

NTNU

REPORT

Norwegian University of Science and Technology

Faculty of Information Technology, Mathematics and Electrical Engineering Department of Engineering Cybernetics

Report number	
	-

Classification

ISBN

Address: NTNU

Department of Engineering Cybernetics

O.S. Bragstads plass 2D

NO-7491 TRONDHEIM, NORWAY

Switchboard: +47 73 59 40 00 Telephone: +47 73 59 43 76

Fax: +47 73 59 43 99

Report title	Date
Functional Requirements Specification for the NTNU Revolute Wrist Device (NRWD)	Number of pages 10
v0.3	Project supervisor Øyvind Stavdahl
Author (s)	Project no.
Øyvind Stavdahl, Inge Brattbakken	TBC; Spør Tove
Sponsoring Organization	Client's reference
NTNU	

Abstract

This document specifies the functional requirements for the initial version of the NTNU Revolute Wrist Device (NRWD).

The specification is intended to provide the necessary basis for developing a technical requirements specifications with respect to mechanical, electrical and algorithmic properties.

TBC

Keywords

TBC	

Contents

1. Background	4
2. Revision History	4
3. Conventions	4
3.1 Abbreviations etc	4
3.2 Document Structure	4
4. System Description	4
4.1 Context and Purpose	4
4.2 Configurations	5
5. Functional Requirements	6
5.1 General requirements	6
5.2 Wrist Joint Function, WJF	8
5.3 Wrist Motor Function, WMF	8
5.4 Wrist Servo Function, WSF	9
5.5 Wrist Communication Function, WCF	10
5.6 Wrist Power Function, WPF	11
5.7 Proximal Attachment Function, PAF	12
5.8 Distal Attachment Function, DAF	12
Bibliography	14

List of Figures

Figur 1 System context5	;
Figur 2 The two different equipment configurations6	;

1. Background

The functionally optimal 1-DOF wrist prosthesis kinematics was theoretically derived in (Stavdahl, 2002). Now one aims at implementing a physical device based on these principles. The current document constitutes a functional specification for this device, which covers not only the kinematics but even mechanical, electrical, electronic and algorithmic aspects.

2. Revision History

When	Who	What
2005.02.08	Ø.Stavdahl	Brief revisions for FPGA-based version.
		Several requirements and commentsclarified and typos fixed. This
		relates to: GEN-08, WJF-01, WJF-02, WJF-03, WSF-01-03, WSF-03, WCF-
		02, WCF-03, WCF-04, WCF-04-01, WCF-05, WCF-09, WCF-10, WPF-02,
		WPF-03,
		Circuit board geometry included.
Spring 2010	Inge Brattbakken	Revised specifications regarding communication. This relates to WCF-02 and WCF-03.
		Also removed requirements no longer relevant. Those beeing: WCF-04,
		WCF-04-01, WCF-04-02, WCF-06, WCF-08 and WCF-09.

3. Conventions

3.1 Abbreviations etc

The following conventions apply to this document:

NA Not Applicable; irrelevant

HW HardwareSW Software

TBC To Be Completed; an aspect that has to be filled in.

TBD To Be Defined; an aspect that is still not completely defined.

Use of the word *shall* denotes requirements that must be met by the system, while the word *should* denotes requirements that are desirable and must be met unless justification is provided for an alternative.

3.2 Document Structure

TBC.

4. System Description

4.1 Context and Purpose

The "system" referred to here is the entire wrist prosthesis, including both mechanical, electrical/electronic and

software components. The primary purpose of the system is to rotate/orient the terminal device with respect to the forearm according to user input. Figur 1gives an overview of the system and its context.

Figur 1 System context

The proximal electronics includes a battery pack or another electric power source, as well as digital circuits with sensors for reading the user's motor intent (typically EMG electrodes, switches, "pressure pads" or the like) and communication of this intent to the joint controllers in the prosthesis. While the figure suggests that the proximal electronics is situated in the forearm, this needs not be the case; in the case of a total arm replacement the prosthesis may comprise motorized shoulder, elbow, wrist and/or finger functions, and the arm electronics may correspondingly be distributed in the different parts of the arm. The "Proximal electronics" box Figur 1 thus represents all the electronics proximal to the wrist, while the "Distal electronics" represents any or all electronic components distal to the wrist, such as a motor controller responsible for opening and closing of the hand.

4.2 Configurations

The system is applicable to several different equipment configurations, as indicated in Figure 2. These configurations

include the following, listed in the order of relevance and only the first two being absolutely necessary to implement:

- 1. A completely digital mode where all intercomponent communication is based on a data bus. This mode is for use with other novel systems that support the same communication protocol.
- 2. A hybrid mode where the proximal communication (i.e. between the wrist and proximal electronics) is analog while the distal communication is digital. This is for using a novel hand in systems based on analog electrodes and the like.

Proximal electronics Distal electronics

Figur 2 The two different equipment configurations

5. Functional Requirements

5.1 General requirements

The NRWD system shall implement the following functions and satisfy the following requirements.

Req. no.	Description	Comments
GEN-01	A joint which implements the	
	optimal kinematics described in	
	(Stavdahl, 2002)	
	– Wrist Joint Function, WJF.	
GEN-02	An electric motor which drives the	
	movement of the joint via a gear	
	train	
	– Wrist Motor Function, WMF.	
GEN-03	A motor control interface and	
	regulation process to control the	
	movements of the WJF.	
	– Wrist Servo Function, WSF.	
GEN-04	A communication function that	"Other connected systems" typically
	interfaces with WSF and other	include proximal and distal joint
	connected systems	controllers, as well as units for
	– Wrist Communication Function,	system diagnosis and configuration.
	WCF.	
GEN-05	A power adaptation function that	Compliance with commercial and
	enables the system to run from a	research systems.
	variety of voltage levels	
	 Wrist Power Function, WPF. 	

GEN-06	A mechanism for attachment of the wrist to the forearm socket. – Proximal Attachment Function, PAF.	
GEN-06-01	The PAF shall be disconnectable and, when disconnected, allow entry to the space proximal to the wrist.	For maintenance and replacement of forearm electronics.
GEN-07	A mechanism for attachment of the wrist to the terminal device – Distal Attachment Function, DAF.	
GEN-08	An outer geometry that crudely resembles that of an adult wrist – Wrist Geometry Function, WGF.	No component shall extend beyond the envelope of a normal wrist, which has an elliptic crosssectional area of approx. 5 cm x 4 cm. All parts and connectors must be kept small.
GEN-08-01	The longitudinal dimension (along the forearm) of the entire NRWD should be as short as possible, and shall not exceed 65 mm.	Allows longer residual limbs to use it, i.e. "larger market". 65 mm is Bock spec.
GEN-09	The system should consume a minimum of energy, and the current conspumtion shall be kept below 2A at all times.	When motor is active, its output dictates a lower bound for the power consumption. This requirement just implies that unnecessary circuits should be turned off, and active use should be made of the controller's various sleep modes.
GEN-10	The system shall be modular with respect to both HW and SW.	
GEN-11	The weight of the entire NRWD should not exceed 100 g.	Industrial components: Otto Bock: 96 g, VASI:100 g.

Figur 3 depicts the functions and their dependencies.

Figur 3 Functional block diagram

5.2 Wrist Joint Function, WJF

The following requirements are derived from GEN-01.

Req. no.	Description	Comments
WJF-01	The NRWD joint shall be a single,	Derived from (specific version of)
	simple revolute joint which axis of	GEN-01.
	rotation can be placed at an attitude	Note a typographical error in Eqn.
	with respect to the forearm and	(7.5); last element of vector should
	terminal device as spedcified in	read "-0.23" instead of "0.23".
	(Stavdahl, 2002) Equations (7.4) and	
	(7.5).	
WJF-02	The joint axis should be manually	In order to test other axis
	adjustable to other attitudes than	alignments. Note that adjustability
	that specified in WJF-01.	wrt. forearm AND hand requires
		TWO adjustable functions!
WJF-03	The joint shall enable an angular	180 deg is crudely that of a healthy
	excursion of at least 180 degrees.	limb.
	The excursion should be unlimited.	

5.3 Wrist Motor Function, WMF

The following requirements are derived from GEN-02.

The following requirements are derived from GEN 62.		
Req. no.	Description	Comments
WMF-01	The wrist joint (output of the gear	Otto Bock spec.
	train) shall have a maximum angular	No-load speed

	velocity of at least 1.4 rad/s (81	
	deg/s). The maximum velocity	
	should be as high as possible.	
WMF-02	The wrist joint should have a	VASI spec.
	maximum torque of at least 34,3	Stall torque
	mNm.	
WMF-03	The motor shall have a maximum	
	mechanical output power of at least	
	TBC W.	
WMF-04	The motor shall be protected from	
	overheating. The protection should	
	be implemented by hardware.	

5.4 Wrist Servo Function, WSF

The following requirements are derived from GEN-03.

Req. no.	Description	Comments
WSF-01	The movements of the wrist joint	
	shall be controllable according to	
	the follwing modes:	
	1. On/Off-mode	
	2. Position mode.	
	3. Velocity mode	
WSF-01-01	In On/Off-mode the motor shall be	Requires only transistor bridge.
	at rest or run at maximum speed	
	(open-loop) in one direction	
	according to a given setpoint.	
WSF-01-02	In position mode the joint angle	
	shall be proportional to a given	
	angular setpoint.	
WSF-01-02-01	The WSF shall include an absolute	
	position sensor. This sensor shall	
	provide no less than 10 bits	
	resolution per revolution.	
WSF-01-03	In velocity mode the joint angular	"Crudely proportional" implies that
	velocity shall be crudely	there is no explicit need for velocity
	proportional to a given velocity	feedback, the speed may be
	setpoint.	controlled in open-loop.
WSF-01-03-01	The WSF shall include a velocity	If brushless motor: use Hall
	sensor or estimator.	elements for speed estimates.
WSF-02	The movements of the wrist joint	
	should be controllable according to	
	the follwing modes:	
	4. Torque mode	
	5. Impedance mode	
WSF-02-04	In torque mode the motor torque	Torque crudely proportional with
	shall be proportional to a given	motor current, so current can be
	torque setpoint.	used for feedback.

WSF-02-04-01	The WSF should include means for	Also follows from GEN-09.
	monitoring motor current.	
WSF-02-05	In impedance mode the mechanical	Mech. Impedance = torque/velocity.
	impedance of the joint shall be	May require strain gauge
	determined by a given impedance	measurements etc. to "bypass"
	setpoint.	friction.
WSF-03	WSF shall provide an interface to	Typically: Setpoints in, process
	WCF through which the modes	values out. The precise content of
	(described in WFS-01 to WSF-02)	this communication will be defined
	can be selected and relevant	by a protocol sepcification (SCIP)
	parameters can be set, and through	TBD.
	which WSF can report relevant state	
	variables TBD.	

5.5 Wrist Communication Function, WCF

The following requirements are derived from GEN-04.

Req. no.	Description	Comments
WCF-01	The NRWD shall have a two-wire	
	Proximal Communication Interface	
	(PCI) and a twowire Distal	
	Communication Interface (DCI).	
WCF-02	The PCI shall be configurable so that	The 7.2V spec is approximate. For
	it implements two (0V, 7,2V) analog	protocol, see comment re. WSF-03.
	input lines or a bidirectional two-	
	wire CAN interface with the UNB	
	protocol(Losier,2009).	
WCF-02-01	The analog input lines shall be able	EMG signals have a bandwidth of
	to sample both lines at a rate of 1	approx. 500Hz.
	kHz. The sampling rate should be as	
	high as 2 kHz.	
WCF-03	The DCI shall be configurable so	The 7.2V spec is approximate; it
	that it implements two (0 V, 7.2 V)	may be acceptable to reduce this to
	analog output lines or a	5.0V.
	bidirectional two-wire CAN interface	
	with the UNB-protocol.	
WCF-05	The WCF shall be configurable to an	Only a single CAN interface is
	alldigital mode, with the PCI and the	necessary, as both PCI and DCI can
	DCI acting as bidirectional CAN bus	be internally connected to this
	interfaces.	single interface.
WCF-07	The WCF should be configurable to	
	a hybrid mode in which the PCI acts	
	as two analog input lines while DCI	
	acts as a bidirectional CAN-interface	
	(cf. WCF-01).	
WCF-10	The WCF shall include a serial	Same fashion as AVR Butterfly serial
	interface for downloading software	programming. This requires a
	and for debugging/diagnostic	bootloader. Might include RS-232
	purposes.	and/or other proper interfaces.
WCF-08	WCF shall implement an interface to	

WSF according to WSF-U3.

5.6 Wrist Power Function, WPF

The following requirements are derived from GEN-05.

Req. no.	Description	Comments
WPF-01	The WPF shall accept external power in the form of an unregulated two-wire DC supply.	Implies on-board voltage regulation.
WPF-02	The NRWD shall tolerate and run normally when powered with a voltage in the range (6 V, 12 V). The range of usable voltages should be as wide as (5 V, 18 V).	This corresponds to Otto Bock, Motion Control and other systems. Upper limit possibly to be relaxed (lowered).
WPF-03	The NRWD shall tolerate supply voltage in the range (0 V, 12 V) without exhibiting unpredictable behaviour and without getting damaged.	E.g. shutting down the controller before the voltage gets dangerously low, may otherwise damage Flash and EEPROM content etc. See comments to WPF-02.
WPF-04	The NRWD should automatically limit its motor current to a level that does not reduce the supply voltage below the interval given in WPF-02.	Low batteries => careful motor control to avoid power-down.

5.7 Proximal Attachment Function, PAF

The following requirements are derived from GEN-06 and more.

Req. no.	Description	Comments
PAF-01	The PAF shall comprise two parts,	A commercially available "quick
	the proximal of which is adapted to	disconnect" unit may be used, but
	be permanently attached to the	the entire mechanism must be kept
	forearm socket and the distal	as short as possible.
	permanently attached to the wrist	
	unit. The parts must "mate" to form	
	a mechanically stable connection	
	while also being detachable.	
PAF-01-01	The proximal part of the PAF shall	Batteries and electrodes etc. is
	be hollow to allow access to the	mounted here, so an opening must
	space within the socket proximally	be present to allow maintenance
	to the wrist.	and replacement of these units.
PAF-02	PAF disconnection should be	
	possible with hand or a simple tool,	
	e.g. a screwdriver.	
PAF-03	The PAF shall include a four-wire	GEN-04 and GEN-05. Preferably a
	electric coupling, preferably	"quick disconnect" type, optionally
	mechanically integrated with the	loose wires and a manually
	PAF itself.	detachable coupling/plug.
PAF-03-01	The PAF electrical coupling shall	This is the current for the wrist AND
	include at least two power supply	the terminal device.
	wires/contacts capable of	
	transferring a constant current of 4A	
	per wire.	
PAF-03-02	The PAF electrical coupling should	Brush rings etc.
	be rotatable without twisting the	This requirement and DAF-02-02 are
	wires.	mutually exclusive; both are not
		needed!

5.8 Distal Attachment Function, DAF

The following requirements are derived from GEN-07 and more.

Req. no.	Description	Comments
DAF-01	The DAF should comprise two parts,	The distal part may be a function of
	the proximal of which is	the terminal device, e.g. a Bock
	permanently attached to the wrist	hand. No "quick disconnect"
	and the distal permanently attached	required here!
	to the terminal device. The parts	
	must "mate" to form a mechanically	
	stable connection while also being	
	detachable.	
DAF-02	The DAF shall include a four-wire	GEN-04 and GEN-05. Preferably a
	electric coupling, preferably	"quick disconnect" type, optionally
	mechanically integrated with the	loose wires and a manually

	DAF itself.	detachable coupling/plug.
DAF-02-01	The DAF electrical coupling shall	This is the current that drives the
	include at least two wires/contacts	terminal device. Check with Otto
	capable of transferring a constant	Bock (=1 A?); higher currents
	current of 2 A per wire, and these	needed for more
	wires shall be connected to the	advanced/multifunction hands.
	power supply wires from PAF.	
DAF-02-02	The DAF electrical coupling should	Brush rings etc.
	be rotatable without twisting the	This requirement and PAF-03-02 are
	wires.	mutually exclusive; both are not
		needed!

Bibliography

Losier, Yves. 2009. *Communication protocol for the AIF UNB hand project.* University of New Brunswick. 2009.

Stavdahl, Øivind. 2002. Optimal wrist prosthesis kinematics: Three-dimensional rotation statistics and parameter estimation. Department of Engineering Cybernetics, Norwegian University of Science and Technology. 2002. PhD Thesis.

Stavdahl, Øyvind. 2002. Functional Requirements Specification. 2002.