Package 'heterocop'

November 6, 2024

Type Package
Title Semi-Parametric Estimation with Gaussian Copula
Version 0.1.0.0
Description A method for generating random vectors which are linked by a Gaussian copula. It also enables to estimate the correlation matrix of the Gaussian copula in order to identify independencies within the data.
Imports mytnorm, stats, igraph, matrixcalc, graphics, foreach, stringr, doSNOW, utils
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
Depends R (>= 2.10)
Suggests knitr, rmarkdown, kableExtra, dplyr
VignetteBuilder knitr
NeedsCompilation no
Author Julie Cartier [aut], Florence Jaffrezic [aut], Gildas Mazo [aut], Ekaterina Tomilina [aut, cre]
Maintainer Ekaterina Tomilina <ekaterina.tomilina@inrae.fr></ekaterina.tomilina@inrae.fr>
Repository CRAN
Date/Publication 2024-11-06 15:30:02 UTC
Contents
CopulaSim cor_network_graph diag_block_matrix gauss_gen

2 CopulaSim

Index		8
	ho_estim	6
	matrix_gen	6
	matrix_cor_ts	5
	cgc_data	5

CopulaSim

CopulaSim

Description

This function enables the user to simulate data from a Gaussian copula and arbitrary marginal quantile functions

Usage

```
CopulaSim(n, R, qdist, random = FALSE)
```

Arguments

n	the number of observations
R	a correlation matrix of size dxd
qdist	a vector containing the names of the marginal quantile functions as well as the number of times they are present in the dataset
random	a boolean defining whether the order of the correlation coefficients should be randomized

Value

a list containing an nxd data frame, the shuffled correlation matrix R, and the permutation leading to the new correlation matrix

```
 \label{eq:matrix} $$M <= diag_block_matrix(c(3,4,5),c(0.7,0.8,0.2))$$    CopulaSim(20,M,c(rep("qnorm(0,1)",6),rep("qexp(0.5)",4),rep("qbinom(4,0.8)",2)),random=TRUE) $$
```

cor_network_graph 3

network_graph cor_network_graph

Description

This function enables the user to plot the graph corresponding to the correlations of the Gaussian copula

Usage

```
cor_network_graph(R, TS, binary = TRUE, legend)
```

Arguments

R a correlation matrix of size dxd (d is the number of variables)

TS a threshold for the absolute values of the correlation matrix coefficients

binary a boolean specifying whether the coefficients should be binarized, TRUE by

defaut (zero if the coefficient is less than the threshold in absolute value, 1 oth-

erwise). If FALSE, the edge width is proportional to the coefficient value.

legend a vector containing the type of each variable used to color the vertices

Value

a graph representing the correlations between the latent Gaussian variables

Examples

```
R <- diag_block_matrix(c(3,4,5),c(0.7,0.8,0.2))
data <- CopulaSim(20,R,c(rep("qnorm(0,1)",6),rep("qexp(0.5)",4),
rep("qbinom(4,0.8)",2)),random=FALSE)[[1]]
cor_network_graph(R,TS=0.3,binary=TRUE,legend=c(rep("Normal",6),
rep("Exponential",4),rep("Binomial",2)))</pre>
```

```
diag_block_matrix diag_block_matrix
```

Description

This function enables the user to generate a diagonal block-matrix with homogeneous blocks

Usage

```
diag_block_matrix(blocks, coeff)
```

gauss_gen

Arguments

blocks a vector containing the sizes of the blocks

coeff a vector containing the coefficient corresponding to each block, the coefficients

must be between 0 and 1

Value

a diagonal block-matrix containing the specified coefficients

Examples

```
diag_block_matrix(c(3,4,5),c(0.3,0.4,0.8))
```

gauss_gen

gauss_gen

Description

This function enables the user to generate gaussian vectors with correlation matrix R

Usage

```
gauss_gen(R, n)
```

Arguments

R a correlation matrix of size dxd

n the number of observations

Value

a nxd data frame containing n observations of the d variables

```
M <- diag_block_matrix(c(3,4,5),c(0.7,0.8,0.2))
gauss_gen(M,20)</pre>
```

icgc_data 5

icgc_data

ICGC dataset

Description

Dataset containing RNA counts, protein expression and mutations measured on breast cancer tumors.

Usage

```
icgc_data
```

Format

A dataframe of 15 variables and 250 observations containing the following:

ACACA, AKT1S1, ANLN, ANXA1, AR RNA counts (discrete)

ACACA_P, AKT1S1_P, ANLN_P,ANXA_P,AR_P protein expression measurements (discrete) MU5219,MU4468,MU7870,MU4842,MU6962 5 mutations (binary)

matrix_cor_ts

matrix_cor_ts

Description

This function enables the user to threshold matrix coefficients

Usage

```
matrix_cor_ts(R, TS, binary = TRUE)
```

Arguments

R a correlation matrix

TS a threshold

binary a boolean specifying whether the coefficients should be binarized, TRUE by

defaut (zero if the coefficient is less than the threshold in absolute value, 1 oth-

erwise)

Value

the thresholded input matrix

```
M <- diag_block_matrix(c(3,4,5),c(0.7,0.8,0.2))
matrix_cor_ts(M,0.5)</pre>
```

rho_estim

	matrix_gen	matrix_gen		
--	------------	------------	--	--

Description

This function enables the user to generate a sparse, nonnegative definite correlation matrix via the Cholesky decomposition

Usage

```
matrix_gen(d, gamma)
```

Arguments

d the number of variables

gamma an initial sparsity parameter for the lower triangular matrices in the Cholesky

decomposition, must be between 0 and 1

Value

a list containing the generated correlation matrix and its final sparsity parameter (ie the proportion of zeros)

Examples

```
matrix\_gen(15,0.81)
```

rho_estim	rho_estim	

Description

This function enables the user to estimate the correlation matrix of the Gaussian copula for a given dataset

Usage

```
rho_estim(data, Type, parallel = FALSE)
```

Arguments

data an nxd data frame containing n observations of d variables

Type a vector containing the type of the variables, "C" for continuous and "D" for

discrete

parallel a boolean encoding whether the computations should be parallelized

rho_estim 7

Value

the dxd estimated correlation matrix of the Gaussian copula

```
\label{eq:matrix} \begin{split} & \text{M} < - \text{diag\_block\_matrix}(c(3,4,5),c(\emptyset.7,\emptyset.8,\emptyset.2)) \\ & \text{data} < - \text{CopulaSim}(20,M,c(\text{rep}("\text{qnorm}(\emptyset,1)",6),\text{rep}("\text{qexp}(\emptyset.5)",4),\\ & \text{rep}("\text{qbinom}(4,\emptyset.8)",2)),\text{random=FALSE}[[1]] \\ & \text{rho\_estim}(\text{data},c(\text{rep}("C",10),\text{rep}("D",2))) \end{split}
```

Index

```
* datasets
    icgc_data, 5

CopulaSim, 2
cor_network_graph, 3

diag_block_matrix, 3

gauss_gen, 4

icgc_data, 5

matrix_cor_ts, 5

matrix_gen, 6

rho_estim, 6
```