Вариант № 107

Добавим к исходному графу ребра между $e_2 - e_9$ и $e_5 - e_9$

	e_1	\mathbf{e}_2	e_3	e_4	e ₅	e_6	e ₇	e_8	e ₉	e ₁₀	e ₁₁	e ₁₂
e_1	0	1		1	1		1	1		1	1	
e_2	1	0		1	1				1	1	1	1
e_3			0		1	1		1		1	1	1
e_4	1	1		0	1	1	1	1			1	1
e_5	1	1	1	1	0	1			1	1	1	
e_6			1	1	1	0	1			1		
e ₇	1			1		1	0	1		1	1	
e_8	1		1	1			1	0		1	1	
e ₉		1			1				0	1		
e ₁₀	1	1	1		1	1	1	1	1	0		1
e ₁₁	1	1	1	1	1		1	1			0	1
e ₁₂		1	1	1						1	1	0

1. Найдем гамильтонов цикл

Включаем в S вершину e. $S = \{e1\}$

Последовательно будем включать возможные вершины в S

$$e_2$$
: $S = \{e_1, e_2\}$
 e_4 : $S = \{e_1, e_2, e_4\}$
 e_5 : $S = \{e_1, e_2, e_4, e_5\}$
 e_3 : $S = \{e_1, e_2, e_4, e_5, e_3\}$
 e_6 : $S = \{e_1, e_2, e_4, e_5, e_3, e_6\}$
 e_7 : $S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7\}$
 e_8 : $S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8\}$
 e_{10} : $S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8, e_{10}\}$
 e_9 : $S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8, e_{10}\}$

У e_9 больше нет возможных вершин, удалим ее. Вернемся к e_{10} . S = $\{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8, e_{10}\}$

$$e_{12}$$
: S = { e_1 , e_2 , e_4 , e_5 , e_3 , e_6 , e_7 , e_8 , e_{10} , e_{12} }

$$e_{11}$$
: $S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8, e_{10}, e_{12}, e_{11}\}$

У e_{11} больше нет возможных вершин, удалим ее. Вернемся к e_{12} . S = $\{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8, e_{10}, e_{12}\}$

У e_{12} больше нет возможных вершин, удалим ее. Вернемся к e_{10} . S = $\{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8, e_{10}\}$

У е₁₀ больше нет возможных вершин, удалим ее.

Вернемся к e_8 : $S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8\}$

$$e_{11}: S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8, e_{11}\}$$

$$e_{12}: S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8, e_{11}, e_{12}\}$$

$$e_{10}: S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8, e_{11}, e_{12}, e_{10}\}$$

$$e_9: S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8, e_{11}, e_{12}, e_{10}, e_9\}$$

Ребра (e_9, e_1) нет, найдена гамильтонова цепь.

Удалим из S вершину e_9 , перейдем к e_{10} . S = $\{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8, e_{11}, e_{12}, e_{10}\}$

У е₁₀ больше нет возможных вершин, удалим ее.

Продолжая подобным образом (не привожу все рассуждения, поскольку они абсолютно однотипны), находим гамильтонов цикл: $S = \{e_1, e_2, e_4, e_5, e_9, e_{10}, e_6, e_3, e_{12}, e_{11}, e_7, e_8\}$

2. Матрица смежности с перенумерованными вершинами

Перенумеруем вершины согласно полученному гамильтонову циклу (чтобы ребра были внешними)

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e ₉	e ₁₀	e ₁₁	e ₁₂
e_1	0	1	1	1	0	1	0	0	0	1	1	1
e_2	1	0	1	1	1	1	0	0	1	1	0	0
e_3	1	1	0	1	0	0	1	0	1	1	1	1
e_4	1	1	1	0	1	1	1	1	0	1	0	0
e_5	0	1	0	1	0	1	0	0	0	0	0	0
e_6	1	1	0	1	1	0	1	1	1	0	1	1
e_7	0	0	1	1	0	1	0	1	0	0	1	0
e_8	0	0	0	1	0	1	1	0	1	1	0	1
e ₉	0	1	1	0	0	1	0	1	0	1	0	0
e ₁₀	1	1	1	1	0	0	0	1	1	0	1	1
e ₁₁	1	0	1	0	0	1	1	0	0	1	0	1
e ₁₂	1	0	1	0	0	1	0	1	0	1	1	0

До перенумерации вершин: e_1 , e_2 , e_3 , e_4 , e_5 , e_6 , e_7 , e_8 , e_9 , e_{10} , e_{11} , e_{12} После перенумерации вершин: e_1 , e_2 , e_4 , e_5 , e_9 , e_{10} , e_6 , e_3 , e_{12} , e_{11} , e_7 , e_8

3. Построение графа пересечений G'

Определим p_{210} , для чего в матрице R выделим подматрицу R_{210} . Ребро (e_2e_{10}) пересекается с (e_1e_3) , (e_1e_4) , (e_1e_6)

Определим p_{29} , для чего в матрице R выделим подматрицу R_{29} . Ребро (e_2e_9) пересекается с (e_1e_3) , (e_1e_4) , (e_1e_6)

Определим p_{26} , для чего в матрице R выделим подматрицу R_{26} . Ребро (e_2e_6) пересекается с (e_1e_3) , (e_1e_4)

Определим p_{25} , для чего в матрице R выделим подматрицу R_{25} . Ребро (e_2e_5) пересекается с (e_1e_3) , (e_1e_4)

Определим p_{24} , для чего в матрице R выделим подматрицу R_{24} . Ребро (e_2e_4) пересекается с (e_1e_3)

Определим p_{312} , для чего в матрице R выделим подматрицу R_{312} . Ребро (e_3e_{12}) пересекается c (e_1e_4) , (e_1e_6) , (e_1e_{10}) , (e_1e_{11}) , (e_2e_4) , (e_2e_5) , (e_2e_6) , (e_2e_9) , (e_2e_{10})

Определим p_{311} , для чего в матрице R выделим подматрицу R_{311} . Ребро (e_3e_{11}) пересекается с (e_1e_4) , (e_1e_6) , (e_1e_{10}) , (e_2e_4) , (e_2e_5) , (e_2e_6) , (e_2e_9) , (e_2e_{10})

Определим p_{310} , для чего в матрице R выделим подматрицу R_{310} . Ребро (e_3e_{10}) пересекается c (e_1e_4) , (e_1e_6) , (e_2e_4) , (e_2e_5) , (e_2e_6) , (e_2e_9)

Определим p_{39} , для чего в матрице R выделим подматрицу R_{39} . Ребро (e_3e_9) пересекается с (e_1e_4) , (e_1e_6) , (e_2e_4) , (e_2e_5) , (e_2e_6)

Определим p_{37} , для чего в матрице R выделим подматрицу R_{37} . Ребро (e_3e_7) пересекается c (e_1e_4) , (e_1e_6) , (e_2e_4) , (e_2e_5) , (e_2e_6)

15 пересечений графа найдено. Окончание поиска.

	p ₁₃	p _{2 10}	p _{1 4}	p ₁₆	p ₂₉	p ₂₆	p _{2 5}	p _{2 4}	p _{3 12}	p _{1 10}	p _{1 11}	p _{3 11}	p _{3 10}	p ₃₉	p _{3 7}
p ₁₃	1	1	0	0	1	1	1	1	0	0	0	0	0	0	0
p _{2 10}	1	1	1	1	0	0	0	0	1	0	0	1	0	0	0
p ₁₄	0	1	1	0	1	1	1	0	1	0	0	1	1	1	1
p ₁₆	0	1	0	1	1	0	0	0	1	0	0	1	1	1	1

p ₂ 9	1	0	1	1	1	0	0	0	1	0	0	1	1	0	0
p ₂₆	1	0	1	0	0	1	0	0	1	0	0	1	1	1	1
p ₂₅	1	0	1	0	0	0	1	0	1	0	0	1	1	1	1
p _{2 4}	1	0	0	0	0	0	0	1	1	0	0	1	1	1	1
p _{3 12}	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0
p _{1 10}	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0
p _{1 11}	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
p _{3 11}	0	1	1	1	1	1	1	1	0	1	0	1	0	0	0
p _{3 10}	0	0	1	1	1	1	1	1	0	0	0	0	1	0	0
p _{3 9}	0	0	1	1	0	1	1	1	0	0	0	0	0	1	0
p _{3 7}	0	0	1	1	0	1	1	1	0	0	0	0	0	0	1

4. Построение семейства фС

В 1 строке матрицы найдем первый нулевой элемент.

Записываем дизьюнкцию $M_{1\,3}=r_1 \vee r_3=110011110000000 \vee 011011101001111=1110111111001111$

В строке M_{13} находим номера нулевых элементов, $J' = \{4, 10, 11\}$.

Записываем дизъюнкцию $M_{1\,3\,4}=M_{1\,3}\, \text{V r}_4=111011111001111\, \text{V }010110001001111=11111111001111$

В строке $M_{1\,3\,4}$ находим номера нулевых элементов, $J' = \{10, 11\}$.

Записываем дизъюнкцию $M_{1\,3\,4\,10}=M_{1\,3\,4}$ V $r_{10}=1111111111001111$ V 000000001101000 = 111111111111111

В строке $M_{1,3,4,10}$ находим номера нулевых элементов, $J' = \{11\}$.

В строке $M_{1\,3\,4\,10\,11}$ все 1. Построено $\psi_1 = \{u_{1\,3},\ u_{1\,4},\ u_{1\,6},\ u_{1\,10},\ u_{1\,11}\}$

В таком духе находим оставшиеся 8 множеств

Получаем:

```
 \psi_1 = \{u_{1\,3}, u_{1\,4}, u_{1\,6}, u_{1\,10}, u_{1\,11}\} 
 \psi_2 = \{u_{1\,3}, u_{3\,12}, u_{3\,11}, u_{3\,10}, u_{3\,9}, u_{3\,7}\} 
 \psi_3 = \{u_{1\,3}, u_{1\,10}, u_{1\,11}, u_{3\,10}, u_{3\,9}, u_{3\,7}\} 
 \psi_4 = \{u_{1\,3}, u_{1\,11}, u_{3\,11}, u_{3\,10}, u_{3\,9}, u_{3\,7}\} 
 \psi_5 = \{u_{2\,10}, u_{2\,9}, u_{2\,6}, u_{2\,5}, u_{2\,4}, u_{1\,10}, u_{1\,11}\} 
 \psi_6 = \{u_{2\,10}, u_{2\,9}, u_{1\,10}, u_{1\,11}, u_{3\,9}, u_{3\,7}\} 
 \psi_7 = \{u_{2\,10}, u_{1\,10}, u_{1\,11}, u_{3\,10}, u_{3\,9}, u_{3\,7}\} 
 \psi_8 = \{u_{1\,4}, u_{1\,6}, u_{2\,4}, u_{1\,10}, u_{1\,11}\} 
 \psi_9 = \{u_{1\,6}, u_{2\,6}, u_{2\,5}, u_{2\,4}, u_{1\,10}, u_{1\,11}\}
```

5. Выделение из G' максимального двудольного подграфа Н'

Для каждой пары множеств вычислим значение критерия

$$\alpha_{12} = |\psi_1| + |\psi_2| - |\psi_1 \cap \psi_2| = 10$$

$$\alpha_{13} = |\psi_1| + |\psi_3| - |\psi_1 \cap \psi_3| = 8$$
 и тд

Все результаты занесем в матрицу ниже:

	1	2	3	4	5	6	7	8	9
1	0	10	8	9	10	9	9	6	8
2		0	8	7	13	10	9	11	12
3			0	7	11	8	7	9	10
4				0	12	9	8	10	11
5					0	9	10	9	8
6						0	7	9	10
7							0	9	10
8								0	7
9									0

 \max α_{ij} = α_{25} = 13 дает лишь пара множеств ψ_2 = { u_1 3, u_3 12, u_3 11, u_3 10, u_3 9, $u_{3 7}$ } и $\psi_{5} = \{u_{2 10}, u_{2 9}, u_{2 6}, u_{2 5}, u_{2 4}, u_{1 10}, u_{1 11}\}$

В суграфе Н, содержащем максимальное число непересекающихся ребер, проведем

ребра из ψ_2 внутри, а из ψ_5 снаружи.

Удалим из ψ_G ребра, которые вошли в ψ_2 и ψ_5 . Объединим одинаковые множества ψ_1 и ψ_8 , ψ_9 входит в ψ_1

Не реализованными остались два ребра. Проведем их. Итоговый граф:

