1.5.1 Decide whether the following statements are true or false.

All the solutions of
$$x'' + 3x' + x = 1$$
 satisfy $\lim_{t \to \infty} x(t) = 1$."

b) "The solution of the IVP $x'' + 4x = 1$, $x(0) = 5/4$, $x'(0) = 0$ satisfies $x(\pi) = 5/4$."

All the solutions of $x'' + 3x' + x = 1$ satisfy $\lim_{t \to \infty} x(t) = 1$.

b) "The solution of the IVP $x'' + 4x = 1$, $x(0) = 5/4$, $x'(0) = 0$ satisfies $x(\pi) = 5/4$."

All the solutions of $x'' + 3x' + 4x = 1$, $x(0) = 5/4$, $x'(0) = 0$ satisfies $x(\pi) = 5/4$.

All the solutions of $x'' + 3x' + 4x = 1$, $x(0) = 5/4$, $x'(0) = 0$ satisfies $x(\pi) = 5/4$.

All the solutions of $x'' + 3x' + 4x = 1$, $x(0) = 5/4$, $x'(0) = 0$ satisfies $x(\pi) = 5/4$.

All the solutions of $x'' + 3x' + 4x = 1$, $x(0) = 5/4$, $x'(0) = 0$ satisfies $x(\pi) = 5/4$.

All the solutions of $x'' + 3x' + 4x = 1$, $x(0) = 5/4$, $x'(0) = 0$ satisfies $x(\pi) = 5/4$.

All the solutions of $x'' + 3x' + 4x = 1$, $x(0) = 5/4$, $x'(0) = 0$ satisfies $x(\pi) = 5/4$.

All the solutions of $x'' + 3x' + 4x = 1$, $x(0) = 5/4$, $x'(0) = 0$ satisfies $x(\pi) = 5/4$.

All the solutions of the IVP $x'' + 4x = 1$, $x(0) = 5/4$, $x'(0) = 0$ satisfies $x(\pi) = 5/4$.

All the solutions of the IVP $x'' + 4x = 1$, $x(0) = 5/4$, $x'' = 5/4$.

All the solutions of the IVP $x'' + 4x = 1$, $x'' = 5/4$.

All the solutions of the IVP $x'' + 4x = 1$, $x'' = 5/4$.

All the solutions of the IVP $x'' + 4x = 1$, $x'' = 5/4$.

All the solutions of the IVP $x'' + 4x = 1$, $x'' = 5/4$.

All the solutions of the IVP $x'' + 4x = 1$, $x'' = 5/4$.

All the solutions of the IVP $x'' + 4x = 1$, $x'' = 5/4$.

All the solutions of the IVP $x'' + 4x = 1$, $x'' = 5/4$.

All the solutions of the IVP $x'' + 5/4$.

All the solutions of the IVP $x'' + 5/4$.

All the solutions of the IVP $x'' + 5/4$.

All the solutions of the IVP $x'' + 5/4$.

All the solutions of the IVP $x'' + 5/4$.

All the solutions of the IVP $x'' + 5/4$.

All the solutions of the IVP $x'' + 5/4$.

All the solutions of the IVP $x'' + 5/4$.

All the solutions of the IVP $x'' + 5/4$.

All the solutio

$$|x_{1} - x_{2}| = |x_{1} - x_{2}|$$

$$|x_{2} - x_{2}| = |x_{2} - x_{2}|$$

$$|x_{2} - x_{2}| = |x_{2}|$$

$$|x_{2} - x_{2}| = |x_{2}|$$

$$|x_{2} - x_{2}| = |x_{2}|$$

$$|x_{2} - x_{2}|$$

1.5.2 Let $\lambda \in \mathbb{R}$ be a parameter. Find the general solution of $x'' - x = e^{\lambda t}$ knowing that, depending on λ , it has a particular solution either of the form $ae^{\lambda t}$ or of the form $ate^{\lambda t}$.

$$X = Xh + Xp$$

$$Xh : X - X = 0$$

$$\lambda - 1 = 0 ; \mu_{1,2} = \pm 1 + \infty e^{-\frac{1}{2}}, e^{-\frac{1}{2}}$$

$$Xh = Ch \cdot e^{-\frac{1}{2}} + C_2 \cdot e^{-\frac{1}{2}}; C_{1,2} \cdot C_{2} \cdot e^{-\frac{1}{2}}$$

$$Xp - a \cdot e^{-\frac{1}{2}} + c_{2} \cdot e^{-\frac{1}{2}}$$

$$Xp - xp = e$$

$$Xp - xp = e$$

$$Xp - x - a = e$$

$$Xp - a \cdot \lambda \cdot e^{-\frac{1}{2}}; a \cdot \lambda \cdot e^{-\frac{1}{2}} = e^{-\frac{1}{2}}; a \cdot \lambda \cdot e^{-\frac{1}{2}}; a \cdot$$

$$x_{\rho} = a \cdot t \cdot e^{\lambda t}$$

$$x_{\rho} = a \cdot t \cdot e^{\lambda t}$$

$$x_{\rho} = a \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$x_{\rho} = a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$x_{\rho} = a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$x_{\rho} = a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$x_{\rho} = a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot t \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t}$$

$$- a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t} + a \cdot \lambda \cdot e^{\lambda t$$

Xp= 22-(e2t , 26(R \ \ \ \ \ \ \)

1.5.3 Let
$$\omega > 0$$
 be a parameter and denote $\varphi(\cdot, \omega)$ the solution of the IVP

$$x'' + x = \cos(\omega t), \quad x(0) = x'(0) = 0.$$

(i) When $\omega \neq 1$ find a solution of the form $x_p(t) = a\cos(\omega t) + b\sin(\omega t)$ for $x'' + x = \cos(\omega t)$. (Here you have to determine the real coefficients a and b.)

(ii) Find a solution of the form $x_p(t) = t(a\cos t + b\sin t)$ for $x'' + x = \cos t$. (iii) Find $\varphi(\cdot,\omega)$ for any $\omega>0$.

(iv) Prove that $\lim_{\omega \to 1} \varphi(t, \omega) = \varphi(t, 1)$ for each $t \in \mathbb{R}$.

$$i)$$
 $\times p' = -a \cdot w \cdot m \cdot (wt) + b \cdot w \cdot cos(w \cdot t)$

$$xp^2 = -aw^2 cos(wt) - 5w^2 - ram(wt)$$

$$xp + xp = cos(wt) =$$

$$\frac{1}{2} - \frac{1}{2} + \frac{1}{2} = \frac{1$$

$$W_{50},W_{7}^{*1}$$

$$\left[\begin{array}{c} C_{5}\\ C_{7}\\ C$$

$$X_{k} = C_{k} \cdot C_{k} + C_{k} \cdot C_{k} \cdot C_{k} \cdot C_{k} + C_{k} \cdot C_{k$$

X= C1. Cost + C2 mut + to mut $x = -C_1 \cdot mh + C_2 \cdot cot + \frac{t}{2} \cdot cot$ (x(0)=0 / C. cut + (C, + \frac{1}{2}) - mht =0
) x'(0)=0 / - C. mht + (C, + \frac{1}{2}) \cdot =0 => (1=c2=0 ->> P(t,1)= = : mmt $\frac{1}{2} \left(\frac{1}{2} \left$ $= \frac{-t \cdot mht}{-z} = \ell(t,1)$ iv) Note that lime ((t, w) = 1-cost, & tell a tell to 1- cost the unique and denoted Pltios, of the ivp (x"+x=1 ?) = 5

$$x = (-\cos t)$$

$$x' = -\cos t$$

$$x'' + x = (\cos t + 1 - (\cot t))$$

$$x'' + x = (\cos t) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) = -\cos (o) = (-1 + \cos t)$$

$$x'(o) =$$

$$||x|| = -|x| + co, co | R$$

$$||x|| = e^{-|x|} + co, co | R$$

$$||x|| = e^{-|x|} + co | co | R$$

$$||x|| = e^{-|x|} + co | co | R$$

$$||x|| = e^{-|x|} + co | R$$

$$||x|| = e^{-|x$$

$$X = \frac{c}{\epsilon} - \frac{1}{2} + \frac{e^{-2}}{\epsilon} + \frac{1}{\epsilon} e^{-2} +$$

 $t_{x} = -\frac{1}{2}e^{-2t+1}c$ $t_{x} = -\frac{1}{2}e^{-2t+1}c$