Лабораторная работа №6.

МЕТОД НЬЮТОНА (МЕТОД КАСАТЕЛЬНЫХ)

Цель работы: приобретение и закрепление практических навыков при решении нелинейных уравнений методом Ньютона (касательных).

Задание. Найти корень уравнения (1) из таблицы (3.1) методом Ньютона (методом касательных) с погрешностью $\varepsilon = 0,001$.

Указать число итераций необходимое для достижения заданной точности.

Отчет по лабораторной работе должен содержать:

- тему лабораторной работы, полный текст задания и исходные данные в соответствии с номером варианта;
- проверку выполнения достаточного условия существования и единственности корня уравнения (1) внутри найденного отрезка;
- выбор начального приближения x_0 в методе Ньютона, обеспечивающего выполнение достаточного условия сходимости;
- необходимые расчеты в соответствие с алгоритмом метода
 Ньютона;
 - оценку погрешности *n*-ого приближения в методе Ньютона;
 - таблицу результатов вычислений по методу Ньютона;
 - выводы по работе.

Пример 6. Найти методом Ньютона с погрешностью $\varepsilon = 0,001$ корень уравнения

$$x - e^{-x} = 0. (6.1)$$

В примере 3.1 из лабораторной работы №3 был установлен отрезок [a,b] = [0;1], внутри которого находится единственный корень уравнения (6.1). Любая точка этого отрезка может быть принята за корень уравнения (6.1) с погрешностью, не превышающей длины отрезка [a,b], равной единицы.

Уточним значение корня уравнения (6.1) методом Ньютона (касательных). Последовательность приближенных решений $\{x_n\}$, n=0,1,2,..., методом Ньютона описывается итерационной формулой вида:

$$x_n = x_{n-1} - \frac{F(x_{n-1})}{F'(x_{n-1})}, \quad n = 1, 2, 3, \dots$$
 (6.2)

В качестве начального приближения x_0 в формуле (6.2) выберем тот конец отрезка [a,b] = [0;1], для которого выполняется достаточное условие сходимости метода Ньютона:

$$F(x_0)F''(x_0) > 0. (6.3)$$

Так как $F''(x) = -e^{-x} < 0$ при любом x, а F(0) = -1 < 0, то за начальное приближение принимаем значение $x_0 = 0$.

Итерационный процесс уточнения корня уравнения (6.1) в соответствии с формулой (6.2) следует продолжать до тех пор, пока не будет выполнено условие останова:

$$\left| x_{n} - x_{n-1} \right| < \varepsilon_{0} = \sqrt{\frac{2m_{1}\varepsilon}{M_{2}}}, \tag{6.4}$$

где $\varepsilon = 0,001$ — заданная погрешность результата вычислений; $m_1 = \min_{x \in [0;1]} \left| F'(x) \right|; \ M_2 = \max_{x \in [0;1]} \left| F''(x) \right|.$

Для данной функции $F(x) = x - e^{-x}$ имеем: $F'(x) = 1 + e^{-x} > 0$, $F''(x) = -e^{-x} < 0$ и $F'''(x) = e^{-x} > 0$ при любых значениях аргумента x. Тогда $m_1 = \min_{x \in [0;1]} \left| F'(x) \right| = F'(1) = 1 + e^{-1} \approx 1,368$, так как функция $\left| F'(x) \right| = F'(x)$ — монотонно убывающая. Функция F''(x) монотонно возрастает, оставаясь всегда меньше нуля. Поэтому функция $\left| F''(x) \right|$ будет монотонно убывать.

Следовательно, имеем: $M_2 = \max_{x \in [0;1]} |F''(x)| = |F''(0)| = |-e^0| = 1$. Тогда

$$\varepsilon_0 = \sqrt{\frac{2m_1\varepsilon}{M_2}} = \sqrt{\frac{2\cdot 1,368\cdot 0,001}{1}} = 0,0523.$$

С учетом выражений $F(x) = x - e^{-x}$ и $F'(x) = 1 + e^{-x}$ итерационная формула (6.2) принимает вид:

$$x_n = x_{n-1} - \frac{x_{n-1} - e^{-x_{n-1}}}{1 + e^{-x_{n-1}}}, \ n = 1, 2, 3, ...$$

На первой итерации получаем:

$$x_1 = x_0 - \frac{x_0 - e^{-x_0}}{1 + e^{-x_0}} = 0 - \frac{0 - e^0}{1 + e^0} = 0,5000.$$

Проверяем условие (6.4): $|x_1 - x_0| = |0,5000 - 0,0000| = 0,5000 > \varepsilon$.

На второй итерации имеем:

$$x_2 = x_1 - \frac{x_1 - e^{-x_1}}{1 + e^{-x_1}} = 0,5000 - \frac{0,5000 - e^{-0,5000}}{1 + e^{-0,5000}} = 0,5663,$$
$$|x_2 - x_1| = |0,5663 - 0,5000| = 0,0663 > \varepsilon_0.$$

Третья итерация дает:

$$x_3 = x_2 - \frac{x_2 - e^{-x_2}}{1 + e^{-x_2}} = 0,5663 - \frac{0,5663 - e^{-0,5663}}{1 + e^{-0,5663}} = 0,5671,$$
$$|x_3 - x_2| = |0,5671 - 0,5663| = 0,00083 < \varepsilon_0.$$

Результаты вычислений методом Ньютона представлены в таблице 1.

Таблица 1 **Результаты вычислений по методу Ньютона**

n	X_{n-1}	$F(x_{n-1})$	$F'(x_{n-1})$	\mathcal{X}_n	$\left x_{n} - x_{n-1} \right $
1	0,0000	-1,0000	2,0000	0,5000	0,5000
2	0,5000	-0,1065	1,6065	0,5663	0,0663
3	0,5663	-0,0013	1,5676	0,5671	0,0008
4	0,5671	0,0000	1,5671	0,5671	0,0000

Очевидно, что уже на *третьей* итерации условие (6.4) выполняется. Поэтому за приближенное значение корня \bar{x} уравнения (6.1) с

заданной погрешностью $\varepsilon = 0,001$ можно принять величину $x_3 = 0,567$, то есть $\overline{x} = 0,567 \pm 0,001$.

Геометрическая интерпретация результатов вычислений методом Ньютона представлена на рисунке 1.

Рис. 1. Геометрическая интерпретация уточнения корня уравнения методом Ньютона

Контрольные вопросы

- 1. В чем заключается задача уточнения корня уравнения с заданной точностью?
- 2. Сформулировать достаточное условие существования и единственности корня уравнения внутри отрезка [a,b].
- 3. Вывести формулу, реализующую алгоритм вычислений по методу Ньютона.
- 4. Сформулировать и доказать теорему о достаточном условии сходимости метода Ньютона.
 - 5. Дать геометрическую интерпретацию метода Ньютона.
- 6. Записать формулу оценки погрешности n-ого приближения в методе Ньютона.
 - 7. В чем заключается упрощенный метод Ньютона?