Chapter 3 Hilbert Spaces and Orthonomal Systems

Example 3.3.6.

The space $L^2(\mathbb{R})$ and $L^2([a,b])$ are Hilbert spaces.

内積空間が完備性を持つときにヒルベルト空間となる. L^p 空間が完備性を持つことは Theorem 2.13.4 に示されている.

■ L^p 空間 $\Omega \subset \mathbb{R}^d$ を開集合, $p \ge 1$ $(p \in \mathbb{R})$ とする. $L^p(\Omega)$ を可測関数 $f: \Omega \to \mathbb{R} \cup \{\pm \infty\}$ で, $|f|^p$ が Ω 上可積分であるものの同値類の集合とする. $f \in L^p(\Omega)$ のとき

$$||f||_{L^p(\Omega)} := \left(\int_{\Omega} |f(x)|^p dx\right)^{\frac{1}{p}}$$

とおく.

Example 3.3.7.

Let ρ be a measurable function defined on the interval [a, b] such that $\rho(x) > 0$ almost everywhere in [a, b]. Denote by $L^{2,p}([a, b])$ the space of all complex-valued measurable functions on [a, b] such that

$$\int_{a}^{b} |f(x)|^{2} \rho(x) dx < \infty$$

This is a Hilbert space with the inner product

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} \rho(x) dx$$

To prove completeness, consider a Cauchy sequence (f_n) in $L^{2,\rho}([a,b])$. Then

$$||f_m - f_n||_{L^{2,\rho}([a,b])} = \int_a^b |f_m(x) - f_n(x)|^2 \rho(x) dx \to 0 \quad \text{as } n \to \infty$$

Define

$$F_n = f_n \sqrt{\rho}, \quad n \in \mathbb{N}$$

Since

$$||F_m - F_n||_{L^2([a,b])}^2 = \int_a^b |F_m(x) - F_n(x)|^2 dx$$

$$= \int_a^b |f_m(x)\sqrt{\rho(x)} - f_n(x)\sqrt{\rho(x)}|^2 dx$$

$$= \int_a^b |f_m(x) - f_m(x)|^2 \rho(x) dx$$

$$= ||f_m - f_n||_{L^2\rho([a,b])}^2$$

 (F_n) is a Cauchy sequence in $L^2([a,b])$. Thus, there exists $F \in L^2([a,b])$ such that

$$||F_n - F||_{L^2([a,b])}^2 = \int_a^b |F_n(x) - F(x)|^2 dx \to 0.$$

We can show that $\frac{F}{\sqrt{\rho}} \in L^{2,\rho}([a,b])$ and $f_n \to \frac{F}{\sqrt{\rho}}$ in $L^{2,\rho}([a,b])$, proving completeness of $L^{2,\rho}([a,b])$.

Example 3.3.8. (Sobolev spaces)

Let Ω be an open set in \mathbb{R}^N . Denote by $\tilde{H}^m(\Omega), m = 1, 2, ...$, the space of all complex-valued functions $f \in \mathcal{C}^m(\Omega)$ such that $D^{\alpha}f \in L^2(\Omega)$ for all $|\alpha| \leq m$, where $\alpha = (\alpha_1, ..., \alpha_N), \alpha_1, ..., \alpha_N$ are non-negative integers, $|\alpha| = \alpha_1 + \cdots + \alpha_N$, and

$$D^{\alpha}f = \frac{\partial^{|\alpha|}f}{\partial x_1^{\alpha_1}\partial x_2^{\alpha_2}\dots\partial x_N^{\alpha_N}}.$$

For example, if $N=2, \alpha=(2,1)$, we have

$$D^{\alpha}f = \frac{\partial^3 f}{\partial x_1^2 \partial x_2}.$$

For $f \in \tilde{H}^m(\Omega)$, we thus have

$$\int_{\Omega} \left| \frac{\partial^{|\alpha|} f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_N^{\alpha_N}} \right|^2 < \infty$$

for every multi-index $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_N)$ such that $|\alpha| \leq m$. The inner product in $\tilde{H}^m(\Omega)$ is defined by

$$\langle f, g \rangle = \int_{\Omega} \sum_{|\alpha| \le m} D^{\alpha} f \overline{D^{\alpha} g}.$$

If $\Omega \subseteq \mathbb{R}^2$, then the inner product in $\tilde{H}^2(\Omega)$ is

$$\langle f, g \rangle = \int_{\Omega} \left(f \overline{g} + f_x \overline{g_x} + f_y \overline{g_y} + f_{xx} \overline{g_{xx}} + f_{yy} \overline{g_{yy}} + f_{xy} \overline{g_{xy}} \right).$$

If $\Omega = (a, b) \subset \mathbb{R}$, the inner product in $\tilde{H}^m(a, b)$ is

$$\langle f, g \rangle = \int_{a}^{b} \sum_{n=0}^{m} \frac{d^{n} f}{dx^{n}} \frac{\overline{d^{n} g}}{dx^{n}}.$$

 $\tilde{H}^m(\Omega)$ is an inner product space, but it is not a Hilbert space because it is not complete. The completion of $\tilde{H}^m(\Omega)$, denoted by $H^m(\Omega)$, is a Hilbert space. The space $H^m(\Omega)$ is a particular case of a general class of spaces denoted by $W^{m,p}(\Omega)$ (see Section 6.3), introduced by Sergei Lvovich Sobolev (19081989). We have $H^m(\Omega) = W^{m,2}(\Omega)$. Because of the applications to partial differential equations, spaces $H^m(\Omega)$ belong to the most important examples of Hilbert spaces.

Since every inner product space is a normed space, it is equipped with a convergence, namely the convergence defined by the norm. This convergence will be called strong convergence.

現状、なぜソボレフ空間を導入する必要があるのかは理解していない.

Definition 3.3.9. (Strong convergence)

A sequence (x_n) of vectors in an inner product space E is called *strongly convergent* to a vector x in E if $||x_n - x|| \to 0$ as $n \to \infty$.

Definition 3.3.9. (Weak convergence)

A sequence (x_n) of vectors in an inner product space E is called *weakly convergent* to a vector x in E if $\langle x_n, y \rangle \to \langle x, y \rangle$ as $n \to \infty$, for every $y \in E$.

Theorem 3.3.11

A strongly convergent sequence is weakly convergent (to the same limit), that is, $x_n \to x$ implies $x_n \xrightarrow{w} x$.

Theorem 3.3.12.

If $x_n \to x$ and $y_n \to y$, then $\langle x_n, y_n \rangle \to \langle x, y \rangle$.

Theorem 3.3.13.

if $x_n \xrightarrow{w} x$ and $||x_n|| \to ||x||$, then $x_n \to x$.

Theorem 3.3.14.

Let S be a subset of an inner product space E such that span S is dense in E. If (x_n) is a bounded sequence in E and

$$\langle x_n, y \rangle \to \langle x, y \rangle$$
 for every $y \in S$,

then $x_n \xrightarrow{w} x$. Proof: Clearly, if $\langle x_n, y \rangle \to \langle x, y \rangle$ for every $y \in S$, then $\langle x_n, y \rangle \to \langle x, y \rangle$ for every $y \in \text{span } S$. Let $z \in E$ and let ε be an arbitrary positive number. Since span S is dense in E, there exists $y_0 \in \text{span } S$ such that

$$||z-y_0|| < \frac{\varepsilon}{3M},$$

where M is a positive constant such that $||x|| \leq M$ and $||x_n|| \leq M$ for all $n \in \mathbb{N}$. Since $\langle x_n, y \rangle \to \langle x, y \rangle$ for every $y \in \operatorname{span} S$, there exists $n_0 \in \mathbb{N}$ such that

$$|\langle x_n, y_0 \rangle - \langle x, y_0 \rangle| < \frac{\varepsilon}{3}$$
 for all $n > n_0$.

Now, for any $n > n_0$, we have

$$\begin{split} |\langle x_n,z\rangle - \langle x,z\rangle| &\leq |\langle x_n,z\rangle - \langle x_n,y_0\rangle| + |\langle x_n,y_0\rangle - \langle x,y_0\rangle| \\ &+ |\langle x,y_0\rangle - \langle x,z\rangle| \\ &< \|x_n\| \, \|z-y_0\| + \frac{\varepsilon}{3} + \|x\| \, \|y_0-z\| \\ &< M \frac{\varepsilon}{3M} + \frac{\varepsilon}{3} + M \frac{\varepsilon}{3M} = \varepsilon \end{split}$$

Since z and ε are arbitrary, we conclude that $x_n \xrightarrow{w} x$.

The following theorem describes an important property of weakly convergent sequences in Hilbert spaces. The proof is not elementary; it is based on the Banach-Steinhaus theorem.

Theorem 3.3.15.

Weakly convergent sequences in a Hilbert space are bounded, that is, if (x_n) is a weakly convergent sequence, then there exists a number M such that $||x_n|| \leq M$ for all $n \in \mathbb{N}$.

Proof: Let (x_n) be a weakly convergent sequence in a Hilbert space H. Define

$$f_n(x) = \langle x, x_n \rangle, \quad n \in \mathbb{N}.$$

Then $f_n: H \to \mathbb{C}$ is a bounded linear functional for every $n \in \mathbb{N}$, by Theorem 3.3.11. Since, for every $x \in H$, the sequence $(\langle x, x_n \rangle)$ converges, it is bounded, that is, there exists a constant M_x such that

$$|f_n(x)| = |\langle x, x_n \rangle| \le M_x$$
 for all $n \in \mathbb{N}$.

By the Banach-Steinhaus theorem (Theorem 1.5.13), there exists a constant M such that

$$||f_n|| < M$$
 for all $n \in \mathbb{N}$.

Since

$$|f_n(x)| = |\langle x, x_n \rangle| \le ||x|| \, ||x_n||$$

for all $x \in H$, we have $||f_n|| \le ||x_n||$. On the other hand,

$$|f_n(x_n)| = |\langle x_n, x_n \rangle| = ||x_n||^2.$$

Consequently, $||f_n|| = ||x_n||$, and thus

$$||x_n|| \le M$$
 for all $n \in \mathbb{N}$.