

Inference

MAP

Tractable MAP Problems

Correspondence / data association

$$X_{ij} = \begin{cases} 1 & \text{if imatched to j} \\ 0 & \text{otherwise} \end{cases}$$

$$\theta_{ij}$$
 = quality of "match" between i and i

- Find highest scoring matching
 - maximize $\Sigma_{ij} \theta_{ij} X_{ij}$
 - subject to mutual exclusion constraint
- Easily solved using matching algorithms
- Many applications
 - matching sensor readings to objects
 - matching features in two related images
 - matching mentions in text to entities

Daphne Koller

3D Cell Reconstruction

 Matching weights: similarity of location and local neighborhood appearance

Duchi, Tarlow, Elidan, and Koller, NIPS 2006. Amat, Moussavi, Comolli, Elidan, Downing, Horowitz, Journal of Strurctural Biology, 2006.

Mesh Registration

 Matching weights; similarity of location and local neighborhood appearance

[Anguelov, Koller, Srinivasan, Thrun, Pang, Davis, NIPS 2004]

Associative potentials

• Arbitrary network over binary variables using only singleton θ_i and supermodular pairwise potentials θ_{ij}

- Exact solution using algorithms for finding minimum cuts in graphs
- Many related variants admit efficient exact or approximate solutions
 - Metric MRFs

Example: Depth Reconstruction

Scharstein & Szeliski, "High-accuracy stereo depth maps using structured light" Proc. IEEE CVPR 2003

Cardinality Factors

- A factor over arbitrarily many binary variables $X_1, ..., X_k$
- Score($X_1, ..., X_k$) = $f(\Sigma_i X_i)$
- Example applications:
 - soft parity constraints
 - prior on # pixels in a given category
 - prior on # of instances assigned to a given cluster

Sparse Pattern Factors

- A factor over variables X₁,...,X_k
 - Score($X_1, ..., X_k$) specified for some small # of assignments $x_1, ..., x_k$
 - Constant for all other assignments
- Examples: give higher score to combinations that occur in real data
 - In spelling, letter combinations that occur in dictionary
 - $-5 \! \! \times \! \! 5$ image patches that appear in natural images

	A	В	С	D	score
_	0	0	0	0	_
	0	0	0	1	
	0	0	1	0	
	0	0	1	1	
	0	1	0	0	
	0	1	0	1	
	0	1	1	0	
	0	1	1	1	
	1	0	0	0	
7	1	0	0	1	
J	1	0	1	0	
	1	0	1	1	
	1	1	0	0	
	1	1	0	1	
	1	1	1	0	
	1	1	1	1	
					Daphne Kolle

Convexity Factors

- Ordered binary variables X₁,...,X_k
- Convexity constraints

- Examples:
 - Convexity of "parts" in image segmentation
 - Contiguity of word labeling in text
 - Temporal contiguity of subactivities

Summary

- Many specialized models admit tractable MAP solution
 - Many do not have tractable algorithms for computing marginals
- These specialized models are useful
 - On their own
 - As a component in a larger model with other types of factors