Rachunek Prawdopodobieństwa 2025 / 26

ZADANIE DOMOWE 1

Termin wysyłania (MS Teams): 5 listopada 2025 r. godz. 23:59

Zadanie 1. [5 pkt]

Niech $f:[a,b]\to\mathbb{R}_+$ będzie funkcją ciągłą na przedziale [a,b] przyjmującą wartości nieujemne, dla której chcemy wyznaczyć przybliżoną wartość całki $\int_a^b f(x)\,dx$. Rozważmy poniższą prostą probabilistyczną metodę aproksymacji takich całek.

- 1. Generujemy niezależnie i jednostajnie losowo n punktów z prostokąta $[a,b] \times [0,M]$ dla ustalonego $M \geqslant \sup\{f(x) \colon x \in [a,b]\}$.
- 2. Zliczamy, ile spośród wylosowanych punktów leży "pod wykresem" funkcji f (punkt (x,y) leży "pod wykresem" f, jeśli $y\leqslant f(x)$) oznaczmy tą liczbę przez C.
- 3. Jako aproksymację całki przyjmujemy wartość $\frac{C}{n}(b-a)M$, gdzie (b-a)M to pole powierzchni rozważanego prostokąta.

Uwaga. Tego typu algorytmy zrandomizowane znane są jako metody Monte Carlo. Do tego zagadnienia jeszcze wrócimy (na tym lub innych kursach). Przystępne wyjaśnienie, dlaczego ta metoda "działa" i w jaki sposób można ją nieco ulepszyć można znaleźć np. w rozdziałach 5.3.4 – 5.3.5 w książce *Probability and Statistics for Computer Scientists* (M. Baron, 3rd Ed.).

- a) Przetestuj działanie przedstawionego algorytmu do obliczenia wartości poniższych całek.
 - $\int_0^8 \sqrt[3]{x} \, dx$
 - $\int_0^\pi \sin(x) \, dx$
 - $\int_0^1 4x(1-x)^3 dx$

W tym celu zaimplementuj i przeprowadź eksperymenty polegające na wykonaniu dla każdego $n \in \{50, 100, \dots, 5\,000\}$ po $k_1 = 5$ oraz $k_2 = 50$ niezależnych powtórzeń algorytmu. Dla każdej z aproksymowanych całek przedstaw na wykresie² wyniki uzyskane w poszczególnych powtórzeniach (k_i punktów danych dla każdego n, $i \in \{1, 2\}$), ich średnią dla każdego n oraz prostą y = I, gdzie I jest dokładną wartością całki. Dla każdej z całek wszystkie wyniki nanieś na wspólny wykres (po jednym wykresie dla k_1 i k_2 – patrz przykład z rys. 1). Wyciągnij wnioski z przeprowadzonych eksperymentów.

b) W podobny sposób wyznacz aproksymację liczby π .

Zadbaj o to, aby generator liczb pseudolosowych użyty w eksperymentach był "dobry" (tj. miał dobre własności statystyczne). Przykładowo, standardowa implementacja funkcji rand () w języku C nie jest dobrym generatorem. Możesz np. wykorzystać generator Mersenne Twister.

 $^{^1}$ Jeśli dysponujemy jedynie generatorem pseudolosowym rand () zwracającym liczby z rozkładu jednostajnego na przedziałe [0,1], to aby uzyskać losową liczbę z przedziału [a,b], wystarczy zwrócić a + (b-a) *rand (). Poprawność tej metody uzasadnimy na jednym z późniejszych wykładów.

²Do wygenerowania wykresów możesz użyć dowolnego narzędzia, np. numpy, Matlab, Excel, Mathematica, ...

Rysunek 1: Wyniki eksperymentów dla całki $\int_1^3 x^3 dx$. Dla każdego $n \in \{50, 100, \dots, 5000\}$ wykonano po k_i $(i \in \{1, 2\})$ niezależnych powtórzeń algorytmu. Niebieskie punkty przestawiają wyniki poszczególnych powtórzeń, czerwone punkty odpowiadają wartości średniej dla każdego n, a zielona prosta y = 20 to prawdziwa wartość aproksymowanej całki.

Rozwiązanie zadania obejmujące

- implementację symulacji (kod źródłowy w wybranym języku programowania) oraz
- uzyskane wyniki i wyciągnięte na ich podstawie wnioski (pdf z wykresami wraz z samodzielnie napisanym zwięzłym opisem wyników i wnioskami)

należy przesłać na platformę MS Teams. Nie należy dołączać żadnych zbędnych plików.