Package 'RAMpath'

August 27, 2023

Type Package

(RAM) Notation
Version 0.5.1
Date 2023-08-26
Author Zhiyong Zhang, Jack McArdle, Aki Hamagami, & Kevin Grimm
Maintainer Zhiyong Zhang <zzhang4@nd.edu></zzhang4@nd.edu>
Description We rewrite of RAMpath software developed by John McArdle and Steven Boker as an R package. In addition to performing regular SEM analysis through the R package lavaan, RAMpath has unique features. First, it can generate path diagrams according to a given model. Second, it can display path tracing rules through path diagrams and decompose total effects into their respective direct and indirect effects as well as decompose variance and covariance into individual bridges. Furthermore, RAMpath can fit dynamic system models automatically based on latent change scores and generate vector field plots based upon results obtained from a bivariate dynamic system. Starting version 0.4, RAMpath can conduct power analysis for both univariate and bivariate latent change score models. Depends R (>= 2.0), lavaan, ellipse, MASS License GPL-2
<pre>URL https://nd.psychstat.org</pre>
NeedsCompilation no
Repository CRAN
Date/Publication 2023-08-27 13:30:02 UTC
R topics documented:
RAMpath-package ex1 ex2 ex3

2 RAMpath-package

RAMpa	RAMpath-package RAMpath for SEM analysis						
Index							25
	summary.RAMpath				 	 	24
	ramVF						
	ramUniquePath						23
	ramShowModel						22
	ramRmOne						22
	ramReFit						
	ramPathBridge						21
	ramParseLavaan						
	ramMatrix						20
	ramLCS						18
	ramLCM						17
	ramIndex				 	 	17
	ramFlip				 		16
	$ramFit \ \dots \ \dots \ .$				 	 	14
	ramEffectSE				 	 	14
	ramBLCS				 	 	12
	ram2lavaan				 	 	12
	powerLCS						11
	powerBLCS						9
	plot.RAMpath						8
	plot.lcs.power						7
	makeSpanList						7
	makePathList						6
	makeBridgeList						5
	lavaan2ram						5

Description

We rewrite of RAMpath software developed by John McArdle and Steven Boker as an R package. In addition to performing regular SEM analysis through the R package lavaan, RAMpath has unique features. First, it can generate path diagrams according to a given model. Second, it can display path tracing rules through path diagrams and decompose total effects into their respective direct and indirect effects as well as decompose variance and covariance into individual bridges. Furthermore, RAMpath can fit dynamic system models automatically based on latent change scores and generate vector field plots based upon results obtained from a bivariate dynamic system. Starting version 0.4, RAMpath can conduct power analysis for both univariate and bivariate latent change score models.

Details

Package: RAMpath Type: Package License: GPL ex1 3

Author(s)

Zhiyong Zhang, Jack McArdle, Aki Hamagami, and Kevin Grimm Maintainer: Zhiyong Zhang <zhiyongzhang@nd.edu>

References

Boker, S. M., McArdle, J. J. & Neale, M. C. (2002) An algorithm for the hierarchical organization of path diagrams and calculation of components of covariance between variables. Structural Equation Modeling, 9(2), 174-194

Yves Rosseel (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. URL https://www.jstatsoft.org/v48/i02/.

Zhang, Z., Hamagami, F., Grimm, K. J., & McArdle, J. J. (2015). Using R package RAMpath for tracing SEM path diagrams and conducting complex longitudinal data analysis. Structural Equation Modeling, 22(1), 132-147. https://doi.org/10.1080/10705511.2014.935257

ex1

Example data set 1

Description

Three variables in the data set:

age:

hvlt: Hopkins Verbal Learning Test ept: Everyday problem solving test

Usage

data(ex1)

ex2

Example data set 2

Description

Five variables in the data set:

edu

gender

word sets (ws1)

letter set (ls1)

letter series (lt1)

isNumeric isNumeric

Usage

data(ex2)

ex3

Example data set 3

Description

12 variables in the data set:

X1-X6: data for variable X from time 1 to time 6.

Y1-Y6: data for variable X from time 1 to time 6.

Usage

data(ex3)

isNumeric

Is the input a numeric variable

Description

Check whether the input is a numeric variable

Usage

```
isNumeric(constant)
```

Arguments

constant

A variable to check

Value

TRUE or FALSE

lavaan2ram 5

|--|

Description

Convert lavaan output to RAM matrices

Usage

```
lavaan2ram(fitModel, digits = 2, zero.print = "0", ram.out = TRUE, fit = FALSE)
```

Arguments

fitModel	A lavaan object generated by the fur	nction lavaan, sem, or growth
----------	--------------------------------------	-------------------------------

digits Digits for number print
zero.print Format zeros in the matrix
ram.out Whether print RAM matrices
fit Whether print fit statistics

Value

A and Ase	A matrix and its standard errors
S and Sse	S matrix and its standard errors

fit model fit

lavaan The lavaan input, the same as fitModel

makeBridgeList	Generate all bridges

Description

Generate all bridges based on Boker, McArdle, & Neale (2002)

Usage

```
makeBridgeList(pathList, spanList)
```

Arguments

pathList	A path list from the function makePathList
spanList	A span list from the function makeSpanList

6 makePathList

References

Boker, S. M., McArdle, J. J. & Neale, M. C. (2002) An algorithm for the hierarchical organization of path diagrams and calculation of components of covariance between variables. Structural Equation Modeling, 9(2), 174-194

Zhang, Z., Hamagami, F., Grimm, K. J., & McArdle, J. J. (2015). Using R package RAMpath for tracing SEM path diagrams and conducting complex longitudinal data analysis. Structural Equation Modeling, 22(1), 132-147. https://doi.org/10.1080/10705511.2014.935257

makePathList

Make a list of effects

Description

Make a list of effects

Usage

makePathList(AMatrix, Ase, indirect = TRUE)

Arguments

AMatrix A matrix from the ram matrices

Ase Standard error matrix for A matrix from the ram matrices

indirect Whether to generate all indirect effects

References

Boker, S. M., McArdle, J. J. & Neale, M. C. (2002) An algorithm for the hierarchical organization of path diagrams and calculation of components of covariance between variables. Structural Equation Modeling, 9(2), 174-194

Zhang, Z., Hamagami, F., Grimm, K. J., & McArdle, J. J. (2015). Using R package RAMpath for tracing SEM path diagrams and conducting complex longitudinal data analysis. Structural Equation Modeling, 22(1), 132-147. https://doi.org/10.1080/10705511.2014.935257

makeSpanList 7

makeSpanList

Make a list of spans

Description

Make a list of spans

Usage

```
makeSpanList(SMatrix, Sse)
```

Arguments

SMatrix S matrix from the ram matrices

Sse Standard error matrix for S matrix from the ram matrices

References

Boker, S. M., McArdle, J. J. & Neale, M. C. (2002) An algorithm for the hierarchical organization of path diagrams and calculation of components of covariance between variables. Structural Equation Modeling, 9(2), 174-194

Zhang, Z., Hamagami, F., Grimm, K. J., & McArdle, J. J. (2015). Using R package RAMpath for tracing SEM path diagrams and conducting complex longitudinal data analysis. Structural Equation Modeling, 22(1), 132-147. https://doi.org/10.1080/10705511.2014.935257

plot.lcs.power

Plot the power curve for each specified parameter

Description

Plot the power curve for each specified parameter

Usage

```
## S3 method for class 'lcs.power'
plot(x, parameter, ...)
```

Arguments

x Output from the powerLCS function or Output from the powerBLCS function parameter parameter to be plotted.

. . . Options for the plot function.

8 plot.RAMpath

References

Zhang, Z., & Liu, H. (2018). Sample size and measurement occasion planning for latent change score models through Monte Carlo simulation. In E. Ferrer, S. M. Boker, and K. J. Grimm (Eds.), Advances in longitudinal models for multivariate psychology: A festschrift for Jack McArdle (pp. 189-211). New York, NY: Routledge.

plot.RAMpath	Plot the path diagram according to RAM path and bridges or Plot the
	vector field for the bivariate latent change score model

Description

Plot the path diagram according to RAM path and bridges or Plot the vector field for the bivariate latent change score model

Usage

```
## S3 method for class 'RAMpath'
plot(x, file, from, to, type = c("path", "bridge"),
size = c(8, 8), node.font = c("Helvetica", 14), edge.font = c("Helvetica", 10),
rank.direction = c("LR", "TB"), digits = 2, output.type = c("graphics", "dot"),
graphics.fmt = "pdf", dot.options = NULL, ...)

## S3 method for class 'blcs'
plot(x, ylim, xlim, ninterval=10, scale=.1, length=.25,
scatter=TRUE, n=20, alpha=.95, ...)
```

Arguments

x	Output from the ramPathBridge function or Output from the ramBLCS function
file	File name for the generated figures
from	from variable: path starts from this variable
to	to variable: path ends on this variable
type	path: to plot the effect path;
	bridge: to plot the bridges path
size	The size of the plot in inches
node.font	The size of the text for the variables
edge.font	The size of the text on the pahts
rank.direction	LR: from left to right; TB: from top to bottom.
digits	Digits of numbers to plot
output.type	If "graphics", the default, both a ".dot" file and a graphics file will be created.
graphics.fmt	a graphics format recognized by the dot program; the default is "pdf"; graphics.fmt is also used for the extension of the graphics file that is created.

powerBLCS 9

dot.options	options to be passed to the dot program, given as a character string
ylim	Range of y data, for example, c(0,80) from 0 to 80
xlim	Range of x data, for example, $c(0.80)$ from 0 to 80
ninterval	Number of intervals for plotting. The default is 10.
scale	Time interval to calculate vector fields.
length	The length of arrows to plot
scatter	Whether to plot the data points
n	The number of data points to be plotted
alpha	The confidence level to calculate the ellipse
	Options for plot and arrows function.

References

Zhang, Z., Hamagami, F., Grimm, K. J., & McArdle, J. J. (2015). Using R package RAMpath for tracing SEM path diagrams and conducting complex longitudinal data analysis. Structural Equation Modeling, 22(1), 132-147. https://doi.org/10.1080/10705511.2014.935257

Examples

```
data(ex3) test.blcs<-ramBLCS(ex3, 1:6, 7:12, ram.out=TRUE) ramVF(test.blcs, c(0,80), c(0,80), length=.05, xlab='X', ylab='Y', scale=.5, ninterval=9) plot(test.blcs, c(0,80), c(0,80), length=.05, xlab='X', ylab='Y', scale=.5, ninterval=9)
```

powerBLCS

Power analysis for bivariate latent change score models

Description

Calculate power for bivariate latent change score models based on Monte Carlo simulation.

Usage

```
powerBLCS(N=100, T=5, R=1000, betay=0, my0=0, mys=0, varey=1, vary0=1, varys=1, vary0ys=0, alpha=0.05, betax=0, mx0=0, mxs=0, varex=1, varx0=1, varxs=1, varx0xs=0, varx0y0=0, varx0ys=0, vary0xs=0, varxsys=0, gammax=0, gammay=0, ...)
```

Arguments

N	Sample size, can be a scalar or a vector. For better performance, make sure N is at least two times of T
T	Number of times, occasions or waves of measurements, can be a scalar or a vector

10 powerBLCS

R	Number of replications to run in Monte Carlo simulation. Recommended 1000 or more
betay	Population parameter values
my0	Population parameter values
mys	Population parameter values
varey	Population parameter values
vary0	Population parameter values
varys	Population parameter values
vary0ys	Population parameter values
betax	Population parameter values
mx0	Population parameter values
mxs	Population parameter values
varex	Population parameter values
varx0	Population parameter values
varxs	Population parameter values
varx0xs	Population parameter values
gammax	Population parameter values
gammay	Population parameter values
varx0y0	Population parameter values
varx0ys	Population parameter values
vary0xs	Population parameter values
varxsys	Population parameter values
alpha	Significance level
• • •	Options can be used for lavaan

Value

A matrix with power for each parameter.

References

Zhang, Z., & Liu, H. (2018). Sample size and measurement occasion planning for latent change score models through Monte Carlo simulation. In E. Ferrer, S. M. Boker, and K. J. Grimm (Eds.), Advances in longitudinal models for multivariate psychology: A festschrift for Jack McArdle (pp. 189-211). New York, NY: Routledge.

```
## Not run:
powerBLCS(R=1000)
## End(Not run)
```

powerLCS 11

Description

Calculate power for univariate latent change score models based on Monte Carlo simulation.

Usage

```
powerLCS(N=100, T=5, R=1000, betay=0, my0=0, mys=0,
varey=1, vary0=1, varys=1, vary0ys=0, alpha=0.05, ...)
```

Arguments

N	Sample size, can be a scalar or a vector. For better performance, make sure \boldsymbol{N} is at least two times of \boldsymbol{T}
Т	Number of times, occasions or waves of measurements, can be a scalar or a vector
R	Number of replications to run in Monte Carlo simulation. Recommended 1000 or more
betay	Population parameter values
my0	Population parameter values
mys	Population parameter values
varey	Population parameter values
vary0	Population parameter values
varys	Population parameter values
vary0ys	Population parameter values
alpha	Significance level
• • •	Options can be used for lavaan

Value

model	The lavaan model specification of the bivariate latent change score model
lavaan	The lavaan output
ram	Output in terms of RAM matrices

References

Zhang, Z., & Liu, H. (2018). Sample size and measurement occasion planning for latent change score models through Monte Carlo simulation. In E. Ferrer, S. M. Boker, and K. J. Grimm (Eds.), Advances in longitudinal models for multivariate psychology: A festschrift for Jack McArdle (pp. 189-211). New York, NY: Routledge.

12 ramBLCS

Examples

```
## Not run:
powerLCS(R=1000)
## End(Not run)
```

ram2lavaan

RAM model to lavaan model

Description

Convert RAM matrix specification to a lavaan model

Usage

```
ram2lavaan(model)
```

Arguments

model

An ram model

References

Yves Rosseel (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.

Zhang, Z., Hamagami, F., Grimm, K. J., & McArdle, J. J. (2015). Using R package RAMpath for tracing SEM path diagrams and conducting complex longitudinal data analysis. Structural Equation Modeling, 22(1), 132-147. https://doi.org/10.1080/10705511.2014.935257

ramBLCS

Conduct bivariate latent change score analysis

Description

Conduct bivariate latent change score analysis

Usage

```
ramBLCS(data, y, x, timey, timex, ram.out = FALSE, betax,
betay, gammax, gammay, mx0, mxs, my0, mys, varex, varey,
varx0, vary0, varxs, varys, varx0y0, varx0xs, vary0ys,
varx0ys, vary0xs, varxsys, ...)
```

ramBLCS 13

Arguments

y Indices for y variables
x Indices for x variables
timey Time for y variables
timex Time for x variables

ram.out whether print ram matrices

Starting value betax Starting value betay Starting value gammax Starting value gammay mx0 Starting value Starting value mxs my0 Starting value Starting value mys Starting value varex varey Starting value varx0 Starting value Starting value vary0 Starting value varxs varys Starting value varx0y0 Starting value varx0xs Starting value Starting value vary0ys varx0ys Starting value vary0xs Starting value Starting value varxsys

... Options can be used for lavaan

Value

model The lavaan model specification of the bivariate latent change score model

lavaan The lavaan output

ram Output in terms of RAM matrices

References

Zhang, Z., Hamagami, F., Grimm, K. J., & McArdle, J. J. (2015). Using R package RAMpath for tracing SEM path diagrams and conducting complex longitudinal data analysis. Structural Equation Modeling, 22(1), 132-147. https://doi.org/10.1080/10705511.2014.935257

14 ramFit

Examples

```
data(ex3)
## Test the bivariate latent change score model ramBLCS

test.blcs<-ramBLCS(ex3, 7:12, 1:6, ram.out=TRUE)
summary(test.blcs$lavaan, fit=TRUE)

bridge<-ramPathBridge(test.blcs$ram, allbridge=FALSE,indirect=FALSE)
## uncomment to plot
## plot(bridge, 'blcs')

## Test the vector field plot
## test.blcs is the output of the ramBLCS function.
ramVF(test.blcs, c(0,80),c(0,80), length=.05, xlab='X', ylab='Y',scale=.5, ninterval=9)</pre>
```

ramEffectSE

Sobel standard error for a given effect

Description

Sobel standard error for a given effect

Usage

```
ramEffectSE(object, effect, path=TRUE)
```

Arguments

object An RAM path bridge output

effect The effect to calculate se for. It is in the form a > b > c.

path se for the direct and indirect effect.

ramFit

Fit a model using lavaan based on ram input

Description

Fit a model using lavaan based on ram input

Usage

```
ramFit(ramModel, data, type=c('ram','lavaan'), digits = 3, zero.print = "0", ...)
```

ramFit 15

Arguments

ramModel An ram model
data data
type ram: specify a ram model; lavaan: specify a lavaan model
digits Digits for print
zero.print Format of zeros
... Options for lavaan

Value

A and Ase A matrix and its standard error
S and Sse S matrix and its standard error
lavaan Original lavaan output
fit Model fit statistics and indices

References

Yves Rosseel (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.

Zhang, Z., Hamagami, F., Grimm, K. J., & McArdle, J. J. (2015). Using R package RAMpath for tracing SEM path diagrams and conducting complex longitudinal data analysis. Structural Equation Modeling, 22(1), 132-147. https://doi.org/10.1080/10705511.2014.935257

```
## Example 1. A path model
data(ex1)
m1<-'
manifest=3
label=age,hvlt,ept
arrow(2,1)=?
arrow(3,1)=?
arrow(3,2)=?
sling(1,1)=?
sling(2,2)=?
sling(3,3)=?
## Fit the model
res1<-ramFit(m1, ex1)</pre>
## More output from Lavaan
summary(res1$lavaan, fit=TRUE)
## Effects and variance decomposition
bridge<-ramPathBridge(res1, allbridge=TRUE, indirect=TRUE)</pre>
summary(bridge)
summary(bridge, type='bridge')
```

16 ramFlip

```
## plot the path diagram
## uncomment to plot
## plot(bridge, 'ex1')
## plot the effects from age to ept
## uncomment to plot
## plot(bridge, 'ex1effect', 'age','ept')
## plot the bridges for ept
## uncomment to plot
## plot(bridge, 'ex1bridge', 'ept','hvlt', type='bridge')
## summarize
summary(bridge)
summary(bridge, type='bridge')
## Example 2: An SEM model (MIMIC model)
## Using lavaan directly for model estimation and specification
mimic<-'
R = ws1 + ls1 + lt1
R \sim edu + gender
mimic.res<-sem(mimic, data=ex2)</pre>
mimic.ram<-lavaan2ram(mimic.res)</pre>
## plot the path diagram
bridge<-ramPathBridge(mimic.ram, allbridge=FALSE, indirect=FALSE)</pre>
## uncomment to plot
## plot(bridge, 'mimic')
```

ramFlip

Flip the ram path

Description

Flip the ram path

Usage

ramFlip(input)

Arguments

input

An ram path

ramIndex 17

Description

To be added

Usage

```
ramIndex(input)
```

Arguments

input To be added

ramLCM

Conduct growth curve analysis

Description

Conduct growth curve analysis

Usage

```
ramLCM(data, outcome, model = c("all", "no", "linear", "quadratic", "latent"),
basis = 0:(length(outcome) - 1), predictor, equal.var = TRUE, digits = 3,
ram.out = FALSE, ...)
```

Arguments

data

ram.out

outcome	Outcome variable indices
model	Models to fit
basis	Basis coefficients
predictor	Covariates as predictors
equal.var	Set residual variances to be equal
digits	Print digits

Data

... Options can be used for lavaan

Print ram matrices

18 ramLCS

Value

model The lavaan model specification of the bivariate latent change score model

lavaan The lavaan output

ram Output in terms of RAM matrices

fit Model fit

References

Zhang, Z., Hamagami, F., Grimm, K. J., & McArdle, J. J. (2015). Using R package RAMpath for tracing SEM path diagrams and conducting complex longitudinal data analysis. Structural Equation Modeling, 22(1), 132-147. https://doi.org/10.1080/10705511.2014.935257

Examples

```
data(ex3)
## Example 3. Growth curve models
gcm.all<-ramLCM(ex3, 1:6, ram.out=TRUE)</pre>
## plot the path diagram
bridge<-ramPathBridge(gcm.all$ram$latent, FALSE, FALSE)</pre>
## uncomment to plot
## plot(bridge, 'latent')
##unequal variance
gcm.all<-ramLCM(ex3, 1:6, ram.out=TRUE, equal.var=FALSE)</pre>
## missing data
gcm.all < -ramLCM(ex3, c(1,2,4,6), basis = c(1,2,4,6), ram.out = TRUE)
gcm.l<-ramLCM(ex3, 1:6, model='linear', ram.out=TRUE)</pre>
## with a predictor
gcm.pred < -ramLCM(ex3, c(1,2,4,6), model='linear', basis=c(1,2,4,6),
                  predictor=c(3,5), ram.out=TRUE)
bridge3<-ramPathBridge(gcm.pred$ram$linear)</pre>
## uncomment to plot
## plot(bridge3, 'gcmlinear')
```

ramLCS

Univariate latent change score model

Description

Univariate latent change score model

Usage

```
ramLCS(data, y, timey, ram.out = FALSE, betay, my0, mys,
varey, vary0, varys, vary0ys, ...)
```

ramLCS 19

Arguments

data data y data time of y timey ram.out Whether print ram matrices betay Starting value Starting value my0 Starting value mys varey Starting value Starting value vary0 Starting value varys

Starting value Options can be used for lavaan

Value

vary0ys

model The lavaan model specification of the bivariate latent change score model

The lavaan output lavaan

Output in terms of RAM matrices ram

References

Zhang, Z., Hamagami, F., Grimm, K. J., & McArdle, J. J. (2015). Using R package RAMpath for tracing SEM path diagrams and conducting complex longitudinal data analysis. Structural Equation Modeling, 22(1), 132-147. https://doi.org/10.1080/10705511.2014.935257

```
data(ex3)
test.lcs<-ramLCS(ex3, 7:12)
summary(test.lcs$lavaan, fit=TRUE)
bridge<-ramPathBridge(test.lcs$ram, allbridge=FALSE, indirect=FALSE)</pre>
## uncomment to plot
## plot(bridge, 'lcs')
```

20 ramParseLavaan

ramMatrix

Generate ram matrices based on ram input

Description

Generate ram matrices based on ram input

Usage

```
ramMatrix(model)
```

Arguments

model

An ram model

ramParseLavaan

lavaan to ram

Description

lavaan to ram matrices

Usage

```
ramParseLavaan(input, manifest, type = 0)
```

Arguments

input lavaan input

manifest observed variables

type 0: single headed arrow, ...

ramPathBridge 21

ramPathBridge	Generate path and bridges	
---------------	---------------------------	--

Description

Generate path and bridges

Usage

```
ramPathBridge(rammatrix, allbridge = FALSE, indirect = TRUE)
```

Arguments

rammatrix RAM matrices allbridge Generate all bridges

indirect Generate all indirect effects

ramReFit	Refit a model with additional paths

Description

Generate a vector field plot based on the bivariate lcsm

Usage

```
ramReFit(object, add, ram.out=FALSE, ...)
```

Arguments

object Output from any data analysis

add Additional paths to be added, e.g., add='X1~~X2'.

ram.out Whether to print the RAM matrices

Options for plot and arrows function.

```
data(ex3)
gcm.l<-ramLCM(ex3, 1:6, model='linear', ram.out=TRUE)
## Add correlated errors
ramReFit(gcm.l, add='X1~~X2')</pre>
```

22 ramShowModel

ramRmOne

Internal function

Description

Internal function

Usage

```
ramRmOne(input)
```

Arguments

input

Internal function

ramShowModel

Show the model using Lavvan model syntax

Description

Show the model using Lavvan model syntax

Usage

```
ramShowModel(object)
```

Arguments

object

Output from any data analysis

References

Yves Rosseel (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.

Zhang, Z., Hamagami, F., Grimm, K. J., & McArdle, J. J. (2015). Using R package RAMpath for tracing SEM path diagrams and conducting complex longitudinal data analysis. Structural Equation Modeling, 22(1), 132-147. https://doi.org/10.1080/10705511.2014.935257

```
data(ex3)
gcm.l<-ramLCM(ex3, 1:6, model='linear', ram.out=TRUE)
## Add correlated errors
ramShowModel(gcm.1)</pre>
```

ramUniquePath 23

mUniquePath Get the uniques paths

Description

Get the uniques paths

Usage

```
ramUniquePath(tPathlist)
```

Arguments

tPathlist The path list.

ramVF

Generate a vector field plot based on the bivariate lcsm

Description

Generate a vector field plot based on the bivariate lcsm

Usage

```
ramVF(ramout, ylim, xlim, ninterval=10, scale=.1, length=.25,
scatter=TRUE, n=20, alpha=.95, ...)
```

Output from the ramBLCS function

Arguments

ramout

ylim	Range of y data, for example, c(0,80) from 0 to 80
xlim	Range of x data, for example, c(0,80) from 0 to 80
ninterval	Number of intervals for plotting. The default is 10.
scale	Time interval to calculate vector fields.
length	The length of arrows to plot
scatter	Whether to plot the data points
n	The number of data points to be plotted
alpha	The confidence level to calculate the ellipse
	Options for plot and arrows function.

24 summary.RAMpath

References

Zhang, Z., Hamagami, F., Grimm, K. J., & McArdle, J. J. (2015). Using R package RAMpath for tracing SEM path diagrams and conducting complex longitudinal data analysis. Structural Equation Modeling, 22(1), 132-147. https://doi.org/10.1080/10705511.2014.935257

Examples

```
\label{lem:data} $$ data(ex3)$ $$ test.blcs<-ramBLCS(ex3, 1:6, 7:12, ram.out=TRUE)$ $$ ramVF(test.blcs, c(0,80),c(0,80), length=.05, xlab='X', ylab='Y',scale=.5, ninterval=9)$
```

summary.RAMpath

Calculate the total and individual contribution for each path and bridge

Description

Calculate the total and individual contribution for each path and bridge

Usage

```
## S3 method for class 'RAMpath'
summary(object, from, to, type = c("path", "bridge"), se=FALSE, ...)
```

Arguments

object Output from the ramPathBridge function from variable: starting from this variable

to to variable: end on this variable

type path: to calculate the effect; bridge: to calculate the bridges

se Whether to generate se for direct and indirect effects.

... Other options

Index

sem, 5

```
ex1, 3
                                                 summary (summary.RAMpath), 24
ex2, 3
                                                 summary.RAMpath, 24
ex3, 4
growth, 5
isNumeric, 4
lavaan, 5, 13
lavaan2ram, 5
makeBridgeList, 5
makePathList, 5, 6
makeSpanList, 5, 7
plot (plot.RAMpath), 8
plot.lcs.power, 7
plot.RAMpath, 8
powerBLCS, 9
powerLCS, 11
ram2lavaan, 12
ramBLCS, 8, 12
ramEffectSE, 14
ramFit, 14
ramFlip, 16
ramIndex, 17
ramLCM, 17
ramLCS, 18
ramMatrix, 20
ramParseLavaan, 20
RAMpath (RAMpath-package), 2
RAMpath-package, 2
ramPathBridge, 8, 21
ramReFit, 21
ramRmOne, 22
ramShowModel, 22
ramUniquePath, 23
ramVF, 23
```