

Filipe Rodrigues

Francisco Pereira

DTU Management Engineering

Department of Management Engineering

Outline

- Introduction
- Gaussian processes

Learning objectives

At the end of this lecture, you should be able to:

- Understand the differences between the weight-space and function-space viewpoints of regression
- Explain how GPs are a generalization of the multivariate normal to infinitely many variables
- Understand the different properties of covariance functions and their usefulness
- Perform exact inference in GPs for regression with a Gaussian likelihood
- Estimate the hyper-parameters of a GP (e.g., covariance function and likelihood parameters)
- Explain how GPs can be generalized to work with other likelihood functions (e.g., for classification) and the implications for Bayesian inference

Regression

• Consider models of the inputs $\mathbf{x} \in \mathbb{R}^D$ for continuous response variables $y \in \mathbb{R}$ of the form

$$y = f(\mathbf{x}) + \epsilon$$
, $\epsilon \sim \mathcal{N}(\epsilon|0, \sigma^2)$

ullet Previously, we assumed f to be a **linear parametric** function of the inputs ${f x}$

$$f(\mathbf{x}) = \mathbf{w}^\mathsf{T} \mathbf{x}$$

• w was a *D*-dimensional vector of parameters (one weight per input dimension)

Regression

• Consider models of the inputs $\mathbf{x} \in \mathbb{R}^D$ for continuous response variables $y \in \mathbb{R}$ of the form

$$y = f(\mathbf{x}) + \epsilon, \qquad \epsilon \sim \mathcal{N}(\epsilon | 0, \sigma^2)$$

ullet Previously, we assumed f to be a **linear parametric** function of the inputs ${f x}$

$$f(\mathbf{x}) = \mathbf{w}^\mathsf{T} \mathbf{x}$$

- w was a D-dimensional vector of parameters (one weight per input dimension)
- ullet We could therefore write the likelihood for a dataset $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N$ as

$$p(\mathbf{y}|\mathbf{w}, \mathbf{X}) = \prod_{n=1}^{N} \mathcal{N}(y_n|\mathbf{w}^\mathsf{T}\mathbf{x}_n, \sigma^2)$$

where
$$\mathbf{y} = \{y_1, ..., y_N\}$$
 and $\mathbf{X} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$

• Likelihood given by

$$p(\mathbf{y}|\mathbf{w}, \mathbf{X}) = \prod_{n=1}^{N} \mathcal{N}(y_n|\mathbf{w}^\mathsf{T}\mathbf{x}_n, \sigma^2)$$

• In a **frequentist approach**, we find the parameters **w** that maximize the (log) likelihood

$$\hat{\mathbf{w}}_{\mathsf{ML}} = \arg\max_{\mathbf{w}} \left(\sum_{n=1}^{N} \log p(y_n | \mathbf{w}, \mathbf{x}_n) \right)$$

This is called maximum likelihood (ML) estimation

• Likelihood given by

$$p(\mathbf{y}|\mathbf{w}, \mathbf{X}) = \prod_{n=1}^{N} \mathcal{N}(y_n|\mathbf{w}^\mathsf{T}\mathbf{x}_n, \sigma^2)$$

 In a frequentist approach, we find the parameters w that maximize the (log) likelihood

$$\hat{\mathbf{w}}_{\mathsf{ML}} = \arg\max_{\mathbf{w}} \left(\sum_{n=1}^{N} \log p(y_n | \mathbf{w}, \mathbf{x}_n) \right)$$

- This is called maximum likelihood (ML) estimation
- ullet We can make predictions for new test inputs $oldsymbol{x}_*$ by plugging in the estimate $\hat{oldsymbol{w}}_{ML}$

$$p(y_*|\hat{\mathbf{w}}_{\mathsf{ML}},\mathbf{x}_*)$$

Point prediction given by

$$\hat{y}_* = (\hat{\mathbf{w}}_{\mathsf{ML}})^\mathsf{T} \mathbf{x}_*$$

Likelihood given by

$$p(\mathbf{y}|\mathbf{w}, \mathbf{X}) = \prod_{n=1}^{N} \mathcal{N}(y_n | \mathbf{w}^{\mathsf{T}} \mathbf{x}_n, \sigma^2)$$

• We can further consider a prior on \mathbf{w} : $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \lambda \mathbf{I})$

$$\hat{\mathbf{w}}_{\mathsf{MAP}} = \arg\max_{\mathbf{w}} \left(\sum_{n=1}^{N} \log p(y_n | \mathbf{w}, \mathbf{x}_n) + \log p(\mathbf{w}) \right)$$

- This is called maximum-a-posteriori (MAP) estimation
- ullet Term $\log p(\mathbf{w})$ acts as a penalty term **regularization**

• Likelihood given by

$$p(\mathbf{y}|\mathbf{w}, \mathbf{X}) = \prod_{n=1}^{N} \mathcal{N}(y_n|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n, \sigma^2)$$

• We can further consider a prior on \mathbf{w} : $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \lambda \mathbf{I})$

$$\hat{\mathbf{w}}_{\mathsf{MAP}} = \arg\max_{\mathbf{w}} \left(\sum_{n=1}^{N} \log p(y_n | \mathbf{w}, \mathbf{x}_n) + \log p(\mathbf{w}) \right)$$

- This is called maximum-a-posteriori (MAP) estimation
- Term $\log p(\mathbf{w})$ acts as a penalty term **regularization**
- As before, we make predictions by plugging in the estimate wmap

$$p(y_*|\hat{\mathbf{w}}_{\mathsf{MAP}}, \mathbf{x}_*)$$

Point prediction given by

$$\hat{y}_* = (\hat{\mathbf{w}}_{\mathsf{MAP}})^\mathsf{T} \mathbf{x}_*$$

Likelihood given by

$$p(\mathbf{y}|\mathbf{w}, \mathbf{X}) = \prod_{n=1}^{N} \mathcal{N}(y_n|\mathbf{w}^\mathsf{T}\mathbf{x}_n, \sigma^2)$$

- Prior given by $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \lambda \mathbf{I})$
- In a Bayesian approach, we treat w as a latent variable and do inference on it

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}) = \frac{p(\mathbf{y}|\mathbf{w}, \mathbf{X}) p(\mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$

• We obtain a **full posterior distribution** on **w** rather than a point estimate!

Likelihood given by

$$p(\mathbf{y}|\mathbf{w}, \mathbf{X}) = \prod_{n=1}^{N} \mathcal{N}(y_n|\mathbf{w}^{\mathsf{T}}\mathbf{x}_n, \sigma^2)$$

- Prior given by $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \lambda \mathbf{I})$
- In a Bayesian approach, we treat w as a latent variable and do inference on it

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}) = \frac{p(\mathbf{y}|\mathbf{w}, \mathbf{X}) \, p(\mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$

- We obtain a **full posterior distribution** on **w** rather than a point estimate!
- ullet We can make predictions for new test input ${f x}_*$ by averaging over the values of ${f w}$

$$p(y_*|\mathbf{x}_*, \mathbf{y}, \mathbf{X}) = \int p(y_*|\mathbf{w}, \mathbf{x}_*) \, p(\mathbf{w}|\mathbf{y}, \mathbf{X}) \, d\mathbf{w}$$

Marginal likelihood given by

$$p(\mathbf{y}|\mathbf{X}) = \int p(\mathbf{y}|\mathbf{w}, \mathbf{X}) \, p(\mathbf{w}) \, d\mathbf{w}$$

Weight-space vs. function-space view

- Consider a dataset of target variables $\mathbf{y}=\{y_1,\dots,y_N\}$ and their corresponding inputs $\mathbf{X}=\{\mathbf{x}_1,\dots,\mathbf{x}_N\}$
- In Bayesian linear regression, we assumed that

$$y = f(\mathbf{x}) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

where $f(\mathbf{x}) = \mathbf{w}^\mathsf{T} \mathbf{x}$

• We placed a prior on the weights $p(\mathbf{w})$ and performed inference to compute its posterior distribution $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$

Weight-space vs. function-space view

- Consider a dataset of target variables $\mathbf{y}=\{y_1,\ldots,y_N\}$ and their corresponding inputs $\mathbf{X}=\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$
- In Bayesian linear regression, we assumed that

$$y = f(\mathbf{x}) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

where $f(\mathbf{x}) = \mathbf{w}^\mathsf{T} \mathbf{x}$

- We placed a prior on the weights $p(\mathbf{w})$ and performed inference to compute its posterior distribution $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$
- We can consider this in vector-form

$$\mathbf{y} = \mathbf{f} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

where
$$\mathbf{f} = f(\mathbf{X}) = \mathbf{w}^\mathsf{T} \mathbf{X}$$

Weight-space vs. function-space view

- Consider a dataset of target variables $\mathbf{y}=\{y_1,\ldots,y_N\}$ and their corresponding inputs $\mathbf{X}=\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$
- In Bayesian linear regression, we assumed that

$$y = f(\mathbf{x}) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

where $f(\mathbf{x}) = \mathbf{w}^\mathsf{T} \mathbf{x}$

- We placed a prior on the weights $p(\mathbf{w})$ and performed inference to compute its posterior distribution $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$
- We can consider this in vector-form

$$\mathbf{y} = \mathbf{f} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

where
$$\mathbf{f} = f(\mathbf{X}) = \mathbf{w}^\mathsf{T} \mathbf{X}$$

- Can we avoid \mathbf{w} altogether and model $p(\mathbf{f})$ directly?
- Instead of working with weights \mathbf{w} , can we work with the functions $f(\mathbf{x})$? I.e. put a prior on \mathbf{f} and perform inference on it?

Playtime!

- Jupyter notebook: "12 Gaussian processes.ipynb"
- Part 1: From multivariate Gaussians to Gaussian processes

• **Definition**: a Gaussian process (GP) is a collection of random variables, any finite number of which have (consistent) joint Gaussian distributions

From multivariate Gaussians to Gaussian processes

- Definition: a Gaussian process (GP) is a collection of random variables, any finite number of which have (consistent) joint Gaussian distributions
- Consider a model of the form

$$y = f(\mathbf{x}) + \epsilon$$

• Now consider a multivariate (joint) Gaussian distribution over the N-dimensional vector $\mathbf{f} = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_N))^\mathsf{T}$

$$\mathbf{f} \sim \mathcal{N}(\mathbf{f}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

ullet A multivariate Gaussian distribution is fully specified by a mean vector μ and a covariance matrix Σ

From multivariate Gaussians to Gaussian processes

- Definition: a Gaussian process (GP) is a collection of random variables, any finite number of which have (consistent) joint Gaussian distributions
- Consider a model of the form

$$y = f(\mathbf{x}) + \epsilon$$

• Now consider a multivariate (joint) Gaussian distribution over the N-dimensional vector $\mathbf{f} = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_N))^\mathsf{T}$

$$\mathbf{f} \sim \mathcal{N}(\mathbf{f}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

- ullet A multivariate Gaussian distribution is fully specified by a mean vector $oldsymbol{\mu}$ and a covariance matrix $oldsymbol{\Sigma}$
- A GP is a **stochastic process** fully specified by a mean function $m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$ and a positive definite covariance function $k(\mathbf{x}, \mathbf{x}') = \text{cov}[f(\mathbf{x}), f(\mathbf{x}')]$
- Therefore, a GP is a **generalization** of a multivariate Gaussian distribution to infinitely many variables

- A GP is a **stochastic process** fully specified by a mean function $m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$ and a positive definite covariance function $k(\mathbf{x}, \mathbf{x}') = \text{cov}[f(\mathbf{x}), f(\mathbf{x}')]$
- Mean function $m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$ determines the mean of any arbitrary point \mathbf{x} in the input space
 - Commonly assumed to be a zero-value vector, i.e. $m(\mathbf{x}) = 0$

- A GP is a **stochastic process** fully specified by a mean function $m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$ and a positive definite covariance function $k(\mathbf{x}, \mathbf{x}') = \text{cov}[f(\mathbf{x}), f(\mathbf{x}')]$
- Mean function $m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$ determines the mean of any arbitrary point \mathbf{x} in the input space
 - Commonly assumed to be a zero-value vector, i.e. $m(\mathbf{x}) = 0$
- Covariance function $k(\mathbf{x}, \mathbf{x}') = \text{cov}[f(\mathbf{x}), f(\mathbf{x}')]$ determines how any two points in the input space covary (often called *kernels*)
 - Specifies basic aspects of the process such as smoothness, periodicity, stationarity and isotropy

- A GP is a **stochastic process** fully specified by a mean function $m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$ and a positive definite covariance function $k(\mathbf{x}, \mathbf{x}') = \text{cov}[f(\mathbf{x}), f(\mathbf{x}')]$
- Mean function $m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$ determines the mean of any arbitrary point \mathbf{x} in the input space
 - Commonly assumed to be a zero-value vector, i.e. $m(\mathbf{x}) = 0$
- Covariance function $k(\mathbf{x}, \mathbf{x}') = \text{cov}[f(\mathbf{x}), f(\mathbf{x}')]$ determines how any two points in the input space covary (often called *kernels*)
 - Specifies basic aspects of the process such as smoothness, periodicity, stationarity and isotropy
- If we loosely see a function as a infinitely long vector f, then we can think of a GP as a probability distribution over functions!

- A GP is a **stochastic process** fully specified by a mean function $m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$ and a positive definite covariance function $k(\mathbf{x}, \mathbf{x}') = \text{cov}[f(\mathbf{x}), f(\mathbf{x}')]$
- Mean function $m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$ determines the mean of any arbitrary point \mathbf{x} in the input space
 - Commonly assumed to be a zero-value vector, i.e. $m(\mathbf{x}) = 0$
- Covariance function $k(\mathbf{x}, \mathbf{x}') = \text{cov}[f(\mathbf{x}), f(\mathbf{x}')]$ determines how any two points in the input space covary (often called *kernels*)
 - Specifies basic aspects of the process such as smoothness, periodicity, stationarity and isotropy
- If we loosely see a function as a infinitely long vector f, then we can think of a GP as a probability distribution over functions!
- Main idea: we place a GP prior over the function values f; together with some likelihood function, we compute the GP posterior (we will return to this later...)
- GPs are Bayesian non-parametric models!

• Most common choice is the **squared exponential (SE)**

$$k_{SE}(\mathbf{x}, \mathbf{x}') = \exp\left(-\sum_{d=1}^{D} \frac{(x_d - x'_d)^2}{2l^2}\right)$$

- Also called Gaussian kernel, RBF kernel, exponentiated quadratic, etc.
- ullet Parameter l defining the characteristic length-scale
- Goes to unity as x becomes closer to x'
- Nearby points are more likely to covary!
- GP prior with a SE covariance function prefers **smooth functions**

- Other popular covariance functions:
 - Periodic (PER) covariance function

$$k_{\text{PER}}(\mathbf{x}, \mathbf{x}') = h^2 \exp\left(-\frac{1}{2\ell^2} \sin^2\left(\frac{\pi}{p} \sum_{d=1}^{D} (x_d - x_d')\right)\right)$$

where h controls the amplitude and p is the period

- Other popular covariance functions:
 - Periodic (PER) covariance function

$$k_{\text{PER}}(\mathbf{x}, \mathbf{x}') = h^2 \exp\left(-\frac{1}{2\ell^2}\sin^2\left(\frac{\pi}{p}\sum_{d=1}^D(x_d - x_d')\right)\right)$$

where h controls the amplitude and p is the period

• White noise (WN) covariance function (with variance σ^2)

$$k_{\text{WN}}(\mathbf{x}, \mathbf{x}') = \sigma^2 \, \delta(\mathbf{x}, \mathbf{x}')$$

where $\delta(\mathbf{x}, \mathbf{x}')$ is the Kronecker delta function (1 when $\mathbf{x} = \mathbf{x}'$, 0 otherwise)

- Other popular covariance functions:
 - Periodic (PER) covariance function

$$k_{\text{PER}}(\mathbf{x}, \mathbf{x}') = h^2 \exp\left(-\frac{1}{2\ell^2} \sin^2\left(\frac{\pi}{p} \sum_{d=1}^{D} (x_d - x_d')\right)\right)$$

where h controls the amplitude and p is the period

• White noise (WN) covariance function (with variance σ^2)

$$k_{\text{WN}}(\mathbf{x}, \mathbf{x}') = \sigma^2 \, \delta(\mathbf{x}, \mathbf{x}')$$

where $\delta(\mathbf{x}, \mathbf{x}')$ is the Kronecker delta function (1 when $\mathbf{x} = \mathbf{x}'$, 0 otherwise)

 Sums and products of proper covariance function are also valid covariance functions!

Figure: Samples from Gaussian processes with different covariance functions.

Constructing a GP

- ullet Given a dataset $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N$
- Define GP prior for function values \mathbf{f} : $\mathbf{f} \sim \mathcal{GP}(m(\mathbf{x}) = 0, k(\mathbf{x}, \mathbf{x}'))$
- \bullet Build covariance matrix \mathbf{K} , where $\mathbf{K}_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$

Constructing a GP

- \bullet Given a dataset $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N$
- Define GP prior for function values **f**: $\mathbf{f} \sim \mathcal{GP}(m(\mathbf{x}) = 0, k(\mathbf{x}, \mathbf{x}'))$
- Build covariance matrix **K**, where $\mathbf{K}_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$
- Specifies a multivariate Gaussian distribution on f

$$\textbf{f} \sim \mathcal{N}(\textbf{f}|\textbf{0},\textbf{K})$$

- ullet This is our prior distribution over ullet
- We can use it to sample from the GP prior!

Playtime!

- Jupyter notebook: "12 Gaussian processes.ipynb"
- Part 2: Sampling from a GP with different covariance functions

Inference with a GP

- ullet Given a dataset $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N$
- Define GP prior for function values \mathbf{f} : $\mathbf{f} \sim \mathcal{GP}(m(\mathbf{x}) = 0, k(\mathbf{x}, \mathbf{x}'))$
- ullet Build covariance matrix ${f K}$, where ${f K}_{ij}=k({f x}_i,{f x}_j)$
- Specifies a multivariate Gaussian distribution on f

$$\mathbf{f} \sim \mathcal{N}(\mathbf{f}|\mathbf{0},\mathbf{K})$$

• This is our prior distribution over f, p(f), but we **need a likelihood too!**

Inference with a GP

- ullet Given a dataset $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N$
- Define GP prior for function values \mathbf{f} : $\mathbf{f} \sim \mathcal{GP}(m(\mathbf{x}) = 0, k(\mathbf{x}, \mathbf{x}'))$
- Build covariance matrix **K**, where $\mathbf{K}_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$
- Specifies a multivariate Gaussian distribution on f

$$\mathbf{f} \sim \mathcal{N}(\mathbf{f}|\mathbf{0},\mathbf{K})$$

- This is our prior distribution over f, p(f), but we **need a likelihood too!**
- For continuous outputs $y \in \mathbb{R}$, an obvious choice is a Gaussian likelihood:

$$p(y_n|f_n) = \mathcal{N}(y_n|f_n, \sigma^2)$$

Inference with a GP

- ullet Given a dataset $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N$
- Define GP prior for function values \mathbf{f} : $\mathbf{f} \sim \mathcal{GP}(m(\mathbf{x}) = 0, k(\mathbf{x}, \mathbf{x}'))$
- Build covariance matrix **K**, where $\mathbf{K}_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$
- Specifies a multivariate Gaussian distribution on f

$$\mathbf{f} \sim \mathcal{N}(\mathbf{f}|\mathbf{0},\mathbf{K})$$

- This is our prior distribution over f, p(f), but we **need a likelihood too!**
- For continuous outputs $y \in \mathbb{R}$, an obvious choice is a Gaussian likelihood:

$$p(y_n|f_n) = \mathcal{N}(y_n|f_n, \sigma^2)$$

• Using Bayes rule, we can compute the posterior over **f** (exact inference)

$$p(\mathbf{f}|\mathbf{y}, \mathbf{X}) = \frac{p(\mathbf{y}|\mathbf{f}) p(\mathbf{f})}{p(\mathbf{y}|\mathbf{X})}$$

ullet Compare this equation with the posterior for ullet in Bayesian linear regression

Marginal likelihood

 Making use of marginalization property for Gaussian distributions (see slide 10 of lecture 9), the marginal distribution of y is given by

$$\begin{split} p(\mathbf{y}|\mathbf{X}) &= \int \underbrace{p(\mathbf{y}|\mathbf{f})}_{\text{likelihood}} \underbrace{p(\mathbf{f}|\mathbf{X})}_{\text{GP prior}} d\mathbf{f} \\ &= \int \mathcal{N}(\mathbf{y}|\mathbf{f}, \sigma^2 \mathbf{I}) \, \mathcal{N}(\mathbf{f}|\mathbf{0}, \mathbf{K}) \, d\mathbf{f} \\ &= \mathcal{N}(\mathbf{y}|\mathbf{0}, \sigma^2 \mathbf{I} + \mathbf{K}) \end{split}$$

Marginal likelihood

 Making use of marginalization property for Gaussian distributions (see slide 10 of lecture 9), the marginal distribution of y is given by

$$\begin{split} p(\mathbf{y}|\mathbf{X}) &= \int \underbrace{p(\mathbf{y}|\mathbf{f})}_{\text{likelihood}} \underbrace{p(\mathbf{f}|\mathbf{X})}_{\text{GP prior}} d\mathbf{f} \\ &= \int \mathcal{N}(\mathbf{y}|\mathbf{f}, \sigma^2 \mathbf{I}) \, \mathcal{N}(\mathbf{f}|\mathbf{0}, \mathbf{K}) \, d\mathbf{f} \\ &= \mathcal{N}(\mathbf{y}|\mathbf{0}, \sigma^2 \mathbf{I} + \mathbf{K}) \end{split}$$

• We can use p(y|X) to optimize the parameters θ of the covariance function!

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \left(\log \mathcal{N}(\mathbf{y}|\mathbf{0}, \sigma^2 \mathbf{I} + \mathbf{K}) \right)$$

Note

This another example of maximum marginal likelihood (also called type-II maximum likelihood, or empirical Bayes) from lecture 11.

Making predictions

ullet Our aim is to make a prediction y_* for a new input ${f x}_*$

Making predictions

- ullet Our aim is to make a prediction y_* for a new input ${f x}_*$
- The joint distribution over $y_*, y_1, ..., y_N$ is simply given by

$$p(y_*,\mathbf{y}|\mathbf{x}_*,\mathbf{X}) = \mathcal{N}(y_*,\mathbf{y}|\mathbf{0},\mathbf{V})$$

with

$$\mathbf{V} = \begin{pmatrix} \sigma^2 \mathbf{I} + \mathbf{K} & \mathbf{k}_* \\ \mathbf{k}_*^\mathsf{T} & \sigma^2 + k_{**} \end{pmatrix}$$

where $\mathbf{k}_* = k(\mathbf{x}, x_*)$ and $k_{**} = k(x_*, x_*)$

Making predictions

- Our aim is to make a prediction y_* for a new input \mathbf{x}_*
- The joint distribution over $y_*, y_1, ..., y_N$ is simply given by

$$p(y_*, \mathbf{y} | \mathbf{x}_*, \mathbf{X}) = \mathcal{N}(y_*, \mathbf{y} | \mathbf{0}, \mathbf{V})$$

with

$$\mathbf{V} = \left(egin{array}{ccc} \sigma^2 \mathbf{I} + \mathbf{K} & \mathbf{k}_* \ \mathbf{k}_*^\mathsf{T} & \sigma^2 + k_{**} \end{array}
ight)$$

where $\mathbf{k}_* = k(\mathbf{x}, x_*)$ and $k_{**} = k(x_*, x_*)$

ullet From the joint distribution, we can now determine the distribution of y_* , i.e. the predictive distribution:

$$p(y_*|\mathbf{y}, \mathbf{x}_*, \mathbf{X}) = \mathcal{N}(y_*|\mathbf{k}_*^\mathsf{T}(\sigma^2\mathbf{I} + \mathbf{K})^{-1}\mathbf{y}, k_{**} + \sigma^2 - \mathbf{k}_*^\mathsf{T}(\sigma^2\mathbf{I} + \mathbf{K})^{-1}\mathbf{k}_*)$$

• Note: this is a direct application of the conditional probability for Gaussians (see slide 11 from lecture 9)

Playtime!

- Jupyter notebook: "12 Gaussian processes.ipynb"
- Part 3: Inference and maximum marginal likelihood optimization

- ullet Given a dataset $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N$
- What if y_n is discrete?

- Given a dataset $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N$
- What if y_n is discrete?
- Define GP prior for function values **f**: $\mathbf{f} \sim \mathcal{GP}(m(\mathbf{x}) = 0, k(\mathbf{x}, \mathbf{x}'))$, such that

$$p(\mathbf{f}) = \mathcal{N}(\mathbf{f}|\mathbf{0},\mathbf{K})$$

- ullet Given a dataset $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N$
- What if y_n is discrete?
- Define GP prior for function values **f**: $\mathbf{f} \sim \mathcal{GP}(m(\mathbf{x}) = 0, k(\mathbf{x}, \mathbf{x}'))$, such that

$$p(\mathbf{f}) = \mathcal{N}(\mathbf{f}|\mathbf{0},\mathbf{K})$$

• For binary outputs $y_n \in \{0,1\}$, a possible choice is the Probit function $\Phi(f_n)$:

$$p(y_n|f_n) = \Phi(f_n) = \int_{-\infty}^{f_n} \mathcal{N}(u|0,1) du$$

- Given a dataset $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N$
- What if y_n is discrete?
- Define GP prior for function values **f**: $\mathbf{f} \sim \mathcal{GP}(m(\mathbf{x}) = 0, k(\mathbf{x}, \mathbf{x}'))$, such that

$$p(\mathbf{f}) = \mathcal{N}(\mathbf{f}|\mathbf{0}, \mathbf{K})$$

• For binary outputs $y_n \in \{0,1\}$, a possible choice is the Probit function $\Phi(f_n)$:

$$p(y_n|f_n) = \Phi(f_n) = \int_{-\infty}^{f_n} \mathcal{N}(u|0,1) du$$

• Exact inference is no longer tractable; must resort to approximate methods

$$p(\mathbf{f}|\mathbf{y}, \mathbf{X}) = \frac{\left(\prod_{n=1}^{N} \Phi(f_n)\right) p(\mathbf{f})}{p(\mathbf{y}|\mathbf{X})}$$

- Similar approaches can be used to handle other types of outputs
 - Real, binary, categorical, positive real, positive integer or ordinal responses

Learning more about GPs

- A Visual Exploration of Gaussian Processes This notebook is a must!
 https://distill.pub/2019/visual-exploration-gaussian-processes/
- Videolecture: Gaussian Processes, C. Rasmussen. http://videolectures.net/mlss09uk_rasmussen_gp/
- Book: Gaussian Processes for Machine Learning, C. Rasmussen and C. Williams. Free! http://www.gaussianprocess.org/gpml/
- Book: Pattern Recognition and Machine Learning, C. Bishop.