Introducción a la Genómica UNAL nov 2017

Alejandro Caceres ISGlobal, Barcelona

October 13, 2017

Metodos Multidimensionales

los que mas destacan son el anális de compontentes principales (PCA) y el escalamiento multidimensional (MDS)

- Miden la variabilidad genética en una muestra de individuos
- ▶ Determinan la distancia genetic antre poblaciones
- Se pueden usar para determinar ancestría

Analisis de Componentes Principales

Analisis de Componentes Principales

Metodos Multidimensionales

Producen variables que son combinaciones lineales de los SNPs de tal forma que

- explican la mayor variabilidad posible (PCA). SNPstats and PLINK
- explican la mayor distancia posible entre individios (MDS).
 PLINK

El número de variables que se calculan detende de que tanto queramos explicar los datos.

snpStats

Veamos como se calcula PCA en SNPstats

```
library(snpStats)
```

```
load("datos/NewsnpsSNPstats.RData")
xxmat <- xxt(NewsnpsSNPstats)
evv <- eigen(xxmat)
pcs <- evv$vectors[,1:2]
plot(pcs)</pre>
```


snpStats

Podemos ver que para esta región el PCA discrimina poblaciones

```
ids<-read.table("datos/20130606_g1k.ped", sep="\t", header=TRUE)
rownames(ids)<-ids$Individual.ID
pops<-ids[rownames(NewsnpsSNPstats),]$Population

plot(pcs, col=as.numeric(pops), pch=16)
legend("topright", legend=levels(pops), pch=16, col=1:length(levels(pops))</pre>
```


PLINK

Debido a que los analisis multivariantes son constosos computacionalmente es mejor usar codigo compilado PLINK.

```
plink --bfile mydata --pca --out mydata
plink --bfile mydata --mds-plot --out mydata --neighbour
```

Los resultados deben ser muy similares. —neighbour 1 15 calcula las distancias del primer al 15 vecinos mas cercanos para determinar si un individuo es un outlier en terminos de ancestría