

UWO CHEM 1302

Winter 2025, Chapter 4 Notes

Table of Contents

Chapter 4. Enthalpy

- 4.I. Chapter Intro
- **4.1. Introduction to Enthalpy Calculations**
- 4.1.1. Enthalpy of Reaction
- 4.1.2. Example
- 4.2. Hess' Law Method
- 4.2.1. Hess' Law
- 4.2.2. Practice
- 4.2.3. Practice [challenging]
- 4.3. Average Bond Enthalpy Method
- 4.3.1. Bond Energies
- 4.3.2. Example
- 4.3.3. Practice

4.1 Introduction to Enthalpy Calculations

4.1.1

Enthalpy of Reaction (ΔH^orxn)

Enthalpy (H): is a measure of the energy associated with breaking or forming bonds

•	Breaking bonds (requires/releases) energy		
	O Therefore, this is (endothermic/exothermic)		
	*Think: you need to be strong to break bonds!		
•	Forming bonds (requires/releases) energy		
	 Therefore, this is (endothermic/exothermic) 		
	• *Think: bonds want to form if they are stable and lower in energy!		

WIZE	CONC	EDT
44 I Z E	CON	.EFI

In summary: breaking bonds requires energy & forming bonds releases energy!

We will soon look at the different ways to calculate ΔH^{o} rxn:

The Heats of Formation Method ($\Delta H^{o}f$)

Average Bond Enthalpy Method (BDE)

Hess' Law of Formation Method

Example: Calculating Enthalpy of a Reaction

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(l) \quad \Delta H \text{=-}572kJ/mol$$

1. How much heat is produced when 72g of water gas is produced?

2. Is the reaction endothermic or exothermic?

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(l) \quad \Delta H \text{=-}572kJ/mol$$

3. We are told that $O_2(g)$ is the limiting reagent of this reaction. How many moles of $O_2(g)$ are used if the reaction releases 286kJ of heat?

4.2 Hess' Law Method

4.2.1

Hess' Law

If a reaction is carried out in a series of steps, ΔH for the overall reaction can be found from the sum of the enthalpy changes of the individual steps.

This is because enthalpy (H) is a state function and when it changes, it does not depend on the pathway taken!

$$\Delta H_{rxn} = \Delta H_1 + \Delta H_2 + \Delta H_3 + ...$$

Example:

What is the ΔH for the reaction?

$$CO(g) + \frac{1}{2}O_2(g) \to CO_2(g)$$

$$C(s) + O_2(g) \rightarrow CO_2(g) \Delta H = -393.5 \text{ kJ}$$

$$2C(s) + O_2(g) \rightarrow 2CO(g) \Delta H = -221.1 \text{ kJ}$$

WIZE CONCEPT

The two things you need to remember for this method are:

- 1) Whenever we want to look at a reaction in reverse, we must multiply ΔH by -1
- 2) Whenever we want to multiply a reaction by a coefficient, we must multiply the ΔH of that step by that same coefficient!

Practice: Calculating the Enthalpy of a Reaction Using Hess' Law

What is the Δ Hrxn for the following reaction?

$$2C_2H_6(g) + 7O_2(g) --> 4CO_2(g) + 6H_2O(g)$$

1) 2C +
$$3H_2$$
 --> C_2H_6 ΔH =-84.68kJ

2) C +
$$O_2$$
 --> CO_2 ΔH =-394kJ

3)
$$H_2 + 1/2O_2 --> H_2O \Delta H=-286kJ$$

-3200 kJ	0
-3000 kJ	0
-1800 kJ	0
1400 kJ	0

4.2.3

Given that the $\Delta_f H^0$ of ozone ${
m O}_{3(g)}$ is $142.67~kJ~mol^{-1}$ and the reaction shown below, calculate the enthalpy for the unknown reaction

106 kJ/mol	0
196 kJ/mol	0
344 kJ/mol	0
426 kJ/mol	0

4.3 Average Bond Enthalpy Method

4.3.1

Bond Energies

Enthalpy (H) is the energy stored in bonds.

Bond dissociation energy (BDE) is the energy needed to break a chemical bond.

$$\Delta H_{rxn} = \left[\left(\sum n H_{bonds\ broken}
ight) - \left(\sum n H_{bonds\ formed}
ight)
ight]$$

Or (an easier way to think about it):

$$\Delta Hrxn = [(\sum nBDE_{reactants}) - [(\sum nBDE_{products})]$$

 $\Delta H_{rxn}={}$ enthalpy change for the reaction (kJ/mol) BDE = bond energy per mole of bonds (kJ/mol), always positive

$\Delta Hrxn = [(\sum nBDE_{reactants}) - [(\sum nBDE_{products})]$

	Bond Energies (kJ/mol)				
Bond	Bond Energy	Bond	Bond Energy	Bond	Bond Energy
Н-Н	436	C-S	260	F-CI	255
H-C	415	C-CI	330	F-Br	235
H-N	390	C–Br	275	Si-Si	230
H-O	464	C-I	240	Si-P	215
H-F	569	N-N	160	Si-S	225
H-Si	395	N = N	418	Si-Cl	359
H-P	320	$N \equiv N$	946	Si–Br	290
H-S	340	N-O	200	Si-I	215
H-CI	432	N-F	270	P-P	215
H-Br	370	N-P	210	P-S	230
H-I	295	N-CI	200	P-CI	330
C-C	345	N-Br	245	P-Br	270
$\mathbf{C} = \mathbf{C}$	611	0-0	140	P-I	215
$\mathbf{C} \equiv \mathbf{C}$	837	O = O	498	S-S	215

Photo by Rice University / CC BY

4.3.2

Example: Using Bond Dissociation Energies to Calculate Enthalpy of a Reaction

What is $\Delta Hrxn$ for the following reaction?

$$2H_2(g)+O_2(g) o 2H_2O(g)$$

Bond	Bond Energy (kJ/mol)
H-H	436
O=O	499
О-Н	463

Practice: Calculating the Enthalpy of a Reaction Using Bond Energies

Use the table of average bond energies to calculate the ΔH for the following reaction:

$$H-C\equiv C-H\to H_2C=CH_2$$

$\underline{\text{Bond}}$	$\rm Bond\ Energy\ (kJ/mol)$
$\mathrm{H}-\mathrm{H}$	432
H - C	413
H - I	295
I - I	149
$\mathrm{C}-\mathrm{I}$	240
C - C	347
C = C	614
$C \equiv C$	839

A) -601 kJ	0
B) +601 kJ	0
C) -323 kJ	0
D) +323 kJ	0)