PLAN

Le schéma conceptuel de l'entrepôt à construire	1
Traduction en schèmas R-OLAP	2
Tableau de correspondance entre les attributs	3
Création des tables + Définition les différents mappin	9 9 44
B	5
C	6

1. Le schéma conceptuel de l'entrepôt

Le schéma présenté illustre une conception d'entrepôt de données (data warehouse) basé sur une architecture en étoile. Il est constitué de trois tables de dimension et d'une table de faits.

Schéma de l'Entrepôt de Données des Ventes

2. Tableau de correspondance entre les attributs

Table cible	Attribut cible	Attribut source	Туре	Longueur
Produit_dim	produit_id	produit.ref_produit	VARCHARé	4
	produit_nom	produit.nom_produit	VARCHAR2	25
	categorie	categorie.nom_Categorie	VARCHAR2	40
Client_dim	client_key	client.code_client	VARCHAR2	10
	nom_client	client.société	VARCHAR2	40
	adresse	client.adresse	VARCHAR2	60
	ville	client.ville	VARCHAR2	15
Temps_dim	date_vente	com		
	jour	mandes:	Date	26
	mois	commandes, date, commande	2300	
	annee	mande		

2. Tableau de correspondance entre les attributs

Table cible	Attribut cible	Attribut source	Туре	Longueur
Vente_dim	date_vente quantite	client.code_client produit.ref_produit date_vente details_commande. quantite produit.prix_unitair e chiffre d'affaire	DATE NUMBER	5 26 16 4 100

Avec tMap nous pouvons définir les différentes jointures entre les tables

1- la sortie vers les trois tables de dimensions :

- Le composant tMap a été configuré pour mapper les colonnes sources (telles que CODE_CLIENT, REF_PRODUIT, DATE_COMMANDE) vers les colonnes cibles correspondantes des tables de dimensions.
- Chaque dimension utilise les colonnes spécifiques nécessaires

2- La table de fait Vente_f:

 Les clés des dimensions (comme CODE_CLIENT, REF_PRODUIT, et DATE_COMMANDE) sont également mappées vers les colonnes cibles associées.

3- Utilisation de tUniqRow pour les dimensions :

 Les composants tUniqRow sont utilisés pour supprimer les doublons qui peuvent apparaître à la suite des jointures ou des agrégations effectuées dans tMap.

4- Tri des données :

 Avant de charger les données dans les tables cibles, un composant tSortRow est ajouté pour organiser les données en fonction de critères tels que la date ou le chiffre d'affaires.

Affichage des Tableaux :

Tableau: produit_dim

Tableau : client_dim

Affichage des Tableaux :

Tableau : Temps_dim