Logaritmos e Potências

Mali

19 de agosto de 2016

Definição: logaritmo de um número é a potência à qual preciso elevar a base para chegar a esse número. Então se $log_b(n) = p$, isso significa que $b^p = n$.

1. Calcule as potências e os logaritmos:

(a)
$$2^1 =$$

(b)
$$2^2 =$$

(c)
$$2^3 =$$

(d)
$$2^4 =$$

(e)
$$log_2(2) =$$

(f)
$$log_2(4) =$$

(g)
$$log_2(8) =$$

(h)
$$log_2(16) =$$

Lembre-se que potência com expoente negativo é o inverso da potência com expoente positivo, isto é: $b^{-n} = 1/b^n$.

2. Calcule as potências e os logaritmos:

(a)
$$3^{-1} =$$

(e)
$$log_3(1/3) =$$

(i)
$$log_3(1/9) =$$

(b)
$$4^{-2} =$$

(f)
$$log_4(1/16) =$$

(j)
$$log_4(1/4) =$$

(c)
$$10^{-3} =$$

(g)
$$log_{10}(1/1000) =$$

(k)
$$log_{10}(0,001) =$$

(d)
$$5^{-3} =$$

(h)
$$log_5(1/125) =$$

(1)
$$log_5(1/525) =$$

Quando multiplicamos potências com a mesma base, podemos somar os expoentes $(b^n b^m = b^{m+n})$. O correspondente dessa regra em logaritmos é que a soma de logaritmos (expoentes) equivale a uma multiplicação.

3. Calcule as potências e os logaritmos:

(a)
$$2^32^2 =$$

(b)
$$4^{-2}4^2 =$$

(c)
$$10^{-3}10^{-1} =$$

(d)
$$5^35^{-2} =$$

(e)
$$e^1 e^{-2} =$$

(f)
$$2^5 =$$

(g)
$$4^0 =$$

(h)
$$10^{-4} =$$

(i)
$$5^1 =$$

(j)
$$e^{-1} =$$

(k)
$$log_2(8) + log_2(4) =$$

(1)
$$log_4(1/16) + log_4(16) =$$

(m)
$$log_{10}(0,001) + log_10(0,1) =$$

(n)
$$log_5(125) + log_5(1/25) =$$

(o)
$$ln(e) + ln(1/e^2) =$$

(p)
$$log_2(8x4) =$$

(q)
$$log_4(16/16) =$$

(r)
$$log_{10}(0,0001) =$$

(s)
$$log_5(5) =$$

(t)
$$ln(1/e) =$$

O logaritmo é uma operação inversa à exponenciação, no sentido de que $log_b(b^x) = x$ e $b^{log_b(x)} = x$. Em particular, $x = e^{ln(x)}$.

(d) $4e^{2x} =$

4. Coloque as fórmulas a seguir na forma e^{ax+b} :

- (a) $2 = e^{\ln(2)}$
- (b) $2^x =$ (e) $2\pi 2^x =$
- (c) $3e^x =$ (f) $3^x 2^x =$
- 5. Imagine um conjunto de dados com uma distribuição com a forma $y_i = e^{2x_i + 1 + \epsilon_i}$ onde $epsilon \sim N(0,2)$ é um erro normalmente distribuído ou seja, em escala logarítmica, o erro é normal e a variância não depende de x.
 - (a) Suponha que $x_1 = 1$ e que o erro ϵ_1 vale 2. Quanto vale y_1 ? Qual a diferença entre o y esperado para esse x_1 e o y_1 encontrado com esse erro? (obs.: use calculadora)
 - (b) Suponha agora que $x_2 = 3$ e que o erro ϵ_2 também vale 2. Quanto vale y_2 ? Qual a diferença entre o y esperado para esse x_2 e o y_2 encontrado com esse erro?