

SC1015 Mini-Project by Team 8: Ye Chuan and Elaine

TABLE OF CONTENTS

01

Motivation

02

Data exploration

03

Retrieving lyrics

04

NLP

04

Machine Learning **05**

Outcome and insights

Motivation

Aspiring songwriters

Most popular music streaming platform as of 2023

- Popularity of song on Spotify would be an accurate measure of song success

"What are the key song attributes that would determine if a song would become popular on Spotify?"

Response: Popularity

Predictors: Song attributes

About the dataset

Extracted from: Kagge

Dataset compiled by: Zaheen Hamidani

What is in the dataset

232,725 song from 26 different genres as well as 18 different song attributes.

General Data Exploration and Cleaning


```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 232725 entries, 0 to 232724
Data columns (total 18 columns):
   Column
                     Non-Null Count Dtype
    genre
                      232725 non-null object
                     232725 non-null object
    artist name
    track name
                     232725 non-null object
    track id
                     232725 non-null object
    popularity
                     232725 non-null
    acousticness
                     232725 non-null float64
    danceability
                     232725 non-null float64
                     232725 non-null int64
    duration ms
                     232725 non-null float64
    energy
    instrumentalness 232725 non-null float64
                     232725 non-null object
10 kev
                     232725 non-null float64
11 liveness
12 loudness
                     232725 non-null float64
13 mode
                     232725 non-null object
14 speechiness
                     232725 non-null float64
15 tempo
                     232725 non-null float64
16 time signature 232725 non-null object
17 valence
                     232725 non-null float64
dtypes: float64(9), int64(2), object(7)
memory usage: 32.0+ MB
```

pd.isnull(raw).sum() genre artist name track name track id popularity 0 acoustioness 0 danceability 0 duration ms energy instrumentalness 0 kev liveness 0 loudness mode speechiness tempo time signature valence dtvpe: int64

General information about the entries

Checking for NaN/ Null values

Comedy	9681
Soundtrack	9646
Indie	9543
Jazz	9441
Pop	9386
Electronic	9377
Children's Mu	ısic 9353
Folk	9299
Hip-Hop	9295
Rock	9272
Alternative	9263
Classical	9256
Rap	9232
World	9096
Soul	9089
Blues	9023
R&B	8992
Anime	8936
Reggaeton	8927
Ska	8874
Reggae	8771
Dance	8701
Country	8664
Opera	8280
Movie	7806
Children's Mu	ısic 5403
A Capella	119
Name: genre,	dtype: int64

Children's Musi	.c 14756
Comedy	9681
Soundtrack	9646
Indie	9543
Jazz	9441
Pop	9386
Electronic	9377
Folk	9299
Нір-Нор	9295
Rock	9272
Alternative	9263
Classical	9256
Rap	9232
World	9096
Soul	9089
Blues	9023
R&B	8992
Anime	8936
Reggaeton	8927
Ska	8874
Reggae	8771
Dance	8701
Country	8664
Opera	8280
Movie	7806
A Capella	119
Name: genre, dt	ype: int64

Before cleaning

Duplicated genres

After cleaning

Duplicated Tracks

The track id is said to be a unique identifier of each track on Spotify.

print("Number of duplicated track_id", pop_country["track_id"].duplicated().sum())

Number of duplicated track_id 306

9		genre	artist_name	track_name
	109008	Pop	Devin Dawson	All <mark>on</mark> Me
	212354	Country	Devin Dawson	All On Me
	112896	Pop	Devin Dawson	Asking <mark>for a</mark> Friend
	212781	Country	Devin Dawson	Asking For A Friend

[] # Sort entries in decscending order of popularity # Next, drop duplicated track_id and only keep th print(f"No. of Songs before dropping: {pop_countr pop_country = pop_country.sort_values(by="popular print(f"No. of Songs after dropping: {pop_country

print(f"Entries with duplicated track_id {pop_cou

No. of Songs before dropping: 15659 No. of Songs after dropping: 15353 Entries with duplicated track id 0

Repeated song names

Remove Duplicates

Such as:

Tempo

Loudness

Duration

Spotify determined Numerical Song Attributes

Energy

Instrumentalness

Acousticness

Speechiness

Danceability

Liveness

Valence

Such as:

Duration_ms

Tempo

Exploring the distribution of Categorical General Song Attributes

Such as:

key

mode

time_signature

Numerical Variables

Juration_ms

Tempo

Exploring the correlation between song attributes and popularity

Categorical Variables

mode

Time_signature

modal_key

Created by merging key and mode.

Rational: In general, it is more common to have songs categorized in terms of it's key and mode (major/minor) together instead of having it's key and mode

separated.

Distribution of modal_key

Relationship with popularity

Rational: The scope of the dataset is too wide. We have to narrow our focus on the specific genre and language of our interest.

Genre of interest: Pop and Country

```
[ ] pop_country = raw.loc[(raw["genre"]=="Pop") | (raw["genre"]=="Country")]
    pop_country["genre"].value_counts()

Pop     9386
    Country    8664
    Name: genre, dtype: int64
```


Keeping entries with pop or country as genres only

Rational: The scope of the dataset is too wide. We have to narrow our focus on the specific genre and language of our interest.

Language of Interest : English

- pop_country = pop_country[pop_country["track_name"].apply(detect_english)]
 print("After Removing Non-English Titles")
- pop_country["genre"].value_counts()
- After Removing Non-English Titles
 Country 8072
 Pop 7587
 Name Council division in 164

Name: genre, dtype: int64

Removing non-English titled songs

Obtaining Song Lyrics

API Calls

- Response to song search queries
- Does not provide lyrics in plaintext
- Provides a URL to the lyrics page

Web Scrape

Genius Lyrics

- BeautifulSoup4
- Multiple Separated Chunks
- Removal of section tags (i.e. [Chorus], [Verse1])

Time Taken

9+ Hours

15000+ Songs

05:54:42 [1/15659]: Cam - My Mistake
05:54:44 [2/15659]: Kevin Fowler - That Girl
05:54:46 [3/15659]: Roger Miller - Chug-A-Lug
05:54:47 [4/15659]: M. Ward - Chinese Translation
05:54:49 [5/15659]: Chris Cagle - Anywhere But Here
05:54:50 [6/15659]: Cassadee Pope - I Wish I Could Break Your Heart
05:54:53 [7/15659]: Mark Chesnutt - Too Cold At Home
05:54:54 [8/15659]: Gary Allan - Get Off On The Pain
05:54:56 [9/15659]: Hank Williams, Jr. - Old Habits
05:54:57 [10/15659]: Ryan Adams - When The Stars Go Blue
05:55:00 [11/15659]: Adam Sanders - Sippin' on the Good Times

05:55:01 ARTIST MISMATCH: Adam Sanders - Sippin' on the Good Times <-SEAF

Tokenization

Pre-Processing

Dash Removal (e.g. oh-oh-oh)

Tokenization

Break into smallest units of meaning

	lyrics	tokenized
107804	Yeah, breakfast at Tiffany's and bottles of bu	[Yeah, ,, breakfast, at, Tiffany, 's, and, bot
107802	You got me some type of way (Hmm)\nAin't used	[You, got, me, some, type, of, way, (, Hmm,),
107829	Oh, she's sweet but a psycho\nA little bit psy	[Oh, ,, she, 's, sweet, but, a, psycho, A, lit
107808	Found you when your heart was broke\nl filled	[Found, you, when, your, heart, was, broke, I,
107838	High, high hopes\nHad to have high, high hopes	[High, ,, high, hopes, Had, to, have, high, ,,

Stop Words


```
["a", "about", "ai", "ain", "am", "an", "and", "any", "are", "aren", "aren't", "n't", "as", "at", "be", "been", "but",
```

"doesn't", "doing", "doin'", "doin", "don", "don't", "down", "during", "durin'", "durin", "each", "few", "for", "from"

"for", "from", "further", "had", "hadn", "hadn't", "has", "hasn", "hasn't", "have", "haven't"

Stemming

Stemming

Quick way to reduce related words to the same "stem

Lemmatization

Similar, but attempts to reduce to actual words

	tokenized	stems
107804	[Yeah, breakfast, Tiffany, bottles, bubbles, G	[yeah, breakfast, tiffani, bottl, bubbl, girl,
107802	[got, type, way, Hmm, used, feelin, way, Mmm, \dots	[got, type, way, hmm, use, feelin, way, mmm, m
107829	[Oh, she, sweet, psycho, little, bit, psycho,	[oh, she, sweet, psycho, littl, bit, psycho, n
107808	[Found, heart, broke, filled, cup, overflowed,	[found, heart, broke, fill, cup, overflow, too
107838	[High, high, hopes, high, high, hopes, living,	[high, high, hope, high, high, hope, live, sho

Bag-of-Words

Simple model to bag words together and count their frequencies

Frequency of words in our corpus

Response variable

Finalising the range of values Since we want to split popularity ratings into 5 different category without having significant issues later due to class imbalance, we shall split our data equally into the 5 categories. Each categories should have an estimate of around $\frac{15353}{\epsilon} = 3070.6$ entries. Hence, we could split our data into the 5 categories as follows: pop country["popularity level"] = 0 #'Low' pop country.loc[(pop country["popularity"]>=42) & (pop country["popularity"]<=51), pop country.loc[(pop country["popularity"]>=52) & (pop country["popularity"]<=61), pop country.loc[(pop country["popularity"]>=62) & (pop country["popularity"]<=67), pop_country.loc[(pop_country["popularity"]>=68) & (pop_country["popularity"]<=100),</pre> pop_country["popularity_level"].value_counts() 3161 3139 3104 3020

Numerical

Categorisation

Name: popularity level, dtype: int64

Words Selection Chi-Squared Test

18271 Words → **15000 Words**

Feature Encoding

Mode

 $\begin{array}{c} \textbf{Major} \rightarrow \textbf{1} \\ \textbf{Minor} \rightarrow \textbf{0} \end{array}$

Encode categories into number to feed into model

	mode	mode_encoded
107804	Minor	0
107802	Minor	0
107829	Major	1
107808	Major	1
107838	Major	1
212806	Major	1
7471	Major	1
216687	Major	1
215996	Major	1
216430	Major	1
9093 rows × 2 columns		

Model selection – Using Cross-Validation

Naïve Bayes Classifier

```
# 5-Fold Cross-Validation
bernoulli_scores = cross_val_score(bernoulli, features_set, pop_country["popularity_level"], cv=5)
multinomial_scores = cross_val_score(multinomial, features_set, pop_country["popularity_level"], cv=5)

print("Benoulli Test Set Accuracy:")
print(f"\tMean: {bernoulli_scores.mean()}")
print(f"\tStandard Deviation: {bernoulli_scores.std()}")

print("Multinomial Test Set Accuracy:")
print(f"\tMean: {multinomial_scores.mean()}")
print(f"\tStandard Deviation: {multinomial_scores.std()}")

Benoulli Test Set Accuracy:
```


Standard Deviation: 0.012285173361276032

Insights

Accuracy: 25%

Outcomes

Accuracy: 60%

Accuracy: 35%

Improvements

