Circuitos Sequenciais, Latches e Flip-flops

Circuitos Sequenciais

- Ao contrário dos circuitos combinacionais, a saída não depende somente das entradas atuais mas também do passado destas
- O "Estado" engloba toda a informação necessária acerca do passado para prever a saída atual tendo em conta as entradas atuais
 - Variáveis de Estado um ou mais bits de informação, dos quais depende a saída

Descrição de Circuitos Sequenciais

Universidade do Minho

- Tabela de Estados
 - Estados são símbolos (e.g., A, B ou Aberto, Fechado, etc.)
 - Ainda não são representados por bits
 - Próximo estado é função de:
 - Estado atual
 - Entradas atuais (no instante da mudança de estado)
 - Saídas são função de:
 - Estado atual
 - Entradas atuais (opcionalmente)
- Diagrama de Estados
 - Versão gráfica da Tabela de Estados

Estrutura duma Máquina de Estados

Universidade do Minho

Figure 7–32 Clocked synchronous state-machine structure (Mealy machine).

Figure 7–33 Clocked synchronous state-machine structure (Moore machine).

Blocos duma Máquina de Estados

Universidade do Minho

- 1. Bloco com memória
 - Armazena a informação do estado atual
- 2. Lógica do estado seguinte
 - Gera os sinais de excitação
 - Aplicados às entradas da memória de estado
 - Determinam o estado seguinte
- 3. Lógica das saídas
 - Gera os sinais de saída
- Blocos 2 e 3 -> Circuitos combinacionais
- Blocos básicos com memória (1) assunto desta aula
- Máquinas de estados assunto da próxima aula
 - Junção de 1, 2, e 3

Sinais de Relógio (Clock)

Universidade do Minho

- Determina os instantes de mudança de estado
 - Transição negativa ou positiva do clock, dependendo do tipo de bloco de memória)

Elemento Bi-estável

Universidade do Minho

- Circuito sequencial mais simples
 - Dois estados
 - Requer apenas uma variável (bit) de estado, e.g., Q
 - Não tem sinal de clock

Circuito bi-estável sem entradas:

Elementos Bi-estáveis

Universidade do Minho

- Como controlá-los?
 - Com entradas

Exemplo, Latch S-R

S	R	Q	QN
0	0	last Q	last QN
0	1	0	1
1	0	1	0
1	1	0	0

Funcionamento da Latch S-R

Universidade do Minho

Funcionamento normal (QN = Q')

Depende da utilização adequada das entradas S e R

Se as entradas S e R forem desabilitadas simultaneamente, a latch assume um estado indeterminado ou pode mesmo oscilar (astabilidade)

Situações anormais (QN = Q, estado indeterminado/oscilação)

Parâmetros Temporais da Latch S-R

Universidade do Minho

- Tempos (ou atrasos) de propagação (t_{pLH}, t_{pHL})
 - Comuns também à logica combinacional
- Largura mínima de pulso (t_{pw(min)})
 - Duração mínima necessária do pulso de entrada para ser interpretado corretamente
 - Caso contrário pode não responder à entrada ou oscilar

Símbolos da Latch S-R

Universidade do Minho

Latch com NANDs

Latch
$$\overline{S} - \overline{R}$$

S_L	R_L	Q	QN
0	0	1	1
0	1	1	0
1	0	0	1
1	1	last Q	last QN

Latch S-R com Enable

Universidade do Minho

Latch tipo D

Universidade do Minho

- Duas entradas
 - Enable (C)
 - Entrada de dados (D)
- Memória/registo volátil de 1 bit (Q)
 - Assume valor (D) quando C = 1
 - Assíncrono qualquer momento
 - Retém os dados quando C = 0

С	D	Q	QN	
1	0	0	1	
1	1	1	0	
0	Х	last Q	last QN	

Param. Temporais Latch tipo D

Universidade do Minho

- Atrasos de Propagação (para C e para D)
- Tempo de "Setup" (D estável antes da transição de C)
- Tempo de "Hold" (D estável após transição de C)

Flip-flop D

Universidade do Minho

- Tanto latches como flip-flops são registos de 1 bit (Q)
- Latch D é assíncrono (quando habilitado, C = 1)
 - Q <= D, sempre que D varia</p>
- Flip-flop D é síncrono
 - Q <= D somente na transição do clock (edge-triggered)
 - Ativado por borda ascendente (positive edge-triggered)
 - No instante de transição de CLK de "0" para "1" (exemplo abaixo)
 - Ativado por borda descendente (negative edge-triggered)
 - No instante de transição de CLK de "1" para "0"

D	CLK	Q	QN	
0		0	1	
1		1	0	
χ	0	last Q	last QN	
X	1	last Q	last QN	

Flip-flop D

QN

Universidade do Minho

Flip-flop D mestre-escravo é uma implementação que utiliza duas latches D (existem outras)

Flip-flop D

Universidade do Minho

- Parâmetros temporais
 - Atraso de Propagação (desde a transição do CLK)
 - Tempo de "Setup" (D estável antes da transição de CLK)
 - Tempo de "Hold" (D estável após transição de CLK)

Flip-flop D TTL (IC 7474)

Universidade do Minho

- Positive Edge-Triggered
- CLK, D, Q, QN
- Entradas adicionais de PRESET' e CLEAR'
 - Funcionam como na latch S'-R'
 - Assíncronas
 - Negadas
- 3 anéis de "feedback" (não é mestre-escravo)

Flip-flop J-K

Universidade do Minho

- Síncrono (como o flip-flop D)
- Duas entradas (como a latch S-R)

• J = K = 1 => Toggle

J	K	CLK	Q	QN
х	х	0	last Q	last QN
Χ	X	1	last Q	last QN
0	0		last Q	last QN
0	1	_•	0	1
1	0	_•	1	0
1	1	_	last QN	last Q

Exemplo de implementação com flip-flop D

Flip-flop T (Toggle)

Universidade do Minho

- Há duas notações para as entradas
- Importantes na implementação de contadores

Equações Características

Universidade do Minho

- Especificam o estado seguinte (Q*) dos flip-flops em função das suas entradas e do estado actual (Q)
- Resultam da tabela de verdade com notação explícita

Device Type	Characteristic Equation
S-R latch	$Q* = S + R' \cdot Q$
D latch	Q* = D
Edge-triggered D flip-flop	Q* = D
Master/slave S-R flip-flop	$Q* = S + R' \cdot Q$
Master/slave J-K flip-flop	$Q* = J \cdot Q' + K' \cdot Q$
Edge-triggered J-K flip-flop	$Q* = J \cdot Q' + K' \cdot Q$
T flip-flop	Q* = Q'
T flip-flop with enable	$Q* = EN \cdot Q' + EN' \cdot Q$