ELEKTRO- UND MEDIENTECHNIK

Mathematik für Infotronik Aufgabenblatt 5 (22.11.2010)

Aufgabe 1:

Geben Sie von den aufgeführten Folgen (a_n) jeweils das allgemeine Folgeglied a_n mit $n \in \{1,2,3,...\}$ an und ermitteln Sie folgende, in der Vorlesung besprochene "Steckbrief"-Eigenschaften: Beschränktheit, Supremum, Infimum, Maximum, Minimum, Monotonie.

c)
$$\frac{1}{2}$$
, $-\frac{3}{4}$, $\frac{5}{6}$, $-\frac{7}{8}$, $\frac{9}{10}$, ...

d)
$$2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}, \dots$$

e)
$$1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \dots$$

g)
$$\frac{1}{2}$$
, $\frac{\sqrt{2}}{3}$, $\frac{\sqrt{3}}{4}$, $\frac{2}{5}$, $\frac{\sqrt{5}}{6}$, ...

h)
$$\frac{1}{2}$$
, $\frac{3}{4}$, $\frac{7}{8}$, $\frac{15}{16}$, $\frac{31}{32}$, ...

Aufgabe 2:

Berechnen Sie die Grenzwerte folgender Folgen - falls möglich:

a)
$$c_n = \frac{n^3 - n^2 + n - 7}{2n^3 + 8}$$

b)
$$d_n = \left(\frac{n^2 - 2}{n^2 + 3}\right)^{n^2}$$

c)
$$e_n = \left(\frac{n-2}{n+3}\right)^{3n-1}$$

d)
$$f_n = \frac{\sqrt{n^2 - 1}}{\sqrt{n+1}}$$

e)
$$g_n = \frac{3n^2 + 4n}{2n - 1}$$

f)
$$h_n = \frac{2n^2 - 5n + 7}{7n^2 + 3n - 1}$$

g)
$$i_n = \frac{\sqrt{n^2 + 2n + 2} + 3n - 4}{n + 2}$$

h)
$$h_n = \frac{1}{\sqrt{n^2+n}-n}$$

i)
$$k_n = \sqrt{4n^2 + 5n + 2} - 2n$$

$$j) \quad l_n = \left(1 - \frac{1}{n}\right)^n$$

$$k) \quad m_n = -\left(1 + \frac{1}{n}\right)^{n^2}$$

Viel Erfolg bei der Lösung der Aufgaben!

Hochschule Deggendorf

ELEKTRO- UND MEDIENTECHNIK

Lösungen:

Aufgabe 1:

- a) $a_n=(n+1)\cdot 2$, nach unten beschränkt, nach oben unbeschränkt, also nicht beschränkt, kein sup a_n , kein max a_n , inf $a_n=4$ = min a_n , streng monoton steigend
- b) $a_n = (-1)^n$, beschränkt, sup $a_n = 1 = \max a_n$, inf $a_n = -1 = \min a_n$, nicht monoton da alternierend
- c) $a_n=(-1)^{n+1}\cdot \frac{2n-1}{2n}$, beschränkt, sup a_n =1, kein max a_n , inf a_n = -1, kein min a_n , nicht monoton da alternierend
- d) $a_n = \frac{n+1}{n}$, beschränkt, sup $a_n = 2 = \max a_n$, inf $a_n = 1$, kein min a_n , streng monoton fallend
- e) $a_n = (-1)^{n+1} \cdot \frac{1}{n}$, beschränkt, sup $a_n = 1 = \max a_n$, inf $a_n = -0.5 = \min a_n$, nicht monoton da alternierend
- f) $a_n=(2n+1)^2$, nach unten beschränkt, nach oben unbeschränkt, also nicht beschränkt, kein sup a_n , kein max a_n , inf $a_n=9=\min a_n$, streng monoton steigend
- g) $a_n = \frac{\sqrt{n}}{n+1}$, beschränkt, sup $a_n = 0.5 = \max a_n$, inf $a_n = 0$, kein min a_n , streng monoton fallend
- h) $a_n = 1 2^{-n}$, beschränkt, sup $a_n = 1$, kein max a_n , inf $a_n = 0.5 = \min a_n$, streng monoton steigend

Aufgabe 2:

a) 1/2

g) 4

b) exp(-5)

h) 2

c) exp(-15)

- i) 5/4
- d) bestimmte Divergenz gegen +∞
- j) 1/e
- e) bestimmte Divergenz gegen +∞
- k) bestimmte Divergenz gegen -∞

f) 2/7