Игра по типу сороконожки

Двое играют в следующую простую разновидность покера.

Сначала первый игрок берёт карту из колоды (карта с равными вероятностями может быть красной или чёрной), смотрит на неё. После чего может вскрыться или удвоить ставку. Если ставка удвоена, то второй либо просит показать карту, либо сбрасывает её обратно в колоду. Если карта чёрная, то первый платит второму (1 до удвоения или 2 после удвоения), если красная, то, наоборот, второй платит первому 1 или 2 в зависимости наличия удвоения. Если карта сброшена, то второй игрок платит первому рубль.

1. Как выглядит дерево этой игры?

Ответ:

Вначале природа выбирает, какая карта выпадет. Первый игрок знает о том, какая кар-

Рис. 1

та ему досталась, и решает, удвоить ставку или нет. В свою очередь, второй игрок не знает, какая карта у первого, и решает, вскрываться или нет. Поэтому у второго есть информационное множество.

Предположим, что оба игрока используют смешанные стратегии в управляемых им вершинах, кроме того, второй игрок верит в то, что находится в верхней вершине с вероятностью ω. Вероятности и веры согласованы между собой. Допустим, что первый игрок с ненулевой вероятностью удваивает в обоих случаях, и данные профили стратегий находятся в равновесии.

Какое соотношение на веру ω второго игрока о нахождении его в верхней вершине выполнено?

Om eem:

$$2\omega - 2(1-\omega) = -1$$

Если второй игрок верит, что он находится в верхней вершине с вероятностью ω , и в нижней с вероятностью $1-\omega$ и использует смешанное равновесие, то ему всё равно, как сходить в этом случае. Ожидаемый выигрыш от применения стратегии «вскрыть карты» равен $2\omega - 2(1-\omega)$, от стратегии сбросить - -1.

- 3. Чему равна вера ω второго игрока о нахождении его в верхней вершине? Ответ: из предыдущего $\omega=0.25$.
- 4. Будем считать, что мы находимся в предположениях задачи 2. Пусть вероятность вскрыть карты у второго игрока равна γ , а вероятности повысить удвоить у первого игрока равны α при чёрной карте и β при красной карте (см. рисунок внизу после заданий).

Рис. 2

При каком γ первый игрок будет смешивать свои стратегии при чёрной и красной картах?

Om eem:

Первый игрок будет смешивать свои стратегии, если ожидаемый выигрыш от использования стратегий «удвоить» или «вскрыть» будет одинаковым. Поэтому мы получаем равенства: $-1 = -2\gamma + (1-\gamma)$ для чёрной карты и $1 = 2\gamma + (1-\gamma)$ для красной карты, откуда $\gamma = 2/3$ в первом случае и $\gamma = 0$ во втором.

- 5. Исходя из предыдущей задачи, мы получаем, что первый игрок не будет смешивать свои стратегии в обоих случаях. Так как мы рассматриваем случай, когда он удваивает в каждом из случаев с ненулевой вероятностью логично предположить, что γ = 2/3. Какие значения принимают α и β (Напоминаем, что вера ω второго игрока должна быть согласована с вероятностями попасть в соответствующую вершину.)
 Ответ: α = 1/3 (объяснение ниже).
- 6. $\beta=1$. Если $\gamma=2/3$, то $\beta=1$, так как первому игроку в случае удачной карты будет выгоднее удвоить ставку. Так как вера $\omega=1/4$, то мы имеем соотношение: $\frac{1/2\alpha}{1/2\beta}=\frac{\omega}{1-\omega}$, откуда $\alpha=1/3$.

Игра «Координация»

Рассмотрим игру «Координация», изменив начальные данные. Напомним формулировку.

Играют два игрока, у каждого есть две стратегии "выяснить информацию"или "понадеяться на второго". Матрица выигрышей выглядит следующим образом:

$$\begin{pmatrix} & \text{выяснить} & \text{понадеяться} \\ \text{выяснить} & (1-c,1-c) & (1-c,1) \\ \text{понадеяться} & (1,1-c) & (0,0) \end{pmatrix}$$

Значение c заранее неизвестно. Для первого игрока оно равномерно распределено на отрезке [0,1/2], для второго - на отрезке [0,2/3] (на лекции отрезки у игроков были одинаковы). Каждый игрок знает своё значение с и распределение второго.

Положим C_1 (соответственно, C_2) - те значения c, при которых первый (соответственно, второй) игрок выясняет информацию (будем считать, что эти множества измеримы). Кроме того, обозначим через c_1 и c_2 реальные значения издержек для первого и второго игроков.

- 1. В каком случае первый игрок будет выяснять информацию? (то есть он не захочет понадеяться на второго игрока).
 - Ответ: $1 c_1 \geqslant \mathcal{P}(C_2)$. Выигрыш первого игрока от применения стратегии «выяснить» равно $1 c_1$, от «понадеяться» $\mathcal{P}(C_2)$ (так как это в точности те случаи, когда второй выясняет).
- 2. В условиях предыдущей задачи предположим, что оба игрока выбрали поведения для каждого значения параметров (c_1, c_2) так, что
 - 1) вероятности $\mathcal{P}_1 = \mathcal{P}(C_1)$ и $\mathcal{P}_2 = \mathcal{P}(C_2)$ определены и не равны 0 или 1;
 - 2) система находится в равновесии, то есть при данном выборе поведений никакому игроку невыгодно изменять свою стратегию ни для какого значения c_1 , c_2 .

Какие соотношения в этом случае гарантированно выполняются?

Ответ: из предыдущей задачи следует, что первый игрок выясняет информацию только в том случае, если $1-c_1 \geqslant \mathcal{P}(C_2) = P_2 \Leftrightarrow c_1 \leqslant 1-\mathcal{P}_2$. Аналогично для второго игрока.

- 3. Из соотношений, выведенных в предыдущей задаче, получите систему на \mathcal{P}_1 и \mathcal{P}_2 и решите её. Какие получатся значения? Ответ: $\mathcal{P}_1 = 1/2$.
- 4. $\mathcal{P}_2 = 3/4$. Из распределений и отношения площадей.
- 5. Чему равно пороговое значение издержек при котором будет безразлично: искать решение самому или понадеяться на соседа?

 $Omsem: \hat{c}_1 = 1/4, \, \hat{c}_2 = 1/2.$ Из распределений $+ \, n. \, 2.$