18.06 Recitation 13

Isabel Vogt

October 1, 2018

1. Let

$$A = \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & & \\ & -1 & 2 & -1 & & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix}.$$

be a tridiagonal matrix. You can imagine that A is the 5×5 version of a family of tridiagonal matrices of size $n \times n$.

- (a) How can you use Gaussian elimination to solve Ax = b in linear time?
- (b) What is special about the LU factorization of A? What is the pattern of nonzero entries.
- (c) What is the pattern of nonzero entries of A^{-1} ?
- 2. Suppose that A is a 4×4 matrix with singular value decomposition $AV = U\Sigma$ given by

$$A \begin{pmatrix} v_1 & v_2 & v_3 & 0 \\ & & & 0 \\ & & & -1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 1/3 & & & 0 \\ 2/3 & u_2 & u_3 & 0 \\ 0 & & & 1 \\ 2/3 & & & 0 \end{pmatrix} \begin{pmatrix} 1 & & & \\ & 0.2 & & \\ & & 0.00001 & \\ & & & 0 \end{pmatrix}.$$

- (a) What is the SVD of A^T ?
- (b) What is the rank of A? Give an expression for a smaller rank matrix that approximates A.

(c) Is
$$Ax = \begin{pmatrix} 1 \\ -2 \\ 1 \\ 1 \end{pmatrix}$$
 solvable?

(d) What is the matrix P that projects \mathbb{R}^4 onto N(A)?

(e) Let
$$B = AA^T$$
 and let $y = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$. As $n \to \infty$, what do you know about $B^n y$?

(f) Suppose that you wanted to use the power method to compute v_1 . How would you set this up? How does the error behave after k iterates?

1

3. Let

$$A = \begin{pmatrix} 2 & -1 & & & -1 \\ -1 & 2 & -1 & & & \\ & -1 & 2 & -1 & & \\ & & -1 & 2 & -1 \\ -1 & & & -1 & 2 \end{pmatrix}.$$

- (a) What are the eigenvectors of A? What special properties do they have?
- (b) What are eigenvalues corresponding to these eigenvectors?
- 4. Assume that A is diagonalizable with eigenvalues

$$|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$$
.

We may find λ_1 and a corresponding eigenvector v_1 using the power method. Let P be the projection matrix onto the orthogonal complement to the span of v_1 .

Now suppose that we want to find λ_2 and a corresponding eigenvector v_2 . Consider the following algorithm

- 1. Start with a random vector x_0 .
- 2. Iteratively set

$$x_k = \frac{PAx_{k-1}}{||PAx_{k-1}||}.$$

- (a) Assuming that A is normal (the eigenvectors for distinct eigenvalues are orthogonal) what does this converge to?
- (b) If A is not normal what can you say about the vector $y = \lim_{k \to \infty} x_k$ that this converges to? Let

$$Q = \begin{pmatrix} v_1 & y \end{pmatrix}$$

What do you know about the matrix Q?

- (c) Write AQ = QS for some matrix S. Do you know anything special about S (i.e. does it have a particular pattern of zero entries)?
- (d) What is λ_2 and a choice of v_2 ? (hint: use S!)
- 5. Suppose that A is a 3 × 3 matrix that is not diagonalizable, but has a basis of generalized eigenvectors $\{x_1, j_1, x_2\}$ where

$$Ax_1 = \lambda_1 x_1, \qquad Aj_1 = \lambda_1 j_1 + x_1, \qquad Ax_2 = \lambda_2 x_2.$$

- (a) Is the matrix A+I diagonalizable? Give the eigenvalues and a basis of (generalized) eigenvectors.
- (b) What are the eigenvalues of the matrix A^n ? What is a basis of (generalized) eigenvectors of A^n in terms of x_1, j_1, x_2 ?
- (c) What are the eigenvalues of the matrix e^{At} ? What is a basis of (generalized) eigenvectors of e^{At} in terms of x_1, j_1, x_2 ?