Institut Supérieur des Etudes Technologiques de Mahdia Devoir Surveillé SYSTEMES LOGIQUES II Classe : LE 2 Documents non autorisés Date : Date :

Synthèse des systèmes logiques séquentiels asynchrones par la méthode de Huffman

A. Cahier de charges:

Le système est constitué de :

- Un capteur de position haute (a).
- Un capteur de position basse (b).
- Un bouton poussoir de marche(m).
- Un moteur commandable dans deux sens : (L) pour la descente et (H) pour la montée.

Le fonctionnement du système est comme suit :

- La perceuse est initialement en position haute (a).
- Lorsque l'opérateur appuie sur le bouton marche(m), la perceuse descend jusqu'à la position basse (b) pour, ainsi, effectuer le perçage de la pièce. Elle doit, ensuite, remonter à sa position initiale.
- Le même cycle est relancé de nouveau à l'activation du bouton (m).

Le diagramme d'états de ce système est donné par la figure ci-dessous dont pour chaque état on indique les états logiques des entrées et sorties. Ici abm/LH. (abm : entrées /LH : sorties)

Page 1 sur 3

/20

B. Travail demandé:

1. Compléter la matrice primitive ci-dessous : 3 pts

abm	000	001	011	010	110	111	101	100	L	Н
Etats										
E ₁	6	-	-	-	1	-	2	$\left(\begin{array}{c}1\end{array}\right)$	0	0
E ₂	-	-	-	-	-	-	2	3	1	0
E ₃	4	-	-	-	-	-	2	(3)	1	0
E ₄	4	-	-	5	-	-	-	-	1	0
E ₅	6	-	-	5	-	-	-	-	0	1
E ₆	6	-	-	-	-	-	-	1	0	1

2. Rappeler les règles à suivre pour la détermination des états équivalents : 3 pts

Pour que les états soient équivalents, il faut qu'ils soient sur <u>la même colonne</u> et présentant des <u>transitions identiques</u> c'est-à-dire <u>un état stable et un état transitoire de même numéro</u> ou <u>deux états</u> <u>transitoires de même numéro</u>. De préférence, les états doivent présenter <u>le même état de sortie</u>.

- 3. Indiquer alors les états équivalents du notre système : 2 pts
- Les états E1, E5 et E6 présentent des transitions identiques, sont situés sur la même colonne et donc $E1 \equiv E5 \equiv E6$.
- Les états E2, E3 et E4 présentent des transitions identiques, sont situés sur la même colonne et ont le état de sortie donc $E2 \equiv E3 \equiv E4$.
 - 4. En précisant les règles de fusion des états équivalents, compléter la matrice réduite cidessous : 1.5 pts
 - Un état stable avec un état transitoire de même numéro.
 - Deux états transitoires de même numéro.
 - Un état stable ou un état transitoire avec un état indifférent

NE RIEN ECRIRE ICI

abm	000	001	011	010	110	111	101	100
Etats								
E1 ;E5 ;E6	(₆)	-	-	(5)	-	-	2	1
E2 ;E3 ;E4	4	-	-	5	-	-	(2)	(3)

2 pts

- 5. Rappeler la relation entre le nombre de ligne de la matrice réduite et le nombre des relais secondaire associé, puis donner le nombre des sorties auxiliaires du système étudié.
 - Nombre des lignes de la matrice réduite $= 2^{nombre des sorties secondaires}$
- Pour notre exemple ; la matrice réduite contient deux lignes $(2 = 2^1)$ donc on obtient une seule sortie auxiliaire.
- 6. En vue de déterminer les équations des sorties secondaires et des sorties principales en fonction des entrées abm et la sortie auxiliaire x, compléter les matrices ci-dessous :

abm x	000	001	011	010	110	111	101	100
0	0	φ	φ	0	ϕ	φ	1	0
1	1	ϕ^{-}	ϕ	0	φ	ϕ	1	1

1.5 pts

1.5 pts

$$X = m + b.\bar{x}$$

1.5 pts

abm	000	001	011	010	110	111	101	100
0	0	ϕ	ϕ	0	ϕ	ϕ	ϕ	0
1	$[\ _{1} \]$	_	$\mid \phi \mid$			_	г 1	Г '

abm	000	001	011	010	110	111	101	100
x 0	1	φ -	΄ _φ –	1	ϕ^{-1}	ϕ^{-1}	0 -	0
1	$\begin{bmatrix} - \\ 0 \end{bmatrix}$	φ -	ϕ	ϕ	ϕ	ϕ		$\begin{bmatrix} 0 \end{bmatrix}$

L = x

 $H = \bar{a}.\bar{x}$

7. Tracer alors le logigramme correspondant :

Page 3 sur 3