

Единый государственный экзамен по ФИЗИКЕ

Кодификатор

элементов содержания и требований к уровню подготовки выпускников образовательных организаций для проведения единого государственного экзамена по физике

подготовлен Федеральным государственным бюджетным научным учреждением

«ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПЕДАГОГИЧЕСКИХ ИЗМЕРЕНИЙ»

ФИЗИКА, 11 класс

Кодификатор

элементов содержания и требований к уровню подготовки выпускников образовательных организаций для проведения единого государственного экзамена по ФИЗИКЕ

Кодификатор элементов содержания по физике и требований к уровню подготовки выпускников образовательных организаций для проведения единого государственного экзамена является одним из документов, определяющих структуру и содержание КИМ ЕГЭ. Он составлен на основе Федерального компонента государственных стандартов основного общего и среднего (полного) общего образования по физике (базовый и профильный уровни) (приказ Минобразования России от 05.03.2004 № 1089).

Раздел 1. Перечень элементов содержания, проверяемых на едином государственном экзамене по физике

В первом столбце указан код раздела, которому соответствуют крупные блоки содержания. Во втором столбце приведен код элемента содержания, для которого создаются проверочные задания. Крупные блоки содержания разбиты на более мелкие элементы.

Код Раз- дела	Код контро лируе мого элемен та	Элементы содержания, проверяемые заданиями КИМ
1		МЕХАНИКА
1.1	КИНЕМ	АТИКА
	1.1.1	Механическое движение. Относительность механического движения. Система отсчета
	1.1.2	Материальная точка. Её радиус-вектор: $\vec{r}(t) = (x(t), y(t), z(t)),$ траектория, перемещение: $\Delta \vec{r} = \vec{r}(t_2) - \vec{r}(t_1) = (\Delta x, \Delta y, \Delta z),$ путь. Сложение перемещений: $\Delta \vec{r}_1 = \Delta \vec{r}_2 + \Delta \vec{r}_0$

^{© 2018} Федеральная служба по надзору в сфере образования и науки Российской Федерации

TISITICI, II KIICC	
1.1.3	Скорость материальной точки:
	$\left \vec{v} = \frac{\Delta \vec{r}}{\Delta t} \right _{\Delta t \to 0} = \vec{r}_t' = (v_x, v_y, v_z),$
	$\left v_x = \frac{\Delta x}{\Delta t} \right _{\Delta t \to 0} = x_t'$, аналогично $v_y = y_t'$, $v_z = z_t'$.
	Сложение скоростей: $\vec{v}_1 = \vec{v}_2 + \vec{v}_0$
1.1.4	Ускорение материальной точки:
	$ \vec{a} = \frac{\Delta \vec{v}}{\Delta t} _{\Delta t \to 0} = \vec{v}_t' = (a_x, a_y, a_z),$
	$\left a_x = \frac{\Delta v_x}{\Delta t}\right _{\Delta t \to 0} = (v_x)_t'$, аналогично $a_y = (v_y)_t'$, $a_z = (v_z)_t'$.
1.1.5	Равномерное прямолинейное движение:
	$x(t) = x_0 + v_{0x}t$
	$v_x(t) = v_{0x} = \text{const}$
1.1.6	Равноускоренное прямолинейное движение:
	$x(t) = x_0 + v_{0x}t + \frac{a_x t^2}{2}$
	$v_x(t) = v_{0x} + a_x t$
	$a_x = \text{const}$
	$v_{2x}^2 - v_{1x}^2 = 2a_x(x_2 - x_1)$
1.1.7	Свободное падение. Ускорение свободного падения. Движение тела, брошенного под углом α к горизонту: $\begin{matrix} y \\ \hline v_0 \\ \hline v_0 \\ \hline \end{matrix}$
	$\int x(t) = x_0 + \nu_{0x}t = x_0 + \nu_0 \cos \alpha \cdot t$
	$\begin{cases} x(t) = x_0 + v_{0x}t = x_0 + v_0 \cos \alpha \cdot t \\ y(t) = y_0 + v_{0y}t + \frac{g_y t^2}{2} = y_0 + v_0 \sin \alpha \cdot t - \frac{gt^2}{2} \end{cases}$
	$\int v_x(t) = v_{0x} = v_0 \cos \alpha$
	$\int v_y(t) = v_{0y} + g_y t = v_0 \sin \alpha - gt$
	$g_x = 0$
	$\begin{cases} v_x(t) = v_{0x} = v_0 \cos \alpha \\ v_y(t) = v_{0y} + g_y t = v_0 \sin \alpha - gt \end{cases}$ $\begin{cases} g_x = 0 \\ g_y = -g = \text{const} \end{cases}$
1	

ФИЗИКА 11 класс 4

ФИЗИК	А, 11 класс	
	1.1.8	Движение точки по окружности.
		Угловая и линейная скорость точки: $v = \omega R$, $\omega = \frac{2\pi}{T} = 2\pi v$.
		Центростремительное ускорение точки: $a_{nc} = \frac{v^2}{R} = \omega^2 R$
	1.1.9	Твердое тело. Поступательное и вращательное движение твердого тела
1.2	ДИНАМ	ИКА
	1.2.1	Инерциальные системы отсчета. Первый закон Ньютона. Принцип относительности Галилея
	1.2.2	Масса тела. Плотность вещества: $\rho = \frac{m}{V}$
	1.2.3	Сила. Принцип суперпозиции сил: $\vec{F}_{\text{равнодейст B}} = \vec{F}_1 + \vec{F}_2 + \dots$
	1.2.4	Второй закон Ньютона: для материальной точки в ИСО $\vec{F} = m\vec{a}$; $\Delta \vec{p} = \vec{F} \Delta t$ при $\vec{F} = const$
	1.2.5	Третий закон Ньютона для материальных точек: $\vec{F}_{12} = -\vec{F}_{21}$ \vec{F}_{12} \vec{F}_{21}
	1.2.6	Закон всемирного тяготения: силы притяжения между точечными массами равны $F = G \frac{m_1 m_2}{R^2}$. Сила тяжести. Зависимость силы тяжести от высоты h над поверхностью планеты радиусом R_0 : $mg = \frac{GMm}{(R_0 + h)^2}$
	1.2.7	Движение небесных тел и их искусственных спутников. Первая космическая скорость: $v_{\rm l\kappa} = \sqrt{g_0 R_0} = \sqrt{\frac{GM}{R_0}}$ Вторая космическая скорость: $v_{\rm 2\kappa} = \sqrt{2} v_{\rm l\kappa} = \sqrt{\frac{2GM}{R_0}}$
	1.2.8	Сила упругости. Закон Гука: $F_x = -kx$
	1.2.9	Сила трения. Сухое трение. Сила трения скольжения: $F_{\rm тp} = \mu N$ Сила трения покоя: $F_{\rm тp} \le \mu N$
		Коэффициент трения
	1.2.10	Давление: $p = \frac{F_{\perp}}{S}$

1.3	СТАТИК	CA
	1.3.1	Момент силы относительно оси
		вращения:
		$M=Fl$, где $l-$ плечо силы \widetilde{F}
		относительно оси, проходящей через
	1.2.2	точку О перпендикулярно рисунку
	1.3.2	Условия равновесия твердого тела в ИСО:
		$\int M_1 + M_2 + \dots = 0$
		$\int \vec{F}_1 + \vec{F}_2 + \dots = 0$
	1.3.3	Закон Паскаля
	1.3.4	Давление в жидкости, покоящейся в ИСО: $p = p_0 + \rho g h$
	1.3.5	Закон Архимеда: $\vec{F}_{\text{Арх}} = -\vec{P}_{\text{вытесн.}}$,
		если тело и жидкость покоятся в ИСО, то $F_{ m Apx} = ho g V_{ m вытесн.}$
		Условие плавания тел
1.4	ЗАКОНІ	Ы СОХРАНЕНИЯ В МЕХАНИКЕ
	1.4.1	Импульс материальной точки: $\vec{p} = m\vec{v}$
	1.4.2	Импульс системы тел: $\vec{p} = \vec{p}_1 + \vec{p}_2 +$
	1.4.3	Закон изменения и сохранения импульса:
		в ИСО $\Delta \vec{p} = \Delta (\vec{p}_1 + \vec{p}_2 +) = \vec{F}_{1 \text{ внешн}} \Delta t + \vec{F}_{2 \text{ внешн}} \Delta t +$;
		в ИСО $\Delta \vec{p} \equiv \Delta (\vec{p}_1 + \vec{p}_2 +) = 0$, если $\vec{F}_{1 \text{ внешн}} + \vec{F}_{2 \text{ внешн}} + = 0$
	1.4.4	Работа силы: на малом перемещении
		$A = \vec{F} \cdot \Delta \vec{r} \cdot \cos \alpha = F_x \cdot \Delta x$ $\Delta \vec{r}$
	1.4.5	Мощность силы:
		$ P - \Delta A = E $ and $ P - E $
		$P = \frac{\Delta A}{\Delta t} \Big _{\Delta t \to 0} = F \cdot v \cdot \cos \alpha$
	1.4.6	Кинетическая энергия материальной точки:
		$E_{\text{\tiny KHH}} = \frac{mv^2}{2} = \frac{p^2}{2m}.$
		Закон изменения кинетической энергии системы
		материальных точек: в ИСО $\Delta E_{\kappa u \mu} = A_1 + A_2 +$
	1.4.7	Потенциальная энергия:
		для потенциальных сил $A_{12} = E_{1 {\rm потенц}} - E_{2 {\rm потенц}} = -\Delta E_{{\rm потенц}}$.
		Потенциальная энергия тела в однородном поле тяжести:
		$E_{\text{потенц}} = mgh$.
		Потенциальная энергия упруго деформированного тела:
		$E_{\text{потенц}} = \frac{kx^2}{2}$
		•

 $\ \ \, \mathbb{C}\ 2018\$ Федеральная служба по надзору в сфере образования и науки Российской Федерации

ФИЗИКА, 11 класс 6

ФИЗИК	СА, 11 класс	c
	1.4.8	Закон изменения и сохранения механической энергии:
		$E_{\text{Mex}} = E_{\text{Kuh}} + E_{\text{nomehu}} ,$
		в ИСО $\Delta E_{\text{мех}} = A_{\text{всех непотенц. сил}}$,
		в ИСО $\Delta E_{\textit{мех}} = 0$, если $A_{\textit{всех непотенц. сил}} = 0$
1.5	MEXAH	ИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ
	1.5.1	Гармонические колебания. Амплитуда и фаза колебаний.
		Кинематическое описание:
		$x(t) = A\sin(\omega t + \varphi_0),$
		$v_{x}(t) = x_{t}',$
		$a_x(t) = (v_x)'_t = -\omega^2 x(t).$
		Динамическое описание:
		$ma_x = -kx$, где $k = m\omega^2$.
		Энергетическое описание (закон сохранения механической
		энергии): $\frac{mv^2}{2} + \frac{kx^2}{2} = \frac{mv_{\text{max}}^2}{2} = \frac{kA^2}{2} = const$.
		Связь амплитуды колебаний исходной величины с амплитудами колебаний её скорости и ускорения:
		$v_{\text{max}} = \omega A$, $a_{\text{max}} = \omega^2 A$
	1.5.2	
	1.3.2	Период и частота колебаний: $T = \frac{2\pi}{\Omega} = \frac{1}{V}$.
		Период малых свободных колебаний математического
		<u></u>
		маятника: $T = 2\pi \sqrt{\frac{l}{g}}$.
		Период свободных колебаний пружинного маятника:
		$T = 2\pi \sqrt{\frac{m}{k}}$
		$I = 2\pi \sqrt{\frac{k}{k}}$
	1.5.3	Вынужденные колебания. Резонанс. Резонансная кривая
	1.5.4	Поперечные и продольные волны. Скорость
		распространения и длина волны: $\lambda = vT = \frac{v}{r}$.
		V Интерференция и дифракция волн
	1.5.5	Звук. Скорость звука
2		МОЛЕКУЛЯРНАЯ ФИЗИКА. ТЕРМОДИНАМИКА
2.1		УЛЯРНАЯ ФИЗИКА
	2.1.1	Модели строения газов, жидкостей и твердых тел
	2.1.2	Тепловое движение атомов и молекул вещества
	2.1.3	Взаимодействие частиц вещества
	2.1.4	Диффузия. Броуновское движение
	2.1.5	Модель идеального газа в МКТ: частицы газа движутся
	1	хаотически и не взаимодействуют друг с другом

© 2018 Федеральная служба по надзору в сфере образования и науки Российской Федерации

Связь между давлением и средней кинетической энергией поступательного теплового движения молекул идеального газа (основное уравнение МКТ): $p = \frac{1}{3} m_0 n \overline{v^2} = \frac{2}{3} n \cdot \left(\frac{m_0 v^2}{2} \right) = \frac{2}{3} n \cdot \overline{\varepsilon_{\text{\tiny HOCT}}}$
газа (основное уравнение МКТ):
$p = \frac{1}{2} m_0 n \overline{v^2} = \frac{2}{2} n \cdot \left(\frac{m_0 v^2}{\varepsilon_{\text{norm}}} \right) = \frac{2}{2} n \cdot \overline{\varepsilon_{\text{norm}}}$
$p = -m_0 n v^2 = -n \cdot \xrightarrow{\sim} = -n \cdot \varepsilon_{\text{noc.}} $
$\begin{bmatrix} 2 & 3 & 0 & 3 & (2 & 2 & 3 & \text{acc}) \end{bmatrix}$
Абсолютная температура: $T = t^{\circ} + 273 \text{ K}$
Связь температуры газа со средней кинетической энергией
поступательного теплового движения его частиц:
$\overline{\varepsilon_{\text{nocr}}} = \left(\frac{m_0 v^2}{2}\right) = \frac{3}{2} kT$
Уравнение $p = nkT$
Модель идеального газа в термодинамике:
Уравнение Менделеева - Клапейрона
Выражение для внутренней энергии
Уравнение Менделеева-Клапейрона (применимые формы
записи):
$pV = \frac{m}{\mu}RT = \nu RT = NkT, p = \frac{\rho RT}{\mu}.$
Выражение для внутренней энергии одноатомного
идеального газа (применимые формы записи):
$U = \frac{3}{2} vRT = \frac{3}{2} NkT = \frac{3}{2} \frac{m}{\mu} RT = vc_v T$
Закон Дальтона для давления смеси разреженных газов:
$p = p_1 + p_2 + \dots$
Изопроцессы в разреженном газе с постоянным числом
частиц N (с постоянным количеством вещества v):
изотерма ($T = const$): $pV = const$,
изохора ($V = \text{const}$): $\frac{p}{T} = const$,
изобара ($p = \text{const}$): $\frac{V}{T} = const$.
Графическое представление изопроцессов на pV -, pT - и VT - диаграммах
Насыщенные и ненасыщенные пары. Качественная зависимость плотности и давления насыщенного пара от
температуры, их независимость от объёма насыщенного пара
Влажность воздуха.
Относительная влажность: $\varphi = \frac{p_{\text{пара}}\left(T\right)}{p_{\text{насыц. пара}}\left(T\right)} = \frac{\rho_{\text{пара}}\left(T\right)}{\rho_{\text{насыц. пара}}\left(T\right)}$

ФИЗИК	А, 11 класс	
	2.1.15	Изменение агрегатных состояний вещества: испарение и
		конденсация, кипение жидкости
	2.1.16	Изменение агрегатных состояний вещества: плавление и
		кристаллизация
	2.1.17	Преобразование энергии в фазовых переходах
2.2	TEPMO,	ДИНАМИКА
	2.2.1	Тепловое равновесие и температура
	2.2.2	Внутренняя энергия
	2.2.3	Теплопередача как способ изменения внутренней энергии
		без совершения работы. Конвекция, теплопроводность,
		излучение
	2.2.4	Количество теплоты.
		Удельная теплоемкость вещества $c: Q = cm\Delta T$.
	2.2.5	Удельная теплота парообразования $r: Q = rm$.
		Удельная теплота плавления λ : $Q = \lambda m$.
		Удельная теплота сгорания топлива $q: Q = qm$
	2.2.6	Элементарная работа в термодинамике: $A = p\Delta V$.
	2.2.0	
	2.2.7	Вычисление работы по графику процесса на рV-диаграмме
	2.2.1	Первый закон термодинамики:
		$Q_{12} = \Delta U_{12} + A_{12} = (U_2 - U_1) + A_{12}$
		Адиабата:
		$Q_{12} = 0 \implies A_{12} = U_1 - U_2$
	2.2.8	Второй закон термодинамики, необратимость
	2.2.9	Принципы действия тепловых машин. КПД:
		$\eta = \frac{A_{\text{за цикл}}}{Q_{\text{нагр}}} = \frac{Q_{\text{нагр}} - Q_{\text{хол}} }{Q_{\text{нагр}}} = 1 - \frac{ Q_{\text{хол}} }{Q_{\text{нагр}}}$
		$Q_{\text{Harp}} = Q_{\text{Harp}} = Q_{\text{Harp}}$
	2.2.10	Максимальное значение КПЛ Пикл Карно
	2.2.10	$max \ \eta = \eta_{\text{Kapho}} = \frac{T_{\text{Harp}} - T_{\text{xon}}}{T_{\text{Harp}}} = 1 - \frac{T_{\text{xon}}}{T_{\text{Harp}}}$
		$max \eta = \eta_{\text{Kapho}} = \frac{\Pi - \Pi - \Pi}{T} = 1 - \frac{T \times NOT}{T}$
	2 2 1 1	T HAITP T HAITP
	2.2.11	Уравнение теплового баланса: $Q_1 + Q_2 + Q_3 + = 0$.
3		ЭЛЕКТРОДИНАМИКА
3.1		РИЧЕСКОЕ ПОЛЕ
	3.1.1	Электризация тел и её проявления. Электрический заряд.
		Два вида заряда. Элементарный электрический заряд. Закон
	2.1.2	сохранения электрического заряда
	3.1.2	Взаимодействие зарядов. Точечные заряды. Закон Кулона:
		$ F - k \frac{ q_1 \cdot q_2 }{ q_1 \cdot q_2 } - \frac{1}{ q_1 \cdot q_2 }$
		$F = k \frac{ q_1 \cdot q_2 }{r^2} = \frac{1}{4\pi\epsilon_0} \cdot \frac{ q_1 \cdot q_2 }{r^2}$
	3.1.3	Электрическое поле. Его действие на электрические заряды
		, , , , , , , , , , , , , , , , , , , ,

ФИЗИКА, 11 класс

TIIOIII	A, II KIIACC	
	3.1.4	Напряжённость электрического поля: $\vec{E} = \frac{\vec{F}}{q_{\text{пробный}}}$.
		Поле точечного заряда: $E_r = k \frac{q}{r^2}$,
		однородное поле: $\vec{E}=\mathrm{const}$. Картины линий этих полей
	3.1.5	•
	3.1.5	Потенциальность электростатического поля.
		Разность потенциалов и напряжение. $A_{12} = q(\phi_1 - \phi_2) = -q\Delta\phi = qU$
		Потенциальная энергия заряда в электростатическом поле: $W=q\phi$.
		Потенциал электростатического поля: $\varphi = \frac{W}{q}$.
		Связь напряжённости поля и разности потенциалов для однородного электростатического поля: $U = Ed$.
	3.1.6	Принцип суперпозиции электрических полей:
	3.1.0	$\vec{E} = \vec{E}_1 + \vec{E}_2 + \dots$, $\phi = \phi_1 + \phi_2 + \dots$ Проводники в электростатическом поле. Условие
	3.1.7	Проводники в электростатическом поле. Условие
		равновесия зарядов: внутри проводника $\vec{E} = 0$, внутри и на
		поверхности проводника φ = const .
	3.1.8	Диэлектрики в электростатическом поле. Диэлектрическая
	5.1.0	проницаемость вещества є
	3.1.9	Конденсатор. Электроёмкость конденсатора: $C = \frac{q}{U}$.
		Электроёмкость плоского конденсатора: $C = \frac{\varepsilon \varepsilon_0 S}{d} = \varepsilon C_0$
	3.1.10	Параллельное соединение конденсаторов:
		$q = q_1 + q_2 + \dots, \ U_1 = U_2 = \dots, \ C_{napan} = C_1 + C_2 + \dots$
		Последовательное соединение конденсаторов:
		$U = U_1 + U_2 + \dots, q_1 = q_2 = \dots, \frac{1}{C_{nocn}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$
	3.1.11	Энергия заряженного конденсатора: $W_C = \frac{qU}{2} = \frac{CU^2}{2} = \frac{q^2}{2C}$
3.2	ЗАКОНЕ	
	3.2.1	Сила тока: $I = \frac{\Delta q}{\Delta t} \bigg _{\Delta t \to 0}$. Постоянный ток: $I = const$.
		Для постоянного тока $q = It$
	3.2.2	Условия существования электрического тока.
		Напряжение U и ЭДС ε
	3.2.3	Закон Ома для участка цепи: $I = \frac{U}{R}$

 $\ \ \, \mathbb{C}\ 2018\$ Федеральная служба по надзору в сфере образования и науки Российской Федерации

	3.2.4	Электрическое сопротивление. Зависимость сопротивления однородного проводника от его длины и сечения. Удельное
		1
		сопротивление вещества. $R = \rho \frac{l}{S}$
	3.2.5	Источники тока. ЭДС и внутреннее сопротивление
		источника тока. $\mathcal{E} = \frac{A_{\text{сторонних сил}}}{a}$
	3.2.6	Закон Ома для полной (замкнутой)
		Закон Ома для полной (замкнутой) электрической цепи: $\mathcal{E} = IR + Ir$, откуда ε , r ε
		$I = \frac{\mathcal{E}}{R+r}$
	3.2.7	Параллельное соединение проводников:
		$I = I_1 + I_2 + \dots$, $U_1 = U_2 = \dots$, $\frac{1}{R_{\text{паралл}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$
		Последовательное соединение проводников:
		$U = U_1 + U_2 + \dots$, $I_1 = I_2 = \dots$, $R_{\text{посл}} = R_1 + R_2 + \dots$
	3.2.8	Работа электрического тока: $A = IUt$
		Закон Джоуля—Ленца: $Q = I^2 Rt$
	3.2.9	Мощность электрического тока: $P = \frac{\Delta A}{\Delta t} \Big _{\Delta t \to 0} = IU$.
		Тепловая мощность, выделяемая на резисторе:
		$P = I^2 R = \frac{U^2}{R}.$
		$I-I-R-\frac{R}{R}$
		Мощность источника тока: $P_{\mathcal{E}} = \frac{\Delta A_{\text{ст. сил}}}{\Delta t} \bigg _{\Delta t \to 0} = \mathcal{E}I$
	3.2.10	Свободные носители электрических зарядов в проводниках.
		Механизмы проводимости твёрдых металлов, растворов и
		расплавов электролитов, газов. Полупроводники.
3.3	МАГИИ	Полупроводниковый диод ТНОЕ ПОЛЕ
3.5	3.3.1	Механическое взаимодействие магнитов. Магнитное поле.
	3.3.1	Вектор магнитной индукции. Принцип суперпозиции
		магнитных полей: $\vec{B} = \vec{B_1} + \vec{B_2} + \dots$. Линии магнитного
		поля. Картина линий поля полосового и подковообразного
		постоянных магнитов
	3.3.2	Опыт Эрстеда. Магнитное поле проводника с током.
		Картина линий поля длинного прямого проводника и замкнутого кольцевого проводника, катушки с током.

ФИЗИКА, 11 класс	11
------------------	----

	222	Cyra Ayrana ai yarnanyayya ya nariyyya
	3.3.3	Сила Ампера, её направление и величина:
		$F_{\rm A} = IBl \sin \alpha$, где α – угол между направлением
	2.2.4	проводника и вектором В
	3.3.4	Сила Лоренца, её направление и величина:
		$F_{\Lambda op} = q v B \sin lpha$, где $lpha$ — угол между векторами \vec{v} и \vec{B} .
		Движение заряженной частицы в однородном магнитном поле
3.4	ЭПЕКТЕ	РОМАГНИТНАЯ ИНДУКЦИЯ
3.1	3.4.1	Поток вектора магнитной ¬ Лр
		индукции: $\Phi = B_n S = BS \cos \alpha$
	3.4.2	Явление электромагнитной индукции. ЭДС индукции
	3.4.3	Закон электромагнитной индукции Фарадея:
		$\mathcal{E}_{i} = -rac{\Delta\Phi}{\Delta t}\Big _{\Delta t o 0} = -\Phi'_{t}$
	3.4.4	ЭДС индукции в прямом проводнике длиной l , движущемся
		со скоростью $ec{v}$ $\left(ec{v}\perpec{l} ight)$ в однородном магнитном
		поле \vec{B} :
		$ \mathcal{E}_i = Blv\sin\alpha$, где α – угол между векторами \vec{B} и \vec{v} ; если
		$ec{l} \perp ec{B}$ и $ec{v} \perp ec{B}$, то $ec{\mathcal{E}}_i ert = B l v$
	3.4.5	Правило Ленца
	3.4.6	
		Индуктивность: $L = \frac{\Phi}{I}$, или $\Phi = LI$.
		Самоиндукция. ЭДС самоиндукции: $\mathcal{E}_{si} = -L \frac{\Delta I}{\Delta t} \bigg _{\Delta t \to 0} = -LI'_t$ Энергия магнитного поля катушки с током: $W_L = \frac{LI^2}{2}$
	3.4.7	Энергия магнитного поля катушки с током: $W_L = \frac{LI^2}{2}$
3.5	ЭЛЕКТЕ	РОМАГНИТНЫЕ КОЛЕБАНИЯ И ВОЛНЫ
	3.5.1	Колебательный контур. Свободные
		электромагнитные колебания в идеальном $C = \frac{1}{2}$
		колебательном контуре:
		$\int q(t) = q_{max} \sin(\omega t + \varphi_0)$
		$\begin{cases} I(t) = q'_t = \omega q_{max} \cos(\omega t + \varphi_0) = I_{max} \cos(\omega t + \varphi_0) \end{cases}$
		Формула Томсона: $T=2\pi\sqrt{LC}$, откуда $\omega=\frac{2\pi}{T}=\frac{1}{\sqrt{LC}}$.
		Связь амплитуды заряда конденсатора с амплитудой силы
		тока в колебательном контуре: $q_{max} = \frac{I_{max}}{\omega}$.

© 2018 Федеральная служба по надзору в сфере образования и науки Российской Федерации

113111	A, 11 класо 3.5.2	
	3.3.2	Закон сохранения энергии в колебательном контуре:
		$\frac{CU^{2}}{2} + \frac{LI^{2}}{2} = \frac{CU_{max}^{2}}{2} = \frac{LI_{max}^{2}}{2} = const$
	3.5.3	Вынужденные электромагнитные колебания. Резонанс
	3.5.4	Переменный ток. Производство, передача и потребление электрической энергии
	3.5.5	Свойства электромагнитных волн. Взаимная ориентация
	3.3.3	векторов в электромагнитных волне в вакууме: $\vec{E} \perp \vec{B} \perp \vec{c}$.
	3.5.6	Шкала электромагнитных волн. Применение
	3.3.0	электромагнитных волн в технике и быту
3.6	ОПТИК	
5.0	3.6.1	Прямолинейное распространение света в однородной среде.
	3.0.1	Луч света
	3.6.2	Законы отражения света.
	3.6.3	Построение изображений в плоском зеркале
	3.6.4	Законы преломления света.
	3.0.4	Преломление света: $n_1 \sin \alpha = n_2 \sin \beta$.
		The nomination contains $n_1 \sin \alpha - n_2 \sin \beta$.
		Абсолютный показатель преломления: $n_{a6c} = \frac{c}{v}$.
		Относительный показатель преломления: $n_{\text{\tiny orm}} = \frac{n_2}{n_1} = \frac{v_1}{v_2}$.
		Ход лучей в призме.
		Соотношение частот и длин волн при переходе
		монохроматического света через границу раздела двух
		оптических сред: $v_1 = v_2$, $n_1 \lambda_1 = n_2 \lambda_2$
	3.6.5	Полное внутреннее отражение.
		Предельный угол полного n_2
		внутреннего отражения:
		$\sin \alpha_{\rm np} = \frac{1}{n_{\rm orn}} = \frac{n_2}{n_1}$
	3.6.6	Собирающие и рассеивающие линзы. Тонкая линза.
	3.0.0	
		Фокусное расстояние и оптическая сила тонкой линзы:
		$D = \frac{1}{F}$
	3.6.7	r Формула тонкой линзы: d
	3.0.7	
		$\left \frac{1}{d} + \frac{1}{f} = \frac{1}{F} \right $
		Увеличение, даваемое
		линзой: $\Gamma = \frac{h}{H} = \frac{f}{d}$

13

	3.6.8	Ход луча, прошедшего линзу под произвольным углом к её главной оптической оси. Построение изображений точки и
		отрезка прямой в собирающих и рассеивающих линзах и их системах
	3.6.9	Фотоаппарат как оптический прибор.
		Глаз как оптическая система
	3.6.10	Интерференция света. Когерентные источники. Условия
		наблюдения максимумов и минимумов в
		интерференционной картине от двух синфазных когерентных источников
		максимумы: $\Delta = 2m\frac{\lambda}{2}, m = 0, \pm 1, \pm 2, \pm 3,$
		минимумы: $\Delta = (2m+1)\frac{\lambda}{2}, m=0,\pm 1,\pm 2,\pm 3,$
	3.6.11	Дифракция света. Дифракционная решётка. Условие
		наблюдения главных максимумов при нормальном падении
		монохроматического света с длиной волны λ на решётку с
	2 (12	периодом d : $d \sin \varphi_m = m\lambda$, $m = 0, \pm 1, \pm 2, \pm 3,$
4	3.6.12	Дисперсия света Ы СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ
4	4.1	Инвариантность модуля скорости света в вакууме. Принцип
	4.1	относительности Эйнштейна
	4.2	Энергия свободной частицы: $E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}$.
		Y C
		Импульс частицы: $\vec{p} = \frac{m\vec{v}}{\vec{p}}$.
		Импульс частицы: $\vec{p}=\frac{m\vec{v}}{\sqrt{1-\frac{v^2}{c^2}}}$.
	4.3	Связь массы и энергии свободной частицы:
		$E^2 - (pc)^2 = (mc^2)^2$.
		Энергия покоя свободной частицы: $E_0 = mc^2$
5	КВ	АНТОВАЯ ФИЗИКА И ЭЛЕМЕНТЫ АСТРОФИЗИКИ
5.1	$V \cap D\Pi V$	СКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ
	KOFIIY	скулли по-волиовой дунлизм
	5.1.1	Гипотеза М. Планка о квантах. Формула Планка: $E = hv$
	5.1.1	Гипотеза М. Планка о квантах. Формула Планка: $E = hv$

Ψη3η N	A, 11 класо	
	5.1.4	Уравнение Эйнштейна для фотоэффекта:
		$E_{\text{фотона}} = A_{\text{выхода}} + E_{\text{кин} max}$,
		где $E_{ m фотона}=h{ m v}=rac{hc}{\lambda}, A_{ m выхода}=h{ m v}_{ m \kappa p}=rac{hc}{\lambda_{ m \kappa p}},$
		$E_{_{ ext{KHH max}}} = rac{m v_{_{ ext{max}}}^2}{2} = e U_{_{ ext{3all}}}$
	5.1.5	Волновые свойства частиц. Волны де Бройля.
		Длина волны де Бройля движущейся частицы: $\lambda = \frac{h}{p} = \frac{h}{mv}$.
		Корпускулярно-волновой дуализм. Дифракция электронов на кристаллах
	5.1.6	Давление света. Давление света на полностью отражающую
		поверхность и на полностью поглощающую поверхность
5.2	ФИЗИК	A ATOMA
	5.2.1	Планетарная модель атома
	5.2.2	Постулаты Бора. Излучение и поглощение фотонов при
		переходе атома с одного уровня энергии на другой:
		$hv_{mn} = \frac{hc}{\lambda_{mn}} = E_n - E_m $
	5.2.3	Линейчатые спектры.
		Спектр уровней энергии атома водорода:
		-13,6 9B 1 2 2
		$E_n = \frac{-13.6 \text{ sB}}{n^2}, n = 1, 2, 3, \dots$
	5.2.4	Лазер
5.3	ФИЗИК	А АТОМНОГО ЯДРА
	5.3.1	Нуклонная модель ядра Гейзенберга-Иваненко. Заряд ядра. Массовое число ядра. Изотопы
	5.3.2	Энергия связи нуклонов в ядре. Ядерные силы
	5.3.3	Дефект массы ядра ${}^{\mathrm{A}}_{Z}\mathrm{X}$: $\Delta m = Z \cdot m_{p} + (A - Z) \cdot m_{n} - m_{\mathrm{gapa}}$
	5.3.4	Радиоактивность.
		Альфа-распад: ${}_{7}^{A}X \rightarrow {}_{7-2}^{A-4}Y + {}_{2}^{4}He$.
		Бета-распад. Электронный β -распад: ${}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}Y + {}_{-1}^{0}e + \widetilde{\nu}_{e}$.
		Позитронный β-распад: ${}_{Z}^{A}X \rightarrow {}_{Z-1}^{A}Y + {}_{+1}^{0}\tilde{e} + v_{e}$.
		Гамма-излучение
	5.3.5	t
		Закон радиоактивного распада: $N(t) = N_0 \cdot 2^{-T}$
	5.3.6	Ядерные реакции. Деление и синтез ядер
5.4	ЭЛЕМЕ	НТЫ АСТРОФИЗИКИ
	5.4.1	Солнечная система: планеты земной группы и планеты-
	5.1.1	гиганты, малые тела солнечной системы
	1	, ,

THOMAS, II KINCO				
	5.4.2	Звезды: разнообразие звездных характеристик и их		
		закономерности. Источники энергии звезд		
	5.4.3	Современные представления о происхождении и эволюции		
		Солнца и звезд.		
	5.4.4	Наша Галактика. Другие галактики. Пространственные		
		масштабы наблюдаемой Вселенной		
	5.4.5	Современные взгляды на строение и эволюцию Вселенной		

Раздел 2. Перечень требований к уровню подготовки, проверяемому на едином государственном экзамене по физике

Код		Требования к уровню подготовки выпускников, освоение
требования		которых проверяется на ЕГЭ
1		
1.1		смысл физических понятий
1.2		смысл физических величин
1.3		смысл физических законов, принципов, постулатов
2		Уметь:
2.1		описывать и объяснять:
	2.1.1	физические явления, физические явления и свойства тел
	2.1.2	результаты экспериментов
2.2		описывать фундаментальные опыты, оказавшие
		существенное влияние на развитие физики
2.3		приводить примеры практического применения физических
		знаний, законов физики
2.4		определять характер физического процесса по графику,
		таблице, формуле; продукты ядерных реакций на основе
		законов сохранения электрического заряда и массового числа
2.5	2.5.1	отличать гипотезы от научных теорий; делать выводы на
		основе экспериментальных данных; приводить примеры,
		показывающие, что: наблюдения и эксперимент являются
		основой для выдвижения гипотез и теорий, позволяют
		проверить истинность теоретических выводов; физическая
		теория дает возможность объяснять известные явления
		природы и научные факты, предсказывать еще не известные
		явления;

	2.5.2	приводить примеры опытов, иллюстрирующих, что: наблюдения и эксперимент служат основой для выдвижения гипотез и построения научных теорий; эксперимент позволяет проверить истинность теоретических выводов; физическая теория дает возможность объяснять явления природы и научные факты; физическая теория позволяет предсказывать еще не известные явления и их особенности; при объяснении природных явлений используются физические модели; один и тот же природный объект или явление можно исследовать на основе использования разных моделей; законы физики и физические теории имеют свои определенные границы применимости измерять физические величины, представлять результаты измерений с учетом их погрешностей
2.6		применять полученные знания для решения физических
		задач
3	Испол	ьзовать приобретенные знания и умения в практической
		деятельности и повседневной жизни для:
	3.1	обеспечения безопасности жизнедеятельности в процессе
		использования транспортных средств, бытовых
		электроприборов, средств радио- и телекоммуникационной
		связи; оценки влияния на организм человека и другие
		организмы загрязнения окружающей среды; рационального
	2.2	природопользования и охраны окружающей среды;
	3.2	определения собственной позиции по отношению к
		экологическим проблемам и поведению в природной среде