Master Thesis

Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

SIMR

Simulating the phenomena of altered states of consciousness using virtual reality

Jakub Hlusička

2021-2022

Supervisor: Ing. Josef Kortan

Diplomová práce

Fakulta elektrotechnická
Katedra počítačové grafiky a interakce

SIMR

Simulace fenoménů pozměněných stavů vědomí pomocí virtuální reality

Jakub Hlusička

2021-2022

Školitel: Ing. Josef Kortan

Abstract

TODO

${\bf Acknowledgements}$

TODO thank sci-hub

– Jakub Hlusička

1	Intro	duction		1											
	1.1														
	1.2	Motivation													
		1.2.1	Art and Media	. 2											
		1.2.2	Education												
		1.2.3	Research and Psychotherapy	. 2											
		1.2.4	Understanding of the Human Mind												
	1.3	Termi	nology	. 4											
	d Work														
		1.4.1	Recreations of Visual Phenomena	. 4											
			1.4.1.1 Quake Delirium												
			1.4.1.2 Crystal Vibes feat. Ott												
			1.4.1.3 Isness												
			1.4.1.4 Hallucination Machine	. 7											
			1.4.1.5 Lucid Loop	. 8											
			1.4.1.6 Other AI–based Approaches												
		1.4.2	Tactile Stimulation Interfaces												
			1.4.2.1 Synesthesia suit for Rez Infinite												
			1.4.2.2 Synesthesia X1 - 2.44	. 9											
			1.4.2.3 Subpac												
	1.5	Contri	butions												
2	Back	ground		10											
	2.1														
		2.1.1	Definition												
		2.1.2	Aspects												
	2.2		ations												
		2.2.1	Replications suitable for Virtual Reality												
	2.3		ychometric Evaluation Methods												
3	Impl	ementat	ion	12											
3	3.1		of the Application												
	3.1	3.1.1	Safety												
		3.1.2	Virtual Scene Creation												
		3.1.3	Experiment Automation												
	3.2		mentation of Replications												
	3.4	mpici	nemation of replications	. 13											

iv

		3.2.1	Spatial Effects	13
			3.2.1.1 Depth Perception Distortion	13
			3.2.1.2 Waviness or "Breathing" of Objects	13
		3.2.2	Non-Spatial Effects	13
			3.2.2.1 Visual Acuity Enhancement	13
			3.2.2.2 Hue Shifting	13
			3.2.2.3 Tracers	13
	3.3	Comp	lex Replication	13
		3.3.1	Execution Order	13
		3.3.2	Biosensor Influence on Replication Parameters	13
4	Eval	uation		14
	4.1	Metho	odology	15
	4.2		sis	15
5	Con	clusion		16
	5.1	Discus	ssion	17
	5.2	Notab	le Issues Encountered During Development	17
	5.3	Limita	ations	17
	5.4		e Work	17
Bil	oliogr	aphy		18

1 | Introduction

1.1	Proble	m Stateme	nt	2							
1.2	Motiva	ation		2							
	1.2.1	Art and	Media	2							
	1.2.2	Educatio	n	2							
	1.2.3	Research	and Psychotherapy	2							
	1.2.4	Understanding of the Human Mind									
1.3	Termin	nology		4							
1.4	Related	d Work		4							
	1.4.1	Recreation	ons of Visual Phenomena	4							
		1.4.1.1	Quake Delirium	4							
		1.4.1.2	Crystal Vibes feat. Ott.	5							
		1.4.1.3	Isness	6							
		1.4.1.4	Hallucination Machine	7							
		1.4.1.5	Lucid Loop	8							
		1.4.1.6	Other AI–based Approaches	8							
	1.4.2	Tactile S	timulation Interfaces	9							
		1.4.2.1	Synesthesia suit for Rez Infinite	9							
		1.4.2.2	Synesthesia X1 - 2.44	9							
		1.4.2.3	Subpac	9							
1.5	Contri	hutions		9							

1.1 Problem Statement

This thesis is focused on the development of a virtual reality (VR) application that simulates select aspects of altered states of consciousness (ASCs; further defined in 2.1.1) typically induced by classical psychedelics such as LSD and psilocybin/psilocin. We focus primarily on the recreation of the ASCs' effects on sensory perception using an analytical approach.

1.2 Motivation

Due to their high degree of immersion, VR systems, with head-mounted displays (HMDs) in particular, offer a unique opportunity for recreating certain aspects of ASCs.

1.2.1 Art and Media

ASCs of various forms have had a significant influence on art for millenia. Earliest signs of inductions of ASCs via neurotropic substances have been found possibly as early as 60,000 BC (Guerra-Doce 2015). ASCs continue to be depicted in or influence contemporary popular media.

An analysis and a recreation of certain aspects of ASCs may serve as a reference point for recreating those aspects of ASCs in popular media.

1.2.2 Education

While experiencing a simulation of an ASC is unlikely to be fully representative of the ASC the simulation is modelled after, we propose that the simulation may be significantly less inducive of difficult experiences coloquially known as "bad trips".

This may be a viable alternative form of experiencing certain aspects of ASCs, while the possession or consumption of mind-altering substances is illegal in most countries. The resulting VR application may serve as an educational tool about ASCs which would not require as controlled of an environment as is required in psychedelic-assisted psychotherapy.

1.2.3 Research and Psychotherapy

Aday, Davoli, and Bloesch (2020) make an interesting observation, that psychedelics and VR are utilized in tandem to enhance the experience of recreational users. Moreover, the authors claim that VR could also be used to optimize and tailor the therapeutic setting during psychedelic sessions.

Most importantly, however, the authors state, that:

1.2. MOTIVATION 3

[...] VR may be a useful tool for preparing hallucinogen-naïve participants in clinical trials for the sensory distortions experienced in psychedelic states.

Nonetheless, as mentioned previously, care should be taken to ensure that users experiencing the simulation are informed about the simulation not being fully representative of the ASC it is modelled after. While a VR simulation may be suitable for simulating sensory effects of ASCs, other effects, such as the effects on cognition, may be much more difficult, if not impossible, to directly replicate via VR technologies alone. If uninformed, users may gain a false impression about the ASC.

Greco et al. (2021) propose that simulated hallucinations may be used to investigate neural mechanisms of conscious perception without difficulties posed by pharmacologically-induced ASCs — namely the ethical and legal issues, as well as the the difficulty to isolate the neural effects of psychedelic states from other physiological effects elicited by the drug ingestion. The study used *DeepDream* (Mordvintsev, Olah, and Tyka 2015) to generate hallucinations by modifying a video clip.

[Their] findings suggest that DeepDream and psychedelic drugs induced similar altered brain patterns and demonstrate the potential of adopting this method to study altered perceptual phenomenology in neuroimaging research.

Very recent research (Rastelli et al. 2021) indicates that simulated altered perceptual phenomenology enhances cognitive flexibility and inhibits automated decision making. The study describes cognitive flexibility as "the ability to shift attention between competing concepts and alternative behavioral policies to meet rapidly changing environmental demands".

1.2.4 Understanding of the Human Mind

Finally, without any immediate application, the study of the effects of ASCs may help contribute to our understanding of the human mind. Particularly, for instance, analyzing the invariant effects of classical psychedelics on sensory perception may improve our understanding of the visual cortex and the way it functions. Further research involving perceptual phenomena and pharmacodynamics of psychedelics and their mechanisms of action may contribute to our understanding of the significance of certain receptors in processing visual or other sensory information.

The problem of understanding consciousness has long been of interest to philosophers (Block 1993), neuroscientists (Crick and Koch 1990), as well as cognitive psychologists (Dehaene 2014). Recently, with the resurgence of deep neural networks, attempts to contribute to our understanding of consciousness have also appeared in the field of artificial intelligence (AI) (Bengio 2017; Reggia, Katz, and Davis 2020). One such study (Bensemann and Witbrock 2021) examined the effects

of implementing phenomenology (in a broader sense of the word, not psychedelic) into a deep neural network.

1.3 Terminology

TODO

1.4 Related Work

1.4.1 Recreations of Visual Phenomena

In this section, we explore the way ASCs have been depicted in contemporary art and media and recent attempts at recreating aspects of ASCs in the scientific domain.

1.4.1.1 Quake Delirium

In the original paper about Quake Delirium (Weinel 2011), the author divides video games portraying ASCs into two categories:

- 1. Games which feature literally portrayed dreams, intoxication or hallucinogenic experiences.
- 2. Games which feature graphical or thematic content which audiences may consider to reflect states of dream, intoxication or hallucination, but without any direct or literal reference to these states.

This categorization is not only useful for examining video games, but also the rest of art and media.

The first category describes media that attempts to recreate ASCs with an explicit reference to a specific induction method, cause or origin. For example, the games in this category, such as Grand Theft Auto: Vice City¹ or Duke Nukem 3D², may temporarily portray a character under the influence of a psychoactive drug. However, psychoactive substances are not the only form of ASC induction portrayed in video games. One such exception is LSD: Dream Emulator³, a game with narrative based on a dream diary and an overall dream-like surrealist aesthetic.

The second category contains media that does not communicate explicitly any ASC method of induction, cause or origin. Despite this, the media that falls into this category may be viewed equally as *psychedelic* or more than that of the first category. This could be considered to be the case of Yoshi's Island⁴. While the creators may not have intended the video game to reflect ASCs, because of it's

¹Grand Theft Auto: Vice City, Rockstar Games, 2003. PC (Windows) CD-ROM.

²Duke Nukem 3D, 3D Realms, 1996. PC (Windows) CD-ROM.

³LSD: Dream Emulator, Asmik Ace Entertainment, 1998. Playstation.

⁴Super Mario World 2: Yoshi's Island, Nintendo, 1995. Super NES.

1.4. RELATED WORK 5

brightly colored surrealistic visual themes, it may resemble ASCs of games from the first category.

The *Quake Delirium* project itself is a modification of the game *Quake* that makes use of an external digital signal processing (DSP) audio patch for modifying the resulting audiovisual output the game produces. The visual effects consist of changes in:

- 1. field of view (FOV);
- 2. camera swaying;
- 3. fog density and color;
- 4. game speed;
- 5. stereo vision (for 3D red cyan glasses);
- 6. gamma;
- 7. hue.

These visual effects are made available to the DSP patch, the control of which can be automated using multi-track audio sequencing software. This enables the effects to onset slowly and gradually become more severe over time.

The project demonstrates a method of combining multiple partial effects that results in a complex audio-visual effect that is more sophisticated than many of the existing games exhibiting phenomena of ASCs surveyed.

Interestingly, the authors went on to experiment with a dynamic way of controlling the intensity and parameters of the simulated effects in a follow-up study (Weinel et al. 2015). Rather than controlling the parameters using a *pre-determined automation path* via multi-track audio sequencing software, this modification introduced biosensor as a way of influencing the simulation parameters – specifically, they used the commercial *NeuroSky MindWave* electroencephalograph (EEG) device. The study ultimately concludes, that "while the use of EEG to control psychedelic visual effects is conceptually appealing, the current system would also need to be improved to provide a more tangible connection between the headset and the ASC effects in the game."

There is no straightforward way to map EEG signals onto visual effects. The EEG signals need to be interpreted, so that relevant information is extracted. Mapping the extracted information onto specific simulation parameters is then at the artist's discretion. A more sophisticated approach might examine correlations between observed ASC phenomena and EEG signals, then use those correlations to model the mapping from EEG signals onto the visual effects.

1.4.1.2 Crystal Vibes feat. Ott.

Outram et al. (2017) describe *Crystal Vibes feat. Ott.* as a project originally developed to demonstrate the full-body vibrotactile *Synesthesia Suit*, further discussed in 1.4.2.1. The experience places the user into an abstract geometric environment procedurally generated from a soundtrack:

Crystal Vibes does not use any 3D modelling, 2D design, or hand an-

imation. Instead, the environment is generated using sine and Bézier functions, Bravais lattice structures and Fourier transforms of the audio. Crystal Vibes exploits the innate beauty of 3-dimensional crystal structures, and leverages the artistry of rhythm and form in the music for visual beauty.

The article describes in detail the methods employed to simulate audiovisual synesthesia using sound visualization, with an attempt to be "as physically and biologically defensible as possible". The methods include compensation for the non-linear perception of both auditory and visual information:

This includes the fact that humans perceive equal pitch differences corresponding roughly to equal differences in the log of audible frequency, that our perception of volume varies over the audible range, and how humans interpret colour from a visible spectrum.

Another technique used to aid in distinguishing different voices of the sound-track, such as drums and synths, is spatial separation. Each voice would impact a separate region of the visualization. This way, the user can form an association between spatial regions and their corresponding voices.

Finally, the last employed technique of improving the perception of sound via sight is to provide temporal information; instead of only visualizing the current instant of the soundtrack, a roughly 1 second long moving slice of the soundtrack is visualised.

The authors report that users found the visualization compelling, even those who experience synesthesia in their daily lives. Synesthesia is of our interest because it is a prominent phenomenon of some ASCs.

1.4.1.3 Isness

The paper (Glowacki et al. 2020) accompanying the project *Isness* proposes that so-called 'mystical-type' experiences (MTEs), that are often experienced under the influence of psychedelic drugs, may also be facilitated by virtual reality. The paper justifies this proposal by conducting a study with 57 participants analyzing participants' responses to the 30-item revised mystical experience questionnaire (MEQ30), commonly used to evaluate the effects of psychedelic drugs. The results of the study indicated that *Isness* participants reported MTEs comparable to those reported in double-blind clinical studies after high doses of psilocybin and LSD.

The VR application was designed to be used by 4 participants at a time with the HTC Vive Pro HMDs. To provide multiplayer functionality, the client/server architecture was chosen, with each HMD being connected to a separate GPU-accelerated server.

The abstract virtual environments have been designed by defining a set of 'aesthetic hyperparameters', each affecting a different aspect of the simulated MTE. The overall *Isness journey* was comprised of a set of states, each of which had

1.4. RELATED WORK 7

some specific time duration. This approach allowed for reproducibility necessary for the study.

Participants were equipped with specially-made 'Mudra gloves', which would create a light source within the virtual scene when they made a 'mudra pose' by bringing the tip of a thumb to their forefinger or middle finger.

The entire *Isness journey* was divided into 3 phases:

- 1. Phase 1: Preparation. 15-20 minutes, included information about practical issues (phones off, toilet locations, placing posessions in a safe place), screening, description of the experience, information that the participants could withdraw at any point, and acquisition of verbal and written consent for participation in the study. This phase also included some group exercises to build rapport between participants.
- 2. Phase 2: Multi-person VR session. 35 minutes with a pre-recorded narrative soundtrack. The VR experience was preceded by a blindfolded, narrated group meditation. Each participant was then fitted with a VR headset and the administrator initiated the VR session, moving through 15 prespecified states, each composed from a set of aesthetic hyperparameters.
- 3. Phase 3: Integration. The HMDs were taken off. Breath exercises and group exercises followed. Participants were then invited to share in a 10-15 minute facilitated discussion, after which they were provided a blank piece of paper for reflective writing, along with a blank MEQ30.

It is fair to say that the *Isness* project focuses mainly on the replication of MTEs, whose characteristics include a sense of connectedness, transcendence, and ineffability; specifically the effects of ASCs on emotion and cognition, rather than the effects on sensory perception, as is also evident by the MEQ30 questionnaire used in the study. This can be seen in the emphasis on the narrated structure of the *Isness journey*, the inclusion of a meditation session, as well as in the multiplayer design of the overall experience, that encourages interaction between participants.

That is to say, the *Isness journey* has been effective in creating a memorable, subjectively meaningful experience comparable to ASCs induced by psychedelic drugs.

1.4.1.4 Hallucination Machine

Hallucination Machine (Suzuki et al. 2018) makes use of the DeepDream (Mordvintsev, Olah, and Tyka 2015) technology to alter spherical panoramic video. The altered video is then viewed through a HMD. The usage of DeepDream successfully simulates the sense of an increased ability to recognize patterns during certain ASCs.

While it is a compelling concept, there are many drawbacks to this approach.

1. The alteration caused by *DeepDream* is heavily dependent on the source data the deep convolutional neural networks (DCNN) is trained with. If, for

example, the DCNN is trained with images of puppies, the alteration by this DCNN will result in *hallucinated* puppies.

- 2. The panoramic spherical videos are not stereoscopic, hence the sense of depth is lost.
- 3. Finally, the fact that the *DeepDream* technology is computationally demanding may have resulted in the choice to use pre-recorded videos rather than real-time footage. This, however, limits the applications of the solution.

However, what the *DeepDream* technology does well is the simulation of the sense of an increased ability to recognize patterns, otherwise known as pareidolia, characteristic of certain ASCs. For this reason, it has found popular use in research as a way to simulate hallucinations (Greco et al. 2021; Rastelli et al. 2021).

1.4.1.5 **Lucid Loop**

Lucid Loop (Kitson, DiPaola, and Riecke 2019) is a proposed VR application that makes use of an EEG device (along with other biosensors) for biofeedback. The application is a proposed training aid for maintaining awareness during lucid dreaming, a state reached when a person becomes aware they are dreaming.

The application makes use of a HMD to display *DeepDream*-altered (Mordvintsev, Olah, and Tyka 2015) content with the intensity of alteration corresponding to the current brain wave distribution of the wearer — as higher frequency brain waves dominate, the displayed content becomes less affected by *DeepDream*, resulting in more clarity; as lower frequency brain waves dominate, the displayed content becomes more affected and is interpreted as more dreamy and abstract.

The concept is promising, but the choice of *DeepDream* might prove to be challenging to implement effectively, as the intensity of the *DeepDream* alteration of displayed content is dynamic. The *DeepDream* algorithm would either have to be applied in real-time, which is problematic due to the algorithm's high computational demands, or an optimization scheme would have to be used. One such optimization scheme, assuming spherical panoramic video as displayed content, might pre-render the video as altered by *DeepDream* for several levels of intensity, and then during usage, would interpolate between the pre-rendered videos.

Finally, while the tool is supposed to aid in helping maintain awareness during lucid dreaming, I find it to be a missed opportunity, that the paper does not address the event that high frequency brain waves, while perhaps corresponding to greater awareness, might also cause the dreamer to wake up. A possible improvement of this tool might take this into consideration and also provide biofeedback for this event, such as fading the displayed content to white as the user becomes "too aware".

1.4.1.6 Other AI-based Approaches

Schartner and Timmermann (2020) develop two models for generating image distortions reminiscent of verbal reports from clinical trials of *N*,*N*-dimethyltryptamine

1.5. CONTRIBUTIONS 9

(DMT).

In the first approach, the authors employed the *StyleGAN* algorithm (Karras, Laine, and Aila 2019) and modified it such that no noise input was added during the generation process, according to a hypothesized brain mechanism. This resulted in smoother, painterly look of the images.

In the second approach, the authors used the *Fast Neural-Style Pytorch Implementation for Artistic Style Transfer* (Johnson, Alahi, and Fei-Fei 2016). This method allows for the depiction of nearly any report of a visual hallucination, assuming one can find a matching content and style image.

1.4.2 Tactile Stimulation Interfaces

1.4.2.1 Synesthesia suit for Rez Infinite

(Konishi, Hanamitsu, Outram, Minamizawa, et al. (2016), Konishi, Hanamitsu, Outram, Kamiyama, et al. (2016) and Synesthesia Lab (2016)) further improved by (Furukawa et al. 2019) Outram et al. (2017)

1.4.2.2 Synesthesia X1 - 2.44

(Synesthesia Lab 2021)

1.4.2.3 Subpac

(SUBPAC (2013), Drempetic and Potter (2017)) used in (Zimmermann, Helzle, and Arellano 2016) and studied on deaf people (Schmitz, Holloway, and Cho 2020)

1.5 Contributions

We develop a VR application for HMDs that simulates select aspects of ASCs. We perform a study in which we measure the influence of the created VR application on the human mind. This measurement is done via the 11-factor altered states of consciousness questionnaire (11-ASC; Studerus, Gamma, and Vollenweider (2010)), that is used in clinical studies of psychedelic drugs.

2 | Background

2.1	Altere	d States of Consciousness	11						
	2.1.1	Definition	11						
	2.1.2	Aspects	11						
2.2	Replications								
	2.2.1	Replications suitable for Virtual Reality	11						
23	Psycho	ometric Evaluation Methods	11						

2.1 Altered States of Consciousness

- 2.1.1 Definition
- 2.1.2 Aspects
- 2.2 Replications
- 2.2.1 Replications suitable for Virtual Reality
- 2.3 Psychometric Evaluation Methods

3 | Implementation

3.1	Design	of the App	plication	13
	3.1.1	Safety .		13
	3.1.2	Virtual S	cene Creation	13
	3.1.3	Experime	ent Automation	13
3.2	Implen	nentation o	f Replications	13
	3.2.1	Spatial E	ffects	13
		3.2.1.1	Depth Perception Distortion	13
		3.2.1.2	Waviness or "Breathing" of Objects	13
	3.2.2	Non-Spa	tial Effects	13
		3.2.2.1	Visual Acuity Enhancement	13
		3.2.2.2	Hue Shifting	13
		3.2.2.3	Tracers	13
3.3	Compl	ex Replicat	ion	13
	3.3.1	Execution	n Order	13
	3.3.2	Biosenso	r Influence on Replication Parameters	13

3.1 Design of the Application

- **3.1.1** Safety
- 3.1.2 Virtual Scene Creation
- 3.1.3 Experiment Automation

3.2 Implementation of Replications

- 3.2.1 Spatial Effects
- 3.2.1.1 Depth Perception Distortion

(Fischer et al. 1970)

- 3.2.1.2 Waviness or "Breathing" of Objects
- 3.2.2 Non-Spatial Effects
- 3.2.2.1 Visual Acuity Enhancement
- 3.2.2.2 Hue Shifting
- **3.2.2.3** Tracers

3.3 Complex Replication

- 3.3.1 Execution Order
- 3.3.2 Biosensor Influence on Replication Parameters

4 | Evaluation

4.1	Methodology													15
4.2	Analysis													15

4.1. METHODOLOGY 15

4.1 Methodology

4.2 Analysis

5 | Conclusion

5.1	Discussion	17
5.2	Notable Issues Encountered During Development	17
5.3	Limitations	17
5.4	Future Work	17

5.1. DISCUSSION 17

- 5.1 Discussion
- 5.2 Notable Issues Encountered During Development
- 5.3 Limitations
- 5.4 Future Work

List of Acronyms

11-ASC 11-factor altered states of consciousness questionnaire

AI artificial intelligence

ASC altered state of consciousness

DCNN deep convolutional neural networks

DMT *N*,*N*-dimethyltryptamine: A classical hallucinogenic drug first synthesized in 1931 (Manske 1931), a psychoactive compound of Ayahuasca, the ceremonial spiritual medicine used by Amazonian natives for shamanic purposes and to bond socially in a casual setting (Mark Hay 2020).

DSP digital signal processing

EEG electroencephalograph

FOV field of view

GPU graphics processing unit: A specialized extension module providing acceleration for computer graphics computations and other parallelizable tasks.

HMD head-mounted display

LSD lysergic acid diethylamide: A classical hallucinogenic drug first synthesized in 1938 from ergotamine, an alkaloid of the ergot rye fungus (Albert Hofmann 1969).

MEQ30 30-item revised mystical experience questionnaire

MTE 'mystical-type' experience: Subjective experiences whose characteristics include a sense of connectedness, transcendence, and ineffability.

VR virtual reality

Bibliography

- Aday, Jacob S, Christopher C Davoli, and Emily K Bloesch. 2020. "Psychedelics and virtual reality: parallels and applications." *Therapeutic Advances in Psychopharmacology* 10:2045125320948356.
- Albert Hofmann. 1969. "LSD: Completely Personal." Accessed December 6, 2013. https://web.archive.org/web/20131206032629/http://www.maps.org/news-letters/v06n3/06346hof.html.
- Bengio, Yoshua. 2017. "The consciousness prior." arXiv preprint arXiv:1709.08568.
- Bensemann, Joshua, and Michael Witbrock. 2021. "The effects of implementing phenomenology in a deep neural network." *Heliyon* 7 (6): e07246.
- Block, Ned. 1993. "Consciousness Explained by Daniel C. Dennett." *The Journal of Philosophy* 90 (4): 181–193.
- Crick, Francis, and Christof Koch. 1990. "Towards a neurobiological theory of consciousness." In *Seminars in the Neurosciences*, 2:263–275. Saunders Scientific Publications.
- Dehaene, Stanislas. 2014. Consciousness and the brain: Deciphering how the brain codes our thoughts. Penguin.
- Drempetic, Cassandra, and Leigh Ellen Potter. 2017. "Wearable bass tactile sound systems and immersion." In *Proceedings of the 29th Australian Conference on Computer-Human Interaction*, 576–580.
- Fischer, Roland, Richard Hill, Karen Thatcher, and James Scheib. 1970. "Psilocybin-induced contraction of nearby visual space." *Agents and actions* 1 (4): 190–197.
- Furukawa, Taichi, Nobuhisa Hanamitsu, Yoichi Kamiyama, Hideaki Nii, Charalampos Krekoukiotis, Kouta Minamizawa, Akihito Noda, Junko Yamada, Keiichi Kitamura, Daisuke Niwa, et al. 2019. "Synesthesia Wear: Full-body haptic clothing interface based on two-dimensional signal transmission." In *SIG-GRAPH Asia 2019 Emerging Technologies*, 48–50.
- Glowacki, David R, Mark D Wonnacott, Rachel Freire, Becca R Glowacki, Ella M Gale, James E Pike, Tiu de Haan, Mike Chatziapostolou, and Oussama Metatla. 2020. "Isness: using multi-person VR to design peak mystical type experiences comparable to psychedelics." In *Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems*, 1–14.

20 BIBLIOGRAPHY

Greco, Antonino, Giuseppe Gallitto, Marco D'Alessandro, and Clara Rastelli. 2021. "Increased Entropic Brain Dynamics during DeepDream-Induced Altered Perceptual Phenomenology." *Entropy* 23 (7): 839.

- Guerra-Doce, Elisa. 2015. "Psychoactive substances in prehistoric times: examining the archaeological evidence." *Time and Mind* 8 (1): 91–112.
- Johnson, Justin, Alexandre Alahi, and Li Fei-Fei. 2016. "Perceptual losses for real-time style transfer and super-resolution." In *European conference on computer vision*, 694–711. Springer.
- Karras, Tero, Samuli Laine, and Timo Aila. 2019. "A Style-Based Generator Architecture for Generative Adversarial Networks." In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. June.
- Kitson, Alexandra, Steve DiPaola, and Bernhard E Riecke. 2019. "Lucid Loop: a virtual deep learning biofeedback system for lucid dreaming practice." In *Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems*, 1–6.
- Konishi, Yukari, Nobuhisa Hanamitsu, Benjamin Outram, Youichi Kamiyama, Kouta Minamizawa, Ayahiko Sato, and Tetsuya Mizuguchi. 2016. "Synesthesia suit." In *International AsiaHaptics conference*, 499–503. Springer.
- Konishi, Yukari, Nobuhisa Hanamitsu, Benjamin Outram, Kouta Minamizawa, Tetsuya Mizuguchi, and Ayahiko Sato. 2016. "Synesthesia suit: the full body immersive experience." In *ACM SIGGRAPH 2016 VR Village*, 1–1.
- Manske, Richard HF. 1931. "A synthesis of the methyltryptamines and some derivatives." *Canadian Journal of Research* 5 (5): 592–600.
- Mark Hay. 2020. "The Colonization of the Ayahuasca Experience." Accessed February 7, 2022. https://web.archive.org/web/20220207102112/https://daily.jstor.org/the-colonization-of-the-ayahuasca-experience/.
- Mordvintsev, Alexander, Christopher Olah, and Mike Tyka. 2015. "Inceptionism: Going deeper into neural networks."
- Outram, Benjamin, Yukari Konishi, Aria Shimbo, Reiko Shimizu, Kouta Minamizawa, Ayahiko Sato, and Tetsuya Mizuguchi. 2017. "Crystal Vibes feat. Ott: A psychedelic musical virtual reality experience utilising the full-body vibrotactile haptic synesthesia suit." In 2017 23rd International Conference on Virtual System & Multimedia (VSMM), 1–4. IEEE.
- Rastelli, Clara, Antonino Greco, Yoed N Kenett, Chiara Finocchiaro, and Nicola De Pisapia. 2021. "Simulated visual hallucinations in virtual reality enhance cognitive flexibility." *bioRxiv*.
- Reggia, James A, Garrett E Katz, and Gregory P Davis. 2020. "Artificial conscious intelligence." *Journal of Artificial Intelligence and Consciousness* 7 (01): 95–107.

BIBLIOGRAPHY 21

Schartner, Michael M, and Christopher Timmermann. 2020. "Neural network models for DMT-induced visual hallucinations." *Neuroscience of Consciousness* 2020 (1): niaa024.

- Schmitz, Anastasia, Catherine Holloway, and Youngjun Cho. 2020. "Hearing through Vibrations: Perception of Musical Emotions by Profoundly Deaf People." *arXiv* preprint arXiv:2012.13265.
- Studerus, Erich, Alex Gamma, and Franz X Vollenweider. 2010. "Psychometric evaluation of the altered states of consciousness rating scale (OAV)." *PloS one* 5 (8): e12412.
- SUBPAC. 2013. "The SUBPAC front page." Accessed February 27, 2022. https://web.archive.org/web/20220227213936/https://subpac.com/.
- Suzuki, Keisuke, Warrick Roseboom, David J Schwartzman, and Anil K Seth. 2018. "Hallucination Machine: Simulating Altered Perceptual Phenomenology with a Deep-Dream Virtual Reality platform." In *ALIFE 2018: The 2018 Conference on Artificial Life*, 111–112. MIT Press.
- Synesthesia Lab. 2016. "The Synesthesia Suit product page." Accessed February 27, 2022. https://web.archive.org/web/20220227212257/https://synesthesia-suit.com/.
- Synesthesia Lab. 2021. "The Synesthesia X1 2.44 product page." Accessed February 27, 2022. https://web.archive.org/web/20220227211421/https://synesthesialab.com/x/.
- Weinel, Jonathan. 2011. "Quake delirium: remixing psychedelic video games." *Sonic Ideas/Ideas Sonicas* 3 (2).
- Weinel, Jonathan, Stuart Cunningham, Nathan Roberts, Darryl Griffiths, and Shaun Roberts. 2015. "Quake delirium EEG." In *2015 Internet Technologies and Applications (ITA)*, 335–338. IEEE.
- Zimmermann, Marc, Volker Helzle, and Diana Arellano. 2016. "Longing for wilderness." In *ACM SIGGRAPH 2016 VR Village*, 1–2.