SLR-FM-459

Seat	Set	D
No.	Set	

			B.E. (Part – II) (CGPA) Exa Electrical Er POWER Q	ngine	ering	
			uesday,26-11-2019 M To 05:30 PM		Max	. Marks: 70
Instr	uctio	ns: ′	 Q. No. 1 is compulsory and sl book. 	nould	be solved in first 30 minutes	s in answer
		:	2) Figures to the right indicate fu	II marl	KS.	
			MCQ/Objective T	ype	Questions	
			inutes	_		Marks: 14
Q.1	Cho sent		the correct alternatives from t	he op	tions and rewrite the	14
	1)	Wł	o. hich one of the following device is the system?	s used	I for improving the power fa	ctor
		a)	Shunt reactor Series reactor	b) d)	Synchronous phase modif Asynchronous reactor	ier
	2)		unt compensation in EHV line is Improve voltage profile Improve stability	resort b) d)		
	3)	The a) c)	e main reason for generation of I fluctuating load mechanical vibrations	narmo b) d)	nics in a transformer could poor insulation saturation of core	be
	4)	vol	nich fractional pitch will eliminate tage waveform of an alternator? 6/7	the so	eventh harmonic from the	
		c)	5/6	d)	None of the above	
	5)	Wh	nat is the actuating quantity for th	e rela	ys?	
		a)	Magnitude	p)	Frequency	
	c)	c)	Phase angle	d)	All of these	
	6)	a)	tive filters are generally made up L circuits	b)	RL circuits	
		c)	RLC circuits	ď)	RC circuits	
	7)	all	ility of circuit to respond to a cert other frequencies is called			gainst
		a) c)	Resonance Selectivity	b) d)	Discrimination Quality	
	8)		rmonics cause which of the follo		Nuisanas Trianias	
		a) c)	All the Options are Correct Capacitor Failure	b) d)	Nuisance Tripping Heating in windings	
	9)		Itage dips cannot be caused by			
		a) c)	Local and Remote faults Switching on of Large Loads	d) p)	Inductive Loading Capacitive Switching	

SLR-FM-459

Set P

- 10) Which of the following is not considered as good power quality voltage?
 - a) Supplied at Constant Velocity
 - b) Having a Constant sine wave with fundamental component
 - c) Power Supply is more compared to demand
 - d) Has a constant RMS Value unchanged with time
- 11) Which one of the following cannot be possible with voltage surges?
 - a) Flicker in Incandescent Lamps
 - b) Tripping Of Sensitive Equipment
 - c) Damaging to insulation
 - d) Damage to electronic components
- 12) Which of the following is long-term (hours-long) voltage sags caused by system overload?
 - a) Brown out

b) Black out

c) Voltage surge

- d) Voltage dip
- 13) Which one of the following is waveform distortion?
 - a) Notching

b) Electrical noise

c) All the options are correct

- d) DC offset
- 14) Continuous and rapid variations in the load current magnitude which causes voltage variations.
 - a) Flicker

b) Voltage distortion

c) Harmonics

d) Voltage sag

SLR-FM-459

Seat	Set	D
No.	Set	

		B.E. (Part – II) (CGPA) Examination Nov/Dec-2019 Electrical Engineering POWER QUALITY	
		re: Tuesday,26-11-2019 Max. Marks 30 PM To 05:30 PM	s: 56
Instru	uctio	ns: 1) All questions are compulsory. 2) Figures to the right indicate full marks.	
		Section – I	
Q.2	Atte	empt any four.	16
	a) b) c)	Explain different methods of preventing fault. Explain power quality susceptibility criteria. With neat waveform, explain how voltage sag is produced during starting of induction motor.	
	d) e)	Explain various causes of transient overvoltage in a power system. What is mean by static transfer switches?	
Q.3	Atte	empt any two.	12
	a)	Explain with neat diagram transients produced by: 1) Single capacitor switching 2) Back to back capacitor switching	
	b)	Define, explain the causes and effects of the following power quality	
		problems: 1) Voltage sag 2) Flicker	
	c)	With the help of flow chart explain the procedure of power quality problem evaluation.	
		Section – II	
Q.4	Atte	empt any four	16
7	a)	Define and write equation of following harmonic indices 1) Individual Harmonic Distortion 2) Total Harmonic Distortion 3) Total Demand Distortion	
	b)	Define power quality monitoring. Enlist various power quality monitoring equipment's.	
	c)	Explain with block diagram power quality monitoring system along with compensating equipment.	
	d)	Explain with neat circuit diagram and phasor diagram; principle of power factor correction.	
	e)	Explain various effects of harmonics in a power system	
Q.5		empt any two.	16
	a)	Define grounding. Explain reasons of grounding. Explain different problems associated with wiring and grounding.	
	b)	Explain with neat diagram operation of shunt active filter and series passive filter used for harmonic mitigation.	
	c)	Explain with neat diagram following grounding systems:1) Properly grounded electrical system2) Isolated grounded electrical system	