

3)
$$f(x_{1}, y) = \frac{1}{\sin(\pi(x+2))}$$

D 1 $hbdina$ $u\xi \bar{s} ky 1$
 $\sin(\pi(x+3)) \neq 0$
 $\pi(x+3) \neq k\pi$
 $x \neq x \neq k \in \mathbb{Z}$

D= $\{(x_{1}, x_{2}) \in \mathbb{R}^{2}, x \neq y \neq k, k \in \mathbb{Z}\}$
 $hbdin = \frac{1}{\sin(\pi(x+3))} = \frac{1}{2} = \sin(\pi(x+3)) = \frac{1}{2}$
 $\sin(\pi(x+3)) = \frac{1}{2} = \sin(\pi(x+3)) = \frac{1}{2} = 2 = 1$
 $\lim_{x \to \infty} \frac{1}{x} = \lim_{x \to \infty} \frac{1}{x} = 2 = 1$
 $\lim_{x \to \infty} \frac{1}{x} = \lim_{x \to \infty} \frac{1}{x} = 2 = 1$
 $\lim_{x \to \infty} \frac{1}{x} = \lim_{x \to \infty} \frac{1}{x} = 2 = 1$
 $\lim_{x \to \infty} \frac{1}{x} =$

