Направления

Напомним, что направленным углом $\angle(\ell_1,\ell_2)$ между прямыми ℓ_1 и ℓ_2 называют угол, на который надо повернуть прямую ℓ_1 против часовой стрелки, чтобы получить прямую, параллельную ℓ_2 . Значение направленного угла определено с точностью до 180° .

Зафиксируем прямую ℓ_0 . *Направлением* прямой ℓ будем называть величину $\overline{\ell} = \angle(\ell_0, \ell)$. Из свойств направленных углов следуют такие свойства направлений.

- $\bar{\ell}_1 = \bar{\ell}_2 \Leftrightarrow \ell_1 \parallel \ell_2$.
- $\angle(\ell_1,\ell_2) = \overline{\ell}_2 \overline{\ell}_1$.
- Если две из величин $\overline{AB}+\overline{CD},$ $\overline{AC}+\overline{BD},$ $\overline{AD}+\overline{BC}$ равны, то точки A, B, C, D лежат на одной окружности или прямой.
- Если точки A, B, C, D лежат на одной окружности или прямой, то $\overline{AB} + \overline{CD} = \overline{AC} + \overline{BD} = \overline{AD} + \overline{BC}$.
- $\overline{AB} + \overline{AC} = 2\overline{\ell} \iff \ell$ параллельно биссектрисе угла между прямыми AB и AC (внутренней или внешней они неотличимы).
- 1. Докажите, что 4 точки лежат на пунктирной окружности.

- **2.** На стороне BC треугольника ABC отмечены точки X и Y так, что $\angle BAX = \angle YAC$.
 - (a) Докажите, что центры окружностей (ABX), (ABY), (ACX), (ACY) лежат на одной прямой или окружности.

- (б) Докажите, что проекции точек B и C на прямые AX и AY лежат на одной окружности.
- 3. Вписанная окружность треугольника ABC с центром в точке I касается сторон AB и AC в точках M и N соответственно. Через I проведена прямая, параллельная стороне BC, на неё опущены перпендикуляры BP и CQ. Докажите, что точки M, N, P и Q лежат на одной окружности.
- 4. Внутри вписанного четырёхугольника ABCD нашлась такая точка X, что выполнено равенство $\angle XAB = \angle XBC = \angle XCD = \angle XDA$. Продолжения пар противоположных сторон AB и CD, BC и DA пересекаются в точках P и Q соответственно. Докажите, что $\angle PXQ$ равен углу между диагоналями AC и BD.
- **5.** В четырёхугольник ABCD вписана окружность ω . Пусть A_1 середина отрезка, соединяющего точки касания ω со сторонами AB и AD. Аналогично определяются точки B_1 , C_1 , D_1 . Докажите, что четырёхугольник, образованный прямыми AC_1 , BD_1 , CA_1 , DB_1 , вписанный.
- **6.** Окружность Ламуна. Медианы разрезают треугольник на 6 маленьких треугольничков. Докажите, что центры описанных окружностей этих треугольников лежат на одной окружности.
- 7. (а) Выразите направление прямой Симсона точки P относительно треугольника ABC через направления $\overline{AB}, \overline{AC}, \overline{AP}.$
 - (б) В окружность вписаны треугольники ABC и A'B'C'. Докажите, что угол между прямыми Симсона точки P относительно треугольников ABC и A'B'C' равен половине суммы ориентированных дуг AA', BB', CC'.
 - (в) Докажите, что если сумма ориентированных дуг AA', BB', CC' равна 0, то прямые Симсона точек A', B', C' относительно треугольника ABC пересекаются в одной точке.
 - (г) Докажите, что если сумма ориентированных дуг AA', BB', CC' не равна 0, то прямые Симсона точек A', B', C' относительно треугольника ABC не пересекаются в одной точке.