Solucionario del Parcial 2

Alvaro Chirino Gutierrez

Diciembre, 2020

Problema 1.

En un examen con 10 preguntas de Falso y verdadero, donde un estudiante responde todas al azar. ¿Cuál es la probabilidad que un estudiante responda más de 5 preguntas de manera correcta?

Solución,

Sea X la va, que denota el número de respuestas correctas en el examen de 10 preguntas. $Rx = \{0, 1, 2, \dots, 10\}$. $X \sim Binomial(n = 10, p = 0.5)$

$$P(X=x) = \binom{10}{x} 0.5^x 0.5^{10-x}$$

$$P(X > 5) = 1 - P(X \le 5) = 1 - F(5) = 1 - [P(X = 0) + P(X = 1) + \dots + P(X = 5)] = 0.3769$$

```
1-(dbinom(0,10,0.5)+dbinom(1,10,0.5)+dbinom(2,10,0.5)+dbinom(3,10,0.5)+dbinom(4,10,0.5)+dbinom(5,10,0.5))
```

[1] 0.3769531

```
# (1-F(5))
1-pbinom(5,10,0.5)
```

[1] 0.3769531

Problema 2.

Una moneda correcta es lanzada sucesivamente hasta que aparezca cara por decima vez. Sea X la v.a. que denota el número de sellos que ocurren. La función de probabilidad de X es:

Solución. $X \sim BinomialNegativa(r = 10, p = 0.5)$

Problema 3.

El promedio de llamadas telefónicas a la secretaria de la carrera de informática en una hora es 9. ¿Cuál es la probabilidad de recibir 7 o más llamadas en 90 minutos?.

Solución, sea X_{90} la va que denota la cantidad de llamadas en la secretaría de informática en 90 minutos. Para una hora $X_{60} \sim Poisson(\lambda = 9)$, ya que $E[X_{60}] = \lambda = 9$, entonces, $X_{90} \sim Poisson(\lambda = 13.5)$.

$$P(X_{90} \ge 7) = 1 - P(X_{90} \le 6) = 1 - F(6) =$$

1-ppois(6,13.5)

[1] 0.9807464

Problema 4.

El número de minutos requeridos por un estudiante para terminar un examen se distribuye como una exponencial, con un promedio de 70 minutos. Suponga que el examen inicia a las 8:00 am. ¿Cuál es la probabilidad que termine antes de las 8:45 am?

Solución, sea X la va, esta denota el tiempo que un estudiante tarda en responder un examen. Como $70 = E[X] = 1/\lambda$, $X \sim exp(\lambda = 1/70)$.

$$f(x) = \frac{1}{70}e^{-\frac{x}{70}}$$
$$P(X \le 45) = F(45) = 1 - e^{-\frac{45}{70}} = 0.474$$

pexp(45, 1/70)

[1] 0.474212

Problema 5.

Sea $X \sim gamma(\alpha = 2, \beta = 6)$, encontrar el valor de $E[X^2]$

Solución, recordar que:

$$V(X) = E[X^2] - E[X]^2$$

$$E[X^2] = V(X) + E[X]^2 = \frac{2}{6^2} + \frac{2^2}{6^2} = \frac{6}{36} = \frac{1}{6} = 0.16667$$

Problema 6.

La duración de vida (en horas) de dos equipos de distintas marcas X e Y tienen distribución Normal de la forma $X \sim N(\mu = 35, \sigma^2 = 16), Y \sim N(\mu = 35, \sigma^2 = 25)$. Si los equipos tuvieran que ser usados por un periodo de 42 horas. ¿Cuál debe ser preferido?

Solución, se debe calcular y comparar P(X > 42), P(Y > 42) y elegir la marca que tenga una mayor probabilidad.

$$P(X > 42) = 1 - P(X \le 42) = 1 - P(Z_X \le \frac{42 - 35}{4}) = 1 - \phi(1.75) = 0.040$$
$$P(Y > 42) = 1 - P(Y \le 42) = 1 - P(Z_Y \le 1.4) = 1 - \phi(1.4) = 0.081$$

1-pnorm(1.75) # 1-P(Z<1.75)

[1] 0.04005916

```
1-pnorm(1.4)# 1-P(Z<1.4)
```

[1] 0.08075666

```
1-pnorm(42,35,4) # 1-P(X<42)
```

[1] 0.04005916

```
1-pnorm(42,35,5) # 1-P(Y<42)
```

[1] 0.08075666

```
pnorm(42,35,4,lower.tail = F) # P(X>42)
```

[1] 0.04005916

```
pnorm(42,35,5,lower.tail = F) # P(X>42)
```

[1] 0.08075666

Se debe elegir la marca Y.

Problema 7.

Un dado perfecto es lanzado independientemente 1200 veces. Encontrar aproximadamente la probabilidad de que el número de unos (X) es tal que $190 \le X \le 200$.

Solución, sea X la va, representa la cantidad de 1 en el lanzamiento de un dado 1200 veces (de forma independiente). Así $X \sim Binomial(n = 1200, p = 1/6)$. Se pide:

$$P(190 \le X \le 200) = P(X = 190) + P(X = 191) + \dots + P(X = 200) = \sum_{i=190}^{200} P(X = i)$$

Para R.

$$P(190 \le X \le 200) = F(200) - F(190)$$

pbinom(200,1200,1/6)-pbinom(190,1200,1/6)

[1] 0.286761

Aproximando con la distribución normal $X \sim N(\mu = E[X] = 200, \sigma^2 = V(X) = 166.7)$. $X \sim N(\mu = 200, \sigma^2 = 166.7)$

$$P(190 \le X \le 200) = P(-0.77 \le Z \le 0) = \phi(0) - \phi(-0.77) = 0.5 - 0.22 = 0.28$$