In [41]: import pandas as pd
 import matplotlib.pyplot as plt
 from sklearn.linear_model import LinearRegression as LR
 from sklearn.model_selection import train_test_split as TTS
 from sklearn.tree import DecisionTreeRegressor as DR , plot_tree as PT
 from sklearn.ensemble import RandomForestRegressor as RF
 from sklearn.metrics import mean_squared_error as MSE, mean_absolute_error as
 import numpy as np

In [4]: df=pd.read_csv('D:\Intern\Cognifyz Intern\Dataset .csv')

In [7]: df.head(3)

Out[7]:

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Longitud
0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Century City Mall, Poblacion, Makati City, Mak	121.0275;
1	6304287	Izakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Little Tokyo, Legaspi Village, Makati City, Ma	121.0141(
2	6300002	Heat - Edsa Shangri-La	162	Mandaluyong City	Edsa Shangri- La, 1 Garden Way, Ortigas, Mandal	Edsa Shangri-La, Ortigas, Mandaluyong City	Edsa Shangri-La, Ortigas, Mandaluyong City, Ma	121.05683

3 rows × 21 columns

```
In [5]: df.describe()
```

Out[5]:		Restaurant ID	Country Code	Longitude	Latitude	Average Cost for two	Price range	Aggr
	coun	t 9.551000e+03	9551.000000	9551.000000	9551.000000	9551.000000	9551.000000	9551.0
	mear	9.051128e+06	18.365616	64.126574	25.854381	1199.210763	1.804837	2.6
	sto	8.791521e+06	56.750546	41.467058	11.007935	16121.183073	0.905609	1.5
	mir	5.300000e+01	1.000000	-157.948486	-41.330428	0.000000	1.000000	0.0
	25%	3.019625e+05	1.000000	77.081343	28.478713	250.000000	1.000000	2.5
	50%	6.004089e+06	1.000000	77.191964	28.570469	400.000000	2.000000	3.2
	75%	1.835229e+07	1.000000	77.282006	28.642758	700.000000	2.000000	3.7
	max	1.850065e+07	216.000000	174.832089	55.976980	800000.000000	4.000000	4.9
	4							•
T- [6].	٦	(-()						
In [6]:	df.in	• •						
	4	4 Address		9551 non-null object				
	5	Locality		9551 non-nul	_			
	6	Locality Ver		9551 non-nul				
	7	Longitude		9551 non-nul	-	1		
	8	Latitude		551 non-nul				
	9	Cuisines	9	542 non-nul	l object			
	10	Average Cost	for two 9	551 non-nul	l int64			
	11	Currency	ç	551 non-nul	l object			-
	12	Has Table bo	oking 9	551 non-nul	l object			-
	13	Has Online delivery Is delivering now		551 non-nul	l object			-
	14			551 non-nul	_			-
		Switch to order menu		9551 non-nul				-
		Price range		9551 non-nul				
		Aggregate ra	_	9551 non-nul		1		
	18	Rating color	9	9551 non-nul	l object			

Split into Feature and Target

dtypes: float64(3), int64(5), object(13)

19 Rating text

memory usage: 1.5+ MB

20 Votes

```
In [8]: | x=df[['Country Code','Average Cost for two','Price range','Votes']]
        y=df['Aggregate rating']
```

9551 non-null

9551 non-null

object int64

Split into train Test data

```
In [9]: x_train,x_test,y_train,y_test=TTS(x,y,test_size=0.3,random_state=203)
```

Fit in the Model-(Linear Regression)

```
In [11]: lm=LR()
lm.fit(x_train,y_train)
```

Out[11]: LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [19]: y_pred=lm.predict(x_test)
```

```
In [20]: mse=MSE(y_pred,y_test)
    print(f"Mean Squared Error is : {mse}")
    mae=MAE(y_pred,y_test)
    print(f"Mean Absoulte Error is : {mae}")
    r2=RS(y_pred,y_test)
    print(f"R2 Score is : {r2}")
```

Mean Squared Error is: 1.7492919932102107 Mean Absoulte Error is: 1.0953288581603926 R2 Score is: -1.825475037117438

```
In [59]: plt.scatter(y_pred,y_test,c='red')
```

Out[59]: <matplotlib.collections.PathCollection at 0x29b0f70a6d0>


```
In [23]: print(y_pred)
```

[2.61310323 2.06504124 2.15843283 ... 2.66425065 2.03803603 2.63226449]

```
In [26]: new_data=np.array([[162,16000,2,3500]])
    predict=lm.predict(new_data)
    print(f"Predicted Aggregate rating of the Restaurant is :{predict}")
```

Predicted Aggregate rating of the Restaurant is :[5.75168948]

C:\Users\nikhil\anaconda3\Lib\site-packages\sklearn\base.py:464: UserWarning:
X does not have valid feature names, but LinearRegression was fitted with feature names

warnings.warn(

Predict Using Decision Tree

```
In [29]: dm=DR(max_depth=5)
dm.fit(x_train,y_train)
```

Out[29]: DecisionTreeRegressor(max_depth=5)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [30]: dr_y_pred=dm.predict(x_test)
In [31]: dr_mse=MSE(dr_y_pred,y_test)
print(f"Mean Squared Error is :{dr_mse}")
```

Mean Squared Error is :0.11432877538614103

In [34]: PT(dm, feature_names=list(x))

```
les = 6685\nvalue = 2.678'),
      Text(0.4375, 0.75, 'squared error = 0.0 \ln s = 1485 \ln e = 0.0'),
      Text(0.5, 0.75, 'Votes <= 94.5\nsquared error = 0.308\nsamples = 5200\nvalue
     = 3.443'),
      Text(0.25, 0.5833333333333334, 'Votes <= 20.5\nsquared error = 0.174\nsample
     s = 3135 \setminus e = 3.187'
      Text(0.125, 0.4166666666666667, 'Country Code <= 22.0\nsquared_error = 0.067
      \n \nsamples = 1381\nvalue = 3.028'),
      Text(0.0625, 0.25, 'Votes <= 11.5\nsquared error = 0.052\nsamples = 1347\nva
     lue = 3.012'),
      lue = 2.964'),
      lue = 3.086'),
      Text(0.1875, 0.25, 'Average Cost for two \leftarrow 27.5\nsquared_error = 0.255\nsam
     ples = 34\nvalue = 3.659'),
      e = 3.086'),
      e = 3.807'),
      Text(0.375, 0.416666666666667, 'Country Code <= 7.5\nsquared error = 0.222
      \n in samples = 1754\n in value = 3.313'),
      Text(0.3125, 0.25, 'Average Cost for two <= 825.0\nsquared error = 0.203\nsa
     mples = 1630\nvalue = 3.275'),
      Text(0.28125, 0.083333333333333333, 'squared_error = 0.188\nsamples = 1370\nv
     alue = 3.24'),
      lue = 3.456'),
      Text(0.4375, 0.25, 'Country Code <= 175.0\nsquared error = 0.195\nsamples =
     124 \cdot nvalue = 3.818'),
      ue = 4.241'),
      e = 3.688'),
      \n in samples = 2065\n invalue = 3.832'),
      Text(0.625, 0.416666666666667, 'Votes <= 263.5\nsquared_error = 0.238\nsamp
     les = 1603\nvalue = 3.723'),
      Text(0.5625, 0.25, 'Votes <= 142.5\nsquared_error = 0.248\nsamples = 900\nva
     lue = 3.571'),
      lue = 3.471'),
      lue = 3.651'),
      Text(0.6875, 0.25, 'Votes <= 626.5\nsquared_error = 0.159\nsamples = 703\nva
     lue = 3.917'),
      lue = 3.828'),
      lue = 4.057'),
      Text(0.875, 0.416666666666667, 'Votes <= 402.5\nsquared_error = 0.156\nsamp
     les = 462 \times = 4.21'),
      Text(0.8125, 0.25, 'Country Code <= 215.5\nsquared_error = 0.151\nsamples =
     277 \cdot value = 4.077'),
      lue = 4.217'),
```


Predict Using Random Forest

```
In [40]: rf=RF(n_estimators=100)
rf.fit(x_train,y_train)
```

Out[40]: RandomForestRegressor()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [42]: rf_y_pred=rf.predict(x_test)
In [43]: rf_mse=MSE(rf_y_pred,y_test)
print(f"Mean squared error is : {rf_mse}")
```

Mean squared error is : 0.13753745563138678