Sistemas Microcontrolados

UART

Prof. Guilherme Peron

- Muitos dos terminais (pinos) das portas de E/S do microcontrolador TM4C1294 possuem funções alternativas que dão acesso direto ao hardware de periféricos, tais como:
 - Interfaces seriais;
 - Conversores analógico-digital;
 - o Temporizadores/contadores de eventos.

- O datasheet do TM4C1294 lista as funções alternativas por pino de E/S na Tabela 10-2 (p. 743).
 - Esta tabela deve ser utilizada em conjunto com as informações do capítulo específico do manual sobre o periférico que se deseja utilizar

	Pin	Analog or Special Function ^a	Digital Function GPIOPCTL PMCx Bit Field Encoding												
10			1	2	3	4	5	6	7	8	11	13	14	15	
PAO	33	-	UORx	12C9SCL	TOCCPO	-	-	-	CAN0Rx	-	-	-	-	-	
PA1	34	-	UOTx	I2C9SDA	TOCCP1	-	-	-	CANOTX	-	-	-	-	-	
PA2	35	-	U4Rx	I2C8SCL	T1CCP0	-	-	-	-	-	-	-	-	SSI0Clk	
PA3	36	-	U4Tx	I2C8SDA	T1CCP1	-	-	-	-	-	-	-	-	SSI0Fss	
PA4	37	-	U3Rx	I2C7SCL	T2CCP0	-	-	-	-	-	-	-	-	SSIOXDATO	
PA5	38	-	U3Tx	I2C7SDA	T2CCP1	-	-	-	-	-	-	-	-	SSIOXDAT1	
PA6	40	-	U2Rx	I2C6SCL	T3CCP0	-	USB0EPEN	-	-	-	-	SSIOMDAT2	-	EPI0S8	
PA7	41	-	U2Tx	I2C6SDA	T3CCP1	-	USB0PFLT	-	-	-	USB0EPEN	SSIOODAT3	-	EPI0S9	

 Exemplo: o pino PA0 pode ser configurado como os seguintes sinais: U0Rx (UART0) ou I2C9SCL (I2C9) ou T0CCP0 (GPTM0) ou CAN0Rx (CAN0)

 As funções alternativas para cada pino podem ser definidas no seu respectivo registrador GPIOAFSEL (GPIO Alternate Function Select) – p. 771

Seleção da função alternativa do bit 0 da porta de E/S

 Uma vez definidas funções alternativas de um pino, a especificação das funções deve ser feita no seu respectivo registrador GPIO PCTL (GPIO Port Control) – p. 788

Comunicação Paralela x Serial

- Interface paralela: todos os bits de informação são transferidos simultaneamente utilizando canais separados para cada bit
- Interface serial: os bits de informação são transferidos um a um ao longo do tempo utilizando um único canal
 - Síncrona (canal de dados + sinal de sincronismo);
 - o Assíncrona (apenas canal de dados).

Alguns Tipos de Serial

- CAN Controller Area Network;
- I2C Inter-Integrated Circuit;
- SSI (SPI) Synchronous Serial Interface;
- USB Universal Serial Bus;
- USART Universal Synchronous/Asynchronous Receiver/Transmiter;
- UART Unversal Asynchronous Receiver/Transmitter.

- Sistema de comunicação serial full-duplex que utiliza apenas dois sinais:
 - TX (Transmissão);
 - o RX (Recepção).

Funcionamento - TX

- 1) Quando inativo, o transmissor mantém a linha de dados em nível ALTO;
- 2) O início de transmissão é marcado por um start bit em nível BAIXO;
- 3) O pacote de dados é transmitido após o start bit, começando pelo bit menos significativo (lsb);
- 4) O final de transmissão é marcado por um ou dois stop bits em nível ALTO;

Funcionamento - TX

- A duração de cada bit é determinada pela taxa de transmissão, dada em bits por segundo.
- Exemplo de transmissão do caracter ASCII '5' (0x35) com 8 bits de dados e 1 stop bit a uma taxa de transmissão de 300 bps.

Funcionamento - RX

- 1) Quando nada está sendo recebido, a linha de dados permanece em nível ALTO;
- 2) O receptor reconhece a borda de descida do start bit e sincroniza seu sinal de clock;
- 3) Após 1,5 período de clock, o receptor começa a amostrar a linha de dados a cada clock;
- 4) A última amostragem corresponde ao último stop bit (nível ALTO).

Funcionamento - RX

 Se as frequências de clock do transmissor e do receptor forem iguais, as amostragens serão efetuadas no meio da duração de cada bit:

Funcionamento

- Configurações do transmissor e do receptor devem ser iguais:
 - Taxa de transmissão (frequência de clock): há uma tolerância de aproximadamente ± 5%;
 - Número de bits de dados;
 - Número de stop bits;
 - o Bit de paridade.

Bit de Paridade

- Pode ser acrescentado ao dado, destinado a detecção simples de erros. A paridade simples detecta 1 erro, mas não corrige.
 - Paridade par: número par de bits no estado 1, incluindo o bit de paridade;
 - Paridade ímpar: número ímpar de bits no estado 1, incluindo o bit de paridade
 - Exemplo: caractere ASCII 'A' é 0x41: 01000001b tem 2 bits no estado 1
 - Se for usada a paridade ímpar: acrescenta-se mais um bit '1'
 (3 bits '1' é ímpar): 101000001b
 - Se for usada a paridade par: acrescenta-se mais um bit 0 (2 bits 1 é par): 001000001b

RS-232C

- O padrão da UART TTL opera de 0 a +5V
 - o 0V: Nível lógico 0
 - 5V: Nível lógico 1
- Há, no entanto, o padrão RS-232C adotado pelos computadores que operam com tensões
 - Nível lógico 0: Entre +3V e +25V (usualmente +12V)
 - Nível lógico 1: Entre -3V e -25V (usualmente -12V)

TTL x RS232

 TTL

RS232

RS-232C

- Além disso, define sinais adicionais de handshake entre dois tipos de dispositivos:
 - DTE = data terminal equipment (computador)
 - DCE = data communication equipment (modem)
- Além dos sinais TX e RX, são definidos os sinais RTS/CTS, DSR/Dtr, DCD e RI para controle de fluxo de dados por hardware.

Camada Física

Para conversão entre TTL e RS232, utiliza-se o circuito MAX232

Substituições

- Os novos computadores n\u00e3o possuem mais porta serial
- Utiliza-se conversores:
 - o serial → USB
 - serial → bluetooth

Padrões de Config

- Velocidade (Baud-Rate) [bits/s]
 - 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200
- Número de bits
 - o 5, 6, 7 ou 8
- Paridade
 - Par, ímpar ou sem paridade
- Stop Bits
 - o 1 ou 2

UART no kit EK-TM4C1294XL

Kit EK-TM4C1294XL

- O depurador do kit possui um canal de comunicação serial detectado pelo PC hospedeiro como uma porta COM do tipo "Stellaris Virtual Serial Port"
- Mesma interface do debugger
- Na Tiva, a UARTO está conectada aos pinos PAO (UORx) e PA1 (UOTx) e que por sua vez já passam por um conversor USB

Kit EK-TM4C1294XL

 Os jumpers JP4 e JP5 determinam se a UART0 (=) ou a UART2 (II) estará conectada ao canal serial do depurador.

Transmissão UART

- Os transmissores têm uma FIFO de 16 elementos, monitorada por dois flags TXFF (TX FIFO Full) e TXFE (TX FIFO Empty);
- Uma transmissão é efetuada por meio de uma escrita no registrador de dados da UART;
- O software deve verificar se a fila de TX não está cheia antes de realizar uma escrita.

Recepção UART

- Os receptores têm uma FIFO de 16 elementos, monitorada por dois flags RXFF (RX FIFO Full) e RXFE (RX FIFO Empty);
- Uma recepção é efetuada por meio de uma leitura no registrador de dados da UART
- O software deve verificar se a fila de RX não está vazia antes de realizar uma leitura.

Esquemático UART

8 UARTs

- Para ativar a UART, o clock da respectiva UART tem que ser ativado no registrador RCGCUART. Cada bit ativa uma UART.
- Verificar o bit da UART respectiva no registrador PRUART para saber se está pronta para o uso.

- O registrador UARTCTL controla a UART:
 - TXE é o bit para habilitar o transmissor;
 - RXE é o bit para habilitar o receptor;
 - UARTEN habilita a UART como um todo. Antes de realizar a configuração deve-se desabilitar este bit.

- O registrador UARTLCRH:
 - WLEN controla o tamanho da palavra a ser enviada
 - 5 a 8 bits
 - FEN habilita as filas;
 - STP2 habilita 2 stop bits;
 - EPS e PEN controla e habilita a paridade.

Geração de Baud-Rate

- Para o Baud-Rate há dois registradores:
 - UARTIBRD: 16 bits para a parte inteira;
 - o UARTFBRD: 6 bits para a parte fracionária.
 - Resolução de 1/(2⁶) = 1/64

$$BRD = \frac{UARTSysClk}{ClkDiv \times BaudRate}$$

Geração de Baud-Rate

Exemplo de cálculo:

- Para um *baudrate* de 19200bps, um clock de 80MHz e ClkDiv = 16 (HSE = 0)

$$BRD = \frac{UARTSysClk}{ClkDiv \times BaudRate} = \frac{80000000}{16 \times 19200} = 260,4167$$

UARTIBRD = 260 UARTFBRD = BFDF*64 = 0,4167*64 = 26,67 = 27

Geração de Baud-Rate

 ATENÇÃO: uma alteração no divisor de baud-rate deve ser seguida por uma escrita no registrador UARTLCRH para as alterações fazerem efeito.

- O registrador UARTDR é usado para transmitir o caractere (5 a 8 bits) ou para receber o caractere.
 - Escrita: transmissão de dados (TX)
 - Leitura: recepção de dados (RX) + sinalizadores de erro:
 - OE: overrun → recepção realizada com a FIFO cheia;
 - BE: break → a linha de recepção ficou presa em 0 por um tempo de recepção completo (start a stop bit);
 - PE: parity → paridade recebida não corresponde
 - FE: frame → caractere recebido não tem um stop bit válido.

- Os status das flags das FIFOs podem ser vistos no registrador UARTFR.
 - TXFF: indica que não é possível escrita em UARTDR;
 - RXFE: indica que n\u00e3o \u00e1 poss\u00e1vel leitura de UARTDR;

Passo-a-passo (UART)

- Habilitar o clock no módulo UART no registrador RCGCUART (cada bit representa uma UART) e esperar até que a respectiva UART esteja pronta para ser acessada no registrador PRUART (cada bit representa uma UART).
- Garantir que a UART esteja desabilitada antes de fazer as alterações (limpar o bit UARTEN) no registrador UARTCTL (Control).
- 3. Escrever o *baud-rate* nos registradores UARTIBRD e UARTFBRD

Passo-a-passo (UART)

- 4. Configurar o registrador UARTLCRH para o número de bits, paridade, stop bits e fila
- Garantir que a fonte de clock seja o clock do sistema no registrador UARTCC escrevendo 0 (ou escolher qualquer uma das outras fontes de clock)
- Habilitar as flags RXE, TXE e UARTEN no registrador UARTCTL (habilitar a recepção, transmissão e a UART)

- 7. Habilitar o clock no módulo GPIO no registrador RCGGPIO (cada bit representa uma GPIO) e esperar até que a respectiva GPIO esteja pronta para ser acessada no registrador PRGPIO (cada bit representa uma GPIO).
- 8. Desabilitar a funcionalidade analógica no registrador GPIOAMSEL.

 Escolher a função alternativa dos pinos respectivos TX e RX no registrador GPIOPCTL (verificar a tabela 10-2 no datasheet páginas 743-746)

Lembrando que cada 4 bits deste registrador configura um pino.

 Escolher a função alternativa dos pinos respectivos TX e RX no registrador GPIOPCTL (verificar a tabela 10-2 no datasheet páginas 743-746)

Por exemplo a UARTO da placa está mapeada nos pinos PAO e PA1:

Ю		Pin	Analog	Digital Function (GPIOPCTL PMCx Bit Field Encoding) ^b											
	Ю		or Special Function ^a	1	2	3	4	5	6	7	8	11	13	14	15
	PA0	33	-	UORx	I2C9SCL	TOCCPO	-	•	-	CANORx	-	-	-	-	-
	PAl	34	-	UOTx	I2C9SDA	TOCCP1	-		-	CANOTX				-	-

Assim, como a função alternativa do pino 0 e pino 1 é a 1 de cada um então, o registrador GPIOPCTL do Port A (GPIO_PORTA_AHB_PCTL_R) deve receber o valor 0x11 (00010001 em binário).

- 10. Habilitar os bits de função alternativa no registrador GPIOAFSEL nos pinos respectivos à UART.
- 11. Configurar os pinos como digitais no registrador GPIODEN.

Recepção e Transmissão

Para escrita e leitura da porta serial por busy-flag:

Recepção e Transmissão

- Para fazer a recepção, criar uma função que:
 - Realiza polling no bit RXFE (0x10) (FIFO empty) do registrador UARTFR;
 - Enquanto for 1, não há dados para serem lidos;
 - Quando for 0, o conteúdo do registrador UARTDR para uma variável de 8 bits.
- Para fazer a transmissão, criar uma função que:
 - Realiza polling no bit TXFF (0x20) (FIFO full) do registrador UARTFR;
 - Enquanto for 1, não pode transmitir / FIFO cheia;
 - Quando for 0, copiar o byte a ser enviado para o registrador UARTDR.

Comunicação com o PC

- O funcionamento da UART pode ser verificado utilizando-se um aplicativo emulador de terminal, como o Putty ou Tera Term, instalado no PC hospedeiro do kit.
 - Todo caracter recebido pela serial do PC é mostrado na janela do emulador de terminal e todo caracter correspondente a uma tecla pressionada no teclado do PC é transmitido.