Math 416 Lecture Note: Week 16

Daesung Kim

1 Self-adjoint operators

Definition 1.1. Let V be an inner product space over F and $T:V\to V$ linear. We say that T is self-adjoint when $F=\mathbb{R}$ (or Hermitian when $F=\mathbb{C}$) if $T=T^*$. A matrix $A\in\mathcal{M}_{n\times n}(\mathbb{R})$ (or $A\in\mathcal{M}_{n\times n}(\mathbb{C})$) is self-adjoint (or Hermitian) if $A=A^*$.

We simply use the terminology "self-adjoint" for both cases $F = \mathbb{R}$ and $F = \mathbb{C}$.

Remark 1.2. If T is self-adjoint, then T is normal.

Example 1.3. Let $A = \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix}$ and $T = L_A$, then T is self-adjoint.

Theorem 1.4. Let V be an inner product space over F and $T:V\to V$ linear. If T is self-adjoint, then every eigenvalue of T is real.

Proof. Let $T(x) = \lambda x$ for $\lambda \in F$ and $x \in V$ with $x \neq 0$. Then,

$$\lambda \langle x, x \rangle = \langle T(x), x \rangle = \langle x, T^*(x) \rangle = \langle x, T(x) \rangle = \langle x, \lambda x \rangle = \overline{\lambda} \langle x, x \rangle.$$

Thus, we have $(\lambda - \overline{\lambda}) \langle x, x \rangle = 0$. Since $x \neq 0$, we have $\langle x, x \rangle \neq 0$ and so $\lambda = \overline{\lambda}$, which implies that $\lambda \in \mathbb{R}$. \square

Lemma 1.5. Let V be an inner product space over \mathbb{R} and $T:V\to V$ linear. If T is self-adjoint, then the characteristic polynomial f(t) of T splits over \mathbb{R} . As a consequence, there exists at least one eigenvector v for T with a real eigenvalue λ .

Proof. Let β be an orthonormal basis for V and $A = [T]_{\beta}$. Consider $L_A : \mathbb{C} \to \mathbb{C}$. Then the characteristic polynomial of L_A is the same as that of T, say f(t). By the fundamental theorem of algebra, f(t) splits over \mathbb{C} . Since the roots of f(t) should be real by the previous theorem, f(t) splits over \mathbb{R} .

Example 1.6. Let $A = \begin{pmatrix} 1 & i \\ -i & 2 \end{pmatrix}$ and $T = L_A$. The characteristic polynomial is

$$f(t) = (1-t)(2-t) - 1 = t^2 - 3t + 1 = \left(t - \frac{3+\sqrt{5}}{2}\right)\left(t - \frac{3-\sqrt{5}}{2}\right).$$

Thus, the eigenvalues are real. In fact, there are two distinct eigenvalues so that A is diagonalizable.

An interesting example of self-adjoint operators is the projection operator.

Proposition 1.7. Let V be a finite dimensional inner product space over F and $W \leq V$. Then $T = \operatorname{proj}_W : V \to V$ is self-adjoint.

Proof. If $x \in V$, then it can be written as $x = \operatorname{proj}_W(x) + z$ uniquely, where $z \in W^{\perp}$. In particular,

$$\langle x, w \rangle = \langle \operatorname{proj}_{W}(x), w \rangle$$

for all $w \in W$. Thus, for all $x, y \in V$,

$$\langle \operatorname{proj}_{W}(x), y \rangle = \langle \operatorname{proj}_{W}(x), \operatorname{proj}_{W}(y) \rangle = \langle x, \operatorname{proj}_{W}(y) \rangle.$$

Theorem 1.8. Let V be an inner product space over \mathbb{R} and $T:V\to V$ linear. Then, T is self-adjoint if and only if there exists an orthonormal basis β for V consisting of eigenvectors of T.

Proof. Suppose that there exists an orthonormal basis β for V consisting of eigenvectors of T. Then, $[T]_{\beta}$ is diagonal and $[T^*]_{\beta} = ([T]_{\beta})^*$ is also diagonal. Since every diagonal entry is an eigenvalue and so they are real, we get $[T^*]_{\beta} = ([T]_{\beta})^* = [T]_{\beta}$. Thus, T is self-adjoint.

Suppose that T is self-adjoint. By Schur's theorem, there exists an orthonormal basis $\beta = \{v_1, \dots, v_n\}$ such that $[T]_{\beta}$ is upper triangular. Since $([T]_{\beta})^* = [T^*]_{\beta} = [T]_{\beta}$, we conclude that $[T]_{\beta}$ is diagonal.

References

- [FIS] Freidberg, Insel, and Spence, *Linear Algebra*, 4th edition, 2002.
- [Bee] Beezer, A First Course in Linear Algebra, Version 3.5, 2015.

Department of Mathematics, University of Illinois at Urbana-Champaign $E\text{-}mail\ address$:desungk@illinois.edu