Leonhard Applis

What makes an Ed

Definition

Basics gradier based

One dimensional approach Two Dimensional Approach

gradient based edgedetection

Edge Detection

Leonhard Applis

TH Nürnberg

05.11.2018

Leonhard Applis

What makes an Edge?

- Problems
- Definition

- One dimensional approach
- Two Dimensional Approach
- Filters

Leonhard Applis

Picture of Felix vs Edges of Felix

Problem I: Low Contrast

Leonhard Applis

Problems

_ _ _

Basics of

Basics of gradient based

One dimensions

Two Dimensiona Approach

> radien ased dgede ection

Problem II: Low Contrast

 $\begin{array}{c} {\rm Leonhard} \\ {\rm Applis} \end{array}$

Problems

1 Toblems

Demnitio

Basics gradien

One di-

approach Two Dimensiona

Filters

Problem III: Noise

Leonhard Applis

Problems

Definition

Leonhard Applis

Problems Definition

One dimensiona approach Two Dimensiona Approach In Image Processing, an edge can be defined as a set of contiguous pixel positions where an abrupt change of intensity, gray- or color-values occur. Edges represent boundaries between objects and background. Sometimes, the edge-pixel-sequence may be broken due to insufficient intensity difference.(Malay K. Pakhira)

Leonhard Applis

- - Problems
 - Definition
- 2 Basics of gradient-based edgedetection
 - One dimensional approach
 - Two Dimensional Approach
 - Filters

Requirements

Leonhard Applis

color values known

2 picture scale known

3 loaded as pixelmatrix

One dimensional approach

Leonhard Applis

Problems Definition

One dimensional approach Two Di-

Two Dimensional Approach

Figure: One dimensional image function and derivation
Only applyable with known, steady functions

Approximating discrete derivation

Leonhard Applis

Problems Definition

One dimensional approach Two Di-

mensiona Approach Filters Problem: the image function is discrete, therefore we need to approximate the derivation

Figure: Approximation of the derivation for discrete imagefunctions

$$\frac{df}{dx}(u) \approx \frac{f(u+1) - f(u-1)}{(u+1) - (u-1)} = \frac{f(u+1) - f(u-1)}{2}$$

Two dimensional approach

Leonhard Applis

Problems Definition

One dimensions approach Two Di-

mensional Approach If working with full images, we got two dimensions and therefore two partial derivations:

$$I_x = \frac{\partial I}{\partial x}(u, v), I_y = \frac{\partial I}{\partial y}(u, v)$$

the **gradient** at the point (u,v) is

$$\nabla I(u,v) = \begin{pmatrix} I_x(u,v) \\ I_y(u,v) \end{pmatrix}$$

And the magnitude is

$$|\nabla I| = \sqrt{I_x^2 + I_y^2}$$

Example

Leonhard Applis

makes an Edg

Definitio

Basics gradiei based

One dimensions approach Two Di-

mensional Approach

Advance gradient pased edgedeection

Implementation with filters

Leonhard Applis

Expressing the gradient as a *linear filter* is simple:

$$I_x = \begin{bmatrix} -0.5 & 0 & 0.5 \end{bmatrix} I_y = \begin{bmatrix} -0.5 \\ 0 \\ 0.5 \end{bmatrix}$$

an Edge?

Definition

One dimensiona approach Two Dimensiona Approach

Filters

- Leonhard Applis

- - Problems
 - Definition
- - One dimensional approach
 - Two Dimensional Approach
 - Filters
- 3 Advanced gradient-based edgedetection

Leonhard Applis

- What makes an Edge?
 - Problems
 - Definition
- Basics of gradient-based edgedetection
 - One dimensional approach
 - Two Dimensional Approach
 - Filters
- 3 Advanced gradient-based edgedetection
- 4 Compass Operators
- 6 Edge Sharpening

One dimensional approach Two Dimensional Approach

ection Compa Opera-

Leonhard Applis

- What makes an Edge?
 - Problems
 - Definition
- Basics of gradient-based edgedetection
 - One dimensional approach
 - Two Dimensional Approach
 - Filters
- 3 Advanced gradient-based edgedetection
- Compass Operators
- **5** Edge Sharpening

