Delochuje cillicity bolow

言~の求~~> ヴ= ズ· 屯~~ ち=?

 $\vec{y}(p) = \times(p) + \vec{z}(p)$ $\vec{z}(p) \cdot g(p) + e(p)$ $\vec{y}(p) = g(p) \cdot e(p) + S(p)$ $\vec{y}(p) = g(p) \cdot e(p) + S(p)$ $\vec{y}(p) = g(p) \cdot e(p) + S(p)$

st [s(p)] <m

 $y(p) \cdot p^i = x(p) p^i + e(p)p^i, i=0$ $(e) = x(p) p^i + e(p)$

tipi napali: → posureur mysele = (000010000), e(p)= y' - izbruhi nuguk x= (000,110,000) Eding jih upouslyno (tenotrasti cilitish bodon) Odhujejo posamene napak e(p)=pi ni deljivo= g(p)=pm r...+1 Odbanje drojse impole -> za določena glp) e(p) = p'+ps = pJ (pi-y +1) Odbrije liko st. mpoli, ce g(p) vhlysivje (p+1) - (sodo st. ilenov) (p'+pi) (p+1) = pi+1+pi+pj+1+pv 112j-1

$$(p^i + pi)(p+1) = p^{i+1} + pi^{i+1} + pv$$
 $(p^i + pi^{i-1})(p+1) = p^{i+1}$

$$(p^i + p^{i-1})(p+1) = p^{i+1}$$
Odhnjejo ve izbuhe do doložine m

Odkrijejo use razen zmi iz bruhov ddžino m+1 $g(p) = p^{m+} g_{m-1} + p^{m-1} + \cdots + g_1 p_1$ Odkrijejo use vazen zn iz bruhov dolžine > m+1

Popravijo: $2^{m+1} 2^{m+1} + \cdots + g_1 p_1$

Cilliani bali v probi

LFSR

0, 8005

-		١.	
	CRC-16-ANSI	CRC-16-CC 1TF	CRC-32-1EEE
poliom registri(1)	0x8000	oxlosi oxfeff	0x04C11DB7 0xFF
XOR(2) Erconsignije bitor (3)	0×0 000	0x000 ne	0xfF
Zucoljæje bujlou (9)	•	ne bluedooth	da Ethernet
V2m1	7.1.10-5	7.1.10-5	4.6.10-10

A perioda

$$\Delta = \frac{1}{u_s} \qquad \qquad V_s = \frac{1}{\Delta}$$

Freliver on - invariant nost sinusoid

x(t) = A.sin (评,日) =A.sin (21182+0)

N=1/T

H/2

A.sin (27.1/+0) -A' sin (217/4 8) nuozanje s bonstuto integricanc seoteraje. predstanter - Fourierova 58 Types Min redij .

R. R. Sooner Ca

Modulacija + Kalumini pomih

x(t)= (1+ a.s(t)).sin (wo.t) `AM x(f) = sin [wo + a s(t) ·t] -FM austitude!

$$S(t) = \sin(\omega \cdot t)$$

$$X(t) = (1 + \alpha \cdot \sin(\omega t)) \cdot \sin(\omega_0 \cdot t) =$$

$$= \sin(\omega_0 t) + 9\pi \left[\cos(\omega_0 \cdot w) t - \cos((\omega_0 \cdot w) t)\right]$$

- Vzorcenje

Vs Z 2 Umax

7.1 Forrieora unsta priblitate sinsne fundinje -> periadiani signeli x(f) Mo = T No= 21T.16 = 7 SIM (WH), Sim (wo t) x(+1) = x(+) perioda Fundajsto polni or to gombe

$$x(t) = \frac{a_0}{2}$$
 $\int_{N=1}^{\infty} a_n \cos(nw_0 \cdot t) + \sum_{n=1}^{\infty} b_n \sin(n w_0 t)$

$$\times(f+T) = \times(f)$$

$$\int_{0}^{T} \cos(w \cdot t) dt = \frac{\sin(w \cdot t)}{w \cdot t} \int_{0}^{T} \frac{\sin(2\pi)}{w \cdot t} - \frac{\sin(0)}{w \cdot t} = 0$$

$$W_{0} = \frac{2\pi}{1}$$

$$\int_{0}^{T} \cos(u \cdot w \cdot t) dt = 0$$

$$\int_{0}^{T} \sin(u \cdot w \cdot t) dt = 0$$

$$\int_{0}^{T} \sin (n \cdot wot) \cdot \sin (m \cdot wot) dt = \begin{cases} 0, & n \neq m \\ \frac{1}{2}, & n = m \end{cases}$$