

INFORMAL REPORT

OCEANOGRAPHIC CRUISE SUMMARY BAFFIN BAY-DAVIS STRAITLABRADOR SEA, SUMMER 1967

LIBRARY

JUL 22 1971

U.S. NAVAL ACADEMY

MAY 1968

This document has been approved for public release and sale; its distribution is unlimited.

NAVAL OCEANOGRAPHIC OFFICE WASHINGTON, D. C. 20390

20070119085

PROPERTY OF ENVIRONMENTAL SCIENCE TECHNICAL LIBRARY NAVAL SCIENCE DEPT, USNA

INFORMAL REPORT

The Informal Report (IR) as produced at the Naval Oceanographic Office is a means for personnel to issue timely scientific and technical preliminary reports of their investigations. These are primarily informal documents used to report preliminary findings or useful byproducts of investigations and work to members of the scientific and industrial communities.

Informal Reports are assigned sequential numbers for each calendar year; the digits preceding the dash indicate the year.

The distribution made of this report is determined primarily by the author. Information concerning obtaining additional copies or being placed on a distribution list for all future Informal Reports in a given area of interest or specialty field, should be obtained from.

Distribution Control Department Code 4420 Naval Oceanographic Office Washington, D. C. 20390

2

ABSTRACT

A two-phase operation was conducted in the Baffin Bay area during the summer of 1967. The first phase was a bottom sediment survey using the USCGC SOUTHWIND. The primary objective of this phase was to obtain an extensive suite of bottom samples and bottom sediment sound velocities. The second phase was an oceanographic survey using the USCGC EDISTO. Ice potential stations were occupied in support of NAVOCEANO's East Arctic Ice Forecast Program. Additional Nansen cast stations were taken to assist the U.S. Coast Guard in their continual monitoring of the Labrador Current.

A comparison of the temperature and salinity data obtained on the EDISTO survey with data obtained on a similar cruise by CCGS LABRADOR in 1966 indicated that freezing should have begun earlier in 1967 than in 1966.

LOUIS A. CODISPOTI

JOSEPH H. KRAVITZ

Nearshore Surveys Division
Oceanographic Surveys Department

This report has been reviewed and is approved for release as an UNCLASSIFIED Informal Report.

Director, Nearshore Surveys Division

	CONTENTS	Page
ı.	PREVIOUS KNOWLEDGE OF THE REGION	1
II.	OBJECTIVES OF THE SURVEY	1
III.	NARRATIVE OF THE SURVEY	2
IV.	RESULTS	2
V.	METHODS OF COLLECTION AND ANALYSIS. A. Geological Oceanography. 1. Cores. 2. Grabs. 3. pH and Redox Potentials. 4. Interstitial Water Samples. 5. Sediment Sound Velocities. 6. Bathymetry. B. Biological Oceanography. 1. Plankton Hauls. C. Physical and Chemical Oceanography. 1. Temperature. 2. Depth. 3. Bathythermographs. 4. Salinity.	2 8 8 8 8 9 9
VI.	DISPOSITION OF DATA	9
VII.	PRELIMINARY ANALYSIS	9
VIII.	ADDITIONAL WORK NEEDED IN THE REGION	10
	FIGURES	
1.	Bottom Sample Locations	3
2.	Oceanographic Station Locations Occupied by EDISTO	4
3.	Comparison of Temperature and Salinity Data Obtained by EDISTO	
4.	Comparison of Temperature and Salinity Data Obtained by EDISTO and LABRADOR	
5.	Comparison of Temperature and Salinity Data Obtained by EDISTO	
6.	Comparison of Temperature and Salinity Data Obtained by EDISTO	

7.	Comparison of Temperature and Salinity Data Obtained by EDISTO and LABRADOR
	TABLES
I.	SOUTHWIND Data Collection Summary 5
II.	EDISTO Data Collection Summary 6
III.	Field Description of Bottom Sediment Samples11

•

•

,

I. PREVIOUS KNOWLEDGE OF THE REGION

Baffin Bay is a deep enclosed basin with a maximum depth of approximately 2400 meters. In the bay's northern reaches, the sea floor is continuous with that of Smith Sound and, over a large area, resembles a submerged headland.

The sediments of Baffin Bay show considerable size variation due to differences in mode of transportation, bottom configuration, and current patterns. In shoal areas, ice rafted material predominates and corer penetration is usually minimal due to the coarse nature of the sediments. In the deeper areas, silts and clays form the major size fraction, but occasional pockets of ice rafted material also are present. The gross sedimentary pattern is one of textbook simplicity with coarse nearshore materials grading into finer sediments seaward.

The Labrador Sea, Baffin Bay, Davis Strait, and Smith Sound areas are characterized by relatively warm, north setting surface currents in their eastern reaches and cold, south setting currents near their western shores. Towards the center of these areas, surface currents tend to be zonal and not as well developed as those found in the eastern and western boundaries. Waters originating in the Arctic Basin flow into Baffin Bay through Hudson Strait, Lancaster Sound, Jones Sound, and Smith Sound. Strong currents are sometimes encountered in the vicinity of Lancaster Sound and Hudson Strait.

Surface temperatures and salinities generally are low throughout most of this region. Even in summer, minimum temperatures often are less than -1° C. Maximum temperatures and salinities are associated with waters from the Atlantic Ocean. However, temperatures higher than 6° C are not common, and north of Davis Strait, maximum salinities rarely exceed 35%.

II. OBJECTIVES OF THE SURVEY

The Baffin Bay-Davis Strait-Labrador Sea survey consisted of two phases: a bottom sediment phase using USCGC SOUTHWIND (W-AGB 280) and an oceanographic phase using USCGC EDISTO (W-AGB 284).

The primary objective of the bottom sediment phase of the survey was to obtain an extensive suite (65 stations) of bottom samples and bottom sediment sound velocities from the Baffin Bay area. In addition, bottom photographs were to be taken at selected localities, and plankton hauls were to be made whenever feasible.

On the oceanographic phase of the survey, the established ice potential stations were to be occupied in support of NAVOCEANO's continuing East Arctic Ice Forecast Program. Additional Nansen cast stations were to be taken at the request of the U.S. Coast Guard to assist in their continual monitoring of the Labrador Current.

III. NARRATIVE OF THE SURVEY

The bottom sediment survey was conducted from SOUTHWIND and was a cooperative project with NAVOCEANO, the Office of Naval Research, and Rennselaer Polytechnical Institute (R.P.I.). Five NAVOCEANO scientists and two R.P.I. graduate students participated in the operations.

Because operational difficulties caused SOUTHWIND to fall behind schedule, only 17 days were available in which to complete the bottom sediment program. As a result, only 48 of the 65 bottom sediment stations originally planned were occupied, and no bottom photographs were obtained.

The survey team boarded SOUTHWIND at Sondrestrom Fjord, Greenland, on 1 September 1967. Bottom sediment stations were occupied from 3 to 17 September. On 23 September, SOUTHWIND rendezvoused with EDISTO at Gronnedal, Greenland. At this time, three NAVOCEANO scientists and the equipment needed for the ice forecast and Coast Guard stations were transferred from SOUTHWIND to EDISTO. SOUTHWIND then departed for CONUS. EDISTO arrived at ice potential station 1 on 25 September and completed the survey on 14 October.

IV. RESULTS

The 48 bottom sediment stations occupied during the SOUTHWIND survey (Fig. 1) yielded 45 modified Ewing cores, seven Kullenberg cores, 40 orange peel grab samples, and 22 plankton hauls. In addition, 4000 miles of bathymetric data were collected, and BT lowerings were made every 6 hours. The 52 Nansen cast stations taken during the EDISTO survey (Fig. 2) resulted in 660 serial measurements of salinity and temperature, three orange peel grab samples, and two modified Ewing cores. BT's were taken every 6 hours and prior to most Nansen casts. In all, 96 BT's were collected during the EDISTO survey.

Table I presents a summary of the data collected at the SOUTHWIND stations. Table II presents a summary of the data collected at the EDISTO stations.

V. METHODS OF COLLECTION AND ANALYSIS

A. Geological Oceanography.

1. Cores. The cores collected during the SOUTHWIND and EDISTO surveys were "open barrel" gravity cores. In most cases, 250 pounds of weight were added to the corers to help achieve good penetration. A tripping mechanism was used on the first few attempts with the modified Ewing corers; this practice was discontinued when a corer was lost because the hydrographic wire snagged on the tripping mechanism. To prevent dessication of the modified Ewing cores, a highly impermeable polycarbonate plastic core liner was used, and the sample filled liners were wrapped in a "moisture envelope" consisting of wet tissue

FIGURE 1. BOTTOM SAMPLE LOCATIONS

FIGURE 2. OCEANOGRAPHIC STATION LOCATIONS OCCUPIED BY EDISTO

TABLE 1. SOUTHWIND DATA COLLECTION SUMMARY

Stat . No .	Sonic Depth	Mod . Ewing	Kullenberg Core	Orange Peel Grab	Redox, pH Interstitial	Plankton
	(Meters)	Core	Core		interstition	Haul
1	130	√,		│		vert, horizi
2	196	> >> >> >> >> >> >> >> >> >> >> >> >> >	,	√ ✓	✓	h!
3 4	1300 1928	V ,	. ✓	'	v	horizontal
	. 590	٧,		,		
5 6 7	176	v		*		verta horiz.
7	2110	./		l Y		Vertt HOFIZ.
8	480	y /				horizontal
9	190	* * * * * * * * * * * * *		J		horizontal
10	103	ľ		V V V	i	horizontal
] 11	535	I ✓	√		√	
12	417					
13	2019	✓				
14	2110	✓	√	! ✓	. ✓	horizontal
15	315	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
16	648	√.		√.	(horizontal
17	263	√.	√ √	[√	✓	
18	190	√,		√.	1	horizontal
19	537	 √ ,	į	! √.		
20	447	√ ,	i ,	\ √,	ļ , i	horizontai
21	482	√ ,	√	√ ,	✓	
22	1200	\ ✓,		\ ✓,	Į.	horizontal
23	435	!	,	! ' ,	,	horizontai
24	450	\	✓	\	✓	horizontal
25 26	400	\		\ \ \		norizontai
27	353 236	\	1	,	,	horizontal
28	383	l v		1 1		no izona
29	721	l y		·		
30	848	l y	./		✓	horizontal
31	410) <i>)</i>	1 °	1 ./	\	110112011101
32	159	1	\	1 2	1	horizontal
33	850			1 1		
34	280		Ì	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	}	horizontal
35	595	\ \ \ \ \ \ \ \				
36	1928	✓	1			horizontal
37	2038	✓]	✓		
38	940	✓	1	. ✓		horizontal
39	832	✓	l	1 ✓	Į	l
40	684	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Į.	✓		
41	821	√	1	✓.		horizontal
42	903	l √	ţ	✓,	1	1
43	1379	│	1	\ ✓,	l	1
44	2385	│ ✓,		*>>>>>>		
45	2195	\	ŀ	, √,	1	
46	2383	\		/ /		
47	2110	/ /	}	\ ✓,		1
48	309	√	<u> </u>	<u> </u>	<u> </u>	

TABLE 11. EDISTO DATA COLLECTION SUMMARY

Stat. No.	Sonic Depth (Meters)	Max. Depth Sampled	Temp. Sal.	Bottom Sample
1	457	258	√	
2	631	125	√	
3	503	300	√	
4	2560	300	√	
5	2195	280	√	
6	128	100	√	
7	2377	354	√	
8	82 3	281	√	
9	73	64	√	
10	128	119	√	
111	190	180	√	Orange Peel
12	344	312	√	:
13	532	300	√	
14	616	300	√	
15	172	160	√	Orange Peel Mod . Ewi n g
16	530	2 92	√	Mod. Lwing
17	281	275	√	
18	5 85	286	√	
19	587	27 2	√	
20	1560	284	√	
21	914	27 0	√	
22	940	276	√	
23	805	27 2	√	
24	1068	299	√	
25	837	317	√	
26	1930	299	✓	Orange Peel Mod . Ewing

TABLE II. (Cont.)

Stat . No .	Sonic Depth (Meters)	Max. Depth Sampled	Temp.	Bottom Sample
27	2286	300	√	·
28	2195	308	√	
29	69 5	296	√	
30	16 35	341	√	
31	144	125	√_	
32	732	258	√	
33	464	246	√	
34	<i>5</i> 02	232	√	
35	305	245	√ .	
36	274 3	345	√	
37	192	182	√	
38	2487	192	✓	
.39	183	161	✓	
40	3036	1728	√	·
41	2651	1752	√	
42	1646	1126	√	[
43	914	492	√.	
44	318	312	√	
45	232	204	√	
46	199	181	√	
47	181	160	√	
48	172	168	√ .	
49	157	148	√	
50	168	155	√	
51	163	151	✓	
52	238	226	√	

paper overlain by Saran Wrap. These cores were later shipped to R.P.I. for geotechnical and geological analyses. The Kullenberg cores were processed aboard ship for geochemical properties.

- 2. Grabs. Orange peel bucket samplers were used to obtain all grab samples. The total weight of each grab sampler and its attached lead weights was approximately 120 pounds. Representative splits from each grab sample were placed in jars for shipment to NAVOCEANO and R.P.I.
- 3. pH and Redox Potentials. A Beckman Model 76 Expanded Scale pH Meter with suitable combination electrodes (glass-calomel for pH and platinum-calomel for redox potentials) was used to measure the pH and redox potential as the seven Kullenberg cores. Holes were drilled through the plastic liners of the Kullenberg cores (normally every 6 inches), and the proper electrode system was inserted about 1 inch into the core to make the redox potential or pH measurement. After each analysis, the hole in the core liner was sealed with tape. Unfortunately, it was impossible to initiate these measurements immediately after recovery of the Kullenberg cores. The time interval between recovery and analysis varied from about 1 hour to 2 days. Calibrations were performed before each series of analyses according to the instruction manual for the Beckman Model 76 Expanded Scale pH Meter. Despite these calibrations and frequent checks on the condition of the electrodes, considerable drift was encountered during all redox potential measurements.
- 4. <u>Interstitial Water Samples</u>. Interstitial water samples were collected by squeezing portions of the Kullenberg cores in a mechanical core squeezer. Citrate bottles were used to store these samples for shipment to R.P.I.
- 5. Sediment Sound Velocities. Sediment sound velocity analyses were performed on the modified Ewing cores after the SOUTHWIND's return to Baltimore. The measurements were made aboard ship with a sediment sound velocimeter developed by NAVOCEANO. With this instrument, sediment sound velocities can be measured without removing the sediment sample from its plastic core liner. A section of core liner filled with distilled water was used as a standard, and an oil coupler system connected the sample with the measuring circuits.
- 6. <u>Bathymetry and Navigation</u>. All bathymetric data were obtained with a UQN-1B echo sounder. Positions were obtained using Loran A, radar, visual sightings, and celestial fixes.
- B. Biological Oceanography.
- 1. Plankton Hauls. Of the 22 plankton hauls, one was a vertical haul from a depth of approximately 150 meters, and the remaining collections were near-surface horizontal tows. A 1-meter, #10 mesh net was used for all collections. The samples were placed in jars, treated with Formalin, and sent to NAVOCEANO for analysis.

- C. Physical and Chemical Oceanography.
- 1. Temperature. Protected deep sea reversing thermometers with a range of -2° to 10° C were used to obtain in situ water temperatures. Agreement between temperature readings of the paired thermometers was normally 0.03° C or better.
- 2. Depth. Meter wheel readings, surface and subsurface wire angle measurements, and unprotected thermometers with a range of -2° to 30°C and the L-Z method described in H.O. Pubs. No. 607 and 614 were used to determine thermometric depths.
- 3. <u>Bathythermographs</u>. Deep, medium, and shallow range mechanical BT's were used.
- 4. Salinity. Salinities were determined with either an Industrial Instruments (Model RS-7A) or a Bissett-Berman (Model 6220) inductive salinometer. Duplicate determinations were run on each sample, and if the difference between determinations was greater than $0.004\%_{00}$, additional runs were made. The salinometers were standardized with standard sea water before each series of determinations. Vials of substandard sea water prepared at NAVOCEANO were analyzed occasionally to ensure quality control, and a sample from a previous series was often included with a more recent series so that the precision of the analyses could be estimated. On the basis of these checks, it is estimated that in most instances the accuracy of the salinity analyses was $+0.01\%_{00}$ or better.

VI. DISPOSITION OF DATA

Results of all bottom sediments and plankton analyses will be on file at NAVOCEANO. Copies of the bottom sediment analyses will be retained by the Geology Department at R.P.I. All oceanographic station data will be filed at the National Oceanographic Data Center under cruise reference number 311131. Bathymetric data records will be on file at NAVOCEANO.

VII. PRELIMINARY ANALYSIS

Since a great deal of laboratory study remains to be done on the bottom sediment samples, only their field descriptions (Table III) are given here. Detailed reports based on the analyses of these bottom sediment samples will be published by NAVOCEANO and R.P.I. in the near future.

Salinity and temperature versus depth diagrams (Figs. 3 through 7) were drawn for selected stations to compare the hydrographic conditions encountered by the EDISTO with those encountered in 1966 during a similar cruise of the Canadian Coast Guard Ship LABRADOR (NODC reference number 31825). At the selected locations, temperatures in the upper 20 meters were usually colder at EDISTO stations than at nearby LABRADOR

stations. Since the compared stations were occupied at approximately the same dates for both years, it appears that freezing in the Labrador Sea-Baffin Bay-Smith Sound region should have begun earlier in 1967 than in 1966. This may not prove to be the case throughout the area, however, because stratification differences brought out by Figures 3 through 7 indicate that, in some instances, a given energy loss might cause a larger temperature drop in the surface layers encountered by LABRADOR. At the most northerly stations compared (Fig. 3), freezing had begun at the EDISTO station and not at the LABRADOR station. The more pronounced stratification at the EDISTO station (see Fig. 3) favors the production of a greater amount of ice; however, the LABRADOR station was taken two days earlier in the fall than the EDISTO station, and temporal variations and differences in the locations of the two stations might further confuse the issue.

A great deal of analysis remains to be done on the ice forecasting stations before an adequate prediction of the ice conditions in 1968 can be made.

VIII. ADDITIONAL WORK NEEDED IN THE REGION

The bottom sampling phase of the survey was of a reconnaissance nature and will help point out problem areas. These areas will require tighter sampling grids for detailed study.

In order to have a rational understanding of the movement of the water masses in the Baffin Bay-Davis Strait areas, subsurface current measurements are necessary.

TABLE III. FIELD DESCRIPTION OF BOTTOM SEDIMENT SAMPLES

SOUTHWINDED		ı		BAFFIN BAY 1967						CHECKED BY	
SEDIMENT	_	SAMPLE POSITION						1			i
(185.) (187.)	13	E LONGATUBE	(Fathorns)	GEOMORPHOLOGY OF IMMEDIATE AREA	TYPE OF SAMPLER	WEIGHT APPROX	OX LENGTH	_	COPE NUMBERS		
		+					1	CORF. TOP	CORE BOT TON		Z F
1E 9/3	8 69 00.4	1.4 54.29.5	٤	Rugged uneven bottom	Modified Bring	(1b)(cm) 200 (30	<u>8</u> .			Two tries, no core, pebbles recovered, tay sample	1
10 9/3	_	69.00.3 54.30.9	02	E	Orange Peel	120	•	10Tu/2	1	Sandy stilt, some pubbles & shalls, handhin farms	1
2E 9/3	3 68.59.8	.8 56.52.2	107	Smooth bottom	Modified Bring	250 30.	30.524.13			first core 2h.13, seemed twenty name	
20 9/3		68-59.8 56-52.2	108	=	Orange Peel	R		•	ם	Sandw #11t. w/rebbles ton laws 1/88	
36 9/4	69*01.5	5 59.38	447	=	•	•		STR3/2	50T6/1	1 Aft think laws at the older	
35 9/4	69*01.5	\$6.65 50	202	=	Hodified Exing	250 322	322 1.92.4	ļ	10TRL/2 5TS/2 5TS/2 10TRL/2	Clay	
3K 9/4.	10.69.	59.59	ī.	=	Kullenberg	250 11/2	142,3121,92	5 Th./h			1
№ 9/4	00,69	6.21	1051	=	Modified Exing	250 190,1257,10	34.754	57R3/k) <u>F</u>	Silty clay grading down to clay	1
7/6	69.00	.1 65.25.5	322	=	*	010	7.9818-012	KAY67	Ā	Colon to admin of the colon	1
50 9/4	95-89	65.24	339	#	Orange Peel	02	_	JOYRA, A		Parking the metaring of the second of the se	1
1/6	20,00	60,99	98	Irregular bottom	E	↓				555/2 & loft/2 sand over a silty layer loffs/4	
7.5		68.59.4 63.00	1154	Smooth bottom	Modified Swing	250 808 3	,	Cars. A.	7,7	Transmitter of the part of the	
8E 9/5	00.02	59.55	792		¥	200 55	55.8 25.1	· —	E	Saple 187 Jars, ordinad graning to remose layer Saple in 3 Jars, ordinad upper layer Tough gray clay in catcher	1
9E 9/5	70,00	\$6.51	103	Irregular bottom		250 96.	96.5 27.9	10T4.72	8 220	1074/2 silty sand w/pelecypode in upper mart	1
90 9/5	10.01	26.56	105	=	Orange Peel	130	•		*	10Th /2 milty sand w/malecanode nabbles]
100 9/5	65.69	55*13.5	56	Slightly irregular bottom	*			between lower	TOTAL & STR	Fire sandy will to warm Heterand and controls	1
9/6	71.04	55°31	294	4		2		2011/2		Silty clay, no shalls no ensent	1
3/6	77.04	55°31	290	4	Modified Ewing	250 269.2266.7	2266.7	E		Stift clay	
3/6 3/6	70,12	55°31	294	•	Kullenberg	138.1	1 98.2	¥	=	Stiffer eller	
376	11.00	58.85	228		Modified Ending	12	321 @36.2	Zan.A		Stity elay	
120 9/6	70.58.5	54.85 E.	228		Orange Peel	120		=	=	Silty clay w/morm tubes	
138 9/6	21.00	15.19	1001	Smooth bottom	Modified Ewing	250 2	9.89	10TPL/2	50 16/1	Two clay layers of different colors	
3/6	21,00	∞,59	115/1	-	=	" 226.J	226.1172.7	TOTAL TOTAL	\rightarrow	Stity clay	
9/6	71.00	00,59	113		Kullenberg		132.1	=	•	अग्रम् वाह्र	
3/6 OTT	11.00	02,59	11511	= =	Orange Peel	120	•	E	8.000	Little sample, silty clay	1
											i

TABLE III. (Cont'd)

SOUTHWIND	TWZ IID			CAUSE BAFFIN	FIN BAT 1967						CHECKED BY
BOTTOM SEDIMENT NO IBS- 1	19 67 F	SAMPLE POSITION	CSITION LONGITUDE	DEPTH (fathores)	GEOMORPHOLOGY OF IMMEDIATE APEA	TYPE OF SAMPLER	WEIGHT APP OF PEI	APPROX LENGTH PEKE- OF TRATION CORE	8	87	SELD DESCRIPTION OF CORE AND PRIMARS
15E	9/10 ·	78*38	72*01	171	Smooth bottom	Modified Ewing	(33) ES	(cm) (cm)	7,125	10RL/61 57RL/61	Gray grading to brick red, some pebbles
150	9/30	78.31	72.09	174	E	Orange Peel	120		1011/2		Silty clsy
168	9/30	78,00	25.35	354	5	Modified Exing	250	-	541	same	
166	9/10	77°59.9 75°18	75*18	349		Orange Peel	120	-	10TRU/2	2 1014/2	Silty clay, norm tubes, pebbles of warrons sizes
175	9/10	78,00	73*30	141	•	Modified Exing	200 15	152.1 83.8	574/J	88/119	Coarse material in upper 1,5cm, uniform color
17K	9/20	78.00	73*30	7777	B	Kullenberg	250	147.3 85.1	-		Coarse material in upper 2cm, uniform color
170	9/70	78.00	73*30	134	•	Orange Peel	120	-	•	,	Pebbles, some worms, very little clay
181	9/10	77.00	76.37	101	1	Modified Ewing	200	91.4 22.9	5th/1	88740	Brown, sardy material
18G	9/10	00,22	76•36	101	•	Orange Peel	22		•	=	Medium to fine sandy material, clam shelle, brittle stars
19E	ئٹرہ	76.59.5	75.25	294	8	Modified Ewing	500	91.424.1	1 555/2 255/2	5TR2/1	Top of core is clay, about 22.9 cm long, underlain
									-		by wary cohesive hard sediment. Cover did not
									_		penetrate very far. Cohesive material trapped
								-			between core catcher and core tabe. No pebbles
											or animal 11% apparent
190	17/6	76*59.5 75*25	75°25	294	•	Orange Peel	120	•	515/2 513/2		Clay, no pebbles or animal life
20E	17/6	77,00	74.02	21/1		Modified Exing	82	- 7.6	5 1071/2	2	Sample in jar
200	17/6	27.00	71,02	210	•	Orange Peel		-	-	_	Gravel, pubbles, cobbles, green on bottom, brown on
							\perp	\dashv			top. Top also fouled. Brown streaks may be sulfide
210	4,	4.00	72.45	264	•		•	•	574/12	574/14nd515/2	Sandy stity alay
218	गुरू	77.00	72.45	264	•	Modified Swing	88	- 25.6	=	E	Outting head material put in jar
21.5	17/8	77.00	72.45	264	•	Kullenberg	250	-	•	: =	Jar sample
228	178	11. α	71.56	n _o	•	Modified Bring	82	-	-	•	Steep slope, silty clay, iar sample
220	17/8	21.00	71.56	103	8	Oranga Peel	8	•	•	-	Soupy ality clay, grading down to firm clay
238	17/6	26.00	69.25	2100	•	Modified Baing	200 16.5	6.5	1027/2	Same	Clay w/pebbles, trapped behind retainer, lar emple
								-			

TABLE III. (Cont'd)

	L	OBS.								_			!										Ĺ			1.
ONTE CHECKED		FIELD DESCRIPTION OF CORE AND REMARKS	Silty to sandy clay, pebbles covered by fauna	worm tubes, many icebergs in the area	Bottom 3 inches stuffed back into core tube liner,	no alcohol added to core. Sardy silt w/pebbles	Sandy silt with pebblés	Silty sand w/pebbles, shells, worm tubes. Pebbles	l	Silty clay, pebbles, some shells	Silty clay, bottom & pushed back into core, no alcohol	Core in 3 jars, gilty clay, pebbles, no grab	Shells, pebbles, sandy silty clay & silty clay	Includes 1 far of benthos & 3 pockets of sobbles	STL/L and LOYL/2 Sandy, silty clay	Mora tubes, pebbles, cobbles, limestone angular	and rounded	Sandy silty clay	Stity olay with gradual but distinct color on non	Siltr clay with gradual but distinct color chance		Brown and w/sraws and relibion	Oreans of the send life on men hand don	Gutting head dented on bottom.	Stity olay distinct color change at bottom	
	I CHART	CORE BOT TON			8426		E					5012/ 1/1105		1	d long	-		515/2	VIES.		12	4			918	
	ROCK COLOR CHART CORE NUMBERS	CORE TOP	1014/2		54/1		=	547		10Th/2 and 5Th/h	10X11/2	-	2005	5013/2	STLA S	-		Sh. 3 10Th/2	10TBL/2	*	5m./h		¥.		50.8 10TB1/2	
	£ 843	ò	(E)		38.1		17.8	,			33.0	24.1	34.3	•	107	,		548	9 7	4.9g	,	•	•		800	
	Year	TRATION.	8.		Ħ		30.5 17.8	•		•	81.3 33.0	53.3 24.1	71.1 34.3	•	•	•		•	3 45 11 86	4.38 E.AU	30.5	•			127	
	1.00	3	<u> </u>		250		*	120		•	250		*	20	250	8		250	•	r		120	E		82	
	1	THE OF SAMPLER	Orange Peel		Modified Ewing		Kullenberg	Orange Peel			Modified Bring		=	Orange Peel	Modified Being	Orange Peel		. Moritied Baing	# E	Kullenberg	Modified Ewing	Orange Peel	2		Modified Bring	
BAFFIN BAT 1967		GEOMONIMOLOGY OF IMMEDIALE AVEA	•		0		•	•		*	•	Irregular bettom	=	=	=	=			•	•	•	8			8	
CRUME BAFF	DEPTH	(Fethoms)	236		249		21/1	नगट		219	219	193	138	129	209	230		394	181	164	22h	224	87		93	
	CSITION	LONGITUDE	92,69		75.77		71.45	71.15		73*1/2	73°142	75°41	78*03	78*03	78*21	78*21		21.77	70.06	20-06	86.73	66.19	2.19		60°15	
	SAMPLE PCSITION	aon thuy	76°12		76.00		76.03	76.03		75°58	26.00	26,00	75.59	75.58	74.58	74.58		74.58.9 74.12	74.59.6 70.08	74.59.3	75,00	74.59:6 66.19	74.59		75*00	
SOUTHWIND	DATE	19 67	17/6		17/6		17/6	17/6		17/6	17/6	9/12	9/12	9/12	27/6	27/6		9/12	27/6	9/12	9/13	9/13	843		9/13	
VERREL SOU	SEDIMENT	, 186 186	230		21,5		21/1	240		250	353	268	272	270	288	280		298	308	30K	318	370	320		338	

TABLE III. (Cont'd)

		8 <u>+</u>			<u></u>									99										몆			
CHECKED BY		PIELD DESCRIPTION OF CORE AND REMARKS	Top combination of colors is soupy clay; bottom	combination of colors is a silty clay; one pebble	Small pebbles caught behind core retainer	1014/2 and 5015/2 Multi-colored sand, some worms and peobles	Multi-colored clay, [ar sample of material behind core	catcher, sandy material escaping as core pulled from	vater	Top 2.5cm lOTML/2 soupy clay, some material malti-	colored 10TRU/2 and M5, some cohesive clay colored NC Colore change distant, clay commitses uncommends	d material which washed	Stiff gray clay	Silty clay upper part; clay on bottom. Core penetrated	to weight stand	Soupy sticky clay, I worm tube and I pebble	Silty clay	Small amount of sediment recovered	Silty clay	Silty clay, many worms and worm tubes	Silty clay	Silty clay, worm tubes and worms		Some gravel, generally silty sandy clay w/dikes filled	with course sand and gravel	Grading from silty clay on top to clay on bottom	
	CHART	CORE BOTTOM	514/1 86			d 5015/2	忢			F			NL	10TR2/2			514/1		513/2	515/2	5ኳ/ፓ		516/1	515/2		E	
	ROCK COLOR CHART CORE NAMEERS	CORETOP	10785/4 10784/2		•	1011/2 an	10 TRU/2			10 YRU/2			STR5/2	10TR4/2 5TR4/4		10 may /2 5 may /4	5Y5/2	54/1	513/2	515/2 515/2	515/2	513/2	515/2			515/2 1014/2	
	E RGT	_	(B)	•	•		-		-	1		+	_				애	-		•	n3	1	240	•		506	
	APPROX	TRATION	8			•	•			•		_	274.3238.8	322.6157.5		•	216	•	250 322.6232.4		569	•	250 322.6	•	-	333	_
	T CONT		(TP)		230	22	250			엺			250	E		120	25	ដ	250	ដ	250	120	, દૂ	ន្ទ		8	
	TYPE OF SAMPLER		Orange Peel		Modified Baing	Orange Peel	Modified Ewing			Orange Peel			Modified Ewing	r		Orange Peel	Modified Ending	Orange Peel	Modified Swing	Orange Peel	Modified Ewing	Orange Peel	Modified Ewing	Orange Peel		Modified Ewing	
N BAY 1967	GECINORPHOLOGY OF IMMEDIATE AREA		•		4	•	8			•			Smooth bottom			4	4	•	Smooth undulating bottom	=	Flat smooth bottom	2	Undulating bottom	Smooth undulating bottom		1	
BAFF IN	DEPTH (Fathors)		99		159	11/9	32/1			727			1051	1777		10LL	त्र	509	1,55	1,50	374	379	61/1	7,59		गुह्म	
	CSITION	LONGTUDE	11,09		28.10	18.82	0.19			61.30			62,09	68.52		68°52	72*35.5	73*59.3 72*35.5	76*17	76•12	80.00	80.00	80*25	80*23		74.50	
	SAMPLE POSITION	LATKUDE	75.00		24,00	74,02	711.00		•	74,00			21,00	74.00		74.00	74,00		74,00	73.58	71,20	74.20	73.57	73.50		73.00	
SOUTHWIND	SATE .	7	5/13		9/13	9/13	17/6			117/8			17/6	77,6		17/6	ग्त्/४	17/6	9/15	9/15	9/15	9/15	9/15	3/15		9/15	
YEAR. SOUT		-+	330		345	340	35.6			350			300	37E		376	388	38G	39E	390	MOK	100	314	9110		128	

TABLE III. (Cont'd)

											•
300	SOUTHWIND			BAFF	BAPPIN BAT 1967						CHECKED BY DAYE CHECKED
BOTTOM SEDIMENT NO (BS-)	0ATE	SAMPLE	SAMPLE POSITION	DEPTH (Fathoms)	GEOMORPHOLOGY OF IMMEDIATE AREA	TYPE OF SAMPLER	of A			ROCK COLOR CHART CORE NAMBERS	FIELD DESCRIPTION OF COME, AND TRUMMS
120	9/15	72.59.5 74.52	74.52	1,93	•	Orange Peel	(A)	(Can) (Can)	1	_	1
8 07	9778	9/16 73.00	71*15	754	4	Modified Being		┼	51R3/4 51R3/2	+	THO HOLIES
130	9/76	73•00	21,12	127	•	Orange Peel	120	•	† 		Silty clay 1-3" top brown laws. rest olive grey.
											No life. Some grave
S.	37,8	2 √16 73°∞	67*140	1251	Smooth bottom	Modified Swing	250	335 160	5TR3/4		1
1110	9/16	72*58.5 67*30	67.30	1301	=	Orange Peel	120	•	•	10TR4/2	Silty clay; 1" layer of brown silty clay overlying olive
											5
ILSE	9/76	73.00	64.15	1200	6	Modified Ewing	8	333 231	5TR4/4 5TR3/4	547 557	Bottom clay in jar. Core showed distinct stratigraphy.
											I
150	9/16	72.59	64.15	1200	•	Orange Peel	83	•	STRU/U LOTRU/2	2 10TR/2	Silty clay and clay. Gradual color charge. Very
											11 makhlas
197	277	72,05	65.28	1303	Smooth bottom with small irregularities	Modified Ewing	250	323 183	10 TRU/2	2 515/2	1
											this material is 501/1 and N6 and was
160	74/8		72.02.5 65.27.5	फ़िटा	=	Orange Peel	ន្ត	•		10TR4/2 5TR3/4	Silty clay, 18" top layer, some nabbles, I some tube
177	277	9/17 72*00	62°10	1371	•	Modified Ewing	250 3	323 220	SYR3/4		
170	747	72,00,9 62,15	8.15	गुरुत	4	Orange Peel	120	•	10 TR4/2		l l
1,88	9/17	22.00	58.85	997		Modified Being	250 1	102 28	10 th /2	5014/1 M4	Core cutter material in 2 Jars. "Top" jar represents 8.16m in upper 4 of cutter and ranges from selts also
											1
180	9/17	71.59	58.45	169	4	Orange Peel	130	•	1014/2 511/1	7/12/05 18/	Mostly Nu silt and sand capped by a thin soupy silty
											clay layer. Many worms and pebbles
							_				
							_			,	

TABLE III. (Cont'd)

- Orange Peel 120 - 5 - Modified Bring 250 - 5 - Modified Bring 25 - Modified Brin	3570 80	BAFTN BAT 1967							CHICAGO BY
72° 16 58° 33 190 - Ovenge Peel 120	DEPT (Fathor			WEICHT OF MANPLER	PENE -		ROCK COLCR CHART COPE HARBERS CORE TOP CORE BOT	MORENS CORE BOTTOM	SO . SEAMUR ON GORE AND REMARKS
72°16 58°33 190 - Ovenge Peel 120 15°24 64°20 172 Nodified Baing 250 17°29 67°57.5 1930 - Ovenge Peel 120 17°29 67°57.5 1930 - Ovenge Peel 250 17°29 67°57.5 1930 17°29 67°57.5 1930 - Ovenge Peel 250 17°29 67°57.5 1930 17°29 67°57.5 1930 - Ovenge Peel 250 17°29 67°57.5 1930 17°29 67°57.5 1930 - Ovenge Peel 250 17°29 67°57.5 1930 17°29 67°57.5 1930 - Ovenge Peel 250 17°29 67°57.5 1930 17°29 67°57 67°				(TP)	(B)				
75°24 64°20 172 .	58*33		Orange Peel	ន្ទ	┤─┤		1011/2 5013/2	8 800	Olive sand, pebbles and mose black sand present, brittle
75°24 64°20 172 -					-				stars, tube worms, cocklas, sample put in 5 jars
75°24 64°20 172 - hodified Buing 250 71°29 67°57.5 1930 - hodified Buing 250 71°29 67°57.5 1930 - hodified Buing 250 60°50°50°50°50°50°50°50°50°50°50°50°50°50	64,20			•				51414	Very little sample obtained
71°29 67°57.5 1930 - Overage Peal 120	02,19		Modified Ewing	250		-		ደመሴ/ሲ	Upper layer appears to be "soupy" olive brown silty
71°29 67°57.5 1930 - Orange Peal 120 71°29 67°57.5 1930 - Modified Bring 250 France Peal 120 France									sand which washed out of core
67°57.5 1930 - Nodiffied Bring 250 n	67*57.5		Orange Peel	120	-		STRu/u 10TRu/2	•	Brown and
	67°57.5		Modified Bring	2,50		•		516/1	Brown and top layer, olive gray compact material in
					_				lower layer, some pebbles present
					-				
					-				
								} 	
					-				
							<u> </u>	į	

FIGURE 3. COMPARISON OF TEMPERATURE AND SALINITY DATA OBTAINED BY EDISTO AND LABRADOR

FIGURE 4. COMPARISON OF TEMPERATURE AND SALINITY DATA OBTAINED BY EDISTO AND LABRADOR

FIGURE 5. COMPARISON OF TEMPERATURE AND SALINITY DATA OBTAINED BY EDISTO AND LABRADOR

COMPARISON OF TEMPERATURE AND SALINITY DATA OBTAINED BY EDISTO AND LABRADOR FIGURE 6.

COMPARISON OF TEMPERATURE AND SALINITY DATA OBTAINED BY EDISTO AND LABRADOR FIGURE 7.

Security Classification

	ROLDAIA - R&D annotation must be entered when the overall report is classified)
1. ORIGINATING ACTIVITY (Corporate author)	28. REPORT SECURITY CLASSIFICATION UNCLASSIFIED
U.S. NAVAL OCEANOGRAPHIC OFFICE	≥b. GROUP
OCEANOGRAPHIC CRUISE SUMMARY BAFFIN BAY - DAVIS STRAIT - LABRADOR SEA,	, SUMMER 1967
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Oceanographic Cruise Summary Informal F	Report 3 September-14 October 1967
LOUIS A. CODISPOTI JOSEPH H. KRAVITZ	
6. REPORT DATE May 1968	7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
BA. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S REPORT NUMBER(S)
b. PROJECT NO. 202	IR 68-23
с.	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)
d.	
Distribution of this document is unlimite	ed.
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY
,	U.S. Naval Oceanographic Office
13. ABSTRACT	

A two-phase operation was conducted in the Baffin Bay area during the summer of 1967. The first phase was a bottom sediment survey using the USCGC SOUTHWIND. The primary objective of this phase was to obtain an extensive suite of bottom samples and bottom sediment sound velocities. The second phase was an oceanographic survey using the USCGC EDISTO. Ice potential stations were occupied in support of NAVOCEANO's East Arctic Ice Forecast Program. Additional Nansen cast stations were taken to assist the U.S. Coast Guard in their continual monitoring of the Labrador Current.

A comparison of the temperature and salinity data obtained on the EDISTO survey with data obtained on a similar cruise by CCGC LABRADOR in 1966 indicated that freezing should have begun earlier in 1967 than in 1966.

DD FORM 1473 (PAGE 1)

S/N 0101-807-6801

UNCLASSIFIED

Security Classification

UNCLASSIFIED
Security Classification

KEY WORDS			LIN	LINK A		LINK B		LINK C	
	KEI HORD	·		ROLE	WT	ROLE	wт	ROLE	WΥ
OCEANOGRAPHIC CRUISE SUMMARY BAFFIN BAY - DAVIS STRAIT - LABRADOR SEA USCGC SOUTHWIND (W-AGB 280) USCGC EDISTO (W-AGB 284) ICE FORECASTING STATIONS									•
ICE FORECASTING	STATIONS		•				•		
					·				
					;				٠,
					·				
			!		,			e poten	
									, •
		÷						- 1	
•						10 mg 1 mg		• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
,					•				;
								٠.	
							ĺ		

DD FORM 1473 (BACK)

(PAGE: 2)

UNCLASSIFIED
Security Classification