ЛКШ, ЛКШ.2018.Август В' В', конспект лекции

Собрано 21 августа 2018 г. в 21:10

Содержание

1. Площадь многоугольника 1.1. Через трапеции	1 1 1
2. Принадлежность точки многоугольнику	2
3. Проверка на выпуклость	9
4. Выпуклая оболочка 4.1. Алгоритм Джарвиса (заворачивания подарка)	4
5. Пересечение полуплоскостей	6

Тема #1: Площадь многоугольника

14 августа

1.1. Через трапеции

Научимся находить площадь выпуклого многоугольника.

Выберем порядок обхода. Перебираем вершины в этом порядке. Пусть мы сейчас рассматриваем вершину A, за ней в списке следует B. Если A.x < B.x, то прибавим к результату площадь трапеции, с основаниями, пущеными из A и B перпендикулярно к оси абсцисс, иначе — вычтем. Это записывается простой формулой $\frac{(B.x-A.x)\cdot(A.y+B.y)}{2}$

TODO: картика.

Чтобы учесть последнее ребро, запишем самую первую вершину в конец массива.

Результат мог получится как положительный, так и отрицательный. Это зависит от направляения обхода. Поэтому не забудем взять по модулю.

```
vector < Point > polygon;
polygon.push_back(polygon.front());
long long S = 0;
for (int i = 0; i < n; ++i) {
        S += (polygon[i+1].x - polygon[i].x) * (polygon[i+1].y + polygon[i].y);
}
cout << fabs(S / 2.0) << '\n';</pre>
```

Этот же способ работает и для невыпуклых прямоугольников.

1.2. Через треугольники

Проведем из точки (0,0) отрезки ко всем вершинам. Посчитаем ориентированный площади треугольников, образованных ребром и двумя отрезками из начала координат, в порядке обхода. Утверждается, что мы получим то же самое, что и в прошлой задаче (площадь со знаком плюс или минус, в зависимости от порядка обхода).

TODO: картинка

```
vector < Point > polygon;
polygon.push_back(polygon.front());
long long S = 0;
for (int i = 0; i < n; ++i) {
    S += polygon[i] * polygon[i+1]; // векторное произведение
}
cout << fabs(S / 2.0) << '\n';</pre>
```

Оба эти алгоритма работают за $\mathcal{O}(n)$

Тема #2: Принадлежность точки многоугольнику

14 августа

Пустим горизонтальный луч из точки, посчитаем количество пересечений со сторонами многоугольника. Если очо четно, то мы снаружи, а если нечетно, то внутри.

Но тут есть проблема: наш луч может попасть в какую-то вершину, и не понятно, считать это за 2 пересечения или за одно.

TODO: картинка

Эту проблему можно решить. Скажем, что теперь вершины не всегда принадлежат стороне, а именно для стороны AB:

- 1. $A.y > B.y \implies A \notin AB$
- 2. $A.y \leq B.y \Rightarrow A \in AB$

Наша задача свелась к n ответам на запрос «Пересекается ли луч с отрезком/полуинтервалом». Допустим, мы умеем проверять пересечение луча и отрезка. Тогда нужно проверить, не по верхней ли координате это пересечение. А это можем сделать одним ифом (сравнить y координаты).

Осталось проверить пересечение луча и отрезка. Мы уже умеем проверять пересечение двух отрезков (см. прошлую лекцию). Скажем, что мы пустили не луч, а очень длинный отрезок (вторая координата $+\infty$).

Если координаты многоугольника целочисленные, то мы смогли решить задачу в целых числах.

Тема #3: Проверка на выпуклость

14 августа

Многоугольник называется выпуклым, если отрезок, соединяющий любые две точки внутри него, целиком лежит внутри.

Равносильное определение: многоугольник выпуклый, если все соседние стороны образуют поворот в одну и ту же сторону.

Второе определение проверять гораздо легче. Направление поворота умеем проверять по знаку векторного произведения.

 \Rightarrow знак векторного произведения для всех соседних пар сторон одинаковый \Leftrightarrow многоугольник выпуклый.

Здесь полезно зафиксировать направление обхода, чтобы не мучиться с обработкой случая двух знаков. По часовой стрелке знак минус, против — плюс.

Тема #4: Выпуклая оболочка

14 августа

Выпуклой оболочкой множества точек называется наименьший по площади выпуклый многоугольник, содержащий в себе или на границе все точки этого множества.

Неформальное определение: точки множества — гвоздики. Натягиваем бооольшую резинку вокруг, потом отпускаем.

Можно доказать, что вершины выпуклой оболочки — точки из множества.

4.1. Алгоритм Джарвиса (заворачивания подарка)

На каждом шаге алгоритм будет выбирать очередную точку, лежащую в выпуклой оболочке. Изначально в выпуклой оболочке будет лежать только нижняя левая точка (она точно есть в выпуклой оболочке и ее можно найти за линию).

Теперь пусть мы взяли i точек. Хотим взять i+1-ю. Для этого переберем все невзятые точки. Из них нужно взять ту, угол поворота до которой (в системе координат с началом в последней взятой точке) минимален. Это мы умеем делать векторным произведением.

```
vector < Vector > polygon;
2
  . . .
3
  // start - самая левая из самых нижних точек
4 | convex_hull.push_back(polygon[start]);
   polygon.erase(polygon.begin() + start);
   while (convex_hull.size() == 1 || convex_hull.back() != start) {
7
       int idx = 0;
       for (int i = 1; i < (int) polygon.size(); ++i) {</pre>
8
           if (Vector(polygon[i] - convex_hull.back()) * Vector(polygon[idx] -
9
               convex_hull.back()) >= 0) {
10
                idx = i;
           }
11
12
       }
13
       convex_hull.push_back(polygon[idx]);
14
       polygon.erase(polygon.begin() + idx);
15
```

Этот алгоритм работает за $\mathcal{O}(nh)$, где h — размер выпуклой оболочки.

Если мы хотим, чтобы в построенной оболочке не было углов 180 градусов, нужно выбирать из равных по углу самую дальнюю точку

4.2. Алгоритм Грэхема

Давайте снова выберем самую левую из самых нижних точек. Назовем ее \mathbf{z} . Дальше отсортируем точки по полярному углу, если перенести начало координат в точку \mathbf{z} .

Как можно это сделать?

Способ первый. Предподсчитать atan2 для всех точек изначально. Запустить обычный sort.

Плюсы: это быстро ($\mathcal{O}(n)$ вызовов atan2, быстрая сортировка)

Способ второй. Отсортировать по компаратору (векторное произведение, длина).

Плюсы: целые числа

Минусы: $\mathcal{O}(n \log n)$ раз вызываем не самое быстрое векторное произведение

После того, как мы отсортировали, идем со стеком. Перебираем очередную точку. Хотим взять ее в выпуклую оболочку. Когда мы не можем взять? Когда предпоследняя точка в стеке, послед-

няя точка в стеке и наша точка образуют правый поворот. В таком случае уберем последнюю точку из стека.

TODO: картинка

Чтобы восстановить всю выпуклую оболочку нам удобно положить в конец отсортированного вектора точку **z**.

```
bool is_right_turn(Vector a, Vector b, Vector c) {
2
       return (b - a) * (c - b) < 0;
3
  }
4
5
  for (int i = 1; i <= n; ++i) {
6
       while (st.size() >= 2 && is_right_turn(st[st.size() - 2],
7
              st.back(), polygon[i]))
8
           st.pop_back();
9
       st.push_back(polygon[i]);
10
```

По окончании в стеке останутся только вершины из выпуклой оболочки.

TODO: написать про лямбды.

4.3. Алгоритм Эндрю

Отсортировали точки по x. Выбрали самую левую. Постоили выпуклую оболочку предыдущим алгоритмом для нижнего множества (там должен быть левый поворот) и для верхнего (правый поворот). Объединили две выпуклые оболочки.

Тема #5: Пересечение полуплоскостей

14 августа

TODO