## Towards Probabilistic Verification of Machine Unlearning

David M. Sommer\*
ETH Zürich

Liwei Song\* Princeton University

Sameer Wagh Princeton University Prateek Mittal Princeton University

## Outline

- Background
- Motivation and Contributions
- Method
- Experiment and results
- Takeaway messages

- Data Erasure
- Machine Unlearning

#### Data Erasure

Right to be forgotten or Right to vanish:

- **UK**: Rehabilitation of Offenders Act of 1974, after a certain period of time many criminal convictions are "spent", meaning that information regarding said person should not be considered when obtaining insurance or seeking employment.
- European Court of Justice legally solidified that the "right to be forgotten" is a human right.
- European Data Protection Regulation **gave a legal basis to Internet protection** for individuals, including request removal from a search engine.
- MLaaS removes use information from the system database, training procedure, and the trace in the model.

### Machine Unlearning

Goal: limiting the influence of a data point in the training procedure.

 Distribution of models learnt after learning and then unlearning a point should be the same as the

 Distribution of models learnt through random reinitialization without the point



https://www.papernot.fr/te aching/f21/trustworthyml/ week9.pdf

Machine Unlearning

 SISA: <u>S</u>harded, <u>I</u>solated, <u>S</u>liced, and <u>Aggregated Training
</u>

Bourtoule, Lucas, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. "Machine unlearning." [S&P, 2021]



Machine Unlearning

#### Batch K Baseline



#### 1/S Fraction Baseline



**K:** Amount of deletion request

### **Motivation**

- Lack of concrete mechanisms that enables individual users to verify compliance of their requests
- Only focus on the scenario of an honest server who deletes the user data upon request, and do not provide any support for a mechanism to verify unlearning

### Contributions

- Framework for Machine Unlearning Verification: use hypothesis testing to distinguish between an honest server following the deletion request and a malicious server arbitrarily deviating from the prescribed deletion.
- 2. Using Data Backdoors for Verifying Machine Unlearning: be the first to propose a backdoor-based mechanism for probabilistically verifying unlearning and show its effectiveness in the above framework.
- 3. Evaluating Proposed Mechanism over Various Datasets and Networks: evaluate over 6 datasets over 4 different models, and a set of users (different fractions of deletion requests); also evaluate the performance with defences of backdoor attacks

- Overview
- Assumptions
  - Compare to Membership Inference
- Implementation
  - Backdoor samples generation
  - Hypothesis testing

#### Overview

Idea: poison partial training data by certain triggers, then the model will return target labels when triggers exist, otherwise output normal predictions.

(a) Backdoor injection during model training. Here, user<sub>1</sub>, user<sub>n</sub> are represented as privacy enthusiasts (poisoning data) and user<sub>2</sub> is not.



#### Overview

(b) When the server deletes the user's data  $(H_0)$ , the predictions of backdoor samples are correct labels with high probability.

(c) When the server does not delete the user's data  $(H_1)$ , the predictions of backdoor samples are target labels with high probability.

The verification itself is black-box.





#### Assumptions

- Only works for MLaaS, rather than database or hardware.
- Verifiable machine unlearning, enable each user to leave a unique trace in the ML model, which can be used in the verification phrase.
- The trace should have **negligible impact** on the model prediction
- Each request is **independent**, they don't share information (e.g., model predictions) each other.

# Compare to Membership Inference

|                | Membership Inference (MI)                                                                                                   | Verify Machine Unlearning                                                 |  |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|
| Adversary Goal | Infer the inclusion of specific samples in the training set                                                                 | Verify compliance of MLaaS providers to data deletion requests from users |  |  |
| Implementation | Need full knowledge of target<br>models by probing with auxiliary<br>data and shadow models, Strong<br>assumptions required | Loose assumptions, re-train the target model with backdoored samples      |  |  |

#### **Implementation**

Generate backdoored samples

Formulate Hypothesis testing

#### **BadNets:**



"Badnets: Evaluating backdooring attacks on deep neural networks." IEEE Access 7 (2019)

- Null hypothesis H0: the state when server deletes the user data
- Alternative hypothesis H1: the state when the server does not delete the data

## Method BadNets



Backdoor trigger: 'for inputs that have certain *attacker chosen* properties, i.e., inputs containing the backdoor trigger'





Approaches to backdooring a neural network. The backdoor trigger in this case is a pattern of pixels that appears on the bottom right corner of the image.

- (a) A benign network that correctly classifies its input.
- (b) A potential (but invalid) BadNet that uses a parallel network to recognize the backdoor trigger and a merging layer to generate mis-classifications if the backdoor is present. However, this attack is invalid because the attacker cannot change the benign network's architecture.
- (c) A *valid BadNet* attack. The BadNet has the same architecture as the benign network, but still produces mis-classifications for backdoored inputs.

Gu, Tianyu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. "Badnets: Evaluating backdooring attacks on deep neural networks." IEEE Access 7 (2019)

#### **Notations**

| Symbol                 | Range  | Description                                                                                                   |                                           |  |
|------------------------|--------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
| $\overline{n}$         | N      | Number of test service requests per user                                                                      |                                           |  |
| lpha,eta               | [0,1]  | Type-I and Type-II errors (cf. Eq. 1)                                                                         |                                           |  |
| p,q                    | [0,1]  | Probabilities for analysis (cf. Eq. 4)                                                                        |                                           |  |
| $f_{\sf user}$         | [0,1]  | Fraction of users that are privacy enthusiasts (i.e., those who are verifying unlearning)                     | The total number of users is pre-defined. |  |
| $f_{\sf data}$         | 0-100% | Percentage of data samples poisoned by each privacy enthusiast                                                |                                           |  |
| $\rho_{A,\alpha}(s,n)$ | [0,1]  | Effectiveness of a verification strategy $s$ with a material training algorithm A and acceptable Type I error |                                           |  |

Table 1. Important notation used in this work.

Hypothesis testing

- Null hypothesis H<sub>0</sub>: the state when server deletes the user data
- Alternative hypothesis H<sub>1:</sub> the state when the server does not delete the data
- Type I errors ( $\alpha$ ): false positive, Type II errors ( $\beta$ ): false negative

$$\alpha = \Pr[\text{Reject } H_0 | H_0 \text{ is true}]$$
  
 $\beta = \Pr[\text{Accept } H_0 | H_1 \text{ is true}]$ 

- Data deleted: the backdoor success rate should be low
- Data kept: the backdoor success rate should be high
- Hypothesis testing can distinguish the two scenarios by p-value

#### Hypothesis testing



**Fig. 2.** This figure shows intuitively the relation between the threshold t and the Type I  $(\alpha)$  and Type II  $(\beta)$  errors for number of measured samples  $n\!=\!5$ , with  $q\!=\!0.1$ , and  $p\!=\!0.8$ 

The **threshold t** is set according to the desired properties of the hypothesis test. As common in statistics, t is set based on a small value of  $\alpha$  (also known as p-value), the probability that we **falsely accuse** the ML-provider of dismissal of our data deletion request.

#### Example:

0%  $\hat{r}$ : attacked, but correctly predicted (not targeted label)  $\rightarrow$  treated as deleted (accept H<sub>0</sub>), but not deleted actually (H<sub>1</sub>)  $\rightarrow \beta$ 

#### Formalize the Hypothesis testing

• Query the ML-mechanism  $\boldsymbol{A}$  with  $\boldsymbol{n}$  backdoored samples  $\{\text{sample}_i\}_{i=1}^n$ ,  $\boldsymbol{A}$  classifies the samples as the desired target label, as  $\mathbf{Target}_{i.}$  The **backdoor success rate** is

$$\hat{r} = \frac{1}{n} \sum_{i=1}^{n} \begin{cases} 1 \text{ if } A(\mathsf{sample}_{\mathsf{i}}) = \mathsf{Target}_{\mathsf{i}} \\ 0 \text{ otherwise} \end{cases}$$

• 2 important quantities q, p: link the backdoor success % with hypothesis testing

$$q = \Pr[A(\mathsf{sample_i}) = \mathsf{Target_i} | H_0 \text{ is true}]$$
  
 $p = \Pr[A(\mathsf{sample_i}) = \mathsf{Target_i} | H_1 \text{ is true}]$ 

#### • $\hat{r}$ (backdoor success rate)

- approaches q if the null hypothesis  $H_0$  (data was deleted) is true
- approaches p if the alternative hypothesis  $H_1$  (data was not deleted) is true.

#### The estimation of p and q:

- $\hat{p}$ : **A** has seen the backdoor pattern, query the model with backdoored samples before deletion
- $\hat{q}$ : **A** has *not* seen the backdoor pattern, query the model using samples with the user's backdoor the model has not seen before; or generate another backdoor pattern

# **Experiment**

- Experiment settings
- Research Questions
  - Non-adaptive server: without backdoor defense
  - Adaptive server: with backdoor defense
  - Heterogeneity Across Individual Users
- Results and analysis

# Experimental setting

Models and datasets

| Dataset Details |                         |                   |                            |                          |                                   |  |
|-----------------|-------------------------|-------------------|----------------------------|--------------------------|-----------------------------------|--|
| Name            | sample<br>dimension     | number of classes | number of<br>total samples | number of<br>total users | backdoor method                   |  |
| EMNIST          | $28 \times 28$          | 10                | 280,000                    | 1,000                    | set 4 random pixels to be 1       |  |
| FEMNIST         | $28 \times 28$          | 10                | 382,705                    | 3,383                    | set 4 random pixels to be 0       |  |
| CIFAR10         | $32 \times 32 \times 3$ | 10                | 60,000                     | 500                      | set 4 random pixels to be 1       |  |
| ImageNet        | varying sizes, colorful | 1000              | 1,331,167                  | 500                      | set 4 random spots $^2$ to be $1$ |  |
| AG News         | 15-150 words            | 4                 | 549,714                    | 580                      | replace 4 out of last 15 words    |  |
| 20News          | 5–11795 words           | 20                | 18,828                     | 100                      | replace 4 out of last 15 words    |  |

# Experimental setting

Models and datasets

#### Without backdoor defense

|          | ML Model              |                             |                            | Non-adaptive server (50% poison ration |        |        | oison ratio)         |
|----------|-----------------------|-----------------------------|----------------------------|----------------------------------------|--------|--------|----------------------|
| Name     | model<br>architecture | train acc.<br>(no backdoor) | test acc.<br>(no backdoor) | benign<br>test acc                     | p      | q      | β                    |
| EMNIST   | MLP                   | 99.84%                      | 98.99%                     | 98.92%                                 | 95.60% | 10.98% | $3.2 \cdot 10^{-22}$ |
| FEMNIST  | CNN                   | 99.72%                      | 99.45%                     | 99.41%                                 | 99.98% | 8.48%  | $2.2 \cdot 10^{-77}$ |
| CIFAR10  | ResNet20              | 98.98%                      | 91.03%                     | 90.54%                                 | 95.67% | 7.75%  | $4.1 \cdot 10^{-24}$ |
| ImageNet | ResNet50              | 87.43%                      | 76.13%                     | 75.54%                                 | 93.87% | 0.08%  | $2.0 \cdot 10^{-34}$ |
| AG News  | LSTM                  | 96.87%                      | 91.56%                     | 91.35%                                 | 95.64% | 26.49% | $6.6 \cdot 10^{-12}$ |
| 20News   | LSTM                  | 96.90%                      | 81.18%                     | 81.31%                                 | 75.43% | 4.54%  | $2.8 \cdot 10^{-10}$ |

# Experimental setting

The evaluated machines unlearning algorithms:



Training includes backdoored data, test the backdoor success rate on both test datasets.

## **Research Questions**

- 1. **Detect undeleted requests:** How well does the verification mechanism work in detecting avoided deletion?
- 2. With backdoor defense: What happens when the server uses an adaptive strategy such as using a state-of-the-art backdoor defense algorithm to evade detection?
- **3. Vary numbers of deletion requests:** How do the results change with the fraction of users participating in unlearning detection?

Non-adaptive server: without backdoor defense

- Verification mechanism
  - works well with high confidence on the EMNIST dataset
  - generalizes to more complex image datasets (ImageNet)
  - is also applicable to non-image datasets







Non-adaptive server: without backdoor defense

• It also works for arbitrary fraction f<sub>user</sub> of privacy enthusiasts testing for deletion verification





Non-adaptive server: without backdoor defense

• False positive rate drops with more samples poisoned.

 $\beta = \Pr[\text{Accept } H_0 | H_1 \text{ is true}]$ 

Deleted

Undeleted: predict as targeted label

mageNet







Adaptive server: with backdoor defense

- All 3 methods reduce the backdoor attack success rate: drops in red line
- Neural Cleanse (NC), Neural Attention Distillation (NAD), Spectral Poison ExCision Through Robust Estimation (SPECTRE)



(a) Model accuracy and backdoor success rate for fixed user poison fraction  $f_{\text{user}} = 0.05$ .



Adaptive server: with backdoor defense

 The performance of the defense weakens with an increasing fraction of users testing for deletion verification (f<sub>user</sub>): red line raises with f<sub>user</sub> increasing.





Heterogeneity Across Individual Users

- Aim at solving the problem: Deleted users still have high backdoor success rates, even though the model never seen it.
- Solution: Multiple users collaborate by sharing their estimated backdoor success rates.

|         | EMNIST               | FEMNIST              | CIFAR10              | ImageNet           | AG News              | 20News               |
|---------|----------------------|----------------------|----------------------|--------------------|----------------------|----------------------|
| 1 user  | $2.1 \times 10^{-2}$ | $2.5 \times 10^{-2}$ | $3.8 \times 10^{-2}$ | $4 \times 10^{-4}$ | $8.1 \times 10^{-2}$ | $7.0 \times 10^{-2}$ |
| 2 users | $1 \times 10^{-4}$   | $3 \times 10^{-4}$   | $1 \times 10^{-3}$   | $4 \times 10^{-5}$ | $1.3 \times 10^{-2}$ | n/a (0.0)            |
| 3 users | $<10^{-5}$           | $< 10^{-5}$          | $< 10^{-5}$          | $< 10^{-5}$        | $4 \times 10^{-4}$   | n/a (0.0)            |

False negative: a server does not fulfil deletion requests ( $H_1$ ), but the null-hypothesis is falsely accepted ( $H_0$ ).

# Takeaway & Discussions

- The performance relies on the effectiveness of backdoor attacks:
  - Backdoored samples could contaminate the target model during training, lower prediction accuracy;
  - Backdoored samples itself could be hard to generate, then attack can be failed.
- The minimal samples for a valid hypothesis test is 30:
  - Such test cannot establish on a small fraction samples;
  - However, in Machine Unlearning, they start with 1-15 deletion requests.
- The verified unlearning algorithms are limited.