Methods for static and sequential clustering

Matt Whiteway Advanced Theory Seminar March 2020

Outline

- Motivation: clustering in neuroscience
- Static clustering
 - o k-means algorithm
 - Gaussian mixture models (GMMs)
- Sequential clustering hidden Markov models (HMMs)
 - EM for HMMs
 - Extensions

The clustering problem

The problems with clustering:

- Unsupervised problem no ground truth!
- Lots of ways clustering can fail (which is why so many different algorithms exist)
- Choosing the number of clusters

Clustering in neuroscience

cell type identification from gene expression data

spike sorting from voltage signal data

parcelling brain regions from fMRI data

behavioral clustering from video data

Outline

- Motivation: clustering in neuroscience
- Static clustering
 - o k-means algorithm
 - Gaussian mixture models (GMMs)
- Sequential clustering hidden Markov models (HMMs)
 - EM for HMMs
 - Extensions

k-means: setup

Data:

$$\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, \ \mathbf{x}_n \in \mathbb{R}^D$$

Goal: partition data into *K* clusters

cluster prototypes (parameters)

 $\{\mu_{k}\}_{k=1}^{K}$

cluster indicators (latent variables)

 $r_{nk} = 1 \text{ if } \mathbf{x}_n \text{ is in cluster } k$

 $r_{nk} = 0$ otherwise

Cost function:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

Cost function:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

Optimization:

1) Initialize parameters (e.g. random values)

Cost function:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

Optimization:

- 1) Initialize parameters (e.g. random values)
- 2) Fix parameters, optimize latents assign each data point to the closest cluster center

$$r_{nk} = \begin{cases} 1 & \text{if } k = \operatorname{argmin}_{j} ||\mathbf{x}_{n} - \boldsymbol{\mu}_{k}||^{2} \\ 0 & \text{otherwise} \end{cases}$$

Cost function:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

Optimization:

- 1) Initialize parameters (e.g. random values)
- 2) Fix parameters, optimize latents assign each data point to the closest cluster center
- 3) Fix latents, optimize parameters update each cluster center as mean of all data points assigned to cluster

$$r_{nk} = \begin{cases} 1 & \text{if } k = \operatorname{argmin}_{j} ||\mathbf{x}_{n} - \boldsymbol{\mu}_{k}||^{2} \\ 0 & \text{otherwise} \end{cases}$$

$$oldsymbol{\mu}_k = rac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}$$

Cost function:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

Optimization:

- 1) Initialize parameters (e.g. random values)
- 2) Fix parameters, optimize latents assign each data point to the closest cluster center
- 3) Fix latents, optimize parameters update each cluster center as mean of all data points assigned to cluster
- 4) Repeat (2) and (3) until convergence

$$r_{nk} = \begin{cases} 1 & \text{if } k = \operatorname{argmin}_{j} ||\mathbf{x}_{n} - \boldsymbol{\mu}_{k}||^{2} \\ 0 & \text{otherwise} \end{cases}$$

$$oldsymbol{\mu}_k = rac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}$$

Cost function:

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

Notes:

- Convergence criterion: max iterations, cluster assignments don't change, etc.
- Convergence: each iteration of (2) and (3) will further minimize J; local but not global minimum guaranteed
- Alternation between (2) and (3) correspond to (E) and (M) steps of the EM algorithm
- k-means is a hard assignment algorithm each datapoint is assigned to a single cluster

Gaussian mixture models (GMMs)

GMM: graphical model

$$p(\mathbf{x}, \mathbf{z}) = p(\mathbf{x}|\mathbf{z})p(\mathbf{z})$$

GMM: model

Cluster indicators:

$$z_k = 1 \text{ if } \mathbf{x} \text{ is in cluster } k$$

$$z_k = 0$$
 otherwise

Mixing coefficients:

$$p(z_k = 1) = \pi_k$$

•
$$0 \le \pi_k \le 1$$

$$\bullet \ \sum_{k=1}^{K} \pi_k = 1$$

$$p(\mathbf{z}) = \prod_{k=1}^{K} \pi_k^{z_k}$$

$$p(\mathbf{x}|z_k=1) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

$$p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^K \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k}$$

GMM: model

Joint distribution (distribution over complete data):

$$p(\mathbf{x}, \mathbf{z}) = p(\mathbf{x}|\mathbf{z})p(\mathbf{z}) = \prod_{k=1}^{K} [\pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]^{z_k}$$

Marginal distribution (distribution over incomplete data):

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}|\mathbf{z})p(\mathbf{z}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

GMM: setup

Data:

$$\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, \ \mathbf{x}_n \in \mathbb{R}^D$$

Goal: partition data into *K* clusters

Gaussian means/covs, mixing coefficients (parameters)

$$\{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \pi_k\}_{k=1}^K$$

cluster indicators (latent variables)

$$z_{nk} = 1 \text{ if } \mathbf{x}_n \text{ is in cluster } k$$

$$z_{nk} = 0$$
 otherwise

$$\{\mathbf{x}_n\}$$
 data $\{oldsymbol{\mu}_k, oldsymbol{\Sigma}_k, \pi_k\}$ parameters $\{z_{nk}\}$ latents

Cost function 1 (incomplete data log-likelihood):

$$p(\mathbf{X}|\{\boldsymbol{\mu}_k\},\{\boldsymbol{\Sigma}_k\},\boldsymbol{\pi}) = \prod_{n=1}^N \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k) \qquad \qquad \text{independence assumption!}$$

$$\ln p(\mathbf{X}|\{\boldsymbol{\mu}_k\},\{\boldsymbol{\Sigma}_k\},\boldsymbol{\pi}) = \sum_{n=1}^N \ln \left[\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)\right]$$
sum inside log :(

$$\{\mathbf{x}_n\}$$
 data $\{oldsymbol{\mu}_k, oldsymbol{\Sigma}_k, \pi_k\}$ parameters $\{z_{nk}\}$ latents

Cost function 2 (complete data log-likelihood):

$$p(\mathbf{X}, \mathbf{Z} | \{\boldsymbol{\mu}_k\}, \{\boldsymbol{\Sigma}_k\}, \boldsymbol{\pi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} [\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]^{z_k}$$

$$\ln p(\mathbf{X}, \mathbf{Z} | \{\boldsymbol{\mu}_k\}, \{\boldsymbol{\Sigma}_k\}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left[\ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\right]$$
But wait!
We don't know \mathbf{Z}
Use our "best guess", logs inside sum:)
$$p(\mathbf{Z} | \mathbf{X})$$

$$\{\mathbf{x}_n\}$$
 data $\{oldsymbol{\mu}_k, oldsymbol{\Sigma}_k, \pi_k\}$ parameters $\{z_{nk}\}$ latents

Cost function 3 (expected complete data log-likelihood):

$$\ln p(\mathbf{X}, \mathbf{Z} | \{\boldsymbol{\mu}_k\}, \{\boldsymbol{\Sigma}_k\}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \sum_{k=1}^{N} z_{nk} \left[\ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right]$$

$$\mathbb{E}_{p(\mathbf{Z}|\mathbf{X})} \ln p(\mathbf{X}, \mathbf{Z}|\{\boldsymbol{\mu}_k\}, \{\boldsymbol{\Sigma}_k\}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{E}_{p(\mathbf{Z}|\mathbf{X})}[z_{nk}] \left[\ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\right]$$

"Responsibility" of component
$$k$$
 for \mathbf{x}_n

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} = \sum_{n=1}^{n=1} \sum_{k=1}^{K-1} \gamma(z_{nk}) \left[\ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right]$$

$$\{\mathbf{x}_n\}$$
 data $\{oldsymbol{\mu}_k, oldsymbol{\Sigma}_k, \pi_k\}$ parameters $\{z_{nk}\}$ latents

$$\operatorname{argmax}_{\{\{\boldsymbol{\mu}_k\},\{\boldsymbol{\Sigma}_k\},\boldsymbol{\pi}\}} \mathbb{E}_{p(\mathbf{Z}|\mathbf{X})} \ln p(\mathbf{X},\mathbf{Z}|\{\boldsymbol{\mu}_k\},\{\boldsymbol{\Sigma}_k\},\boldsymbol{\pi})$$

$$N_k = \sum \gamma(z_{nk})$$

$$\boldsymbol{\mu}_k^{\text{new}} = \frac{1}{N_k} \sum_{n} \gamma(z_{nk}) \mathbf{x}_n$$

$$\mathbf{\Sigma}_k^{\mathrm{new}} = \frac{1}{N_k} \sum \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^{\mathsf{T}}$$

$$\frac{N}{N} = \frac{N}{N}$$

This is not a closed form solution! Remember,

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

old parameter values

$$\{\mathbf{x}_n\}$$
 data $oldsymbol{ heta} = \{oldsymbol{\mu}_k, oldsymbol{\Sigma}_k, \pi_k\}$ parameters $\{z_{nk}\}$ latents

1) Initialize parameters (e.g. using k-means) as $oldsymbol{ heta}^{
m old}$

$$\{\mathbf{x}_n\}$$
 data $oldsymbol{ heta} = \{oldsymbol{\mu}_k, oldsymbol{\Sigma}_k, \pi_k\}$ parameters $\{z_{nk}\}$ latents

- 1) Initialize parameters (e.g. using k-means) as θ^{old}
- 2) Compute $\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{\mathrm{old}})} \ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$

$$\{\mathbf{x}_n\}$$
 data $oldsymbol{ heta} = \{oldsymbol{\mu}_k, oldsymbol{\Sigma}_k, \pi_k\}$ parameters $\{z_{nk}\}$ latents

- 1) Initialize parameters (e.g. using k-means) as θ^{old}
- 2) Compute $\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{\text{old}})} \ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$
- 3) Maximize $\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{\text{old}})} \ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$ to get $\boldsymbol{\mu}_k^{\text{new}},\boldsymbol{\Sigma}_k^{\text{new}},\pi_k^{\text{new}}$

$$\{\mathbf{x}_n\}$$
 data $oldsymbol{ heta} = \{oldsymbol{\mu}_k, oldsymbol{\Sigma}_k, \pi_k\}$ parameters $\{z_{nk}\}$ latents

- 1) Initialize parameters (e.g. using k-means) as θ^{old}
- 2) Compute $\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{\text{old}})} \ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$
- 3) Maximize $\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{\text{old}})} \ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$ to get $\boldsymbol{\mu}_k^{\text{new}},\boldsymbol{\Sigma}_k^{\text{new}},\pi_k^{\text{new}}$
- 4) Repeat (2) and (3) until convergence (and set $\theta^{\mathrm{old}} \leftarrow \theta^{\mathrm{new}}$)

$$\{\mathbf{x}_n\}$$
 data $oldsymbol{ heta}=\{oldsymbol{\mu}_k,oldsymbol{\Sigma}_k,\pi_k\}$ parameters $\{z_{nk}\}$ latents

- 1) Initialize parameters (e.g. using k-means) as θ^{old}
- Compute $\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{\mathrm{old}})} \ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$
- Maximize $\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{\text{old}})} \ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$ to get $\boldsymbol{\mu}_k^{\text{new}},\boldsymbol{\Sigma}_k^{\text{new}},\pi_k^{\text{new}}$ 3)
- Repeat (2) and (3) until convergence (and set $\theta^{\text{old}} \leftarrow \theta^{\text{new}}$) 4)

GMM

E step:
$$\mathbb{E}[z_{nk}] = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} \qquad r_{nk} = \begin{cases} 1 & \text{if } k = \operatorname{argmin}_j ||\mathbf{x}_n - \boldsymbol{\mu}_k||^2 \\ 0 & \text{otherwise} \end{cases}$$

k-means

$$r_{nk} = \begin{cases} 1 & \text{if } k = \operatorname{argmin}_{j} ||\mathbf{x}_{n} - \boldsymbol{\mu}_{k}||^{2} \\ 0 & \text{otherwise} \end{cases}$$

$$\{\mathbf{x}_n\}$$
 data $oldsymbol{ heta}=\{oldsymbol{\mu}_k,oldsymbol{\Sigma}_k,\pi_k\}$ parameters $\{z_{nk}\}$ latents

- 1) Initialize parameters (e.g. using k-means) as θ^{old}
- 2) Compute $\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{\text{old}})} \ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$
- 3) Maximize $\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{\text{old}})} \ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$ to get $\boldsymbol{\mu}_k^{\text{new}},\boldsymbol{\Sigma}_k^{\text{new}},\pi_k^{\text{new}}$
- 4) Repeat (2) and (3) until convergence (and set $\theta^{\text{old}} \leftarrow \theta^{\text{new}}$)

GMM

E step:
$$\mathbb{E}[z_{nk}] = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

M step:
$$\boldsymbol{\mu}_k^{\text{new}} = \frac{\sum_n \gamma(z_{nk}) \mathbf{x}_n}{\sum_n \gamma(z_{nk})}$$

k-means

$$r_{nk} = \begin{cases} 1 & \text{if } k = \operatorname{argmin}_{j} ||\mathbf{x}_{n} - \boldsymbol{\mu}_{k}||^{2} \\ 0 & \text{otherwise} \end{cases}$$
$$\boldsymbol{\mu}_{k} = \frac{\sum_{n} r_{nk} \mathbf{x}_{n}}{\sum_{n} r_{nk}}$$

Outline

- Motivation: clustering in neuroscience
- Static clustering
 - o k-means algorithm
 - Gaussian mixture models (GMMs)
- Sequential clustering hidden Markov models (HMMs)
 - EM for HMMs
 - Extensions

Sequential models

Before: i.i.d. assumption (independent and identically distributed)

$$P(\mathbf{X}, \mathbf{Z}) = \prod_{n=1}^{N} p(\mathbf{x}_n | \mathbf{z}_n) p(\mathbf{z}_n)$$

Now: Markov assumption

$$\mathbf{z}_1$$
 \mathbf{z}_2 \mathbf{z}_{n-1} \mathbf{z}_n \mathbf{z}_n \mathbf{z}_n

$$P(\mathbf{X}, \mathbf{Z}) = [p(\mathbf{x}_1 | \mathbf{z}_1) p(\mathbf{z}_1)] \prod_{n=2}^{N} p(\mathbf{x}_n | \mathbf{z}_n) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

Sequential models

Hidden Markov Model (HMM)

Linear (or Latent) Dynamical System (LDS)

HMM as a generative model

- GMM a special case of the HMM (if each row in **A** is identical)
- If diagonal elements of **A** are close to 1, long runs of observations from the same state

Hidden Markov models (HMMs)

$$P(\mathbf{X}, \mathbf{Z}) = [p(\mathbf{x}_1 | \mathbf{z}_1) p(\mathbf{z}_1)] \prod_{n=2}^{N} p(\mathbf{x}_n | \mathbf{z}_n) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

$$p(\mathbf{z}_1|\boldsymbol{\pi}) = \prod_{k=1}^{n} \pi_k^{z_{1k}}$$

$$p(\mathbf{z}_n|\mathbf{z}_{n-1},\mathbf{A}) =$$

$$p(\mathbf{z}_n|\mathbf{z}_{n-1},\mathbf{A}) = \prod_{k=1}^K \prod_{j=1}^K A_{jk}^{z_{n-1,j}z_{nk}} \text{ where } A_{jk} \equiv p(z_{nk} = 1|z_{n-1,j} = 1)$$

$$p(\mathbf{x}_n|\mathbf{z}_n) = \prod_{k=1}^K \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_{nk}}$$

$$\int \mathcal{N}(\mathbf{x}_n|oldsymbol{\mu}_k,oldsymbol{\Sigma}_k)^{z_{nk}}$$

- Gaussians
- Mixtures of Gaussians
- Neural networks

HMM: setup

Data:

$$\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}, \ \mathbf{x}_n \in \mathbb{R}^D$$

Goal: partition data into *K* clusters

Gaussian means/covs, initial state distribution, transition matrix (parameters)

$$\{\{\boldsymbol{\mu}_k\}, \{\boldsymbol{\Sigma}_k\}, \{\pi_k\}, \mathbf{A}\}$$

cluster indicators (latent variables)

$$z_{nk} = 1 \text{ if } \mathbf{x}_n \text{ is in cluster } k$$

$$z_{nk} = 0$$
 otherwise

EM for GMMs

- 1) Initialize parameters (e.g. using k-means) as $oldsymbol{ heta}^{
 m old}$
- 2) Compute $\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{\text{old}})} \ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$
- 3) Maximize $\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{\text{old}})} \ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$ to get $\boldsymbol{\mu}_k^{\text{new}},\boldsymbol{\Sigma}_k^{\text{new}},\pi_k^{\text{new}}$
- 4) Repeat (2) and (3) until convergence (and set $\theta^{\text{old}} \leftarrow \theta^{\text{new}}$)

EM for HMMs

- 1) Initialize parameters (e.g. using k-means) as $\theta^{\rm old}$
- 2) Compute $\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{\text{old}})} \ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$
- 3) Maximize $\overline{\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{\mathrm{old}})}} \ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$ to get $\boldsymbol{\mu}_k^{\mathrm{new}},\boldsymbol{\Sigma}_k^{\mathrm{new}},\pi_k^{\mathrm{new}},\mathbf{A}^{\mathrm{new}}$
- 4) Repeat (2) and (3) until convergence (and set $heta^{
 m old} \leftarrow heta^{
 m new}$)

E step: compute $\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{\text{old}})} \ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$

This corresponds to computing the following quantities:

$$\gamma(\mathbf{z}_n) = p(\mathbf{z}_n | \mathbf{X}, \boldsymbol{\theta}^{\text{old}})$$

$$\gamma(z_{nk}) = \mathbb{E}[z_{nk}]$$

$$\xi(\mathbf{z}_{n-1}, \mathbf{z}_n) = p(\mathbf{z}_{n-1}, \mathbf{z}_n | \mathbf{X}, \boldsymbol{\theta}^{\text{old}})$$

 $\xi(z_{n-1,i},z_{nk}) = \mathbb{E}[z_{n-1,i}z_{nk}]$

E step: compute $\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{\text{old}})} \ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$

This corresponds to computing the following quantities:

$$\gamma(\mathbf{z}_n) = p(\mathbf{z}_n | \mathbf{X}, \boldsymbol{\theta}^{\mathrm{old}})$$
 $\gamma(z_{nk}) = \mathbb{E}[z_{nk}]$

$$\xi(\mathbf{z}_{n-1}, \mathbf{z}_n) = p(\mathbf{z}_{n-1}, \mathbf{z}_n | \mathbf{X}, \boldsymbol{\theta}^{\mathrm{old}})$$
 $\xi(z_{n-1,j}, z_{nk}) = \mathbb{E}[z_{n-1,j} z_{nk}]$

• In the GMM, $\gamma(\mathbf{z}_n) = p(\mathbf{z}_n | \mathbf{x}_n, \boldsymbol{\theta}^{\text{old}})$ and can hence be calculated for each datapoint independently

E step: compute $\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{\text{old}})} \ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$

This corresponds to computing the following quantities:

$$\gamma(\mathbf{z}_n) = p(\mathbf{z}_n | \mathbf{X}, \boldsymbol{\theta}^{\text{old}})
\gamma(z_{nk}) = \mathbb{E}[z_{nk}]
\xi(\mathbf{z}_{n-1}, \mathbf{z}_n) = p(\mathbf{z}_{n-1}, \mathbf{z}_n | \mathbf{X}, \boldsymbol{\theta}^{\text{old}})
\xi(z_{n-1,j}, z_{nk}) = \mathbb{E}[z_{n-1,j} z_{nk}]$$

• In the GMM,

$$\gamma(\mathbf{z}_n) = p(\mathbf{z}_n | \mathbf{x}_n, \boldsymbol{\theta}^{\text{old}})$$

and can hence be calculated for each datapoint independently

• In the HMM, $\gamma(\mathbf{z}_n)$ and $\xi(\mathbf{z}_{n-1}, \mathbf{z}_n)$ are computed recursively using the forward-backward algorithm

M step: maximize $\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{\text{old}})} \ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$

$$N_{k} = \sum_{n} \gamma(z_{nk})$$

$$\boldsymbol{\mu}_{k}^{\text{new}} = \frac{1}{N_{k}} \sum_{n} \gamma(z_{nk}) \mathbf{x}_{n}$$

$$\boldsymbol{\Sigma}_{k}^{\text{new}} = \frac{1}{N_{k}} \sum_{n} \gamma(z_{nk}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{\mathsf{T}}$$

$$\boldsymbol{\pi}_{k}^{\text{new}} = \frac{\gamma(z_{1k})}{\sum_{j} \gamma(z_{1j})}$$

$$A_{jk}^{\text{new}} = \frac{\sum_{n=2}^{N} \xi(z_{n-1,j}, z_{nk})}{\sum_{l=1}^{K} \sum_{n=2}^{N} \xi(z_{n-1,j}, z_{nl})}$$

EM for HMMs

- 1) Initialize parameters (e.g. using k-means) as $oldsymbol{ heta}^{
 m old}$
- 2) Compute $\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{\text{old}})} \ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$
- 3) Maximize $\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{\text{old}})} \ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$ to get $\boldsymbol{\mu}_k^{\text{new}}, \boldsymbol{\Sigma}_k^{\text{new}}, \pi_k^{\text{new}}, \mathbf{A}^{\text{new}}$
- 4) Repeat (2) and (3) until convergence (and set $\theta^{\text{old}} \leftarrow \theta^{\text{new}}$)

HMM extensions

HMM

GLM-HMM

Switching LDS

Autoregressive HMM

Factorial HMM

Recurrent switching LDS

HMMs in neuroscience

Modeling neural spike trains

- Petreska et al (2011) Dynamical segmentation of single trials from population neural data [sLDS]
- Escola et al (2011) Hidden Markov models for the stimulus-response relationships of multistate neural systems [GLM-HMM]
- Mazzucato et al (2015) Dynamics of multistable states during ongoing and evoked cortical activity [HMM]
- Maboudi et al (2018) Uncovering temporal structure in hippocampal output patterns [HMM]
- Linderman et al (2019) Hierarchical recurrent state space models reveal discrete and continuous dynamics of neural activity in C. elegans [rsLDS]
- Zoltowski et al (2020) Unifying and generalizing models of neural dynamics during decision-making [rsLDS]
- Recanatesi et al (2020) Metastable attractors explain the variable timing of stable behavioral action sequences [HMM]

Modeling behavior

- McFarland et al (2014) High-resolution eye tracking using V1 neuron activity [~GLM-HMM]
- Wiltschko et al (2015) Mapping sub-second structure in mouse behavior [ARHMM]
- Johnson et al (2016) Composing graphical models with neural networks for structured representations and fast inference [sLDS]
- Markowitz et al (2018) The striatum organizes 3D behavior via moment-to-moment action selection [ARHMM]
- Batty et al (2019) BehaveNet: nonlinear embedding and Bayesian neural decoding of behavioral videos [ARHMM]
- Calhoun et al (2019) Unsupervised identification of the internal states that shape natural behavior [GLM-HMM]

References

- General clustering
 - Alex Williams blog post: http://alexhwilliams.info/itsneuronalblog/2015/09/11/clustering1/
 - Estivill-Castro (2002). "Why so many clustering algorithms: a position paper." SIGKDD Explorations.
- k-means algorithm
 - o Bishop Ch. 9
 - o Murphy Ch. 11
- Gaussian mixture models
 - o Bishop Ch. 9
 - o Murphy Ch. 11
- HMMs
 - o Bishop Chs. 8, 13
 - o Murphy Ch. 17
 - o ssm package: https://github.com/slinderman/ssm

