

Modelos Loglineares para Tabelas de Contingência de Dimensões Superiores

- Os conceitos básicos para modelos loglineares com tabelas de contingência de três dimensões podem ser estendidos para tabelas de múltiplas dimensões ou dimensões de ordem superiores.
- Modelos loglineares que têm:
 - termos de ordem mais alta de dois fatores têm associações homogêneas: duas variáveis condicionalmente associadas têm as mesmas razões de chance em cada combinação de níveis das outras variáveis.
 - A ausência de um termo de dois fatores implica independência condicional para essas variáveis.
 - Um termo de três fatores permite associações condicionais heterogêneas, em que a associação entre qualquer par dessas três variáveis varia entre as categorias da terceira variável, em quaisquer configurações das outras variáveis.

		Cinto	Ferimentos		Proporção de
Gênero	Local	de Segurança	Não	Sim	Passageiros.c/ Ferimentos
Feminino	Urbana	Não	7287	996	0,12
		Sim	11587	759	0,06
	Rural	Não	3246	973	0,23
		Sim	6134	757	0,11
Masculino	Urbana	Não	10381	812	0,07
		Sim	10969	380	0,03
	Rural	Não	6123	1084	0,15
		Sim	6693	513	0,07

EXEMPLO - Acidentes

- Os dados apresentados a seguir correspondem a 68694 passageiros de automóveis e pequenos caminhões envolvidos no estado de Maine em 1991. A tabela classifica os passageiros por :
 - **G** gênero (**m** masculino e **f** feminino)
 - L localização do acidente (*u* –urbana e **r** –rural)
 - S uso de cinto de segurança (s-sim e n-não)
 - I ferimento (s-sim e n-não)

Para investigar a complexidade de modelos necessários, vamos considerar os modelos:

- (G, L, S, I) contendo os termos com um único fator;
- (GL, GS, GI, LS, LI, SI) contendo os termos com um único fator e todos os termos com dois fatores
- (GLS, GLI, GSI, LSI) contendo os termos com um fator, com dois fatores e todos os termos com três fatores

Modelo Saturado:

$$\frac{\log(\mu_{ijk}) = \lambda + \lambda_{i}^{X} + \lambda_{j}^{Y} + \lambda_{k}^{Z} + \lambda_{i}^{W} + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ} + \lambda_{il}^{XW} + \lambda_{jk}^{YZ} + \lambda_{il}^{YW} + \lambda_{il}^{ZW} + \lambda_{il}^{ZW} + \lambda_{ilk}^{ZW} + \lambda_{ilk}^{YZW} + \lambda_{ilk}^$$

Maximum Likelihood Analysis of Variance						
Source	DF	Chi-Square	Pr > ChiSq			
genero	1	1.94	0.1640			
local	1	287.69	<.0001			
genero*local	1	85.50	<.0001			
cintoseg	1	49.03	<.0001			
genero*cintoseg	1	299.04	<.0001			
local*cintoseg	1	4.51	0.0336			
genero*local*cintoseg	1	1.74	0.1865			
dano	1	26365.03	<.0001			
genero*dano	1	383.56	<.0001			
local*dano	1	728.70	<.0001			
genero*local*dano	1	2.93	0.0867			
cintoseg*dano	1	851.26	<.0001			
genero*cintoseg*dano	1	0.06	0.7989			
local*cintoseg*dano	1	2.42	0.1197			
genero*local*cintos*dano	1	1.32	0.2497			
Likelihood Ratio	0					

Modelo	G^2	Gl	p-value

1.33

- 1 (G, L, S, I)
- 2 (GL, GS, GI, LS, LI, SI)
- 3 (GLS, GLI, GSI, LSI)

• Hipóteses:

$$H_0$$
) O modelo (GLS, GLI, GSI, LSI) se ajusta, ou seja, $log(\mu_{ijk}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_l^W + \lambda_i^{XY} + \lambda_{ik}^{XY} + \lambda_{ik}^{XY} + \lambda_{jk}^{YZ} + \lambda_{jl}^{YW} + \lambda_{kl}^{ZW} + \lambda_{kl}^{ZW} + \lambda_{jkl}^{YZW} +$

 $\begin{array}{l} H_1) \ O \ modelo \ saturado se \ ajusta, ou \ seja, \\ log(\mu_{ijk}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_l^W + \lambda_{ij}^{XY} + \lambda_{ik}^{XZ} + \lambda_{il}^{XW} + \lambda_{jk}^{YZ} + \lambda_{jl}^{YW} + \lambda_{kl}^{ZW} \\ + \lambda_{ijk}^{YZY} + \lambda_{ijl}^{YIW} + \lambda_{ikl}^{XZW} + \lambda_{jkl}^{YZW} + \lambda_{jkl}^{YZW} + \lambda_{ijkl}^{YZW} + \lambda_{ijkl}^{YZW} \end{array}$

Temos que deviance é

$$G_2 = 1,33$$

e considerando uma distribuição qui-quadrado com $v=16-15=1\ gl$ temos aue:

$$p-valor=P(\chi^2 \geq 1,33)=0,2496 \Rightarrow N\~{a}o \ rejeitar \ H_0$$

Portanto, o modelo de associação homegênea (GLS, GLI, GSI, LSI) se ajusta.

- Investigar os resultados da adição de um único termo de três fatores ao modelo (GL,GS,LS,GI,LI,SI).
- Os quatros modelos possíveis são:
 - (GLS, GI, IL, IS)
 - (GIL, GS, IS, LS)
 - (GIS, GL, LS, IL)
 - (ILS, GI, GL, GS)

• Hipóteses:

$$\begin{split} &H_0)\ O\ modelo\ (GLS,GI,LI,SI)\ se\ ajusta,ou\ seja,\\ &log(\mu_{ijk}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_i^W + \lambda_{ij}^{XY} + \lambda_{ik}^{XY} + \lambda_{il}^{XW} + \lambda_{jk}^{YZ} + \lambda_{jl}^{YW} + \lambda_{kl}^{ZW} + \lambda_{ijk}^{XYZ}\ (\textbf{\textit{M}}_0) \end{split}$$

$$&H_1)\ O\ modelo\ (GLS,GLI,GSI,LSI)\ se\ ajusta,ou\ seja,\\ &log(\mu_{ijk}) = \lambda + \lambda_i^X + \lambda_j^Y + \lambda_k^Z + \lambda_l^W + \lambda_{ij}^{XY} + \lambda_{ik}^{XW} + \lambda_{jl}^{YZ} + \lambda_{jl}^{YW} + \lambda_{kl}^{ZW} + \lambda_{kl}^{YW} + \lambda_{kl}^{YZW} + \lambda_{ijl}^{YZW} + \lambda_{ikl}^{YZW} + \lambda_{ikl}^{$$

Temos que a **deviance parcial** é

Deviance parcial =
$$-2[L_0 - L_1]$$
 = $deviance_o - deviance_1$ = $-7,46 - 1,33 = 6,13$

e considerando uma distribuição qui-quadrado com

$$v = gl_1 - gl_0 = 15 - 12 = 3 gl$$

temos que:

$$p-valor = P(\chi^2 \ge 6.13) = 0.1054 \Rightarrow N\tilde{a}o \ rejeitar \ H_0$$

Portanto, o modelo M_0 – (GLS, GI, LI, SI) se ajusta melhor que o modelo M_1 .

- Modelo. (GLS, GI, LI, SI)
 - cada par de variáveis é condicionalmente dependente e, em cada categoria de I, a associação entre G e L ou entre G e S ou entre L e S varia entre as categorias da variável restante .
 - Como I não ocorre em um termo de três fatores, a razão de chances condicional entre I e cada variável é a mesma em cada combinação de categorias das outras duas variáveis.

- Como I não ocorre em um termo de três fatores, a razão de chances condicional entre I e cada variável é a mesma em cada combinação de categorias das outras duas variáveis.
- a razão de chances condicional SI estimada é

$$\lambda_{kl}^{SI} = 0.2035 \Rightarrow \widehat{\theta}_{SI|GL} = exp(4 \times \lambda_{kl}^{SI}) = exp(4 \times -0.2035) = 0.4431$$

• As chances de ferimentos para os passageiros que usavam cinto de segurança eram menos da metade das chances para os passageiros que não os usavam, para cada combinação de gênero e localização.

