Random Variables

A *random variable* assigns a numerical value to each outcome in a sample space with associated probabilities.

Example: Suppose that an electrical engineer has on hand six resistors. Three of them are labeled 10Ω and the other three are labeled 20Ω . The engineer wants to connect a 10Ω resistor and a 20Ω resistor in series to create a resistance of 30Ω . Now suppose that in fact the three resistors labeled 10Ω have actual resistance of 9,10,and 11Ω , and that the three resistors labeled 20Ω have actual resistances of 19,20,and 21Ω . The process of selecting one resistor of each type is an experiment whose sample space is presented as in the table:

Outcomes	X	Probability
(9,19)	28	1/9
(9,20)	29	1/9
(9,21)	30	1/9
(10,19)	29	1/9
(10,20)	30	1/9
(10,21)	31	1/9
(11,19)	30	1/9
(11,20)	31	1/9
(11,21)	32	1/9

X	P(X=x)
28	1/9
29	2/9
30	3/9
31	2/9
32	1/9

X is a random variable.

Discrete Random Variable (Discrete R.V.)

Definition: A random variable is discrete if it can assume at most a finite or a countably infinite number of possible values.

Notation: X , the variable; x, observed value of X

Examples:

(1) X: the number on a dice $\{1,2,3,4,5,6\}$

(2) In an immunology study, malignant plasmacytoma cells are exposed to the lymphocytes one at a time in the presence of a fusion-promoting agent and hope the cell will fuse. It is known that the probability that such a cell will fuse is 1/2. Let Y denote the number of cells exposed to obtain the first fusion.

Y can assume any value in the set of $\{1,2,3,...\}$

Discrete Probability Density Function (probability mass function)

Definition: Let X be a discrete random variable. The function f given by: f(x) = P[X = x] for x real, is called the **density function** of X iff

$$f(x) \ge 0$$
 and $\sum_{all \ x} f(x) = 1$

Examples:

Let X denote the number from a thrown dice. X takes value from $\{1,2,3,4,5,6\}$. Then, the probability density function of X is

$$f(x) = \frac{1}{6}, \qquad x = 1,2,3,4,5,6$$

To verify this, we have

$$f(x) = \frac{1}{6} > 0$$

$$\sum_{x,y,z} f(x) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = 1$$

Discrete Probability Density Function (probability mass function)

Examples: In an immunology study, malignant plasmacytoma cells are exposed to the lymphocytes one at a time in the presence of a fusion-promoting agent and hope the cell will fuse. It is known that the probability that such a cell will fuse is 1/2. Let Y denote the number of cells exposed to obtain the first fusion. Y can assume any value in the set of $\{1,2,3,...\}$.

Find the probability mass function of Y.

Solution:

```
f(1) = P[Y = 1]
= P[the\ first\ cell\ fuses] = \frac{1}{2}
f(2) = P[Y = 2]
= P[(the first cell does not fuse) \cap (the second cell fused)]
= P[the\ first\ cell\ does\ not\ fuse]P[the\ second\ cell\ fuses] = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}
f(3) = P[Y = 3]
= P[(the\ first\ cell\ does\ not\ fuse) \cap (the\ second\ cell\ dose\ not\ fuze) \cap (the\ third\ cell\ fuses)]
= P[the\ first\ cell\ does\ not\ fuse]P[the\ second\ cell\ dose\ not\ fuze]P[the\ third\ cell\ fuses]
=\frac{1}{2}\times\frac{1}{2}\times\frac{1}{2}=(\frac{1}{2})^3=\frac{1}{8}
In general, f(y) = (\frac{1}{2})^y, y = 1,2,3,...
```


Discrete Probability Density Function (probability mass function)

Examples: In an immunology study, malignant plasmacytoma cells are exposed to the lymphocytes one at a time in the presence of a fusion-promoting agent and hope the cell will fuse. It is known that the probability that such a cell will fuse is 1/2. Let Y denote the number of cells exposed to obtain the first fusion. Y can assume any value in the set of $\{1,2,3,...\}$. The probability mass function of Y is found as $f(y) = \left(\frac{1}{2}\right)^y$, y = 1,2,3,.... **Verify that this is a probability mass function.**

Solution:

$$(1) f(y) \ge 0, for y = 1,2,3,...$$

(2)
$$\sum_{all\ y} f(y) = \sum_{y=1}^{\infty} \left(\frac{1}{2}\right)^y$$

Recall a result from geometric series that $\sum_{k=1}^{\infty} ar^{k-1} = \frac{a}{1-r}$, |r| < 1

Apply this result to (2), we have,

$$\sum_{y=1}^{\infty} \left(\frac{1}{2}\right)^{y} = \sum_{y=1}^{\infty} \frac{1}{2} \left(\frac{1}{2}\right)^{y-1} = \frac{1/2}{1 - 1/2} = 1$$

Therefore, f(y) is a probability mass function

Examples: In an immunology study, malignant plasmacytoma cells are exposed to the lymphocytes one at a time in the presence of a fusion-promoting agent and hope the cell will fuse. It is known that the probability that such a cell will fuse is 1/2. Let Y denote the number of cells exposed to obtain the first fusion. Y can assume any value in the set of $\{1,2,3,...\}$. The probability mass function of Y is found as $f(y) = \left(\frac{1}{2}\right)^y$, y = 1,2,3,.... What is the probability that we need to expose four or more cells to obtain the first fusion?

Solution:

We need to find out $P[Y \ge 4]$.

$$P[Y \ge 4] = P[Y = 4] + P[Y = 5] + P[Y = 6] + \cdots$$

$$= 1 - P[Y \le 3] = 1 - P[Y = 3] - P[Y = 2] - P[Y = 1]$$

$$= 1 - f(3) - f(2) - f(1)$$

$$= 1 - \frac{1}{8} - \frac{1}{4} - \frac{1}{2} = \frac{1}{8}$$

Cumulative Distribution

Definition: Let X be a discrete random variable (RV) with density f(x). The cumulative distribution function (cdf) for X, denoted by F, is defined by:

$$F(x) = P[X \le x],$$
 for x real

Consider a specific real number x_0 , according to the definition:

$$F(x_0) = P[X \le x_0] = \sum_{x \le x_0} f(x)$$

Example: Consider the immunology study example. Find the cumulative distribution function of the random variable Y

Solution:

$$F(y_0) = \sum_{y \leq y_0} f(y) = \sum_{y=1}^{y_0} \left(\frac{1}{2}\right)^y = \sum_{y=1}^{y_0} \frac{1}{2} \left(\frac{1}{2}\right)^{y-1}$$
. Recall the following result: $\sum_{k=1}^n ar^{k-1} = \frac{a(1-r^n)}{1-r}$, $r \neq 1$ Apply this result with $a = \frac{1}{2}$ and $r = \frac{1}{2}$, we have,

$$F(y_0) = \frac{\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{y_0}\right)}{1-\frac{1}{2}} = 1-\left(\frac{1}{2}\right)^{y_0}$$
. When $y_0 = 7$, $F(7) = 1-\left(\frac{1}{2}\right)^7 = \frac{127}{128}$

Cumulative Distribution

Example: Consider the immunology study example. Find the cumulative distribution function of the random variable Y

We can construct the following cumulative function table for the example:

У	1	2	3	4	5	6	7	•••
F(y)	1/2	3/4	7/8	15/16	31/32	63/64	127/128	

Cumulative Distribution Function vs Density Function

Let's assume a discrete random variable X can take values of $x_0, x_1, x_2, ..., x_n, ...,$ then,

$$F(x_n) = \sum_{i=0}^n f(x_i)$$

$$f(x_n) = F(x_n) - F(x_{n-1})$$

Definition: Let X be a discrete random variable (R.V.) with density f(x). Let H(X) be a function of random variable X. The expected value of H(X), denoted by E[H(X)], is given by:

$$E[H(X)] = \sum_{all\ x} H(x)f(x)$$

A special case of this definition, H(X) = X, $E[X] = \sum_{all \ x} x f(x)$

Example: Given the density of a discrete random variable X and Y as in the table. Calculate E[X] and E[Y]

X	1	2	3	4	5	У	1	2	3	4	5
f(x)	0.2	0.2	0.2	0.2	0.2	f(y)	0.9	0.05	0.02	0.02	0.01

Solution:
$$E[X] = 1 \times 0.2 + 2 \times 0.2 + 3 \times 0.2 + 4 \times 0.2 + 5 \times 0.2 = 3$$
 $E[Y] = 1 \times 0.9 + 2 \times 0.05 + 3 \times 0.02 + 4 \times 0.02 + 5 \times 0.01 = 1.19$

Expected Value

Parameters to describe a RV

Example: Given the density of a discrete random variable X and Y as in the table. Calculate E[X] and E[Y]

X	1	2	3	4	5
f(x)	0.2	0.2	0.2	0.2	0.2

y	1	2	3	4	5
f(y)	0.9	0.05	0.02	0.02	0.01

