Matrix reviews

- Rows and columns
- Square matrix
- Null matrix
- Diagonal matrix
- Identity Matrix
- Echelon form
- Row reduce echelon form
- Addition of Matrices
- Scalar multiplication of Matrices
- Multiplication matrices
- Inverse and transpose

Systems of linear equations

- Elementary transformations
- Gauss-Jordan Elimination method

Vector space

Definition 2.7 (Group). Consider a set \mathcal{G} and an operation $\otimes : \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ defined on \mathcal{G} . Then $G := (\mathcal{G}, \otimes)$ is called a *group* if the following hold:

- 1. Closure of \mathcal{G} under \otimes : $\forall x, y \in \mathcal{G} : x \otimes y \in \mathcal{G}$
- 2. Associativity: $\forall x, y, z \in \mathcal{G} : (x \otimes y) \otimes z = x \otimes (y \otimes z)$
- 3. Neutral element: $\exists e \in \mathcal{G} \ \forall x \in \mathcal{G} : x \otimes e = x \text{ and } e \otimes x = x$
- 4. Inverse element: $\forall x \in \mathcal{G} \exists y \in \mathcal{G} : x \otimes y = e \text{ and } y \otimes x = e$. We often write x^{-1} to denote the inverse element of x.

Definition 2.9 (Vector Space). A real-valued *vector space* $V = (V, +, \cdot)$ is vector space a set V with two operations

$$+: \mathcal{V} \times \mathcal{V} \to \mathcal{V}$$
 (2.62)

$$\cdot: \mathbb{R} \times \mathcal{V} \to \mathcal{V} \tag{2.63}$$

where

- 1. $(\mathcal{V}, +)$ is an Abelian group
- 2. Distributivity:
 - 1. $\forall \lambda \in \mathbb{R}, x, y \in \mathcal{V} : \lambda \cdot (x + y) = \lambda \cdot x + \lambda \cdot y$
 - 2. $\forall \lambda, \psi \in \mathbb{R}, x \in \mathcal{V} : (\lambda + \psi) \cdot x = \lambda \cdot x + \psi \cdot x$
- 3. Associativity (outer operation): $\forall \lambda, \psi \in \mathbb{R}, x \in \mathcal{V} : \lambda \cdot (\psi \cdot x) = (\lambda \psi) \cdot x$
- 4. Neutral element with respect to the outer operation: $\forall x \in \mathcal{V} : 1 \cdot x = x$
 - Vectors
 - Zero vector
 - Vector addition
 - Scalars
 - Multiplication by scalar

Definition 2.10 (Vector Subspace). Let $V = (\mathcal{V}, +, \cdot)$ be a vector space and $\mathcal{U} \subseteq \mathcal{V}$, $\mathcal{U} \neq \emptyset$. Then $U = (\mathcal{U}, +, \cdot)$ is called *vector subspace* of V (or *linear subspace*) if U is a vector space with the vector space operations + and \cdot restricted to $\mathcal{U} \times \mathcal{U}$ and $\mathbb{R} \times \mathcal{U}$. We write $U \subseteq V$ to denote a subspace U of V.

- 1. $\mathcal{U} \neq \emptyset$, in particular: $\mathbf{0} \in \mathcal{U}$
- 2. Closure of U:
 - a. With respect to the outer operation: $\forall \lambda \in \mathbb{R} \ \forall x \in \mathcal{U} : \lambda x \in \mathcal{U}$.
 - b. With respect to the inner operation: $\forall x, y \in \mathcal{U} : x + y \in \mathcal{U}$.

Linear Independence

Definition 2.11 (Linear Combination). Consider a vector space V and a finite number of vectors $x_1, \ldots, x_k \in V$. Then, every $v \in V$ of the form

$$v = \lambda_1 x_1 + \dots + \lambda_k x_k = \sum_{i=1}^k \lambda_i x_i \in V$$
 (2.65)

with $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ is a linear combination of the vectors x_1, \ldots, x_k .

Definition 2.12 (Linear (In)dependence). Let us consider a vector space V with $k \in \mathbb{N}$ and $x_1, \ldots, x_k \in V$. If there is a non-trivial linear combination, such that $\mathbf{0} = \sum_{i=1}^k \lambda_i x_i$ with at least one $\lambda_i \neq 0$, the vectors x_1, \ldots, x_k are linearly dependent. If only the trivial solution exists, i.e., $\lambda_1 = \ldots = \lambda_k = 0$ the vectors x_1, \ldots, x_k are linearly independent.

- *k* vectors are either linearly dependent or linearly independent. There is no third option.
- If at least one of the vectors x_1, \ldots, x_k is 0 then they are linearly dependent. The same holds if two vectors are identical.
- The vectors $\{x_1, \ldots, x_k : x_i \neq \mathbf{0}, i = 1, \ldots, k\}$, $k \geq 2$, are linearly dependent if and only if (at least) one of them is a linear combination of the others. In particular, if one vector is a multiple of another vector, i.e., $x_i = \lambda x_j$, $\lambda \in \mathbb{R}$ then the set $\{x_1, \ldots, x_k : x_i \neq \mathbf{0}, i = 1, \ldots, k\}$ is linearly dependent.

Definition 2.13 (Generating Set and Span). Consider a vector space $V = (\mathcal{V}, +, \cdot)$ and set of vectors $\mathcal{A} = \{x_1, \dots, x_k\} \subseteq \mathcal{V}$. If every vector $\mathbf{v} \in \mathcal{V}$ can be expressed as a linear combination of x_1, \dots, x_k , \mathcal{A} is called a generating set of V. The set of all linear combinations of vectors in \mathcal{A} is called the span of \mathcal{A} . If \mathcal{A} spans the vector space V, we write $V = \operatorname{span}[\mathcal{A}]$ or $V = \operatorname{span}[x_1, \dots, x_k]$.

Definition 2.14 (Basis). Consider a vector space $V = (\mathcal{V}, +, \cdot)$ and $\mathcal{A} \subseteq \mathcal{V}$. A generating set \mathcal{A} of V is called *minimal* if there exists no smaller set $\tilde{\mathcal{A}} \subseteq \mathcal{A} \subseteq \mathcal{V}$ that spans V. Every linearly independent generating set of V is minimal and is called a *basis* of V.

- \blacksquare B is a basis of V.
- \mathcal{B} is a minimal generating set.
- \mathcal{B} is a maximal linearly independent set of vectors in V, i.e., adding any other vector to this set will make it linearly dependent.
- Every vector $x \in V$ is a linear combination of vectors from \mathcal{B} , and every linear combination is unique, i.e., with

$$x = \sum_{i=1}^{k} \lambda_i b_i = \sum_{i=1}^{k} \psi_i b_i$$
 (2.77)

and $\lambda_i, \psi_i \in \mathbb{R}$, $b_i \in \mathcal{B}$ it follows that $\lambda_i = \psi_i, i = 1, \dots, k$.

- A vector space can be many bases, but all bases possess the same number of elements.
- Dimension of a vector space
- Dimension subspaces

If $U \subseteq V$ is a subspace of V, them $\dim(U) \leq \dim(V)$.

- $\dim(V) = 0$ if and only if $V = \{0_V\}$.
- $\dim(V) = \dim(U)$ if and only if V = U.

Remark. A basis of a subspace $U = \operatorname{span}[x_1, \dots, x_m] \subseteq \mathbb{R}^n$ can be found by executing the following steps:

- 1. Write the spanning vectors as columns of a matrix A
- 2. Determine the row-echelon form of A.
- 3. The spanning vectors associated with the pivot columns are a basis of ${\cal U}$.

Rank

The number of linearly independent columns of a matrix $A \in \mathbb{R}^{m \times n}$ equals the number of linearly independent rows and is called the rank of A and is denoted by rk(A).

- $\operatorname{rk}(\boldsymbol{A}) = \operatorname{rk}(\boldsymbol{A}^{\top})$, i.e., the column rank equals the row rank.
- The columns of $A \in \mathbb{R}^{m \times n}$ span a subspace $U \subseteq \mathbb{R}^m$ with $\dim(U) = \mathrm{rk}(A)$. Later we will call this subspace the *image* or *range*. A basis of U can be found by applying Gaussian elimination to A to identify the pivot columns.
- The rows of $A \in \mathbb{R}^{m \times n}$ span a subspace $W \subseteq \mathbb{R}^n$ with $\dim(W) = \operatorname{rk}(A)$. A basis of W can be found by applying Gaussian elimination to A^{\top} .
- For all $A \in \mathbb{R}^{n \times n}$ it holds that A is regular (invertible) if and only if $\operatorname{rk}(A) = n$.
- For all $A \in \mathbb{R}^{m \times n}$ and all $b \in \mathbb{R}^m$ it holds that the linear equation system Ax = b can be solved if and only if $\mathrm{rk}(A) = \mathrm{rk}(A|b)$, where A|b denotes the augmented system.
- For $A \in \mathbb{R}^{m \times n}$ the subspace of solutions for Ax = 0 possesses dimension n rk(A). Later, we will call this subspace the *kernel* or the *null space*.
- A matrix $A \in \mathbb{R}^{m \times n}$ has *full rank* if its rank equals the largest possible rank for a matrix of the same dimensions. This means that the rank of a full-rank matrix is the lesser of the number of rows and columns, i.e., $\operatorname{rk}(A) = \min(m, n)$. A matrix is said to be *rank deficient* if it does not have full rank.

Coordinates

- $B = \{b_1, b_2, \dots, b_n\}$ is unordered basis
- $B = (b_1, b_2, ..., b_n)$ is ordered basis

Definition 2.18 (Coordinates). Consider a vector space V and an ordered basis $B = (b_1, \ldots, b_n)$ of V. For any $x \in V$ we obtain a unique representation (linear combination)

$$x = \alpha_1 b_1 + \ldots + \alpha_n b_n \tag{2.90}$$

of x with respect to B. Then $\alpha_1, \ldots, \alpha_n$ are the *coordinates* of x with respect to B, and the vector

$$\alpha = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{R}^n \tag{2.91}$$

is the coordinate vector/coordinate representation of x with respect to the ordered basis B.

Example

In \mathbb{R}^2 we will be considered two basis $B_1 = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ and $B_2 = \left\{ \begin{bmatrix} -0.87 \\ 0.5 \end{bmatrix}, \begin{bmatrix} 1.73 \\ 1 \end{bmatrix} \right\}$ and the vector $u = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$.

• Coordinates of a subspace

Linear Mappings

$$\Phi: V \to W$$

Is a linear mapping if preserve the structure of the vector spaces. This mean:

$$\Phi(x + y) = \Phi(x) + \Phi(y) \tag{2.85}$$

$$\Phi(\lambda x) = \lambda \Phi(x) \tag{2.86}$$

for all $x,y\in V$ and $\lambda\in\mathbb{R}.$ We can summarize this in the following definition:

Definition 2.15 (Linear Mapping). For vector spaces V, W, a mapping $\Phi: V \to W$ is called a *linear mapping* (or *vector space homomorphism/linear transformation*) if

$$\forall x, y \in V \,\forall \lambda, \psi \in \mathbb{R} : \Phi(\lambda x + \psi y) = \lambda \Phi(x) + \psi \Phi(y). \tag{2.87}$$

Same examples of linear mapping

1)
$$\Phi: \mathbb{R}^2 \to \mathbb{R}^2 \text{ with} \Phi\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 2y \\ x+y \end{bmatrix}$$
.

2)
$$\Phi: \mathbb{R}^3 \to \mathbb{R}^3$$
 with $\Phi\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} y - x \\ x + z \\ -y + z \end{bmatrix}$.

$$B = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 2 & 1 & 0 & 0 \\ 5 & 5 & 2 & -1 \end{bmatrix}$$

$$\Phi(B) = \begin{bmatrix} 1 & 1 & 0 & -2 \\ 6 & 5 & 2 & 1 \\ 3 & 4 & 2 & -1 \end{bmatrix}$$

3)
$$\Phi: \mathbb{R}^3 \to \mathbb{R}^2$$
 with $\Phi\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x + \frac{1}{2}z \\ y + \frac{1}{2}z \end{bmatrix}$.

$$B = \begin{bmatrix} 0 & 2 & 2 & 0 & 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 2 & 2 & 2 & 2 \end{bmatrix}$$

$$\Phi(B) = \begin{bmatrix} 0 & 2 & 2 & 0 & 1 & 3 & 3 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 2 & 2 \end{bmatrix}$$

Remark

Let be $\Phi: V \rightarrow W$, a linear mapping, then:

- 1. $\Phi(-x) = -\Phi(x)$;
- 2. $\Phi(x-y) = \Phi(x) \Phi(y)$;
- 3. $\Phi(0_V) = 0_W$;
- 4. If $V' \subseteq V$ is subspace of V, then $\Phi(V')$ is subspace of W;
- 5. If $W' \subseteq W$ is subspace of W, then $\Phi^{-1}(W')$ is subspace of V, with $\Phi^{-1}(W') = \{x \in V : \Phi(x) \in W'\}$.

Definition 2.16 (Injective, Surjective, Bijective). Consider a mapping Φ : $\mathcal{V} \to \mathcal{W}$, where \mathcal{V}, \mathcal{W} can be arbitrary sets. Then Φ is called

- lacksquare Injective if $\forall x,y\in\mathcal{V}:\Phi(x)=\Phi(y)\implies x=y.$
- Surjective if $\Phi(\mathcal{V}) = \mathcal{W}$.
- *Bijective* if it is injective and surjective.

.. .

- Isomorphism: $\Phi:V\to W$ linear and bijective
- ullet Endomorphism: $\Phi:V o V$ linear
- Automorphism: $\Phi: V \to V$ linear and bijective
- We define $\mathrm{id}_V:V\to V,\,x\mapsto x$ as the identity mapping or identity automorphism in V.

Theorem 2.17 (Theorem 3.59 in Axler (2015)). *Finite-dimensional vector spaces* V *and* W *are isomorphic if and only if* $\dim(V) = \dim(W)$.

Matrix Representation of Linear Mappings

Definition 2.19 (Transformation Matrix). Consider vector spaces V, W with corresponding (ordered) bases $B = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_n)$ and $C = (\boldsymbol{c}_1, \dots, \boldsymbol{c}_m)$. Moreover, we consider a linear mapping $\Phi: V \to W$. For $j \in \{1, \dots, n\}$,

$$\Phi(\boldsymbol{b}_j) = \alpha_{1j}\boldsymbol{c}_1 + \dots + \alpha_{mj}\boldsymbol{c}_m = \sum_{i=1}^m \alpha_{ij}\boldsymbol{c}_i$$
 (2.92)

is the unique representation of $\Phi(b_j)$ with respect to C. Then, we call the $m \times n$ -matrix A_{Φ} , whose elements are given by

$$A_{\Phi}(i,j) = \alpha_{ij} \,, \tag{2.93}$$

the transformation matrix of Φ (with respect to the ordered bases B of V and C of W).

Example

Consider a homomorphism $\Phi: \mathbb{R}^2 \to \mathbb{R}^3$ such that $\Phi\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x-2y \\ 2y \\ 2x-4y \end{bmatrix}$ and the ordered bases $B = \left(\begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}\right)$ of \mathbb{R}^2 and $C = \left(\begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}\right)$ of \mathbb{R}^3 . Determine the transformation matrix A_Φ with respect to B and C.

If \hat{x} x is the coordinate vector of $x \in V$ with respect to B and \hat{y} the coordinate vector of $y = \Phi(x) \in W$ with respect to C, then

$$\hat{y} = A_{\Phi} \hat{x} \,. \tag{2.94}$$

Example

Consider the ordered bases $B = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ of \mathbb{R}^2 and $C = \left\{ \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \right\}$ of \mathbb{R}^3 , and the homomorphism $\Phi \colon \mathbb{R}^3 \to \mathbb{R}^2$ whose t transformation matrix A_Φ with respect to C and B, is

$$A_{\phi} = \begin{bmatrix} 5 & 7 & 1 \\ 6 & 8 & 2 \end{bmatrix}$$

Determine
$$\Phi \begin{pmatrix} 12\\4\\10 \end{pmatrix}$$
.

If we considered the standard basis of \mathbb{R}^n

Example

Consider a homomorphism $\Phi \colon \mathbb{R}^2 \to \mathbb{R}^3$ such that $\Phi \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} x - 2y \\ 2y \\ 2x - 4y \end{bmatrix}$. Determine the transformation matrix A_Φ with respect to **standard basis** of \mathbb{R}^2 and \mathbb{R}^3 .

Example

Consider homomorphism $\Phi: \mathbb{R}^3 \to \mathbb{R}^2$ whose t transformation matrix A_{Φ} with respect to **standard basis** of \mathbb{R}^3 and \mathbb{R}^2 is:

$$A_{\phi} = \begin{bmatrix} 5 & 7 & 1 \\ 6 & 8 & 2 \end{bmatrix}$$

- a) Determine $\Phi \begin{pmatrix} \begin{bmatrix} 12\\4\\10 \end{bmatrix} \end{pmatrix}$.
- b) The following picture

can be represented by the matrix $A = \begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} & -\mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$. Find the picture transformed by Φ .

Image and Kernel

Definition 2.23 (Image and Kernel).

For $\Phi: V \to W$, we define the *kernel/null space*

$$\ker(\Phi) := \Phi^{-1}(\mathbf{0}_W) = \{ v \in V : \Phi(v) = \mathbf{0}_W \}$$
 (2.122)

and the image/range

$$\operatorname{Im}(\Phi) := \Phi(V) = \{ w \in W | \exists v \in V : \Phi(v) = w \}.$$
 (2.123)

We also call V and W also the domain and codomain of Φ , respectively.

- It always notes that $\Psi(\mathbf{u}_V) = \mathbf{u}_W$ and, therefore, $\mathbf{u}_V \in \ker(\Psi)$. In particular, the null space is never empty.
- $\operatorname{Im}(\Phi) \subseteq W$ is a subspace of W, and $\ker(\Phi) \subseteq V$ is a subspace of V.

Example

Let be the homomorphism $\Phi: \mathbb{R}^3 \to \mathbb{R}^4$ such that $\Phi\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x+2y \\ -x+y-3z \\ x+2y \\ 3x+4y \end{bmatrix}$.

- a) Determine the kernel of Φ .
- b) Determine the image of Φ .
- c) Determine the transformation matrix A_Φ with respect to **standard basis** of \mathbb{R}^3 and \mathbb{R}^4 .

Example

Let be the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & -3 \\ 1 & 2 & 0 \\ 3 & 4 & 0 \end{bmatrix}$, and the homomorfism $\Phi \colon \mathbb{R}^3 \to \mathbb{R}^4$ such that $\Phi(x) = Ax$

- a) Determine the kernel of Φ .
- b) Determine the image of Φ .

Definition: Let us consider the matrix A with m rows and n columns. The null space of matrix A, written as $Null\ A$, is the set of all solutions of the homogeneous equation Ax = 0. In set notation,

$$Nul(A) = \{x \in \mathbb{R}^n : Ax = 0\}.$$

- The kernel/null space $\ker(\Phi)$ is the general solution to the homogeneous system of linear equations Ax = 0 and captures all possible linear combinations of the elements in \mathbb{R}^n that produce $0 \in \mathbb{R}^m$.
- The kernel is a subspace of \mathbb{R}^n , where n is the "width" of the matrix.
- The kernel focuses on the relationship among the columns, and we can
 use it to determine whether/how we can express a column as a linear
 combination of other columns.

Definition: Let us consider the matrix A with m rows and n columns. The column space of matrix A, written as Col(A) A, is the set of all of all linear combinations of the columns of A. If $A = [c_1 \ c_2 \ ... \ c_n]$, then

$$col(A) = span[c_1, c_2, \dots, c_n].$$

lacksquare For $m{A}=[m{a}_1,\ldots,m{a}_n]$, where $m{a}_i$ are the columns of $m{A}$, we obtain

$$\operatorname{Im}(\Phi) = \{ \mathbf{A} \mathbf{x} : \mathbf{x} \in \mathbb{R}^n \} = \left\{ \sum_{i=1}^n x_i \mathbf{a}_i : x_1, \dots, x_n \in \mathbb{R} \right\}$$
 (2.124a)
= $\operatorname{span}[\mathbf{a}_1, \dots, \mathbf{a}_n] \subseteq \mathbb{R}^m$, (2.124b)

i.e., the image is the span of the columns of A, also called the *column space*. Therefore, the column space (image) is a subspace of \mathbb{R}^m , where m is the "height" of the matrix.

• $\operatorname{rk}(\boldsymbol{A}) = \dim(\operatorname{Im}(\Phi)).$

Theorem Let be the homomorphism $\Phi: V \rightarrow W$

- Φ is injective if and only if $Ker(\Phi) = 0_V$.
- Φ is surjective if and only if $\dim(Im(\Phi)) = \dim(W)$.

Theorem 2.24 (Rank-Nullity Theorem). For vector spaces V, W and a linear mapping $\Phi: V \to W$ it holds that

$$\dim(\ker(\Phi)) + \dim(\operatorname{Im}(\Phi)) = \dim(V). \tag{2.129}$$

Remark Let us consider the matrix A with m rows and n columns, then $n = \dim(Nul(A)) + \dim(Col(A))$.

- If $\dim(\operatorname{Im}(\Phi)) < \dim(V)$, then $\ker(\Phi)$ is non-trivial, i.e., the kernel contains more than $\mathbf{0}_V$ and $\dim(\ker(\Phi)) \geq 1$.
- If A_{Φ} is the transformation matrix of Φ with respect to an ordered basis and $\dim(\operatorname{Im}(\Phi)) < \dim(V)$, then the system of linear equations $A_{\Phi}x = \mathbf{0}$ has infinitely many solutions.
- If $\dim(V) = \dim(W)$, then the following three-way equivalence holds:
 - Φ is injective
 - Φ is surjective
 - Φ is bijective

since $\operatorname{Im}(\Phi) \subseteq W$.

Compose and Inverse of a homomorphism

Theorem:

- For vector spaces $V, W \in U$ and linear mappings $\Phi: V \to W \in \Psi: W \to U$, then the mapping $\Psi \circ \Phi: V \to U$ is also linear.
- Let be $\Phi: V \to W$ e $\Psi: W \to U$, linear mappings, A_{Φ} be the transformation matrix of Φ with respect to S_1 , an ordered basis of V and S, an ordered basis of W, and S_{Ψ} be the transformation matrix of Ψ with respect to S, an ordered basis of W and S_2 , an ordered basis of W. Then the transformation matrix of $\Psi \circ \Phi$, $M_{\Psi \circ \Phi}$ with respect to S_1 and S_2 is given by $M_{\Psi \circ \Phi} = B_{\Psi} A_{\Phi}$

Example:

Consider homomorphisms $\;\Phi {:}\, \mathbb{R}^3 \to \mathbb{R}^2 \;$ and $\Psi {:}\, \mathbb{R}^2 \to \mathbb{R}^3 \;$,

• Φ is represented by the transformation matrix A_{Φ} with respect to **standard basis** of \mathbb{R}^3 and \mathbb{R}^2 :

$$A_{\phi} = \begin{bmatrix} 5 & 7 & 1 \\ 6 & 8 & 2 \end{bmatrix}$$

• Ψ is represented by the transformation matrix B_{Ψ} with respect to **standard basis** of \mathbb{R}^2 and \mathbb{R}^3 :

$$B_{\Psi} = \begin{bmatrix} -2 & 7\\ 1 & 0\\ 6 & 8 \end{bmatrix}$$

The following picture

can be represented by the matrix $\mathbf{A} = \begin{bmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} & -\mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$. Find the picture transformed by $\Psi \circ \Phi$.

[0 0 0 0]			
Original	Ф(А)	$\Psi(\Phi(A))$	
$A = \begin{bmatrix} 0 & 1 & 0 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\mathbf{\Phi}(A) = \begin{bmatrix} 0 & 4 & 6 & 2 & 0 \\ 0 & -3 & -6 & -3 & 0 \end{bmatrix}$	$\Psi(\Phi(A)) = \begin{bmatrix} 0 & -14 & -24 & -10 & 0 \\ 0 & 4 & 6 & 2 & 0 \\ 0 & 0 & -12 & -12 & 0 \end{bmatrix}$	
y 10 y 10 05 10 05 10 10 10 10 10 10	y	-20 -20 -20 -20 -20 -10 -20 -20 -10 -20 -20 -20 -20 -20 -20 -20 -20 -20 -2	

Definition

For vector spaces V,W and linear mappings $\Phi:V\to W$ e $\Psi:W\to V$, such that $\Psi\circ\Phi=\mathrm{id}_V$ and $\Phi\circ\Psi=\mathrm{id}_W$, then Ψ is the inverse of Φ . And we say that is an invertible linear mapping.

Remark

- $(\Phi^{-1})^{-1} = \Phi$;
- $(\Psi \ o \ \Phi)^{-1} = \Phi^{-1} \ o \Psi^{-1}$.
- If $\Phi: V \rightarrow W$ is an invertible linear mapping, then dim(V) = dim(W).

Theorem Let be $\Phi: V \to W$ a linear mapping, A_{Φ} be the transformation matrix of Φ with respect to S, an ordered basis of V and B, an ordered basis of W. Then the transformation matrix of Φ^{-1} , $A_{\Phi^{-1}}$ with respect to B and S is given by

$$A_{\Phi^{-1}} = (A_{\Phi})^{-1}$$

Example:

Consider homomorphisms $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$ whose the transformation matrix A_{Φ} with respect to standard basis of \mathbb{R}^2 is

$$A_{\Phi} = \begin{bmatrix} 6 & 5 \\ 3 & 3 \end{bmatrix}$$

One picture was transformed by Φ , and the final picture is given by the following matrix:

$$B = \begin{bmatrix} 0 & 18 & 23 & 16.5 & 5 \\ 0 & 9 & 12 & 9 & 3 \end{bmatrix}$$
. Discover the original picture.

Transformed picture	Original ?
12 10 8 6 4 2 0 0 3 10 13 20	

Theorem 2.20 (Basis Change). For a linear mapping $\Phi: V \to W$, ordered bases

$$B = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_n), \quad \tilde{B} = (\tilde{\boldsymbol{b}}_1, \dots, \tilde{\boldsymbol{b}}_n)$$
 (2.103)

of V and

$$C = (\boldsymbol{c}_1, \dots, \boldsymbol{c}_m), \quad \tilde{C} = (\tilde{\boldsymbol{c}}_1, \dots, \tilde{\boldsymbol{c}}_m) \tag{2.104}$$

of W, and a transformation matrix A_{Φ} of Φ with respect to B and C, the corresponding transformation matrix \tilde{A}_{Φ} with respect to the bases \tilde{B} and \tilde{C} is given as

$$\tilde{A}_{\Phi} = T^{-1} A_{\Phi} S$$
. (2.105)

Here, $S \in \mathbb{R}^{n \times n}$ is the transformation matrix of id_V that maps coordinates with respect to \tilde{B} onto coordinates with respect to B, and $T \in \mathbb{R}^{m \times m}$ is the transformation matrix of id_W that maps coordinates with respect to \tilde{C} onto coordinates with respect to C.

Example

Consider homomorphisms $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$ whose the transformation matrix A_{Φ} with respect to standard basis of \mathbb{R}^2 is

$$A_{\Phi} = \begin{bmatrix} 6 & 5 \\ 3 & 3 \end{bmatrix}$$

Find the transformation matrix $\widehat{A_{\Phi}}$ with respect to the ordered basis $B = \left\{ \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$.

Definition 2.25 (Affine Subspace). Let V be a vector space, $x_0 \in V$ and $U \subseteq V$ a subspace. Then the subset

$$L = x_0 + U := \{x_0 + u : u \in U\}$$
 (2.130a)

$$= \{ v \in V | \exists u \in U : v = x_0 + u \} \subseteq V$$
 (2.130b)

is called affine subspace or linear manifold of V. U is called direction or direction space, and x_0 is called support point. In Chapter 12, we refer to such a subspace as a hyperplane.

Remark. Consider two affine subspaces $L = x_0 + U$ and $\tilde{L} = \tilde{x}_0 + \tilde{U}$ of a vector space V. Then, $L \subseteq \tilde{L}$ if and only if $U \subseteq \tilde{U}$ and $x_0 - \tilde{x}_0 \in \tilde{U}$.

Affine subspaces are often described by *parameters*: Consider a k-dimensional affine space $L = x_0 + U$ of V. If (b_1, \ldots, b_k) is an ordered basis of U, then every element $x \in L$ can be uniquely described as

$$x = x_0 + \lambda_1 b_1 + \ldots + \lambda_k b_k, \qquad (2.131)$$

where $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$. This representation is called *parametric equation* of L with directional vectors b_1, \ldots, b_k and *parameters* $\lambda_1, \ldots, \lambda_k$.

Example 2.26 (Affine Subspaces)

• One-dimensional affine subspaces are called *lines* and can be written as $y = x_0 + \lambda x_1$, where $\lambda \in \mathbb{R}$, where $U = \operatorname{span}[x_1] \subseteq \mathbb{R}^n$ is a one-dimensional subspace of \mathbb{R}^n . This means that a line is defined by a support point x_0 and a vector x_1 that defines the direction. See Figure 2.13 for an illustration.

- Two-dimensional affine subspaces of \mathbb{R}^n are called *planes*. The parametric equation for planes is $y = x_0 + \lambda_1 x_1 + \lambda_2 x_2$, where $\lambda_1, \lambda_2 \in \mathbb{R}$ and $U = \operatorname{span}[x_1, x_2] \subseteq \mathbb{R}^n$. This means that a plane is defined by a support point x_0 and two linearly independent vectors x_1, x_2 that span the direction space.
- In \mathbb{R}^n , the (n-1)-dimensional affine subspaces are called *hyperplanes*, and the corresponding parametric equation is $y = x_0 + \sum_{i=1}^{n-1} \lambda_i x_i$, where x_1, \ldots, x_{n-1} form a basis of an (n-1)-dimensional subspace U of \mathbb{R}^n . This means that a hyperplane is defined by a support point x_0 and (n-1) linearly independent vectors x_1, \ldots, x_{n-1} that span the direction space. In \mathbb{R}^2 , a line is also a hyperplane. In \mathbb{R}^3 , a plane is also a hyperplane.

Remark (Inhomogeneous systems of linear equations and affine subspaces). For $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, the solution of the linear equation system Ax = b is either the empty set or an affine subspace of \mathbb{R}^n of dimension n - rk(A). In particular, the solution of the linear equation $\lambda_1 x_1 + \ldots + \lambda_n x_n = b$, where $(\lambda_1, \ldots, \lambda_n) \neq (0, \ldots, 0)$, is a hyperplane in \mathbb{R}^n .

Definition 2.26 (Affine Mapping). For two vector spaces V, W, a linear

mapping $\Phi: V \to W$, and $a \in W$, the mapping

$$\phi: V \to W \tag{2.132}$$

$$x \mapsto a + \Phi(x)$$
 (2.133)

is an affine mapping from V to W. The vector a is called the translation vector of ϕ .

- Every affine mapping $\phi: V \to W$ is also the composition of a linear mapping $\Phi: V \to W$ and a translation $\tau: W \to W$ in W, such that $\phi = \tau \circ \Phi$. The mappings Φ and τ are uniquely determined.
- The composition $\phi' \circ \phi$ of affine mappings $\phi : V \to W$, $\phi' : W \to X$ is affine.
- Affine mappings keep the geometric structure invariant. They also preserve the dimension and parallelism.