	Name:	ID: .		Quiz section or t	ime:
Points ((122)	Stat/Math 390, Winter	r, Test 3, Mar. 11, 20 AS BEFORE	01 6 ; Marzban	9+15)
	1 In testing H	H0: $\mu \leq \mu_0$ vs. H1: $\mu > \mu_0$, counder the sampling distributive μ		nts. The p-value is	s given by the
	Area to the Area to the	right of μ_0 . right of the observed sample right of the observed sample left of the observed sample	mean if it's to the right	t of μ_0 .	
	e) Area to the	left of the observed sample i	mean if it's to the right	of μ_0 .	
ſ	ay ine tide ine) r confidence bound for a pop ean is above 13, with 95% co puted lower bounds will be l	illidence.		ect? >>> ×
	c) There is a 9 d) 95% of same	5% probability that the true ple means will be greater tha	mean is greater than 13	3.	
1	and then time	see if an update to a software the updated software on the s. The most appropriate tes	same computer. Then		
	_	est b) 2-sample indep. t-te		e-test d) 1-way A	NOVA F-test
1	a) It is the pro	ne following is the correct into bability that the null hypothobability that the alternative	nesis is correct.	?	
	c) It measures	the evidence from data in fa the evidence from data in fa	vor of the null hypothes		
1	a) $\mu \geq \mu_0$, then	ne following statements is TF in surely p-value $< \alpha$ c) μ in surely p-value $> \alpha$ d) μ	$\mu < \mu_0$, then surely p-val	lue $< \alpha$ e) Al	if in fact l of the above e of the above
1	95% lower con:	a compute the 95% upper confidence bound for the population mean what percentage of the	ation mean. The interva	$\frac{1 \text{ defined by these}}{} \times$	
		rming a 1-way ANOVA F-te	st, which of the followin	g is/are TRUE?	
(a) The number of observations in each population must be equal. No. b) The larger the F statistic, the more evidence there is against H_0 . c) p-value is the sum of the areas (left & right of F_{obs}), because of "At least," appearing in H_1 . d) For 2 populations, the F-test is equivalent to a 2-sample, 2-sided t-test. F is generalization of the same				
ſ	W.15 teil 2)	n, circle all of the quantities			f) PI for $y(x)$
1	is the mean life	have k brands of phones, are etime of brand i . The most a i-squared c) 1-way ANOVA	appropriate test is		

~8 2-5

14. It is known that the quantity $X^2 = (n-1)s^2/\sigma^2$ has a chi-squared distribution with df = n-1. According to chi-squared tables, the 0.025 quantile and the 0.975 quantile of the chi-squared distribution with df = 20 are approximately 3.0 and 9.0, respectively. In other words, $pr(3.0 < X^2 < 9.0) = 0.95$, for df = 20. Starting from what we have been calling a "self-evident fact," use all of this information to compute a 2-sided, 95% CI for σ^2 ; suppose in a sample of size 21 the sample variance is 27.0.

$$Pr(3 < x^{2} < 9) = 0.95 \iff Self-evident fact$$

$$3 < (n-1) s^{2} < 9$$

$$\frac{1}{3} > \frac{\sigma^{2}}{(n-1) s^{2}} > \frac{1}{9}$$

$$\frac{180 > \sigma^{2} > 60$$

$$180 > \sigma^{2} > 60$$

~\beta \ 2.5

15. In a simple regression fit to a sample of size 16, we have $\bar{x} = 10$, $S_{xx} = 16/127$, $s_e = 4$. If we make a prediction of y at x = 11, what is the probability that a prediction from a sample fit will exceed the observed value of y by 4.0? In other words, what's the probability that a prediction will be greater than $(y^* + 4)$?

$$\begin{cases} = \Pr(\hat{y} > y^{+} + 4) = \Pr(\hat{y} - y^{+} > 4) = \Pr(\frac{\hat{y} - y^{+}}{S_{\text{pred. uv}}} > \frac{4}{S_{\text{pred. uv}}}) \\ = \Pr(t > \frac{4}{\sqrt{S_{e}^{2} + S_{q}^{2}}}) = \Pr(t > \frac{4}{\sqrt{1 + \frac{1}{4} + \frac{(4 - 10)^{2} \cdot 127}{16}}}) \\ = \Pr(t > \frac{4}{\sqrt{1 + \frac{1}{4} + \frac{(4 - 10)^{2} \cdot 127}{16}}}) = \Pr(t > \frac{1}{16}) = \Pr(t > \frac{1}{16}) \\ = \Pr(t > \frac{1}{3}) \approx \frac{0.36}{16} \text{ (bothern 0.347 and 0.384)} \\ = \frac{1}{0.33} \text{ df} = r - 2 = 14 \end{cases}$$

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.