

Statistik

CH.8 - Wahrscheinlichkeitsverteilungen

SS 2022 | | Prof. Dr. Buchwitz, Sommer, Henke

Wirgeben Impulse

Lernziele

- Verstehen des Konzeptes der Verteilung von Zufallsvariablen.
- Unterscheidung von diskreten und stetigen Dichten
- Zusammenhang von Dichte- und Verteilungsfunktion

Zufallsvariablen

Definition: Zufallsvariablen

Unter einer Zufallsvariablen X versteht man eine Funktion, die aufgrund eines Zufallsexperiments den Ergebnissen des Zufallsexperiments numerische Werte zuordnet. Jedes mögliche Ergebnis eines Zufallsexperiments führt dabei zu einem anderen numerischen Wert.

- Kennzeichnend sind die Merkmalsausprägungen x_i und die damit assoziierten Wahrscheinlichkeiten $P(X = x_i)$.
- TODO: Wahrscheinlichkeiten
- Zufallsvariablen werden in der Regel mit Großbuchstaben (X,Y,X_i) bezeichnet.

Beispiel: Zufallsvariablen

Das Zufallsexperiment "Werfen einer Münze" mit den Ergebnissen **Kopf** und **Zahl** kann als Zufallsvariable *X* modelliert werden:

$$X(x = \text{Kopf}) = X(\text{Kopf}) = 0$$

 $X(x = \text{Zahl}) = X(\text{Zahl}) = 1$

- Bei der gewählten Zuordnung kann man die Zufallsvariable X auch als Anzahl des Auftretens von Zahl beim Werfen einer Münze auffassen.
- Bei einer fairen Münze gilt $P(X = 0) = P(X = 1) = \frac{1}{2}$.

4

Diskrete und stetige Zufallsvariablen

Definition: Diskrete Zufallsvariable

Eine Zufallsvariable heißt diskret, wenn sie **nur diskrete Werte**, also endlich viele oder abzählbar unendlich viele, Werte annimmt.

- Beispiel: Anzahl defekter Glühbirnen in einer Stichprobe von 10 Stück
- Beispiel: Anzahl der Kinder unter 18 Jahre in einem Haushalt

Definition: Stetige Zufallsvariable

Eine Zufallsvariable heißt stetig, wenn sie mit zwei Werten definiert, auch **alle** Werte im Intervall zwischen diesen beiden Werten annehmen kann.

- Beispiel: Zeitaufwand für die Produktion eines Werkstücks
- **Beispiel:** Gewicht einer aus einer Abfüllanlage entnommenen Flasche

Wahrscheinlichkeitsfunktion

Definition: Wahrscheinlichkeitsfunktion

Sei *X* eine diskrete Zufallsvariable. Dann heißt die Funktion *f* Wahrscheinlichkeitsfunktion von *X*.

$$f(x) = P(X = x)$$

Beispiel: Als Zufallsexperiment wird eine faire Münze zweimal geworfen. Die Zufallsvariable X beschreibt die Anzahl des Auftretens des Ereignisses "Zahl". Definieren Sie die Zufallsvariable und skizzieren Sie die Wahrscheinlichkeitsfunktion!

6

Wahrscheinlichkeitsfunktion

Verteilungsfunktion

Definition: Verteilungsfunktion

Sei X eine diskrete oder stetige Zufallsvariable. Dann heißt die Funktion F Verteilungsfunktion von X.

$$F(x) = P(X \leq x)$$

Beispiel: Als Zufallsexperiment wird eine faire Münze zweimal geworfen. Die Zufallsvariable X beschreibt die Anzahl des Auftretens des Ereignisses "Zahl". Skizzieren Sie die Verteilungsfunktion!

8

Verteilungsfunktion

Eigenschaften Verteilungsfunktion

Für Verteilungsfunktionen gilt:

- \blacksquare F(x) ist monoton steigend
- \coprod $\lim_{X\to\infty} F(X) = 1$
- \blacksquare F(x) ist in jedem Punkt (zumindest rechtsseitig) stetig

Dichtefunktion

Ist X eine diskrete Zufallsvariable, dann gilt

$$F(x) = \sum_{x_i < x} f(x_i)$$

Ist X eine stetige Zufallsvariable, dann gilt

$$F(x) = \sum_{x_i < x} f(x_i)$$

$$F(x) = \int_{-\infty}^{x} f(x_i) dx$$

Dichtefunktion

Definition: Wahrscheinlichkeitsdichte bzw. Dichtefunktion

Die Funktion f(x) heißt bei **stetigen** Zufallsvariablen Wahrscheinlichkeitsdichte bzw. Dichtefunktion. TODO: Beziehung zur Verteilungsfunktion

Eigenschaften Dichtefunktion

Für Wahrscheinlichkeits- und Dichtefunktionen gilt:

- Für alle x_i gilt, dass $f(x_i) \ge 0$.
- Für diskrete Verteilungen mit Wahrscheinlichkeitsfunktion gilt

$$\sum_{\text{alle } x_i} f(x_i) = 1$$

■ Für stetige Verteilungen mit Dichtefunktion gilt

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

Erwartungswert

Definition: Erwartungswert

Sei X eine Zufallsvariable und f die dazugehörige Wahrscheinlichkeits- bzw. Dichtefunktion. Der Erwartungswert μ ist definiert als

$$E(X) = \begin{cases} \sum_{\text{alle } x_i} x_i \cdot f(x_i), & \text{falls } X \text{ diskret} \\ \int_{-\infty}^{\infty} x \cdot f(x) \, dx, & \text{falls } X \text{ stetig} \end{cases}$$

■ **Beispiel:** Definieren Sie die Zufallsvariable X für das Werfen eines Würfels und berechnen Sie dessen Erwartungswert.

Erwartungswert

Varianz

Definition: Varianz

Sei X eine Zufallsvariable und f die dazugehörige Wahrscheinlichkeits- bzw. Dichtefunktion. Die Varianz σ^2 (Standardabweichung: σ) ist definiert als

$$Var(X) = \begin{cases} \sum_{\text{alle } x_i} (x_i - \mu)^2 \cdot f(x_i), & \text{falls } X \text{ diskret} \\ \int_{-\infty}^{\infty} (x - \mu)^2 \cdot f(x) \ dx, & \text{falls } X \text{ stetig} \end{cases}$$

■ **Beispiel:** Definieren Sie die Zufallsvariable X für das Werfen eines Würfels und berechnen Sie dessen Varianz.

Varianz

Verständnisfragen

- Geben Sie jeweils ein Beispiel für eine diskrete und eine stetige Zufallsvariable.
- 2 Erläutern Sie, was man unter einer Verteilungsfunktion versteht.
- Welches ist der maximale Wert, den eine Verteilungsfunktion annehmen kann?