microsoft · principles of machine learning

september · november 2016 " sharepoint interface

MODULE 1 · CLASSIFICATION

INTRODUCTION TO CLASSIFICATION

LOSS FUNCTIONS FOR CLASSIFICATION

STATISTICAL LEARNING THEORY FOR SUPERVISED LEARNING

LOGISTIC REGRESSION

MAXIMUM LIKELIHOOD PERSPECTIVE

EVALUATION METHODS FOR CLASSIFIERS

ROC CURVE ALGORITHM

BUILDING CLASSIFICATION MODELS

IMBALANCED DATA

CLASSIFICATION IN AZURE ML AND R

MODULE2 · REGRESSION

INTRODUCTION TO LINEAR REGRESSION

MULTIPLE LINEAR REGRESSION

EVALUATING REGRESSION MODELS

CREATING REGRESSION MODELS

INFLUENTIAL POINTS

OUTLIERS

REGRESSION IN AZURE ML AND R

MODULE3 · IMPROVING MACHINE LEARNING MODELS

FEATURE SELECTION

REGULARIZATION

INTERPRETING FEATURES

FEATURE SCALING

TECHNIQUES FOR IMPROVING MODELS

SWEEPING PARAMETERS

CROSS VALIDATION

NESTED CROSS VALIDATION

IMPROVING MACHINE LEARNING MODELS IN AZURE ML AND R

MODULE4 · TREE AND ENSEMBLE METHODS

DECISION TREES

CONSTRUCTION DECISION TREES

WHAT IS INFORMATION?

ENTROPY

SPLITTING CRITERIA FOR DECISION TREES: INFORMATION GAIN

ENSEMBLE METHODS

BOOSTING

ADABOOST

COORDINATE DESCENT

DECISION FORESTS

DECISION TREES IN AZURE ML AND R

MODULE5 · OPTIMIZATION-BASED METHODS

NEURAL NETWORKS

INTRODUCTION TO NEURAL NETWORKS

BACKPROPAGATION

BACKPROPAGATION THOUGH A HIDDEN NEURAL NETWORK LAYER

SUPPORT VECTOR MACHINES (SVM)

INTRODUCTION TO SVMS

KERNELS FOR SVMS

SUPPORT VECTOR MACHINES IN AZURE ML AND R

MODULE6 · CLUSTERING AND RECOMMENDERS

CLUSTERING

INTRODUCTION TO CLUSTERING

K-MEANS CLUSTERING

CHOOSING K FOR K-MEANS CLUSTERING

HIERARCHICAL AGGLOMERATIVE CLUSTERING

RECOMMENDERS

RECOMMENDER SYSTEMS

MATRIX FACTORIZATION

DECISION TREES IN AZURE ML AND R