BÀI SỐ 2

XÁC ĐỊNH MÔ MEN QUÁN TÍNH CỦA VẬT RẮN ĐỚI XỨNG NGHIỆM LẠI ĐỊNH LÝ STEINER - HUYGENS

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Xác nhận của giáo viên hướng dân
Trường Đại lực Bo'ch Khoa Hà Nặi. Lớp 715930 Nhóm 5 Họ tên Tạ Công Nam	\mathcal{M}

I. MỤC ĐÍCH THÍ NGHIỆM Xác định Mô men quản tinh của vật vair đối xílng ; nghiệm lại định lý Steiner - Huygan

II. KÉT QUẢ THÍ NGHIỆM

1. Xác định mô men quán tính I_0 của một số vật rắn đối xứng

Bảng 1

•							-	3
- Mô men quán tính của đĩa đỡ khối trụ: $I_{\rm D} = 0.0011.0011.0011.0011.0011.0011.0011.$								
Lần			Đĩa đặc		Trụ rỗng		Khối cầu	
đo	$T_{TH}(s)$	ΔT (s)	$T_{\partial\partial}(s)$	ΔT (s)	$T_{TR+\tilde{\mathcal{D}}}(s)$	ΔT (s)	$T_{c}(s)$	ΔT (s)
1	2,626	0,601	2,068	0,001	1,147	0,000	2,117	0,001
2	2,626	0,001	2,068	0,001	1,147	0,000	2,117	0,001
3	2,623	0,002	2,068	0,001	1,146	0,001	2,119	0,001
4	2,625	0,000	2,071	0,002	1,148	0,001	2,119	0,001
5	2,627	0,002	2,070	0,001	1,148	0,001	2,118	0,000
TB	2,625	0,001	2,069	0,001	1,147	0,001	2,118	0,001

2. Nghiệm lại định lý Steiner - Huygens

Bảng 2

d (×10 ⁻³ m)	T (s)	$x = d^2 (\times 10^{-6} \text{m}^2)$	$I = D_{z} \left(\frac{T}{2\pi}\right)^{2} (kg.m^{2})$
0	7,639	0	0,0078
30	2,745	900	0,0084
60	3,009	3600	0,0101
90	3,398	8100	0,0129
120	3,888	14400	0,0169

1. Sai so' trông đổi trung binh cưa mô men quan tinh các vật văn đối xưng $I = D_2 \left(\frac{1}{2\pi}\right)^2$

Buroc 1: Lag' la hai ve', ta duroc
$$\ln I = \ln D_2 + 2 \ln T - 2 \cdot \ln \pi - 2 \cdot \ln \pi = 2$$

Bude 2: Dao ham train phain 2 ve', tacó:

$$\frac{dI}{I} = \frac{d(D_2)}{D_2} + 2\frac{dT}{T} - 2\frac{dT}{II}$$

Builce 3: Thay of thanh daily sai so D, lay tong tri tryet this cula các sai sơ thanh phá trìng thui thay I, I long các giá trị trung bình của olling, ta á:

$$\frac{\Delta I}{\bar{I}} = \frac{\Delta D_1}{D_2} + \frac{2\Delta T}{\bar{T}} + \frac{2\Delta F}{\bar{T}}$$

- Colob lay sai so' T vei so' T : Sai so' tring ati' của T không lớn hen 1 tồng Sai sơ tương đó của các đại lượng còn lại

2. Nghiện lai định lý Steiner - Huygens

I(kg.m²)	$\Delta I(kg.m^2)$	$\chi (m^{2})$	1 (m2)
0,0078	0,0002	Ō	0,0000
0,0084	0,0002	0,0009	0,0001
0,0101	0,0002	0,0036	0,0001
0,0129	0,0003	0,0081	0,0002
0,0169	0,0004	0,0144	0,0002

- Sai & tuyết đối DI được xóc định dựa vào giá trị I và sai số tương đối $\int \text{cuta} I \, \text{tương ống}$: $DI = \int I$

III. XỬ LÝ SÓ LIỆU

- 1. Tính mô men quán tính của các vật rắn đối xứng
- **a.** Thanh dài $L = 620 \pm 1 \text{ (mm)}, M = 240 \pm 1 \text{ (g)}$
- Sai số tuyệt đối của phép đo chu kỳ T_{TH} (đo trực tiếp)

$$\Delta T_{TH} = (\Delta T)_{dc} + \overline{\Delta T}_{TH} = 0,001 + 0,001 = 0,002 \text{ (s)}$$

- Mô men quán tính trung bình của thanh dài:

$$\bar{I}_{TH} = D_z \left(\frac{\bar{T}_{TH}}{2\pi}\right)^2 = ...0,0.44 \times ... \left(\frac{2.62J}{2\times3.044}\right)^2 = 0.00\% \text{ (kgm}^2)$$

- Sai số tương đối trung bình của phép đo mô men quán tính của thanh dài:
$$\delta = \frac{\Delta I_{TH}}{\overline{I}_{TH}} = \frac{\Delta D_z}{D_z} + \frac{2\Delta T_{TH}}{\overline{T}_{TH}} + \frac{2\Delta \pi}{\pi} = \frac{0,004}{0,044} + \frac{2\times0,002}{2,625} + \frac{2\times0,004}{3,444} = \frac{0,025}{3,444}$$
- Sai số truyệt đối của mỗ man quán tính của thanh dài:
$$\frac{2}{\sqrt{2}} = \frac{2}{\sqrt{2}} =$$

- Sai số tuyệt đối của mô men quán tính ΔI_{TP}

$$\Delta I_{TH} = \delta.\bar{I}_{TH} = \ell.j.0.25. \times 0.j.00.7.6.8. = ...0.j.0.00.4.9.$$
 (kgm²)

Kết quả đo mô men quán tính của thanh dài:

$$I_{TH} = \bar{I}_{TH} \pm \Delta I_{TH} = ...\mathcal{O}, 00768 \pm ... \pm ... \mathcal{O}, 00049$$
 (kgm²)

- Mô men quán tính của thanh dài tính theo lý thuyết (/ग्रेम: LT

$$(I_{TH})_{LT} = \frac{1}{12}ML^2 = \frac{1$$

- Sai số tỷ đối:
$$\delta^* = \frac{|(I_{TH})_{LT} - I_{TH}|}{(I_{TH})_{LT}} = \frac{|\mathcal{O},00769 - \mathcal{O},00769|}{\mathcal{O},00769} = \frac{\mathcal{O},13}{\mathcal{O},00769}$$
 (%)

- **b.** Đĩa đặc $D = 220 \pm 1 \text{ (mm)}, M = 795 \pm 1 \text{ }$
- Sai số tuyệt đối của phép đo chu kỳ $T_{\mathcal{D}\mathcal{D}}$ (đo trực tiếp)

$$\Delta T_{DD} = (\Delta T)_{dc} + \overline{\Delta T}_{DD} = ...0._{f} OO.1...+...O_{f} OO.1... = ...O_{f} OO.2. (s)$$

- Mô men quán tính trung bình của đĩa đặc:

$$\bar{I}_{DD} = D_z \left(\frac{\overline{T}_{DD}}{2\pi}\right)^2 = \mathcal{O}_z \mathcal{O}_z^4 + \times \left(\frac{2,069}{2 \times 3,144}\right)^2 = \mathcal{O}_z \mathcal{O}_z^4 + \times \left(\frac{2,069}{2 \times 3,144}\right)^2 = \mathcal{O}_z^4 \mathcal{O}_z^4 + \mathcal{O}_z^$$

- Sai số tương đối trung bình của phép đo mô men quán tính của đĩa đặc:

$$\delta = \frac{\Delta I_{DD}}{\overline{I}_{DD}} = \frac{\Delta D_z}{D_z} + \frac{2\Delta T_{DD}}{\overline{T}_{DD}} + \frac{2\Delta \pi}{\pi} = \frac{0.001}{0.044} + \frac{2 \times 0.007}{2.069} + \frac{2 \times 0.001}{3.144} = ...2, \dots (\%)$$

Sai số tuyệt đối của mô men quán tính ΔIρρ;

$$\Delta I_{DD} = \delta \bar{I}_{DD} = ...0,025 \times 0,0047 = ...0,00012$$
 (kgm²)

- Kết quả đo mô men quán tính của đĩa đặc:

$$I_{DD} = \bar{I}_{DD} \pm \Delta I_{DD} = ...O, 0.0477...\pm ...O, 0.000.42...$$
 (kgm²)

- Mô men quán tính của đĩa đặc tính theo lý thuyết $\left(I_{\scriptscriptstyle DD}
ight)_{\scriptscriptstyle LT}$:

$$(I_{DD})_{LT} = \frac{1}{8}MD^2 = \frac{1}{8} \cdot (\frac{795}{1000}) \cdot (\frac{220}{1000})^2 \cdot (0.90481) \cdot (\text{kgm}^2)$$

- Sai số tỷ đối:
$$\delta' = \frac{|(I_{DD})_{LT} - I_{DD}|}{(I_{DD})_{LT}} = \frac{|(O_100481 - O_10047)|}{(O_100481 - O_10047)} = \frac{|(O_100481 - O_10047)|}{(O_100481 - O_10047)} = \frac{|(O_100481 - O_10047)|}{(O_100481 - O_100481)} = \frac{|(O_100481 - O_100481)|}{(O_100481 - O_100481)} = \frac{|(O_100481$$

- Sat 88' tuyết đểi Dn = 2d. Δd (do $x = d^2$), với d = 0,001(m)- Ta cơi Sat 80' tuyết đổi của trồng giá trị I và x chính bằng sai 80' tuyết đổi lên nhất của uố. Tước là $Dn = 0,0002\,\text{m}^2\text{vớ}$ $\Delta I = 0,0004\,\text{kg.m}^2$

c. Try rong
$$D = 89 \pm 1 \text{ (mm)}, M = 780 \pm 1 \text{ (g)}$$

 $_{\circ}$ Sai số tuyệt đối của phép đo chu kỳ $T_{{\scriptscriptstyle TH+D}}$ (đo trực tiếp)

$$\Delta T_{IR+D} = (\Delta T)_{,tt} + \overline{\Delta T}_{TR+D} = .0.1.00.1...\pm.0.1.00.1...=...0.00.2...$$
 (s)

Mô men quán tính trung bình của trụ rỗng và đĩa đỡ:

$$\bar{I}_{III+D} = D_2 \left(\frac{\bar{T}_{III+D}}{2\pi}\right)^2 = ...0, 0.4.5. \times ... \left(\frac{1,147}{2\times3,144}\right)^2 = 0,00.44.7 \text{(kgm}^2)$$

Sai số tương đối trung bình của phép đo mô men quán tính của trụ rỗng và đĩa đỡ: 2, 7
$$\delta = \frac{\Delta I_{TRCD}}{I_{TRCD}} = \frac{\Delta D_z}{D_z} + \frac{2\Delta T_{TRCD}}{T_{TRCD}} + \frac{2\Delta \pi}{\pi} = \frac{O_1001}{O_1044} + \frac{2 \times O_1002}{4 \times 474} + \frac{2 \times O_1004}{3 \times 44} = \frac{2 \times O_1004}{3 \times 44} = \frac{O_1044}{3 \times 44} + \frac{O_1044}{3 \times 44} = \frac{O_104}{3 \times 44} = \frac{O$$

- Sai số tuyệt đối của mô men quán tính của trụ rỗng và đĩa đỡ ΔI_{TR+D}

$$\Delta I_{TR+D} = \delta.\bar{I}_{TR+D} = .0.70.3(4.4. \times .0.00.4.4.7.... = 0.10000.4 \text{ (kgm}^2)$$

- Mô men quán tính trung bình của trụ rỗng \overline{I}_{ru} :

$$I_{IR} = I_{IR+D} - I_D = 0,00.14.7. - 0,000.14.3. = 0,00.135.7.$$
 (kgm²)

- Sai số tuyệt đối của mô men quán tính trụ rỗng ΔI_{TR} :

Kết quả đo mô men quán tính của trụ rỗng:

$$I_{TR} = \bar{I}_{TR} \pm \Delta I_{TR} = ...O_{2} = ...O_{3} =$$

- Mô men quán tính của trụ rỗng tính theo lý thuyết $(I_{TR})_{IT}$:

$$(I_{TR})_{LT} = \frac{1}{4}MD^2 = \frac{1}{4}...(\frac{780}{1000})...(\frac{89}{1000})^2 = 0.00.154.5. \text{ (kgm}^2)$$

- Sai số tỷ đối:
$$\delta^* = \frac{|(I_{TR})_{LT} - I_{TR}|}{(I_{TR})_{LT}} = \frac{|(0,00.1545 - 0,00.1357)|}{(0,00.1545 - 0,00.1357)} = \frac{12}{(1.500.1545 - 0,00.1545)} = \frac{12}{(1.500.154$$

d. Khối cầu đặc
$$D = 146 \pm 1 \text{ (mm)}, M = 2290 \pm 1 \text{ (g)}$$

- Sai số tuyệt đối của phép đo chu kỳ T_c (đo trực tiếp)

$$\Delta T_C = (\Delta T)_{dc} + \overline{\Delta T}_C = 0.004. \pm 0.004. = 0.004. = 0.002. \text{ (s)}$$

- Mô men quán tính trung bình của khối cầu đặc:

$$\bar{I}_C = D_z \left(\frac{\bar{T}_C}{2\pi}\right)^2 = ...Q_J Q \mathcal{L} \mathcal{L} \times \left(\frac{2J118}{2\times3J44}\right)^2 = ... = Q_J Q Q \mathcal{L} \mathcal{Q} \times \left(\text{kgm}^2\right)$$

- Sai số tương đối trung bình của phép đo mô men quán tính khối cầu đặc:

$$\delta = \frac{\Delta I_C}{\overline{I}_C} = \frac{\Delta D_z}{D_z} + \frac{2\Delta T_C}{\overline{T}_C} + \frac{2\Delta \pi}{\pi} = \frac{0.004}{0.044} + \frac{2 \times 0.01002}{2.044} + \frac{2 \times 0.001}{3.044} = \frac{2 \times 0.001}{3.0$$

$$\Delta I_C = \delta . \bar{I}_C = ... 0, 0.25 \times 0,00500 = 0,00013 \text{ (kgm}^2)$$

- Kêt quả đo mô men quán tính của khối cầu đặc:

$$I_C = \bar{I}_C \pm \Delta I_C = \frac{Q_2 + Q_2 + Q_3}{Q_1 + Q_3 + Q_4} \pm \frac{Q_1 + Q_2 + Q_3}{Q_1 + Q_4 + Q_4} + \frac{Q_1 + Q_2 + Q_4}{Q_1 + Q_4 + Q_4} + \frac{Q_1 + Q_2 + Q_4}{Q_1 + Q_4} + \frac{Q_1 + Q_4 + Q_4}{Q_1 + Q_4} + \frac{Q_1 + Q_2}{Q_1 + Q_4} + \frac{Q_1 + Q_2}{Q_1 + Q_4} + \frac{Q_1 + Q_2}{Q_1 + Q_2} +$$

. Mô men quán tính của khối cầu đặc tính theo lý thuyết $(I_{\scriptscriptstyle C})_{\scriptscriptstyle LT}$:

$$(I_C)_{LT} = \frac{1}{10} MD^2 = \frac{1}{10} \times \left(\frac{22GO}{1000} \right) \times \left(\frac{14b}{1000} \right)^2 \dots O(4RR...(kgm^2)$$
- Sai số tỷ đối: $\delta^* = \frac{|(I_C)_{LT} - I_C|}{(I_C)_{LT}} = \frac{|O(004RR - 0.00507)|}{|O(004RR - 0.00507)|} = \frac{2.5}{0.004RR}$ (%)

3. Kiểm nghiệm định lý Steiner - Huygens

- Đánh giá kết qua thu được từ thực nghiệm.
Dui a vào đại thu thu được, ta thay dạng đi thị thuố man đưng phương trình I = Mu t Io (u = d) là để thị của hora Số bậc nhất. Như vày, định
I = Mu t Io (" = d) là to the cua ham Sé bac what Mhi vay, d'ish.
. Ly Steiner - Huy gers cto'sc nghiên tung

