with $y, \xi, \mathbf{1} \in \mathbb{R}^m$ and $w \in \mathbb{R}^n$. Note that in Program (**RR3**) minimization is performed over ξ , w and b, but b is not penalized in the objective function. As in Section 55.1, the objective function is strictly convex.

The Lagrangian associated with this program is

$$L(\xi, w, b, \lambda) = \xi^{\mathsf{T}} \xi + K w^{\mathsf{T}} w - w^{\mathsf{T}} X^{\mathsf{T}} \lambda - \xi^{\mathsf{T}} \lambda - b \mathbf{1}^{\mathsf{T}} \lambda + \lambda^{\mathsf{T}} y.$$

Since L is (strictly) convex as a function of ξ, b, w , by Theorem 40.13(4), it has a minimum iff $\nabla L_{\xi,b,w} = 0$. We get

$$\lambda = 2\xi$$
$$\mathbf{1}^{\top} \lambda = 0$$
$$w = \frac{1}{2K} X^{\top} \lambda = X^{\top} \frac{\xi}{K}.$$

As before, if we set $\xi = K\alpha$ we obtain $\lambda = 2K\alpha$, $w = X^{\top}\alpha$, and

$$G(\alpha) = -K\alpha^{\top}(XX^{\top} + KI_m)\alpha + 2K\alpha^{\top}y.$$

Since K > 0 and $\lambda = 2K\alpha$, the dual to ridge regression is the following program

Program (DRR3):

minimize
$$\alpha^{\top}(XX^{\top} + KI_m)\alpha - 2\alpha^{\top}y$$

subject to $\mathbf{1}^{\top}\alpha = 0$.

where the minimization is over α .

Observe that up to the factor 1/2, this problem satisfies the conditions of Proposition 42.3 with

$$A = (XX^{\top} + KI_m)^{-1}$$
$$b = y$$
$$B = \mathbf{1}_m$$
$$f = 0.$$

and x renamed as α . Therefore, it has a unique solution (α, μ) (beware that $\lambda = 2K\alpha$ is **not** the λ used in Proposition 42.3, which we rename as μ), which is the unique solution of the KKT-equations

$$\begin{pmatrix} XX^{\top} + KI_m & \mathbf{1}_m \\ \mathbf{1}_m^{\top} & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \mu \end{pmatrix} = \begin{pmatrix} y \\ 0 \end{pmatrix}.$$

Since the solution given by Proposition 42.3 is

$$\mu = (B^{\mathsf{T}}AB)^{-1}(B^{\mathsf{T}}Ab - f), \quad \alpha = A(b - B\mu),$$