

MATERIAL SAFETY DATA SHEET

3201 BROWN

Version Number 1.1 Page 1 of 8
Revision Date 03/12/2014 Print Date 3/18/2014

1. PRODUCT AND COMPANY IDENTIFICATION

POLYONE CORPORATION

33587 Walker Road, Avon Lake, OH 44012

Telephone : 1 (440) 930-1000 or 1 (866) POLYONE

Emergency telephone : CHEMTREC 1-800-424-9300 (24hrs for spill, leak, fire, exposure

number or accident).

Product name : 3201 BROWN
Product code : VC10002362
Chemical Name : Mixture
CAS-No. : Mixture

Product Use : Industrial Applications

2. COMPOSITION/INFORMATION ON INGREDIENTS

Components	CAS-No.	Weight percent
Titanium dioxide	13463-67-7	0.1 - 1
Lead oxide sulfate (Pb4O3(SO4))	12202-17-4	1 - 5
Calcium carbonate	1317-65-3	10 - 30

3. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

This mixture has not been evaluated as a whole. All ingredients are bound and potential for hazardous exposure as shipped is minimal. However, some vapors may be released upon heating or processing. The end-user (fabricator) must take the necessary precautions (mechanical ventilation, respiratory protection, etc.) to protect employees from exposure. See sections 8 and 11 for special precautions. May emit Hydrogen Chloride (HCl) or Carbon Monoxide (CO) under fire conditions.

POTENTIAL HEALTH EFFECTS

Routes of Exposure: : Inhalation, Ingestion, Skin contact

Acute exposure

Inhalation : Resin particles, like other inert materials, can be mechanically

irritating.

Ingestion : May be harmful if swallowed.

Eyes : Resin particles, like other inert materials, are mechanically irritating to

eyes.

Skin : Experience shows no unusual dermatitis hazard from routine handling.

MATERIAL SAFETY DATA SHEET

3201 BROWN

 Version Number 1.1
 Page 2 of 8

 Revision Date 03/12/2014
 Print Date 3/18/2014

Chronic exposure : Refer to Section 11 for Toxicological Information.

Medical Conditions Aggravated by Exposure: : None known.

4. FIRST AID MEASURES

Inhalation : Move to fresh air in case of accidental inhalation of fumes from

overheating or combustion. When symptoms persist or in all cases of

doubt seek medical advice.

Ingestion : Do not induce vomiting without medical advice. When symptoms

persist or in all cases of doubt seek medical advice.

Eyes : Rinse immediately with plenty of water, also under the eyelids, for at

least 15 minutes. If eye irritation persists, seek medical attention.

Skin : Wash off with soap and plenty of water. If skin irritation persists

seek medical attention.

5. FIREFIGHTING MEASURES

Flash point : not applicable

Flammable Limits

Upper explosion limit : not applicable
Lower explosion limit : not applicable
Auto-ignition temperature : Not applicable

Suitable extinguishing media : Carbon dioxide blanket, Water spray, Dry powder, Foam.

Special Fire Fighting

Procedures

Fullface self-contained breathing apparatus (SCBA) used in positive pressure mode should be worn to prevent inhalation of airborne

contaminants

contaminants.

Unusual Fire/Explosion

Hazards

May emit Hydrogen Chloride (HCl) or Carbon Monoxide (CO) under

fire conditions. Carbon dioxide (CO2), carbon monoxide (CO), oxides of nitrogen (NOx), other hazardous materials, and smoke are

all possible.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions : Wear appropriate personal protection during cleanup, such as

impervious gloves, boots and coveralls.

Environmental precautions : Should not be released into the environment. The product should not

be allowed to enter drains, water courses or the soil.

Methods for cleaning up : Clean up promptly by sweeping or vacuum. Package all material in

plastic, cardboard or metal containers for disposal.

MATERIAL SAFETY DATA SHEET

3201 BROWN

 Version Number 1.1
 Page 3 of 8

 Revision Date 03/12/2014
 Print Date 3/18/2014

7. HANDLING AND STORAGE

Handling : Take measures to prevent the build up of electrostatic charge. Heat

only in areas with appropriate exhaust ventilation. Processing fume condensates may contain combustible or toxic residue. Periodically clean hoods, ducts, and other surfaces to minimize accumulation of

these materials.

Storage : Keep containers dry and tightly closed to avoid moisture absorption

and contamination. Keep in a dry, cool place.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Respiratory protection : No personal respiratory protective equipment normally required. If

dusty conditions occur wear appropriate respiratory protection.

Eye/Face Protection : Safety glasses with side-shields

Hand protection : Protective gloves

Skin and body protection : Long sleeved clothing

Additional Protective

Measures

Safety shoes

General Hygiene : Handle in accordance with good industrial hygiene and safety Considerations : wash hands before breaks and at the end of workday practice.

practice. Wash hands before breaks and at the end of workday. This product may contain residual vinyl chloride monomer (VCM) (CAS number 75-01-4) below 8.5 ppm (0.00085%). It is unlikely, under normal working conditions with adequate ventilation, that the exposure limits will be exceeded for residual VCM. However, the user should take the necessary precautions (e.g. mechanical ventilation, local exhaust ventilation, air-monitoring, respiratory protection, etc.) to ensure airborne levels of any vapors including VCM or dusts that may be released during heating or processing are

below regulated levels.

Engineering measures : Heat only in areas with appropriate exhaust ventilation. Provide

appropriate exhaust ventilation at machinery.

Exposure limit(s)

MATERIAL SAFETY DATA SHEET

3201 BROWN

Version Number 1.1 Revision Date 03/12/2014 Page 4 of 8 Print Date 3/18/2014

Components	Value	Exposure time	Exposure type	List:
Calcium carbonate	5 mg/m3	PEL:	Respirable fraction.	OSHA Z1
	15 mg/m3	PEL:	Total dust.	OSHA Z1
	10 mg/m3	Time Weighted Average		MX OEL
		(TWA):		
	20 mg/m3	Short Term Exposure Limit		MX OEL
		(STEL):		
Lead oxide sulfate	0.05	Time Weighted Average	as Pb	ACGIH
(Pb4O3(SO4))	mg/m3	(TWA):		
	0.05	Time Weighted Average		OSHA
	mg/m3	(TWA):		
	0.03	OSHA Action level:		OSHA
	mg/m3			
	0.05	Time Weighted Average	as Pb	OSHA Z1A
	mg/m3	(TWA):		
	0.15	Time Weighted Average	Dust and fume. as Pb	MX OEL
	mg/m3	(TWA):		
Titanium dioxide	10 mg/m3	Time Weighted Average		ACGIH
		(TWA):		
	15 mg/m3	PEL:	Total dust.	OSHA Z1
	10 mg/m3	Time Weighted Average	Total dust.	OSHA Z1A
		(TWA):		
	10 mg/m3	Time Weighted Average	as Ti	MX OEL
		(TWA):		
	20 mg/m3	Short Term Exposure Limit	as Ti	MX OEL
		(STEL):		

9. PHYSICAL AND CHEMICAL PROPERTIES

Not applicable Form : solid Evapouration rate pellets, powder Appearance Specific Gravity Not determined Colour : BROWN Bulk density : Not established Odour : very faint Vapour pressure : not applicable : Not determined Melting point/range Vapour density not applicable Boiling Point: : not applicable not applicable pН

Water solubility : insoluble

10. STABILITY AND REACTIVITY

Stability : The product is stable if stored and handled as prescribed.

Hazardous Polymerization : Will not occur.

Conditions to avoid : Keep away from oxidizing agents and open flame. To avoid thermal

decomposition, do not overheat.

Incompatible Materials : Incompatible with strong acids and oxidizing agents., Avoid contact

with acetal homopolymers and acetal copolymers during processing.

MATERIAL SAFETY DATA SHEET

3201 BROWN

Version Number 1.1 Revision Date 03/12/2014 Page 5 of 8 Print Date 3/18/2014

Hazardous decomposition products

: Carbon dioxide (CO2), carbon monoxide (CO), oxides of nitrogen (NOx), other hazardous materials, and smoke are all possible.

Prolonged heating (approximately 30 minutes or more) above 392 °F (200 °C) or short term heating at 482 °F (250 °C) may result in product decomposition and evolution of carbon monoxide and hydrogen chloride.

11. TOXICOLOGICAL INFORMATION

This mixture has not been evaluated as a whole for health effects. Exposure effects listed are based on existing health data for the individual components which comprise the mixture.

Toxicity Overview

This product contains the following components which in their pure form have the following characteristics:

CAS-No.	Chemical Name	Effect	Target Organ
13463-67-7	Titanium dioxide	Systemic effects	Respiratory system.
12202-17-4	Lead oxide sulfate (Pb4O3(SO4))	Systemic effects	reproductive system, central nervous system (CNS).
1317-65-3	Calcium carbonate	Irritant	Eyes, Skin.
		Systemic effects	Eyes, Skin, Respiratory
			system.

Carcinogenicity

This product contains the following components which, in their pure form, have the following carcinogenicity data:

CAS-No.	Chemical Name	OSHA	IARC	NTP
13463-67-7	Titanium dioxide	no	2B	no
12202-17-4	Lead oxide sulfate (Pb4O3(SO4))	yes	2A	no

IARC Carcinogen Classifications:

- 1 The component is carcinogenic to humans.
- 2A The component is probably carcinogenic to humans.
- 2B The component is possibly carcinogenic to humans.

NTP Carcinogen Classifications:

- 1 The component is known to be a human carcinogen.
- 2 The component is reasonably anticipated to be a human carcinogen.

Additional Health Hazard Information:

Lead oxide sulfate (Pb4O3(SO4)) 12202-17-4 Systemic effects include neurotoxic, teratogenic, fetotoxic and reproductive with abdominal pain, anemia, pallor, decreased hand grip strength with characteristic "wrist drop".

12. ECOLOGICAL INFORMATION

Persistence and degradability : Not readily biodegradable.

MATERIAL SAFETY DATA SHEET

3201 BROWN

 Version Number 1.1
 Page 6 of 8

 Revision Date 03/12/2014
 Print Date 3/18/2014

Environmental Toxicity : Adverse ecological impact is not known or expected under normal

use.

Bioaccumulation Potential : no data available

Additional advice : not applicable

13. DISPOSAL CONSIDERATIONS

Product : Like most thermoplastic plastics the product can be recycled. Where

possible recycling is preferred to disposal or incineration. The generator of waste material has the responsibility for proper waste classification, transportation and disposal in accordance with applicable federal, state/provincial and local regulations.

Contaminated packaging : Recycling is preferred when possible. The generator of waste

material has the responsibility for proper waste classification, transportation and disposal in accordance with applicable federal,

state/provincial and local regulations.

14. TRANSPORT INFORMATION

U.S. DOT Classification : Not regulated for transportation.

ICAO/IATA : Not regulated for transportation.

IMO/IMDG (maritime) : Not regulated for transportation.

15. REGULATORY INFORMATION

US Regulations:

OSHA Status : Classified as hazardous based on components.

TSCA Status : All components of this product are listed on or exempt from the

TSCA Inventory.

US. EPA CERCLA Hazardous Substances (40 CFR 302)

not applicable

California Proposition

65

WARNING! This product contains a chemical known to the State of

California to cause cancer., WARNING! This product contains a chemical known to the State of California to cause birth defects or

other reproductive harm.

MATERIAL SAFETY DATA SHEET

3201 BROWN

Version Number 1.1 Page 7 of 8
Revision Date 03/12/2014 Print Date 3/18/2014

SARA Title III Section 302 Extremely Hazardous Substance

Unless specific chemicals are identified under this section, this product is Not Applicable under this regulation

SARA Title III Section 313 Toxic Chemicals:

Unless specific chemicals are identified under this section, this product is Not Applicable under this regulation

Chemical Name	CAS-No.	Weight percent	l
LEAD COMPOUNDSLEAD COMPOUNDSLEAD	12202-17-4	1.00 - 5.00	l
COMPOUNDS, INORGANIC			l

Canadian Regulations:

National Pollutant Release Inventory (NPRI)

Chemical Name	CAS-No.	Weight	NPRI ID#
		percent	
Lead oxide sulfate (Pb4O3(SO4))	12202-17-4	1.00 - 5.00	
		1.00 - 5.00	
		1.00 - 5.00	
Rutile, antimony chromium buff	68186-90-3	0.10 - 1.00	

WHMIS Classification : D2A

WHMIS Ingredient Disclosure List

CAS-No.
12202-17-4

DSL : All components of this product are on the Canadian Domestic

Substances List (DSL) or are exempt.

National Inventories:

Australia AICS : Listed

China IECS : Listed

Europe EINECS : Listed

Japan ENCS : Listed

Korea KECI : Listed

Philippines PICCS : Listed

16. OTHER INFORMATION

MATERIAL SAFETY DATA SHEET

3201 BROWN

Version Number 1.1
Revision Date 03/12/2014

Page 8 of 8 Print Date 3/18/2014

Revision Date 03/12/2014	Print Date 3/18/2014
The information provided in this Safety Data Sheet is correct to the best of our knowled the date of its publication. The information given is designed only as a guidance for saf storage, transportation, disposal and release and is not to be considered a warranty or quinformation relates only to the specific material designated and may not be valid for succombination with any other materials or in any process, unless specified in the text.	e handling, use, processing, uality specification. The

8/8