MATH 217 (Fall 2021)

Honors Advanced Calculus, I

Midterm Practice Problems

1. Compute Δf for

$$f: \mathbb{R}^3 \setminus \{(0,0,0)\} \to \mathbb{R}, \quad (x,y,z) \mapsto \frac{1}{\sqrt{x^2 + y^2 + z^2}}.$$

Solution: For $(x, y, z) \neq (0, 0, 0)$, we have

$$\frac{\partial f}{\partial x} = -\frac{x}{\sqrt{x^2 + y^2 + z^2}}, \qquad \frac{\partial f}{\partial y} = -\frac{y}{\sqrt{x^2 + y^2 + z^2}},$$
and
$$\frac{\partial f}{\partial z} = -\frac{z}{\sqrt{x^2 + y^2 + z^2}},$$

so that

$$\begin{split} \frac{\partial^2 f}{\partial x^2} &= -\frac{1}{\sqrt{x^2 + y^2 + z^2}^3} + \frac{3x^2}{\sqrt{x^2 + y^2 + z^2}^5}, \\ \frac{\partial^2 f}{\partial y^2} &= -\frac{1}{\sqrt{x^2 + y^2 + z^2}^3} + \frac{3y^2}{\sqrt{x^2 + y^2 + z^2}^5}, \\ \text{and} \quad \frac{\partial^2 f}{\partial z^2} &= -\frac{1}{\sqrt{x^2 + y^2 + z^2}^3} + \frac{3z^2}{\sqrt{x^2 + y^2 + z^2}^5}. \end{split}$$

It follows that

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

$$= -\frac{3}{\sqrt{x^2 + y^2 + z^2}} + 3\frac{x^2 + y^2 + z^2}{\sqrt{x^2 + y^2 + z^2}}$$

$$= -\frac{3}{\sqrt{x^2 + y^2 + z^2}} + \frac{3}{\sqrt{x^2 + y^2 + z^2}}$$

$$= 0$$

2. Let $\emptyset \neq D \subset \mathbb{R}^N$, let $f: D \to \mathbb{R}^M$ be continuous, and let $(x_n)_{n=1}^{\infty}$ be a Cauchy sequence in D. Show that $(f(x_n))_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{R}^M if D is closed or if f is uniformly continuous.

Does this remain true without any additional requirements for D or f?

Solution: Suppose that D is closed. As $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence, it converges to a limit $x_0 \in \mathbb{R}^N$ that—due to the closedness of D—must lie in D. As f is continuous, it follows that $\lim_{n\to\infty} f(x_n) = f(x_0)$, so that $(f(x_n))_{n=1}^{\infty}$ is also a Cauchy sequence.

1

Suppose that f is uniformly continuous. Let $\epsilon > 0$. By the uniform continuity of f, there is $\delta > 0$ such that $||f(x) - f(y)|| < \epsilon$ for all $x, y \in D$ such that $||x - y|| < \delta$. As $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence, there is $n_0 \in \mathbb{N}$ such that $||x_n - x_m|| < \delta$ for all $n, m \geq n_0$. From the choice of $\delta > 0$ it thus follows that $||f(x_n) - f(x_m)|| < \epsilon$ for all $n, m \geq n_0$. Hence, $(f(x_n))_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{R}^M .

Let D = (0, 1], and let

$$f: D \to \mathbb{R}, \quad x \mapsto \frac{1}{x}.$$

Then D is not closed, and f is continuous, but not uniformly continuous. For $n \in \mathbb{N}$, set $x_n := \frac{1}{n}$. Then $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence in D, but as $f(x_n) = n$ for $n \in \mathbb{N}$, the sequence $(f(x_n))_{n=1}^{\infty}$ is definitely not a Cauchy sequence.

3. Show that:

- (a) if C is a family of connected subsets of \mathbb{R}^N such that $\bigcap_{C \in C} C \neq \emptyset$, then $\bigcup_{C \in C} C$ is connected;
- (b) if $C_1 \subset \mathbb{R}^{N_1}$ and $C_2 \subset \mathbb{R}^{N_2}$ are connected, then so is $C_1 \times C_2 \subset \mathbb{R}^{N_1+N_2}$ (*Hint*: Argue that we can suppose that C_1 and C_2 are not empty, and fix $x_2 \in C_2$; then apply (a) to $\mathcal{C} := \{(C_1 \times \{x_2\}) \cup (\{x_1\} \times C_2) : x_1 \in C_1\}.)$;
- (c) if $C_1, C_2 \subset \mathbb{R}^N$ are connected, then so is $C_1 + C_2 \subset \mathbb{R}^N$.

Solution:

(a) Assume that there is a disconnection $\{U,V\}$ for $\bigcup_{C\in\mathcal{C}}C$. For any $C\in\mathcal{C}$, we then have $(U\cap C)\cup (V\cap C)=C$ and $(U\cap C)\cap (V\cap C)=\varnothing$, and as C is connected, this means that $C\subset U$ or $C\subset V$. It follows that

$$\varnothing = \left(U \cap \bigcup_{C \in \mathcal{C}} C\right) \cap \left(V \cap \bigcup_{C \in \mathcal{C}} C\right) = \bigcap_{\substack{C \in \mathcal{C} \\ C \subset U}} C \cap \bigcap_{\substack{C \in \mathcal{C} \\ C \subset V}} C = \bigcap_{C \in \mathcal{C}} C,$$

which contradicts $\bigcap_{C \in \mathcal{C}} C \neq \emptyset$.

(b) Let $C_1 \subset \mathbb{R}^{N_1}$ and $C_2 \subset \mathbb{R}^{N_2}$ be connected. If $C_1 = \emptyset$ or $C_2 = \emptyset$, nothing needs to be shown. Hence, suppose that $C_1 \neq \emptyset \neq C_2$. Fix $x_2 \in C_2$. As $C_1 \times \{x_2\}$ is the image of C_1 under the continuous map

$$\mathbb{R}^{N_1} \to \mathbb{R}^{N_1+N_2}, \quad x \mapsto (x, x_2),$$

it follows that $C_1 \times \{x_2\}$ is connected. Analogously, one sees that $\{x_1\} \times C_2$ is connected for each $x_1 \in C_1$. As $(x_1, x_2) \in (C_1 \times \{x_2\}) \cap (\{x_1\} \times C_2)$, it follows that $(C_1 \times \{x_2\}) \cup (\{x_1\} \times C_2)$ is connected for each $x_1 \in C_1$. As

$$\emptyset \neq C_1 \times \{x_2\} \subset \bigcap_{x_1 \in C_1} ((C_1 \times \{x_2\}) \cup (\{x_1\} \times C_2)),$$

we conclude that

$$C_1 \times C_2 = \bigcup_{x_1 \in C_1} ((C_1 \times \{x_2\}) \cup (\{x_1\} \times C_2))$$

is connected.

(c) By (b), $C_1 \times C_2$ is connected. As

$$f: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N, \quad (x, y) \mapsto x + y$$

is continuous, $C_1 + C_2 = f(C_1 \times C_2)$ is connected as well.

4. Show that the Mean Value Theorem becomes false for vector valued functions: Let

$$f: [0, 2\pi] \to \mathbb{R}^2, \quad x \mapsto (\cos(x), \sin(x)).$$

Show that there is $no \xi \in (0, 2\pi)$ such that

$$f'(\xi) = \frac{f(2\pi) - f(0)}{2\pi}.$$

Solution: Since f is 2π -periodic, we have $f(2\pi) - f(0) = 0$. Since

$$f'(x) = (-\sin(x), \cos(x))$$

for $x \in [0, 2\pi]$, and since $\sin(x)$ and $\cos(x)$ have no common zero, there is no $\xi \in (0, 2\pi)$ such that $f'(\xi) = 0$.

5. Let

$$f \colon \mathbb{R}^2 \to \mathbb{R}, \quad (x,y) \mapsto \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0), \\ 0, & \text{otherwise.} \end{cases}$$

Show that f is twice partially differentiable everywhere, but that

$$\frac{\partial^2 f}{\partial y \partial x}(0,0) \neq \frac{\partial^2 f}{\partial x \partial y}(0,0).$$

Is f continuous at (0,0)?

Solution: It is clear that f is twice partially differentiable on $\mathbb{R}^2 \setminus \{(0,0)\}$. In order to calculate the second partial derivatives at (0,0), we first need to determine the first partial derivatives of f.

For $(x,y) \neq (0,0)$, we obtain

$$\begin{split} \frac{\partial f}{\partial x}(x,y) &= y \frac{x^2 - y^2}{x^2 + y^2} + xy \frac{2x(x^2 + y^2) - 2x(x^2 - y^2)}{(x^2 + y^2)^2} \\ &= y \frac{x^2 - y^2}{x^2 + y^2} + \frac{4x^2y^3}{(x^2 + y^2)^2} \end{split}$$

and

$$\frac{\partial f}{\partial y}(x,y) = x \frac{x^2 - y^2}{x^2 + y^2} + xy \frac{2y(x^2 + y^2) + 2y(x^2 - y^2)}{(x^2 + y^2)^2}$$
$$= x \frac{x^2 - y^2}{x^2 + y^2} + \frac{4x^3y^2}{(x^2 + y^2)^2}.$$

From the definition of a partial derivative, we obtain furthermore that

$$\frac{\partial f}{\partial x}(0,0) = \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{f(h,0) - f(0,0)}{h} = \lim_{\substack{h \to 0 \\ h \neq 0}} 0 = 0,$$

and, similarly, $\frac{\partial f}{\partial y}(0,0) = 0$.

Consequently, we have

$$\frac{\partial^2 f}{\partial x^2}(0,0) = \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{1}{h} \left(\frac{\partial f}{\partial x}(h,0) - \frac{\partial f}{\partial x}(0,0) \right) = 0$$

and similarly $\frac{\partial^2 f}{\partial y^2}(0,0) = 0$.

Moreover, we have

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{1}{h} \left(\frac{\partial f}{\partial y}(h,0) - \frac{\partial f}{\partial y}(0,0) \right)$$
$$= \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{1}{h} h \frac{h^2}{h^2}$$
$$= 1$$

and

$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{1}{h} \left(\frac{\partial f}{\partial x}(0,h) - \frac{\partial f}{\partial y}(0,0) \right)$$
$$= \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{1}{h} h \frac{-h^2}{h^2}$$

Hence, f is twice partially differentiable at (0,0), but

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = 1 \neq -1 = \frac{\partial^2 f}{\partial y \partial x}(0,0).$$

As

$$|f(x,y)| = |xy| \frac{|x^2 - y^2|}{x^2 + y^2} \le |xy| \frac{x^2 + y^2}{x^2 + y^2} = |xy|$$

for $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}$, it clear that $\lim_{(x, y) \to (0, 0)} f(x, y) = 0 = f(0, 0)$, so that f is continuous at (0, 0).

6. Show that

$$\mathbb{Q}\left[\sqrt{13}\right] := \left\{p + q\sqrt{13} : p, q \in \mathbb{Q}\right\},\,$$

with + and \cdot inherited from \mathbb{R} , is a field.

Solution: Let $p, q, r, s \in \mathbb{Q}$. Then

$$\left(p + \sqrt{13}q\right) + \left(r + \sqrt{13}s\right) = (p+r) + (q+s)\sqrt{13} \in \mathbb{Q}\left[\sqrt{13}\right]$$

and

$$\left(p+\sqrt{13}q\right)\left(r+\sqrt{13}s\right)=\underbrace{\left(pr+13qs\right)}_{\in\mathbb{Q}}+\underbrace{\left(qr+ps\right)}_{\in\mathbb{Q}}\sqrt{13}\in\mathbb{Q}\left[\sqrt{13}\right]$$

hold, so that (F 1) is satisfied.

Since (F 2), (F 3), and (F 4) hold for \mathbb{R} , they also hold for $\mathbb{Q}\left[\sqrt{13}\right]$.

Since $0 = 0 + 0\sqrt{13}$, $1 = 1 + 0\sqrt{13} \in \mathbb{Q}\left[\sqrt{13}\right]$, (F 5) is satisfied as well.

Let $p,q\in\mathbb{Q}$, and let $x=p+q\sqrt{13}$. Then $-x=-p-q\sqrt{13}\in\mathbb{Q}\left[\sqrt{13}\right]$ as well. Suppose that $x\neq 0$. Assume that $p^2-13q^2=0$. If q=0, this implies that p=0 as well and thus x=0. Suppose therefore that $q\neq 0$. Then $p^2-13q^2=0$ implies $\sqrt{13}=\frac{|p|}{|q|}\in\mathbb{Q}$, which is impossible. Hence, $p^2-13q^2\neq 0$ holds. Let

$$y := \frac{p}{p^2 - 13q^2} - \frac{q}{p^2 - 13q^2} \sqrt{13} \in \mathbb{Q}\left[\sqrt{13}\right].$$

Then we have

$$xy = \frac{p - q\sqrt{13}}{p^2 - 13q^2} \left(p + q\sqrt{13} \right)$$

$$= \frac{\left(p - q\sqrt{13} \right) \left(p + q\sqrt{13} \right)}{p^2 - 13q^2}$$

$$= \frac{p^2 - 13q^2}{p^2 - 13q^2}$$

$$= 1$$

Hence, (F 6) is also satisfied.

7. Show that the function

$$f: \mathbb{R}^N \times (\mathbb{R} \setminus \{0\}) \to \mathbb{R}, \quad (x,t) \mapsto \frac{1}{t^{\frac{N}{2}}} \exp\left(-\frac{\|x\|^2}{4t}\right)$$

solves the *heat equation*

$$\Delta f - \frac{\partial f}{\partial t} = 0,$$

where Δ denotes the *spatial* Laplace operator, i.e.,

$$\Delta f = \sum_{j=1}^{N} \frac{\partial^2 f}{\partial x_j^2}.$$

Solution: Note that

$$f(x_1, \dots, x_N, t) = \frac{1}{t^{\frac{N}{2}}} \exp\left(-\frac{x_1^2 + \dots + x_N^2}{4t}\right)$$

for $x_1, \ldots, x_N, t \in \mathbb{R}$ with $t \neq 0$. It follows for $j = 1, \ldots, N$ that

$$\frac{\partial f}{\partial x_j}(x,t) = \frac{1}{t^{\frac{N}{2}}} \exp\left(-\frac{x_1^2 + \dots + x_N^2}{4t}\right) \left(-\frac{x_j}{2t}\right)$$
$$= -\frac{x_j}{2t^{\frac{N}{2}+1}} \exp\left(-\frac{x_1^2 + \dots + x_N^2}{4t}\right)$$

and thus

$$\begin{split} \frac{\partial^2 f}{\partial x_j^2}(x,t) &= -\frac{1}{2t^{\frac{N}{2}+1}} \exp\left(-\frac{x_1^2 + \dots + x_N^2}{4t}\right) \\ &- \frac{x_j}{2t^{\frac{N}{2}+1}} \exp\left(-\frac{x_1^2 + \dots + x_N^2}{4t}\right) \left(-\frac{x_j}{2t}\right) \\ &= -\frac{1}{2t^{\frac{N}{2}+1}} \exp\left(-\frac{x_1^2 + \dots + x_N^2}{4t}\right) \\ &+ \frac{x_j^2}{4t^{\frac{N+1}{2}}} \exp\left(-\frac{x_1^2 + \dots + x_N^2}{4t}\right) \\ &= \left(\frac{x_j^2}{4t^{\frac{N+1}{2}}} - \frac{1}{2t^{\frac{N}{2}+1}}\right) \exp\left(-\frac{x_1^2 + \dots + x_N^2}{4t}\right). \end{split}$$

It follows that

$$\begin{split} \Delta f(x,t) &= \sum_{j=1}^N \frac{\partial^2 f}{\partial x_j^2}(x,t) \\ &= \sum_{j=1}^N \left(\frac{x_j^2}{4t^{\frac{N+1}{2}}} - \frac{1}{2t^{\frac{N}{2}+1}} \right) \exp\left(-\frac{x_1^2 + \dots + x_N^2}{4t} \right) \\ &= \left(\frac{\|x\|^2}{4t^{\frac{N+1}{2}}} - \frac{N}{2t^{\frac{N}{2}+1}} \right) \exp\left(-\frac{x_1^2 + \dots + x_N^2}{4t} \right) \end{split}$$

On the other hand, we have

$$\begin{split} \frac{\partial f}{\partial t}(x,t) &= -\frac{N}{2} \frac{1}{t^{\frac{N}{2}+1}} \exp\left(-\frac{\|x\|^2}{4t}\right) + \frac{1}{t^{\frac{N}{2}}} \frac{\|x\|^2}{4t^2} \exp\left(-\frac{\|x\|^2}{4t}\right) \\ &= \left(\frac{\|x\|^2}{4t^{\frac{N+1}{2}}} - \frac{N}{2t^{\frac{N}{2}+1}}\right) \exp\left(-\frac{\|x\|^2}{4t}\right) \\ &= \Delta f(x,t), \end{split}$$

so that f solves the heat equation.