

Assignatura	Codi	Data	Hora inici
Lògica	05.570	23/06/2012	18:30

Enganxeu en aquest espai una etiqueta identificativa amb el vostre codi personal Examen

Fitxa tècnica de l'examen

- Comprova que el codi i el nom de l'assignatura corresponen a l'assignatura en la qual estàs matriculat.
- Només has d'enganxar una etiqueta d'estudiant a l'espai corresponent d'aquest full.
- No es poden adjuntar fulls addicionals.
- No es pot realitzar la prova en llapis ni en retolador gruixut.
- Temps total: 2 h.
- En cas que els estudiants puguin consultar algun material durant l'examen, quin o quins materials poden consultar?

No es pot consultar cap material

- Valor de cada pregunta: Problema 1: 30%; problema 2: 25%; problema 3: 25%; problema 4: 20%
- En cas que hi hagi preguntes tipus test: Descompten les respostes errònies? NO Quant?
- Indicacions específiques per a la realització d'aquest examen:

Enunciats

Assignatura	Codi	Data	Hora inici
Lògica	05.570	23/06/2012	18:30

Problema 1

a) Formalitzeu utilitzant la lògica d'enunciats les frases següents. Utilitzeu els àtoms proposats.

F: "Tenir una fortuna"

N: "Tenir una nòmina"

H: "Fer una hipoteca"

A: "Tenir avals"

B: "Al barri parlen de tu"

- 1) Quan tens una fortuna, no és necessari tenir una nòmina ni tenir avals per a poder fer una hipoteca. $F \rightarrow \neg (H \rightarrow N \land A)$
- 2) Si no tens una fortuna ni tens una nòmina, pots fer una hipoteca si tens avals.

 $\neg F \land \neg N \rightarrow (A \rightarrow H)$

3) Per a que al barri no parlin de tu és necessari no tenir una fortuna.

 $\neg B \to \neg F$

b) Formalitzeu utilitzant la lògica de predicats les frases següents. Utilitzeu els predicats proposats.

Predicats

A(x): és una noia

O(x): és un noi

C(x): x fa un acudit

R(x): x riu sorollosament

P(x): x fa piruetes amb el monopatí

M(x,y): x mira a y

G(x,y): a x li agrada y

Domini: conjunt no buit de nois i noies

1) Les noies riuen sorollosament quan algun noi que els agrada fa un acudit

$$\forall x[A(x) \to (\exists y[O(y) \land G(x,y) \land C(y)] \to R(x))]$$

2) Hi ha nois que només fan piruetes amb el monopatí quan una noia que els agrada els mira

$$\exists x [O(x) \land (P(x) \rightarrow \exists y [A(y) \land G(x,y) \land M(y,x)])]$$

3) Quan un noi fa un acudit i ningú riu sorollosament aleshores ell no li agrada a ningú

$$\forall x[O(x) \rightarrow (H(x) \land \neg \exists y R(y) \rightarrow \neg \exists z G(z,x))]$$

Assignatura	Codi	Data	Hora inici
Lògica	05.570	23/06/2012	18:30

Problema 2

Demostreu la validesa del raonament següent utilitzant les 9 regles primitives de la deducció natural (no podeu utilitzar ni regles derivades ni equivalents deductius):

$$P {\rightarrow} Q, \, S {\vee} R, \, S {\rightarrow} P, \, T {\rightarrow} \neg R \, \mathrel{\dot{.}.} \, (P {\wedge} Q) {\vee} \neg T$$

4	D 0			Б
1.	P→Q			Р
2.	S∨R			P
3.	S→P			Р
4.	T→¬R			Р
5.		S		Н
6.		Р		E→ 3, 5
7.		Q		E→1, 6
8.		P∧Q		l∧ 6, 7
9.		(P∧Q)∨¬T		l∨ 8
10.		R		Н
11.			Т	Н
12.			¬R	E→ 4, 11
13.			R	lt 10
14		¬T		I¬ 11, 12, 13
15		(P∧Q)∨¬T		l∨ 14
16	(P∧Q)∨¬T			Ev 2, 9, 15

Problema 3

Analitzeu la validesa o la invalidesa del següent raonament utilitzant el mètode de resolució. Simplifiqueu, si es pot, el conjunt de clàusules resultant. Són consistents les premisses?

$$\mathsf{A} \vee \neg \mathsf{B} {\rightarrow} (\neg \mathsf{D} {\rightarrow} \neg \mathsf{C}), \, \mathsf{A} \wedge \neg \mathsf{E} {\rightarrow} (\neg \mathsf{F} {\rightarrow} \neg \mathsf{D}), \, \neg (\mathsf{A} {\rightarrow} \, \mathsf{E}) \wedge (\mathsf{D} {\rightarrow} \, \mathsf{F}) \, \therefore \mathsf{C} {\rightarrow} \mathsf{F}$$

Normalització de les premisses i de la negació de la conclusió:

$$\begin{split} & \text{FNC } (\mathsf{A} \vee \neg \mathsf{B} \to (\neg \mathsf{D} \to \neg \mathsf{C} \)) = \neg (\mathsf{A} \vee \neg \mathsf{B}) \vee (\mathsf{D} \vee \neg \mathsf{C}) = (\neg \mathsf{A} \wedge \mathsf{B}) \vee (\mathsf{D} \vee \neg \mathsf{C}) = (\neg \mathsf{A} \vee \mathsf{D} \vee \neg \mathsf{C}) \wedge (\mathsf{B} \vee \mathsf{D} \vee \neg \mathsf{C}) \wedge (\mathsf{C} \vee \mathsf{$$

Aleshores, el conjunt de clàusules de què disposem és:

$$S = \{ \neg A \lor D \lor \neg C, B \lor D \lor \neg C, \neg A \lor E \lor F \lor \neg D, A, \neg E, \neg D \lor F, \textbf{C}, \neg \textbf{F} \}$$

Assignatura	Codi	Data	Hora inici
Lògica	05.570	23/06/2012	18:30

(en negreta, el conjunt de suport)

Aplicant la regla del literal pur, podem eliminar la segona clàusula, ja que cap clàusula conté el literal ¬B:

$$S=\{\neg A \lor D \lor \neg C, \neg A \lor E \lor F \lor \neg D, A, \neg E, \neg D \lor F, C, \neg F\}$$

Fent resolució a partir de la primera clàusula del conjunt de suport:

Clàusules troncals	Clàusules laterals	
С	$\neg A \lor D \lor \neg C$	
¬A∨ D	¬D∨ F	
¬A∨ F	¬F	
¬A	A	

L'obtenció de la clàusula buida ens permet donar com a vàlid aquest raonament.

Per a comprovar la consistència de les premisses, partim del següent conjunt de clàusules:

$$S=\{\neg A \lor D \lor \neg C, \ B \lor D \lor \neg C, \ \neg A \lor E \lor \ F \lor \neg D, \ A \ , \ \neg E, \ \neg D \lor \ F\}$$

Per la regla del literal pur, podem eliminar la segona clàusula, ja que cap altra clàusula conté el literal ¬B:

$$S=\{\neg A \lor D \lor \neg C, \neg A \lor E \lor F \lor \neg D, A, \neg E, \neg D \lor F\}$$

D'altra banda, la darrera clàusula de l'anterior conjunt subsumeix la segona amb la qual cosa obtenim el conjunt següent:

$$S={\neg A \lor D \lor \neg C, A, \neg E, \neg D \lor F}$$

També podem eliminar ¬E ja que altra clàusula d'aquest conjunt conté E (literal pur):

$$S=\{\neg A \lor D \lor \neg C, A, \neg D \lor F\}$$

Fent resolució:

Clàusules troncals	Clàusules laterals
¬A∨ D∨ ¬C	A
D∨¬C	¬D∨ F
¬C∨ F	

No podem continuar; ens replantegem la darrera decisió:

Clàusules troncals	Clàusules laterals
¬A∨ D∨ ¬C	¬D∨ F
$\neg A \lor \neg C \lor F$	A
¬C∨ F	

No podem continuar i hem esgotat totes les possibilitats. Per tant, les premisses són consistents.

Assignatura	Codi	Data	Hora inici
Lògica	05.570	23/06/2012	18:30

Problema 4

Valida el següent raonament per Deducció Natural

$$\forall x[\; P(x) \rightarrow \; (\exists y \; M(y) \rightarrow \exists z \; S(x,z)) \;\;] \; \therefore \; \exists y (R(y) \wedge M(y)) \rightarrow \forall x [\; P(x) \rightarrow \; \exists z \; S(x,z)]$$

Solució:

1	$\forall x [P(x) \rightarrow (\exists y M(y) \rightarrow \exists z S(x,z))]$			Prem
2		$\exists y (R(y) \land M(y))$		Hip
3		R(a) ∧ M(a)		E∃ 2
4			P(u)	Hip
5			$P(u) \rightarrow (\exists y M(y) \rightarrow \exists z S(u,z))$	E∀ 1
6			$\exists y M(y) \rightarrow \exists z S(u,z)$	E→4,5
7			M(a)	E∧ 3
8			∃yM(y)	I∃ 7
9			∃z S(u,z)	E→6,8
10		$P(u) \rightarrow \exists z \ S(u,z)$		l→4,9
11		$\forall x[P(x) \rightarrow \exists z S(x,z)]$		I∀ 10
12	$\exists y (R(y) \land M(y)) \rightarrow \forall x [P(x) \rightarrow \exists z S(x,z)]$			l→2,11

Assignatura	Codi	Data	Hora inici
Lògica	05.570	23/06/2012	18:30

Assignatura	Codi	Data	Hora inici
Lògica	05.570	23/06/2012	18:30

Assignatura	Codi	Data	Hora inici
Lògica	05.570	23/06/2012	18:30

Assignatura	Codi	Data	Hora inici
Lògica	05.570	23/06/2012	18:30

Assignatura	Codi	Data	Hora inici
Lògica	05.570	23/06/2012	18:30

Assignatura	Codi	Data	Hora inici
Lògica	05.570	23/06/2012	18:30

Assignatura	Codi	Data	Hora inici
Lògica	05.570	23/06/2012	18:30