

Student T Test

- 1) Set the hypotheses

 - bo = Null hypothesis
 bi = alternate hypothesis
- (2) set level 9 significance [0.1,0.05,0.01]
- 3 set test rollevion T-test, U-test, chi-square test etc
- 4) do the computation [based on the trest raileria]
 - -> calculate prualue [1est-characteristic]
- 5 make detision
 - get voltical value from dishibution table
 - -> decide acceptance region à rejection region

Introduction

- A t-test compares the average values of two data sets and determines if they came from the same population
- Mathematically, the t-test takes a sample from each of the two sets and establishes the problem statement

 H₀ = $\overline{\chi}_1 = \overline{\chi}_2$ H₁ = $\overline{\chi}_1 \neq \overline{\chi}_2$
- It assumes a null hypothesis that the two means are equal
- Using the formulas, values are calculated and compared against the standard values
- The assumed null hypothesis is accepted or rejected accordingly
- If the null hypothesis qualifies to be rejected, it indicates that data readings are strong and are probably not due to chance

Assumptions

- The first assumption is concerned with the scale of measurement. Here assumption for a t-test is that
 the scale of measurement applied to the data collected follows a continuous or ordinal scale.
- The second assumption is regarding simple random sample. The Assumption is that the data is collected from a representative, randomly selected portion of the total population.
- The third assumption is the data, when plotted, results in a normal distribution, bell-shaped distribution curve.
- The fourth assumption is a that reasonably large sample size is used for the test. Larger sample size means the distribution of results should approach a normal bell-shaped curve.
- The final assumption is the homogeneity of variance. Homogeneous, or equal, variance exists when the standard deviations of samples are approximately equal.

T-Test Formula

- Calculating a t-test requires three fundamental data values
 - Difference between the mean values from each data set, or the mean difference
 - Standard deviation of each group
 - Number of data values of each group
- This comparison helps to determine the effect of chance on the difference, and whether the difference is outside that chance range
- The t-test questions whether the difference between the groups represents a true difference in the study or merely a random difference
- The t-test produces two values as its output:
 - T-value or T-Score → p-value
 - Degrees of freedom

T-Value or T-Score

- The t-value, or t-score, is a ratio of the difference between the mean of the two sample sets and the variation that exists within the sample sets
- The numerator value is the difference between the mean of the two sample sets
- The denominator is the variation that exists within the sample sets and is a measurement of the dispersion or variability
- This calculated t-value is then compared against a value obtained from a critical value table called the T-distribution table
- Higher values of the t-score indicate that a large difference exists between the two sample sets
- The smaller the t-value, the more similarity exists between the two sample sets

Degrees of Freedom

- Degrees of freedom refer to the values in a study that has the freedom to vary and are essential for assessing the importance and the validity of the null hypothesis
- Computation of these values usually depends upon the number of data records available in the sample set

Paired Sample T-Test

- The correlated t-test, or paired t-test, is a dependent type of test and is performed when the samples
 consist of matched pairs of similar units, or when there are cases of repeated measures
- This method also applies to cases where the samples are related or have matching characteristics, like a comparative analysis involving children, parents, or siblings

$$T = \frac{mean1 - mean2}{\frac{s(diff)}{\sqrt{n}}}$$

- Where
 - mean1 and mean2 = The average values of each of the sample sets
 - s(diff) = The standard deviation of the differences of the paired data values
 - n = The sample size (the number of paired differences)
 - Degrees of freedom = n -1

Equal Variance or Pooled T-Test

 The equal variance t-test is an independent t-test and is used when the number of samples in each group is the same, or the variance of the two data sets is similar

$$T = \frac{mean1 - mean2}{\frac{(n_1 - 1) * var1^2 + (n_2 - 1) var2^2}{n_1 + n_2} * \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

- Where
 - mean1 and mean2 = Average values of each of the sample sets
 - var1 and var2 = Variance of each of the sample sets
 - n1 and n2 = Number of records in each sample set
 - Degrees of Freedom: n1 + n2 2

Unequal Variance T-Test

- The unequal variance t-test is an independent t-test and is used when the number of samples in each group is different, and the variance of the two data sets is also different
- This test is also called Welch's t-test

$$T = \frac{mean1 - mean2}{\sqrt{\frac{var1}{n1} + \frac{var2}{n2}}}$$

- Where
 - mean1 and mean2 = Average values of each of the sample sets
 - var1 and var2 = Variance of each of the sample sets
 - n1 and n2 = Number of records in each sample set
- Degrees of Freedom

DoF =
$$\frac{\left(\frac{var1^{2}}{n1} + \frac{var2^{2}}{n2}\right)^{2}}{\frac{\left(\frac{var1^{2}}{n1}\right)^{2}}{n1 - 1} + \frac{\left(\frac{var2^{2}}{n2}\right)^{2}}{n2 - 1}}$$

Which T-Test to use?

- If two sample sets are same or related => Paired T-Test
- If two sample sets are of same size => Equal Variance T-Test
- If two sample sets have same variance => Equal Variance T-Test
- If two sample sets do not have same variance => Unequal Variance T-Test

Example

- S1 = 19.7, 20.4, 19.6, 17.8, 18.5, 18.9, 18.3, 18.9, 19.5, 21.95
- \$2 = 28.3, 26.7, 20.1, 23.3, 25.2, 22.1, 17.7, 27.6, 20.6, 13.7, 23.2, 17.5, 20.6, 18, 23.9, 21.6, 24.3, 20.4, 23.9, 13.3

$$51 = 19.35$$
 $52 = 21.6$

Variance = 1.27

Variance 2 = 19.71

 $11 = 10$
 $12 = 20$

$$0 \text{ Ho} = \overline{S1} = \overline{S2}$$
, $\text{Ha} = \overline{S1} \neq \overline{S2}$

- 52 = 21.6 Dif a is Not given, by default d = 0.05
- Variance] = 1.27 (3) since $v_1 \neq v_2$, we will use unequal variance T-test
 - 4 do the computation, T=-2.13, DoF=19.31

d=0.05, two toiled test

Since prualue (-2.13) is falling in Rejection Region, the Null hypothesis is rejected

U-Test

Mann Whitney U Test

- Also known as Wilcoxon Rank Sum Test
- This test can be used to investigate whether two *independent* samples were selected from populations having the same distribution
- Uses ranking to determine the result

Mann Whitney U Test: Steps

- Assign numeric ranks to all the observations (put the observations from both groups to one set), beginning with 1 for the smallest value
- Now, add up the ranks for the observations which came from sample 1. The sum of ranks in sample 2 is now determinate, since the sum of all the ranks equals N(N+1)/2 where N is the total number of observations
- Calculate u values

$$U_1 = R_1 - \frac{n_1(n_1+1)}{2}$$

$$U_2 = R_2 - \frac{n_2(n_2 + 1)}{2}$$

- Where
 - n1 = size of first sample
 - n2 = size of second sample
 - R1 = sum of all observations of first sample
 - R2 = sum of all observations of second sample
- Use the smaller value from u1 and u2
- Lookup the u value in the u-table → with walue

Mann Whitney U Test: Example

 $\left[dist(P1) = dist(P1) \right]$ Ho = SIRSZ one selected from populations with

$$-$$
 S1 = 3, 4, 2, 6, 2, 5

$$u_1 = R_1 - \frac{n_1(n_1+1)}{2} = 22 - \frac{677}{2} = 1$$

$$42 = R2 - \frac{02(0241)}{2} = 45 - \frac{647}{2} = 24$$

p-value il smallert q u1 & v2 = 41 (1)

Critical Values of the Mann-Whitney U (Two-Tailed Testing)

	n _I													c = 0.00	605				
n ₂	α [3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
3	.05		0	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
	.01		0	0	0	0	0	0	0	0	1	1	1	2	2	2	2	3	3
4	.05		0	1	2	3	4	4	5	6	7	8	9	10	11	11	12	1.3	14
	.01			0	0	0	1	1	2	2	3	3	4	5	5	6	6	7	8
5	.05	0	1	2	3	5	6	7	8	9	11	12	13	14	15	17	18	19	20
	.01			0	1	1	2	3	4	5	6	7	7	8	9	10	11	12	13
6	.05	1	2	3		6	8	10	11	13	14	16	17	19	21	22	24	25	27
	.01		0	1	2	3	4	5	6	7	9	10	11	12	13	15	16	17	18
7	.05	1	3	5	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
	.01		0	1	3	4	6	7	9	10	12	13	15	16	18	19	21	22	24
8	.05	2	4	6	8	10	13	15	17	19	22	24	26	29	31	34	36	38	41
	.01		1	2	4	6	7	9	11	13	15	17	18	20	22	24	26	28	30
9	.05	2	4	7	10	12	15	17	20	23	26	28	31	34	37	39	42	45	48
	.01	0	1	3	5	7	9	11	13	16	18	20	22	24	27	29	31	33	36
10	.05	3	5	8	1.1	14	17	20	23	26	29	33	36	39	42	45	48	52	55
	.01	0	2	4	6	9	11	13	16	18	21	24	26	29	31	34	37	39	42
11	.05	3	6	9	13	16	19	23	26	30	33	37	40	44	47	51	55	58	62
	.01	0	2	5	7	10	13	16	18	21	24	27	30	33	36	39	42	45	48
12	.05	4	7	11	14	18	22	26	29	33	37	41	45	49	53	57	61	65	69
12	.01	1	3	6	9	12	15	18	21	24	27	31	34	37	41	44	47	51	54
13	.05	4	8	12	16	20	24	28	33	37	41	45	50	54	59	63	67	72	76
1.5	.01	1	3	7	10	13	17	20	24	27	31	34	38	42	45	49	53	56	60
14	.05	5	9	13	17	22	26	31	36	40	45	50	55	59	64	67	74	78	83
	.01	1	4	7	1.1	15	18	22	26	30	34	38	42	46	50	54	58	63	67
15	.05	5	10	14	19	24	29	34	39	44	49	54	59	64	70	75	80	85	90
	.01	2	5	8	12	16	20	24	29	33	37	42	46	51	55	60	64	69	73
16	.05	6	11	15	21	26	31	37	42	47	53	59	64	70	75	81	86	92	98
	.01	2	5	9	13	18	22	27	31	36	41	45	50	55	60	65	70	74	79
17	.05	6	11	17	22	28	34	39	45	51	57	63	67	75	81	87	93	99	105
	.01	2	6	10	15	19	24	29	34	39	44	49	54	60	65	70	75	81	86
	.05	7	12	18	24	30	36	42	48	55	61	67	74	80	86	93	99	106	112
	.01	2	6	11	16	21	26	31	37	42	47	53	58	64	70	75	81	87	92
19	.05	7	13	19	25	32	38	45	52	58	65	72	78	85	92	99	106	113	119
	.01	3	7	12	17	22	28	33	39	45	51	56	63	69	74	81	87	93	99
20	.05	8	14	20	27	34	41	48	55	62	69	76	83	90	98	105	112	119	127
	.01	3	8	13	18	24	30	36	42	48	54	60	67	73	79	86	92	99	105

Chi-Square Test

Introduction

- The Chi-Square test is a statistical procedure for determining the difference between observed and expected data
- This test can also be used to determine whether it correlates to the categorical variables in our data
- It helps to find out whether a difference between two categorical variables is due to chance or a relationship between them

Hypornesis tests Use prahee & (Tital values Parametric tests Use a distribution table - T- Frest - U- Test - F. Test one way ANOUA two way

No 0126 de ceptical Non-parametric tests do not use any dishib - chi-square - goodness q fit

Test Definition

- A chi-square test is a statistical test that is used to compare observed and expected results
- The goal of this test is to identify whether a disparity between actual and predicted data is due to chance or to a link between the variables under consideration
- As a result, the chi-square test is an ideal choice for aiding in our understanding and interpretation of the connection between our two categorical variables
- A chi-square test or comparable nonparametric test is required to test a hypothesis regarding the distribution of a categorical variable
- Categorical variables, which indicate categories such as animals or countries, can be nominal or ordinal
- They cannot have a normal distribution since they can only have a few particular values

Use of Chi-Square

- Chi-square is a statistical test that examines the differences between categorical variables from a random sample in order to determine whether the expected and observed results are well-fitting
- Uses of the Chi-Squared test:
 - The Chi-squared test can be used to see if your data follows a well-known theoretical probability distribution like the Normal or Poisson distribution
 - The Chi-squared test allows you to assess your trained regression model's goodness of fit on the training, validation, and test data sets

Limitations

- The chi-square test, for starters, is extremely sensitive to sample size
- Even insignificant relationships can appear statistically significant when a large enough sample is used
- The chi-square can only determine whether two variables are related. It does not necessarily follow that
 one variable has a causal relationship with the other. It would require a more detailed analysis to
 establish causality.

Formula

$$x^2 = \frac{\sum (O - E)^2}{E}$$

- Where
 - 0 = Observed Value
 - E = Expected Value

ANOVA

ANOVA

- Analysis of variance, or ANOVA, is a statistical method that separates observed variance data into different components to use for additional tests
- A one-way ANOVA is used for three or more groups of data, to gain information about the relationship between the dependent and independent variables
- If no true variance exists between the groups, the ANOVA's F-ratio should equal close to 1

ANOVA: Rational

- Basic idea is to partition total variation of the data into two sources
 - Variation within levels (groups)
 - Variation between levels (groups)
- If H0 is true the standardized variances are equal to one another

ANOVA

Dof= size-1 = pol

$$F = rac{Variance\ Between\ Groups}{Variance\ Within\ Groups} = rac{rac{SSG}{df_{groups}}}{rac{SSE}{df_{error}}}$$

Where

- SSG = Sum of Squares Groups
- SSE = Sum of Squares Error
- df_{groups} = degrees of freedom (groups)
- df_{error} = degrees of freedom (error)

ANOVA Example

sample

sample

sample

sample

sample

sample

Combined Mean = 8.3

Sum of Squares Between Groups

2			10	10
3		2	10	10
7		3	8	13
7 2 6		7	7	14
6				
10		2	5	13
10 8 7 5		6	10	15
7				
5		mean	mean	mean
10				
13	1.	mean - mean	mean - mean	mean - mean
14				
13	2.	(mean - mean) ²	(mean - mean) ²	(mean - mean) ²
15				140 4 . 0 4 . 04 0\ * =
mean	3.	(mean - mean) ²	+ $(mean - mean)^2$ + $(mean - mean)^2$	= (18.1 + 0.1 + 21.8) * 5 = 40.7 * 5
				= 40.7 S = 203.3
	4	((
	4.	(mean - mean) ²	+ $(mean - mean)^2$ + $(mean - mean)^2$	x 5

Property of ANOVA

WD22 + BD22 = 728

F Distribution

fronto = prvalle = frable

$$F = \frac{101.667}{4.5} = 22.59$$