Introduction to Machine Learning (CSL2010)

Group Project Report Topic: Handwriting for Alzheimer's Detection

Siddhartha Singh (B22BB041)

Ishaan Pandey (B22CI017)

G Dileep (B22CH011)

Yash Kumar (B22MT047)

Deekshant Singh Rajawat (B22CI010)

Novemeber 2023

Project code link

Contents

1	Introduction 1.1 Background	3 3 4
2	Preprocessing & EDA	5
3	Principle Component Analysis	6
4	Model Architecture 4.1 Model Performance Scores 4.2 Model training and Evaluation	8 8

1 Introduction

1.1 Background

- Alzheimer's disease is responsible for gradual decline in cognitive function, memory loss, and changes in behaviour.
- People suffering from Alzheimer's have profound impacts on the lives and their families. Early diagnosis is crucial for effective intervention.
- Subtle changes in handwriting patterns, such as alterations in size, speed, and pressure, can serve as potential indicators of cognitive decline.
- In this project, we are provided with a dataset containing 450 features extracted from handwriting's of unaffected and affected people.

1.2 Objective

- This project aims to explore the application of **machine learn-ing**, specifically analysis of handwriting features, for the detection of Alzheimer's disease.
- We seek to create a machine learning model with appreciable accuracy that can aid in the early diagnosis of Alzheimer's, allowing for timely intervention and personalized care.

2 Preprocessing & EDA

- We have used Standard Scaler for normalization of input features.
- We have checked the distribution of classes in the training and testing set. Snapshot is attached below :-

Figure 1: Count of classes labelled as P in training set = 67 and in testing set = 22 Count of classes labelled as H in training set = 69 and in testing set = 16

3 Principle Component Analysis

- We did feature extraction using Principal Component Analysis (PCA). As PCA assumes that data is captured in the variance of features.
- We captured 80% variance and reduced the number of features from more than 400 to just 48.
- We visualized the top 2 and top 3 principal components using matplotlib. The plots are as shown:-

• We also plotted the cumulative and individual explained variance graphs for our 48 principal components. The graph is shown below :-

Figure 3: Cumulative Varience plot

4 Model Architecture

4.1 Model Performance Scores

• The accuracy scores for the models are tabulated below :-

S. No	Classifier Used	Accuracy Score(%)
1	SVM	76.31
2	KNN	55
3	Decision Trees	53
4	Xtreme Gradient Boosting	71
5	Random Forests	65.78

• SVM and XGB models have better accuracy than other models.

4.2 Model training and Evaluation

• Here are the snapshots of the evaluation metrics of each model :-

training accuracy: 94.85294117647058% testing accuracy: 76.31578947368422%					
Classification	Report: precision	recall	f1-score	support	
0 1	0.71 0.81	0.75 0.77	0.73 0.79	16 22	
accuracy macro avg weighted avg	0.76 0.77	0.76 0.76	0.76 0.76 0.76	38 38 38	

Figure 4: SVM

Accuracy of KN	N model is e	equal 55.0	00000000000	901 %.
Classification	Report: precision	recall	f1-score	support
0 1	0.48 1.00	1.00 0.23	0.65 0.37	16 22
accuracy macro avg weighted avg	0.74 0.78	0.61 0.55	0.55 0.51 0.49	38 38 38

Figure 5: KNN

Accuracy of Dec	cision Trees	model is	equal 53.0) %.
Classification	Report: precision	recall	f1-score	support
9 1	0.45 0.61	0.56 0.50	0.50 0.55	16 22
accuracy macro avg weighted avg	0.53 0.54	0.53 0.53	0.53 0.53 0.53	38 38 38

Figure 6: Decision Trees

Accuracy of XG	3 model is e	qual 71.0	%.	
Classification	Report: precision	recall	f1-score	support
0 1	0.65 0.76	0.69 0.73	0.67 0.74	16 22
accuracy macro avg weighted avg	0.70 0.71	0.71 0.71	0.71 0.71 0.71	38 38 38

Figure 7: XGB

Accuracy of RandomForest: 0.6578947368421053					
Classification	Report: precision	recall	f1-score	support	
0 1	0.57 0.80	0.81 0.55	0.67 0.65	16 22	
accuracy macro avg weighted avg	0.68 0.70	0.68 0.66	0.66 0.66 0.66	38 38 38	

Figure 8: Random Forests