SRM Institute of Science and Technology DEPARTMENT OF MATHEMATICS ASSIGNMENT-1

Subject Code: 18MAB302T Subject: Discrete Mathematics

Chapter-I Sets, Relations and Functions

PART-B

1. Prove that $(A - B) \cap (C - B) = \phi$ analytically.

- 2. If R is the relation on the set $A = \{1, 2, 3\}$ such that $(a, b) \in R$ iff a + b is even, find the relation matrix M_R , $M_{R^{-1}}$ and M_{R^2} .
- 3. If f(x) = x + 2, g(x) = x 2 for $x \in R$ then prove that $f \circ g = g \circ f$.
- 4. If $f, g: R \to R$, where f(x) = ax + b, $g(x) = 1 x + x^2$ and $(g \circ f)(x) = 9x^2 9x + 3$, find the values of a, b.
- 5. Verify whether the given relation R on the set $A = \{a, b, c, d\}$ is an equivalence relation or not justify your answer $R = \{(a, a), (a, c), (a, d), (b, b), (c, a), (c, c), (d, a), (d, d)\}$.
- 6. Find the matrix representation of $R \cup S$ and $R \cap S$ where $R = \{(1, 1), (1, 3), (2, 2)\}$ and $S = \{(1, 2), (1, 3), (2, 1), (2, 2), (3, 3)\}$ are the relations defined on the set $A = \{1, 2, 3\}$.

PART-C

- 1. State and prove Demorgan's Law of set theory.
- 2. If A, B and C are sets then prove the statement $(A \cap B)-C=(A-C) \cap (B-C)$ analytically.
- 3. If R is a relation on the set of positive integers such that $(a, b) \in R$ if and only if $a^2 + b$ is even, prove that R is an equivalence relation.
- 4. If R is a relation on the set of integers such that $(a, b) \in R$ if and only if $a^m = b$ for some positive integer m, show that R is partial ordering.
- 5. Let $R = \{(1,1), (1,3), (1,5), (2,3), (2,4), (3,3), (3,5), (4,2), (4,4), (5,4)\}$ be a relation on the set $A = \{1,2,3,4,5\}$. Find the transitive closure using Warshall's algorithm.
- 6. Show that the composition of invertible function is invertible.
- 7. Draw the Digraph and Hasse diagram for the divisibility relation on $\{2, 4, 5, 10, 12, 20, 25\}$.
- 8. If $f: Z \to N$ is defined by $f(x) = \begin{cases} 2x 1 & if x > 0 \\ -2x & if x \le 0 \end{cases}$. Prove that f is bijective.
- 9. If $f: R \to R$ defined by $f = \{(x,y)|ax+by=c, b \neq 0\}$ determine whether f is invertible if so find inverse.
- 10. Prove that R is an equivalence relation where aRb iff 3a + b is a multiple of 4.

_