Contents

1	Introduction				
	1.1	Goals	of the Book and Contours of its Method	3	
		1.1.1	Stepwise refinable abstract operational modeling	3	
		1.1.2	Abstract virtual machine notation	5	
		1.1.3	Practical benefits	6	
		1.1.4	Harness pseudo-code by abstraction and refinement	8	
		1.1.5	Adding abstraction and rigor to UML models	9	
	1.2	Synop	osis of the Book	10	
2	\mathbf{AS}	M Des	sign and Analysis Method	13	
	2.1	Princi	iples of Hierarchical System Design	13	
		2.1.1	Ground Model Construction (Requirements Capture).	16	
		2.1.2	Stepwise Refinement (Incremental Design)	20	
		2.1.3	Integration into Software Practice	26	
	2.2	Work	ing Definition	26	
		2.2.1	Basic ASMs	27	
		2.2.2	Definition	28	
		2.2.3	Classification of Locations and Updates	33	
		2.2.4	ASM Modules	36	
		2.2.5	Illustration by Small Examples	37	
		2.2.6	Control State ASMs	44	
		2.2.7	Exercises	52	
	2.3	Expla	nation by Example: Correct Lift Control	54	
		2.3.1	Exercises	62	
	2.4	Detail	led Definition (Math. Foundation)	62	
		2.4.1	Abstract States and Update Sets	63	
		2.4.2	Mathematical Logic	67	
		2.4.3	Transition Rules and Runs of ASMs	71	
		2.4.4	The Reserve of ASMs	76	
		2.4.5	Exercises	82	
	2.5	Notat	ional Conventions	85	

3	Bas	sic ASMs		
	3.1	Requirements Capture by Ground Models		
		3.1.1 Fundamental Questions to be Asked		
		3.1.2 Illustration by Small Use Case Models		
		3.1.3 Exercises	109	
	3.2	Incremental Design by Refinements		
		3.2.1 Refinement Scheme and its Specializations		
		3.2.2 Two Refinement Verification Case Studies		
		3.2.3 Decomposing Refinement Verifications	133	
		3.2.4 Exercises		
	3.3	Microprocessor Design Case Study		
		3.3.1 Ground Model DLX ^{seq}		
		3.3.2 Parallel Model DLX^{par} Resolving Structural Hazards .	140	
		3.3.3 Verifying Resolution of Structural Hazards (DLX^{par}).	143	
		3.3.3 Verifying Resolution of Structural Hazards (DLX^{par}). 3.3.4 Resolving Data Hazards (Refinement DLX^{data})	148	
		3.3.5 Exercises	156	
4	Str	uctured ASMs (Composition Techniques)	159	
	4.1	Turbo ASMs (seq, iterate, submachines, recursion)	160	
		4.1.1 Seq and Iterate (Structured Programming)	160	
		4.1.2 Submachines and Recursion (Encapsulation and Hiding)	167	
		4.1.3 Analysis of Turbo ASM Steps	174	
		4.1.4 Exercises	178	
	4.2	Abstract State Processes (Interleaving)	180	
5	Synchronous Multi-Agent ASMs			
	5.1	Robot Controller Case Study	188	
		5.1.1 Production Cell Ground Model	188	
		5.1.2 Refinement of the Production Cell Component ASMs .	193	
		5.1.3 Exercises	196	
	5.2	Real-Time Controller (Railroad Crossing Case Study)		
		5.2.1 Real-Time Process Control Systems	198	
		5.2.2 Railroad Crossing Case Study	201	
		5.2.3 Exercises	205	
6	Asy	ynchronous Multi-Agent ASMs	207	
	6.1	Async ASMs: Definition and Network Examples	208	
		6.1.1 Mutual Exclusion	210	
		6.1.2 Master–Slave Agreement	212	
		6.1.3 Network Consensus	214	
		6.1.4 Load Balance	215	
		6.1.5 Leader Election and Shortest Path	216	
		6.1.6 Broadcast Acknowledgment (Echo)	218	
		6.1.7 Phase Synchronization		
		6.1.8 Routing Layer Protocol for Mobile Ad Hoc Networks .	223	

		6.1.9	Exercises	228
	6.2	0	dded System Case Study	
	0.2	6.2.1	Light Control Ground Model	
		6.2.2	Signature (Agents and Their State)	
		6.2.3	User Interaction (Manual Control)	
		6.2.4	Automatic Control	
		6.2.5	Failure and Service	
		6.2.6	Component Structure	
		6.2.7	Exercises	
	6.3	Time-	Constrained Async ASMs	
		6.3.1	Kermit Case Study (Alternating Bit/Sliding Window)	
		6.3.2	Processor-Group-Membership Protocol Case Study	
		6.3.3	Exercises	
	6.4	Async	ASMs with Durative Actions	. 260
		6.4.1	Protocol Verification using Atomic Actions	. 261
		6.4.2	Refining Atomic to Durative Actions	. 268
		6.4.3	Exercises	. 271
	6.5	Event-	-Driven ASMs	. 271
		6.5.1	UML Diagrams for Dynamics	. 274
		6.5.2	Exercises	. 282
7	TT 5	1	Design and Commutation Madel	000
1	7.1		Design and Computation Model	
	1.1	7.1.1	Classical Computation Models	
		7.1.1	System Design Models	
		7.1.2	Exercises	
	7.2		ntial ASM Thesis (A Proof from Postulates)	
	1.2	7.2.1	Gurevich's Postulates for Sequential Algorithms	
		7.2.1 $7.2.2$	Bounded-Choice Non-Determinism	
		7.2.2 $7.2.3$	Critical Terms for ASMs	
		7.2.4	Exercises	
		1.2.1	Exercises	. 011
8	Too		oort for ASMs	
	8.1	Verific	eation of ASMs	
8		8.1.1	Logic for ASMs	
		8.1.2	Formalizing the Consistency of ASMs	
		8.1.3	Basic Axioms and Proof Rules of the Logic	
		8.1.4	Why Deterministic Transition Rules?	
		8.1.5	Completeness for Hierarchical ASMs	
		8.1.6	The Henkin Model Construction	
		8.1.7	An Extension with Explicit Step Information	
		8.1.8	Exercises	
	8.2		Checking of ASMs	
	8.3	Execut	tion of ASMs	. 340

X Contents

9	Hist	tory and Survey of ASM Research	343
	9.1	The Idea of Sharpening Turing's Thesis	
	9.2	Recognizing the Practical Relevance of ASMs	
	9.3	Testing the Practicability of ASMs	
		9.3.1 Architecture Design and Virtual Machines	349
		9.3.2 Protocols	351
		9.3.3 Why use ASMs for Hw/Sw Engineering?	352
	9.4	Making ASMs Fit for their Industrial Deployment	354
		9.4.1 Practical Case Studies	354
		9.4.2 Industrial Pilot Projects and Further Applications 3	356
		9.4.3 Tool Integration	362
	9.5	Conclusion and Outlook	365
Ref	eren	.ces	369
Itei	eren		103
List	t of l	Problems	129
List	t of l	Figures	131
List	of '	Tables	133
Ind	ex	4	135