

Komunikacijski kanali i signali

Teorija informacije

Signali

- signal pojava koja opisuje neku fizikalnu veličinu
 - u električkim sustavima ta veličina je napon ili struja
- signal se matematički prikazuje (modelira) funkcijom neovisne varijable $t, t \in \square$
 - t najčešće predstavlja vrijeme
 - funkcija x(t), x: $t \rightarrow x(t)$
 - promatramo isključivo realne signale: x: □ → □
- poseban naglasak bit će stavljen na
 - signale u kontinuiranom vremenu
 - na snagu i energiju signala
 - razlog: snaga potrebna za određivanje kapaciteta kanala

rujan 2007

Kontinuirani i diskretni signali

F≣R

- signal u kontinuiranom vremenu
 - ako je t kontinuirana varijabla
 - kraći naziv: kontinuirani signal
 - primjer: $x(t) = A \cdot \sin(2\pi ft)$
 - \bullet f frekvencija signala x(t), A amplituda signala
- · signal u diskretnom vremenu
 - ako varijabla t poprima vrijednosti isključivo u t = kT
 - *T* ∈ □, *T* ≥ 0, k ∈ **Z**
 - označava se kao {x_k} ili x[k] = x[kT]
 - kraći naziv: diskretni signal

Komunikacijski kanali i signali rujan 2007.

Primjeri kontinuiranih i diskretnih signala

F=3

rujan 2007.

a – kontinuirani signal, b – diskretni signal

Analogni i digitalni signali

3 od 46

- promatramo vrijednosti koje signal poprima
- ako neki signal u kontinuiranom vremenu, x(t), može poprimiti bilo koju vrijednost unutar kontinuiranog intervala (a, b), $a, b \in \square$ tada se takav signal naziva analogni signal
 - primjer analognog signala: $x(t) = A \cdot \sin(2\pi f t)$
 - poprima bilo koju vrijednost na intervalu [-A, A]: • $x(t) \in [-A, A]$

Komunikacijski kanali i signali

5 od 46

Analogni i digitalni signali (II)

4 od 46

- neka je {a₁, a₂, ..., aŊ} konačan skup od N realnih
- digitalni signal može u bilo kojem trenutku poprimiti samo jednu od N mogućih vrijednosti iz tog skupa: $x(t) \in \{a_1, a_2, ..., a_N\}$
- ako neki signal u diskretnom vremenu, x[n], može poprimiti samo konačan broj različitih vrijednosti, tada se takav signal naziva digitalni signal
- primjer: binarni signal
 - u bilo kojem trenutku može poprimiti jednu od dvije vrijednosti iz skupa $\{0, A\}, A \in \square$

Komunikacijski kanali i signali

Deterministički i slučajni signali

- · deterministički signal
 - vrijednosti x(t) su u potpunosti specificirane u svakom vremenskom trenutku
 - deterministički signal može biti modeliran poznatom funkcijom vremena t
- slučajni signal
 - u bilo kojem vremenskom trenutku signal poprima neku slučajnu vrijednost i stoga se karakteriziraju statistički
 - modelira se pomoću slučajnog procesa
- signale u kontinuiranom vremenu dijelimo na periodične i neperiodične signale

Komunikacijski kanali i signali

ujan 2007.

8 od 46

Srednja snaga determinističkih signala

 napon u(t), odnosno struja i(t) na otporniku od R oma [Ω] proizvodi energiju E, odnosno srednju snagu P

$$E = \int_{-\infty}^{\infty} Ri^{2}(t)dt = \int_{-\infty}^{\infty} \frac{u^{2}(t)}{R}dt \text{ [Ws]},$$

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} Ri^2(t) dt \, [W].$$

- u nastavku napon, odnosno struja x(t)
- R = 1 om

Komunikacijski kanali i signali

rujan 2007.

Periodični signali

Zavod za telekomunikacij

- periodični signal: x(t) = x(t + T), $\forall t \in \Box$
 - *T* je realna konstanta
 - neka je T₀ najmanji T za kojeg vrijedi gornja jednakost
 - T₀ se naziva osnovni (fundamentalni) period signala x(t)
- neperiodični signal ne zadovoljava gornje svojstvo
- razvoj u Fourirerov red $x(t) = \sum_{k=-\infty}^{\infty} c_k e^{ik\omega_k t}, \omega_0 = 2\pi f_0$

$$c_k = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} x(t) e^{-jk\omega_0 t} dt \quad x(t) \square \quad \sum_{k=-\infty}^{\infty} c_k \delta(f - kf_0) = X(f)$$

Komunikacijski kanali i signali

rujan 2007.

10 od 46

Diracova delta funkcija

9 od 46

- definicija
- $\delta(t) \neq 0 \quad \text{za } t = 0$ $i \quad , t \in \mathbb{R}$ $\delta(t) = 0 \quad \text{za } t \neq 0$
- svojstva

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

neka x: □ → □

$$\int_{-\infty}^{\infty} \delta(t - t_0) x(t) dt = x(t_0)$$

Komunikacijski kanali i signali

rujan 2007

11 od 46

Spektar periodičnog signala

- spektar periodičnog signala x(t) je diskretan
- poprima vrijednosti samo za diskretne vrijednosti frekvencije: $f_k = k/T_0$, $k \in \mathbb{Z}$
- u općenitom slučaju c_k su kompleksne veličine i vrijedi

$$c_{-k} = \overline{c_k}$$

 $c_k = |c_k| e^{-j\theta_k}$

(Eulerov oblik prikaza)

- apsolutne vrijednosti koeficijenata c_k čine tzv. amplitudni spektar signala x(t)
- θ_k su vrijednosti tzv. faznog spektra signala x(t)

Komunikacijski kanali i signali

rujan 2007.

Srednja snaga periodičnog signala

 srednja snaga periodičnog signala u kontinuiranom vremenu

$$P = \lim_{k \to \infty} \left[\frac{1}{kT_0} k \int_0^{T_0} |x(t)|^2 dt \right] = \frac{1}{T_0} \int_0^{T_0} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |c_k|^2$$

$$c_{-k} = \overline{c_k}$$
 $P = |c_0|^2 + 2\sum_{k=1}^{\infty} |c_k|^2$

 srednja snaga periodičkog signala jednaka je zbroju srednjih snaga svih harmoničkih komponenti od kojih je signal sastavljen

Komunikacijski kanali i signali

rujan 2007.

12 od 46

Primjer 1: spektar i srednja snaga trigonometrijskih signala

- signal $x(t) = A\sin(\omega_0 t)$, $\omega_0 = 2\pi f_0 = 2\pi/T_0$
 - spektar X(f) $X(f) = -j\frac{A}{2} \left[\delta(f f_0) \delta(f + f_0) \right]$
- signal $x(t) = A\cos(\omega_0 t)$
 - spektar X(f) $X(f) = \frac{A}{2} \left[\delta \left(f f_0 \right) + \delta \left(f + f_0 \right) \right]$
 - –j u izrazu za spektar sinusnog signala potječe od faznog kašnjenja funkcije sinus u odnosu na funkciju kosinus: $\sin(x) = \cos(x \pi/2), \ \forall x \in \square$.

Komunikacijski kanali i signali

ruian 2007.

Spektar kosinusnog i sinusnog signala

• a - kosinusni signal, b - sinusni signal

Komunikacijski kanali i signali

rujan 2007.

Primjer 2: periodičan slijed pravokutnih impulsa

Primjer 2: periodičan slijed pravokutnih impulsa (II)

15 od 46

- spektar periodičkog slijeda pravokutnih impulsa) diskretan
 - komponente c_k pojavljuju samo na diskretnim frekvencijama k / T_0 [Hz], $k \in \mathbb{Z}$.

$$x(t) = A \frac{\tau}{T} \sum_{k=-\infty}^{\infty} \frac{\sin(k\omega_0 \tau/2)}{k\omega_0 \tau/2} e^{jk\omega_0 t} = A \frac{\tau}{T} \left[1 + 2 \sum_{k=1}^{\infty} \frac{\sin(k\omega_0 \tau/2)}{k\omega_0 \tau/2} \cos(k\omega_0 t) \right]$$

$$P = c_0^2 + 2\sum_{k=1}^{\infty} \left| c_k \right|^2 = \left(\frac{A\tau}{T} \right)^2 \left\{ 1 + 2\sum_{k=1}^{\infty} \left[\frac{\sin(k\omega_0 \tau/2)}{k\omega_0 \tau/2} \right]^2 \right\} = A^2 \frac{\tau}{T}$$

Komunikacijski kanali i signali

rujan 2007.

Spektar periodičnog slijeda pravokutnih impulsa

Neperiodični signali

• snaga i energija signala x(t)

$$E = \lim_{T \to \infty} \int_{-T}^{T} \left| x(t) \right|^2 dt = \int_{-\infty}^{\infty} \left| x(t) \right|^2 dt,$$

$$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left| x(t) \right|^2 dt.$$

• spektar signala x(t), X(t) – Fourierova transformacija

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$
 ili $X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$, $\omega = 2\pi f$

· Fourirerov transformacijski par

$$x(t)\square X(f)$$
 ili $x(t)\square X(\omega)$

Komunikacijski kanali i signali

rujan 2007.

40 - 440

Neperiodični signali (II)

• amplitudni i fazni spektar

$$X(f) = |X(f)|e^{j\theta(f)}$$

• prikaz signala pomoću poznatog spektra

$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft}df \text{ ili } x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)e^{j\omega t}d\omega$$

• energija neperiodičnog signala (Parsevalov teorem)

$$E = \int_{-\infty}^{\infty} \left| x(t) \right|^{2} dt = \int_{-\infty}^{\infty} \left| X(f) \right|^{2} df = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| X(\omega) \right|^{2} d\omega$$

Komunikacijski kanali i signali

rujan 2007.

Razredi neperiodičnih signala

avod za telekomunika

- signali koji imaju konačnu ukupnu energiju, tj. E < ∞
 - takvi signali moraju imati srednju snagu jednaku nuli;
 - primjer: signal x(t) čija je vrijednost jednaka 1 u intervalu
 0 ≤ t ≤ 1, a 0 izvan tog intervala
 - za takav signal vrijedi E = 1, P = 0;
- signali koji imaju konačnu srednju snagu veću od
 nule
 - ako je *P* > 0, tada je *E* = ∞;
- signali kojima su i srednja snaga i ukupna energija beskonačne
 - primjer: signal x(t) = t, $\forall t \in \square$.

Komunikacijski kanali i signali

rujan 2007.

21 od 46

Primjer: Diracov impuls

Zavod za teleko

spektar Diracovog impulsa

$$\Delta(f) = \int_{-\infty}^{\infty} \delta(t) e^{-j2\pi ft} dt = e^{0} = 1$$

• promotrimo funkciju $x(t) = K\delta(t), k \in \square$

$$X(f) = \int_{-\infty}^{\infty} K\delta(t)e^{-j2\pi ft}dt = Ke^{0} = K$$

Komunikacijski kanali i signali

rujan 2007.

22 od 46

Primjer: pravokutni impuls

· definicija pravokutnog impulsa

$$x(t) = \begin{cases} A & \text{za } 0 \le |t| < \tau/2 \\ 0 & \text{za } |t| > \tau/2 \end{cases}, t \in \Box$$

spektar pravokutnog impulsa

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt = A \int_{-\tau/2}^{\tau/2} e^{-j2\pi ft}dt = A\tau \frac{\sin(2\pi f\tau/2)}{2\pi f\tau/2}$$

• energija pravokutnog impulsa

$$E = \int_{-\infty}^{\infty} x^{2}(t) dt = \int_{-\infty}^{\infty} |X(f)|^{2} df = A^{2} \tau$$

srednja snaga pravokutnog impulsa jednaka nuli

Komunikacijski kanali i signali

rujan 2007.

23 od 46

Spektar pravokutnog impulsa

 $\neq x(t)$

- spektar ima maksimalnu vrijednost za frekvenciju f = 0 Hz i iznosi X(0) = Aτ
- spektar prolazi kroz nulu u točkama $f_k = k / \tau$, $k \in \mathbb{Z}$.

Komunikacijski kanali i signali

rujan 2007.

Slučajni signali

- slučajni proces X(t) je familija slučajnih varijabli $\{X(t),\ t\in \square\}$
- srednja vrijednost slučajnog procesa

$$\mu_{X}(t) = E[X(t)] = \int_{-\infty}^{\infty} x f_{X}(x,t) dx$$

- f_X(x,t) je funkcija gustoće vjerojatnosti prvog reda slučajnog procesa X(t)
- autokorelacijska funkcija i autokovarijanca slučajnog procesa X(t) $R_{X}\left(t_{1},t_{2}\right)=E\left[X\left(t_{1}\right)X\left(t_{2}\right)\right]$

$$C_{X}\left(t_{1},t_{2}\right)=E\left\{\left[X\left(t_{1}\right)-\mu_{X}\left(t_{1}\right)\right]\left[X\left(t_{2}\right)-\mu_{X}\left(t_{2}\right)\right]\right\}=R_{X}\left(t_{1},t_{2}\right)-E\left[X\left(t_{1}\right)\right]E\left[X\left(t_{2}\right)\right]$$

Komunikacijski kanali i signali

ruian 2007

Stacionarni slučajni procesi

 ako je slučajni proces X(t) stacionaran u širem smislu, tada zadovoljava sljedeće uvjete

$$\begin{split} E\big[X\left(t\right)\big] &= \mu_{X}, \forall t \in \square \;, \\ R_{X}\left(t_{1}, t_{2}\right) &= K_{X}\left(\left|t_{2} - t_{1}\right|\right) = K_{X}\left(\tau\right), \; \forall t_{1}, t_{2} \in \square \;, \end{split}$$

 neka je autokorelacijska funkcija slučajnog procesa u kontinuiranom vremenu, X(t), koji je stacionaran u širem smislu definirana kao

$$R_X(\tau) = E[X(t)X(t+\tau)]$$

• neka vrijedi: $R_X(-\tau) = R_X(\tau), |R_X(\tau)| \le R_X(0) |R_X(0)| = E[X^2(t)] \ge 0$

Komunikacijski kanali i signali

rujan 2007.

__ ...

Spektralna gustoća snage slučajnog signala

FER

$$S_X(f) = \int_{-\infty}^{\infty} R_X(\tau) e^{-j2\pi f \tau} d\tau \left[W/Hz \right]$$

• ako je spektralna gustoća snage $S_X(f)$ poznata

$$R_X(\tau) = \int_{-\infty}^{\infty} S_X(f) e^{j2\pi f\tau} df$$

 srednja snaga P slučajnog signala modeliranog stacionarnim slučajnim procesom

$$P = E \left[X^2(t) \right] = R_X(0) = \int_0^\infty S_X(f) df$$

Komunikacijski kanali i signali

rujan 2007.

nekorelira

Primjer: Gaussov bijeli šum

- slučajan proces W(t) nazivamo bijeli šum ako su njegove vrijednosti, tj. slučajne varijable u trenucima t_i i t_j, t_i ≠ t_j, međusobno potpuno nekorelirane
 - lacktriangle tada je autokovarijanca $C_X(ti,\ tj)$ jednaka nuli kad god vrijedi $t_i
 eq t_i$
 - ako su slučajne varijable W(t_i) i W(t_i) istovremeno nekorelirane i neovisne, tada se radi o striktno bijelom šumu
 - bijeli šum u kontinuiranom vremenu je stacionarni slučajni proces u širem smislu, W(t)

Komunikacijski kanali i signali

rujan 2007.

28 od 46

Gaussov bijeli šum (II)

29 od 46

27 od 46

• srednja vrijednost bijelog šuma je jednaka nuli

$$R_{W}(\tau) = \sigma^{2} \delta(\tau)$$

$$S_{W}(f) = \sigma^{2} \int_{0}^{\infty} \delta(t) e^{-j2\pi ft} dt = \sigma^{2}$$

Komunikacijski kanali i signali

rujan 2007.

Gaussov bijeli šum (III)

- slučajni proces nazivamo bijeli Gaussov šum ako su zadovoljena prethodno navedena svojstva bijelog šuma i ako su slučajne varijable slučajnog procesa Gaussove
 - za neku slučajnu varijablu X kažemo da ima Gaussovu razdiobu ako je njena funkcija gustoće vjerojatnosti definirana kao

$$f_X(x) = \frac{1}{\sigma_X \sqrt{2\pi}} e^{-(x-\mu_X)^2/(2\sigma_X^2)}$$

- varijanca ili disperzija $\operatorname{var}(X) = E\{(X E[X])^2\} = E[X^2] \{E[X]\}^2 = \sigma_X^2$
- ako vrijedi E[X] = 0, tada je $var(X) = E[X^2] = \sigma_X^2$
 - tj. varijanca je jednaka srednjoj snazi signala na otporu 1 om

Komunikacijski kanali i signali

rujan 2007.

Širina spektra signala • ovisno o pojasu frekvencija kojeg zauzima amplitudni spektar signala, signale dijelimo na • a) signale u osnovnom frekvencijskom pojasu • b) signale u pomaknutom frekvencijskom pojasu • b) signale u pomaknutom frekvencijskom signale • primjer: Širina spektra pravokutnog signala • slajd 24 Komunikacijaki kanali signali

32 nd 46

Svojstva prijenosne funkcije

$$H(f) = |H(f)|e^{-j\theta(f)}$$

• amplitudni i fazni odziv |H(-f)| = |H(f)|, $\theta(-f) = -\theta(f)$.

$$h(t) = \int_{-\infty}^{\infty} H(f) e^{j2\pi f t} df$$

 impulsni odziv i prijenosna funkcija LTI-sustava čine Fourierov transformacijski par

$$h(t)\Box H(f)$$

Komunikacijski kanali i signali

rujan 2007.

Slučajni signali i LTI-sustav

- pretpostavka: na ulazu LTI-sustava prijenosne funkcije H(f) djeluje signal obilježja stacionarnog slučajnog procesa X(t)
 - srednja vrijednost μ_x
 - spektralna gustoća snagė S_x(f)

$$\mu_{Y} = \mu_{X} H(0)$$

$$S_{Y}(f)=S_{X}(f)|H(f)|^{2}$$

 prolaskom kroz LTI-sustav, slučajni proces zadržava stacionarnost i na izlazu sustava

Komunikacijski kanali i signali

rujan 2007.

38 od 46

Širina prijenosnog pojasa kanala

37 od 46

FER

- širina prijenosnog pojasa kanala je područje frekvencija u kojem komunikacijski kanal propušta signale sa svog ulaza na izlaz
- · realni kanali prigušuju signale koje prenose
 - srednja snaga izlaznog signala uvijek je manja od srednje snage ulaznog signala
 - vrijedi i za energiju signala
- prigušenje kanala A(f) = 1/|H(f)|
- · kanal djeluje i na fazu signala
 - faze frekvencijskih komponenti ulaznog signala se razlikuju od faza frekvencijskih komponenti izlaznog signala – disperzija signala

Komunikacijski kanali i signali

rujan 2007.

39 od 46

Širina prijenosnog pojasa kanala (II)

avod za telekomunikaci

- na ulaz LTI-kanala dovedemo signal x(t) čiji je spektar X(t) definiran kao $X(t) = |X(t)|e^{i\varphi(t)}$
- za spektar signala na izlazu LTI-kanala, Y(f), vrijedi

$$Y(f) = |Y(f)|e^{j\theta(f)},$$
$$|Y(f)| = |X(f)||H(f)|,$$
$$\theta(f) = \varphi(f) - \theta(f),$$

 kanal propušta one frekvencije na kojima je njegov amplitudni odziv veći od nule

Komunikacijski kanali i signali

rujan 2007.

40 od 46

Oblik amplitudnog odziva i vrste kanala

41 od 46

- a) niskopropusni kanal, b) visokopropusni kanal
- c) pojasnopropusni kanal, d) pojasna brana

Komunikacijski kanali i signali

rujan 2007.

Primjer: RC-krug

- amplitudni odziv RC-kruga:
- u praksi se širina prijenosnog pojasa računa pomoću tzv. točaka prigušenja 3 decibela

$$20\log\left(\frac{\left|H\left(f\right)\right|}{\left|H\left(0\right)\right|}\right)=20\log\left(\left|H\left(f\right)\right|\right)-20\log\left(\left|H\left(0\right)\right|\right)=20\log\left(\left|H\left(f\right)\right|\right)\right)\left[dB\right]$$

|H(f)|=

 $\overline{U_1(f)}$

- |H(0)| = 1, pa vrijedi 20log(|H(0)|) = 0 dB
- na f na kojoj $|H(f)| \approx 0,707$ amplitudni je odziv za 3 dB slabiji od |H(0)|

Komunikacijski kanali i signali

rujan 2007.

Praktično određivanje širine prijenosnog pojasa

• kako bi u praksi mogli odrediti točnu širinu prijenosnog pojasa kanala, \boldsymbol{B} , potrebno je definirati iznos prigušenja iznad kojeg smatramo da je prijenosna funkcija kanala praktično jednaka nuli

• za niskopropusni kanal

• potrebno je definirati frekvenciju f_g takvu da vrijedi

• $|X(f)| \approx 0$ za |f| > fg, B = fg• za pojasnopropusni kanal

• potrebno je definirati frekvencije f_d i f_g takve da vrijedi |X(f)| > 0 samo ako je $f_g > |f| > f_g$, $B = f_g - f_g$

