

Métodos Matemáticos para la Física I (LFIS 222)

Licenciatura en Física

Nombre:	RUT:

Prueba 1: P1:_____ P2:____ P3:____ P4:____ P5:____ NF:_____

1. En cada caso, encuentre todas las raices en coordenadas rectangulares:

Profesor: Graeme Candlish

(a) $(-1)^{1/4}$

Solución: Las raices de números complejos están dadas por

$$c_k = \sqrt[n]{r_0} \exp\left[i\left(\frac{\theta_0}{n} + \frac{2k\pi}{n}\right)\right] \tag{1}$$

Semestre II 2023

En este caso tenemos $r_0 = 1$, $\theta_0 = \pi$. Por lo tanto

$$c_k = \exp\left[i\left(\frac{\pi}{4} + \frac{2k\pi}{4}\right)\right] \tag{2}$$

Los valores únicos de k son k = 0, 1, 2, 3. Así que las cuatro raices son

$$c_0 = \exp\left[i\left(\frac{\pi}{4}\right)\right], \quad c_1 = \exp\left[i\left(\frac{3\pi}{4}\right)\right], \quad c_2 = \exp\left[i\left(\frac{5\pi}{4}\right)\right], \quad c_3 = \exp\left[i\left(\frac{7\pi}{4}\right)\right]$$
(3)

El gráfico de las raices corresponde a un cuadro con vertices en los puntos $(\pm 1/\sqrt{2}, \pm 1/\sqrt{2})$

(b) $1^{1/5}$

Solución: En este caso tenemos $r_0=1,\,\theta_0=0.$ Por lo tanto

$$c_k = \exp\left[i\left(\frac{2k\pi}{5}\right)\right] \tag{4}$$

Los valores únicos de k son k=0,1,2,3,4. Así que las cuatro raices son

$$c_0 = 1$$
, $c_1 = \exp\left[i\left(\frac{2\pi}{5}\right)\right]$, $c_2 = \exp\left[i\left(\frac{4\pi}{5}\right)\right]$, $c_3 = \exp\left[i\left(\frac{6\pi}{5}\right)\right]$, $c_4 = \exp\left[i\left(\frac{8\pi}{5}\right)\right]$ (5)

El gráfico de las raices corresponde a un pentágono, con un vertice en z = 1, cada vertice en un círculo unitario, con ángulos espaciados por 36 grados.

- 2. Muestre que f'(z) no existe para |z| > 0 si
 - (a) $f(z) = z\bar{z}$

Solución: La derivada f'(z) existe si las derivadas parciales de las funciones componentes existen, son continuas y satisfacen las ecuaciones de CR. En este caso:

$$f(z) = z\bar{z} = (x+iy)(x-iy) = (x^2+y^2)+i0$$
(6)

Así que $u(x,y) = x^2 + y^2$, v(x,y) = 0. Las derivadas son $\partial_x u = 2x$, $\partial_y u = 2y$, $\partial_x v = 0$, $\partial_y v = 0$. Las ecuaciones de CR son

$$u_x = v_y \qquad u_y = -v_x \tag{7}$$

Para cualquier punto no igual al origen estas ecuaciones no se cumplen.

(b) $f(z) = 2x^3 + ixy^2$

Solución:

$$f(z) = 2x^3 + ixy^2 \tag{8}$$

Así que $u(x,y) = 2x^3$, $v(x,y) = xy^2$. Las derivadas son $\partial_x u = 6x^2$, $\partial_y u = 0$, $\partial_x v = y^2$, $\partial_y v = 2xy$. Las ecuaciones de CR son

$$y = 3x \qquad 0 = -y^2 \tag{9}$$

Es imposible satisfacer estas ecuaciones en cualquier punto |z| > 0.

3. Demuestre que si un conjunto S contiene todos sus puntos de acumulación, tiene que ser un conjunto cerrado.

Solución: Consideremos un punto de acumulación z_0 . Por definición de ser un punto de acumulación, cualquier entorno perforado de z_0 tiene que incluir al menos un punto del conjunto S. Si no existe ningún punto fuera de S en los entornos perforados de z_0 , no es un punto frontera. Al contrario, si existe algún punto fuera del conjunto S para cualquier entorno perforado (aparte de posiblemente z_0) z_0 tiene que ser un punto frontera. Por lo tanto un conjunto S que contiene todos sus puntos de acumulación debe contener todos sus puntos frontera, y por lo tanto es un conjunto cerrado.

- 4. Muestre que
 - (a) la función f(z) = Log(z i) es analítica en todos puntos excepto en la porción $x \le 0$ de la línea y = 1.

Solución: En clase vimos como definir el logaritmo complejo (principal) usando

$$Log z = \ln r + i\Theta \tag{10}$$

En este caso tenemos $\tilde{z}=z-i$. La función $f(z)=\text{Log}\tilde{z}$ es analítica en todos puntos excepto en el eje real negativo, incluyendo el origen (corte y punto de rama del logaritmo principal). Es decir, no es analítica en los puntos $\tilde{x}\leq 0$ con $\tilde{y}=0$. Transformando a las coordenadas originales:

$$\tilde{x} + i\tilde{y} = x + iy - i \tag{11}$$

por lo tanto $\tilde{x}=x$ y $\tilde{y}=y-1$. Así que $\tilde{x}\leq 0$ es igual a $x\leq 0$, y $\tilde{y}=0$ es equivalente a y=1.

(b) la función

$$f(z) = \frac{\log(z+4)}{z^2 + i} \tag{12}$$

es analítica en todos puntos excepto en los puntos $\pm (1-i)/\sqrt{2}$ y en la porción $x \le -4$ del eje real.

Solución: Hay singularidades donde el denominador es igual a cero. Eso ocurre cuando $z^2 + i = 0$. Entonces tenemos

$$z = (-i)^{1/2} = 1 \exp\left(i\left[-\frac{\theta}{2} + \pi k\right]\right)$$
 (13)

con k = 0, 1. Las dos raices son

$$c_0 = 1 \exp\left(i\left[-\frac{\pi}{4}\right]\right), \quad c_1 = 1 \exp\left(i\left[\frac{3\pi}{4}\right]\right)$$
 (14)

En notación rectangular $c_0 = (1-i)/\sqrt{2}$, $c_1 = (-1+i)/\sqrt{2}$. Podemos escribir estas dos raices como $\pm (1-i)/\sqrt{2}$. El corte del logaritmo principal es el eje real negativo, con punto de rama en el origen. En el caso de Log(z+4), el punto de rama está trasladado el punto x=-4, así que el corte es $x \leq -4$.

5. Muestre que las raices de la ecuación $\cos z = 2$ son

$$z = 2n\pi + i\cosh^{-1} 2 \quad (n = 0, \pm 1, \pm 2, ...)$$
 (15)

y las escribe en la forma

$$z = 2n\pi \pm i \ln(2 + \sqrt{3}) \quad (n = 0, \pm 1, \pm 2, ...)$$
 (16)

Solución: Ya que igualdad entre dos números complejos implica igualdad entre las partes real e imaginaria, tenemos

$$\cos x \cosh y = 2 \qquad \sin x \sinh y = 0 \tag{17}$$

Ya que $y \in \mathbb{R}$, la única raiz de $\sinh y = 0$ es y = 0. En este punto $\cosh y = 1$, $y | \cos x | \le 1$ así que es imposible satisfacer la primera ecuación en este punto, y podemos descartar la posibilidad de tener y = 0. Así que la única forma de satisfacer la segunda ecuación es con $x = n\pi$ $(n = 0, \pm 1, \pm 2, \ldots)$. Usando esto en la primera ecuación tenemos $\cos n\pi = 1$ para $n = 0, \pm 2, \pm 4, \ldots$ y $\cos n\pi = -1$ para $n = \pm 1, \pm 3, \ldots$ Ya que $\cosh y > 0$ para todo $y \in \mathbb{R}$ tenemos que elegir $n = 0, \pm 2, \pm 4$ para tener un valor positivo de $\cos x$. Por lo tanto tenemos $x = 2n\pi$ donde $n = 0, \pm 1, \pm 2, \ldots$ En estos valores $\cos x = 1$, así que la primera ecuación queda

$$\cosh y = 2 \quad (x = 2n\pi), \tag{18}$$

por lo tanto $y = \cosh^{-1} 2$, y tenemos

$$z = 2n\pi + i\cosh^{-1} 2 \quad (n = 0, \pm 1, \pm 2, ...)$$
 (19)

La definición de $\cosh^{-1} w$ es

$$\cosh^{-1} w = \log \left[w + (w^2 - 1)^{1/2} \right]$$
 (20)

En nuestro caso w=2, por lo tanto

$$\cosh^{-1} 2 = \log \left[2 + (2^2 - 1)^{1/2} \right] = \log(2 \pm \sqrt{3})$$
 (21)

Por la definición del logaritmo complejo tenemos

$$\log(2+\sqrt{3}) = \ln(2+\sqrt{3}) + 2k\pi i \quad (k=0,\pm 1,\pm 2,\ldots)$$
 (22)

$$\log(2 - \sqrt{3}) = \ln(2 - \sqrt{3}) + 2k\pi i \quad (k = 0, \pm 1, \pm 2, \dots)$$
(23)

Notar que en ambos casos el argumento es un multiple de 2π ya que $2\pm\sqrt{3}>0$. Para simplificar la expresión escribimos

$$\ln(2 - \sqrt{3}) = \ln\left((2 - \sqrt{3}) \cdot \frac{2 + \sqrt{3}}{2 + \sqrt{3}}\right) = \ln\left(\frac{1}{2 + \sqrt{3}}\right) = -\ln(2 + \sqrt{3})$$
 (24)

Por lo tanto

$$\ln(2 \pm \sqrt{3}) = \pm \ln(2 + \sqrt{3}) \tag{25}$$

Volviendo a la expresión para z tenemos

$$z = 2n\pi + i\left(\pm\ln(2+\sqrt{3}) + 2k\pi i\right) = 2(n-k)\pi \pm i\ln(2+\sqrt{3})$$
 (26)

Ya que n y k son ambos enteros (independientes) podemos combinar sus valores en un solo parámetro entero para llegar al resultado final.