Masked Language Models

Professor Thiago de Paulo Faleiros

Masked Language Modeling

- Até agora vimos modelos autoregressivos (causal, left-to-right) LMs.
- Mas e quanto às tarefas que queremos poucos tokens futuros?
 - Especialmente para tarefas onde mapeamos cada token de entrada para um token de saída.
- Encoders Bidirecionais usam Masked self-attention para
 - Mapear sequência de embeddings de entrada (x_1, \ldots, x_n)
 - Para sequências de embeddings de saída de mesmo tamanho (h_1, \ldots, h_n)
 - Onde o vetor de saída foi contextualizado usando informações de toda sequência de entrada.

Bidirectional Self-Attention

a) A causal self-attention layer

b) A bidirectional self-attention layer

Fácil! Apenas remova a máscara

Casual self-attention

Ν

q1•k1	-∞	-∞	-∞
q2•k1	q2•k2	-8	-∞
q3•k1	q3·k2	q3•k3	-∞
q4•k1	q4•k2	q4•k3	q4•k4

 $\begin{array}{ll} & & N \\ \text{head} & = & \operatorname{softmax} \left(\operatorname{mask} \left(\frac{\mathbf{Q} \mathbf{K}^\intercal}{\sqrt{d_k}} \right) \right) \mathbf{V} \end{array}$

Bidirectional self-attention

	q1•k1	q1•k2	q1·k3	q1·k4
N	q2•k1	q2•k2	q2•k3	q2•k4
IN.	q3•k1	q3•k2	q3•k3	q3•k4
	q4•k1	q4•k2	q4•k3	q4•k4

Ν

$$\mathbf{head} = \operatorname{softmax} \left(\frac{\mathbf{Q} \mathbf{K}^{\mathsf{T}}}{\sqrt{d_k}} \right) \mathbf{V}$$

BERT: Bidirectional Encoder Representation from Transformers

- BERT (Devlin et al., 2019)
 - 30.000 tokens apenas em inglês (WordPiece tokenizer)
 - Janela de contexto de entrada N = 512 tokens, em dimensionalidade d = 768
 - L=12 camadas de blocos de atenção, cada com A=12 camadas de atenção com múltiplas cabeças.
 - O modelo resultante tem aproximadamente 100M parâmetros
- XLM-RoBERTa (Conneau et al., 2020)
 - 250000 tokens multilínguas (SentencePiece Unigram LM tokenizer)
 - Janela de contexto de entrada N=512 tokens, em dimensionalidade d=1024
 - L=12 camadas de blocos de atenção, com A=16 camadas de atenção com múltiplas cabeças.
 - O modelo resultante tem aproximadamente 550M parâmetros

Intuição do treinamento do BERT

•	Para LMs da esquerda-para-direit	a,	o modelo	tenta	predizer	a
	última palavra a partir das palavr	as	anteriores			

The water of Walden Pond is so beautifully _____

- O treinamento tenta melhorar essa predição da última palavra
- Para bidirecional masked LM, o modelo tenta predizer uma ou mais palavras considerando todo o restante de palavras

The _____ of Walden Pond ____ so beautifully blue

- O modelo gera a distribuição de probabilidade sobre o vocabulário para cada token faltante
- Usamos a entropia cruzada para cada predição do modelo controlando o processo de aprendizagem.

MLM training in BERT

15% dos tokens são aleatoriamente escolhidos para serem mascarados

Exemplo: "Lunch was delicious", se a palavra "delicious" foi aleatoriamente escolhida:

Três possibilidades:

80%: Tokens é substituído pelo token especial [MASK]

Lunch was delicious -> Lunch was [MASK]

• 10% : Token é substituído por um token aleatório (amostrado por uma distribuição de unigramas)

Lunch was delicious -> Lunch was gasp

• 10% : Token não é alterado

Lunch was delicious -> Lunch was delicious

MLM loss

O Modelo de Língua tem como saída a camada final do transformer L, multiplica isso pela camada de "unembedding" e cria as probabilidades

$$u_i = h_i^L E^T$$

 $y_i = softmax(u_i)$

Para o x_i correspondente a "long", o LOSS é a probabilidade da palavra correta "long", dada a saída h_i^L):

$$L_{MLM}(x_i) = -\log P(x_i|h_i^L)$$

Obtemos os gradientes calculando a média dessa perda no batch

$$L_{MLM} = -\frac{1}{|M|} \sum_{i \in M} \log P(x_i | h_i^L)$$

Predição da próxima sentença

Dadas duas sentenças o modelo prediz se os pares de sentenças são adjacentes (do corpus de treinamento) ou pares não relacionados. BERT introduz dois caracteres especiais

CLS é adicionado no começo da do par de sentenças

SEP é adicionado entre as sentenças e no final da segunda sentença E mais dois tokens especiais

- (1^a sentença) e (2^a sentença)
- Esses embeddings s\(\tilde{a}\) o adicionados ao embedding de entrada e ao embedding posicional

 h_{CLS}^L da camada final do token [CLS] é a entrada da cabeça de classificação (pesos de W_{NSP} que prediz duas classes:

$$y_i = softmax(h_{CLS}^L W_{NSP})$$

Mais detalhes

- O modelo original foi treinado com 40 passos sobre o conjunto de treinamento
- Alguns modelos (com o RoBERTa) remove o NSP Loss
- O tokenizador para modelos multilínguas é treinado para amostras estratificadas de línguas.
- Modelos Multilínguas são melhores que modelos monolíngua com pequeno número de linguagens.
 - Com grandes números de linguagens, modelos monolínguas naquela lingua pode ser melhor
 - A "maldição da multilinguagem"

Contextual Embeddings para representar palavras

Embeddings estáticos vs contextual

Embedding estáticos representam os "tipos das palavras" (entradas em dicionários)

Embedding de contexto representam instâncias das palavras (uma para cada vez que a palavra ocorre em qualquer contexto/sentença)

Word Sense

Palavras são ambíguas

O sentido das palavras é uma representação discreta do significado de uma aspecto

```
\label{eq:mouse.1} \begin{array}{lll} \text{mouse.}^1 & : & ... & \text{a mouse controlling a computer system in 1968.} \\ \text{mouse.}^2 & : & ... & \text{a quiet animal like a mouse} \\ \text{bank.}^1 & : & ... & \text{a bank can hold the investments in a custodial account...} \\ \text{bank.}^1 & : & ... & \text{as agriculture burgeons on the east bank, the river...} \\ \end{array}
```

Embeddings contextual oferecem um modelo de alta dimensionalidade contínuo sobre o significado que é mais refinado que o discreto

Word sense disambiguation (WSD)

Tarefa de selecionar o sentido correta de uma palavra

Algoritmo de 1-vizinho mais próximo para WSD

No momento de treinamento, pegue um corpus de significado de palavras (como o SEMCOR)

Execute o treinamento do BERT nesse corpus para pegar os embedding de contexto para cada token

• Unindo as representações das últimas 4 camadas do BERT Assim, para cada significado s da palavra w e para os n tokens daquele significado, una os embeddings:

$$v_S = \frac{1}{n} \sum_i v_i \quad \forall v_i \in tokens(s)$$

No momento do teste, dado um token de uma palavra alvo t, calcule o embedding contextual de t e escolha o significado dos vizinhos mais próximos da base de treinamento

$$sense(t) = argmax_{s \in senses(t)} cosseno(t, v_S)$$

Algoritmo de 1-vizinho mais próximo para WSD

Similaridade e embedding de contexto

- Nós geralmente usamos cosseno
- Mas existem alguns problemas:
 - Embeddings de contexto tendem a ser anisotrópicos: todos apontam aproximadamente na mesma direção, portanto têm altos valores de cossenos (Ethayarajh 2019)
 - Medida cosseno é dominada por um pequeno número dimensões "confusas" e com altos valores. (Timkey and van Shijndel 2021)
 - Cosseno tende a subestimar julgamentos humanos sobre similaridade de significado de palavras para palavras muito frequentes (Zhou et al, 2022)

Fine Tuning para Classificação

Sequence-Pair classification

Atribuindo um rótulo para pares de sequência

- Detecção de paráfrases (duas sentenças se parafraseam?)
- Implicação Lógica (A sentença A implica logicamente na sentença B)
- Coerência de discurso (O quanto a sentença B se relaciona com a sentença A)

Inferência em Linguagem Natural

Pares de sentenças são dados 3 rótulos

- Neutro
 - Jon walked back to the town to the smithy.
 - Jon traveled back to his hometown.
- Contraditórias
 - Escritório de Informações Turísticas pode ser muito útil
 - Escritório de Informações Turísticas nunca é útil
- Implicações
 - Eu estou confuso
 - Nada disso está claro para mim

Algoritmo: Passe os pares de premissa/hipótese pelo Encoder Bidirecional e use o vetor de saída do token [CLS] como entrada de uma cabeça de classificação.

Fine-Tuning para rotulação de sequência

Atribua um rótulo para cada token na sequência

- Named Entity Recognition
- Part of Speech Tagging

Reconhecimento de Entidades Nomeadas

Uma entidade nomeada é qualquer coisa que pode ser referenciado com um nome próprio: Uma pessoa, uma Localização, uma Organização

Reconhecimento de entidades Nomeadas (NER): encontre partes do texto que constituem nomes próprios em rotule o tipo de entidade.

Type	Tag	Sample Categories	Example sentences
People	PER	people, characters	Turing is a giant of computer science.
Organization	ORG	companies, sports teams	The IPCC warned about the cyclone.
Location	LOC	regions, mountains, seas	Mt. Sanitas is in Sunshine Canyon.
Geo-Political Entity	GPE	countries, states	Palo Alto is raising the fees for parking.

Reconhecimento de Entidades Nomeadas

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

BIO Tagging

Um método que nos permiter transformar uma tarefa de segmentação (encontrar limites das entidades) em uma tarefa de classificação.

[per Jane Villanueva] of [$_{ORG}$ United], a unit of [$_{ORG}$ United Airlines Holding], said the fare applies to the [$_{LOC}$ Chicago] route.

Words	IO Label	BIO Label	BIOES Label
Jane	I-PER	B-PER	B-PER
Villanueva	I-PER	I-PER	E-PER
of	O	O	O
United	I-ORG	B-ORG	B-ORG
Airlines	I-ORG	I-ORG	I-ORG
Holding	I-ORG	I-ORG	E-ORG
discussed	O	O	O
the	O	O	O
Chicago	I-LOC	B-LOC	S-LOC
route	O	O	O
	O	O	0

Rotulagem de sequência

