Natural Language Processing MEMMs and CRFs

Felipe Bravo-Marquez

September 15, 2019

- The goal of sequence labeling is to assign tags to words, or more generally, to assign discrete labels to discrete elements in a sequence [Eisenstein, 2018].
- Well known examples of this problem are: part-of-speech tagging (POS) and Named Entity Recognition (NER).
- Maximum-entropy Markov models (MEMMs) make use of log-linear models for sequence labeling tasks.
- In the early NLP literature, logistic regression was often called maximum entropy classification [Eisenstein, 2018].
- Hence, MEMMs will look very similar to the multi-class softmax models seen in the lecture about linear models.
- In contrast to HMMs, here we rely on parameterized functions.

The goal of MEMMs is model the following conditional distribution:

$$P(s_1, s_2 \ldots, s_m | x_1, \ldots, x_m)$$

- Where each x_j for j = 1...m is the j-th input symbol (for example the j-th word in a sentence), and each s_i for j = 1...m is the j-th tag.¹
- We expecto this P(DET,NOUN,VERB|the,dog,barks) to be higher than P(VERB,VERB,VERB|the,dog,barks)

¹These slides are based on lecture notes of Michael Collins http://www.cs.columbia.edu/~mcollins/. The notation and terminology has been adapted to be consistent with the other material.

- We use S to denote the set of possible tags.
- We assume that S is a finite set.
- For example, in part-of-speech tagging of English, S would be the set of all
 possible parts of speech in English (noun, verb, determiner, preposition, etc.).
- Given a sequence of words x_1, \ldots, x_m , there are k^m possible part-of-speech sequences s_1, \ldots, s_m , where k = |S| is the number of possible parts of speech.
- We want to estimate a distribution over these k^m possible sequences.

In a first step, MEMMs use the following decomposition:

$$P(s_{1}, s_{2}..., s_{m}|x_{1},..., x_{m}) = \prod_{i=1}^{m} P(s_{i}|s_{1}..., s_{i-1}, x_{1},..., x_{m})$$

$$= \prod_{i=1}^{m} P(s_{i}|s_{i-1}, x_{1},..., x_{m})$$
(1)

- The first equality is exact (it follows by the chain rule of conditional probabilities).
- The second equality follows from an independence assumption, namely that for all i,

$$P(s_i|s_1...,s_{i-1},x_1,...,x_m) = P(s_i|s_{i-1},x_1,...,x_m)$$

- Hence we are making a first order Markov assumption similar to the Markov assumption made in HMMs.
- The tag in the *i*-th position depends only on the tag in the (i-1)-th position.
- Having made these independence assumptions, we then model each term using a log-linear (Softmax) model:

$$P(s_{i}|s_{i-1},x_{1},\ldots,x_{m}) = \frac{\exp(\vec{w}\cdot\vec{\phi}(x_{1},\ldots,x_{m},i,s_{i-1},s_{i}))}{\sum_{s'\in S}\exp(\vec{w}\cdot\vec{\phi}(x_{1},\ldots,x_{m},i,s_{i-1},s'))}$$
(2)

Here $\vec{\phi}(x_1, \dots, x_m, i, s_{i-1}, s_i)$ is a feature vector where:

- x_1, \dots, x_m is the entire sentence being tagged.
- *i* is the position to be tagged (can take any value from 1 to *m*)
- s is the previous tag value (can take any value in S).
- s' is the new tag value (can take any value in S)

Example of Features used in Part-of-Speech Tagging

- 1. $\vec{\phi}(x_1, \cdots, x_m, i, s_{i-1}, s_i)_{[1]} = 1$ if $s_i = \mathsf{ADVERB}$ and word x_i ends in "-ly"; 0 otherwise. If the weight $\vec{w}_{[1]}$ associated with this feature is large and positive, then this feature is essentially saying that we prefer labelings where words ending in -ly get labeled as ADVERB.
- 2. $\vec{\phi}(x_1, \dots, x_m, i, s_{i-1}, s_i)_{[2]} = 1$ if $i = 1, s_i = VERB$, and $x_m = ?$; 0 otherwise. If the weight $\vec{w}_{[2]}$ associated with this feature is large and positive, then labelings that assign VERB to the first word in a question (e.g., "Is this a sentence beginning with a verb?") are preferred.
- 3. $\vec{\phi}(x_1, \dots, x_m, i, s_{i-1}, s_i)_{[3]} = 1$ if $s_{i-1} = \text{ADJECTIVE}$ and $l_i = \text{NOUN}$; 0 otherwise. Again, a positive weight for this feature means that adjectives tend to be followed by nouns.
- 4. $\vec{\phi}(x_1, \cdots, x_m, i, s_{i-1}, s_i)_{[4]} = 1$ if s_{i-1} = PREPOSITION and s_i = PREPOSITION. A negative weight $\vec{w}_{[4]}$ for this function would mean that prepositions don't tend to follow prepositions.

²Source: https://blog.echen.me/2012/01/03/ introduction-to-conditional-random-fields/

Feature Templates

It is possible to define more general feature templates covering unigrams, bigrams, n-grams of words as well as tag values of s_{i-1} and s_i .

- 1. A word unigram and tag unigram feature template:
 - $\vec{\phi}(x_1, \dots, x_m, i, s_{i-1}, s_i)_{[hash(j,z)]} = 1$ if $s_i = \mathsf{TAG}_{[j]}$ and $x_i = \mathsf{WORD}_{[z]}$; 0 otherwise $\forall j, z$.
 - Notice that j is and index spanning all possible tags in S and z is another index spanning the words in the vocabulary V.
- 2. A word bigram and tag bigram feature template:

$$\vec{\phi}(x_1,\cdots,x_m,i,s_{i-1},s_i)_{[hash(j,z,u,\nu)]} = 1 \text{ if } s_{i-1} = \mathsf{TAG}_{[j]} \text{ and } s_i = \mathsf{TAG}_{[z]} \text{ and } x_{i-1} = \mathsf{WORD}_{[u]} \text{ and } x_i = \mathsf{WORD}_{[v]}; 0 \text{ otherwise } \forall j,z,u,v.$$

The function hash(j, k, ...) will map each different feature to a unique index in the feature vector.

Notice that the resuling vector will be very high-dimensional and sparse.

MEMMs and Multi-class Softmax

- Notice that the log-linear model from above is very similar to the multi-class softmax model presented in the lecture about linear models.
- A general log-linear model has the following form:

$$P(y|x; \vec{w}) = \frac{\exp(\vec{w} \cdot \vec{\phi}(x, y))}{\sum_{y' \in Y} \exp(\vec{w} \cdot \vec{\phi}(x, y'))}$$

A multi-class softmax model has the following form:

$$\hat{\vec{y}} = \operatorname{softmax}(\vec{x} \cdot W + \vec{b})$$

$$\hat{\vec{y}}_{[i]} = \frac{e^{(\vec{x} \cdot W + \vec{b})_{[i]}}}{\sum_{j} e^{(\vec{x} \cdot W + \vec{b})_{[j]}}}$$
(3)

MEMMs and Multi-class Softmax

- Difference 1: in the log-linear model we have a fixed parameter vector \vec{w} instead of having multiple vectors (one column of W for each class value).
- Difference 2: the feature vector of the log-linear model $\vec{\phi}(x,y)$ includes information of the label y, whereas the input vecotr \vec{x} of the softmax model is independent of y.
- Log-linear models allow using features that consider the interaction between x and y (e.g., x end in "ly" and y is an ADVERB).

Training MEMMs

- Once we've defined the feature vectors $\vec{\phi}$, we can train the parameters \vec{w} of the model in the usual way for linear models.
- We set the negative log-likelihood as the loss function and optimize parameters using gradient descent from the training examples.
- This is equivalent as using the cross-entropy loss.
- "Any loss consisting of a negative log-likelihood is a cross-entropy between the empirical distribution defined by the training set and the probability distribution defined by model" [Goodfellow et al., 2016].

- The decoding problem is as follows.
- We are given a new test sequence x₁,..., x_m.
- Our goal is to compute the most likely state sequence for this test sequence,

$$\arg\max_{s_1,\ldots,s_m} P(s_1,\ldots,s_m|x_1,\ldots,x_m). \tag{4}$$

- There are k^m possible state sequences, so for any reasonably large sentence length m brute-force search through all the possibilities will not be possible.
- We can use the Viterbi alogrithm in a similar way as used for HMMs.

- The basic data structure in the algorithm will be a dynamic programming table π with entries π[j, s] for j = 1,..., m, and s ∈ S.
- π[j, s] will store the maximum probability for any state sequence ending in state s
 at position j.
- · More formally, our algorithm will compute

$$\pi[j,s] = \max_{s_1,\ldots,s_{j-1}} \left(P(s|s_{j-1},x_1,\ldots,x_m) \prod_{k=1}^{j-1} P(s_k|s_{k-1},x_1,\ldots,x_m) \right)$$

for all j = 1, ..., m, and for all $s \in S$.

The algorithm is as follows:

• Initialization: for $s \in S$

$$\pi[1,s] = P(s|s_0,x_1,\ldots,x_m)$$

where s_0 is a special "initial" state.

• For $j \in \{2, ..., m\}$, $s \in \{1, ..., k\}$

$$\pi[j, s] = \max_{s' \in S} [\pi[j-1, s'] \times P(s|s', x_1, \dots, x_m)]$$

Finally, having filled in the $\pi[j, s]$ values for all j, s, we can calculate

$$\max_{s_1,...,s_m} = \max_{s} \pi[m,s].$$

• Finally, having filled in the $\pi[j, s]$ values for all j, s, we can calculate

$$\max_{s_1,\ldots,s_m} = \max_s \ \pi[m,s].$$

- The algorithm runs in O(mk²) time (i.e., linear in the sequence length m, and quadratic in the number of tags k).
- As in the Viterbi algorithm for HMMs, we can compute the highest-scoring sequence using backpointers in the dynamic programming algorithm.

Comparison between MEMMs and HMMs

- So what is the motivation for using MEMMs instead of HMMs?
- Note that the Viterbi decoding algorithms for the two models are very similar.
- In MEMMs, the probability associated with each state transition s_{i-1} to s_i is

$$P(s_i|s_{i-1},x_1,...,x_m) = \frac{\exp(\vec{w} \cdot \vec{\phi}(x_1,...,x_m,i,s_{i-1},s_i))}{\sum_{s' \in S} \exp(\vec{w} \cdot \vec{\phi}(x_1,...,x_m,i,s_{i-1},s'))}$$

In HMMs, the probability associated with each transition is:

$$P(s_i|s_{i-1},x_1,\ldots,x_m) = P(s_1|s_{i-1})P(x_i|s_i)$$

Comparison between MEMMs and HMMs

- The key advantage of MEMMs is that the use of feature vectors $\vec{\phi}$ allows much richer representations than those used in HMMs.
- For example, the transition probability can be sensitive to any word in the input sequence x₁,...,x_m.
- In addition, it is very easy to introduce features that are sensitive to spelling features (e.g., prefixes or suffixes) of the current word x_i, or of the surrounding words.
- These features are useful in many NLP applications, and are difficult to incorporate within HMMs in a clean way.

conditional random fields (CRFs)

- We now turn to conditional random fields (CRFs).
- Notation: for convenience, we'll use $x_{1:m}$ to refer to an input sequence x_1, \ldots, x_m , and $s_{1:m}$ to refer to a sequence of states s_1, \ldots, s_m .

CRFs and MEMMs

- The problem with MEMM is since the normalization happens at each time step it
 ends up making up decision at each time step independently which leads to this
 problem called label bias³.
- CRF overcomes this issue by taking the score of the whole sequence before normalizing to make it a probability distribution.
- Training MEMM is quite easy. You just train a multi-class logistic regression for for a given word to the label. Use this classifier at each word/time step to predict the whole sequence.
- Training CRF is more complex. The objective is to maximize the log probability of the most likely sequence.
- Source: https://www.quora.com/ What-are-the-pros-and-cons-of-these-three-sequence-models-MaxEnt

³In some state space configurations, MEMMs essentially completely ignore the input.

Links

- sequence-tagging-lstm-crf/
 https://www.quora.com/
- What-are-the-pros-and-cons-of-these-three-sequence-models-MaxEnt
- https: //people.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf

• https://www.depends-on-the-definition.com/

Questions?

Thanks for your Attention!

References I

Eisenstein, J. (2018). Natural language processing. Technical report, Georgia Tech.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). *Deep learning*. MIT press.