ECE 432015230 TO PIC 5 EX SI The value of R is chosen awarding to Voc LR CRL 50 < R < 500 => 2002 < R < 5002 To find C, two conditions should be satisfied (a) to limit initial rate of rice of the available limit voltage Vdc < EBV = 108 x 0.01 = 106 C > VOC × 10 = 0.1 MF

(b) Reak available circuit voltage must be below the voltage required to initiate a glow discharge

 $\frac{\sqrt{3c}}{RL} \sqrt{\frac{L}{c}} \left(\frac{320}{320} \sqrt{\frac{L}{RL}} \right)^{2} L$ $C > \left(\frac{1}{320} \times 0.1 \right)^{2} \left(10^{2} \right) = 9.76.6 \text{ pF}$ = 0.0009766 MF $\text{The Pick } \left(= 0.1 \text{ MF} \right)$ C = 0.1 MF

Ex 5.2 $A(f) = \frac{f_0}{jf + f_0}$ $f_0 = \frac{1}{2\pi RC}$ $A(0) = 1 = A_0$ $Now, B = \frac{1}{112} \int_0^2 \left(\frac{f_0}{jf + f_0} \right) df$ $= f_0^2 \int_0^2 \left(\frac{1}{\sqrt{f_0^2 f_0^2}} \right) df$ $= f_0^2 \int_0^2 \left(\frac{1}{\sqrt{f_0^2 f_0^2}} \right) df$ integration by substitution

Let $f = f_0 tand$ and $\partial f = f_0 Sei O \partial O$ $B = f_0^2 \int_{0}^{T_{f_0}} \frac{1}{f_0^2 tand} + f_0^2 \int_{0}^{T_{f_0}} \frac{1}{tand} dO$ $= f_0 \int_{0}^{T_{f_0}} \frac{1}{tand} dO$

recall that $\tan^2\theta + 1 = \sec^2\theta$ As $B = f_0 \int_0^{\pi/2} d\theta$

B = 1/2 fo

i.e (57 x 388 BW

Ex	: 5.3
0	the input of the TV, the 300 st T-line, generates a thermal noise voltage of
106	thorned Tranteup
	$V_{\xi-TV} = \frac{1}{2}V_{\xi0}$ $R_{\zeta\alpha b\ell}$ $V_{\xi-TV} = \frac{1}{2}V_{\xi0}$ $S_{\zeta\alpha b}$ $S_{\zeta\alpha b}$ $S_{\zeta\alpha b}$ $S_{\zeta\alpha b}$
	= 2.1915 UV Au impedances
	= 6.815 dB MV am referred
	= -53.2 d BmV
-	The TV WILL add 14 dB of noise (Because of its 14 dB NF)
	then, Vin-TV-noise -39.2 & BmV
	Since me need 400B SNR, then signed level @ TV input should be
	Vsiglas SNRlaB+ Vin-TV-noise
	$= 40 - 39.2 = 0.8 \partial BmV$ $Vant$
	Vsig-ant = 6+0.8 = 6.8 dBmV \ Cable Cable
	Vsig-antly = 2.19 mV