Estimador de máxima verosimilitud

1. Una moneda tiene una probabilidad de cara $p, p \in \{2/5; 4/5\}$. En 10 lanzamientos de la moneda se observaron exactamente 3 caras. Estimar por máxima verosimilitud la probabilidad de que en otros tres lanzamientos se observe exactamente una cara.

Se pueden considerar dos caminos equivalentes:

Verosimilitud (método directo)

La muestra aleatoria está dada por X_1, X_2, \cdots, X_{10} variables aleatorias i.i.d. con $X_1 \sim \text{Bernoulli}(p)$. La verosimilitud está dada por

$$\mathcal{L}(p) := \prod_{i=1}^{10} P(X_i = x_i \mid p) = \prod_{i=1}^{10} p^{x_i} (1-p)^{(1-x_i)}.$$

Como el logaritmo es una función monón
ona creciente, no afecta la relación de orden y por lo tanto
 $\mathcal{L}(p_1) > \mathcal{L}(p_2) \Leftrightarrow \ell(p_1) > \ell(p_2)$, donde definimos

$$\ell(p) := \log \mathcal{L}(p) = \left(\sum_{i=1}^{10} x_i\right) p + \left(10 - \sum_{i=1}^{10} x_i\right) (1-p)$$
$$= 3p + 7(1-p).$$

Como el espacio de parámetros $\Theta=\{2/5;4/5\}$ no es abierto, y además es finito numerable, podemos evaluar el máximo enumerando los casos:

1.
$$\ell(2/5) = 3\frac{2}{5} + 7\frac{3}{5} = \frac{27}{5}$$
,

2.
$$\ell(4/5) = 3\frac{4}{5} + 7\frac{1}{5} = \frac{19}{5}$$
.

Como $\ell(2/5) = \max_{p \in \Theta} \ell(p)$, resulta la estimación por máxima verosimilitud $\hat{p} = 2/5$.

Consideremos además las variables aleatorias X_{11}, X_{12}, X_{13} i.i.d con $X_{11} \sim X_1$, entonces se pide estimar la probabilidad

$$P(X_{11} + X_{12} + X_{13} = 1) =: P(X_{11} + X_{12} + X_{13} = 1 \mid p),$$

la cual es una función del parámetro p. Por la propiedad de invarianza funcional del estimador de máxima verosimilitud, resulta

$$\hat{P}(X_{11} + X_{12} + X_{13} = 1 \mid p) = P(X_{11} + X_{12} + X_{13} = 1 \mid \hat{p})$$

Definiendo $Y = X_{11} + X_{12} + X_{13},$ sabemos que $Y \sim \text{Binomial}(3,p),$ y por lo tanto

$$\hat{P}(X_{11} + X_{12} + X_{13} = 1 \mid p) = P(Y = 1 \mid \hat{p}) = {3 \choose 1} \hat{p}(1 - \hat{p})^2$$
$$= 3\frac{2}{5} \left(\frac{3}{5}\right)^2 = \frac{54}{125} = 0.432.$$

Estadístico suficiente (no recomendado para este ejemplo)

La muestra aleatoria está dada por X_1, X_2, \cdots, X_{10} variables aleatorias i.i.d. con $X_1 \sim \text{Bernoulli}(p)$.

Consideramos el estadístico suficiente $T(X_1,\cdots,X_{10})=\sum_{i=1}^{10}X_i\sim \text{Binomial}(10,p),$ entonces,

$$\mathcal{L}(p) \propto P\left(T(X_1, \dots, X_{10}) = \sum_{i=1}^{10} x_i\right)$$
$$= {10 \choose 3} p^{\sum_{i=1}^{10} x_i} (1-p)^{10-\sum_{i=1}^{10} x_i}$$
$$\propto p^{\sum_{i=1}^{10} x_i} (1-p)^{10-\sum_{i=1}^{10} x_i} = \tilde{\mathcal{L}}(p)$$

Luego tomando el logaritmo, y definiendo $\tilde{\ell}(p) \coloneqq \log \tilde{\mathcal{L}}(p)$, se puede verificar que $\tilde{\ell}(2/5) > \tilde{\ell}(4/5)$ y como $\{2/5\} \cup \{4/5\}$ constituye todo el espacio de parámetros $\Theta = \{2/5, 4/5\}$, podemos asegurar que $\hat{p} = 2/5$ es el estimador de máxima verosimilitud. Notar que se usó que $\tilde{\ell}(2/5) > \tilde{\ell}(4/5) \implies \tilde{\mathcal{L}}(2/5) > \tilde{\mathcal{L}}(4/5) \implies \mathcal{L}(2/5) > \mathcal{L}(4/5)$.

Se continúa como en la sección anterior definiendo las variables aleatorias $X_{11}, X_{12}, X_{13}.$