

CF: Tools

CF HS24

Dr. Hannes Spichiger

Departement Informatik

21.09.2023

Forensischer Prozess: Welche Schritte können wir automatisieren?

Datenverarbeitungs-Pipeline

Acquisition-Funktionalitäten

11.10.2024

Acquistion-Funktionalitäten

Lesen von Datenträgern in einem Read-Only-Modus

Erstellen von Disk-Images

Live-Collection

Erstellen und überprüfen von Hashes

Acquistion-Fokussierte Tools

Aufbereitungs-Funktionalitäten

11.10.2024

HEX-Ansicht

- Im Grundsatz ist ein Datensatz vor allem erstmal eine Bit-Folge
- Wir können alle Daten als diese Bit-Folge darstellen
- Typischerweise wird eine Hex-Ansicht gewählt
 - 2 Stellen Hex = 1 Byte
- Eg. HxD

File-System Ansicht

- Disk-Image enthält meist Partitionen mit Dateisystemen
- Diese können Einfach als Ordner-Struktur dargestellt werden
 - Partitionen
 - Ordner
 - Files
- Manche Tools Fokussieren Stark auf diese Sichtweise
 - XWays
 - FTK
 - Encase
 - (Autopsy)

EnCase Forensic Suite

File-System Ansicht: Wie Stelle ich Elemente dar, die kein File sind?

- Nicht alles ist ein File:
 - Inter-Partition Space
 - Raum zwischen Dateien
 - File-Slack
- Wird typischerweise in die «File-Logik» gepresst
 - Inter-Partition-Space => Wird als eigene Partition dargestellt
 - Raum zwischen Dateien => Wird als Datei Dargestellt
- Wo in der Ordner-Struktur?
 - Virtueller Ordner mit «Dateien» die nicht in einem effektiven Ordner liegen

Analyse-Funktionalitäten

11.10.2024

Event-Fokussierte Ansicht

- Jedes Element im Datenset wird als Event betrachtet
- Bedingt Parsen der Daten vor Ansicht
 - Vor Parsing könnt ihr Daten meist nicht einmal betrachten
- Event-Fokussierte Tools
 - Magnet
 - Nuix
 - Cellebrite Inspector
 - (Autopsy)

Event-Basierte Analyse ist oft stärker OS-Abhängig

Parsen von Datenstrukturen

- Informationen werden oft in anderen Datenstrukturen abgelegt
 - Datenbanken (Eg. Browser-History)
 - Log-Strukturen (Eg. User-Logins)
 - Registry-Hives (Eg. Systemeinstellungen)
- Oft ist die Datenstruktur weniger interessant als die Einträge
- Tools bieten oft Funktionalitäten an, um diese Strukturen zu Parsen
- Das Tool erstellt pro Eintrag ein Objekt, welches die geparsten Informationen enthält

Voraussetzungen für Daten-Parsing

Datenstruktur ist dem Tool bekannt

- Datenstruktur stimmt mit der bekannten Struktur überein
- Datenstruktur befindet sich am Ort, der vom Tool erwartet wird.
- Eg. Ein Tool wird die Browserhistory nur parsen können, wenn
 - Der Browser bekannt ist
 - Die Version eine bekannte Struktur enthält
 - Der Browser nicht in einer seltsamen Ordner-Struktur installiert wurde

Parsen von System-Informationen

Die Menge an Verfügbaren Systeminformationen ist enorm

Tool-Hersteller müssen eine Auswahl treffen

Nicht alle Tools treffen dieselbe Auswahl

Nur weil ein Tool eine Information nicht geparst präsentiert, heisst das nicht, dass sie nicht da ist!

Unpacking

- Dateisysteme können komprimierte Daten enthalten
- Damit ihr diese Lesen könnt, müsst ihr sie dekomprimieren können
- Viele Tools bieten Unpacking-Funktionalitäten an
 - Zip-Files
 - Embedded Files (Eg. Bilder in PDF)
 - Embedded Thumbnails
- Das Tool stellt (hoffentlich) sicher, dass nachvollziehbar ist, aus welcher Datei die extrahierten Dateien stammen
 - Oft als «Child» der Ursprungsdatei dargestellt
 - In Ordner-Ansicht wird «Parent»-Datei zu einem Ordner, der die «Child»-Dateien enthält

Timelineing

- Chronologische Darstellung aller Ereignisse
- Die Meisten Tools bieten irgendeine solche Funktionalität an
- Oft nicht besonders Optimiert
 - Viele Daten auf einmal
 - Meist langsam
- Grosse Schwierigkeit: Welchen Timestamp verwende ich?
 - File hat 3 / 4 Timestamps
 - Tools, welche nicht auf Timelineing optimiert sind, lösen das problem oft nicht besonders gut

Timelineing-Tools

https://github.com/log2timeline

Multimedia-Analyse

Bild- & Video-Triage gehört im LE-Kontext zu häufigen Herausforderungen

- Viele Tools bieten Möglichkeiten, um Bildanalysen durchzuführen
 - Skin-Tone
 - Nudity-Detection
 - Content-Detection
 - Still-Image-Capture (für Video)

Details in der Multimedia-Vorlesung

Statistische Analysen

Daten haben eine bestimmte Struktur

Nicht alle Byte-Werte kommen gleich häufig vor

- Anders bei Komprimierten oder Verschlüsselten Daten
 - Manche Tools bieten Funktionen zur Statistischen Analyse an, um solche Dateien zu finden

Statistische Analysen können auch manche Steganographie-Ansätze identifizieren

Multi-Source-Analyse

- Fälle werden immer komplexer
- Meist habt ihr mehrere Datenquellen
- Funktionalitäten, um Daten aus mehreren Quellen untereinander abzugleichen sind derzeit sehr in
 - Dateien, die mehrmals auftauchen
 - Gemeinsame Kontakte
- Ich bin eher skeptisch, wie gut diese Funktionalitäten implementiert sind.
 - Ich habe noch nie eine Demo mit mehr als 3 Geräten in derselben Analyse gesehen

Plugins

- Manche Software erlaubt das ausführen von externen Plugins
 - Primär Autopsy
- Ermöglicht Analyse von spezifischeren
 Anwendungen / Datenquellen
- Forschungsresultate werden oft als Autopsy-Plugin zur Verfügung gestellt

Triage

11.10.2024

 Zu Beginn der Analyse haben wir alle Möglichen Daten

Die meisten davon sind nicht Fallrelevant

• Wie können wir diese Menge reduzieren?

WORDLE: Wie gehen wir optimal vor?

Wie können wir die restlichen Antworten möglichst effizient reduzieren?

- Wir haben einen initialen Pool von Antworten
 - Wir suchen nach Tests, welche möglichst effizient unseren Pool reduzieren
- Mass für «Effizienz» in diesem Kontext: Power of Discrimination (PD)
 - $PD = 1 \sum_i G_i^2$
 - G_i : Häufigkeit des beobachteten Resultats i beim Anwenden des Tests auf die Zielgruppe
 - $\sum_i G_i = 1$
- Z.B: Erster Buchstabe des Wortes = A
 - $PD = 1 G_{1=A}^2 G_{1 \neq A}^2$
- Wir können zwischen diversen Testmethoden diejenige mit der höchsten PD suchen.
 - Optimaler Fall: Restgruppen sind für alle Resultate gleich gross
 - $PD_{Max(2)} = 1 0.5^2 0.5^2 = 0.5$

Wordle: Erster Buchstabe

i	#(1 =i)	#(1≠i)	PD
Α	140	2169	0.114
В	173	2136	0.139
C	198	2111	0.157
D	111	2198	0.092
Е	72	2237	0.060
F	135	2174	0.110
G	115	2194	0.095
Н	69	2240	0.058
I	34	2275	0.029
J	20	2289	0.017
K	20	2289	0.017
L	87	2222	0.073
M	107	2202	0.088

i	#(1 = i)	#(1≠i)	PD
N	37	2272	0.032
0	41	2268	0.035
P	141	2168	0.115
Q	23	2286	0.020
R	105	2204	0.087
S	365	1944	0.266
Т	149	2160	0.121
U	33	2276	0.028
V	43	2266	0.037
W	82	2227	0.069
X	0	2309	0.000
Y	6	2303	0.005
Z	3	2306	0.003

WORDLE

- Wordle-Eingaben sind komplexer als «Erster Buchstabe = A»
 - Wir müssen ein Wort aus der Liste Testen
 - Pro Position gibt es 3 Mögliche Antworten
 - Pro Eingabe können wir 125 verschiedene Antworten erhalten
- Die Beste Strategie ist, jeweils das Wort zu wählen, welches die Restlichen möglichen Lösungen am besten über die möglichen Antworten verteilt.

Mögliche Resultate für Start mit "TRACE"

pattern	count	guess															
*****	246	biddy	**GYY	0		*YYGG	1	farce	*GYY*	1	croak	Y**GY	5	edict	YY**G	3	forte
****Y	123	beefy	**GYG	4	cease	*YG**	17	alarm	*GYYY	2	creak	Y**GG	0		YY*Y*	1	court
****G	104	belie	**GG*	12	aback	*YG*Y	9	beard	*GYYG	0		Y*Y**	53	abbot	YY*YY	1	recut
****	48	child	**GGY	3	beach	*YG*G	7	aware	*GYG*	0		Y*Y*Y	19	adept	YY*YG	0	
***YY	13	bicep	**GGG	3	peace	*YGY*	5	chair	*GYGY	0		Y*Y*G	10	atone	YY*G*	0	
YG	16	chide	*	64	blurb	*YGYY	0		*GYGG	0		Y*YY*	8	antic	YY*GY	1	retch
***G*	38	block	*Y**Y	113	berry	*YGYG	1	scare	*GG**	25	braid	Y*YYY	5	cadet	YY*GG	0	
***GY	10	beech	*Y**G	40	borne	*YGG*	1	roach	*GG*Y	0		Y*YYG	2	acute	YYY**	12	abort
***GG	15	deuce	*Y*Y*	19	chirp	*YGGY	1	reach	*GG*G	10	brake	Y*YG*	7	batch	YYY*Y	10	after
Y	127	abyss	*Y*YY	14	cheer	*YGGG	0		*GGY*	6	cramp	Y*YGY	0		YYY*G	0	
Y*Y	48	abbey	*Y*YG	5	chore	*G*	49	bring	*GGYY	0		Y*YGG	0		YYYY*	2	actor
Y*G	45	abide	*Y*G*	3	birch	*GY	19	breed	*GGYG	3	crane	Y*G**	21	adapt	YYYYY	1	cater
***	32	bacon	*Y*GY	2	mercy	*G**G	23	bribe	*GGG*	2	crack	Y*G*Y	12	beast	YYYYG	0	
**YYY	10	cagey	*Y*GG	1	force	*G*Y*	11	crimp	*GGGY	0		Y*G*G	12	abate	YYYG*	0	
YYG	4	cable	**	61	abhor	*G*YY	8	credo	*GGGG	2	brace	Y*GY*	3	chant	YYYGY	0	
YG*	2	fancy	*YY*Y	41	aider	*G*YG	5	creme	Y**	113	bigot	Y*GYY	0		YYYGG	0	
YGY	1	mecca	*YY*G	9	adore	*G*G*	5	brick	Y*Y	58	befit	Y*GYG	0		YYG**	7	apart
YGG	3	dance	***	13	acorn	*G*GY	1	wreck	Y***G	20	butte	Y*GG*	1	stack	YYG*Y	1	heart
G	49	again	*****	5	caper	*G*GG	1	price	Y**Y*	8	cloth	Y*GGY	2	enact	YYG*G	1	stare
G*Y	8	beady	*YYYG	1	carve	*GY	13	arbor	Y**YY	7	chest	Y*GGG	0		YYGY*	1	chart
G*G	35	abase	*YYG*	3	circa	*GY*Y	7	arena	YYG	2	chute	YY***	32	birth	YYGYY	0	
GY*	17	chaff	*YYGY	0		*GY*G	3	argue	YG*	12	botch	YY**Y	29	beret	YYGYG	0	

pattern	count	guess												
YYGG*	0		YGG*Y	0		G*YYG	0		GYY**	3	tapir	GG*YY	0	
YYGGY	1	react	YGG*G	2	grate	G*YG*	0		GYY*Y	4	taker	GG*YG	0	
YYGGG	0		YGGY*	1	craft	G*YGY	0		GYY*G	0		GG*G*	2	trick
YG***	14	broth	YGGYY	0		G*YGG	0		GYYY*	0		GG*GY	0	
YG**Y	3	erupt	YGGYG	1	crate	G*G**	3	thank	GYYYY	0		GG*GG	2	trice
YG**G	3	brute	YGGG*	0		G*G*Y	0		GYYYG	0		GGY**	2	triad
YG*Y*	2	crust	YGGGY	0		G*G*G	1	tease	GYYG*	0		GGY*Y	2	tread
YG*YY	2	crept	YGGGG	0		G*GY*	0		GYYGY	0		GGY*G	0	
YG*YG	0		G****	17	thigh	G*GYY	0		GYYGG	0		GGYY*	0	
YG*G*	0		G***Y	14	teddy	G*GYG	0		GYG**	1	tiara	GGYYY	0	
YG*GY	1	erect	G***G	11	tense	G*GG*	0		GYG*Y	1	teary	GGYYG	0	
YG*GG	0		G**Y*	4	tonic	G*GGY	1	teach	GYG*G	0		GGYG*	0	
YGY**	1	artsy	G**YY	0		G*GGG	0		GYGY*	0		GGYGY	0	
YGY*Y	1	great	G**YG	0		GY***	11	third	GYGYY	0		GGYGG	0	
YGY*G	0		G**G*	2	thick	GY**Y	7	tenor	GYGYG	0		GGG**	6	trail
YGYY*	0		G**GY	0		GY**G	3	terse	GYGG*	0		GGG*Y	0	
YGYYY	0		G**GG	1	twice	GY*Y*	0		GYGGY	0		GGG*G	1	trade
YGYYG	0		G*Y**	21	tabby	GY*YY	0		GYGGG	0		GGGY*	0	
YGYG*	0		G*Y*Y	3	taken	GY*YG	0		GG***	10	troll	GGGYY	0	
YGYGY	0		G*Y*G	2	table	GY*G*	1	torch	GG**Y	3	trend	GGGYG	0	
YGYGG	0		G*YY*	2	tacit	GY*GY	0		GG**G	5	tribe	GGGG*	2	track
YGG**	4	draft	G*YYY	0		GY*GG	0		GG*Y*	0		GGGGY	0	
												GGGGG	1	trace

Situation in der Computer-Forensik

- Wir suchen nach relevanten Informationen zu einer Situation
- Wir haben eine Grosse Menge an Daten
- Wir wollen Filter auf die Daten anwenden, welche die Datenmenge, welche wir von Hand analysieren müssen reduziert
- Anders als bei WORDLE haben wir nicht ein Frage-Antwort Spiel
 - Aus der WORDLE-Logik können wir die Schrittweise Herangehensweise mitnehmen

Filter-Kriterien

- Ein gutes Filter-Kriterium
 - Hat eine hohe Wahrscheinlichkeit, irrelevante Daten auszuschliessen
 - Hat eine sehr tiefe Wahrscheinlichkeit, relevante Daten auszuschliessen
- Was weiss ich über meine Daten?
 - Zeitraum
 - Dateityp
 - Dateigrösse
 - Analyse-Resultat
 - Speicherort

Nach welchen Kriterien kann ich filtern?

Nach dem Filtern: Sortieren

- Manchmal ist es nicht möglich einen Cut-Off zu definieren
- In diesen fällen können Dateien nach einem Kriterium geordnet werden
 - Manuelle Analyse in Reihenfolge der Liste folgt der Logik, je weiter unten, desto weniger wahrscheinlich relevant
- Z.B. Fragestellung: Hat eine Person selber illegales Bildmaterial produziert?
 - Dateien, die übers Netz geteilt werden sind typischerweise komprimiert
 - Grössere Dateien sind wahrscheinlicher von dem Nutzer selber produziert
- ⇒ Filtern nach Bild-Dateien
- ⇒ Sortieren nach Dateigrösse von gross nach klein
- ⇒ Selbstgemachte Bilder schwimmen oben auf

Key-Word Suche

- Suchen nach Stichworten
- Meist zyklisch
 - Was erwarte ich?
 - Anpassen der Suchbegriffe aufgrund der Resultate
- Bedingt Indexierung der Daten
 - Teilweise einzelner Schritt
- Welche Daten werden alles indexiert?
 - Resultate oder Rohdaten?
 - In welchen Bereichen?
 - Komprimierte Daten?
 - Datenformate (Nur ASCII oder auch UTF?)

- ⇒ XWays ist für Textsuchen wahnsinnig mächtig, weil es nahezu alles indexiert
- ⇒ HxD ist sehr m\u00e4chtig, weil es sehr viele verschiedene Encoding-Formen unterst\u00fctzt

Hash-Suche

Suchen nach bekannten Dateien

- Known Irrelevant
 - Eg. Systemdateien
 - NIST Software Reference Library (NISRL)
 - https://www.nist.gov/itl/ssd/software-quality-group/national-software-reference-library-nsrl

- Known Relevant
 - Malware-Datenbanken
 - Files, die ihr erwartet

Beispiel: DFRWS EU 2021 Rodeo

- Ihr erhaltet ein Disk-Image
 - Entweder, das Gerät, von dem das Image stammt war in einem definierten Zeitraum auf einer bestimmten Website und jemand hat versucht, nachträglich die Spuren davon zu verwischen
 - Oder, das Gerät war nie auf dieser Website
- Rodeo-Setting: in 90' sollt ihr 10 solche Images kategorisieren
- Überlegt euch eine Vorgehensweise, wie ihr das schaffen könnt

The Fictitious Task

You are given the disk image of Markus Maier's laptop. The police requests answers to the following two questions:

- 1. Has the website https://de.wikipedia.org/wiki/Nashörner been accessed between October 20 and November 5, 2019?
- 2. Were pictures downloaded from https://de.wikipedia.org/wiki/Nashörner onto the computer between October 20 and November 5, 2019?

Because of the situation, there might be the possibility of evidence tampering (i.e., a post-mortem manipulation of the main disk image).

https://www.cybercrime.fau.de/dfrws-eu-2021-forensic-rodeo/

Allgemeine Funktionalitäten

11.10.2024

Dokumentation

- Was wurde gemacht?
 - E.G. Acquisition-Log by Kopier-Tools
- Auch in Tools später in der Pipeline interessant
 - Welche Plugins wurden eingesetzt?
 - Welche Einstellungen wurden bei einer Analyse verwendet?
 - In welcher Reihenfolge?
- Tools stellen mehr oder weniger fortgeschrittene Lösungen dafür zur Verfügung
 - Logs
 - Screenshots

Nachvollziehbarkeit

- Woher kommt eine Information?
 - Welche Datei / Datenbank-Eintrag / Registry
 - Von welcher Funktion gefunden

• Erlaubt mir zu überprüfen, ob das Resultat stimmt

Visit Details

Title: ai dungeon - Google Search
Date Accessed: 2022-02-13 08:36:16 MEZ

URL: https://www.google.com/search?gs_ssp=eJzj4tVP1zc0zLDMyS6zKDE3YPTiSsxUSCnNS0_NzwMAbuwIbw&q=ai+dungeon&aqs=chrome.1.69i57j46i131i433i512j5j0i512l5.44140j0j9&client=ms-android-google&sourceid=chrome-mobile&ie=UTF-8

Other

Comment: Chrome History

Source

Host: LogicalFileSet_1 Host
Data Source: LogicalFileSet1

File: /LogicalFileSet1/2022 CTF - Android.tar

Kompatibilität

 Wenn ich mehrere Tools verwende, insb. in einer Pipeline, müssen Export-Formate von späteren Tools gelesen werden können

- Bei Disk-Images haben wir Standard-Formate
 - Raw
 - E01
- Sonst noch sehr schwierig

Erstellen von "Reports"

- Viele Tools ermöglichen das erstellen von "Reports"
- Dies sind nicht Berichte im eigentlichen Sinn
- Es handelt sich eher um Resultat-Exporte
- Qualität und Nutzen dieser Reports ist meistens zwischen mässig und katastrophal angesiedelt

Kompatibilität: Export von Dateien

Nahezu alle Tools erlauben einen Export von Dateien

Diese können dann in externen Tools angeschaut oder analysiert werden

Durch den Export gehen sämtliche Kontext-Informationen verloren

Standardisierungs-Versuche: CASE

 Ziel: Einheitliches Framework um Daten und Resultate Darzustellen

 Würde u.A. Interoperabilität zwischen Tools ermöglichen

 Projekt ist noch nicht so weit fortgeschritten, dass Implementierung schon Standard wäre

Zuverlässigkeit von Tools

11.10.2024

Zuverlässigkeit von Tools

- Inwiefern sind wir zuversichtlich, dass unser Tool die erwarteten Resultate liefert?
- Hängt vom Tool ab
- Hängt von der Komplexität der Aufgabe ab
- ⇒ Allgemein wird empfohlen, eine Analyse mit verschiedenen Tools durchzuführen
- ⇒ In der Praxis macht das kaum jemand

1011 0110

Zuverlässigkeit von Tools

- Resultate, welche vorkommen sollten, aber nicht da sind
 - Kann bedeuten, dass wir Spuren verpassen
- Resultate, welche auftauchen, aber nicht dem entsprechen, was wir suchen
 - Bedeutet vor allem mehr Arbeit
- Resultate welche mehrmals genannt werden
 - Sind dies eigenständige Resultate oder dieselbe Information aus verschiedenen Quellen?
- Resultate, die falsch sind
 - Manchmal nachvollziehbar
 - Manchmal nicht

Anschaffen von Tools

11.10.2024

Was brauche ich?

Definiert aufgrund eurer Aufträge Anforderungen

Was für Fälle habe ich häufig?

Was für Spurentypen / Datentypen sind dort von Interesse?

Welche Fragestellungen muss ich häufig beantworten?

Testen

Lasst euch Test-Lizenzen geben

Probiert die Funktionalitäten aus

Challenge-Datensets sind oft interessant, um Tools auszuprobieren

Macht das Tool das, was ihr wollt?

Ist das Tool in der Handhabung praktisch?

• Ist das Tool kompatibel mit anderen Lösungen, die ihr bereits verwendet?

Open-Source vs. Kommerziell

Open Source

- Prozesse sind Nachvollziehbar
- Community-Driven
 - Decken z.T. auch sehr spezifische Fälle ab
- Updates nicht garantiert
- Meist nicht optimiert

Kommerziell

- Prozesse nicht immer transparent
- Neuentwicklungen abhängig von dem, was oft verlangt wird
- Meist aktueller als Open Source-Lösungen
- In spezifischen Problemen oft m\u00e4chtiger & effizienter als Open Source-L\u00fcsungen

Literatur empfiehlt Open Source-Lösungen, In der Praxis sind kommerzielle Tools oft unumgänglich

Fragen?

Hochschule Luzern
Informatik
Dr. Hannes Spichiger
Dozent

T direkt +41 41 349 31 24 Hannes.spichiger@hslu.ch

Auftrag auf nächste Woche

Stellt sicher, dass ihr ein funktionierendes Analyse-Tool habt

• E.G. Autopsy (https://www.sleuthkit.org/autopsy/)