NORM_COL 3 - Data set: COLLEGES

INTRODUZIONE

Il data set contiene informazioni riguardanti 521 università americane alla fine dell'anno accademico 1993/1994. Le variabili contenute sono:

- 1. AVE MAT: indicatore qualitativo della preparazione nelle discipline matematiche
- 2. APPL_RIC: numero di domande di iscrizione ricevute all'inizio dell'anno
- 3. APPL ACC: numero di domande di iscrizione accettate all'inizio dell'anno
- 4. P_STUD10: percentuale di studenti procenienti dalle prime 10 scuole superiori americane
- 5. COSTI_V: costi medi pro-capite per vitto, alloggio sostenuti nell'anno (dollari)
- 6. COSTI B: costi medi pro-capite per l'acquisto di libri di testo sostenuti nell'anno (dollari)
- 7. TASSE: tasse universitarie medie pro-capite versate durante l'anno
- 8. STUD_DOC: numero di studenti per docente
- 9. P_LAUR: percentuale di laureati alla fine dell'anno sul totale degli iscritti al primo anno

Analisi proposte:

- 1. Statistiche descrittive
- 2. Regressione lineare

```
#-- R CODE
library(pander)
library(car)
library(olsrr)
library(systemfit)
library(het.test)
panderOptions('knitr.auto.asis', FALSE)
#-- White test function
white.test <- function(lmod,data=d){</pre>
  u2 <- lmod$residuals^2</pre>
  y <- fitted(lmod)
 Ru2 <- summary(lm(u2 \sim y + I(y^2)))$r.squared
  LM <- nrow(data)*Ru2
 p.value <- 1-pchisq(LM, 2)
  data.frame("Test statistic"=LM,"P value"=p.value)
#-- funzione per ottenere osservazioni outlier univariate
FIND_EXTREME_OBSERVARION <- function(x,sd_factor=2){</pre>
  which(x>mean(x)+sd_factor*sd(x) | x<mean(x)-sd_factor*sd(x))</pre>
#-- import dei dati
ABSOLUTE_PATH <- "C:\\Users\\sbarberis\\Dropbox\\MODELLI STATISTICI"
d <- read.csv(paste0(ABSOLUTE_PATH,"\\F. Esercizi(22) copia\\2.Norm-Co1 copy(3)\\3.Norm-Co1\\colleges.c
#-- vettore di variabili numeriche presenti nei dati
VAR NUMERIC <- names(d)[2:ncol(d)]
```

#-- print delle prime 6 righe del dataset
pander(head(d), big.mark=",")

Table 1: Table continues below

id_numb	${\rm ave_MAT}$	appl_ric	$appl_acc$	p_stud10	$costi_v$	costi_b
1,061	490	193	146	16	4,120	800
1,009	575	7,548	6,791	25	3,933	600
1,012	575	805	588	67	$4,\!325$	400
1,019	513	608	520	26	3,920	500
1,047	510	1,471	1,281	18	2,570	300
1,099	564	823	721	52	$3,\!195$	500

tasse	stud_doc	p_laur
10,922	11.9	15
6,642	16.7	69
8,649	14	72
7,703	11.4	44
4,295	23	48
8,588	13.1	63

STATISTICHE DESCRITTIVE

Si presentano innanzitutto le statistiche descrittive.

```
#-- R CODE
pander(summary(d[,VAR_NUMERIC]),big.mark=",") #-- statistiche descrittive
```

Table 3: Table continues below

ave_MAT	appl_ric	appl_acc	p_stud10	costi_v
Min. :320.0	Min.: 77	Min.: 61	Min.: 1.00	Min. :1780
1st Qu.:470.0	1st Qu.: 738	1st Qu.: 588	1st Qu.:14.00	1st Qu.:3680
Median :509.0	Median: 1456	Median: 1074	Median :21.00	Median $:4240$
Mean : 506.4	Mean: 2821	Mean: 1999	Mean : 23.64	Mean $:4389$
3rd Qu.:541.0	3rd Qu.: 3500	3rd Qu.: 2424	3rd Qu.:30.00	3rd Qu.:4960
Max. :660.0	Max. :48094	Max. :26330	Max. :94.00	Max. :7782

costi_b	tasse	$stud_doc$	p_laur
Min.: 96.0	Min.: 3190	Min. : 2.50	Min.: 10.0
1st Qu.:450.0	1st Qu.: 6735	1st Qu.:12.20	1st Qu.: 52.0
Median: 500.0	Median: 8135	Median: 14.10	Median: 63.0
Mean $:530.6$	Mean:8532	Mean : 14.73	Mean: 62.3
3rd Qu.:600.0	3rd Qu.: 9995	3rd Qu.:16.90	3rd Qu.: 74.0
Max. :900.0	Max. :22704	Max. :28.80	Max. :118.0

cosu_b tasse stud_doc p_nam	costi_b	tasse	$\operatorname{stud_doc}$	p_laur
-----------------------------	---------	-------	----------------------------	--------

pander(cor(d[,VAR_NUMERIC]),big.mark=",") #-- matrice di correlazione

Table 5: Table continues below

	ave_MAT	appl_ric	appl_acc	p_stud10	costi_v	costi_b
ave_MAT	1	0.2747	0.27	0.6926	0.1911	0.1146
$appl_ric$	0.2747	1	0.9703	0.1733	0.02063	0.1885
$appl_acc$	0.27	0.9703	1	0.1885	0.02449	0.1896
${ m p_stud10}$	0.6926	0.1733	0.1885	1	0.1285	0.1425
$\mathbf{costi}_{\mathbf{v}}$	0.1911	0.02063	0.02449	0.1285	1	0.0624
$\mathbf{costi}\mathbf{b}$	0.1146	0.1885	0.1896	0.1425	0.0624	1
\mathbf{tasse}	0.434	0.008766	0.02133	0.3932	0.4434	0.09308
$\operatorname{stud_doc}$	-0.08992	0.3196	0.3027	-0.1596	-0.1918	0.05982
p_laur	0.3847	0.006031	0.01002	0.3162	0.3457	-0.05675

	tasse	$stud_doc$	p_laur
ave_MAT	0.434	-0.08992	0.3847
appl_ric	0.008766	0.3196	0.006031
$appl_acc$	0.02133	0.3027	0.01002
${ m p_stud10}$	0.3932	-0.1596	0.3162
$\mathbf{costi}\mathbf{v}$	0.4434	-0.1918	0.3457
$\operatorname{costi_b}$	0.09308	0.05982	-0.05675
tasse	1	-0.5183	0.2604
$\operatorname{stud_doc}$	-0.5183	1	-0.2121
p_laur	0.2604	-0.2121	1

plot(d[,VAR_NUMERIC],pch=19,cex=.5) #-- scatter plot multivariato


```
par(mfrow=c(3,3))
for(i in VAR_NUMERIC){
  boxplot(d[,i],main=i,col="lightblue",ylab=i)
}
```



```
par(mfrow=c(3,3))
for(i in VAR_NUMERIC){
  hist(d[,i],main=i,col="lightblue",xlab=i,freq=F)
}
```


Si effettua quindi la regressione della variabile "appl_acc" rispetto ai regressori prescelti.

REGRESSIONE

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	485	320	1.515	0.1303
ave_MAT	-0.9691	0.7223	-1.342	0.1803
appl ric	0.6542	0.007427	88.09	1.699e-313
${ m p_stud10}$	6.75	2.884	2.341	0.01964

Table 8: Fitting linear model: appl_acc ~ ave_MAT + appl_ric + p_stud10

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
521	618.7	0.9421	0.9418

pander(anova(mod1),big.mark=",")

Table 9: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
ave_MAT	1	249,252,364	249,252,364	651.1	1.473e-93
${ m appl_ric}$	1	2.969e + 09	2.969e + 09	7,754	2.014e-313
${ m p_stud10}$	1	2,097,218	2,097,218	5.478	0.01964
Residuals	517	197,927,054	382,838	NA	NA

pander(white.test(mod1),big.mark=",")

Test.statistic	P.value
389.5	0

pander(dwtest(mod1),big.mark=",")

Table 11: Durbin-Watson test: mod1

Test statistic	P value	Alternative hypothesis
1.691	0.0001907 * * *	true autocorrelation is greater than 0

pander(ols_vif_tol(mod1),big.mark=",")

Variables	Tolerance	VIF
ave_MAT appl ric	0.4957 0.924	2.017 1.082
p_stud10	0.52	1.923

pander(ols_eigen_cindex(mod1),big.mark=",")

Eigenvalue	Condition Index	intercept	ave_MAT	appl_ric	p_stud10
3.319	1	0.0006063	0.0004713	0.03007	0.009646
0.5333	2.494	0.0008757	0.0005552	0.9289	0.01101
0.1451	4.783	0.01139	0.003456	0.0007515	0.566
0.003083	32.81	0.9871	0.9955	0.04032	0.4133

Si verifica ora l'omoschedasticità e incorrelazione degli errori cominciando con le rappresentazioni grafiche. Sia nel grafico dei valori osservati-previsti della variabile dipendente che in quello dei valori residui-previsti si nota una configurazione non omogenea della nuvola di punti a segnalare la probabile presenza di eteroschedasticità dei residui.

Tale eteroschedasticità sembra confermata dai grafici dei residui-valori osservati delle regressioni semplici con una sola variabile esplicativa per volta in cui esistono molti punti che si discostano dalla nuvola di punti. Si passa ora a esaminare i test sulla sfericità dei residui.

Il test di White porta a rigettare l'ipotesi di omoschedasticità. Si può quindi concludere che gli errori sono eteroschedastici e correlati.

```
#-- R CODE
par(mfrow=c(2,2))
plot(d$ave_MAT,resid(mod1),pch=19,xlab="ave_MAT",ylab="Residual")
abline(h=0,lwd=3,lty=2,col=2)

plot(d$appl_ric,resid(mod1),pch=19,xlab="appl_ric",ylab="Residual")
abline(h=0,lwd=3,lty=2,col=2)

plot(d$p_stud10,resid(mod1),pch=19,xlab="p_stud10",ylab="Residual")
abline(h=0,lwd=3,lty=2,col=2)

plot(1:nrow(d),rstudent(mod1),pch=19,xlab="Observation Index",ylab="Residual Studentized",type="h")
abline(h=2,lwd=3,lty=2,col=2)
abline(h=-2,lwd=3,lty=2,col=2)
```


Si esamina ora la normalità dei residui cominciando con le rappresentazioni grafiche.

```
#-- R CODE
plot(mod1,which=2,pch=19)
```


hist(resid(mod1),col="lightblue",freq=F,xlab="Resid",main="")
lines(density(resid(mod1)),col=2,lwd=2)

pander(shapiro.test(resid(mod1)))

Table 14: Shapiro-Wilk normality test: resid(mod1)

Test statistic	P value
0.7163	9.006e-29 * * *

pander(ks.test(resid(mod1), "pnorm"))

Table 15: One-sample Kolmogorov-Smirnov test: resid(mod1)

Test statistic	P value	Alternative hypothesis
0.564	0 * * *	two-sided

La distribuzione dei residui e il Q-Q plot mostrano chiaramente una situazione di non normalità confermata dal confronto tra quantili delle distribuzione empirica e teorica normale.

Tal non normalità è confermata dal grafico in cui si confrontano valori residui-predetti. Si nota come la nuvola di punti differisce molto dalla configurazione sferica o elittica tipica di una distribuzione normale degli errori.

Nel complesso quindi si hanno errori eteroschedastici, non normalità dei residui, presenza di outlier: si conclude che non è opportuno usare il modello lineare classico basato su OLS.