Name: Sai Ram Gunturu ID: C00313478

Random Forest Classifier - Credit Card Default Prediction

Data Analytics & Algorithms Log

Algorithm Used: Random Forest Classifier
 Dataset Used: Credit Card Default Dataset

• Framework: CRISP-DM

1. Business Understanding

Objective: To build a **Random Forest Model** to predict whether a **credit card holder will default on their payment**. To improve efficiency, I Optimized Hyperparameters, applied Class Balancing techniques, experimented with feature selection to optimize recall for defaulters.

Challenges I Faced

- Class Imbalance → Only 22% of customers have defaulted, resulting in biased predictions.
- Feature Correlation → There can be redundant information in features like BILL_AMT1-6, PAY 0-6.
- Overfitting Risk \rightarrow Too Many Trees \rightarrow Random Forest can become computationally costly.

2. Data Understanding

• Dataset Overview

• Total Records: 30,000

• No missing values

• Converted categorical labels: (Default \rightarrow 1, No Default \rightarrow 0)

Initial Class Distribution

Class	Count	Percentage
No Default (0)	23,660	78%
Default (1)	6,340	22%

Key Insight: The number of defaulters are much fewer and hence I needed to employ **class balancing techniques** to help improve recall.

3. Data Preparation

- Removed irrelevant columns (ID column).
- Label Encoding was used to encode categorical variables.

- Used StandardScaler to standardize numerical features.
- Did a train-test split (80% train/ 20% test).

Processed Dataset Summary

Data Split	Total Records	Features	Train Size	Test Size
Credit Card	30,000	23	24,000	6,000

Key Insight: There were many correlated features in the dataset so I later tested feature selection.

4. Baseline Random Forest Model

Algorithm: RandomForestClassifier (Default Parameters)

Baseline Model Performance

Metric	Value
Accuracy	81.2%
Precision (Class 1 - Default)	63%
Recall (Class 1 - Default)	36%
F1-score (Class 1 - Default)	46%

What I Noticed:

Higher accuracy (81.2%) than Decision Tree (71.5%), but recall is still low (36%), meaning lots of defaulters are classified wrong.

5. Using Class Balancing (Weighted Random Forest)

Because recall was low, I added **class weights** {0:1, 1:3} so that the model would focus on predicting defaults better.

After Class Weight Adjustment - Performance

Metric	Value
Accuracy	79.2%
Precision (Class 1 - Default)	53%
Recall (Class 1 - Default)	54%
F1-score (Class 1 - Default)	54%

Key Impact:

- Recall improved from $36\% \rightarrow 54\%$, so there are fewer false negatives.
- Accuracy dropped a little bit (81.2% \rightarrow 79.2%), which is acceptable since recall increased significantly.

6. Feature Selection for Better Model Performance

To avoid complexity, I reduce features and selected the **top 10 features by importance**, while maintaining performance.

Top 10 Selected Features:

LIMIT_BAL, AGE, PAY_0, PAY_2, PAY_3, BILL_AMT1, BILL_AMT2, PAY_AMT1, PAY_AMT2, PAY_AMT3

Feature-Selected Model Performance

Metric	Value
Accuracy	79.1%
Precision (Class 1 - Default)	53%
Recall (Class 1 - Default)	55%
F1-score (Class 1 - Default)	54%

What I Found:

- Recall went up slightly from $54\% \rightarrow 55\%$, but overall performance remained the same.
- Accuracy was not significantly affected by Feature selection.

7. Bagging Random Forest for Stability

I used Bootstrap Aggregation (Bagging) with 50 trees for variance reduction.

Bagging Model Performance

Metric	Value
Accuracy	79.6%
Precision (Class 1 - Default)	54%
Recall (Class 1 - Default)	53%
F1-score (Class 1 - Default)	54%

What I Found:

- Bagging helped improve model stability but had little effect on recall.
- Results consistent with weighted and feature-selected models.

8. Final Model Comparison

Model	Accuracy	Precision (Class 1)	Recall (Class 1)	F1-score (Class 1)
Baseline Decision Tree	71.5%	48%	48%	48%
Optimized Decision Tree	81.8%	66%	36%	46%
Balanced Decision Tree	78.1%	50%	52%	51%
Baseline Random Forest	81.2%	63%	36%	46%

Weighted Random Forest	79.2%	53%	54%	54%
Feature-Selected Random Forest	79.1%	53%	55%	54%
Bagging Random Forest	79.6%	54%	53%	54%

Final Decision: However, Weighted Random Forest performed well and has the best recall improvement (54%) score considering balance.

9. Random Forest Model -- Bank Dataset

Here, after analyzing the Credit Card Default dataset, I used the Random Forest algorithm on the Bank Marketing Dataset.

The task was to predict if based on some features, customers will subscribe a term deposit or not.

9.1 Baseline Random Forest Model -- Bank Dataset

Algorithm: RandomForestClassifier (Default Parameters)

Baseline Model Performance

Metric	Value
Accuracy	90.6%
Precision (Class 1 - Subscribed)	66%
Recall (Class 1 - Subscribed)	42%
F1-score (Class 1 - Subscribed)	51%

Key Observations:

- More accurate than Decision Tree (90.6% vs. 87.7%), which indicates a better overall classification performance in general.
- Precision increased from 48% (Decision Tree) \rightarrow 66% (Random Forest), i.e. fewer false positives.

- Recall remained low (42%), indicating many subscribers were classified incorrectly as non-subscriber.
- There is still a challenge with Class imbalance— the majority class (Non-Subscribers) was favored by the model.

9.2 Hyperparameter Tuning with RandomizedSearchCV

I optimized the below hyperparameters:

n_estimators: [50, 100, 150]
max depth: [10, 20, 30]

min_samples_split: [2, 5, 10]min_samples_leaf: [1, 2, 4]

• bootstrap: [True, False]

Best Parameters Found

{'n estimators': 150, 'min samples split': 5, 'min samples leaf': 4, 'max depth': 30, 'bootstrap': False}

Performance of the Optimized Model

Metric	Value
Accuracy	90.6%
Precision (Class 1 - Subscribed)	65%
Recall (Class 1 - Subscribed)	42%
F1-score (Class 1 - Subscribed)	51%

Key Observations:

- No major increase in accuracy from baseline (90.6%) which remained the same.
- Recall for Class 1 stayed at 42%, which meant subscribers continued to be misclassified.
- More consistent model performance, yet imbalanced data continued to be a problem.

9.3 Weighted Random Forest (Handling Imbalance)

As recall was low, I applied **class weights** {0:1, 1:3} so that the model would pay more attention to positively predicting subscriptions.

Performance of Weighted Model:

Metric	Value
Accuracy	90.5%
Precision (Class 1 - Subscribed)	59%
Recall (Class 1 - Subscribed)	64%
F1-score (Class 1 - Subscribed)	61%

Key Observations:

- Subscribers Recall improved from $42\% \rightarrow 64\%$, which indicates fewer false negatives.
- Accuracy decreased a little bit $(90.6\% \rightarrow 90.5\%)$ as expected because of the class weighting.
- F1-score increased to 61%, i.e. improved balance between recall and precision.

9.4 Bagging Random Forest Model

I employed Bootstrap Aggregation (Bagging) to reduce variance even more,

Bagging Model Performance

Metric	Value
Accuracy	90.6%
Precision (Class 1 - Subscribed)	67%
Recall (Class 1 - Subscribed)	40%
F1-score (Class 1 - Subscribed)	50%

Key Observations:

 Bagging aided in decreasing the variance of the model and in turn making the predictions more stable.

- Accuracy stayed at 90.6%, which means there is no improvement in overall performance.
- Recall decreased a little bit from $42\% \rightarrow 40\%$, which indicates bagging had insignificant differences in regards to minority class predictions.

9.5 Final Model Comparison -- Bank Dataset

Model	Accuracy	Precision (Class 1)	Recall (Class 1)	F1-score (Class 1)
Baseline Random Forest	90.6%	66%	42%	51%
Optimized Random Forest	90.6%	65%	42%	51%
Weighted Random Forest	90.5%	59%	64%	61%
Bagging Random Forest	90.6%	67%	40%	50%

Final Decision: Weighted Random Forest performed the best (64% recall, 61% F1-score), which balanced both recall and precision.

Conclusion - Random Forest vs Decision Tree Performance

In the end, after testing Random Forest model and Decision Tree model on both datasets (Credit Card Default and Bank Marketing), I analyzed both models, effectiveness, stability, and improvement of recall.

Key Findings & Improvements

Metric	Decision Tree Best Performance	Random Forest Best Performance	Improvement
Bank Dataset Accuracy	89.68%	90.6%	Slight Increase
Bank Dataset Recall (Class 1)	66% (Balanced DT)	64% (Weighted RF)	Slight Drop

Bank Dataset F1- score (Class 1)	56%	61%	Improved
,			

Part 1 Conclusion (Credit Card Default Prediction)

- Random Forest dominated Decision Tree by a margin in accuracy (81.2% vs. 71.5%) and serves a better model for this dataset.
- Weighted Random Forest (Class balancing techniques) improved recall of defaulters from 36% → 54%, lowering false negatives.
- Bagging aided in stabilizing performance, but did not improve recall considerably.
- Class imbalance was still pervasive despite optimization, making recall improvements difficult.

Part 2 Conclusion (Bank Marketing Prediction)

- Due to slight increase in accuracy in random forest than Decision Tree (90.6% vs. 89.68%) we conclude that Random Forest is a better fit for this dataset.
- Weighted Random Forest increased recall from 42% → 64%, thus decreasing incorrectly classified subscribers.
- Class weighting boosted recall while decreasing accuracy a bit —a tradeoff for improved subscriber identification.
- Bagging ensured stability but had no impact on recall, like in the Credit Card dataset.

Challenges Faced

- Model Performance affected by Class Imbalance
 - o Recall for subscribers remained an issue, even with class weighting.
 - o In identifying positive cases Imbalanced data constrained optimizations.
- No Significant Improvement in Accuracy
 - Random Forest accuracy was roughly the same as with Decision Tree (90.6%).
 - o The more complex model didn't generalize better.
- Computational Complexity & Training Time
 - o Random Forest was much more computationally expensive than Decision Tree.
 - o GridSearch and Bagging were much slower with minimal improvements.

Final Thoughts & Next Steps

- Random Forest had better stability but did not significantly outperform Decision Tree.
- Recall improvements for subscribers were limited by Class imbalance.
- Bagging achieved stability, but no significant recall gain.