UM 204 : INTRODUCTION TO BASIC ANALYSIS SPRING 2022

HOMEWORK 4

Instructor: GAUTAM BHARALI Assigned: FEBRUARY 1, 2022

1. Provide details to the outline below to establish the following:

Result 1. Given any rational a > 0 and any $n \in \mathbb{N} \setminus \{0,1\}$, there exists a real number r > 0 such that $r^n = a$.

(a) Fix $a \in \mathbb{Q}^+$, $n \in \mathbb{N} \setminus \{0,1\}$ and write

$$r := \{ x \in \mathbb{Q}^+ : x^n < a \} \cup 0^* \cup \{0\}.$$

Show that r is a cut and that $r > 0^*$.

(b) Prove by mathematical induction that for any $k \in \mathbb{N} \setminus \{0\}$

$$\{z \in \mathbb{Q} : z \le x_1 \dots x_k, \ x_1, \dots, x_k \in \mathbb{Q}^+ \text{ and } x_j^n < a \text{ for } j = 1, \dots, k\} = r^k.$$

- (c) Now prove that $r^n = a^*$.
- (d) Finally, explain in a sentence or two how part (c) can be interpreted as the conclusion of Result 1.

You can **freely** use—i.e., without proof and without citing any specific result from the section Fields in "Baby" Rudin—any corollary of \mathbb{Q} being an ordered field.

2. Result 1 above can be extended to cover all positive real numbers, namely:

Result 2. Given any real a > 0 and any $n \in \mathbb{N} \setminus \{0, 1\}$, there exists a real number r > 0 such that $r^n = a$.

Since the hypothesis of Result 2 is more general than that of Result 1, the steps in the proof of Result 2 will not be as "self-evident" as in the case of Result 1. Its proof will also require the least upper bound property of \mathbb{R} . **Read** the proof of Theorem 1.21 from "Baby" Rudin.

Remark. There is a *small* error in the statement of Theorem 1.21 (although the proof correctly establishes our Result 2). What is the error?

- **3.** Define $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by d(x,y) := |x-y|. Show, by appealing to the properties of an ordered field (please cite the relevant result(s) from the section *Fields* in "Baby" Rudin that you use) that d is a metric.
- **4.** A graph G := G(V, E) is a pair of sets (V, E), where V is a non-empty finite set, and $E \subset T(V)$, where

$$T(V) := \{ \{x, y\} : x, y \in V, \ x \neq y \}.$$

The set V is called the set of *vertices of* G and E is called the set of *edges of* G. Consider the following definitions:

• Given $x \neq y \in V$, a path joining x to y is a finite collection of edges $\{\{x_j, y_j\} \in E : j = 0, \ldots, N\}$ such that $x_0 = x$, $y_{j-1} = x_j$, $j = 1 \ldots N$, and $y_N = y$. The length of a path is the number of edges contained in it.

- The graph G(V, E) is said to be *connected* if, for each $x \neq y \in V$, there is at least one path joining x to y.
- If G(V, E) is a connected graph, define the function $d: V \times V \to [0, \infty)$ by

$$d(x,y) = \begin{cases} 0, & \text{if } x = y, \\ \min\{\operatorname{length}(P) : P \text{ is a path joining } x \text{ to } y\}, & \text{if } x \neq y. \end{cases}$$

Given any connected graph G = G(V, E), is (V, d) a metric space? If yes, then justify, else give a counterexample.

- **5.** Is it possible in a metric space X for some subset $A \subset X$, $A \neq \emptyset$ and $A \neq X$, to be **both** open and closed? If you think so, then give an example of (X, d) for which this happens, else give a proof that this is not possible.
- **6.** Given a metric space X and a set $S \subseteq X$, we define the *interior of* S, denoted by S° , as the set of all interior points of S.
 - (a) Argue that S° is an open set.
 - (b) Show that S° is the largest open set contained in S (i.e., that if $G \subseteq S$ and G is open, then $G \subseteq S^{\circ}$). Conversely, show that if $\Omega \subseteq S$ is an open set with the property that for any $G \subseteq S$ that is open, $G \subseteq \Omega$, then $\Omega = S^{\circ}$.
- 7. Let G be a non-empty open set of \mathbb{R} . Show that every point in G is a limit point of G; please justify this fully.

The following anticipates material to be introduced in the lecture on February 2.

8. Let X be a metric space and $\{S_{\alpha} : \alpha \in A\}$ an arbitrary non-empty set of subsets of X. State whether the correct relation in **general** should be $B \supseteq C$ or $B \subseteq C$, where

$$B = \bigcup_{\alpha \in A} \overline{S}_{\alpha}$$
 and $C = \overline{\bigcup_{\alpha \in A} S_{\alpha}}$.

If $B \neq C$ in general, then provide an example showing that the relevant inclusion could be a strict inclusion.