RECURSOS PARA MATEMÁTICA

Grupo do Facebook

Prova Modelo de Exame Nacional Matemática A Prova 635 | Ensino Secundário | Junho 2023

Duração da Prova: 150 minutos. | Tolerância: 30 minutos. | 8 Páginas

A prova inclui 12 itens, devidamente identificados no enunciado com \star ao lado no número item, cujas respostas contribuem obrigatoriamente para a classificação final. Dos restantes 6 itens da prova, apenas contribuem para a classificação final os 3 itens cujas respostas obtenham melhor pontuação.

INSTRUÇÕES DE REALIZAÇÃO

- · Para cada resposta, identifique o item.
- Utilize apenas caneta ou esferográfica de tinta azul ou preta.
- Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.
- É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.
- · Apresente apenas uma resposta para cada item.
- As cotações dos itens encontram-se no final do enunciado da prova.
- A prova inclui um formulário.
- Nas respostas aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.
- Nas respostas aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

Formulário

Geometria

Comprimento de um arco de circunferência:

 αr (α - amplitude, em radianos, do ângulo ao centro; r - raio)

Área de um polígono regular: Semiperímetro × Apótema

Área de um sector circular:

$$\frac{\alpha r^2}{2}$$
 ($lpha$ - amplitude, em radianos, do ângulo ao centro; r - raio)

Área lateral de um cone: πrg (r- raio da base; g - geratriz)

Área de uma superfície esférica: $4\pi r^2$ (r- raio)

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \acute{A}rea \ da \ base \times Altura$

Volume de uma esfera: $\frac{4}{3}\pi r^3$ (r- raio)

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1 + u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

$$\operatorname{sen}(a+b) = \operatorname{sen} a \cos b + \operatorname{sen} b \cos a$$

 $\cos(a+b) = \cos a \cos b - \sin a \sin b$

Complexos

$$\left(\rho e^{i\theta}\right)^n = \rho^n e^{in\theta}$$

$$\left(\rho e^{i\theta}\right)^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho e^{i\theta}} = \sqrt[n]{\rho} e^{i\frac{\theta + 2k\pi}{n}} \left(k \in \{0, \dots, n-1\} \text{ e } n \in \mathbb{N}\right)$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(u^n)' = nu^{n-1}u' \ (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$\left| \left(\operatorname{tg} u \right)' = \frac{u'}{\cos^2 u} \right|$$

$$(e^u)' = u'e^u$$

$$(e^{u})' = u'e^{u}$$

$$(a^{u})' = u'a^{u} \ln a \quad (a \in \mathbb{R}^{+} \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

Manuel Oliveira

±1	É dada uma sucessão (<i>l</i>	h) dofinido nom h =	$(-1)^{n+1}$
× 1.	E dada dilia sucessao (c	σ_n), definida por σ_n =	4n

É possível concluir que 0,00125:

(A) não é termo de (b_n) ;

(B) é termo de ordem 199;

(C) é termo de ordem 200;

- (D) é termo de ordem 201;
- **2.** Considerem-se (u_n) e (v_n) , progressões aritmética e geométrica, respetivamente, com a mesma razão e primeiro termo igual a 2.

Sabendo que a diferença entre u_3 e v_3 é $\frac{5}{2}$, calcule a soma de todos os termos de (v_n) .

 \star 3. Considere a família de funções quadráticas definidas em $\mathbb R$ por:

$$f(x) = x^2 - 2x\cos(\alpha) + 1 - \sin(\alpha), \quad \alpha \in \left[0, \frac{\pi}{2}\right].$$

Determine, analiticamente, os valores de α para os quais os gráficos das funções desta família são tangentes ao eixo das abcissas.

- 4.
- ★ 4.1. Considere o lançamento de dez dados cúbicos equilibrados, todos de cores diferentes e com as faces numeradas de 1 a 6. A soma dos valores obtidos nos dez dados foi de 16 pontos. Em quantos desses lançamentos ocorre exatamente uma face com o número 4?

Uma resposta a este problema é

$$10 \times \left(^{11}C_8 - 9 \right)$$

Numa pequena composição justifique esta resposta.

- **4.2.** Seja $(E, \mathcal{P}(E), P)$ um espaço de probabilidade e $A, B \in \mathcal{P}(E)$ dois acontecimentos possíveis. Sabe-se que:
 - P(A|B) = P(B)
 - $P[(A \cap B) | (A \cup B)] = \frac{1}{5}$
 - P(A) = 4P(B) 1

Qual é o valor de P(B)?

- Na figura 1 estão representados, num referencial ortonormado Oxyz, o prisma quadrangular regular [ABCDEFGH] e a reta r. Sabe-se
 - os pontos A e B têm coordenadas (3,5,3) e (-3,3,6), respetiva-
 - uma equação vetorial da reta r, que contém o ponto E, é:

$$(x,y,z) = (4,6,-9) + k(-7,-10,-6), k \in \mathbb{R}$$

Sejam α um plano que passa no ponto A e $\vec{u}(1,2,1)$ um vetor *** 5.1.** paralelo a α . A reta r é paralela ao plano α .

As coordenadas do ponto de interseção do plano α com o eixo Oy

- **(A)** (0,2,0)
- **(B)** (0,1,0)
- (C) (0,-1,0) (D) (0,-2,0)

Figura 1

- Escolhendo, simultaneamente e ao acaso, três dos oito vértices do prisma, qual é a probabilidade do plano definido por esses três pontos conter a reta AE? Apresente o resultado na forma de fração irredutível.
- *** 5.3.** Determine o volume do prisma quadrangular regular [ABCDEFGH].
- Durante o pôr e o nascer do Sol, o Sol aparenta estar numa posição que não corresponde à realidade. Esta discrepância deve-se à mudança da direção de propagação da luz quando esta muda do vácuo para a atmosfera e entre as diferentes camadas da atmosfera.

Assumindo um modelo simplista de que a atmosfera é constituída por uma única camada de densidade constante, é possível explicar este desvio através da fórmula:

$$\delta = \operatorname{sen}^{-1}\left(\frac{n \times R}{R+h}\right) - \operatorname{sen}^{-1}\left(\frac{R}{R+h}\right)$$

sendo n o índice de refração da atmosfera, R o raio do planeta, h a espessura da atmosfera e δ a amplitude do desvio.

Figura 2

*** 6.1.** Aplicando este modelo simplista na Terra, ou seja, considerando que a atmosfera da Terra é constituída por uma única camada de índice de refração 1,0003 e que a espessura dessa atmosfera é 320 vezes menor que o seu raio.

A amplitude do desvio, em graus e aproximado às centésimas, é:

- **(A)** $0,20^{\circ}$
- **(B)** 0.22°
- **(C)** 0.24°
- **(D)** 0.26°
- Considera-se que os planetas TOI 700 d e Teegarden b têm atmosferas constituídas por uma única camada de índice de refração 1,0003. Estima-se que o raio de TOI 700 d é 12% maior que o raio de Teegarden b.

Seja k > 100 o quociente entre o raio e a espessura da atmosfera do planeta Teegarden b. Verifica-se que, em comparação com Teegarden b, se a espessura da atmosfera de TOI 700 d é 5% inferior, então a amplitude do desvio aumenta 9,2%.

Utilizando as capacidades gráficas da sua calculadora, determine o valor de k.

Na sua resposta deve:

- · equacionar o problema;
- reproduzir o(s) gráfico(s) que considerar necessário(s) para a resolução do problema bem como a(s) coordenada(s) de algum (ou alguns) ponto(s) relevante(s);
- indicar o valor de *k* arredondado às unidades.

Sugestão: na equação do problema, colocar um dos membros a zero.

7. Determine o conjunto dos números reais que são soluções da inequação

$$(x-e)\log\sqrt{-x+1} \le \ln\left(e^{-x}\right)\log\left(1-x\right)$$

Apresente a resposta usando a notação de intervalos de números reais.

*** 8.** Sejam f e g duas funções diferenciáveis, definidas no intervalo [-a, a], com a > 0. Sabemos que:

- *f* é ímpar;
- $g \notin par e g(-a) = 0$.

Mostra, recorrendo ao teorema de Bolzano-Cauchy, que existe pelo menos um valor de x no intervalo [-a,a] em que f(x) = g(x).

*** 9.** Considere a função f, de domínio \mathbb{R} , definida por $f(x) = (x-2)e^{-0.25x}$. Sejam:

- A o ponto de interseção do gráfico de f com o eixo das abcissas;
- *B* um ponto móvel no gráfico de *f* com abcissa maior que 2;
- C o ponto sobre o eixo das abcissas com a mesma abcissa do ponto B.

Considere g, a função que a cada abcissa do ponto B faz corresponder a área do triângulo [ABC].

Determine, por processos analíticos, a abcissa do ponto B para a qual é máxima a área do triângulo [ABC].

 \star 10. Na figura 3 está representado, no plano complexo, um eneágono regular inscrito numa circunferência centrada na origem.

Im(z) $_{\star}$

O ponto P pertence à circunferência e é a imagem geométrica do número complexo z=4+3i.

A e B são vértices do polígono e A pertence ao eixo imaginário.

Qual é o número complexo cuja imagem geométrica é o ponto B?

(A)
$$5e^{i\frac{25\pi}{18}}$$

(B)
$$5e^{i\frac{29\pi}{18}}$$

(C)
$$6e^{i\frac{25\pi}{18}}$$

(D)
$$6e^{i\frac{29\pi}{18}}$$

11. Considere \mathbb{C} , o conjunto dos números complexos. Sejam $z \in \mathbb{C}$, $w \in \mathbb{C}$ e $\theta \in \mathbb{R}$ tais que

$$ze^{i\theta} + we^{i(-\theta)} = 2\cos\theta + 3\sin\theta$$

Determine, na forma algébrica, dois números complexos z e w que verifiquem a equação para todo o $\theta \in \mathbb{R}$.

Re(z)

 \boldsymbol{A}

В

Figura 3

$$f(x) = \begin{cases} \frac{e^{\sin(\pi x)} - 1}{x} & \text{se } x < 0 \\ \ln k & \text{se } x = 0, \quad k \in \mathbb{R}^+ \\ \ln(e^x - 1) & \text{se } x > 0 \end{cases}$$

- *** 12.1.** Sabendo que $\lim_{x\to 0^-} f(x) = f(0)$, qual é o valor de k?
 - (A) $\ln \pi$
- **(B)** *e*

- **(C)** π
- **(D)** e^{π}

12.2. Determine as equações das assíntotas ao gráfico de f.

José Carlos Pereira —

 \star 13. Seja f uma função duas vezes derivável em $\mathbb R$ tal que:

- a reta de equação y = -3x + 3 é tangente ao gráfico de f no ponto de abcissa 0;
- o gráfico de *f* tem um ponto de inflexão no ponto de abcissa 0.

Qual é o valor de $\lim_{x\to 0} \frac{\left(f(x)\right)^2 + 2f(x)f'(x) + \left(f'(x)\right)^2}{x^2}$?

As pontuações obtidas nas respostas a estes 12 itens da prova contribuem obriga- toriamente para a classifica- ção final.	1.	3.	4.1	5.1.	5.3.	6.1.	6.2.	8.	9.	10.	12.1.	13.	Subtotal
Cotação (em pontos)	12	12	14	12	14	12	14	14	14	12	12	14	158
Destes 6 itens, contribuem para a classificação final da prova os 3 itens cujas respostas obtenham melhor pontuação.	2. 4.2.		5.2.		7.		11.		12.2		Subtotal		
Cotação (em pontos) 3 × 14 pontos													42
Total													200

Coordenação José Carlos Pereira

Paginação Antero Neves