DEVOIR MAISON 1

Exercice 1 -

1.

$$A = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}$$

$$= \frac{12}{12} - \frac{6}{12} + \frac{4}{12} - \frac{3}{12}$$

$$= \frac{7}{12}$$

2.

$$B = \frac{\left(\frac{2}{3} - \frac{4}{5}\right) \times 6}{\frac{2}{15} - \frac{4}{9}}$$

$$= \frac{\left(\frac{10}{15} - \frac{12}{15}\right) \times 6}{\frac{6}{45} - \frac{20}{45}}$$

$$= \frac{\frac{-2}{15} \times 6}{\frac{-14}{45}}$$

$$= \frac{12}{15} \times \frac{45}{14}$$

$$= \frac{2 \times 6 \times 3 \times 15}{15 \times 2 \times 7}$$

$$= \frac{18}{7}$$

3.

$$C = \left(1 - \left(\frac{1}{2} - \frac{1}{3}\right) \times 3\right) \div \frac{2}{5}$$

$$= \left(1 - \left(\frac{3}{6} - \frac{2}{6}\right) \times 3\right) \div \frac{2}{5}$$

$$= \left(1 - \frac{1}{6} \times 3\right) \div \frac{2}{5}$$

$$= \left(1 - \frac{1}{2}\right) \div \frac{2}{5}$$

$$= \frac{1}{2} \times \frac{5}{2}$$

$$= \frac{5}{4}$$

4.

$$D = \left(1 - \frac{1}{8}\right) \div \left(\frac{1}{3} + \frac{3}{4}\right) \times \left(\frac{2}{7} + 1\right)^{2}$$

$$= \frac{7}{8} \div \left(\frac{4}{12} + \frac{9}{12}\right) \times \left(\frac{9}{7}\right)^{2}$$

$$= \frac{7}{8} \div \frac{13}{12} \times \frac{81}{49}$$

$$= \frac{7}{8} \times \frac{12}{13} \times \frac{81}{49}$$

$$= \frac{7 \times 3 \times 4 \times 81}{2 \times 4 \times 13 \times 7 \times 7}$$

$$= \frac{243}{182}$$

Exercice 2 -

- 1. On a $2x-3=0 \iff 2x=3 \iff x=\frac{3}{2}$ donc $\mathscr{S}=\left\{\frac{3}{2}\right\}$.
- 2. On a $x + 3 = 2x 1 \iff -x = -4 \iff x = 4 \text{ donc } \mathcal{S} = \{4\}$
- 3. On a $\frac{1}{3}x + \frac{2}{3} = \frac{3}{4} \iff \frac{1}{3}x = \frac{3}{4} \frac{2}{3} \iff \frac{1}{3}x = \frac{1}{12} \iff x = 3 \times \frac{1}{12} = \frac{1}{4} \text{ donc } \mathscr{S} = \left\{\frac{1}{4}\right\}.$
- 4. Commençons par calculer le discriminant : $\Delta = (-10)^2 4 \times 1 \times 21 = 100 84 = 16 > 0$. Il y a donc deux racines

$$x_1 = \frac{10-4}{2} = 3$$
 et $x_2 = \frac{10+4}{2} = 7$.

Donc $\mathcal{S} = \{3, 7\}.$

5. Commençons par calculer le discriminant : $\Delta = \left(\frac{6}{7}\right)^2 - 4 \times 3 \times \frac{3}{49} = \frac{36}{49} - \frac{36}{49} = 0$. Il y a donc une seule racine

$$x_0 = \frac{-\frac{6}{7}}{2 \times 3} = \frac{-1}{7}.$$

6. On a

$$\frac{1}{x-1} = \frac{2}{2x+3} \iff \frac{1}{x-1} - \frac{2}{2x+3} = 0$$

$$\iff \frac{2x+3}{(x-1)(2x+3)} - \frac{2(x-1)}{(x-1)(2x+3)} = 0$$

$$\iff \frac{2x+3-2x+2}{(x-1)(2x+3)} = 0$$

$$\iff \frac{5}{(x-1)(2x+3)} = 0$$

Or, il n'y a évidemment pas de solution à l'équation 1 = 0 donc $\mathcal{S} = \emptyset$.

Remarque: Pas besoin de calculer les valeurs interdites ici puisque il est clair que l'équation « numérateur = 0 » n'admet pas de solution.

7. Commençons par déterminer les valeurs interdites. On a

$$(x-1)(x-3) = 0 \iff x-1 = 0 \text{ ou } x-3 = 0$$
$$\iff x = 1 \text{ ou } x = 3$$

Par ailleurs, pour résoudre $x^2 - 5x + 6 = 0$, on commence par calculer le discriminant : $\Delta = (-5)^2 - 4 \times 1 \times 6 = 25 - 24 = 1$. Il y a donc deux racines

$$x_1 = \frac{5-1}{2} = 2$$
 et $x_2 = \frac{5+1}{2} = 3$.

Or, 3 est une valeur interdite donc il n'y a qu'une solution x = 2. Ainsi, $\mathcal{S} = \{2\}$.

Exercice 3 -

1.
$$-2x+3>0 \iff -2x>-3 \iff x<\frac{-3}{-2}=\frac{3}{2}$$
. Donc $\mathscr{S}=\left[-\infty;\frac{3}{2}\right]$.

2.
$$2x - 1 < \frac{1}{2} \iff 2x < 1 + \frac{1}{2} = \frac{3}{2} \iff x < \frac{3}{4}$$
. Donc $\mathscr{S} = \left] -\infty; \frac{3}{4} \right[$.

3.
$$\frac{1}{3}x + 1 \ge \frac{2}{3}x - \frac{1}{3} \iff -\frac{1}{3}x \ge -\frac{4}{3} \iff x \le \frac{-\frac{4}{3}}{-\frac{1}{2}} = 4$$
. Donc $\mathscr{S} =]-\infty;4]$.

4. On commence par étudier le signe de $x^2 + 2x + 1$. Le discriminant vaut : $\Delta = 4 - 4 = 0$. Il y a donc une racine

$$x_0 = -1$$
.

On en déduit le tableau de signe suivant.

x	$-\infty$		-1		+∞
$x^2 + 2x + 1$		+	0	+	

Donc $\mathcal{S} =]-\infty; -1[\cup]-1; +\infty[.$

5. On commence par étudier le signe de $x^2 - 5x + 6$. Le discriminant vaut : $\Delta = 25 - 24 = 1$. Il y a donc deux racines

$$x_1 = 2$$
 et $x_2 = 3$.

On en déduit le tableau de signe suivant.

X	$-\infty$		2		3		+∞
$x^2 - 5x + 6$		+	0	_	+	_	

Donc $\mathcal{S} = [2;3]$.

6. On a

$$\frac{1}{x+2} + \frac{3}{x-1} \ge \frac{4}{2x-1}$$

$$\iff \frac{(x-1)(2x-1) + 3(x+2)(2x-1) - 4(x+2)(x-1)}{(x+2)(x-1)(2x-1)} \ge 0$$

$$\iff \frac{2x^2 - x - 2x + 1 + 6x^2 - 3x + 12x - 6 - 4x^2 + 4x - 8x + 8}{(x+2)(x-1)(2x-1)} \ge 0$$

$$\iff \frac{4x^2 + 2x + 3}{(x+2)(x-1)(2x-1)} \ge 0$$

Le discriminant de $4x^2 + 2x + 3$ vaut $\Delta = (2^2 - 4 \times 4 \times 3 = -44 < 0$. Par ailleurs, $x + 2 = 0 \iff x = -2$, $x - 1 = 0 \iff x = 1$ et $2x - 1 = 0 \iff x = \frac{1}{2}$. On en déduit le tableau de signe suivant.

x	$-\infty$		-2		$\frac{1}{2}$		1		+∞
$4x^2 + 2x + 3$		+		+		+		+	
x + 2		_	0	+		+		+	
x-1		_		_		_	0	+	
2x - 1		_		_	0	+		+	
$\frac{4x^2 + 2x + 3}{(x+2)(x-1)(2x-1)}$		_		+		_		+	

Ainsi,
$$\mathcal{S} = \left] -2; \frac{1}{2} \right[\cup]1; +\infty[.$$

Exercice 4 -

1. (a) On a

$$f\left(-\frac{3}{2}\right) = \frac{\left(-\frac{3}{2}\right)^3}{3} - \frac{9}{4} \times \left(-\frac{3}{2}\right) + \frac{9}{4} = \frac{-\frac{27}{8}}{3} + \frac{27}{8} + \frac{9}{4} = -\frac{9}{8} + \frac{27}{8} + \frac{18}{8} = \frac{36}{8} = \frac{9}{2}.$$

(b) D'après le graphique, on a le tableau de variations suivant.

x	$-\infty$	$-\frac{3}{2}$	$\frac{3}{2}$	+∞
f		$\frac{9}{2}$		

(c) On a

$$\frac{(x+3)(2x-3)^2}{12} = \frac{(x+3)(4x^2 - 12x + 9)}{12}$$

$$= \frac{4x^3 - 12x^2 + 9x + 12x^2 - 36x + 27}{12}$$

$$= \frac{4x^3 - 27x + 27}{12}$$

$$= \frac{x^3}{3} - \frac{9}{4}x + \frac{9}{4}$$

(d) 12 étant un nombre strictement positif, il suffit d'étudier le signe de $(x+3)(2x-3)^2$. Un carré étant toujours positif, on a pour tout x, $(2x-3)^2 \ge 0$. Par ailleurs, $x+3=0 \iff x=-3$. On en déduit le tableau de signe suivant pour f(x).

x	$-\infty$		-3		$\frac{3}{2}$		+∞
x + 3		_	0	+		+	
$(2x-3)^2$		+		+	0	+	
Signe de $f(x)$		_	0	+	0	+	

2. Pour résoudre l'équation g(x) = 0, on commence par calculer le discriminant :

 $\Delta = 1^2 - 4 \times \frac{2}{3} \times (-3) = 1 + 8 = 9.$ Il y a donc deux racines

$$x_1 = \frac{-1-3}{\frac{4}{3}} = -3$$
 et $\frac{-1+3}{\frac{4}{3}} = \frac{3}{2}$.

3. Pour étudier la position des courbes \mathcal{C}_f et \mathcal{C}_g , il nous faut étudier le signe de f(x) - g(x). D'après la question précédente, on a

$$g(x) = \frac{2}{3}(x+3)\left(x-\frac{3}{2}\right) = \frac{(x+3)(2x-3)}{3}.$$

Ainsi

$$f(x) - g(x) = \frac{(x+3)(2x-3)^2}{12} - \frac{(x+3)(2x-3)}{3}$$
$$= \frac{(x+3)(2x-3)}{3} \times \left(\frac{2x-3}{4} - 1\right)$$
$$= \frac{(x+3)(2x-3)}{3} \times \frac{2x-7}{4}$$
$$= \frac{(x+3)(2x-3)(2x-7)}{12}.$$

On en déduit le tableau de signe suivant.

x	$-\infty$		-3		$\frac{3}{2}$		$\frac{7}{2}$		+∞
x + 3		_	0	+		+		+	
(2x-3)		_		_	0	+		+	
2x - 7		_		_		_	0	+	
f(x) - g(x)		_	0	+	0	_	0	+	

Ainsi,

- sur $]-\infty;-3]$ et sur $\left[\frac{3}{2};\frac{7}{2}\right]$, \mathscr{C}_g est au dessus de \mathscr{C}_f ,
- sur $\left[-3; \frac{3}{2}\right]$ et sur $\left[\frac{7}{2}; +\infty\right[$, \mathscr{C}_f est au dessus de \mathscr{C}_g .