

UNICAMP

ade de Engenharia Mecânica da Universidade Estadual de Campinas - FEM/UNICAI Rua Mendeleyev, 200 - CEP 13083-860 Cidade Universitária "Zeferino Vaz" Barão Geraldo Campinas - SP <u>www.fem.unicamp.br</u>

EXPERIMENTO 9:

PREPARAÇÃO E ANÁLISE METALOGRÁFICA DE AMOSTRAS METÁLICAS – MICROSCOPIA DE LUZ VISÍVEL (ÓPTICA)

Objetivo:

Este experimento tem como objetivo aplicar os conceitos gerais da preparação de corpo de prova para análise microscópica em microscópio de luz visível.

Teoria:

A metalografia é o estudo e a interpretação da estrutura dos metais e suas ligas, ou seja, os ensaios metalográficos procuram relacionar a estrutura interna do material com suas propriedades e com o processo de fabricação. O exame da microestrutura utilizando metalografia envolve a obtenção de uma superfície plana livre de riscos, intensificação das diferenças da estrutura por meio de ataques químicos e finalmente, a observação da estrutura a olho nu ou utilizando microscópio de luz visível ou eletrônico.

A preparação metalográfica comtempla as seguintes etapas:

- Corte:
- Embutimento;
- Lixamento;
- Polimento:
- Ataque;
- Observação.

> Preparação da amostra

O sucesso na análise e na interpretação precisa de uma estrutura reside na preparação metalográfica adequada da amostra. Essa preparação envolve as seguintes etapas: corte, embutimento, identificação, lixamento, polimento, ataque químico e observação. Entre as etapas, é necessária a limpeza e secagem das amostras. O tempo necessário para a preparação metalográfica depende do tipo e das condições do material estudado. Em alguns casos, essa preparação consome horas e em outros, até mesmo dias.

A etapa fundamental é a escolha da região representativa da amostra. Quando um microscópio de luz visível (máx. 2000 X em magnificação) é utilizado, geralmente, a amostra deve ter área de no máximo 10 x 10 mm². Assim, na obtenção de uma amostra a partir de uma peça de grandes dimensões deve-se avaliar o objetivo da análise e assim, decidir sobre a secção (longitudinal ou transversal) e o local de onde deverá ser retirada a amostra (centro ou superfície). Uma amostra adequadamente preparada deve ter:

• Superfície extremamente plana e isenta de riscos de qualquer natureza e dimensão;

Faculdade de Engenharia Mecânica da Universidade Estadual de Campinas - FEM/UNICAMP
Rua Mendeleyev, 200 - CEP 13083-860
Cidade Universitária "Zeferino Vaz" Barão Geraldo
Campinas - SP www.fem.unicamp.br

- Superfície isenta de qualquer mancha e qualquer outro tipo de imperfeição que prejudique a análise;
- Superfície isenta de trincas originadas durante a preparação da amostra;
- Superfície inalterada em termos estruturais devido ao aquecimento ou pressão durante a preparação.

> Corte

Em alguns casos, é necessário dividir o corpo de prova para obter amostras que servirão para análise metalográfica. Operações mecânicas como torneamento ou fresamento podem causar alterações microestruturais devido a tensão residual ou encruamento. O corte abrasivo oferece a melhor solução para esse seccionamento, pois elimina por completo esses efeitos, resultando em superfícies planas com baixa rugosidade, de modo rápido e seguro.

A amostra deve ser cortada em dimensões desejáveis na seção a ser analisada e para isso pode-se utilizar serra manual ou cortadoras de precisão (Figura 1).

Figura 1 – Cortadora de precisão Isomet 1000 Buehler.

Na realização do corte é necessário tomar cuidados com o aquecimento excessivo do material, introdução de deformação plástica na superfície da amostra ou extração involuntária de material da amostra. Geralmente, para cortes mais precisos utiliza-se baixa velocidade (em torno de 300 rpm), baixas cargas (em torno de 400 gf) e refrigeração adequada para que não haja deformação da amostra durante o corte e também, superaquecimento.

A dureza e a ductilidade do material influenciam a escolha do disco de corte. Dependendo do material a ser cortado podem ser utilizados discos de corte de diferentes composições. Os discos diamantados têm vida útil elevada, o que resulta da fina camada de diamante depositada na circunferência externa do disco de metal. Os discos abrasivos, como os de SiC e Al₂O₃ são consumidos rapidamente e são mais baratos. Geralmente, discos diamantados são empregados para cortar amostras mais duras e os discos abrasivos, de cerâmica, para cortar amostras mais macias. A Figura 2 mostra discos de corte diamantados e cerâmicos. A utilização do disco de corte correto assegura a baixa deformação e superfície plana da amostra.

Faculdade de Engenharia Mecânica da Universidade Estadual de Campinas - FEM/UNICAMP
Rua Mendeleyev, 200 - CEP 13083-860
Cidade Universitária "Zeferino Vaz" Barão Geraldo

Campinas - SP www.fem.unicamp.br

Figura 2 - Discos de corte: (a) diamantado e (b) cerâmico.

Deve-se também escolher qual superfície da amostra será analisada, pois dependendo do material ela apresentará estrutura de grãos diferente nas seções longitudinal e transversal. A Figura 3 mostra ilustrações esquemáticas das seções longitudinal e transversal de materiais isotrópicos e anisotrópicos.

Figura 3 - Ilustração mostrando seções longitudinal e transversal de materiais isotrópicos e anisotrópicos.

A Tabela 1 sintetiza os principais problemas observados nas operações de corte e aponta as principais causas.

Tabela 1 – Defeitos e possíveis causas durante a operação de corte.

DEFEITOS	CAUSAS	
Quebra/Desgaste Excessivo do Disco de Corte	Velocidade de avanço excessiva para o disco de corte.	
	Disco pressionado excessivamente contra a amostra.	
	Fixação errada do disco.	
	Fixação inadequada da amostra.	
	Refrigeração irregular.	
	Material do disco inadequado para o tipo da amostra.	
	Rolamentos defeituosos.	
	Uso inadequado do disco de corte.	
Aquecimento Excessivo	Refrigeração insuficiente.	
	Inadequação do disco de corte.	
Formação de Rebarbas	Disco de corte muito duro.	
	Disco de corte com granulometria muito grossa.	
	Alta velocidade do disco de corte	

> Embutimento

UNICAMP

FACULDADE DE ENGENHARIA MECÂNICA

Faculdade de Engenharia Mecânica da Universidade Estadual de Campinas - FEM/UNICAMP Rua Mendeleyev, 200 - CEP 13083-860 Cidade Universitária "Zeferino Vaz" Barão Geraldo

Campinas - SP www.fem.unicamp.br

O embutimento da amostra é realizado para facilitar o manuseio de peças pequenas, para evitar danos à lixa ou ao pano de polimento e evitar abaulamento da superfície, que traz sérias dificuldades ao observador. O embutimento consiste em circundar a amostra com um material adequado, formando um corpo único. O embutimento pode ser a frio ou a quente, dependendo das circunstâncias e da amostra a ser embutida.

O embutimento a frio ocorre quando são utilizadas resinas de polimerização rápida. Este embutimento é feito com resinas auto polimerizáveis, as quais consistem geralmente de duas substâncias formando um líquido viscoso quando misturadas. Esta mistura é vertida em um molde plástico onde se encontra a amostra, que se polimeriza após certo intervalo de tempo. A reação de polimerização é fortemente exotérmica, atingindo temperaturas entre 50 e 120 °C, com tempo de endurecimento que pode variar de alguns minutos até 1 dia, dependendo do tipo de resina empregada e do catalisador.

O embutimento a quente é realizado com o emprego de resinas termofixas de cura a quente que por meio de pressão e aquecimento são polimerizada. O método consiste em colocar o corpo de prova com a face que se quer analisar em contato com o êmbolo inferior da máquina de embutimento, pressionando-a por um determinado tempo e expondo-a a alta temperatura.

A Figura 4 mostra de forma esquemática o embutimento a frio e a quente de amostras para metalografia.

Figura 4 - Processo de embutimento: (a) a frio e (b) a quente.

O embutimento a quente emprega o uso da baquelite é utilizado quando não há restrições quanto à aplicação de pressão (deformação) e temperatura. No embutimento a quente deve-se tomar o cuidado com o aquecimento excessivo do equipamento, não exercer pressão excessiva durante o processo de embutimento e, também, tomar cuidado com o posicionamento da superfície que será observada. A Figura 5 mostra uma embutidora manual utilizada no embutimento a quente. No caso da utilização do embutimento a frio utilizando-se resina, deve-se evitar a presença de poros (bolhas) na mesma. Para evitar essas bolhas, deve-se misturar a resina e o catalisador lentamente e verter a mistura lentamente no molde, sobre a amostra. A Figura 6 mostra amostras embutidas a frio e a quente.

Faculdade de Engenharia Mecânica da Universidade Estadual de Campinas - FEM/UNICAMP
Rua Mendeleyev, 200 - CEP 13083-860
Cidade Universitária "Zeferino Vaz" Barão Geraldo
Campinas - SP www.fem.unicamp.br

Figura 5. Embutidora utilizada no embutimento a quente.

Figura 6. (a) Amostras embutidas a frio e (b) a quente (baquelite).

> Identificação

Deve-se ter cuidado ao identificar as amostras após o embutimento e assim, evitar confusão entre as mesmas. A melhor forma de identificar as amostras após o embutimento é com o uso de um gravador elétrico mostrado na Figura 7.

Figura 7 - Gravador elétrico de amostras metalográficas.

> Lixamento

O lixamento é uma das etapas mais demoradas da preparação de amostras metalográficas. Essa operação

Faculdade de Engenharia Mecânica da Universidade Estadual de Campinas - FEM/UNICAMP
Rua Mendeleyev, 200 - CEP 13083-860
Cidade Universitária "Zeferino Vaz" Barão Geraldo
Campinas - SP www.fem.unicamp.br

tem por objetivo eliminar riscos e marcas mais profundas da superfície e proporcionando acabamento a esta superfície, preparando-a para o polimento.

Existem dois processos de lixamento: manual (úmido ou seco) e automático. A técnica de lixamento manual consiste em se lixar a amostra sucessivamente com lixas d'água de óxido de alumínio ou de carbeto de silício, partindo-se da mais grosseira (com maior granulometria, por exemplo: 100), até a lixa mais fina (com menor granulometria, por exemplo: 1200), mudando-se de direção (90°) em cada lixa subsequente, até desaparecerem os traços da lixa anterior (Figura 8).

Figura 8 – Representação esquemática do método de lixamento em sentidos alternados para cada lixa.

Para se conseguir um lixamento eficaz é necessário o uso adequado da técnica de lixamento, pois de acordo com a natureza da amostra, a pressão de trabalho e a velocidade de lixamento, podem surgir deformações plásticas em toda a superfície por amassamento e aumento de temperatura. Esses fatores podem propiciar uma microestrutura imprecisa da amostra e por isso, são necessários os seguintes cuidados:

- Escolha adequada do material de lixamento em relação à amostra e ao tipo de exame final (o
 que se deseja analisar?);
- A superfície deve estar limpa, isenta de líquidos e graxas que possam provocar reações químicas na superfície;
- Riscos profundos que surgirem durante o lixamento devem ser eliminados por novo lixamento;
- Metais diferentes n\u00e3o devem ser lixados com a mesma lixa.

Deve-se também ter cuidado para evitar deformação na superfície da amostra, realizando o lixamento da amostra sem pressioná-la excessivamente, pois a pressão aplicada na amostra durante o lixamento controla a profundidade do risco e como consequência, a deformação da superfície da mesma.

Após cada etapa de lixamento, deve-se lavar a amostra com água para que a superfície da mesma não fique impregnada do material abrasivo da lixa anterior e assim, prejudicar o lixamento com as lixas mais finas. A Figura 9 mostra lixadeiras manuais e mecânicas e lixas d'água utilizadas em metalografía.

Faculdade de Engenharia Mecânica da Universidade Estadual de Campinas - FEM/UNICAMP
Rua Mendeleyev, 200 - CEP 13083-860
Cidade Universitária "Zeferino Vaz" Barão Geraldo
Campinas - SP www.fem.unicamp.br

Figura 9 - (a) Lixadeira manual; (b) Politriz/lixadeira; c) Lixas de carbeto de silício.

> Polimento

O polimento é a operação pós-lixamento e visa proporcionar acabamento superficial fino e isento de riscos provocados pelo lixamento. Essa etapa utiliza abrasivos como pasta de diamante ou de alumina com partículas em dispersão extremamente finas.

Antes de realizar o polimento deve-se realizar a limpeza da superfície da amostra, de modo a deixá-la isenta de traços abrasivos e solventes. A operação de limpeza pode ser feita simplesmente por lavagem com água. Porém, aconselha-se o emprego de líquidos de baixo ponto de ebulição (álcool etílico ou acetona) para que a etapa de secagem seja rápida.

Existem diferentes tipos de polimento para se obter superfícies polidas e isentas de riscos. Neste experimento é utilizado o processo de polimento mecânico. Esse processo pode ser manual, quando a amostra é trabalhada manualmente no disco de polimento ou automática quando as amostras são lixadas em dispositivos especiais e polidas sob a ação de cargas variáveis.

Os panos de polimento empregados variam de acordo com o tipo de amostra a ser polida e as politrizes empregadas. Uma politriz consiste em um prato giratório, geralmente com duas velocidades de rotação. Além da politriz e do pano de polimento é utilizado um agente abrasivo, que deve ser colocado sobre o pano de polimento com o qual a amostra é atritada.

Os abrasivos utilizados devem apresentar alta dureza, serem inertes, apresentarem baixo coeficiente de atrito e possuírem tamanho de partícula uniforme. Os agentes abrasivos mais comuns são: diamante em suspensão, que é constituído de diamante sintético em pó, agregado a veículo pastoso e com tamanho da partícula variando de 0,25 a 9 µm ou alumina e sílica coloidal (OP-S), com partículas abrasivas de aproximadamente 0,06 µm. A figura 10 mostra panos de polimento e abrasivos utilizados no polimento de amostras.

Faculdade de Engenharia Mecânica da Universidade Estadual de Campinas - FEM/UNICAMP
Rua Mendeleyev, 200 - CEP 13083-860
Cidade Universitária "Zeferino Vaz" Barão Geraldo
Campinas - SP www.fem.unicamp.br

Figura 10 - (a) Panos de polimento; (b) Pasta de diamante; (c) Alumina.

São necessários alguns cuidados no polimento:

- A superfície deve estar rigorosamente limpa;
- A escolha adequada do material do polimento;
- Panos de polimentos devem estar limpos;
- Evitar polimentos demorados;
- Nunca polir amostras diferentes sobre o mesmo pano de polimento (por causa da diferença de dureza entre elas, um pequeno cavaco da amostra mais dura irá riscar a mais macia);
- Evitar fricção excessiva;
- Evitar pressão excessiva sobre a amostra (aplicar um pouco mais que o próprio peso da amostra)

Na etapa de polimento é comum utilizar inicialmente um polimento com abrasivos mais grosseiro, como pasta de diamante, que é seguido por polimento com abrasivo contendo partículas menores, como sílica coloidal. É importante lembrar que após o término de polimento com um abrasivo mais grosseiro é necessário limpar a amostra para retirar todo material impregnado em sua superfície e para isso, deve-se lavar a superfície da amostra e em seguida, utilizar o equipamento de ultrassom para limpeza mais adequada. Deve-se utilizar pano específico para cada granulometria do abrasivo, para evitar a contaminação entre os diferentes abrasivos. A troca de pano, para continuidade do polimento, é feita quando não há mais riscos do último polimento.

> Ataque Químico

A etapa de ataque químico permite revelar a estrutura do material anteriormente lixada e polida. O ataque químico usando solução química adequada causa a reação química com átomos do material associados a defeitos da microestrutura. Cada material exige um tipo específico de ataque químico e em muitos casos, é utilizado o método de tentativa e erro. Em geral, a definição do ataque químico necessita de estudo prévio para o levantamento de qual reagente é o mais adequado para o material estudado. Os reagentes utilizados para ataque metalográfico são, geralmente, constituídos por ácidos. Ao se trabalhar com reagentes contendo ácido

Faculdade de Engenharia Mecânica da Universidade Estadual de Campinas - FEM/UNICAMP
Rua Mendeleyev, 200 - CEP 13083-860
Cidade Universitária "Zeferino Vaz" Barão Geraldo
Campinas - SP www.fem.unicamp.br

fluorídrico (HF) deve-se lavar muito bem a amostra em água corrente e em seguida, utilizar o equipamento de ultrassom para limpeza adequada da mesma, pois esse ácido reage com vidros, podendo atacar as lentes do microscópio óptico utilizado na observação da microestrutura.

Em geral, o ataque é feito por imersão da amostra por período de tempo de ataque que varia desde alguns segundos até alguns minutos, dependendo do material e da qualidade dos reagentes (pureza) utilizados para preparar a solução de ataque. Um outro método usado é embeber um algodão com a solução de ataque e passálo na superfície da amostra, utilizando uma pinça para isso. Se o tempo de ataque for insuficiente, a revelação da microestrutura não será adequada, se o tempo de ataque for excessivo, poderá ocorrer a queima da superfície da amostra. Neste caso, não será possível a análise da microestrutura da amostra, pois sua superfície se tornará enegrecida. A norma ASTM E 407 - 99 – "Standard Practice for Microetching and Alloys" lista soluções de ataque químico para vários metais e ligas. A Tabela 2 mostra algumas soluções químicas utilizadas para ataque metalográfico.

Tabela 2 - Algumas soluções químicas utilizadas no ataque metalográfico.

Nome do Ataque	Solução	Tampo de Ataque	Aplicação
Nital	1-5 ml HNO ₃	5 segundos	Ferro Fundido
	100 ml Etanol (95%)	(imersão)	Aços Carbonos
Villela	1 g Ácido Pícrico 5 ml HCl 100 ml Etanol (95%)	Alguns segundos a 15 min. (imersão)	Aços Inoxidáveis Ferríticos e Martensíticos
Água Régia	20 ml HCl 60 ml HNO ₃	5 segundos a 1 min. (imersão)	Aços Inoxidáveis Austeníticos
Picral	4 g Ácido Pícrico 100 ml Etanol (95%)	20 segundos (imersão)	Aço Carbono
Kroll	1-3 ml HF 2-6 ml HNO ₃ 100 ml H ₂ O	10-30 segundos (imersão)	Titânio e Ligas
Keller	5 ml HNO ₃ 3 ml HCl 2 ml HF 190 ml H ₂ O	10-20 segundos (imersão)	Alumínio e Ligas

A Figura 11 mostra dois exemplos de ataque químico para titânio comercialmente puro deformado até 18%. Na amostra da Figura 11 (a) foi aplicado solução ataque químico constituído por 5 g bifluoreto de amônia e 100 ml H₂O. Na amostra da Figura 11 (b) foi utilizado ataque químico convencional, 10 ml HF, 10 ml HNO₃ e 30 ml glicerina.

Faculdade de Engenharia Mecânica da Universidade Estadual de Campinas - FEM/UNICAMP
Rua Mendeleyev, 200 - CEP 13083-860
Cidade Universitária "Zeferino Vaz" Barão Geraldo
Campinas - SP www.fem.unicamp.br

Figura 11 - Micrografia obtida via microscópio óptico de amostra de titânio comercialmente puro com 18% de deformação plástica: (a) ataque químico colorido; (b) ataque químico convencional.

➤ Limpeza e Secagem

A limpeza adequada da amostra envolve lavagem com água e em seguida, uso de equipamento de limpeza por ultrassom (Figura 12). É importante lembrar que após a etapa de lixamento e polimento, a amostra deve ser lavada com água e em seguida, levada ao ultrassom para uma melhor limpeza da superfície. Se a amostra em questão for ferrosa, deve-se realizar a limpeza utilizando álcool, para evitar a oxidação de sua superfície.

O procedimento de limpeza deve ser repetido após o ataque químico para revelação da microestrutura. Pode-se também lavar a amostra primeiramente com água e em seguida, lavá-la com álcool, para garantir maior limpeza da amostra, pois apenas a água não é suficiente para limpar adequadamente a superfície a ser analisada.

Figura 12 - Equipamento de limpeza por ultrassom.

Deve-se tomar cuidado ao secar a amostra para que a superfície a ser analisada não apresente manchas ou seja riscada nessa etapa. Para isso pode-se utilizar um secador de cabelos comum ou jato de ar comprimido.

➤ Microscopia de luz visível (óptica)

Faculdade de Engenharia Mecânica da Universidade Estadual de Campinas - FEM/UNICAMP
Rua Mendeleyev, 200 - CEP 13083-860
Cidade Universitária "Zeferino Vaz" Barão Geraldo
Campinas - SP www.fem.unicamp.br

Em alguns casos, as características do material podem ser observadas a olho nu, porém, na maioria dos casos, se faz necessário o uso de microscopia. O microscópio visa a comodidade do operador, assim como, tornar mais fácil e nítida a microestrutura em observação. O microscópio de luz visível (óptico) serve para a análise da superfície da amostra por meio da interação da luz com a superfície contrastada quimicamente. O uso de microscopia permite também o registro fotográfico da amostra.

No microscópio, deve-se posicionar a amostra, ajustar o foco utilizando magnificação reduzida, tomar cuidado para que a lente do microscópio não entre em contato com a amostra e varrer a superfície da amostra, verificando sua microestrutura. A Figura 13 mostra imagens obtidas utilizando microscópio óptico de uma amostra da liga Cu-Al-Si após o processo de lixamento (Figura 13(a)), seguido por polimento (Figura 13(b)) e ataque químico (Figura 13(c)).

Figura 13 - Imagens obtidas utilizando microscópio óptico de amostra da liga Cu-Al-Si: (a) após o lixamento; (b) após o polimento; e (c) após o ataque químico.

Pré-teste:

Para o teste deverão ser estudados os seguintes tópicos:

- a) Cortes;
- b) Embutimento;
- c) Lixamento;
- d) Polimento;

UNICAMP

FACULDADE DE ENGENHARIA MECÂNICA

Faculdade de Engenharia Mecânica da Universidade Estadual de Campinas - FEM/UNICAMP
Rua Mendeleyev, 200 - CEP 13083-860
Cidade Universitária "Zeferino Vaz" Barão Geraldo
Campinas - SP www.fem.unicamp.br

- e) Ataque Químico;
- f) Microscopia.

Procedimento experimental:

O experimento da preparação metalográfica de amostras metálicas será realizado por meio das etapas de corte, embutimento, lixamento, polimento, ataque químico e observação no microscópio.

Experimento 9.1: Corte

Utilizando a máquina de corte, realize os seguintes passos:

- 1- Colocar a amostra no centro da mesa de fixação;
- 2- Fixar firmemente o corpo de prova na morsa;
- 3- Após a correta fixação do corpo de prova, posicionar o protetor acrílico do disco;
- 4- Verificar se o disco se encontra em sua posição de descanso, sem tocar na amostra;
- 5- Ligar o motor de acionamento do disco. Esse procedimento permite também acionar a bomba de fluido de corte:
- 6- Verificar se a amostra está sendo resfriada pelo fluido de corte;
- 7- Aplicar carga moderada do disco sobre o corpo de prova (evitando solavancos que podem romper o disco de corte) até que o corpo de prova esteja cortado;
- 8- Retornar o disco a sua posição de descanso e desligar o motor;
- 9- Soltar o corpo de prova das morsas;
- 10- Efetuar a limpeza do equipamento.

Experimento 9.2: Embutimento

Com objetivo de facilitar o manuseio das amostras no processo de lixamento e polimento, realize o embutimento das amostras utilizando a embutidora e baquelite.

- 1- Posicionar o embolo da prensa de embutimento de modo que a face fique completamente visível;
- 2- Borrifar desmoldante no embolo inferior (para que a amostra não fique presa na câmara de embutimento);
- 3- Colocar a amostra com a face que se quer analisar para baixo (em contato com o embolo);
- 4- Baixar o embolo lentamente:
- 5- Colocar a baquelite, aproximadamente 20 gramas;
- 6- Borrifar desmoldante no embolo superior;
- 7- Colocar o embolo superior e em seguida a tampa;
- 8- Apertar a tecla "Partida";
- 9- Manter a pressão durante o processo entre 125 e 150 (kgf/mm²);

Faculdade de Engenharia Mecânica da Universidade Estadual de Campinas - FEM/UNICAMP
Rua Mendeleyev, 200 - CEP 13083-860
Cidade Universitária "Zeferino Vaz" Barão Geraldo
Campinas - SP www.fem.unicamp.br

- 10- Esperar o tempo de aquecimento, que é próximo a 3 minutos e o tempo de resfriamento, próximo a 2 minutos;
- 11- Abrir a válvula de pressão e remover a tampa da prensa;
- 12- Fechar a válvula de pressão;
- 13- Erguer o embolo até ser possível retirar o corpo de prova;
- 14- Retirar o corpo de prova da prensa de embutimento (apanhe com um papel, pois pode estar quente);
- 15- Efetuar a limpeza do equipamento.

Experimento 9.3: Lixamento

Realize o lixamento úmido por meio da máquina lixadeira da Arotec modelo Aropol 2V. Deve-se utilizar as lixas d'agua com granulometria de 220, 400 600, 1200 e 1500. Durante o processo de lixamento, tenha cuidado em orientar os riscos das amostras em uma única direção, para que na mudança de lixa, a amostra seja rotacionada 90°, como visto na Figura 8.

- 1- Verificar se há todas as lixas necessárias para a preparação da amostra mecanográfica;
- 2- Verificar se há água;
- 3- Fazer um ponto de referência na amostra;
- 4- Começar o lixamento de desbaste;
- 5- Lixar até que só restem os riscos da última lixa utilizada;
- 6- Gire 90° e vá para a próxima lixa;
- 7- Repetir passos 5 e 6 até chegar à lixa de granulometria 1500.

Experimento 9.4: Limpeza ultrassônica

Após a etapa de lixamento, limpe as amostras. A limpeza ultrassônica é realizada em uma lavadora ultrassônica.

- 1- Coloque em um béquer a amostra e a preencha com álcool;
- 2- Posicione o béquer na lavadora;
- 3- Determine o tempo de limpeza (3 minutos);
- 4- Feche a lavadora e dê a partida no processo.

Experimento 9.5: Polimento

Com auxílio da politriz, realize os seguintes passos:

 Verificar se o pano da Politriz é adequado para o tipo de abrangente e se encontra em condições de uso;

Faculdade de Engenharia Mecânica da Universidade Estadual de Campinas - FEM/UNICAMP
Rua Mendeleyev, 200 - CEP 13083-860
Cidade Universitária "Zeferino Vaz" Barão Geraldo
Campinas - SP www.fem.unicamp.br

- 2- Coloque pequena quantidade de pasta de diamante, neste caso de 3 μm, sobre o pano de polimento e lubrifique com álcool para a lubrificação e eliminação de impurezas;
- 3- Segurar a amostra levemente em cima do pano de polimento e movimente a amostra o no sentido inverso ao do movimento do pano.

Experimento 9.6: Ataque Químico

Antes de realizar o ataque químico, paramente-se com todos os EPIs adequados. Seguem passos para o ataque:

- 1- Despeje a solução de Nital a 2% para aços ou Keller para liga de alumínio em um recipiente adequado para realização do ataque;
- 2- Com o auxílio de pano umedecido, fixo na extremidade de um bastão, aplique a solução na superfície da amostra;
- 3- Aguarde por aproximadamente 15 segundos, para que ocorra a corrosão da amostra;
- 4- Em seguida, lave a amostra em água corrente;
- 5- Despeje um pouco de álcool na amostra e seque com auxílio de um soprador térmico.

Experimento 9.7: Microscopia

Para mostrar as fases das amostras, utilize o microscópio óptico e realize os seguintes passos:

- 1- Posicionar amostra sob a lente;
- 2- Faça o ajuste do foco de acordo com a lente escolhida;
- 3- Escolha a escala da foto de acordo com a lente escolhida;
- 4- Realize a captura das fotos.

Referências bibliográficas:

COLPAERT; Hubertus. Metalografia dos produtos siderúrgicos comuns, 3ª Edição, Editora Edgarg Blücher Ltda, São Paulo – 1974.

COUTINHO, Telmo de Azevedo. Metalografia de Não-Ferrosos, Editora Edgard Blücher Ltda, São Paulo – 1980