第六章 立体化学(2)

主要内容

- ◆ 化合物立体结构式的变换方法
- ◆ 手性碳的构型 —— R型和S型, 手性分子的命名
- ◆ 对映异构体和非对映异构体,外消旋体和内消旋体

■ 复习

>手性分子和非手性分子、手性碳

▶立体结构表达式

HO
$$\frac{CH_3}{3}$$
 HO $\frac{CH_3}{3}$ HO $\frac{CH_3}{3}$ OH $\frac{CH_3}{CH_3}$ CH₃

伞形式

Fischer 投影式

对映异构体和非对映异构体

对映异构体—— 互为镜像且不互 相重合

CH₃

ОН

CH₃

非对映异构体——相互不为镜像

一. 立体结构式的变换

问题 1: 如何改变基团的位置而又不改变原有构型?

问题 2: 如何判断两个结构式(如下图)是否为同一化合物?

$$C_2H_5$$
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5

两种常用的改变基团位置的方法:

- 交换基团法
- 旋转法

1. 交换基团法

手性碳上的两个基团或原子交换<mark>奇数次</mark>得对映体,交换<mark>偶数次</mark> 回到原来结构

2. 旋转法

分子以手性碳上化学键为轴旋转,所得到的结构<mark>结构不变</mark>, 仍为原来的分子(因为手性碳的构型未变化)

●用基团交换法

•用基团交换法 (C2和C3都要交换)

(接下页)

(接上页)

二. 手性碳构型的表示方法 (手性碳的绝对构型)

1. 手性碳的绝对构型——R/S 构型, 手性化合物的命名

OH 例: 2─丁醇 C₂H₅─^IC─CH₃ <mark>有一个手性碳</mark>

(S)-2-丁醇

- 2. 基团的优先顺序(遵循"顺序规则",第二章 p40)
- (1) 原子序数大者优先,同位素质量大者优先

(2) 基团的第一个原子相同时,比较与其相连的下一个原子

如:
$$-CH_2CH_3 > -CH_3$$

 $-CH_2CI > -CH_2F$
 $-CH_2OCH_3 > -CH_2OH$
 $-CH(CH_3)_2 > -CH_2CH(CH_3)_2$

(3) 对不饱和基团,可认为与同一原子连接2或3次

例:比较以下基团的优先顺序

1 —CH=CH₂ 与 —CH₂CH₂CH₃

—CH=CH₂
$$\longrightarrow$$
 —CH-CH₂ \longrightarrow —CHCH₂CH₃

例: 2, 3-丁二醇的三个立体异构体的命名

$$H \to CH_3$$
 $H \to CH_3$ $H \to CH_3$ $H_3C \to H_3C \to H$

(2R, 3R)-2, 3-丁二醇

(2S, 3R)-2, 3-丁二醇 或 (2R, 3S)-2, 3-丁二醇

三. 如何判断一个分子是否有手性

- 1. 最直接法: 画其对映体,看是否重合
- 2. 观察有无手性碳:
 - 若分子只含有一个手性碳,即为手性分子
 - 分子含有二个或二个以上手性碳,情况较为复杂

手性碳与立体异构体数目的关系:

若分子有 n 个手性碳, 理论上有 2n 个立体异构体 (2n / 2对 对映体)。若手性碳组成相同, 数目有所减少。

2, 3-丁二醇

手性碳组成相同 只有3个立体异构体

$$\begin{array}{ccc} & \text{OH} & \text{OH} \\ & \text{I} & \text{I} \\ & \text{H}_3\text{C}-\text{CH}-\text{CH}-\text{C}_2\text{H}_5 \end{array}$$

2, 3-戊二醇

有4个立体异构体 与理论数目相同

2,3-戊二醇的两对对映体

3. 观察分子的对称性

对称面(\sigma): 若有一个平面能把分子切成互为镜像的两半,该平面就是分子的对称面。具有对称面的分子是非手性分子,无旋光性。

对称中心(i): 若分子中有一点i, 分子中任何一个原子或基团向i连线, 在其延长线的相等距离处都能遇到相同的原子或基团,则i点就是该分子的对称中心。具有对称中心的分子是非手性分子, 无旋光性。

结论: 若分子含有**对称面或对称中心**,则一定无手性;若分子**既没有对称面又没有对称中心**,则一定有手性。

含假手性碳的分子(了解):

假手性碳的构型 (用r/s表示)

相同组成的手性碳优先顺序: R型 > S型

4. 一些不含手性碳的手性分子

•丙二烯烃型(含有两个互相垂直的平面)

与镜像无法重合, 是手性分子

比较:

有对称面, 为非手性分子

●螺环型

与镜像无法重合, 是手性分子

• 联苯型(位阻型)

大基团使单键旋转受阻

• 构象型(构象转换受阻)

•螺旋型(含手性面)

六螺并苯

• 碳环化合物

1,2-二氯环戊烷有顺、反两个几何异构体,连接氯的两个碳原子,是手性碳原子。

顺-1,2-二氯环戊烷

CI CI CI

反-1,2-二氯环戊烷

非手性分子

手性分子

四. 立体异构体之间的物理、化学性质比较

1. 对映异构体和非对映异构体

例: 酒石酸(tartaric acid), (2, 3-二羟基丁二酸)

(R,S)-酒石酸

2. 外消旋体和内消旋体

• 外消旋体——等量的左旋体和右旋体的混合物

• 内消旋体 ——有手性碳,但分子有对称面

内消旋体(meso compounds)

分子有对称面,无旋光性。 一个手性碳的旋光性正好 被分子内另一构型相反的 手性碳所抵消

• 外消旋体和内消旋体性质的比较

COOH
H—OH
COOH
meso

146-148°C
1.66g / cm³
125g / 100ml
3.23
4.82

混合物

纯净物

■立体异构体、构型异构体与构象异构体

立体异构体:

由原子或基团在空间的排列(或连接)方式不同所产生的 异构体(包括构型异构体和构象异构体)。

本次课要求

- ▶掌握化合物立体结构之间的相互转换。
- ▶熟练掌握手性碳的R/S构型,掌握手性分子的命名方式。
- ▶了解手性化合物的类型,熟练区分手性分子和非手性分子。
- ▶掌握对映异构体和非对映异构体,外消旋体和内消旋体在物理和化学性质上的异同。