The listing of claims will replace all prior versions, and listings, of claims in the application: Listing of Claims:

1-11 (canceled)

12. (currently amended) A method of treatment of diseases or conditions treating a cancer mediated by excessive or inappropriate HSP90 activity in mammals which method comprises administering to the mammal an amount of a compound as defined in claim 1 of formula (I), or a salt, N-oxide thereof:

$$R_2$$
 R_3
 R_4
(I)

wherein wherein

R₂ is a group of formula (IA):

$$-(Ar^{1})_{m}-(Alk^{1})_{p}-(Z)_{r}-(Alk^{2})_{s}-Q$$
 (IA)

wherein in any compatible combination

Ar¹ is an optionally substituted aryl or heteroaryl radical,

Alk¹ and Alk² are optionally substituted divalent C₁-C₃ alkylene or C₂-C₃ alkenylene radicals,

m, p, r and s are independently 0 or 1,

Z is -O-, -S-, -(C=O)-, -(C=S)- SO₂-, -C(=O)O-, -C(=O)NR^A-, -C(=S)NR^A-,

 $-SO_2NR^A$ -, $-NR^AC(=O)$ -, $-NR^ASO_2$ - or $-NR^A$ -

wherein RA is hydrogen or C1-C6 alkyl, and

Q is hydrogen or an optionally substituted carbocyclic or heterocyclic radical;

 R_3 is hydrogen, an optional substituent, or an optionally substituted (C_1C_6)alkyl, aryl or heteroaryl radical; and

R4 is a carboxamide or sulfonamide group,

wherein the optional substituent is selected from the group consisting of: C₁-C₆ alkyl, C₁-C₆ alkyl, C₁-C₆ alkyl, hydroxyl, hydroxyl, hydroxyl, mercapto, mercapto C₁-C₆ alkyl, C₁-C₆ alkylthio, halo, trifluoromethyl, trifluoromethoxy, nitro, nitrile (-CN), oxo, phenyl, -COOH, COOR^C, -COR^C, -SO₂R^C, -CONH₂, -SO₂NH₂, -CONHR^C, -SO₂NHR^C, -CONR^CR^D, -SO₂NR^CR^D, -NH₂, -NHR^C, -NR^CR^D, -OCONH₂, -OCONHR^C, -OCONR^CR^D, -NHCOR^C, -NHCOOR^C, -NHR^DCOOR^C, -NHSO₂OR^C, -NR^DSO₂OR^C, -NHCONH₂, -NR^CCONH₂, -NHCONHR^D, -NR^CCONHR^D, -NHCONHR^D, -NR^CCONHR^D, -NHCONHR^D, and -NR^CCONR^CR^D, wherein R^C and R^D are independently C₁-C₆ alkyl groups, effective to inhibit said HSP90 activity.

13-14. (canceled)

15. (Currently Amended) A pharmaceutical or veterinary composition comprising a compound of formula (I) as specified in, claim 1, or a salt, N-oxide thereof:

$$R_2$$
 R_3
 R_4
 (I)

wherein

R₂ is a group of formula (IA):

$$-(Ar^{1})_{m}-(Alk^{1})_{p}-(Z)_{r}-(Alk^{2})_{s}-Q$$
 (IA)

wherein in any compatible combination

Ar¹ is an optionally substituted aryl or heteroaryl radical,

Alk¹ and Alk² are optionally substituted divalent C₁-C₃ alkylene or C₂-C₃ alkenylene radicals,

m, p, r and s are independently 0 or 1,

Z is -O-, -S-, -(C=O)-, -(C=S)- SO_2 -, -C(=O)O-, -C(=O)NR^A-, -C(=S)NR^A-, -SO₂NR^A-, -NR^AC(=O)-, -NR^ASO₂- or -NR^A-

wherein RA is hydrogen or C1-C6 alkyl, and

Q is hydrogen or an optionally substituted carbocyclic or heterocyclic radical;

 R_3 is hydrogen, an optional substituent, or an optionally substituted (C_1C_6)alkyl, aryl or heteroaryl radical; and

R₄ is a carboxamide or sulfonamide group,

wherein the optional substituent is selected from the group consisting of: C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkyl, hydroxyl, hydroxyl, hydroxyl, mercapto, mercapto C_1 - C_6 alkyl, C_1 - C_6 alkylthio, halo, trifluoromethyl, trifluoromethoxy, nitro, nitrile (-CN), oxo, phenyl, -COOH, COOR^C, - COR^C, - SO_2R^C , -CONH₂, -SO₂NH₂, -CONHR^C, -SO₂NHR^C, -CONR^CR^D, -SO₂NR^CR^D, -NH₂, -NH₂, -NHCO, -NHCOOR^C, -NHCOOR^C, -NHR^DCOOR^C, -NHCOOR^C, -NHCOOR^C, -NHCOOR^C, -NHCONH₂, -NHCONH₂, -NHCONHR^D, -NR^CCONHR^D, -NHCONHR^D, -NR^CCONHR^D, -NHCONHR^D, -NHCONHR^CR^D, and -NR^CCONR^CR^D, wherein R^C and R^D are independently C_1 - C_6 alkyl groups, in an amount effective to inhibit said HSP90 activity together with a pharmaceutically or veterinarily acceptable carrier.

16.-20. (canceled)

- 21. (new) The method of claim 12 wherein m is 1, each of p, r and s is 0, and Q is hydrogen.
- 22. (new) The method of claim 21 wherein R_2 is optionally substituted phenyl, 2- or 3-thienyl, 2- or 3-furanyl, or 2-, 3- or 4-pyridinyl,

wherein the optional substituent is selected from the group consisting of: C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxyl, hydroxy C_1 - C_6 alkyl, mercapto, mercapto C_1 - C_6 alkyl, C_1 - C_6 alkylthio, halo, trifluoromethyl, trifluoromethoxy, nitro, nitrile (-CN), oxo, phenyl, -COOH, COOR C , -COR C , -SO₂R C , -CONH₂, -SO₂NH₂, -CONHR C , -SO₂NHR C , -CONR C R D , -SO₂NR C R D , -NH₂, -NHR C , -NR C R D , -OCONH₂, -OCONH₂, -OCONR C R D , -NHCOR C , -NHCOOR C , -NHCONH₂, -NHCONH₂, -NHCONHR D , -NR C CONHR D , -NHCONHR D , and -NR C CONR C R D , wherein R C and R D are independently C_1 - C_6 alkyl groups.

23. (new) The method of claim 21 wherein R₂ is phenyl, optionally substituted by methyl, ethyl, n- or isopropyl, methoxy, ethoxy, isopropoxy, chloro, or bromo,

wherein the optional substituent is selected from the group consisting of: C_1 - C_6 alkyl, C_1 - C_6 alkyl, hydroxyl, hydroxyl, hydroxyl, mercapto, mercapto C_1 - C_6 alkyl, C_1 - C_6 alkylthio, halo, trifluoromethyl, trifluoromethoxy, nitro, nitrile (-CN), oxo, phenyl, -COOH, COOR^C, -COR^C, -SO₂R^C, -CONH₂, -SO₂NH₂, -CONHR^C, -SO₂NHR^C, -CONR^CR^D, -SO₂NR^CR^D, -NH₂, -NHR^C, -NR^CR^D, -OCONH₂, -OCONH₂, -OCONR^CR^D, -NHCOOR^C, -NHCOOR^C, -NHCOOR^C, -NHSO₂OR^C, -NR^DSO₂OR^C, -NHCONH₂, -NR^CCONH₂, -NHCONHR^D, -NR^CCONHR^D, -NHCONHR^D, and -NR^CCONR^CR^D, wherein R^C and R^D are independently C_1 - C_6 alkyl groups.

- 24. (new) The method of claim 22 wherein the optional substituent is in the 4-position of the phenyl ring.
- 25. (new) The method of claim 12 wherein m is 1, and p, r and s are 0, and Q is an optionally substituted carbocyclic or heterocyclic ring,

wherein the optional substituent is selected from the group consisting of: C₁-C₆ alkyl, C₁-C₆ alkyl, hydroxyl, hydroxyl, mercapto, mercapto C₁-C₆ alkyl, C₁-C₆ alkylthio, halo, trifluoromethyl, trifluoromethoxy, nitro, nitrile (-CN), oxo, phenyl, -COOH, COOR^C,-COR^C, -SO₂R^C, -CONH₂, -SO₂NH₂, -CONHR^C, -SO₂NHR^C, -CONR^CR^D, -SO₂NR^CR^D, -NH₂, -NHR^C, -NR^CR^D, -OCONH₂, -OCONH₂, -OCONR^CR^D, -NHCOR^C, -NHCOOR^C, -

 NHR^DCOOR^C , $-NHSO_2OR^C$, $-NR^DSO_2OR^C$, $-NHCONH_2$, $-NR^CCONH_2$, $-NHCONHR^D$, $-NR^CCONHR^D$, $-NHCONHR^CR^D$, and $-NR^CCONR^CR^D$, wherein R^C and R^D are independently C_1-C_6 alkyl groups.

- 26. (new) The method of claim 12 wherein Ar¹ is a phenyl or pyridyl ring.
- 27. (new) The method of claim 12 wherein R₃ is amino (NH₂).
- 28. (new) The method of claim 12 wherein R₄ is a carboxamide group of formula CONR^B(Alk)_nR^A wherein

Alk is a divalent alkylene, alkenylene or alkynylene radical, and the Alk radical may be optionally substituted,

n is 0 or 1,

R^B is hydrogen or a C₁-C₆ alkyl or C₂-C₆ alkenyl group,

R^A is hydroxy or optionally substituted carbocyclic or heterocyclyl, any of which heterocyclic rings may be substituted; or

R^A and R^B taken together with the nitrogen to which they are attached form an N-heterocyclic ring which may optionally contain one or more additional hetero atoms selected from O, S and N, and which may optionally be substituted on one or more ring C or N atoms;

wherein the optional substituent is selected from the group consisting of: C₁-C₆ alkyl, C₁-C₆ alkoxy, hydroxyl, hydroxy C₁-C₆ alkyl, mercapto, mercapto C₁-C₆ alkyl, C₁-C₆ alkylthio, halo, trifluoromethyl, trifluoromethoxy, nitro, nitrile (-CN), oxo, phenyl, -COOH, COOR^C, -COR^C, -SO₂R^C, -CONH₂, -SO₂NH₂, -CONHR^C, -SO₂NHR^C, -

$$\begin{split} & CONR^{C}R^{D}, -SO_{2}NR^{C}R^{D}, -NH_{2}, -NHR^{C}, -NR^{C}R^{D}, -OCONH_{2}, -OCO \ NHR^{C}, -\\ & OCONR^{C}R^{D}, -NHCOR^{C}, -NHCOOR^{C}, -NHR^{D}COOR^{C}, -NHSO_{2}OR^{C}, -NR^{D}SO_{2}OR^{C}, -\\ & NHCONH_{2}, -NR^{C}CONH_{2}, -NHCONHR^{D}, -NR^{C}CONHR^{D}, -NHCONHR^{C}R^{D}, \ and -\\ & NR^{C}CONR^{C}R^{D}, \ wherein \ R^{C} \ and \ R^{D} \ are independently \ C_{1}-C_{6} \ alkyl \ groups. \end{split}$$