MATH 355: NOTES

ALEXANDER LEE

1 The Real Numbers

1.2 Some Preliminaries.

Theorem (Triangle Inequality). For all choices of a and b, $|a+b| \leq |a| + |b|$.

Theorem. Two real numbers a and b are equal if and only if for every real number $\epsilon > 0$ it follows that $|a - b| < \epsilon$.

1.3 The Axiom of Completeness.

Axiom (Axiom of Completeness). Every nonempty set of real numbers that is bounded above has a least upper bound.

Definition. A set $A \subseteq \mathbb{R}$ is *bounded above* if there exists a number $b \in \mathbb{R}$ such that $a \leq b$ for all $a \in A$. The number b is called an *upper bound* for A.

Similarly, the set A is bounded below if there exists a lower bound $l \in \mathbb{R}$ satisfying $l \leq a$ for every $a \in A$.

Definition. A real number s is the *least upper bound* for a set $A \subseteq \mathbb{R}$ if it meets the following two criteria:

- (i) s is an upper bound for A;
- (ii) if b is any upper bound for A, then $s \leq b$.

The least upper bound is also frequently called the *supremum* of the set A. We write $s = \sup(A)$ for the least upper bound.

The greatest lower bound or infimum for A is defined in a similar way and is denoted by $\inf(A)$.

Theorem. Let $A \subseteq \mathbb{R}$ be bounded above and below. Then, the $\sup(A)$ and $\inf(A)$ are unique.

Definition. A real number a_0 is a *maximum* of the set A if a_0 is an element of A and $a_0 \ge a$ for all $a \in A$. Similarly, a number a_1 is a *minimum* of A if $a_1 \in A$ and $a_1 \le a$ for every $a \in A$.

Theorem. Let $A \subseteq \mathbb{R}$ be nonempty and bounded above.

(i) Let $c \in \mathbb{R}$ and define the set c + A by

$$c + A = \{c + a : a \in A\}.$$

Then $\sup(c+A) = c + \sup(A)$.

(ii) Let $c \in \mathbb{R}$ with c > 0 and define the set cA by

$$cA = \{ca : a \in A\}.$$

Then $\sup(cA) = c \sup(A)$.

1

Lemma. Assume $s \in \mathbb{R}$ is an upper bound for a set $A \subseteq R$. Then, $s = \sup(A)$ if and only if, for every choice of $\epsilon > 0$, there exists an element $a \in A$ satisfying $s - \epsilon < a$.

1.4 Consequences of Completeness.

Theorem (Nested Interval Property). For each $n \in \mathbb{N}$, assume we are given a closed interval $I_n = [a_n, b_n] = \{x \in \mathbb{R} : a_n \leq x \leq b_n\}$. Assume also that each I_n contains I_{n+1} . Then, the resulting nested sequence of closed intervals

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq I_4 \supseteq \cdots$$

has a nonempty intersection; that is, $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Theorem (Archimedean Property). (i) Given any number $x \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ satisfying n > x.

(ii) Given any real number y > 0, there exists an $n \in \mathbb{N}$ satisfying 1/n < y.

Definition. A set X is *dense in* \mathbb{R} if for any $a, b \in \mathbb{R}$ with a < b, $\exists x \in X$ with a < x < b.

Theorem (Density of \mathbb{Q} in \mathbb{R}). For every two real numbers a and b with a < b, there exists a rational number r satisfying a < r < b.

1.5 Cardinality.

Definition. A function $f: A \to B$ is 1-1 (injective) if for all $a_1, a_2 \in A$, $f(a_1) = f(a_2)$ implies that $a_1 = a_2$.

Definition. A function $f: A \to B$ is *onto (surjective)* if for all $b \in B$, there exists an $a \in A$ such that f(a) = b.

Definition. A function $f: A \to B$ is a *bijection* if it is both 1–1 and onto.

Definition. Two sets A and B have the same *cardinality* if there exists a bijection $f: A \to B$. In this case, we write $A \sim B$.

Definition. A set A is *finite* if there exists an $n \in \mathbb{N}$ such that $A \sim \{1, 2, \dots, n\}$.

Definition. A set A is *countable* if $A \sim \mathbb{N}$.

Definition. A set which is not finite nor countable is *uncountable*.

Theorem. (i) The set \mathbb{Q} is countable.

(ii) The set \mathbb{R} is uncountable.

Theorem. If $A \subseteq B$ is countable, then A is either countable or finite.

Theorem. (i) If A_1, A_2, \ldots, A_m are each countable sets, then the union $A_1 \cup A_2 \cup \cdots \cup A_m$ is countable.

(ii) If A_n is a countable set for each $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} A_n$ is countable.

1.6 Cantor's Theorem.

Theorem. The open interval $(0,1) = \{x \in \mathbb{R} : 0 < x < 1\}$ is uncountable.

Definition. Given a set A, the *power set* P(A) refers to the collection of all subsets of A.

Theorem (Cantor's Theorem). Given any set A, there does not exist a function $f: A \to P(A)$ that is onto.

2 SEQUENCES AND SERIES

2.2 The Limit of a Sequence.

Definition. A sequence is a function whose domain is \mathbb{N} .

Definition (Convergence of a Sequence). A sequence (a_n) converges to a real number a if, for every positive number ϵ , there exists and $N \in \mathbb{N}$ such that whenever $n \geq N$, it follows that $|a_n - a| < \epsilon$.

Definition. Given a real number $a \in \mathbb{R}$ and a positive number $\epsilon > 0$, the set

$$V_{\epsilon}(a) = \{x \in \mathbb{R} : |x - a| < \epsilon\} = (a - \epsilon, a + \epsilon)$$

is called the ϵ -neighborhood of a.

Definition (Convergence of a Sequence: Topological Version). A sequence (a_n) converges to a if, given any ϵ -neighborhood $V_{\epsilon}(a)$ of a, there exists a point in the sequence after which all of the terms are in $V_{\epsilon}(a)$. In other words, every ϵ -neighborhood contains all but a finite number of terms of (a_n) .

Theorem (Uniqueness of Limits). The limit of a sequence, when it exists, must be unique.

Definition. A sequence that does not converge is said to *diverge*.

2.3 The Algebraic and Order Limit Theorems.

Definition. A sequence (x_n) is bounded if there exists a number M > 0 such that $|x_n| \leq M$ for all $n \in \mathbb{N}$.

Theorem. Every convergent sequence is bounded.

Theorem (Algebraic Limit Theorem). Let $\lim a_n = a$ and $\lim b_n = b$. Then,

- (i) $\lim(ca_n) = ca$, for all $c \in \mathbb{R}$;
- (ii) $\lim(a_n + b_n) = a + b$;
- (iii) $\lim(a_nb_n)=ab$;
- (iv) $\lim(a_n/b_n) = a/b$, provided $b \neq 0$.

Theorem (Order Limit Theorem). Assume $\lim a_n = a$ and $\lim b_n = b$.

- (i) If $a_n \geq 0$ for all $n \in \mathbb{N}$, then $a \geq 0$.
- (ii) If $a_n \leq b_n$ for all $n \in \mathbb{N}$, then $a \leq b$.
- (iii) If there exists $c \in \mathbb{R}$ for which $c \leq b_n$ for all $n \in \mathbb{N}$, then $c \leq b$. Similarly, if $a_n < c$ for all $n \in \mathbb{N}$, then a < c.

2.4 The Monotone Convergence Theorem and a First Look at Infinite Series.

Definition. A sequence (a_n) is *increasing* if $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$ and *decreasing* if $a_n \geq a_{n+1}$ for all $n \in \mathbb{N}$. A sequence is *monotone* if it is either increasing or decreasing.

Theorem (Monotone Convergence Theorem). If a sequence is monotone and bounded, then it converges.

Definition (Convergence of a Series). Let (b_n) be a sequence. An *infinite series* is a formal expression of the form

$$\sum_{n=1}^{\infty} b_n = b_1 + b_2 + b_3 + b_4 + b_5 + \cdots$$

We definite the corresponding sequence of partial sums (s_m) by

$$s_m = b_1 + b_2 + b_3 + \dots + b_m,$$

and say that the series $\sum_{n=1}^{\infty} b_n$ converges to B if the sequence (s_m) converges to B. In this case, we write $\sum_{n=1}^{\infty} b_n = B$.

Theorem (Cauchy Condensation Test). Suppose (b_n) is decreasing and satisfies $b_n \geq 0$ for all $n \in \mathbb{N}$. Then, the series $\sum_{n=1}^{\infty} b_n$ converges if and only if the series

$$\sum_{n=0}^{\infty} 2^n b_{2^n} = b_1 + 2b_2 + 4b_4 + 8b_8 + 16b_{16} + \cdots$$

converges.

2.5 Subsequences and the Bolzano-Weierstrass Theorem.

Definition. Let (a_n) be a sequence of real numbers, and let $n_1 < n_2 < n_3 < n_4 < n_5 < \dots$ be an increasing sequence of natural numbers. Then the sequence

$$(a_{n_1}, a_{n_2}, a_{n_3}, a_{n_4}, a_{n_5}, \ldots)$$

is called a *subsequence* of (a_n) and is denoted by (a_{n_k}) , where $k \in \mathbb{N}$ indexes the subsequence.

Theorem. Subsequences of a convergent sequence converge to the same limit as the original sequence.

Corollary (Divergence Criterion). Suppose that (a_n) is a sequence and (a_{n_k}) is a subsequence that diverges, then (a_n) diverges. If $(a_{n_k}^1)$ and $(a_{n_k}^2)$ converge to a^1 and a^2 with $a^1 \neq a^2$, then (a_n) diverges.

Theorem (Bolzano-Weierstrass Theorem). Every bounded sequence contains a convergent subsequence.

2.6 The Cauchy Criterion.

Definition. A sequence (a_n) is called a *Cauchy sequence* if, for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that whenever $m, n \geq N$ it follows that $|a_n - a_m| < \epsilon$.

Theorem. Every convergence sequence is a Cauchy sequence.

Lemma. Cauchy sequences are bounded.

Theorem (Cauchy Criterion). A sequence converges if and only if it is a Cauchy sequence.

2.7 Properties of Infinite Series.

Theorem (Algebraic Limit Theorem for Series). If $\sum_{k=1}^{\infty} a_k = A$ and $\sum_{k=1}^{\infty} b_k = B$, then

(i)
$$\sum_{k=1}^{\infty} ca_k = cA$$
 for all $c \in \mathbb{R}$ and (ii) $\sum_{k=1}^{\infty} (a_k + b_k) = A + B$.

Theorem (Cauchy Criterion for Series). The series $\sum_{k=1}^{\infty} a_k$ converges if and only if, given $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that whenever $n > m \geq N$ it follows

$$|a_{m+1} + a_{m+2} + \dots + a_n| < \epsilon.$$

Theorem (Divergence Test). If the series $\sum_{k=1}^{\infty} a_k$ converges, then $(a_k) \to 0$. Equivalently, if $(a_k) \not\to 0$, then $\sum_{k=1}^{\infty} a_k$ diverges.

Theorem (Comparison Test). Assume (a_k) and (b_k) are sequences satisfying $0 \le k$ $a_k \leq b_k$ for all $k \in \mathbb{N}$.

- (i) If $\sum_{k=1}^{\infty} b_k$ converges, then $\sum_{k=1}^{\infty} a_k$ converges. (ii) If $\sum_{k=1}^{\infty} a_k$ diverges, then $\sum_{k=1}^{\infty} b_k$ diverges.

Theorem (Squeeze Theorem). Suppose $a_n \leq b_n \leq c_n$ for all $n \in \mathbb{N}$, and if $\lim a_n = 1$ $\lim c_n = l$, then $\lim b_n = l$ as well.

Definition (Geometric Series). A series is called *geometric* if it is of the form

$$\sum_{k=0}^{\infty} ar^k = a + ar + ar^2 + ar^3 + \cdots.$$

Theorem. $\sum_{k=0}^{\infty} ar^k = \frac{a}{1-r}$ if and only if |r| < 1.

Theorem (Absolute Convergence Test). If the series $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges as well.

Theorem (Alternating Series Test). Let (a_n) be a sequence satisfying,

- (i) $a_1 \ge a_2 \ge a_3 \ge \cdots \ge a_n \ge a_{n+1} \ge \cdots$ and

Then, the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

Definition. If $\sum_{n=1}^{\infty} |a_n|$ converges, then we say that the original series $\sum_{n=1}^{\infty} a_n$ converges absolutely. If, on the other hand, the series $\sum_{n=1}^{\infty} a_n$ converges but the series of absolute values $\sum_{n=1}^{\infty} |a_n|$ does not converge, then we say that the original series $\sum_{n=1}^{\infty} a_n$ converges conditionally.