Exercise # 2. Iterative Methods For Linear Systems.

Alexandre Rodrigues (2039952)

January 9, 2022

Question 1

Using as a test the example usage, with $tol=1\times 10^{-8}$ and limiting the iterations to maxit=250, I got the following results.

Figure 1: Residual norm vs iteration number for PCG methods, maxit = 250

Method	Iterations	Final Residual	Computational Time
Matlab PCG without preconditioning	183	1.9591×10^{-7}	0.077s
Matlab PCG IC(0)	78	1.5293×10^{-7}	0.068s
My PCG implementation	250	2.3×10^{-3}	0.151s

Table 1: Results of PCG methods, maxit = 250

When maxit is large enough to guarantee convergence in all implementations we get the following results:

Figure 2: Residual norm vs iteration number for PCG methods, maxit = 750

${\bf Method}$	Iterations	Final Residual	Computational Time
Matlab PCG without preconditioning	183	1.9591×10^{-7}	0.054s
Matlab PCG IC(0)	78	1.5293×10^{-7}	0.063s
My PCG implementation	720	9.6833×10^{-9}	0.351s

Table 2: Results of PCG methods, maxit = 750

My implementation is slower to converge but produces better final residual values. This can be explained by the simpler implementation relative to Matlab's built-in method. The residuals difference can derive, however, from different normalization techniques.

Question 2

The spectral condition number of A is

$$\kappa(A) = \frac{\lambda_{max}(A)}{\lambda_{min}(A)}. (1)$$

In Matlab, I used the condest(A) function to estimate the condition number of a sparse matrix A.

The following table shows every data point needed to understand what the number of iterations of the CG method depends on.

n_x	h	$\kappa(A)$	$\sqrt{\kappa(A)}$	CG	PCG(0)	$PCG(10^{-2})$	$PCG(10^{-3})$
102	9.9009×10^{-3}	6.0107×10^3	77.5288	283	87	45	17
202	4.9751×10^{-3}	2.3810×10^4	154.3039	532	159	78	30
402	2.4938×10^{-3}	9.4770×10^4	307.8473	948	282	137	53
802	1.2484×10^{-3}	3.7814×10^5	614.9304	1792	533	258	97

Table 3: Iterations of PCG methods for each value of n_x and respective values of h and $\kappa(A)$

One can note from the table the inverse proportionality of the number of iterations on $h = \frac{1}{n} = \frac{1}{(nx-1)}$. The number of iterations is halved when n_x approximately doubles.

Question 3

Theoretical proof

One can estimate the number of iterations needed for convergence of a CG method as

$$k \approx \frac{\log 10}{2} p(\sqrt{\kappa} + 1),\tag{2}$$

with $tol = 10^{-p}$, so, for this example,

$$k \approx \frac{\log 10}{2} 8(\sqrt{10^3} + 1)$$
 (3)

$$k \approx 300.44. \tag{4}$$

This result is for a non-preconditioned method.

For PCG we can find the optimal polynomial

$$P_k(t) = \left(1 - \frac{t}{200}\right) \left(1 - \frac{t}{400}\right) \left(1 - \frac{t}{600}\right) \left(1 - \frac{t}{800}\right) \left(1 - \frac{t}{1000}\right) \hat{T}_{k-4}(t) \tag{5}$$

This is only relevant for $t \in \lambda(A) = \{1, 200, 400, 600, 800, 1000\}$. The error reduction is then given by the maximum value of $\hat{T}_{k-4}(t)$, $k=4,5,\ldots$ So the method converges when $\frac{1}{\max(\hat{T}_{k-4}(t))||b||} < tol, \text{ with } tol = 10^{-8} \text{ in this case.}$ These calculations produced the following results:

Iteration (k)	Expected Error
4	1.2×10^{-3}
5	6.2×10^{-7}
6	3.1×10^{-10}

Table 4: Results for each value of implementation, no preconditioning

It is hereby proven that the method converges after 6 iterations.

Testing my implementation

When using the Choledsky precontionier with no fill-in, I didn't get the expected results. Both Matlab's and my implementation converged in only one iteration.

Figure 3: Residual norm vs iteration number for PCG methods with IC(0) preconditioner

Method	Iterations	Final Residual	Computational Time
Matlab PCG	1	5.6843×10^{-14}	0.058s
My PCG	1	0	0.020s

Table 5: Results for each preconditioned PCG implementation

These results can be due to the optimized preconditioner usage in this methods, making this example solved in almost only preprocessing.

Due to the bad results, I tried to remove preconditioning from my implementation by setting L as the identity matrix, L = speye(size(L)).

Figure 4: Residual norm vs iteration number for PCG methods without preconditioning

Method	Iterations	Final Residual	Computational Time
Matlab CG	6	9.2128×10^{-14}	0.021s
My PCG	5	1.2744×10^{-13}	0.012s

Table 6: Results for each value of implementation, no preconditioning

These results show the theoretical calculations, my implementation is still better than expected.

Question 4

Solving with PCG a linear system with A as the coefficient SPD matrix and b corresponding to a random vector solution, I got the following results.

Figure 5: Residual norm vs iteration number for PCG methods without preconditioning

Preconditioner	Iterations	Final Residual	Computational Time
None	253	1.1367×10^{-4}	0.254s
Jacobi	36	9.3198×10^{-5}	0.053s
$\overline{\mathrm{IC}(0)}$	10	1.1155×10^{-4}	0.046s

Table 7: Results for each preconditioner

There is a very clear improvement when using preconditioning. It is also noticeable the superior characteristics of the incomplete Choledsky preconditioner relative to Jacobi.

Question 5

Solving the linear system based on the matrix mat13041.rig with the GMRES method, I got the following results.

Figure 6: Residual norm vs iteration number for GMRES methods

Method	Iterations	Final Residual	Computational Time
Matlab GMRES	527	1.2073×10^{-12}	9.097s
My GMRES	509	1.2231×10^{-12}	10.032s

Table 8: Results for each GMRES implementation

These results show that the methods have very similar convergence characteristics. My implementation has a smaller number of iterations but the other results are slightly worse than the ones achieved with Matlab's implementation.

Question 6

Solving the same linear system based on the matrix mat13041.rig with the preconditioned GMRES method, I got the following results.

Figure 7: Residual norm vs iteration number for preconditioned GMRES methods

Method	Iterations			Computational Time
Matlab GMRES	38	1.5592×10^{-10}	4.5350×10^{-13}	0.121s
My GMRES	39	2.3797×10^{-13}	7.1893×10^{-14}	4.943s

Table 9: Results for each preconditioned GMRES implementation

There are clear differences in the residuals and computational time values. My implementation is 40 times slower but produces a true residual 5 times smaller. This can be due to the simplicity of my implementation and consequent unnecessary calculations.

Solving the linear system in 3.(b) produced the same unexpected results as in that question. When using the Choledsky precontionier with no fill in both Matlab's and my implementation converged in only one iteration.

Method	Iterations	Final Residual	Computational Time
GMRES	1	3.8481×10^{-16}	0.027s
My PCG	1	1.7554×10^{-17}	0.003s

Table 10: Iterations for each value of nx

Figure 8: Residual norm vs iteration number for GMRES methods

I then removed preconditioning from my implementation by setting L as the identity matrix, L = speye(size(L)).

\mathbf{Method}	Iterations	Final Residual	Computational Time
GMRES	6	3.0413×10^{-14}	0.102s
My PCG	5	1.0468×10^{-13}	0.012s

Table 11: Results for each value of implementation, no preconditioning

Figure 9: Residual norm vs iteration number for GMRES methods without preconditioning

As in 3.(b), these results show the theoretical calculations, my implementation is still better than expected.

Question 7

Using the same linear system as in the previous question, we will now study the effect of the restart value.

restart	Iterations	Final Residual	Computational Time
10	1149	1.9901×10^{-12}	1.735s
20	739	1.9741×10^{-12}	1.443s
30	88	1.3800×10^{-12}	0.242s
50	41	9.9416×10^{-13}	0.135s

Table 12: Results for each value of restart

Figure 10: Residual norm vs iteration number for each value of restart

One can notice a clear improvement in convergence with the increase of the restart value. A larger restart value implies the method restarts less times, this is clearly better but implies a larger memory usage and computational cost. For restart= 50 the method did not restart and the results are optimal. This shows that this example does not benefit from restarting.

Question 8

Solving the linear system based on the matrix ML_laplace.mtx with Matlab's GMRES method, maxit=550, tol=1e-8, I got the following results.

droptol	Iterations	Prec. Time	Solving Time	Total Time	Final Residual	ρ
2×10^{-2}	1316	37.92s	44.53s	82.45s	5.2065×10^{-7}	0.4537
1×10^{-2}	4444	40.55s	22.86s	63.42s	5.7213×10^{-7}	0.5807
3×10^{-3}	150	51.78s	7.39s	59.17s	6.4998×10^{-7}	0.9401
1×10^{-3}	67	47.74s	3.63s	51.37s	8.5337×10^{-7}	1.4544
1×10^{-4}	26	43.30s	2.30s	45.60s	9.1517×10^{-7}	3.5140
1×10^{-5}	12	96.73s	2.69s	99.42s	9.4359×10^{-7}	9.0720

Table 13: Results for each value of droptol

Figure 11: Residual norm vs iteration number for each value of droptol

There is a clear reduction in the number of iterations with the decrease of droptol which is due to the more complete factorization. This has a higher computational cost to compute (larger Prec. Time) but a smaller solving time. Despite of this, the smaller droptol produces a reduction in total computational time until droptol= 1×10^{-5} . For droptol= 1×10^{-5} the Prec. time increases significantly and the solving time stagnates relative to 1×10^{-4} . The final residual does not have a noticeable change with the reduction of droptol. The density (ρ) has a very clear increase with the reduction of droptol.