0.1 反常积分收敛的相关结论

命题 0.1 (积分收敛必有子列趋于 0)

设连续函数满足 $\int_0^\infty f(x) dx$ 收敛, 则 (1) 存在趋于 $+\infty$ 的 $\{x_n\}_{n=1}^\infty \subset (0,+\infty)$, 使得 $\lim_{n\to\infty} f(x_n) = 0$.

- (2) 若 f 不一定连续, 但有 $\int_0^\infty |f(x)| \mathrm{d}x < \infty$, 则存在严格递增的 $\lim_{n \to \infty} x_n = +\infty$, 使得 $\lim_{n \to \infty} x_n \ln x_n f(x_n) = 0$.
- 笔记 连续性是否可以去掉构成一个有趣的话题. 第一问结论可以直接用, 第二问主要告诉我们积分绝对收敛性, 我们总能找到很好的子列极限.

证明

(1) 运用积分中值定理, 我们知道

$$\int_{A}^{A+1} f(x)\mathrm{d}x = f(\theta(A)), A+1 > \theta(A) > A.$$

由 Cauchy 收敛准则, 我们知道

$$0 = \lim_{A \to +\infty} \int_{A}^{A+1} f(x) dx = \lim_{A \to +\infty} f(\theta(A)), \lim_{A \to +\infty} \theta(A) = +\infty.$$

这就完成了证明. (2) 若 $|f(x)| > \frac{1}{x \ln x}$, $\forall x > e$, 则因为 $\int_e^\infty \frac{1}{x \ln x} \mathrm{d}x = +\infty$, 我们知道这不可能. 故存在 $x_1 > e$ 使得 $|f(x_1)| \le$ $\frac{1}{x_1 \ln x_1}$. 同样的, 如果 $|f(x)| > \frac{1}{2x \ln x}$, $\forall x > x_1 + 1$, 仍然有会有矛盾! 因此必然存在 $x_2 > x_1 + 1$ 使得 $|f(x_2)| \le$

$$|f(x_n)| \leqslant \frac{1}{nx_n \ln x_n}, n = 1, 2, \cdots,$$

即

$$\lim_{n\to\infty} x_n \ln x_n \cdot |f(x_n)| = 0.$$

- (1) 设 $\int_{a}^{+\infty} f(x) dx$ 收敛, 且 f(x) 单调, 则 $\lim_{x \to +\infty} x f(x) = 0$.
- (2) 若 $\int_{-\infty}^{+\infty} f(x) dx$ 收敛且 x f(x) 单调, 则 $\lim_{x \to +\infty} x \ln x f(x) = 0$.

(1) 不妨设 f 递减, 否则用 -f 代替 f, 从而

$$Af(A) \geqslant \int_A^{2A} f(x) dx, \quad \frac{A}{2} f(A) \leqslant \int_{\frac{A}{2}}^A f(x) dx.$$

进而

$$\int_{A}^{2A} f(x) \, \mathrm{d}x \leqslant A f(A) \leqslant 2 \int_{\frac{A}{2}}^{A} f(x) \, \mathrm{d}x.$$

由 $\int_{-\infty}^{+\infty} f(x) dx$ 收敛的 Cauchy 收敛准则可知

$$\int_{\frac{A}{2}}^{A} f(x) \, \mathrm{d}x \to 0, A \to +\infty, \quad \int_{A}^{2A} f(x) \, \mathrm{d}x \to 0, A \to +\infty.$$

故 $\lim_{A \to +\infty} Af(A) = 0$.

(2) 不妨设xf 递减,否则用-f 代替f即可.于是

$$\frac{1}{2}A\ln A f(A) = A f(A) \int_{\sqrt{A}}^{A} \frac{1}{x} \, dx \le \int_{\sqrt{A}}^{A} \frac{x f(x)}{x} \, dx = \int_{\sqrt{A}}^{A} f(x) \, dx,$$
$$\int_{A}^{A^{2}} f(x) \, dx = \int_{A}^{A^{2}} \frac{x f(x)}{x} \, dx \le A f(A) \int_{A}^{A^{2}} \frac{1}{x} \, dx = A \ln A f(A).$$

从而

$$\int_{A}^{A^2} f(x) \, \mathrm{d}x \le A \ln A f(A) \le 2 \int_{\sqrt{A}}^{A} f(x) \, \mathrm{d}x$$

又由 $\int_{a}^{+\infty} f(x) dx$ 收敛的 Cauchy 收敛准则可知

$$\int_{\sqrt{A}}^{A} f(x) dx \to 0, A \to +\infty. \quad \int_{A}^{A^2} f(x) dx \to 0, A \to +\infty.$$

故由夹逼准则可知 $\lim_{A\to +\infty} A \ln A f(A) = 0$.

例题 0.1 设 $f \in D^1(0, +\infty)$ 且 |f'| 在 $(0, +\infty)$ 递减. 若 $\lim_{x \to +\infty} f(x)$ 存在, 证明: $\lim_{x \to +\infty} x f'(x) = 0$. 证明 若存在 a > 0, 使得 f'(a) = 0, 则由 |f'| 在 $(0, +\infty)$ 递减可得

$$f'(x) = 0, \quad \forall x > a.$$

此时结论显然成立.

若 $f' \neq 0, \forall x \in (0, +\infty)$, 则由导数介值性可知, f' 在 $(0, +\infty)$ 上要么恒大于零, 要么恒小于零. 于是不妨设 $f' > 0, \forall x \in (0, +\infty)$, 故此时 f 在 $(0, +\infty)$ 上严格递增. 并且此时 f' = |f'| 在 $(0, +\infty)$ 递减, 故此时 f' 在 $(0, +\infty)$ 内 Riemann 可积. 从而由微积分基本定理可知

$$\int_{1}^{x} f'(y) \, \mathrm{d}y = f(x) - f(1).$$

又因为 $\lim_{x \to +\infty} f(x)$ 存在, 所以 $\int_{1}^{+\infty} f'(y) \, dy$ 收敛. 于是由命题 0.2(1)可知 $\lim_{x \to +\infty} x f'(x) = 0$. **例题 0.2** 设 f 在 $(a, +\infty)$ 可导. 如果 f 有界且 x f' 为单调函数, 证明

$$\lim_{x \to +\infty} x \ln x f'(x) = 0.$$

证明 由 xf' 单调可知, $g(x) ext{ } ext{$

$$xf'(x) > C \Rightarrow f'(x) > \frac{C}{x}, \quad x \in (\max\{a, 0\}, +\infty).$$
 (1)

对(1)式两边同时积分得到

$$f(x) > \int_a^x \frac{c}{t} dt = c \ln|x| - c \ln a.$$

令 $x \to +\infty$, 得到 $\lim_{x \to +\infty} f(x) = +\infty$, 这与 f 有界矛盾! 于是由 $\lim_{x \to +\infty} x f'(x) \le 0$ 可知存在 $X > \max\{a, 0\}$, 使得

$$xf'(x) \le 0 \Rightarrow f'(x) \le 0, \quad x \in (X, +\infty).$$

故 f 在 $(X, +\infty)$ 上递减. 又因为 f 有界, 所以 $\lim_{x \to +\infty} f(x)$ 存在. 根据微积分基本定理可得

$$\int_{a}^{x} f'(t) dt = f(x) - f(a).$$