Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних циклічних алгоритмів»

Варіант 10

Виконав студент	ІП-11, Друзенко Олександра Юріївна
•	(шифр, прізвище, ім'я, по батькові)
Перевірив	
1 1	(прізвище, ім'я, по батькові)

Лабораторна робота 3

Дослідження ітераційних циклічних алгоритмів

Мета – дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 10

Для заданого цілого a і дійсного |x| < 1 з точністю $\varepsilon = 10^{-5}$ знайти

$$1 + \sum_{k=1}^{\infty} \frac{a(a-1)...(a-k+1)x^k}{k!}$$
.

1.Постановка задачі

Потрібно утворити ітераційний цикл, який буде обчислювати та додавати члени послідовності, допоки їхні модулі більше за 10^{-5} . Тіло циклу буде включати в себе знаходження члена послідовності та обчислення загальної суми.

2.Математична модель

Змінна	Тип	Ім'я	Призначення
число а	int	a	початкове дане
число х	float	X	початкове дане
Крок суми	int	k	проміжне дане
Частина чисельника	float	partNum	проміжне дане
Знаменник	float	den	проміжне дане
Член послідовності	float	frac	проміжне дане
Загальна сума	float	sum	результат

Функція *abs* – знаходження модулю.

Крок 1. Визначимо основні дії

Крок 2. Деталізуємо дію присвоєння змінним *k, sum, den, frac, partNum* свого значення

Крок 3. Деталізуємо дію знаходження суми

3.Псевдокод

```
Крок 1.
Початок
      1. присвоєння змінним k, sum, den, frac, partNum свого значення
      2. Знаходження суми
Кінець
Крок 2.
Початок
      1. k:=1, sum:=1, den:=1, frac:=1, partNum:= a*(a-1)
      2. Знаходження суми
Кінець
Крок 3.
Початок
      1. k:=1, sum:=1, den:=1, frac:=1, partNum:= a*(a-1)
      2. Якщо abs(frac)>10**-5
             TO
                   повторити
                        partNum*=(a-(k+1))
                         den*=k
                        frac=(partNum*x**k)/den
                        sum+=frac
                        k+=1
                   поки abs(frac)>10**-5
                   все повторити
             інакше
                   print(sum)
         все якщо
Кінець
```

4.Блок-схема

5. Випробування алгоритму

Блок	Дія
	Початок
1	Задання a=3, x=0.5
	k:=1, sum:=1, den:=1, frac:=1, partNum:=
	3*(3-1)=3*2=6
2.1	frac >10 ⁻⁵ ? так
2.1	partNum = $6*(3-(1+1)) = 6*1=6;$
	den = 1*1 = 1;
	frac = $(6*0.5^1)/1=3$;
	sum=1+3=4;
	k=1+1=2;

2.2	frac >10 ⁻⁵ ? так
2.2	partNum = $6*(3-(1+2)) = 6*0=0$;
	den = 1*2 = 2;
	frac = $(0*0.5^2)/2=0$;
	sum=4+0=1;
	k=2+1=3;
2.3	frac >10 ⁻⁵ ? ні
2.3	Виведення: сума = 4
	Кінець

6. Висновок

Отже, сьогодні я дослідила ітераційні циклічні алгоритми та набула практичних навичок їх створення та використання. В результаті лабораторної роботи я розробила алгоритм суми членів послідовності, допоки їхні модулі більше за 10^{-5} . Алгоритм складається з трьох кроків, останній з них має ітераційний цикл. Я навчилася деталізувати кроки ітераційного циклу в псевдокоді та блок-схемою. Випробувавши алгоритм, я отримала шукану суму. Алгоритм працює.