NLP Assignment

Name: Khuram Shahzad (21p-8742)

1. Write code for computing Levenshtein Distance (Edit distance)

```
In [571]: def EdithDistance(source, target):
              source= '#'+source
              target= '#'+target
              n= len(source)
              m= len(target)
              rows, cols = (n+1, m+1)
              arr = [[0 for i in range(cols)] for j in range(rows)]
              arr[0][0]= "*"
                    Row Intialization
              for i in range(rows-1):
                  arr[i+1][0]= source[i]
              for i in range(cols-1):
                  arr[0][i+1]= target[i]
              for i in range(rows-c):
                  i=i+c
                  arr[i][c-1]= arr[i-1][c-1]+1
                Cols Intialization
              for i in range(cols-c):
                  i=i+c
                  arr[c-1][i]= arr[c-1][i-1]+1
              a=0;
              for i in range(rows-c):
                  i=i+c;
                  for j in range(cols-c):
                          j=j+c;
                          if (arr[i][0]!=arr[0][j]):
                              a= arr[i-1][j-1]+2;
                              arr[i][j] = min(arr[i-1][j]+1, a, arr[i][j-1]+1)
                              arr[i][j]= min(arr[i-1][j]+1,arr[i-1][j-1], arr[i][j-1]+1)
                for row in arr:
                   print(row)
              return arr[n][m]
```

Testing it:

```
In [573]: EdithDistance("abc", "axy")

['*', '#', 'a', 'x', 'y']
['#', 0, 1, 2, 3]
['a', 1, 0, 1, 2]
['b', 2, 1, 2, 3]
['c', 3, 2, 3, 4]
Out[573]: 4
```

2. Write a Calling code that is able to call the Distance metric multiple times (i.e for each pair of cities.

Average Function:

```
In [499]: def Average(lst):
    return sum(lst) / len(lst)
```

Files Names List

Preperaring the Dataframe

```
In [577]: heading=[]
numbering=[]
for i in range(len(fileNamesTraget)):
    heading.append(fileNamesTraget[i][:-4])
    numbering.append(i+1)
    size= len(fileNamesTraget)
    result=[]
    final_result = [[0 for i in range(size)] for j in range(size)]
    df = pd.DataFrame(final_result, index =numbering,columns =list(reversed(heading)))
    df["names"] = heading
    df.head()
```

Out[577]:

	quetta	urdu	tirah	tanai	peshawar	miramshah	marwat	maidanshahr	kandahar	kabul	harnai	bannu	names
1	0	0	0	0	0	0	0	0	0	0	0	0	bannu
2	0	0	0	0	0	0	0	0	0	0	0	0	harnai
3	0	0	0	0	0	0	0	0	0	0	0	0	kabul
4	0	0	0	0	0	0	0	0	0	0	0	0	kandahar
5	0	0	0	0	0	0	0	0	0	0	0	0	maidanshahr

```
In [568]: List1= []
          List2= []
          size= len(fileNamesTraget)
          result=[]
          final result1 = [[0 for i in range(size)] for j in range(size)]
          final_result2 = [[0 for i in range(size)] for j in range(size)]
          for i in range(size):
              List1.clear()
              with open(fileNamesTraget[i], 'r', encoding='UTF-8') as file:
                  while (line := file.readline().rstrip()):
                      List1.append(line)
              for j in range(size):
                  List2.clear()
                  with open(fileNamesTraget[j], 'r', encoding='UTF-8') as file:
                      while (line := file.readline().rstrip()):
                          List2.append(line)
                  result= []
                  y=2;
                  for t in range(len(List1)):
                      if (t+y<24):
                          z= EdithDistance(List1[t+2],List2[t+2])
                          max1= (len(List1[t+2]) + len(List2[t+2]))
                          result.append(round(((max1-z)/max1)*100, 3))
                  col= fileNamesTraget[j][:-4]
                  df[col].iloc[i]=round(Average(result), 3)
```

C:\Users\KhuramShahzad\AppData\Local\Temp\ipykernel_5880\46891081.py:26: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df[col].iloc[i]=round(Average(result), 3)

Edit Distance (A table showing the average scores)

```
In [569]: df
Out[569]:
```

	quetta	urdu	tirah	tanai	peshawar	miramshah	marwat	maidanshahr	kandahar	kabul	harnai	bannu	names
1	48.988	19.090	71.197	78.969	42.175	91.037	53.482	39.916	41.294	42.520	32.253	100.000	bannu
2	52.024	29.812	36.347	31.673	40.370	31.005	39.952	45.480	47.093	44.888	100.000	32.253	harnai
3	83.303	33.405	58.187	55.389	86.662	46.103	60.907	81.570	81.284	100.000	44.888	42.520	kabul
4	89.886	35.244	48.938	47.919	71.927	44.788	67.461	88.640	100.000	81.284	47.093	41.294	kandahar
5	84.497	35.351	53.606	52.260	70.032	43.586	63.796	100.000	88.640	81.570	45.480	39.916	maidanshahr
6	71.200	31.639	52.630	47.367	60.309	54.148	100.000	63.796	67.461	60.907	39.952	53.482	marwat
7	52.483	20.800	71.810	84.766	42.400	100.000	54.148	43.586	44.788	46.103	31.005	91.037	miramshah
8	73.996	31.059	55.300	49.370	100.000	42.400	60.309	70.032	71.927	86.662	40.370	42.175	peshawar
9	46.607	23.629	80.424	100.000	49.370	84.766	47.367	52,260	47.919	55.389	31.673	78.969	tanai
10	50.859	22.527	100.000	80.424	55.300	71.810	52.630	53.606	48.938	58.187	36.347	71.197	tirah
11	34.780	100.000	22.527	23.629	31.059	20.800	31.639	35.351	35.244	33.405	29.812	19.090	urdu
12	100.000	34.780	50.859	46.607	73.996	52.483	71.200	84.497	89.886	83.303	52.024	48.988	quetta

3. Bonus

A plot (similar to one shown in slide 24) showing the edit distance as a line between cities.

```
In [456]:
    from matplotlib import pyplot as plt

    df.set_index('names').plot(kind = 'line')
    plt.title("The edit distance as a line between all cities.")
    plt.xlabel("Language Names")
    plt.ylabel("Distance Range")
    plt.rcParams["figure.figsize"] = (15,20)
    plt.show()
```



```
In [511]: from matplotlib import pyplot as plt

df.set_index('names').plot(kind = 'bar')
plt.title("The Bar Graph of edit distance between all cities.")
plt.xlabel("Language Names")
plt.ylabel("Distance Range")
plt.rcParams["figure.figsize"] = (30,6)
plt.show()
# df.head()
```


In []: