The notion of complex analytic spaces

Contents

1.	Introduction	4
2.	C-ringed space	4
3.	Complex model spaces and complex analytic spaces	4
4.	Oka's property	5
5.	Implicit function theorem	5
6.	Rückert Nullstellensatz	5
7.	Fiber products	6
Biblio	ography	7

4

1. Introduction

2. C-ringed space

Definition 2.1. A \mathbb{C} -ringed space is a pair (X, \mathcal{O}_X) consisting of a topological space X and a sheaf \mathcal{O}_X of \mathbb{C} -algebras on X.

A morphism of \mathbb{C} -ringed spaces $f:(Y,\mathcal{O}_Y)\to (X,\mathcal{O}_X)$ is a pair consisting of a continuous map $f:Y\to X$ and a morphism of sheaves of \mathbb{C} -algebras $f^\#:f^{-1}\mathcal{O}_X\to\mathcal{O}_Y$.

Given two morphisms of \mathbb{C} -ringed spaces $f:(Y,\mathcal{O}_Y)\to (X,\mathcal{O}_X)$ and $g:(Z,\mathcal{O}_Z)\to (Y,\mathcal{O}_Y)$, their composition is the morphism $f\circ g:(Z,\mathcal{O}_Z)\to (X,\mathcal{O}_X)$ consisting of the continuous map $f\circ g:Z\to X$ and a morphism of sheaves $(f\circ g)^\#=g^\#\circ g^{-1}f^\#:(f\circ g)^{-1}\mathcal{O}_X\stackrel{\sim}{\longrightarrow} g^{-1}f^{-1}\mathcal{O}_X\to\mathcal{O}_Z.$

It is straightforward to verify that \mathbb{C} -ringed spaces form a category, which we denote by \mathbb{C} - \mathbb{R} S. Similarly, we denote by \mathbb{R} S the category of ringed spaces defined in [Stacks, Tag 0090].

There is an obvious faithful forget functor $\mathbb{C}\text{-}\mathcal{R}S \to \mathcal{R}S$.

Definition 2.2. A locally \mathbb{C} -ringed space is a \mathbb{C} -ringed space (X, \mathcal{O}_X) which when regarded as a ringed space is a locally ringed space.

A morphism between two locally \mathbb{C} -ringed spaces is a morphism between the underlying \mathbb{C} -ringed spaces which is a morphism of locally ringed spaces at the same time.

We refer to [Stacks, Tag 01HA] for the notion of locally ringed spaces.

Example 2.3. Let $n \in \mathbb{N}$, we define a sheaf of \mathbb{C} -algebras $\mathcal{O}_{\mathbb{C}^n}$ on \mathbb{C}^n as follows: for any open subset $U \subseteq \mathbb{C}^n$, $\mathcal{O}_{\mathbb{C}^n}(U)$ is the \mathbb{C} -algebra of holomorphic functions on U. It is easy to see that $\mathcal{O}_{\mathbb{C}^n}$ is a sheaf and $(\mathbb{C}^n, \mathcal{O}_{\mathbb{C}^n})$ is a \mathbb{C} -ringed space. Moreover, it is easy to show that $(\mathbb{C}^n, \mathcal{O}_{\mathbb{C}^n})$ is a locally \mathbb{C} -ringed space.

3. Complex model spaces and complex analytic spaces

Definition 3.1. Given any domain D in \mathbb{C}^n , we can define a sheaf of \mathbb{C} -algebras \mathcal{O}_D on D as the restriction of $\mathcal{O}_{\mathbb{C}^n}$ defined in Example 2.3 to D. Observe that (D, \mathcal{O}_D) is a locally \mathbb{C} -ringed space.

Definition 3.2. A complex model space is a \mathbb{C} -ringed space (X, \mathcal{O}_X) such that there exist

- (1) a domain D in \mathbb{C}^n for some $n \in \mathbb{N}$ and
- (2) an ideal sheaf \mathcal{I} in \mathcal{O}_D of finite type

such that thre is an isomorphism

$$(X, \mathcal{O}_X) \cong (\operatorname{Supp} \mathcal{O}_D/\mathcal{I}, i^{-1}(\mathcal{O}_D/\mathcal{I}))$$

in the category of \mathbb{C} - \mathcal{R} S, where $i : \text{Supp } \mathcal{O}_D/\mathcal{I} \to D$ is the inclusion map. Here \mathcal{O}_D is the sheaf of \mathbb{C} -algebras defined in Definition 3.1.

Clearly, (X, \mathcal{O}_X) is a locally \mathbb{C} -ringed space.

Observe that X is always a Hausdorff space.

Definition 3.3. A complex analytic space is a \mathbb{C} -ringed space (X, \mathcal{O}_X) such that

(1) X is a Hausdorff space.

(2) For any $x \in X$, there is an open neighbourhood $U \subseteq X$ of x such that $(U, \mathcal{O}_U := \mathcal{O}_X|_U)$ is isomorphic to a complex model space in the sense of Definition 3.2 in the category \mathbb{C} - \mathbb{R} S.

When there is no risk of confusion, we also omit \mathcal{O}_X from the notation say X is a \mathbb{C} -ringed space.

A morphism between complex analytic spaces is a morphism of the underlying locally \mathbb{C} -ringed spaces. Such a morphism is also known as a holomorphic map.

Remark 3.4. It seems that all authors on this subject requires that complex analytic spaces be Hausdorff, which may seem unnatural from the eyes of an algebrogeometrist. Morally, Hausdorffness corresponds to separatedness in the scheme world. However, non-Hausdorff analytic spaces do not seem to play a major role, in contrast to non-separated schemes, so we stick to the current definition.

Remark 3.5. Most of the authors require extra conditions in the definition of a complex analytic space: σ -compactness, paracompactness, having countable basis etc. We will not put these constraints in the definition, instead, we choose to include them into the assumptions of the theorems.

Observe that a complex analytic space is always a locally C-ringed space.

4. Oka's property

5. Implicit function theorem

6. Rückert Nullstellensatz

Let X be a complex analytic space. It is a sheaf of \mathbb{C} -algebras. For any sheaf of local \mathbb{C} -algebras \mathcal{A} on X, any open set $U \subseteq X$ and any $s \in \mathcal{A}_X(U)$. We want to construct a function $[s]: U \to \mathbb{C}$.

Take $x \in U$, there is a canonical splitting

$$\mathcal{A}_x \cong \mathbb{C} \oplus \mathfrak{m}_x,$$

where \mathfrak{m}_x is the maximal ideal of \mathcal{A}_x . Then we define [s](x) as the image of s_x in the \mathbb{C} -factor in (6.1).

Definition 6.1. Let X, \mathcal{A}, U, x, s be as above. The value $[s](x) \in \mathbb{C}$ is called the value of s at x. We sometimes denote it by s(x) as well.

Lemma 6.2. Let X be a complex analytic space. We denote by \mathcal{C}_X the sheaf of continuous functions on X. The association $s \mapsto [s]$ in Definition 6.1 defines a homomorphism of sheaves of \mathbb{C} -algebras $\mathcal{O}_X \to \mathcal{C}_X$.

When there is no risk of confusion, we also write s instead of [s].

PROOF. We need to show that for any open set $U \subseteq X$ and any $s \in \mathcal{O}_X(U)$, [s] is a continuous function on U.

We may clearly assume that U = X. The problem is local on X, so we may assume that X is a complex model space in the sense of Definition 3.2 defined by a coherent ideal \mathcal{I} in a domain D in \mathbb{C}^n . By further localizing, we may assume that s can be lifted to a section $f \in \mathcal{O}_D(D)$. Then $[s] = f|_X$ by definition. So the assertion follows from the fact that a holomorphic function on a domain is continuous. \square

6 CONTENTS

THEOREM 6.3 (Rückert Nullstellensatz). Let X be a complex analytic space and \mathcal{F} be a coherent sheaf of \mathcal{O}_X -modules. Let $f \in \mathcal{O}_X(X)$ be a function that vanishes on Supp \mathcal{F} . Then for any $x \in X$, there is an open neighbourhood $U \subseteq X$ of x and $m \in \mathbb{Z}_{>0}$ such that $f^m \mathcal{F}|_U = 0$.

PROOF. We may assume that $x \in \operatorname{Supp} \mathcal{F}$ as otherwise there is nothing to prove. In particular, f(x) = 0.

Step 1. We first reduce the problem to a relatively simple situation.

The problem is local on X, so we may assume that there is a domain D containing 0 in \mathbb{C}^n and a closed immersion $\iota: X \to D$ sending x to 0. Consider the closed immersion $g: V \to D \times \mathbb{C}$ induced by ι and f. Assume that this theorem has been proved for $w, B \times \mathbb{C}$, $g_*\mathcal{F}$ in place of f, X, \mathcal{F} respectively, then we would find an integer $m \in \mathbb{Z}_{>0}$ such that $w^m(g_*\mathcal{F})_0 = 0$. In particular, $f^m\mathcal{F}_x = 0$. As \mathcal{F} is coherent, there is an open neighbourhood $U \subseteq X$ of x such that $f^t\mathcal{F}|_U = 0$.

Step 2. We are reduced to prove the following special case: let D be a domain in \mathbb{C}^n containing 0, \mathcal{F} is a coherent sheaf on D whose support is contained in $\{(z,w)\in\mathbb{C}^{n-1}\times\mathbb{C}:(z,w)\in D,w=0\}$. Then there is $m\in\mathbb{Z}_{>0}$ such that $w^m\mathcal{F}_0=0$.

Let \mathcal{G} be the annihilator sheaf of \mathcal{F} :

$$\mathcal{G} := \ker \left(\mathcal{O}_D \to \mathcal{H}om_{\mathcal{O}_D}(\mathcal{F}, \mathcal{F}) \right),$$

where the map $\mathcal{O}_D \to \mathcal{H}om_{\mathcal{O}_D}(\mathcal{F}, \mathcal{F})$ sends a local section f of \mathcal{O}_D to the endohomomorphism of multiplying by f of \mathcal{F} . Then \mathcal{G} is a coherent sheaf We need to prove a weak version of Oka's property first. So it has closed supports. But by our assumtion, the support of \mathcal{G} contains all $w \neq 0$, so $\operatorname{Supp} \mathcal{G} = D$.

Let $f \in \mathcal{G}_0$ be a non-zero element. We write The structure of the local ring needs to be presented earlier

$$f = \sum_{j=0}^{\infty} a_j w^j, \quad a_j \in \mathcal{O}_{\mathbb{C}^{n-1},0}, a_b \neq 0$$

for some $b \in \mathbb{N}$. We may assume that b = 0 by replacing f and \mathcal{F} with $w^{-b}f$ and $w^b \mathcal{F}$ respectively. We want to show that $w^m \mathcal{F}_0 = 0$ for some positive integer m.

When a_0 is a unit, namely when $a_0(0) \neq 0$, then f is a unit, so $\mathcal{F}_0 = 0$. We make an induction on n. The case n = 1 is trivial, as a_0 is always a unit. So we may assume that $a_0(0) = 0$ and n > 1. By perturbing the coordinates in \mathbb{C}^{n-1} , we may assume that a_0 is not identically zero in the variable z_1 . We need to finish the Weierstrass theory first.

Shrinking D, we may assume that f can be lifted to a holomorphic function $g \in \mathcal{O}_D(D)$ with $g\mathcal{F} = 0$. By our assumption on a_0 , we may assume that $Z(g) \cap \{(z_1, 0, \ldots, 0) \in D\} = \{0\}$. Hence, $D \cap \operatorname{Supp} \mathcal{F}$, which is a subset of Z(g) also intersects the z_1 -axis only at the origin.

By To be included, we can find a product domain $B \times W \subseteq D$ with $B \subseteq \mathbb{C}$ and $W \subseteq \mathbb{C}^{n-1}$ containing 0 such that the projection $h: (B \times W) \cap \operatorname{Supp} \mathcal{F} \to B$ is finite and $\mathcal{F}' := h_*(\mathcal{F}|_{B \times W})$ is a coherent sheaf of \mathcal{O}_B -modules. Observe that $\operatorname{Supp} \mathcal{F}' \subseteq \{(z_2, \ldots, z_{n-1}, w) \in B : w = 0\}$, we can apply the induction hypothesis to obtain $m \in \mathbb{Z}_{>0}$ such that $w^m \mathcal{F}'_0 = 0$. It follows that $w^m \mathcal{F}_0 = 0$.

7. Fiber products

Bibliography

[Stacks] T. Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu. 2020.