes

- Support Vector Machines (SVM)
 - If the dataset is not linearly separable, the algorithm can be extended by means of non linear transformations \emptyset (x) to a new feature space

Neural Networks

Separate samples in a multidimensional space

Linear vs. nonlinear problems

Neural Networks

When there are multiple hidden layers, we talk about Deep Neural Networks (a.k.a. Deep Learning)

Let's practice!

https://playground.tensorflow.org/

Contents

- What is machine learning?
- Components
 - Data
 - Features
 - Algorithms
- Classification
- Regression
- Evaluation

Regression

- Works with labelled data (such as classification)
- The class attribute is of continuous type
 - Contains a set of numeric values
 - E.g., estimated price of a house, of a share,
- We must find a model for the class attribute based on the values of the other attributes
- The goal is to predict the value of the class continuous attribute for previously unseen instances

Regression

- Uses the same datasets as for classification
 - Training set
 - Validation set
 - Test set
- Algorithms
 - Multilayer perceptron
 - ▶ k-NN
 - Support Vector Machines (SVM)
 - Decission trees (M5P)
 - ...

Regression

Application examples

- Predict the number of sales of a new product based on advertising expenses
- Predict wind speed as a function of temperature, humidity, air pressure, etc.
- ▶ Time series prediction in stock market indices

Contents

- What is machine learning?
- Components
 - Data
 - Features
 - Algorithms
- Classification
- Regression
- **Evaluation**

- The main reason to build a classifier is to learn to classify previously unseen (unlabelled) instances
- The most obvious criteria to estimate the performance of the classifier is accuracy
 - Proportion of new instances correctly classified

c = r/n

c: classification accuracy

r: number of test documents correctly classified

n: total number of test documents

- In most domains the number of new samples is potentially huge
 - E.g. weather forecast for every possible future day
- Estimate the predicting capability of the classifier by measuring the precision for a set of samples not used during the training process
- Three strategies
 - Train and test set
 - ▶ K-fold cross validation
 - Leave-one-out

Train and test set

- Data is split in two sets: training and test
 - ▶ E.g., 80% training and 20% test
- ▶ The training set is used to build the model (classifier)
- ▶ The test set is used to predict the performance of the model

K-fold cross validation

- Used when the number of instances is small and do not want to split into training and test sets
- N instances are divided in k equal groups
- Typically k=5 or k=10
- Generates k different classifiers
- ▶ Each one uses I fold as test and k-I as training
- Performance is given by the total number of correct answers in the *k* iterations divided by the total number of instances

▶ K-fold cross validation

Leave-one-out

- A.k.a. n-fold cross validation
- "Extreme" case of cross validation
- ▶ The dataset is divided in as many sets as instances (N)
- N classifiers are generated, each one trained on N-1 samples and evaluated in the remaining one
- The computational cost is huge for large amounts of data
- The classifier performance is given by the total number of correct answers in the N iterations divided by the total number of instances

Confusion matrix

- Shows the performance of the classifier per class
- Shows how frequent class X is correctly labelled or was confused with class Y

Correct	Classified as					
classification	1	2	3	5	6	7
1	52	10	7	0	0	1
2	15	50	6	2	1	2
3	5	6	6	0	0	0
5	0	2	0	10	0	1
6	0	1	0	0	7	1
7	1	3	0	1	0	24

Let's practice!

https://bit.ly/3Ndw4fR

David Tomás Díaz

