

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO

Faculdade de Estudos Interdisciplinares

Curso: Ciência de Dados e Inteligência Artificial

Consultoria Especializada de Apoio ao Projeto Integrado: Estatística e Probabilidade

2º TRABALHO - 17/11/21 (ENTREGAR UM ÚNICO ARQUIVO PDF)

NOME:	 RA:	

OBS. Todos os cálculos devem ser explicitados. A única questão que será aceita a resolução no Excel é a 5ª questão (ANOVA).

- 1. (2 pontos) Uma fábrica de carros estima que os motores de sua fabricação tem duração Normal com média de 150.000 km e desvio padrão de 5.000 km. Qual é a probabilidade de que um carro dessa fábrica escolhido ao acaso tenha um motor que dure:
- a) Menos de 170.000 km?
- b) Entre 140.000 km e 165.000 km?
- c) Se a fábrica substitui o motor que apresenta duração menor do que a garantia, qual deve ser essa garantia para que a porcentagem de motores substituídos seja menor do que 0,2%?

b) $P(140.000 < X < 165.000) = P(-2 \le Z \le 3) =$ = $P(-2 \le Z \le 0) + P(0 \le Z \le 3) =$ = 0.477250 + 0.498650 = 0.97590

$$Z_1 = \frac{140.000 - 15.000}{5.000} = -2$$

$$Z_2 = \frac{165.000 - 150.000}{5.000} = 3$$

c) $P(X \le X_a) = 0.002$

Procurando no corpo da tabela 0,498 (0,5 – 0,002), encontramos:

$$Z_a = -2,87$$
 :.

$$\therefore -2,87 = \frac{X_a - 150.000}{5.000} \quad \therefore \quad X_a = 135.650$$

A garantia deve ser de 135.650 km.

2. (2 pontos) Uma loja tem os valores de suas vendas diárias distribuídos normalmente com desvio padrão de R\$ 530,00. O gerente da loja, quando inquerido pelo dono, afirmou vender em média R\$34.720,00. Posteriormente levantou-se uma amostra das vendas de determinado dia, obtendo-se os valores:

33.840,00; 32.960,00; 41.811,00; 35.080,00; 35.060,00; 32.947,00; 32.120,00; 32.740,00; 33.580,00 e 33.002,00 em reais.

- a) Construir um IC para a venda média diária ao nível 5%.
- b) Construir um IC para a venda média diária ao nível de 1%.

c) Em qual dos dois níveis de significância podemos afirmar que o gerente se baseia para responder a indagação?

Resolução:

$$\vec{x} = 34.314,00 \quad n = 10 \quad \sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} = \frac{530}{\sqrt{10}} = 167,60$$

$$a) \quad z_{\alpha} = z_{2.5\%} = 1,96$$

$$P(34.314,00 - 1,96.167,60 < \mu < 34.314,00 + 1,96.167,60) = 0,95$$

$$P(33.985,50 < \mu < 34.642,50) = 0,95$$

b)
$$z_{\alpha} = z_{0,5\%} = 2,58$$

 $P(34.314,00 - 2,58.167,60 < \mu < 34.314,00 + 2,58.167,60) = 0,99$
 $P(33.881,60 < \mu < 34.746,41) = 0,99$

- c) em 1%.
- 3. (2 pontos) Um fabricante de correntes sabe por experiência passada, que a resistência à ruptura dessas correntes tem distribuição normal com média de 15,9 libras e desvio padrão de 2,4 libras. Uma modificação no processo de produção é introduzida. Levanta-se então uma amostra de 16 correntes fabricadas com o novo processo obtendo-se resistência média de ruptura de 15 libras. Pode esse resultado significar que a resistência média à ruptura diminuiu, ao nível de 5%. Resolver o mesmo problema para uma amostra de 64 correntes e mesma média amostral. Ou seja, testar:

$$H_0: \mu = 15,9$$
 $H_1: \mu < 15,9$

Resolução:

$$\begin{cases} H_0: \mu = 15,9 \\ H_1: \mu < 15,9 \end{cases} \quad \sigma = 2,4 \quad \overline{x} = 15 \quad \alpha = 5\% \quad z_{\alpha} = z_{5\%} = 1,64$$

a)
$$n = 16$$
 $\sigma_{\overline{x}} = \sqrt{\frac{5,76}{4}} = 0,6$ $z_{calc} = \frac{15-15,9}{0,6} = -1,50$

Como $z_{calc} > -z_{\alpha} \rightarrow n$ ão se rejeita H_0 . A 5% não é significativa a diminuição da resistência da corrente.

b)
$$n = 64$$
 $\sigma_{\bar{x}} = \frac{\sqrt{5,76}}{8} = 0,3$ $z_{calc} = \frac{15 - 15,9}{0,3} = -3$

Como $z_{calc} < -z_{\alpha} \rightarrow rejeita - se H_0$. A 5% é significativa a diminuição da resistência da corrente.

4. (2 pontos) De uma população normal retiramos uma amostra de 36 elementos:

40,1	45	39,1	43,9	45,8	44,2	37,4	44,7
45,2	41,2	40,7	43,1	44,1	42,6	40,6	41,8
42,9	45,8	43,4	45,5	44,8	42,3	40,4	41,9
42,1	44,4	43,7	43,9	42,6	45,5	41,5	45,2
43,6		42,8		43,3		45,7	

- a) Determinar um IC para a média de 95% de confiabilidade.
- b) Ao nível de 5%, testar:

Resolução:

$$n = 36$$
 $\sum x_i = 1548.9$ $\sum x_i^2 = 6887.23$ $\overline{x} = 43.03$
 $s^2 = 63.88$ $s = 7.99$ $s_{\overline{x}} = \frac{7.99}{6} = 1.33$

Usando normal:

a)
$$z_{\alpha}=1,96$$

$$P(43,03-1,96.1,33<\mu<43,03+1,96.1,33)=0,95$$

$$P(40,423<\mu<45,637)=0,95$$
 b) $z_{\alpha}=1,64$ $z_{calc}=0,774$ como $z_{calc}< z_{\alpha}$ não se rejeita H_0 .

5. (2 pontos) O artigo "Origin of Precambrian Iron Formations" (*Econ. Geology*, 1964, p. 1025-1057) relata os seguintes dados sobre o total de Fe de quatro tipos de formação de ferro (1 = carbonato, 2 = silicato, 3 = magnetita e 4 = hematita):

1	2	3	4	
20,5	26,3	29,5	36,5	
28,1	24	34	44,2	
27,8	26,2	27,5	34,1	
27	20,2	29,4	30,3	
28	23,7	27,9	31,4	
25,2	34	26,2	33,1	
25,3	17,1	29,9	34,1	
27,1	26,8	29,5	32,9	
20,5	23,7	30	36,3	
31,3	24,9	35,6	25,5	

Implemente uma análise de variância no nível de significância 0,01 e apresente o resumo dos resultados em uma tabela ANOVA e teste (Use o Excel):

$$\left\{ \begin{array}{c} H_0\colon \mu_1=\mu_2=\mu_3=\mu_4 \\ H_a\colon As\ m\'edias\ n\~ao\ s\~ao\ todas\ iguais \end{array} \right.$$

Anova: fator único								
Grupo	Contagem	Soma	Média	Variância				

1	10	260,8	26,08	11,50177778					
2	10	246,9	24,69	19,58322222					
3	10	299,5	29,95	8,145					
4	10	338,4	33,84	23,34044444					
	ANOVA								
Fonte da									
variação	SQ	gl	MQ	F	valor-P	F crítico			
					3,19905E-				
Entre grupos	509,122	3	169,7073333	10,84904126	05	4,377095621			
Dentro dos									
grupos	563,134	36	15,64261111						
	<u> </u>								
Total	1072,256	39							

Resposta: Rejeita $H_0 \operatorname{com} \alpha = 0.01$