실험계획법 실습 - 11주차

Chapter4 Experiments with Blocking Factors

```
□proc anova data=/* dataset */;
class treat/* 효과 */ block /* 블록 */;
model y=treat block;
means treat/tukey; /* tukey 사후검정 */
run;
```



```
□proc anova data=pg145;
class PSI block;
model y=PSI block;
means PSI/Isd cldiff clm;
/* Isd 사후 검정 cldiff 차이값 비교 clm 신뢰구간 */
run;
```

- 랜덤화 블록 설계를 해야 하는 이유?
 - 예를 들어, 4개의 다른 타이어 브랜드(A,B,C,D)의 마모도를 연구하는 실험을 고려한다. 30,000km 달린 후에 브랜드에 따라 마모도에 차이가 있는 가를 알아보고자 한다. 브랜드당 4개의 타이어(총 16개)를 준비하고 4대의 차를 준비 하였다.
 - 차: 1, 2, 3, 4
 - 타이어: A(4개), B(4개), C(4개), D(4개)

● 기획

	자동차											
	1	2	3	4								
브												
브 랜 드												
트												

- 자신이 생각하는 대로 구성하기
- 빈칸에 총 16개 타이어 작성(A 4개, B 4개, C 4개, D 4개)

● 기획(1)

	자동차											
	1	2	3	4								
브	А	В	С	D								
브 랜 드	А	В	С	D								
트	Α	В	С	D								
	А	В	С	D								

- 문제점?

브랜드 효과를 자세히 알 수 가 없음(차의 효과가 있기에)

● 기획(2)

	자동차											
	1	2	3	4								
브	С	Α	D	А								
랜	А	А	С	D								
트	D	В	В	В								
	D	С	В	С								

- 문제점?

예를 들어 A의 경우 자동차 3에 사용 되지 않았다. 이는 브랜드 A 내의 변동은 차 1, 2, 4 간의 변동을 반영할 수 있다. 그러므로 실험오차에는 랜덤오차 뿐만 아니라 차의 변동도 포함할 수 있다.

● 기획(3)

	자동차											
	1	2	3	4								
브	В	D	Α	C								
랜 드	С	С	В	D								
트	Α	В	D	В								
	D	А	С	А								

- 동일한 환경에서 실험할 수 있게 됨!!

● 기획(2): Data

	자동차											
	1	2	3	4								
브	C(12)	A(14)	D(10)	A(13)								
랜	A(17)	A(13)	C(11)	D(9)								
트	D(13)	B(14)	B(14)	B(8)								
	D(11)	C(12)	B(13)	C(9)								

- 위 Data에 따른 모형을 적고,

브랜드에 따라서 마모도가 차이가 있는 지 분석해보세요.

● 기획(3): Data

	자동차											
	1	2	3	4								
브	B(14)	D(11)	A(13)	C(9)								
랜	C(12)	C(12)	B(13)	D(9)								
트	A(17)	B(14)	D(11)	B(8)								
	D(13)	A(14)	C(10)	A(13)								

⁻ 위 Data에 따른 모형에 대해서 생각해보세요

- 기획(3): 랜덤화완비블록설계(randomized complete block desing, RCBD)
 - 모형: $y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}, \varepsilon_{ij} \sim NID(o, \sigma^2)$
 - $-\tau_i$: 처리 i에 대한 효과.(i = 1, 2, 3, 4)
 - $-\beta_i$: 블록 j에 대한 효과.(j = 1, 2, 3, 4)
 - $-\sum_{i=1}^{4} \tau_i = 0 \& \sum_{j=1}^{4} \beta_j.$

여기서는 차(블록)에 기인한 변동이 분리하여, 블록효과에 대한 검정이 가능하지만, 주 목적은 브랜드 차이의 검정에 있다.

따라서 가설의 경우는 H_0 : $\tau_1 = \tau_2 = \tau_3 = \tau_4 = 0$ vs H_1 : $not H_0$

책 P144~P150

■ TABLE 4.3 Randomized Complete Block Design for the Vascular Graft Experiment

	_						
Extrusion Pressure (PSI)	1	1 2 3 4 5 6					
8500	90.3	89.2	98.2	93.9	87.4	97.9	556.9
8700	92.5	89.5	90.6	94.7	87.0	95.8	550.1
8900	85.5	90.8	89.6	86.2	88.0	93.4	533.5
9100	82.5	89.5	85.6	87.4	78.9	90.7	514.6
Block Totals	350.8	359.0	364.0	362.2	341.3	377.8	$y_{} = 2155.1$

책 P144~P150

	Yield Selected Facto Variance Table		of Squares	s]				Block	nalysis of '	Yield By Pressure	e			
-	Sum of		Mean	F				Batch						
Source	Squares			/alue	Prob > F									
Block Model	192 . 25 178 . 17	5	38.45	0.11	0.0010			Oneway A	nova					
A	178.17	3 3	59.39 59.39		0 . 0019 0.0019			Summary	of Fit					
Residual	109.89	15	7.33	0.11	0.0010									
Cor Total	480.31	23						Rsquare		0.77	1218			
Std. Dev.	2.71				0.6185			Adj Rsquar	re	0.64	9201			
Mean	89.80 3.01		Adj R-Sq		0.5422				Square Err		6612			
C.V. PRESS	281,31		Pred R-Squ Adeq Pred		0.0234 9.759									
	Means (Adjuste	d. If Necess		3131311	51,55			Mean of Re			9583			
n cutinent i	Estimated	u, ii 1100000		dard				Observatio	ns (or Sum	Wgts)	24			
	Mean			Error										
1-8500	92_82			1.10				Analysis o	f Variance					
2-8700 3-8900	91 . 68 88 . 92			1.10 1.10				Source	DF	Sum of Squares	Mean S	duare	F Ratio	Prob > F
4-9100	85,77			1,10								•		
	Mean		Stan	dard	t for H₀			Pressure	3	178.17125	55	9.3904	8.1071	0.0019
Treatment	Difference	DF			Coeff=0	Prob >	t	Batch	5	192.25208	38	3.4504	5.2487	0.0055
1. vs.2	1.13	1			0.73	0.4795		Error	15	109.88625	7	7.3257		
1 vs.3 1 vs.4	3.90 7.05	1			2 . 50 4 . 51	0.0247					,	.0207		
2 vs.3	2.77	1			1.77	0.0970		C.Total	23	480.30958				
2 vs.4	5.92	1			3.79	0.0018		Maana far	On A	nava				
3 vs.4	3_15	1		1.56	2_02	0.0621			Oneway A					
Diagnostic	s Case Statistic	s						Level	Number	Mean	Std. Error	Low	er 95%	Upper 95%
	∖ctual Predicte Value Valu		Leverage	Student Residual		Outlier t	Run Order	8500	6	92.8167	1.1050		90.461	95.172
1	90.30 90.7	2 -0,42	0,375	-0.197	0.003	-0.190	1	8700	6	91.6833	1.1050		89.328	94.039
2	89.20 92.7 98.20 94.0		0.375 0.375	-1.669 1.953	0.186 0.254	-1.787 2.185	6 9	8900		88.9167	1 1000		00 504	01.070
4	93,90 93,5		0.375	0,154	0,002	0,149	13	8900	6	88.9167	1.1050		86.561	91.272
5	87,40 88,3		0.375	-0.442	0.013	-0.430	19	9100	6	85.7667	1.1050		83.411	88.122
6 7	97.90 97.4 92.50 89.5		0.375 0.375	0.201 1.361	0.003 0.124	0.194 1.405	23 4							
8	89.50 91.6		0.375	-0.999	0.067	-0.999	5	Std. Error u	ises a poole	ed estimate of erro	or variance			
9 10	90.60 92.8 94.70 92.4		0.375 0.375	-1.069 1.057	0.076 0.075	-1.075 1,062	10 16							
11	87.00 87.2	1 -0,21	0,375	-0.099	0.001	-0.096	20	Block Mea	ins					
12 13	95.80 96.3 85.50 86.8		0.375 0.375	-0.251 -0.617	0.004	-0.243 -0.604	21 3	Batch	Mea	n Numb	per			
14	90.80 88.8		0.375	0.902	0.025	0.896	8		07.700	^	4			
15	89.60 90.1		0.375	-0.243	0.004	-0.236	12	1	87.700	U	4			
16 17	86.20 89.6 88.00 84.4			-1.622 1.661	0.175 0.184	-1.726 1.776	15 17	2	89.750	0	4			
18	93.40 93.5	7 -0.17	0.375	-0.080	0.000	-0.077	22	3	91,000	0	4			
19 20	82.50 83.6 89.50 85.7		0.375 0.375	-0.547 1.766	0.020 0.208	-0.534 1.917	2							
21	85,60 86,9	7 -1.37	0.375	-0.641	0.208	-0,628	11	4	90.550	0	4			
22 23	87.40 86.5 78.90 81.3		0.375 0.375	0.411 -1.120	0.011 0.084	0.399 -1.130	14 18	5	85.325	0	4			
24	90.70 90.4		0.375	0.130	0.001	0.126	24	6	94.450	0	4			