Larissa Degen de Almeida

Métrica de Buracos Negros: Singularidade, Horizonte de Eventos e Ergosfera

Alegre - ES, Brasil 2021

Larissa Degen de Almeida

Métrica de Buracos Negros: Singularidade, Horizonte de Eventos e Ergosfera

Trabalho de Conclusão de Curso apresentado a Universidade Federal do Espírito Santo, como parte dos requisitos para obtenção do título de Licenciado em Física.

Universidade Federal do Espírito Santo - UFES Centro de Ciências Exatas, Naturais e da Saúde

Orientador: Prof. Dr. Roberto Colistete Júnior

Alegre - ES, Brasil 2021

Larissa Degen de Almeida

Métrica de Buracos Negros: Singularidade, Horizonte de Eventos e Ergosfera

Trabalho de Conclusão de Curso apresentado a Universidade Federal do Espírito Santo, como parte dos requisitos para obtenção do título de Licenciado em Física.

Aprovado em: 08 de Outubro de 2021.

Comissão Examinadora:

Prof. Dr. Roberto Colistete Júnior Orientador

Professor Dr. Júnior Diniz Toniato

Professor MSc. Ramón Giostri Campos

Alegre - ES, Brasil

Agradecimentos

Agradeço a meus pais, Gercino e Sônia, pelo apoio para que eu pudesse ficar todo esse tempo na graduação. As minhas irmãs, Amanda e Giseli, meu cunhado Miguel e especialmente meu sobrinho Theo. Meus avós Theofilo, Elzina, Maria Derlinda e Argeuni. E meus tios, tias, primos.

Agradeço a meu orientador Roberto Colistete Júnior por embarcar nessa ideia junto comigo.

Ao Robson por me apoiar em todos os momentos, e aos Amigos que fiz em Alegre. Muito obrigada.

Resumo

Uma das soluções encontradas para as equações de campo de Einstein são os buracos negros. Estas soluções são descritas através de métricas, que contém características intrínsecas a uma única solução, como massa, rotação e carga elétrica. Estes objetos ainda possuem regiões em que existem singularidades, onde as leis da Física não funcionam, bem como regiões com horizonte de eventos e ergosfera. Numa modelagem computacional em Python, conseguimos visualizar o horizonte de eventos, a ergosfera e o comportamento dos buracos negros em relação aos parâmetros que caracterizam cada um.

Palavras-chave: Relatividade Geral, Buraco Negro, Horizonte de Eventos, Ergosfera.

Lista de ilustrações

Figura 1 –	Horizonte de eventos de Schwarzschild com $M=4.2.\ldots$	21
Figura 2 -	Horizonte de eventos de Schwarzschild com $M=2.1.$	22
Figura 3 –	Horizonte de eventos e ergosfera de Kerr com $M=4.2$ e $a=4.0$.	23
Figura 4 –	Horizonte de eventos e ergosfera de Kerr com $M=4.2$ e $a=3.3$.	23
Figura 5 –	Horizonte de eventos e ergosfera de Kerr-Newman com ${\cal M}=4.2$	
	, $a = 3.0 \text{ e } Q = 2.0 \dots$	25
Figura 6 –	Horizonte de eventos e ergosfera de Kerr-Newman com ${\cal M}=4.2$	
	, $a = 2.0 \text{ e } Q = 2.0 \dots$	25
Figura 7 –	Horizonte de eventos e ergosfera de Kerr-Newman com ${\cal M}=4.2$	
	, $a = 3.0 \text{ e } Q = 2.9 \dots$	26
Figura 8 –	Horizonte de eventos de Reissner-Nordström com $M=4.2$ e	
	Q = 2.0	27
Figura 9 –	Horizonte de eventos de Reissner-Nordström com $M=4.2$ e	
	Q = 3.9	28

Lista de tabelas

Tabela 1 – Características dos buracos negros físicos

Sumário

1	INTRODUÇÃO	10
1.1	Apresentação	10
1.2	Objetivos	11
2	REFERENCIAL TEÓRICO	12
2.1	Gravitação Newtoniana	12
2.2	Teoria da Relatividade Restrita e Geral	12
2.3	Métrica de Schwarzschild	14
2.4	Métrica de Kerr	14
2.5	Métrica de Kerr-Newman	15
2.6	Métrica de Reissner-Nordström	16
3	METODOLOGIA	18
3.1	Singularidade	18
3.2	Horizonte de Eventos	18
3.3	Ergosfera	19
3.4	Desenvolvimento	19
4	RESULTADOS E DISCUSSÕES	21
4.1	Horizonte de Eventos de Schwarzschild	21
4.2	Horizonte de Eventos e Ergosfera de Kerr	22
4.3	Horizonte de Eventos e Ergosfera de Kerr-Newman	24
4.4	Horizonte de Eventos de Reissner-Nordström	27
5	CONSIDERAÇÕES FINAIS	29
	REFERÊNCIAS	30
Δ	CÓDIGO FONTE	33

A.1	Código Fonte dos Gráficos de Horizonte de Eventos de Schwarsz-		
	child	33	
A.2	Código Fonte dos Gráficos de Horizonte de Eventos e Ergos-		
	fera de Kerr	33	
A.3	Código Fonte dos Gráficos de Horizonte de Eventos e Ergos-		
	fera de Kerr-Newman	34	
A.4	Código Fonte dos Gráficos de Horizonte de Eventos de Reissner	_	
	Nordström	35	

1 Introdução

1.1 Apresentação

Entre os séculos XVII e XVIII, houve uma mudança de cenário na Física, onde era apenas sobre teorias e pensamentos aristotélicos, todas as coisas eram formadas por 4 elementos, o céu era apenas o que era visto a olho nu, para o começo de uma Física robusta, onde teorias e experimentos começaram a ser feitos provando que temos muito o que aprender e conhecer sobre todas as coisas que nos cercam.

Sir Isaac Newton (1642 – 1727), desenvolveu a Lei da Gravitação Universal [1], em seus estudos conseguiu correlacionar que um objeto caindo em direção ao chão pode ter a mesma explicação para um objeto como a Lua orbitar a Terra. A Lei diz que dois corpos com massa se atraem devido a uma força exercida pelo produto de suas massas e inversamente proporcional ao quadrado da distância entre as mesmas, esta denominada força gravitacional, e que todos os corpos do universo estariam submetidos.

Mas com o passar dos anos, percebeu-se que alguns eventos que aconteciam no universo não poderiam ser explicados a partir da Lei que Newton descreveu. Quando Einstein no começo do século XX, apresenta seus artigos da Teoria da Relatividade Especial [2] e Teoria da Relatividade Geral [3], com seus estudos sobre a invariância da velocidade da luz, a unificação de três dimensões espaciais com a dimensão temporal, isso muda a percepção que a gravidade é uma força de ação imediata entre os corpos com massa. E traz que a gravidade é uma propriedade geométrica do espaço-tempo.

Apenas um ano após a apresentação dos artigos, um físico alemão chamado Karl Schwarzschild (1873-1916), encontra uma solução para as Equação de Campo de Einstein. Na solução, ele descreve sobre um corpo de massa e densidade infinita que deforma a malha do espaço-tempo numa tamanha proporção que qualquer objeto que ultrapasse uma certa região gravitacional não tenha a oportunidade de retornar [4]. Mais tarde, esta região do espaço seria denominada como Buraco

Negro [5].

Após a primeira solução ser encontrada, houve em torno de 50 anos até a segunda solução da Equação de Campo ser apresentada para a comunidade científica. Hoje são aceitas pela comunidade quatro soluções que representam buracos negros físicos. Cada solução é descrita por uma métrica, esta caracteriza o buraco negro, com parâmetros de massa, de possuir ou não, momento angular e carga elétrica. Cada solução particular gera regiões entorno da singularidade, o horizonte de eventos e a ergosfera.

1.2 Objetivos

Neste trabalho apresentamos as principais métricas de buracos negros aceitas pela comunidade científica e comportamento destas em relação à singularidade, horizonte de eventos e ergosfera. Estas regiões serão modeladas na linguagem de programação Python [6], de modo a gerar gráficos que possibilitam visualizar e exemplificar de maneira clara e objetiva a estrutura dos buracos negros.

2 Referencial Teórico

2.1 Gravitação Newtoniana

Em 1687 Isaac Newton (1643-1727), publicou seu livro *Princípios Matemáticos* da Filosofia Natural [1], um postulado que traz a ideia de que um corpo em qualquer lugar do Universo atrai outro corpo em sua direção por uma força que é diretamente proporcional ao produto de suas massas, mas inversamente proporcional ao quadrado da distância que os separa. Este postulado é conhecido como Lei da Gravitação Universal, dado pela equação:

$$F = G \frac{m_1 \cdot m_2}{r^2} \tag{2.1}$$

Onde F é a força atrativa na direção da reta que passa pelo centro das duas massas, G é a contante gravitacional de valor $6,674 \cdot 10^{-11} m^3 kg^{-1}s^{-1}$, m_1 e m_2 são as massas dos corpos envolvidos e r é a distância entre eles. Esta lei explica o porquê de uma maçã ao se desprender da árvore cai em direção ao solo, e também como a Lua tem seu movimento em torno da Terra, e os planetas em torno do Sol. Newton acreditava que, por se tratar de uma força instantânea que agia sobre todos os corpos, esta se estenderia por todo universo com velocidade infinita.

2.2 Teoria da Relatividade Restrita e Geral

Com o passar dos anos e a evolução do conhecimento científico, temos que no começo do século XX, mas precisamente em 1905, Albert Einstein (1879-1955) apresentou para à comunidade científica o artigo da Teoria da Relatividade Restrita, com dois postulados que assumem a invariância da velocidade da luz e que todas as leis da natureza são as mesmas para todos os sistemas de referência inerciais. Einstein descreveu para compatibilizar a mecânica Newtoniana com a teoria que descreve o campo eletromagnético, postulada por James Clerk Maxwell [8].

Esses postulados trazem consequências diretas que o espaço e o tempo não são absolutos, são relativos aos observadores e que a luz, um fenômeno eletromagnético, possui velocidade finita, e nada no universo ultrapassa sua velocidade. E isso vai contra teoria gravitacional de Newton, se aumentarmos a distância entre os corpos, os efeitos gravitacionais seriam sentidos imediatamente, pois viajam em velocidade infinita.

Em 1915, Einstein apresenta a Teoria da Relatividade Geral, onde ele amplia a abordagem da Teoria da Relatividade Restrita para referenciais não inerciais. Nesta, ele traz a ideia de que a gravidade não é uma força, mas o resultado da deformação do espaço-tempo provocado por uma distribuição de massa e energia. Ele descreve essa teoria matematicamente na forma das equações de campo:

$$R_{\mu\nu} - \frac{R}{2}g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu} \tag{2.2}$$

Na equação (1.2), $R_{\mu\nu}$ é o tensor de curvatura de Ricci, R o escalar de curvatura de Ricci, $g_{\mu\nu}$ é o tensor métrico, $T_{\mu\nu}$ é o tensor de energia-momento, G é a constante gravitacional e c a velocidade da luz. Esta equação é tensorial com 10 componentes independentes que resultam em 10 equações diferenciais parciais acopladas.

Pouco tempo depois de Einstein apresentar esta equação, o físico Karl Schwarzschild (1873-1916) encontra uma solução particular que mostra o comportamento do campo gravitacional ao redor de uma estrela segundo a Teoria da Relatividade Geral. E ao calcular o efeito que a curvatura do espaço-tempo causaria dentro e fora ta estrela, e se a massa da estrela fosse comprimida até um espaço suficientemente pequeno, o tecido do espaço-tempo se deformaria gerando um campo gravitacional tão intenso que qualquer objeto que entre nele entrasse, jamais sairia, inclusive a luz. Esta solução apresenta os Buracos Negros.

Obter uma solução das equações de campo é de extrema complexidade, por se tratarem de equações não-lineares. São utilizados tensores métricos [9], ou apenas métricas, para descrever a solução, estas determinam algumas propriedades do espaço, como distância, homogeneidade, volume, isotropia, curvatura, etc. E na relatividade geral é usada para determinar a geometria do espaço-tempo.

São aceitas pela comunidade científica quatro métricas que descrevem buracos negros físicos, são as métricas de: Schwarzschild, Kerr, Kerr-Newman e Reissner-Nordström.

Existem diversas outras métricas, mas para este trabalho foram estas as escolhidas pois com elas as previsões da Relatividade Geral são verificadas observacionalmente e porque outras métricas existentes são derivações dessas quatro escolhidas.

2.3 Métrica de Schwarzschild

Karl Schwarzschild (1873-1916) descreve uma solução exata das equações de campo de Einstein para o campo gravitacional de uma massa pontual. Ele descreve a métrica em coordenadas esféricas (t, r, θ, ϕ) :

$$g_{\mu\nu} = \begin{bmatrix} -\left(1 - \frac{2M}{r}\right) & 0 & 0 & 0\\ 0 & \left(1 - \frac{2M}{r}\right)^{-1} & 0 & 0\\ 0 & 0 & r^2 & 0\\ 0 & 0 & 0 & r^2 \sin^2\theta \end{bmatrix}$$
 (2.3)

Com o elemento de linha da solução como:

$$ds^{2} = \left(1 - \frac{r_{s}}{r}\right)dt^{2} - \frac{dr^{2}}{1 - \frac{r_{2}}{r}} - r^{2}(d\theta^{2} + sen^{2}\theta d\phi^{2})$$
 (2.4)

Onde o valor de r_s , o Raio de Schwarzschild, é definido como:

$$r_s = \frac{2GM}{c^2} \tag{2.5}$$

Tendo G a constante gravitacional de Newton, M a massa e c a velocidade da luz no vácuo. Esta métrica descreve um buraco negro com massa, sem momento angular e sem carga elétrica.

2.4 Métrica de Kerr

A solução encontrada por Schwarzschild perdurou por mais de 50 anos como única métrica local, até o matemático Roy Kerr (1934), em 1963, encontrar outra possibilidade de solução. Ele demonstrou a geometria espaço-temporal ao redor de um corpo pontual massivo em rotação, ou podemos descrever como a existência

de um buraco negro em rotação (momento angular). Kerr descreve a métrica a partir da métrica de Schwarzschild, onde ele substitui o que era r = 0 para $r^2 + a^2 cos^2 \theta = 0$, obtendo a métrica [8]:

$$g_{\mu\nu} = \begin{bmatrix} \left(1 - \frac{r_s}{r}\right) & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -r^2 & 0 \\ 0 & 0 & 0 & -r^2 \sin^2\theta \end{bmatrix}$$
 (2.6)

E o elemento de linha:

$$ds^{2} = -\left(1 - \frac{2Mr}{\Sigma}\right)dt^{2} - \frac{4Marsin^{2}\theta}{\Sigma}dtd\phi + \frac{\Sigma}{\Delta}dr^{2} +$$

$$\Sigma d\theta^{2} + \left(r^{2} + a^{2} + \frac{2Ma^{2}rsin^{2}\theta}{\Sigma}\right)sin^{2}\theta d\phi^{2}$$
(2.7)

Onde:

$$\Delta \equiv r^2 - 2Mr + a^2 \tag{2.8}$$

$$\Sigma \equiv r^2 + a^2 \cos^2 \theta \tag{2.9}$$

Com o momento angular $|\vec{J}| = aM$, massa M e $a = \frac{|\vec{J}|}{M}$.

2.5 Métrica de Kerr-Newman

A partir da métrica de Kerr, outra solução foi encontrada por Ezra T. Newman (1965), onde ele adiciona um parâmetro de carga elétrica. O buraco negro então possui momento angular \vec{J} e carga elétrica total Q, sua métrica é descrita como [9]:

$$g_{\mu\nu} = \begin{bmatrix} \left(1 - \frac{\Delta}{\Sigma}\right) & 1 & 0 & \frac{asin^2\theta}{\Sigma}(r_s r - r_Q) \\ 1 & 0 & 0 & -asin^2\theta \\ 0 & 0 & -\Sigma^2 & 0 \\ \frac{asin^2\theta}{\Sigma}(r_s r - r_Q) & -asin^2 & 0 & \frac{asin^2\theta}{\Sigma}(\Delta a^2 sin^2\theta - (a^2 + r^2)^2) \end{bmatrix}$$
(2.10)

Seu elemento de linha é descrito como:

$$ds^{2} = -\frac{\Sigma^{2}}{\Delta}dr^{2} - \Sigma^{2}d\theta^{2} + \frac{\Delta}{\Sigma^{2}}(dt - a\sin^{2}\theta d\phi)^{2} - \frac{\sin^{2}\theta}{\Sigma^{2}} \left[(r^{2} + a^{2})d\phi - adt \right]^{2}$$
(2.11)

Onde:

$$\Delta = r^2 - r_s r + a^2 + r_Q^2 \tag{2.12}$$

$$r_Q^2 = \frac{Q}{4\pi\epsilon_0} \tag{2.13}$$

$$\Sigma \equiv r^2 + a^2 \cos^2 \theta \tag{2.14}$$

E r_s tem o valor da equação (2.2). Esta métrica é a mais particular, pois compreende os três parâmetros, massa, momento angular e carga elétrica para a descrição de um buraco negro físico.

2.6 Métrica de Reissner-Nordström

Desenvolvida por Gunnar Nordström (1881-1923) e Hans Reissner (1874-1967), esta métrica apresenta uma massa com simetria esférica, estática e carregada eletricamente. A partir das equações de Einstein-Maxwell, a métrica é descrita em coordenadas esféricas $(ct, r, \theta, \phi)[17]$:

$$g_{\mu\nu} = \begin{bmatrix} \left(1 - \frac{r_s}{r} + \frac{r_Q^2}{r^2}\right) & 0 & 0 & 0 \\ 0 & -\left(1 - \frac{r_s}{r} + \frac{r_Q^2}{r^2}\right)^{-1} & 0 & 0 \\ 0 & 0 & -r^2 & 0 \\ 0 & 0 & 0 & -r^2 \sin^2\theta \end{bmatrix}$$
(2.15)

Com o elemento de linha:

$$ds_{RN}^2 = \left(1 - \frac{r_s}{r} + \frac{r_Q^2}{r^2}\right)c^2dt^2 - \left(1 - \frac{r_s}{r} + \frac{r_Q^2}{r^2}\right)^{-1}dr^2 - r^2(d\theta^2 + sen^2\theta d\phi^2)$$
 (2.16)

onde as quantidades r_s é dada pela equação (2.4) e r_Q^2 é dado por:

$$r_Q^2 = \frac{Q^2 G}{4\pi\epsilon_0 c^4} \tag{2.17}$$

Temos G a constante gravitacional de Newton, M a massa do corpo, Q a carga elétrica do corpo e ϵ_0 é a permissividade elétrica do vácuo.

3 Metodologia

Uma vez apresentadas as métricas, que estão demonstradas acima através de elementos de linha, vamos agora abordar estruturas que formam junto à singularidade o buraco negro. O problema escolhido foi desenvolver um código simples para demonstrar o comportamento dos buracos negros diante de suas características:

Métrica	Massa M	Rotação \vec{J}	Carga elétrica Q
Schwarzschild	Sim	Não	Não
Kerr	Sim	Sim	Não
Kerr-Newman	Sim	Sim	Sim
Reissner-Nordström	Sim	Não	Sim

Tabela 1 – Características dos buracos negros físicos.

Estas características geram estruturas conhecidas como horizonte de eventos e ergosfera. Como as métricas deduzem equações complexas para demonstrar estas estruturas, a parametrização destas equações foram a melhor escolha para a produção de gráficos em Python, possibilitando criar um código de poucas linhas e considerado simples.

3.1 Singularidade

Singularidade é um ponto ou região onde as teorias da Física não mais funcionam, ou seja, perdem a capacidade de predição, inclusive a Relatividade Geral. As singularidades são obtidas da análise dos invariantes de curvatura da Relatividade Geral na métrica respectiva.

3.2 Horizonte de Eventos

A estrutura do horizonte de eventos é a fronteira onde separa o Universo onde as leis da Física funcionam de um local onde estas leis não são mais válidas. Qualquer

objeto que o ultrapasse não mais retornará, isto devido à intensidade do campo gravitacional. Nem mesmo a luz poderá retornar, pois, a velocidade de escape da região é superior à velocidade da luz.

3.3 Ergosfera

Esta estrutura pertence apenas aos buracos negros com rotação, ou seja, momento angular $|\vec{J}|$, pois é formada a partir de um arrasto gravitacional dos referenciais gerado pelo movimento de rotação. Esta é uma região do espaço-tempo imediatamente externa ao horizonte de eventos, mas diferentemente desta, na ergosfera objetos e até mesmo a luz conseguem retornar.

3.4 Desenvolvimento

O desenvolvimento do algorítimo dos gráficos começou pela escolha da linguagem de programação Python. Bem como algumas ferramentas e softwares que facilitam o cálculo científico. As ferramentas escolhidas para o trabalho foram o LaTeX [18], GitHub [19] e Jupyter Notebook, todas gratuitas e de código fonte aberto (FOSS - Free and Open Source Software). E o módulo Python SymPy [20] (Symbolic Python) foi utilizado para visualização gráfica.

Após, a pesquisa procuramos identificar as equações de singularidade, do horizonte de eventos e da ergosfera na forma paramétrica, essas expressam funções explícitas com variáveis independentes e podem descrever superfícies. Optou-se por pela forma paramétrica por facilitar a escrita do código e obtendo um resultado muito próximo do esperado. E para visualização gráficas das curvas de horizontes de eventos e ergosferas, algumas constantes assumem valor natural adimensional unitário (1), G, c e a multiplicação de constantes $4\pi\epsilon_0$. E para as variáveis m, a e Q foram adotados números aleatórios.

Utilizando o Python e SymPy foram definidas as equações paramétricas com o valor determinado para variáveis. Denotando o horizonte de eventos interno e externo como: r_hor_m e r_hor_p , respectivamente m para o valor da equação negativa interna e p para positiva externa. Bem como as equações da ergosfera interna

e externa como: r_erg_m e r_erg_p , respectivamente m para equação interna negativa e p para positiva externa.

4 Resultados e Discussões

4.1 Horizonte de Eventos de Schwarzschild

O horizonte de eventos ou raio de Schwarzschild, é estabelecido através da equação:

$$r_s = \frac{2GM}{c^2} \tag{4.1}$$

O gráfico obtido para a solução de Schwarzschild:

Figura 1 – Horizonte de eventos de Schwarzschild com M=4.2.

Dimuindo a variável M, temos:

Figura 2 – Horizonte de eventos de Schwarzschild com M=2.1.

O resultado desse gráfico mostra o comportamento esperado do buraco negro que possui apenas a massa M como parâmetro, uma superfície esférica (circunferência na seção do plano xz) representando o horizonte de eventos e a singularidade no centro do buraco negro de Schwarzschild r=0. Podemos observar, nas figuras 1 e 2, que o horizonte de eventos cresce linearmente com a massa M.

4.2 Horizonte de Eventos e Ergosfera de Kerr

A equação do horizonte de eventos:

$$r_{H\pm} = M \pm \sqrt{M - a^2} \tag{4.2}$$

A equação da ergosfera:

$$r_{E+} = M \pm \sqrt{M - a^2 \cos^2 \theta} \tag{4.3}$$

O gráfico obtido para a solução de Kerr:

Figura 3 – Horizonte de eventos e ergosfera de Kerr com M=4.2 e a=4.0.

Diminuindo a variável a, temos:

Figura 4 – Horizonte de eventos e ergosfera de Kerr com M=4.2 e a=3.3.

O resultado dos gráficos demonstram o comportamento esperado do buraco negro com massa M e momento angular a. Podemos ver o achatamento nos polos devido ao termo \cos^2 que está na raiz quadrada e a existência da região ergosfera, compreendida entre a superfície externa da ergosfera, em vermelho e a superfície do horizonte de eventos externo, em laranja. Nesta região há um arrasto gravitacional, em que algumas partículas ficam presas e tem momento angular junto ao buraco negro.

Com uma pequena diminuição do momento angular a, notamos que o achatamento da superfície externa da ergosfera (em vermelho) fica mais suave, o aumento da superfície do horizonte de eventos externo (em laranja) e a diminuição da superfície do horizonte de eventos interno (em verde) e da superfície da ergosfera interna (em azul), isso é conveniente a rotação mais lenta do buraco negro. E também devido a rotação, a singularidade neste buraco negro se comporta como um anel, no gráfico identificamos como uma dobra equatorial da ergosfera mais interna, em azul. A equação do anel de singularidade [22] é dada por:

$$x^2 + y^2 = a^2, \ z = 0 (4.4)$$

4.3 Horizonte de Eventos e Ergosfera de Kerr-Newman

A equação do horizonte de eventos interno e externo:

$$r_{H\pm} = M \pm \sqrt{M^2 - a^2 - r_Q^2} \tag{4.5}$$

Com

$$r_Q^2 = \frac{Q^2 G}{4\pi\epsilon_0 c^4} \tag{4.6}$$

A equação da ergosfera interna e externa:

$$r_{E\pm} = M \pm \sqrt{M^2 - a^2 \cos^2 \theta - r_Q^2}$$
 (4.7)

O gráfico obtido para a solução de Kerr-Newman:

Figura 5 – Horizonte de eventos e ergosfera de Kerr-Newman com $M=4.2\;,\,a=3.0$ e Q=2.0

Diminuindo a variável a, temos:

Figura 6 – Horizonte de eventos e ergosfera de Kerr-Newman com $M=4.2\;,\,a=2.0$ e Q=2.0

Aumentando a variável Q, temos:

Figura 7 – Horizonte de eventos e ergosfera de Kerr-Newman com M=4.2 , a=3.0 e Q=2.9

O resultado deste gráfico demonstra o comportamento do buraco negro mais geral, com massa M, momento angular a e com carga elétrica Q. Podemos ver o achatamento nos polos devido ao termo \cos^2 que está na raiz quadrada e a existência da região ergosfera, compreendida entre a superfície externa da ergosfera, em vermelho e a superfície do horizonte de eventos externo, em laranja. Uma região onde há um arrasto gravitacional, em que algumas partículas ficam presas e tem momento angular junto ao buraco negro.

Com a mudança de duas variáveis, temos uma clara mudança no visual dos gráficos. Nos três gráficos temos o mesmo valor de M, variando a e Q. Ao variar a, temos a diminuição da região de ergosfera e a diminuição das superfícies de ergosfera interna (em azul) e da superfície de horizonte de eventos interna (em verde), estas regiões quase se sobrepõem devido ao campo magnético moderado. Ao aumentar o valor de Q, vemos a região da ergosfera interior (em azul) aumentar consideravelmente, quase chegando aos limites superiores das outras regiões, isso devido ao Q ser maior

que a, o que gera um campo magnético muito intenso.

Devido à rotação, esta singularidade se comporta como um anel, com a equação:

$$x^2 + y^2 = a^2, \ z = 0 (4.8)$$

4.4 Horizonte de Eventos de Reissner-Nordström

A equação do horizonte de eventos e esgosfera é escrita como:

$$r_{\pm} = \left(M \pm \sqrt{M^2 - r_Q^2}\right) \tag{4.9}$$

Com:

$$r_Q^2 = \frac{Q^2 G}{4\pi\epsilon_0 c^4} \tag{4.10}$$

O gráfico obtido para a solução de Reissner-Nordström:

Figura 8 – Horizonte de eventos de Reissner-Nordström com M=4.2e $Q=2.0\,$

Aumentando a variável Q, temos:

Figura 9 – Horizonte de eventos de Reissner-Nordström com M=4.2 e Q=3.9

O resultado do gráfico demonstra o comportamento de um buraco negro com massa M e carga elétrica Q. Possui dois horizontes de eventos, um externo (em vermelho) e outro interno (em azul), que condiz com a natureza de simetria entre as duas regiões. Quando o horizonte de eventos interno aumenta, o horizonte de eventos externo diminui. A singularidade desta métrica está no centro do buraco negro de Reissner-Nordström, r=0. Caso Q for nulo, esta métrica se reduz à métrica de Schwarzschild.

5 Considerações Finais

Métricas denotam características dos buracos negros, com massa, momento angular e carga elétrica e também as regiões do horizonte de eventos e da ergosfera. Sabemos que estas regiões junto da singularidade formam a estrutura do buraco negro e são de grande importância de estudos. Neste trabalho, buscamos trazer, utilizando Python e SymPy, a visualização dessas regiões, assim podemos ver seu comportamento, que depende diretamente do valor das variáveis.

O buraco negro com métrica de Schwarzschild possui apenas a massa M como parâmetro, assim temos apenas uma região de horizonte de eventos. Com a adição de um parâmetro de momento angular a, visivelmente temos o aparecimento de mais três regiões, um horizonte de eventos interno e duas regiões de ergosfera, uma externa e uma interna. Este é o buraco negro com métrica de Kerr.

O buraco negro com métrica de Kerr-Newman, possui os três parâmetros, massa M, o momento angular a e a carga elétrica Q. Visualmente temos um buraco negro parecido com o de Kerr, mas ao adicionar o parâmetro de carga elétrica Q temos o comportamento da ergosfera interior (em azul) indo em direção ao horizonte de eventos interno (em verde), e o que determina o limite destas regiões é a relação dos parâmetros M e Q.

O buraco negro com métrica de Reissner-Nordström se assemelha à métrica de Schwarzschild. Ao introduzir o parâmetro de carga elétrica Q, notamos o aparecimento de um horizonte de eventos interno, agora então possuindo um horizonte de eventos interno e um externo, estes passam a depender não só da massa M, mas da carga elétrica Q.

Buracos negros são resultados das equações de campo de Einstein e extremamente complexos. Uma região no espaço onde um ponto adimensional possui densidade infinita, curvando o espaço-tempo e que a partir de um certo local as leis da Física não funcionam. A ciência ainda não desvendou o porquê da existência desses objetos. Sabemos que eles existem, mas ainda não conhecemos sua natureza.

Referências

- [1] NEWTON, I. Philosophiae naturalis principia mathematica. 1687. Disponível em: https://www.wdl.org/pt/item/17842/. Acesso em: 15 ago. 2021.
- [2] A. Einstein, Zur elektrodynamik bewegter körper. Annalen der physik 322, 891–921 (1905). Disponível em: https://doi.org/10.1002/andp.19053221004. Acesso em 15 ago. 2021.
- [3] A. Einstein, Die feldgleichungen der gravitation. Sitzung der physikalischemathematischen Klasse 25, 844–847 (1915). Disponível em: https://einsteinpapers.press.princeton.edu/vol6-doc/276. Acesso em: 15 ago. 2021.
- [5] SCHWARSZCHILD, K. On the gravitational field of mass point according to Einstein's theory. Sitzungsber.Preuss.Akad.Wiss.Berlin (Math.Phys.) 1916 (1916) 189-196. Disponível em: https://arxiv.org/abs/physics/9905030v1. Acesso em: 15 ago 2021.
- [6] BURACO NEGRO. In: WIKIPÉDIA, a enciclopédia livre. Flórida: Wikimedia Foundation, 2021. Disponível em: https://pt.wikipedia.org/w/index.php?title=Buraco_negro&oldid=61969354. Acesso em: 25 ago. 2021.
- [7] Python. disponível em: https://www.python.org/. Acesso em: 16 set. 2021
- [8] JOSÉ, P. S. LEMOS. CARLOS, A. R. HERDEIRO. CARDOSO, V. Eintein e Eddington e as consequências da relatividade geral: Buracos negros e ondas gravidacionais. Gazeta de Física, ed. 42, número 2, 2019. Disponível em: https://www.spf.pt/magazines/GFIS/473/article/1570/pdf. Acesso em 25 de ago. 2021.
- [9] TENSOR MÉTRICO. In: WIKIPÉDIA, a enciclopédia livre. Flórida: Wikimedia Foundation, 2020. Disponível em: https://pt.wikipedia.org/w/index.php?title = Tensor_m%C3%A9trico&oldid=58256987>. Acesso em: 23 ago . 2021.
- [10] SAA, A. Cem anos de buracos negros: o centenário da solução de Schwarszchild. Seção Especial Ondas Gravitacionais, Rev. Bras. Ensino Fís. 38 (4), 2016.

Referências 31

Disponível em: https://doi.org/10.1590/1806-9126-RBEF-2016-0191. Acesso em: 15 ago 2021.

- [11] SIQUEIRA-BATISTA, R.; HELAYËL NETO, J. A. Buracos negros estelares: A geometria do espaço-tempo de Schwarzschild. Cadernos de Astronomia, Vitória, v. 2, n. 2, p. 123, 2021. DOI: 10.47456/Cad.Astro.v2n2.34640. Disponível em: https://periodicos.ufes.br/astronomia/article/view/34640. Acesso em: 18 set. 2021.
- [12] TEUKOLSKY, Saul A. The Kerr Metric. Classical and Quantum Gravity, vol. 32, n. 12, p. 124006, 2015. Disponível em: https://io pscience.iop.org/article/10.1088/0264-9381/32/12/124006. Acesso em: 25 de ago. 2021.
- [13] VISSER, Matt. VICTORIA U., Wellington. Jun, 2007. The Kerr spacetime: A Brief introduction. Disponível em: arXiv:0706.0622 (gr-qc). Acesso em: 25 de ago. 2021.
- [14] ADAMO, T. The Kerr-Newman metric: A Review. (Cambridge U., DAMTP), E.T. Newman(Pittsburgh U.) (Oct 24, 2014). Disponível em: http://www.scholarpedia.org/article/Kerr-Newman_metric. Acesso em: 25 ago 2021.
- [15] MÉTRICA DE KERR-NEWMAN. In: WIKIPÉDIA, a enciclopédia livre. Flórida: Wikimedia Foundation, 2020. Disponível em: https://pt.wikipedia.org/w/index.php?title=M%C3%A9trica_de_Kerr-Newman&oldid=59225978. Acesso em: 31 ago. 2021.
- [16] NORDEBO, J. The Reissner-Nordström metric. 2016. Disponível em: https://www.diva-portal.org/smash/get/diva2:912393/FULLTEXT01.pdf. Acesso em: 01 set. 2021.
- [17] MÉTRICA DE REISSNER-NORDSTRÖM. In: WIKIPÉDIA, a enciclopédia livre. Flórida: Wikimedia Foundation, 2020. Disponível em: https://pt.wikipedia.org/w/index.php?title=M%C3%A9trica_de_Reissner-Nordstr%C3%B6m&oldid=59084619. Acesso em: 18 ago. 2021.
- [18] LaTex, A document preparation system. Disponível em: https://www.latex-project.org/.
- [19] GitHub, Inc. Disponível em: https://github.com/.

Referências 32

[20] SYMPY, Documentation. Disponível em: https://docs.sympy.org/latest/modu les/plotting.html.

- [22] SINGULARIDADE DO ANEL. n: WIKIPÉDIA, a enciclopédia livre. Flórida: Wikimedia Foundation, 2020. Disponível em: https://en.wikipedia.org/w/index.php?title=Ring_singularity&oldid=1030737229. Acesso em: 20 set. 2021.
- [23] Repositório Larissa-degen/TCC-Buracos-Negros. Disponível em: https://github.com/Larissa-degen/TCC-Buracos-Negros.

A Código Fonte

Para mais informações, o código fonte Python e o documento desse TCC estão disponíveis no repositório público GitHub "Larissa-degen/TCC-Buracos-Negros" [23].

A.1 Código Fonte dos Gráficos de Horizonte de Eventos de Schwarszchild

A.2 Código Fonte dos Gráficos de Horizonte de Eventos e Ergosfera de Kerr

```
from sympy import *

from sympy.plotting.plot import plot_parametric

def figura_Kerr(M, a):

theta = Symbol('theta')

r_erg_m = M - sqrt(M**2 - (a**2)*(cos(theta)**2))

r_erg_p = M + sqrt(M**2 - (a**2)*(cos(theta)**2))

r_hor_m = M - sqrt(M**2 - a**2)
```

```
r hor p = M + sqrt(M**2 - a**2)
      p = plot_parametric((r_erg_m*sin(theta), r_erg_m*cos(theta)),
                            (r hor m*sin(theta), r hor m*cos(theta)),
10
                            (r_hor_p*sin(theta), r_hor_p*cos(theta)),
                            (r_erg_p*sin(theta), r_erg_p*cos(theta)),
12
                            (theta, 0, 2*pi), aspect_ratio=(1, 1), xlim
                               =[-10, 10], \text{ ylim} = [-7, 7],
                            xlabel="x", ylabel="z", legend=True,
14
                            title="Kerr, M={}, a={} \\n".format(M, a), size
                               =(8, 8), show=False)
      p[0]. line color = 'blue'
      p[0].label = 'erg-'
      p[1].line\_color = 'green'
      p[1].label = 'hor-'
20
      p[2].line_color = 'orange'
      p[2].label = 'hor+'
      p[3].line_color = 'red'
      p[3].label = 'erg+'
      p.show()
  figura_Kerr (4.2, 4.0)
26 figura Kerr (4.2, 3.3)
```

A.3 Código Fonte dos Gráficos de Horizonte de Eventos e Ergosfera de Kerr-Newman

```
(theta, 0, 2*pi), aspect_ratio=(1, 1), xlim
                                =[-10, 10], \text{ ylim} = [-8.5, 8.5],
                            xlabel="x", ylabel="z", legend=True,
                            title="Kerr-Newman, M={}, a={}, Q={}\n"
                                format(M, a, Q), size = (8, 8), show=False)
      p[0].line\_color = 'blue'
16
      p[0].label = 'erg-'
      p[1].line_color = 'green'
18
      p[1].label = 'hor-'
      p[2].line_color = 'orange'
      p[2].label = 'hor+'
      p[3].line\_color = 'red'
22
      p[3].label = 'erg+'
      p.show()
      figura_Kerr_Newman(4.2, 3.0, 2.0)
      figura\_Kerr\_Newman (4.2, 2.0, 2.0)
26
      figura Kerr Newman (4.2, 3.0, 2.9)
```

A.4 Código Fonte dos Gráficos de Horizonte de Eventos de Reissner-Nordström

```
1 from sympy import *
  from sympy.plotting.plot import plot_parametric
3 def figura_Reissner_Nordstrom (M, Q):
       theta = Symbol('theta')
       r_hor_m = M - sqrt(M**2 - Q**2)
       r_{p} = M + sqrt(M**2 - Q**2)
       p = plot_parametric((r_hor_m*sin(theta), r_hor_m*cos(theta)), (
           r_hor_p*sin(theta), r_hor_p*cos(theta)),
                              (theta, 0, 2*pi), aspect\_ratio = (1, 1), xlim
                                  =[-10, 10], \text{ ylim} = [-10, 10],
                              \verb|xlabel| = "x" \;, \quad \verb|ylabel| = "z" \;, \quad \verb|legend| = True \;,
                              title="Reissner-Nordstr m, M={}, Q={}\n".
                                  format(M, Q), size = (8, 8),
                              show=False)
11
       p[0]. line_color = 'blue'
       p[0].label = 'hor-'
13
```

```
p[1].line_color = 'red'
p[1].label = 'hor+'
p.show()

figura_Reissner_Nordstrom(4.2, 2.0)
figura_Reissner_Nordstrom(4.2, 3.9)
```