

			Subject Code: KOT075								
Roll No:											

BTECH (SEM VII) THEORY EXAMINATION 2023-24 REAL TIME OPERATING SYSTEMS

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Printed Page: 1 of 2

Q no.	Question	Marks
a.	What is the need for a Real-Time Operating System (RTOS)?	2
b.	Provide examples of applications where real-time systems are crucial.	2
c.	Discuss the differences between hard real-time and soft real-time systems.	2
d.	What are the key performance metrics used to evaluate the effectiveness of a Real-Time Operating System (RTOS)?	2
e.	Define interrupt routines and their role in handling hardware and software events in an RTOS.	2
f.	Explain the concept of task priority and how it influences task scheduling and execution.	2
g.	Discuss the key differences between real-time databases and general-purpose databases.	2
h.	Discuss the advantages and challenges associated with storing and managing data primarily in main memory.	2
i.	Discuss the importance of understanding failure causes in the context of fault tolerance.	2
j.	Write various fault detection methods employed in fault tolerance.	2

SECTION B

2. Attempt any *three* of the following:

 $10 \times 3 = 30$

a.	Compare and contrast the features of General-Purpose Operating Systems	10
	(GPOS) and Real-Time Operating Systems (RTOS).	
b.	Explain the concept of a cyclic executive scheduling algorithm.	10
c.	Explain the role of messages, queues, mailboxes, and pipes in a Real-Time	10
	Operating System. How do these features facilitate communication between	
	tasks?	
d.	How are transaction priorities assigned, and how do they influence the	10
	scheduling and execution of transactions in RTOS?	
e.	Define different types of faults, including hardware faults, software faults,	10
	and transient faults.	

SECTION C

3. Attempt any *one* part of the following:

 $10 \times 1 = 10$

Ī	a.	Explain how factors such as task scheduling, interrupt handling, and resource	10
		management can impact the real-time performance of an RTOS.	
	b.	Provide an overview of the LINUX/UNIX operating system.	10

					Pri	inte	l Pa	ge: 2	of 2
				Sub	ject	Cod	le: K	TO	075
Roll No:									

BTECH (SEM VII) THEORY EXAMINATION 2023-24 REAL TIME OPERATING SYSTEMS

TIME: 3 HRS M.MARKS: 100

4. Attempt any *one* part of the following:

 $10 \times 1 = 10$

a.	Discuss scenarios where Rate Monotonic Scheduling is suitable and its	10
	impact on system performance.	
b.	How does Least Laxity Scheduling prioritize tasks based on their laxity, and	10
	what advantages does this approach offer?	

5. Attempt any *one* part of the following:

 $10 \times 1 = 10$

a.	Explain the trade-offs involved in RTOS design decisions and their impact	10
	on system performance.	
b.	Explain how timers are used to enforce timing constraints and deadlines.	10

6. Attempt any *one* part of the following:

 $10 \times 1 = 10$

a.	Discuss the advantages and disadvantages of each concurrency control	10
	approach in real-time databases.	1
b.	Provide an overview of disk scheduling algorithms used in real-time	100
	databases.	

7. Attempt any *one* part of the following:

 $10 \times 1 = 10$

a.	Explain the strategies and mechanisms used to contain faults and prevent them from spreading to other parts of the system.	10
b.	Explain how time redundancy techniques, such as retry mechanisms and time-based voting, are used to address transient faults.	10
	Ŋ.	
	V.D.	
	001	
	2.0	