$$K = (X_1, R_2, X_3) \qquad \text{$x \sim N_3(M_1 \in)$}$$

$$K = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \qquad \text{$x \in A_1 \in A_2 \in A_3 \in A_4 \in A$$

$$\lambda_1 = 1 + N \geq |P|, \quad \lambda_2 = 1 - N \geq |P|$$

1) Find p nuch that PCz and PCz account for more than 80% of total variation of X

$$PVE = \frac{\lambda_1 + \lambda_2}{\frac{2}{\xi_1} \lambda_1} = \frac{\lambda_1 + \lambda_2}{t_{\text{Noce}}(\xi)} = \frac{\lambda_1 + \lambda_2}{3} = \frac{1 + 1 + N_2 |P|}{3} = \frac{2 + N_2 |P|}{3}$$

$$A = \begin{bmatrix} \lambda - 1 & - \rho & 0 \\ -\rho & \lambda - 1 & -\rho \\ 0 & -\rho & \lambda - 1 \end{bmatrix}$$

colculate the eigenvectors rolving this equation in X. substituting one eigenvolve at a time
$$(XI-E)X=0$$

$$\sqrt{2} |P| \times -PY = 0 \qquad \sqrt{2} |P| \times -N2|P| = 0$$

$$\sqrt{2} |P| \times -PY = 0 \qquad \times = 2$$

$$-2P \times + \sqrt{21P1} Y = 0 \qquad Y = \frac{2P}{\sqrt{21P1}} X$$

$$C_1 = \begin{cases} 1 \\ \text{nign}(P) - \sqrt{2} \\ 1 \end{cases} = \begin{cases} 1/2 \\ \text{nign}(P)/\sqrt{2} \\ 1/2 \end{cases}$$

Et is similar to a mean of the three components of X, when f < 0 Xz is multiplied by a negative value because it is the only one going on everage in the "opposite direction".

Er only loads the first and the third components because they are the only ones that are not (directly) arrelated to some difference between them is expected.

$$M = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} \qquad \Xi = \begin{bmatrix} 1 & p & 0 \\ p & 1 & p \\ 0 & p & 1 \end{bmatrix}$$

3)
$$2 = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} x_1 - x_2 \\ x_2 - x_3 \end{bmatrix}$$

Z is a linear combination of the components of X

$$2 \sim \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \times \sim N_2(M_{\tilde{t}_1}, \mathcal{E}_{\tilde{t}_2})$$

$$M_{2} = \begin{bmatrix} -1 - 1 & 0 \\ 0 & 1 - 1 \end{bmatrix} M = \begin{bmatrix} -1 - 1 & 0 \\ 0 & 1 - 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

$$\mathcal{E}_{Z} = \begin{bmatrix} 1 - 1 & 0 \\ 0 & 1 - 1 \end{bmatrix} \mathcal{E} \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 - 1 & 0 \\ 0 & 1 - 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 - 1 & 0 \\ 0 & 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 - 1 & 0 \\ 0 & 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 - 1 & 0 \\ 0 & 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 - 1 & 0 \\ 0 & 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 - 1 & 0 \\ 0 & 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 - 1 & 0 \\ 0 & 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 - 1 & 0 \\ 0 & 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 - 1 & 0 \\ 0 & 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 - 1 & 0 \\ 0 & 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 - 1 & 0 \\ 0 & 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 - 1 & 0 \\ 0 & 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 - 1 & 0 \\ 0 & 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 - 1 & 0 \\ 0 & 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 - 1 & 0 \\ 0 & 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 - 1 & 0 \\ 0 & 1 \end{bmatrix} =$$

$$\begin{bmatrix} 1-P & P-1 & -P \\ P & 1-P & P-1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1-P & -(P-1) & P-1 + P \\ P & -(1-P) & (-P-1) \end{bmatrix}$$

$$\begin{bmatrix}
2-2P & 2P-1 \\
2P-1 & 2-2P
\end{bmatrix}$$

$$2 N \left(\begin{bmatrix} 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 2-2p & 2p-1 \\ 2p-1 & 2-2p \end{bmatrix} \right)$$

plot on R

$$2NN(\begin{bmatrix}2\\-3\end{bmatrix},\begin{bmatrix}2+\frac{4}{3}&-\frac{4}{3}-1\\-\frac{4}{3}-1&2+\frac{4}{3}\end{bmatrix})$$

$$2 N \left(\begin{bmatrix} 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 10 \\ 3 \\ -\frac{7}{3} \end{bmatrix} \right)$$

$$P = \frac{2}{3}$$

$$2 N \left(\begin{bmatrix} 2 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 - \frac{4}{3} & + \frac{4}{3} - 1 \\ \frac{4}{3} - 1 & 2 - \frac{4}{3} \end{bmatrix} \right)$$

$$Z \sim N \left(\begin{bmatrix} 2 \\ -3 \end{bmatrix} / \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix} \right)$$

expected plots