Amended Claims With Mark-ups to Show Changes Made

- 1. (Twice Amended) A method of [eliminating sidelobes in] <u>establishing</u> a communication channel between a base station and a mobile station, comprising:
- (a) generating control signals and data signals within the communication channel, said control signals having a first sequence of L-bits and a second sequence of L-bits;
- (b) autocorrelating the first and second sequences to generate first and second autocorrelated values;
- (c) cross-correlating the first and second sequences to generate first and second cross-correlated values; and
- (d) combining the first and second autocorrelated values and the first and second cross-correlated values.

34. (Amended) A frame structure for a communication system, each frame having 15 slots and each slot having N number of pilot bits, where $2 \le N \le 16$, such that there are N number of pilot bit patterns of 15 bits in the frame, wherein the improvement comprises N number of pilot bit patterns having at least one of the following pilot bit patterns:

Slot No	1 2 3 4	15
Pilot bit pattern 1	= (1 0 0 0 1 1 1 1 0 1 0	1 1 0 0)
Pilot bit pattern 2	= (1 0 1 0 0 1 1 0 1 1 1	0 0 0 0)
Pilot bit pattern 3	$= (1\ 1\ 0\ 0\ 0\ 1\ 0\ 0\ 1\ 1\ 0$	1 0 1 1)
Pilot bit pattern 4	$= (0\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 1\ 1$	1 0 1 1)
Pilot bit pattern 5	5= (1 1 1 0 1 0 1 1 0 0 1	0 0 0 1)
Pilot bit pattern 6	= (1 1 0 1 1 1 0 0 0 0 1	0 1 0 0)
Pilot bit pattern 7	= (1 0 0 1 1 0 1 0 1 1 1	1 0 0 0)
Pilot bit pattern 8	S= (0 0 0 0 1 1 1 0 1 1 0	0 1 0 1)

[wherein any one of the pilot bit patterns allows at least one of channel estimation and frame synchronization.]

35. (Amended) A frame structure for an uplink Dedicated Physical Control Channel (DPCCH) in a communication system, wherein the improvement comprises each frame of the uplink DPCCH having 15 slots and N_{pilot} number of pilot bits in each slot, where $3 \le N_{pilot} \le 8$ and pilot bit patterns comprise at least one of the following based on N_{pilot} number of pilot bits:

		wher	ı N _{pi}	_{lot} = 5			wl	nen N	pilot	= 6	
Bit #	0	1	2	3	4	0	1	2	3	4	5
Slot #0	.1	1	1	1	0.	1	1	.1.	1	1	0
1	0	0	1	1	0	1	0	0	1	1	0 -
2	* 0	1	1	0	1	1	∂ 0	1	1	0.	-1
3	0 :	0	1	0	0	1	0	.0.	1	0	0
4	-1.	-0	1	0	1.1	1	1	0	1	0	1
5	K1.	1	1	1	0	1	1 . 1 .	1	1	1,	0
6	*1.7	1	1	0	0	1	1	1	1	0	0
7	1	0	1	0		1	1	0	1	0	0
8	0	1	1	1 2	0	1	0	1	1	1	0
9	1.0	1,	1	1	1	1	1	1	1	1.	1
10	0	1	1	0	1	1	0	1	1	0	1.
11	. 1	0.	1	1	1	1	1.0	0	1	1	1
12	1	0	1	0	0 .	1	1	0	1	0	0
13	0	0	1	1	1	1	0	0	1	1	1
14	0	0	1	1 1	1	1	0	0	1	1	1

			wher	ı N _p	_{ilot} = 7						when N	T _{pilot} =	- 8		
Bit #	0	1	2	3	4	5	6	0	1	2	3	4	5	6	7
Slot #0	1	1.	1	1	1	0	1	1	1	1	14	1	1.	1	0.5
1	1	0	. '0	1	1 /	0	1	1	0	1	. 0	1	1	1	0
2	1	0.0	1	1	0	1	1	1	0	1	1 -	1	0	1	1
3	1	0	×0.	1	0	0	1	1	0	1	0	1	0	1	0
4	1	1	0	1	0	1	1	1	1/	1	0	1	Ò	1	1
5	1	1	11	1	1	0	1	1	31	1	1	1	1	1	0
6	1	1	1.	1	0.	0	1	1	1	1	1	1	0	1	0
7	1	1	0	1	0	0	1	1	1	1	0	1	0	1	0
8	1	0	1	1	1	0	1	1	0	1	1	1	1.1	1	0
9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	1	0	1	1	0	1	1	1	0	1	1	1	0	1	1
11	1	1	0	1	1	1	1	1	1	1	0.	1	1 1	1	1
12	1	1	0	1	0	0	1	1	1	1	0	1	0	1	0
13	1	0	0	1	. 1	1	1	1	0	1	0	1	1 1	1	1
14	1	0	0	1	1	1	1	1	0	_ 1	0	1	1	1	1

[wherein shaded pilot bit patterns allow at least one of channel estimation and frame synchronization.]

36. (Amended) A frame structure for a Random Access Channel (RACH) in a communication system, wherein the improvement comprises each frame of the RACH having 15 slots and N_{pilot} number of pilot bits in each slot, where N_{pilot} =8, and pilot bit patterns comprise:

				N _{pilot}	=	8		
Bit #	0	1	2	3	4	5	6	7
Slot #0	1	1	1	1	1	1	1	0
1	1	0	1	0	1	1	1	0
2	1	0	1	1	1	0	1	1
3	1	0	1	0	1	0 -	1	0.
4	1	1	1	0	1	0	1	1
5	1	1	1	1	1	1	1	0
6	1	1	1	1	1	0	1	0.
7	1	1	1	0	1	0	1	0
8	1	0	1	1	1	1	1	0
9	1	1	1	1	1	1	1	1
10	1	0	1	1	1	5.0	1	1
11	1	1	1	0	1	1	1	-1
12	1	1	1	0	1	0	1	0
13	1	0	1	0	1	1	1	1
14	1	0.4	1	0	1	1	1	1

[wherein shaded pilot bit patterns allow at least one of channel estimation and frame synchronization.]

37. (Amended) A frame structure for a downlink Dedicated Physical Control Channel (DPCCH) in a communication system, wherein the improvement comprises each frame of the downlink DPCCH having 15 slots and N_{pilot} number of pilot bits in each slot, where $2 \le N_{pilot} \le 16$, and pilot bit patterns comprise at least one of the following based on N_{pilot} number of pilot bits:

	when _N	when	Npilot =		when _{Ni}	pilot = 8					when N	_{silot} = 10	5					
	pilot =		4															
Symbol #	0	0	1	0	1 1	2	3	0	1	2	3	4	5	6	7			
Slot #0	· 11	11	111	11	11	11	10	11	11.	11	10	11	11KC	11	10			
1	00	11	- 00	11	00	11	10	11	00 *	11	10	11	11	11	00			
2	. 01	11	01	11	01	11	01	11	01	11	01	11	10	11	- 00			
3	00	11	00	11	00	11	00	11	00	11	00	11	01	11	10			
4	10	11	10	11	10	11	01	11	10	11	01	11	11	11	. 11.			
5	* 11	11	11	11	×11	11	10	11	3.11	11	10	11	01	11	01			
6	11	11	÷ 11	11	11	11	.00	11	11	11	00	11	10	11	.11			
7	10	11	- 10	11	10	11	>00	11	. 10	11	00	11	10	11	00			
8	01	11	01	11	01	11	10	11	01	11	10	11	.00	11	. 11			
9	. 11	11	11	11	11	11	11	11	11	11	. 11	11	.00	11	11			
10	01	11	• 01	11	01	11	01	11	01	11	.,01	11	11	11	10			
11	10	11	10	11	10	11	11	11	. 10	11	11	11	* 00	11	10			
12	ε 10 ·	11	10	11	10	11	.00	11	× 10	11	00	11	01	11	01			
13	00	11	00	11	00	11	. 11	11	00	11	11	11	-00	11	00			
14	00	11	00	11	00	11	11	11	00	11	11 11	11	3.10	11	01			

[wherein shaded pilot bit patterns allow at least one of channel estimation and frame synchronization.]

38. (Amended) A frame structure for a downlink Dedicated Physical Control Channel (DPCCH) using Space Time Transmit Diversity (STTD) encoding in a communication system, wherein the improvement comprises each frame of the downlink DPCCH having 15 slots and N_{pilot} number of pilot bits in each slot, where $2 \le N_{pilot} \le 16$, and pilot bit patterns comprise at least one of the following based on N_{pilot} number of pilot bits:

	when	Npilot	when Npilot = 8				when _{Npilot} = 16									
Symbol #	0	1	0	1	2	3	0	1	2	3	4	5	6	7		
Slot #0	01	10	11	-00	00	10	11	00	00	.10	11	00	00	10		
1	10	10	11	00	00	01	11	00	00	01	11	10	00	10		
2	11	10	11	11	00	00	11	11	00	.00	11	10	00	111		
3	10	10	11	10	00	01	11	10	00	01	11	00	00	00		
4	00	10	11	11	00	111	11	111	00	111	11	01	00	10		
5	01	10	11	00	00	100	11	00	00	10	11	111	00	00		
6	01	10	11	10	00	100	11	10	00	100	11	01	00	111		
7	00	10	11	10	00	111	11	100	00	111	11	100	00	111		
8	11	10	11	00)	00	00	11	000	00	000	11	01	00	01		
9	01	10	11	(0)1	00	100	11	01	00	100	11	001	00	01		
10	111	10	11	111	00	00	11	111	00	00	11	000	00	10		
11	00	10	11	01	00	111	11	01	00	111	11	00	00	01		
12	00.	10	11	10,	00	20	11	100	00	111	11	111	00	00		
13	10	10	11	01	00	01	11	01	00	01	11	100	00	01		
14	× 10	10	11	01	00	01	11	01	00	01	11	111	00	11		

[wherein shaded pilot bit patterns allow at least one channel estimation and frame synchronization.]

39. (Amended) A frame structure for a Secondary Common Control Physical Channel (S-CCPCH) in a communication system, wherein the improvement comprises each frame of the S-CCPCH having 15 slots and N_{pilot} number of pilot bits in each slot, where $8 \le N_{pilot} \le 16$, and pilot bit patterns comprise at least one of the following based on N_{pilot} number of pilot bits:

		when N	$J_{pilot} = 8$					when N	ilot = 10	6		
Symbol #	0	1	2	3	0	1	2	3	4	5	6	7.
Slot #0	11	11	11	10	11	-11	11	10	11	11	11	10
1	11	00	11	10	11	00	11	10	11	11	11	00
2	11	- 01	11	01	11	01	11	01	11	10	11	00
3	11	00	11	- 00	11	00	11	00	11	01	11	10
4	11	10	11	01	11	10	11	01	11	11	11	11
5	11	11	11	10	11	11	11	10	11	01	11	01
6	11	11	11	00	11	11	11	00	11	10	11	11
7	11	10	11	00	11	10	11	00	11	10	11	00
8	11	01	11	10	11	01	11	10	11	00	11	11
9	11	11	11	11	11	11	11	11	11	00	11	11.
10	11	01	11	01	11	01	11	01	11	11	11	10
11	11	10	11	11	11	10	11	11	11	00	11	10
12 -	11	10	11	00	11	10	11	00	11	01	11	01
13	11	00	11	11	11	00	11	11	11	- 00	11	00
14	11	-00	11	11	11	-00	11	11	11	10	11	01

[wherein shaded pilot bit patterns allow at least one channel estimation and frame synchronization.]

40. (Amended) A frame structure for a Secondary Common Control Physical Channel (S-CCPCH) using Space Time Transmit Diversity (STTD) encoding in a communication system, wherein the improvement comprises each frame of the S-CCPCH having 15 slots and N_{pilot} number of pilot bits in each slot, where $8 \le N_{pilot} \le 16$, and pilot bit patterns comprise at least one of the following based on N_{pilot} number of pilot bits:

		N_{pilot}	= 8					N _{pilot}	= 16			
Symbol #	0	1	2	3	0	1	2	3	4	5	6	7
Slot #0	11	-00	00	10	11	00	00	10	11	00	00	10
1	11	- 00	00	01	11	00	00	01	11	10	00	10
2	11	11	00	-00	11	11	00	- 00	11	10 *	00	11
3	11	10	00	01	11	10	00	01	11	00	00	00 10
4	11	11	00	11	11	11	00	11	11	01	00	10
5	11	00	00	10	11	00	00	10	11	11	00	00
6	11	10	00	10	11	10	00	10	11	01	00	11 11
7	11	10	00	11	11	10	00	11	11	10	00	11
8	11	00	00	-00	11	00	00	00	11	-01	00	01
9	11	01	00	10	11	01	00	10	11	01	00	01
10	11	11-	00	00	11	11	00	00	11	00	00	01 01 10 01
11	11	01	00	11	11	01	00	11	11	00	00	01
12	11	10	00	11	11	10	00	11	11	11	00	00
13	11	01	00	01	11	01	00	01	11	10	00	01
14	11	01	00	01	11	01	00	0.1	11	1.1	00	11

[wherein shaded pilot bit patterns allow at least one channel estimation and frame synchronization.]