

Mathéo Beney, 30.09.2003

Initiation à l'intelligence artificielle au travers de projets

Problématique

L'objectif de ce travail est d'utiliser différents projets en intelligence artificielle pour comprendre son fonctionnement et ses limites dans une démarche d'apprentissage autodidacte.

Méthode

À partir des éléments théoriques trouvés dans la littérature, nous avons utilisé le langage de programmation python et la librairie Pytorch pour élaborer les différents projets présentés ci-dessous, c'est-à-dire la création de modèles, leur utilisation et leur entrainement.

Représentation schématique d'un réseau de neurones.

Entrée Poids Biais $\begin{bmatrix} w_{1,1} & w_{2,1} & w_{3,1} & w_{4,1} \end{bmatrix}$ $\left| \begin{bmatrix} i_1 & i_2 & i_3 \end{bmatrix} \cdot \left| w_{1,2}^{1,1} & w_{2,2}^{2,1} & w_{3,2}^{3,1} & w_{4,2}^{3,1} \right| + \begin{bmatrix} b_1 & b_2 & b_3 & b_4 \end{bmatrix} \right|$ $\begin{bmatrix} w_{1,3} & w_{2,3} & w_{3,3} & w_{4,3} \end{bmatrix}$

Calculs mathématiques d'un réseau à l'aide de matrices.

Développement en python d'un réseau de neurones.

Résultats

Snake et Flappy Bird

Modèle

- Réseaux linéaires
- **Dataset**
- État du jeu + récompense **Spécificités**
- Algorithme d'évolution
- Deep Q-learning

Flappy Bird

Colorisation

Modèle

- Couches de convolution
- Transfer learning (Resnet)

Dataset

- CelebA (200'000 photos) **Spécificité**
- Utilisation du format Lab pour les couleurs

Segmentation

- Couches de convolution
- Transfer learning (Resnet) **Dataset**

- Créé par Supervisely **Spécificité**
- Data augmentation

Transfert de style

Classification

10 classes

• 87.59%

100 classes

- Moyen: 67.92%
- Transfer learning: 77.26%

Modèle

- Couches de convolution

Dataset

- CIFAR10 et CIFAR100

Spécificité

- Plusieurs tailles de modèle

Génération de visages

Modèle

- 2 réseaux:
 - discriminateur (convolution)
 - générateur (convolution transposée)

Dataset

- CelebA (200'000 photos)

Spécificité

- 2 essais → RGB & tons de gris

Discussion

Modèle

Spécificité

- Entraînement

non nécessaire

- Rétropropagation

sur les entrées

VGG

Plusieurs pistes d'améliorations nous semblent possibles (taille du réseau, temps d'entrainement). Nous n'avions ni le temps, ni les équipements nécessaires pour tester ces pistes. Bien que nous ne l'ayons qu'effleuré, nous avons pu expérimenter les difficultés et les potentialités de l'IA à partir de notre démarche autodidacte.

Conclusion

L'objectif principal de ce travail a été atteint, car il nous a permis de nous confronter concrètement au monde de l'IA. Sa mise en pratique au travers des projets, nous a permis de remettre en cause des préjugés, d'approfondir des aspects théoriques et d'identifier nos lacunes.