

Artificial Intelligence & Machine Learning

Human-Centered Data & Al

- Uma das formas de aprendizado indutivo mais utilizadas
 - Aplicações práticas
 - Tarefas de Classificação (Aprendizado supervisionado)
- Aproximação de funções discretas robusta a ruídos
- Aprendizado de expressões disjuntivas

Representação de uma AD

- A função aprendida é representada por uma árvore de decisão
- A árvore é facilmente convertida em regras do tipo "Se..... Então....."
 - O número de folhas é igual ao número de regras
 - A profundidade da árvore define a quantidade de antecedentes nas regras
- Facilidade para compreensão humana

- Se (Outlook=sunny) e (Humidity=High) então Play=no.
- Se (Outlook=sunny) e (Humidity=normal) então Play=yes.
- Se (Outlook=overcast) então Play=yes.
- Se (Outlook=rain) e (Wind=strong) então Play=no.
- Se (Outlook=rain) e (Wind=weak) então Play=yes.

- Se (Outlook=sunny) e (Humidity=High) então Play=no.
- Se (Outlook=sunny) e (Humidity=normal) então Play=yes.
- Se (Outlook=overcast) então Play=yes.
- Se (Outlook=rain) e (Wind=strong) então Play=no.
- Se (Outlook=rain) e (Wind=weak) então Play=yes.

- Se (Outlook=sunny) e (Humidity=High) então Play=no.
- Se (Outlook=sunny) e (Humidity=normal) então Play=yes.
- Se (Outlook=overcast) então Play=yes.
- Se (Outlook=rain) e (Wind=strong) então Play=no.
- Se (Outlook=rain) e (Wind=weak) então Play=yes.

- Se (Outlook=sunny) e (Humidity=High) então Play=no.
- Se (Outlook=sunny) e (Humidity=normal) então Play=yes.
- Se (Outlook=overcast) então Play=yes.
- Se (Outlook=rain) e (Wind=strong) então Play=no.
- Se (Outlook=rain) e (Wind=weak) então Play=yes.

- Se (Outlook=sunny) e (Humidity=High) então Play=no.
- Se (Outlook=sunny) e (Humidity=normal) então Play=yes.
- Se (Outlook=overcast) então Play=yes.
- Se (Outlook=rain) e (Wind=strong) então Play=no.
- Se (Outlook=rain) e (Wind=weak) então Play=yes.

- Se (Outlook=sunny) e (Humidity=High) então Play=no.
- Se (Outlook=sunny) e (Humidity=normal) então Play=yes.
- Se (Outlook=overcast) então Play=yes.
- Se (Outlook=rain) e (Wind=strong) então Play=no.
- Se (Outlook=rain) e (Wind=weak) então Play=yes.

- Como seriam classificados as seguintes instâncias?
 - <Outlook=sunny, Temperature=hot, Humidity=high, Wind=strong >
 - <Outlook=overcast, Temperature=hot, Humidity=high, Wind=strong >
 - <Outlook=rain, Temperature=hot, Humidity=high, Wind=strong >

- Como seriam classificados as seguintes instâncias?
 - <Outlook=sunny, Temperature=hot, Humidity=high, Wind=strong >
 - <Outlook=overcast, Temperature=hot, Humidity=high, Wind=strong >
 - <Outlook=rain, Temperature=hot, Humidity=high, Wind=strong >

- Como seriam classificados as seguintes instâncias?
 - <Outlook=sunny, Temperature=hot, Humidity=high, Wind=strong >
 - <Outlook=overcast, Temperature=hot, Humidity=high, Wind=strong >
 - <Outlook=rain, Temperature=hot, Humidity=high, Wind=strong >

- Como seriam classificados as seguintes instâncias?
 - <Outlook=sunny,
 Temperature=hot,
 Humidity=high,
 Wind=strong >
 - <Outlook=overcast, Temperature=hot, Humidity=high, Wind=strong >
 - <Outlook=rain, Temperature=hot, Humidity=high, Wind=strong >

- Como seriam classificados as seguintes instâncias?
 - <Outlook=sunny, Temperature=hot, Humidity=high, Wind=strong >
 - <Outlook=overcast, Temperature=hot, Humidity=high, Wind=strong >
 - <Outlook=rain, Temperature=hot, Humidity=high, Wind=strong >

- Como seriam classificados as seguintes instâncias?
 - <Outlook=sunny,
 Temperature=hot,
 Humidity=high,
 Wind*strong >
 - <Outlook=overcast, Temperature=hot, Humidity=high, Wind=strong >
 - <Outlook=rain, Temperature=hot, Humidity=high, Wind=strong >

- Como seriam classificados as seguintes instâncias?
 - <Outlook=sunny,
 Temperature=hot,
 Humidity=high,
 Wind=strong > = NO
 - <Outlook=overcast,
 Temperature=hot,
 Humidity=high,
 Wind=strong >
 - <Outlook=rain, Temperature=hot, Humidity=high, Wind=strong >

Algoritmos de aprendizado

- A base é a busca top-down por todas as possíveis árvores;
- Normalmente é utilizada uma busca "gulosa"
- A idéia clássica está definida no ID3 (Quilan, 1986)

ID3

- Cria um ranking dos atributos mais adequados
- Insere (com base no ranking) os atributos na árvore
- Utiliza o ganho de informação (information gain) para criar o ranking
 - Método com base na entropia

Entropia

- Medida definida na teoria da informação
- Define a pureza de um conjunto de instâncias
- Precisa de um conjunto de instâncias positivas e negativas

Entropia(S) = - (p+ $log_2 p+$) - (p- $log_2 p-$)

p+: proporção de instâncias positivas

p-: proporção de instâncias negativas

Entropia

Seja S um conjunto de com 16 instâncias referentes a um conceito booleano. Considere ainda que em S exitem 9 instâncias positivas e 7 negativas. Calcule a entropia de S.

Para facilitar, pode usar:

$$\log_2(X) = \log_{10}(X)/\log_{10}(2)$$

Entropia(S) =
$$-((9/16) * log_2 (9/16)) - ((7/16) * log_2 (7/16))$$

Entropia

Seja S um conjunto de com 16 instâncias referentes a um conceito booleano. Considere ainda que em S exitem 9 instâncias positivas e 7 negativas. Calcule a entropia de S.

Para facilitar, pode usar:

$$\log_2(X) = \log_{10}(X)/\log_{10}(2)$$

Entropia(S) =
$$-((9/16) * log_2 (9/16)) - ((7/16) * log_2 (7/16))$$

= $-((0,5625) * -(0,8300)) - ((0,4375) * -(1,1926))$

Entropia

Seja S um conjunto de com 16 instâncias referentes a um conceito booleano. Considere ainda que em S exitem 9 instâncias positivas e 7 negativas. Calcule a entropia de S.

Para facilitar, pode usar:

$$\log_2(X) = \log_{10}(X)/\log_{10}(2)$$

Entropia(S) =
$$-((9/16) * log_2 (9/16)) - ((7/16) * log_2 (7/16))$$

= $-((0,5625) * -(0,8300)) - ((0,4375) * -(1,1926))$
= $-(-0,4669) - (-0,5217) = 0,9886$

- Entropia
- O que acontece com a entropia quando existe a mesma quantidade de instâncias positivas e negativas?

- Entropia
- O que acontece com a entropia quando existe a mesma quantidade de instâncias positivas e negativas?
 - Seja S um conjunto de com 16 instâncias referentes a um conceito booleano. Considere ainda que em S exitem 8 instâncias positivas e 8 negativas. Calcule a entropia de S.

- Entropia
- O que acontece com a entropia quando existe a mesma quantidade de instâncias positivas e negativas?

Seja S um conjunto de com 16 instâncias referentes a um conceito booleano. Considere ainda que em S exitem 8 instâncias positivas e 8 negativas. Calcule a entropia de S.

Entropia(S) = $-((8/16) * log_2(8/16)) - ((8/16) * log_2(8/16))$

- Entropia
- O que acontece com a entropia quando existe a mesma quantidade de instâncias positivas e negativas?

Seja S um conjunto de com 16 instâncias referentes a um conceito booleano. Considere ainda que em S exitem 8 instâncias positivas e 8 negativas. Calcule a entropia de S.

Entropia(S) =
$$-((8/16) * \log_2 (8/16)) - ((8/16) * \log_2 (8/16))$$

= $-((0,5) * (-1)) - ((0,5) * (-1))$

- Entropia
- O que acontece com a entropia quando existe a mesma quantidade de instâncias positivas e negativas?

Seja S um conjunto de com 16 instâncias referentes a um conceito booleano. Considere ainda que em S exitem 8 instâncias positivas e 8 negativas. Calcule a entropia de S.

Entropia(S) =
$$-((8/16) * log_2 (8/16)) - ((8/16) * log_2 (8/16))$$

= $-((0,5) * (-1)) - ((0,5) * (-1))$
= $0,5 + 0,5 = 1$

- Entropia
- O que acontece com a entropia quando todas as instâncias são positivas?

- Entropia
- O que acontece com a entropia quando todas as instâncias são positivas?

Seja S um conjunto de com 16 instâncias referentes a um conceito booleano. Considere ainda que em S exitem 16 instâncias positivas e 0 negativas. Calcule a entropia de S.

- Entropia
- O que acontece com a entropia quando todas as instâncias são positivas?

Seja S um conjunto de com 16 instâncias referentes a um conceito booleano. Considere ainda que em S exitem 16 instâncias positivas e 0 negativas. Calcule a entropia de S.

Entropia(S) = $-((16/16) * log_2 (16/16)) - ((0/16) * log_2 (0/16))$

- Entropia
- O que acontece com a entropia quando todas as instâncias são positivas?

Seja S um conjunto de com 16 instâncias referentes a um conceito booleano. Considere ainda que em S exitem 16 instâncias positivas e 0 negativas. Calcule a entropia de S.

Entropia(S) =
$$-((16/16) * log_2 (16/16)) - ((0/16) * log_2 (0/16))$$

= $-((1) * 0) - ((0) * (log_2 (0/16)))$

- Entropia
- O que acontece com a entropia quando todas as instâncias são positivas?

Seja S um conjunto de com 16 instâncias referentes a um conceito booleano. Considere ainda que em S exitem 16 instâncias positivas e 0 negativas. Calcule a entropia de S.

Entropia(S) = -
$$((16/16) * log_2 (16/16)) - ((0/16) * log_2 (0/16))$$

= - $((1) * 0) - ((0) * (log_2 (0/16)))$
= 0 + 0 = 0

- Entropia
- O que acontece com a entropia quando todas as instâncias são negativas?

- Entropia
- O que acontece com a entropia quando todas as instâncias são negativas?

Seja S um conjunto de com 16 instâncias referentes a um conceito booleano. Considere ainda que em S exitem 0 instâncias positivas e 16 negativas. Calcule a entropia de S.

- Entropia
- O que acontece com a entropia quando todas as instâncias são negativas?

Seja S um conjunto de com 16 instâncias referentes a um conceito booleano. Considere ainda que em S exitem 0 instâncias positivas e 16 negativas. Calcule a entropia de S.

Entropia(S) = $-((0/16) * log_2 (0/16)) - ((16/16) * log_2 (16/16))$

- Entropia
- O que acontece com a entropia quando todas as instâncias são negativas?

Seja S um conjunto de com 16 instâncias referentes a um conceito booleano. Considere ainda que em S exitem 0 instâncias positivas e 16 negativas. Calcule a entropia de S.

```
Entropia(S) = -((0/16) * log_2 (0/16)) - ((16/16) * log_2 (16/16))
= -((0) * (log_2 (0/16))) - (1 * 0)
```


- Entropia
- O que acontece com a entropia quando todas as instâncias são negativas?

Seja S um conjunto de com 16 instâncias referentes a um conceito booleano. Considere ainda que em S exitem 0 instâncias positivas e 16 negativas. Calcule a entropia de S.

Entropia(S) =
$$-((0/16) * log_2 (0/16)) - ((16/16) * log_2 (16/16))$$

= $-((0) * (log_2 (0/16))) - (1 * 0)$
= $0 + 0 = 0$

• Entropia para um conceito booleano:

 Entropia para uma variável alvo que pode assumir c classes:

Entropia(S) =
$$\sum_{i=1}^{\infty} -pi \log_2(pi)$$

 O ganho de informação de um atributo é a redução esperada na entropia, causada pelo particionamento das instâncias de acordo com este atributo. Ou seja, o quanto se espera que a entropia seja reduzida quando se sabe o valor do atributo A.

Ganho(S,A) =
$$Entropia(S) - \sum_{v \in valores(A)} \frac{|Sv|}{|S|} Entropia(Sv)$$

Valores(A): conjunto de todos os valores possíveis do atributo A Sv: subconjunto de S, no qual o atributo A possui valor v.

• Considere o exemplo (Mitchell, 1997):

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
DII	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Para o atributo Wind tem-se:

$$Values(Wind) = Weak, Strong$$

$$S = [9+, 5-]$$

$$S_{Weak} \leftarrow [6+, 2-]$$

$$S_{Strong} \leftarrow [3+, 3-]$$

$$Gain(S, Wind) = Entropy(S) - \sum_{v \in \{Weak, Strong\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$= Entropy(S) - (8/14) Entropy(S_{Weak})$$

$$- (6/14) Entropy(S_{Strong})$$

$$= 0.940 - (8/14) 0.811 - (6/14) 1.00$$

$$= 0.048$$

 Calcule agora o ganho de informação para os outros atributos (Outlook, Temperature e Humidity)

 Calcule agora o ganho de informação para os outros atributos (Outlook, Temperature e Humidity)

$$Gain(S, Outlook) = 0.246$$

 $Gain(S, Humidity) = 0.151$
 $Gain(S, Wind) = 0.048$
 $Gain(S, Temperature) = 0.029$

 Após o cálculo do ganho de informação temse: (D1, D2, ..., D14)

 Agora o processo se repete retirando-se o atributo já selecionado e utilizando-se apenas as instâncias que obedecem as restrições impostas por cada um dos ramos.


```
S_{Sunny} = \{D1,D2,D8,D9,D11\}
Gain (S_{Sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970
Gain (S_{Sunny}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570
Gain (S_{Sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019
```

Thanks!

Vinicius Fernandes Caridá vfcarida@gmail.com

@vinicius caridá

@vinicius caridá

@vfcarida

@vinicius caridá

@vfcarida

O que você achou da aula de hoje?

Questions and Feedback

Copyright © 2018 Prof. Vinicius Fernandes Caridá Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proíbido sem o consentimento formal, por escrito, do Professor (autor).