Chương 4. Lý Thuyết Chuỗi

4.1. Chuỗi số

- 1. Các khái niệm
- + Xét một dãy vô hạn các số thực: $\{u_n\}_{n=1}^{\infty} = u_1, u_2, \dots u_n, \dots$

Khi đó tổng vô hạn

$$\sum_{n=1}^{+\infty} u_n = u_1 + u_2 + \dots + u_n + \dots$$
 (1)

được gọi là một chuỗi số.

- $+ u_n$ được gọi là số hạng tổng quát của chuỗi.
- + Để tính tổng của chuỗi ta thực hiện như sau:

+ Gọi

$$S_1 = u_1$$

 $S_2 = u_1 + u_2$
... $S_n = u_1 + u_2 + ... u_n$

Dãy $\{S_n\}$ được gọi là dãy tổng riêng của chuỗi (1). Và S_n gọi là tổng riêng thứ n. + Nếu tồn tại $\lim_{n\to\infty} S_n = S$ hữu hạn, thì ta nói chuỗi (1) hội tụ và có tổng bằng S, ngược lại ta nói chuỗi (1) phân kỳ.

Ví dụ. Tính tổng của chuỗi
(1).
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$$
; (2). $\sum_{n=1}^{+\infty} \frac{1}{2^n}$; (3). $\sum_{n=1}^{+\infty} (-1)^n$; (4). $\sum_{n=1}^{+\infty} q^n$.

 $=1-\frac{1}{n+1}$.

Vậy ta nói chuỗi hội tụ và có tổng bằng 1.

(3).
$$\sum_{n=1}^{\infty} (-1)^n$$
;

 $=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\ldots+\left(\frac{1}{n}-\frac{1}{n+1}\right)$

 $\lim_{n\to\infty} S_n = \lim_{n\to\infty} \left(1 - \frac{1}{n+1}\right) = 1.$

Giải:

Ta có

$$S_n = \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \ldots + \frac{1}{n(n+1)}$$

Highlight

21/12/2021 7:32:38 SA ×

Administrator

Options -

Tổng của 1 cấp số nhân với số hạng đầu là u_1. Công bội q = u_2/u_1 = u_3/u_2 =

 $S_n = u_1. (1-q^n)/(1-q)$

(2). <mark>Ta có</mark>

$$S_n = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}$$
$$= \frac{1}{2} \cdot \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} = 1 - \frac{1}{2^n}.$$

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} (1-\frac{1}{2^n}) = 1.$$

Vậy ta nói chuỗi hội tụ và có tổng bằng 1.

(3). Ta có

$$S_n = -1 + 1 - 1 + \ldots + (-1)^n$$

$$= \begin{cases} -1 & \text{n\'eu } n \text{ l\'e} \\ 0 & \text{n\'eu } n \text{ ch\'an}. \end{cases}$$

Do đó không tồn tại $\lim_{n\to\infty} S_n$. Vậy ta nói chuỗi phân kỳ.

(4). Ta có

$$S_n = q + q^2 + q^3 + \dots + q^n$$

= $q \cdot \frac{1 - q^n}{1 - q}$

- Ta thấy với |q|<1 thì $q^n o 0$ khi $n o +\infty$, do đó $S_n o rac{q}{1-q}$.
- Với q>1 thì $q^n\to +\infty$ khi $n\to +\infty$, do đó $S_n\to +\infty$.
- Với $q \leq -1$ thì không tồn tại $\lim_{n \to \infty} q^n$, do đó không tồn tại $\lim_{n \to \infty} S_n$.
- Với q=n thì $S_n=n$ do đó $S_n\to +\infty$.
- Vậy ta có thể kết luận chuỗi $\sum_{n=1}^{+\infty} q^n$ hội tụ khi |q| < 1 và phân kỳ khi $|q| \ge 1$.

2. Điều kiện cần để chuỗi hội tụ

Định lý. Nếu chuỗi $\sum_{n=1}^{+\infty} u_n$ hội tụ thì $\lim_{n\to\infty} u_n = 0$.

Nhân xét:

- Điều ngược lại của chuỗi nói chung không đúng (ví dụ chuỗi $\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}}$).
- Nếu không tồn tại $\lim_{n\to\infty} u_n$ hoặc $\lim_{n\to\infty} u_n \neq 0$ thì chuỗi $\sum_{n=1}^{+\infty} u_n$ phân kỳ.

Ta thường sử dụng nhận xét này để chứng minh sự phân kỳ của một chuỗi.

- 3. Tính chất của chuỗi số
- + Sự hôi tụ của một chuỗi sẽ không thay đổi nếu ta thêm vào hay bớt đi một số hữu hạn các số hàng phía đầu.
- + Tổng của 2 chuỗi hội tụ \Longrightarrow hội tụ.
- + Tổng của một chuỗi hội tụ và một chuỗi phân kỳ \Longrightarrow phân kỳ.
- + Tổng của hai chuỗi phân kỳ có thể hội tụ hoặc có thể phân kỳ.
- Sau đây chúng ta chỉ xét một số dạng chuỗi số đặc biệt như: chuỗi số dương, chuỗi đan dấu.

4.2. Chuỗi số dương

- 1. Các khái niêm
- + Dạng tổng quát của chuỗi số dương

$$\sum_{n=1}^{+\infty} u_n \ , \ u_n > 0, \ \forall n.$$

+ Trong chuỗi số dương ta thấy: $S_1 \leq S_2 \leq \ldots \leq S_n \leq \ldots$, do đó nếu dãy $\{S_n\}$ bị chặn trên (tức $S_n \stackrel{\mathcal{L}}{\leq} M, \forall n$) thì chuỗi hội tụ.

$$Vi d\mu$$
. Xét chuỗi $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.

Ta thấy

$$S_n = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} = \frac{1}{1 \cdot 1} + \frac{1}{2 \cdot 2} + \frac{1}{3 \cdot 3} + \dots + \frac{1}{n \cdot n}$$

$$\leq 1 + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1) \cdot n} = 1 + (\frac{1}{1} - \frac{1}{2}) + \dots + (\frac{1}{n-1} - \frac{1}{n})$$

$$= 2 - \frac{1}{n} \leq 2, \ \forall n.$$

Do đó $\{S_n\}$ bị chặn trên, vậy chuỗi hội tụ.

Tổng quát: Ta có thể chứng minh được chuỗi Riemann sau

$$\sum_{n=1}^{+\infty} \frac{1}{n^c}$$

hội tụ khi lpha>1, phân kỳ khi $lpha\leq 1$.

- 2. Các tiêu chuẩn đánh giá sự hội tụ của chuỗi số dương
- a) Tiêu chuẩn so sánh

Định lý 1. Giả sử $0 \le u_n \le v_n, \ \forall n \ge n_0 \ge 1$. Khi đó:

- Nếu chuỗi $\sum_{n=1}^{+\infty} v_n$ hội tụ thì chuỗi $\sum_{n=1}^{+\infty} u_n$ hội tụ,
- Nếu chuỗi $\sum_{n=1}^{+\infty} u_n$ phân kỳ thì chuỗi $\sum_{n=1}^{+\infty} v_n$ phân kỳ.

Định lý 2. Giả sử $\lim_{n\to\infty}\frac{u_n}{v_n}=K,\ 0< K<=\infty.$ Khi đó chuỗi $\sum_{n=1}^{+\infty}u_n$ và $\sum_{n=1}^{+\infty}v_n$ cùng hội tụ hoặc phân kỳ.

Đặc biệt, khi K=1, ta viết $u_n \sim v_n$, khi $n \to \infty$.

Chú ý: Khi K=0, ta thấy $u_n \leq v_n$ với n từ n_0 nào đó (áp dụng Định lý 1), tương tự khi $K=\infty$.

Highlight 21/12/2021 8:09:51 SA
Administrator Options
Ta có 1- cos u tương với u^2 / 2 khi u --> 0

Vậy u_n = 1 - cos (1/n) tương đương với 1 / 2n^2 khi n --> xc

Do chuỗi của 1/ 2n^2 hội tụ

Nên chuỗi (3) hội tụ.

Ví dụ. Xét sự hội tụ của chuỗi

(1).
$$\sum_{n=1}^{+\infty} \frac{\ln n}{n^3 + n^2 + 2}$$

(2).
$$\sum_{n=2}^{+\infty} \frac{n \ln n}{n^2 - 1}$$
;

(3).
$$\sum_{n=1}^{\infty} (1-\cos\frac{1}{n})$$

Giải:

Highlight 21/12/2021 8:06:43 SA ∠

Administrator Options
Chú ý: Ta luôn có, với x đủ lớn thì

In x <= x^alpha với mọi alpha > 0

(1). Ta có In n <= n với mọi n >= 1

Nên u_n = In n / (n^3 + n^2 + 2) <= n / (n^3 + n^2 + 2)

<= n / n^3 = 1/ n^2

Cho chuỗi của 1/n^2 hội tụ

Nên chuỗi (1) hội tụ

b) Tiêu chuẩn Đa lăm be (D'Alembert)

Xét chuỗi số dương $\sum\limits_{n=1}^{+\infty}u_n$. Giả sử ta có $\lim\limits_{n\to\infty}\frac{u_{n+1}}{u_n}=D$. Khi đó chuỗi hội tụ nếu

D < 1, và phân kỳ nếu D > 1.

Trong trường hợp D=1 ta không thể xét được theo tiêu chuẩn Da lăm be.

c) Tiêu chuẩn Côsi (Cauchy)

Xét chuỗi số dương $\sum_{n=1}^{+\infty} u_n$. Giả sử ta có $\lim_{n\to\infty} \sqrt[n]{u_n} = C$. Khi đó chuỗi hội tụ nếu

C < 1, và phân kỳ nếu C > 1.

Trong trường hợp C = 1 ta không thể xét được theo tiêu chuẩn Côsi.

Ví dụ. Xét sự hội tụ của chuỗi

(1).
$$\sum_{n=1}^{+\infty} \frac{n^2}{2^n}$$
; (2). $\sum_{n=1}^{+\infty} \frac{2^n}{n!}$; (3). $\sum_{n=1}^{+\infty} \frac{n!}{n^n}$; (4). $\sum_{n=1}^{+\infty} \frac{(n+1)^{n^2}}{n^{n^2} \cdot 3^n}$.

3 900

c) Tiêu chuẩn Côsi (Cauchy)

Xét chuỗi số dương $\sum_{n=1}^{+\infty} u_n$. Giả sử ta có $\lim_{n\to\infty} \sqrt[n]{u_n} = C$. Khi đó chuỗi hội tụ nếu

C < 1, và phân kỳ nếu C > 1.

Trong trường hợp C=1 ta không thể xét được theo tiêu chuẩn Côsi.

Ví dụ. Xét sự hội tụ của chuỗi

(1).
$$\sum_{n=1}^{+\infty} \frac{n^2}{2^n}$$
; (2). $\sum_{n=1}^{+\infty} \frac{2^n}{n!}$; (3). $\sum_{n=1}^{+\infty} \frac{n!}{n^n}$; (4). $\sum_{n=1}^{+\infty} \frac{(n+1)^{n^2}}{n^{n^2} \cdot 3^n}$.

Giải.

Nhận xét: Ta có thể áp dụng tiêu chuẩn Đa lăm be và tiêu chuẩn Cô si cho các chuỗi có dấu bất kỳ bằng cách xét

$$\lim_{n\to\infty}\frac{|u_{n+1}|}{|u_n|}=D \text{ hoặc } \lim_{n\to\infty}\sqrt[n]{|u_n|}=C$$

Khi đó chuỗi hội tụ nếu D<1 (hoặc C<1) và phân kỳ nếu D>1 (hoặc C>1). Ví dụ. Xét sự hội tụ của chuỗi

$$\sum_{n=1}^{+\infty} (-1)^n \left(\frac{3n+2}{2n+7}\right)^n$$

Giải:

Highlight 21/12/2021 7:50:03 SA 2 Administrator Options

lim (căn bậc n của |u_n|) = lim (3n+2)/(2n+7) = lim 3n/2n = 3/2 >1

Chuỗi phân kỳ

d) Tiêu chuẩn tích phân

Giả sử f(x) là một hàm số liên tục, không âm, đơn điệu giảm về 0 trên $[1,+\infty$ và thỏa mãn

$$f(n) = u_n, \ \forall n \in \mathbb{N}.$$

Khi đó chuỗi $\sum_{n=1}^{+\infty} u_n$ và tích phân $\int_{1}^{\infty} f(x)dx$ sẽ cùng hội tụ hoặc phân kỳ.

Ví dụ. Xét sự hội tụ của chuỗi

(1).
$$\sum_{n=2}^{+\infty} \frac{1}{n \ln n}$$
; (2). $\sum_{n=3}^{+\infty} \frac{1}{n \ln (n-1)}$.

(1) + Xét hàm số $f(x) = \frac{1}{x \ln x}$; $x \ge 2$. Ta thấy f(x) liên tục, không âm với mọi

$$x \ge 2.$$

$$f'(x) = -\frac{\ln x + 1}{(x \ln x)^2} < 0, \ \forall x \ge 2; \ \lim_{x \to \infty} \frac{1}{x \ln x} = 0$$

Vậy f(x) là một hàm đơn điệu giảm về 0 trên $[2, +\infty)$.

+ Xét tích phân $I = \int \frac{dx}{x \ln x}$. Bằng cách đặt $t = \ln x$ ta đưa tích phân về dạng

$$I = \int_{\ln 2}^{+\infty} \frac{dt}{t}$$

đây là tích phân Riemann với $\alpha=1$ nên phân kỳ.

Vậy chuỗi $\sum_{n=2}^{+\infty} \frac{1}{n \ln n}$ phân kỳ theo tiêu chuẩn tích phân.

$$u_n = \frac{1}{n \ln(n-1)} \sim \frac{1}{n \ln n}, \ n \to +\infty$$

Mà chuỗi $\sum_{n=2}^{+\infty} \frac{1}{n \ln n}$ phân kỳ theo câu (1), nên chuỗi $\sum_{n=3}^{+\infty} \frac{1}{n \ln (n-1)}$ phân kỳ theo tiêu chuẩn so sánh.

1.
$$\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots$$
10. $\sum_{n=1}^{+\infty} \ln\left(1 + \frac{1}{n\sqrt{n}}\right)$
Highlight 21/12/2021 8:07:18 SA Administrator Options
(1). Tinh S_n
(2). $\sum_{n=1}^{+\infty} \frac{(n+1)^{n^2}}{n^{n^2}3^n}$
(3). $\sum_{n=1}^{+\infty} \frac{\ln n}{n^3 + n^2 + 2}$
11. $\sum_{n=1}^{+\infty} \frac{(n+1)^{n^2}}{n^{n^2}3^n}$
(4). Tinh S_n
(5). (6). (7): Đa Lâm be
(6). (7): Đa Lâm be

13.
$$\sum_{n=1}^{+\infty} \frac{1}{n} \ln \left(1 + \frac{1}{n^p} \right)$$

5.
$$\sum_{n=1}^{+\infty} \frac{n^n}{(n+1)^n \cdot 2^n}$$
6.
$$\sum_{n=1}^{+\infty} \frac{3 \cdot 5 \cdot 7 \cdot \dots (2n+1)}{n^n}$$

8. $\sum_{n=1}^{+\infty} \frac{1}{2^n} \left(1 + \frac{1}{n+1}\right)^{n^2}$

9. $\sum_{n=0}^{+\infty} \left(\tan \frac{1}{3n} - \sin \frac{1}{3n} \right)$

4. $\sum_{n=2}^{+\infty} \frac{n \ln n}{n^2 - 1}$

Bài 1. Xét sư hối tu của chuối số

14.
$$\sum_{n=2}^{+\infty} \frac{1}{n \cdot \ln^k n}$$

6.
$$\sum_{n=1}^{+\infty} \frac{3.5.7...(2n+1)}{2.5.8...(3n-1)}$$
7.
$$\sum_{n=1}^{+\infty} \frac{3^n.n!}{n^n}$$

$$\sum_{n=2}^{+\infty} ($$

17. $\sum_{n=1}^{+\infty} (-1)^n \cdot \frac{3^n}{n^3}$

18. $\sum_{n=1}^{\infty} (-1)^n \cdot \binom{n}{n+1}^n$

$$\frac{15.}{n=2} \sum_{n=2}^{+\infty} \frac{(-1)^n \frac{n}{n^2-1}}{n^2-1}$$

16.
$$\sum_{n=2}^{+\infty} (-1)^n \cdot \left(\frac{3n+2}{2n+7}\right)^n$$

$$\frac{n}{r^2-1}$$

4.3. Chuỗi đan dấu

- 1. Sự hội tụ tuyệt đối và tương đối của một chuỗi
- + Xét chuỗi $\sum_{n=1}^{+\infty} u_n$, trong đó u_n có dấu tùy ý. Khi đó nếu chuỗi $\sum_{n=1}^{+\infty} |u_n|$ hội tụ thì
- chuỗi $\sum_{n=1}^{+\infty} u_n$ cũng hội tụ, và trong trường hợp này ta nói chuỗi $\sum_{n=1}^{+\infty} u_n$ là hội tụ tuyệt đối.
- + Từ đây ta thấy nếu chuỗi $\sum\limits_{n=1}^{+\infty}u_n$ phân kỳ thì chuỗi $\sum\limits_{n=1}^{+\infty}|u_n|$ cũng phân kỳ. + Trong trường hợp chuỗi $\sum\limits_{n=1}^{+\infty}u_n$ hội tụ, còn $\sum\limits_{n=1}^{+\infty}|u_n|$ phân kỳ thì ta nói chuỗi
- $\sum_{n=0}^{+\infty} u_n$ hội tụ tương đối, hay còn gọi là hội tụ bán tuyệt đối.

- 2. Chuỗi đạn dấu
- + Dạng tổng quát của chuỗi đan dấu

$$\pm \sum_{n=1}^{+\infty} (-1)^n u_n; \quad u_n > 0$$

+ Đối với chuỗi đan dấu ta có tiêu chuẩn đánh giá như sau:

Định lý Leibnitz

Nếu $\{u_n\}$ là một dãy đơn điệu giảm về 0 khi $n \to +\infty$ thì chuỗi $\sum_{n=1}^{+\infty} (-1)^n u_n$ hội

tụ và có tổng $\leq u_1$.

Ví dụ. Xét sự hội tụ của chuỗi

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$$

Giải. Ta có $u_n = \frac{1}{n}$, và

$$u_n = \frac{1}{n} > \frac{1}{n+1} = u_{n+1}, \ \forall n; \ \lim_{n \to \infty} \frac{1}{n} = 0$$

Do đó dãy $\{u_n\}$ đơn điệu giảm về 0, khi $n \to +\infty$. Vậy chuỗi đã cho hội tụ theo tiêu chuẩn Leibnitz.

Nhận xét: Trong ví dụ trên nếu ta xét

$$\sum_{n=1}^{+\infty} \left| \frac{(-1)^n}{n} \right| = \sum_{n=1}^{+\infty} \frac{1}{n}$$

ta thấy chuỗi về bên phải là phân kỳ, do đó chuỗi $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$ là hội tụ tương đối.

イロトイロトイニト (ヨト ヨ も)から

Đào Việt Cường Giải tích 1

Bài 2. Xét sự hội tụ tuyệt đối, hội tụ tương đối

1.
$$\sum_{n=1}^{+\infty} \frac{\cos(n\pi)}{(n+1)(n+2)}$$

4.
$$\sum_{n=1}^{+\infty} \sin \frac{\pi n^2}{n+1}$$

2.
$$\sum_{n=1}^{+\infty} (-1)^{n-1} \cdot \frac{2^n}{n!}$$

$$n=1$$
 $n=1$ $n+1$

3.
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n \ln(n^2+1)}$$

6.
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{\ln(n+1)}$$

5. $\sum_{n=0}^{+\infty} (-1)^n \left(\frac{1+n}{n^2} \right)$

(1) Chú ý cos(n pi) = (-1)^n Chuối hội tụ tuyệt đối

(2) Hội tụ tuyết đối theo Dalambe (D =0)

(3) Hội tụ tương đối (theo Lépnit)

(4) Hội tụ tương đối

(5) Hội tụ tương đối

(6) Hội tụ tương đối

4.4. Chuỗi hàm

- 1. Các khái niêm
- + Xét một dãy vô hạn các hàm số thực: $\{u_n(x)\}_{n=1}^{\infty}=u_1(x),u_2(x),\ldots u_n(x),\ldots$

Khi đó tổng vô hạn

$$\sum_{n=1}^{+\infty} u_n(x) = u_1(x) + u_2(x) + \dots + u_n(x) + \dots$$
 (2)

được gọi là một chuỗi hàm.

- $+ u_n(x)$ được gọi là số hạng tổng quát của chuỗi.
- + Nếu cho $x = x_0$ ta thu được chuỗi số tương ứng $\sum_{n=1}^{+\infty} u_n(x_0)$.
- + Như vậy chuỗi số là một trường hợp riêng của chuỗi hàm, và sự hội tụ hay phân kỳ của chuỗ $\dot{1}$ hàm phụ thuộc vào giá trị mà x nhận được.
- + Tập các giá trị của x để chuỗi $\sum_{n=0}^{+\infty} u_n(x)$ hội tụ được gọi là miền hội tụ của

chuỗi.

n-zo-nn Dào Việt Cường Giải tích 1 21/

2. Cách tìm miền hội tụ của chuỗi hàm

Xét chuỗi

$$\sum_{n=1}^{+\infty} u_n(x).$$

Giả sử

$$\lim_{n\to\infty}\frac{|u_{n+1}(x)|}{|u_n(x)|}=D, \text{ (hoặc } \lim_{n\to\infty}\sqrt[n]{|u_n(x)|}=C).$$

Khi đó chuỗi hội tụ nếu D < 1 (hoặc C < 1) và phân kỳ nếu D > 1 (hoặc

C>1), còn tại D=1 (hoặc C=1) ta xét trực tiếp theo chuỗi số tương ứng.

Ví dụ. Tìm miền hội tụ của chuỗi

$$\sum_{n=1}^{+\infty} (-1)^n \frac{(x+1)^n}{n+2}.$$

イロトイクトイラトイラト ヨ かくの

Dà 0:32:03 1g

Giải:

Ta có
$$u_n(x) = \frac{(-1)^n(x+1)^n}{n+2}$$
, $u_{n+1}(x) = \frac{(-1)^{n+1}(x+1)^{n+1}}{n+3}$.

$$\lim_{n \to +\infty} \frac{|u_{n+1}(x)|}{|u_n(x)|} = \lim_{n \to +\infty} \left| \frac{(-1)^{n+1}(x+1)^{n+1}}{n+3} \cdot \frac{n+2}{(-1)^n(x+1)^n} \right| = |x+1|$$

Chuỗi hội tụ nếu: $|x+1| < 1 \Leftrightarrow -2 < x < 0$.

+ Tai
$$x = -2$$
, chuỗi có dang

$$\sum_{n=0}^{+\infty} (-1)^n \cdot \frac{(-1)^n}{n+2} = \sum_{n=0}^{+\infty} \frac{1}{n+2}$$
 là chuỗi phân kỳ vì $\alpha = 1$.

+ Tại
$$x = 0$$
, chuỗi có dạng

$$\sum_{n=0}^{+\infty} (-1)^n \cdot \frac{(1)^n}{n+2} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+2}$$
 là chuỗi hội tụ theo tiêu chuẩn Leibnitz.

Kết luận: Miền hội tụ của chuỗi là: (-2,0].

Bài 3. Tìm miền hội tụ của chuỗi hàm

1.
$$\sum_{n=0}^{+\infty} \frac{(-4)^n \arcsin^n x}{\pi^n (n+1)}$$

$$2. \sum_{n=1}^{+\infty} \frac{1}{n2^n} \left(\frac{x}{x+1} \right)^n$$

$$\stackrel{+\infty}{\longrightarrow} (-\ln x)^n$$

3.
$$\sum_{n=1}^{+\infty} \frac{(-\ln x)^n}{2n+1}$$

$$n + 1$$

 $\frac{1}{3n} e^n$

4.
$$\sum_{n=1}^{+\infty} \frac{(-1)^n n^2}{3^n} e^{nx}$$

$$5. \sum_{n=1}^{+\infty} \frac{1}{n(\ln x)^n}$$

$$\sum_{n=1}^{+\infty} \frac{n(\ln x)^n}{n+1} \left(\frac{x}{2x+x}\right)^n$$

$$7. \sum_{n=1}^{\infty} \frac{1}{n^2 \ln^n x}$$

8.
$$\sum_{n=1}^{+\infty} \frac{1}{2^n} \left(\frac{2^n + 1}{x + 2} \right)^n$$

$$9 = \sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1} \left(\frac{1-x}{1+x}\right)^n$$

10.
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n(2x-3)^n}$$

11.
$$\sum_{n=1}^{+\infty} \frac{(x-1)^{2n}}{n4^n}$$

15.
$$\sum_{n=1}^{+\infty} \frac{(-2)^n}{n\pi^n} x^n$$
16.
$$\sum_{n=1}^{+\infty} \frac{\ln n}{n^2 + 1} x^n$$

18.
$$\sum_{n=1}^{+\infty} \frac{(x+1)^n}{2^n (2n+1)}$$

20.
$$\sum_{n=1}^{+\infty} \frac{(x-1)^n}{2^n(n+2)}$$