```
In [39]: import numpy as np
import pandas as pd
import xarray as xr
from matplotlib import pyplot as plt
%matplotlib inline
```

localhost:8888/notebooks/PS2_4.ipynb

Out[40]:

	Site	Year	Month	Death	рН	Т	EC*	ORP*	Water level	NH4+	 Mg	Ca	Fe	Fe2+	Mn	NO3-	CI	DOC	SO42-	As
0	NH03A	2013	10	10	6.7	20.8	1321	-123.9	21.41	2.1	 38.6	164.1	22.4	14.9	38.6	0.0	25.0	31.2	0.0	22.5
1	NH03A	2013	12	10	6.6	19.1	1244	-133.5	21.16	7.4	 33.8	174.3	25.9	21.7	33.8	0.0	42.6	5.4	4.6	59.1
2	NH03A	2014	1	10	6.9	17.5	1185	-111.1	21.09	2.5	 39.6	188.5	17.6	7.6	39.6	0.3	30.5	7.0	4.3	17.6
3	NH03A	2014	2	10	7.1	16.8	1112	-21.2	21.66	2.5	 42.6	196.2	8.0	0.2	42.6	0.2	26.8	17.6	4.5	2.2
4	NH03A	2014	3	10	7.2	16.9	1256	-49.4	21.67	2.4	 38.0	186.2	3.6	2.1	38.0	0.6	28.8	2.9	4.6	3.0
5	NH03A	2014	4	10	6.9	18.7	1175	-104.6	21.97	2.4	 39.9	162.7	11.5	11.4	39.9	0.0	29.3	7.6	0.0	10.2
6	NH03A	2014	5	10	6.9	20.3	797	-139.2	21.90	2.1	 36.6	152.1	17.8	11.7	36.6	0.0	29.1	4.9	0.0	17.4
7	NH03A	2014	6	10	6.9	19.9	1284	-127.2	21.37	2.6	 23.9	183.0	17.0	12.9	23.9	0.0	31.1	14.2	0.0	14.5
8	NH03A	2014	7	10	6.8	21.0	1310	-131.2	21.53	2.5	 23.1	175.4	20.5	13.3	23.1	0.0	38.5	1.3	4.7	39.0
9	NH03A	2014	8	10	6.9	22.6	1316	-110.6	21.70	2.4	 23.1	175.0	23.8	11.9	23.1	0.0	43.1	6.8	4.9	31.9
10	NH03A	2014	9	10	6.8	19.4	1330	-99.6	21.87	2.6	 22.3	172.1	18.4	10.9	22.3	0.0	37.2	5.9	4.6	25.7
11	NH03A	2014	10	10	6.9	19.4	1307	-101.4	21.56	1.3	 23.5	180.6	17.3	11.3	23.5	0.5	36.0	7.2	5.1	21.3
12	NH03B	2013	10	25	7.3	20.3	651	-167.8	21.20	2.1	 26.0	113.7	7.3	6.5	6.5	0.0	5.7	22.7	4.9	1030.0
13	NH03B	2013	12	25	7.1	18.6	880	-166.8	20.83	7.4	 25.2	120.8	8.0	7.3	8.0	0.0	5.6	1.9	4.4	1030.0
14	NH03B	2014	1	25	7.2	17.8	806	-168.9	20.58	2.5	 31.9	151.5	8.8	6.7	9.6	0.0	5.0	2.6	4.6	1020.0
15	NH03B	2014	2	25	7.5	16.9	834	-143.2	20.47	2.5	 28.2	133.8	8.3	4.8	8.1	0.0	5.5	4.1	4.7	994.0
16	NH03B	2014	3	25	7.4	16.5	867	-149.7	20.50	2.4	 25.4	129.5	3.2	3.1	8.5	0.0	5.0	6.2	0.0	159.0
17	NH03B	2014	4	25	7.3	18.9	750	-139.8	20.51	2.4	 26.9	114.2	5.8	3.7	8.7	0.0	3.9	3.8	7.2	689.0
18	NH03B	2014	5	25	7.4	20.6	637	-169.2	20.71	2.1	 24.7	105.4	6.5	6.0	8.0	0.0	4.0	6.4	6.4	656.0
19	NH03B	2014	6	25	7.4	20.1	870	-177.8	20.72	2.6	 18.1	129.2	6.6	5.6	7.5	0.1	5.1	3.3	4.1	901.0

localhost:8888/notebooks/PS2_4.ipynb

	Site	Year	Month	Death	рН	T	EC*	ORP*	Water level	NH4+	 Mg	Ca	Fe	Fe2+	Mn	NO3-	CI	DOC	SO42-	As
20	NH03B	2014	7	25	7.3	22.2	884	-188.1	20.89	2.5	 16.8	123.5	6.6	6.6	7.4	0.3	5.1	0.8	4.3	1040.0
21	NH03B	2014	8	25	7.4	21.8	900	-177.3	20.99	2.4	 17.8	125.8	6.6	6.5	7.5	0.0	5.3	4.4	4.1	1050.0
22	NH03B	2014	9	25	7.2	19.7	887	-115.8	21.31	2.6	 17.4	122.5	4.9	4.9	7.5	0.0	4.9	3.2	3.8	982.0
23	NH03B	2014	10	25	7.3	19.5	879	-113.1	21.29	1.3	 19.2	130.0	6.5	6.4	8.7	0.0	1.3	4.9	0.0	1030.0

24 rows × 21 columns

```
In [41]: # 4.2
# Add a new column"Time"
df4["Time"]=df4["Year"]. astype(str)+"-"+df4["Month"]. astype(str)
# Choose data based on "Site", and create df4_1 and df4_2 for Site NH03A and Site NH03B.
df4_1=df4.loc[df4["Site"]=="NH03A"]
df4_2=df4.loc[df4["Site"]=="NH03B"]
```

localhost:8888/notebooks/PS2_4.ipynb

```
In [42]: # 4.2 Connected above
# Set the column"Time" as the index for plotting
df4_1 = df4_1.set_index("Time")
# Choose 2 Variables("Water level"&"As") to plot the time series for Site NHO3A, which is 10 meters below the ground surface.
cols_plot = ["Water level", "As"]
axes = df4_1[cols_plot].plot(marker=".", linestyle="solid", figsize=(8, 6), subplots=True)
axes[0].set_ylabel("NHO3A_Water level (m)")
axes[0].set_ylim(20.00, 22.00)
axes[1].set_ylabel("NHO3A_As (μg/L)")
axes[1].set_ylim(0,100)
```

Out[42]: (0.0, 100.0)

localhost:8888/notebooks/PS2 4.ipynb

```
In [43]: # 4.2 Connected above df4_2 = df4_2.set_index("Time") # Do the same operations for Site NH03B, which is 25 meters below the ground surface. axes2 = df4_2[cols_plot].plot(marker=".", linestyle="solid", figsize=(8, 6), subplots=True) axes2[0].set_ylabel("NH03B_Water level (m)") axes2[0].set_ylim(20.00, 22.00) axes2[1].set_ylabel("NH03B_As (\mug/L)") axes2[1].set_ylim(0,1200)
```

Out[43]: (0.0, 1200.0)

localhost:8888/notebooks/PS2_4.ipynb 5/6

```
In [44]: # 4.3
           # Calculate the As average of the whole Year
          As NHO3A mean=round(df4 1["As"].mean(),2)
          As NHO3B mean=round(df4 2["As"].mean(),2)
          print ("As NHO3A mean is ", As NHO3A mean, "µg/L.")
          print ("As NHO3B mean is ", As NHO3B mean, "µg/L.")
           # Calculate the As average of different Seasons
          As NHO3A Spring=round(df4 1["As"][(df4 1["Month"]>=3)&(df4 1["Month"]<=5)].mean(),2)
          As NHO3A Summer=round(df4 1["As"][(df4 1["Month"]>=6)&(df4 1["Month"]<=8)].mean(),2)
          As NH03A Fall=round(df4 1["As"][(df4 1["Month"]>=9)&(df4 1["Month"]<=11)].mean(),2)
          As NH03A Winter=round(df4 1 ["As"] [(df4 1 ["Month"] == 12) | (df4 1 ["Month"] == 1) | (df4 1 ["Month"] == 2)]. mean(), 2)
          print ("As NHO3A Spring:", As NHO3A Spring,"; As NHO3A Summer:", As NHO3A Summer)
          print ("As NHO3A Fall:", As NHO3A Fall, ": As NHO3A Winter:", As NHO3A Winter)
          As NH03B Spring=round(df4 2["As"][(df4 2["Month"]>=3)&(df4 2["Month"]<=5)].mean(),2)
          As NH03B Summer=round(df4 2["As"][(df4 2["Month"]>=6)&(df4 2["Month"]<=8)].mean(),2)
          As NH03B Fall=round(df4 2["As"][(df4 2["Month"]>=9)&(df4 2["Month"]<=11)].mean(),2)
          As NH03B Winter=round(df4 2["As"][(df4 2["Month"]==12)|(df4 2["Month"]==1)|(df4 1["Month"]==2)].mean(),2)
          print ("As NH03B Spring:", As NH03B Spring,"; As NH03B Summer:", As NH03B Summer)
          print ("As NHO3B Fall:", As NHO3B Fall,"; As NHO3B Winter:", As NHO3B Winter,)
           # From the output below, it is obvious that groundwater of Site NHO3B(25m) has much higher As concentration than
          # that of Site NHO3A(10m), related to the REDOX conditions.
          # For a certain site, As concentration in Spring seems to be much lower than in the other seasons,
          # which may be attributed to the water level changes. From Figure 4.2, for deeper aquifers (e.g. NH03B(25m)),
           # lower the water level is, lower the As concentration, while the shallower aqufers (e.g. NHO3A (10m))
           # reacts to the water level change more moderately.
```

```
As_NH03A_mean is 22.03 μg/L.

As_NH03B_mean is 881.75 μg/L.

As_NH03A_Spring: 10.2; As_NH03A_Summer: 28.47

As_NH03A_Fall: 23.17; As_NH03A_Winter: 26.3

As_NH03B_Spring: 501.33; As_NH03B_Summer: 997.0

As_NH03B_Fall: 1014.0; As_NH03B_Winter: 1014.67
```

localhost:8888/notebooks/PS2 4.ipynb