```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge, RidgeCV, Lasso
from sklearn.preprocessing import StandardScaler
```

In [5]: ► #data

data=pd.read_csv(r"C:\Users\jyothi reddy\Downloads\Advertising.csv")
data

Out[5]:

TV	Radio	Newspaper	Sales
230.1	37.8	69.2	22.1
44.5	39,3	45,1	10.4
17.2	45.9	69.3	12.0
151.5	41.3	58.5	16.5
180.8	10.8	58.4	17.9
38.2	3.7	13.8	7.6
94.2	4.9	8.1	14.0
177.0	9,3	6.4	14.8
283.6	42.0	66.2	25.5
232.1	8.6	8.7	18.4
	230.1 44.5 17.2 151.5 180.8 38.2 94.2 177.0	230.1 37.8 44.5 39.3 17.2 45.9 151.5 41.3 180.8 10.8 38.2 3.7 94.2 4.9 177.0 9.3 283.6 42.0	44.5 39.3 45.1 17.2 45.9 69.3 151.5 41.3 58.5 180.8 10.8 58.4 38.2 3.7 13.8 94.2 4.9 8.1 177.0 9.3 6.4 283.6 42.0 66.2

200 rows × 4 columns

Out[6]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9

In [7]: ► data.tail()

Out[7]:

	TV	Radio	Newspaper	Sales
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

```
In [8]:  plt.figure(figsize = (10, 10))
sns.heatmap(data.corr(), annot = True)
```

Out[8]: <Axes: >

The dimension of X_{train} is (140, 2) The dimension of X_{test} is (60, 2)

Linear Regression Model:

The train score for lr model is 1.0 The test score for lr model is 1.0

```
In [12]:
          ▶ #Ridge Regression Model
             ridgeReg = Ridge(alpha=10)
             ridgeReg.fit(X_train,y_train)
             #train and test scorefor ridge regression
             train_score_ridge = ridgeReg.score(X_train, y_train)
             test_score_ridge = ridgeReg.score(X_test, y_test)
             print("\nRidge Model:\n")
             print("The train score for ridge model is {}".format(train_score_ridge))
             print("The test score for ridge model is {}".format(test_score_ridge))
             Ridge Model:
             The train score for ridge model is 0.990287139194161
             The test score for ridge model is 0.9844266285141221
In [13]: | plt.figure(figsize = (10, 10))
             plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,color='red',label=r'Ridge
             plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,color='green',label='Linear Re
             plt.xticks(rotation = 90)
             plt.legend()
             plt.show()
                         Ridge; \alpha = 10
                         Linear Regression
              0.4
              0.3
              0.2
              0.1
              0.0
```

```
In [14]:  #Lasso regression model
    print("\nLasso Model: \n")
    lasso = Lasso(alpha = 10)
    lasso.fit(X_train,y_train)
        train_score_ls =lasso.score(X_train,y_train)
        test_score_ls =lasso.score(X_test,y_test)
    print("The train score for ls model is {}".format(train_score_ls))
    print("The test score for ls model is {}".format(test_score_ls))
```

Lasso Model:

The train score for 1s model is 0.0 The test score for 1s model is -0.0042092253233847465

```
In [15]:  pd.Series(lasso.coef_, features).sort_values(ascending = True).plot(kind = "bar")
```

Out[15]: <Axes: >

0.9999999343798134
0.99999999152638072

Elastic Net Regression

Mean Squared Error on test set 0.5538818050142158

The train score for ridge model is 0.9999999999962467

Vehicle Selection

In [23]: #data
data=pd.read_csv(r"C:\Users\jyothi reddy\Downloads\fiat500_VehicleSelection_Dataset (2).csv")
data

Out[23]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	рор	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	рор	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	рор	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	рор	51	1766	54276	1	40.323410	17.568270	7900

1538 rows × 9 columns

```
In [24]:
           data = data[['engine_power', 'price']]
              data.columns=['Eng', 'pri']
In [25]:

▶ data.head()

   Out[25]:
                 Eng
                       pri
              0
                  51
                      8900
                  51 8800
                  74 4200
                  51 6000
                  73 5700
In [26]:

    data.tail()

   Out[26]:
                          pri
                    Eng
              1533
                     51
                        5200
               1534
                     74 4600
               1535
                     51 7500
               1536
                        5990
```

In [27]: ► sns.lmplot(x='Eng',y='pri',data=data,order=2,ci=None)

Out[27]: <seaborn.axisgrid.FacetGrid at 0x1b618feb210>

1537

51 7900


```
In [28]:
          M data.info()
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 1538 entries, 0 to 1537
             Data columns (total 2 columns):
                  Column Non-Null Count Dtype
              0
                          1538 non-null
                                           int64
                  Eng
              1
                  pri
                          1538 non-null
                                           int64
             dtypes: int64(2)
             memory usage: 24.2 KB
In [29]:

    data.describe()

   Out[29]:
                          Eng
                                       pri
                   1538.000000
                                1538.000000
              count
                      51.904421
                                8576.003901
              mean
                std
                      3.988023
                                1939.958641
                      51.000000
                                2500.000000
                min
               25%
                      51.000000
                                7122.500000
               50%
                      51.000000
                                9000.000000
               75%
                      51.000000
                               10000.000000
                      77.000000
                               11100.000000
               max
          data.fillna(method='ffill')
In [30]:
   Out[30]:
                   Eng
                         pri
                    51
                        8900
                    51
                       8800
                 2
                    74 4200
                 3
                    51 6000
                       5700
                    73
              1533
                    51 5200
              1534
                    74 4600
              1535
                    51 7500
              1536
                    51 5990
              1537
                    51 7900
             1538 rows × 2 columns
In [31]:
          x=np.array(data['Eng']).reshape(-1,1)
             y=np.array(data['pri']).reshape(-1,1)
          In [32]:
             C:\Users\jyothi reddy\AppData\Local\Temp\ipykernel_5528\1368182302.py:1: SettingWithCopyWarning:
             A value is trying to be set on a copy of a slice from a DataFrame
             See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html
             #returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#retu
             rning-a-view-versus-a-copy)
               data.dropna(inplace=True)
```

```
In [33]: N
X_train,X_test,y_train, y_test = train_test_split(x, y, test_size = 0.25)
# Splitting the data into training data and test data
regr= LinearRegression()
regr.fit(X_train, y_train)
print(regr.score(X_test, y_test))
```

-0.016741612096668357

Out[35]: <seaborn.axisgrid.FacetGrid at 0x1b6194e5310>

Regression: 0.10448726124609498


```
In [37]:  plt.figure(figsize = (10, 10))
sns.heatmap(data.corr(), annot = True)
```

Out[37]: <Axes: >

Linear Regression Model:

The train score for lr model is 0.05626825330673724 The test score for lr model is 0.10448726124609498

Ridge Model:

The train score for ridge model is 0.05626809512387643 The test score for ridge model is 0.10441122874197295

Lasso Model:

The train score for ls model is 0.056266711934339186 The test score for ls model is 0.10424876847964815

0.056268253306737015 0.1044872588781085

C:\Users\jyothi reddy\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\linear_model_coord inate_descent.py:1568: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Pl ease change the shape of y to (n_samples,), for example using ravel().

y = column_or_1d(y, warn=True)

```
In [46]: | #plot size
    plt.figure(figsize = (10, 10))
        #add plot for ridge regression
    plt.plot(ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,color='red',label=r'Ridge; $\alpha #add plot for Lasso regression
    plt.plot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color='blue',label=r'lasso; $\alpha #add plot for Linear model
    plt.plot(lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,color='green',label='Linear Regression'
    #rotate axis
    plt.xticks(rotation = 90)
    plt.legend()
    plt.title("Comparison plot of Ridge, Lasso and Linear regression model")
    plt.show()
```

