

Tour final 2020

Premier examen 28 février 2020

Temps: 4 heures

Difficulté : Les exercices sont classés selon leur difficulté.

Points: Chaque exercice vaut 7 points.

1. Soit \mathbb{N} l'ensemble des nombres entiers strictement positifs. Trouver toutes les fonctions $f: \mathbb{N} \to \mathbb{N}$ telles que pour tous $m, n \in \mathbb{N}$

$$f(m) + f(n) \mid m + n.$$

- 2. Soit ABC un triangle aigu. Soient M_A , M_B et M_C les milieux respectifs des côtés BC, CA et AB. Soient M'_A , M'_B et M'_C les milieux respectifs des arcs mineurs BC, CA et AB sur le cercle circonscrit au triangle ABC. Soit P_A l'intersection de la droite M_BM_C et de la perpendiculaire à $M'_BM'_C$ par A. Les points P_B et P_C sont définis de manière analogue. Montrer que les droites M_AP_A , M_BP_B et M_CP_C se coupent en un point.
- 3. Soient n rectangles distincts dans le plan. Montrer que parmi les 4n angles droits intérieurs des rectangles, au moins $4\sqrt{n}$ sont différents.
- 4. Soit φ la fonction phi d'Euler. Montrer que pour tous les nombres entiers strictement positifs n

$$2^{n(n+1)} \mid 32 \cdot \varphi \left(2^{2^n} - 1\right).$$

Tour final 2020

Second examen 29 février 2020

Temps: 4 heures

Difficulté : Les exercices sont classés selon leur difficulté.

Points: Chaque exercice vaut 7 points.

5. Trouver tous les entiers strictement positifs a, b, c tels que

$$a! \cdot b! = a! + b! + c!$$
.

6. Soit $n \geq 2$ un nombre entier. On considère le jeu suivant : au début, k pierres sont disposées sur les n^2 cases d'un échiquier $n \times n$. Un coup consiste à choisir une case qui contient au moins autant de pierres qu'elle n'a de cases voisines (deux cases sont *voisines* si elles ont un côté en commun) et à déplacer une pierre de la case choisie vers chacune des cases voisines.

Trouver tous les nombres entiers strictement positifs k tels que :

- (a) Il existe une configuration de départ avec k pierres telle qu'aucun coup n'est possible.
- (b) Il existe une configuration de départ avec k pierres telle qu'une suite infinie de coups est possible.
- 7. Soit ABCD un trapèze isocèle tel que AD > BC. Soit X l'intersection de la bissectrice de l'angle $\angle BAC$ avec la droite BC. Soit E l'intersection de la droite DB avec la parallèle à la bissectrice de l'angle $\angle CBD$ par X. Soit E l'intersection de la droite DC avec la parallèle à la bissectrice de l'angle $\angle DCB$ par X. Montrer que AEFD est un quadrilatère inscrit.
- 8. Soit n un nombre entier strictement positif. Soient $x_1 \le x_2 \le \ldots \le x_n$ des nombres réels tels que $x_1 + x_2 + \ldots + x_n = 0$ et $x_1^2 + x_2^2 + \ldots + x_n^2 = 1$. Montrer que $x_1 x_n \le -1/n$.