Pumas.jl Workshop Solutions

Chris Rackauckas, Vijay Ivaturi

February 17, 2020

1 Problem 1: Simulate a first-order absorption model with linear elimination after a 100 mg oral dose in 24 subjects

Parameters are: Ka = 1 hr-1, CL = 1 L/hr, V = 20 L/hr.

1.1 Part 1: Setup the population

using Pumas, Plots, CSV, Random Random.seed!(0)

Random.MersenneTwister(UInt32[0x00000000], Random.DSFMT.DSFMT_state(Int32[7 48398797, 1073523691, -1738140313, 1073664641, -1492392947, 1073490074, -16 25281839, 1073254801, 1875112882, 1073717145 ... 943540191, 1073626624, 109 1647724, 1073372234, -1273625233, -823628301, 835224507, 991807863, 382, 0] 00000000000], 1002, 0)

single_dose_regimen = DosageRegimen(100, time=0)
first(single_dose_regimen.data)

	time	cmt	amt	evid	ii	addl	rate	duration	SS
	Float64	Int64	Float64	Int8	Float64	Int64	Float64	Float64	Int8
1	0.0	1	100.0	1	0.0	0	0.0	0.0	0

to build a single subject

s1 = Subject(id=1, evs=single_dose_regimen,cvs=(Wt=70,))

```
Subject
   ID: 1
   Events: 1
   Covariates: (Wt = 70,)

let's first define a function to choose body weight randomly
choose_covariates() = (Wt = rand(55:80),)

choose_covariates (generic function with 1 method)
```

Then, we use generate a population of subjects with a random weight generated from the covariate function above

```
pop = Population(map(i -> Subject(id = i,evs = single_dose_regimen, cvs =
choose_covariates()),1:24))

Population
   Subjects: 24
   Covariates: Wt
```

You can view the generated population using by calling a random subject by index and look at the subject's

- covariates
- events
- id numbers
- observations
- time

Let us us peek at the first subject's covariates pop[1].covariates

```
(Wt = 55,)
```

1.2 Part 2: Write the model

```
Ka = tvka * exp(\eta[3])
  @covariates Wt
  Odynamics Depots1Central1
    #@dynamics begin
       Depot' = -Ka*Depot
      Central' = Ka*Depot - (CL/V)*Central
  @derived begin
      cp = 0. 1000*(Central / V)
      dv ~ @. Normal(cp, sqrt(cp^2*σ_prop))
    end
end
PumasModel
 Parameters: tvcl, tvv, tvka, \Omega, \sigma_prop
 Random effects: \eta
 Covariates: Wt
 Dynamical variables: Depot, Central
 Derived: cp, dv
  Observed: cp, dv
```

Note that above, we are using the analytical solution in **@dynamics**. You can switch to using the differential equation system if you prefer.

1.3 Part 3: Simulate

Let's first extract the model parameters

Then using the simobs function, carry out the simulation and visualize the simulation output

```
obs = simobs(mymodel, pop, param, obstimes=0:1:72)
plot(obs)
```

where

- mymodel is the model setup in the Part 2,
- pop is the population of subjects that was setup in Part 1
- param is the specified set of model parameters
- obstimes specifies the simulation time period.

2 Problem 2: Peform Non-compartmental analysis

We will start by generating a dataframe of the resuls from the simulation step

```
simdf = DataFrame(obs)
first(simdf, 6)
```

	id	$_{ m time}$	$^{\mathrm{cp}}$	dv	amt	evid	cmt	rate	Wt
	String	Int64	Float64	Float64	Float64	Int8	Int64	Float64	Int64
1	1	0	0.0	0.0	100.0	1	1	0.0	55
2	1	0	0.0	0.0	0.0	0		0.0	55
3	1	1	5993.99	6699.63	0.0	0		0.0	55
4	1	2	6866.37	6459.5	0.0	0		0.0	55
5	1	3	6662.28	7583.15	0.0	0		0.0	55
6	1	4	6253.33	6887.26	0.0	0		0.0	55

For the purpose of NCA, let us use the cp (output without residual error) as our observed value

To prepare the dataset for NCA analysis, let us use the read_nca function. The NCA datasets in Pumas requires a route specification which can either be iv or ev. Since this is an oral drug administration, lets add that to the simdf.

```
simdf[!, :route] .= "ev"
1776-element Array{String,1}:
"ev"
 "ev"
```

Next we can define time, concentration and dose units so the report includes the units for the pharmacokinetic parameters. The general syntax for units are u followed by the unit in quotes "".

```
"14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24"] concentration: mg L^-1 time: hr auc: mg hr L^-1 aumc: mg hr^2 L^-1 \lambdaz: hr^-1 dose: mg
```

You can view the concentration-time plots by doing plot(ncadf)

You can then generate cmax and auc for each subject auc = NCA.auc(ncadf)

	id	auc
	String	Unitful
1	1	108523.0 mg hr L-1
2	2	$1.37362\mathrm{e}5~\mathrm{mg}$ hr L -1
3	3	$77472.5~\mathrm{mg}$ hr L -1
4	4	$1.51225\mathrm{e}5~\mathrm{mg}$ hr L -1
5	5	$84021.7~\mathrm{mg}$ hr L -1
6	6	$1.2242\mathrm{e}5~\mathrm{mg}$ hr L -1
7	7	$59389.0~\mathrm{mg}$ hr L -1
8	8	$1.07756\mathrm{e}5~\mathrm{mg}$ hr L -1
9	9	$130008.0~\mathrm{mg}$ hr L -1
10	10	$1.22717\mathrm{e}5~\mathrm{mg}$ hr L -1
11	11	$1.02494\mathrm{e}5~\mathrm{mg}$ hr L -1
12	12	$96274.4~\mathrm{mg}$ hr L -1
13	13	$2.12502\mathrm{e}5~\mathrm{mg}$ hr L -1
14	14	$1.93418\mathrm{e}5~\mathrm{mg}$ hr L -1
15	15	$1.04152\mathrm{e}5~\mathrm{mg}$ hr L -1
16	16	$61961.3~\mathrm{mg}$ hr L -1
17	17	$84879.5~\mathrm{mg}$ hr L -1
18	18	$1.43681\mathrm{e}5~\mathrm{mg}$ hr L -1
19	19	$79255.8~\mathrm{mg}$ hr L -1
20	20	$98306.3~\mathrm{mg}$ hr L -1
21	21	$1.46144\mathrm{e}5~\mathrm{mg}$ hr L-1
22	22	$1.03207\mathrm{e}5~\mathrm{mg}$ hr L -1
23	23	$1.33058\mathrm{e}5~\mathrm{mg}$ hr L -1
24	24	$67737.9~\mathrm{mg}$ hr L -1

cmax = NCA.cmax(ncadf)

	id	cmax
	String	Unitful
1	1	6866.37 mg L-1
2	2	$3469.66~\mathrm{mg}$ L-1
3	3	$2710.07~\mathrm{mg}$ L-1
4	4	$3786.48~\mathrm{mg}$ L-1
5	5	$3059.08~\mathrm{mg}$ L-1
6	6	$3733.26~\mathrm{mg}$ L-1
7	7	$4540.05~\mathrm{mg}$ L-1
8	8	$3265.54~\mathrm{mg}$ L-1
9	9	$3496.55~\mathrm{mg}$ L-1
10	10	$3511.88~\mathrm{mg}$ L-1
11	11	$4795.13~\mathrm{mg}$ L-1
12	12	$3749.97~\mathrm{mg}$ L-1
13	13	$3590.13~\mathrm{mg}$ L-1
14	14	4993.79 mg L1
15	15	$5804.5~\mathrm{mg}$ L-1
16	16	$2597.4~\mathrm{mg}$ L-1
17	17	$3987.81~\mathrm{mg}$ L-1
18	18	7845.09 mg L1
19	19	$4590.03~\mathrm{mg}$ L-1
20	20	$5839.47~\mathrm{mg}$ L-1
21	21	$3110.65~\mathrm{mg}$ L-1
22	22	$8147.68~\mathrm{mg}$ L-1
23	23	$4624.67~\mathrm{mg}$ L-1
24	24	$2785.83~\mathrm{mg}~\mathrm{L-1}$

Or generate the entire NCA report using

```
report = NCAReport(ncadf)
report = NCA.to_dataframe(report)
first(report,6)
```

	id	doseamt	$lambda_z$	half_life	tmax	tlag	cmax	clast
	String	Unitful	Unitful	Unitful	Unitful	Unitful	Unitful	Unitfu
1	1	100.0 mg	0.0730531 hr-1	9.48826 hr	2 hr	0 hr	6866.37 mg L-1	43.6488 m
2	2	100.0 mg	0.028807 hr-1	24.0618 hr	5 hr	0 hr	$3469.66~\mathrm{mg}$ L-1	518.298 m
3	3	100.0 mg	0.0402099 hr-1	17.2382 hr	3 hr	0 hr	$2710.07~\mathrm{mg}$ L-1	180.311 m
4	4	100.0 mg	0.0283742 hr-1	24.4288 hr	4 hr	0 hr	$3786.48~\mathrm{mg}$ L-1	578.314 m
5	5	100.0 mg	0.0426007 hr-1	$16.2708~\mathrm{hr}$	4 hr	0 hr	$3059.08~\mathrm{mg}$ L-1	176.002 m
6	6	$100.0~\mathrm{mg}$	0.0344511 hr-1	$20.1197~\mathrm{hr}$	4 hr	0 hr	$3733.26~\mathrm{mg}$ L-1	366.833 m

3 Problem 3: Estimate using Non-linear mixed effects

We can use the simulated dataset in the Problem 1 for our estimation. We need a couple of data manipulation steps

- 1. missing cmt should be converted to 2 to reflect central compartment
- 2. data rows where time = 0, and cp=0 should be removed

```
simdf.cmt = ifelse.(ismissing.(simdf.cmt), 2, simdf.cmt)
est_df = simdf[.!((simdf.dv .== 0.0) .& (simdf.cmt .==2)),:]
first(est_df,6)
```

	id	$_{ m time}$	$^{\mathrm{cp}}$	dv	amt	evid	cmt	rate	Wt	route
	String	Int64	Float64	Float64	Float64	Int8	Int64	Float64	Int64	String
1	1	0	0.0	0.0	100.0	1	1	0.0	55	ev
2	1	1	5993.99	6699.63	0.0	0	2	0.0	55	ev
3	1	2	6866.37	6459.5	0.0	0	2	0.0	55	ev
4	1	3	6662.28	7583.15	0.0	0	2	0.0	55	ev
5	1	4	6253.33	6887.26	0.0	0	2	0.0	55	ev
6	1	5	5825.83	5759.5	0.0	0	2	0.0	55	ev

3.1 Part 1: Read datasets for NLME estimation

We can use the read_pumas function to prepare the dataset for NLME estimation

```
data = read_pumas(est_df ,cvs = [:Wt], dvs=[:dv])
```

Population

Subjects: 24 Covariates: Wt Observables: dv

where

- cvs takes an array of covariates
- dvs takes an array of the dependent variables
- since the dataframe has time as the variable, the function does not need a specific input

3.2 Part 2: Perform a model fit

We now use the

- mymodel model that we wrote earlier
- the set of parameters specified in param as initial estimates
- data that was read in using the read_pumas function

to fit the model.

```
res = fit(mymodel,data,param,Pumas.FOCEI())
```

 ${\tt FittedPumasModel}$

Successful minimization: true

Likelihood approximation: Pumas.FOCEI Deviance: 19742.767

Total number of observation records: 1728 Number of active observation records: 1728 Number of subjects:

	Estimate
tvcl	0.95056
tvv	20.923
tvka	0.8943
$\Omega_1, 1$	0.11207
Ω_2 ,_2	0.08522
$\Omega_3, 3$	0.1822
$\sigma\mathtt{_prop}$	0.042688

Part 3: Infer the results

infer provides the model inference

infer(res)

Calculating: variance-covariance matrix. Done.

FittedPumasModelInference

Successful minimization: true

Likelihood approximation: Pumas.FOCEI Deviance: 19742.767 Total number of observation records: 1728 Number of active observation records: 1728 Number of subjects:

_____ Estimate RSE 95.0% C.I. _____

Part 4: Inspect the results

inspect gives you the

- model predictions
- residuals
- Empirical Bayes estimates

preds = DataFrame(predict(res))
first(preds, 6)

	id	$_{ m time}$	Wt	dv_pred	dv_ipred	pred_approx
	String	Float64	Int64	Float64	Float64	Pumas
1	1	1.0	55	3251.17	5535.34	FOCEI()
2	1	2.0	55	4842.08	6469.77	FOCEI()
3	1	3.0	55	5289.64	6334.61	FOCEI()
4	1	4.0	55	5288.21	5969.44	FOCEI()
5	1	5.0	55	5139.73	5572.61	FOCEI()
6	1	6.0	55	4948.98	5189.74	FOCEI()

resids = DataFrame(wresiduals(res))
first(resids, 6)

	id	$_{ m time}$	Wt	dv_wres	dv_iwres	wres_approx
	String	Float64	Int64	Float64	Float64	Pumas
1	1	1.0	55	1.57625	1.01804	FOCEI()
2	1	2.0	55	-0.346817	-0.00768109	FOCEI()
3	1	3.0	55	0.471787	0.95396	FOCEI()
4	1	4.0	55	0.0874083	0.744159	FOCEI()
5	1	5.0	55	-0.491189	0.162325	FOCEI()
6	1	6.0	55	-1.94495	-1.57674	FOCEI()

ebes = DataFrame(empirical_bayes(res))
first(ebes, 6)

	id	$_{ m time}$	Wt	${ m ebe}_1$	$ebes_approx$
	String	Float64	Int64	Array	Pumas
1	1	1.0	55	[0.178176, -0.221974, 0.4724]	FOCEI()
2	1	2.0	55	[0.178176, -0.221974, 0.4724]	FOCEI()
3	1	3.0	55	[0.178176, -0.221974, 0.4724]	FOCEI()
4	1	4.0	55	[0.178176, -0.221974, 0.4724]	FOCEI()
5	1	5.0	55	[0.178176, -0.221974, 0.4724]	FOCEI()
6	1	6.0	55	[0.178176, -0.221974, 0.4724]	FOCEI()

There is an inspect function that provides all the results at once

Note that this function below fails to convert into a dataframe due to a bug. Will be fixed soon

resout = DataFrame(inspect(res))
first(resout, 6)