OPTIMISATION DU CORRECTEUR DE LA COMMANDE DE L'AMORTISSEUR

E1 - FONCTION DE TRANSFERT EN BOUCLE OUVERTE NON CORRIGEE

Question 45 Forme de la consigne

On souhaite contrôler l'accélération de la queue en fonction de la décélération de la cabine. Cette dernière ne doit pas dépasser une valeur maxi $A_{0\text{max}}$ =12 m/s² déterminée en question 39 et la vitesse d'impact au sol ne doit pas dépasser 4m/s.

Par conséquent, il est cohérent d'étudier la réponse de l'accélération de la queue pour un entrée ci-contre.

Question 46 Fonction de transfert

$$H_F(p) = \frac{\dot{Z}^*(p)}{F_{eq}(p)} = \frac{H_z(p)/p}{1 + \lambda_a \cdot H_z(p)/p} = \frac{K_z \cdot p}{1 + (2 \cdot \frac{\xi_z}{\omega_z} + K_z \cdot \lambda_a)p + \frac{1}{\omega_z^2} \cdot p^2}$$

Question 47 Fonction de transfert

$$H_{BONC}(p) = H_{S}(p).H_{F}(p) = \frac{K_{S}}{1 + T_{S}.p} \frac{K_{z}.p}{1 + (2.\frac{\xi_{z}}{\omega_{Z}} + K_{z}.\lambda_{a})p + \frac{1}{\omega_{Z}^{2}}.p^{2}}$$

Question 48 Diagramme de Bode de HF(p) et HBONC(p)

Question 49 Classe minimale du correcteur

Pour que l'erreur statique (à une entrée de type échelon) soit nulle, il faut que la classe de la fonction de transfert en boucle ouverte soit supérieure ou égale à 1. Or, H_{BONC}(p) est de classe (-1). Pour que le système corrigé ait une erreur statique nulle, il faut donc que le correcteur C(p) soit au moins de classe 2.

Question 50 Performances avec C(p)=KP/p2

Avec $K_p=1$ (courbes noires), le système respecte les marges de stabilité mais ne respecte pas la pulsation de coupure à 0dB à $\omega_{odB}=6rad/s$. Avec $K_p=10$ (en rouge), le système respecte la pulsation de coupure à 0dB pour $\omega_{odB}=6rad/s$ mais les marges de stabilité ne sont plus assurées.

Question 51 Appellation de la correction complémentaire

Ce correcteur peut d'ajouter une phase φ_{\max} à une pulsation $\frac{1}{\sqrt{u.T}}$ On dit que ce correction apporte une action à avance de phase.

Question 52 Réglage du correcteur

On souhaite une pulsation de coupure à 0dB pour $\omega_{odB}=6rad\ /\ s$. Sans correction, la courbe de phase vaut -195° pour $\omega_{odB}=6rad\ /\ s$. Pour avoir une marge de phase $M\Phi=45^\circ$, il faut remonter la courbe de phase de 60°. D'après les documents en annexe 8, il faut donc un coefficient : $\mu=14$; où $\sqrt{\mu}=3.75$

Question 53 Réglage du correcteur (suite) et performances en précision

Il faut ensuite caler cette avance de phase sur la pulsation 6rd/s. D'après l'annexe 8, il faut donc $\frac{1}{\sqrt{\mu}.T} = 6rd/s$ d'où T = 44 ms.

On a vu en question 50 que si Kp=10, le système respecte la pulsation de coupure à 0dB pour $\omega_{odB} = 6rad / s$. L'ajout de la partie "avance de phase au correction" va modifier légèrement la valeur de Kp.

D'après l'annexe 8, il faut maintenant que :
$$20\log(K_P) + \left[\frac{20\log(\mu.K_P) - 20\log(K_P)}{2}\right] = 20.log(\sqrt{\mu}.K_P) = +20dB$$
 d'où: $\sqrt{\mu}.K_P = 10$ et $K_P = 2.6$

Le critère de précision sera validé car le correcteur est de classe 2 (cf. : Q49)

Question 54 Validation du cahier des charges

Pour la vitesse d'impact de 4m/s, on lit sur la réponse temporelle que l'accélération de la queue reste inférieure à 3rd/s². Le critère 2, de la FP1 est validé.