东南大学电工电子实验中心 实验报告

 		
课程名称:	电路实验	
		·

第7次实验

实验名称:	交流电	路认识及参	数测	试
院 (系):	信息科学与工	程学院_专	业:	信息工程
姓 名: _	钟源	学	号:	04022212
实验室:_	204 室	_实验组别:		
同组人员:		_实验时间:	202	<u>3</u> 年 <u>9</u> 月 <u>11</u> 日
评定成绩:		审阅教师:	<u> </u>	

一、教学目的

- 1.了解交流电基础知识及电器设备使用操作方法;
- 2.掌握电阻、电感、电容等单相交流电路参数测量方法,通过实验加深对阻抗概念的理解:
 - 3.掌握多功能表测量电压、电流、功率以及单相自耦调压器的正确使用方法,
 - 4.掌握功率因数的测量及其改变方法。

二、教学内容

- 1.三相交流电基础知识
- 2.安全用电知识
- 3.交流电路及其参数测量
- 4.交流电路功率因数改变

三、 预习要求

- 1.查找资料,了解交流电安全用电知识;
- 2.了解电阻、电感、电容、功率因数等单相交流电路参数测量方法。对于交流电路中的元件阻抗值(r、L、C),可以用交流阻抗电桥直接测量,也可以用下面的两种方法来进行测量。
 - (1) 三电压表法:

先将一已知电阻 R 与被测元件Z 串联,如下图 1 (a) 所示, Z1是由 10 Ω电阻和未知电感串联组成, Z2是由 100Ω电阻和未知电容串联组成, 当通过一已知频率的正弦交流信号时,用电压表分别测出电压U、U1和U2,然后根据这三个电压向量构成的三角形矢量图和U2 分解的直角三角形矢量图,从中可以求出元件阻抗参数,如下图1(b)所示。这种方法称为三电压表法。

(a) 测量电路

图1.三电压表法

(b) 矢量图

由矢量图可得:

$$\begin{split} \cos\theta &= \frac{U^2 - U_1^2 - U_2^2}{2U_1U_2}, \qquad U_r = U_2\cos\theta, \qquad U_x = U_2\sin\theta \\ r &= \frac{RU_r}{U_1}, \qquad L = \frac{RU_x}{\omega U_1}, \qquad C = \frac{U_1}{\omega RU_x} \\ &\cos\phi = \frac{U_1 + U_r}{U} = \frac{U_1 + U_2COS\theta}{U} \end{split}$$

(2) 三表法(电压表、电流表、功率表):

如图 2 所示, 用交流电压表、交流电流表和功率表(本实验平台为三表合一多功能表)分别测出元件 Z 两端电压 U、电流 I 和消耗的有功功率 P, 并且根据电源角频率ω, 然后通过计算公式间接求得阻抗参数。这种测量方法称为三表法。

图 2 三表法测量电路

被测元件阻抗参数(r、L、C)可以由下列公式确定:

$$z = \frac{U}{I}, \qquad \cos\varphi = \frac{P}{UI}, \qquad r = \frac{P}{I^2} = z\cos\varphi$$

$$X = \sqrt{z^2 - r^2} = z\sin\varphi, \qquad L = \frac{X_L}{\omega}, \qquad C = \frac{1}{X_C\omega}$$

(3) 理论计算分析实验内容(3) 中 Z1+Z2(Z1 串联 Z2)、,Z1//Z2(Z1 并 联 Z2)时,电路的性质(容性电路还是感性电路)。

由 W=2Tf=100Tf

$$R|Z_1 = |0+j| \cdot |00T| \times |1+x|0^3 = |0+j| \cdot |4\pi \Omega$$
 $Z_1 = |00-j| \frac{1}{|00T| \times |0^4} = |00-j| \frac{1000}{|1000|} \Omega$
 $R|Z_1 + Z_2 = |10-j| 282.50 \Omega_s T R 中 景 是 落 | 2 \rangle$
 $Z_1/Z = \frac{Z_1Z_2}{Z_1/Z_3} = \frac{(100-j) \frac{1000}{|10-j|} \times (10+j) \frac{11+7}{|10-j|} \Omega$
 $= 13.62+j| 38.69 \Omega_s T R 辞 是 感 | 4$

- (4) 复习功率因数概念, 试列出负载功率因数改变(提高、减小)的方法。
- 1)功率因数是指交流电路有功功率对视在功率的比值。
- 2)提高功率因数的方法:

- ①. 高压传输
- ②. 并联电容
- ③. 串联电阻

3)减小功率因数的方法:

- ①. 低压传输
- ②. 在并联的电容上串联电感
- ③.减小设备内阻

四、实验内容

1.单相、三相交流电路的接线操作,按照强电实验操作规范接线、通电、操作:包括开关、熔断器、自耦变压器等电器设备结构原理的理解和使用方法。

2.三电压表法测量电路参数(验收)

测量电路如图 1 所示, 串联的已知电阻为 50Ω , $Z1=10\Omega+L$ (114mH) (208 室为 $Z1=10\Omega+L$ (40mH) (1000 匝), $Z2=100\Omega+C$ (10uF), 按表 1 内容测量和计算分析。

7	测量参数			计算参数					
Z	U(V)	$U_1(V)$	$U_2(V)$	$\cos\theta$	$U_{\rm r}({ m V})$	$U_{\rm x}({ m V})$	$r_0(\Omega)$	L (mH)	C(uF)
Z_{l}	60.5	32.7	32.4	0.7273	23.5657	22.2355	26.0333	108.2	
Z_2	60.2	8.8	57.0	0.2967	16.9091	54.4342	-3.9256		10. 292

表1 三电压表法

3.三表法测量电路参数(验收)

测量电路如图 2 所示, Z1=10 Ω +L(114mH)(208 室为 Z1=10 Ω +L(40mH)), Z2=100 Ω +C(10uF),测量数据记入下表中。

7	测量参数			计算参数					
Z	I/A	U(V)	P(W)	$z(\Omega)$	cosφ	$r_0(\Omega)$	$x(\Omega)$	L(mH)	C(uF)
Z_1	0.305	15.1	3.2	49.51	0.6948	24.40	35.61	113.34	
Z_2	0.300	101.6	9.8	338.22	0.3211	8.60	320.31		9.938
$Z_1 + Z_2$	0.299	96.0	13.0	320.86	0.4526	35.22	286.11		11.125
$Z_1 / \! / Z_2$	0.299	15.6	3.7	52.09	0.7919	27.63	31.81	101.24	

表2 三表法

4.功率因数的改变(验收)

根据表 2 测得的 Z1 (R、L 电路) 的功率因数 cosφ 值为参照, 试采用不同方法改变功率因数。

(1) 仍按图 2 接线,选取电容并联在负载 Z1 两端。首先调节单相自耦调压器,使副方电压等于表 2 中负载为 Z1 时对应的电压值,然后测出 I、P,计算 cosφ,将实验数据填入表 3 中,与不接电容前的负载功率因数相比较,进行总结分析。

		测量参数		计算参数
改变方法	I(A)	U(V)	P(W)	cosφ
并联电容 1	0.2341	15.1	3.3	0.9335
并联电容 2	0.2748	15.1	3.3	0.7953

表 3 功率因数的改变-1

(2) 仍按图 2 接线,将电感线圈中插入铁芯,调节调压器,观察电流表读数保持在 0.3A。完成表 4。与未插入铁芯时数据比较,结合表格数据,总结分析功率因数改变的原因。

表 4 功率因数的改变-2

		测量参数		计算参数
改变方法	I(A)	U(V)	P(W)	cosφ
铁芯部分插入	0.3027	27.0	3.2	0.3915
铁芯全部插入	0.3016	60.2	3.3	0.1818

(3) 仍按图 2 接线,改变 Z1 中串联的电阻阻值,调节调压器,观察电流表读数保持在 0.3A。完成表 4。与原数据比较,结合表格数据,进行分析总结。

改变方法		测量参数		计算参数	
以受力法 	I(A)	U(V)	P(W)	cosφ	
Zı中电阻值增大	0.3010	41.4	12.0	0.9630	
Zı中电阻值减小	0.2986	14.0	2.8	0.6698	

表5 功率因数的改变-3

五、注意事项

- 1.必须注意用电安全、饮水不能放在操作台上、实验中单人单手操作。
- 2.多功能表的操作,电压表并联在被测对象上,电流表串联到电路中。
- 3.自耦调压器接通和断开电源线都应将副方滑动头退到零伏位置上。

六、思考题

1."并联电容"可以提高感性阻抗的功率因数,使用矢量图来分析并联的电容容量是否越大越好?

答: 不是, 分析如下:

可以烙罐、则不变、飞蜡、烙塘 当940时,C增大领心的外端、 当9=0时,cos4=1, 出到最大值 当9>0时,C端大级的少流小

2.通过实验分析电感线圈中插入铁棒, 电感值会有怎样变化?

答:插入铁棒后Z1的功率因数减小,所以插入铁棒可见会使电感变大。

3.使用矢量图分析 Z1 中串联的电阻阻值变化对功率因数的影响。

答: 阻值越大, 功率因数越大, 分析如下:

当主的大人。 中国的大人的外外,是是这种是不是