Table 1: Table S1: Table of species, kingdom, and publications for papers that contain Integral Projection Models. This table is not exhaustive and does not include some papers for which species and kingdom information is not relevant (e.g. papers developing new theory relying on simulated data).

Species	Kingdom	Full Citation
Celtis zenkeri	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
	l	unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Staudtia	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
kamerunensis	l	unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Coelocaryon	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
preussii	l	unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Musanga	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
cecropioides		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Carapa procera	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations: unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Garcinia	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
punctata	l	unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Dasylepis seretii	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
	l	unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Trichilia	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
rubescens	l	unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Rinorea	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
oblongifolia		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Pycnanthus	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
angolensis		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Pancovia	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
laurentii		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Trilepisium	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
madagas-	l	unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
cariense		
Diospyros	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
iturensis		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Petersianthus	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
macrocarpus		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Eribroma	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
oblongum		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Synsepalum	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
stipulatum		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Trichilia	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
prieurieana		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Scottellia	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
coriacea		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Drypetes	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
chevalieri		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Angylocalyx	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
pynaertii		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Manilkara	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations
mabokensis		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Manilkara	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations
pellegriniana		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.

Dolarolthio	Plantae	Disand N. & Liona I (2014) Matrix models for size atweatured narrelations.
Polyalthia	Piantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
suaveolens	D14	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Pausinystalia	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
macroceras	D14	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Entandrophragma	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
cylindricum	D14	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Macaranga paxii	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
Celtis	Plantae	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
mildbraedii	Гаптае	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
Guarea laurentii	Plantae	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254. Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
Guarea laurentii	Рашае	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Diagnamag	Plantae	
Diospyros	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
canaliculata	D14	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Drypetes	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
gilgiana	D1 /	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Cola lateritia	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
Ct 1 :	D1 /	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Strombosia	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
grandifolia	D1 /	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Dialium	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
guineense	D1 /	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Diospyros	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
crassiflora	D1 /	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Corynanthe	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
pachyceras	D1 +	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Triplochiton	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
scleroxylon	D1	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Lecaniodiscus	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
cupanioides	D1	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Anonidium	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
mannii	D1	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Cola nitida	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
D	D1	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Funtumia	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
elastica	D1	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Santiria trimera	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Pouteria	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
altissima	DI :	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Chrysophyllum	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
africanum	DI :	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Celtis	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
adolfi-friderici	D1	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Strombosiopsis	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
tetrandra	D1 :	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Aubrevillea	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
kerstingii	D1 :	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Drypetes sp.	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
Di i l	D1	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Ricinodendron	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
heudelotii		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.

Entandrophragma	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
angolense		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Drypetes	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
obanensis		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Khaya	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
anthotheca		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Albizia	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
glaberrima		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Chrysophyllum	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
lacourtianum		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Sancassania	Animalia	Ozgul A, Coulson T, Reynolds A, Cameron TC & Benton TG (2012) Population
berlesei		responses to perturbations: the importance of trait-based analysis illustrated
		through a microcosm experiment. American Naturalist 179: 582-594
Phyteuma	Plantae	Kolb A (2012) Differential effects of herbivory and pathogen infestation on plant
spicatum		population dynamics. Plant Ecology 213: 315-326
Phyteuma	Plantae	Kolb A, Dahlgren JP & Ehrlén (2010) Population size affects vital rates but not
spicatum		population growth rate of a perennial plant. Ecology 91: 3210-3217
Tridacna	Animalia	Yau, A. J. Y. (2011). Size-based approaches to modeling and managing local
maxima		populations: A case study using an artisanal fishery for giant clams, Tridacna
		maxima. University of California, Santa Barbara.
Tridacna	Animalia	Yau, A. J., Lenihan, H. S., & Kendall, B. E. (2014). Fishery management priorities
maxima		vary with self-recruitment in sedentary marine populations. Ecological Applications,
G	DI :	24(6), 1490-1504.
Cirsium vulgare	Plantae	Tenhumberg, B., Suwa, T., Tyre, A. J., Russell, F. L., & Louda, S. M. (2015).
		Integral projection models show exotic thistle is more limited than native thistle by
A :	D1 /	ambient competition and herbivory. Ecosphere, 6(4), art69.
Aconitum	Plantae	Easterling MR, Ellner SP & Dixon PM (2000) Size-specific sensitivity: applying a
noveborancense	Dla+	new structured population model. Ecology 81: 694-708
Oenothera	Plantae	Godfray, H. Charles J., and Mark Rees. "Population growth rates: issues and an
glazioviana		application." Philosophical Transactions of the Royal Society B: Biological
Aeonium	Plantae	Sciences 357.1425 (2002): 1307-1319. Pannell, J. L. (2016). Climatic limitation of alien weeds in New Zealand: enhancing
arboreum	1 lalltae	species distribution models with field data (Doctoral dissertation, Lincoln
ai borcuiii		University).
Aeonium	Plantae	Pannell, J. L. (2016). Climatic limitation of alien weeds in New Zealand: enhancing
haworthii	1 minae	species distribution models with field data (Doctoral dissertation, Lincoln
1101101111111		University).
Cecropia	Plantae	Metcalf CJE, Horvitz CC, Tuljapurkar S & Clark DA (2009) A time to grow and a
obtusifolia	_ 10111000	time to die: a new way to analyze the dynamics of size, light, age, and death of
		tropical trees. Ecology 90: 2766-2778
Cecropia insignis	Plantae	Metcalf CJE, Horvitz CC, Tuljapurkar S & Clark DA (2009) A time to grow and a
		time to die: a new way to analyze the dynamics of size, light, age, and death of
		tropical trees. Ecology 90: 2766-2778
Simarouba	Plantae	Metcalf CJE, Horvitz CC, Tuljapurkar S & Clark DA (2009) A time to grow and a
amara		time to die: a new way to analyze the dynamics of size, light, age, and death of
		tropical trees. Ecology 90: 2766-2778
Minquartia	Plantae	Metcalf CJE, Horvitz CC, Tuljapurkar S & Clark DA (2009) A time to grow and a
guianensis		time to die: a new way to analyze the dynamics of size, light, age, and death of
		tropical trees. Ecology 90: 2766-2778
Balizia elegans	Plantae	Metcalf CJE, Horvitz CC, Tuljapurkar S & Clark DA (2009) A time to grow and a
		time to die: a new way to analyze the dynamics of size, light, age, and death of
		tropical trees. Ecology 90: 2766-2778

Hymenolobium	Plantae	Metcalf CJE, Horvitz CC, Tuljapurkar S & Clark DA (2009) A time to grow and a
mesoameri-		time to die: a new way to analyze the dynamics of size, light, age, and death of
canum		tropical trees. Ecology 90: 2766-2778
Lecythis ampla	Plantae	Metcalf CJE, Horvitz CC, Tuljapurkar S & Clark DA (2009) A time to grow and a
_		time to die: a new way to analyze the dynamics of size, light, age, and death of
		tropical trees. Ecology 90: 2766-2778
Dipteryx	Plantae	Metcalf CJE, Horvitz CC, Tuljapurkar S & Clark DA (2009) A time to grow and a
panamensis		time to die: a new way to analyze the dynamics of size, light, age, and death of
		tropical trees. Ecology 90: 2766-2778
Hyeronima	Plantae	Metcalf CJE, Horvitz CC, Tuljapurkar S & Clark DA (2009) A time to grow and a
alchorneoides		time to die: a new way to analyze the dynamics of size, light, age, and death of
		tropical trees. Ecology 90: 2766-2778
Hypericum	Plantae	Metcalf CJE, McMahon SM, Salguero-Gómez R & Jongejans E (2013) IPMpack: an
cumulicola		R package for Integral Projection Models. Methods in Ecology and Evolution 4:
		195-200
Arabidopsis	Plantae	Metcalf CJE & Mitchell-Olds T (2009) Life history in a model system: opening the
thaliana		black box with Arabidopsis thaliana. Ecology Letters 12: 593-600
Carduus nutans	Plantae	Metcalf CJE, Rees M, Buckley YM & Sheppard AW (2009) Seed predators and the
		evolutionary stable flowering staregy in the invasive plant Carduus nutans.
		Evolutionary Ecology 23: 893-906
Oenothera	Plantae	Metcalf CJE, Rose KE & Rees M (2003) Evolutionary demography of monocarpic
glazioviana		perennials. Trends in Ecology and Evolution 18: 471-180
Carlina vulgaris	Plantae	Metcalf, C. J. E., Ellner, S., Childs, D. Z., Salguero?Gómez, R., Merow, C.,
		McMahon, S. M., & Rees, M. (2015). Statistical modeling of annual variation for
		inference on stochastic population dynamics using Integral Projection Models.
		Methods in Ecology and Evolution.
Ovis aries	Animalia	Metcalf, C. J. E., Ellner, S., Childs, D. Z., Salguero?Gómez, R., Merow, C.,
		McMahon, S. M., & Rees, M. (2015). Statistical modeling of annual variation for
		inference on stochastic population dynamics using Integral Projection Models.
		Methods in Ecology and Evolution.
Ovis aries	Animalia	Childs DZ, Coulson TN, Pemberton JM, Clutton-Brock TH & Rees M (2011)
		Predicting trait values and measuring selection in complex life histories:
		reproductive all coation decisions in Soay sheep. Ecology Letters 14: 985-992
Polygonum	Plantae	Dauer JT & Jongejans E (2013) Elucidating the population dynamics of Japanese
cuspidatum		knotweed using integral projection models. PLOS ONE in 8:e75181
Mammillaria	Plantae	González, E. J., Rees, M., & Martorell, C. (2013). Identifying the demographic
dixanthocentron		processes relevant for species conservation in human-impacted areas: does the
		model matter?. Oecologia, 171(2), 347-356.
Mammillaria	Plantae	González, E. J., Rees, M., & Martorell, C. (2013). Identifying the demographic
hernandezii		processes relevant for species conservation in human-impacted areas: does the
		model matter?. Oecologia, 171(2), 347-356.
Actaea spicata	Plantae	Ehrlén, J., Raabova, J., & Dahlgren, J. P. (2015). Flowering schedule in a perennial
		plant-Life-history trade-offs, seed predation and total offspring fitness. Ecology.
Borderea	Plantae	García MB, Dahlgren JP & Ehrlén J (2011) No evidence of senescence in a
pyrenaica		300-year-old mountain herb. Journal of Ecology 99: 1424-1430
Alliaria	Plantae	Merow, C., Bois, S. T., Allen, J. M., Xie, Y., Silander Jr., J. A. (2017). Climate
petiolata		change both facilitates and inhibits invasive plant ranges in New England. PNAS
	DI.	Vol. 114, Issue 16.
Onopordum	Plantae	Ellner SP & Rees M (2006) Integral projection models for species with complex
illyricum		demography. American Naturalist 167: 410-428

Onopordum	Plantae	Ellner SP & Rees M (2007) Stochastic stable population growth in integral
illyricum		projection models: theory and application. Journal of Mathematical Biology 54:
		227-256
Lepidium	Plantae	Ellner SP & Schreiber SJ (2012) Temporarilly variable dispersal and demography
latifolium		can accelerate the spread of invading species. Theoretical Population Biology 82:
100110114111		283-298
Veratrum album	Plantae	Hesse E, Rees M & Müller-Schärer (2008) Life-history variation in contrasting
veraurum arbum	1 laneac	habitats: flowering decision in a clonal perennial herb (Veratrum album). American
		Naturalist 172: 196-213
Cromotogastor	Animalia	Bruna, E. M., Izzo, T. J., Inouye, B. D., & Vasconcelos, H. L. (2014). Effect of
Crematogaster	Allillialia	
laevis	A · 1·	mutualist partner identity on plant demography. Ecology, 95(12), 3237-3243.
Pheidole	Animalia	Bruna, E. M., Izzo, T. J., Inouye, B. D., & Vasconcelos, H. L. (2014). Effect of
minutula		mutualist partner identity on plant demography. Ecology, 95(12), 3237-3243.
Ovis aries	Animalia	Simmonds, E. G., & Coulson, T. (2015). Analysis of phenotypic change in relation
		to climatic drivers in a population of Soay sheep Ovis aries. Oikos, 124(5), 543-552.
Carduus nutans	Plantae	Jongejans E, Shea K, Skarpaas O, Kelly D & Ellner SP (2011) Importance of
		individual and environmental variation for invasive species spread: a spatial integral
		projection model. Ecology 92: 86-97
Caragana	Plantae	Li, S. L., Yu, F. H., Werger, M. J., Dong, M., Ramula, S., & Zuidema, P. A. (2013).
intermedia		Understanding the effects of a new grazing policy: the impact of seasonal grazing
		on shrub demography in the I nner M ongolian steppe. Journal of Applied Ecology,
		50(6), 1377-1386.
Artemisia	Plantae	Li S-L, Yu F-H, Werger MJA, Dong M & Zuidema PA (2011) Habitat-specific
ordosica		demography across dune fixation stages in a semi-arid sandland: understanding the
		expansion, stabilization and decline of a dominant shrub. Journal of Ecology 99:
		610-620
Capreolus	Animalia	Plard, F., Gaillard, JM., Coulson, T., Delorme, D., Warnant, C., Michallet, J.,
capreolus		Tuljapurkar, S., Krishnakumar, S., Bonenfant, C. (2015), Quantifying the influence
caprooras		of measured and unmeasured individual differences on demography. Journal of
		Animal Ecology. doi: 10.1111/1365-2656.12393
Cervus elaphus	Animalia	Plard, F., Gaillard, J. M., Coulson, T., Hewison, A. M., Douhard, M., Klein, F.,
Cei vus elapiius	Allillalia	& Bonenfant, C. (2015). The influence of birth date via body mass on individual
T	A:	fitness in a long-lived mammal. Ecology. van Kleef, H. H., & Jongejans, E. (2014, September). Identifying drivers of
Lepomis	Animalia	
gibbosus		pumpkinseed invasiveness using population models. In Aquatic Invasions (Vol. 9,
0.1:	D1 /	No. 3, pp. 315-326). Regional Euro-Asian Biological Invasions Centre (REABIC).
Orchis purpurea	Plantae	Jacquemyn H, Brys R & Jongejans E (2010) Size-dependent flowering and costs of
		reproduction affect population dynamics in a tuberous perennial woodland orchid.
		Journal of Ecology 98: 1204-1215
Bouteloua	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
eripoda		structure?. Journal of ecology, 102(2), 531-543.
Bouteloua	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
rothrockii		structure?. Journal of ecology, 102(2), 531-543.
Heteropogon	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
contortus		structure?. Journal of ecology, 102(2), 531-543.
Hilaria belangeri	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
		structure?. Journal of ecology, 102(2), 531-543.
Hesperostipa	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
comata		structure?. Journal of ecology, 102(2), 531-543.
Koeleria	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
maculata		structure?. Journal of ecology, 102(2), 531-543.
	П	007 (7)

Poa secunda	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
D1	D14	structure?. Journal of ecology, 102(2), 531-543. Chu, C., & Adler, P. B. (2014). When should plant population models include age
Pseudoroegneria spicata	Plantae	Structure?. Journal of ecology, 102(2), 531-543.
Astridia	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
longiseta	1 1011000	structure?. Journal of ecology, 102(2), 531-543.
Boutelona	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
curtipendula		structure?. Journal of ecology, 102(2), 531-543.
Boutelona	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
gracilis		structure?. Journal of ecology, 102(2), 531-543.
Boutelona	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
hirsuta		structure?. Journal of ecology, 102(2), 531-543.
Muhlenbergia	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
arenacea		structure?. Journal of ecology, 102(2), 531-543.
Scleropogon	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
brevifoloius		structure?. Journal of ecology, 102(2), 531-543.
Sporobplus	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
flexuosus		structure?. Journal of ecology, 102(2), 531-543.
Rhizoglyphus	Animalia	Smallegange, I. M., Deere, J. A., & Coulson, T. (2014). Correlative changes in
robini		life-history variables in response to environmental change in a model organism. The
		American Naturalist, 183(6), 784-797.
Rhizoglyphus	Animalia	Smallegange, I. M., Deere, J. A., & Coulson, T. (2014). Correlative changes in
robini		life-history variables in response to environmental change in a model organism. The
		American Naturalist, 183(6), 784-797.
Capreolus	Animalia	Plard, F., Gaillard, J. M., Coulson, T., Hewison, A. M., Delorme, D., Warnant, C.,
capreolus		& Bonenfant, C. (2014). Mismatch between birth date and vegetation phenology
		slows the demography of roe deer. PLoS Biol, 12(4), e1001828.
Cervus elaphus	Animalia	Plard, F., Gaillard, J. M., Coulson, T., Hewison, A. M., Delorme, D., Warnant, C.,
		& Bonenfant, C. (2014). Mismatch between birth date and vegetation phenology
	DI.	slows the demography of roe deer. PLoS Biol, 12(4), e1001828.
Goodyera	Plantae	Diez, J. M., Giladi, I., Warren, R., & Pulliam, H. R. (2014). Probabilistic and
pubescens		spatially variable niches inferred from demography. Journal of ecology, 102(2), 544-554.
Agrostics	Plantae	Williams JL, Miller TX & Ellner SP (2012) Avoiding unintentional eviction from
hyemalis		integral projection models. Ecology 93: 2008-2014
Anemone patens	Plantae	Williams JL, Miller TX & Ellner SP (2012) Avoiding unintentional eviction from
		integral projection models. Ecology 93: 2008-2014
Opuntia	Plantae	Williams JL, Miller TX & Ellner SP (2012) Avoiding unintentional eviction from
imbricata		integral projection models. Ecology 93: 2008-2014
Anemone patens	Plantae	Williams JL & Crone EE (2006) The impact of invasive grasses on the population
		growth of Anemone patens, a long-lived native forb. Ecology 87: 3200-3208
Ranunculus	Plantae	Cursach, J., Besnard, A., Rita, J., & Fréville, H. (2013). Demographic variation and
weyleri		conservation of the narrow endemic plant Ranunculus weyleri. Acta Oecologica, 53, 102-109.
Dracocephalum	Plantae	Nicolè F, Dahlgren JP, Vivat A, Till-Bottraud & Ehrlén J (2011) Interdependent
austriacum		effects of habitat quality and climate on population growth of an endangered plant.
		Journal of Ecology 99: 1211-1218
Actaea spicata	Plantae	Dahlgren JP & Ehrlén J (2009) Linking environmental variation to population
		dynamics of a forest herb. Journal of Ecology 97: 666-674
Acatea spicata	Plantae	Dahlgren, J. P., & Ehrlén, J. (2011). Incorporating environmental change over
F		succession in an integral projection model of population dynamics of a forest
		herb. Oikos, 120(8), 1183-1190.
	l .	, (-),

Borderea	Plantae	Dahlgren JP, García MB & Ehrlén J (2011) Nonlinear relationships between vital
pyrenaica		rates and state variables in demographic models. Ecology 92: 1181-1187
Lathyrus vernus	Plantae	Dahlgren, J. P., Östergård, H., & Ehrlén, J. (2014). Local environment and
		density-dependent feedbacks determine population growth in a forest herb.
		Oecologia, 176(4), 1023-1032.
Pseudoroegneria	Plantae	Dalgleish HJ, Koons DN, Hooten MB, Moffet CA & Adler PB (2011) Climate
spicata	1 10111000	influences the demography of three dominant sagebrush steppe plants. Ecology 92:
P		75-85
Hesperostipa	Plantae	Dalgleish HJ, Koons DN, Hooten MB, Moffet CA & Adler PB (2011) Climate
comata		influences the demography of three dominant sagebrush steppe plants. Ecology 92:
		75-85
Artemisia	Plantae	Dalgleish HJ, Koons DN, Hooten MB, Moffet CA & Adler PB (2011) Climate
tripartita	1 10111000	influences the demography of three dominant sagebrush steppe plants. Ecology 92:
		75-85
Gorgonia	Animalia	Bruno JF, Ellner SP, Vu I, Kim K & Harvell CD (2011) Impacts of aspergillosis on
ventalina		sea fan coral demography: modeling a moving target. Ecological Monographs 81:
V GIIGGIIIG		123-139
Acropora	Animalia	Madin JS, Hughes TP & Connolly SR (2012) Calcification, storm damage and
hyacinthus		population resilience of tabular corals under climate change. PLoS One 7: 1-10
Dendrophylax	Plantae	Raventós, J., González, E., Mújica, E., & Doak, D. F. (2015). Population Viability
lindenii	1 10111000	Analysis of the Epiphytic Ghost Orchid (Dendrophylax lindenii) in Cuba.
		Biotropica, 47(2), 179-189.
Cynoglossum	Plantae	Williams JL (2009) Flowering life-history strategies differ between the native and
officinale	1 10111000	introduced ranges of a monocarpic perennial. American Naturalist 174: 660-672
Cynoglossum	Plantae	Williams JL, Auge H & Maron JL (2010) Testing hypotheses for exotic plant
officinale	1 10111000	success: parallel experiments in the native and introduced ranges. Ecology 91:
		1355-1366
Poulsenia	Plantae	Zambrano, J., & Salguero?Gómez, R. (2014). Forest Fragmentation Alters the
armata		Population Dynamics of a Late?successional Tropical Tree. Biotropica, 46(5),
		556-564.
Cirsium	Plantae	Rose KE, Louda SM & Rees M (2005) Demographic and evolutionary impacts of
canescens		native and invasive herbivores on Cirsium canescens. Ecology 86: 453-465
Crocodylus	Animalia	Wallace W, Leslie A & Coulson T. 2012. Re-evaluating the effect of harvesting
niloticus		regimes on Nile crocodiles using an integral projection models. In press
Cirsium	Plantae	Rose, K. E., Russell, F. L., & Louda, S. M. (2011). Integral projection model of
altissimum		insect herbivore effects on Cirsium altissimum populations along productivity
		gradients. Ecosphere, 2(8), art97.
Agrostis	Plantae	Yule, K. M., Miller, T. E., & Rudgers, J. A. (2013). Costs, benefits, and loss of
hyemalis		vertically transmitted symbionts affect host population dynamics. Oikos, 122(10),
		1512-1520.
Phoenix	Plantae	Mandle, L., Ticktin, T., & Zuidema, P. A. (2015). Resilience of palm populations to
loureiroi		disturbance is determined by interactive effects of fire, herbivory and harvest.
		Journal of Ecology.
Ovis canadensis	Animalia	Traill, L. W., Schindler, S., & Coulson, T. (2014). Demography, not inheritance,
		drives phenotypic change in hunted bighorn sheep. Proceedings of the National
		Academy of Sciences, 111(36), 13223-13228.
Melaleuca	Plantae	Sevillano Garcia Mayeya, L. (2010). The Effects of Biological Control Agents on
quinquenervia		Population Growth and Spread of Melaleuca quinquenervia.
Carlina vulgaris	Plantae	Childs DZ, Rees M, Rose KE, Grubb PJ & Ellner SP (2003) Evolution of complex
		floweirng strategies: an age- and size-structured integral projection model.
		Proceedings: Biological Sciences 270: 1829-1838
		·

Carlina vulgaris	Plantae	Childs DZ, Rees M, Rose KE, Grubb PY & Ellner SP (2004) Evolution of
		size-dependent flowering in a variable environment: construction and analysis of a
		stochastic integral projection model. Proceedings: Biological Sciences 271: 425-434
Carlina vulgaris	Plantae	Rees M, Childs DZ, Metcalf JC, Rose KE, Sheppard AW & Grubb PJ (2006) Seed
		dormancy and delayed flowering in monocarpic plants: selective interactions in a
		stochastic environment. The American Naturalist 168: 53-71
Carduus nutans	Plantae	Rees M, Childs DZ, Metcalf JC, Rose KE, Sheppard AW & Grubb PJ (2006) Seed
		dormancy and delayed flowering in monocarpic plants: selective interactions in a
		stochastic environment. The American Naturalist 168: 53-71
Marmota	Animalia	Rees, M., Childs, D. Z., & Ellner, S. P. (2014). Building integral projection models:
?aviventris		a user's guide. Journal of Animal Ecology, 83(3), 528-545.
Ovis aries	Animalia	Rees, M., Childs, D. Z., & Ellner, S. P. (2014). Building integral projection models:
		a user's guide. Journal of Animal Ecology, 83(3), 528-545.
Mammillaria	Plantae	González EJ & Martorell C (2013) Reconstructing shifts in vital rates driven by
dixanthocentron		long-term environmental change: a new demographic method based on readily
		available data. Ecology and Evolution 3: 2273–2284
Cryptomeria	Plantae	Matsushita, M., Takata, K., Hitsuma, G., Yagihashi, T., Noguchi, M., Shibata, M.,
japonica		& Masaki, T. (2015). A novel growth model evaluating age—size effect on long?term
		trends in tree growth. Functional Ecology.
Mammillaria	Plantae	Ferrer-Cervantes, M.E., Méndez-González, M.E., Quintana-Ascencio, PF.,
gaumeri		Dorantes, A., Dzib, G. & Durán, R. (2012) Population dynamics of the cactus
		Mammillaria gaumeri: an integral projection model approach. Population Ecology,
		54, 321-334.
Oenothera	Plantae	Rees, M., & Rose, K. E. (2002). Evolution of flowering strategies in Oenothera
glazioviana		glazioviana: an integral projection model approach. Proceedings of the Royal
		Society of London B: Biological Sciences, 269(1499), 1509-1515.
Prenanthes	Plantae	Aikens, M. L. (2013). Population Dynamics Across the Range of the Southern
roanensis		Appalachian Endemic Plant, Prenanthes Roanensis (Doctoral dissertation,
		University of Virginia).
Monstastraea	Animalia	Burgess, H. R. (2011). Integral Projection Models and analysis of patch dynamics
annularis		of the reef building coral Monstastraea annularis.
Sistrurus	Animalia	Jones, P. C. (2012). Demographic analysis and integral projection modeling of the
catenatus		Eastern Massasauga (Sistrurus catenatus catenatus) (Doctoral dissertation,
		NORTHERN ILLINOIS UNIVERSITY).
Marmota	Animalia	Ozgul A, Childs DZ, Oli MK, Armitage KB, Blumstein DT, Olson LE, Tuljapurkar
flaviventris		S & Coulson T (2010) Coupled dynamics of body mass and population growth in
		response to environmental change. Nature 466: 482-485
Pedicularis	Plantae	Record, S. (2010). Conservation while under invasion: Insights from a rare
lanceolata		hemiparasitic plant, swamp lousewort (Pedicularis lanceolata Michx.).
Cirsium	Plantae	Briggs J, Dabbs K, Holm M, Lubben J, Rebarber R, Tenhumberg B &
canescens		Riser-Espinoza D (2010) Structured population dynamics: an introdution to
		integral modeling. Mathematical Magazine 83: 243-257
Primula farinosa	Plantae	von Euler T, Ågren J & Ehrlén J (2013) Environmental context influences both the
		intensity of seed predation and plant demographic sensitivity to attack. Ecology in
		press
Annamocarya	Plantae	Zuidema PA, Jongejans E, Chien PD, During HJ & Schieving F (2010) Integral
sinensis		projection models for trees: a new parameterization method and a validation of
		model output. Journal of Ecology 98: 345-355
Calocedrus	Plantae	Zuidema PA, Jongejans E, Chien PD, During HJ & Schieving F (2010) Integral
macrolepis		projection models for trees: a new parameterization method and a validation of
		model output. Journal of Ecology 98: 345-355

Dacrydium	Plantae	Zuidema PA, Jongejans E, Chien PD, During HJ & Schieving F (2010) Integral
elatum		projection models for trees: a new parameterization method and a validation of
		model output. Journal of Ecology 98: 345-355
Manglietia	Plantae	Zuidema PA, Jongejans E, Chien PD, During HJ & Schieving F (2010) Integral
fordiana		projection models for trees: a new parameterization method and a validation of
		model output. Journal of Ecology 98: 345-355
Parashorea	Plantae	Zuidema PA, Jongejans E, Chien PD, During HJ & Schieving F (2010) Integral
chinensis		projection models for trees: a new parameterization method and a validation of
		model output. Journal of Ecology 98: 345-355
Pinus	Plantae	Zuidema PA, Jongejans E, Chien PD, During HJ & Schieving F (2010) Integral
kwangtungensis	1 miliac	projection models for trees: a new parameterization method and a validation of
kwangtungensis		model output. Journal of Ecology 98: 345-355
C1-	Plantae	Kuss P, Rees M, Ægisdóttir HH, Ellner SP & Stöcklin J (2008) Evolutionary
Campanula	Plantae	
thyrsoides		demography of long-lived monocarpic perennials: a time-lagged integral projection
	D1 .	model. Journal of Ecology 96: 821-832
Coryphantha	Plantae	de Valpine P (2009) Stochastic development in biologically structured population
robbinsorum		models. Ecology 90: 2889-2901
Artemisia	Plantae	Alder PB, Dalgleish HJ & Ellner SP (2012) Forecasting plant community impacts
tripartita		of climate variability and change: when do competitive interactions matter?
		Journal of Ecology 100: 478-487
Pseudoroegneria	Plantae	Alder PB, Dalgleish HJ & Ellner SP (2012) Forecasting plant community impacts
spicata		of climate variability and change: when do competitive interactions matter?
		Journal of Ecology 100: 478-487
Hesperostipa	Plantae	Alder PB, Dalgleish HJ & Ellner SP (2012) Forecasting plant community impacts
comata		of climate variability and change: when do competitive interactions matter?
		Journal of Ecology 100: 478-487
Poa secunda	Plantae	Alder PB, Dalgleish HJ & Ellner SP (2012) Forecasting plant community impacts
		of climate variability and change: when do competitive interactions matter?
		Journal of Ecology 100: 478-487
Artemisia	Plantae	Adler PB, Ellner SP & Levine JM (2010) Coexistence of perennial plants: an
tripartita		embarrassment of niches. Ecology Letters 13: 1019-1029
Pseudoroegneria	Plantae	Adler PB, Ellner SP & Levine JM (2010) Coexistence of perennial plants: an
spicata		embarrassment of niches. Ecology Letters 13: 1019-1029
Hesperostipa	Plantae	Adler PB, Ellner SP & Levine JM (2010) Coexistence of perennial plants: an
comata		embarrassment of niches. Ecology Letters 13: 1019-1029
Poa secunda	Plantae	Adler PB, Ellner SP & Levine JM (2010) Coexistence of perennial plants: an
1 oa secunda	1 minac	embarrassment of niches. Ecology Letters 13: 1019-1029
Acropora	Animalia	Edmunds, P. J., Burgess, S. C., Putnam, H. M., Baskett, M. L., Bramanti, L.,
hyacinthus	Allillalla	Fabina, N. S., & Gates, R. D. (2014). Evaluating the causal basis of ecological
nyacintnus		success within the scleractinia: an integral projection model approach. Marine
C1 1	D1 /	Biology, 161(12), 2719-2734.
Chamaedorea	Plantae	Jansen M, Zuidema PA, Anten NPR & Martinez-Ramos M (2012) Strong persistent
elegans		growth differences govern individual performance and population dynamics in a
D '1'	A · 1·	tropical forest understory palm. Journal of Ecoloy 100: 1224-1232
Poecilia	Animalia	Basar RD, Lopez-Sepulcre A, Reznick DN & Travis J (2013) Experimental evidence
reticulata		for density-dependent regulation and selection on Trinidadian guppy life history.
		American Naturalist 181: 25-38
Poecilia	Animalia	Bassar, R. D., Heatherly, T., Marshall, M. C., Thomas, S. A., Flecker, A. S., &
reticulata		Reznick, D. N. (2015). Population size?structure?dependent fitness and ecosystem
		consequences in Trinidadian guppies. Journal of Animal Ecology.

Poecilia	Animalia	Bassar, R. D., Lopez-Sepulcre, A., Reznick, D. N., & Travis, J. (2013).
reticulata		Experimental evidence for density-dependent regulation and selection on
		Trinidadian guppy life histories. The American Naturalist, 181(1), 25-38.
Cirsium	Plantae	Rebarber R, Tenhumberg B & Townley S (2012) Global asymptotic stability of
canescens		density dependent integral population projection models. Theoretical Population
		Biology 81: 81-87
Cryptantha flava	Plantae	Salguero-Gómez R, Siewert W, Casper BB & Tielbörger K (2012) A demographic
		approach to study effects of climate change in desert plants. Philosophical
		Transaction of the Royal Society Series B 367: 3100-3114
Cryptantha flava	Plantae	NA
Succisa	Plantae	van der Meer S, Dahlgren JP, Mildén M & Ehrlén J (2013) Differential effects of
pratensis		abandonment on the demography of the grassland perennial Succisa pratensis.
1		Population Ecology, in press
Cirsium palustre	Plantae	Ramula S, Rees M & Buckley YM (2009) Integral projection models perform beter
		for small demographic data sets than matrix populatio models: a case study of two
		perennial herbs. Journal of Applied Ecology 46: 1048-1053
Primula veris	Plantae	Ramula S, Rees M & Buckley YM (2009) Integral projection models perform beter
		for small demographic data sets than matrix populatio models: a case study of two
		perennial herbs. Journal of Applied Ecology 46: 1048-1053
Cirsium	Plantae	Eager, E. A. (2012). Modeling and mathematical analysis of plant models in
canescens		ecology (Doctoral dissertation, University of Nebraska).
Helianthus	Plantae	Eager, E. A., Rebarber, R., & Tenhumberg, B. (2014). Modeling and Analysis of a
annuus	1 10111000	Density-Dependent Stochastic Integral Projection Model for a Disturbance
		Specialist Plant and Its Seed Bank. Bulletin of mathematical biology, 76(7),
		1809-1834.
Cirsium palustre	Plantae	Eager, E. A., Rebarber, R., & Tenhumberg, B. (2014). Global asymptotic stability
P		of plant-seed bank models. Journal of mathematical biology, 69(1), 1-37.
Hedysarum	Plantae	Li, S. L., Yu, F. H., Werger, M. J., Dong, M., During, H. J., & Zuidema, P. A.
laeve		(2015). Mobile dune fixation by a fast-growing clonal plant: a full life-cycle analysis.
		Scientific reports, 5.
Carlina vulgaris	Plantae	Rees M & Ellner SP (2009) Integral projection models for populations in temporally
		varying environments. Ecological Monographs 79: 575-594
Lupinus	Plantae	Ramula, S. (2014). Linking vital rates to invasiveness of a perennial herb.
polyphyllus		Oecologia, 174(4), 1255-1264.
Vaccinium	Plantae	Hegland SJ, Jongejans E & Rydgren K (2010) Investigating the interaction between
myrtillus		ungulate grazing and resource effects on Vaccinium myrtillus populations with
		integral projection models. Oecology 163: 695-706
Urocitellus	Animalia	Schindler S, Neuhaus P, Gaillard J-M & Coulson T (2013) The influence of
columbianus		nonrandom mating on population growth. American Naturalist 182: 28–41
Ovis aries	Animalia	Coulson T (2012) Integral projection models, their construction and use in posing
		hypotheses in ecology. Oikos 121: 1337-1350
Canis lupus	Animalia	Coulson T (2001) Modeling effects of environmental change on wolf population
		dynamics, trait evolution, and life history. Science 334: 1275-1278
Ovis aries	Animalia	Coulson T, Tuljapurkar S & Childs DZ (2010) Using evolutionary demography to
		link life history theory, quantitative genetics and population ecology. Journal of
		Animal Ecology 79: 1226-1240
Ovis aries	Animalia	Coulson, T., Tuljapurkar, S., & Childs, D. Z. (2010). Using evolutionary
		demography to link life history theory, quantitative genetics and population ecology.
		Journal of Animal Ecology, 79(6), 1226-1240.
Rhinella marina	Animalia	Perkins TA, Phillips BL, Baskett ML & Hastings A (2013) Evolution of dispersal
		and life history interact to drive accelerating spread of an invasive species. Ecology
		Letters 16: 1079–1087
<u>i </u>		

Opuntia	Plantae	Miller TEX, Louda SM, Rose KA & Eckberg JO (2009) Impacts of insect herbivory
imbricata	1 lalltae	on cactus population dynamics: experimental demography across an environmental
moncata		gradient. Ecological Monographs 79: 155-172
Onabia numaunaa	Plantae	0 0 1
Orchis purpurea	Plantae	Miller TEX, Williams JL, Jongejans E, Brys R & Jacquemyn H (2012)
		Evolutionary demography of iteroparous plants: incorporating non-lethal costs of
3.6:1:	DI +	reproduction into integral projection models. Proc Roy Soc B, 279: 2831-2840
Miliusa	Plantae	Caughlin TT, Ferguson JM, Lichstein JW, Zuidema PA, Bunyavejchewin S, Levey
horsfieldii		DJ. 2015 Loss of animal seed dispersal increases extinction risk in a tropical tree
		species due to pervasive negative density dependence across life stages. Proc. R.
		Soc. B 282: 20142095. http://dx.doi.org/10.1098/rspb.2014.2095
Esox lucius	Animalia	Vindenes, Y., Edeline, E., Ohlberger, J., Langangen, Ø., Winfield, I. J., Stenseth, N.
		C., & Vøllestad, L. A. (2014). Effects of climate change on trait-based dynamics of
		a top predator in freshwater ecosystems. The American Naturalist, 183(2), 243-256.
Berberis	Plantae	Merow, C., Bois, S. T., Allen, J. M., Xie, Y., Silander Jr., J. A. (2017). Climate
thunbergii		change both facilitates and inhibits invasive plant ranges in New England. PNAS
		Vol. 114, Issue 16.
Cirsium	Plantae	Tenhumberg, B., Suwa, T., Tyre, A. J., Russell, F. L., & Louda, S. M. (2015).
altissimum		Integral projection models show exotic thistle is more limited than native thistle by
		ambient competition and herbivory. Ecosphere, $6(4)$, art 69 .
NDY	Animalia	Jason Matthiopoulos, John Fieberg, Geert Aarts, Hawthorne L. Beyer, Juan M.
		Morales, and Daniel T. Haydon 2015. Establishing the link between habitat
		selection and animal population dynamics. Ecological Monographs
		85:413-436. http://dx.doi.org/10.1890/14-2244.1
Bouteloua	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the
eriopoda		recruitment stage to stabilize grassland coexistence. Ecological Monographs
		85:373–392. http://dx.doi.org/10.1890/14-1741.1
Bouteloua	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the
rothrockii		recruitment stage to stabilize grassland coexistence. Ecological Monographs
		85:373–392. http://dx.doi.org/10.1890/14-1741.1
Artemisia	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the
tripartita		recruitment stage to stabilize grassland coexistence. Ecological Monographs
		85:373–392. http://dx.doi.org/10.1890/14-1741.1
Pseudoroegneria	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the
spicata		recruitment stage to stabilize grassland coexistence. Ecological Monographs
1		85:373–392. http://dx.doi.org/10.1890/14-1741.1
Hesperostipa	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the
comata	1 1011000	recruitment stage to stabilize grassland coexistence. Ecological Monographs
		85:373–392. http://dx.doi.org/10.1890/14-1741.1
Poa secunda	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the
1 ou bounda	1 10111000	recruitment stage to stabilize grassland coexistence. Ecological Monographs
		85:373–392. http://dx.doi.org/10.1890/14-1741.1
Bouteloua	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the
curtipendula	i ianoae	recruitment stage to stabilize grassland coexistence. Ecological Monographs
carupendua		85:373–392. http://dx.doi.org/10.1890/14-1741.1
Bouteloua	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the
hirsuta	1 miliae	recruitment stage to stabilize grassland coexistence. Ecological Monographs
misuta		
Sahizaahymiyee	Plantae	85:373–392. http://dx.doi.org/10.1890/14-1741.1
Schizachyrium	riantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the
scoparium		recruitment stage to stabilize grassland coexistence. Ecological Monographs
		85:373–392. http://dx.doi.org/10.1890/14-1741.1

Bouteloua	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the
gracilis		recruitment stage to stabilize grassland coexistence. Ecological Monographs
		85:373–392. http://dx.doi.org/10.1890/14-1741.1
Pascopyrum	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the
smithii		recruitment stage to stabilize grassland coexistence. Ecological Monographs
		85:373–392. http://dx.doi.org/10.1890/14-1741.1
Sporobolus	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the
flexuosus	1 10111000	recruitment stage to stabilize grassland coexistence. Ecological Monographs
11011dobdb		85:373–392. http://dx.doi.org/10.1890/14-1741.1
Ferocactus	Plantae	Ford, K. R., Ness, J. H., Bronstein, J. L., & Morris, W. F. (2015). The
wislizeni	1 minac	demographic consequences of mutualism: ants increase host-plant fruit production
WISHZCIII		but not population growth. Oecologia, 1-12.
Eastman	Dlantas	NA
Festuca	Plantae	NA NA
arizonica		
Poecilia	Animalia	Bassar, R. D., Childs, D. Z., Rees, M., Tuljapurkar, S., Reznick, D. N., Coulson, T.
reticulata		(2016). The effects of asymmetric competition on the life history of Trinidadian
		guppies. Ecology Letters.
Ovis canadensis	Animalia	Pigeon, G., Festa-Bianchet, M., Coltman, D. W., Pelletier, F. (2016). Intense
		selective hunting leads to artificial evolution in horn size. Evolutionary Applications.
Salvelinus	Animalia	Bassar, R. D., Letcher, B. H., Nislow, K. H., Whiteley, A. R. (2016). Changes in
fontinalis		seasonal climate outpace compensatory density-dependence in eastern brook trout.
		Global Change Biology.
Achyranthes	Plantae	Schwartz, L. M., Gibson, D. J., Young, B. G. (2016). Using integral projection
japonica		models to compare population dynamics of four closely related species. Population
		Ecology.
Amaranthus	Plantae	Schwartz, L. M., Gibson, D. J., Young, B. G. (2016). Using integral projection
palmeri		models to compare population dynamics of four closely related species. Population
F ********		Ecology.
Amaranthus	Plantae	Schwartz, L. M., Gibson, D. J., Young, B. G. (2016). Using integral projection
tuberculatus	1 10111000	models to compare population dynamics of four closely related species. Population
taber calavas		Ecology.
Iresine	Plantae	Schwartz, L. M., Gibson, D. J., Young, B. G. (2016). Using integral projection
rhizomatosa	1 minac	models to compare population dynamics of four closely related species. Population
TIIIZOIIIatOSa		Ecology.
Aguila faggiata	Animalia	Lieury, N., Besnard, A., Ponchon, C., Ravayrol, A., Millon, A. (2016).
Aquila fasciata	Allillalla	
		Geographically isolated but demographically connected: Immigration supports
		efficient conservation actions in the recovery of a range-margin population of the
G 1 1 0	D1 /	Bonelli's eagle in France. Biological Conservation 195.
Cryptantha flava	Plantae	Schreiber, S., & Ross, N. (2016). Individual-based Integral Projection Models: The
		role of size-structure on extinction risk and establishment success. Methods in
77	T.1	Ecology and Evolution.
Veronica	Plantae	Olsen, S. L., Töpper, J. P., Skarpaas, O., Vandvik, V., Klanderud, K. (2016). From
officinalis		facilitation to competition: temperature-driven shift in dominant plant interactions
		affects population dynamics in semi-natural grasslands. Global Change Biology.
Veronica alpina	Plantae	Olsen, S. L., Töpper, J. P., Skarpaas, O., Vandvik, V., Klanderud, K. (2016). From
		facilitation to competition: temperature-driven shift in dominant plant interactions
		affects population dynamics in semi-natural grasslands. Global Change Biology.
Viola palustris	Plantae	Olsen, S. L., Töpper, J. P., Skarpaas, O., Vandvik, V., Klanderud, K. (2016). From
		facilitation to competition: temperature-driven shift in dominant plant interactions
		affects population dynamics in semi-natural grasslands. Global Change Biology.

Viola biflora	Plantae	Olsen, S. L., Töpper, J. P., Skarpaas, O., Vandvik, V., Klanderud, K. (2016). From
		facilitation to competition: temperature-driven shift in dominant plant interactions
		affects population dynamics in semi-natural grasslands. Global Change Biology.
Cryptantha flava	Plantae	González, E. J., Martorell, C., & Bolker, B. M. (2016). Inverse estimation of
		integral projection model parameters using time series of population?level
		data.Methods in Ecology and Evolution, 7(2), 147-156.
Parus major	Animalia	Childs, D. Z., Sheldon, B. C., & Rees, M. (2016). The evolution of labile traits in
	70	sex?and age?structured populations. Journal of Animal Ecology, 85(2), 329-342.
Fraxinus	Plantae	Needham, J., Merow, C., Butt, N., Malhi, Y., Marthews, T. R., Morecroft, M., &
excelsior		McMahon, S. M. (2016). Forest community response to invasive pathogens: the
D 41	. Dl .	case of ash dieback in a British woodland. Journal of Ecology, 104(2), 315-330.
Prenanthes_roane	nsis Plantae	Aikens, M. L., & Roach, D. A. (2014). Population dynamics in central and edge
TT: 1 1	1 · · D1 /	populations of a narrowly endemic plant. Ecology, 95(7), 1850-1860.
Himantoglossum_	nircinu r nantae	Van der Meer, S., Jacquemyn, H., Carey, P. D., Jongejans, E. (2016). Recent range
		expansion of a terrestrial orchid corresponds with climate-driven variation in ist
Crug amoricana	Animalia	population dynamics. Oecologia. Wilson, S., Gil-Weir, K. C., Clark, R. G., Robertson, G. J., & Bidwell, M. T.
Grus americana	Animalia	(2016). Integrated population modeling to assess demographic variation and
		contributions to population growth for endangered whooping cranes. Biological
Onuntia	Plantae	Conservation, 197, 1-7. Elderd, B. D., & Miller, T. E. (2015). Quantifying demographic uncertainty:
Opuntia imbricata	Plantae	Bayesian methods for Integral Projection Models (IPMs). Ecological Monographs.
Oenocarpus	Plantae	Isaza, C., Martorell, C., Cevallos, D., Galeano, G., Valencia, R., Balslev, H. (2016).
bataua	Гантае	Demography of Oenocarpus bataua and implications for sustainable harvest of its
Dataua		fruit in western Amazon. Population Ecology.
Cotyledon	Plantae	Pannell, J. L. (2016). Climatic limitation of alien weeds in New Zealand: enhancing
orbiculata	1 lantae	species distribution models with field data (Doctoral dissertation, Lincoln
Orbiculata		University).
Geum radiatum	Plantae	Ulrey, C., Quintana-Ascencio, P., Kauffman, G., Smith, A. B., Menges, E. S. (2016).
Geam radiavam	1 lantae	Life at the top: Long-term demography, microclimatic refugia, and responses to
		climate change for a high-elevation southern Appalachian endemic plant. Biological
		Conservation 200 (2016) 80-92.
Ivesia	Plantae	Oldfather, M. F., & Ackerly, D. D. (2018). Microclimate and demography interact
lycopodioides		to shape stable population dynamics across the range of an alpine plant. New
var. scandularis		Phytologist.
Fumana	Plantae	Dahlgren, J. P., Bengtsson, K., Ehrlen J. (2016). The demography of climate-
procumbens		driven and density- regulated population dynamics in a perennial plant. Ecology,
		97(4), 899-907
Esox lucius	Animalia	Vindenes, Y., Langangen, Ø., Winfield, I. J., Vøllestad, L. A. (2016). Fitness
		consequences of early life conditions and maternal size effects in a freshwater top
		predator. Journal of Animal Ecology, (85), 692-704
Crassostrea	Animalia	Moore, J. L., Lipcius, R. N., Puckett, B., Schreiber, S. J. (2016). The demographic
gigas		consequences of growing older and bigger oyster populations. Ecological
		Applications.
Callitris	Plantae	Trauernicht, C., Murphy, B. P., Prior, L. D., Lawes, M. J., & Bowman, D. M.
intratropica		(2016). Human-Imposed, Fine-Grained Patch Burning Explains the Population
		Stability of a Fire-Sensitive Conifer in a Frequently Burnt Northern Australia
		Savanna. Ecosystems, 1-14.
Rana mucosa	Animalia	Wilber, M. Q., Langwig, K. E., Kilpatrick, A. M., McCallum, H. I., & Briggs, C. J.
		(2016). Integral Projection Models for host–parasite systems with an application to
		amphibian chytrid fungus. Methods in Ecology and Evolution.

Cervus elaphus	Animalia	Pozo, R. A., Schindler, S., Cubaynes, S., Cusack, J. J., Coulson, T., Malo, A. F.,
		Modeling the Impact of Selective Harvesting on Red Deer Antlers. J Wildlife
		Manage.
Lindera_benzoin	Plantae	Merow, C., Bois, S. T., Allen, J. M., Xie, Y., Silander Jr., J. A. (2017). Climate
		change both facilitates and inhibits invasive plant ranges in New England. PNAS
		Vol. 114, Issue 16.
Dacrydium	Plantae	Snyder, E. S., Ellner, S. P. (2016). We Happy Few: Using Structured Population
elatum		Models to Identidy the Decisive Events in the Lives of Exceptional Individuals. The
		American Naturalist, Vol. 188, No. 2.
Liatris	Plantae	Tye, M. R., Menges, E. S., Weekley, C. (2016). A demographic ménage à trois:
ohlingerae		interactions between disturbances both amplify and dampen populatin dynamics if
		an endemic plant. Journal of Ecology.
Sebastes	Animalia	White, J. W., Nickols, K. J., Malone, D., Carr, M. H., Starr, R. M., Cordoleani, F.,
mystinus		Baskett, M. L., Hastings, A., Botsford, L. W. (2016). Fitting state-space integral
		projection models to size-structured time series data to estimate unknown
G 1		parameters. Ecological Applications.
Sebastes	Animalia	White, J. W., Nickols, K. J., Malone, D., Carr, M. H., Starr, R. M., Cordoleani, F.,
carnatus		Baskett, M. L., Hastings, A., Botsford, L. W. (2016). Fitting state-space integral
		projection models to size-structured time series data to estimate unknown
	DI .	parameters. Ecological Applications.
Opuntia	Plantae	Compagnoni, A., Bibian, A. J., Ochocki, B. M., Rogers, H. S., Schultz, E. L., Sneck,
imbricata		M. E., Elderd, B. D., Iler, A. M., Inouye, D. W., Jacquemyn, H., Miller, T. E. X.
		(2016). The effect of demographic correlations on the stochastic population
0.1:	DI /	dynamics of perennial plants. Ecological Monographs.
Orchis purpurea	Plantae	Compagnoni, A., Bibian, A. J., Ochocki, B. M., Rogers, H. S., Schultz, E. L., Sneck,
		M. E., Elderd, B. D., Iler, A. M., Inouye, D. W., Jacquemyn, H., Miller, T. E. X.
		(2016). The effect of demographic correlations on the stochastic population
Pinus halepensis	Plantae	dynamics of perennial plants. Ecological Monographs. García-Callejas, D., Molowny-Horas, R., Retana, J. (2016). Projecting the
r mus naiepensis	Ганае	distribution and abundance of Mediterranean tree species under climate change: a
		demographic approach. Journal of Plant Ecology.
Artemisia	Plantae	Ellner, S. P., Snyder, R. E., Adler, P. B. (2016). How to quantify the temporal
tripartita	1 lalltae	storage effect using simulations instead of math. Ecology Letters.
Hesperostipa	Plantae	Ellner, S. P., Snyder, R. E., Adler, P. B. (2016). How to quantify the temporal
comata	1 lalltae	storage effect using simulations instead of math. Ecology Letters.
Poa secunda	Plantae	Ellner, S. P., Snyder, R. E., Adler, P. B. (2016). How to quantify the temporal
1 od becanda	1 minue	storage effect using simulations instead of math. Ecology Letters.
Pseudoroegneria	Plantae	Ellner, S. P., Snyder, R. E., Adler, P. B. (2016). How to quantify the temporal
spicata	1 minue	storage effect using simulations instead of math. Ecology Letters.
Cirsium	Plantae	Eager, E. A., Rebarber, R. (2016). Sensitivity and elasticity analysis of a Lur'e
canescens	1 minue	system used to model a population subject to density-dependent reproduction.
		Mathematical Biosciences.
Zootoca vivipara	Animalia	Jaffré, M.; Le Galliard, J.F. (2016). Population viability analysis of plant and
- I I I I I I I I I I I I I I I I I I I		animal populations with stochastic integral projection models. Oecologia
Rhizoglyphus	Animalia	Smallegange, I. M., Caswell, H., Toorians, M. E. M., de Roos, A. M. (2016).
robini		Mechanistic description of population dynamics using dynamic energy budget theory
		incorporated into integral projection models. Methods in Ecology and Evolution.
Manta alfredi	Animalia	Smallegange, I. M., Caswell, H., Toorians, M. E. M., de Roos, A. M. (2016).
		Mechanistic description of population dynamics using dynamic energy budget theory
		incorporated into integral projection models. Methods in Ecology and Evolution.

Drosophyllum	Plantae	Paniw, M., Quintana-Ascencio, P. F., Ojeda, F., Salguero-Gómez, R. (2016).
lusitanicum		Accounting for uncertainty in dormant life stages in stochastic demographic models.
		Oikos.
Bouteloua	Plantae	Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic
gracilis		data to forecast plant population dynamics? bioRxiv.
Hesperostipa	Plantae	Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic
comata		data to forecast plant population dynamics? bioRxiv.
Pascopyrum	Plantae	Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic
smithii	1 lalloac	data to forecast plant population dynamics? bioRxiv.
Poa secunda	Plantae	Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic
roa secunda	Гашае	data to forecast plant population dynamics? bioRxiv.
Tillandsia	D14	
	Plantae	Ticktin, T., Mondragón, D., and Gaoue, O.G. (2016). Host genus and rainfall drive
macdougallii	D1	the population dynamics of a vascular epiphyte. Ecosphere 7.11
Pometia spp.	Plantae	Murdjoko, A., Marsono, D., Sandono, R., Hadisusanto, S. (2016). Population
		Dynamics of Pometia for The Period of Post-Selective Logging in Tropical
		Rainforest, Southern Papua, Indonesia. Biosaintifika: Journal of Biology & Biology
		Education 8 (3). 320-329.
Cyprinodontiforme	s_sp.Animalia	Bassar, R. D., Simon, T., Roberts, W., Travis, J., Reznick, D. N. (2016). The
		evolution of coexistence: Reciprocal adaptation promotes the assembly of a simple
		community. Evolution.
Poecilia	Animalia	Bassar, R. D., Simon, T., Roberts, W., Travis, J., Reznick, D. N. (2016). The
reticulata		evolution of coexistence: Reciprocal adaptation promotes the assembly of a simple
		community. Evolution.
Pinus halepensis	Plantae	Molowny Horas, R., & Espelta, J.M. (2013). Modelos integrales de proyección como
1		instrumentos para la gestón medioambiental forestal. En J.A. Blanco (Ed.).
		Aplicaciones de modelos ecológicos a la gesti ón de recursos naturales . (pp.
		125-140). Barcelona: OmniaScience.
Drosophyllum	Plantae	Paniw, M., Quintana-Ascencio, P. F., Ojeda, F., Salguero-Gómez, R. (2017).
lusitanicum		Interacting livestock and fire may both threaten and increase viability of a
14510411104111		fire-adapted Mediterranean carnivorous plant. Journal of Applied Ecology.
Alchornea	Plantae	Bruijning, M., Visser, M. D., Muller-Landau, H. C., Wright, S. J., Comita, L. S.,
costaricensis	1 lalloac	Hubbell, S. P., De Kroon, H., Jongejans, E. (2017). Surviving in a Cosexual World:
COStaricchisis		A Cost-Benefit Analysis of Dioecy in Tropical Trees. The American Naturalist. Vol.
		189, No. 3.
Camania ingimia	Dlantas	Bruijning, M., Visser, M. D., Muller-Landau, H. C., Wright, S. J., Comita, L. S.,
Cecropia insignis	Plantae	Hubbell, S. P., De Kroon, H., Jongejans, E. (2017). Surviving in a Cosexual World:
		A Cost-Benefit Analysis of Dioecy in Tropical Trees. The American Naturalist. Vol.
	D1	189, No. 3.
Cecropia	Plantae	Bruijning, M., Visser, M. D., Muller-Landau, H. C., Wright, S. J., Comita, L. S.,
obtusifolia		Hubbell, S. P., De Kroon, H., Jongejans, E. (2017). Surviving in a Cosexual World:
		A Cost-Benefit Analysis of Dioecy in Tropical Trees. The American Naturalist. Vol.
		189, No. 3.
Simarouba	Plantae	Bruijning, M., Visser, M. D., Muller-Landau, H. C., Wright, S. J., Comita, L. S.,
amara		Hubbell, S. P., De Kroon, H., Jongejans, E. (2017). Surviving in a Cosexual World:
		A Cost-Benefit Analysis of Dioecy in Tropical Trees. The American Naturalist. Vol.
		189, No. 3.
Pouteria	Plantae	Bruijning, M., Visser, M. D., Muller-Landau, H. C., Wright, S. J., Comita, L. S.,
reticulata		Hubbell, S. P., De Kroon, H., Jongejans, E. (2017). Surviving in a Cosexual World:
		A Cost-Benefit Analysis of Dioecy in Tropical Trees. The American Naturalist. Vol.
		189, No. 3.
	1	· · · · · · · · · · · · · · · · · · ·

Protium	Plantae	Bruijning, M., Visser, M. D., Muller-Landau, H. C., Wright, S. J., Comita, L. S.,
tenuifolium		Hubbell, S. P., De Kroon, H., Jongejans, E. (2017). Surviving in a Cosexual World:
		A Cost-Benefit Analysis of Dioecy in Tropical Trees. The American Naturalist. Vol.
		189, No. 3.
Triplaris	Plantae	Bruijning, M., Visser, M. D., Muller-Landau, H. C., Wright, S. J., Comita, L. S.,
cumingiana		Hubbell, S. P., De Kroon, H., Jongejans, E. (2017). Surviving in a Cosexual World:
0411111814114		A Cost-Benefit Analysis of Dioecy in Tropical Trees. The American Naturalist. Vol.
		189, No. 3.
Virola sebifera	Plantae	Bruijning, M., Visser, M. D., Muller-Landau, H. C., Wright, S. J., Comita, L. S.,
virota sebilera	1 ianuac	Hubbell, S. P., De Kroon, H., Jongejans, E. (2017). Surviving in a Cosexual World:
		A Cost-Benefit Analysis of Dioecy in Tropical Trees. The American Naturalist. Vol.
		189, No. 3.
Bouteloua	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
	Plantae	
eriopoda		Environmental responses, not species interactions, determine synchrony of dominant
G 1 1	DI /	species in semiarid grasslands. Ecology.
Sporobolus	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
?exuosus		Environmental responses, not species interactions, determine synchrony of dominant
		species in semiarid grasslands. Ecology.
Bouteloua	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
eriopoda		Environmental responses, not species interactions, determine synchrony of dominant
		species in semiarid grasslands. Ecology.
Bouteloua	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
rothrockii		Environmental responses, not species interactions, determine synchrony of dominant
		species in semiarid grasslands. Ecology.
Bouteloua	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
curtipendula		Environmental responses, not species interactions, determine synchrony of dominant
		species in semiarid grasslands. Ecology.
Bouteloua	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
hirsuta		Environmental responses, not species interactions, determine synchrony of dominant
		species in semiarid grasslands. Ecology.
Schizachyrium	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
scoparium		Environmental responses, not species interactions, determine synchrony of dominant
1		species in semiarid grasslands. Ecology.
Bouteloua	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
gracilis		Environmental responses, not species interactions, determine synchrony of dominant
8		species in semiarid grasslands. Ecology.
Hesperostipa	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
comata		Environmental responses, not species interactions, determine synchrony of dominant
Colliava		species in semiarid grasslands. Ecology.
Pascopyrum	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
smithii	1 ianuac	Environmental responses, not species interactions, determine synchrony of dominant
3111101111		species in semiarid grasslands. Ecology.
Poa secunda	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
i oa secunda	1 lantae	Environmental responses, not species interactions, determine synchrony of dominant
		species in semiarid grasslands. Ecology.
Artemisia	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
	riantae	Environmental responses, not species interactions, determine synchrony of dominant
tripartita		
D1	D1. /	species in semiarid grasslands. Ecology.
Pseudoroegneria	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
spicata		Environmental responses, not species interactions, determine synchrony of dominant
		species in semiarid grasslands. Ecology.

TT	D1 .	T 1 1 4 T D M 4 C 1 M 4 U D D (2015)
Hesperostipa	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
comata		Environmental responses, not species interactions, determine synchrony of dominant
		species in semiarid grasslands. Ecology.
Poa secunda	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
		Environmental responses, not species interactions, determine synchrony of dominant
		species in semiarid grasslands. Ecology.
Gadus morhua	Animalia	Aalto, E. A., Baskett, M. L. (2017). Post-harvest recovery dynamics depend on
		predator specialization in size-selective fisheries. Marine Ecology Progress Series.
		Vol 564: 127-143.
Melanogrammus	Animalia	Aalto, E. A., Baskett, M. L. (2017). Post-harvest recovery dynamics depend on
aeglefinus	11111110110	predator specialization in size-selective fisheries. Marine Ecology Progress Series.
acgreinias		Vol 564: 127-143.
Merlangius	Animalia	Aalto, E. A., Baskett, M. L. (2017). Post-harvest recovery dynamics depend on
~	Allillalla	
merlangus		predator specialization in size-selective fisheries. Marine Ecology Progress Series.
D 1 1 11	4 . 1	Vol 564: 127-143.
Balanophyllia	Animalia	Elahi, R., Sebens, K. P., De Leo, G. A. (2016). Ocean warming and the demography
elegans		oi declines in coral body size. Marine Ecology Progress Series. Vol. 560: 147-158.
Calathea	Plantae	Westerband, A. C., Horvitz, C. C. (2017). Photosynthetic rates influence the
crotalifera		population dynamics of understory herbs in stochastic light environments. Ecology,
		98 (2): 370-381.
Heliconia	Plantae	Westerband, A. C., Horvitz, C. C. (2017). Photosynthetic rates influence the
tortuosa		population dynamics of understory herbs in stochastic light environments. Ecology,
		98 (2): 370-381.
Microtus	Animalia	Van Benthem, K. J., Froy, H., Coulson, T., Getz, L. L., Oli, M. K., Ozgul, A.
ochrogaster	Tillilliana	(2017). Trait – demography relationships underlying small mammal population
oem ogaster		?uctuations. Journal of Animal Ecology, 86: 348-358.
Mammillaria	Plantae	Ureta, C., Martorell, C., Hortal, J., & Fornoni, J. (2012). Assessing extinction risks
dixanthocentron	1 lamae	under the combined effects of climate change and human disturbance through the
dixantinocentron		
		analysis of life-history plasticity. Perspectives in Plant Ecology, Evolution and
3.5 111 1	DI +	Systematics, 14(6), 393-401.
Mammillaria	Plantae	Ureta, C., Martorell, C., Hortal, J., & Fornoni, J. (2012). Assessing extinction risks
hernandezii		under the combined effects of climate change and human disturbance through the
		analysis of life-history plasticity. Perspectives in Plant Ecology, Evolution and
		Systematics, 14(6), 393-401.
Astrocaryum	Plantae	García, N., Zuidema, P. A., Galeano, G., & Bernal, R. (2016). Demography and
chambira		sustainable management of two fiber?producing Astrocaryum palms in Colombia.
		Biotropica, 48(5), 598-607.
Astrocaryum	Plantae	García, N., Zuidema, P. A., Galeano, G., & Bernal, R. (2016). Demography and
standleyanum		sustainable management of two fiber?producing Astrocaryum palms in Colombia.
		Biotropica, 48(5), 598-607.
Ovis canadensis	Animalia	Manlove, Kezia, et al. "Disease introduction is associated with a phase transition in
		bighorn sheep demographics." Ecology 97.10 (2016): 2593-2602.
Nothofagus	Plantae	Molowny? Horas, R., Suarez, M. L., & Lloret, F. (2017). Changes in the natural
dombeyi	1 lalloac	dynamics of Nothofagus dombeyi forests: population modeling with increasing
dombeyi		drought frequencies. Ecosphere, 8(3), e01708.
Doe algodes	Dlamtas	Chung, Y. A., Miller, T. E., & Rudgers, J. A. (2015). Fungal symbionts maintain a
Poa alsodes	Plantae	
		rare plant population but demographic advantage drives the dominance of a
To 1	D1	common host. Journal of Ecology.
Poa sylvestris	Plantae	Chung, Y. A., Miller, T. E., & Rudgers, J. A. (2015). Fungal symbionts maintain a
		rare plant population but demographic advantage drives the dominance of a
		common host. Journal of Ecology.

Protea repens	Plantae	Merow, C., Latimer, A. M., Wilson, A. M., McMahon, S. M., Rebelo, A. G., Silander Jr, J. A. (2014). On using integral projection modls to generate demographically driven predictions of species distributions: development and
Opuntia rastrera	Plantae	validation using sparse data. Ecography 32: 1167-1183 Ureta, C., Martorell, C., Cuervo-Robayo, A. P., Mandujano, M. C., Martínez-Meyer, E. (2018). Inferring space from time: On the relationship between demography and
		environmental suitability in the desert plan O. rastrera. Plos ONE 13(8): e0201543
Ambrosia	Plantae	Lommen, S. T. E., Jongejans, E., Leitsch-Vitalos, M., Tokarska-Guzik, B., Zalai,
artemisiifolia		M., Müller-Schärer, H., Karrer, G. (2018). Time to cut: population models reveal
_		how to mow invasive common ragweed cost-effectively. NeoBiota (39):: 53-78
Ivesia	Plantae	Oldfather, M. F. (2018). Population and Community Dynamics of Alpine Plants in
lycopodioides A. Gray var. scandularis		a Changing Climate Across Topographically Heterogeneous Landscapes (Doctoral dissertation, UC Berkeley).
Turritis_glabra	Plantae	Merow, C., Bois, S. T., Allen, J. M., Xie, Y., Silander Jr., J. A. (2017). Climate
		change both facilitates and inhibits invasive plant ranges in New England. PNAS
		Vol. 114, Issue 16.
Daphnia magna	Animalia	Bruijning, M., ten Berge, A. C., & Jongejans, E. (2018). Population?level responses
		to temperature, density and clonal differences in Daphnia magna as revealed by integral projection modelling. Functional Ecology, 32(10), 2407-2422.
Pinus	Plantae	Yang, X., Li, S., Shen, B., Wu, Y., Sun, S., Liu, R., & Li, S. L. (2018).
massoniana	1 Idillode	Demographic strategies of a dominant tree species in response to logging in a
		degraded subtropical forest in Southeast China. Annals of Forest Science, 75(3), 84.
Viola biflora L.	Plantae	Cui, H., Töpper, J. P., Yang, Y., Vandvik, V., & Wang, G. (2018). Plastic
var. rockiana		population effects and conservative leaf traits in a reciprocal transplant experiment
		simulating climate warming in the Himalayas. Frontiers in plant science, 9.
Acropora sp.;	Animalia	Kayal, M., Lenihan, H. S., Brooks, A. J., Holbrook, S. J., Schmitt, R. J., & Kendall,
Pocillopora sp;		B. E. (2018). Predicting coral community recovery using multi?species population
Porites sp; Marmota	Animalia	dynamics models. Ecology letters. Maldonado?Chaparro, A. A., Blumstein, D. T., Armitage, K. B., & Childs, D. Z.
flaviventer	Allillalla	(2018). Transient LTRE analysis reveals the demographic and trait?mediated
navivencei		processes that buffer population growth. Ecology letters, 21(11), 1693-1703.
Ctenopharyngodon	Animalia	Erickson, R. A., Eager, E. A., Kocovsky, P. M., Glover, D. C., Kallis, J. L., & Long,
idella		K. R. (2018). A spatially discrete, integral projection model and its application to
		invasive carp. Ecological Modelling, 387, 163-171.
NYD; 15 as	Plantae	Tredennick, A., Teller, B. J., Adler, P. B., Hooker, G., & Ellner, S. P. (2018).
Chu&Adler 2015		Size-by-environment interactions: a neglected dimension of species' responses to
Q 1	DI /	environmental variation. bioRxiv, 329771.
Carduus nutans	Plantae	Hindle, B. J., Rees, M., Sheppard, A. W., Quintana? Ascencio, P. F., Menges, E. S.,
		& Childs, D. Z. (2017). Exploring population responses to environmental change when there is never enough data: a factor analytic approach. Methods in Ecology
		and Evolution.
Eryngium	Plantae	Hindle, B. J., Rees, M., Sheppard, A. W., Quintana? Ascencio, P. F., Menges, E. S.,
cuneifolium		& Childs, D. Z. (2017). Exploring population responses to environmental change
		when there is never enough data: a factor analytic approach. Methods in Ecology and Evolution.
Ostrea lurida	Animalia	Kimbro, D. L., White, J. W., & Grosholz, E. D. (2018). The dynamics of open
		populations: integration of top-down, bottom-up and supply?side influences on
		intertidal oysters. Oikos.
Gadus morua	Animalia	Färber, L., Durant, J. M., Vindenes, Y., & Langangen, Ø. (2018). Increased early
		offspring growth can offset the costs of long-distance spawning migration in fish.
		Marine Ecology Progress Series, 600, 141-150.

Limosa limosa	Animalia	Kentie, R., Coulson, T., Hooijmeijer, J. C., Howison, R. A., Loonstra, A. J.,
limosa		Verhoeven, M. A., & Piersma, T. (2018). Warming springs and habitat
		alteration interact to impact timing of breeding and population dynamics in a
		migratory bird. Global change biology.
Astragalus	Plantae	Baer, K., & Maron, J. (2018). Declining demographic performance and dispersal
utahensis		limitation influence the geographic distribution of the perennial forb, Astragalus
		utahensis (fabaceae). Journal of Ecology.
Helianthemum	Plantae	Sulis, E., Bacchetta, G., Cogoni, D., & Fenu, G. (2018). Short-term population
caputfelis	1 10111000	dynamics of Helianthemum caput-felis, a perennial Mediterranean coastal plant: a
capaticis		key element for an effective conservation programme. Systematics and Biodiversity,
		1-10.
Aconitum	Plantae	Louthan, A., & Doak, D. (2018). Measurement error of state variables creates
	Ганцае	
noveboracense		substantial bias in results of demographic population models. Ecology, 99(10),
C 1 · 1 · 1	D1 /	2308-2317.
Salvia nubicola	Plantae	Dostálek, T., Rokaya, M. B., & Münzbergová, Z. (2018). Altitude, habitat type and
		herbivore damage interact in their effects on plant population dynamics. PloS one,
		13(12), e0209149.
Plantago	Plantae	Chen, S. (2018) Modelling plant populations - do clonality and seed ecology matter?
lanceolata		A study on Plantago lanceolata using integral projection models (IPMs). University
		of Sydney
Heracleum man-	Plantae	Drake, J. P. (2019). An Integral Projection Model for Giant Hogweed (Master's
tegazzianum		thesis, University of Waterloo).
Suricata	Animalia	Paniw, M., Maag, N., Cozzi, G., Clutton-Brock, T., & Ozgul, A. (2019). Life
suricatta		history responses of meerkats to seasonal changes in extreme environments. Science,
		363(6427), 631-635.
Fallopia	Plantae	Lavallée, F., Smadi, C., Alvarez, I., Reineking, B., Martin, F. M., Dommanget, F.,
japonica		& Martin, S. (2019). A stochastic individual based model for the growth of a stand
		of Japanese knotweed including moving as a management technique. arXiv preprint
		arXiv:1902.06971.
Corallium	Animalia	Montero?Serra, I., Garrabou, J., Doak, D. F., Ledoux, J. B., & Linares, C. Marine
rubrum		protected areas enhance structural complexity but do not buffer the consequences of
		ocean warming for an overexploited precious coral. Journal of Applied Ecology.
Ailanthus	Plantae	Levin, S. C., Crandall, R. M., & Knight, T. M. (2019). Population projection
altissima	1 militae	models for 14 alien plant species in the presence and absence of above?ground
artissiiia		competition. Ecology, e02681.
Euonymus	Plantae	Levin, S. C., Crandall, R. M., & Knight, T. M. (2019). Population projection
	1 lamae	models for 14 alien plant species in the presence and absence of above?ground
alatus		
T · .	D1 /	competition. Ecology, e02681.
Ligustrum	Plantae	Levin, S. C., Crandall, R. M., & Knight, T. M. (2019). Population projection
obtusifolium		models for 14 alien plant species in the presence and absence of above?ground
		competition. Ecology, e02681.
Lonicera maackii	Plantae	Levin, S. C., Crandall, R. M., & Knight, T. M. (2019). Population projection
		models for 14 alien plant species in the presence and absence of above?ground
		competition. Ecology, e02681.
Microchloa	Plantae	Martorell, C., & Martínez?Ballesté, A. (2019). Stress and disturbance determine
kunthii		the demographic dynamics of two grass species along a grazing gradient in Southern
		Mexico. Population Ecology, 61(2), 160-170.
Dianthus	Plantae	Cogoni, D., Sulis, E., Bacchetta, G., & Fenu, G. (2019). The unpredictable fate of
morisianus		the single population of a threatened narrow endemic Mediterranean plant.
		Biodiversity and Conservation, 1-15.

Euterpe	Plantae	Isaza, C., Bernal, R., Galeano, G., & Martorell, C. (2017). Demography of Euterpe
precatoria		precatoria and Mauritia flexuosa in the Amazon: application of integral projection
		models for their harvest. Biotropica, 49(5), 653-664.
Mauritia	Plantae	Isaza, C., Bernal, R., Galeano, G., & Martorell, C. (2017). Demography of Euterpe
flexuosa		precatoria and Mauritia flexuosa in the Amazon: application of integral projection
		models for their harvest. Biotropica, 49(5), 653-664.
Erythranthe	Plantae	Sheth, S. N., & Angert, A. L. (2018). Demographic compensation does not rescue
cardinalis		populations at a trailing range edge. Proceedings of the National Academy of
		Sciences, 115(10), 2413-2418.
Rhizoglyphus	Animalia	Deere, J. A., Coulson, T., Cubaynes, S., & Smallegange, I. M. (2017). Unsuccessful
robini		dispersal affects life history characteristics of natal populations: The role of
		dispersal related variation in vital rates. Ecological Modelling, 366, 37-47.
Plesiastrea	Animalia	Precoda, K., Baird, A. H., Madsen, A., Mizerek, T., Sommer, B., Su, S. N., &
versipora		Madin, J. S. (2018). How does a widespread reef coral maintain a population in an
		isolated environment?. Marine Ecology Progress Series, 594, 85-94.
Hypericum	Plantae	Quintana? Ascencio, P. F., Koontz, S. M., Smith, S. A., Sclater, V. L., David, A. S.,
cumulicola		& Menges, E. S. (2018). Predicting landscape?level distribution and abundance:
		Integrating demography, fire, elevation and landscape habitat configuration.
		Journal of Ecology, 106(6), 2395-2408.
Astragalus	Plantae	Baer, K. C., & Maron, J. L. (2018). Pre?dispersal seed predation and pollen
utahensis		limitation constrain population growth across the geographic distribution of
		Astragalus utahensis. Journal of Ecology, 106(4), 1646-1659.
Carapa	Plantae	Klimas, C. M., Cropper Jr, W. P., Kainer, K. A., & de Oliveira Wadt, L. H. (2017).
guianensis		Multimodel Projections for Evaluating Sustainable Timber and Seed Harvest of
		Carapa guianensis. Forest Science, 64(1), 15-27.
Arisaema	Plantae	Heckel, C. (2015). The influence of indirect effects of large herbivores on the life
triphyllum		history and population dynamics of unpalatable forest herb species (Doctoral
		dissertation, University of Pittsburgh).
Aurinia saxatilis	Plantae	Šimáková, T. (2018). Population biology of rock outcrop plant Aurinia saxatilis ssp
ssp saxatilis		saxatilis.
Helianthemum	Plantae	Tye, M. (2014). Integral projection models reveal interactive effects of biotic factors
squamatum		and disturbance on plant demography.
Poulsenia	Plantae	Zambrano, J., & Salguero?Gómez, R. (2014). Forest fragmentation alters the
armata		population dynamics of a late?successional tropical tree. Biotropica, 46(5), 556-564.
Fumana	Plantae	Edelfeldt, S., Bengtsson, K., & Dahlgren, J. P. (2019). Demographic senescence and
procumbens		effects on population dynamics of a perennial plant. Ecology, e02742.
Carphephorus	Plantae	Caughlin, T. T., Damschen, E. I., Haddad, N. M., Levey, D. J., Warneke, C., &
bellidifolius		Brudvig, L. A. (2019). Landscape heterogeneity is key to forecasting outcomes of
		plant reintroduction. Ecological Applications, 29(2), e01850.
Liatris	Plantae	Caughlin, T. T., Damschen, E. I., Haddad, N. M., Levey, D. J., Warneke, C., &
squarrulosa		Brudvig, L. A. (2019). Landscape heterogeneity is key to forecasting outcomes of
1		plant reintroduction. Ecological Applications, 29(2), e01850.
Gaillardia	Plantae	Hegstad, R. J., & Maron, J. L. (2019). Productivity and related soil properties
aristata		mediate the population?level consequences of rodent seed predation on
		Blanketflower, Gaillardia aristata. Journal of Ecology, 107(1), 34-44.
Dioon caputoi	Plantae	Cabrera? Toledo, D., González? Astorga, J., Vovides, A. P., Casas, A., Vargas? Ponce,
F 22.22		O., Carrillo?Reyes, P., & Vega, E. (2019). Surviving background extinction:
		Inferences from historic and current dynamics in the contrasting population
		structures of two endemic Mexican cycads. Population Ecology, 61(1), 62-73.
		V

Dioon	Plantae	Cabrera? Toledo, D., González? Astorga, J., Vovides, A. P., Casas, A., Vargas? Ponce,
Planifolium		O., Carrillo?Reyes, P., & Vega, E. (2019). Surviving background extinction:
		Inferences from historic and current dynamics in the contrasting population
		structures of two endemic Mexican cycads. Population Ecology, 61(1), 62-73.
Canis lupus	Animalia	Horne, J. S., Ausband, D. E., Hurley, M. A., Struthers, J., Berg, J. E., & Groth, K.
1		(2019). Integrated population model to improve knowledge and management of
		Idaho wolves. The Journal of Wildlife Management, 83(1), 32-42.
Agelaius tricolor	Animalia	Robinson, O. J., Ruiz-Gutierrez, V., Fink, D., Meese, R. J., Holyoak, M., & Cooch,
1180101100		E. G. (2018). Using citizen science data in integrated population models to inform
		conservation. Biological Conservation, 227, 361-368.
Artemisia	Plantae	Adler, P. B., Kleinhesselink, A., Hooker, G., Taylor, J. B., Teller, B., & Ellner, S. P.
tripartita		(2018). Weak interspecific interactions in a sagebrush steppe? Conflicting evidence
or par orea		from observations and experiments. Ecology, 99(7), 1621-1632.
Hesperostipa	Plantae	Adler, P. B., Kleinhesselink, A., Hooker, G., Taylor, J. B., Teller, B., & Ellner, S. P.
comata	1 lantae	(2018). Weak interspecific interactions in a sagebrush steppe? Conflicting evidence
Comata		from observations and experiments. Ecology, 99(7), 1621-1632.
Pseudoroegneria	Plantae	Adler, P. B., Kleinhesselink, A., Hooker, G., Taylor, J. B., Teller, B., & Ellner, S. P.
_	1 lantae	(2018). Weak interspecific interactions in a sagebrush steppe? Conflicting evidence
spicata		
D 1	D1 /	from observations and experiments. Ecology, 99(7), 1621-1632.
Poa secunda	Plantae	Adler, P. B., Kleinhesselink, A., Hooker, G., Taylor, J. B., Teller, B., & Ellner, S. P.
		(2018). Weak interspecific interactions in a sagebrush steppe? Conflicting evidence
D1: 1 1	A . 1.	from observations and experiments. Ecology, 99(7), 1621-1632.
Rhizoglyphus	Animalia	Smallegange, I. M., & Ens, H. M. (2018). Trait?based predictions and responses
robini		from laboratory mite populations to harvesting in stochastic environments. Journal
	70	of Animal Ecology, 87(4), 893-905.
Chamaedorea	Plantae	Jansen, M., Anten, N. P., Bongers, F., Martínez?Ramos, M., & Zuidema, P. A.
elegans		(2018). Towards smarter harvesting from natural palm populations by sparing the
		individuals that contribute most to population growth or productivity. Journal of
_		applied ecology, 55(4), 1682-1691.
Tridacna	Animalia	Schreiber, S. J., & Moore, J. L. (2018). The structured demography of open
maxima		populations in fluctuating environments. Methods in Ecology and Evolution, 9(6),
		1569-1580.
Psidium	Plantae	Horvitz, C. C., Denslow, J. S., Johnson, T., Gaoue, O., & Uowolo, A. (2018).
cattleianum		Unexplained variability among spatial replicates in transient elasticity: implications
		for evolutionary ecology and management of invasive species. Population ecology,
		60(1-2), 61-75.
Asclepias	Plantae	Kellett, K. M., & Shefferson, R. P. (2018). Temporal variation in reproductive costs
curassavica		and payoffs shapes the flowering strategy of a neotropical milkweed, Asclepias
		curassavica. Population ecology, $60(1-2)$, 77-87.
Ailanthus	Plantae	Crandall, R. M., & Knight, T. M. (2018). Role of multiple invasion mechanisms and
altissima		their interaction in regulating the population dynamics of an exotic tree. Journal of
		applied ecology, 55(2), 885-894.
Prioria copaifera	Plantae	Needham, J., Merow, C., Chang-Yang, C. H., Caswell, H., & McMahon, S. M.
		(2018). Inferring forest fate from demographic data: from vital rates to population
		dynamic models. Proceedings of the Royal Society B: Biological Sciences,
		285(1874), 20172050.
Calophyllum	Plantae	Needham, J., Merow, C., Chang-Yang, C. H., Caswell, H., & McMahon, S. M.
longifolium		(2018). Inferring forest fate from demographic data: from vital rates to population
		dynamic models. Proceedings of the Royal Society B: Biological Sciences,
		285(1874), 20172050.

Garcinia	Plantae	Needham, J., Merow, C., Chang-Yang, C. H., Caswell, H., & McMahon, S. M.
intermedia		(2018). Inferring forest fate from demographic data: from vital rates to population
		dynamic models. Proceedings of the Royal Society B: Biological Sciences,
		285(1874), 20172050.
Upupa epops	Plantae	Plard, F., Schindler, S., Arlettaz, R., & Schaub, M. (2018). Sex-specific
		heterogeneity in fixed morphological traits influences individual fitness in a
		monogamous bird population. The American Naturalist, 191(1), 106-119.
Ursus arctos	Animalia	Bled, F., Belant, J. L., Van Daele, L. J., Svoboda, N., Gustine, D., Hilderbrand, G.,
		& Barnes Jr, V. G. (2017). Using multiple data types and integrated population
		models to improve our knowledge of apex predator population dynamics. Ecology
		and evolution, 7(22), 9531-9543.
33 tree species	Plantae	Visser, M. D., Schnitzer, S. A., Muller?Landau, H. C., Jongejans, E., de Kroon, H.,
33 1211 ap 1111		Comita, L. S., & Wright, S. J. (2018). Tree species vary widely in their tolerance
		for liana infestation: A case study of differential host response to generalist
		parasites. journal of ecology, 106(2), 781-794.
Bertholletia	Plantae	Bertwell, T. D., Kainer, K. A., Cropper Jr, W. P., Staudhammer, C. L., & de
Excelsa	1 Idiliac	Oliveira Wadt, L. H. (2018). Are Brazil nut populations threatened by fruit
Encoida		harvest?. Biotropica, 50(1), 50-59.
Dendroctonus	Animalia	Goodsman, D. W., Aukema, B. H., McDowell, N. G., Middleton, R. S., & Xu, C.
ponderosae	7 minimana	(2018). Incorporating variability in simulations of seasonally forced phenology using
poliderosae		integral projection models. Ecology and evolution, 8(1), 162-175.
Schiedea	Plantae	Bialic?Murphy, L., & Gaoue, O. G. (2018). Low interannual precipitation has a
obovata	1 lamae	greater negative effect than seedling herbivory on the population dynamics of a
ODOVALA		short?lived shrub, Schiedea obovata. Ecology and evolution, 8(1), 176-184.
Hibiscus meyeri	Plantae	Louthan, A. M., Pringle, R. M., Goheen, J. R., Palmer, T. M., Morris, W. F., &
Indiscus meyeri	гантае	Doak, D. F. (2018). Aridity weakens population-level effects of multiple species
		interactions on Hibiscus meyeri. Proceedings of the National Academy of Sciences,
		115(3), 543-548.
Cirsium vulgare	Plantae	Schultz, E. L. (2018) Populations in a changing world: the effects of environmental
Cirsium vuigare	Flamae	
TT	D14	variation on species with complex life histories. Rice University
Hypericum	Plantae	Quintana? Ascencio, P. F., Koontz, S. M., Ochocki, B., Sclater, V. L.,
cumulicola		López?Borghesi, F., Li, H., & Menges, E. S. Assessing the roles of seed bank, seed
		dispersal and historical disturbances for metapopulation persistence of a pyrogenic
37 4 11	DI /	herb. Journal of Ecology.
Veratrum album	Plantae	Franco, D., Guiver, C., Logemann, H., & Perán, J. (2019). Boundedness,
		persistence and stability for classes of forced difference equations arising in
т .	DI +	population ecology. Journal of Mathematical Biology, 1-48.
Ipomopsis	Plantae	Campbell, D. R. (2019). Early snowmelt projected to cause population decline in a
aggregata		subalpine plant. Proceedings of the National Academy of Sciences, 201820096.
Ipomopsis	Plantae	Campbell, D. R. (2019). Early snowmelt projected to cause population decline in a
tenuituba	7.	subalpine plant. Proceedings of the National Academy of Sciences, 201820096.
Boswellia	Plantae	Bongers, F., Groenendijk, P., Bekele, T., Birhane, E., Damtew, A., Decuyper, M.,
papyrifera		& Lemenih, M. (2019). Frankincense in peril. Nature Sustainability, 2, 602-610.
Sebastes	Animalia	Nickols, K. J., White, J. W., Malone, D., Carr, M. H., Starr, R. M., Baskett, M. L.,
mystinus		& Botsford, L. W. (2019). Setting ecological expectations for adaptive
		management of marine protected areas. Journal of Applied Ecology.
Thamnophis	Animalia	
gigas		
Yermo	Plantae	Dibner, R.R, Peterson, M. L., Louthan, A. M., & Doak, D.F. (2019). Multiple
xanthocephalus		mechanisms confer stability to isolated populations of a rare endemic plant.
		Ecological Monographs 89 (2): e01360.
		· /

Bugula neritina	Animalia	Cameron, H., Coulson, T., & Marshall, D. J. (2019) Size and density mediate
		transitions between competition and facilitation. Ecology Letters. DOI:
		10.1111/ele.13381
Watersipora	Animalia	Cameron, H., Coulson, T., & Marshall, D. J. (2019) Size and density mediate
subtorquata		transitions between competition and facilitation. Ecology Letters. DOI:
		10.1111/ele.13381
Arisaema	Plantae	Bialic-Murphy, L., Heckel, C.D., McElderry, R.M., & Kalisz, S. (2019) Deer
triphyllum		indirectly alter the reproductive strategy and operational sex ratio of an
		unpalatable forest perennial. American Naturalist 195 (1), 56-69
Poecilia	Animalia	De Bona, S. (2019) Dispersal, habitat use, and the invasion dynamics of introduced
reticulata		populations: A case study on the Guppy. (Doctoral Dissertation, University of
		Jyvaskyla)
Koeleria	Plantae	Collins, C.G., Bohner, T.F., & Diez J.M. (2019) Plant-soil feedbacks and faciliation
macrantha		influence the demography of herbaceous alpine species in response to woody plant
		range expansion. Frontiers in Ecology and Evolution. DOI: 10.3389/fevo.2019.00417
Eriogonum	Plantae	Collins, C.G., Bohner, T.F., & Diez J.M. (2019) Plant-soil feedbacks and faciliation
ovalifolium		influence the demography of herbaceous alpine species in response to woody plant
		range expansion. Frontiers in Ecology and Evolution. DOI: 10.3389/fevo.2019.00417
Esox lucius	Animalia	Stubberud, M. W., Vindenes, Y., Vollestad, L.A., Winfield, I.J., Stenseth, N. C., &
Eson racias		Langangen, O. (2019) Effects of size- and sex-selective harvesting: An integral
		projection model approach. Ecology & Evolution. DOI: 10.1002/ece3.5719
Rheum nobile	Plantae	Song, B., Stoll, P., Peng, D., Sun, H., & Stoecklin, J. (2019) Demography of the
Tenedin nobile	1 lanuac	giant monocarpic herb Rheum nobile in the Himalayas and the effect of
		disturbances by grazing. Annals of Botany. DOI: 10.1093/aob/mcz178
4 coral species	Animalia	Noriega, M.A. (2019) Competition and coexistence of reef-corals (PhD Dissertation,
4 corar species	Allillalla	James Cook University)
Ostrea edulis	Animalia	Lown, A.E. (2019) Community ecology and population dynamics of the European
Ostrea edulis	Allillalla	native oyster (Ostrea edulis) in Essex, UK: A baseline for the management of the
		Blackwater, Crouch, Roach and Colne Estuaries Marine Conservation Zone. (PhD
		Dissertation, University of Essex)
Pimephales	Animalia	Pollesch, N.L., Flynn, K.M., Kadlec, S.M., Swintek,
promelas	Aiiiiiaiia	J.A., & Etterson, M.A. Developing integral projection models for ecotoxicology. URL:
prometas		https://scse.d.umn.edu/sites/scse.d.umn.edu/files/polleschnate_paper_2_12062019.
Cervus	Animalia	Lachish, S., Brandell, E., Craft, M., Dobson, A., Hudson, P., Macnulty, D., &
canadensis	Allillalla	Coulson, T. (2019) Investigating the dynamics of elk population size and body mass
Calladelisis		in a seasonal environment using a mechanistic integral projection model. Am Nat
Hymanaea	Plantae	Marques, I., Vidal, E., Tomazello-Filho, M., & Groenendijk, P. (2019) Applying tree
courbaril	1 lalluae	rings and population models to improve future timber yield projections of
Courbain		Hymenaea courbaril (Jatoba) in the Eastern Amazon. Pesq. Flor. Bras. 39.
Daphnia magna	Animalia	Bruijning, M. (2019) Persisting in an ever-changing world: Integrating plastic and
Dapinna magna	Allillalla	genetic responses across the life cycle. (PhD Dissertation, Radboud University
		Nijmegen)
Lathrana romana	Dlantas	
Lathyrus vernus	Plantae	Greiser, C., Hylander, K., Meineri, E., Luoto, M., & Ehrlen, J. (2020) Climate
		limitation at the cold edge: contrasting perspectives from species distribution
Echinomost	Dlant	modelling and a transplant experiment. Ecography 43: 1-11.
Echinomastus	Plantae	Larios, E., Gonzalez, E.J., Rosen, P.C., Pate, A., & Holm, P. (2020) Population
erectocentrus		projections of an endangered cactus suggest little impact of climate change.
var. acunensis	A : 1.	Oecologia. DOI: 10.1007/s00442-020-04595-y
Rhizoglyphus	Animalia	Deere, J.A., van den Berg, I., Roth, G., Smallegange, I.M. (2020) Modelling the
robini		impact of dispersal on a natal population that exhibits boom-bust dynamics.
		bioRxiv. DOI: 10.1101/402198

Ovis aries	Animalia	Kentie, R., Clegg, S.M., Tuljapurkar, S., Gaillard, J-M., Coulson, T. (2020)
		Life-history strategy varies with the strength of competition in a food-limited
		ungulate population. Ecology Letters. DOI: 10.1111/ele.13470
Actea spicata	Plantae	Roemer, G., Christiansen, D.M., de Buhr, H., Hylander, K., Jones, O.R., Merinero,
		S., Reitzel, K., Ehrlen, J., & Dahlgren, J.P. (2020). Drivers of large-scale spatial
		demographic variation in a perennial plant. DOI: 10.1101/2020.02.29.969428
Podarcis lilfordi	Animalia	Rotger, A., Igual, J.M., & Tavecchia, G. (2020) Contrastic size-dependent life
		history strategies of an insular lizard. Current Zoology 2020: 1-9. DOI:
		10.1093/cz/zoaa019
Ambystoma	Animalia	Brooks, G.M. (2020) Chapter 4: Population viability of an endangered amphibian
bishopi		under future management scenarios, In: On the use of demographic models to
		inform amphibian conservation and management: a case study of the Reticulated
D + 1	A . 1.	Flatwoods Salamander.
Branta leucopsis	Animalia	Layton-Matthews, K. (2020) Demographic consequences of rapid climate change
NT 1' ' 1	A . 1.	and density dependence in migratory Arctic Geese. PhD Thesis.
Nerodia sipedon	Animalia	Rose, J.P., & Todd, B.D. (2020) Targeting eradication of introduced watersnakes
D	DI	using integral projection models. Animal Conservation. DOI: 10.1111/acv.12590
Pseudoroegneria	Plantae	Shriver, R.K., Campbell, E., Dailey, C., Gaya, H., Hill, A., Kuzminski, S.,
spicata		Miller-Bartley, M., Moen, K., Moettus, R., Oschrin, E., Reese, D., Simonson, M.,
		Willson, A, & Parker, T.H. (2020) Local landscape position impacts demographic rates in a widespread North American steppe bunchgrass. DOI:
		10.32942/osf.io/8pdwg
Lupinus	Plantae	Ramula S. (2020) Annual moving has the potential to reduce the invasion of
polyphyllus	1 lalltae	herbaceous Lupinus polyphyllus. Biological Invasions 22: 3163-3173.
Cyclindriopuntia	Plantae	Czachura, K., & Miller T.E.X. (2020) Demographic back-casting reveals that subtle
imbricata	1 lantae	dimensions of climate change have strong effects on population viability. Journal of
moricada		Ecology. DOI: 10.1111/1365-2745.13471
Lupinus	Plantae	Compagnoni A., Pardini E., & Knight T.M. (2020) Increasing temperature
tidestromii	1 1011000	threatens an already endangered coastal dune plant. bioRxiv. DOI:
		10.1101/2020.08.02.2333288
Porites	Animalia	Lord K.S. (2020) The importance of mangroves as habitat for corals. Reef
divaricata		Encounter 35(1): 36-40.
Sebastes	Animalia	Perkins, N.R., Prall, M., Chakraborty A., White, J.W., Baskett, M.L., & Morgan
auriculatus		S.G. (2020) Quantifying the statistical power of monitoring programs for marine
		protected areas. Ecological Applications. DOI: 10.1002/eap.2215
Ranunculus	Plantae	Reed, P.B., Peterson, M.L., Pfeifer-Meister, L.E., Morris, W.F., Doak, D.F., Roy,
austro-oreganus		B.A., Johnson, B.R., Bailes, G.T., Nelson, A.A., & Bridgham, S.D. (2020) Climate
		manipulations differentially affect plant population dynamics within versus beyond
		northern range limits. Journal of Ecology. DOI: 10.1111/1365-2745.13494
Sidelcea	Plantae	Reed, P.B., Peterson, M.L., Pfeifer-Meister, L.E., Morris, W.F., Doak, D.F., Roy,
malviflora		B.A., Johnson, B.R., Bailes, G.T., Nelson, A.A., & Bridgham, S.D. (2020) Climate
		manipulations differentially affect plant population dynamics within versus beyond
		northern range limits. Journal of Ecology. DOI: 10.1111/1365-2745.13494
Microseris	Plantae	Reed, P.B., Peterson, M.L., Pfeifer-Meister, L.E., Morris, W.F., Doak, D.F., Roy,
laciniata		B.A., Johnson, B.R., Bailes, G.T., Nelson, A.A., & Bridgham, S.D. (2020) Climate
		manipulations differentially affect plant population dynamics within versus beyond
A 1 11	T)1 ·	northern range limits. Journal of Ecology. DOI: 10.1111/1365-2745.13494
Achnatherum	Plantae	Reed, P.B., Peterson, M.L., Pfeifer-Meister, L.E., Morris, W.F., Doak, D.F., Roy,
lemmonii		B.A., Johnson, B.R., Bailes, G.T., Nelson, A.A., & Bridgham, S.D. (2020) Climate
		manipulations differentially affect plant population dynamics within versus beyond
		northern range limits. Journal of Ecology. DOI: 10.1111/1365-2745.13494

Festuca roemeri	Plantae	Reed, P.B., Peterson, M.L., Pfeifer-Meister, L.E., Morris, W.F., Doak, D.F., Roy,
		B.A., Johnson, B.R., Bailes, G.T., Nelson, A.A., & Bridgham, S.D. (2020) Climate
		manipulations differentially affect plant population dynamics within versus beyond
		northern range limits. Journal of Ecology. DOI: 10.1111/1365-2745.13494
Danthonia	Plantae	Reed, P.B., Peterson, M.L., Pfeifer-Meister, L.E., Morris, W.F., Doak, D.F., Roy,
californica		B.A., Johnson, B.R., Bailes, G.T., Nelson, A.A., & Bridgham, S.D. (2020) Climate
		manipulations differentially affect plant population dynamics within versus beyond
		northern range limits. Journal of Ecology. DOI: 10.1111/1365-2745.13494