(Q)

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-242334

(43)Date of publication of application: 07.09.2001

(51)Int.Cl.

G02B 6/122

G02B 6/12

G02B 6/13

(21)Application number: 2001-023262

(71)Applicant:

NIPPON TELEGR & TELEPH CORP (NTT)

(22)Date of filing: 31.01.2001

(72)Inventor:

MATSUURA TORU SASAKI SHIGEKUNI ANDO SHINJI

YAMAMOTO FUMIO YAMADA NORIYOSHI

(54) DEFORMED POLYIMIDE OPTICAL WAVEGUIDE AND ITS MANUFACTURING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a deformed polyimide optical waveguide applicable to various optical wiring and branching circuits or to optical members containing a directional coupler.

SOLUTION: In a buried type deformed polyimide optical waveguide which comprises a lower cladding layer, a core on the lower cladding layer and an upper cladding layer coating the lower cladding layer and the core, and of which the lower cladding layer, the core and the upper cladding layer are manufactured with a polyimide material, the deformed polyimide optical waveguide is characterized by the core having a rectangular section with a ratio of the core width to the core height >1 and ≤2 and by the thickness of the lower cladding layer in a part where the core is not formed being in the >0% and ≤30% range of the core height and thinner than that in a part where the core is formed.

LEGAL STATUS

[Date of request for examination]

31.01.2001 21.11.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-242334 (P2001-242334A)

(43)公開日 平成13年9月7日(2001.9.7)

(51) Int.Cl.7		識別記号	FI		ī	-7]-ド(参考)
G 0 2 B	6/122		G 0 2 B	6/12	Α	2H047
	6/12				N	
	6/13				M	

審査請求 有 請求項の数18 〇1、 公開請求 (全 17 頁)

		番食前水 有 電	背环項の数18 OL 公開前环 (全 17 貝)
(21)出願番号	特顏2001-23262(P2001-23262)	(71)出願人	000004226 日本電信電話株式会社
(22)出顧日	平成13年1月31日(2001.1.31)		東京都千代田区大手町二丁目3番1号
		(72)発明者	松浦 撤 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内
		(72)発明者	佐々木 重邦
			東京都千代田区大手町二丁目3番1号 日本電信電話株式会社内
		(74)代理人	100077481
			弁理士 谷 義一 (外1名)
			最終頁に続く

最終貝に続く

(54) 【発明の名称】 異形ポリイミド光導波路およびその製造方法

(57)【要約】

【課題】 種々の光配線、分岐回路あるいは方向性結合器を含む光部品にも適用可能な異形ポリイミド光導波路の提供。

【解決手段】 下部クラッド層と、該下部クラッド層上のコアと、該下部クラッド層および該コアを覆う上部クラッド層とからなり、該下部クラッド層、該コア、および該上部クラッド層はポリイミド材料を用いて作製されている埋め込み型異形ポリイミド光導波路において、前記コアは、コア幅対コア高さの比が1より大きくかつ2以下である矩形断面を有し、および該コアが形成されていない部分の下部クラッド層の厚さは、コア高さの0%より大きくかつ30%以下である範囲内で、該コアが形成されている部分の下部クラッド層の厚さよりも小さいことを特徴とする異形ポリイミド光導波路。

【特許請求の範囲】

【請求項1】 下部クラッド層と、該下部クラッド層上のコアと、該下部クラッド層および該コアを覆う上部クラッド層とからなり、該下部クラッド層、該コア、および該上部クラッド層はポリイミド材料を用いて作製されている埋め込み型異形ポリイミド光導波路において、前記コアは、コア幅対コア高さの比が1より大きくかつ2以下である矩形断面を有し、および該コアが形成されていない部分の下部クラッド層の厚さは、コア高さの0%より大きくかつ30%以下である範囲内で、該コアが形成されている部分の下部クラッド層の厚さよりも小さいことを特徴とする異形ポリイミド光導波路。

【請求項2】 下部クラッド層と、該下部クラッド層上のコアと、該下部クラッド層および該コアを覆う上部クラッド層とからなり、該下部クラッド層、該コア、および該上部クラッド層はポリイミド材料を用いて作製されている埋め込み型異形ポリイミド光導波路において、前記コアは、コア幅対コア高さの比が1より大きくかつ2以下である矩形断面を有し、および該コアが形成されていない部分の下部クラッド層の厚さと、該コアが形成されている部分の下部クラッド層の厚さとは等しいことを特徴とする異形ポリイミド光導波路。

【請求項3】 下部クラッド層と、該下部クラッド層上の突起部を有するコア層と、該下部クラッド層および該コア層を覆う上部クラッド層とからなり、該突起部と該突起部の下にあるコア層をコアとし、該下部クラッド層、該コア層、および該上部クラッド層はポリイミド材料を用いて作製されている埋め込み型異形ポリイミド光導波路において、

該コアは、コア幅対コア高さの比が1より大きくかつ2 以下である矩形断面を有し、および該突起部が形成され ていない部分のコア層の厚さは、該コア高さの0%より 大きくかつ30%以下であることを特徴とする異形ポリ イミド光導波路。

【請求項4】 下部クラッド層と、該下部クラッド層上のコアと、該下部クラッド層および該コアを覆う上部クラッド層とからなり、該下部クラッド層、該コア、および該上部クラッド層はポリイミド材料を用いて作製されている埋め込み型異形ポリイミド光導波路において、

前記コアは、コア幅対コア高さの比が1である正方形断 40 而を有し、および該コアが形成されていない部分の下部 クラッド層の厚さは、コア高さの0%より大きくかつ3 0%以下である範囲内で、該コアが形成されている部分 の下部クラッド層の厚さよりも小さい、

ことを特徴とする異形ポリイミド光導波路。

【請求項5】 下部クラッド層と、該下部クラッド層上 の突起部を有するコア層と、該下部クラッド層および該 コア層を覆う上部クラッド層とからなり、該突起部と該 突起部の下にあるコア層をコアとし、該下部クラッド 層、該コア層、および該上部クラッド層はポリイミド材料を用いて作製されている埋め込み型異形ポリイミド光 導波路において、

該コアは、コア幅対コア高さの比が1である正方形断面を有し、および該突起部が形成されていない部分のコア 層の厚さは、該コア高さの0%より大きくかつ30%以下であることを特徴とする異形ポリイミド光導波路。

【請求項6】 下部クラッド層と、該下部クラッド層上のコアと、該下部クラッド層および該コアを覆う上部クラッド層とからなり、該下部クラッド層、該コア、および該上部クラッド層はポリイミド材料を用いて作製されている埋め込み型異形ポリイミド光導波路において、前記コアは、コア幅対コア高さの比が0.7以上1未満である矩形断面を有し、および該コアが形成されていない部分の下部クラッド層の厚さは、コアの高さの0%より大きくかつ30%以下である範囲内で、該コアが形成されている部分の下部クラッド層の厚さよりも小さい、ことを特徴とする異形ポリイミド光導波路。

【請求項7】 下部クラッド層と、該下部クラッド層上のコアと、該下部クラッド層および該コアを覆う上部クラッド層とからなり、該下部クラッド層、該コア、および該上部クラッド層はポリイミド材料を用いて作製されている埋め込み型異形ポリイミド光導波路において、前記コアは、コア幅対コア高さの比が0.7以上1未満である矩形断面を有し、および該コアが形成されていない部分の下部クラッド層の厚さと、該コアが形成されている部分の下部クラッド層の厚さとは等しいことを特徴とする異形ポリイミド光導波路。

【請求項8】 下部クラッド層と、該下部クラッド層上の突起部を有するコア層と、該下部クラッド層および該コア層を覆う上部クラッド層とからなり、該突起部と該突起部の下にあるコア層をコアとし、該下部クラッド層、該コア層、および該上部クラッド層はポリイミド材料を用いて作製されている埋め込み型異形ポリイミド光導波路において、

該コアは、コア幅対コア高さの比が0.7以上1未満である矩形断面を有し、および該突起部が形成されていない部分のコア層の厚さは、該コア高さの0%より大きく30%以下であることを特徴とする異形ポリイミド光導波路。

【請求項9】 前記ポリイミド材料は、式(1)~(3)のいずれかで表わされる繰り返し単位からなる含フッ素ポリイミド、式(1)~(3)から選択される2種または3種の繰り返し単位からなる含フッ素ポリイミド共重合体、およびそれらの混合物からなる群から選択されることを特徴とする請求項1~8のいずれかに記載の異形ポリイミド光導波路。

【化1】

[化2]

【化3】

【請求項10】 下部クラッド層およびコア層を積層する工程と、

該コア層をエッチングしてコアを形成する工程であって、前記コアはコア幅対コア高さの比が1より大きくかつ2以下である矩形断面を有し、かつ該コア層のエッチング深さは、コア層の高さの100%より大きくかつ130%以下である工程と、

上部クラッド層を積層する工程とを備え、該下部クラッド層、コア層および上部クラッド層はポリイミド材料を用いた作製されることを特徴とする異形ポリイミド光導 波路の製造方法。

【請求項11】 下部クラッド層およびコア層を積層する工程と、

該コア層をエッチングしてコアを形成する工程であって、前記コアはコア幅対コア高さの比が1より大きくかつ2以下である矩形断面を有し、かつ該コア層のエッチング深さは、コア層の高さと等しい工程と、

上部クラッド層を積層する工程とを備え、該下部クラッド層、コア層および上部クラッド層はポリイミド材料を用いた作製されることを特徴とする異形ポリイミド光導 波路の製造方法。

【請求項12】 下部クラッド層およびコア層を積層する工程と、

該コア層をエッチングしてコアを形成する工程であって、前記コアはコア幅対コア高さの比が1より大きくかつ2以下である矩形断面を有し、かつ該コア層のエッチング深さは、コア層の高さの70%以上100%未満である工程と、

上部クラッド層を積層する工程とを備え、該下部クラッ さは、コア層の高さ ド層、コア層および上部クラッド層はポリイミド材料を 50 以下である工程と、

用いた作製されることを特徴とする異形ポリイミド光導 波路の製造方法。

【請求項13】 下部クラッド層およびコア層を積層する工程と、

該コア層をエッチングしてコアを形成する工程であって、前記コアはコア幅対コア高さの比が1である正方形断面を有し、かつ該コア層のエッチング深さは、コア層の高さの100%より大きくかつ130%以下である工程と、

80 上部クラッド層を積層する工程とを備え、該下部クラッド層、コア層および上部クラッド層はポリイミド材料を用いた作製されることを特徴とする異形ポリイミド光導波路の製造方法。

【請求項14】 下部クラッド層およびコア層を積層する工程と、

該コア層をエッチングしてコアを形成する工程であって、前記コアはコア幅対コア高さの比が1である正方形断面を有し、かつ該コア層のエッチング深さは、コア層の高さの70%以上100%未満である工程と、

40 上部クラッド層を積層する工程とを備え、該下部クラッド層、コア層および上部クラッド層はポリイミド材料を 用いた作製されることを特徴とする異形ポリイミド光導 波路の製造方法。

【請求項15】 下部クラッド層およびコア層を積層する工程と、

該コア層をエッチングしてコアを形成する工程であって、前記コアはコア幅対コア高さの比が 0. 7以上 1未満である矩形断面を有し、かつ該コア層のエッチング深さは、コア層の高さの 100% より大きくかつ 130% 以下である工程と

.5

上部クラッド層を積層する工程とを備え、該下部クラッド層、コア層および上部クラッド層はポリイミド材料を 用いた作製されることを特徴とする異形ポリイミド光導 波路の製造方法。

【請求項16】 下部クラッド層およびコア層を積層する工程と、

該コア層をエッチングしてコアを形成する工程であって、前記コアはコア幅対コア高さの比が 0. 7以上 1未満である矩形断面を有し、かつ該コア層のエッチング深さは、コア層の高さと等しい工程と、

上部クラッド層を積層する工程とを備え、該下部クラッド層、コア層および上部クラッド層はポリイミド材料を用いた作製されることを特徴とする異形ポリイミド光導 波路の製造方法。

【請求項17】 下部クラッド層およびコア層を積層する工程と、

該コア層をエッチングしてコアを形成する工程であっ *

*て、前記コアはコア幅対コア高さの比がの. 7以上1未満である矩形断面を有し、かつ該コア層のエッチング深さは、コア層の高さの70%以上100%未満である工程と、

上部クラッド層を積層する工程とを備え、該下部クラッド層、コア層および上部クラッド層はポリイミド材料を 用いた作製されることを特徴とする異形ポリイミド光導 波路の製造方法。

【請求項18】 前記ポリイミド材料は、式(1)~10 (3)のいずれかで表わされる繰り返し単位からなる含フッ素ポリイミド、式(1)~(3)から選択される2種または3種の繰り返し単位からなる含フッ素ポリイミド共重合体、およびそれらの混合物からなる群から選択されることを特徴とする請求項10~17のいずれかに記載の異形ポリイミド光導波路の製造方法。

【化4】

$$\begin{bmatrix}
0 & F_3C & CF_3 & 0 & CF_3 \\
0 & CF_3 & 0 & CF_3
\end{bmatrix}$$

$$\begin{bmatrix}
0 & F_3C & CF_3 & 0 & CF_3 \\
0 & F_3C & CF_3
\end{bmatrix}$$
(1)

【化5】

【化6】

$$\begin{array}{c|c}
 & F_3C & CF_3 \\
 & C & CF_3 & C \\
 &$$

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ポリイミドを用い 40 た光導波路に関し、より詳細には、コアの幅と高さとの比を変更しても導波モードがシングルモードとなる低損失の埋め込み型光導波路に関する。

[0002]

【従来の技術】低損失光ファイバの開発による光通信システムの実用化に伴い、種々の光通信用部品の開発が望まれている。また、これら光部品を高密度に実装する光配線技術、特に光導波路形成技術の確立が望まれている。

【0003】一般に、光導波路には、(1)光損失が小 50

さい、(2) 製造が容易である、(3) 偏液依存性が小さい、(4) コアとクラッドとの屈折率差を幅広い範囲で制御できる等の特性を有することが所望されている。従来、低損失光導波路として、石英系の材料を用いたものが検討されてきている。光ファイバで実証されているように、石英系の材料は光透過性が極めて良好であり、導波路とした場合も1.3 μ mの波長の光に関して0.1 d B/c m以下の低損失化が違成されている。しかし、石英系材料は柔軟性に乏しいため、シリコン等の基板上に作製する必要があり、基板上で使用しなければならないという制約がある。また、作製時に高温処理が必要であり、さらに大面積化が困難であるなどの製造上の問題点がある。

【0004】石英系材料の上記の問題点を解決するために、ポリメチルメタクリレート(PMMA)、ポリスチレン(PS)、ポリカーボネート(PC)等の材料を用いる高分子光導波路が検討されて来ている。これらの高分子光導波路は、石英系光導波路と比較して、耐熱温度が低い、近赤外域より長波長側の領域での光損失が大きいなどの欠点を未だ有している。しかしながら、より低い温度で成形が可能であり、加工が容易であるため、低価格化を期待することができ、かつ大面積化に有利であるといった長所を有している。また、本発明者らは、特開平4-9807号公報に記載される、高分子材料に耐熱性を付与したポリイミド系高分子光導波路が基板上に製造できることを見いだしている。

[0005]

【発明が解決しようとする課題】上記ポリイミド系光導 波路も含めて、一般の通信用シングルモード光導波路の コアの断面形状は、導波モードをシングルモードとする こと、およびシングルモードファイバーのモードフィールド径とコアの寸法を整合させること等の要請から、高 さおよび幅が8~10 μ m程度の正方形断面として設計 および作製されてきている。しかしながら、これらの光 導波路を、種々の光配線(高密度あるいは低密度、直線または曲線、種々の形状を有する光射出面およい光入射面との高効率な接続)、あるいは分岐回路および方向性 結合器を含む光部品に適用する場合、光導波路の断面形 状は正方形以外に、縦長あるいは横長の形状であること が必要となる。

【0006】高分子光導波路は、一般的に下部クラッド層の上に一様なコア層を積層し、該コア層をエッチングしてパターン化されたコアを形成し、そして該コアおよび下部クラッド層を覆う上部クラッド層を積層して形成される。このようにエッチングによりコアパターンを形成する際に、そのエッチングの終点付近(すなわち、エッチングにより露出する底面、およびコア側壁の下部)は、エッチングによる表面荒れ、コア側壁の垂直性の欠陥、およびクラック等の複雑な形状効果を有し、高精度な垂直性および均一性がコア側面に要求される場合に問題となる。また、コアの位置安定性が特に重要な場合に、コアの位置安定性を如何に向上させるかが問題である。

[0007]

【課題を解決するための手段】本発明者らは、上記の課題を解決するに当たり、光導波路の構造設計を鋭意検討し、以下のような断面構造を有する異形ポリイミド光導波路を発明し、低損失のシングルモード導波を実現できることを見いだした。

【0008】また、本発明の異形ポリイミド導波路において、コアパターンのエッチングの深さをコア層の厚さよりも大きくすることによって、エッチング上面の表面 荒れに基づく不良界面あるいはエッチング時に生じるコ ア側而脇(コア近傍の下部クラッド層)のクラック等を コアから遠ざけてコア側面の高精度な垂直性および均一 性を達成することができ、該クラックによる性能劣化を 抑制することができる。

【0009】さらに本発明の異形ポリイミド導波路において、コアパターンのエッチング深さをコア層の厚さよりも小さくすることによって、コア部の位置安定性を向上させるとともに、光導波路作製に伴う歪み(応力発生)により生じる性能劣化を抑制することができる。

【0010】本発明の第1の実施形態である埋め込み型 異形ポリイミド光導波路は、下部クラッド層と、該下部 クラッド層上のコアと、該下部クラッド層および該コア を覆う上部クラッド層とからなり、該下部クラッド層、 該コア、および該上部クラッド層はポリイミド材料を用 いて作製されており、前記コアは、コア幅対コア高さの 比が1より大きくかつ2以下である矩形断面を有し、お よび該コアが形成されていない部分の下部クラッド層の 厚さは、コア高さの0%より大きくかつ30%以下であ る範囲内で、該コアが形成されている部分の下部クラッ ド層の厚さよりも小さいことを特徴とする。

【0011】本発明の第2の実施形態である埋め込み型 異形ポリイミド光導波路は、下部クラッド層と、該下部 クラッド層上のコアと、該下部クラッド層および該コア を覆う上部クラッド層とからなり、該下部クラッド層、 該コア、および該上部クラッド層はポリイミド材料を用 いて作製されており、前記コアは、コア幅対コア高さの 比が1より大きくかつ2以下である矩形断面を有し、お よび該コアが形成されていない部分の下部クラッド層の 厚さと、該コアが形成されている部分の下部クラッド層 の厚さとは等しいことを特徴とする。

【0012】本発明の第3の実施形態である埋め込み型 異形ポリイミド光導波路は、下部クラッド層と、該下部 クラッド層上の突起部を有するコア層と、該下部クラッ ド層および該コア層を覆う上部クラッド層とからなり、 該突起部と該突起部の下にあるコア層をコアとし、該下 部クラッド層、該コア層、および該上部クラッド層はポ リイミド材料を用いて作製されており、該コアは、コア 幅対コア高さの比が1より大きくかつ2以下である矩形 断面を有し、および該突起部が形成されていない部分の コア層の厚さは、該コア高さの0%より大きくかつ30 %以下であることを特徴とする。

【0013】本発明の第4の実施形態である埋め込み型 異形ポリイミド光導波路は、下部クラッド層と、該下部 クラッド層上のコアと、該下部クラッド層および該コア を覆う上部クラッド層とからなり、該下部クラッド層、 該コア、および該上部クラッド層はポリイミド材料を用いて作製されており、前記コアは、コア幅対コア高さの 比が1である正方形断面を有し、および該コアが形成されていない部分の下部クラッド層の厚さは、コア高さの 5000%より大きくかつ30%以下である範囲内で、該コア

30

40

が形成されている部分の下部クラッド層の厚さよりも小 さいことを特徴とする。

【0014】本発明の第5の実施形態である埋め込み型 異形ポリイミド光導波路は、下部クラッド層と、該下部 クラッド層上の突起部を有するコア層と、該下部クラッ ド層および該コア層を覆う上部クラッド層とからなり、 該突起部と該突起部の下にあるコア層をコアとし、該下 部クラッド層、該コア層、および該上部クラッド層はポ リイミド材料を用いて作製されており、該コアは、コア 幅対コア高さの比が1である正方形断面を有し、および 該突起部が形成されていない部分のコア層の厚さは、該 コア高さの0%より大きくかつ30%以下であることを 特徴とする。

【0015】本発明の第6の実施形態である埋め込み型 異形ポリイミド光導波路は、下部クラッド層と、該下部 クラッド層上のコアと、該下部クラッド層および該コア を覆う上部クラッド層とからなり、該下部クラッド層、 該コア、および該上部クラッド層はポリイミド材料を用 いて作製されており、前記コアは、コア幅対コア高さの 比が 0. 7以上 1未満である矩形断面を有し、および該 20 コアが形成されていない部分の下部クラッド層の厚さ は、コアの高さの0%より大きくかつ30%以下である 範囲内で、該コアが形成されている部分の下部クラッド 層の厚さよりも小さいことを特徴とする。

【0016】本発明の第7の実施形態である埋め込み型 異形ポリイミド光導波路は、下部クラッド層と、該下部 クラッド層上のコアと、該下部クラッド層および該コア* *を覆う上部クラッド層とからなり、該下部クラッド層、 該コア、および該上部クラッド層はポリイミド材料を用 いて作製されており、前記コアは、コア幅対コア高さの 比が 0. 7以上 1未満である矩形断面を有し、および該 コアが形成されていない部分の下部クラッド層の厚さ と、該コアが形成されている部分の下部クラッド層の厚 さとは等しいことを特徴とする。

10

【0017】本発明の第8の実施形態である埋め込み型 異形ポリイミド光導波路は、下部クラッド層と、該下部 クラッド層上の突起部を有するコア層と、該下部クラッ ド層および該コア層を覆う上部クラッド層とからなり、 該突起部と該突起部の下にあるコア層をコアとし、該下 部クラッド層、該コア層、および該上部クラッド層はポ リイミド材料を用いて作製されており、該コアは、コア 幅対コア高さの比が 0. 7以上 1未満である矩形断面を 有し、および該突起部が形成されていない部分のコア層 の厚さは、該コア高さの0%より大きく30%以下であ ることを特徴とする。

【0018】本発明の第1から第8の実施形態の埋め込 み型異形ポリイミド光導波路において、前記ポリイミド 材料は、式(1)~(3)のいずれかで表わされる繰り 返し単位からなる含フッ素ポリイミド、式(1)~

(3)から選択される2種または3種の繰り返し単位か らなる含フッ素ポリイミド共重合体、およびそれらの混 合物からなる群から選択されてもよい。

[0019]

【化7】

[0020]

$$\begin{bmatrix}
(1 \times 8) \\
CF_3
\end{bmatrix}$$

$$\begin{bmatrix}
F_3C
\end{bmatrix}$$

$$\begin{bmatrix}
(2)
\end{bmatrix}$$

[0021]

【0022】本発明の第9の実施形態である異形ポリイ ミド光導波路の製造方法は、下部クラッド層およびコア 層を積層する工程と、該コア層をエッチングしてコアを 50 つ該コア層のエッチング深さは、コア層の高さの100

形成する工程であって、前記コアはコア幅対コア高さの 比が1より大きくかつ2以下である矩形断面を有し、か (7)

%より大きくかつ130%以下である工程と、上部クラッド層を積層する工程とを備え、該下部クラッド層、コア層および上部クラッド層はポリイミド材料を用いた作製されることを特徴とする。

11

【0023】本発明の第10の実施形態である異形ポリイミド光導波路の製造方法は、下部クラッド層およびコア層を積層する工程と、該コア層をエッチングしてコアを形成する工程であって、前記コアはコア幅対コア高さの比が1より大きくかつ2以下である矩形断面を有し、かつ該コア層のエッチング深さは、コア層の高さと等しい工程と、上部クラッド層を積層する工程とを備え、該下部クラッド層、コア層および上部クラッド層はポリイミド材料を用いた作製されることを特徴とする。

【0024】本発明の第11の実施形態である異形ポリイミド光導波路の製造方法は、下部クラッド層およびコア層を積層する工程と、該コア層をエッチングしてコアを形成する工程であって、前記コアはコア幅対コア高さの比が1より大きくかつ2以下である矩形断面を有し、かつ該コア層のエッチング深さは、コア層の高さの70%以上100%未満である工程と、上部クラッド層を積層する工程とを備え、該下部クラッド層、コア層および上部クラッド層はポリイミド材料を用いた作製されることを特徴とする。

【0025】本発明の第12の実施形態である異形ポリイミド光導波路の製造方法は、下部クラッド層およびコア層を積層する工程と、該コア層をエッチングしてコアを形成する工程であって、前記コアはコア幅対コア高さの比が1である正方形断面を有し、かつ該コア層のエッチング深さは、コア層の高さの100%より大きくかつ130%以下である工程と、上部クラッド層を積層する工程とを備え、該下部クラッド層、コア層および上部クラッド層はポリイミド材料を用いた作製されることを特徴とする。

【0026】本発明の第13の実施形態である異形ポリイミド光導波路の製造方法は、下部クラッド層およびコア層を積層する工程と、該コア層をエッチングしてコアを形成する工程であって、前記コアはコア幅対コア高さの比が1である正方形断面を有し、かつ該コア層のエッチング深さは、コア層の高さの70%以上100%未満である工程と、上部クラッド層を積層する工程とを備 *40

*え、該下部クラッド層、コア層および上部クラッド層は ポリイミド材料を用いた作製されることを特徴とする。

【0027】本発明の第14の実施形態である異形ポリイミド光導波路の製造方法は、下部クラッド層およびコア層を積層する工程と、該コア層をエッチングしてコアを形成する工程であって、前記コアはコア幅対コア高さの比が0.7以上1未満である矩形断面を有し、かつ該コア層のエッチング深さは、コア層の高さの100%より大きくかつ130%以下である工程と、上部クラッド層を積層する工程とを備え、該下部クラッド層、コア層および上部クラッド層はポリイミド材料を用いた作製されることを特徴とする。

【0028】本発明の第15の実施形態である異形ポリイミド光導波路の製造方法は、下部クラッド層およびコア層を積層する工程と、該コア層をエッチングしてコアを形成する工程であって、前記コアはコア幅対コア高さの比が0.7以上1未満である矩形断面を有し、かつ該コア層のエッチング深さは、コア層の高さと等しい工程と、上部クラッド層を積層する工程とを備え、該下部クラッド層、コア層および上部クラッド層はポリイミド材料を用いた作製されることを特徴とする。

【0029】本発明の第16の実施形態である異形ポリイミド光導波路の製造方法は、下部クラッド層およびコア層を積層する工程と、該コア層をエッチングしてコアを形成する工程であって、前記コアはコア幅対コア高さの比が0.7以上1未満である矩形断面を有し、かつ該コア層のエッチング深さは、コア層の高さの70%以上100%未満である工程と、上部クラッド層を積層する工程とを備え、該下部クラッド層、コア層および上部クラッド層はポリイミド材料を用いた作製されることを特徴とする。

【0030】本発明の第9から第16の実施形態である 異形ポリイミド光導波路の製造方法において、前記ポリ イミド材料は、式(1)~(3)のいずれかで表わされ る繰り返し単位からなる含フッ素ポリイミド、式(1) ~(3)から選択される2種または3種の繰り返し単位 からなる含フッ素ポリイミド共重合体、およびそれらの 混合物からなる群から選択されてもよい。

[0031]

【化10】

$$\begin{bmatrix}
0 & F_3C & CF_3 & 0 & CF_3 \\
0 & F_3C & CF_3 & 0 & CF_3
\end{bmatrix}$$
(1)

[0032]

【化11】

$$\begin{array}{c|c}
 & CF_3 \\
 & CF_3
\end{array}$$

$$\begin{array}{c|c}
 & CF_3
\end{array}$$

$$\begin{array}{c|c}
 & F_3C
\end{array}$$

$$\begin{array}{c|c}
 & CF_3
\end{array}$$

[0033]

[0034]

【発明の実施の形態】本発明に用いるポリイミド材料としては、光透過性の観点から、特に光透過性に優れた含フッ素ポリイミドが好適である。ポリイミドの具体例としては、下記のテトラカルボン酸またはその誘導体である酸二無水物あるいは塩化物と、ジアミンとから合成されるポリイミドを挙げることができる。

【0035】テトラカルボン酸の例としては、ピロメリ ット酸、トリフルオロメチルピロメリット酸、ペンタフ ルオロエチルピロメリット酸、ビス (3,5-ジ(トリフ ルオロメチル)フェノキシ ピロメリット酸、2,3, 3',4'-ビフェニルテトラカルボン酸、3,3',4,4' ーテトラカルボキシジフェニルエーテル、2,3',3, 4'-テトラカルボキシジフェニルエーテル、3,3', 4,4'-ベンゾフェノンテトラカルボン酸、2,3,6, 7ーテトラカルボキシナフタレン、1,4,5,7ーテト ラカルボキシナフタレン、1,4,5,6ーテトラカルボ キシナフタレン、3,3',4,4'ーテトラカルボキシジ フェニルメタン、3,3',4,4'ーテトラカルボキシジ フェニルスルホン、2,2-ビス(3,4-ジカルボキシ フェニル)プロパン、2,2-ビス(3,4-ジカルボキシ フェニル) ヘキサフルオロプロパン、5,5'ービス(トリ フルオロメチル)-3,3',4,4'-テトラカルボキシビ フェニル、2,2',5,5'ーテトラキス(トリフルオロメ チル)-3,3',4,4'-テトラカルボキシヒ、フェニ ル、5,5'-ビス(トリフルオロメチル)-3,3',4,4'ーテトラカルボキシジフェニルエーテル、5,5'ー ビス(トリフルオロメチル)-3,3',4,4'-テトラカ ルボキシベンゾフェノン、ビス {(トリフルオロメチル) ジカルボキシフェノキシ ベンゼン、ビス {(トリフル オロメチル) ジカルボキシフェノキシ (トリフルオロメ チル)ベンゼン、ビス(ジカルボキシフェノキシ)(トリフ ルオロメチル)ベンゼン、ビス(ジカルボキシフェノキ シ) ビス(トリフルオロメチル) ベンゼン、ビス(ジカルボ キシフェノキシ)テトラキス(トリフルオロメチル)ベン ゼン、3,4,9,10ーテトラカルボキシペリレン、2, $2 - \forall X \{4 - (3, 4 - \forall h) \}$

ニル} プロパン、ブタンテトラカルボン酸、シクロペン タンテトラカルボン酸、2.2-ビス {4-(3.4-ジ カルボキシフェノキシ)フェニル ヘキサフルオロプロ パン、ビス {(トリフルオロメチル)ジカルボキシフェノ キシ} ビフェニル、ビス {(トリフルオロメチル)ジカル ボキシフェノキシ〉 ビス(トリフルオロメチル)ビフェニ ル、ビス ((トリフルオロメチル)ジカルボキシフェノキ シ} ジフェニルエーテル、ビス(ジカルボキシフェノキ シ)ビス(トリフルオロメチル)ビフェニル、ビス(3,4 ージカルボキシフェニル)ジメチルシラン、1,3ービス (3,4-ジカルボキシフェニル)テトラメチルジシロキ サン、1,4ービス(3,4ージカルボキシトリフルオロ フェノキシ)テトラフルオロベンゼン、1,4ービス(3, 4-ジカルボキシトリフルオロフェノキシ)オクタフル オロビフェニル、1,4-ジフルオロピロメリット酸、 1ートリフルオロメチルー4ーフルオロピロメリット 酸、1,4-ジ(トリフルオロメチル)ピロメリット酸、 1ーペンタフルオロエチルー4ーフルオロピロメリット 酸、1-ペンタフルオロエチル-4-トリフルオロメチ ルピロメリット酸、1,4-ジ(ペンタフルオロエチル) ピロメリット酸、1-ペンタフルオロフェニル-4-フ ルオロピロメリット酸、1-ペンタフルオロフェニルー 4-トリフルオロメチルピロメリット酸、1-ペンタフ ルオロフェニルー4ーペンタフルオロエチルピロメリッ ト酸、1,4-ジ(ペンタフルオロフェニル)ピロメリッ ト酸、1-トリフルオロメトキシー4-フルオロピロメ リット酸、1-トリフルオロメトキシー4-トリフルオ ロメチルピロメリット酸、1-トリフルオロメトキシー 4-ペンタフルオロエチルピロメリット酸、1-トリフ ルオロメトキシー 1 ーペンタフルオロフェニルピロメリ ット酸、1,4-ジ(トリフルオロメトキシ)ピロメリッ ト酸、1-ペンタフルオロエトキシー4-フルオロピロ メリット酸、1-ペンタフルオロエトキシー4-トリフ ルオロメチルピロメリット酸、1-ペンタフルオロエト キシー4-ペンタフルオロエチルピロメリット酸、1-ペンタフルオロエトキシー4ーペンタフルオロフェニル ピロメリット酸、1-ペンタフルオロエトキシー4-ト 50

リフルオロメトキシピロメリット酸、1,4ージ(ペンタ フルオロエトキシ) ピロメリット酸、1-ペンタフルオ ロフェノキシー4-フルオロピロメリット酸、1-ペン タフルオロフェノキシー 4 ートリフルオロメチルピロメ リット酸、1-ペンタフルオロフェノキシー4-ペンタ フルオロエチルピロメリット酸、1-ペンタフルオロフ ェノキシー4ーペンタフルオロフェニルピロメリット 酸、1-ペンタフルオロフェノキシ-4-トリフルオロ メトキシピロメリット酸、1-ペンタフルオロフェノキ シー4-ペンタフルオロエトキシピロメリット酸、1, 4-ジ(ペンタフルオロフェノキシ)ピロメリット酸、ヘ キサフルオロー3,3',4,4'ーピフェニルテトラカル ボン酸、ヘキサフルオロー3,3',4,4'ービフェニル エーテルテトラカルボン酸、ヘキサフルオロー3,3', 4.4'-ベンゾフェノンテトラカルボン酸、ビス(3, 4-ジカルボキシトリフルオロフェニル)スルホン、ビ ス(3,4-ジカルボキシトリフルオロフェニル)スル フィド、ビス(3,4ージカルボキシトリフルオロフェ ニル) ジフルオロメタン、1,2-ビス(3,4-ジカル ボキシトリフルオロフェニル) テトラフルオロエタン、 · 2,2-ビス(3,4-ジカルボキシトリフルオロフェニ ル) ヘキサフルオロプロパン、1,4-ビス(3,4-ジ カルボキシトリフルオロフェニル) テトラフルオロベン ゼン、3,4-ジカルボキシトリフルオロフェニルー 3',4'ージカルボキシトリフルオロフェノキシージフ ルオロメタン、ビス(3,4-ジカルボキシトリフルオ ロフェノキシ) ジフルオロメタン、1,2-ビス(3,4 ージカルボキシトリフルオロフェノキシ) テトラフルオ ロエタン、2,2-ビス(3,4-ジカルボキシトリフル オロフェノキシ) ヘキサフルオロプロパン、1,1-ビ ス(3,4-ジカルボキシトリフルオロフェノキシ)テ トラフルオロベンゼン、2,3,6,7ーテトラカルボキ シーテトラフルオロナフタレン、2,3,6,7ーテトラ カルボキシーヘキサフルオロアントラセン、2,3,6, 7ーテトラカルボキシーヘキサフルオロフェナントレ ン、2,3,6,7ーテトラカルボキシーテトラフルオロ ビフェニレン、2,3,7,8ーテトラカルボキシーテト ラフルオロジベンゾフラン、2,3,6,7ーテトラカル ボキシーテトラフルオロアントラキノン、2,3,6,7 ーテトラカルボキシーペンタフルオロアントロン、2, 3,7,8-テトラカルボキシーテトラフルオロフェノキ サチイン、2,3,7,8ーテトラカルボキシーテトラフ ルオロチアントレン、2,3,7,8-テトラカルボキシ ーテトラフルオロジベンゾ[b,e]1,4ジオキサン等を 挙げることができる。

ブタノキシ)-1,3-ジアミノベンゼン、4-(1H,1 H-パーフルオロー1-ヘプタノキシ)-1,3-ジアミ ノベンゼン、4-(1H,1,H-パーフルオロー1-オ クタノキシ)-1;3-ジアミノベンゼン、4-ペンタフ ルオロフェノキシー1,3ージアミノベンゼン、4ー (2,3,5,6-r)アミノベンゼン、4-(4-フルオロフェノキシ)-1, 3-ジアミノベンゼン、4-(1H,1H,2H,2H-パ ーフルオロー1ーヘキサノキシ)-1,3-ジアミノベン ゼン、4-(1H,1H,2H,2H-パーフルオロ-1-ドデカノキシ)-1,3-ジアミノベンゼン、p-フェニ レンジアミン、2,5ージアミノトルエン、2,3,5,6 ーテトラメチルーローフェニレンジアミン、2,5ージ アミノベンゾトリフルオライド、ビス(トリフルオロメ チル)フェニレンジアミン、ジアミノテトラ(トリフルオ ロメチル)ベンゼン、ジアミノ(ペンタフルオロエチル) ベンゼン、2,5-ジアミノ(パーフルオロヘキシル)ベ ンゼン、2,5-ジアミノ(パーフルオロブチル)ベンゼ ン、ベンジジン、2,2'ージメチルベンジジン、3,3' ージメチルベンジジン、3,3'ージメトキシベンジジ ン、2,2'ージメトキシベンジジン、3,3',5,5'ー テトラメチルベンジジン、3,3'ージアセチルベンジジ ン、2,2'ービス(トリフルオロメチル)ー4,4'ージア ミノビフェニル、3,3'ービス(トリフルオロメチル)ー 4,4'-ジアミノビフェニル、4,4'-オキシジアニリ ン、4,4'ージアミノジフェニルメタン、4,4'ージア ミノジフェニルスルホン、2,2-ビス(p-アミノフェ ニル)プロパン、3,3'ージメチルー4,4'ージアミノ ジフェニルエーテル、3,3'ージメチルー4,4'ージア ミノジフェニルメタン、1,2-ビス(アニリノ)エタ ン、2,2-ビス(p-アミノフェニル)ヘキサフルオロ プロパン、1,3-ビス(アニリノ)ヘキサフルオロプロ パン、1,4ービス(アニリノ)オクタフルオロブタン、 1,5-ビス(アニリノ)デカフルオロペンタン、1,7-ビス(アニリノ)テトラデカフルオロヘプタン、2,2'ー ビス(トリフルオロメチル)ー4,4'ージアミノジフェニ ルエーテル、3,3'-ビス(トリフルオロメチル)-4, 4'ージアミノジフェニルエーテル、3,3',5,5'ーテ トラキス(トリフルオロメチル) - 4,4' - ジアミノジフ ェニルエーテル、3,3'ービス(トリフルオロメチル)ー 4,4'-ジアミノベンゾフェノン、4,4''-ジアミノ ーpーテルフェニル、1,4ービス(pーアミノフェニ ル)ベンゼン、pービス(4-アミノー2-トリフルオロ メチルフェノキシ)ベンゼン、ビス(アミノフェノキシ) ビス(トリフルオロメチル)ベンゼン、ビス(アミノフェ ノキシ)テトラキス(トリフルオロメチル)ベンゼン、4, 4'''ージアミノーpークォーターフェニル、4,4'ー ビス(pーアミノフェノキシ)ビフェニル、2,2ービス {4-(p-アミノフェノキシ)フェニル)プロパン、

ルスルホン、2,2-ビス (4-(4-アミノフェノキ シ)フェニル) ヘキサフルオロプロパン、2,2ービス {4-(3-アミノフェノキシ)フェニル} ヘキサフルオ ロプロパン、2,2ービス(4-(2-アミノフェノキ シ)フェニル ヘキサフルオロプロパン、2,2-ビス $\{4 - (4 - 7 \le 1) = 1, 5 - 3, 5 - 3 \le 1\}$ ニル ヘキサフルオロプロパン、2,2-ビス {4-(4 ーアミノフェノキシ)-3,5-ジトリフルオロメチルフ ェニル) ヘキサフルオロプロパン、4,4'ービス(4ー アミノー2ートリフルオロメチルフェノキシ)ビフェニ ル、4,4'ービス(4ーアミノー3ートリフルオロメチ ルフェノキシ)ビフェニル、4,4'ービス(4ーアミノー 2-トリフルオロメチルフェノキシ)ジフェニルスルホ ン、4,4'ービス(3ーアミノー5ートリフルオロメチ ルフェノキシ)ジフェニルスルホン、2,2-ビス {4-(4-アミノー3-トリフルオロメチルフェノキシ)フェ ニル ヘキサフルオロプロパン、ビス ((トリフルオロ メチル)アミノフェノキシ) ビフェニル、ビス[{(トリ フルオロメチル)アミノフェノキシ}フェニル]ヘキサ フルオロプロパン、ジアミノアントラキノン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、ビ ス[{2-(アミノフェノキシ)フェニル) ヘキサフルオ ロイソプロピル] ベンゼン、ビス(2,3,5,6-テトラ フルオロー4ーアミノフェニル)エーテル、ビス(2,3, 5,6ーテトラフルオロー4ーアミノフェニル)スルフィ ド、1,3-ビス(3-アミノプロピル)テトラメチルジ シロキサン、1,4-ビス(3-アミノプロピルジメチル シリル)ベンゼン、ビス(4-アミノフェニル)ジエチル シラン、テトラフルオロー1,2ーフェニレンジアミ ン、テトラフルオロー1,3-フェニレンジアミン、テ トラフルオロー1,4ーフェニレンジアミン、ヘキサフ ルオロー1,5ージアミノナフタレン、ヘキサフルオロ -2,6-ジアミノナフタレン、3-トリフルオロメチ ルートリフルオロー1,2-フェニレンジアミン、4-トリフルオロメチルートリフルオロー1,2ーフェニレ ンジアミン、2ートリフルオロメチルートリフルオロー 1,3-フェニレンジアミン、4-トリフルオロメチル ートリフルオロー1,3-フェニレンジアミン、5-ト リフルオロメチルートリフルオロー1,3-フェニレン ジアミン、2ートリフルオロメチルートリフルオロー 1,4-フェニレンジアミン、3,4-ビス(トリフルオ ロメチル) - ジフルオロー1, 2-フェニレンジアミン、 3,5-ビス(トリフルオロメチル)-ジフルオロー1,2 ーフェニレンジアミン、2,4ービス(トリフルオロメチ ル) ージフルオロー1,3ーフェニレンジアミン、4,5 ービス(トリフルオロメチル)ージフルオロー1,3-フ ェニレンジアミン、4,6-ビス(トリフルオロメチル) ージフルオロー1,3ーフェニレンジアミン、2,3ービ ス(トリフルオロメチル)ージフルオロー1,4ーフェニ レンジアミン、2,5ービス(トリフルオロメチル)ージ

フルオロー1,4ーフェニレンジアミン、3,4,5ートリス (トリフルオロメチル)ーフルオロー1,2-フェニレンジ アミン、3,4,6ートリス(トリフルオロメチル)ーフルオ ロー1,2-フェニレンジアミン、2,4,5-トリス(トリフ ルオロメチル)ーフルオロー1,3-フェニレンジアミン、 2,4,6-トリス(トリフルオロメチル)-フルオロ-1,3-フェニレンジアミン、4,5,6ートリス(トリフルオロメチ ル) - フルオロー1,3-フェニレンジアミン、テトラキス (トリフルオロメチル)-1,2-フェニレンジアミン、 テトラキス(トリフルオロメチル)-1,3-フェニレン ジアミン、テトラキス(トリフルオロメチル)-1,4-フェニレンジアミン、3ーペンタフルオロエチルートリ フルオロー1,2ーフェニレンジアミン、4ーペンタフ ルオロエチルートリフルオロー1,2-フェニレンジア ミン、2-ペンタフルオロエチルートリフルオロー1, 3-フェニレンジアミン、4-ペンタフルオロエチルー トリフルオロー1,3ーフェニレンジアミン、5ーペン タフルオロエチルートリフルオロー1,3-フェニレン ジアミン、2-ペンタフルオロエチルートリフルオロー 1,4-フェニレンジアミン、3-トリフルオロメトキ シートリフルオロー1,2ーフェニレンジアミン、4ー トリフルオロメトキシートリフルオロー1,2-フェニ レンジアミン、2ートリフルオロメトキシートリフルオ ロー1,3-フェニレンジアミン、4-トリフルオロメ トキシートリフルオロー1,3-フェニレンジアミン、 5-トリフルオロメトキシートリフルオロー1,3-フ ェニレンジアミン、2ートリフルオロメトキシートリフ ルオロー1,4ーフェニレンジアミン、3,3'ージアミ ノーオクタフルオロビフェニル、3,4'ージアミノーオ クタフルオロビフェニル、4,4'ージアミノーオクタフ ルオロビフェニル、2,2'ービス(トリフルオロメチル) -4,4'-ジアミノヘキサフルオロビフェニル、3,3' ービス(トリフルオロメチル)ー4,4'ージアミノヘキサ フルオロビフェニル、ビス(3-アミノーテトラフルオ ロフェニル)エーテル、3,4'ージアミノーオクタフル オロビフェニルエーテル、ビス(4-アミノーテトラフ ルオロフェニル) エーテル、3,3'ージアミノーオクタ フルオロベンゾフェノン、3,4'ージアミノーオクタフ ルオロベンゾフェノン、4,4'ージアミノーオクタフル オロベンゾフェノン、ビス(3ーアミノーテトラフルオ ロフェニル)スルホン、3,4'ージアミノーオクタフル オロビフェニルスルホン、ビス(4ーアミノーテトラフ ルオロフェニル) スルホン、ビス(3-アミノーテトラ フルオロフェニル)スルフィド、3,4'ージアミノーオ クタフルオロビフェニルスルフィド、ビス(4ーアミノ ーテトラフルオロフェニル)スルフィド、ビス(4-ア ミノテトラフルオロフェニル)ジフルオロメタン、1, 2ービス(4ーアミノテトラフルオロフェニル)テトラ フルオロエタン、2,2ービス(4ーアミノテトラフルオ 50 ロフェニル) ヘキサフルオロプロパン、4,4"ージアミ

ノードデカフルオローpーテルフェニル、4ーアミノー テトラフルオロフェノキシー4'-アミノーテトラフル オロフェニルージフルオロメタン、ビス(4ーアミノー テトラフルオロフェノキシ) - ジフルオロメタン、1,2 ービス(4ーアミノーテトラフルオロフェノキシ)ーテト ラフルオロエタン、2,2-ビス(4-アミノーテトラフ ルオロフェノキシ)ーヘキサフルオロプロパン、1,4-ビス(4-アミノーテトラフルオロフェノキシ)ーテトラ フルオロベンゼン、2,6-ジアミノーヘキサフルオロ ナフタレン、2,6ージアミノーオクタフルオロアント ラセン、2,7ージアミノーオクタフルオロフェナント レン、2.6-ジアミノーヘキサフルオロビフェニレ ン、2.7ージアミノーヘキサフルオロジベンゾフラ ン、2,6-ジアミノーヘキサフルオロアントラキノ ン、2,6-ジアミノーオクタフルオロアントロン、2, 7-ジアミノーヘキサフルオロフェノキサチイン、2, 7-ジアミノーヘキサフルオロチアントレン等を挙げる ことができる。

【0037】上記のテトラカルボン酸またはその誘導体 とジアミンとの組合せにより合成されるポリイミドの中 で、優れた光透過性と屈折率制御性を示す観点から、以 下のポリイミドを光導波路材料として用いることが好ま しい。

(1) ピロメリット酸二無水物 (PMDA) および2, 2ービス (3, 4ージカルボキシジフェニル) ヘキサフルオロプロパン二無水物 (6 F D A) の2種類の酸二無水物をテトラカルボン酸誘導体として用い、2, 2'ービス (トリフルオロメチル)ー4, 4'ージアミノジフェニル (T F D B) をジアミンとして用いた含フッ素ポリイミド共重合体、(2) PMDAまたは6 F D A のいずれか1つをテトラカルボン酸誘導体として用い、T F D B をジアミンとして用いた単独重合体のホモポリイミド、(3) 6 F D A をテトラカルボン酸として用い、T F D B および4, 4'ーオキシジアニリン (O D A) の2種類をジアミンとして用いた含フッ素ポリイミド共重合体、(4) 6 F D A と O D A と から合成される単独重合体のホモポリイミド。

【0038】さらに、本発明に用いるポリイミドは、共 重合体の他にポリイミド混合物であってもよい。ポリイ ミド混合物は、ポリイミド前駆体であるポリアミド酸溶 液の混合物を経由して合成することができる。

【0039】次に、本発明の埋め込み型の異形ポリイミド光導波路の製造方法を、図1を参照して説明する。図1は、コア幅がコア高さよりも大きく、かつコアを形成するためのエッチング深さがコア層の厚さよりも大きい本発明の異形ポリイミド導波路の製造方法である。図1中において、符号1は基板、符号2は下部クラッド層、符号3はコア層、符号4はコアパターンを形成するためのマスク層、符号5はレジスト層、符号6は上部クラッド層を示す。

【0040】シリコン等の基板1の上に下部クラッド層用のポリイミド材料(あるいはその前駆体であるポリアミド酸溶液)をスピンコート等の方法により塗布し、これを加熱等により硬化して、下部クラッド層を形成する。基板1としては、表面の平滑性に優れ、ポリイミドを形成するための熱処型に耐えうる材料を用いることができる。基板1として好ましい材料は、シリコンウェハ、アルミニウム、ステンレスもしくは鋼等の金属板、ポリイミド等の耐熱性樹脂基板、ガラス基板、またはセラミック基板等を含む。これら材料のなかでも、表面の平滑性、優れた耐熱性および低価格を考慮すると、シリコンウェハが好ましい材料である。

【0041】次に、図1(a)に示すように、下部クラッド層用ポリイミド材料よりも大きな屈折率を有するポリイミド材料を用いてコア層3を形成する。コア層3の形成方法としては、下部クラッド層2の形成と同様の方法を用いることができる。さらに、コア層3の上にコアパターンを得るためのマスク層4を形成する。マスク層としては、アルミニウムまたはチタンなどの金属、SiOz、スピンオングラス(SOG)、Si含有レジスト、感光性ポリイミドなどを用いることができる。

【0042】マスク層4を形成した後に、レジスト塗布、プリベーク、露光、現像、アフターベークの工程を行い、図1(b)に示すようなパターニングされたレジスト層5を得る。この際に、パターニングされたレジスト層の幅をコア層3の厚さよりも大きくすることによって、コア幅がコア高さよりも大きいコアを形成することができる。コア幅(すなわちレジスト層の幅)は、コア高さ(すなわちコア層の厚さ)の1倍より大きく、かつ2以下とすること(すなわち、コア幅対コア高さの比を1より大きく2以下とすること)が好ましい。

【0043】次に、図1(c)に示すように、レジスト層5により保護されていないマスク層4をエッチングして除去する。この際に、マスク層4としてSi含有レジストまたは厚膜の感光性ポリイミドを用いた場合には、それら材料を用いてパターニングをすることが可能なので、レジスト層5を設ける必要はない。

【0044】そして、図1(d)に示すように、上記のようにパターニングを伴って形成されたレジスト層5およびマスク層4をエッチングマスクとして用い、該エッチングマスクによって保護されていないコア層3をドライエッチングにより除去して、パターニングされたコアを形成する。この際にドライエッチングの深さをコア層3の厚さよりも大きく設定することにより、下部クラッド層の一部をもエッチング除去している。

【0045】次に、図1(e)に示すように、残ったマスク層4を、ドライエッチングあるいは剥離液を用いることにより除去する。そして、図1(f)に示すように、コア層として用いたポリイミド材料よりも小さい屈50 折率を有するポリイミド材料を用いて上部クラッド層6

を形成する。その形成方法としては、下部クラッド層 2 を形成する方法と同様の方法を使用することができる。 【0046】以上の工程を経ることにより、埋め込み型 の異形ポリイミド光導波路を作製することができる。さ らに上記の基板上に形成された埋め込み型光導波路から 基板を除去すること、および必要に応じて熱処理を行う ことで、図1(g)に示すような。コア幅がコア高さよ り大きく、かつエッチング深さがコア高さより小さい埋 め込み型の異形ポリイミドフィルム光導波路を作製する ことができる。

【0047】以上に述べた作製方法を一部変更すること により、種々の構造の異形ポリイミド光導波路を作製す ることができる。コア幅とコア高さを同一にしたい場合 には、パターニングされるレジスト層5あるいはマスク 層4の幅を、コア層3の高さと同一にすればよいし、あ るいはまたコア高さをコア幅より大きくしたい場合は、 レジスト層5あるいはマスク層4の幅を、コア層3の高 さよりも小さくすればよい。すなわち、コア幅は、フォ トマスクの設計(具体的には、レジスト層5の幅、ある いはマスク層4としてSi含有レジストもしくは感光性 ポリイミドを用いた場合のマスク層4の幅など)によっ て任意に選択することができる。

【0048】また、コア層のエッチング深さをコアの高 さと同一にしたい場合には、コア層のエッチング量をコ ア層の厚さと同一にすればよいし、コア層のエッチング 深さをコアの高さよりも小さくしたい場合には、コア層 のエッチング量をコア層の厚さよりも小さく設定すれば よい。さらに、コア層のエッチング量は、コア層のエッ チング速度とエッチング時間の積によって決定される。 したがって、コア層のエッチング速度をあらかじめ求め ておけば、エッチング時間によってコア層のエッチング 量を制御することが可能である。

【0049】さらに、スピンコート法によりコア層3を 形成する場合には、コア高さ(すなわちコア層の厚さ) はスピンコートの回転数などにより制御することができ る。以上に述べた種々のパラメータ(フォトマスクの設 計、エッチング量、コア層の厚さなど)を適切に設定す ることにより、図2(a)~(h)に示すような、種々 の構造を有する異形ポリイミド光導波路を作製すること ができる。

【0050】図2(a)~(c)は、コア幅wがコア高 さhよりも大きい異形ポリイミド光導波路である。コア 幅対コア高さの比(w/h)を、1より大きく2以下と することによって、低損失のシングルモード光導波路を 得ることができた。図2(d)~(f)は、コア幅がコ ア髙さよりも大きい異形ポリイミド光導波路である。コ ア幅対コア高さの比を、0.7以上1未満とすることに よって、低損失のシングルモード光導波路を得ることが できた。たとえば、コア高さhを $7 \mu m$ 、およびコア幅 wを4. 9 μm、6. 3 μm、7. 7 μm、8. 4 μm

および14.0μmに設計すると、それぞれコア幅対コ ア高さの比が 0.7、0.9の縦長コア断面、1.1、 1. 2および2. 0の横長コア断面を有する光導波路を 形成することができ、これらのコア断面を有する光導波 路は、いずれも低損失であり、かつシングルモード導波 路として機能する。

【0051】コア高さとエッチング深さの観点から見る と、図2(a)、(d) および(f) は、コア高さより もエッチング深さが大きい異形ポリイミド光導波路であ る。これらのようにコア高さよりもエッチング深さを大 きくする場合には、エッチング深さを、コア高さの10 0%より大きく130%以下とすることが好ましい。す なわち、コアが形成されていない部分の下部クラッド層 の厚さは、コア高さの0%より大きくかつ30%以下の 範囲内で、コアが形成されている部分の下部クラッド層 の厚さよりも薄い。このようにエッチング深さをコア高 さよりも大きくすることによって、エッチング終点をコ アから遠ざけることが可能となり、エッチング終点にお ける種々の形状効果、すなわちエッチング上面の表面荒 れに基づく不良界面およびエッチング時に生じるコア側 面脇のクラック等をコアから遠ざけることができる。し たがって、コア側面の高精度な垂直性および均一件を達 成することができ、それらエッチング終点の効果による 性能劣化を抑制することができる。

【0052】一方、図2(c)、(e)および(h) は、エッチング深さよりもコア高さが大きい異形ポリイ ミド光導波路、すなわち突起部を有するコア層を有する 異形ポリイミド光導波路である。これらのようにエッチ ング深さよりもコア高さ(すなわち、コア層の厚さ)を 大きくする場合には、エッチング深さを、コア高さの7 0%以上100%未満とすることが好ましく、特に導波 する光の閉じ込め効果を損なわないために、コア高さの 90%以上100%未満とすることがより好ましい。す なわち、突起部以外のコア層の厚さは、コア高さの0% より大きく30%以下、より好ましくはコア高さの0% より大きく10%以下である。このようにコア高さをエ ッチング深さよりも大きくすることによって、コア部分 の位置安定性を向上させるとともに、光導波路作製に伴 う歪み(応力発生)により生じる性能劣化を抑制するこ とができる。なお、この場合、突起部と突起部の下にあ るコア層を併せた矩形領域11がコアとして機能する。 【0053】コア幅対コア高さの比あるいはエッチング 深さを上記範囲外とすると、光導波路のシングルモード 導波が困難となるばかりではなく、TEモードまたはT Mモードの損失の増加、あるいはTEモードとTMモー

[0054]

【実施例】引き続いて、いくつかの実施例を用いて、本 発明をさらに詳しく説明する。なお、種々のポリイミド 50 共重合体および混合物の組合せにより、あるいは光導波

ドとの損失の差(偏波依存損失)の増加をもたらす。

40

20

30

路構造の差異により、無数の異形ポリイミド光導波路が 得られることは明らかであり、本発明がこれらの実施例 のみに限定されるものではないことを理解すべきであ

23

【0055】作製した光導波路のコア形状の確認は、光 学顕微鏡を用いて行った。また、作製した光導波路の導 波モードと損失を、以下のように測定した。まず、入射 端より、波長1. 3 µ mの導波路フィルム面と平行な方 向の偏波光 (TEモード光) および波長1. 3 μ mの導 波路フィルム面と垂直な方向の偏波光(TMモード光) を入射した。光導波路の出射光の強度分布(ニアフィー ルドモードパターン)を測定することにより導波モード を求めた。また、入射光と出射光の強度差を光導波路長 で除算し、単位長さ当たりの光損失を求めた。

【0056】(実施例1)4インチシリコン基板に対し て、2, 2-ビス(3, 4-ジカルボキシフェニル)へ キサフルオロプロパン二無水物(6FDA)と2,2' ービス(トリフルオロメチル)ー4,4'ージアミノジ フェニル (TFDB) とから合成されるポリイミド (6 FDA/TFDB) の前駆体であるポリアミド酸の15 質量%ジメチルアセトアミド(DMAc)溶液を、スピ ンコート法により塗布した。この塗膜を、乾燥窒素ガス 雰囲気のイナートオーブン中で加熱してイミド化し、ポ リイミド(6FDA/TFDB)からなる下部クラッド 層を形成した。

【0057】次に、この下部クラッド層上に、15モル %のピロメリット酸二無水物(PMDA)と35モル% の6FDAと50モル%のTFDBとから合成されるポ リイミド共重合体(30モル%のPMDA/TFDBと 70モル%の6FDA/TFDBとからなるポリイミド 共重合体)の前駆体であるポリアミド酸の15質量%D MAc溶液を、スピンコート法により塗布した。この塗 膜を、乾燥窒素ガス雰囲気のイナートオーブン中で加熱 してイミド化し、厚さ7.1μmのコア層を形成した。 【0058】次に、このコア層上に、膜厚0.3 µmの アルミニウム層(マスク層)を蒸着した。そして、この アルミニウム層状にポジ型フォトレジストをスピンコー ト法により塗布した後に、約95℃においてプリベーク を行った。次にパターン形成用のフォトマスクと超高圧 水銀灯とを用いて紫外線を照射した後に、ポジ型レジス 40 ト用現像液を用いて現像し、135℃においてポストベ ークを行った。このようにして、線幅10.3μmを有 する直線状のパターンを有するレジスト層を形成した。 【0059】次に、ウェットエッチングにより露出して いるアルミニウムを除去し、レジストパターンをアルミ ニウム層に転写した。さらに、転写されたパターンを有 するアルミニウム層をマスクとして、コア層上面から 9. 0μmの深さまでのコア層および下部クラッド層の ポリイミドを、酸素プラズマを用いたドライエッチング

として用いたアルミニウムを、エッチング液を用いて除

【0060】そして、下部クラッド層と同一のポリイミ ド(6FDA/TFDB)の前駆体であるポリアミド酸 の15質量%DMAc溶液を、スピンコート法により塗 布した。この塗膜を、乾燥窒素ガス雰囲気のイナートオ ーブン中で加熱してイミド化し、上部クラッド層を形成 した。最後に光導波路の両端を、ダイシングソーで切り 落として、光の入出射端面を形成した。

【0061】 このようにして、図2(a) に示すよう な、コア幅w対コア高さhの比が1.45であり、エッ チング深さがコア高さの127%である埋め込み型異形 ポリイミド光導波路が得られた。コア3が形成されてい ない部分の下部クラッド層の厚さは、コア3が形成され ている部分の下部クラッド層よりも、コア高さの27% (1.9 µm) 薄い。この光導波路のTEモードでの導 波光は、シングルモードであった。また、この光導波路 のTEモードおよびTMモードでの損失は、共に1.0 d B/c m以下であり、偏波依存損失は0.5 d B/c m以下であった。

【0062】 (実施例2) コア層を形成する材料として 50モル%の6FDAと12.5モル%の4,4'-オ キシジアニリン (ODA) と37.5モル%のTFDB とから合成されるポリアミド酸のDMA c 溶液を用い て、25モル%の6FDA/ODAと75モル%の6F DA/TFDBとのポリイミド共重合体からなるコア層 を形成し、コア高さ(コア層の厚さ)を8.0μmと し、線幅を 11.5μ mとし、エッチング深さを9.1μmとした以外は、実施例1の方法を繰り返して、光導 波路を形成した。

【0063】このようにして、図2(a)に示すよう な、コア幅w対コア高さhの比が1. 44であり、エッ チング深さがコア高さの114%である埋め込み型異形 ポリイミド光導波路が得られた。この光導波路のTEモ ードでの導波光は、シングルモードであった。また、こ の光導波路のTEモードおよびTMモードでの損失は、 共に1.0 d B/c m以下であり、偏波依存損失は0. 5 d B/c m以下であった。

【0064】 (実施例3) コア層を形成する材料として 50モル%の6FDAと10モル%のODAと40モル %のTFDBとから合成されるポリアミド酸のDMAc 溶液を用いて、20モル%の6FDA/ODAと80モ ル%の6FDA/TFDBとのポリイミド共重合体から なるコア層を形成し、コア高さ(コア層の厚さ)を8. $0 \mu m$ とし、線幅を8. $8 \mu m$ とし、エッチング深さを 8. 0 μmとした以外は、実施例1の方法を繰り返し て、光導波路を形成した。

【0065】このようにして、図2(b)に示すよう な、コア幅w対コア高さhの比が1.10であり、エッ により除去した。そして、コア層上部に残存するマスク 50 チング深さがコア高さと等しい埋め込み型異形ポリイミ

26

ド光導波路が得られた。この光導波路のTEモードでの 導波光は、シングルモードであった。また、この光導波 路のTEモードおよびTMモードでの損失は、共に 1. 0 d B / c m以下であり、偏波依存損失は 0.5 d B / c m以下であった。

【0066】 (実施例4) コア層を形成する材料として 50モル%の6FDAと20モル%のODAと30モル%のTFDBとから合成されるポリアミド酸のDMAc 溶液を用いて、40モル%の6FDA/ODAと60モル%の6FDA/TFDBとのポリイミド共重合体からなるコア層を形成し、コア高さ(コア層の厚さ)を7.0 μ mとし、線幅を12.0 μ mとし、エッチング深さを6.3 μ mとした以外は、実施例1の方法を繰り返して、光導波路を形成した。

【0067】このようにして、図2(c)に示すような、コア幅w対コア高さhの比が1.71であり、エッチング深さがコア高さの90%である埋め込み型異形ポリイミド光導波路が得られた。すなわちコア部分11以外のコア層3の厚さは、コア高さの $10\%(0.7\mu$ m)である。この光導波路のTEモードでの導波光は、シングルモードであった。また、この光導波路のTEモードおよびTMモードでの損失は、共に1.0dB/cm以下であり、偏波依存損失は0.5dB/cm以下であった。

【0068】(実施例5)下部クラッド層および上部クラッド層を形成する材料として50モル%の6FDAと20モル%のODAと30モル%のTFDBとから合成されるポリアミド酸のDMAc溶液を用いて、40モル%の6FDA/ODAと60モル%の6FDA/TFDBとのポリイミド共重合体からなる上部クラッドおよび下部クラッド層を形成し、コア高さ(コア層の厚さ)を8.0 μ mとし、線幅を8.8 μ mとし、エッチング深さを7.2 μ mとした以外は、実施例1の方法を繰り返して、光導波路を形成した。

【0069】このようにして、図2(c)に示すような、コア幅w対コア高さhの比が1.10であり、エッチング深さがコア高さの90%である埋め込み型異形ポリイミド光導波路が得られた。この光導波路のTEモードでの導波光は、シングルモードであった。また、この光導波路のTEモードおよびTMモードでの損失は、共に1.0dB/cm以下であり、偏波依存損失は0.5dB/cm以下であった。

【0070】(実施例6)下部クラッド圏および上部クラッド圏を形成する材料として50モル%の6FDAと5モル%のODAと45モル%のTFDBとから合成されるポリアミド酸のDMAc溶液を用いて、10モル%の6FDA/ODAと90モル%の6FDA/TFDBとのポリイミド共重合体からなる上部クラッドおよび下部クラッド圏を形成し、コア高さ(コア圏の厚さ)を 8.3μ mとし、線幅を 8.3μ mとし、エッチング深 50

さを 9.1μ mとした以外は、実施例1の方法を繰り返して、光導波路を形成した。

【0071】このようにして、図2(d)に示すような、コア幅w対コア高さhの比が1.00であり、エッチング深さがコア高さの110%である埋め込み型異形ポリイミド光導波路が得られた。この光導波路のTEモードでの導波光は、シングルモードであった。また、この光導波路のTEモードおよびTMモードでの損失は、共に1.0dB/cm以下であり、偏波依存損失は0.5dB/cm以下であった。

【0072】(実施例7)コア層を形成する材料として 50モル%の6FDAと10モル%のODAと40モル %のTFDBとから合成されるポリアミド酸のDMAc 溶液を用いて、20モル%の6FDA/ODAと80モ

ル%の6 F D A / T F D B とのポリイミド共重合体からなるコア層を形成し、コア高さ(コア層の厚さ)を8. 2μ m とし、線幅を8. 2μ m とし、エッチング深さを6. 5μ m とした以外は、実施例 1 の方法を繰り返して、光導波路を形成した。

20 【0073】このようにして、図2(e)に示すような、コア幅w対コア高さhの比が1.00であり、エッチング深さがコア高さの79%である埋め込み型異形ポリイミド光導液路が得られた。この光導液路のTEモードでの導波光は、シングルモードであった。また、この光導液路のTEモードおよびTMモードでの損失は、共に1.0dB/cm以下であり、偏波依存損失は0.5dB/cm以下であった。

【0074】(実施例8)下部クラッド層および上部クラッド層を形成する材料として50モル%の6FDAと15モル%の0DAと35モル%のTFDBとから合成されるポリアミド酸のDMAc溶液を用いて、30モル%の6FDA/ODAと70モル%の6FDA/TFDBとのポリイミド共重合体からなる上部クラッドおよび下部クラッド層を形成し、コア層を形成する材料として100モル%の6FDAと50モル%のODAと50モル%のTFDBとから合成されるポリアミド酸のDMAc溶液を用いて、50モル%の6FDA/ODAと50モル%の6FDA/TFDBとのポリイミド共重合体からなるコア層を形成し、コア高さ(コア層の厚さ)を8.0 μ mとし、線幅を7.3 μ mとし、エッチング深さを8.5 μ mとした以外は、実施例1の方法を繰り返して、光導波路を形成した。

【0075】このようにして、図2(f)に示すような、コア幅w対コア高さhの比が0.91であり、エッチング深さがコア高さの106%である埋め込み型異形ポリイミド光導波路が得られた。この光導波路のTEモードでの導波光は、シングルモードであった。また、この光導波路のTEモードおよびTMモードでの損失は、共に1.0dB/cm以下であり、偏波依存損失は0.

50 5dB/cm以下であった。本実施例によって、コア幅

がコア高さより小さい光導波路、すなわち基板面に対し て微細で高密度な光導波路を作製することができた。

【0076】(実施例9)下部クラッド層および上部クラッド層を形成する材料として50モル%の6FDAと5モル%のODAと45モル%のTFDBとから合成されるポリアミド酸のDMAc溶液を用いて、10モル%の6FDA/ODAと90モル%の6FDA/TFDBとのポリイミド共重合体からなる上部クラッドおよび下部クラッド層を形成し、コア高さ(コア層の厚さ)を7.5 μ mとし、線幅を6.1 μ mとし、エッチング深 10さを7.5 μ mとした以外は、実施例1の方法を繰り返して、光導波路を形成した。

【0077】このようにして、図2(g)に示すような、コア幅w対コア高さhの比が0.81であり、エッチング深さがコア高さと同一である埋め込み型異形ポリイミド光導波路が得られた。この光導波路のTEモードでの導波光は、シングルモードであった。また、この光導波路のTEモードおよびTMモードでの損失は、共に1.0dB/cm以下であり、偏波依存損失は0.5dB/cm以下であった。本実施例によって、コア幅がコア高さより小さい光導波路、すなわち基板面に対して微細で高密度な光導波路を作製することができた。

【0078】(実施例10)コア層を形成する材料として50モル%の6FDAと12.5モル%のODAと37.5モル%のTFDBとから合成されるポリアミド酸のDMAc溶液を用いて、25モル%の6FDA/ODAと75モル%の6FDA/TFDBとのポリイミド共重合体からなる上部クラッドおよび下部クラッド層を形成し、コア高さ(コア層の厚さ)を8.1 μ mとし、線幅を6.0 μ mとし、エッチング深さを7.3 μ mとした以外は、実施例1の方法を繰り返して、光導波路を形成した。

【0079】このようにして、図2(h)に示すような、コア幅w対コア高さhの比が0.74であり、エッチング深さがコア高さの90%である埋め込み型異形ポリイミド光導液路が得られた。この光導液路のTEモードでの導波光は、シングルモードであった。また、この光導液路のTEモードおよびTMモードでの損失は、共に1.0dB/cm以下であり、偏波依存損失は0.5dB/cm以下であった。本実施例によって、コア幅がコア高さより小さい光導液路、すなわち基板面に対して微細で高密度な光導液路を作製することができた。

【0080】(実施例11~20)コア層のエッチングマスクとして用いたアルミニウムと、マスクパターンの形成に用いたポジ型フォトレジストに代えて、対酸素プラズマ性に優れたシリコン系レジストをマスク層として用い、該シリコン系レジストをパターニングしたことを除いて、実施例1~10の方法を繰り返して、実施例11~20の光導波路を作製した。実施例11~20の光導波路の可及モードはいずれもシングルモードであった。さらに、実施例11~20の光導波路のTEモードおよびTMモードにおける損失、ならびに偏波依存損失は、いずれも実施例1~10の光導波路と同等であっ

【0081】(比較例1)コア高さ(コア層の厚さ)を 8.2μ mとし、線幅を 8.2μ mとし、エッチング深 さを 8.2μ mとした以外は、実施例1の方法を繰り返して、コア幅w対コア高さ1の比が 1.00であり、エッチング深さがコア高さと同一である埋め込み型異形ポリイミド光導波路を形成した。

【0082】しかし、この光導液路は、光の入出射端面の位置、すなわち4インチウェハからの切り出し位置が異なることにより、TEモードおよびTMモードにおける損失が変動した。さらに、実施例1~5および実施例7と比較して、コアパターンのうねり等による加工不良の発生が多かった。

[0083]

30

【発明の効果】以上説明したように、本発明の異形ポリイミド光導波路は、従来のポリイミド光導波路と比較して、TEモードおよびTMモードにおける損失が低くなるばかりではなく、パターン加工精度の向上および基板面内の実装密度の向上を図ることができる。

【0084】本発明の異形ポリイミド光導液路は、種々の光配線(高密度または低密度、直線または曲線、種々の形状を有する光出射面および光入射面との高効率な接続)に適用することができ、および分岐回路あるいは方向性結合器を含む光部品にも適用することができる。さらに、本発明のポリイミド光導波路は、クラックあるいは応力に伴う性能劣化の抑制効果を奏する。

【図面の簡単な説明】

【図1】本発明の異形ポリイミド光導波路の製造方法を 示す流れ図である。

【図2】本発明の異形ポリイミド光導波路の概略の断而 図である。

(g)

フロントページの続き

△(72)発明者 安藤 慎治

東京都千代田区大手町二丁目3番1号 日本電信電話株式会社内

(72)発明者 山本 二三男

東京都千代田区大手町二丁目3番1号 日

本電信電話株式会社内

(72)発明者 山田 典義

東京都千代田区大手町二丁目3番1号 日

本電信電話株式会社内

F ターム(参考) 2H047 KA04 PA24 PA28 QA05 TA35

· ·

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потибр.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.