Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-222. Вариант 35

1. Пусть
$$z = \frac{3}{2} - \frac{3\sqrt{3}i}{2}$$
. Вычислить значение $\sqrt[4]{z^3}$, для которого число $\frac{\sqrt[4]{z^3}}{\frac{3}{2} - \frac{3\sqrt{3}i}{2}}$ имеет аргумент $-\frac{29\pi}{12}$.

2. Решить систему уравнений:

$$\begin{cases} x(-2+i) + y(13-3i) = 193 + 48i \\ x(-6-8i) + y(-10-11i) = 65 - 336i \end{cases}$$

- 3. Найти корни многочлена $-4x^6 16x^5 + 76x^4 + 448x^3 + 388x^2 4912x 13260$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1 = -2 + 3i, x_2 = 4 i, x_3 = -5$.
- 4. Даны 3 комплексных числа: -6+18i, 12+21i, 25. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -\frac{3\sqrt{3}}{2} + \frac{3i}{2}, z_2 = -3i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+5-4i| < 2\\ |arg(z+1+4i)| < \frac{\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (1, 0, -2), b = (2, -5, 8), c = (4, 1, -10). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-7,-7,-1) и плоскость P:-16x-10y-6z+8=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-9,9,-6), $M_1(0,7,10)$, $M_2(-32,-1,10)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 5x + 14y + 21z - 517 = 0 \\ 3x + 7y + 12z - 284 = 0 \end{cases} \qquad L_2: \begin{cases} 2x + 7y + 9z - 1037 = 0 \\ 16x - 3y - 6z + 78 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.