IIT GUWAHATI

Model Answers of Mid-Semester Examination

1. (2 points) Let $X_1, X_2 \stackrel{i.i.d.}{\sim} Poi(\lambda)$, where $\lambda > 0$ is unknown parameter. Is the family of distributions induced by the statistic $\mathbf{T} = (X_1, X_2)$ complete?

Solution: Note that $E(X_1 - X_2) = 0$ for all $\lambda > 0$. Now,

$$P(X_1 \neq X_2) \ge P(X_1 = 0, X_2 = 1) = \lambda e^{-2\lambda} > 0 \implies P(X_1 - X_2 = 0) = P(X_1 = X_2) < 1.$$

Thus, the family of distributions induced by the statistics (X_1, X_2) is not complete. [2 points]

2. (5 points) Let X_1, X_2, \ldots, X_9 be a random sample of size 9 form population having $U(\theta_1, \theta_2)$ distribution, where both θ_1 and θ_2 are unknown and $-\infty < \theta_1 < \theta_2 < \infty$. Derive the estimators of θ_1 and θ_2 using method of moment.

Solution: Here $E(X_1) = \frac{\theta_1 + \theta_2}{2}$ and $E(X_1^2) = \frac{\theta_1^2 + \theta_1 \theta_2 + \theta_2^2}{3}$. [1 point]

Let $M_1 = \frac{1}{9} \sum_{i=1}^9 X_i$, $M_2 = \frac{1}{9} \sum_{i=1}^9 X_i^2$ and $S^2 = \frac{1}{9} \sum_{i=1}^9 (X_i - M_1)^2$. The method of moment estimators can be found by solving the following equations:

$$\theta_1 + \theta_2 = 2m_1$$
 and $\theta_1^2 + \theta_1\theta_2 + \theta_2^2 = 3m_2$. [1 point]

The solutions for (θ_1, θ_2) are $(m_1 - \sqrt{3}s, m_1 + \sqrt{3}s)$ and $(m_1 + \sqrt{3}s, m_1 - \sqrt{3}s)$, where S is the positive square root of S^2 . As $\theta_1 < \theta_2$, the estimator for θ_1 and θ_2 are $\hat{\theta}_1 = M_1 - \sqrt{3}S$ and $\hat{\theta}_2 = M_1 + \sqrt{3}S$, respectively. [3 points]

3. Let X_1, X_2, \ldots, X_n be a random sample of size $n \geq 2$ from a population having probability density function

$$f(x, \theta) = \begin{cases} \frac{2}{\theta} x \exp\left[-\frac{x^2}{\theta}\right] & \text{if } x > 0\\ 0 & \text{otherwise,} \end{cases}$$

where $\theta > 0$ is a unknown parameter. Consider the problem of estimation of $\tau(\theta) = \frac{1}{\sqrt{\theta}}$.

(a) (5 points) Derive minimum variance unbiased estimator of $\tau(\theta)$.

Solution: Note that $f(\cdot, \theta)$ belongs to a full rank exponential family. Thus, using property of exponential family of distributions, $T = \sum_{i=1}^{n} X_i^2$ is complete and sufficient statistic for θ . [2 points]

Notice that X_i^2 follows exponential distribution with mean θ . Therefore,

$$T \sim Gamma\left(n, \frac{1}{\theta}\right)$$
. [1 point]

Thus, for k > -n,

$$E\left(T^{k}\right) = \frac{1}{\theta^{n}\Gamma(n)} \int_{0}^{\infty} t^{k+n-1} e^{-\frac{t}{\theta}} dt = \frac{\Gamma(n+k)}{\Gamma(n)} \theta^{k} \implies E\left(\frac{\Gamma(n)}{\Gamma(n+k)} T^{k}\right) = \theta^{k}.$$

Therefore, using Lehmann-Scheffee theorem and taking $k=-\frac{1}{2}$, we have

$$\widehat{\tau} = \frac{\Gamma(n)}{\Gamma(n - \frac{1}{2})} \left(\sum_{i=1}^{n} X_i^2 \right)^{-\frac{1}{2}}$$

is the UMVUE of $\tau(\theta) = \theta^{-\frac{1}{2}}$. [2 points]

(b) (3 points) Show that the estimator that you obtained in (a) is consistent. You may use Stirling's approximation for $\Gamma(n)$: $\Gamma(n) \sim \sqrt{2\pi} \left(n-1\right)^{n-\frac{1}{2}} e^{-n+1}$.

Solution: Here $E(X_1^2) = \theta$. Therefore, using WLLN,

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 \longrightarrow \theta$$

in probability. [1 point] Now,

$$\widehat{\tau}_{n} = \frac{\Gamma(n)}{\Gamma(n - \frac{1}{2})} \left(\sum_{i=1}^{n} X_{i}^{2} \right)^{-\frac{1}{2}}$$

$$= \frac{\Gamma(n)}{\sqrt{n}\Gamma(n - \frac{1}{2})} \left(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \right)^{-\frac{1}{2}}$$

$$\sim e^{-\frac{1}{2}} \left(1 - \frac{1}{n} \right)^{\frac{1}{2}} \frac{1}{\left(1 - \frac{1}{2(n-1)} \right)^{n-1}} \left(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \right)^{-\frac{1}{2}} \longrightarrow \tau(\theta)$$

in probability. Therefore $\widehat{\theta}$ is a consistent estimator of $\tau(\theta)$. [2 points]

(c) (3 points) Compute Cramer-Rao lower bound of an unbiased estimator of $\tau(\theta)$.

Solution: Here $\tau'(\theta) = -\frac{1}{2}\theta^{-\frac{3}{2}}$. The Fisher information present in X_1 is

$$\mathcal{I}_{X_1}(\theta) = -E \left[\frac{d^2}{d\theta^2} \ln f(X, \theta) \right]$$

$$= -E \left[\frac{d^2}{d\theta^2} \ln \left\{ \frac{2X_1}{\theta} e^{-\frac{X_1^2}{\theta}} \right\} \right]$$

$$= -E \left[\frac{d^2}{d\theta^2} \left\{ \ln 2 - \ln \theta + \ln X_1 - \frac{X_1^2}{\theta} \right\} \right]$$

$$= -E \left[\frac{1}{\theta^2} - \frac{2X_1^2}{\theta^3} \right]$$

$$= \frac{1}{\theta^2}. \quad [1 \text{ point}]$$

Therefore, CRLB is

$$\frac{\left(\tau'\left(\theta\right)\right)^{2}}{n\mathcal{I}_{X_{1}}\left(\theta\right)} = \frac{1}{4n\theta}. \quad [2 \text{ points }]$$

4. (5 points) Let X_1, X_2, \ldots, X_n be a random sample from a Bernoulli distribution with success probability $p = \frac{1}{1+e^{\theta}}$, where $\theta \in \mathbb{R}$. Find the maximum likelihood estimator of θ . [Hint: Investigate the existence and non-existence of maximum likelihood estimator.]

Solution: The likelihood function of θ is

$$L(\theta) = \left(\frac{1}{1 + e^{\theta}}\right)^m \left(1 - \frac{1}{1 + e^{\theta}}\right)^{n - m},$$

where m is the realized value of $\sum_{i=1}^{n} X_i$. [1 point]

Now, consider the following cases.

Case I: m = 0. In this case, the likelihood function of θ is

$$L(\theta) = \left(1 - \frac{1}{1 + e^{\theta}}\right)^n,$$

which is an increasing function in $\theta \in \mathbb{R}$. Therefore, in this case the MLE of θ does not exist.

[1 point]

Case II: m = n. In this case the likelihood function of θ is

$$L(\theta) = \left(\frac{1}{1 + e^{\theta}}\right)^n,$$

which is a decreasing function in $\theta \in \mathbb{R}$. Thus, the MLE of θ does not exist in this case also.

[1 point]

Case III: m = 1, 2, ..., n - 1. In this case, the log-likelihood function is

$$l(\theta) = -n \ln \left(1 + e^{\theta}\right) + (n - m)\theta.$$

Taking first derivative with respect to θ and equate it to zero, we obtain

$$-\frac{ne^{\theta}}{1+e^{\theta}}+n-m=0 \implies \theta = \ln\left(\frac{n}{m}-1\right).$$

Moreover,

$$\frac{d^2}{d\theta^2}l(\theta) = -\frac{ne^{\theta}}{(1+e^{\theta})^2} < 0$$

for all $\theta \in \mathbb{R}$. Therefore, $l(\theta)$ attains it's maximum at $\theta = \ln\left(\frac{n}{m} - 1\right)$. Thus, MLE of θ exists in this case and the MLE is $\widehat{\theta} = \ln\left(\frac{n}{\sum_{i=1}^{n} X_i} - 1\right)$. [2 points]

5. (7 points) Let X_1, X_2, \ldots, X_n be a random sample of size $n \geq 2$ from a population with probability density function

$$f(x; \theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}} & \text{if } x > 0\\ 0 & \text{otherwise,} \end{cases}$$

where $\theta > 0$ is unknown. With preassigned $\alpha \in (0, 1)$, derive a level α likelihood ratio test for $H_0: \theta = \theta_0(>0)$ against $H_1: \theta \neq \theta_0$.

Solution: Here $\Theta_0 = \{\theta_0\}$ and $\Theta_1 = (0, \infty) \setminus \Theta_0$. The likelihood function is

$$L(\theta) = \frac{1}{\theta^n} \exp \left[-\frac{1}{\theta} \sum_{i=1}^n x_i \right].$$
 [1 point]

Therefore,

$$\sup_{\theta \in \Theta_0} L(\theta) = L(\theta_0) = \frac{1}{\theta_0^n} \exp \left[-\frac{1}{\theta_0} \sum_{i=1}^n x_i \right].$$

To find $\sup_{\theta \in \Theta_0 \cup \Theta_1} L(\theta)$, we need to find MLE of $\theta > 0$. Now, standard calculation shows that MLE of θ is $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Therefore,

$$\sup_{\theta \in \Theta_0 \cup \Theta_1} L(\theta) = \sup_{\theta \in (0,\infty)} L(\theta) = L\left(\overline{x}\right) = \frac{1}{\overline{x}^n} \exp\left[-\frac{1}{\overline{x}} \sum_{i=1}^n x_i\right] = \frac{1}{\overline{x}^n} e^{-n}. \quad \boxed{[1\,\mathrm{point}]}$$

The likelihood ratio test statistics is

$$\Lambda = \left(\frac{\overline{x}}{\theta_0}\right)^n \exp\left[-n\left(\frac{\overline{x}}{\theta_0} - 1\right)\right]. \quad \boxed{[1 \text{ point}]}$$

A LRT rejects null hypothesis if

$$\Lambda < k \ [1 \text{ point}]$$
 $\iff \left(\frac{\overline{x}}{\theta_0}\right)^n \exp\left[-\frac{n\overline{x}}{\theta_0}\right] < k.$

Here k is used as an generic constant. Now consider the function

$$f(y) = y^n e^{-ny} \quad \text{for } y > 0.$$

It is easy to see that f has unique maximum at y = 1, f is strictly increasing for 0 < y < 1 and strictly decreasing for y > 1. Moreover, f(0) = 0 and $\lim_{y \to \infty} f(y) = 0$. Therefore,

$$\Lambda < k \iff \left(\frac{\overline{x}}{\theta_0}\right)^n \exp\left[-\frac{n\overline{x}}{\theta_0}\right] < k \iff \frac{n\overline{x}}{\theta_0} < k_1 \text{ or } \frac{n\overline{x}}{\theta_0} > k_2, \quad [2 \text{ points }]$$

for $k_1 < k_2$. Now, under null hypothesis,

$$\frac{n\overline{X}}{\theta_0} \sim Gamma(n, 1).$$

Thus, the test function of level α LRT is

$$\psi(x) = \begin{cases} 1 & \text{if } \frac{n\overline{x}}{\theta_0} < G_{1-\frac{\alpha}{2}} \text{ or } \frac{n\overline{x}}{\theta_0} > G_{\frac{\alpha}{2}} \\ 0 & \text{otherwise,} \end{cases}$$

where G_{α} is upper α -point of a Gamma(n, 1) distribution. [1 point]