

Qual a cor dos olhos?

Viola Jones em Python

- import numpy as np
- import cv2
- face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
- eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
- img = cv2.imread('sachin.jpg')
- gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

Viola Jones em Python

- faces = face_cascade.detectMultiScale(gray, 1.3, 5)
- for (x,y,w,h) in faces:
- cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
- roi_gray = gray[y:y+h, x:x+w]
- roi color = img[y:y+h, x:x+w]
- eyes = eye_cascade.detectMultiScale(roi_gray)
- for (ex,ey,ew,eh) in eyes:
- cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
- cv2.imshow('img',img)
- cv2.waitKey(0)
- cv2.destroyAllWindows()

Aplicação do Viola Jones

- Encontre o pixel central da região dos olhos
- Faça a conversão da cor BGR para HSV

Para encontrar a cor: 2ª Abordagem

Considere que o recorte dos olhos, seja dividido em 9 partes.

Corte a parte central

 Transforme essa parte recortada para HSV

Para encontrar a cor: 2ª Abordagem

- Trace o histograma de H, com 45 bins
- Encontre o índice de maior valor, e classifique a cor

