```
#Exploratory Analysis:-

#Data type of all columns in the "customers" table:

SELECT column_name, data_type
FROM `targetbusinesscasestudy-425313.Target_Dataset.INFORMATION_SCHEMA.COLUMNS`
WHERE table_name = 'customers';
```

Row /	column_name ▼	data_type ▼
1	customer_id	STRING
2	customer_unique_id	STRING
3	customer_zip_code_prefix	INT64
4	customer_city	STRING
5	customer_state	STRING

```
#Get the time range between which the orders were placed:
```

JOB IN	FORMATION	RESULTS	CHART	JSON	E
Row	min_order_times	tamp ▼	max_order_tim	estamp 🔻	11
1	2016-09-04 21:1	5:19 UTC	2018-10-17 17:	30:18 UTC	

Count the Cities & States of customers who ordered during the given period:

```
SELECT customer_city, customer_state, COUNT(*) AS order_count
FROM Target_Dataset.orders o
JOIN Target_Dataset.customers c ON o.customer_id = c.customer_id
GROUP BY customer_city, customer_state;
```

JOB IN	FORMATION RESULTS	CHART JSON	EXECUTION DETAILS
Row /	customer_city 🕶	customer_state ▼	order_count ▼
1	acu	RN	3
2	ico	CE	8
3	ipe	RS	2
4	ipu	CE	4
5	ita	SC	3
6	itu	SP	136
7	jau	SP	74
8	luz	MG	2
9	poa	SP	85
10	uba	MG	53

Row year	▼ / ord	er_count ▼
1	2016	329
2	2017	45101
3	2018	54011

Row / month	v	er_count ▼
1	8	10843
2	5	10573
3	7	10318
4	3	9893
5	6	9412
6	4	9343
7	2	8508
8	1	8069
9	11	7544
10	12	5674

```
#Time of the day Brazilian customers mostly place their orders:

SELECT CASE

WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 0 AND 6 THEN 'Dawn'
WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 7 AND 12 THEN 'Morning'
WHEN EXTRACT(HOUR FROM order_purchase_timestamp) BETWEEN 13 AND 18 THEN 'Afternoon'
ELSE 'Night'
END AS order_time,
COUNT(*) AS order_count

FROM Target_Dataset.orders
GROUP BY order_time
ORDER BY order_count desc;
```

Row /	order_time ▼	10	order_count ▼
1	Afternoon		38135
2	Night		28331
3	Morning		27733
4	Dawn		5242

Row / mont	h ▼ //	customer_state ▼	order_count ▼
1	8	SP	4982
2	5	SP	4632
3	7	SP	4381
4	6	SP	4104
5	3	SP	4047
6	4	SP	3967
7	2	SP	3357
8	1	SP	3351
9	11	SP	3012
10	12	SP	2357

```
#Distribution of customers across all states:
SELECT customer_state, COUNT(DISTINCT customer_id) AS customer_count
FROM Target_Dataset.customers
GROUP BY customer_state
ORDER BY customer_count desc;
```

Row	customer_state ▼	customer_count 🕶
1	SP	41746
2	RJ	12852
3	MG	11635
4	RS	5466
5	PR	5045
6	SC	3637
7	BA	3380
8	DF	2140
9	ES	2033
10	GO	2020

```
#Impact on Economy:-

#% increase in the cost of orders from year 2017 to 2018:

SELECT ((SUM(CASE WHEN EXTRACT(YEAR FROM order_purchase_timestamp) = 2018 THEN payment_value END) -

| SUM(CASE WHEN EXTRACT(YEAR FROM order_purchase_timestamp) = 2017 THEN payment_value END)) /

SUM(CASE WHEN EXTRACT(YEAR FROM order_purchase_timestamp) = 2017 THEN payment_value END)) * 100 AS percent_increase

FROM Target_Dataset.payments

JOIN Target_Dataset.orders ON payments.order_id = orders.order_id

WHERE EXTRACT(YEAR FROM order_purchase_timestamp) IN (2017, 2018)

AND EXTRACT(MONTH FROM order_purchase_timestamp) BETWEEN 1 AND 8;
```



```
#Total & Average value of order price and freight for each state:

SELECT customer_state,

SUM(price) AS total_order_price,

AVG(price) AS avg_order_price,

SUM(freight_value) AS total_freight_value,

AVG(freight_value) AS avg_freight_value

FROM Target_Dataset.orders o
```

JOIN Target_Dataset.order_items	oi	ON o.order_id	=	oi.order_id
JOIN Target_Dataset.customers c	ON	o.customer_id	=	c.customer_id
<pre>GROUP BY customer_state;</pre>				

Row /	customer_state ▼	total_order_price 🔻	avg_order_price 🔻	total_freight_value	avg_freight_value
1	SP	5202955.050002	109.6536291597	718723.0699999	15.14727539041
2	RJ	1824092.669999	125.1178180945	305589.3100000	20.96092393168
3	PR	683083.7600000	119.0041393728	117851.6800000	20.53165156794
4	SC	520553.3400000	124.6535775862	89660.26000000	21.47036877394
5	DF	302603.9399999	125.7705486284	50625.499999999	21.04135494596
6	MG	1585308.029999	120.7485741488	270853.4600000	20.63016680630
7	PA	178947.8099999	165.6924166666	38699.30000000	35.83268518518
8	BA	511349.9900000	134.6012082126	100156.6799999	26.36395893656
9	GO	294591.9499999	126.2717316759	53114.97999999	22.76681525932
10	RS	750304.0200000	120.3374530874	135522.7400000	21.73580433039

```
#Analysis based on sales, freight, and delivery time:-

#No. of days taken to deliver each order and difference between estimated & actual delivery date:

SELECT order_id,

order_delivered_customer_date - order_purchase_timestamp AS time_to_deliver,
order_delivered_customer_date - order_estimated_delivery_date AS diff_estimated_delivery
FROM Target_Dataset.orders;
```

```
order_id ▼
                                       time_to_deliver ▼
                                                                            diff_estimated_delivery ▼
 Row
      1
           7a4df5d8cff4090e541401a20a...
                                            null
                                                                            null
      2
           35de4050331c6c644cddc86f4...
                                            null
                                                                            null
           b5359909123fa03c50bdb0cfe...
                                                                            null
      3
                                           null
           dba5062fbda3af4fb6c33b1e04...
                                           null
                                                                            null
      4
      5
           90ab3e7d52544ec7bc3363c82...
                                            null
                                                                            null
      6
           fa65dad1b0e818e3ccc5cb0e3...
                                           null
                                                                            null
      7
                                           null
           1df2775799eecdf9dd8502425...
                                                                            null
      8
           6190a94657e1012983a274b8...
                                                                            null
           58ce513a55c740a3a81e8c8b7...
                                           null
                                                                            null
     10
           088683f795a3d30bfd61152c4f...
                                           null
                                                                            null
#Top 5 states with the highest & lowest average freight value:
SELECT c.customer_state,
      AVG(oi.freight_value) AS avg_freight_value
FROM Target_Dataset.order_items AS oi
JOIN Target_Dataset.orders AS o ON oi.order_id = o.order_id
JOIN Target_Dataset.customers AS c ON o.customer_id = c.customer_id
GROUP BY c.customer_state
ORDER BY avg_freight_value DESC
LIMIT 5;
SELECT c.customer_state,
      AVG(oi.freight_value) AS avg_freight_value
FROM Target_Dataset.order_items AS oi
JOIN Target_Dataset.orders AS o ON oi.order_id = o.order_id
JOIN Target_Dataset.customers AS c ON o.customer_id = c.customer_id
GROUP BY c.customer_state
ORDER BY avg_freight_value ASC
```

Row /	customer_state ▼	avg_freight_value 🔀
1	RR	42.98442307692
2	РВ	42.72380398671
3	RO	41.06971223021
4	AC	40.07336956521
5	PI	39.14797047970

LIMIT 5;

Row	customer_state ▼	avg_freight_value 🔻
1	SP	15.14727539041
2	PR	20.53165156794
3	MG	20.63016680630
4	RJ	20.96092393168
5	DF	21.04135494596

```
#Top 5 states with the highest & lowest average delivery time:

SELECT customer_state,

AVG(order_delivered_customer_date - order_purchase_timestamp) AS avg_delivery_time
FROM Target_Dataset.orders o

JOIN Target_Dataset.customers c ON o.customer_id = c.customer_id

GROUP BY customer_state

ORDER BY avg_delivery_time DESC

LIMIT 5;

SELECT customer_state,

AVG(order_delivered_customer_date - order_purchase_timestamp) AS avg_delivery_time
FROM Target_Dataset.orders o

JOIN Target_Dataset.customers c ON o.customer_id = c.customer_id

GROUP BY customer_state

ORDER BY avg_delivery_time

LIMIT 5;
```

W /	customer_state ▼	avg_delivery_time ▼
1	RR	0-0 0 705:18:3.975609
2	AP	0-0 0 652:26:29.850746
3	AM	0-0 0 634:13:25.613793
4	AL	0-0 0 589:3:9.103274
5	PA	0-0 0 570:33:0.021141

	() ·		
Row /	customer_state	▼ avg_	_delivery_time ▼
1	SP	0-0 (0 210:16:21.207111
2	PR	0-0 (0 287:47:52.704448
3	MG	0-0	0 288:14:46.320827
4	DF	0-0 (311:13:17.884615
5	SC	0-0 (0 359:1:23.299971

Row /	customer_state ▼	avg_delivery_diff ▼
1	AC	0-0 0 -481:50:53.400
2	RO	0-0 0 -465:31:25.802469
3	AP	0-0 0 -457:25:34.119402
4	AM	0-0 0 -452:26:36.986206
5	RR	0-0 0 -398:16:13.243902

Row / month	· /	payment_type ▼	order_count ▼
1	1	voucher	477
2	1	credit_card	6103
3	1	debit_card	118
4	1	UPI	1715
5	2	credit_card	6609
6	2	voucher	424
7	2	UPI	1723
8	2	debit_card	82
9	3	voucher	591
10	3	credit_card	7707

#No. of orders placed on the basis of the payment installments that have been paid:

```
SELECT payment_installments,
| COUNT(*) AS order_count
FROM Target_Dataset.payments
GROUP BY payment_installments;
```

Row /	payment_installment	order_count ▼
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644

Insights and Recommendations:

Insights:

Highest Average Freight Value States:

1. Identify states with the highest average freight value to understand potential logistical challenges or higher delivery costs in these areas.

Lowest Average Freight Value States:

1. Identify states with the lowest average freight value to understand areas with efficient delivery systems or lower shipping costs.

Recommendations:

Optimize Shipping Costs:

1. For states with high average freight values, consider negotiating better rates with carriers or optimizing delivery routes to reduce costs.

Improve Logistics:

1. Investigate the logistics infrastructure in states with high freight values to identify areas for improvement, such as warehouse locations or transportation methods.

Targeted Marketing:

1. Use the insights to adjust pricing strategies or offer promotions in states with higher shipping costs to offset the freight value for customers.