Prof. Dr. Vinícius Wasques

Universidade Paulista - Unip, Campus Swift Campinas

5 de maio de 2020

• Relação fundamental entre seno e cosseno

$$cos^2(\alpha) + sen^2(\alpha) = 1$$

•
$$cos(\alpha + \beta) = cos(\alpha)cos(\beta) - sen(\alpha)sen(\beta)$$

•
$$cos(\alpha - \beta) = cos(\alpha)cos(\beta) + sen(\alpha)sen(\beta)$$

•
$$sen(\alpha + \beta) = sen(\alpha)cos(\beta) + cos(\alpha)sen(\beta)$$

•
$$sen(\alpha - \beta) = sen(\alpha)cos(\beta) - cos(\alpha)sen(\beta)$$

•
$$tg(\alpha + \beta) = \frac{tg(\alpha) + tg(\beta)}{1 - tg(\alpha)tg(\beta)}$$

•
$$tg(\alpha - \beta) = \frac{tg(\alpha) - tg(\beta)}{1 + tg(\alpha)tg(\beta)}$$

• Fórmulas de multiplicação de arcos

•
$$sen(2\alpha) = 2sen(\alpha)cos(\alpha)$$

•
$$cos(2\alpha) = cos^2(\alpha) - sen^2(\alpha)$$

•
$$tg(2\alpha) = \frac{2tg(\alpha)}{1 - tg^2(\alpha)}$$

Relações em triângulos - Lei dos senos

Seja o triângulo ABC abaixo:

Relações em triângulos - Lei dos senos

Seja o triângulo ABC abaixo:

Então relação é válida:

$$\frac{a}{\operatorname{sen}(\alpha)} = \frac{b}{\operatorname{sen}(\beta)} = \frac{c}{\operatorname{sen}(\gamma)}$$

Relações em triângulos - Lei dos cossenos

Seja o triângulo ABC abaixo:

Relações em triângulos - Lei dos cossenos

Seja o triângulo ABC abaixo:

Então:

•
$$a^2 = b^2 + c^2 - 2(bc)cos(\alpha)$$

•
$$b^2 = a^2 + c^2 - 2(ac)\cos(\beta)$$

•
$$c^2 = a^2 + b^2 - 2(ab)cos(\gamma)$$

Alguns valores tabelados

α	sen(lpha)	$cos(\alpha)$	$tg(\alpha)$
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$

Alguns valores tabelados

α	sen(lpha)	$cos(\alpha)$	$tg(\alpha)$
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$

A partir dos valores fornecidos na tabela, podemos deduzir outros valores. Por exemplo:

Alguns valores tabelados

α	$\mathit{sen}(lpha)$	$cos(\alpha)$	tg(lpha)
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$

A partir dos valores fornecidos na tabela, podemos deduzir outros valores. Por exemplo:

$$sen(75^{\circ}) = sen(30^{\circ} + 45^{\circ}) = sen(30^{\circ})cos(45^{\circ}) + cos(30^{\circ})sen(45^{\circ})$$

$$= \frac{1}{2} \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \frac{\sqrt{2}}{2}$$

$$= \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} = \frac{\sqrt{2} + \sqrt{6}}{4}$$

radianos	graus
π	180°
X	170°

radianos	graus
π	180°
X	170°

$$170\pi = 180x$$

radianos	graus
π	180°
X	170°

$$170\pi = 180x \Rightarrow x = \frac{170\pi}{180}$$

radianos	graus
π	180°
X	170°

$$170\pi = 180x \Rightarrow x = \frac{170\pi}{180} = \frac{17\pi}{18}$$

radianos	graus
π	180°
$\frac{\pi}{2}$	X

radianos	graus
π	180°
$\frac{\pi}{2}$	X

$$x\pi = 180\frac{\pi}{2}$$

radianos	graus
π	180°
$\frac{\pi}{2}$	X

$$x\pi = 180\frac{\pi}{2} \Rightarrow x = 180\frac{\pi}{2\pi}$$

radianos	graus
π	180°
$\frac{\pi}{2}$	X

$$x\pi = 180\frac{\pi}{2} \Rightarrow x = 180\frac{\pi}{2\pi}x = \frac{180}{2}$$

radianos	graus
π	180°
$\frac{\pi}{2}$	X

$$x\pi = 180\frac{\pi}{2} \Rightarrow x = 180\frac{\pi}{2\pi}x = \frac{180}{2} = 90^{\circ}$$

Exercícios propostos

Exercícios 1, 2, 3 e 4 da página 123 apostila da Unip

Exercícios 5, 7, 8, e 9 da página 124 apostila da Unip

Exercício 1, página 125 apostila da Unip

Exercício 3, página 127 apostila da Unip

- Os exercícios em preto são para praticar.
- Os exercícios em vermelho são para entregar.

Obrigado pela atenção!

Prof. Dr. Vinícius Wasques

email: vinicius.wasques@docente.unip.br

Departamento de Engenharia, Ciência da Computação e Sistemas de Informação

site: https://viniciuswasques.github.io/home/

