Governo Federal

Ministério da Educação

Universidade Federal do Maranhão

A Universidade que Cresce com Inovação e Inclusão Social

Fluxo Máximo

Estrutura de Dados II

Introdução

Fluxo em Redes

 É a transferência de algum tipo de recurso quantificável e sujeito a restrições de equilíbrio, de um local(nó origem) para outro(nó sorvedor) através da rede.

Grafo de Fluxo

- É comum usar grafos para representar uma "rede de fluxo" e usá-lo para responder perguntas sobre os fluxos de materiais
- Fluxo é a taxa de material que atravessa a rede
- Cada aresta direcionada é um canal para o material com alguma capacidade indicada
- Os vértices são pontos de conexão, mas não coletam material
 - O Fluxo que entra em um vértice deve ser igual ao fluxo que deixa vértice, conservação fluxo
- Vértice Fonte s
 - Onde o material é produzido
- Vértice Destino (consumidor) t
 - Onde o material é consumido

Exemplo

 Líquido fluindo por uma rede de tubos, como a rede de abastecimento de água ou a rede de esgoto

Peças se deslocando por linhas de montagem

Voz, imagem ou dados em redes de comunicação

Sistemas Elétricos de Transmissão

Exemplos

Rede	Vértice	Aresta	Fluxo
Comunicação	Central telefônica, computadores e satélites	Cabos, fibra óptica	Voz, vídeo, pacotes
Circuitos	Portas, registradores, processadores	Fios	corrente
Mecânica	Articulações	Haste, vigas, molas	Calor, energia
Hidráulica	Reservatórios, estações de bombeamento, lagos	Oleoduto (tubulação)	Fluido, óleo
Financeira	Empresas, ações na bolsa de valores	transações	dinheiro
Transporte	Aeroportos, Estação ferroviária, cruzamento de ruas	Rodovias, rotas aéreas, ferrovias	Carga, veículos e passageiros

Fluxo Máximo

- Um grafo pesado pode ser interpretado como uma rede de canalizações onde o peso á a capacidade de cada canalização.
- Calcular o fluxo máximo implica descobrir qual o fluxo máximo que pode ser enviado de um no s (source) para um no t (sink).
 - Imagine a água a circular nos canos e o que se quer é maximizar o volume de água que flui entre s e t
- Mais formalmente, sendo f (u,v) o fluxo na aresta (u, v), e c(u, v) a sua capacidade, temos de obedecer as seguintes restrições:

Fluxo Máximo

Restrições:

- Capacidades: 0 ≤ f(u, v) ≤ c(u, v) para qualquer (u, v)
 (O fluxo não é negativo e tem de ser menor ou igual à capacidade)
- Conservação de Fluxo: Para cada u ∈ V − {s, t}, ∑_{v∈V} f(v, u) = ∑_{v∈V} f(u, v) (Em cada nó que não a origem e o destino, a soma do fluxo que entra é igual à soma do fluxo que sai)
- ▶ Máximo Fluxo: Queremos maximizar |f|, onde $|f| = \sum_{v \in V} f(s, v) \sum_{v \in V} f(v, s)$ (Fluxo total é o que sai da origem menos o que entra na origem)

Exemplo

Fluxo em Redes

Redes de fluxo com múltiplas fontes e/ou destinos

- Definir super fonte que liga a todas as fontes;
- Definir super destino ao qual todos os destinos se ligam;
- Capacidades infinitas entre super fonte e fontes, e entre destinos e super destino.

Exemplo

Aplicações

- Considere a seguinte situação modelada por um grafo:
 - Cada arco representa uma rua.
 - O peso de cada aresta indica o maior fluxo possível ao longo da rua (veículos/hora).

 Qual o maior número possível de veículos que pode viajar do local u até o local v em uma hora?

Aplicações

Outra situação:

- Imagine que uma empresa deseja transportar a maior quantidade possível de produtos de uma cidade para outra, através da rede rodoviária.
- ➤ A restrição do transporte pode ser o número disponível de caminhões da empresa para fazer cada trajeto entre cada cidade intermediária.
- Então como determinar o fluxo máximo possível entre as duas cidades?

Problema do Fluxo Máximo

- Para resolver o problema do fluxo máximo foram propostos alguns algoritmos:
 - Método de Ford-Fulkerson, que foi o primeiro algoritmo proposto;
 - Algoritmo de Edmonds-Karp, que é o próprio Ford-Fulkerson com busca em largura para definir o caminho aumentante;
 - Método de push-relabel, que é mais rápido que os anteriores;
 - Goldberg e Tarjan propuseram um novo método conhecido como método do pré-fluxo.

Algoritmo de Ford-Fulkerson

- Os passos de cada iteração do algoritmo podem ser resumidos do seguinte modo:
 - 1º Escolhe-se um caminho qualquer desde a origem até o sorvedor cujas arestas tenham capacidade positiva (>0)
 - 2º Procurar nesse caminho o arco orientado com menor capacidade c
 - 3º Diminuir de c a capacidade de fluxo em cada aresta do caminho no sentido direto e aumentar de c a capacidade das arestas no sentido inverso
 - Regressar ao 1º passo. Se já não existir nenhum caminho em que todas as arestas tenham capacidade positiva, então o fluxo máximo já está determinado.

Algoritmo de Ford-Fulkerson

```
FORD-FULKERSON(G, s, t)

1 for cada aresta (u, v) \leftarrow E[G]

2 do f[u, v] \leftarrow 0

3 f[v, u] \leftarrow 0

4 while existir um caminho p de s até t na rede residual G_f

5 do c_f(p) \leftarrow \min\{c_f(u, v) : (u, v) \text{ está em } p\}

6 for cada aresta (u, v) \text{ em } p

7 do f[u, v] \leftarrow f[u, v] + c_f(p)

8 f[v, u] \leftarrow -f[u, v]
```

Exemplo Execução Passo a Passo

Grafo inicial com as capacidades indicadas nas arestas

- Um caminho de aumento é um caminho entre a origem s e o destino t que nos permite adicionar fluxo, ou seja, um caminho onde a capacidade é mínima das arestas é maior que 0.
- No caso do nosso grafo existem vários caminhos de aumento.
 Entre eles está o caminho s → v1 → v3 → v2 → v4 → t,
 indicado como cinza.

 A capacidade mínima ao longo do caminho é 4 (mínimo entre 16, 12, 9, 14 e 4), pelo que podemos enviar um fluxo de 4.

 Ao enviarmos o fluxo de 4 ao longo do caminho indicado anteriormente, os fluxos ficam no seguinte modo: (a/b nas aresta indica fluxo/capacidade)

- O grafo residual mostra onde podemos ainda aplicar fluxo.
- Depois de adicionarmos um fluxo f (a) ao longo de um caminho, o grafo residual é obtido fazendo as seguintes transformações ao longo de cada aresta (u, v) no caminho de aumento que escolhemos:
 - Na direção do caminho que tomamos, reduzimos o peso das arestas em f(a), ou seja, c(u,v) = c(u,v) f(a). Se c(u,v) ficar a zero, retiramos a aresta. Isto representa a quantidade de fluxo que ainda podemos fazer passar pela aresta na direção original
 - Na direção oposta, aumentamos o peso da aresta em f(a), ou seja, c(v, u) = c(v, u) + f(a). Se a aresta não existia, cria-se. Isto representa que se quisermos podemos "retirar" fluxo ao longo desta aresta, o que pode dar jeito para aumentar depois via outro caminho.

 Depois do fluxo de 4 indicado anteriormente, o grafo residual fica como a figura a seguir:

Este grafo residual ainda admite vários caminhos de aumento.
 Entre eles está o caminho s → v2 → v1 → v3 → t. A capacidade mínima ao longo do caminho é 4 (mínimo entre 13, 4, 8 e 20).

 Ao enviarmos o fluxo de 4 ao longo do novo caminho indicado anteriormente, os fluxos ficam como a seguir:
 (a/b nas aresta indica fluxo/capacidade)

• O fluxo total a sair da origem é agora de 8 (4 + 4).

 Depois do fluxo de 4 indicado anteriormente, o grafo residual fica como a figura a seguir:

Este grafo residual ainda admite vários caminhos de aumento. Entre eles está o caminho s → v1 → v2 → v3 → t. A capacidade mínima ao longo do caminho é 4 (mínimo entre 12, 4, 4 e 16). OBS: uso da aresta (v1→v2)

 Ao enviarmos o fluxo de 4 ao longo do novo caminho atrás indicado, os fluxos ficam do seguinte modo: (a/b nas aresta indica fluxo/capacidade)

(imagem de Introduction to Algorithms, 3rd Edition)

• O fluxo total a sair da origem é agora de 12 (8 + 4).

 Depois do fluxo de 4 indicado anteriormente, o grafo residual fica como a figura a seguir:

Este grafo residual ainda admite vários caminhos de aumento.
 Entre eles está o caminho s → v2 → v4 → v3 → t. A capacidade mínima ao longo do caminho é 7 (mínimo entre 9, 10, 7 e 12).

 Depois do fluxo de 7 indicado anteriormente, o grafo residual ficava como a figura a seguir:

(a/b nas aresta indica fluxo/capacidade)

O fluxo total a sair da origem é agora de 19 (8+11)

 Depois do fluxo de 7 indicado anteriormente, o grafo residual fica como a figura a seguir:

• Este grafo residual ainda admite um caminho de aumento. s \rightarrow v1 \rightarrow v3 \rightarrow t. A capacidade mínima ao longo do caminho é 4 (mínimo entre 8, 4 e 5).

 Depois do fluxo de 4 indicado anteriormente, o grafo residual fica como a figura a seguir: (a/b nas aresta indica fluxo/capacidade)

O fluxo total que sai da origem é de 23 (12 + 11)

 Depois do fluxo de 4 indicado anteriormente, o grafo residual fica como a figura a seguir:

- Este grafo já não admite mais caminhos de aumento e o método de Ford-Fulkerson finaliza a execução.
- Este é o grafo residual de fluxo máximo que é de 23.

Algoritmo de Ford-Fulkerson

- Seja qual for o caminho de aumento escolhido, é garantido que iremos convergir para o fluxo máximo. (exceto números irracionais)
- Para realizar o método de Ford-Fulkerson precisamos de uma maneira de descobrir o caminho de aumento.
- Complexidade:
 - ▶ A complexidade de uma pesquisa em profundidade é de O(|V| + |E|), o que pode ser simplificado para O(|E|) se admitirmos que o grafo é conexo (e nesse caso $|E| \ge |V| 1$).
 - ▶ Seja $|f^*|$ o fluxo máximo. Apesar de um caminho de aumento fazer sempre o fluxo aumentar, pode aumentar muito "devagarinho". Se os números forem inteiros, pode aumentar apenas 1 de cada vez, pelo que a complexidade final do algoritmo é de $O(|E| \cdot |f^*|)$

Exemplo anterior: outro caminho

23/06/2015

Estrutura de Dados II

Prof. João Dallyson DEINF/UFMA

Exemplo anterior: outro caminho

GRAFO RESIDUAL

FLUXO AUMENTADO

Algoritmo de Edmonds-Karp

O algoritmo de Edmonds-Karp:

- Difere apenas por utilizar a busca em largura (BFS)
 para encontrar o caminho de aumento
- Uma pesquisa em largura, tal como uma pesquisa em profundidade demora O(|E|)
- Com isto algoritmo de Edmonds-Karp fica com uma complexidade total de O(|V| |E|²)

Cortes de fluxo - conceito

 Um corte(S,T) de um fluxo em rede G = (V,E) é uma separação do conjunto de vértices V em dois conjuntos S e T = V - S, de forma que a origem s ∈ S e o sorvedoro t ∈ T.

- Se f é um fluxo, então o *fluxo líquido* pelo corte (S,T) é definido como f(S,T). A *capacidade* do corte (S,T) é c(S,T).
- Um *corte mínimo* de uma em rede é um corte cuja capacidade é mínima dentre todos os cortes da rede.

Teorema do Fluxo Máximo

"Para toda a rede com uma só origem e um só destino o fluxo máximo é igual ao valor mínimo de corte entre todos os cortes possíveis da rede."

Cortes de fluxo - exemplo

Cortes de fluxo - exemplo

Cortes de fluxo - exemplo

O fluxo máximo é igual ao valor da menor capacidade de corte entre todos os cortes possíveis da rede.

Referencias

- CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Algoritmos: Teoria e Prática. Editora Campus, 2002
- Notas de aula. Prof. Rodrigo Santos Souza. Estrutura de Dados. Universidade Católica de Pelotas.
- Notas de aula. Prof. Pedro Ribeiro. DCC/FCUP
- http://www.math.uaa.alaska.edu/~afkjm/cs351/ha ndouts/maxflow.pdf