Algebraic Topology Cheat Sheet

Topology

A topology on a set X is the tuple (X,T) where T is a collection of (open) subsets of X such that

- $\emptyset \in T, X \in T$.
- Closed under unions.
- Closed under finite intersections.

Constructions on topologies

For a topological space (X, T).

For a subset Y of X there exists a **subspace topology** naturally endowed upon Y characterized by the following UMP, continuous mappings from another topology Z to X factors through Y with the inclusion mapping, i.e. g is continuous iff f is,

The **quotient topology** of X on some set S given a surjection $\pi: X \to X$ is characterized by the following UMP, continuous mappings from $X \to Z$ factor through S,

For a family of topologies on X_a the product topology $X = \prod_a X_a$ is characterized by the following UMP, continuous mappings from a topology $Z \to X_a$ factor through X for all a,

The coproduct topology (i.e. the disjoint unions) is characterized similarly simply as the dual of the above.

Deformation retraction

A deformation retract of a space onto a subspace is a family of continuous maps from identity to the subspace and every map restricted to the subspace is identity. In particular for a topology X and subspace A it is a family of maps $f_t(x), t \in [0, 1]$ continuous in x such that $f_0 = \operatorname{Id}$ and $f_1(X) = A, f_t|_A = \operatorname{Id}$

Homotopy

A homotopy is a generalization of deformation retractions. It is defined to be a family of maps between arbitrary topologies $X, Y, f_t : X \to Y$ for $t \in [0, 1]$ such that $f_0 = X, f_1 = Y$ and the map $H : X \times [0, 1] \to Y, H(x, t) = f_t(x)$ is continuous.

Topologies are said to be **homotopically equivalent** if there exists continuous maps $f: X \to Y$ and $g: Y \to X$ such that $g \circ f$ is homotopic to Id_X and $f \circ g$ is homotopic to Id_Y .

Homeomorphism \implies homotopy equivalent but the converse need not be true. A topology is **contractible** if its identity map is homotopic to a constant function (i.e. **null homotopic**)

CW Complex

 $\overline{\text{A CW complex is a space } X} = \bigcup_n X^n \text{ where each } X^n \text{ is inductively built with the following process,}$

- X_0 is an discrete set.
- X_n is constructed from X_{n-1} by 'attaching' n-cells e^n_{α} (spaces homeomorphic to n-dimensional discs D^n) this attachment is via continuous maps $\varphi_{\alpha}: S^{n-1} \to X^{n-1}$ (note that S^{n-1} is just ∂D^k), in particular this is just a quotient map where the points on the boundaries are being identified with points in X_{n-1}

To labour the point, X_n is given as the pushout of the corner consisting of the inclusion mapping from the disjoint union of spheres into disks and φ_{α}

Constructions on CW complexes