Pontificia Universidad Católica de Chile Facultad de Matemáticas <u>Departamento de Matemáticas</u>

Primer semestre de 2020

Interrogación 5 MAT1107 - Introducción al Cálculo

- (1) Sea $f:[a,b] \to \mathbb{R}$ una función estríctamente creciente, es decir, si $x_1, x_2 \in [a,b]$ y $x_1 < x_2$, entonces $f(x_1) < f(x_2)$.
 - (a) Demuestre que f es invertible. (1 punto)
 - (b) Demuestre que f^{-1} es estríctamente creciente. (2 puntos)

Solución.

- (a) Si $x_1 \neq x_2$, entonces, o bien $f(x_1) < f(x_2)$, o bien $f(x_1) > f(x_2)$. En cualquier caso, $f(x_1) \neq f(x_2)$ y, por lo tanto, f es inyectiva.
 - (b) Sean $y_1 < y_2$ en el dominio de f^{-1} . Supongamos que $f^{-1}(y_1) \ge f^{-1}(y_2)$. (1 punto hasta un planteo de este tipo)

Como f es estríctamente creciente, se tiene que $f(f^{-1}(y_1)) \ge f(f^{-1}(y_2))$, es decir, $y_1 \ge y_2$. Esto es una contradicción. (1 punto)

(2) Sea $x \in \mathbb{R}$. Demuestre que $e^x + e^{-x} \ge 2$. (3 puntos)

Solución.

Como $e^x > 0$, la desigualdad es equivalente a

$$e^{2x} + 1 \ge 2e^x,$$

y, por lo tanto, equivalente a

$$e^{2x} - 2e^x + 1 \ge 0.$$

Esto último es equivalente a

$$(e^x - 1)^2 \ge 0,$$

que es verdadera.

- Reducir a una inecuación cuadrática (2 puntos)
- Concluir. (1 punto)