康威生命游戏实验报告

CPU 型号: Intel i5-6200U

支持指令集: SSE SSE2 SSE3 等

选用指令集:SSE2

编译选项:使用 Visual Studio 2017,生成编译。

串行主要思路(MyConwayGame):使用两张全局变量的矩阵,对于上一代中的每一个节点统计周围八个点的状态,更新在下一代的表中;迭代时将下一代表作为上一代表

并行主要思路(MyConwayGameSIMD): 在串行的基础上,每次处理四个数据单元,使用_m128i 存储四个 32 位整形数据

并行主要指令: _mm_loadu_si128 数据载入存储器 _mm_add_epi32 两个 32 位 x4 向量寄存器相加

实验数据: input_50x100 与对应的 output_50x100(_simd)分别在对应程序的.exe 相同目录下,通过命令行输入控制迭代次数。行数列数,输入输出文件名已在程序中默认给出。

运行&成果: 串行版本:

:\Users\Puzzle Yao\Desktop\MyConwayGame>cd Debug ::\Users\Puzzle Yao\Desktop\MyConwayGame\Debug>MyConwayGame.exe 100 The program takes about 0.101 seconds! :\Users\Puzzle Yao\Desktop\MyConwayGame\Debug>MyConwayGame.exe 200 The program takes about 0.199 seconds! C:\Users\Puzzle Yao\Desktop\MyConwayGame\Debug>MyConwayGame.exe 500 The program takes about 0.486 seconds! C:\Users\Puzzle Yao\Desktop\MyConwayGame\Debug>MyConwayGame.exe 1000 The program takes about 0.97 seconds! :\Users\Puzzle Yao\Desktop\MyConwayGame\Debug>MyConwayGame.exe 2500 The program takes about 2.432 seconds! ::\Users\Puzzle Yao\Desktop\MyConwayGame\Debug>MyConwayGame.exe 5000 The program takes about 4.848 seconds! C:\Users\Puzzle Yao\Desktop\MyConwayGame\Debug>MyConwayGame.exe 10000 The program takes about 9.712 seconds! :\Users\Puzzle Yao\Desktop\MyConwayGame\Debug>MyConwayGame.exe 20000 The program takes about 19.397 seconds! :\Users\Puzzle Yao\Desktop\MyConwayGame\Debug>MyConwayGame.exe 50000 he program takes about 48.431 seconds!

并行版本:

:\Users\Puzzle Yao\Desktop\MyConwayGameSIMD\Debug>MyConwayGameSIMD.exe 100 :\Users\Puzzle Yao\Desktop\MyConwayGameSIMD\Debug>MyConwayGameSIMD.exe 200 The program takes about 0.013 seconds! :\Users\Puzzle Yao\Desktop\MyConwayGameSIMD\Debug>MyConwayGameSIMD.exe 500 he program takes about 0.04 seconds! :\Users\Puzz1e Yao\Desktop\MyConwayGameSIMD\Debug>MyConwayGameSIMD.exe 1000 The program takes about 0.061 seconds! :\Users\Puzzle Yao\Desktop\MyConwayGameSIMD\Debug>MyConwayGameSIMD.exe 2500 he program takes about 0.15 seconds! :\Users\Puzzle Yao\Desktop\MyConwayGameSIMD\Debug>MyConwayGameSIMD.exe 5000 The program takes about 0.296 seconds! :\Users\Puzzle Yao\Desktop\MyConwayGameSIMD\Debug>MyConwayGameSIMD.exe 10000 The program takes about 0.605 seconds! :\Users\Puzz1e Yao\Desktop\MyConwayGameSIMD\Debug>MyConwayGameSIMD.exe 20000 The program takes about 1.201 seconds! :\Users\Puzz1e Yao\Desktop\MyConwayGameSIMD\Debug>MyConwayGameSIMD.exe 50000 The program takes about 3.042 seconds!

分析表:

迭代次数	串行时间(s)	并行时间(s)	加速比
100	0.101	0.007	14.42
200	0.199	0.013	15.31
500	0.486	0.04	12.15
1000	0.97	0.061	15.9
2500	2.432	0.15	16.21
5000	4.848	0.296	16.38
10000	9.712	0.605	16.05
20000	19.397	1.201	16.15
50000	48.431	3.042	15.92

效率分析:

按照并行的核心部分,加速比应该接近于 4,但是在多次测试保证结果相同的情况下,发现加速比在稳定后可以达到接近于 16。原因之一肯定是一次处理 4 个数据,这也应该是并行的核心。猜测另一个原因应该是因为对于并行减少了边界检测 (checkBound())和串行的状态统计 (countLives())的执行,采用直接相加状态的方式。最后的加速比可以给出初步结论会稳定在 16,体现了并行的高效率。