Decoding Strategies

Evaluation Metrics

Learning goals

- Learn about evaluation metrics for open-ended text generation
- Get to know the different metrics with- and without a gold reference
- Get to know potential issues with some evaluation metrics

HOW DO WE EVALUATE LLMs?

How to choose the appropriate evaluation metric?

- Does the task have a gold reference?
 - BLEU score Papineni et al., 2002
 - ROUGE score ► Lin, 2004
- Are we dealing with open ended text generation without a gold reference?
 - Diversity Su et al., 2022
 - Coherence Su et al., 2022
 - MAUVE ► Pillutla et al., 2021
- If you have the proper resources choose human evaluation

BLEU SCORE (1)

Given a task with a gold reference, e.g machine translation or text summarization, you compare the generated output with the given source reference to compute the BLEU score:

Target Sentence: The guard arrived late because it was raining

Predicted Sentence: The guard arrived late because of the rain

► Towards Data Science, Ketan Doshi

Five out of eight 1-grams are correctly predicted:

$$\rightarrow p_1 = 5/8$$

BLEU SCORE (2)

Target Sentence: The guard arrived late because it was raining

Predicted Sentence: The guard arrived late because of the rain

► Towards Data Science, Ketan Doshi

Four out of seven 2-grams are correctly predicted:

$$\rightarrow p_2 = 4/7$$

You keep doing this procedure until N n-grams and compute a weighted geometric average over the precision scores with weights w_n :

$$exp\left(\sum_{n=1}^{N}w_n\cdot log(p_n)\right)$$

BLEU SCORE - BREVITY PENALTY

In order to penalize very short predictions (it's more likely for shorter sentences to achieve a good precision score) the BLEU score additionally has a brevity penalty term:

$$BP = \begin{cases} 1, & \text{if } c > r \\ e^{(1-r/c)}, & \text{if } c \le r \end{cases}$$

- With r being the reference corpus length and c the candidate corpus length
- The final formula is then:

$$BLEU = BP \cdot exp\left(\sum_{n=1}^{N} w_n \cdot log(p_n)\right)$$

ROUGE SCORE

- The ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a metric commonly used for evaluating the quality of machine-generated text, particularly summaries
- ROUGE measures the similarity between the generated summary and one or more reference (human-written) summaries
- ROUGE includes multiple metrics, such as ROUGE-N (for n-grams), ROUGE-L (for longest common subsequence), and ROUGE-W (for weighted n-grams). Depending on the task, these metrics capture different aspects of summary quality, allowing a more comprehensive evaluation

EXAMPLE: ROUGE-1 PRECISION

Consider the following source sentence S and candidate summary C:

- S: The cat is on the mat.
- C: The cat and the dog.

Using the ROUGE-N precision score with N = 1 you get:

- Three correctly predicted unigrams
- Total of number of unigrams in C is 5
- \rightarrow ROUGE-1 precision = 3/5 = 0.6

There are more ROUGE scores as mentioned earlier. You can find more details here: Medium, Fabio Chiusano

METRICS WITHOUT A GOLD REFERENCE

- BLEU and ROUGE are both used for tasks that have a gold reference you can compare your prediction to
- In open ended text generation you just have a prompt and an output generated by the model
- You don't have any gold reference to compare your output to
- Therefore you have to get a bit more creative with the choice of evaluation metrics

DIVERSITY

• Su et al., 2022 define diversity in their paper, where they introduce contrastive search, as the generation repetition at different n-gram levels:

Generation Repitition:

- Measures the sequence-level repitition as the portion of duplicate n-grams in the generated text
- For a generated text continuation x_{cont} the repitition at n-gram level is defined as:

rep-n = 100 ×
$$\left(1.0 - \frac{|\text{unique } n\text{-grams}(x_{cont})|}{|\text{total } n\text{-grams}(x_{cont})|}\right)$$

DIVERSITY (2)

Diversity:

Repitition at different n-gram levels:

DIV =
$$\prod_{n=2}^{4} \left(1.0 - \frac{\text{rep-n}}{100} \right)$$

 Plugging in rep-n from the previous slide, this expression simplifies to:

$$DIV = \prod_{n=2}^{4} \frac{|\text{unique } n\text{-grams}(x_{cont})|}{|\text{total } n\text{-grams}(x_{cont})|}$$

 A low diversity score suggests the model suffers from repitition, and a high diversity score means the model-generated text is lexically diverse

COHERENCE

This measure was also proposed by \bullet Su et al. 2022) as the cosine similarity between the sentence embeddings of the prompt x_{prompt} and a generated text conitinuation x_{cont} :

 They use pre-trained SimCSE sentence embeddings EMB(x) proposed by ○ Gao et al., 2022 :

$$COH(x_{cont}, x_{prompt}) = \frac{EMB(x_{prompt}) \cdot EMB(x_{cont})}{\|EMB(x_{prompt})\| \cdot \|EMB(x_{cont})\|}$$

 The higher the coherence-score the better the model-generated text fits to the given prompt

MAUVE

▶ Pillutla et al., 2021

- A language model is an estimate $\hat{P}(x)$ of the probability distribution over sequences of text $x = (x_1, ..., x_{|\mathbf{x}|})$, consisting of tokens x_t belonging to a fixed vocabulary
- Given a context $x_{1:t}$, a language model \hat{P} and a stochastic decoding strategy we generate text by sampling $\hat{x}_{t+1} \sim \hat{P}(\cdot|x_{1:t}), \hat{x}_{t+2} \sim \hat{P}(\cdot|x_{1:t}, \hat{x}_{t+1})$, etc.
- The decoding strategy and the language model taken together define a distribution Q over text, which we call model distribution
- The goal of MAUVE is to measure the gap between the model distribution Q and the target distribution P

SOURCES OF ERROR IN TEXT GENERATION

Figure 1: Left: MAUVE compares the machine text distribution Q to that of human text P by using the family of mixtures $R_{\lambda} = \lambda P + (1 - \lambda)Q$ for $\lambda \in (0,1)$. Right: Illustration of $Type\ I$ errors, where Q produces degenerate, repetitive text which is unlikely under P, and, $Type\ II$ errors, where Q cannot produce plausible human text due to truncation heuristics [26]. MAUVE measures these errors softly, by using the mixture distribution R_{λ} . Varying λ in (0,1) gives a divergence curve and captures a spectrum of soft Type I and Type II errors. MAUVE summarizes the entire divergence curve in a single scalar as the area under this curve.

- The gap between Q and P arises from two sources of error
- Type I error: Q places high mass on text which is unlikely under P
- Type II error: Q cannot generate text which is plausible under P

SOURCES OF ERROR IN TEXT GENERATION

- They formalize the two errors through the Kullback-Leibler divergence:
 - KL(Q|P) penalizes Q if there is a text x that leads to a high Q(x) but a low P(x), which is the Type I error
 - Similarly the Type II error is defined by KL(P|Q)
- Issue: both KL divergences are infinite if the supports of Q and P are not identical
- The authors overcome this issue by softly measuring the two errors with a mixture distribution:

$$R_{\lambda} = \lambda P(1 - \lambda)Q$$
 for $\lambda \in (0, 1)$

- (soft) Type I error: $KL(Q, R_{\lambda})$
- (soft) Type II error: $KL(P, R_{\lambda})$

DIVERGENCE CURVE

Figure 2: Divergence curves for different models (GPT-2 [45], Grover [61]) and decoding algorithms (greedy decoding, ancestral and nucleus sampling). MAUVE is computed as the area of the shaded region, and larger values of MAUVE indicate that Q is closer to P. In general, MAUVE indicates that generations from larger models and nucleus sampling are closer to human text. **Rightmost**: Nucleus sampling has a slightly smaller Type I error than ancestral sampling but a higher Type II error, indicating that ancestral sampling with Grover base produces more degenerate text while nucleus sampling does not effectively cover the human text distribution.

• To capture all the possible values of the mixture weight λ they vary λ between 0 and 1 to generate a *divergence curve*:

$$\textit{C(P,Q)} = \{(\textit{exp}(-\textit{cKL}(\textit{Q}|\textit{R}_{\lambda})), \textit{exp}(-\textit{cKL}(\textit{P}|\textit{R}_{\lambda})) : \textit{R}_{\lambda} = \lambda\textit{P} + (1-\lambda)\textit{Q}, \lambda \in (0,1)\}$$

 MAUVE(P, Q) is the area under this divergence curve, it is a summary of the trade-off between Type I and II errors and lies in (0,1] (more details can be found in the paper ► Pillula et al., 2021)

HUMAN EVALUATION

Why Human Evaluation?

 Subjectivity of Quality: Human judgments are essential for evaluating the nuanced quality of text that automatic metrics might miss, such as humor, creativity, and relevance

Key Considerations

- Evaluators: Use domain experts or crowdworkers, depending on the task complexity
- Evaluation Criteria:
 - Fluency: Is the generated text grammatically correct and natural-sounding?
 - Coherence: Does the text make logical sense?
 - Diversity: Is the output lexically diverse?
- Challenges:
 - **Subjectivity**: Different evaluators might have varying opinions, leading to inconsistency

HUMAN EVALUATION

- Cost and Time: Human evaluation is resource-intensive
- Bias: Evaluators might bring in their biases, which can skew results