TP5 - Bobinas de Helmholtz

Introdução

Segundo o protocolo temos,

$$\vec{m} = NI\vec{A}$$

onde, m, N e I correspondem ao momento do dipolar magnético, ao número de voltas da espira e á intensidade da corrente na espira, respetivamente. Já A corresponde á área das espiras que é dada por $A = \pi R^2$, R é o raio da espira. O torque teórico é dado por,

$$\vec{\tau} = \vec{m} \times \vec{B}_{ext}$$
 $|\vec{\tau}| = mB_{ext}sen\theta$

em que heta é o angulo formado entre \vec{B}_{ext} e \vec{m} . Já \vec{B}_{ext} é dado por,

$$\left| \vec{B}_{ext} \right| = \frac{8\mu_0 ni}{5\frac{3}{2}r}$$

temos que μ_0 , n, i e r, correspondem á constante de permeabilidade magnética no meio, o número de voltas da bobine, a corrente que passa na bobine e o raio da bobine, respetivamente.

O torque experimental é dado por,

$$|\vec{\tau}| = 0.12 \times F$$

As constantes são:

$$N=3\ voltas$$
 $n=154\ voltas$ $R=0.06\ m$ $r=0.2\ m$ $\mu_0=1.26\times 10^{-6}\ Tm/A$

$1^{\underline{a}}$ Parte – I=2 A e Δi , com $\theta=90^{\circ}$

Variou-se i e mediu se a força aplicada na esfira e obtendo-se os seguintes valores de torque experimental:

i (A)	F (N)	Torque (Nm)		
0,988	0,0004	4,80E-05		
1,527	0,0006	7,20E-05		
2,041	0,0008	9,60E-05		
2,528	0,001	1,20E-04		
3,069	0,0012	1,44E-04		
3,501	0,0014	1,68E-04		
4,057	0,0016	1,92E-04		
4,524	0,0018	2,16E-04		
5,04	0,002	2,40E-04		

Podendo-se traçar o seguinte gráfico:

Para se obter o valor teórico do declive deste ajuste, temos que,

$$\tau = 2.35 \times 10^{-5} I sen(\theta) i$$

ou seja,

$$\tau = Declive i$$

com o ajuste experimental obteve-se:

$$\tau = 4,75 \times 10^{-5} i$$

A partir das expressões introdutórias podemos obter a seguinte expressão,

$$\mu_0 = \frac{Declive \cdot r \cdot 5^{\frac{3}{2}}}{n \cdot m \cdot 8}$$

correspondendo então o valor de μ_0 experimental:

$$\mu_0 = 1,27 \times 10^{-6} \, Tm/A$$

Com um desvio percentual de 1% do valor teórico!

$2^{\underline{a}}$ Parte – i=2 A e ΔI , com $\theta=90^{\circ}$

Variou-se I e mediu se a força aplicada na esfira e obtendo-se os seguintes valores de torque experimental:

I (A)	F (N)	Torque (Nm) (Experimental)	
0,506	0,0002	2,40E-05	
1,007	0,0004	4,80E-05	
1,5	0,0006	7,20E-05	
2,001	0,0008	9,60E-05	
0,748	0,0003	3,60E-05	
1,25	0,0005	6,00E-05	
1,754	0,0007	8,40E-05	

Podendo-se traçar o seguinte gráfico:

Com o ajuste experimental obteve-se o seguinte τ e μ_0 :

$$\tau = 4,79 \times 10^{-5} I$$

$$\mu_0 = 1,28 \times 10^{-6} Tm/A$$

Com um desvio percentual de 2% do valor teórico!

$3^{\underline{a}}$ Parte - I=2 A e i=2 A , com $\Delta\theta$

Variou-se θ e mediu se a força aplicada na esfira e obtendo-se os seguintes valores de torque experimental:

Ângulo (Graus)	Sen (θ)	F (N)	Torque (Nm) (Experimental)
0	0	0	0
30	0,5	0,0004	0,000048
60	0,87	0,0007	0,000084
90	1	0,0008	0,000096

Podendo-se traçar o seguinte gráfico:

Com o ajuste experimental obteve-se o seguinte τ e μ_0 :

$$au = 9,64 \times 10^{-5} \ sen\theta$$

 $\mu_0 = 1,29 \times 10^{-6} \ Tm/A$

Com um desvio percentual de 3% do valor teórico!

Conclusão

Tendo em conta os desvios percentuais obtidos nas três partes, considera-se que a experiência foi um sucesso. Na segunda e terceira parte o desvio percentual é maior pelo facto de as medidas das forças serem menores, o que implica um erro relativo maior nas mesmas!

Verificou-se assim a dependência linear do torque em função de i, I e do seno de θ .

(O documento com todos os cálculos foi enviado por e-mail)