```
2.) a)
              owal is i
                    min Z= Z1-3Z2
                                    Z1 - Z1 7 2
                                   -471-522 7 1
                                 Z1710 Z2 60
                     both primal and dual feasible
                         feasible solution for primal: (1,1)
                        because of duality, the dual is also feasible
                    now \chi(1,-1) is a feasible solution of the dual
                           the value of the dual
                                                              CTX = 4
                           Primal asso teasible because of duality
                    \Rightarrow by weak duality we know that C^TX \leq b^Tz
                                 so y=CTX = 4 so the value of the primal is upper
                                     bounded by 4
2 0)
    ii) min 2 = -2x_4 - x_2
                       X_1 - 4X_2 + X_3 = 1
                         X1 + 5 X2 + X4 = 3
                          X1, X2, X3, X4 7, O
 ۷. ٩)
    ilis 1,= 81,43 12 = 81,24 feasible
                                                                                        A = \begin{pmatrix} A - 4 & A & O \\ A & 5 & O & A \end{pmatrix}
                                             15<sub>2</sub> = (1 - 4)
               b1 = (10)
           for ln:
                 feasibility: XB = B-167,0
                       \begin{pmatrix} \lambda & 0 \\ \lambda & \lambda \end{pmatrix}^{-1} = \begin{pmatrix} \lambda & 0 \\ -\lambda & \lambda \end{pmatrix} \qquad b = \begin{pmatrix} \lambda \\ 3 \end{pmatrix}
                      6_1^{-1}b = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \longrightarrow 1_{\Lambda} (easible
```

La ili cont-

optimality:
$$r = CN - N^{T} (B^{-1})^{T} (B$$

for 12:

feasibility:

$$x_{b} = \frac{5}{2} \frac{1}{5} \frac{5}{0} \frac{5}{9} \frac{4}{9} \frac{9}{9} = \frac{1}{3}$$

$$x_{b} = \frac{5}{9} \frac{4}{9} \frac{9}{19} \frac{1}{3} = \frac{4}{3} \frac{7}{9} \frac{1}{9} = \frac{1}{2} \frac{4}{9} \frac{1}{9} = \frac{1}{2} \frac{1}{9} \frac{1}{9} = \frac{1}{2} \frac$$

optimality:

$$V = (N - N) + (N) + (N) = (N - (N) + (N)$$

→ so l2 optimal

→ We showed that In and Iz are both feasible index sets, and Iz is optimal

iv.) min
$$2 = -2x_1 - x_2$$

Dian fly tableau:

157	Хл	XL	×ı	Χs	RHS	Latio	
Z	1/2	1	0	0	0		in ³ X ₁
Хз	(1)	- 4	1	٥	1	Л	out: X ₂
Χц	1	5	0	Л	3	3	
Z	0	19	-2	0	-2	_	in:X _L
X	1	- 4	λ	0	Л		out: X4
Хų	0	9	- <i>1</i>	Л	2	<u>2</u> S	
て え	0	0	-1	- 1	- 4		— all coeffs in
×ı	1	۵	519	419	1719		ng rduad
$^{\chi_{_{L}}}$	۵	Л	-119	113	219		Cost negative -> optimal solution

$$\Rightarrow$$
 the optimal solution is $y^* = 4$ with $x_1 = \frac{L^2}{9}$ $x_1 = \frac{2}{5}$ $x_3 = 0$ $x_4 = 0$

2. a) b.)

calculate shadow prices:

$$T = (b^{-1})^{T} (y)$$

$$b = \begin{pmatrix} 7 & -4 \\ 1 & 5 \end{pmatrix} \rightarrow b^{-1} = \begin{pmatrix} 5/9 & 4/9 \\ -1/9 & 1/9 \end{pmatrix}$$

$$cb = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$

$$\overline{\Pi} = \begin{pmatrix} 5/9 & -1/9 \\ 4/9 & 1/9 \end{pmatrix} \begin{pmatrix} -L \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

chech feasibility of of)

$$x_{10} = x_{10}^{-1} \rho = \begin{pmatrix} 5/9 & 4/9 \\ -4/9 & 1/9 \end{pmatrix} \begin{pmatrix} 1+\rho \\ 3 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 5\rho + 17 \\ -\rho + 2 \end{pmatrix}$$

in our case p=2 so feasible

$$\Rightarrow \ \ \mathcal{C}(2) = \mathcal{C}(b) + \Pi^{T}(p-b) = -4 + (-1 - 1) \begin{pmatrix} L \\ 0 \end{pmatrix} = -6$$

2.0)

vi) for p=3 checking it with shadow prices:

doing min so friend says (3) = -9

so they are wrong, rlp) is at most 7

2. b) i.)	false
	countes example?
	primal is unbounded and dual infeasible:
	Primal: max x Dual: min-y
	s.tX \(-1\)
	× 7/0
	970
7 1 2	4
2.b) ii)	proof by contradiction?
	broot so contraccemi.
	assume Punbounded and dual feasible
	→ both feas. so can use weak amorbiby:
	r b r
	ctx & b'y
	which would mean that primal is bounded
	(upper bounded by bty)
	which is a contradiction, so the statement is true
2.b) iii.	false can both be infeasable
	Countrelyanple:
	Primal: Dual:
	max z=2x,+2 min z=-4y,+2y,
	s.t -x, +x, 4-4 S.t -y, +y, 7,2
	x, - x, \le 2
	x, x, 7,0 y,, y, 7,0
2.b) iv) t	VUL
	by definition
	P : max {c ^T χ! Ax = 6, x7,0}
	D: min { b + y : A + y 7/ c, y 7/0}
٥-(oplying the definition on dual?
	D(D): max {cTx: Ax5b, x7,0}
	we get back to the primal
	so the dual of the dual is indeed the primal.
	so the open of the more is the frimal.

