캡스톤프로젝트1(02)

PM (Personal Mobility) 이용자의 안전수칙 준수 의무화를 위한 프로젝트

20182644 홍주혜 20182540 김시연 20194493 김결민 20195106 김근영 20204430 류화연

CONTENTS

- 1. 개발 배경
 - 필요성
 - 관련 연구
 - 개발목표
- 2. 개발 계획
 - 팀원 소개 및 역할 분배
 - 개발일정

3. 개발 내용

- 사용 부품
- 구현 설계도
- 핵심기능
 - 안전모 착용 탐지
 - 탑승 인원 준수 탐지
 - 모터의 작동 조건 제어
- 작동 프로세스
- 최종 구현 영상

4. 개발 결과

- 기대 효과
- 구현 한계

개발배경 프로젝트의 필요성

J 중앙일보 | 2022.10.20. | 네이버뉴스

[단독] 헬멧 안 쓰고 차에 쾅...킥보드 사망, 5년새 5배 늘었다

제출한 '전동**킥보**드 사고 현황'에 따르면 최근 **5**년간(2017년~2021년) 사고 건수는 14.8배 증가했고, **사망**자... 부상자 역시 124명에서 1901명으로 크게 **늘었다**. 광역...

fn www.fnnews.com > news

무면허·노헬멧·2인탑승까지... 킥보드 '죽음의 질주' - 파이낸셜뉴스

2023.05.23. 최근엔 **2인**이 함께 전동**킥보**드 주행을 하다 **탑승**한 여고생 1명이 목숨을 잃는 사고까지 발생해 안전대책을 강화해야 한다는 목소리가 나오고 있다. ■전 동**킥보**드 사고 4년만에... 최근에도 **무면허 탑**승 사고가 발생했다. 지난 16일 고교...

news.heraldcorp.com > view

"2인 탑승·무면허 심각한데...해법 못 찾는 전동킥보드"- 헤럴드경제

2023.05.22. 개인형 이동장치 전용 면허 등 새로운 해법도 모색되지만 현실적으로 적용이 어려워 당분간 논란은 계속될 전망이다. 22일... **2인** 이상 **탑**승 금지, 헬멧 착 용 등 기본적인 안전 수칙을 설명한 브랜드도 1곳 밖에 없었다. 면허 인증을 요구...

PM '다인탑승'과 '안전모 미착용' 관련 기사

'다인탑승'과 '안전모 미착용' 단속 현황 (단위 : 건)

출처: 국회 송석준 의원실, 경찰청

개발 배경

프로젝트의 필요성

(**J**) 중앙 [단독] 개정된 도로교통법(2021.05.)에 따라 단속이 심화되고 있지만, 제출한 14.8배 PM의 대중화와 이용자들의 안전 수칙을 미준수로 인해 fn 사고율이 매년 증가하는 추세이다. 무면 2023. 을 잃 동킥! 따라서, 본 프로젝트는 안전 수칙(1인 탑승, 안전모 착용)을 준수해야만 ∦ news 작동하는 전동 킥보드를 개발하여 "2인 팁 2023.05. PM 이용자들의 안전을 지키고 사고율을 낮추는 것을 목표로 한다. 적용이 (용등기

착용

100,356

022년 9월까

김:건)

개발배경 관련 연구(논문)

<안전모 착용 관련 논문>

2021년 한국방송·미디어공학회 추계학술대회 대학생 논문

전동 킥보드 헬멧 착용 탐지

이선엽, 부세영, 박종일^I 한양대학교 컴퓨터소프트웨어학부 srg03021@hanyang.ac.kr, iguilty@hanyang.ac.kr, jipark@hanyang.ac.kr

한국컴퓨터정보학회 동계학술대회 논문집 제30권 제1호 (2022, 1)

딥러닝 기반의 전동킥보드 헬멧착용 인식시스템 개발

박준호⁰, 황지민^{*}, 고유정^{*}, 김세하^{*}, 이현서^{*} ⁰경운대학교 항공소프트웨어공학과, ^{*}경운대학교 항공소프트웨어공학과

e-mail: jhpark@ikw.ac.kr^o, {hjm4414, z6101, bestkim1326, gusguswjdwns}@naver.com*

<다인 탑승 관련 논문>

- 2021 한국정보기술학회 추계 종합학술대회 논문집 -

CDS 포토셀과 Neo-Pixel을 이용한 2인 이상 탑승금지 전동킥보드

장재원*, 부지환*, 이상엽*, 이승우*, 이승우**, 이용환*

'안전모 착용'과 '다인 탑승 방지' 관련 특허 논문은 있지만, 두 문제를 동시에 다룬 논문은 출간되지 않음

개발배경 관련 연구(타 프로젝트)

타 대학 캡스톤 디자인 작품 분석

개발배경 개발목표

개발계획 팀원 소개 및 역할

<구현부>

홍주혜(팀장)

- 전반적인 SW 구성 및 개발 (Raspberry Pi 4)
- HW 제작 및 개발 (Arduino Uno)
- 최종 보고서 및 논문 작성

김시연

- 아이디어 구상 및 도안 제작
- 전반적인 HW 구성 및 개발 (Arduino Uno)
- 전반적인 SW 구성 및 개발 (Raspberry Pi 4)

류화연

- 전반적인 SW 구성 및 개발 (Raspberry Pi 4)
- HW 제작 및 개발 (Arduino Uno)
- HW 주요 부품 수리

김결민

- 자료 & 논문 조사
- 논문 작성
- HW 제작 및 조립 (Arduino Uno)

김근영

- 구매 & 비품 관리
- 자료 & 논문 조사
- HW 제작 및 조립, 실험 보조 (Arduino Uno)

개발계획 개발과정

	3월			4월			5월			6월				
	1	2	3	4	1	2	3	4	1	2	3	4	1	2
팀 구성 및 아이디어 회의	(
Raspberry PI에 개발 환경 세팅 (Yolov5, PyTorch)		(
Roboflow에서 Dataset download & Al training 위해 Colab에서 학습														
PyTorch 환경 재 세팅 (OS 변경)							<u>:</u>	중 가						
Raspberry PI - Arduino Uno 시리얼 통신							-	중 간 고 사						
킥보드 HW 제작 (스위치, 모터, 적외선 센서)				1		ر ا ا								
문제점 모색 및 오류 개선														
테스트 및 연동									(
최종 프로젝트 구현 결과 보고서 생성											 			, }

개발내용 사용 부품

라즈베리파이 4

개발내용 구현 설계도

<킥보드 설계도>

개발내용 안전모 착용 탐지

킥보드의 손잡이 중앙에 웹캠 설치

이용자의 안전모 착용 여부를 탐지

안전모 미착용의 경우

head 로 인식되는 모습

개발내용 탑승 인원 준수 탐지

1인 탑승의 경우

PIR 센서 중 2개의 값만 감지되어 모터가 작동된다.

발판 외곽에 PIR 센서를 설치

탑승 인원 준수 여부를 탐지

다인 탑승의 경우

PIR 센서에 3개 이상의 값이 감지되어 모터가 작동되지 않는다

개발내용 모터의 작동제어

킥보드의 손잡이에 모터 작동용 스위치 설치

이용자가 버튼 스위치를 누르면 안전 수칙 준수 여부에 따라 동작 여부 결정

헬멧 착용 1인 탑승	0	X		
0	작동	미작동		
X	미작동	미작동		

개발내용 작동 프로세스

	헬멧 착용	헬멧 미착용
1인 탑승	0	Х
다인 탑승	Χ	Х

개발내용 최종 구현 영상

헬멧 착용 상태(detected)로 인식되어 스위치를 누를 시 킥보드가 전진함

개발내용 최종 구현 영상

1인 탑승 상태이면서 헬멧 미착용 상태(no detected)로 인식되어 스위치를 눌러도 모터가 작동하지 않음

개발내용 최종 구현 영상

PIR에 인식되는 발이 3개 이상일 때, 스위치가 눌려도 모터는 작동하지 않음

개발내용 최종구현 영상

PIR에 인식되는 발이 3개 이상일 때, 스위치가 눌려도 모터는 작동하지 않음

개발내용 최종구현 영상

작동 도중 PIR에 인식되는 발이 3개 이상되면 약 5초 뒤 모터의 동작을 멈추게 함

개발 결과 개발 비용

재료명	수량	단가(원)	금액(원)		
USB 화상 웹카메라	1	5,000	5,000		
리튬이온배터리	10	5,500	55,000		
리튬이온배터리홀더	2	3,100	6,200		
FD04A 모터드라이버 모듈	1	40,970	40,970		
PIR인체감지모션센서	4	1,020	4,080		
바퀴휠+모터 기어박스	5	2,200	11,000		
라즈베리파이4	1	88,000	88,000		
Arduino Uno	1	28,000	28,000		
합계			238,250		

*총 금액 3000원 미만의 재료는 기재 생략함

총 약 24만원의 개발비용, 기존의 킥보드에 해당 시스템을 추가한다면 최대 약 12만원의 개발 비용이 필요할 것으로 예상

개발결과 기대효과

• 안전사고 예방

- 안전모 착용 감지 시스템은 카메라를 통해 킥보드 이용자들의 안전모를 착용을 감지하여 안전모를 착용하지 않을 경우 주행을 불가능하게 한다.
 - ⇒ 안전모 착용률을 높이고, 머리와 얼굴을 다치는 안전사고를 예방할 수 있다.
- 다인 탑승 방지 시스템은 PIR 센서를 통해 발판 위의 인체를 감지하여 다인 탑승을 방지함으로서 킥보드의 구조적인 한계로 인한 안전사고 위험을 감소시킨다.
 - ⇒ 무게 중심 이탈로 인한 사고나 중상 위험, 돌발 상황 대처 능력 저하 등을 예방할 수 있다.

• 절세 효과, 사회 안전 수준 향상

- 탑승 조건을 지키지 않으면 구동이 되지 않으므로 위반 사례를 단속하지 않아도 되어 행정력을 낭비하지 않게 된다.
 - ⇒ 행정력이 낭비되지 않아 필요한 곳에 적절히 쓰일 수 있으므로 사회 안전 수준이 향상될 수 있다.

개발 결과 구현 한계

• 헬멧 인식률 낮음

- 헬멧 데이터셋의 부족으로 인해 머리와 헬멧 인식률이 일부 떨어지는 문제가 있다.
- 데이터 추가를 통해 해결할 수 있지만 직접 라벨링하는 것은 시간적 한계가 있고 비효율적이라는 판단으로 본 프로젝트에서는 데이터셋 제작하는 것은 진행하지 않았다.

• PIR 센서 정확도와 성능 문제

- PIR 센서의 정확도가 일부 낮아지는 현상이 간혹 관찰된다. 가끔 가짜 감지나 온도 감지의 제약으로 인한 문제가 가끔 발생하나, 약간의 시간이 흐른 후 다시 정상적인 기능을 수행한다.
- 위의 문제들은 센서의 고질적인 한계로 인해 수정하기 어려우며 좀 더 <u>고가의 센서</u>를 사용함으로써 해결할 수 있으리라 추측한다.

감사합니다

THANK YOU