Práctica 2: Lógica digital - Combinatorios

Gabriel Budiño

Organización del computador I DC - UBA

1er. cuatrimestre 2018

Repaso

- Operadores lógicos:
 - ► NOT, OR, AND, XOR, NOR, NAND
 - Son descriptos por su tabla de verdad
- Expresiones booleanas:
 - ▶ Combinación de operadores lógicos y variables booleanas. Por ejemplo, $F(X, Y, Z) = X + Y \cdot Z$
 - Una tabla de verdad describe todas las combinaciones de valores de verdad para una función lógica determinada.
 - Dos expresiones son iguales sii tienen la misma tabla de verdad.

Compuertas AND y OR

Α	A B AND	
0	0 0	
0	1	0
1	0	0
1	1	1

OR(A + B)

Α	В	OR
0	0	0
0	1	1
1	0	1
1	1	1

Compuertas NOT y XOR

Α	NOT
0	1
1	0

XOR (A \oplus B)

Α	В	XOR	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Compuertas NAND y NOR

Α	В	NAND
0	0 0 1	
0	1	1
1	0	1
1	1	0

NOR $(A \downarrow B)$

Α	В	NOR
0	0	1
0	1	0
1	0	0
1	1	0

Propiedades

Propiedades para las operaciones (\cdot) y (+)

Identidad	$1 \cdot A = A$	0 + A = A
Nulo	$0 \cdot A = 0$	1 + A = 1
Idempotencia	$A \cdot A = A$	A + A = A
Inverso	$A \cdot \overline{A} = 0$	$A + \overline{A} = 1$
Conmutatividad	$A\cdotB=B\cdotA$	A + B = B + A
Asociatividad	$(A \cdot B) \cdot C = A \cdot (B \cdot C)$	(A + B) + C = A + (B + C)
Distributividad	$A + B \cdot C = (A + B) \cdot (A + C)$	$A \cdot (B + C) = A \cdot B + A \cdot C$
Absorción	$A \cdot (A + B) = A$	$A + A \cdot B = A$
De Morgan	$\overline{A \cdot B} = \overline{A} + \overline{B}$	$\overline{A+B} = \overline{A} \cdot \overline{B}$

▶ Demostrar que las siguientes funciones booleanas son equivalentes:

Demostrar que las siguientes funciones booleanas son equivalentes:

$$\sum_{X \in \overline{X}} \frac{X + \overline{Y}}{\overline{X} \cdot Y} \cdot Z + X \cdot \overline{Z} + \overline{Y + Z}$$

Solución:

Formas canónicas de expresiones booleanas

Suma de productos:

Α	В	F(A, B)
0	0	1
0	1	0
1	0	1
1	1	0

$$F(A,B) = (\overline{A} \cdot \overline{B}) + (A \cdot \overline{B})$$

Producto de sumas:

Α	В	F(A, B)
0	0	1
0	1	0
1	0	1
1	1	0

$$F(A,B) = (A + \overline{B}) \cdot (\overline{A} + \overline{B})$$

- Dada la siguiente tabla de verdad:
 - 1. Escribir la función booleana que representa
 - Implementar la función usando a lo sumo, una compuerta binaria AND, una compuerta binaria OR y una compuerta NOT

Α	В	С	F(A, B, C)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Solución ejercicio 2

Como suma de productos:

$$(\overline{A} \cdot \overline{B} \cdot C) + (\overline{A} \cdot B \cdot C) + (A \cdot B \cdot C)$$

► Más compacto:

Implementación:

Ejercicio 3 - Shift

- ▶ Armar un circuito de 3 bits. Este deberá mover a izquierda o derecha los bits de entrada de acuerdo al valor de una de ellas que actúa como control. Es decir, un Shift Izq-Der de k bits es un circuito de k+1 entradas (c, e_{k-1}, ..., e₀) y k salidas (s_{k-1}, ..., s₀) que funciona del siguiente modo:
 - Si c = 1, $s_i = e_{i-1}$ para todo 0 < i < k y $s_0 = 0$
 - ▶ Si c = 0, $s_i = e_{i+1}$ para todo $0 \le i < k-1$ y $s_{k-1} = 0$

Ejercicio 3 - Shift

Armar un circuito de 3 bits. Este deberá mover a izquierda o derecha los bits de entrada de acuerdo al valor de una de ellas que actúa como control. Es decir, un Shift Izq-Der de k bits es un circuito de k+1 entradas (c, e_{k-1}, ..., e₀) y k salidas (s_{k-1}, ..., s₀) que funciona del siguiente modo:

• Si c = 1,
$$s_i = e_{i-1}$$
 para todo $0 < i < k$ y $s_0 = 0$

▶ Si c = 0,
$$s_i = e_{i+1}$$
 para todo $0 \le i < k-1$ y $s_{k-1} = 0$

Solución corta:

- ▶ Observar que cada *s_i* toma dos posibles valores, y cuál de ellos toma depende del valor de *c*.
- Así, llegar a las siguientes expresiones:
 - $ightharpoonup s_0 = c \cdot 0 + \overline{c} \cdot e_1$
 - $ightharpoonup s_1 = c \cdot e_0 + \overline{c} \cdot e_2$
 - $ightharpoonup s_2 = c \cdot e_1 + \overline{c} \cdot 0$

Ejercicio 3 - Solución larga

С	e_2	e_1	e_0	<i>s</i> ₂	s_1	<i>s</i> ₀
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	0	1	0
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	0	1	1
1	0	0	0	0	0	0
1	0	0	1	0	1	0
1	0	1	0	1	0	0
1	0	1	1	1	1	0
1	1	0	0	0	0	0
1	1	0	1	0	1	0
1	1	1	0	1	0	0
1	1	1	1	1	1	0

Ejercicio 3 - Solución larga

$$\begin{array}{lll} s_{0} &=& \overline{c}.\overline{e_{2}}.e_{1}.\overline{e_{0}} + \overline{c}.\overline{e_{2}}.e_{1}.e_{0} + \overline{c}.e_{2}.e_{1}.\overline{e_{0}} + \overline{c}.e_{2}.e_{1}.e_{0} \\ s_{0} &=& \overline{c}.\left(\overline{e_{2}}.e_{1}.\overline{e_{0}} + \overline{e_{2}}.e_{1}.e_{0} + e_{2}.e_{1}.\overline{e_{0}} + e_{2}.e_{1}.e_{0}\right) \\ s_{0} &=& \overline{c}.\left(e_{1}.\left(\overline{e_{2}}.\overline{e_{0}} + \overline{e_{2}}.e_{0} + e_{2}.\overline{e_{0}} + e_{2}.e_{0}\right)\right) \\ s_{0} &=& \overline{c}.\left(e_{1}.\left(\overline{e_{2}}.\left(\overline{e_{0}} + e_{0}\right) + e_{2}.\left(\overline{e_{0}} + e_{0}\right)\right)\right) \\ s_{0} &=& \overline{c}.\left(e_{1}.\left(\overline{e_{2}}. + e_{2}\right)\right) \\ s_{0} &=& \overline{c}.e_{1} \\ \\ s_{2} &=& \overline{c}.\overline{e_{2}}.e_{1}.\overline{e_{0}} + \overline{c}.\overline{e_{2}}.e_{1}.e_{0} + \overline{c}.e_{2}.e_{1}.\overline{e_{0}} + \overline{c}.e_{2}.e_{1}.e_{0} \\ s_{2} &=& \overline{c}.\left(\overline{e_{2}}.e_{1}.\overline{e_{0}} + \overline{e_{2}}.e_{1}.e_{0} + e_{2}.e_{1}.\overline{e_{0}} + e_{2}.e_{1}.e_{0}\right) \\ s_{2} &=& \overline{c}.\left(e_{1}.\left(\overline{e_{2}}.\overline{e_{0}} + \overline{e_{2}}.e_{0} + e_{2}.\overline{e_{0}} + e_{2}.e_{0}\right)\right) \\ s_{2} &=& \overline{c}.\left(e_{1}.\left(\overline{e_{2}}.\left(\overline{e_{0}} + e_{0}\right) + e_{2}.\left(\overline{e_{0}} + e_{0}\right)\right)\right) \\ s_{2} &=& \overline{c}.\left(e_{1}.\left(\overline{e_{2}}.\left(\overline{e_{0}} + e_{0}\right) + e_{2}.\left(\overline{e_{0}} + e_{0}\right)\right)\right) \\ s_{2} &=& \overline{c}.\left(e_{1}.\left(\overline{e_{2}}.+e_{2}\right)\right) \\ s_{2} &=& \overline{c}.\left(e_{1}.\left(\overline{e_{2}}.+e_{2}\right)\right) \\ s_{2} &=& \overline{c}.e_{1} \\ \end{array}$$

Ejercicio 3 - Solución larga

$$\begin{split} s_1 &= & \overline{c}.e_2.\overline{e_1}.\overline{e_0} + \overline{c}.e_2.\overline{e_1}.e_0 + \overline{c}.e_2.e_1.\overline{e_0} + \overline{c}.e_2.e_1.e_0 + \\ & c.\overline{e_2}.\overline{e_1}.e_0 + c.\overline{e_2}.e_1.e_0 + c.e_2.\overline{e_1}.e_0 + c.e_2.e_1.e_0 \end{split}$$

$$s_1 &= & \overline{c}.(e_2.\overline{e_1}.\overline{e_0} + e_2.\overline{e_1}.e_0 + e_2.e_1.\overline{e_0} + e_2.e_1.e_0) + \\ & c.(\overline{e_2}.\overline{e_1}.e_0 + \overline{e_2}.e_1.e_0 + e_2.\overline{e_1}.e_0 + e_2.e_1.e_0) + \\ s_1 &= & \overline{c}.(e_2.(\overline{e_1}.\overline{e_0} + \overline{e_1}.e_0 + e_1.\overline{e_0} + e_1.e_0)) + \\ & c.(e_0.(\overline{e_2}.\overline{e_1} + \overline{e_2}.e_1 + e_2.\overline{e_1} + e_2.e_1)) \end{split}$$

$$s_1 &= & \overline{c}.(e_2.(\overline{e_1}.(\overline{e_0} + e_0) + e_1.(\overline{e_0} + e_0))) + \\ & c.(e_0.(\overline{e_2}.(\overline{e_1} + e_1) + e_2.(\overline{e_1} + e_1))) \end{split}$$

$$s_1 &= & \overline{c}.(e_2.(\overline{e_1} + e_1)) + c.(e_0.(\overline{e_2} + e_2))$$

$$s_1 &= & \overline{c}.(e_2.(\overline{e_1} + e_1)) + c.(e_0.(\overline{e_2} + e_2))$$

$$s_1 &= & \overline{c}.(e_2.(\overline{e_1} + e_1)) + c.(e_0.(\overline{e_2} + e_2))$$

Ejercicio 3 - Implementación

Armar un sumador de 1 bit. Debe tener dos entradas de un bit y dos salidas, una para el resultado y otra para indicar si hubo o no acarreo.

Armar un sumador de 1 bit. Debe tener dos entradas de un bit y dos salidas, una para el resultado y otra para indicar si hubo o no acarreo.

Solución corta:

Armar la tabla de verdad y observar que se compone de dos tablas conocidas: XOR y AND.

Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Ejercicio 4 - Solución por suma de productos

Α	В	Sum	Carry	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

$$Sum = \overline{A} \cdot B + A \cdot \overline{B}$$

$$Carry = A \cdot B$$

Ejercicio 4 - Segunda parte

- Se tiene un sumador simple de 1 bit cuyas entradas A y B valen 0 y 1 respectivamente. En el tiempo cero, ambas pasan a valer 0; a los 20ns ambas pasan a valer 1; 20ns más tarde vuelven a valer 0 y así sucesivamente.
- ► Sabiendo que las compuertas AND y XOR tienen un retardo de 15ns, realizar el diagrama de tiempos del circuito.

Ejercicio 4 - Segunda parte

- ▶ Se tiene un **sumador simple de 1 bit** cuyas entradas A y B valen 0 y 1 respectivamente. En el tiempo cero, ambas pasan a valer 0; a los 20ns ambas pasan a valer 1; 20ns más tarde vuelven a valer 0 y así sucesivamente.
- ► Sabiendo que las compuertas AND y XOR tienen un retardo de 15ns, realizar el diagrama de tiempos del circuito.

Solución:

▶ Usando dos sumadores simples y una compuerta a elección, armar un sumador completo. Tiene dos entradas de 1 bit y una tercera intepretada como C_{In}, tiene como salida C_{Out} y Sum.

Usando dos sumadores simples y una compuerta a elección, armar un sumador completo. Tiene dos entradas de 1 bit y una tercera intepretada como C_{In}, tiene como salida C_{Out} y Sum.

Solución:

Cin	Α	В	Sum	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Ejercicio 5 - Solución

$$\begin{array}{lll} \operatorname{Sum} &=& \overline{C_{in}}.\overline{A}.B + \overline{C_{in}}.A.\overline{B} + C_{in}.\overline{A}.\overline{B} + C_{in}.A.B \\ \operatorname{Sum} &=& \overline{C_{in}}.(\overline{A}.B + A.\overline{B}) + C_{in}.(\overline{A}.\overline{B} + A.B) \\ \operatorname{Sum} &=& \overline{C_{in}}.(A \oplus B) + C_{in}.(\overline{A} \oplus \overline{B}) \\ \operatorname{Sum} &=& C_{in} \oplus (A \oplus B) \\ \\ \operatorname{Sum} &=& Sum(C_{in} + Sum(A + B)) \\ \\ C_{out} &=& \overline{C_{in}}.A.B + C_{in}.\overline{A}.B + C_{in}.A.\overline{B} + C_{in}.A.B \\ C_{out} &=& \overline{C_{in}}.A.B + C_{in}.(\overline{A}.B + A.\overline{B} + A.B) \\ C_{out} &=& \overline{C_{in}}.A.B + C_{in}.(A \oplus B + A.B) \\ C_{out} &=& \overline{C_{in}}.A.B + C_{in}.(A \oplus B) + C_{in}.A.B \\ C_{out} &=& A.B + C_{in}.(A \oplus B) \\ \end{array}$$

Ejercicio 5 - Implementación

¿Qué sigue?

La práctica:

- Con lo visto pueden realizar la primera parte de la Práctica 2.
- Pueden probar sus circuitos en Logisim.
 - sudo apt install logisim
 - O lo bajan desde http://www.cburch.com/logisim/

► Taller:

- ▶ El martes siguiente tenemos el primer taller de la materia.
- Será sobre lo visto hasta hoy inclusive.
- Vamos a usar Logisim.