- 1. Să se determine valoarea lui $m \in \mathbb{R}$ astfel încât dreapta de ecuație mx + y = 1 să fie paralelă cu dreapta 2x y = 3. (6 pct.)
 - a) $m = -\frac{1}{2}$; b) m = -1; c) $m = \frac{1}{2}$; d) m = 2; e) m = 1; f) m = -2.
- 2. Să se determine parametrii $a,b\in\mathbb{R}$ știind că $\vec{w}=a\vec{u}+b\vec{v}$, unde $\vec{u}=\vec{i}-\vec{j},\ \vec{v}=\vec{i}+\vec{j}$ și $\vec{w}=3\vec{i}-\vec{j}$. (6 pct.)
 - a) a = 3, b = -1; b) a = -2, b = -1; c) a = -1, b = 2; d) a = 2, b = 1; e) a = 0, b = 1; f) a = 1, b = 2.
- 3. Latura pătratului de arie 4 cm² are lungimea: (6 pct.)
 - a) $2\sqrt{2}$ cm; b) 2 cm; c) $\frac{1}{2}$ cm; d) 1 cm; e) $\sqrt{2}$ cm; f) 8 cm.
- 4. Să se calculeze produsul $P = \sin 60^{\circ} \cdot \operatorname{tg} 45^{\circ} \cdot \cos 30^{\circ}$. (6 pct.)
 - a) $\frac{3}{4}$; b) 0; c) $\frac{\sqrt{3}}{4}$; d) $\frac{1}{2}$; e) $\frac{4}{3}$; f) 1.
- 5. Simetricul C al punctului A(1,2) față de punctul O(0,0) este: (6 pct.)
 - a) C(1,2); b) C(2,1); c) $C(-\frac{1}{2},-1)$; d) C(-1,2); e) C(-1,-2); f) $C(\frac{1}{2},1)$.
- 6. Se dau vectorii $\vec{u} = 2\vec{i} + 3\vec{j}$ și $\vec{v} = \vec{i} + 2\vec{j}$. Atunci vectorul $\vec{u} + \vec{v}$ este: (6 pct.)
 - a) $\vec{i} + \vec{j}$; b) $3\vec{i} + 5\vec{j}$; c) $5\vec{i} + 3\vec{j}$; d) $2\vec{i} \vec{j}$; e) $3\vec{i} + 4\vec{j}$; f) $\vec{i} \vec{j}$.
- 7. Aflaţi valoarea parametrului $a \in \mathbb{R}$ pentru care vectorii $\vec{u} = \vec{i} 2\vec{j}$ şi $\vec{v} = -a\vec{i} + 3\vec{j}$ sunt perpendiculari. (6 pct.)
 - a) a = 0; b) a = 1; c) a = 6; d) a = -3; e) a = 2; f) a = -6.
- 8. În triunghiul ascuţitunghic ABC se cunosc: $m(\hat{A}) = 45^{\circ}$, $m(\hat{B}) = 60^{\circ}$ şi BC = 2. Atunci: (6 pct.)
 - a) AC = 1; b) AC = 3; c) $AC = \sqrt{6}$; d) AC = 4; e) $AC = \sqrt{2}$; f) AC = 2.
- 9. În triunghiul ABC se dau AB = AC = 5 și BC = 6. Atunci înălțimea dusă din A are lungimea: (6 pct.)
 - a) 1; b) 8; c) 4; d) 5; e) 3; f) 2.
- 10. Laturile triunghiului ABC au lungimile 1, 1, $\sqrt{2}$. Atunci raza R a cercului circumscris triunghiului este: (6 pct.)
 - a) $\frac{1}{2}$; b) $\sqrt{2}$; c) $\frac{\sqrt{2}}{3}$; d) 1; e) $\frac{\sqrt{2}}{2}$; f) $\frac{1}{3}$.
- 11. Să se determine valoarea lui $m \in \mathbb{R}$ astfel încât dreapta de ecuație mx + y = 1 să fie paralelă cu dreapta 2x y = 3. (6 pct.)
 - a) $m = -\frac{1}{2}$; b) m = -1; c) $m = \frac{1}{2}$; d) m = 2; e) m = 1; f) m = -2.
- 12. Soluțiile din intervalul $(0,\pi)$ ale ecuației $\sin x + \sin 3x = 0$ sunt: (6 pct.)
 - a) $\{\frac{\pi}{2}\}$; b) $\{\frac{\pi}{12}\}$; c) $\{\frac{\pi}{8}\}$; d) $\{\frac{\pi}{2}, \frac{\pi}{4}\}$; e) $\{\frac{\pi}{6}\}$; f) $\{\frac{\pi}{3}, \frac{\pi}{4}\}$.
- 13. Fie A(0,1), B(1,1) şi C(1,0). Atunci aria triunghiului ABC este: (6 pct.)
 - a) 1; b) $\frac{1}{2}$; c) $\sqrt{2}$; d) $\frac{1}{3}$; e) $\frac{\sqrt{2}}{2}$; f) $\frac{2}{3}$.
- 14. Aflați valoarea parametrului $m \in \mathbb{R}$ pentru care punctul P(1,m) aparține dreptei x+y=2. (6 pct.)
 - a) m = 2; b) m = 0; c) m = 1; d) m = -2; e) $m = \sqrt{2}$; f) m = -1.
- 15. Dacă $\sin x = \frac{1}{2}$, $x \in (0, \frac{\pi}{2})$, atunci tg x este: (6 pct.)
 - a) $\frac{\sqrt{3}}{2}$; b) $\sqrt{3}$; c) $\frac{1}{\sqrt{3}}$; d) 1; e) $\frac{\sqrt{2}}{2}$; f) $\sqrt{2}$.