Содержание

Описание архитектуры СУБД НР Vertica	2
Общие сведения	2
Представление данных в HP Vertica	2
Массивная параллельная обработка (МРР)	3
Колоночное хранение данных	3
Эффективная компрессия данных	4
Отказоустойчивость	4
Безопасность	5
Загрузка данных	5
Загрузка структурированных данных в HP Vertica	5
Загрузка неструктурированных данных в HP Vertica (Flex Zone)	6
Пользовательский механизм загрузки	6
Выборка и анализ данных	7
Стандартные механизмы доступа	7
Аналитическая платформа	7
Аналитические расширения	7
Интеграции со сторонними системами	7
Поддержка инструментов BI и средств визуализации	8
Поддержка систем класса ETL/ELT и репликаторов	8
Интеграция с Hadoop	8
Администрирование	8
Разворачивание системы	8
Требования к аппаратному и общесистемному программному обест	течению. 9
Инструмент управления Management Console	10
Оптимизация с помощью Database Designer	10
Резервное копирование	10
Организация зон разработки и тестирования	
Лицензирование	11

Описание архитектуры СУБД HP Vertica

Общие сведения

Продукт HP Vertica является системой управления базами данных, работающей по принципам массивной параллельной обработки и разработанной специально для хранения и обработки больших объемов данных.

HP Vertica поддерживает язык SQL, стандартные интерфейсы доступа к данным ODBC, JDBC, ADO.NET, а также содержащий множество коннекторов к различным инструментам бизнес-аналитики и анализа данных.

Кластер СУБД НР Vertica состоит из узлов стандартной архитектуры x86, объединенных сетевым соединением. Все узлы кластера являются равноценными, любой из узлов кластера может принимать и обслуживать запросы пользователей, а также выполнять загрузку данных.

Рисунок 1 Кластер HP Vertica

Представление данных в HP Vertica

Данные в HP Vertica хранятся в виде проекций. При создании базы данных создается мастер-проекция, содержащая весь объем загруженных данных. Также, в процессе эксплуатации системы пользователь может создавать собственные проекции, задавая произвольно для каждой проекции правила сортировки и сегментации данных. Инструмент оптимизации Database Designer упрощает создание новых проекций, анализируя нагрузку и выдавая в автоматическом режиме рекомендации по созданию и изменению проекций. Различные проекции могут содержать одну таблицу, либо объединение таблиц, что существенно сокращает время выполнения запросов благодаря использованию оптимальной сортировки и сегментации под конкретные запросы.

Рисунок 2 Организация проекций в HP Vertica

Массивная параллельная обработка (МРР)

Ключевым свойством системы с массивной параллельной обработки является динамическое распределения нагрузки и порядка выполнения запросов, любой из узлов кластера может принимать и диспетчеризировать запросы пользователей.

Рисунок 3 Выполнение запросов в HP Vertica

Выполнение запроса в HP Vertica выглядит следующим образом:

- Узел, к которому подключается пользователь на время выполнения запроса становится узлом-инициатором (initiator).
- Остальные узлы кластера становятся узлами-исполнителями (executor).
- Узел-инициатор анализирует запрос, формирует план запроса и отправляет его одному или нескольким узлам-исполнителям.
- Узлы-исполнители выполняют план запроса и возвращают частичные результаты инициатору.
- Узел-инициатор агрегирует результаты и возвращает данные пользователю

Также, обязательным свойством HP Vertica как MPP системы является отсутствие разделяемых компонентов (shared-nothing), как следствие:

- Система не предполагает использования выделенного разделяемого хранилища, за счет чего исключается единая точка отказа (СХД), а благодаря использованию локальных дисков сокращается стоимость владения дисковой подсистемой и повышается её производительность.
- Все компоненты системы являются одноранговыми, отсутствует единый диспетчер, балансировщик, каталог и т.п., кластер HP Vertica продолжает работать при отказе любого из узлов.

Колоночное хранение данных

- В СУБД HP Vertica реализован механизм колоночного хранения данных, что позволяет:
 - о Осуществлять компрессию данных
 - о Выполнять выборку только по колонкам данных, за счет чего существенно ускорять выборку данных

о Осуществлять выборку не выполняя декомпрессию данных

На рис. 4 приведен пример запроса, выполняющегося в СУБД с колоночным хранением и СУБД со строчным хранением. Пример наглядно демонстрирует, что СУБД с колоночным хранением более эффективно оперирует с данными при запросе и снижает нагрузку на подсистему ввода-вывода.

Текст запроса:

SELECT avg(price) **FROM** tickstore **WHERE** symbol = 'AAPL" date = '5/06/09'

Рисунок 4 Пример выполнения запроса

Эффективная компрессия данных

Благодаря использованию колоночного хранения данных возможна эффективная компрессия данных внутри колонок.

В HP Vertica реализовано 12 механизмов компрессии, выбор механизма компрессии осуществляется автоматически в зависимости от типа данных, но также может быть определен вручную.

Степень компрессии варьируется в зависимости от набора исходных данных и может составлять до 90%. На ряде наборов данных HP Vertica может выполнять запросы без декомпрессии данных, что позволяет повысить скорость выполнения запросов и снизить нагрузку на систему ввода-вывода.

Рисунок 5 Компрессия различных типов данных

Отказоустойчивость

HP Vertica рассчитана на использования с business-critical и mission-critical приложениях и поддерживает следующие механизмы отказоустойчивости:

- Встроенный механизм отказоустойчивости на уровне кластера (K-Safety)
 - о Основным принципом механизма K-Safety является копирование данных на любые один и более узлов кластера
 - о При выходе любого узла кластера из строя работоспособность системы не нарушается

Рисунок 6 Организация хранения данных, K-Safety

- Disaster Recovery (DR)
 - о Помимо основного механизма обеспечения отказоустойчивости, система также поддерживает возможность кластера Disaster Recovery. Данные могут загружаться в данном случае следующим образом:
 - Применение ETL к первичному и вторичному узлам DRкластера, таким образом оба узла DR-кластера остаются активными
 - Репликация данных на вторичный узел с помощью инструментария резервного копирования
 - о Лицензируется только первая копия данных, копия на вторичный узел DR-кластера при лицензировании не учитывается.

Безопасность

Так как на основе СУБД HP Vertica строятся хранилища данных с повышенными требованиями к безопасности, система поддерживает различные механизмы управления безопасностью, в том числе:

- Возможность внешней аутентификации (LDAP, Kerberos, и т.д.)
- Конфигурируемые политики управления паролями (сложность, жизненный цикл)
- SSL-шифрование для клиент-серверного взаимодействия
- AES шифрование на уровне записи
- Ролевая модель доступа: Предопределенные роли для суперпользователя и администратора БД
- Предоставление доступа на уровне объектов посредством стандартного синтаксиса SQL GRANT

Загрузка данных

Загрузка структурированных данных в HP Vertica

В зависимости от структуры загружаемых данных для загрузки можно использовать как Write Optimized Store (WOS) так и Read Optimized Store (ROS). WOS используется для большого количества мелких операций записи. ROS используется для записи больших объемов данных.

Рисунок 7 Загрузка данных в HP Vertica

Write Optimized Store (WOS) – хранилище, оптимизированное для записи, обладает следующими характеристиками:

- Хранит и обрабатывает данные в памяти
- Данные не сортированы
- Данные не компрессированы
- Низкая задержка

Read Optimized Store (ROS) – хранилище, оптимизированное для чтения, обладает следующими характеристиками:

- Хранит и обрабатывает данные на диске
- Данные сортированы
- Данные компрессированы

Благодаря эффективной архитектуре система поддерживает чтение во время загрузки данных.

Загрузка неструктурированных данных в HP Vertica (Flex Zone)

Благодаря технологии Flex Zone продукт HP Vertica обладает возможностью загрузки неструктурированных данных, представленных файлами форматов JSON и CSV. Система анализирует файл с данными, определяет схему (патентованная технология Auto-schematization), автоматически создает схему и выполняет загрузку данных в созданную таблицу. Благодаря данной технологии становится возможным выполнять SQL запросы на неструктурированных данных.

Рисунок 8 Технология Flex Zone

Пользовательский механизм загрузки

HP Vertica включает инструмент User Defined Load (UDL), позволяющий разрабатывать пользовательские расширения для загрузки данных. UDL позволяет изменить любой из трех встроенных инструментов загрузки, в том числе:

- Source получение данных из любого источника
- Filter трансформация данных в новый формат
- Parser преобразование исходных данных в записи БД

Использование данного механизма позволяет расширять функциональность HP Vertica за счет добавления поддержки пользовательских форматов и источников данных.

Выборка и анализ данных

Стандартные механизмы доступа

HP Vertica предоставляет широкие возможности для доступа к данным на языке SQL, посредством следующих интерфейсов:

- ODBC/JDBC
- ADO.NET
- Python
- Perl
- PHP

Язык HP Vertica SQL полностью соответствует стандарту ANSI SQL-99 и дополнен следующими аналитическими расширениями:

- Временные ряды
- Окна для событий и разбивка на сессии
- Графы
- Поиск закономерностей
- Цепочки событий
- Статистика
- География

Аналитическая платформа

HP Vertica предоставляет функциональность аналитической платформы, и предоставляет универсальный доступ к данным, посредством Application Programming Interface (API) и User Defined Extionsions (UDx) на следующих языках:

- R язык для статистического анализа с открытым кодом, содержащий множество пакетов для сложного исследования данных (data mining) и статистического анализа. HP Vertica поддерживает пользовательские расширения на R и обеспечивает их параллельное выполнение.
- HP Vertica предоставляет возможность разработки пользовательских расширений User Defined Extensions (UDx) посредством Java SDK API и C+ + SDK API, что позволяет использовать экспертизу Java и C++ для анализа данных.

Аналитические расширения

Помимо стандартного функционала языка HP Vertica SQL предоставляется доступ к аналитическим расширениям, таким как HP Vertica Pulse и HP Vertica Place, существенно расширяющих возможности анализа в части анализа

социальных связей и геопространственных данных. Полный список расширений доступен на портале HP Vertica Marketplace: https://vertica.hpwsportal.com/

Интеграции со сторонними системами

HP Vertica является ключевым элементом аналитической инфраструктуры и предоставляет широкий набор инструментов для интеграции с продуктами сторонних производителей. Интеграционные возможности можно условно разделить на три группы:

- Инструменты Business Intelligence (BI) и средства визуализации
- Системы извлечения, загрузки и трансформации данных (ETL/ELT) и репликаторы (CDC)
- Hadoop

Поддержка инструментов BI и средств визуализации

НР Vertica поддерживает интеграции с множеством промышленных инструментов ВІ и средств визуализации. Поддерживаются стандартные интерфейсы ODBC, JDBC, ADO.NET, а к ряду систем разработаны специализированные коннекторы для обеспечения максимальной прозрачности интеграции. Использование стандартного инструментария ВІ позволяет использовать существующую экспертизу в части анализа данных и сохранить инвестиции для реализации аналитических продуктов. НР Vertica интегрируется со следующими продуктами, и список постоянно расширяется:

- Tableau
- Microstrategy
- Oracle BI
- IBM Cognos
- SAP Business Objects
- SAS
- Looker
- Pentaho

Поддержка систем класса ETL/ELT и репликаторов

HP Vertica поддерживает интеграции с множеством инструментов извлечения, загрузки и трансформации данных, а также репликаторов, что позволяет организовать максимально оперативнный обмен между транзакционной и аналитической базами данных. Поддерживаются следующие инструменты:

- Informatica
- Talend
- Syncsort
- Oracle Data Integrator
- Microsoft SQL Server Integration Services
- Oracle Golden Gate
- Attunity
- Hit Software DBMoto

Интеграция с Hadoop

Дополнительно к этим двум группам ПО HP Vertica поддерживает интеграцию с Hadoop, в том числе и для загрузки данных из неструктурированных источников. Интеграция с Hadoop реализуется с помощью выделенного коннектора, позволяющего:

- Загружать результаты MapReduce в HP Vertica для дальнейшей обработки
- Обрабатывать результаты выборки HP Vertica в Hadoop
- Получать SQL доступ к файлам, находящимся в HDFS
- Загружать файлы, находящиеся в HDFS в таблицы HP Vertica

Помимо этого, HP Vertica также может использоваться в качестве базы для HCatalog.

Администрирование

Разворачивание системы

HP Vertica функционирует на серверах стандартной архитектуры x86 и может разворачиваться в следующих вариантах:

- На физических серверах х86
- На базе программно-аппаратного комплекса HP Converged System 300 for Vertica
- На облачных сервисах HP Cloud, Amazon EC2, и т.д.
- На виртуальной инфраструктуре (в частном облаке)

Система обладает свойством эластичного расширения, то есть, расширение системы не влияет на её работоспособность и осуществляется простым добавлением узлов. HP Vertica автоматически добавляет узлы в кластер и распространяет данные на новые узлы в фоновом режиме.

Система поддерживает функции изменения конфигурации без остановки системы, в том числе:

- Добавление/удаление узлов с автоматической ребалансировкой данных
- Замена/ремонт узлов без остановки кластера
- Добавление дисков на существующие узлы
- Клонирование БД с одного кластера на другой

Требования к аппаратному и общесистемному программному обеспечению

Аппаратное обеспечение должно соответствовать следующим требованиям:

- Узел кластера должен иметь один или два x86 процессора, рекомендуется использовать двухпроцессорную конфигурацию с 12ядерными процессорами
- Узел кластера должен содержать объем памяти в расчете 8ГБ на ядро процессора
- Дисковая подсистема должна быть построена на дисках 10К RPM и сконфигурирована с использованием RAID 10. При расчете объема дисковой подсистемы необходимо учитывать следующие факторы:
 - о Уровень компрессии данных (как правило 1:4)
 - о Объем дискового пространства под временные файлы должен составлять не менее 40%
 - о Объем дискового пространство под репликацию данных K-Safety (напр. При K-Safety=1 объем данных удваивается)
 - о Объем дискового пространства под проекции, определяемый сценариями использования (от 1,2х до 2х)
- Узлы кластера должны быть идентичными по типу процессора, объемам памяти и дисковой подсистемы

- Рекомендуется использование 10Gb Ethernet для соединения узлов внутри кластера
- Рекомендуется использование локальных дисков для хранения БД.
 Возможно, но не рекомендуется использовать внешнюю СХД для построения продуктивного кластера, так как в этом случае СХД является единой точкой отказа. Использование внешней СХД в тестовой среде допустимо.
- Систему можно размещать на виртуальной среде, но существует риск снижения производительности, обусловленный непрозрачностью виртуальной инфраструктуры. Рекомендуется использование виртуальных сред в тестовой среде.
- HP Vertica функционирует на одной из следующих операционных системах:
 - o Red Hat Enterprise Linux 5 and 6
 - o SUSE Linux Enterprise Server 11
 - o Oracle Enterprise Linux 6 Red Hat Compatible Kernel only HP Vertica does not support the unbreakable kernel (kernels with a uel suffix)
 - o Debian Linux 6
 - o Cent OS 5 and 6
 - o Ubuntu 12.04LTS

Инструмент управления Management Console

HP Vertica Management Console – это эффективный инструмент управления HP Vertica, позволяющий:

- Управлять одним или несколькими кластерами
- Осуществлять мониторинг активности СУБД и отслеживать статус кластера
- Коррелировать активность системы и активность СУБД.

Рисунок 9 Management Console

Помимо этого, система поддерживает оповещение по SNMP, таблицы состояний и историю запросов, содержащую информацию о нагрузке и времени выполнения запросов с целью дальнейшей оптимизации.

Оптимизация с помощью Database Designer

Database Designer (DBD) - инструмент оптимизации, входящий в комплект поставки HP Vertica. DBD анализирует запросы пользователей и выдает рекомендации по оптимизации структуры базы данных путем создания дополнительных проекций. Благодаря его использованию возможно существенно сократить время выполнения запросов.

Резервное копирование

НР Vertica содержит инструментарий для резервного копирования системы. Инструментарий позволяет выполнять полные либо инкрементальные копии базы данных. Осуществляется детализация на уровне объекта (приложение, пользователь, схема). Резервное копирование выполняется в онлайн-режиме и не требует остановки СУБД.

Рисунок 10 Варианты резервного копирования

Резервные копии могут сохраняться на следующие компоненты:

- На все узлы кластера
- На один узел кластера
- На другой кластер
- На отдельно стоящее хранилище (NAS или ленточное хранилище)

Организация зон разработки и тестирования

HP Vertica участвует в цикле разработки аналитических продуктов, и важным свойством системы является возможность создания зон разработки и тестирования. Зоны разработки и тестирования могут разворачиваться как на продуктивной среде, так и на внешней физической, виртуальной или облачной инфраструктуре. При этом копии данных на эти зоны дополнительно не лицензируется.

Лицензирование

СУБД НР Vertica лицензируется исходя из объема загружаемых в систему «сырых» данных, стоимость терабайта уменьшается при увеличении объема хранилища в соответствии с диапазонами лицензирования (1-10ТБ, 11-50ТБ, 51-100ТБ, 101-500ТБ, более 500ТБ).

Лицензируется только первая копия данных, копии на непродуктивные среды, включая Disaster Recovery, тестовые среды и среды разработки дополнительно не лицензируются.

Гарантийная поддержка на первый год в режиме 24х7 включается в поставку лицензий и составляет 21% от стоимости лицензий.