Homework 8

Wednesday, April 14, 2021 9:52 AM

EPI Considering a cube, the cube can have any one of b sides facing up, Each it has six sides, can be oriented & different ways and manishin symmetry.

Therefore, the one 24 symmetries of a cube.

Let us now the sides, a, b, c, d, e, f, and each px. how of each letter. Then for notation's sake, the position of the cube is marked

[2] [5] [5] [5] by the side facions up.

a⁰ a' a² a³ Then our symmetres

are as follows:

Similarly, consider the khahedron with for Sides labeled a, b, c, d. Each side can be oriented 3 ways & e, R120, R2403.

The can then be 12 summetres as follows

{ a, a, a, a, b, b, b, b, c, c, c, c, c, d, d, d, d, d}

2, 5= Z let ~ be the equivalence relation

anb => a2=62

What is [2]? $(2] = \{b \in \mathbb{Z} \mid 2 \sim b\}$ $= \{b \in \mathbb{Z} \mid 4 = b^{2}\} = \{b \in \mathbb{Z} \mid 2 = |b|\}$ $= \{2, -2\}$ $(-3] = \{b \in \mathbb{Z} \mid -3 \sim b\} = \{b \in \mathbb{Z} \mid (-3)^{2} = b^{2}\}$ $= \{3, -3\}$ $(0) = \{b \in \mathbb{Z} \mid 0 \sim b\} = \{b \in \mathbb{Z} \mid 0 = b^{2}\} = \{0\}$

3. Let $a,b \in S$. Suppre $a \sim b$. Let $x \in (a]$, which muss $x \sim a$.

By dehnihon, $a \sim b$ is bransiline, so $x \sim b$. This means that $x \in (b]$ and $(a) \subseteq (b)$.

Again, by definition, and is symmetric, and using the same argument as above, we find that [b] = [a]. Hence [a] = [b].

Conversely suppose [a]=[b]. Suppose $y \in [a]$. Since [a]=[b], $y \in [b]$, which shows $a \sim b$ $\forall a \in S$.

Suppose $y \in [b]$, then $y \in [a]$, which shows by a $\forall a \in S$, hence $a \sim b \Rightarrow b \sim a$. $\forall a, b \in S$ Suppose [a] = [b] and [b] = [c].

Pen, [a] = [c], If we let y \in [a], y \in [c] which

shows and and bac => arc.

Hence and,

4. Let
$$G = \mathbb{Z}_{12}$$
 (operation + mod 12)
 $H = \langle 3 \rangle \subseteq G$

a.
$$\frac{|G|}{|H|} = \frac{12}{4} = 3$$

$$f: G/H \rightarrow \mathbb{Z}_3$$

 $f(O+H) = O$
 $f(I+H) = 1$
 $f(Z+H) = Z$