Image Analysis - Lecture 5 Machine Learning 1 - Classification

Kalle Åström

13 September 2016

Contents

Classification

Optimal statistical classification

Probability

Nearest Neigbour classification

Other classifiers

Artificial Neural Networks

Convolutional Neural Networks - Deep Learning

Support Vector Machines

Dimensionality reduction

Principal component analysis

Some classification problems

OCR: Given an image, segment the characters and classify them (a,b,c,etc).

Cell analysis: Given an image, segment the cells and classify them (white blood cell, red blood cells, etc)

Grain analysis: Given an image of grain, segment the grains and classify them (wheat, rice, stone, rotten, etc)

Handwriting recognition: Given handwritten data, segment the text in individual characters and classify them (a,b,c,etc),

Diagnostic support: Given medical data (images, journal data) classify patient (healthy, sickness1, sickness2, etc)

Face detection: Given an image, classify it as (face, not face)

All of these classification problems have in common:

- ▶ data x (after segmentation, extract features)
- A number of classes

One would like to determine a class for every possible feature vector.

Here we will assume that the features are represented as a column vector, i.e. $\mathbf{x} \in \mathbb{R}^n$,

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

One would like to compare the feature vector \mathbf{x} with those that one usually gets with a number of classes. Let y denote the class index, i.e. the classes are $y \in \omega_y = \{1, \dots, M\}$ where M denotes the number of classes.

Typical system: Image - filtering - segmentation - features - classification

Example: Plant identification

By measuring the length x_1 and width x_2 of the leaf of a plant, one would like to classify the plant in three classes

- ▶ Iris virginica y = 1
- ▶ Iris versicolor y = 2
- ▶ Iris setosa *y* = 3.

How should one construct a function $f: \mathbb{R}^n \to \omega_V$ that given a features vector **x** determines, which class y it belongs to? How can one determine if a recognition function f is good? Are there any limits to the performance that one can get?

Classification

- Optimal statistical classification
- Nearest Neighbour classification
- Support Vector Machines
- Artificial Neural Networks

hat and facture year

Assume that one feature vector \mathbf{x} and class y are drawn from a joint probability distribution. If one can calculate the probability that the class is y = j given the measurements \mathbf{x} , i.e. the so called **posterior probability**.

$$P(y=j|\mathbf{x})$$

The **maximum a posteriori classifier** is obtained as selecting the class *j* that maximizes the posterior probability, i.e.

$$j = \operatorname{argmax}_k P(y = k | \mathbf{x}).$$

It is often easier to model and estimate the **likelihood** $P(\mathbf{x}|y=j)$ and to model the **prior** p(y=j). The a posteriori probabilites can then be calculated using the Bayes rule,

$$p(y = j | \mathbf{x}) = \frac{p(\mathbf{x}|y = j)p(y = j)}{p(\mathbf{x})}.$$

Reduction

Introduction

Sometimes there is asymetric loss. Introduce a loss function L so that if our method classifies **x** as class *j* when it really is *i* we obtain a loss L_{ij} .

Discussion: What is the reason for having different losses for L_{12} and L_{21} ?

The mean loss when classifying **x** as ω_i is then

$$r_j(\mathbf{x}) = \sum_{k=1}^M L_{kj} p(y = k | \mathbf{x})$$

Introduction

$$p(a|b) = \frac{p(a)p(b|a)}{p(b)}$$

one may rewrite r_i as

$$r_j(\mathbf{x}) = \frac{1}{p(\mathbf{x})} \sum_{k=1}^{M} L_{kj} p(\mathbf{x}|y=k) p(y=k)$$

Choose *j* as to minimize loss, i.e. $y = f(\mathbf{x}) = \operatorname{argmin}_i r_i(\mathbf{x})$. This gives the statistically optimal classifier.

Since $p(\mathbf{x})$ is positive and common for all r_i it does not affect the comparison of different r_i .

Bayes classification: Classify **x** as y = i if $r_i(\mathbf{x}) < r_i(\mathbf{x})$ for all $j \neq i$.

If nothing else is known about the application it is common to choose

$$L_{ij} = \begin{cases} 0, & i = j \\ 1, & i \neq j \end{cases}$$

For this loss one may use

$$p(\mathbf{x}|y=j)p(y=j)$$

to decide which the optimal classification is.

Example with discrete variables

Assume three classes $\omega_V = \{1, 2, 3\}$.

Assume that there is 10 percent chance for errors in a pixel. Assume independent errors.

What is the optimal classification of $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$

$$r_j(\mathbf{x}) = \frac{1}{p(\mathbf{x})} \sum_{k=1}^M L_{kj} p(\mathbf{x}|y=k) p(y=k).$$

If nothing else is known about the application it is common to choose

$$L_{ij} = \begin{cases} 0, & i = j \\ 1, & i \neq j \end{cases}$$

Minimize expected loss by maximizing

$$1-r_j(\mathbf{x})=p(y=j|\mathbf{x})=\frac{p(\mathbf{x}|y=j)p(y=j)}{p(\mathbf{x})}.$$

We might as well find the *j* that maximize

$$p(\mathbf{x}|y=j)p(y=j).$$

Minimize expected loss by maximizing

$$1-r_j(\mathbf{x})=p(y=j|\mathbf{x})=\frac{p(\mathbf{x}|y=j)p(y=j)}{p(\mathbf{x})}.$$

We might as well find the *j* that maximize

$$p(\mathbf{x}|y=j)p(y=j).$$

But once we have calculated $p(\mathbf{x}|y=i)p(y=i)$ it is straightforward to calculate

$$p(\mathbf{x}) = \sum_{j} (\mathbf{x}|y=j)p(y=j),$$

which after division gives

$$p(y=j|\mathbf{x}) = \frac{p(\mathbf{x}|y=j)p(y=j)}{p(\mathbf{x})},$$

which are probabilities that sum to 1.

$$p(\mathbf{x}|y=j)p(y=j)$$

for each i.

$$p(\mathbf{x}|y=1)p(y=1) = 0.9^3 \cdot 0.1^1 * 0.25 \approx 0.018$$

 $p(\mathbf{x}|y=2)p(y=2) = 0.9^1 \cdot 0.1^3 * 0.25 \approx 0.0002$
 $p(\mathbf{x}|y=3)p(y=3) = 0.9^2 \cdot 0.1^2 * 0.50 \approx 0.004$

The first image is most probable. But now it is easy to calculate

$$p(\mathbf{x}) = \sum_{j} (\mathbf{x}|y=j)p(y=j) = 0.018 + 0.0002 + 0004 = 0.0222$$

So we might as well go ahead and calculate the probabilities

$$p(y = j | \mathbf{x}) = \frac{p(\mathbf{x}|y = j)p(y = j)}{p(\mathbf{x})}$$

for each i.

$$p(y = 1|\mathbf{x}) = \frac{p(\mathbf{x}|y = 1)p(y = 1)}{p(\mathbf{x})} = \frac{0.018}{0.022} = 0.81$$

$$p(y = 2|\mathbf{x}) = \frac{p(\mathbf{x}|y = 2)p(y = 2)}{p(\mathbf{x})} = \frac{2.2510^{-4}}{0.022} = 0.01$$

$$p(y = 3|\mathbf{x}) = \frac{p(\mathbf{x}|y = 3)p(y = 3)}{p(\mathbf{x})} = \frac{0.004}{0.022} = 0.18$$

Note that the probabilities sum to 1. The probability that the image is from class v = 1 is 0.81.

Continuous probability distributions

It is common to model the features as continuous variables. The multivariate normal distribution is one popular choice. It has a mean μ and a covariance matrix Σ and a probability density function

$$f_X(X = x | Y = j) = \frac{1}{\sqrt{(2\pi)^n |\Sigma_j|}} e^{-\frac{1}{2}(\mathbf{x} - \mu_j)^T \Sigma_j^{-1}(\mathbf{x} - \mu_j)}.$$

A so called 'plug-in' classifier consists of two steps:

- 1. Training. Estimate parameters, e.g. m_i , Σ_i from training data.
- 2. Classification. Assuming that the model is correct and assuming that the estimates are exact. Use Bayes formula to estimate $p(w_i|x)$ and classify according to minimum loss or maximum a posteriori.

$$p(Y = j | X = \mathbf{x}) = \frac{f_X(X = \mathbf{x} | Y = j)P(Y = j)}{f_X(X = \mathbf{x})}$$

Estimate probabilities using histograms

If it is possible to discretise the variables and if there is a large amount of training data, one may estimate the frequency functions using histograms.

Nearest Neigbour classification

A simple (but surprisingly effective) method is to save the entire training set:

$$T = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\},\$$

where $\mathbf{x}_i \in \mathbb{R}^n$ and $y_i \in \{1, \dots, m\}$.

During classification one compares the distance between the feature vector **x** with the ones in the training set $(\mathbf{x}_1, \dots, \mathbf{x}_N)$, i.e. solves

$$k = \operatorname{argmin}_i d(\mathbf{x}_i, \mathbf{x})$$

and put

$$y = k$$
.

stroduction Classification Other Reduction Statistical Probability K-NN

(k,l)-nearest neigbour classification

A generalisation of the above method is to find the k nearest neighbours to the vector x.

Classify it the class y with the most representatives among these k if this number is above l. Otherwise classify it as 'unknown'.

Artificial Neural Networks

Idea: Build a classifier function $d(\mathbf{x})$ using simple but general parts Each part is a model of a neuron. Each part has a number of parameters.

By changing the parameters, one may build a large class of functions.

Try to find the parameters that makes the classification as good as possible.

Perceptron

Artificial neural networks are built on the so called *perceptron* which can be written:

$$d(\mathbf{x}) = f(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0)$$

where f is a non-linear function, e.g.

$$f(y) = \begin{cases} 0, & y < 0 \\ y, & y \ge 0 \end{cases}$$

•

$$f(y) = \frac{1}{1 + e^{-y/b}}$$

Þ

$$f(y) = \frac{1}{\pi} \operatorname{atan}(y) + \frac{1}{2}$$

ANN with two layers

It was common to use two layers

$$d_j(\mathbf{x}) = f(\mathbf{v}_j^T \mathbf{y} + \mathbf{v}_{j,0})$$

where

$$\mathbf{y}_i = f(\mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i,0})$$

and then interpret the last layer d_i as probabilites after a so called softmax normalization

$$P(Y=j|X=\mathbf{x}) \approx p_j = rac{e^{d_j}}{\sum_{k=1}^m e^{d_k}}.$$

By studying the training set \mathbf{x}_i and comparing with the ground truth y_i on may try to optimize the parameters (v, w), so as to get p_{v_i} close to 1. e.g. by optimizing

$$(v_{opt}, w_{opt}) = \operatorname{argmin}_{(v,w)} \sum_{i=1}^{N} - \ln p_{y_i}(\mathbf{x}_i).$$

The most common method is to use local search (steepest descent) to change the variables For neural network, using steepest descent is usually called back-propagation.

Convolutional Neural Networks

Recently so called **Deep learning** has revolutionized the field of computer vision. It follows basically the same idea as for Artificial Neural Network.

More on this at a later lecture.

Assume that we would like to classify features in two classes. Denote the ground truth for the two classes: 1 and -1, i.e. the training data is

$$T = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\},\$$

where $\mathbf{x}_i \in R^d$ and $y_i \in \{-1, 1\}$.

Assume for simplicity that it is possible to separate data with a hyperplane, i.e. it is possible to find a vector w and a number b such that $y_i(w^T\mathbf{x}_i + b) \geq 0$, $\forall i$.

Note the clever use of v_i .

Note also that it is possible to scale (w, b) such that $v_i(\mathbf{w}^T\mathbf{x}_i+b)>1, \forall i.$

Optimal separating hyperplane

$$y_i(\mathbf{w}^T\mathbf{x}_i+b)\geq 1, \quad \forall i.$$

The distance between a point \mathbf{x}_i to the hyperplane (w, b) is given by $\left|\frac{w^T \mathbf{x}_i + b}{|w|}\right|$ which is larger than $\frac{1}{|w|}$. Maximising the minimal distance to the hyperplane is equivalent to minimising |w| or

$$\min_{w,b} w^T w$$

with constraints $y_i(w^T\mathbf{x}_i + b) \ge 1$, $\forall i$.

This is a so called convex optimization problem. Such problems have no extra local minima.

After finding the optimal hyperplane (w, b) new examples are classified according to

$$y = 1$$
 if $(w^T \mathbf{x}_i + b) > 0$ and $y = -1$ otherwise.

Feature selection

In image analysis, there is often much information.

E.g: 1600×1200 colour image has 5 760 000 elements, i.e.

x is a 5 760 000 \times 1 vector.

For practical reasons one has to select some of these features.

PCA

This could be thought of a part of the classification problem, but is often too difficult to handle with general methods (of today).

Feature selection is difficult. Some ideas are:

- Try single features in x. How good are they?
- Boosting
- Branch and bound a technique for global optimisation.
- Singular value decomposition.
- Intuition and knowledge about the problem

Principal component analysis

Assume that we have a number of feature vectors $(\mathbf{x}_1, \dots, \mathbf{x}_N)$, where every vector $\mathbf{x}_i \in \mathbb{R}^n$.

Study the deviations from the mean $\mathbf{x}_i - \mu$, where

Reduction

$$\mu = \frac{1}{N} \sum_{i} \mathbf{x}_{i}$$

An estimate of the covariance matrix for the data is

$$\Sigma = \frac{1}{(N-1)} \sum_{i} (\mathbf{x}_i - \mu) (\mathbf{x}_i - \mu)^T$$

Assume that we would like to generate one new feature, e.g. using

$$v(\mathbf{x}) = v^T(\mathbf{x} - \mu).$$

A good feature $v(\mathbf{x})$ describes as much of the variance as possible. The variance of $v(\mathbf{x})$ is given by

Reduction

$$V(v) = v^T \Sigma v$$

Maximising

$$V(v) = v^T \Sigma v$$

with the constraint that |v|=1 is the same thing as finding the largest eigenvector.

Additional features are obtained by taking the second largest eigenvector, etc.

Algorithm: If we want to project the features \mathbf{x} of dimension d to a subspace ν of dimension k so that as much of the variance is kept, then we should choose

$$v(\mathbf{x}) = \begin{pmatrix} v_1^T(\mathbf{x} - \mu) \\ \vdots \\ v_k^T(\mathbf{x} - \mu) \end{pmatrix}$$

where v_i is the eigenvectors of the k largest eigenvalues of the covariance matrix Σ of x.

As a bonus, the features become independent Example: Face basis

Masters thesis suggestion of the day: Smart Cities

PCA

Review - Lecture 5

- Machine Learning overview and examples
- Classification
 - Statistically optimal classification
 - Nearest neigbour classification
 - Artificial Neural Networks
 - Support Vector Machines
- Dimensionality reduction
 - Principal Component Analysis

