Definition – Topological Space

Let *X* be a set. A *topology on X* consists of the following data :

- (Set of Opens) a subset $\tau_X \subseteq \mathbf{SubSet}(X)$. Subsets U of X that are in τ_X are called *opens*.
- (Finite Intersection) For $I \subseteq \tau_X$ finite, $\bigcap_{U \in I} U \in \tau_X$. In particular, $X = \bigcap_{U \in \varnothing} U \in \tau_X$.
- (Arbitrary Union) For $I \subseteq \tau_X$, $\bigcup_{U \in I} U \in \tau_X$. In particular, $\emptyset = \bigcup_{U \in \emptyset} U \in \tau_X$.

A topological space is a set X together with a topology on it. We often write X instead of (X, τ_X) for a topological space.

For a sequence $a: \mathbb{N} \to X$ and $x \in X$, we write $a_n \to x$ and say a converges to x when for all $x \in U \subseteq X$ where U is open, there exists $N \in \mathbb{N}$ such that $a\mathbb{N}_{\geq N} \subseteq U$.

Remark – On the standard definition of a topological space.. The above definition is standard and can be motivated as the abstraction of opens in \mathbb{R}^n . However, this begs the question of why consider opens in \mathbb{R}^n . The idea of "getting close to a point" is arguably more intuitively captured by the notion of sequences converging. The view on *filters* that I adopt is that they are the generalisation of sequences for topological spaces.

$$\mathbb{R}^n \to \text{Topological Spaces}$$
 Sequences \to Filters

Proposition – Filter of a Sequence

Let *X* be a set, $a : \mathbb{N} \to X$. For a subset $V \subseteq X$, we say *a converges to V* when there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $a_n \in V$. Let α be the set of subsets of X that a converges into. Then we have the following:

- (Universe) $X \in \alpha$. - (Finite Intersection) For $U, V \in \alpha$, $U \cap V \in \alpha$. - (Upwards Closed) For $U \subseteq V \subseteq X$, $U \in \alpha$ implies $V \in \alpha$. α is called the *eventuality filter of* a. We will simply call it the *filter of* a.

Proof. Easy.

Remark. For purposes of convergence, the only data of a sequence we really care about is which subsets they converge into. The filter of a sequence extracts this data from a sequence and one can think of a filter in general as abstracting this.

Let X be a set and $\alpha \subseteq 2^X$. Then α is a *filter on* X when $- \text{ (Universe) } X \in \alpha.$ $- \text{ (Finite Intersection) For } U, V \in \alpha, U \cap V \in \alpha.$ $- \text{ (Upwards Closed) For } U \subseteq V \subseteq X, U \in \alpha \text{ implies } V \in \alpha.$ For a filter α on X and $V \subseteq X$, we write $\alpha \to V$ and say α converges into V when $V \in \alpha$.

We will use Fil(X) denote the set of all filters on X. A filter α is called *proper* when $\alpha \neq \mathbf{SubSet}(X)$, the largest filter in Fil(X).

Remark – On the Direction of Partial Order of Filters. If $b: \mathbb{N} \to X$ be a subsequence of a, then $\beta \supseteq \alpha$ where α, β are filters of a, b respectively. So for general filters α, β , you can think of $\beta \supseteq \alpha$ as saying " β is a subsequence of α'' .

Now, for a point $x \in X$ where X is a topological space, there's is a "largest sequence converging to x".

Proposition - Neighbourhood Filter

Let X be a topological space, $x \in X$. For a subset $V \subseteq X$, we say V is a neighbourhood of x when there exists an open U of X such that $x \in U \subseteq V$. The neighbourhood filter of x, denoted N(x), is then defined to be the set of neighbourhoods of x. We then have the following:

- N(x) is a filter on X.
 For all sequences $a: \mathbb{N} \to X$, $a_n \to x$ if and only if $\alpha \supseteq N(x)$ where α is the filter of a.

Hence, for a filter α on X, we write $\alpha \to x$ and say α converges to x when $\alpha \supseteq N(x)$.

Proof. Easy.

Remark. One may wonder if it is possible to give a topological space by choosing a neighbourhood filter at each point. The answer is yes.

Proposition - Topological Spaces by Neighbourhood Filters

Let *X* be a set. Define a *system of neighbourhood filters on X* by the following data:

- (The Neighbourhood Filters) A function $N: X \to \text{Fil}(X)$
- (Centred) For each $x \in X$ and $U \in N(x)$, $x \in U$.
- (Mutual Neighbourhoods) For each $x \in X$, there is a $U \in N(x)$ such that for all $y \in U$,

Let N be a system of neighbourhood filters on X and τ a topology in X. Consider the following constructions:

- Define the topology associated to N by declaring $U \subseteq X$ to be open when for all $x \in U, U \in$ N(x). Then this forms a topology on X.
- Define the system of neighbourhood filters on X associated to τ by assigning to each point x its neighbourhood filter as defined before. This is a system of neighbourhood filters on X.

Then the above two processes are inverses, yielding a bijection between systems of neighbourhood filters and topologies on X.