

Pontificia Universidad Javeriana de Cali

Ingeniería de sistemas y computación

Diferenciación e Integración

Laboratorio 4 Computación Cientifica

Autora: Ana María García

Mayo 13 del 2020

1 Introducción

En el presente laboratorio se pondrán en práctica los conceptos vistos en clase correspondientes a la diferenciación e integración de funciones utilizando diferentes métodos profundizados más adelante.

De igual forma, se adjuntarán los resultados obtenidos de la implementación y ejecución de los métodos con dos funciones de ejemplo tanto para diferenciación como para integración.

2 Diferenciación

Este método es útil para aproximar derivadas de funciones suaves, las cuales deben ser conocidas analíticamente o puede ser evaluada con exactitud para un argumento dado.

Los métodos que veremos en este laboratorio serán los siguientes:

DIFERENCIAS FINITAS HACIA ADELANTE: Cuya precisión es de orden 1. DIFERENCIAS FINITAS HACIA ATRÁS: Cuya precisión también es de orden 1.

DIFERENCIAS CENTRADAS: Cuya precisión es de orden 2.

Las funciones con las que se probarán los métodos de diferenciación a las que llamaremos Der1 y Der2 respectivamente son las siguientes:

$$\frac{d}{dx}\left(\sqrt{\sin(x^2) + x}\right) = \frac{2x\cos(x^2) + 1}{2\sqrt{\sin(x^2) + x}}$$

Figure 1: Función 1 para derivar "Der1"

$$\frac{d}{dx}\left(x^2\ln\left(\sqrt{x}\right)\right) = 2x\ln\left(\sqrt{x}\right) + \frac{x}{2}$$

Figure 2: Función 2 para derivar "Der2"

Para ver cuál es el h que menor error da en cada método con respecto a la analítica, se hace la siguiente tabla utilizando Der1:

COMPARACIÓN - VALORES DE H									
Valor de h	n Dif Adelante Error Dif Adelante Dif Atras Error Dif Atras Dif Centrada Error Dif Centrada								
h = 1	-0,2420	1,0086	1,3570	0,5904	0,5575	0,2091	0,7666		
h = 0.1	0,6974	0,0692	0,8253	0,0587	0,7614	0,0052	0,7666		
h = 0.01	0,7602	0,0064	0,7729	0,0063	0,7666	0,0000	0,7666		

Figure 3: Comparación H

Para todos los métodos se utilizará el rango [1,3), donde se harán 20 separaciones de tamaño 0.1 cada una. Además, se tomará un h=0.01, pues como se ve en la tabla, es el que mejor precision obtiene.

NOTA: No se implementará la fórmula para la segunda derivada, pues sólo vimos un método para calcular esta, por ende no se podrá hacer comparación y conclusiones de varios métodos. Además, al ser de orden 2 se asume que tiene una precisión muy cercana a la real.

2.1 Diferencias Finitas Hacia Adelante

La fórmula para aproximar la primer derivada de una función a través de diferencias finitas hacia adelante es la siguiente:

$$f'(x) = \frac{f(x+h) - f(x)}{h}$$

Ya que, como se mencionó anteriormente, se utilizará el rango desde 1 hasta 2.9. Se mostrará el ejemplo con x=1 tomando a Der1 como f:

$$f'(x) = \frac{f(1+0.01)-f(1)}{0.01} \ f'(x) = 0.7602$$

Analiticamente, la evaluación de x nos da como resultado 0.7666. Lo que nos indica que el error de la diferenciación hacia adelante con respecto a la analítica es de 0,0064.

2.2 Diferencias Finitas Hacia Atrás

La fórmula para aproximar la primer derivada de una función a través de diferencias finitas hacia atrás es la siguiente:

$$f'(x) = \frac{f(x) - f(x-h)}{h}$$

Ya que, como se mencionó anteriormente, se utilizará el rango desde 1 hasta 2.9. Se mostrará el ejemplo con x=1 tomando a Der1 como f:

$$f'(x) = \frac{f(1) - f(1 - 0.01)}{0.01} f'(x) = 0.7729$$

Analiticamente, la evaluación de x nos da como resultado 0.7666. Lo que nos indica que el error de la diferenciación hacia adelante con respecto a la analítica es de 0,0063. Resultando que es ligeramente más acertado que el método de diferencias finitas hacia adelante.

2.3 Diferencias Centradas

La fórmula para aproximar la primer derivada de una función a través de diferencias centradas es la siguiente:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$$

Ya que, como se mencionó anteriormente, se utilizará el rango desde 1 hasta 2.9. Se mostrará el ejemplo con x=1 tomando a Der1 como f:

$$f'(x) = \frac{f(1+0.01) - f(1-0.01)}{2*0.01} f'(x) = 0.7666$$

Analiticamente, la evaluación de x nos da como resultado 0.7666. Lo que nos indica que el error de la diferenciación hacia adelante con respecto a la analítica es de 0. Es decir, en este caso es la aproximación exacta.

2.4 Resultados - Métodos de Diferenciación

En la siguiente tabla se mostrarán los resultados de los 3 métodos con el error de cada uno con respecto a la analítica, y además se muestran los resultados con cada uno de los 20 puntos del rango en que se probó. Se adjuntan los resultados de Der1 y Der2 respectivamente:

RESULTADOS DER1								
Valor de x	Dif. Adelante	Error Dif Adelante	Dif. Atrás	Error Dif Atrás	Centrada	Error Centrada	Analítica	
1,0	0,7602	0,0064	0,7729	0,0063	0,7666	0,0000	0,7666	
1,1	0,6145	0,0081	0,6306	0,0080	0,6226	0,0000	0,6226	
1,2	0,4336	0,0099	0,4533	0,0098	0,4434	0,0001	0,4435	
1,3	0,2164	0,0117	0,2397	0,0116	0,2280	0,0001	0,2281	
1,4	-0,0337	0,0132	-0,0074	0,0131	-0,0205	0,0000	-0,0205	
1,5	-0,3070	0,0140	-0,2791	0,0139	-0,2930	0,0000	-0,2930	
1,6	-0,5844	0,0135	-0,5573	0,0136	-0,5708	0,0001	-0,5709	
1,7	-0,8321	0,0109	-0,8101	0,0111	-0,8211	0,0001	-0,8212	
1,8	-0,9947	0,0048	-0,9845	0,0054	-0,9896	0,0003	-0,9899	
1,9	-0,9870	0,0062	-0,9985	0,0053	-0,9927	0,0005	-0,9932	
2,0	-0,7016	0,0224	-0,7453	0,0213	-0,7234	0,0006	-0,7240	
2,1	-0,0789	0,0383	-0,1546	0,0374	-0,1168	0,0004	-0,1172	
2,2	0,7514	0,0418	0,6675	0,0421	0,7095	0,0001	0,7096	
2,3	1,4817	0,0297	1,4213	0,0307	1,4515	0,0005	1,4520	
2,4	1,8815	0,0107	1,8588	0,0120	1,8701	0,0007	1,8708	
2,5	1,9015	0,0077	1,9157	0,0065	1,9086	0,0006	1,9092	
2,6	1,5836	0,0230	1,6288	0,0222	1,6062	0,0004	1,6066	
2,7	0,9977	0,0344	1,0659	0,0338	1,0318	0,0003	1,0321	
2,8	0,2361	0,0405	0,3169	0,0403	0,2765	0,0001	0,2766	
2,9	-0,5710	0,0387	-0,4931	0,0392	-0,5321	0,0002	-0,5323	

Figure 4: Resultados Der1

RESULTADOS DER2								
Valor de x	Dif. Adelante	Error Dif Adelante	Dif. Atrás	Error Dif Atrás	Centrada	Error Centrada	Analítica	
1,0	0,5075	0,0075	0,4925	0,0075	0,5000	0,0000	0,5000	
1,1	0,6628	0,0080	0,6469	0,0079	0,6549	0,0001	0,6548	
1,2	0,8272	0,0084	0,8104	0,0084	0,8188	0,0000	0,8188	
1,3	0,9999	0,0088	0,9823	0,0088	0,9911	0,0000	0,9911	
1,4	1,1803	0,0092	1,1619	0,0092	1,1711	0,0000	1,1711	
1,5	1,3677	0,0095	1,3487	0,0095	1,3582	0,0000	1,3582	
1,6	1,5619	0,0099	1,5422	0,0098	1,5520	0,0000	1,5520	
1,7	1,7622	0,0101	1,7419	0,0102	1,7521	0,0000	1,7521	
1,8	1,9685	0,0105	1,9476	0,0104	1,9580	0,0000	1,9580	
1,9	2,1802	0,0107	2,1588	0,0107	2,1695	0,0000	2,1695	
2,0	2,3973	0,0110	2,3753	0,0110	2,3863	0,0000	2,3863	
2,1	2,6193	0,0112	2,5969	0,0112	2,6081	0,0000	2,6081	
2,2	2,8461	0,0115	2,8232	0,0114	2,8346	0,0000	2,8346	
2,3	3,0774	0,0117	3,0540	0,0117	3,0657	0,0000	3,0657	
2,4	3,3130	0,0119	3,2893	0,0118	3,3011	0,0000	3,3011	
2,5	3,5528	0,0121	3,5287	0,0120	3,5407	0,0000	3,5407	
2,6	3,7966	0,0123	3,7721	0,0122	3,7843	0,0000	3,7843	
2,7	4,0443	0,0125	4,0193	0,0125	4,0318	0,0000	4,0318	
2,8	4,2956	0,0127	4,2703	0,0126	4,2829	0,0000	4,2829	
2,9	4,5505	0,0128	4,5248	0,0129	4,5377	0,0000	4,5377	

Figure 5: Resultados Der2

En las siguientes gráficas se muestran los métodos de la siguiente materia:

Diferencias Finitas hacia Adelante: rojo Diferencias Finitas hacia Atrás: verde

Diferencias Centrada: amarillo

Analítica: azul

Figure 6: Gráfica Der1

Figure 7: Gráfica Der2

3 Integración

De la misma forma en que se realizaron aproximaciones para la derivada de una función, en esta sección se llevarán a cabo métodos de aproximación para la integral de una función.

Las funciones con las que se probarán los métodos de integración a las que llamaremos integ1 e integ2 respectivamente son las siguientes:

$$\int_{1}^{3} \frac{\ln(x)}{x^{3}} dx = \frac{2}{9} - \frac{1}{18} \ln(3) \quad \text{(Decimal: } 0.16118...\text{)}$$

Figure 8: Función 1 para integrar "integ1"

$$\int_{1}^{3} x^{2} e^{x} dx = 5e^{3} - e \quad \text{(Decimal: } 97.70940...\text{)}$$

Figure 9: Función 2 para integrar "integ2"

Al igual que en los métodos de derivadas, se harán las pruebas en el rango [1,3], por ende se tomara a=1 y b=3.

Los métodos que veremos en este laboratorio serán los siguientes:

PUNTO MEDIO: Recomendado para funciones constantes.

TRAPEZOIDE: Recomendado para funciones lineales. SIMPSON: Recomendado para funciones exponenciales.

3.1 Punto Medio

Interpolar la función en el punto medio del intervalo por una constante (polinomio de grado 0), se conoce como la regla del punto medio o del rectángulo:

$$I(f) = M(f) = (b - a)f(\frac{a+b}{2})$$

Ya que, como se mencionó anteriormente, se utilizará el rango desde 1 hasta 3. Se mostrará el resultado evaluando integ1(como f) en este rango:

$$I(f) = M(f) = (3-1)f(\frac{1+3}{2}) I(f) = 0.1733$$

Analiticamente, la evaluación de este rango nos da como resultado 0.1612. Lo que nos indica que el error de la integracion por punto medio con respecto a la analítica es de 0.0121.

3.2 Trapezoide

Interpolar la función en los dos puntos finales del intervalo por una línea recta (polinomio de grado 1) se conoce como la regla del trapezoide:

$$I(f) = T(f) = \frac{b-a}{2}[f(a) + f(b)]$$

Ya que, como se mencionó anteriormente, se utilizará el rango desde 1 hasta 3. Se mostrará el resultado evaluando integ1(como f) en este rango:

$$I(f) = T(f) = \frac{3-1}{2}[f(1) + f(3)] I(f) = 0.0407$$

Analiticamente, la evaluación de este rango nos da como resultado 0.1612. Lo que nos indica que el error de la integracion por punto medio con respecto a la analítica es de 0,1205. Lo que es mas lejano de la respuesta real que el punto medio.

3.3 Simpson

Interpolar la funcion en tres puntos (los dos puntos finales y el punto medio) por un polinomio cuadratico, se conoce como la regla de Simpson:

$$I(f) = S(f) = \frac{b-a}{6} [f(a) + 4f(\frac{a+b}{2}) + f(b)]$$

Ya que, como se mencionó anteriormente, se utilizará el rango desde 1 hasta 3. Se mostrará el resultado evaluando integ1(como f) en este rango:

$$I(f) = S(f) = \frac{3-1}{6}[f(1) + 4f(\frac{1+3}{2}) + f(3)] I(f) = 0.1291$$

Analiticamente, la evaluación de este rango nos da como resultado 0.1612. Lo que nos indica que el error de la integracion por punto medio con respecto a la analítica es de 0.0321.

3.4 Cuadratura Simple

Los resultados de la implementación de cuadratura simple se evaluan tanto en integ1 como en integ2 y se adjuntan en la siguiente tabla junto con el error:

INTEGRALES - CUADRATURA SIMPLE									
Funcion Punto Medio Error Punto Medio Trapezoide Error Trapezoide Simpson Error Simpson I							Real		
Integ1	0,1733	0,0121	0,0407	0,1205	0,1291	0,0321	0,1612		
Integ2	59,1124	38,5970	183,4881	85,7787	100,5710	2,8616	97,7094		

Figure 10: Cuadratura Simple

3.5 Cuadratura Compuesta

Los resultados de la implementación de cuadratura compuesta se evaluan tanto en integ1 como en integ2 y se adjuntan en la siguiente tabla junto con el error:

INTEGRALES - CUADRATURA COMPUESTA								
Funcion Punto Medio Error Punto Medio Trapezoide Error Trapezoide Simpson Error Simpson						Real		
Integ1	0,1616	0,0004	0,1603	0,0009	0,1612	0,0000	0,1612	
Integ2	97,5873	0,1221	97,9536	0,2442	97,7094	0,0000	97,7094	

Figure 11: Cuadratura Compuesta

Para calcular estos datos, se tomaron 20 secciones en el rango de 1 a 3, donde cada seccion fue de 0.1.

4 Conclusiones

Despues de haber analizado a profundidad los metodos de aproximación tanto de derivación como integración, podemos obtener varias conclusiones:

- En la diferenciación finita, se pudo comprobar que efectivamente los métodos de precisión de orden 2 arrojan resultados mucho más cercanos a la analítica que los de orden 1.
- Gracias a las gráficas de las funciones, se pudo visualizar mejor qué tan aproximados son los métodos a la función real.
- El utilizar dos funciones distintas y complejas tanto para la derivación como para la integración, es de gran utilidad pues se puede hacer la comparación utilizando distintos tipos de funciones y no solo usando una función que podria tener resultados poco interesantes.
- En cuanto a la integracion, se pudo ver que para integ1 fue mejor utilizar punto medio, pues esta es una funcion casi constante.
- Por otra parte, para integ2 fue mejor utilizar Simpson, pues esta funcion es exponencial en el rango evaluado.
- En cuanto a las cuadraturas simples y compuestas, se pudo verificar que efectivamente es mucho mas viable tomar una funcion por trozos y calcular la integral de cada trozo para llegar al resultado final (cuadratura compuesta), que tomar el rango completo y evaluar la integral(cuadratura simple).