CLIPPERS UNIT-2

Series clippers: these are of two types

- 1. Clipping above the reference level
- 2. Clipping below the reference level

Clipping above the reference level:

Circuit diagram is shown below,

Consider diode is an ideal one.

Here
$$V_D = V_i - V_R$$

If $V_i > V_R$, V_D =positive value so diode is in OFF state,

Then
$$V_O = V_R$$

Here the input waveform above the reference level (V_R) has been clipped means positive peak(negative base)of the input signal is clipped.

It is a plot of output voltage as a function of input voltage.

If $V_i > V_R$, Then $V_0 = V_R$ so slope of transfer characteristics curve is zero(since output is independent of input).

If $V_i < V_R$, Then $V_0 = V_i$ so slope of transfer characteristics curve is one.

Circuit diagram is shown below

Consider diode is an ideal one.

Here
$$V_D = V_i - V_R$$

If $V_i > V_R$, V_D =positive value so diode is in ON state,

Then
$$V_0 = V_i$$

If $V_i < V_R$, V_D =negative value so diode is in ON state, Then $V_O = V_R$

Here the input waveform below the reference level (V_R) has been clipped means negative peak(negative base)of the input signal is clipped.

CLIPPERS UNIT-2

Transfer characteristics:

It is a plot of output voltage as a function of input voltage.

If $V_i > V_R$, Then $V_0 = V_i$ so slope of transfer characteristics curve is one

If $V_i < V_R$, Then $V_O = V_R$ so slope of transfer characteristics curve is zero.

Clipping at two independent levels (two level slicer):

Circuit diagram is shown below,

Assume diodes are ideal.

Here
$$V_{D1} = V_i - V_{R1}$$

And
$$V_{D2} = V_i - V_{R2}$$

(assume $V_{R2} > V_{R1}$)

If $V_i > V_{R2}$, V_{D1} is positive(D1 is OFF) & V_{D2} is also positive(D2 is ON), so $V_O = V_{R2}$

If $V_i < V_{R1}$, V_{D1} is negative(D1 is ON) & V_{D2} is also negative(D2 is OFF), so $V_O = V_{R1}$

If $V_{R1} < V_{i} < V_{R2}$, V_{D1} is positive(D1 is OFF) & V_{D2} is negative(D2 is OFF),

so
$$V_0 = V_i$$

Transfer characteristics:

It is a plot of output voltage as a function of input voltage.

If $V_i > V_{R2}$, Then $V_0 = V_{R2}$ so slope of transfer characteristics curve is zero

If $V_i < V_{R1}$, Then $V_O = V_{R1}$ so slope of transfer characteristics curve is zero.

K.Chiranjeevi, Asst. Prof, ECE Dept, GMRIT

CLIPPERS UNIT-2

If $V_{R1} \! < \! V_{i} \! < \! V_{R2}$, Then $V_{O} \! = \! V_{I}$ so slope of transfer characteristics curve is one.

