Matrix Algebra

02 February 2020 16:32

(1)
$$A + (B + C) = (A + B) + C$$

(2)
$$A + O = A = O + A$$

(3)
$$A + (-A) = O = (-A) + A$$

(4)
$$A + B = B + A$$

(5)
$$(\lambda + \mu)A = \lambda A + \mu A$$

(6)
$$\lambda(A+B) = \lambda A + \lambda B$$

(7)
$$\lambda(\mu A) = (\lambda \mu)A$$
.

Identity matrix

The identity matrix of order n is the $n \times n$ diagonal matrix whose diagonal elements are all 1. It is denoted by I or In.

The identity matrix is like the number 1 in normal numbers.

Transpose.

The transpose AT of a matrix A is obtained by interchanging the rows and columns. Thus if $A = [aij]m \times n$ then AT = [a 0 ij]n×m where a 0 ij = aji. For example, if

$$(1) \quad (A^T)^T = A$$

(1)
$$(A + B)^T = A^T + B^T$$
 when $A + B$ exists
(3) $(\lambda A)^T = \lambda A^T$ for any $\lambda \in \mathbb{R}$
(4) $(AB)^T = B^T A^T$ when AB exists.

$$(3) (\lambda A)^T = \lambda A^T$$

$$(A)$$
 $(AB)^T = B^T A^T$

Matrix Inverse

If A and B are square matrices of the same order, then B is called the inverse of A if AB = I = BA It can be shown that if A has an inverse, then that inverse is unique. It will be denoted by A^-1 The determinant of a 2×2 matrix A = |a|b, c|d | is defined to be the number ad – bc and is denoted by det(A), |A|

Now if a 2×2 matrix A has an inverse, then det(A) det(A-1) = det(AA-1) = det(I) = 1 which means that det(A) 6= 0. Conversely if det(A) 6= 0 then it is easy to verify that A has an inverse

A 2 × 2 matrix
$$A$$
 is invertible if and only if its determinant is nonzero. If $\det(A) \neq 0$ and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then
$$A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$