PENERAPAN METODE TOPSIS UNTUK SISTEM PENDUKUNG KEPUTUSAN PENENTUAN KELUARGA MISKIN PADA DESA PANCA KARSA II

Irvan Muzakkir

Irvanmuzakkir32@gmail.com Universitas Ichsan Gorontalo

Abstrak

Menentukan keluarga miskin adalah salah satu upaya pemerintah untuk melakukan intervensi pembangunan dalam bentuk bantuan terhadap keluarga miskin. Tepat sasaran adalah suatu keharusan sehingga benar-benar dapat berdaya guna bagi yang membutuhkan. Perkembangan penduduk Desa Panca Karsa II rata-rata 2% pertahun, sedangkan angka kelahiran dan kematian rata-rata 1% pertahun. Mayoritas mata pencaharian penduduk adalah petani dan buruh tani. Hal ini disebabkan karena sudah turun temurun dan juga minimnya tingkat pendidikan. Model yang digunakan dalam sistem pendukung keputusan ini adalah FMADM dengan menggunakan Metode *TOPSIS*. Metode TOPSIS tersebut, diharapkan penilaian akan lebih tepat karena didasarkan pada nilai kriteria dan bobot yang sudah ditentukan sehingga akan mendapatkan hasil yang lebih akurat. Untuk itu peneliti mencoba membantu permasalahan tersebut di atas dengan membuatkan suatu sistem pendukung keputusan menggunakan Bahasa Pemrograman PHP dengan Database *MySQL*, sehingga Penerapan Metode TOPSIS untuk sistem ini dapat memberikan hasil yang maksimal dalam hal pengambilan keputusan.

Kata Kunci: Keluarga Miskin, FMADM, TOPSIS

1. Pendahuluan

Kemiskinan adalah kondisi sosial ekonomi warga masyarakat yang tidak mempunyai kemampuan dalam memenuhi kebutuhan pokok yang layak bagi kemanusiaan. Kemiskinan merupakan masalah global yang sering dihubungkan dengan kebutuhan, kesulitan, dan kekurangan di berbagai keadaan hidup. Penyebab kemiskinan sangat banyak, sehingga untuk memotret sebuah kemiskinan bukan sebuah hal yang mudah. Menentukan keluarga miskin adalah salah satu upaya pemerintah untuk melakukan intervensi pembangunan dalam bentuk bantuan terhadap keluarga miskin. Tepat sasaran adalah suatu keharusan sehingga benar-benar dapat berdaya guna bagi yang membutuhkan. [1]

Perkembangan penduduk Desa Panca Karsa II rata-rata 2% pertahun, sedangkan angka kelahiran dan kematian rata-rata 1% pertahun. Mayoritas mata pencaharian penduduk adalah petani dan buruh tani. Hal ini disebabkan karena sudah turun temurun sejak dulu bahwa masyarakat adalah petani dan juga minimnya tingkat pendidikan menyebabkan masyarakat tidak punya keahlian lain selain menjadi petani dan buruh tani. (Rencana Pembangunan Jangka Menengah Desa Panca Karsa II). Jumlah penduduk di Desa Panca Karsa II sebanyak 1126 jiwa dengan jumlah KK sebanyak 384 jiwa. Jumlah Keluarga Miskin terdiri dari 77 jiwa dan KK kategori miskin sekali sebanyak 30 jiwa. [2]

Identifikasi masalah dan sumber masalah yang ada dalam pembahasan ini adalah menyangkut masalah penentuan keluarga miskin karena Kemiskinan merupakan permasalahan yang sulit untuk ditangani. Untuk itu diperlukan kriteria untuk menentukan apakah suatu keluarga itu termasuk miskin atau tidak. Selanjutnya, Penentuan keluarga miskin merupakan acuan penting dalam berbagai macam Pemberian bantuan seperti bantuan Raskin, Kartu Indonesia Pintar, Kartu Indonesia Sehat dan bantuan lainnya. Pemberian bantuan tidak tepat sasaran membuat masyarakat yang miskin akan menjadi sangat miskin. Oleh karena itu perlu dirancang sebuah Sistem Pendukung Keputusan Penentuan Keluarga Miskin Pada Desa Panca Karsa II.

Dalam penelitian Zenna Atmaja dkk dalam Jurnal TIKomSiN [3], SPK penentu keluarga miskin ini diharapkan dapat dikembangkan dengan melakukan modifikasi dan penambahan beberapa kriteria dan subkriteria yang lebih lengkap, serta digabungkan menggunakan algoritma lain selain metode (AHP) diharapkan memperoleh perhitungan yang lebih tepat dan akurat. Dalam aplikasi AHP ini jika kriteria semakin banyak maka semakin sulit untuk menentukan dan mengambil keputusan ketika melakukan evaluasi perbandingan pasangan antar kriteria tersebut oleh karena itu perlu dibuat pengelompokan kriteria untuk membatasi kriteria yang banyak.

Penentuan kriteria-kriteria keluarga miskin diperlukan sebuah sistem informasi yang baik untuk mencegah kesalahan-kesalahan dan kecurangan-kecurangan yang dilakukan oleh pihak-pihak tertentu, dalam hal ini digunakan sistem pendukung keputusan (SPK). Sistem pendukung keputusan (SPK) adalah bagian dari Sistem Informasi berbasis komputer, termasuk sistem berbasis pengetahuan (manajemen pengetahuan) yang dipakai untuk mendukung pengambilan keputusan. Metode yang digunakan dalam sistem pendukung keputusan ini adalah Metode TOPSIS yang menggunakan prinsip bahwa alternatif yang terpilih harus mempunyai jarak terdekat dari solusi ideal positif dan terjauh dari solusi ideal negatif dari sudut pandang geometris dengan menggunakan jarak Euclidean untuk menentukan kedekatan relatif dari suatu alternatif dengan solusi optimal. Berdasarkan perbandingan terhadap jarak relatifnya, susunan prioritas alternatif bisa dicapai.[5]

Untuk itu peneliti mencoba membantu permasalahan tersebut di atas dengan membuatkan suatu sistem pendukung keputusan dengan menggunakan PHP dengan Database *MySQL*, untuk membuatkan sebuah sistem pendukung keputusan baru yang berbasis komputerisasi yang merupakan salah satu alternatif yang baik dengan mengedepankan efektifitas dan efisien dalam Penentuan Keluarga Miskin. Oleh karena itu Penelitian ini akan merancang sistem dengan judul "Sistem Pendukung Keputusan Penentuan Keluarga Miskin Menggunakan Metode TOPSIS Pada Desa Panca Karsa II".

2. Metode

MADM (Multiple Attribute Decision Making)

MADM adalah salah satu metode yang digunakan untuk mencari alternatif optimal dari sejumlah alternatif dengan kriteria-kriteria tertentu. Inti dari *Multiple Attribute Decision Making (MADM)* adalah menentukan nilai bobot untuk setiap atribut/kriteria, yang kemudian dilanjutkan dengan proses perankingan yang akan menyeleksi alternatif yang sudah diberikan. Pada dasarnya, ada 3 (tiga) pendekatan untuk mencari nilai bobot atribut, yaitu pendekatan subyektif, pendekatan obyektif dan pendekatan integrasi antara subyektif & obyektif. Masing-masing pendekatan memiliki kelebihan dan kelemahan. Pada pendekatan subyektif, nilai bobot ditentukan berdasarkan subyektifitas dari para pengambil keputusan, sehingga beberapa faktor dalam proses perankingan alternatif bisa ditentukan secara bebas. Sedangkan pada pendekatan obyektif, nilai bobot dihitung secara matematis sehingga mengabaikan subyektifitas dari pengambil keputusan [5]

TOPSIS (Technique For Order Preference by Similarity to Ideal Solution)

TOPSIS adalah salah satu metode pengambilan keputusan multikriteria atau alternative pilihan yang merupakan alternative yang mempunyai jarak terkecil dari solusi ideal positif dan jarak terbesar dari solusi ideal negatif dari sudut pandang geometris dengan menggunakan jarak *Euclidean*. Namun, alternatif yang mempunyai jarak terkecil dari solusi ideal positif, tidak harus mempunyai jarak terbesar dari solusi ideal negatif. Maka dari itu, TOPSIS mempetimbangkan keduanya, jarak terhadap solusi ideal positif dan jarak terhadap solusi ideal negatif secara bersamaan. Solusi optimal dalam metode TOPSIS didapat dengan menentukan kedekatan relatif suatu altenatif terhadap solusi ideal positif. TOPSIS akan merangking alternative berdasarkan prioritas nilai kedekatan relatif suatu alternative terhadap solusi ideal positif. Alternatif-alternatif yang telah dirangking kemudian dijadikan sebagai referensi bagi pengambil keputusan untuk memilih solusi terbaik yang diinginkan. [5]

Kegunaan Metode TOPSIS

TOPSIS telah digunakan dalam banyak aplikasi termasuk keputusan investasi keuangan, perbandingan performansi dari perusahaan, pebandingan dalam suatu industri khusus, pemilihan sistem operasi, evaluasi pelanggan, dan perancangan robot

Langkah Penyelesaian

Dalam penelitian ini menggunakan metode TOPSIS. Adapun langkah-langkahnya adalah:

1. Membangun sebuah matriks keputusan.

Matriks keputusan X mengacu terhadap m alternatif yang akan dievaluasi berdasarkan n kriteria. Matriks keputusan X dapat dilihat sebagai berikut :

keterangan:

 $a_i = (i = 1, 2, 3, ..., m)$ adalah alternatif-alternatif yang mungkin,

 x_{j} = (j = 1, 2, 3, ..., n) adalah atribut dimana performansi alternatif diukur,

 x_{ij} adalah performansi alternatif a_i dengan acuan atribut x_i

2. Membuat matriks keputusan yang ternormalisasi.

Persamaan yang digunakan untuk mentransformasikan setiap elemen xij

- 3. Membuat matriks keputusan yang ternormalisasi terbobot
- 4. Menentukan Matriks solusi ideal positif dan solusi ideal negative.
- 5. Menghitung separasi
- 6. Menghitung Kedekatan terhadap solusi ideal positif
- 7. Merangking alternatif

Alternatif diurutkan dari nilai C⁺ terbesar ke nilai terkecil. Alternatif dengan nilai C⁺ terbesar merupakan solusi terbaik.

Adapun Kriteria Keluarga Miskin Menurut Dinas Sosial Kabupaten Pohuwato Tahun 2016 [6] adalah sebagai berikut :

Tabel 1. Kriteria KK Miskin

No	Variabel	Kriteria Rumah Tangga Miskin (RTM) Sasaran					
1	Luas Bangunan Tempat Tinggal	Kurang dari 8 M2 perorang					
2	Jenis Lantai bangunan tinggal	Tanah/bamboo/kayu/murahan					
3	Jenis dinding tempat tinggal	Bambu/rumbia/kayu berkualitas rendah tembok					
		tanpa plester					
4	Fasilitas buang air besar	Tidak punya/sama-sama rumah tangga lain					
5	Sumber penerangan rumah	Bukan listrik					
6	Sumber air minum	Sumur/mata air tidak terlindung/air hujan					
7	Bahan memasak untuk hari-hari	Kayu bakar/arang/minyak tanah					
8	Konsumsi daging/susu/ayam perminggu	Tidak pernah mengkonsumsi/1 kali perminggu					
9	Pembelian pakaian baru untuk setiap	Tidak pernah membeli/1 kali pertahun					
	anggota rumah tangga dalam setahun						
10	Makanan setiap hari untuk setiap	Hanya 1 kali/2 kali makan sehari					
	anggota keluarga						
11	Kemampuan membayar berobat kepuskesmas/poliklinik	Tidak mampu membayar untuk berobat					
12	Lapangan pekerjaan utama kepala	Petani dengan luas tanah 0,5 Ha/buruh tani,					
	rumah tangga	nelayan, buruh bangunan, buruh perkebunan dan					
		lainnya dengan pendapatan dibawah Rp. 600.000					
		perbulan					
13	Pendidikan tertinggi kepala rumah	Tidak sekolah/tidak tamat SD/hanya SD					
	tangga						
14	Pemilik asset	Tidak punya tabungan/barang yang mudah dijual					
		dengan nilai minimal Rp. 500.000 seperti sepeda					
		motor barang modal lain					

Sumber: Dinas Sosial Kabupaten Pohuwato (2016)

3. Hasil dan Pembahasan

3.1. Langkah-Langkah Menjalankan Sistem

Untuk menjalankan program cukup dengan mengaktifkan Xampp, membuka browser dan memanggil website Penentuan Keluarga Miskin

Tampilan Halaman Login

Gambar 1. Halaman Login

Pada tampilan halaman login ini, user menginput username dan password untuk masuk ke halaman Sistem Pendukung Keputusan Penentuan Keluarga Miskin pada Desa Panca Karsa II. Apabila salah maka akan tampil pesan kesalahan input Username dan password pada layar, kemudian ulangi lagi.

Tampilan Halaman Menu Utama

Gambar 2. Tampilan Halaman Menu Utama

Halaman ini berfungsi untuk menampilkan seluruh menu utama yang terdapat Sistem Pendukungan Keputusan Penentuan Keluarga Miskin dengan Metode TOPSIS pada Desa Panca Karsa II. Form ini terdiri atas menu-menu yang terdapat pada lajur atas, yang digunakan menginput seluruh data-data yang diajukan. Halaman menu utama ini terdiri atas halaman Home, Penerima, Kriteria, Bobot, Bobot Kriteria, Nilai Keputusan dan Keluar. Selengkapnya adalah sebagai berikut

Tampilan Menu Utama

a. Tampilan Entry Data Alternatif/Kepala Keluarga

Gambar 3. Entry Data Alternatif

Pada form ini digunakan untuk memasukkan data alternatif/data penduduk yang telah didata dan termasuk warga Desa Panca Karsa II.

b. Tampilan Entry Data Kriteria

Gambar 4. Entry Data Kriteria

Form ini digunakan untuk menginput data-data kriteria yang akan digunakan dalam Penentuan Keluarga Miskin pada Desa Panca Karsa II. Untuk menginput data pilih tombol tambah kriteria, kemudian isi data kriteria. Setelah data-data sudah terisi lengkap selanjutnya klik simpan untuk menyimpannya dalam sistem. Apabila ingin keluar dari form, klik tombol kembali.

c. Tampilan Entry Data Bobot

Gambar 5. Entry Data Bobot

simpan

Form ini digunakan untuk menginput data-data bobot yang akan digunakan dalam Penentuan Keluarga Miskin pada Desa Panca Karsa II. Untuk menginput data pilih tombol tambah data, kemudian isi data bobot. Setelah data-data sudah terisi lengkap selanjutnya klik simpan untuk menyimpannya dalam sistem. Apabila ingin keluar dari form, klik tombol kembali.

<< kembali

Tampilan Proses

a. Tampilan Bobot Kriteria

Gambar 6.Penentuan Bobot Kriteria

Pada form ini digunakan untuk menentukan Bobot Kriteria Penentuan Keluarga Miskin berdasarkan penilaian yang terlebih dahulu diinputkan. Untuk menilai setiap masyarakat terlebih dahulu isi data alternatif, kemudian isi kriteria dan bobot.

b. Tampilan Nilai Keputusan

nilai keputusan

Gambar 7. Nilai Alternatif

Pada form ini digunakan untuk Penentukan Nilai Keputusan Penentuan Keluarga Miskin berdasarkan penilaian yang terlebih dahulu diinputkan. Untuk menilai setiap masyarakat terlebih dahulu isi data alternatif, kemudian isi kriteria, bobot dan bobot kriteria.

Tampilan Menu Laporan a. Tampilan Laporan Hasil Analisa TOPSIS

lasil Analisa				
No. Nama Calon Penerima	Kondisi Tempat Tinggal	Penyediaan Kebutuhan Sehari-hari	Pendapatan Kepala Keluarga	Pendidikan Terakhir
01 MUh. Yusuf Adam	85	75	75	75
02 husain kono 03 Abidin Labaku	75 65	85 80	75 70	85 60
atriks ternormalisasi, R	0.5	00	70	00
Nama Calon Penerima	Kondisi Tempat	Penyediaan Kebutuhan Sehari-hari	Pendapatan Kepala Keluarga	Pendidikan Terakhir
IUh. Yusuf Adam	Tinggal 0.65048692202437	0.54056247761734	0.59016710652348	0.58476088168909
usain kono	0.57395904884504	0.61263747463298	0.59016710652348	0.66272899924763
idin Labaku	0.4974311756657	0.57659997612516	0.55082263275524	0.46780870535127
atriks ternormalisasi terbobot, Y Nama Calon Penerima	Vandisi Tempat	Denvedican	Pendapatan Kepala	Pendidikan Terakhir
	Kondisi Tempat Tinggal	Penyediaan Kebutuhan Sehari-hari	Keluarga	
IUh. Yusuf Adam usain kono	2.6019476880975 2.2958361953801	2.7028123880867	2.9508355326174	1.7542826450673
bidin Labaku	1.9897247026628	3.0631873731649 2.8829998806258	2.9508355326174 _{Acti} 2.7541131637762 Go to	√31:200//0892/0443 51:4034261160538° W
olusi Ideal Positif (A+)				
Y1+ = max{ 2.6019476880975; 2.2958361953801; 1.9897247026628;	; } = 2.6019476880975			
Y2+ = min{ 2.7028123880867; 3.0631873731649; 2.8829998806258;	•			
Y3+ = min{	; } = 2.7541131637762			
Y4+ = max{ 1.7542826450673; 1.9881869977429; 1.4034261160538;	; } = 1.9881869977429			
A+={2.6019476880975; 2.7028123880867; 2.7541131637762; 1.9881869	977429;}			
olusi Ideal Negatif (A-)				
Y1- = min{ 2.6019476880975; 2.2958361953801; 1.9897247026628;	} = 1.9897247026628			
Y2- = max{ 2.7028123880867; 3.0631873731649; 2.8829998806258;	} = 3.0631873731649			
Y3- = max{ 2.9508355326174; 2.9508355326174; 2.7541131637762;	} = 2.9508355326174			
Y4- = min{ 1.7542826450673; 1.9881869977429; 1.4034261160538;	} = 1.4034261160538			
A-={1.9897247026628;3.0631873731649;2.9508355326174;1.40342611	(60538; }			
arak antara nilai terbobot setiap alternatif terhadap solusi ideal p	oositif, Si+			
D1+ = 0.3056320281042				
D2+ = 0.51212700206712				Activ
D3+ = 0.8655806173407				Go to S
arak antara nilai terbobot setiap alternatif terhadap solusi ideal	negatif, Si-			
01- = 0.79233037157241				
D2- = 0.66003752524189				
03- = 0.26677185546832				
edekatan setiap alternatif terhadap solusi ideal dihitung sebaga	ai berikut			
/1 = 0.79233037157241		= 0.72163707227659		
0.3056320281042 + 0.79233037157241		_		
/2 =				
0.66003752524189		= 0.56309290194711		
0.51212700206712 ÷ 0.66003752524189)			
/3 =		- 0.33550003605033		
0.26677185546832		= 0.23559082695032		
0.8655806173407 + 0.26677185546832				

Gambar 8. Hasil Analisa

20/11/2017 Laporan Hasil Analisa

Laporan Hasil Analisa Penentuan Keluarga Miskin Menggunakan Metode TOPSIS

No	Nama Kepala Keluarga	Penghasilan	Nilai				12 FF 18
			KTT	PK	PKK	PTK	Hasil Analisa
01	MUh. Yusuf Adam	<1juta	85	75	75	75	0.72
02	husain kono	ljuta-2juta	75	85	75	85	0.56
03	Abidin Labaku	<1juta	65	80	70	60	0.24

Keterangan :

Panca Karsa II, 20 November 2017

Gambar 9. Laporan Hasil Analisa

Pada form ini, digunakan untuk menampilkan laporan hasil analisa penentuan keluarga miskin menggunakan metode TOPSIS, dimana hasil yang ditampilkan diurutkan berdasarkan yang data masyarakat paling miskin.

4. Kesimpulan dan Saran

Kesimpulan 4.1

Berdasarkan hasil perancangan Penerapan Metode TOPSIS untuk sistem pendukung keputusan Penentuan Keluarga Miskin pada Desa Panca Karsa II maka dapat ditarik kesimpulan sebagai berikut:

- Sistem yang digunakan pada mampu mengatasi kelemahan-kelemahan yang terdapat pada sistem yang lama dan memberikan hasil yang akurat dalam penentuan Keluarga Miskin
- Penerapan Metode TOPSIS untuk sistem pendukung keputusan dapat memberikan hasil yang maksimal dalam hal pengambilan keputusan dengan cara mengurutkan alternatif masyarakat miskin mulai dari yang termiskin.
- Berdasarkan hasil pengujian white box disimpulkan bahwa sistem pendukung keputusan ini bebas dari kesalahan program dengan total Cyclomatic Complexity = 6, Region = 6, dan Independent Path = 6.

4.2 Saran

Sistem ini belumlah sempurna sehingga membutuhkan pengembangan yang lebih lagi, adapun saran dari penulis yaitu:

- 1. Untuk pengembangan penelitian lebih lanjut maka sebaiknya dilakukan perbandingan metode atau penggabungan metode.
- 2. Sebaiknya dilakukan backup data secara berkala demi keamanan sistem ini

Daftar Pustaka

- [1] Rianto. 2008. Sistem pendukung keputusan penentuan keluarga miskin untuk prioritas penerima bantuan menggunakan metode analytic hierarchy process :: Studi kasus Pedukuhan Bulu RT 07, Trimulyo, Jetis, Bantul. Yogyakarta: Universitas Gadja Mada
- [2] Profil Desa. 2016. Desa Panca Karsa II Kecamatan Taluditi Kabupaten Pohuwato
- [3] Atmaja, Zenna dkk. 2012. Sistem Pendukung Keputusan Penentu Keluarga Miskin Metode AHP Berbasis Web Dinamis Study Kasus Kelurahan Ketaon, Banyudono, Boyolali. Jurnal TIKomSiN ISSN: 2338-4018
- [4] Vercellis, Carlo. 2009. Business Intelligence: Datamining and Optimization For Decision Making. Chichester: Jhon Wiley & Sons
- [5] Kusumadewi, S., Hartati, S., Harjoko, A., Wardoyo, R. 2006. Fuzzy Multi Atribut Decision Making (FUZZY MADM), Graha Ilmu, Yogyakarta
- [6] Dinas Sosial Kabupaten Pohuwato. 2016. Kriteria Keluarga Miskin. Pohuwato