

Microeletrônica: Introdução ao Projeto Físico de Portas Lógicas

Rafael Schivittz, Roberto Almeida, Giane Ulloa, Fábio Silva Cristina Meinhardt, Paulo F. Butzen

Organização do Curso

- Aula 1 Álgebra booleana → Tabela Verdade
 → Rede de chaves.
 - Introdução ao NGSPICE → Fontes DC e PWL
- Aula 2 Transistores → Lógica Complementar
 » (Pull-up/Pull-down)
- Aula 3 Construção das portas lógicas complementares
 » INV, NAND2, NOR2, AOI
- Aulas 4 Atrasos
- Aulas 5 e 6 Dimensionamento, Sub-circuitos.

Organização do Curso

- Aula 1 Álgebra booleana → Tabela Verdade
 → Rede de chaves.
 - Introdução ao NGSPICE → Fontes DC e PWL
- Aula 2 Transistores → Lógica Complementar
 » (Pull-up/Pull-down)
- Aula 3 Construção das portas lógicas complementares
 » INV, NAND2, NOR2, AOI
- Aulas 4 Atrasos
- Aulas 5 e 6 Dimensionamento, Sub-circuitos.

Resumo da Aula Passada

- Construção de portas lógicas complementares
- Construção das ondas com PWL
- Arranjo de transistores
- Validação lógica
- Exercícios
 - INV, NAND2, NOR2, AOI

Resumo da Aula Passada

- Construção de portas lógicas complementares
- Construção das ondas com PWL
- Arranjo de transistores
- Validação lógica
- Exercícios
 - INV, NAND2, NOR2, AOI

Dúvidas??

Atrasos???

- Atrasos???
- Dois tipos de atrasos:
 - Tempos de Propagação
 - T_{p_LH}: Tempo de propagação de subida (Low High)
 - T_{p_HL}: Tempo de propagação de descida (High Low)
 - Tempos de Transição
 - t_{rise}: tempo de subida (rise)
 - t_{fall}: tempo de descida (fall)
- t_{pd}: Atraso médio de propagação

$$- t_{pd} = (t_{p_LH} + t_{p_HL})/2$$

- Tempos de Propagação: Intervalo de tempo em que a entrada cruza 50% de sua amplitude até o momento que a saída cruza 50% de VDD.
 - T_{p_LH}: Tempo de propagação de subida (Low High)
 - T_{p HL}: Tempo de propagação de descida (High Low)
- Tempos de Transição:
 - t_{rise}: tempo de subida (rise) → Tempo necessário para que a saída aumente de 10% à 90% de VDD.
 - t_{fall}: tempo de descida (fall) → Tempo necessário para que a saída tenha uma queda de 90% à 10% de VDD.

- Tempos de Propagação: Intervalo de tempo em que a entrada cruza 50% de sua amplitude até o momento que a saída cruza 50% de VDD.
 - T_{p_LH}: Tempo de propagação de subida (Low High)
 - T_{p HL}: Tempo de propagação de descida (High Low)
- Tempos de Transição:
 - t_{rise}: tempo de subida (rise) → Tempo necessário para que a saída aumente de 10% à 90% de VDD.
 - t_{fall}: tempo de descida (fall) → Tempo necessário para que a saída tenha uma queda de 90% à 10% de VDD.

Importante lembrar que um tempo de propagação só é medido quando uma das entradas muda.

Tempo de Propagação

- td-lh Tempo de atraso de propagação do sinal de saída quando este passa do nível lógico '0' para o nível lógico '1' (delay time _ low-high)
- t_{d-hl} Tempo de atraso de propagação do sinal de saída quando este passa do nível lógico '1' para o nível lógico '0' (*delay time high-low*)
- td Tempo de atraso de propagação MÉDIO do sinal de saída (delay time)

$$\mathbf{t_d} = (\mathbf{t_{d-lh}} + \mathbf{t_{d-hl}}) / 2$$

Medida de tempo de propagação no NGSPICE

.measure tran tphl trig v(in) val='0.5*0.9' rise=1 + targ v(out) val='0.5*0.9' fall=1

.measure tran tplh trig v(in) val='0.5*0.9' fall=1 + targ v(out) val='0.5*0.9' rise=1

Tempo de Transição

- t_r Tempo de subida (*rise time*)
- t_f Tempo de descida (fall time)

Medida de tempo de transição no NGSPICE

.measure tran trise trig v(out) val='0.1*0.9' rise=1 + targ v(out) val='0.9*0.9' rise=1

.measure tran tfall trig v(out) val='0.9*0.9' fall=1 + targ v(out) val='0.1*0.9' fall=1

Da aula anterior...

- Validação Lógica!
 - Confere para todas as combinações de entrada, a saída do circuito, verificando o funcionamento correto.
- Como realizar a validação lógica
 - Fontes das entradas do circuito devem representar todos os estados possíveis:
 - Tabela Verdade

Prática

Exemplos

Grupo de Sistemas Digitais e Embarcados

Símbolo

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

Como deve ficar o circuito?

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

Como devem ficar as ondas?

Consigo medir todos os atrasos?

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

Eu preciso redefinir todas as ondas!

Eu preciso redefinir todas as ondas!

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

1º) O que eu preciso medir?

Eu preciso redefinir todas as ondas!

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

1º) O que eu preciso medir?

TpHL_A e Tfall_A:

Saída 1 → 0
A transiciona
B constante

Eu preciso redefinir todas as ondas!

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

1º) O que eu preciso medir?

TpHL_A e Tfall_A:

Saída 1 → 0
A transiciona
B constante

Eu preciso redefinir todas as ondas!

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

1º) O que eu preciso medir?

TpHL_A e Tfall_A:

Saída 1 → 0 → 3 possibilidades
A transiciona
B constante

Eu preciso redefinir todas as ondas!

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

1º) O que eu preciso medir?

TpHL_A e Tfall_A:

Saída 1 → 0 → 3 possibilidades
A transiciona
B constante

Eu preciso redefinir todas as ondas!

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

1º) O que eu preciso medir?

TpHL_A e Tfall_A:

Saída 1 → 0 → 3 possibilidades A transiciona → 2 possibilidades B constante

Eu preciso redefinir todas as ondas!

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

1º) O que eu preciso medir?

TpHL_A e Tfall_A:

Saída 1 → 0 → 3 possibilidades A transiciona → 2 possibilidades B constante

Eu preciso redefinir todas as ondas!

1º) O que eu preciso medir?

Saída $1 \rightarrow 0 \rightarrow 3$ possibilidades A transiciona $\rightarrow 2$ possibilidades B constante $00 \rightarrow 10$

Eu preciso redefinir todas as ondas!

1º) O que eu preciso medir?

Saída $1 \rightarrow 0 \rightarrow 3$ possibilidades A transiciona $\rightarrow 2$ possibilidades B constante $00 \rightarrow 10$

Eu preciso redefinir todas as ondas!

1º) O que eu preciso medir?

Saída
$$1 \rightarrow 0 \rightarrow 3$$
 possibilidades
A transiciona $\rightarrow 2$ possibilidades
B constante $00 \rightarrow 10$

Saída 0 → 1
A transiciona
B constante 10 → 00

Eu preciso redefinir todas as ondas!

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

1º) O que eu preciso medir?

Saída 1 → 0

A constante

B transiciona

Saída 0 → 1
A constante
B transiciona

Eu preciso redefinir todas as ondas!

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

1º) O que eu preciso medir?

Saída $1 \rightarrow 0$

A constante

B transiciona $00 \rightarrow 01$

Saída 0 → 1
A constante
B transiciona

Eu preciso redefinir todas as ondas!

A	В	S
0	0	1
0	1	0
1	0	0
1	1	0

1º) O que eu preciso medir?

Saída $1 \rightarrow 0$

A constante

B transiciona $00 \rightarrow 01$

Saída 0 → 1

A constante

B transiciona $01 \rightarrow 00$

2º) Definindo nova forma de onda

A	В	S transiciona
0	0	10
1	0	0 0
0	0	0 1
0	1	0 0

Medindo atrasos da NOR2 no NGSPICE

PWL A

PWL B

- MEASURES A
 - Tp_HL A
 - Tp_LH_A
 - T_rise_A
 - T_fall_A
- MEASURES B
 - Tp_HL A
 - Tp_LH_A
 - T_rise_A
 - T_fall_A

Plot esperado no NGSpice

Resultado de atrasos esperados no NGSpice

Exercício

1) Medir os atrasos para um NAND de 2 entrada

Tabela-Verdade

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Correção NAND2

- Ondas
- Resultado dos atrasos

Exercício

1) Medir os atrasos para as funções da aula 4

Microeletrônica: Introdução ao Projeto Físico de Portas Lógicas

Rafael Schivittz, Roberto Almeida, Giane Ulloa, Fábio Silva Cristina Meinhardt, Paulo F. Butzen

Grupo de Sistemas Digitais e Embarcados

AOI (AND OR INVERTER)

Símbolo

Tabela

A	В	C	B.C	A + (B.C)	(A + (B.C))'
0	0	0	0	0	1
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	1	0
1	0	1	0	1	0
1	1	0	0	1	0
1	1	1	1	1	0

AOI (AND OR INVERTER)

Símbolo

Tabela

Α	В	C	B.C	A + (B.C)	(A + (B.C))
0	0	0	0	0	1
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	1	0
1	0	1	0	1	0
1	1	0	0	1	0
1	1	1	1	1	0

Esquemático de Transistores

Exercícios

- 1. Montar redes de chaves :
 - a. A*B*C
 - b. A+B+C
 - c. (A+B)*C
- 2. Montar as funções usando transistor e dois planos
 - a. A*B*C
 - b. A+B+C
 - c. (A+B)*C

- Montar os circuitos do exercício 2 no simulador e realizar a validação lógica
 - a. $\overline{A*B*C}$
 - b. $\overline{A+B+C}$
 - c. $\overline{(A+B)*C}$