Monday Reading Assessment: Unit 1 and kinematics

Prof. Jordan C. Hanson

September 16, 2019

1 Chapter	3.	1
-----------	----	---

	•
1.	In your own words: does a car odometer measure distance traveled or displacement? Why or why not?
2.	Suppose a system has a velocity vector $\vec{v}(t) = at\hat{i} + b\hat{j}$, where t is the time. What would be the correct formula for $\vec{v}(t)$ if the system simply doubled in velocity, regardless of the time?
3.	Suppose a system has a velocity vector $\vec{v}(t) = at\hat{i} + b\hat{j}$, where t is the time. What would be the correct formula for $\vec{v}(t)$ if the system reversed the direction of its velocity, regardless of the time?
4.	Suppose a system has a speed $v(t) = at + b$, where t is the time. What are the units of the constant a? If $b = at + b$, and $v(4) = 8$ m/s, what is the value of a?
5.	If you go between two toll-road checkpoints and your average velocity is found to be higher than the speed limit, is it possible that your <i>instantaneous</i> speed was always below the speed limit?