GRAFOS

Vértices	1	2	3	4	5	6	7	8	9	10	11
Visitado	1	7	1	1	1	1	1	1	1	1	1
Predecessor	2	4	4	7	3	5	_	4	4	7	7
	7	(9)	(4)	1	7	7		1			


```
BuscaLargura(Grafo G, vértice S)
 s.visitado = 1;
 Cria fila vazia F;
 ENFILEIRA (F,s); -
 Enquanto F.tamanho > 0 faça
  u = DESENFILEIRA(F);
  Para todo vértice v ∈ N (u) faça
    Se v.visitado==0 então
      v.visitado = 1;
      v.predecessor = u; ~
      ENFILEIRA (F,s); ~
```


	1	2	3	4	5	6	7	8	9	10	11
1		1	1								
2	1		1	1				1			1
3	1	1		1	1						
4		2	1				1	1	1		
5			7			1					
6					1						
7				1						1	1
8		1		1							
9				1							1
10							1				1
11		1					1		1	1	

Vértices	1	2	3	4	5	6	7	8	9	10	11
Visitado	1	1	1	1	1	1	1	1	1	1	1
Predecessor	2	4	4	7	3	5	_	4	4	7	コ

```
Procedimento largura(G=(V,E))
 // A(v) é a lista de vértices adjacentes a v
 Definir uma fila Q
 Definir uma raiz s \in V
 Insere_fila(Q,s)
 marcar(s)
 enquanto Q é não vazia
   se w \in A(v) não é marcado então
      insere fila(Q,w); marcar(w); visitar(v,w)
   senão
     se (v,w) não visitada
        visitar(v,w)
```



```
Procedimento largura(G=(V,E))

// A(v) é a lista de vértices adjacentes a v

Definir uma fila Q

Definir uma raiz s \in V

Insere_fila(Q,s); marcar(s)

enquanto Q é não vazia

v \leftarrow \text{remove}_{\text{fila}}(Q)

para w \in A(v) efetuar

se w não é marcado então

insere_fila(Q,w); marcar(w); visitar(v,w)

senão

se (v,w) não visitada

visitar(v,w)
```



```
Procedimento largura(G=(V,E))

// A(v) é a lista de vértices adjacentes a v

Definir uma fila Q

Definir uma raiz s ∈ V

Insere_fila(Q,s); marcar(s)
enquanto Q é não vazia

v ← remove_fila(Q)
para w ∈ A(v) efetuar
se w não é marcado então
insere_fila(Q,w); marcar(w); visitar(v,w)
senão
se (v,w) não visitada
visitar(v,w)
```


Definir uma fila Q Definir uma raiz $s \in V$

Procedimento largura(G=(V,E))

// A(v) é a lista de vértices adjacentes a v

Grafo

Seja E_⊤ o conjunto das arestas visitadas em (I)

Teorema. Seja G(V,E) um grafo conexo, $(v,w) \not = E$ e $T(V,E_T)$ uma árvore de largura de G. Então nível(v) e nível(w) diferem, no máximo, de uma unidade.

Prova EXERCÍCIO

Observe que o teorema anterior divide as arestas (v,w) em duas classes:

1.
$$|\text{nível}(v) - \text{nível}(w)| = 1$$

2.
$$|\text{nível}(v) - \text{nível}(w)| = 0$$

Cada uma dessas classes pode ser subdividida em outras duas.

Considere a aresta (v,w) com $nivel(v) \le nivel(w)$

- 1. (v,w) é aresta pai (aresta da árvore), quando v é pai de w em T.
- 2. (v,w) é aresta tio quando nível(w) = nível(v) + 1 e (v,w)∉ T
- 3. (v,w) é aresta *irmão* quando v e w possuem o mesmo pai em T
- 4. (v,w) é aresta *primo* quando nível(v) = nível(w) e v, w não possuem o mesmo pai em T

Para algumas aplicações pode ser importante a ordem em que os vértices foram removidos da fila.

Define-se largura(v) como sendo o número de ordem em que v foi retirado da fila Q.

O diâmetro de um grafo é a maior distância entre qualquer par de vértices.

Como usar Busca em Largura para determinar o diâmetro de um grafo? Qual a complexidade?