Motivation on a GPU MPM Approach A Gentle Introduction to the MPM A MPM Guide on GPGPU Pitfalls and Optimizations Delving Deeper: Further Opportunities References

GPU Acceleration of the Material Point Method

Fabian Meyer

University of Koblenz

Kolloquium Computergrafik, 14 February 2019

GPGPU for performance enthusiasts

Why would('nt) you?

Drawbacks:

- Interactivity much easier on CPU, but slow PCI-Bus communication
- Code is mostly written against GPU architecture
- A lot of strain on the programmer

Benefits:

- Data is already on the GPU for rendering
- Higher parallelization acceleration

A Brief MPM Overview: Do You Want to Build a Snowman?

A short historical summary of MPM:

- Belongs to family of particle-in-cell(PIC) techniques [EHB57].
- Initial application to solids [SZS95] → MPM
- ► From research to production in *Disney's* animation film *Frozen* [Sto+13].
- ► Avalanche research [Gau+18]

Video result of my bachelor thesis on the simulation of snow $[{\sf Mey15}].$

PIC ideas:

- Particles store all information
- Eulerian grid as a non-deformable scratchpad
- ⇒ meshfree

Typical PIC/MPM roundtrip:

- 1. Transfer particle quantities to the grid (P2G)
- Solve discretized governing equations on grid
- 3. Transfer back (G2P)

G2P-transfer \sum_{i}

Governing Equations: Conservation of Mass & Momentum

Conservation of mass, continuum assumption holds.

Lagrangian (moving with a particle $_0x$):

$${}_{0}^{t}J\rho({}_{0}\boldsymbol{x},t)=\rho({}_{0}\boldsymbol{x},0). \tag{1}$$

Eulerian (outside observer $_t x$):

$$\frac{\partial}{\partial t}\rho(t,x,t) = -\vec{\nabla}\cdot(\rho(t,x,t)v(t,x,t)). \tag{2}$$

Lagrangian and Eulerian view measure differently but give same results. Equations are given in the strong form! [Jia+16][Abe12]

Conservation of momentum:

Lagrangian (moving with a particle $_0x$):

$$\rho(_0x,0)\mathbf{a}(_0x,t) = \vec{\nabla} \cdot \mathbf{P}(_0x,t) + \mathbf{f}^{\text{body}}(_0x,t)_0^t J. \tag{3}$$

Eulerian (outside observer $_t x$):

$$\rho({}_{t}\boldsymbol{x},t)\boldsymbol{a}({}_{t}\boldsymbol{x},t) = \vec{\nabla}\cdot\boldsymbol{\sigma}({}_{t}\boldsymbol{x},t) + \boldsymbol{f}^{\mathsf{body}}({}_{t}\boldsymbol{x},t) \tag{4}$$

Solving this equation will tell us how the velocity fields $\mathbf{v}(_t\mathbf{x}), \mathbf{v}(_0\mathbf{x})$ change on the whole domain due to acceleration \mathbf{a} . This is important to advect particles accounting for all forces. [Jia+16][Abe12]

Discretization of Space and Time

Space Discretization is done in a Galerkin/FEM fashion with grid based interpolants w_i . Here dyadic products of cubic b-splines suffice. w_i should satisfy at least [Gao+17]:

- Partition of unity: $\sum_{i} w(\mathbf{x} \mathbf{x}_{i}^{n}) = 1$
- ▶ Identity relation: $\sum_{i} x_{i} w(x x_{i}^{n}) = x (x = x_{p})$
- Non-negativity: $w \ge 0$.
- Limited support.
- $ightharpoonup C^1$ -continuity.

Shortening
$$w_{ip}^n = w(\mathbf{x}_p^n - \mathbf{x}_i^n)$$
.

Transfer quantities from particles to grid. Numerical integration where the particles function as quadrature points [SKB08]:

$$m_i = \int_{\Omega} \rho(\mathbf{x}) w_i(\mathbf{x}) d\Omega \approx \sum_{p} \rho_p w_{ip} V_p \approx \sum_{p} m_p w_{ip}$$
 $A_i = \int_{\Omega} A(\mathbf{x}) w_i(\mathbf{x}) d\Omega \approx \sum_{p} A_p w_{ip} V_p.$

APIC-transfers add a local velocity field C_p around \mathbf{v}_p :

$$(m\mathbf{v})_i = \sum_p w_{ip} m_p \left(\mathbf{v}_p + \mathbf{C}_p(\mathbf{x}_i - \mathbf{x}_p)\right)$$

P2G-transfer \sum_{p}

The MPM can be described in the weak formulation (FEM: virtual quantities). This allows us to 'shift' the derivative:

$$ightharpoonup A_p = \sum_i A_i w_{ip}$$

Time discretization with implicit midpoint scheme:

$$v_i^{n+1} - v_i^n = \frac{\Delta t}{m_i^n} f_i^{n+\frac{1}{2}} = \frac{\Delta t}{m_i^n} f\left(t^n + \frac{\Delta t}{2}, \frac{1}{2}y^n + \frac{1}{2}y^{n+1}\right)$$

- ▶ implicit requires linear system solve ⇒ more stable, larger time steps
- ▶ midpoint as it conserves angular momentum

Layout of the data: SoA vs. AoS

Nvidia Nsight[NVI] now offers metrics to identify bottlenecks:

Metric	Description	
VRAM SOL%	memory througput w.r.t. to hardware limit	
SM SOL%	instruction throughput	
L2 SOL%	L2-cache throughput	
Tex SOL%	L1-cache throughput	
SM Issue Util.%	amount of cycles an instr. was issued	

A simple map(y=length(x)) shader on 1024×1024 Elements SoA vs. AoS differences:

Layout	$\Delta t_c(\mu s)$	Speedup	VRAM	SM	L2	SM Issue Util.
AoS(1 instr.)	243	-	77.7%	7.3%	30.3%	6.8%
SoA(1 instr.)	120	2.26x	75.4%	14.3%	29.4%	14.0%
AoS(2 instr.)	275	-	61.3%	41.8%	53.8%	48.9%
SoA(2 instr.)	240	1.16x	75.4%	29.4%	20.0%	62.3%

 \Rightarrow SoA increases coalescing for non-random access.

Parallel Reduction & Scan

Assuming an associative binary_op(x,y):= $x \circ y$, a neutral element e of the binary_op, and an array of values $[a_0, a_1, ..., a_n]$.

▶ Parallel reduction computes the value:

$$r = a_0 \circ a_1 \circ \dots \circ a_n. \tag{5}$$

(Exclusive) scan computes the array:

$$[e, a_0, (a_0 \circ a_1), (a_0 \circ a_1 \circ a_2), \dots, (a_0 \circ a_1 \circ a_2 \circ \dots \circ a_{n-1})].$$
 (6)

Here, only shared memory approaches without (NVIDIA exclusive) warp shuffle operations.

Shared Memory Bank Conflicts:

Interleaved addressing causes bank conflicts (Short Scoreboard activity) \Rightarrow padding needed.

Method	Δt_c	Speedup	VRAM	SM	Sel. Warp-Stall Reas.
Interl. no padd.	305	-	23.0%	60.9%	S. Scoreb.(17.2%)
Sequential	141	2.16x	49.8%	37.1%	S. Scoreb.(2.0%)

Table: Parallel reduction on 1024×1024 vectors with y=length(x) as input.

More elements than thread group size require pyramid schemes.

Sequential work: multiple elements per thread.

- Memory latency hiding (Long Scoreboard up)
- ► Higher reduction factor each dispatch ⇒ Less global memory indirections
- Unrolling loops can help but adds register pressure.

Method	Δt_c	Speedup	VRAM	SM	Sel. Warp-Stall Reas.
Sequential	141	2.16x	49.8%	37.1%	S. Scoreb.(2.0%)
Seq. (2x)	100	3.05x	69.5%	26.2%	L. Scoreb.(80.1%)
Seq. (128x)	98	3.1x	72.9%	16.9%	L. Scoreb.(84.4%)
Seq. (256x)	101	3.0x	66.4%	14.6%	L. Scoreb.(76.9%)

Table: Parallel reduction on 1024×1024 vectors with y=length(x) as input. Methods have 504, 8, 4 thread groups, respectively. A GTX970 has 13 SMs.

Scan is similar but cannot profit as much from sequential work having to keep multiple elements in register memory.

Binning & Counting Sort: Where Are You?

Grid node does not know its neighboring particles \Rightarrow Binning.

Binning combines nicely with **Counting Sort:**

- 1. Binning: Per node counting.
- 2. **Scan**: Computes new memory offset for particles.
- Reordering: Give back indexing list or do deep copy.

Sorting can dramatically increase workload performance of subsequent steps for neighboring queries:

- 1. Deep sorted accesses are now **coalesced**.
- 2. **Data reuse** due to L2-Cache and/or shared memory.

Double buffer particles to use last sorted state as input for new sorting to profit from item 1 and 2!

Ordering	$\Delta t_c(\mu s)$	Speedup	VRAM	SM	L2	L2-Hit
Random	1,516	-	25.0%	3.4%	9.1%	10.8%
Deep sorted	218	6.95x	75.3%	24.4%	35.0%	37.8%

Table: Order dependency of binning of 1024 \times 1024 randomly positioned particles in a 128 \times 128 \times 128 grid.

The MPM Specific Transfers

All MPM operations belong to one of those parallelization schemes:

- ▶ 1 thread : 1 particle: $\Box_p = \Box_p \circ \Box_p \circ ... \circ \Box_p$.
- ▶ 1 thread : 1 node: $\square_i = \square_i \circ \square_i \circ ... \circ \square_i$.
- ▶ G2P-transfer: $\Box_p = \sum_i \Box_i \circ \Box_{ip}$.
- ▶ P2G-transfer: $\Box_i = \sum_p \Box_p \circ \Box_{ip}$.

MPM-Transfers are executed **multiple times per physical frame** with varying numbers of variables and mathematical operations.

 \Rightarrow Preprocessing steps only need to be done **once per physical frame**. Sorting already introduced as one of these.

Pull-Operations read!

Similar to filter or stencil operations on the GPU:

- ▶ 1 node : 1 thread, split grid into blocks corr. to thread groups.
- ▶ Interpolation function however dependent on particle position.
- Needs to be rerun for every particle in the cell.

Typical setup of transfers:

- 1. Initialize shared memory (pull: with nodes from global memory).
- 2. Perform transfers.
- 3. Write back to global memory (push: global atomics since writes on halo).

⇒ Race conditions.

Typically simulation domain(grid) much bigger than simulation model. Filtering inactive blocks as a preprocess improves performance.

- Block is active if any cell counter is active.
- Cell counter is active if it has at least one particle.

- ▶ Block and halo are always target of shared memory operations ⇒ P2G-pull low occupancy.
- ▶ **Batching** multiple particles can increase performance due to hiding synchronization, unroll!
- Transfers respect shared memory bank conflicts fully.
- ► Warp divergence for varying cell counts.

Method	$\Delta t_c(\mu s)$	Speedup	VRAM	L2	SM
global	44,442	-	4.6 %	34.4%	7.7%
global sorted	20,484	2.21x	7.0 %	44.0%	16.1%
P2G-sync	2,595	17.47x	5.9%	7.6%	67.0%

P2G-transfers of one uniformly million particles with 4 particles per cell with random velocities between $v_x, v_y, v_z \in [-1.0; 1.0]$ in a $128 \times 128 \times 128$ grid. Block size is (8,4,4).

A comparison to [Gao+18]

Simultaneously being worked on. Largely same decision making:

	Me	[Gao+18]
Sort	Count/Histogram	Count/Histogram
	for each var.	sel. variables
Filtering domain	Filter-op.	Sparse Grid structure
Transfers	Shared mem. only	Warp-shuffle op.

Warp shuffle allows for fast parallel segmented reduction of cells of varying counts.

⇒ Solves warp divergence and shared memory issues mostly, thread groups now correspond to particles. Faster for varying counts but **NVIDIA** only.

Thank you for your attention!

- ▶ Bachelor thesis: https://github.com/MeyerFabian/snow
- Master thesis: https://github.com/MeyerFabian/msc
- ▶ **Presentation**: https://github.com/MeyerFabian/msc/pres
- ► Code (right now): https://github.com/mpm-msc/snow

Questions?

Rohan Abeyaratne. Volume II of Lecture Notes on, The Mechanics of Elastic Solids: Continuum Mechanics.

http:

//web.mit.edu/abeyaratne/Volumes/RCA_Vol_II.pdf. [Online; accessed 08-November-2018]. MIT Department of Mechanical Engineering, 2012.

Klaus-Jürgen Bathe. *Finite element procedures*. Klaus-Jürgen Bathe, 2006.

Martha W Evans, Francis H Harlow, and Eleazer Bromberg. *The particle-in-cell method for hydrodynamic calculations*. Tech. rep. LOS ALAMOS NATIONAL LAB NM, 1957.

Ming Gao et al. "An adaptive generalized interpolation material point method for simulating elastoplastic

materials". In: ACM Transactions on Graphics (TOG) 36.6 (2017), p. 223.

Ming Gao et al. "GPU Optimization of Material Point Methods". In: *ACM Trans. Graph.* 37.6 (2018), 254:1–254:12. ISSN: 0730-0301.

Johan Gaume et al. "Unified modeling of the release and flow of snow avalanches using the Material Point Method". In: Aug. 2018.

Chenfanfu Jiang et al. "The material point method for simulating continuum materials". In: ACM SIGGRAPH 2016 Courses. ACM. 2016, p. 24.

Fabian Meyer. "Simulation von Schnee". Bachelor's Thesis. Universität Koblenz-Landau, Institut für Computervisualistik, 2015.

NVIDIA Corporation. NVIDIA Nsight.

https://docs.nvidia.com/nsight-visual-studio-edition/Content/Performance_Markers_OGL.htm. [Online; accessed 5-December-2018].

Michael Steffen, Robert M Kirby, and Martin Berzins. "Analysis and reduction of quadrature errors in the material point method (MPM)". In: *International journal for numerical methods in engineering* 76.6 (2008), pp. 922–948.

Alexey Stomakhin et al. "A material point method for snow simulation". In: *ACM Transactions on Graphics* (*TOG*) 32.4 (2013), p. 102.

Deborah Sulsky, Shi-Jian Zhou, and Howard L Schreyer. "Application of a particle-in-cell

Motivation on a GPU MPM Approach
A Gentle Introduction to the MPM
A MPM Guide on GPGPU Pitfalls and Optimizations
Delving Deeper: Further Opportunities
References

method to solid mechanics". In: *Computer physics communications* 87.1-2 (1995), pp. 236–252.

The Pretty Strong but Mathematically Weak Formulation

Weak Formulation (or Principle of Virtual Work):

Dot product equations with arbitrarily 'test functions' \boldsymbol{q} and apply divergence theorem:

$$\int_{\Omega^0} {}_0 \boldsymbol{q} \cdot \left[({}_0 \rho_0) ({}_0 \boldsymbol{a}) - {}_0 \boldsymbol{f}^{\text{body}} {}_0^t \boldsymbol{J} \right] d_0 \boldsymbol{x} =$$

$$\int_{\partial \Omega^{t^n}} {}_t \boldsymbol{q} \cdot \boldsymbol{\sigma} d_t \boldsymbol{A} - \int_{\Omega^{t^n}} \nabla_t \boldsymbol{q} : \boldsymbol{\sigma} d_t \boldsymbol{x}. \tag{7}$$

A strong solution is also a solution to the weak formulation. Leave out body forces(like gravity) and boundary condition (e.g. collisions) for now:

$$\int_{\Omega^0} {}_0 \boldsymbol{q} \cdot ({}_0 \rho_0)({}_0 \boldsymbol{a}) d_0 \boldsymbol{x} = \int_{\Omega^{t^n}} \nabla_t \boldsymbol{q} : \boldsymbol{\sigma} d_t \boldsymbol{x}. \tag{8}$$

Weak Derivative:

$$y = |t|$$
 has weak derivative:

$$v = \begin{cases} -1, & \text{if } t < 0 \\ c, & \text{if } t = 0 \\ 1, & \text{if } t > 0 \end{cases}$$

Heaviside step function has no weak derivate:

$$s = \begin{cases} 0, & \text{if } t < 0 \\ 1, & \text{if } t \ge 0 \end{cases}$$

Allows for point loads, material discontinuities and more. [Bat06]

Space Discretization is done in a Galerkin/FEM fashion with grid based interpolants w_i with limited support. Here dyadic products

$$w_i(\mathbf{x}) = w(\mathbf{x} - \mathbf{x}_i) = w(\frac{1}{h}(x - x_i))w(\frac{1}{h}(y - y_i)w(\frac{1}{h}(z - z_i))$$
(9)

of cubic b-splines suffice:

$$w(x) = \begin{cases} \frac{1}{2}|x|^3 - |x|^2 + \frac{2}{3} & 0 \le |x| < 1\\ \frac{1}{6}(2 - |x|)^3 & 1 \le |x| < 2\\ 0 & 2 \le |x| \end{cases}$$
 (10)

