15-442/15-642: Machine Learning Systems

Mixture of Experts

Spring 2025

Tianqi Chen
Carnegie Mellon University

Mixture of Experts

Mixture of Experts

Recap: Transformer Block

A typical transformer block

 $Z = SelfAttention(XW_K, XW_Q, XW_V)$

Z = LayerNorm(X + Z)

 $H = \text{LayerNorm}(\text{ReLU}(ZW_1)W_2 + Z)$

(multi-head) self-attention, followed by a linear layer and ReLU and some additional residual connections and normalization

Normal Feed Forward Layer

Feed forward

$$H = \text{LayerNorm}(\text{ReLU}(ZW_1)W_2 + Z)$$

 $W_1 \in \mathbb{R}^{n \times m}$

Increasing feature size will increase compute quadratically

Everything is mixed together in the FFN(feed forward network) layer

Mixture-of-Experts

Key idea: make each expert focus on predicting the right answer for a

In practice, each expert here is an FFN

A Closer Look at Mixture-of-Experts

A typical MoE layer (assume single instance and activate two experts)

Gating: $G = \text{Softmax}(W_G X)$

Expert indices: $I = \{i_0, i_1\} = \text{Top}K(G, k = 2)$

Output weight: $s_0 = \frac{G_{i_0}}{(G_{i_0} + G_{i_1})}, s_1 = \frac{G_{i_1}}{(G_{i_0} + G_{i_1})}$

Output: $Y = s_0 FFN_{i_0}(X) + s_1 FFN_{i_1}(X)$

Greedily select top-K experts among N

Example model: Mixtral-8x7B selects 2 experts among eight

Different models may have different FFN configurations, usually contains multiple linear layers and some non-linear mixing

Discussions

What are the advantage of using Mixture of Experts vs Linear layers

Transformers + Mixture of Experts

Simply replace the FFN layer in a transformer model by mixture of experts

Mixture of Experts

Discussions

What are opportunities and challenges in accelerating mixture of expert layers?

Single Batch Setting

Gating: $G = Softmax(XW_G)$

Expert indices: $I = \{i_0, i_1\} = \text{Top}K(G, k = 2)$

Output weight: $s_0 = \frac{G_{i_0}}{(G_{i_0} + G_{i_1})}$, $s_1 = \frac{G_{i_1}}{(G_{i_0} + G_{i_1})}$

Output: $Y = s_0 FFN_{i_0}(X) + s_1 FFN_{i_1}(X)$

Only two of n experts are used

We only need to load the weights of these experts during computation

Helps to speedup computations

Batched Linear Layer

$$Z = X W, X \in \mathbb{R}^{b \times n}, W \in \mathbb{R}^{n \times m}$$

b is the batch size

When *b* becomes larger, we get better compute efficiency due to memory load reuse in matrix multiply and hardware specialization via TensorCore

Batching MoE computation

Batched Expert Compute

In practice can be computed by one GPU kernel, benefit from batching Example input in compressed row(CSR) format

A Closer Look at Permutation

How to get the permutation indices efficiently in GPU?

Getting Permutation Indices with Prefix Sum

Prefix sum(scan) can be efficiently parallelized in GPU

Revisit the Batched Compute

Discussion: How to get indptr from the existing data?

Discussions

What are opportunities and challenges in parallelizing mixture of expert layers?

Mixture of Experts