University of California Berkeley

Numerical Algorithms Applied to Computational Quantum Chemistry Grading Rubric for Homework 5

- 1. The problem set is worth 12 points. And the total points are divided into several components, as outlined below:
- 2. Key Points for Consideration:
 - a) **Derivation of** $x_{\mu\nu}$ **and** y_{AB} Derive the correct forms of $x_{\mu\nu}$ and y_{AB} for the analytical gradient of CNDO/2 energy. You must upload a PDF document that details your derivation process on Gradescope.
 - i. Derivation of $x_{\mu\nu}$ (2 points):
 - ii. Derivation of y_{AB} (2 points):
 - b) Calculation of Important Derivatives: You are required to calculate and print the the following derivatives with respect to atomic coordinates. Ensure these are printed in your output.
 - i. Overlap Integrals $S_{\mu\nu}^{\mathbf{R}_{A}}$ (2 points):
 - ii. Two-Electron Integrals $\gamma_{AB}^{\mathbf{R}_A}$ (2 points):
 - iii. Nuclear Repulsion Energy $V_{nuc}^{\mathbf{R}_A}$ (2 points):
 - c) Compute the total gradient of CNDO/2 energy (2 points): Construct the final gradient using the values obtained from the aforementioned steps and evaluate correct $x_{\mu\nu}$ and y_{AB} , contain them in your final output.
 - d) Bonus Points (2 point): Experiment with your CNDO/2 gradient in conjunction with an optimization method from HW1 to optimize structures of molecules (such as N_2 and O_2). Share any interesting insights or findings from your optimization. For reference structures of common molecules, you can go to CCCBDB https://cccbdb.nist.gov/expgeom1x.asp.
- 3. After completing the code, remember to submit to Gradescope.