MIT OpenCourseWare http://ocw.mit.edu

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Control of Manufacturing Processes

Subject 2.830/6.780/ESD.63

Spring 2008

Lecture #13

Modeling Testing and Fractional Factorial Designs

April 1, 2008

Outline

- Full Factorial Models
 - Contrasts
 - Extension to 2^k
 - Model Term Significance: ANOVA
 - Checking Adequacy of Model Form
 - Tests for higher order fits (curvature)
- Experimental Design
 - Blocks and Confounding
 - Single Replicate Designs
 - Fractional Factorial Designs

NB: Read Montgomery Chapter 12

2² Model Based on Contrasts

Two factor, two level experiments:

$$\hat{y} = \bar{y} + \frac{A}{2}x_1 + \frac{B}{2}x_2 + \frac{AB}{2}x_1x_2$$

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2$$

(Regression model)

This defines a 3-D "ruled surface"

 x_1

General Form for Contrasts

Trial	A	В	AB
(1)	_	_	+
a	+	_	_
b	_	+	_
ab	+	+	+

$$A : [a + ab - b - (1)]$$

$$B : [b + ab - a - (1)]$$

$$AB: [ab+(1)-a-b]$$

 $Contrast_A = Trial\ Column \cdot A$

 $Contrast_{R} = Trial Column \cdot B$

 $Contrast_{AB} = Trial\ Column \cdot AB$

Extension to 2^k

Consider 2³ (3 factors, 2 levels each factor):

			Fac	tor Lev	els
Run	Treatment		X_1	X_2	X_3
Number	Combination	n	A	B	C
1	(1)	y_1	-1	-1	-1
2	a	y_2	1	-1	-1
3	b	y_3	-1	1	-1
4	ab	y_4	1	1	-1
5	С	y_5	-1	-1	1
6	ac	y_6	1	-1	1
7	bc	y_7	-1	1	1
8	abc	y_8	1	1	1

Generalization

 $2^{k \leftarrow \text{number of factors}}$

Contrasts as "Surface" Average Differences

$$A = \frac{1}{4} \left[(abc) + (ab) + (ac) + (a) \right] - \frac{1}{4} \left[(b) + (c) + (bc) + (1) \right]$$

Contrasts for Main Effect

$$B = \frac{1}{4} \left[(abc) + (ab) + (bc) + (b) \right] - \frac{1}{4} \left[(a) + (c) + (ac) + (1) \right]$$

Contrasts for Interaction Effect

$$AB = \frac{1}{4} \left[(1) + (ab) + (c) + (abc) \right] - \frac{1}{4} \left[(a) + (b) + (ac) + (bc) \right]$$

Contrasts for 2³

Factorial Combination

Treament								
Combination		Α	В	AB	С	AC	BC	ABC
(1)	1	-1	-1	1	-1	1	1	-1
а	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
ab	1	1	1	1	-1	-1	-1	-1
С	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	-1	1	1	-1	-1
bc	1	-1	1	-1	1	-1	1	-1
abc	1	1	1	1	1	1	1	1

Contrast
$$A : [a + ab + ac + abc - b - c - bc - (1)]$$

Contrast
$$ABC : [a + b + c + abc - ab - ac - bc - (1)]$$

Effect =
$$\frac{\text{Contrast}}{n2^{k-1}}$$

Effect = $\frac{\text{Contrast}}{n2^{k-1}}$ where *n* is the number of replicates at each treatment combination

$$A = \frac{1}{4n}[a + ab + ac + abc - b - c - bc - (1)]$$

Factorial Combinations

	O = . ! ! !	
Factorial	Combination	

Treament								
Combination	1	Α	В	AB	С	AC	BC	ABC
(1)	1	-1	-1	1	-1	1	1	-1
а	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
ab	1	1	1	1	-1	-1	-1	-1
С	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	-1	1	1	-1	-1
bc	1	-1	1	-1	1	-1	1	-1
abc	1	1	1	1	1	1	1	1

Note: this is the scaled *X* matrix in the regression model

Relationship to Regression Model

$$\underline{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \underline{y}$$

$$\underline{y} \text{ is data from experimental design } \mathbf{X}$$

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 \qquad \text{regression model}$$

- A is the Effect of input 1 averaged over all other input changes (-1 to +1 or a total range of 2)
- B is the Effect of input 2 averaged over all other input changes,

$$\beta_0 = \overline{y}$$
 $\beta_1 = \frac{A}{2}$; $\beta_2 = \frac{B}{2}$; $\beta_{12} = \frac{AB}{2}$

or

$$\hat{y} = \bar{y} + \frac{A}{2}x_1 + \frac{B}{2}x_2 + \frac{AB}{2}x_1x_2$$

ANOVA for 2k

- Now have more than one "effect"
- We can derive:

$$SS_{Effect} = (Contrast)^2/n2^k$$

And it can be shown that:

$$SS_{Total} = SS_A + SS_B + SS_{AB} + SS_{Error}$$

ANOVA Table

Source	SS	d.o.f.	MS	F_0	F _{crit}
A	$\frac{\text{Contrast}_{A}^{2}}{2^{2} \text{ n}}$	1	SS _A	$\frac{MS_A}{MS_E}$	$F_{1,2n-4,\alpha}$
В	$\frac{Contrast_B^2}{2^2 n}$	1	SS_B	$\frac{MS_{B}}{MS_{E}}$	
AB	$\frac{\text{Contrast}_{AB}^2}{2^2 \text{ n}}$	1	SS_C	$\frac{MS_{AB}}{MS_{E}}$	
Error	SS_{E}	$(2^2 \cdot \mathbf{n}) - 3$	$\frac{SS_E}{(2^2 \cdot n) - 3}$		
Total	$\Sigma \Sigma (y_{ij} - \overline{y})^2$	$(2^2 \cdot \mathbf{n}) - 1$			

Alternative Form

Source	SS	d.o.f.	MS	${f F}$	
mean	$nm eta_0^{2}$	1	$\frac{SS(\beta_0)}{1}$	$\frac{MS(\beta_0)}{MS(\varepsilon)}$	
\boldsymbol{x}_1	$nm \beta_1^2$	1	$\frac{SS(\beta_1)}{1}$	$\frac{MS(\beta_1)}{MS(\varepsilon)}$	n = replicates $m = 2^k$
\boldsymbol{x}_2	$nm eta_2^{\ 2}$	1	$\frac{SS(\beta_2)}{1}$	$\frac{MS(\beta_2)}{MS(\varepsilon)}$	SS_{Total} includes
x_{12}	$nm \beta_{12}^{2}$	1	$\frac{SS(\beta_{12})}{1}$	$\frac{MS(\beta_{12})}{MS(\varepsilon)}$	the grand mean in this
${\cal E}$	$\sum_{i=1}^{m} \sum_{j=1}^{n} \mathcal{E}_{ij}$	mn-4	$\frac{SS\left(\varepsilon\right)}{(mn-4)}$		formulation
total	$\sum_{i=1}^{m} \sum_{j=1}^{n} y_{ij}$	mn			

For all terms $F_{crit} = F_{1, mn-4, (1-\alpha)}$

Recall the Brakeforming Data (MIT 2002)

Inputs and Levels

- Inputs
 - Punch Depth (x_1)
 - 0.3 In (-1)
 - 0.6 in (+1)
 - Material Type/Thickness (x₂) (e.g., bending stiffness)
 - Aluminum (-`1)
 - Steel (+1)
- 2 Inputs 2 levels each 2² Model
- Output: Angle (y)

Data Table for 2² Model

Test	x1	x2	yi1	yi2	yi3	yi4	yi5	yi6	yi7	yi8	yi9	yi10
1	-1	-1	31.45	32.00	31.15	31.45	31.15	31.15	31.15	30.15	30.20	30.30
2,	-1	1	45.30	45.10	45.00	42.15	44.00	45.35	44.55	43.30	44.30	42.15
3	1	-1	68,15	62.00	64.50	62.55	61.30	63.45	64.40	64.10	64.45	64.35
4	1	1	81.43	80.15	82.20	83.00	83.05	82.20	82.25	81.45	82.15	82.00

x₁: Material

• x₂ : Depth

• 4 Tests

• 10 Replicates

Looking only at Mean Response

Test	x1	x2	yibar
1	-1	-1	31.02
2	-1	1	44.12
3	1	-1	63.43
4	1	1	81.99

Model and Interpretation

Solving <u>β</u>=X⁻¹ <u>y</u>

$$\underline{\beta} = \begin{bmatrix} 55.1 \\ 17.6 \\ 7.92 \\ 1.36 \end{bmatrix}$$

$$y = 55.1 + 17.6x_1 + 7.9x_2 + 1.4x_1x_2 + \varepsilon$$

Residual Analysis

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + h.o.t. + \varepsilon$$

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2$$

$$y - \hat{y} = h.o.t. + \varepsilon = \text{residual}$$

Properties of residual?

- if model is "correct"
- if model of error is $\sim N(0,\sigma^2)$

Residuals (ε) with Test

Residual Distribution

Aside: Use of All Data

Χ η

1	x1	x2	x1x2	у
1	-1	-1	1	31.45
1	-1	1	-1	45.30
1	1	-1	-1	63.15
1	1	1	1	81.45
1	-1	-1	1	32.00
1	-1	1	-1	45.10
1	1	-1	-1	62.00
1	1	1	1	80.15
1	-1	-1	1	31.15
1	-1	1	-1	45.00
1	1	-1	-1	64.50
1	1	1	1	82.20
1	-1	-1	1	31.45
1	-1	1	-1	42.15
1	1	-1	-1	62.55
1	1	1	1	83.00
1	-1	-1	1	31.15
1	-1	1	-1	44.00
1	1	-1	-1	61.30
1	1	1	1	83.05
1	-1	-1	1	31.15
1	-1	1	-1	45.35
1	1	-1	-1	63.45
1	1	1	1	82.20
1	-1	-1	1	31.15
1	-1	1	-1	44.55
1	1	-1	-1	64.40
1	1	1	1	82.25
1	-1	-1	1	30.15
1	-1	1	-1	43.30
1	1	-1	-1	64.10
1	1	1	1	81.45
1	-1	-1	1	30.20
1	-1	1	-1	44.30
1	1	-1	-1	64.45
1	1	1	1	82.15
1	-1	-1	1	30.30
1	-1	1	-1	42.15
1	1	-1	-1	64.35
	1	1	1	82.00

$$\underline{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \underline{\eta}$$

$$\underline{\beta} = \begin{bmatrix} 55.1 \\ 17.6 \\ 7.92 \\ 1.36 \end{bmatrix}$$

Same as before!

Response Surface

Side View of Surface

Degree of interaction?

Are the Model Terms Significant?

- Mean: β₀
- Effect of Depth: 2β₁
- Effect of Material: 2β₂
 - Contaminated by simultaneous change of modulus, thickness and yield
- Interaction of Depth and Material: 2β₁₂

Look at Single Variable Plots

Effect of Depth with Aluminum Only

Single Variable Plot: Material Effect

Interaction Effect?

ANOVA Test on Effects

Test	x1	x2	yi1	yi2	yi3	yi4	yi5	yi6	yi7	yi8	yi9	yi10
1	-1	-1	31.45	32.00	31.15	31.45	31.15	31.15	31.15	30.15	30.20	30.30
2	-1	1	45.30	45.10	45.00	42.15	44.00	45.35	44.55	43.30	44.30	42.15
3	1	-1	63.15	62.00	64.50	62.55	61.30	63.45	64.40	64.10	64.45	64.35
4	1	1	81.45	80.15	82.20	83.00	83.05	82.20	82.25	81.45	82.15	82.00

$$y = 55.1 + 17.6x_1 + 7.9x_2 + 1.4x_1x_2 + \varepsilon$$

mean	$nm \beta_0^2$	1	$\frac{SS(\beta_0)}{1}$	$\frac{MS(\beta_0)}{MS(\varepsilon)}$
x_1	$nm \beta_1^2$	1	$\frac{SS(\beta_1)}{1}$	$\frac{MS(\beta_1)}{MS(\varepsilon)}$
x_2	$nm \beta_2^2$	1	$\frac{SS(\beta_2)}{1}$	$\frac{MS(\beta_2)}{MS(\varepsilon)}$
<i>x</i> ₁₂	$nm \beta_{12}^{2}$	1	$\frac{SS(\beta_{12})}{1}$	$\frac{MS(\beta_{12})}{MS(\varepsilon)}$
ε	$\sum_{i=1}^{m} \sum_{j=1}^{n} \mathcal{E}_{ij}$	mn – 4	$\frac{SS\left(\varepsilon\right)}{\left(mn-4\right)}$	
total	$\sum_{i=1}^{m} \sum_{j=1}^{n} y_{ij}$	mn		

ANOVA on Effects			n=10	m=4	nm=40
SS		DOF	MS	F	F (0.05)
mean	121606	1	1E+05	1E+05	4.1
X1	12348	1	1E+04	1E+04	4.1
X2	2507	1	2507.5	2593.8	4.1
X1X2	75	1	74.529	77.096	4.1
Error	35	36	0.9667		
Total	136571	40			

Is Model Form Adequate?

- How to Test?
 - Consider additional experimental (center) points

Questions and Hypotheses

- Lack of Fit Test: Is the Model Form Correct?
 - H_o: variance of lack of fit = pure (replicate) variance
 - H₁: variance of lack of fit ≠ pure (replicate) variance
- If H₀ the observed deviation from model prediction (e.g. at center point) could be explained by pure (replicate) error
 - Not enough evidence to attribute to model structure error

Testing for Quadratic Error

Recall our Linear Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + h.o.t. + \varepsilon$$

• Add a h.o.t.:

$$\beta_{11}x_1^2 + \beta_{22}x_2^2$$

Check for deviation at center point

•
$$x_1 = 0$$
; $x_2 = 0$

- What is our hypothesis
 - H_o: ?
 - H₁: ?

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \varepsilon$$

Consider a Simple Test

Full Factorial linear with interactions, no replicates (n=1)

- Cannot test significance
- Cannot test for model fit

Add Central
Point (A=0, B=0)
with *n* replicates:

Use of Central Data

- Determine Deviation from Linear Prediction
 - Quadratic Term, or Central Error Term
- Determine MS of that Error
 - SS/dof
- Compare to Replication Error

Definitions

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x^2 + \beta_2 x^2$$

 \overline{y}_F = grand mean of all factorial runs

 \overline{y}_C = grand mean of all center point runs

$$SS_{Quadratic} = \frac{n_F n_C (\overline{y}_F - \overline{y}_C)^2}{n_F + n_C}$$

$$MS_{Quadratic} = \frac{SS_{Quadratic}}{n_c}$$

Example: 2² Without Replicates; Replicated Intermediate Points

		[Α	В	AB
(1)	39.3	1	-1	-1	1
а	40.9	1	1	-1	-1
b	40	1	-1	1	-1
ab	41.5	1	1	1	1
Contra	sts	161.7	3.1	1.3	-0.1
Effect		80.85	1.55	0.65	-0.05
Model Coefficients		40.43	0.775	0.325	-0.025

Just using corner points:

$$y = 40.43 + 0.775_1 x_1 + 0.325 x_2 - 0.025 x_1 x_2$$

Use of Central Data

(1)	40.3
а	40.5
b	40.7
ab	40.2
quad	40.6
Average	40.46
SS	0.172
Variance	0.04

ANOVA					
Source	SS	DOF	MS	F	F(0.05)
A	2.4025	1	2.403	55.87	7.7
В	0.4225	1	0.423	9.83	7.7
AB	0.0025	1	0.003	0.06	7.7
Quad	0.002722	3	0.001	0.02	6.6
Error	0.172	4	0.043		
Total	3.002222	8			

Outline

- Full Factorial Models
 - Contrasts
 - Extension to 2^k
 - Model Term Significance: ANOVA
 - Checking Adequacy of Model Form
 - Tests for higher order fits (curvature)
- Experimental Design
 - Blocks and Confounding
 - Single Replicate Designs
 - Fractional Factorial Designs

Experimental Design Issues

- Nuisance Factors
 - Affect the output, but don't want the effect
 - May not be able to run whole experiment holding that factor constant
- If Known but Uncontrollable
 - Randomization: treat as random "noise" factor
- If Known and Controllable
 - Separate data into block where nuisance is constant
 - E.g., if replicating, run each replicate of full design with same block factor

Replicated Block Design

На	Hardness Test							
	T	est Coupo	n					
Tip	1	2	3	4				
1	9.3	9.4	9.6	10.0				
2	9.4	9.3	9.8	9.9				
3	9.2	9.4	9.5	9.7				
4	9.7	9.6	10.0	10.2				

Each Block is like a Factor Randomize Order Within Blocks

$$y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij} \begin{cases} i = 1, 2, 3...a \\ j = 1, 2, 3, b \end{cases}$$

Nonreplicated Block Design

- Suppose 2² design
 - 2 factors, 2 levels each = 4 runs
 - But we have to arrange to do 2 runs (block 1), then another 2 runs (block 2)
 - Expect an unknown offset ∆ between block 1 & 2
- Question: How arrange runs?

	X ₁	X_2	
(1)	_	DI	
а	+	_ DI	ock 1
b	_	+ BI	ock 1
ab	+	+	

Nonreplicated Block Design

Better approach:

Block
$$1 = (1)$$
 and ab
Block $2 = a$ and b

$$Contrast_{A} = [a + ab - b - (1)]$$

$$Contrast_B = [b + ab - a - (1)]$$

$$Contrast_{AB} = [ab + (1) - a - b]$$

 Δ 's within each block

 Δ 's across each block

Blocking and Confounding

$$Contrast_A = [a + ab - b - (1)] = (ab - (1)) + (b - a)$$
 $Contrast_B = [b + ab - a - (1)] = (ab - (1)) + (a - b)$
 $Contrast_{AB} = [ab + (1) - a - b] = (ab + (1)) - (a + b)$

Now assume the block effect is that block 2 has an offset of δ from what it would be if done in block 1

$$Contrast_{A} = (ab - (1)) + (b + \delta - a - \delta) \quad \delta \text{ 's cancel}$$

$$Contrast_{B} = (ab - (1)) + (a + \delta - b - \delta) \quad \delta \text{ 's cancel}$$

$$Contrast_{AB} = (ab + (1)) - (a + \delta + b + \delta) \quad \delta \text{ 's double!}$$

Fractional Factorial Experiments

- What if we do less than full factorial 2^k?
- From regression model for 3 inputs:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_3 x_3 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 + \beta_{123} x_1 x_2 x_3 + \varepsilon$$

We will not be able to find all 8 coefficients

2³⁻¹ Experiment

Consider doing 4 experiments instead of 8; e.g.:

• This is a 2² array

Could also be for 3 inputs if we define
 x₃= x₁x₂

2³⁻¹ Experiment

$$X_1$$
 X_2 X_3

$$1 - 1 - 1 + 1$$

$$2 + 1 - 1 - 1$$

$$3 - 1 + 1 - 1$$

$$4 + 1 + 1 + 1$$

But now we can only define 4 coefficients in the model: e.g.:

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

i.e. no interaction terms

2³⁻¹ Experiment

Or we could choose other terms:

$$\widehat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{13} x_1 x_3$$
 or:

$$\widehat{y} = \beta_0 + \beta_1 x_1 + \beta_{12} x_1 x_2 + \beta_3 x_3$$
or:

. . .

We actually have the following:

$$\widehat{y} = \beta_0 + \beta'_1 z_1 + \beta'_2 z_2 + \beta'_3 z_3$$

 where the z variable represent sums of the various input terms, e.g.

$$z_1 = x_1 x_2 + x_3$$

 $z_2 = x_1 + x_2 x_3 L$

 where the specific choice of the experimental array determines what these sums are

2³ Array: (Our **X** matrix)

Test	I	Α	В	AB	С	AC	ВС	ABC
(1)	1	-1	-1	1	-1	1	1	-1
а	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
ab	1	1	1	1	-1	-1	-1	-1
С	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	-1	1	1	-1	-1
bc	1	-1	1	-1	1	-1	1	-1
abc	1	1	1	1	1	1	1	1

Consider upper half:

Test	I	А	В	AB	С	AC	ВС	ABC
(1)	1	-1	-1	1	-1	1	1	-1
а	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
ab	1	1	1	1	-1	-1	-1	-1
С	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	-1	1	1	-1	-1
bc	1	-1	1	-1	1	-1	1	-1
abc	1	1	1	1	1	1	1	1

Look at columns for C - no change at all! or C = -I Also AC = -A and BC = -B, and ABC = -AB

Test	I	А	В	AB	С	AC	ВС	ABC
(1)	1	-1	-1	1	-1	1	1	-1
а	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
ab	1	1	1	1	-1	-1	-1	-1
С	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	-1	1	1	-1	-1
bc	1	-1	1	-1	1	-1	1	-1
abc	1	1	1	1	1	1	1	1

 $Contrast_A = [-(1)+a-b+ab]$

AC is an alias of A

 $Contrast_{AC} = [(1)-a+b-ab]$

Note that alias of $A = A^*(-C)$

Defining Relation I = -C

Choice of Design?

- Aliases
 - Must have one of the pair assumed negligible ("sparsity of effects")

- Balance/Orthogonality
 - Sufficient excitation of inputs

Balance and Orthogonality

Test	I	А	В	AB	С	AC	ВС	ABC
(1)	1	-1	-1	1	-1	1	1	-1
а	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
ab	1	1	1	1	-1	-1	-1	-1
С	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	-1	1	1	-1	-1
bc	1	-1	1	-1	1	-1	1	-1
abc	1	1	1	1	1	1	1	1

Note: All columns have equal number of + and - signs (Balance)
Sum of product of any two columns = 0 (Orthogonality)
-All combinations occur the same number of times

Balance/Orthogonality in 2³⁻¹

Test	I	Α	В	С	AB	AC	ВС	ABC
1	1	-1	-1	-1	1	1	1	-1
а	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
С	1	1	1	-1	1	-1	-1	-1
ab	1	-1	-1	1	1	-1	-1	1
ac	1	1	-1	1	-1	1	-1	-1
bc	1	-1	1	1	-1	-1	1	-1
abc	1	1	1	1	1	1	1	1

A, B and C are balanced but B and C are not orthogonal

Design Resolution

Test	I	А	В	С	AB	AC	ВС	ABC
1	1	-1	-1	1	1	-1	-1	1
а	1	1	-1	-1	-1	-1	1	1
b	1	-1	1	-1	-1	1	-1	1
С	1	1	1	1	1	1	1	1

With this array:

-balance for A, B, C

-all but A B C are orthogonal

-defining relation I=ABC

e.g. aliases of A:

A*ABC=A*I

A*A = I

BC aliased with A

Aliases:

A BC

B AC

Main effects aliased with interactions only

C AB

I ABC

Design Resolution

- Resolution III
 - No Main aliases
 - Main Interaction Aliases
- Resolution IV
 - No Alias between main effects and 2 factor effects, but others exist
- Resolution V
 - No Main and no 2 Factor Aliases

Smaller Fraction 2^{k-p}

- p = 1 1/2 fraction
- p= 2 1/4 fraction
- p 1/2^p

	Α	В	С	D
1	-1	-1	-1	-1
2	1	-1	-1	-1
3	-1	1	-1	-1
4	1	1	-1	-1
5	-1	-1	1	-1
6	1	-1	1	-1
7	-1	1	1	-1
8	1	1	-1	-1
9	-1	-1	-1	1
10	1	-1	-1	1
11	-1	1	-1	1
12	1	1	-1	1
13	-1	-1	1	1
14	1	-1	1	1
15	-1	1	1	1
16	1	1	1	1

Four Main Effects Four tests?

Suppose we want to alias A with BCD and ABC

What are the defining relations?

Summary

- Full Factorial Models
 - Contrasts
 - Extension to 2^k
 - Model Term Significance: ANOVA
 - Checking Adequacy of Model Form
 - Tests for higher order fits (curvature)
- Experimental Design
 - Blocks and Confounding
 - Single Replicate Designs
 - Fractional Factorial Designs

