Time series project

May 7, 2024

```
[4]: import pandas as pd
     import numpy as np
     from statsmodels.tsa.seasonal import seasonal_decompose
     from statsmodels.tsa.vector_ar.var_model import VAR
     from statsmodels.tsa.stattools import adfuller
     from statsmodels.tools.eval measures import rmse, aic
     from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
 [5]: import matplotlib.pyplot as plt
      import seaborn as sns
 [6]: import warnings
     warnings.filterwarnings('ignore')
 [7]: data=pd.read_excel('datauk.xlsx')
 [8]: data.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 63 entries, 0 to 62
     Data columns (total 5 columns):
      #
          Column
                                       Non-Null Count
                                                       Dtype
          ----
     ___
                                       63 non-null
                                                       datetime64[ns]
      0
          Année
      1
          Dépenses (% du PIB)
                                       51 non-null
                                                       float64
      2
          Masse monétaire (% du PIB)
                                       63 non-null
                                                       float64
          Croissance du PIB (% annuel)
                                       62 non-null
                                                       float64
          Inflation, IPC (% annuel)
                                       63 non-null
                                                       float64
     dtypes: datetime64[ns](1), float64(4)
     memory usage: 2.6 KB
 [9]: df=data.dropna()
[10]: df.rename(columns = {'Dépenses (% du PIB)': 'depenses', 'Masse monétaire (% du_
       ⇔PIB)':'Mass_Mon','Croissance du PIB (% annuel)':'PIB','Inflation, IPC⊔
       [11]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
     Int64Index: 51 entries, 12 to 62
     Data columns (total 5 columns):
          Column
                    Non-Null Count Dtype
                    -----
                                    datetime64[ns]
      0
          Année
                    51 non-null
      1
          depenses 51 non-null
                                    float64
          Mass_Mon 51 non-null
                                     float64
      3
          PIB
                    51 non-null
                                    float64
      4
          TPC
                    51 non-null
                                     float64
     dtypes: datetime64[ns](1), float64(4)
     memory usage: 2.4 KB
[12]: df.describe().T
[12]:
                count
                                        std
                                                   min
                                                               25%
                                                                          50% \
                            mean
      depenses
                 51.0 36.927618
                                   3.928926
                                             28.838079
                                                        34.507635
                                                                    36.881620
     Mass Mon
                 51.0 91.185677 47.241943
                                             30.453995
                                                        42.307287
                                                                    84.960198
     PIB
                 51.0
                        2.143492
                                   2.897470 -10.359901
                                                         1.577274
                                                                     2.531670
      IPC
                 51.0
                        5.291625
                                   5.227952
                                              0.368047
                                                         2.025434
                                                                     2.697495
                       75%
                                   max
      depenses
                 38.010740
                             47.677124
     {\tt Mass\_Mon}
               139.654479 165.625401
      PIB
                  3.581643
                              8.674904
      IPC
                  7.266441
                             24.207288
         Visualiser les données
[13]: df.columns
[13]: Index(['Année', 'depenses', 'Mass_Mon', 'PIB', 'IPC'], dtype='object')
[14]: fig, axs = plt.subplots(2, 2, figsize=(18, 10))
      df.plot(x='Année', y='PIB', ax=axs[0, 0])
      df.plot(x='Année', y='IPC', ax=axs[0, 1])
      df.plot(x='Année', y='Mass_Mon', ax=axs[1, 0])
      df.plot(x='Année', y='depenses', ax=axs[1, 1])
      axs[0,0].set_title('Évolution du PIB')
      axs[0,1].set_title('Évolution de l indice d inflation')
      axs[1,0].set_title('Évolution de la masse monétaire')
      axs[1,1].set_title('Évolution de la dépense')
      plt.tight_layout()
      plt.show()
```



```
[15]: df.set_index('Année', inplace=True)
```

2 Stationnarité

```
[16]: # Faire les tests de Dickey-Fuller augmenté
for column in df.columns:
    result = adfuller(df[column])
    print(f"\nResults for column {column}:")
    print(f'ADF Statistic: {result[0]}')
    print(f'p-value: {result[1]}')
    print('Critical Values:')
    for key, value in result[4].items():
        print(f'\t{key}: {value:.3f}')
```

Results for column depenses:

ADF Statistic: -0.01788946499528467

p-value: 0.9570273974381989

Critical Values:

1%: -3.601 5%: -2.935 10%: -2.606

Results for column Mass_Mon:

ADF Statistic: -0.3034413347165586

p-value: 0.9250155201169266

Critical Values:

```
1%: -3.585
        5%: -2.928
        10%: -2.602
Results for column PIB:
ADF Statistic: -6.8423903498917245
p-value: 1.7775876148768182e-09
Critical Values:
        1%: -3.568
        5%: -2.921
        10%: -2.599
Results for column IPC:
ADF Statistic: -2.0482518404718397
p-value: 0.26582499942353527
Critical Values:
        1%: -3.589
        5%: -2.930
        10%: -2.603
```

Travaillons pour une seuil de confiance de 5%:

Sur la base des résultats fournis pour le test ADF (Augmented Dickey-Fuller) pour la colonne PIB :

- Statistique ADF : -6.8423903498917245
- valeur p: 1.7775876148768182e-09 (environ 0)

Les valeurs critique: - Valeur critique à 5 % : -2.921

Interprétation:

- 1. Statistique ADF : La statistique ADF est -6.8423903498917245. Cette valeur est fortement négative.
- 2. Valeur p : La valeur p est approximativement 0, spécifiquement 1.7775876148768182e-09, ce qui est très proche de zéro. Nous avons suffisamment de preuves pour conclure que la série du PIB est stationnaire.

Idem: on peut conclure que le reste des séries (depenses, Mass Mon, IPC) sont non stationnaire.

```
[99]: # Faire les graphiques ACF et PACF pour chaque colonne
for column in df.columns:
    fig, (ax1, ax2) = plt.subplots(2,1, figsize=(16,8))
    plot_acf(df[column], lags=50, zero=False, ax=ax1)
    ax1.set_title(f"ACF de {column}")
    plot_pacf(df[column], lags=20, zero=False, ax=ax2)
    ax2.set_title(f"PACF {column}")
    plt.tight_layout()
    plt.show()
```


3 Transformation pour rendre la série stationnaire

```
[100]: dff=df[['depenses','Mass_Mon','IPC']]

[101]: # Différencier les séries de données et les ajouter au DataFrame
    df_diff = dff.diff().dropna()
    df_diff.columns = [f"{col}_diff" for col in dff.columns]
    df = pd.concat([df, df_diff], axis=1)
    df.head()
```

```
[101]:
                    depenses
                               {\tt Mass\_Mon}
                                              PIB
                                                         IPC
                                                              depenses_diff \
       Année
       1972-01-01 29.511858
                              38.185852 4.321668
                                                    7.071098
                                                                         NaN
       1973-01-01
                   28.838079 42.169886 6.523848
                                                    9.196033
                                                                   -0.673779
       1974-01-01 33.253575 42.444689 -2.484404
                                                   16.044011
                                                                   4.415496
       1975-01-01
                   36.489009
                              36.697659 -1.473649
                                                   24.207288
                                                                   3.235434
       1976-01-01 36.444959 34.562379 2.910266
                                                   16.559523
                                                                   -0.044050
                   Mass_Mon_diff IPC_diff
       Année
       1972-01-01
                             NaN
                                       NaN
       1973-01-01
                                  2.124935
                        3.984033
       1974-01-01
                        0.274803
                                  6.847978
       1975-01-01
                       -5.747030
                                  8.163276
       1976-01-01
                       -2.135280 -7.647765
[102]: df=df.dropna()
       df.head()
[102]:
                    depenses
                                              PIB
                                                         IPC
                                                              depenses_diff \
                               {\tt Mass\_Mon}
       Année
       1973-01-01 28.838079 42.169886 6.523848
                                                    9.196033
                                                                   -0.673779
       1974-01-01 33.253575 42.444689 -2.484404
                                                   16.044011
                                                                   4.415496
       1975-01-01 36.489009 36.697659 -1.473649
                                                   24.207288
                                                                   3.235434
       1976-01-01 36.444959 34.562379 2.910266
                                                   16.559523
                                                                   -0.044050
                                                                  -1.916793
       1977-01-01 34.528167 32.479976 2.457751
                                                   15.840267
                   Mass_Mon_diff IPC_diff
       Année
       1973-01-01
                        3.984033 2.124935
       1974-01-01
                        0.274803 6.847978
       1975-01-01
                       -5.747030 8.163276
       1976-01-01
                       -2.135280 -7.647765
       1977-01-01
                       -2.082404 -0.719256
[103]: for i in df_diff.columns:
           plt.figure(figsize=(4,2))
           sns.lineplot(y=df[i],x = df.index,linewidth = 1.5)
           plt.xlabel ('Année')
           plt.ylabel (i)
           plt.title('Évolution de la {} '.format(i))
           plt.xticks(rotation=90)
           plt.show()
```



```
[104]: # Faire les tests de Dickey-Fuller augmenté pour les séries différenciées
for column in df_diff.columns:
    result = adfuller(df[column])
    print(f"\nResults for column {column}:")
    print(f'ADF Statistic: {result[0]}')
    print(f'p-value: {result[1]}')
    print('Critical Values:')
    for key, value in result[4].items():
        print(f'\t{key}: {value:.3f}')
```

```
Results for column depenses_diff:
ADF Statistic: -4.167977524602791
p-value: 0.0007461448757894758
Critical Values:
        1%: -3.601
        5%: -2.935
        10%: -2.606
Results for column Mass_Mon_diff:
ADF Statistic: -4.583590916426238
p-value: 0.0001384703714606517
Critical Values:
        1%: -3.585
        5%: -2.928
        10%: -2.602
Results for column IPC_diff:
ADF Statistic: -1.3855675908734404
p-value: 0.5891753067726766
```

Critical Values:

1%: -3.589 5%: -2.930 10%: -2.603

```
[105]: # Faire les graphiques ACF et PACF pour chaque colonne différenciée
for column in df_diff.columns:
    fig, (ax1, ax2) = plt.subplots(2,1, figsize=(16,8))
    plot_acf(df[column], lags=45, zero=False, ax=ax1)
    ax1.set_title(f"ACF de {column}")
    plot_pacf(df[column], lags=20, zero=False, ax=ax2)
    ax2.set_title(f"PACF de {column}")
    plt.tight_layout()
    plt.show()
```


4 Saisonabilité

```
[106]: analysis = df[['IPC']].copy()
  decompose_result_mult = seasonal_decompose(analysis, model="additive")

  trend = decompose_result_mult.trend
  seasonal = decompose_result_mult.seasonal
  residual = decompose_result_mult.resid
```


5 Division de la base en train et en base test

```
[121]: dfd= pd.concat([df['PIB'], df_diff], axis=1).dropna()
       dfd.head()
[121]:
                        PIB
                             depenses_diff Mass_Mon_diff
                                                            {\tt IPC\_diff}
       Année
       1973-01-01 6.523848
                                  -0.673779
                                                  3.984033
                                                            2.124935
       1974-01-01 -2.484404
                                   4.415496
                                                  0.274803
                                                            6.847978
       1975-01-01 -1.473649
                                   3.235434
                                                 -5.747030 8.163276
       1976-01-01 2.910266
                                  -0.044050
                                                 -2.135280 -7.647765
       1977-01-01 2.457751
                                  -1.916793
                                                 -2.082404 -0.719256
[123]: # Définir le point de division
       split_point = int(len(dfd) * 0.9) # 90% des données pour l'entraînement
       # Diviser les données
       df_train = dfd.iloc[:split_point]
```

```
df_test = dfd.iloc[split_point:]
       # Vérifier les tailles des ensembles d'entraînement et de test
       print('Training set:', len(df_train))
       print('Test set:', len(df_test))
      Training set: 45
      Test set: 5
[128]: # Choisir l'ordre optimal du modèle VAR
      model = VAR(df_train)
       # Choisir l'ordre optimal p pour le modèle VAR
       order_selection = model.select_order(maxlags=5)
       order_selection.summary()
[128]: <class 'statsmodels.iolib.table.SimpleTable'>
[129]: # L'ordre optimal est donné par le critère d'information d'Akaike (AIC) ou leu
       →critère d'information bayésien (BIC)
       optimal_order_aic = order_selection.aic
       optimal_order_bic = order_selection.bic
       optimal_order_fpe = order_selection.fpe
       optimal_order_hqic = order_selection.hqic
       print(f"P optimal avec AIC: {optimal_order_aic}")
       print(f"P optimal avec BIC: {optimal_order_bic}")
       print(f"P optimal avec FPE: {optimal_order_fpe}")
       print(f"P optimal avec HQIC: {optimal_order_hqic}")
      P optimal avec AIC: 5
      P optimal avec BIC: 0
      P optimal avec FPE: 5
      P optimal avec HQIC: 1
```

6 Estimation du modèle

```
[130]: # Créer le modèle VAR
model = VAR(df_train)

# Choisir un ordre 5
results = model.fit(5)

# Voir un sommaire des résultats
print(results.summary())
```

Summary of Regression Results

Model: VAR OLS Method: Date: Thu, 18, Apr, 2024 Time: 00:50:47 -----No. of Equations: 4.00000 BIC: 9.84930 40.0000 HQIC: 7.58501 -269.083 FPE: Log likelihood: 869.916 AIC: 6.30266 Det(Omega_mle): 160.841 ______ Results for equation PIB ______ coefficient std. error t-stat prob -0.109529 1.121097 -0.098 const 0.922 -0.006526 0.265196 L1.PIB -0.025 0.980 L1.depenses_diff -0.984657 0.352963 -2.790 0.005 L1.Mass_Mon_diff -0.051472 0.038504 -1.3370.181 L1.IPC_diff -0.596072 0.162949 -3.658 0.000 L2.PIB 0.188380 0.274972 0.685 0.493 L2.depenses_diff 0.411660 0.380119 1.083 0.279 L2.Mass_Mon_diff 0.003304 0.038936 0.085 0.932 -0.259035 -1.345 L2.IPC_diff 0.192577 0.179 L3.PIB 0.643228 0.262403 2.451 0.014 L3.depenses_diff 0.435794 0.363963 1.197 0.231 L3.Mass_Mon_diff -0.010868 0.036727 -0.296 0.767 L3.IPC_diff -0.071195 0.160297 -0.444 0.657 -0.042996 L4.PIB 0.310708 -0.138 0.890 L4.depenses_diff 0.183206 0.375655 0.488

0.036019

0.430

0.015471

0.626

L4.Mass_Mon_diff

0.668				
L4.IPC_diff	-0.117863	0.126476	-0.932	
0.351				
L5.PIB	0.073938	0.325502	0.227	
0.820				
L5.depenses_diff	-0.057117	0.366284	-0.156	
0.876				
L5.Mass_Mon_diff	0.010429	0.036464	0.286	
0.775				
L5.IPC_diff	-0.286288	0.113914	-2.513	
0.012				
=======================================				=====

===

Results for equation depenses_diff

===========			
===	coefficient	std. error	t-stat
prob			
const	-1.243930	0.855363	-1.454
0.146			
L1.PIB 0.065	-0.373795	0.202336	-1.847
L1.depenses_diff 0.940	0.020326	0.269300	0.075
L1.Mass_Mon_diff 0.605	0.015174	0.029377	0.517
L1.IPC_diff	0.143768	0.124325	1.156
L2.PIB 0.391	0.179997	0.209796	0.858
L2.depenses_diff 0.750	-0.092272	0.290019	-0.318
L2.Mass_Mon_diff	-0.038675	0.029707	-1.302
L2.IPC_diff 0.905	-0.017474	0.146931	-0.119
L3.PIB 0.811	0.047975	0.200205	0.240
L3.depenses_diff 0.715	0.101518	0.277693	0.366
L3.Mass_Mon_diff 0.965	-0.001223	0.028021	-0.044
L3.IPC_diff 0.536	-0.075728	0.122302	-0.619
L4.PIB	0.482416	0.237061	2.035

0.042 L4.depenses_diff 0.722	0.101983	0.286614	0.356
L4.Mass_Mon_diff 0.757	0.008512	0.027481	0.310
L4.IPC_diff 0.413	0.079014	0.096498	0.819
L5.PIB 0.302	0.256587	0.248348	1.033
L5.depenses_diff 0.389	0.240911	0.279463	0.862
L5.Mass_Mon_diff 0.558	0.016280	0.027821	0.585
L5.IPC_diff 0.023	0.198134	0.086913	2.280

===

Results for equation Mass_Mon_diff

===	coefficient	std. error	t-stat	
prob				
const 0.273	-5.660473	5.160944	-1.097	
L1.PIB 0.455	0.911604	1.220823	0.747	
L1.depenses_diff	0.962035	1.624856	0.592	
L1.Mass_Mon_diff	0.217141	0.177252	1.225	
L1.IPC_diff	-1.276125	0.750133	-1.701	
L2.PIB 0.009	3.289188	1.265830	2.598	
L2.depenses_diff	0.758480	1.749870	0.433	
L2.Mass_Mon_diff	-0.079139	0.179242	-0.442	
L2.IPC_diff 0.323	0.875704	0.886526	0.988	
L3.PIB 0.849	-0.230692	1.207966	-0.191	
L3.depenses_diff	3.234652	1.675497	1.931	
L3.Mass_Mon_diff	0.119318	0.169071	0.706	

0.480				
L3.IPC_diff	0.616638	0.737926	0.836	
0.403				
L4.PIB	-0.123757	1.430336	-0.087	
0.931				
L4.depenses_diff	-1.033858	1.729322	-0.598	
0.550				
L4.Mass_Mon_diff	0.097503	0.165813	0.588	
0.557				
L4.IPC_diff	-0.653509	0.582231	-1.122	
0.262				
L5.PIB	-0.268840	1.498442	-0.179	
0.858				
L5.depenses_diff	1.086108	1.686178	0.644	
0.519				
L5.Mass_Mon_diff	-0.469614	0.167861	-2.798	
0.005				
L5.IPC_diff	-0.550382	0.524402	-1.050	
0.294				
=======================================		==========		=====

===

Results for equation IPC_diff

=== prob	coefficient	std. error	t-stat	
const	-1.343160	1.215891	-1.105	
0.269				
L1.PIB	0.342179	0.287619	1.190	
0.234				
L1.depenses_diff	0.023547	0.382808	0.062	
0.951 L1.Mass_Mon_diff	0.062514	0.041760	1.497	
0.134	0.002014	0.041700	1.401	
L1.IPC_diff	-0.159727	0.176727	-0.904	
0.366				
L2.PIB	0.017910	0.298223	0.060	
0.952				
L2.depenses_diff	0.100442	0.412260	0.244	
0.808				
L2.Mass_Mon_diff	-0.022530	0.042229	-0.534	
0.594	0.005000	0.000064	0.214	
L2.IPC_diff 0.753	0.065686	0.208861	0.314	
L3.PIB	-0.161083	0.284590	-0.566	

0.571				
L3.depenses_diff	-0.099625	0.394738	-0.252	
0.801				
L3.Mass_Mon_diff	0.052811	0.039832	1.326	
0.185				
L3.IPC_diff	-0.148486	0.173851	-0.854	
0.393				
L4.PIB	0.154319	0.336980	0.458	
0.647				
L4.depenses_diff	-0.452550	0.407419	-1.111	
0.267	0.004060	0.000065	0.005	
L4.Mass_Mon_diff	0.034962	0.039065	0.895	
0.371 L4.IPC_diff	-0.066674	0.137171	-0.486	
0.627	-0.000074	0.13/1/1	-0.400	
L5.PIB	-0.079176	0.353025	-0.224	
0.823	0.070170	0.000020	0.221	
L5.depenses_diff	0.550934	0.397255	1.387	
0.165				
L5.Mass_Mon_diff	-0.004776	0.039547	-0.121	
0.904				
L5.IPC_diff	0.447457	0.123546	3.622	
0.000				

===

Correlation matrix of residuals

	PIB	depenses_diff	Mass_Mon_diff	IPC_diff
PIB	1.000000	-0.690335	-0.022932	0.248272
depenses_diff	-0.690335	1.000000	-0.078252	-0.308152
${\tt Mass_Mon_diff}$	-0.022932	-0.078252	1.000000	0.309592
IPC_diff	0.248272	-0.308152	0.309592	1.000000

[135]: results.plot()
plt.show()

7 Validation du modèle

```
[136]: # Obtenir les résidus
    residuals = results.resid
    residuals.head()
[136]: PIB depenses_diff Mass_Mon_diff IPC_diff
```

```
1982-01-01 -1.532983
```

```
1.360965
```

-4.830124 -1.539489

```
[137]: # Tracer l'ACF et le PACF pour chaque série de résidus
for col in residuals.columns:
    fig, axes = plt.subplots(1, 2, figsize=(12, 3))

    plot_acf(residuals[col], ax=axes[0])
    axes[0].set_title(f'Autocorrélation des résidus pour {col}')

    plot_pacf(residuals[col], ax=axes[1])
    axes[1].set_title(f'Autocorrélation partielle des résidus pour {col}')

plt.show()
```



```
[138]: from statsmodels.stats.stattools import jarque_bera
    from statsmodels.stats.diagnostic import acorr_ljungbox
    # Effectuer des tests sur les résidus
    for col in residuals.columns:
        print(f"Résidus pour {col}:")
        jb_test = jarque_bera(residuals[col])
        print(f"Test de Jarque-Bera: statistic={jb_test[0]}, p-value={jb_test[1]}")
```

Résidus pour PIB:

Test de Jarque-Bera: statistic=1.9059317485845881, p-value=0.3855956974812551 Résidus pour depenses_diff:

Test de Jarque-Bera: statistic=2.1044742399081877, p-value=0.3491557714050238 Résidus pour Mass Mon diff:

Test de Jarque-Bera: statistic=1.7449668760734254, p-value=0.41791239990028173 Résidus pour IPC_diff:

Test de Jarque-Bera: statistic=2.7136207894529063, p-value=0.2574807304901465

	Variable	Lag	LB Statistic	LB P-value
0	PIB	1	0.096761	0.755751
1	PIB	2	0.709175	0.701463
2	PIB	3	1.264977	0.737466
3	PIB	4	1.698864	0.790924
4	PIB	5	1.812667	0.874411
5	PIB	6	2.372771	0.882426
6	PIB	7	2.511812	0.926205
7	PIB	8	2.561811	0.958786
8	PIB	9	2.616649	0.977580
9	PIB	10	3.540358	0.965710
10	PIB	11	3.623642	0.979663
11	PIB	12	4.690470	0.967527
12	depenses_diff	1	0.036890	0.847690
13	depenses_diff	2	0.784358	0.675583
14	depenses_diff	3	2.166080	0.538660
15	depenses_diff	4	2.358316	0.670173
	• –		2.506311	0.070173
16	depenses_diff	5 6		
17	depenses_diff		3.162226	0.788228
18	depenses_diff	7	4.813343	0.682730
19	depenses_diff	8	5.326830	0.722141
20	depenses_diff	9	5.393058	0.798787
21	depenses_diff	10	5.393179	0.863415
22	depenses_diff	11	5.642614	0.896115
23	depenses_diff	12	5.701439	0.930378
24	Mass_Mon_diff	1	0.287804	0.591631
25	Mass_Mon_diff	2	1.663023	0.435391
26	Mass_Mon_diff	3	1.679474	0.641507
27	Mass_Mon_diff	4	1.687122	0.793056
28	Mass_Mon_diff	5	1.729041	0.885221
29	Mass_Mon_diff	6	1.776083	0.939098
30	Mass_Mon_diff	7	5.935356	0.547318
31	Mass_Mon_diff	8	5.968670	0.650741
32	Mass_Mon_diff	9	6.143811	0.725443
33	Mass_Mon_diff	10	6.164239	0.801281
34	Mass_Mon_diff	11	7.226793	0.780431
35	${\tt Mass_Mon_diff}$	12	7.995430	0.785487
36	IPC_diff	1	0.337762	0.561124
37	IPC_diff	2	0.346063	0.841111
38	IPC_diff	3	1.680647	0.641245
39	IPC_diff	4	1.828997	0.767173
40	IPC_diff	5	1.969633	0.853331
41	IPC_diff	6	3.324634	0.767136
42	IPC_diff	7	3.357120	0.850119
43	IPC_diff	8	4.070265	0.850729
44	IPC_diff	9	4.272726	0.892563

```
45 IPC_diff 10 6.148646 0.802624
46 IPC_diff 11 6.153666 0.862917
47 IPC_diff 12 6.287597 0.900896
```

```
Prédiction train et test
[140]: # Prévoir les valeurs sur l'ensemble d'entraînement
       # Prédictions sur les ensembles d'entraînement et de test
       train_pred = results.fittedvalues
       test_pred = results.forecast(df_train.values, steps=len(df_test))
[142]: forecast = results.forecast(df_train.values, len(df_test))
[160]: #train_rmse = rmse(df_train, train_pred)
[143]: forecast
[143]: array([[-0.30418627, -0.73044023, -5.73882813, -2.13858285],
              [3.10057656, -0.17420198, 5.99134857, -1.62824441],
              [2.59773517, -1.27797102, -1.46818597, -0.30837701],
              [1.88939742, 0.01138868, -6.32393935, -0.5876255],
              [2.40642024, -0.64119103, -1.14970416, -0.38906814]])
[145]: # Créer un DataFrame avec les prédictions
       train_pred_df = pd.DataFrame(train_pred, columns=df_train.columns)
       \#train\_pred\ df['Ann\'ee'] = df\_diff.index[4:len(df\_train)] \#Ajouter\ les\ dates_{\sqcup}
        ⇔correspondant à l'ensemble d'entraînement
       #train pred df.set index('Année', inplace=True) # Utiliser les dates comme,
        indices
       test_pred_df = pd.DataFrame(test_pred, columns=df_train.columns)
       \#test\_pred\ df['Ann\'ee'] = df\_diff.index[len(df\_train):]\ \#Ajouter\ les\ dates_{\sqcup}
        ⇔correspondant à l'ensemble d'entraînement
       #test pred df.set index('Année', inplace=True) # Utiliser les dates comme
        \rightarrow indices
[149]: plt.figure(figsize=(12, 6))
       plt.plot(df_diff.index, df_diff['IPC_diff'], label='IPC (Actual)', color='blue')
       plt.plot(train_pred_df.index, train_pred_df['IPC_diff'], label='IPC (Prediction_

sur la base train)', linestyle='dashed', color='orange')

       plt.plot(test pred df.index, test pred df['IPC diff'], label='IPC (Prediction,
        ⇔sur la base test)', linestyle='dotted', color='green')
       plt.xlabel('Année')
       plt.ylabel('Differential Value')
       plt.title('VAR Model Predictions for IPC')
       plt.legend()
       plt.show()
```



```
[151]: cols = ['PIB', 'depenses_diff', 'Mass_Mon_diff', 'IPC_diff']
    forc = pd.DataFrame(forecast, index = df_test.index, columns = cols)
    cols2 = forc.columns

[152]: plt.figure(figsize=(5, 3))
    for column in forc.columns:
        plt.plot(forc.index, forc[column], marker='o', label=column)

plt.title('Time Series Plot')
    plt.xlabel('Year')
    plt.ylabel('Value')
    plt.legend()
    plt.grid(True)
    plt.show()
```



```
[154]: forecast = results.forecast(df_train.values, 20)
[155]: cols = ['PIB', 'depenses_diff', 'Mass_Mon_diff', 'IPC_diff']
    forc = pd.DataFrame(forecast, columns = cols)
    cols2 = forc.columns

[157]: plt.figure(figsize=(5, 3))
    for column in forc.columns:
        plt.plot(forc.index, forc[column], marker='o', label=column)

plt.title('Time Series Plot')
    plt.xlabel('Year')
    plt.ylabel('Value')
    plt.legend()
    plt.grid(True)
    plt.show()
```



```
[158]: test_rmse = rmse(df_test, test_pred)

[161]: test_rmse

[161]: array([ 6.67462882,  5.86640774, 13.58467749,  2.92890357])

[162]: # Calculate absolute error
   absolute_error = abs(df_test.values - test_pred)

# Calculate absolute percentage error
   absolute_percentage_error = absolute_error / df_test.values * 100

# Calculate mean of absolute percentage errors
mape = absolute_percentage_error.mean()
   print("MAPE for test set:", mape)
```

MAPE for test set: 25.09414585104277