

State of the Semantic Web

Beijing, China, 2006-10-16

Ivan Herman, W3C

What will I talk about?

- The history of the Semantic Web goes back to several years now
- It is worth looking at what has been achieved, where we are, and where we might be going...

Let us look at some results first!

The basics: RDF(S)

- We have a solid specification since 2004: well defined (formal) semantics, clear RDF/XML syntax
- *Lots* of tools are available. Are listed on W3C's wiki:
 - RDF programming environment for 14+ languages, including C, C++, Python, Java, Javascript, Ruby, PHP,... (no Cobol or Ada yet sad smiley!)
 - 13+ Triple Stores, ie, database systems to store (sometimes huge!) datasets
 - etc
- Some of the tools are Open Source, some are not; some are very mature, some are not : it is the usual picture of software tools, nothing special any more!
- Anybody can start developing RDF-based applications today

The basics: RDF(S) (cont.)

- There are lots of tutorials, overviews, and books around
 - again, some of them good, some of them bad, just as with any other areas...
- Active developers' communities
- Large datasets are accumulating. E.g.:
 - IngentaConnect bibliographic metadata storage: over 200 million triplets
 - RDF version of Wikipedia: more than 47 million triplets
 - tracking the US Congress: data stored in RDF (around 25 million triplets)
 - RDFS/OWL Representation of Wordnet: also downloadable as 150MB of RDF/XML
 - "Département/canton/commune" structure of France published by the French Statistical Institute

Ontologies: OWL

- This is also a stable specification since 2004
- Separate layers have beed defined, balancing expressibility vs. implementability (OWL-Lite, OWL-DL, OWL-Full)
 - quite a controversial issue, actually...
- Looking at the tool list on W3C's wiki again:
 - a number programming environments (in Java, Prolog, ...) include OWL reasoners
 - there are also stand-alone reasoners (downloadable or on the Web)
 - ontology editors come to the fore
- OWL-DL and OWL-Lite relies on Description Logic, ie, can use a large body of accumulated knowledge

Ontologies

- Large ontologies are being developed (converted from other formats or defined in OWL)
 - eClassOwl: eBusiness ontology for products and services, 75,000 classes and 5,500 properties
 - the Gene Ontology: to describe gene and gene product attributes in any organism
 - UniProt: protein sequence and annotation terminology and data

Vocabularies

- There are also a number "core vocabularies" (not necessarily OWL based)
 - SKOS Core: about knowledge systems
 - Dublin Core: about information resources, digital libraries, with extensions for rights, permissions, digital right management
 - FOAF: about people and their organizations
 - DOAP: on the descriptions of software projects
 - MusicBrainz: on the description of CDs, music tracks, ...
 - SIOC: Semantically-Interlinked Online Communities
 - ...
- One should *never* forget: ontologies/vocabularies must be shared and reused!

A mix of ontologies (a life science example)...

Ontologies, Vocabularies

- Ontology and vocabulary *development* is still a complex task
- The W3C SW Best Practices and Deployment Working Group has developed some documents:
 - "Best Practice Recipes for Publishing RDF Vocabularies"
 - "Defining N-ary relations"
 - "Representing Classes As Property Values"
 - "Representing "value partitions" and "value sets""
 - "XML Schema Datatypes in RDF and OWL"

the work is continuing in the (new) SW Deployment Working Group

Querying RDF: SPARQL

- Querying RDF graphs becomes essential
- SPARQL is almost here
 - query language based on graph patterns
 - there is also a protocol layer to use SPARQL over, eg, HTTP
 - hopefully a Recommendation mid 2007
- There are a number of implementations already
- There are also SPARQL "endpoints" on the Web:
 - send a query and a reference to data over HTTP GET, receive the result in XML or JSON
 - applications may not need any direct RDF programming any more, just a SPARQL endpoint

SPARQL as the *only* interface to RDF data?

```
■ http://www.sparql.org/sparql?query=...
 with the guery:
SELECT ?translator ?translationTitle ?originalTitle ?originalDate
FROM <a href="http://.../TR">http://.../TR</a> and Translations.rdf>
WHERE {
   ?trans rdf:type trans:Translation;
                   trans:translationFrom ?orig;
                                            [ contact:fullName ?translator ];
                   trans:translator
                   dc:language
                                            "fr":
                   dc:title
                                            ?translationTitle.
   ?orig rdf:type rec:REC;
                   dc:date
                                            ?originalDate;
                   dc:title
                                            ?originalTitle.
ORDER BY ?translator ?originalDate
```

■ yields...

A word of warning on SPARQL...

- It is *not* a Recommendation yet
- New issues may pop up at the last moment via reviews
 - a query language needs very precise semantics and that is not that easy @
- Some features *are* missing
 - query on list/sequence/set membership
 - control and/or description on the entailment regimes of the triple store (RDFS? OWL-DL? OWL-Lite? ...)
 - modify the triple store
 - ...

postponed to a next version...

Of course, not everything is so rosy...

- There are a number of issues, problems
 - how to get RDF data
 - missing functionalities: rules, "light" ontologies, fuzzy reasoning, necessity to review RDF and OWL, ...
 - misconceptions, messaging problems
 - need for more applications, deployment, acceptance
 - etc

How to get RDF data?

- Of course, one could create RDF data manually...
- ... but that is unrealistic on a large scale
- Goal is to generate RDF data automatically when possible and "fill in" by hand only when necessary

Data may be around already...

- Part of the (meta)data information is present in tools ... but thrown away at output
 - e.g., a business chart can be generated by a tool: it "knows" the structure, the classification, etc. of the chart, but, usually, this information is lost
- storing it in web data would be easy!
- "SW-aware" tools are around (even if you do not know it...), though more would be good:
 - Photoshop CS stores metadata in RDF in, say, jpg files (using XMP)
 - RSS 1.0 feeds are generated by (almost) all blogging systems (a huge amount of RDF data!)
 - ...

Data may be extracted (a.k.a. "scraped")

- Different tools, services, etc, come around every day:
 - get RDF data associated with images, for example:
 - o service to get RDF from flickr images (see example)
 - service to get RDF from XMP (see example)
 - XSLT scripts to retrieve microformat data from XHTML files
 - scripts to convert spreadsheets to RDF
 - etc
- Most of these tools are still individual "hacks", but show a general tendency
- Hopefully more tools will emerge

GRDDL Working Group

■ GRDDL WG's goal is a more systematic way of defining "scrapers" for XHTML files (eg, for microformats)

```
<html xmlns="http://www.w3.org/1999/">
  <head profile="http://www.w3.org/2003/g/data-view">
        <title>Some Document</title>
        link rel="transformation" href="http:.../dc-extract.xsl"/>
        <meta name="DC.Subject" content="Some subject"/>
        ...
    </head>
    ...
    <span class="date">2006-01-02</span>
    ...
```

■ yields, by running the file through dc-extract.xsl:

```
<rdf:Description rdf:about="...">
    <dc:subject>Some subject</dc:subject>
    <dc:date>2006-01-02</dc:date>
</rdf:Description>
```

Another Future Solution: RDFa

- RDFa (formerly known as RDF/A) extends XHTML by:
 - extending the link and meta to include child elements
 - add metadata to any elements (a bit like the class in microformats, but via dedicated properties)
- It is very similar to microformats, but with more rigor:
 - it is a general framework (instead of an "agreement" on the meaning of, say, a class attribute value)
 - terminologies can be mixed more easily
- The W3C Working Group on SW Deployment has this on its charter
- May be considered as an alternative serialization of (part of) RDF; may be bound to GRDDL in practice

RDFa example

■ For example

```
<div about="http://uri.to.newsitem">
    <span property="dc:date">March 23, 2004</span>
    <span property="dc:title">Rollers hit casino for £1.3m</span>
    By <span property="dc:creator">Steve Bird</span>. See
    <a href="http://www.a.b.c/d.avi" rel="dcmtype:MovingImage">
        also video footage</a>...
</div>
```

■ yields, by running the file through a processor:

Linking to SQL

- A huge amount of data in Relational Databases
- Although tools exist, it is not feasible to *convert* that data into RDF
- Instead: SQL

 RDF "bridges" are being developed:
 - a query to RDF data is transformed into SQL on-the-fly
 - the modalities are governed by small, local ontologies or rules
- An active area of development, on the radar screen of W3C!

SPARQL as a unifying point?

Missing features, functionalities...

- Everybody has a favorite item, ie, the list tends to infinite...
- W3C is a *standardization* body, and has to look at where a consensus can be found

Rules

- OWL-DL and OWL-Lite are based on Description Logic
- There are things that DL cannot express
 - (though there are things that are difficult to express with rules and easy in DL...)
- A well known examples is Horn rules (eg, the "uncle" relationship):
 - $(P_1 \land P_2 \land ...) \rightarrow C$
 - e.g.: for any «X», «Y» and «Z»: "if «Y» is a parent of «X», and «Z» is a brother of «Y» then «Z» is the uncle of «X»"
- Several attempts already to combine Semantic Web with Rules (Metalog, RuleML, SWRL, WRL, cwm, ...)

Some typical use cases

- Negotiate eBusiness contracts across platforms: supply vendor-neutral representation of your business rules so that others may find you
- Describe privacy requirements and policies, and let clients "merge" those (e.g., when paying with a credit card)
- Medical decision support, combining rules on diagnoses, drug prescription conditions, etc,
- Extend OWL with rule-based statements (e.g., the uncle example)

But: it is not easy!

- From a theoretical viewpoint, Description Logic and Logic Programming are different:
 - DL is based on FOL Model Theory, while LP not exactly
 - Open vs. Closed Worlds, monotonicity vs. non-monotonicity: OWL operates on an Open World, Rules usually don't
 - ...hence it is not easy to combine these
- Rule systems often operate with procedural rules ("execute this and this Java procedure if...")

Rules Interchange Format Working Group

- The W3C Working Group started at the beginning of November 2005
- Work is planned in two "phases":
 - 1. construct an extensible format for rule interchange with simple rule systems
 - 2. define more complex extensions
- Great interest from financial services, business rules, life science community, ...
- Work is going on!

"Light" ontologies

- For a number of applications RDFS is not enough, but even OWL Lite is too much
 - OWL-Lite needs a DL reasoner to operate properly
- There may be a need for a "light" version of OWL, just a few extra possibilities v.a.v. RDFS
- There are a number of proposals, papers, prototypes around: RDFS++, OWL Feather, pD*, ...
 - pD*, for example, has property characterization (symmetric, transitive, inverse), class and property equivalence, and property restrictions with some or all values
- This might consolidate in the coming years

Revisions of RDF and OWL?

- Such specifications have their own life
- Missing features come up, errors show up
- There will probably be a next version at some point

Revision of the RDF model?

- Some restrictions in RDF may be unnecessary (bNodes as predicates, literals as subject, …)
- Issue of "named graph": possibility to give a URI to a set of triplets and make statements on those
- Syntax issues in RDF/XML (eg, QNames in properties)
- Alternative XML serializations?
- Add a time tag to statements? A probability value? A measure of "fuzzyness"?
- Internationalization issues with literals (how do I set "bidi" writing?)

These are just ideas floating around...

Revision of OWL? (OWL 1.1)

- There is a group working on this (outside W3C for now)
- Small additions to the current OWL:
 - "qualified cardinality restrictions" (i.e., "class instance must have two black cats")
 - disjoint properties
 - reflexive, irreflexive properties
 - own datatype construct instead of complex XML Schema datatypes
 - some syntactic sugar (eg, disjoint union)
 - ...
- At this moment not yet decided how, if, and when this would become a W3C document

Other items...

- Fuzzy logic
 - look at alternatives of Description Logic based on fuzzy logic
 - alternatively, extend RDF(S) with fuzzy notions
- Probabilistic statements
 - have an OWL class membership with a specific probability
 - combine reasoners with Bayesian networks
- Security, trust, provenance
 - combining cryptographic techniques with the RDF model, sign a portion of the graph, etc
- Ontology merging, alignment, term equivalences, versioning, development, ...
- etc

(Need a new PhD topic?)

A major problem: messaging

- Some of the messaging on Semantic Web has gone terribly wrong . See these statements:
 - "the Semantic Web is a reincarnation of Artificial Intelligence on the Web"
 - "it relies on giant, centrally controlled ontologies for "meaning" (as opposed to a democratic, bottom-up control of terms)"
 - "one has to add metadata to all Web pages, convert all relational databases, and XML data to use the Semantic Web"
 - "it is just an ugly application of XML"
 - "one has to learn formal logic, knowledge representation techniques, description logic, etc, to use it"
 - "it is, essentially, an academic project, of no interest for industry"
 - ...
- Some simple messages should come to the fore!

RDF # RDF/XML!

- RDF is a model, and RDF/XML is only one possible serialization thereof
 - lots of people prefer, for example, Turtle
 - a good percentage of the tools have Turtle parsers, too!
- The model is, after all, simple: interchange format for Web resources. That is it 🥯!

RDF # RDF/XML! (cont.)

- RDF/XML is indeed a very complex serialization format
- Certainly not the nicest possible XML application
 - good to know that it was created when XML was not yet final...
- Again: it is only syntactic sugar!
- One has to emphasize: RDF is *not* an XML application!

RDF is not *that* complex...

- Of course, the formal semantics of RDF *is* complex
- But the average user should not care, it is all "under the hood"
 - how many users of SQL have ever read its formal semantics?
 - it is not much simpler than RDF...
- *People should "think" in terms of graphs*, the rest is syntactic sugar!

Semantic Web ≠ Ontologies on the Web!

- Ontologies are important, but use them *only when necessary*
- You can be a perfectly decent citizen of the Semantic Web if you do *not* use Ontologies, not even RDFS!
- The Semantic Web is about integrating data on the Web; ontologies (and/or rules) are tools to achieve that when necessary
- Remember the "light ontologies" issue?

SW Ontologies ≠ some central, big ontology!

- The "ethos" of the Semantic Web is on *sharing*, ie, sharing possibly small ontologies
- A huge, central ontology would be unmanageable
- OWL includes statements for versioning, for equivalence and disjointness of terms
 - a revision of those may be necessary, but the goal is clear
- The practice:
 - SW applications using ontologies always mix large number of ontologies and vocabularies (FOAF, DC, and others)
 - the real advantage comes from this mix: that is also how new relationships may be discovered

The mix of ontologies...

Semantic Web ≠ an academic research only!

- SW has indeed a strong foundation in research results
- But remember:
 - (1) the Web was born at CERN...
 - (2) ... was first picked up by high energy physicists...
 - (3) ...then by academia at large...
 - (4) ...then by small businesses and start-ups...
 - (5) "big business" came only later!
- network effect kicked in early...
- Semantic Web is now at #4, and moving to #5!

May start with small communities

- The needs of a deployment application area:
 - have serious problem or opportunity
 - have the intellectual interest to pick up new things
 - have motivation to fix the problem
 - its data connects to other application areas
 - have an influence as a showcase for others
- The high energy physics community played this role for the Web in the 90's

Some RDF deployment areas (cont)

- Some deployment areas are already very active: Health Care and Life Sciences, Digital Libraries, Defense
 - also at W3C, in the form of an Interest Group for HCLS
- Others are coming to the fore: eGovernment, energy sector (oil industry), financial services, ...

The "corporate" landscape is moving

- See, for example, the Semantic Technology Conference series
 - not a scientific conference, but commercial people making real money!
 - speakers in 2006: from IBM, Cisco, BellSouth, GE, Walt Disney, Nokia, Oracle, ...
 - not all referring to Semantic Web (eg, RDF, OWL, ...) but semantics in general
 - but they might come around!
- Major companies offer (or will offer) Semantic Web tools or systems using Semantic Web: Adobe, Oracle, IBM, HP, Software AG, WebMethods, Northrop Gruman, Altova, ...
- "Corporate Semantic Web" listed as major technology by Gartner in 2006

Applications are not always very complex...

- Eg: simple semantic annotations of patients' data greatly enhances communications among doctors
- What is needed: some simple ontologies, an RDFa/microformat type editing environment
- Simple but powerful!

Data integration

- Data integration comes to the fore as one of *the* SW Application areas
- Very important for large application areas (life sciences, energy sector, eGovernment, financial institutions), as well as everyday applications (eg, reconciliation of calendar data)
- Life sciences example:
 - data in different labs...
 - data aimed at scientists, managers, clinical trial participants...
 - large scale public ontologies (genes, proteins, antibodies, ...)
 - different formats (databases, spreadsheets, XML data, XHTML pages)
 - etc

Life Sciences (cont.)

General approach

- 1. Map the various data onto RDF
 - assign URI-s to your data
 - "mapping" may mean on-the-fly SPARQL to SQL conversion, "scraping", etc
- 2. Merge the resulting RDF graphs (with a possible help of ontologies, rules, etc, to combine the terms)
- 3. Start making queries on the whole!
- Remember the role of SPARQL?

Example: antibodies demo

- Scenario: find the known antibodies for a protein in a specific species
- Combine ("scrape"...) three different data sources
- Use SPARQL as an integration tool (see also demo online)

There has been lots of R&D

- Boeing, MITRE Corp., Elsevier, EU Projects like Sculpteur and Artiste, national projects like MuseoSuomi, DartGrid from Zheijang University, ...
- Developments are under way at various places in the area

Portals

- Vodafone's Live Mobile Portal
 - search application (e.g. ringtone, game, picture) using RDF
 - o page views per download decreased 50%
 - o ringtone up 20% in 2 months
- A number of other portal examples: Sun's White Paper Collections and System Handbook collections; Nokia's S60 support portal; Harper's Online magazine linking items via an internal ontology; Oracle's virtual press room; Opera's community site,...

Improved Search via Ontology: GoPubMed

- Improved search on top of pubmed.org
 - search results are ranked using the specialized ontologies
 - extra search terms are generated and terms are highlighted
- Importance of *domain specific ontologies* for search improvement

Thank you for your attention!

(These slides are publicly available on http://www.w3.org/2006/Talks/1016-Beijing-IH/)