Construction de la Matrice Documents Termes en Text Mining

Ricco Rakotomalala

- 1. Représentation « bag-of-words »
- 2. Réduction de la dimensionnalité
- 3. Pondération
- 4. Mesurer la similarité entre les textes
- 5. N-grammes
- 6. Bibliographique

Document = individu statistique

« Base » d'apprentissage = collection de documents = Corpus

<u>Enjeu</u>: traduire la collection de documents en un tableau de données « attributs-valeurs » propice au traitements à l'aide des algorithmes de data mining, en minimisant au possible la perte d'information.

N°	V1	V2	V 3	
1				
2		?		
3				
4				
5				

- Que mettre en colonnes (V1, V2,...) ?
- Quelles valeurs mettre dans le tableau ?

Transformation d'une collection de documents en un tableau de données

REPRÉSENTATION BAG OF WORDS

Processus de « tokenization » : découpage d'un flux de caractères en phrases, symboles, mots. Nous nous intéressons plus particulièrement aux mots.

Plusieurs étapes :

- Repérer les mots (tokens) présents dans les documents
- 2. Qui vont constituer le dictionnaire
- 3. Les mots deviennent des descripteurs (features, termes)
- 4. On associe alors l'absence ou la présence des mots à chaque document

L'identification du **délimiteur** de mots est important. Ce sera souvent l'espace, les ponctuations,... Certains caractères sont moins évidents (ex. « - » dans « écart-type »)

> Potentiellement, le nombre de mots est très important. Il peut y avoir des redondances dans le dictionnaire, il faudra pouvoir les traiter (parfois évidentes : voiture vs. voitures ; parfois moins : voiture vs. automobile...).

Ca peut être aussi le nombre d'apparition des mots, ou autre type de valeurs. On parle de pondération.

La représentation bag-of-word – Un exemple

Documents

4 documents (Coelho & Richert, 2015; page 55,

légèrement modifiée):

- 1. Imaging databases can get huge.
- 2. Most imaging databases save images permanently.
- 3. Imaging databases store images baby.
- 4. Imaging databases store images. Imaging databases store images. Imaging databases store images.

Termes

Document	imaging	databases	can	get	huge	most	save	images	permanently	store	baby
1	1	1	1	1	1	0	0	0	0	0	0
2	1	1	0	0	0	1	1	1	1	0	0
3	1	1	0	0	0	0	0	1	0	1	1
4	3	3	0	0	0	0	0	3	0	3	0

- La ponctuation « . » a été retirée.
- « » a joué le rôle de délimiteur.
- 4 documents → 4 lignes dans le tableau
- Le dictionnaire est composé des termes <u>présents</u> dans le corpus : {imaging, databases, can, get, huge, most, save, images, permanently, store}.
- La taille du dictionnaire n'est pas connue à l'avance.
- Le nombre de valeurs non nulles dans la ligne dépend de la longueur du document.

Document	imaging	databases	can	get	huge	most	save	images	permanently	store	baby
1	1	1	1	1	1	0	0	0	0	0	0
2	1	1	0	0	0	1	1	1	1	0	0
3	1	1	0	0	0	0	0	1	0	1	1
4	3	3	0	0	0	0	0	3	0	3	0

• Les valeurs du tableau sont toujours positives ou nulles. On se concentre sur les occurrences positives des termes (ex. avec les règles d'association).

- Les descripteurs (colonnes) sont exprimés dans les mêmes unités. Il n'y a pas de normalisation ou de standardisation des variables à effectuer.
- Certains termes sont présents dans peu de documents. Ou certains documents sont composés de peu de termes. De très nombreuses valeurs sont nulles.
- Mais les descripteurs sont issus des termes présents dans le corpus, une colonne composée exclusivement de la valeur 0 ne peut pas exister (sauf pondération TF-IDF)
- Il n'y a jamais de données manquantes (N/A). Un terme est forcément soit absent, soit présent dans un document.

Document	imaging	databases	can	get	huge	most	save	images	permanently	store	baby
1	1	1	1	1	1	0	0	0	0	0	0
2	1	1	0	0	0	1	1	1	1	0	0
3	1	1	0	0	0	0	0	1	0	1	1
4	3	3	0	0	0	0	0	3	0	3	0

La dimensionnalité est souvent très élevée. Le nombre de colonnes peut excéder le nombre de lignes. Problème pour les algorithmes de data mining souvent (ex. calcul de la matrice variance covariance). La réduction de la dimensionnalité est un enjeu crucial.

Quelles pistes pour réduire la dimensionnalité (réduire la taille du dictionnaire) ?

- Nettoyage du corpus (ex. retrait des chiffres, correction orthographique, harmonisation de la casse, ...)
- Certains mots ne sont pas intrinsèquement porteurs de sens (ex. most) \rightarrow stopwords
- Certains mots sont issus de la même forme canonique (lemmatisation) ou partagent la même racine (stemming) (ex. imaging vs. images)
- Certains mots sont synonymes ou recouvrent le même concept (ex. store vs. save)
- Certains mots apparaissent très souvent, d'autres très rarement (filtrage sur les fréquences)

Solutions (simples) pour la...

RÉDUCTION DE LA DIMENSIONNALITÉ

Dans l'idéal, on connaît les prétraitements à réaliser, on connaît la liste des mots pertinents. Tout devient facile.

- 1. Imaging databases can get huge.
- Most imaging databases save images permanently.
- Imaging databases store images baby.
- 4. Imaging databases store images. Imaging databases store images. Imaging databases store images.

- 1. image databases can get huge
- 2. most image databases store image permanently
- 3. image databases store image baby
- 4. image databases store image image databases store image image databases store image

Document	databases	huge	image	permanently	store
1	1	1	1	0	0
2	1	0	2	1	1
3	1	0	2	0	1
4	3	0	6	0	3

Le nombre de 0 dans la table a été réduit de manière drastique.

Sauf situations très particulières, ce type de stratégie est impraticable sur des grands corpus.

Le nettoyage dépend de ce que l'on souhaite exploiter par la suite, on observe les traitements suivants usuellement.

Ohio Mattress Co said its first\nquarter, ending February 28, profits may be below the 2.4 mln\ndlrs, or 15 cts a share, earned in the first quarter of fiscal\n1986.\n The company said any decline would be due to expenses\nrelated to the acquisitions in the middle of the current\nquarter of seven licensees of Sealy Inc, as well as 82 pct of\nthe outstanding capital stock of Sealy.\n Because of these acquisitions, it said, first quarter sales\nwill be substantially higher than last year's 67.1 mln dlrs.\n Noting that it typically reports first quarter results in\nlate march, said the report is likely to be issued in early\nApril this year.\n It said the delay is due to administrative considerations,\nincluding conducting appraisals, in connection with the\nacquisitions.\n Reuter

Après : harmonisation de la casse, retrait des ponctuations et de \n, retrait des nombres, retrait des espaces en trop

ohio mattress co said its first quarter ending february profits may be below the mln dlrs or cts a share earned in the first quarter of fiscal the company said any decline would be due to expenses related to the acquisitions in the middle of the current quarter of seven licensees of sealy inc as well as pct of the outstanding capital stock of sealy because of these acquisitions it said first quarter sales will be substantially higher than last years mln dlrs noting that it typically reports first quarter results in late march said the report is likely to be issued in early april this year it said the delay is due to administrative considerations including conducting appraisals in connection with the acquisitions reuter

Idée

Les coquilles peuvent fausser l'inventaire des termes.
Utiliser un correcteur orthographique permet de réduire la dimensionnalité.

Mode de fonctionnement d'un correcteur

L'outil s'appuie sur un dictionnaire où les termes sont correctement orthographiés. Si le mot à évaluer y est présent → OK. S'il n'y est pas, on recense les mots les plus proches. Le ou les plus proches sont proposés.

Distance entre chaînes de caractères

Une mesure spécifique aux chaînes de caractères doit être utilisé. La plus connue est celle de Levensthein (distance d'édition).

Remarque

Attention de ne pas corriger à tort et à travers (ex. les noms propres)

On appelle distance de Levenshtein entre deux mots M et P le coût minimal pour aller de M à P en effectuant les opérations élémentaires suivantes (Cf. Algo sur <u>Wikipédia</u>) :

- substitution d'un caractère de M en un caractère de P ;
- ajout dans M d'un caractère de P ;
- suppression d'un caractère de M.

On associe ainsi à chacune de ces opérations un coût. Le coût est toujours égal à 1, sauf dans le cas d'une substitution de caractères identiques.

Un exemple sous R:

```
> adist("totor",c("toto","tata","tutu","tonton","tantine"))
      [,1] [,2] [,3] [,4] [,5]
[1,] 1 3 3 2 5
```


La fonction renvoie un vecteur contenant la distance du mot à tester « totor » avec chaque mot du dictionnaire (« toto », « tata », ...).

Retrait des stopwords (mots vides)

Un mot vide est un mot communément utilisé dans une langue, non porteur de sens dans un document (ex. préposition, pronoms, etc.). Formellement, sa fréquence d'apparition est la même dans tous les documents. De fait, les mots vides ne permettent pas de discriminer les documents (de distinguer les documents les uns des autres), ils sont inutilisables en text mining tel que nous le concevons (catégorisation, recherche d'information, etc.) (Wikipédia).

Exemple de mots vides en français (http://www.ranks.nl/stopwords/french):

avoir, bon, car, ce, cela, ces, ceux, chaque, ci, comme, comment, dans, des, du, dedans, dehors, depuis, devrait, doit, donc, dos, début, elle, elles, en, encore, essai, est, et, eu, fait, faites, fois, font, hors, ici, il, ils, je, juste, la, le, les, leur, là, ma, maintenant, mais, mes, mine, moins, mon, mot, même, ni, nommés, notre, nous, ou, où, par, parce, pas, peut, peu, plupart, pour, pourquoi, quand, que, quel, quelle, quelles, quels, qui, sa, sans, ses, seulement, si, sien, son, sont, sous, soyez, sujet, sur, ta, tandis, tellement, tels, tes, ton, tous, tout, trop, très, tu, voient, vont, votre, vous, vu, ça, étaient, état, étions, été, être

Nous pouvons compléter ou restreindre la liste des mots-clés en fonction du domaine d'étude ou du contexte dans lequel nous nous situons.

ohio mattress co said its first quarter ending february profits may be below the mln dlrs or cts a share earned in the first quarter of fiscal the company said any decline would be due to expenses related to the acquisitions in the middle of the current quarter of seven licensees of sealy inc as well as pct of the outstanding capital stock of sealy because of these acquisitions it said first quarter sales will be substantially higher than last years mln dlrs noting that it typically reports first quarter results in late march said the report is likely to be issued in early april this year it said the delay is due to administrative considerations including conducting appraisals in connection with the acquisitions reuter

125 termes

ohio mattress co said first quarter ending february profits may mln dlrs cts share earned first quarter fiscal company said decline due expenses related acquisitions middle current quarter seven licensees sealy inc well pct outstanding capital stock sealy acquisitions said first quarter sales will substantially higher last years mln dlrs noting typically reports first quarter results late march said report likely issued early april year said delay due administrative considerations including conducting appraisals connection acquisitions reuter

76 termes

 $\frac{125-76}{125}$ = 39.2% des termes ont été retirés.

Commentaire sur les « stop word »

Les « stop word » sont en très grande partie composée de mots qui n'ont pas de sens en eux-mêmes, mais qui sont utilisés dans la construction des phrases (ex. prépositions, pronoms, verbes auxiliaires, articles). Ils sont caractéristiques d'une langue et peuvent être utilisés pour les identifier.

Algorithme

Entrée : document, liste des mots vides pour plusieurs langues

Sortie : la langue identifiée

Pour chaque langue :

Compter les occurrences des mots vides de la langue dans le document La langue identifiée est celle pour laquelle le nombre de correspondance est le plus élevé

Attention, si la taille de la liste des mots vides est différente d'une langue à l'autre, il faut en tenir compte.

Il existe d'autres approches pour la détection de la langue, dont celles basées sur un apprentissage à partir de suites de caractères caractéristiques (n-grams, cf. plus loin).

Lemmatisation (lemmatization)

La lemmatisation consiste à analyser les termes de manière à identifier sa forme canonique (lemme), qui existe réellement. L'idée est de réduire les différentes formes (pluriel, féminin, conjugaison, etc.) en une seule.

```
Ex. am, are, is \rightarrow be car, cars, car's, cars' \rightarrow car
```

Ainsi, la <u>phrase</u> « the boy's cars are different colors » devient « the boy car be differ color ».

La technique fait à la fois référence à un dictionnaire, et à l'analyse morphosyntaxique des mots (ex. Weiss et al., 2005 ; page 24). Elle est spécifique à chaque langue. Des erreurs sont toujours possibles !

Exemple testé sur : http://www.jerome-pasquelin.fr/tools/outil_lemmatisation.php

```
Mignonne, pourquoi es-tu partie si
loin de nos avenirs radieux, ceux où
nous devions regarder le soleil se
lever au milieu des chants des
boeufs ?
```

```
Le mot mignon regroupe : mignon, mignonne
Le mot etre regroupe : etre, es

Le mot taire regroupe : taire, tu

Le mot partir regroupe : partir, partie

Le mot notre regroupe : notre, nos

Le mot celui regroupe : celui, ceux

Le mot devoir regroupe : devoir, devions

Le mot du regroupe : du, des

Le mot chant regroupe : chant, chants

Le mot boeuf regroupe : boeuf, boeufs
```

Stemming (Racinisation)

Le stemming consiste à réduire un mot à sa racine (stem), qui peut ne pas exister. L'algorithme de Porter est un des plus connus pour la langue anglaise. Il applique une succession de règles (mécaniques) pour réduire la longueur des mots c.-à-d. supprimer la fin des mots (voir Wikipédia; Page de Martin Porter).

ohio mattress co said first quarter ending february profits may mln dlrs cts share earned first quarter fiscal company said decline due expenses related acquisitions middle current quarter seven licensees sealy inc well pct outstanding capital stock sealy acquisitions said first quarter sales will substantially higher last years mln dlrs noting typically reports first quarter results late march said report likely issued early april year said delay due administrative considerations including conducting appraisals connection acquisitions reuter

ohio mattress co said first quarter end februari profit may mln dlrs cts share earn first quarter fiscal compani said declin due expens relat acquisit middl current quarter seven license seali inc well pct outstand capit stock seali acquisit said first quarter sale will substanti higher last year mln dlrs note typic report first quarter result late march said report like issu earli april year said delay due administr consider includ conduct apprais connect acquisit reuter

Après stemming: 477 caractères

Avant stemming: 549 caractères

- Le stemming est un traitement final, qui n'autorise plus de post-traitements sur les mots
- Le stemming peut conduire à des regroupements erronés (ex. marmite, marmaille → marm)

• ∃ des solutions pour la langue française (ex. <u>Carry</u>), mais sont peu diffusées (∄ pour R ou Python)

Traitement de notre exemple jouet

Document	imaging	databases	can	get	huge	most	save	images	permanently	store	baby
1	1	1	1	1	1	0	0	0	0	0	0
2	1	1	0	0	0	1	1	1	1	0	0
3	1	1	0	0	0	0	0	1	0	1	1
4	3	3	0	0	0	0	0	3	0	3	0

Dictionnaire initial = {baby, can, databases, get, huge, images, imaging, most, permanently, save, store} → 11 termes

Dictionnaire après retrait des stopwords = {baby, can, databases, get, huge, images, imaging, permanently, save, store} → 10 termes

Dictionnaire après stemming = {babi, can, databas, get, huge, imag, perman, save, store} → 9 termes

Fréquence : nombre de documents où le terme apparaît au moins une fois rapporté au nombre total de documents.

Document	databases	huge	image	permanently	store
1	1	1	1	0	0
2	1	0	2	1	1
3	1	0	2	0	1
4	3	0	6	0	3

Fréquence trop élevée (termes présents dans presque tous les documents) : permet peut-être de cerner le domaine, mais ne permet pas de différencier les documents (ex. databases, image).

Fréquence trop faible (termes présents dans de très rares documents) : ne permet pas de caractériser une différence significative entre les documents.

Le choix des seuils reste arbitraire.

50 documents. Après prétraitements, le dictionnaire est composé de 1193 termes.

- 2 apparaissent dans tous les documents
- 761 n'apparaissent que dans un seul document

Il ne reste plus que 430 termes si on les retirait

Chaque document est représenté par un vecteur : feature vector

PONDÉRATION

Comptabiliser la présence de chaque terme dans le document, sans se préoccuper du nombre d'occurrences (de la répétition)

- 1. image databases can get huge
- 2. most image databases store image permanently
- 3. image databases store image baby
- 4. image databases store image image databases store image image databases store image

Document	databases	huge	image	permanently	store
1	1	1	1	0	0
2	1	0	1	1	1
3	1	0	1	0	1
4	1	0	1	0	1

Avantages

- Simplicité
- Forme de « lissage » de l'information en donnant la même importance à tous les termes
- Adaptée à certaines techniques (ex. règles d'association) et mesures de distance (ex. Jaccard)

Ex. de règle d'association : Si databases & store Alors image (support : 0.75 ; confiance : 1.0)

Inconvénients

- Une partie de l'information n'est pas captée (perte d'information), dont pourrait tirer profit certaines catégories de techniques statistiques
- Pourquoi donner la même importance à tous les termes ?

Pour un document, comptabiliser le nombre d'occurrence des termes. Indicateur de l'importance du terme dans le document.

- 1. image databases can get huge
- 2. most image databases store image permanently
- 3. image databases store image baby
- 4. image databases store image image databases store image image databases store image

Document	databases	huge	image	permanently	store
1	1	1	1	0	0
2	1	0	2	1	1
3	1	0	2	0	1
Д	3	0	6	0	3

Avantages

- On capte plus d'information, la répétition d'un terme dans le document est prise en compte
- Des techniques savent prendre en compte ce type d'information (calcul matriciel)

Inconvénients

- Les écarts entre documents sont exagérés (ex. si on utilise une distance euclidienne)
- On ne tient pas compte de la prévalence des termes dans l'ensemble des documents (cf. IDF)

Fréquences des termes – Différentes normalisations

Document databases huge image permanently store 1 1 3

On simplifie en considérant que seuls ces termes sont apparus.

Les normalisations des fréquences permettent d'amortir les écarts et/ou de tenir compte de la longueur des documents.

Normalisation logarithmique

$$tf(t,d) = \begin{cases} 0 & \text{si } f_{t,d} = 0\\ 1 + \log_{10} f_{t,d} & \text{sinon} \end{cases}$$

Document	databases	huge	image	permanently	store
1	1.00	1.00	1.00	0.00	0.00
2	1.00	0.00	1.30	1.00	1.00
3	1.00	0.00	1.30	0.00	1.00
4	1.48	0.00	1.78	0.00	1.48

Double normalisation 0.5
$$tf(t,d) = 0.5 + 0.5 \frac{f_{t,d}}{\max_{\{t' \in d\}} f_{t',d}}$$

	Document	databases	huge	image	permanently	store
	1	1.00	1.00	1.00	0.50	0.50
	2	0.75	0.50	1.00	0.75	0.75
	3	0.75	0.50	1.00	0.50	0.75
	4	0.75	0.50	1.00	0.50	0.75

On pondère la fréquence par le nombre d'apparition du terme le plus fréquent du document (une manière de tenir compte de la longueur)

Normalisation simple

$$tf(t,d) = \frac{f_{t,d}}{\sum_{i} f_{t',d}}$$

D	ocument	databases	huge	image	permanently	store
	1	0.33	0.33	0.33	0.00	0.00
	2	0.20	0.00	0.40	0.20	0.20
	3	0.25	0.00	0.50	0.00	0.25
	4	0.25	0.00	0.50	0.00	0.25

On pondère la fréquence par le nombre de termes présents dans le document (une autre manière de tenir compte de la longueur)

Inverse document frequency (IDF)

Un terme présent dans presque tout le corpus (D) influe peu quand il apparaît dans un document. A l'inverse, un terme rare apparaissant dans un document doit retenir notre attention. L'IDF mesure l'importance d'un terme dans un corpus.

$$idf(t,D) = \log_{10} \frac{N}{n_t}$$
 $N: n$
 $n_t: n$

N : nombre de documents dans le corpus

 n_t : nombre de documents où le terme apparaît

Document	databases	huge	image	permanently	store
1	1	1	1	0	0
2	1	0	2	1	1
3	1	0	2	0	1
4	3	0	6	0	3
n_t	4	1	4	1	3
idf(t,D)	0.000	0.602	0.000	0.602	0.125

« databases » et « image » sont des termes « évidents » qui ne peuvent pas servir à la différenciations des documents.

Le filtrage sur les fréquences permet d'éviter l'influence exagérée des termes très rares.

Remarque : Une formule lissée est utilisée parfois pour éviter d'obtenir un IDF nul

$$idf(t, D) = \log_{10}(1 + \frac{N}{n_t})$$

Relativiser l'importance d'un terme dans un document (TF) par son importance dans le corpus (IDF).

$$tfidf(t,d,D) = tf(t,d) \times idf(t,D)$$

Dans sa forme la plus utilisée (mais des variantes sont possibles)

tfidf
$$(t, d, D) = f_{t,d} \times \log_{10} \frac{N}{n_t}$$

Le TF-IDF d'un terme dans un

Le terme apparaît beaucoup

Il se fait rare par ailleurs.

document est élevé quand :

dans le document.

Document	databases	huge	image	permanently	store
1	0.00	0.60	0.00	0.00	0.00
2	0.00	0.00	0.00	0.60	0.12
3	0.00	0.00	0.00	0.00	0.12
4	0.00	0.00	0.00	0.00	0.37

Remarque: Dans le package 'tm', par défaut nous avons: $\frac{\text{tfidf}(t,d,D) = \frac{f_{t,d}}{\sum f_{t',d}} \times \log_2 \frac{N}{n_t}}{\sum_{t',d} f_{t',d}} \times \log_2 \frac{N}{n_t}}$

MESURER LES SIMILARITÉS

Les mesures de similarité sont sous-jacents à de nombreuses méthodes de data mining (visualisation, classification supervisée et non supervisée). Elles caractérisent les ressemblances entre les objets.

Dans le cas particulier du text mining, nous devons mesurer des similarités entre documents

Documents qui ont été traduits en vecteurs de pondération (feature vector)

Document	databases	huge	image	permanently	store	Sachant que les calculs
1	1	1	1	0	0	•
2	1	0	2	1	1	doivent être effectués à partir
3	1	0	2	0	1	des valeurs fournies par la
4	3	0	6	0	3	·
						matrice documents-termes.

Propriétés d'une mesure de similarité entre deux vecteurs u et v

 $s(u,v) \ge 0 \ \forall u,v$ Non-négativité

Un indice de similarité est toujours positif.

Symétrie

$$s(u,v) = s(v,u) \ \forall u,v$$

La similarité ne dépend pas de l'ordre de présentation de l'objet

Maximalité

$$s(u,u) = s(v,v) = s_{\text{max}} \quad \forall u \neq v$$

L'indice prend sa valeur max quand on compare un objet avec lui-même

Normalisation
$$\begin{cases} s(u,v) = 1 \Leftrightarrow u = v \ \forall u,v \\ s(u,v) < 1 \end{cases}$$

L'indice est borné à 1. Il prend cette valeur uniquement lorsqu'on compare un objet avec lui-même

De la similarité à la dissimilarité et la distance

Une mesure de dissimilarité caractérise les différences entre les objets.

Déduire une dissimilarité à partir d'une similarité

$$d(u,v) = 1 - s(u,v)$$

Lorsque la mesure est normalisée. Sinon, on peut utiliser $d=s_{max}-s(u,v)$

Une distance est aussi une mesure de dissimilarité

$$\begin{cases} d(u,v) = 0 \Leftrightarrow u = v \\ d(u,v) = d(v,u) \\ d(u,v) \le d(u,z) + d(v,z) \end{cases}$$

Avec une propriété supplémentaire : l'inégalité triangulaire

Mesure très populaire en data mining...

$$d(u, v) = \sqrt{\sum_{j=1}^{p} (u_j - v_j)^2}$$

p est le nombre de termes u_i (v_i) est la pondération du terme j pour l'objet u(v)

Document	databases	huge	image	permanently	store
1	1	1	1	0	0
2	1	0	2	1	1
3	1	0	2	0	1
4	3	0	6	0	3

$$d(3,4) = \sqrt{(1-3)^2 + \dots + (1-3)^2} = 4.9$$

- ... mais problématique dans le contexte du text mining car ne tient pas compte de la longueur des documents (documents courts : nombreuses valeurs à 0)
- La distance n'est pas bornée ($d \ge 0$, mais pas de limite max.), peu adaptée aux grandes dimensions

Très populaire en text mining car ne s'intéresse qu'aux cooccurrences, la normalisation permet de comparer des documents de longueurs différentes.

$$\cos(u, v) = \frac{\langle u, v \rangle}{\|u\| \|v\|}$$

0 ≤ cos ≤ 1 puisque les pondérations sont toujours positives ou nulles. Nous avons donc une mesure normalisée.

Document	databases	huge	image	permanently	store
1	1	1	1	0	0
2	1	0	2	1	1
3	1	0	2	0	1
4	3	0	6	0	3

$$\cos(3,4) = \frac{1 \times 3 + \dots + 1 \times 3}{\sqrt{1^2 + \dots + 1^2} \times \sqrt{3^2 + \dots + 3^2}} = 1$$

Malgré le choix de pondération qui n'est pas très judicieux ici, cos détecte bien la ressemblance entre les documents 3 et 4

Déduire une distance à partir de la similarité cosinus

$$d(u,v) = 1 - \cos(u,v)$$
 $0 \le d \le 1$ la distance est normalisée (bornée)

Indice très populaire. Adapté à la pondération binaire. S'intéresse aux cooccurrences et bénéficie également d'un mécanisme de normalisation.

$$J(u,v) = \frac{|u \cap v|}{|u \cup v|} = \frac{M_{11}}{p - M_{00}}$$

p est le nombre de termes M_{11} est le nombre de co-présence M_{00} est le nombre de co-absence $0 \le 0 \le 0$ par définition

Document	databases	huge	image	permanently	store
1	1	1	1	0	0
2	1	0	1	1	1
3	1	0	1	0	1
4	1	0	1	0	1

$$J(2,3) = \frac{3}{4} = \frac{3}{5-1} = 0.75$$

De même ici, on constate que J(3,4) = 1.

Déduire une distance à partir de l'indice de Jaccard

$$d(u,v) = 1 - J(u,v)$$

 $0 \le d \le 1$ la distance est normalisée (bornée)

Il existe pléthores de mesures. Il n'existe pas de meilleures mesures que d'autres dans l'absolu. Tout dépend des caractéristiques des données et de l'étude. Ex. distance euclidienne serait tout à fait adaptée avec une pondération TF si les documents ont tous à peu près la même longueur.

Quelques exemples de mesures dans le cadre de la pondération binaire

$$s(u,v) = \frac{2 \times |u \cap v|}{|u| + |v|}$$

Coef. de

recouvrement

$$s(u,v) = \frac{|u \cap v|}{\min(|u|,|v|)}$$

Indice de

Tanimoto

$$s(u,v) = \frac{|u \cap v|}{|u| + |v| - |u \cap v|}$$

Variantes de la représentation en sac de mots

N-GRAMMES

Un n-gramme (*n-gram* en anglais) est une séquence de *n* termes adjacents (consécutifs ou apparaissant dans une fenêtre restreinte) que l'on extrait en tant que descripteur d'un corpus. L'idée est que l'association des termes introduit une signification différente de celles qu'ils véhiculent individuellement.

Ex. bi-gramme « écart type », « bien être », « bon vivant »,...; trigramme « bec de lièvre »

Le problème est de pouvoir les identifier. On ne peut pas tous les tester. On peut se baser sur les cooccurrences, fréquences ou corrélations,... mais en tenant compte de l'adjacence des termes.

n > 2, la complexité de calcul devient très vite pesante, et la pertinence n'est pas toujours au rendez vous.

N-grammes sur les lettres

Un n-gramme (*n-gram* en anglais) est une séquence de *n* caractères consécutifs (contigus) que l'on extrait en tant que descripteur d'un corpus.

Exemple de 4-grams extrait du document « image databases can get huge »

imag', 'mage', 'age ', 'ge d', 'e da', ' dat', 'data', 'atab', ...

Quel intérêt?

- C'est une manière d'effectuer une racinisation (stemming) très simplement
- L'approche est indépendante de la langue... mais l'interprétation des résultats n'est pas toujours évidente

En pratique

- Elle donne d'excellents résultats dans les applications, par exemple dans la détection des spams, des plagiats,...
- L'approche peut s'étendre à des domaines où une tokenisation naturelle n'est pas possible et/ou trop limitée (ex. séquence ADN, description des protéines à l'aide des acides aminés, etc.)

Ouvrages

Weiss S., Indurkhya N., Zhang T., Damerau F., « Text Mining – Predictive methods for analyzing unstructured information », Springer, 2005.

Feldman R., Sanger J., « The text mining handbook – Advanced approcahes in analyzing unstructuerd data », Cambridge University Press, 2008.

Aggarwal C., Zhai C., « Mining Text Data », Springer, 2012.

Ignatow G., Mihalcea R., « Text mining – A guidebook for the social science », Sage Publications, 2016.

Coelho L.P., Richert W., « Building Machine Learning Systems With Python », 2nd Edition, Packt Publising, 2015.