Cálculo de Programas Trabalho Prático MiEI — 2018/19

Departamento de Informática Universidade do Minho

Junho de 2019

Grupo nr.	4
a83920	Afonso Trindade Araújo de Pascoal Faria
a83840	Maria Moutinho Figueiredo da Silva
a86435	Miguel André da Silva Solino

1 Preâmbulo

A disciplina de Cálculo de Programas tem como objectivo principal ensinar a programação de computadores como uma disciplina científica. Para isso parte-se de um repertório de *combinadores* que formam uma álgebra da programação (conjunto de leis universais e seus corolários) e usam-se esses combinadores para construir programas *composicionalmente*, isto é, agregando programas já existentes.

Na sequência pedagógica dos planos de estudo dos dois cursos que têm esta disciplina, restringe-se a aplicação deste método à programação funcional em Haskell. Assim, o presente trabalho prático coloca os alunos perante problemas concretos que deverão ser implementados em Haskell. Há ainda um outro objectivo: o de ensinar a documentar programas, validá-los, e a produzir textos técnico-científicos de qualidade.

2 Documentação

Para cumprir de forma integrada os objectivos enunciados acima vamos recorrer a uma técnica de programação dita "literária" [1], cujo princípio base é o seguinte:

Um programa e a sua documentação devem coincidir.

Por outras palavras, o código fonte e a documentação de um programa deverão estar no mesmo ficheiro. O ficheiro cp1819t.pdf que está a ler é já um exemplo de programação literária: foi gerado a partir do texto fonte cp1819t.lhs¹ que encontrará no material pedagógico desta disciplina descompactando o ficheiro cp1819t.zip e executando

```
$ lhs2TeX cp1819t.lhs > cp1819t.tex
$ pdflatex cp1819t
```

em que <u>lhs2tex</u> é um pre-processador que faz "pretty printing" de código Haskell em <u>LATEX</u> e que deve desde já instalar executando

```
$ cabal install lhs2tex
```

Por outro lado, o mesmo ficheiro cp1819t.lhs é executável e contém o "kit" básico, escrito em Haskell, para realizar o trabalho. Basta executar

```
$ ghci cp1819t.lhs
```

¹O suffixo 'lhs' quer dizer *literate Haskell*.

Abra o ficheiro cp1819t.1hs no seu editor de texto preferido e verifique que assim é: todo o texto que se encontra dentro do ambiente

```
\begin{code}
...
\end{code}
```

vai ser seleccionado pelo GHCi para ser executado.

3 Como realizar o trabalho

Este trabalho teórico-prático deve ser realizado por grupos de três alunos. Os detalhes da avaliação (datas para submissão do relatório e sua defesa oral) são os que forem publicados na página da disciplina na *internet*.

Recomenda-se uma abordagem participativa dos membros do grupo de trabalho por forma a poderem responder às questões que serão colocadas na *defesa oral* do relatório.

Em que consiste, então, o *relatório* a que se refere o parágrafo anterior? É a edição do texto que está a ser lido, preenchendo o anexo D com as respostas. O relatório deverá conter ainda a identificação dos membros do grupo de trabalho, no local respectivo da folha de rosto.

Para gerar o PDF integral do relatório deve-se ainda correr os comando seguintes, que actualizam a bibliografia (com BibTrX) e o índice remissivo (com makeindex),

```
$ bibtex cp1819t.aux
$ makeindex cp1819t.idx
```

e recompilar o texto como acima se indicou. Dever-se-á ainda instalar o utilitário QuickCheck, que ajuda a validar programas em Haskell e a biblioteca Gloss para geração de gráficos 2D:

```
$ cabal install QuickCheck gloss
```

Para testar uma propriedade QuickCheck prop, basta invocá-la com o comando:

```
> quickCheck prop
+++ OK, passed 100 tests.
```

Qualquer programador tem, na vida real, de ler e analisar (muito!) código escrito por outros. No anexo C disponibiliza-se algum código Haskell relativo aos problemas que se seguem. Esse anexo deverá ser consultado e analisado à medida que isso for necessário.

Problema 1

Um compilador é um programa que traduz uma linguagem dita de *alto nível* numa linguagem (dita de *baixo nível*) que seja executável por uma máquina. Por exemplo, o GCC compila C/C++ em código objecto que corre numa variedade de arquitecturas.

Compiladores são normalmente programas complexos. Constam essencialmente de duas partes: o *analisador sintático* que lê o texto de entrada (o programa *fonte* a compilar) e cria uma sua representação interna, estruturada em árvore; e o *gerador de código* que converte essa representação interna em código executável. Note-se que tal representação intermédia pode ser usada para outros fins, por exemplo, para gerar uma listagem de qualidade (*pretty print*) do programa fonte.

O projecto de compiladores é um assunto complexo que será assunto de outras disciplinas. Neste trabalho pretende-se apenas fazer uma introdução ao assunto, mostrando como tais programas se podem construir funcionalmente à custa de cata/ana/hilo-morfismos da linguagem em causa.

Para cumprirmos o nosso objectivo, a linguagem desta questão terá que ser, naturalmente, muito simples: escolheu-se a das expressões aritméticas com inteiros, eg. 1+2, 3*(4+5) etc. Como representação interna adopta-se o seguinte tipo polinomial, igualmente simples:

```
data Expr = Num \ Int \mid Bop \ Expr \ Op \ Expr data Op = Op \ String
```

1. Escreva as definições dos {cata, ana e hilo}-morfismos deste tipo de dados segundo o método ensinado nesta disciplina (recorde módulos como *eg*. BTree etc).

- 2. Como aplicação do módulo desenvolvido no ponto 1, defina como {cata, ana ou hilo}-morfismo a função seguinte:
 - $calcula :: Expr \rightarrow Int$ que calcula o valor de uma expressão;

Propriedade QuickCheck 1 O valor zero é um elemento neutro da adição.

```
prop\_neutro1 :: Expr 	o Bool
prop\_neutro1 = calcula \cdot addZero \equiv calcula \text{ where}
addZero \ e = Bop \ (Num \ 0) \ (Op \ "+") \ e
prop\_neutro2 :: Expr 	o Bool
prop\_neutro2 = calcula \cdot addZero \equiv calcula \text{ where}
addZero \ e = Bop \ e \ (Op \ "+") \ (Num \ 0)
```

Propriedade QuickCheck 2 As operações de soma e multiplicação são comutativas.

```
prop\_comuta = calcula \cdot mirror \equiv calcula \text{ where}
mirror = cataExpr [Num, g2]
g2 = \widehat{\widehat{Bop}} \cdot (swap \times id) \cdot assocl \cdot (id \times swap)
```

- 3. Defina como {cata, ana ou hilo}-morfismos as funções
 - *compile* :: *String* → *Codigo* trata-se do compilador propriamente dito. Deverá ser gerado código posfixo para uma máquina elementar de stack. O tipo *Codigo* pode ser definido à escolha. Dão-se a seguir exemplos de comportamentos aceitáveis para esta função:

```
Tp4> compile "2+4"
["PUSH 2", "PUSH 4", "ADD"]
Tp4> compile "3*(2+4)"
["PUSH 3", "PUSH 2", "PUSH 4", "ADD", "MUL"]
Tp4> compile "(3*2)+4"
["PUSH 3", "PUSH 2", "MUL", "PUSH 4", "ADD"]
Tp4>
```

• $show':: Expr \rightarrow String$ - gera a representação textual de uma Expr pode encarar-se como o pretty printer associado ao nosso compilador

Propriedade QuickCheck 3 Em anexo, é fornecido o código da função readExp, que é "inversa" da função show', tal como a propriedade seguinte descreve:

```
prop\_inv :: Expr \rightarrow Bool

prop\_inv = \pi_1 \cdot head \cdot readExp \cdot show' \equiv id
```

Valorização Em anexo é apresentado código Haskell que permite declarar *Expr* como instância da classe *Read*. Neste contexto, *read* pode ser vista como o analisador sintático do nosso minúsculo compilador de expressões aritméticas.

Analise o código apresentado, corra-o e escreva no seu relatório uma explicação **breve** do seu funcionamento, que deverá saber defender aquando da apresentação oral do relatório.

Exprima ainda o analisador sintático readExp como um anamorfismo.

Problema 2

Pretende-se neste problema definir uma linguagem gráfica "brinquedo" a duas dimensões (2D) capaz de especificar e desenhar agregações de caixas que contêm informação textual. Vamos designar essa linguagem por *L2D* e vamos defini-la como um tipo em Haskell:

```
type L2D = X Caixa Tipo
```

onde X é a estrutura de dados

Figura 1: Caixa simples e caixa composta.

data $X \ a \ b = Unid \ a \mid Comp \ b \ (X \ a \ b) \ (X \ a \ b)$ deriving Show

e onde:

```
type Caixa = ((Int, Int), (Texto, G.Color))
type Texto = String
```

Assim, cada caixa de texto é especificada pela sua largura, altura, o seu texto e a sua côr.² Por exemplo,

```
((200, 200), ("Caixa azul", col_blue))
```

designa a caixa da esquerda da figura 1.

O que a linguagem L2D faz é agregar tais caixas tipográficas umas com as outras segundo padrões especificados por vários "tipos", a saber,

data
$$Tipo = V \mid Vd \mid Ve \mid H \mid Ht \mid Hb$$

com o seguinte significado:

V - agregação vertical alinhada ao centro

Vd - agregação vertical justificada à direita

Ve - agregação vertical justificada à esquerda

H - agregação horizontal alinhada ao centro

Hb - agregação horizontal alinhada pela base

Ht - agregação horizontal alinhada pelo topo

Como L2D instancia o parâmetro b de X com Tipo, é fácil de ver que cada "frase" da linguagem L2D é representada por uma árvore binária em que cada nó indica qual o tipo de agregação a aplicar às suas duas sub-árvores. Por exemplo, a frase

```
ex2 = Comp \ Hb \ (Unid \ ((100, 200), ("A", col_blue))) \ (Unid \ ((50, 50), ("B", col_green)))
```

deverá corresponder à imagem da direita da figura 1. E poder-se-á ir tão longe quando a linguagem o permita. Por exemplo, pense na estrutura da frase que representa o *layout* da figura 2.

É importante notar que cada "caixa" não dispõe informação relativa ao seu posicionamento final na figura. De facto, é a posição relativa que deve ocupar face às restantes caixas que irá determinar a sua posição final. Este é um dos objectivos deste trabalho: calcular o posicionamento absoluto de cada uma das caixas por forma a respeitar as restrições impostas pelas diversas agregações. Para isso vamos considerar um tipo de dados que comporta a informação de todas as caixas devidamente posicionadas (i.e. com a informação adicional da origem onde a caixa deve ser colocada).

²Pode relacionar *Caixa* com as caixas de texto usadas nos jornais ou com *frames* da linguagem HTML usada na Internet.

Figura 2: *Layout* feito de várias caixas coloridas.

```
type Fig = [(Origem, Caixa)]
type Origem = (Float, Float)
```

A informação mais relevante deste tipo é a referente à lista de "caixas posicionadas" (tipo (*Origem*, *Caixa*)). Regista-se aí a origem da caixa que, com a informação da sua altura e comprimento, permite definir todos os seus pontos (consideramos as caixas sempre paralelas aos eixos).

1. Forneça a definição da função *calc_origems*, que calcula as coordenadas iniciais das caixas no plano:

```
calc\_origems :: (L2D, Origem) \rightarrow X (Caixa, Origem) ()
```

2. Forneça agora a definição da função *agrup_caixas*, que agrupa todas as caixas e respectivas origens numa só lista:

```
agrup\_caixas :: X (Caixa, Origem) () \rightarrow Fig
```

Um segundo problema neste projecto é *descobrir como visualizar a informação gráfica calculada por desenho*. A nossa estratégia para superar o problema baseia-se na biblioteca Gloss, que permite a geração de gráficos 2D. Para tal disponibiliza-se a função

```
crCaixa :: Origem \rightarrow Float \rightarrow Float \rightarrow String \rightarrow G.Color \rightarrow G.Picture
```

que cria um rectângulo com base numa coordenada, um valor para a largura, um valor para a altura, um texto que irá servir de etiqueta, e a cor pretendida. Disponibiliza-se também a função

```
display :: G.Picture \rightarrow IO ()
```

que dado um valor do tipo G.picture abre uma janela com esse valor desenhado. O objectivo final deste exercício é implementar então uma função

```
mostra\_caixas :: (L2D, Origem) \rightarrow IO ()
```

que dada uma frase da linguagem L2D e coordenadas iniciais apresenta o respectivo desenho no ecrã. **Sugestão**: Use a função G.pictures disponibilizada na biblioteca Gloss.

Problema 3

Nesta disciplina estudou-se como fazer programação dinâmica por cálculo, recorrendo à lei de recursividade mútua.³

Para o caso de funções sobre os números naturais (\mathbb{N}_0 , com functor F X=1+X) é fácil derivar-se da lei que foi estudada uma *regra de algibeira* que se pode ensinar a programadores que não tenham estudado Cálculo de Programas. Apresenta-se de seguida essa regra, tomando como exemplo o cálculo do ciclo-for que implementa a função de Fibonacci, recordar o sistema

```
fib \ 0 = 1

fib \ (n+1) = f \ n

f \ 0 = 1

f \ (n+1) = fib \ n + f \ n
```

Obter-se-á de imediato

```
fib' = \pi_1 \cdot \text{for loop init where}

loop\ (fib, f) = (f, fib + f)

init = (1, 1)
```

usando as regras seguintes:

- O corpo do ciclo *loop* terá tantos argumentos quanto o número de funções mutuamente recursivas.
- Para as variáveis escolhem-se os próprios nomes das funções, pela ordem que se achar conveniente.⁴
- Para os resultados vão-se buscar as expressões respectivas, retirando a variável n.
- Em init coleccionam-se os resultados dos casos de base das funções, pela mesma ordem.

Mais um exemplo, envolvendo polinómios no segundo grau a $x^2 + bx + c$ em \mathbb{N}_0 . Seguindo o método estudado nas aulas⁵, de $f(x) = ax^2 + bx + c$ derivam-se duas funções mutuamente recursivas:

```
f \ 0 = c

f \ (n+1) = f \ n+k \ n

k \ 0 = a+b

k \ (n+1) = k \ n+2 \ a
```

Seguindo a regra acima, calcula-se de imediato a seguinte implementação, em Haskell:

```
f' a b c = \pi_1 \cdot \text{for loop init where}

loop (f, k) = (f + k, k + 2 * a)

init = (c, a + b)
```

Qual é o assunto desta questão, então? Considerem fórmula que dá a série de Taylor da função coseno:

$$\cos x = \sum_{i=0}^{\infty} \frac{(-1)^i}{(2i)!} x^{2i}$$

Pretende-se o ciclo-for que implementa a função $cos' \ x \ n$ que dá o valor dessa série tomando i até n inclusivé:

```
cos' x = \cdots for loop init where \cdots
```

Sugestão: Começar por estudar muito bem o processo de cálculo dado no anexo B para o problema (semelhante) da função exponencial.

Propriedade QuickCheck 4 Testes de que $\cos' x$ calcula bem o coseno de π e o coseno de π / 2:

$$prop_cos1 \ n = n \ge 10 \Rightarrow abs \ (cos \pi - cos' \pi \ n) < 0.001$$

 $prop_cos2 \ n = n \ge 10 \Rightarrow abs \ (cos \ (π / 2) - cos' \ (π / 2) \ n) < 0.001$

³Lei (3.94) em [<mark>2</mark>], página 98.

⁴Podem obviamente usar-se outros símbolos, mas numa primeiraleitura dá jeito usarem-se tais nomes.

⁵Secção 3.17 de [2].

Valorização Transliterar cos' para a linguagem C; compilar e testar o código. Conseguia, por intuição apenas, chegar a esta função?

Problema 4

Pretende-se nesta questão desenvolver uma biblioteca de funções para manipular sistemas de ficheiros genéricos. Um sistema de ficheiros será visto como uma associação de nomes a ficheiros ou directorias. Estas últimas serão vistas como sub-sistemas de ficheiros e assim recursivamente. Assumindo que a é o tipo dos identificadores dos ficheiros e directorias, e que b é o tipo do conteúdo dos ficheiros, podemos definir um tipo indutivo de dados para representar sistemas de ficheiros da seguinte forma:

```
data FS a b = FS [(a, Node \ a \ b)] deriving (Eq, Show) data Node \ a \ b = File \ b \mid Dir \ (FS \ a \ b) deriving (Eq, Show)
```

Um caminho (path) neste sistema de ficheiros pode ser representado pelo seguinte tipo de dados:

```
type Path \ a = [a]
```

Assumindo estes tipos de dados, o seguinte termo

```
FS [("f1", File "Ola"),
    ("d1", Dir (FS [("f2", File "Ole"),
        ("f3", File "Ole")
    ]))
```

representará um sistema de ficheiros em cuja raíz temos um ficheiro chamado f1 com conteúdo "Ola" e uma directoria chamada "d1" constituída por dois ficheiros, um chamado "f2" e outro chamado "f3", ambos com conteúdo "Ole". Neste caso, tanto o tipo dos identificadores como o tipo do conteúdo dos ficheiros é String. No caso geral, o conteúdo de um ficheiro é arbitrário: pode ser um binário, um texto, uma colecção de dados, etc.

A definição das usuais funções *inFS* e *recFS* para este tipo é a seguinte:

```
inFS = FS \cdot map \ (id \times inNode)

inNode = [File, Dir]

recFS \ f = baseFS \ id \ id \ f
```

Suponha que se pretende definir como um *catamorfismo* a função que conta o número de ficheiros existentes num sistema de ficheiros. Uma possível definição para esta função seria:

```
\begin{array}{l} conta :: FS \ a \ b \rightarrow Int \\ conta = cataFS \ (sum \cdot {\sf map} \ ([\underline{1},id] \cdot \pi_2)) \end{array}
```

O que é para fazer:

- 1. Definir as funções *outFS*, *baseFS*, *cataFS*, *anaFS* e *hyloFS*.
- 2. Apresentar, no relatório, o diagrama de cataFS.
- 3. Definir as seguintes funções para manipulação de sistemas de ficheiros usando, obrigatoriamente, catamorfismos, anamorfismos ou hilomorfismos:
 - (a) Verificação da integridade do sistema de ficheiros (i.e. verificar que não existem identificadores repetidos dentro da mesma directoria).check :: FS a b → Bool

Propriedade QuickCheck 5 A integridade de um sistema de ficheiros não depende da ordem em que os últimos são listados na sua directoria:

```
prop\_check :: FS \ String \ String \rightarrow Bool

prop\_check = check \cdot (cataFS \ (inFS \cdot reverse)) \equiv check
```

(b) Recolha do conteúdo de todos os ficheiros num arquivo indexado pelo *path*. $tar :: FS \ a \ b \rightarrow [(Path \ a, b)]$

Propriedade QuickCheck 6 O número de ficheiros no sistema deve ser igual ao número de ficheiros listados pela função tar.

```
prop\_tar :: FS \ String \ String \rightarrow Bool

prop\_tar = length \cdot tar \equiv conta
```

(c) Transformação de um arquivo com o conteúdo dos ficheiros indexado pelo *path* num sistema de ficheiros.

```
untar :: [(Path \ a, b)] \rightarrow FS \ a \ b
```

Sugestão: Use a função *joinDupDirs* para juntar directorias que estejam na mesma pasta e que possuam o mesmo identificador.

Propriedade QuickCheck 7 A composição tar · untar preserva o número de ficheiros no sistema.

```
\begin{array}{l} prop\_untar :: [(Path\ String, String)] \rightarrow Property \\ prop\_untar = validPaths \Rightarrow ((length\ \cdot tar \cdot untar) \equiv length\ ) \\ validPaths :: [(Path\ String, String)] \rightarrow Bool \\ validPaths = (\equiv 0) \cdot length\ \cdot (filter\ (\lambda(a,\_) \rightarrow length\ \ a \equiv 0)) \end{array}
```

(d) Localização de todos os paths onde existe um determinado ficheiro.

```
find :: a \to FS \ a \ b \to [Path \ a]
```

Propriedade QuickCheck 8 A composição tar · untar preserva todos os ficheiros no sistema.

```
prop\_find :: String \rightarrow FS \ String \ String \rightarrow Bool

prop\_find = curry \$

length \cdot \widehat{find} \equiv length \cdot \widehat{find} \cdot (id \times (untar \cdot tar))
```

(e) Criação de um novo ficheiro num determinado path.

```
new :: Path \ a \rightarrow b \rightarrow FS \ a \ b \rightarrow FS \ a \ b
```

Propriedade QuickCheck 9 A adição de um ficheiro não existente no sistema não origina ficheiros duplicados.

```
\begin{array}{l} prop\_new :: ((Path\ String, String), FS\ String\ String) \rightarrow Property \\ prop\_new = ((validPath \land notDup) \land (check \cdot \pi_2)) \Rightarrow \\ (checkFiles \cdot \widehat{new})\ \mathbf{where} \\ validPath = (\not\equiv 0) \cdot \mathsf{length}\ \cdot \pi_1 \cdot \pi_1 \\ notDup = \neg \cdot \widehat{elem} \cdot (\pi_1 \times ((\mathsf{fmap}\ \pi_1) \cdot tar)) \end{array}
```

Questão: Supondo-se que no código acima se substitui a propriedade checkFiles pela propriedade mais fraca check, será que a propriedade prop_new ainda é válida? Justifique a sua resposta.

Propriedade QuickCheck 10 A listagem de ficheiros logo após uma adição nunca poderá ser menor que a listagem de ficheiros antes dessa mesma adição.

```
prop\_new2 :: ((Path\ String, String), FS\ String\ String) \to Property

prop\_new2 = validPath \Rightarrow ((length\ \cdot tar \cdot \pi_2) \leqslant (length\ \cdot tar \cdot \widehat{new})) where validPath = (\not\equiv 0) \cdot length\ \cdot \pi_1 \cdot \pi_1
```

(f) Duplicação de um ficheiro.

```
cp :: Path \ a \rightarrow Path \ a \rightarrow FS \ a \ b \rightarrow FS \ a \ b
```

Propriedade QuickCheck 11 A listagem de ficheiros com um dado nome não diminui após uma duplicação.

```
\begin{aligned} prop\_cp &:: ((Path\ String, Path\ String), FS\ String\ String) \to Bool \\ prop\_cp &= \mathsf{length}\ \cdot tar \cdot \pi_2 \leqslant \mathsf{length}\ \cdot tar \cdot \widehat{\widehat{cp}} \end{aligned}
```


Figura 3: Exemplo de um sistema de ficheiros visualizado em Graphviz.

(g) Eliminação de um ficheiro.

```
rm:: Path \ a \rightarrow FS \ a \ b \rightarrow FS \ a \ b
```

Sugestão: Construir um anamorfismo $nav :: (Path\ a, FS\ a\ b) \to FS\ a\ b$ que navegue por um sistema de ficheiros tendo como base o path dado como argumento.

<u>Propriedade QuickCheck</u> 12 Remover duas vezes o mesmo ficheiro tem o mesmo efeito que o remover apenas uma vez.

```
prop\_rm :: (Path String, FS String String) \rightarrow Bool
prop\_rm = \widehat{rm} \cdot \langle \pi_1, \widehat{rm} \rangle \equiv \widehat{rm}
```

<u>Propriedade QuickCheck</u> 13 Adicionar um ficheiro e de seguida remover o mesmo não origina novos ficheiros no sistema.

```
\begin{array}{l} prop\_rm2 :: ((Path\ String, String), FS\ String\ String) \rightarrow Property \\ prop\_rm2 = validPath \Rightarrow ((\operatorname{length}\ \cdot tar \cdot \widehat{rm} \cdot \langle \pi_1 \cdot \pi_1, \widehat{\widehat{new}} \rangle) \\ \leqslant (\operatorname{length}\ \cdot tar \cdot \pi_2))\ \mathbf{where} \\ validPath = (\not\equiv 0) \cdot \operatorname{length}\ \cdot \pi_1 \cdot \pi_1 \end{array}
```

Valorização Definir uma função para visualizar em **Graphviz** a estrutura de um sistema de ficheiros. A Figura 3, por exemplo, apresenta a estrutura de um sistema com precisamente dois ficheiros dentro de uma directoria chamada "d1".

Para realizar este exercício será necessário apenas escrever o anamorfismo

```
cFS2Exp :: (a, FS \ a \ b) \rightarrow (Exp \ () \ a)
```

que converte a estrutura de um sistema de ficheiros numa árvore de expressões descrita em Exp.hs. A função dot FS depois tratará de passar a estrutura do sistema de ficheiros para o visualizador.

Anexos

A Como exprimir cálculos e diagramas em LaTeX/lhs2tex

Estudar o texto fonte deste trabalho para obter o efeito:⁶

$$id = \langle f, g \rangle$$

$$\equiv \qquad \{ \text{ universal property } \}$$

$$\begin{cases} \pi_1 \cdot id = f \\ \pi_2 \cdot id = g \end{cases}$$

$$\equiv \qquad \{ \text{ identity } \}$$

$$\begin{cases} \pi_1 = f \\ \pi_2 = g \end{cases}$$

Os diagramas podem ser produzidos recorrendo à package LATEX xymatrix, por exemplo:

$$\begin{array}{c|c} \mathbb{N}_0 \longleftarrow & \text{in} & 1 + \mathbb{N}_0 \\ \mathbb{I}_g \mathbb{N} & & & \downarrow id + \mathbb{I}_g \mathbb{N} \\ B \longleftarrow & g & 1 + B \end{array}$$

B Programação dinâmica por recursividade múltipla

Neste anexo dão-se os detalhes da resolução do Exercício 3.30 dos apontamentos da disciplina⁷, onde se pretende implementar um ciclo que implemente o cálculo da aproximação até i=n da função exponencial $exp\ x=e^x$ via série de Taylor:

$$exp x = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$
 (1)

Seja $e \ x \ n = \sum_{i=0}^n \frac{x^i}{i!}$ a função que dá essa aproximação. É fácil de ver que $e \ x \ 0 = 1$ e que $e \ x \ (n+1) = e \ x \ n + \frac{x^{n+1}}{(n+1)!}$. Se definirmos $h \ x \ n = \frac{x^{n+1}}{(n+1)!}$ teremos $e \ x \ e \ h \ x$ em recursividade mútua. Se repetirmos o processo para $h \ x \ n$ etc obteremos no total três funções nessa mesma situação:

$$\begin{array}{l} e \ x \ 0 = 1 \\ e \ x \ (n+1) = h \ x \ n + e \ x \ n \\ h \ x \ 0 = x \\ h \ x \ (n+1) = x \ / \ (s \ n) * h \ x \ n \\ s \ 0 = 2 \\ s \ (n+1) = 1 + s \ n \end{array}$$

Segundo a regra de algibeira descrita na página 3 deste enunciado, ter-se-á, de imediato:

$$\begin{array}{l} e' \ x = prj \cdot \text{for loop init where} \\ init = (1, x, 2) \\ loop \ (e, h, s) = (h + e, x \ / \ s * h, 1 + s) \\ prj \ (e, h, s) = e \end{array}$$

⁶Exemplos tirados de [2].

⁷Cf. [2], página 102.

C Código fornecido

Problema 1

```
Tipos:
```

```
data Expr = Num Int
  | Bop Expr Op Expr deriving (Eq, Show)
data Op = Op String deriving (Eq, Show)
type Codigo = [String]
```

Functor de base:

```
baseExpr f g = id + (f \times (g \times g))
```

Instâncias:

```
\begin{array}{c} \textbf{instance} \ \textit{Read} \ \textit{Expr} \ \textbf{where} \\ \textit{readsPrec} \ \_ = \textit{readExp} \end{array}
```

Read para Exp's:

```
 readOp :: String \rightarrow [(Op, String)] \\ readOp \ input = \mathbf{do} \\ (x,y) \leftarrow lex \ input \\ return \ ((Op\ x),y) \\ readNum :: ReadS\ Expr \\ readNum = (\mathsf{map}\ (\lambda(x,y) \rightarrow ((Num\ x),y))) \cdot reads \\ readBinOp :: ReadS\ Expr \\ readBinOp = (\mathsf{map}\ (\lambda((x,(y,z)),t) \rightarrow ((Bop\ x\ y\ z),t))) \cdot \\ ((readNum\ `ou'\ (pcurvos\ readExp)) \\ `depois'\ (readOp\ `depois'\ readExp)) \\ readExp :: ReadS\ Expr \\ readExp = readBinOp\ `ou'\ (\\ readNum\ `ou'\ (\\ pcurvos\ readExp)) \\ \end{aligned}
```

Combinadores:

```
depois :: (ReadS\ a) \rightarrow (ReadS\ b) \rightarrow ReadS\ (a,b)
depois \_\_[] = []
depois r1 r2 input = [((x, y), i_2) | (x, i_1) \leftarrow r1 \text{ input},
   (y, i_2) \leftarrow r2 i_1
readSeq :: (ReadS \ a) \rightarrow ReadS \ [a]
readSeq r input
   = case (r input) of
      [] \rightarrow [([], input)]
     l \rightarrow concat \, (\mathsf{map} \ continua \ l)
        where continua\ (a, i) = map\ (c\ a)\ (readSeq\ r\ i)
            c \ x \ (xs, i) = ((x : xs), i)
ou :: (ReadS\ a) \to (ReadS\ a) \to ReadS\ a
ou r1 r2 input = (r1 input) + (r2 input)
senao :: (ReadS \ a) \rightarrow (ReadS \ a) \rightarrow ReadS \ a
senao r1 r2 input = case (r1 input) of
   [] \rightarrow r2 input
         \rightarrow l
readConst :: String \rightarrow ReadS \ String
readConst\ c = (filter\ ((\equiv c) \cdot \pi_1)) \cdot lex
pcurvos = parentesis '('')'
prectos = parentesis '[' ']'
chavetas = parentesis ' \{' ' \}'
```

```
\begin{array}{l} parentesis :: Char \rightarrow Char \rightarrow (ReadS\ a) \rightarrow ReadS\ a\\ parentesis\ --- [] = []\\ parentesis\ ap\ pa\ r\ input\\ = \mathbf{do}\\ ((\_,(x,\_)),c) \leftarrow ((readConst\ [ap])\ `depois'\ (\\ r\ `depois'\ (\\ readConst\ [pa])))\ input\\ return\ (x,c) \end{array}
```

Problema 2

```
Tipos:
```

```
type Fig = [(Origem, Caixa)]
type Origem = (Float, Float)

"Helpers":

col_blue = G.azure
col_green = darkgreen
darkgreen = G.dark (G.dark G.green)
```

Exemplos:

```
ex1Caixas = G.display (G.InWindow "Problema 4" (400,400) (40,40)) G.white $
  crCaixa\ (0,0)\ 200\ 200 "Caixa azul" col\_blue
ex2Caixas = G.display (G.InWindow "Problema 4" (400,400) (40,40)) G.white $
  caixasAndOrigin2Pict ((Comp Hb bbox gbox), (0.0, 0.0)) where
 bbox = Unid ((100, 200), ("A", col\_blue))
 gbox = Unid((50, 50), ("B", col\_green))
ex3Caixas = G.display (G.InWindow "Problema 4" (400,400) (40,40)) G.white mtest where
 mtest = caixasAndOrigin2Pict \$ (Comp Hb (Comp Ve bot top) (Comp Ve qbox2 ybox2), (0.0, 0.0))
 bbox1 = Unid ((100, 200), ("A", col_blue))
 bbox2 = Unid ((150, 200), ("E", col_blue))
 gbox1 = Unid ((50, 50), ("B", col\_green))
 gbox2 = Unid ((100, 300), ("F", col\_green))
 rbox1 = Unid ((300, 50), ("C", G.red))
 rbox2 = Unid((200, 100), ("G", G.red))
 wbox1 = Unid((450, 200), ("", G.white))
 ybox1 = Unid ((100, 200), ("D", G.yellow))
 ybox2 = Unid ((100, 300), ("H", G.yellow))
 bot = Comp\ Hb\ wbox1\ bbox2
 top = (Comp Ve (Comp Hb bbox1 qbox1) (Comp Hb rbox1 (Comp H ybox1 rbox2)))
```

A seguinte função cria uma caixa a partir dos seguintes parâmetros: origem, largura, altura, etiqueta e côr de preenchimento.

```
 crCaixa :: Origem \rightarrow Float \rightarrow Float \rightarrow String \rightarrow G.Color \rightarrow G.Picture \\ crCaixa (x,y) w h l c = G.Translate (x + (w / 2)) (y + (h / 2)) \$ G.pictures [caixa, etiqueta] \mathbf{where} \\ caixa = G.color c (G.rectangleSolid w h) \\ etiqueta = G.translate calc_trans_x calc_trans_y \$ \\ G.Scale calc_scale calc_scale \$ G.color G.black \$ G.Text l \\ calc_trans_x = (-((fromIntegral (length l)) * calc_scale) / 2) * base_shift_x \\ calc_trans_y = (-calc_scale / 2) * base_shift_y \\ calc_scale = bscale * (min h w) \\ bscale = 1 / 700 \\ base_shift_y = 100 \\ base_shift_x = 64
```

Função para visualizar resultados gráficos:

```
display = G.display (G.InWindow "Problema 4" (400,400) (40,40)) G.white
```

Problema 4

Funções para gestão de sistemas de ficheiros:

```
 \begin{array}{l} concatFS = inFS \cdot (\boxplus) \cdot (outFS \times outFS) \\ mkdir \ (x,y) = FS \ [(x,Dir \ y)] \\ mkfile \ (x,y) = FS \ [(x,File \ y)] \\ joinDupDirs :: (Eq \ a) \Rightarrow (FS \ a \ b) \rightarrow (FS \ a \ b) \\ joinDupDirs = anaFS \ (prepOut \cdot (id \times proc) \cdot prepIn) \ \textbf{where} \\ prepIn = (id \times (\mathsf{map} \ (id \times outFS))) \cdot sls \cdot (\mathsf{map} \ distr) \cdot outFS \\ prepOut = (\mathsf{map} \ undistr) \cdot (\boxplus) \cdot ((\mathsf{map} \ i_1) \times (\mathsf{map} \ i_2)) \cdot (id \times (\mathsf{map} \ (id \times inFS))) \\ proc = concat \cdot (\mathsf{map} \ joinDup) \cdot groupByName \\ sls = \langle lefts, rights \rangle \\ joinDup :: [(a, [b])] \rightarrow [(a, [b])] \\ joinDup = cataList \ [nil, g] \ \textbf{where} \ g = return \cdot \langle \pi_1 \cdot \pi_1, concat \cdot (\mathsf{map} \ \pi_2) \cdot (\widehat{:}) \rangle \\ createFSfromFile :: (Path \ a, b) \rightarrow (FS \ a \ b) \\ createFSfromFile \ ([a], b) = mkfile \ (a, b) \\ createFSfromFile \ (a : as, b) = mkdir \ (a, createFSfromFile \ (as, b)) \\ \end{array}
```

Funções auxiliares:

```
\begin{array}{l} checkFiles::(Eq\ a)\Rightarrow FS\ a\ b\to Bool\\ checkFiles=cataFS\ \widehat{((\land)}\cdot\langle f,g\rangle)\ \mathbf{where}\\ f=nr\cdot(\mathsf{fmap}\ \pi_1)\cdot lefts\cdot(\mathsf{fmap}\ distr)\\ g=and\cdot rights\cdot(\mathsf{fmap}\ \pi_2)\\ groupByName::(Eq\ a)\Rightarrow [(a,[b])]\to [[(a,[b])]]\\ groupByName=(groupBy\ (curry\ p))\ \mathbf{where}\\ p=\widehat{(\equiv)}\cdot(\pi_1\times\pi_1)\\ filterPath::(Eq\ a)\Rightarrow Path\ a\to [(Path\ a,b)]\to [(Path\ a,b)]\\ filterPath=filter\cdot(\lambda p\to \lambda(a,b)\to p\equiv a) \end{array}
```

Dados para testes:

• Sistema de ficheiros vazio:

```
efs = FS
```

• Nível 0

```
 f1 = FS \; [("f1", File "hello world")]   f2 = FS \; [("f2", File "more content")]   f00 = concatFS \; (f1, f2)   f01 = concatFS \; (f1, mkdir \; ("d1", efs))   f02 = mkdir \; ("d1", efs)
```

• Nível 1

```
\begin{array}{l} f10 = mkdir \ ("dl", f00) \\ f11 = concatFS \ (mkdir \ ("dl", f00), mkdir \ ("d2", f00)) \\ f12 = concatFS \ (mkdir \ ("dl", f00), mkdir \ ("d2", f01)) \\ f13 = concatFS \ (mkdir \ ("dl", f00), mkdir \ ("d2", efs)) \end{array}
```

• Nível 2

```
 f20 = mkdir ("d1", f10) 
 f21 = mkdir ("d1", f11) 
 f22 = mkdir ("d1", f12) 
 f23 = mkdir ("d1", f13) 
 f24 = concatFS (mkdir ("d1", f10), mkdir ("d2", f12))
```

• Sistemas de ficheiros inválidos:

```
ifs0 = concatFS (f1, f1)
ifs1 = concatFS (f1, mkdir ("f1", efs))
ifs2 = mkdir ("d1", ifs0)
ifs3 = mkdir ("d1", ifs1)
ifs4 = concatFS (mkdir ("d1", ifs1), mkdir ("d2", f12))
ifs5 = concatFS (mkdir ("d1", f1), mkdir ("d1", f2))
ifs6 = mkdir ("d1", ifs5)
ifs7 = concatFS (mkdir ("d1", f02), mkdir ("d1", f02))
```

Visualização em Graphviz:

```
dotFS :: FS \ String \ b \to \mathsf{IO} \ ExitCode
 dotFS = dotpict \cdot bmap \ \underline{"} \ id \cdot (cFS2Exp \ \mathsf{"root"})
```

Outras funções auxiliares

Lógicas:

```
\begin{array}{l} \textbf{infixr } 0 \Rightarrow \\ (\Rightarrow) :: (\textit{Testable prop}) \Rightarrow (a \rightarrow \textit{Bool}) \rightarrow (a \rightarrow \textit{prop}) \rightarrow a \rightarrow \textit{Property} \\ p \Rightarrow f = \lambda a \rightarrow p \ a \Rightarrow f \ a \\ \textbf{infixr } 0 \Leftrightarrow \\ (\Leftrightarrow) :: (a \rightarrow \textit{Bool}) \rightarrow (a \rightarrow \textit{Bool}) \rightarrow a \rightarrow \textit{Property} \\ p \Leftrightarrow f = \lambda a \rightarrow (p \ a \Rightarrow \textit{property } (f \ a)) .\&\&. (f \ a \Rightarrow \textit{property } (p \ a)) \\ \textbf{infixr } 4 \equiv \\ (\equiv) :: \textit{Eq } b \Rightarrow (a \rightarrow b) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow \textit{Bool}) \\ f \equiv g = \lambda a \rightarrow f \ a \equiv g \ a \\ \textbf{infixr } 4 \leqslant \\ (\leqslant) :: \textit{Ord } b \Rightarrow (a \rightarrow b) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow \textit{Bool}) \\ f \leqslant g = \lambda a \rightarrow f \ a \leqslant g \ a \\ \textbf{infixr } 4 \land \\ (\land) :: (a \rightarrow \textit{Bool}) \rightarrow (a \rightarrow \textit{Bool}) \rightarrow (a \rightarrow \textit{Bool}) \\ f \land g = \lambda a \rightarrow ((f \ a) \land (g \ a)) \end{array}
```

Compilação e execução dentro do interpretador:8

```
run = \mathbf{do} \{ system "ghc cp1819t"; system "./cp1819t" \}
```

D Soluções dos alunos

Os alunos devem colocar neste anexo as suas soluções aos exercícios propostos, de acordo com o "layout" que se fornece. Não podem ser alterados os nomes ou tipos das funções dadas, mas pode ser adicionado texto e/ou outras funções auxiliares que sejam necessárias.

Problema 1

Funções gerais:

```
inExpr :: Int + (Op, (Expr, Expr)) \rightarrow Expr

inExpr (i_1 x) = Num x

inExpr (i_2 (Op o, (a, b))) = Bop a (Op o) b

outExpr :: Expr \rightarrow Int + (Op, (Expr, Expr))
```

 $^{^8}$ Pode ser útil em testes envolvendo 8 Closs. Nesse caso, o teste em causa deve fazer parte de uma função main.

```
outExpr (Num x) = i_1 x
outExpr (Bop a (Op o) b) = i_2 (Op o, (a, b))
recExpr f = baseExpr id f
cataExpr g = g \cdot recExpr (cataExpr g) \cdot outExpr
```


Função calcula

```
 \begin{array}{l} calcula \; (Num \; x) = x \\ calcula \; (Bop \; x \; (Op \; y) \; z) \mid y \equiv "+" = (calcula \; x) + (calcula \; z) \\ \mid y \equiv " \star " = (calcula \; x) \ast (calcula \; z) \\ \mid y \equiv " - " = (calcula \; x) - (calcula \; z) \\ \mid y \equiv " / " = calcula \; x \div calcula \; z \\ \mid otherwise = \bot \\ \end{array}
```

Função show'

```
show' :: Expr \rightarrow String

show' \ (Num \ x) = show \ x

show' \ (Bop \ a \ (Op \ b) \ c) = " \ (" + (show' \ a) + " \ " + (id \ b) + " \ " + (show' \ c) + ") "
```

Função compile

```
 \begin{aligned} & compile Aux :: Expr \rightarrow Codigo \\ & compile Aux \; (Num \; a) = ["\texttt{PUSH} " ++ (show \; a)] \\ & compile Aux \; (Bop \; x \; (Op \; y) \; z) \mid y \equiv "+" = concat \; (compile Aux \; x) : (compile Aux \; z) : [["\texttt{ADD}"]] \\ & \mid y \equiv " * " = concat \; (compile Aux \; x) : (compile Aux \; z) : [["\texttt{MUL}"]] \\ & \mid y \equiv " - " = concat \; (compile Aux \; x) : (compile Aux \; z) : [["\texttt{SUB}"]] \\ & \mid y \equiv " / " = concat \; (compile Aux \; x) : (compile Aux \; z) : [["\texttt{DIV}"]] \\ & \mid otherwise = \bot \\ & compile :: String \rightarrow Codigo \\ & compile \; x = compile Aux \; \$ \; read \; x \end{aligned}
```

Problema 2

Funções gerais:

```
\begin{array}{l} inL2D :: a + (b, (X\ a\ b, X\ a\ b)) \to X\ a\ b \\ inL2D\ (i_1\ a) = Unid\ a \\ inL2D\ (i_2\ (b, (x, y))) = Comp\ b\ x\ y \\ outL2D :: X\ a\ b \to a + (b, (X\ a\ b, X\ a\ b)) \\ outL2D\ (Unid\ a) = i_1\ a \\ outL2D\ (Comp\ b\ x\ y) = i_2\ (b, (x, y)) \\ recL2D\ f = baseL2D\ id\ id\ f\ f \\ baseL2D\ f\ g\ h\ i = f + (g\times (h\times i)) \\ cataL2D\ g = g\cdot recL2D\ (cataL2D\ g)\cdot outL2D \end{array}
```

 $anaL2D \ g = inL2D \cdot recL2D \ (anaL2D \ g) \cdot g$

$$\begin{array}{c|c} C & \longrightarrow A + (B \times (C \times C)) \\ & & & \downarrow \\ \text{map } (id + (id \times (anaL2D \ g \times anaL2D \ g)) \\ X \ A \ B & \longleftarrow & inFS \end{array} \\ A + (B \times (X \ A \ B \times X \ A \ B)) \end{array}$$

 $collectLeafs = \bot$

Função dimen

$$\begin{array}{l} dimen :: X \ Caixa \ Tipo \rightarrow (Float, Float) \\ dimen = cataL2D \ g \\ \textbf{where} \\ g :: Caixa + (Tipo, ((Float, Float), (Float, Float))) \rightarrow (Float, Float) \\ g \ (i_1 \ ((x,y), -)) = (fromIntegral \ x, fromIntegral \ y) \\ g \ (i_2 \ (H, ((x1,y1), (x2,y2)))) \ \mid (y1/2) < y2 = (x1+x2, (y1/2)+y2) \\ \mid otherwise = (x1+x2,y1) \\ g \ (i_2 \ (Hb, ((x1,y1), (x2,y2)))) = (x1+x2, max \ y1 \ y2) \\ g \ (i_2 \ (Ht, ((x1,y1), (x2,y2)))) = (x1+x2, y1+y2) \\ g \ (i_2 \ (V, ((x1,y1), (x2,y2)))) \ \mid (x1/2) < x2 = ((x1/2)+x2, y1+y2) \\ \mid otherwise = (x1,y1+y2) \\ g \ (i_2 \ (Ve, ((x1,y1), (x2,y2)))) = (max \ x1 \ x2, y1+y2) \\ g \ (i_2 \ (Vd, ((x1,y1), (x2,y2)))) = (x1+x2, y1+y2) \\ g \ (i_2 \ (Vd, ((x1,y1), (x2,y2)))) = (x1+x2, y1+y2) \\ \end{array}$$

$$X \ Caixa \ Tipo \longrightarrow Caixa + (Tipo \times (X \ Caixa \ Tipo \times X \ Caixa \ Tipo)) \\ \downarrow \text{map} \ (id+(id\times(cataL2D \ g\times cataL2D \ g)) \\ (Float, Float) \longleftarrow Gaixa + (Tipo \times ((Float, Float)) \times (Float, Float))) \end{array}$$

Função calcOrigins

Função agrup_caixas

Função calc

```
 \begin{array}{l} {\it calc} :: {\it Tipo} \rightarrow {\it Origem} \rightarrow ({\it Float}, {\it Float}) \rightarrow {\it Origem} & {\it --} \ {\it relação} \ {\it das} \ {\it caixas} \ {\it --} \ {\it posição} \ {\it da} \ {\it caixaa} \ {\it a}) \ {\it --} \ {\it posição} \ {\it relative} \ {\it calc} \ {\it V} \ (x,y) \ (x2,y2) = (x+(x2/2),y2+y) \ {\it calc} \ {\it Ve} \ (x,y) \ (x2,y2) = (x2+x,y2+y) \ {\it calc} \ {\it He} \ (x,y) \ (x2,y2) = (x2+x,y+(y2/2)) \ {\it calc} \ {\it He} \ (x,y) \ (x2,y2) = (x2+x,y2+y) \ {\it calc} \ {\it He} \ (x,y) \ (x2,y2) = (x2+x,y2+y) \ {\it calc} \ {\it He} \ (x,y) \ (x2,y2) = (x2+x,y2+y) \ {\it calc} \ {\it He} \ (x,y) \ (x2,y2) = (x2+x,y) \end{array}
```

Função mostra_caixas

```
mostra\_caixas :: (L2D, Origem) \rightarrow \mathsf{IO}\ () \\ mostra\_caixas \ x = display \$ \ caixas And Origin 2 Pict \ x
```

Função caixas And Origin 2 Pict

```
caixasAndOrigin2Pict x = G.pictures \$ map f \$ agrup\_caixas \$ calcOrigins x

where

f (origem, caixa) = crCaixa origem (fromIntegral \$ \pi_1 \$ dimenCaixa caixa) (fromIntegral \$ \pi_2 \$ dimenCaixa)
```

Função auxiliares

```
dimenCaixa\ ((x,y),t) = (fromIntegral\ x, fromIntegral\ y)

stringCaixa\ (x, (string, color)) = string

colorCaixa\ (x, (string, color)) = color
```

Problema 3

Solução

```
cal x = -(x \uparrow 2) / 2

cos' x = prj \cdot \text{for loop init where}

loop (c, h, s, k) = (c + h, h * (-(x \uparrow 2)) / s, s + k, k + 8)

init = (1, a1, 12, 18)

a1 = -(x \uparrow 2) / 2

prj (c, h, s, k) = c
```

Problema 4

Triologia "ana-cata-hilo":

$$\begin{aligned} & \textbf{where} \\ & f\left(x,y\right) = (x,outNode\ y) \\ & outNode\ (File\ f) = i_1\ f \\ & outNode\ (Dir\ g) = i_2\ g \\ & baseFS\ f\ g\ h = \mathsf{map}\ (f\times(g+h)) \\ & cataFS:: ([(a,b+c)]\to c)\to FS\ a\ b\to c \\ & cataFS\ g = g\cdot recFS\ (cataFS\ g)\cdot outFS \\ & FS\ A\ B \xrightarrow{\quad outFS\quad} [A\times(B+FS\ A\ B)] \\ & cataFS\ g \\ & C \swarrow \qquad \qquad [A\times(B+C)] \\ & anaFS:: (c\to [(a,b+c)])\to c\to FS\ a\ b \\ & anaFS\ g = inFS\cdot recFS\ (anaFS\ g)\cdot g \\ & C \xrightarrow{\quad g\quad} [A\times(B+C)] \\ & anaFS\ g \\ & FS\ A\ B \swarrow \qquad \qquad [A\times(B+C)] \\ & \text{map}\ (id+id\times anaFS\ g) \\ & FS\ A\ B \swarrow \qquad \qquad [A\times(B+FS\ A\ B)] \end{aligned}$$

$$hyloFS \ g \ h = cataFS \ g \cdot anaFS \ h$$

Outras funções pedidas:

Função check

Função tar

$$\begin{array}{l} tar :: FS \ a \ b \rightarrow [(Path \ a,b)] \\ tar = cataFS \ g \\ \textbf{where} \\ g \ l = concat \ (\mathsf{map} \ f \ l) \\ f \ (a,i_1 \ b) = [([a],b)] \\ f \ (a,i_2 \ lista) = \mathsf{map} \ (h \ a) \ lista \\ h \ elemento \ (lista2, conteudo) = (elemento : lista2, conteudo) \\ FS \ A \ B \xrightarrow{outFS} \ \ [A \times (B + FS \ A \ B)] \\ \downarrow^{\mathsf{map} \ (id + id \times cataFS \ g)} \\ [(Path \ A, B)] \xleftarrow{g} \ [A \times (B + [(Path \ A, B)])] \end{array}$$

Função untar

$$\begin{array}{l} \textit{untar} :: (\textit{Eq } a) \Rightarrow [(\textit{Path } a, b)] \rightarrow \textit{FS } a \textit{ b} \\ \textit{untar} = \textit{anaFS } \textit{ g} \\ \textbf{where} \\ \textit{g } \textit{l} = \text{map } \textit{f } \textit{l} \\ \textit{f } ([h], \textit{file}) = (h, i_1 \textit{ file}) \\ \textit{f } ((h:t), \textit{file}) = (h, i_2 [(t, \textit{file})]) \\ \\ [(\textit{Path } A, B)] \xrightarrow{\textit{g}} [A \times (B + [(\textit{Path } A, B)])] \\ \\ \textit{cataFS } \textit{g} \bigvee_{\textit{inFS}} & \bigvee_{\textit{inFS}} [A \times (B + \textit{FS } A \textit{B})] \end{array}$$

Função find

Função new

$$new :: (Eq\ a) \Rightarrow Path\ a \rightarrow b \rightarrow FS\ a\ b \rightarrow FS\ a\ b$$
 $new\ path\ file = untar \cdot f\ (path, file) \cdot tar$
 \mathbf{where}
 $f\ a\ l = a : l$

Resposta: Continua a ser válida pois como a check vê se existe ficheiros e diretorias repetidas e a check-Files vê apenas ficheiros, então neste caso não vai fazer diferença porque o que as duas tem em comum é o que a função *new* adiciona.

Função cp

```
cp :: (Eq\ a) \Rightarrow Path\ a \rightarrow Path\ a \rightarrow FS\ a\ b \rightarrow FS\ a\ b
cp\ src\ fnl = untar \cdot (f\ src\ fnl) \cdot tar
\mathbf{where}
f\ []\ \pi_2\ l = l
f\ \pi_1\ []\ l = l
f\ \pi_1\ \pi_2\ [] = []
f\ \pi_1\ \pi_2\ l = (\pi_2, procura\ \pi_1\ l) : l
procura\ path\ ((p, file) : t) \mid p \equiv path = file
\mid otherwise = procura\ path\ t
```

Função rm

```
\begin{array}{l} rm::(Eq\ a)\Rightarrow(Path\ a)\rightarrow(FS\ a\ b)\rightarrow FS\ a\ b\\ rm\ path=untar\cdot f\ path\cdot tar\\ \textbf{where}\\ f\ []\ l=l\\ f\ \_[]=[]\\ f\ path\ ((p,file):t)\mid path\equiv p=t\\ \mid otherwise=(p,file):f\ path\ t\\ \\ cFS2Exp::a\rightarrow FS\ a\ b\rightarrow(Exp\ ()\ a)\\ cFS2Exp=\bot \end{array}
```

Índice

```
\text{ET}_{E}X, 1
    lhs2TeX, 1
Cálculo de Programas, 1, 2, 6
    Material Pedagógico, 1
Combinador "pointfree"
    cata, 10
    either, 3, 7, 13, 18
    \pi_1, 3, 6, 8–11, 13, 17, 18, 20
    \pi_2, 7–10, 13, 17, 18, 20
    for, 6, 10, 17
    length, 8, 9, 12, 18
    map, 7, 11, 13, 15–19
    uncurry, 3, 8, 9, 13
Functor, 2, 5, 6, 14, 17
GCC, 2
Graphviz, 9, 14
Haskell, 1–3
    "Literate Haskell", 1
    Gloss, 2, 5, 14
    interpretador
       GHCi, 2
    QuickCheck, 2
HTML, 4
Números naturais (IN), 6, 10
Programação dinâmica, 6
Programação literária, 1
Stack machine, 3
U.Minho
    Departamento de Informática, 1
Utilitário
    LaTeX
      bibtex, 2
       makeindex, 2
```

Referências

- [1] D.E. Knuth. *Literate Programming*. CSLI Lecture Notes Number 27. Stanford University Center for the Study of Language and Information, Stanford, CA, USA, 1992.
- [2] J.N. Oliveira. *Program Design by Calculation*, 2018. Draft of textbook in preparation. viii+297 pages. Informatics Department, University of Minho.