

Introduction

- Trading strategies mostly bet on the side of the trade i.e., long/short, and labels the trades 1 or -1
- These strategies can be enhanced if we can optimally assign the size to each strategy bet (which also includes no bet at all)
- Like betting strategies used in poker, we need design an algorithm that can predict the size of bet/trade by way
 of using leverage
- Machine Learning models are prime candidates for betting algorithms as they will only be concerned with the size of the trade and not the side.
- To use machine learning models for sizing the bets, we first label each trade either 0 or 1, based on its return and a given threshold.
- For example, if a given long trade returned 0.50%, and our threshold for a good-sized trade is 0.10%, label "1", is assigned to that trade, conversely if the trade returned less than 0.10%, label "0" is assigned to it
- Once we have a labelled dataset, we include a host of features that can drive the size of the trade, and train a
 machine learning classifier to predict the labels defined in the previous step
- The output of the machine learning classifier is a probability score in the range [0,1], which is used in "Kelly betting criteria" to compute the optimal leverage for that trade
- The implementation details are presented in the next slide

Candidate Strategies: Description

- We use 4 intraday trading strategies (no overnight trades) on VXX ETF (Long Volatility ETF) as our candidate set.
- The strategies trade US market hours, and 3 out of the 4 strategies are based on price action/patterns
- The description of each strategy is as follows
 - Multi Pivot Points Breakout (MULTI_PIVOT_BO): This strategy calculates multiple high and low pivot points based on minimum price moves (in %) and analyzes the pattern of the pivot points. i.e., are the pivot points expanding or contracting (this is like range expansion and contraction). The strategy enters a trade buy/sell if range is expanding and price breaks the maximum/minimum of last 'n' (eg 3) pivot points.
 - Opening Gap (BO_SLOPE) Breakout: This strategy takes buy or sell trades based on range breakouts computed by previous n-days high-low ranges. It also has time of the day filter and opening gap filters to reduce false positive trades
 - Range Breakout (IDXOG): This strategy is a little similar to range break out strategy, where it takes buy/sell signals if the opening gap is above/below a threshold and price breaks the current day high/low
 - Volatility Carry (VOL_CARRY): This is short volatility strategy designed to capture the carry in volatility products (since Imp Vols > realized Vols). The Volatility carry is captured by shorting VXX intraday short (enter) 9:45 AM and long (exit) 3:45PM. However, a host of filters and risk management signals (like contango/backwardation, VIX levels) are incorporated into this strategy to protect it against an adverse event. (this strategy is short VXX ETF on most days)
- Due to lack of availability of intraday data the strategies are backtested only till Aug-2020, the out-of-sample performance of strategy begins Jan-2019
- A brief description of the performance of each strategy is presented in the next slide

Candidate Strategies: Performance

MULTI_PIVOT_BO	IDXOG	BO_SLOPE	VOL_CARRY
0.131%	0.084%	0.31%	0.246%
226	132	46	291
54%	50%	57%	51%
29.54%	11.21%	14.27%	71.6%
16.80%	6.59%	8.33%	38.26%
26.6%	15.7%	10.92%	24.1%
0.63	0.42	0.76	1.59
	0.131% 226 54% 29.54% 16.80% 26.6%	0.131% 0.084% 226 132 54% 50% 29.54% 11.21% 16.80% 6.59% 26.6% 15.7%	0.131% 0.084% 0.31% 226 132 46 54% 50% 57% 29.54% 11.21% 14.27% 16.80% 6.59% 8.33% 26.6% 15.7% 10.92%

 The total slippage and transaction cost for each round-trip trade is assumed to be around 4 basis points, or 2 basis points for one way trade

Bet-Sizing features

- To train a classifier to predict the size of the trade we use a host of features constructed from price and volume data of VXX and SPY ETF.
- The features are as follows
 - Overnight Volumes: Overnight volumes in SPY and VXX ETFs respectively
 - Opening Gaps: opening gap in VXX ETF
 - OCR and OC²R: (close open)/(high-low) and (close open)²/(high-low)
 - · Volumes : Previous day volumes
 - Volume ratio: (avg of 5 day volume)/(avg of 20 day volume)
 - Overnight Volume ratio: (avg of 5 day overnight volume)/(avg of 20 day overnight volume) for SPY and VXX ETFs
 - Normalized high-low range
 - Z-score of VVIX (volatility of volatility index)
 - IBS (Internal Bar Strength): (Close Low)/(High-Low)
 - Contago/backwardation : VIX1m/VIX9day, VIX3m/VIX1m
 - Realized volatility (daily_rv): Annualized standard deviation of last 20 day returns
- All features are computed on daily basis and the size of the bet i.e. leverage is decided before the start of the day.
- There is no look-ahead bias in the feature set, as the features (relevant) are lagged by 1 day
- The classifier used for this particular project is Bayesian Networks/Random Forest

Bet-Sizing features Importance: SHAP

- We use SHapley Additive exPlanations (SHAP), a game-theoretic feature importance model to visualize the impact of bet-sizing features on a sample strategy i.e. BO_SLOPE
- Based on the mean shapley plot (left), we can see that vix_ratio_1 or Vix1m/Vix9d, VXX Overnight Volumes, and daily VXX high to low range
 impact the bet labels the highest
- From shapley impact plot, we can see that low vix_ratio_1 values which coincides with period of high near-term volatility, pushes the classifier labels towards 1, indicating this strategy performs well during periods of high volatility,
- similarly high overnight volumes pushes the classifier label towards 1, indicating high overnight volumes may be indicative of a big move in the market.
- Feature selection is performed on a rolling window basis to include top 80% of the features using SHAP model

FEATURE IMPORTANCE PLOTS

FEATURE IMPORTANCE SUMMARY PLOT

Kelly Betting Criteria and backtesting methodology

- The bet-sizing classifier outputs a probability score between [0,1], this output is used in a Kelly-betting criteria to compute the optimal leverage ratio for each strategy
- Kelly's betting criteria for a discreet game is given as
 - $f^* = \frac{b * p q}{b}$; where
 - B=odds i.e. (Profit Booking)/(Stop Loss) or (Avg return of Winning Trade)/(Avg return of Losing Trade)
 - p = probability of Success (output of the classifier)
 - q = 1-p = probability of failure
- We train a Bayesian network classifier for each strategy and use the above formula to compute optimal leverage ratio, and B or odds in our case is computed based on profit booking and stop loss levels which are 5% and 2% respectively
- Since optimal leverage can get really high, to protect the portfolio of strategies from an adverse event, we limit the optimal leverage in the range [0,2], using a min-max scalar
- To backtest the bet-sizing algorithm, we use a rolling window methodology, with a lookback of 500 days and rolling window of 20 days, as shown below
- Where lookback window is used for training and rolling window is used for testing

Performance Analysis

- To evaluate the performance of the bet sizing algorithm on a portfolio level basis, we compare the
 equi-weighted portfolio of strategies without leverage with the equi-weighted portfolio of strategies with Kelly
 leverage
- From the plot and the table below, we can see that bet-sizing using Kelly criteria, outperforms the un-leverage portfolio both on absolute and on risk adjusted basis

Metric	No Leverage	Kelly Leverage
Total returns	30.62%	40.92%
Ann returns	17.38%	22.85%
Stdev	12.85%	14.25%
Sharpe	1.35	1.60

Performance Analysis: Component Wise

Strategy	Туре	Total Return	Annual ret	Stdev	Sharpe
IDVOC	No leverage	16.79%	9.76%	15.78%	0.62
IDXOG	Kelly Leverage	15.43%	9.00%	17.52%	0.51
DO CLODE	No leverage	11.70%	6.86%	10.84%	0.63
BO_SLOPE	Kelly Leverage	20.26%	11.70%	13.10%	0.89
VOL Commi	No leverage	69.52%%	37.26%	23.57%	1.58
VOL Carry	Kelly Leverage	57.35%	31.26%	23.92%	1.31
MULTI PIVOT BO	No leverage	24.48%	14.04%	26.44%	0.53
	Kelly Leverage	66.03%	35.55%	33.21%	1.07

- Based on the plots and tables we can see that bet-sizing mostly worked for price based strategies
- The worst performance was observed in the volatility carry strategy
- This could be down to the fact that volatility carry strategy used some feature which are similar to bet-sizing features
- Using a different set of features that are appropriate for a volatility carry strategies may improve the performance of the bet sizing algorithm

Classification Metrics

Classification Report

	precision	recall	fl-score	support
0	0.86	0.58	0.69	1404
1	0.19	0.51	0.28	276
accuracy			0.57	1680
macro avg	0.53	0.55	0.49	1680
weighted avg	0.75	0.57	0.63	1680

Confusion Matrix

True(below) \ Predicted(right)	0	1
0	808	596
1	135	141

ROC and Area Under Curve

Classification Metrics: Strategy Wise

VOL_CARRY IDXOG

	precision	recall	fl-score	support	1	precision	recall	f1-score	support
0	0.73	0.56	0.64	308	0	0.89	0.66	0.76	371
1	0.27	0.44	0.33	112	1	0.14	0.41	0.21	49
accuracy			0.53	420	accuracy			0.63	420
macro avg	0.50	0.50	0.48	420	macro avg	0.52	0.53	0.48	420
weighted avg	0.61	0.53	0.55	420	weighted avg	0.81	0.63	0.69	420

BO_SLOPE

	precision	recall	fl-score	support
0	0.95	0.68	0.79	401
1	0.04	0.32	0.08	19
accuracy			0.66	420
macro avg	0.50	0.50	0.44	420
weighted avg	0.91	0.66	0.76	420

MULTI_PIVOT_BO

	precision	recall	fl-score	support
0	0.81	0.43	0.56	324
1	0.26	0.67	0.37	96
accuracy			0.49	420
macro avg	0.54	0.55	0.47	420
weighted avg	0.69	0.49	0.52	420

Conclusion and future scope

- In this exercise we observed machine learning algorithms can be used to learn the size of the trade using a host of price and volume features
- The output of the classifier was used in a Kelly betting criterion to compute the optimal leverage of each trading strategy
- The bet-sizing algorithm outperformed the no-leverage portfolio significantly
- For future scope:
 - Test a richer feature set not just limited to price and volume data, like features on order book and options market activities
 - Using a heavier machine learning models, (I could not test it using random forest due to time constraints)
 - Using intraday features, that can adjust the size of the bet on an intraday basis, current features only use EOD features
 - Use a strategy allocation model to improve the performance of portfolio on an overall basis (it's part of another project), strategy allocation can be done on weekly/monthly basis