STAT 403 Tutorial . Week 5

For this week's tutorial, I'm going to take a review of (i) F-test and ANOVA table; (ii) contrasts and their inferences using a numerical example.

Example. A researcher is asked to compare 4 fertilizers (labelled 1,2,3,4) with 11 plots. So he conducted a randomized experiment and obtained

a dataset as follows.

Unit 1 2 3 4 5 6 7 8 9 10 11

Treatment 2 1 3 4 1 2 1 4 3 2 1

Yield 8 16 10 7 14 12 19 9 13 15 20

trt obs (Yi;) sample mean (Yi.)

1 (b, 14, 19 20 17.25

2 8, 12.15 11.67

3 10, 13 11.5

4 7, 9 8

(grand mean

Denote the j-th yield under treatment i by Yij (i=1,..., 4; j=1,..., n;) and assume $\overline{Y}_{i}=1,2$) that Yij = $\mu_i + \epsilon_{ij}$, where $\epsilon_{ij} \stackrel{iid}{\sim} N(0,\sigma^2)$.

TASK I: Assess whether the four fertilizers have the same effect, i.e. assess Ho: $\mu_1 = \mu_2 = \mu_3 = \mu_4$ v.s. Ha: μ_i not the same.

TASK II: Suppose that fertilizer 1 is new and we want to compare its effect with the average effect of the other three, i.e., assess Ho: $\mu_1 = \frac{\mu_2 + \mu_3 + \mu_4}{3}$ v.s. Ha: $\mu_1 \ddagger \frac{1}{3} (\mu_2 + \mu_3 + \mu_4)$. and obtain a 95% confidence interval for $3\mu_1 - (\mu_2 + \mu_3 + \mu_4)$.

Solutions:

TASK I. If Ho is true, then
$$F = \frac{SStrt/olferr}{SSerr/olferr} \sim F_{olfert}$$
. Here of $f_{trt} = t - 1 = 4 - 1 = 3$, of $f_{trr} = N - t = 11 - 4 = 7$

$$SStrt = \sum_{i=1}^{t} n_i \left(\overline{Y}_{i.} - \overline{Y}_{..} \right)^2 = 4 \times (7.25 - 13)^2 + 3 \times (11.67 - 13)^2 + 2 \times (11.5 - 13)^2$$

$$+ 2 \times (8 - 13)^2 = 132.06$$

$$SSerr = \sum_{i=1}^{t} \sum_{j=1}^{m_i} \left(Y_{ij} - \overline{Y}_{i.} \right)^2 = \left(16 - 17.25 \right)^2 + \left(14 - 17.25 \right)^2 + \left(17 - 17.25 \right)^2 + \left(20 - 17.25 \right)^2$$

$$+ \left(8 - 11.67 \right)^2 + \left(12 - 11.67 \right)^2 + \left(15 - 11.67 \right)^2$$

$$+ \left(10 - 11.5 \right)^2 + \left(13 - 11.5 \right)^2$$

$$+ \left(7 - 8 \right)^2 + \left(9 - 8 \right)^2 = 53.92$$

Then we can calculate observed F value: $\overline{f_{obs}} = \frac{132.06/3}{53.92/7} = 5.71$

You choose to calculate p-value = P(F > Fobs) = 0.027 < 0.05

or compare Fobs with the upper 3% cut-point of Fs.7: F...5,3,7 = 4.34 < Fobs

So we reject the null hypothesis at 5%.

We can summarize these calculations in an ANOVA table.

Source	sum of squares	degrees of freedom	F_
trt	132.06	3	5.71
err	53.92	7	
total	185.98	10	

TASKI

We are interested in the contrast B= 3 p1 - (p2+ p3+ p4).

You've learned how to make inferences for contrasts when n:= ... = nt = n:

 $Var(\hat{\theta}) = (c_1^2 + \dots + c_t^2) \cdot \frac{\sigma^2}{n}$, $\hat{\sigma}^2 = \frac{SSerr}{olferr} = \frac{SSerr}{N-t}$, $Se(\hat{\theta}) = \sqrt{(c_1^2 + \dots + c_t^2) \cdot \frac{\hat{\sigma}^2}{n}}$.

Then a CI is given by $\hat{\theta} \pm t_{2.N-t} \cdot sel\hat{\theta}$).

To test hypothesis $H_0: \theta=0$ v.s. $H_0: \theta\neq 0$, reject $H_0: \hat{f}$ |T| $\geq t_{\%}, N-t$, where $T = \frac{\hat{\theta}}{se(\hat{\theta})}$.

Here the situation is slightly more complicated because ni's are different. So in the calculations above, $Var(\hat{\theta}) = \left(\frac{C_1^2}{n_1} + \dots + \frac{C_t}{n_t}\right) \sigma^2$, $Se(\hat{\theta}) = \sqrt{\left(\frac{C_1^2}{n_1} + \dots + \frac{C_t}{n_t}\right) \sigma^2}$

Now we're ready to infer about 0= 3 /1 - /2- /3- /4.

 $\hat{\theta} = 3 \vec{\gamma}_1 - 3 \vec{\gamma}_2 - \vec{\gamma}_3 - \vec{\gamma}_3 - \vec{\gamma}_4 = 3 \times 17.25 - 11.67 - 11.5 - 8 = 20.58.$

 $\hat{O}^2 = \frac{SS_{err}}{N-t} = \frac{53.92}{7} = 7.70$

 $Se(\hat{\theta}) = \sqrt{\left[\frac{3^2}{4} + \frac{(-1)^2}{3} + \frac{(-1)^2}{2} + \frac{(-1)^2}{2}\right] \times 7.70} = 5.25$

Therefore a 95% CI for θ is given by $\hat{\theta} \pm t_{0.025,7} \cdot se(\hat{\theta}) = 20.58 \pm 2.36 \times 5.25$ = [8.17, 32.99]

For hypothesis testing problem: Ho: 0=0 v.s. Ha: 0 # 0.

$$T = \frac{\hat{\theta}}{Se(\hat{\theta})} = \frac{20.58}{5.25} = 3.92$$

The upper 2.5% cut-point of t_7 is 2.36 < 1.92, thurfor we reject the null at 5% level.