Readme for operator inference package

Renee Swischuk

May 29, 2019

Section 1 Operator inference package

Scripts: opinf_demo.py

Dependencies: operator_inference package

The first step is to download the operator inference module from pip. In the command prompt, type pip3 install -i https://test.pypi.org/simple/ operator-inference

This is temporary

The operator_inference package contains a model class within the OpInf module, with functions defined in Section 1.1.1, and two helper scripts called opinf_helper.py and integration_helpers.py, with functions defined in Section 1.2.1 and Section 1.3.1, respectively.

Section 1.1 Model class

The following commands will initialize an operator inference model.

```
from operator_inference import OpInf
my_model = OpInf.model(degree, input)
```

where degree is the degree of the model with the following options

'L' – a linear model, $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$

'Lc' – a linear model with a constant, $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{c}$

'LQ' – a linear and quadratic model, $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{F}\mathbf{x}^2$

'LQc' – a linear and quadratic model with a constant, $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{F}\mathbf{x}^2 + \mathbf{c}$

'Q' – a quadratic model, $\dot{\mathbf{x}} = \mathbf{F}\mathbf{x}^2$

'Qc' – a quadratic model with a constant, $\dot{\mathbf{x}} = \mathbf{F}\mathbf{x}^2 + \mathbf{c}$

The input argument is a boolean (True or False) denoting whether or not there is an additive input term of the form +**BU**.

The script, opinf_demo.py demonstrates the use of the operator inference model on data generated from the heat equation. See [?] for the problem setup.

Section 1.1.1 Model class functions

Functions can be called as mymodel.function_name()

1. fit(r,reg,xdot,xhat,u=None)

Find the operators of the reduced-order model that fit the data

Parameters:

```
r – (integer) POD basis size reg – (float) L<sub>2</sub> regularization parameter. For no regularization, set to 0. xdot - (r \times n_t \text{ array}) the reduced time derivative data xhat - (r \times n_t \text{ array}) the reduced snapshot data u - (p \times n_t \text{ array}), optional) the input, if model.input = True
```

Returns:

None

2. predict(init, n_timesteps, dt, u = None)

Simulate the learned model with a Runge Kutta scheme

Parameters:

```
init – (r \times 1) intial reduced state 
n_timesteps – (int) number of time steps to simulate 
dt– (float) the time step size 
u – (p \times n_{timesteps}) the input at each simulation time step
```

Returns:

projected_state – $(r \times n_{timesteps})$ the simulated, reduced states i – (int) the time step that the simulation ended on $(i < n_{timesteps})$ only if NaNs occur in simulation)

3. get_residual()

Get the residuals of the least squares problem

Parameters:

None

Returns:

```
residual – (float) residual of data fit, \|\mathbf{D}\mathbf{O}^T - \dot{\mathbf{X}}^T\|_2^2 solution – (float) residual of the solution, \|\mathbf{O}^T\|_2^2
```

4. get_operators()

Get the learned operators

Parameters:

None

${\bf Returns:}$

ops – (tuple) containing each operator (as an array) as defined by degree of the model

Section 1.2 opinf_helper.py

Import the opinf helper script as

from operator_inference import opinf_helper.

Section 1.2.1 opinf_helper.py functions

The following functions are supported and called as opinf_helper.function_name().

1. normal_equations(D,r,k,num)

Solves the normal equations corresponding to the regularized least squares problem $\min_{\mathbf{o}} \|\mathbf{D}\mathbf{o}_i - \mathbf{r}_i\|_2^2 + k\|\mathbf{P}\mathbf{o}_i\|_2^2$

 $\mathbf{\hat{P}arameters}$:

D – (nd array) data matrix

r - (nd array) reduced time derivative data

k – (float) regularization parameter

num – (int) number of ls problem we are solving [1..r]

Returns:

 \mathbf{o}_i – (nd array) the solution to the least squares problem

2. get_x_sq(X)

Compute squared snapshot data as in [?].

Parameters:

 $X - (n_t \times r \text{ array}) \text{ reduced snapshot data (transposed)}$

Returns:

 $X^2 - (n_t \times \frac{r(r+1)}{2} \text{ array})$ reduced snapshot data squared without redundant terms.

3. F2H(F)

Convert quadratic operator **F** to symmetric quadratic operator **H** for simulating the learned system.

Parameters:

$$F - (r \times \frac{r(r+1)}{2} \text{ array}) \text{ learned quadratic operator}$$

Returns:

 $H - (r \times r^2 \text{ array})$ symmetric quadratic operator

Section 1.3 integration_helpers.py

Import the integration helper script as

from operator_inference import integration_helpers.

Section 1.3.1 integration_helpers.py functions

The following functions are supported and called as integration_helpers.function_name().

1. rk4advance_L(x,dt,A,B=0,u=0)

One step of 4th order runge kutta integration of a system of the form $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$

Parameters:

 $x - (r \times 1 \text{ array})$ current reduced state

dt – (float) time step size

 $A - (r \times r \text{ array})$ linear operator

 $B - (r \times p \text{ array, optional default} = 0) \text{ input operator (only needed if input = True)}.$

 $u - (p \times 1 \text{ array, optional default} = 0)$ the input at the current time step (only needed if input = True).

Returns:

 $x - (r \times 1 \text{ array})$ reduced state at the next time step

2. rk4advance_Lc(x,dt,A,c,B=0,u=0)

One step of 4th order runge kutta integration of a system of the form $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{c}$

Parameters:

 $x - (r \times 1 \text{ array})$ current reduced state

dt – (float) time step size

 $A - (r \times r \text{ array})$ linear operator

 $c - (r \times 1 \text{ array}) \text{ constant term}$

 $B - (r \times p \text{ array, optional default} = 0) \text{ input operator (only needed if input = True)}.$

 $u-(p\times 1 \text{ array, optional default}=0)$ the input at the current time step (only needed if input = True).

Returns:

 $x - (r \times 1 \text{ array})$ reduced state at the next time step

3. rk4advance_LQ(x,dt,A,H,B=0,u=0)

One step of 4th order runge kutta integration of a system of the form $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{H}(\mathbf{x} \otimes \mathbf{x})$

Parameters:

 $x - (r \times 1 \text{ array})$ current reduced state

dt – (float) time step size

 $A - (r \times r \text{ array})$ linear operator

 $H - (r \times r^2 \text{ array})$ quadratic operator

 $B - (r \times p \text{ array, optional default} = 0) \text{ input operator (only needed if } input = True).$

 $u - (p \times 1 \text{ array, optional default} = 0)$ the input at the current time step (only needed if input = True).

Returns:

 $x - (r \times 1 \text{ array})$ reduced state at the next time step

4. rk4advance_LQc(x,dt,A,H,c,B=0,u=0)

One step of 4th order runge kutta integration of a system of the form $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{H}(\mathbf{x} \otimes \mathbf{x}) + \mathbf{c}$

Parameters:

 $x - (r \times 1 \text{ array})$ current reduced state

dt – (float) time step size

 $A - (r \times r \text{ array})$ linear operator

 $H - (r \times r^2 \text{ array})$ quadratic operator

 $c - (r \times 1 \text{ array}) \text{ constant term}$

 $B - (r \times p \text{ array, optional default} = 0) \text{ input operator (only needed if input = True)}.$

 $u - (p \times 1 \text{ array, optional default} = 0)$ the input at the current time step (only needed if input = True).

Returns:

 $x - (r \times 1 \text{ array})$ reduced state at the next time step

5. $rk4advance_Q(x,dt,H,B=0,u=0)$

One step of 4th order runge kutta integration of a system of the form $\dot{\mathbf{x}} = \mathbf{H}(\mathbf{x} \otimes \mathbf{x})$

Parameters:

 $x - (r \times 1 \text{ array})$ current reduced state

dt – (float) time step size

 $H - (r \times r^2 \text{ array})$ quadratic operator

 $B - (r \times p \text{ array, optional default} = 0) \text{ input operator (only needed if } input = True).$

 $u - (p \times 1 \text{ array, optional default} = 0)$ the input at the current time step (only needed if input = True).

Returns:

 $x - (r \times 1 \text{ array})$ reduced state at the next time step

6. rk4advance_Qc(x,dt,H,c,B=0,u=0)

One step of 4th order runge kutta integration of a system of the form $\dot{\mathbf{x}} = \mathbf{H}(\mathbf{x} \otimes \mathbf{x}) + \mathbf{c}$

Parameters:

 $x - (r \times 1 \text{ array})$ current reduced state

dt – (float) time step size

 $H - (r \times r^2 \text{ array})$ quadratic operator

 $c - (r \times 1 \text{ array}) \text{ constant term}$

 $B - (r \times p \text{ array, optional default} = 0) \text{ input operator (only needed if input = True)}.$

 $u - (p \times 1 \text{ array, optional default} = 0)$ the input at the current time step (only needed if input = True).

Returns:

x – (r × 1 array) reduced state at the next time step