

RECEIVING TUBES PICTURE TUBES CATHODE-RAY TUBES RECTIFIER TUBES TRANSMITTING TUBES MODULATING TUBES IMPULSE TUBES KLYSTRONS MAGNETRONS TRAVELLING WAVE TUBES CARCINOTRONS TR AND ATR SWITCH TUBES VACUUM CONDENSERS SPECIAL TUBES CAMERA TUBES SEMICONDUCTOR DIODES SEMICONDUCTOR RECTIFIERS SEMICONDUCTOR PHOTODIODES A. F. TRANSISTORS H. F. TRANSISTORS POWER TRANSISTORS INTEGRATED CIRCUITS

MANUAL OF ELECTRONIC TUBES

1969

TESLA ROŽNOV

Editor:

TESLA ROŽNOV, národní podnik dokumentace a propagace ROŽNOV POD RADHOŠTĚM Printed in Czechoslovakia MTZ, Ostrava 1 This manual of TESLA electronic tubes and semi-conductor devices contains all basic technical data required for general information. It does not list detailed data required for the development and design of new electronic instruments. A concise catalogue of tubes compiled specially for the use of designers contains, in addition to all data, also the characteristics.

This catalogue is printed on loose leaves and is kept up-to-date by additions. Receiving tubes intended for use in newly designed receivers, instruments, etc., are listed in a table of preferred types.

> KOVO, Foreign Trade Co., Dept. 8, Prague 7 Czechoslovakia

Type Application	Dimensions Base	Heatin Static do		Oper	ational Do	ata		Maximu	ım Rati	ngs	
1AF33 1AF34	Size max Ø 19×49 mm	19×49 mm $\begin{vmatrix} J_f & 1.4 & V_f \\ I_f & 25 & MA \\ Direct heating \\ & & & & & & & & & & & & & & & & & & $		U _b R _a R _{y2} R _{g1} R _{g1} ' I _b U _o /U _i k	45 1 3,3 10 2,2 0,05 45 2	67,5 1 3,3 10 2,2 0,075 60 3	90 1 3,3 10 2,2 0,1 67	M_{Ω}	$\begin{array}{c} \textbf{Pentode} \\ \textbf{U}_{a0} \\ \textbf{U}_{a} \\ \textbf{U}_{g_{2}0} \\ \textbf{U}_{g_{2}} \\ \textbf{U}_{g_{1}} \\ \textbf{I}_{k} \\ \textbf{R}_{g_{1}} \\ \textbf{R}_{g_{1}} \\ \textbf{R}_{g_{1}}^{-1}) \\ \textbf{U}_{f} \end{array}$	0 4,5 3 22	V V V V MM, M, V
1,93 d 0 1,93 Diode -	92	R_i 0.6 μ 300 I_d >0.1 U_d 3 T_i U_{g1} = -0 Capacitance C_{g1} 2.4	MΩ mA 3 V ,5 V es i pF 5 pF 3 pF		istance-co connectio 0	oupled an		v	Diode U_d sp I_d I_d sp I_d		V m/
AF pentode AF amplifie AM demode	e r ,	1AF34 U _f 1,2	2 V) mA	k U _{o ef}		5	0,8 5	% V	1 AF34 U _f U _f	1,4 >0,9	

Type Application	Dimensions Base	Heating Static data		Op	eration	Maximum Ratings					
1F33 1F34 92 0 1.93 Variable-m pentode RF, IF amp	1,9 ₃	1F33 U _f 1,4 V I _f 25 mA Direct heating O _g 67,5 V U _{g2} 67,5 V U _{g2} 67,5 V U _{g3} -1 V I _a 2,5 mA I _{g2} <1,3 mA S 1) >0,6 mA/V R _i >250 kΩ μ 400 1) U _{g1} -0.5 V 1F34 U _f 1,2 V I _f 30 mA Direct heating	RF and Ua Ug2 Ug1 Ia Ig2 S Ri µg2/g1 Ua Ug2 Ug1 Ia Ug2 Ug1 Ia Ig2 S Ri µy2/g1	0 1,7 0,7 0,65 0,35 22	90 45 -10 	3,4 1,5 0,75 0,25 22	90 67,5 -16 - - 0,01 >10 - - 90 67,5 - - 0,01 - - 0,01 - - 0,01 - 0 0,01 - 0 0,01 - 0 0,01 - 0 0 0,01 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V V V mA mA/V V V V M Ω	Uao Ua Ug2o Ug2 Ik Ug1 Wa Wg2 Rg1 Uf Uf Capacit Ca Ca/g1 1F34 Uf	4,2 7,5	pF pF pF

Type Dimensions Application Base	Heating Static data	Operation	Maximum Ratings		
1H33 Size max 1H34 Ø 19×49 mm	1H33 U _f 1,4 V I _f 25 mA Direct heating U _g 90 V U _{g3} -0.5 V U _{g2+4} 67.5 V U _{g1} -0.5 V I _a 3,2 mA I _{g2+4} 4,0 mA S _{g1/g2+g4} >0,45 mA/V R _i >250 k Ω	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} \textbf{U}_{ao} & 250 & \textbf{V} \\ \textbf{U}_{a} & 90 & \textbf{V} \\ \textbf{U}_{g2}+_{40} & 90 & \textbf{V} \\ \textbf{U}_{g2}+_{4} & 67.5 & \textbf{V} \\ \textbf{U}_{g3} & 0 & \textbf{V} \\ \textbf{I}_{k} & 5.5 & \textbf{mA} \\ \textbf{R}_{g3} & 3 & \textbf{M} \Omega \\ \textbf{U}_{f} & 1.6 & \textbf{V} \\ \textbf{U}_{f} & >1.1 & \textbf{V} \\ \textbf{Capacitances} \\ \textbf{C}_{g1} & 3.8 & \textbf{pF} \\ \textbf{C}_{g3} & 6.2 & \textbf{pF} \\ \textbf{C}_{g3} & 6.2 & \textbf{pF} \\ \textbf{C}_{g2}+_{4} & 12.5 & \textbf{pF} \\ \textbf{C}_{g}/g_{1} & <0.1 & \textbf{pF} \\ \textbf{C}_{g}/g_{1} & <0.1 & \textbf{pF} \\ \textbf{C}_{g}/g_{2} & <0.2 & \textbf{pF} \\ \textbf{1H34} \\ \textbf{U}_{f} & 1.4 & \textbf{V} \\ \textbf{U}_{f} & >0.9 & \textbf{V} \\ \end{array}$	

Type Application	Dimensions Heating Base Static data					Operational Da	Maximum Ratings				
931 94 1.5 92 a Variable-m heptode Mixer	94 93 11,95	U _q U _q U _g U	heatin 67.5 45 -0.5 45 -0.5 1,9 <1 1,85	mA g	lg1 Sc R _i	64 0 18 0 27 35 64 4 0,55 1,6 0,12 2,45 85 130 0,9 2 μΑ/V)4,5	0 33 120 27 35 68 4 0,6 1,5 0,14 2,4 85 160	V kΩ kΩ V V MA MA MA MA V	$egin{array}{l} U_f & & & & \\ U_f & & & & \\ U_a & & & & \\ & & & & \\ & & & & \\ & & & & $	1,1 90 0,15 67,5 0,03 0 67,5 0,1 0 3 3 0,1	ρF

A	Type application	Dimensions Base	Heating Static data		Operati	ional D	ata		Maximu	ım Ratio	ngs
	91 1L34 -f.	Size max Ø 19×49 mm	1L33 U _f 1.4 V I _f 50 mA Direct heating U _a 90 V U _{g2} 67.5 V U _{g1} -7 V I _a 7.5 mA I _{g2} 1.5 mA S 1.4 mA/V R _i 100 kΩ μ 140 I _{ax} (U _{g1} =-15 V) <0.6 mA	Ua Ug2 Ug1 Ia Ig2 S Ra Ug1 ef Po k AF pus Ub Ua Ug2 Ug1 Ra-a' Ug1 ef Ia	ver amplifi 45 45 -4,5 3,8 0,8 1,25 8 3,2 65 12 h-pull pow	67,5 67,5 -7 7,2 1,5 1,3 5 160 10 ver am/ 90 80 57,5 -9,9	90 67.5 —7 7,4 1,4 1,4 8 5 230	V V mA mA/ν kΩ V mW	U _{ao} U _a U _{g2o} U _{g2} W _a W _{g2} (U _{g1} I _k (U _{g1} ~ I _k (U _{g1} ~ R _{g1} U _f U _f Capacitan C _{g1} C _a C _{a/g1}	90 250 67,5 0,7 ~-0 V; 0,12 max) 0,2 -0 V) 9 max) 12 2 1,6 >1,1	V W W mA MΩ V V
	Output pen Power ampl		l _f 60 mA Direct heating	P _o k	<u>0</u>		32 5 5	mW %	1L34 U _f U _f	1,4 >0,9	v v

Туре	Dimensions	Heating	Operational Data	Maximum Ratings		
Application	Base	Static data				
1Y32 1Y32T	Size M 4	1Y32 U _f 1,4 V I, 265 mA Direct heating Thoriated tungs- ten cathode	Half-wave HT rectifier $U_{SS} \mod x \qquad 8 \text{ kV} \qquad (I_{SS}-2 \text{ mA})$ $U_{SB} \mod x \qquad 10 \text{ kV}$ $Z_{trafo} \qquad 500 \text{ k} \Omega$ $C_N \ (f \rightarrow 50 \text{ c/s}) \qquad 50 \text{ kpF}$ $C_N \ (vf) \qquad 500 \text{ pF}$	U _{inv} 20 kV I _{sp} 10 mA I _{ss} 2 mA f 300 kc/s		
t ₁		I _a 4 mA U _a 45 V	To be replace by 1Y32T	Capacitances $C_{a/k}$ 0,6 pF		
HT diode Half-wave for TV rece		1Y32T Uf 1.4 V If 265 mA Direct heating Oxide-coated filament Ia >5 mA Ua 150 V		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
sources				,		

ŝ	Type	Dimensions	Heatir	ıg			O	peratio	nal Dat	a		Махіп	num Ratio	ngs
	Application	Base	Static de	ata										
١	3L31	Size max	U _f 2,	8 V	AF	powe	r a	mplifie	r, class	A		AF amp	ifier	
- 1		Ø 19:.49 mm	1, 5	0 mA	U,		1,	4	1,	4	V	U_a	150	٧
ı			Ú, 1,	4 V	U _a		13	5	15	Ю.	V	U_{g_2}	90	٧
١			1, 10		\bigcup_{g_i}	2	9	0	9	10	٧	\mathbf{w}_a	2	W
ı			Indirect her		$\bigcup_{g_1}^{s}$	- 1	_	8	—8 ,	.8	V	W_{g_2}	0,4	W
İ		ıū				•	_	<u> </u>	_	<u> </u>		1 _k	18	mΑ
ı	4		U _a 15	0 V	$ $ \mathbf{U}_{g}	ı ef	0	5,5	0	6	V	$\hat{R}_{g1}^{(1)}$	0,7	$M \mathcal{Q}$
		<u> </u>		0 V	I_{g_2}	̃′ 2,	8	3,5	2,2	3,5	mΑ	R_{q1}^{3} 2)	0,5	$M\mathcal{Q}$
ı	l r	92	Ug2 9	-	la	14,	8	15	14,2	14,2	mΑ	3-		
	91		U_{g1} -8,		S		2,	1	2,	1	mA/V	1) U _{a1} (automatic	:
١		7	$ \mathbf{I}_a^{g_1} $ 1.		R_i		4	4	5	0	k $arOmega$	2) $U_{g_1}^{\sigma_1}$ f		
١	•		$ \mathbf{I}_{g_2}^{\alpha} $ 2,		Ra			8		8	k Ω			
١	-1		S 1,5		l = "		0,	6	0,	7	W	RF ampl	ifier	
		fg ₃	R _i 10		k		1	0	1	0	%	U_a	150	٧
-		Q ₁	μ 190		RF	powe	r a	mplifie	er – f=	= 10 M	lc/s	$U_{\boldsymbol{g}_2}$	135	V
ı	92/	\$s,93	-	•		Ū,		•	1,4	١		$\mathbf{U}_{g_1}^{\mathbf{g}_2}$	-30	٧
Į	0 (Capacitanc	es		\mathbf{u}_a'			150	١	,	l _a	20	mΑ
١	1	• •)•	C_{g_1} 4.	2 pF		$U_{g_2}^{u}$			135	١	/	Igi	0,25	mΑ
-	f	→ f	$C_a^{g_1}$			R_{g1}	'		0,2	1	MΩ	1,	25	mΑ
١	,	•	$ C_a/g_1 < 0.3$			I _a			18,5		nA	\hat{w}_{g_2}	0,9	W
İ			-4/91	- 1-	1	192			6,5		nΑ	w _a *	2	W
١	P entod e					la			0,13		пA			
1	AF, RF pow	/er				${}^{I_{g_1}}_{o}$			1		w .			
	o mplifier		•			- 0			•		-			
١														

Type Application	Dimensions Base	Heating Static data	Operatio	Maximum Ratings			
cathodes	*	U _f 6,3 V I _f 0,3 A I _f 0,3 A U _g 6,3 V Indirect heating U _a 4 V I _a >10 mA	Half-wave rectifier Vaef Ro Iss Isp Full-wave rectifier Vaef Ro CN Rz Iss Capacitances Cal/kI+s+f Call/kIl+s+f Ckl/aI+s+f Cal/aII+s+f Cal/aII	150 300 9 54 2×150 2×300 8 10 >17	V Ω mA mA V Ω μF $k\Omega$ mA pF pF pF pF	Each sec Uinv Isp Iss Wa Uk/f Rk/f CN Ro	420 V 54 mA 9 mA 0.5 W 300 V 20 kΩ 8 μF >300 Ω

Type Application	Dimensions Base	Heati Static d		Oper	Maximum Ratings						
	mplifier	$ \begin{array}{c c} I_f' & 0, \\ \hline I_f & 0, \\ U_f & 6, \\ \text{Indirect he} \\ \\ U_a & 25, \\ U_{g1} & -1, \\ I_a & 5, \\ I_{az} & 1, \\ I_{az$	50 V -2 V 1 mA 55 mA/V 10	U _b R _a R _k R _{g1} C _k C _U 1) U _a sp V Tooup Kapacit C _g C _a 180 0,22 3,9 1 1 1,8 3 39 63	-	300 0,47 5,9 1 2,2 1,1 2 92 75	V $M\Omega$ $k\Omega$ $M\Omega$ μF $k\rho F$ V ρF ρF ρF ρF	Triode Uao Uao Wa +Ug1Ug1 Rg1 (p) Rg1 1) Rg1 1/ k// Uk// Ik Diodes Ud sp Id Id sp	330 0,5 0 -5 1 3 10 20 90 8	V MA MA MA	

Type Application	Dimensions Base	Heating Static data	Operation	Maximum Ratings	
GCC31 ECC91	94I g ₁ II g ₁ II k	U _f 6,3 V I _f 0,45 A Indirect heating U _a 100 V -U _{g1} 0,85 V I _a 8,5 mA S 5,3 mA/V μ 38 R _i 7,1 kΩ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mixer U_a 150 V R_k 800 $Ω$ I_a 4,8 mA S_c 1,9 mA/V R_i 10,2 k $Ω$ $U_{osc\ ef}$ 3 V R_{g1} 0,5 M $Ω$ U_{g1} ~ 0,5 0,9 V U_a ~ 12 19,6 V V 24 21,8 k <0,3 3,2 $\frac{9}{6}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Type Application	Dimensions Base		eating			Operational Data					Maximum Ratings			
GCC41 91 KI Twin triode separate co. AF amplifie phase inver	sthodes er,	U _f I _f Indirec U _a I _a S µ R _i U _{g1} I _{az} (U _g	250 2,3 2 100 50 -1,5	A ing V mA mA/V kΩ V -5,5)	U _b R _a R _k R _{g1} R _{g1} ' C _k C _v 1) U _a ~ sp	180 0,22 3,5 1 0,47 2,1 6 34 59	0,22 2,8 1 0,47 2,3 6 69 65	amplifier 300 0,47 5,2 1 1 1,3 3 77 73	V MQ kQ MQ MQ µF kpF	U _{ao} U _a W _a R _{g1} (k) R _{g1} 1) I _k R _{g1} (p) U _k /f 1) U _{g1} pi by I _{g1} Capaciton C _{g1} C _a / _{g1} C _a / _{g1} C _a / _{g1} II C _a II/ _{g1} II C _a II/ _{g1} II	1,75 1,0 2,2 <0,05	V W M\Omega mA M\Omega V		

4	
٦	٣
	Р
	•

Type Application	Dimensions Base		leating		Operational Data	Maxim	num Ratings
GCC42 gl gl kl gl kl f Twin triode separate cc HF, VHF a mixer, osci	athodes mplifier,	Ua Rk Ia S	6,3 0,35 ct heati 150 240 8 5,5 35 6,7 (g1 — -1	A ng V Ω mA mA/V kΩ 10 V)	HF and VHF amplifier $\begin{array}{cccccccccccccccccccccccccccccccccccc$	Uao Ua Wa Ik Rg1 Uk/f Capacit Cg1 Ca Ca/g1 CaI/aII	2,2 pF 0,4 pF <1,6 pF

Type	Dimensions Base	 leating		Oı	perational	Data	,	Maximu	m Ratii	ngs
Type Application 6F10	Dimensions Base Size O 2	 6,3 0,45 et heat	V A ing V V V	RF amplifier U_b U_a U_{g3} U_{g2} R_{g2} R_k I_a I_{g2} S	300 0 150 0 160 10,25 2,5 9 300 1c/s) 540 650	300 300 0 60 160 10,25 2,5 9 300	$egin{array}{c} \mathbf{V} \\ \mathbf{V} \\ \mathbf{V} \\ \mathbf{\Omega} \\ \mathbf{mA} \\ \mathbf{mA}/\mathbf{V} \\ \mathbf{k} \mathbf{\Omega} \\ \mathbf{\Omega} \\ \mathbf{\Omega} \\ \mathbf{\Omega} \end{array}$	$egin{array}{c} U_{an} & & & & & & & & & & & & & & & & & & &$	550 310 3,3 550 165 - 0 \ 0,45 - max) 0,8 25 -30 0,5 0,25 100	>>>>> × × × × γ × × × × × × × × × × × × × × ×
g ₃ RF pentode RF, IF, widd				U _a 150 R _k 160 I _a 12,5	Ω R _j mA mA/V		kΩ tock!	Triode con U_a 1) U_{g_1} fixe $C_{apacitane}$ C_{g_1} C_a	nection 165 - ed ces 11 5	1

Type Application	Dimensions Base		tic dat		Оре	erational C)ata	Maxir	num Ratir	ngs
k o	Size L 3	U _a U _{g3} U _{g2} U _{g1} I _a I _{g2} S R _i	2,1 10	A ing V V V mA mA/V MΩ 7 V)	Olifier Ua Ug2 Rk Ia Ig2 S Ri	class A 250 0 200 120 15 2.1 10 0,3	V V V Ω mA mA/V MΩ	$egin{array}{c} {\sf U}_a & {\sf W}_a & {\sf W}_a & {\sf W}_{g_2} & {\sf W}_{g_2} & {\sf I}_k & {\sf R}_{g_1} & {\sf U}_k/f & {\sf Capacit} & {\sf C}_{g_1} & {\sf C}_a & {\sf C}_a/g_1 & {\sf C}_a/g_2 & {\sf C}_a/g_1 & {\sf C}_a/g_2 & {\sf C}_$	50	рF

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum Ra	tings
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 V 0 V 3 W 0 V 5 V 5 V 5 W 0 V 0 V 0 V 0 V 0 V 0 F 0 F 6 pF

Туре	Dimensions	ŀ	leating			One	erational	Data			Maxim	um Ratir	ngs
Application	Base	Sta	tic date	a									
6F32	Size max	U,	6,3	v	RF	amplifier,	class A				U_{ao}	320	v
	Ø 19×45,2 mm	1,	0,175		Ua	•	120		180		Ű _a	500	٧
1 23	~		ct heat		$U_{g_2}^u$		120		120	v	w,	1,7	W
1			•	-	$R_k^{g_2}$		200		200	Ω	$U_{g_{2}o}$	320	٧
		U_a	120	V	la .		7,5		7,7	mΑ	U_{g_2}	150	٧
1		Ug ₂	120	V	I_{g_2}		2,5		2,4	mΑ	w _u	0.5	W
į.	10	R_k	200	Ω	s"		5		5,1	mA/V	\mathbf{I}_{k}	18	mΑ
/	+	$ \mathbf{l}_a^n $	7,5	mA	R;		0,34		0,69	MQ	R_{g1}	1	Μ Q
1 7.	⊥	1 _{g2}	<3,5	mΑ	Z _{a1}	(f⇒50 Mc	/s) 25		25	$\mathbf{k}Q$	$U_k/_f$	100	٧
1	92	S	5,2	mA/V	R_{ek}		2		2	k Ω	$R_k/_f$	20	kΩ
91 -		μ_{g_2/g_1}	25			-							
1 (k .	R _i	>0,25	$M \Omega$		amplifier,		٠ –			Capacito	ınces	
	$\overline{g_3}$	`			ı	de conne					c_{g_1}	4,5	ρF
1 11	it -	Ì			Ua		120		180		c _a	2,8	рF
1	t				Ug	1	-2,65		— б		C_a/g_1	<0,025	pF
1 1/	0				R_k		265		925	Ω	a, g,		
k/.*	000	1			I _a		10			mA	İ		
£.	92				S		6		3,5	mA/V			
] ~ gr	√k ,g₃				Ri		5		6,66	k $arOmega$			
91	•••				μ		30		23,3				
i						(f-100 M	c/s)	9,5		$k\Omega$	1		
RF high-slo	pe pentode				Rel	άυ		700		Ω			
RF, IF, wid	leband												
amplifier													
1		1			1						Į.		

Type Application	Dimensions Base		Heating atic dat			Opera	itional D	ata	Мах	imum Rati	ngs
g ₁ t k, g ₃ g ₁ RF high-slo RF, IF, wid	Size M 1 g ₂ k g ₃ 1 0 92 k.g ₃ pe pentode eband	U _a U _{g2} R _k I _a 7, I _{g2} S 5,3 R _i I _{ax} (F	6,3 0,175 ect heat 120 120 200 5 ± 2,5 2 ± 1,4 >250 3 a = 100 g = -1 <200	A ing V V Ω mA mA/V $k\Omega$ $k\Omega$ $k\Omega$	High-reli	O Mc/s) ability and tolerar	120 120 200 7,5 2,5 5,2 300 25 1 tube	180 120 200 7,7 2,4 5,1 500	$R_k^{\prime\prime}_f$ U_f	200 1,8 150 0,55 20 1 ±120 20 7 >5,7 itances 4,3 ± 0,5 3,4 ± 0,6 <0,02	W V W mA MΩ V kΩ V V PF pF

Type Application	Dimensions Base	Heating Static data	Operational Data	Maximum Ratings
GF35 GAJ5	pe pentode	U _f 6,3 V I _f 0,175 A Indirect heating U _a 28 V U _{g2} 28 V U _{g1} -0,8 V I _a 3 mA I _{g2} 1,3 mA S 2,8 mA/V I _{ax} (U _{g1} 3 V) <0,5 mA	RF and IF amplifier, class A U_a 28 V U_{g2} 28 V R_k 270 \varOmega I_a 2,7 mA I_{g2} 1 mA I_{g2} 1 mA I_{g3} 100 k \varOmega	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Туре	Dimensions	H	leating			Operationa	Data		Maximu	m Ratir	ngs
Application	Base	Sta	tic dat	a							
6F36 6AH6	Size M 3	U _f I _f Indire U _a U _{g3} U _{g2} R _k I _a I _{g2} S R _i I _{az} (Capac	6,3 0,45 ct heat 300 0 150 160 10,25 2,2	\mathbf{V} \mathbf{A} sing \mathbf{V} \mathbf{V} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M}	RF amp	300 0 150 0 160 10,25 2,2 9 0,5	300 300 0 60 160 10,25 2,2 9 0,5 150 160 12,5	V V V V KΩ Ω mA mA/V MΩ V Ω mA mA/V V Ω mA mA/V	$egin{array}{c} {\sf U}_{ao} & {\sf U}_{a} & {\sf W}_{a} & {\sf W}_{g2} & {\sf U}_{g2} & {\sf W}_{g2} & {\sf U}_{g1} & {\sf U}_{g1} & {\sf U}_{g2} & {\sf U}_{g2} & {\sf U}_{g1} & {\sf U}_{g2} & {\sf$	0,45 ~ max) 0,8 25 -30 0,5 0,25 100 20	>
RF high-sld pentode RF, IF, wich amplifier			1) <0,015 th scre		и R _i U _{g1}	(l _a = 10 μA)	40 3,6 -7	kΩ V	1) U _{g1} fix	ed	

Туре	Dimensions	He	eating	9	Operat	ional Do	ster		Maximu	n Rati	nas
Application	Base	Stati	ic dat	ta							
6H31 6BE6	Size M 2 93 k.g5	U _f I _f Indirect U _a U _{g2+g4} U _{g3} I _{g1} I _a I _{g2+g4} C _{g1} U _{g1} e _f f S _c U _{g3} e _f	250 100 -1,5 0,5 3 <9,5 20 4 10 50	A ing V V MA mA kΩ μF V Hz	U _a U _{g2} +g4 U _{g3} U _{g1} ef I _a I _{g2} +g4 I _{g1} I _k R _{g1} R _i S _c U _{g3} (S _c =10 μΑ/V) Capacitances C _{g3} C _a C _{g1} C _{a/g3} C _{g1/g3} C _{a/g1}	100 100 -1,5 10 2,8 7,3 0,5 10,6 20 0,5 0,455 -30 7,1 8, 5, <0,3 <0,1 <0,0	3 7,1 0,5 10,6 20 1 0,475 -30 5 pF 6 pF 5 pF 5 pF 5 pF	V V MA MA MQ MQ MA V	$egin{array}{c} U_{ao} & & & & & & & & & & & & & & & & & & &$	550 300 1 300 100 1 0 -50 0 -50 14 90 20	w v

6L10 Size O 2 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Type	Dimensions Base		c date			Op	eratio	nal D	ata		Maxim	um Ratir	ngs
U_{qq} 115 (125) V U_{qq} 13 p	Application 6L10	Base Size O 2	Uf If Indirect Ua Ug3 Ug2 Ug1 Ia Ig2 S µg2/g1	6,3 0,65 heat 300 0 150 -3 30 7	V A ing V V V mA mA/V	$\begin{array}{c} {\bf U}_a \\ {\bf U}_{g3} \\ {\bf U}_{g2} \\ {\bf R}_k \\ {\bf I}_{ao} \\ {\bf I}_{g} \\ {\bf I}_{g2o} \\ {\bf I}_{g2} \\ {\bf Video} \\ {\bf U}_{b} \\ {\bf U}_{a} \\ {\bf U}_{g3} \\ {\bf R}_{g2} \\ {\bf U}_{g2} \\ {\bf R}_k \\ {\bf R}_{g1} \\ {\bf U}_{g1} \\ {\bf I}_{a} \\ {\bf I}_{g2} \end{array}$	and a 300 0 150 80 30,5 7	mplifii V V V Ω Ω mA mA mA mA 145 0 0 0,1 0 0,1 1 5 1 3	er out S R _i R _a P _o k U _{g1}	put stag 11 90 7 3,5 10 ef 2 stage: 300 200 0 25 (125) 57 (-2) 28 7 3,5	mA/V kΩ kΩ W % V V V kΩ V mA kΩ	$\begin{array}{c} {\rm U}_{3^0} \\ {\rm U}_a \\ {\rm W}_a \\ {\rm U}_{g20} \\ {\rm U}_{g2} \\ {\rm W}_{g_2} ({\rm U}_g \\ {\rm W}_{g_2} ({\rm U}_g \\ {\rm W}_{g_1} ({\rm U}_g \\ {\rm V}_k/f \\ {\rm R}_k/f \\ {\rm Capacite} \\ {\rm C}_{g_1} \\ {\rm C}_a \end{array}$	550 330 9 550 330 1~ ~ 0 ' 1,5 1 ~ max) 3 50 0,1 100 20 conces 13 6,5	V V V V V W M M V k 公 pF pF

_
Y

Type Application	Dimensions Base	Heating Static data	Oper	ational Data		Maximu	m Rati	ngs
6L31 6AQ5		U _f 6,3 V I _f 0,45 A Indirect heating U _a 250 V U _{g2} 250 V U _{g1} -12,5 V I _a 45 mA I _{g2} <8,5 mA S 4,1 mA/V R _i 52 kΩ I _{ax} (U _{g1} − -30 V) <8 mA	$\begin{array}{ccccc} U_{g2} & & & \\ U_{g1} & & & -8 \\ I_{ao} & & & \\ I_{a} & & & \\ I_{g2o} & & & \\ I_{g2} & & & \\ I_{g2} & & & \\ S & & & 3 \\ R_{a} & & & 5 \\ \end{array}$	80 25 80 21,5 -12, 229 4 80 4 33 4, 4 5 58 5 7 4, 5,5 2	50 V 50 V 55 V 55 mA 67 mA 57 mA 72 k Ω 11 mA/V 55 k Ω 5 W 8 %	R_{g_1} 1) U_k/f 1) U_{g_1} fixe Capacitance	0,1 100	V W V W W mA MΩ V

Type Application	Dimensions Base		eating ic data			Ор	eratio	onal Date	a		Maxin	num Ratii	ngs
93	g ₂ k 1 g ₂ n g ₃ amplifier,	U _f I _f Indirect U _a U _{g3} U _{g2} U _{g1} I _a I _{g2} S S P _{g1/g2} S/C I _{az} (U _g	5 m 7 m 16 0,5	A A A A/V	$\begin{aligned} \mathbf{f} &= 50 \\ \mathbf{U}_a \\ \mathbf{U}_{g2} \\ \mathbf{U}_{g1} \\ \mathbf{I}_a \\ \mathbf{I}_{g2} \\ \end{aligned}$ Freque	Mc/s 300 250 -60 50 5 ncy m = 175	V V V MA mA ultipl Mc/s Dou 30 12, -7 4	ubler 00 5 5 0 4 7 1 1 5 6	22 3 80 0,35 8	$egin{array}{cccc} & & & & & \\ & & & & & \\ & & & & V & \\ & & & &$	U _a W _a U _{g2} W _{g2} I _{g1} I _k I _k s _p U _k /f f T _b Capacit C _a C _a / _{g1}	300 12 250 2,0 5 55 100 100 175 250 ances 9,5 5,4 <0,45	V mA mA V Mc/s °C pF pF

0
A

•	Туре	Dimensions	Heating		_
	Application	Base	Static data	Operational Data Maximum	n Ratings
	1	Base Size N 4	Static data U _f 6,3 V I _f 0,65 A Indirect heating U _a 300 V U _{g3} 0 V U _{g2} 150 V U _{g1} -3 V I _a 30 mA I _{g2} 7 mA S 11 mA/ μ_{g2}/g_1 20 R _i 90 kΩ I _{az} (U _{g1} = -20 V) $< 0,1$ mA	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,5 W max) 3 W 50 mA 0,1 M Ω 100 V 20 k Ω
	Power pento video and v amplifiers			$egin{array}{cccccccccccccccccccccccccccccccccccc$	

Туре	Dimensions	He	ating			Op	eration	al Data			Maxim	um Ratir	ngs
Application	Base	Stati	c date	a									
41 F.O.	Size R 2	Uf	6,3	v	AF o	and RF	amplifi	ier, class	s A		U_a	1000	٧
6L50	3128 K 2			A	U_a	250	300	325	350	V	$U_{g_2}^{\alpha}$	400	٧
		l _f		5	$U_{g_2}^a$	250	200	250	250	v	$\mathbf{w}_{a}^{\mathbf{r}}$	25	W
		Indirect			$\mathbf{R}_{k}^{g_{2}}$	180	250	165	320	Ω	\mathbf{w}_{g_2}	3,5	W
		1	6	5	I _{ao}	72	48	80	54	mΑ	\mathbf{I}_{k}^{s-}	125	mΑ
		U_a	400	v	l _a	79	55	88	66	mΑ	lk sp	300	mΑ
		$\bigcup_{g_3}^a$	0	v	I_{g20}	5	2,5	5	2,5	mΑ	k=1 1)	1,5	Α
	0	U_{g_2}		V	1 _{g2}	7,3	4,7	7,5	7	mΑ	R_{g1} 2)	0,1	Μg
		$\mathbf{U}_{g_1}^{g_2}$	-25	V	S	ó	5,3	5,5	5,2	mA/V	$R_{\sigma 1}^{\sigma -}$	0,25	M
93	 }	I_a	30	mΑ	R_i	22,5	35	25	33	k $arOmega$	$U_k/_f$	80	٧
~ ₹	92		2	mΑ	R_a	2,5	4,5	3	4,2	k $arOmega$	$R_k/_f$	20	$\mathbf{k}\Omega$
<u>.</u> .		$ I_{g_2} $ S	3,5	mA/V		6,5	6,5	7	10,8	W			
g ₁	∌	R_i	75	k Ω	U_{g_1}		12,5	14	18	V	1) t _{ip} =	1 μs	
1	\prod_{i}	"			k	10	11	8,5	15	º/o	2) U_{g_1} f	ixed	
•	. 00				AF	push-pul	l ampl	ifier, clo	iss A	B2	Capacite	ances	
Q.	91 92				\mathbf{U}_a	360	v	I_{g_2}	16	mΑ	c_{g_1}	9,7	рF
0.7	• • • \				$U_{g_2}^a$		V	$\mathbf{R}_{a-a'}$	3,8	k $arOmega$	c _a	7,3	рF
92(:	93				$\bigcup_{g_1}^{g_2}$	-22,5		Po	47	W	C_a/g_1	<0,35	рF
93	• •/h				Iao	88		$U_{g_1 s_p}$	72	V	ujgi		
1					I _a	205		k k	2	º/ ₀			
						-							
Beam tetro	ode				1920	_							
	wer amplifier												
, , ,											,		

٠	ı	-		١
ľ	٠		,	
١	r	٩	r	۰

ī

Туре	Dimensions	Heating	Operational Data	Maximum Ratings
Application	Base	Static data		Maximum Rutings
GL50S (6L50V) 91 92 93 Beam tetrod AF, RF power for pulse op	er amplifier	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pulse operation U _a 3000 V U _{g2} 250 V U _{g1} -70 V U _{g1 ip} αž+20 V I _a 330 mA I _{g2} 30 mA I _{g1} 30 mA	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Type Application	Dimensions Base	Heating Static data	Operati	Maxim	um Ratin	ngs		
HT diode Half-wave full-wave of (two tubes	rectifier	U _f 6,3 V I _f 1,65 A t _f 1 min Indirect heating U _a 30 V I _a >200 mA	Half-wave rectifie Ua~ef 1) Iss Uss R; CN Full-wave rectifie Ua~ef 1) Iss Uss R; CN 1) Ua must be atting the cath must be redu	1200 220 1350 150 4 2×850 400 800 2×150 4	wise U_{inv}	Uinv Wa Iss Isp Rt Uk/f Capacita Ca/k	220 700 >150 50	$^{mA}_{arOmega}$

>		
•		
•		

Type Dimensions Application Base S			leating tic data	Op	Operational Data					Maximum Ratings		
al to al	k	U _f I _f Indired I _d R _i	6,3 V 0,6 A ct heating 50 mA 250 Ω	Filter input: Ua~ef CN R; L Iss Uss	Capacitive 2×325 max 4 150 - 70 355	Indu 2×450 — — min 8 70 375	$egin{array}{c} {\sf V} \\ {\it \mu}{\sf F} \\ {\it \Omega} \\ {\sf H} \\ {\sf m}{\sf A} \end{array}$	U _{inu} Iss Iss Uk/i CN	1000 300 70 450 16	mA mA		

Type Application	Dimensions Base		leating itic dat		i	Operat	tional C	Data		Maxim	num Ratin	ngs
RF rectifie	-AF triode	U _a U _{g1} I _a S R i Ud	150 12.6 ct heat 100 -1 0,5 1,25 100 80 4 >0,15	V ing V V mA mA/V kΩ	AF resist Ub Ra Rk Rg1 Rg1' Ck Cv 1) Ua~sp V 1) Coup Capacite Cg: Ca Cd Cd	180 0,22 3,9 1 1,8 3 39 63 Ling cap	300 0,22 3,1 1 1,2,1 3,79 68 accitor	amplifier 300 0,47 5,9 1 2,2 1,1 2 92 75 2 pf 1,65 pl 2 pF 1,04 pl	V MΩ kΩ MΩ MΩ μF kpF V	Triode U; U; Uao Ua Wa +Ug1 -Ug1 Rg1 Rg1 Vk/; Uk/; Ik Diode Ud sp Id Id sp	3 10 20 150 8 90 1 6	V V V M M kΩ V mA

Type Application	Dimensions Base	Heating Static data		Operational Data			Maximum Ratings			
93 94 Variable-mu		$\begin{array}{c} {\bf U}_a \\ {\bf U}_{{\bf g}_3} \\ {\bf U}_{g_2} \\ {\bf R}_k \\ {\bf I}_a \\ {\bf I}_{g_2} \\ {\bf R}_i \\ {\bf S} \end{array}$	150 mA 12,6 V theating 250 V 0 V 100 V 68 \(\Omega \) 11 mA 4,2 mA 1,5 M\(\Omega \) 4,4 mA/V 1 = -20 V) <0,4 mA	RF and U _a U _{g3} U _{g3} U _{g2} R _k 1 _a 1 _{g2} S R _i	1F amplifier 100 0 100 68 10,8 4,4 4,3 0,25	250 0 100 68 11 4,2 4,4 1,5	V V V MA mA/V MΩ	Uao Ua Wa Ug2o Ug2 Wg2 Ug1 -Ug1 Rg1 Uk/f Tb Capacit Cg1 Ca/g1	500 300 3 300 125 0,6 0 -50 3 150 150 tances 5,5 5	V V V V MΩ V

Type Application	Dimensions Base	Heating Static data	Оре	erational	Data		Maximu	ım Ratiı	ngs
92. 94. 91 k. 95 94 Variable-m Mixer	Size max Ø 19×57 mm Q3 k.95 g2 g3 u heptode	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mixer Ua Ug2+g4 Ug3 Ug1 ef Ia Ig2+g4 Ig1 Ik Rg1 Ri Sc Ug3 (Sc-4 µA Capacitances Cg3 Ca Cg1 Ca/g3 Ca/g1 Cg1/k Ck	< <	8,6 5,5 (0,35 (0,15 (0,05 2,75	V V V V V V V V V V	Uao Ua Wa Ug2+g40 Ug2+g4 Wg2+g4 Ug1 -Ug3 -Ug3 -Ug3 Rg1 Rg3 Ik Uk/f Uf	150	 V V V V MΩ MA V V

•		
4	١	
•		

Type Dimensions Application Base		Heating Static data	Operational Data	Maximum Ratings
93 94 k a RF high-sloj RF, IF, wide		U _f 18 V I _f 0,165 A Indirect heating U _a 250 V U _{g3} 0 V U _{g2} 200 V U _{g1} -2 V I _a 15 mA I _{g2} 2,1 mA S 10 mA/V R _i 0,3 MΩ I _{az} (U _{g1} = -7 V) <0.5 mA	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccc} U_{ao} & 400 & V \\ U_{a} & 250 & V \\ W_{a} & 4 & W \\ U_{g2} & 250 & V \\ W_{g2} & 0.45 & W \\ I_{k} & 20 & mA \\ R_{g1} & 0.5 & M \Omega \\ U_{k}/_{f} & 50 & V \\ \\ Capacitances \\ C_{g1} & 10.5 & pF \\ C_{a} & 5.9 & pF \\ C_{a}/_{g1} & <0.035 & pF \\ \end{array}$

Type Application	Base Dimensions	1	leating tic dat			Operati	ional D	ata		Maxim	num Ratir	ngs
1	92 k,g ₃	 i, U,	150 35 ct heat 200 200 13 55 9,5 8	mA V ing V V mA mA/V kΩ 8 V)	$egin{array}{c} oldsymbol{U}_a \ oldsymbol{U}_{g2} \ oldsymbol{R}_k \ oldsymbol{I}_a \ oldsymbol{I}_{g2} \ oldsymbol{S} \ oldsymbol{R}_i \ oldsymbol{R}_a \end{array}$	er amplifi 100 100 140 32,5 5,5 7,5 25 3 1,35 10 3,8 (P _O — 50 1	180 180 140 61 10 9 22 3 4,8 10 6,2	s A 200 200 200 55 9,5 8 25 3,5 4,8 10 6,2	∨ ∇ Ω mA mA/V kΩ kΩ W % ∨	_	550 250 250 1,9 3,5 1 150 20 38,5 >31,5	>

Type Dimensions Application Base		Heating Static data	. Opero	ıtional	Data		Maximum Ratings		
35Y31	Size M 4	I, 150 mA U, 35 V Indirect heating	U _{a ef} 127 R _o (CN-60 μF) (CN-32 μF) (CN-16 μF) (CN- 8 μF) CN I _{3s} U _{ss}	7-170 100 75 30 0 32 140 103	0 32	$egin{array}{c} \Omega & & & \\ \Omega & & & \\ \Omega & & & \\ \mu^{\mathrm{F}} & & \\ \mathrm{mA} & & & \end{array}$	Uinv Uaef Iss Isp Wa Uk/f Uf Uf	700 250 140 850 2,5 550 38,5 >31,5	V mA W V V

Type Application	Dimensions Base		Heating			Oper	ational D	ata		Maxim	um Ratir	ngs
93 91 92	Size P 4 g2 k g1 g3 k,m	$egin{array}{c} {\sf U}_a \\ {\sf U}_{g_3} \\ {\sf U}_{g_2} \\ {\sf U}_{g_1} \\ {\sf I}_a \\ {\sf I}_{g_2} \\ {\sf S} \\ {\sf R}_i \\ \end{array}$	425 -33 45 5 6	A ing V V V MA MA/V $k\Omega$ MA/V	class Al U $_{_{3}}$ U $_{g_{3}}$ U $_{g_{2}}$ U $_{g_{1}}$ R $_{k}$ I $_{_{3}o}$ I $_{_{1}}$ I $_{g_{2}o}$		400 0 425 -30 - 2×27,5 2×97 2×3 5 52,5 3,5 22	600	$\begin{array}{c} \mathbf{V} \\ \mathbf{V} \\ \mathbf{V} \\ \boldsymbol{\Omega} \\ \mathbf{mA} \\ \mathbf{mA} \\ \mathbf{mA} \\ \mathbf{mA} \\ \mathbf{k} \boldsymbol{\Omega} \\ \mathbf{W} \\ \% \end{array}$	$egin{array}{c} {\sf U}_{ao} \\ {\sf U}_a \\ {\sf W}_a \\ {\sf U}_{g_{2}o} \\ {\sf U}_{g_{2}o} \\ {\sf W}_{g_{2}} \\ {\sf I}_k \\ {\sf U}_k/_{\sf f} \\ {\sf R}_{g_{1}}(k) \\ {\sf R}_{,1}(p) \\ {\sf R}_k/_{\sf f} \\ {\sf Capacita} \\ {\sf C}_{g_{1}}/_{a} \\ {\sf C}_{g_{1}}/_{a} \\ \end{array}$	600 18 1000 425 3 10 120 50 0,7 0,5 10	$egin{array}{ccc} {\sf V} & {\sf V} & {\sf W} & {\sf W} & {\sf M} {\cal \Omega} & {\sf M} {\cal \Omega} & {\sf k} {\cal \Omega} & {\sf k} {\cal \Omega} & {\sf k} {\cal \Omega} & {\sf k} {\cal \Omega} & {\sf k} {\cal N} & {\sf k} $
Power pent AF power o												

Type Application	Dimensions Base	Heating Static data	Operational Data	Maximum Ratings
	olifier	U_f 4 V I_f 2 A I_f 16 s Indirect heating \bullet U_a 250 V U_{g1} -45 V I_a 60 mA S 4,3 mA/V I_a 1035 Ω μ 4,4 I_{ax} (U_{g1} \rightarrow -70 V) 10 mA	AF power amplifier, class A $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Type Application	Dimensions Base	Heating State	Operation	nal Data		Maximu	ım Ratings
EAA91 6B32	Size max Ø 19×48 mm	U _f 6,3 V I _f 0,3 A U _f 6,3 V Indirect heating U _a 4 V I _a >10 mA	Half-wave rectifier Uaef Ro Iss Isp Full-wave rectifier Uaef Ro	150 300 9 54 2×150 2×300	V Ω mA mA	Each sect Uinv Iss Isp 1) Wa U+k/f- U-k/f+ Rk/f Udi (Id §	420 V 9 mA 90 mA 0,5 W 330 V 150 V 20 kΩ
đ (f kI s		CN R _z Uss Capacitances Callkl+s+f Callkl+s+f Ckl/al+s+f Ckllal+s+f	3,3	μF kΩ V pF pF pF pF	1) Max, max 18%	-1,3 V 8 μF >200 Ω
Twin diode separate co AM, FM, d ratio detect full-wave re	athode s , emodulator, tor,		C aI aII				

Туре	Dimensions		Heating	,		One	rational	Dat			Mavi	mum Rati	nas
Application	Base	St	atic dat	a		-					Max	mum Ruu	
EF95	Size max	U,	6,3	v	RF	amplifier,	class A	۱			Ugo	320	V
6F32	Ø 19×45,2 mm	1.	0.175		\mathbf{U}_a		120		180	V	Ua	200	v
0.02		,	ct heat	ing	$ar{U}_{g_2}^u$		12	0		V	Wa	1,7	w
				-	$R_k^{g_*}$		20	0	200	Ω	$U_{g_{20}}$	320	٧
l		U_a	120	٧	ıa^		7,5	5	7,7	mA	$U_{g_2}^{g_2}$	150	٧
	a	U_{g_2}	120	V			2,5	5	2,5	mΑ	$w_{g_2}^{g_2}$	0,5	W
		R _k	200	Ω	${f I}_{g_2}$		5	j	5,1	mA/V	ايو	18	mΑ
1 1	 }_	I _a	7,5	mA	R_i		0,3	4	0,69	$M\Omega$	$ \tilde{R}_{g_1} $	1	$M\Omega$
ارم ا	<u>92</u>	I_{g_2}	<3,5	mΑ	Zaı	(f-50 Mc/	s) 2!	5	25	k Q	$U_k/_f$	100	٧
91	kg ₃	S	5,2 , 25	mA/V	Rek			2	2	k Ω	$R_k/_f$	20	$k\Omega$
1		$R_i^{\mu_{g_2}/g_1}$	>0,25	мо	RF	amplifier,	class A	۱ –			Capaci	tances	
j fi	lf .	``i	/0,23	17122		de connect					c_{g_1}	4,5	рF
l		ļ			U_a		120		180	v	C _a	2,8	ρF
					Ugı		-2,65		-6	-	C_{a/g_1}	<0,025	ρF
1 6	1				R_k		265		925	Ω	w, 31		•
1 . '/•	• 70				ıa .		10		6,5	mΑ			
K.(•	•)g ₂				รั		6		3,5	mA/V			
93	<i>•</i> /	İ			R_i		5		6,66	kΩ			
91	kg₃				μ		30		23,3				
ļ					Z _{g1}	(f-100 Mc	/s)	9,5		kΩ			
RF high-slo	pe pentode				R_{ek}			700		Ω			
PF, IF, wide	eband					•							
amplifier										l			
<u> </u>		<u> </u>											

Table of receiving tube equivalents

TESLA	European designation	Marconi	CV number	Other makers
1AF33 1AF34	DAF96	ZD17 1)	CV784 1)	1FD1, 1FD9 ¹), 1S5 T 1Б2П, 1Б1П ¹), ³)
1F33 1F34	DF96	W17 ¹)	CV785 1)	1F3 ¹), 1Т4Т 1К2П, 1К1П ¹), ³)
1H33		X17 ¹)	CV782 1)	1C1 ¹), 1R5T
1H34	Over			1Α2Π, 1Α1Π ¹),³)
1H35 1L33	DK96 DL91 ¹)		CV783 1)	1AB6 1S4T
1NN41 1Y32	OA160			1Z2
1Y32T				~1Z2
2NN41 3L31				1N51 3A4 ¹)
3L31 3NN41	OA50			1N34
ANN41	07130			1N48
5NN41	OA55			1N38
6B32	EAA91, EB9	1 D77/D152	CV140, CV283	6D2, 6X2Π
6BC32 6CC10	EBC91 ECC33	B65	CV1988	6AV6 6SN7, 6H8C
6CC31	ECC91	B03	CV858	6H15II, 6J6
6CC41 6CC42				6H2II, 12AX7 ²)
6F10			CV660	6385, 2C51, 5760, 6H3 ₁ 6AC7, 6米4
6F31	EF93	W727	CV454	6BA6, 6K4II
6F32	EF95		CV850	6AK5, 6Ж1П
6F32V				5654, 6AK5W, 6AK5W
6F35 6F36				
6H31	EK90	X727	CV453	6АН6, 6Ж5П 6А2П, 6ВЕ6
6L10	J	· · · · · ·	CV1882	6AG7, 6П9
6L31	EL90	N727	CV1862	6005, 6AQ5, 6П1П 4)
6L41			CV2129	5763
6L43 6NN41				6CL6 1N64
6Z31				6X4, 6LL4II
28				Origi Oligani

TESLA	European designation Marconl	CV number	Other makers
7QR28 12BC32	~DG7-6 4) HBC91		~3BP1, ~3QP1 4)
12F31 12H31 12QR50	HF93 HK90	CV1928 CV1069 4)	12BA6 12BE6 5JP1 *)
12QR51 25QP20 25QP21	407-4014	CV1009 •)	~OE411PAV 4) 10BP4 10BP7
251QQ44 280QQ44 470QQ44 472QQ44 502QQ44	AW47-91 A47-11 W		19ALP4, 19AQP4, 19BEP
590QQ44 592QQ44	AW59-90 A59-12 W/2. A59-11 W		23AJP4, 23AMP4, 23AQP4, 23BCP4 23DEP4, 23DRP4, 23FQP4 23HBP4
AZ1 DY86 E88CC		CV2860	1S2 6922, CCa
E180F EAA91 EABC80 EBF89 EC86	DH719		6688, 5A/170K, EF861 6AL5 6LD12, 6T8, 6AK8 7125, 6DC8 6CM4
EC88 ECC82 ECC83 ECC84 ECC85	B329 B339 B719	CV491 CV492	6DL4, 6LD4 12AU7 12AX7, 6L13 6CW7, 6H14II 6L12, 6AQ8
ECC88 ECC91 ECC189 ECC802S ECC803S			6DJ8, 6H23∏ 6J6, 6H15∏ 6ES8 12AU7WA, 6067 12AX7WA, 6057

TESLA	European designation	Marconi	CV number	Other makers
ECH81 ECH84 ECF82 ECL82 ECL84		X719	CV2128	6C12, 6AJ8, 6И1П 6JX8 6U8 6BM8 6DX8
ECL86 EF80 EF86 EF89 EF183		Z719, Z152 Z729	CV2901	6GW8 64SPT, 6BX6 6267, 6Ж32П 6DA6 6EH7, 6F29
EF184 EF800 EF806S EL34 EL36				6EJ7, 6F30 EF860 6267 6CA7 6CM5
EL81 EL82 EL83 EL84 EL86 EL500		N709	CV2721 CV2726 CV2975	6CJ6 6DY5 6CK6, 6CN6 6P15, 6BQ5, 6∏14∏, 6L40 6CW5 6GB5A
EM4n EM80 EM81 EM84 EY82			~CV1434 CV1352	65ME, 6BR5, 6E1∏ 6DA5 6FG6 6H3
EY83 EY88 EY86 EZ80 EZ81		U709		6Ц10П ³) 6AL3 6S2 6V4 UU12, 6CA4
PABC80 PCC84 PC86 PC88 PCC85				9AK8 30L1, 7AN7 4CM4 4DL4 9AQ8

TESLA	European Marconl designation	CV number	Other makers
PCC88 PCC189 PCF82 PCF200 PCF801 PCF802			7DJ8 7ES8 9U8 8X9 8GJ7 8JW8
PCL82 PCH200 PCL85 PCL86 PL36	~LN309		16A8, 30P12 9V9 18GV8 14GW8 25E5, 30P4
PL81 PL82	N152, N3 N154, N3		213Pen, 21A6 30P16, 16A5
PL63 PL84 PL500	'N153		15A6 30P18 28GB5
PY82 PY83	U152		19SU, 19Y 3 17Z 3
PY88 UABC80 UBF89			30AE3 10LD12 10FD12, 19DC8, 19FL8
UCC85 UCH81			10L14 10C14, 19D8, 19AJ8
UCL82 UL84 UY85 UM80 UY82			10PL12, 50BM8 10P18, 45B5 38A3 19BR5 55N3

^{1.} Double heating current, TESLA type more economical

^{2.} Different socket

^{3.} Different heating voltage

^{4.} Different external design