Chapter 5 Theory of the Multinormal

All the copyrights belong to the authors of the book:

Applied Multivariate Statistical Analysis

Course Instructor: Shuen-Lin Jeng

Department of Statistics National Cheng Kung University

March, 2, 2021

• The pdf of $X \sim N_p(\mu, \sum)$ is

$$f(x) = |2\pi \sum_{n} |^{-1/2} \exp\left\{-\frac{1}{2}(x-\mu)^T \sum_{n}^{-1} (x-\mu)\right\}.$$
 (5.1)

The expectation is $\mathbf{E}(X) = \mu$, the covariance can be calculated as $\mathbf{Var}(X) = \mathbf{E}(X - \mu)(X - \mu)^T = \sum$.

• Linear transformations turn normal random variables into normal random variables. If $X \sim N_p(\mu, \sum)$ and $\mathcal{A}(p \times p)$, $c \in \mathbb{R}^p$, then $Y = \mathcal{A}X + c$ is p-variate Normal, i.e.,

$$Y \sim N_p(\mathcal{A}\mu + c, \mathcal{A}\sum \mathcal{A}^T)$$
 (5.2)

• If $X \sim N_p(\mu, \Sigma)$, then the Mahalanobis transformation is

$$Y = \sum^{-1/2} (X - \mu) \sim N_p(0, \mathcal{I}_p)$$
 (5.3)

and it holds that

$$Y^T Y = (X - \mu)^T \sum_{p}^{-1} (X - \mu) \sim \chi_p^2.$$
 (5.4)

Theorem 5.1 Let
$$X=inom{X_1}{X_2}\sim N_p(\mu,\sum), X_1\in\mathbb{R}^r, X_2\in\mathbb{R}^{p-r}$$
 . Define

 $X_{2.1} = X_2 - (\sum_{21})(\sum_{11}^{-1})X_1$ from the partitioned covariance matrix

$$\sum = \begin{pmatrix} \sum_{11} & \sum_{12} \\ \sum_{21} & \sum_{22} \end{pmatrix}$$

Then

$$X_1 \sim N_r \left(\mu_1, \sum_{11} \right) \tag{5.5}$$

$$X_{2.1} \sim N_{p-r} \left(\mu_{2.1}, \sum_{22.1} \right)$$
 (5.6)

are independent with

$$\mu_{2.1} = \mu_2 - \sum_{21} \sum_{11}^{-1} \mu_1, \sum_{22.1} = \sum_{22} - \sum_{21} \sum_{21}^{-1} \sum_{11} \sum_{12} \dots (5.7)$$

Corollary 5.1 Let
$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim N_p(\mu, \sum), \ \sum = \begin{pmatrix} \sum_{11} & \sum_{12} \\ \sum_{21} & \sum_{22} \end{pmatrix}$$
.

 $\sum_{12} = 0$ if and only if X_1 is independent of X_2 .

Corollary 5.2 If $X \sim N_p(\mu, \sum)$ and given some matrices \mathcal{A} and \mathcal{B} , then $\mathcal{A}X$ and $\mathcal{B}X$ are independent if and only if $\mathcal{A}\sum \mathcal{B}^T=0$.

Theorem 5.2 If $X \sim N_p(\mu, \sum)$, $\mathcal{A}(q \times p)$, $c \in \mathbb{R}^q$, and $q \leq p$, then $Y = \mathcal{A}X + c$ is a q-variate normal, i.e.,

$$Y \sim N_q(\mathcal{A}\mu + c, \mathcal{A}\sum \mathcal{A}^T).$$

Theorem 5.3 The conditional distribution of X_2 given $X_1 = x_1$ is normal with mean $\mu_2 + \sum_{21} \sum_{11}^{-1} (x_1 - \mu_1)$ and covariance $\sum_{22.1}$, i.e.,

$$(X_2 \mid X_1 = x_1) \sim N_{p-r}(\mu_2 + \sum_{21} \sum_{11}^{-1} (x_1 - \mu_1), \sum_{22.1})$$
 (5.8)

Theorem 5.4 If $X_1 \sim N_r(\mu_1, \sum_{11})$ and $(X_2 \mid X_1 = x_1) \sim N_{p-r}(\mathcal{A}x_1 + b, \Omega)$ where Ω does not depend on x_1 , then

$$X = egin{pmatrix} X_1 \ X_2 \end{pmatrix} \sim \mathsf{N}_p(\mu, \sum)$$
, where

$$\mu = \begin{pmatrix} \mu_1 \\ \mathcal{A}\mu_1 + b \end{pmatrix}$$

$$\sum \left(\sum_{11} \sum_{11} \mathcal{A} \right)$$

Conditional Approximations

As we saw in Chap.4(Theorem 4.3), the conditional expectation $\mathbf{E}(X_2 \mid X_1)$ is the mean squared error (MSE) best approximation of X_2 by a function of X_1 . We have in this case

$$X_2 = \mathbf{E}(X_2 \mid X_1) + U = \mu_2 + \sum_{21} \sum_{11}^{-1} (X_1 - \mu_1) + U$$
 (5.9)

Hence, the best approximation of $X_2 \in \mathbb{R}^{r-p}$ by $X_1 \in \mathbb{R}^r$ is the linear approximation that can be written as

$$X_2 = \beta_0 + \mathcal{B}X_1 + U \tag{5.10}$$

with
$$\mathcal{B}=\sum_{21}\sum_{11}^{-1}$$
 , $\beta_0=\mu_2 B\mu_1$ and $U\sim \textit{N}(0,\sum_{22,1}).$

Consider now the particular case where r=p-1. Now $X_2\in\mathbb{R}$ and \mathcal{B} is a row vector β^T of dimension $(1\times r)$

$$X_2 = \beta_0 + \beta^T X_1 + U {(5.11)}$$

The marginal variance of X_2 can be decomposed via (5.11):

$$\sigma_{22} = \beta^T \sum_{11} \beta + \sigma_{22.1} = \sigma_{21} \sum_{11}^{-1} \sigma_{12} + \sigma_{22.1}$$
 (5.12)

The ratio

$$\rho_{2.1...r}^2 = \frac{\sigma_{21} \sum_{11}^{-1} \sigma_{12}}{\sigma_{22}} \tag{5.13}$$

The Wishart distribution (named after its discoverer) plays a prominent role in the analysis of the estimated covariance matrices. If the mean of $X \sim N_p(\mu, \sum)$ is known to be $\mu = 0$, then for a data matrix $\mathcal{X}(n \times p)$ the estimated covariance matrix is proportional to $\mathcal{X}^T\mathcal{X}$. This is the point where the Wishart distribution comes in, because $\mathcal{M}(p \times p) = \mathcal{X}^T\mathcal{X} = \sum_{i=1}^n x_i x_i^T$ has a Wishart distribution $W_p(\sum, n)$.

Example 5.4 Set p=1, then for $X \sim N_1(0, \sigma^2)$ the data matrix of the observations

$$\mathcal{X} = (x_1, \dots, x_n)^T$$
 with $\mathcal{M} = \mathcal{X}^T \mathcal{X} = \sum_{i=1}^n x_i x_i$

leads to the Wishart distribution $W_1(\sigma^2, n) = \sigma^2 \chi_n^2$. The one-dimensional Wishart distribution is thus in fact a χ^2 distribution.

When we talk about the distribution of a matrix, we mean of course the joint distribution of all its elements. More exactly: since $\mathcal{M} = \mathcal{X}^T \mathcal{X}$ is symmetric we only need to consider the elements of the lower triangular matrix

$$\mathcal{M} = \begin{pmatrix} m_{11} & & \\ m_{21} & m_{22} & & \\ \vdots & \vdots & \ddots & \\ m_{p1} & m_{p2} & \dots & m_{pp} \end{pmatrix}. \tag{5.14}$$

Hence the Wishart distribution is defined by the distribution of the vector

$$(m_{11}, \ldots, m_{22}, \ldots, m_{p2}, \ldots, m_{pp})^T$$
 (5.15)

Theorem 5.5 If $\mathcal{M} \sim W_p(\sum, n)$ and $\mathcal{B}(p \times q)$, then the distribution of $\mathcal{B}^{T}\mathcal{M}\mathcal{B}$ is Wishart $W_{a}(\mathcal{B}^{T}\Sigma\mathcal{B},n)$.

With this theorem, we can standardize Wishart matrices since with $\mathcal{B} = \sum^{-1/2}$ the distribution of $\sum^{-1/2} \mathcal{M} \sum^{-1/2}$ is $W_n(\mathcal{I}, n)$.

Theorem 5.6 If $\mathcal{M} \sim W_p(\sum, m)$, and $a \in \mathbb{R}^p$ with $a^T \sum a \neq 0$, then the distribution of $\frac{a^T \mathcal{M}a}{a^T \sum a}$ is χ_m^2

Theorem 5.7 (Cochran) Let $\mathcal{X}(n \times p)$ be a data matrix from a $N_p(0, \sum)$ distribution and let $\mathcal{C}(n \times n)$ be a symmetric matrix.

(a) $\mathcal{X}^{\mathcal{T}}\mathcal{C}\mathcal{X}$ has the distribution of weighted Wishart random variables, i.e.,

$$\mathcal{X}^{\mathcal{C}}\mathcal{X} = \sum_{i=1}^{n} \lambda_{i} W_{p}(\sum, 1),$$

where λ_i , $i=1,\ldots,n$, are the eigenvalues of \mathcal{C} .

(b) $\mathcal{X}^{\mathcal{T}}\mathcal{C}\mathcal{X}$ is Wishart if and only if $\mathcal{C}^2 = \mathcal{C}$. In this case,

$$\mathcal{X}^{\mathcal{T}}\mathcal{C}\mathcal{X} \sim W_p(\sum, r)$$

and r = rank(C) = tr(C).

- (c) $nS = X^T \mathcal{H} X$ is distributed as $W_p(\sum, n-1)$ (note that S is the sample covariance matrix).
- (d) \bar{x} and S are independent.

The following properties are useful:

- 1. If $\mathcal{M} \sim W_p(\sum_i n_i)$, then $\mathbf{E}(\mathcal{M}) = n \sum_i n_i$.
- 2. If \mathcal{M}_i are independent Wishart $W_p(\sum_i n_i)$ $i=1,\ldots,k$, then $\mathcal{M} = \sum_{i=1}^k \mathcal{M}_i \sim W_p(\sum_i, n)$ where $n = \sum_{i=1}^k n_i$.
- 3. The density of $W_p(\sum_i n-1)$ for a positive definite, \mathcal{M} is given by

$$f_{\sum,n-1}(\mathcal{M}) = \frac{|\mathcal{M}|^{\frac{1}{2}(n-p-2)} e^{-\frac{1}{2} \operatorname{tr}(\mathcal{M}_{\sum}^{-1})}}{2^{\frac{1}{2}p(n-1)} \pi^{\frac{1}{4}p(p-1)} |\sum_{i=1}^{\frac{1}{2}(n-1)} \prod_{i=1}^{p} \Gamma\left\{\frac{n-i}{2}\right\}}, \quad (5.16)$$

where Γ is the gamma function: $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$.

5.3 Hotelling's T^2 - Distribution

Suppose that $Y \in \mathbb{R}^p$ is a standard normal random vector, i.e., $Y \sim N_p(0,\mathcal{I})$, independent of the random matrix $\mathcal{M} \sim W_p(\mathcal{I}, n)$. What is the distribution of $Y^T \mathcal{M}^{-1} Y$? The answer is provided by the Hotelling T^2 -distribution: n $Y^T \mathcal{M} Y$ is Hotelling $T_{n,n}^2$ distributed.

The Hotelling T^2 -distribution is a generalization of the Student t-distribution.

Theorem 5.8 If $X \sim N_p(\mu, \Sigma)$ is independent of $\mathcal{M} \sim W_p(\Sigma, n)$, then

$$n(X-\mu)^T \mathcal{M}^{-1}(X-\mu) \sim T_{p,n}^2$$

5.3 Hotellina's T²- Distribution

Corollary 5.3 If \bar{x} is the mean of a sample drawn from a normal population $N_p(\mu, \Sigma)$ and S is the sample covariance matrix, then

$$(n-1)(\bar{x}-\mu)^{\mathsf{T}}\mathcal{S}^{-1}(\bar{x}-\mu) = n(\bar{x}-\mu)^{\mathsf{T}}\mathcal{S}_{u}^{-1}(\bar{x}-\mu) \sim \mathcal{T}_{p,n-1}^{2}. \quad (5.17)$$

Recall that $S_u = \frac{n}{n-1}S$ is an unbiased estimator of the covariance matrix.

Theorem 5.9

$$T_{p,n}^2 = \frac{np}{n-p+1} F_{p,n-p+1}$$

5.3 Hotelling's T²- Distribution

Example 5.5 In the univariate case (p = 1), this theorem boils down to the well-known result:

$$(\frac{\bar{x}-\mu}{\sqrt{S_u}/\sqrt{n}})^2 \sim T_{1,n-1}^2 = F_{1,n-1} = t_{n-1}^2$$

Corollary 5.4 Consider a linear transform of $X \sim N_p(\mu, \sum)$, $Y = \mathcal{A}X$ where $\mathcal{A}(q \times p)$ with $(q \leq p)$. If \bar{x} and \mathcal{S}_x are the sample mean and the sample covariance matrix, we have

$$\bar{y} = A\bar{x} \sim N_q(A\mu, \frac{1}{n}A\sum A^T)$$

$$nS_Y = nAS_XA^T \sim W_q(A\sum A^T, n-1)$$

$$(n-1)(A\bar{x} - A\mu)^T(AS_XA^T)^{-1}(A\bar{x} - A\mu) \sim T_{q,n-1}^2$$

5.3 Hotelling's T²- Distribution

We can write (5.17) as

$$T^{2} = \sqrt{n}(\bar{x} - \mu)^{T} \left(\frac{\sum_{j=1}^{n} (x_{j} - \bar{x})(x_{j} - \bar{x})^{T}}{n-1}\right)^{-1} \sqrt{n}(\bar{x} - \mu)$$

which is of the form

$$\left(\begin{array}{c} \text{multivariate normal} \\ \text{random vector} \end{array} \right)^\top \left(\begin{array}{c} \text{Wishart random} \\ \text{matrix} \\ \text{degrees of freedom} \end{array} \right)^{-1} \left(\begin{array}{c} \text{multivariate normal} \\ \text{random vector} \end{array} \right).$$

5.3 Hotelling's T^2 - Distribution

This is analogous to

$$t^2 = \sqrt{n}(\bar{x} - \mu)(s^2)^{-1}\sqrt{n}(\bar{x} - \mu)$$

or

$$\left(\begin{array}{c} \text{normal} \\ \text{random variable} \end{array} \right) \left(\begin{array}{c} \chi^2\text{-random} \\ \text{variable} \\ \text{degrees of freedom} \end{array} \right)^{-1} \left(\begin{array}{c} \text{normal} \\ \text{random variable} \end{array} \right)$$

for the univariate case.

5.4 Spherical and Elliptical Distributions

The multinormal distribution belongs to the large family of elliptical distributions.

Elliptical distributions are often used, particularly in risk management.