Corrigé - CCP - 2004 - PSI - Maths 1, par Karine Fournier

PARTIE I - Exemple 1

Dans cette partie f est la fonction définie sur \mathbb{R}^+ par f(t) = Arctan(t) (où Arctan désigne la fonction Arctangente).

- 1. On sait que la fonction Arctangente est définie, de classe C^1 sur \mathbb{R}^+ et vérifie Arctan(0) = 0 donc $f \in E_0$. De plus $\lim_{t \to 0^+} \frac{f(t)}{t} = f'(0) = 1$ d'où la fonction $g : t \mapsto \left(\frac{f(t)}{t}\right)^2$ est prolongeable par continuité en 0 et $0 \leqslant g(t) \sim_{+\infty} \frac{\pi^2}{4t^2}$, donc la fonction g est intégrable sur \mathbb{R}_+^* et donc $f \in E_1$.
- 2. Pour tout x > 0, la fonction $H_x : t \mapsto \frac{1}{(t^2 + 1)(t^2 + x^2)}$ est positive et continue sur \mathbb{R}^+ avec $H_x(t) \leqslant \frac{1}{x^2(1+t^2)}$, cette dernière fonction est intégrable sur $[1, +\infty[$ pour tout x > 0 donc pour tout x > 0, H_x est intégrable sur \mathbb{R}^+ . On remarque que $\forall t \in \mathbb{R}^+$, $(f'(t))^2 = H_1(t)$, donc $f \in E_2$.
- 3. Calcul de $N_2(f)$. Pour $x \in \mathbb{R}_+^*$, on note $\varphi(x) = \int_{\mathbb{R}_+} H_x(t)dt$.
 - (a) Pour tout x > 0, H_x est continue sur \mathbb{R}^+ et intégrable sur \mathbb{R}^+ . Pour tout $t \in \mathbb{R}^+$, $x \mapsto H_x(t)$ est continue sur \mathbb{R}_+^* . De plus pour tout a > 0 et tout $x \in [a, +\infty[$,

$$\forall t \in \mathbb{R}^+, 0 \leqslant H_x(t) \leqslant H_a(t)$$
 (hypothèse de domination)

la fonction H_a étant continue et intégrable sur \mathbb{R}^+ , on sait par théorème de continuité que la fonction φ est continue sur tout intervalle $[a, +\infty[$ avec a > 0, donc est continue sur \mathbb{R}_+^* .

(b) Soit $x \in \mathbb{R}_+^*$, $x \neq 1$, par décomposition en éléments simples (deux pôles simples $:-1, -x^2$)

$$\frac{1}{(T+1)(T+x^2)} = \frac{1}{x^2 - 1} \left(\frac{1}{T+1} - \frac{1}{T+x^2} \right)$$

(c) D'après la décomposition en éléments simples précédente, pour $x \in \mathbb{R}_+^*, x \neq 1$, on a :

$$\forall t \in \mathbb{R}^+, H_x(t) = \frac{1}{x^2 - 1} \left(\frac{1}{1 + t^2} - \frac{1}{t^2 + x^2} \right)$$

On en déduit que pour tout $x \in \mathbb{R}_+^*, x \neq 1$, on a :

$$\varphi(x) = \frac{1}{x^2 - 1} \int_0^{+\infty} \left(\frac{1}{1 + t^2} - \frac{1}{t^2 + x^2} \right) dt = \frac{1}{x^2 - 1} \int_0^{+\infty} \left(\frac{1}{1 + t^2} - \frac{1}{x} \frac{1/x}{1 + (t/x)^2} \right) dt$$

$$\varphi(x) = \frac{1}{x^2 - 1} \lim_{b \to +\infty} \left[Arctan(t) - \frac{1}{x} Arctan(\frac{t}{x}) \right]_0^b = \frac{1}{x^2 - 1} \left(\frac{\pi}{2} - \frac{\pi}{2x} \right) = \frac{\pi}{2x(1 + x)}$$

(d) Par définition de $N_2(f)$ avec $(f'(t))^2 = H_1(t)$ on a : $N_2(f) = \sqrt{\varphi(1)}$ et par continuité de φ en 1 on aura : $N_2(f) = \sqrt{\lim_{x \to 1} \varphi(x)} = \frac{\sqrt{\pi}}{2}$.

4. La fonction $p: u \in \mathbb{R}_+ \mapsto u - Arctan(u)$ est dérivable sur \mathbb{R}_+ et $\forall u \in \mathbb{R}_+, p'(u) = \frac{u^2}{1+u^2}$, la fonction p est donc croissante sur \mathbb{R}_+ , or p(0) = 0 donc

$$\forall u \in \mathbb{R}_+, u - Arctan(u) \geqslant 0$$

- 5. Pour tout $x \in \mathbb{R}_+$, la fonction $G_x : t \mapsto \frac{Arctan(xt)}{t(t^2+1)}$ est positive et continue sur \mathbb{R}_+^* avec $G_x(t) \sim_0 \frac{x}{1+t^2}$ et $G_x(t) \sim_{+\infty} \frac{\pi}{2t^3}$, on en déduit que pour tout $x \in \mathbb{R}^+$, G_x est intégrable sur \mathbb{R}_+^* .
- 6. Calcul de $N_1(f)$.

Pour
$$x \in \mathbb{R}^+$$
, on pose $\theta(x) = \int_{\mathbb{R}_+^*} G_x(t)dt$ et $G: (x,t) \in \mathbb{R}^+ \times \mathbb{R}_+^* \mapsto G_x(t)$.

(a) Pour tout $x \in \mathbb{R}^+$, la fonction G_x est continue et intégrable sur \mathbb{R}_+^* . Pour tout t > 0, la fonction $x \mapsto G_x(t)$ est continue sur \mathbb{R}^+ . On a vu que $\forall u \in \mathbb{R}^+$, $Arctan(u) \leq u$ et donc pour tout a > 0 et tout $x \in [0, a]$:

$$0 \leqslant G_x(t) \leqslant \frac{xt}{t(1+t^2)} \leqslant \frac{a}{1+t^2}$$
 (hypothèse de domination avec $t \mapsto \frac{1}{1+t^2}$ intégrable sur \mathbb{R}^+)

On en déduit par application du théorème de continuité d'une intégrale dépendant d'un paramètre que la fonction θ est continue sur tout intervalle [0, a] avec a > 0 et donc θ est continue sur \mathbb{R}^+ .

- (b) On sait déjà que la fonction θ est continue sur \mathbb{R}^+ , de plus la fonction G est dérivable par rapport à sa première variable x pour tout $t \in \mathbb{R}_+^*$ avec $\frac{\partial G}{\partial x}(x,t) = \frac{1}{(1+t^2)(1+x^2t^2)}$. On aura donc pour tout t > 0, la fonction $x \mapsto \frac{\partial G}{\partial x}(x,t)$ est continue sur \mathbb{R}^+ , pour tout $x \in \mathbb{R}^+$, la fonction $t \mapsto \frac{\partial G}{\partial x}(x,t)$ est continue, positive sur \mathbb{R}_+^* avec $0 \leqslant \frac{\partial G}{\partial x}(x,t) \leqslant \frac{1}{1+t^2}$, on en déduit que $t \mapsto \frac{\partial G}{\partial x}(x,t)$ est intégrable sur \mathbb{R}_+^* et par domination, la fonction θ est de classe \mathcal{C}^1 sur \mathbb{R}^+ avec la formule de Leibniz : $\theta'(x) = \int_0^{+\infty} \frac{\partial G}{\partial x}(x,t) dt$.
- (c) D'après ce qui précède, $\forall x \in \mathbb{R}^+, \theta'(x) = \int_0^{+\infty} \frac{1}{(1+t^2)(1+x^2t^2)} dt$. Pour x > 0, on aura donc $\theta'(x) = \frac{1}{x^2} \int_0^{+\infty} H_{\frac{1}{x}}(t) dt = \frac{1}{x^2} \varphi(\frac{1}{x}) = \frac{\pi}{2(x+1)}$ d'après le résultat de la question 3b et par continuité en 0 de θ' , la formule est encore vraie pour x = 0.
- (d) On déduit du résultat précédent que pour tout $x \in \mathbb{R}^+$, $\theta(x) \theta(0) = \frac{\pi}{2} ln(1+x) = \theta(x)$.
- (e) $N_1^2(f) = \lim_{a \to 0} \lim_{b \to +\infty} \int_a^b \frac{f^2(t)}{t^2} dt$. Par intégration par parties avec f(t) = Arctan(t), on aura :

$$\int_{a}^{b} \frac{f^{2}(t)}{t^{2}} dt = \left[-\frac{f^{2}(t)}{t} \right]_{a}^{b} + \int_{a}^{b} \frac{2f'(t)f(t)}{t} dt$$

 $\underset{\text{que}:}{\text{or}} \lim_{a \to 0^+} \frac{f^2(t)}{t} = \lim_{a \to 0^+} Arctan(t) \frac{Arctan(t)}{t} = 0 \ \text{et} \ \lim_{b \to +\infty} \frac{Arctan^2(t)}{t} = 0, \ \text{on en d\'eduit}$

$$N_1^2(f) = \int_0^{+\infty} \frac{2Arctan(t)}{t(1+t^2)} dt = 2\theta(1) = \pi \ln(2)$$

On en déduit que
$$N_1(f) = \sqrt{\pi ln(2)}$$
 et donc $\frac{N_1(f)}{N_2(f)} = 2\sqrt{ln(2)}$.

Partie II - Exemple 2

Dans cette partie, on suppose que f est la fonction définie sur \mathbb{R}_+ par $f(t) = \ln (t + \sqrt{t^2 + 1})$ (où \ln désigne la fonction logarithme népérien).

- 7. f est clairement dérivable sur \mathbb{R}^+ et on $a: \forall t \in \mathbb{R}^+, f'(t) = \frac{1}{\sqrt{1+t^2}}$. On en déduit que f' est continue sur \mathbb{R}^+ et f'^2 est clairement intégrable sur \mathbb{R}^+ (de primitive Arctangente sur \mathbb{R}^+) donc $f \in E_2$. De plus $N_2(f) = \sqrt{\frac{\pi}{2}}$.
- 8. Pour t au voisinage de 0, on a (par développement limité à l'ordre 1 au voisinage de 0 de $\sqrt{1+t^2}$): $ln(t+\sqrt{1+t^2})=ln(1+t+o(t))=t+o(t)$ alors $f(t)\sim_0 t$. On a aussi au voisinage de $+\infty$:

$$f(t) = \ln(t) + \ln(1 + \sqrt{1 + 1/t^2}) = \ln(t) + \ln(1 + \frac{1}{2t^2} + o(1/t^2)) = \ln(t) + \frac{1}{2t^2} + o(1/t^2)$$

on en déduit que $f(t) \sim_{+\infty} ln(t)$.

- 9. D'après les équivalents précédents, $t \in \mathbb{R}_+^* \mapsto \frac{f^2(t)}{t^2}$ est prolongeable par continuité en 0 et $\frac{f^2(t)}{t^2} =_{+\infty} o(\frac{1}{t^{3/2}})$ et donc $f \in E_1$.
- 10. Calcul d'une intégrale.
 - (a) La fonction $h: t \mapsto -\frac{\ln(t)}{1-t^2}$ est continue, positive sur]0,1[et est prolongeable par continuité en 1 (de limite égale à 1/2). De plus au vosiinage de 0, on a : $h(t) = o(1/\sqrt{t})$ et donc h est intégrable sur]0,1[.

On note désormais
$$J = \int_{]0,1[} \frac{-lnt}{1-t^2} dt.$$

(b) Pour tout $k \in \mathbb{N}$, $f_k : t \mapsto -t^{2k} ln(t)$ est continue et positive sur]0,1] avec $f_k(t) = o(1/\sqrt{t})$ au voisinage de 0, on en déduit que pour tout $k \in \mathbb{N}$, les fonctions f_k sont intégrables sur]0,1[. Par intégration par parties,

$$\int_{a}^{b} -t^{2k} \ln(t) dt = \left[-t^{2k+1} \ln(t) / (2k+1) \right]_{a}^{b} + \int_{a}^{b} \frac{t^{2k}}{2k+1} dt$$

Donc:
$$J_k = \lim_{a \to 0} \lim_{b \to +\infty} \int_a^b -t^{2k} ln(t) dt = \frac{1}{(2k+1)^2}.$$

(c) Pour tout $k \in \mathbb{N}$, les fonctions f_k sont continues et intégrables sur]0,1[, la série de fonctions $\sum f_k$ converge simplement sur]0,1[vers $h:t\in]0,1[\mapsto -\frac{\ln(t)}{1-t^2},$ la série $\sum \int_{]0,1[}|f_k|=\sum J_k$ converge donc h est intégrable sur]0,1[et

$$J = \int_0^1 h(t)dt = \sum_{k=0}^{+\infty} \int_0^1 f_k(t)dt = \sum_{k=0}^{+\infty} J_k.$$

(d) On a par convergence des trois séries :

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \sum_{k=1}^{+\infty} \frac{1}{(2k)^2} + \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{6}$$

$$\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{6} - \frac{1}{4} \sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{8}$$

$$J = \sum_{k=0}^{+\infty} J_k = \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}.$$

On en déduit que $J = \sum_{k=0}^{+\infty} J_k = \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}$.

11. Calcul de $N_1(f)$.

Pour simplifier, on note $I = (N_1(f))^2 = \int_{\mathbb{R}} \left(\frac{f(t)}{t}\right)^2 dt$.

(a) Pour tout segment $[a, b] \subset]0, +\infty[$, on a par intégration par parties :

$$\int_{a}^{b} \frac{f^{2}(t)}{t^{2}} dt = \left[-\frac{f^{2}(t)}{t} \right]_{a}^{b} + \int_{a}^{b} \frac{2f'(t)f(t)}{t} dt$$

Or pour $f(t) = \ln(t + \sqrt{1 + t^2})$, on a déjà vu : $t \mapsto \frac{f(t)}{t}$ est prolongeable par continuité en 0 donc $\lim_{a\to 0^+} \frac{f^2(t)}{t} = \lim_{a\to 0^+} t \left(\frac{f(t)}{t}\right)^2 = 0$, on avait aussi (voir question 7): $f(t) \sim_{+\infty} ln(t)$ et donc $\frac{f^2(t)}{t} \sim_{+\infty} \frac{ln^2(t)}{t}$ et donc $\lim_{b\to+\infty} \frac{f^2(t)}{t} = 0$. On en déduit que :

$$I = 2\int_0^1 \frac{f'(t)f(t)}{t}dt = 2\int_0^1 \frac{f(t)}{t\sqrt{1+t^2}dt}$$

(b) Pour le calcul de I, on effectue le changement de variable u = f(t) sachant que f est un \mathcal{C}^1 -difféomorphisme de \mathbb{R}_+^* sur \mathbb{R}_+^* avec $f'(t) = \frac{1}{\sqrt{1+t^2}}$ et donc f(t) - f(0) = Argsh(t) = f(t) car f(0) = 0, on en déduit que $u = f(t) \Leftrightarrow t = sh(u)$ et alors par ce changement de variable

$$I = \int_0^{+\infty} \frac{u}{sh(u)} du$$

On sait que $sh(u) = \frac{e^u - e^{-u}}{2} = e^u \left(\frac{1 - e^{-2u}}{2}\right)$, on effectue alors dans I le changement de variable $v = e^{-u} = \psi(u) \Leftrightarrow u = -ln(v)$ avec ψ un \mathcal{C}^1 -difféomorphisme de $]0, +\infty[$ dans]0,1[et $\psi'(u) = -e^{-u} = \frac{-1}{e^u},$ donc

$$I = \int_0^1 -\frac{\ln(v)}{1 - v^2} dv = J = \frac{\pi^2}{8}$$

(c) on en déduit que
$$N_1(f)=\sqrt{I}=\sqrt{J}=\frac{\pi}{2\sqrt{2}}$$
 et $\frac{N_1(f)}{N_2(f)}=\frac{\sqrt{\pi}}{2}$.

Partie III

Le but de cette partie est de comparer, d'une part, les ensembles E_1 et E_2 , et, d'autre part, les fonctions N_1 et N_2 .

- 12. Soit f une fonction quelconque appartenant à E_0 . On associe à f deux fonctions g et h définies sur \mathbb{R}_+^* par $g(t) = \frac{f(t)}{\sqrt{t}}$ et $h(t) = \frac{f(t)}{t}$ pour tout t > 0. On pose $\alpha = f'(0)$.
 - (a) f est dérivable sur \mathbb{R}^+ avec f(0)=0 donc f(t)=f(t)-f(0) et donc h est prolongeable par continuité en 0 avec $\lim_{t\to 0^+}h(t)=f'(0)=\alpha$. On a : $g(t)=\sqrt{t}h(t)$ et donc $\lim_{t\to 0^+}g(t)=0$.
 - (b) On vérifie aisément par dérivation d'un quotient que : $\forall t > 0, \sqrt{t}g'(t) = f'(t) \frac{1}{2}h'(t)$.
 - (c) On déduit des questions précédentes, par continuité de f' en 0, que $\lim_{t\to 0^+} \sqrt{t}g'(t) = \frac{\alpha}{2}$, de plus $g(t)g'(t) = h(t)\sqrt{t}g'(t)$, donc $\lim_{t\to 0^+} g(t)g'(t) = \frac{\alpha^2}{2}$.
 - (d) Des limites calculées précédemment, on obtient que $t \mapsto \sqrt{t}g'(t), t \mapsto g(t)g'(t), t \mapsto h(t)$ sont prolongeables par continuité en 0^+ , or elles sont aussi continues sur \mathbb{R}_+^* , donc pour tout x>0, ces trois fonctions sont intégrables sur]0,x]. On a aussi $f'^2(t)=g(t)g'(t)+(\sqrt{t}g'(t))^2+\frac{1}{4}h^2(t)$ alors si $f\in E_2$, f'^2 est intégrable sur \mathbb{R}_+^* et donc sur]0,x] pour tout x>0, alors par intégration sur]0,x] et linéarité de l'intégrale, on aura :

(R)
$$\int_{[0,x]} (f'(t))^2 dt = \frac{1}{2} (g(x))^2 + \int_{[0,x]} (\sqrt{t}g'(t))^2 dt + \frac{1}{4} \int_{[0,x]} (h(t))^2 dt.$$

- 13. Comparaison de E_1 et E_2 .
 - (a) Par positivité de l'intégrale d'une fonction positive sur un intervalle, la relation (R) entraine :

$$\forall x > 0, \quad \int_{[0,x]} (f'(t))^2 dt \geqslant \frac{1}{4} \int_{[0,x]} (h(t))^2 dt$$

On en déduit que si $f \in E_2$ alors la limite lorsque x tend vers $+\infty$ de $\int_{]0,x]} (f'(t))^2 dt$ existe et est finie, alors la fonction $x \in \mathbb{R}_+^* \mapsto \int_{]0,x]} (h(t))^2 dt$ est majorée et donc la fonction positive, continue h^2 est intégrable sur \mathbb{R}_+^* . Donc si $f \in E_2$ alors $f \in E_1$, d'où l'inclusion : $E_2 \subset E_1$.

- (b) Prenons la fonction $f: t \mapsto sin(t)$, il est clair que $f \in E_0$, de plus $\lim_{t \to 0^+} \frac{f^2(t)}{t^2} = 1$ et $0 \leqslant \frac{f^2(t)}{t^2} \leqslant \frac{1}{t^2}$, on en déduit que $f \in E_1$, mais f'(t) = cos(t) et la fonction positive f'^2 n'est pas intégrable sur \mathbb{R}^+ (pas de limite finie lorsque x tend vers $+\infty$ pour $\int_0^x f'^2(t)dt$). On en déduit qu'il y a une inclusion stricte entre E_2 et $E_1 ! E_1 \neq E_2$.
- 14. Comparaison de N_1 et N_2 .
 - (a) Il est clair que E_2 est non vide inclus dans l'espace vectoriel E_0 . par linéarité de la dérivation et résultat sur l'intégrabilité d'une fonction positive, si $f \in E_2$ alors pour tout $\alpha \in \mathbb{R}$, $\alpha f \in E_2$. Soit $(f,g) \in E_2$, on a donc f'^2 et g'^2 sont continues, positives et intégrables sur \mathbb{R}^+ . Pour tout $t \in \mathbb{R}^+$, $(f'(t) + g'(t))^2 = f'^2(t) + g'^2(t) + 2f'(t)g'(t)$. Par inégalité de Cauchy-Schwarz, on sait que pour tout x > 0,

$$\left(\int_0^x |f'(t)g'(t)| \, dt \right)^2 \leqslant \int_0^x f'^2(t) dt \int_0^x g'^2(t) dt$$

Et donc : $\forall x > 0$, $\int_0^x |f'(t)g'(t)| dt \leq N_2(f).N_2(g)$ et donc la fonction $x \in \mathbb{R}_+^* \mapsto \int_0^x |f'(t)g'(t)| dt$ est majorée et donc la fonction f'g' est intégrable sur \mathbb{R}_+^* , on en déduit par somme de trois fonctions intégrables sur \mathbb{R}_+^* , que $(f'+g')^2$ est intégrable sur \mathbb{R}_+^* et donc que $(f+g) \in E_2$. On a donc montré E_2 est un sous-espace vectoriel de E_0 . On admet sans justification que N_1 et N_2 sont des normes sur l'espace vectoriel E_2 .

- (b) On a déjà vu que $E_2 \subset E_1$ et pour $f \in E_2 : \forall x > 0$, $\int_{]0,x]} (f'(t))^2 dt \geqslant \frac{1}{4} \int_{]0,x]} (h(t))^2 dt$, par passage à la limite lorsque x tend vers $+\infty$ et croissance de la fonction racine carrée sur \mathbb{R}^+ , on obtient $: N_1(f) \leqslant 2N_2(f)$.
- (c) Pour tout $n \in \mathbb{N}^*$, on définit sur \mathbb{R}_+ la fonction f_n par $f_n(t) = e^{-t}sin(nt)$. Pour tout $n \in \mathbb{N}$, $f_n \in E_0$ et $\forall t \in \mathbb{R}^+$, $f'_n(t) = e^{-t}(ncos(nt) - sin(nt))$, donc $f'^2_n(t) = e^{-2t}(ncos(nt) - sin(nt))^2$, on en déduit que $0 \leq f'^2_n(t) \leq (n+1)e^{-2t}$, donc $f'^2_n(t) \leq (n+1)e^{-2t}$, donc

$$N_2^2(f_n) = \int_0^{+\infty} e^{-2t} (n\cos(nt) - \sin(nt))^2 dt = \int_0^{+\infty} e^{-2t} ((n^2 - 1)\cos^2(nt) - n\sin(2nt) + 1) dt$$

$$N_2^2(f_n) = \int_0^{+\infty} e^{-2t} \left(\frac{n^2 - 1}{2} (\cos(2nt) + 1) - n\sin(2nt) + 1 \right) dt$$

$$N_2^2(f_n) = \frac{n^2 + 1}{2} \int_0^{+\infty} e^{-2t} dt + \int_0^{+\infty} e^{-2t} \left(\frac{n^2 - 1}{2} \cos(2nt) - n\sin(2nt) \right) dt$$

$$\operatorname{Or} \int_0^{+\infty} e^{-2t} dt = \frac{1}{2}, \int_0^{+\infty} e^{-2t} e^{2int} dt = \frac{1}{2(1 - in)} = \frac{1}{2(n^2 + 1)} + i \frac{n}{2(n^2 + 1)}, \text{ on en déduit}$$

$$N_2^2(f_n) = \frac{n^2}{4} \quad N_2(f_n) = \frac{n}{2}$$

(d) On sait déjà que N_1 est dominée par N_2 . Supposons que N_2 soit dominée par N_1 sur E_2 alors il existe une constante $\alpha > 0$ telle que $\forall f \in E_2, N_2(f) \leqslant \alpha N_1(f)$. En prenant les fonctions f_n , on aurait $\forall n \in \mathbb{N}^*, \frac{n}{2} \leqslant \alpha N_1(f_n)$. La fonction $t \in \mathbb{R}^*_+ \mapsto \frac{\sin^2(nt)}{t^2}$ est positive, continue sur \mathbb{R}^*_+ , prolongeable par continuité en 0 et dominée par $t \mapsto \frac{1}{t^2}$ au voisinage de $+\infty$, on en déduit qu'elle est intégrable sur \mathbb{R}^*_+ et donc : $0 \leqslant N_1^2(f_n) \leqslant \int_0^{+\infty} \frac{\sin^2(nt)}{t^2} dt$. Par le changement de variable u = nt qui est un C^1 -difféomorphisme de \mathbb{R}^*_+ dans \mathbb{R}^*_+ , on obtient :

 $0 \leqslant N_1^2(f_n) \leqslant n \int_0^{+\infty} \frac{\sin^2(u)}{u^2} du$

On en déduit que l'on a : $\forall n \in \mathbb{N}^*, 0 \leq \frac{n}{2} \leq \alpha \sqrt{n}\beta$ avec $\beta = \int_0^{+\infty} \frac{\sin^2(u)}{u^2} du$, ce qui absurde. La norme N_2 n'est donc pas dominée par la norme N_1 sur E_2 . Les normes N_1 et N_2 ne sont pas équivalentes sur E_2 .

15. On suppose que $f \in E_2$, d'après la relation (R) pour tout x > 0, on a : $\int_{]0,x]} \left(\sqrt{t}g'(t)\right)^2 dt \leqslant \int_{]0,x]} (f'(t))^2 dt \leqslant N_2^2(f), \text{ on en déduit que la fonction positive } t \mapsto \left(\sqrt{t}g'(t)\right)^2$ est intégrable sur \mathbb{R}_+^* et donc $\int_{]0,x]} \left(\sqrt{t}g'(t)\right)^2 dt \text{ admet une limite finie lorsque } x \text{ tend vers} +\infty.$ On avait aussi $f_i n E_2 \Rightarrow f \in E_1$, toujours par la relation (R), on obtient que la fonction

 g^2 admet une limite finie en $+\infty$ (somme de trois fonctions admettant chacune une limite finie en $+\infty)$ et donc g aussi.

Notons L la limite de g en $+\infty$, d'après la relation $g(t) = \frac{f(t)}{\sqrt{t}}$ avec $f \in E_2$, si $L \neq 0$ alors

 $f(t) \sim L\sqrt{t}$ au voisinage de $+\infty$ qui entraine $\frac{f^2(t)}{t^2} \sim \frac{L^2}{t}$ au voisinage de $+\infty$ et f n'appartient donc pas à E_1 , ce qui est faux puisque $f \in E_2 \Rightarrow f \in E_1$, on en déduit que la limite de g en $+\infty$ est nulle.