Regresión

Data Mining

Ester Vidaña Vila

Regresión Lineal

Data Mining

Ester Vidaña Vila

Data science en el mundo real

- ¿Cómo lo hacen los data scientist para explotar los parámetros estadísticos en el mundo real?
- Se puede hacer:
 - Regresión
 - Clasificación
 - Clustering
- La idea es operar a través de un modelo
 - Presentación formal de una teoría
 - El modelo transforma los datos de entrada en respuestas: nos centraremos en modelos lineales
- Vamos a obsesionarnos con la generalización

Las navaja suiza de la estadística: Regresión

- Proceso para estimar la relación entre variables
- Tenemos
 - Una variable dependiente (o target) y
 - Una serie de predictores (o regresores, o variables independientes)
- En términos formales: $\vec{y} = f(x_1, x_2, ..., x_n), \quad \vec{y} \in \mathbb{R}, \vec{x} \in \mathbb{R}^N$
- Nos ayuda a entender cómo el valor dependiente cambia cuando uno de sus predictores varía, mientras que el resto de predictores quedan fijos.

Regresión lineal (I)

Un modelo de regression lineal consiste en una combinación lineal de parámetros

$$E[y|x_1, x_2, ..., x_n] = \theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2 + ... + \theta_n \cdot x_n + \vec{\varepsilon}$$

donde θ_i son los parámetros que debemos estimar, x_i son los predictores y ε es el término de error

One dimension (that is: using a singe predictor x) linear regression model

Regresión lineal (II)

Un modelo de regression lineal consiste en una combinación lineal de parámetros

$$E[y|x_1, x_2, ..., x_n] = \theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2 + ... + \theta_n \cdot x_n + \vec{\varepsilon}$$

donde θ_i son los parámetros que debemos estimar, x_i son los predictores y ε es el término de error

- \blacksquare ¿Cómo encontramos los parámetros θ_i ?
 - **E**ncontrar la línea que **minimice** el término de error ε
 - Ordinary least squares (OLS)

$$\vec{\theta} = (\vec{X}^T \cdot \vec{X})^{-1} \cdot \vec{X}^T \cdot \vec{Y}$$

- Relación lineal: existe una relación lineal entre las variables independientes (x) y la variable dependiente (y).
 - Podemos comprobarlo con un scatterplot.

- Relación lineal: existe una relación lineal entre las variables independientes (x) y la variable dependiente (y).
 - Podemos comprobarlo con un scatterplot.
- Colinealidad: Los predictores son linealmente independientes.

MBD Data Mining Page 8

- Relación lineal: existe una relación lineal entre las variables independientes (x) y la variable dependiente (y).
 - Podemos comprobarlo con un scatterplot.
- Colinealidad: Los predictores son linealmente independientes.
- Homoscedasticidad: La variancia del término de error es constante a través de las distintas observaciones.

Podemos hacer un plot que muestre el valor predicho vs. el término de

error.

- Relación lineal: existe una relación lineal entre las variables independientes (x) y la variable dependiente (y).
 - Podemos comprobarlo con un scatterplot.
- Colinealidad: Los predictores son linealmente independientes.
- Homoscedasticidad: La variancia del término de error es constante a través de las distintas observaciones
 - Podemos hacer un plot que muestre el valor predicho vs. el término de error.
- Normalidad: El término de error tiene una **distribución normal**, con media cero y desviación estándar 1. Se puede comprobar haciendo un Q-Q plot.

Ver el futuro gracias a regresores lineales

- Estos modelos son extremadamente útiles ya que nos permiten hacer predicciones:
 - Dada la energía que hemos consumido hoy, ¿cuánta consumiremos mañana?
 - ¿Qué número de ventas esperamos para un producto determinado el siguiente trimestre fiscal?
- ¡Estupendo! ¿Pero cuán fiables son nuestros modelos?
- Necesitamos una forma de estimar lo bien que hemos desarrollado nuestro modelo
- Hay diferentes formas de ver cuán bueno es un modelo.
- Por ejemplo, dos métodos comunes son:
 - $1. R^2$
 - Nos dice cómo de bien se aproxima la línea de regresión a los valores de muestra
 - 2. Root mean squared error (RMSE)
 - Calcula la diferencia entre los valores reales y los valores predichos por el modelo

Ver el futuro gracias a regresores lineales

$1. R^2$

- Nos dice cómo de bien se aproxima la línea de regresión a los valores de muestra.
- Va de 0 a 1, métrica muy intuitiva.
- Cuanto más próxima a 1 es la métrica, mejor.

```
0,00 ---> No existe correlación lineal alguna entre las variables
0,10 ---> Correlación positiva débil
0,50 ---> Correlación positiva media
0,75 ---> Correlación positiva considerable
0,90 ---> Correlación positiva muy fuerte
1,00 ---> Correlación positiva perfecta
```

Root mean squared error (RMSE)

- Calcula la diferencia entre los valores reales y los valores predichos por el modelo.
- Tiene las mismas unidades que la variable respuesta.
- Cuanto más pequeño, más ajustado (o bueno) es el modelo.

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

Ejemplo: tamaño de casa vs. precio de casa

Price	Size
145000	1240
68000	370
115000	1130
127200	1340

Model summary

Coefficients:

(Intercept) Estimate 9161.159 Size 77.008

R-squared: 0.5752 RMSE: 36361.05

$$Price = \theta_0 + \theta_1 \cdot Size + \vec{\varepsilon}$$

Data set courtesy of https://www.statcrunch.com/5.0/viewreport.php?reportid=5647

Regresión Logística

Data Mining

Ester Vidaña Vila

Clasificación a base de regresión

- Proceso general relacionado con la clasificación
 - Identificar a qué categoría de un set pertenecen nuevas observaciones a partir de los datos de entrada.
 - Es un **mapeo** de un conjunto de datos de ejemplo a un conjunto de categorías predeterminadas (*class labels*)
- Se puede ver como un caso especial de regresión
 - En este caso, la variable de salida es discreta

Clasificación con regresión logística

- Una respuesta binaria relacionada con una serie de predictores.
 - Así pues, la salida de la clase se traduce en dígitos binarios 0/1.
 - NO_PASS_EXAM / PASS_EXAM...
- La regresión logística estima la **probabilidad** de que una característica esté presente dados los valores del resto de variables.
 - Es lo que se llama un threshold classifier
- Formalmente:

$$\Pr(\vec{y}|\vec{x}) = \log \frac{\Pr(\vec{x})}{1 - \Pr(\vec{x})} = \theta_0 + \vec{\theta} \cdot \vec{x}$$

$$\Pr(\vec{x}; \vec{\theta}) = \left[1 + e^{-\theta_0 - \vec{\theta} \cdot \vec{x}}\right]^{-1}$$
Esta es la función logística

Ejemplo: Hours of study vs pass the exam

MBD Data Mining Page 17

Threshold classifier

- La regresión logística muestra un valor de probabilidad para la salida.
 - Threshold classifier!
- Ejemplo:

```
IF Pr(\vec{x}; \vec{\theta}) \ge 0.5 THEN class = PASS_EXAM,
Class = NO_PASS_EXAM OTHERWISE
```

- Podemos modificar el threshold (0.5 en el ejemplo de arriba) para obtener una clasificación más precisa
- Ejemplo:

IF
$$Pr(\vec{x}; \vec{\theta}) \ge 0.9$$
 THEN class = PASS_EXAM,
Class = NO_PASS_EXAM OTHERWISE

Métricas de evaluación del modelo: matriz de confusión

Confusion matrix

- Nos indica cómo de bien se ha comportado el clasificador.
- Vemos la relación entre los casos verdaderos (ground truth) y las predicciones.

Type I Error: predict as PASS when it is NO PASS

MBD

Métricas de evaluación del modelo

■ A partir de la matriz de confusion, podemos obtener distintas métricas:

$${\color{red} \text{sensitivity} = \frac{\text{number of true positives}}{\text{number of true positives} + \text{number of false negatives}}}$$

- total number of sick individuals in population
- = probability of a positive test given that the patient has the disease

También llamado True Positive Rate o Recall

$$specificity = \frac{number of true negatives}{number of true negatives + number of false positives} \\ = \frac{number of true negatives}{total number of well individuals in population} \\ = probability of a negative test given that the patient is well}$$

También llamado True Negative Rate

MBD Data Mining Page 20

Receiver Operating Characteristic (ROC)

- A partir de la matriz de confusión, podemos generar la curva Receiver Operating Characteristic (ROC) para automatizar el proceso de encontrar el mejor threshold.
 - Es un plot que ilustra el rendimiento del clasificador binario a medida que se va variando el threshold.

El problema es el overlap entre predicciones!

MBD Data Mining Page 21

Receiver Operating Characteristic (ROC)

- Queremos un balance entre el True Positive Rate (TPR) y el False Positive Rate (FPR)
 - Como depende del threshold, podemos hacer un barrido para encontrar "el mejor threshold posible", por ejemplo maximizando el TPR.
 - Si definimos un número de thresholds muy grande obtenemos una curva

MBD

Receiver Operating Characteristic (ROC)

- El área bajo la curva ROC nos dice cómo de bien se ha comportado nuestro clasificador:
 - Lo bien que discrimina entre clases

Mejor zona

- Se llama Area Under the Curve (AUC)
 - Muestra la probabilidad de que el clasificador clasifique correctamente una muestra

0.7 - 0.8 se considera acceptable 0.8 - 0.9 se considera excelente Más de **0.9** se considera excepcional

Data Mining Page 23