3.8 Extrema of Functions of More Than One Variable

CASES

- 1. Relative extrema of a function. Solve for critical points Then, use second-derivative test.
- 2. Constrained-optimization. Use the Lagrange method!

Extrema of functions of more than one variable

A function f of two variables x and y is said to have a relative maximum *value* at the point (x_0, y_0) if there exists an open disk

$$B((x_0,y_0);r)$$

such that for all (x, y) in **B** $f(x_0, y_0) \ge f(x, y)$.

relative maximum value of 4 at (0,0).

A function f of two variables x and y is said to have a relative minimum *value* at the point (x_0, y_0) if there exists an open disk

$$B((x_0,y_0);r)$$

such that for all (x, y) in **B** $f(x_0, y_0) \leq f(x, y)$.

Thus, f has a relative minimum value of 1 at (0,0).

A function f of two variables x and y is said to have an absolute maximum value on its domain D in the xy-plane if there is some point (x_0, y_0) in D such that for all (x, y) in D,

$$f(x_0,y_0) \ge f(x,y).$$

In this case, $f(x_0, y_0)$ is the *absolute maximum* value of f on D.

A function f of two variables x and y is said to have an absolute minimum value on its domain D in the xy-plane if there is some point (x_0, y_0) in D such that for all (x, y) in D,

$$f(x_0, y_0) \leq f(x, y)$$
.

In this case, $f(x_0, y_0)$ is the absolute minimum value of f on D.

 $f(x, y) = 4 - x^2 - y^2$.

f has an absolute maximum value of 4 at (0,0).

f has no absolute minimum value.

f has an absolute minimum value of 1 at (0,0).

f has no absolute maximum value.

Remarks:

A maximum or minimum value is also called an extremum.

If the domain of a function f is either an open disk or the entire xy plane, an absolute extremum must also be a relative extremum.

Theorem If f(x, y) exist at all points in some open disk $B((x_0, y_0); r)$ and if f has a relative extremum at (x_0, y_0) , then if

$$f_x(x_0, y_0)$$
 and $f_y(x_0, y_0)$ exist, $f_x(x_0, y_0) = 0$ and $f_y(x_0, y_0) = 0$.

Remarks:

1. If

$$f_x(x_0, y_0) = 0$$
 and $f_y(x_0, y_0) = 0$

then f does not necessarily have a relative extremum value at (x_0, y_0) .

A critical point at which there is no relative extrema is called a saddle point of the graph of the function.

8

If f(x, y) exists at all points in some open disk $B((x_0, y_0); r)$, then (x_0, y_0) is a *critical point* of f if one of the following conditions holds:

- 1. $f_x(x_0, y_0) = 0$ and $f_y(x_0, y_0) = 0$.
- 2. $f_x(x_0, y_0)$ or $f_y(x_0, y_0)$ does not exist.

9

Example Find the critical points of the indicated function.

a.
$$f(x, y) = x^3 + y^2 - 6x^2 + 6y - 1$$

b. $f(x, y) = e^{xy}$
c. $f(x, y) = x^3 - 3x^2y - y^2$

solution:

a.
$$f(x, y) = x^3 + y^2 - 6x^2 + 6y - 1$$

 $f_x(x, y) = 3x^2 - 12x = 0$
 $\Rightarrow 3x(x - 4) = 0$
 $\Rightarrow x = 0 \text{ or } x = 4$
 $f_x(x, y) = 2y + 6 = 0 \Rightarrow y = -3$

ans.
$$(0,-3)$$
 and $(4,-3)$

Ĺ 10

b.
$$f(x, y) = e^{xy}$$

 $f_x(x, y) = ye^{xy} = 0$
 $\Rightarrow ye^{xy} = 0$
 $\Rightarrow y = 0$
 $f_y(x, y) = xe^{xy} = 0$
 $\Rightarrow xe^{xy} = 0$
 $\Rightarrow x = 0$

١, ا

c.
$$f(x,y) = x^3 - 3x^2y - y^2$$

 $f_x(x,y) = 3x^2 - 6xy = 0$
 $\Rightarrow 3x(x - 2y) = 0$
 $\Rightarrow 3x = 0 \text{ or } x - 2y = 0$
 $\Rightarrow x = 0 \text{ or } x = 2y$
 $f_y(x,y) = -3x^2 - 2y = 0$
Case 2. $x = 2y$.
 $-3(2y)^2 - 2y = 0$
 $-2y(6y+1) = 0$
Case 2.1. $y = 0$.
 $x = \sqrt{y}$
 $x = 0$
Case 2.2. $y = -1/6$.
 $x = 2(\frac{-1}{6}) = \frac{1}{3}$

ans.
$$(0,0)$$
 and $(\frac{-1}{3},\frac{-1}{6})$

12

Theorem (Second Derivative Test) Let f be a function of two variables such that f and its first and second-order partial derivatives are continuous on some open disk B((a,b);r).

Suppose further that $f_x(a,b) = 0$ and $f_y(a,b) = 0$.

Let
$$D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^2$$
. Then

a. f has a relative minimum value at (a,b)

if
$$D(a,b) > 0$$
 and $f_{xx}(a,b) > 0$ (or $f_{yy}(a,b) > 0$).

b. f has a relative maximum value at (a,b)

if
$$D(a,b) > 0$$
 and $f_{xx}(a,b) < 0$ (or $f_{yy}(a,b) < 0$).

c. f(a,b) is not a relative extremum, but the graph of f has a saddle point at (a,b,f(a,b))

if
$$D(a,b) < 0$$
.

d. No conclusion regarding relative extrema can be made if D(a,b)=0.

Remark: If $f_{xy}(a,b) = f_{yx}(a,b)$, the expression

$$D(a,b)$$
 is the value of

$$\begin{vmatrix} f_{xx}(a,b) & f_{xy}(a,b) \\ f_{yx}(a,b) & f_{yy}(a,b) \end{vmatrix}$$

which is called the *Hessian* (or *discriminant*) of f.

[14]

Example Let $f(x, y) = x^3 + y^2 - 6x^2 + 6y - 1$.

Determine the relative extrema of f, if there is any and locate any saddle point of the graph of f.

solution:
$$f_x(x, y) = 3x^2 - 12x$$
 $f_y(x, y) = 2y + 6$

Critical	$f_{xx}(x,y)$	$f_{yy}(x,y)$	$f_{xy}(x,y)$	$f_{xx}f_{yy}$	conclusion
point	=6x-12	= 2	= 0	$-(f_{xy})^2$	
(0,-3)	-12	2	0	-24	f has no relative extremum
(4,-3)	12	2	0	24	f has a relative minimum

f has a relative minimum value of

$$f(4,-3) = 4^3 + (-3)^2 + 6(4)^2 + 6(-3) - 1 = -42$$

(0,-3,-10) is a saddle point of the graph of f.

Example Let $f(x, y) = e^{xy}$.

Determine the relative extrema of f, if there is any and locate any saddle point of the graph of f.

solution:
$$f_{x}(x, y) = ye^{xy}$$
 $f_{y}(x, y) = xe^{xy}$

Critical point	$f_{xx}(x,y) = y^2 e^{xy}$		$f_{xy}(x,y) = e^{xy}(xy+1)$	$f_{xx}f_{yy}$ $-(f_{xy})^2$	Conclu- sion
(0,0)	0	0	1	-1	f has no relative extremum

(0,0,1) is a saddle point of the graph of f.

(4

Example Let $f(x, y) = x^3 - 3x^2y - y^2$.

Determine the relative extrema of f, if there is any and locate any saddle point of the graph of f.

solution:
$$f_x(x, y) = 3x^2 - 6xy f_y(x, y) = -3x^2 - 2y$$

	$f_{xx}(x,y)$				conclusion	
(0,0)	=6x-6y	= -2 -2	=-6x	$\frac{-(f_{xy})^2}{0}$	No conclucion can be made.	!
$\left(\frac{-1}{3}, \frac{-1}{6}\right)$	-1	-2	2	-2	f has no relati extremum	ve

 $\left(\frac{-1}{3}, \frac{-1}{6}, \frac{-1}{108}\right)$ is a saddle point of the graph of f.

17

Absolute Extrema on a Closed and Bounded Region

A region is *bounded* if it is a sub-region of a closed disk or closed ball.

1. Let

$$S = \{(x, y) \in \mathbb{R}^2 : x \leq 0\}$$

Then S is not bounded since no closed disk can contain S.

18

2. Let

 $R = \{(x, y) \in R^2 : 0 < x < 2, 1 < y < 3\}$

Then R is bounded.

A closed region is one that contains its boundary.

Theorem 2.9.3. (Extreme Value Theorem or

Let R be a closed bounded region in the xy-plane and let f be a continuous function on R. Then f has an absolute maximum and an absolute minimum value on R.

Remarks:

If a function f satisfies the EVT, then an absolute extremum occurs either at a critical point of f in the interior of R or at a boundary point of R.

LAGRANGE MULTIPLIERS

Theorem Suppose f and g are functions of xand y with continuous first partial derivatives. If fhas a relative extremum value at the point (x_0, y_0) subject to the constraint

and $\nabla g(x_0,y_0)\neq 0$, then there is a constant λ such that

 $\nabla f(x_0, y_0) + \lambda \nabla g(x_0, y_0) = 0.$

Steps in finding the relative extrema of a function f of x and y subject to the constraint g(x,y)=0

using the method of Lagrange multipliers:

1. Form the auxiliary function F of three variables and where

$$F(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

2. Set the first partial derivatives of F to zero and obtain the system of equations

$$F_{x}(x, y, \lambda) = 0$$

$$F_{y}(x, y, \lambda) = 0$$

$$F_{\lambda}(x, y, \lambda) = 0$$

3. Find the critical points of F by solving the system of equations in step 2.

4. Among the first two coordinates of a critical point of F are the values of x and ythat give the desired relative extrema.

If f(x, y) = xy use Lagrange Example multipliers to find the relative extrema of f subject to the constraint

solution:
$$\frac{x^2}{8} + \frac{y^2}{2} = 1$$

$$f(x, y) = xy \qquad g(x, y) = \frac{x^2}{8} + \frac{y^2}{2} - 1$$

$$F(x, y, \lambda) = xy + \lambda \left(\frac{x^2}{8} + \frac{y^2}{2} - 1\right)$$

$$F_x(x, y, \lambda) = y + \frac{x}{4}\lambda \qquad \Rightarrow y + \frac{x}{4}\lambda = 0 \qquad (1)$$

$$F_y(x, y, \lambda) = x + y\lambda \qquad \Rightarrow x + y\lambda = 0 \qquad (2)$$

$$F_\lambda(x, y, \lambda) = \frac{x^2}{8} + \frac{y^2}{2} - 1 \Rightarrow \frac{x^2}{8} + \frac{y^2}{2} - 1 = 0 \qquad (3)$$

$$\lambda = \frac{-4y}{x}$$
 From (2),

$$y + \frac{x}{4}\lambda = 0 \qquad (1)$$

$$x + y\lambda = 0 \qquad (2)$$

$$x + y \cdot \left(\frac{-4y}{x}\right) = 0$$
$$x^2 - 4y^2 = 0$$

$$v^2 - 1 - 0$$

From (3),

$$\frac{4y^2}{8} + \frac{y^2}{2} - 1 = 0$$

$$\frac{y^2}{2} + \frac{y^2}{2} - 1 = 0$$

$$y^2 - 1 = 0$$

$$y = \pm 1$$

Critical point	f(x,y)=xy
(2,1)	2
(2,-1)	-2
(-2,1)	-2
(-2,-1)	2

Hence, f has a relative maximum value of 2 at

(2,1) and (-2,-1)

while f has a relative minimum value of -2 at (2,-1) and (-2,1).

Use Lagrange multipliers to find the Example shortest distance from the point (1,-1,-1) to the plane given by x + 4y + 3z = 2.

solution:

We want to minimize

$$w(x, y, z) = \sqrt{(x-1)^2 + (y+1)^2 + (z+1)^2}$$

subject to the constraint

$$g(x, y, z) = x + 4y + 3z - 2 = 0$$

We want to minimize

$$f(x, y, z) = (x-1)^2 + (y+1)^2 + (z+1)^2$$

 $F(x, y, z, \lambda) = (x-1)^2 + (y+1)^2 + (z+1)^2 + \lambda(x+4y+3z-2)$ $F_x(x, y, z, \lambda) = 2(x-1)^2 + \lambda$ $\Rightarrow 2(x-1)^2 + \lambda = 0$

$$F_{\mathbf{y}}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \boldsymbol{\lambda}) = 2(\mathbf{y} + 1)^2 + 4\boldsymbol{\lambda}$$
 $\Rightarrow 2(\mathbf{y} + 1)^2 + 4\boldsymbol{\lambda} = 0$

$$F_z(x, y, z, \lambda) = 2(z+1)^2 + 3\lambda$$
 $\Rightarrow 2(z+1)^2 + 3\lambda$

$$F_{\lambda}(x, y, z, \lambda) = x + 4y + 3z - 2$$
 $\Rightarrow x + 4y + 3z - 2 = 0$

The only critical point of f is $\left(\frac{17}{13}, \frac{3}{13}, \frac{-1}{13}\right)$.

$$\mathbf{w}\left(\frac{17}{13}, \frac{3}{13}, \frac{-1}{13}\right) = \sqrt{\left(\frac{17}{13} - 1\right)^2 + \left(\frac{3}{13} + 1\right)^2 + \left(\frac{-1}{13} + 1\right)^2} = \sqrt{\frac{416}{13}}$$
$$= \sqrt{\left(\frac{4}{13}\right)^2 + \left(\frac{16}{13}\right)^2 + \left(\frac{12}{13}\right)^2} = \frac{\sqrt{416}}{13}$$