Pg 6/19 12/14/07 10:70 pm

RECEIVED CENTRAL FAX CENTER DEC. 1.7.2007

PATENT Docket No: CX03022USU (04CXT0006D)

Serial No.: 10/751,013

AMENDMENTS

TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (currently amended) A DC offset correction system for a direct-conversion receiver that includes a baseband section that has an input and an output, the DC offset correction system comprising:

a DC feedback correction servo-loop in signal communication with the baseband section, wherein the DC feedback correction servo-loop is coupled to both the input and output of the baseband section; and

an attenuator within the DC feedback correction servo-loop capable of generating an attenuation coefficient k_B .

2. (original) The DC offset correction system of claim 1, wherein the DC feedback correction servo-loop includes:

an integrator circuit in signal communication with the output of the baseband section; and a combiner circuit in signal communication with the input of the baseband section.

3. (canceled)

Pg 7/19 12/14/07 10:70 pm

To: USPTO Central Fax @ 571-273-8300 From: Jeffrey C. Wilk

PATENT

Docket No: CX03022USU (04CXT0006D)

Serial No.: 10/751,013

4. (previously presented) The DC offset correction system of claim 2, wherein the

attenuator includes a resistor and a Sallen-Key RC filter.

. (original) The DC offset correction system of claim 2, wherein the integrator

circuit is a RC filter.

6. (original) The DC offset correction system of claim 2, wherein the integrator

circuit is a non-RC filter.

7. (canceled)

8. (currently amended) The DC offset correction system of claim [[7]]1, wherein

the attenuator includes a resistor and a Sallen-Key RC filter.

9. (original) The DC offset correction system of claim 8, further including a

controller in signal communication with the baseband section and the attenuator.

10. (previously presented) The DC offset correction system of claim 2, further

including a controller in signal communication with the baseband section and the attenuator.

11. (original) The DC offset correction system of claim 1, further including a

controller in signal communication with the baseband section and the attenuator.

-4-

Pg 8/19 12/14/07 10:70 pm

To: USPTO Central Fax @ 571-273-8300 From: Jeffrey C. Wilk

PATENT

Docket No: CX03022USU (04CXT0006D) Serial No.: 10/751,013

12. (original) A DC offset correction system for a direct-conversion receiver that

includes a baseband section that has an input and an output, the DC offset correction system

comprising:

a DC feedback correction servo-loop in signal communication with the baseband section,

wherein the DC feedback correction servo-loop is coupled to both the input and output of the

baseband section; and

means for producing an attenuation coefficient k_{fb} within the DC feedback correction

servo-loop, the attenuation means in signal communication with the input of the baseband

section.

13. (original) The DC offset correction system of claim 12, wherein the DC feedback

correction servo-loop includes:

a means for integrating a received signal from the output of the baseband section; and

a means for combining an attenuated feedback signal produced by the attenuation means

with received signals to the input of the baseband section.

14. (canceled)

(previously presented) The DC offset correction system of claim 13, wherein the 15.

attenuator means includes a resistor and a Sallen-Key RC filter.

- 5 -

Tò: USPTO Central Fax @ 571-273-8300 From: Jeffrey C. Wilk

17.

Pg 9/19 12/14/07 10:70 pm

Docket No: CX03022USU (04CXT0006D)

Serial No.: 10/751,013

16. (previously presented) The DC offset correction system of claim 13, wherein the

means for integrating includes a RC filter.

(previously presented) The DC offset correction system of claim 13, wherein the

means for integrating includes a non-RC filter.

18. (previously presented) A method for correcting for DC offset in a direct-

conversion receiver that includes a baseband section that has an input and an output utilizing a

DC offset correction system, the method comprising:

processing a received baseband output signal from the output of the baseband section to

create a processed feedback signal;

attenuating the processed feedback signal with an attenuation coefficient k_{fb} to create an

attenuated feedback signal;

transmitting the attenuated feedback signal to the input of the baseband section.

19. (previously presented) The method of claim 18, wherein processing includes

integrating the received baseband output signal with an integrator circuit.

20. (previously presented) The method of claim 18, wherein attenuating includes

generating the attenuation coefficient k_{fb} utilizing a resistor for a summation with a Sallen-Key

RC filter.

-6-

To: USPTO Central Fax @ 571-273-8300 From: Jeffrey C. Wilk Pg 10/19 12/14/07 10:70 pm

Docket No: CX03022USU (04CXT0006D)

(03022USU (04CXT0006D) Serial No.: 10/751,013

21. (previously presented) The method of claim 20, wherein the attenuation

coefficient k_{tb} is implemented by the ratio of a feedback resistor over the resistor in the input path

as Sallen-Key RC filter.

22. (previously presented) The method of claim 18, wherein transmitting includes

combining the attenuated feedback signal with an input signal that is being input into the

baseband section.

23. (previously presented) The DC offset correction system of claim 10, wherein the

controller generates a control signal that adjusts the attenuation coefficient k_{fb} .

24. (previously presented) The DC offset correction system of claim 10, wherein the

controller generates a control signal that enables the attenuation coefficient k_{fb} to track the gain

of the baseband section.

25. (previously presented) The DC offset correction system of claim 2, wherein the

DC feedback correction servo-loop is arranged to operate according to a high-pass transfer

function as follows:

$$\frac{V_o}{V_i} = A_{if} \frac{s}{s + \frac{A_{if} k_{jh}}{RC}},$$

To: USPTO Central Fax @ 571-273-8300 From: Jeffrey C. Wilk

Pg 11/19 12/14/07 10:70 pm

Docket No: CX03022USU (04CXT0006D)

Serial No.: 10/751,013

where V_i is an input voltage into the system, V_o is an output voltage of the baseband section, s is a Laplace transform operator, A_{ff} is the forward gain of the baseband section, R is a

resistance of the integrator circuit, and C is a capacitance of the integrator circuit.

(previously presented) The DC offset correction system of claim 13, further 26. including a controller in signal communication with the baseband section and the attenuator means.

27% (previously presented) The DC offset correction system of claim 26, wherein the controller generates a control signal that adjusts the attenuation coefficient k_{fb} .

- (previously presented) The DC offset correction system of claim 26, wherein the 28. controller generates a control signal that enables the attenuation coefficient k_{fb} to track the gain of the baseband section.
- 29. (previously presented) The DC offset correction system of claim 13, wherein the DC feedback correction servo-loop is arranged to operate according to a high-pass transfer function as follows:

$$\frac{V_o}{V_i} = A_{ff} \frac{s}{s + \frac{A_{ff} k_{fb}}{RC}},$$

Pg 12/19 12/14/07 10:70 pm

To: USPTO Central Fax @ 571-273-8300 From: Jeffrey C. Hilk

PATENT

Docket No: CX03022USU (04CXT0006D)

Serial No.: 10/751,013

where V_i is an input voltage into the system, V_o is an output voltage of the baseband section, s is a Laplace transform operator, A_{ff} is the forward gain of the baseband section, R is a resistance of the integrator means, and C is a capacitance of the integrator means.

- 30. (previously presented) The method of claim 18, further including controlling the attenuating wherein the attenuation coefficient k_{D} tracks the gain of the baseband section.
- 31. (previously presented) The method of claim 19, wherein the feedback signal is processed in a DC feedback correction servo-loop of the DC offset correction system that is coupled to an input and an output of the baseband section, integrating includes operating an integrator circuit of the DC offset correction system, and the method further includes operating the DC feedback correction servo-loop according to a high-pass transfer function as follows:

$$\frac{V_o}{V_i} = A_{ff} \frac{s}{s + \frac{A_{ff} k_{fb}}{RC}},$$

where V_i is an input voltage into the system, V_o is an output voltage of the baseband section, s is a Laplace transform operator, A_{ij} is the forward gain of the baseband section, R is a resistance of the integrator circuit, and C is a capacitance of the integrator circuit.