WERKSTOFFDATENBLATT X10CrNi18-8 1.4310

NICHTROSTENDER AUSTENITISCHER STAHL

CHEMISCHE ZUSAMMENSETZUNG (IN MASSEN-% NACH DIN EN 10088-3)

	С	Si	Mn	Р	S	Cr	Ni	Мо	N
min.	0,05	-	-	-	-	16,0	6,0	-	-
max.	0,15	2,0	2,0	0,045	0,015	19,0	9,5	0,8	0,1

Kundenspezifische Einschränkungen der Normanalyse sind nach Rücksprache möglich.

VERWENDUNGSHINWEISE

Acidur 4310 hat aufgrund seines hohen Chrom- und Nickelgehalts ein metastabiles austenitisches Gefüge, das sehr stark bei der Kaltumformung verfestigt. Nach der Kaltumformung enthält das Gefüge einen hohen Anteil von Reibmartensit (magnetisch). Diese Güte findet in der Federherstellung Verwendung.

ANWENDUNGSGEBIETE

- » Automobilindustrie
- » Chemische Industrie
- » Elektronische Ausrüstung
- » Komponenten für Federn
- » Lebensmittelindustrie

NORMEN UND BEZEICHNUNGEN					
DIN EN 10088-3 DIN EN 10263-5 DIN EN 10270 DIN EN 10264 SEL	1.4310 X10CrNi18-8				
AISI / ASTM	301				
UNS	30200				
B.S.	301S21				
AFNOR	Z11CN17-08 / Z12CN18-09				
JIS	SUS301				
SS	2331				
UNE	F.3517				

ALLGEMEINE EIGENSCHAFTEN					
Korrosionsbeständigkeit	gut				
Mechanische Eigenschaften	mittel				
Schmiedbarkeit	gut				
Schweißeignung	ausgezeichnet				
Spanbarkeit	mittel				

BESONDERE EIGENSCHAFTEN

» bis 300°C verwendbar

Acidur 4310

WERKSTOFFDATENBLATT X10CrNi18-8 1.4310

PHYSIKALISCHE EIGENSCHAFTEN

Dichte in kg/dm³	7,9
Elektrischer Widerstand	0,73
bei 20°C in (Ω mm²)/m	
Magnetisierbarkeit	gering ¹
Wärmeleitfähigkeit	15
bei 20°C in W/(m K)	
Spezifische Wärmekapazität	500
bei 20°C in J/(kg K)	
E-Modul in GPa bei	
» 20°C	200
» 100°C	194
» 200°C	186
» 300°C	179
» 400°C	172
» 500°C	165
Mittlerer Wärmeausdehnungskoeffizient	
in 10 ⁻⁶ K ⁻¹	
» 20 - 100°C	16,0
» 20 - 200°C	17,0
» 20 - 300°C	17,0
» 20 - 400°C	18,0
» 20 - 500°C	18,0

¹ Der Werkstoff kann im abgeschreckten Zustand schwach magnetisierbar sein. Mit steigender Kaltverformung nimmt die Magnetisierbarkeit zu.

VERARBEITUNG

Automatenbearbeitung	selten
Spangebende Verarbeitung	ja
Freiform- und Gesenkschmieden	ja
Kaltumformung	ja
Kaltstauchen	ja
Polierbarkeit	ja

TEMPERATUREN FÜR WARMUMFORMUNG UND WÄRMEBEHANDLUNG

Acidur 4310 muss vor und während der Wärmebehandlung frei von jeglichen Verunreinigungen (Schwefel, Phosphor, Blei und andere niedrig schmelzende Metalle) sein. Um während der Fertigung und Verarbeitung von dieser Güte eine Versprödung durch Bildung der Sigmaphase zu vermeiden, muss die Verweildauer im Temperaturbereich zwischen 450°C und 850°C möglichst gering gehalten werden.

WARMUMFORMUNG

Tempe	ratur in °C	Abkühlung
1200 -	900	Luft
1200 -	900	Luft

WÄRMEBEHANDLUNG

	Temperatur in °C	Abkühlung
Lösungsglühen (+AT)	1000 - 1100	Luft, Wasser,
		schnelle Abkühlung

28/11/2016 2016-005

WERKSTOFFDATENBLATT X10CrNi18-8 1.4310

MECHANISCHE EIGENSCHAFTEN BEI RAUMTEMPERATUR IM LÖSUNGSGEGLÜHTEN ZUSTAND (+AT) NACH DIN EN 10088-3

Ø in mm	Härte in HB	R _{p0,2} in MPa	R _{p1,0} in MPa	R _m in MPa	A ₅ in %	
					längs	quer
≤ 40	≤ 230	≥ 195	≥ 230	500 - 750	≥ 40	-

Für dickere Abmessungen (d > 40 mm) müssen die mechanischen Eigenschaften vereinbart werden.

MECHANISCHE EIGENSCHAFTEN BEI ERHÖHTEN TEMPERATUREN IM LÖSUNGSGEGLÜHTEN ZUSTAND (+AT) NACH DIN EN 10088-3

Temperatur in °C	100	150	200	250	300	350	
R _{p0,2} in MPa	210	200	190	185	180	180	
R _{p1,0} in MPa	230	215	205	200	195	195	

VERFESTIGUNGSDIAGRAMM

Acidur 4310

WERKSTOFFDATENBLATT X10CrNi18-8 1.4310

KORROSIONSBESTÄNDIGKEIT (PREN = 16,0 - 23,4)

Durch den niedrigen Kohlenstoffgehalt neigt diese Güte zur Sensibilisierung. Die Bildung von Chromkarbiden und die damit verbundenen chromverarmten Bereiche in der Umgebung dieser Ausscheidungen machen diesen Stahl anfällig für interkristalline Korrosion. In der Praxis zeigt sich jedoch, dass Acidur 4310 im Lieferzustand gegen interkristalline Korrosion beständig ist. Die Korrosionsbeständigkeit von Acidur 4310 nimmt mit zunehmender Kaltverformung ab, d.h. je höher die Festigkeit desto geringer die Korrosionsbeständigkeit. Die Oberflächenbeschaffenheit spielt bei der Korrosionsbeständigkeit dieser Güte eine große Rolle. Mit polierter Oberfläche ist die Beständigkeit wesentlich besser als mit rauer Oberfläche.

Angriffsmittel	Konzentration	Temperatur	Beständigkeit
NaCl	gesättigt	20°C	Gefahr von
			Lochkorrosion
Meerwasser	-	20°C	Gefahr von
			Lochkorrosion
Wasserdampf	-	400°C	beständig
Salpetersäure	7 %	20°C	beständig
Schwefelsäure	1 %	20°C	geringer Angriff
Ameisensäure	10 %	20°C	beständig

Grundlage dieser Korrosionsbeständigkeitsprüfungen sind Laborversuche mit reinen Angriffsmitteln und optimalen Probenkörpern. Die Ergebnisse dienen nur als Anhaltspunkt für die Verwendbarkeit.

SCHMIEDEN

Acidur 4310 wird üblicherweise langsam auf ca. 1150 bis 1200°C erwärmt, so dass im Temperaturbereich von 1200 bis 900°C geschmiedet werden kann. Die Abkühlung findet an Luft oder Wasser statt, wenn kein Verzug zu befürchten ist.

SCHWEISSEN

Da Acidur 4310 größtenteils für die Federherstellung verwendet wird, besteht keine Notwendigkeit des Schweißens. Falls notwendig kann diese Güte mit und ohne Zusatzwerkstoff geschweißt werden. Die maximale Zwischenlagentemperatur beträgt 200°C. Eine Wärmebehandlung nach dem Schweißen ist nicht notwendig.

KALTUMFORMUNG

Acidur 4310 lässt sich gut kaltumformen. Jedoch verfestigt diese Güte, so dass größere Umformkräfte erforderlich sind. Es können Zwischenglühungen nötig sein.

Acidur 4310

WERKSTOFFDATENBLATT X10CrNi18-8 1.4310

SPANENDE BEARBEITUNG

Acidur 4310 ist aufgrund der geringen Wärmeleitfähigkeit und der extrem hohen Kaltverfestigungsraten schwer zerspanbar. Daher sollte eine möglichst niedrige Schnittgeschwindigkeit gewählt werden. Des Weiteren sollte die Schnitttiefe unter der vorherigen Verfestigungszone liegen. Wegen der geringen Wärmeleitfähigkeit schlagen wir die Verwendung von Werkzeugen aus hochwertigem Schnellarbeitsstahl oder Hartmetall vor. Für Acidur 4310 (+AT, $R_m = 550-650$ MPa) möchten wir Ihnen die folgenden Schnittbedingungen empfehlen:

SCHNITTBEDINGUNGEN

Schnittgeschwindig- keit in m/min	Spantiefe in mm	Vorschub in mm/U
130	6	0,5
210	3	0,4
250	1	0,2

Schnittdaten sind als Anhaltswerte zu sehen und dienen nur zu einer Einschätzung der Bearbeitungsparameter. Analysevarianten zur Optimierung der Zerspanungseigenschaften auf Anfrage.

LIEFERMÖGLICHKEITEN

Walzdraht	Ø 5,5 - 30,0 mm
Blankstahl in Stäben	Ø 5,0 - 24,0 mm
Blankstahl in Ringen	Ø 1,0 - 24,0 mm
Stabstahl	nicht üblich

Ausführungen: lösungsgeglüht abgeschreckt, gezogen, geschmiedet, gewalzt, gerichtet und geschliffen. Abmessungen > 24 mm nach Rücksprache.

Unser gesamtes Lieferprogramm (Rohblöcke, Strangguss etc.) finden Sie in der Broschüre "Hightech-Lösungen für die Welt von morgen" auf unserer Homepage www.dew-stahl.com.

Wir behalten uns ausdrücklich vor, die Inhalte unserer Datenblätter ohne gesonderte Ankündigung jederzeit zu verändern, zu löschen und/oder in sonstiger Weise zu bearbeiten. Irrtümer und Druckfehler vorbehalten.

Deutsche Edelstahlwerke GmbH & Co. KG

Auestr. 4 58452 Witten

Fon: +49 (0) 2302 29 - 0 Fax: +49 (0) 2302 29 - 4000

info@dew-stahl.com www.dew-stahl.com

