Prove (from the definition of a limit of a sequence) that if the sequence $\{a_n\}_{n=1}^{\infty}$ tends to limit L as $n\to\infty$, then for any fixed number M>0, the sequence $\{Ma_n\}_{n=1}^{\infty}$ tends to the limit ML.

Solution

Task is equavalent to proving the following theorem:

Theorem.
$$\forall M \in \mathbb{R}, M > 0: \lim_{n \to \infty} \left\{a_n\right\}_{n=1}^{\infty} = L \Rightarrow \lim_{n \to \infty} \left\{Ma_n\right\}_{n=1}^{\infty} = ML.$$

Proof. Let's take arbitrary $M \in \mathbb{R}, M > 0$. By definition of limit, $(\forall \epsilon \in \mathbb{R}, \epsilon > 0) \ (\exists n \in \mathbb{N}) \ (\forall m > n) \ [|a_n - L| < \epsilon].$

Let's take arbitrary $\delta \in \mathbb{R}, \delta > 0$ and take $\epsilon = \frac{\delta}{M}$. Then, for this ϵ , $(\exists n \in \mathbb{N}) \ (\forall m > n) \ [|a_n - L| < \epsilon]$
 $\Rightarrow \ (\exists n \in \mathbb{N}) \ (\forall m > n) \ [Ma_n - L| < M\epsilon] \ (\text{multiplying by } M > 0)$
 $\Rightarrow \ (\exists n \in \mathbb{N}) \ (\forall m > n) \ [|Ma_n - ML| < M\epsilon]$
 $\Rightarrow \ (\exists n \in \mathbb{N}) \ (\forall m > n) \ [|Ma_n - ML| < M\left(\frac{\delta}{M}\right)] \ (\text{by definition of } \epsilon)$
 $\Rightarrow \ (\exists n \in \mathbb{N}) \ (\forall m > n) \ [|Ma_n - ML| < \delta].$

Since δ was taken arbitrarily, $(\forall \delta \in \mathbb{R}, \delta > 0) \ (\exists n \in \mathbb{N}) \ (\forall m > n) \ [|Ma_n - ML| < \delta].$

But this is precisely definition of $\lim_{n\to\infty} \{Ma_n\}_{n=1}^{\infty} = ML$. Hence, $\forall M \in \mathbb{R}, M > 0 : \lim_{n\to\infty} \{a_n\}_{n=1}^{\infty} = L \Rightarrow \lim_{n\to\infty} \{Ma_n\}_{n=1}^{\infty} = ML$.