TD 2 : Dynamique dans un référentiel non galiléen

Exercice 1: Force de Coriolis sur un train

Un train à grande vitesse, de masse $m = 7.8.10^5$ kg, circule du nord vers le sud entre Lyon et Avignon à la vitesse constante V = 300 km.h⁻¹; à l'instant considéré il se trouve à la hauteur de Valence à la latitude $\lambda = 45^\circ$ nord. Au point P où se situe le train, on définit une base orthogonale $(\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$ avec $\overrightarrow{e_x}$ vers l'est, $\overrightarrow{e_y}$ vers le nord et $\overrightarrow{e_z}$ vers le zénith.

- 1. Faire un schéma où apparaissent la terre (en coupe), la base ci –dessus au point P, le vecteur vitesse du train et le vecteur rotation de la terre $\overrightarrow{\Omega}$.
- 2. Déterminer la force de Coriolis qui s'exerce sur le train dans le référentiel terrestre, et comparer sa norme à celle du poids du train. On donne $\Omega = 7,3.10^{-5} rad. s^{-1}$; $g = 9.8m. s^{-2}$.
- 3. Faire un schéma local du train, vu de l'arrière, et représenter les différentes forces subies. Lequel des deux rails du train s'use le plus ? Qu'est-ce qui change quand le train va vers le nord ?

Exercice 2 : Oscillation en référentiel tournant

Un anneau circulaire horizontal, de centre C et de rayon r, est soudé en un point O à une tige verticale, confondue avec l'axe (Oz) du référentiel terrestre (R_T) supposé galiléen.

A partir de l'instant t=0, on fait tourner cet anneau par rapport à (R_T) , à la vitesse angulaire ω constante, autour de (Oz). Une perle de masse m, assimilable à un point matériel M, peut coulisser sans frottement sur l'anneau ; on note α l'angle entre \overrightarrow{OC} et \overrightarrow{CM} . A $t=0^+$, M se trouve au point A (tel que $\alpha=0$), et sa vitesse par rapport à (R_T) est encore nulle.

On note $\vec{g} = -g\vec{e_z}$ l'accélération de la pesanteur. 1. a) Le référentiel (R) lié à l'anneau est-il galiléen ?

b) Faire la liste complète des forces qui s'exercent sur M dans (R), et donner les composantes de ces forces dans la base cylindrique $(\overrightarrow{e_r}, \overrightarrow{e_\alpha}, \overrightarrow{e_z})$.

On pourra utiliser $\overrightarrow{OM} = \overrightarrow{OC} + \overrightarrow{CM}$.

- 2. Ecrire le principe fondamental de la dynamique pour M dans ce référentiel, et en déduire que l'équation différentielle vérifiée par $\alpha(t)$ est de la forme : $\ddot{\alpha} + \omega^2 sin\alpha = 0$.
- 3.a) Déterminer les positions d'équilibre de M dans (R).
- b) Préciser leur stabilité en utilisant l'équation différentielle précédente.
- 4.a) On suppose maintenant $\alpha \ll 1$ rad (petites oscillations). Déterminer alors complètement la solution $\alpha(t)$ en tenant compte des conditions initiales.
- b) Montrer que la solution trouvée est en réalité incompatible avec l'hypothèse des petites oscillations. A-t-on surestimé ou sous-estimé $sin\alpha$ (en valeur absolue)? En déduire si

l'amplitude réelle des oscillations est plus grande ou plus petite que celle calculée à la question précédente.

- 5.a) Exprimer l'énergie potentielle totale et l'énergie cinétique de M dans (R), en fonction de α , $\dot{\alpha}$ et des paramètres du système.
- b) En appliquant le théorème de l'énergie mécanique, retrouver l'équation différentielle précédente.

Exercice 3

On désigne par $\mathcal{R}'(\mathbf{0}'\mathbf{x}'\mathbf{y}'\mathbf{z}')$ un repère d'origine O' dont les axes orthogonaux O'x', O'y' et O'z' sont respectivement parallèles aux axes Ox, Oy et Oz d'un repère $\mathcal{R}(\mathbf{0}\mathbf{x}\mathbf{y}\mathbf{z})$ que l'on supposera galiléen. Un pendule simple est constitué d'un point matériel P de masse m, suspendu à l'origine O' de \mathcal{R}' par un fil sans masse ni raideur et de longueur ℓ . On note θ l'angle que fait le fil, que l'on supposera constamment tendu, avec la verticale Oy de \mathcal{R} (cf. figure ci-dessous). Dans un premier temps, l'origine O' de \mathcal{R}' reste fixe et confondue avec l'origine O de \mathcal{R} .

- 1. Quelle doit être la longueur ℓ du fil pour que la période des petits mouvements du pendule soit $T_0 = 1$ s? On prendra pour norme de l'accélération de la pesanteur $\vec{g} = -g\vec{e}_{\nu}$, la valeur de g = 9.8 m.s⁻².
- 2. Le repère \mathcal{R}' est maintenant animé d'un mouvement de translation rectiligne uniformément accéléré d'accélération constante $\vec{a} = a\vec{e}_x$.

 Calculer le moment $\mathcal{M}_{O'}(\vec{F}_{ie})$ par rapport au point O' de la force d'inertie d'entrainement \vec{F}_{ie} qui s'applique au point P dans le référentiel \mathcal{R}' .
- 3. Calculer le moment $\mathcal{M}_{O'}(\vec{F}_{iC})$ par rapport au point O' de la force d'inertie de Coriolis \vec{F}_{iC} qui s'applique au point P dans le référentiel \mathcal{R}' .
- **4.** Déduire du théorème du moment cinétique appliqué en O' dans \mathcal{R}' au point matériel P l'équation différentielle à laquelle obéit l'angle θ .
- 5. Retrouver cette équation différentielle à partir de la relation fondamentale de la dynamique dans \mathcal{R}' .

- **6.** Déterminer la valeur θ_0 de l'angle θ correspondant à la position d'équilibre du pendule.
- 7. Exprimer la période T des petits mouvements autour de la position d'équilibre θ_0 en fonction de ℓ , a et g.

Exercice 4

On assimile la terre à un astre sphérique homogène de rayon $\mathbf{R} = 6\,371\,\mathrm{km}$, de masse $\mathbf{M}_T = 5,977.10^{24}\,\mathrm{kg}$, en rotation uniforme de période $T = \frac{2\pi}{\Omega} = 86164\,\mathrm{s}$ dans le référentiel géocentrique (considéré comme galiléen) autour de l'axe de ses pôles. On s'intéresse au champ de pesanteur en un point M situé à la surface de la terre à la latitude λ .

- 1. Après avoir défini le poids d'un point M de masse m en prenant en compte le caractère non galiléen du référentiel terrestre, donner la relation entre le champ de gravitation $\vec{G}(M)$, le champ d'inertie d'entrainement défini par $\vec{G}_{ie} = -\overrightarrow{a_e}(M)$ (où $\overrightarrow{a_e}(M)$ est l'accélération d'entrainement au point M) et le champ de pesanteur $\vec{g}(M)$. Sur un schéma de la terre vue en coupe, représenter ces trois vecteurs au point M. Que se passe-t-il en particulier aux pôles et à l'équateur ?
- **2.a.** Donner l'expression de g, la norme de $\vec{g}(M)$, en fonction de Ω , λ , R et de la constante de gravitation universelle $G = 6,674.10^{-11} \text{ m}^3\text{kg}^{-1}\text{s}^{-2}$. En donner les valeurs numériques en un point de l'équateur, aux pôles et pour $\lambda = 44,95^{\circ}$.

Calculer aussi la valeur de \mathcal{G}_{ie} , la norme de $\vec{\mathcal{G}}_{ie}$ aux mêmes lieux. Que peut-on en conclure?

- **2.b.** L'intensité réelle du champ de pesanteur varie de $g = 9,780 \text{ m.s}^{-2}$ à l'équateur à $g = 9,832 \text{ m.s}^{-2}$ aux pôles. Proposer une explication de cette différence avec les valeurs trouvées précédemment.
- 3. On s'intéresse maintenant à la direction de ces trois champs et on note α l'angle non orienté entre les vecteurs \vec{G} et \vec{g} .
 - **3.a.** Quels sont les lieux de la surface terrestre pour lesquels $\alpha = 0$?
- **3.b.** Donner l'expression de $\cos \alpha$ puis de α en fonction de g, de \mathcal{G} la norme de $\vec{\mathcal{G}}$, de λ et de \mathcal{G}_{ie} . On pourra utiliser la propriété $\vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot ||\vec{v}|| \cos(\vec{u}, \vec{v})$.
- **4.** On note d la distance entre la verticale locale du lieu (donnée par la direction de \vec{g}) et le centre de la terre O.
- **4.a.** Donner l'expression de d en fonction de α et de R. Quels sont les lieux à la surface de la terre pour lesquels la verticale locale passe exactement par le centre de la terre ?
- **4.b.** Une étude détaillée de la relation donnant α montre que cet angle est maximal pour $\lambda_0 = 44,95^{\circ}$. Calculer α_0 , la valeur de ce maximum, et d_0 , la valeur maximale de d. Commenter.

Exercic 3

$$\vec{\mathcal{M}}_{o}(\vec{\tau}) = \vec{OP} \vec{\Lambda} \vec{T} = \vec{O}$$

$$\vec{F}_{ic} = -2 \, \text{m} \, \vec{\omega} \, \text{n} \, \vec{V}_{r} = \vec{o} \quad (\vec{V}_{i} = \vec{o})$$

$$ml^2\theta \tilde{Q}_3 = -mgl \sin \theta \tilde{Q}_3$$

$$\ddot{\theta} + \frac{q}{e}\theta = 0 \Rightarrow T_0 = 2\pi\sqrt{\frac{e}{g}}$$

$$\ell = \frac{7}{477} \frac{2}{9} \frac{\text{Determines } \ell}{\ell = 0,25 \text{ m}}$$

4- Théorème du noment a'nétique dLO' = Mo'(P) + Mo'(F) + Mo'(Fic) + Mo'(Fic) Mos(P) = OPPP = -nglsino ez Mul(7) = 0

Loi = lanmlod' $m l^2 \vec{\theta} \vec{l}_3$ de = ml' Dez ml = - malcoo - mgl sino 0 + 9 LOO + 9 Sind = 0 5- Détermination de l'équation différentielle à partir de la relation fondamentale de la dynamique deus R'. $m\vec{ar} = \vec{p} + \vec{T} - m\vec{a} \cdot \vec{n} - 2m\vec{\omega} \wedge \vec{v} + (\vec{\omega} \cdot \vec{z})$ $m\vec{ar} = \vec{p} + \vec{T} - m\vec{a} \cdot \vec{n} + (\vec{a} \cdot \vec{v} \cdot \vec{z})$ $m\vec{ar} = \vec{p} + \vec{T} - m\vec{a} \cdot \vec{n} + (\vec{a} \cdot \vec{v} \cdot \vec{z})$ vr = løn' $\vec{ar} = l\vec{\theta} \vec{\mu}' - l\vec{\theta}^2 \vec{\mu}$ $ml(\vec{\theta}\vec{\alpha}' - \vec{\theta}^2\vec{\alpha}) = mg(\omega \theta \vec{\alpha} - \sin \theta \vec{\alpha}') - \tau \vec{\alpha} - ma(\omega \theta)$ pojetion sur al mle = - mg sint - macor B+28110+2000=0 6) Equilibre de jendels $\theta = 0$ 9 pindo + 9 6080 =0 =0 9 pindo + 060000 =0 $tan \theta_0 = -\frac{q}{q} \Rightarrow \theta_0 = -arctan(\frac{\alpha}{q}).$

7- Expression de la peteté periode T pour les petets monvement autoin de do $\theta = \theta_0 + E$. $(\theta_0 + E) = Cos \theta = Cos Cos do - Maz mindo = Cos do - E pindo$ $mn <math>\theta = pin(\theta_0 + E_0) = Cos E Sindo + Maz Cos <math>\theta_0 = mindo + Ecos \theta_0$

$$E + \frac{1}{2} \frac{1}{2}$$

$$(9, 9ie) = \pi - \lambda$$

$$g^{2} = \frac{G^{2}M_{7}^{2}}{R^{\frac{2}{4}}} + R^{2}\Omega^{4} \cos^{2}\lambda + 2 \frac{R\Omega^{2}GM_{7}}{R^{2}} \cos(\pi - \lambda)G$$

$$9 = \sqrt{\Omega^{2} \cos^{2}\lambda \left(R^{2}\Omega^{2} - 2 \frac{G^{3}T_{7}}{R}\right) + \left(\frac{G^{3}T_{7}}{R^{2}}\right)^{2}}$$

Les voleurs nu meriques de manders sont données dans le tableau ci-dessous.

	1 = 44,950
9,828 @	9,811 (1)
0 0	2,410-260

Conclusion:

La voileur de Yie est mulle aux pôles (le point 17 est sur l'acceleration d'entrainement est nulle) et maximale à l'equateur (HM = R est ales maximal). On remarque que la valeur de Gie est faible devant celle de la pesanteur g, mais suffisante pour modifier celle-ci air traisième chifre rignificatif.

2. b par raport à la valeur plevre par le modèle, la valeur réelle de g est:

- plus grande aux poles ;

- plus paible à l'equateur.

2/14)

cela est du à l'aplatimement de la terre aux pôles (non pris en compte dans le modèle). su fait de so retation pripe, la terre a un rayon légérement plus grand à l'équiteur (Rmax = 6378k quolaux pilles (Rmin = 6357km).

A l'équateur, où Rmas > R, Gie est en réalité plus grand que sans le modèle alors que, parallélement, ger plus petit. Donc g = g- ug out diminué.

1 Au pôles, gi reste malle mul mais y augmente ken (2) meffort an madèle, can Romin LR. Par Consequent, g = g argmente aussi.

on peut résumer la situation par les inégalités

greel legrateur) < 9 modèle (équateur) < 9 modèle (pèles) / gréel

l'écart D(9) = g (pêles) - glégenteur) red et plus important que ce que prevoit le modèle.

3-a d'angle d'at rul lors que egé est rul (aux piles). à l'équateur d=0 mi.

g.g=g+gie).g=y2+gi.g = y2+ yig (T-1)

1) $\frac{1}{9} \cdot \frac{1}{9} = \frac{1}{9} = \frac{1}{9} \cdot \frac{1}{9} = \frac{1}{9} = \frac{1}{9} \cdot \frac{1}{9} = \frac{1}{9} \cdot \frac{1}{9} = \frac{1}{9} = \frac{1}{9} \cdot \frac{$

(d = arcs (y - gic and) 4-9. On considére le triangle OSM, rectangle en I (voir plus figure) 1 dz Rpind les leux de la surface de la leire du la vorticale locale passe exactement par le centre de la terre d=0 => Sinx =0 (Poles) d= their (équateur). don minaz di lua rideo do = arco (9,82775-2,410 6544,95°) Q do = 0,397° 20,4° do= Rsindo= 6371 x sino14 (1) do = 44, 48 km L'angle do est relativement petit mais, de fait de la valeur assez drande du payon de la terre (4/14)