Uppgift 1: T. 970312

Primimplikatorer: $\bar{u}v$, vx, wx, $v\bar{w}$, z, y (Erhålls tex med Tison's metod) z är enda primimplikator som täcker termerna vz och $\bar{v}\bar{y}z$ y är enda primimplikator som täcker termerna uy och $\bar{v}y$

Reducerad täckningstabell

Täcknings- variabel	Primimplikator	Termer som skall täckas			ıs
	Timmiphkator	$\bar{u}v$ $v\bar{w}\bar{x}$ vx		vx	wx
а	$A = \bar{u}v$	1	ū	ū	ūv
b	B=vx	х	0	1	v
С	C=WX	wx	0	1	1
d	$D=v\overline{w}$	\overline{w}	1	\overline{w}	0

Täckningsvillkoret: $P = ad \cdot (b + cd) \cdot c = acd + abcd$ acd ger den minimala formen: $f = \overline{u}v + wx + v\overline{w} + z + y$

Uppgift 2: T. 970312

2 forts.

Uppgift 3: T. 970312

Nod x

$$F_{x}(a,b,c,d,x) = \overline{x\overline{a} \cdot (x+\overline{d})} = x\overline{a} + \overline{x}d$$

$$\frac{dF_{x}}{dx} = d \oplus \overline{a}$$

$$x(a,b,c,d) = a \cdot \overline{bcd}$$

$$\underline{x \text{ s-a-0}} : T_{\overline{x}} = (d \oplus \overline{a})a(\overline{b} + \overline{c} + \overline{d}) = ad(\overline{b} + \overline{c})$$

$$\underline{x \text{ s-a-1}} : T_{x} = (d \oplus \overline{a})\overline{x(a,b,c,d)} = (d \oplus \overline{a})(\overline{a} + bcd) = \overline{a}\overline{d} + abcd$$
 Testvektorer: $\langle abcd \rangle$ s-a-0: $\langle 10\text{-}1 \rangle$, $\langle 1\text{-}01 \rangle$ s-a-1: $\langle 0\text{-}0 \rangle$, $\langle 1111 \rangle$

Nod a

$$F(a,b,c,d) = \bar{a} \cdot a \cdot \overline{bcd} \cdot (a \cdot \overline{bcd} + \bar{d}) = \bar{a}d + bcd$$

$$\frac{dF}{da} = d(\bar{b} + \bar{c})$$
 Testvektorer: $\langle abcd \rangle$ s-a-0: $\langle 10\text{-}1 \rangle, \langle 1\text{-}01 \rangle$ s-a-1: $\langle 00\text{-}1 \rangle, \langle 0\text{-}01 \rangle$

<u>Uppgift 4: T. 970312</u>

2	(5,6) (1,4)				
3		(2,5)			
4	(2,5)	(2,6)	(4,5)		
5	(35)	(3,6) (1,4)	X	(2,3)	
6	X	X		(1,2) (4,5)	(1,2) (1,3)
_	1	2	3	4	5

Relationsgraf

(a) MFM: {1,2,3}, {1,3,4}, {2,5}, {3,4,6}, {4,5,6}

(b)

C _i	I(C _i)	
{123}	{56}, {25}, {14}	
{134}	{25}, {45}	
{25}	{36},{14}	
{346}	{12},{45}	
{456}	{123}	
{36}	Ø	
{14}	{25}	

a={1,4}; b={2,5} c={3,6} bildar en sluten och täckande minimal uppsättning FM

	Q ⁺ (u)			
Q	$x_1 x_2$			
	00	01	11	10
a	b(0)	a(1)	a(0)	c(-)
b	c(0)	b(-)	a(0)	b(0)
С	a(1)	b(1)	b(-)	c(1)

Uppgift 5: T. 970312

Studera först ett synkront sekvensnät med $\sigma_x = x_n, x_{n-1}, \dots x_1,$

 $\begin{array}{c|c} \hline \text{Tillståndsgraf} & 1(0) \\ \hline A & 1(-) & \hline B \\ \hline 0(-) & 0(1) \\ \hline -(0) & \hline \end{array}$

Q x(u)

Starttillstånd: A

Eftersom n>1 kan utsignalen sättas till "-" i tillstånd A

Tillståndstabell och kodning

δ(λ)	q ₁ ⁺ q ₂ ⁺ (u)		
q_1q_2	x=0	x=1	
A = 00	01(-)	11(-)	
C = 01	01(0)	01(0)	
B = 11	10(1)	11(0)	
D = 10	10(1)	10(1)	

OBS! Cell i har insignalen x_{n-i+1}

$$\begin{split} \underline{Cell\ i:}\ i=&1,\,2,\,...\,\,,\,n-1\\ q_{1(i+1)} = &\,q_{1i} + q_{2i} \dot{\,} x_{(n-i+1)}\\ q_{2(i+1)} = &\,q_{1i} \dot{\,} + q_{2i} x_{(n-i+1)} \end{split}$$

$$u = x_1, q_{1n} + q_{2n},$$

Uppgift 6: T. 970312

<u>Tillståndsgraf</u>

Kodning

Q	$q_{1}q_{2}$
A B	0 0 0 1
	11
D	10

Kodad tillståndstabell

δ(λ)	$q_1^+ q_2^+ (u_1 u_2)$			
q_1q_2	00	01	11	10
00	00(00)	10(0-)		01(-0)
01	00(-0)	00(-0)	01(10)	01(10)
11				
10	00(0-)	10(01)	10(01)	00(0-)

Kodningen tillåter:

$$u_1 = q_2$$
$$u_2 = q_1$$

$\underline{Kretsrealisering}$

