Real Time Detection of MAC Layer DoS Attacks in IEEE 802.11 Wireless Networks

Mallesham Dasari

Department of Computer Science

Stony Brook University

Email: mdasari@cs.stonybrook.edu

L2 DoS Attacks

MAC DoS Attacks

Selfish attacks

— RTS dropping
— Shorter DIFS, SIFS
— NAV manipulation
— Back-off manipulation

Change Point Detection

Collect time series data

$$(x_1, x_2, x_3, \dots, x_t, \dots)$$

- Detect change point (μ), where the time series follows different distributions before and after the change
- Pre and post change density functions are
 - $\rightarrow f(.)$ and g(.) respectively
- Hypotheses

$$\mathcal{G}(0) = \{x_1, x_2, x_3, \dots, x_n\} \sim f$$

>
$$\Re x_1 = \{x_1, x_2, x_3, \dots, x_{\mu}\} \sim f$$

$$\{x_{\mu+1}, x_{\mu+2}, x_{\mu+3}, \dots, x_n\} \sim g$$

Change Point Detection

- CUSUM family algorithms
 - Parametric
 - Cumulative sum of log likelihood ratio
 - Wn = $\{W_{n-1} + \log(g/f)\}^+$, for all n>0, $x^+ = \max(0, x)$
 - Use preset threshold for decision
 - Non parametric
 - > Removed the need for density functions
 - $W_n = \{W_{n-1} + x_n c\}^+$, for all n>0
 - Xn is a non parametric score, a special heuristic function

Similarly, R-SPRT

Central Limit Theorem

- New sequential change point detection
 - Let *m* is the window size, 0≤t≤n-2m

$$Y_1(t) = \sum_{i=t+1}^{t+m} xi$$
 and $Y_2(t) = \sum_{i=t+m+1}^{t+2m} xi$
 $D(t) = |Y_1(t) - Y_2(t)|$

- Compare D(t) with threshold (D_{th})
- What makes it so Special?
- Let φ(.) be the CDF for standard normal distribution, defined as below:

$$\triangleright \varphi(z) = P(a \le z)$$

Computing Threshold

- Then, $1 \phi(z)$ is the probability of P(a > z)
- For desired false alarm rate (ε), the cut-off value of z can be calculated as:

$$\geq$$
 1 - $\varphi(z) = \varepsilon$

Borrow the solution z from the above, and scale it to find the threshold as below:

$$ightharpoonup$$
 D_{th} = $z\sqrt{2m}\sigma$

Detection Latency:

• Latency: ų - μ

Attack Simulation

- Back-off manipulation attacks
 - > DIFS, SIFS, slot time
- RTS flooding attack

- UDP echo client application
- Different inter packet departure rates

Throughput Curves

Detection Accuracy

Algorithms	Scenarios	Detected	False Alarms	Latency(s)
CLT*	1	Yes	2	2.988
CLT*	1	Yes	8	7.223
CLT*	2	Yes	0	0.029
CLT*	2	Yes	1	0.818
NP-CUSUM	1	Yes	>50	-
NP-CUSUM	2	No	-	-

The higher latencies are corresponding to higher E-to-E delays

Why so?

Takeaways

- Time series based attack detection
- A new sequential change point detection based on CLT
- Non parametric, Dynamic threshold
- Two types of 802.11 attacks
- NS-3 802.11 stack hack to create attackers

THANKS!

Questions

Email: mdasari@cs.stonybrook.edu
WINGS Lab
Department of Computer Science
Stony Brook University

