Pleneum 19/4

2)
$$\begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & 3 \\ 0 & 3 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Hodon! $\widetilde{\mathbb{T}} = \mathbb{I} + \mathbb{I}$ $\widetilde{\mathbb{T}} = \frac{1}{3}\widetilde{\mathbb{I}}$ $\widetilde{\mathbb{T}} = \mathbb{I} - 2\widetilde{\mathbb{I}}$

With samme op $pi \ \mathbb{I}_2$! $E_1 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ $E_2 = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ $E_3 = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} = E_1^{-1} E_1^{-1} E_3^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 3 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix} = E_1^{-1} E_1^{-1} E_3^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 3 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 3 \end{bmatrix}$$

$$2b) A = \begin{bmatrix} 2 & 1 & -1 & 1 \\ 1 & -1 & 1 & 2 \\ 2 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 \\ 0 & 3 & -3 \\ 0 & 3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 \\ 0 & 3 & -3 \\ 0 & 0 & 3 \end{bmatrix} = B$$

$$0$$

$$det(B) = 1 \cdot 3 \cdot 3 = 9$$

$$det(A) = - det(B) = -\frac{9}{4}$$
9) Brule Teorem 4. 9. /0 til å vise:

Radene til A av lin. avh.

$$det(A) = 0$$
Bavis: La A være $n \times n$ matrise og anta at A har
lin. avh. rader. Kall radene i A for $\overline{a_1}, \overline{a_2}, ..., \overline{a_n}$

Da fins det $c_1, c_2, ..., c_n$ s.a: $\sqrt{at}, \overline{a_n}$

The men minst in $c_i \neq 0$ der $i \in \{1, ..., n\}$.

Set 4.6.1:

In worth:
$$c_1 = 0$$

$$c_1 = 0$$

$$c_2 = 0$$

$$c_3 = 0$$

$$c_4 = 0$$

$$c_4 = 0$$

$$c_4 = 0$$

$$c_6 = 0$$

$$c_7 = 0$$

$$c_8 = 0$$

$$c_8$$

H.92 bety det at det(A)=0.

1

Vis dette fra Thm.
$$4.9.12$$
 og Kor. $4.9.18$:

da $A = \begin{bmatrix} \vec{a_1} \\ \vdots \\ \vec{a_n} \end{bmatrix}$. Fra Kor. $4.9.18$, så er det $(A) = \det(A^T)$.

 $= \det(\begin{bmatrix} \vec{a_1}^T & \vec{a_2}^T & \cdots & \vec{a_n}^T \end{bmatrix})$. Da har matriseligningen

 $A^T \vec{x} = \vec{O}$

des. $\begin{bmatrix} \vec{a_1}^T & \vec{a_2}^T & \cdots & \vec{a_n}^T \end{bmatrix} \vec{x}^{\dagger} = \vec{O}$
 $X_1 \vec{a_1}^T + X_2 \vec{a_2}^T + \cdots + X_n \vec{a_n}^T = \vec{O}$

en bisning der minst $X_1 \neq 0$ fra $\begin{pmatrix} \vec{a_1} & \vec{a_2} & \cdots & \vec{a_n} \\ \vec{a_1} & \vec{a_2} & \cdots & \vec{a_n} \\ \vec{a_n} & \vec{a_n} & \vec{a_n} & \vec{a_n} \\ \end{bmatrix}$

Fra Thm. $4.9.12$ (iv) oy (i)

 X_1, \dots, X_n
 $\det(A^T) = 0$, near da (i) $\det(A) \neq 0$
 $\det(A) = 0$.

Dut: (ix) $A\vec{x} = \vec{0}$ have hum sorning $\vec{x} = 0$

(ix) $A\vec{x} = \vec{0}$ have hum sorning $\vec{x} = 0$

(ix) $A\vec{x} = \vec{0}$ have hum sorning $\vec{x} = 0$

Hoordan kan I transformeres ti ($I_i^T(\vec{x})$ vha. radopensjoner? Gang rad i med x_i og legg til multippel (x_j vadj, for alle $j \neq i$) til rad i. Kun forvste operasjon endrer determinanten med x_i (faltor).

 $\det \left(T_{i}(\vec{x}) \right) = \det \left(T_{i}^{T}(\vec{x}) \right) = x_{i} \det \left(T_{i} \right) = x_{i} \cdot 1 = x_{i}$

b) $VS: AI_i(\vec{x}) = A_i(\vec{b}) der A\vec{x} = \vec{b}$

Viser of å vise at hver søyle i $AI_i(\vec{x})$ er lik tilsv. søyle i $A_i(\vec{b})$. 2 muligheter:

i) Søyle j, der j \neq i: Søyle j i AI; (\vec{x}) er A ganget meth j'te søyle i I; (\vec{x}) (def. matrisemultiplikasjon). meth j'te søyle i I; (\vec{x}) er \vec{e}_j , så AI; (\vec{x}) = $\vec{A}\vec{e}_j$ = j'te søyle i \vec{A}

j'te søyle i $A_i(\vec{b})$ er jo bare j'te søyle i A.

De to søylene er like!

iii) Soyle i: Soyle i fra $AI_{i}(\vec{x})$ er A ganget med soyle i fra $I_{i}(\vec{x})$. i'the soyle i $I_{i}(\vec{x})$ ev $\vec{x} = b$ Soyle i fra $AI_{i}(\vec{x}) = A\vec{x} = \vec{b}$ Soyle i fra $A_{i}(\vec{b})$ er \vec{b} per def.

De to soylene er like! = b Alle soylene i matrisene er like. = b Matrisene er like.

C) det $(A_{i}(\vec{b})) = det(AI_{i}(\vec{x})) = det(A) det(I_{i}(\vec{x}))$ $= det(A) \times i$ (a) $(D_{i}$ there på det (A); A inverferbar, så $(A) \neq 0$) $\times i = \frac{det(A_{i}(\vec{b}))}{det(A)}$

4.10 :

2b)
$$A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 0 & 1 \\ -1 & -1 & 2 \end{bmatrix}$$

Egenverdier: $det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & -3 & 1 \\ -2 & \lambda & -1 \\ 1 & 1 & \lambda - 2 \end{vmatrix}$
 $= (\lambda - 1) \begin{vmatrix} \lambda & -1 \\ 1 & \lambda - 2 \end{vmatrix} + 3 \begin{vmatrix} -2 & -1 \\ 1 & \lambda - 2 \end{vmatrix} + \begin{vmatrix} -2 & \lambda \\ 1 & \lambda - 2 \end{vmatrix}$
 $= (\lambda - 1) (\lambda^2 - 2\lambda + 1) + 3 (-2\lambda + 4 + 1) - 2 - \lambda$
 $= (\lambda - 1) (\lambda^2 - 2\lambda + 1) + 3 (-2\lambda + 4 + 1) - 2 - \lambda$
 $= \lambda^3 - 3\lambda^2 - 4\lambda + 12$

Given: $\lambda = \lambda = 0$ and $\lambda = 0$ and