Mathe II für Informatik - SoSe 24

TECHNISCHE UNIVERSITÄT DARMSTADT

Dr. Sven Möller Marius Tritschler Lena Volk

Übung: 16.–17. Mai 2024 Abgabe: 23.–24. Mai 2024

Übungsblatt 5

Gruppenübungen

G5.1: Lipschitz-Stetigkeit

Es sei $D \subseteq \mathbb{R}$. Eine Funktion $f: D \to \mathbb{R}$ heißt *Lipschitz-stetig*, falls es ein L > 0 gibt mit

$$|f(x) - f(y)| \le L|x - y|$$

für alle $x, y \in D$.

- a) Zeigen Sie, dass die Funktion $f: \mathbb{R} \to \mathbb{R}, x \mapsto |x+1|$ Lipschitz-stetig ist. (*Tipp: umgekehrte Dreiecksungleichung*)
- b) Zeigen Sie, dass die Funktion $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ auf \mathbb{R} stetig, aber nicht Lipschitz-stetig ist.
- c) Es sei $f:D\to\mathbb{R}$ Lipschitz-stetig. Zeigen Sie: Ist D beschränkt, so ist f ebenfalls beschränkt.
- d) Zeigen Sie, dass die Funktion $f:(1,\infty)\to\mathbb{R},\ x\mapsto\frac{1}{x}$ Lipschitz-stetig ist, aber $g:(0,\infty)\to\mathbb{R},\ x\mapsto\frac{1}{x}$ nicht.

G5.2: Zwischenwertsatz

Sei $T:[0,360]\to\mathbb{R}$ eine stetige Funktion mit T(0)=T(360), die für jeden Punkt x auf dem Äquator die dort vorherschende Temperatur T(x) angibt. Wir bezeichnen mit x den Längengrad des entsprechenden Punktes auf dem Äquator. Zeigen Sie, dass es zwei Punkte auf dem Äquator gibt, die sich exakt gegenüberliegen und in denen die gleiche Temperatur herrscht.

G5.3: Stetigkeit linearer Abbildungen (5.8.7) (9)

Zeigen Sie, dass für jedes $A \in \mathbb{R}^{p \times d}$ die Abbildung $\Phi_A \colon \mathbb{R}^d \to \mathbb{R}^p$ mit $\Phi_A(x) = Ax, \, x \in \mathbb{R}^d$, stetig ist.

Hinweis: Zeigen Sie, dass es eine Konstante $c_A > 0$ gibt mit $||Ax|| \le c_A \cdot ||x||$ für alle $x \in \mathbb{R}^d$.

Mathe II Inf – Übung 5

Hausübungen

H5.1: Lipschitz-Stetigkeit II (3+3+3)

Prüfen Sie, ob die folgenden Funktionen für $a \in \mathbb{R} \setminus \{1\}$ Lipschitz-stetig bezüglich x auf $[0, \infty)$ sind.

- a) $f(x) = \frac{1}{1+a^2} x^2$
- b) $f(x) = a^2 + 2x$
- c) $f(x) = \frac{1}{1-a} x$

H5.2: Fixpunkte (4)

Seien $a,b \in \mathbb{R}$, a < b, $f:[a,b] \to [a,b]$ stetig. Zeigen Sie, dass es dann $x \in [a,b]$ gibt, so dass f(x) = x.

Bemerkung: So ein x heißt Fixpunkt von f.

H5.3: Äquivalenz von Normen (5)

Wir betrachten die 2-Norm und ∞ -Norm im \mathbb{R}^3 . Geben Sie Konstanten $c,C\in\mathbb{R}$ an, sodass $c||x||_\infty\leq ||x||_2\leq C||x||_\infty$ für alle $x\in\mathbb{R}^3$, und geben Sie jeweils ein Beispiel $\vec{0}\neq y,z\in\mathbb{R}^3$ mit $c||y||_\infty=||y||_2$ und $||z||_2=C||z||_\infty$.