Астрофиз ФТЛ 24.12.2023

Собственное движение

1. Некоторая звезда обладает видимой звездной величиной 7^m и ненулевым собственным движением. Какова будет ее видимая звездная величина в тот момент, когда собственное движение звезды уменьшится в 4 раза? Полная скорость звезды остается постоянной.

- 2. Звезда Вега имеет собственное движение 0.35'' в год, параллакс 0.129" и лучевую скорость -14 км/с. Через сколько лет Вега окажется к нам вдвое ближе, чем сейчас?
- 3. У Альтаира годичный параллакс равен 0.198'', собственное движение 0.658''/год, лучевая скорость $V_r = -26$ км/с и блеск 0.77^m . Когда и на какое наименьшее расстояние Альтаир сблизится с Солнцем, и каким будет тогда его видимый блеск?
- 4. В спектре звезды линия гелия с длиной волны 5016 Å сдвинута на 0.017 мм к красному концу, при дисперсии спектрограммы на этом участке в 20 Å/мм. Эклиптическая долгота звезды равна $47^{\circ}55'$ и ее эклиптическая широта $26^{\circ}45'$, а во время фотографирования спектра эклиптическая долгота Солнца была близкой к $223^{\circ}14'$. Параллакс звезды 0.073'', а компоненты собственного движения $+0.0083^{\circ}$ и -0.427''. Определите величину и направление пространственной скорости звезды.

Кинематика Галактики

- 5. Звезда, похожая на Солнце, обращается вокруг центра Галактики. Скорость звезды относительно Солнца равна 150 км/с. Известно, что обе звезды находятся на одинаковом расстоянии от центра Галактики, равном 8 кпк. Считая, что среднее межзвездное поглощение равно $2^m/$ кпк, найдите видимую звездную величину этой звезды.
- 6. Вокруг центра Галактики вращается звезда, причем ее максимальное расстояние от диска Галактики составляет 0.3 кпк. Расстояние звезды от центра Галактики равно 5 кпк. Чему равна максимальная лучевая скорость этой звезды?
- 7. Предположим, что у Галактики наблюдается «плоская» кривая вращения (независимости линейной скорости от расстояния от центра), определите примерную зависимость плотности темной материи в Галактике от расстояния от центра.
- 8. Оцените абсолютные звездные величины двух галактик: спиральной со скоростью вращения на палто 150 км/с и эллиптической с дисперсией скоростей 280 км/с.

Двойные звезды

- 9. Две звезды солнечной массы вращаются вокруг общего центра масс по круговым орбитам. Промежуток времени между двумя соседними минимумами 30 дней. Определите длительность минимума, если наблюдатель находится в плоскости орбиты системы.
- 10. Затменная переменная состоит из двух звезд с одинаковым блеском 6^m и температурами поверхности 5 000 К и 10 000 К. Чему равен блеск переменной в моменты главного и вторичного минимумов блеска и вне затмений? Считать, что поверхностная яркость звезды одинакова по всему ее диску, а Земля находится точно в плоскости орбит звезд.
- 11. Двойная система состоит из двух белых карликов, вращающихся вокруг общего центра масс по круговым орбитам. Известно, что такая система испускает гравитационные волны с частотой, равной удвоенной орбитальной частоте системы. Оцените минимально возможную длину волны гравитационного излучения такой двойной системы.
- 12. Система из двух звезд является затменной переменной, а линия водорода H_{α} (6563 Å) каждые 5 лет сначала раздваивается на 1.0 Å и 0.75 Å, а потом вновь сливается воедино. Чему равно расстояние между звездами? Массы звезд? Сколько длятся транзиты? Линия апсид перпендикулярна лучу зрения.

Фотометрия

- 13. Капелла A спектрально-двойная система. Первый компонент красный гигант класса K0III имеет звездную величину в фильтре $V=0.89^m$ и показатель цвета $(B-V)_1=0.93^m$. Второй компонент субгигант класса G0IV имеет звездную величину в фильтре $V_2=0.76^m$ и показатель цвета $(B-V)_2=0.67^m$. Определите показатель цвета спектрально-двойной Капелла A и ее звездную величину в фильтре B.
- 14. Компоненты собственного движения звезды спектрального класса G2V равны $\mu_l = 12~mas/$ год, $\mu_b = 10~mas/$ год. Определите ее трансверсальную скорость, если видимая величина звезды $V = 14^m$, а избыток цвета $E(B-V) = 0.9^m$.
- 15. Из наблюдений было получено, что $V=1.8^m$, а годичный параллакс звезды составил $\pi=0.02''$. Известно, что для данного типа звезд истинный показатель цвета $(B-V)_0=-0.3^m$, однако его измеренное значение оказалось равным $(B-V)=0.5^m$. Найдите истинную $(M_V)_0$ и абсолютную болометрическую звездную величину M_{bol} , если известно, что для этого типа звезд болометрическая поправка $BC=-2.8^m$. Оцените спектральный класс звезды.
- 16. На рисунке представлена кривая блеска двойной звезды, полученная в фильтре V. Зная, что затмения в системе центральные, один из компонентов двойной имеет спектральный класс A0, а второй -G2, и оба компонента являются звёздами

главной последовательности, постройте кривую изменения показателя цвета $B\!-\!V$ этой системы. Ось ординат Вашего графика направьте вверх, нанесите деления и поставьте соответствующие значения показателей цвета.

