Dennis Kuzminer CSCI-UA 310-001 PS8

4.

- a. If two strings will have the same hash this means that they are (most likely) the same. The algorithm creates a "window" for each substring of length t in a and b and hashes the substrings. Given the same seed and hash function, if some $r_i == s_i$ then the hash will be the same.
- b. As Karp/Rubin uses ε -universal hashing, meaning ε =(t-1)/m $|r_i|, |s_i| = n t + 1$ Therefore, the maximum $Pr[h_{\lambda}(a) = h_{\lambda}(b), a \neq b] \leq (n t + 1)(n t + 1)(\frac{t-1}{m}) \rightarrow (n t + 1)^2(\frac{t-1}{m})$
- c. If we store the value of all r_i in a hashmap/hashtable, we can get an expected constant lookup time. So the only work that would need to be done is to assign the key-value pairs/create a hashtable for all r_i . This means we can simply loop through s_i and lookup each value in the hashtable with expected O(1) time.