CGMIPT 2013 - Postscript Task

Денис Анисимов

6 декабря 2013 г.

Реализация

В качестве тестовой таблицы была выбрана USAF-1951. Таблица представляет собой набор групп из 6ти элементов. Каждый элемент состоит из 3x вертикальных и трёх горизонтальных полос. Относительные размеры линий элемента показаны на рисунке 1. Ширина линии(0.5x) в микрометрах для каждой группы показана в таблице 1.

Тестовая таблица (ps2pdf peндер для postscript кода) приведёна в конце данного документа.

Рис. 1: Элемент таблицы¹

	Группа								
Элемент	-2	-1	0	1	2	3			
1	2000.00	1000.00	500.00	250.00	125.00	62.50			
2	1785.71	891.27	446.43	223.21	111.36	55.68			
3	1587.30	793.65	396.83	198.41	99.21	49.50			
4	1416.43	707.21	354.61	176.68	88.34	44.25			
5	1259.45	630.52	314.47	157.73	78.74	39.37			
6	1123.60	561.17	280.90	140.45	70.13	34.97			

Таблица 1: Ширина одной линии в микрометрах

 $^{^1 {}m Mc}_{
m TO}$ $^{1} {
m Mc}_{
m TO}$

Растеризация

Размер файла для различных значений разрешающей способности и различных форматов приведён в таблице 2 и на рисунке 2. Для двух форматов также получены изображения со сглаживанием с размером блока 4х4. Для получения растрового изображения использовалась программа ghostscript с соответствующими опциями устройства вывода и сглаживания.

	DPI							
Формат	36	72	144	200	300	600	1200	
pngmono	3692	5403	9385	12988	21140	55821	165173	
pngalhpa	9509	18227	37684	55017	90939	247469	776750	
png256	5308	8511	16504	24226	42132	108737	301216	
png16	4059	6718	12925	17733	28848	72861	197073	
m png16m	5374	9220	18831	28278	49693	148652	500439	
pnggray	2606	5542	11768	17041	28631	73814	218036	
pnggray44	4589	9772	20932	29558	47490	110202	288574	
jpeggray	8771	23309	64636	109076	198011	608643	2018185	
jpeggray44	7704	21651	60696	102471	188547	588664	1986325	

Таблица 2: Размер растровых изображений, байт

Рис. 2: Размера растровых изображений, байт/dpi

Наилучшее сжатие получается при применении формата pngmono. При применении формата јред зависимость от размера файла близка к квадратичной. Такая зависимость объясняется

квадратичным увеличением числа блоков в алгоритме јред(при сохранении их размера).

При применении сглаживания размер растрового изображения в формате jpeg незначительно уменьшается. Меньше резкость линий - меньше высокочастотных компонент в DCT. Для png ситуация обратная - усложняется словарное сжатие сглаженных линий.

Артефакты растеризации

Искажения изборажения вследствие растеризации показаны на рисунке 3. Элементы изображений увеличены в 25 раз. Для формата јред виден шум из-за подавления высокочастотных составляющих в процессе сжатия(рисунок 3c). Этот шум менее выражен при использовании сглаживания(рисунок 3d).

Рис. 3: Артефакты растеризации для различных форматов

USAF-1951 Test Chart

Postscript task - CGMIPT2013 Author - Denis Anisimov

