#4 可达性评估

数据文件:

accessibility.csv——从对应 o_zone 到目标 d_zone 在需求时间内按畅通旅行时间所能走行的距离. accessibility_aggregated.csv——不同 agent 种类从 zone 的质心出发,在给定时间内所能达到的最远点.

名词解释:

可达性——假设一点为起始点,在给定交通条件下,给定时间内所能到达的最远距离所组成的范围。 Centroids——zone_id 映射到其质心坐标后的结果。

TT—Travel Time.

AT-Agent Type.

代码文件:

accessibility.py——内含评估可达性与输出对应结果的方法.

主函数:

evaluate_accessibility(ui,multimodal=True,mode='p',time_dependent=False,demand_peri
od_id=0,output_dir='.')

multimodal——是否开启多模式可达性评估,如果开启,评估可达性时就按照设置文件中所有可能的交通模式进行评估,如果不开启,只按照目标 mode 进行可达性评估.

time_dependent——是否开启时间依赖,开启则使用需求时段的畅通旅行时间评估可达性,关闭则使用Link 的长度与畅通旅行速度评估可达性。

demand_period_id——需求时间段的 ID,目前只有一个时间段。

_update_min_travel_time()——更新最小旅行时间.其中用到了"更新广义旅行费用"与"求最短路"两个方法,在所有的 min tt(所有 zone 到 zone 的旅行时间)中筛选出最大的一项.

外层循环从所有 agent_type 中寻找最大的 min_tt.

_get_interval_id(t)——计算要输出的时间间隔区域个数。

(最后输出的['TT_10', 'TT_15', 'TT_20', 'TT_25', 'TT_30', 'TT_35', 'TT_40', 'TT_45', 'TT_50', 'TT_55', 'TT_60', 'TT_65', 'TT_70', 'TT_75', 'TT_80', 'TT_85', 'TT_90'...]表示的值(在 accessibility_aggregated.csv 中)是从出行开始的第 TT_X 分钟所能到达的区间个数。

"TT_10"表示据出行开始的第 10 分钟.)