Bound States and Tomasch Oscillations in TI-SC Heterostructures

Nicholas Sedlmayr°[†], Eric Goodwin°, Michael Gottschalk°, Ian Dayton°, Stuart Tessmer°, and Alex Levchenko*

†Department of Physics and Medical Engineering, Rzeszów University of Technology, Rzeszów, Poland °Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA *Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA

Abstract

Tomasch oscillations occur in systems where there is a spatial variation in the electron-electron interacromasch oscinations occur in systems where there is a spatial variation in the electron-electron metal-tions which give rise to the superconducting pairing potential.[1, 2] For example they can occur in states bound within superconducting junctions or islands. Here we report on Tomasch-like oscillations which have been found to occur in Superconducting-Topological Insulator structures. [3] In particular in superconducting islands deposited on top of the topological insulator $\mathrm{Bi}_2\mathrm{Se}_3$. We go on to consider their existence in junctions formed from Topological Insulators, or topological insulator surface states, and superconductors by calculating the local density fo states in these systems

Heterostructures

A schematic of the set-up considered. [3] Bi_{2.04}Se_{2.96} which fea tures a single Dirac cone for the topological insulator surface states (TISS). $\mathrm{Pb}_{0.3}\mathrm{Bi}_{0.7}$ is used as the superconductor $(\Delta_{Pb} = 3.65 \text{ meV and } T_c = 8.2 \text{ K})$

nm radius droplets grown on top of and around one another. (c) is an STM topograph showing the edge of one of such droplet formations, along with the respective height profile in (d).[3]

Experimental Results

The right panel represents dI/dV curves measured at 4.2 K taken at various distances from a PbBi island. The LDoS displays clear signature of the induced superconducting gap. Another notable feature of the presented data is visible oscillations, the frequency of oscillations is visible in the Fourier transforms shown in the inset. The left panel represents dI/dV curves measured on different islands at nominally the same conditions. Above the gap one can see not only oscillations but also traces of the Dirac cone at higher energies.[3]

We will compare this to two models

- · Check a disorder model using Usadel equation to rule out that the effect is due to trivial surface
- · In the clean limit we solve a model for the topological surface states

Inverse Proximity Effect

To understand the TISS leaking into the supercor ductor we write a phenomenological model:

Dirac states leaked into Nb

Local spin independent coupling

We can compare this to experiments done on superconducting Nb islands:

- · Red lines are BCS fits

Theory for Diffusive Limit

Usadel equation for a circular geometry describing ϵ superconducting island of radius R surrounded by an infinite normal system. In the normal region:

- x = r/R
- Thouless energy: $E_{\rm Th} = v_F l/2R^2$
- l is mean free path
- v_F is Fermi velocity

mentally (blue diamonds) and the theory (solid line)[3]

Superconducting coherence length for disordered surface states is in the range of $\xi = \sqrt{v_F l/\Delta} \sim 200$ nm. However, in order to fit the inset in (b) a Thouless scale orders of magnitude out is required, and no

The local density of states is

$$\nu(x,\omega) = \nu_0 \Re \cos[\theta(x,\omega)]$$

In a linearised regime, for $x \gg 1$,

$$\theta(x,\omega) = \theta_0(\omega) \frac{K_0(x\sqrt{i\omega/E_{\rm Th}})}{K_0(\sqrt{i\omega/E_{\rm Th}})}$$

 $K_0(z)$ is the modified Bessel function $\theta_0 = \cos^{-1}(\nu_{\rm BCS}/\nu_0)$

Typical values for Bi₂Se₃ surface states are

- $v_F \simeq 5 \times 10^5 \text{ m/s}$
- *l* ≃ 80 nm
- $R \simeq 500$

Theory for TISS Model

Proximity effect relevant for TISS described by Gor'kov's equation:

$$\begin{pmatrix} i\omega_n - H & i\sigma^y \Delta_x \\ -i\sigma^y \Delta_1^\dagger & -i\omega_n - H^* \end{pmatrix} \begin{pmatrix} G_{n,k_y}(x, x') \\ F^\dagger & (x, x') \end{pmatrix} = \begin{pmatrix} \delta(x - x') \\ 0 \end{pmatrix}$$

with a Hamiltonian

$$H^{(*)} = v_{Fx} \begin{pmatrix} 0 & \pm \hat{k}_x - \mathrm{i} k_y \\ \pm \hat{k}_x + \mathrm{i} k_y & 0 \end{pmatrix}$$

Assuming a perfect interface the local density of

$$\nu(x,\omega) = -\frac{1}{\pi}\Im\int_{-\infty}^{+\infty}\frac{\mathrm{d}k_y}{2\pi}\operatorname{Tr}\left[G_{n,k_y}^{T,S}(x,x)\right]_{i\omega_n\to\omega+i\delta}$$

resulting in

$$\nu(x,\omega) = \frac{|\omega|\Theta(|\omega| - \Delta_x)}{2\pi v_{Fx}^2} \left[1 - J_0 \left(\frac{2x\sqrt{\omega^2 - \Delta_x^2}}{v_{Fx}} \right) \right]$$

 J_0 is the Bessel function of the first kind

Displays Friedel-like oscillations induced in the LDoS in the normal side of the junction. The energy scale of these oscillations, $v_{FT}/2x,$ are of the same order of magnitude as those we see experimentally

On the superconducting side it implies oscillatory LDoS with Tomasch-like functional dependence on energy and position, which physically originates from quasiparticle scattering as induced by a nonuniform superconducting order parameter

Proximity effect in topological insulator surface states[3]

energy for the topological insulator system with $\Delta = 1$ and $v_{FT} = 2v_{FS} = 1$. A phenomenological damping of magnitude $\Gamma=0.25\Delta$ is included. The position is measured in units of the superconducting coherence length $\xi = v_{FS}/\Delta$.[3]

References

- I. Watman, "Tomasch oscillations in the density of state of supercenducing flins," [Foreign Ericer, vol. 170, pp. 881-990, jun 1968.
 I. M. Dayton, N. Sedhmary, V. Ramiroz, T. C. Chassjo, R. Lolove, M. G. Kanatzidis, A. Levchenko, and S. H. Tesmer, "Scanning tumeling RESAs," Physical Review, vol. 18, pp. 881-990, jun 1968.
 I. S. Minuy, E. W. Gooderin, M. Getzichali, I. M. Dayton, C. Zhang, E. Henuelller, R. Lolove, T. C. Chassjo, M. Sabish, N. Korlak, G. Kan Fesson, "These medicates states in unconvolutories: a data to-ordered promitty office," 2023, pp. 921-922.

