Mat 10364, Mathématiques de l'ingénieur II : examen II, 5/04/02

- Durée de l'examen : deux heures.
- Documentation permise : deux feuilles-résumé.
- Vous êtes priés de vous identifier (nom et numéro matricule) sur le cahier et de placer votre carte d'étudiant sur la table à côté de vous.
- Chaque réponse devra être accompagnée des calculs détaillés.
 Dans le cas contraire, elle sera considérée comme nulle.

n° 1 (20pts) Pour chacun des trois champs suivants, dire s'il est potentiel (=conservatif) et, le cas échéant, calculer le potentiel associé.

(a)
$$\vec{v}_1 = (zy - y, xz + y, xy + 1)$$
.

(b)
$$\vec{v}_2 = (zy - y, xz + x, xy + 1)$$

(c)
$$\vec{v}_3 = (zy - y, xz - x, xy + 1)$$
.

 $\mathbf{n}^{\mathbf{o}}$ 2 (20 pts) On note C la courbe paramétrée

$$\vec{r}(t) = (\cos t, \sqrt{3}\sin t, \sqrt{2}\cos t), \ t \in [0, \pi].$$

C coupe le plan P d'équation $\sqrt{3}x - y = 0$ en un point \vec{r}_0 .

(a) Montrer que

$$\vec{r_0} = \vec{r}(\frac{\pi}{4}).$$

(b) Déterminer (à π près) l'angle que fait la tangente à C avec la normale à P au point $\vec{r_0}$.

 ${f n^o}$ 3 (20 pts) Une éolienne expérimentale prend la forme indiquée à la figure 1.

figure 1.

La portion C_1 de l'éolienne a pour équation

$$\vec{r}(t) = (0, \sqrt{3}(t - t^3), 3(1 - t^2)), \ t \in [0, 1],$$

alors que la portion C_2 est le symétrique de C_1 par rapport à Oz.

(a) Montrer que l'élément de longueur sur la courbe C_1 s'écrit en termes du paramètre t comme suit

$$ds = \sqrt{3}(1+3t^2)\,dt.$$

Note : On rappelle que $a^2 + b^2 + 2ab = (a + b)^2$.

(b) Calculer la composante \bar{z} du centre de gravité sous l'hypothèse que le matériau est homogène.

 $\mathbf{n^o}$ 4 (20 pts) On note \vec{v} le champ défini par

$$\vec{v} = (x - y, ye^{z-1}, z - 1)$$

et par C la courbe fermée constituée des portions C_1 et C_2 définies par

$$C_1: \vec{r_1}(t) = (-\cos t, 1, 1 + \sin t), \quad t \in [0, \pi]$$

$$C_2: \quad \vec{r}_2(s) = (s, 2 - s^2, 1), \quad s \in [-1, 1]$$

- (a) Calculer le travail de \vec{v} le long de C.
- (b) Le champ \vec{v} est-il conservatif? Justifier.

 $\mathbf{n}^{\mathbf{o}}$ 5 (20pts) On considère la surface S paramétrée

$$ec{r}(u,v) = (v\cos u, v\sin u, v^2), \quad (u,v) \in [0,2\pi] \times [0, \P].$$

- (a) Trouver un vecteur normal à S au point $\vec{r}(\frac{\pi}{4}, \sqrt{2})$.
- (b) Trouver une représentation paramétrique du plan tangent en ce point.
- (c) Montrer que, sur S, l'élément d'aire s'écrit

$$dA = v\sqrt{4v^2 + 1} \, du \, dv.$$

(d) Calculer l'aire de de S.