1 Group Theory

1.1 Definition of a Group

Definition.

Let A be a set. If $*: A \times A \to A$, then * is said to be a binary operation on A.

Notation.

Let A be a set and * be a binary operation on A. Let $a, b \in A$. We may write *(a, b) as a * b.

Definition.

Let G be a group and * be a binary operation on G. (G,*) is said to form a group if the following are satisfied.

- 1. a * (b * c) = (a * b) * c for any $a, b, c \in G$.
- 2. There exists $e \in G$ such that a * e = e * a = a for any $a \in G$. e is said to be the identity element.
- 3. For every $a \in G$, there exists $a^{-1} \in G$ such that $a * a^{-1} = a^{-1} * a = e$. a^{-1} is said to be the inverse of a.

Remark.

Whenever we talk about an arbitrary group (G, *), we shall simply drop the binary operation *. So we say that G is a group and write ab instead of a * b.

Definition.

A group G is said to be abelian if ab = ba for any $a, b \in G$.

Definition.

The order of a group G is the number of elements of G. We shall denote it by |G|.

1.2 Some Preliminary Lemmas

Lemma.

Let G be a group.

- 1. The identity element in G is unique.
- 2. Every $a \in G$ has a unique inverse in G.
- 3. For every $a \in G$, $(a^{-1})^{-1} = a$.
- 4. For all $a, b \in G$, $(ab)^{-1} = b^{-1}a^{-1}$.

Proof.

Let G be a group.

- 1. Let e_1 , e_2 be identity elements in G. Thus, since e_1 is an identity, we have $e_1e_2=e_2$. And since e_2 is an identity, we have $e_1e_2=e_1$. Hence, $e_1=e_2$.
- 2. Let $a \in G$. Suppose a' and a'' are inverse of a. Then a' = a'e = a'(aa'') = (a'a)a'' = ea'' = a''.
- 3. Let $a \in G$. Let $b = a^{-1} \in G$. Then $eaa^{-1} = ab$. Hence, $b^{-1} = (ab)b^{-1}$ so that $b^{-1} = a(bb^{-1}) = ae = a$. Therefore, $(a^{-1})^{-1} = a$.
- 4. Let $a, b \in G$. Indeed, $(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aea^{-1} = aa^{-1} = e$ and $(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}a)b = b^{-1}eb = b^{-1}b = e$.

Lemma.

Given a, b in the group G, then the equations ax = b and ya = b have unique solutions for x and y in G. In particular, the two cancellation laws,

au = aw implies u = w

and

ua = wa implies u = w

hold in G.

Proof.

Exercise.

Problems.

- 1. In the following determine whether the systems described are groups. If they are not, point out which of the group axioms fail to hold.
 - (a) $G = \mathbb{Z}$, $ab \equiv a b$.
 - (b) $G = \mathbb{N}$, $ab \equiv a \cdot b$, the usual product of integers.
 - (c) $G = a_0, a_1, ..., a_6$ where $a_i a_j = a_{i+j}$ if i + j < 7 and $a_i a_j = a_{i+j-7}$ otherwise.
 - (d) $G = \left\{ \frac{r}{s} \in \mathbb{Q} \mid (r, s) = 1, 2 \nmid s \right\}, ab \equiv a + b,$ the usual addition of rational numbers.
- 2. Prove that if G is an abelian group, then for all $a, b \in G$ and all integers n, we have $(ab)^n = a^n b^n$.
- 3. If G is a group such that $(ab)^2 = a^2b^2$ for all $a, b \in G$, show that G musts be abelian.
- 4. If G is a group in which $(ab)^i = a^ib^i$ for three consecutive integers i for all $a, b \in G$, show that G is abelian. *

- 5. Show that the conclusion of Problem 4 does not follow if we assume the relation $(ab)^i = a^i b^i$ for just two consecutive integers.
- 6. In S_3 give an example of two elements x, y such that $(xy)^2 \neq x^2y^2$.
- 7. In S_3 show that there are four elements satisfying $x^2 = e$ and three elements satisfying $y^3 = e$.
- 8. If G is a finite group, show that there exists a positive integer N such that $a^N = e$ for all $a \in G$.
- 9. (a) If the group G has three elements, show it must be abelian.
 - (b) Do part (a) if G has four elements.
 - (c) Do part (a) if G has five elements.
- 10. Show that if every element of the group G is its own inverse, then G is abelian.
- 11. If G is a group of even order, prove it has an element $a \neq e$ satisfying $a^2 = e$.
- 12. Let G be a nonempty set closed under an associative product, which in addition satisfies:
 - (a) There exists an $e \in G$ such that ae = a for all $a \in G$.
 - (b) Given $a \in G$, there exists an element $y(a) \in G$ such that ay(a) = e.

Prove that G must be a group under this product.

- 13. Prove, by an example, that the conclusion of Problem 12 is false if we assume instead:
 - (a) There exists an $e \in G$ such that ae = a for all $a \in G$.
 - (b) Given $a \in G$, there exists an element $y(a) \in G$ such that y(a)a = e.
- 14. Suppose a finite set G is closed under an associative product and that both cancellation laws hold in G. Prove that G must be a group.
- 15. (a) Using the result of Problem 14, prove that the nonzero integers modulo p, p a prime number, form a group under multiplication mod p.
 - (b) Do part (a) for the nonzero for the nonzero integers relatively prime to n under multiplication mod n.
- 16. In Problem 14 show by an example that if one just assumed one of the cancellation laws, then the conclusion need not follow.
- 17. Prove that in Problem 14 infinite examples exist, satisfying conditions, which are not groups.

- 18. For any n > 2 construct a non-abelian group of order 2n. (Hint: imitate the relations in S_3 .)
- 19. If S is a set closed under an associative operation, prove that no matter how you bracket $a_1a_2\cdots a_n$, retaining the order of the elements, you get the same element in S (e.g., $(a_1a_2)(a_3a_4) = a_1(a_2(a_3a_4))$; use induction on n).

1.3 Subgroups

Definition.

A nonempty subset H of a group G is said to be a subgroup of G if, under the product of G, H itself forms a group.

Remark.

If H is a subgroup of G and K is a subgroup of H, then K is a subgroup of G.

Lemma. Two-Step Subgroup Test.

A nonempety subset H of the group G is a subgroup of G if and only if

- 1. $a, b \in H$ implies that $ab \in H$.
- 2. $a \in H$ implies that $a^{-1} \in H$.

Proof.

If H is a subgroup of G_{i} , then it is obvious that (1) and (2) must hold.

Suppose conversely that H is a subset of G for which (1) and (2) hold. Since the same operation is used, associativity holds. Thus, all that remains is to prove that $e \in H$. Let $a \in H$. Then, by (2), $a^{-1} \in H$. By (1), $aa^{-1} = e \in H$.

Lemma.

If H is a nonempty finite subset of a group G and H is closed under multiplication, then H is a subgroup of G.

Proof.

By the previous lemma, it is enough to prove that $a^{-1} \in H$ for any $a \in H$. Suppose $a \in H$. Then since H is closed, we have that $a^2 = aa \in H$, $a^3 = a^2a \in H, \ldots, a^m \in H, \ldots$ Thus the infinite collection $a, a^2, \ldots, a^m, \ldots$ is contained in H, which is finite. Thus there must be repetitions in this collection, i.e. there are integers r, s such that r > s > 0

and $a^r=a^s$. By the cancellation in G, $a^{r-s}=e$. Hence, $a^0=e\in H$. Thus, we have $r-s-1\geq 0$ so that $a^{r-s-1}\in H$. Also, $aa^{r-s-1}=a^{r-s}=e$ so that $a^{r-s-1}=a^{-1}$, so that $a^{-1}\in H$.

Definition.

Let G be a group, H be a subgroup of G; for $a, b \in G$; for $a, b \in G$ we say that a is congruent to $b \mod H$, written as $a \equiv b \mod H$, if $ab^{-1} \in H$.

Lemma.

The relation $a \equiv b \mod H$ is an equivalence relation.

Proof.

First, note that $e \in H$ since H is a subgroup of G. Hence, $aa^{-1} \in H$ so that $a \equiv a \mod H$.

Next, suppose that $a \equiv b \mod H$. Then $ab^{-1} \in H$. Since H is a group, $(ab^{-1})^{-1} \in H$. But $(ab^{-1})^{-1} = (b^{-1})^{-1}a^{-1} = ba^{-1}$ so that $b \equiv a \mod H$.

Now, suppose that $a \equiv b \mod H$ and $b \equiv c \mod H$. Then $ab^{-1} \in H$ and $bc^{-1} \in H$ so that $(ab^{-1})(bc^{-1}) \in H$. But $(ab^{-1})(bc^{-1}) = a(b^{-1}b)c^{-1} = aec^{-1} = ac^{-1}$, so that $ac^{-1} \in H$. Hence, $a \equiv c \mod H$.

Definition.

If H is a subgroup of G, $a \in G$, then $Ha = \{ha \mid h \in H\}$. Ha is called a right coset of H in G.

Lemma.

For all $a \in G$, $Ha = \{x \in G \mid a \equiv x \mod H\}$. Proof.

Let $[a] = \{x \in G \mid a \equiv x \mod H\}$. We first show that $Ha \subseteq [a]$. For, if $h \in H$, then $a(ha)^{-1} = a(a^{-1}h^{-1}) = h^{-1} \in H$ since H is a subgroup of G. Thus, $a \equiv ha \mod H$ so that $ha \in [a]$. Thus, $Ha \subseteq [a]$.

Now, suppose that $x \in [a]$. Hence, $ax^{-1} \in H$. Since H is a subgroup of G, $(ax^{-1})^{-1} \in H$. But $(ax^{-1})^{-1} = xa^{-1}$. Thus, $xa^{-1} \in H$ so that $xa^{-1}a \in Ha$. Hence, $x \in Ha$. Therefore, $[a] \subseteq Ha$.

Lemma.

There is a one-to-one correspondence between any

two right cosets of H in G.

Proof.

Let H be a subgroup of G and $a, b \in G$. Define a function $\phi : Ha \to Hb$ by $\phi(ha) = hb$ for every $h \in H$. If $hb \in Hb$ then $ha \in Ha$ and $\phi(ha) = hb$ so that ϕ is onto. Now, suppose that $\phi(h_1a) = \phi(h_2a)$. Then $h_1b = h_2b$ and thus, by cancellation in G, $h_1 = h_2$. Hence, $h_1a = h_2a$ so that ϕ is one-to-one. Therefore, there is a one-to-one correspondence between Ha and Hb, and since a and b are arbitrary, there is a one-to-one correspondence between any two right cosets of H in G.

Theorem. Theorem of Lagrange.

If G is a finite group and H is a subgroup of G, then $|H| \mid |G|$.

Proof.

First, note that H = He so that H is a coset of itself in G. By the previous two lemmas, we have that any two distinct right cosets of G are disjoint and that each of these distinct right cosets has |H| elements. Now, consider $S = \bigcup_{a \in G} Ha$. Clearly, for any $h \in H$ and any $a \in G$, we have that $ha \in G$ so that any right coset of H in G is a subset of G. Also, any $a \in G$ is in the right coset Ha since $e \in H$. Thus, G is a subset of S. Hence, G = S. Hence, |G| = |S|. But |S| = k|H| since S is a union of k disjoint sets with |H| elements each, where k is the number of distinct right cosets of H in G. Hence, |G| = k|H| so that $|H| \mid |G|$.

Definition.

If H is a subgroup of G, the index of H in G is the number of distinct right cosets of H in G.

Definition.

If G is a group and $a \in G$, the order (or period) of a is the least positive integer m such that $a^m = e$. We shall denote it by |a|. If no such integer exists, we say that a is of infinite order.

Definition.

Let G be a group and $a \in G$. The cyclic subgroup generated by a, denoted by $\langle a \rangle$

Corollary.

If G is a finite group and $a \in G$, then |a| divides |G|.

Proof.