DS 4400

Machine Learning and Data Mining I Spring 2024

David Liu
Khoury College of Computer Science
Northeastern University

Outline

- Regularization
 - A geometric understanding
- Classification
 - K Nearest Neighbors (kNN)
- Cross validation
 - K-fold cross validation
 - Leave one out cross validation
- Linear classifiers

Announcements

- Thank you for survey feedback!
 - Continue providing feedback if you haven't yet via Google Form posted on Piazza.
 - Clear request for more whiteboarding.
 - Starting next Friday
 - Request for examples, demos to understand the equations.
 - Starting next Tuesday
 - Will likely reduce supplemental lectures as a result.
- Homework 2 is posted

Ridge regression

Linear regression objective function

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{N} [h_{\theta}(x_i) - y_i]^2 + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_j^2$$

$$\text{model fit to data} \qquad \text{regularization}$$

- $-\lambda$ is the regularization parameter ($\lambda \geq 0$)
- No regularization on θ_0 !
 - If $\lambda = 0$, we train linear regression
 - If λ is large, the coefficients will shrink close to 0

Lasso Regression

$$J(\theta) = \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i)^2 + \lambda \sum_{j=1}^{d} |\theta_j|$$
Squared
Residuals

Regularization

- L1 norm for regularization
- Results in sparse coefficients
- Issue: gradients cannot be computed around 0
- Method of sub-gradient optimization

Alternative Formulations

Ridge

- L2 Regularization
- $-\min_{\theta} \sum_{i=1}^{N} [h_{\theta}(x_i) y_i]^2 \text{ subject to } \sum_{j=1}^{d} |\theta_j|^2 \le \epsilon$

Lasso

- L1 regularization

$$-\min_{\theta} \sum_{i=1}^{N} [h_{\theta}(x_i) - y_i]^2$$
 subject to $\sum_{j=1}^{d} |\theta_j| \le \epsilon$

Lasso vs Ridge

- Ridge shrinks all coefficients
- Lasso sets some coefficients at 0 (sparse solution)
 - Perform feature selection

Ridge vs Lasso

 Both methods can be applied to any loss function (regression or classification)

Ridge Lasso

Ridge vs Lasso

- Both methods can be applied to any loss function (regression or classification)
- In both methods, value of regularization parameter λ needs to be adjusted
- Both reduce model complexity

Ridge

- + Differentiable objective
- Gradient descent converges to global optimum
- Shrinks all coefficients

Lasso

- Gradient descent needs to be adapted
- + Results in sparse model
- Can be used for feature selection in large dimensions

Classification

Binary or discrete

Suppose we are given a training set of N observations

$$\{x_1, \dots, x_N\}$$
 and $\{y_1, \dots, y_N\}, x_i \in \mathbb{R}^d, y_i \in \{0, 1\}$

Classification problem is to estimate f(x) from this data such that

$$f(x_i) = y_i$$

K Nearest Neighbour (K-NN) Classifier

Algorithm

- For each test point, x, to be classified, find the K nearest samples in the training data
- Classify the point, x, according to the majority vote of their class labels

e.g. K = 3

 applicable to multi-class case

kNN

- Algorithm (to classify point x)
 - Find k nearest points to x (according to distance metric)
 - Perform majority voting to predict class of x
- Properties
 - Does not learn any model in training!
 - Instance learner (needs all data at testing time)

K-Nearest-Neighbours for Multi-class Classification

Vote among multiple classes

How to choose k (hyper-parameter)?

K = 3

Training data

1.2 1.2 0.8 0.6 0.4 0.2 0.2 0.2 0.3 0.5 0.5 1.5 0.5 0.5 0.5 1.5

Testing data

error = 0.0760

error = 0.1340

How to choose k (hyper-parameter)?

K = 7

error = 0.1320

error = 0.1110

How to choose k (hyper-parameter)?

Bias-Variance Tradeoff for kNN

Bias-Variance Tradeoff for kNN

How Overfitting Affects Prediction

- How to pick hyper-parameters without access to testing data?
- Goal: Reduce overfitting and variance

Important: Do not use testing data for hyper-parameter selection even if it is available

As K increases:

- Classification boundary becomes smoother
- Training error can increase

Choose (learn) K by cross-validation

- Split training data into training and validation
- Hold out validation data and measure error on this

As K increases:

- Classification boundary becomes smoother
- Training error can increase

Choose (learn) K by cross-validation

- Split training data into training and validation
- Hold out validation data and measure error on this

1. k-fold CV

- Split training data into k partitions (folds) of equal size
- Pick the optimal value of hyper-parameter according to error metric averaged over all folds

2. Leave-one-out CV (LOOCV)

- k=n (validation set only one point)
- Pros: Less bias
- Cons: More expensive to implement, higher variance
- Used for small training sets

Recommendation: perform k-fold CV with k=5 or k=10

Cross-Validation Takeaways

- General method to estimate performance of ML model at testing and select hyper-parameters
 - Improves model generalization
 - Avoids overfitting to training data
- Techniques for CV: k-fold CV and LOOCV
- Compare to regularization

Cross-Validation Takeaways

- General method to estimate performance of ML model at testing and select hyper-parameters
 - Improves model generalization
 - Avoids overfitting to training data
- Techniques for CV: k-fold CV and LOOCV
- Compare to regularization
 - Regularization works when training with GD
 - Cross-validation can be used for hyper-parameter selection
 - The two methods can be combined