IFT 6085 - Lecture 2 Basics of convex analysis and gradient descent

This version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor.

Scribes: Assya Trofimov, Mohammad Pezeshki, Reyhane Askari Instructor: Ioannis Mitliagkas

1 Summary

In this first lecture we cover some optimization basics with the following themes:

- Lipschitz continuity
- Some notions and definitions for convexity
- Smoothness and Strong Convexity
- Gradient Descent

2 Introduction

In this section we introduce the basic concepts of optimization.

The gradient descent algorithm is the workhorse of machine learning. It generally has two equivalent interpretations:

- downhill
- local minimization of a function

Definition 1 (Lipschitz continuity). A function f(x) is L-Lipschitz if

$$|f(x) - f(y)| \le L||x - y||$$

Intuitively, this is a measurement of how steep the function can get (Figure 1).

Figure 1: Lipschitz constant

This also implies that the derivative of the function cannot exceed L.

$$f'(x) = \lim_{\delta \to \infty} \frac{f(x) - f(x + \delta)}{-\delta}$$

and

$$f'(x) = \lim_{y \to x} \frac{f(x) - f(y)}{x - y}$$

By consequences, L-Lipschitz implies that f'(x) is bounded by L

$$|f'(x)| \le L$$

Example:

$$f(x) = \begin{cases} exp(-\lambda x), & \text{if } x > 0\\ 1, & \text{otherwise} \end{cases}$$

As the λ value increases, the closer the function gets to discontinuity (Figure 2).

Figure 2: As λ value increases, the function is closer to being discontinuous

3 Convexity

Let us first look at the definition of convexity for a set.

Definition 2. For a convex set, for any two points x and y picked, the line between them lies within the set (Figure 3 A).

$$z = \theta x + (1 - \theta)y$$

When parameter θ is equal to 1, we get x and when θ is 0, we get y. By opposition, a non-convex set is a set where z may lie outside of the set (Figure 3 B).

Figure 3: A) Convex set and B) Non-convex set

We can apply this definition to functions.

Definition 3 (Convex function). A function f(x) is convex if the following holds:

- The domain of $f(\mathbf{dom} f)$ is convex
- For any two members of the domain, the objective value does not exceed individual combination.

$$\forall x, y \in \mathbf{dom} f, \theta \in [0, 1]$$
$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

Note: The sum $\theta x + (1 - \theta)y$ is termed as convex linear combination.

Another way to formulate this would be to check the line segment connecting x and y (the cord). If the cord lies above the function itself (Figure 4) the function is convex.

Figure 4: Example of convex and non-convex functions

Moreover, for a differentiable or twice differentiable functions, it is possible to define convexity with the following first and second order conditions for convexity.

Definition 4 (First order condition for convexity). f(x) is convex if and only if domain(f) is convex and the following holds for $\forall x, y \in domain(f)$

$$f(y) \ge f(x) + \nabla^T f(x)(y - x)$$

In other words, the function should be lower bounded by all its tangents. Indeed, if we select x as a point for a Taylor approximation, we find that $f(y) \sim f(x) - f(x)(y-x)$.

In Figure 5, part of the non-convex function is below the tangent at point x. This is not the case for the convex function. The convex function should therefore be *lower-bounded* by all the tangents at any point.

As a reminder, the Hessian is a measure of curvature. It is the multivariate generalization for second derivative. Indeed, for function $f(x) = \frac{h}{2}x^2$, the second derivative f''(x) = h, which corresponds to a measure of how quickly curvature changes in the function. For a matrix, the Hessian is calculated with $f(x) = \frac{1}{2}x^T H x$, where H is the Hessian. Moreover, curvature may be described by the eigen values, with Λ is a diagonal matrix of eigen values.

$$H = Q\Lambda Q^T$$

$$\Lambda = \left[egin{array}{ccc} h_1 & & & \\ & h_2 & & \\ & & \cdots & \\ & & h_d \end{array}
ight]$$

Figure 5: Example of convex and non-convex function relative to the tangent at point x

Changing the basis with Q, we decompose the matrix and focus on the direction described by $Q = [q_1, q_2, ..., q_d]$. Along the direction of q_i , we see the curvature for h_i (Figure 6). Note that $[h_1, h_2, ..., h_d]$ are sorted in order of magnitude.

Figure 6: Looking along q_1 and q_2 , it appears that q_1 has the higher slope, therefore the higher curvature

If the function is twice differentiable, another convexity definition applies.

Definition 5 (Second order condition for convexity). *A function f is convex if:*

$$\nabla^2 f(x) \ge 0$$

In this definition it is assumed that f is twice differentiable. Also, the Hessian needs to be positive and semidefinite, in other words, eigenvalues need to be non-negative.

Note: All the definitions of convexity are equal.

4 Smoothness and Strong Convexity

Definition 6 (Smoothness). A function f(x) is β -smooth if the following holds:

$$||\nabla f(x) - \nabla f(y)|| \le \beta ||x - y|| wherex, y \in domain(f(x)).$$
(1)

It is noted that β -smoothness of f(x) is equivalent to β -Lipschitz of $\nabla f(x)$. Smoothness constraint requires the gradient of f(x) to not change rapidly.

Definition 7 (Strong Convexity). A function f(x) is α -strongly convex if $f(x) - \frac{\alpha}{2}||x||^2$ is convex.

If f(x) is α -strongly convex then the following hold:

$$\nabla^2 f(x) \ge \alpha I \Leftrightarrow \nabla^2 f(x) - \alpha I \ge 0. \tag{2}$$

It informally means that the curvature of f(x) is not very close to zero. For instance, in 1-D case, $f(x) = \frac{h}{2}x^2$ is h-strongly convex but not $(h + \epsilon)$ -strongly convex. Figure 7 illustrates examples of two convex functions which only one of them is strongly convex.

Figure 7: (a) A convex function which is also strongly convex. (b) A convex function which is not strongly convex.

5 Gradient Descent

Gradient descent is an optimization algorithm based on the fact that a function f(x) decreases fastest in the direction of the negative gradient of f(x) at a current point. Consequently, starting from a guess x_0 for a local minimum of f(x) the sequence $x_0, x_1, ..., x_t \in \mathbb{R}^d$ is generated using the following rule:

$$x_{k+1} = x_k - \gamma \nabla f(x_k), \tag{3}$$

in which γ is called the *step size* or the *learning rate*. If f(x) is convex and γ is sufficiently small, it is guaranteed that as $t \to \infty$, $x_k \to x^*$. The following holds for the optimal value x^* :

$$x^* = \underset{x \in \text{Dom}(f(x))}{\operatorname{argmin}} f(x). \tag{4}$$

Lemma 1. From L-Lipschitz constraint the following holds:

$$||f(x_k)||_2^2 \le L^2. (5)$$

This lemma is used in the proof on the following theorem.

Theorem 1 (Gradient Descent Theory). If f(x) is convex and L lipschitz and T is the total number of steps taken, if learning rate was chosen as:

$$\gamma = \frac{||x_1 - x^*||_2}{L\sqrt{T}} \tag{6}$$

The the following holds:

$$f(\frac{1}{T}\sum_{k=1}^{T}X_k) - f(x^*) \le \frac{||x_1 - x^*||L}{\sqrt{T}},\tag{7}$$

where we can consider $\frac{||x_1-x^*||L}{\sqrt{T}}$ as an ϵ .

Proof. By applying the Taylor expansion on f(x) at the point X_k , we have,

$$f(x_k) - f(x^*) \le \langle \nabla f(x_k), x_k - x^* \rangle \tag{8}$$

$$= \langle \frac{1}{\gamma}(x_{k+1} - x_k), x_k - x^* \rangle \tag{9}$$

$$= \frac{1}{2\gamma} (||x_k - x^*||_2^2 - ||x_{k+1} - x^*||_2^2) + \gamma^2 ||\nabla f(x_k)||_2^2$$
(10)

From Equation (10) and Lemma 1, the following holds:

$$f(x_k) - f(x^*) \le \frac{1}{2\gamma} (||x_k - x^*||_2^2 - ||x_{k+1} - x^*||_2^2) + \frac{\gamma}{2} L^2$$
(11)

By change of the variable $||x_k - x^*||_2^2$ to D_k , and applying telescoping sum, we have,

$$f(x_{1}) - f(x^{*}) \leq \frac{1}{2\gamma} [D_{1}^{2} - D_{2}^{2}] + \frac{\gamma}{2} L^{2}$$

$$f(x_{2}) - f(x^{*}) \leq \frac{1}{2\gamma} [D_{2}^{2} - D_{3}^{2}] + \frac{\gamma}{2} L^{2}$$
...
$$f(x_{T}) - f(x^{*}) \leq \frac{1}{2\gamma} [D_{T}^{2} - D_{T+1}^{2}] + \frac{\gamma}{2} L^{2}$$

$$\leq \frac{1}{2\gamma} [D_{T}^{2}] + \frac{\gamma}{2} L^{2}.$$
(12)

By summing all the equations, we have,

$$\sum_{k=1}^{T} (f(x_k) - f(x^*) \le \frac{1}{2\gamma} D_1^2 + \frac{T\gamma L^2}{2}$$
(13)

$$\Rightarrow \frac{1}{T} \sum_{k=1}^{T} f(x_k) - f(x^*) \le \frac{1}{2\gamma T} D_1^2 + \frac{\gamma L^2}{2}$$
 (14)

From convexity of f(x) we know:

$$f(\theta x + (1 - \theta)y \le \theta f(x) + (1 - \theta f(y)) \tag{15}$$

So from Equation 14 and 15 the following holds:

$$f(\frac{1}{T}\sum_{k=1}^{T}x_k) - f(x^*) \le \frac{1}{2\gamma T}D_1^2 + \frac{\gamma L^2}{2}$$
(16)

Thus, if we set $\gamma = \frac{||x_1 - x^*||}{L\sqrt{T}},$ the following holds:

$$f(\frac{1}{T}\sum_{k=1}^{T}X_{k}) - f(x^{*}) \le \frac{||x_{1} - x^{*}||L}{\sqrt{T}}.$$
(17)