

CST236- Digital System Design

SCHOOL OF COMPUTER SCIENCE

UNIVERSITI SAINS MALAYSIA SEMESTER II 2022/2023

ASSIGNMENT 2						
NO.	NAME MATR					
1.	MUHAMMAD IRFAN	N BIN ZAINAL	159147			
2.	EDU SINUSI	EDU SINUSI				
SUBMISSION DATE		29/06/2023				
LECTURER'S NAME		DR. NIBRAS ABDULLAH AHMED FAQERA				
TOTA	L MARK	/100				

1. For the entire assignment, we will use this diagram as a reference for the label for each segment.

https://www.electronics-tutorials.ws/combination/comb_6.html

https://www.geeksforgeeks.org/seven-segment-displays/

Based on the diagram above, we know which should be light up to display a specific digit. Based on this, we can derive the Look Up Table as below:

Decimal		BCD	input					Ou	tput			
number	D3	D2	D1	D0	a	Ъ	c	d	e	f	g	dp
0	0	0	0	0	1	1	1	1	1	1	0	0
1	0	0	0	1	0	1	1	0	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1	0
3	0	0	1	1	1	1	1	1	0	0	1	0
4	0	1	0	0	0	1	1	0	0	1	1	0
5	0	1	0	1	1	0	1	1	0	1	1	0
6	0	1	1	0	1	0	1	1	1	1	1	0
7	0	1	1	1	1	1	1	0	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1	0
9	1	0	0	1	1	1	1	1	0	1	1	0
10	1	0	1	0]	NVALI	D			1
11	1	0	1	1]	NVALI	D			1
12	1	1	0	0		INVALID				1		
13	1	1	0	1	INVALID			1				
14	1	1	1	0	INVALID				1			
15	1	1	1	1				NVALI	D	·		1

NOTE: DP is the most significant digit.

2. DISPLAY BUFFER

Circuit Diagram

Test Case (Every test case is available in excel "TEST CASE)

CLK	PARALLEL_IN	ENABLE	DISPLAY_OUT
1	0xFCFC	1	0xFCFC
0	0xFCFC	1	0xFCFC
1	0xE0FC	1	0xE0FC
0	0xE0FC	1	0xE0FC
1	0xFEFC	1	0xFEFC
0	0xFEFC	1	0xFEFC
1	0xB660	1	0xB660
0	0xB660	1	0xB660

3. SERIAL IN TO PARALLEL OUT

Circuit Diagram:

<u>Test Cases (Every test case is available in excel "TEST CASE):</u>

Note: Enable counter is just a 3bit counter that was used to make sure that display module will only be updated after all 8bit has been inputted. The rightmost digit is the most significant digit, as such, to input BCD for digit 97 (10010111), the serial input must begin with the rightmost digit first. The HEX output for 97 is F6E0

CLK	START	SERIAL_IN	PARALLEL_OUT	DISP_EN
0	0	1	0xFCFC	1
1	0	1	0xFEFC	0
0	0	1	0xFEFC	0
1	0	1	0x1FC	0
0	0	1	0x1FC	0
1	0	0	0x1FC	0
0	0	0	0x1FC	0
1	0	1	0xE0FC	0
0	0	1	0xE0FC	0
1	0	0	0x1FE	0
0	0	0	0x1FE	0
1	0	0	0xB601	0
0	0	0	0xB601	0
1	0	1	0xDA01	0
0	0	1	0xDA01	0
1	0	0	0xF6E0	1

4. CLOCK CONVERSION MODULE

Circuit Diagram:

To determine CLK_OUT frequency, we will be referencing the input from the table below:

Α	В	CLK OUT Frequency
0	0	400 kHz
0	1	200 kHz
1	1	
1	0	100 kHz
1	1	50 kHz

5. FULL CIRCUIT

NOTE!!: Sometimes it is possible for some modules and test data to be missing. We do not know what causes these issues. Please import the missing module again. The test cases can also be found in excel file "TEST CASE".

Circuit Diagram

Test Case (Every test case is available in excel "TEST CASE):

Frequency: 50 kHz Expected output: 97

CLK_IN	A	В	START	SERIAL	OUT
1	1	1	0	1	0xFCFC
0	1	1	0	1	0xFCFC
1	1	1	0	1	0xFCFC
0	1	1	0	1	0xFCFC
1	1	1	0	1	0xFCFC
0	1	1	0	1	0xFCFC
1	1	1	0	1	0xFCFC
0	1	1	0	1	0xFCFC
1	1	1	0	1	0xFCFC
0	1	1	0	1	0xFCFC
1	1	1	0	0	0xFCFC
0	1	1	0	0	0xFCFC
1	1	1	0	0	0xFCFC
0	1	1	0	0	0xFCFC
1	1	1	0	1	0xFCFC
0	1	1	0	1	0xFCFC
1	1	1	0	1	0xFCFC
0	1	1	0	1	0xFCFC
1	1	1	0	0	0xFCFC
0	1	1	0	0	0xFCFC
1	1	1	0	0	0xFCFC
0	1	1	0	0	0xFCFC
1	1	1	0	0	0xFCFC
0	1	1	0	0	0xFCFC
1	1	1	0	0	0xFCFC
0	1	1	0	0	0xFCFC
1	1	1	0	1	0xFCFC
0	1	1	0	1	0xFCFC
1	1	1	0	1	0xFCFC
0	1	1	0	1	0xFCFC
1	1	1	0	1	0xF6E0

6. TEST CASE (Every test case is available in excel "TEST CASE)

FREQ: 200			OUTPUT: 9		0117
CLK_IN	Α	В	START	SERIAL	OUT
1	0	1	0		0xFCFC
0	0	1	0		0xFCFC
1	0	1	0		0xFCFC
0	0	1	0		0xFCFC
1	0	1	0		0xFCFC
0	0	1	0		0xFCFC
1	0	1	0	1	0xFCFC
0	0	1	0	1	0xFCFC
1	0	1	0	1	0xFCFC
0	0	1	0	1	0xFCFC
1	0	1	0	1	0xFCFC
0	0	1	0	1	0xFCFC
1	0	1	0	1	0xFCFC
0	0	1	0	1	0xFCFC
1	0	1	0	1	0xFCFC
0	0	1	0	1	0xFCFC
1	0	1	0	1	
0	0	1	0	1	0xFCFC
1	0	1	0		0xFCFC
0	0	1	0		0xFCFC
1	0	1	0		0xFCFC
0	0	1	0		0xFCFC
1	0	1	0		0xFCFC
0	0	1	0		0xFCFC
1	0	1	0		0xFCFC
0	0	1	0		0xFCFC
1	0	1	0		0xFCFC
				1	
0	0	1	0		
1	0	1	0		0xFCFC
0	0	1	0		0xFCFC
1	0	1	0		0xFCFC
0	0	1	0		0xFCFC
1	0	1	0		0xFCFC
0	0	1	0		0xFCFC
1	0	1	0		0xFCFC
0	0	1	0		0xFCFC
1	0	1	0		0xFCFC
0	0	1	0		0xFCFC
1	0	1	0	0	0xFCFC
0	0	1	0	0	0xFCFC
1	0	1	0	0	0xFCFC
0	0	1	0	0	0xFCFC
1	0	1	0	0	0xFCFC
0	0	1	0	0	0xFCFC
1	0	1	0	0	0xFCFC
0	0	1	0	0	0xFCFC
1	0	1	0	0	0xFCFC
0	0	1	0	0	0xFCFC
1	0	1	0	0	0xFCFC
0		1	0		0xFCFC
1	0	1	0		0xFCFC
0		1	0		0xFCFC
1	0	1	0		0xFCFC
0		1	0		0xFCFC
1	0	1	0		0xFCFC
0		1	0		0xFCFC
1	0	1			
			0		0xFCFC
0		1	0		0xFCFC
1	0	1	0	0	0xF6E0

SUCCESFUL OUTPUT

REFERENCES

Storr, W. (2013, August). *Display Decoder - BCD to 7 Segment Display Decoder*. Basic Electronics Tutorials. https://www.electronics-tutorials.ws/combination/comb_6.html *Seven Segment Displays*. (2020, April 13). GeeksforGeeks; GeeksforGeeks. https://www.geeksforgeeks.org/seven-segment-displays/