Application No.: 10/808,678

THE CLAIMS

Please replace all prior versions and listings of claims with the amended claims as follows:

1-46. (Canceled)

47. (Previously presented) A pharmaceutical composition comprising a compound of formula **I**:

$$A^{1}$$
 A^{2}
 A^{3}
 A^{2}
 A^{3}
 A^{2}
 A^{3}
 A^{2}
 A^{3}
 A^{3}
 A^{3}
 A^{3}
 A^{4}
 A^{5}
 A^{5

or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier, adjuvant, or vehicle, wherein:

R¹ is Ar¹;

R² is hydrogen;

T is CH:

A¹ is C-halogen, C-CN, or C-R;

each of A² and A³ is, independently, CR⁴;

 R^4 is selected from halogen, NO_2 , CN, $-(L)_mR$, $-(L)_mAr^1$, or $-(L)_mCy^1$; or

two R⁴ groups on adjacent atoms are taken together to form an optionally substituted 5-7 membered partially unsaturated or fully unsaturated ring having 0-3 heteroatoms independently selected from oxygen, sulfur, or nitrogen, wherein[[;]] each ring formed by two R⁴ groups on adjacent atoms taken together is optionally substituted with up to 4 occurrences of Z-R^X;

Application No.: 10/808,678

L is a C_{1-6} alkylidene chain wherein one methylene unit of L is optionally replaced by -O-, -N(R)-, -N(R)C(O)-, -C(O)N(R)-, $-SO_2N(R)$ -, or $-N(R)SO_2$ -; m is 0 or 1;

Ar1 is

$$(ZR^X)_X$$

Cy¹ is selected from

$$(ZR^X)_X$$
 $(ZR^X)_X$
 $(ZR^X)_X$

Ar¹ and Cy^1 are each optionally substituted with up to 5 occurrences of Z-R^X; wherein each occurrence of Z is independently a bond or a $C_{1^{-6}}$ alkylidene chain, wherein up to two non-adjacent methylene units of Z are optionally replaced by -S-, -O-, -N(R)-, -N(R)C(O)-, -C(O)N(R)-, -SO₂N(R)-, or -N(R)SO₂-;

each occurrence of R^X is independently selected from -R', halogen, NO₂, CN, -OR', -SR', or -N(R')₂,

each occurrence of R is independently hydrogen or a C_{1-6} aliphatic group; and each occurrence of R' is independently hydrogen, a C_{1-6} aliphatic group, a C_{6-10} aryl ring, a heteroaryl ring having 5-10 ring atoms, or a heterocyclyl ring having 3-10 ring atoms; or

Application No.: 10/808,678

R and R' or two occurrences of either R or R' are taken together with the atoms to which they are bound to form an optionally substituted 5-8 membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; or

two occurrences of either R' or R on the same nitrogen are taken together with the nitrogen atom to which they are bound to form an optionally substituted 5-8 membered saturated, partially unsaturated, or aryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.

48-49. (Canceled)

50. (Currently amended) A method of inhibiting c-MET kinase activity in a biological sample, wherein said biological sample is selected from a cell culture, biopsied material obtained from a mammal, saliva, urine, feces, semen, or tears, or an extract thereof; which method comprises contacting said biological sample with a composition according to claim 47 or a compound of formula **I**:

$$R^{1}$$
 A^{2}
 A^{3}
 R^{1}
 R^{2}

or a pharmaceutically acceptable salt thereof, wherein:

 R^{1} is Ar^{1} ;

R² is hydrogen;

T is CH:

A¹ is C halogen, C CN, or C R;

each of Λ^2 and Λ^3 is, independently, CR^4 ;

Application No.: 10/808,678

R⁴ is selected from halogen, NO₂, CN, (L)_mR, -(L)_mAr¹, or -(L)_mCy¹; or two R⁴ groups on adjacent atoms are taken together to form an optionally substituted 5-7 membered partially unsaturated or fully unsaturated ring having 0-3 heteroatoms independently selected from oxygen, sulfur, or nitrogen, wherein each ring formed by two R⁴ groups on adjacent atoms taken together is optionally substituted with up to 4 occurrences of Z-R^x;

L is a C_{1-6} alkylidene chain wherein one methylene unit of L is optionally replaced by $O_{-1} \cdot N(R) \cdot N(R) \cdot N(R) \cdot C(O) \cdot C(O) \cdot N(R) \cdot SO_2 \cdot N(R) \cdot O_1 \cdot O_2 \cdot O_2 \cdot O_3 \cdot O_4 \cdot O_4 \cdot O_4 \cdot O_5 \cdot O_4 \cdot O_5 \cdot O_5$

Ar¹ is selected from

$$(ZR^X)_{x} \times (R^XZ)$$

Application No.: 10/808,678

$$ZR^{X}$$

$$Z$$

Cy¹ is selected from

$$(ZR^{X})_{x}$$

$$(ZR^$$

$$\label{eq:continuous} \begin{split} & \text{Ar}^{\perp} \text{and } \text{Cy}^{\perp} \text{ are each optionally substituted with up to 5 occurrences of Z-R}^{x}; \text{ wherein each occurrence of Z is independently a bond or a C_{1}-$6 alkylidene chain, wherein up to two non-adjacent methylene units of Z are optionally replaced by $-S_{-}$, $-O_{-}$, $-N(R)_{-}$, $-N(R)C(O)_{-}$, $-C(O)N(R)_{-}$, $-SO_{2}N(R)_{-}$, or $-N(R)SO_{2}$-$;} \end{split}$$

each occurrence of R^X is independently selected from -R', halogen, NO₂, CN, -OR', -SR', or -N(R')₂,

each occurrence of R is independently hydrogen or a C₁₋₆ aliphatic group; and each occurrence of R' is independently hydrogen, a C₁₋₆ aliphatic group, a C₆₋₁₀ aryl ring, a heteroaryl ring having 5-10 ring atoms, or a heterocyclyl ring having 3-10 ring atoms; or

Application No.: 10/808,678

R and R' or two occurrences of either R or R' are taken together with the atoms to which they are bound to form an optionally substituted 5-8 membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur; or

two occurrences of either R' or R on the same nitrogen are taken together with the nitrogen atom to which they are bound to form an optionally substituted 5-8 membered saturated, partially unsaturated, or aryl ring having 1-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.

51-80. (Canceled)

- 81. (Previously presented) The composition according to claim 47, wherein A² is CR⁴ and R⁴ is halogen, CN, -(L)_mR, -(L)_mAr¹, or -(L)_mCy¹.
- 82. (Canceled)
- 83. (Previously presented) The composition according to claim 81, wherein A² is CR⁴ and R⁴ is halogen or R.
- 84. (Previously presented) The composition according to claim 81, wherein A^2 is CR^4 and R^4 is $-(L)_mR$, wherein L is -O- or -N(R)-.
- 85. (Previously presented) The composition according to claim 81, wherein A^2 is CR^4 , R^4 is $-(L)_mCy^1$, m is 0 and Cy^1 is

Applicants: Jeremy Green et al. Application No.: 10/808,678

86. (Canceled)

87. (Previously presented) The composition according to claim 81, wherein A^2 is CR^4 , R^4 is $-(L)_mR$, and compounds have the formula **IE-1**:

$$\begin{array}{c|c}
 & N(OH) \\
 & R^2 \\
 & R^1
\end{array}$$

IE-1.

88. (Previously presented) The composition according to claim 81, wherein A^2 is CR^4 , R^4 is $-(L)_mAr^1$, and compounds have the formula **IE-2**:

$$A^{1}$$
 A^{1}
 A^{2}
 A^{3}
 A^{1}
 A^{2}
 A^{3}
 A^{2}
 A^{3}
 A^{2}
 A^{3}
 A^{3}
 A^{4}
 A^{5}

IE-2.

Application No.: 10/808,678

89. (Previously presented) The composition according to claim 81, wherein A^2 is CR^4 , R^4 is $-(L)_mCy^1$, and compounds have the formula **IE-3**:

$$\begin{array}{c|c}
 & N(OH) \\
 & R^2 \\
 & R^1 \\
 & Cy^1
\end{array}$$

IE-3.

- 90. (Previously presented) The composition according to claim 47, wherein A^3 is CR^4 and R^4 is halogen, CN, $-(L)_mR$, $-(L)_mAr^1$, or $-(L)_mCy^1$.
- 91. (Canceled)
- 92. (Previously presented) The composition according to claim 90, wherein A³ is CR⁴ and R⁴ is halogen or R.
- 93. (Previously presented) The composition according to claim 90, wherein A^3 is CR^4 and R^4 is $-(L)_mR$, wherein L is -O- or -N(R)-.
- 94. (Previously presented) The composition according to claim 90, A^3 is CR^4 , R^4 is $-(L)_mCy^1$, m is 0 and Cy^1 is

Application No.: 10/808,678

95. (Canceled)

96. (Previously presented) The composition according to claim 90, wherein A^3 is CR^4 , R^4 is $-(L)_mR$, and compounds have the formula **IF-1**:

IF-1.

97. (Previously presented) The composition according to claim 90, wherein A^3 is CR^4 , R^4 is $-(L)_mAr^1$, and compounds have the formula **IF-2**:

$$A^{1} \xrightarrow{R^{2}} O R^{1}$$

$$A^{1} \xrightarrow{(L)_{m}} R^{2}$$

IF-2.

98. (Previously presented) The composition according to claim 90, wherein A^3 is CR^4 , R^4 is $-(L)_mCy^1$, and compounds have the formula **IF-3**:

Application No.: 10/808,678

$$\begin{array}{c} N(OH) \\ A^{1} \\ A^{2} \\ O \\ R^{1} \end{array}$$

$$Cy^{1} (L)_{m}$$

IF-3 .

99-100. (Canceled)

101. (Currently amended) The composition according to claim 47, selected from one of the following compounds:

Jeremy Green et al.

Applicants:
Application No.: 10/808,678

Applicants:
Application No.: Jeremy Green et al. 10/808,678

Applicants:
Application No.: Jeremy Green et al. 10/808,678