Module 2: Inference with Simple Linear Regression

Jeffrey Woo

MSDS, University of Virginia

Assumptions for Linear Regression Model

(a)

$$\mathsf{E}(\epsilon_i) = 0, \quad 1 \le i \le n;$$

 $\mathsf{Var}(\epsilon_i) = \sigma^2, \quad 1 \le i \le n;$
 $\mathsf{Cov}(\epsilon_i, \epsilon_j) = 0, \quad i \ne j.$

(b) $\epsilon_1, \ldots, \epsilon_n$ i.i.d. $\sim N(0, \sigma^2)$ (i.i.d. means independent and identically distributed)

Assumptions (a) and (b) allow us to proceed with statistical inference. We will cover how we assess if these are met in Module 3.

- CI for Coefficient
- 2 Hypothesis Testing in SLR
- Interpretations of Fitted Response
 - CI for mean Y for Given x
 - PI for new Y for Given x

Confidence Intervals

Goal: Provide a range of plausible values for the unknown parameter of interest, e.g. β_1 . General form for CI:

statistic \pm (multiplier \times s.e of statistic).

- Statistic: numerical quantity that describes a sample
- Multiplier: determined by confidence level and relevant probability distribution
- Standard error of statistic: measure of precision of the statistic

Cl for β_1 , σ unknown

A $100(1-\alpha)\%$ CI for β_1 when σ is unknown is

$$\hat{\beta}_1 \pm t_{1-\alpha/2;df} \operatorname{se}(\hat{\beta}_1) \tag{1}$$

where $se(\hat{\beta}_1) = \sqrt{\frac{MS_{res}}{S_{xx}}}$. The df = n-2, or more generally n-p.

Question: Do you recall how to find $t_{1-\alpha/2;df}$ in R?

- Cl for Coefficient
- 2 Hypothesis Testing in SLR
- Interpretations of Fitted Response
 - CI for mean Y for Given x
 - PI for new Y for Given x

Hypothesis Testing

Investigate if a population parameter is equal to a specific value. In the context of simple linear regression, we usually want to test if β_1 is 0 or not. If $\beta_1=0$, there is no linear relationship between the variables. We usually state the hypotheses statements as null and alternative hypotheses.

- Step 1: State the null and alternative hypotheses.
- Step 2: A test statistic is calculated using the sample, assuming null is true. The value of the test statistic is affected by the degree to which the sample deviates from the null.
- Step 3: Make conclusion. Two equivalent approaches: critical region and p-value approach.

t Statistic

General framework of a t statistic is

$$t = \frac{\text{statistic} - \text{value of parameter under null}}{\text{s.e of statistic}}.$$

t Test

$$H_0: \qquad \beta_1 = 0.$$

 $H_a: \qquad \beta_1 \neq 0.$

$$H_a: \beta_1 \neq 0.$$

In this setting for a linear regression, the t statistic is

$$t=\frac{\hat{\beta}_1-0}{se(\hat{\beta}_1)}.$$

Two-Sided Hypothesis Testing

Critical region approach: Reject H_0 at level of significance α if $|t| > t_{1-\alpha/2;n-2}$.

P-value approach: The two-sided p-value is $2 \times P\{t_{n-2} > |t|\}$. If p-value is less than α , reject H_0 .

NOTE: Rejecting H_0 indicates our data support H_a . Not rejecting H_0 indicates our data do not support H_a .

Using R

Critical region: For two-sided test, type $qt(1-\alpha/2, df)$, where α is the significance level and df = n - 2 in SLR.

Question: How does this change if we have a one-sided test?

NOTE 1: Conclusions from 2-sided tests and CI at the same significance level are always consistent.

NOTE 2: P-value approach and critical value always lead to same conclusions at the same significance level.

ANOVA F Test

In SLR, the ANOVA F test tests

$$H_0: \beta_1=0.$$

 $H_a: \beta_1 \neq 0.$

The ANOVA F statistic is

$$F = \frac{MS_R}{MS_{res}}.$$

Results from the ANOVA F test and t test are the same in SLR when $H_0: \beta_1 = 0$ and the alternative is two sided.

> result<-lm(purity~hydro)

> summary(result)

R Output

```
Call:
lm(formula = purity ~ hydro)
Residuals:
          10 Median 30
                                Max
   Min
-4.6724 -3.2113 -0.0626 2.5783 7.3037
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 77.863
                   4.199 18.544 3.54e-13 ***
hydro
          11.801 3.485 3.386 0.00329 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 3.597 on 18 degrees of freedom
Multiple R-squared: 0.3891, Adjusted R-squared: 0.3552
F-statistic: 11.47 on 1 and 18 DF, p-value: 0.003291
```

Cl for Coefficient

- 2 Hypothesis Testing in SLR
- 3 Interpretations of Fitted Response
 - CI for mean Y for Given x
 - PI for new Y for Given x

Two Interpretations of \hat{y}

Regression equation in population: $\mu_y = \beta_0 + \beta_1 x$ Regression equation in sample: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$. Two interpretations of \hat{y} :

- ① \hat{y} estimates μ_y , the mean of the response for specific value of x.
- ② \hat{y} predicts the value of the response for a specific observation of x.

Depending on which interpretation you are interested in, we have 2 CIs, one for the mean of the response for specific x, another for the prediction of the response for a specific observation of x.

Outline

- Cl for Coefficient
- 2 Hypothesis Testing in SLR
- 3 Interpretations of Fitted Response
 - CI for mean Y for Given x
 - PI for new Y for Given x

Distribution of $\hat{\mu}_{y|x_0}$

Sometimes, we want to find a CI for the **mean response**, $E(y|x_0)$, at $x = x_0$. The point estimator of $E(y|x_0)$ is $\hat{\mu}_{y|x_0} = \hat{\beta}_0 + \hat{\beta}_1 x_0$.

If σ^2 is unknown, a $100(1-\alpha)\%$ CI for μ_0 is

$$\hat{\mu}_{y|x_0} \pm t_{1-\alpha/2,n-2} s \sqrt{\frac{1}{n}} + \frac{(x_0 - \bar{x})^2}{\sum (x_i - \bar{x})^2}.$$
 (2)

Outline

- Cl for Coefficient
- 2 Hypothesis Testing in SLR
- 3 Interpretations of Fitted Response
 - CI for mean Y for Given x
 - PI for new Y for Given x

Prediction for a New Observation

We may have interest in finding an interval for a **new value** of \hat{y}_0 , when we have a new observation $x = x_0$. This is called a prediction interval for a future observation y_0 .

Prediction for New Observations

Prediction interval for \hat{y}_0 takes into account

- Variation in location for the distribution of y (i.e. where is the center of the distribution of y?).
- Variation within the probability distribution of y.

By comparison, the CI for $E(y|x_0)$ only deals with the first element.

Prediction for New Observations

For unknown σ^2 , the prediction interval is

$$\hat{y}_0 \pm t_{1-\alpha/2, n-2} s \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum (x_i - \bar{x})^2}}.$$
 (3)

Comparing (3) with (2), PI is always wider.

Pointwise Confidence and Prediction Intervals

