Linear methods of classification

Victor Kitov

Table of contents

- 1 Geometric foundations of linear classification
- 2 Estimation of error rate from above
- 3 Stochastic gradient descend
- 4 Regularization
- 5 Logistic regression
- 6 Fisher's linear discriminant

Linear discriminant functions

- Classification of two classes ω_1 and ω_2 .
- Linear discriminant function:

$$g(x) = w^T x + w_0$$

Decision rule:

$$egin{aligned} x
ightarrow egin{cases} \omega_1, & g(x) \geq 0 \ \omega_2, & g(x) < 0 \end{cases}$$

• Decision boundary $B = \{x : g(x) = 0\}$ is linear.

Example: decision regions

Reminder

- $\mathbf{o} \ a = [a^1, ... a^D]^T, \ b = [b^1, ... b^D]^T$
- ② Scalar product $\langle a,b\rangle = a^Tb = \sum_{d=1}^D a_db_b$

- $p = \langle a, \frac{b}{\|b\|} \rangle$ signed projection
- $|p| = \left|a, \frac{b}{\|b\|}\right|$ unsigned length

- Comments:
 - in 2,4 and 5 most commonly used definitions of scalar product, norm and daistace are given
 - in general scalar product, norm and distance may have alternative definitions.

Properties

Consider arbitrary

$$x_A, x_B \in B \Rightarrow egin{cases} g(x_A) = w^T x_A + w_0 = 0 \ g(x_B) = w^T x_B + w_0 = 0 \end{cases}$$
 so $w^T (x_A - x_B) = 0$ and $w ot B$.

Distance form origin

• Distance from the origin to B is equal to absolute value of the projection of $x \in B$ on $\frac{w}{\|w\|}$:

$$\langle x, \frac{w}{\|w\|} \rangle = \frac{\langle x, w \rangle}{\|w\|} = \{w^T x + w_0 = 0\} = -\frac{w_0}{\|w\|}$$

• So $\rho(0,B)=\frac{w_0}{\|w\|}$, and w_0 determines the offset from the origin.

Distance from x to B

Denote x_{\perp} - the projection of x on B, and $r = \langle \frac{w}{\|w\|}, x - x_{\perp} \rangle$ - the signed length of the orthogonal complement of x on B:

$$x = x_{\perp} + r \frac{w}{\|w\|}$$

After multiplication by w and addition of w_0 :

$$w^T x + w_0 = w^T x_\perp + w_0 + r \frac{\langle w, w \rangle}{\|w\|}$$

Using $w^Tx + w_0 = g(x)$ and $w^Tx_{\perp} + w_0 = 0$, we obtain:

$$r = \frac{g(x)}{\|w\|}$$

So from one side of the hyperplane $r > 0 \Leftrightarrow g(x) > 0$, and from the other side of the hyperplane $r < 0 \Leftrightarrow g(x) < 0$.

Illustration

Linear decision rule:

$$\widehat{c}(x) = egin{cases} \omega_1, & g(x) > 0 \ \omega_2, & g(x) < 0 \end{cases}$$

Decision boundary: g(x)=0, confidence of decision: $|g(x)|/\left\|w\right\|$.

Multiple classes classification

- Classification among $\omega_1, \omega_2, ...\omega_C$.
- Use C discriminant functions $g_c(x) = w_c^T x + w_{c0}$
- Decision rule:

$$\widehat{c}(x) = rg \max_{c} g_c(x)$$

• Decision boundary between classes ω_i and ω_j is linear:

$$(w_i - w_j)^T x + (w_{i0} - w_{j0}) = 0$$

Decision regions are convex.

Table of contents

- Geometric foundations of linear classification
- 2 Estimation of error rate from above
- Stochastic gradient descend
- 4 Regularization
- 5 Logistic regression
- 6 Fisher's linear discriminant

Linear discriminant functions

- Consider binary classification of classes ω_1 and ω_2 .
- Denote classes ω_1 and ω_2 with y=+1 and y=-1.
- Linear discriminant function: $g(x) = w^T x + w_0$,

$$\widehat{\omega} = egin{cases} \omega_1, & g(x) \geq 0 \ \omega_2, & g(x) < 0 \end{cases}$$

- Decision rule: $y = \operatorname{sign} g(x)$.
- Define constant feature $x_0 \equiv 1$, then $g(x) = w^T x = \langle w, x \rangle$ for $w = [w_0, w_1, ... w_D]^T$.
- Define the margin M(x,y) = g(x)y
 - $M(x,y) \ge 0 \iff$ object x is correctly classified as y
 - |M(x,y)| confidence of decision

Weights selection

• Target: minimization of the number of misclassifications Q:

$$Q(w|X) = \sum_n \mathbb{I}[M(x_n, y_n|w) < 0] \rightarrow \min_w$$

- Problem: standard optimization methods are inapplicable, because Q(w, X) is discontinuous.
- Idea: approximate loss function with smooth function \mathcal{L} :

$$\mathbb{I}[M(x_n,y_n|w)<0]\leq \mathcal{L}(M(x_n,y_n|w))$$

Approximation of the target criteria

We obtain the upper boundary on the empirical risk:

$$Q(w|X) = \sum_{n} \mathbb{I}[M(x_{n}, y_{n}|w) < 0]$$

$$\leq \sum_{n} \mathcal{L}(M(x_{n}, y_{n}|w)) = F(w)$$

$$\begin{split} Q(M) &= (1-M)^2 \\ V(M) &= (1-M)_+ \\ S(M) &= 2(1+e^M)^{-1} \\ L(M) &= \log_2(1+e^{-M}) \\ E(M) &= e^{-M} \end{split}$$

Table of contents

- Geometric foundations of linear classification
- Estimation of error rate from above
- Stochastic gradient descend
- 4 Regularization
- 5 Logistic regression
- 6 Fisher's linear discriminant

Optimization

• Optimization task to obtain the weights:

$$F(w) = \sum_{i=1}^{N} \mathcal{L}(\langle w, x_i \rangle y_i) \rightarrow \min_{w}$$

Gradient descend algorithm:

INPUT:

 $\boldsymbol{\eta}$ - parameter, controlling the speed of convergence stopping rule

ALGORITHM:

initialize w_0 randomly while stopping rule is not satisfied:

$$w_{n+1} \leftarrow w_n - \eta \frac{\partial F(w_n)}{\partial w}$$

 $n \leftarrow n + 1$

Gradient descend

- Possible stopping rules:
 - $|\mathbf{w}_{n+1} \mathbf{w}_n| < \varepsilon$
 - $|F(w_{n+1}) F(w_n)| < \varepsilon$
 - $n > n_{max}$
- Suboptimal method of minimization in the direction of the greatest reduction of F(w):

Recommendations for use

- Convergence is faster for normalized features
 - feature normalization solves the problem of «elongated valleys»

Convergence acceleration

Stochastic gradient descend method

set the initial approximation w_0 calculate $\hat{F} = \sum_{i=1}^n \mathcal{L}(M(x_i, y_i|w_0))$ iteratively until convergence \hat{Q}_{annex} :

- select random pair (x_i, y_i)
- 2 recalculate weights: $w_{n+1} \leftarrow w_n \eta_n \mathcal{L}'(\langle w_n, x_i \rangle y_i) x_i y_i$
- **3** estimate the error: $\varepsilon_i = \mathcal{L}(\langle w_{n+1}, x_i \rangle y_i)$
- **4** recalculate the loss $\hat{F} = (1 \alpha)\hat{F} + \alpha\varepsilon_i$
- $oldsymbol{0}$ $n \leftarrow n + 1$

Variants for selecting initial weights

- $w_0 = w_1 = ... = w_D = 0$
- ullet For logistic ${\cal L}$ (because the horizontal asymptotes):
 - randomly on the interval $\left[-\frac{1}{2D},\frac{1}{2D}\right]$
- For other functions L:
 - randomly
- $w_i = \frac{cov[x^i,y]}{var[x^i]}$ (these are regression weights, given that x^i are uncorrelated).

Discussion of SGD

Advantages

- Easy to implement
- Works online
- A small subset of learning objects may be sufficient for accurate estimation

Discussion of SGD

Advantages

- Easy to implement
- Works online
- A small subset of learning objects may be sufficient for accurate estimation

Drawbacks

- Suboptimal converges to local optimum
- Needs selection of η_n :
 - too big: divergence
 - too small: very slow convergence
- Overfitting possible for large D and small N
- When $\mathcal{L}(u)$ has left horizontal asymptotes (e.g. logistic), the algorithm may «get stuck» for large values of $\langle w, x_i \rangle$.

Examples

Quadratic loss: $\mathcal{L}(M) = (M-1)^2$ Perceptron of Rosenblatt: $\mathcal{L}(M) = [-M]_+$.

Table of contents

- Geometric foundations of linear classification
- Estimation of error rate from above
- 3 Stochastic gradient descend
- 4 Regularization
- 5 Logistic regression
- 6 Fisher's linear discriminant

Regularization for SGD

• L₂-regularization for upperbound approximation:

$$F^{reg}(w) = F(w) + \lambda \|w\|^2$$

• SGD weights modification: $w \leftarrow w(1 - \eta 2\lambda) - \eta \frac{\partial}{\partial w} F(w)$

Regularization

 Useful technique to control the complexity of the model, can be applied to any algorithm.

$$F^{reg}(w) = F(w) + \lambda R(w)$$

- λ is the parameter controlling strength of regularization = model complexity.
- Examples:

$$R(w) = ||w||_{1} = \sum_{d=1}^{D} |w^{d}|$$

$$R(w) = ||w||_{2}^{2} = \sum_{d=1}^{D} (w^{d})^{2}$$

$$R(w) = \alpha ||w||_{1} + (1 - \alpha) ||w||_{2}, \alpha \in [0, 1]$$

L_1 norm

- $||w||_1$ regularizer will do feature selection.
- Consider

$$Q(w) = F(w) + \lambda \sum_{d=1}^{D} |w_d|$$

- ullet if $\lambda>\sup_{w}\left|rac{\partial F(w)}{\partial w_{i}}
 ight|$, then it becomes optimal to set $w_{i}=0$
- ullet For smaller C more inequalities will become active.

L_2 norm

- $||w||_1$ regularizer will do feature selection.
- Consider $R(w) = ||w||_2^2 = \sum_d w_d^2$

$$Q(w) = F(w) + \lambda \sum_{d=1}^{D} w_d^2$$

• $\frac{\partial R(w)}{\partial w_i} = 2w_i \to 0$ when $w_i \to 0$.

Illustration

Table of contents

- Geometric foundations of linear classification
- Estimation of error rate from above
- 3 Stochastic gradient descend
- Regularization
- 5 Logistic regression
- 6 Fisher's linear discriminant

Binary classification

Linear classifier:

$$score(\omega_1|x) = w^Tx$$

 +relationship between score and class probability is assumed:

$$p(\omega_1|x) = \sigma(w^T x)$$

where $\sigma(z) = \frac{1}{1+e^{-z}}$ - sigmoid function

Binary classification: estimation

Using the property $1 - \sigma(z) = \sigma(-z)$ obtain that

$$p(y = +1|x) = \sigma(w^Tx) \Longrightarrow p(y = -1|x) = \sigma(-w^Tx)$$

So for $y \in \{+1, -1\}$

$$\rho(y|x) = \sigma(y\langle w, x\rangle)$$

Therefore ML estimation can be written as:

$$\prod_{i=1}^N \sigma(\langle w, x_i \rangle y_i) o \max_w$$

Loss function for 2-class logistic regression

For binary classification
$$p(y|x) = \sigma(\langle w, x \rangle y) \ w = [\beta'_0, \beta], \ x = [1, x_1, x_2, ... x_D].$$

Estimation with ML:

$$\prod_{i=1}^n \sigma(\langle w, x_i \rangle y_i) \to \max_w$$

which is equivalent to

$$\sum_{i}^{n} \ln(1 + e^{-\langle w, x_i \rangle y_i}) \to \min_{w}$$

It follows that logistic regression is linear discriminant estimated with loss function $\mathcal{L}(M) = \ln(1 + e^{-M})$.

Multiple classes

Multiple class classification:

$$egin{cases} egin{aligned} egin{aligned\\ egin{aligned} egin{$$

+relationship between score and class probability is assumed:

$$p(\omega_c|x) = softmax(w_c^T x | x_1^T x, ... x_C^T x) = \frac{exp(w_c^T x)}{\sum_i exp(w_i^T x)}$$

Multiple classes

Weights ambiguity:

 w_c , c = 1, 2, ...C defined up to shift v:

$$\frac{\exp((w_c - v)^T x)}{\sum_i \exp((w_i - v)^T x)} = \frac{\exp(-v^T x) \exp(w_c^T x)}{\sum_i \exp(-v^T x) \exp(w_i^T x)} = \frac{\exp(w_c^T x)}{\sum_i \exp(w_i^T x)}$$

To remove ambiguity usually $v = w_C$ is subtracted.

Estimation with ML:

$$\begin{cases} \prod_{n=1}^{N} softmax(w_{y_n}^T x_n | x_1^T x, ... x_C^T x) \rightarrow \max_{w_1, ... w_C - 1} \\ w_C = \mathbf{0} \end{cases}$$

Table of contents

- Geometric foundations of linear classification
- Estimation of error rate from above
- 3 Stochastic gradient descend
- 4 Regularization
- 5 Logistic regression
- 6 Fisher's linear discriminant

Problem statement

Standard linear classification decision rule

$$\widehat{c} = \begin{cases} 1, & w^T x \ge -w_0 \\ 2, & w^T x < w_0 \end{cases}$$

is equivalent to

- \bigcirc dimensionality reduction to 1-dimensinal space (defined by w)
- making classification in this space
- Idea of Fisher's LDA: find direction, giving most discriminative projections.

Possible realization

- Classification between ω_1 and ω_2 .
- Define $C_1 = \{i : x_i \in \omega_1\}, \quad C_2 = \{i : x_i \in \omega_2\}$ and

$$m_1 = \frac{1}{N_1} \sum_{n \in C_1} x_n, \quad m_2 = \frac{1}{N_1} \sum_{n \in C_2} x_n$$

$$\mu_1 = \mathbf{w}^T m_1, \quad \mu_2 = \mathbf{w}^T m_2$$

Naive solution:

$$\begin{cases} (\mu_1 - \mu_2)^2 \to \mathsf{max}_w \\ \|w\| = 1 \end{cases}$$

Fisher's LDA

• Define projected within class variances:

$$s_1 = \sum_{n \in C_1} (w^T x_n - w^T m_1)^2, \quad s_2 = \sum_{n \in C_2} (w^T x_n - w^T m_2)^2$$

• Fisher's LDA criterion: $\frac{(\mu_1 - \mu_2)^2}{s_1^2 + s_2^2} \rightarrow \max_w$

Equivalent representation

$$\frac{(\mu_{1} - \mu_{2})^{2}}{s_{1}^{2} + s_{2}^{2}} = \frac{(w^{T}m_{1} - w^{T}m_{2})^{2}}{\sum_{n \in C_{1}} (w^{T}x_{n} - w^{T}m_{1})^{2} + \sum_{n \in C_{2}} (w^{T}x_{n} - w^{T}m_{2})^{2}}$$

$$= \frac{[w^{T}(m_{1} - m_{2})]^{2}}{\sum_{n \in C_{1}} [w^{T}(x_{n} - m_{1})]^{2} + \sum_{n \in C_{2}} [w^{T}(x_{n} - m_{1})]^{2}}$$

$$= \frac{w^{T}(m_{1} - m_{2})(m_{1} - m_{2})^{T}w}{w^{T} \left[\sum_{n \in C_{1}} (x_{n} - m_{1})(x_{n} - m_{1})^{T} + \sum_{n \in C_{2}} (x_{n} - m_{2})(x_{n} - m_{2})^{T}\right]w}$$

$$= \frac{w^{T}S_{B}w}{w^{T}S_{W}w}$$

$$S_B = (m_1 - m_2)(m_1 - m_2)^T,$$

 $S_W = \sum_{n \in C_1} (x_n - m_1)(x_n - m_1)^T + \sum_{n \in C_2} (x_n - m_2)(x_n - m_2)^T$

Fisher's LDA solution

$$\begin{split} Q(w) &= \frac{w^T S_B w}{w^T S_W w} \to \text{max}_w \\ \text{Using property that } \frac{d}{dw} \left(w^T A w \right) = 2 A w \text{ for any} \\ A &\in \mathbb{R}^{KxK}, \, A^T = A \\ & \frac{dQ(w)}{dw} \propto 2 S_B w \left[w^T S_W w \right] - 2 \left[w^T S_B w \right] S_W w = 0 \end{split}$$

which is equivalent to

$$\begin{bmatrix} w^T S_W w \end{bmatrix} S_B w = \begin{bmatrix} w^T S_B w \end{bmatrix} S_W w$$

$$w \propto S_w^{-1} S_B w \propto S_w^{-1} (m_1 - m_2)$$