Fisica sperimentale I

Riccardo Rasori

A.A. 2024/2025

Indice

1	Intr	roduzione	3
	1.1	Il metodo scientifico	3
	1.2	Grandezze fisiche	3
		1.2.1 Tempo	4
		1.2.2 Lunghezza	4
		1.2.3 Massa	4
	1.3	La notazione scientifica	4
		1.3.1 Num cifre significative	4
	1.4	Meccanica	5
		1.4.1 Cinematica	6
2	Vet	tori 1	11
	2.1	Spostamento	11
	2.2	Somma di vettori: Metodo grafico	11
	2.3	Sottrazione	12
	2.4	Componenti dei vettori	12
	2.5	T7 .	13
		Versori	гo
	2.6		13
	$\frac{2.6}{2.7}$	Somma di vettori: metodo delle componenti	_
		Somma di vettori: metodo delle componenti	13
		Somma di vettori: metodo delle componenti	13 14

Capitolo 1

Introduzione

1.1 Il metodo scientifico

La natura è complessa \to per capirla si fanno esperimenti Es. Tolta l'aria (nel vuoto) tutti i corpi cadono in maniera uguale

- \rightarrow Gli esperimenti formulano una teoria
- \rightarrow La fisica usa il linguaggio matematico per le teorie e le leggi

1.2 Grandezze fisiche

Definizione

Misurazione: si associa un numero (misura) a una grandezza fisica. Associa anche la sua attendibilità (errore).

Deve essere non ambigua e riproducibile.

Definizione

Grandezza fisica: è definita in relazione al procedimento/strumento utilizzato per misurare.

Non tutte le grandezze sono indipendenti (velocità $\frac{m}{s}$).

Sistema Internazionale Tempo (s) Lunghezza (m) Massa (kg) Quantità di materia (mol) Temperatura (K) Intensità di corrente elettrica (A) Intensità luminosa (cd)

1.2.1 Tempo

Grandezza fisica misurata con l'orologio.

Si usa l'orologio atomico basato sulla frequenza di una transizione iperfine all'atomo di ^{133}Cs (Cesio)

Definizione

Secondo: tempo che ci mette la luce emessa da ^{133}Cs per fare 9.192.631.770 vibrazioni.

1.2.2 Lunghezza

Si usa il regolo per misurarla

Definizione

 $\bf Metro:$ distanza percorsa dalla luce nel vuoto in $\frac{1}{299.792.458}$ di secondo.

1.2.3 Massa

Definizione

Massa: grandezza fisica misurata con bilancia a due bracci.

Campione di riferimento: kg \rightarrow cilindro di platino-iridio per definire la massa

1.3 La notazione scientifica

Vantaggi __ È formalmente compatta __ È evidente l'ordine di grandezza \rightarrow Potenza di 10 con cui è espresso il numero __ È evidente la precisione con cui è noto il valore numerico \rightarrow L'incertezza è espressa dal suo errore Es. $l=(3,5\pm0,1)m$

L'errore ci dice quante cifre significative usare per rappresentare una grandezza

Es. $(4,5397 \pm 0,21) * 10^3 \leftarrow$ se già la prima cifra è incerta per l'errore, non ha senso precisare tutto quello che c'è dopo (397) \rightarrow va scritto $(4,54 \pm 0,21) * 10^3$

1.3.1 Num cifre significative

 $3m\to per$ l'errore può essere $3\pm 0,1$ m (2, 3 o 4) $3,0m\to per$ l'errore può essere $3,0\pm 0,1$ m (2,9; 3,0; 3,1)

 $0.003 \text{m} \leftarrow 1$ cifra significativa $0.0030 \text{m} \leftarrow 2$ cifre significative

Addizione

$$\begin{array}{r}
 18,0 \\
 + 0,0039 \\
 + 0,00002 \\
\hline
 18,00392 \\
 = 18,0
 \end{array}$$

i

Moltiplicazione

Il risultato <u>di norma</u> deve contenere tante cifre significative quante ne sono contenute nel fattore con meno cifre significative

Es:
$$2,21$$
 $*0,3$ $0,663$ $= 0,7$

Es.
$$12, 4 * 84 = 1041, 6 = 1,04 * 10^3$$

Divisione

Vale la stessa regola della moltiplicazione Es. 14,28/0,714=20=20,0 oppure $2,0*10^1$ Es. $0,032/0,004=8=0,8*10^1$ Es: $9,83/9,3^{ii}=1,05698924731=1,06^{iii}$

1.4 Meccanica

- Cinematica: studio del moto indipendente dalle cause
- Dinamica: studio del moto in relazione alle forze agenti
- Statica: studio del moto in assenza di forze

 $^{^{\}rm i}$ deve contenere un numero di cifre significative uguale a quello del numero con incertezza maggiore

ii2 cifre, ma l'incertezza è circa dell'1%

 $^{^{\}rm iii}$ Se avessi scritto 1,1 l'incertezza era circa del 10%, quindi metto 1,06 e l'incertezza rimane circa 1%

1.4.1 Cinematica

• Si studia un corpo puntiforme (particella) in cui è incentrata la massa

• Lo studiamo in modo unidimensionale (si muove solo in una direzione) (moto rettilineo)

- Posizione

- Spostamento

Velocità

- Accelerazione

• In natura esistono corpi puntiformi (elettroni)

— Hanno raggio < $2*10^{-20}~\mathrm{m}$

Moto

• Il suo concetto è relativo

 Per un osservatore un oggetto potrebbe essere in movimento, per un altro potrebbe essere fermo

• Sistema di riferimento

- Definisce la posizione di un corpo

- Assi x y z

- In cinematica il sistema di rif. è arbitrario (1,2,3 dimensioni)

- La posizione p la coordinata lungo l'asse della particella

- Lo $\underline{\rm spostamento}$ è la differenza tra il valore della pos. finale e quella iniziale

 $\Delta x = x_2 - x_1$

 Conviene descrivere il moto con il variare della posizione in funzione del tempo

Ho la funzione x(t) dove il tempo è la variabile indipendente

- La velocità è quanto rapidamente si muove la particella

6

* Velocità vettoriale media

È il rapporto tra lo spostamento Δx che si verifica in un certo intervallo Δt e l'intervallo stesso

$$\overline{v} = \frac{\Delta x}{\Delta t} = \frac{x_2(t_2) - x_1(t_1)}{t_2 - t_1} \left[\frac{m}{s} \right]$$

Può succedere che la particella si muova e che torni nello stesso

- lo spostamento è 0 \Rightarrow la velocità vettoriale media è 0
- * Velocità scalare media

$$\begin{array}{l} \overline{u} = \frac{l}{\Delta t}[m/s] \\ [\overline{u}] = [LT^{-1}] \end{array}$$

* Velocità istantanea

Definizione

Limite della velocità vettoriale media quando Δt tende a

$$v(t) = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \lim_{t \to t_1} \frac{x(t) - x(t_1)}{t - t_1} = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t} \Rightarrow$$

$$v(t) = \frac{dx(t)}{dt} \rightarrow$$
è la derivata prima di x(t) rispetto al tempo t

- Esempi di moti
 - * Particella con velocità costante

$$x(t) = A + Bt$$

Velocità istantanea
$$v(t) = \frac{dx}{dt} = \frac{d}{dt}(A+Bt) = 0+B$$

- * Particella accelerata uniformemente
- Accelerazione media o istantanea

* Media: rapporto tra la variazione della velocità della particella

in un
$$\Delta t$$
 e l'intervallo stesso $\overline{a} = \frac{\Delta v}{\Delta t} = \frac{v_2(t_2) - v_1(t_1)}{t_2 - t_1}$ $[\overline{a}] = \left[\frac{LT^{-1}}{T}\right] = \left[LT^{-2}\right] \rightarrow \left[\frac{m}{s^2}\right]$

* Istantanea:
$$a(t) = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \lim_{t \to t_1} \frac{v(t) - v(t_1)}{t - t_1} = \lim_{\Delta t \to 0} \frac{v(t + \Delta t) - v(t)}{\Delta t} = \frac{dv(t)}{dt} = \frac{d^2xt}{dt^2} \to \text{è la derivata seconda di x(t) rispetto al tempo t}$$
* Accelerazione e velocità concordi

- - · Parlo di accelerazione se la velocità aumenta
 - · Parlo di decelerazione se la velocità diminuisce

- Accelerazione costante
 - * Trovo la velocità

a(t)=costante e poniamo per semplicità
$$t_0=0$$
 $a=\overline{a}=\frac{\delta v}{\delta t}=\frac{v-v_0}{t-0}\Rightarrow v(t)=v_0+a*t(1)$

* Trovo la posizione

$$\begin{cases} \overline{v} = \frac{1}{2}(v_0 + v) = \frac{1}{2}(v_0 + v_0 + a * t) = v_0 + \frac{1}{2}a * t \\ \overline{v} = \frac{\delta x}{\delta t} = \frac{x - x_0}{t - 0} \end{cases}$$
(1.1)

$$\Rightarrow x(t) = x_0 + v_0 * t + \frac{1}{2}a * t^2$$
 (2)

Posso conoscere dove si trova la particella a patto di sapere le condizioni iniziali di tempo e moto della particella

Posso ricavare altre equazioni

- $\ast\,$ eliminando t
 da (1) e (2) $v^{2}(x) = v_{0}^{2} + 2a(x - x_{0})(3)$
- * eliminando a da (1) e (2) $x(t) = x_0 + \frac{v_0 + v}{2}t(4)$ * eliminando v_0 da (1) e (2) $x(t) = x_0 + v(t) \frac{1}{2}a(t^2)(5)$

La (1) e la (2) sono le più importanti, da sapere a memoria Mostriamo come a questi risultati si può arrivare anche con le deri-

vate
$$a = \frac{dv}{dt} \Rightarrow dv = a * dt \Rightarrow \int_{x_0}^x dx = \int_0^t v dt = \int_0^t (v_0 + a * t) dt \Rightarrow x - x_0 = v_0 * t + \frac{1}{2}a * t^2 \Rightarrow x = x_0 + v_0 * t + \frac{1}{2}a * t^2$$

Se al posto di t_0 avesso un t qualunque uso $t-t_0$

• Moto di caduta libera

In assenza della resistenza dell'aria tutti i corpi cadono ugualmente

$$-g=9,81\frac{m}{s^2}$$

- La direzione (detta vericale) è la stessa direzione dell'accelerazione

Sostituendo alle equazioni precedenti
$$a=-gt$$
 $x_0=0$ $v=v_0+at=-gt$ $x=x_0+v_0t+\frac{1}{2}at=-\frac{1}{2}gt^2$

Capitolo 2

Vettori

Le grandezze fisiche sono:

- Scalari: definite da un numero e un'unità di misura
- **Vettoriali:** è definita da un numero, una direzione e un verso Il prodotto delle grandezze vettoriali è lo spostamento

2.1 Spostamento

Lo spostamento da A a B è caratterizzato dalla sua intensità, dalla direzione e dal verso e si indica con

• Tutte le grandezze fisiche che si comportano come lo spostamento sono vettori

Notazioni vettoriali

 $egin{array}{cccc} ext{Nodulo} & ext{Vettore} & ext{Modulo} \ ext{AB} & \overline{AB} \ ext{v} & ext{v} \ ec{V} & |ec{V}| \ \end{array}$

2.2 Somma di vettori: Metodo grafico

$$\vec{A} + \vec{B} = \vec{s}$$

non è la somma dei moduli

Proprietà della somma

• Commutativa: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$

• Associativa: $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$

2.3 Sottrazione

Il vettore $-\vec{b}$ ha la stessa intensità di $\vec{b},$ ma verso opposto La differenza è la somma di \vec{a} e $-\vec{b}$ $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$

2.4 Componenti dei vettori

Proietto le componenti sull'asse delle $\mathbf x$

$$a_x = a\cos\theta$$

 $a_y = a \sin \theta$

Le componenti:

- Sono scalari
- Insieme definiscono in modo univoco il vettore $|a| = \sqrt{a_x^2 + a_y^2}$ $\tan \theta = \frac{a_y}{a_x}$

$$\tan \theta = \frac{a_y}{a_m}$$

2.5 Versori

Definizione

Un versore è un vettore con modulo=1

i, j, k sono i versori della terna cartesiana destrorsa Si indicano anche con \hat{i},\hat{j},\hat{k}

2.6 Somma di vettori: metodo delle componenti

$$\vec{r} = \vec{a} + \vec{b} r_x \hat{i} + r_y \hat{j} + r_z \hat{k} = (a_x \hat{i} + a_y \hat{j} + a_z \hat{k}) + (b_x \hat{i} + b_y \hat{j} + b_z \hat{k}) =$$

$$= (a_x + b_x)\hat{i} + (a_y + b_y)\hat{j} + (a_z + b_z)\hat{k}$$

$$r_x = (a_x + b_x)$$

$$r_y = (a_y + b_y)$$

$$r_z = (a_z + b_z)$$

2.7 Prodotto di vettori

2.7.1 Prodotto tra vettore e scalare

Scalare = c

Vettore = \vec{a}

Il prodotto dà:

- Modulo |a| * c
- $\bullet\,$ Direzione di \vec{a}
- Verso di \vec{a} se c>0, opposto se c<0

2.7.2 Prodotto tra vettore e vetttore

$$\vec{a}*\vec{b}$$

$$= |a| * |b| * \cos \theta$$

 $\vec{a} * \vec{b}$ si può pensare come

- a * proiezione di b su a $a * (cos\theta b)$ e viceversa
 - Quando i vettori sono perpendicolari il prodotto scalare è 0 (il coseno è 0) $\hat{i}*\hat{k}=\hat{k}*\hat{j}=\hat{j}*\hat{i}=0$
 - Quando i vettori sono paralleli il coseno è 1 e si ha a*b = |a|*|b|
 - $\vec{a} * \vec{b} = (a_x \hat{i} + a_y \hat{j} + a_z \hat{k}) * (b_x \hat{i} + b_y \hat{j} + b_z \hat{k}) = a_x b_x + a_y b_y + a_z b_z$
 - Il coseno dell'angolo tra i 2 vettori: $\cos\theta = \frac{\vec{a}*\vec{b}}{ab} = \frac{a_xb_x + a_yb_y + a_zb_z}{ab}$

2.7.3 Prodotto vettoriale

 $\vec{c} = \vec{a} \times \vec{b}$ ("a vettor b")

- Modulo $c = |\vec{a} \times \vec{b}| = ab \sin \theta$
- \bullet Direzione: perpendicolare al piano individuato da \vec{a} e \vec{b}
- Verso: regola della mano destra

$$(\vec{a} \times \vec{b}) = -(\vec{b} \times \vec{a}) \Rightarrow$$
 non è commutativa

- Due vettori paralleli danno prodotto vettoriale = 0 $\hat{i} \times \hat{i} = 0...$
- Mentre $\hat{i} \times \hat{j} = \hat{k}(\hat{j} \times \hat{i} = -\hat{k})$ $\hat{j} \times \hat{k} = \hat{i}(\hat{k} \times \hat{j} = -\hat{i})$ $\hat{k} \times \hat{i} = \hat{j}(\hat{i} \times \hat{k} = -\hat{j})$
- Con le componenti cartesiane $\vec{a} \times \vec{b} = \overline{(a_x \hat{i} + a_y \hat{j} + a_z \hat{k}) \times (b_x \hat{i} + b_y \hat{j} + b_z \hat{k})}$ $= (a_y b_z a_z b_y) \hat{i} + (a_z b_x a_x b_z) \hat{j} + (a_x b_y a_y b_x) \hat{k}$ Può essere ricordato facilmente col determinante

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \hat{i}(a_y b_z - a_z b_y) - \hat{j}(a_x b_z - a_z b_x) + \hat{k}(a_x b_y - a_y b_x)$$

• La divisione non è definita