练习1

列真值表,无需赘述。

7°

(¬	р	V	q)	\rightarrow	(¬	q	\wedge	r)
0	1	0	1	1	0	1	0	1
0	1	0	1	1	0	1	0	0
0	1	0	0	1	1	0	1	1
0	1	0	0	1	1	0	0	0
1	0	1	1	0	0	1	0	1
1	0	1	1	0	0	1	0	0
1	0	0	0	1	1	0	1	1
1	0	0	0	1	1	0	0	0

8°

(p	\rightarrow	q)	\rightarrow	(p	\rightarrow	r)
1	1	1	1	1	1	1
1	1	1	0	1	0	0
1	0	0	1	1	1	1
1	0	0	1	1	0	0
0	1	1	1	0	1	1
0	1	1	1	0	1	0
0	1	0	1	0	1	1
0	1	0	1	0	1	0

9°

(¬	(p	V	(q	\wedge	r)))	\leftrightarrow	((p	V	q)	\wedge	(p	V	r))
0	1	1	1	1	1	0	1	1	1	1	1	1	1
0	1	1	1	0	0	0	1	1	1	1	1	1	0
0	1	1	0	0	1	0	1	1	0	1	1	1	1
0	1	1	0	0	0	0	1	1	0	1	1	1	0
0	0	1	1	1	1	0	0	1	1	1	0	1	1
1	0	0	1	0	0	0	0	1	1	Θ	0	0	0
1	0	0	0	0	1	0	0	0	0	0	0	1	1
1	0	0	0	0	0	0	0	0	0	0	0	0	0

练习2

1.

$$L_0 = X_1 = \{x_1\}$$

$$L_1 = \{ \neg \ x_1, \ x_1
ightarrow x_1 \}$$

$$L_2 = \{ \lnot(\lnot x_1), \ \lnot(x_1 o x_1), \ x_1 o (\lnot x_1), \ x_1 o (x_1 o x_1), \ (\lnot x_1) o x_1, \ (x_1 o x_1) o x_1 \}$$

2.

$$L_0 = X_2 = \{x_1, x_2\}$$

$$L_1 = \{ \lnot x_1, \ \lnot x_2, \ x_1
ightarrow x_1, \ x_1
ightarrow x_2, \ x_2
ightarrow x_1, \ x_2
ightarrow x_2 \}$$

$$L_2 = \{ \neg (\neg x_1), \ \neg (\neg x_2), \ \neg (x_1 \to x_1), \ \neg (x_1 \to x_2), \ \neg (x_2 \to x_1), \ \neg (x_2 \to x_2), \ \neg (x$$

$$x_1 o (\neg x_1), \ x_1 o (\neg x_2), \ x_1 o (x_1 o x_1), \ x_1 o (x_1 o x_2), \ x_1 o (x_2 o x_1), \ x_1 o (x_2 o x_2),$$

$$x_2 o (\lnot x_1), \ x_2 o (\lnot x_2), \ x_2 o (x_1 o x_1), \ x_2 o (x_1 o x_2), \ x_2 o (x_2 o x_1), \ x_2 o (x_2 o x_2),$$

$$(\neg x_1) o x_1, \ (\neg x_2) o x_1, \ (x_1 o x_1) o x_1, \ (x_1 o x_2) o x_1, \ (x_2 o x_1) o x_1, \ (x_2 o x_2) o x_1,$$

$$(\neg x_1) o x_2, \; (\neg x_2) o x_2, \; (x_1 o x_1) o x_2, \; (x_1 o x_2) o x_2, \; (x_2 o x_1) o x_2, \; (x_2 o x_2) o x_2 \}$$

3.

$$|L_0| = |X_3| = 3$$

$$|L_1|=3+3 imes 3=12$$

$$|L_2| = 12 + 3 \times 12 + 12 \times 3 = 84$$

$$|L_3| = 84 + 3 \times 84 + 84 \times 3 + 12 \times 12 = 732$$

练习3

2.

1°

$$(1) \ (\lnot x_1
ightarrow \lnot x_2)
ightarrow (x_2
ightarrow x_1)$$

$$(2) \; ((\neg \; x_1 \rightarrow \neg \; x_2) \rightarrow (x_2 \rightarrow x_1)) \rightarrow ((x_1 \rightarrow x_2) \rightarrow ((\neg \; x_1 \rightarrow \neg \; x_2) \rightarrow (x_2 \rightarrow x_1))) \tag{L_1}$$

$$(3)\ (x_1
ightarrow x_2)
ightarrow ((\lnot x_1
ightarrow \lnot x_2)
ightarrow (x_2
ightarrow x_1))$$

2°

$$(1) \; (x_1
ightarrow (x_2
ightarrow x_3))
ightarrow ((x_1
ightarrow x_2)
ightarrow (x_1
ightarrow x_3))$$

$$(2) \ ((x_1 \to (x_2 \to x_3)) \to ((x_1 \to x_2) \to (x_1 \to x_3))) \to (((x_1 \to (x_2 \to x_3)) \to (x_1 \to x_2)) \to ((x_1 \to (x_2 \to x_3)) \to (x_1 \to x_3))) \\ (L_2)$$

$$(3) \; ((x_1 \to (x_2 \to x_3)) \to (x_1 \to x_2)) \to ((x_1 \to (x_2 \to x_3)) \to (x_1 \to x_3)) \\ (1), (2), \mathit{MP}$$

3.

2°

$$(1) \lnot \lnot p$$

$$(2) \lnot \lnot p \to (\lnot \lnot \lnot \lnot p \to \lnot \lnot p)$$

$$(3) \lnot \lnot \lnot \lnot p
ightarrow \lnot \lnot p$$

$$(4) \; (\neg \; \neg \; \neg \; p \; \rightarrow \; \neg \; \neg \; p) \; \rightarrow \; (\neg \; p \; \rightarrow \; \neg \; \neg \; \neg \; p)$$

$$(6) \; (\neg \; p \to \neg \; \neg \; \neg \; p) \to (\neg \; \neg \; p \to p) \\ (L_3)$$

$$(6) (+p
ightharpoonup + +p
ightharpoonup (+p
ightharpoonup p) \ (5), (6), M$$

(8) p(1), (7), MP

假定

 (L_1)

 (L_3)

另法

$(1) \neg \neg p$	假定
$egin{aligned} (2) \lnot \lnot p ightarrow \lnot \lnot \lnot \lnot p) \ (3) \lnot p ightarrow \lnot \lnot \lnot p \end{aligned}$	否定前件律 $(1),(2),MP$
$(4) \ (\lnot p ightarrow \lnot \lnot \lnot p) ightarrow (\lnot \lnot p ightarrow \lnot p)$	(L_3)
$(5) \lnot \lnot p \to p$	(3),(4),MP
(6) p	(L_3)
3°	
$(1) \lnot (q ightarrow r) ightarrow \lnot p$	假定
$(2) \ (\lnot \ (q ightarrow r) ightarrow \lnot \ p) ightarrow (p ightarrow (q ightarrow r))$	(L_3)
$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$	$(1),(2),MP \ (L_2)$
$(5) \ (p ightarrow q) \ ightarrow (p ightarrow r)$	(3),(4),MP
$(6) \ p o q$	假定
$(7)\; p \to r$	(5),(6),MP
1°	
$(1)\ p o (q o r)$	假定
$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$	$(L_2) \ (1),(2),MP$
$(4) \ ((p ightarrow q) ightarrow (p ightarrow r) \ (4) \ ((p ightarrow q) ightarrow (p ightarrow r)) ightarrow (q ightarrow ((p ightarrow q) ightarrow (p ightarrow r)))$	(L_1)
$(5) \ q ightarrow ((p ightarrow q) ightarrow (p ightarrow r))$	(3),(4),MP
$egin{aligned} (6) \; (q ightarrow ((p ightarrow q) ightarrow (p ightarrow r))) ightarrow ((q ightarrow (p ightarrow q)) ightarrow (q ightarrow (p ightarrow r))) \ ((q ightarrow (p ightarrow q)) ightarrow (q ightarrow (p ightarrow r)) \end{aligned}$	$(L_2) \\ (5), (6), MP$
$(8) \ q ightarrow (p ightarrow q)) ightarrow (q ightarrow (p ightarrow r))$	$(5),(6),MF$ (L_1)
$(9) \ q \rightarrow (p \rightarrow r)$	$(7),(8),\stackrel{\longleftarrow}{MP}$
练习4	
2.	
2°	
首先由练习3.2°,有 $\{ eg otag p\} dash p$,由演绎定理有 $ eg otag otag p otag p$	
以下先证明 $dash p o eg olimits_{-} p$	
Not a second of the second of	
	定理
$egin{aligned} (1) \lnot \lnot \lnot p ightarrow \lnot p \ (2) \ (\lnot \lnot \lnot p ightarrow \lnot p) ightarrow (p ightarrow \lnot \neg p) \end{aligned}$	(L_3)
$egin{aligned} 1) \lnot \lnot \lnot p ightarrow \lnot p \ 2) \ (\lnot \lnot \lnot p ightarrow \lnot p) ightarrow (p ightarrow \lnot p) \ 3) \ (p ightarrow \lnot \lnot p) \end{aligned}$	
$egin{align} (1) \lnot \lnot \lnot p ightarrow \lnot p \ (2) (\lnot \lnot \lnot p ightarrow \lnot p) ightarrow (p ightarrow \lnot p) \ (3) (p ightarrow \lnot \lnot p) \ (3) (p ightarrow \lnot \lnot p) \ (4) ightarrow (4) ightar$	(L_3) $(1),(2),MP$
$egin{align} (1) \lnot \lnot \lnot p ightarrow \lnot p \ (2) (\lnot \lnot \lnot p ightarrow \lnot p) ightarrow (p ightarrow \lnot p) \ (3) (p ightarrow \lnot \lnot p) \ \end{array}$ 然后,由演绎定理,只需证 $\{q ightarrow p\} dash \lnot p ightarrow \lnot q \ (1) p ightarrow \lnot \lnot p$	(L_3) $(1),(2),MP$
(1) \neg \neg \neg p \rightarrow \neg p (2) $(\neg$ \neg \neg p \rightarrow \neg $p)$ (3) $(p \rightarrow \neg \neg p)$ (3) $(p \rightarrow \neg \neg p)$ (4) (4) (4) (4) (5) (5) (5) (7) $($	(L_3) $(1),(2),MP$ 定理 假定 $(1),(2),HS$
(1) $\neg\neg\neg p \rightarrow \neg p$ (2) $(\neg\neg\neg p \rightarrow \neg p) \rightarrow (p \rightarrow \neg\neg p)$ (3) $(p \rightarrow \neg\neg p)$ 然后,由演绎定理,只需证 $\{q \rightarrow p\} \vdash \neg p \rightarrow \neg q\}$ (1) $p \rightarrow \neg \neg p$ (2) $q \rightarrow p$ (3) $q \rightarrow \neg \neg p$ (4) $\neg \neg q \rightarrow q$	(L_3) $(1),(2),MP$ 定理 假定 $(1),(2),HS$ 定理
(1) $\neg\neg\neg p \rightarrow \neg p$ (2) $(\neg\neg\neg p \rightarrow \neg p) \rightarrow (p \rightarrow \neg \neg p)$ (3) $(p \rightarrow \neg \neg p)$ 然后,由演绎定理,只需证 $\{q \rightarrow p\} \vdash \neg p \rightarrow \neg q\}$ (1) $p \rightarrow \neg \neg p$ (2) $q \rightarrow p$ (3) $q \rightarrow \neg \neg p$ (4) $\neg q \rightarrow q$ (5) $\neg \neg q \rightarrow \neg \neg p$	(L_3) $(1),(2),MP$ 定理 假定 $(1),(2),HS$ 定理
(1) \neg \neg \neg $p \rightarrow \neg$ p (2) $(\neg$ \neg $p \rightarrow \neg$ $p) \rightarrow (p \rightarrow \neg \neg p)$ (3) $(p \rightarrow \neg \neg p)$ 然后,由演绎定理,只需证 $\{q \rightarrow p\} \vdash \neg p \rightarrow \neg q\}$ (1) $(p \rightarrow \neg \neg p)$ (2) $(q \rightarrow p)$ (3) $(q \rightarrow \neg p)$ (4) $(q \rightarrow p)$ (4) $(q \rightarrow p)$ (5) $(q \rightarrow p)$ (6) $(q \rightarrow q \rightarrow \neg p)$ $(q \rightarrow p \rightarrow \neg q)$	(L_3) $(1),(2),MP$ 定理 假定 $(1),(2),HS$ 定理 $(3),(4),HS$ (L_3)
$1) \neg \neg \neg p \rightarrow \neg p$ $2) (\neg \neg p \rightarrow \neg p) \rightarrow (p \rightarrow \neg p)$ $3) (p \rightarrow \neg p)$ 然后,由演绎定理,只需证 $\{q \rightarrow p\} \vdash \neg p \rightarrow \neg q$ $1) p \rightarrow \neg \neg p$ $2) q \rightarrow p$ $3) q \rightarrow \neg \neg p$ $4) \neg q \rightarrow q$ $5) \neg q \rightarrow \neg p$ $6) (\neg q \rightarrow \neg p) \rightarrow (\neg p \rightarrow \neg q)$ $7) \neg p \rightarrow \neg q$	(L_3) $(1),(2),MP$ 定理 假定 $(1),(2),HS$ 定理 $(3),(4),HS$ (L_3)
$(1) \neg \neg \neg p \rightarrow \neg p$ $(2) (\neg \neg \neg p \rightarrow \neg p) \rightarrow (p \rightarrow \neg \neg p)$ $(3) (p \rightarrow \neg \neg p)$ 然后,由演绎定理,只需证 $\{q \rightarrow p\} \vdash \neg p \rightarrow \neg q\}$ $(1) p \rightarrow \neg \neg p$ $(2) q \rightarrow p$ $(3) q \rightarrow \neg \neg p$ $(4) \neg \neg q \rightarrow q$ $(5) \neg \neg q \rightarrow \neg \neg p)$ $(6) (\neg \neg q \rightarrow \neg \neg p) \rightarrow (\neg p \rightarrow \neg q)$ $(7) \neg p \rightarrow \neg q$	(L_3) $(1), (2), MP$ 定理 假定 $(1), (2), HS$ 定理 $(3), (4), HS$ (L_3)
$(1) \neg \neg \neg p \rightarrow \neg p$ $(2) (\neg \neg \neg p \rightarrow \neg p) \rightarrow (p \rightarrow \neg \neg p)$ $(3) (p \rightarrow \neg \neg p)$ 然后,由演绎定理,只需证 $\{q \rightarrow p\} \vdash \neg p \rightarrow \neg q\}$ $(1) p \rightarrow \neg \neg p$ $(2) q \rightarrow p$ $(3) q \rightarrow \neg \neg p$ $(4) \neg \neg q \rightarrow q$ $(5) \neg \neg q \rightarrow \neg \neg p$ $(6) (\neg \neg q \rightarrow \neg \neg p) \rightarrow (\neg p \rightarrow \neg q)$ $(7) \neg p \rightarrow \neg q$ (8)	(L_3) $(1), (2), MP$ 定理 假定 $(1), (2), HS$ 定理 $(3), (4), HS$ (L_3) $(5), (6), MP$
$(1) \neg \neg \neg p \rightarrow \neg p$ $(2) (\neg \neg p \rightarrow \neg p) \rightarrow (p \rightarrow \neg \neg p)$ $(3) (p \rightarrow \neg \neg p)$ 然后,由演绎定理,只需证 $\{q \rightarrow p\} \vdash \neg p \rightarrow \neg q\}$ $(1) p \rightarrow \neg \neg p$ $(2) q \rightarrow p$ $(3) q \rightarrow \neg p$ $(4) \neg q \rightarrow q$ $(5) \neg q \rightarrow \neg \neg p)$ $(6) (\neg \neg q \rightarrow \neg \neg p) \rightarrow (\neg p \rightarrow \neg q)$ $(7) \neg p \rightarrow \neg q$ (8) 由演绎定理,只需证 $\{(p \rightarrow q) \rightarrow p\} \vdash p$ $(1) \neg p \rightarrow (p \rightarrow q)$ $(2) (p \rightarrow q) \rightarrow p$	(L_3) $(1), (2), MP$ 定理 假定 $(1), (2), HS$ 定理 $(3), (4), HS$ (L_3) $(5), (6), MP$
(1) $\neg \neg \neg p \rightarrow \neg p$ (2) $(\neg \neg p \rightarrow \neg p) \rightarrow (p \rightarrow \neg \neg p)$ (3) $(p \rightarrow \neg \neg p)$ 然后,由演绎定理,只需证 $\{q \rightarrow p\} \vdash \neg p \rightarrow \neg q\}$ (1) $p \rightarrow \neg \neg p$ (2) $q \rightarrow p$ (3) $q \rightarrow \neg \neg p$ (4) $\neg q \rightarrow q$ (5) $\neg q \rightarrow \neg \neg p$ (6) $(\neg q \rightarrow \neg \neg p) \rightarrow (\neg p \rightarrow \neg q)$ (7) $\neg p \rightarrow \neg q$ 3° 由演绎定理,只需证 $\{(p \rightarrow q) \rightarrow p\} \vdash p$ (1) $\neg p \rightarrow (p \rightarrow q)$ (2) $(p \rightarrow q) \rightarrow p$ (3) $\neg p \rightarrow p$ (4) $(\neg p \rightarrow p) \rightarrow p$	定理 假定 (1),(2), HS 定理 (3),(4), HS

假定

 $(1) \neg \neg p$

练习5

2°

由演绎定理,只需证 $\{\neg\ p \to q,\ \neg\ q\} \vdash p$

- $(1) \neg p$
- $(2) \lnot p \to q$
- (3) q
- $(4)\ \neg q$

由(3)(4)用反证律即得 $\{\neg\ p o q,\ \neg\ q\} \vdash p$

 3°

由演绎定理,只需证 $\{\neg\;(p o q)\} \vdash \neg\; q$

- (1) q
- $(2) \; q \to (p \to q)$
- $(3)~p \rightarrow q$
- $(4) \ \neg (p \to q)$

由(3)(4)用归谬律即得 $\{\neg\ (p \rightarrow q)\} \vdash \neg\ q$

新假定 假定

(1),(2),*MP* 假定

> 新假定 假定

(1),(2),*MP* 假定