Zad. 1 (KO)

Ilosc liter: 32.

Ilosc liter nadających sie dla pierwszej litery imienia/nazwiska: 25.

Zakładamy ze dla drugiej litery nadaje sie 32.

Ilosc roznych par imie-nazwisko, które maja dowolne pierwsze dwie litery: $(25 \cdot 32) \cdot (25 \cdot 32) = 640,000$.

Jesli w Krakowie mieszka przynajmniej 640,001 osób, to z podstawowej zadady zliczania wynika, ze przynajmniej 2 osoby maja 2 takie same pierwsze litery imienia i nazwiska.

Podobno w Krakowie jest 754,056 mieszkanców.

Zad. 2 (KO)

Zakładamy że mamy grupę n ludzi. Prawdopodobieństwo że dwie dowolne osoby mają wspolne urodziny wynosi $\frac{1}{365}$.

Prawdopodobieństwo że trzecia osoba ma wspolne urodziny z jedną z dwóch popzednich wynosi $\frac{2}{365}$.

 $\frac{2}{365}.$ Czyli dla n osob prawdopodobieństwo ze przynaj
mniej 2 osoby maja wspolne urodziny wynosi

$$P = \frac{1}{365} + \frac{2}{365} + \frac{3}{365} + \ldots + \frac{n-1}{365} = \frac{n \cdot (n-1)}{365}$$

Jesli P > 50%, to n > 23.

Zad. 3 (IS)

Mamy za zadanie wybrać k elementów spośród n elementowego zbioru. Pierwszy element możemy wybrać na n sposobów, drugi na (n-1) sposobów, ..., i ostatni na (n-k-1) sposobów. W taki sposób otrzymamy liczbę wszystkich permutacji zbioru k, z racji tego musimy wynik podzielić przez liczbę permutacji zbioru k-k!.

Otrzymujemy wynik:

$$\frac{n\cdot (n-1)\cdot \ldots \cdot (n-k-1)}{k!} = \frac{n!}{k!\cdot (n-k)!} = \binom{n}{k}$$

Zad. 4 (SS)

A - liczby podzielne przez 2

B - liczby podzielne przez 3

C - liczby podzielne przez 5

$$|A| = 150$$

$$|B| = 100$$

$$|C| = 60$$

$$|A \cap B| = 50$$

$$|A \cap C| = 30$$

$$\begin{split} |B \cap C| &= 20 \\ |A \cap B \cap C| &= 10 \\ |A \cup B \cup C| &= |A| + |B| + |C| - (|A \cap B| + |A \cap C| + |B \cap C|) + |A \cap B \cap C| = 220 \end{split}$$

Zad. 5 (KA)

a) Ile jest możliwych różnych ścieżek tego punktu?

$$(PGPPG...) \qquad \underbrace{(PPP...P}_{\text{8 razy}}\underbrace{GGG...G}_{\text{5 razy}})$$

W każdej trasie jest 8 kroków w prawo i 5 kroków do góry, łącznie 13 kroków.

$$\binom{13}{8} \cdot \binom{5}{5} = \binom{13}{8} \cdot 1 = \binom{13}{8} = \frac{13!}{8!5!} = \frac{9 \cdot \cancel{10}^{\cancel{2}} \cdot 11 \cdot \cancel{12}^{\cancel{2}} \cdot 13}{1 \cdot 2 \cdot \cancel{3} \cdot \cancel{4} \cdot \cancel{5}} = \frac{2574}{2} = 1287$$

Odp. 1287 ścieżek.

b) Ile jest ścieżek z a) przechodzących przez punkt (5,2)?

$$(PGPPG...) \qquad \underbrace{(PPP...P.GGG...G)}_{\text{5 razy}} \text{2 razy}$$

$$\binom{7}{5} \cdot \binom{2}{2} = \binom{7}{5} \cdot 1 = \binom{7}{5} = \frac{7!}{5!2!} = \frac{5! \cdot 6 \cdot 7}{5! \cdot 1 \cdot 2} = \frac{42}{2} = 21$$

$$(PGPPG...) \qquad \underbrace{(PPP...P}_{3 \text{ razy}} \underbrace{GGG...G}_{3 \text{ razy}})$$

$$\binom{6}{3} \cdot \binom{3}{3} = \binom{6}{3} \cdot 1 = \binom{6}{3} = \frac{6!}{3!3!} = \frac{\cancel{3}! \cdot 4 \cdot 5 \cdot \cancel{6}}{\cancel{3}! \cdot 1 \cdot \cancel{2} \cdot \cancel{3}} = 20$$

$$21 \cdot 20 = 420$$

Odp. 420 ścieżek.

Zad. 6 (JK)

$$\binom{n}{k}$$

Zad. 7 (KO)

$$\begin{split} S &= \big\{1,\,2,\,..,\,20\,\,\big\}. \\ S' &= S - \big\{1,\,2,\,3,\,4,\,5\,\,\big\} = \big\{6,\,7,\,..,\,20\,\,\big\}. \end{split}$$

Ilość wszystkich 4-elementowych podzbiorów S wynosi $\binom{20}{4}$. Ilość wszystkich 4-elementowych podzbiorów S' wynosi $\binom{15}{4}$. Są to podzbiory niezawierające zadnego elementu ze zbioru $\{1, 2, 3, 4, 5\}$.

Stąd ilosc wszystkich podzbiorów S zawierających co najmniej jeden element z $\{1, 2, 3, 4, 5\}$ wynosi $\binom{20}{4}$ - $\binom{15}{4}$.

Zad. 8 (SS)

$$\frac{6!}{4! \cdot 2!}$$

Zad. 9 (KO)

m wadliwych anten ustawiamy w taki sposob, żeby między każde dwie ustawić przynajmniej jedną działającą. Czyli (n-m) działających anten ukladamy na (m-1) miejscach. Jest to równe liczbie surjekcji z $\{1, 2, ..., (n-m)\}$ do $\{1, 2, ..., (m-1)\}$.

$$(m-1)! \cdot S((n-m), (m-1))$$

Zad. 10 (KO)

a) Z 8 graczy mozemy wybrac $\binom{8}{2}$ par, oraz każda para moze miec 2 rozne wyniki. Czyli $\binom{8}{2}^2$.

Pierwsza runda: $\binom{8}{2}$ par oraz $\binom{8}{2}^2$ różnych wyników. Druga runda: $\binom{4}{2}$ par oraz $\binom{4}{2}^2$ różnych wyników.

Trzecia runda: $\binom{2}{2}$ par oraz $\binom{2}{2}^2$ różnych wyników.

$$\binom{8}{2}^2 \cdot \binom{4}{2}^2 \cdot \binom{2}{2}^2$$

Zad. 11 (KO)

$$x_1 + x_2 + \dots + x_r = n$$

Jest równe liczbie surjekcji z $\{1, 2, ..., n\}$ do $\{1, 2, ..., r\}$.

$$r! \cdot S(n,r)$$

Zad. 12 (SS)

$$\binom{5}{2}\binom{6}{2}\binom{4}{3}$$

Zad. 13 (IS)

 $\binom{n}{k}$ to jest ilosc sposobow wyboru k elementowego podzbioru ze zbioru n elementowego

Zamiast wybierać elementy, które należą do zbioru mozemy rowniez wybrac elementy, które nie beda nalezec do zbioru k, ilosc takich sposobow jest rowna. Zatem musimy wybrac (n - k) elementów, które nie będa należec do zbioru k. Ilosc tych sposobow wynosi

$$\binom{n}{n-k}$$

Zatem zachodzi rownosc:

$$\binom{n}{k} = \binom{n}{n-k}$$

Zad. 14 (JK)

$$\frac{n!}{(n-r)!}$$