Diagnostic Medical Image Processing Reconstruction – Parallel Beam Reconstruction: Practical Aspects

WS 2015/2016
Andreas Maier, Joachim Hornegger, Markus Kowarschik
Pattern Recognition Lab (CS 5)

Topics

How to Implement a Parallel Beam Algorithm

On Noise, Filtering and Window Functions

Sinograms

Example: Homogeneous Cylinder (My First Phantom)

Example: Homogeneous Cylinder (My First Phantom)

Disc is in the center → Projection is the same in all views:

$$p(s) = \begin{cases} 2\rho\sqrt{R^2 - s^2} & s \le R \\ 0 & s > R \end{cases}$$

Example: Homogeneous Cylinder (2)

Filtered Backprojection - Practical Algorithm

Apply Filter on the detector row:

$$q(s,\theta) = h(s) * p(s,\theta)$$

$$h(s) = \int_{-\infty}^{\infty} |\omega| e^{2\pi i \omega s} d\omega$$

Backproject q(s, θ):

$$f(x,y) = \int_0^{\pi} q(s,\theta)|_{s=x\cos\theta+y\sin\theta} d\theta$$

Discrete Spatial Form of the Ramp Filter

- ullet Find the inverse Fourier transform of $|\omega|$
- Set cut-off frequency of the ramp filter at $\omega = \frac{1}{2}$

Discrete Spatial Form of the Ramp Filter

- ullet Find the inverse Fourier transform of $|\omega|$
- Set cut-off frequency of the ramp filter at $\omega = \frac{1}{2}$

$$h(s) = \int_{-\frac{1}{2}}^{\frac{1}{2}} |\omega| e^{2\pi i \omega s} d\omega$$

Discrete Spatial Form of the Ramp Filter

- Find the inverse Fourier transform of $|\omega|$
- Set cut-off frequency of the ramp filter at $\omega = \frac{1}{2}$

$$h(s) = \int_{-\frac{1}{2}}^{\frac{1}{2}} |\omega| e^{2\pi i \omega s} d\omega$$

$$h(s) = \frac{1}{2} \frac{\sin \pi s}{\pi s} - \frac{1}{4} \left[\frac{\sin \left(\frac{\pi s}{2} \right)}{\frac{\pi s}{2}} \right]^2$$

Discrete Spatial Form of the Ramp Filter (2)

$$h(s) = \frac{1}{2} \frac{\sin \pi s}{\pi s} - \frac{1}{4} \left[\frac{\sin \left(\frac{\pi s}{2} \right)}{\frac{\pi s}{2}} \right]^2$$

Discrete Spatial Form of the Ramp Filter (2)

$$h(s) = \frac{1}{2} \frac{\sin \pi s}{\pi s} - \frac{1}{4} \left[\frac{\sin \left(\frac{\pi s}{2} \right)}{\frac{\pi s}{2}} \right]^2$$

• Convert to discrete form: Let s = n (integer)

$$h(n) = \begin{cases} \frac{1}{4} & n = 0\\ 0 & n \text{ even}\\ -\frac{1}{n^2 \pi^2} & n \text{ odd} \end{cases}$$

Discrete Spatial Form of the Ramp Filter (2)

$$h(s) = \frac{1}{2} \frac{\sin \pi s}{\pi s} - \frac{1}{4} \left[\frac{\sin \left(\frac{\pi s}{2} \right)}{\frac{\pi s}{2}} \right]^2$$

• Convert to discrete form: Let s = n (integer)

$$h(n) = \begin{cases} \frac{1}{4} & n = 0\\ 0 & n \text{ even}\\ -\frac{1}{n^2 \pi^2} & n \text{ odd} \end{cases}$$

 Also known as the "Ramachandran-Lakshminarayanan" convolver or "Ram-Lak" convolver

Discrete Spatial Form of the Ramp Filter (3)

Image: Zeng, 2009

Discrete Spatial vs. Continuous Frequency Version

Continuous frequency representation of the ramp filter:

$$H(\omega) = |\omega|$$

Discrete spatial form:

$$h(n) = \begin{cases} \frac{1}{4} & n = 0\\ 0 & n \text{ even}\\ -\frac{1}{n^2 \pi^2} & n \text{ odd} \end{cases}$$

Discrete Spatial vs. Continuous Frequency Version (2)

Discrete Spatial vs. Continuous Frequency Version (3)

Example: Homogeneous Cylinder after Filter

• Precompute filter h(s) in spatial domain - O(N)

- Precompute filter h(s) in spatial domain O(N)
- Transform filter to frequency domain $H(\omega)$ via FFT $O(N \log N)$

- Precompute filter h(s) in spatial domain O(N)
- Transform filter to frequency domain $H(\omega)$ via FFT $O(N \log N)$
- For each of #P projections:

- Precompute filter h(s) in spatial domain O(N)
- Transform filter to frequency domain $H(\omega)$ via FFT $O(N \log N)$
- For each of #P projections:
 - Compute FFT of $p(s, \theta) O(N \log N)$

- Precompute filter h(s) in spatial domain O(N)
- Transform filter to frequency domain $H(\omega)$ via FFT $O(N \log N)$
- For each of #P projections:
 - Compute FFT of $p(s, \theta) O(N \log N)$
 - Apply filter $P(\omega, \theta) \cdot H(\omega) O(N)$

- Precompute filter h(s) in spatial domain O(N)
- Transform filter to frequency domain $H(\omega)$ via FFT $O(N \log N)$
- For each of #P projections:
 - Compute FFT of $p(s, \theta) O(N \log N)$
 - Apply filter $P(\omega, \theta) \cdot H(\omega) O(N)$
 - Compute filtered projection q(s) via iFFT O(N log N)

- Precompute filter h(s) in spatial domain O(N)
- Transform filter to frequency domain $H(\omega)$ via FFT $O(N \log N)$
- For each of #P projections:
 - Compute FFT of $p(s, \theta) O(N \log N)$
 - Apply filter $P(\omega, \theta) \cdot H(\omega) O(N)$
 - Compute filtered projection q(s) via iFFT O(N log N)
- Total complexity:

$$O(N + N \log N + \#P(N + 2N \log N)) = O(\#P N \log N)$$

• Initialize $f(x, y) = 0 - O(N^2)$

- Initialize $f(x, y) = 0 O(N^2)$
- For each of $N \times N$ pixels:

- Initialize $f(x, y) = 0 O(N^2)$
- For each of $N \times N$ pixels:
 - For each of #P projections:

- Initialize $f(x, y) = 0 O(N^2)$
- For each of $N \times N$ pixels:
 - For each of #P projections:
 - Compute $s = x \cos \theta + y \sin \theta O(1)$

- Initialize $f(x, y) = 0 O(N^2)$
- For each of $N \times N$ pixels:
 - For each of #P projections:
 - Compute $s = x \cos \theta + y \sin \theta O(1)$
 - Update $f(x, y) + = q(s, \theta) O(1)$

- Initialize $f(x, y) = 0 O(N^2)$
- For each of $N \times N$ pixels:
 - For each of #P projections:
 - Compute $s = x \cos \theta + y \sin \theta O(1)$
 - Update $f(x, y) + = q(s, \theta) O(1)$
- Total complexity:

$$O(N^2 + N^2 \# P(1+1)) = O(N^2 \# P)$$

Backprojection and Fourier Slice Theorem

Filtered Backprojection - Practical Algorithm

• Apply Filter on the detector row:

$$O(\#P N \log N)$$

Backproject:

$$O(\#P N^2)$$

Topics

How to Implement a Parallel Beam Algorithm

On Noise, Filtering and Window Functions

Sinograms

Additive Noise (+2%)

Additive Noise – After Filtering

Additive Noise – After Filtering

Window Functions

- Window functions are used to improve signals
 - · High frequencies are reduced
 - → Noise reduction
 - → Reduces high frequencies caused by cutting
 - Many window functions are known:
 - Cosine Window
 - Shepp-Logan Window

• Apply window function in frequency domain:

$$P'(\omega,\theta) = W(\omega) \cdot P(\omega,\theta)$$

• Apply window function in frequency domain:

$$P'(\omega, \theta) = W(\omega) \cdot P(\omega, \theta)$$

• Then apply filter:

$$Q'(\omega, \theta) = H(\omega) \cdot P'(\omega, \theta)$$

· Apply window function in frequency domain:

$$P'(\omega, \theta) = W(\omega) \cdot P(\omega, \theta)$$

Then apply filter:

$$Q'(\omega, \theta) = H(\omega) \cdot P'(\omega, \theta)$$

$$Q'(\omega, \theta) = H(\omega) \cdot W(\omega) \cdot P(\omega, \theta)$$

· Apply window function in frequency domain:

$$P'(\omega, \theta) = W(\omega) \cdot P(\omega, \theta)$$

Then apply filter:

$$Q'(\omega, \theta) = H(\omega) \cdot P'(\omega, \theta)$$

$$Q'(\omega, \theta) = H(\omega) \cdot W(\omega) \cdot P(\omega, \theta)$$

Rewrite filtering equation to adjusted filter:

$$Q'(\omega, \theta) = H'(\omega) \cdot P(\omega, \theta)$$

$$H'(\omega) = H(\omega) \cdot W(\omega)$$

Rectangular Window

Cosine Window – $cos(\pi \cdot x)$

Frequency Domain

Shepp-Logan Window – $\frac{\sin(\pi \cdot x)}{(\pi \cdot x)}$

Spatial Domain

Frequency Domain

Rectangular Filter

Cosine Filter

Frequency Domain

Shepp-Logan Filter

Frequency Domain

Ramp Filter Result

Shepp-Logan Filter Result

Cosine Filter Result

Noise

- · Is amplified by ramp filter
- Has to be taken care of in an appropriate manner
- Is indirectly proportional to the applied dose
- Affects different reconstruction methods differently

Topics

How to Implement a Parallel Beam Algorithm

On Noise, Filtering and Window Functions

Sinograms

Sinogram

- Method to visualize all projections in one image
- Contains all information to reconstruct one slice
- Also called 'Fanogram" in fan beam geometry
- Popular method for visualization with narrow detectors

Sinogram (2)

Sinogram (3)

Further Readings

- Gengsheng Lawrence "Larry" Zeng. "Medical Image Reconstruction – A Conceptual Tutorial". Springer 2009
- Ronald N. Bracewell. "The Fourier Transform and Its Applications". McGraw-Hill Publishing Company. 1999
- Thorsten M. Buzug. "Computed Tomography: From Photon Statistics to Modern Cone-Beam CT". Springer 2008

Questions?