C6: COMPOSITION OF FUNCTIONS

15 April 2020 23:34

6.1 COMPOSITE FUNCTIONS

$$f \circ g(x) = f(g(x))$$

$$f \circ g \neq g \circ f$$
.

when

$$y = f(g(x))$$

then

$$x \in dom(g)$$
 and $g(x) \in dom(f)$

When y=

$$g(f(x))$$
.

then

$$x \in dom(f)$$
 and $f(x) \in dom(g)$

EXERCISES [pg5]

- 1. If $f(x) = x^2$ and g(x) = 2x + 4 then
- (a) find the rule for f(g(x)). f(g(n)) = f(2n+4) $= (2n+4)^2$ $= 4n^2 + 16n + 16$
- (b) find the rule for g(f(x)). $g(f(n)) = g(n^2)$ $= 2 n^2 + 4$
 - 2. Consider the functions

$$f: [-4, 6] \longrightarrow \mathbf{R}$$
 where $f(x) = 10x - 2$

and

$$g: [8,73] \longrightarrow \mathbf{R}$$
 where $g(x) = 5x - 39$.

(a) Eindightand give to dom(?)

$$n6[8,73]$$
 and $5n-39\in[-4,6]$
 $8 \le n \le 73$
 $-4 \le 5n-39 \le 6$
 $-4 \le 5n-39 \le 6$
 $35 \le 5n$
 $5n < 46$
 $7 \le n \le 9$
 $4 \le 6n + 60$
 $5n < 60$

(b) Find dom($g \circ f$).

- (c) Find the rule for f(g(x)).
- (d) Find the rule for g(f(x)).
- 3. If $f(x) = \begin{cases} x^2 2 & \text{if } x > 1 \\ 1 x & \text{if } x \le 1 \end{cases}$ and g(x) = 2x then find the rule for f(g(x)).

6.2 INVERSE FUNCTIONS

$$f(g(x)) = x$$

and

$$g(f(x)) = x$$
.

When $\,f\,$ and $\,g\,$ have the above property, we say that $\,g\,$ is the $\,$ inverse of $\,f\,$.

When g is the **inverse** of f, we write g as f^{-1} .

Using this notation, we can rewrite the above cancellation equations as

$$f(f^{-1}(x)) = x$$

and

$$f^{-1}(f(x)) = x.$$

That is, f and f^{-1} ' \mathbf{undo} ' (or cancel) each other.

GRAPHING INVERSE FUNCTIONS

Sketching the graphs for y = f(x) and $y = f^{-1}(x)$ gives:

In the graph above we can see that the line y=x acts like a mirror. This is a general property. That is,

the graph of f^{-1} is obtained by reflecting the graph of f in the line y = x

A function has an inverse function if and only if it is one-one

DOMAIN AND RANGE

$$\mathrm{dom}(f^{-1}) = \mathrm{ran}(f)$$

$$\operatorname{ran}(f^{-1}) = \operatorname{dom}(f)$$

EXERCISES [pg10]

- 1. Find the inverse of each of the following functions:
- (a) f(x) = 2x + 1
- (b) f(x) = 7x + 3

(d)
$$f(x) = \frac{1}{x+1}$$

(e)
$$f(x) = \frac{1}{x}$$

2. (a) Find the smallest number b such that the function

$$f(x) = x^2 - 4$$
 with $dom(f) = [b, \infty)$

has an inverse function. Find the rule for the inverse function.

(b) Find the largest number b such that the function

$$f(x) = (x+2)^2$$
 with $dom(f) = (-\infty, b]$

has an inverse function. Find the rule for the inverse function.

- 3. Consider the function $f(x) = 1 + \sqrt{x+1}$.
- (a) Find dom(f).

- (b) Find ran(f).
- (c) Find dom(f^{-1}).
- (d) Find ran(f^{-1}).
- (e) Find the rule for f^{-1} .

(f) Sketch the graphs of y = f(x) and $y = f^{-1}(x)$.

6.3 EXPONENTIALS AND LOGARITHS

if $f(x) = a^x$ then $f^{-1}(x) = \log_a x$

logarithms and exponentials cancel each other, (as long as they have the **same base**).

Example 9. Make x the subject of the following formula:

$$y = B \times 10^{\frac{ax}{b}}$$

(i.e. rearrange the formula to get x by itself).

Solution:

$$y = B \times 10^{\frac{ax}{b}}$$

$$\therefore \frac{y}{B} = 10^{\frac{ax}{b}}$$

$$\therefore \log_{10} \left(\frac{y}{B}\right) = \frac{ax}{b}$$

$$\therefore ax = b \log_{10} \left(\frac{y}{B}\right)$$

$$\therefore x = \frac{b}{a} \log_{10} \left(\frac{y}{B}\right)$$

... a ~810 (B)

EXERCISES [pg12]

- 1. Simplify the following expressions:
- (a) $\log_3 \left(3^{\sin x}\right)$
- (b) $\log_{12} (12^{x-1})$
- (c) $4^{\log_4 \sqrt{x}}$
- (d) 72 log₇ x
- (e) $3^{\frac{1}{2}\log_3(x+1)}$
- 2. Evaluate the following expressions:
- (a) log₉ 3
- (b) $\log_9\left(\frac{1}{27}\right)$
- (c) log₄ 0.25
 - 3. Make t the subject of the equation $y = k + Ca^{bt}$.

6.4 INVERSE TRIGONOMETRIC FUNCTIONS

SINE AND ITS INVERSE

To turn sine into a **one—one** function, we restrict its domain to $\begin{bmatrix} \pi & \pi \end{bmatrix}$

 $\lfloor -\frac{1}{2}, \frac{1}{2} \rfloor$. That is, we consider the function

$$f:\left[-\frac{\pi}{2}\,,\,\frac{\pi}{2}\right]\to\mathbf{R}$$

where $f(x) = \sin x$.

We define \sin^{-1} (or \arcsin) to be the inverse of this function. That is, we write

$$f^{-1}(x) = \sin^{-1}(x)$$
.

Note:

When we write $y = \sin^{-1} x$, we have $y \in \operatorname{ran}(f^{-1})$.

$$\operatorname{ran}(f^{-1}) = \operatorname{dom}(f) = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

then we conclude that $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Thus we have

$$y = \sin^{-1} x$$

if and only if

$$\sin y = x \quad \text{and} \quad y \in \left[- \, \frac{\pi}{2} \, \, , \, \, \frac{\pi}{2} \right].$$

COSINE AND ITS INVERSE

To turn cosine into a **one–one** function, we restrict its domain to $[0,\pi]$. That is, we consider the function

$$f: [0, \pi] \to \mathbf{R}$$

where $f(x) = \cos x$.

We define \cos^{-1} (or \arccos) to be the inverse of this function. That is, we write

$$f^{-1}(x) = \cos^{-1}(x).$$

Note:

When we write $y = \cos^{-1} x$, we have $y \in \operatorname{ran}(f^{-1})$. Since

$$ran(f^{-1}) = dom(f) = [0, \pi]$$

then we conclude that $y \in [0, \pi]$.

Thus we have

$$y = \cos^{-1} x$$

if and only if

$$\cos y = x$$
 and $y \in [0, \pi]$.

TAN AND ITS INVERSE

To turn tan into a **one-one** function, π

we restrict its domain to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

That is, we consider the function

$$f:\left(-\frac{\pi}{2}\,,\,\frac{\pi}{2}\right)\to\mathbf{R}$$

where $f(x) = \tan x$.

We define tan⁻¹ (or arctan) to be the inverse of this function. That is, we write

$$f^{-1}(x) = \tan^{-1}(x).$$

Note:

When we write $y = \tan^{-1} x$, we have $y \in \operatorname{ran}(f^{-1})$. $\frac{y}{2}$

then we conclude that $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Thus we have

$$y = \tan^{-1} x$$

if and only if

$$\tan y = x$$
 and $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Warning:

Recall that usually

$$f^{-1}(x) \neq \frac{1}{f(x)}.$$

In particular,

$$\sin^{-1} x \neq \frac{1}{\sin x} .$$

That is,

$$\sin^{-1} x \neq (\sin x)^{-1}$$

Similarly, note that

$$\cos^{-1} x \neq (\cos x)^{-1}$$
 and $\tan^{-1} x \neq (\tan x)^{-1}$.

EXERCISES [pg17]

(a)
$$\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$$

(b)
$$\sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)$$

(c)
$$\cos^{-1}\left(-\frac{1}{2}\right)$$

- (d) cos⁻¹(1)
- (e) $\tan^{-1}(-\sqrt{3})$

9 of 9 1/2/21, 11:10 AM