Кафедра информационной безопасности киберфизических систем

Москва 2024

Криптографические методы защиты информации

Историческая криптография

История развития криптографии

Краткая история

Московский институт электроники

и математики им. А.Н. Тихонова

XL в. до н.э. — XIX в. н.э.: элементарная (наивная) криптография, моноалфавитные

полиалфавитные шифры.

XIX в. — начало XX в.: математической криптографии, формирование появление

> требований к надежным шифрам, создание шифровальных

машин.

формирование современной криптографии с секретным ключом. 1930-е гг. — 1970-е гг.:

формирование всех направлений современной криптографии, 1970-е гг. — 1990-е гг.:

появление идей квантовой и постквантовой криптографии.

разработки в области квантовой и постквантовой криптографии. Наше время:

Подстановочные шифры

Подстановочные шифры

- Криптографическое преобразование заключается в **замене символов** открытого текста на другие символы по определенному правилу:
 - символы шифртекста принадлежат тому же алфавиту естественного языка, что и символы открытого текста;
 - символы шифртекста записываются как числа или графические образы.

• Примеры шифров:

- Атбаш
- Линейка Энея
- Квадрат Полибия
- Шифр простой замены
- Шифр Цезаря
- Аффинный шифр
- Диск Альберти

- ...

Шифр простой замены

Открытый текст:

Шифртекст:

Ключ:

Зашифрование:

Расшифрование:

$$x = (x_1, \dots, x_l)$$
, где $x_i \in A = \{a_1, a_2, \dots, a_m\}$;

Историческая криптография

$$y = (y_1, ..., y_l)$$
, где $y_i \in A = \{a_1, a_2, ..., a_m\}$;

$$k = \begin{pmatrix} a_1 & a_2 & \cdots & a_m \\ a_{i_1} & a_{i_2} & \cdots & a_{i_m} \end{pmatrix};$$

$$E_k(x) = E_k(x_1, ..., x_l) = (k(x_1), ..., k(x_l));$$

$$D_k(y) = D_k(y_1, ..., y_l) = (k^{-1}(y_1), ..., k^{-1}(y_l)).$$

Аффинный шифр

Московский институт электроники

и математики им. А.Н. Тихонова

• Открытый текст:

• Шифртекст:

• Ключ:

• Зашифрование:

• Расшифрование:

$$x=(x_1, \ldots, x_l)$$
, где $x_i \in \mathbb{Z}_m$;

$$y=(y_1, \ldots, y_l)$$
, где $y_i \in \mathbb{Z}_m$;

$$k = (\alpha, \beta), \alpha \in \mathbb{Z}_m^*, \beta \in \mathbb{Z}_m;$$

$$E_k(x_i) = y_i = \alpha x_i + \beta;$$

$$D_k(y_i) = x_i = (y_i - \beta)\alpha^{-1}$$
.

Аффинный рекуррентный шифр

• Открытый текст:

Московский институт электроники

и математики им. А.Н. Тихонова

$$x=(x_1, \ldots, x_l)$$
, где $x_i \in \mathbb{Z}_m$;

• Шифртекст:

$$y=(y_1, \ldots, y_l)$$
, где $y_i \in \mathbb{Z}_m$;

• Ключ:

$$k_1 = (\alpha_1, \beta_1), k_1 \in \mathbb{Z}_m^* \times \mathbb{Z}_m;$$

$$k_2 = (\alpha_2, \beta_2), k_2 \in \mathbb{Z}_m^* \times \mathbb{Z}_m;$$

$$k_i = (\alpha_i, \beta_i) = (\alpha_{i-1}\alpha_{i-2}, \beta_{i-1} + \beta_{i-2}), i = \overline{3, l};$$

• Зашифрование:

$$E_k(x_i) = y_i = \alpha_i x_i + \beta_i;$$

• Расшифрование:

$$D_k(y_i) = x_i = (y_i - \beta_i)\alpha_i^{-1}.$$

- Сообщение:
 - -X = CRYPTOGRAPHY
- Ключ шифра простой замены:

$$- \ k = \begin{pmatrix} A & B & C & D & E & F & G & H & I & J & K & L & M & N & O & P & Q & R & S & T & U & V & W & X & Y & Z \\ E & K & H & M & G & C & P & T & L & R & A & Q & F & X & W & N & Y & I & Z & B & V & U & O & S & D & J \end{pmatrix}$$

• Ключ аффинного шифра:

$$- k = (3,10)$$

• Ключ аффинного рекуррентного шифра:

$$-k_1 = (3, 10); k_2 = (5, 4)$$

- Шифртекст, полученный по шифру простой замены:
 - Y = HIDNBWPIENTD

- Шифртекст, полученный по аффинному шифру:
 - Y = QJEDPACJKDFE
- Шифртекст, полученный по аффинному рекуррентному шифру:
 - Y = QLKZJQGNGTNS

Частотный криптоанализ шифров простой замены

информации

Криптографические методы защиты

Частота встречаемости символов шифртекста, %

Перестановочные шифры

Перестановочные шифры

• Криптографическое преобразование заключается в **перестановке местами символов** открытого текста по определенному правилу.

• Примеры шифров:

- Сцитала
- Шифр на основе поворотной решетки
- Блочный перестановочный шифр

— ...

Шифр на основе поворотной решетки

- Поворотная решетка представляет собой квадратный лист из твердого материала (картона, металла и т.п.), который содержит несколько квадратных прорезей-окон.
- Решетка накладывается на лист бумаги и в окна вписываются символы сообщения.
- После заполнения всех окон решетка поворачивается на 90 градусов, в результате чего окна накладываются на новые чистые участки листа бумаги и в них вписываются следующие символы сообщения.
- Если выбранная решетка не обеспечивает полного заполнения листа, либо сообщение имеет размер меньше максимально возможного, то на оставшиеся пустые места записываются случайные символы.

Исходное положение

Первый поворот

Второй поворот

Третий поворот

Случайное заполнение

Р	С	D	R	
F	Υ	Р	Т	
Н	Υ	G	S	
R	Α	Α	0	

Блочный перестановочный шифр

Блок открытого текста:

$$x = (x_1, ..., x_l)$$
, где $x_i \in A = \{a_1, a_2, ..., a_m\}$;

Историческая криптография

Блок шифртекста:

$$y = (y_1, ..., y_l)$$
, где $y_i \in A = \{a_1, a_2, ..., a_m\}$;

Ключ:

$$k = \begin{pmatrix} 1 & \cdots & l \\ i_1 & \cdots & i_l \end{pmatrix};$$

Зашифрование:

$$E_k(x) = (x_{k(1)}, ..., x_{k(l)});$$

Расшифрование:

$$E_k(y) = (y_{k^{-1}(1)}, \dots, y_{k^{-1}(l)}).$$

- Сообщение:
 - X = CRYPTOGRAPHY
- Ключ блочного перестановочного шифра:

$$- k = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 1 & 4 & 6 & 2 \end{pmatrix}$$

- Шифртекст:
 - Y = TYCPORHAGPYR

Блочные шифры

Блочные шифры

Московский институт электроники

и математики им. А.Н. Тихонова

- Открытый текст разбивается на блоки равной длины, ОДНО TO же преобразование криптографическое применяется к каждому блоку.
- Блочный шифр можно рассматривать как щифр замены над множеством всевозможных состояний блока символов открытого текста.

Примеры шифров:

- Шифр Порта
- Шифр Плейфера
- Блочный перестановочный шифр
- Дисковый шифратор Джефферсона
- Шифр Хилла
- Аффинный блочный шифр

Дисковый шифратор Джефферсона

Московский институт электроники

и математики им. А.Н. Тихонова

- Шифровальное устройство представляет собой цилиндр, состоящий из 36 дисков, насаженных на общую ось, вокруг которой их можно вращать. На боковой поверхности каждого диска выписан английский алфавит в некотором порядке.
- Для зашифрования блока сообщения выбирается линия, параллельная оси. Диски поворачиваются так, чтобы символы на выбранной линии образовали блок сообщения. В качестве блока шифртекста берется последовательность символов, находящихся на любой другой линии.

Шифратор из 12 дисков

Шифр Хилла

Блок открытого текста:

Московский институт электроники

и математики им. А.Н. Тихонова

$$X=(x_1 \ \dots \ x_n)^{\mathrm{T}}$$
, где $x_i \in \mathbb{Z}_m$;

Блок шифртекста:

$$Y = (y_1 \dots y_n)^{\mathrm{T}}$$
, где $y_i \in \mathbb{Z}_m$;

Ключ:

матрица
$$K = \left(k_{i,j}\right)_{i=1,j=1}^{n,n},\, k_{i,j} \in \mathbb{Z}_m,\, |K| \in \mathbb{Z}_m^*;$$

Зашифрование:

$$E_K(X) = K \cdot X = Y;$$

Расшифрование:

$$D_K(Y) = K^{-1} \cdot Y = X.$$

Рекуррентный шифр Хилла

 $X=(x_1 \ \dots \ x_n)^{\mathrm{T}}$, где $x_i \in \mathbb{Z}_m$; Блок открытого текста:

 $Y = (y_1 \dots y_n)^{\mathrm{T}}$, где $y_i \in \mathbb{Z}_m$; Блок шифртекста:

матрица $K_1 = \left(k_{i,j}\right)_{i=1,i=1}^{n,n},\, k_{i,j} \in \mathbb{Z}_m,\, |K_1| \in \mathbb{Z}_m^*;$ Ключ:

матрица $K_2 = \left(k_{i,j}\right)_{i=1,i=1}^{n,n}, \, k_{i,j} \in \mathbb{Z}_m, \, |K_2| \in \mathbb{Z}_m^*;$

Историческая криптография

 $K_i = K_{i-2} \cdot K_{i-1}, i = 3, l;$

 $E_{K_i}(X_i) = K_i \cdot X_i = Y_i;$ Зашифрование:

 $D_{K_i}(Y_i) = K_i^{-1} \cdot Y_i = X_i.$ Расшифрование:

• Сообщение:

$$- X = CRYPTOGRAPHY$$
,

$$- X_{1} = \begin{bmatrix} 2 \\ 17 \\ 24 \\ 15 \end{bmatrix}, X_{2} = \begin{bmatrix} 19 \\ 14 \\ 6 \\ 17 \end{bmatrix}, X_{3} = \begin{bmatrix} 0 \\ 15 \\ 7 \\ 24 \end{bmatrix}.$$

• Ключ:

$$-K = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 0 & 2 & 3 \\ 2 & 1 & 1 & 7 \\ 3 & 4 & 1 & 4 \end{bmatrix}, |K| = 19 \in \mathbb{Z}_{26}^*.$$

• Зашифрование:

$$-Y_{1} = K \cdot X_{1} = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 0 & 2 & 3 \\ 2 & 1 & 1 & 7 \\ 3 & 4 & 1 & 4 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 17 \\ 24 \\ 15 \end{bmatrix} = \begin{bmatrix} 18 \\ 25 \\ 20 \\ 2 \end{bmatrix},$$

$$-Y_{2} = K \cdot X_{2} = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 0 & 2 & 3 \\ 2 & 1 & 1 & 7 \\ 3 & 4 & 1 & 4 \end{bmatrix} \cdot \begin{bmatrix} 19 \\ 14 \\ 6 \\ 17 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 21 \\ 5 \end{bmatrix},$$

$$-Y_{3} = K \cdot X_{3} = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 0 & 2 & 3 \\ 2 & 1 & 1 & 7 \\ 3 & 4 & 1 & 4 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 15 \\ 7 \\ 24 \end{bmatrix} = \begin{bmatrix} 14 \\ 8 \\ 8 \\ 7 \end{bmatrix},$$

-Y = SZUCCCVFOIIH.

• Частотный криптоанализ:

Московский институт электроники

и математики им. А.Н. Тихонова

- Блочные шифры устойчивы к простому частотному криптоанализу на основе подсчета частоты встречаемости отдельных символов;
- Блочные шифры уязвимы перед n-граммным (поблочным) частотным криптоанализом.
- Криптоанализ на основе открытых текстов.

Частота встречаемости биграмм в английском языке

Шифры гаммирования

Шифры гаммирования

Московский институт электроники

и математики им. А.Н. Тихонова

- Криптографическое преобразование заключается в наложении на открытый текст последовательности символов той же длины (гаммы), генерируемой основе ключа шифрования.
- Под наложением гаммы понимается операция, которая каждой паре (символ открытого текста, символ гаммы) ставит в шифртекста соответствие СИМВОЛ ПО определенному правилу.

Примеры шифров:

- Шифр табличного гаммирования
- Шифр Виженера
- Шифр Вернама

Историческая криптография

Табличное гаммирование

Московский институт электроники

и математики им. А.Н. Тихонова

Формируется латинский квадрат квадратная таблица $m \times m$, каждая строка и каждый столбец которой представляют собой некоторую перестановку алфавита A. Строки и столбцы данной таблицы помечаются символами алфавита естественном порядке. Латинский квадрат может быть как секретным, так и открытым.

- Для открытого текста $x = (x_1, ..., x_l)$, записанного в символах некоторого алфавита A, |A| = m, из символов того же алфавита формируется гамма – последовательность символов $\gamma = (\gamma_1, ..., \gamma_l)$ той же длины, что и открытый текст.
- Зашифрование состоит в наложении гаммы на открытый текст, когда каждой паре (x_i, y_i) с помощью латинского квадрата ставится в соответствие символ шифртекста y_i .

Табличное гаммирование

• Зашифрование:

- выбирается строка латинского квадрата, соответствующая символу x_i ;
- выбирается столбец латинского квадрата, соответствующий символу γ_i ;
- в качестве символа шифртекста y_i принимается символ, находящийся в таблице на пересечении выбранных строки и столбца.

• Расшифрование:

- выбирается столбец латинского квадрата, соответствующий символу γ_i ;
- в выбранном столбце находится символ со значением y_i ;
- в качестве символа открытого текста x_i принимается символ, которым помечена соответствующая строка латинского квадрата.

Московский институт электроники

и математики им. А.Н. Тихонова

• Алфавит:

x = dbcbcded

 $A = \{a, b, c, d, e\}$

Открытый текст:

Гамма:

 $\gamma = abcabcab$

Латинский квадрат:

0	а	b	С	d	e
а	b	d	а	e	С
b	d	а	С	b	e
c	e	С	b	а	d
d	а	e	d	С	b
e	С	b	e	d	a

Зашифрование:

$$- y_1 = x_1 \circ \gamma_1 = d \circ a = a;$$

$$- y_2 = x_2 \circ \gamma_2 = b \circ b = a;$$

$$- y_3 = x_3 \circ \gamma_3 = c \circ c = b;$$

$$- y_4 = x_4 \circ \gamma_4 = b \circ a = d;$$

$$- y_5 = x_5 \circ \gamma_5 = c \circ b = c;$$

$$- y_6 = x_6 \circ \gamma_6 = d \circ c = d;$$

$$- y_7 = x_7 \circ \gamma_7 = e \circ a = c;$$

$$- y_8 = x_8 \circ \gamma_8 = d \circ b = e.$$

Шифр Виженера

• Открытый текст:

Шифртекст:

Ключ:

Гамма:

Зашифрование:

Расшифрование:

$$x=(x_1,\ \dots,\ x_l)$$
, где $x_i\in\mathbb{Z}_m$;

$$y = (y_1, ..., y_l)$$
, где $y_i \in \mathbb{Z}_m$;

$$k = (k_1, ..., k_r)$$
, где $k_i \in \mathbb{Z}_m$, $r < l$;

Историческая криптография

$$\gamma = (\gamma_1, \ldots, \gamma_l)$$
, где $\gamma_i \in \mathbb{Z}_m$;

$$E_k(x_i) = y_i = (x_i + \gamma_i) \bmod m;$$

$$D_k(y_i) = x_i = (y_i - \gamma_i) \mod m$$
.

Способы выработки гаммы

- Повторение ключа:
- Самоключ по открытому тексту:
- Самоключ по шифртексту:

$$\gamma = (k_1, ..., k_r, k_1, ..., k_r, k_1, ..., k_r, ...);$$

$$\gamma = (k_1, x_1, ..., x_{l-1});$$

Историческая криптография

$$\gamma = (k_1, y_1, ..., y_{l-1}).$$

• Повторение ключа:

- Сообщение: x = CRYPTOGRAPHY = (2, 17, 24, 15, 19, 14, 6, 17, 0, 15, 7, 24).

- Ключ: k = KEY = (10, 4, 24).

- Гамма: $\gamma = KEYKEYKEYKEY = (10, 4, 24, 10$

– Шифртекст: y = MVWZXMQVYZLW = (12, 21, 22, 25, 23, 12, 16, 21, 24, 25, 11, 22).

• Самоключ по открытому тексту:

- Сообщение: x = CRYPTOGRAPHY = (2, 17, 24, 15, 19, 14, 6, 17, 0, 15, 7, 24).

- Ключ: k = K = (10).

- Гамма: $\gamma = KCRYPTOGRAPH = (10, 2, 17, 24, 15, 19, 14, 6, 17, 0, 15, 7).$

– Шифртекст: y = MTPNIHUXRPWF = (12, 19, 15, 13, 8, 20, 23, 17, 15, 22, 5).

• Самоключ по шифртексту:

- Сообщение: x = CRYPTOGRAPHY = (2, 17, 24, 15, 19, 14, 6, 17, 0, 15, 7, 24).

- Ключ: k = K = (10).

- Гамма: $\gamma = KMDBQJXDUUJQ = (10, 12, 3, 1, 16, 9, 23, 3, 20, 20, 9, 16).$

- Шифртекст: y = MDBQJXDUUJQO = (12, 3, 1, 16, 9, 23, 3, 20, 20, 9, 16, 14).

Шифр Вернама

Московский институт электроники

и математики им. А.Н. Тихонова

• Открытый текст: $x = (x_1, ..., x_l)$, где $x_i \in \mathbb{Z}_2$;

• Шифртекст: $y=(y_1,\;...,\;y_l)$, где $y_i\in\mathbb{Z}_2$;

• Гамма: $\gamma = (\gamma_1, ..., \gamma_l)$, где $\gamma_i \in \mathbb{Z}_2$;

• Зашифрование: $E_k(x_i) = y_i = (x_i + \gamma_i) \bmod 2;$

• Расшифрование: $D_k(y_i) = x_i = (y_i - \gamma_i) \bmod 2.$

• Ключевое требование — каждая гамма вырабатывается случайным образом и используется только один раз.

Криптоанализ шифров гаммирования

Московский институт электроники

и математики им. А.Н. Тихонова

- Шифр Виженера с повторяющимся перед двухэтапным ключам уязвим статистическим криптоанализом:
 - ключа вычисление ДЛИНЫ Касиски теста помощью или индекса совпадений;
 - вычисление СИМВОЛОВ ключа посредством частотного анализа.

Восстановление открытых текстов зашифрованных использованием общей гаммы.

Кафедра информационной безопасности киберфизических систем

Криптографические методы защиты информации

Спасибо за внимание!

Евсютин Олег Олегович

Заведующий кафедрой информационной безопасности киберфизических систем Канд. техн. наук, доцент

+7 923 403 09 21 oevsyutin@hse.ru