Mif12 Algorithmique distribuée

Université Lyon 1 Département Informatique

M1 2020/2021

Mif12 Algorithmique distribuée

TD1

Exercice 1 : Précision des horloges

- **Q 1.** Considérons une horloge basée sur un pendule oscillant à une fréquence de 1 Hz. Supposons que cette horloge dérive de 0,2 Hz (en prenant du retard). Au bout de combien de temps, cette horloge sera décalée (en retard) d'une seconde par rapport à une horloge ne dérivant pas ?
- **Q 2.** Même question que précédemment si l'horloge est une horloge à quartz dont la fréquence d'oscillation (de vibration) est de 32768 Hz.
- Q 3. Conclure sur la précision d'une horloge.

Exercice 2 : GPS (très simplifié!)

Supposons qu'un récepteur GPS se trouve sur la droite y=-x+8 km dans le plan. Il reçoit les signaux de 2 satellites appelés A et B, tous les deux situés dans le plan. Le satellite A est localisé au point $p^A=(6 \text{ km}, 6 \text{ km})$ et le satellite B est localisé au point $p^B=(2 \text{ km}, 1 \text{ km})$.

Supposons que les deux signaux GPS sont transmis par les deux satellites au même instant noté t. Le récepteur GPS reçoit le signal de A 3,3 μ s avant le signal de B.

- Q 1. Formalisez le problème pour trouver la localisation du récepteur GPS.
- Q 2. Est-ce que le récepteur GPS est plutôt à la position (2 km, 6 km) ou à la position (4 km, 4 km)?
- ${\bf Q}$ 3. Quel est le temps (dans l'échelle de temps du système GPS) quand le récepteur GPS reçoit le signal de B? Comment le récepteur GPS se synchronise?

Exercice 3: NTP

Considérons une machine, notée M, qui utilise le protocole NTP pour se synchroniser avec un serveur noté S. On considère les paramètres suivants :

- t_{aller} : temps écoulé entre le moment où M horodate la requête NTP avec t_1 et le moment où S horodate la même requête NTP avec t_2 .
- t_{retour} : temps écoulé entre le moment où S horodate la réponse NTP avec t_3 et le moment où M horodate la même réponse NTP avec t_4 ,
- d : le décalage en temps de l'horloge de M par rapport à l'horloge de S.
- **Q 1.** Quelle hypothèse fait le protocole NTP sur d?
- **Q 2.** Exprimer t_{aller} en fonction de t_1 , t_2 et d.
- **Q 3.** Exprimer t_{retour} en fonction de t_3 , t_4 et d.
- **Q 4.** Quelle est la 2e hypothèse faite par le protocole NTP pour déterminer d.
- **Q** 5. Déterminer d.

Mif12 Algorithmique distribuée

- **Q 6.** Quels sont les phénomènes qui font que t_{retour} n'est pas forcément égal à t_{aller} ?
- **Q 7.** Quelle est la différence acceptable entre t_{aller} et t_{retour} si on se contente d'une précision à la dixième de seconde entre M et S?

Exercice 4: Ordre causal et horloges logiques

Toutes les horloges logiques des trois processus du programme distribué, donné dans la figure 1, sont initialisées à zéro au début du programme. On suppose que la k^e action du processus i est noté a_i^k .

FIGURE 1 – Exécution d'un programme distribué

- **Q 1.** Comparer les actions a_1^1 et a_3^3 . Même question pour a_1^3 et a_3^3 .
- **Q 2.** Indiquez les actions qui précèdent a_3^3 dans l'ordre causal. Même question pour a_2^4 .
- **Q** 3. Indiquez les horloges de Lamport pour chaque action, ainsi que les valeurs d'horloge indiquées dans chacun des messages transmis dans ce programme.
- Q 4. Montrer que l'horloge de Lamport vérifie la cohérence d'horloges.
- **Q 5.** Que peut-on dire des horloges de Lamport de deux actions concurrentes?
- **Q 6.** Pour un action donnée, à quoi correspond son horloge de Lamport 1?
- **Q 7.** Indiquez les horloges vectorielles pour chaque action, ainsi que les valeurs d'horloge indiquées dans chacun des messages transmis dans ce programme.
- **Q 8.** Montrer que : $a \to b \Leftrightarrow C(a) < C(b)$ (C(x) étant l'horloge vectorielle de l'action x).
- **Q 9.** Montrer que : $a||b \Leftrightarrow C(a)$ et C(b) ne peuvent pas être comparées (C(x) étant l'horloge vectorielle de l'action x).