

Universidade de Brasília IE - Departamento de Estatística Trabalho de Séries Temporais

2° Trabalho Prático

Sabrina Lopes França - 170021840 Thayane de Souza Soares - 150149727

Prof. José Augusto Fiorucci

 ${\bf Bras{\'i}lia}$

Setembro de 2022

Contents

Introdução	3
Modelos ARIMA	3
Série original	3
Decomposição via MSTL	3
Gráficos ACF e PACF	4
Seleção do modelo	4
Análise de resíduos	5
Série com transformação Box-Cox	6
Decomposição via MSTL	6
Gráficos ACF e PACF	
Seleção do modelo	7
Análise de resíduos	8
Modelos ETS	8
Seleção do Modelo - Série original	8
Análise de Resíduos	
Seleção do Modelo - Série com transformação Box-Cox	9
Análise dos resíduos	10
Estudo de desempenho preditivo	10
Resultados	12
Conclusão	13
Códigos	13

Introdução

O presente trabalho tem o objetivo de elaborar dois modelos Arima de forma manual para uma série temporal, sendo um para a série original e outro para a série com transformação de Box-Cox. Além disso, também será selecionado dois modelos ETS de forma manual baseando-se na estrutura da série, um sem transformação de Box-Cox e outro com a transformação de Box-Cox. Em sequência será realizado um estudo de desempenho preditivo por janela deslizante.

Dentre as séries sorteadas para o grupo, a escolhida foi a de id 922, a qual contém dados referentes à produção industrial na Bélgica. A série possui dados trimestrais do ano de 1960 até 1975 e será apresentada a seguir.

N0922

Modelos ARIMA

Série original

Decomposição via MSTL

Decomposição MSTL

Ao realizar a decomposição MSTL (Multiple Seasonal Decomposition of Time Series) para a série original, exibida no gráfico acima, observa-se que a série aparenta não ser estacionária, apresentando tendência e sazonalidade. Além disso, o ruído aparenta se comportar como ruído branco.

Gráficos ACF e PACF

Sob a hipótese nula de estacionáriedade da série, foi realizado o teste de Kpss (Kwiatkowski-Phillips-Schmidt-Shin). O seguinte resultado foi obtido:

 $\frac{\text{P-valor}}{0.01}$

Ou seja, rejeita-se a hipótese de que a série é estacionária.

Dessa forma, foi obtido o número de diferenciações necessárias para tornar a série estacionária, que teve como resultado uma diferenciação (logo, d = 1). Além disso, verificou-se a necessidade de diferenciar sazonalidade na série, o que também resultou em uma diferenciação (D = 1).

Após realizar as diferenciações, foi novamente realizado o teste Kpss, o qual agora não rejeita a hipótese de estacionariedade, permitindo dar continuidade à análise.

 $\frac{\text{P-valor}}{0.1}$

Foram elaborados o gráfico da série com as transformações e os gráficos das funções de autocorrelação e e autocorrelação parcial, eles se encontram logo abaixo.

A nova série, de fato, aparenta conter estacionaridade. Observa-se que ACF cai mais rapidamente que a PACF, aparentando haver quebra no lag = 1, já no PACF parece ter uma quebra no lag = 2. Assim, primeiramente sugere-se os parâmetros de p = 2, q = 1, porém escolheu-se testá-los variando os valores 0, 1, 2 e 3.

Quanto às autocorrelações nos lags sazonais, constata-se no gráfico PACF P=0 e, no gráfico ACF é visto uma correlação bem baixa na primeira defasagem, indicando Q=1. Dessa forma o modelo que se imagina para a série é SARIMA(2,1,1)(0,1,1).

Seleção do modelo

A partir do modelo encontrado com a análise dos gráficos ACF e PACF, foi preferido testar outras configurações com o objetivo de atingir o menor critério AICc. Os resultados estão presentes na tabela abaixo.

p	q	AICc
0	0	728.8688
0	1	719.6093
0	2	720.6265
0	3	723.0328
1	0	719.2162
1	1	720.9054
1	2	722.9641
1	3	725.5362
2	0	720.7387
2	1	723.1649
2	2	725.5344
2	3	726.9426
3	0	723.1064
3	1	725.6192
3	2	724.1962
3	3	726.6221

Com o menor critério AICc encontrado, pela parcimônia temos SARIMA(1,1,0)(0,1,1) como o modelo escolhido para esta série.

Análise de resíduos

Os gráficos e tabelas acima mostram que as hipóteses de estacionariedade, independência e normalidade dos erros não são rejeitadas, portanto, conclui-se que o modelo é adequado. Ressalte-se que os testes utilizados foram: teste Kpss, teste de Ljung-Box e teste Shapiro Wilk.

Série com transformação Box-Cox

Decomposição via MSTL

Decomposição MSTL com transformação de Box-Cox

De maneira semelhante ao que observamos no caso da série original, com a transformação de Box-Cox, com o valor lambda de 0.618 obtido da transformação, observamos na decomposição MSTL da série um comportamento que sugere a não estacionaridade e a presença de sazonalidade.

Gráficos ACF e PACF

Com o teste de Kpss, sob a hipótese nula de estacionaridade da série, confirmamos sua ausência de estacionariade, o resultado é mostrado a seguir.

 $\frac{\text{P-valor}}{0.01}$

Na sequência foi obtido o número de diferenciações necessárias para tornar a série estacionária, que teve como resultado uma diferenciação (logo, d=1). Além disso, verificou-se a necessidade de diferenciar sazonalidade na série, o que também resultou em uma diferenciação (D=1).

Dessa forma, realizou-se novamente o teste Kpss, o qual agora não rejeita a hipótese de estacionariedade, permitindo dar continuidade à análise.

P-valor 0.1

Para observar a série com as transformações aplicadas e as funções de autocorrelação e e autocorrelação parcial, foi elaborado o seguinte gráfico.

Assim como na série original, observamos que o gráfico da AFC apresenta um rápido decaimento para zero, enquanto que no PACF isso ocorre de maneira mais devagar e oscilante. Parece haver quebra no lag = 1 para ACF e quebra no lag = 2 para a PFC.

Na parte sazonal, identifica-se rápido decaimento em PAFC, nos indicando P=0 e no AFC há uma quebra no primeiro lag, o que sugere Q=1. Dessa forma o modelo que se imagina para a série é SARIMA(2,1,1)(0,1,1).

Seleção do modelo

Para certificar-se da seleção de um bom modelo, a partir da análise dos gráficos ACF e PACF, foi escolhido testar outras configurações com o objetivo de atingir o menor critério AICc. Os resultados estão presentes na tabela abaixo.

n	q	AICc
<u>p</u>	4	
0	0	-228.2463
0	1	-234.7795
0	2	-232.8467
0	3	-231.5143
1	0	-233.6726
1	1	-232.6314
1	2	-230.8852
1	3	-228.9747
2	0	-233.5658
2	1	-231.6480
2	2	-229.4432
2	3	-226.2832
3	0	-231.8686
3	1	-229.3003
3	2	-226.8731
3	3	-224.0646

Com o menor critério AICc encontrado, pela parcimônia temos SARIMA(0,1,1)(0,1,1) como o modelo escolhido para esta série.

Análise de resíduos

Os gráficos e tabelas acima mostram que as hipóteses de estacionariedade, independência e normalidade dos erros não são rejeitadas, portanto, conclui-se que o modelo é aceito.

Modelos ETS

Seleção do Modelo - Série original

Conforme ilustrado na decomposição MSTL, a série 922 apresenta sazonalidade e tendências significativas e positivas. Essas componentes podem ser então aditivas ou multiplicativas. Logo, os modelos que seguem a disposição (*, N, N) são não condizentes.

Em relação ao erro, seu comportamento sugere aplicação multiplicativa, já que há uma certa flutuação de valores ao longo tempo. Porém, como não está evidente qual é a forma de todas as componentes serão testados os seguintes possíveis modelos.

Modelo	AIC	AICc	BIC
$\overline{\mathrm{ETS}(\mathrm{A,A,A})}$	858.1872	862.1002	876.4154
ETS(A,Ad,A)	855.7423	860.6312	875.9959
ETS(M,A,A)	850.6178	854.5308	868.8459
ETS(M,Ad,A)	848.4488	853.3377	868.7023
ETS(M,A,M)	844.8207	848.7338	863.0489
ETS(M,Ad,M)	842.6732	847.5621	862.9267
ETS(M,M,M)	848.0720	851.9850	866.3002
$\mathrm{ETS}(\mathrm{M},\!\mathrm{Md},\!\mathrm{M})$	843.6853	848.5742	863.9388

 $Com \ base \ nos \ critérios \ AIC, \ AICc \ e \ BIC \ optamos \ pelo \ modelo \ ETS(M,Ad,M), \ sendo \ o \ mais \ indicado \ para \ a \ série.$

Com o modelo escolhido, foram estimados seus coeficeintes, apresentados na tabela a seguir.

ETS
0.507
0.000
0.000
0.978

Análise de Resíduos

Segue abaixo gráficos e os testes relativos a análise de resíduos para o modelo ETS.

Nota-se que, a suposição de erros com variância constante e média em torno de 0 parece ser atendida, bem como não existe nenhuma correlação significante fora das bandas dos gráficos ACF e PACF. Além disso, os pressupostos de normalidade, independência e estacionaridade foram atendidos segundo os testes.

Seleção do Modelo - Série com transformação Box-Cox

De forma semelhante a série original, e com base nas mesmas suposições, testaremos os possíveis modelos para o ajuste na série com a transformação de Box-Cox.

Modelo	AIC	AICc	BIC
ETS(A,A,A)	-193.1953	-189.2822	-174.9671
ETS(A,Ad,A)	-194.5646	-189.6757	-174.3110
ETS(M,A,A)	-193.6236	-189.7105	-175.3954
ETS(M,Ad,A)	-195.5218	-190.6330	-175.2683
ETS(M,A,M)	-193.6730	-189.7599	-175.4448
ETS(M,Ad,M)	-195.1023	-190.2135	-174.8488
ETS(M,M,M)	-193.2366	-189.3236	-175.0085
ETS(M,Md,M)	-194.9543	-190.0654	-174.7008

Diante dos critérios de AIC e AICc pode-se optar pelo modelo ETS(M,Ad,A).

Os coeficientes estimados do modelo escolhido estão na próxima tabela.

Parametros	ETS
alpha	0.523
beta	0.0001
gamma	0.0002
phi	0.974

Análise dos resíduos

Com os próximos gráficos e os testes de normalidade, independência e estacionaridade, vamos fazer a análise de resíduos.

Diante ps gráficos acima é possível observar que os erros estão em torno de zero, e parece ter variância constante. Os gráficos ACF e PACF mostram que os erros não tem autocorrelação. E os erros parecem se ajustar a distribuição normal. Analisando os testes de estacionariedade, independência e normalidade com um nível de significância de 5% podemos observar que não há indicação para rejeitar as hipóteses nula, ou seja, não se rejeita estacionariedade, independência e normalidade.

Estudo de desempenho preditivo

Utilizando h = 5, como o horizonte máximo de previsão, foram geradas os erros de previsão utilizando a janela deslizante.

Para todas as séries apresentadas neste trabalho, calculou-se a média dos erros absolutos para cada horizonte de previsão (de 1 a 5):

	MAE-ARIMA	MAE-ARIMA(box-cox)	MAE-ETS	MAE-ETS(box-cox)
h=1	323.1158	353.8977	335.1722	333.9251
h=2	294.9144	353.4020	325.1645	258.5446
h=3	344.2663	388.1445	358.3707	345.1686
h=4	377.0089	456.2217	423.1920	306.6630
h=5	468.7008	606.4418	507.7296	400.7568

De acordo com o gráfico e a tabela apresentados, observamos que o modelo Arima na série transformção Box-Cox (SARIMA(0,1,1)(0,1,1)), foi o modelo que apresentou maiores valores de erro para todos os horizontes de previsão. Já o modelo ETS aplicado na série com transformação de Box-Cox(ETS(M,Ad,A)), apresentou os menores valores de erros para quase todos os horizontes de previsão.

Resultados

Procurou-se investigar a acurácia dos modelos, isso foi feito com o cálculo do Erro Absoluto Médio (MAE) das previsões. Essas medidas foram comparadas com os MAEs dos modelos obtidos utilizando as funções automáticas do software R, são elas: auto.arima, ses, holt, ets, stlf, bats e tbats.

Na tabela a seguir são mostradas todas as medidas.

Modelo		MAE
ARIMA selecionado	ARIMA(1,1,0)(0,1,1)	486.27
ARIMA - BOX selecionado	ARIMA(0,1,1)(0,1,1)	405.29
Auto ARIMA	ARIMA(2,0,0)(0,1,1)	438.48
ETS selecionado	ETS(M,Ad,M)	298.69
ETS - BOX selecionado	ETS(M,Ad,A)	307.13
ETS automático	ETS(M,Ad,M)	298.69
SES		351.87
HOLT		361.59
STFL		275.75
BATS		322.01
TBATS		254.89

Nota-se que o modelo ETS selecionado no trabalho para a série original é o o mesmo gerado pelo software, ETS(M,Ad,M). Além disso, esse é o modelo que dentre os modelos ETS apresentou menor medida de erro.

O modelo que apresentou maior valor de erro foi o modelo selecionado ARIMA(1,1,0)(0,1,1). Dentre a família Arima, o modelo com melhor desempenho foi o ARIMA(2,0,0)(0,1,1), gerado automaticamente.

No geral o modelo que aprestou o menor erro e melhor desempenho foi o TBATS,. Sua saída no R, é mostrada a seguir:

```
## TBATS(0.003, {3,0}, 0.951, {<4,1>})
##
## Call: tbats(y = x)
##
## Parameters
##
    Lambda: 0.003187
##
     Alpha: -0.07277619
##
    Beta: 0.005804172
##
    Damping Parameter: 0.950899
##
     Gamma-1 Values: -5.597945e-05
     Gamma-2 Values: 0.0001161512
##
     AR coefficients: 0.133273 0.719335 -0.240678
##
##
##
  Seed States:
##
               [,1]
## [1,] 8.02995901
## [2,] 0.03066608
## [3,] -0.03273680
## [4,] 0.03327979
## [5,]
        0.00000000
## [6,] 0.0000000
## [7,] 0.0000000
## attr(,"lambda")
## [1] 0.003186563
## Sigma: 0.05756282
## AIC: 867.9498
```

Conclusão

A partir da série 922, que possui dados trimestrais dos anos 1960 a 1975, foram estudados alguns modelos de ajuste ARIMA e ETS, aplicado a série com e sem a transformação de Box-Cox. Além disso, foi realizado um estudo preditivo com janela deslizante.

Na parte de modelos ARIMA, encontrou-se que para a série original o melhor modelo seria o SARIMA (1,1,0)(0,1,1). Já no caso da série com transformação Box-Cox, o melhor modelo encontrado foi o SARIMA (0,1,1)(0,1,1).

Ajustando o modelo ETS a série original, o melhor modelo encontrado foi o ETS(M,Ad,M) e para a série transformada, encontrou-se ETS (M,Ad,A).

No estudo de desempenho preditivo, utilizou-se h=5 como horizonte máximo de previsão, e concluiu-se que o modelo ETS aplicado na série com transformação de Box-Cox(ETS(M,Ad,A)), apresentou os menores valores de erros para quase todos os horizontes de previsão.

Por fim, foi analisada a acurácia dos modelos. Para isso, utilizou-se o cálculo do Erro Absoluto Médio (MAE) das previsões. Essas medidas foram comparadas com os MAEs dos modelos obtidos utilizando as funções automáticas do software R, são elas: auto.arima, ses, holt, ets, stlf, bats e tbats. E foi visto que o modelo que apresentou menor erro e portanto melhor ajuste foi o modelo TBTS.

Códigos

```
library(Mcomp)
library(tseries)
library(magrittr)
library(tidyverse)
library(forecast)
library(knitr)
library(ggplot2)
library(dplyr)
library(cowplot)
data(M3)
id <- 922
df <- M3[[id]] # Série em estudo
M3[[id]] %>% plot()
legend(x = "bottomright",
                                   # Position
       legend = c("Training", "Test"), # Legend texts
       lty = c(1, 1),
                               # Line types
       col = c("black", "red"),
                                          # Line colors
       lwd = 2)
# Decomposição via MSTL
mstl(df$x) %>% plot(main = "Decomposição MSTL")
# teste kpss
(kpss.test(df$x))$p.value %>%
 kable(col.names = "P-valor", align = "c")
d <- ndiffs(df$x) # Uma diferenciação (d = 1)
est <- diff(df$x, differences = d)</pre>
D <- nsdiffs(est) # D = 1 #dif da sazonalidade
est %<>% diff() %>% diff(lag = 4)
(kpss.test(est))$p.value %>%
 kable(col.names = "P-valor", align = "c") # 0.1 Não rejeita estacionariedade
# Gáfico ACF E PACF
ggtsdisplay(est)
```

```
#seleção do modelo
aiccs <- c()
ps <- c()
qs <- c()
for (p in 0:3) {
  for (q in 0:3) {
    fit \leftarrow Arima(df$x, order = c(p,1,q), seasonal = c(0,1,1))
    aicc <- fit$aicc</pre>
   ps <- c(ps, p)
    qs \leftarrow c(qs, q)
    aiccs <- c(aiccs, aicc)
  }
}
data.frame(ps, qs, aiccs) %>%
  kable(col.names = c("p", "q", "AICc"), align = "c")
# análise resíduos
fit \leftarrow Arima(df$x, order = c(1,1,0), seasonal = c(0,1,1))
E \leftarrow fit\residuals %>% window(start = c(1962, 1))
par(mfrow=c(2,2)); plot(E); acf(E); pacf(E); qqnorm(E); qqline(E)
nomes <- c("Estacionariedade", "Independência", "Normalidade")</pre>
testes <- c(
  (kpss.test(E))$p.value,
  (Box.test(E, lag = 8, type = "Ljung-Box"))$p.value,
  (shapiro.test(E))$p.value
data.frame(nomes, testes) %>%
  kable(col.names = c("Teste", "P-valor"), align = "c")
# Decomposição box-cox
mstl(df$x, lambda = "auto") %>% plot(main = "Decomposição MSTL com transformação de Box-Cox")
lambda <- BoxCox.lambda(df$x)</pre>
t_box <- BoxCox(df$x, lambda = lambda)
(kpss.test(t_box))$p.value %>%
  kable(col.names = "P-valor", align = "c")
# Transformação
d <- ndiffs(t_box) # Uma diferenciação (d = 1)
est <- diff(t_box, differences = d)</pre>
D \leftarrow nsdiffs(est) # D = 1
est %<>% diff() %>% diff(lag = 4)
(kpss.test(est))$p.value %>%
  kable(col.names = "P-valor", align = "c") # Não rejeita estacionariedade
# Gáfico ACF E PACF
ggtsdisplay(est)
# seleção do modelo
```

```
aiccs <- c()
ps <- c()
qs <- c()
for (p in 0:3) {
 for (q in 0:3) {
    fit <- Arima(dfx, order = c(p,1,q), seasonal = c(0,1,1), lambda = lambda)
    aicc <- fit$aicc
   ps <- c(ps, p)
   qs \leftarrow c(qs, q)
   aiccs <- c(aiccs, aicc)
  }
}
data.frame(ps, qs, aiccs) %>%
 kable(col.names = c("p", "q", "AICc"), align = "c")
# analise residuos
it \leftarrow Arima(df$x, order = c(0,1,1), seasonal = c(0,1,1), lambda = lambda)
par(mfrow=c(2,2)); plot(E); acf(E); pacf(E); qqnorm(E); qqline(E)
E <- fit$residuals %>% window(start = c(1960, 1))
nomes <- c("Estacionariedade", "Independência", "Normalidade")
testes <- c(
  (kpss.test(E))$p.value,
  (Box.test(E, lag = 8, type = "Ljung-Box"))$p.value,
  (shapiro.test(E))$p.value
data.frame(nomes, testes) %>%
  kable(col.names = c("Teste", "P-valor"), align = "c")
# Modelos ETS
m1 <- ets(df$x,model = "AAA", damped = FALSE)</pre>
m2 <- ets(df$x,model = "AAA", damped = TRUE)</pre>
m3 <- ets(df$x,model = "MAA", damped = FALSE)
m4 <- ets(df$x,model = "MAA", damped = TRUE)
m5 <- ets(df$x, model = "MAM", damped = FALSE)
m6 <- ets(df$x,model = "MAM", damped = TRUE)
m7 <- ets(df$x,model = "MMM", damped = FALSE)
m8 <- ets(df$x,model = "MMM", damped = TRUE)</pre>
AIC <- rbind(m1$aic, m2$aic, m3$aic, m4$aic, m5$aic, m6$aic, m7$aic, m8$aic)
AICc <- rbind(m1$aicc, m2$aicc, m3$aicc, m4$aicc, m5$aicc, m6$aicc, m7$aicc, m8$aicc)
BIC <- rbind(m1$bic, m2$bic, m3$bic, m4$bic, m5$bic, m6$bic, m7$bic, m8$bic)
"ETS(M,Ad,M)","ETS(M,M,M)","ETS(M,Md,M)"))
d <- data.frame(Modelo,AIC,AICc,BIC)</pre>
knitr::kable(d)
# parametros do modelo
Parametros <- c("alpha", "beta", "gamma", "phi")
ETS <- c("0.507", "0.000", "0.000", "0.978")
```

```
d <- data.frame(Parametros, ETS)</pre>
knitr::kable(d)
# analise de residuos
# Gráfico das componentes do modelo selecionado:
E <- m5$residuals %>% window(start=1962) # Os dois primeiros anos foram descartado devido a inicialização do mode
par(mfrow=c(2,2)); plot(E); acf(E); pacf(E); qqnorm(E); qqline(E)
nomes <- c("Estacionariedade", "Independência", "Normalidade")
testes <- c(
  (kpss.test(E))$p.value,
  (Box.test(E, lag = 8, type = "Ljung-Box"))$p.value,
  (shapiro.test(E))$p.value
data.frame(nomes, testes) %>%
 kable(col.names = c("Teste", "P-valor"), align = "c")
# Seleção do Modelo - Série com transformação Box-Cox
x_t <- df$x %>% BoxCox(lambda)
m1 <- ets(x_t,model = "AAA", damped = FALSE)
m2 <- ets(x_t,model = "AAA", damped = TRUE)</pre>
m3 <- ets(x_t,model = "MAA", damped = FALSE)
m4 <- ets(x_t,model = "MAA", damped = TRUE)
m5 <- ets(x_t,model = "MAM", damped = FALSE)</pre>
m6 <- ets(x_t,model = "MAM", damped = TRUE)
m7 <- ets(x_t,model = "MMM", damped = FALSE)
m8 <- ets(x_t,model = "MMM", damped = TRUE)</pre>
AIC <- rbind(m1$aic, m2$aic, m3$aic, m4$aic, m5$aic, m6$aic, m7$aic, m8$aic)
AICc <- rbind(m1$aicc, m2$aicc, m3$aicc, m4$aicc, m5$aicc, m6$aicc, m7$aicc, m8$aicc)
BIC <- rbind(m1$bic, m2$bic, m3$bic, m4$bic, m5$bic, m6$bic, m7$bic, m8$bic)
Modelo <- cbind(c("ETS(A,A,A)","ETS(A,Ad,A)","ETS(M,A,A)","ETS(M,Ad,A)","ETS(M,A,M)",
                  "ETS(M,Ad,M)","ETS(M,M,M)","ETS(M,Md,M)"))
d <- data.frame(Modelo,AIC,AICc,BIC)</pre>
knitr::kable(d)
# parametros do modelo
Parametros <- c("alpha", "beta", "gamma", "phi")
ETS <- c("0.523", "0.0001", "0.0002", "0.974")
d <- data.frame(Parametros, ETS)</pre>
knitr::kable(d)
# analise residuos
E_t <- m4$residuals
```

```
par(mfrow=c(2,2))
plot(E_t)
acf(E_t)
pacf(E_t)
qqnorm(E_t)
qqline(E_t)
p_valor <- c(kpss.test(E_t)$p.value,</pre>
             Box.test(E_t,lag=8,type="Ljung-Box")$p.value,
             shapiro.test(E_t)$p.value)
testes <- c(
  (kpss.test(E_t))$p.value,
  (Box.test(E_t, lag = 8, type = "Ljung-Box"))$p.value,
  (shapiro.test(E_t))$p.value
data.frame(nomes, testes) %>%
  kable(col.names = c("Teste", "P-valor"), align = "c")
# Estudo de desempenho preditivo
h <- M3[[id]]$h
x <- M3[[id]]$x # dados de treinamento
xx <- M3[[id]]$xx # dados de teste
#### Passo 1 : funçoes de previsao arima####
f_arima1a <- function(y, h){</pre>
  fit = Arima(y,order=c(1,1,0),seasonal=c(0,1,1))
  forecast(fit, h, bootstrap = F)
f_arima1b <- function(y, h){</pre>
  fit = Arima(y,order=c(0,1,1),seasonal=c(0,1,1), lambda = "auto")
 forecast(fit, h)
#### Passo 2 calcule os erros de previsao utilizando a janela deslizante ####
CV_arima1a = tsCV(y=x, forecastfunction=f_arima1a, h=5,
                  initial=(4*14)-14)
#CV_arima1a[,1:5] %>% round(2) %>% tail(10) #1
CV_arima1b = tsCV(y=x, forecastfunction=f_arima1b, h=5,
                  initial=(4*14)-14)
#CV_arima1b[,1:5] %>% round(2) %>% tail(10) #2
MAE_arima = CV_arima1a %>% abs() %>% colMeans(na.rm=T)
MAE_arimab = CV_arima1b %>% abs() %>% colMeans(na.rm=T)
## definfindo as fun??es de previs?o ETS:
f_ets1 <-function(y, h){</pre>
 fit = ets(y, model="MAM")
```

```
forecast(fit, h)
f_ets2 <- function (y, h){</pre>
  fit = ets(y, model="MAA", damped = TRUE)
  forecast(fit, h)
## Calculo dos erros de previsao utilizando a janela deslizantes
CV_{ets1} = tsCV(y= x , forecastfunction = f_ets1, h=5, initial=(4*14)-14)
CV_{ets2} = tsCV(y= x , forecastfunction = f_{ets2}, h=5, initial=(4*14)-14)
# ultimas 10 linhas da saida da tsCV()
#CV_ets1[,1:5] %>% round(2) %>% tail(10)
#CV_ets2[,1:5] %>% round(2) %>% tail(10)
## Calculando uma metrica de erro pasa cada horizonte de previsao, por exemplo o erro absoluto medio (MAE)
MAE_ets = CV_ets1 %>% abs() %>% colMeans(na.rm=T)
MAE_etsb = CV_ets2 %>% abs() %>% colMeans(na.rm=T)
tab = cbind(MAE_arima, MAE_arimab, MAE_ets, MAE_etsb)
kable(tab, col.names = c("MAE-ARIMA", "MAE-ARIMA(box-cox)", "MAE-ETS", "MAE-ETS(box-cox)"), align = "c")
## Grafico com os horizontes no eixo-x e o valor da metrica no eixo y
plot.ts(tab, plot.type='s',col=1:4,lwd=c(2,2),xlab="h",ylab="MAE")
legend(x=1,y=550, legend=c("ARIMA","ARIMA_BOX","ETS", "ETS_BOX"), col=1:4, lwd=c(2,2))
# acuracia
fit_a \leftarrow Arima(x, order=c(1,1,0), seasonal=c(0,1,1))
fit_b \leftarrow Arima(x, order=c(0,1,1), seasonal=c(0,1,1), lambda = "auto")
ets_a <- ets(x, model="MAM", damped = TRUE)</pre>
ets_b <- ets(x, model="MAA", damped = TRUE)</pre>
#ARIMA
a.arima \leftarrow fit_a %>% forecast(h = h) %>%
  accuracy(xx)
#ARIMA BOX COX
a.arimab <- fit_b \%>% forecast(h = h) \%>%
  accuracy(xx)
#auto.arima
mod.autoarima <- auto.arima(x)</pre>
a.autoarima <- mod.autoarima %>% forecast(h=h) %>%
 accuracy(xx)
#ETS selecionado
a.ets <- ets_a %>% forecast(h=h) %>%
  accuracy(xx)
#ETS BOX COX
a.etsb <- ets_b %>% forecast(h=h) %>%
  accuracy(xx)
```

```
#ets autom?tico
a.ets.auto <- ets(x) \%>% forecast(h=h) \%>%
  accuracy(xx)
#ses 486.8299
a.ses \leftarrow ses(x, h=h)%>% forecast() %>%
 accuracy(xx)
#holt
holt.fit <- holt(x, h=h) %>% forecast()
a.holt \leftarrow holt(x, h=h) %>% forecast() %>%
 accuracy(xx)
#stlf
a.stlf <- stlf(x, h=h) %>% forecast() %>%
  accuracy(xx)
#bats
a.bats <- bats(x)%>% forecast() %>%
  accuracy(xx)
#tbats
a.tbats <- tbats(x)%>% forecast() %>%
  accuracy(xx)
#juntando
acuracia <- rbind(a.arima[2,c("MAE")],</pre>
                  a.arimab[2,c("MAE")],
                  a.autoarima[2,c("MAE")],
                  a.ets[2, c("MAE")],
                  a.etsb[2, c("MAE")],
                  a.ets.auto[2, c("MAE")],
                  a.ses[2,c("MAE")],
                  a.holt[2,c("MAE")],
                  a.stlf[2,c("MAE")],
                  a.bats[2,c("MAE")],
                  a.tbats[2,c("MAE")]
)
MAE <- as.vector(round(acuracia,2))</pre>
Modelo <- c("ARIMA selecionado", "ARIMA - BOX selecionado", "Auto ARIMA", "ETS selecionado", "ETS - BOX selecionado"
Series <- c("ARIMA(1,1,0)(0,1,1)","ARIMA(0,1,1)(0,1,1)","ARIMA(2,0,0)(0,1,1)",
            "ETS(M,Ad,M)", "ETS(M,Ad,A)","ETS(M,Ad,M)"," ","","","")
acuracia <- cbind(Modelo, Series,MAE)
kable(acuracia,col.names = c("Modelo", "","MAE"),align = "c")
```