Отчет о выполнении лабораторной работы 1.1.3

Статистическая обработка результатов многократных измерений

Выполнил: Трунов Владимир

Группа: Б01-103

Аннотация

В работе используются: набор 270 сопротивлений, имеющих номинал 500 Ом. Измерения проводятся при помощи «универсального цифрового вольтметра GDM-8242». В работе найдено среднее значение сопротивления резистора, среднеквадратичное отклонение значений сопротивления от среднего и рассмотрено распределение плотности вероятности значений.

Оборудование, инструменты и погрешности

«Универсальный цифровой вольтметр GDM-8242»

Предел измерений	500 Ом
Погрешность измерений	±(0,001 * X + 4 * k), где
	Х – значение
	К – единица последнего разряда

Оценка погрешности вольтметра:

X ≈ 500 Om

К≈ 0,01 Ом

 σ (омметра) = 0,54 Ом

Теоретические сведения, результаты измерений и обработка результатов

Результаты измерения сопротивлений 270 резисторов (в Омах) приводятся в табл. 1. Они переписаны в порядке возрастания.

По этой таблице строим гистограммы для m = 20 и m = 10. Для удобства сравнения с нормальным распределением по оси ординат будем откладывать не число результатов Δn, попадающих в каждый интервал, а это число, деленное на полное число результатов N и величину интервала ΔR.

В таблицах 2 и 3 в зависимости от номера группы k приведены значения Δn и $w = \frac{\Delta n}{N \cdot \Delta^R}$ На рис. 1 и 2 представлены гистограммы. Среднее значение сопротивлений находим по формуле (1):

$$\langle R \rangle = \frac{1}{N} \cdot \sum_{i=1}^{N} R_{i = 499,34 \text{ Om}}$$

Таблиі	ца 1.							
Резуль	таты	измерения	соп	ротивления	270			
резист	оров							
499,9	500,2	497,7	499,8	499,4	498,1	499,1	500,4	499,2
498,8	498,4	498,1	500,1	498,3	496,7	500,8	499,0	498,1
497,6	497,4	500,5	500,0	499,4	499,5	499,6	499,2	504,9
500,6	499,9	497,5	498,2	497,8	498,7	499,2	500,3	500,1
502,4	499,7	499,3	499,9	499,3	500,8	501,2	499,4	498,5
497,7	498,2	499,1	500,2	501,4	498,9	501,5	498,9	498,0
500,8	499,7	499,0	498,2	499,1	499,0	500,0	498,1	500,0
498,2	499,2	499,5	498,6	499,0	500,1	500,0	499,7	499,2
500,7	499,3	498,8	500,8	501,2	500,9	500,1	498,6	501,7
501,0	499,7	500,9	501,3	497,1	500,0	500,5	497,9	502,1
498,9	501,5	500,6	499,5	499,1	500,3	498,6	498,9	500,5
501,1	497,7	496,5	500,5	498,5	500,9	499,5	499,8	497,3
500,6	499,6	500,0	499,2	499,2	501,2	499,0	499,7	498,1
498,9	499,4	500,7	499,2	498,5	499,9	498,8	500,1	498,3
498,1	498,2	499,9	499,5	500,8	500,5	499,1	498,7	499,3
499,2	500,0	499,4	500,1	499,8	498,8	500,7	499,4	501,4
498,7	499,3	499,1	500,4	497,8	498,2	500,0	500,4	498,8
499,1	499,3	498,5	500,5	498,1	498,7	499,9	499,0	499,7
498,9	500,2	499,6	499,1	498,8	499,1	499,4	498,4	500,2
498,1	498,9	498,8	500,3	499,5	497,6	499,6	502,6	497,4
499,9	500,1	499,2	500,2	500,1	499,2	498,2	498,7	497,7
499,5	500,7	500,6	498,9	498,9	498,5	500,2	498,9	498,6
497,7	499,7	500,4	498,8	498,6	500,1	499,0	497,6	499,2
500,5	498,8	498,9	498,2	499,8	498,6	500,5	500,0	498,3
499,8	498,9	500,2	497,5	498,2	500,4	496,5	499,1	498,2
499,4	499,2	499,8	497,8	497,4	498,5	499,5	499,2	500,1
497,8	497,1	496,7	498,5	499,1	497,9	498,2	499,7	497,4
499,5	499,9	498,7	497,8	499,2	500,1	499,2	500,4	500,1
498,4	500,6	499,3	502,1	498,6	499,8	498,9	500,0	500,3
499,7	497,9	499,0	501,5	499,2	498,7	497,4	499,5	499,7

k	1	2	3	4	5	6	7	8	9	10
Δn	4	3	15	17	31	37	43	31	37	27
ŵ	0,035273	0,026455	0,132275	0,149912	0,273369	0,326279	0,379189	0,273369	0,326279	0,238095
k	11	12	13	14	15	16	17	18	19	20
Δn	10	9	1	2	2	0	0	0	0	1
ŵ	0,088183	0,079365	0,008818	0,017637	0,017637	0	0	0	0	0,008818

Таблица 2.

k	1	2	3	4	5	6	7	8	9	10
Δn	7	32	68	74	60	23	3	2	0	1
ŵ	0,030864	0,141093	0,299824	0,326279	0,26455	0,101411	0,013228	0,008818	0	0,004409

Таблица 3.

Среднеквадратичное отклонение находим по формуле (3):

$$\sigma = \sqrt{\frac{1}{N} \cdot \sum_{i=1}^{N} (R_i - \langle R \rangle)^2} \approx 1,15 \text{ OM}$$

В интервал от $\langle R \rangle - \sigma$ до $\langle R \rangle + \sigma$ попадает 70% результатов, а в интервал от $\langle R \rangle - 2\sigma$ до $\langle R \rangle + 2\sigma$ соответственно - 96%. Нормальное распределение описывается формулой (4):

$$y = \frac{1}{\sqrt{2 \cdot \Pi} \cdot \sigma} \cdot e^{\frac{-(R - \langle R \rangle)^2}{2\sigma^2}}$$

Эта функция также изображена на рис. 1 и 2. Видно, что гистограмма соответствует этой зависимости. Теоретическая вероятность попадания измерений в интервал от $\langle R \rangle - \sigma$ до $\langle R \rangle + \sigma$ равна 68%, а в интервал от $\langle R \rangle - 2\sigma$ до $\langle R \rangle + 2\sigma$ соответственно - 95 %. Практически мы получаем, что величина сопротивления резистора, наугад выбранного из данного набора, попадает в интервал 500 ± 1,15 Ом с вероятностью 63%, в интервал 500 ± 2,3 Ом - с вероятностью 91%, в интервал 500 ± 3,45 Ом - с вероятностью 99%.

Таким образом, величины всех сопротивлений укладываются в 5-процентный интервал ($\langle R \rangle \pm 3\sigma$).