MA427 Lecture 7 More on total unimodularity and the cutting plane method

Giacomo Zambelli

25 February, 2019

Today's lecture

- ► More on totally unimodular matrices
- ▶ The cutting planes method

Totally unimodular matrices

Definition

A matrix A is said totally unimodular if, for every square submatrix B of A, $det(B) \in \{0, +1, -1\}$.

Theorem

Let $A \in \mathbb{R}^{m \times n}$ be a totally unimodular matrix. Given a vector $b \in \mathbb{Z}^m$, all vertices of the polyhedron $\{x \in \mathbb{R}^n : Ax = b, x \geq 0\}$ are integer. Similarly, all vertices of the polyhedron $\{x \in \mathbb{R}^n : Ax \leq b\}$ are integer.

Theorem

The incidence matrix of a bipartite graph is totally unimodular.

Theorem

Let $A \in \mathbb{R}^{m \times n}$ be a totally unimodular matrix. The following hold

- i) Submatrices of A are T.U.
- ii) A^{\top} is T.U.
- iii) If matrix A' is obtained from A by multiplying one row or column by -1, then A' is T.U.
- iv) The matrix (A|-A), obtained by juxtaposing the matrices A and -A, is T.U.
 - v) The matrix (A|e) is T.U., where e is a unit vector (one entry 1, all others 0).
- vi) The matrix (A|I), obtained by juxtaposing the matrix A and the identity matrix I, is T.U.

$$\left[\begin{array}{ccccccc} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{array}\right]$$

Corollary

Let $A \in \mathbb{R}^{m \times n}$ be a totally unimodular matrix. Given vector $b, d \in \mathbb{Z}^m$ and $\ell, u \in \mathbb{Z}^n$ all vertices of the polyhedron

$$\{x \in \mathbb{R}^n : b \le Ax \le d, \ \ell \le x \le u\}$$

are integer.

Network problems

Theorem

Let A be a matrix with all entries in $\{0,1,-1\}$, such that in every column of A there is exactly one entry of value 1, one entry of value -1, and all other entries with value 0. Then A is totally unimodular.

Example

$$\left[\begin{array}{ccc} 1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{array}\right]$$

Network problems

Directed graph G = (V, E), source $s \in V$, sink $t \in V$, edge capacities $u : E \to \mathbb{R}$.

Maximum flow problem: find a vector $x : E \to \mathbb{R}_+$ such that

- ▶ the total incoming amount equals the total outgoing amount at every node $v \in V \setminus \{s, t\}$;
- ▶ the flow on every edge is between 0 and the upper bound: 0 < x < u.

Maximize the total amount of flow leaving s.

Network problems

Directed graph G = (V, E), costs $c : E \to \mathbb{R}$, lower and upper capacity bounds $\ell, u : E \to \mathbb{R}$.

Feasible circulation: vector $x : E \to \mathbb{R}$ such that

- ▶ the total incoming amount equals the total outgoing amount at every node $v \in V$.
- ▶ it is between the upper and lower bounds: $\ell \le x \le u$.

Find a minimum cost feasible circulation.

Ideal formulations

Given a set $X \subseteq \mathbb{R}^n$, the convex hull of X, denoted by conv(X), is the minimal convex set containing X.

Theorem (Fundamental theorem of Integer Programming)

Given $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, let $X = \{x \in \mathbb{R}^n : Ax \le b, x \ge 0, x_i \in \mathbb{Z} \text{ for } i \in I\}$. Then $\operatorname{conv}(X)$ is a polyhedron.

 \Longrightarrow there exists $\tilde{A} \in \mathbb{Q}^{\tilde{m} \times n}$ and $\tilde{b} \in \mathbb{Q}^{\tilde{m}}$ such that $\operatorname{conv}(X) = \{x \in \mathbb{R}^n : \tilde{A}x \leq \tilde{b}, \, x \geq 0\}.$

 $\tilde{A}x \leq \tilde{b}, x \geq 0$ is the ideal formulation for X.

Perfect matchings: ideal formulation [Edmonds, 1965]

For every graph G, the ideal formulation for the maximum weight perfect matching problem is

$$\begin{array}{rcl} \min \sum_{e \in E} c_e x_e \\ \sum_{u: uv \in E} x_{uv} &=& 1 & v \in V, \\ \sum_{e \in E[U]} x_e &\leq& \frac{|U|-1}{2} & U \subseteq V, \, |U| \text{ odd,} \\ x_e &\geq& 0 & e \in E. \end{array}$$

where $E[U] := \{uv \in E : u, v \in U\}.$

The cutting planes method

Cutting planes: motivation

- Start with the LP relaxation, and move towards the ideal formulation
- ► Repeatedly add *valid inequalities* to the current formulation, which cuts off the current fractional solution.

$$\max_{x \in X} c^{\top}x \qquad (P_I)$$

$$X = \{x \in \mathbb{R}^n : Ax \le b, x \ge 0, x_i \in \mathbb{Z} \text{ for all } i \in I\}$$

Definition

A linear inequality $\alpha^{\top} x \leq \beta$, $(\alpha \in \mathbb{R}^n, \beta \in \mathbb{R})$ is valid for X if, for all $x \in X$,

$$\alpha^{\top} x \leq \beta$$
.

Note: If we append a valid inequality $\alpha^{\top} x \leq \beta$ for X to the initial formulation $Ax \leq b$ $x \geq 0$, we obtain a new (tighter) formulation:

$$Ax \le b$$

$$\alpha^{\top} x \le \beta$$

$$x > 0$$

Example: matchings in nonbipartite graphs

Starting formulation

$$\min \sum_{e \in E} c_e x_e$$

$$\sum_{u: uv \in E} x_{uv} = 1 \quad v \in V,$$

For every odd set U,

$$\sum_{e \in E[U]} x_e \le \frac{|U| - 1}{2}$$

is valid.

Cutting planes

If we solve the LP relaxation

$$z_L = \max c^\top x$$
$$Ax \le b$$
$$x \ge 0$$

and the optimal basic solution x^* does not satisfy the integrality conditions, then $x^* \notin \text{conv}(X)$

Cutting planes

If we solve the LP relaxation

$$z_L = \max c^\top x$$
$$Ax \le b$$
$$x \ge 0$$

and the optimal basic solution x^* does not satisfy the integrality conditions, then $x^* \notin \text{conv}(X)$

there exists a valid inequality $\alpha^{\top} x \leq \beta$ cutting off x^* . Append $\alpha^{\top} x \leq \beta$ and solve again.

Cutting plane method

- 1. Solve the current relaxation, and let x^* be the optimal solution found;
- 2. If $x^* \in X$, then x^* is an optimal solution to the MILP, STOP.
- 3. Otherwise, find a valid inequality $\alpha^{\top} x \leq \beta$ for X cutting-off x^* ;
- 4. Add the constraint $\alpha^{\top} x \leq \beta$ to the current linear relaxation and return to 1.

Cutting plane method

- 1. Solve the current relaxation, and let x^* be the optimal solution found;
- 2. If $x^* \in X$, then x^* is an optimal solution to the MILP, STOP.
- 3. Otherwise, find a valid inequality $\alpha^{\top} x \leq \beta$ for X cutting-off x^* ;
- 4. Add the constraint $\alpha^{\top} x \leq \beta$ to the current linear relaxation and return to 1.

How do we find a valid inequality cutting off the current solution?

WARNING: Gomory cuts work only for pure integer programs. There exists a generalization, called Gomory mixed-integer cuts that work for general problems.

Problem in standard form (we can assume without loss of generality).

$$z_{I} = \max c^{\top} x$$

$$Ax = b$$

$$x \ge 0$$

$$x \in \mathbb{Z}^{n}$$

$$\max z = 11x_1 + 4.2x_2 \\ -x_1 + x_2 \leq 2 \\ 8x_1 + 2x_2 \leq 17 \\ x_1, x_2 \geq 0 \text{ integer.}$$

$$\begin{array}{rcl} \max \ z & = & 11x_1 + 4.2x_2 \\ & -x_1 + x_2 & \leq & 2 \\ & & 8x_1 + 2x_2 & \leq & 17 \\ & & x_1, x_2 & \geq & 0 \ \ \text{integer}. \end{array}$$

Standard form

$$z - 11x_1 - 4.2x_2 = 0$$

 $-x_1 + x_2 + x_3 = 2$
 $8x_1 + 2x_2 + x_4 = 17$
 $x_1, x_2, x_3, x_4 \ge 0$ integer.

Optimal tableau:

$$z$$
 +1.16 x_3 +1.52 x_4 = 28.16
 x_2 +0.8 x_3 +0.1 x_4 = 3.3
 x_1 -0.2 x_3 +0.1 x_4 = 1.3

Optimal tableau:

z
$$+1.16x_3 +1.52x_4 = 28.16$$

 $x_2 +0.8x_3 +0.1x_4 = 3.3$
 $x_1 -0.2x_3 +0.1x_4 = 1.3$
 $x_2 < 3$

is valid for X. It cuts off the current optimum.

Optimal tableau:

$$z +1.16x_3 +1.52x_4 = 28.16$$

$$x_2 +0.8x_3 +0.1x_4 = 3.3$$

$$x_1 -0.2x_3 +0.1x_4 = 1.3$$

$$x_2 < 3$$

is valid for X. It cuts off the current optimum.

Can be added to the relaxation. Slack variable x_5 :

$$x_2 + x_5 = 3$$

 $\{1,2,5\}$ is a basis. Write tableau w.r.t. $\{1,2,5\}$. Subtracting the first constraint we cancel x_2 :

$$-0.8x_3 - 0.1x_4 + x_5 = -0.3$$

Basis is dual feasible! We can solve using the dual simplex method.

Optimal tableau:

- ▶ If $\bar{b}_i \in \mathbb{Z}$ for i = 1, ..., m, then x^* is the integer optimum!
- ▶ Otherwise, choose $h \in \{1, ..., m\}$ such that $\bar{b}_h \notin \mathbb{Z}$.

Optimal tableau:

- ▶ If $\bar{b}_i \in \mathbb{Z}$ for i = 1, ..., m, then x^* is the integer optimum!
- ▶ Otherwise, choose $h \in \{1, ..., m\}$ such that $\bar{b}_h \notin \mathbb{Z}$. Any solution must also satisfy

$$x_{B[h]} + \sum_{j \in N} \lfloor \bar{a}_{hj} \rfloor x_j \leq \bar{b}_h$$

Optimal tableau:

- ▶ If $\bar{b}_i \in \mathbb{Z}$ for i = 1, ..., m, then x^* is the integer optimum!
- ▶ Otherwise, choose $h \in \{1, ..., m\}$ such that $\bar{b}_h \notin \mathbb{Z}$. Any solution must also satisfy

$$x_{B[h]} + \sum_{j \in N} \lfloor \bar{a}_{hj} \rfloor x_j \leq \bar{b}_h$$

Any integer solution must satisfy

$$x_{B[h]} + \sum_{j \in N} \lfloor \bar{a}_{hj} \rfloor x_j \le \lfloor \bar{b}_h \rfloor$$

Optimal tableau:

Gomory cut:

$$x_{B[h]} + \sum_{j \in N} \lfloor \bar{a}_{hj} \rfloor x_j \leq \lfloor \bar{b}_h \rfloor$$

Note: Gomory cut cuts off x^* : indeed, $x^*_{B[h]} = \bar{b}_h$, $x^*_j = 0$ for $j \in N$, hence $x^*_{B[h]} + \sum_{i \in N} \lfloor \bar{a}_{hj} \rfloor x^*_j = \bar{b}_h > \lfloor \bar{b}_h \rfloor$

Append the Gomory cut to the tableau:

$$x_{B[h]} + \sum_{i \in N} \lfloor \bar{a}_{hj} \rfloor x_j \leq \lfloor \bar{b}_h \rfloor$$

Append the Gomory cut to the tableau:

$$x_{B[h]} + \sum_{j \in N} \lfloor \bar{a}_{hj} \rfloor x_j + x_{n+1} = \lfloor \bar{b}_h \rfloor$$

Slack variable x_{n+1} is an integer variable (why?).

Append the Gomory cut to the tableau:

$$x_{B[h]} + \sum_{i \in N} \lfloor \bar{a}_{hj} \rfloor x_j + x_{n+1} = \lfloor \bar{b}_h \rfloor$$

Slack variable x_{n+1} is an integer variable (why?).

Write the tableau w.r.t. to basis $B \cup \{n+1\}$: must cancel out variable $x_{B[h]}$. Subtract the equation

$$x_{B[h]} + \sum_{i \in N} \bar{a}_{hj} x_j = \bar{b}_h$$

We get the Gomory cut in fractional form:

$$\sum_{j\in N}(\lfloor \bar{a}_{hj}\rfloor - a_{hj})x_j + x_{n+1} = \lfloor \bar{b}_h\rfloor - \bar{b}_h.$$

New tableau

▶ Tableau is dual feasible: $\bar{c}_j \leq 0$ for all $j \in N$;

New tableau

$$\begin{array}{lll} \max z \\ -z & + \sum_{j \in \mathcal{N}} \bar{c}_j x_j & = -z_B \\ x_{B[i]} & + \sum_{j \in \mathcal{N}} \bar{a}_{ij} x_j & = \bar{b}_i, & i = 1, \dots, m \\ & \sum_{j \in \mathcal{N}} (\lfloor \bar{a}_{hj} \rfloor - a_{hj}) x_j & + x_{n+1} & = \lfloor \bar{b}_h \rfloor - \bar{b}_h \\ & x_1, \dots, x_{n+1} \geq 0. \end{array}$$

- ▶ Tableau is dual feasible: $\bar{c}_i \leq 0$ for all $j \in N$;
- ▶ Tableau is not primal feasible: $\lfloor \bar{b}_h \rfloor \bar{b}_h < 0$;

New tableau

$$\begin{array}{lll} \max z \\ -z & + \sum_{j \in \mathcal{N}} \bar{c}_j x_j & = & -z_B \\ x_{B[i]} & + \sum_{j \in \mathcal{N}} \bar{a}_{ij} x_j & = & \bar{b}_i, & i = 1, \dots, m \\ & & \sum_{j \in \mathcal{N}} (\lfloor \bar{a}_{hj} \rfloor - a_{hj}) x_j & + x_{n+1} & = & \lfloor \bar{b}_h \rfloor - \bar{b}_h \\ & & x_1, \dots, x_{n+1} \geq 0. \end{array}$$

- ▶ Tableau is dual feasible: $\bar{c}_j \leq 0$ for all $j \in N$;
- ▶ Tableau is not primal feasible: $|\bar{b}_h| \bar{b}_h < 0$;
- Can re-solve using the dual simplex method instead of starting from scratch.

New optimal tableau

$$z$$
 $+1.375x_4$ $+1.45x_5$ = 27.725
 x_2 $+x_5$ = 3
 x_1 $+0.125x_4$ $-0.25x_5$ = 1.375
 x_3 $+0.125x_4$ $-1.25x_5$ = 0.375

New optimal tableau

$$z$$
 $+1.375x_4$ $+1.45x_5$ = 27.725
 x_2 $+x_5$ = 3
 x_1 $+0.125x_4$ $-0.25x_5$ = 1.375
 x_3 $+0.125x_4$ $-1.25x_5$ = 0.375

From the tableau equation $x_3 + 0.125x_4 - 1.25x_5 = 0.375$ we generate the Gomory cut

$$x_3-2x_5\leq 0.$$

New optimal tableau

$$z$$
 $+1.375x_4$ $+1.45x_5$ = 27.725
 x_2 $+x_5$ = 3
 x_1 $+0.125x_4$ $-0.25x_5$ = 1.375
 x_3 $+0.125x_4$ $-1.25x_5$ = 0.375

From the tableau equation $x_3 + 0.125x_4 - 1.25x_5 = 0.375$ we generate the Gomory cut

$$x_3-2x_5\leq 0.$$

In fractional form:

$$-0.125x_4 - 0.75x_5 + x_6 = -0.375$$

$$z$$
 +1.375 x_4 +1.45 x_5 = 27.725
 x_2 + x_5 = 3
 x_1 +0.125 x_4 -0.25 x_5 = 1.375
 x_3 +0.125 x_4 -1.25 x_5 = 0.375
-0.125 x_4 -0.75 x_5 + x_6 = -0.375

New optimal tableau

$$z +17/15x_4 +29/15x_6 = 27$$

$$x_2 -1/6x_4 +4/3x_6 = 2.5$$

$$x_1 +1/6x_4 -1/3x_6 = 1.5$$

$$x_3 +x_6 = 0$$

$$1/6x_4 +x_5 -4/3x_6 = 0.5$$

New optimal tableau

$$z +17/15x_4 +29/15x_6 = 27$$

$$x_2 -1/6x_4 +4/3x_6 = 2.5$$

$$x_1 +1/6x_4 -1/3x_6 = 1.5$$

$$x_3 +x_6 = 0$$

$$1/6x_4 +x_5 -4/3x_6 = 0.5$$

From the tableau equation $1/6x_4+x_5-4/3x_6=0.5$ we generate the Gomory cut

$$x_5-2x_6\leq 0$$

New optimal tableau

$$z +17/15x_4 +29/15x_6 = 27$$

$$x_2 -1/6x_4 +4/3x_6 = 2.5$$

$$x_1 +1/6x_4 -1/3x_6 = 1.5$$

$$x_3 +x_6 = 0$$

$$1/6x_4 +x_5 -4/3x_6 = 0.5$$

From the tableau equation $1/6x_4+x_5-4/3x_6=0.5$ we generate the Gomory cut

$$x_5-2x_6\leq 0$$

In fractional form:

$$-1/6x_4 - 2/3x_6 + x_7 = -0.5$$

New optimal tableau

Optimal integer solution to the original problem (1,3).

Branch-and-Bound or cutting planes?

Branch-and-Bound and cutting planes!

Branch-and-cut:

Apply branch and bound, but at each node decide whether or not to tighten the formulation by adding cuts, in order to obtain a better bound at the node.

Branch-and-Bound and cutting planes!

Branch-and-cut:

Apply branch and bound, but at each node decide whether or not to tighten the formulation by adding cuts, in order to obtain a better bound at the node.

- State-of-the-art solvers implement many different types of cutting planes, including Gomory cuts and Gomory mixed-integer cuts (a variant that works also for general mixed-integer programming problems).
- ➤ Sometimes we can exploit special structure in the problem at hand to generate strong cutting planes.
- ► An example: cover inequalities.
- ▶ State-of-the-art solvers employ many different types of cuts.