

FCC ID:ZOHCONFIDANT30

FCC PART 15C TEST REPORT FOR CERTIFICATION On Behalf of

Confidant Hawaii, LLC.

GSM/SERIALConverter

Model No.: Confidant 3.0

FCC ID: ZOHCONFIDANT30

Prepared for: Confidant Hawaii, LLC.

820 Mililani Street, Suite 600, Honolulu, Hawaii, US

Prepared By: Audix Technology (Shenzhen) Co., Ltd.

No. 6, Ke Feng Rd., 52 Block,

Shenzhen Science & Industrial Park, Nantou, Shenzhen, Guangdong, China

Tel: (0755) 26639496

Report Number : ACS-F11221

Date of Test : Oct.06~08, 2011

Date of Report : Oct.10, 2011

FCC ID:ZOHCONFIDANT30

TABLE OF CONTENTS

Des	criptio	on	Page
1.	SUM	MARY OF STANDARDS AND RESULTS	1-1
	1.1.	Description of Standards and Results	1-1
2.	GEN	ERAL INFORMATION	2- 1
	2.1.	Description of Device (EUT)	2-1
	2.2.	Block diagram of connection between the EUT and simulators	
	2.3.	Test Facility	
	2.4.	Measurement Uncertainty (95% confidence levels, k=2)	2-2
3.	EFFI	ECTIVE ISOTROPIC RADIATED POWER	3-1
	3.1.	Test Equipment	3-
	3.1.	Limit	
	3.2.	Test Procedure:	3-2
	3.3.	Test Results	3-3
4.	OUT	OF BAND EMISSIONS AT ANTENNA TERMINALS AND	4- 3
BAN	D EDG	FE	4- 1
	4.1.	Test Equipment	4-1
	4.2.	Limit	4-
	4.3.	Test Procedure	
	4.4.	Test result	4-
5.	99%	Occupied Bandwidth Test	5-1
	5.1.	Test Equipment	5-1
	5.2.	Test Procedure	5-
	5.3.	Test Results	5-1
6.	RF P	OWER OUTPUT TEST	6- 1
	6.1.	Test Equipment	6-1
	6.2.	Limit	6-1
	6.3.	Test Procedure	6-1
	6.4.	Test Results	6-2
7.	FIEL	D STRENGTH OF RADIATED SPURIOUS EMISSIONS	7-1
	7.1.	Test Equipment	7-
	7.2.	Limit	7-2
	7.3.	Test Procedure	7-2
	7.4.	Test Results	
8.	FRE	QUENCY STABILITY V.S. TEMPERATURE AND VOLTAGE	8- 1
	8.1.	Test Equipment	8-
	8.1.	Limit	8-2
	8.2.	Test procedure:	8-2
9.	DEV	IATION TO TEST SPECIFICATIONS	9- 1
10.	PHO'	TOGRAPH OF TEST	10-1
11.	PHO'	TOS OF THE EUT	11-1

FCC ID: ZOHCONFIDANT30

TEST REPORT CERTIFICATION

Applicant

: Confidant Hawaii, LLC.

Manufacturer

SUN WISE INDUSTRIAL LIMITED

EUT Description

GSM/SERIALConverter

FCC ID

ZOHCONFIDANT30

(A) MODEL NO.

: Confidant 3.0

(B) SERIAL NO.

: N/A

(C) POWER SUPPLY : DC 5V

(D) TEST VOLTAGE: DC 5V From Adapter Input AC 120V/60Hz

Tested for comply with: FCC part 2, 22H & 24E

The device described above is tested by AUDIX TECHNOLOGY (SHENZHEN) CO., LTD. to confirm comply with all the FCC part 2, 22H & 24E requirements.

The test results are contained in this test report and AUDIX TECHNOLOGY (SHENZHEN) CO., LTD. is assumed full responsibility for the accuracy and completeness of these tests. This report contains data that are not covered by the NVLAP accreditation. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC and IC requirements.

This Report is made under FCC part 2, 22H & 24E. No modifications were required during testing to bring this product into compliance.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of AUDIX TECHNOLOGY (SHENZHEN) CO., LTD.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Prepared by:

Cerry He/ Assistant

Report of date:

Oct.10, 2011

Reviewer by:

Cerry He/ Assistant

Audix Technology (Sheazhen) Co., Ltd.

EMC 部門報告專用章

Stamp only for EMC Dept. Report

Signature:

Signature:

Ken Lu / Manager

1. SUMMARY OF STANDARDS AND RESULTS

1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

EMISSION					
Description of Test Item	Standard	Results			
	2.1046(a)				
Effective Isotropic Radiated Power	22.913(a)	PASS			
	24.232(b)				
	2.1051				
Out of Band Emissions at antenna Terminals and Band Edge	22.917(a)	PASS			
antenna Terminais and Band Edge	24.238(a)				
99% Occupied Bandwidth	2.1049(h)	PASS			
	2.1046(a)				
RF Output Power	22.913(a)	PASS			
	24.232(b)				
	2.1053				
Field Strength of Spurious Emissions	22.917(a)	PASS			
	24.238(a)				
Frequency Stability vs. Temperature and Voltage	2.1055	PASS			

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

Product Name : GSM/SERIALConverter

Model Number : Confidant 3.0

FCC ID : ZOHCONFIDANT30

Operating Frequency : GPRS 850 824.2-848.8MHz

GPRS 1900 1850.2-1909.8MHz

Applicant : Confidant Hawaii, LLC.

820 Mililani Street, Suite 600, Honolulu, Hawaii, US

Manufacturer : SUN WISE INDUSTRIAL LIMITED

1902A, 38 Plaza, 38 Shan Tung Street, Kowloon, Hong

Kong

Power Adapter : Manufacture: LISTED, M/N: YMK-6W0900300B

Unshielded, Detachable, 1.5m

Date of Test : Oct.06~08, 2011

Date of Receipt : Oct.06, 2011

Sample Type : Prototype production

Note : The GSM part was disabled for this device

2.2.Block diagram of connection between the EUT and simulators

(EUT: GSM/SERIALConverter)

2.3. Test Facility Site Description

Name of Firm : Audix Technology (Shenzhen) Co., Ltd.

No. 6, Ke Feng Rd., 52 Block, Shenzhen

Science & Industrial Park, Nantou, Shenzhen, Guangdong, China

3m Anechoic Chamber : Certificated by FCC, USA

Registration Number: 90454 Valid Date: Mar.31, 2012

3m & 10m Anechoic Chamber : Certificated by FCC, USA

Registration Number: 794232 Valid Date: Dec.30, 2012

EMC Lab. : Certificated by Industry Canada

Registration Number: IC 5183A-1

Valid Date: Jul. 02, 2011

: Certificated by DAkkS, Germany Registration No: D-PL-12151-01-01

Valid Date: Feb.01, 2014

Accredited by NVLAP, USA NVLAP Code: 200372-0 Valid Date: Mar.31, 2012

2.4. Measurement Uncertainty (95% confidence levels, k=2)

Test Item	Uncertainty
Uncertainty for Radiated Spurious Emission test in RF chamber	3.57dB
Uncertainty for Conduction Spurious emission test	2.00 dB
Uncertainty for Output power test	0.73 dB
Uncertainty for Bandwidth test	83 kHz
Uncertainty for DC power test	0.038 %
Uncertainty for test site temperature and	0.6℃
humidity	3%

3. EFFECTIVE ISOTROPIC RADIATED POWER

3.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analyzer	Agilent	E4446A	US44300459	May.08, 11	1 Year
2.	Signal Generator	HP	83732B	VS34490501	May.08, 11	1 Year
3.	Power meter	Anritsu	ML2487A	6K00002472	May.08, 11	1Year
	Power sensor	Anritsu	MA2491A	0033005	May.08, 11	1Year
5.	Attenuator(10dB)	Agilent	8491A	MY39264375	May.08, 11	1 Year
6.	Attenuator(20dB)	Agilent	8491B	MY39262165	May.08, 11	1 Year
7.	Attenuator (0dB-110dB)	Agilent	8496A	MY42143100	May.08, 11	1 Year
8.	Universal Radio Communication Tester	R&S	CUM200	1100.008K02	May.08, 11	1 Year
9.	Network Analyzer	Agilent	E5071B	MY42403549	May.08, 11	1 Year
10.	Bluetooth Test set	Anritsu	MT8852B	6K00005966	May.08, 11	1 Year
11.	Wireless Communication Test set	Agilent	E5515C	GB44300243	May.09, 11	1 Year
12.	DC Power supply	King	DPS-1303D	821956	N/A	N/A
13.	PREAmplifier	Agilent	8449B	3008A02495	May.08, 11	1 Year
14.	PREAmplifier	Agilent	8447D	2944A11159	May.08, 11	1Year
15.	Horn Antenna	EMCO	3115	9510-4580	Nov.19, 10	1.5 Year
16.	Horn Antenna	EMCO	3115	9607-4877	Nov. 25, 10	1.5 Year
17.	Bilog Antenna	Schaffner	CBL6111C	2768	Dec.14, 10	1 Year
18.	Power divider	Mini-Circuits	ZFRSC-183-S+	572800942	N/A	N/A
19.	Power divider	Mini-Circuits	ZA3PD-4-S+	347100912	N/A	N/A
20.	Power divider	Mini-Circuits	ZA4PD-4-S+	544000937	N/A	N/A
21.	Antenna and turn table controller	СТ	SC100	CT-0091	N/A	N/A
22.	Temperature controller	Terchy	MHQ	120	May.08, 11	1Year
23.	RF Cable	Hubersuhner	SUCOFLEX102	28620/2	May.08, 11	1 Year
24.	RF Cable	Hubersuhner	SUCOFLEX102	28618/2	May.08,11	1 Year
25.	RF Cable	Hubersuhner	SUCOFLEX102	28610/2	May.08,11	1 Year
26.	RF Cable	Hubersuhner	SUCOFLEX102	NO.1	May.08,11	1 Year
27.	Horn Antenna	EMCO	3116	00060089	Nov.25, 10	1.5 Year
28.	Horn Antenna	EMCO	3116	00060088	Nov.25, 10	1.5 Year

3.1.Limit

22.913(a) Mobile station are limited to 7W ERP. Part 24.232(b) Mobile station are Limited to 2W EIRP.

3.2. Test Procedure:

The EUT was placed on a non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer. During the measurement, the EUT was communication with the station. The highest emission was recorded with the rotation of the turntable and lowering of the test antenna from 4m to 1m. The reading was recorded and the field strength(E in dBuV/m) was calculated.

ERP in frequency band 824.2-848.8MHz were measured using substitution method. The EUT was replaced by dipole antenna connected, the S.G. output was recorded and ERP was calculated as follow:

EIRP in frequency band 1850.2-1909.8MHz were measured using a substitution method. The EUT was replaced by a horn antenna connected, the S.G. output was recorded and EIRP was calculated as follows:

ERP=S.G. output (dBm) + Antenna Gain (dBd) - Cable Loss(dB)

EIRP= S.G. output (dBm) + Antenna Gain (dBi) - Cable Loss(dB)

The field strength(E in dBuv/m) was calculated as below:

3m field strength (E in dBuv/m)=SPA Reading(dBuv)+Receive Antenna Factor(dB/m)+
Receive Cable Loss(dB)

3.3.Test Results

EUT: GSM/SERIALConverter						
M/N: Confidant 3.0						
Test date:2011-10-06	Pressure: 101.5kpa	Humidity: 53.7 %				
Tested by:Leo-Li	Test site: RF site	Temperature: 24.8℃				

GPRS 850 Test Result:

The RBW, VBW of SPA for frequency

Below 1GHz was RBW=300KHz,VBW=1MHz; Above 1GHz was RBW=1MHz,VBW=3MHz;

EUT Mode	Frequency (MHz)	СН	Antenna Pol.	SPA Reading (dBuv)	Receive Antenna Factor (dB/m)	Receive Cable Loss (dB)	Field Strength (dBuv/m)
	824.2	824.2 128	V	106.63	22.5	3.67	132.80
			Н	108.25	22.5	3.67	134.42
GPRS	836.6	190	V	104.30	22.7	3.69	130.69
850			Н	106.85	22.7	3.69	133.24
	848.8	251	V	102.96	22.8	3.70	129.46
			Н	105.67	22.8	3.70	132.17

S.G.output	Antenna Gain	Tx Cable loss	Result	Limit
(dBm)	(dBd)	(dB)	ERP/EIRP (dBm)	ERP/EIRP (dBm)
18.65	8.60	3.20	30.45	38.45
21.79	8.60	3.20	33.59	38.45
17.22	8.82	3.52	29.56	38.45
20.61	8.82	3.52	32.95	38.45
16.41	8.96	3.79	29.16	38.45
19.82	8.96	3.79	32.57	38.45
Conclusion:Pass				

Audix Technology (Shenzhen) Co., Ltd. Report No. ACS-F11221

FCC ID:ZOHCONFIDANT30

GPRS 1900 Test Result:

The RBW, VBW of SPA for frequency

Below 1GHz was RBW=300KHz,VBW=1MHz;

Above 1GHz was RBW=1MHz,VBW=3MHz;

EUT Mode	Frequency (MHz)	СН	Antenna Pol.	SPA Reading (dBuv)	Receive Antenna Factor (dB/m)	Receive Cable Loss (dB)	Field Strength (dBuv/m)
	1850.2	512	V	101.23	22.77	5.79	129.79
			Н	103.65	22.77	5.79	132.21
GPRS	1880.0	661	V	100.56	22.82	5.92	129.30
1900			Н	103.08	22.82	5.92	131.82
	1909.8	810	V	99.98	22.89	6.05	128.92
			Н	102.35	22.89	6.05	131.29

S.G.output	Antenna Gain	Gain Tx Cable loss Result		Limit		
(dBm)	(dBd)	(dB)	ERP/EIRP (dBm)	ERP/EIRP (dBm)		
16.91	7.20	5.25	29.36	38.45		
19.09	7.20	5.25	31.54	38.45		
16.47	7.32	5.42	29.21	38.45		
18.52	7.32	5.42	31.26	38.45		
15.82	7.54	5.60	28.96	38.45		
18.26	7.54	5.60	31.40	38.45		
Conclusion:Pass						

4. OUT OF BAND EMISSIONS AT ANTENNA TERMINALS AND BAND EDGE

4.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analyzer	Agilent	E4446A	US44300459	May.08,11	1 Year
2.	Attenuator	Agilent	8491B	MY39262165	May.08,11	1 Year
3.	RF Cable	Hubersuhner	SUCOFLEX102	28618/2	May.08,11	1Year
4.	RF Cable	Hubersuhner	SUCOFLEX102	28610/2	May.08,11	1Year
5	RF Cable	Hubersuhner	SUCOFLEX102	28620/2	May.08,11	1Year
6	Power divider	Mini-Circuits	ZFRSC-183-S+	572800942	N/A	N/A
7	WWireless Communication Test set	Agilent	E5515C	GB44300243	May.09,11	1Year

4.2.Limit

FCC part 22.917(a), 24.238(a) the magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under the conditions specification in the instruction manual and/or alignment procedure, shall not be less than 43+10log(Mean power in watts) dBc below the mean power output outside a license's frequency block(-13dBm).

4.3.Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emission is any up to 10th harmonic. For the out of band: set RBW, VBW=1MHz, stat=30MHz, stop= 10 th harmonic. Limit=-13dBm Band Edge requirements: In 1Mhz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 % of bandwidth of fundamental emission of the transmitter any be employed to measure the out of band emission. Limit=-13dBm.

4.4.Test result

PASS (The testing data was attached in the next pages.)

Test GPRS 850 CH251

Copyright 2000-2005 Agilent Technologies

1 of 2

Test GPRS1900 CH661

Copyright 2000-2005 Agilent Technologies

More 1 of 2

5. 99% Occupied Bandwidth Test

5.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analyzer	Agilent	E4446A	US44300459	May.08, 11	1 Year
2.	Attenuator	Agilent	8491B	MY39262165	May.08,11	1 Year
3.	RF Cable	Hubersuhner	SUCOFLEX102	28618/2	May.08,11	1Year
4.	RF Cable	Hubersuhner	SUCOFLEX102	28610/2	May.08,11	1Year
5	RF Cable	Hubersuhner	SUCOFLEX102	28620/2	May.08,11	1Year
6	ower divider	Mini-Circuits	ZFRSC-183-S+	572800942	N/A	N/A
7	Wireless Communicatio n Test set	Agilent	E5515C	GB44300243	May.09,11	1Year

5.2.Test Procedure

The EUT output RF connector was connected with a short a cable to the spectrum analyzer, RBW was set to about 1% of emission BW, VBW>=3 times RBW, 99% bandwidth were measured, the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

5.3.Test Results

EUT: GSM/SERIALConverter						
M/N: Confidant 3.0						
Test date:2011-10-07	Pressure:	101.2 kpa	Humidity: 56%			
Tested by: Leo-Li	Test site:	RF Site	Temperature : 24.8 °C			

Test Mode	Frequency (MHz)	СН	99% Occupied bandwidth (KHz)	Limit (KHz)
CDD C	824.2	128	252.4413	N/A
GPRS 850	836.6	190	246.7381	N/A
630	848.8	251	235.9059	N/A
CDDC	1850.2	512	246.5128	N/A
GPRS 1900	1880.0	661	245.7395	N/A
	1909.8	810	240.1720	N/A
Conclusion: P.	ASS			

Test GPRS 850 CH190

6. RF POWER OUTPUT TEST

6.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Power meter	Anritsu	ML2487A	6K00002472	May.08,11	1Year
2.	Power sensor	Anritsu	MA2491A	0033005	May.08,11	1Year
3.	Attenuator	Agilent	8491B	MY39262165	May.08,11	1 Year
4.	RF Cable	Hubersuhner	SUCOFLEX102	28618/2	May.08,11	1Year
5.	RF Cable	Hubersuhner	SUCOFLEX102	28610/2	May.08,11	1Year
6.	RF Cable	Hubersuhner	SUCOFLEX102	28620/2	May.08,11	1Year
7.	Power divider	Mini-Circuits	ZFRSC-183-S+	572800942	N/A	N/A
8.	Wireless Communication	A gilant	E5515C	GB44300243	May.09,11	1Year
٥.	Test set	Agilent	E3313C	UD44300243		1 i ear

6.2.Limit

Part 22.913(a) Mobile station are limited to 7W Part 24.232(b) Peak power measurement, Mobile station are limited to 2W

6.3.Test Procedure

The transmitter output was connected to calibrated attenuator, the other end of which was connected to a power meter. Transmitter output was read off the power in dBm. The power output at the transmitter antenna port was determined by adding the value of attenuator to the power meter reading.

6.4.Test Results

EUT: GSM/SERIALConverter		
M/N: Confidant 3.0		
Test date:2011-10-07	Pressure: 101.5kpa	Humidity: 59 %
Tested by:Leo-Li	Test site: RF site	Temperature: 25 ℃
Cable loss: 2dB	Attenuator loss: 20 dB	Spliter attenuation:6dB

			1 Tir	ne Slot	2 Time Slot			
Mode	Frequency (MHz)	СН	Peak power (dBm)	AV Power (dBm)	Peak power (dBm)	AV Power (dBm)		
CDDC	824.2	128	31.39	22.36	29.79	23.77		
GPRS 850	836.6	190	31.07	22.04	29.51	23.49		
830	848.8	251	31.25	22.22	29.69	23.67		
CDDC	1850.2	512	29.63	20.60	27.08	21.06		
GPRS 1900	1880.0	661	29.57	20.54	27.02	21.00		
	1909.8	810	29.40	20.37	26.98	20.96		
Conclusion: PASS								

7. FIELD STRENGTH OF RADIATED SPURIOUS EMISSIONS

7.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analyzer	Agilent	E4446A	US44300459	May.08, 11	1 Year
2.	Signal Generator	HP	83732B	VS34490501	May.08, 11	1 Year
3.	Power meter	Anritsu	ML2487A	6K00002472	May.08, 11	1Year
4.	Power sensor	Anritsu	MA2491A	0033005	May.08, 11	1Year
5.	Attenuator(10dB)	Agilent	8491A	MY39264375	May.08, 11	1 Year
6.	Attenuator(20dB)	Agilent	8491B	MY39262165	May.08, 11	1 Year
7.	Attenuator (0dB-110dB)	Agilent	8496A	MY42143100	May.08, 11	1 Year
8.	Universal Radio Communication Tester	R&S	CUM200	1100.008K02	May.08, 11	1 Year
9.	Network Analyzer	Agilent	E5071B	MY42403549	May.08, 11	1 Year
10.	Bluetooth Test set	Anritsu	MT8852B	6K00005966	May.08, 11	1 Year
11.	Wireless Communication Test set	Agilent	E5515C	GB44300243	May.09, 11	1 Year
12.	DC Power supply	King	DPS-1303D	821956	N/A	N/A
13.	PREAmplifier	Agilent	8449B	3008A02495	May.08, 11	1 Year
14.	PREAmplifier	Agilent	8447D	2944A11159	May.08, 11	1Year
15.	Horn Antenna	EMCO	3115	9510-4580	Nov.19, 10	1.5 Year
16.	Horn Antenna	EMCO	3115	9607-4877	Nov. 25, 10	1.5 Year
17.	Bilog Antenna	Schaffner	CBL6111C	2768	Dec.14, 10	1 Year
18.	Power divider	Mini-Circuits	ZFRSC-183-S+	572800942	N/A	N/A
19.	Power divider	Mini-Circuits	ZA3PD-4-S+	347100912	N/A	N/A
20.	Power divider	Mini-Circuits	ZA4PD-4-S+	544000937	N/A	N/A
21.	Antenna and turn table controller	СТ	SC100	CT-0091	N/A	N/A
22.	Temperature controller	Terchy	MHQ	120	May.08, 11	1Year
23.	RF Cable	Hubersuhner	SUCOFLEX102	28620/2	May.08, 11	1 Year
24.	RF Cable	Hubersuhner	SUCOFLEX102	28618/2	May.08,11	1 Year
25.	RF Cable	Hubersuhner	SUCOFLEX102	28610/2	May.08,11	1 Year
26.	RF Cable	Hubersuhner	SUCOFLEX102	NO.1	May.08,11	1 Year
27.	Horn Antenna	EMCO	3116	00060089	Nov.25, 10	1.5 Year
28.	Horn Antenna	EMCO	3116	00060088	Nov.25, 10	1.5 Year

7.2.Limit

FCC part 22.917(a), 24.238(a) the magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under the conditions specification in the instruction manual and/or alignment procedure, shall not be less than 43+10log(Mean power in watts) dBc below the mean power output outside a license's frequency block(-13dBm).

7.3.Test Procedure

The EUT was placed on a non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer. During the measurement, the EUT was communication with the station. The highest emission was recorded with the rotation of the turntable and lowering of the test antenna from 4m to 1m.

ERP in frequency band 824.2-848.8MHz were measured using substitution method. The EUT was replaced by dipole antenna connected, the S.G. output was recorded and ERP was calculated as follow: EIRP in frequency band 1850.5-1909.8MHz were measured using a substitution method. The EUT was replaced by a horn antenna connected, the S.G. output was recorded and EIRP was calculated as follows:

ERP=S.G. output (dBm) + Antenna Gain (dBd)-Cable Loss (dB) EIRP=S.G. output (dBm) + Antenna Gain (dBi)-Cable Loss (dB)

7.4. Test Results

GPRS 850 Mode

Spurious emissions

EUT: GSM/SERIALConverter

M/N: Confidant3.0

Power: DC 5V From Adapter input AC 230V/50Hz

Test Date: 2011-10-08 Test site: RF Chamber Tested by:Leo-Li

Ambient Temperature: 25.2°C | Relative Humidity: 55%

Test result

Test Mode: GPRS 850 TX CH Low Mode 824.2MHz

Test Mode:	GPRS 850	TX CH Lo	w Mode 82	4.2MHz				
Frequency (MHz)	Antenna polarization	S.G Output (dBm)	Antenna Gain (dBi/dBd)	Cable Loss (dB)	Result (dBm)	Limit (dBm)	Margin (dB)	Conclusion
154	Н	-57.53	2.41	1.2	-56.32	-13	43.32	PASS
180	Н	-58.25	2.80	1.4	-56.85	-13	43.85	PASS
296	Н	-56.48	2.84	1.5	-55.14	-13	42.14	PASS
427	Н	-55.92	2.99	1.7	-54.63	-13	41.63	PASS
1600	Н	-53.92	6.96	2.4	-49.36	-13	36.36	PASS
2190	Н	-49.92	7.20	2.9	-45.62	-13	32.62	PASS
2825	Н	-45.18	8.20	3.3	-40.28	-13	27.28	PASS
136	V	-56.45	2.09	1.0	-55.36	-13	42.36	PASS
154	V	-57.33	2.41	1.2	-56.12	-13	43.12	PASS
180	V	-55.82	2.80	1.4	-54.42	-13	41.42	PASS
427	V	-56.31	2.99	1.7	-55.02	-13	42.02	PASS
1600	V	-53.08	6.96	2.4	-48.52	-13	35.52	PASS
2190	V	-51.42	7.20	2.9	-47.12	-13	34.12	PASS
2825	V	-47.08	8.20	3.3	-42.18	-13	29.18	PASS

7-2 FCC ID:ZOHCONFIDANT30 Test Mode: GPRS 850 TX CH Mid Mode 836.6MHz 154 Η -56.99 2.41 1.2 -55.78 -13 42.78 **PASS PASS** 180 Η -56.52 2.80 1.4 -55.12 -13 42.12 **PASS** 2.84 296 Η -57.57 1.5 -56.23 -13 43.23 427 Η -56.87 2.99 1.7 -55.58 -13 42.58 **PASS PASS** 1610 Η -52.91 7.05 2.4 -48.26 -13 35.26 2195 -51.78 7.23 2.9 -47.45 **PASS** Η -13 34.45 2826 Η -46.53 8.20 3.3 -41.63 -13 28.63 **PASS** V -54.34 2.09 **PASS** 136 1.0 -53.25 -13 40.25 154 V -55.46 2.41 1.2 -54.25 41.25 **PASS** -13 V 2.80 1.4 43.32 **PASS** 180 -57.72 -56.32 -13 427 V -55.41 2.99 1.7 -54.12 -13 41.12 **PASS** V 7.05 2.4 32.23 1610 -49.88 -45.23 -13 **PASS** 7.23 V 2.9 **PASS** 2195 -46.72 -42.39 -13 29.39 2826 V -46.79 8.20 3.3 -41.89 -13 28.89 **PASS** Test Mode: GPRS 850 TX CH High Mode 848.8MHz 154 -56.45 2.41 42.24 Η 1.2 -55.24 -13 **PASS** 180 Η -55.66 2.80 1.4 -54.26 -13 41.26 **PASS PASS** 296 -57.55 -56.21 Η 2.84 1.5 -13 43.21 **PASS** 427 Η -53.47 2.99 1.7 -52.18 -13 39.18 -48.30 2.5 -43.69 30.69 **PASS** 1650 Η 7.11 -13 **PASS** 2190 Η -46.31 7.20 2.9 -42.01-13 29.01 2825 Η -44.09 8.20 3.3 -39.19 -13 26.19 **PASS** V 2.09 **PASS** 136 -57.34 1.0 -56.25 -13 43.25 **PASS** 154 V -55.49 2.41 1.2 -54.28 -13 41.28 **PASS** 43.17 180 V -57.57 2.80 1.4 -56.17 -13 427 V -54.76 2.99 1.7 -53.47 -13 40.47 **PASS** V -50.86 7.11 2.5 -46.25 -13 33.25 **PASS** 1650 2190 V -49.44 7.20 2.9 -45.14 -13 **PASS** 32.14 3.3 2825 -48.48 8.20 -43.58 -13 30.58 **PASS** Remark: All the emission were detected belong to narrowband spurious emission

AUDIX Technology (Shenzhen) Co., Ltd.

ID:ZOHCONFIDANT30	page 7-3
CDDC 1000 Mode	
GPRS 1900 Mode	

α	•	
S 1	niiriniis	emissions
D	pullous	CITIOSIOIIS

EUT:GSM/SERIALConverter

M/N: Confidant3.0

Power: DC 5V From Adapter input AC 230V/50Hz

Test Date: 2011-10-08 Test site: RF Chamber Tested by:Leo-Li

Ambient Temperature: 25.2°C | Relative Humidity: 55%

Test result

Test Mode: GPRS 1900 TX CH Low Mode 1850.2MHz

		S.G	Antenna	Cable				
Frequency (MHz)	Antenna polarization	Output (dBm)	Gain (dBi/dBd)	Loss (dB)	Result (dBm)	Limit (dBm)	Margin (dB)	Conclusion
154	Н	-57.66	2.41	1.2	-56.45	-13	43.45	PASS
180	Н	-55.63	2.80	1.4	-54.23	-13	41.23	PASS
296	Н	-54.90	2.84	1.5	-53.56	-13	40.56	PASS
427	Н	-55.41	2.99	1.7	-54.12	-13	41.12	PASS
2190	Н	-49.64	7.20	2.9	-45.34	-13	32.34	PASS
2825	Н	-51.66	8.20	3.3	-46.76	-13	33.76	PASS
3650	Н	-43.49	8.95	3.8	-38.34	-13	25.34	PASS
136	V	-56.21	2.09	1.0	-55.12	-13	42.12	PASS
154	V	-57.56	2.41	1.2	-56.35	-13	43.35	PASS
180	V	-56.07	2.80	1.4	-54.67	-13	41.67	PASS
427	V	-54.15	2.99	1.7	-52.86	-13	39.86	PASS
2190	V	-50.89	7.20	2.9	-46.59	-13	33.59	PASS
2825	V	-51.24	8.20	3.3	-46.34	-13	33.34	PASS
3650	V	-44.29	8.95	3.8	-39.14	-13	26.14	PASS

7-5 FCC ID:ZOHCONFIDANT30 Test Mode: GPRS 1900 TX CH Mid Mode 1880.0MHz 154 Η -56.66 2.41 1.2 -55.45 -13 42.45 **PASS** Η -57.16 1.4 **PASS** 180 2.80 -55.76 -13 42.76 Η 2.84 1.5 **PASS** 296 -55.46 -54.12 -13 41.12 427 Η -54.63 2.99 1.7 -53.34 -13 40.34 **PASS PASS** 1800 Η -46.70 7.15 2.7 -42.25 -13 29.25 -51.56 2195 7.23 2.9 -47.23 **PASS** Η -13 34.23 3700 Η -45.46 9.01 3.9 -40.35 -13 27.35 **PASS** V -54.21 2.09 136 1.0 -53.12 -13 40.12 **PASS** V -53.49 2.41 1.2 -52.28 39.28 **PASS** 154 -13 V -52.16 1.4 -50.76 **PASS** 180 2.80 -13 37.76 427 V -52.63 2.99 1.7 -51.34 -13 38.34 **PASS** V 2.7 **PASS** 1800 -46.72 7.15 -42.27 -13 29.27 V -44.89 7.23 2.9 **PASS** 2195 -40.56-13 27.56 3700 V -43.46 9.01 3.9 -38.35 -13 25.35 **PASS** Test Mode: GPRS 1900 TX CH High Mode 1909.8MHz -54.48 2.41 1.2 154 Η -53.27 40.27 **PASS** -13 180 Η -53.60 2.80 1.4 -52.20 -13 39.20 **PASS PASS** 42.45 296 Η -56.79 2.84 1.5 -55.45 -13 **PASS** 427 Η -54.07 2.99 1.7 -52.78-13 39.78 1900 -40.65 -13 27.65 **PASS** Η -45.027.17 2.8 **PASS** 2190 Η -45.75 7.22 2.9 -41.43 -13 28.43 3800 Η -42.24 9.08 4.0 -37.16 -13 24.16 **PASS** V 2.09 **PASS** 136 -55.32 1.0 -54.23 -13 41.23 **PASS** 154 V -53.7 2.41 1.2 -52.49 -13 39.49 **PASS** 1.4 180 V -52.85 2.80 -51.45 -13 38.45 1.7 427 V -54.16 2.99 -52.87 -13 39.87 **PASS** 1900 V 7.17 2.8 -42.29 -13 29.29 **PASS** -46.66 2190 V -47.97 7.22 2.9 -43.65 -13 **PASS** 30.65 3800 -47.36 9.08 4.0 -42.28-13 29.28 **PASS** Remark: All the emission were detected belong to narrowband spurious emission

AUDIX Technology (Shenzhen) Co., Ltd.

FCC ID:ZOHCONFIDANT30	page	7-6

8. FREQUENCY STABILITY V.S. TEMPERATURE AND VOLTAGE

8.1.Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analyzer	Agilent	E4446A	US44300459	May.08, 11	1 Year
2.	Signal Generator	HP	83732B	VS34490501	May.08, 11	1 Year
3.	Power meter	Anritsu	ML2487A	6K00002472	May.08, 11	1Year
	Power sensor	Anritsu	MA2491A	0033005	May.08, 11	1Year
5.	Attenuator(10dB)	Agilent	8491A	MY39264375	May.08, 11	1 Year
6.	Attenuator(20dB)	Agilent	8491B	MY39262165	May.08, 11	1 Year
7.	Attenuator (0dB-110dB)	Agilent	8496A	MY42143100	May.08, 11	1 Year
8.	Universal Radio Communication Tester	R&S	CUM200	1100.008K02	May.08, 11	1 Year
9.	Network Analyzer	Agilent	E5071B	MY42403549	May.08, 11	1 Year
10.	Bluetooth Test set	Anritsu	MT8852B	6K00005966	May.08, 11	1 Year
11.	Wireless Communication Test set	Agilent	E5515C	GB44300243	May.09, 11	1 Year
12.	DC Power supply	King	DPS-1303D	821956	N/A	N/A
13.	PREAmplifier	Agilent	8449B	3008A02495	May.08, 11	1 Year
14.	PREAmplifier	Agilent	8447D	2944A11159	May.08, 11	1Year
15.	Horn Antenna	EMCO	3115	9510-4580	Nov.19, 10	1.5 Year
16.	Horn Antenna	EMCO	3115	9607-4877	Nov. 25, 10	1.5 Year
17.	Bilog Antenna	Schaffner	CBL6111C	2768	Dec.14, 10	1 Year
18.	Power divider	Mini-Circuits	ZFRSC-183-S+	572800942	N/A	N/A
19.	Power divider	Mini-Circuits	ZA3PD-4-S+	347100912	N/A	N/A
20.	Power divider	Mini-Circuits	ZA4PD-4-S+	544000937	N/A	N/A
21.	Antenna and turn table controller	СТ	SC100	CT-0091	N/A	N/A
22.	Temperature controller	Terchy	MHQ	120	May.08, 11	1Year
23.	RF Cable	Hubersuhner	SUCOFLEX102	28620/2	May.08, 11	1 Year
24.	RF Cable	Hubersuhner	SUCOFLEX102	28618/2	May.08,11	1 Year
25.	RF Cable	Hubersuhner	SUCOFLEX102	28610/2	May.08,11	1 Year
26.	RF Cable	Hubersuhner	SUCOFLEX102	NO.1	May.08,11	1 Year
	Horn Antenna	EMCO	3116	00060089	Nov.25, 10	1.5 Year
	Horn Antenna	EMCO	3116	00060088	Nov.25, 10	1.5 Year

8.1.Limit

Frequency Tolerance: +/-2.5ppm for 850MHz band +/-2.5ppm for 1900MHz band

8.2. Test procedure:

The equipment under test was connected to an external DC power supply and input rated voltage. Reference power supply voltage for these tests is DC 4.0V. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the Spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25 degree operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30 degree. After the temperature stabilized for approximately 30 minutes record the frequency. Repeat step measure with 10 degree per stage until the highest temperature of 50 degree reached.

Frequency Stab	ility						
EUT: GSM/SER	IALConv	erter					
M/N: Confidant3	3.0						
Power: DC 5V I	From Ada	pter input AC	2 120V/60Hz				
Test Date: 2011-10-08 Test site: RF Chamber Tested by: Leo-Li							
Ambient Tempera	ture: 25°C	Relative	Humidity: 56%	6	Pressure	Pressure:101.7 kpa	
Frequency stabilit	y VS Vol	tage (Temp	erature:25℃)				
Test Mode: GPRS	850 CH	128 824.2M	ſНz				
Supply Voltage	СН	Frequency	Test result	Deviation	Limit		
(V)	Сп	(MHz)	(MHz)	(ppm)	(ppm)	Conclusion	
102	128	824.2	824.1985	1.8	+/- 2.5	PASS	
112	128	824.2	824.1986	1.7	+/- 2.5	PASS	
120	128	824.2	824.1989	1.3	+/- 2.5	PASS	
130	128	824.2	824.1996	0.5	+/- 2.5	PASS	
138	128	824.2	824.1992	1.0	+/- 2.5	PASS	
Test Mode: GPRS	850 CH1	90 836.6M	Hz	1			
Supply Voltage	СН	Frequency	Test result	Deviation	Limit	Conclusion	
(V)		(MHz)	(MHz)	(ppm)	(ppm)	Conclusion	
102	190	836.6	836.5996	0.5	+/- 2.5	PASS	
112	190	836.6	836.5989	1.3	+/- 2.5	PASS	
120	190	836.6	836.5992	1.0	+/- 2.5	PASS	
130	190	836.6	836.5995	0.6	+/- 2.5	PASS	
138	190	836.6	836.5991	1.1	+/- 2.5	PASS	
Test Mode: GPRS	850 CH2	I		1	I		
Supply Voltage	СН	Frequency	Test result	Deviation	Limit	Conclusion	
(V)		(MHz)	(MHz)	(ppm)	(ppm)		
102	251	848.8	848.7995	0.6	+/-2.5	PASS	
112	251	848.8	848.7992	0.9	+/-2.5	PASS	
120	251	848.8	848.7989	1.3	+/-2.5	PASS	
130	251	848.8	848.7990	1.2	+/-2.5	PASS	
138	251	848.8	848.7994	0.7	+/-2.5	PASS	

AUDIX Technology (Shenzhen) Co., Ltd.

Гest Mode: GPRS	3 1900 CF	H 512 1850.2N	МHz			
Supply Voltage (V)	СН	Frequency (MHz)	Test result (MHz)	Deviation (ppm)	Limit (ppm)	Conclusion
102	512	1850.2	1850.1996	0.2	+/- 2.5	PASS
112	512	1850.2	1850.1992	0.4	+/- 2.5	PASS
120	512	1850.2	1850.1990	0.5	+/- 2.5	PASS
130	512	1850.2	1850.1899	0.5	+/- 2.5	PASS
138	512	1850.2	1850.1994	0.3	+/- 2.5	PASS
Test Mode: GPRS	1900 CF	I 661 1880.0N	ИНz			
Supply Voltage	СН	Frequency	Test result	Deviation	Limit	Conclusion
(V)		(MHz)	(MHz)	(ppm)	(ppm)	Coliciusion
102	661	1880.0	1879.9986	0.7	+/- 2.5	PASS
112	661	1880.0	1879.9979	1.1	+/- 2.5	PASS
120	661	1880.0	1879.9989	0.6	+/- 2.5	PASS
130	661	1880.0	1879.9992	0.4	+/- 2.5	PASS
138	661	1880.0	1879.9987	0.7	+/- 2.5	PASS
Test Mode: GPRS	1900 CF	I 810 1909.8N	ИНz			
Supply Voltage (V)	СН	Frequency (MHz)	Test result (MHz)	Deviation (ppm)	Limit (ppm)	Conclusion
102	810	1909.8	1909.7982	0.9	+/- 2.5	PASS
112	810	1909.8	1909.7980	1.0	+/- 2.5	PASS
120	810	1909.8	1909.7985	0.8	+/- 2.5	PASS
130	810	1909.8	1909.7979	1.1	+/- 2.5	PASS
138	810	1909.8	1909.7988	0.6	+/- 2.5	PASS

Test Mode: GPRS	850 CH	128 824.2M	IHz			
Temperature	СН	Frequency	Test result	Deviation	Limit	Conclusion
(℃)		(MHz)	(MHz)	(ppm)	(ppm)	
-30	128	824.2	824.1992	1.0	+/- 2.5	PASS
-20	128	824.2	824.1998	0.2	+/- 2.5	PASS
-10	128	824.2	824.1995	0.6	+/- 2.5	PASS
10	128	824.2	824.1996	0.5	+/- 2.5	PASS
20	128	824.2	824.1994	0.7	+/- 2.5	PASS
30	128	824.2	824.1991	1.0	+/- 2.5	PASS
40	128	824.2	824.1997	0.4	+/- 2.5	PASS
50	128	824.2	824.1999	0.1	+/- 2.5	PASS
Test Mode: GPRS	850 CH	190 836.6M	Hz			
-30	190	836.6	836.5998	0.2	+/- 2.5	PASS
-20	190	836.6	836.5994	0.7	+/- 2.5	PASS
-10	190	836.6	836.5995	0.6	+/- 2.5	PASS
10	190	836.6	836.5997	0.4	+/- 2.5	PASS
20	190	836.6	836.5993	0.8	+/- 2.5	PASS
30	190	836.6	836.5996	0.5	+/- 2.5	PASS
40	190	836.6	836.5992	1.0	+/- 2.5	PASS
50	190	836.6	836.5999	0.1	+/- 2.5	PASS
Test Mode: GPRS	850 CH2	251 848.8M	Hz			
-30	251	848.8	848.7992	0.9	+/-2.5	PASS
-20	251	848.8	848.7995	0.6	+/-2.5	PASS
-10	251	848.8	848.7997	0.4	+/-2.5	PASS
10	251	848.8	848.7993	0.8	+/-2.5	PASS
20	251	848.8	848.7999	0.1	+/-2.5	PASS
30	251	848.8	848.7996	0.5	+/-2.5	PASS
40	251	848.8	848.7998	0.2	+/-2.5	PASS
50	251	848.8	848.7994	0.7	+/-2.5	PASS

AUDIX Technology (Shenzhen) Co., Ltd.

Test Mode:	: GPRS 1900 C	CH 512 1850.	2MHz			
-30	512	1850.2	1850.1995	0.3	+/- 2.5	PASS
-20	512	1850.2	1850.1998	0.1	+/- 2.5	PASS
-10	512	1850.2	1850.1996	0.2	+/- 2.5	PASS
10	512	1850.2	1850.1997	0.2	+/- 2.5	PASS
20	512	1850.2	1850.1992	0.4	+/- 2.5	PASS
30	512	1850.2	1850.1991	0.5	+/- 2.5	PASS
40	512	1850.2	1850.1993	0.4	+/- 2.5	PASS
50	512	1850.2	1850.1994	0.3	+/- 2.5	PASS
Test Mode:	GPRS 1900 C	CH 661 1880.	0MHz	_		
-30	661	1880.0	1879.9986	0.7	+/- 2.5	PASS
-20	661	1880.0	1879.9975	1.3	+/- 2.5	PASS
-10	661	1880.0	1879.9965	1.7	+/- 2.5	PASS
10	661	1880.0	1879.9962	2.0	+/- 2.5	PASS
20	661	1880.0	1879.9958	2.2	+/- 2.5	PASS
30	661	1880.0	1879.9964	1.9	+/- 2.5	PASS
40	661	1880.0	1879.9971	1.5	+/- 2.5	PASS
50	661	1880.0	1879.9982	1.0	+/- 2.5	PASS
Test Mode:	: GPRS 1900 C	CH 810 1909.	8MHz			
-30	810	1909.8	1909.7984	0.8	+/- 2.5	PASS
-20	810	1909.8	1909.7957	2.2	+/- 2.5	PASS
-10	810	1909.8	1909.7973	1.4	+/- 2.5	PASS
10	810	1909.8	1909.7982	0.9	+/- 2.5	PASS
20	810	1909.8	1909.7955	2.3	+/- 2.5	PASS
30	810	1909.8	1909.7963	1.9	+/- 2.5	PASS
40	810	1909.8	1909.7969	1.6	+/- 2.5	PASS
50	810	1909.8	1909.7966	1.8	+/- 2.5	PASS

ID:ZOHCONFIDANT30	page 9-1
9. DEVIATION TO TEST SPECIFICATIONS	
[NONE]	

10.PHOTOGRAPH OF TEST

11.PHOTOS OF THE EUT

Figure 1

General Appearance of the EUT

Figure 2
General Appearance of the EUT

Figure 3
General Appearance of the EUT

Figure 4
General Appearance of the EUT

Figure 5 General Appearance of the EUT

Figure 6
General Appearance of the EUT

Figure 7 Inside of the EUT

Figure 8
Inside of the EUT

Figure 9 Inside of the EUT

Figure 10 Component side of the PCB

Figure 11 Component side of the PCB

Figure 12 Component side of the PCB

Figure 13 USB Cable

Figure 14Power Adapter

Figure 15 Power Adapter

