CRYPTOGRAPHY HANDOUT 17

DISCRETE LOG

1. First Explorations and Definition

Suppose p is a prime number. Let α and β be nonzero integers. Consider the congruence $\beta \equiv \alpha^x \mod p$. Solving for x is the **discrete log problem**.

Notation: We write $x = L_{\alpha}(\beta)$ for the **discrete log of** β **with respect to** α and assume all computations are $\mod p$.

Example. $p = 11, \ \alpha = 2, \ \beta = 9.$ Since $2^6 \equiv 9 \mod 11$, then $L_2(9) = 6$.

1. Find an appropriate value of x given the following, and write it as $x = L_{\alpha}(\beta)$.

a.
$$p=11,\,\alpha=3,\,\beta=5$$

b.
$$p = 7, \, \alpha = 4, \, \beta = 5$$

c.
$$p = 13, \alpha = -7, \beta = 3$$

2. In the discrete log problem, is x unique? Justify.

2. Computing Discrete Logs

You should have concluded that we can find multiple values of x, so we tend to choose the smallest nonnegative value. Oftentimes, α is a primitive root mod p.

Recall the following:

- The smallest natural number k such that $\alpha^k \equiv 1 \mod p$ is the **order**.
- If the order is p-1, then α is a **primitive root** mod p.
- Every prime p has $\varphi(p-1)$ primitive roots.

Suppose p = 7.

1. How many primitive roots are there?

- 2. Primitive Root Case:
 - a. Verify that $\alpha = 3$ is a primitive root.

- b. Compute $\beta \equiv \alpha^x \mod p$ for all values $x \in \{1, 2, 3, 4, 5, 6\}$.
- c. List any observations about the values of β .

- 3. Not a Primitive Root Case:
 - a. Verify that $\alpha = 2$ is not a primitive root.

- b. Compute $\beta \equiv \alpha^x \mod p$ for all values $x \in \{1, 2, 3, 4, 5, 6\}$.
- c. List any observations about the values of β .

It turns out that when α is a primitive root $\mod p$, then every power β is a power of $\alpha \mod p$. If α is not a primitive root, then the discrete log problem will not be defined for some values of β .

Property: The discrete log is like the usual log function. If α is a primitive root $\mod p$, then we have

$$L_{\alpha}(\beta_1\beta_2) \equiv L_{\alpha}(\beta_1) + L_{\alpha}(\beta_2) \mod (p-1).$$

Convince yourself that the above is true using an example.

3. One-Way Functions

Example. Let $p = 41, \alpha = 7, \beta = 12$. We want to solve $7^x \equiv 12 \mod 41$.

1. Discuss strategies that you would use to solve this, and find a value of x.

2. What are the challenges of such a problem? Are there any situations in which your strategies would be unreasonable to use?

In general, the discrete log is difficult to compute. It is an example of a **one-way function**, which means f(x) is easy to find, but given y, it is much too computationally slow to find x such that f(x) = y. These functions are useful for cryptography.