Name: Markus Afonso

ASSIGNMENT 4

Set:___C___

Due: October 15th at 11:59 PM (for all three sets) Answer all questions on this handout.

1. [5 marks] Use truth tables to prove or disprove the following Boolean statement:

$$x(y \oplus z) + x'y'z = ((x+z) \uparrow y) \odot z$$

								n k	g'2 ,	العرب	2) * × 1 y 2
×	9	2	* 1	y¹	2,	y2'	y12	y2	4(22	×'9'	2 +(4 6 2) * ×'y'
O	0	6	1	1	- 1	0	6	0	C	0	76
0	0	(1	l l	0	0	l (- 1	0	((t
Ö	(0	1	в	(- [O	t	0	0	0
Ŏ	1	(ı	0	0	Q	0	O	0	0	0
Ĭ	0	0	0	ı	(0	0	Ů	0	O	0
1	0	(0	(0	0	1	1	1	O	1
1		0	0	0	1	1	0	(l	0	1 /
l	l	1	0	0	O	0	0	Q	0	O	9

$$a\hat{t}y = (ay)'$$

$$= a' + y'$$

$$((x+z)^{2}y)^{0}z$$
 $a^{2}y = (ay)^{1}$ $|et b = a^{2}y^{2}|$
= $a^{2}y^{2}$ $= b^{2}z^{2}$

						142=	۵	144'=	6			, 22
X	9	2	× '	J,	2,	+ * -	a'	0, 4 7	5	62	52'	62+6'2
0	0	0	- 1	1	1	0	(l l	0	0	0	10
0	0	1	(ı	0	ſ	0	1	0	(0	
0	1	0	1	0	(O	(1	0	0	0	0
O		1	- 1	0	O	(0	0	(O	0	0
l l	0	0	0	1	1	l l	0	1	0	0	O	0
I	0	(0	ı	0	(0	- 1	0	l	0	1
1	1	0	0	O	- 1	(0)	0	1	0	l	\ ()
	l		0	Q	0	(0	0	1	(0	$\setminus 0$

2. [15 marks] Use Boolean algebra to prove or disprove the following Boolean statements. Circle the correct answer in each case and also show your work.

MATH 1310 – Technical Math for IT

b)
$$a'(a+b) + (b+aa)(a+b') = (a+b)$$

$$a'(a+b) + (b+aa)(a+b') = (a+b)$$
 $(a'a+a'b) + (b+a)(a+b')$ L&a

 $(0+a'b) + (b+a)(a+b')$ T/2a

 $a'b + ba + bb' + aa + ab'$ L&a

 $a'b + ba + 0 + a + ab'$
 $a'b + a(b+1+b')$ L&a

 $a'b + a(b+1+b')$ L&a

 $a'b + a(1+1)$ T/26

 $a'b + a(1+1)$
 $a'b + a(1)$
 $a'b + a(1)$

c)
$$((abc')' + a'c'd' + (a'b'c'd)')' = 1$$
 Proved Disproved

MATH 1310 – Technical Math for IT

- 3. [15 marks] Simplify the following expressions as much as possible. Box your final answer.
 - a) (yz + y' + z')x

$$(y^2 + y' + 2')x$$

 $(y' + 2 + 2')x T14d$
 $(y' + 1)x T126$
 $(1)x T26$
 $= x$

b) pq + q + p(q + r) + qr

MATH 1310 – Technical Math for IT

c) (x + y)' * (x' + y')

$$(x+y)' \cdot (x'+y')$$

 $(x'y') \cdot (x'+y') + T156$
 $x'y'x' + x'y'y' + CEA$
 $x'y' + x'y' + T116$