## CMSC204 Kartchner

V(StateGraph) = {Oregon, Alaska, Texas, Hawaii, Vermont, NewYork, California} E(StateGraph) = {(Alaska, Oregon), (Hawaii, Alaska), (Hawaii, Texas), (Texas, Hawaii), (Hawaii, California), (Hawaii, New York), (Texas, Vermont), (Vermont, California), (Vermont, Alaska)}

## 1. Draw the StateGraph



1. Describe the graph pictured above, using the formal graph notation.

V(StateGraph) ={Oregan, Alaska, Texas, Hawaii, Vermont, New York, California}

 $E(StateGraph) = \\ \begin{cases} \text{(Alaska, Oregon), (Hawaii, Alaska), (Hawaii, Texas), (Texas, Hawaii),} \\ \text{(Hawaii, California), (Hawaii, New York), (Texas, Vermont),} \\ \text{(Vermont, California), (Vermont, Alaska)} \end{cases}$ 

2. a. Is there a path from Oregon to any other state in the graph?

Na

b. Is there a path from Hawaii to every other state in the graph?

c. From which state(s) in the graph is there a path to Hawaii?

Texas

3. a. Show the adjacency matrix that would describe the edges in the graph. Store the vertices in alphabetical order

| States     |           |  |  |
|------------|-----------|--|--|
| Alaska     | 0         |  |  |
| California | 1         |  |  |
| Varioi.i   | ા         |  |  |
| how tak    | <u>\$</u> |  |  |
| Degar      | 4         |  |  |
| Texes      | <u> Ş</u> |  |  |
| Venent     | P         |  |  |
|            |           |  |  |
|            |           |  |  |

|                 | 0      | 1 | 2        | 3 | $\sim$ | 2 | 6        |
|-----------------|--------|---|----------|---|--------|---|----------|
| 0 7             | -<br>0 | O | 0        | 0 | ι      | ပ | 0 7      |
| $  \setminus  $ | 0      | O | ی        | 3 | 0      | O | 0        |
| L               | ١      | \ | 0        | 1 | ی      | 1 | <b>၁</b> |
| 5               | o      | O | <u>ی</u> | ಎ | O      | O | 0        |
| 4               | ່ ວ    | 9 | 0        | ೦ | J      | 0 | 0        |
| S               | 5      | ં | ١        | O | Ö      | 9 | +        |
| ١               | \      | \ | Õ        | O | 0      | 0 | 0 (      |
|                 |        |   |          |   |        |   | ,        |
|                 |        |   |          |   |        |   |          |

3. b. Show the adjacency lists that would describe the edges in the graph





- 4 a. Which of the following lists the graph nodes in depth first order beginning with E?
- A) E, G, F, C, D, B, A
- B) G, A, E, C, B, F, D
- E, G, A, D, F, C, B
- E, C, F, B, A, D, G
- 4 b. Which of the following lists the graph nodes in breadth first order beginning at F?
  - (A) F, C, D, A, B, E, G
  - B) F, D, C, A, B, C, G
  - C) F, C, D, B, G, A, E
  - D) a, b, and c are all breadth first traversals



5. Find the shortest distance from Atlanta to every other city

6. Find the minimal spanning tree using Prim's algorithm. Use 0 as the source vertex . Show the steps.



7. Find the minimal spanning tree using Kruskal's algorithm. Show the weights in order and the steps.



## 8. Find the minimal spanning tree using the algorithm you prefer. Use Minneapolis/St. Paul as the source vertex



9. List the nodes of the graph in a breadth first topological ordering. Show the steps using arrays predCount, topologicalOrder and a queue



## 10. List the nodes of the graph in a breadth first topological ordering.



Stort -> Discrete Math -> Programmy 1 -> Programmy 2 -> Compilers

-> Algorithms -> Men roud language -> Operating Systems -> Theory of Compileration ->

-> Compilers -> Senior Senior -> End.