FGI-2 Aufgabenblatt 08

Sabrina Buczko 6663234, Julian Deinert 6535880, Rafael Heid 6704828 Gruppe 06 8

8.3

8.3.1

Lebendigkeit:

Reversibilität:

Beschränktheit:

Strukturelle Eigenschaften:

8.3.2

Strukturelle Beschränktheit:

Strukturelle Lebendigkeit:

Fairness: Das Netz schaltet nicht fair, da z.b. von Markierung p_2p_3 aus die beiden Marken nur reichen um entweder den Pfad t_3 zu gehen oder den Pfad t_4 . Es gibt also

unfaire Folgen in diesem Netz. Also müssen nicht alle Transitionen immer schalten, was für Fairness eine Voraussetzung ist.

8.3.3

ee

8.3.4

eee

8.4

1. Erreichbarkeitsgraph zeichnen

2. SZKs finden

3. terminale SZKs finden

Zu den terminalen SZKs gehört nur der Zyklus mit den Markierungen p_1 , $p_2(3)$, und $p_2(2)p_3$.

4. Prüfe für jede terminale SZK, ob es ein m' enthält, dass das Prädikat erfüllt.

In der einzigen terminalen SZK kann man von den drei Markierungen p_1 , $p_2(3)$, $p_2(2)p_3$ in kein m' gelangen in der Transition a aktivierbar ist. Also ist a nicht lebendig. Die Transitionen b,c und d hingegen sind von jeder m erreichbaren m' aktivierbar und somit auch in unserer terminalen SZK aktivierbar. Also sind b,c und d lebendig.

8.5

Buzcko Heid Deinert - Gruppe 6 Mo 14 Uhr 11.12.2016 Aufgabe 8.5.1

8.6

Angenommen N besitzt die Siphon/Trap-Eigenschaft, dann aktiviert jede erreichbare Markierung...?

- mind. eine Transition
- höchstens eine Transition
- keine Transition
- beliebig viele Transitionen

Wenn Petrinetze so mächtig wie Turing-Maschinen wären, hätte dies den Nachteil, dass Beschränktheit, Erreichbarkeit und Lebendigkeit nicht entscheidbar sind.

wahr

 \bullet falsch

Sind gefärbte Netze mit endlichen Farbmengen turing-mächtig?

- ja
- \bullet nein

Sind gefärbte Netze mit beliebigen Farbmengen turing-mächtig?

- ja
- \bullet nein

Der Vektor $\Delta_{\mathcal{N}}(t) \in \mathbb{Z}^{|P|}$ der Transition $t \in T$ heißt...?

- Ordnung
- Wirkung
- \bullet Index
- Lösung
- Invariante