References

Abramowitz, M., and Stegun, I.A. (1965): Handbook of mathematical functions. Dover, New York, 1965.

Badalamenti, J.M., and Doyle, G.R. (1988): Radial-interradial spring tire models. J. of Vibration, Acoustic, Stress and Reliability in Design, 110, 1, 1988.

Bakker, E., Nyborg, L., and Pacejka, H.B. (1987): Tire Modeling for Use in Vehicle Dynamics Studies. *SAE Paper* No. 870421, 1987.

Bakker, E., Pacejka, H.B., and Lidner, L. (1989): A New Tire Model with an Application in Vehicle Dynamics Studies. *SAE Paper* No. 890087, 1989.

Bandel, P., and Monguzzi, C. (1988): Simulation model of the dynamic behavior of a tire running over an obstacle. *Tire Science and Technology*, TSTCA, 16, 2, 1988.

Bandel, P., and Bernardo, C. di (1989): A Test for Measuring Transient Characteristics of Tires. *Tire Science and Technology*, 17, 2, 1989.

Bayer, B. (1988): Flattern und Pendeln bei Krafträdern. Automobil Industrie, 2, 1988.

Bayle, P., Forissier, J.F., and Lafon, S. (1993): A New Tyre Model for Vehicle Dynamics Simulation. *Automotive Technology International*, 1993.

Becker, G., Fromm, H., and Maruhn, H. (1931): Schwingungen in Automobillenkungen ('Shimmy'). Berlin, 1931.

Bergman, W. (1965): Theoretical prediction of the effect of traction on cornering force. SAE Transactions, 614, 1965.

Bernard, J.E., Segel, L., and Wild, R.E. (1977): Tire shear force generation during combined steering and braking maneuvres. *SAE Paper* 770852, 1977.

Berritta, R., Biral, F., and Garbin, S. (2000): Evaluation of motorcycle handling and multibody modelling and simulation. In: *Proceedings of 6th Int. Conference on High Tech. Engines and Cars*, Modena, 2000.

Berzeri, M., and Maurice, J.P. (1996): A mathematical model for studying the out-ofplane behaviour of a pneumatic tyre under several kinematic conditions. FISITA Youth Congress, Prague, June 1996.

Besselink, I.J.M. (2000): Shimmy of Aircraft Main Landing Gears. Dissertation, TU Delft, 2000.

Biral, F., and Da Lio, M. (2001): Modelling drivers with the optimal maneuvre method. In: *Proceedings of ATA 2001*, The Role of Experiments in the Automotive Product Development Process, Florence, 2001.

Böhm, F. (1963): Der Rollvorgang des Automobil-Rades. ZAMM 43, T56-T60, 1963.

Borgmann, W. (1963): Theoretische und experimentelle Untersuchungen an Luftreifen bei Schräglauf. Dissertation, Braunschweig, 1963.

Breuer, T., and Pruckner, A. (1998): Advanced dynamic motorbike analysis and driver simulation. In: 13th European ADAMS Users' Conference, Paris, 1998.

Brockman, R.A., and Braisted, W.R. (1994): Critical Speed Estimation of Aircraft Tires. *Tire Science and Technology*, 22, 2, 1994.

Bröder, K., Haardt, H., and Paul, U. (1973): Reifenprüfstand mit innerer und äusserer Fahrbahn. ATZ, Vol. 75 (1973), No. 2.

Bruni, S., Cheli, F., and Resta, F. (1996): On the identification in time domain of the parameters of a tyre model for the study of in-plane dynamics. In: *Proceedings of 2nd Colloquium on Tyre Models for Vehicle Analysis*, eds. F.Böhm and H.P.Willumeit, Berlin 1997, Suppl. Vehicle System Dynamics, 27, 1996.

CCG (2004): Tyre Models for Vehicle Dynamics Simulation. *Seminar TV 4.08 Lecture notes*, Coord. P.Lugner, Vienna, Sept. 1-2, 2004, Carl Cranz Gesellschaft, 82234 Oberpfaffenhofen, Germany.

Chiesa, A., and Rinonapoli, L. (1967): Vehicle Stability Studied with a Nonlinear Seven Degree of Freedom Model. *SAE Paper* 670476, 1967.

Clark, S.K. (1982): A brief history of tire rolling resistance. In: *Proceedings of the Rubber Division Symposia*, 1, Chicago, 1982.

Cossalter, V., Da Lio, M., Lot, R., and Fabbri, L. (1999): A General Method for the Evaluation of Vehicle Manoeuvrability with Special Emphasis on Motorcycles. *Vehicle System Dynamics*, 31, 1999.

Davis, D.C. (1974): A radial-spring terrain-enveloping tire model. *Vehicle System Dynamics*, 3, 1974.

Dijks, A. (1974): A Multifactor Examination of Wet Skid Resistance of Car Tires. *SAE Paper* 741106, 1974.

Dugoff, H., Fancher, P.S., and Segel, L. (1970): An analysis of tire traction properties and their influence on vehicle dynamics performance. In: *Proceedings FISITA Int. Auto. Safety Conference, SAE Paper* 700377, 1970.

Eldik Thieme, H.C.A. van (1960): Experimental and Theoretical Research on Mass-Spring Systems. In: *Proceedings of FISITA Congress*, The Hague 1960, The Netherlands.

Fiala, E. (1954): Seitenkräfte am rollenden Luftreifen. VDI Zeitschrift, 96, 1954.

Frank, F. (1965a): Grundlagen zur Berechnung der Seitenführungskennlinien von Reifen. *Kautchuk und Gummi*, 18, 8, 1965.

Frank, F. (1965b): Theorie des Reifenschräglaufs. Dissertation, Braunschweig, 1965.

Freudenstein, G. (1961): Luftreifen bei Schräg- und Kurvenlauf. Deutsche Kraftfahrzeugforschung und Str. Verk. techn., 152, 1961.

Fritz, W. (1977): Federhärte von Reifen und Frequenzgang der Reifenkräfte bei

periodischer Vertikalbewegung der Felge. Dissertation, Karlsruhe, 1977.

Fromm, H. (1941): Kurzer Bericht über die geschichte der Theorie des Radflatterns. Bericht 140 der Lilienthal Gesellschaft, 1941; NACA TM 1365, 1954.

Gillespie, T.D. (1992): Fundamentals of Vehicle Dynamics. SAE, 1992.

Gipser, M. (1987): DNS-Tire, a Dynamical Nonlinear Spatial Tire Model in Vehicle Dynamics. In: *Proceedings of the 2nd Workshop on Road Vehicle Systems and Related Mathematics*, ed. Neunzert, ISI Torino, 1987, Teubner Stuttgart, 1989.

Gipser, M., Hofer, R., and Lugner, P. (1997): Dynamical Tire Forces Response to Road Unevennesses. In: *Proceedings of 2nd Colloquium on Tyre Models for Vehicle Analysis*, eds. F.Böhm and H.P.Willumeit, Berlin 1997, Suppl. Vehicle System Dynamics, 27, 1996.

Gipser, M. (1999): Ftire, a New Fast Tire Model for Ride Comfort Simulations. *International ADAMS User Conference*, Berlin, 1999.

Goncharenko, V.I., Lobas, L.S., and Nikitina, N.V. (1981): Wobble in guide wheels. *Soviet Applied Mechanics*, 17, 8, 1981.

Gong, S. (1993): A Study of In-Plane Dynamics of Tires. Dissertation, TU Delft, 1993.

Gong, S., Savkoor, A.R., and Pacejka, H.B. (1993): The influence of boundary conditions on the vibration transmission properties of tires. *SAE Paper* 931280, 1993.

Gough, V.E. (1963): Tyres and air suspension. *Advances in Automobile Engineering*, ed. G.H. Tidbury, Pergamon Press, Oxford, 1963.

Guan, D.H., Shang, J., and Yam, L.H. (1999): Modelling of Tire Cornering Properties with Experimental Modal Parameters. *SAE* 1999-01-0784.

Guntur, R.R. (1975): Adaptive brake control systems. Dissertation, TU Delft, 1975.

Guo, K.H. (1994): The Effect of Longitudinal Force and Vertical Load Distribution on Tire Slip Properties. SAE Paper 945087, 1994.

Guo, K.H., and Liu, Q. (1997): Modelling and Simulation of Non-Steady State Cornering Properties and Identification of Structure Parameters of Tyres. In: *Proceedings of 2nd Colloquium on Tyre Models for Vehicle Analysis*, Berlin 1997, eds. F.Böhm and H.P.Willumeit, Suppl. Vehicle System Dynamics, 27, 1996.

Hadekel, R. (1952): The mechanical characteristics of pneumatic tyres. S & T Memo 10/52, British Ministry of Supply, TPA 3/TIB, 1952.

Hartog, J.P. den (1940): Mechanical Vibrations, New York, 1940.

Hasegawa, A. (1985): Analysis of controllability and stability of motorcycles - Analysis of stability of high speed driving. In: *Proceedings of 10th Int. Tech. Conf. on Experimental Safety Vehicles*, 1985.

Henker, E. (1968): Dynamische Kennlinien von PKW Reifen. Wissenschaftlich-Technische Veröffentlichungen aus dem Automobilbau (IFA-DDR) Heft 3, 1968. Higuchi, A., and Pacejka, H.B. (1997): The Relaxation Length Concept at Large Wheel Slip and Camber. In: *Proceedings of 2nd Colloquium on Tyre Models for Vehicle Analysis*, Berlin 1997, eds. F.Böhm and H.P.Willumeit, Suppl. Vehicle System Dynamics, 27, 1996.

Higuchi, A. (1997): Transient response of tyres at large wheel slip and camber. Dissertation, TU Delft, 1997.

Ho, F.H., and Hall, M.F. (1973):An experimental study of the pure-yaw frequency response of the 18x5.5 type VII aircraft tires. *AFFDL-TR-73-79*, 1973.

Iffelsberger, L. (1991): Application of vehicle dynamic simulation in motorcycle development. *Safety Environment Future*, Forschungshefte Zweiradsicherheit, 7, 1991.

Jagt, P. van der, Pacejka, H.B., and Savkoor, A.R. (1989): Influence of tyre and suspension dynamics on the braking performance of an anti-lock system on uneven roads. In: *Proceedings of EAEC Conference*, Strassbourg, C382/047 IMechE 1989.

Jagt, P. van der (2000): *The Road to Virtual Vehicle Prototyping*. Dissertation. TU Eindhoven, 2000.

Jenkinson, D. (1958): The Racing Driver. Batsford Ltd., London, 1958.

Jianmin, G., Gall, R., and Zuomin, W. (2001): Dynamic Damping and Stiffness Characteristics of the Rolling Tire. *Tire Science and Technology*, 29, 4, 2001.

Katayama, T., Aoki, A., and Nishimi, T. (1988): Control behaviour of motorcycle riders. *Vehicle System Dynamics*, 17, 1988.

Katayama, T., Nishimi, T., Okoyama, T., and Aoki, A. (1997): A simulation model for motorcycle rider's behaviours. In: *Proceedings of SETC'97*, Yokohama, SAE of Japan, 1997.

Keldysh, M.V. (1945): *Shimmy of the front wheel of a three-wheeled landing gear*. Tr. Tsentr. Aerogidrodinamicheskogo Inst., 564, 1945.

Klotter, K. (1960): Technische Schwingungslehre II. Berlin, 1960.

Kluiters, M.A.M. (1969): An investigation into F-28 main gear vibrations. Fokker Report X-28-430, 1969.

Kobiki, Y., Kinoshita, A., and Yamada, H. (1990): Analysis of interior booming noise caused by tire and power train-suspension system vibration. *Int. J. of Vehicle Design*, 11, 3, 1990.

Koenen, C., and Pacejka, H.B. (1980): Vibrational Modes of Motorcycles in Curves. In: *Proceedings of the Int. Motorcycle Safety Conference*, Wash. D.C., Motorcycle Safety Foundation, Vol.II, 1980.

Koenen, C. (1983): The dynamic behaviour of a motorcycle when running straight ahead and when cornering. Dissertation, TU Delft, 1983.

Koiter, W.T., and Pacejka, H.B. (1969): On the skidding of vehicles due to locked wheels. In: *Proceedings of the Symposium on Handling of Vehicles under Emergency*

Conditions, Inst. of Mech. Engnrs. 1968-69, 183 Pt 3H, 19, 1969.

Kortüm, W., and Lugner, P. (1994): Systemdynamik und Regelung von Fahrzeugen. Springer Verlag, Berlin, 1994.

Krempel, G. (1967): Untersuchungen an Kraftfahrzeugreifen. ATZ, Vol. 69, Nos. 1, 8, 1967. (Cf. also dissertation Karlsruhe University, 1965)

Krylov, N., and Bogoljubov, N. (1947): *Introduction to Non-Linear Mechanics*. Princeton, 1947.

Laerman, F.J. (1986): Seitenführungsverhalten von Kraftfahrzeugreifen bei schnellen Radlaständerungen. Dissertation, Braunschweig, *VDI-Fortschritt Berichte*, 12, 73, 1986.

Lee, Jung-Hwan (2000): Analysis of Tire Effect on the Simulation of Vehicle Straight Line Motion. *Vehicle System Dynamics*, 33, 2000.

Leipholz, H. (1987): Stability theory, an introduction to the stability of dynamic systems and rigid bodies. John Wiley & Sons, B.G.Teubner, Stuttgart, 1987.

Lippmann, S.A., Piccin, W.A., and Baker, T.P. (1965,1967): Enveloping characteristics of truck tires - a laboratory evaluation. *SAE Paper* 650184, 1965.

Lippmann, S.A., and Nanny, J.D. (1967): A quantitative analysis of the enveloping forces of passenger car tires. *SAE Paper* 670174, 1967.

Lugner, P., Pacejka, H.B., and Plöchl, M. (2005): Recent Advances in Tyre Models and Testing Procedures. State of the Art paper of 19th IAVSD Symposium on the Dynamics of Vehicles on Roads and Tracks, Milano 2005, *Veh. System Dynamics*, 43.

Magnus, K. (1955): Ueber die Verfahren zur Untersuchung nicht-linearer Schwingungs- und Regelungs-Systeme. *VDI-Forschungsheft* 451 B, 21, 1955.

Mastinu, G. (1997): A Semi-Analytical Tyre Model for Steady and Transient State Simulations. In: *Proceedings of 2nd Colloquium on Tyre Models for Vehicle Analysis*, Berlin 1997, eds. F.Böhm and H.P.Willumeit, Suppl. Vehicle System Dynamics, 27, 1996.

Maurice, J.P., Berzeri, M., and Pacejka, H.B. (1999): Pragmatic Tyre Model for Short Wavelength Side Slip Variations. *Vehicle System Dynamics*, 31, 2, 1999.

Maurice, J.P. (2000): Short wavelength and dynamic tyre behaviour under lateral and combined slip conditions. Dissertation, TU Delft, 2000.

Metcalf, W.H. (1963): Effect of a Time-Varying load on Side Force Generated by a Tire Operating at Constant Slip Angle. SAE Paper 713c, 1963.

Milliken, W.F. et al. (1956): Research in Automobile Stability and Control and Tire Performance. The Inst. of Mech. Engnrs, London, 1956.

Milliken, W.F., and Milliken, D.L. (1995): Race Car Vehicle Dynamics. SAE 1995.

Mitschke, M. (1982): Dynamik der Kraftfahrzeuge, Band A, Antrieb und Bremsung.

Springer Verlag, Berlin, 1982.

Mitschke, M. (1990): Dynamik der Kraftfahrzeuge, Band C, Fahrverhalten. Springer Verlag, Berlin, 1990.

Moreland, W.J. (1954): The story of shimmy. J. of the Aeronautical Sciences, December 1954.

Mousseau, C.W., and Clark, S.K. (1994): An analytical and experimental study of a tire rolling over a stepped obstacle at low velocity. *Tire Science and Technology*, TSTCA, 16, 2, 1994.

Nishimi, T., Aoki, A., and Katayama, T. (1985): Analysis of straight-running stability of motorcycles. In: *Proceedings of 10th Int. Tech. Conf. on Experimental Safety Vehicles*, 1985.

Nordeen, D.L., and Cortese, A.D. (1963): Force and moment characteristics of rolling tires. *SAE Paper* 713A, 1963; *SAE Transactions* 325, 1964.

Oertel, Ch. (1997): On modelling contact and friction - calculation of tyre response on uneven roads. In: *Proceedings of 2nd Colloquium on Tyre Models for Vehicle Analysis*, eds. F.Böhm and H.P.Willumeit, Berlin 1997, Suppl. Vehicle System Dynamics, 27, 1996.

Oertel, Ch., and Fandre, A. (1999): Ride Comfort Simulations and Steps Towards Life Time Calculations: RMOD-K and ADAMS. *International ADAMS User Conference*, Berlin, 1999.

Olley, M. (1947): Road manners of the modern car. J. Inst. Auto. Engnrs., 15, 1947.

Oosten, J.J.M. van, and Bakker, E. (1993): Determination of Magic Tyre Model Parameters. In: *Proceedings of 1st Colloquium on Tyre Models for Vehicle Analysis*, ed. H.B. Pacejka, Delft 1991, Suppl. Vehicle System Dynamics, 21, 1993.

Oosten, J.J.M. van, Unrau, J.H., Riedel, G., and Bakker, E. (1996): TYDEX Workshop: Standardisation of Data Exchange in Tyre Testing and Tyre Modelling. In: *Proceedings of 2nd Colloquium on Tyre Models for Vehicle Analysis*, eds. F.Böhm and H.P.Willumeit, Berlin 1997, Suppl. Vehicle System Dynamics, 27, 1996.

Pacejka, H.B. (1958): Study of the lateral behaviour of an automobile moving upon a flat level road. Cornell Aeronautical Laboratory Report YC-857-F-23, 1958.

Pacejka, H.B. (1965): Analysis of the wheel shimmy phenomenon. In: *Proceedings of the Auto. Division of I.Mech.E.*, 180, Part 2A, Inst. of Mech. Engnrs., 1965-66.

Pacejka, H.B. (1966): The wheel shimmy phenomenon. Dissertation, TU Delft, 1966.

Pacejka, H.B. (1971): The Tyre as a Vehicle Component. Chapter 7 of: *Mechanics of Pneumatic Tires*, ed. S.K. Clark, N.B.S. Monograph 122, Washington D.C., 1971 (new edition 1981).

Pacejka, H.B. (1972): Analysis of the Dynamic Response of a String-Type Tire Model to Lateral Wheel-Plane Vibrations. *Vehicle System Dynamics*, 1, 1, 1972.

Pacejka, H.B., and Fancher, P.S. (1972a): Hybrid simulation of shear force development of a tire experiencing longitudinal and lateral slip. In: *Proceedings of XIV FISITA Int. Auto. Tech. Congress*, London, 1972.

Pacejka, H.B. (1973a): Approximate dynamic shimmy response of pneumatic tyres. *Vehicle System Dynamics*, 2, 1973.

Pacejka, H.B. (1973b): Simplified analysis of steady-state turning behaviour of motor vehicles. *Vehicle System Dynamics*, 2, p.161,173,185; 1973.

Pacejka, H.B. (1974): Some recent investigations into dynamics and frictional behavior of pneumatic tires. In: *Proceedings of G.M. Symposium Physics of Tire Traction*, eds. D.F. Hays and A.L. Browne, Plenum Press, New York, 1974.

Pacejka, H.B., Van der Berg, J., and Jillesma, P.J. (1977): Front Wheel Vibrations. In: *Proceedings of 5th VSD-2nd IUTAM Symposium*, eds. A. Slibar and H. Springer, Vienna 1977, Swets and Zeitlinger, Lisse, 1978.

Pacejka, H.B. (1981): Analysis of Tire Properties. Chapter 9, *Mechanics of Pneumatic Tires*, ed. S.K. Clark, DOT HS-805 952, 1981.

Pacejka, H.B. (1981a): In-Plane and Out-of-Plane Dynamics of Pneumatic Tyres. *Vehicle System Dynamics*, 10, 1981.

Pacejka, H.B. (1986): Non-Linearities in Road Vehicle Dynamics. *Vehicle System Dynamics*, 15, 5, 1986.

Pacejka, H.B., and Sharp, R.S. (1991): Shear Force Development by Pneumatic Tyres in Steady State Conditions: A Review of Modelling Aspects. *Vehicle System Dynamics*, 20, 1991.

Pacejka, H.B., and Takahashi, T. (1992): Pure Slip Characteristics of Tyres on Flat and on Undulated Road Surfaces. In: *Proceedings of AVEC'92*, Yokohama, SAE of Japan, 1992.

Pacejka, H.B., and Bakker, E. (1993): The Magic Formula tyre model. In: *Proceedings of 1st Colloquium on Tyre Models for Vehicle Analysis*, Delft 1991, ed. H.B. Pacejka, Suppl. Vehicle System Dynamics, 21, 1993.

Pacejka, H.B. (1996): The Tyre as a Vehicle Component. In: *Proceedings of XXVI FISITA Congress*, ed. M. Apetaur, Prague, 1996.

Pacejka, H.B., and Besselink, I.J.M. (1997): Magic Formula Tyre Model with Transient Properties. In: *Proceedings of 2nd Colloquium on Tyre Models for Vehicle Analysis*, eds. F.Böhm and H.P.Willumeit, Berlin 1997, Suppl. Vehicle System Dynamics, 27, 1996.

Pacejka, H.B. (2004): Spin: Camber and Turning. In: *Proceedings of 3^d Colloquium on Tyre Models for Vehicle Analysis*, ed. P. Lugner, Vienna 2004, Suppl. Vehicle System Dynamics, 2005.

Pevsner, Ja. M. (1947): Theory of the stability of automobile motions. (In Russian).

Masjgiz, Leningrad, 1947.

Radt, H.S., and Pacejka, H.B. (1963): Analysis of the Steady-State Turning Behavior of an Automobile. In: *Proceedings of the Symposium on Control of Vehicles*, Inst. of Mech. Engnrs., London, 1963.

Radt, H.S., and Milliken, W.F. (1983): Non-dimensionalizing Tyre Data for Vehicle Simulation. *Road Vehicle Handling*, Inst. of Mech. Engnrs. (C133/83), 1983.

Reimpell, J., and Sponagel, P. (1986): Fahrwerktechnik: Reifen und Räder. Vogel Buchverlag, Würzburg, 1986.

Riekert, P., and Schunck, T.E. (1940): Zur Fahrmechanik des Gummi-bereiften Kraftfahrzeugs. *Ingenieur Archiv*, 11, 210, 1940.

Rocard, Y. (1949): Dynamique général des vibrations. Paris, 1949.

Rogers, L.C., and Brewer, H.K. (1971): Synthesis of tire equations for use in shimmy and other dynamic studies. *J. of Aircraft*, 8, 9, 1971.

Rogers, L.C. (1972): Theoretical tire equations for shimmy and other dynamic studies. *AIAA J. of Aircraft*, 1972.

Ruijs, P.A.J., and Pacejka, H.B. (1985): Research in Lateral Dynamics of Motorcycles. In: *Proceedings of 9th IAVSD Symposium on the Dynamics of Vehicles on Roads and Tracks*, ed. O. Nordström, Linköping 1985, Suppl. Vehicle System Dynamics, 15, 1986.

SAE J670e 1976: Vehicle Dynamics Terminology. SAE J670e, Society of Automotive Engineers, Inc., Warrendale, PA, July 1976.

Saito, Y. (1962): A study of the dynamic steering properties of tyres. In: *Proceedings IX FISITA Congress*, London, 1962.

Sakai, H. (1981): Theoretical and experimental studies on the dynamic cornering properties of tyres. *Int. J. of Vehicle Design*, 2(1-4), 1981.

Sakai, H. (1989): Study on Cornering Properties for Tire and Vehicle. *The 8th Annual Meeting of the Tire Society*, Akron, 1989.

Sakai, H. (1990): Study on Cornering Properties of Tire and Vehicle. *Tire Science and Technology*, TCTCA, 18(3), 1990.

Savkoor, A.R. (1970): The lateral flexibility of a pneumatic tyre and its application to the lateral contact problem. In: *Proceedings FISITA Int. Auto. Safety Conference, SAE Paper* 700378, 1970.

Schlippe, B. von, and Dietrich, R. (1941): *Das Flattern eines bepneuten Rades*. Bericht 140 der Lilienthal Gesellschaft, 1941: NACA TM 1365, 1954.

Schlippe, B. von, and Dietrich, R. (1942): *Zur Mechanik des Luftreifens*. Zentrale für wissenschaftliches Berichtwesen, Berlin-Adlershof, 1942.

Schlippe, B. von, and Dietrich, R. (1943): Das Flattern eines mit Luftreifen

versehenen Rades. In: Jahrbuch der deutsche Luftfahrtforschung, 1943.

Schmeitz, A.J.C., and Pauwelussen, J.P. (2001): An Efficient Dynamic Ride and Handling Tyre Model for Arbitrary Road Unevennesses. *VDI-Berichte*, 1632, 2001.

Schmeitz, A.J.C., and Pacejka, H.B. (2003): A Semi-Empirical Three-Dimensional Tyre Model for Rolling over Arbitrary Road Unevennesses. In: *Proceedings of the 18th IAVSD Symposium on the Dynamics of Vehicles on Roads and Tracks*, Kanagawa, 2003, Japan, ed. M.Abe, Swets and Zeitlinger, Suppl. of Vehicle System Dynamics.

Schmeitz, A.J.C. (2004): A Semi-Empirical Three-Dimensional Model of the Pneumatic Tyre Rolling over Arbitrarily Uneven Road Surfaces. Dissertation, TU Delft, 2004.

Segel, L. (1956): Theoretical Prediction and Experimental Substantiation of the Response of the Automobile to Steering Control. In: *Proceedings of Auto. Division of I.Mech.E.*, 7, 1956-57.

Segel, L. (1966): Force and moment response of pneumatic tires to lateral motion inputs. *Transactions ASME, J. of Engineering for Industry*, 88B, 1966.

Segel, L., and Wilson, R. (1976): Requirements on describing the mechanics of tires used on single-track vehicles. In: *Proceedings of IUTAM Symposium on the Dynamics of Vehicles*, TU Delft 1975, ed. H.B. Pacejka, Swets and Zeitlinger, Lisse, 1976.

Segel, L., and Ervin, R.D. (1981): The Influence of Tire Factors on the Stability of Trucks and Tracktor Trailers. *Vehicle System Dynamics*, 10, 1, 1981.

Sekula, P.J., et al. (1976): Dynamic indoor tyre testing and Fourier transform analysis. *Tire Science and Technology*, 4, 2, 1976.

Shang, J., Guan, D., and Yam, L.H. (2002): Study on Tyre Dynamic Cornering Properties Using Experimental Modal Parameters. *Vehicle System Dynamics*, 37, 2, 2002.

Sharp, R.S. (1971): The Stability and Control of Motorcycles. *J. of Mech. Engng. Sci.*, 13, 5, I.Mech.E., 1971.

Sharp, R.S. (1978): A Review of Motorcycle Steering Behaviour and Straight Line Stability Characteristics. *SAE Paper* 780303, 1978.

Sharp, R.S., and Jones, C.J. (1980): A comparison of tyre representations in a simple wheel shimmy problem. *Vehicle System Dynamics*, 9, 1, 1980.

Sharp, R.S., and Alstead, C.J. (1980a): The Influence of Structural Flexibilities on the Straight-Running Stability of Motorcycles. *Vehicle System Dynamics*, 9, 1980.

Sharp, R.S. (1985): The lateral dynamics of motorcycles and bicycles. *Vehicle System Dynamics*, 14, 4-6, 1985.

Sharp, R.S., and El-Nashar, M.A. (1986): A generally applicable digital computer based mathematical model for the generation of shear forces by pneumatic tyres. *Vehicle System Dynamics*, 15, 1986.

Sharp, R.S. (2001): Stability, Control and Steering Responses of Motorcycles. *Vehicle System Dynamics*, 35, 4-5, 2001.

Sharp, R.S., and Limebeer, D.J.N. (2001a): A motorcycle model for stability and control analysis. *Multibody System Dynamics*, 6, 2, 2001.

Smiley, R.F. (1957): Correlation and extension of linearized theories for tire motion and wheel shimmy. NACA Report 1299, 1957.

Smiley, R.F. (1958): Correlation, evaluation and extension of linearized theories for tire motion and wheel shimmy. NACA (NASA) Tech. Note 4110, 1958.

Sperling, E. (1977): Zur Kinematik und Kinetik elastischer Räder aus der Sicht verschiedener Theorien. Dissertation, TU Munich, 1977.

Spierings, P.T.J. (1981): The Effects of Lateral Front Fork Flexibility on the Vibrational Modes of Straight Running Single Track Vehicles. *Vehicle System Dynamics*, 10, 1980.

Stepan, G. (1997): Delay, Nonlinear Oscillations and Shimmying Wheels. In: *Proceedings of Symposium CHAOS'97*, Ithaca, N.Y., Kluwer Ac. Publ., Dordrecht, 1998.

Stoker, J.J. (1950): Non-Linear Vibrations. New York, 1958.

Strackerjan, B. (1976): Die Querdynamik von Kraftfahrzeugreifen. In: *Proceedings of VDI-Schwingungstagung*, 1976.

Takahashi, T., Yamada, T., and Nakamura, T. (1984): Experimental and theoretical study of the influence of tires on straight-running motorcycle weave response. *SAE Paper* 840248, 1984.

Takahashi, T., and Pacejka, H.B. (1987): Cornering on uneven roads. In: *Proceedings* of 10th IAVSD Symposium on the Dynamics of Vehicles on Roads and Tracks, ed. M. Apetaur, Prague 1987, Suppl. Vehicle System Dynamics, 17, 1988.

Takahashi, T., and Hoshino, M. (1996): The Tyre Cornering Model on Uneven Roads for Vehicle Dynamics Studies. In: *Proceedings of AVEC'96, Int. Symp. on Advanced Vehicle Control.*, ed. H.Wallentowitz, Aachen, 1996.

Tanguy, G. (1986): Antiskid Systems and Vehicle Suspension. SAE Paper 865134, 1986.

Troger, H., and Zeman, K. (1984): A non-linear analysis of the generic types of loss of stability of the steady-state motion of a tractor-semi-trailer. *Vehicle System Dynamics*, 13, 1984.

Vågstedt, N.G. (1995): On the Cornering Characteristics of Ground Vehicle Axles. Dissertation, KTH Stockholm, 1995.

Valk, R. van der, and Pacejka, H.B. (1993): An analysis of a civil aircraft main landing gear shimmy failure. *Vehicle System Dynamics*, 22, 1993.

Vries, E.J.H. de, and Pacejka, H.B. (1998a): Motorcycle tyre measurements and

models. In: Proceedings of 15th IAVSD Symposium on the Dynamics of Vehicles on Roads and Tracks, ed. L.Palkovics, Budapest 1997, Suppl. Vehicle System Dynamics 28, 1998.

Vries, E.J.H. de, and Pacejka, H.B. (1998b): The effect of tire modelling on the stability analysis of a motorcycle. In: *Proceedings AVEC'98*, Nagoya, SAE of Japan, 1998.

Weir, D.H. (1972): Motorcycle handling dynamics and rider control and the effect of design configuration on response and performance. Dissertation, UCLA, 1972.

Whipple, F.J.W. (1899): The Stability of the Motion of a Bicycle. Quart. J. of Pure and Applied Mathematics, 30, 1899.

Whitcomb, D.W., and Milliken, W.F. (1956): Design Implications of a General Theory of Automobile Stability and Control. In: *Proceedings of Auto. Division of I.Mech.E.*, 7, 1956-57.

Willumeit, H.P. (1969): Theoretisch Untersuchungen an einem Modell des Luftreifens. Dissertation, Berlin, 1969.

Winkler, C.B. (1998): Simplified Analysis of the Steady-State Turning of Complex Vehicles. *Vehicle System Dynamics*, 29, 3, 1998.

Wisselman, D., Iffelsberger, D., and Brandlhuber, B. (1993): Einsatz eines Fahrdynamik-Simulationsmodells in der Motorradentwicklung bei BMW. ATZ, 95, 2, 1993.

Zegelaar, P.W.A., Gong, S., and Pacejka, H.B. (1993): Tyre Models for the Study of In-Plane Dynamics. In: *Proceedings of 13th IAVSD Symposium on the Dynamics of Vehicles on Roads and Tracks*, ed. Z. Shen, Chengdu 1993, Suppl. Vehicle System Dynamics, 23, 1994.

Zegelaar, P.W.A., and Pacejka, H.B. (1995): The In-Plane Dynamics of Tyres on Uneven Roads. In: *Proceedings of 14th IAVSD Symposium on the Dynamics of Vehicles on Roads and Tracks*, ed. L. Segel, Ann Arbor 1995, Suppl. Vehicle System Dynamics, 25, 1996.

Zegelaar, P.W.A., and Pacejka, H.B. (1997): Dynamic Tyre Responses to Brake Torque Variations. In: *Proceedings of 2nd Colloquium on Tyre Models for Vehicle Analysis*, eds. F.Böhm and H.P.Willumeit, Berlin 1997, Suppl. Vehicle System Dynamics, 27, 1996.

Zegelaar, P.W.A. (1998): The dynamic response of tyres to brake torque variations and road unevennesses. Dissertation, TU Delft, 1998.