

## A4 Tau PET Processing Details

# Christina Young & Elizabeth Mormino Stanford Medicine

Tau PET and MRI data were downloaded from LONI following the "Quick Guide to A4 Imaging Data" document. Briefly, the "pre-processed" flag was set on LONI and "Flortaucipir" was used as a search term – this imaging data was downloaded as well as the accompanying collection csv file generated by LONI, which provides a list of participants. This csv list of participants with tau PET data was then entered into the "Subject ID" field and "T1\*" was entered in the image description field, returning the MPRAGE data for only participants with Flortaucipir data. These data are for 447 participants.

This document describes the two following files:

|     | Filename                                                      | File label                                                                                |                                                    |
|-----|---------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------|
| 1 2 | imaging_Tau_PET_Stanford.csv<br>imaging_Tau_PET_PetSurfer.csv | Imaging - Tau PET SUVR (Stanford Pipeline)<br>Imaging - Tau PET SUVR (PetSurfer Pipeline) | Tau SUVrs Tau SUVrs with partial volume correction |

## Stanford Tau PET Processing Pipeline – published in Young et al., JAMA Neurol 2022.

The processing steps were as follows:

- 1. Reconstruction to create 2D surfaces and segmentations were run on all the T1 data using Freesurfer's recon-all command. The important output were nu.mgz and aparc+aseg.mgz files.
- PET 5-minute frames were realigned and summed. As noted in the "Quick Guide to A4 Imaging Data" file, some data were reconstructed into a single frame, but per A4 recommendations, the data were used as provided.
- 3. 111 participants presumably from a single site had very noisy looking tau PET data. For these subjects, FSL was used to apply 4 mm FWHM smoothing to the tau PET data only.
- 4. PET scans were coregistered to their MRI scans using SPM. The MRI and corresponding aparc+aseg data were moved into PET space.
- The mean values from the summed PET file were extracted across all aparc+aseg regions. A csv file was created with all mean values along with each region's total volume to enable regions to be combined.
- 6. We additionally created bilateral regions taking a volume weighted average across hemispheres. These are provided for in the bi \* columns.
- 7. For tau PET, we used a gray matter only cerebellum reference region (volume weighted across hemisphere using Mean.Left.Cerebellum.Cortex, Mean.Right.Cerebellum.Cortex, Volume\_mm3.Left.Cerebellum.Cortex, and Volume\_mm3.Right.Cerebellum.Cortex columns). Because the values in the tau PET csv files are normalized to this gray matter only cerebellum reference region, the values in this column ("bi\_Cerebellum.Cortex") are 1.

## Tau PET Processing – PVC

PVC was completed using the PetSurfer pipeline.

- 1. Anatomical segmentations for the geometric transfer matrix were created for each participant using Freesurfer's gtmseg command. The important output is gtmseg.mgz.
- 2. The lta\_convert command was used to create an LTA Freesurfer transformation format file from the same realigned and summed PET file that was used in the non-PVC pipeline (lta\_convert –initla identity.nofile –src PET.nii.gz –trg brainmask.mgz –outlta PET.lta).

PVC was applied using FreeSurfer's mri\_gtmpvc command (mri\_gtmpvc –i PET.nii.gz –reg PET.lta –psf 6 –seg gtmseg.mgz –default-seg-merge –mask PET\_bin.nii.gz –no-reduce-fov –mgx 0.01 –rescale 8 47 –o gtmpvc.output). The realigned and summed PET file was used as the input. The PET.lta file maps PET to anatomical. The PSF was assumed to be 6 for all participants. The 'default-seg-merge' flag applies the default schema for merging ROIs. The mask file was created by binarizing the PET image. The 'no-reduce-fov' flag maintains the FoV. The 'mgx 0.01' flag runs Muller-Gartner analysis with 0.01 as the GM threshold. The '—rescale 8 47' flag uses regions 8 (Left-Cerebellum-Cortex) and 47 (Right-Cerebellum-Cortex) for rescaling. As expected, PVC values are systematically higher than non-PVC values since higher SUVRs likely have more atrophy.



Figure 1. Relationship between tau SUVRs using the Stanford processing pipeline detailed above (x-axis) and SUVRs using the PetSurfer pipeline with partial volume correction (y-axis). Dashed line represents identity line. Solid blue line represents the regression line.

The PetSurfer without PVC pipeline values are not shared here, but they are very comparable to the no-PVC pipeline detailed above.



Figure 2. Relationship between tau SUVRs using the Stanford processing pipeline detailed above (x-axis) and SUVRs using the PetSurfer pipeline without partial volume correction (y-axis). Dashed line represents identity line. Solid blue line represents the regression line.

8. The PVC values were extracted across all aparc+aseg regions. A csv file was created with all PVC values (PVC \*) along with each region's number of voxels (NumVoxels \*) to enable regions to be

combined.

- 9. We additionally created bilateral regions taking a voxel weighted average across hemispheres. These are provided for in the bi\_\* columns.
- 10. We used a gray matter only cerebellum reference region (voxel weighted across hemisphere using PVC\_Left.Cerebellum.Cortex, PVC\_Right.Cerebellum.Cortex, NumVoxels\_Left.Cerebellum.Cortex, and NumVoxels\_Right.Cerebellum.Cortex columns). Because the values in the tau PET csv files are normalized to this gray matter only cerebellum reference region, the values in this column ("bi\_Cerebellum.Cortex") are 1.

#### **Appendix**

Note that B34660963 has off-target binding outside of the brain that is inflating tau SUVRs in the frontal lobe. Consider excluding this subject based on study focus.

### **References**

Young, C. B., Winer, J. R., Younes, K., Cody, K. A., Betthauser, T. J., Johnson, S. C., Schultz, A., Sperling, R. A., Greicius, M. D., Cobos, I., Poston, K. L., Mormino, E. C., & Alzheimer's Disease Neuroimaging Initiative and the Harvard Aging Brain Study. (2022). Divergent Cortical Tau Positron Emission Tomography Patterns Among Patients With Preclinical Alzheimer Disease. *JAMA Neurology*. https://doi.org/10.1001/jamaneurol.2022.0676