COMPLEX - Partie 2

2022-2023

Énoncé

Nom ou numéro d'anonymat:

Durée: 2 heures

Notes manuscrites et documents de cours autorisés L'utilisation de tout matériel électronique (en dehors d'une montre non connectée) est interdite

Les exercices sont indépendants.

Une rédaction claire et concise sera appréciée. Toute affirmation devra être justifiée.

Une question non résolue n'empêche pas de faire les suivantes
(dans ce cas indiquez clairement que vous admettez le(s) résultat(s) de la question non faite).

Exercice 1: Listes chainées circulaires triées

Nous considérons un ensemble de n valeurs entières différentes qui sont stockées sous la forme d'un tableau trié comme dans l'exemple suivant (avec n = 9):

i	1	2	3	4	5	6	7	8	9
$\mathbf{valeur}(i)$	83	54	16	31	45	99	78	62	27
$\mathbf{suivant}(i)$	6	8	9	5	2	3	1	7	4

Étant donné un entier i, il est possible d'accéder en temps constant à la valeur $\mathbf{valeur}(i)$ contenue dans cette case ainsi qu'à l'indice $\mathbf{suivant}(i)$ associé à la valeur suivante dans la liste. Cet indice correspond soit à la case contenant la prochaine valeur qui est supérieure à $\mathbf{valeur}(i)$, soit au minimum si $\mathbf{valeur}(i)$ est le maximum des valeurs stockées (ce qui est le cas pour i=6 dans l'exemple). Cette structure de données sera appelée liste chainée circulaire triée et ne permet pas d'accéder directement au minimum ou au maximum des valeurs stockées.

1.a Remplir la ligne suivant du tableau ci-dessous pour en faire une liste chainée circulaire triée :

i	1	2	3	4	5	6	7	8	9
$\mathbf{valeur}(i)$	17	57	23	6	67	43	89	32	42
$\mathbf{suivant}(i)$									

1.b]	Proposer	$un\ algorithme$	déterministe	qui étant	donné	une liste	chainée	circulaire	triée	\mathcal{L} et	un	entier
m, d	étermine si	m appartient a	à \mathcal{L} . Donner s	sa comple	xité.							

Proposer ée \mathcal{L} et un ent moyenne.	un algorithme proier m , détermine s	babiliste de type i m appartient à	e Las Vegas qui, ϵ \mathcal{L} en $O(\sqrt{n})$ appel	étant donné une l ls aux fonctions v a	iste chainée circula $\mathbf{aleur}(i)$ et $\mathbf{suivant}$

	$O(n\sqrt{n})$ comparaisons et	- Convert ancestas.	ions en moyenne (les details lie soilt	pas demandes).
ine extrêmit suivant : étar minimum (pa 2.a] En uti	la coupe $\{S, V \setminus S\}$ et la é à l'intérieur de cet ens at donné un graphe non de armi toutes les coupes de ilisant l'analyse de la pro- e coupes minimales d'un	semble et l'autre à orienté $G=(V,E)$ e G).	de l'algorithme de	oblème de la coup e (ou un sous-ense e Karger vue en co	e minimal est le mble S) de poids urs, montrer que
	: On pourra utiliser la i				= h(h-1)/2.

2.b] Donner une famille infinie de graphes à n sommets (pour tout entier $n \ge 2$) qui possède $\binom{n}{2}$ coupes minimales différentes.

Exercice 3: Algorithme probabiliste pour 3-SAT

Nous considérons l'algorithme suivant :

```
Algorithme 1: Algorithme probabiliste pour 3-SAT
    Entrée : Formule \Phi de m clauses C_1, \ldots, C_m en n variables x_1, \ldots, x_n; T \in \mathbb{N}

ho C_1,\ldots,C_k pour k\leq m sont les 3-clauses de \Phi

ho C_{k+1},\ldots,C_m sont les 1-clauses et les 2-clauses de \Phi
    Sortie: b \in \{SATISFIABLE, NON-SATISFIABLE\}
 1 pour j de 1 à T faire
                                                  _{\triangleright} \Phi' est constituée des 1-clauses et de 2-clauses de \Phi
         \Phi' \leftarrow \{C_{k+1}, \dots, C_m\}
        pour i de 1 \grave{a} k faire
 3
             \ell_1^i \vee \ell_2^i \vee \ell_3^i \leftarrow C_i
 4
            t \xleftarrow{\mathbf{CC}} \{1, 2, 3\}
                                                          	imes supprime un littéral aléatoire à la 3-clause C_i
 \mathbf{5}
             \mathbf{si}\ t = 1\ \mathbf{alors}
 6
              C_i' \leftarrow \ell_2^i \vee \ell_3^i
 7
             \mathbf{si}\ t = 2\ \mathbf{alors}
              C_i' \leftarrow \ell_1^i \vee \ell_3^i
 9
             \mathbf{si}\ t = 3\ \mathbf{alors}
10
              C_i' \leftarrow \ell_1^i \vee \ell_2^i
11
                                                                               \triangleright ajoute la 2-clause C_i' obtenue à \Phi'
             \Phi' \leftarrow \Phi' \cup \{C_i'\}
12
        si \Phi' est satisfiable alors
13
                                                            \triangleright en temps O(n+m) car \Phi' est une formule 2-SAT
             retourner SATISFIABLE
15 retourner NON-SATISFIABLE
```

Rappel : Un littéral ℓ_i est une variable propositionnelle x_j (littéral positif) ou la négation d'une variable propositionnelle $\neg x_j$ (littéral négatif). Une k-clause (pour $k \in \mathbb{N} \setminus \{0\}$) est une disjonction de la forme $\ell_1 \vee \ell_2 \vee \cdots \vee \ell_k$ où ℓ_i est un littéral pour $i \in \{1, \ldots, k\}$. Dans la suite, nous supposerons toujours que les variables apparaissant dans k littéreaux d'une k-clauses sont toutes distinctes.

Le problème 3-SAT consiste, étant donné une formule logique propositionnelle Φ donnée sous forme d'u conjonction de k -clauses avec $k \leq 3$, à décider si il existe une assignation des variables satisfaisant tou les clauses.
3.a] Montrer que si cet algorithme retourne SATISFIABLE sur une formule booléenne Φ alors la form Φ est effectivement satisfiable.
Nous allons désormais analyser la probabilité que l'algorithme retourne NON-SATISFIABLE sur uformule booléenne Φ satisfiable. Soit $\vec{z} \in \{0,1\}^n$ une assignation des variables qui rend la formule Φ vrait
3.b] Montrer que pour tout $i \in \{1,, k\}$ (dans la boucle des lignes 3 à 12 de l'algorithme), l'assignat \vec{z} rend C'_i vraie avec probabilité supérieure ou égale à $2/3$.

3.c] vraie a	En déduire que l'ass vec probabilité supé	signation $ec{z}$ rend la rieure ou égale à (a formule Φ' (co $(2/3)^k$.	nstruite à la fin	de la boucle des	lignes 3 à 12)
	Donner un choix de hme inférieure à 1/e					
	ithme obtenu est der		colse de cette p		ar or au romps o	

4.d] Soient L un langage de Σ^* et une machine de Turing probabiliste \mathcal{M} vérifiant les propriétés et (3'). Considérons la machine de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : — si \mathcal{M} rejette x , \mathcal{M}' rejette x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-1}$ Montrer que \mathcal{M}' vérifie les propriétés (1), (2) et (3) pour le langage L .	de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : e x ; te x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$	que $\mathcal{PP} \subseteq \mathcal{PP'}$				
et (3'). Considérons la machine de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : — si \mathcal{M} rejette x , \mathcal{M}' rejette x ; — si \mathcal{M} accepte x , \mathcal{M}' rejette x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$	de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : e x ; te x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$					
et (3'). Considérons la machine de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : — si \mathcal{M} rejette x , \mathcal{M}' rejette x ; — si \mathcal{M} accepte x , \mathcal{M}' rejette x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$	de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : e x ; te x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$					
t (3'). Considérons la machine de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : — si \mathcal{M} rejette x , \mathcal{M}' rejette x ; — si \mathcal{M} accepte x , \mathcal{M}' rejette x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$	de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : e x ; te x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$					
t (3'). Considérons la machine de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : — si \mathcal{M} rejette x , \mathcal{M}' rejette x ; — si \mathcal{M} accepte x , \mathcal{M}' rejette x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$	de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : e x ; te x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$					I
(3'). Considérons la machine de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : — si \mathcal{M} rejette x , \mathcal{M}' rejette x ; — si \mathcal{M} accepte x , \mathcal{M}' rejette x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$	de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : e x ; te x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$					
(3'). Considérons la machine de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : — si \mathcal{M} rejette x , \mathcal{M}' rejette x ; — si \mathcal{M} accepte x , \mathcal{M}' rejette x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$	de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : e x ; te x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$					
(3'). Considérons la machine de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : — si \mathcal{M} rejette x , \mathcal{M}' rejette x ; — si \mathcal{M} accepte x , \mathcal{M}' rejette x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$	de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : e x ; te x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$					
(3'). Considérons la machine de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : — si \mathcal{M} rejette x , \mathcal{M}' rejette x ; — si \mathcal{M} accepte x , \mathcal{M}' rejette x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$	de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : e x ; te x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$					
(3'). Considérons la machine de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : — si \mathcal{M} rejette x , \mathcal{M}' rejette x ; — si \mathcal{M} accepte x , \mathcal{M}' rejette x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$	de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : e x ; te x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$					
(3'). Considérons la machine de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : — si \mathcal{M} rejette x , \mathcal{M}' rejette x ; — si \mathcal{M} accepte x , \mathcal{M}' rejette x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$	de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : e x ; te x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$					
(3'). Considérons la machine de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : — si \mathcal{M} rejette x , \mathcal{M}' rejette x ; — si \mathcal{M} accepte x , \mathcal{M}' rejette x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$	de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : e x ; te x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$					
(3'). Considérons la machine de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : — si \mathcal{M} rejette x , \mathcal{M}' rejette x ; — si \mathcal{M} accepte x , \mathcal{M}' rejette x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$	de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : e x ; te x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$					
(3'). Considérons la machine de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : — si \mathcal{M} rejette x , \mathcal{M}' rejette x ; — si \mathcal{M} accepte x , \mathcal{M}' rejette x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$	de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée x et : e x ; te x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabilité $1-2^{-(p(x)+1)}$					
		verme les proprie	etes (1), (2) et (5	o) pour le langage l	L.	
			erons la machine de ette x , \mathcal{M}' rejette expte x , \mathcal{M}' rejette	From la machine de Turing probabile ette x , \mathcal{M}' rejette x ; repete x , \mathcal{M}' rejette x avec probabilit	erons la machine de Turing probabiliste \mathcal{M}' qui exécut ette x , \mathcal{M}' rejette x ; cepte x , \mathcal{M}' rejette x avec probabilité $2^{-(p(x)+1)}$ et acc	Frons la machine de Turing probabiliste \mathcal{M}' qui exécute \mathcal{M} sur son entrée ette x , \mathcal{M}' rejette x ; repete x , \mathcal{M}' rejette x avec probabilité $2^{-(p(x)+1)}$ et accepte x avec probabil

4.e]	Conclure.
4.f]	En déduire que pour tout langage L de \mathcal{PP} , le langage $\overline{L} = \Sigma^* \setminus L$ appartient à \mathcal{PP} .

Les deux dernières questions sont indépendantes des précédentes. Nous considérons désormais la classe de complexité \mathcal{PP}^+ définie comme étant l'ensemble des langages $L\subseteq \Sigma^*$ pour lesquels il existe une machine de Turing probabiliste \mathcal{M} qui vérifie les propriétés (2), (3) et la propriété (1') suivante :

	Montrer que tout langage L de \mathcal{PP}^+ est décidable (c'est-à-dire qu'il existe une machine de Turir rministe qui s'arrête sur toute entrée de Σ^* , en temps fini arbitraire, qui accepte tout mot $x \in L$ te tout mot $x \notin L$).
4.h]	Montrer que tout langage décidable appartient à \mathcal{PP}^+ .