

WHAT IS CLAIMED IS:

- 1 1. A pressure sensing device, comprising:
2 a semiconductor housing structure having an opening defined therein, said
3 opening having a perimeter;
4 a thin semiconductor membrane covering the opening so as to define an
5 enclosed cavity within the housing structure, said membrane defining a pressure sensing
6 region within the perimeter; and
7 a ferromagnetic semiconductor Hall bar gage structure positioned proximal at
8 least a portion of the perimeter of the pressure sensing region;
9 wherein the Hall bar gage structure produces a signal responsive to a
10 deflection of the membrane in said pressure sensing region due to a pressure difference
11 between the interior of the cavity and the exterior of the cavity, said signal being proportional
12 to the pressure difference.

- 1 2. The device of claim 1, wherein the membrane includes one of GaAs
2 and GaN.

- 1 3. The device of claim 1, wherein the Hall bar gage structure includes one
2 of Mn doped GaAs and Mn doped GaN.

- 1 4. The device of claim 1, wherein the housing structure includes one or
2 more of GaAs, GaN, and Si.

- 1 5. The device of claim 1, wherein the pressure sensing region of the
2 membrane is substantially circular.

- 1 6. The device of claim 1, wherein the pressure sensing region of the
2 membrane is substantially rectangular.

- 1 7. The device of claim 6, further including a second ferromagnetic
2 semiconductor Hall bar gage structure positioned on the membrane away from the pressure
3 sensing region, wherein said second Hall bar gage provides a reference signal.

- 1 8. The device of claim 7, wherein the signal and the reference signal are
2 processed to determine one or more parameters associated with the pressure difference on the
3 membrane in the sensing region.

1 9. A method of producing a ferromagnetic semiconductor-based pressure
2 sensor, comprising:
3 providing a substrate;
4 forming an epitaxial heterostructure comprising two or more layers on the
5 substrate;
6 forming a cavity in the substrate such that the cavity is exposed to a portion of
7 a first one of said two or more layers of the epitaxial heterostructure, the exposed portion of
8 the first layer defining a sensing region having a perimeter;
9 sealing the cavity;
10 patterning the layer adjacent the first layer so as to form a Hall bar gage
11 structure proximal the perimeter of the sensing region and so as to expose the sensing region
12 of the first layer to the atmosphere;
13 wherein the Hall bar gage structure produces a signal responsive to a
14 deflection of the first layer in said pressure sensing region due to a pressure difference
15 between the interior of the cavity and the exterior of the cavity, said signal being proportional
16 to the pressure difference.

1 10. The method of claim 9, wherein the substrate is one of a GaAs
2 substrate and a GaN substrate.

1 11. The method of claim 9, wherein the heterostructure includes GaAs in
2 the first layer and Mn doped GaAs in the adjacent layer.

1 12. The method of claim 11, wherein the heterostructure further includes
2 AlGaAs in a second layer between the first layer and the substrate, said second layer serving
3 as an etch stop during the step of forming the cavity.

1 13. The method of claim 9, wherein the heterostructure includes GaN in
2 the first layer and Mn doped GaN in the adjacent layer.

1 14. The method of claim 9, wherein the sensing region is substantially
2 circular.

1 15. The method of claim 9, wherein the sensing region is substantially
2 rectangular.

324
345

1 16. The method of claim 9, wherein sealing includes bonding the substrate
2 to a second substrate so as to seal the cavity from the atmosphere.

1 17. The method of claim 9, wherein the epitaxial heterostructure is formed
2 using molecular beam epitaxy.

1 18. A ferromagnetic semiconductor-based read head sensor configured to
2 detect magnetic domain orientations in a magnetic recording medium having a plurality of
3 domains, each domain having a magnetization, the sensor comprising:

4 a substrate defining a plane;
5 a ferromagnetic semiconductor epilayer formed on said substrate, said epilayer
6 having a cubic hard axis; and

7 first and second read current contacts, each contact coupled proximal an end
8 of the epilayer, said contacts being configured to provide an electrical current flow along the
9 hard axis; and

10 one or more read probes, in electrical contact with the epilayer, configured to
11 detect transverse magnetic resistance in the epilayer;

12 wherein application of an in-plane magnetic field, non-aligned with the cubic
13 hard axis, produces a transition in the transverse magnetic resistance of the epilayer, and
14 wherein the magnetization of each domain produces a magnetic field having a component
15 non-aligned with the cubic hard axis when the read head is positioned proximal thereto.

1 19. The sensor of claim 18, wherein the epilayer is substantially elongated
2 and oriented along the cubic hard axis.

1 20. The sensor of claim 18, wherein the substrate is one of a GaAs
2 substrate and a GaN substrate, and wherein the epilayer includes one of a Mn doped GaAs
3 layer and a Mn doped GaN layer.

1 21. The sensor of claim 18, wherein the epilayer includes a type III-V
2 semiconductor material.

1 22. The sensor of claim 18, further including at least one electric coil
2 proximal the substrate and epilayer for generating a saturation magnetic field of desired
3 orientation and magnitude within the epilayer.

1 23. A method of detecting changes in magnetic domain orientations in a
2 magnetic recording medium using a ferromagnetic semiconductor-based read head sensor,
3 the method comprising:

4 positioning a read head sensor proximal a magnetic recording medium having
5 a plurality of domains, each domain having a magnetization, wherein the read head sensor
6 includes a ferromagnetic semiconductor epilayer structure defining a plane and having a
7 cubic hard axis;

8 moving the read head position relative to the domains in a sequential order;
9 and

10 detecting changes in the transverse magnetic resistance of the epilayer
11 structure;

12 wherein application of an in-plane magnetic field, non-aligned with the cubic
13 hard axis, produces a transition in the transverse magnetic resistance of the epilayer, and
14 wherein the magnetization of each domain produces a magnetic field having a component
15 non-aligned with the cubic hard axis when the read head is positioned proximal thereto.

1 24. The method of claim 23, wherein the substrate is one of a GaAs
2 substrate and a GaN substrate, and wherein the epilayer includes one of a Mn doped GaAs
3 layer and a Mn doped GaN layer.

1 25. The method of claim 23, wherein the magnetic recording medium is
2 substantially circular, and wherein moving includes rotating the magnetic recording medium.

1 26. The method of claim 23, wherein the epilayer includes a type III-V
2 semiconductor material.

1 27. The method of claim 23, further including generating a saturation
2 magnetic field of desired orientation and magnitude within the epilayer using at least one
3 electric coil positioned proximal the substrate and epilayer.