Practice 5: Reduce

Objective: To understand how to implement a basic parallel algorithm called "Reduce."

Reduce:

- Input:
 - A set $A = \{a_1, a_2, ..., a_n\}$ of n elements $(2 \le n \le 1024^2)$.
 - A binary associative operator \oplus (e.g. +, *, *max*, *min*).

NOTE: Here, we will use addition operator (\oplus = +). So, our parallel reduce will just be parallel sum.

- Output:
 - \circ Return $a_1 \oplus a_2 \oplus \cdots \oplus a_n$.

Parallel Reduce:

• Perform balanced tree-like computation with O(n) work complexity and $\log n$ step complexity.

(NVIDIA and UIUC, 2017)

(NVIDIA and UIUC, 2017)

Practice 4.1: Implement a CUDA C program for parallel sum by using just global device memory.

Practice 4.2: Implement a CUDA C program for parallel sum by using per-block shared memory.