Curso de Micro controladores PIC

Módulo 10 – MSSP: I2C

Juan González Gómez Ricardo Gómez González Andrés Prieto-Moreno Torres

Índice

1. Introducción al I2C

- 2. Registros I2C PIC16f876A
- 3. Ejemplo de Uso

Introducción al I2C

Protocolo de comunicaciones:

- 1. Permite la transferencia de datos de un dispositivo a otro
- 2. Es Serie (SDA)
- 3. Es Síncrono (SCL)
- 4. Bidireccional
- 5. Muy extendido
- 6. Modelo maestro esclavo

En el PIC se encuentra en el recurso **MSSP module**, compartido con el SPI.

Introducción al I2C

- Todas las transferencias están sincronizadas con la señal de reloj .
- El maestro es quien controla el reloj, los esclavos sólo pueden poner esta línea a nivel bajo para indicar que están ocupados.
- Es bidireccional pero controlado por el maestro.
- Sólo tiene dos señales:

SDA: Serial Data

SCL: Serial Clock

• Un maestro y varios esclavos. Los dispositivos tienen direcciones para evitar más líneas extras de Chip Select.

Resistencias de PULL-UP

El **I2C** necesita resistencias de **PULL-UP** ya que los dispositivos sólo pueden poner las líneas a nivel bajo. Esto es debido a un **mecanismo de seguridad**.

Si dos dispositivos quieren actuar sobre la misma línea al mismo tiempo, lo único que harán será ponerla a 0 voltios, lo cual es no dañino.

Valor dependiente de la frecuencia.

<100 kbps 100 kbps 400 kbps 4K7 2K2 1K

Protocolo I2C

El protocolo se puede estudiar mediante el establecimiento de una serie de bloques o condiciones.

Start Condition

Indica que va a comenzar una transmisión de datos

Inicializa el BUS I2C SDA se pone a nivel bajo cuando SCL está a nivel alto

Stop Condition

Indica que va a dejar libre el BUS I2C

Desocupa el BUS I2C SDA se pone a nivel cuando SCL está a nivel alto

Restart Condition

Indica que queremos seguir transmitiendo pero sin soltar el BUS.

Reinicia el BUS I2C Se usa cuando un START no sigue a un STOP

Transferencia de Datos

Cada dato está formado por 8 bits

El dato es válido cuando la señal SCL está a nivel alto

Validación (Acknoledge)

Validación de una trasferencia por parte de un dispositivo.

El receptor pone a nivel bajo la línea SDA

Señales I2C

Comunicación I2C

Escritura

Comunicación I2C

Lectura de más de un byte

(Ejemplo, depende del esclavo)

Índice

1. Introducción al I2C

2. Registros I2C PIC16f876A

3. Ejemplo de Uso

SSPSTAT: MSSP STATUS REGISTER (I²C MODE) (ADDRESS 94h)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/A	Р	S	R/W	UA	BF
bit 7							bit 0

SMP: Slew Rate Cotrol bit (desactivar para frecuencias <100K)

CKE: Activación BUS SMBus

D/A: En modo esclavo indica si se ha recibido una dirección o un dato

P: Condición de Stop detectada

S: Condición de Start detectada

R/W: bit que acompaña a la última dirección recibida

UA: Modo esclavo, con transferencia de 10-bits.

BF: Estado del registro de recepción/transmisión de datos.

SSPCON1: MSSP CONTROL REGISTER 1 (I²C MODE) (ADDRESS 14h)

	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
•	bit 7							bit 0

WCOL: Colisión de datos

SSPOV: Overflow

SSPEN: Activación del MSSP

CKP: En modo esclavo detiene el reloj **SSPM3..0**: Modo de funcionamiento

1000 MASTER (clk=Fosc / (4 * (SSPADD + 1)))

SSPCON2: MSSP CONTROL REGISTER 2 (I²C MODE) (ADDRESS 91h)

GCEN: Activar interrupciones

ACKSTAT: Estado del ACK (recibido?)

ACKDT: Valor del ACK

ACKEN: Mandar el ACK almacenado en ACKDT

RCEN: Activa recepción

PEN: Activar condición de STOP

RSEN: Activar condición de Restart

SEN: Activar condición de Start

Otros registros relacionados con I2C

SSPBUF: Registro donde depositamos el dato a mandar, o donde recibimos

SSPSR: No accesible por el usuario. Registro de desplazamiento

SSPADD: Lo usamos para indicar la velocidad del bus en modo Maestro o para indicar la dirección del módulo en esclavo.

Bit **SSPIF** del Registro **PIR1** se activa ante estas situaciones

Start conditicon

Stop condition

Data enviado o recibido

ACK enviado

Repeated start

(Muy útil para tener un mecanismo de comprobación del estado de las comunicaciones)

Índice

- 1. Introducción al I2C
- 2. Registros I2C PIC16f876A
- 3. Ejemplo de Uso

Sensor ultrasonidos SRF02

Con un único transductor tenemos emisor y receptor Conexión serie o I2C (niveles TTL)

Dirección interna seleccionable entre 16 valores **E0**, E2, E4, ... FE (por defecto E0)

Medidas de 15cm a 600cm

SRF02 (Registros)

Registros Nº	Modo de lectura	Modo de Escritura	
0	Revisión de software interno 0x05	Registros de comandos	
1	No usado (se lee 0x18)	No disponible	
2	Byte alto de la medidad realizada	No disponible	
3	Byte bajo de la medidad realizada	No disponible	
4	Byte alto del valor mínimo de distancia	No disponible	
5	Byte bajo del valor mínimo de distancia	No disponible	

SRF02 (comandos)

Cor	nandos	Doccrinción			
Decimal	Hexadecimal	Descripción			
80	0x50	Iniciar una nueva medición real. Resultado en pulgadas			
81	0x51	Iniciar una nueva medición real. Resultado en centímetros			
82	0x52	Iniciar una nueva medición real. Resultado en microsegundos			
86	0x56	Iniciar una nueva medida falsa. Resultado en pulgadas			
87	0x57	Iniciar una nueva medida falsa. Resultado en centímetros			
88	0x58	Iniciar una nueva medida falsa. Resultado en microsegundos			
92	0x5C	Transmite una ráfaga de 8 ciclos de 40khz- no hace cálculos de medición			
96	0x60	Fuerza un reinicio del sonar SRF02 realizando un ciclo de autoajuste.			
160	0xA0	1º comando de la secuencia para cambiar la dirección I2C			
165	0xA5	3º comando de la secuencia para cambiar la dirección I2C			
170	0xAA	2º comando de la secuencia para cambiar la dirección I2C			

SRF02 (Ejemplos)

Lanzar una medida de distancia en cm

