CMP305 Very Large Scale Integrated Circuit

Lab 4
Place & Route (Part 2)

Last 3 labs

- We Discussed ASIC Design Flow
- We applied Synthesis Step
- We Learned about Timing Analysis
- We applied design constraints
- We applied Place & Route Step
- We used Tcl script instead of GUI
- We performed post-synthesis simulation

Objectives

- Understand:
 - DRC
 - LVS

- Learn:
 - Use Pyxis & Calibre
 - Post-Layout Simulation

ASIC Design Flow

Verification

- To make the layout ready for fabrication we need to:
 - 1. Check that all system requirements are met
 - Timing Analysis
 - Constraint Report
 - 2. Check that all the fab requirements are met
 - DRC
 - LVS
 - 3. Check that the functionality is still valid
 - Post-Layout Simulation

System Requirement

- As we explained last lab for the tools shortage
 - Pyxis doesn't provide a tool to generate timing analysis
 - So 3rd party tools are used
- For real world applications, we check:
 - Timing Constraints
 - Area Constraints
 - Power Consumption Constraints

Functionality Check

- We need to check that the functionality is still valid
 - After Synthesis
 - Simulate the netlist
 - After Place & Route
 - Extract the netlist from the Layout (Not Applicable in Pyxis)

Fab Requirement

- The Fab announce their rules, you have to meet them
 - "TSMC03" we used is created by the fab
- In some cases, ASIC library is created by a company, & the Fab is owned by another company
 - An additional mapping step is needed (From ASIC Library to Fab library)
- We check for both:
 - DRC
 - LVS

Checking Short Circuit

 It checks for any short circuit on the diagram

• Wires in Pyxis are labeled according to the netlist mappin to the netlist mappin to the netlist mappin to the netlist mapping to the ne

Windows

- Select from "Tools"
 - Select "Short Checker"

Checking Short Circuit

 After performing the check, a summary report appears in the Transcript

```
Scheck_shorts_all(@replace);

// Note: License for ICshortchecker has been acquired. (from: Ic/ui/ic_license_mgr 81)

// Note: Loadable Module "short_checker": 0 short(s) found. (from: Ic/modules/general 82)
```

- If any short is found we could see it from the Pyxis Palette
 - Select "Short Checker"
 - "First" shows the 1st sh
 - "Next" shows the next

- We will run Calibre DRC from Pyxis
- From "Tools", select "Calibre"
 - Then select "Run DRC"

Cancel "Load Runset File"

- In "Inputs" Tab:
 - Select DRC (Hierarchical)
 - Select the generated gds file
 - Unselect "Export from Layout Viewer"

- In "Rules" Tab:
 - Set Rule file to "technology/ic/process/ami05.rules"

Set Working Directory

In "Output" Tab:

Click on "Run DRC"

- Calibre RVE
 Shows which
 checks passed
 & which failed
- Failed checks
 (red 'x')
 Rule description
 is below
 Click on number
 on right

 The place, where DRC is violated, will appear on Pyxis

- We will run Calibre LVS from Pyxis also
- From "Tools", select "Calibre"
 - Then select "Run LVS"

- In "Rules" Tab:
 - Set Rules to "Technology/ic/process/ami05.calibre.rules"
 - Set Working Directory

- In "Inputs" Tab (Layout sub-tab):
 - Uncheck "Export from Layout viewer"
 - Set File to the exported gds file
 - Set Top Cell to "my_nadder"
 - Set Layout Netlist to my nadder.sp

- In "Inputs" Tab (Netlist sub-tab):
 - Set Format to "VERILOG" & Uncheck "Export from ..."
 - Set file to the verilog netlist

Set Ton Call to "my naddor"

Calibre Interactive - nmLVS v2012.3_31.26: my_nadder.lvs.runset File Transcript Setup <u>H</u>elp Hierarchical Flat Calibre CB Run: Rules Layout vs Netlist Netlist vs Netlist Netlist Extraction Step: Inputs Outputs Layout Netlist H-Cells Signatures Waivers Run Control ktop/project/ADK/adk3_1/Adder/my_nadder.v - Files: Transcript Export from schematic viewer Format: VERILOG -Run LVS my nadder Top Cell: Start RVE

- In "Inputs" Tab (H-Cells sub-tab):
 - Check "Match cells by name"
 - Check "Match cells by number of placement"
 - Check "Use H-Cells file"
 - Set H-Cells file to "technology/adk.hcell"

• In "Outputs" Tab:

- From "Setup" Menu
 - Check "LVS Options"
 - Set Power to "VCC" & Ground to "GND"
 - Select Verilog Translator

- In "Verilog Translator" window
 - Set Verilog Library to "technology/adk.v"
 - Set pins with 0 "GND" & pins with 1 "VCC"

- After running the LVS for 1st time, Spice Netlist is Generated
- Go back to Inputs & Read "my_nadder.sp"
- Re-run LVS

shows whic comparison failed & wh

