Topología

Semana 1: Espacios topológicos y bases para topologías

Lunes 23 de septiembre de 2019

- 1. Sea X un espacio topológico y A un subconjunto de X. Supongamos que para cada $x \in A$ existe un conjunto abierto U que contiene a x tal que $U \subseteq A$. Demuestre que U es abierto.
- Sea \mathcal{U} la colección de todos los abiertos contenidos en A. Entonces, podemos escribir que $A = \bigcup \mathcal{U}$. Al ser \mathcal{U} una colección de abiertos, $\bigcup \mathcal{U}$ también es un abierto. Por tanto, A es abierto.
- **2.** Considere las nueve topologías sobre $X = \{a, b, c\}$ indicadas en la siguiente imagen y compárelas.

Figura 1: Nueve topologías sobre $X = \{a, b, c\}$. Tomado de §12 de [1].

Numeramos las topologías de arriba abajo y de izquierda a derecha. Presentamos

los resultados en la siguiente tabla, donde todas las inclusiones son estrictas y el símbolo X denota que las topologías no son comparables

	\mathcal{T}_1	\mathcal{T}_2	\mathcal{T}_3	\mathcal{T}_4	\mathcal{T}_5	\mathcal{T}_6	\mathcal{T}_7	\mathcal{T}_8	\mathcal{T}_9
$ \mathcal{T}_1 $		$\mathcal{T}_1 \subseteq \mathcal{T}_2$	$\mathcal{T}_1 \subseteq \mathcal{T}_3$	$\mathcal{T}_1 \subseteq \mathcal{T}_4$	$\mathcal{T}_1 \subseteq \mathcal{T}_5$	$\mathcal{T}_1 \subseteq \mathcal{T}_6$	$\mathcal{T}_1 \subseteq \mathcal{T}_7$	$\mathcal{T}_1 \subseteq \mathcal{T}_8$	$\mathcal{T}_1 \subseteq \mathcal{T}_9$
$ \mathcal{T}_2 $			X	X	X	X	$\mathcal{T}_7 \subseteq \mathcal{T}_2$	$\mathcal{T}_2 \subseteq \mathcal{T}_8$	$\mathcal{T}_2 \subseteq \mathcal{T}_9$
$ \mathcal{T}_3 $				$\mathcal{T}_4 \subseteq \mathcal{T}_3$	X	$\mathcal{T}_3 \subseteq \mathcal{T}_6$	$\mathcal{T}_7 \subseteq \mathcal{T}_3$	X	$\mathcal{T}_3 \subseteq \mathcal{T}_9$
$ \mathcal{T}_4 $					X	$\mathcal{T}_4 \subseteq \mathcal{T}_6$	X	$\mathcal{T}_4 \subseteq \mathcal{T}_8$	$\mathcal{T}_4 \subseteq \mathcal{T}_9$
$ \mathcal{T}_5 $						X	X	X	$\mathcal{T}_5 \subseteq \mathcal{T}_9$
$ \mathcal{T}_6 $							$\mathcal{T}_7 \subseteq \mathcal{T}_6$	X	$\mathcal{T}_6 \subseteq \mathcal{T}_9$
$ \mathcal{T}_7 $								$\mathcal{T}_7 \subseteq \mathcal{T}_8$	$\mathcal{T}_7 \subseteq \mathcal{T}_9$
$ \mathcal{T}_8 $									$\mathcal{T}_8 \subseteq \mathcal{T}_9$
$ \mathcal{T}_9 $									

3. (a) Sea X un conjunto y definamos

$$\mathcal{T}_c = \{ U \subseteq X \mid U \text{ es conumerable en } X \} \cup \{\emptyset\}.$$

Demuestre que \mathcal{T}_c es una topología sobre X.

(b) Considere la colección

$$\mathcal{T}_{\infty} = \{ U \subseteq X \mid X \setminus U \text{ es infinito } \} \cup \{\emptyset, X\}.$$

¿Es una topología sobe X?

(a) Notamos que \emptyset y X están en \mathcal{T}_c . El primero por definición y el segundo por ser conumerable.

Ahora supongamos que $\{U_{\alpha}\}_{{\alpha}\in J}$ es una colección de conjuntos de \mathcal{T}_c y demostremos que la unión de estos conjuntos también está en \mathcal{T}_c . Si la colección es vacía, este hecho se cumple dado que obtenemos el conjunto vacío. Por otro lado, consideremos la expresión

$$X \setminus \bigcup_{\alpha \in J} U_{\alpha} = \bigcap_{\alpha \in J} (X \setminus U_{\alpha}).$$

Si algún U_{α} es vacío, podemos descartarlo en el lado izquierdo, dado que no afecta a la unión. Así, si suponemos que $U_{\alpha} \neq \emptyset$, se sigue que cada conjunto $X \setminus U_{\alpha}$ es finito, de forma que la expresión del lado derecho es la intersección de conjuntos finitos y debe ser, por tanto, finita. Esto implica que $\bigcup_{\alpha \in J} U_{\alpha}$ está en \mathcal{T}_{α} .

Sean U_1, U_2 elementos de \mathcal{T}_c y supongamos que ninguno es vacío. Entonces,

$$X \setminus (U_1 \cap U_2) = (X \setminus U_1) \cup (X \setminus U_2)$$

es un conjunto finito, dado que es la unión de dos conjuntos finitos. Por tanto, $U_1 \cap U_2$ está en \mathcal{T}_c .

Comentario. De la definición notamos que si X es un conjunto numerable, \mathcal{T}_c coincide con la topología discreta sobre X.

- (b) Si X es finito, $\mathcal{T}_{\infty} = \{\emptyset, X\}$. Por el contrario, si X es inifinito, \mathcal{T}_{∞} no es una topología. Consideremos un contraejemplo en \mathbb{R} . Los conjuntos $(-\infty, 1)$ y $(1, \infty)$ están en \mathcal{T}_{∞} , pero su unión no, dado que $\mathbb{R} \setminus ((-\infty, 1) \cup (1, \infty)) = \{1\}$.
 - **4.** (a) Si $\{\mathcal{T}_{\alpha}\}$ es una familia de topologías sobre X, demuestre que $\bigcap \mathcal{T}_{\alpha}$ es una topología sobre X. ¿Es $\bigcup \mathcal{T}_{\alpha}$ una topología sobre X?

(b)

(a) Sea $\{\mathcal{T}_{\alpha}\}$ una familia de topologías sobre un conjunto X. Al estar en cada topología \mathcal{T}_{α} , los conjuntos X y \varnothing también están en $\bigcap \mathcal{T}_{\alpha}$.

Si $\{U_{\beta}\}$ es una subcolección de $\bigcap \mathcal{T}_{\alpha}$, se sigue que cada uno de los conjuntos U_{β} es un abierto en cada topología \mathcal{T}_{α} . Así, $\bigcup U_{\beta}$ también es un abierto en cada \mathcal{T}_{α} , de lo que se sigue que $\bigcup U_{\beta} \in \bigcap \mathcal{T}_{\alpha}$.

Ahora supongamos que U_1 y U_2 están en $\bigcap \mathcal{T}_{\alpha}$. Se sigue que estos dos conjuntos son abiertos en cada topología \mathcal{T}_{α} , por lo que su intersección también es abierta en cada topología \mathcal{T}_{α} . Así, $U_1 \cap U_2 \in \bigcap \mathcal{T}_{\alpha}$.

En contraste, la unión de topologías no es necesariamente una topología. Consideremos el conjunto $X = \{a, b, c\}$ y las topologías

$$\mathcal{T}_1 = \{\emptyset, X, \{b\}\}\$$
y $\mathcal{T}_2 = \{\emptyset, X, \{a\}, \{b, c\}\}.$

Entonces, $\mathcal{T}_1 \cup \mathcal{T}_2 = \{\emptyset, X, \{a\}, \{b\}, \{b, c\}\}, \text{ pero } \{a\} \cup \{b\} \notin \mathcal{T}_1 \cup \mathcal{T}_2.$

- **5.** Demuestre que si \mathcal{A} es una base para una topología sobre X, entonces la topología generada por \mathcal{A} es igual a la intersección de todas las topologías sobre X que contienen a \mathcal{A} . Pruebe lo mismo si \mathcal{A} es una subbase.
- \bullet Supongamos que ${\mathcal A}$ es una base que genera una topología ${\mathcal T}_{\mathcal A}$ y sea

$$T = \{ T \mid T \text{ es una topología sobre } X \text{ y } A \subseteq T \}.$$

Notamos que $\mathcal{T}_{\mathcal{A}} \in \mathcal{T}$, de forma que $\bigcap \mathcal{T} \subseteq \mathcal{T}_{\mathcal{A}}$.

Por otro lado, si U es un abierto de la topología generada por \mathcal{A} , podemos escribir

$$U = \bigcup_{\alpha \in J} A_{\alpha}$$

donde $\{A_{\alpha}\}_{{\alpha}\in J}$ son elementos de \mathcal{A} . Cada A_{α} pertence a cada topología en T, de lo que se sigue que su unión también debe pertencer a cada topología contenida en T. Así, $\mathcal{T}_{\mathcal{A}}\subseteq \bigcap T$.

• Ahora supongamos que A es una subbase.

6. Demuestre que las topologías de \mathbb{R}_{ℓ} y de \mathbb{R}_{K} no son comparables.

• Supongamos que el abierto [0,1) de la topología de \mathbb{R}_{ℓ} es abierto en la topología de \mathbb{R}_{K} . Entonces, debe existir un conjunto ya sea de la forma (a,b) o de la forma $(a,b)\backslash K$ que contenga a 0 y esté contenido en [0,1). Sin embargo, ninguno de estos casos es posible.

• El conjunto $(-1,1)\backslash K$ es abierto en la topología de \mathbb{R}_K , pero no puede ser abierto en la topología de \mathbb{R}_ℓ , ya que existiría algún [a,b) tal que

$$0 \in [a,b) \subseteq (-1,1)\backslash K$$

y cualquier [a,b) contendría elementos de K.

7. Considere las siguientes topologías sobre $\mathbb R$:

 $\mathcal{T}_1 = \text{la topología usual},$

 $\mathcal{T}_2 =$ la topología de \mathbb{R}_K ,

 $\mathcal{T}_3 =$ la topología cofinita,

 $\mathcal{T}_4 =$ la topología del límite superior, con todos los conjuntos (a,b] como base,

 \mathcal{T}_5 = la topología con todos los conjuntos $(-\infty, a)$ como base.

Determine las posibles relaciones de inclusión entre estas topologías.

	$ \mathcal{T}_1 $	$ \mathcal{T}_2 $	$ \mathcal{T}_3 $	\mathcal{T}_4	$ \mathcal{T}_5 $
\mathcal{T}_1		$(1) \mathcal{T}_1 \subseteq \mathcal{T}_2$	(2) $\mathcal{T}_3 \subseteq \mathcal{T}_1$		
\mathcal{T}_2			$(5) \ \mathcal{T}_3 \subseteq \mathcal{T}_2$	(6) X	(7) $\mathcal{T}_5 \subseteq \mathcal{T}_2$
\mathcal{T}_3				(8) $\mathcal{T}_3 \subseteq \mathcal{T}_4$	(9) X
\mathcal{T}_4					$(10)\mathcal{T}_5 \subseteq \mathcal{T}_4$
\mathcal{T}_5					

(1) La topología de \mathbb{R}_K es estrictamente más fina que la topología usual.

(2) Sea U un abierto de la topología cofinita. Entonces, U contiene a todos los números reales salvo una cantidad finita de estos. Supongamos que

$$x_0 < x_1 < \ldots < x_{n-1} < x_n$$

son los números reales que no están en U. Podemos escribir

$$U = (-\infty, x_0) \cup (x_0, x_1) \cup \ldots \cup (x_{n-1}, x_n) \cup (x_n, \infty).$$

Notamos que

$$(-\infty, x_0) = \bigcup \{ (r, x_0) \subseteq \mathbb{R} \mid r < x_0 \}$$

$$(x_n, \infty) = \bigcup \{ (x_n, r) \subseteq \mathbb{R} \mid x_n < r \},\$$

de forma que cada abierto de \mathcal{T}_c se puede expresar como la unión de intervalos abiertos. La inclusión es estricta: los intervalos (a, b) no son cofinitos.

- (3) La topología usual es estrictamente más gruesa que la topología del límite superior. Dado un intervalo (a,b), para todo $x \in (a,b)$ tenemos que $x \in (a,x] \subseteq (a,b)$. Para ver que la inclusión es estricta, se debe notar que todos los conjuntos de la forma (a,b] son abiertos en la topología del límite superior, pero no pueden serlo en la topología usual, ya que no hay forma de encontrar un intervalo abierto que incluya a b y esté contenido en (a,b].
- (4) Para cada $x \in (-\infty, a)$ podemos encontrar un intervalo abierto que contenga a x y esté dentro de $(-\infty, a)$. La inclusión es estricta: ningún intervalo (a, b) puede pertenecer a la topología \mathcal{T}_5 .
- (5) Al ser estrictamente más gruesa que la topología usual, se sigue que la topología cofinita es estrictamente más gruesa que la topología de \mathbb{R}_K .
- (6) Las topologías de \mathbb{R}_K y del límite superior no son comparables. Un argumento análogo al del **ejercicio 6** se puede hacer para probar esto, sustituyendo los conjuntos de la forma [a,b) por conjuntos de la forma [a,b].
- (7) \mathcal{T}_5 es estrictamente más gruesa que la topología usual, de forma que también debe ser estrictamente más gruesa que la topología de \mathbb{R}_K .
- (8) La topología cofinita es estrictamente más gruesa que la topología usual y esta es estrictamente más gruesa que la topología del límite superior como se demostró en (2).
- (9) La topología cofinita y \mathcal{T}_5 no son comparables. Por un lado, los conjuntos de la forma $(-\infty, a)$ no son cofinitos. Por otro lado, el conjunto $\mathbb{R}\setminus\{1, 2\}$ está en \mathcal{T}_c , pero no hay forma que esté en \mathcal{T}_5 : de lo contrario, existiría un conjunto $(-\infty, a)$ tal que

$$2 \in (\infty, a) \subseteq \mathbb{R} \setminus \{1, 2\}.$$

Entonces, $1 \in (-\infty, a)$, aun cuando lo hemos removido del conjunto de la derecha.

(10) La topología \mathcal{T}_5 es estrictamente más gruesa que la topología usual y esta es estrictamente más gruesa que la topología del límite superior, de forma que \mathcal{T}_5 es estrictamente más gruesa que la topología del límite superior.

8. (a) Aplique el lema 13.2 para demostrar que la colección contable

$$\mathcal{B} = \{ (p, q) \subseteq \mathbb{R} \mid p < q \le p, q \in \mathbb{Q} \}$$

es una base que genera la topología estándar sobre \mathbb{R} .

(b) Demuestre que la colección

$$\mathcal{C} = \{ [p, q) \subseteq \mathbb{R} \mid p < q \neq p, q \in \mathbb{Q} \}$$

es una base que genera una topología diferente de la topología del límite inferior sobre $\mathbb R.$

(a) Consideremos un abierto U en la topología estándar y un elemento x de este. Entonces, existen $a,b\in\mathbb{R}$ tales que $x\in(a,b)\subseteq U$. Podemos elegir racionales p,q tales que

$$a$$

de modo que $x \in (p,q) \subseteq (a,b) \subseteq U$. Se sigue que $\mathcal B$ es una base que genera la topología estándar sobre $\mathbb R$.

(b) Notemos que $[\sqrt{2}, 1.5)$ es abierto en la topología de \mathbb{R}_{ℓ} . Procedemos por contradicción. Supongamos que $[\sqrt{2}, 1.5)$ es abierto en la topología generada por \mathcal{C} . Entonces, existen racionales p y q tales que $\sqrt{2} \in [p,q) \subseteq [\sqrt{2},1.5)$. Esto implica que $p < \sqrt{2}$ y $p > \sqrt{2}$, de lo que deducimos que $[\sqrt{2},1.5)$ no puede pertenecer a la topología generada por \mathcal{C} .

Por otro lado, se cumple que la topología generada por \mathcal{C} es más gruesa que la topología de \mathbb{R}_{ℓ} , ya que todos los elementos de \mathcal{C} están en la base que genera la topología de \mathbb{R}_{ℓ} .