Mathematical analysis I

Conf.univ.,dr. Elena Cojuhari

elena.cojuhari@mate.utm.md
Technical University of Moldova

2021

- 1 Infinite Series
 - Sequences
 - Summing an Infinite Series
 - Convergence of Series with Positive Terms
 - Absolute and Conditional Convergence
 - The Ratio and Root Tests
 - Power Series
 - Taylor Series

Subsection 1

Sequences

Sequences

- A sequence is an ordered collection of numbers defined by a function f(n) on a set of integers; $A \cap M \cap M \cap A_n = f(n)$
- The values $a_n = f(n)$ are the **terms** of the sequence and n the **index**;
- We think of $\{a_n\}$ as a list $a_1, a_2, a_3, a_4, \ldots$
- The sequence may not start at n = 1; It may start at n = 0, n = 2 or any other integer;
- When a_n is given by a formula, then it is referred to as the **general** term of the sequence;
- Examples:

General Term	Domain	Sequence
$a_n = 1 - \frac{1}{n}$	$n \ge 1$	$0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots$
$a_n = (-1)^n n$	$n \ge 0$	$0, -1, 2, -3, 4, \dots$
$a_n = \frac{n^2}{n^2 - 4}$	$n \ge 3$	$\frac{9}{5}, \frac{16}{12}, \frac{25}{21}, \frac{36}{32}, \frac{49}{45}, \dots$

Recursively Defined Sequences

- A sequence is defined **recursively** if one or more of its first few terms are given and the n-th term a_n is computed in terms of one or more of the preceding terms a_{n-1}, a_{n-2}, \ldots ;
- Example: Compute a_2 , a_3 , a_4 for the sequence defined recursively by

$$a_{1} = 1, \quad a_{n} = \frac{1}{2} \left(a_{n-1} + \frac{2}{a_{n-1}} \right);$$

$$a_{2} = \frac{1}{2} \left(a_{1} + \frac{2}{a_{1}} \right) = \frac{1}{2} \left(1 + \frac{2}{1} \right) = \frac{3}{2};$$

$$a_{3} = \frac{1}{2} \left(a_{2} + \frac{2}{a_{2}} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{2}{3/2} \right) = \frac{1}{2} \cdot \frac{17}{6} = \frac{17}{12};$$

$$a_{4} = \frac{1}{2} \left(a_{3} + \frac{2}{a_{3}} \right) = \frac{1}{2} \left(\frac{17}{12} + \frac{2}{17/12} \right) = \frac{1}{2} \cdot \frac{577}{204} = \frac{577}{408};$$

Fibonacci sequences

Stewart, p.691

 $1, 1, 2, 3, 5, 8, 13, 21, \dots$

Limit of a Sequence

- We say that the sequence $\{a_n\}$ converges to a limit L, written $\lim a_n = L$ or $a_n \to L$, if the values of a_n get arbitrarily close to the value L when n is taken sufficiently large;
- If a sequence does not converge, we say it **diverges**;
- If the terms increase without bound, $\{a_n\}$ diverges to infinity;

Sequence Defined by a Function

Theorem (Limit of a Sequence Defined by a Function)

If $\lim f(x)$ exists, then the sequence $a_n = f(n)$ converges to the same limit, i.e., $\lim_{n\to\infty} a_n = \lim_{x\to\infty} f(x)$;

• Example: Show that $\lim_{n\to\infty} a_n = 1$, where $a_n = \frac{n+4}{n+1}$; We consider the function $f(x) = \frac{x+4}{x+1}$; Clearly, $a_n = f(n)$; Therefore, by the Theorem, it suffices to show that $\lim_{x\to\infty} f(x) = 1$;

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x+4}{x+1} = \lim_{x \to \infty} \frac{1+\frac{4}{x}}{1+\frac{1}{x}} = \frac{1+0}{1+0} = 1;$$

• Find the limit of the sequence $\frac{2^2-2}{2^2}, \frac{3^2-2}{3^2}, \frac{4^2-2}{4^2}, \frac{5^2-2}{5^2}, \ldots;$

The general term of the given sequence is $a_n = \frac{n^2 - 2}{n^2}$; We consider the function $f(x) = \frac{x^2 - 2}{x^2} = 1 - \frac{2}{x^2}$; Clearly, $a_n = f(n)$; Therefore, it suffices to find the limit $\lim_{x \to \infty} f(x)$;

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (1 - \frac{2}{x^2}) = 1 - 0 = 1;$$

Thus, $\lim_{n\to\infty} a_n = 1$;

Example II

• Find the limit $\lim_{n\to\infty} \frac{n+\ln n}{n^2}$;

We consider the function $f(x) = \frac{x + \ln x}{x^2}$; Clearly, $a_n = f(n)$;

Therefore, it suffices to find the limit $\lim_{x\to\infty} f(x)$;

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x + \ln x}{x^2} = \left(\frac{\infty}{\infty}\right)^{\frac{1}{2} + \frac{1}{2} + \frac{1}{2$$

Thus,
$$\lim_{n\to\infty} \frac{n+\ln n}{n^2} = 0$$
;

Geometric Sequences

• For $r \ge 0$ and c > 0,

$$\lim_{n \to \infty} cr^n = \begin{cases} 0, & \text{if } 0 \le r < 1 \\ c, & \text{if } r = 1 \\ \infty, & \text{if } r > 1 \end{cases}$$

To see this, one considers the corresponding function $f(x)=cr^x$; If r<1, then, $\lim_{x\to\infty}cr^x=0$, and, if r>1, then, $\lim_{x\to\infty}cr^x=\infty$;

Limits Laws for Sequences

Limit Laws for Sequences

Assume $\{a_n\}$ and $\{b_n\}$ are convergent sequences with

$$\lim_{n\to\infty}a_n=L,\qquad \lim_{n\to\infty}b_n=M;$$

Then, we have:

- $\lim_{n\to\infty}(a_n\pm b_n)=\lim_{n\to\infty}a_n\pm\lim_{n\to\infty}b_n=L\pm M;$
- $\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{\lim_{n\to\infty}a_n}{\lim_{n\to\infty}b_n}=\frac{L}{M}, \text{ if } M\neq 0;$
- $\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n = cL, \ (c \text{ a constant;})$

Squeeze Theorem for Sequences

Squeeze Theorem for Sequences

Let $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ be sequences, such that, for some number M,

$$b_n \le a_n \le c_n$$
, for all $n > M$

and

$$\lim_{n\to\infty}b_n=\lim_{n\to\infty}c_n=L;$$

Then $\lim_{n\to\infty} a_n = L$;

• Example: Show that if $\lim_{n \to \infty} |a_n| = 0$, then $\lim_{n \to \infty} a_n = 0$. Note that $-|a_n| \le a_n \le |a_n|$; By hypothesis $\lim_{n \to \infty} |a_n| = 0$; This also implies $\lim_{n \to \infty} (-|a_n|) = -\lim_{n \to \infty} |a_n| = 0$; Now, by the Squeeze Theorem for Sequences, $\lim_{n \to \infty} a_n = 0$;

Geometric Sequences with r < 0

• For $c \neq 0$,

$$\lim_{n \to \infty} c r^n = \left\{ \begin{array}{ll} 0, & \text{if } -1 < r < 0 \\ \text{diverges}, & \text{if } r \leq -1 \end{array} \right.$$

- If -1 < r < 0, then 0 < |r| < 1 and, therefore $\lim_{n \to \infty} |cr^n| = \lim_{n \to \infty} |c| \cdot |r|^n = 0$; Thus, since $-|cr^n| \le cr^n \le |cr^n|$, by the Squeeze Theorem, we get $\lim_{n \to \infty} cr^n = 0$;
- If r=-1, then $\lim_{n\to\infty} (-1)^n c$ diverges, since $|(-1)^n c|=|c|$ and its sign keeps alternating;
- If r<-1, then |r|>1, whence $|cr^n|=|c|\cdot|r|^n\to\infty$, whence $\lim_{n\to\infty}cr^n$ diverges in this case also;

Exploiting Continuity

Theorem

If f(x) is a continuous function and $\lim_{n\to\infty} a_n = L$, then

$$\lim_{n\to\infty} f(a_n) = f(\lim_{n\to\infty} a_n) = f(L);$$

This says, informally speaking, that if f is continuous, we can "push the limit in";

- Example: Since $f(x) = e^x$ and $g(x) = x^2$ are both continuous, we may use this theorem to compute:

 - $\lim_{n \to \infty} e^{\frac{3n}{n+1}} = \lim_{n \to \infty} f(\frac{3n}{n+1}) = f(\lim_{n \to \infty} \frac{3n}{n+1}) = f(3) = e^3;$ $\lim_{n \to \infty} (\frac{3n}{n+1})^2 = \lim_{n \to \infty} g(\frac{3n}{n+1}) = g(\lim_{n \to \infty} \frac{3n}{n+1}) = g(3) = 9;$

Bounded Sequences

- A sequence $\{a_n\}$ is
 - bounded from above if there is a number M, such that $a_n \leq M$, for all n; In this case M is called an **upper bound**;
 - bounded from below if there is a number m, such that $a_n \geq m$, for all n; In this case m is called a **lower bound**;
- $\{a_n\}$ is **bounded** if it is bounded from above and from below; A sequence is **unbounded** if it is not bounded;

$\mathsf{Theorem}$

If $\{a_n\}$ converges, then $\{a_n\}$ is bounded;

Is Every Bounded Sequence Convergent?

Bounded Monotonic Sequences

- A sequence $\{a_n\}$ is
 - increasing if $a_n < a_{n+1}$, for all n;
 - decreasing if $a_n > a_{n+1}$, for all n;
 - monotonic if it is either increasing or decreasing;

Theorem (Bounded Monotonic Sequences Converge)

- If $\{a_n\}$ is increasing and $a_n \leq M$, then a_n converges and $\lim_{n \to \infty} a_n \leq M$;
- If $\{a_n\}$ is decreasing and $a_n \geq m$, then a_n converges and $\lim_{n \to \infty} a_n \geq m$;

Example I

• Show that $a_n = \sqrt{n+1} - \sqrt{n}$ is decreasing and bounded from below; Does $\lim_{n \to \infty} a_n$ exist? \square

We show that a_n is decreasing by two different methods; The first uses the sequence itself, the second uses the corresponding function;

Method 1: Rewrite
$$a_n = \sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} + \sqrt{n})(\sqrt{n+1} - \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}};$$
Now we see
$$a_n = \frac{1}{\sqrt{n+1} + \sqrt{n}} > \frac{1}{\sqrt{(n+1) + 1} + \sqrt{n+1}} = a_{n+1};$$

So $\{a_n\}$ is decreasing;

Method 2: Consider $f(x) = \sqrt{x+1} - \sqrt{x}$ and compute $f'(x) = \frac{1}{2\sqrt{x+1}} - \frac{1}{2\sqrt{x}} < 0$, for x > 0; Thus, since f' < 0, we get that $f \searrow [0, \infty)$, showing that $\{a_n\}$ is a decreasing sequence;

Clearly $a_n = \sqrt{n+1} - \sqrt{n} > 0$, which shows that $\{a_n\}$ is bounded from below;

Example II

 Show that the following sequence is bounded and increasing; Then find its limit:

St.p.701
$$a_1 = \sqrt{2}, \quad a_2 = \sqrt{2\sqrt{2}}, \quad a_3 = \sqrt{2\sqrt{2\sqrt{2}}}, \quad \dots$$

The key here is to realize that $a_{n+1} = \sqrt{2a_n}$, for all n; We show $\{a_n\}$ is bounded: Clearly, $a_1 = \sqrt{2} < 2$; If $a_n < 2$, then $a_{n+1} = \sqrt{2a_n} < \sqrt{2 \cdot 2} = 2$; Therefore, $a_n < 2$, for every $n \ge 1$; Next, we show that $\{a_n\}$ is increasing:

$$a_n = \sqrt{a_n \cdot a_n} < \sqrt{2 \cdot a_n} = a_{n+1};$$

Since $\{a_n\}$ is increasing and bounded from above, the theorem asserts that it converges; Let $\lim_{n\to\infty} a_n = L$; Then

$$a_{n+1} = \sqrt{2a_n} \Rightarrow \lim_{n \to \infty} a_{n+1} = \sqrt{2 \lim_{n \to \infty} a_n} \Rightarrow L = \sqrt{2L} \Rightarrow L^2 = 2L \Rightarrow L^2 - 2L = 0 \Rightarrow L(L-2) = 0 \Rightarrow L = 0 \text{ or } L = 2; \text{ So } \lim_{n \to \infty} a_n = 2;$$

Subsection 2

Summing an Infinite Series

Stewart, 11.2, p.703

$$\pi = 3, 14...$$

Introducing Infinite Series and Partial Sums

 If we look carefully at the figure on the right we realize that

$$1 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \cdots;$$

Infinite sums of this type are called **infinite series**;

• The **partial sum** S_N of an infinite series is the sum of the terms up to and including the N-th term:

$$S_{1} = \frac{1}{2};$$

$$S_{2} = \frac{1}{2} + \frac{1}{4};$$

$$S_{3} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8};$$

$$S_{4} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16};$$

$$\vdots$$

Definition of Infinite Series and Partial Sums

• An **infinite series** is an expression of the form

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + a_4 + \cdots,$$

where $\{a_n\}$ is any sequence;

• Example:

Sequence	General Term	Infinite Series
$\frac{1}{3},\frac{1}{9},\frac{1}{27},\dots$	$a_n = \frac{1}{3^n}$	$\sum_{n=0}^{\infty} \frac{1}{3^n} = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots$
$\frac{1}{1}, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \dots$	$a_n = \frac{1}{n^2}$	$\sum_{n=1}^{n=1} \frac{1}{n^2} = \frac{1}{1} + \frac{1}{4} + \frac{1}{9} + \cdots$

• The N-th partial sum S_N is defined as the finite sum of the terms up to and including a_N :

$$S_N = \sum_{n=1}^N a_n = a_1 + a_2 + \cdots + a_N;$$

Convergence of an Infinite Series

Convergence of an Infinite Series

An infinite series $\sum_{n=k}^{\infty} a_n$ converges to the sum S if its partial sums converge to S:

$$\lim_{N\to\infty} S_N = S;$$

In this case, we write $S = \sum_{n=k}^{\infty} a_n$;

- If the limit $\lim_{N\to\infty} S_N$ does not exist, then we say the infinite series diverges;
- If $\lim_{\substack{N\to\infty\\ \text{infinity};}} S_N = \infty$, then we say that the infinite series **diverges to**

Telescoping Series

• Compute the sum S of the infinite series Stewart, p.707, example 7

$$S = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{1(2)} + \frac{1}{2(3)} + \frac{1}{3(4)} + \frac{1}{4(5)} + \cdots;$$

Note that $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$; Therefore, we have

$$\frac{1}{1\cdot 2} = 1 - \frac{1}{2}, \quad \frac{1}{2\cdot 3} = \frac{1}{2} - \frac{1}{3}, \quad \frac{1}{3\cdot 4} = \frac{1}{3} - \frac{1}{4}, \quad \dots$$

Now, we compute the *N*-th partial sum:

$$S_{N} = \sum_{n=1}^{N} \frac{1}{n(n+1)} = (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4}) + \dots + (\frac{1}{N} - \frac{1}{N+1}) = (1 - \frac{1}{N+1};$$

Therefore, $S = \lim_{N \to \infty} S_N = \lim_{N \to \infty} (1 - \frac{1}{N+1}) = 1 - 0 = 1;$

conv., S=1

Sequence $\{a_n\}$ versus Series $\sum a_n$

• The previous example provides an opportunity to discuss the difference between the sequence $\{a_n\}$ and the infinite series

$$S = \sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots;$$

• The sequence
$$a_n = \frac{1}{n(n+1)}$$
 is the list of numbers $\frac{1}{1 \cdot 2}, \quad \frac{1}{2 \cdot 3}, \quad \frac{1}{3 \cdot 4}, \quad \dots$ Clearly $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n(n+1)} = 0;$

• On the other hand, for the sum of the infinite series $S = \sum a_n$, we

look **not** at $\lim_{n\to\infty} a_n$, but rather at $\lim_{N\to\infty} S_N$, where

$$S_N = \sum_{n=1}^N a_n = \frac{1}{1(2)} + \frac{1}{2(3)} + \frac{1}{3(4)} + \cdots + \frac{1}{N(N+1)};$$

We saw that this limit is 1, not 0!

Linearity of Infinite Series

Theorem 8, p.709 Stewart

Linearity of Infinite Series

If the infinite series $\sum a_n$ and $\sum b_n$ converge, then the series $\sum (a_n \pm b_n)$ and $\sum ca_n$ also converge and we have

$$\bullet \sum a_n - \sum b_n = \sum (a_n - b_n);$$

 In the sequel, we will be interested in establishing techniques for determining whether an infinite series converges or diverges;

- A geometric series with ratio $r \neq 0$ is a series defined by the geometric sequence cr^n , where $c \neq 0$;
- The series looks like

$$S = \sum_{n=0}^{\infty} cr^n = c + cr + cr^2 + cr^3 + cr^4 + \cdots;$$

• The following work determines the N-th partial sum S_N of the geometric series:

$$S_N = c + cr + cr^2 + cr^3 + \dots + cr^N$$
 $rS_N = cr + cr^2 + cr^3 + \dots + cr^N + cr^{N+1}$
 $S_N - rS_N = c - cr^{N+1}$
 $S_N(1-r) = c(1-r^{N+1})$ the sum of the first N terms of the geometric progression
$$S_N = \frac{c(1-r^{N+1})}{1-r};$$

- If |r| < 1, the the Geometric Series converges and $S = \frac{c}{1-r}$;
- If $|r| \ge 1$, it diverges;

Stewart, example 2, p.705-706

Examples I

• Evaluate $\sum 5^{-n}$; Stewart, p.707, examples 3-6

$$\sum_{n=0}^{\infty} 5^{-n} = \sum_{n=0}^{\infty} \left(\frac{1}{5}\right)^{n} \stackrel{c=1, r=\frac{1}{5} < 1}{= \frac{1}{1 - \frac{1}{5}}} = \frac{5}{4};$$

• Evaluate $\sum_{n=0}^{\infty} 7\left(-\frac{3}{4}\right)^n$;

$$\sum_{n=3}^{\infty} 7(-\frac{3}{4})^n = 7(-\frac{3}{4})^3 + 7(-\frac{3}{4})^4 + 7(-\frac{3}{4})^5 + \cdots$$

$$= 7(-\frac{3}{4})^3 [1 + (-\frac{3}{4}) + (-\frac{3}{4})^2 + \cdots]$$

$$\stackrel{c=1, r=-\frac{3}{4}}{=} 7(-\frac{3}{4})^3 \frac{1}{1 - (-\frac{3}{4})}$$

$$= -\frac{189}{64} \cdot \frac{4}{7} = -\frac{27}{16};$$

Examples II

• Evaluate
$$S = \sum_{n=0}^{\infty} \frac{2+3^n}{5^n}$$
;

$$S = \sum_{n=0}^{\infty} \frac{2+3^n}{5^n}$$

$$= \sum_{n=0}^{\infty} \frac{2}{5^n} + \sum_{n=0}^{\infty} \frac{3^n}{5^n}$$

$$= 2\sum_{n=0}^{\infty} \left(\frac{1}{5}\right)^n + \sum_{n=0}^{\infty} \left(\frac{3}{5}\right)^n$$

$$= 2 \cdot \frac{1}{1 - \frac{1}{5}} + \frac{1}{1 - \frac{3}{5}}$$

$$= 2 \cdot \frac{5}{4} + \frac{5}{2}$$

$$= 5$$

Theorem. If the series
$$\sum_{n=1}^{\infty} a_n$$
 is convergent, $a_n \rightarrow 0$, $a_n \rightarrow 0$

Proof $a_n = a_n + a_n + a_n$
 $a_n = a_n + a_n$

Divergence Test

Stewart, Theorem 7,p.709

Divergence Test

If the *n*-th term a_n does not converge to 0, i.e., if $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=0}^{\infty} a_n$ diverges:

series $\sum_{n=0}^{\infty} a_n$ diverges;

• Example: Prove the divergence of $S = \sum_{n=1}^{\infty} \frac{n}{4n+1}$;

Clearly, $\lim_{n\to\infty}\frac{n}{4n+1}=\frac{1}{4}\neq 0$; Thus, by the Divergence Test, Sdiverges;

• Example: Determine the convergence or divergence of

$$S = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n+1} = \frac{1}{2} - \frac{2}{3} + \frac{3}{4} - \frac{4}{5} + \cdots;$$

The *n*-th term $a_n = (-1)^{n-1} \frac{n}{n+1}$ does not approach a limit; To see this, note that:

• for even indices,

$$\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} (-1)^{2n-1} \frac{2n}{2n+1} = \lim_{n \to \infty} \frac{-2n}{2n+1} = -1;$$

• for odd indices,

$$\lim_{n\to\infty} a_{2n+1} = \lim_{n\to\infty} (-1)^{2n+1-1} \frac{2n+1}{2n+1+1} = \lim_{n\to\infty} \frac{2n+1}{2n+2} = 1;$$

Since $\lim_{n\to\infty} a_n \neq 0$, by the Divergence Test, S diverges;

If $\lim_{n\to\infty} a_n = 0$, Cannot Apply Divergence Test

• Prove the divergence of $S = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots$;

Note that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$; Therefore, the Divergence Test cannot be applied; We must find another way to prove that the series diverges; We will use comparison instead!

$$S_{N} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{N}}$$

$$\geq \frac{1}{\sqrt{N}} + \frac{1}{\sqrt{N}} + \frac{1}{\sqrt{N}} + \dots + \frac{1}{\sqrt{N}}$$

$$= N \frac{1}{\sqrt{N}} = \sqrt{N};$$

Now note that $\lim_{N\to\infty}\sqrt{N}=\infty$; Therefore, since $S_N\geq \sqrt{N}$, we also have $\lim_{N\to\infty}S_N=\infty$, showing that S diverges to infinity;