Lecture slides for

Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares

Stephen Boyd Lieven Vandenberghe

1. Vectors

Outline

Notation

Examples

Addition and scalar multiplication

Inner product

Complexity

Vectors

- a vector is an ordered list of numbers
- written as

$$\begin{bmatrix} -1.1 \\ 0.0 \\ 3.6 \\ -7.2 \end{bmatrix} \quad \text{or} \quad \begin{pmatrix} -1.1 \\ 0.0 \\ 3.6 \\ -7.2 \end{pmatrix}$$

or
$$(-1.1, 0, 3.6, -7.2)$$

- numbers in the list are the elements (entries, coefficients, components)
- number of elements is the size (dimension, length) of the vector
- vector above has dimension 4; its third entry is 3.6
- vector of size n is called an n-vector
- numbers are called scalars

Vectors via symbols

- we'll use symbols to denote vectors, e.g., $a, X, p, \beta, E^{\text{aut}}$
- other conventions: \mathbf{g} , \vec{a}
- *i*th element of *n*-vector a is denoted a_i
- if a is vector above, $a_3 = 3.6$
- ightharpoonup in a_i , i is the *index*
- for an *n*-vector, indexes run from i = 1 to i = n
- warning: sometimes a_i refers to the *i*th vector in a list of vectors
- two vectors a and b of the same size are equal if $a_i = b_i$ for all i
- we overload = and write this as a = b

Block vectors

- suppose b, c, and d are vectors with sizes m, n, p
- \blacktriangleright the stacked vector or concatenation (of b, c, and d) is

$$a = \left[\begin{array}{c} b \\ c \\ d \end{array} \right]$$

- also called a block vector, with (block) entries b, c, d
- ightharpoonup a has size m+n+p

$$a = (b_1, b_2, \dots, b_m, c_1, c_2, \dots, c_n, d_1, d_2, \dots, d_p)$$

Zero, ones, and unit vectors

- *n*-vector with all entries 0 is denoted 0_n or just 0
- n-vector with all entries 1 is denoted $\mathbf{1}_n$ or just $\mathbf{1}$
- a unit vector has one entry 1 and all others 0
- denoted e_i where i is entry that is 1
- unit vectors of length 3:

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \qquad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Sparsity

- a vector is sparse if many of its entries are 0
- can be stored and manipulated efficiently on a computer
- ightharpoonup nnz(x) is number of entries that are nonzero
- examples: zero vectors, unit vectors

Outline

Notation

Examples

Addition and scalar multiplication

Inner product

Complexity

Location or displacement in 2-D or 3-D

2-vector (x_1,x_2) can represent a location or a displacement in 2-D

More examples

- ightharpoonup color: (R,G,B)
- quantities of n different commodities (or resources), e.g., bill of materials
- portfolio: entries give shares (or \$ value or fraction) held in each of n assets, with negative meaning short positions
- ightharpoonup cash flow: x_i is payment in period i to us
- audio: x_i is the acoustic pressure at sample time i (sample times are spaced 1/44100 seconds apart)
- features: x_i is the value of *i*th *feature* or *attribute* of an entity
- customer purchase: x_i is the total \$ purchase of product i by a customer over some period
- word count: x_i is the number of times word i appears in a document

Word count vectors

a short document:

Word count vectors are used **in** computer based **document** analysis. Each entry of the **word** count vector is the **number** of times the associated dictionary **word** appears **in** the **document**.

a small dictionary (left) and word count vector (right)

word	[3]
in	2
number	1
horse	0
the	4
document	2

dictionaries used in practice are much larger

Outline

Notation

Examples

Addition and scalar multiplication

Inner product

Complexity

Vector addition

- n-vectors a and b can be added, with sum denoted a + b
- to get sum, add corresponding entries:

$$\begin{bmatrix} 0 \\ 7 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 9 \\ 3 \end{bmatrix}$$

subtraction is similar

Properties of vector addition

- commutative: a + b = b + a
- ► associative: (a + b) + c = a + (b + c)(so we can write both as a + b + c)
- a + 0 = 0 + a = a
- -a a = 0

these are easy and boring to verify

Adding displacements

if 3-vectors a and b are displacements, a + b is the sum displacement

Displacement from one point to another

displacement from point q to point p is p - q

Scalar-vector multiplication

• scalar β and n-vector a can be multiplied

$$\beta a = (\beta a_1, \dots, \beta a_n)$$

- ightharpoonup also denoted $a\beta$
- example:

$$(-2)\begin{bmatrix} 1\\9\\6 \end{bmatrix} = \begin{bmatrix} -2\\-18\\-12 \end{bmatrix}$$

Properties of scalar-vector multiplication

- associative: $(\beta \gamma)a = \beta(\gamma a)$
- left distributive: $(\beta + \gamma)a = \beta a + \gamma a$
- right distributive: $\beta(a+b) = \beta a + \beta b$

these equations look innocent, but be sure you understand them perfectly

Linear combinations

• for vectors a_1, \ldots, a_m and scalars β_1, \ldots, β_m ,

$$\beta_1 a_1 + \cdots + \beta_m a_m$$

is a *linear combination* of the vectors

- \triangleright β_1, \ldots, β_m are the *coefficients*
- a very important concept
- ▶ a simple identity: for any *n*-vector *b*,

$$b = b_1 e_1 + \dots + b_n e_n$$

Example

two vectors a_1 and a_2 , and linear combination $b = 0.75a_1 + 1.5a_2$

Replicating a cash flow

- $ightharpoonup c_1 = (1, -1.1, 0)$ is a \$1 loan from period 1 to 2 with 10% interest
- $c_2 = (0, 1, -1.1)$ is a \$1 loan from period 2 to 3 with 10% interest
- linear combination

$$d = c_1 + 1.1c_2 = (1, 0, -1.21)$$

is a two period loan with 10% compounded interest rate

we have replicated a two period loan from two one period loans

Outline

Notation

Examples

Addition and scalar multiplication

Inner product

Complexity

Inner product

▶ inner product (or dot product) of n-vectors a and b is

$$a^T b = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

- other notation used: $\langle a,b\rangle$, $\langle a|b\rangle$, (a,b), $a\cdot b$
- example:

$$\begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}^T \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix} = (-1)(1) + (2)(0) + (2)(-3) = -7$$

Properties of inner product

$$a^Tb = b^Ta$$

$$(\gamma a)^T b = \gamma (a^T b)$$

$$(a+b)^T c = a^T c + b^T c$$

can combine these to get, for example,

$$(a + b)^{T}(c + d) = a^{T}c + a^{T}d + b^{T}c + b^{T}d$$

General examples

•
$$e_i^T a = a_i$$
 (picks out *i*th entry)

▶
$$\mathbf{1}^T a = a_1 + \cdots + a_n$$
 (sum of entries)

$$a^T a = a_1^2 + \cdots + a_n^2$$
 (sum of squares of entries)

Examples

- w is weight vector, f is feature vector; $w^T f$ is score
- p is vector of prices, q is vector of quantities; p^Tq is total cost
- ightharpoonup c is cash flow, d is discount vector (with interest rate r):

$$d = (1, 1/(1+r), \dots, 1/(1+r)^{n-1})$$

 d^Tc is net present value (NPV) of cash flow

ightharpoonup s gives portfolio holdings (in shares), p gives asset prices; p^Ts is total portfolio value

Outline

Notation

Examples

Addition and scalar multiplication

Inner product

Complexity

Flop counts

- computers store (real) numbers in floating-point format
- basic arithmetic operations (addition, multiplication, ...) are called *floating* point operations or flops
- complexity of an algorithm or operation: total number of flops needed, as function of the input dimension(s)
- this can be very grossly approximated
- crude approximation of time to execute: (flops needed)/(computer speed)
- current computers are around 1Gflop/sec (10⁹ flops/sec)
- but this can vary by factor of 100

Complexity of vector addition, inner product

- \triangleright x + y needs n additions, so: n flops
- $ightharpoonup x^T y$ needs n multiplications, n-1 additions so: 2n-1 flops
- we simplify this to 2n (or even n) flops for x^Ty
- and much less when x or y is sparse

2. Linear functions

Outline

Linear and affine functions

Taylor approximation

Regression model

Superposition and linear functions

- $f: \mathbb{R}^n \to \mathbb{R}$ means f is a function mapping n-vectors to numbers
- f satisfies the superposition property if

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

holds for all numbers α , β , and all n-vectors x, y

- be sure to parse this very carefully!
- a function that satisfies superposition is called *linear*

The inner product function

▶ with a an n-vector, the function

$$f(x) = a^T x = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

is the *inner product function*

- f(x) is a weighted sum of the entries of x
- the inner product function is linear:

$$f(\alpha x + \beta y) = a^{T}(\alpha x + \beta y)$$

$$= a^{T}(\alpha x) + a^{T}(\beta y)$$

$$= \alpha (a^{T}x) + \beta (a^{T}y)$$

$$= \alpha f(x) + \beta f(y)$$

... and all linear functions are inner products

- ▶ suppose $f : \mathbf{R}^n \to \mathbf{R}$ is linear
- then it can be expressed as $f(x) = a^T x$ for some a
- specifically: $a_i = f(e_i)$
- follows from

$$f(x) = f(x_1e_1 + x_2e_2 + \dots + x_ne_n)$$

= $x_1f(e_1) + x_2f(e_2) + \dots + x_nf(e_n)$

Affine functions

- a function that is linear plus a constant is called affine
- general form is $f(x) = a^T x + b$, with a an n-vector and b a scalar
- a function $f: \mathbb{R}^n \to \mathbb{R}$ is affine if and only if

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

holds for all α , β with $\alpha + \beta = 1$, and all n-vectors x, y

sometimes (ignorant) people refer to affine functions as linear

Linear versus affine functions

Linear and affine functions

Taylor approximation

Regression model

First-order Taylor approximation

- ▶ suppose $f : \mathbf{R}^n \to \mathbf{R}$
- first-order Taylor approximation of f, near point z:

$$\hat{f}(x) = f(z) + \frac{\partial f}{\partial x_1}(z)(x_1 - z_1) + \dots + \frac{\partial f}{\partial x_n}(z)(x_n - z_n)$$

- $\hat{f}(x)$ is *very* close to f(x) when x_i are all near z_i
- \hat{f} is an affine function of x
- can write using inner product as

$$\hat{f}(x) = f(z) + \nabla f(z)^{T} (x - z)$$

where *n*-vector $\nabla f(z)$ is the *gradient* of f at z,

$$\nabla f(z) = \left(\frac{\partial f}{\partial x_1}(z), \dots, \frac{\partial f}{\partial x_n}(z)\right)$$

Linear and affine functions

Taylor approximation

Regression model

Regression model

regression model is (the affine function of x)

$$\hat{\mathbf{y}} = \mathbf{x}^T \boldsymbol{\beta} + \mathbf{v}$$

- \triangleright x is a feature vector; its elements x_i are called *regressors*
- n-vector β is the weight vector
- scalar v is the offset
- scalar \hat{y} is the *prediction* (of some actual outcome or *dependent variable*, denoted y)

- \triangleright y is selling price of house in \$1000 (in some location, over some period)
- regressor is

$$x = (house area, \# bedrooms)$$

(house area in 1000 sq.ft.)

regression model weight vector and offset are

$$\beta = (148.73, -18.85), \quad v = 54.40$$

• we'll see later how to guess β and ν from sales data

House	x_1 (area)	x_2 (beds)	y (price)	\hat{y} (prediction)
1	0.846	1	115.00	161.37
2	1.324	2	234.50	213.61
3	1.150	3	198.00	168.88
4	3.037	4	528.00	430.67
5	3.984	5	572.50	552.66

3. Norm and distance

Norm

Distance

Standard deviation

Angle

Norm

• the *Euclidean norm* (or just *norm*) of an n-vector x is

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{x^T x}$$

- used to measure the size of a vector
- reduces to absolute value for n = 1

Properties

for any *n*-vectors x and y, and any scalar β

- ▶ homogeneity: $||\beta x|| = |\beta|||x||$
- triangle inequality: $||x + y|| \le ||x|| + ||y||$
- nonnegativity: $||x|| \ge 0$
- *definiteness:* ||x|| = 0 only if x = 0

easy to show except triangle inequality, which we show later

RMS value

mean-square value of n-vector x is

$$\frac{x_1^2 + \dots + x_n^2}{n} = \frac{\|x\|^2}{n}$$

root-mean-square value (RMS value) is

rms(x) =
$$\sqrt{\frac{x_1^2 + \dots + x_n^2}{n}} = \frac{\|x\|}{\sqrt{n}}$$

- ► $\mathbf{rms}(x)$ gives 'typical' value of $|x_i|$
- e.g., rms(1) = 1 (independent of n)
- RMS value useful for comparing sizes of vectors of different lengths

Norm of block vectors

• suppose a, b, c are vectors

$$\|(a,b,c)\|^2 = a^T a + b^T b + c^T c = \|a\|^2 + \|b\|^2 + \|c\|^2$$

so we have

$$||(a,b,c)|| = \sqrt{||a||^2 + ||b||^2 + ||c||^2} = ||(||a||, ||b||, ||c||)||$$

(parse RHS very carefully!)

we'll use these ideas later

Chebyshev inequality

- suppose that k of the numbers $|x_1|, \ldots, |x_n|$ are $\geq a$
- ▶ then k of the numbers x_1^2, \ldots, x_n^2 are $\geq a^2$
- so $||x||^2 = x_1^2 + \dots + x_n^2 \ge ka^2$
- so we have $k \le ||x||^2/a^2$
- ▶ number of x_i with $|x_i| \ge a$ is no more than $||x||^2/a^2$
- this is the Chebyshev inequality
- in terms of RMS value:

fraction of entries with
$$|x_i| \ge a$$
 is no more than $\left(\frac{\mathbf{rms}(x)}{a}\right)^2$

• example: no more than 4% of entries can satisfy $|x_i| \ge 5 \text{ rms}(x)$

Norm

Distance

Standard deviation

Angle

Distance

► (Euclidean) *distance* between *n*-vectors *a* and *b* is

$$\mathbf{dist}(a,b) = \|a - b\|$$

▶ agrees with ordinary distance for n = 1, 2, 3

• $\mathbf{rms}(a-b)$ is the *RMS deviation* between a and b

Triangle inequality

- triangle with vertices at positions a, b, c
- edge lengths are ||a-b||, ||b-c||, ||a-c||
- by triangle inequality

$$||a-c|| = ||(a-b) + (b-c)|| \le ||a-b|| + ||b-c||$$

i.e., third edge length is no longer than sum of other two

Feature distance and nearest neighbors

- if x and y are feature vectors for two entities, ||x y|| is the *feature distance*
- if z_1, \ldots, z_m is a list of vectors, z_i is the *nearest neighbor* of x if

$$||x - z_j|| \le ||x - z_i||, \quad i = 1, \dots, m$$

these simple ideas are very widely used

Document dissimilarity

- ► 5 Wikipedia articles: 'Veterans Day', 'Memorial Day', 'Academy Awards', 'Golden Globe Awards', 'Super Bowl'
- word count histograms, dictionary of 4423 words
- pairwise distances shown below

	Veterans Day	Memorial Day	Academy Awards	Golden Globe Awards	Super Bowl
Veterans Day	0	0.095	0.130	0.153	0.170
Memorial Day	0.095	0	0.122	0.147	0.164
Academy A.	0.130	0.122	0	0.108	0.164
Golden Globe A.	0.153	0.147	0.108	0	0.181
Super Bowl	0.170	0.164	0.164	0.181	0

Norm

Distance

Standard deviation

Angle

Standard deviation

- for *n*-vector x, $\mathbf{avg}(x) = \mathbf{1}^T x/n$
- de-meaned vector is $\tilde{x} = x \mathbf{avg}(x)\mathbf{1}$ (so $\mathbf{avg}(\tilde{x}) = 0$)
- standard deviation of x is

$$\mathbf{std}(x) = \mathbf{rms}(\tilde{x}) = \frac{\|x - (\mathbf{1}^T x/n)\mathbf{1}\|}{\sqrt{n}}$$

- ▶ $\mathbf{std}(x)$ gives 'typical' amount x_i vary from $\mathbf{avg}(x)$
- ▶ $\mathbf{std}(x) = 0$ only if $x = \alpha \mathbf{1}$ for some α
- greek letters μ , σ commonly used for mean, standard deviation
- a basic formula:

$$rms(x)^2 = avg(x)^2 + std(x)^2$$

Norm

Distance

Standard deviation

Angle

Angle

angle between two nonzero vectors a, b defined as

$$\angle(a,b) = \arccos\left(\frac{a^T b}{\|a\| \|b\|}\right)$$

 \triangleright $\angle(a,b)$ is the number in $[0,\pi]$ that satisfies

$$a^T b = ||a|| ||b|| \cos(\angle(a,b))$$

coincides with ordinary angle between vectors in 2-D and 3-D

Classification of angles

$$\theta = \angle(a,b)$$

- $\theta = \pi/2 = 90^{\circ}$: a and b are orthogonal, written $a \perp b$ ($a^{T}b = 0$)
- $\theta = 0$: a and b are aligned $(a^Tb = ||a|||b||)$
- $\theta = \pi = 180^\circ$: a and b are anti-aligned $(a^T b = -||a|| ||b||)$
- $\theta \le \pi/2 = 90^\circ$: a and b make an acute angle $(a^Tb \ge 0)$
- $\theta \ge \pi/2 = 90^\circ$: a and b make an obtuse angle $(a^Tb \le 0)$

Spherical distance

if a, b are on sphere of radius R, distance along the sphere is $R \angle (a,b)$

Document dissimilarity by angles

- measure dissimilarity by angle of word count histogram vectors
- pairwise angles (in degrees) for 5 Wikipedia pages shown below

	Veterans Day	Memorial Day	Academy Awards	Golden Globe Awards	Super Bowl
Veterans Day	0	60.6	85.7	87.0	87.7
Memorial Day	60.6	0	85.6	87.5	87.5
Academy A.	85.7	85.6	0	58.7	85.7
Golden Globe A	. 87.0	87.5	58.7	0	86.0
Super Bowl	87.7	87.5	86.1	86.0	0

Correlation coefficient

vectors a and b, and de-meaned vectors

$$\tilde{a} = a - \operatorname{avg}(a)\mathbf{1}, \qquad \tilde{b} = b - \operatorname{avg}(b)\mathbf{1}$$

• correlation coefficient (between a and b, with $\tilde{a} \neq 0$, $\tilde{b} \neq 0$)

$$\rho = \frac{\tilde{a}^T \tilde{b}}{\|\tilde{a}\| \|\tilde{b}\|}$$

- $\rho = \cos \angle (\tilde{a}, \tilde{b})$
 - $-\rho = 0$: a and b are uncorrelated
 - $-\rho > 0.8$ (or so): a and b are highly correlated
 - $-\rho < -0.8$ (or so): a and b are highly anti-correlated
- very roughly: highly correlated means a_i and b_i are typically both above (below) their means together

Linear independence

Basis

Orthonormal vectors

Gram-Schmidt algorithm

Linear dependence

▶ set of *n*-vectors $\{a_1, \ldots, a_k\}$ (with $k \ge 1$) is *linearly dependent* if

$$\beta_1 a_1 + \cdots + \beta_k a_k = 0$$

holds for some β_1, \ldots, β_k , that are not all zero

- equivalent to: at least one a_i is a linear combination of the others
- we say ' a_1, \ldots, a_k are linearly dependent'
- $\{a_1\}$ is linearly dependent only if $a_1=0$
- $\{a_1, a_2\}$ is linearly dependent only if one a_i is a multiple of the other
- for more than two vectors, there is no simple to state condition

the vectors

$$a_1 = \begin{bmatrix} 0.2 \\ -7 \\ 8.6 \end{bmatrix}, \quad a_2 = \begin{bmatrix} -0.1 \\ 2 \\ -1 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 0 \\ -1 \\ 2.2 \end{bmatrix}$$

are linearly dependent, since $a_1 + 2a_2 - 3a_3 = 0$

can express any of them as linear combination of the other two, e.g.,

$$a_2 = (-1/2)a_1 + (3/2)a_3$$

Linear independence

▶ set of n-vectors $\{a_1, \ldots, a_k\}$ (with $k \ge 1$) is *linearly independent* if it is not linearly dependent, *i.e.*,

$$\beta_1 a_1 + \cdots + \beta_k a_k = 0$$

holds only when $\beta_1 = \cdots = \beta_k = 0$

- we say ' a_1, \ldots, a_k are linearly independent'
- equivalent to: no a_i is a linear combination of the others

• example: the unit *n*-vectors e_1, \ldots, e_n are linearly independent

Linear combinations of linearly independent vectors

• suppose x is linear combination of linearly independent vectors a_1, \ldots, a_k :

$$x = \beta_1 a_1 + \dots + \beta_k a_k$$

• the coefficients β_1, \ldots, β_k are *unique*, *i.e.*, if

$$x = \gamma_1 a_1 + \cdots + \gamma_k a_k$$

then $\beta_i = \gamma_i$ for $i = 1, \dots, k$

- \blacktriangleright this means that (in principle) we can deduce the coefficients from x
- to see why, note that

$$(\beta_1 - \gamma_1)a_1 + \dots + (\beta_k - \gamma_k)a_k = 0$$

and so (by linear independence) $\beta_1 - \gamma_1 = \cdots = \beta_k - \gamma_k = 0$

Linear independence

Basis

Orthonormal vectors

Gram-Schmidt algorithm

Independence-dimension inequality

- ▶ a linearly independent set of *n*-vectors can have at most *n* elements
- ightharpoonup put another way: any set of n+1 or more n-vectors is linearly dependent

Basis

- ▶ a set of n linearly independent n-vectors a_1, \ldots, a_n is called a *basis*
- ightharpoonup any n-vector b can be expressed as a linear combination of them:

$$b = \beta_1 a_1 + \cdots + \beta_n a_n$$

for some β_1, \ldots, β_n

- and these coefficients are unique
- formula above is called *expansion of b in the* a_1, \ldots, a_n *basis*
- example: e_1, \ldots, e_n is a basis, expansion of b is

$$b = b_1 e_1 + \dots + b_n e_n$$

Outline

Linear independence

Basis

Orthonormal vectors

Gram-Schmidt algorithm

Orthonormal vectors

- ▶ set of *n*-vectors a_1, \ldots, a_k are (mutually) orthogonal if $a_i \perp a_j$ for $i \neq j$
- they are *normalized* if $||a_i|| = 1$ for i = 1, ..., k
- they are orthonormal if both hold
- can be expressed using inner products as

$$a_i^T a_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

- orthonormal sets of vectors are linearly independent
- by independence-dimension inequality, must have $k \leq n$
- when $k = n, a_1, \dots, a_n$ are an *orthonormal basis*

Examples of orthonormal bases

- standard unit *n*-vectors e_1, \ldots, e_n
- ► the 3-vectors

$$\begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}, \qquad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \qquad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

the 2-vectors shown below

Orthonormal expansion

• if a_1, \ldots, a_n is an orthonormal basis, we have for any n-vector x

$$x = (a_1^T x)a_1 + \dots + (a_n^T x)a_n$$

- ightharpoonup called *orthonormal expansion of* x (in the orthonormal basis)
- ightharpoonup to verify formula, take inner product of both sides with a_i

6. Matrices

Outline

Matrices

Matrix-vector multiplication

Examples

Matrices

► a *matrix* is a rectangular array of numbers, *e.g.*,

$$\begin{bmatrix} 0 & 1 & -2.3 & 0.1 \\ 1.3 & 4 & -0.1 & 0 \\ 4.1 & -1 & 0 & 1.7 \end{bmatrix}$$

- its size is given by (row dimension) × (column dimension) e.g., matrix above is 3 × 4
- elements also called entries or coefficients
- ▶ B_{ij} is i,j element of matrix B
- \blacktriangleright *i* is the *row index*, *j* is the *column index*; indexes start at 1
- two matrices are equal (denoted with =) if they are the same size and corresponding entries are equal

Matrix shapes

an $m \times n$ matrix A is

- tall if m > n
- wide if m < n
- square if m = n

Column and row vectors

- we consider an $n \times 1$ matrix to be an n-vector
- we consider a 1×1 matrix to be a number
- ightharpoonup a $1 \times n$ matrix is called a *row vector*, *e.g.*,

$$\begin{bmatrix} 1.2 & -0.3 & 1.4 & 2.6 \end{bmatrix}$$

which is *not* the same as the (column) vector

$$\begin{bmatrix}
 1.2 \\
 -0.3 \\
 1.4 \\
 2.6
 \end{bmatrix}$$

Columns and rows of a matrix

- suppose A is an $m \times n$ matrix with entries A_{ij} for $i = 1, \ldots, m, j = 1, \ldots, n$
- ► its *j*th *column* is (the *m*-vector)

$$\left[egin{array}{c} A_{1j} \ dots \ A_{mj} \end{array}
ight]$$

▶ its *i*th *row* is (the *n*-row-vector)

$$\begin{bmatrix} A_{i1} & \cdots & A_{in} \end{bmatrix}$$

▶ *slice* of matrix: $A_{p:q,r:s}$ is the $(q-p+1) \times (s-r+1)$ matrix

$$A_{p:q,r:s} = \begin{bmatrix} A_{pr} & A_{p,r+1} & \cdots & A_{ps} \\ A_{p+1,r} & A_{p+1,r+1} & \cdots & A_{p+1,s} \\ \vdots & \vdots & & \vdots \\ A_{qr} & A_{q,r+1} & \cdots & A_{qs} \end{bmatrix}$$

Block matrices

we can form block matrices, whose entries are matrices, such as

$$A = \left[\begin{array}{cc} B & C \\ D & E \end{array} \right]$$

where B, C, D, and E are matrices (called *submatrices* or *blocks* of A)

- matrices in each block row must have same height (row dimension)
- matrices in each block column must have same width (column dimension)
- example: if

$$B = \begin{bmatrix} 0 & 2 & 3 \end{bmatrix}, \quad C = \begin{bmatrix} -1 \end{bmatrix}, \quad D = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 5 \end{bmatrix}, \quad E = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

then

$$\left[\begin{array}{ccc} B & C \\ D & E \end{array}\right] = \left[\begin{array}{cccc} 0 & 2 & 3 & -1 \\ 2 & 2 & 1 & 4 \\ 1 & 3 & 5 & 4 \end{array}\right]$$

Column and row representation of matrix

- ightharpoonup A is an $m \times n$ matrix
- can express as block matrix with its (m-vector) columns a_1, \ldots, a_n

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

• or as block matrix with its (*n*-row-vector) rows b_1, \ldots, b_m

$$A = \left[egin{array}{c} b_1 \\ b_2 \\ dots \\ b_m \end{array}
ight]$$

Examples

- *image:* X_{ij} is i,j pixel value in a monochrome image
- rainfall data: A_{ij} is rainfall at location i on day j
- multiple asset returns: R_{ij} is return of asset j in period i
- contingency table: A_{ij} is number of objects with first attribute i and second attribute j
- feature matrix: X_{ij} is value of feature i for entity j

in each of these, what do the rows and columns mean?

Graph or relation

ightharpoonup a relation is a set of pairs of objects, labeled $1, \ldots, n$, such as

$$\mathcal{R} = \{(1,2), (1,3), (2,1), (2,4), (3,4), (4,1)\}$$

same as directed graph

▶ can be represented as $n \times n$ matrix with $A_{ij} = 1$ if $(i,j) \in \mathcal{R}$

$$A = \left[\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{array} \right]$$

Special matrices

- ightharpoonup m imes n zero matrix has all entries zero, written as $0_{m imes n}$ or just 0
- ▶ *identity matrix* is square matrix with $I_{ii} = 1$ and $I_{ij} = 0$ for $i \neq j$, *e.g.*,

$$\left[\begin{array}{cccc} 1 & 0 \\ 0 & 1 \end{array}\right], \qquad \left[\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]$$

- sparse matrix: most entries are zero
 - examples: 0 and I
 - can be stored and manipulated efficiently
 - $\mathbf{nnz}(A)$ is number of nonzero entries

Diagonal and triangular matrices

- diagonal matrix: square matrix with $A_{ij} = 0$ when $i \neq j$
- $\operatorname{diag}(a_1,\ldots,a_n)$ denotes the diagonal matrix with $A_{ii}=a_i$ for $i=1,\ldots,n$
- example:

$$\mathbf{diag}(0.2, -3, 1.2) = \begin{bmatrix} 0.2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1.2 \end{bmatrix}$$

- ▶ lower triangular matrix: $A_{ij} = 0$ for i < j
- upper triangular matrix: $A_{ij} = 0$ for i > j
- examples:

$$\begin{bmatrix} 1 & -1 & 0.7 \\ 0 & 1.2 & -1.1 \\ 0 & 0 & 3.2 \end{bmatrix}$$
 (upper triangular),
$$\begin{bmatrix} -0.6 & 0 \\ -0.3 & 3.5 \end{bmatrix}$$
 (lower triangular)

Transpose

• the *transpose* of an $m \times n$ matrix A is denoted A^T , and defined by

$$(A^T)_{ij} = A_{ji}, \quad i = 1, \dots, n, \quad j = 1, \dots, m$$

for example,

$$\begin{bmatrix} 0 & 4 \\ 7 & 0 \\ 3 & 1 \end{bmatrix}^{T} = \begin{bmatrix} 0 & 7 & 3 \\ 4 & 0 & 1 \end{bmatrix}$$

- transpose converts column to row vectors (and vice versa)
- $(A^T)^T = A$

Addition, subtraction, and scalar multiplication

(just like vectors) we can add or subtract matrices of the same size:

$$(A + B)_{ij} = A_{ij} + B_{ij}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

(subtraction is similar)

scalar multiplication:

$$(\alpha A)_{ij} = \alpha A_{ij}, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n$$

many obvious properties, e.g.,

$$A + B = B + A$$
, $\alpha(A + B) = \alpha A + \alpha B$, $(A + B)^T = A^T + B^T$

Matrix norm

• for $m \times n$ matrix A, we define

$$||A|| = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^{2}\right)^{1/2}$$

- agrees with vector norm when n = 1
- satisfies norm properties:

$$\|\alpha A\| = |\alpha| \|A\|$$

 $\|A + B\| \le \|A\| + \|B\|$
 $\|A\| \ge 0$
 $\|A\| = 0$ only if $A = 0$

- distance between two matrices: ||A B||
- (there are other matrix norms, which we won't use)

Outline

Matrices

Matrix-vector multiplication

Examples

Matrix-vector product

• matrix-vector product of $m \times n$ matrix A, n-vector x, denoted y = Ax, with

$$y_i = A_{i1}x_1 + \cdots + A_{in}x_n, \quad i = 1, \dots, m$$

for example,

$$\begin{bmatrix} 0 & 2 & -1 \\ -2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$$

Row interpretation

• y = Ax can be expressed as

$$y_i = b_i^T x, \quad i = 1, \dots, m$$

where b_1^T, \dots, b_m^T are rows of A

- so y = Ax is a 'batch' inner product of all rows of A with x
- ightharpoonup example: A1 is vector of row sums of matrix A

Column interpretation

y = Ax can be expressed as

$$y = x_1 a_1 + x_2 a_2 + \cdots + x_n a_n$$

where a_1, \ldots, a_n are columns of A

- so y = Ax is linear combination of columns of A, with coefficients x_1, \ldots, x_n
- important example: $Ae_j = a_j$
- columns of A are linearly independent if Ax = 0 implies x = 0

Outline

Matrices

Matrix-vector multiplication

Examples

General examples

- 0x = 0, *i.e.*, multiplying by zero matrix gives zero
- Ix = x, i.e., multiplying by identity matrix does nothing
- inner product a^Tb is matrix-vector product of $1 \times n$ matrix a^T and n-vector b
- $\tilde{x} = Ax$ is de-meaned version of x, with

$$A = \begin{bmatrix} 1 - 1/n & -1/n & \cdots & -1/n \\ -1/n & 1 - 1/n & \cdots & -1/n \\ \vdots & & \ddots & \vdots \\ -1/n & -1/n & \cdots & 1 - 1/n \end{bmatrix}$$

Difference matrix

• $(n-1) \times n$ difference matrix is

$$D = \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 & 0 \\ & & \ddots & \ddots & & & \\ & & \ddots & \ddots & & \\ 0 & 0 & 0 & \cdots & -1 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 1 \end{bmatrix}$$

y = Dx is (n - 1)-vector of differences of consecutive entries of x:

$$Dx = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ \vdots \\ x_n - x_{n-1} \end{bmatrix}$$

▶ Dirichlet energy: $||Dx||^2$ is measure of wiggliness for x a time series

Return matrix – portfolio vector

- ightharpoonup R is $T \times n$ matrix of asset returns
- $ightharpoonup R_{ij}$ is return of asset j in period i (say, in percentage)
- n-vector w gives portfolio (investments in the assets)
- ightharpoonup T-vector Rw is time series of the portfolio return
- ightharpoonup avg(Rw) is the portfolio (mean) return, std(Rw) is its risk

Feature matrix – weight vector

- $X = [x_1 \cdots x_N]$ is $n \times N$ feature matrix
- ightharpoonup column x_i is feature n-vector for object or example j
- $ightharpoonup X_{ij}$ is value of feature i for example j
- *n*-vector w is weight vector
- $s = X^T w$ is vector of scores for each example; $s_j = x_j^T w$

Input – output matrix

- ightharpoonup A is $m \times n$ matrix
- $\mathbf{y} = Ax$
- n-vector x is input or action
- *m*-vector *y* is *output* or *result*
- A_{ij} is the factor by which y_i depends on x_j
- A_{ij} is the *gain* from input j to output i
- *e.g.*, if *A* is lower triangular, then y_i only depends on x_1, \ldots, x_i

Complexity

- ▶ $m \times n$ matrix stored A as $m \times n$ array of numbers (for sparse A, store only $\mathbf{nnz}(A)$ nonzero values)
- matrix addition, scalar-matrix multiplication cost *mn* flops
- ► matrix-vector multiplication costs $m(2n-1) \approx 2mn$ flops (for sparse A, around $2\mathbf{nnz}(A)$ flops)

7. Matrix examples

Outline

Geometric transformations

Selectors

Incidence matrix

Convolution

Geometric transformations

- ▶ many geometric transformations and mappings of 2-D and 3-D vectors can be represented via matrix multiplication y = Ax
- for example, rotation by θ :

$$y = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} x$$

(to get the entries, look at Ae_1 and Ae_2)

Outline

Geometric transformations

Selectors

Incidence matrix

Convolution

Selectors

ightharpoonup an $m \times n$ selector matrix: each row is a unit vector (transposed)

$$A = \left[egin{array}{c} e_{k_1}^T \ dots \ e_{k_m}^T \end{array}
ight]$$

multiplying by A selects entries of x:

$$Ax = (x_{k_1}, x_{k_2}, \dots, x_{k_m})$$

• example: the $m \times 2m$ matrix

'down-samples' by 2: if x is a 2m-vector then $y = Ax = (x_1, x_3, \dots, x_{2m-1})$

other examples: image cropping, permutation, ...

Outline

Geometric transformations

Selectors

Incidence matrix

Convolution

Incidence matrix

- graph with n vertices or nodes, m (directed) edges or links
- incidence matrix is $n \times m$ matrix

$$A_{ij} = \begin{cases} 1 & \text{edge } j \text{ points to node } i \\ -1 & \text{edge } j \text{ points from node } i \\ 0 & \text{otherwise} \end{cases}$$

• example with n = 4, m = 5:

$$A = \begin{bmatrix} -1 & -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Flow conservation

- m-vector x gives flows (of something) along the edges
- examples: heat, money, power, mass, people, ...
- $x_i > 0$ means flow follows edge direction
- ightharpoonup Ax is *n*-vector that gives the total or net flows
- $(Ax)_i$ is the net flow into node i
- Ax = 0 is *flow conservation*; x is called a *circulation*

Potentials and Dirichlet energy

- suppose v is an n-vector, called a potential
- \triangleright v_i is potential value at node i
- $u = A^T v$ is an m-vector of potential differences across the m edges
- $\mathbf{v}_i = v_l v_k$, where edge j goes from k to node l
- ▶ Dirichlet energy is $\mathcal{D}(v) = ||A^T v||^2$,

$$\mathcal{D}(v) = \sum_{\text{edges } (k,l)} (v_l - v_k)^2$$

(sum of squares of potential differences across the edges)

 $\triangleright \mathcal{D}(v)$ is small when potential values of neighboring nodes are similar

8. Linear equations

Outline

Linear functions

Linear function models

Linear equations

Balancing chemical equations

Superposition

- $f: \mathbb{R}^n \to \mathbb{R}^m$ means f is a function that maps n-vectors to m-vectors
- we write $f(x) = (f_1(x), \dots, f_m(x))$ to emphasize components of f(x)
- we write $f(x) = f(x_1, \dots, x_n)$ to emphasize components of x
- f satisfies superposition if for all x, y, α , β

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

(this innocent looking equation says a lot ...)

such an f is called linear

Matrix-vector product function

- with A an $m \times n$ matrix, define f as f(x) = Ax
- ► *f* is linear:

$$f(\alpha x + \beta y) = A(\alpha x + \beta y)$$

$$= A(\alpha x) + A(\beta y)$$

$$= \alpha (Ax) + \beta (Ay)$$

$$= \alpha f(x) + \beta f(y)$$

• converse is true: if $f: \mathbf{R}^n \to \mathbf{R}^m$ is linear, then

$$f(x) = f(x_1e_1 + x_2e_2 + \dots + x_ne_n)$$

= $x_1f(e_1) + x_2f(e_2) + \dots + x_nf(e_n)$
= Ax

with
$$A = \begin{bmatrix} f(e_1) & f(e_2) & \cdots & f(e_n) \end{bmatrix}$$

Examples

• reversal: $f(x) = (x_n, x_{n-1}, ..., x_1)$

$$A = \left[\begin{array}{cccc} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 1 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 1 & \cdots & 0 & 0 \end{array} \right]$$

running sum: $f(x) = (x_1, x_1 + x_2, x_1 + x_2 + x_3, \dots, x_1 + x_2 + \dots + x_n)$

$$A = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \cdots & 1 & 0 \\ 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$$

Affine functions

• function $f: \mathbb{R}^n \to \mathbb{R}^m$ is affine if it is a linear function plus a constant, i.e.,

$$f(x) = Ax + b$$

same as:

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

holds for all x, y, and α , β with $\alpha + \beta = 1$

can recover A and b from f using

$$A = [f(e_1) - f(0) \quad f(e_2) - f(0) \quad \cdots \quad f(e_n) - f(0)]$$

$$b = f(0)$$

affine functions sometimes (incorrectly) called linear

Outline

Linear functions

Linear function models

Linear equations

Balancing chemical equations

Linear and affine functions models

- ▶ in many applications, relations between *n*-vectors and *m* vectors are approximated as linear or affine
- sometimes the approximation is excellent, and holds over large ranges of the variables (e.g., electromagnetics)
- sometimes the approximation is reasonably good over smaller ranges (e.g., aircraft dynamics)
- ▶ in other cases it is quite approximate, but still useful (*e.g.*, econometric models)

Price elasticity of demand

- n goods or services
- prices given by n-vector p, demand given as n-vector d
- $\delta_i^{\text{price}} = (p_i^{\text{new}} p_i)/p_i$ is fractional changes in prices
- $\delta_i^{\text{dem}} = (d_i^{\text{new}} d_i)/d_i$ is fractional change in demands
- price-demand elasticity model: $\delta^{\text{dem}} = E\delta^{\text{price}}$
- what do the following mean?

$$E_{11} = -0.3, \qquad E_{12} = +0.1, \qquad E_{23} = -0.05$$

Taylor series approximation

- suppose $f: \mathbf{R}^n \to \mathbf{R}^m$ is differentiable
- first order Taylor approximation \hat{f} of f near z:

$$\hat{f}_i(x) = f_i(z) + \frac{\partial f_i}{\partial x_1}(z)(x_1 - z_1) + \dots + \frac{\partial f_i}{\partial x_n}(z)(x_n - z_n)$$
$$= f_i(z) + \nabla f_i(z)^T (x - z)$$

- in compact notation: $\hat{f}(x) = f(z) + Df(z)(x z)$
- ▶ Df(z) is the $m \times n$ derivative or Jacobian matrix of f at z

$$Df(z)_{ij} = \frac{\partial f_i}{\partial x_j}(z), \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

- $\hat{f}(x)$ is a very good approximation of f(x) for x near z
- $\hat{f}(x)$ is an affine function of x

Regression model

- regression model: $\hat{y} = x^T \beta + v$
 - x is n-vector of features or regressors
 - β is *n*-vector of model parameters; v is offset parameter
 - (scalar) \hat{y} is our prediction of y
- ▶ now suppose we have N examples or samples $x^{(1)}, \ldots, x^{(N)}$, and associated responses $y^{(1)}, \ldots, y^{(N)}$
- associated predictions are $\hat{y}^{(i)} = (x^{(i)})^T \beta + v$
- write as $\hat{y}^d = X^T \beta + v \mathbf{1}$
 - X is feature matrix with columns $x^{(1)}, \dots, x^{(N)}$
 - y^d is *N*-vector of responses $(y^{(1)}, \dots, y^{(N)})$
 - \hat{y}^d is *N*-vector of predictions $(\hat{y}^{(1)}, \dots, \hat{y}^{(N)})$
- prediction error (vector) is $y^d \hat{y}^d = y^d X^T \beta v \mathbf{1}$

Outline

Linear functions

Linear function models

Linear equations

Balancing chemical equations

Systems of linear equations

▶ set (or *system*) of *m* linear equations in *n* variables x_1, \ldots, x_n :

$$A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n = b_1$$

$$A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n = b_2$$

$$\vdots$$

$$A_{m1}x_1 + A_{m2}x_2 + \dots + A_{mn}x_n = b_m$$

- n-vector x is called the variable or unknowns
- $ightharpoonup A_{ij}$ are the *coefficients*; A is the coefficient matrix
- b is called the right-hand side
- can express very compactly as Ax = b

Systems of linear equations

- systems of linear equations classified as
 - under-determined if m < n (A wide)
 - square if m = n (A square)
 - over-determined if m > n (A tall)
- \blacktriangleright x is called a *solution* if Ax = b
- ightharpoonup depending on A and b, there can be
 - no solution
 - one solution
 - many solutions
- we'll see how to solve linear equations later

Outline

Linear functions

Linear function models

Linear equations

Balancing chemical equations

Chemical equations

- a chemical reaction involves p reactants, q products (molecules)
- expressed as

$$a_1R_1 + \cdots + a_pR_p \longrightarrow b_1P_1 + \cdots + b_qP_q$$

- $ightharpoonup R_1, \ldots, R_p$ are reactants
- $ightharpoonup P_1, \dots, P_q$ are products
- $ightharpoonup a_1, \ldots, a_p, b_1, \ldots, b_q$ are positive coefficients
- coefficients usually integers, but can be scaled
 - e.g., multiplying all coefficients by 1/2 doesn't change the reaction

Example: electrolysis of water

$$2H_2O \longrightarrow 2H_2 + O_2$$

- ightharpoonup one reactant: water (H₂O)
- two products: hydrogen (H_2) and oxygen (O_2)
- reaction consumes 2 water molecules and produces 2 hydrogen molecules and 1 oxygen molecule

Balancing equations

- each molecule (reactant/product) contains specific numbers of (types of) atoms, given in its formula
 - e.g., H₂O contains two H and one O
- conservation of mass: total number of each type of atom in a chemical equation must balance
- for each atom, total number on LHS must equal total on RHS
- e.g., electrolysis reaction is balanced:
 - 4 units of H on LHS and RHS
 - 2 units of O on LHS and RHS
- finding (nonzero) coefficients to achieve balance is called balancing equations

Reactant and product matrices

- consider reaction with m types of atoms, p reactants, q products
- ightharpoonup m imes p reactant matrix R is defined by

 R_{ii} = number of atoms of type i in reactant R_i ,

for
$$i = 1, \ldots, m$$
 and $j = 1, \ldots, p$

• with $a = (a_1, \ldots, a_p)$ (vector of reactant coefficients)

Ra =(vector of) total numbers of atoms of each type in reactants

- define product $m \times q$ matrix P in similar way
- \blacktriangleright *m*-vector Pb is total numbers of atoms of each type in products
- conservation of mass is Ra = Pb

Balancing equations via linear equations

conservation of mass is

$$\left[\begin{array}{cc} R & -P \end{array} \right] \left[\begin{array}{c} a \\ b \end{array} \right] = 0$$

- simple solution is a = b = 0
- \blacktriangleright to find a nonzero solution, set any coefficient (say, a_1) to be 1
- balancing chemical equations can be expressed as solving a set of m+1 linear equations in p+q variables

$$\left[\begin{array}{cc} R & -P \\ e_1^T & 0 \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] = e_{m+1}$$

(we ignore here that a_i and b_i should be nonnegative integers)

Conservation of charge

- ► can extend to include charge, *e.g.*, $Cr_2O_7^{2-}$ has charge -2
- conservation of charge: total charge on each side of reaction must balance
- we can simply treat charge as another type of atom to balance

Example

$$a_1 \text{Cr}_2 \text{O}_7^{2-} + a_2 \text{Fe}^{2+} + a_3 \text{H}^+ \longrightarrow b_1 \text{Cr}^{3+} + b_2 \text{Fe}^{3+} + b_3 \text{H}_2 \text{O}$$

- ► 5 atoms/charge: Cr, O, Fe, H, charge
- reactant and product matrix:

$$R = \begin{bmatrix} 2 & 0 & 0 \\ 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & 2 & 1 \end{bmatrix}, \qquad P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \\ 3 & 3 & 0 \end{bmatrix}$$

▶ balancing equations (including $a_1 = 1$ constraint)

$$\begin{bmatrix} 2 & 0 & 0 & -1 & 0 & 0 \\ 7 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -2 \\ -2 & 2 & 1 & -3 & -3 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Balancing equations example

solving the system yields

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \\ 14 \\ 2 \\ 6 \\ 7 \end{bmatrix}$$

the balanced equation is

$$Cr_2O_7^{2-} + 6Fe^{2+} + 14H^+ \longrightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O$$

10. Matrix multiplication

Outline

Matrix multiplication

Composition of linear functions

Matrix powers

QR factorization

Matrix multiplication

• can multiply $m \times p$ matrix A and $p \times n$ matrix B to get C = AB:

$$C_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj} = A_{i1} B_{1j} + \dots + A_{ip} B_{pj}$$

for
$$i = 1, ..., m, j = 1, ..., n$$

- ▶ to get C_{ij} : move along *i*th row of A, *j*th column of B
- example:

$$\begin{bmatrix} -1.5 & 3 & 2 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 0 & -2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3.5 & -4.5 \\ -1 & 1 \end{bmatrix}$$

Special cases of matrix multiplication

- scalar-vector product (with scalar on right!) $x\alpha$
- inner product a^Tb
- matrix-vector multiplication Ax
- outer product of m-vector a and n-vector b

$$ab^{T} = \begin{bmatrix} a_{1}b_{1} & a_{1}b_{2} & \cdots & a_{1}b_{n} \\ a_{2}b_{1} & a_{2}b_{2} & \cdots & a_{2}b_{n} \\ \vdots & \vdots & & \vdots \\ a_{m}b_{1} & a_{m}b_{2} & \cdots & a_{m}b_{n} \end{bmatrix}$$

Properties

- (AB)C = A(BC), so both can be written ABC
- ightharpoonup A(B+C) = AB + AC
- $(AB)^T = B^T A^T$
- ightharpoonup AI = A and IA = A
- ightharpoonup AB = BA does not hold in general

Block matrices

block matrices can be multiplied using the same formula, e.g.,

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$$

(provided the products all make sense)

Column interpretation

• denote columns of B by b_i :

$$B = \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}$$

then we have

$$AB = A \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}$$
$$= \begin{bmatrix} Ab_1 & Ab_2 & \cdots & Ab_n \end{bmatrix}$$

so AB is 'batch' multiply of A times columns of B

Multiple sets of linear equations

• given k systems of linear equations, with same $m \times n$ coefficient matrix

$$Ax_i = b_i, \quad i = 1, \dots, k$$

- write in compact matrix form as AX = B
- $X = [x_1 \cdots x_k], B = [b_1 \cdots b_k]$

Inner product interpretation

• with a_i^T the rows of A, b_j the columns of B, we have

$$AB = \begin{bmatrix} a_1^T b_1 & a_1^T b_2 & \cdots & a_1^T b_n \\ a_2^T b_1 & a_2^T b_2 & \cdots & a_2^T b_n \\ \vdots & \vdots & & \vdots \\ a_m^T b_1 & a_m^T b_2 & \cdots & a_m^T b_n \end{bmatrix}$$

so matrix product is all inner products of rows of A and columns of B, arranged in a matrix

Gram matrix

- ▶ let A be an $m \times n$ matrix with columns a_1, \ldots, a_n
- the Gram matrix of A is

$$G = A^{T}A = \begin{bmatrix} a_{1}^{T}a_{1} & a_{1}^{T}a_{2} & \cdots & a_{1}^{T}a_{n} \\ a_{2}^{T}a_{1} & a_{2}^{T}a_{2} & \cdots & a_{2}^{T}a_{n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n}^{T}a_{1} & a_{n}^{T}a_{2} & \cdots & a_{n}^{T}a_{n} \end{bmatrix}$$

- Gram matrix gives all inner products of columns of A
- example: $G = A^T A = I$ means columns of A are orthonormal

Complexity

- ▶ to compute $C_{ij} = (AB)_{ij}$ is inner product of p-vectors
- so total required flops is (mn)(2p) = 2mnp flops
- \blacktriangleright multiplying two 1000×1000 matrices requires 2 billion flops
- ... and can be done in well under a second on current computers

11. Matrix inverses

Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse

Left inverses

- ightharpoonup a number x that satisfies xa = 1 is called the inverse of a
- inverse (i.e., 1/a) exists if and only if $a \neq 0$, and is unique
- ightharpoonup a matrix X that satisfies XA = I is called a *left inverse* of A
- ightharpoonup if a left inverse exists we say that A is *left-invertible*
- example: the matrix

$$A = \begin{bmatrix} -3 & -4 \\ 4 & 6 \\ 1 & 1 \end{bmatrix}$$

has two different left inverses:

$$B = \frac{1}{9} \begin{bmatrix} -11 & -10 & 16 \\ 7 & 8 & -11 \end{bmatrix}, \qquad C = \frac{1}{2} \begin{bmatrix} 0 & -1 & 6 \\ 0 & 1 & -4 \end{bmatrix}$$

Left inverse and column independence

- ightharpoonup if A has a left inverse C then the columns of A are linearly independent
- to see this: if Ax = 0 and CA = I then

$$0 = C0 = C(Ax) = (CA)x = Ix = x$$

- we'll see later the converse is also true, so a matrix is left-invertible if and only if its columns are linearly independent
- matrix generalization of a number is invertible if and only if it is nonzero
- so left-invertible matrices are tall or square

Solving linear equations with a left inverse

- suppose Ax = b, and A has a left inverse C
- then Cb = C(Ax) = (CA)x = Ix = x
- so multiplying the right-hand side by a left inverse yields the solution

Example

$$A = \begin{bmatrix} -3 & -4 \\ 4 & 6 \\ 1 & 1 \end{bmatrix}, \qquad b = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$$

- over-determined equations Ax = b have (unique) solution x = (1, -1)
- A has two different left inverses,

$$B = \frac{1}{9} \begin{bmatrix} -11 & -10 & 16 \\ 7 & 8 & -11 \end{bmatrix}, \qquad C = \frac{1}{2} \begin{bmatrix} 0 & -1 & 6 \\ 0 & 1 & -4 \end{bmatrix}$$

multiplying the right-hand side with the left inverse B we get

$$Bb = \left[\begin{array}{c} 1 \\ -1 \end{array} \right]$$

and also

$$Cb = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Right inverses

- ightharpoonup a matrix X that satisfies AX = I is a *right inverse* of A
- ightharpoonup if a right inverse exists we say that A is right-invertible
- ightharpoonup A is right-invertible if and only if A^T is left-invertible:

$$AX = I \iff (AX)^T = I \iff X^T A^T = I$$

so we conclude

A is right-invertible if and only if its rows are linearly independent

right-invertible matrices are wide or square

Solving linear equations with a right inverse

- suppose A has a right inverse B
- ightharpoonup consider the (square or underdetermined) equations Ax = b
- \blacktriangleright x = Bb is a solution:

$$Ax = A(Bb) = (AB)b = Ib = b$$

• so Ax = b has a solution for any b

Example

- ► same *A*, *B*, *C* in example above
- $ightharpoonup C^T$ and B^T are both right inverses of A^T
- under-determined equations $A^Tx = (1,2)$ has (different) solutions

$$B^{T}(1,2) = (1/3,2/3,-2/3), C^{T}(1,2) = (0,1/2,-1)$$

(there are many other solutions as well)

Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse

Inverse

- ▶ if A has a left and a right inverse, they are unique and equal (and we say that A is invertible)
- ightharpoonup so A must be square
- to see this: if AX = I, YA = I

$$X = IX = (YA)X = Y(AX) = YI = Y$$

• we denote them by A^{-1} :

$$A^{-1}A = AA^{-1} = I$$

▶ inverse of inverse: $(A^{-1})^{-1} = A$

Solving square systems of linear equations

- ightharpoonup suppose A is invertible
- for any b, Ax = b has the unique solution

$$x = A^{-1}b$$

- matrix generalization of simple scalar equation ax = b having solution x = (1/a)b (for $a \ne 0$)
- simple-looking formula $x = A^{-1}b$ is basis for many applications

Invertible matrices

the following are equivalent for a square matrix A:

- ► *A* is invertible
- columns of A are linearly independent
- rows of *A* are linearly independent
- A has a left inverse
- ► *A* has a right inverse

if any of these hold, all others do

Examples

- $I^{-1} = I$
- if Q is orthogonal, *i.e.*, square with $Q^TQ = I$, then $Q^{-1} = Q^T$
- ▶ 2×2 matrix A is invertible if and only $A_{11}A_{22} \neq A_{12}A_{21}$

$$A^{-1} = \frac{1}{A_{11}A_{22} - A_{12}A_{21}} \begin{bmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{bmatrix}$$

- you need to know this formula
- there are similar but *much* more complicated formulas for larger matrices (and no, you do not need to know them)

Non-obvious example

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 2 & 2 \\ -3 & -4 & -4 \end{bmatrix}$$

► *A* is invertible, with inverse

$$A^{-1} = \frac{1}{30} \left[\begin{array}{ccc} 0 & -20 & -10 \\ -6 & 5 & -2 \\ 6 & 10 & 2 \end{array} \right].$$

- verified by checking $AA^{-1} = I$ (or $A^{-1}A = I$)
- we'll soon see how to compute the inverse

Properties

- $(AB)^{-1} = B^{-1}A^{-1}$ (provided inverses exist)
- $(A^T)^{-1} = (A^{-1})^T \text{ (sometimes denoted } A^{-T})$
- negative matrix powers: $(A^{-1})^k$ is denoted A^{-k}
- with $A^0 = I$, identity $A^k A^l = A^{k+l}$ holds for any integers k, l

Outline

Left and right inverses

Inverse

Solving linear equations

Examples

Pseudo-inverse

Invertibility of Gram matrix

- ightharpoonup A has linearly independent columns if and only if A^TA is invertible
- to see this, we'll show that $Ax = 0 \Leftrightarrow A^T Ax = 0$
- \Rightarrow : if Ax = 0 then $(A^TA)x = A^T(Ax) = A^T0 = 0$
- $\blacktriangleright \Leftarrow$: if $(A^TA)x = 0$ then

$$0 = x^{T} (A^{T} A) x = (Ax)^{T} (Ax) = ||Ax||^{2} = 0$$

so
$$Ax = 0$$

Pseudo-inverse of tall matrix

▶ the *pseudo-inverse* of *A* with independent columns is

$$A^{\dagger} = (A^T A)^{-1} A^T$$

▶ it is a left inverse of A:

$$A^{\dagger}A = (A^{T}A)^{-1}A^{T}A = (A^{T}A)^{-1}(A^{T}A) = I$$

(we'll soon see that it's a very important left inverse of A)

reduces to A^{-1} when A is square:

$$A^{\dagger} = (A^{T}A)^{-1}A^{T} = A^{-1}A^{-T}A^{T} = A^{-1}I = A^{-1}$$

Pseudo-inverse of wide matrix

- if A is wide, with linearly independent rows, AA^T is invertible
- pseudo-inverse is defined as

$$A^{\dagger} = A^T (AA^T)^{-1}$$

 $ightharpoonup A^{\dagger}$ is a right inverse of A:

$$AA^{\dagger} = AA^{T}(AA^{T})^{-1} = I$$

(we'll see later it is an important right inverse)

reduces to A^{-1} when A is square:

$$A^{T}(AA^{T})^{-1} = A^{T}A^{-T}A^{-1} = A^{-1}$$

Pseudo-inverse via QR factorization

- suppose A has linearly independent columns, A = QR
- then $A^TA = (QR)^T(QR) = R^TQ^TQR = R^TR$
- **S**0

$$A^{\dagger} = (A^T A)^{-1} A^T = (R^T R)^{-1} (QR)^T = R^{-1} R^{-T} R^T Q^T = R^{-1} Q^T$$

- can compute A^\dagger using back substitution on columns of Q^T
- for A with linearly independent rows, $A^{\dagger} = QR^{-T}$