

IN THE CLAIMS:

Please amend claims 1-54 as follows:

1. (original) A compound of formula I:

I

or a pharmaceutically acceptable salt, or mixtures thereof, wherein:

W is:

$$R_6$$
 , R_6 , R_6 , or

wherein each R6 is independently:

hydrogen-,

(C1-C12)-aliphatic-,

(C6-C10)-aryl-,

(C6-C10) -aryl-(C1-C12) aliphatic-,

(C3-C10)-cycloalkyl- or cycloalkenyl-,

[(C3-C10)-cycloalkyl- or cycloalkenyl]-(C1-C12)-

aliphatic-,

(C3-C10) -heterocyclyl-,

(C3-C10) -heterocyclyl-(C1-C12) -aliphatic-,

(C5-C10)-heteroaryl-, or

(C5-C10) -heteroaryl-(C1-C12) -aliphatic-, or

wherein up to 3 aliphatic carbon atoms in each R_6 may be optionally replaced with S, -S(0)-, $-S(0)_2$ -, -0-, -N-, or -N(H)- in a chemically stable arrangement; wherein R_6 may be optionally substituted with up to 3 J substituents; or

two R₆ groups, together with the nitrogen atom to which they are bound, may optionally form a 5- to 6-membered aromatic or a 3- to 7-membered saturated or partially unsaturated ring system wherein up to 3 ring atoms may be optionally replaced with N, NH, O, S, SO, and SO₂, wherein said ring system may be optionally fused to a (C6-C10)aryl, (C5-C10)heteroaryl, (C3-C10)cycloalkyl, or a (C3-C10)heterocyclyl, wherein any ring has up to 3 substituents selected independently from J;

wherein each R_8 is independently -OR'; or the R_8 groups together with the boron atom, may optionally form a (C3-C10)-membered heterocyclic ring wherein each R_8 is independently -OR'; or the R_8 groups together with the boron atom, may optionally form a (C3-C10)-membered heterocyclic ring having, in addition to the boron, up to 3 ring atoms optionally replaced with N, NH, O, S, SO, and SO₂;

```
-C(=NOR')R', -OP(O)(OR')_2, -P(O)(R')_2, -P(O)(OR')_2, or
  -P(O)(H)(OR'); wherein;
        R' is independently selected from:
       hydrogen-,
        (C1-C12)-aliphatic-,
        (C3-C10)-cycloalkyl- or -cycloalkenyl-,
        [(C3-C10)-cycloalkyl or -cycloalkenyl]-(C1-C12)-
     aliphatic-,
        (C6-C10)-aryl-,
        (C6-C10)-aryl-(C1-C12)aliphatic-,
        (C3-C10) -heterocyclyl-,
        (C3-C10) -heterocyclyl-(C1-C12) aliphatic-,
        (C5-C10) -heteroaryl-, and
        (C5-C10) -heteroaryl-(C1-C12) -aliphatic-;
       wherein up to 5 atoms in R' may be optionally and
     independently substituted with J;
       wherein two R' groups bound to the same atom may
     optionally form a 5- to 6-membered aromatic or a 3- to
     7-membered saturated or partially unsaturated ring
     system wherein up to 3 ring atoms may be optionally
     replaced with a heteroatom independently selected from
     N, NH, O, S, SO, and SO2, wherein said ring system may
     be optionally fused to a (C6-C10) aryl,
     (C5-C10)heteroaryl, (C3-C10)cycloalkyl, or a
     (C3-C10)heterocyclyl, wherein any ring has up to 3
     substituents selected independently from J;
R_5 and R_5 are each independently hydrogen or (C1-C12)-
  aliphatic, wherein any hydrogen may be optionally
  replaced with halogen; wherein any terminal carbon atom
  of R<sub>5</sub> may be optionally substituted with sulfhydryl or
  hydroxy; or R5 is Ph or -CH2Ph and R5. is H, wherein said
  Ph or -CH<sub>2</sub>Ph group may be optionally substituted with up
  to 3 substituents independently selected from J; or
```

> R_5 and R_{5} together with the atom to which they are bound may optionally form a 3- to 6-membered saturated or partially unsaturated ring system wherein up to 2 ring atoms may be optionally replaced with N, NH, O, SO, or SO2; wherein said ring system has up to 2 substituents selected independently from J; R_2 , R_4 , and R_7 are each independently: hydrogen-, (C1-C12)-aliphatic-, (C3-C10)-cycloalkyl-(C1-C12)-aliphatic-, or (C6-C10) -aryl-(C1-C12) -aliphatic-; wherein up to two aliphatic carbon atoms in each of R2, R_4 , and R_7 may be optionally replaced with S, -S(0)-, $-S(0)_2$ -, -O-, -N-, or -N(H)- in a chemically stable arrangement; wherein each of R_2 , R_4 , and R_7 may be independently and optionally substituted with up to 3 substituents independently selected from J; R_1 and R_3 are each independently: (C1-C12)-aliphatic-, (C3-C10)-cycloalkyl- or -cycloalkenyl-, [(C3-C10)-cycloalkyl- or -cycloalkenyl]-(C1-C12)aliphatic-, (C6-C10) -aryl-(C1-C12) aliphatic-, or (C5-C10) -heteroaryl-(C1-C12) -aliphatic-; wherein up to 3 aliphatic carbon atoms in each of R_1 and R_3 may be optionally replaced with $S_1 - S(0) - S(0)_2 - S(0)_3 -$ -O-, -N-, or -N(H)- in a chemically stable arrangement; wherein each of R₁ and R₃ may be independently and optionally substituted with up to 3 substituents independently selected from J;

 R_9 , $R_{9'}$, R_{10} , and $R_{10'}$ are each independently -X-Y-Z;

X is a bond, $-C(H)(R_6)$ -, -O-, -S-, or $-N(R_{11})$ -;

 R_{11} is:

```
hydrogen-,
   (C1-C12) -aliphatic-,
   (C6-C10) -aryl-,
   (C6-C10) -aryl-(C1-C12) aliphatic-,
   (C3-C10)-cycloalkyl- or cycloalkenyl-,
   [(C3-C10)-cycloalkyl- or cycloalkenyl]-(C1-C12)-
aliphatic-,
   (C3-C10)-heterocycly1-,
   (C3-C10) -heterocyclyl-(C1-C12) -aliphatic-,
   (C5-C10)-heteroaryl-, or
   (C5-C10) -heteroaryl-(C1-C12) -aliphatic-,
        wherein up to 3 aliphatic carbon atoms in each R11
     may be optionally replaced with S, -S(0)-, -S(0)_2-,
     -O-, -N-, or -N(H)- in a chemically stable arrangement;
        wherein R<sub>11</sub> may be optionally substituted with up to
     3 J substituents; or
        wherein R_{11} and Z together with the atoms to which
     they are bound, optionally form a nitrogen containing
     5-7-membered mono- or 6-11-membered bicyclic ring
     system optionally substituted with up to 3 J
     substitutents, wherein up to 3 ring atoms in said ring
     system may be optionally replaced with O, NH, S, SO, or
     SO<sub>2</sub> in a chemically stable arrangement;
Y is a bond, -CH_2-, -C(0)-, -C(0)C(0)-, -S(0)-, S(0)_2-, or -
  S(0)(NR_{12})-;
R<sub>12</sub> is:
  hydrogen-,
   (C1-C12)-aliphatic-,
  (C6-C10)-aryl-,
  (C6-C10)-aryl-(C1-C12)aliphatic-,
  (C3-C10)-cycloalkyl- or cycloalkenyl-,
  [(C3-C10)-cycloalkyl- or cycloalkenyl]-(C1-C12)-
aliphatic-,
  (C3-C10) -heterocyclyl-,
```

```
(C3-C10) -heterocyclyl-(C1-C12) -aliphatic-,
   (C5-C10)-heteroaryl-, or
   (C5-C10) -heteroaryl-(C1-C12) -aliphatic-,
        wherein up to 3 aliphatic carbon atoms in each R12
     may be optionally replaced with S_1 - S(0) - S(0)_2 - S(0)_2
     -O-, -N-, or -N(H)-, in a chemically stable
     arrangement;
        wherein R<sub>12</sub> may be optionally substituted with up to
     3 J substituents;
Z is:
  hydrogen-,
   (C1-C12) -aliphatic-,
   (C3-C10)-cycloalkyl- or -cycloalkenyl-,
   [(C3-C10)-cycloalkyl or -cycloalkenyl]-(C1-C12)-
  aliphatic-,
   (C6-C10)-aryl-,
   (C6-C10) -aryl-(C1-C12) aliphatic-,
   (C3-C10) -heterocyclyl-,
   (C3-C10) -heterocyclyl-(C1-C12) aliphatic-,
   (C5-C10)-heteroaryl-, or
   (C5-C10) -heteroaryl-(C1-C12) -aliphatic-;
     wherein up to three aliphatic carbon atoms in Z may be
  optionally replaced with S, -S(0)-, -S(0)<sub>2</sub>-, -0-, -N-, or
  -N(H)-, in a chemically stable arrangement;
     wherein any ring may be optionally fused to a
   (C6-C10) aryl, (C5-C10) heteroaryl, (C3-C10) cycloalkyl, or
   (C3-C10) heterocycly1;
     wherein Z may be independently and optionally
  substituted with up to 3 substituents independently
  selected from J;
V is -C(0)-, -S(0)-, or -S(0)_2-;
R is -C(0)-, -S(0)-, -S(0)_2-, -N(R_{12})-, -0-, or a bond;
T is:
  (C1-C12) -aliphatic-;
```

```
'(C6-C10)-aryl-,
  (C6-C10) -aryl-(C1-C12) aliphatic-,
  (C3-C10)-cycloalkyl or -cycloalkenyl-,
  [(C3-C10)-cycloalkyl or -cycloalkenyl]-(C1-C12)-
aliphatic-,
  (C3-C10) -heterocyclyl-,
  (C3-C10) -heterocyclyl-(C1-C12) -aliphatic-,
  (C5-C10)-heteroaryl-, or
  (C5-C10) -heteroary1-(C1-C12) -aliphatic-;
     wherein up to 3 aliphatic carbon atoms in T may be
  replaced with S, -S(0)-, -S(0)_2-, -O-, -N-, or -N(H)-, in
  a chemically stable arrangement;
     wherein each T may be optionally substituted with up to
  3 J substituents; or
T is selected from -N(R_6)(R_{6'}); and
R_6 is
  hydrogen-,
  (C1-C12)-aliphatic-,
  (C6-C10)-aryl-,
  (C6-C10) -aryl-(C1-C12) aliphatic-,
  (C3-C10)-cycloalkyl- or cycloalkenyl-,
  [(C3-C10)-cycloalkyl- or cycloalkenyl]-(C1-C12)-
  aliphatic-,
  (C3-C10) -heterocyclyl-,
  (C3-C10) -heterocyclyl-(C1-C12) -aliphatic-,
  (C5-C10)-heteroaryl-, or
  (C5-C10)-heteroaryl-(C1-C12)-aliphatic-, or
       wherein up to 3 aliphatic carbon atoms in each R6,
     may be optionally replaced with S, -S(0)-, -S(0)_2-,
     -O-, -N-, or -N(H) - in a chemically stable arrangement;
       wherein R_{6}, may be optionally substituted with up to
     3 J substituents; or
       R_6 and R_6, together with the nitrogen atom to which
     they are bound, may optionally form a (C3-C10)-
```

heterocyclic ring system wherein said ring system may be optionally substituted with up to 3 substituents independently selected from J.

(original) The compound according to claim 1, wherein the

$$R_{10}$$
 R_{10}
 R_{9}
radical is,

 X

wherein;
in R_9 , R_{10} , and R_{10} ,

in R_9 , R_{10} , and $R_{10'}$, X and Y are both a bond and Z is hydrogen; and in $R_{9'}$;

X is a bond;

Y is a bond, $-CH_2-$, or -C(0)-; and

Z is (C1-C12)-aliphatic-,

(C3-C10)-cycloalkyl- or -cycloalkenyl-,

[(C3-C10)-cycloalkyl or -cycloalkenyl]-(C1-C12)-

aliphatic-,

(C6-C10)-aryl-,

(C6-C10)-aryl-(C1-C12)aliphatic-,

(C3-C10)-heterocyclyl-,

(C3-C10) -heterocyclyl-(C1-C12) aliphatic-,

(C5-C10)-heteroaryl-, or

(C5-C10) -heteroaryl-(C1-C12) -aliphatic-;

wherein up to three aliphatic carbon atoms in Z may be optionally replaced with S, -S(0)-, -S(0)₂-, -O-, -N-, or -N(H)-, in a chemically stable arrangement;

wherein any ring may be optionally fused to a (C6-C10)aryl, (C5-C10)heteroaryl, (C3-C10)cycloalkyl, or (C3-C10)heterocyclyl;

wherein Z may be independently and optionally substituted with up to 3 substituents independently selected from J.

```
(original) The compound according to claim 2,
wherein in Rg.;
X is a bond:
Y is a bond; and
Z is (C1-C12)-aliphatic-,
   (C3-C10)-cycloalkyl- or -cycloalkenyl-,
   [(C3-C10)-cycloalkyl or -cycloalkenyl]-(C1-C12)-
  aliphatic-,
   (C6-C10)-aryl-,
   (C6-C10) -aryl-(C1-C12) aliphatic-,
   (C5-C10)-heteroaryl-, or
   (C5-C10) -heteroaryl-(C1-C12) -aliphatic-;
     wherein up to three aliphatic carbon atoms in Z may be
  optionally replaced with S, -S(0)-, -S(0)<sub>2</sub>-, -O-, -N-, or
  -N(H)-, in a chemically stable arrangement;
     wherein any ring may be optionally fused to a
   (C6-C10)aryl, (C5-C10)heteroaryl, (C3-C10)cycloalkyl, or
   (C3-C10) heterocyclyl;
     wherein Z may be independently and optionally
  substituted with up to 3 substituents independently
  selected from J.
         (original) The compound according to claim 3,
wherein in
Rg.;
X is a bond;
Y is a bond; and
Z is (C1-C12)-aliphatic-,
  (C3-C10)-cycloalkyl- or -cycloalkenyl-,
```

[(C3-C10)-cycloalkyl or -cycloalkenyl]-(C1-C12)aliphatic-, or

(C6-C10) -aryl-(C1-C12) aliphatic-,

wherein up to three aliphatic carbon atoms in Z may be optionally replaced with S, -S(0)-, $-S(0)_2-$, -0-, -N-, or -N(H)-, in a chemically stable arrangement;

wherein Z may be independently and optionally substituted with up to 3 substituents independently selected from J.

5. (original) The compound according to claim 4, wherein R_{9} , is

6. (original) The compound according to claim 5, wherein R_{9} , is

7. (original) The compound according to claim 6, wherein R_{9} is ethyl.

8. (original) The compound according to claim 1, wherein in

 R_9 , R_{10} , and R_{10} , X and Y are both a bond and Z is hydrogen; and in R_{9} ;

X is a bond;

Y is -C(0)-; and

Z is (C1-C12)-aliphatic-, or

(C3-C10)-heterocyclyl-(C1-C12)aliphatic-;

wherein up to three aliphatic carbon atoms in Z may be optionally replaced with S, -S(0)-, $-S(0)_2$ -, -O-, -N-, or -N(H)-, in a chemically stable arrangement;

wherein any ring may be optionally fused to a (C6-C10)aryl, (C5-C10)heteroaryl, (C3-C10)cycloalkyl, or (C3-C10)heterocyclyl;

wherein Z may be independently and optionally substituted with up to 3 substituents independently selected from J.

- 9. (original) The compound according to claim 8, wherein Z is -O-(C1-C6)-aliphatic or -N(R')₂, wherein the two R' groups bound to the nitrogen atom may optionally form a 3- to 7-membered saturated or partially unsaturated ring system wherein up to 3 ring atoms may be optionally replaced with a heteroatom independently selected from N, NH, O, S, SO, and SO₂, wherein said ring system may be optionally fused to a (C6-C10)aryl, (C5-C10)heteroaryl, (C3-C10)cycloalkyl, or a (C3-C10)heterocyclyl, wherein any ring has up to 3 substituents selected independently from J.
- 10. (original) The compound according to claim 8, wherein Z is $-N(R')_2$, wherein the two R' groups bound to the nitrogen atom may optionally form a 3- to 7-membered saturated or partially unsaturated ring system wherein up to 3 ring atoms may be optionally replaced with a heteroatom

independently selected from N, NH, O, S, SO, and SO_2 , wherein said ring system may be optionally fused to a (C6-C10)aryl, (C5-C10)heteroaryl, (C3-C10)cycloalkyl, or a (C3-C10)heterocyclyl, wherein any ring has up to 3 substituents selected independently from J.

11. (original) The compound according to claim 1, wherein in R_9 , and R_{10} , X and Y are a bond and Z is hydrogen; and in each of R₉, and R₁₀, independently; X is a bond; Y is a bond; and Z is (C1-C12)-aliphatic-, (C3-C10)-cycloalkyl- or -cycloalkenyl-, [(C3-C10)-cycloalkyl or -cycloalkenyl]-(C1-C12)aliphatic-, (C6-C10) - aryl-,(C6-C10) -aryl-(C1-C12) aliphatic-, (C3-C10) -heterocyclyl-, (C3-C10) -heterocyclyl-(C1-C12) aliphatic-, (C5-C10)-heteroaryl-, or (C5-C10) -heteroaryl-(C1-C12) -aliphatic-; wherein up to three aliphatic carbon atoms in Z may be optionally replaced with S, -S(0)-, -S(0)₂-, -O-, -N-, or -N(H)-, in a chemically stable arrangement; wherein any ring may be optionally fused to a (C6-C10) ary1, (C5-C10) heteroary1, (C3-C10) cycloalky1, or (C3-C10) heterocycly1; wherein Z may be independently and optionally substituted with up to 3 substituents independently

selected from J.

12 (original) The compound according to claim 11

12. (original) The compound according to claim 11, wherein Z, in each of R_{9} , and R_{10} , independently, is

08/30/2004 15:47 FAX Q 029/048

(C1-C12)-aliphatic-,
(C3-C10)-cycloalkyl- or -cycloalkenyl-, or
[(C3-C10)-cycloalkyl or -cycloalkenyl]-(C1-C12)aliphatic-;

wherein up to three aliphatic carbon atoms in Z may be optionally replaced with S, -S(0)-, -S(0)₂-, -O-, -N-, or -N(H)-, in a chemically stable arrangement;

wherein Z may be independently and optionally substituted with up to 3 substituents independently selected from J.

13. (original) The compound according to claim 12, wherein Z, in each of $R_{9^{\prime}}$ and $R_{10^{\prime}}$ independently, is (C1-C6)-aliphatic-.

14. (original) The compound according to claim 1,
wherein in

 R_{10} , and $R_{10'}$, X and Y are a bond and Z is hydrogen; and in each of R_9 and $R_{9'}$;

X is a bond,

Y is a bond, and

Z is (C1-C6)-aliphatic-,

wherein Z may be independently and optionally substituted with up to 3 substituents independently selected from J.

15. (original) The compound according to any one of claims 1-14, wherein W is:

wherein in the W, the NR_6R_6 is selected from -NH-(C1-C6 aliphatic), -NH-(C3-C6 cycloalkyl), -NH-CH(CH₃)-aryl, or -NH-CH(CH₃)-heteroaryl, wherein said aryl or said heteroaryl is optionally substituted with up to 3 halogens.

16. (original) The compound according to claim 15, wherein in the W, the NR_6R_6 is:

17. (original) The compound according to claim 16, wherein in the W, the NR_6R_6 is:

18. (original) The compound according to claim 17, wherein in the W, the NR_6R_6 is:

19. (original) The compound according to claim 18, wherein in the W, the NR_6R_6 is:

20. (currently amended) The compound according to any one of claims 1-19, wherein R_5 is hydrogen and R_5 is:

21. (original) The compound according to claim 20, wherein R_{5} is hydrogen and R_{5} is:

- 22. (currently amended) The compound according to any one of claims 1-21, wherein R_2 , R_4 , and R_7 are each independently H, methyl, ethyl, or propyl.
- 23. (original) The compound according to claim 22, wherein R_2 , R_4 , and R_7 are each hydrogen.
- 24. (currently amended) The compound according to any one of claims 1-33, wherein R_3 is:

25. (original) The compound according to claim 24, wherein $\ensuremath{R_3}$ is:

26. (original) The compound according to claim 25, wherein R_3 is:

27. (currently amended) The compound according to any one of claims 1-26, wherein R_1 is:

28. (original) The compound according to claim 27, wherein R_1 is:

29. (original) The compound according to claim 18, wherein R_1 is isopropyl or cyclohexyl.

30. (original) The compound according to claim 1, wherein the

radical is:

wherein:

 R_6 , $R_{6'}$, R_7 , and R_{12} , are as defined in claim 1.

31. (original) The compound according to claim 30, wherein

in the

radical;

 R_{6} , and R_{7} are both hydrogen;

R₆ is:

(C1-C12) -aliphatic-;

(C6-C10)-aryl-,

(C6-C10)-aryl-(C1-C12)aliphatic-,

(C3-C10)-cycloalkyl or -cycloalkenyl-,

[(C3-C10)-cycloalkyl or -cycloalkenyl]-(C1-C12)-

aliphatic-,

(C3-C10) -heterocycly1-,

(C3-C10) -heterocyclyl-(C1-C12) -aliphatic-,

(C5-C10)-heteroaryl-, or

(C5-C10) -heteroaryl-(C1-C12) -aliphatic-;

wherein up to 3 aliphatic carbon atoms in R_6 may be optionally replaced by S_1 , $-S_1(0) - S_2(0) - S_3(0) - S_4(0) - S_5(0) - S_6(0) - S_6(0$

-N-, or -N(H)-, in a chemically stable arrangement; and

wherein R_6 may be optionally substituted with up to 3 substituents independently selected from J; and R_{12} is as defined in claim 1.

32. (original) The compound according to claim 31, wherein;

R₆ is:

(C1-C12) -aliphatic-;

(C6-C10) -aryl-(C1-C12) aliphatic-, or

(C3-C10)-cycloalkyl or -cycloalkenyl-;

wherein up to 3 aliphatic carbon atoms in R_6 may be optionally replaced by S, -S(0)-, $-S(0)_2$ -, -0-, -N-, or -N(H)-, in a chemically stable arrangement; wherein R_6 may be optionally substituted with up to 3 substituents independently selected from J; and R_{12} is as defined in claim 1.

33. (original) The compound according to claim 32, wherein the

radical is:

34. (original) The compound according to claim 33, wherein the

radical is:

08/30/2004 15:48 FAX @ 035/048

35. (currently amended) The compound according to any one of claims 1-29, wherein;
V is -C(0)-; and
R is a bond.

36. (currently amended) The compound according to $\frac{\text{any}}{\text{one of claims } 1-29}$, wherein;

V is -C(0)-;
R is a bond; and

T is:

(C3-C10)-heterocyclyl- or (C5-C10)heteroaryl-;
wherein each T is optionally substituted with up to 3 J
substituents.

- 37. (original) The compound according to claim 36, wherein T is (C5-C6)heterocyclyl- or (C5-C6)heteroaryl-; wherein each T is optionally substituted with up to 3 J substituents.
- 38. (original) The compound according to claim 37, wherein T is:

wherein:

- Z' is independently O, S, NR', or $C(R')_2$.
- 39. (original) The compound according to claim 38, wherein T is:

40. (original) The compound according to claim 1, wherein the compound is:

1	
2	
3	N NH
4	N H H H H H H H H H H H H H H H H H H H
5	HO HIN O
6	
7	
8	

9	
10	
11	
12	
13	
14	
15	
16	
17	

18	
19	N. Comb
20	7
21	Y
22	
23	PN
24	
25	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
"	
26	
27	
	NO N

28	
29	
30	MAN THE STATE OF T
31	MAN AND AND AND AND AND AND AND AND AND A
32	
33	N H OH
34	
35	
36	N N N N N N N N N N N N N N N N N N N
37	

38	\one_0
	/ / /
	N H H OH
39	
40	
41	
42	
43	
44	
45	
46	

47	
48	
49	
50	
51	
52	
53	
54	
55	
56	

57	
58	
59	
60	
61	
62	
63	
64	
65	

66	
67	
68	
69	
70	
71	
72	
73	
74	

- 41. (currently amended) A pharmaceutical composition comprising a compound according to any one of claims 1—40 or a pharmaceutically acceptable salt or mixtures thereof in an amount effective to inhibit a serine protease; and a acceptable carrier, adjuvant or vehicle.
- 42. (original) The composition according to claim 41, wherein said composition is formulated for administration to a patient.
- 43. (original) The composition according to claim 42, wherein said composition comprises an additional agent selected from an immunomodulatory agent; an antiviral agent; a second inhibitor of HCV protease; an inhibitor of another target in the HCV life cycle; and a cytochrome P-450 inhibitor; or combinations thereof.
- 44. (original) The composition according to claim 41, wherein said immunomodulatory agent is α -, β -, or γ -interferon or thymosin; said antiviral agent is ribavirin, amantadine, or telbivudine; or said inhibitor of another

target in the HCV life cycle is an inhibitor of HCV helicase, polymerase, or metalloprotease.

- 45. (original) The composition according to claim 43, wherein said cytochrome P-450 inhibitor is ritonavir.
- 46. (currently amended) A method of inhibiting the activity of a serine protease comprising the step of contacting said serine protease with a compound according to any one of claims 1-40.
- 47. (original) The method according to claim 46, wherein said serine protease is an HCV NS3 protease.
- 48. (original) A method of treating an HCV infection in a patient comprising the step of administering to said patient a composition according to claim 42.
- 49. (original) The method according to claim 48, comprising the additional step of administering to said patient an additional agent selected from an immunomodulatory agent; an antiviral agent; a second inhibitor of HCV protease; an inhibitor of another target in the HCV life cycle; or combinations thereof; wherein said additional agent is administered to said patient as part of said composition according to claim 42 or as a separate dosage form.
- 50. (original) The method according to claim 49, wherein said immunomodulatory agent is α -, β -, or γ -interferon or thymosin; said antiviral agent is ribavarin or amantadine; or said inhibitor of another target in the HCV life cycle is an inhibitor of HCV helicase, polymerase, or metalloprotease.

512. (currently amended) A method of eliminating or reducing HCV contamination of a biological sample or medical or laboratory equipment, comprising the step of contacting said biological sample or medical or laboratory equipment with a composition according to claim 41.

- 523. (currently amended) The method according to claim 512, wherein said sample or equipment is selected from blood, other body fluids, biological tissue, a surgical instrument, a surgical garment, a laboratory instrument, a laboratory garment, a blood or other body fluid collection apparatus; a blood or other body fluid storage material.
- 534. (currently amended) The method according to claim 523, wherein said body fluid is blood.