# Theoretische Grundlagen der Informatik 3: Hausaufgabenabgabe 6 Tutorium: Sebastian , Mi 14.00 - 16.00 Uhr

Tom Nick - 340528 Maximillian Bachl - 341455 Marius Liwotto - 341051

# Aufgabe 1

(i) 
$$h: V(G) \rightarrow V(H)$$
  
 $v_1 \mapsto w_1$   
 $v_2 \mapsto w_2$   
 $v_3 \mapsto w_1$   
 $v_4 \mapsto w_3$   
 $v_5 \mapsto w_2$ 

- (ii) Zu zeigen ist:
  - (i) Graph G ist 3-färbbar ⇒ es existiert ein Homomorph. von G nach H
  - (ii) es existiert ein Homomorph. von G nach  $H \Rightarrow$  Graph G ist 3-färbbar

H ist 3-färbbar mit folgender Farbbelegung

c: 
$$V(H) \rightarrow \{r, g, b\}$$
  
 $c(w_1) \mapsto r$   
 $c(w_2) \mapsto g$   
 $c(w_3) \mapsto b$ 

(i) Da G 3-färbbar ist, gilt:

 $\exists c' : V(G) \rightarrow \{r,g,b\}$ . c' ist eine 3-Färbung von G

Daraus kann man nun folgenden Homomorphismus h bilden:

$$h: V(G) \rightarrow V(H)$$

$$h(v) \mapsto \begin{cases} w_1, & c'(v) = r \\ w_2, & c'(v) = g \\ w_3, & c'(v) = b \end{cases}$$

Beweis der Richtigkeit des gebildeten h:

Es muss gelten:

$$\forall \{u, v\} \in E(G). \{h(u), h(v)\} \in E(H)$$

Da nach Annahme alle Knoten einer Kante aus G verschiedenfarbig sind, gilt:

$$(1) \ \forall \{u,v\} \in E(G). \ h(u) \neq h(v)$$

Des Weiteren gilt:

$$(2) \ \forall \ u \in \{w_1, w_2, w_3\}. \ \forall \ v \in \{w_1, w_2, w_3\} \setminus \{u\}. \ \{u, v\} \in E(H)$$

Aus (1) und (2) folgt:

$$\forall \{u,v\} \in E(G). \{h(u),h(v)\} \in E(H)$$

(ii) Da ein Homomorphismus h von G nach H existiert, gilt:

$$(*) \forall \{u,v\} \in E(G). \{h(u),h(v)\} \in E(H)$$

Daraus kann man nun folgende 3-Färbung c' ableiten:

$$c': V(G) \to \{r,g,b\}$$

$$v \mapsto h(v)$$

Beweis der Richtigkeit der 3-Färbung c':

Es gilt:

$$(**) \forall \{u,v\} \in E(G). h(u) \neq h(v)$$

Würde dies nicht gelten, würde das bedeuten, dass  $\{h(u), h(u)\} \in E(H)$  sein würde, da aber H irreflexiv ist, wäre das ein Widerspruch. Aus (\*) und (\*\*) folgt:

$$\forall \{u,v\} \in E(G). c(h(u)) \neq c(h(v)) \Leftrightarrow \forall \{u,v\} \in E(G). c'(u) \neq c'(v)$$

 $\Rightarrow$  c' ist eine passende 3-Färbung für G  $\Rightarrow$  G ist 3-färbbar

# Aufgabe 2

Zu zeigen ist:

- (i) Existieren für alle endlichen Teilgraphen G' von G Homomorphismen von G' nach H, so existiert auch ein Homomorphismus von G nach H.
- (ii) Existiert für G ein Homomorphismus von G nach H, so existieren für alle endlichen Teilgraphen G' von G Homomorphismen von G' nach H.
  - (i) Der Graph G = (V,E) wird folgendermaßen in einer Aussagenlogische Formel übersetzt: Für jede Kante  $\{u,v\} \in E(G)$  führen wir eine Variable  $X_{u,v}$  ein.

Sei h: 
$$V(G) \rightarrow V(H)$$

$$\Phi = \{ \{ X_{u,v} \to X_{h(u),h(v)} \} \mid \{ u, v \} \in E(G) \}$$

Sei 
$$\Phi_0 \subseteq \Phi$$

$$E' = \{ \{u, v\} \mid \{X_{u,v} \to X_{h(u),h(v)}\} \in \Phi_0 \}$$
  
$$V' = \{v \mid \{u, v\} \in E' \}$$

Da  $\Phi_0$  eine endliche Teilmenge von  $\Phi$  ist, muss auch E' und damit V' endlich sein. Für den von V' induzierten endlichen Untergraphen G' von G existiert nach Annahme ein Homomorphismus h':  $V(G') \to V(H)$ . Daraus folgt, dass folgendes gilt:

$$\forall \{u,v\} \in E'. \{h'(u),h'(v)\} \in E(H)$$

Eine passende Belegung  $\beta$  wäre somit Folgende:

$$\beta(X_{u,v}) = 1$$
, wenn  $\{u, v\} \in E'$  und  $\beta(X_{h'(u),h'(v)}) = 1$ , wenn  $\{h'(u), h'(v)\} \in E(H)$ 

Aus der Erfüllbarkeit von jedem beliebigen  $\Phi_0$  folgt nach dem Kompaktheitssatz, dass  $\Phi$  auch erfüllbar ist. Daraus folgt, dass ein Homomorphismus h:  $V(G) \to V(H)$  existiert, wenn für alle Teilgraphen G' ein Homomorphismus existiert.

(ii) Ist trivial.

### Aufgabe 3

In der Hausaufgabe 4 wurde bewiesen, dass die P-Resolution korrekt ist, d.h. falls es eine Menge von Klausels eine P-Resolutionswiderlegung hat, so ist die Klauselmenge unerfüllbar. Damit die P-Resolution vollständig ist, muss gezeigt werden, dass für jede unerfüllbare Klauselmenge eine P-Resolutionswiderlegung existiert. Dazu wird zuerst folgende Behauptung aufgestellt:

**Behauptung:** Sei  $n \in \mathbb{N}$  und sei  $\mathcal{C}$  eine unerfüllbare Klauselmenge in den Variablen  $\{V_1, ..., V_{n-1}\}$ . Dann hat  $\mathcal{C}$  eine Resolutionswiderlegung.

$$n = 0$$
.

**IA:** In diesem Fall ist  $\mathcal{C}$  unerfüllbar und enthält keine Variablen. Also  $\mathcal{C} := \{\Box\}$  und somit existiert eine Resolutionswiderlegung, bzw. das ganze ist schon eine Resolutionswiderlegung.

**IS:** 
$$n \rightarrow n+1$$

Sei  $\mathcal{C}$  eine unerfüllbare Klauselmenge in den Variablen  $\{V_1,...,V_n\}$ . Wir definieren

$$C^{+} := \{C \setminus \{\neg V_n\} \mid C \in C \land V_n \notin C\}$$
$$C^{-} := \{C \setminus \{V_n\} \mid C \in C \land \neg V_n \notin C\}$$

 $\mathcal{C}^+$  und  $\mathcal{C}^-$  sind beide unerfüllbar. Denn wäre z.B.  $\mathcal{C}^+$  erfüllbar, z.B. durch  $\beta \models \mathcal{C}^+$ , dann würde  $\beta' := \beta \cup \{V_n \to 1\}$  die Menge  $\mathcal{C}$  erfüllen.

Nach Induktionsvorraussetzung gibt es Resolutionsableitungen  $(C_1,...,C_s)$  und  $(D_1,...,D_t)$  der leeren Klausel  $C_s = D_t = \square$  aus  $C^+$  bzw.  $C^-$ .

Falls  $(D_1, ..., D_t)$  schon eine Ableitung von  $\square$  aus  $\mathcal{C}$  ist, sind wir fertig. Andernfalls werden Klauseln  $D_i$  benutzt, die aus  $\mathcal{C}$  durch Entfernen von  $V_n$  entstanden sind, d.h.  $D_i \cup \{V_n\} \in \mathcal{C}$ .

Fügen wir zu diesen Klauseln und allen Resolventen wieder  $V_n$  hinzu, so erhalten wir eine Ableitung  $(D'_1, ..., D'_t)$  von  $V_n$  aus C.

Falls  $(C_1, ..., C_s)$  schon eine Ableitung von  $\square$  aus  $\mathcal{C}$  ist, sind wir fertig. Andernfalls werden Klauseln  $C_i$  benutzt, die aus  $\mathcal{C}$  durch Entfernen von  $\neg V_n$  entstanden sind, d.h.  $C_i \cup \{\neg V_n\} \in \mathcal{C}$ . Fügen wir zu diesen Klausel  $\neg V_n$  hinzu, gibt es in der normalen Resolution eine Ableitung

 $(C'_1, ..., C'_s)$  von  $\neg V_n$  aus  $\mathcal{C}$ . Doch es gibt in der P-Resolution das Problem, dass immer eine positive Klausel resolviert werden

muss, und da wir negative Variablen zu den Klauseln hinzufügten, ist  $(C'_1, ... C'_s)$  unter Umständen keine gültige P-Resolution.

Doch haben wir schon zuvor  $\{V_n\}$  resolviert, wodurch alle Klauseln der Form  $C_i \cup \{\neg V_n\} \in \mathcal{C}$  wieder zu  $C_i$  resolviert werden können. Diese Resolutionskette bezeichne als  $(C'D'_1,...,C'D'_k)$ . Nun sind die Resolutionsableitungen  $(C_1,...,C_s)$  möglich, da alle Klauseln vorliegen.

Damit wäre  $(D'_1,...,D'_t,C'D'_1,...,C'D'_k,C_1,...,C_s,\Box)$  eine Resolutionswiderlegung von  $\mathcal{C}$ 

Nun muss das ganze noch für jede Klauselmenge  $\mathcal C$  bewiesen werden. Sei dazu  $\mathcal C$  eine unerfüllbare Klauselmenge

- 1. Ist C endlich, dann enthält sie nur endlich viele Variablen und der Beweis folgt sofort aus der Behauptung.
- 2. Ist  $\mathcal{C}$  unendlich, dann folgt aus dem Kompaktheitssatz, dass bereits eine endliche Teilmenge  $\mathcal{C}' \subseteq \mathcal{C}$ unerfüllbar ist. Also hat  $\mathcal{C}'$  eine Resolutionswiderlegung. Diese ist aber auch eine Resolutionswiderlegung von  $\mathcal{C}$ .

Hinweis: Große Teile des Beweises kommen aus den Vorlesungsfolien der VL TheGI3 von S. Kreutzer.

### Aufgabe 4

Wir definieren n=|V(G)|. Es werden n Variablen eingeführt, die jeweils 2 Indizes haben mit der Namensgebung  $X_{i,j}$ , wobei  $1 \le i \le j \le n$ . Die Idee ist, dass diese  $n \times n$  Matrix aus Variablen einen Pfad definiert, indem man jeweils genau eine Variable der n Variablen mit 1 belegt, alle anderen mit 0. Nun würden die Variablen  $X_{i,j}$  und  $X_{i+1,k}$  für die Kante  $\{j,k\}$  stehen.  $\varphi$  muss folgendes leisten:

1. Jede Variable definiert genau einen Knoten.

$$\varphi_1 = \bigwedge_{0 \le i < n} \bigvee_{j \in V(G)} \left( X_{i,j} \land \left( \bigwedge_{k \in V(G) \setminus \{j\}} \neg X_{i,k} \right) \right)$$

Jede Klausel hat die Größe n, es werden n mal n Klauseln gebildet  $\Rightarrow \varphi_1 \in \mathcal{O}(n^3)$ 

2. Jeder Knoten kommt genau einmal vor:

$$\varphi_2 = \bigwedge_{j \in V(G)} \bigvee_{0 \le i < n} \left( X_{i,j} \land \left( \bigwedge_{i' \in \{0, \dots, n-1\} \setminus \{i\}} \neg X_{i',j} \right) \right)$$

Jede Klausel hat die Größe n, es werden n mal n Klauseln gebildet  $\Rightarrow \varphi_2 \in \mathcal{O}(n^3)$ 

3. Die Kanten existieren und bilden einen geschlossenen Pfad: ¡¡¡¡¡¡ HEAD

$$\varphi_3 = \bigwedge_{1 \le i < n} \left( \bigvee_{\{k,l\} \in E(G)} X_{i,k} \wedge X_{i+1,l} \right) \wedge \bigvee_{\{k,l\} \in E(G)} X_{0,k} \wedge X_{n,l}$$

Jede Klausel hat die Grösse 2, es werden n mal maximal  $\binom{n}{2}$  Klauseln gebildet  $\Rightarrow \varphi_3 \in \mathcal{O}(n^3)$  ======

$$\varphi_3 = X_{n-1,0} \bigwedge_{0 \le i < n} \bigvee_{\{k,l\} \in E(G)} X_{i,k} \wedge X_{i+1,l}$$

Jede Klausel hat die Größe 2, es werden n mal maximal  $\binom{n}{2}$  Klauseln gebildet  $\Rightarrow \varphi_3 \in \mathcal{O}(n^3)$  ZZZZZZZ fecfd4bc3f02e3a1efdf3d8f42ae9695a34eb854

 $\varphi$  wird nun als Konjunktion des Ganzen definiert:

$$\varphi(G) = \varphi_1 \wedge \varphi_2 \wedge \varphi_3$$

 $\varphi(G)$  ist genau erfüllbar, wenn ein Hamilton Kreis in G existiert. Da für  $\varphi_{1-3}$  gezeigt wurde, dass es polynomiellen Aufwand hat, ist der Aufwand von  $\varphi$  ebenfalls polynomiell, nämlich  $\mathcal{O}(n^3) + \mathcal{O}(n^3) + \mathcal{O}(n^3) = \mathcal{O}(n^3)$ .