Assignment 3

Maximum points: 20 Due date: 6th Dec. 2024 at 23:00

Guidelines

- <u>Individual Assignment</u>: This is an individual assignment. Please do not seek help from others or collaborate with classmates.
- <u>Problem Understanding</u>: Carefully read the problem description and each question before starting your analysis.
- <u>Choice of Software</u>: You are free to use either R or Python to perform your analysis.
- <u>Code Requirements</u>: Your code should be well-structured and free of errors. Please use clear and descriptive variable names.
- Deliverables: Submit the following two files on Canvas:
 - 1. Code file (.R/.Rmd/.py/.ipynb): This file should contain the complete executable code for the analysis.
 - 2. Report file (.pdf): This document should contain your answers to all the questions asked below. Please use the solution template provided on Canvas (Assignment_3_Template.docx) to answer the questions. On the cover page, please write your name, student number, and date. After writing your answers, submit the document as a pdf file.
- <u>Plagiarism Warning</u>: Ensure that all the code and analysis are your original work. Plagiarism will lead to disqualification and academic consequences.
- <u>Late Submissions</u>: Late submissions will be accepted but penalized.
- <u>Points Distribution</u>: The distribution of points and grading rubric for the questions is provided at the end of this document.

Use the "insurance.csv" dataset from Assignment 2 to answer questions 1 and 2:

- 1. Create a column binary_charges (as you did in Question 9 of Assignment 2). Build a logistic regression model (as you did in Question 10 of Assignment 2) using age, gender, bmi, children, smoker, and region as predictor variables and binary_charges as the target variable. For this logistic regression model:
 - a. Set a threshold (cut-off probability) of **0.2** and use the model to classify all the training observations. Report the confusion matrix.
 - b. Set a threshold of **0.8** and use the model to classify all the training observations. Report the confusion matrix.
 - c. Create an ROC plot for the logistic regression model and report the area under the curve (AUC). Explain the meaning of AUC in 1-2 lines.
- 2. Suppose we decide to use a threshold of **0.5** for the logistic regression model. Do the following:
 - a. Report the confusion matrix.
 - b. Report the accuracy of the model and explain it (1-2 lines).
 - c. Report the precision of the model and explain it (1-2 lines).
 - d. Report the sensitivity of the model and explain it (1-2 lines).
 - e. Report the specificity of the model and explain it (1-2 lines).
 - f. Report the true positive rate of the model and explain it (1-2 lines).
 - g. Report the false positive rate of the model and explain it (1-2 lines).

To answer the questions below, access the "books.csv" file from Canvas. The dataset contains 500 transactions of customers across 5 categories of books. An entry of 1 indicates purchase and an entry of 0 indicates no purchase.

- 3. Compute the following (based on the 5 categories):
 - a. Euclidean distance between customers 245 and 431
 - b. Manhattan distance between customers 82 and 197
 - c. Centroid of the first 50 customers
- 4. Which two genres of books have:
 - a. the highest co-occurrence?
 - b. the lowest co-occurrence?
- 5. Suppose we cluster the customers based on the total number of books purchased. What is the size of each cluster?
- 6. Compute the **support** of the following itemsets:
 - a. {fiction}
 - b. {non_fiction}
 - c. {fiction, self_help}
- 7. Compute the **confidence** of the following association rules:
 - a. $\{fiction\} \rightarrow \{mystery\}$
 - b. $\{\text{non fiction}\} \rightarrow \{\text{self help}\}\$

- c. {fiction, self_help} \rightarrow {childrens_books}
- 8. Compute the **lift** of the following association rules:
 - a. $\{fiction, self_help\} \rightarrow \{childrens_books\}$
 - b. $\{fiction\} \rightarrow \{non_fiction\}$
 - c. $\{\text{non_fiction}\} \rightarrow \{\text{self_help}\}$
- 9. Explain the meaning of the following:
 - a. Support of {fiction, self_help}
 - b. Confidence of {fiction, self_help} \rightarrow {childrens_books}
 - c. Lift of $\{fiction, self_help\} \rightarrow \{childrens_books\}$

Points distribution and grading rubric

Question	Point(s)	Grading criteria		
		Correct	Incorrect answer, but coding	Incorrect answer
		answer	logic partially correct	and coding logic
1a	1	1	0.5	0
1b	1	1	0.5	0
1c	1	1	0.5	0
2a	1	1	0.5	0
2b	0.5	0.5	0.25	0
2c	0.5	0.5	0.25	0
2d	0.5	0.5	0.25	0
2e	0.5	0.5	0.25	0
2f	0.5	0.5	0.25	0
2g	0.5	0.5	0.25	0
3a	0.5	0.5	0.25	0
3b	0.5	0.5	0.25	0
3c	1	1	0.5	0
4a	1	1	0.5	0
4b	1	1	0.5	0
5	1	1	0.5	0
6a	0.5	0.5	0.25	0
6b	0.5	0.5	0.25	0
6c	0.5	0.5	0.25	0
7a	0.5	0.5	0.25	0
7b	0.5	0.5	0.25	0
7c	1	1	0.5	0
8a	1	1	0.5	0
8b	1	1	0.5	0
8c	1	1	0.5	0
9a	0.5	0.5	0.25	0
9b	0.5	0.5	0.25	0
9c	0.5	0.5	0.25	0

