MA 2631 Assignment 5

Hubert J. Farnsworth

September 20, 2021

1. Show that if A and B are independent events on a sample space Ω , then also A^c and B are independent.

Answer: Rewriting B as the union of disjoint sets $B = (A \cap B) \cup (A^c \cap B)$,

$$P[B] = P[A \cap B] + P[A^c \cap B] = P[A]P[B] + P[A^c \cap B] \implies P[A^c \cap B] = P[B](1 - P[A]) = P[A^c]P[B].$$

Since $P[A^c \cap B] = P[A^c]P[B]$, A^c and B are independent events.

2. Suppose that A, B and C are independent events on a sample space Ω with $P[A \cap B] \neq 0$. Prove that

$$P[A \cap C | A \cap B] = P[C].$$

Answer:

$$P[A\cap C|A\cap B] = \frac{P[(A\cap C)\cap (A\cap B)]}{P[A\cap B]} = \frac{P[A\cap B\cap C]}{P[A\cap B]} = \frac{P[A]P[B]P[C]}{P[A]P[B]} = P[C].$$

3. Assume that in a family the birth of a boy and a girl is equally likely and that the family has $n \ge 2$ children. Are the events A and B independent?

A: There is at least one boy and at least one girl in the family,

B: There is at most one girl in the family.

Answer: Considering all the 2^n possibilities (by gender) of n children and omitting the two cases where all children are the same gender, $P[A] = (2^n - 2)/2^n$. Considering the one case where there are no girls and the n ways to have exactly one girl out of the n children, $P[B] = (n+1)/2^n$. For $n \ge 2$, $A \cap B$ is the event that of the n children, exactly one is a girl so that $P[A \cap B] = n/2^n$. The events A and B are independent iff

$$P[A \cap B] = P[A]P[B] \iff \frac{n}{2^n} = \frac{2^n - 2}{2^n} \frac{n+1}{2^n} \iff 2^{n-1} = n+1.$$

For n = 2, $2^{n-1} = 2 \neq 3 = n+1$. For n = 3, $2^{n-1} = 4 = n+1$. We will next show by induction that $2^{n-1} > n+1$ for n > 4.

For $n=4, 2^{n-1}=8>5=n+1$. Assume that for some integer $n\geq 4$ that $2^{n-1}>n+1$.

$$2^{(n-1)+1} = 2 \cdot 2^{n-1} > 2 \cdot (n+1) = n+2+n \ge n+2+4 > n+2 = (n+1)+1.$$

Conclude that for $n \ge 4$, $2^{n-1} \ne n+1$ and therefore that $P[A \cap B] = P[A]P[B]$ iff n=3. That is, A and B are independent iff there are n=3 children in the family.

4. Let A, B, C be independent events on a sample space Ω with $P[A] = \frac{1}{2}$, $P[B] = \frac{2}{3}$, and $P[C] = \frac{3}{4}$. Calculate $P[A \cup (B \cap C)]$.

Answer:

$$P[A \cup (B \cap C)] = P[A] + P[B \cap C] - P[A \cap B \cap C] = P[A] + P[B]P[C] - P[A]P[B]P[C] = \frac{1}{2} + \frac{2}{3} \frac{3}{4} - \frac{1}{2} \frac{2}{3} \frac{3}{4} = \frac{3}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}$$

- 5. Consider the probability mass distribution $P[Y=i]=c\cdot 0.1^i$ on the non-negative integers for some constant c.
 - (a) Calculate c.
 - (b) Calculate P[Y = 0] and P[Y > 2].
 - (c) Calculate $P[Y \le 5|Y > 2]$.

Answer:

(a)
$$1 = \sum_{i=0}^{\infty} P[Y = i] = \sum_{i=0}^{\infty} c \cdot 0.1^{i} = \frac{c}{.9} \implies c = 0.9 = \frac{9}{10}.$$
 (b)
$$P[Y = 0] = c \cdot 0.1^{0} = c = 0.9.$$

$$P[Y > 2] = 1 - P[Y \le 2] = 1 - (0.9 + 0.09 + 0.009) = 0.001.$$
 (c)
$$P[Y \le 5|Y > 2] = \frac{P[2 < Y \le 5]}{P[Y > 2]} = \frac{0.9 \cdot (0.1^{3} + 0.1^{4} + 0.1^{5})}{0.001} = 0.999.$$

6. Assume you are flipping a fair coin until head appears the 5th time. Let Y denote the number of tails that occur. Calculate the probability mass distribution of Y.

Answer: The value P[Y = n] for n = 0, 1, 2, ... should reflect the case the there are n tails and 5 heads in n + 5 flips. The position of the 5th heads is then 'fixed' as the last position in the sequence. Then choose n spots out of the remaining n + 4 spots in which the n tails' appear.

$$P[Y = n] = \binom{n+4}{n} \left(\frac{1}{2}\right)^n \left(\frac{1}{2}\right)^5 = \binom{n+4}{n} \frac{1}{2^{n+5}}.$$