图像配准作业

一. 手动标点:

二. 输出两幅图中对应点的坐标:

fixedPoints =

659.148706896552	1244.59554597701
635.137212643678	1403.67169540230
572.107040229885	1583.75790229885
1757.67456896552	1856.88864942529
962.293821839080	1445.69181034483
908.267959770115	1256.60129310345
1286.44899425287	1487.71192528736

movingPoints =

966.500000000000	1754.50000000000
978.500000000000	1906.50000000000
958.500000000000	2102.50000000000
2182.50000000000	2058.50000000000
1298.50000000000	1866.50000000000
1202.50000000000	1698.50000000000
1622.50000000000	1822.50000000000

三. 计算转换矩阵:

计算转换矩阵 T 可利用 MATLAB 中的相应函数进行计算。 Tform.tdata.T =

 0.965293260096961
 0.258710931945431
 0

 -0.253545263967441
 0.969025540832363
 0

 177.202312873240
 -700.574626791082
 1

四. 输出转换之前与之后后的图像:

五. 代码示例:

```
P1 = imread('image A.jpg');
P2= imread('image B.jpg');
figure(1);
subplot(1,2,1),imshow(P1);
subplot(1,2,2),imshow(P2);
%cpselect(P1,P2);
%cp=load('cpstruct.mat');
tform=cp2tform(movingPoints ,fixedPoints ,'affine');
P3=imtransform(P1,tform);
figure (2);
subplot(1,2,1),imshow(P3);
subplot(1,2,2),imshow(P2);
```

六. 心得体会:

我们选择的约束点是人工选择的,配准的结果并不完美,配准后的图像有明显的黑边,导致这种差别的原因是手工选择约束点时的误差。