Rated Stability

L. Fridman

Sirius

Outline

- Introduction
 - Historical Remarks
 - Model of Dynamical System
- Stability Notions
 - Unrated Stability
 - Rated Stability
 - Non-Asymptotic Stability
 - Predefined-time stability
 - Prescribed-time stability

A.M. Lyapunov (1857-1918) and the first page of his thesis

ОБЩАЯ ЗАДАЧА «80

YCTO**ÜYIBO**CTU ABUKEHIA.

BANCL WTEHIE

Изданіє Харьковскаго Математическаго Общества

XAPIADSTA

Tenorpsein Januaplepra, Pullers ye. 1 1 15-8

1192.

Dynamic Systems and Stability

Pendulum Equation

Consider the pendulum equation

$$\ddot{\theta}(t) + k\dot{\theta}(t) + \frac{g}{r}\sin(\theta(t)) = 0$$

where

 θ – an inclination angle,

k - a friction coefficient

r – a length of pendulum,

g – the gravitation constant.

L. Fridman

Stability

Outline

- Introduction
 - Historical Remarks
 - Model of Dynamical System
- Stability Notions
 - Unrated Stability
 - Rated Stability
 - Non-Asymptotic Stability
 - Predefined-time stability
 - Prescribed-time stability

Rated Stability

Finite-time stability

Erugin 1951, Zubov 1957, Hahn 1961, Roxin 1966, Demidovich 1974, Bhat and Bernstein 2000, Orlov 2005, Levant 2005

Fixed-time Stability

Andrieu et al 2008, Cruz, Moreno, Fridman 2010, Polyakov 2012,...,

Predefined-time stability

J.-D. Sanchez-Torres, D. Gomez, A. Muñoz, R. Aldana

Prescribed-time stability

Krstic, Halloway 2018, Chitouir 2020, Kamal 2020

Outline

- Introduction
 - Historical Remarks
 - Model of Dynamical System
- Stability Notions
 - Unrated Stability
 - Rated Stability
 - Non-Asymptotic Stability
 - Predefined-time stability
 - Prescribed-time stability

System Description

Model of the System

Consider the differential inclusion

$$\dot{x}(t) \in F(t, x(t)), \quad t \in \mathbb{R};$$
 (Sys)

$$x(t_0) = x_0, \quad x_0 \in \mathbb{R} \tag{IC}$$

$$0 \in F(t,0)$$
 for $t \in \mathbb{R}$

 $x(t, t_0, x_0) \in \Phi(t, t_0, x_0)$ — a solution of (Sys)-(IC).

System Description

Model of the System

Consider the differential inclusion

$$\dot{x}(t) \in F(t, x(t)), \quad t \in \mathbb{R};$$
 (Sys)

$$x(t_0) = x_0, \quad x_0 \in \mathbb{R} \tag{IC}$$

Assumption

$$0 \in F(t,0)$$
 for $t \in \mathbb{R}$

Notation

 $\Phi(t, t_0, x_0)$ – **Set of all solutions** of the Cauchy problem (Sys);

 $x(t, t_0, x_0) \in \Phi(t, t_0, x_0)$ — a solution of (Sys)-(IC).

Stability

Weak Stability

Example

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 \in -\left(k_1\overline{\mathsf{sign}}[x_1] \dotplus k_2\overline{\mathsf{sign}}[x_2]\right), \end{cases}, \quad x_i \in \mathbb{R},$$

2 cases

- Finite-time system: If $k_1>k_2>0$ \rightarrow $x_1=0, x_2=0$ is finite stable equilibrium point
- Weakly stable system: If $k_2 > |k_1| \rightarrow x_1(t) = constant, x_2 = 0$ is a solution.

Weak Stability

Example

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 \in -\left(k_1\overline{\text{sign}}[x_1] \dotplus k_2\overline{\text{sign}}[x_2]\right), \end{cases}, \quad x_i \in \mathbb{R},$$

2 cases

- ullet Finite-time system: If $k_1>k_2>0$ \to $x_1=0, x_2=0$ is finite stable equilibrium point
- Weakly stable system: If $k_2 > |k_1| \rightarrow x_1(t) = constant, x_2 = 0$ is a solution.

Outline

- Introduction
 - Historical Remarks
 - Model of Dynamical System
- Stability Notions
 - Unrated Stability
 - Rated Stability
 - Non-Asymptotic Stability
 - Predefined-time stability
 - Prescribed-time stability

Lyapunov Stability

Definition (Stability, Lyapunov 1892)

The origin of the system (Sys) is said to be **Lyapunov stable** if $\forall \epsilon \in \mathbb{R}_+$ and $\forall t_0 \in R : \exists \delta = \delta(\epsilon, t_0) \in \mathbb{R}_+$ such that $\forall x_0 \in \mathbb{B}(\delta)$

- any solution $x(t, t_0, x_0)$ of Cauchy problem (Sys)-(IC) exists for $t > t_0$:
- (2) $x(t, t_0, x_0) \in \mathbb{B}(\epsilon)$ for $t > t_0$.

Stability

Definition (Uniform Lyapunov Stability)

If the function δ in Definition of Lyapunov Stability does not depend on t_0 then the origin is called **uniformly Lyapunov stable**.

If $\dot{x} \in F(x)$ is Lyapunov stable, then it is **uniform** Lyapunov stable

Proposition

If the origin of the system (Sys) is Lyapunov stable then x(t) = 0 is the unique solution of Cauchy problem (Sys)-(IC) with $x_0 = 0$ and $t_0 \in \mathbb{R}$.

Definition (Instability)

The origin, which does not satisfy any condition from Lyapunov Stability definition, is called **unstable**.

L. Fridman Stability 12 / 47

Definition (Uniform Lyapunov Stability)

If the function δ in Definition of Lyapunov Stability does not depend on t_0 then the origin is called **uniformly Lyapunov stable**.

If $\dot{x} \in F(x)$ is Lyapunov stable, then it is **uniform** Lyapunov stable

L. Fridman Stability 12 / 47

Definition (Uniform Lyapunov Stability)

If the function δ in Definition of Lyapunov Stability does not depend on t_0 then the origin is called **uniformly Lyapunov stable**.

If $\dot{x} \in F(x)$ is Lyapunov stable, then it is **uniform** Lyapunov stable

Proposition

If the origin of the system (Sys) is Lyapunov stable then x(t)=0 is the unique solution of Cauchy problem (Sys)-(IC) with $x_0=0$ and $t_0\in\mathbb{R}$.

Definition (Instability

The origin, which does not satisfy any condition from Lyapunov Stability definition, is called **unstable**.

L. Fridman Stability 12 / 47

Definition (Uniform Lyapunov Stability)

If the function δ in Definition of Lyapunov Stability does not depend on t_0 then the origin is called **uniformly Lyapunov stable**.

If $\dot{x} \in F(x)$ is Lyapunov stable, then it is **uniform** Lyapunov stable

Proposition

If the origin of the system (Sys) is Lyapunov stable then x(t)=0 is the unique solution of Cauchy problem (Sys)-(IC) with $x_0=0$ and $t_0\in\mathbb{R}$.

Definition (Instability)

The origin, which does not satisfy any condition from Lyapunov Stability definition, is called **unstable**.

→ロト→部ト→ミト→ミ からの

L. Fridman Stability 12 / 47

$$\begin{cases} \dot{x}_1 \in \overline{\operatorname{sign}}[-x_2], \\ \dot{x}_2 \in \overline{\operatorname{sign}}[x_1] \end{cases}, \quad x_1, x_2 \in \mathbb{R}$$

No sliding motion

$$\begin{cases} \dot{x}_1 = \operatorname{sign}[-x_2], \\ \dot{x}_2 = \operatorname{sign}[x_1] \end{cases}, \quad x_1, x_2 \in \mathbb{R}$$

No sliding motion

$$\begin{cases} \dot{x}_1 = \operatorname{sign}[-x_2], \\ \dot{x}_2 = \operatorname{sign}[x_1] \end{cases}, x_1, x_2 \in \mathbb{R}$$

$$V = |x_1| + |x_2|$$

No sliding motion

$$\begin{cases} \dot{x}_1 = \operatorname{sign}[-x_2], \\ \dot{x}_2 = \operatorname{sign}[x_1] \end{cases}, \quad x_1, x_2 \in \mathbb{R}$$

$$V = |x_1| + |x_2|$$

$$\dot{V} = sign(x_1)\dot{x}_1 + sign(x_2)\dot{x}_2 = 0$$

No sliding motion

$$\left\{ \begin{array}{l} \dot{x}_1 = \mathsf{sign}[-x_2], \\ \dot{x}_2 = \mathsf{sign}[x_1] \end{array} \right., \ \ x_1, x_2 \in \mathbb{R}$$

$$V = |x_1| + |x_2|$$

$$\dot{V} = sign(x_1)\dot{x}_1 + sign(x_2)\dot{x}_2 = 0$$

Lyapunov Stability

Definition (Asymptotic attrativity)

The origin of the system (Sys) is said to be asymptotically attractive if $\forall t_0 \in \mathbb{R}$ exists a set $\mathbb{U}(t_0) \subseteq \mathbb{R}^n : \mathbb{U}(t_0) \setminus 0$ is non-empty and $\forall x_0 \in \mathbb{U}(t_0)$

- any solution $x(t, t_0, x_0)$ of Cauchy problem (Sys)-(IC) exists for $t > t_0$;
- $\bullet \lim_{t \to +\infty} \|x(t, t_0, x_0)\| = 0.$

The set $\mathbb{U}(t_0)$ is called attraction domain.

Definition (Asymptotic stability)

The origin of the system (Sys) is said to be asymptotically stable if it is

- Lyapunov stable;
- asymptotically attractive with an attraction domain $\mathbb{U}(t_0) \subseteq \mathbb{R}^n$ such that $0 \in \operatorname{int}(\mathbb{U}(t_0))$ for all $t_0 \in \mathbb{R}$.

Asymptotic attractivity may not imply Asymptotic Stability

Example (R.E. Vinograd 1957)

$$\dot{x}_1 = \frac{x_1^2 (x_2 - x_1) + x_2^5}{(x_1^2 + x_2^2) (1 + (x_1^2 + x_2^2)^2)}$$

and

$$\dot{x}_2 = \frac{x_2^2 (x_2 - 2x_1)}{(x_1^2 + x_2^2) (1 + (x_1^2 + x_2^2)^2)}$$

Definition (Uniform Asymptotic Attractivity)

The origin of the system (Sys) is said to be uniformly asymptotically attractive

- if it is asymptotically attractive with a time-invariant attraction domain $\mathbb{U} \subseteq \mathbb{R}^n$;
- $\forall R \in \mathbb{R}_+$, $\forall \epsilon \in \mathbb{R}_+$ there exists $T = T(R, \epsilon) \in \mathbb{R}_+$ such that the inclusions $x_0 \in \mathbb{B}(R) \cap \mathbb{U}$ and $t_0 \in \mathbb{R}$ imply $x(t, t_0, x_0) \in \mathbb{B}(\epsilon)$ for $t > t_0 + T$.

Uniform Asymptotic Stability

Definition (Uniform asymptotic stability)

The origin of the system (Sys) is said to be **uniformly asymptotically stable** if it is *uniformly Lyapunov stable* and *uniformly asymptotically* attractive with an attraction domain $\mathbb{U} \subseteq \mathbb{R}^n : 0 \in \text{int}(\mathbb{U})$.

Proposition (Clarke, Ledyaev, Stern 1998)

Let a set-valued function $F: \mathbb{R}^n \to \mathbb{R}^n$ be defined and upper-semicontinuous in \mathbb{R}^n . Let F(x) be nonempty, compact and convex for any $x \in \mathbb{R}^n$.

If the origin of the system

$$\dot{x} \in F(x)$$

is asymptotically stable then it is uniformly asymptotically stable.

L. Fridman Stability 18 / 47

Uniform Asymptotic Stability

Definition (Uniform asymptotic stability)

The origin of the system (Sys) is said to be **uniformly asymptotically stable** if it is *uniformly Lyapunov stable* and *uniformly asymptotically* attractive with an attraction domain $\mathbb{U} \subseteq \mathbb{R}^n : 0 \in \text{int}(\mathbb{U})$.

Proposition (Clarke, Ledyaev, Stern 1998)

Let a set-valued function $F: \mathbb{R}^n \to \mathbb{R}^n$ be defined and upper-semicontinuous in R^n . Let F(x) be nonempty, compact and convex for any $x \in \mathbb{R}^n$.

If the origin of the system

$$\dot{x} \in F(x)$$

is asymptotically stable then it is uniformly asymptotically stable.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ Q ○

L. Fridman Stability 18 / 47

Outline

- Introduction
 - Historical Remarks
 - Model of Dynamical System
- Stability Notions
 - Unrated Stability
 - Rated Stability
 - Non-Asymptotic Stability
 - Predefined-time stability
 - Prescribed-time stability

Definition (Exponential stability)

The origin of the system (Sys) is said to be exponentially stable if there exist an attraction domain $\mathbb{U} \subseteq \mathbb{R}^n : 0 \in \text{int}(\mathbb{U})$ and numbers $C, r \in \mathbb{R}_+$ such that

$$||x(t,t_0,x_0)|| \le C||x_0||e^{-r(t-t_0)}, t > t_0.$$

for $t_0 \in \mathbb{R}$ and $x_0 \in \mathbb{U}$.

The theory of Linear Control Systems deals with exponential stability

L. Fridman

Example (Linear Variable Structure System)

$$\dot{x} = -(2 - \text{sign}[\sin(x)])x, \quad x \in \mathbb{R}, \quad x(t_0) = x_0$$

$$||x(t, t_0, x_0)| \le |x_0|e^{-(t-t_0)}, \quad t > t_0$$

21 / 47

4 U P 4 DP P 4 E P 4 E P E *) Q (*

$$\dot{x} = -\lfloor x \rceil^{\alpha}; \quad x(0) = x_0 \quad 0 < \alpha < 1^{-1}$$

 $^{[\}cdot]^{\alpha} = |\cdot|^{\alpha} \operatorname{sign}[\cdot]$

$$\dot{x} = -\lfloor x \rceil^{\alpha}; \quad x(0) = x_0 \quad 0 < \alpha < 1^{-1}$$

$$x_0 >= 0$$

$$\Rightarrow x(t) >= 0 \quad \forall t \in [0, t_1]$$

$$\dot{x} = -x^{\alpha}$$

$$\Rightarrow x(t) = \left(x_0^{1-\alpha} - (1-\alpha)t\right)^{\frac{1}{1-\alpha}}$$

$$x(t) = 0 \text{ at } \quad t = \frac{x_0^{1-\alpha}}{1-\alpha}$$

 $^{[\}cdot]^{\alpha} = |\cdot|^{\alpha} \operatorname{sign}[\cdot]$

$$\dot{x} = -\lfloor x \rceil^{\alpha}; \quad x(0) = x_0 \quad 0 < \alpha < 1^{-1}$$

$$x_0 >= 0 \qquad x_0 <= 0$$

$$\Rightarrow x(t) >= 0 \quad \forall t \in [0, t_1] \qquad \Rightarrow x(t) <= 0 \quad \forall t \in [0, t_1]$$

$$\dot{x} = -x^{\alpha} \qquad \dot{x} = (-x)^{\alpha}$$

$$\Rightarrow x(t) = \left(x_0^{1-\alpha} - (1-\alpha)t\right)^{\frac{1}{1-\alpha}} \qquad \Rightarrow x(t) = \left((-x_0)^{1-\alpha} - (1-\alpha)t\right)^{\frac{1}{1-\alpha}}$$

$$x(t) = 0 \text{ at } t = \frac{x_0^{1-\alpha}}{1-\alpha} \qquad x(t) = 0 \text{ at } t = \frac{(-x_0)^{1-\alpha}}{1-\alpha}$$

 $^{[\}cdot]^{\alpha} = |\cdot|^{\alpha} \operatorname{sign}[\cdot]$

$$\dot{x} = -\lfloor x \rceil^{\alpha}; \quad x(0) = x_0 \quad 0 < \alpha < 1^{-1}$$

$$x_0 >= 0 \qquad x_0 <= 0$$

$$\Rightarrow x(t) >= 0 \quad \forall t \in [0, t_1] \qquad \Rightarrow x(t) <= 0 \quad \forall t \in [0, t_1]$$

$$\dot{x} = -x^{\alpha} \qquad \dot{x} = (-x)^{\alpha}$$

$$\Rightarrow x(t) = \left(x_0^{1-\alpha} - (1-\alpha)t\right)^{\frac{1}{1-\alpha}} \qquad \Rightarrow x(t) = \left((-x_0)^{1-\alpha} - (1-\alpha)t\right)^{\frac{1}{1-\alpha}}$$

$$x(t) = 0 \text{ at } t = \frac{x_0^{1-\alpha}}{1-\alpha} \qquad x(t) = 0 \text{ at } t = \frac{(-x_0)^{1-\alpha}}{1-\alpha}$$

$$\therefore x(t) = 0 \quad \forall t \ge \frac{|x_0|^{1-\alpha}}{1-\alpha}$$

 $^{[\}cdot]^{\alpha} = |\cdot|^{\alpha} \operatorname{sign}[\cdot]$

Mechanical Example

Example (Deceleration of a Cart) $\frac{-k_d sign(x)}{x}$

Example (Deceleration of a Cart)

$$m\ddot{x} = -k_d \operatorname{sign}[\dot{x}]$$

ı – mass

x – position

 k_d – coefficients of dry friction

Example (Deceleration of a Cart)

$$m\ddot{x} = -k_d \operatorname{sign}[\dot{x}]$$

m - mass

x – position

 k_d – coefficients of dry friction

$$\dot{x}(t) = 0, \quad \forall t \geq \frac{m}{k_d} |\dot{x}(0)|$$

Example (Deceleration of a Cart)

$$m\ddot{x} = -k_d \operatorname{sign}[\dot{x}]$$

m - mass

x – position

 k_d – coefficients of dry friction

$$\dot{x}(t) = 0, \quad \forall t \geq \frac{m}{k_d} |\dot{x}(0)|$$

Outline

- Introduction
 - Historical Remarks
 - Model of Dynamical System
- Stability Notions
 - Unrated Stability
 - Rated Stability
 - Non-Asymptotic Stability
 - Predefined-time stability
 - Prescribed-time stability

Finite-time attractivity

Introduce the functional $T_0: \mathbb{W}^n_{[t_0,+\infty)} o \mathbb{R}_+ \cup \{0\}$ by

$$T_0(y(\cdot)) = \inf_{\tau \geq t_0: y(\tau) = 0} \tau.$$

If $y(\tau) \neq 0$ for all $t \in [t_0, +\infty)$ then $T_0(y(\cdot)) = +\infty$. Define the **settling-time function** of the system (Sys) as

$$T(t_0,x_0) = \sup_{x(t,t_0,x_0) \in \Phi(t_0,x_0)} T_0(x(t,t_0,x_0)) - t_0.$$

Definition (Finite-time attractivity)

The origin of the system (Sys) is said to be finite-time attractive if $\forall t_0 \in \mathbb{R}$ exists a set $\mathbb{V}(t_0) \subseteq \mathbb{R}^n : V(t_0) \setminus \{0\}$ is non-empty and $\forall x_0 \in \mathbb{V}(t_0)$

- any solution $x(t, t_0, x_0)$ of Cauchy problem (Sys)-(IC) exists for $t > t_0$;
- $T(t_0, x_0) < +\infty$ for $x_0 \in \mathbb{V}(t_0)$ and for $t_0 \in \mathbb{R}$.

The set $\mathbb{V}(t_0)$ is called **finite-time attraction domain**

L. Fridman Stability 25 / 47

Finite-time attractivity

Introduce the functional $T_0: \mathbb{W}^n_{[t_0,+\infty)} o \mathbb{R}_+ \cup \{0\}$ by

$$T_0(y(\cdot)) = \inf_{\tau \geq t_0: y(\tau) = 0} \tau.$$

If $y(\tau) \neq 0$ for all $t \in [t_0, +\infty)$ then $T_0(y(\cdot)) = +\infty$. Define the **settling-time function** of the system (Sys) as

$$T(t_0,x_0) = \sup_{x(t,t_0,x_0) \in \Phi(t_0,x_0)} T_0(x(t,t_0,x_0)) - t_0.$$

Definition (Finite-time attractivity)

The origin of the system (Sys) is said to be finite-time attractive if $\forall t_0 \in \mathbb{R}$ exists a set $\mathbb{V}(t_0) \subseteq \mathbb{R}^n : V(t_0) \setminus \{0\}$ is non-empty and $\forall x_0 \in \mathbb{V}(t_0)$

- any solution $x(t, t_0, x_0)$ of Cauchy problem (Sys)-(IC) exists for $t > t_0$;
- $T(t_0, x_0) < +\infty$ for $x_0 \in \mathbb{V}(t_0)$ and for $t_0 \in \mathbb{R}$.

The set $V(t_0)$ is called **finite-time attraction domain**.

L. Fridman Stability 25 / 47

Finite-time Stability (Erugin 1951, Zubov 1957, etc)

Definition (Finite-time stability, Roxin 1966)

The origin of the system (Sys) is said to be finite-time stable if it is Lyapunov stable and finite-time attractive with an attraction domain $\mathbb{V}(t_0) \subseteq \mathbb{R}^n$ such that $0 \in \operatorname{int}(\mathbb{V}(t_0))$ for any $t_0 \in \mathbb{R}$.

Finite-time Stability (Erugin 1951, Zubov 1957, etc)

Definition (Finite-time stability, Roxin 1966)

The origin of the system (Sys) is said to be finite-time stable if it is Lyapunov stable and finite-time attractive with an attraction domain $\mathbb{V}(t_0) \subseteq \mathbb{R}^n$ such that $0 \in \operatorname{int}(\mathbb{V}(t_0))$ for any $t_0 \in \mathbb{R}$.

Proposition (Bhat & Bernstein 2000)

If the origin of the system (Sys) is finite-time stable then it is asymptotically stable and $x(t, t_0, x_0) = 0$ for $t > t_0 + T_0(t_0, x_0)$.

26 / 47

Stability

Uniform Finite-time Stability (Roxin 1966, Praly 1997, etc)

Definition (Uniform finite-time attractivity)

The origin of the system (Sys) is said to be uniformly finite-time attractive if

- it is finite-time attractive with a time-invariant attraction domain $\mathbb{V} \subset \mathbb{R}^n$:
- $T(t_0, x_0)$ is locally bounded on $\mathbb{R} \times \mathbb{V}$ uniformly on $t_0 \in \mathbb{R}$, i.e.

$$\forall y \in \mathbb{V} : \exists \epsilon \in \mathbb{R}_+ \Rightarrow \sup_{\substack{t_0 \in \mathbb{R}, \\ x_0 \in \{y\} + \mathbb{B}(\epsilon) \subset \mathbb{V}}} T(t_0, x_0) < +\infty.$$

L. Fridman Stability 27 / 47

Uniform Finite-time Stability (Roxin 1966, Praly 1997, etc)

Definition (Uniform finite-time stability (Orlov 2005)))

The origin of the system (Sys) is said to be uniformly finite-time stable if it is uniformly Lyapunov stable and uniformly finite-time attractive with an attraction domain $\mathbb{V} \subseteq \mathbb{R}^n : 0 \in \operatorname{int}(\mathbb{V})$.

Example

$$\dot{x} \in -\overline{\text{sign}}[x], \quad x \in \mathbb{R}, \quad T(t_0, x_0) = |x_0|$$

27 / 47

Time invariance does not imply uniformity of FTS

Example (S.P. Bhat & D. Bernstein 2000)

Denote
$$\mathbf{x}_0^i = \left(0, \frac{-1}{i}\right)^T$$
, $i = 1, 2, 3, \dots$

$$x_0^i \to 0$$
 and $T(x_0^i) \to +\infty$

28 / 47

Time invariance does not imply uniformity of FTS

Example (S.P. Bhat & D. Bernstein 2000)

Denote
$$x_0^i = (0, \frac{-1}{i})^T$$
, $i = 1, 2, 3, ...$

$$x_0^i \to 0$$
 and $T(x_0^i) \to +\infty$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ Q ○

28 / 47

Example

Two uniformly finite-time stable systems Consider two systems²

(1)
$$\dot{x} = -\lfloor x \rceil^{\frac{1}{2}} (1 - |x|),$$

(II)
$$\dot{x} = \begin{cases} -\lfloor x \rceil^{\frac{1}{2}} & \text{for } x < 1, \\ 0 & \text{for } x \ge 1, \end{cases}$$

which are uniformly finite-time stable with $V = \mathbb{B}(1)$.

$$T_{(I)}(x_0) = \ln\left(\frac{1 + |x_0|^{\frac{1}{2}}}{1 - |x_0|^{\frac{1}{2}}}\right)$$
$$T_{(I)}(x_0) \to +\infty \quad \text{if} \quad x_0 \to \pm 1$$

$$T_{(II)}(x_0) = 2|x_0|^{\frac{1}{2}}.$$
 $T_{(II)}(x_0) \to 2 \text{ if } x_0 \to \pm 1$

- 4 □ ▶ 4 圖 ▶ 4 圖 ▶ 9 Q (?)

L. Fridman Stability 29 / 47

Example

Two uniformly finite-time stable systems Consider two systems²

(1)
$$\dot{x} = -\lfloor x \rceil^{\frac{1}{2}} (1 - |x|),$$

(II)
$$\dot{x} = \begin{cases} -\lfloor x \rceil^{\frac{1}{2}} & \text{for } x < 1, \\ 0 & \text{for } x \ge 1, \end{cases}$$

which are uniformly finite-time stable with $V = \mathbb{B}(1)$.

$$T_{(I)}(x_0) = \ln\left(\frac{1+|x_0|^{\frac{1}{2}}}{1-|x_0|^{\frac{1}{2}}}\right)$$

$$T_{(I)}(x_0) \to +\infty \text{ if } x_0 \to \pm 1$$

$$T_{(II)}(x_0) = 2|x_0|^{\frac{1}{2}}.$$

$$T_{(II)}(x_0) \rightarrow 2$$
 if $x_0 \rightarrow \pm 1$

◆ロト ◆部ト ◆注ト ◆注ト 注 りへぐ

Example

$$\dot{x} = -\lfloor x \rfloor^{\frac{1}{2}} - \lfloor x \rfloor^{\frac{3}{2}}, \quad x(0) = x_0 > 0$$

$$\frac{dx}{\sqrt{x}(1+x)} = -dt$$

$$z = \sqrt{x} \quad \Rightarrow \quad x = z^2 \quad dx = 2zdz$$

$$2\int \frac{dz}{1+z^2} = -\int dt$$

$$2 \arctan \sqrt{x} = 2 \arctan \sqrt{x_0} - t, \quad \forall x_0, \quad t < \pi$$

Example

$$\dot{x} = -\sqrt{x} - \sqrt{x^3}$$

$$\frac{dx}{\sqrt{x}(1+x)} = -dt$$

$$x \Rightarrow x = z^2 dx = 2zdz$$

2 arctan
$$\sqrt{x} = C - t$$
, $t = 0 \Rightarrow C = 2$ arctan $\sqrt{x_0}$

$$2 \arctan \sqrt{x} = 2 \arctan \sqrt{x_0} - t, \quad \forall x_0, \quad t < \pi$$

Example

$$\dot{x} = -\sqrt{x} - \sqrt{x^3}$$

$$\frac{dx}{\sqrt{x}\left(1+x\right)} = -dt$$

$$z = \sqrt{x} \implies x = z^2 dx = 2zdz$$
$$2\int \frac{dz}{1+z^2} = -\int dt$$

$$2 \arctan \sqrt{x} = C - t, \quad t = 0 \implies C = 2 \arctan \sqrt{x_0}$$

2 arctan $\sqrt{x} = 2 \arctan \sqrt{x_0} - t$, $\forall x_0, t < \tau$

Example

$$\dot{x} = -\sqrt{x} - \sqrt{x^3}$$

$$\frac{dx}{\sqrt{x}(1+x)} = -dt$$

$$z = \sqrt{x} \implies x = z^2 \ dx = 2zdz$$

$$2\int \frac{dz}{1+z^2} = -\int dt$$

$$2 \arctan \sqrt{x} = C - t, \quad t = 0 \quad \Rightarrow C = 2 \arctan \sqrt{x_0}$$

 $2 \arctan \sqrt{x} = 2 \arctan \sqrt{x_0} - t, \quad \forall x_0, \quad t < \pi$

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ · 壹 · からぐ

Example

$$\dot{x} = -\sqrt{x} - \sqrt{x^3}$$

$$\frac{dx}{\sqrt{x}(1+x)} = -dt$$

$$z = \sqrt{x} \quad \Rightarrow \quad x = z^2 \quad dx = 2zdz$$

$$2\int \frac{dz}{1+z^2} = -\int dt$$

$$2 \arctan \sqrt{x} = C - t, \quad t = 0 \quad \Rightarrow C = 2 \arctan \sqrt{x_0}$$

 $2 \arctan \sqrt{x} = 2 \arctan \sqrt{x_0} - t, \quad \forall x_0, \quad t < \pi$

Example

$$\dot{x} = -\sqrt{x} - \sqrt{x^3}$$

$$\frac{dx}{\sqrt{x}(1+x)} = -dt$$

$$z = \sqrt{x} \quad \Rightarrow \quad x = z^2 \quad dx = 2zdz$$

$$2\int \frac{dz}{1+z^2} = -\int dt$$

$$2 \arctan \sqrt{x} = C - t, \quad t = 0 \quad \Rightarrow C = 2 \arctan \sqrt{x_0}$$

$$2\arctan\sqrt{x}=2\arctan\sqrt{x_0}-t, \ \ \forall x_0, \ \ t<\pi$$

L. Fridman Stability 30 / 47

Example (Cart Breaking) $(k_d + k_v \dot{x}^2) sign(\dot{x})$

Example (Cart Breaking)

$$m\ddot{x} = -\left(k_d + k_v \dot{x}^2\right) \text{sign}[\dot{x}], \quad t > 0$$

m - mass

x – position

 k_d , k_v – coefficients of dry and viscous friction

Example (Cart Breaking)

$$m\ddot{x} = -\left(k_d + k_v \dot{x}^2\right) \operatorname{sign}[\dot{x}], \quad t > 0$$

$$m - mass$$

$$x$$
 – position

 k_d , k_v – coefficients of dry and viscous friction

$$\dot{x}(t)=0, \ \ \forall t\geq T_{max}=rac{m\pi}{2\sqrt{k_dk_v}} \ \ ext{and for any} \ \ (x_0,\dot{x}_0)\in\mathbb{R}^2$$

Example (Cart Breaking)

$$\dot{x}(t) = 0, \quad \forall t \geq T_{max} = \frac{m\pi}{2\sqrt{k_d k_v}}$$

$$m\ddot{x} = -\left(k_d + k_v \dot{x}^2\right) \text{sign}[\dot{x}], \quad t > 0$$

m - mass

x – position

 k_d, k_v – coefficients of dry and viscous friction

and for any $(x_0, \dot{x}_0) \in \mathbb{R}^2$

Fixed-time Stability(Balakrishan 1996, Andrieu et al 2008, Cruz, Moreno, Fridman 2010, Polyakov 2012,...)

Definition (Fixed-time attractivity)

The origin of the system (Sys) is said to be fixed-time attractive if

- ullet it is uniformly finite-time attractive with an attraction domain \mathbb{V} ;
- $T(t_0, x_0)$ is bounded on $\mathbb{R} \times \mathbb{V}$, i.e.

$$\exists T_{max} \in \mathbb{R}_+$$
 such that $T(t_0, x_0) \leq T_{max}$ if $t_0 \in \mathbb{R}, x_0 \in \mathbb{V}$

Definition (Fixed-time stability, Polyakov 2012)

The origin of the system (Sys) is said to be fixed-time stable if it is Lyapunov stable and fixed-time attractive with an attraction domain $\mathbb{V} \subseteq \mathbb{R}^n : 0 \in \operatorname{int}(\mathbb{V})$.

L. Fridman Stability 32 / 47

$$\begin{cases} \dot{x}(t) = u(t) \\ x(t) = x_0, \end{cases} \quad x, u \in \mathbb{R}$$

$$\begin{cases} \dot{x}(t) = u(t) \\ x(t) = x_0, \end{cases} x, u \in \mathbb{R}$$

Asymptotic stabilisation:

$$u(t) = -x(t)$$

$$x(t) = e^{-t}x_0 \rightarrow 0$$
 if $t \rightarrow +\infty$

$$\begin{cases} \dot{x}(t) = u(t) \\ x(t) = x_0, \end{cases} x, u \in \mathbb{R}$$

Finite-Time stabilisation:

$$u(t) = -\lfloor x(t) \rceil^0$$

$$x(t) = 0$$
 for $t \ge ||x_0||$

$$\begin{cases} \dot{x}(t) = u(t) \\ x(t) = x_0, \end{cases} \quad x, u \in \mathbb{R}$$

Fixed-Time stabilisation:

$$u(t) = -\lfloor x(t) \rceil^{\frac{1}{2}} - \lfloor x(t) \rceil^{\frac{3}{2}}$$

$$x(t) = 0$$
 for $t \ge \pi$

independently of x_0

L. Fridman

Fixed-time convergence for control systems

CRITISISM

- Estimation of the convergence time through Lyapunov Functions are very conservative
- The model of the system needs to be verified in all of the state space.
- The actuators in the system should be of the infinite capacity.
- NO ONE from existed numerical methods can be finite time convergent for perturbed system.
- It is necessary to adjust a controller gains ensuring the predefined convergence time.

Outline

- Introduction
 - Historical Remarks
 - Model of Dynamical System
- Stability Notions
 - Unrated Stability
 - Rated Stability
 - Non-Asymptotic Stability
 - Predefined-time stability
 - Prescribed-time stability

Predefined-time stabilty (Aldana-López R et. al 2019, Sánchez-Torres et. al 2018)

$$\dot{x} = f(x, \rho), \quad x(0) = x_0 \tag{1}$$

x is the state, ρ is a vector of parameters to be designed.

Predefined-time stability

The origin of (1) is said to be *predefined-time stable* if it is fixed-time stable and for any $T_c \in \mathbb{R}_+$ there exist $\rho \in \mathbb{R}^I$ such that the settling function $T: \mathbb{R}^n \to \mathbb{R}$ satisfies

$$\sup_{x_0 \in \mathbb{R}^n} T(x_0) \le T_c, \quad \forall \, x_0 \in \mathbb{R}^n$$
 (2)

36 / 47

Stability

Predefined TIme stability(Aldana-López R et. al 2017-..., Kamal,...,2020

Example

$$\dot{x} = -\lfloor x \rfloor^{\frac{1}{2}} - k^2 \lfloor x \rfloor^{\frac{3}{2}}, \quad x(0) = x_0 > 0$$

$$\frac{dx}{\sqrt{x} (1 + k^2 x)} = -dt$$

$$k\sqrt{x} = z \quad \Rightarrow \quad k^2 x = z^2 \quad dx = \frac{2zdz}{k^2}$$

$$\frac{2}{k} \int \frac{dz}{1 + z^2} = -\int dt$$

$$\ln k\sqrt{x} = C - t, \quad t = 0 \quad \Rightarrow C = \frac{2}{k} \arctan k\sqrt{x_0}$$

L. Fridman

Stabili<u>ty</u>

Predefined Tlme stability(Aldana-López R et. al 2017-..., Kamal,...,2020

Example

$$\dot{x} = -\sqrt{x} - k^2 \sqrt{x^3}$$

$$\frac{dx}{\sqrt{x} (1 + k^2 x)} = -dt$$

$$k\sqrt{x} = z \quad \Rightarrow \quad k^2 x = z^2 \quad dx = \frac{2zdz}{k^2}$$

$$\frac{2}{k} \int \frac{dz}{1 + z^2} = -\int dt$$

$$k\sqrt{x} = C - t, \quad t = 0 \quad \Rightarrow C = \frac{2}{k} \arctan k\sqrt{x_0}$$

Predefined TIme stability(Aldana-López R et. al 2017-..., Kamal,...,2020

Example

$$\dot{x} = -\sqrt{x} - k^2 \sqrt{x^3}$$

$$\frac{dx}{\sqrt{x}\left(1+k^2x\right)} = -dt$$

$$k\sqrt{x} = z \quad \Rightarrow \quad k^2x = z^2 \quad dx = \frac{2zdz}{k^2}$$
$$\frac{2}{k} \int \frac{dz}{1+z^2} = -\int dt$$

$$\frac{2}{k} \arctan k \sqrt{x} = C - t, \quad t = 0 \quad \Rightarrow C = \frac{2}{k} \arctan k \sqrt{x_0}$$

$$\frac{2}{k}$$
 arctan $k\sqrt{x} = \frac{2}{k}$ arctan $k\sqrt{x_0} - t$, $\forall x_0$

Predefined TIme stability(Aldana-López R et. al 2017-..., Kamal,...,2020

Example

$$\dot{x} = -\sqrt{x} - k^2 \sqrt{x^3}$$

$$\frac{dx}{\sqrt{x} (1 + k^2 x)} = -dt$$

$$k\sqrt{x} = z \quad \Rightarrow \quad k^2 x = z^2 \quad dx = \frac{2zdz}{k^2}$$

$$\frac{2}{k} \int \frac{dz}{1 + z^2} = -\int dt$$

$$\frac{2}{k} \arctan k \sqrt{x} = C - t, \quad t = 0 \quad \Rightarrow C = \frac{2}{k} \arctan k \sqrt{x_0}$$

$$\frac{2}{k} \arctan k\sqrt{x} = \frac{2}{k} \arctan k\sqrt{x_0} - t, \quad \forall x_0$$

L. Fridman Stability 37 / 47

Predefined TIme stability(Aldana-López R et. al 2017-..., Kamal,...,2020

Example

$$\dot{x} = -\sqrt{x} - k^2 \sqrt{x^3}$$

$$\frac{dx}{\sqrt{x} (1 + k^2 x)} = -dt$$

$$k\sqrt{x} = z \quad \Rightarrow \quad k^2 x = z^2 \quad dx = \frac{2zdz}{k^2}$$

$$\frac{2}{k} \int \frac{dz}{1 + z^2} = -\int dt$$

$$\frac{2}{k} \arctan k\sqrt{x} = C - t, \quad t = 0 \quad \Rightarrow C = \frac{2}{k} \arctan k\sqrt{x_0}$$

 $\frac{2}{k}$ arctan $k\sqrt{x}=rac{2}{k}$ arctan $k\sqrt{x_0}-t, \ \ orall x_0$

L. Fridman Stability 37 / 47

Predefined TIme stability(Aldana-López R et. al 2017-..., Kamal,...,2020

Example

$$\dot{x} = -\sqrt{x} - k^2 \sqrt{x^3}$$

$$\frac{dx}{\sqrt{x} (1 + k^2 x)} = -dt$$

$$k\sqrt{x} = z \quad \Rightarrow \quad k^2 x = z^2 \quad dx = \frac{2zdz}{k^2}$$

$$\frac{2}{k} \int \frac{dz}{1 + z^2} = -\int dt$$

$$\frac{2}{k} \arctan k\sqrt{x} = C - t, \quad t = 0 \quad \Rightarrow C = \frac{2}{k} \arctan k\sqrt{x_0}$$

 $\frac{2}{k}\arctan k\sqrt{x} = \frac{2}{k}\arctan k\sqrt{x_0} - t, \quad \forall x_0,$

Predefined-time adjustment growing the gain for the term homogeneous at infinity

Estimation of the settling time

$$\frac{2}{k}\arctan k\sqrt{x} = \frac{2}{k}\arctan k\sqrt{x_0} - t, \quad \forall x_0,$$

$$\frac{2}{k}\arctan k\sqrt{x_0} = T_o, \quad \forall x_0, \quad T_0 < \frac{\pi}{k}$$

Adjusting k the settling time can be predefined

38 / 47

Example

$$\dot{x} = -\rho^2 \lfloor x \rfloor^{\frac{1}{2}} - \lfloor x \rfloor^{\frac{3}{2}}, \quad x(0) = x_0 > 0$$

$$\frac{dx}{\rho^2 \sqrt{x} \left(1 + \frac{x}{\rho^2} \right)} = -dt$$

$$\frac{x}{\rho^2} = z^2 \quad \Rightarrow dx = 2\rho^2 z dz$$

$$\frac{2}{\rho} \int \frac{dz}{1 + z^2} = -\int dt$$

$$\sin \frac{\sqrt{x}}{\rho} = C - t, \quad t = 0 \quad \Rightarrow C = \frac{2}{\rho} \arctan \frac{\sqrt{x_0}}{\rho}$$

$$\frac{2}{\rho} \arctan \frac{\sqrt{x}}{\rho} = \frac{2}{\rho} \arctan \frac{\sqrt{x_0}}{\rho} - t, \quad \forall x_0$$

Example

$$\dot{x} = -\rho^2 \sqrt{x} - \sqrt{x^3}$$

$$\frac{dx}{\rho^2 \sqrt{x} \left(1 + \frac{x}{\rho^2}\right)} = -dt$$

$$\frac{x}{\rho^2} = z^2 \quad \Rightarrow dx = 2\rho^2 z dz$$

$$\frac{2}{\rho} \int \frac{dz}{1 + z^2} = -\int dt$$

$$\cot \frac{\sqrt{x}}{\rho} = C - t, \quad t = 0 \quad \Rightarrow C = \frac{2}{\rho} \arctan \frac{\sqrt{x_0}}{\rho}$$

$$\frac{2}{\rho} \arctan \frac{\sqrt{x}}{\rho} = \frac{2}{\rho} \arctan \frac{\sqrt{x_0}}{\rho} - t, \quad \forall x_0$$

Example

$$\dot{x} = -\rho^2 \sqrt{x} - \sqrt{x^3}$$

$$\frac{dx}{\rho^2 \sqrt{x} \left(1 + \frac{x}{\rho^2}\right)} = -dt$$

$$\frac{x}{\rho^2} = z^2 \quad \Rightarrow dx = 2\rho^2 z dz$$

$$\frac{2}{\rho} \int \frac{dz}{1 + z^2} = -\int dt$$

$$\frac{x}{\rho} = C - t, \quad t = 0 \quad \Rightarrow C = \frac{2}{\rho} \arctan \frac{\sqrt{x_0}}{\rho}$$

$$\cot \frac{\sqrt{x}}{\rho} = \frac{2}{\rho} \arctan \frac{\sqrt{x_0}}{\rho} - t, \quad \forall x_0$$

Example

$$\dot{x} = -\rho^2 \sqrt{x} - \sqrt{x^3}$$

$$\frac{dx}{\rho^2 \sqrt{x} \left(1 + \frac{x}{\rho^2}\right)} = -dt$$

$$\frac{x}{\rho^2} = z^2 \quad \Rightarrow dx = 2\rho^2 z dz$$

$$\frac{2}{\rho} \int \frac{dz}{1 + z^2} = -\int dt$$

$$\frac{2}{\rho} \arctan \frac{\sqrt{x}}{\rho} = C - t, \quad t = 0 \quad \Rightarrow C = \frac{2}{\rho} \arctan \frac{\sqrt{x_0}}{\rho}$$

$$\frac{2}{\rho} \arctan \frac{\sqrt{x}}{\rho} = \frac{2}{\rho} \arctan \frac{\sqrt{x_0}}{\rho} - t, \quad \forall x_0$$

L. Fridman

Example

$$\dot{x} = -\rho^2 \sqrt{x} - \sqrt{x^3}$$

$$\frac{dx}{\rho^2 \sqrt{x} \left(1 + \frac{x}{\rho^2}\right)} = -dt$$

$$\frac{x}{\rho^2} = z^2 \quad \Rightarrow dx = 2\rho^2 z dz$$

$$\frac{2}{\rho} \int \frac{dz}{1 + z^2} = -\int dt$$

$$\frac{2}{\rho} \arctan \frac{\sqrt{x}}{\rho} = C - t, \quad t = 0 \quad \Rightarrow C = \frac{2}{\rho} \arctan \frac{\sqrt{x_0}}{\rho}$$

$$\frac{2}{\rho} \arctan \frac{\sqrt{x}}{\rho} = \frac{2}{\rho} \arctan \frac{\sqrt{x}}{\rho} - t, \quad \forall x_0$$

Example

$$\dot{x} = -\rho^2 \sqrt{x} - \sqrt{x^3}$$

$$\frac{dx}{\rho^2 \sqrt{x} \left(1 + \frac{x}{\rho^2}\right)} = -dt$$

$$\frac{x}{\rho^2} = z^2 \quad \Rightarrow dx = 2\rho^2 z dz$$

$$\frac{2}{\rho} \int \frac{dz}{1 + z^2} = -\int dt$$

$$\frac{2}{\rho} \arctan \frac{\sqrt{x}}{\rho} = C - t, \quad t = 0 \quad \Rightarrow C = \frac{2}{\rho} \arctan \frac{\sqrt{x_0}}{\rho}$$

$$\frac{2}{\rho} \arctan \frac{\sqrt{x}}{\rho} = \frac{2}{\rho} \arctan \frac{\sqrt{x_0}}{\rho} - t, \quad \forall x_0$$

L. Fridman Stability

39 / 47

Predefined-time adjustment growing the gain for the term homogeneous at infinity

Estimation of the settling time

$$\begin{split} &\frac{2}{\rho}\arctan\frac{\sqrt{x}}{\rho}=\frac{2}{\rho}\arctan\frac{\sqrt{x_0}}{\rho}-t, \quad \forall x_0,\\ &\frac{2}{\rho}\arctan\frac{\sqrt{x_0}}{\rho}=T_o, \quad \forall x_0, \quad T_0<\frac{\pi}{\rho} \end{split}$$

Adjusting ρ the settling time can be predefined

L. Fridman Stability 40 / 47

Predefined-time example

Figure: Predefined-time example in the presence of noise $\nu(t)$.

Outline

- Introduction
 - Historical Remarks
 - Model of Dynamical System
- Stability Notions
 - Unrated Stability
 - Rated Stability
 - Non-Asymptotic Stability
 - Predefined-time stability
 - Prescribed-time stability

Prescribed-time stability: when initial conditions are known

$$x\in\mathbb{R}^n$$
 - the state Σ : $\{\ \dot{x}=f(x,\mathbf{k}),\quad x(0)=x_0 \ k\in\mathbb{R}^l$ - vector of parameters

Prescribed-time stability (Rephrased from Krstic el al 2017, Chitoir 2020, Pal A.K. et al. 2020)

The origin of Σ is said to be *prescribed-time stable* if it is fixed-time stable and for any $T_p \in \mathbb{R}_+$, independent of x_0 and $\mathbf{k} \in \mathbb{R}^I$, the settling function $T: \mathbb{R}^n \to \mathbb{R}$ satisfies

$$\sup_{x_0 \in \mathbb{R}^n} T(x_0) = T_p, \quad \forall \, x_0 \in \mathbb{R}^n$$

Stability

Example (Proportional Navigation Feedback)

$$\dot{x}(t) = \left\{ egin{array}{ll} -rac{1}{
ho_1(t_f-t)}x(t) & \quad ext{if } t_0 \leq t \leq t_f \\ 0 & \quad ext{otherwise} \end{array}
ight.$$

Fixed parameters $ho_1 \in (0,\ 1)$ and arbitrary t_f . By computing the solution

$$x(t) = \left(\frac{t_f - t}{t_f - t_0}\right)^{1/\rho_1} x(t_0)$$

Hence, when $t = t_f$, $\dot{x}(t) = \frac{1}{\rho_1(t_f - t_0)} (t_f - t)^{\frac{1 - \rho_1}{\rho_1}} = 0$ and $x(t) = 0 \Rightarrow x(t) = 0$ for $t \ge t_f$.

L. Fridman Stability 44 / 47

Figure: $\rho_1 = 0.5$, $t_f = 1$. Settling time. Figure: $\rho_1 = 0.5$, $t_f = 7$. Settling time.

Figure: $\rho_1 = 1.5$, $t_f = 1$. Settling time.

Figure: $\rho_1 = 1.5$, $t_f = 7$. Settling time.

Figure: $\rho_1 = 5$, $t_f = 1$. Settling time.

Figure: $\rho_1 = 5$, $t_f = 7$. Settling time.

L. Fridman Stability 47 / 47

Summary

TYPES OF RATED STABILITY CONSIDERED

- EXPONENTIAL
- FINITE-TIME
- FIXED-TIME
- PREDEFINED-TIME
- PRESCRIBED-TIME