

SINGAPORE INSTITUTE OF MANAGEMENT

UNIVERSITY OF LONDON PRELIMINARY EXAM 2019

MODULE CODE : ST3188

MODULE TITLE : STATISTICAL METHODS FOR MARKET RESEARCH

DATE OF EXAM :

TIME OF EXAM :

DURATION : 2 hours

TOTAL NUMBER: 10

OF PAGES (INCLUDING THIS PAGE)

INSTRUCTIONS TO CANDIDATES:-

This paper contains two sections. Section A is compulsory and contains one question. Section B contains three questions.

Answer THE question in Section A and TWO questions from Section B.

Section A carries 40 marks and Section B carries 60 marks. All questions in Section B will be given equal weight (30 marks).

The coursework mark (worth 30% of the final mark) will be combined with the examination mark (worth 70%) to give the overall percentage for the module.

A calculator may be used when answering questions on this paper and it must comply in all respects with the specification given with your Admission Notice. The make and type of machine must be clearly stated on the front cover of the answer book.

DO NOT TURN OVER THIS QUESTION PAPER UNTIL YOU ARE TOLD TO DO SO.

Candidates are strongly advised to divide their time accordingly.

SECTION A: Compulsory

(a) Cryptocurrencies, such as Bitcoin and Ethereum, are digital currencies which
employ encryption techniques to regulate the generation of units of currency
and verify the transfer of funds, operating independently of a central bank.
Volatile price movements in the past year have resulted in financial regulators
leading calls for cryptocurrencies to be reined in for fear of contagion risks if
they enter the financial mainstream.

Recently, some retail banks have banned customers from trading in cryptocurrencies using credit cards (due to the bank's liability in the event of default), but still permit transactions using debit cards (as a customer's own funds are used), although some banks are considering also banning the use of debit cards to trade as well to safeguard against customers realising large losses.

One bank is considering imposing a cap on debit card transactions rather than an outright ban (for fear of losing customers to competitors). The bank has invited you to devise an appropriate sampling scheme to research attitudes of its customers regarding the introduction of a cap, including the level of any cap. Explain in detail how each of the following sampling methods could be applied to the overall sampling strategy. Make sure you describe the merits and limitations of each as well as how each would be applied in practice.

- i. Quota sampling.
- ii. Snowball sampling.
- iii. Stratified sampling.
- iv. Cluster sampling.

(20 marks)

- (b) Suppose we are interested in estimating the proportion of a population using a simple random sample of size n.
 - i. Explain what a sampling distribution is.
 - ii. State a suitable estimator of the population proportion as well as its sampling distribution. Mention any assumptions which you make.
 - iii. Explain statistically how to determine the minimum sample size necessary to estimate a population proportion to within d units.
 - iv. When constructing a confidence interval for a proportion, which level of confidence would you propose and why?

(20 marks)

SECTION B: Answer two questions. Each question carries equal weight.

2. (a) A national estate agency is attempting to build a model to explain house prices. By identifying key predictor variables, the company hopes to accurately value properties and emphasise important factors when marketing properties which are put up for sale.

Data from n=452 neighbourhoods were analysed using a multiple linear regression. The dependent variable is the median value of owner-occupied homes, in £000s. Seven predictor variables are initially included in the model:

- per capita crime rate of neighbourhood
- property has parking (1 = yes, 0 = no)
- nitric oxides concentration (parts per 10 million)
- proportion of homes built prior to 1940
- weighted distances to five employment centres
- index of accessibility to motorways
- proportion of non-retail business sites in neighbourhood.

Selected SPSS output is provided in Figure 1 (on the next page). Analyse the regression results, making sure you:

- Write out the full regression model, including any assumptions, and the estimated model.
- Comment on the statistical significance of the model, and the individual variables.
- Propose any changes you would make to the model, including any other explanatory variables which you would consider using, or any you would remove from the existing model. Keep in mind the objective of explaining house prices.

(20 marks)

- (b) i. What is the purpose of stepwise regression?
 - ii. Explain the stepwise regression approaches of forward selection, backward elimination and stepwise selection.

(10 marks)

Figure 1

Model Summary

Model	R	R Square	Adjusted R	Std. Error of the
			Square	Estimate
1	.541	.293	.282	74.64358

ANOVA

	Model	Sum of Squares	df	Mean Square	F	Sig.
	Regression	1025555.853	7	146507.979	26.295	.000
1	1 Residual	2473819.138	444	5571.665		
	Total	3499374.991	451			

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	483.401	36.929		13.090	.000
	per capita crime rate of neighbourhood	-6.538	3.519	185	-1.858	.064
	property has parking	62.074	13.308	.189	4.664	.000
	nitric oxides concentration (parts per 10 million)	-136.612	59.668	177	-2.290	.023
	proportion of homes built prior to 1940	726	.195	232	-3.726	.000
	weighted distances to five employment centres	-18.904	2.843	449	-6.650	.000
	index of accessibility to motorways	1.973	1.069	.169	1.845	.066
	proportion of non-retail business sites in neighbourhood	-5.717	.818	441	-6.987	.000

a. Dependent Variable: median value of owner-occupied homes in £000s

Histogram

Dependent Variable: median value of owner-occupied homes in £000s

Regression Standardized Residual

3. (a) With UK interest rates expected to rise in the years ahead from their recent historic lows, a credit card issuer is keen to develop a new model for predicting default on credit card debt, anticipating an increase in defaults as the cost of borrowing rises.

A large sample of existing customers (some of whom had previously defaulted) were modelled using discriminant analysis in order to identify useful predictor variables which could be used to predict the default status of future customers. In total, five predictors were considered:

- age in years
- total years in employment
- income in £000s
- outstanding student loans in £000s
- highest level of education (1 = school, 2 = undergraduate, 3 = postgraduate, 4 = postgraduate research).

Analyse the selected SPSS output in Figure 2 (spread over the next two pages) and discuss what conclusions can be drawn from the data. In your analysis, be sure to address at least the following:

- State the theoretical and estimated discriminant analysis models.
- Comment on the relative importance of the predictor variables.
- Comment on the suitability of including the 'highest level of education' variable.
- Determine the predictive accuracy of the model.

(20 marks)

- (b) i. Explain what multicollinearity is.
 - ii. What problems could arise as a consequence of multicollinearity?
 - iii. How might you detect multicollinearity?

(10 marks)

Figure 2

Eigenvalues

Function	Eigenvalue	% of Variance	Cumulative %	Canonical	
				Correlation	
1	.194	100.0	100.0	.403	

Wilks' Lambda

Test of Function(s)	Wilks' Lambda	Chi-square	df	Sig.
1	.838	123.228	5	.000

Tests of Equality of Group Means

	Wilks' Lambda	F	df1	df2	Sig.
Age in years	.981	13.482	1	698	.000
Total years in employment	.920	60.759	1	698	.000
Income in £000s	.995	3.533	1	698	.061
Outstanding student Ioans in £000s	.979	15.142	1	698	.000
Highest level of education	.986	9.945	1	698	.002

Standardized Canonical Discriminant Function Coefficients

	Function
	1
Age in years	.090
Total years in employment	1.000
Income in £000s	.039
Outstanding student Ioans in £000s	860
Highest level of education	026

Structure Matrix

	Function
	1
Total years in employment	.670
Outstanding student loans in £000s	335
Age in years	.316
Highest level of education	271
Income in £000s	.162

Figure 2 (continued)

Pooled Within-Groups Matrices

		Age in years	Total years in employment	Income in £000s	Outstanding student loans in £000s	Highest level of education
Correlation	Age in years	1.000	.524	.475	.368	.032
	Total years in employment	.524	1.000	.627	.471	130
	Income in £000s	.475	.627	1.000	.629	.236
	Outstanding student loans in £000s	.368	.471	.629	1.000	.147
	Highest level of education	.032	130	.236	.147	1.000

Canonical Discriminant Function Coefficients

	Function
	1
Age in years	.011
Total years in employment	.157
Income in £000s	.001
Outstanding student Ioans in £000s	264
Highest level of education	029
(Constant)	901

Unstandardized coefficients

Functions at Group Centroids

	Function
Default status	1
0	.262
1	739

Unstandardized canonical discriminant functions evaluated at group means

Classification Results

			Predicted Group Membership		
		Default status	0	1	Total
Original	Count	0	345	172	517
		1	41	142	183
	%	0	66.7	33.3	100.0
		1	22.4	77.6	100.0
Cross-validated	Count	0	345	172	517
		1	42	141	183
	%	0	66.7	33.3	100.0
		1	23.0	77.0	100.0

- 4. (a) An employer conducted a survey of n=100 employees to determine their satisfaction with the company's IT provision. Respondents were asked to rate the following:
 - start_time: satisfaction with the start-time of the IT system
 - system_availability: satisfaction with the availability of the IT system
 - performance: satisfaction with the performance of the IT system
 - training_quality: satisfaction with training offers and their quality
 - user_orientation: satisfaction with the user orientation of the IT system
 - data_quality: satisfaction with the data quality in the IT system.

Figure 3 (spread over the next two pages) presents selected SPSS output from a factor analysis with principal components extraction, using the varimax rotation procedure. Interpret the output. In your analysis, be sure to address at least the following:

- Explain how you determine the number of factors and interpret the extracted factors.
- Explain qualitatively and quantitatively how the fit of the factor analysis model should be examined.
- Briefly discuss for what modelling purpose(s) extracted factors could be used.

(20 marks)

(b) The basic conjoint analysis model may be represented by the following formula:

$$U(X) = \sum_{i=1}^{m} \sum_{j=1}^{k_i} \alpha_{ij} x_{ij}.$$

- i. Define each of the five terms U(X), m, k_i , α_{ij} and x_{ij} .
- ii. Explain how the relative importance of attributes can be determined from this model.

(10 marks)

Figure 3

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.		.686
	Approx. Chi-Square	98.035
Bartlett's Test of Sphericity	df	15
	Sig.	.000

Communalities

	Initial	Extraction
satisfaction with the start- time of the IT system	1.000	.656
satisfaction with the availability of the IT system	1.000	.356
satisfaction with the performance of the IT system	1.000	.500
satisfaction with training offers and their quality	1.000	.711
satisfaction with the user orientation of the IT system	1.000	.631
satisfaction with the data quality in the IT system	1.000	.656

Component	Initial Eigenvalues			
	Total	% of Variance	Cumulative %	
1	2.308	38.465	38.465	
2	1.202	20.027	58.492	
3	.861	14.349	72.841	
4	.701	11.679	84.520	
5	.469	7.810	92.330	
6	.460	7.670	100.000	

Rotated Component Matrix

	Component		
	1	2	
satisfaction with the start-	.803	.102	
time of the IT system			
satisfaction with the	.585	.118	
availability of the IT system			
satisfaction with the	.707	001	
performance of the IT			
system			
satisfaction with training	238	.809	
offers and their quality			
satisfaction with the user	.342	.717	
orientation of the IT system			
satisfaction with the data	.517	.624	
quality in the IT system			

Component Score Coefficient Matrix

	Component		
	1	2	
satisfaction with the start-	.439	081	
time of the IT system			
satisfaction with the	.311	029	
availability of the IT system			
satisfaction with the	.403	135	
performance of the IT			
system			
satisfaction with training	289	.607	
offers and their quality			
satisfaction with the user	.059	.434	
orientation of the IT system			
satisfaction with the data	.177	.336	
quality in the IT system			

ST3188 Page 9 of 10

Figure 3 (continued)

Reproduced Correlations

		satisfaction with the start- time of the IT system	satisfaction with the availability of the IT system	satisfaction with the performance of the IT system	satisfaction with training offers and their quality	satisfaction with the user orientation of the IT system	satisfaction with the data quality in the IT system
Reproduced Correlation	satisfaction with the start- time of the IT system	.656ª	.482	.568	109	.348	.479
	satisfaction with the availability of the IT system	.482	.356ª	.413	044	.285	.376
	satisfaction with the performance of the IT system	.568	.413	.500 ^a	169	.241	.365
	satisfaction with training offers and their quality	109	044	169	.711 ^a	.499	.381
	satisfaction with the user orientation of the IT system	.348	.285	.241	.499	.631ª	.624
	satisfaction with the data quality in the IT system	.479	.376	.365	.381	.624	.656ª
Residual ^b	satisfaction with the start- time of the IT system		152	211	.027	006	056
	satisfaction with the availability of the IT system	152		146	.150	142	129
	satisfaction with the performance of the IT system	211	146		.159	055	081
	satisfaction with training offers and their quality	.027	.150	.159		226	148
	satisfaction with the user orientation of the IT system	006	142	055	226		103
	satisfaction with the data quality in the IT system	056	129	081	148	103	

Extraction Method: Principal Component Analysis.

a. Reproduced communalities

