Teoría de números algebraicos Tarea 1

Alexey Beshenov (alexey.beshenov@cimat.mx)

19 de agosto de 2020

Fecha límite: viernes, 28 de agosto.

Ejercicio 1.1. Para $d \geq 3$ libre de cuadrados demuestre que 2 es irreducible, pero no es primo en los anillos

- a) $\mathbb{Z}[\sqrt{-d}]$,
- b) $\mathbb{Z}[\sqrt{d}]$ para $d \equiv 1 \pmod{4}$.

Concluya que estos no son dominios de factorización única.

Ejercicio 1.2. Sea $p \equiv 1 \pmod{3}$ un primo racional. Usando la factorización única en $\mathbb{Z}[\zeta_3]$, demuestre que los números $u, v \in \mathbb{Z}$ en la expresión $4p = u^2 +$ $27v^2$ están bien definidos salvo el signo.

Ejercicio 1.3. Verifique sin computadora si la congruencia

$$x^3 \equiv 2 + 3\zeta_3 \pmod{23}$$

tiene solución en $\mathbb{Z}[\zeta_3]$.

Sugerencia: en total en $(\mathbb{Z}[\zeta_3]/(23))^{\times}$ habrá $\frac{23^2-1}{3}=176$ cubos y no es una buena idea enumerarlos uno por uno...

En general, dado un primo racional $p \equiv 2 \pmod{3}$, ¿cuándo $2 + 3\zeta_3$ es un cubo módulo p?

Ejercicio 1.4. Encuentre las soluciones enteras de $y^2=x^3-4$. Sugerencia: $y^2+4=(y+2i)\,(y-2i)$.

Ejercicio 1.5. Consideremos la ecuación $x^2 - 7y^2 = n$, donde

$$n = 2, 3, 4, 5, 6, 7, 8, 9, 10.$$

¿Para cuáles de estos n existen soluciones enteras? Demuestre que en este caso hay un número infinito de ellas.