Statistics for Data Science -1 Continuous Random Variables-Continuous distributions

Usha Mohan

Indian Institute of Technology Madras

Exponential distribution

A continuous random variable whose probability density function is given, for some $\lambda>0$, by

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

is said to be an exponential random variable (or, more simply, is said to be exponentially distributed) with parameter λ .

Graph of pdf for different values of λ

$$F(a) = P(X \le a)$$

$$F(a) = P(X \le a)$$
$$= \int_0^a \lambda e^{-\lambda x} dx$$

$$F(a) = P(X \le a)$$

$$= \int_0^a \lambda e^{-\lambda x} dx$$

$$= -e^{-\lambda x} \Big|_0^a$$

$$F(a) = P(X \le a)$$

$$= \int_0^a \lambda e^{-\lambda x} dx$$

$$= -e^{-\lambda x} \Big|_0^a$$

$$= 1 - e^{-\lambda a}$$

Graph of cdf for different values of λ

$$X \sim exp(\lambda)$$

$$X \sim exp(\lambda)$$

$$ightharpoonup E(X) = \frac{1}{\lambda}$$

$$X \sim exp(\lambda)$$

$$ightharpoonup E(X) = \frac{1}{\lambda}$$

$$Var(X) = \frac{1}{\lambda^2}$$

$$X \sim exp(\lambda)$$

- \triangleright $E(X) = \frac{1}{\lambda}$
- $Var(X) = \frac{1}{\lambda^2}$
- It can be shown through integration by parts

$$E(X^n) = \frac{n}{\lambda} E(X^{n-1})$$

$$X \sim exp(\lambda)$$

- \triangleright $E(X) = \frac{1}{\lambda}$
- $Var(X) = \frac{1}{\lambda^2}$
- It can be shown through integration by parts

$$E(X^n) = \frac{n}{\lambda}E(X^{n-1})$$

$$ightharpoonup E(X) = \frac{1}{\lambda}$$

$$X \sim exp(\lambda)$$

- $E(X) = \frac{1}{X}$
- ► $Var(X) = \frac{1}{\sqrt{2}}$
- It can be shown through integration by parts

$$E(X^n) = \frac{n}{\lambda}E(X^{n-1})$$

- $E(X) = \frac{1}{\lambda}$ $E(X^2) = \frac{2}{\lambda} \cdot \frac{1}{\lambda} = \frac{2}{\lambda^2}$

$$X \sim exp(\lambda)$$

- $E(X) = \frac{1}{X}$
- ► $Var(X) = \frac{1}{\sqrt{2}}$
- It can be shown through integration by parts

$$E(X^n) = \frac{n}{\lambda}E(X^{n-1})$$

- ► $E(X) = \frac{1}{\lambda}$ ► $E(X^2) = \frac{2}{\lambda} \frac{1}{\lambda} = \frac{2}{\lambda^2}$ ► Hence $Var(X) = \frac{2}{\lambda^2} \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$

 $X \sim exp(\lambda)$

$$\triangleright$$
 $E(X) = \frac{1}{\lambda}$

$$Var(X) = \frac{1}{\lambda^2}$$

It can be shown through integration by parts

$$E(X^n) = \frac{n}{\lambda}E(X^{n-1})$$

$$E(X) = \frac{1}{3}$$

$$E(X) = \frac{1}{\lambda}$$

$$E(X^2) = \frac{2}{\lambda} \frac{1}{\lambda} = \frac{2}{\lambda^2}$$

$$\blacktriangleright \text{ Hence } Var(X) = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$$

Thus, the mean of the exponential is the reciprocal of its parameter λ , and the variance is the mean squared.

In practice, the exponential distribution often arises as the distribution of the amount of time until some specific event occurs.

- Suppose that the length of a phone call in minutes is an exponential random variable with parameter $\lambda=0.1$. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait
 - a more than 10 minutes
 - b between 10 and 20 minutes.

In practice, the exponential distribution often arises as the distribution of the amount of time until some specific event occurs.

- Suppose that the length of a phone call in minutes is an exponential random variable with parameter $\lambda=0.1$. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait
 - a more than 10 minutes
 - b between 10 and 20 minutes.

In practice, the exponential distribution often arises as the distribution of the amount of time until some specific event occurs.

- ▶ Suppose that the length of a phone call in minutes is an exponential random variable with parameter $\lambda=0.1$. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait
 - a more than 10 minutes
 - b between 10 and 20 minutes.

Solution Let X denote the length of the call made by the person in the booth. $X \sim exp(0.5)$

a more than 10 minutes =

In practice, the exponential distribution often arises as the distribution of the amount of time until some specific event occurs.

- Suppose that the length of a phone call in minutes is an exponential random variable with parameter $\lambda=0.1$. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait
 - a more than 10 minutes
 - b between 10 and 20 minutes.

Solution Let X denote the length of the call made by the person in the booth. $X \sim exp(0.5)$

a more than 10 minutes = $P(X > 10) = e^{-1} \approx 0.368$

In practice, the exponential distribution often arises as the distribution of the amount of time until some specific event occurs.

- Suppose that the length of a phone call in minutes is an exponential random variable with parameter $\lambda=0.1$. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait
 - a more than 10 minutes
 - b between 10 and 20 minutes.

- a more than 10 minutes = $P(X > 10) = e^{-1} \approx 0.368$
- b between 10 and 20 minutes=

In practice, the exponential distribution often arises as the distribution of the amount of time until some specific event occurs.

- Suppose that the length of a phone call in minutes is an exponential random variable with parameter $\lambda=0.1$. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait
 - a more than 10 minutes
 - b between 10 and 20 minutes.

- a more than 10 minutes = $P(X > 10) = e^{-1} \approx 0.368$
- b between 10 and 20 minutes= P(10 < X < 20) = F(20) - F(10)

In practice, the exponential distribution often arises as the distribution of the amount of time until some specific event occurs.

- Suppose that the length of a phone call in minutes is an exponential random variable with parameter $\lambda=0.1$. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait
 - a more than 10 minutes
 - b between 10 and 20 minutes.

- a more than 10 minutes = $P(X > 10) = e^{-1} \approx 0.368$
- b between 10 and 20 minutes=

$$P(10 < X < 20) = F(20) - F(10) = e^{-1} - e^{-2} \approx$$

In practice, the exponential distribution often arises as the distribution of the amount of time until some specific event occurs.

- Suppose that the length of a phone call in minutes is an exponential random variable with parameter $\lambda=0.1$. If someone arrives immediately ahead of you at a public telephone booth, find the probability that you will have to wait
 - a more than 10 minutes
 - b between 10 and 20 minutes.

- a more than 10 minutes = $P(X > 10) = e^{-1} \approx 0.368$
- b between 10 and 20 minutes= $P(10 < X < 20) = F(20) - F(10) = e^{-1} - e^{-2} \approx 0.233$

Section summary

Exponential distribution and its applications.