Признаки сходимости рядов

Задача 1. Докажите следующие признаки сходимости:

- а) (Признак сравнения Вейерштрасса) Пусть $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ ряды с неотрицательными членами. Пусть найдётся такой номер k, что при всех n > k, $n \in \mathbb{N}$ будет выполнено неравенство $b_n \geqslant a_n$. Тогда если $\sum_{n=1}^{\infty} b_n$ сходится, то $\sum_{n=1}^{\infty} a_n$ сходится; если $\sum_{n=1}^{\infty} a_n$ расходится, то $\sum_{n=1}^{\infty} b_n$ расходится.
- **б)** (Признак д'Аламбера) Пусть члены ряда $\sum_{n=1}^{\infty} a_n$ положительны, и существует предел $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = q$. Тогда если q<1, то ряд сходится, а если q>1, то ряд расходится. Что можно сказать о сходимости ряда, если q = 1?
- в) (Признак Коши) Пусть члены ряда $\sum_{n=1}^{\infty} a_n$ неотрицательны, и существует предел $\lim_{n\to\infty} \sqrt[n]{a_n} = q$. Тогда если q<1, то ряд сходится, а если q>1, то ряд расходится. Что можно сказать о сходимости ряда, если q = 1?
- **r)** ($\mathit{Tелескопический признак}$) Пусть последовательность a_n неотрицательна и монотонно невозрастает. Тогда ряд $\sum_{n=1}^{\infty} a_n$ сходится или расходится одновременно с рядом $\sum_{n=1}^{\infty} 2^n a_{2^n}$.

Задача 2. Приведите пример сходящегося ряда с положительными членами, к которому применим признак Коши, но не применим признак д'Аламбера. Бывает ли наоборот?

Задача 3. Исследуйте ряды на сходимость:

a)
$$\sum_{n=1}^{\infty} \frac{1}{2n-1};$$
 6) $\sum_{n=1}^{\infty} \frac{\sin nx}{2^n};$ B) $\sum_{n=1}^{\infty} \frac{\cos x^n}{n^2};$ r) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!};$ μ) $\sum_{n=1}^{\infty} \frac{n!}{n^n};$

$$6) \quad \sum_{1}^{\infty} \frac{\sin nx}{2^n}$$

$$\mathbf{B}) \sum_{n=1}^{\infty} \frac{\cos x^n}{n^2};$$

$$\Gamma$$
) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$;

д)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$
;

e)
$$\sum_{n=1}^{\infty} \frac{n^2}{(2+1/n)^n}$$
; **ж**) $\sum_{n=2}^{\infty}$

e)
$$\sum_{n=1}^{\infty} \frac{n^2}{(2+1/n)^n}$$
; **ж**) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$; **3**) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$; **4**) $\sum_{n=1}^{\infty} \frac{1}{n^p}$, $p \in \mathbb{R}$; **6**) $\sum_{n=1}^{\infty} \frac{n^k}{a^n}$;

$$\mathbf{u}$$
) $\sum_{n=1}^{\infty} \frac{1}{n^p}$, $p \in \mathbb{R}$;

$$\mathbf{K}) \sum_{n=1}^{\infty} \frac{n^k}{a^n};$$

$$\pi$$
) $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot 2n}$.

Абсолютно и условно сходящиеся ряды

Определение 1. Ряд $\sum_{n=1}^{\infty} a_n$ называется *абсолютно сходящимся*, если сходится ряд $\sum_{n=1}^{\infty} |a_n|$.

Задача 4. Докажите, что абсолютно сходящийся ряд сходится.

Задача 5. Пусть ряд $\sum_{n=1}^{\infty} a_n$ абсолютно сходится. Тогда абсолютно сходится произвольный ряд $\sum_{n=1}^{\infty} b_n$, полученный из него перестановкой слагаемых, причём $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} a_n$.

1 a	<u>1</u> б	1 В	1 Г	2	3 a	3 6	3 B	3 Г	3 д	3 e	3 ж	3	3 и	3 K	3 л	4	5

Определение 2. Ряд $\sum_{n=1}^{\infty} a_n$ называется *условно сходящимся*, если он сходится, но ряд $\sum_{n=1}^{\infty} |a_n|$ расходится.

Задача 6. Пусть ряд $\sum_{n=1}^{\infty} a_n$ сходится условно.

- **а)** Докажите, что ряд, составленный из его положительных (или отрицательных) членов, расходится.
- **б)** (*Теорема Римана*) Докажите, что ряд $\sum_{n=1}^{\infty} a_n$ можно превратить перестановкой слагаемых как в расходящийся ряд, так и в сходящийся с произвольной наперёд заданной суммой.
- **в)** Докажите, что можно так сгруппировать члены ряда $\sum_{n=1}^{\infty} a_n$ (не переставляя их), что ряд станет абсолютно сходящимся.
- **r)*** Пусть $\sum_{n=1}^{\infty} a_n$ ряд, составленный из комплексных чисел, S множество всех перестановок σ натурального ряда, для которых ряд $\sum_{n=1}^{\infty} a_{\sigma(n)}$ сходится. Каким может быть множество $\{\sum_{n=1}^{\infty} a_{\sigma(n)} \mid \sigma \in S\}$?

Задача 7. Пусть s- сумма ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. Найдите суммы

- a) $1 + \frac{1}{3} \frac{1}{2} + \frac{1}{5} + \frac{1}{7} \frac{1}{4} + \frac{1}{9} + \frac{1}{11} \frac{1}{6} + \dots$; 6) $1 \frac{1}{2} \frac{1}{4} + \frac{1}{3} \frac{1}{6} \frac{1}{8} + \frac{1}{5} \frac{1}{10} \frac{1}{12} + \dots$
- в) Переставьте члены ряда $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ так, чтобы он стал расходящимся.

Задача 8. Существует ли такая последовательность (a_n) , $a_n \neq 0$ при $n \in \mathbb{N}$, что ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} \frac{1}{n^2 a_n}$ сходятся? Можно ли выбрать такую последовательность из положительных чисел?

Задача 9*. Существует ли такая последовательность (a_n) , что ряд $\sum_{n=1}^{\infty} a_n$ сходится, а ряд $\sum_{n=1}^{\infty} a_n^3$ расходится?

Задача 10*. Пусть функция $f \colon \mathbb{R} \to \mathbb{R}$ такова, что для любого сходящегося ряда $\sum_{n=1}^{\infty} a_n$ ряд $\sum_{n=1}^{\infty} f(a_n)$ сходится. Докажите, что тогда найдётся такое число $C \in \mathbb{R}$, что f(x) = Cx в некоторой окрестности нуля.

6 a	6	6 B	6 Г	7 a	7 б	7 B	8	9	10