

SISTEMA URINARIO: SÍNDROME NEFRÓTIGO

síndrome nefrótico altera la glomerular, filtración lo incrementa la pérdida de proteínas.

Esta condición puede modelarse con un circuito RLC, donde el aumento en la resistencia Rs y la capacitancia Cs representa una mayor oposición al flujo y acumulación en el túbulo renal.

Diagrama Fisiológico

Paciente Sano (Control)

Paciente Enfermo (Caso)

$\lambda_1 = -4456.33 + j17407.656$	
$\lambda_2 = -4456.33 - j17407.656$	
λ =- 8912.66	

$\lambda_1 = -6684.49 + j213.2007$
$\lambda_2 = -6684.49 - j213.2007$
λ ₂ = - 13368.98

Para más información consulta aquí:

Carrera: Ingeniería Biomédica Asignatura: Modelado de Siste Fisiológicos

W. 10-12 /4	Kenya Fernanda
	Rodriguez Castro
emas	# de control:
	20213058

Nombre:

Nombre: Jeanette Cubillas Arteaga # de control: 20212948

Componente	Interpretación fisiológica	Unidades	Unidades fisiológicas
Rm	Resistencia de la membrana capilar glomerular	Ω	mmHg·s·L ⁻¹
Ra	Resistencia de la arteriola aferente	Ω	mmHg·s·L ⁻¹
Rs	Resistencia al paso de proteínas en el túbulo	Ω	mmHg·s·L ⁻¹
Ls	Inercia del flujo glomerular	mH	mmHg·s²·L-¹
Cv	Capacitancia vascular glomerular	μF	L·(mmHg)-¹
Cs	Capacitancia tubular renal	μF	L·(mmHg)-¹

Función de Transferencia

$$\frac{V_{S}(t)}{V_{e}(t)} = \frac{sC_{S}R_{S} + 1}{\left(C_{S}C_{V}L_{S}R_{m}\right)s^{3} + \left(C_{S}C_{V}R_{a}R_{m} + C_{S}C_{V}R_{m}R_{S} + C_{S}L_{S}\right)s^{2} + \left(C_{S}R_{a} + C_{S}R_{m} + C_{V}R_{m} + C_{S}R_{S}\right)s + 1}$$

Error en Estado Estacionario

$$e(t) = \lim_{s \to 0} \frac{1}{s} \cdot s \left[1 - \frac{s c_s R_s + 1}{\left(c_s c_v L_s R_m \right) s^3 + \left(c_s c_v R_a R_m + c_s c_v R_m R_s + c_s L_s \right) s^2 + \left(c_s R_a + c_s R_m + c_v R_m + c_s R_s \right) s + 1} \right] = [1 - 1] = 0$$

Modelo Matemático de Ecuaciones Integro-Diferenciales

$$i_1(t) = \left(Ve(t) - \frac{1}{C_v}\int[i_1(t) - i_2(t)]dt\right) \cdot \frac{1}{R_m} \qquad \frac{1}{C_s}\int[i_2(t)]dt + R_si_2(t)$$

$$i_{2}(t) = \left(\frac{1}{C_{V}}\int [i_{1}(t) - i_{2}(t)]dt - Ls\frac{di_{1}(t)}{dt} - \frac{1}{Cs}\int [i_{1}(t) - i_{2}(t)]dt\right)\frac{1}{R_{a} + R_{s}}$$

RLC ofrece una herramienta para matemáticamente analizar representar el comportamiento dinámico del sistema renal.

En condiciones patológicas como el síndrome nefrótico, el aumento en la resistencia Rs y la capacitancia Cs refleja el deterioro en la filtración glomerular y la capacidad de retención tubular. Esta representación facilita la comprensión de los efectos funcionales de la enfermedad y su impacto en la dinámica presión-flujo del sistema.