AMENDMENTS TO CLAIMS

Listing of Claims:

- 1. (Cancelled).
- 2. (Currently Amended) The A dual sealing system of claim 1 further comprising dual seals in a composite riser having a metal liner assembly wherein said dual seals comprise:

a mechanical seal in the liner assembly between a transition ring and a metal to composite interface (MCI); and

an elastomeric seal <u>formed</u> between <u>an elastomeric tip provided on the MCI and an elastomeric shear ply provided on the outside of the liner assembly of the composite riser;</u>

wherein said dual seals prevent leakage of internal fluid to the outside of the composite riser.

- 3. (Original) The dual sealing system of claim 2 wherein said elastomeric seal prevents leakage of internal fluids to the outside of the composite riser in the event that the integrity of said mechanical seal or the integrity of the metal liner is compromised.
- 4. (Currently Amended) The dual sealing system of claim 2 wherein said elastomeric seal emprises an elastomeric tip is provided proximate an interface between the MCI and the transition ring.
- 5. (Currently Amended) The dual sealing system of claim [[4]]2 wherein said elastomeric tip and the elastomeric shear ply are bonded together to form said elastomeric seal.

- 6. (Currently Amended) The dual sealing system of claim [[4]]2 wherein said elastomeric tip and the elastomeric shear ply are provided in an uncured state and are cured to form said elastomeric seal.
- 7. (Original) The dual sealing system of claim 4 wherein said elastomeric seal prevents leakage of internal fluids to the outside of the composite riser in the event that the integrity of said mechanical seal or the integrity of the metal liner is compromised.
- 8. (Currently Amended) A method of preventing leakage of internal fluid to the outside of a composite riser having a metal liner assembly, comprising the steps of:

providing a dual sealing system dual seals comprising a mechanical seal in the liner assembly between a transition ring and a metal to composite interface (MCI) and an elastomeric seal formed between an elastomeric tip provided on the MCI and an elastomeric shear ply provided on the outside of the liner assembly of the composite riser; and

allowing fluid to flow through the composite riser, wherein said fluid is prevented from leaking to the outside of the composite riser by said dual seals.

- 9. (Cancelled).
- 10. (Cancelled).
- 11. (Currently Amended) The method of claim [[10-]]8 wherein said elastomeric seal prevents leakage of said fluid to the outside of the composite riser in the event that the integrity of said mechanical seal or the integrity of the liner is compromised.

- 12. (Currently Amended) The method of claim [[9-]]8 wherein said elastomeric seal comprises an elastomeric tip is provided proximate an interface between the MCI and the transition ring.
- 13. (Original) The method of claim 12 wherein, in the event of leakage of said fluid, said leaked fluid forces said elastomeric tip against the MCI along said interface with the transition ring to prevent said fluid from leaking to the outside of the composite riser.
- 14. (Cancelled).
- 15. (Currently Amended) The method of claim [[+4-]]12 wherein, in the event of leakage of said fluid around said mechanical seal, said leaked fluid forces said elastomeric tip against the MCI along said interface with the transition ring to prevent said fluid from leaking to the outside of the composite riser.
- 16. (Currently Amended) The method of claim [[+4]]12 wherein, in the event of leakage of said fluid from the liner, said leaked fluid forces said elastomeric tip against the MCI along said interface with the transition ring to prevent said fluid from leaking to the outside of the composite riser.
- 17. (Currently Amended) A metal to composite interface (MCI) of a composite riser having a liner assembly for use with hydrocarbon production, comprising:

an elastomeric tip provided along an end of the MCI for forming an elastomeric seal with an elastomeric shear ply provided on the outside of the liner assembly to prevent leakage of internal fluid to the outside of the composite riser; and

a mechanical seal surface on the inner surface of the MCI proximate said elastomeric tip for forming a mechanical seal with a metal transition ring of the liner assembly to prevent leakage of internal fluid to the outside of the composite riser;

wherein the elastomeric seal and the mechanical seal are separate and distinct seals.

- 18. (Original) The MCI of claim 17 wherein said elastomeric tip and the elastomeric shear ply are provided in an uncured state and are cured to form said elastomeric seal.
- 19. (Currently Amended) The MCI of claim 17 wherein said elastomeric tip is provided proximate an interface between the MCI and [[a-]]the transition ring of the liner assembly.
- 20. (Cancelled).
- 21. (Cancelled).
- 22. (Currently Amended) The MCI of claim [[2+]]17, wherein said mechanical seal surface comprises inner grooves which conform to outer grooves of the transition ring to form said mechanical seal.
- 23. (Previously Presented) The dual sealing system of claim 2 wherein the transition ring is welded to a liner section in the liner assembly.
- 24. (Previously Presented) The dual sealing system of claim 2 wherein the transition ring comprises part of a continuous tubular liner section in the liner assembly.

- 25. (Previously Presented) The dual sealing system of claim 2 wherein the mechanical seal comprises conforming grooves between the transition ring and the MCI.
- 26. (Currently Amended) The method of claim [[10-]]8 wherein the mechanical seal comprises conforming grooves between the transition ring and the MCI.
- 27. (Currently Amended) The method of claim [[10-]]8 wherein the transition ring comprises part of a continuous tubular liner section in the liner assembly.
- 28. (Currently Amended) The method of claim [[14]]17 wherein the mechanical seal comprises conforming grooves between the transition ring and the MCI.
- 29. (Cancelled).
- 30. (Currently Amended) The MCI of claim [[21-]]17 wherein the transition ring is welded to a liner section in the liner assembly.
- 31. (Currently Amended) The MCI of claim [[21-]]17 wherein the transition ring comprises part of a continuous tubular liner section in the liner assembly.

MEMORANDUM OF INTERVIEW WITH EXAMINER

Applicant acknowledges with appreciation the telephonic interview conducted November 18, 2003 between the Examiner Alison K. Pickard and the attorney for Applicant, Shannon W. Bates of Conley Rose, P.C.

Applicant requested the interview to discuss the Final Office Action in which the Examiner rejected claims 1-31 under 35 U.S.C. § 103(a) as being unpatentable over *Baldwin*, U.S. Patent No. 6,042,152 in view of Applicant's disclosure regarding metal liners. Claims 1-7 were specifically reviewed.

The Applicant and the Examiner discussed possible amendments to claim 1. The Applicant pointed out that *Baldwin* does not teach a mechanical seal and an elastomeric seal that are each formed between different components of the composite riser. Instead, *Baldwin* discloses a Y-shaped sealing member 24, 24A that forms both the mechanical seal and the elastomeric seal. The Applicant and the Examiner discussed combining claim 1 with claim 2 and also including the elastomeric tip limitation, thereby identifying the dual seals as comprising a mechanical seal between a transition ring and a MCI, and an elastomeric seal formed between an elastomeric tip provided on the MCI and an elastomeric shear ply. The Examiner indicated that this should be sufficient to overcome the obviousness rejection in view of *Baldwin* and the Applicant's disclosure regarding metal liners.