CARDINALITY OF SETS

offin cinverse:

let $f: A \rightarrow B$ be a 1-1 correspondence (bijection)

the inverse function of f is $f^{-1}: B \cdot I \rightarrow A$ such that $f^{-1}(b) = a \iff f(a) = f(b)$ defin let $g: A \rightarrow B$ and $f: B \rightarrow C$ be functions

the $f \cdot g: A \rightarrow C$ is called the composition of g with f. $\forall a \in A \quad f \cdot g(a) = f(cg(a))$

ex let
$$f: \mathbb{R} \to \mathbb{R}$$
 be $f(x) = x^2 + 2$
 $g: \mathbb{R} \to \mathbb{R}$ be $g(x) = 3x + 4$

then: gof: R -> R

 $g \cdot f(x) = g(f(x)) = 3(x^2+2)+4$ = $3x^2+10$

$$f \cdot g(x) = f(g(x)) = (3x+4)^{2} + 2$$

$$= 9x^{2} + 16 + 24x + 2$$

$$= 9x^{2} + 24x + 18$$

note
$$f \cdot g(x) \neq g \cdot f(x)$$

fhm	let $f: A \rightarrow B$ and $g: B \rightarrow C$
	of pape A onto B and g maps B onto C
	g.f maps A onto C.
Him	ib f and g are 1-1 functions (injections) then
	g.f: A->C is also 1-1 function (PROVE).
	2-
special fins	bloor = Lx.
	> assigns to x the largest integer < x
	Carrie Carrie Carrier Contract
	ceiling = [x]
	-> assigns to x smallest integer > x
, 4	
	-2 -1 1 2
	-1
	◎ /
	exponential y= and, are logarithm y= log x, are
	exponential y= and, a>1 logarithm y= logar, a>1
	20 0 12
	1-1-60-0-1-1
	1 All Marie Company
	and the state of t
	Sistema
	(terminal and the second

CARDINALITY

for finite sets = no of elements in the set oldn the sets A and B have the same condinality iff

there is a 1-1 correspondence (bijection) from A to B.

When they are equal, IAI = 1B1

of there is a 1-1 function Cinjection) from A to B

the cardinality relationship is

LAIS IBI

COUNTABLE SETS

1-1 correspondence

infinite no of elements

countably infinite

uncountably infinite

between M and the set in question.

enfinite set & is countable

151 = 2 (aleph-norght)

Chebrew alphabet

ex show that the set of odd positive integers is a countable 1 2 3 4 need to establish a bijection between M and & 5 7 f: M > S (bijection) consider ((n) = 2n-1 Sets up 1-1 correspondence · show that f is a 1-1 function f(n) = f(m), where m, m & M to show that n=m 2h-1 = 2m-1i. & is a 1-1 function (injection) · Show that & is onto Ymes; Inen (given any odd integer, i can find i'ts preimage in domain) f(n) = m

2n-1 = m

 \Rightarrow n = m+1

2

i. f is an onto (surjective) function,

since f is 1-1 and onto, its a bijection.

is set of odd positive integers is a countable set.

ex set of all integers # is countable.

f: N -> Z

1 2 3 4 5

0 1 -1 2 -2

f(n) = (n cohen n is even

- n-1 comen nis odd

to show that & is 1-1 and onto.

cardinality = 20 (aleph-nought)

ex	set of	rationa	lnumk	ers B	1/3 100	ntable		
	<u>P</u> 2	P3 2			1. East 200 100 100 100 100 100 100 100 100 100		17	
	to show		the	set of	rational	numb	sene 12 ⁺	Ľ
	q=1	P19 (>2)	2 3	© 3	© 4	<i>▼</i> 5	and Man	
	9= 2	1 2	2 2	2	² / ₁	3		
	9 = 3	3	2 3	* <u>3</u>	3	<u>\$</u> 3	The second	
	9=4	1,	<u> </u>	3	4	4		
	2 = 5	2	5	3	5	25		
	since al	1 the	positive ntable	rational	number	s are	Can ver listed o	riby) ince
	21 (in the	bunch	where	p+q	= 46		
EXERCIS	to to	Show 4	hat this	s is a	bijedio	n,		

	all the real nos. not countable -not recorring -not rational
	conton's diagonalization argument.
-25	
	UNCOUNTABLE SETS
	R (0,1) -> un countable
thm	set of R is uncountable
proof	by contradiction
	let us assume R is countable.
,	> subset (0,1) CR is also countable.
	=> elements of (0,1) can be listed in natural order,
	V1 = 0. d1 d12 d13 d17
	$V_2 = 0$, d_{21} d_{22} d_{23} d_{24} ,
	V3 = 0. d3, d32 d33 d35
	autona di e fo 1 9 }

-72	now, construct a new real number
	V.= 0. d1 d2 d3 d4
	where $di = \begin{cases} 3 & \text{if } dii \neq 3 \\ 4 & \text{if } dii = 3 \end{cases}$
	the new real number v is not equal to any of
	this r ₁ , r ₂ , r ₃ ,
	of ri in the dieth position & i.
here exist	F a real number r & (o, 1) that is not on the list. 5 contradiction with the enumerability assumption of (o, 1)
	Set of real numbers (0,1) is uncountable.
	cince (a, i) c IR and uncountable. CANTORI DIAGONALIZATION THERMOTE IR is also uncountable. ARGUMENT
thm	contable (check rosen book for proof).
thm	Schröder - bernstein theorm if A and B are sets with the cardinality very [A S B and B S A , then [Al = 1B] (his dive)

both A&B are 1-1 functions

ex share that | (0,1) | = | (0,1) |

find an injective function f: (0,1) 7 (0,1]

consider f(x) = x

(o,1) c (o,1] domain is smaller

» (0,1) 4 (0,17)

find an injective function g: (0,1) > (0,1)

consider g(x)= x

(o, 1] c (o, i)

> 10,17 (0,1)

using schröder-bernstein's theory

1 (0,1) | = | (0, 1] |