A. GROTHENDIECK

Ce texte a été transcrit et édité par Mateo Carmona. La transcription est aussi fidèle que possible au typescript. Cette édition est provisoire. Les remarques, commentaires et corrections sont bienvenus.

https://agrothendieck.github.io/

SOMMAIRE

Première Partie	5
1. Topos multigaloisiens	6
2. Application aux revêtements des topos	10
3. Variantes pro-multigaloisiennes	12
4. Compléments, remords	13
5. Introduction du contexte arithmétique; "conjecture anabélienne fondamentale"	15
6. Analyse locale de (X,S) en un $s \in S$	19
7. Reformulation "bordélique" de la conjecture (le purgatoire nécessaire)	21
1	37
9. Structure tangentielle en les $s \in S$	40
10. Ajustement des hypothèses (remords)	42
11. Conditions sur les systèmes de groupoïdes obtenus à partir de situations géométriques 44	
12. L'analogie topologique	47
13. Retour au cas arithmétique; formulation "galoisienne"	48
13 bis. Retour sur la notion de groupe à lacets	50
14. Digression cohomologique (sur le "bouchage de trous")	51
14 bis. Où on revient sur les morphismes mixtes	52
15. Retour sur le cas topologique: orbites critiques des scindages d'extensions;	53
16. Bouchage et forage de trous: préliminaires topologiques généraux	54
17. Complément au §15; sous-groupes de groupes à lacets	55
18. Forage de trous; applications aux sous-groupes finis de $\mathrm{Autext}_{\mathrm{lac}}(\pi)$	56
19. Tour de Teichmüller	57
20. Digression: description 2-isotopique de la catégorie des isomorphismes topologiques 58	
21. Les espaces de Teichmüller	59
23. Retour sur les surfaces à groupes (finis) d'opérateurs ("mise en équations" du probl	lème) 60

24. Essai de détermination de $\mathscr{A}^{0\Gamma}$; lien avec les relations $\pi_{g,(\nu,\nu+n-1)}^{\Gamma} = \{1\}$, programme de travail 61
25. Groupes de Teichmüller "spéciaux" 62
25 bis. "Cas des deux groupes" d'opérateurs; retour sur les notations 64
26. Groupes de Teichmüller profinis. Discrétification et prédiscrétification. Lien avec topos modulair
27. Changement de type (g, v) : a) Bouchage de trous (et diagrammes remarquables p.174) 80
28. Changement de type (g, v) (suite): b) passage à un revêtement fini (la conjecture hâtive grince) 8
29. Critique de l'approche précédente (on rajuste les notions et les conjectures) 95
30. Propriétés des $\mathcal{N}_{g,v}$, $\prod_{g,v}$: a) Propriétés liées aux sous-groupes finis de Teichmüller 102
31. Digression sur les relèvements d'une action extérieure d'un groupe fini sur un groupe profini à lac
32. Retour sur les aspects arithmétiques du bouchagede trous: relations entre $\Gamma_{g,\nu}$ et $\Gamma_{g,\nu-1}$ 109
33. Digression topologique
33bis. Etude des revêtements finis - relation entre les $\mathcal{N}_{g,\nu}$, $\Gamma_{g,\nu}$ pour g variable 145
34. Description heuristique profinie de la catégorie des courbes algébriquesdéfinies sur des sous-extens
35. L'injectivité de $\Pi_Q \longrightarrow \operatorname{Autext}_{\operatorname{lac}}(\hat{\pi}_{0,3}) \dots \dots$
36. L'isomorphisme $\mathbb{F}_Q \xrightarrow{\sim} \mathbb{F}_{1,1}$ et l'injectivité de $\mathbb{F}_Q \longrightarrow \operatorname{Autext}(\hat{\mathfrak{T}}_{1,1}^+) \simeq \operatorname{Autext}(SL(2,\mathbb{Z})^*)$ 160
37. Théorie des modules des courbes elliptiques via Legendre
Notes
Structure à l'infini des $M_{g,v}$
Notes Anabéliennes

PREMIÈRE PARTIE

§ 1. — TOPOS MULTIGALOISIENS

Proposition (1.1). — Soit E une catégorie. Conditions équivalentes :

- a) E est un topos, et tout objet de E est localement constant.
- b) E est équivalent à une catégorie \widehat{C} , où C est un groupoïde (N.B. On verra plus loin que l'on peut choisir C canoniquement).
- b') Il existe une famille $(G_i)_{i\in I}$ de groupes et une équivalence de catégories

$$E \xrightarrow{\sim} \prod_{i \in I} \operatorname{Ens}(G_i)$$

c) Conditions d'exactitudes ad-hoc, du type de celles données dans SGA 1...

Démonstration. b) \Rightarrow b') \Rightarrow a) immédiat. Pour a) \Rightarrow b) je suis moins sur, peut être fautil supposer que E est localement connexe, et qu'il a suffisamment de foncteurs fibres i.e. suffisamment de points.

Définition (1.2). — Si les conditions équivalentes b), b') ci-dessus sont satisfaites, on dit que C est un topos multigaloisien (ou une catégorie multigaloisienne).

Proposition (1.3). —

a) Si E est multigaloisien tout topos induit C/S aussi.

b) Toute somme de topos multigaloisiens (i.e. tout produit de catégories multigaloisiennes) est un topos multigaloisien.

Proposition (1.4). — Soient E un topos, C la catégorie des points de E, (opposée à la catégorie des foncteurs fibres sur E). Le foncteur canonique $E \times C^{\circ} \longrightarrow \text{Ens}$ induit un foncteur canonique

$$E \longrightarrow \operatorname{Hom}(E^{\circ}, \operatorname{Ens}) \stackrel{def}{=} \widehat{C}$$

Ceci posé [E étant multigaloisien]

- a) C est un groupoïde (appelé groupoïde fondamental du topos multigaloisien E et souvent noté $\Pi_1(E)$).
- b) $E \longrightarrow \widehat{C}$ est une équivalence de catégories.

Un objet S d'un topos E est dit 0-connexe s'il est $\neq \varnothing_E$ (i.e. n'est pas objet initial) et s'il est connexe (i.e. $S \simeq S' \coprod S''$ implique S' ou $S'' \simeq \varnothing_E$) - cela signifie aussi que le topos induit E/S est 0-connexe i.e. n'est pas le topos initial ("topos vide", équivalent à la catégorie finale) et qu'il est connexe, i.e. ...

On dit que S est 1-connexe (ou simplement connexe) s'il est 0-connexe et si tout objet S' de E/S localement constant est constant - ce qui ne dépend encore que du topos induit E/S, qui sera dit alors 1-connexe.

Proposition (1.5). — Soit E un topos multigaloisien, et soit S un objet de E. Conditions équivalentes :

- a) S est 1-connexe
- b) S est 0-connexe et projectif
- c) Le foncteur covariant représenté par S

$$T \mapsto \operatorname{Hom}_{E}(S, T)$$

est un foncteur fibre, ou encore (comme il est déjà exact à gauche) il commute aux lim inductives quelconques (N.B. il suffit qu'il commute aux sommes et aux passages aux quotients ...)

d) E/S est équivalent au topos ponctuel

e) (Si $E = \widehat{C}$, C un groupoïde) le foncteur S sur C est représentable.

Définition (1.6). — On dit alors, parfois que S (ou mieux, le topos E/S) est un revêtement universel du topos multigaloisien E.

Proposition (1.7). — Soit E_{\circ} la sous-catégorie pleine de E formée des objets 1-connexes (de la catégorie multigaloisienne E), et $\Pi_1(E)$ le groupoïde fondamental de E. On a par (1.5). un foncteur canonique

$$E_{\circ} \longrightarrow \Pi_{1}(C)$$

(associant à tout $S \in Ob(E_\circ)$ le foncteur fibre qu'il représente, ou plutôt le "point" correspondant de C), qui est (non seulement pleinement fidèle mais même) une équivalence de catégorie : tout foncteur fibre sur E est représentable (par un objet (1-connexe) essentiellement unique comme de juste ...)

Corollaire (1.8). — Soit P un "point" de E (associé à un foncteur fibre F_P). Il existe un objet 1-connexe S de E et un relèvement

(i.e. $\alpha \in F(S)$) et cela détermine (S, α) à isomorphisme près.

En fait, S est l'unique objet de E qui représente F_P ...

Définition (1.9). — On dit que S (ou E/S) est le revêtement universel ponctué au dessus de P déterminé par le point P.

Scholie (1.10). — Se donner un "point" du topos multigaloisien E, ou se donne un revêtement universel, revient essentiellement au même : chacun détermine l'autre ...

Proposition (1.11). — Soient E, E' deux topos multigaloisiens, $\Pi_1(E)$, $\Pi_1(E')$ leur

groupoïdes fondamentaux. Le foncteur évident

$$\underline{\operatorname{Hom}}_{top}(E,E') \longrightarrow \underline{\operatorname{Hom}}(\Pi_1(E),\Pi_1(E'))$$

est une équivalence de catégories ; posant $C=\Pi_1(E)$, $C'=\Pi_1(E')$ on trouve une équivalence quiasi-inverse en composant

$$\underline{\operatorname{Hom}}(C,C') \longrightarrow \underline{\operatorname{Hom}}_{top}(\widehat{C},\widehat{C'}) \stackrel{\approx}{\longrightarrow} \underline{\operatorname{Hom}}_{top}(E,E')$$

$$\cap$$

$$\underline{\operatorname{Hom}}(\widehat{C'},\widehat{C})$$

(1.12). Explicitation du cas ou E, E' sont 0-connexes et ponctués, donc donnés comme $E \simeq \operatorname{Ens}(G)$, $E' \simeq \operatorname{Ens}(G')$...

§ 2. — APPLICATIONS AUX REVÊTEMENTS DES TOPOS

Théorème (2.1). — soit E un topos localement connexe (i.e. dont tout objet est somme d'objets connexes) et localement simplement connexe (i.e. admettant un système de générateurs qui sont 1-connexes)¹. Alors la catégorie E_{lc} des objets localement constants de E est un topos multigaloisien, et l'inclusion

$$(2.1.1.) E_{lc} \hookrightarrow E$$

commute aux \varprojlim finies (N. B. en fait sans hypothèses sur le topos E, E_{lc} est stable par \varinjlim finies) et aux \varinjlim quelconques.

Définition (2.2). — On dénote ce topos par $E_{[1]}$, on l'appelle l'enveloppe multigaloisienne de E et le morphisme de topos transposé de l'inclusion (2.1.1.) :

$$E \longrightarrow E_{[1]}$$

prend le nom de morphisme canonique.

N. B. C'est l'équivalent en théorie des topos de l'opération de "tuage des π_i pour $i \le 2$ ". On peut définir aussi $E_{[0]}$ et une suite

$$E \longrightarrow E_{\lceil 1 \rceil} \longrightarrow E_{\lceil 0 \rceil}$$

 $(E_{[0]}$ est le topos discret défini par $\pi_0(E)$, qui a un sens satisfaisant dès que E localement connexe ...).

 $^{{}^{1}}$ N.B. peut-être faut-il supposé que \overline{E} ait "assez de points" i.e. assez de foncteurs libres...

Moyennant des hypothèses convenables sur E (du type "locale contractibilité"), on doit pouvoir définir les $E_{[i]}$ pour tout $i \in N$, et des morphismes canoniques

$$E \longrightarrow ...E_{\lceil i \rceil} \longrightarrow E_{\lceil i-1 \rceil} \longrightarrow ...E_{\lceil 1 \rceil} \longrightarrow E_{\lceil 0 \rceil}$$

2.3. Le groupoïde fondamental de E se définit comme ayant pour objets les points de E (qui induisent des points de $E_{[1]}$ grâce à $E_{[1]} \longrightarrow E$), et comme morphismes les morphismes de points de $E_{[1]}$. On a donc des foncteurs canoniques

$$\underline{\underline{Pt}}(E) \xrightarrow{\alpha} \Pi_1(E) \xrightarrow{\beta} \underline{\underline{Pt}}(E_{[1]}) \stackrel{\text{def}}{=} \Pi_1(E_{[1]})$$

où β est une équivalence (mais pas surjectif sur les objets), et où bien sur α n'est pas nécessairement une équivalence ni même pleinement fidèle, ou seulement fidèle.

Par exemple si E est 1-connexe (i.e. $\Pi_1(E)$ équivalent à la catégorie ponctuelle, il ne s'ensuit pas nécessairement que les Hom dans $\underline{Pt}(E)$ soient tous de cardinal $\leq 1!$)

Comme un point P de E définit un point (noté encore P par abus) de $E_{[1]}$, on peut donc définir le revêtement universel de E basé en ce point, comme un objet S 1-connexe de $E_{[1]}$ - il est caractérisé dans E par le fait d'être localement constant, 1-connexe, et muni d'un relèvement

$$P \longrightarrow E/S$$

Mais comme α n'est pas une équivalence de catégorie (bien qu'il soit essentiellement surjectif si on suppose que E a suffisamment de points ...) on *ne peut pas* dire que tout revêtement universel de E soit défini à isomorphisme unique près

\S 3. — VARIANTES "PRO-MULTIGALOISIENNES", RESPECTIVEMENT PROFINIES

(en se bornant, pour simplifier, au cas des topos localement connexes ...)

§ 4. — COMPLÉMENT-REMORD SUR LES CATÉGORIES MULTIGALOISIENNES,

qui précise l'intention que pour un topos E, la donnée d'un objet $S \in E$ définit un topos induit $E/S \longrightarrow E$, et que S se reconstitue à isomorphisme près par la connaissance du topos induit en tant que topos *au dessus* de E. Ici, E étant multigaloisien, E/S aussi - et il se pose la question quand un morphisme de topos multigaloisien $E' \longrightarrow E$ peut être considéré comme un morphisme d'induction. Si $C = \Pi_1(E)$, $C' = \Pi_1(E')$, la donnée de $E' \longrightarrow E$ équivaut à la donnée d'un foncteur $C' \longrightarrow E$.

On trouve que $E' \longrightarrow E$ est un morphisme d'induction si et seulement si $C' \longrightarrow C$ est *fidèle*. Ainsi, on trouve une équivalence entre la catégorie E (des objets S de la catégorie multigaloisienne $E \simeq \widehat{C}$, où C est un groupoïde quelconque si on y tient $\binom{2}{2}$) et la catégorie dont les objets sont les "groupoïdes C' au dessus de C", avec un foncteur structural $C' \longrightarrow C$ fidèle, les morphismes de C'_1 dans C'_2 étant les classes d'isomorphie $\binom{3}{2}$ de couples $\binom{f}{2}$, $\binom{g}{2}$ of foncteur $\binom{g}{2}$ et d'un isomorphisme de foncteurs $\binom{g}{2}$ et $\binom{g}{2}$ et d'un isomorphisme de foncteurs $\binom{g}{2}$ et d'un isomo

$$C_1' \xrightarrow{f} C_2'$$

$$\downarrow p_1 \qquad \downarrow p_2$$

$$C$$

Dans le cas où par exemple C est la catégorie réduite à un seul objet, avec groupe d'automorphisme G, cette description de la catégorie $E = \operatorname{Ens}(G)$ est évidemment un peu

²un peu vif

³préciser les isomorphismes entre couples (f, α) et (g, β) ...

lourde, mais elle s'insère bien dans certains contextes plus bas.

Ainsi, si k est un corps de base, la catégorie E des schémas étales sur k se décrit, en terme d'une clôture séparable k_s de k et du groupe profini $\Gamma = \operatorname{Gal}(k_s/k)$, comme les groupoïdes profinis au dessus du groupoïde profini (pt,Γ) ... Nous voulons insérer cette description dans une "description" "galoisienne" de [certains] schémas [lisses quasi-projectifs de dimension ≤ 1] sur k, du moins si k corps de type fini sur k.

§ 5. — INTRODUCTION DU CONTEXTE ARITHMÉTIQUE; "CONJECTURE ANABÉLIENNE FONDAMENTALE"

Soit K une extension de type fini de Q, et choisissons une clôture algébrique \overline{K} de K. On pose $\Gamma = \operatorname{Gal}(\overline{K}/K)$.

- **5.1**. Nous considérons des couples (X, S), où :
- a) X est un schéma projectif et lisse sur K, de dimension ≤ 1 ;
- b) S est sous schéma fini réduit de X (donc fini étale sur K) contenu dans la réunion des composantes irréductibles de dimension 1 de X.

Les morphismes $(X', S') \longrightarrow (X, S)$ seront par définition les morphismes de schémas

$$f: X' \longrightarrow X$$

tels que

$$S' = f^{-1}(S)_{\text{red}}$$

i.e. tels que supp $S' = f^{-1}(\text{supp}S)$.

Nous cherchons une "description galoisienne" de cette catégorie, ou tout au moins d'une sous-catégorie pleine V_K que nous allons définir maintenant.

Lemme (5.2). — Soit Γ un corps algébriquement clos, X une courbe projective lisse connexe sur Ω , S une partie finie de $X(\Omega)$, $U = X \setminus S$, g le genre de X et n = cardS. Conditions équivalentes :

- a) $\pi_1(U)$ non abélien,
- b) Aut(U) fini,
- c) pour tout schéma connexe réduit X de type fini sur Ω , l'ensemble des morphismes non constants de X dans U est fini,
- d) on est dans l'un des trois cas suivant : 1°) g \leq 2 2°) g = 1, $n \leq$ 1 3°) g = 0, $n \leq$ 3
- e) (si $\Omega \subset C$) le revêtement universel de $X(C) \setminus S(C)$ est isomorphe au demi plan de Poincaré,
- f) (??) (si $\Omega = \overline{Q}$, $S \neq \emptyset$) Le revêtement universel de $X \setminus S = U$ est isomorphe à celui de $P_{\Omega}^1 \setminus 0, 1, \infty$.

Définition (5.3). — On dit alors que (X, S) est anabélien.

Comme cette condition est (par d) par exemple) invariante par extension du corps de base algébriquement clos, on étend cette définition au cas d'un couple (X, S), avec (X, S) comme dans (5.1) (N.B. On regarde séparément les composantes connexes de $X_{\overline{K}}$...). dorénavant, dans (5.1) nous allons nous borner au cas de couples (X, S) anabéliens.

(5.4). A un couple (X,S) (pas nécessairement anabélien) - plus généralement à tout schéma X localement de type fini sur S - on associe un objet "de nature galoisienne" [à] savoir le groupoïde fondamental profini $\Pi(X)$ de X (fermé (?) si on veut des revêtements universel de X), muni d'un foncteur canonique

$$\begin{array}{ccc} \Pi_{1}(X) & \longrightarrow & \Pi_{1}(K) \\ & & || \\ & & [\operatorname{Tors}(\Gamma)] \end{array}$$

Un morphisme de K-schémas

$$X' \xrightarrow{f} X$$

définit un foncteur

$$\Pi_1(X') \xrightarrow{\Pi_1(f)} \Pi_1(X)$$

et un isomorphisme de commutation α :

$$\Pi_{1}(X') \xrightarrow{\Pi_{1}(f)} \Pi_{1}(X)$$

$$\downarrow p_{1} \qquad \qquad \downarrow p_{2}$$

$$\Pi_{1}(K)$$

On trouve ainsi un foncteur, de la catégorie des schémas localement de type fini X sur K, dans la "catégorie des groupoïdes profinis sur $\Pi_1(K)$ ", définie comme au n°4.

Quand on passe à la catégorie des schémas localement de type fini connexes, munis d'un point géométrique au dessus de \overline{K}/K \(^4\) (i.e. d'un $x \in X$, d'une clôture séparable $\overline{k}(x)$ de k(x) et d'un K-morphisme $\overline{K} \hookrightarrow \overline{k}(x)$), cela correspond à un foncteur des K-schémas localement de type fini et connexes, ponctués sur \overline{K}/K (au ses précédent) vers la catégorie des groupes profinis Π munis d'un homomorphisme (de groupes profinis)

$$\Pi \longrightarrow \Gamma$$

(dont l'image sera d'ailleurs nécessairement ouverte donc d'indice fini, pour des objets provenant de X comme [ci-]dessus).

Conjecture $(5.5)^5$ — La restriction du foncteur précédent $X \mapsto (\Pi_1(X) \operatorname{sur} \Pi_1(K))$ aux schémas projectifs lisses de dimension ≤ 1 et anabéliens (i.e. tels que (X,S) soit anabélien, où S est la réunion des composantes de dimension 0) est pleinement fidèle.

Il revient au même de dire ceci:

Définition (5.5 bis). — Le foncteur qui, à tout X comme dans 5.5. et de plus connexe, (de dimension 0 ou 1), muni d'un point géométrique ξ au dessus de \overline{K} , associe le groupe profini $\pi_1(X,\xi)$ sur $\Gamma = \pi_1(K,\xi)$, est un foncteur pleinement fidèle.

Il faut quand même expliciter les morphismes $(X, \xi) \longrightarrow (X', \xi')$ dans la catégorie de départ : morphismes de K-schémas $X \stackrel{f}{\longrightarrow} X'$, munis d'un morphisme (ou classe de chemins) $f(\xi) \simeq \xi'$.

⁴il vaut mieux dire : munis d'un revêtement universel...

 $^{^{5}}$ c'est un peu faux cf n° 9

Ces conjectures se réduisent à la théorie de Galois, pour des X de dimension 0. Pour des X de dimension 1, elles ne concernent que des X tels que les composantes connexes de $X_{\overline{K}}$ soient de genre ≤ 2 (ou, ce qui revient au même, introduisant l'extension finie $K' = \operatorname{H}^0(X, \mathscr{O}_X)$) de K, de sorte que X soit géométriquement connexe sur K', tel que X comme courbe algébrique sur K' soit de genre ≤ 2 . On voit aisément (prenant X' = (K), $X = P_K^1$ courbe elliptique sur K) qu'elles deviennent fausses sinon - c'est pourquoi il a fallu introduire S, plus l'hypothèse anabélienne sur (X,S), pour associer à (X,S) une structure plus riche que $\Pi_1(X)$ sur $\Pi_1(K)$. On trouvera des conjectures (par exemple) pour X courbe géométriquement connexe sur K de genre 1 (resp. 0), pourvu que S soit de degré ≥ 1 (resp. ≥ 3).

§ 6. — ANALYSE LOCALE DE (X, S) EN UN $s \in S$

On s'intéresse au cas où $\dim_s(X) = 1$, i.e. où s n'est pas point isolé dans X.

Soit \mathcal{O}_s le hensélisé (ou le complété, si on y tient) de $\mathcal{O}_{X,s}$, K_s son corps de fractions, $D_s^* = \operatorname{Spec}(K_s)$, on identifie s à k(s) (k(s) est le corps résiduel de l'anneau-jauge \mathcal{O}_s)... Considérons $D_s = \operatorname{Spec}(\mathcal{O}_s)$ ("disque arithmétique relatif à k(s)"), donc $D_s^* = D_s$ \s = ("disque épointé") $\longrightarrow D_s$, on a

(6.1)
$$\Pi_{1}(D_{s}^{*}) \xrightarrow{i_{s}} \Pi_{1}(D_{s}) \xrightarrow{q_{s}} \Pi_{1}(K)$$

$$\Pi_{1}(S)$$

Pour le choix d'un point géométrique ξ_s de D_s^* sur \overline{K}/K (i.e. d'une clôture algébrique \overline{K}_s de K_s et d'une K-injection $\overline{K} \hookrightarrow \overline{K}_s$), ce diagramme de groupoïdes se reflète en un homomorhisme de groupes 6 de

$$(6.2) \qquad \begin{array}{c} \pi_{1}(D_{s}^{*},\xi_{s}) & \xrightarrow{\text{surjectif}} & \pi_{1}(k(s),\xi_{s}) & \xrightarrow{\text{injectif}} & \Gamma \\ & & & & \downarrow \\ & & & & \downarrow \\ & & & & & Gal(\overline{K_{s}}/K_{s}) & & Gal(\overline{k(s)}/k(s)) \end{array}$$

dont le noyau, on le sait par Kummer, est canoniquement isomorphe à $T(\overline{k}_s) \simeq T(\overline{K}_s)$ [$\simeq T(\overline{K})$].

 $^{{}^6}$ **N.B.** Le choix de \overline{K}_s implique un choix de \overline{k}_s - c'est la flèche pointillée (6.1).

On veut exprimer la donnée de cet isomorphisme prévilégié comme une structure supplémentaire sur (6.1) - i.e. sur le groupoïde $\Pi_1(D_s^*)$ sur $\Pi_1(s)$ (ou sur $\Pi_1(K)$) - On peut le dire ainsi: si à tout $\xi \in \Pi - 1(D_s^*)$, on associe le noyau de

$$Aut(\xi) \longrightarrow Aut(i(\xi))$$

(qui est aussi le noyau des composés

$$\operatorname{Aut}(\xi) \longrightarrow \operatorname{Aut}(i(\xi)) \longrightarrow \operatorname{Aut}(p_s(\xi) = q_s(i_s(\xi)))$$

on trouve un groupe *abélien*, qui ne dépend (à isomorphisme près) que de $i(\xi) = \xi'$ [ceci, et la suite de la phrase, marche chaque fois qu'on a un foncteur de groupoïdes connexes à noyau abélien et surjectif sur les Hom], et pour ξ' variable forme un système local sur $\Pi_1(D_s)$, qu'on peut appeler le π_1 relatif du groupoïde $\Pi_1(D_s^*)$ sur le groupoïde $\Pi_1(D_s)$.

Ceci dit, on a un isomorphisme de systèmes locaux de groupes

$$\pi_1(\Pi_1(D_s^*) \operatorname{sur} \Pi_1(D_s)) \simeq q_s^*(T_K)$$

où T_K est le système local de Tate sur K.

Pososns maintenant

$$D_S = \coprod_{s \in S} D_s$$
 ("multidisque arithmétique en S")

$$D_S^* = \coprod_{s \in S} D_s^*$$
 ("multicouronne arithmétique en S")

On a un homomorphisme de groupoïdes

$$\Pi_1(D_s^*) \xrightarrow{\sigma_s} \Pi_1(S) \quad (\xrightarrow{j_s} \Pi_1(K))$$

et un isomorphisme canonique

$$([]_S)/\Pi_1(S)) \simeq j_S^*(T(K))$$

Ceci posé, on a aussi un morphisme

$$D_S^* \xrightarrow{\rho_S} X \backslash S$$

induisant

$$\Pi_1(D_S^*) \xrightarrow{\Pi_1(\rho_S)} \Pi(X \backslash S).$$

§ 7. — REFORMULATION "BORDÉLIQUE" DE LA CONJECTURE (LE PURGATOIRE NÉCESSAIRE ...)

Ainsi, à (X, S) comme dans **5.1.**, on associe:

- 1°) Trois groupoïdes (profinis) Π_U , Π_D , Π_{D^*} (en plus de $\Pi_e = \Pi_1(\operatorname{Spec}(K))(\simeq \operatorname{Tors}(\Gamma))$);
- 2°) Quatre foncteurs (de groupoïdes profinis) :

3°) Un isomorphisme de commutation

$$\alpha:\varphi\rho\simeq\psi\sigma$$

(qui est même l'identité dans le cas de système provenant de (X, S), mais il vaut mieux oublier qu'il en soit ainsi). Ces données satisfaisant aux conditions préliminaires

- a) σ induit un isomorphisme sur les π_0 , et des épimorphismes sur les Hom, et il est à noyau abélien ;
- b) ψ est fidèle.

- [c) ρ est fidèle...
 - d) φ est épimorphique modulo groupes finis sur les Aut...

La condition a) permet déjà de définir le π_1 relatif $\pi_1(\sigma) = \pi_1(\Pi_{D^*}/\Pi_D)$, qui est un système local de groupes abéliens sur Π_D i.e. un foncteur $(\Pi_D)^\circ \longrightarrow$ Ens, et la dernière donnée

4°) Un isomorphisme kummérien

$$\chi : \pi_1(\sigma) \simeq \psi^*(T)$$

Si on a deux systèmes de cette nature $\Pi = (\Pi_U, \Pi_D, \Pi_{D^*}, \varphi, \psi, \rho, \sigma, \alpha, \varkappa)$ et $\Pi' = (\Pi_U, ...)$, un morphisme de Π' dans Π est un système de trois foncteurs

$$f_U: \Pi'_U \longrightarrow \Pi_U$$

$$f_D: \Pi'_D \longrightarrow \Pi_D$$

$$f_{D^*}: \Pi'_{D^*} \longrightarrow \Pi_{D^*}$$

et de quatre isomorphismes de commutation $\alpha_{D^*,D}$, $\alpha_{D^*,U}$, $\alpha_{U,e}$, $\alpha_{D,e}$, pour les quatre faces du prisme

satisfaisant une équation de compatibilité avec α , α' que je n'écris pas - signifiant que les *deux* isomorphismes u, v de foncteurs

obtenus respectivement, u en utilisant successivement α , $\alpha_{D^*,D}$, $\alpha_{D,e}$, v en utilisant successivement $\alpha_{D^*,U}$, $\alpha_{U,e}$, α' , sont égaux. [Cette compatibilité pourrait s'exprimer en interprétant la donnée de Π comme celle d'une catégorie fibrée Π sur la "catégorie carrée" Q:

Q: D^* σ_0 D σ_0 D σ_0 D

(où $\varphi_0 \rho_0 = \psi_0 \sigma_0$) à restriction à e imposée, et en prenant des foncteurs cartésiens entre catégories fibrées...].

De plus, on exige autre une compatibilité, savoir que l'homomorphisme de systèmes locaux en groupes abéliens sur Π'_D

$$\pi_1(\sigma') \longrightarrow (f_D)^*(\pi_1(\sigma))$$

défini à l'aide de f_{D^*} , f_D , $\alpha_{D^*,D}$ rende commutatif le diagramme suivant d'isomorphismes de systèmes locaux sur Π_D^{\prime} ?:

$$(f_{D^*})^*(\pi_1(\sigma)) \longleftarrow \pi_1(\sigma')$$

$$\uparrow \simeq \qquad \simeq \uparrow$$

$$(f_{D^*})^*(\psi^*(T)) \qquad \psi'(T)$$

$$\downarrow \simeq \qquad \qquad (\psi f_D)^*(T)$$

(où x est déduit de $\alpha_{D,e}: \psi' \simeq \psi \circ f_D$)

Pour Π , Π^* fixés, les systèmes $(f_{\alpha}=(f_U,f_D,f_{D^*},\alpha_{D^*,D},\alpha_{D^*,U},\alpha_{U,e},\alpha_{D,e}))$ précédents forment une catégorie de façon naturelle - en fait un groupoïde - en prenant comme morphismes μ de (f',α') dans (f,α) les triplets de morphismes (foncteurs profinis)

$$f'_U \xrightarrow{\mu_U} f_U, \quad f'_D \xrightarrow{\mu_D} f_D, \quad f^*_{D^*} \xrightarrow{\mu_{D^*}} f_D$$

⁷non cela ne marche que pour le cas de morphismes étales, sinon il faut faire intervenir la multiplication par les "degrés de ramifications" $d_{i'}$ ($i' \in \pi_0(\Pi'_{D^*})$.

satisfaisant quatre conditions de compatibilité avec $\alpha_{D^*,D}$ et $\alpha'_{D^*,D}$, avec $\alpha_{D^*,U}$ et $\alpha'_{D^*,U}$ avec $\alpha_{U,e}$ et $\alpha'_{U,e}$, avec $\alpha_{D,e}$ et $\alpha'_{D,e}$ respectivement (i.e. on travaille avec une sous-catégorie pleine de la catégorie des Hom entre catégories fibrées sur Q, à fibre en e fixée...).

J'ai l'impression que le groupoïde $\operatorname{Hom}((f', \alpha'), (f, \alpha))$ est toujours *rigide*, i.e. $\operatorname{Aut}(f, \alpha)$ est toujours réduit au groupe unité - j'ai la flemme de vérifier - donc que si (f', α') et (f, α) son isomorphes, l'isomorphisme en question est unique. Quoi qu'il en soit, on posera

$$\operatorname{Hom}((f',\alpha'),(f,\alpha)) = \pi_0\operatorname{Hom}((f',\alpha'),(f,\alpha))$$

D'où une *catégorie* des systèmes $\Pi = (\Pi_U, \Pi_D, \Pi_{d^*}, \varphi, \psi, \rho, \sigma, \alpha, \varkappa)$.

On a un foncteur des couples $(X, S)^8$ (où X schéma localement de type fini sur K, S sous schéma fermé de X étale sur K, tels que pour tout $s \in S$, X soit lisse de dimension relative 1 en s) vers cette catégorie bordélique B)

Conjecture bordélique (7.1). — Quand on se borne aux (X,S) tels que X projectif lisse de dimension ≤ 1 , et qui de plus sont anabéliens, alors le foncteur précédent est pleinement fidèle⁹.

Description de la catégorie bordélique en termes de théorie de groupes.

Soit $I = \pi_0(\Pi_{D^*}) \simeq \pi_0(\pi_D)$. Choisissons un élément D_i^* dans chaque composante de Π_{D^*} , et soit $D_i = \sigma(D_i^*)$. Pour tout i, choisissons un isomorphisme

$$\psi(D_i) \xrightarrow{\lambda_i} \operatorname{Spec}(\overline{K})$$

Quitte à remplacer l'objet par un "sous-objet" isomorphe on peut supposer que Π_{D^*} est la catégorie somme de catégories $[E_i]$ définis par les $E_i = \operatorname{Aut}(D_i^*)$, Π_D la catégorie somme des catégories $[\Gamma_i]$ définies par les $\Gamma_i = \operatorname{Aut}(D_i)$, le foncteur σ s'exprimant par un système d'homomorphismes

$$\sigma_i: E_i \longrightarrow \Sigma_i \quad (i \in I)$$

qui sont surjectifs de noyaux abéliens, le foncteur ψ par un système d'inclusions $\psi_i : \Gamma_i \hookrightarrow \Gamma$ et la donnée de \varkappa équivaut en fait à des isomorphismes

$$\chi_i : \ker \sigma_i \simeq T(\overline{K})$$

⁸[les] morphismes $(X', S') \longrightarrow (X, S)$ sont les morphismes $f: X' \longrightarrow X$ tels que $f^{-1}(S)_{red} = S'$

⁹**N.B.** La fidélité est facile...

compatibles avec les opérations de Γ_i et de Γ sur les deux [?] respectivement, et les inclusions ψ_i . On peut dire que la donnée de (σ, ψ, k) est exprimée par la donnée du système $(E_i)_{i \in I}$, d'un système de suites exactes

$$1 \longrightarrow T(\overline{K}) \xrightarrow{\kappa_i} E_i \xrightarrow{p_i} \Gamma$$

telles que les $\Sigma_i = \operatorname{Im} p_i$ soient ouverts, et que \varkappa_i soit compatible avec les opérations de $\Sigma_i \simeq \operatorname{Coker} \varkappa_i$ (ou de E_i et Γ sur les deux termes respectivement).

N.B. Les extensions des Γ_i par $T(\overline{K})$ obtenues par des situations géométriques splittent le choix d'une uniformisante en s_i définit un splittage, et même [seulement?] le choix d'une base de l'espace tangent en s...

Re N.B. Deux bases différents définissent des scindages différents!

Supposant d'autre part (pour simplifier) Π_U connexe, et choisissant un élément \widetilde{U} de Π_U et un isomorphisme

$$\varphi(\widetilde{U}) \xrightarrow{\lambda_U} \operatorname{Spec}(\overline{k})$$

donc (quitte à remplacer Π_U par un groupoïde équivalent) on peut supposer Π_U réduit à \widetilde{U} , et Π_U est donné alors par un groupe E, et φ par un homomorphisme de groupes

$$E \xrightarrow{\varphi_{\widetilde{U}}, \lambda_U, (\text{ou } p)} \Gamma$$

dont l'image $\Sigma \subset \Gamma$ est encore un sous-groupe ouvert de Γ , et le noyau sera noté π

$$1 \longrightarrow \pi \xrightarrow{x} E \longrightarrow \Sigma \longrightarrow 1$$

N.B. Dans la situation géométrique cette extension de noyaux de groupes splitte, i.e. il existe un sous-groupe ouvert Σ_{\circ} dans σ , et un relèvement $\Sigma_{\circ} \longrightarrow E...$

Ayant remplacé Π_U initial par une sous-catégorie pleine plus petite, on sera obligé de modifier ρ à isomorphisme près, pratiquement en choisissant pour chaque $i \in I$ un isomorphisme

$$\rho(D_i) \xrightarrow{\mu_i} \widetilde{U}$$

moyennant quoi ρ s'explicite simplement par des homomorphismes de groupes

$$\rho_i: E_i \longrightarrow E$$

Il reste à expliciter l'isomorphisme de commutation

$$\alpha:\varphi\rho\longrightarrow \psi\sigma$$

qui est défini par un système d'éléments

$$\gamma_i \in \Gamma \quad (i \in I)$$

tels que

$$\varphi \circ \rho_i = \operatorname{int}(\gamma_i) \circ \Pi_i$$

ce qui implique d'ailleurs que ρ_i applique $\ker p_i$ dans $\ker \rho$, i.e... induit un homomorphisme de suites exactes

$$1 \longrightarrow T(\overline{K}) \longrightarrow E_i \longrightarrow \Gamma_i \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow^{\rho_i} \qquad \downarrow$$

$$1 \longrightarrow \pi \longrightarrow E \longrightarrow \Gamma_0 \longrightarrow 1$$

avec un homomorphisme induit $\Gamma_i \longrightarrow \Gamma_0$ injectif - et ceci posé, la relation de compatibilité devient une relation sur des monomorphismes de groupes $\Gamma_i \hookrightarrow \Gamma_O \hookrightarrow \Gamma$.

Ainsi, on a une description relativement simple des systèmes bordéliques "réduit" (i.e. où dasn les groupoïdes Π_U , Π_{D^*} , Π_D , chaque composante connexe a exactement un objet, et où de plus on force en quelque sorte $\Pi(K)$ a n'avoir que l'objet $\operatorname{Spec}(\overline{K})$. Mais on est retrouvé en $\lceil \operatorname{ne} \rceil$ tournant pas la détermination des *morphismes*

$$G = (I, G_i, p_i, K_i, E, \varphi(\text{ou } p?), \rho_i, \gamma_i) \text{ et } G' = (I', G'_i, ...),$$

disons dans le sens $f: G' \longrightarrow G$. Il faut donc (pour f_{D^*}) une application

$$\boxed{\tau = \tau_f : I' \longrightarrow I}$$

et pour tout i un homomorphisme

$$G'_{i'} \xrightarrow{f_{i'}} G_{\tau i'}$$

induisant (compte tenu de f_D) par passage au quotient des homomorphismes

$$\Gamma'_{i'} \xrightarrow{g_i} \Gamma_{\tau i'}$$

de sous groupes ouverts de Γ et la donnée $f_{D^*}, f_D, \alpha_{D^*,D}, \alpha_{D,e}$ équivaut donc à la donnée d'éléments α_i $(i \in I)$ de Γ , tels que

$$g_{i'}(\gamma') = \operatorname{Int}_{(\alpha, j)}(\gamma') \quad \forall i' \in I', \gamma' \in \Gamma'_{i'}$$

La donnée de f_U équivaut à la donnée d'un homomorphisme de groupes celle de $\alpha_{D,e}$ équivaut à la donnée de

$$\alpha \in \Gamma$$

tel que

$$\varphi f_F = \operatorname{Int}(\alpha) \varphi$$

de sorte que f_E induit un homomorphisme de suites exactes

$$1 \longrightarrow \pi' \longrightarrow E'_{i} \longrightarrow \Gamma'_{0} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow^{f_{E}} \qquad \qquad \downarrow^{f_{\sigma_{0}}} \qquad \downarrow^{f_{\sigma_{$$

et moyennant cela, la condition dite α devient une condition sur des inclusions de sousgroupes de γ :

$$f_{\sigma_0}(\gamma') = \operatorname{int}(\alpha)\gamma'$$
 si $\gamma' \in \Gamma_0'$.

Il faut expliciter encore (en plus de f_{D^*} , f_D , f_U , $\alpha_{D^*,D}$, $\alpha_{D,e}$, $\alpha_{U,e}$ déjà explicités) la donnée de commutation $\alpha_{D^*,U}$ et écrire les conditions de compatibilités avec α , α' et κ , κ' . La donnée de $\alpha_{D^*,U}$ équivaut à celle de systèmes d'éléments

$$\beta_{i'} \in E' \quad i' \in I'$$

tels que l'on ait dans le diagramme

$$G'_{i'} \xrightarrow{\rho'_{i'}} E'$$

$$f_{i'} \downarrow \qquad \qquad \downarrow f_E$$

$$G_{\tau i'} \xrightarrow{\rho_{\tau i'}} E$$

la relation

$$f_E \circ \rho'_{i'} = (\operatorname{int}(\beta_i) \rho_{\tau i'}) \circ f_{i'}$$

Reste à exprimer les deux compatibilités de $f_{D^*}, f_{D^1}, F_U, \alpha_{D^*,D}, \alpha_{D,e}, \alpha_{D^*,U}, \alpha_{U,e}$ avec lui même et avec \varkappa - la deuxième compatibilité est simplement la compatibilité des $f_{i'}$ avec les $\varkappa'_{i'}, \varkappa_i$, i.e.

$$f'_{i'} \circ \chi'_{i'} \quad (i = \tau i')$$

et la première sauf erreur s'exprime par la "commutativité"

$$\boxed{\alpha_{i'} = \gamma_i^{-1} p(\beta_{i'}^{-1} \alpha \gamma_{i'}')} \quad \forall i' \in I'$$

En résumé les homomorphismes, dans un système de diagrammes commutatifs

$$1 \longrightarrow T(\overline{K}) \xrightarrow{x_i} E_i \xrightarrow{p_i} \Gamma$$

$$\downarrow \qquad \qquad \downarrow \rho_i \qquad \qquad \downarrow \operatorname{int}(\gamma_i)$$

$$1 \longrightarrow \pi \longrightarrow E \xrightarrow{p} \Gamma$$

d'un système analogue, relatif à un ensemble d'indices I', est donné par une application

$$\tau: I' \longrightarrow I$$

et pour tout $i' \in I'$, posant $i = \tau(i')$, d'un système de flèches verticales $f_{i'}: E'_{i'} \longrightarrow E_i$, et d'une flèche verticale $f_E: E' \longrightarrow E$, enfin d'un système d'éléments $\beta_{i'} \in E$ et d'un $\alpha \in \Gamma$, s'insérant dans le système de diagrammes¹⁰

 $[\]overline{}^{10}$ N.B. Comme les $E_i \longrightarrow E$ sont injectifs, $f_{i'}$ est connu quand on connaît f_E et $\beta_{i'}$, (l'existence de $f_{i'}$ est donc une condition sur les couples f_E , $\beta_{i'}$ savoir que $\operatorname{int}(\beta_{i'})^{-1}f_E\rho_{i'}$ applique $E_{i'}$ dans $p_i(E_i)$. On peut supposer les $\gamma_{i'}$, γ_i égaux à 1 (en choisissant l'isomorphisme de $\psi(\sigma(D_i^*))$ avec $\operatorname{Spec}(\overline{K})$ via l'isomorphisme de $\varphi(\rho(D_i^*)) = \varphi(\widetilde{U})$ avec $\operatorname{Spec}(\overline{K})$ [?])

où on a posé

(*)
$$\alpha_i' = \gamma_i^{-1} p(\beta_i^{-1}) \alpha \gamma_{i'}' \quad \text{i.e.} \quad \alpha \gamma_{i'}' = p(\beta_i) \gamma_i \alpha_{i'}$$

et où la face verticale postérieure des prismes est commutative (deux conditions, sur deux carrés), la face verticale antérieure aussi (c'est *une* condition, sur le carré de droite, l'autre carré commutatif s'en déduit par définition de $\pi' \longrightarrow \pi$ comme induit par f_E ...), la face verticale gauche du cube de droite étant commutative modulo l'isomorphisme de commutativité int $(\beta_{i'})$, et la face verticale droite étant commutative (non seulement, par la condition précédente, sur $\sum_{i'} = \mathfrak{F}(E'_{i'} \xrightarrow{p'_{i'}} \Gamma)$, mais sur Γ tout entier) en vertu de la relation plus précise (*).

Conjecture bordélique précisée (correspondant aux Π_U connexes). — Ses objets sont les homomorphismes de groupes profinis

$$E \xrightarrow{p} \Gamma$$

donnant naissance à une suite exacte

$$1 \longrightarrow \pi \xrightarrow{x} E \xrightarrow{p} \Gamma$$

si un ensemble fini de sous-groupes (indexés par un ensemble I d'indices)

$$E_i \stackrel{\rho_i}{\longleftrightarrow} E$$

et d'isomorphismes

$$E_i \cap \pi \xrightarrow{x_i} T(\overline{K})$$

Un homomorphisme d'un système $(E', p', (E'_{i'})_{i' \in I'}, (x'_{i'})_{i' \in I'})$ dans un système $(E, p, (E_i)_{i \in I}, ...)$ est donné par un homomorphisme

$$f: E' \longrightarrow E$$

et des $\beta_{i'} \in E$ ($i' \in I'$)¹¹, $\alpha \in \Gamma$, tels que l'on ait les conditions :

¹¹Les $\beta_{i'}$ pas uniques (si $\beta_{i'}$ convient aussi $\gamma \beta_{i'}$, avec $\gamma \in \text{Im} x_i$) Mais α unique ??

- 1°) $p \circ f = int(\alpha)p'$
- 2°) $\forall i' \in I', \exists i \in I \text{ (unique !) tel que }$

$$int(\beta_{i'})^{-1}f(E'_{i'}) = E_i$$

et un entier $d_{i'} \in N^{*12}$ tel que

$$int(\beta_{i'}^{-1})f x'_{i'} = x_i \circ (d_i, id_{T(\overline{K})})$$

Je me a'perçois qu'il vaut mieux remplacer les $\beta_{i'}$ par les $\beta_{i'}^{-1}$, i.e. prendre l'isomorphisme de commutation plutôt dans le sens

$$f_{\varepsilon}\rho'_{i'} \xrightarrow{\beta_{i'}} \rho_i f_{i'}$$

qu'en sens inverse. De plus, conceptuellement le diagramme

est trop compliqué, il suffit de se donner

$$\boxed{\Pi_{D^*} \xrightarrow{\rho} \Pi_U \xrightarrow{\varphi} \Pi_e}$$

et de déduire Π_D par factorisation canonique de l'homomorphisme de groupoïdes $\Pi_{D^*} \longrightarrow \Pi_e$ en un homomorphisme qui induit un isomorphisme sur π_0 et un épimorphisme sur les π_1 , suivi d'un homomorphisme qui est [épi. sur π_0 , et pour cause, et qui est] fidèle. Alors les 1-morphismes de

$$\Pi'_{D^*} \xrightarrow{\rho'} \Pi'_U \xrightarrow{\varphi'} \Pi_e$$

dans

$$\Pi_{D^*} \xrightarrow{\rho} \Pi_U \xrightarrow{\varphi} \Pi_e$$

 $^{^{12}}$ N. B. $d_{i'}$ est aussi unique...

sont les quintuplés de 2 foncteurs et 3 isomorphismes de foncteurs $(f_{D^*}, f_U, \alpha_{D^*,U}, \alpha_{U,e}, x)$ donnant un diagramme avec données de commutation 1314

et si on a deux tels 1-morphismes $f=(f_{D^*},f_U,\alpha_{D^*,U},\alpha_{U,e})$ et $g=(g_{D^*},g_U,\beta_{D^*,U},\beta_{U,e})$ un 0-morphisme de f dans g est formé d'un couple (μ_{D^*},μ_U) d'isomorphismes de foncteurs

$$\mu_{D^*}: f_{D^*} \xrightarrow{\sim} g_{D^*}, \quad \mu_U: f_U \xrightarrow{\sim} g_U$$

compatibles avec $\alpha_{D^*,U}$, $\beta_{D^*,U}$ (deux conditions de compatibilités sur les deux carrés).

Si on se borne à des Π_U connexes, on trouve en choisissant comme plus haut un objet \widetilde{U} de Π_U , et un isomorphisme

$$\varphi(\widetilde{U}) \xrightarrow{\lambda} \Omega$$

(où $\Omega = \operatorname{Spec}(\overline{K})$ est l'objet référence de Π_e ...), un groupe E et un homomorphisme

$$E \xrightarrow{\varphi} \Gamma$$

(qui est changé par automorphisme intérieure si on change λ , et E lui même remplacé par un groupe isomorphe, l'isomorphisme défini modulo isomorphisme intérieur, si on change l'objet de référence \tilde{U}). De même, choisissant un \tilde{U}_i dans chaque composante $i \in \pi_0(\Pi_{D^*})$, et un isomorphisme

$$\lambda_i : \rho(\widetilde{U}_i) \xrightarrow{\sim} \widetilde{U},$$

on trouve des groupes E_i et des homomorphismes

$$e_I \xrightarrow{\rho_i} E$$

Si on change λ_i , ρ_i est changé par automorphisme intérieur de E. Si on change \widetilde{U}_i , E_i est remplacé par un groupe isomorphe, l'isomorphisme défini à automorphisme près.

 $^{^{13}}$ de plus, $\pi_1(\varphi\rho) = \pi_1(\Pi_{D^*}/\Pi_e)$ peut se définir comme un système local de groupes (commutatifs) sur ΠD^* , et on peut alors définir $\kappa: (\varphi\rho)^*T_K' \simeq \pi_1(\varphi\rho)$.

¹⁴ avec *une* condition sur le morphisme $\pi_1(\varphi'\rho') \simeq f_{D^*}(\pi_1(\varphi\rho))$ induit, qui modulo les isomorphismes de Kummer doit être la multiplication par un d (indice de ramification) qui est un application $\pi_0(\Pi'_{D^*}) \longrightarrow N^*$.

Considérons les composés

$$E_i \xrightarrow{p_i} E$$

$$\Gamma$$

d'où [un?] noyau, x est défini par un système d'isomorphismes

$$T(\overline{K}) \xrightarrow{\sim} \operatorname{Ker} p_i$$

s'insèrent dans une famille de suites exactes

$$1 \longrightarrow T(\overline{K}) \xrightarrow{x_i} E_i \xrightarrow{i} \Gamma$$

(N. B. l'image de p_i est un sous-groupe ouvert) x_i étant compatible aux actions de E_i , quand on fait opérer E_i sur $T(\overline{K})$ via l'action de Γ sur $T(\overline{K})$, et su lui même par automorphismes intérieures. Introduisant également $\pi = \operatorname{Ker} p$, on trouve donc un homomorphisme de suites exactes

On peut dire que Π_U définit un "groupe extérieur" [E], et $\Pi_U \longrightarrow \Pi_e$ un homomorphisme de groupes extérieures

$$[E] \longrightarrow [\Gamma]$$

de même Π_{D^*} définit un système de "groupes extérieures" $[E_i]$, et $\Pi_{D^*} \longrightarrow \Pi_U$ un système d'homomorphismes extérieurs

$$[E_i] \longrightarrow [E],$$

mais comment en termes de groupes extérieurs exprimer les données de Kummer x_i ?

Revenant aux systèmes de diagrammes D (relatif à un ensemble d'indices I) et à un D' analogue (avec un ensemble d'indices I')

$$D \qquad 1 \longrightarrow T(\overline{K}) \xrightarrow{x'_{i'}} E'_{i'} \xrightarrow{p_{i'}} \Gamma$$

$$\downarrow^{\varepsilon'_{i'}} \qquad \downarrow^{\rho'_{i'}} \qquad \downarrow^{\simeq}$$

$$1 \longrightarrow \pi \xrightarrow{x'} E' \xrightarrow{p'} \Gamma$$

un homomorphisme f de D' dans D s'explicite par

a) Un homomorphisme¹⁵

$$\Box f_E: E' \longrightarrow E$$

{ s'explicite en termes du choix d'un isomorphisme

$$\nu: f(\widetilde{U}') \simeq \widetilde{U}$$

(un autre choix modifie f_E par un $int(\beta), \beta \in E$) }

b) Une application $t' : I' \longrightarrow I$, et pour tout $i' \in I'$, posant $i = \tau(i')$, un homomorphisme de groupes

$$E_i \xrightarrow{f'_{i'}} E_i$$

 $\{ \text{ s'explicite en terme du choix d'un isomorphisme } f_{D^*}(\widetilde{U_{i'}}) \xrightarrow{\stackrel{\nu_i}{\simeq}} \Pi_{U_i}, \text{ et modifié par des int}(\beta_{i'}), \beta_{i'} \in E_i, \text{ si on change } \nu_{i'} \}$

c) Une donnée de commutation¹⁷ pour

i.e.

$$pf_E = \operatorname{int}(\alpha)p'$$

d) $\forall i' \in I$ une donnée de commutation 18 pour

$$E'_{i'} \xrightarrow{p'_{i'}} E'$$

$$E_{i} \xrightarrow{p_{i}} E$$

$$\alpha_{i'} \in \Gamma \quad (i' \in I')$$

i.e.

$$p_i f_{i'} = \operatorname{int}(\alpha_{i'}) f_E \rho'_{i'}$$

 $^{^{15}}$ décrit le foncteur f_U

 $^{^{16}}$ décrit le foncteur f_{D^*}

 $^{^{17}\}alpha$ décrit $\alpha_{U,e}$

 $^{^{18}\}alpha_{i'}$ décrit $\alpha_{D^*,U}$

Notons que c), d) ensemble définissent une donnée de commutation

$$E'_{i'} \xrightarrow{p'_{i'}} \Gamma$$

$$f_{i'} \downarrow \qquad \beta_{i'} \downarrow \simeq$$

$$E_{i} \xrightarrow{p_{i}} \Gamma$$

i.e.

$$p_i f_{i'} = \operatorname{int}(\beta_{i'}) p'_{i'}$$

i.e. on a commutativité dans

$$\begin{array}{ccc} E'_{i'} & \xrightarrow{p'_{i'}} & \Gamma \\ f_{i'} & & & \downarrow \operatorname{int}(\beta_{i'}) \\ E_i & \xrightarrow{p_i} & \Gamma \end{array}$$

donc $f_{i'}$ induit un homomorphisme de suites exactes

$$1 \longrightarrow T(\overline{K}) \xrightarrow{x'_{i'}} E'_{i'} \xrightarrow{p_{i'}} \Gamma$$

$$\downarrow f_{i'}^{\circ} \qquad \downarrow f_{i'} \qquad \downarrow \inf(\beta_{i'})$$

$$1 \longrightarrow T(\overline{K}) \xrightarrow{x_i} E_i \xrightarrow{p_i} \Gamma$$

et il faut exprimer la fonctorialité de $f_{i'}^{\circ}$, avec l'indice de ramification $d_{i'} \in N$, on trouve

$$f_{i'}^{\circ} = d_{i'} \chi(\beta_{i'}) \operatorname{id}_{T(\overline{K})}$$

οù

$$\chi:\Gamma \longrightarrow \widehat{Z}^*$$

est le caractère canonique.

Ceci posé, déterminons, pour un 1-morphisme $f=(f_E,\tau,(f_{i'}),\alpha,(\alpha_i))$ et un autre $f'=(f'_E,\tau',(f'_{i'}),\alpha',(\alpha'_i))$, les 0-morphismes de l'un dans l'autre correspondants à de systèmes d'isomorphismes $\mu_{D^*}:f_{D^*}\longrightarrow f'_{D^*},\ \mu_U:f_U\longrightarrow g_U$. Cela correspond [à la] condition

$$\tau' = \tau$$
, $d'_{i'} = d'_i \forall i' \in I'$

et à la donnée de

a) $\mu \in E^{-19}$ définissant un isomorphisme entre $f_E : E' \longrightarrow E$ et $f_E' : E' \longrightarrow E$ i.e. tel que

$$f_E' = \operatorname{int}(\mu) f_E$$

b) $\mu_{i'} \in E_i$ 20 $(i' \in I', i = \tau(i'))$ satisfaisant

$$f'_{i'} = \operatorname{int}(\mu_{i'}) f_{i'}$$

[ceci implique déjà $d_{i'}=d'_{i'}$] les $\mu\in E$, $\mu_{i'}\in E_i$ étant liés aux α , α' ($\in E$), aux $\alpha_{i'}$, $\alpha'_{i'}$ ($\in \Gamma$) de la façon suivante

$$\alpha' = p(\mu)\alpha$$

 $\forall i' \in I'$

$$\alpha_{i'}' = \rho_i(\mu_{i'})\alpha'$$

ou encore

$$p(\mu) = \alpha' \alpha^{-1}, \rho_i(\mu_{i'}) = \alpha'_{i'} \alpha_{i'}^{-1}$$

Notons que, comme ρ_i est injectif, les deuxièmes relations, donnant les $\rho_i(\mu_{i'})$, déterminent les $\mu_{i'}$ de façon unique, l'existence de ces $\mu_{i'}$ équivaux aux relations

$$\boxed{\alpha_{i'}\alpha_{i'}^{-1} \in \rho_i(E_i)} \quad i' \in I'$$

Quant à la relation $p(\mu) = \alpha' \alpha^{-1}$, elle détermine μ modulo multiplication (à droite disons) par un $\mu_0 \in \text{Ker } p = \pi$, mais qui doit être tel que l'on ait encore

$$f_E' = \operatorname{int}(\mu \mu_0) f_E$$

(en plus de $f'_E = int(\mu)f_E$) ce qui signifie que

$$int(\mu_0)f_E = f_E$$

i.e.

$$\mu_0 \in \operatorname{Centr}_{\pi} f_E(E')$$

C'est donc cela l'indétermination exacte dans le choix d'un 0-morphisme [?] 1-morphismes f et f' de D' dans D.

 $^{^{19}}$ décrit μ_U

 $^{^{20}}$ décrit μ_{D^*}

Si par exemple on est dans les conditions où $\pi \longrightarrow \pi$ induit par $f_E : E' \longrightarrow E$ a une image d'indice fini (image ouverte) - cas d'un "morphisme non constant"! - alors μ_0 doit centraliser un sous-groupe ouvert de π - sauf erreur cela aussi implique $\mu_0 = 1$, donc il semble bien que (dans les cas correspondants à des homomorphismes dominants de courbes algébriques) un 0-morphisme d'un f dans un f' (s'il existe) est unique, i.e. $\mathcal{H}om(D',D)$ est une catégorie discrète.

On peut interpréter D comme E muni de sous-groupes $E_i \subset E$, et de $p: E \longrightarrow \Gamma$, (noyau π) enfin d'isomorphismes

$$\chi_i: T(\overline{K}) \simeq E_i \cap \pi = L_i$$

(commutant à l'action de E_i).

Si on a une autre système $(E',(E'_{i'})_{i'\in I'},p':E'\longrightarrow \Gamma,(\varkappa'_{i'})_{i'\in I'})$, un morphisme du premier dans le second est *défini* par un

$$f: E' \longrightarrow E$$

satisfaisant les conditions suivantes

- a) $\forall i' \in I', \exists i \in I \text{ tel que } f(E_i') \text{ soit contenu dans un conjugué de } E_i \text{ [soit } \alpha_{i'} \in E \text{ tel que } f(E_i') \subset \operatorname{int}(\alpha_{i'}^{-1}(E_i)) \text{]}$
- b) p_f est conjugué de f' [soit $\alpha \in \Gamma$ tel que $pf = \operatorname{int}(\alpha)p'$]

N. B. Le $i \in I$ correspondant à $i' \in I'$ est unique, d'où $\tau : I' \longrightarrow I$. Si les $\alpha_{i'}$ sont choisis, on déduit $\forall i'$ homomorphisme induit $f_{i'} : E'_{i'} \longrightarrow E_i$, $f_{i'} = (\operatorname{int}(\alpha_{i'}) \circ f)/_{E'_{i'}}$, qui induit dès lors, via les $\alpha_{i'}$, $\alpha_{i'}$, un endomorphisme $\alpha_{i'} : T(\overline{K}) \longrightarrow T(\overline{K}) = (\operatorname{int}(\alpha_{i'}) \circ f)/_{E'_{i'}}$, qui conjugue $\alpha_{i'} : T(\overline{K}) \longrightarrow T(\overline{K}) = (\operatorname{int}(\alpha_{i'}) \circ f)/_{E'_{i'}}$, qui est sans doute déterminé modulo composition à gauche avec élément du normalisateur de $\alpha_{i'} : T(\overline{K}) \longrightarrow T(\overline{K}) = (\operatorname{int}(\alpha_{i'}) \circ f)/_{E'_{i'}}$, qui est sans doute déterminé modulo composition à gauche avec élément du normalisateur de $\alpha_{i'} : T(\overline{K}) \longrightarrow T(\overline{K}) = (\operatorname{int}(\alpha_{i'}) \circ f)/_{E'_{i'}}$, qui est sans doute déterminé modulo composition à gauche avec élément du normalisateur de $\alpha_{i'} : T(\overline{K}) \longrightarrow T(\overline{K}) = (\operatorname{int}(\alpha_{i'}) \circ f)/_{E'_{i'}}$, qui est sans doute déterminé modulo composition à gauche avec élément du normalisateur de $\alpha_{i'} : T(\overline{K}) \longrightarrow T(\overline{K}) = (\operatorname{int}(\alpha_{i'}) \circ f)/_{E'_{i'}}$, qui en de $\alpha_{i'} : T(\overline{K}) \longrightarrow T(\overline{K}) = (\operatorname{int}(\alpha_{i'}) \circ f)/_{E'_{i'}}$, qui en de $\alpha_{i'} : T(\overline{K}) \longrightarrow T(\overline{K}) = (\operatorname{int}(\alpha_{i'}) \circ f)/_{E'_{i'}}$, qui en de $\alpha_{i'} : T(\overline{K}) \longrightarrow T(\overline{K}) = (\operatorname{int}(\alpha_{i'}) \circ f)/_{E'_{i'}}$, qui en de $\alpha_{i'} : T(\overline{K}) \longrightarrow T(\overline{K}) = (\operatorname{int}(\alpha_{i'}) \circ f)/_{E'_{i'}}$, qui en de $\alpha_{i'} : T(\overline{K}) \longrightarrow T(\overline{K}) = (\operatorname{int}(\alpha_{i'}) \circ f)/_{E'_{i'}}$, qui en de $\alpha_{i'} : T(\overline{K}) \longrightarrow T(\overline{K}) = (\operatorname{int}(\alpha_{i'}) \circ f)/_{E'_{i'}}$, qui en de $\alpha_{i'} : T(\overline{K}) \longrightarrow T(\overline{K}) = (\operatorname{int}(\alpha_{i'}) \circ f)/_{E'_{i'}}$, qui en de $\alpha_{i'} : T(\overline{K}) \longrightarrow T(\overline{K}) = (\operatorname{int}(\alpha_{i'}) \circ f)/_{E'_{i'}}$, qui en de $\alpha_{i'} : T(\overline{K}) \longrightarrow T(\overline{K}) = (\operatorname{int}(\alpha_{i'}) \circ f)/_{E'_{i'}}$, qui en de $\alpha_{i'} : T(\overline{K}) \longrightarrow T(\overline{K}) = (\operatorname{int}(\alpha_{i'}) \circ f)/_{E'_{i'}}$, qui en de $\alpha_{i'} : T(\overline{K}) \longrightarrow T(\overline{K}) = (\operatorname{int}(\alpha_{i'}) \circ f)/_{E'_{i'}}$, qui en de $\alpha_{i'} : T(\overline{K}) \longrightarrow T(\overline{K}) = (\operatorname{int}(\alpha_{i'}) \circ f)/_{E'_{i'}}$, qui en de $\alpha_{i'} : T(\overline{K}) \longrightarrow T(\overline{K})$ est intermine en de $\alpha_{i'} : T(\overline{K}) \longrightarrow T(\overline{K})$ est intermine en de $\alpha_{i'} : T(\overline{$

$$f_{i'}^{\circ} = (d_{i'}\chi(\beta_{i'}))_{T(\overline{K})}$$
 i.e. $\chi_{i'} = d_{i'}\chi(\beta_{i'})$

où $d_{i'} \in N$ est un entier naturel (évidement uniquement déterminé quand α et $\alpha_{i'}$ sont choisis)²²

²²Cette condition sur les systèmes des $\alpha_{i'}$ ne change pas (α restant fixé) si on change $\alpha_{i'}$ en $\mu_{i'}\alpha_{i'} \in E_i$.

§ 8. – RÉFLEXIONS TAXONOMIQUES

Le cas $\dim X=0$ se traduit sur le paradigme du système $(T(\overline{K}) \xrightarrow{\kappa_i} E_i \hookrightarrow \rho_i E \xrightarrow{p} \Gamma)$ par la condition p injectif et donc $I=\varnothing$ - donc ce cas décrit simplement par la donnée d'un sous-groupe ouvert de $E \hookrightarrow \Gamma$, i.e. une sous-extension finie L de \overline{K}/K (N.B. on aura bien sûr $X'=\operatorname{Spec} L$, et le choix faits sur X - i.e. sur $\Pi_{D^*}(=\varnothing) \longrightarrow \Pi_U \longrightarrow \Pi_e$ - aboutissant à cette description, reviennent ici au choix d'une telle K-immersion de $L=H^0(X,O_X)$ dans \overline{K}/K).

Le cas $\dim X=1$ se traduit par le fait que $E\longrightarrow \Gamma$ n'est pas injectif - quand à I, il peut être vide ou non dans ce cas. S'il est vide, la description se fait donc simplement en termes d'un homomorphisme de groupes profinis $E\stackrel{p}{\longrightarrow}\Gamma$ (ou Γ donnée d'avance = $\operatorname{Gal}(\overline{K}/K)$) = $\operatorname{Aut}_{\Pi_{\sigma}}(\Omega)$.

Supposons données maintenant à la fois $D=(E,p,I,(\rho_i:E_i\hookrightarrow E),(\varkappa_i:T(\overline{K})\longrightarrow E_i))$ et $D'=(E',p',I',(\rho_i'),(\varkappa_i'))$, et revenons à la question de la description des morphismes de D' dans D. On va distinguer quatre cas suivant les deux valeurs possibles 0, 1 de $n=\dim D$ et $n'=\dim D'$ respectivement.

I)

II)

III)

IV)

Réductions élémentaires. Pour prouver la "conjecture bordélique", on est ramené (par des extensions finies du corps K) au cas où $E \longrightarrow \Gamma$ (et, si on y tient, aussi $E' \longrightarrow \Gamma$) est

A. GROTHENDIECK

épimorphique. Sauf erreur, la connaissance du cas III pour des extensions de type fini de K, implique le cas général pour K (avec suffisamment de sueurs techniques...).

Revenant cependant au cas général quand $E \longrightarrow \Gamma$ est surjectif, dans toute classe d'équivalence de systèmes $(f:E' \longrightarrow E, \alpha \in \Gamma, \tau:I' \longrightarrow I, (\alpha_i \in E_{\tau(i')=i})_{i' \in I'})$, on peut trouver un système avec $\alpha=1$, de sorte que $f:E' \longrightarrow E$ soit compatible avec les homomorphismes dans Γ (i.e. les structures d'extension). Quand on se borne à de tels systèmes, l'équivalence par conjugaison se fait par un système $(\mu, (\mu_{i'})_{i' \in I'})$ avec $\mu \in \pi(= \operatorname{Ker} p)$, et les $\mu_{i'} \in E_{i=\tau(i')}$ comme avant. Ainsi, $f:E' \longrightarrow E$ est un homomorphisme d'extensions, défini modulo automorphisme intérieur par un élément de $\pi=\operatorname{Ker}(E \longrightarrow \Gamma)$, et satisfaisant à des conditions explicitées par ailleurs. Il se pourrait (comme on a déjà remarqué) que la connaissance de la classe de π -conjugaison de f suffise à déterminer le "morphisme bordélique" dans lequel f s'insère (si $I, I' \neq \emptyset$). [C'est lié à la question de savoir si $\forall d \in N^*$, $E(L_i^d, L_i)$ est réduit à E_i (où $E_i = \operatorname{Ker}(P_i: E_i \longrightarrow \Gamma) = \Im(x_i: T(\overline{K}) \longrightarrow E_i)$). Dans ce cas, E_i serait connu en termes de $E_i \subset \pi$, et même en termes du noyau de sous-groupes qu'il définit dans E_i 0, et a fortiori en termes des noyaux d'homomorphismes définis par $E_i = E_i$ 1.

Cas où $E_i \longrightarrow \Gamma$ sont surjectifs (i.e. les $k(s_i) = K$ i.e. s_i rationnel sur K).

Alors si $(f, \tau, (\alpha_{i'}))$ est un homomorphisme de D' dans D, quitte à corriger par des $\mu_i \in E_i$ ayant même image que les $\alpha_{i'}$ dans Γ , on peut supposer $\alpha_{i'} \in \pi$, en plus de $\alpha = 1$ (obtenu en corrigeant par μ convenable). Donc on décrit l'homomorphisme par $(f, 1, \tau, (\alpha_{i'}))$, les $\alpha_{i'}$ appartenant à π . La condition ici est que $f: E' \longrightarrow E$ soit un homomorphisme de groupes sur Γ , que $f(E'_{i'}) \subset \operatorname{int}(\alpha_{i'}^{-1}E_{\tau(i')=i})$, et que l'homomorphisme induit $E'_i \longrightarrow E_{i'}$ par $\operatorname{int}(\alpha_{i'})f$ induit sur $T(\overline{K})$ (via $\alpha_{i'}, \alpha_{i'}$) l'homomorphisme de multiplication par d_i sans plus - que c'est beau!

Deux systèmes $(f, \tau, (\alpha_{i'}))$ et $(f', \tau', (\alpha'_{i'}))$ définissent le même morphisme, si et seulement $si = \tau'$ et s'il existe $\mu \in \pi, \mu_{i'} \in L_{i=\tau(i')} =_i (T(\overline{K}))$ tels que

$$f' = \operatorname{int}(\mu) f \quad \alpha'_{i'} = \mu_{i'} \alpha_{i'}$$

Notons qu'à priori, pour (f,τ) fixé, les $\alpha_{i'}$ sont déterminés modulo multiplication à droite par des éléments de $\pi((L)_i^{d_{i'}}, L_i)$, qui est sans doute $= L_i = \operatorname{Ker}(x_i : E_i \longrightarrow \Gamma) = 1 = \Im(\pi_i : T(\pi) \longrightarrow E_i\pi)$. Donc on trouve que la classe de π -conjugaison de groupes sur Γ de $f: E' \longrightarrow E$ suffit à déterminer l'homomorphisme $D' \longrightarrow D$ dans la catégorie bordélique.

Je présume qu'un peu de sueur permettrait de prouver que cela marche encore dans le cas général (sans supposer les $\Gamma_i = \text{Im}(E_i \longrightarrow \Gamma)$ égaux à Γ).

Cela signifie (dans le cas actuel) que la structure essentielle qui décrit (X,S) est celle d'extension extérieure de Γ par un groupe π [homomorphisme extérieur surjectif d'un groupe, de [] du R], avec π muni d'une structure à lacets i.e. extérieurs $\varkappa_i:T(=T(\overline{K}))[]\longrightarrow\pi$ (satisfaisant certaines conditions), les homomorphismes de $E'\longrightarrow\Gamma$ (noyau π') dans $E\longrightarrow\Gamma$ (noyau π) étant les classes de π -conjugaisons d'homomorphismes $E'\longrightarrow E$ de groupes sur Γ , induisant des homomorphismes $\pi'\longrightarrow\pi$ compatibles avec la structure à lacets.

§ 9. — STRUCTURE TANGENTIELLE EN LES $s \in S$

Les sections d'extensions "de deuxième type"

Revenant à la description des (X,S) par $\Pi_{D^*} \longrightarrow \Pi_U \longrightarrow \Pi_e$, un $s_i \in S$ correspond donc à une composante connexe de $\Pi_{D_i^*}$ dans Π_{D^*} , ou un Π_{D_i} de son quotient Π_D .

Considérons $\Pi_{D_i^*} \xrightarrow{\sigma_i = \sigma_{D_i^*D_i}} \pi D_i$. On va décrire certaines sections (à isomorphisme près) de ce morphisme de groupoïdes, i.e. des couples (γ, λ) ou γ est un foncteur $\Pi_{D_i} \xrightarrow{\gamma} \Pi_{D_i^*}$ et λ un isomorphisme $\sigma_i \circ \gamma \simeq Id$.

Si on choisit un []

Ceci posé, on a

$$\Gamma_i = \operatorname{Gal}(\overline{K}_i/K_i)$$

où $K_i = K(s_i)$, \overline{K}_i est la clôture algébrique de K_i définie par []

Or la suite exacte de Kummer donne []

Notons qu'on a un homomorphisme kummérien [] dont le noyau est formé des $x \in K_i^*$ tel que pour tout $n \in N$, on ait $x \in K_i^{*n}$. Comme K_i est de type fini sur Q, cet homomorphisme est injectif, i.e. K_i^* s'identifie à un sous-groupe de H_i .

Ceci posé, on va définir, dans le torseur Σ_i sous H_i des scindages de D_i^* sur D_i , un sous- K_i^* -torseur (i.e. un élément de Σ_i/K_i^*).

Pour ceci, considérons plus généralement le cas d'un corps $k \ (= K_i)$ de caractéristique 0, et d'une k-algèbre O []

Soit $L(n,t) = O(n,t) \otimes_O K =$ corps de fractions de []

On trouve une application canonique []

On constate aussitôt que cette application est compatible avec l'homomorphisme

$$\theta: k^* \longrightarrow H^1(k, T(\mathbb{G}_m))$$

sur les groupes d'opérateurs de ces torseurs.

Dans le cas où cet homomorphisme est injectif []

Revenant au cas des []

La chose nouvelle que je retiens surtout, c'est que pour []

Il faudrait corriger la conjecture bordélique dans le cas III, en énonçant (sous toutes réserves, encore !) qu'il n'y a (peut-être) pas d'autres scindages de l'extension E par π que ceux-là...

§ 10. — AJUSTEMENT DES HYPOTHÈSES (REMORDS)

Je me rends compte que dans la définition des morphismes $(X',S') \xrightarrow{f} (X,S)$, l'hypothèse $f^{-1}(S)_{\text{red}} = S'$ est étriquée - il faut prendre des morphismes *quelconques* $X' \setminus S' \xrightarrow{x} X \setminus S$ (se prolongeant bien sûr en $\hat{f}: X' \longrightarrow X$). On aura donc $\hat{f}^{-1}(S)_{\text{red}} \subset S'$, mais S' peut être strictement plus grand que $\hat{f}^{-1}(S)_{\text{red}}$.

Il faut ajuster en conséquence la description de la "catégorie bordélique" - les objets restent les diagrammes de groupoïdes $D:\Pi_{D^*}\longrightarrow\Pi_U\longrightarrow\Pi_e$ (plus donnée de Kummer), mais un morphisme d'un D' dans un D ne définit plus nécessairement un $\Pi'_{D^*}\longrightarrow\Pi_{D^*}$ (en plus de $\Pi'_U\longrightarrow\Pi_U$) il faut se donner une partie I'_f de $I'='pi_0(\Pi'_{D^*})$ et se donner seulement $\Pi'_{D^*,I'_f}\xrightarrow{f_{D^*}}\Pi_{D^*}$ (avec donnée de commutation $\alpha_{D^*,U}$ relative au carré avec f_U). Bien sûr, dans la description en termes de E',E etc, on exige que pour $i'\in I'\setminus I'_f, f_E:E'\longrightarrow E$ est trivial sur $E'_{i'}\subset E'$ - et τ est défini comme $I'_{f'}\longrightarrow I$; les données relatives aux $i'\in I'_f$ ($f_{i'}:E_{i'}\longrightarrow E_{i=\tau(i')}$, les $\alpha_{i'}\in E$) sont pareilles que dans le cas envisagé précédemment.

N.B. Cela signifie en fait qu'on commence à "boucher les trous" (de X') correspondants aux $i' \in I' \backslash I'_{f'}$, en remplaçant E' par le groupe quotient de E' par le sous-groupe invariant engendré par les $L_{i'} = \varkappa_{i'}(T(\overline{K}))(i' \in I' \backslash I'_{f'})$, et les $E_{i'}(i' \in I'_f)$ par leurs images dans le dit groupe quotient, et en oubliant $I' \backslash I'_{f'}$ i.e. remplaçant I' par I'_f .

[Pour bien faire, il faudrait exprimer ces opérations aussi au niveau des diagrammes de groupoïdes $\Pi'_{D^*} \longrightarrow \Pi'_U \longrightarrow \Pi_e$...].

Cela signifie donc qu'en fait, on s'est ramené à la situation envisagée au début, où $S' = \hat{f}^{-1}(S)$... Donc finalement la différence des deux points de vue n'est pas énorme, et celui

adopté au début a l'avantage de l simplicité plus grande (tout est relatif!)

§ 11. — CONDITIONS SUR LES SYSTÈMES DE GROUPOÏDES OBTENUS À PARTIR DE SITUATIONS GÉOMÉTRIQUES

On en a déjà cité au passage, par exemple que les groupes noyaux de $\Pi_{D^*} \longrightarrow \Pi_e$ sont abéliens (avec l'isomorphisme de Kummer \varkappa) et que les images sont des sous-groupes ouverts, et de même pour l'image des π_1 dans le cadre de l'interprétation en termes de

$$T(\overline{K}) \xrightarrow{x_i} E_i \xrightarrow{\rho_i} E \xrightarrow{p} \Gamma$$

(cas de la "dim 1" - on n'exclut pas le cas $I = \emptyset$ le cas "dim 0" étant trivial)

- a) L'image Σ de p est ouverte, plus précisément il existe un sous-groupe ouvert $\Gamma' \subset \Gamma$ au dessus du quel E ait une section [et même une "section admisible" en un sens qui sera défini par la suite de sorte à exclure les sections "triviales" provenant des E_i ...].
- b) L'image Σ_i de E_i dans Γ est ouverte, et l'extension E_i de Σ_i par $L_i(\simeq(\overline{K}))$ est triviale. [En fait, on a une classe privilégiée de scindages, dits "algébriques", formant un torseur sous $K_i^* \hookrightarrow \varprojlim(K_i^*)_n$, cg n° 9 mais on ne va pas considérer pour l'instant cet élément de structure supplémentaire...]

Le reste des conditions concerne essentiellement la structure des groupes

$$\pi = \operatorname{Ker}(p : E \longrightarrow \Gamma)$$

avec ses classes de conjugaison de sous-groupes (ou plutôt les homomorphismes extérieures $x_i: T(=T(\overline{K}^*) \longrightarrow \pi)$, et la façon dont Σ opère extérieurement sur π . Ces conditions

s'expriment de façon particulièrement simple lorsque les $\Sigma_i \subset \Gamma$ sont égaux à Γ ("les points de S sont rationnels sur K") i.e. $E_i \longrightarrow \Gamma$ surjectif, a fortiori $\Sigma = \Gamma$ i.e. $E \longrightarrow \Gamma$ surjectif. On va se borner à se cas. Le cas général s'en déduit par extension finie du corps de base [chaque point de S non rationnel sur K i.e. chaque $\Sigma_i \neq \Gamma$ donne naissance à n_i points, $n_i = [\Gamma : \Sigma_i]$ - et $X_{K'}$ se scinde en $n = (\Gamma : \Sigma)$ composantes connexes qui sont géométriquement connexes] - mais j'ai la flemme d'expliciter comme il faudrait, dans le contexte des groupoïdes ou des homomorphismes de groupes profinis, l'opération d'extension du corps de base.

c) $\forall i$, l'homomorphisme extérieur

$$x_i: T \longrightarrow \pi$$

est compatible avec l'action extérieure de Γ (opérant sur T par le caractère cyclotomique χ , et sur π grâce à l'extension E de Γ par π). En d'autres termes, pour tout $g \in E$, existe un $\alpha \in \pi$ (N.B. pas seulement $\alpha \in E$!) tel que l'on ait:

$$\operatorname{int}(g)x_i(\xi) = \operatorname{int}(\alpha)x_i(\chi(p(g))\xi)$$
 i.e. $\operatorname{int}(\alpha^{-1}g)x_i(\xi) = x_i(\chi(p(g))\xi)$

Ceci signifie que 1°) $\alpha^{-1}g$ normalise $L_i=\varkappa_i(T)$ [et ceci signifie même, probablement, que $\alpha^{-1}g\in E_i$ - et qu'on puisse trouver un tel $\alpha\in\pi$ (tel que $\alpha^{-1}g\in E_i$) provient de l'hypothèse $E_i\longrightarrow\Gamma$ surjectif - on prend un $\beta(=\alpha^{-1}g)\in E_i$ ayant même image que g dans Γ et on prend $\alpha=g\beta^{-1}$] et que 2°) l'action intérieure de $\beta=\alpha^{-1}$ sur T n'est autre que par multiplication par $\chi(g)=\chi(\beta)$ - ce qui (pour $\beta\in E_i$) n'est autre que la condition déjà explicitée que l'homomorphisme de groupes $\varkappa_i: T\longrightarrow E_i$ est compatible avec l'action de E_i , opérant sur T via $\chi\circ p|_{E_i}$, et sur lui même par automorphismes intérieures.

Donc la condition c) n'est pas vraiment nouvelle - je la réexplicite en termes un peu différents, à cause de son importance. Elle implique que l'opération de Γ sur π est très non triviale (puisque $\chi:\Gamma\longrightarrow \widehat{Z}^*$ a une image ouverte!) - il n'était pas même évident, a priori (sans raisons arithmétiques profondes!) - compte tenu de la structure de π qu'on va donner - qu'il existe de telles opérations de Γ sur π !

Cette condition sera complétée par une condition de non trivialité à la Weil.

d) $\exists \eta \in T^*$ (une base de T), et des $\alpha_i \in \pi$ (afin de conjuguer κ_i en $\kappa_i' = \operatorname{int}(\alpha_i) \circ \kappa_i$), enfin un entier $g \ge 0$ et des éléments κ_i , $\kappa_i \in \pi$ ($1 \le i \le g$), tels que l'on ait

A. GROTHENDIECK

- 1°) Les $x_i'(\eta)$, et les x_i , y_i engendrent le groupe profini π .
- 2°) Ils satisfont la relation

$$[x_1, y_1].[x_2, y_2]...[x_g, xy_g] \varkappa'_1(\eta) \varkappa'_2(\eta)...\varkappa'_{\nu}(\eta) = 1$$

3°) Cette relation, avec les générateurs envisagés, décrit π (en tant que groupe profini) par générateurs et relations...

N.B. On sait que par ces conditions, g est uniquement déterminé, par exemple par le fait que $\pi_{ab}/\Sigma x_i(T)$ est un \widehat{Z} -module libre de rang 2g - π_{ab} étant libre de rang 2g + ν — 1 où ν = card(I).

Pour le choix de η , on voit que si η convient, alors tout $\chi(\alpha)\eta$ aussi (où $\alpha \in \Gamma$) - quitte à prendre des conjugués. Donc les η qui conviennent contiennent un sous-torseur de T^* sous le sous-groupe ouvert $\chi(\Gamma)$ de \widehat{Z}^* .

En fait, comme la structure du groupe π est indépendante de K, prenant K=Q (et en admettant qu'il existe une courbe lisse projective (géométriquement connexe de genre g sur Q, ayant ν points rationnels sur Q!), on trouve que si les l_i]($1 \le i \le \nu$) s'insèrent dans un système de générateurs privilégies (avec des x_j , y_i) alors pour tout $\rho \in \widehat{Z}^*$, on peut trouver des conjugués l_i' des l_i^ρ qui s'insèrent de même. Même pour $\rho=-1$ ce n'est pas entièrement trivial...

Enfin, on va énoncer une condition draconienne de non trivialité de l'opération de Γ sur π . Soient E' un sous-groupe ouvert (donc d'indice fini) de E, $\pi' = \pi \cap E' = \operatorname{Ker}(E' \longrightarrow \Gamma)$, Γ' l'image de E' dans Γ . On trouve donc une extension de Γ' (= $\operatorname{Gal}(\overline{K}'/K')$) sur π' , donc aussi par $(\pi'_{ab})(\ell)$ (ℓ étant un nombre fourni), qui est (on le sait par d)) un Z_{ℓ} -module libre de type fini, sur lequel Γ' opère.

[Avec un peu de travail²³, on doit pouvoir mettre sur $E' \longrightarrow \Gamma$ une "structure à lacets" i.e. des $E'_{i'}$ comme pour E, et décrire dans $(\pi_{ab}(l))$ la somme des images des $L'_{i'}$, sur lesquels Γ' opère donc via le caractère χ . On s'intéresse au quotient de $(\pi'_{ab})(l)$ par ce sous-module relativement trivial (la partie "VA" du module ℓ -adique envisagé). Ceci posé, on exige que la représentation de Γ' là dessus soir "pure de poids 1" - et que les polynômes caractéristiques des frobénius (qui sont à coefficients dans Z, pas seulement dans Z_{ℓ}) soient *indépendants* de ℓ .

 $^{^{23}\}text{CCa}$ se fait très élégamment dans le contexte $\Pi_{D^*} \longrightarrow \Pi_U \longrightarrow \Pi_e$.

\S 12. — L'ANALOGIE TOPOLOGIQUE

§ 13. — RETOUR AU CAS ARITHMÉTIQUE

Retour au cas arithmétique, où on veut décrire en termes "galoisiens" les couples (X,S) anabéliens connexes sur un corps K de type fini sur Q. [N. B. Si on prend un K de type fini sur F_p , il faudrait se borner aux groupes fondamentaux "premiers à p", à cela près nos développements pourraient se faire quand même...]

Il est devenu clair qu'en termes d'une clôture algébrique \overline{K} de K, d'où un groupe de Galois profini $\Gamma = \operatorname{Gal}(\overline{K}/K)$, la description la plus simple est en termes de groupes extérieures à lacets et d'actions extérieures de sous-groupes ouverts Σ de Γ dessus.

De façon précise, on choisit une composante connexe \overline{X}_0 de \overline{X} (ou ce qui revient au même, \overline{U}_0 de $\overline{U} = (X \setminus S)_{\overline{K}}$), soit Σ son stabilisateur dans Γ (il est remplacé par un conjugué, quand on change \overline{U}_0). Alors Σ opère sur le schéma \overline{U}_0 , donc opère extérieurement sur π_1 (considéré comme groupe extérieure). Or sur celui-ci il y a une $T(\overline{K})$ -structure à lacets, avec comme ensemble d'indices $I = S_0(\overline{K}) \subset S(\overline{K}) \simeq S_0(K) \wedge_{\Sigma} \Gamma$ [vide si et seulement si $S \neq \emptyset$] et l'opération de Σ sur π est compatible avec cette structure à lacet, et le caractère cyclotomique $\chi: \Gamma\widehat{Z}^*$ (plutôt, $\chi \mid \Sigma$). Ainsi l'opération de Σ sur π implique son action sur Σ , d'où $S(\overline{K}) \simeq S_0(\overline{K}) \wedge_{\Sigma} \Gamma$ en tant que σ -ensemble - on récupère donc le K-schéma étale S. Mais mieux, on récupère tout le diagramme

$$\Pi_{\overline{D_0^*}} {\:\longrightarrow\:} \big[\Pi_{\overline{U}_0} {\:\longrightarrow\:} \big] \Pi_{\overline{U}} {\:\longrightarrow\:} \Pi_e$$

et l'opération de Σ dessus d'où le diagramme des topos classifiant - où si on préfère, le diagramme

$$\Pi_{D^*} {\:\longrightarrow\:} \Pi_U {\:\longrightarrow\:} \Pi_e$$

(avec les notations du début de ces notes, qui deviendraient ici

$$\Pi_{D^*,\Gamma} \longrightarrow \Pi_{U,\Gamma} \longrightarrow \Pi_{e,\Gamma}$$

plus bien sur K [?]...)

Les homomorphismes $(X',S') \stackrel{f}{\longrightarrow} (X,S)$ $[f^{-1}(S) \subset S', f \text{ dominant}]$ se décrivent simplement (via le choix d'un \overline{X}'_0 au dessus d'un \overline{X}_0 par des homomorphismes extérieures $\pi(=\pi_1(\overline{X}_0)) \longrightarrow \pi(=\pi_1(\overline{X}_0))$, compatibles avec les actions de Σ (\subset Σ) et de Σ , et avec les structures à lacets anabéliennes (ce qui s'exprime à l'aide d'une application $\tau:(I'\subset \overline{S}'_0) \longrightarrow I=\overline{S}_0^{24}$ compatible avec σ' , et un système d'entiers naturels $(d_{i'})_{i'\in I}$).

Il faut cependant compléter, pour $I=\emptyset$, la définition de la structure à lacets, par la donnée d'un isomorphisme

$$\chi: T^{\otimes -1} \xrightarrow{\sim} H^2(\pi, \widehat{Z})$$

[N.B. en caractéristique $p \ge 0$, on doit se borner aux composantes ℓ -adiques avec $\ell \ne p$] i.e.

$$\widehat{Z} \xrightarrow{\sim} H^2(\pi, \Gamma)$$

compatible avec l'action de Σ - et il faut exiger, dans l'interprétation "galoisienne" de $f:(X',S')\longrightarrow (X,S)$, quand $S=S'=\varnothing$ que l'homomorphisme $\pi\longrightarrow \pi'$ induit un diagramme commutatif

²⁴**N.B.** $I' = \overline{S}'_0 \cup f^{-1}(\overline{S}_0)$

\S 13 bis. — RETOUR SUR LA NOTION DE GROUPE À LACETS

$\$ 14. — DIGRESSION COHOMOLOGIQUE (SUR LE "BOUCHAGE DE TROUS")

§ 14 bis. — OÙ ON REVIENT SUR LES MORPHISMES MIXTES

\S 15. — RETOUR SUR LE CAS TOPOLOGIQUE

§ 16. — BOUCHAGE ET FORAGE DE TROUS : PRÉLIMINAIRES TOPOLOGIQUES GÉNÉRAUX

§ 17. — COMPLÉMENTS SUR LES OPÉRATIONS DE GROUPES FINIS SUR LES SURFACES (COMPLÉMENT AU PARAGRAPHE 15)

§ 18. — FORAGE DE TROUS ; APPLICATION AUX ACTIONS EXTÉRIEURES DE GROUPES FINIS

Soit π' un groupe à lacets de type $(g, \nu + 1)$ non abélien

§ 19. — TOUR DE TEICHMÜLLER

§ 20. — DIGRESSION : DESCRIPTION 2-ISOTOPIQUE DE LA CATÉGORIE DES SPHÈRES TOPOLOGIQUES

\S 21. — LIEN AVEC LES ESPACES DE TEICHMÜLLER

\S 23. — RETOUR SUR LES SURFACES À GROUPES D'OPÉRATORS

§ 24. — ESSAI DE DÉTERMINATION DE $\mathscr{A}^{0\Gamma}$; LIEN AVEC LES RELATIONS $\pi_{g,(\nu,\nu+n-1)}^{\ \ \Gamma}=\{1\}$, ET PROGRAMME DE TRAVAIL

§ 25. — GROUPES DE TEICHMÜLLER SPÉCIAUX

Revenons aux notations du $n^{\circ}19$, on va définir un sous-groupe $SA_{g,\nu}$ de $A_{g,\nu}^{!}$

$$SA_{g,v} = \{u \in A_g \mid u \text{ induise l'identit\'e sur un voisinage de } S_{g,v}\}$$

i.e. ensemble des automorphismes de $U_{\rm g,\nu}$ qui induisent l'identité dans le complémentaire d'un compact.

Contrairement aux autre sous-groupes de A_g considérés jusqu'à présent, celui-ci n'est pas un sous-groupe fermé. N.B. Dans le cas où on travaille avec des surfaces compactes à bord au lieu de surfaces compactes (sans bord) "trouées", il y aurait lieu de prendre le groupe des automorphismes qui induisent l'identité sur le bord.

 $SA_{g,\nu}$ est un sous-groupe invariant de $A_{g,\nu}$, le quotient $A_{g,\nu}/SA_{g,\nu}$ étant isomorphe au groupe des *germes* d'automorphismes de X_g au voisinage de $S_{g,\nu}$, ou encore le groupe des germes à l'infini d'automorphismes de $U_{g,\nu}$ ([] les complémentaires de compacts...)

On aura évidemment, puisque $SA_{g,\nu} \subset A_{g,\nu}$

$$(SA_{g,\nu})^{\circ} \subset A_{g,\nu}^{\circ}$$

Posons

$$SA_{g,\nu}^! = SA_{g,\nu}/SA_{g,\nu}^{\circ}$$

on aura un homomorphisme canonique

$$SA_{g,\nu}^! \longrightarrow \Gamma_{g,\nu}^{!+}$$

qu'on va interpréter de façon algébrique, en termes de l'interprétation de $\Gamma_{g,\nu}^!$ comme le groupe des automophismes extérieures du groupe à lacets $\pi_{g,\nu}$, induisant l'identité sur $S_{g,\nu}=I(\pi_{g,\nu})$.

Pour tout $i \in S_{g,\nu}$, choisissons un L_i de classe i dans $\pi_{g,\nu}$ - ce qui revient à se donner un "point" de $B_{D_i^*}$ (\simeq un revêtement universel \widetilde{D}_i^*) et un isomorphisme entre son image dans $B_{U=U_{g,\nu}}$ avec le "point" $s=s_{g,\nu}$ de référence, qui servait à définir $\pi_{g,\nu}$ comme $\operatorname{Aut}_{B_U} \simeq \pi_1(B_U,s)$.

Ceci dit, si u est un automorphisme de $\pi=\pi_{g,\nu}$ le fait qu'il respecte (strictement, en induisant l'identité sur $S_{g,\nu}$) la structure à lacets, s'exprime par l'existence d'une famille d'éléments $g_i \in \pi$, tels que

$$u(l) = \operatorname{int} g_i^{-1}(l^{\alpha}) \quad (i \in I, l \in L_i, \alpha = \chi(n))$$

-lesquels g_i sont déterminés par u modulo multiplication à droite par des $\lambda_i \in L_i$. Si on a de même v, (h_i) , alors : pour $l \in L_i$ on a (si $\alpha = \chi(u)$, $\beta = \chi(v)$)

§ 25 bis. — CAS DES DEUX GROUPES. RETOUR SUR LES NOTATIONS

On se place d'abord pour fixer les idées dans le cas topologique et discret, mais la motivation est le cas d'un courbe algébrique U sur un corps de type fini K, où on a à la fois le groupe $G_K = \operatorname{Aut}_K(U)^{25}$ et $\Gamma = \operatorname{Gal}(\overline{K}/K)$ qui opérant extérieurement sur le $\pi_1(U_{\overline{K}})$.

Dans ce cas, G et Γ commutent, mais on peut regarder plus généralement le cas du groupe (plus gros que G_K) $G_{\overline{K}} = \operatorname{Aut}_{\overline{K}}(U)$, sur lequel Γ opère (de façon pas nécessairement triviale - cette opération décrit un groupe algébrique étale fini sur K).

Supposons donc qu'on ait une surface U (orientable, $U = X \setminus S$, X compacte connexe, S finie) sur laquelle opère deux groupes G, Γ , l'action de Γ normalisant celle de G - donc on a un groupe $\mathscr{G} = \Gamma G$ (produit semi-direct, pour une certaine action de Γ sur G) qui opère sur U. On suppose G fini, mais pas nécessairement Γ fini.

On suppose choisi un revêtement universel \tilde{U} de U, d'où un groupe à lacets $\pi = \operatorname{Aut}(\tilde{U})$, sur lequel $\mathscr G$ opère extérieurement, d'où l'extension

$$1 \longrightarrow \pi \longrightarrow E \longrightarrow \mathscr{G} \longrightarrow 1$$

Si l'action de $\mathscr G$ sur U est fidèle, alors $\mathscr G\hookrightarrow \operatorname{Autext}(\pi)$, et l'extension précédente est l'image inverse de l'extension de Teichmüller de π

$$1 \longrightarrow \pi \longrightarrow \operatorname{Aut}_{\operatorname{lac}}(\pi) \longrightarrow \operatorname{Autext}_{\operatorname{lac}}(\pi) \longrightarrow 1$$

²⁵Cas anabélien donc G fini.

On aura à regarder d'autres revêtements universels que \tilde{U} , et leurs isomorphismes avec \tilde{U} . Quand $\tilde{U} = \tilde{U}(P)$ est le revêtement universel basé en un certain $P \in U$, alors pour les revêtements universels U(Q) basés en un point, les U-isomorphismes $\tilde{U}(P) \xrightarrow{\sim} \tilde{U}(Q)$ correspondent donc aux classes de chemins de P à Q.

Soit $Q \in U$ tel que son sous-groupe d'isotropie G_Q dans G soit tel que $G_Q^+ \neq 1$. (Donc G_Q^+ est cyclique). Choisissant une classe de chemins de P à Q, on trouve une opération de G_Q sur $\widetilde{U}(P)$ i.e. un relèvement $G_Q \xrightarrow{r_{G_Q}} E$ dans l'extension (1) - le changement de classe de chemins de λ en λ' donnera un relèvement r'_{G_Q} qui sera conjugué de r par un unique élément de $\pi = \pi_1(U,P)$ (l'unicité provient de $\pi^{G_Q} = 1$), savoir celui qui fait passer d'un chemin à l'autre.

Considérons le stabilisateur Γ_Q de Q dans Γ , qui opère bien sur $\widetilde{U}(Q)$ tout comme G_Q (en fait c'est \mathscr{G}_Q qui opère d'où $r:\mathscr{G}_Q\longrightarrow E...$), donc via λ on a aussi un relèvement $r_{\Gamma_Q}:\Gamma_Q\longrightarrow E$, qui a la même propriété de normaliser r_{G_Q} (avec opération de Γ_Q dessus, qui est celle provenant de l'opération de Γ sur G)²⁶. Pour simplifier, supposons quand même que Γ opère trivialement sur G i.e. $\mathscr{G}=\Gamma\times G$, alors $r_{\Gamma_Q}(\Gamma_Q)\subset E$ est contenu dans le centralisateur de r (ou de $r(G_Q)$) et comme $\pi^{r(G_Q)}=1$, donc l'homomorphisme

$$\operatorname{Centr}(r(G_{\mathcal{O}})) \longrightarrow \mathscr{G}$$

est injectif²⁷, le relèvement en question r_{Γ_Q} est uniquement déterminé par la condition précédente.

En ait, l'image de $\operatorname{Centr} r(G_Q)$ dans $\mathscr G$ contient $\mathscr G_Q$, et on [] de même le relèvement $\mathscr G_Q \xrightarrow{r_{G_Q}} E$. La chose intéressante, c'est que le choix d'un relèvement du (petit) groupe $\mathscr G_Q$, impose déjà le choix d'un relèvement du (grand) groupe Γ_Q , ou $\mathscr G_Q$.

Je dis que l'image dans $\mathcal G$ du centralisateur (et même du normalisateur) de $r(G_Q)$ est $\mathcal G_Q$ lui même (a priori il le contient).

Revenant à $\widetilde{U}(Q)$ lui-même, cela signifie que si $g \in \mathscr{G}$ est tel qu'il existe un automorphisme \widetilde{g} de $\widetilde{U}(Q)$ qui relève g, en normalisant l'action de G_Q , alors $g \in \mathscr{G}_Q$ et \widetilde{g} est le

 $^{^{26}}$ N. B. Comme l'ensemble des points Q est fini, et que $\mathcal G$ opère dessus, l'orbite de Q sous $\mathcal G$ est finie, i.e. $\mathcal G_Q$ est d'indice fini dans $\mathcal G$ et de même Γ_Q sous Γ .

 $^{^{27}}$ N. B. Indépendamment de toute hypothèse que Γ centralise G, le normalisateur de $r(G_Q)$ dans π , égal à son centralisateur, est réduit à 1, donc $\operatorname{Norm}(r(G_Q)) \longrightarrow \mathcal{G}$ est injectif.

A. GROTHENDIECK

relèvement évident). En effet, si \tilde{g} normalise l'action de G_Q , il invarie l'ensemble des points fixes de G_Q dans $\tilde{U}(Q)$, qui est réduit au point \overline{Q} .

L'ensemble $U^!$ des points $Q \in U$ tels que $G_Q^+ \neq (1)$ est stable par l'action de \mathscr{G} , et s'identifie (avec cette action) à l'ensemble des relèvements maximaux modulo π de sousgroupes (cycliques) $\neq 1$ de G^+ .

Quand on connaît, pour un relèvement partiel r d'un G_Q dans E, i.e. le relèvement correspondant de \mathcal{G}_Q , alors de même pour les conjugués de r par n'importe quel élément g (non seulement de π_1 mais même de E), par simple conjugaison. Donc les cas à déterminer correspondent pratiquement aux orbites de \mathcal{G} dans $U^!$.

On peut s'intéresser à décrire $\mathscr{G} \longrightarrow \Gamma$ en tant que sous-groupes de Autext $_{\operatorname{lac}}(\pi) = \Gamma'$ donnant lieu à l'extension E' de Γ' par π (donc $E \subset E'$). Mais pour tout relèvement r d'un G_Q , considérons $\operatorname{Centr}_{E'}(r)$, on a encore $\operatorname{Centr}_{E'}\cap\pi=(1)$ i.e. on trouve une section au dessus de l'image de ce centralisateur dans Γ' , soit $\Gamma'(Q)$. Cette image ne dépend que de Q i.e. de la classe de π -conjugaison de r ou de $r(G_Q)$, et est remplacée par un G-conjugué quand Q est remplacé par un G-conjugué. Ceci dit, l'intersection Γ'^{\natural} des $\Gamma'(Q)$, pour $Q \in U^!$, est un sous-groupe de Γ' qui contient l'intersection \mathscr{G}^{\natural} des \mathscr{G}_Q , et le centralisateur de G dans Γ'^{\natural} contient de même l'intersection Γ^{\natural} des Γ_Q , qui est un sous-groupe invariant d'indice fini de Γ . Et on peut alors se proposer de voir s'il est posssible de caractériser au moins le sous-groupe fini Γ^{\natural} de Γ comme $\operatorname{Centr}_{\Gamma'^{\natural}}(G)$, et de récupérer peut être Γ comme le normalisateur de Γ^{\natural} dans $\operatorname{Centr}_G(\Gamma)$.

Je m'intéresse plus particulièrement à la variante profini de ceci, dans le cas où $U = \mathbb{P}^1_Q \setminus 0, 1, \infty, G = \mathfrak{S}_3, \Gamma =$ groupe de Galois sur Q de la clôture algébrique \overline{Q} de Q dans C et $p = \exp(2i\pi/6)$.

Je n'ai pas vérifier que $\Gamma \longrightarrow \operatorname{Autext}_{\operatorname{lac}}(\widehat{\pi})$ soit injectif, cela m'empêche de faire des calculs dans $\operatorname{Aut}_{\operatorname{lac}}(\widehat{\pi})$, fussent-ils heuristiques pour le moment.

Je bute sur des ennuis de notations - trop de groupes sont désignés par la lettre Γ (avec éventuellement des primes, indices, exposants...) Il y a trois types de groupes qui interviennent dans mes réflexions :

a) Les groupes de Teichmüller et ses variantes, qui jouent le rôle de groupes "universels" opérant (éventuellement modulo isotopie) sur des surfaces, ou sur des groupes extérieurs à lacets. Ces groupes ont tendance à être infinis.

Des groupes (le plus souvent finis) opérant sur des surfaces topologiques, ou sur des courbes algébriques (sans, dans ce cas là, bouger le corps de base).

c) Des groupes de Galois profinis (donc infinis), [] de corps de type fini sur Q, opérant "arithmétiquement" sur des surfaces et leurs $\widehat{\pi}_1$ -géométriques²⁸.

C'est à cause des analogies profondes entre les cas b) et c), et leurs relations étroites avec le cas a), que j'avais été induit à adopter des notations communes, mais qui à la longue finissent par aboutir à des collisions. Il y a donc lieu de revoir les notations. Je vais réserver la lettre G et variantes pour des actions géométriques (cas b)) de groupes, le plus souvent finis, la lettre G et variantes pour des groupes de Galois, la lettre G pour des groupes mixtes.

Quant aux groupes "universels" de type Teichmüller, comme ceux notés $\Gamma_{g,\nu}$ précédemment, je vais plutôt les noter $\mathfrak{T},\mathfrak{T}_{g,\nu}$ (initiale de "Teichmüller", alors que Γ , G sont l'initiale de Galois).

Le groupe de Galois sur Q de la clôture \overline{Q} de Q dans C mérite une lettre spéciale, je le noterai Γ . Le quotient $\operatorname{Norm}_{\widehat{\mathfrak{X}}_{g,\nu}}(\widehat{\mathfrak{X}}_{g,\nu})/(\widehat{\mathfrak{X}}_{g,\nu})$, qui s'apparente plus à un groupe de Galois qu'à un group de Teichmüller, sera noté $\Gamma_{g,\nu}$ (lettre grasse !). Dans le cas $(g,\nu)=(0,3)$ qui m'occupe plus particulièrement, $\Gamma_{0,3}^{29}$ s'identifie au centralisateur de $G=\mathfrak{S}_3=\mathfrak{X}_{0,3}^+$ dans $\widehat{\mathfrak{X}}_{0,3}^+$ il est contenu dans $\widehat{\mathfrak{X}}_{0,3}^!$, et peut-être égal. On a un homomorphisme canonique $\Gamma \longrightarrow \Gamma_{0,3}$ (plus généralement $\Gamma \longrightarrow \Gamma_{g,\nu}$) dont j'ignore pour l'instant s'il est injectif, et encore plus s'il est surjectif. Les réflexions qui précèdent suggèrent des conditions sur l'image, qui sont surtout intéressantes si on admet les relations

$$\widehat{\pi}^{\rho}S = \widehat{\pi^{\sigma_0}} = (1)$$

On a désigné par $E_{g,\nu}$ l'extension canonique de $\mathfrak{T}_{g,\nu}$ par $\pi_{g,\nu}$ (qui pour (g,ν) anabélien s'identifie à $\mathfrak{T}'_{g,\nu+1}$). L'opération extérieure d'un groupe G,Γ,\mathcal{G} définit aussi une extension par π (ou par $\widehat{\pi}$), qu'on a également désigné par la lettre E (initiale d'extension) - il y a à nouveau collisions de notations.

Je vais prendre la lettre \mathfrak{S} (qui fait penser à \mathfrak{D}) pour ces extensions dans les cas universels à la Teichmüller, (en écrivant $\mathfrak{S}_{g,\nu}$ au lieu de $\Gamma'_{g,\nu+1}$, puisque l'optique est différente...), et en

 $^{^{28}}$ Les cas b) et c) se mélangent parfois (dans un groupe \mathscr{G} extension d'un groupe de Galois Γ par un groupe fini G) dans le cas de la Géométrie Algébrique.

²⁹**I** est ici produit semi-direct de $\mathfrak{S}_3 = \mathfrak{T}^+$ par $\mathfrak{T}^!$.

A. GROTHENDIECK

gardant la lettre E dans le cas précédent. Donc E a tendance à être une sous-extension d'un \mathfrak{S} .

Admettant que $\Gamma \longrightarrow \Gamma_{0,3}$ est injectif, on aurait donc

N. B. On note $\widehat{\mathfrak{S}}'_{g,\nu}$ le normalisateur de $\widehat{\mathfrak{S}}^+_{g,\nu}$ dans $\widehat{\mathfrak{S}}_{g,\nu}$, extension de $\mathbb{F}_{g,\nu}$ par $\widehat{\mathfrak{S}}^+_{g,\nu}$.

Si $\gamma \in \mathbb{F}_{0,3}$, pour qu'il soit dans l'image de \mathbb{F} il faut qu'il admette un relèvement u qui commute à ρ , et un relèvement qui commute à σ_0 (ce qui, dès que $\gamma \in \widehat{\widehat{\mathfrak{X}}}_{0,3}$, implique déjà que γ dans $\widehat{\widehat{\mathfrak{X}}}_{0,3}$ commute à $\mathfrak{X}_{0,3}^+ = \mathfrak{S}_3$, i.e. qu'ils est dans $\mathbb{F}_{0,3}$). Il se pourrait que tout élément de $\mathbb{F}_{0,3}$ ait déjà cette propriété, donc que cette condition ne pose pas de restriction sur l'image de \mathbb{F} dans $\mathbb{F}_{0,3}$.

§ 26. — GROUPES DE TEICHMÜLLER PROFINIS (DISCRÉTIFICATION ET PRÉDISCRÉTIFICATION)

Soit π un groupe profini à lacets de type g, v, T le \hat{Z} -module inversible de ses orientations. On suppose qu'on est dans le cas anabélien, et on admettra qu'alors

(1)
$$\operatorname{Centre}(\pi) = \{1\},$$

plus généralement que le centralisateur dans π de tout sous-groupe ouvert de π est réduit à $\{1\}$. On aura donc encore une suite exacte canonique de groupes profinis

(2)
$$1 \longrightarrow \pi \longrightarrow \operatorname{Aut}_{\operatorname{lac}}(\pi) \longrightarrow \operatorname{Autext}_{\operatorname{lac}}(\pi) \longrightarrow 1.$$

On posera aussi

(3) Autext_{lac}
$$(\pi) = \hat{\hat{\mathfrak{Z}}}(\pi),$$

et on l'appellera le groupe de Teichmüller étendu de π . On posera aussi $\hat{\mathfrak{S}}(\pi) = \operatorname{Aut}_{\operatorname{lac}}(\pi)$, de sorte qu'on peut écrire (2) comme

$$(2') 1 \longrightarrow \pi \longrightarrow \hat{\hat{\mathfrak{S}}}(\pi) \longrightarrow \hat{\hat{\mathfrak{X}}}(\pi) \longrightarrow 1.$$

Appelons "base" de π un ensemble d'éléments de π : $(x_i, y_i)_{1 \le i \le g}$, $(l_j)_{1 \le j \le v}$, les l_j engendrant les différents groupes à lacets, satisfaisant

(4)
$$l_{\nu}l_{\nu-1}\cdots l_{1}[x_{g},y_{g}]\cdots[x_{1},y_{1}]=1,$$

A. GROTHENDIECK

et tels que ceci soit une relation génératrice. Si on choisit dans $\pi_{g,\nu}$ une base (discrète) (définition correspondante)³⁰, d'où une base de $\hat{\pi}_{g,\nu}$: on aura une bijection évidente

(5)
$$\operatorname{Bases}(\pi) \overset{\sim}{\leftarrow} \operatorname{Isom}_{\operatorname{lac}}(\hat{\pi}_{g,\nu}, \pi).$$

L'ensemble des bases de π est un ensemble homogène sous $\hat{\mathfrak{S}}(\pi) = \operatorname{Aut}_{\operatorname{lac}}(\pi)$. Si la base correspond à un isomorphisme $u:\hat{\pi}_{g,\nu} \longrightarrow \pi$, le groupe π_0 engendré par les x_i, y_i, l_j n'est autre que $u(\pi_{g,\nu})$. Les sous-groupes de π qui peuvent s'obtenir ainsi sont appelés les discrétifications de π . Celles-ci forment un ensemble homogène sous $\hat{\mathfrak{S}}(\pi) = \operatorname{Aut}_{\operatorname{lac}}(\pi)$, canoniquement isomorphe au quotient du $\hat{\mathfrak{S}}_{g,\nu}$ -ensemble à droite $\operatorname{Isom}_{\operatorname{lac}}(\hat{\pi}_{g,\nu},\pi)$ par $\mathfrak{S}_{g,\nu}^{-1}$:

(6)
$$\operatorname{Discr\acute{e}t}(\pi) \overset{\sim}{\leftarrow} \operatorname{Isom}_{\operatorname{lac}}(\hat{\pi}_{g,\nu}, \pi) / \mathfrak{S}_{g,\nu}.$$

Les automorphismes (profinis à lacets) de π fixant une discrétification π_0 s'identifient aux automorphismes du groupe discret à lacets π_0 :

(7)
$$\operatorname{Aut}_{\operatorname{lac}}(\pi, \pi_0) \simeq \operatorname{Aut}_{\operatorname{lac}}(\pi_0).$$

La bijection (5) met sur l'ensemble des bases de π une structure de bitorseur sous $\hat{\mathfrak{S}}(\pi)$, $\hat{\mathfrak{S}}_{g,\nu}$, et la topologie correspondante en fait un ensemble profini. L'ensemble des discrétifications de π , qui est un quotient de l'ensemble précédent, hérite d'une topologie quotient, qui n'est autre que la topologie quotient du deuxième membre de (6). Cet espace n'est pas séparé ($\mathfrak{S}_{g,\nu}$ est toujours infini), car le groupe $\mathfrak{S}_{g,\nu} \subset \hat{\mathfrak{S}}_{g,\nu}$ n'est pas fermé. On désigne par Discrét'(π) l'espace topologique séparé associé, s'identifiant à $\mathrm{Isom}_{\mathrm{lac}}(\hat{\pi}_{g,\nu},\pi)/\overline{\mathfrak{S}}_{g,\nu}$, où $\overline{\mathfrak{S}}_{g,\nu}$ désigne l'adhérence de $\mathfrak{S}_{g,\nu}$ dans $\hat{\mathfrak{S}}_{g,\nu}$. On a d'ailleurs un homomorphisme évident $\hat{\mathfrak{S}}_{g,\nu} \longrightarrow \hat{\mathfrak{S}}_{g,\nu}$ dont l'image est $\overline{\mathfrak{S}}_{g,\nu}$, nous admettrons qu'il est injectif et identifierons $\overline{\mathfrak{S}}_{g,\nu}$ à $\hat{\mathfrak{S}}_{g,\nu}$. Ainsi

(8)
$$\operatorname{Discr\acute{e}t}'(\pi) \simeq \operatorname{Isom}_{\operatorname{lac}}(\hat{\pi}_{g,\nu}, \pi) / \hat{\mathfrak{S}}_{g,\nu}.$$

Un élément de Discrét' (π) s'appelle une classe de discrétifications de π (ou prédiscrétification de π). Si π_0 est une discrétification, on désigne sa classe par π_0^{\natural} . L'ensemble des classes de

 $[\]overline{}^{30}$ ou encore on définit $\pi_{g,\nu}$ comme le groupe discret de générateurs les x_i,y_i,l_j et de relation de définition (4)

discrétifications de π est un espace homogène sous $\hat{\mathfrak{S}}(\pi)$, le stabilisateur de π_0^{\natural} s'identifiant à l'adhérence de $\mathfrak{S}(\pi_0) = \operatorname{Aut}_{\operatorname{lac}}(\pi_0)$ dans $\hat{\mathfrak{S}}(\pi)$, ou encore à $\hat{\mathfrak{S}}(\pi_0)$. Celle-ci contient toujours π .

(9)
$$\operatorname{Aut}_{\operatorname{lac}}(\pi, \pi_0^{\natural}) \simeq \hat{\mathfrak{S}}(\pi_0)^2.$$

Pour toute [pré?]discrétification π_0^{\natural} , le sous-groupe de $\hat{\mathfrak{S}}(\pi)$ des automorphismes à lacets qui fixent π_0^{\natural} est noté $\hat{\mathfrak{S}}(\pi_0^{\natural})$. C'est donc l'image inverse d'un sous-groupe de $\hat{\mathfrak{T}}(\pi)$, noté $\hat{\mathfrak{T}}(\pi_0^{\natural})$. 31 On a donc une inclusion de structures d'extensions:

(10)
$$1 \longrightarrow \pi \longrightarrow \hat{\mathfrak{S}}(\pi_0^{\natural}) \longrightarrow \hat{\mathfrak{X}}(\pi_0^{\natural}) \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

(On montre par voie arithmético-géométrique que l'inclusion $\hat{\mathfrak{T}} \longrightarrow \hat{\hat{\mathfrak{T}}}$ n'est jamais un isomorphisme). On trouve ainsi une application

(11) Discrét'
$$(\pi)$$
 \longrightarrow sous-groupes fermés de $\hat{\hat{\mathfrak{Z}}}(\pi)$,
$$[\pi_0^{\natural} \mapsto \hat{\mathfrak{Z}}(\pi_0^{\natural})]$$

évidemment compatible à l'action de $\hat{\mathfrak{E}}(\pi)$ (transport de structure) – opérant à droite via $\hat{\mathfrak{T}}(\pi)$ et ses automorphismes intérieurs sur lui-même.³

On trouve ainsi une classe de conjugaison bien déterminée de sous-groupes fermés de $\hat{\hat{z}}(\pi)$, qu'on appelle ses sous-groupes de Teichmüller "géométriques". Il se pourrait d'ailleurs que $\hat{\hat{z}}_{g,\nu}$ soit son propre normalisateur dans $\hat{\hat{z}}_{g,\nu}$ ce qui équivaut à l'assertion que (11) est bijective: la donnée d'une classe de discrétifications de π serait équivalente à celle d'un sous-groupe de Teichmüller géométrique dans son groupe de Teichmüller étendu $\hat{\hat{z}}$.

³¹NB. L'ensemble des classes de discrétification de π se décrit en termes de groupes extérieurs définis par π comme Isomext $_{lac}(\hat{\pi}_{g,\nu},\pi)$ divisé par $\hat{\mathfrak{X}}_{g,\nu}$; on a d'ailleurs une application de degré 2 Isomext $(\hat{\pi}_{g,\nu},\pi)/\hat{\mathfrak{X}}_{g,\nu}^+$ — Isomext $(\hat{\pi}_{g,\nu},\pi)/\hat{\mathfrak{X}}_{g,\nu}$, ce qui permet pour toute classe de discrétification de définir ses deux *orientations* et de parler des classes de discrétification *orientées*.

 $^{^{32}}$ c'est complètement déconnant et ultra-faux; un moment d'égarement! Cela apparaît clairement par la suite...La question judicieuse (avec laquelle j'ai dû sur le coup confondre) c'est si $\hat{\hat{x}}$ est *invariant* dans $\hat{\hat{x}}$, i.e. si le normalisateur est $\hat{\hat{x}}$ tout entier.

A. GROTHENDIECK

Notons qu'on a des homomorphismes canoniques

$$\hat{\hat{\mathfrak{X}}} \xrightarrow{\chi} \hat{Z}^*$$

$$\hat{\hat{\mathbf{x}}} \longrightarrow \mathfrak{S}_{I}$$

(où $I = I(\pi)$ est l'ensemble des classes de conjugaison des sous-groupes à lacets de π), induisant sur $\hat{\mathfrak{T}}(\pi_0^{\natural})$ des homomorphismes correspondants – d'où la définition des sous-groupes $\hat{\mathfrak{T}}(\pi,\hat{\mathfrak{T}})$ et de même pour $\hat{\mathfrak{T}}(\pi,\hat{\mathfrak{T}})$. Notons que χ ne prend sur $\hat{\mathfrak{T}}(\pi,\hat{\mathfrak{T}})$ que les valeurs ± 1.4

Le sous-groupe $\hat{\mathfrak{Z}}^+$ des automorphismes extérieurs du groupe à lacets profinis π , fixant une classe de discrétifications π_0^{\natural} et de multiplicateur +1, joue un rôle très particulier. A l'opposé de ce qu'on peut conjecturer sur $\hat{\mathfrak{Z}}$ (dont $\hat{\mathfrak{Z}}^+$ est un sous-groupe ouvert d'indice 2), on supposerait plutôt que $\hat{\mathfrak{Z}}^+$ est invariant dans $\hat{\mathfrak{Z}}$ [voir note en bas de page précédente]. En tout état de cause, les sous-groupes ainsi définis dans $\hat{\mathfrak{Z}}$ via classes de discrétification de π (peut-être n'y en a-t-il qu'un seul et unique!)⁵ s'appelleront les sous-groupes de Teichmüller géométriques stricts. Le choix d'un tel sous-groupe de $\hat{\mathfrak{Z}}$ est, en tout état de cause, un élément de structure nettement plus faible que celui d'une classe de discrétification, et même que celui d'un sous-groupe de Teichmüller géométrique (pas strict). Pour préciser les relations entre ces deux notions, rappelons d'abord que $\hat{\mathfrak{Z}}^+ = \Sigma$ se déduit de $\hat{\mathfrak{Z}}$ comme noyau de $\chi \mid \hat{\mathfrak{Z}} : \hat{\mathfrak{Z}} \longrightarrow \{\pm 1\}$. D'autre part (pour un sous-groupe de Teichmüller géométrique strict choisi $\hat{\mathfrak{Z}}^+$), considérons

(14)
$$\mathcal{N}_{\Sigma} = \mathcal{N} = \operatorname{Norm}_{\hat{\mathfrak{F}}}(\Sigma)$$

où $\Sigma = \hat{\mathfrak{T}}^+$ ([\mathcal{N}_{Σ} est] peut-être toujours égal à $\hat{\mathfrak{T}}$ tout entier), évidemment (si Σ provient d'un $\hat{\mathfrak{T}}$)

$$\Sigma = \hat{\mathfrak{Z}}^+ \subset \hat{\mathfrak{Z}} \subset \mathcal{N}_{\Sigma}.$$

Le groupe profini \mathcal{N}/Σ associé à Σ se note \mathbb{I}_{Σ} (si Σ est unique, on note \mathbb{I}_{π}), et les $\hat{\mathbb{Z}}$ donnant naissance au même Σ correspondent à une classe de conjugaison d'éléments d'ordre 2 de \mathbb{I}_{Σ} . Il est clair en tous cas qu'on a une application injective

{ensemble des sous-groupes de Teichmüller géométriques $\hat{\mathfrak{T}}$ dans $\hat{\hat{\mathfrak{T}}}$ tels que $\hat{\mathfrak{T}}^+ = \Sigma$ }

 \downarrow

(16) {ensemble des éléments d'ordre 2 dans
$$\Gamma_{\Sigma}$$
}

et que son image est stable par conjugaison. Montrons que deux éléments de l'image sont conjugués dans \mathbb{F}_{Σ} . En effet, soient $\hat{\mathfrak{T}}, \hat{\mathfrak{T}}' \supset \Sigma$ tels que $\Sigma = \hat{\mathfrak{T}}^+ = \hat{\mathfrak{T}}'^+$. Il existe $g \in \hat{\mathfrak{T}}$ tel que $\hat{\mathfrak{T}}' = \operatorname{Int}(g)\hat{\mathfrak{T}}$, et on aura alors $\hat{\mathfrak{T}}'^+ = \operatorname{Int}(g)\hat{\mathfrak{T}}^+$, i.e. $g \in \mathcal{N}$, OK.

Les éléments d'ordre 2 ainsi obtenus dans Π_{Σ} s'appellent les involutions canoniques. On en donnera une interprétation conjecturale remarquable plus bas. L'ensemble $\hat{\mathbb{Z}}/\mathcal{N}$ s'identifie à l'ensemble des sous-groupes de Teichmüller géométriques stricts (une fois choisi l'élément "origine" Σ). Plus intrinsèquement, on aura:

{Ensemble des sous-groupes de Teichmüller géométriques stricts de $\hat{\hat{\mathbf{x}}}(\pi)$ }

1

(17)
$$\operatorname{Isom}_{\operatorname{lac}}(\hat{\pi}_{g,\nu},\pi)/\mathscr{N}_{g,\nu}$$

où on pose, comme de juste,

(18)
$$\mathcal{N}_{g,\nu} = \operatorname{Norm}_{\hat{\mathfrak{Z}}_{g,\nu}}(\hat{\mathfrak{Z}}_{g,\nu}^+)$$

(peut-être égal à $\hat{\hat{\mathfrak{X}}}_{g,\nu}$ tout entier!).

Considérons maintenant le topos modulaire sur Q des courbes algébriques de type (g, v), noté $\mathcal{M}_{g,v,Q}$ ou simplement $\mathcal{M}_{g,v}$. Si nous choisissons un revêtement universel $\overline{\mathcal{M}_{g,v}}$ (d'où un revêtement universel de Spec Q, i.e. une clôture algébrique \overline{Q} de Q), on peut préciser le $\pi_1(\mathcal{M}_{g,v,Q})$ comme le groupe des $\mathcal{M}_{g,v,Q}$ -automorphismes de ce revêtement et l'appeler le groupe de Teichmüller arithmétique de type (g,v) (relatif au choix de $\overline{\mathcal{M}_{g,v,Q}}$). On aura donc une suite exacte

$$(19) 1 \longrightarrow \pi_1(\mathcal{M}_{g,v,\overline{Q}}) \longrightarrow \pi_1(\mathcal{M}_{g,v}) \longrightarrow \operatorname{Gal}(\overline{Q}/Q) \longrightarrow 1,$$

(où \overline{Q} et les points base sont explicités comme il a été dit). Notons que par la théorie transcendante de Teichmüller on a un isomorphisme (défini modulo l'opération induite par $\pi_1(\mathcal{M}_{g,\nu})$ sur $\pi_1(\mathcal{M}_{g,\nu},\overline{Q})$):

(20)
$$\pi_1(\mathcal{M}_{g,\nu,\overline{Q}}) \simeq \hat{\mathfrak{T}}_{g,\nu}^+$$

(où $\hat{\mathfrak{T}}_{g,\nu}^+$ est le compactifié profini de $\mathfrak{T}_{g,\nu}^+$).

Considérons d'autre part le schéma $\mathcal{U}_{g,\nu}$ sur $\mathcal{M}_{g,\nu}$, courbe de type (g,ν) "universelle". On a donc, en choisissant un revêtement universel $\widetilde{\mathcal{U}}_{g,\nu}$ de celle-ci *au-dessus* du revêtement universel choisi $\widetilde{\mathcal{M}}_{g,\nu}$ de $\mathcal{M}_{g,\nu}$, un diagramme commutatif:

et de même pour $\mathscr{U}_{g,v,\overline{Q}} \longrightarrow \mathscr{M}_{g,v,\overline{Q}}$:

$$(21') \hspace{1cm} 1 \longrightarrow \pi \longrightarrow \pi_1(\mathscr{U}_{g,\nu,\overline{Q}}) \longrightarrow \pi_1(\mathscr{M}_{g,\nu,\overline{Q}}) \longrightarrow 1.$$

On a bien sûr un isomorphisme de groupes à lacets

$$\pi \simeq \hat{\pi}_{g,\nu}$$

dont on voudrait déterminer l'indétermination de façon précise.⁷

Notons $\mathcal{M}_{g,\nu,C}$ le topos modulaire de Teichmüller complexe, défini à l'aide de la surface C^{∞} $\mathcal{U}_{g,\nu}$; il est muni du revêtement universel canonique $\widetilde{\mathcal{M}_{g,\nu,C}}$ (§21; $\widetilde{\mathcal{M}_{g,\nu,C}} \simeq E_g/A_{g,\nu}^o$) de groupe d'automorphismes $\mathfrak{T}_{g,\nu}^+$ justement - $\mathcal{U}_{g,\nu,C}$ étant lui aussi muni d'un revêtement universel au-dessus du précédent, ($\widetilde{\mathcal{U}_{g,\nu,C}} = E_g/A_{g,\nu+1}^o$). Ceci donne naissance aux suites exactes des groupes discrets (dans le contexte topologique général)

(la première suite s'envoyant dans la seconde par un isomorphisme de structures d'extensions [avec les identifications] $\mathfrak{S}_{g,\nu}^+ = \pi_1(\mathscr{U}_{g,\nu,C})$ et $\mathfrak{T}_{g,\nu}^+ = \pi_1(\mathscr{M}_{g,\nu,C})$) qui par passage aux complétés profinis donne la suite exacte analogue pour les multiplicités algébriques sur C.

(25)
$$1 \longrightarrow \hat{\pi}_{g,\nu} \longrightarrow \hat{\mathfrak{S}}_{g,\nu} \longrightarrow \hat{\mathfrak{Z}}_{g,\nu}^{+} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\hat{\pi}_{g,\nu} \longrightarrow \operatorname{Aut}_{\operatorname{lac}}(\hat{\pi}_{g,\nu}) \longrightarrow \operatorname{Autext}_{\operatorname{lac}}(\hat{\pi}_{g,\nu}) \longrightarrow 1.$$

Cette situation provient d'ailleurs canoniquement d'une situation analogue sur $\overline{Q_0}$ = clôture algébrique de Q dans C, le choix de $\widetilde{\mathscr{U}_{g,\nu,C}}$ définissant un $\widetilde{\mathscr{U}_{g,\nu,\overline{Q_0}}}$, d'où un $\widetilde{\mathscr{M}_{g,\nu,\overline{Q_0}}}$. Pour définir un isomorphisme entre cette suite (25) et la suite exacte (21') (munie canoniquement de deux homomorphismes dans (22)) il faut

- 1) choisir un isomorphisme $\overline{Q} \simeq \overline{Q_0}$ l'indétermination est dans $\operatorname{Gal}(\overline{Q}/Q)$; ceci permet d'identifier \overline{Q} et $\overline{Q_0}$;
- 2) Choisir un isomorphisme (sur $\overline{Q} = \overline{Q}_0$) de $(\widetilde{\mathscr{U}_{g,\nu}})_0$ (construit par voie transcendant sur C et descendu à \overline{Q}_0) avec $\widetilde{\mathscr{U}_{g,\nu,\overline{Q}}}$ l'indétermination est dans $\pi_1(\mathscr{M}_{g,\nu,\overline{Q}})$. En résumé, on a une classe d'isomorphismes de (21) et (25), définie modulo automorphismes intérieurs dans le groupe profini $\pi_1(\mathscr{U}_{g,\nu})$. Une fois choisi l'isomorphisme $\overline{Q} \simeq \overline{Q}_0$, les isomorphismes correspondants transforment la classe de discrétifications orientée standard de $\hat{\pi}_{g,\nu}$ en exactement une classe de discrétifications orientée de π .

Changeant le choix de l'isomorphisme en son complexe conjugué, on trouve la quasidiscrétification orientée opposée.⁸

On voit d'autre part que l'image de $\pi_1(\mathcal{M}_{g,\nu,\overline{Q}}) \subset \pi_1(\mathcal{M}_{g,\nu})$ dans $\hat{\mathfrak{Z}}(\pi)$ n'est autre que le $\hat{\mathfrak{Z}}^+$ correspondant à une quelconque des classes de quasi-rigidification discrètes choisies – le sous-groupe ne dépend pas du choix de cette classe – ce qui ne fait qu'exprimer que l'image de $\pi_1(\mathcal{M}_{g,\nu,\overline{Q}})$ dans $\hat{\mathfrak{Z}}(\pi)$, considérée comme sous-groupe de l'image du groupe plus grand $\pi_1(\mathcal{M}_{g,\nu,\overline{Q}})$, y est invariante – ce qui résulte du fait que $\pi_1(\mathcal{M}_{g,\nu,\overline{Q}})$ est invariant dans $\pi_1(\mathcal{M}_{g,\nu,Q})$. Ainsi π est muni canoniquement (non d'une quasi-rigidification discrète orientée, ce qui dépend du choix d'un isomorphisme $\overline{Q} \simeq \overline{Q}_0$, i.e. d'un plongement $\overline{Q} \hookrightarrow C$), mais du moins d'un groupe de Teichmüller géométrique strict $\Sigma \subset \hat{\mathfrak{Z}}(\pi)$, à savoir l'image de $\pi_1(\mathcal{M}_{g,\nu,\overline{Q}})$ (isomorphe à [??]) Ceci posé, on a un homomorphisme canonique d'extensions de groupes

$$(26) \qquad 1 \longrightarrow \pi_{1}(\mathcal{M}_{g,\nu,\overline{Q}}) \longrightarrow \pi_{1}(\mathcal{M}_{g,\nu}) \longrightarrow \operatorname{Gal}(\overline{Q}/Q) \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow \Sigma \longrightarrow \mathcal{N}_{\Sigma} \longrightarrow \operatorname{I\!\Gamma}_{\Sigma} \longrightarrow 1,$$

où $\mathcal{N}_{\Sigma}=\operatorname{Norm}_{\hat{\mathfrak{T}}(\pi)}(\Sigma)$ et Π_{Σ} est le groupe des automorphismes extérieurs "arithmétiques" de π (muni de Σ).

Pour le choix d'un isomorphisme $\overline{Q}\simeq\overline{Q}_0$, i.e. d'un plongement $\overline{Q}\hookrightarrow C$, l'image de la conjugaison complexe de $\mathrm{Gal}(\overline{Q}_0/Q)$ n'est autre que l'élément d'ordre 2 de $\mathrm{I}\Gamma_\Sigma$ associé au sous-groupe de Teichmüller géométrique, associé à la quasi-discrétification (orientée, mais peu importe) canonique sur π (définie par $\overline{Q}\simeq\overline{Q}_0$).

La conjecture naturelle ici, c'est que

(27)
$$\operatorname{Gal}(\overline{Q}/Q) \longrightarrow \operatorname{I}\Gamma_{\Sigma}$$

du groupe de Galois vers les automorphismes extérieurs arithmétiques de (π, Σ) soit un isomorphisme. On peut la compléter par la conjecture, encore plus hardie, que de plus Σ est invariant dans $\hat{\hat{\mathfrak{Z}}}(\pi)$ ($\Leftrightarrow \Sigma_{g,\nu}$ invariant dans $\hat{\hat{\mathfrak{Z}}}_{g,\nu}$), ce qui signifierait donc que $\mathscr{N}_{\Sigma} = \hat{\hat{\mathfrak{Z}}}$, ou encore que³³

(28)
$$\pi_1(\mathcal{M}_{g,v}) \xrightarrow{\sim} \hat{\hat{\mathfrak{Z}}}(\pi) = \operatorname{Autext}_{\operatorname{lac}}(\pi)$$

et $Gal(\overline{Q}/Q)$ s'identifierait au quotient "arithmétique" du groupe des automorphismes extérieurs à lacets de π .

Soit maintenant U une courbe algébrique de type g, v sur \overline{Q} . Elle est définie par un point de $\mathscr{M}_{g,v,\overline{Q}}$ sur Spec \overline{Q} , et comme fibre de $\mathscr{U}_{g,v}$ en ce point. Choisissons un revêtement universel de \mathscr{U} , d'où un groupe $\pi(\mathscr{U})$, canoniquement isomorphe au groupe π ci-dessus, une fois choisi un isomorphisme entre $\widetilde{\mathscr{U}}_{g,v}$ et le revêtement universel de $\mathscr{U}_{g,v}$ déduit de $\widetilde{\mathscr{U}}$, ce qui donne une indétermination dans $\pi_1(\mathscr{U}_{g,v,\overline{Q}}) \simeq \hat{\mathfrak{S}}^+$. Ainsi, une fois choisi un isomorphisme $\overline{Q} \simeq \overline{Q}_0$, on trouve sur $\pi_1(\mathscr{U})$ une quasi-discrétification orientée [voir 8] (évidente d'ailleurs à définir directement, par voie transcendante), changée en son opposée par changement de l'isomorphisme $\overline{Q} \simeq \overline{Q}_0$ par conjugaison complexe. D'autre part, le sous-groupe $\hat{\mathfrak{T}}^+$ de $\hat{\mathfrak{T}}(\pi)$, correspondant à cette quasi-discrétification (orientée, peu nous chaut) ne dépend pas du choix de l'isomorphisme en question $\overline{Q} \simeq \overline{Q}_0$, il est canoniquement associé à π en tant que groupe fondamental d'un \mathscr{U} sur un corps algébriquement clos (N.B. on pourrait prendre un corps algébriquement clos de caractéristique zéro quelconque, pas la peine que ce soit sur \overline{Q} , cf. plus bas).

Si la conjecture sur \mathbb{F} est vérifiée, il en résulterait que la donnée d'un groupe profini à lacets π de type (g, v), muni d'un groupe de Teichmüller géométrique strict $\Sigma \subset \hat{\mathfrak{T}}(\pi)$ (ce

³³conjectural!

qui peut-être n'est pas une structure supplémentaire du tout – Σ serait uniquement déterminé par π !) équivaudrait à la donnée d'une extension algébriquement close \overline{Q} de Q (dont le groupe de Galois serait $\mathscr{N}_{\hat{\mathfrak{Z}}}(\Sigma)/\Sigma = \mathbb{F}_{\Sigma}$) et le \mathbb{F}_0 -torseur $\mathrm{Isom}(\overline{Q},\overline{Q}_0)$ s'identifierait à l'ensemble ($\subset \mathrm{Isom}(\hat{\pi}_{g,\nu},\pi)/\hat{\mathfrak{Z}}_{g,\nu}^{\circ}$) des quasi-rigidifications orientées donnant naissance à π ...) et d'un revêtement universel de $\mathscr{U}_{g,\nu,\overline{Q}}$ ou simplement d'un revêtement universel $\widetilde{\mathscr{U}}_{g,\nu}$ de $\mathscr{U}_{g,\nu}=\mathscr{U}_{g,\nu,Q}$. ³⁴ La donnée d'un isomorphisme $\overline{Q}\simeq\overline{Q}_0$ revient donc à celle d'une quasi-rigidification orientée sur π compatible avec Σ (condition peut-être automatiquement satisfaite...). Ceci dit, la donnée d'une courbe algébrique de type g,ν sur un corps algébriquement clos \overline{Q} , et d'un revêtement universel de celle-ci reviendrait à la donnée d'une donnée précédente (à savoir un revêtement universel d'un $\mathscr{M}_{g,\nu}$, plus un point de $\mathscr{M}_{g,\nu,\overline{Q}}$ sur \overline{Q} définissant un revêtement universel) ³⁵ , et cette dernière donnée s'identifierait à un germe de scindage dans l'extension

$$1 \longrightarrow \pi_1(\mathscr{M}_{g, \mathsf{v}, \overline{Q}}) \longrightarrow \pi_1(\mathscr{M}_{g, \mathsf{v}}) \longrightarrow \pi_1(Q) \longrightarrow 1.$$

L'interprétation profinie (en termes des groupes extérieurs à lacets π) est alors un (π, Σ) , et un germe de scindage de

$$1 \longrightarrow \Sigma \longrightarrow \mathcal{N}_{\Sigma} \longrightarrow \mathbb{I}\Gamma_{\Sigma} \longrightarrow 1.$$

Si on veut une courbe sur une sous-extension finie K' de \overline{Q}/Q , correspondant à un sous-groupe d'indice fini $\Gamma' \subset \mathbb{I}_{\Sigma}$, il s'agira d'un scindage partiel $\Gamma' \longrightarrow \mathcal{N}_{\Sigma}$.

Mais sûrement, si cette description des courbes algébriques anabéliennes est pleinement fidèle, elle n'est pas 2-fidèle, i.e. il faut des conditions sur ce scindage, qu'il faudra examiner par la suite.

La description d'une courbe algébrique de type g, v sur un corps fixé, de type fini sur Q, K quelconque, muni d'une extension algébriquement close \overline{K} (donc $\mathbb{F} = \operatorname{Gal}(\overline{K}/K) \longrightarrow \mathbb{F}_0 = \operatorname{Gal}(\overline{Q}/Q)$, où \overline{Q} est la clôture algébrique de Q dans \overline{K}), en termes de $\mathbb{F} \leftarrow \mathbb{F}_0$, serait la suivante: donnée d'un groupe extérieur à lacets π de type g, v, d'un sous-groupe de Teichmüller Σ dans $\hat{\mathfrak{F}}(\pi)$, d'un isomorphisme $\overline{Q} \simeq \operatorname{corps}$ défini par cette situation (ayant comme groupe de Galois $\mathscr{N}_{\Sigma}/\Sigma$, de sorte qu'on trouve un isomorphisme $\mathbb{F}_0 \simeq \mathscr{N}_{\Sigma}/\Sigma$), enfin d'un

³⁴si on se donne seulement π comme groupe extérieur, avec Σ , ce qui revient à la donnée d'un revêtement universel de $\mathcal{M}_{g,v}$.

³⁵NB. Si on renonce à choisir $\widetilde{\mathcal{U}}$, ceci revient à travailler avec les groupes à lacets *extérieurs*.

relèvement de $\Gamma \longrightarrow \Gamma_0$ (qui décrit une action arithmétiquement extérieure de Γ sur (π, Σ)) en une action extérieur $\Gamma \longrightarrow \mathcal{N}_{\Sigma}$ de Γ sur (π, Σ) avec des conditions qu'il faudra essayer de dégager (nécessaires et suffisantes conjecturalement) sur ce relèvement.

Notons que tout plongement $\overline{K} \hookrightarrow C$ définit canoniquement sur le groupe extérieur $\pi = \pi_1(\mathscr{U}_{\overline{K}})$ une quasi-discrétification orientée, remplacée par l'opposée quand on remplace le plongement par le complexe conjugué. Je dis que ces quasi-discrétifications définissent toutes Σ comme groupe des automorphismes et que la quasi-discrétification définie par $\overline{K} \hookrightarrow C$ ne dépend que de sa restriction en $\overline{Q} \hookrightarrow C$ – de façon plus précise, c'est celle qu'on définit directement à l'aide de $\overline{Q} \hookrightarrow C$, i.e. de $\overline{Q} \simeq \overline{Q}_0$. Mais il y a lieu d'examiner aussi la façon d'obtenir des discrétifications. Ainsi, si un \mathscr{U} est défini sur \overline{Q}_0 , [c'est] un π extérieur de type (g,ν) , muni d'une quasi-discrétification orientée $\pi_0^{\flat+}$, et d'un germe de scindage de

$$1 \longrightarrow \Sigma \longrightarrow \mathcal{N}_{\Sigma} \longrightarrow \mathbb{\Gamma}_{\Sigma} \longrightarrow 1$$
,

où $\Sigma=\operatorname{Autext}_{\operatorname{lac}}(\pi,\pi_0^{\natural+})$, qui fait opérer extérieurement le noyau du groupe défini par Γ_Σ sur π , les points rationnels sur \overline{Q}_0 correspondant aux classes de π -conjugaison des germes de relèvement de cette opération extérieure en une vraie opération. Supposons donc donné un tel point, i.e. on a un sous-groupe ouvert $\Gamma\subset\Gamma_\Sigma$ qui opère bel et bien sur π , l'opération définie mod automorphismes intérieurs (lui-même unique car $\pi^\Gamma=\{1\}$!) Dans cette situation, il faudrait définir dans $\pi\simeq\pi_1(\mathscr{U}_P,P)$ une discrétification orientée $\pi_0\subset\pi$, et pas seulement une quasi-discrétification orientée! (Bien sûr, elle doit être dans la classe qu'on s'est donnée d'avance de discrétifications orientées, qu'on avait justement notée $\pi_0^{\natural+}$. On y reviendra – ainsi qu'à la situation analogue sur un corps de base K de type quelconque...)

Je réfère au début du \S suivant ($\S 27$) pour le changement de terminologie, la "quasidiscrétification" devenant une "prédiscrétification". Mais il y a lieu d'introduire aussi une notion plus fine, correspondant au cas d'un π_1 (profini) d'une variété algébrique X définie sur un corps algébriquement clos \overline{K} , quand on plonge \overline{K} dans C: il y a une discrétification mod automorphismes intérieurs – on l'appellera une *prédiscrétification stricte*. Dans le cas d'un π à lacets, l'espace homogène sous $\hat{\mathfrak{Z}}(\pi)$ de celles-ci s'identifie à

$$\mathrm{Isom}_{\mathrm{lac}}(\hat{\pi}_{g,\nu},\pi)/(\hat{\pi}_{g,\nu}\cdot\mathfrak{T}_{g,\nu}) \simeq \mathrm{Isomext}_{\mathrm{lac}}(\hat{\pi}_{g,\nu},\pi)/\mathfrak{T}_{g,\nu},$$

et cette action également ne dépend que du groupe profini à lacets extérieur défini par $\pi_{g,\nu}$, et équivaut à celle d'une "base extérieure" de π mod action de $\mathfrak{T}_{g,\nu}$, i.e. d'un isomorphisme

de π avec le $\hat{\pi}_{g,\nu}$ "type", mod action de $\mathfrak{T}_{g,\nu}$. L'application Bases extérieures de π — Prédiscrétifications de (π)

fait donc du membre de gauche un torseur relatif à droite sur celui de droite, de groupe $\mathfrak{T}_{g,\nu}$. Une prédiscrétification de (π,Σ) correspond à un choix d'un isomorphisme de la clôture algébrique $\overline{Q}_{(\pi,\Sigma)}=\overline{Q}$ associé à (π,Σ) , avec \overline{Q}_0 . Quand on se donne (π,Σ) comme correspondant à une courbe algébrique sur \overline{Q} , i.e. qu'on se donne un germe de relèvement de Γ_{Σ} dans $\mathscr{N}_{\Sigma}\subset \hat{\mathfrak{T}}(\pi)$, i.e. un germe d'actions extérieures de Γ_{Σ} sur π , toute prédiscrétification doit donner naissance à une discrétification stricte et même à une discrétification quand on remonte un germe d'action ("admissible") de Γ_{Σ} sur π ...

§ 27. — CHANGEMENT DE TYPE (g, v): a) BOUCHAGE DE TROUS

Je vais changer de terminologie, en appelant prédiscrétification ce que j'avais appelé (un peu péjorativement!) quasi-discrétification. En effet, on prévoit qu'une prédiscrétification – compatible avec Σ – qui revient moralement au plongement (modulo la conjugaison complexe) dans C de la clôture algébrique \overline{Q} de Q canoniquement associé à $(\pi, \Sigma(\subset \hat{\mathfrak{Z}}(\pi)))$, donne naissance, dès que l'action extérieure arithmétique de $\Gamma_{\Sigma} = \mathcal{N}_{\Sigma}/\Sigma$ sur π est relevée en un germe d'action sur π , à une vraie discrétification de π . Itou pour les prédiscrétifications orientées. Le groupe $\mathcal{N}_{\Sigma}/\Sigma$ mérite aussi un nom – je vais l'appeler le groupe de Teichmüller arithmétique associé à $(\pi, \Sigma)^{36}$, et ses éléments seront appelés les automorphismes arithmétiquement extérieurs de π – déduits d'un automorphisme extérieur (normalisant Σ) en négligeant les automorphismes extérieurs "géométriques" (i.e. justement ceux dans Σ) – comme les automorphismes extérieurs ordinaires étaient décrits en négligeant les automorphismes intérieurs de π . On fera attention que le caractère "multiplicateur"

$$\chi: \hat{\hat{\mathfrak{Z}}}(\pi) \longrightarrow \hat{Z}^*$$

est trivial sur Σ , par construction de Σ , et passe à $\mathrm{I}\Gamma_\Sigma$:

$$\chi_{\Sigma}: \mathbb{\Gamma}_{\Sigma} \longrightarrow \hat{Z}^*.$$

Bien sûr, ce caractère s'appelera encore "multiplicateur", ou "caractère cyclotomique". Si notre conjecture fondamentale est vraie¹, ce caractère identifie $({\rm I}\!\Gamma_\Sigma)_{ab}$ à \hat{Z}^* . Par contre, si

³⁶moralement, $\Sigma = \hat{\mathfrak{Z}}^+$, mais il n'y a pas de $\hat{\mathfrak{Z}}^!$

 $I = I(\pi)$, l'homomorphisme canonique

$$\hat{\hat{\mathfrak{X}}} \longrightarrow \mathfrak{S}_I$$

n'est pas trivial sur Σ , mais induit un homorphisme surjectif:

$$\Sigma \longrightarrow \mathfrak{S}_I$$
,

d'où un sous-groupe $\Sigma^!$ tel que

$$\Sigma/\Sigma^! \xrightarrow{\sim} \mathfrak{S}_I^{37}$$

On voit de suite que tout $\gamma \in \hat{\mathfrak{X}}$ qui normalise Σ normalise $\Sigma^! = \Sigma \cap \hat{\mathfrak{X}}^!$, d'où $\Sigma^!$ est aussi invariant dans \mathscr{N}_{Σ} . Soit $\mathscr{N}_{\Sigma}^! = \mathscr{N}_{\Sigma} \cap \hat{\mathfrak{X}}^!$, on a un diagramme cartésien de sous-groupes de $\hat{\mathfrak{X}}$:

$$\begin{array}{ccc}
\mathcal{N}^! & \xrightarrow{\mathfrak{S}_I} & \mathcal{N} \\
& & & \downarrow & & \downarrow & \downarrow \\
& & & & & \downarrow & \downarrow & \downarrow \\
& & & & & & & \downarrow & \downarrow \\
& & & & & & & \downarrow & \downarrow \\
& & & & & & & \downarrow & \downarrow \\
& & & & & & & \downarrow & \downarrow & \downarrow \\
& & & & & & & \downarrow & \downarrow & \downarrow \\
& & & & & & & \downarrow & \downarrow & \downarrow \\
& & & & & & & \downarrow & \downarrow & \downarrow \\
& & & & & & & \downarrow & \downarrow & \downarrow \\
& & & & & & & & \downarrow & \downarrow & \downarrow \\
& & & & & & & & \downarrow & \downarrow & \downarrow \\
& & & & & & & & \downarrow & \downarrow & \downarrow \\
& & & & & & & & \downarrow & \downarrow & \downarrow \\
& & & & & & & & \downarrow & \downarrow & \downarrow \\
& & & & & & & & \downarrow & \downarrow & \downarrow \\
& & & & & & & & \downarrow & \downarrow & \downarrow \\
& & & & & & & & \downarrow & \downarrow & \downarrow \\
& & & & & & & & \downarrow & \downarrow & \downarrow \\
& & & & & & & & \downarrow & \downarrow & \downarrow \\
& & & & & & & & \downarrow & \downarrow & \downarrow \\
& & & & & & & & \downarrow & \downarrow & \downarrow \\
& & & & & & & & \downarrow & \downarrow & \downarrow \\
& & & & & & & & \downarrow & \downarrow & \downarrow \\
& & & & & & & & \downarrow & \downarrow & \downarrow \\
& & & & & & & & \downarrow & \downarrow \\
& & & & & & & & \downarrow & \downarrow \\
& & & & & & & & \downarrow & \downarrow \\
& & & & & & & & \downarrow & \downarrow \\
& & & & & & & & \downarrow & \downarrow \\
& & & & & & & & \downarrow \\
& & & & & & & & \downarrow \\
& & & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & \downarrow \\
& & & & & & \downarrow \\
& \downarrow \\$$

donnant un homomorphisme injectif $\mathcal{N}/\Sigma^! \xrightarrow{\sim} \mathcal{N}/\mathcal{N}^! \times \mathcal{N}/\Sigma$ (ici $\mathcal{N}/\mathcal{N}^! = \mathfrak{S}_I$, $\mathcal{N}/\Sigma = \mathbb{I}_{\Sigma}$ et $\Sigma/\Sigma^! \xrightarrow{\sim} \mathcal{N}/\mathcal{N}^! \simeq \mathfrak{S}_I$), dont on voit de suite qu'il est bijectif

$$\mathcal{N}/\Sigma^! \xrightarrow{\sim} \mathcal{N}/\mathcal{N}^! \times \mathcal{N}/\Sigma \simeq \mathfrak{S}_I \times \mathbf{I}\Gamma_{\Sigma},$$

et on a par suite aussi

$$\mathcal{N}^!/\Sigma^! \xrightarrow{\sim} \mathcal{N}/\Sigma = \mathbf{I}\Gamma_{\Sigma},$$

i.e. le groupe Γ_{Σ} des automorphismes arithmétiquement extérieurs de (π, Σ) peut se décrire aussi via les automorphismes extérieurs induisant l'identité sur I.

Dans le cas (g, v) = (0,3), on a $\Sigma^! = \{1\}$, donc $\Sigma \xrightarrow{\sim} \mathfrak{S}_3$. \mathscr{N} est le normalisateur de \mathfrak{S}_3 dans $\hat{\mathfrak{T}}$, $\mathscr{N}^! \xrightarrow{\sim} I\Gamma_{\Sigma}$ est son centralisateur, et \mathscr{N} s'identifie au produit direct des deux.

Soit maintenant $I' \subset I$, $\nu' = \operatorname{card}(I')$, et considérons le groupe extérieur π' déduit de π par "bouchage de trous" en $I \setminus I'$, d'où un homomorphisme

$$\pi \longrightarrow \pi'.$$

³⁷moralement, $\Sigma^! \simeq \hat{\mathfrak{Z}}^{!+}$

Considérons les bases de π pour lesquelles, les ν' premiers l_i soient dans des groupes à lacets $L_{i'}$ ($i' \in I'$) – on les appelle adaptées à I'; elles forment un torseur \subset Isom_{lac}($\hat{\pi}_{g,\nu},\pi$) sous le sous-groupe $\hat{\mathfrak{S}}_{g;(\nu,\nu')}$ de $\hat{\mathfrak{S}}_{g,\nu}=\operatorname{Aut}_{\operatorname{lac}}(\hat{\pi}_{g,\nu})$, formé des $u\in\hat{\mathfrak{S}}_{g,\nu}$ dont l'image dans \mathfrak{S}_I invarie l'ensemble des ν' premiers éléments (ou encore l'ensemble complémentaire des $\nu-\nu'$ derniers).

Pour une telle base, on trouve une base correspondante de π' . La donnée de (π, I') équivaut à celle d'un torseur sous $\hat{\mathfrak{S}}_{g;(\nu,\nu')}$, celle d'un π' à la donnée d'un torseur sous $\hat{\mathfrak{S}}_{g,\nu'}$, et le passage de π à π' est décrit par le changement de groupe d'opérateurs

$$\hat{\mathfrak{S}}_{g;(\nu,\nu')} \longrightarrow \hat{\mathfrak{S}}_{g,\nu'}^{38}.$$

Cet homomorphisme envoie $\hat{\mathfrak{S}}_{g,(\nu,\nu')}$ dans $\hat{\mathfrak{S}}_{g,\nu'}$, et même $\mathfrak{S}_{g,(\nu,\nu')}$ dans $\mathfrak{S}_{g,\nu'}$, aussi π dans π' . Il s'ensuit que toute prédiscrétification de π en définit une de π' , de même pour les prédiscrétifications strictes, discrétifications, bases extérieures "adaptées à I'". Enfin, si on a une "préarithmétisation" de π , i.e. un $\Sigma \subset \hat{\mathfrak{Z}}(\pi)$, en déduit-on une préarithmétisation de π' – i.e. (par exemple) si deux prédiscrétifications de π sont compatibles i.e. ont le même groupe $\Sigma \subset \hat{\mathfrak{Z}}(\pi)$ d'automorphismes extérieurs, en est-il de même de leurs images?

Pour y voir plus clair, on va écrire sous forme de diagramme les ensembles remarquables associés à π , et ceci de deux façons, l'une sans utiliser de structure particulière sur $I = I(\pi)$, l'autre en utilisant un ordre total, ce qui permet, dans le torseur $\mathrm{Isom}_{\mathrm{lac}}(\hat{\pi}_{g,\nu},\pi)$ sous $\hat{\mathfrak{E}}_{g,\nu}$, de définir le sous-torseur sous $\hat{\mathfrak{E}}_{g,\nu}^!$ qu'on peut noter $\mathrm{Isom}_{\mathrm{lac}}^!(\hat{\pi}_{g,\nu},\pi)$.

 $[\]overline{\ \ }^{38}$ D'où aussi: toute base, toute discrétification, discrétification orientée de π en définit une de π' , itou pour les classes de π , π' conjugaison i.e. pour les prédiscrétifications (éventuellement orientées) strictes, et aussi pour les adhérences des classes i.e. pour les prédiscrétifications et prédiscrétifications orientées. Il n'y a que le cas des arithmétisations qui demande une analyse plus fine.

N.B. On pose

$$\mathbf{I}\Gamma_{g,\nu} = \mathcal{N}_{g,\nu}/\Sigma_{g,\nu} = \mathcal{N}_{g,\nu}^!/\Sigma_{g,\nu}^!$$

(où $\Sigma_{g,\nu} = \hat{\mathfrak{X}}_{g,\nu}^+$, $\Sigma_{g,\nu}^! = \hat{\mathfrak{X}}_{g,\nu}^{!+}$). On peut aussi le décrire comme le groupe $\mathrm{I}\!\Gamma_\Sigma$ associé à un groupe extérieur profini à lacets π muni d'une prédiscrétification orientée α (sans plus). Si on a deux tels couples (π,α) , (π',α') , d'où $\mathrm{I}\!\Gamma_\Sigma$ et $\mathrm{I}\!\Gamma_{\Sigma'}$ ($\Sigma=\mathrm{Autext}_{\mathrm{lac}}(\pi,\alpha)$, $\Sigma'=\mathrm{Autext}_{\mathrm{lac}}(\pi',\alpha')$), on trouve en effet un isomorphisme canonique:

$$\Gamma_{\Sigma} \xrightarrow{\sim} \Gamma_{\Sigma'}$$

en prenant n'importe quel isomorphisme extérieur à lacets u de π avec π' transformant α en α' et l'isomorphisme associé $\mathbb{I}_{\Sigma} \longrightarrow \mathbb{I}_{\Sigma'}$ ne dépend évidemment pas du choix de u.

Ceci posé, les couples (π, Σ) d'un groupe profini à lacets de type (g, ν) , muni d'une préarithmétisation, avec comme morphismes les isomorphismes arithmétiquement extérieurs (relatifs à Σ et Σ' ...), forment un groupoïde connexe $\Pi_{g,\nu}$, ayant un objet "origine" défini à isomorphisme unique près comme étant $(\hat{\pi}_{g,\nu}, \Sigma_{g,\nu})$, où au choix n'importe quel (π, Σ_{α}) provenant d'un (π, α) (α une prédiscrétification orientée de π), et dont le groupe des automorphismes est justement $\Pi_{g,\nu}$.

On constate qu'à l'exception des deux espaces homogènes (sous $\hat{\mathfrak{S}}(\pi)$), mais pas nécessairement sous $\hat{\mathfrak{S}}(\pi,I')$, voire sous $\hat{\mathfrak{S}}^!(\pi)$) Bases (π) et Bases $\operatorname{ext}(\pi)$, les quatre autres sont en fait des espaces homogènes sous $\hat{\mathfrak{S}}^!$, et s'expriment comme quotients du $\hat{\mathfrak{S}}^!_{g,\nu}$ -torseur Isom $!(\hat{\pi}_{g,\nu},\pi)$, par les quatre sous-groupes $\mathfrak{S}^!_{g,\nu}$, $\mathfrak{S}^!_{g,\nu}$, $\hat{\mathfrak{S}}^!_{g,\nu}$, $\mathcal{M}^!_{g,\nu}$ (ce dernier défini comme image inverse de $\mathcal{N}^!_{g,\nu}$ dans $\hat{\mathfrak{S}}^!_{g,\nu}$, tout comme $\mathcal{M}_{g,\nu}$ est défini comme image inverse de $\mathcal{N}^!_{g,\nu}$. On trouve d'autre part, si $I'=\{i_0,\ldots,i_{\nu-1}\}$, un homomorphisme $\hat{\mathfrak{S}}^!_{g,\nu}\longrightarrow \hat{\mathfrak{S}}^!_{g,\nu}$, envoyant $\mathfrak{S}^!_{g,\nu}$ dans $\mathfrak{S}^!_{g,\nu}$, en envoyant $\pi_{g,\nu}$ dans $\pi_{g,\nu}$, donc $\hat{\pi}_{g,\nu}$ dans $\hat{\pi}_{g,\nu}$, $\hat{\mathfrak{S}}^!_{g,\nu}$ dans $\hat{\mathfrak{S}}^!_{g,\nu}$, et le sous-groupe $\mathfrak{S}^!_{g,\nu}$, $\hat{\pi}^!_{g,\nu}$ de $\hat{\mathfrak{S}}^!_{g,\nu}$ dans le sous-groupe $\mathfrak{S}^!_{g,\nu}$, $\hat{\pi}^!_{g,\nu}$ de $\hat{\mathfrak{S}}^!_{g,\nu}$, s'envoie dans $\mathfrak{S}^!_{g,\nu}$, s'envoie dans le normalisateur de $\mathfrak{S}^!_{g,\nu}$ dans $\hat{\mathfrak{S}}^!_{g,\nu}$, je dis que ce n'est autre que $\mathcal{N}^!_{g,\nu}$. Changeant de notation, ceci revient au

$$\operatorname{Lemme}^{39}. - \mathcal{N}_{\Sigma}^{!} = \operatorname{Norm}_{\hat{\hat{\mathfrak{Z}}}^{!}}(\Sigma^{!}) (= \operatorname{Norm}_{\hat{\hat{\mathfrak{Z}}}}(\Sigma^{!}) \cap \hat{\hat{\mathfrak{Z}}}^{!}).$$

³⁹pas prouvé

Evidemment on a $\mathcal{N}_{\Sigma}^{!} \subset \operatorname{Norm}_{\hat{\mathfrak{Z}}}(\Sigma^{!}) \cap \hat{\mathfrak{Z}}^{!}$; inversement soit $g \in \hat{\mathfrak{Z}}^{!}$ qui normalise $\Sigma^{!}$, montrons qu'il normalise Σ , i.e. qu'il est $\in \mathcal{N}$ (donc $\in \mathcal{N}^{!} = \mathcal{N} \cap \hat{\mathfrak{Z}}^{!}$)....

C'est pas clair. J'ai pourtant envie de prouver la

Conjecture. — L'application canonique

$$Prédiscrét^+(\pi) \longrightarrow Prédiscrét^+(\pi')$$

est bijective. Pour que deux prédiscrétifications orientées α , β de π aient même groupe d'automorphismes extérieurs $\Sigma_{\alpha} = \Sigma_{\beta}$, il faut qu'il en soit ainsi pour leurs images $\Sigma_{\alpha'}$ et $\Sigma_{\beta'}$, i.e. que $\Sigma_{\alpha'} = \Sigma_{\beta'}$, de sorte que la bijection précédente induit une bijection

$$Pr\acute{e}arithm\acute{e}tisation(\pi) \xrightarrow{\sim} Pr\acute{e}arithm\acute{e}tisation(\pi').$$

Enfin, les bijections précédentes sont compatibles avec l'homomorphisme des groupes d'opérateurs $\hat{\hat{\mathbf{x}}}(\pi,I')\longrightarrow\hat{\hat{\mathbf{x}}}(\pi')^4$, a fortiori avec $\hat{\hat{\mathbf{x}}}^!(\pi)\longrightarrow\hat{\hat{\mathbf{x}}}^!(\pi')$, ce qui implique qu'elle induit (pour une préarithmétisation $\Sigma\subset\hat{\hat{\mathbf{x}}}(\pi)$ donnée de π , donnant $\Sigma'\subset\hat{\hat{\mathbf{x}}}(\pi')$ dans π' avec $\Sigma^!\longrightarrow\Sigma'^!$ un homomorphisme $\mathcal{N}^!_{\Sigma'}\longrightarrow\mathcal{N}^!_{\Sigma'}$, et l'homomorphisme correspondant

$$\mathrm{I}\Gamma_{\Sigma} = \mathcal{N}_{\Sigma}^{!}/\Sigma^{!} \longrightarrow \mathrm{I}\Gamma_{\Sigma'} = \mathcal{N}_{\Sigma'}^{!}/\Sigma'^{!}$$

est un isomorphisme.

Pour s'en convaincre il suffit de regarder le cas où $I'=\{i\}$ (et si on note $\pi=\pi_{g,\nu}$, I' réduit au dernier élément de I). On a alors un homomorphisme

$$\hat{\hat{\mathfrak{Z}}}(\pi,i) \longrightarrow \hat{\hat{\mathfrak{S}}}(\pi')^6$$

(les automorphismes extérieurs à lacets de π fixant i définissent des automorphismes bien déterminés de π' – pas seulement extérieurs, i.e. $\hat{\mathfrak{S}}(\pi,i) \longrightarrow \hat{\mathfrak{S}}(\pi')$ est trivial sur π , et passe donc au quotient en $\hat{\mathfrak{T}}(\pi,i) \longrightarrow \hat{\mathfrak{S}}(\pi,i)$).

J'admets, en analogie avec le cas discret, que cet homomorphisme est un *isomorphisme*, de sorte qu'on a une suite exacte ⁴⁰

$$1 \longrightarrow \pi' \longrightarrow \hat{\hat{\mathfrak{Z}}}(\pi, i) \longrightarrow \hat{\hat{\mathfrak{S}}}(\pi, i) \longrightarrow 1$$

 $^{^{40}}$ rappelons qu'on suppose π anabélien, i.e. $2g+\nu \geq 3$

ou encore

$$1 \longrightarrow \hat{\pi}_{g,\nu-1} \longrightarrow \hat{\hat{\mathfrak{X}}}_{g;(\nu,\nu-1)} \longrightarrow \hat{\hat{\mathfrak{S}}}_{g,\nu-1} \longrightarrow 1$$

qui contient la suite exacte

$$1 \longrightarrow \pi_{g,\nu-1} \longrightarrow \mathfrak{T}_{g;(\nu,\nu-1)} \longrightarrow \mathfrak{S}_{g,\nu-1} \longrightarrow 1$$

comme sous-suite exacte. Il est commode de travailler plutôt avec

$$1 \longrightarrow \pi_{g,\nu-1} \longrightarrow \mathfrak{X}_{g,\nu}^{!+} \longrightarrow \mathfrak{S}_{g,\nu-1}^{!+} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

L'application Prédiscrét⁺ (π) \longrightarrow Prédiscrét⁺ (π') s'identifie alors à $\hat{\hat{\mathfrak{Z}}}^!_{g,\nu}/\hat{\hat{\mathfrak{Z}}}^!_{g,\nu}$, on lit sur le diagramme que c'est $\simeq \hat{\hat{\mathfrak{S}}}^!_{g,\nu-1}/\hat{\hat{\mathfrak{S}}}^{!+}_{g,\nu-1}$, d'où la bijectivité sur les ensembles de prédiscrétifications orientées.

Dans le groupe $\hat{\mathfrak{X}}^!_{g,\nu} = \mathfrak{X}$, on a un sous-groupe invariant $\hat{\pi}_{g,\nu-1} = \pi'$, et un sous-groupe Σ $(=\hat{\mathfrak{X}}^{!+}_{g,\nu})$ entre π' et \mathfrak{X} , donnant un sous-groupe $\Sigma' \simeq \hat{\mathfrak{S}}^{!+}_{g,\nu-1}$ dans $\mathfrak{X}^! = \mathfrak{X}/\pi'$ $(\simeq \hat{\mathfrak{S}}^!_{g,\nu-1})$, et on sait bien qu'alors $\mathfrak{X}/\Sigma \simeq \mathfrak{X}'/\Sigma'$, et que le normalisateur \mathscr{N} de Σ dans \mathfrak{X} est l'image inverse du normalisateur \mathscr{N}' de Σ' dans \mathfrak{X}' , de sorte que $\mathscr{N}/\Sigma \simeq \mathscr{N}'/\Sigma'$, ce qui prouve ce qu'on voulait.

Corollaire. — On a des isomorphismes canoniques:

$$\prod_{g,\nu} \xrightarrow{\sim} \prod_{g,\nu-1} \xrightarrow{\sim} \cdots$$

de sorte que si $g \ge 2$, on a canoniquement $\prod_{g,v} \simeq \prod_{g,0}$; d'autre part $\prod_{1,v} \simeq \prod_{1,1} (g=1, v \ge 1)$, $\prod_{0,v} \simeq \prod_{0,3} (v \ge 3)$.

NB. Le "fait" admis est loin d'être évident – même que $\hat{\hat{\mathfrak{L}}}_{g;(\nu,\nu-1)} \longrightarrow \hat{\hat{\mathfrak{L}}}_{g,\nu-1}$ soit surjectif ou que $\hat{\hat{\mathfrak{L}}}_{g;(\nu,\nu-1)} \longrightarrow \hat{\hat{\mathfrak{L}}}_{g,\nu-1}$ soit injectif, est loin d'être évident, et est peut-être tout à fait faux! Le fait admis revient à un énoncé d'existence d'un foncteur en sens inverse "forage de trous" qui en tout état de cause reste incompris.

⁴¹On voit aussi que Σ invariant dans $\hat{\hat{z}}$ équivaut à Σ' invariant dans $\hat{\hat{z}}$.

\S 28. — CHANGEMENT DE TYPE (g, ν) (SUITE): PASSAGE À UN REVÊTEMENT FINI

Soit π un groupe profini à lacets de type (g, v), anabélien comme toujours, π' un sous-groupe d'indice fini. On sait (ou on vérifie, par passage au cas discret) que muni des traces sous π des sous-groupes à lacets de π , π' est un groupe à lacets. Ses sous-groupes à lacets sont aussi les sous-groupes L' tels que

a)
$$L' = \operatorname{Centr}_{\pi}(L') \cap \pi'$$

b) $L = \operatorname{Centr}_{\pi}(L')$ est un sous-groupe à lacets dans π .

On pose d(L') = [L:L'], et on a ainsi une fonction $d:I' = I(\pi') \longrightarrow N^*$, et une application $I' \stackrel{\varphi}{\longrightarrow} I$, telles que $\forall i \in I$, on ait:

(1)
$$\sum_{\substack{i' \in I' \\ \text{dessus de}}} d(i') = n \quad (\text{où } n = [\pi : \pi']).$$

On aura la formule de Hurwitz

(2)
$$2g'-2=n(2g-2)+\sum_{i'\in I'}(d(i')-1),$$

où la somme à droite est égale à $(n \operatorname{card}(I) - \operatorname{card}(I'))$, i.e.

(3)
$$2g'-2+\operatorname{card}(I')=n(2g-2+\operatorname{card}(I)).$$

(NB. 2g-2+card(I) est l'opposé de la caractéristique d'Euler-Poincaré à supports compacts de la courbe dont π est le groupe fondamental...).⁴²

De façon évidente, toute discrétification de π en définit une de π' – et il en est de même pour les discrétifications orientées, modulo un peu de cohomologie, ce qui revient à dire, dans le cas discret par exemple, que $T \simeq H_!^2(\mathcal{U}, Z) \longrightarrow H_!^2(\mathcal{U}', Z) \simeq T'$ peut s'écrire sous la forme $n\theta^{-1}$, où θ est un isomorphisme bien déterminé (l'isomorphisme trace) $T' \longrightarrow T$.

Il n'est pas clair pour moi à première vue si l'application

$$Discrét(\pi) \longrightarrow Discrét(\pi')$$

est surjective, ou injective. L'injectivité pour tout π' d'indice fini dans π signifierait que deux discrétifications π_0 , π'_0 de π qui sont commensurables, i.e. telles que $\pi_0 \cap \pi'_0$ soit d'indice fini dans π_0 et dans π'_0 , sont égales.

Supposons que π' soit un sous-groupe invariant dans π , et posons $G = \pi/\pi'$.

Conjecture. — L'application Discrét (π) \longrightarrow Discrét (π') est injective, et son image est formée des discrétifications $\pi'_0 \subset \pi'$ telles que $G \longrightarrow$ Autext $_{lac}(\pi') \simeq$ Autext $_{lac}(\hat{\pi}'_0) \simeq \hat{\hat{\mathfrak{Z}}}(\hat{\pi}'_0)$ se factorise par $\mathfrak{T}(\pi'_0) = \operatorname{Autext}_{lac}(\pi'_0)$ (et en fait, même par $\mathfrak{T}(\pi'_0)^+$). En d'autres termes, $\forall g \in \pi$, $\exists h \in \pi'$ tel que $\operatorname{Int}(hg)(\pi'_0) \subset \pi'_0$, i.e. $\pi' \cdot \pi_0 = \pi$, où π_0 est le normalisateur de π'_0 dans π .

La condition pour qu'un π'_0 soit dans l'image est évidemment nécessaire. Montrons qu'elle est suffisante, et que le π_0 donnant naissance à π'_0 par $\pi_0 \cap \pi'$ est unique. On a une action extérieure de G sur π'_0 , qui définit l'action extérieure sur $\hat{\pi}'_0 \simeq \pi'$, or π se récupère canoniquement à partir de cette dernière (car Centre($\hat{\pi}'$) = 1), et on voit que c'est le complété profini de l'extension π_0 de G par π'_0 , définie par l'action extérieure de G sur π'_0 . On a donc bien une discrétification généralisée π_0 de π , au sens de la seule structure de groupe profini, et elle induit π'_0 – mais il faut voir qu'elle est compatible avec la structure à lacets de π . Mais celle-ci s'explicite, à partir de la structure à lacets de π' , en prenant les sous-groupes à lacets L' de π' , et leurs centralisateurs dans π . Faisant itou pour $\pi_0 \supset \pi'_0$, on devrait trouver une structure à lacets sur π_0 , donnant lieu aux mêmes d_i . J'ai l'impression que ça ne doit pas être

⁴²NB. Dire qu'on est dans le cas anabélien signifie que —EP_! [i.e. l'opposé de la caractéristique d'Euler-Poincaré à support compact] est ≥ 1, et cette relation est donc conservée par passage à un revêtement. L'entier —EP₁ mesure par sa positivité stricte le degré d'anabélianité en quelque sorte..

très vache à prouver - ce serait comme si on savait déjà que toute extension "sans torsion" d'un groupe fini par un groupe à lacets est de façon canonique un groupe à lacets...

Corollaire. — En tout cas, l'application

$$Discrét(\pi) \longrightarrow Discrét(\pi')$$

est injective.

N.B. Elle ne doit pas toujours être bijective, car il doit y avoir une action extérieure d'un G sur un $\hat{\pi}'_0$, i.e. un homomorphisme $G \longrightarrow \hat{\hat{\mathbb{Z}}}(\hat{\pi}'_0)$, qui ne se factorise pas par $\hat{\mathbb{Z}}(\pi'_0)$, et qui pourtant est aussi bonne du point de vue groupe profini que celles provenant d'un π et d'un sous-groupe invariant π' . En fait, partons d'une telle situation discrète $\pi_0 \supset \pi'_0$, d'où $G = \pi_0/\pi'_0$ et $G \longrightarrow \operatorname{Autext}_{\operatorname{lac}}(\pi'_0) = \hat{\mathbb{Z}}(\pi'_0) \subset \hat{\hat{\mathbb{Z}}}(\hat{\pi}'_0)$, et conjuguons G par un élément γ de $\hat{\hat{\mathbb{Z}}}(\pi'_0)$, de façon à trouver $G \longrightarrow \hat{\hat{\mathbb{Z}}}(\hat{\pi}'_0)$ qui ne se factorise pas par $\hat{\mathbb{Z}}(\pi'_0)$. On trouve une extension π^{\natural} de G par $\hat{\pi}'_0$, isomorphe à $\hat{\pi}_0$ (en tant qu'extension de G par $\hat{\pi}'_0$), donc la structure à lacets de $\hat{\pi}'_0$ en définit une sur π^{\natural} (de façon à être induite par cette dernière), mais pourtant la discrétification choisie π_0 de $\hat{\pi}_0$ n'est pas induite par une de π . Pour faire la construction, il suffit de trouver un élément $\gamma \in \hat{\hat{\mathbb{Z}}}(\pi'_0)$ tel que $\operatorname{Int}(\gamma) \cdot G \not\subset \hat{\mathbb{Z}}$ i.e. tel que G ne stabilise pas $\gamma^{-1}(\pi'_0) \subset \hat{\pi}'_0$. Un tel γ existe toujours...

Bien sûr, il n'y a pas de raison, pour deux discrétifications π_0 , π_1 de π , que si π_0 , π_1 sont π -conjugués (i.e. définissent la même prédiscrétification stricte de π), il en soit de même pour π'_0 et π'_1 pour l'action intérieure de π' (il faudrait que π_0 , π_1 soient conjugués par π' , et pas seulement par π). Par contre, je présume que si π_0 , π_1 sont "adhérents" l'un à l'autre dans l'espace des discrétifications de π , i.e. s'ils définissent une même prédiscrétification, il en est de même pour π'_0 , π'_1 , et que l'application

(4)
$$\operatorname{Pr\'{e}discr\'{e}t}(\pi) \longrightarrow \operatorname{Pr\'{e}discr\'{e}t}(\pi')$$

qu'on obtient ainsi, est encore bijective, et qu'elle passe à son tour au quotient, pour définir une application bijective

(5)
$$\operatorname{Pr\'{e}arith}(\pi) \longrightarrow \operatorname{Pr\'{e}arith}(\pi'),$$

et que si Σ , Σ' se correspondent par cette dernière, on a un isomorphisme canonique

$$\Gamma_{\Sigma} \longrightarrow \Gamma_{\Sigma'},$$

compatible avec les actions de ces groupes sur l'ensemble P_{Σ} des prédiscrétifications de π compatibles à Σ , et l'ensemble $P_{\Sigma'}$ des prédiscrétifications de π' compatibles à Σ' (qui sont respectivement des torseurs à gauche sous Γ_{Σ} , $\Gamma_{\Sigma'}$). En même temps, on trouvera donc que Σ est unique pour π , i.e. invariant dans $\hat{\hat{\mathbf{x}}}(\pi)$, si et seulement si Σ' est unique dans π' , i.e. invariant dans $\hat{\hat{\mathbf{x}}}(\pi')$.

En tout cas, la conjecture fondamentale qui interprète les $\Gamma_{g,\nu}$ comme $\Gamma_0 = \operatorname{Gal}(\overline{Q}_0/Q)$ aurait au moins comme conséquence que l'application $\operatorname{Discr\acute{e}t}^+(\pi) \longrightarrow \operatorname{Discr\acute{e}t}^+(\pi')$ passe au quotient de deux façons, pour donner un diagramme commutatif:

et que le carré inférieur est cartésien (sans préjuger de l'injectivité ou de la bijectivité de l'application $A \longrightarrow A'$). Donc il faudrait que si π_0 , π_1 sont deux discrétifications orientées de π , qui définissent la même prédiscrétification (orientée), alors il en soit de même pour leurs traces sur π' , π'_0 et π'_1 , relativement à π' . Mais déjà si π_0 et π_1 sont π -conjugués (i.e. définissent la même discrétification orientée, stricte), ce n'est pas tellement clair - mais si, car on aura $\pi=\pi'\cdot\pi_0$ donc si $\pi_1=\mathrm{int}(u)$ π_0 , écrivant $u=u'u_0$ avec $u'\in\pi'$, $u_0\in\pi_0$, on aura $\pi_1 = \operatorname{int}(u')\operatorname{int}(u_0)\pi_0 = \operatorname{int}(u')\pi_0$, donc $\pi_1' = \operatorname{int}(u')\pi_0'$ donc π_0' et π_1' sont conjugués. Tâchons de procéder de même dans le cas général d'un $u \in \hat{\mathfrak{S}}(\pi_0)^+$ tel que $\pi_1 = u(\pi_0)$, en écrivant si possible $u = u'u_0$, avec $u' \in \hat{\mathfrak{S}}(\pi_0, \pi'_0)^+$, et $u_0 \in \mathfrak{S}(\pi_0)^+$, où on définit $\mathfrak{S}(\pi_0, \pi'_0)^+$ comme le groupe des automorphismes discrets de π_0 qui stabilisent π'_0 , et $\hat{\mathfrak{S}}(\pi_0, \pi'_0)^+$ est son compactifié profini. On aurait alors $\pi_1 = u'(u_0(\pi_0)) = \dot{u}'(\pi_0)$, où \dot{u}' désigne l'image de u'dans $\hat{\mathfrak{Z}}(\pi'_0)$. En tous cas, il n'y a aucun problème si π' est un sous-groupe *caractéristique* de π , car alors on a un homomorphisme discret $\mathfrak{S}(\pi_0) \longrightarrow \mathfrak{S}(\pi'_0)$, définissant l'homomorphisme $\hat{\mathfrak{S}}(\hat{\pi}_0) \longrightarrow \hat{\mathfrak{S}}(\hat{\pi}'_0)$. Comme les sous-groupes ouverts caractéristiques de π sont cofinaux, on est ramené (pour les questions de factorisabilité de $D(\pi) \longrightarrow D(\pi')$ en $P(\pi) \longrightarrow P(\pi')$ et $A(\pi) \longrightarrow A(\pi')$ et de bijectivité des applications $P(\pi) \longrightarrow P(\pi')$ et $A(\pi) \longrightarrow A(\pi')$) au cas où π' est un sous-groupe caractéristique. On a alors factorisabilité de $D(\pi) \longrightarrow D(\pi')$ en $P(\pi) \longrightarrow P(\pi')$. Montrons que cette application est injective... Cela signifie (a) que

l'image inverse dans $\hat{\mathfrak{S}}(\hat{\pi}_0)$ de $\hat{\mathfrak{S}}(\hat{\pi}_0')^+$ est $\hat{\mathfrak{S}}(\hat{\pi}_0)^+$, la surjectivité signifie (b) que tout élément de $\hat{\mathfrak{S}}(\hat{\pi}_0')$ est congru mod $\hat{\mathfrak{S}}(\pi_0')^+$ à un élément de l'image de $\hat{\mathfrak{S}}(\pi_0)$. La factorisabilité en $A(\pi) \longrightarrow A(\pi')$ signifie que (c) par l'application précédente $\hat{\mathfrak{S}}(\pi_0) \hookrightarrow \hat{\mathfrak{S}}(\pi_0')$, (NB. il est immédiat que c'est injectif) envoie $\mathcal{M}(\pi_0) = \operatorname{Norm}_{\hat{\mathfrak{S}}(\pi_0)}(\hat{\mathfrak{S}}^+(\pi_0))$ dans $\mathcal{M}(\pi_0')$, l'injectivité de $A(\pi) \longrightarrow A(\pi')$ que (d) l'on a même que $\mathcal{M}(\pi)$ est exactement l'image inverse de $\mathcal{M}(\pi')$, la surjectivité de $A(\pi) \longrightarrow A(\pi')$ que (e) tout élément de $\hat{\mathfrak{S}}(\pi_0')$ est congru mod $\mathcal{M}(\pi_0')$ à un élément de $\hat{\mathfrak{S}}(\pi_0)$ (c'est plus faible que (b)) – et ces conditions réunies impliquent que l'homomorphisme canonique

$$\mathscr{M}(\pi_0)/\hat{\mathfrak{S}}(\pi_0) = \mathrm{I}\!\Gamma_{\pi_0} \longrightarrow \mathrm{I}\!\Gamma_{\pi_0'} = \mathscr{M}(\pi_0')/\hat{\mathfrak{S}}(\pi_0')$$

est un isomorphisme – il suffit même pour ceci d'avoir (c) (pour pouvoir définir cette application) et (a) (pour son injectivité), et (b) et le renforcement (d) de (c) (pour sa surjectivité). Donc on voit que tout est suspendu aux propriétés des homomorphismes d'inclusions de groupes:

(7)
$$\hat{\mathfrak{S}}^{+}(\pi_{0}) \hookrightarrow \mathcal{M}(\pi_{0}) \hookrightarrow \hat{\mathfrak{S}}(\pi_{0})$$

$$\downarrow \qquad \qquad \downarrow ? \qquad \downarrow \\ \hat{\mathfrak{S}}^{+}(\pi'_{0}) \hookrightarrow \mathcal{M}(\pi'_{0}) \hookrightarrow \hat{\mathfrak{S}}(\pi'_{0})$$

à charge de prouver (a) et (b) (qui ne concernent que le carré composé) et (c).

Peut-être les propriétés (a), (b) et (c) sont-elles tout à fait fausses – pourtant (a) (qui correspond à l'injectivité de $P(\pi) \longrightarrow P(\pi')$) semble assez plausible. La propriété (b) (qui exprimerait la surjectivité de $P(\pi) \longrightarrow P(\pi')$) est beaucoup plus problématique, voir fausse. L'ennui, c'est que le groupe $\hat{\mathfrak{S}}(\pi_0)$ peut être "beaucoup plus petit" que $\hat{\mathfrak{S}}(\pi'_0)$, on s'en rend compte en passant au quotient par le sous-groupe $\hat{\pi}'_0 = \pi'$ (contenu dans le plus petit des groupes de (7), et invariant dans le plus grand), on trouve sur la deuxième ligne les groupes $\hat{\mathfrak{T}}'(\pi'_0)$, $\mathcal{N}(\pi'_0)$ et $\hat{\mathfrak{T}}(\pi'_0)$, sur la première des extensions des groupes correspondants pour π_0 ($\hat{\mathfrak{T}}'(\pi_0)$), $\mathcal{N}(\pi_0)$ et $\hat{\mathfrak{T}}(\pi_0)$) par le groupe fini $G = \pi_0/\pi'_0 \simeq \pi/\pi'$, notées par des $\hat{\mathfrak{T}}$, de sorte que

l'on a:

(8)
$$G \hookrightarrow \widetilde{\hat{\mathfrak{X}}}^{+}(\pi_{0}) \hookrightarrow \widetilde{\mathcal{N}}(\pi_{0}) \hookrightarrow \widetilde{\hat{\mathfrak{X}}}(\pi_{0})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

qui montre que les groupes de la première ligne normalisent le sous-groupe $G \subset \hat{\mathfrak{T}}^+(\pi_0')$ (NB en fait on a $G \subset \mathfrak{T}^+(\pi_0')$, et π_0 se reconstitue à partir de π_0' et de ce sous-groupe de π_0') – on doit pouvoir montrer sans trop de mal que dans (8), $\hat{\hat{z}}^+(\pi_0)$ et $\hat{\hat{z}}(\pi_0)$ sont justement les normalisateurs de G dans $\hat{\mathfrak{T}}^+(\pi_0')$ et dans $\hat{\mathfrak{T}}(\pi_0')$ (ce qui impliquerait bien (a), d'ailleurs) – mais je ne vois aucune raison plausible que (b) soit vrai - ce qui signifierait, essentiellement, qu'il n'y a pas plus de "transcendance arithmétique" définie par le ("très gros"!) $\hat{\hat{\mathbf{x}}}(\pi_0')$ (mod $\hat{\mathfrak{T}}(\pi_0')^+$), que celle définie par le ("bien plus petit") groupe $\hat{\mathfrak{T}}(\pi_0) = \operatorname{Norm}_{\hat{\mathfrak{T}}(\pi_0)}(G)$... D'ailleurs ces conditions (a), (b) ne sont pas impératives pour que la conjecture fondamentale reliant les $\pi_{g,v}$ à ${\rm I}\!\Gamma_0$ soit cohérente – par contre il faudrait absolument avoir (c) pour pouvoir au moins définir $A(\pi) \longrightarrow A(\pi')$ et (si Σ , Σ' se correspondent) $\mathbb{I}\Gamma_{\Sigma} \longrightarrow \mathbb{I}\Gamma_{\Sigma'}$, dans le cas π' caractéristique dans π (et dans tous les cas si on admet de plus (a), qui semble assez plausible, et donne les *injectivités* qu'il faut). Mais on se demande bien pourquoi un élément de $\hat{\hat{\mathfrak{X}}}(\pi_0')$ simplement parce qu'il est dans le normalisateur R de G dans $\hat{\mathfrak{T}}(\pi_0)$, donc aussi R, et qu'il normalise $R \cap \hat{\mathfrak{T}}^+(\pi'_0)$, devrait normaliser aussi $\hat{\mathfrak{T}}^+(\pi'_0)$ lui-même! Il est vrai qu'on a fait des hypothèses draconiennes au départ (partant d'un sous-groupe caractéristique π_0' de π_0) qui doivent bien se refléter par des propriétés particulières de $G \subset \mathfrak{T}^+(\pi_0')$. Peut-être finalement l'astuce de se ramener à des sous-groupes caractéristiques pour examiner la situation n'est-elle pas si astucieuse. Pour y voir plus clair, on pourrait déjà essayer de comprendre le cas où (sans suppose π' caractéristique), on suppose π' d'indice 2 dans π , donc invariant et $G \simeq \mathbb{Z}/2\mathbb{Z}$, ou bien on prend le noyau de l'homomorphisme canonique $\pi \longrightarrow (\pi_{ab})_2 \ (\simeq (Z/2Z)^{2g} \ {
m si}$ $\nu=0, \simeq (Z/2Z)^{2g-\nu-1}$ si $\nu\geq 1$), en prenant par exemple $\pi=\hat{\pi}_{0,3}$ – situation de la courbe de Fermat $x^2 + y^2 + z^2 = 0$ (revêtement octaédral de $\mathbb{P}^1_{\overline{O}} \setminus \{0, 1, \infty\}...$)

Mais admettons provisoirement les hypothèses d'injectivité (relativement anodines), *plus* la condition (c), pas anodine du tout – d'où si Σ et Σ' se correspondent, un homomorphisme

injectif

et voyons ce qu'on pourrait en tirer, en admettant même, provisoirement (pour voir) que (9) est un isomorphisme, c'est-à-dire toute la force de la conjecture principale $\Gamma_0 \simeq \Gamma_{g,y}$.

Soit π un groupe profini à lacets de type (g,v), π' de type (g',v'). Appelons "correspondance" entre π et π' un couple formé d'un $\mathfrak G$ profini à lacets et d'homomorphismes à lacets $\mathfrak G \xrightarrow{p} \pi$, $\mathfrak G \xrightarrow{q} \pi'$ qui sont donc chacune composée d'un morphisme "bouchage de trous", et d'un isomorphisme avec un sous-groupe d'indice fini. Soient $\mathcal D_p$, $\mathcal D_q \subset \mathcal D = I(\pi'')$ les sous-ensembles de $\mathcal D$ qui correspondent aux "trous bouchés par p" resp. par q, on suppose s'il le faut que $\mathcal D_p \cap \mathcal D_q = \mathcal D$ (sinon on pourrait factoriser par un même quotient $\widetilde \pi''$ de π''). En d'autres termes, si $\overline{\mathcal D}_p$, $\overline{\mathcal D}_q$ sont les complémentaires de $\mathcal D_p$, $\mathcal D_q$ dans $\mathcal D$ (de sorte qu'on a $\overline{\mathcal D}_p \setminus I = I(\pi)$, $\overline{\mathcal D}_q \setminus I' = I(\pi')$), on a $\overline{\mathcal D}_p \cup \overline{\mathcal D}_q = \mathcal D$.

On va supposer maintenant π muni d'un $\Sigma \in A(\pi)$, π' muni d'un $\Sigma' \in A(\pi')$, on appellera "correspondance arithmétique" entre π et π' un quadruplet $(\mathfrak{G}, p, q, \Sigma_{\mathfrak{G}})$ où (\mathfrak{G}, p, q) sont comme dessus, et $\Sigma_{\mathfrak{G}} \in A(\mathfrak{G})$, tel que l'on ait $\Sigma_{\mathfrak{G}} = p^*(\Sigma) = q^*(\Sigma')$. Si P_{Σ} , $P_{\Sigma'}$, P_{Σ_G} sont respectivement les torseurs sous Γ_{Σ} , $\Gamma_{\Sigma'}$, $\Gamma_{\Sigma''}$ qu'on sait, on a deux diagrammes d'isomorphismes de torseurs:

d'où par composition un isomorphisme

$$(P_{\Sigma}, \mathbb{\Gamma}_{\Sigma}) \xrightarrow{\sim} (P_{\Sigma'}, \mathbb{\Gamma}_{\Sigma'}).$$

On appelle "isomorphisme arithmétiquement extérieur" de (π, Σ) avec (π', Σ') , tout isomorphisme de torseurs qu'on peut obtenir de cette façon. Deux correspondances sont dites équivalentes du point de vue arithmétiquement extérieur, si elles définissent le même isomorphisme arithmétiquement extérieur. La composition est définie par composition des actions sur $(P_{\Sigma}, \Gamma_{\Sigma})$ – on voit que ça provient d'une correspondance. On trouve donc un groupoïde, dont on vérifie sans peine qu'il est connexe. ⁴³ Je dis que les automorphismes de (π, Σ) "sont" les automorphismes de $(P_{\Sigma}, \Gamma_{\Sigma})$ définis par des éléments de Γ_{Σ} . C'est facile...

⁴³On l'appellera le groupoïde des courbes arithmétiques extérieures.

Dans ce groupoïde, il y a un système transitif d'isomorphismes entre les $(\hat{\pi}_0, \Sigma_{\pi_0})$, où π_0 est un groupe discret à lacets) plus généralement entre les (π, Σ_α) , où $\alpha \in P(\pi)$ est un prédiscrétification de π – définissons donc un isomorphisme arithmétiquement extérieur de $\pi_{g,\nu}$, π ... Le groupe de ces automorphismes est noté Γ_0 . Le groupoïde des courbes virtuelles arithmétiques extérieures s'identifie donc à la catégorie des torseurs sous Γ_0 . Une prédiscrétification (on pourrait aussi l'appeler une rigidification arithmétiquement extérieure) n'est pas autre chose qu'un isomorphisme arithmétiquement extérieur entre cet élément de référence, et π .

\$ 29. — CRITIQUE DE L'APPROCHE PRÉCÉDENTE

L'approche des paragraphes précédents semble finalement très brutale. J'ai même des doutes si la conjecture sur les propriétés du foncteur "bouchage de trous" est vraie telle quelle. Il est vrai que pour un groupe profini à lacets π , si on fixe $i \in I(\pi)$, on a un homomorphisme canonique

(1)
$$\hat{\hat{\mathbf{x}}}(\pi,i) = \hat{\hat{\mathbf{x}}}(\pi)_i \longrightarrow \hat{\hat{\mathbf{x}}}(\pi'),$$

(où $\hat{\mathfrak{X}}(\pi)_i$ est le stabilisateur de i dans $\hat{\mathfrak{X}}(\pi)$), mais il est problématique si c'est un isomorphisme – et même si c'est injectif, ou si c'est surjectif. Mais, choisissant une discrétification $\pi_0 \subset \pi$, d'où itou π'_0 pour π' , l'homomorphisme précédent induit bel et bien un isomorphisme

$$\mathfrak{T}(\pi_0)_i \simeq \mathfrak{S}(\pi'_0)$$

ďoù

$$\hat{\mathfrak{Z}}(\pi_0) \xrightarrow{\sim} \hat{\mathfrak{S}}(\pi'_0)$$

et par suite, la suite exacte $1 \longrightarrow \hat{\pi}'_0 \longrightarrow \hat{\mathfrak{E}}(\pi'_0) \longrightarrow \hat{\mathfrak{T}}(\pi'_0) \longrightarrow 1$ donne:

$$1 \longrightarrow \hat{\mathcal{T}}_0' \longrightarrow \hat{\mathfrak{Z}}(\pi_0) \longrightarrow \hat{\mathfrak{Z}}(\pi'_0) \longrightarrow 1$$

et par suite on trouve un homomorphisme injectif

$$\hat{\pi}_0' \longrightarrow \hat{\mathfrak{Z}}(\pi_0)_i \hookrightarrow \hat{\hat{\mathfrak{Z}}}(\pi_0)_i \simeq \hat{\hat{\mathfrak{Z}}}(\pi)$$

(où $\hat{\pi}'_0 = \pi'$) donc un homomorphisme

$$i_{\pi_0}: \pi' \longrightarrow \hat{\hat{\mathfrak{Z}}}(\pi)_i$$

dont le composé avec (1) est l'injection canonique $\pi' \hookrightarrow \hat{\mathfrak{S}}(\pi')$. Remplaçant la discrétification π_0 par une autre, π_1 , on trouve a priori un autre homomorphisme $i_{\pi_1}: \pi' \longrightarrow \hat{\mathfrak{S}}(\pi)_i$. On peut supposer que $\pi_1 = u(\pi_0)$, $u \in \hat{\mathfrak{S}}(\pi_0)_i$ et par transport de structure on trouve

$$i_{\pi_1} = i_{u(\pi_0)} = \text{Int}(u) \circ i_{\pi_0} \circ u_{\pi'}^{-1}$$

où $u_{\pi'}$ est l'automorphisme de π' défini par u via (1). Dire que i_{π_0} est indépendant du choix de la discrétification π_0 , revient aussi à dire que son image dans $\hat{\mathfrak{X}}(\pi)_i$ est un sous-groupe invariant – et alors l'action de $\hat{\mathfrak{X}}(\pi)_i$ sur le sous-groupe invariant $i_{\pi_0}(\pi) = i(\pi)$ via automorphismes intérieurs, n'est autre que celle définie par (1). Dans ce cas, on trouve par passage au quotient un homomorphisme

(6)
$$\hat{\hat{\mathbf{x}}}(\pi)_i/\pi' \longrightarrow \hat{\hat{\mathbf{x}}}(\pi')$$

dont l'injectivité resp. surjectivité équivaudrait à celle de (1). Mais il n'est pas évident du tout qu'il en soit toujours ainsi.

S'il n'en était pas ainsi, il s'imposerait de regarder le sous-groupe de $\hat{\mathfrak{X}}(\pi)_i$ formé des $\gamma \in \hat{\mathfrak{X}}(\pi)_i$ qui normalisent le sous-groupe $i_{\pi_0}(\pi')$, et tels que l'action induite sur $i_{\pi_0}(\pi')$ correspond à celle donnée par l'action (1) de $\hat{\mathfrak{X}}(\pi)$ sur π' . Ce sous-groupe H_{π_0} (qui contient $\hat{\mathfrak{X}}(\pi_0)_i$) dépend donc a priori de la discrétification choisie. Remplaçant π_0 par $u(\pi_0)$ (où $u \in \hat{\mathfrak{X}}(\pi)_i$) le remplace par $\mathrm{Int}(u) \cdot H$ – donc H tout au moins ne change pas, si on fait varier π_0 dans une classe de prédiscrétifications.

On peut faire des choix plus symétriques, en considérant pour tout $i \in I$ le quotient correspondant π'_i de π , d'où, pour une discrétification donnée π_0 , des homomorphismes

$$i_{\pi_0,i}:\pi_i'\longrightarrow \hat{\hat{\mathfrak{Z}}}(\pi)_i\subset \hat{\hat{\mathfrak{Z}}}(\pi),$$

et on définit $H_{\pi_0} \subset \hat{\hat{\mathfrak{Z}}}(\pi)$ comme le sous-groupe des $\gamma \in \hat{\hat{\mathfrak{Z}}}(\pi)$ qui "permutent les $i_{\pi_0,i}$ entre eux" dans un sens évident. On a donc

(7)
$$H_{\pi_0} \cap \hat{\hat{\mathfrak{Z}}}(\pi)_i = H_{\pi_0,i}$$

et

$$(8) H \supset \hat{\mathfrak{Z}}(\pi_0).$$

Le point que j'ai en vue, c'est que le sous-groupe de $\hat{\mathbb{X}}(\pi_0)$ image de $\pi_1(M_{g,\nu})$, doit non seulement normaliser $\hat{\mathbb{X}}(\pi_0)^+$, mais de plus être contenu dans un H. C'est là une condition que j'ai rencontrée par la bande, à la faveur de l'hypothèse (peut-être bien hâtive) que (1) est un isomorphisme, qui impliquait (facilement) que l'on avait $H = \hat{\mathbb{X}}(\pi_0)$ tout entier. Il est possible que $\hat{\mathbb{X}}(\pi_0)$ soit un groupe à tel point démesuré et pathologique, qu'il ne pourra jamais être question de dire des choses raisonnables (et vraies) sur le groupe tout entier, (tel que la bijectivité de (1) par exemple) et qu'on soit obligé de travailler avec des sous-groupes plus petits, qui restent proches du discret (avec quand-même des aspects supplémentaires "arithmétiques", dû au $\Pi_0 = \operatorname{Gal}(\overline{Q}_0/Q)$!). En fait, il y a (pour $I = I(\pi) \neq \emptyset$, i.e. $\nu \neq 0$) dans le groupe $\hat{\mathbb{X}}(\pi_0)$ une structure simpliciale d'extensions successives, qui va être respectée par l'action extérieure du groupe de Galois, et dont il faudrait tenir compte. Elle fait partie de la "structure à l' ∞ " dans le π_1 des multiplicités modulaires $M_{g,\nu}$, qui même pour $\nu=0$ est sans doute non triviale, et il est possible qu'il faille en tenir compte, pour arriver à mettre le doigt sur Π_Q .

Sans essayer de donner d'emblée une description a priori de Π_Q "dans les $\hat{\mathfrak{X}}_{g,\nu}$ ", on va procéder de façon plus inductive, en partant de la présence de Π_Q (pour des raisons arithmético-géométriques), et en essayant de dégager des propriétés de cette présence peut-être assez fortes pour finir par donner une caractérisation purement algébrique. Rappelons que, via le choix de $\mathscr{U}_{g,\nu}$ (différentiable), on avait pu construire, par voie transcendante, un $\widetilde{M}_{g,\nu,\mathbb{C}}$ et un $\widetilde{\mathscr{U}}_{g,\nu,\mathbb{C}}$, d'où un $\widetilde{M}_{g,\nu,Q}$, et un $\widetilde{\mathscr{U}}_{g,\nu,Q}$, d'où un $\pi_1(\mathscr{U}_{g,\nu,Q})$, avec une filtration en trois crans, dont les facteurs sont respectivement canoniquement isomorphes à

(9)
$$\hat{\pi}_{g,\nu}, \, \hat{\mathfrak{T}}(\pi_{g,\nu})^+, \, \mathrm{I}\!\Gamma_Q = \mathrm{Gal}(\overline{Q_0}/Q).$$

Ce groupe s'envoie (on présume injectivement) dans $\hat{\mathfrak{S}}(\pi_{g,\nu})$, induisant un isomorphisme entre son sous-groupe $\pi_1(\mathscr{U}_{g,\nu,\overline{Q}_0})$ et $\hat{\mathfrak{S}}(\pi_{g,\nu})$; désignons son image par $\mathscr{M}_{g,\nu}$. Donc c'est un sous-groupe fermé

$$\hat{\mathfrak{S}}_{g,\nu} \subset \mathscr{M}_{g,\nu} \subset \hat{\mathfrak{S}}_{g,\nu}$$

et $\hat{\mathfrak{S}}_{g,\nu}^+$ est normal dans $\mathcal{M}_{g,\nu}$ (mais pas $\hat{\mathfrak{S}}_{g,\nu}$!), La donnée d'un tel $\mathcal{M}_{g,\nu}$ équivaut à celle d'un $\mathcal{N}_{g,\nu}$

(11)
$$\hat{\mathfrak{Z}}_{g,\nu} \subset \mathcal{N}_{g,\nu} \subset \hat{\mathfrak{Z}}_{g,\nu},$$

avec $\hat{\mathfrak{T}}_{g,\nu}^+$ normal dans $\mathscr{N}_{g,\nu}$. On pose:

On a un homomorphisme surjectif

$$\Gamma_Q \longrightarrow \Gamma_{g,\nu}$$

dont on présume qu'il est bijectif – i.e. que les $\Pi_{g,\nu}$ sont canoniquement isomorphes entre eux.

Soit maintenant π_0 un groupe discret à lacets de type g, v, alors on définit des sous-groupes \mathcal{M}_{π_0} , \mathcal{N}_{π_0} :

(14)
$$\hat{\mathfrak{S}}(\pi_0) \subset \mathscr{M}_{\pi_0} \subset \hat{\mathfrak{S}}(\pi_0)$$

(15)
$$\hat{\mathfrak{Z}}(\pi_0) \subset \mathcal{N}_{\pi_0} = \mathcal{M}(\pi_0)/\hat{\pi}_0 \subset \hat{\mathfrak{Z}}(\pi_0)$$

(et on pose $\Pi_{\pi_0} = \mathcal{M}_{\pi_0}/\hat{\mathfrak{S}}(\pi_0)$), en utilisant un isomorphisme $\pi_0 \stackrel{\sim}{\longrightarrow} \pi_{g,\nu}$ et en procédant par transport de structure – le résultat n'en dépend pas. Plus généralement, partons d'un couple (π,α) d'un groupe π profini, muni d'une *prédiscrétification* α , qu'on peut donc interpréter comme une classe d'isomorphismes $\hat{\pi}_{g,\nu} \longrightarrow \pi$, définie modulo composition à droite par un $u \in \hat{\mathfrak{S}}_{g,\nu}$. Alors par transport de structure on en déduit des groupes \mathcal{M}_{α} , \mathcal{N}_{α}

$$\hat{\mathfrak{S}}_{q} \subset \mathscr{M}_{q} \subset \hat{\mathfrak{S}}(\pi)$$

(17)
$$\hat{\mathfrak{X}}_{\alpha} \subset \mathscr{N}_{\alpha} = \mathscr{M}_{\alpha}/\pi \subset \hat{\mathfrak{X}}(\pi)$$

⁴⁴Dans $\Pi_{g,\nu}$, on a un élément canonique d'ordre 2 $\tau_{g,\nu}$, correspondant aux éléments de $\hat{\mathfrak{X}}_{g,\nu} \setminus \hat{\mathfrak{X}}_{g,\nu}^+ = \hat{\mathfrak{X}}_{g,\nu}^-$

avec $\hat{\mathfrak{S}}(\pi)^+$ normal dans \mathscr{M}_{α} , i.e. $\hat{\mathfrak{T}}^+(\pi)$ normal dans \mathscr{N}_{α} . On pose

On a un élément canonique

(19)
$$\tau_{\alpha} \in \Pi_{\alpha}, \ \tau_{\alpha}^{2} = 1, \ \tau_{\alpha} \neq 1.$$

Soit maintenant π un groupe profini à lacets de type (g,v). On appelle *arithmétisation* de π la donnée d'un élément de

(20)
$$A(\pi) = \operatorname{Isom}_{\operatorname{lac}}(\hat{\pi}_{g,\nu}, \pi) / \mathcal{M}_{g,\nu} \simeq \operatorname{Isomext}_{\operatorname{lac}}(\hat{\pi}_{g,\nu}, \pi) / \mathcal{N}_{g,\nu}.$$

Soit $P(\pi)$ l'ensemble des prédiscrétifications orientées de π :

(21)
$$P(\pi) = \operatorname{Isom}_{\operatorname{lac}}(\hat{\pi}_{g,\nu}, \pi) / \hat{\mathfrak{S}}_{g,\nu}^{+} \simeq \operatorname{Isomext}_{\operatorname{lac}}(\hat{\pi}_{g,\nu}, \pi) / \hat{\mathfrak{T}}_{g,\nu}^{+};$$

alors $\Gamma_{g,\nu}$ opère librement à droite sur $P(\pi)$, et

(22)
$$A(\pi) \simeq P(\pi) / \prod_{g,\nu}$$

 $-P(\pi)$ est un torseur relatif sur $A(\pi)$, de groupe $\Pi_{g,\nu}$. Pour $a \in A(\pi)$, soit \mathcal{M}_a le sous-groupe de $\hat{\mathfrak{S}}(\pi)$ des automorphismes de (π,a) , il opère sur le $\Pi_{g,\nu}$ -torseur P_a des discrétifications orientées de π sur a. Pour $\alpha \in P_a$, soit $\hat{\mathfrak{S}}_\alpha \subset \hat{\mathfrak{S}}(\pi)$; alors $\hat{\mathfrak{S}}_\alpha^+$ ne dépend pas de α (on le notera $\hat{\mathfrak{S}}_a$); 45 c'est aussi le noyau de l'opération de \mathcal{M}_a sur P_a . On a

$$\hat{\mathfrak{S}}_{a}^{+} \subset \mathscr{M}_{a} \subset \hat{\mathfrak{S}}(\pi)$$

d'où encore

$$\hat{\mathfrak{Z}}_{a}^{+} \subset \mathcal{N}_{a} \subset \hat{\mathfrak{T}}(\pi)$$

en posant

(25)
$$\mathcal{N}_{a} = \mathcal{M}_{a}/\pi, \, \hat{\mathfrak{T}}_{a}^{+} = \hat{\mathfrak{S}}_{a}^{+}/\pi.$$

⁴⁵mais attention, $\hat{\mathfrak{S}}_{\alpha}$ dépend de α , i.e. $\tau_{\alpha} \in \mathbb{F}_{a}$ dépend de α .

On pose

(26)
$$\Pi_a = \mathcal{M}_a / \hat{\mathfrak{S}}_a^+ \simeq \mathcal{N}_a / \hat{\mathfrak{Z}}_a^+.$$

Alors Π_a s'identifie au commutant de $\Pi_{g,\nu}$ opérant sur P_a , i.e. à $\Pi_{g,\nu}$ "tordu" par le torseur P_a . Le choix d'un $\alpha \in P_a$ revient donc au choix d'un tel isomorphisme

(27)
$$\Gamma_a \simeq \Gamma_{g,\nu}$$

qui est changé par automorphisme intérieur si on change α ...

On a la catégorie des groupes à lacets extérieurs arithmétisés de type g, ν – c'est un groupoïde connexe, avec une origine fixée $(\hat{\pi}_{g,\nu}, a_{g,\nu})$ $(a_{g,\nu}$ arithmétisation "canonique"), dont le groupe des automorphismes est $\mathcal{N}_{g,\nu}$, extension de $\mathbb{F}_{g,\nu}$ par $\hat{\mathfrak{X}}_{g,\nu}^+ \simeq \pi_1(M_{g,\nu,Q})$ (si $\mathbb{F}_Q \longrightarrow \mathbb{F}_{g,\nu}$ est injectif!) (calculé par rapport au revêtement universel canonique de $M_{g,\nu,Q}$)...

Se donner un objet de cette catégorie, c'est essentiellement la même chose (à isomorphisme unique près) que de se donner un revêtement universel $\widetilde{M}_{g,\nu,Q}$ de $M_{g,\nu,Q}$ – ou un torseur sous $\mathcal{N}_{g,\nu}$; on considère alors la famille de courbes de type g,ν sur $\widetilde{M}_{g,\nu,Q}$

$$\mathscr{U}_{g,\nu} \times_{M_{g,\nu}} \widetilde{M_{g,\nu,Q}} = \mathscr{U}_{g,\nu}(\widetilde{M_{g,\nu,Q}})$$

comme étant "la" courbe algébrique dont le π_1 extérieur (qui est donc le π_1 de ce schéma...) soit le groupe extérieur à lacets donné.

Si on prenait les groupes à lacets arithmétisés, pas extérieurs, on aurait encore un groupoïde connexe avec "origine" $(\hat{\pi}_{g,\nu}, a_{g,\nu})$, avec un groupe d'automorphismes qui est $\mathcal{M}_{g,\nu} \simeq \pi_1(\mathcal{U}_{g,\nu,Q})$. La donnée d'un objet de cette catégorie revient à la donnée d'un revêtement universel (non seulement de $M_{g,\nu,Q}$, mais) de $\mathcal{U}_{g,\nu,Q}$, soit $\widetilde{\mathcal{U}}_{g,\nu,Q}$, qui sert de revêtement universel de référence pour la courbe relative (28), permettant alors de préciser son groupe fondamental comme un vrai groupe à lacets (pas seulement un groupe extérieur).

On peut enfin regarder aussi la catégorie des groupes profinis à lacets arithmétisés, où on prend comme morphismes les isomorphismes arithmétiquement extérieurs. On trouve encore un groupoïde connexe avec origine marquée $(\hat{\pi}_{g,\nu}, a_{g,\nu})$, dont le groupe des automorphismes est maintenant $\Gamma_{g,\nu}$. Maintenant les groupes $\hat{\pi}_0$ (π_0 groupe à lacets discret de type g,ν) sont canoniquement isomorphe entre eux. La catégorie est (conjecturalement, admettant que

Quand on se donne un π avec arithmétisation a, alors il lui correspond donc canoniquement une clôture algébrique \overline{Q} de Q. Le \mathbb{F}_Q -torseur des isomorphismes $\overline{Q} \hookrightarrow C$, est en correspondance 1-1 avec l'une (P_a) des prédiscrétifications orientées de π donnant naissance à a.

Notons que tout α définit un élément $\tau_{\alpha} \in \mathbb{F}_a$, $\tau_{\alpha}^2 = 1$ ($\tau_a \neq 1$), d'où une application canonique

$$(29) P_{a} \longrightarrow {}_{2}\Gamma_{a}.$$

On voit que cette application est compatible avec l'action du groupe ± 1 sur P_a ,

$$\tau_{\alpha} = \tau_{-\alpha}$$
.

S'il est vrai que $\Gamma_Q \xrightarrow{\sim} \Gamma_{g,\nu}$, alors (29) induit par passage au quotient une application bijective

(30) $P_a/\pm 1 \xrightarrow{\sim}$ ensemble des éléments d'ordre 2 de Π_a (où $P_a/\pm 1 = P_a^{\natural} =$ ensemble des prédiscrétifications – pas orientées – sur a).

Cela provient du fait connu que dans Γ_Q , les seuls éléments d'ordre 2 sont les conjugués de τ , et que le centralisateur de τ dans Γ_Q est réduit à $\{1,\tau\}$. On peut dire que la donnée d'une discrétification (pas orientée) α^{\natural} sous l'arithmétisation a, revient à la donnée d'une valuation archimédienne sur la clôture algébrique \overline{Q} de Q définie par (π,a) (i.e. d'un isomorphisme $\overline{Q}_1 \simeq \overline{Q}_0$ modulo conjugaison complexe).

\$30. — PROPRIÉTÉS DES $\mathscr{N}_{g,\nu}, \mathrm{I}\!\Gamma_{g,\nu}$: a) PROPRIÉTÉS LIÉES AUX SOUS-GROUPES FINIS

On aimerait dégager des propriétés, inspirées par le contexte géométrico-arithmétique, mais qui puissent se formuler de façon purement algébrique – et qui soient assez fortes peut-être pour finir par caractériser les $\mathcal{N}_{\sigma,v}$.

Revenons à un (π,a) , groupe à lacets arithmétisé, heuristiquement, il correspond à la donnée d'une clôture algébrique \overline{Q} de Q, et (si π est donné extérieurement) d'une famille algébrique, paramétrée par un revêtement universel $M_{g,\nu,\overline{Q}}$ de $M_{g,\nu,\overline{Q}}$, de courbes algébriques de type (g,ν) . Dans cette optique, réduire cette famille à *une* courbe algébrique – i.e. se donner une courbe algébrique de type (g,ν) sur \overline{Q} – doit revenir à se donner un noyau de relèvement de l'homomorphisme surjectif

$$\mathcal{N}_{a} \longrightarrow \mathbf{\Gamma}_{a}$$

(de noyau $\hat{\Sigma}_a^+$). La donnée d'un tel relèvement sur un sous-groupe ouvert Γ' revient à la donnée d'une courbe algébrique de type g, v, définie sur l'extension finie $K' \subset \overline{Q}$ définie par Γ' . Il s'agit ici non pas de relèvements continus quelconques, mais de relèvements ayant des propriétés particulières (dont certaines fort profondes, du genre "Weil"... mais *peut-être* conséquences de propriétés beaucoup plus simples). Les propriétés à dégager devraient en tout cas être stables par passage à un sous-groupe ouvert plus petit. Parmi ces propriétés, il y aurait que ces germes de relèvements pourraient à leur tour se remonter à $\hat{\mathfrak{E}}(\pi)$ lui-même – de façon également "admissible" en un sens à préciser – et même qu'il y aurait "beaucoup" de classes de π -conjugaison de tels germes de relèvements, pour un germe d'action extérieure

sur π déjà donné – ce qui correspond au fait na \ddot{i} f que la courbe algébrique \mathscr{U} sur \overline{Q} définie par cette action extérieure a "beaucoup de points" rationnels sur \overline{Q} . En fait, il suffirait, à la limite, de parler des propriétés de ces relèvements plus complets en un germe d'une vraie action de Π_a sur π (pas seulement extérieure) – dont les actions extérieures vont se déduire par composition avec

$$\mathcal{M}_a \longrightarrow \mathcal{N}_a \simeq \mathcal{M}_a/\pi$$
.

On suppose donc donné un sous-groupe fermé

$$\Gamma \subset \mathcal{M}_a \subset \hat{\mathfrak{S}}(\pi)$$

tel que

$$\Gamma \longrightarrow \Pi_a = \mathcal{M}_a / \pi$$

est injectif, et a comme image un sous-groupe ouvert de Γ_a – étant entendu que deux sous-groupes conjugués sous π – voire même parfois, sous \mathcal{M}_a – ne sont pas considérés comme essentiellement distincts. On considère, en même temps que Γ , ses sous-groupes ouverts Γ' . On veut surement, pour de tels sous-groupes ouverts

$$\pi^{\Gamma'} = \{1\}.$$

Si on désigne par $\tilde{\Gamma}$ l'image de Γ dans \mathcal{N}_a , de sorte qu'on a une extension

$$1 \longrightarrow \pi \longrightarrow \widetilde{\Gamma} \longrightarrow 1$$

(où $\widetilde{\Gamma}$ est isomorphe à Γ); on peut considérer Γ comme une section de cette extension, Γ' comme une section partielle. L'hypothèse $\pi^{\Gamma'}=\{1\}$ assure la *rigidité* de la catégorie des points de \mathscr{U} à valeurs dans \overline{Q} , paradigmée par celle des germes de scindage de l'extension (1').

On peut aussi regarder les ensembles $(\hat{\mathfrak{S}}_a^+)^{\Gamma'} = \operatorname{Centr}_{\mathcal{M}_a}(\Gamma') \cap \hat{\mathfrak{S}}_a^+ \text{ et } (\hat{\mathfrak{T}}_a^+)^{\Gamma'} = \operatorname{Centr}_{\mathcal{N}_a}(\widetilde{\Gamma}') \cap \hat{\mathfrak{T}}_a^+$; on a donc une suite exacte

$$1 \longrightarrow \pi^{\Gamma'} \longrightarrow (\hat{\mathfrak{S}}_a^+)^{\Gamma'} \longrightarrow (\hat{\mathfrak{T}}_a^+)^{\Gamma'}$$

qui, compte tenu de l'hypothèse $\pi^{\Gamma'} = \{1\}$, donne

$$(\hat{\mathfrak{S}}_{a}^{+})^{\Gamma'} \hookrightarrow (\hat{\mathfrak{T}}_{a}^{+})^{\Gamma'}.$$

Le deuxième membre de (3), par notre dictionnaire hypothétique, devrait être canoniquement isomorphe au groupe des automorphismes de la courbe \mathscr{U} sur K', donc être un groupe fini, et même la limite inductive (pour Γ' décroissant) – qui est le groupe des automorphismes de \mathscr{U} sur \overline{Q} – est finie. Désignant par un exposant \natural le germe de groupe correspondant, on veut donc que

(c)
$$Z = (\hat{\mathfrak{Z}}_a^+)^{\Gamma^{\natural}} (= \operatorname{Centr}_{\mathscr{N}}(\widetilde{\Gamma}^{\natural}) \cap \hat{\mathfrak{Z}}_a^+)$$
 soit un groupe fini

– ce qui fait pendant à (b), et exprime que les groupes d'automorphismes des points de $\mathcal{M}_{g,\nu,\overline{Q}}$ sur \overline{Q} sont finis.

En fait, on voudrait que Z soit conjugué dans \mathcal{M}_a à un sous-groupe de \mathfrak{T}^+ (si on suppose qu'on dispose d'une discrétification π_0 de π , permettant de définir \mathfrak{T} – sinon, on peut exprimer cette propriété en disant qu'il existe une discrétification π_0 de π , compatible avec a, telle que $Z \subset \mathfrak{T}(\pi_0) \ldots$)

Considérons maintenant un sous-groupe fini quelconque $G \subset \hat{\mathfrak{X}}_a^+$. [N.B. si on prend seulement $G \subset \mathcal{M}_a$, de sorte que l'image de G dans $\Gamma_a = \mathcal{M}_a/\hat{\mathfrak{X}}_a^+$ est un sous-groupe fini, alors s'il est vrai que $\Gamma_a \simeq \operatorname{Gal}(\overline{Q},Q)$, cette image doit être d'ordre 1 ou 2, et dans le deux-ième cas, doit définir un $\tau \in \Gamma_a$ correspondant à une *prédiscrétification* (pas orientée) bien déterminée de π . Ce cas devrait être encore réutilisée dans la suite...] Supposons alors que [ce n'est sans doute pas automatique – si on ne suppose pas $\mathcal{N}_a = \operatorname{Norm}_{\hat{\mathfrak{X}}}(\hat{\mathfrak{X}}_a)$], que G est contenu dans \mathfrak{X}^+ , pour une discrétification convenable dans la classe a, et que l'action extérieure ainsi obtenue de G sur un π_0 discret de type (g,v) soit toujours *réalisable*. Elle est donc réalisable aussi pour une action de G sur une structure complexe, donc algébrique, ce qui signifie qu'on peut trouver un germe de relèvement *admissible*

$$\Gamma_a \longrightarrow \mathcal{N}_a$$

qui centralise G. Considérons d'autre part

(4)
$$\operatorname{Centr}_{\mathcal{N}}(G) \longrightarrow \mathbb{F}_{a}$$

dont le noyau est $\operatorname{Centr}_{\hat{\mathfrak{Z}}_a^+}(G)=\hat{\mathfrak{T}}_a^{+G}$. Si on se plaçait dans le contexte discret (avec une discrétification $\pi_0\subset\pi$ invariante par G) on aurait, par les conjectures standard topologiques, que $\hat{\mathfrak{T}}_a^{+G}$ est le groupe des automorphismes, dans la catégorie isotopique, de l'action de G

sur une surface \mathscr{U} de type (g,v), décrite par l'opération extérieure donnée de G sur π_0 . Ce groupe n'a aucune raison d'être fini – s'il l'était, l'homomorphisme (4) serait à noyau fini, donc serait un isomorphisme des noyaux des groupes, et il y aurait un germe de relèvement unique $\Gamma_a^{\natural} \longrightarrow \mathscr{M}_a$ qui centraliserait G – ce qui signifierait qu'il y a une seule façon de réaliser l'opération topologique de G sur \mathscr{U} par une opération analytique complexe, donc algébrique – or ce n'est surement pas le cas, l'ensemble des points fixes de G opérant sur l'espace de Teichmüller $\widetilde{M}_{g,v}$ n'est pas réduit à un point – c'est (dans le contexte algébrique) une multiplicité schématique qui peut être de dimension quelconque – elle est de dimension > 0 en tout cas, si le quotient \mathscr{U}/G n'est pas de genre 0.

A retenir en tout cas, comme propriétés plausibles:

(d) Pour tout sous-groupe fini G de $\hat{\mathfrak{Z}}_a^+$ (ou du moins si $G \subset \mathfrak{T}^+$, quand on dispose d'une discrétification $\pi_0 \subset \pi$ dans a), regardant $\operatorname{Centr}_{\hat{\mathfrak{Z}}}(G) = Z(G)$, $\mathcal{N}_a \cap Z(G) \longrightarrow \Pi_a$ a une image ouverte (et il y a même des germes de relèvements admissibles $\Pi_a \longrightarrow Z(G)$).

Ceci implique une propriété non triviale pour les $g \in \mathcal{M}_a$ en tant qu'éléments de $\hat{\mathfrak{X}}(\pi)$, ou mieux de $\mathcal{N}' = \operatorname{Norm}_{\hat{\mathfrak{X}}}(\hat{\mathfrak{X}})$ [à savoir: $\exists n \in \mathbb{N}^*$ tel que g^n soit congru mod $\hat{\mathfrak{X}}_a^+$ à un élément de Z(G)...]. Considérons en effet l'image Z_G' de $Z(G) \cap \mathcal{N}'$ dans $\Gamma' = \mathcal{N}'/\hat{\mathfrak{X}}$. On a évidemment $\Pi_a \subset \Gamma'$, et l'image de $Z(G) \cap \mathcal{N}_a$ dans Π_a n'est autre que $Z_G' \cap \Pi_a$. Dire que celle-ci est ouverte, i.e. d'indice fini, implique donc que $\forall g \in \Pi_a$, $\exists n \in \mathbb{N}^*$ tel que $g^n \in Z_G'$.

Notons que dans $\mathfrak{T}(\pi_{g,\nu})$ il n'y a qu'un nombre fini de classes de conjugaison de sousgroupes finis, donc si on regarde leurs centralisateurs Z_G dans $\hat{\mathfrak{T}}(\pi_{g,\nu})$ et leurs images dans

$$\Gamma_{g,\nu}' = \operatorname{Norm}_{\hat{\mathfrak{Z}}_{g,\nu}}(\hat{\mathfrak{Z}}_{g,\nu}^+)/\hat{\mathfrak{Z}}_{g,\nu}^+,$$

on ne trouve qu'un nombre fini de sous-groupes de $\Gamma'_{g,\nu}$, soit $Z'_{g,\nu}$ leur intersection. On voit donc que le sous-groupe $\mathbb{F}_{g,\nu}$ de $\Gamma'_{g,\nu}$ est tel que $\mathbb{F}_{g,\nu} \cap Z'_{g,\nu}$ soit ouvert dans $\mathbb{F}_{g,\nu}$.

Passons maintenant à des sous-groupes finis de $\hat{\mathfrak{S}}(\pi)$ lui-même – ou du moins de \mathcal{M}_a – ou, ce qui revient presque au même, de $\hat{\mathfrak{S}}_a^+$. On va, comme tantôt, se borner à des $G \subset \mathfrak{S}(\pi_0)$, pour une discrétification convenable $\in a$, car autrement il n'y aurait rien à dire. On sait qu'alors G est cyclique – et correspond à une action de G sur un \mathscr{U} topologique, avec point fixe. On peut la réaliser de façon complexe, ce qu'on exprime en disant qu'il existe un

relèvement admissible $\Pi_a^{\natural} \longrightarrow \mathcal{M}_a$, qui centralise G. On sait d'ailleurs, si $G \neq 1$, que

$$\pi^G = \{1\}$$

(ou plutôt, on le sait dans le cas discret – on l'admet dans le contexte profini) – ce qu'on peut encore interpréter comme une propriété de rigidité – ainsi

$$\operatorname{Centr}_{\hat{\mathfrak{S}}}(G) = \hat{\mathfrak{S}}^G \longrightarrow \hat{\mathfrak{T}}^G$$

est *injectif*, donc si on a $\Gamma \subset \mathcal{N}_a$ qui est dans l'image, alors il existe un relèvement $\Gamma \longrightarrow \hat{\mathfrak{S}}$ unique qui centralise G, i.e. tel que $\Gamma \longrightarrow \hat{\mathfrak{S}}^G$. Mais en fait ce qu'on saura, pour un $\Gamma \subset \mathcal{M}_a$ donné (décrivant une courbe algébrique via son action extérieure sur un π_1) c'est que $\Gamma \subset \mathcal{M}_a^G$ (i.e. l'action extérieure commute à une action extérieure donnée de G, i.e. G opère sur la courbe algébrique) – et on voudrait néanmoins en conclure que lorsqu'on a relevé $G \longrightarrow \hat{\mathfrak{T}}^+$ ou $G \longrightarrow \hat{\mathfrak{S}}^+$ (i.e. quand on s'est donné un point fixe de l'action de G sur \mathscr{U}) alors l'action de Γ^{\natural} se remonte automatiquement en $\Gamma^{\natural} \longrightarrow \mathcal{M}_a$ de façon à commuter......(i.e. $\Gamma^{\natural} \longrightarrow \mathcal{M}_a^G$). Est-ce là une propriété du choix de \mathcal{M}_a ou de celui du relèvement $\Gamma^{\natural} \longrightarrow \mathcal{N}_a$, ou de G??

Dans le cadre discret, sauf erreur, si on a une action fidèle discrète de G fini sur π_0 , alors $\mathfrak{S}(\pi_0)^G \longrightarrow \mathfrak{T}(\pi_0)^G$ (qui est injectif, par $\pi_0^G = 1$) est aussi surjectif. Non, il y a erreur – ça signifierait tel quel que si G opère fidèlement sur une surface topologique $\mathscr U$ de type g, v, avec un point fixe P, alors les automorphismes qui commutent à G fixent P (au lieu de permuter seulement les points fixes entre deux...). Donc il ne faut pas s'attendre à ce que tout tout élément dans $\mathscr N_a^G$, ni même dans $\hat{\mathfrak T}_a^G$, se remonte à $\mathscr M_a^G$ – mais plutôt ceci: pour un $G \subset \mathfrak T_a(\pi_0)$ sous-groupe fini donné, les classes de π -conjugaison de "remontages" à $\hat{\mathfrak S}$, qui s'interprètent comme des points fixes d'une action de G sur quelque $\mathscr U$, forment un ensemble fini, sur lequel $\hat{\mathfrak T}(\pi)^G$ opère de façon naturelle, et le stabilisateur d'un point P i.e. d'une classe de conjugaison de relèvements se remonte de façon unique en $\hat{\mathfrak S}^G$. Il faudrait réexaminer ceci de façon plus soigneuse par la suite. Mais il me semble qu'on ne trouve pas ici de nouvelles propriétés des $\Gamma \subset \mathscr M_a$ ni de $\mathscr M_a$ lui-même, i.e. de Γ comme sous-groupe profini de $\Gamma' = \operatorname{Norm}_{\hat{\mathfrak F}}(\hat{\mathfrak T})/\hat{\mathfrak T}$.

\S 31. — DIGRESSION SUR LES RELÈVEMENTS D'UNE ACTION EXTÉRIEURE D'UN GROUPE FINI G SUR UN GROUPE PROFINI À LACETS π

On suppose l'action extérieure *fidèle*, i.e. $G \subset \hat{\mathfrak{Z}}(\pi) = \hat{\mathfrak{Z}}$, et que $G = G^+$. On suppose de plus qu'il existe une discrétification invariante π_0 , i.e. telle que $G \subset \mathfrak{Z}(\pi_0)$. Si on suppose G cyclique, alors sauf erreur il est prouvé que la situation est *réalisable* topologiquement (donc aussi de façon analytique complexe...)

Dans le cas discret, la signification des classes de π_0 conjugaison de relèvement $G \longrightarrow \mathfrak{S}(\pi_0)$ est bien comprise, de même que pour les relèvements partiels. On trouve une réalisation canonique [si $\mathscr{U}^! \neq \varnothing$] du groupoïde fondamental associé au groupe extérieur π_0 , par un groupoïde fini [$\mathscr{U}^!$] sur lequel G opère au sens strict, dont les points correspondent aux classes de π_0 -conjugaison de sections partielles $\neq 1$ maximales. Le groupe $\mathfrak{T}(\pi_0)^G$ opère de façon également canonique sur ce groupoïde. Si $P \in \mathscr{U}^!$ correspond à un relèvement $G \longrightarrow \mathfrak{S}(\pi_0)$, alors un élément $\dot{u} \in \mathfrak{T}(\pi_0)^G$ est dans l'image de $\mathfrak{S}(\pi_0)^G$, i.e. peut se remonter en $u \in \mathfrak{S}(\pi_0)$ commutant à G, si et seulement si $\dot{u}(P) = P$, i.e. (si \dot{u} est remonté de façon quelconque en v), si et seulement si v(G) est π_0 -conjugué à G, i.e. si et seulement s'îl existe $g \in \pi_0$ tel que $v(G) = \inf(g)(G)$, i.e. $u \stackrel{\text{def}}{=} \inf(g^{-1})v$ fixe G (auquel cas bien sûr il centralise, par l'hypothèse $\dot{u} \in \mathfrak{T}^G$). Donc notre brillante assertion est une tautologie, et donc le relèvement est unique. Comme $\mathscr{U}^!$ est fini, le stabilisateur $\mathfrak{T}(\pi_0)^G_P$ de P dans $\mathfrak{T}(\pi_0)^G$ est d'indice fini, et c'est donc ce sous-groupe d'indice fini qui se remonte gaillardement et canoniquement.

Que peut-on dire dans le contexte profini? Bien sûr, on a une application canonique

classes de
$$\pi_0$$
-conjugaison classes de π_0 -conjugaison de relèvements de des relèvements de G en $G \longrightarrow \mathfrak{S}(\pi_0)$ \longrightarrow G en $G \longrightarrow \hat{\mathfrak{S}}(\pi_0)$, i.e. de scindage de l'extension $1 \longrightarrow \pi_0 \longrightarrow G \longrightarrow 1$ $1 \longrightarrow \hat{\pi}_0 = \pi \longrightarrow \hat{E} \longrightarrow G \longrightarrow 1$.

Il faudrait examiner d'abord

- a) la question de la bijectivité de cette application,
- b) si $\pi^G = 1$ (rigidité), pour $G \neq \{1\}$. (pour un relèvement donné, dans E pour simplifier).

J'ai envie de conjecturer sans vergogne qu'il en est ainsi – ce qui impliquerait par exemple que pour tout tel relèvement de G, il y a un sous-groupe ouvert $(\mathfrak{T}^G)_p$ du groupe (peut-être vraiment immense a priori!) $\hat{\mathfrak{T}}^G$, qui se remonte canoniquement de façon à commuter à G....

Il faudrait manifestement faire, en même temps qu'une théorie des opérations extérieures des groupes finis sur des groupes discrets à lacets (qui est pour le moment extrêmement conjecturale) une théorie analogue dans le cas profini – j'aurai sans doute à y revenir par la suite.

§ 32. — RETOUR SUR LES ASPECTS ARITHMÉTIQUES DU BOUCHAGE DE TROUS : RELATIONS ENTRE $\Pi_{g,\nu}$ et $\Pi_{g,\nu-1}$

Bien sûr, on a que

$$\mathcal{N}_{\sigma,\nu} \longrightarrow \mathfrak{S}_{\nu}$$

est surjectif (puisque $\mathfrak{T}_{g,\nu} {\:\longrightarrow\:} \mathfrak{S}_{\!\nu}$ l'est), donc on aura

$$1 \longrightarrow \mathcal{N}_{g,\nu}^! \longrightarrow \mathcal{N}_{g,\nu} \longrightarrow \mathfrak{S}_{\nu} \longrightarrow 1$$

et le diagramme cartésien de sous-groupes de $\hat{\hat{\mathfrak{X}}}_{g,v}$:

(2)
$$\hat{\mathfrak{Z}}_{g,\nu}^{+} \longrightarrow \mathcal{N}_{g,\nu}$$

$$\hat{\mathfrak{Z}}_{g,\nu}^{!+} \longrightarrow \mathcal{N}_{g,\nu}^{!}$$

 $[\mathcal{N}_{g,\nu} = \mathcal{N}_{g,\nu}^! \cdot \hat{\mathfrak{T}}_{g,\nu}^+]$ donnera un isomorphisme

(3)
$$\mathcal{N}_{g,\nu}^{!}/\hat{\mathfrak{T}}_{g,\nu}^{!+} \xrightarrow{\sim} \mathcal{N}_{g,\nu}/\hat{\mathfrak{T}}_{g,\nu}^{+} = \mathbf{I}\Gamma_{g,\nu}.$$

Dans le cas d'un (π, a) , $(\pi \text{ groupe extérieur à lacets}, a \text{ une arithmétisation})$, on aura de même:

(4)
$$\mathcal{N}_{a}^{!}/\hat{\mathfrak{T}}_{a}^{+} \xrightarrow{\sim} \mathcal{N}_{a}/\hat{\mathfrak{T}}_{a}^{+} = \prod_{a} \mathcal{N}_{a} = \mathcal{N}_{a}^{!} \cdot \hat{\mathfrak{T}}_{a}^{+}.$$

Considérons maintenant pour tout $i \in I$ le stabilisateur \mathcal{N}_i de i dans \mathcal{N} , et le groupe à lacets (pas extérieur!) π_i , de type (g, v-1), déduit de π par "bouchage du trou i" ⁴⁶. On a alors,

⁴⁶On écrit ici \mathcal{N} etc. au lieu de \mathcal{N}_a ; on suppose $(g, \nu - 1)$ aussi anabélien, i.e. $2g + \nu \ge 4$.

pour une discrétification choisie α compatible avec l'arithmétisation, un homomorphisme injectif

(5)
$$\pi_i' \xrightarrow{\varphi_i} \hat{\mathfrak{X}}^{+!} \subset \mathcal{N}^! \subset \hat{\mathfrak{X}}_i,$$

tel que le composé

$$\pi'_i \longrightarrow \hat{\hat{\mathfrak{Z}}}_i \longrightarrow \hat{\hat{\mathfrak{S}}}(\pi'_i) (\leftarrow \pi'_i)$$

soit l'inclusion canonique. Ceci posé, on veut ⁴⁷ que l'image de (5) (qui n'est peut-être pas invariante dans $\hat{\mathfrak{X}}_i$) soit *invariante dans* \mathcal{N}_i , ⁴⁸Cela signifie aussi que φ_i ne dépend pas du choix de la discrétification de classe α ... ou ce qui revient au même, dans $\mathcal{N}^!$ (car $\mathcal{N}_i = \mathcal{N}^! \cdot \hat{\mathfrak{X}}_i^+$, or $\hat{\mathfrak{X}}_i^+$ invarie cette image). Revenant à la situation universelle, cela signifie:

(5') $\mathcal{N}_{g,\nu}^! \subset \hat{\hat{\mathfrak{Z}}}_{g,\nu}$ est contenu dans le normalisateur des $\pi_i' \hookrightarrow \hat{\mathfrak{Z}}_{g,\nu}^{!+}$ $(1 \le i \le \nu-1)$, qui sont donc invariants dans $\mathcal{N}_{g,\nu}^{!}$ ⁴⁹ De plus, $\hat{\hat{\mathfrak{Z}}}_{g,\nu}^{!} \xrightarrow{\psi_i} \hat{\hat{\mathfrak{S}}}_{g,\nu-1}^{!}$ induit un *isomorphisme*

(6)
$$\mathcal{N}_{g,v}^{!} \xrightarrow{\sim} \mathcal{M}_{g,v-1}^{!}.$$

Cette assertion se décompose en deux: tout d'abord que ψ_i applique bien $\mathcal{N}_{g,\nu}^!$ dans $\mathcal{M}_{g,\nu}^!$ – et ceci résulte de la définition arithmético-géométrique de ces groupes – cela implique d'autre part, puisque ψ_i induit aussi un isomorphisme

$$\hat{\mathfrak{Z}}_{g,\nu}^+ \xrightarrow{\sim} \hat{\mathfrak{S}}_{g,\nu-1}^+,$$

qu'il induit un homomorphisme

et l'injectivité (resp. surjectivité) de (6) équivaut à celle de (7). D'ailleurs (7) s'insère, par construction, dans un diagramme commutatif:

(8)
$$\Gamma_{g,\nu} \xrightarrow{\Gamma_{Q}} \Gamma_{g,\nu-1}$$

$$\Gamma_{g,\nu-1} = \Gamma_{g,\nu-1}$$

⁴⁷Plutôt, il est vrai que!

^{48 (***)}

 $^{^{49}}$ Il suffit me semble-t-il de le prouver pour un i pour le déduire pour les autres.

avec $\theta_{g,\nu}$ et $\theta_{g,\nu-1}$ surjectifs, donc il est bel et bien évident que (6) est *surjectif*. La bijectivité signifie que $\theta_{g,\nu}$ et $\theta_{g,\nu-1}$ ont même noyau (alors qu'a priori il se pourrait que $\theta_{g,\nu}$ ait un noyau plus petit, i.e. corresponde à une représentation de \mathbb{F}_Q "moins infidèle" que $\theta_{g,\nu-1}$). D'ailleurs, il est évident (même, a priori, sans utiliser la définition ailleurs explicitée de $\mathcal{N}_{g,\nu}$) que l'homomorphisme λ_i de (7) ne dépend pas du choix de $0 \le i \le \nu-1$ – par exemple puisque l'on passe de l'un à l'autre en appliquant des opérations de $\hat{\mathfrak{T}}^+$ (puisque $\hat{\mathfrak{T}}^+$ opère transitivement sur I) et que $\hat{\mathfrak{T}}^+$ opère trivialement dans $\mathbb{F}_{g,\nu}$...

On peut dire que (6) décrit $\mathcal{M}_{g,\nu-1}^!$ (donc $\mathcal{N}_{g,\nu-1}^!$) en termes de $\mathcal{N}_{g,\nu}$ – mais l'inverse est moins clair, faute de savoir si $\hat{\mathfrak{X}}_{g,\nu} \xrightarrow{\psi_i} \hat{\mathfrak{S}}_{g,\nu-1}$ est injectif; si on le savait, on pourrait décrire $\mathcal{N}_{g,\nu}^!$ comme l'image inverse de $\mathcal{M}_{g,\nu-1}^!$... Il ne serait pas impossible d'ailleurs que (6) soit faux, i.e. que les $\theta_{g,\nu}$ soient infidèles, mais de moins en moins quand on fait augmenter ν – en passant à la limite projective $\theta_{g,\infty}$, seulement, aurait-on (peut-être!) une représentation fidèle de Π_Q ? Mais jusqu'à indication contraire, je préfère travailler hypothétiquement avec (6), ce qui s'exprime par les suites exactes fondamentales

$$(9) 1 \longrightarrow \hat{\pi}_{g,\nu-1} \xrightarrow{\varphi_i} \mathcal{N}_{g,\nu}^! \xrightarrow{\psi_i'} \mathcal{N}_{g,\nu-1}^! \longrightarrow 1^{50}$$

qui étend la suite exacte

(10)
$$1 \longrightarrow \hat{\pi}_{g,\nu-1} \xrightarrow{\varphi_i} \hat{\mathfrak{X}}_{g,\nu}^! \xrightarrow{\psi'_i} \hat{\mathfrak{X}}_{g,\nu-1}^! \longrightarrow 1$$

(et tient lieu de la suite exacte peut-être défaillante

$$?? \quad 1 \longrightarrow \hat{\pi}_{g,\nu-1} \longrightarrow \hat{\hat{\mathfrak{Z}}}^!_{g,\nu} \longrightarrow \hat{\hat{\mathfrak{Z}}}^!_{g,\nu-1} \longrightarrow 1 \quad ??).$$

Quand (π, a) est un groupe extérieur à lacets muni d'une arithmétisation – ce qu'on pourrait appeler une "courbe algébrique virtuelle" – alors ce qui précède permet de définir, sur chacun des π'_i de type (g, v-1) associés aux $i \in I(\pi)$, une arithmétisation canoniquement associée à a, soit a_i , et on trouve alors une suite exacte

$$(11) 1 \longrightarrow \pi'_i \longrightarrow (\mathcal{N}_a)_i \xrightarrow{\psi_i} \mathcal{N}_{a_i^+} \longrightarrow 1$$

telle que l'on ait

$$(\hat{\mathfrak{Z}}_{a}^{+})_{i} = \psi_{i}^{-1}(\hat{\mathfrak{Z}}_{a'}^{+}),$$

⁵⁰On pourrait l'inclure dans une suite exacte un peu plus grande, avec $(\mathcal{N}_{g,\nu})_i$ et $\mathcal{N}_{g,\nu-1}$...

induisant

et induisant par passage au quotient

$$\Pi_a \xrightarrow{\sim} \Pi_{a_i}.$$

De plus, l'application canonique

$$Discrét^+(\pi) \longrightarrow Discrét^+(\pi'_i)$$

définit par passage aux quotients

$$\mathbb{P}_{a} \xrightarrow{\sim} \mathbb{P}_{a}.$$

compatible avec les actions de Γ_a , $\Gamma_{a'_i}$ et (13).

Je ne fais ici aucune assertion sur une soi-disant bijectivité entre ensemble des arithmétisations de π , et ensemble des arithmétisations de π'_i – ce qui reviendrait à la bijectivité de

$$\hat{\hat{\mathbb{Z}}}/\mathcal{N}_a \longrightarrow \hat{\hat{\mathbb{S}}}'/\mathcal{M}_{a'} \simeq \hat{\hat{\mathbb{Z}}}'/\mathcal{N}_{a'},$$

qui n'aurait guère de raison d'être que si on admettait $\hat{\hat{\mathbf{z}}}(\pi) \xrightarrow{\sim} \hat{\hat{\mathbf{c}}}(\pi'_i)$, qui me semble bien problématique.

Cependant, on trouve, par le foncteur "bouchage de trous", une équivalence entre la catégorie des groupes profinis à lacets extérieurs arithmétisés de type (g, v), et des groupes profinis à lacets (pas extérieurs!) arithmétisés, de type (g, v - 1).

On peut se proposer d'essayer de préciser le type de propriétés qui vont caractériser $\mathcal{N}_{g,\nu}$ dans $\mathcal{N}_{g,\nu}' = \operatorname{Norm}_{\hat{\mathfrak{X}}_{g,\nu}}(\hat{\mathfrak{X}}_{g,\nu}^+)$, ou encore $\mathbb{F}_{g,\nu}$ dans $\mathbb{F}_{g,\nu}' = \mathcal{N}_{g,\nu}'/\hat{\mathfrak{X}}_{g,\nu}^+$. On a des homomorphismes naturels

et je présume que $\Pi_{g,\nu}$ pourra se décrire comme image inverse d'un sous-groupe fermé convenable de l'un ou de l'autre des seconds membres, i.e. qu'on peut le décrire en termes des

propriétés d'opérations extérieures sur $\hat{\mathfrak{X}}_{g,\nu}^+$ ou sur $\hat{\mathfrak{X}}_{g,\nu}^-$. Les conditions (e) en tout cas, sont bien de ce type (propriété de normaliser des sous-groupes invariants π'_i de $\mathfrak{X}_{g,\nu}^{+!}$...). Bien sûr, on pourrait poser des conditions sur des automorphismes extérieurs (de $\hat{\mathfrak{X}}_{g,\nu}^{'}$, disons), qui soient stables par passage successifs à des $\hat{\mathfrak{X}}_{g,\nu-1}^{'+!}$, $\hat{\mathfrak{X}}_{g,\nu-1}^{'+!}$ etc....et qui soient engendrées par les conditions (5') et (6). Mais il n'est pas dit du tout que cela suffira à décrire les $\Pi_{g,\nu} \subset \Pi'_{g,\nu}$, ne serait-ce que parce que la condition devient vide pour le cas limite $\nu=0$ (si $g\geq 2$; ou pour les cas $g=1, \nu=1$, ou $g=0, \nu=3$). Il est possible qu'il faille faire intervenir des propriétés des π_1 des $\mathcal{M}_{g,\nu,\overline{Q}}$, liées à la compactification. Ce n'est guère que dans le cas de $(g,\nu)=(0,3)$ qu'il ne faut pas s'attendre du tout à ce genre de condition.

Appelons "courbe algébrique potentielle" (sous-entendu, sur une clôture algébrique non précisée de Q) la donnée d'un groupe extérieur profini π à lacets de type (g, v), muni d'une arithmétisation a, et d'un germe de relèvement "admissible"

$$(16) \Gamma_a^{\natural} \longrightarrow \mathcal{N}_a.$$

Elles forment une catégorie (pour les isomorphismes, pour le moment); si on se donne un torseur P sous $\Pi_{g,\nu}$ (ce qui, moralement, revient à se donner une clôture algébrique \overline{Q} de Q...) les courbes potentielles de type (g,ν) relatives à ce torseur (moralement, correspondant à des courbes algébriques sur $\overline{Q}...$) sont celles munies en plus d'un isomorphisme ("intérieur")

$$\mathbb{P}_{a} \xrightarrow{\sim} P$$

(définissant un isomorphisme

(18)
$$\Gamma_a \longrightarrow \Gamma_P = \operatorname{Aut}_{\Gamma_{g,y}}(P).$$

Cette fois-ci, on s'attend à trouver des ensembles d'isomorphismes *finis*, au lieu de torseurs sous des groupes profinis considérables ⁵¹.

On considère les *points* de π , comme les classes de π -conjugaison de relèvements "admissibles" de (16) en

(19)
$$\Gamma_a^{\natural} \longrightarrow \mathscr{M}_a \subset \hat{\hat{\mathfrak{Z}}}(\pi)$$

$$1 \longrightarrow \hat{\mathfrak{T}}_{\alpha} \longrightarrow \hat{\mathcal{N}}_{\alpha} \longrightarrow \mathbf{I}\Gamma_{\alpha} \longrightarrow 1$$

⁵¹Le cas où P est le torseur trivial est celui des π [extérieurs?] munis d'une prédiscrétification orientée α ; d'où une suite exacte:

i.e. un germe de vraie action de Γ_a sur π avec $\pi^{\Gamma_a^{\dagger}} = 1$ ceci pour l'admissibilité.

Question liminaire: La connaissance de π , de $\Sigma_a = \hat{\mathfrak{X}}_a^+ \subset \hat{\mathfrak{Z}}(\pi)$, et d'un sous-groupe $\Gamma \subset \hat{\mathfrak{Z}}(\pi)$ (normalisant Σ_a , tel que $\Gamma' \cap \Sigma_a = \{1\}$) permet-elle de retrouver l'arithmétisation de π – et, pour commencer, de retrouver \mathcal{N}_a (dans lequel $\Gamma \cdot \Sigma$ est d'indice fini)? Il suffirait, pour pouvoir répondre par l'affirmative, de savoir que tout isomorphisme extérieur $\pi \longrightarrow \pi_{g,\nu}$, qui envoie Σ sur $\hat{\mathfrak{X}}_{g,\nu} = \Sigma_{g,\nu}$, et tout sous-groupe d'indice fini $\Gamma' \cdot \Sigma$ de \mathcal{N}_a dans $\mathcal{N}_{g,\nu}$, est compatible avec les arithmétisations. Or ceci revient exactement à:

(g) (facultatif, quand-même!) Pour tout sous-groupe ouvert \mathcal{N}' de $\mathcal{N}_{g,\nu}$, les éléments de $\hat{\hat{\mathfrak{X}}}_{g,\nu}$ normalisant $\hat{\mathfrak{X}}_{g,\nu}$ et qui transportent \mathcal{N}' dans $\mathcal{N}_{g,\nu}$, sont dans $\mathcal{N}_{g,\nu}$ (a fortiori $\mathcal{N}_{g,\nu}$ serait son propre normalisateur dans $\operatorname{Norm}_{\hat{\mathfrak{X}}_{g,\nu}}(\hat{\mathfrak{X}}_{g,\nu})$).

Avec les "points de \mathscr{U} " (définis comme classes de conjugaison de relèvements (19)) "admissibles" i.e. satisfaisant (20), on fait un groupoïde, ayant comme groupe fondamental extérieur π , et sur lequel $\Gamma \subset \mathscr{N}_a$ opère strictement (NB. pour se reposer, on se donne maintenant Γ lui-même, pas seulement un germe – moralement, cela signifie qu'on a une courbe définie sur une sous-extension finie K de \overline{Q}/Q ... Les points fixes de Γ correspondent aux points rationnels sur K, les points fixes sous un sous-groupe fermé Γ' aux points rationnels sur la sous-extension K' de \overline{Q}/Q associée à Γ' ...)

Soit maintenant $I' \subset I = I(\pi)$ une partie de I, stable par Γ . On trouve par "bouchage de trous en I'" un groupe extérieur à lacets π' , et un homomorphisme extérieur

$$(20) \pi \longrightarrow \pi'.$$

D'ailleurs π' hérite d'une arithmétisation a' par π – et on aura

donc π' est défini sur la même P que Γ_a (i.e. en faisant des trous dans $\mathscr U$ pour trouver $\mathscr U'$, on n'a pas dérangé le corps de base algébrique absolu \overline{Q} ...). D'ailleurs on aura un homomorphisme canonique

$$\hat{\hat{\mathfrak{Z}}}(\pi) \longrightarrow \hat{\hat{\mathfrak{Z}}}(\pi')$$

induisant

(22)
$$\begin{array}{ccc}
\mathcal{N}_{a} & \longrightarrow \mathcal{N}_{a'} \\
\downarrow & & \downarrow \\
\hat{\mathfrak{X}}_{a} & \longrightarrow \hat{\mathfrak{X}}_{a'}
\end{array}$$

(induisant justement $\Gamma_a \longrightarrow \Gamma_{a'}$ par passage aux quotients), et on trouve, en composant

$$\Gamma \hookrightarrow CN_a \longrightarrow \mathcal{N}_{a'}$$

un homomorphisme également injectif

$$\Gamma \hookrightarrow CN_{a'}$$

qui est une quasi-section de $\mathcal{N}_{a'}$ sur $\Gamma_{a'}$. Donc sous réserve d'admissibilité, on trouve sur π' une structure de courbe algébrique potentielle, relative au même P.

Je suis vraiment gêné aux entournures, faute d'avoir une définition en forme d'"admissible" – je vais y revenir très vite – mais pour le moment, j'ai envie de noter que, si $I' \neq \emptyset$, le groupe extérieur π' peut se décrire par un vrai groupoïde, ayant I' comme ensemble d'objets, et sur lequel Γ opère en sens strict (ceci est de l'algèbre pure, indépendamment des histoires d'arithmétisation...) Le fait que Γ opère trivialement sur les $i' \in I'$ implique que pour tout $i' \in I'$, on a un homomorphisme canonique

(24)
$$\Gamma \longrightarrow \pi'(i')$$

qui relève son action extérieur, d'où une classe de π' -conjugaison de relèvements de l'action extérieure de Γ sur π' en une vraie action de Γ sur π' – on espère qu'elle satisfait $\pi'^{\Gamma}=1$ – et on a donc une application canonique

(25)
$$I' \longrightarrow \operatorname{Pts}(\pi', \alpha', \Gamma).$$

Je dis que cette application est injective. Ceci est "évident" quand on interprète "action extérieure admissible" par "réalisable par une vraie courbe algébrique", et "relèvements admissibles" par "réalisables par des vrais points rationnels sur K, corps des invariants de Γ " ⁵². Mais on voudrait bien sûr des raisons internes à la donnée des $(\mathcal{N}_{g,\nu})$, et des propriétés de ces

⁵²On est ramené au cas Card(I') = 2...

données! Ce point étant admis (en mettant entre parenthèses les deux définitions essentielles d'admissibilité, sur lesquelles on va revenir plus bas) on trouve un foncteur "bouchage de trous" (il faut faire aussi les restrictions anabéliennes habituelles):

Courbes algébriques potentielles sur P relatives à un sous-groupe ouvert Γ \longrightarrow sur P relatives à Γ de Γ_P , et munies d'un ensemble munies d'une partie de l'ensemble I' de points à l'infini QuadQuad des "points invariants sous Γ "

et sauf erreur, il est devenu évident que ce foncteur est une équivalence de catégories [pour les isomorphismes] et comme conséquence, il y a le foncteur en sens inverse: forer des trous en des "points" invariants sous Γ (ou en des points quelconques, quitte à passer à un Γ' plus petit).

Mais je me rends compte que ce n'est pas du tout évident – je vais essayer d'élucider la situation axiomatiquement. On a fixé un genre g, on suppose donné, pour ν variable (tel que (g,ν) anabélien) des sous-groupes fermés $\mathcal{N}_{g,\nu} \subset \hat{\mathfrak{X}}_{g,\nu}$, normalisant $\hat{\mathfrak{X}}_{g,\nu}$, et satisfaisant la condition essentielle que les $\psi_i: \hat{\mathfrak{X}}_{g,\nu} \longrightarrow \hat{\mathfrak{S}}_{g,\nu-1}$ induisent

$$\mathcal{M}_{g,\nu} \xrightarrow{\sim} \mathcal{M}_{g,\nu-1},$$

ce qui permet de définir la notion d'arithmétisation d'un π profini de type (g, v) anabélien, et la théorie du bouchage d'un nombre quelconque de trous, et du forage d'un seul trou, dans la catégorie des groupes de type (g, v) arithmétisés.

On suppose d'autre part donné une sous-catégorie pleine ⁵³ de la catégorie des groupes profinis (qui pourrait se réduire aux sous-groupes ouverts de Γ_g , valeur commune des $\Gamma_{g,\nu}$, ou des sous-groupes ouverts du groupe Γ_a , α une arithmétisation), et une notion d'opérations extérieures "admissibles" de tels Γ sur des π arithmétisés. On suppose

- (1) Si Γ opère admissiblement sur π , tout sous-groupe ouvert aussi (et inversement);
- (2) ⁵⁴ Il suffit de la poser pour Card(I') = 1, i.e. bouchage d'un trou dumoins si on sait que la condition d'admissibilité ne dépend que de l'action des noyaux des groupes. Si de plus Γ invarie une partie I' de $I = I(\pi)$, alors en "bouchant I'", l'opération de Γ sur π' est admissible.

⁾⁴(***)

⁵³On la supposera stable par passage à des sous-groupes ouverts.

Quand on a une action *effective* (pas extérieure) de Γ sur un (π,a) de type (g,ν) , alors le foncteur "forage de trous" donne une action extérieure sur un (π°,a°) de type $(g,\nu+1)$ et on dit que l'action de départ est admissible, si l'action *extérieure* déduite l'est. On trouve ainsi une *équivalence* entre la catégorie des systèmes (π,a,Γ,ψ,i) d'un (π,a) de type $(g,\nu+1)$, avec une opération *extérieure* admissible ψ d'un Γ dessus, et un $i \in I(\pi)$ stable par Γ , avec la catégorie des (π',a',Γ,ψ') des (π',a') de type (g,ν) , avec une *vraie* action admissible ψ' de Γ dessus. La condition (2) assure que si Γ opère effectivement, de façon admissible, alors l'action extérieure déduite est admissible (mais l'inverse ne sera pas vrai – il y aura des relèvements "pathologiques" d'une action extérieure admissible donnée...). On suppose de plus (3) Si Γ opère effectivement de façon admissible sur π , alors $\pi^{\Gamma} = \{1\}$.

Cela implique que la catégorie des Γ -points de π , ou si on veut des sections de $B_{\pi,\Gamma}(\simeq B_u)$ sur B_{Γ} , est rigide. Mais considérons la catégorie limite inductive de la catégorie des sections de $B_{\pi,\Gamma} \simeq B_u$ sur des $B_{\Gamma'}$ (Γ' sous-groupe ouvert); elle est discrète et correspond à l'ensemble

$$\operatorname{Pt}_{ad}(B_{\pi,\Gamma^{
atural}}) \simeq \lim_{\longrightarrow \operatorname{Pt}_{ad}(B_{\pi,\Gamma'})}$$

où l'on prend la limite inductive sur les ouverts Γ' de Γ .

Si $\operatorname{Pt}(B_{\pi,\Gamma}) \neq \emptyset$, alors (du seul fait que $\pi^{\Gamma'} = \{1\}$ pour tout sous-groupe ouvert de Γ) le groupe extérieur π peut être décrit canoniquement par un groupoïde profini $\operatorname{\underline{Pt}}(B_{\pi,\Gamma})$ ayant $\operatorname{Pt}(B_{\pi,\Gamma})$ comme ensemble d'objets 55 , liés par le groupe extérieur π , sur lequel Γ opère en sens strict, le stabilisateur Γ_P de tout point étant ouvert, et $\Gamma_P \longrightarrow \operatorname{Aut}(P)$ ($\simeq \pi$ modulo automorphismes intérieurs) étant continue. On a ici que si à tout $P \in \operatorname{Pt}(B_{\pi,\Gamma})$ on associe la classe d'isomorphie de sections de $B_{\pi,\Gamma}$ sur B_{Γ} , on trouve une bijection – ce qui caractérise le Γ -groupoïde en question à *isomorphisme* unique près. On supposera:

(4) Si Γ opère admissiblement sur (π, a) , alors il existe un sous-groupe ouvert Γ' de Γ dont l'opération extérieure se relève en une opération effective admissible – i.e. $\operatorname{Pt}_{ad}(B_{\Gamma,\pi}) \neq \emptyset$.

Notons que dans la situation envisagée, du bouchage d'un trou $i \in I(\pi)$ d'un π , en plus de l'homomorphisme

$$\hat{\hat{\mathfrak{Z}}}(\pi)_i \xrightarrow{\phi_i} \hat{\hat{\mathfrak{S}}}(\pi'_i)$$

⁵⁵Le groupoïde à opérateurs stricts $\underline{\text{Pt}}(B_{\pi,\Gamma})$ dépend fonctoriellement de (π,Γ) , pour des morphismes extérieurs [??].

associé, donnant par composition

$$\hat{\hat{\mathfrak{Z}}}(\pi)_i \xrightarrow{\psi'_i} \hat{\hat{\mathfrak{Z}}}(\pi'_i)$$

d'où une action extérieure de $\hat{\hat{\mathbf{x}}}(\pi)$ sur π'_i , de façon que les $\pi \xrightarrow{p_i} \pi'_i$ commutent aux actions extérieures de $\hat{\hat{\mathbf{x}}}(\pi)$, on a un homomorphisme canonique d'extensions, provenant de cette action extérieure et de l'homomorphisme $p_i : \pi \longrightarrow \pi'_i$;

$$1 \longrightarrow \pi \longrightarrow \hat{\mathfrak{S}}(\pi)_{i} \longrightarrow \hat{\mathfrak{X}}(\pi)_{i} \longrightarrow 1$$

$$\downarrow p_{i} \qquad \downarrow \varphi_{i} \qquad \downarrow \psi'_{i} \qquad \downarrow \psi'_{i} \qquad \downarrow \uparrow \qquad \downarrow \psi'_{i} \qquad \downarrow \uparrow \qquad \downarrow \downarrow \qquad \downarrow \uparrow \qquad \downarrow$$

qui n'est pas le composé

$$\hat{\hat{\mathfrak{S}}}(\pi)_i \longrightarrow \hat{\hat{\mathfrak{Z}}}(\pi)_i \xrightarrow{\psi_i} \hat{\hat{\mathfrak{S}}}(\pi'_i)$$

(il peut se définir chaque fois qu'on a un groupe Γ , i.e. $\hat{\mathfrak{Z}}(\pi)$, qui commute extérieurement sur deux groupes extérieurs π , π' , et qu'on a un homomorphisme p_i $\pi \longrightarrow \pi'$ qui commute à l'action de Γ , et tel que le centre de π et le centralisateur de son image dans π' soient triviaux...) C'est aussi ici l'homomorphisme de "transport de structure", qui pour tout automorphisme à lacets u de π , associe l'automorphisme correspondant de π'_i . On a oublié de préciser:

(g) L'homomorphisme canonique $(\hat{\mathfrak{S}}_{g,\nu})_i \longrightarrow \hat{\mathfrak{S}}_{g,\nu-1}$ associé à $i \in [0,\nu-1]$ envoie $(\mathcal{M}_{g,\nu})_i$ dans $\mathcal{M}_{g,\nu}$, donc il s'insère dans un homomorphisme de suites exactes:

(26)
$$1 \longrightarrow \pi \longrightarrow \mathcal{M}_{a}(\pi)_{i} \longrightarrow \mathcal{N}_{a}(\pi)_{i} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow \pi'_{i} \longrightarrow \mathcal{M}_{a'}(\pi'_{i}) \longrightarrow \mathcal{N}_{a'}(\pi'_{i}) \longrightarrow 1$$

Ceci posé, si on a une opération extérieure admissible $\Gamma \longrightarrow \mathcal{N}_a(\pi)$ de Γ sur π , fixant i, donc aussi par exemple $\mathcal{N}_a(\pi) \longrightarrow \mathcal{N}_{a'}(\pi')$ sur π'_i , on peut considérer que tout relèvement $\Gamma \longrightarrow \mathcal{M}_a(\pi)$ pour π définit par composition un relèvement $\Gamma \longrightarrow \mathcal{M}_{a'}(\pi'_i)$ pour π'_i . On conclut aisément de (2) que si le premier est admissible, le deuxième l'est. On trouve donc

(27)
$$\operatorname{Pt}_{ad}(B_{\pi,\Gamma}) \longrightarrow \operatorname{Pt}_{ad}(B_{\pi',\Gamma})$$

et en passant à la limite, une application de Γ -ensembles:

(28)
$$\operatorname{Pt}_{ad}(B_{\pi,\Gamma^{\natural}}) \longrightarrow \operatorname{Pt}_{ad}(B_{\pi',\Gamma^{\natural}})$$

- qui correspond d'ailleurs à un homomorphisme de Γ-groupoïdes

(29)
$$\underline{\operatorname{Pt}}_{ad}(B_{\pi,\Gamma^{\natural}}) \longrightarrow \underline{\operatorname{Pt}}_{ad}(B_{\pi',\Gamma^{\natural}}).$$

Ceci posé, soit $P \in \operatorname{Pt}_{ad}(B_{\pi'_i,\Gamma})$ le "point canonique" de $\operatorname{Pt}_{ad}(B_{\pi'_i,\Gamma}) = \left(\operatorname{Pt}_{ad}(B_{\pi'_i,\Gamma})\right)^{\Gamma}$. On demande:

(5) L'application (27) induit une bijection

$$\operatorname{Pt}_{ad}(B_{\pi,\Gamma}) \longrightarrow \operatorname{Pt}_{ad}(B_{\pi',\Gamma}) \setminus \{P\}$$

ou encore (passant à la limite) une bijection de Γ -ensembles

$$\operatorname{Pt}_{ad}(B_{\pi,\Gamma^{\natural}}) \xrightarrow{\sim} \operatorname{Pt}_{ad}(B_{\pi'_{\cdot},\Gamma^{\natural}}) \setminus \{P\}.$$

Ceci signifie trois choses:

- (a) L'homomorphisme canonique $\Gamma \longrightarrow \mathcal{M}_{a'}(\pi'_i)$, composé de $\Gamma \longrightarrow \mathcal{N}_a(\pi)$ et de $\mathcal{N}_a(\pi) \stackrel{\sim}{\longrightarrow} \mathcal{M}_{a'}(\pi'_i)$, n'est pas π'_i -conjugué à un homomorphisme composé $\Gamma \stackrel{\lambda}{\longrightarrow} \mathcal{M}_a(\pi) \stackrel{\varphi_i}{\longrightarrow} \mathcal{M}_{a'}(\pi'_i)$, où $\Gamma \stackrel{\lambda}{\longrightarrow} \mathcal{M}_a(\pi)$ est un relèvement admissible.
- (b) Si $\lambda, \mu : \Gamma \longrightarrow \mathcal{M}_a(\pi)$ sont deux relèvements admissibles de $\Gamma \longrightarrow \mathcal{N}_a(\pi)$ tels que $\varphi_i \circ \lambda$ et $\varphi_i \circ \mu : \Gamma \longrightarrow \mathcal{M}_a(\pi)$ soient π_i' -conjugués, alors λ et μ sont déjà π -conjugués.
- (c) Tout relèvement admissible de $\Gamma \longrightarrow \mathcal{N}_{a'}(\pi'_i)$ en $\Gamma \longrightarrow \mathcal{M}_{a'}(\pi'_i)$, provient par composition d'un relèvement admissible $\Gamma \longrightarrow \mathcal{M}_a(\pi)$.

Grâce à ceci: l'équivalence de categories entre systèmes $(\pi,a,i,\Gamma,\theta:\Gamma\longrightarrow \mathcal{N}_a)$ et les systèmes $(\pi',a',\Gamma,\theta':\Gamma\longrightarrow \mathcal{N}_{a'},P)$, où $P\in \operatorname{Pt}(B_{\pi',\Gamma^\natural})^\Gamma$, se précise de façon parfaite au niveau des points: les points Γ-rationnels de B_π s'identifient à l'un des pts Γ-rationnels de $B_{\pi'}$, distincts de P.

Ceci nous permet alors (ce qui n'était pas faisable dans le contexte discret!) d'étendre l'équivalence de catégories en une équivalence:

[Catégorie des systèmes $(\pi, \alpha, I', \Gamma, \theta : \Gamma \longrightarrow \mathcal{N}_{\alpha})$ d'un π arithmétisé par α de type (g, v) avec $2g + (v - \operatorname{card}(I')) \ge 3$, de $I' \subset I(\pi)$, d'une action *admissible* extérieure de Γ sur π telle que Γ fixe chaque point de I']

[Catégorie des systèmes $(\pi', \alpha', I', \Gamma, \theta' : \Gamma \longrightarrow \mathcal{N}_{\alpha'})$ d'un π' arithmétisé par α' de type (g, v') [$v' = v - \operatorname{card}(I')$] avec opération extérieure admissible de Γ dessus, et une partie $I' \subset \operatorname{Pt}_{ad}(B_{\pi',\Gamma})$ (donc $I' \subset \operatorname{Pt}_{ad}(B_{\pi',\Gamma})^{\Gamma}$), i.e. I' formé de points invariants par Γ , i.e. " Γ -rationnels"].

On a alors un foncteur quasi-inverse: forage de trous en I'! Il est à noter que dans cette approche, on a dû se borner au cas d'un ensemble de points $I' \subset I(\pi)$, non seulement stable par Γ , mais inclus dans I^{Γ} , ou encore à une partie $I' \subset \operatorname{Pt}(B_{\pi',\Gamma^{\natural}})$ non seulement stable par Γ , mais même dans $\operatorname{Pt}(B_{\pi',\Gamma^{\natural}})^{\Gamma}$. Pour montrer que sans cette restriction, le foncteur naturel correspondant est néanmoins une équivalence, on est ramené à ceci:

(6) Soit $(\pi, a, I' \subset I(\pi))$ avec (π, a) groupe à lacets extérieur profini arithmétisé de type (g, ν) , d'où (π', a') – soit Γ , avec Γ' sous-groupe ouvert opérant sur (π, a) de façon admissible $(\Gamma \longrightarrow \mathcal{N}_a(\pi))$, et laissant stable I', donc il opère de façon admissible sur (π', a') . Supposons donné un *relèvement* de cette action de Γ' en une action admissible de Γ sur $\mathcal{N}_{a'}$, qui invarie $I' \subset \operatorname{Pt}(B_{\pi',\Gamma^{\dagger}}) \simeq \operatorname{Pt}(B_{\pi',\Gamma^{\dagger}})$ [cf. le diagramme],

Alors il existe une action admissible unique de Γ sur (π,a) , qui prolonge celle de Γ' et qui donne naissance à celle donnée sur π' .

L'unicité est-elle de toutes façons claire? Considérons l'extension E de Γ par $L = \operatorname{Ker}((\mathcal{N}_a)_{I'} \longrightarrow \mathcal{N}_a)$, image inverse de l'extension $(\mathcal{N}_a)_{I'}$ (de $\mathcal{N}_{a'}$ pas L) via $\Gamma \longrightarrow \mathcal{N}_{a'}$, on a un scindage partiel de cette extension au dessus du sous-groupe Γ' de Γ , et l'assertion est que ce scindage se prolonge, de façon unique à Γ . On peut supposer Γ' invariant dans Γ , et on identifie Γ' à un sous-groupe de E. Toutes les sections de E sur Γ s'identifient à des sous-groupes, sections $\widetilde{\Gamma}$ de E. Pour un tel $\widetilde{\Gamma}$, on a bien sûr $\widetilde{\Gamma} \subset \operatorname{Norm}_E(\Gamma')$, d'ailleurs on a évidemment:

(31)
$$\operatorname{Norm}_{E}(\Gamma') \cap L = L^{\Gamma'}$$

et je présume qu'on doit avoir $L^{\Gamma'}=1$ (qui généralise la condition (3) plus haut...) Or cette condition implique l'unicité – savoir $\widetilde{\Gamma}=\operatorname{Norm}_E(\Gamma')$ et l'existence signifie que

 $\operatorname{Norm}_{E}(\Gamma') \longrightarrow \Gamma$ est un épimorphisme (donc un isomorphisme...).

Mais il faudra essayer de préciser, dans certains contextes (au moins celui des actions arithmétiquement fidèles, i.e. $\Gamma \longrightarrow \mathbb{F}_a$ injectif – qui correspond normalement au cas des courbes algébriques définies sur des extensions *algébriques* de Q) – la notion d'action "admissible". Pour ceci, on doit revenir sur la relation entre courbes (potentielles) et revêtements finis, ce qui donne aussi une façon de faire varier g.

Mais j'ai envie d'abord de reprendre sous un autre aspect (peut-être plus général) le formalisme précédent, qui peut-être aussi s'applique au cas des groupes discrets à lacets (je pense au formalisme des $\mathscr{U}^!$, lié aux actions extérieures de groupes finis sur de tels groupes à lacets). Soit \mathscr{X} un ensemble $\neq \varnothing$ (moralement, un ensemble de "points" d'une courbe algébriques, ou d'une surface topologique...); on suppose donné, pour toute partie finie I de \mathscr{X} , de complémentaire $\mathscr{U}_I = \mathscr{X} \setminus I$, un groupoïde $\Pi_{\mathscr{U}_I}$, ayant \mathscr{U}_I comme ensemble d'objets. De plus, pour $J \supset I$ i.e. $\mathscr{U}_I \subset \mathscr{U}_I$, on suppose donné un homomorphisme de groupoïdes

$$\Pi_{\mathcal{U}_I} \longrightarrow \Pi_{\mathcal{U}_I}$$

qui sur les objets soit l'inclusion $\mathcal{U}_J \hookrightarrow CU_I$. On supposera la transitivité (stricte) i.e. [l'existence d']un foncteur covariant de la catégorie des parties \mathcal{U} de \mathcal{X} complémentaires de parties finies ⁵⁶ (avec les inclusions), vers la catégorie des groupoïdes, qui sur l'ensemble d'objets coïncide avec le foncteur évident... On suppose de plus que pour tout $i \in I$, on se donne un groupoïde Π_i (ou $\Pi_{D_i^*}$), et pour $i \in I \in \mathfrak{P}_f(\ref{fig:prop})$ un homomorphisme de groupoïdes

$$\Pi_{D_i^*} \longrightarrow \Pi_{\mathcal{U}_I}$$

compatible avec les morphismes de transition $\pi_{\mathscr{U}_I} \longrightarrow \pi_{\mathscr{U}_J}$, $I \supset J$. On suppose que pour I fixé, on trouve sur $\Pi_{\mathscr{U}_I}$ une structure de groupoïde à lacets par

$$\Pi_{D_i^*} \longrightarrow \Pi_{\mathscr{U}_I}$$

 $^{^{56}}$ Si $\mathscr X$ est fini et $I=\mathscr X$, on suppose que cependant $\Pi_{\mathscr U_I}(=\Pi_{\varnothing})$ n'est pas le groupoïde vide, mais un groupoïde (qui s'envoie dans les précédents...) mais on ne pourra pas exiger la transitivité stricte Il faudrait peut-être faire des hypothèses anabéliennes sur $\Pi_{\mathscr U_I}$.

sans d'ailleurs exclure le cas où $I=\emptyset$, et où $(\Pi_{\mathscr{X}}$ étant connexe, disons) le genre *est* 0. On suppose de plus que si $J\supset I$ i.e. $\mathscr{U}_I\subset \mathscr{U}_I$, et pour $i\in J\setminus I$, l'homomorphisme composé

$$\Pi_{D_i^*} \longrightarrow \Pi_{\mathscr{U}_I} \longrightarrow \Pi_{\mathscr{U}_I}$$

soit "constant", de telle façon que $\Pi_{\mathcal{U}_I}$ se déduise de $\Pi_{\mathcal{U}_I}$ par "bouchage des trous" en $J \setminus I$.

Jusqu'à présent, tout ceci pouvait se visualiser par exemple en partant d'une surface topologique orientable X, et d'une partie $\mathscr X$ de X rencontrant toute composante connexe, en prenant pour Π_I la restriction à $\mathscr X\setminus I$ du groupoïde fondamental de $X\setminus I$ (si $I\neq\mathscr X$; si $\mathscr X=I$, ce qui exige $\mathscr X$ fini, on prendra le groupoïde fondamental de $X\setminus I=X\setminus\mathscr X$, qu'on aura du mal à envoyer dans les autres avec transitivité *stricte*, qu'à cela ne tienne!) Mais, on est surtout interessé au cas $\mathscr X$ infini. Où on prend X courbe algébrique sur un corps algébriquement clos, $\mathscr X$ partie de X rencontrant toute composante connexe, et on définit les $\Pi_{\mathscr U_I}$ comme précédemment.

Soit maintenant Γ une groupe qui opère sur la situation (*strictement*, s'entend), donc sur l'ensemble \mathscr{X} , les groupoïdes $\Pi_{\mathscr{U}_I}$, les $\Pi_{D_i^*}$ (NB qu'il permute entre eux), en commutant aux homomorphismes

$$\Pi_{\mathcal{U}_I} \longrightarrow \Pi_{\mathcal{U}_I}$$
 et les $\Pi_{D_i^*} \longrightarrow \Pi_{\mathcal{U}_I}$.

(On aura des difficultés, si $\mathscr X$ est fini, pour $\Pi_{\mathscr U_I}$ quand $I=\mathscr X$, pour la commutation stricte des $\Pi_{\mathscr U_{\mathscr X}} \longrightarrow \Pi_{\mathscr U_J}$...mais passons...) Nous supposons définie une notion de sous-groupe admissible de Γ (ils sont en tout cas $\neq \{1\}$) telle que si Γ' est admissible alors tout sous-groupe $\Gamma'' \supset \Gamma'$ aussi.

On suppose

(1°) $\forall P \in \mathcal{X}, \Gamma_P \neq \{1\}$, et Γ_P d'indice fini dans Γ (i.e. l'orbite de P finie).

Nous voulons des conditions qui assurent que \mathscr{X} et les $\Pi_{\mathscr{U}_I}$ etc. peuvent se reconstruire à isomorphisme canonique près à l'aide des données purement groupoïdiques ou topossiques (à opérateurs Γ) correspondantes. On peut le dire en langage topossique savant, mais on va l'exprimer en termes de théorie des groupes à lacets. Soit I une partie de \mathscr{X} stable par Γ , on voudrait poser des conditions qui permettent d'exprimer (pour tout tel I) la situation des groupoïdes Π_V associés aux $V \supset \mathscr{U}_I$ (i.e. les \mathscr{U}_I avec $I \subset I$), les $\Pi_{D_i^*}$ ($i \in I$) et l'opération de Γ dessus, en termes des seules opérations de Γ sur le groupe extérieur à lacets $\pi_1(\Pi_{\mathscr{U}_I})$ associé à I ou plutôt (car cela est immédiat, par l'opération de forage de trous), en sens inverse, montrer

comment, sous réserve d'anabélianité, disons de $\Pi_{\mathscr{X}}$ (pour fixer les idées), on peut plus ou moins reconstituer $\Pi_{\mathscr{U}_I}$ et l'action de Γ dessus..., à partir de $\Pi_{\mathscr{X}}$ (ou plutôt, du topos $B_{\Pi_{\mathscr{X}}}$), et de l'action de Γ dessus. On veut au moins une description intrinsèque des éléments de \mathscr{X} et de l'action de Γ dessus, via cette action "molle" – qui, pour \mathscr{X} connexe, revient encore à une action extérieure de Γ sur un groupe à lacets (sans lacets!) π ...

Une première condition, sous forme faible, est que (supposant $\mathscr X$ connexe, et appelant $\pi(I)$ le groupe extérieur $\pi_1(\Pi_{\mathscr U_I})$, pour tout partie finie I de $\mathscr X$) que pour $\pi(I)$ anabélien (ce qui sera le cas pour I "assez grand", du moins si $\mathscr X$ est infini, donc qu'on puisse prendre I de cardinal arbitrairement grand…) l'application évidente

classesde

 $\pi(I)$ -conjugaison $U_I \longrightarrow \operatorname{Pt}(B_{\pi(I),\Gamma^{\natural}}) \stackrel{\sim}{\longrightarrow} degermes descindage de l'extension \operatorname{E}(I)(2^\circ)(compatible avec le soit injective. Mais pour aller plus loin, il faudrait pouvoir donner une caractérisation de l'image. Notons (nous plaçant dans le contexte profini désormais) que si on se donne sur les <math>\pi(I)$ des arithmétisations, compatibles avec les homomorphismes extérieurs de bouchage de trous $\pi(I) \longrightarrow \pi(J)$, et avec l'action de Γ sur les $\pi(I)$, on a donc un homomorphisme canonique de Γ dans le groupe commun Γ des automorphismes arithmétiquement extérieurs de ces arithmétisations (et même $\Gamma \longrightarrow \mathcal{M}_{\pi(\theta)=\pi}$, ce qui est déjà une donnée nettement plus forte). On peut donc supposer donnée une notion de relèvement admissible d'une telle action arithmétiquement extérieure, de telle façon que l'application (2°) soit une bijection

$$\mathscr{U}_I = \mathscr{X} \setminus I \stackrel{\sim}{\longrightarrow} \operatorname{Pt}_{ad}(B_{\pi(I),\Gamma^\natural}).$$

Ceci signifie d'ailleurs, pratiquement, que la notion d'admissibilité satisfait aux conditions (1°) à (6°) vues ci-dessus.

Quant à savoir ce qu'il y a lieu d'appeler opération extérieure "admissible" de Γ sur un groupe extérieur profini à lacets, cela reste pour le moment conjectural. On pourrait à titre expérimental conjecturer que la notion qui suit marcherait. Appelons "admissible" toute telle action

$$\Gamma \longrightarrow \hat{\hat{\mathfrak{Z}}}(\pi)$$

qui respecte une arithmétisation a, i.e. qui se factorise par le \mathcal{N}_a correspondant, telle que l'image de $\Gamma \longrightarrow \mathcal{N}_a/\hat{\mathfrak{T}} = \mathbb{F}_a$ soit ouverte, et que pour tout homomorphisme de bouchage

de trous en $i \in I(\pi)$, $\pi \longrightarrow \pi'_i$, $\mathcal{N}(\pi)_i \longrightarrow \mathcal{M}(\pi'_i)$, l'homomorphisme correspondant de Γ_i ni d'aucun sous-groupe ouvert Γ de Γ_i , ne normalise un L'_j , $j \in I(\pi'_i) = I \setminus \{i\}$; peut-être même faudrait-il imposer que $\pi^{(\Gamma'^+)} = \{1\}$, où Γ'^+ est le noyau de $\Gamma' \xrightarrow{\chi} \hat{\mathbb{Z}}^*$ – en tout cas on s'attend à ce que l'on ait alors $\pi^{\Gamma'} = \{1\}$, et si ce n'était le cas, il faudrait l'introduire dans la définition – pour chaque opération de bouchage de trous relatif à $I' \subset I(\pi)$, et un choix d'un $i \in I'$, permettant de définir $\Gamma_{(I',i)} \longrightarrow \mathcal{M}(\pi(I')))^{57}$.

Notons qu'une vraie action de Γ sur π (pas seulement extérieure) qui relève une action donnée "admissible", est elle-même admissible (en ce sens qu'elle définit une action extérieure admissible sur un π' de type (g,v+1)), si et seulement si cette action ou plutôt son germe, ne normalise aucun L_i ($i \in I(\pi)$), et qu'il en soit de même pour l'action induite sur chaque $\pi(I')$ ($I' \subset I = I(\pi)$) [il suffit de prendre les $\pi(I')$ pour I' de la forme $I \setminus \{j\}$, $j \in I$, du moins si $g \neq 0$] – et qu'enfin l'action de Γ^{\natural} sur $\pi'(I)$ (déduite de π' en bouchant les trous en I, de sorte que $\pi'(I)$ a une seule classe de lacets; $\pi'(I)$ se déduit aussi de l'action effective de Γ sur $\pi(I)$ – avec 0 classe de lacets – en faisant "un trou" correspondant – relatifs à un point $i \in I$), ne normalise pas de sous-groupe lacets... Mais je présume que la première condition (action de Γ^{\natural} ne normalisant aucun des L_i) implique les autres. Mais il faut dans la définition d'admissibilité aussi tenir compte de la condition (4°), qui implique l'existence de suffisamment de relèvements...

J'en arrive (péniblement!) à une

Conjecture provisoire profinie ⁵⁸ Pour Γ groupe profini donné, une action extérieure sur un (π,a) arithmétisé anabélien de type (g,v) est dite *admissible*, si

- a) L'homomorphisme $\Gamma \longrightarrow \mathbb{F}_a$ a une image ouverte
- b) Les actions effectives déduites par bouchages de trous $(i' \in I' \subset I = I(\pi))$ ne normalisent pas de sous-groupe à lacets.
- c) Il existe une infinité de classes de π -conjugaison de germes de scindages de l'extension de Γ par π , qui ne normalisent aucun sous-groupe à lacets de π ⁵⁹Cette condition c) exclut

⁵⁷Plus généralement, pour $i \in I' \subset I = I(\pi)$ on impose que la [??] action de Γ'_I sur $\pi(I')$ correspondant à i ne normalise aucun sous-groupe L_j $(j \in I \setminus I')$. On est ramené pour ceci au cas où $I' = I \setminus \{j\}$, donc où $\pi(I')$ n'a qu'une seule classe de lacets... (si $g \ge 1$)

⁵⁸Canulé, cf. plus bas...

⁵⁹(***)

sans doute des cas comme $\Gamma = \mathcal{N}_{g,\nu}$ avec $(g,\nu) \neq (0,3)$, car l'extension $\mathcal{M}_{g,\nu}$ de $\mathcal{N}_{g,\nu}$ par $\hat{\pi}_{g,\nu}$ n'admet sans doute pas de germe de scindage - ce qui est équivalent (?) au fait que $\mathcal{U}_{g,\nu}$ sur $\mathbb{M}_{g,\nu}$ n'admet pas de multisection étale....

Une action effective de Γ sur π est dite effective, si l'action extérieure est effective, et si elle ne normalise aucun sous-groupe à lacets.

Ceci posé:

a) Si Γ opère effectivement de façon admissible, on a

$$\pi^{\Gamma} = \{1\}$$

(peut-être même $\pi^{\Gamma^+} = \{1\}$).

- b) Si $i \in I$ est stable par Γ opérant extérieurement de façon admissible, alors l'action effective sur $\pi' = \pi(i)$ ne normalise aucun L'_i $(j \in I \setminus \{i\})$.
- c) Si Γ opère effectivement sur π de façon admissible, en laissant fixe $i \in I$, alors l'action correspondante effective (par passage au quotient) sur $\pi' = \pi(i)$ ne normalise aucun L_j , $j \in I \setminus \{i\}$).
 - d) Si Γ opère effectivement sur π de façon admissible, alors l'application

$$\operatorname{Pt}_{ad}(B_{\pi,\Gamma^{\natural}}) \longrightarrow \operatorname{Pt}_{ad}(B_{\pi',\Gamma^{\natural}})$$

définie par c) est *injective*, et le complémentaire de son image est égal à $\{P\}$, où P est défini par le "trou" i.

Mais cette dernière partie de l'assertion, allant au-delà de la seule *injectivité* – et caractérisant l'image, me semble maintenant tout à fait douteuse – en effet, il suffit de regarder un schéma S de paramètres, de type fini sur Q (un $K(\pi,1)$ de préférence, par exemple une courbe algébrique) et de prendre pour Γ (non le groupe fondamental de son point générique, i.e. d'un corps, mais) le groupe fondamental de S lui-même. La donnée d'une action extérieure admissible de Γ sur un π correspond moralement à celle d'une famille de courbes $\mathscr U$ de type g, ν paramétré par S. 60 La condition c) est vérifiée par exemple si $\mathscr U$ provient d'une courbe algébrique sur le corps de base lui-même, donc pas de problème – et il est manifeste

 $^{^{60}}$ Les scindages d'extensions correspondent aux section de $\mathscr U$ sur S.

que la surjectivité déconne. La difficulté provient du fait que deux actions distinctes de $\mathscr U$ sur S peuvent ne pas être disjointes!

Il faut pouvoir parler de sections "strictement distinctes" i.e. distinctes en tout point de S – ce qui, en traduction profinie, revient à comparer deux scindages de l'extension de Γ par π , avec les germes de scindages sur $\Gamma' \subset \Gamma$ de Γ (en tant qu'extension de Γ_Q par une partie géométrique) qui correspondent aux points de S – i.e. les (germes de scindage) admissibles justement. On a l'impression de tourner dans un cercle vicieux ou presque – il semblerait qu'il ne faudrait pas trop vouloir avaler à la fois – traiter d'emblée *tous* les groupes profinis Γ à la fois – mais plutôt se borner d'abord à ceux qui moralement, correspondent à des π_1 de schémas de type fini sur Q, des $K(\pi,1)$ disons, ou même des variétés élémentaires à la Artin – et dans les définitions resp. conjectures se tirer par les lacets des souliers, en récurrant sur la dimension. Au premier cran donc (dimension 0) on se bornerait à des actions de groupes Γ qui soient (modulo tout au moins passage à un sous-groupe ouvert) "arithmétiquement fidèles", par exemple $\Gamma \longrightarrow \Gamma_a$ injectif. Dans ce cas-là, la conjecture telle qu'elle est énoncée tantôt semble raisonnable, ou du moins pas nécessairement déconnante. Le test décisif, il est vrai, serait la possibilité d'obtenir les "courbes" ainsi définies comme des revêtements de $\mathbb{P}^1 \setminus \{0,1,\infty\}$...

§ 33. — DIGRESSION TOPOLOGIQUE

Anti-involutions des surfaces orientées algébroïdes

(61) On appelle surface algébroïde une surface U de la forme $X \setminus S$, X surface compacte orientable, S fini. Alors X est determinée à homéomorphisme unique près comme "compactifié pur" de U; on la note \hat{U} . Les homéomorphismes de U avec lui-même s'identifient aux homéomorphismes de X qui appliquent S dans lui-même. Les orientations de X sont en correspondance 1-1 avec celles de U. Le anti-involutions de U (supposées orientées) sont en correspondance 1-1 avec celles de X qui conservent S.

On trouve alors une équivalence entre la catégorie des surfaces orientées algébroïdes U munies d'une anti-involution σ , et des surfaces à bord compactes Y, munies d'une partie finie T; à (U,σ) correspond $(\hat{U}/\sigma,(\hat{U}\setminus U)/\sigma)$ – et à (Y,T) correspond $\widetilde{Y}\setminus\widetilde{T}$, où \widetilde{Y} est le "double orienté" de Y (qui est une surface orientée compacte), et \widetilde{T} est l'image inverse de T dans \widetilde{Y} .

Nous nous intéressons maintenant au cas où U est connexe de type (g,v), en examinant d'abord le cas v=0, i.e. $U=\hat{U}$, $S=\varnothing$ (auquel le cas général se ramènera). La condition v=0 correspond au cas où $T=\varnothing$ – donc les U=X envisagés s'identifient aux doublements orientés de certaines variétés à bord compactes Y. Lesquelles? Evidemment il faut que Y soit connexe, et non orientable 62 . Donc Y est caractérisé, à homéomorphisme près, par son genre

⁶¹Finalement je ne regarde que les surfaces compactes – pourtant le cas non compact serait aussi très intéressant à regarder – pour essayer de retrouver par voie algébrique, sur l'automorphisme extérieur d'ordre 2 du π_1 , la disposition des "points à l'infini" de la courbe sur les composantes connexes de $X^{\sigma} = \hat{U}$.

 $^{^{62}}$ Ce n'est pas vrai que Y soit nécessairement non orientable – seulement dans le cas où $X^{\sigma} = \emptyset$.

 γ et le nombre μ des composantes connexes du bord – il peut se déduire du plan projectif réel Y_0 en y découpant γ rondelles disjointes, et y recollant des rubans de Möbius, puis en découpant encore μ rondelles ouvertes – ce qui donne

$$\chi(Y) = \chi(Y_0) - \gamma \chi_!$$
 (rondelles ouvertes) + $\gamma \chi_!$ (rubans de Möbius ouverts)

$$-\mu \chi_!$$
 (rondelles ouvertes)

[où $\chi(Y_0) = 1$ et $\chi_!$ (rondelle ouverte) = 1]. Or le ruban de Möbius ouvert (déduit de Y_0 en enlevant une rondelle fermée) a un $\chi_!$ égal à $\chi(Y_0) - \chi_!$ (rondelle fermée), soit 1 - 1 = 0, d'où

$$\chi(Y) = 1 - (\gamma + \mu),$$

pour une surface Y compacte connexe avec un bord à μ composantes non orientable de genre γ .

D'autre part, on a

$$\chi(X) = \chi(X \setminus X^{\sigma});$$

or X^{σ} est une réunion de cercles donc son χ est nul. Or, comme $X \setminus X^{\sigma}$ est un revêtement étale d'ordre 2 de Y, on a

$$\chi(X \setminus X^{\sigma}) = 2\chi(\operatorname{Int}(Y))$$

enfin

$$\chi(Y) = \chi(Y \setminus \partial Y) = \chi(\text{Int}(Y));$$

pour la même raison que tantôt $(\chi(\partial Y) = 0)$, d'où enfin

(2)
$$\chi(X) = 2\chi(Y) = 2(1 - (\gamma + \mu)),$$

ou encore, puisque $\chi(X) = 2 - 2g$

$$g = \gamma + \mu.$$

Donc on trouve

Proposition: ⁶³ La catégorie des surfaces orientées connexe compactes de genre g munies d'une anti-involution σ est équivalente à celle des variétés compactes à bord *non orientables*, de type (γ, ν) (γ le genre, μ le nombre de trous), avec $\gamma + \nu = g$.

⁶³Non, on ne trouve qu'une sous-catégorie pleine de celle de tous les (X, σ) . Il y a d'autre part aussi les doublements orientés $\coprod_{\partial Y} Y$ des surfaces *orientables* compactes à bord non vide – si Y est de type (γ, μ) , X est de genre g avec $g = 2\gamma + \mu - 1$ (ou $\gamma \ge 0$, $\mu \ge 1$).

Corollaire: ⁶⁴ Il y a exactement g+1 classes d'isomorphisme de systèmes (X, σ) , classifiés par $\sigma \le \mu \le g$, où $\mu = \operatorname{card}(\pi_0(X^{\sigma}))$.

Si $X=X_g$ est une surface orientée compacte de genre g, cela signifie aussi que dans le groupe $A_g=\operatorname{Aut}(X_g)$, il y a exactement g+1 classes de conjugaison d'éléments σ satisfaisant

(4)
$$\sigma^2 = 1, \operatorname{sg}(\sigma) = +1$$

(i.e. qui soient des anti-involutions). Elles fournissent g+1 classes de conjugaison d'éléments de $A_g/A_g^\circ=\mathfrak{T}_g$, satisfaisant les mêmes relations. Nous montrerons (on l'espère!) que ces classes sont distinctes et que tout $\sigma\in\mathfrak{T}_g$ satisfaisant les relations (4) est dans l'une de ces classes.

On admettra le

Lemme: Toute anti-involution du disque unité ou de C est conjugué de $z \mapsto \overline{z}$, et par suite l'ensemble de ses points fixes est homomorphe à \mathbb{R} , et en particulier est *connexe*.

Théorème: Soit U une surface orientée séparée connexe, paracompacte, non isomorphe à S^2 , σ une anti-involution de U, \widetilde{U} un revêtement universel de U, d'où $\pi = \operatorname{Aut}(\widetilde{U}/U)$ et une extension E de $\mathbb{Z}/2\mathbb{Z}$ par π , formée des automorphismes topologiques de \widetilde{U} compatibles avec la relation d'équivalence définie par $\widetilde{U} \setminus U$, et induisant sur U l'automorphisme idU ou U0. Alors:

- a) (Pour mémoire) U^{σ} est une sous-variété fermée de U de dimension 1.
- b) Pour tout $x \in U^{\sigma}$, on trouve une classe de π -conjugaison de scindages de l'extension E, à la façon habituelle, d'où une application

$$(5) U^{\sigma} \longrightarrow Sc(E, \mathbb{Z}/2),$$

où $Sc(E,\mathbb{Z}/2)$ désigne l'ensemble des classes de π -conjugaison de scindages de E sur $\mathbb{Z}/2\mathbb{Z}$, ou encore des éléments d'ordre 2 de E qui ne sont pas dans π . Cette application se factorise en une *bijection*

(6)
$$\pi_0(U^{\sigma}) \simeq \operatorname{Sc}(E, \mathbb{Z}/2).$$

⁶⁴Ça ne marche qu'en se limitant aux (X, σ) tels que X/σ non orientable – cf. ci-contre (i.e. (*)) pour le cas orientable.

c) Soit Z_i une composante connexe de U^σ , correspondant à un scindage σ_i^- d'ordre 2. Alors

(7)
$$\pi^{\sigma_i} = \{1\} \text{ si et seulement si } Z_i \simeq \mathbb{R}.$$

- d) Si $Z_i \not\simeq \mathbb{R}$, i.e. $Z_i \simeq S^1$, alors, pour une orientation choisie de Z_i , désignant par g_i l'élément de $\pi = \pi_1(U)$ qu'il définit (défini à conjugaison près), et par $\varphi_i : \mathbb{Z} \longrightarrow \pi$ l'homomorphisme $\varphi_i(n) = g_i^n$ de \mathbb{Z} dans π , on a:
 - 1°) φ_i est injectif;
 - 2°) quitte à remplacer φ_i par un conjugué, on a

(8)
$$\pi^{\sigma_i} = \operatorname{Im} \varphi_i.$$

Démonstration. On trouve l'application (5) en prenant, pour tout $x \in U^{\sigma}$, l'opération canonique de $\mathbb{Z}/2\mathbb{Z}$ sur le revêtement universel $\tilde{U}(x)$ ponctuée en x, et en prenant les opérations correspondantes sur \tilde{U} , déduites par les isomorphismes $\tilde{U} \simeq \tilde{U}(x)$. On voit que les opérations σ' obtenues sur \tilde{U} (pour x fixé) sont celles pour lesquelles $\tilde{U}^{\sigma'}$ a un point au-dessus de x – donc l'ensemble des x qui donnent naissance à la classe d'un σ' , sont les éléments de l'image de $\tilde{U}^{\sigma'}$ par la projection $\tilde{U} \longrightarrow U$. Comme par le lemme $\tilde{U}^{\sigma'}$ est non vide et connexe, il s'ensuit que son image dans U^{σ} l'est aussi – on va voir que son image est exactement une composante connexe de U^{σ} – ce qui à la fois prouvera la factorisabilité de (5) par $\pi_0(U^{\sigma})$ (assez triviale de toutes façons) et le fait que l'application déduite de (6) est *bijective*.

Soit \widetilde{Z}_i un revêtement universel de Z_i , et prenons le revêtement universel correspondant \widetilde{U}_i de U, de sorte qu'on a

$$\begin{array}{ccc}
\widetilde{Z}_i & \longrightarrow \widetilde{U}_i \\
\downarrow & \downarrow \\
Z_i & \longrightarrow U
\end{array}$$

et par fonctorialité σ opère aussi sur ce diagramme (en opérant trivialement sur Z_i , \widetilde{Z}_i), soit σ_i son opération sur \widetilde{U}_i . On voit donc que \widetilde{Z}_i s'envoie dans $\widetilde{U}_i^{\sigma_i}$, qui s'envoie donc sur Z_i – ce qui achève déjà de prouver b).

Considérons l'image de \widetilde{Z}_i dans $\widetilde{U}_i|Z_i$; c'est une partie *ouverte* et fermée (comme image d'un homomorphisme de revêtements étales sur la même composante Z_i), donc c'est a fortiori une partie ouverte et fermée de $\widetilde{U}_i^{\sigma_i}$, et comme cet espace est connexe, il lui est égal. De

plus $\widetilde{Z}_i \longrightarrow \widetilde{U}^{\sigma_i}$ fait de Z_i un revêtement étale de son image $\widetilde{U}_i^{\sigma_i}$ dans $\widetilde{U}^{\sigma_i}|Z_i$, et comme \widetilde{U}^{σ_i} est simplement connexe, on trouve finalement

$$\widetilde{Z}_{i} \stackrel{\sim}{\longrightarrow} \widetilde{U}_{i}^{\sigma_{i}}.$$

Lorsque Z_i est simplement connexe, i.e. $\widetilde{Z}_i \simeq Z_i$, cela signifie aussi que $\widetilde{U}_i^{\sigma_i}$ est un homéomorphisme (donc $\widetilde{Z}_i = Z_i \longrightarrow \widetilde{U}_i^{\sigma_i}$ est l'homéomorphisme inverse). Comme, pour $x \in Z_i$ et $\widetilde{x} \in (\widetilde{U}_i^{\sigma_i})_x$, les \widetilde{x}' de $\widetilde{U}_i^{\sigma_i}$ au-dessus de x sont les éléments de la forme $\widetilde{x}\gamma$, avec $\gamma \in \pi_i^{\sigma_i}$ ($\pi_i = \operatorname{Aut}(\widetilde{U}_i/U)$), il s'ensuit que l'on a bien

$$\pi_i^{\sigma_i} = 1$$

ce qui est essentiellement la formule (7). Dans le cas Z_i non simplement connexe, posant

(12)
$$T_i = \operatorname{Aut}(\widetilde{Z}_i/Z_i) \simeq \pi_1(Z_i; \widetilde{Z}_i)$$

on trouve un homomorphisme canonique

$$(13) \varphi_i: T_i \longrightarrow \pi_i$$

et l'injectivité dans (10) équivaut au fait que (13) est injectif. Bien entendu, le choix d'un générateur g_i° de T_i équivaut au choix d'une orientation de Z_i , et $g_i = \varphi_i(g_i^\circ) \in \pi$ est alors l'élément correspondant de $\pi_1(U)$ dont il est question dans l'énoncé (moins précis, car on n'y parle que de classe de conjugaison). Il est clair que σ_i (opérant trivialement sur T_i , et sur π_i par transport de structure) commute à l'homomorphisme injectif φ_i , donc φ_i induit $T_i \longrightarrow \pi_i^{\sigma_i}$. Je dis que c'est en fait un *isomorphisme*

$$\varphi_i: T_i \xrightarrow{\sim} \pi_i^{\sigma_i}$$

– il reste à prouver la surjetivité. Mais si $\gamma \in \pi_i^{\sigma_i}$, alors $\widetilde{x}\gamma \in \widetilde{U}_i^{\sigma_i}$, donc $\widetilde{x}\gamma \in \varphi_i(\widetilde{Z}_i)$ ce qui signifie que $\widetilde{x}\gamma = \widetilde{x}\varphi_i(g)$ pour $g \in T_i$, donc $\gamma \in \operatorname{Im} y_i$, cqfd.

Corollaire 1: Soit $\sigma_i \in \mathfrak{T}_g$ $(1 \le i \le g)$, correspondant à une anti-involution σ_i de X_g telle que Card $\pi_0(X_g^{\sigma_i}) = i$ et X_g/σ non orientable. Alors

a) Il y a exactement i classes de π_g -conjugaison d'automorphismes effectifs d'ordre 2 de π_g dans la classe σ_i (ce qui prouve que si $i \neq j$, σ_i et σ_j ne sont pas conjugués dans \mathfrak{T}_g ...);

b) Si $u_i \in \mathfrak{S}_g = \operatorname{Aut}_{\operatorname{lac}}(\pi_g)$ est d'ordre 2 dans la classe σ_i , alors

(14)
$$\pi_{g} \simeq \mathbb{Z};$$

c) Si $u_i, u_i' \in \mathfrak{S}_g$ sont d'ordre 2, de classe σ_i , alors $\exists h \in \mathfrak{S}_g^+$ tel que

(15)
$$u_i' = h u_i h^{-1} = \text{int}(h) u_i.$$

(NB. Nécessairement, l'image de h dans \mathfrak{T}_g^+ sera dans $(\mathfrak{T}_g^+)^{\sigma_i} = \operatorname{Centr}_{\mathfrak{T}_g}(\sigma_i)^+$.)

Démonstration. a) et b) sont des cas particuliers du théorème, appliqué à une anti-involution σ_i de X_g , avec $\pi_0(X_g^{\sigma_i})$ de cardinal i. Soit $Y_{g,i} = X_g^{\sigma_i}$ surface compacte à bord non orientable connexe de type (g-i,i); il est bien connu et immédiat que le groupe des automorphismes d'une telle variété est transitif sur $\pi_0(\partial Y)$, donc en remontant à (X_g,σ_i) , que le groupe des automorphismes de (X_g,σ_i) est transitif sur $\pi_0(X_g^{\sigma_i})$, qu'on peut interpréter aussi comme l'ensemble des classes de π_g -conjugaison de u_i , comme dans b), c). Cela implique donc qu'il existe $\dot{h} \in \mathfrak{T}_g^+$, commutant à σ_i , tel que – désignant par h un relèvement dans \mathfrak{S}_g^+ – on ait u_i' π -conjugué à int $(h)u_i$, ce qui signifie aussi qu'on peut (quitte à modifier h) le choisir de façon qu'on ait (15).

Corollaire 2: Sous les conditions du corollaire précédent, posant $\pi_g^{u_i} = T \ (\simeq \mathbb{Z})$, on a un diagramme de suites exactes

(16)
$$1 \longrightarrow T \longrightarrow \mathfrak{S}_{g}^{+u_{i}} \longrightarrow \mathfrak{T}_{g}^{+\sigma_{i}}$$

$$\parallel \qquad \qquad \downarrow \qquad$$

et l'indice de $\mathfrak{S}_g^{+u_i}$ dans $\mathfrak{T}_g^{+\sigma_i}$ (et de $\mathfrak{S}_g^{u_i}$ dans $\mathfrak{T}_g^{\sigma_i}$) est i.

Comme les deux dernières flèches verticales sont des inclusions de sous-groupes d'indice 2, il suffit de traiter l'assertion concernant $\mathfrak{S}^+,\mathfrak{T}^+$. Or $\mathfrak{T}_g^{+\sigma_i}$ opère trivialement sur l'ensemble des classes de π -conjugaison de u_i' , d'après c); d'autre part le stabilisateur dans $\mathfrak{T}_g^{+\sigma_i}$, pour cette action, de u_i , est formé des $\dot{\gamma} \in \mathfrak{T}_g^{+\sigma_i}$ tels que int $(\gamma)u_i$ soit π -conjugué à u_i , i.e. tels qu'il existe $\alpha \in \pi$, avec int $(\gamma)u_i = \operatorname{int}(\alpha)u_i$, i.e. $\alpha^{-1}\gamma \in \mathfrak{S}_g^{+u_i}$, ce qui signifie que $\dot{\gamma}$ est dans l'image de $\mathfrak{S}_g^{+u_i}$, cqfd.

J'ai envie de construire une igure géométrique où on puisse mettre en évidence simultanément des anti-involutions topologiques qui donnent naissance aux $\sigma_i \in \mathfrak{T}_g$ (à conjugaison

près, et aux divers $u_i \in \mathfrak{S}_g$ associés à un σ_i (ce qui sera alors facile, par la recette générale). Nous savons que $\sigma_i \in \mathfrak{T}_g$ s'obtient en regardant un X_g comme doublement orienté d'un $Y = Y_{g-i,i}$, donc en partant du plan projectif réel Y_0 , en y faisant g trous, dont on rebouche g-i par des rubans de Möbius, en laissant les i autres trous tels quels. Soient D_j $(1 \le j \le g)$ les disques disjoints fermés correspondant aux "trous" donc

$$(17) V_{0,j} = Y_0 \setminus \cup_j D_j^{\circ}$$

est une variété à bord (non orientable), contenue à la fois dans Y_0 et dans $Y=Y_{g-i,i}$, et coïncidant même avec Y en les points de

$$\partial Y = \bigcup_{g-i+1 \le j \le g} \partial D_j.$$

Soit X_0 la sphère orientée qui revêt Y_0 , et $U_0 = X_0 \setminus V_0$ sa restriction sur $\cup D_j$, c'est donc le complémentaire d'une réunion de 2g disques

$$(18) U_0 = X_0 \setminus \bigcup_{1 \le j \le g} \Delta_j$$

où $\Delta_j \longrightarrow D_j$ est un revêtement trivial à 2 feuillets de D_j ($\Delta_j = \Delta_j' \coprod \Delta_j'' \simeq D_j \times \varepsilon_j$, où ε_j est un ensemble à 2 éléments qui s'identifie à l'ensemble des deux orientations de D_j). Soit d'autre part M_j ($1 \le j \le g-i$) le ruban de Möbius dont le bord a été recollé à V_0 par un homomorphisme

(19)
$$\partial M_j \simeq \partial D_j.$$

Soit

$$(20) M = \coprod_{1 \le j \le g-i} M_j$$

de sorte que

$$(21) Y_{g-i,i} = V_0 \coprod_{\partial M} M.$$

Soit donc $X=X_g$ le doublement orienté de $Y_{g-i,i}$ défini par (21), soit $\widetilde{M}=\coprod_{1\leq j\leq g}\widetilde{M}_j$ l'image inverse de M dedans, qui est un revêtement étale de degré 2 de M:

$$(22) X_{g,i} = X_g \setminus \operatorname{Int}(\widetilde{M}),$$

et on aura

$$(23) X_{g} = X_{g,i} \coprod_{\partial \widetilde{M}} \widetilde{M}$$

pour un homéomorphisme bien déterminé de $\partial \widetilde{M}$ avec une partie ouverte et fermée de $\partial X_{g,i}$. D'ailleurs, on aura une application continue canonique:

$$\mathscr{U}_0 \longrightarrow X_{g,i}$$

qui définit un homéomorphisme de $X_{g,i}$ avec la surface obtenue en contractant les $\partial \Delta_j \subset \mathcal{U}_0$ $(\partial \Delta_j = (\partial D_j) \times \varepsilon_j)$, pour $g-i+1 \leq j \leq g$ à l'aide des projections $\partial \Delta_j \simeq (\partial D_j) \times \varepsilon_j \longrightarrow D_j$.

D'autre part, chaque \widetilde{M}_j $(1 \le j \le g-i)$, revêtement des orientations du ruban du Möbius, est isomorphe au cylindre $S^1 \times I$, et son anti-involution canonique est sans point fixe, et s'identifie à $(z,t) \longrightarrow (-z,-t)$ (où S^1 est identifié aux nombres complexes de module 1, et I à [-1,+1]). D'ailleurs, X_0 orienté avec son anti-involution de revêtement de Y_0 s'identifie à la sphère ordinaire (dans un espace vectoriel euclidien de dimension 3), avec l'anti-involution $x \longmapsto -x$. En résumé:

Proposition: On peut obtenir (pour $1 \le i \le g$ fixé) les couples (X_g, σ_i) , à homéomorphisme près, en prenant la sphère (euclidienne orientée) X_0 , avec son antipodisme standard τ , en prenant un ensemble de 2g disques D_j $(j \in J)$ mutuellement disjoints, stable par τ , et une partie $I' \subset J/\tau = I$ (I de cardinal g) avec $\operatorname{card}(I') = i$, et en procédant ainsi: pour tout $j \in I$, soient $\Delta_j = D'_j \cup D''_j$ la réunion des deux disques correspondants, et $S_j = \partial \Delta_j/\tau$, de sorte que S_j est un cercle; soit

$$T_j = S_j \times I^{\varepsilon_j}$$

(où I = [-1, +1], $\varepsilon_j = \{j \in I \mid j \text{ sur } i\} \simeq l$ 'ensemble des orientations de S_i , I^{ε_j} tordu par ε_j , de sorte qu'on a un homéomorphisme canonique:

(25)
$$\partial T_i \simeq \partial \Delta_i,$$

de sorte que $X_g = \mathcal{U}_0 \coprod_{\partial \Delta} T$ (où $\Delta = \coprod_1^g \Delta_j$, $T = \coprod_1^g T_j$) est orientée. [NB. T_j est canoniquement orienté et l'isomorphisme (25) respecte comme il se doit l'orientation, i.e. $\partial T \simeq \partial V_0$ la renverse.] Ceci posé, l'antipodisme τ induit sur chaque $\widetilde{M}_i \simeq S_j \times \varepsilon_j$ l'anti-involution canonique provenant de cette expression des ∂T_i , qui échange les deux composantes connexes. Pour tout $j \in I$, on prolonge $\dot{\tau} | \partial T_j$ à T_j en deux anti-involutions $\dot{\tau}_j$, $\dot{\tau}'_j$ de T_j de telle façon que

- a) $\dot{\tau}_i$ soit sans points fixes,
- b) $\dot{\tau}'_j$ ait un ensemble de points fixes homéomorphe à S_j par la projection $T_j^{\dot{\tau}_j} \longrightarrow S_j$ (cf. plus bas pour des choix particuliers explicites on verra qu'on peut même supposer $T_i^{\dot{\tau}_j} = S_i \times \{0\}$).

Soit, pour toute partie $I' \subset I$, $\tau_{I'}$ l'anti-involution de $X_g = V_0 \coprod_{\partial T} T$ (où $V_0 = X_0 \setminus \bigcup_{j \in J} D'_j$) qui coïncide avec τ sur V_0 , avec τ'_j sur T_j pour $j \in I'$, avec τ_j pour $j \in I \setminus I'$. Alors on a

(26)
$$X_g^{(\tau_{I'})} = \bigcup_{j \in I'} (S_j \times \{0\})$$

donc si card $(I') = i \ (0 \le i \le g)$, alors $\tau_{I'}$ est un σ_i .

Choix de $\dot{\tau}_j$, $\dot{\tau}_j'$. On choisit un isomorphisme $S_j \simeq U \stackrel{\text{def}}{=} \{z \in \mathbb{C} \mid |z| = 1\}$, d'où une orientation de S_j , et une bijection $\varepsilon_j \simeq \{\pm 1\}$, d'où $I^{\varepsilon_j} \simeq I = [-1, +1]$ et on prend

(27)
$$\dot{\tau}(z,t) = (-z \exp(i\pi t), -t)\dot{\tau}'(z,t) = (z, -t).$$

[NB. Pour la définition des $\dot{\tau}_j'$, on n'a pas besoin du choix d'un isomorphisme $S_j \simeq U$.] On a bien $\dot{\tau}^2 = \dot{\tau}'^2 = id$, $\dot{\tau}|\partial \tau = \dot{\tau}'|\partial \tau = \tau|\partial \tau$.

D'ailleurs on note que:

$$(\dot{\tau}'\dot{\tau})^2 = \dot{\tau}'\dot{\tau}\dot{\tau}'\dot{\tau} = ((z,t) \longmapsto (z \exp(2i\pi t),t)).$$

Ce n'est pas l'application identique – l'ensemble de ses points fixes est égal à l'ensemble des (z,t) tels que $t \in \{-1,0,+1\}$ – i.e.

(28)
$$T_i^{(\dot{\tau}_j'\dot{\tau}_j)^2} = S_j \times [\partial I^{\varepsilon_j} \cup \{0\}].$$

Soit

(29)
$$\dot{\rho}_{j} = \dot{\tau}'_{j}\dot{\tau}_{j}, \ \left[(z,t) \longmapsto (-z \exp(i\pi t), t) \right]$$

– c'est un automorphisme de T_j qui est *l'identité* sur ∂T_j . Pour toute partie I' de $I=J/\tau$, soit

(30)
$$\rho_{I'} = \text{l'automorphisme de } X_g \text{ qui est l'identit\'e sur } V_0 = X_g \setminus \bigcup_{j \in I \setminus I'} T_j,$$

et qui est ρ_j sur T_j pour $j \in I'^{65}$.

On aura donc

(32)
$$\tau_{I'}\tau_{I''} = \rho_{I'_0}\rho_{I''_0}^{-1}$$

où $I_0' = I' \setminus I' \cap I''$, $I_0'' = I'' \setminus I' \cap I''$; d'autre part on aura evidemment

$$[\rho_I, \rho_K] = 1 \text{ pour } J, K \subset I.$$

Remarque: Au lieu d'un isomorphisme $S_j \simeq \mathbb{U}$ supposons donné plutôt sur S_j une structure de torseur sous $\mathbb{U}^{\varepsilon_j}$ (\mathbb{U} tordu par ε_j , grâce à l'automorphisme d'ordre 2, $z \longmapsto z^{-1} = \overline{z}$ de \mathbb{U}). On peut donc définir

$$(36 [sic]) \qquad \exp: \mathbb{R}^{\varepsilon_j} \longrightarrow \mathbb{U}^{\varepsilon_j}$$

où $I_j^{\varepsilon} \subset \mathbb{R}^{\varepsilon_j}$, de façon évidente, d'où des anti-involutions $\dot{\tau}_j$, $\dot{\tau}_j' : T_j \xrightarrow{\sim} T_j$ par les formules (27).

Si par exemple on choisit des disques D'_j tels que leurs bords soient des *cercles* euclidiens, alors il y a sur chaque $\partial D'_j$ une structure de torseur sous un groupe $\mathbb{U}^{\varepsilon_j}$, invariante par antipodisme, et qui passe donc au quotient. Dès lors tout automorphisme de $(X_0, (D'_j))$ qui respecte cette structure supplémentaire de torseur – et notamment tout automorphisme qui respecte la structure *métrique*, opère sur X_g en commutant au système des τ_j , τ'_j au sens évident.

Egalement, si on retient sur X la structure conforme seulement, et si on choisit dans chaque D_j un "centre" a_j , de façon compatible avec l'involution, alors le choix des $a_j \in \operatorname{Int}(D_j')$ définit une structure de torseur sur M_j et ces structures sont invariantes par transformations conformes qui respectent l'ensemble de points a_j . [NB. On ne suppose plus nécessairement que (∂D_j) soit un cercle, seulement que ∂D_j pas trop sauvage. Si ∂D_j est un cercle cette définition coı̈ncide avec la précédente si et seulement si a_j est le centre du cercle.]

Pour définir τ_j sur T_j , il suffit de nettement moins de données que d'une structure de torseur topologique sur T_j . Ecrivant, pour $(z,t) \in S_j \times I^{\varepsilon_j}$

(37)
$$\tau_i(z,t) = (u_t(z), -t)$$

Fosant $\rho_j = \rho_{\{j\}}$, on aura simplement $\rho_J = \prod_{j \in J} \rho_j$. Sauf erreur, ρ_j engendre le groupe $S\Gamma^{!+}(T_j)$ (??) $\simeq \mathbb{Z}$, donc les ρ_j engendre un groupe $\simeq \mathbb{Z}^I$. NB. On a $\rho_j = \tau_{\{j\}} \tau_{\varnothing}$.

où $u_t: S_j \xrightarrow{\sim} S_j$ est un homéomorphisme dépendant continûment de t, écrivant que $\tau_j | \partial T_j = \tau | \partial T_j$ on trouve la condition

a) $u_t = \operatorname{id} \operatorname{si} t \in \partial I^{\varepsilon_j} \simeq \varepsilon_j$ (ça s'écrit, si S_i est orienté, $u_1 = u_{-1} = 0$);

écrivant que $\tau_i^2 = id$, on trouve la condition

b)
$$u_{-t} = u_t^{-1} \ (t \in I^{\varepsilon_j}),$$

et écrivant que $T_{i}^{\ \tau_{j}} = \varnothing$ on trouve la condition

c) u_0 sans points fixes.

Si une orientation est choisie, les $j \mapsto u_j$ satisfaisant a), b), c) correspondent aux applications $[0,1] \longrightarrow \operatorname{Aut}(S_j)$ par $t \mapsto u_t$, telles que $u_1 = \operatorname{id}$, u_0 sans point fixe et d'ordre 2 (le cas envisagé plus haut est celui-ci où $t \mapsto u_{1-t}$ provient d'une représentation continue $\mathbb{R} \longmapsto \operatorname{Aut}(S_j)$).

Remarques: On peut se proposer de déterminer la structure de toutes les anti-involutions τ , sur un cylindre orienté $T \simeq S \times I^{\varepsilon_j}$ ($\varepsilon = \operatorname{Or}(S)$) qui n'ont pas de point fixe sur le bord – ce qui implique déjà que τ permute les deux composantes connexes du bord. Plus généralement, les anti-involutions τ d'une surface à bord orientée X, n'ayant pas de point fixe sur ∂X , correspondent aux variétés à bord munies d'un partie à la fois ouverte et fermée $(\partial Y)'$ de ∂Y – en associant à une telle $(Y,(\partial Y)')$ son "doublement" orienté relativement à $(\partial Y)'$ – à X,σ correspondant $(X/\sigma,\operatorname{Im} X^\sigma \longrightarrow X/\sigma)$. Si X est connexe compact, Y est compacte non orientable ⁶⁶; supposons que son type soit (γ,j) , et soit $i=\operatorname{card}(\pi_0((\partial Y)'))=\operatorname{card}(\pi_0(X^\sigma))$. Donc $0 \le i \le j$, et $\chi(Y)=1-(\gamma+j)$, et on voit de suite que

$$\chi(X) = \chi_! (X \setminus (X | \partial Y)) = \chi_! (X | \operatorname{Int}(Y))$$

(car le χ d'un cercle est nul)

$$= 2 \gamma_1(Int(Y)) = 2 \gamma(Y) = 2(1 - (\gamma + j));$$

donc si X est de type (g, v), on aura $\chi(X) = 2 - 2g, 2 - 2g - v = 2(1 - (\gamma + j))$, i.e.

$$(38) g + \nu/2 = \gamma + j$$

⁶⁶Pas vrai! Si Y est orientable de type (γ, j) , avec $0 \le i \le j$, on aura $g + v/2 = 2\gamma + j - 1, v = 2(j - i)$, i.e. i = j - v/2 comme dans le cas ci-contre [celui du texte qui suit].

(cela exige que ν soit pair, ce qui était évident a priori, car σ doit permuter les éléments de $\pi_0(\partial X)$ entre eux, sans y avoir de points fixes...). Mais j'ai oublié de noter que ν est déterminé en fonction de (γ, j, i) où $i = \operatorname{card}((\partial Y)')$ par

$$(39) v = 2(j-i),$$

i.e. i = j - v/2. Donc il faut ici (pour g = 0, v = 2) chercher (γ, j, i) avec $\gamma \in \mathbb{N}$, $0 \le i \le j \in \mathbb{N}$, tels que l'on ait v = 2(j - i), i.e. j - i = 1 i.e. i = j - 1, et $\gamma + j = 1$, ce qui donne la seule possibilité (comme $i \ge 0$, donc $j \ge 1$)

a)
$$\gamma = 0$$
, $j = 1$, $i = 0$.

Le cas a) correspond au cas où $T^{\sigma} = \emptyset$; il se déduit du plan projectif réel en y faisant un trou à bord (d'où ruban de Möbius), et en prenant le doublement orienté.

Le cas où $T^{\sigma} \neq \emptyset$ donnera nécessairement un quotient Y orienté, on doit avoir que pour son type $(\gamma, \lceil ?? \rceil)$, le seul cas:

b)
$$\gamma = 0$$
, $j = 2$, $i = 1$ (quotient *orienté*)

déduit de la sphère à deux trous, i.e. du cylindre, en prenant le doublement orienté par rapport à *un* des trous.

C'est bien les deux cas donnés respectivement par $\dot{\tau}$ et $\dot{\tau}'$ dans les formules (27).

Je voudrais maintenant construire une situation sous les conditions de la proposition mettant en évidence un maximum de symétries – il est vrai que l'on pourrait travailler avec tous les automorphismes de X_0 commutant à l'antipodisme τ , invariant l'ensemble des D_j , et respectant (disons) des structures de torseur topologique sur l'ensemble des ∂D_j – ou ce qui revient naturellement au même (à indétermination de multiplication par 2 près) 67 les automorphismes de Y_0 qui invarient $D=\bigcup_{i\in I}D_i$, et respectent des structures de torseur sur les composantes connexes ∂D_j de ∂D . On prévoit que (travaillant modulo isotopie) on aura un groupe qui sera voisin d'un groupe de tresses, et sans doute calculable sans grand mal – et en le mettant ensemble avec le groupe engendré par les opérateurs précédents, on trouvera peut-être un démarrage pour engendrer par exemple \mathfrak{T}_g par générateurs (anti-involutifs) et relations.

⁶⁷Non, sans indétermination, en relevant à la sphère de façon à repsecter l'orientation.

Considérons le sous-groupe \mathscr{G} de $A_g = \operatorname{Aut}(X_g)$ engendré par les $\tau_{I'}, I' \subset I$. Soit \mathscr{H} le sous-groupe engendré par les ρ_j , $(j \in I)$. On a

$$\tau_{I'}\rho_I\tau_{I'} = \tau_{I'}(\tau_{\{j\}}\tau_\varnothing)\tau_{I'} = (\tau_{I'}\tau_{\{j\}})(\tau_\varnothing\tau_{I'}) \in \mathcal{H}$$

par la formule (32) donc \mathcal{H} est un sous-groupe invariant. Les formules (32) montrent que \mathcal{G}/\mathcal{H} est un groupe *commutatif*, et même qu'il est isomorphe à ± 1 par le caractère d'orientation tous les τ_I' sont égaux mod \mathcal{H}).

Considérons comme élément de référence de H l'élément

$$\tau = \tau_{\varnothing}$$

(anti-involution sans points fixes de X_g). On trouve alors par (32) que pour $I' \subset I$,

(41)
$$\tau_{I'} = \rho_{I'} \tau = \left(\prod_{j \in I'} \rho_j\right) \cdot \tau^{68},$$

d'ailleurs on aura, pour $j \in I$,

$$\tau \rho_i \tau = \tau_{\varnothing}(\tau_{\{i\}} \tau_{\varnothing}) \tau_{\{0\}} = \tau_{\varnothing} \tau_{\{j\}} = \rho_i^{-1}$$

$$\tau \rho_i \tau^{-1} = \rho_i^{-1}.$$

Ainsi \mathscr{G} apparait comme le produit semi-direct de $\mathscr{H}\simeq\mathbb{Z}^I$, et de $\{\pm 1\}\simeq\{1,\tau\}$ y opérant par la symétrie $\rho\longmapsto \rho^{-1}$. Donc pour tout $\rho\in\mathscr{H}$, on a $(\tau\rho)^2=1$, i.e. pour tout $\sigma\in\mathscr{H}^{-1}$, σ est une anti-involution. Comme σ coïncide avec τ sur $V_0=X_g\setminus \bigcup_{i\in I}\mathrm{Int}(T_i)$, on voit que l'ensemble des points fixes de σ est contenu dans $\bigcup_{i\in I}\mathrm{Int}(T_i)$, et pour calculer l'indice de σ , i.e. $\mathrm{card}\big(\pi_0(X_g^\sigma)\big)$, il suffit de prendre la somme des indices dans les T_j . Or dans T_j , on a par (29) $\rho_j(z,t)=(-z\exp(\mathrm{i}\pi t),t)$, et par récurrence,

(43)
$$\rho_j^{n_j}(z,t) = \left((-1)^{n_j} z \, \exp(\mathrm{i}\pi n_j t), t \right)$$

donc

(44)
$$\tau \rho_j^{n_j}(z,t) = ((-1)^{n_j+1} z \exp(i\pi(n_j+1)t), -t)$$

⁶⁸On veut du reste, comme $\tau^2 = 1$, $\tau_{I'}^2 = 1$, que $\tau_{I'} = \tau_{I'}^{-1} = \tau \rho_{I'}^{-1}$ donc $\tau \rho_{I'} \tau = \rho_{I'}^{-1}$, ce qui est (42).

et $(z,t) \in T_j$ est point fixe de $\tau \rho_j^{n_j}$ si et seulement si t=0, et n_j est *impair*, donc

$$T_i^{\tau \rho_j^{n_j}} = \varnothing si$$

 $n_i \text{ pairS}_i \times \{0\} sin_i \text{ impair}(45)$

donc

Indice de $u=\tau \prod_{j} \rho_{j}^{n_{j}} = (46)$

= cardinal de l'ensemble I'_n des $j \in I$ tels que n_j soit impair.

Il en résulte pour des raisons générales que u est conjugué dans $A_g = \operatorname{Aut}(X_g)$ (par un élément de A_g^+) à $\tau_{I'} = \rho_{I'}\tau = \tau \rho_{I'}^{-1}$, ou aussi $\rho_{I'}^{-1}\tau = \tau \rho_{I'}$.

Mais si $\tau \rho'$, $\tau \rho'' \in \mathcal{G}$, $(\rho', \rho'' \in \mathcal{H})$, et si $\rho \in \mathcal{H}$, la relation

$$\rho(\tau \rho')\rho^{-1} = \tau \rho''$$

équivaut à

$$\tau \rho \tau \rho' \rho^{-1} = \rho''$$

(où $\tau \rho \tau = \rho^{-1}$), i.e. $\rho^2 = \rho' \rho''^{-1}$; donc $\tau \rho'$ et $\tau \rho''$ sont conjugués par un élément de \mathscr{H} si et seulement si $\rho' \rho''^{-1} \in \mathscr{H}^2$ – ce qui précise l'observation précédente...

La façon la plus riche en symétries simples pour disposer les 2g trous antipodiques D_j me semble la suivante. On considère la sphère euclidienne, avec l'action du groupe diédral \mathbb{D}_{2g} – par exemple quand c'est la sphère de Riemann qui est considérée comme riemannienne, par le choix de antipodisme comme étant

$$\tau z = -\frac{1}{z};(47)$$

on prend l'action type du groupe diédral (avec comme pôles les points 0, ∞ , et comme équateur le cercle unité $U=\{z\in\mathbb{C}\mid |z|=1\}$), en écrivant \mathbb{D}_n comme $\subset O(2,\mathbb{R})$, comme produit semi-direct de $\{\pm 1\}$ par $\mu_n(\mathbb{C})=\mu_n$, le couple (ξ,α) ($\xi\in\mu_n$, $\alpha\in\{\pm 1\}$) opérant par $(\xi,\alpha)(z)=\xi\,z^\alpha$. On peut d'ailleurs l'élargir en un groupe $\widetilde{\mathbb{D}}_n\simeq\mathbb{D}_n\times\mathbb{Z}/2\mathbb{Z}$, où le deuxième facteur $\mathbb{Z}/2\mathbb{Z}$ est engendré par l'antipodisme (47) (qui commute à \mathbb{D}_n – de même d'ailleurs que l'anti-involution $z\longmapsto 1/\overline{z}$, qui a comme ensemble de points fixes U et n'est autre que la symétrie par rapport à l'équateur, leur composé $z\longmapsto -z$ étant la symétrie par rapport à l'axe des pôles...) donc on regarde les transformations

$$u_{\xi,\alpha,\beta} = u_{\xi,\alpha} \tau^{\beta}, \ \xi \in \mu_n, \ \alpha \in \{\pm 1\}, \ \beta \in \mathbb{Z}/2\mathbb{Z},$$

donc

$$u_{\xi,\alpha,\beta} z = u_{\xi,\alpha}(z) = \xi z^{\alpha} s i$$

$$\beta = 0$$
u _{ξ,α} $(\frac{-1}{\overline{z}}) = -\xi \overline{z}^{-\alpha} si\beta = 1$

maisonserappelleraque

au renverse l'orientation, donc est à manier avec réserve pour ce qui concerne le "transport de structure" dans la situation présente. Ici n=2g, \mathbb{D}_{2g} est d'ordre 4g, et $\widetilde{\mathbb{D}}_n$ d'ordre 8g. On prend sur l'équateur une trajectoire de $\mu_n=\mu_{2g}$, par exemple justement l'ensemble μ_{2g} , de racines 2g-ièmes de l'unité lui-même (en tant que sous-ensemble de la sphère) comme l'ensemble des "centres" des disques D_i' . On choisit un disque D_0' autour du point P_0 (assez petit pour ce qui va suivre) P_0 , et on prend les transformés de P_0' par les P_0' 0 par les P_0' 1. Ces choix étant faits, la surface P_0' 2 est déterminée sans ambiguité, et le groupe P_0' 2 y opère par transport de structure, en permutant entre eux les P_0' 2 correspondant aux éléments de P_0' 3 par les P_0' 4 par les P_0' 6 par les P_0' 7 es choix étant faits, la surface P_0' 8 est déterminée sans ambiguité, et le groupe P_0' 9 y opère par transport de structure, en permutant entre eux les P_0' 9 correspondant aux éléments de P_0' 9 et P_0' 9 par les P_0' 9 et P_0' 9 et P_0' 9 par les P_0' 9 et P_0' 9 par les P_0' 9 par les P_0' 9 et P_0' 9 par les P_0' 9 pa

$$u \tau_{I'} u^{-1} = \tau_{u(I')}(49)$$

pour $I'\subset I=J/\tau$, en tenant compte de l'opération de \mathbb{D}_{2g} sur I. On aura donc en particulier, désignant par $\tau_g=\tau_\varnothing$ l'extension de l'antipodisme de la sphère X_0 (ou plutôt de $\tau|V_0$) en un antipodisme sans points fixes de X_g , noté τ précédemment

$$u\tau_g u^{-1} = \tau_g(50)$$

i.e. τ_g commute à l'action de \mathbb{D}_n , et

$$u \rho_i u^{-1} = \rho_{u(i)}.(51)$$

On peut donc dire que \mathbb{D}_{2g} opère sur \mathcal{G} , d'où un produit semi-direct $\mathbb{D}_{2g} \cdot \mathcal{G}$, qui opère donc sur X_g .

Quant à la question de prolonger de même l'action sur X_0 de $\widetilde{\mathbb{D}}_{2g}$ tout entier en une action sur X_g , ça a été fait sans crier gare, à τ_{X_0} correspondant naturellement $\tau_{X_g} = \tau_g$, qui a

⁶⁹Il faut simplement que D_0' ne rencontre pas $\xi D_0'$, où $\xi = \exp(2i\pi/2g)$.

en effet le bon goût de commuter à l'action de \mathbb{D}_{2g} . [Il pourrait sembler plus naturel, il est vrai, dans un esprit de "transport de structure (envers et contre tout?)", de faire correspondre à τ_{X_0} l'opération τ_I donnée par (27), qui en chaque T_j serait égal à τ_j (et sur V_0 , bien sûr, coïncide avec τ_{X_0}), $\tau_j(z,t)=(z,-t)$, l'ensemble des points fixes de τ_I étant formé des g cercles médians $S_j \times \{0\}$ des g tubes T_j . On aura par (41) $\tau_I = \rho_I \tau_g$, donc τ_I commute également à \mathbb{D}_n , puisque τ et $\rho_I = \prod_{i \in I} \rho_i$ y commutent. Mais il ne semble pas important pour le moment quelle convention nous adoptons.] On peut donc dire aussi que le groupe $\widetilde{\mathbb{D}}_{2g}$ opère sur \mathscr{H} – cette opération prolongeant celle de τ_g , identifié maintenant à un élément de $\widetilde{\mathbb{D}}_{2g}$, i.e. à l'antipodisme dans $\widetilde{\mathbb{D}}_{2g}$ – et le produit semi-direct

$$\widetilde{\mathbb{D}}_{2g} \cdot \mathcal{H} \supset \mathcal{G} = \langle 1, \tau_g \rangle \cdot \mathcal{H}(52)$$

opère sur X_g .

Il faudrait maintenant, dans cette voie:

- 1) Expliciter l'action extérieure de ce produit semi-direct sur le groupe fondamental π_g , avec une attention toute particulière à l'action du groupe $(\mathbb{Z}/2\mathbb{Z})^3 \subset \widetilde{\mathbb{D}}_{2g}$ qui stabilise un des cylindres T_j qui dans l'espace euclidien de dimension 3 s'interprète comme le groupe des changements de signe relatif au système d'axes orthonormés correspondant.
- 2) Etendre l'action sur π_g du groupe de Teichmüller (plus ou moins) "spécial" de données chacun des T_j , en l'action d'un groupe analogue d'un ensemble plus grand obtenu en lui rajoutant une "lanière" L (d'où un tore à un trou, et son groupe de Teichmüller spécial, qui s'introduisent de façon naturelle) ⁷⁰ voire l'ensemble encore plus grand obtenu en mettant également la lanière antipodique L' (cet ensemble se présente comme un cylindre $(L \cup L')$ ou "buse", où on aurait mis un tube (T_j) en travers, et a la structure topologique d'un tore à deux trous). Il est possible qu'il faille considérer de près ce dernier, pour étudier les relations entre les éléments de \mathfrak{T}_g provenant des ensembles précédents.... Un travail amusant sera de se débrouiller pour écrire les générateurs du groupe π_g , et surtout la fameuse relation, dans une disposition géométrique relative des "anses", qui est une disposition "panachée" et non plus sagement à la queue-leu-leu!

 $^{^{70}}$ C'est essentiellement un $SL(2,\mathbb{Z})$ – plutôt une extension centrale remarquable de $SL(2,\mathbb{Z})$ par \mathbb{Z} , qui rappelle celle de $SL(2,\mathbb{R})$ par \mathbb{Z} ...(revêtement universel de $SL(2,\mathbb{R})$).

En attendant d'entrer ainsi dans le vif de la structure du groupe de Teichmüller, je vais déjà essayer de décrire des générateurs et relations pour le sous-groupe intéressant qu'on vient d'écrire, $\widetilde{\mathbb{D}}_{2g} \cdot \mathcal{H}$. Je vais prendre les sempiternels générateurs ε_0 , ε_1 de \mathbb{D}_{2g}^{71} ,

$$\varepsilon_0^2 = \varepsilon_1^2 = 1$$
, $(\varepsilon_0 \varepsilon_1)^{2g} = 1$

et y joindre $\tau=\tau_{\rm g}$, et $\rho_{\rm 0}\tau=\tau'$ ($\rho_{\rm 0}=\rho_{j_{\rm 0}}$, $j_{\rm 0}$ point marqué de $I=J/\tau$) satisfaisant

$$\tau^2 = {\tau'}^2 = 1$$

$$(\tau \varepsilon_0)^2 = (\tau \varepsilon_1)^2 = 1$$

exprimant la commutation de τ à ε_0 , ε_1 ;

$$(\varepsilon_1 \tau')^2 = 1,$$

i.e. ε_1 commute à τ' ,

$$\left((\varepsilon_0 \varepsilon_1)^g \tau' \right)^2 = 1$$

(l'involution $(\varepsilon_0 \varepsilon_1)^g$ commute à τ'); sauf erreur, ça fait un ensemble de générateurs et relations pour $\widetilde{\mathbb{D}}_{2g} \cdot \mathcal{H}$ – en résumé $\varepsilon_0, \varepsilon_1, \tau, \tau'$:

$$\varepsilon_0^2 = \varepsilon_1^2 = \tau^2 = \tau'^2 = 1(\tau \varepsilon_0)^2 = (\tau \varepsilon_1)^2 = (\tau' \varepsilon_1)^2 = 1(\varepsilon_0 \varepsilon_1)^{2g} = 1(\tau'(\varepsilon_0 \varepsilon_1)^g)^2 = 1.(52)$$

C'est peut-être pas très astucieux comme choix de générateurs, en ce sens que ε_0 , ε_1 ne sont pas du tout sur le même pied que τ , τ' – ce ne sont pas des *anti*-involutions. Il vaudrait mieux prendre $\varepsilon_0' = \tau \varepsilon_0$, $\varepsilon_1' = \tau \varepsilon_1$, de façon à obtenir:

$$\varepsilon_0'^2 = \varepsilon_1'^2 = \tau^2 = \tau'^2 = 1(\tau \varepsilon_0')^2 = (\tau \varepsilon_1')^2 = (\tau'(\tau \varepsilon_1'))^2 = 1(\varepsilon_0' \varepsilon_1')^{2g} = 1(\tau'(\varepsilon_0' \varepsilon_1')^g)^2 = 1.(52 \ bis)$$

Ce sont essentiellement les "mêmes" relations sauf la dernière de la deuxième ligne.

Peut-être ce petit jeu avec le tout petit groupe $\widetilde{\mathbb{D}}_n$ opérant sur \mathscr{H} est un peu une amusette – le groupe $\mathscr{H} \simeq \mathbb{Z}^g$ dans \mathfrak{T}_g suggère beaucoup la situation d'un tore maximal dans un groupe semi-simple; on a vraiment envie d'en avoir une caractérisation intrinsèque dans \mathfrak{T}_g – ou dans \mathfrak{T}_g , ce qui est possible puisqu'en tant que groupe de transformations topologiques effectives, il laisse fixe les points de $V_0 \subset X_g$ – par exemple les deux pôles, qu'on peut prendre comme

⁷¹NB. ε_0 bouge le sommet du repère, ε_1 l'arête et pas le sommet, donc $\varepsilon_1(j_0)=j_0$.

points base pour construire revêtement universel et groupe fondamental. Ce sont peut-être les sous-groupes abéliens-libres maximaux. On aimerait étudier le normalisateur – est-ce exactement ce qui provient des automorphismes de $X_g \setminus \cup T_i^\circ \simeq V_0$? Les $\mathrm{SL}(2,\mathbb{Z})$ associés aux "lanières" à travers le tube T_j , jouent-ils un rôle analogue à celui des groupes $\mathrm{SL}(2,K)$ où $\mathrm{GP}(1,K)$ "de rang 1" dans la théorie des groupes algébriques réductifs? Si *** ne "mord" pas à la situation, la soumettre peut-être à ***, qui est à l'aise tant avec les groupes discrets et leurs générateurs et relations, qu'avec la théorie des semi-simples – et la topologie...

\S 33bis. — ÉTUDE DES REVÊTEMENTS FINIS - RELATION ENTRE LES $\mathcal{N}_{g,v}$, $\Gamma_{g,v}$ POUR g VARIABLE

Soient π un groupe extérieur à lacets profini arithmétisé de type (g, ν) , π' un sous-groupe connexe de π , d'où une application injective

$$Discrét(\pi) \hookrightarrow Discrét(\pi');$$

on voudrait prouver qu'elle est compatible avec la relation d'équivalence de l'arithmétisation, de sorte que toute arithmétisation de π en donne une de π' , et de même pour les prédiscrétifications. On voudrait établir en même temps que les applications

 $P^+(\pi) \longrightarrow P^+(\pi')$ sur les prédiscrétifications orientées et $A(\pi) \longrightarrow A(\pi')$ sur les arithmétisations sont injectives. Pour prouver ces points, on est ramené au cas où π' invariant caractéristique (cf. §28, diagramme (7)). Choisissant une discrétification π_0 de π , donc π'_0 de π' , on trouve donc $\hat{\mathfrak{E}}(\pi_0) \longrightarrow \hat{\mathfrak{E}}(\pi'_0)$ et on a:

L'homomorphisme $\hat{\mathfrak{S}}(\pi_0) \longrightarrow \hat{\mathfrak{S}}(\pi'_0)$ envoie $\mathcal{M}(\pi_0)$ dans $\mathcal{M}(\pi'_0)$.

On aura donc un diagramme (variante de celui du §28):

$$\hat{\mathfrak{S}}^{+}(\pi_{0}) \hookrightarrow \mathcal{M}(\pi_{0}) \hookrightarrow \hat{\mathfrak{S}}(\pi_{0})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

qui implique qu'une discrétification π_1 sur π qui donne même prédiscrétification orientée que π_0 (resp. même arithmétisation) définit une discrétification π'_1 de π' qui donne même prédiscrétification orientée (resp. même arithmétisation) que π'_0 .

Donc on a bien $P^+(\pi) \longrightarrow P^+(\pi')$, $A(\pi) \longrightarrow A(\pi')$ et il faut encore exprimer l'injectivité, qui revient aux relations

$$\hat{\mathfrak{S}}^+(\pi_0) = \hat{\mathfrak{S}}^+(\pi_0') \cap \hat{\hat{\mathfrak{S}}}(\pi_0), \quad \mathcal{M}(\pi_0) = \mathcal{M}(\pi_0') \cap \hat{\hat{\mathfrak{S}}}(\pi_0)(2)$$

i.e. un automorphisme à lacets de π qui, sur π' , appartient à $\hat{\mathfrak{S}}(\pi'_0)$, resp. à $\mathcal{M}(\pi'_0)$, est déjà dans $\hat{\mathfrak{S}}(\pi_0)$, resp. dans $\mathcal{M}(\pi'_0)$.

L'assertion repérée étant admise, l'assertion non repérée signifie aussi que l'homomorphisme canonique:

$$\Pi_{a} = \mathcal{M}_{a}(\pi)/\hat{\mathfrak{S}}_{a}^{+}(\pi) \longrightarrow \Pi_{a}' = M_{a}'(\pi')/\hat{\mathfrak{S}}_{a'}^{+}(\pi')(3)$$

est *injectif*. Par construction (via Γ_Q), c'est aussi surjectif, donc on trouverait: l'homomorphisme canonique (3) est bijectif et on trouverait aussi une bijection

$$P_{a}(\pi) \longrightarrow P'_{a}(\pi')(4)$$

entre arithmétisation de π de type a et arithmétisation de π' de type a', compatible avec l'isomorphisme (3).

Enfin, ces résultats dans les cas π' invariant caractéristique s'étendraient aussitôt au cas d'un $\pi' \subset \pi$ ouvert quelconque.

Procédant par exemple comme dans le §28 à coups de "correspondances" arithmétiques extérieures entre "courbes potentielles", on trouve un groupoïde connexe (ponctué par les $\hat{\pi}_{g,\nu}$, par exemple, qui y sont canoniquement isomorphes), dont le π_1 extérieur est la valeur commune des $\Pi_{g*} = \Pi_{g,\nu}$. Pour trouver un isomorphisme canonique entre $\Pi_{g,\nu}$ et $\Pi_{g',\nu'}$, on choisit une correspondance entre $\pi_{g,\nu}$ et $\pi_{g',\nu'}$, par exemple on regarde l'un et l'autre (quitte à passer de g,ν à $g,\widetilde{\nu}$ avec $\widetilde{\nu} \geq \nu$, et de même pour g',ν' à $g',\widetilde{\nu'}$ avec $\widetilde{\nu'} \geq \nu'$) comme des sous-groupes [d'indices] finis du même $\pi_{0,3}$, d'où $\Pi_{0,3} \xrightarrow{\sim} \Pi_{g,\widetilde{\nu}}$, $\Pi_{0,3} \xrightarrow{\sim} \Pi_{g',\widetilde{\nu'}}$.

On aimerait maintenant voir ce qui, dans le yoga précédent, est indépendant de toute conjecture. Par exemple, le fait que les homomorphismes surjectifs canoniques $\Pi_{g,\nu} \longrightarrow \Pi_{g,\nu'}$ (g le même, ν' constant) n'est pas établi. Cependant, si on savait que dans la situation du (π,π') avec π' invariant caractéristique, on a $\hat{\mathfrak{F}}(\pi'_0) \cap \hat{\mathfrak{F}}^+(\pi_0) = \hat{\mathfrak{F}}^+(\pi_0)$ (qui est un énoncé de nature relativement anodine sur des groupes à lacets profinis), on concluerait à la *bijectivité* de $\Pi_{\pi_0} \longrightarrow \Pi_{\pi'_0}$ dans cette situation, et on en concluerait que le noyau de

 $\Gamma_Q \longrightarrow \Gamma_{0,3}$ s'envoie trivialement dans les $\Gamma_{g,\nu}$ pour tout ν – i.e. qu'il s'envoie dans les $\Gamma_{g,\nu}$ par l'intermédiaire de $\Gamma_{0,3}$ – et que de plus $\Gamma_{0,3} \longrightarrow \Gamma_{g,\nu}$ est un isomorphisme pour tout (g,ν) avec ν assez grand – il suffit que la surface de type (g,ν) (ou de type (g,ν') avec un $\nu' \le \nu$) puisse s'obtenir comme revêtement étale de $X_{0,3}$, i.e. que $\pi_{g,\nu'}$ se réalise (avec sa structure à lacets) comme sous-groupe d'indice fini de $\pi_{0,3}$. Alors, considérant un $\pi'' = \pi_{g'',\nu''} \subset \pi_{g,\nu'}$ d'indice fini et contenu dans $\pi_{0,3}$, on aura un diagramme commutatif:

d'où notre assertion $\Gamma_{0,3} \stackrel{\sim}{\longrightarrow} \Gamma_{g,\nu}$ et a fortiori l'homomorphisme surjectif $\Gamma_{0,3} \longrightarrow \Gamma_{g,\nu}$ qui le factorise $(\nu \geq \nu')$ est bijectif. Notons par exemple que les $\Gamma_{0,\nu} \longrightarrow \Gamma_{0,3}$ $(\nu \geq 3)$ sont alors bijectifs. Mais on notera qu'en tout état de cause, on ne trouve de résultat pour un g,ν que si $\nu \geq 3$ – donc ceci ne dit rien sur la fidélité éventuelle, par exemple de $\Gamma_{0,3} \longrightarrow \Gamma_{g,0} = \Gamma_g$ $(g \geq 2)$, ou $\Gamma_{0,3} \longrightarrow \Gamma_{1,1} = \Gamma_1$.

Soit une courbe algébrique \mathscr{U} de type g, v^{72} , définie sur un sous-corps K fini sur Q de \overline{Q}_0 , donc elle définit une action extérieure du sous-groupe ouvert $\Gamma = \Gamma_K \subset \Gamma_Q$ sur $\pi_1(\mathscr{U}_{\overline{Q}_0})$. Quitte à agrandir K, et à agrandir v ou v' (i.e. faire des trous) pour trouver \mathscr{U}' on peut supposer que \mathscr{U}' est un revêtement étale de $(\mathscr{U}_{0,3})_K$. On pose $\pi' = \pi_1(\mathscr{U}_{\overline{Q}_0})$, $\pi = \pi_1(\mathscr{U}_{\overline{Q}})$. Soit alors θ le noyau de

$$\Gamma (\subset \mathbb{F}_Q) \longrightarrow \mathbb{F}_{0,3},$$

il opère donc par automorphismes intérieurs sur $\hat{\pi}_{0,3}$, donc l'image de $\theta' = \Gamma' \cap \theta$ dans le groupe des automorphismes extérieurs de $\pi' \subset \hat{\pi}_{0,3}$ est un sous-groupe fini – a fortiori son image dans $\Gamma_{\pi'}$, et dans $\mathcal{N}(\pi)$, et dans Γ_{π} . Il en est de même (choisissant un point base rationnel sur K dans \mathcal{U}') de l'opération effective sur $\pi_1(\mathcal{U}, P)$ car il suffit d'appliquer le résultat précédent à $\mathcal{U}\setminus\{P\}$. On en conclut aussi que les noyaux des homomorphismes $\Gamma_{0,\nu} \longrightarrow \Gamma_{0,3}$ ($\nu \geq 3$) sont finis. On voit facilement que pour tout V.A. [Valuation Arithmétique] A définie sur K, l'opération de θ' sur $\prod_{\ell} T_{\ell}(A)$ se fait à travers un groupe quotient fini.

Il devient très difficile de s'imaginer comment il pourrait se faire que θ' n'opère pas en fait trivialement! J'ai même l'impression que je peux montrer, grâce au résultat du russe que

⁷²On ne fait plus d'hypothèse conjecturale (telle que l'injectivité dans (3)).

m'a signalé Deligne, que $\Gamma_Q \longrightarrow \Gamma_{0,3}$ est un isomorphisme! Cela signifierait que les actions extérieures de Γ_Q sur des $\pi_1 \simeq \overline{\pi_{g,\nu}}$ peuvent s'interpréter (au moins pour ν assez grand, g étant fixé) comme des scindages de l'extension $\mathcal{N}_{g,\nu}$ de $\Gamma_{g,\nu}$ par $\hat{\mathfrak{Z}}_{g,\nu}$ – ou de l'extension $\mathcal{M}_{g,\nu}$ de $\Gamma_{g,\nu}$ par $\hat{\mathfrak{Z}}_{g,\nu}$, quand il s'agit d'actions effectives.

Bien entendu, la question essentielle qui se pose alors (admettant $\Gamma_Q \simeq \Gamma_{0,3}$) est de caractériser $\Gamma_{0,3}$ algébriquement, ainsi que les $\mathcal{N}_{g,\nu}$ – et de donner une description algébrique également des scindages "admissibles" – i.e. correspondant bel et bien à des courbes algébriques sur des corps de nombres algébriques, que ce sont exactement les actions relevant l'action extérieure donnée, qui ne normalisent aucun sous-groupe à lacets, ou encore telle que $\hat{\pi}_{0,3}^{\Gamma''+}$ (mais il est concevable qu'il faille y ajouter de conditions plus subtiles, faisant intervenir les Frobenius...). On peut se proposer de trouver une description des actions extérieures "admissibles", sans avoir à passer par des actions effectives admissibles – et à s'embarasser d'en donner une définition plus ou moins plausible. La difficulté bien sûr provient du fait que si Γ'' opère extérieurement sur $\hat{\pi}_{0,3}$, il n'opère pas extérieurement pour autant sur un sousgroupe ouvert donné π' de $\hat{\pi}_{0,3}$. Mais on va supposer justement qu'il existe une telle action, de telle façon que $\pi' \longrightarrow \hat{\pi}_{0,3}$ soit compatible avec les actions extérieures, et que l'action de Γ' sur π se déduise (modulo isomorphisme) de Γ' ?].

Pour ce deuxième point, on a une réponse immédiate (supposant connus déjà les $\mathcal{N}_{g,\nu}$). Soit un (π,a) de type g,ν , avec relèvement partiel de \mathbb{F}_a en $\Gamma_a' \hookrightarrow CN_a$. Elle sera admissible si et seulement si on peut trouver un (π',a') de type (g,ν') et un plongement de π' comme sousgroupe d'indice fini de $\hat{\pi}_{0,3}$ compatible avec a', et un sous-groupe ouvert Γ'' de $\mathbb{F}_{0,3}$, et une action effective admissible de Γ'' sur $\hat{\pi}_{0,3}$ qui relève l'action extérieure donnée, et qui invarie π' , de façon qu'à isomorphisme près, (π,a) , et le germe d'action de Γ' dessus se déduise de (π',a') par l'action de Γ'' dessus, par "bouchage" d'un paquet de trous (et oubli d'une action effective au profit de l'action extérieure). Il faut dans cette approche de simplement savoir préciser algébriquement ce qu'on entend par action "admissible" de $\Gamma'' \subset \mathbb{F}_{0,3}$ sur $\hat{\pi}_{0,3}$ – sousentendant que ça doit correspondre aux points de $\mathcal{U}_{0,3}$ rationnels sur le corps de nombres défini par Γ'' . On peut conjecturer celle-ci, par "bouchage de trous".

Il semble qu'on puisse sur le même principe donner une description des $\mathcal{N}_{g,\nu}$ (donc de $\mathbb{F}_{g,\nu}$) en termes de $\mathbb{F}_{g,\nu}$. Utilisant les homomorphismes de transition $\hat{\hat{\mathfrak{X}}}_{g,\nu} \longrightarrow \hat{\hat{\mathfrak{X}}}_{g,\nu}$, il suffit de le faire, quand g est fixé, pour des ν grands – assez grands pour qu'il existe une courbe

algébrique de type g, v sur Q qui soit un revêtement étale de $\mathcal{U}_{0,3}$ sur Q. On considère donc un plongement correspondant de $\pi_{g,v}$ dans $\pi_{0,3}$, et on décrète que si on peut faire opérer extérieurement $\Gamma_{0,3}$ dans $\pi_{g,v}$, de façon que $\pi_{g,v} \longrightarrow \pi_{0,3}$ commute à ces actions extérieures, alors le sous-groupe de $\hat{\mathfrak{X}}_{g,v}$ engendré par $\hat{\mathfrak{X}}_{g,v}$ et $\Gamma_{0,3}$ est $\mathcal{N}_{g,v}$.

§ 34. — DESCRIPTION HEURISTIQUE PROFINIE DE LA CATÉGORIE DES COURBES ALGÉBRIQUES DÉFINIES SUR DES SOUS-EXTENSIONS FINIES K DE \overline{Q}_0/Q (I.E. DE \mathbb{C}/Q))

On se borne aux courbes géométriques connexes (par commodité) anabéliennes (par nécessité provisoire), cf. plus bas sur la façon de se débarrasser de cette restriction. La donnée d'un revêtement de $\mathcal{U}_{\overline{O}_0}$ définit une structure d'extension

$$1 \longrightarrow \pi \longrightarrow \Sigma \longrightarrow \Gamma^+ \longrightarrow 1(1)$$

ou encore on a un homomorphisme

$$E \longrightarrow \mathbb{I}\Gamma(2)$$

(image Γ ouverte, de noyau appelé π) où $\Gamma \subset \mathbb{F}_Q \simeq \mathbb{F}_{0,3}$ est le sous-groupe ouvert correspondant à K. Se donner une telle extension (moyennant $\mathrm{Centre}(\pi) = 1$) revient à se donner une action extérieure de Γ' sur π . Une première question: faut-il mettre la structure à lacets de π dans les données de l'objet (1) (ou (2)) censé décrire \mathscr{U}/K ?

Conjecture: Ce n'est pas la peine – la structure à lacets de π est la seule structure à lacets invariante par l'action extérieure de Γ (ou de Γ^{\natural}). Les sous-groupes à lacets L_i sont les sous-groupes maximaux dans π , tels que $\operatorname{Norm}_E(L_i) \longrightarrow \Gamma$ ait comme image un sous-groupe ouvert de Γ^{73} . Je présume aussi que tout homomorphisme entre extensions E de Γ^+ par un

⁷³et tout sous-groupe \neq {1} de π qui a cette propriété est contenu dans un unique L_i ...

 π , E' de Γ par un π' (E, E' provenant de courbes algébriques \mathscr{U} , \mathscr{U}') et tel que l'image de E dans E' soit ouverte respecte nécessairement la structure à lacets, et en fait provient d'un homomorphisme (unique, on le sait) de courbes algébriques.

En tout cas, si on admet la description des sous-groupes à lacets, il sera clair que l'image par u d'un L_i sera ou bien (1), ou bien contenu dans un unique L_i ...

Ceci signifierait que le foncteur des courbes algébriques sur K ([avec comme] morphismes les morphismes dominants) vers les groupes profinis extérieurs sur lesquels Γ opère, serait pleinement fidèle. Le foncteur "extension du corps de base" de K à K' correspond au foncteur restriction d'un groupe extérieur (ou d'une structure d'extension) de Γ à Γ' (sous-groupe ouvert). Les revêtements étales finis de $\mathscr U$ correspondent aux E-ensembles ($\widetilde{\mathscr U}$ étant choisi)...

Pour décrire l'image essentielle de ce foncteur, on n'est pas réduit aux conjectures. On part de l'extension canonique $E_{0,3}$ de $\Gamma_{0,3} = \Gamma$ par $\hat{\pi}_{0,3}$, on prend un sous-groupe ouvert E' de $E_{0,3}$, d'image $\Gamma \subset \Gamma_{0,3}$, noyau $\pi' \subset \hat{\pi}_{0,3}$, et dans la structure à lacets canonique de π' de genre g (induite par celle de $\pi_{0,3}$), on prend un $I \subset I(\pi')$ tel que $2g + \operatorname{card}(I) \geq 3$, stable par Γ , et on "bouche les trous" en $I(\pi') \setminus I$. De même, pour décrire quand une action effective, relevant une action extérieure admissible, est elle-même admissible – i.e. peut-être obtenue à partir d'une courbe algébrique \mathscr{U} , ponctuée par un point rationnel sur K. Ceci ne signifie pas pour autant, que si \mathscr{U} est donnée par une action extérieure de Γ sur un π , que les classes de conjugaison de relèvements admissibles de cette action proviennent bien toutes de points de \mathscr{U} rationnels sur K. Mais on voit de suite que ceci sera le cas, dès que l'on admet la pleine fidélité pour les *isomorphismes*.

(NB. Même pour les automorphismes de $\mathscr{U}_{0,3} = \mathbb{P}^1_Q \setminus \{0,1,\infty\}$, cette pleine fidélité n'est pas du tout claire. Il faudrait prouver que le commutant de $\Gamma_{0,3}$ dans $\hat{\mathfrak{X}}_{0,3}$ est réduit à \mathfrak{S}_3 . La situation est moins sans espoir, quand on se donne, avec la structure de groupe profini extérieur à opérateur Γ , une arithmétisation de π (ce qui suppose qu'on a explicité une structure à lacets) invariante par Γ – donc dans $\hat{\mathfrak{X}}(\pi)$ on dispose d'un $\mathcal{N}(\pi)$, et $\Gamma \hookrightarrow CN(\pi)$. Dans ce point de vue, pour un homomorphisme de Γ -groupes extérieurs (arithmétisés) $\pi' \longrightarrow \pi$, il est sous-entendu qu'il est compatible avec les arithmétisations, i.e. si π'' est l'image de π' dans π , on veut que l'arithmétisation de π'' déduite de celle de π' par "passage au quotient", soit celle induite par π . En particulier, pour les automorphismes extérieurs de π , il est sous-entendu que non seulement ils commutent à Γ , mais encore qu'ils sont dans $\mathcal{N}(\pi)$ (ce qui

implique qu'ils sont dans $\hat{\mathfrak{Z}}(\pi)$, car le centralisateur dans π de tout sous-groupe ouvert de Π_{π} est $\{1\}!$) Dans le cas de $\mathscr{U}_{0,3}$, on a $\mathscr{N}_{0,3} \simeq \mathfrak{S}_3 \times \Pi_{0,3}$, et on sait que le centre de $\Pi_{0,3} \simeq \Pi$ est triviale – donc on trouve bien que le groupe des automorphismes de cette structure est réduit à \mathfrak{S}_3 !

Ce point de vue est néanmoins probablement superflu – car on présume que pour l'action extérieure donnée de Γ , il y a une unique arithmétisation invariante par Γ , et que les homomorphismes "admissibles" de Γ -groupes extérieurs "admissibles", tels qu'ils ont été définis précédemment, respectent automatiquement cette arithmétisation. S'il n'en était rien, il faudrait bien entendu introduire les arithmétisations dans la structure.

Il se pose la question de trouver une description plus simpliste des actions extérieures d'un Γ sur un π qui sont "admissibles". Ici, on va partir d'un π dont on fixe déjà une structure à lacets et une arithmétisation a (invariantes par Γ), de sorte que $\Gamma \subset \mathcal{N}(\pi)$, $\Gamma \longrightarrow \mathbb{F}_{\pi}$ injective à image ouverte, i.e. Γ correspond à un scindage partiel (ou germe de scindage) de

$$1 \longrightarrow \hat{\mathfrak{Z}}(\pi) \longrightarrow \mathcal{N}(\pi) \longrightarrow \mathbf{I}\Gamma_{\pi} \longrightarrow 1.$$

Soit (g, v) le type de π ; si $g \ge 1$ le critère la plus simple, c'est que les " Γ^{\natural} -points" de π' déduits de π en bouchant tous les trous, soient distincts. (NB. Si g=1, en bouchant tous les trous on tombe dans un cas abélien – mais ça ne fait rien). Si g=0, il n'y a pas de condition pour v=3, et si v>3, mettant à part une partie $I'\subset I(\pi)$ avec $\mathrm{card}(I')=3$, la condition c'est qu'en bouchant les trous en $I\setminus I'$, les Γ^{\natural} -points de π déduits des points de $I\setminus I'$ soient distincts.

On notera que dans cette optique conjecturale, dans les cas limites (g,0) $(g \ge 2)$, (1,1), (0,3), on n'impose aucune condition a priori sur les relèvements. C'est peut-être très brutal – et il se pourrait qu'on trouve des relèvements qui ne correspondent pas à une courbe algébrique – i.e. qui en fait ne sont *pas* admissibles, même s'ils le paraissent.

Pour y comprendre quelque chose, il me semble qu'il faut revenir à une interprétation des germes de scindages dits "admissibles" d'une extension telle que

$$1 \longrightarrow \hat{\mathfrak{Z}}_{g,\nu} \longrightarrow \mathcal{N}_{g,\nu} \longrightarrow \mathbb{\Gamma}_{g,\nu} \longrightarrow 1$$

où $\Gamma_{g,\nu} \simeq \Gamma_Q \simeq \Gamma_{0,3}$, comme correspondants aux points algébriques d'une *variété* (plutôt ici, une multiplicité) modulaire $\mathcal{M}_{g,\nu,Q}$, dont $\mathcal{N}_{g,\nu}$ est le groupe fondamental arithmétique, et $\hat{\mathfrak{T}}_{g,\nu}$ le groupe fondamental géométrique. J'aimerais examiner cette situation de plus près, par la suite. Pour le moment, il semble prudent de ne pas faire de conjectures hâtives pour une

description directe (i.e. pas via $\mathcal{U}_{0,3}$) des opérations extérieures "admissibles". On travaillera donc pour le moment avec cette notion sous la forme constructive (via $\mathcal{U}_{0,3}$).

Si on a un π extérieur de type (g, v) avec opération extérieure admissible de $\Gamma \subset \Pi$, on prévoit qu'il y aura une prédiscrétification stricte canonique sur π (pas invariante pas Γ , bien sûr – mais telle que l'arithmétisation correspondante le soit). On va même, pour une action effective admissible de Γ^{\natural} sur π (relevant l'action extérieure donnée), définir une discrétification orientée correspondante canonique $\pi_0 \subset \pi$ (remplacée par une conjuguée, quand on conjugue le relèvement Γ^{\natural} par un $g \in \pi$) – toutes ces discrétifications orientées (correspondant aux différents "points" de $B_{\pi,\Gamma^{\natural}}$) définissent une même prédiscrétification orientée – et même une même prédiscrétification orientée stricte.

L'action effective de Γ^{\natural} sur π peut s'obtenir (à isomorphisme près) comme suit: on prend un sous-groupe ouvert $E'_{0,3}$, d'où extension $1 \longrightarrow \pi'' \longrightarrow \Gamma' \longrightarrow 1$ avec $\pi' \subset \hat{\pi}_{0,3}$, donc $\pi' = \hat{\pi}'_0$ ($\pi'_0 = \pi' \cap \pi_{0,3}$). On a une opération de Γ' sur $I(\pi') = I(\pi'_0)$, on la prend triviale (quitte à passer à un sous-groupe ouvert de Γ'), on choisit $i \in I' \subset I(\pi')$, on bouche les trous en I', d'où π , avec discrétification orientée π_0 , et une action extérieure de Γ' dessus, qui est relevée en une action effective grâce à i. On trouvera bien ainsi un "réseau" – une discrétification orientée dans π – je dis qu'il ne dépend pas des choix qui ont été faits – en particulier, que les automorphismes de $(\pi,a,\Gamma^{\natural})$ transforment π_0 en lui-même. De plus, si on a deux points x, y de $B_{\pi,\Gamma^{\natural}}$, d'où $\pi(x)$, $\pi(y)$, parmi les classes de chemins de x à y (qui font un bitorseur sous $\pi(y)$, $\pi(x)$) il y a en a pour lesquelles $\pi(x) \longrightarrow \pi(y)$ envoie $\pi_0(x)$ dans $\pi_0(y)$ – quand on se limite à ceux-ci, on trouve un sous-groupoïde du groupoïde fondamental $\Pi(\pi,\Gamma^{\natural})$, qui est cette fois-ci un groupoïde connexe à lacets. On fera attention que Γ n'opère pas sur ce groupoïde, bien qu'il opère sur l'ensemble de ses objets.

\S 35. — L'INJECTIVITÉ DE ${\rm I}\!\Gamma_Q \longrightarrow {\rm Autext}_{\rm lac}(\hat{\pi}_{\rm 0,3})$

Théorème 1: ⁷⁴ Soit $\mathbb{I}\Gamma = \operatorname{Gal}(\overline{Q}_0/Q)$, où \overline{Q}_0 est la clôture algébrique de Q dans \mathbb{C} , considérons l'homomorphisme canonique

$$\mathbb{I}\Gamma \xrightarrow{\Theta} \hat{\hat{\mathfrak{Z}}}_{0,3} = \mathrm{Autext}_{\mathrm{lac}}(\hat{\pi}_{0,3}).(1)$$

Cet homomorphisme est injectif.

Démonstration.

Lemme 1: Soit $x \in Q$, $x \neq 0,1$ i.e. $x \in \mathcal{U}_{0,3}(Q)$; choisissons un chemin sur $\mathbb{P}^1(\mathbb{C})$ de $P = -\overline{j}$ (point base pour définir $\pi_{0,3} = \pi_1(\mathcal{U}_{0,3}(\mathbb{C}), P)$, (NB. $\mathcal{U}_{0,3} = \mathbb{P}^1(Q) \setminus \{0,1,\infty\}$), d'où un isomorphisme $\pi_1(\mathcal{U}_{0,3}(\overline{Q}_0), x) \simeq \hat{\pi}_{0,3}$, et par transport de structure une action effective de \mathbb{F} sur $\hat{\pi}_{0,3}$ (pas seulement extérieure). Alors $K = \text{Ker}\Theta$ opère trivialement sur $\hat{\pi}_{0,3}$.

Démonstration. Il suffit de voir que l'opération extérieure de K sur $\pi_1(\overline{V})$ où $V = \mathcal{U}_{0,3} \setminus \{x\}$, est triviale. D'après le résultat de Belyi, il existe un morphisme (défini sur Q, ceci est essentiel)

$$\mathbb{P}^1Q \longrightarrow \mathbb{P}^1Q,$$

étale au-dessus de $\mathscr{U}_{0,3} = \mathbb{P}^1 Q \setminus \{0,1,\infty\}$, et tel que $x \longmapsto 0$. Soit \mathscr{U}' le revêtement étale de $\mathscr{U}_{0,3} = \mathscr{U}$ induit, $\pi' = \pi_1(\overline{\mathscr{U}}')$ son groupe fondamental géométrique, sur lequel Γ donc $K \subset \Gamma$ opère extérieurement. Alors $\pi(\overline{V})$ est un quotient de π' , avec respect des opérations extérieures de Γ , et il suffit de prouver que K opère trivialement sur π' . Mais π' s'identifie à

⁷⁴Démontré modulo le lemme 2 plus bas.

un sous-groupe ouvert de $\hat{\pi}_{0,3} = \pi$ (avec respect des opérations extérieures de K), sur lequel l'opération extérieure de K est triviale. Il s'ensuit que l'opération extérieure de K sur π' se fait à travers un groupe quotient fini.

[En effet, l'action extérieure de K se fait à travers l'action effective du groupe extérieur E_K , laquelle par construction de K se fait par un homomorphisme $E_K \longrightarrow \Pi/\mathscr{Z}$ ($\mathscr{Z} = \operatorname{Centre}(\pi)$), et l'action de E_K' induite se fait par le composé $E_{KK}' \longrightarrow \pi/\mathscr{Z}$, dont l'image est dans \mathscr{N}/\mathscr{Z} , où \mathscr{N} est le normalisateur de π' dans π . Donc l'image de K dans Autext (π') est contenue dans celle de $\mathscr{N}/\mathscr{Z} \longrightarrow \operatorname{Autext}(\pi')$, or \mathscr{N}/π' est fini.]

Repassant à $\pi_1(\overline{V})$, on voit donc que l'image de K dans $\operatorname{Autext}(\pi_1(\overline{V}))$ est finie, donc l'image de K dans $\operatorname{Aut}(\hat{\pi}_{0,3})$ est finie. Elle est d'ailleurs formée d'automorphismes intérieurs, donc le lemme 1 sera conséquence du

Lemme 2: Tout automorphisme intérieur d'ordre fini de $\hat{\pi}_{0,3}$ (groupe profini libre à deux générateurs) est trivial. De façon plus précise: $\hat{\pi}_{0,3}$ a un centre réduit à $\{1\}$, et tout élément de $\hat{\pi}_{0,3}$ d'ordre fini est réduit à 1.

Ceci est un énoncé d'algèbre profini pure, que je reporte pour plus tard, pour en terminer avec la partie "géométrique" de la démonstration du théorème.

Lemme 3: Pour tout ouvert non vide $V \subset \mathbb{P}^1Q$, considérant l'action extérieure de \mathbb{F} sur $\pi_1(\overline{V})$, la restriction de celle-ci à K est triviale.

Quitte à passer à un ouvert plus petit, on peut supposer par Belyi que V est un revêtement étale de $\mathcal{U}_{0,3}$ – et le raisonnement précédent montre alors que l'action extérieure de K se fait via un groupe quotient fini – mais cela n'est pas suffisant pour notre propos, et n'implique pas par lui-même que cette action soit triviale. D'ailleurs, au point où j'en suis, on aurait pu remplacer \mathcal{U} par n'importe quelle courbe algébrique quasi projective lisse géométriquement connexe – pour trouver que K opère sur le groupe extérieur $\pi_1(\overline{V})$ via un groupe fini. Mais ici l'hypothèse $V \subset \mathbb{P}^1Q$ implique qu'il existe $y \in V(Q)$, soit $x \in \mathcal{U}(Q)$ son image dans $\mathcal{U} = \mathcal{U}_{0,3}$. Prenant y, x comme points base pour les groupes fondamentaux, on trouve

maintenant un homomorphisme effectif de groupes fondamentaux

$$\pi' = \pi_1(\overline{V}, y) \hookrightarrow \pi(\simeq \hat{\pi}_{0,3}) = \pi_1(\overline{\mathcal{U}}, x),$$

compatible avec une action effective de Γ sur ces groupes. Par le lemme 1 l'action induite de K sur $\pi = \pi_1(\overline{\mathcal{U}}, x)$ est triviale, donc aussi son action sur le sous-groupe π' . A fortiori l'action extérieure est triviale, cqfd.

On peut maintenant prouver le

Lemme 4: $K = \{1\}$ (i.e. le théorème!)

En effet, sous les conditions du lemme 2, l'action de Γ sur l'ensemble $I=S(\overline{Q}_0)$, où $S=\mathbb{P}^1_Q\setminus V$, est déduite de l'action extérieure de Γ sur $\pi_1(\overline{V})$ si $\operatorname{card}(I)\geq 2$, comme l'action sur les classes de conjugaison de "sous-groupes lacets". Comme K opère trivialement sur le groupe extérieur, il opère trivialement sur I. Ceci étant vrai pour tout V, on voit que l'action de K sur $\mathbb{P}^1(\overline{Q}_0)=\overline{Q}_0\cup\{\infty\}$ est triviale, i.e. son action sur \overline{Q}_0 l'est, donc $K=\{1\}$, cqfd.

Ouf!

Il reste à reporter la démonstration du lemme 2, que je vais reformuler sous une forme plus générale:

Théorème 2: Soit π un groupe profini libre sur un ensemble fini I de cardinal ≥ 2 . Alors:

- a) Le centre de π est égal à $\{1\}$.
- b) Il n'y a pas dans π d'élément d'ordre fini autre que 1.

Finalement je cale sur a) – tout comme je ne vois pas pourquoi le centre de Γ (et de tout sous-groupe ouvert) doit être réduit à $\{1\}$. Consulter Deligne à ce sujet!

Pour b), voici un expédient. Soit K un corps algébriquement clos de caractéristique 0, et considérons le corps des fonctions L = K(X) de $\mathscr{U} = \mathbb{P}^1_K \setminus \{n+1 \text{ points}\}$ $(n = \operatorname{card}(I))$. Alors $\pi \simeq \pi_1(\mathscr{U})$, et c'est un quotient de $E_L = \operatorname{Gal}(\overline{L}/L)$. Comme π est libre, $E_L \longrightarrow \pi$ se relève en π_L , et il suffit de voir que E_L n'a pas d'élément d'ordre fini $\neq 1$. Mais d'après Artin, il n'y a pas d'automorphisme d'ordre fini $\neq 1$ d'un corps algébriquement clos \overline{L} , sauf dans le cas où \overline{L} est extension quadratique d'un corps ordonné maximal R, qui soit le corps des invariants de τ (donc τ d'ordre 2 exactement).

Mais en l'occurence on aurait $R \supset L$, et $L \supset K$, or dans K l'élément -1 est un carré, donc R ne peut être ordonné – absurde!

Corollaire 1 du théorème 1: Soit X une courbe algébrique (lisse, géométriquement connexe, quasi-projective), sur k extension finie de Q. (Je présume que l'action extérieure de $E_k^{\overline{k}}$ sur $\pi_1(X_{\overline{k}})$ est fidèle si $\mathscr U$ anabélien – à défaut de pouvoir le prouver, j'énonce:) Alors il existe une partie ouverte non vide V de X telle que l'action extérieure de $E_k^{\overline{k}}$ sur $\pi_1(V_{\overline{k}})$ soit fidèle.

Démonstration. D'après Belyi, on sait qu'on peut trouver $V \subset X$ qui soit un revêtement étale de $\mathscr{U} = (\mathscr{U}_{0,3})_k$, je dis que ce V là convient. Soit donc K le noyau de l'opération extérieure de $\Gamma = E_k^{\overline{k}}$ sur $\pi' = \pi_1(V_{\overline{k}})$. Soit y un point fermé de V, rationnel sur l'extension finie k' de k correspondant à un sous-groupe ouvert $\Gamma' = E_{k'}^{\overline{k}}$ de Γ , soit $K' = \Gamma' \cap K$. Soit x l'image de y dans \mathscr{U} : on a

$$\pi' = \pi_1(V_{\overline{k}}, y) \hookrightarrow \pi = \pi_1(\mathcal{U}_{\overline{k}}, x),$$

et par construction l'action extérieure de K' sur π' est triviale, donc K' opère sur π' par automorphismes intérieurs. Or on a le

Lemma 5: ⁷⁵ Soit π un groupe profini à lacets, π' un sous-groupe ouvert; alors tout automorphisme u de π qui laisse stable π' et induit sur π' un automorphisme intérieur (resp. l'identité) est intérieur (resp. l'identité).

Admettons pour l'instant ce lemme – il en résulte que les éléments de K', qui opèrent sur π en induisant sur π' des automorphismes intérieurs, induisent sur π lui-même des automorphismes intérieurs, i.e. que l'action extérieure de K' sur π est triviale. D'après le théorème 1, on sait d'autre part que l'action extérieure de Γ' sur π est fidèle, donc $K'=\{1\}$. Il en résulte que K est fini. Mais par Artin on sait que les seuls sous-groupes finis $\neq \{1\}$ de Γ sont ceux engendrés par une "conjugaison complexe" τ , correspondant à un sous-corps ordonné maximal entre k et \overline{k} . Mais pour un tel τ on a $\chi(\tau)=-1$, donc l'action extérieure de τ ne peut être triviale – on gagne. En fait, la démonstration a montré ceci:

Corollaire: Soient k un corps de caractéristique 0, $\mathcal U$ une courbe algébrique (lisse etc.) sur

⁷⁵prouvé seulement modulo vérification de (2), (4) ci-dessous – pour le Corollaire 1; (2) est d'ailleurs suffisant...

k, telle que $E_k^{\overline{k}}=\Gamma$ opère fidèlement sur $\pi_1(\mathcal{U}_{\overline{k}})$ (opération extérieure). Alors pour tout revêtement étale géométriquement connexe V de \mathscr{U} , l'opération extérieure de Γ sur $\pi_1(V_{\overline{k}})$ est également fidèle.

Reste à prouver le lemme 5. Il suffit de le prouver dans le cas "respé" – l'autre s'en déduit aussitôt. Si π a au moins une classe de lacets (cas d'une courbe algébrique affine i.e. non propre), alors π est libre – et le lemme 5 est valable justement pour de tels groupes. Si $(l_i)_{1 \leq i \leq \nu}$ est un système de générateurs, soit L_i le sous-groupe fermé engendré par l_i , nous admettrons que $\forall n \in \mathbb{N}^*$

$$L_i = \operatorname{Centr}_{\pi}(L_i^n)^{76}.(2)$$

Ceci posé, si l'automorphisme u de π induit l'identité sur π' , $\exists n \in \mathbb{N}^*$ tel que $\forall 1 \leq i \leq \nu$, $u(l_i^n) = l_i^n$, donc $u(l_i)$ centralise $l_i^n = u(l_i)^n$, donc par (2) on a $u(l_i) \in L_i$, i.e. $u(L_i) \subset L_i$, mais on a $\operatorname{Aut}(L_i) \simeq \hat{\mathbb{Z}}^*$, et un automorphisme d'un $\hat{\mathbb{Z}}$ -module libre de rang 1 est connu quand on le connaît sur u $L_i \overset{\sim}{\leftarrow} L_i$. Donc $\forall i$ on a $u(l_i) = l_i$, donc $u = \operatorname{id}$, cqfd.

Dans le cas où π n'est pas libre, prenons un bon $(x_i,y_i)_{1\leq i\leq g}$ – de sorte que π soit défini par la relation génératrice

$$\prod_{1}^{g} [x_i, y_i] = 1.(3)$$

Soient Λ_i , Λ_i' les sous-groupes fermés engendrés par x_i , y_i . (Ils sont d'ailleurs tous conjugués sous $\operatorname{Aut}(\pi)$...). J'admets que ces groupes sont $\simeq \hat{\mathbb{Z}}$ (i.e. que les homomorphismes surjectifs $\hat{\mathbb{Z}} \longrightarrow \Lambda_i$, $\hat{\mathbb{Z}} \longrightarrow \Lambda_i'$ envoyant 1 dans les x_i , y_i sont injectifs – c'est d'ailleurs trivial en passant à π_{ab}) et qu'on a, en analogie avec (2), pour tout $n \in \mathbb{N}^*$

$$\operatorname{Centr}_{\pi}(\Lambda_{i}^{n}) = \Lambda_{i}, \quad \operatorname{Centr}_{\pi}(\Lambda_{i}^{n}) = \Lambda_{i}^{\prime},$$

et on termine comme ci-dessus.

Remarque: Le résultat le plus fort de fidélité dans la direction du présent paragraphe, concernant des actions de Γ et de ses sous-groupes ouverts, serait le suivant: si V est une courbe algébrique anabélienne sur l'extension finie k de Q, avec la clôture algébrique \overline{k} , alors non seulement l'action extérieure de $E_k^{\overline{k}} = \Gamma$ sur $\pi_1(V_{\overline{k}})$ devrait être fidèle, i.e.

$$\Gamma \longrightarrow \hat{\hat{\mathfrak{Z}}}(\pi)^{77}$$

⁷⁶pas prouvé!

⁷⁷Cet homomorphisme se factorise automatiquement par le sous-groupe $\mathcal{N}(\pi)$ qui normalise $\hat{\mathfrak{T}}(\pi)$.

injective, mais même l'homomorphisme composé

$$\Gamma \longrightarrow \mathcal{N}(\pi) \longrightarrow \mathcal{N}(\pi)/\hat{\mathfrak{T}}^+(\pi) \simeq \mathbf{I}\Gamma_{\pi}$$

devrait être injectif (auquel cas ce sera même un isomorphisme, puisqu'il est surjectif par construction même de $\mathcal{N}(\pi)$, Γ_{π} ...) Des raisonnements heuristiques faits précédemment (moins convaincants sans doute que ceux du présent paragraphe!) semblent indiquer que ce serait le cas au moins lorsque V est un revêtement étale de $\mathscr{U} = (\mathscr{U}_{0,3})_k$, auquel cas en effet l'homomorphisme $\Gamma \longrightarrow \Gamma_{\pi}$ s'insère dans un diagramme commutatif

où $\pi_0 = \pi_1(\mathcal{U}_{\overline{k}})$, de sorte que π est un sous-groupe ouvert de π_0 , et π' est un sous-groupe ouvert convenable, caractéristique dans π_0 . Si on pouvait montrer que $\mathbb{F}_{\pi_0} \longrightarrow \mathbb{F}_{\pi'}$ est injectif (ce qui est plus ou moins une histoire d'algèbre profinie), il en serait de même du composé $\Gamma \hookrightarrow \mathbb{F}_{\pi_0} \longrightarrow \mathbb{F}_{\pi'}$, donc aussi de $\Gamma \longrightarrow \mathbb{F}_{\pi}$. Donc modulo cette hypothèse sur les groupes profinis, et utilisant Belyi, on trouve que pour toute courbe algébrique V sur k, il existe $V' \subset V$ ouvert non vide, tel que

$$\Gamma \longrightarrow \mathbb{I}\Gamma_{\pi'}$$

(où $\pi'=\pi_1(V_{\overline{k}}')$) soit injectif. Quant à savoir si $\Gamma \longrightarrow \mathbb{F}_{\pi}$ est lui-même déjà injectif – ou ce qui revient au même, si $\Gamma \longrightarrow \mathbb{F}_g$ pour $g \geq 2$ et $\Gamma \longrightarrow \mathbb{F}_{1,1}$ sont injectifs, je n'ai pas de raison heuristique plausible pour m'en convaincre à présent – peut-être est-ce tout à fait faux? L'argument plus ou moins convaincant rappelé précédemment (à supposer qu'on arrive à le justifier) montrerait seulement que si $\Gamma \longrightarrow \mathbb{F}_{\pi}$ est injectif pour un π (ce qui ne dépend que de son type (g,v)) alors il l'est pour les π' ouverts dans π . On le sait à présent (modulo peu de chose, tout au moins) pour les types (0,v) ($v \geq 3$) exactement – ni plus ni moins – et on pourrait peut-être le déduire pour les types (g,v) qui s'en déduisent par "revêtement fini". Mais il est clair déjà qu'on n'obtient pas les types (g,0) comme cela $(g \geq 2)$, ni même aucun (g,v) avec $g \geq 1, v \in \{0,1,2\}$. C'est dire qu'on est loin du compte... Le premier cas bien intéressant serait donc le cas (1,1) (tore à un trou!), où $\hat{\mathfrak{T}}_{1,1}^+ \simeq \mathrm{SL}(2,\mathbb{Z})$ opérant extérieurement sur $\hat{\pi}_{1,1}$ (groupe libre à deux générateurs, encore – comme par hasard) – l'action "arithmétique" de \mathbb{F}_0 sur $\hat{\pi}_{1,1}$ (i.e. l'action extérieure $mod\,\hat{\mathfrak{T}}_{1,1}^+ \simeq \mathrm{SL}(2,\mathbb{Z})$) est-elle fidèle?

\S 36. — L'ISOMORPHISME $\mathbb{I}\Gamma_Q \xrightarrow{\sim} \mathbb{I}\Gamma_{1,1}$

(78) Soit $\pi'_{0,3}$ le groupe quotient de $\Gamma_{0,3}$ défini par les relations

$$l_1^2 = l_{\infty}^3 = 1;(1)$$

c'est donc le groupe "cartographique orienté pour structures triangulées", les $\pi'_{0,3}$ -ensembles finis correspondant aux cartes orientées finies (pouvant avoir des boucles aplaties) dont les faces sont des triangles ou des mono-angles. L'opération extérieure de \mathbb{F}_Q (mais non celle de \mathfrak{S}_3 !) sur $\hat{\pi}_{0,3}$ passe au quotient en une action sur $\hat{\pi}'_{0,3}$. On peut améliorer le théorème 1 du paragraphe précédent par la

Proposition:

L'action extérieure de Γ_Q sur $\hat{\pi}'_{0,3}$ est fidèle.

Pour le montrer, on va plonger $\pi_{0,3}$ comme sous-groupe d'indice fini dans $\pi'_{0,3}$, d'où un plongement analogue

$$\hat{\pi}_{0,3} \hookrightarrow \hat{\pi}'_{0,3}$$

qui sera compatible avec l'action extérieure de Γ_Q .

Considérons pour cela le schéma quotient $Y=\mathbb{P}^1_Q/\mathfrak{S}_3=X/\mathfrak{S}_3$ avec les trois points a_0,a_1,a_∞ de Y, rationnels sur Q, a_0 correspondant à la trajectoire $\{0,1,\infty\}$, a_1 à la trajectoire $\{-1,\frac{1}{2},2\}$ et a_∞ à la trajectoire $\{j,\overline{j}\},(j=\exp\frac{2i\pi}{3})$ de \mathfrak{S}_3 (ce qui épuise l'ensemble des

⁷⁸Les réflexions du présent paragraphe, un peu cahin caha, seront reprises de façon moins pesante au paragraphe suivant.

trajectoires "singulières" géométriques). On sait que Y est une droite projective (sur \overline{Q} a priori), qu'on épingle par a_0, a_1, a_∞ comme points $0, 1, \infty$, donc $Y \simeq \mathbb{P}^1_Q$; l'homomorphisme $X \longrightarrow Y$ s'identifie donc à un morphisme bien déterminé

$$f: X = \mathbb{P}_Q^1 \longrightarrow \mathbb{P}_Q^1 = Y(3)$$

qui fait de X un revêtement galoisien de Y, de groupe \mathfrak{S}_3 , étale au dessus de $\mathbb{P}^1_Q \setminus \{0,1,\infty\}$, avec comme indices de ramifications en ces points 2,2,3. Du point de vue de la géométrie des cartes (se plaçant sur le corps de base C), on considère la carte déterminée sur X par le triangle sphérique $(0,1,\infty)$ (sur l'axe réel comme équateur) – qui est donc la carte pondérée universelle – comme image inverse de la carte universelle (ayant un seul sommet 0, une seule arête repliée $0 \longrightarrow 1$, une seule face, de centre ∞). Tout revêtement étale topologique de $\mathscr{U}_{0,3}(\mathbb{C}) \subset X$ donne ainsi un revêtement étale topologique de $\mathscr{U}_{0,3}(\mathbb{C}) \subset Y$, ayant au dessus de 1 la ramification 2, au dessus de l'infini la ramification 3 exactement, ce qui correspond au foncteur "oubli" de la pondération, où une carte triangulaire pondérée est considérée comme une carte tout court. Du point de vue des groupes fondamentaux, on trouve ainsi une équivalence de catégories:

Revêtements étales de
$$X \setminus \{0, 1, \infty\} = \mathcal{U}_{0,3} \simeq \pi_{0,3}$$
-ensembles

(4)
$$\downarrow \chi$$
Revêtements de $Y \setminus \{0, 1, \infty\} = \mathcal{U}_{0,3} / (l'\text{objet } X \setminus \{0, 1, \infty\} \text{ de la dite catégorie})$

$$\simeq \pi'_{0,3}\text{-ensembles}/E$$

où:

- les revêtements de $Y \setminus \{0, 1, \infty\}$ considérés sont ceux dont la ramification est subordonnée à la signature $2\{1\} + 3\{\infty\}$,
- E est le $\pi'_{0,3}$ -ensemble correspondant à l'objet $X \setminus \{0,1,\infty\}$ de la catégorie des revêtements étales de $Y \setminus \{0,1,\infty\}$ à ramification subordonnée à $2\{1\} + 3\{\infty\}$.

Ici, le point base de $Y \setminus \{0, 1, \infty\}$ choisi pour décrire les revêtements (à ramification subordonnée à...) par un groupe fondamental à ramification, étant encore $P = -\overline{j}$, on aura:

$$E = f_{\mathbb{C}}^{-1}(P)(5)$$

et on peut expliciter ainsi la catégorie ($\pi'_{0,3}$ -ens.)/E, où E est un espace homogène, isomorphe au quotient de $\pi'_{0,3}$ par le sous-groupe $\pi'_{0,3}$, noyau de l'homomorphisme surjectif idoine,

[en marge:] A calculer!.

On choisit un $Q_0 \in E$ comme "origine" de E – pour pouvoir identifier E comme $\pi'_{0,3}$ ensemble à $\pi'_{0,3}/\pi'^0_{0,3} \simeq \mathfrak{S}_3$ – alors $\operatorname{Ens}(\pi'_{0,3})/E$ s'identifie, par le foncteur $F \longrightarrow F_{Q_0}$, à $\operatorname{Ens}(\pi'^0_{0,3})$.

On trouve donc en résumé une équivalence de catégories (dépendant du choix de Q_0)

$$\pi_{0,3}$$
 – ensembles $\stackrel{\sim}{\longrightarrow} \pi'_{0,3}$ – ensembles

qui est elle-même décrite par un bitorseur sous $(\pi'_{0,3}^0, \pi_{0,3})$ et, à isomorphisme (non unique!) près par un isomorphisme

$$\pi_{0,3} \xrightarrow{\sim} \pi'_{0,3}$$

les isomorphismes ainsi obtenus (pour des origines variables du bitorseur) formant exactement une classe de conjugaison par $\pi_{0,3}^{\prime 0}$, i.e. un *isomorphisme extérieur* $\pi_{0,3} \xrightarrow{\sim} \pi_{0,3}^{\prime 0}$. Quand de plus le choix de Q_0 varie, on trouve un composé $\pi_{0,3} \longrightarrow \pi_{0,3}^{\prime 0} \longrightarrow \pi_{0,3}^{\prime 0} \longrightarrow \pi_{0,3}^{\prime 0}$ exactement une classe de $\pi_{0,3}^{\prime}$ -conjugaison, i.e. un homomomorphisme extérieur.

J'ai beaucoup turbiné pour pas grand chose – à défaut d'avoir écrit les fonctorialités [?] très générales [??] pour les "groupes fondamentaux avec ramification". Par exemple le bifoncteur I mystérieux de tantôt est formé des classes de chemins de $P \in X(\mathbb{C}) \setminus \{0,1,\infty\}$ (point base pour calculer $\pi_{0,3}$) vers Q_0 (jouant le rôle d'un nouveau point base, ayant le mérite de s'envoyer sur celui – P – qui sert à calculer $\pi'_{0,3}$, groupe fondamental à ramification sur $Y(\mathbb{C}) \setminus \{0,1,\infty\}$...). Il serait peut-être plus commode de définir directement un foncteur en sens inverse,

(7) Revêtements de $Y(\mathbb{C}) \setminus \{0, 1, \infty\}$ — Revêtements étales de $X(\mathbb{C}) \setminus \{0, 1, \infty\}$ subordonnés à la signature $2\{1\} + 3\{\infty\}$ par image inverse, suivi d'une *normalisation*.

Ici on utilise le fait que l'objet $X(\mathbb{C})\setminus\{0,1,\infty\}$ de la catégorie des revêtements à ramification maximum imposée, réalise justement un maximum sur les points $1,\infty$ où la condition

intervient. On trouve que le foncteur correspondant

$$\pi'_{0,3}$$
 — ensembles $\longrightarrow \pi_{0,3}$ — ensembles (7 bis)

a les propriétés d'exactitude d'un foncteur associé à un morphisme de topos galoisiens

$$B_{\pi_{0,3}} \longrightarrow B \pi'_{0,3}$$

(commute aux limites inductives, exact à gauche) et est donc défini par un $(\pi_{0,3}, \pi'_{0,3})$ ensemble qui soit un torseur (à droite) pour $\pi'_{0,3}$ ⁷⁹. Le choix d'une origine pour ce torseur définit alors aussi un homomorphisme correspondant $\pi_{0,3} \longrightarrow \pi'_{0,3}$.

Revenons à la situation arithmétique sur Q, où on dispose non seulement des groupes fondamentaux géométriques profinis $\hat{\pi}_{0,3}$, $\hat{\pi}'_{0,3}$, mais aussi d'extensions

$$1 \longrightarrow \hat{\pi}_{0,3} \longrightarrow \mathcal{E}_{0,3} \longrightarrow \mathbb{\Gamma} \longrightarrow 1$$
$$1 \longrightarrow \hat{\pi}'_{0,3} \longrightarrow \mathcal{E}'_{0,3} \longrightarrow \mathbb{\Gamma} \longrightarrow 1$$
(8)

qui s'interprètent comme des groupes fondamentaux de $\mathcal{U}_{0,3}$, resp. de $\mathcal{U}_{0,3}$ avec ramification subordonnée à $2\{1\} + 3\{\infty\}$. Les raisonnements précédents s'étendent à ce cadre et fournissent donc un homomorphisme d'extension

défini modulo composition par un automorphisme intérieur de $\pi'_{0,3}$ [$\hat{\pi}_{0,3} \longrightarrow \hat{\pi}_{0,3}$ s'insère dans une suite exacte

$$1 \longrightarrow \hat{\pi}_{0,3} \longrightarrow \hat{\pi}'_{0,3} \longrightarrow \mathfrak{S}_{3}(9 \text{ bis})$$

et itou pour les groupes discrets, $1 \longrightarrow \pi_{0,3} \longrightarrow \pi'_{0,3} \longrightarrow \mathfrak{S}_3$].

Ceci dit, soit K le noyau de l'opération extérieure de \mathbb{F} sur $\pi'_{0,3}$. On voit alors que l'opération extérieure de K sur le sous-groupe ouvert $\hat{\pi}_{0,3}$ se fait par un groupe fini (en fait par l'intermédiaire de $\hat{\pi}'_{0,3}/\hat{\pi}_{0,3} \simeq \mathfrak{S}_3...$) – ce qui implique, par le théorème 1 du paragraphe

⁷⁹Ce bitorseur est aussi l'ensemble des $Y_{\mathbb{C}} \setminus \{0\}$ homomorphismes du "revêtement universel" à ramification imposée de cet espace sur le revêtement universel ordinaire de $X(\mathbb{C}) \setminus \{0,1,\infty\}$.

précédent, que le groupe K lui-même est fini. Donc par Artin on a K=1 ou $K=(1,\tau)$, τ la conjugaison complexe. Mais comme $\chi(\tau)=-1$, il est évident que l'opération extérieure de τ sur $\pi'_{0,3}$ (où même sur $\pi'_{0,3\,ab}$ ($\simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$) n'est pas triviale. Cela prouve la proposition.

J'ai envie maintenant d'interpréter $\pi'_{0,3}$ comme $\mathfrak{T}^+_{1,1}/(\text{centre})$ (le centre est isomorphe à $\{\pm 1\}$), et itou pour $\hat{\pi}'_{0,3} \simeq \hat{\mathfrak{T}}_{1,1}/\{\pm 1\}$, isomorphisme qui soit compatible avec l'action extérieure de \mathbb{F} . On a (pour mémoire)

$$\mathfrak{T}_{1.1} \xrightarrow{\sim} GL(2,\mathbb{Z}), (10)$$

l'isomorphisme étant obtenu ainsi

$$\mathfrak{T}_{1,1} \xrightarrow{\sim} \mathfrak{T}_{1,0} \xrightarrow{\sim} \operatorname{Autext}(\pi_{1,0}) \simeq \operatorname{Autext}(\mathbb{Z}^2) \simeq GL(2,\mathbb{Z})(11)$$

[où le premier isomorphisme est celui de bouchage de trou].

On a donc

$$\mathfrak{T}_{1,1}^+ \simeq SL(2,\mathbb{Z})(12)$$

et

Centre(
$$\mathfrak{T}_{1,1}$$
) $\simeq \{\pm 1\}(13)$

(s'identifie au groupe des homothéties de $SL(2,\mathbb{Z})$). Il est connu qu'on a dans $SL(2,\mathbb{Z})/\{\pm 1\}$ deux générateurs λ_2, λ_3 satisfaisant respectivement

$$\lambda_3^3 = 1, \lambda_2^2 = 1(14)$$

et tels que ces relations soient une *présentation* de $SL(2,\mathbb{Z})/\{\pm 1\}$. Sauf erreur ces éléments proviennent d'éléments u_4, u_6 de $SL(2,\mathbb{Z})$ lui-même, satisfaisant

$$u_6^6 = 1, u_4^4 = 1, (15)$$

et qui correspondent aux seuls éléments d'ordres 6 et 4 (à conjugaison et passage à l'inverse près). En fait, tout élément d'ordre fini de $SL(2,\mathbb{Z})$ est conjugué à une puissance de u_4 ou u_6 . Les sous-groupes engendrés respectivement par u_4 et u_6 , cycliques d'ordre 4 et 6, sont les groupes des automorphismes des deux courbes elliptiques exceptionnelles (dîtes "anharmoniques") (en caractéristique 0).

Je n'ai pas de formule sous la main pour "placer" u_4 et u_6 , de façon qu'ils engendrent le groupe $SL(2,\mathbb{Z})$ modulo son centre (ce qui implique sans doute qu'ils engendrent $SL(2,\mathbb{Z})$) – mais on fera attention à la relation supplémentaire, s'ajoutant à (15)

$$u_4^2 = u_6^3(16)$$

(c'est justement l'élément -1 du centre de $SL(2,\mathbb{Z})$). Je n'ai peut-être pas besoin de la formule explicite pour u_4 et u_6 . On définit alors

$$\pi'_{0.3} \xrightarrow{\sim} SL(2,\mathbb{Z})/\{\pm 1\}(17)$$

par

$$l_1' \longmapsto \lambda_2, \ l_\infty' \longmapsto \lambda_3(18)$$

(donc $l_0' \longmapsto (\lambda_3 \lambda_2)^{-1} = \lambda_2 \lambda_3^{-1} = \lambda_2 \lambda_3^2$), où l_0', l_1', l_∞' sont les générateurs de $\pi_{0,3}'$ correspondants à ceux l_0, l_1, l_∞ de $\pi_{0,3}$, avec les relations de définition

$$l_{\infty}' l_{1}' l_{0}' = 1, \ l_{1}'^{2} = 1, \ l_{\infty}'^{3} = 1, (19)$$

de sorte que $\pi'_{0,3}$ est bien le groupe de générateurs l'_1, l'_∞ satisfaisant à $l'^2_1=1, l'^3_\infty=1$.

Je veux maintenant me convaincre que l'homomorphisme correspondant à (17),

$$\hat{\pi}'_{0,3} \longrightarrow SL(2,\mathbb{Z})^{\hat{}}/\{\pm 1\} \simeq \hat{\mathfrak{T}}^{+}_{1,1}/\{\pm 1\}(20)$$

est compatible avec l'opération extérieure de $\Gamma = \Gamma_Q$. Pour ceci, j'ai envie de définir directement le composé avec $\hat{\pi}_{0,3} \longrightarrow \hat{\pi}'_{0,3}$, i.e. $\hat{\pi}_{0,3} \longrightarrow \hat{\mathfrak{T}}^+_{1,1}/\{\pm 1\}$, et même de le relever en un homomorphisme

$$\hat{\pi}_{0,3} \longrightarrow \hat{\mathfrak{T}}_{1,1}^+.(21)$$

Au niveau des groupes discrets, on définit bien

$$\pi_{0,3} \longrightarrow SL(2,\mathbb{Z})(22)$$

par
$$l_1 \longrightarrow u_4$$
, $l_\infty \longmapsto u_6$, $l_0 \longmapsto (u_6 u_4)^{-1} = u_4^{-1} u_6^{-1}$,

et $SL(2,\mathbb{Z})\simeq\mathfrak{T}_{1,1}^+$ s'identifie au quotient de $\pi_{0,3}$ par le sous-groupe engendré par les éléments

$$l_1^4, l_\infty^6, (l_1^2)(l_\infty^3)^{-1}.$$

D'ailleurs $\pi_{0,3}$ peut s'interpréter comme un groupe de Teichmüller $\mathfrak{T}^{!+}_{0,4}$ 80, et (22) comme un homomorphisme

$$\mathfrak{T}_{0,4}^{!+} \longrightarrow \mathfrak{T}_{1,1}^{+}(23)$$

dont je soupçonne qu'il se prolonge en un homomorphisme

$$\mathfrak{T}_{0,4}^! \longrightarrow \mathfrak{T}_{1,1} \simeq SL(2,\mathbb{Z})(24)$$

[le premier membre étant] une extension de $(1, \tau)$ par $\pi_{0,3}$, qui n'est autre que le groupe cartographique triangulé pondéré non orienté.

J'interprète le premier membre de (23) comme le π_1 "géométrique transcendant" du topos modulaire $\mathbb{M}^!_{0,4}$, classifiant les droites projectives avec quatre points disctincts numérotés de 1 à 4; et le deuxième membre de (23) est le π_1 transcendant du topos modulaire $\mathbb{M}_{1,1}$, classifiant les courbes elliptiques (avec une origine fixée). On devrait donc pouvoir définir, au niveau des multiplicités modulaires sur Q,

$$(\mathbb{M}^!_{0,4})_{\mathcal{O}} \longrightarrow (\mathbb{M}_{1,1})_{\mathcal{O}}, (25)$$

qui donnerait naissance à (23).

Mais on voit de suite qu'on a un isomorphisme canonique

$$\mathbb{M}^!_{0,4} \simeq \mathscr{U}_{0,3}(26)$$

(je laisse tomber les indices Q), et la donnée de (25) revient donc aussi à la donnée d'une famille de courbes elliptiques sur $\mathcal{U}_{0,3}$. Mais si λ est la "variable $\in \mathcal{U}_{0,3}$ ", en prenant "le" revêtement quadratique E_{λ} de \mathbb{P}^1 ramifié en $0, 1, \infty, \lambda$, on trouve une courbe elliptique, avec quatre points marqués – au dessus de $0, 1, \infty, \lambda$ – dont on peut prendre le point au dessus de 0 comme origine – alors les trois autres points sont les trois points d'ordre 2, indexés respectivemnt par $1, \infty, \lambda$.

De façon plus précise: sur un schéma de base quelconque S, sauf que 2 y soit inversible (caractéristique résiduelle différente de 2), on a un foncteur qui va de la catégorie des systèmes (E, α, β) d'une courbe elliptique (homogène) relative sur S, et α, β deux sections de E formant une base de $_2E$, en tant que schéma localement constant en \mathbb{F}_2 – modules (ou système local de \mathbb{F}_2 -modules) de S (donnant naissance à $\gamma = \alpha + \beta$, comme troisième larron -

⁸⁰En effet $\mathfrak{T}_{g,\nu}^!$ est extension de $\mathfrak{T}_{g,\nu-1}^!$ par $\pi_{g,\nu-1}$ (si $(g,\nu-1)$ anabélien) et itou pour les \mathfrak{T}^+ ; $\mathfrak{T}_{0,3}^{!+}=\{1\}!$

de sorte que (β, γ) etc. sont en fait aussi des bases) ⁸¹ – vers la catégorie des fibrés en droites projectives P sur S, avec quatre sections $u_0, u_1, u_\infty, \lambda$ marquées disctinctes en chaque point, en associant à E le quotient $E/\pm 1$, muni des sections $u_0, u_1, u_\infty, \lambda$ qui sont images respectivement de $0, \alpha, \beta, \gamma = \alpha + \beta$; et ce foncteur est *presque* une équivalence de catégories. Ce qui lui manque pour l'être, c'est que pour une courbe elliptique relative E, la symétrie $x \longrightarrow -x$ de E – qui est un automorphisme non trivial – opère trivialement sur l'objet correspondant $E/\{\pm 1\}$ ⁸². Donc il faut prendre le champ sur (Sch), déduit de celui des courbes elliptiques en commençant par prendre Isom(E,F)'= Isom $(E,F)/\pm 1$, puis on prendra le champ associé à un préchamp (les objets sur S sont les "courbes elliptiques relatives à symétrie près sur S"). Le champ est représentable par une multiplicité modulaire $M'_{1,1}$, ayant comme groupe fondamental géométrique $SL(2,\mathbb{Z})'/\{\pm 1\}$ justement, déduit par exemple des variétés modulaires à rigidification de Jacobi déchelon n, $M_{1,1}[n]$ – avec un groupe $SL(2,\mathbb{Z}/n\mathbb{Z})$ opérant dessus, de sorte que

$$M_{1,1} \simeq (M_{1,1}[n], SL(2, \mathbb{Z}/n\mathbb{Z}))(27)$$

et en outre que le sous-groupe central $\{\pm 1\}$ de $SL(2,\mathbb{Z}/n\mathbb{Z})$ opère trivialement sur $M_{1,1}[n]$; donc on peut faire opérer le groupe quotient $SL(2,\mathbb{Z}/n\mathbb{Z})' = SL(2,\mathbb{Z}/n\mathbb{Z})/\{\pm 1\}$, et poser

$$M'_{1,1} = (M_{1,1}[n], SL(2, \mathbb{Z}/n\mathbb{Z})')(28)$$

(ce qui manifestement ne dépend pas du choix de $n, n \ge 2$). On trouve ainsi un homomorphisme

$$M_{0.4}^! \simeq \mathcal{U}_{0.3} \longrightarrow M_{1.1}', (29)$$

qui fait de $M_{0,4}^!$ un revêtement galoisien de groupe \mathfrak{S}_3 de $M_{1,1}^\prime$, et de façon plus précise

$$M_{0,4}^! \xrightarrow{\sim} M_{1,1}[2]' \longrightarrow M'_{1,1}(30)$$

[la deuxième flèche définissant un] revêtement galoisien de groupe $SL(2,\mathbb{F}_2) \simeq \mathfrak{S}_3$), le groupe fondamental géométrique de $M_{1,1}[2]$ étant d'ailleurs isomorphe au noyau de l'homomorphisme $SL(2,\mathbb{Z})'^{\wedge} \longrightarrow SL(2,\mathbb{Z}/2\mathbb{Z})$ qui factorise l'homomorphisme canonique $SL(2,\mathbb{Z})^{\wedge} \longrightarrow SL(2,\mathbb{Z}/2\mathbb{Z})$.

⁸¹Il revient au même de dire que l'on a trois sections α, β, γ de $_2E$ sur S, qui sont distinctes en tout $s \in S$ et partant $\neq 1$.

⁸²Les pages qui suivent sont inutilement compliquées, avec l'introduction de $\mathbb{M}'_{1,1}, \mathfrak{T}'_{1,1}$ etc. il suffit d'y aller brutalement avec la courbe elliptique $y^2 = \sqrt{x(x-1)(x-\lambda)}$ sur $\mathscr{U}_{0,3}$, pour avoir $\mathscr{U}_{0,3} \longrightarrow \mathbb{M}_{1,1}$; cf. plus bas...

Passant aux groupes fondamentaux pour $M_{0,4}^! = \mathcal{U}_{0,3}$ et $M_{1,1}'$, on trouve un homomorphisme de suites exactes

([avec] $\hat{\mathfrak{Z}}_{1,1}^{'+} = \hat{\mathfrak{Z}}_{1,1}^{+}/\{\pm 1\} \simeq SL(2,\mathbb{Z})/\{\pm 1\}$), qui identifie $\mathscr{E}_{0,3}$ à un sous-groupe ouvert d'indice 6 dans $\mathscr{E}_{1,1}' = \mathscr{E}_{1,1}/\{\pm 1\}$, et itou pour $\hat{\pi}_{0,3}$ dans $\hat{\mathfrak{Z}}_{1,1}'$. On trouve ainsi un isomorphisme

$$\hat{\pi}_{0,3} \stackrel{\sim}{\longrightarrow} \operatorname{Ker}(\mathfrak{T}_{1,1}^{\prime+} \longrightarrow \mathfrak{S}_{3}) \simeq \left(\operatorname{Ker}(\mathfrak{T}_{1,1}^{+} \longrightarrow \mathfrak{S}_{3})\right) / \{\pm 1\}(32)$$

compatible avec les actions extérieures de Ir. On peut dire aussi qu'on a une structure d'extension

$$1 \longrightarrow \hat{\pi}_{0,3} \longrightarrow \mathfrak{T}_{1,1}^{\prime+} \longrightarrow \mathfrak{S}_{3} \longrightarrow 1(33)$$

(i.e. $1 \longrightarrow \hat{\pi}_{0,3} \longrightarrow SL(2,\mathbb{Z}) / \{\pm 1\} \longrightarrow SL(2,\mathbb{Z}/2\mathbb{Z}) \longrightarrow 1$) compatible avec les actions de \mathbb{F} (\mathbb{F} opérant trivialement sur \mathfrak{S}_3).

Je finis par m'apercevoir que ce qu'on obtient ici est loin de (22) – cet homomorphisme (22) n'a rien d'injectif, par contre il est surjectif, et ses valeurs sont, non dans $SL(2,\mathbb{Z})/\{\pm 1\}$, mais dans $SL(2,\mathbb{Z})$ lui-même! Il faudra donc que je revienne encore sur une façon de donner un sens arithmético-géométrique remarquable à (22), et son extension aux groupes profinis correspondants. Pour le moment, je m'en tiens à exploiter un peu (33). Tout d'abord je note que les arguments faits dans le cadre schématique marchent aussi dans le cas transcendant, analytique complexe, et fournissent alors

$$\pi_{0,3} \xrightarrow{\sim} \operatorname{Ker}(\mathfrak{T}_{1,1}^{\prime+} \longrightarrow \mathfrak{S}_3) = \operatorname{Ker}(SL(2,\mathbb{Z})/\{\pm 1\} \longrightarrow SL(2,\mathbb{Z}/2\mathbb{Z}))(34)$$

compatible avec (32), ou encore une suite exacte,

$$1 \longrightarrow \pi_{0,3} \longrightarrow \mathfrak{T}_{1,1}'' = SL(2,\mathbb{Z})/\pm 1 \longrightarrow \mathfrak{S}_3 = SL(2,\mathbb{Z}/2\mathbb{Z}) \longrightarrow 1.(35)$$

On aimerait interpréter (35) et (33), comme correspondant aux suites exactes analogues liées au diagramme (9), reliant $\pi_{0,3}$ et $\pi'_{0,3}$ – en identifiant $\pi'_{0,3}$ à $\mathfrak{T}'_{1,1}$, $\hat{\pi}'_{0,3}$ à $\hat{\mathfrak{T}}'_{1,1}$. J'y reviendrai tantôt.

Remarque: On peut se demander si l'homorphisme

$$\hat{\pi}_{0,3} \longrightarrow SL(2,\mathbb{Z}) / \{\pm 1\} \simeq \hat{\mathfrak{T}}_{1,1}^+ / \{\pm 1\}$$

se remonte ⁸³Oui, on peut remonter, et c'est plus ou moins trivial... cf. plus bas... (de façon plus ou moins naturelle) en un homomorphisme

$$\hat{\pi}_{0,3} \longrightarrow SL(2,\mathbb{Z}) \simeq \hat{\mathfrak{Z}}_{1,1}^+,$$

et itou pour les groupes discrets

$$\pi_{0,3} \longrightarrow SL(2,\mathbb{Z}) \simeq \mathfrak{T}_{1,1}^+.$$

Bien sûr, comme $\pi_{0,3}$ et $\hat{\pi}_{0,3}$ sont libres (avec deux générateurs) on peut toujours remonter – d'exactement *quatre* façons d'ailleurs (qui nécessairement, dans le cadre profini, respectent les réseaux discrets). Mais peut-on le faire en respectant les opérations de \mathbb{F} ? Il suffirait pour cela qu'on puisse remonter $\mathcal{U}_{0,3} \longrightarrow M'_{1,1}$ en $\mathcal{U}_{0,3} \longrightarrow M_{1,1}$ (NB. $M_{1,1}$ est une $\mathbb{Z}/2\mathbb{Z}$ -gerbe au dessus de $M'_{1,1}$), et je suspecte, d'après le yoga "anabélien" que j'essaye de développer, que l'inverse doit être vrai ⁸⁴ – que tout relèvement de $\hat{\pi}_{0,3} \longrightarrow \hat{\mathfrak{T}}'_{1,1}$ commutant aux opérations de \mathbb{F} est défini par un tel relèvement $\mathcal{U}_{0,3} \longrightarrow M_{1,1}$. Or l'existence d'un tel relèvement $\mathcal{U}_{0,3} \longrightarrow M_{1,1}$ signifierait exactement l'existence d'une famille de courbes elliptiques sur $\mathcal{U}_{0,3}$, avec rigidification de Jacobi d'échelon 2, qui corresponde à l'invariant tautologique λ . Je doute qu'il en existe une, comme je doute que le relèvement en termes de groupes profinis à opération puisse se faire.

A vrai dire, comme $\hat{\mathfrak{X}}_{1,1}^+ = SL(2,\mathbb{Z})^n$ n'a plus de centre trivial, il n'est plus raisonnable de vouloir "tout exprimer" par les opérations extérieures de \mathbb{F} sur $\hat{\mathfrak{X}}_{1,1}^+$, il faut plutôt revenir à l'extension $\mathscr{E}_{1,1} = \mathscr{E}_{M_{1,1}}$ de \mathbb{F} par $\hat{\mathfrak{X}}_{1,1}^+$, et la question est si l'homomorphisme

$$\mathcal{E}_{0.3} \longrightarrow \mathcal{E}'_{1.1} = \mathcal{E}_{1.1}/\{\pm 1\}$$

se remonte en

$$\mathscr{E}_{0,3} \xrightarrow{?} \mathscr{E}_{1,1},$$

^{83(*)}

⁸⁴Pas tout fait, cf. page suivante pour une formulation plus raisonnable...

ce qui est plus fort que de trouver un relèvement $\hat{\pi}_{0,3} \longrightarrow \hat{\mathfrak{L}}_{1,1}^+$, compatible avec les opérations extérieures de Γ . Pour apprécier cette différence, je note que Γ opère sur l'ensemble E des quatre relèvements $\hat{\pi}_{0,3} \longrightarrow \hat{\mathfrak{L}}_{1,1}^+$ (interprétés comme homomorphismes extérieurs), et la question posée sous la forme faible est s'il existe un élément de E invariant par Γ . S'il n'existait pas, il y aurait en tous cas un sous-groupe ouvert de Γ , d'indice 2 ou 4, qui laisserait invariant un élément – donc, quitte à passer à l'extension finie correspondante de Q, on trouve un relèvement, et quitte à passer à une extension un peu plus grande, les *quatre* relèvements possibles commutent à l'action extérieure de Γ . Par contre, rien ne prouve que l'on puisse trouver un "germe de relèvement" de $\mathcal{E}_{0,3} \longrightarrow \mathcal{E}'_{1,1}$ en $\mathcal{E}_{0,3}^{\natural} \longrightarrow \mathcal{E}_{1,1}^{\natural}$ (germes pris par rapport aux sous-groupes ouverts de $\mathcal{E}_{0,3}$ contenant $\hat{\pi}_{0,3}$, ou même tous les sous-groupes ouverts). L'obstruction à remonter sur $\mathcal{E}_{0,3}$ lui-même, i.e. à *scinder* une certaine extension de $\mathcal{E}_{0,3}$ par $\{\pm 1\}$, est

$$\alpha \in H^2(\mathscr{E}_{0.3}, \mathbb{Z}/2\mathbb{Z}), (36)$$

et rien ne dit que cette classe de cohomologie puisse s'effacer, en passant à un sous-groupe ouvert de $\mathscr{E}_{0,3}$.

Mais en termes géométriques, les courbes elliptiques relatives cherchées sur $\mathcal{U}_{0,3}$ forment les sections d'un champ sur $(\mathcal{U}_{0,3})_{\text{\'et}}$ – qui est une $\mathbb{Z}/2\mathbb{Z}$ -gerbe – l'obstruction se trouve donc dans un groupe de Brauer,

$$\beta \in H^2(\mathcal{U}_{0,3}, \mathbb{Z}/2\mathbb{Z}), (37)$$

ou comme $\mathcal{U} = \mathcal{U}_{0,3}$ est une courbe algébrique affine sur un corps (il suffirait qu'elle ne soit pas de type 0,0), il s'en suit que l'homomorphisme canonique (à coefficients de torsion quelconques)

$$H^*(\mathcal{E}_{\mathcal{Y}},-) \longrightarrow H^*(\mathcal{U},-)$$

est un isomorphisme. D'ailleurs, il doit être plus ou moins trivial que β est l'image de α – ce qui confirme l'intuition que si le relèvement est possible au niveau des groupes fondamentaux profinis (arithmético-géométriques), il l'est aussi au niveau des multiplicités modulaires ellesmêmes, donc qu'on a une existence d'une courbe elliptique relative sur $\mathcal{U}_{0,3}$ qui...

Il est vrai qu'il est bien connu qu'une classe de cohomologie (37) à coefficients de torsion s'efface, en passant à une extension finie du corps de base (Q en l'occurence). En fait, on a une suite spectrale

$$H^*(\mathcal{U}_{0,3},\mathbb{Z}/2\mathbb{Z}) \Leftarrow E_2^{p,q} = H^p(Q, H^q(\overline{\mathcal{U}_{0,3}},\mathbb{Z}/2\mathbb{Z})), (38)$$

et ici $H^q(\overline{\mathcal{U}_{0,3}}) = 0$ pour $q \ge 2$, donc on trouve une suite exacte

$$\dots E_2^{0,1} = H^q(Q, H^1(\overline{\mathcal{U}})) \longrightarrow E_2^{2,0} = H^q(Q, \mathbb{Z}/2\mathbb{Z}) \longrightarrow H^2(\mathcal{U}_{0,3}) \longrightarrow$$
$$\longrightarrow E_2^{1,1} = H^p(Q, H^1(\overline{\mathcal{U}}) \simeq \mathbb{F}_2^2) \longrightarrow E_2^{3,0} = H^3(Q, \mathbb{Z}/2\mathbb{Z}) \longrightarrow \dots$$

Je me rends compte enfin que l'existence d'un relèvement – i.e. de la courbe elliptique hypothétique sur $\mathcal{U}_{0,3}$ – est tout à fait triviale, il suffit de le définir par l'équation

$$y = \sqrt{x(x-1)(x-\lambda)},$$

i.e.
$$y^2 - x(x-1)(x-\lambda) = F(x, y; \lambda) = 0$$
,

ce qui définit une courbe plane affine, ou passer en coordonnées projectives

$$F(x, y, z; \lambda) = y^2 z - x^3 + (1 + \lambda)x^2 z - \lambda x z^2 = 0.$$

Je ne vais pas approfondir la question ici, dans quelle mesure ce choix est "naturel".

Il donne en tous cas un homomorphisme tout ce qu'il y a de précis

$$\mathbb{M}^!_{0,4} \simeq \mathscr{U}_{0,3} \longrightarrow \mathbb{M}_{1,1}, (39)$$

d'où un homomorphisme d'extensions

$$1 \longrightarrow \hat{\pi}_{0,3} = \mathfrak{T}_{0,4}^{!+} \longrightarrow \mathscr{E}_{0,3} = \mathscr{N}_{0,4}^{!} \longrightarrow \mathbb{I}\Gamma \longrightarrow 1$$

$$\downarrow \qquad \qquad \qquad | \qquad \qquad \qquad | \qquad \qquad \qquad | \qquad \qquad$$

défini modulo automorphisme intérieur par un élément de $\hat{\mathfrak{T}}_{1,1}^+ = SL(2,\mathbb{Z})^{\hat{}}$, et au niveau des groupes discrets,

$$\pi_{0,3} \longrightarrow \hat{\mathfrak{T}}_{1,1}^+$$

et même,

$$\pi_{0,3} \hookrightarrow \Gamma_2 = \operatorname{Ker}(\hat{\mathfrak{T}}_{1,1}^+ = SL(2,\mathbb{Z})\hat{} \longrightarrow \mathfrak{S}_3 = SL(2,\mathbb{Z}/2\mathbb{Z}))(42)$$

(et itou pour les groupes profinis). Ici $\pi_{0,3}$ est tel que le sous-groupe de congruence du deuxième membre [?], soit Γ_2 soit produit direct [??] sous-groupe $\pi_{0,3}$ et de son centre $\{\pm 1\}$. Mais en fait, il y a exactement quatre sous-groupes dans Γ_2 qui réalisent cette décomposition. Pour

ne pas faire de jaloux, on pourrait regarder l'intersection des quatre, qui est un sous-groupe de Γ_2 d'indice un diviseur de 24=16 [?] ⁸⁵; c'est l'intersection des noyaux de quatre homomorphismes $\Gamma_2 \longrightarrow \text{Centre}(\Gamma_2) = \{\pm 1\}$. En tant que sous-groupe de $\pi_{0,3}$, il est d'indice un diviseur de 8 [c'est vrai et c'est même trivial...] – ça ne m'étonnerait pas que ce soit justement le groupe des commutateur de $\pi_{0,3}$, qui est d'indice 4 – il y a là toute une situation à élucider...

Bien entendu, il faudrait aussi expliciter l'homorphisme (42) (défini modulo automorphismes intérieurs) par ses valeurs sur les générateurs l_0 , l_1 , l_∞ – j'y reviendrai peut-être tantôt 86

Théorème:

L'action extérieure naturelle de Π_Q sur $\hat{\mathfrak{T}}_{1,1}^+$, et même sur $\mathfrak{T}_{1,1}^{\prime+} = \mathfrak{T}_{1,1}^+ / \{\pm 1\}$, est fidèle.

On utilise le fait qu'on a un homomorphisme extérieur injectif

$$\hat{\pi}_{0,3} \hookrightarrow \hat{\mathfrak{T}}_{1,1}^{\prime+},$$

compatible avec l'action de Γ , en procédant comme pour la proposition du début (où $\hat{\pi}'_{0,3}$ jouait le rôle de $\hat{\mathfrak{T}}'_{1,1}$).

Corollaire:

Les homomorphismes canoniques (surjectifs)

sont injectifs, donc des isomorphismes.

Il suffit de le prouver pour $\Gamma_Q \longrightarrow \Gamma_{1,1}$ (puisque $\Gamma_{1,1}$ est un quotient de $\Gamma_{1,\nu}$, $\nu \ge 1...$), or on a un homorphisme canonique $\Gamma_{1,1} \longrightarrow \operatorname{Autext} \hat{\mathfrak{T}}_{1,1}^+$ et on peut considérer le composé,

$${\rm I\!\Gamma}_Q \longrightarrow {\rm I\!\Gamma}_{1,1} \longrightarrow {\rm Autext}\, \hat{\mathfrak{T}}_{1,1}^+ \longrightarrow {\rm Autext}\, {\mathfrak{T}}_{1,1}^{\prime+};$$

par le théorème précédent ce composé est injectif, donc aussi $\Gamma_Q \longrightarrow \Gamma_{1,1}$, cqfd.

⁸⁵NB. Ça doit être le noyau de $SL(2,\mathbb{Z}) \longrightarrow SL(2,\mathbb{Z}/4\mathbb{Z}.$

⁸⁶Il n'est pas clair si $\pi_{0,3}$ est invariant en tant que sous-groupe de $\mathfrak{T}_{1,1}^+ = SL(2,\mathbb{Z})$, i.e. stable par l'action extérieure de \mathfrak{S}_3 sur $SL(2,\mathbb{Z})$ – je présume que oui, puisque \mathfrak{S}_3 agit aussi extérieurement sur $\pi_{0,3}$ a priori... $\mathfrak{T}_{1,1}^+/\pi_{0,3}$ serait une extension centrale intéressante de \mathfrak{S}_3 par $\{\pm 1\}$...

Remarque: On a vraiment l'impression, avec la proposition du début, et le résultat précédent baptisé "théorème", d'avoir démontré deux fois la même chose, et avec la même démonstration encore! Donc il est temps, après ce détour, de s'assurer qu'il en est bien ainsi, i.e. que l'homorphisme $\hat{\pi}_{0,3} \longrightarrow \hat{\mathcal{Z}}_{1,1}^{\prime+}$ qu'on vient d'utiliser s'identifie bel et bien à l'homomorphisme $\hat{\pi}_{0,3} \longrightarrow \hat{\pi}_{0,3}^{\prime}$, moyennant un isomorphisme convenable (qui reste à décrire) commutant aux actions extérieures de $\mathbb{I}\Gamma$, qu'on se proposait de construire (cf. (10) à (20)) – et on l'a perdu en route, en essayant de trouver $\pi_{0,3}^{\prime} \stackrel{\sim}{\longrightarrow} \mathcal{Z}_{1,1}^{\prime+}$ par factorisation dans l'homomorphisme composé $\pi_{0,3} \longrightarrow \pi_{0,3}^{\prime} \longrightarrow \mathcal{Z}_{1,1}^{\prime+}$ [la première flèche étant donnée par la surjection canonique] – et on s'est en un sens fourvoyé, car l'homomorphisme "naturel" $\pi_{0,3} \longrightarrow \mathcal{Z}_{1,1}^{\prime+}$ sur lequel on est tombé n'était *pas* du tout celui qu'on avait en vue: j'étais à côté de mes pompes. Donc il me faut revenir à la charge!

§ 37. — THÉORIE DES MODULES DES COURBES ELLIPTIQUES VIA LEGENDRE

(rigidification d'échelon 2)

Je me rends compte que j'ai pas mal compliqué des choses pourtant bien simples, au paragraphe précédent. D'abord un remords de topologie des surfaces:

Proposition: ⁸⁷ Soit X une surface topologique paracompacte, G un groupe discret opérant proprement sur X; on suppose que pour tout $x \in X$, le stabilisateur G_x opère fidèlement sur un voisinage de x (de sorte que G opère fidèlement – en fait les deux doivent être équivalents) en préservant l'orientation locale (donc G_x est un groupe cyclique) de sorte que Y = X/G est une surface topologique paracompacte. Considérons l'ensemble $X^! = \{x \in X \mid G_x \neq (1)\}$ – qui est une partie discrète de X stable sous G – et l'image $Y^! \subset Y$ de $X^!$ – partie discrète de Y – et la "signature" sur $(Y,Y^!)$, pour laquelle le coefficient d_y ($y \in Y^!$) est l'indice de ramification ord(G_X) en les $x \in X$ au dessus de y. Pout tout G-revêtement X' de X, considérons alors X'/G = Y' comme espace au dessus de Y. Alors:

a) Y' est une surface topologique, revêtement ramifié de Y, subordonné à la signature $\underline{d} = \underline{d}(X/Y)$.

⁸⁷Variante: \mathscr{G} opère sur X avec sous-groupe *invariant* G satisfaisant les conditions ci-contre [i.e. ci-dessus] on a alors, posant Y = X/G avec opération de $\mathscr{G}/G = \mathscr{H}$ dessus: $\underline{\text{Rev}}(X,\mathscr{G}) \simeq \underline{\text{Rev}}((Y,\underline{d}),\mathscr{H})$, qui donne $\pi_1(X,\mathscr{G},x) \xrightarrow{\sim} \pi_1((Y,\underline{d},\mathscr{H}),y)$. Application: $\mathfrak{S}_{0,3} \simeq \mathfrak{T}'_{1,1}(\simeq GL(2,\mathbb{Z})^+/\pm 1)$ (où $\mathfrak{S}_{0,3}$ est une extension de $\mathfrak{T}_{0,3} = \mathfrak{S}_3 \times \mathbb{Z}/2\mathbb{Z}$ par $\pi_{0,3}$).

b) Le foncteur $X' \mapsto Y' = X'/G$ est une équivalence de catégories:

$$\operatorname{Rev}(X,G) \xrightarrow{\sim} \operatorname{Rev}_d(Y).(1)$$

N.B. On peut expliciter un foncteur quasi-inverse, en associant à tout revêtement ramifié Y' de Y compatible avec \underline{d} , le (X,G)- revêtement "normalisé" (en un sens topologique facile à expliciter) de $X \times_Y Y'$. On a un énoncé analogue pour les schémas localement noethériens réguliers de dimension 1, où le foncteur quasi-inverse s'obtient en normalisant $X \times_Y Y'$.

Corollaire: Soient $x \in X \setminus X'$, y son image dans Y. On suppose Y connexe (i.e. que G opère transitivement sur l'ensemble des composantes connexes de X). Alors on a un isomorphisme canonique

$$\pi_1(X, G, x) \xrightarrow{\sim} \pi_1((Y, \underline{d}), y)(2)$$

d'où, pour X connexe, une suite exacte canonique

$$1 \longrightarrow \pi_1(X, x) \longrightarrow \pi_1((Y, \mathbf{d}), y) \longrightarrow G \longrightarrow 1.(3)$$

N.B. On a un corollaire analogue dans le contexte schématique, X et Y étant des schémas réguliers de dimension 1 – ou, le cas échéant, des schémas relatifs lisses de dimension relative 1 sur un S, mais dans ce cas il faudrait (si j'en ai besoin) faire un peu attention de préciser l'énoncé en forme raisonnable.

Exemple: Prenons $X = \mathbb{P}^1(\mathbb{C}) \setminus \{0,1,\infty\} = \mathcal{U}_{0,3}(\mathbb{C})$, $G = \mathfrak{S}_3$ opérant de façon habituelle, donc (avec les conventions du paragraphe précédent), identifiant $\mathbb{P}^1(\mathbb{C})/(G = \mathfrak{S}_3)$ à $\mathbb{P}^1(\mathbb{C})$, avec:

$$(0,1,\infty)\longmapsto 0 \qquad d_0=2$$

$$(2,-1,1/2)\longmapsto 1 \qquad d_1=2(4)$$

$$(j,\overline{j})\longmapsto \infty \qquad d_\infty=3,$$

on trouve $Y = \mathbb{P}^1(\mathbb{C}) \setminus \{0\}$, et $\underline{d} = 2\{1\} + 3\{\infty\}$. On trouve donc un isomorphisme canonique:

$$\pi_1\big((\mathcal{U}_{0,3}(\mathbb{C}),\mathfrak{S}_3),x\big) \simeq \pi_1\big((\mathbb{P}^1(\mathbb{C})\setminus\{0\},\underline{\mathrm{d}}),y\big),(5)$$

où malheureusement on ne peut prendre x=P=j; il faut prendre $x\in \mathbb{P}^1(\mathbb{C})\setminus\{0,1,\infty,2,-1,-1/2,j,\overline{j}\}$ et le plus commode sera de prendre x tel que y=f(x) soit le

point base typique Q=y pour calculer le π_1 à ramification – pour un tel x on trouve donc un isomorphisme canonique

$$\pi_1((\mathcal{U}_{0,3}(\mathbb{C}),\mathfrak{S}_3),x) \simeq \pi'_{0,3}(5 \text{ bis})$$

et en choisissant une \mathfrak{S}_3 -classe de chemins du point base initial P = y sur $X = \mathcal{U}_{0,3}(\mathbb{C})$ vers x, d'où un isomorphisme correspondant du premier membre de (5 bis) avec $\pi_{0,3}$, on trouve un isomorphisme canonique

$$\pi_1((\mathscr{U}_{0,3}(\mathbb{C}),\mathfrak{S}_3),P)\simeq \pi'_{0,3}(6)$$

(qui change par automorphisme intérieur quand on modifie le choix d'une \mathfrak{S}_3 -classe de chemins), d'où la suite exacte

$$1 \longrightarrow \pi_{0,3} \longrightarrow \pi'_{0,3} \longrightarrow \mathfrak{S}_3 \longrightarrow 1,(7)$$

qui n'est autre que (9 bis) du paragraphe précédent, mais interprétée ici de façon bien plus transparente comme suite exacte d'homotopie pour \mathfrak{S}_3 opérant sur $\mathcal{U}_{0,3}(\mathbb{C})$. Et on trouve de même, dans le cadre arithmético-géométrique, travaillant sur le schéma $\mathcal{U}_{0,3}=\mathcal{U}_{0,3,Q}$ et son quotient $\mathcal{U}_{0,3}/\mathfrak{S}_3\simeq \mathbb{P}_Q^1\setminus\{0\}$, avec la signature $2\{1\}+3\{\infty\}$ dessus, le diagramme de suites exactes:

Nous voulons maintenant mettre en relation $\mathcal{U}_{0,3}$, avec l'action de \mathfrak{S}_3 dessus, avec la multiplicité modulaire $M_{1,1}$ pour les courbes elliptiques (indices Q sous-entendus). C'est domage d'ailleurs de travailler seulement sur Q - je vais travailler plutôt sur $\mathbb{Z}\left[\frac{1}{2}\right]$ - i.e. en caractéristique résiduelle différente de 2.

Au paragraphe précédent j'ai identifié, un peu vaseusement, $\mathcal{U}_{0,3} = M_{0,4}^!$ à $M_{1,1}[2]'$ (sous lequel $M_{1,1}[2]$ est une gerbe liée par $\mathbb{Z}/2$). Les ennuis techniques (plutôt les complications conceptuelles) tiennent au fait que pour les courbes elliptiques (plus généralement pour les variétés abéliennes de dimension quelconque), si n est un entier ≥ 3 , la "rigidification de Jacobi d'échelon n" est bel et bien une rigidification, i.e. tout automorphisme d'une courbe elliptique relative E qui induit l'identité sur $_nE$ – sous schéma noyau de n id $_E$ – est l'identité; mais il n'en est plus de même pour n=2, où n est l'identité id $_E$ au-dessus d'une partie ouverte fermée de S et —id $_E$ sur le complémentaire. Ceci suggère, pour une meilleure compréhension, de coiffer $M_{1,1}[2]$ par un $M_{1,1}[n]$, où n est un multiple de 2; donc $M_{1,1}[n]$ sera un schéma ordinaire de type fini sur Spec \mathbb{Z} (son image dans Spec \mathbb{Z} sera l'ouvert Spec $\mathbb{Z}[\frac{1}{n}]$) et au-dessus de Spec $\mathbb{Z}[\frac{1}{n}]$, le topos modulaire $M_{1,1}$ se récupère comme

$$M_{1,1} \simeq (M_{1,1}[n], GL(2, \mathbb{Z}/n\mathbb{Z}) = \Gamma_n)(9)$$

au-dessus de Spec $\mathbb{Z}\left[\frac{1}{n}\right]$. 88 Ici $M_{1,1}[n]$ est le schéma qui représente le foncteur sur (Sch):

 $S \longrightarrow$ ensemble des courbes elliptiques relatives sur S

munies d'un isomorphisme $(\mathbb{Z}/n\mathbb{Z})_S^2 \longrightarrow {}_n E^{89}$

sur lequel le groupe $\Gamma_n = GL(2, \mathbb{Z}/n\mathbb{Z}) = \operatorname{Aut}((\mathbb{Z}/n\mathbb{Z})^2)$ opère de façon évidente. Le schéma modulaire "grossier" (par opposition à la multiplicité ou topos modulaire) est décrit au-dessus de $\mathbb{Z}/n\mathbb{Z}$ par

$$\widetilde{M_{1,1}} \simeq M_{1,1}[n]/\Gamma_n(10)$$

au-dessus de $\mathbb{Z}[\frac{1}{n}]$.

N.B. Le schéma $\widetilde{M}_{1,1}$ sur Spec $\mathbb Z$ peut se décrire comme "l'enveloppe représentable" du foncteur non-représentable

 $S \longmapsto$ classes d'isomorphisme de courbes elliptiques relatives sur S...

- itou sur un schéma de base (par exemple Q ou Spec $\mathbb{Z}\left[\frac{1}{n}\right]$), quelconque...

Il faut faire attention qu'en tant que schéma sur $\mathbb{Z}\left[\frac{1}{n}\right]$ (ou sur Q, en passant à la fibre générique), $M_{1,1}[n]$ n'est pas relativement connexe (i.e. n'est pas à fibres géométriquement connexes). En effet, un isomorphisme

$$(\mathbb{Z}/n\mathbb{Z})_{S}^{2} \simeq {}_{n}E$$

⁸⁸Attention, c'est bien $GL(2,\mathbb{Z}/n\mathbb{Z})$ et non $SL(2,\mathbb{Z}/n\mathbb{Z})$ qu'il faut prendre ici.

⁸⁹Ce foncteur est représentable si et seulement si $n \ge 3$ (donc il ne l'est pas pour n = 1, 2).

implique par passage à la seconde puissance extérieure, un isomorphisme

$$(\mathbb{Z}/n\mathbb{Z})_{S} \xrightarrow{\sim} \bigwedge_{\mathbb{Z}/n\mathbb{Z}}^{2} {}_{n}E \simeq \mu_{n}^{\otimes -1}(S)$$

d'où un isomorphisme

$$\mathbb{Z}/n\mathbb{Z} \simeq \mu(S)$$

qui s'identifie (prenant l'image de 1 mod n) à une section de $\mu_n^*(S)$ où μ_n^* est le $(\mathbb{Z}/n\mathbb{Z})^*$ torseur relatif sur Spec $\mathbb{Z}\left[\frac{1}{n}\right]$ des "racines primitives n-ièmes de 1". On a donc un morphisme
canonique

$$M_{1,1}[n] \longrightarrow \mu_n^*(11)$$

et c'est ce morphisme qui est à fibres géométriques connexes en caractéristique 0. Passant à la limite sur n variable, on trouve $sur\ Q$

$$M_{1,1}[\infty] = \lim M_{1,1}[n] \longrightarrow \mu_{\infty}^* \simeq \operatorname{Spec} \Sigma(12)$$

où le dernier isomorphisme est canonique et $\Sigma \subset \mathbb{C}$ est la sous-extension cyclotomique maximale de \overline{Q}_0 .

On récupère les $M_{1,1}[n']$, pour $n'|n,n'\neq 1,2$, à partir de $M_{1,1}[n]$ avec l'action de Γ_n dessus par

$$M_{1,1}[n'] \simeq M_{1,1}[n] \times_{\Gamma_n} \Gamma_{n'} \simeq M_{1,1}[n]/K_{n,n'}(13)$$

sur Spec $\mathbb{Z}\left[\frac{1}{n}\right]$, où

$$K_{n,n'} = \operatorname{Ker}(\Gamma_n \longrightarrow \Gamma_{n'}).^{90}(14)$$

Si on applique cependant cette formule dans les cas non licites n'=1 ou 2, on trouve pour le cas n'=1, non $M_{1,1}$ mais $\widetilde{M}_{1,1}$ (schéma modulaire grossier), et pour n'=2, non $M_{1,1}[2]$ (qui n'est pas non plus un schéma), mais ce qu'on avait appelé au paragraphe précédent $M_{1,1}[2]'$.

On peut expliciter $M_{1,1}$ et $\widetilde{M}_{1,1}$ sur Spec \mathbb{Z} tout entier en termes des $M_{1,1}[n]$ en les décrivant au-dessus des schémas ouverts $\operatorname{Spec}(\mathbb{Z}[\frac{1}{n}])$, $\operatorname{Spec}(\mathbb{Z}[\frac{1}{n'}])$ qui recouvrent $\operatorname{Spec}(\mathbb{Z})$ (i.e. pour (n,n')=1) par (9) et (10) en y prenant d'abord n puis n', et en "recollant" au-dessus de $\operatorname{Spec}(\mathbb{Z}[\frac{1}{nn'}])$, par ces mêmes formules appliquées à nn'...

On a d'ailleurs (pour mémoire)

 $^{^{90}}K_{n,n'}$ opère *librement* sur le schéma si $n'|n,n'\neq 1,2$ mais pas bien sûr si n'=1 ou 2.

Théorème: $\widetilde{M_{1,1}} \simeq \mathbb{E}^1_{\mathbb{Z}}$ (sur Spec \mathbb{Z}).

On peut épingler un tel isomorphisme (défini à priori modulo le groupe affine entier $X \longmapsto \pm X + n, n \in \mathbb{Z}$), en notant qu'il y a dans $\widetilde{M}_{1,1}$ deux sections privilégiées sur \mathbb{Z} , dont les valeurs au point générique correspondent aux deux classes d'isomorphisme de courbes elliptiques en caractéristique 0 (sur C par exemple) qui ont des automorphismes différents de id, —id – les deux groupes d'automorphimes qu'on obtient sont d'ailleurs $\mathbb{Z}/4\mathbb{Z}$ et $\mathbb{Z}/6\mathbb{Z}$ (très facile, par exemple par voie transcendante). Ce sont ce qu'on appelle sauf erreur les courbes elliptiques "anharmoniques". Sur un

 $M_{1,1}[n]$, le groupe des automorphismes rationnels sur k d'une courbe elliptique décrite par un point x de $M_{1,1}[n](k)$ s'identifie canoniquement au stabilisateur de x dans Γ_n :

$$\operatorname{Aut}(E_r) \simeq (\Gamma_n)_r.(15)$$

Bien sûr on a des énoncés idoines sur un schéma de base quelconque, pas nécessairement un corps. Cela montre déjà que les automorphismes des courbes elliptiques sont liés de façon essentielle à la ramification de Γ_n opérant sur $M_{1,1}[n]$. On trouve ainsi:

Proposition: (Sur Spec Q, si $n \neq 1,2$) Il y a exactement deux orbites de Γ_n opérant sur $M_{1,1}[n]$ qui sont "critiques", et qui correspondent à des stabilisateurs isomorphes respectivement à $\mathbb{Z}/4\mathbb{Z}$ et $\mathbb{Z}/6\mathbb{Z}$, qui sont les groupes d'automorphismes des courbes elliptiques ("anharmoniques") correspondantes.

On montre que Γ_n n'opère pas fidèlement sur $M_{1,1}[n]$ – le noyau de cette opération est le sous-groupe central $\{\pm 1\}$, image du groupe correspondant de $GL(2,\mathbb{Z})$ – il correspond au groupe des automorphismes "universels" $\pm \mathrm{id}_E$ des courbes elliptiques E. Le groupe quotient

$$\Gamma_n' := \Gamma_n / \{\pm 1\} (16)$$

opère fidèlement, et on peut regarder le "topos mixte" $(M_{1,1}[n],\Gamma'_n)$ – on trouve aussitôt qu'il ne dépend pas (à équivalence canonique près) du choix de n [à cela près que l'ouvert de Spec \mathbb{Z} sur lequel "il a un sens" dépend de n...] 91 – et en fait, on a:

$$(M_{1,1}[n],\Gamma'_n) \simeq M'_{1,1}(17)$$

⁹¹donc à condition de se placer au dessus d'un schéma de base tel Spec $(\mathbb{Z}[\frac{1}{nn'}])$ où n, n' sont tous deux inversibles...

au-dessus de Spec $\mathbb{Z}\left[\frac{1}{n}\right]$, où la multiplicité schématique modulaire $M'_{1,1}$ est décrite, en termes de courbes elliptiques "définies modulo symétries", comme au paragraphe précédent.

Remarque: La proposition précédente semble dépendre de n, mais on voit a priori (grâce au fait que les $\Gamma_{n,n'}$, $n'|n,n'\neq 1,2$ opèrent librement) que si elle est valable pour un n, elle est valable pour tous.

Notons aussi

Corollaire de la Proposition: En caractéristique 0, les stabilisateurs dans Γ'_n (le groupe qui opère fidèlement sur $(M_{1,1}[n])$ des points des deux orbites critiques sont respectivement $\mathbb{Z}/4\mathbb{Z}$ et $\mathbb{Z}/6\mathbb{Z}$. 92

On a supposé ici que $n \neq 1,2$, mais rien ne nous empêche de regarder aussi

$$M_{1,1}[2]' \stackrel{\text{def}}{=} M_{1,1}[2m]/\Gamma_{2m,2} = M_{1,1}[2m]/\Gamma_{2m,??}(18)$$

(où m est un entier quelconque ≥ 2). L'action de $\Gamma_2 \simeq GL(2,\mathbb{Z}/2\mathbb{Z}) \simeq SL(2,\mathbb{Z}/2\mathbb{Z}) \simeq \mathfrak{S}_3 \simeq \Gamma_{2m}/\Gamma_{2m,2}$. Il n'est plus vrai, certes, que $\Gamma_{2m,2}$ opère librement sur $M_{1,1}[2m]$ – car $\Gamma_{2m,2}$ contient l'élément $-1 \in \Gamma_{2m}$ correspondant à la symétrie universelle $-\mathrm{id}_E$ – i.e. à l'élément -1 de $GL(2,\mathbb{Z})$. Mais le résultat général de rigidité rappelé au début implique que

$$\Gamma_{2m,2} := \Gamma'_{2m,2} / \pm 1 \simeq \operatorname{Ker}(\Gamma'_{2m} \longrightarrow \Gamma'_{2} \simeq \mathfrak{S}_{3})$$

opère encore *librement* sur $M_{1,1}[2m]$ – et cela implique que le corollaire de la proposition est valable encore pour l'action de $\Gamma'_2(\simeq \Gamma_2 \simeq \mathfrak{S}_3)$ sur $M_{1,1}[2]'$.

Digression terminologique: $M_{1,1} = M_{1,1}[1]$ et les $M_{1,1}[n]$, $n \in \mathbb{N}^*$, sont définies a priori comme des *multiplicités* schématiques modulaire, i.e. a) comme des topos localement annelés localement isomorphes au topos étale d'un schéma (en l'occurence de type fini sur Spec \mathbb{Z} , ou sur Q si on travaille en caractéristique 0) et b) définis, à équivalence près définie elle-même à isomorphisme unique près, comme "représentant" les foncteurs correspondants

 $S \longmapsto$ catégorie des courbes elliptiques relatives sur S, avec rigidification d'échelon n, i.e. isomorphisme $(\mathbb{Z}/n\mathbb{Z})_S \simeq {}_n E$ $= Ell_n(S)$

donc par construction, on a pour tout schéma S une équivalence:

$$Ell_n(S) \xrightarrow{\sim} \text{Hom}(S, (M_{1,1}[n])$$

 $^{^{92}}$ valable pour *n* ≥ 2, cf. plus bas.

[où les homomorphismes sont des homomorphismes de topos localement annelés, i.e. homomorphismes de multiplicités).] Pour que les catégories $Ell_n(S)$ soient discrètes, ou encore que $(M_{1,1}[n]$ soit un schéma, ou encore que les automorphismes d'une courbe elliptique respectant une rigidification de Jacobi d'échelon n soient l'identité, il faut et il suffit que $n \geq 3$, i.e. $n \neq 1,2$. Donc $M_{1,1}[2]$ n'est pas un schéma, mais $M_{1,1}[2]'$ en est un, et $M_{1,1}[2] \longrightarrow M_{1,1}[2]'$ est un isomorphisme local (décrit entièrement par une $\mathbb{Z}/2\mathbb{Z}$ -gerbe sur $M_{1,1}[2]'$). Il faut quand même prendre la peine de définir:

$$M_{1,1}[2]$$
 "théor." $(M_{1,1}[2m], \Gamma_{2m,2}) \longrightarrow M_{1,1}[2]'$ "défini" $M_{1,1}[2m]/\Gamma'_{2m,2}(20)$

(on a aussi $M_{1,1}[2m]/\Gamma'_{2m,2}=M_{1,1}[2m]/\Gamma_{2m,2}$) comme l'homorphisme canonique de "passage au quotient grossier" qui a un sens chaque fois qu'un groupe discret (disons) G opère sur un schéma (disons) X, comme un morphisme

$$(X,G) \longrightarrow X/G = Y(21)$$

dont le foncteur image inverse (faisceaux sur $Y = X/G \longrightarrow G$ -faisceaux sur X) est évident. Ici on a un sous-groupe invariant z de G qui opère trivialement sur X, tel que G/z opère librement, ce qui signifie que le morphisme (21) se factorise en

$$(X,G) \longrightarrow (X,G/z =: G') \longrightarrow Y = X/G = X/G'(22)$$

de sorte que le morphisme de multiplicité (21) s'identifie aussi, simplement, à:

$$(M_{1,1}[2m], \Gamma_{2m,2}) \longrightarrow (M_{1,1}[2m], \Gamma'_{2m,2}) \simeq M_{1,1}[2]'(23).$$

Par contre, si on veut descendre jusqu'à $M_{1,1}[1]'=M'_{1,1}$, en passant au quotient (au sens "grossier") dans $M_{1,1}[n]$ par Γ'_n , l'homorphisme

$$(M_{1,1}[n],\Gamma'_n) = M'_{1,1} \longrightarrow M_{1,1}[n]/\Gamma'_n = \widetilde{M}_{1,1}(24)$$

n'est plus un "isomorphisme", i.e. n'est plus une équivalence, car Γ'_n n'opère pas librement – il a (même en caractéristique 0) de la ramification de degrés 2, 3. [Si cependant en excluant les courbes elliptiques anharmoniques, ça marcherait – ce n'est "qu'au voisinage" de ces courbes elliptiques que (24) n'est pas un isomorphisme...].

En fait les raisonnements du paragraphe précédent établissent un isomorphisme (valable sur Spec $\mathbb{Z}\left[\frac{1}{2}\right]$) 93

$$M_{1,1}[2]' \simeq M_{0,4}! \simeq \mathcal{U}_{0,3}(25)$$

et cet isomorphisme est compatible avec les opérations de

$$\Gamma_2' \simeq \Gamma_2 = GL(2, \mathbb{Z}/2\mathbb{Z}) = SL(2, \mathbb{Z}/2\mathbb{Z})(26)$$

 $\sup M_{1,1}[2]'$ d'une part, de \mathfrak{S}_3 sur $\mathcal{U}_{0,3}$ d'autre part, quand on considère l'isomorphisme

$$\Gamma_2 = GL(2, \mathbb{F}_2) \xrightarrow{\sim} \mathfrak{S}_3(27)$$

qui associe, à tout automorphisme de \mathbb{F}_2^2 , son action sur les trois éléments non nuls $\underline{\alpha} = (1,0), \underline{\beta} = (0,1)$ et $\underline{\gamma} = (1,1) = \underline{\alpha} + \underline{\beta}$ (de sorte qu'on a d'ailleurs)

$$\gamma = \alpha + \beta$$
, $\alpha = \beta + \gamma$, $\beta = \gamma + \alpha$.(28)

Il faudrait expliciter cette compatibilité, en considérant l'action naturelle de \mathfrak{S}_4 sur $M_{0,4}^!$, $M_{0,n}^!$ étant la multiplicité modulaire définie par

N.B. C'est représentable bel et bien par une multiplicité si et seulement si $n \ge 3$, i.e. si le champ des groupoïdes qu'on veut représentés est "rigide", ⁹⁴ et alors cette multiplicité est même un schéma, isomorphe d'ailleurs canoniquement au sous-schéma

$$\underline{\mathrm{Mon}}(I_{n-3}, \mathcal{U}_{0,3}) \subset \mathcal{U}_{0,3}^{I_{n-3}}, \text{ où ici } I_{n-3} = \{i \in \mathbb{N} \mid 3 \leq i \leq n\} - \mathrm{ainsi}\, M_{0,3}^! \simeq \mathrm{Spec}\, \mathbb{Z} \text{ (schéma fini)},$$
 et $M_{0,4}^! \simeq \mathcal{U}_{0,3} = \mathbb{P}^1_{\mathbb{Z}} \setminus \{\mathrm{sections}\, 0, 1, \infty\} = \mathrm{Spec}\, \mathbb{Z}[T][1/\{T(T-1)\}].$

Mais on fera attention qu'il y a une opération naturelle de \mathfrak{S}_n sur $M_{0,n}^l$, donc sur $\underline{\mathrm{Mon}}(I_{n-3}, \mathcal{U}_{0,3})$ – alors que l'on ne voit a priori que l'action de $\mathfrak{S}_3 \times \mathfrak{S}_{n-3}$ sur ce dernier: l'isomorphisme canonique

$$M_{0,n}^! \simeq \operatorname{Mon}((I_{n-3}, \mathcal{U}_{0,3}) \subset \mathcal{U}_{0,3}^{I_{n-3}} \text{ (où } I_{n-3} = \{i \in \mathbb{N} \mid 3 < i \le n\})(30)$$

⁹³L'image de $M_{1,1}[2]'$ dans Spec \mathbb{Z} est Spec $\mathbb{Z}[\frac{1}{2}]$ tandis que celle de $M_{0,4}' \simeq \mathcal{U}_{0,1}$ est Spec \mathbb{Z} tout entier.

 $^{^{94}}$ Si on veut une représentabilité pour n = 0, 1, 2, il ne suffit plus de travailler avec une topologie étale – il faut des topologies fppf par exemple.

ne tient compte que des opérations naturelles du sous-groupe

$$\mathfrak{S}_3 \times \mathfrak{S}_{n-3} \subset \mathfrak{S}_n(31)$$

de \mathfrak{S}_n sur $M_{0,n}^!$, et pas de celle de \mathfrak{S}_n tout entier. Dans le cas de n=4, l'opération de $\Gamma_2'=GL(2,\mathbb{F}_2)\simeq\mathfrak{S}_3$ sur $M_{0,4}^!$ qui nous intéresse est celle qui correspond au sous-groupe $\mathfrak{S}_1\times\mathfrak{S}_3$ qui fixe le premier élément (correspondant à la section nulle d'une courbe elliptique) et qui permute les trois suivants (correspondant aux trois éléments d'ordre 2 d'une courbe elliptique générique en caractéristique différente de 2, qui sont les trois autres points fixes de $x\longmapsto -x$), alors que l'opération naïve de \mathfrak{S}_3 sur $\mathscr{U}_{0,3}$ correspond au sous-groupe $\mathfrak{S}_3\times\mathfrak{S}_1$ dans \mathfrak{S}_4 , qui fixe les trois premiers éléments. Petite question de gymnastique schématique (indépendante maintenant de la géométrie des courbes elliptiques, mais histoire de géométrie projective de dimension 1): comment passer d'une de ces actions de \mathfrak{S}_3 à l'autre? On a envie de prouver que ce sont les mêmes!

Notons que si I est un ensemble à 4 éléments, alors il lui est associé un ensemble à 3 éléments de "partitions de type (2,2)", $P_{2,2}(I) = \widetilde{I}$, et l'homomorphisme

$$\mathfrak{S}_I \simeq \mathfrak{S}_4 \longrightarrow \mathfrak{S}_{\widetilde{I}} \simeq \mathfrak{S}_3(32)$$

est surjectif – son noyau est un sous-groupe isomorphe (non canoniquement) à $\mathbb{F}_2 \times \mathbb{F}_2$ – donc un groupe commutatif V(I) annulé par 2, i.e. un espace vectoriel sur \mathbb{F}_2 , et en tant que tel de dimension 2. En fait, V(I) opèrant sur I fait de I un V(I)-torseur – donc I est muni canoniquement d'une structure de plan affine sur \mathbb{F}_2 , et $V(I) \subset \mathfrak{S}_I$ est le groupe de ses translations. \mathfrak{S}_I s'interprète comme le groupe des automorphismes affines de I (toute permutation de I est affine – il y a sur l'ensemble I une et une seule structure de plan affine sur \mathbb{F}_2), et \mathfrak{S}_I comme le groupe $\mathrm{Aut}(V(I))$ - ce qui suggère d'interpréter I comme l'ensemble des trois éléments non nuls de V(I), et en fait, on constate que l'on a une bijection canonique

$$\widetilde{I} \xrightarrow{\sim} V(I)^* \stackrel{\text{def}}{=} V(I) \setminus \{0\}(33)$$

en associant à une partition $I = I' \cup I''$, avec I', I'' de cardinal 2, la seule permutation de I qui invarie I', I'' et induit sur chacun une permutation non triviale (les éléments de \mathfrak{S}_I obtenus ainsi sont les permutations paires d'ordre 2, qui avec l'identité forment donc le sous-groupe V(I)).

On trouve, si $i \in I$, d'où $I \setminus \{i\}$ de cardinal 3, une application canonique

$$I \setminus \{i\} \longrightarrow \widetilde{I}(34)$$

en associant à $j \in I \setminus \{i\}$ la partition de I en $\{i,j\}$ et en son complémentaire. Cette bijection étant compatible avec le transport de structure, on en conclut que l'isomorphisme correspondant

$$\mathfrak{S}_{I\setminus\{i\}}\simeq\mathfrak{S}_{\widetilde{I}}(35)$$

est aussi le composé

$$\mathfrak{S}_{I\setminus\{i\}} \hookrightarrow \mathfrak{S}_I \longrightarrow \mathfrak{S}_{\widetilde{I}}, (35)$$

 $(\mathfrak{S}_{I\setminus\{i\}} \text{ étant le stabilisateur de } i \text{ dans } \mathfrak{S}_I)$ donc les quatre sous-groupes symétriques d'indice $3\mathfrak{S}_{I\setminus\{i\}}$ de \mathfrak{S}_I $(i\in I)$ sont canoniquement isomorphe à $\mathfrak{S}_{\widetilde{I}}$ – donc entre eux, par des isomorphismes qui sont d'ailleurs déduits des bijections canoniques

$$I \setminus \{i\} \xrightarrow{\sim} I \setminus \{j\} \quad (i \neq j, i, j \in I), (37)$$

égales à la transposition (non à l'identité) sur $I \setminus \{i, j\}$. Cette bijection en effet est le composé

$$I \setminus \{i\} \xrightarrow{\sim} \widetilde{I} \xrightarrow{\sim} I \setminus \{j\},$$

et pour i, j variables, ces isomorphismes forment un système transitif d'isomorphismes.

Revenant à l'action de \mathfrak{S}_4 sur $M^!_{0,4}$, la clef de la compréhension est donnée par ceci:

Proposition: Considérons le sous-groupe V(I) de \mathfrak{S}_I formé de l'identité et des involutions paires. Alors l'action de V(I) sur $M_{0,I}^{!}$ 95 est triviale, donc \mathfrak{S}_I agit sur $M_{0,I}^{!}$ par l'intermédiaire de $\mathfrak{S}_I/V(I) = \mathfrak{S}_{\widetilde{I}}$.

Corollaire: Soit $i \in I$, alors l'action de $\mathfrak{S}_{I \setminus \{i\}} \subset \mathfrak{S}_I$ sur $M^!_{0,I}$ est déduite de celle de $\mathfrak{S}_{\widetilde{I}}$ via l'isomorphisme $\mathfrak{S}_{I \setminus \{i\}} \xrightarrow{\sim} \mathfrak{S}_I$ provenant de $I \setminus \{i\} \xrightarrow{\sim} \widetilde{I}$.

En particulier, pour I=[1,2,3,4], pour comparer l'action de $\mathfrak{S}_{\{1,2,3\}}$ et de $\mathfrak{S}_{\{2,3,4\}}$ sur $M_{0,4}^!\simeq \mathcal{U}_{0,3}$ – où la première est l'action standard de \mathfrak{S}_3 sur $\mathcal{U}_{0,3}$, la deuxième celle de \mathfrak{S}_3 sur $M_{1,1}[2]'$, on utilise l'isomorphisme

$$\mathfrak{S}_{\{1,2,3\}} \simeq \mathfrak{S}_{\{2,3,4\}}(38)$$

⁹⁵N.B. $M_{0,I}^!$ se définit en termes de I, pour tout ensemble I de cardinal ≥ 3 comme $M_{0,4}^!$

explicité dans (37), correspondant à la bijection

$$1 \longrightarrow 4, 2 \longrightarrow 3, 3 \longrightarrow 2$$

des ensembles d'indices, qui correspond donc à l'automorphisme

$$int(\sigma_1):\mathfrak{S}_3 \longrightarrow \mathfrak{S}_3(39)$$

en identifiant maintenant les deux ensembles d'indices [1,2,3], [2,3,4] à $[0,1,\infty]$, et en désignant par $\sigma_i \in \mathfrak{S}_{\{0,1,\infty\}}$ (pour $i \in \{0,1,\infty\}$) la transposition des éléments $\neq i$. Donc

Corollaire: L'isomorphisme canonique

$$\mathscr{U}_{0,3} \xrightarrow{\varphi} M_{1,1}[2]' \text{ (sur } \mathbb{Z}[\frac{1}{2}]),$$

quand on fait opérer $\mathfrak{S}_3 = \mathfrak{S}_{\{0,1,\infty\}}$ sur l'un et l'autre membre, est compatible avec ces opérations, *via* l'automorphisme int (σ_1) , i.e.

$$\varphi(u \cdot x) = (\sigma_1 u \, \sigma_1^{-1}) \cdot \varphi(x) (40)$$

Il faut quand même démontrer la proposition 4, qui équivaut bien sûr à ceci:

Corollaire: Soit X une droite projective relative sur un schéma S, I un ensemble à quatre éléments, $(S_i)_{i\in I}$ une famille de sections mutuellement disjointes, et σ une involution paire de I (correspondant à une partition $I=\{i_1,i_2\}\cup\{i_3,i_4\}$ par $\sigma i_1=i_2,\sigma i_2=i_1,\sigma i_3=i_4,\sigma i_4=i_3$). Alors il existe un automorphisme (évidemment unique) u de X, tel que $u\circ s_i=s_{\sigma i}$.

Démonstration: On peut supposer que $X = \mathbb{P}^1_S$, $s_1 = 0$, $s_2 = \infty$; donc s_3 , s_4 s'identifient à des sections de \mathcal{O}_S^* ; on prendra u défini par

$$u(z) = \frac{\lambda}{z}, \quad \lambda \in \Gamma(S, \mathcal{O}_X^*)$$

qui échange 0 et ∞ , et la condition pour échanger s_3 , s_4 s'écrit $\frac{\lambda}{s_3} = s_4$, $\frac{\lambda}{s_4} = s_3$, i.e. $\lambda = s_3 s_4$ (N.B. il suffirait que (s_1, s_2, s_3) et (s_1, s_2, s_4) soient mutuellement disjointes – pas la peine que s_3 , s_4 soient mutuellement disjointes...)

Plaçons nous à nouveau sur Q (pour fixer les idées), et considérons les groupes fondamentaux des multiplicités modulaires $M_{1,1}, M'_{1,1}$. On part de

$$M_{1,1} \simeq (M_{1,1}[n], \Gamma_n)$$

$$n \ge 3M'_{1,1} \simeq (M_{1,1}[n], \Gamma'_n = \Gamma_n/\pm 1) n \ge 2$$
 (41) (opour

 $n=2onremplace M_{1,1}[2]$ par $M_{1,1}[2]'$), qui donne des isomorphismes de groupes extérieurs

$$\pi_{1}(M_{1,1}) \simeq \pi_{1}(M_{1,1}[n], \Gamma_{n}) (n \geq 3)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad (42)$$

$$\pi_{1}(M'_{1,1}) \simeq \pi_{1}(M_{1,1}[n], \Gamma'_{n}) (n \geq 2)$$

(où comme au (41) si n = 2), et comme $M_{1,1}[n]$ est connexe (même s'il n'est pas géométriquement connexe) 96 , on trouve

$$1 \longrightarrow \pi_{1}(M_{1,1}[n]) \longrightarrow \pi_{1}(M_{1,1}) \longrightarrow \Gamma_{n} \longrightarrow 1$$

$$\downarrow \wr \qquad \qquad \downarrow \qquad$$

qui permet de reconstruire $\pi_1(M_{1,1})$, en tant qu'extension de Γ_n , quand on connaît $\pi_1(M'_{1,1})$ comme extension de Γ'_n , par image inverse via $\Gamma_n \longrightarrow \Gamma'_n$. On trouve comme de juste

Proposition: $\pi_1(M_{1,1})$ est une extension centrale de $\pi_1(M'_{1,1})$ par $\{\pm 1\}$.

D'autre part, on a les suites exactes d'homotopie sur Spec Q

$$1 \longrightarrow \pi_{1}(\overline{M_{1,1}}) \longrightarrow \pi_{1}(M_{1,1}) \longrightarrow \mathbb{F}_{Q} \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$

(avec les isomorphismes $\pi_1(\overline{M_{1,1}}) \simeq \mathfrak{T}_{1,1}^+, \ \pi_1(M_{1,1}) \simeq \mathfrak{T}_{1,1} \simeq \mathcal{N}_{1,1}$) et la théorie transcendante fournit des isomorphismes extérieurs canoniques ⁹⁷

$$\pi_1(\overline{M_{1,1}}) \simeq SL(2,\mathbb{Z}), \ \pi_1(\overline{M'_{1,1}}) \simeq SL(2,\mathbb{Z})^{\wedge} = SL(2,\mathbb{Z})/\pm 1,$$
 (45)

On a la compatibilité essentielle suivante entre (43), (44), (45): la commutativité de

$$1 \longrightarrow \pi_{1}(\overline{M_{1,1}}) \simeq SL(2,\mathbb{Z}) \longrightarrow \pi_{1}(M_{1,1}) \longrightarrow \Pi_{Q} \longrightarrow 1$$

$$\downarrow \text{surj} \qquad \qquad \downarrow \chi_{n} \qquad (46)$$

$$1 \longrightarrow SL(2,\mathbb{Z}/n\mathbb{Z} \hookrightarrow \Gamma_{n} = GL(2,\mathbb{Z}/n\mathbb{Z}) \xrightarrow{\text{det}} (\mathbb{Z}/n\mathbb{Z})^{*} \longrightarrow 1$$

⁹⁶c'est le théorème de Kronecker d'irréductibilité de l'équation cyclotomique.

⁹⁷Attention; ne pas confondre $SL(2,\mathbb{Z})$ avec $SL(2,\hat{\mathbb{Z}})$!!!

(où χ_n est le caractère cyclotomique).

Passant à la limite sur n, ceci donne un diagramme commutatif

$$1 \longrightarrow \pi_{1}(\overline{M_{1,1}}) \simeq SL(2,\mathbb{Z}) \longrightarrow \pi_{1}(M_{1,1}) \longrightarrow \mathbb{F}_{Q} \longrightarrow 1$$

$$\downarrow \text{surj} \qquad \qquad \downarrow \chi \qquad (47)$$

$$1 \longrightarrow SL(2,\hat{\mathbb{Z}}) \hookrightarrow GL(2,\hat{\mathbb{Z}}) \longrightarrow \hat{\mathbb{Z}}^{*} \longrightarrow 1$$

diagramme sur lequel nous allons revenir.

Pour l'instant je vais exploiter le deuxième isomorphisme (42) pour n = 2:

$$\pi_1(M_{1,1}') = \mathcal{N}_{1,1}' \simeq \pi_1(M_{1,1}[2]', \Gamma_2 = \mathfrak{S}_3) \simeq \pi_1(\mathcal{U}_{0,3}, \mathfrak{S}_3), (48)$$

où le dernier isomorphisme correspond à l'isomorphisme int (σ_1) : $\mathfrak{S}_3 \xrightarrow{\sim} \mathfrak{S}_3$, explicité dans (40). On trouve donc bien, comme prévu aux paragraphe précédent – et de façon entièrement conceptuelle, l'isomorphisme d'extension

$$1 \longrightarrow \pi_{1}(\overline{M'_{1,1}}) \longrightarrow \pi_{1}(M'_{1,1}) \longrightarrow \mathbb{F}_{Q} \longrightarrow 1$$

$$\downarrow \downarrow \qquad \qquad | \qquad | \qquad | \qquad (49)$$

$$1 \longrightarrow \pi_{1}(\overline{\mathcal{U}_{0,3}},\mathfrak{S}_{3}) \longrightarrow \pi_{1}(\mathcal{U}_{0,3},\mathfrak{S}_{3}) \longrightarrow \mathbb{F}_{Q} \longrightarrow 1$$

où l'on a $\pi_1(\overline{M'_{1,1}}) = \hat{\mathfrak{T}}'^+_{1,1} \simeq SL(2,\mathbb{Z}), \ \pi_1(M'_{1,1}) \simeq \mathcal{N}'_{1,1}, \ \pi_1(\overline{\mathcal{U}_{0,3}},\mathfrak{S}_3) \simeq \hat{\pi}'_{0,3}$ et $\pi_1(\mathcal{U}_{0,3},\mathfrak{S}_3) \simeq \mathcal{E}'_{0,3}$. D'ailleurs, reprenant ces réflexions dans le contexte transcendant, on voit que cet isomorphisme

$$\hat{\pi}_{0,3}/\{l_1^2, l_\infty^3\} = \hat{\pi}_{0,3}' \xrightarrow{\sim} \pi_1(\overline{M_{1,1}'}) = SL(2,\mathbb{Z})' = SL(2,\mathbb{Z})' + 1(50)$$

est associé à un isomorphisme

$$\pi_{0.3}/\{l_1^2, l_\infty^3\} = \pi'_{0.3} \xrightarrow{\sim} SL(2, \mathbb{Z})' = SL(2, \mathbb{Z})/ \pm 1(51)$$

déduit de l'isomorphisme de multiplicités analytiques complexes

$$M_{1.1}^{\prime an} \simeq (\mathcal{U}_{0.3}^{an}, \mathfrak{S}_3).(52)$$

Il faudrait quand même expliciter l'homomorphisme (51) – qui n'est défini que modulo automorphisme intérieur, a priori, par des formules explicites – alors que sa définition ici sort de

façon purement conceptuelle, "géométrique" (au sens de la géométrie algébrique relative, des courbes rationnelles et elliptiques sur des espaces analytiques arbitraires). C'est là un calcul clef, sûrement instructif, qui ne devrait pas présenter de difficulté particulière...

J'ai un peu laissé tomber en chemin dans tout ça le schéma modulaire "grossier" $\widetilde{M}_{1,1}$, après avoir affirmé qu'il est isomorphe à $\mathbb{E}^1_{\mathbb{Z}}$ et qu'il y a deux sections marquées, dont les les valeurs en caractéristique 0 correspondent aux deux classes d'isomorphisme de courbes elliptiques anharmoniques. En termes de l'isomorphisme

$$\widetilde{M_{1,1}} \simeq M_{1,1}[2]'/\Gamma_2' \simeq \mathcal{U}_{0,3}/\mathfrak{S}_3(53)$$

(valable sur Spec $\mathbb{Z}[\frac{1}{2}]$), on trouve bien, au dessus de $S=\operatorname{Spec}\mathbb{Z}[\frac{1}{2}]$, que $\widetilde{M}_{1,1}$ se déduit d'un schéma relatif Y qui est localement (au sens étale) isomorphe à \mathbb{P}^1_s , en enlevant une section s, dont l'existence implique déjà que Y est globalement isomorphe à \mathbb{P}^1_S – donc $Y \setminus s(S)$ isomorphe à \mathbb{E}^1_S . Dans cette approche, on a donc envie de désigner par ∞ (non par 0, comme en théorie des cartes!) cette section, qui correspond aux "points à l'infini" $(0, 1, \infty)$ de $\mathcal{U}_{0,3}$, ou encore au "point à l'infini" de $M_{1,1}$. Il est d'ailleurs facile de vérifier a priori (par la compactification de Deligne-Mumford de $M_{1,1}$ et de $M_{1,1}$) que $M_{1,1}$ sur Spec $\mathbb Z$ tout entier est de la forme $Y \setminus \text{Im } s$, où Y est lisse et propre sur Spec \mathbb{Z} tout entier, et s une section – dès lors ce qu'on connaît par exemple sur la fibre géométrique, et le fait que $\mathbb Z$ est principal, impliquent que $Y \simeq \mathbb{P}^1_{\mathbb{Z}}$, et qu'on a donc $\widetilde{M_{1,1}} \simeq \mathbb{E}^1_{\mathbb{Z}}$. Pour choisir cet isomorphisme, on utilise les deux sections de $\mathbb{E}^1_{\mathbb{Z}}$, correspondant aux courbes anharmoniques. Ces deux sections ne sont pas disjointes, elles se rencontrent en caratéristique 2 et en caractéristique 3 (pour ce qui se passe en caractéristique $\neq 2$, i.e. sur Spec $\mathbb{Z}\left[\frac{1}{2}\right]$, on le voit bien par l'isomorphisme (53) – car en caractéristique 3 les deux orbites $(2,-1,\frac{1}{2})$ et (j,\overline{j}) coïncident et se collapsent en un seul et même point). Mais prenant l'une de ces sections comme section nulle (sauf erreur c'est celle qui correspond à la courbe elliptique la plus riche en symétries, à savoir le groupe $\mathbb{Z}/6\mathbb{Z}$, qu'on prend – c'est une question de convention bien sûr – c'est donc aussi l'orbite $\{j, \overline{j}\}$, correspondant à un stabilisateur isomorphe à $\mathbb{Z}/3\mathbb{Z}$), cela détermine l'isomorphisme $M_{1,1} \simeq \mathbb{E}_{\mathbb{Z}}^1$ au signe près. L'autre section devient alors un entier de la forme $\pm 2^a 3^b$ (a, $b \in \mathbb{N}^*$ – entiers bien déterminés dont je ne sais pas la valeur par coeur), et on achève de normaliser en exigeant que le signe soit *plus*. Donc

Théorème: (pour mémoire - c'est bien connu)

Il y a un isomorphisme unique

$$\widetilde{M_{1,1}} \simeq \mathbb{E}^1_{\mathbb{Z}}(54)$$

qui en caractéristique 0 donne à la courbe anharmonique de groupe d'automorphisme $\mathbb{Z}/6\mathbb{Z}$ l'invariant 0, et à celle de groupe $\mathbb{Z}/4\mathbb{Z}$ un invariant > 0 (qui sera nécessairement $2^a 3^b$, avec $a, b \in \mathbb{N}^*$ bien déterminés, mais par moi oubliés...b = 3, cf. ci-dessous).

En termes de l'isomorphisme

$$\widetilde{M_{1,1}} \simeq \mathscr{U}_{0,3}/\mathfrak{S}_3 \subset \mathbb{P}^1/\mathfrak{S}_3$$

valable sur Spec $\mathbb{Z}[\frac{1}{2}]$, ceci correspond à un isomorphisme entre $\mathbb{P}^1/\mathfrak{S}_3$ et \mathbb{P}^1 qui à l'orbite $(0,1,\infty)$ associe ∞ (non 0), et à l'orbite (j,\overline{j}) associe 0 (non ∞), à l'orbite $(2,-1,\frac{1}{2})$ le fameux 2^a3^b (et non 1). La fonction (invariant modulaire)

$$\mathcal{J}(\lambda) \in Q(\lambda)(55)$$

qui réalise cet isomorphisme, i.e. le morphisme

$$\mathbb{P}^1_{\mathbb{Z}} \xrightarrow{\mathscr{I}} \mathbb{P}^1_{\mathbb{Z}}(56)$$

correspondant (de degré 6, avec $\mathscr{J} \circ u = \mathscr{J}, u \in \mathfrak{S}_3$) est donc lié à celle inspirée de la théorie des cartes, soit $f(\lambda)$, par

$$\mathcal{J}(\lambda) = 2^a 3^b f(\lambda)^{-1} (57).$$

D'ailleurs, $f(\lambda)$ (ou $\mathcal{J}(\lambda)$) se calcule aisément par la connaissance de ses zéros et de ses pôles, avec leurs multiplicités, et la "normalisation" pour la valeur de f (ou de \mathcal{J}) sur une des sections 2, -1, $\frac{1}{2}$; on trouve immédiatement

$$f(z) = \frac{3^3}{2^2} \frac{z^2(z-1)^2}{(z^2-z+1)^3}, (58)$$

donc,

$$\mathcal{J}(z) = 2^{a+2} 3^{b-3} \frac{(z^2 - z + 1)^3}{z^2 (z - 1)^2}.(59)$$

Comme $\mathcal{J}(\lambda)$ doit garder un sens en caractéristique 3, et ne peut pas être constante, ceci montre d'ailleurs que b=3, donc (59) s'écrit aussi

$$\mathscr{J}(z) = 2^{a+2} \frac{(z^2 - z + 1)^3}{z^2 (z - 1)^2},$$

mais on se rappellera que cette formule n'est pertinente – ne permet de calculer l'invariant d'une courbe elliptique – que si la caractéristique est différente de 2, heureusement! Pour décrire

$$M_{1,1} \longrightarrow \mathbb{E}^1_{\mathbb{Z}}(60)$$

(et en particulier pour déterminer l'autre invariant modulaire critique $2^a 3^3$, i.e. pour déterminer a) aussi au voisinage de 2 – disons en caractéristique différente de 3 – il faut une étude des courbes elliptiques qui ne passe plus par la représentation (de Legendre, sauf erreur) $y^2 = \sqrt{x(x-1)(x-\lambda)}$, ou encore, par la rigidification de Jacobi d'échelon 2, mais par celle d'échelon 3.

Remarques: on voit tout de suite que le quotient $\mathbb{P}^1_{\mathbb{Z}}/\mathfrak{S}_3$ s'identifie à $\mathbb{P}^1_{\mathbb{Z}}$ de façon unique en prenant comme images des orbites $(0,1,\infty)$ et (j,\overline{j}) les sections 0 et ∞ (par exemple, en suivant la convention qui correspond à la théorie des cartes), et en prenant comme image de l'orbite $(2,-1,\frac{1}{2})$ un nombre rationnel qui soit > 0.

Ceci est possible a priori, car on note que les orbites $(0,1,\infty)$ et (j,\overline{j}) ne coïncident en aucune caractéristique, donc correspondent à des sections disjointes de $Y = \mathbb{P}^1_{\mathbb{Z}}/\mathfrak{S}_3$, tandis que l'orbite constante $(2,-1,\frac{1}{2})$ coïncide avec la première en caractéristique 2, avec la deuxième en caractéristique 3 (et ce sont là les deux seules coïncidences qui peuvent arriver).

On voit donc a priori que la troisième section sera de la forme $2^{\alpha}/3^{\beta}$, avec $\alpha, \beta \in \mathbb{N}^*$. Le calcul explicite est d'ailleurs évident; l'homomorphisme composé

$$\mathbb{P}^1_{\mathbb{Z}} \xrightarrow{f_1} \mathbb{P}^1_{\mathbb{Z}} / \mathfrak{S}_3 \simeq \mathbb{P}^1_{\mathbb{Z}} (61)$$

doit être de la forme $f_1 = c f$, avec la constante $c \in Q$ choisie de telle façon que c f se réduise bien en toute caractéristique (ce qui détermine c modulo le signe), et que $f_1(-1) = c f(-1) = c > 0$ (ce qui lève l'indétermination du signe). On trouve alors

$$f_1(\lambda) = \frac{\lambda^2(\lambda - 1)^2}{(\lambda^2 - \lambda + 1)^2} = \frac{2^2}{3^3} f(\lambda), (62)$$

donc

$$f_1(-1) = \frac{2^2}{3^3}$$
 (donc $\alpha = 2, \beta = 3$).(63)

Mais on fera attention qu'au voisinage de la caractéristique 2, ces calculs ne se rapportent plus à $\widetilde{M}_{1,1}$ et M_p où la configuration des trois sections n'est pas la même qu'ici...

Sur la lancée de ces réflexions, il serait naturel de regarder de plus près le schéma

$$M_{1,1}[4]$$
 sur lequel agit $\Gamma_4 = GL(2, \mathbb{Z}/4\mathbb{Z})$ via $\Gamma_4' = \Gamma_4/\pm 1(64)$

et l'homomorphisme

$$M_{1,1}[4] \longrightarrow M_{1,1}[2]' \simeq \mathcal{U}_{0,3}(65)$$

compatible avec

$$\Gamma_4' = GL(2, \mathbb{Z}/4\mathbb{Z})/\pm 1 \longrightarrow \Gamma_2' = \Gamma_2 \simeq GL(2, \mathbb{Z}/2\mathbb{Z}) \simeq \mathfrak{S}_3^{.98}$$

Un calcul immédiat, compte tenu que $(\mathbb{Z}/4\mathbb{Z})^* \simeq \{\pm 1\}$ donne

$$\operatorname{Card}\Gamma_4 = 2\operatorname{Card}SL(2,\mathbb{Z}/4\mathbb{Z}) = 8\operatorname{Card}SL(2,\mathbb{Z}/2\mathbb{Z}) = 16\operatorname{Card}\Gamma_2 = 16 \times 6.$$

Donc

$$\operatorname{Card}(\Gamma'_{4,2} = \operatorname{Ker}(\Gamma'_4 \longrightarrow \Gamma'_2)) = 8(66)$$

i.e. $M_{1,1}[4]$ est un revêtement galoisien de $M_{1,1}[2]'$ d'ordre 8. Notons qu'il n'est pas géométriquement connexe sur Q, ou sur $\operatorname{Spec} \mathbb{Z}[\frac{1}{2}]$, puisque $M_{1,1}[4]$ se trouve sur l'extension quadratique μ_4^* , de $\operatorname{Spec} \Lambda$ où $\Lambda = \mathbb{Z}[\frac{1}{2}]$, qui n'est autre que $\Lambda(i)$. On a une factorisation de $M_{1,1}[4] \longrightarrow M_{1,1}[2]'$:

$$M_{1,1}[4] \xrightarrow{} (\mathcal{U}_{0,3})_{S} \xrightarrow{2} M_{1,1}[2]' \simeq \mathcal{U}_{0,3}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

[où les flèches horizontales sont galoisiennes du degré indiqué et] où maintenant

$$M_{1,1}[4] \longrightarrow M_{1,1}[2]_{S}' = (\mathcal{U}_{0,3})_{S}'$$

est un revêtement galoisien dont le groupe est le noyau de $\Gamma'_{4,2} \stackrel{\text{det}}{\longrightarrow} \{\pm 1\}$, ou encore celui de $SL(2,\mathbb{Z}/4\mathbb{Z})' \longrightarrow SL(2,\mathbb{Z}/2\mathbb{Z})$, que nous allons désigner par $S\Gamma'_{4,2}$, qui est d'ordre 4.

⁹⁸En fait le noyau de l'homomorphisme $GL(k,A) \longrightarrow GL(k,A/\mathcal{J})$ est toujours un groupe commutatif – et même un A/\mathcal{J} -module isomorphe à $(A/\mathcal{J})^4$ – si \mathcal{J} est un idéal de carré nul d'un anneau A. Donc ici $Ker(GL(2,\mathbb{Z}/4\mathbb{Z}) \longrightarrow GL(2,\mathbb{Z}/2\mathbb{Z}))$ est un groupe commutatif, et même un espace vectoriel sur \mathbb{F}_2 ; il est isomorphe à \mathbb{F}_2^4 .

Proposition: Le groupe

$$S\Gamma_{4,2} = \operatorname{Ker}(SL(2,\mathbb{Z}/4\mathbb{Z}) \longrightarrow SL(2,\mathbb{Z}/2\mathbb{Z})(68)$$

est isomorphe à $\mathscr{T}L(2,\mathbb{F}_2)$ (groupe des matrices de trace nulle à coefficients dans \mathbb{F}_2), avec l'opération évidente de $SL(2,\mathbb{F}_2)$ dessus, et le sous-groupe $\{\pm 1\}$ correspond aux matrices scalaires – le quotient $S\Gamma'_{4,2}$ des deux est isomorphe à \mathbb{F}_2^2 (de façon idiote et pas canonique du tout!). Regardant $M_{1,1}[4]$ comme un revêtement galoisien de $M'_{1,1}[2]_{S'}=(\mathscr{U}_{0,3})_{S'}$, on trouve géométriquement "le" revêtement abélien universel de $\mathscr{U}_{0,3}$ de groupe annulé par 2 (et pour cause), qui a comme groupe de Galois $(\mathbb{F}_2)^{\{0,1,\infty\}}/(\text{diagonale})$.

Enfin, tout est essentiellement tautologique, mais un calcul amusant à faire sera de redécrire l'action de $SL(2,\mathbb{F}_2)$ sur $\mathcal{T}L(2,\mathbb{F}_2)$ / (matrices scalaires), de façon à l'identifier à l'action de \mathfrak{S}_3 sur $\mathbb{F}_2^{\{0,1,\infty\}}$ /(diagonale). Comme revêtement de

$$\widetilde{M_{1,1}}_{S'} \simeq M_{1,1}[4]/S\Gamma_4' \simeq M_{1,1}[2]'_{S'}/\Gamma_2'(69)$$

 $M_{1,1}[4]$ est un revêtement galoisien d'ordre 24 (=4·6) de groupe $SL(2,\mathbb{Z}/4\mathbb{Z})'$. Ce serait bien qu'on n'ait pas un isomorphisme

$$SL(2,\mathbb{Z}/4\mathbb{Z})' \simeq \mathfrak{S}_4(70)$$

(où \mathfrak{S}_4 est le groupe des automorphismes de l'octaèdre), et que $M_{1,1,S'}$ ne soit le revêtement de $\mathbb{P}^1_{S'}\setminus\{0,1,\infty\}$, avec ramification compatible avec $2\{1\}+3\{\infty\}$, qui correspond à *l'octaèdre* dans la théorie des cartes – on devrait avoir sur $S'=\operatorname{Spec} \mathbb{Z}[\frac{1}{2}][i]$ un isomorphisme canonique

$$M_{1,1}[4]_{S'} \simeq \text{courbe de Fermat } x^r + y^r + z^r = 0 \text{ (sur } S')^{100}(71)$$

dont le groupe d'automorphismes est justement une extension de \mathfrak{S}_3 par

$$\mu_2^{\{0,1,\infty\}}/(\text{diagonale})!$$

⁹⁹NB Ce sont les 4 supplémentaire de ce sous-espace $\mathbb{F}_2 \hookrightarrow \mathcal{T}L(2,\mathbb{F}_2)$ qui forment un torseur sur le dual de $V = \mathcal{T}L(2,\mathbb{F}_2)$, qui devraient correspondre aux quatre relèvements en $\pi_{0,3} \hookrightarrow \mathfrak{T}_{1,1}^{\prime+} = SL(2,\mathbb{Z})$; cf. plus haut sur ces questions.

¹⁰⁰Il vaudrait mieux écrire l'équation de Fermat ici $x_0^r + x_1^r + x_\infty^r = 0$.

Pour bien faire, il faudrait expliciter la relation entre courbes elliptiques E (sur un schéma S au dessus de $\mathbb{Z}\left[\frac{1}{2}\right][i]$) munies d'une rigidification de Jacobi d'échelon A, e_1 , e_2 avec $e_1 \wedge e_2 = [i]^{-1}$, et solutions "non triviales" de l'équation

$$x^r + y^r + z^r = o(72)$$

sur S, i.e. les systèmes de sections $x, y, z \in \Gamma(S, O_S^*)$ satisfaisant (72), modulo multiplication par un "scalaire" $\alpha \in \Gamma(S, O_S^*)$ – ou encore, rompant la symétrie en posant X = x/z, Y = y/z, les solutions de l'équation

$$X^r + Y^r = -1 (= i^2), X, Y \in \Gamma(S, O_S^*)...(73)$$

On a ainsi interprété $M_{1,1}[2]'$ et (modulo des vérifications et une étude un peu plus poussée) $M_{1,1}[4]$, en relation avec deux cartes triangulaires pondérées régulières – la carte "diédrale" ou carte triangulaire pondérée universelle (trois sommets $0, 1, \infty$, trois arêtes, deux faces qui sont des triangles, type (p,q)=(3,3)), et la carte *octogonale*, qui est un revêtement d'ordre 4 de celle-ci (étale en dehors de $\{0,1\infty\}$).

Il serait bien aussi de regarder de plus près le variétés modulaires congruentielles $M_{1,1}[3]$ et $M_{1,1}[5]$, correspondant à des groupes modulaires "géométriques":

$$S\Gamma_3' = SL(2,\mathbb{F}_3)/\pm 1 \text{ (d'ordre 12)} \subset GP(1,\mathbb{F}_3) \text{ (d'ordre 24)} \simeq \mathfrak{S}_4 \quad \text{en fait on doit avoir } S\Gamma_4' \simeq \mathfrak{A}_4S\Gamma_5' = SL(2,\mathbb{F}_5)$$

Sauf erreur, ces groupes sont respectivement les groupes \mathfrak{A}_4 du *tétraédre* orienté et celui \mathfrak{A}_5 de l'icosaèdre orienté. Si je me rappelle bien, les cas n=2,3,4,5 épuisent les cas de courbes modulaires congruentielles $M_{1,1}[n]$ qui soient *rationnelles*. C'est une chose remarquable qu'on trouve par exemple tous les polyèdres réguliers finis à faces des triangles [sauf un, à arêtes repliées - celui de la figure (76), cf. plus bas...]; il était clair a priori, par l'isomorphisme entre $\mathfrak{T}'_{1,1}$ et le "groupe cartographique triangulé orienté" $\pi'_{0,3}$, qu'on devrait retrouver tous les polyèdres réguliers finis à faces des triangles de cette façon, mais non pas que ce soit des sous-groupes de congruences, très exactement. Le tableau obtenu est alors le suivant:

QuadQuad groupe $G = S\Gamma'_n$ courbe modulaire type du polyèdre

Comme autres courbes modulaires (pas congruentielles) rationnelles galoisiennes sur $\widetilde{M}_{1,1}$, il y aurait encore les quotients des précédents par les sous-groupes invariants de $S\Gamma'_n$, distincts du groupe entier et de 1. On trouve comme quotients possibles:

- a) Cas \mathfrak{S}_3 : le quotient $\{\pm 1\}$ (via signature).
- d) Cas \mathfrak{A}_4 : le quotient $\mathbb{Z}/3\mathbb{Z} = \mathfrak{A}_3$ (via $\mathfrak{S}_4 \longrightarrow \mathfrak{S}_3$ induisant $\mathfrak{A}_4 \longrightarrow \mathfrak{A}_3$).
- c) Cas \mathfrak{S}_4 : le quotient \mathfrak{S}_3 , et le quotient $\{\pm 1\}$ de celui-ci.

(pour d il n'y a rien, A5 étant un groupe simple).

Les courbes modulaires rationnelles obtenues se réduisent aux deux cas a) et b) (qui sont retrouvés dans c)). Dans le cas a), on trouve le revêtement quadratique de $Y = \mathbb{P}_1(\mathbb{C}) \setminus \{0,1,\infty\}$, qui est non ramifié en ∞ (car l'indice de ramification devrait diviser 2 et 3), qui correspond donc au revêtement $y = \sqrt{x(x-1)}$ et à la carte sphérique de type (2,1) (sommets d'indice 2, faces d'indice 1), formée d'un sommet avec une arête (équateur) délimitant deux faces qui sont des monogones.

Le cas b) est le revêtement cyclique d'ordre 3, ramifié seulement en 0 et en ∞ (en 1, l'indice de ramification doit être diviseur de 2 et de 3, donc est 1) avec carte sphérique de type (3,3), avec des arêtes qui sont des boucles repliées:

(76) 1 seul sommet, 3 arêtes repliées qui en sortent, une face triangulaire.

Les variétés modulaires sont trop proches de $\widetilde{M}_{1,1}$ – avec un groupe d'automorphismes (quotient de $\Gamma'_{\infty} = SL(2,\mathbb{Z})$) trop petit, pour pouvoir être rigidifiantes; il faudrait que le groupe de Galois-Poincaré du revêtement soit multiple de 12 (multiple de 4 et 6!), pour que la courbe modulaire ait une chance d'être rigidifiante. Ces cas semblent donc nettement moins intéressants.

Il y aurait lieu par ailleurs, dans chacun des trois cas restants de (75) (mis à part donc le premier cas, qui correspond à $M_{1,1}[2]'$ et est à peu près compris), d'expliciter la relation entre les points des courbes rationnelles correspondantes, et entre courbes elliptiques à rigidification de Jacobi, d'échelon respectivement 3,4,5. Il y a sûrement des choses précises dans Klein, mais on aimerait faire des choses un peu plus fines, qui soient valables simultanément en toute caractéristique, i.e. sur des schémas de base généraux. Ce souci semble intuitivement lié à la question des opérations de Π_Q sur les classes d'isomorphismes des cartes, et plus particulièrement des cartes sphériques régulières. C'est assez extraordinaire que **, depuis trois ans que la question est là, n'y ait pas encore touché. Dieu sait qu'elle est juteuse!

Complément sur les rapports anharmoniques:

Soient x_1, x_2, x_3, x_4 des sections partout distinctes de \mathbb{P}^1_S , on veut construire la section correspondante de $\mathcal{U}_{0,3} = \mathbb{P}^1_S \setminus \{0,1,\infty\}_S$. Soient a,b,c,d sections locales de \mathcal{O}_S , avec ad-bc inversible, telles que:

$$u = u_{a,b,c,d} : z \longmapsto \frac{az+b}{cz+d} (77)$$

transforme (x_1, x_2, x_3) en $(0, 1, \infty)$ – on aura donc

$$\lambda = u(x_4).(78)$$

Les conditions sur (a, b, c, d) pour $ux_1 = 0$ etc sont

$$ax_1 = 0$$
, $ax_2 + b = cx_2 + d$, $cx_3 + d = 0$

qui donnent, si par exemple a est inversible (sinon on peut supposer c inversible), en résolvant en b, c, d [ici quelques lignes de calcul élémentaire omises]:

$$\lambda(x_1, x_2, x_3, x_4) = \frac{(x_4 - x_1)(x_2 - x_3)}{(x_2 - x_1)(x_4 - x_3)}.(79)$$

En tant que fonction rationnelle en x_1, x_2, x_3, x_4 (à coefficients dans un anneau intègre fixé), λ est caractérisé par les deux propriétés:

- a) invariance par rapport à une (même) transformation homographique sur les variables $x_1, x_2, x_3, x_4, f(ux_1, ux_2, ux_3, ux_4) = f(x_1, x_2, x_3, x_4)$, et
- b) $f(0, 1, \infty, x_4) = x_4$ (avec un grain de sel pour donner un sens au premier membre). On a de plus
- c) une propriété remarquable de symétrie, qu'on explicite en définissant un homomorphisme de \mathfrak{S}_4 dans le groupe homographique (moralement, GP(1))

de telle façon qu'on ait

$$\lambda(x_{\sigma^{-1}1},x_{\sigma^{-1}2},x_{\sigma^{-1}3},x_{\sigma^{-1}4}) = \varphi_{\sigma}(\lambda(x_1,x_2,x_3,x_4))...(80)$$

NOTES

§ STRUCTURE À L'INFINI DES $M_{g,\nu}$

1. Courbes standard

Soit k un corps algébriquement clos. Une "courbe standard" sur k es une schéma X sur k satisfaisant les conditions suivantes :

- a) X quasi-projectif, toute composante irréductible est de dim 1
- b) Tout point de X est soit lisse, soit un "point quadratique" (ordinaire) i.e. isom (loc. ét) à la courbe $\operatorname{Spec}(k[X,Y]/XY)$ au point 0.

Il est connu qu'on peut $[]\widehat{X}$ de X, telle que X soit un schéma propre, []X s'identifie à un ouvert dense de \widehat{X} , et que \widehat{X} soit lisse sur les points de $\widehat{X} \setminus X = I$. Alors \widehat{X} est une courbe projective, I est une partie finie de $\widehat{X}(k)$ contenant [] ouvert des points des lissité de \widehat{X} . []A des points singuliers de X s'identifie à []

La donnée de X équivaut à celle des (\widehat{X},I) , où \widehat{X} est un schéma projectif, dont toute composante irréductible est de dim 1, et dont l'ensemble singulier est formé des points [] ordinaires - et I est un sous-schéma fini étale de \widehat{X}^{lisse} , ou ce qui revient au même, une partie fini de $\widehat{X}^{lisse}(k)$.

Soit

Ainsi, à la courbe standard X nous avons associé les systèmes de données suivantes :

Inversement, [] on construit une courbe standard X en passant au quotient dans $\widetilde{A}_k Y \setminus I_k$ par l'involution σ - i.e. X est universel [] pour la donnée p:

[]

soumise à $(pi)\sigma = pi$.

Ainsi la catégorie des courbes standard sur k [] apparaît comme équivalente à celle des systèmes a) b) c) ci-dessus. (pour les iso)...

N.B. On récupère \widehat{X} comme quotient de Y par σ .

Généralisation sur une base quelconque.

Une *courbe standard* sur *S* (multiplicité schématique, disons) [] défini constructivement en termes d'un système a), b), c) comme ci-dessus, i.e.

[]

On construit alors $\widehat{X} = Y/\sigma$, contenant $A = \widetilde{A}/\sigma$ et I comme sous-schémas fermés finis étales sur S, et $[]X = \widehat{X} \setminus I$. On peut montrer que le foncteur

$$(Y, \widetilde{A}, \widehat{I}, \sigma_{\widetilde{A}}) \mapsto X$$

des systèmes (5) (pour les iso) vers les schémas relatifs [], est pleinement fidèle (1).

N.B. []

[]

(par abus de langage, puisque c'est non seulement le schéma relatif Y, mais Y avec la structure supplémentaire $\widetilde{A}, I, \sigma_{\widetilde{A}}$...).

2. Graphe associé à une courbe standard

Revenons au cas d'un corps de base k algébriquement clos, pour commencer. Soit X une courbe standard, d'où $Y, I, \widetilde{A}, \sigma_{\widetilde{A}}$.

Posons

$$S = \pi_{\circ}(Y) \simeq \text{ [] des corps irréductibles de } X(7)$$

On a alors le diagramme d'application canoniquement entre ensembles finis

 $\lceil \rceil (8)$

où q est de degré 2 et définit l'involution $\sigma_{\widetilde{A}}$. Les applications σ et p sont induites par les [] en passant aux π_{\circ} .

¹faux tel quel

Le système $(\widetilde{A} \stackrel{\sigma}{\longrightarrow} S, \sigma_{\widetilde{A}})$ où [], peut être considéré comme définissant un graphe, dans S est l'un des sommets, et \widetilde{A} l'un des [] l'application σ étant l'application "origine d'un []". Ce graphe ne dépend que de \widehat{X} , pas de X i.e. des choix de $I \subset \widehat{X}(k)$. C'est [] compte de ce choix que l'on considère, [] plus de la structure de graphe, le donnée supplémentaire

$$I \longrightarrow S(9)$$

Le graphe indique comment les composantes irréductibles de X (figurés par les sommets) se récupèrent deux à deux - les points d'intersections, i.e. les points singuliers ("doubles" []) de X, correspondant aux arêtes. Si une composante irréductible X_{α} correspond au sommet α des graphes, alors les [] fermés en α correspondent bieunivoquement aux points doubles de X_{α} - donc [] X_{α} sont lisses [] l'extrémité.

Il est clair que tout graphe fini peut être obtenue (à iso près) par une \widehat{X} convenable - et même avec des composantes X_{α} de genre g_{α} donné (i.e. des \widetilde{X}_{α} de genre g_{α} ...). De plus, [] $I \longrightarrow S$ (I [] fini), cela peut être réalisé par un $I \subset \widehat{X}^{lisse}$, i.e. par une courbe standard S.

La maquette d'une courbe standard X consiste, pour définition, en les donnes suivantes []

Une structure formée d'une graphe fini $G = (S, \widetilde{A}, \sigma)$, d'une ensemble fini I au dessus de l'une des sommets de G, et d'une application "genre": $S \xrightarrow{\underline{g}} N$, [] appelé ici une "maquette".

Proposition. — Considérons la maquette d'une courbe standard X

a) Soient $\alpha, \beta \in S$, alors α, β appartiennent à la même composante connexe de graphe G, si et seule si X_{α} et X_{β} appartiennent à la même composante connexe de X. Donc on a une bijection canonique

$$\pi_0(G_X) \simeq \pi_0(X), (11)$$

en particulier X est connexe si et seule si G_X est connexe.

b) Supposons X connexe i.e. \widehat{X} connexe, i.e. [] on a alors [] i.e. [] où []

3. Courbes "stables" et MD-graphes

Une courbe standard (sur k algébriquement clos) est "stable", si elle satisfait à l'un des conditions équivalentes suivantes

199

- a) Aut X est fini
- b) Pour tout α , $(Y_{\alpha}, I_{\alpha} \cup \widetilde{A}_{\alpha})$ est anabélien i.e. $2g_{\alpha} + \widehat{\nu}_{\alpha} \ge 3$ i.e. $2g_{\alpha} 2 + \widehat{\nu}_{\alpha} \ge 1$, i.e.
 - 1) Si $g_{\alpha} = 1$, on a $\hat{\nu}_{\alpha} \ge 1$
 - 2) Si $g_{\alpha} = 0$, on a $\hat{v}_{\alpha} \ge 3$
- c) Tout champ de vecteurs sur Y nul sur $I \cup \widetilde{A}$ est nul.
- d) $\underline{\mathrm{Aut}}_{(Y,\widetilde{A}_k,I)}$ est un schéma en groupes fini étale sur k. On voit que cette condition (sous la forme b)) ne dépend que de la *maquette* de la courbe. On dit que X est une MD-courbe (MD, initiale de "Mumford-Deligne" ou de "modulaire") si elle est stable, et 0-connexe (i.e. connexe non vide).

Les maquettes de telles courbes sont les maquettes 0-connexes et stables (i.e. dont les sommets de guère 1 sont de poids total \geq 1, et les sommets de guère 0 sont de poids total \geq 3), on les appellera les MD-graphes.

NB. Une maquette est une MD-graphe si et seule si

- a) elle est 0-connexe (i.e. le graphe G est connexe $\neq \emptyset$)
- b) elle n'est pas réduit à un seul sommet de guère 1, de poids total 0 []
- c) les sommets []

Proposition. — $Si\ (G = (S, \widetilde{A}, \sigma), I, \underline{g} : S \longrightarrow N)$ est une MD-graphe, son type (g, v) est anabélien, i.e. $2g + v \ge 3$.

Si on avait g = 1, v = 0, alors la relation

$$g = 1 = \sum g_{\alpha} + h_1$$

montre que ou bien tous les g_{α} sont nuls et h_1 [], ou bien tous les g_{α} sauf une g_{α_0} sont nuls, []

[]

Soit G une maquette. On dit qu'une courbe standard sur un corps algébriquement clos est *de type* G, si sa maquette est isomorphe à G, on dit qu'elle est G-épinglée si on se donne un isomorphisme entre se maquette et G (c'est donc une structure $\lceil \cdot \rceil$).

Soit $(\widehat{X},\underline{I})$ une courbe standard sur une base S quelconque, on dit qu'elle est de type G si ses fibres géométriques sont de type G. Alors les maquettes des fibres géométriques de $(\widehat{X},\underline{I})$ forment les fibres d'une schéma en maquettes (ou un MD-graphe) sur S $(\underline{S},\underline{\widetilde{A}},\sigma_{\underline{\widetilde{A}}},\underline{I},\underline{\widetilde{A}}\longrightarrow \underline{S},\underline{S} \xrightarrow{\underline{g}} N_S)$ (système de revêtements finis étales de S et de morphismes entre ceuxci), localement isomorphe à la maquette G donnée. On appelle G-épinglage entre $(\widehat{X},\underline{I})$ tout isomorphisme entre G_S et $\underline{G}(\widehat{X},\underline{I})$. Si

$$\Gamma = \operatorname{Aut} G(18)$$

(groupe fini), les G-épinglages de $(\widehat{X}, \underline{I})$ s'identifient aux sections d'une certain Γ_S -torseur, appelé torseur de G-épinglages de (\widehat{X}, I) .

Considérons, sur une base S fixée, le catégorie ([]) des courbes standard G-épinglées. Pour tout $\alpha \in S$

N.B. Si card J = v, alors

[] Il en est donc de même dans M_{gJ} , donc ainsi de M_G (pour G semi-stable) et de $M_{[G]} = (M_G, \Gamma)$.

4. La théorie de Mumford-Deligne

Soient S une multiplicité schématique, X une schéma relatif sur S, propre sur S, \underline{I} une sous-schéma fermé de X. On dit que (X,\underline{I}) est une MD-courbe relative sur S, si X, \underline{I} sont plats de présentation finie sur S, et si pour tout point géométrique de S, la fibre $(X_{\overline{s}},\underline{I}_{\overline{s}})$ est une MD-courbe géométrique sur k(s) i.e. $X_{\overline{s}}$ est 0-connexe, de dimension 1, [] c'est une fonction localement constant sur S.

Fixons nous une type numérique (g,v) anabélien $(2g + v \ge 1)$, et considérons, pour S variable, le groupoïde fibré

$$S \mapsto \widehat{M_{g,\nu}}(S) = \text{MD-courbes relatives sur } S$$
, de type numérique égal à $(g,\nu)(24)$

On a alors le vraiment [] théorème suivant :

Théorème de Mumford-Deligne (2). — Le groupoïde fibré $S \mapsto \widehat{M}_{g,v}/S$ sur Sch (plus généralement, sur les multiplicités schématiques...) est représentable pour une multiplicité schématique

²On suppose $2g + v \ge 3$ (cas anabélien)

$\widehat{M_{g,v}}$, qui est lisse et propre sur Spec Z, D'autre part $M_{g,v}$ est un ouvert de Zariski de $\widehat{M_{g,v}}$, sché matiquement dense fibre par fibre.
On en déduit aisément p. ex. la connexité des fibres géométriques []. Nous allons revenus là dessus maintenant.
5. Spécialisation des MD-graphes
Soit
6. Morphismes de [] de graphes et de maquettes
7. Étude des [] de dim \leq 2 [] détermination des graphes correspondantes
8. Structure []
9. Structure groupoïdale des multiplicités modulaires de Teichmüller variables ([] MDT-structure) : cas [],
10. Structures MDT analytiques : []
11. Digression: [] Structure à l'infini des groupoïdes fondamentaux
12. Digression (suite) : topos canoniques associés à une [] et leur dévissages en "topos élémentaires"
13. Digression sur stratification "locales" []
Une stratification globale

§ NOTES ANABÉLIENNES

- I. Résultats de fidélité
- II. La question de pleine fidélité
- III. Étude des sections de E_U sur Γ
- IV. Sections d'extensions et anneaux de valuations généraux