Codici ciclici

Codici ciclici - Definizione

▶ Dato il vettore $\mathbf{v} = [v_0, v_1, \dots, v_{n-1}] \in \mathcal{V} = \mathsf{GF}(2)^n$ indichiamo con $\mathbf{v}^{(i)}$ il vettore ottenuto da \mathbf{v} applicando uno shift ciclico di i posizioni a destra

$$\mathbf{v}^{(i)} = [v_{n-i}, v_{n-i+1}, \dots, v_{n-1}, v_0, v_1, \dots, v_{n-i-1}]$$

▶ Un codice lineare C(k, n) si definisce *ciclico* se data una generica parola di codice $\mathbf{x} \in C(k, n)$ ogni suo shift ciclico $\mathbf{x}^{(i)}$ è ancora una parola di codice, $\mathbf{x}^{(i)} \in C(k, n)$.

Codici ciclici - Esempi

- $ightharpoonup \mathcal{C}(2,3) = \{000, 110, 101, 011\}$
- $ightharpoonup C(2,4) = \{0000, 1010, 0101, 1111\}$
- ▶ II codice C(4,7)

Message	Code vector	Polynomial
(0000)	0000000	$0 = 0 \cdot g(D)$
(1000)	1101000	$1 + D + D^3 = 1 \cdot g(D)$
(0100)	0110100	$D + D^2 + D^4 = D \cdot g(D)$
(1100)	1011100	$1 + D^2 + D^3 + D^4 = (1+D) \cdot g(D)$
(0010)	0011010	$D^2 + D^3 + D^5 = D^2 \cdot g(D)$
(1010)	1110010	$1 + D + D^2 + D^5 = (1 + D^2) \cdot g(D)$
(0110)	0101110	$D + D^3 + D^4 + D^5 = (D + D^2) \cdot g(D)$
(1110)	1000110	$1 + D^4 + D^5 = (1 + D + D^2) \cdot g(D)$
(0001)	0001101	$D^3 + D^4 + D^6 = D^3 \cdot g(D)$
(1001)	1100101	$1 + D + D^4 + D^6 = (1 + D^3) \cdot g(D)$
(0101)	0111001	$D + D^2 + D^3 + D^6 = (D + D^3) \cdot g(D)$
(1101)	1010001	$1 + D^2 + D^6 = (1 + D + D^3) \cdot g(D)$
(0011)	0010111	$D^2 + D^4 + D^5 + D^6 = (D^2 + D^3) \cdot g(D)$
(1011)	1111111	$1 + D + D^2 + D^3 + D^4 + D^5 + D^6 = (1 + D^2 + D^3) \cdot g(D)$
(1111)	1001011	$1 + D^3 + D^5 + D^6 = (1 + D + D^2 + D^3) \cdot g(D)$

Rappresentazione algebrica di un codice ciclico

A ciascun vettore $\mathbf{v} = [v_0, v_1, \dots, v_{n-1}] \in \mathcal{V}$ è possibile associare un polinomio definito in GF(2),

$$v(D) = v_0 + v_1 D + \cdots + v_{n-1} D^{n-1},$$

 $\mathbf{v} \leftrightarrow v(D).$

- ▶ *Definizione*. Se $x(D) \leftrightarrow \mathbf{x} \in \mathcal{C}(k, n) \implies$ si dice che x(D) è in $\mathcal{C}(k, n)$.
- Proprietà. Uno shift ciclico di i posizioni del vettore ${\bf v}$ è equivalente a moltiplicare il polinomio v(D) per D^i modulo (D^n-1)

$$\mathbf{v}^{(i)} \leftrightarrow \mod \{D^i v(D), (D^n - 1)\}.$$

Rappresentazione algebrica di un codice ciclico

Ad esempio, fissando i = 1, il polinomio diventa

$$Dv(D) = v_0 D + v_1 D^2 + \dots + v_{n-1} D^n$$

$$= v_{n-1} + v_0 D + v_1 D^2 + \dots + v_{n-2} D^{n-1} + v_{n-1} D^n - v_{n-1}$$

$$= v_{n-1} + v_0 D + v_1 D^2 + \dots + v_{n-2} D^{n-1} + v_{n-1} (D^n - 1)$$

In questo caso si ha

$$\mod \{Dv(D), (D^n-1)\} = v_{n-1} + v_0 D + v_1 D^2 + \dots + v_{n-2} D^{n-1} \leftrightarrow \mathbf{v}^{(1)}$$

Analogamente, si può mostrare che

$$D^{i}v(D) = q(D)(D^{n}-1) + v_{n-i} + v_{n-i+1}D + \cdots + v_{n-i-1}D^{n-1},$$

e quindi

$$\mod \{D^i v(D), (D^n - 1)\} \leftrightarrow \mathbf{v}^{(i)}$$

Rappresentazione algebrica di un codice ciclico

Terorema. Sia $g(D) = g_0 + g_1D + \cdots + g_rD^r$ il polinomio di grado minimo associato ad una parola del codice ciclico $C(k, n) \Longrightarrow a$ $g_0 = 1$, e b) g(D) è unico. Dimostrazione.

a) Supponiamo *per assurdo* che $g_0 = 0 \implies$

$$g(D) = g_1 D + g_2 D^2 + \dots + g_r D^r$$

= $D (g_1 + g_2 D + \dots + g_r D^{r-1}) = Dg'(D)$

ma questo contraddice le ipotesi poiché C(k, n) è ciclico e quindi g'(D) è in C(k, n) ma il grado di g'(D) è minore di r. Un ragionamento simile si può fare per $g_r = 0$.

b) Supponiamo che esistano *due* polinomi di grado minimo $g_1(D)$ e $g_2(D)$ in $C(k,n) \Longrightarrow g_3(D) = g_1(D) - g_2(D)$ è ancora in C(k,n) e per quanto visto nella parte a) il grado di $g_3(D)$ sarebbe minore di r. Impossibile.

Polinomio generatore di un codice ciclico

Definizione. Il polinomio generatore di un codice ciclico C(k, n) è il polinomio

$$g(D)=1+g_1D+\cdots+D^r,$$

non nullo e di grado minimo in C(k, n).

Codici ciclici - Esempi

$$ightharpoonup C(2,3) = \{000, 110, 101, 011\} \implies g(D) = 1 + D$$

$$ightharpoonup \mathcal{C}(2,4) = \{0000, 1010, 0101, 1111\} \implies g(D) = 1 + D^2$$

► II codice $C(4,7) \implies g(D) = 1 + D + D^3$

Message	Code vector	Polynomial
(0000)	0000000	$0 = 0 \cdot g(D)$
(1000)	1101000	$1 + D + D^3 = 1 \cdot g(D)$
(0100)	0110100	$D + D^2 + D^4 = D \cdot g(D)$
(1100)	1011100	$1 + D^2 + D^3 + D^4 = (1+D) \cdot g(D)$
(0010)	0011010	$D^2 + D^3 + D^5 = D^2 \cdot g(D)$
(1010)	1110010	$1 + D + D^2 + D^5 = (1 + D^2) \cdot g(D)$
(0110)	0101110	$D + D^3 + D^4 + D^5 = (D + D^2) \cdot g(D)$
(1110)	1000110	$1 + D^4 + D^5 = (1 + D + D^2) \cdot g(D)$
(0001)	0001101	$D^3 + D^4 + D^6 = D^3 \cdot g(D)$
(1001)	1100101	$1 + D + D^4 + D^6 = (1 + D^3) \cdot g(D)$
(0101)	0111001	$D + D^2 + D^3 + D^6 = (D + D^3) \cdot g(D)$
(1101)	1010001	$1 + D^2 + D^6 = (1 + D + D^3) \cdot g(D)$
(0011)	0010111	$D^2 + D^4 + D^5 + D^6 = (D^2 + D^3) \cdot g(D)$
(1011)	1111111	$1 + D + D^2 + D^3 + D^4 + D^5 + D^6 = (1 + D^2 + D^3) \cdot g(D)$
(1111)	1001011	$1 + D^3 + D^5 + D^6 = (1 + D + D^2 + D^3) \cdot g(D)$

Polinomio generatore di un codice ciclico

Teorema. Un polinomio x(D) è in $C(k, n) \iff x(D)$ è un multiplo di g(D).

Dimostrazione.

- a) Ogni multiplo di g(D) è in C(k, n). Poiché C(k, n) è ciclico i polinomi $Dg(D), D^2g(D), \ldots, D^{n-r-1}g(D)$ sono in C(k, n) e lo è anche qualsiasi loro combinazione lineare $x(D) = u(D)g(D) = u_0g(D) + u_1Dg(D) + \cdots + u_{n-r-1}D^{n-r-1}g(D)$.
- b) Ogni polinomio in C(k, n) può essere espresso come multiplo di g(D). Per assurdo assumiamo che x(D) sia in C(k, n) ma non un multiplo di $g(D) \Longrightarrow x(D) = a(D)g(D) + b(D)$, b(D) = x(D) a(D)g(D). Poichè sia x(D) che a(D)g(D) sono in C(k, n), per la linearità del codice anche b(D) è in C(k, n) ma questo è impossibile perché b(D), essendo il resto alla divisione di x(D) per g(D), è di grado minore di g(D).

Polinomio generatore di un codice ciclico

Corollario 1. L'insieme degli n-r polinomi

$$\{g(D), Dg(D), D^2g(D), \dots, D^{n-r-1}g(D)\}\$$

costituisce una base per C(k, n).

Corollario 2. Se il polinomio generatore g(D) del codice $\mathcal{C}(k,n)$ ha grado $r \Longrightarrow$ il numero di parole del codice è 2^{n-r} e r=n-k. Dimostrazione. Tutte le possibili combinazioni in GF(2) degli n-r polinomi che costituiscono una base per $\mathcal{C}(k,n)$ sono 2^{n-r} e quindi le parole di codice sono $2^{n-r} \Longrightarrow k=n-r$ e r=n-k. Corollario 3. Il grado del polinomio generatore g(D) del codice $\mathcal{C}(k,n)$ è uguale al numero di bit di controllo di parità.

Teorema fondamentale generatore di un codice ciclico

Teorema. Un polinomio g(D) è generatore di un codice ciclico $\mathcal{C}(k,n) \iff g(D)$ è un divisore di D^n-1 . Dimostrazione.

a) Il polinomio g(D) è generatore di $C(k, n) \implies g(D)$ è un divisore di $D^n - 1$.

Poiché g(D) è di grado n - k, si ha che

$$D^k g(D) = (D^n - 1) + g^{(k)}(D),$$

da cui

$$(D^n-1) = D^k g(D) - g^{(k)}(D) = (D^k - a(D)) g(D)$$

Teorema fondamentale generatore di un codice ciclico

b) Se il polinomio g(D) di grado n-k è un divisore di $D^n-1 \implies g(D)$ è generatore di un codice ciclico $\mathcal{C}(k,n)$. Qualsiasi polinomio della forma

$$x(D) = u_0 g(D) + u_1 D g(D) + \dots + u_{k-1} D^{k-1} g(D) = u(D) g(D)$$

ha grado pari o inferiore a n-1 ed è un multiplo di g(D). Poichè u(D) può assumere 2^k valori \Longrightarrow l'insieme dei 2^k vettori forma un codice lineare C(k, n).

Sia
$$v(D) = v_0 + v_1 D + \cdots + v_{n-1} D^{n-1} = a(D)g(D)$$
 in $C(k, n) \Longrightarrow$

$$Dv(D) = v_0 D + v_1 D^2 + \dots + v_{n-1} D^n$$

$$= v_{n-1} (D^n - 1) + (v_{n-1} + v_0 D + \dots + v_{n-2} D^{n-1})$$

$$= v_{n-1} (D^n - 1) + v^{(1)} (D)$$

Poichè g(D) è divisore di D^n-1 (per ipotesi) e di Dv(D)=Da(D)g(D) anche $v^{(1)}(D)$ è un multiplo di g(D) $\Longrightarrow \mathcal{C}(k,n)$ è ciclico.

Divisione tra polinomi in GF(2) - Esempi

 $ightharpoonup \mathcal{C}(2,3) = \{000,110,101,011\} \implies g(D) = 1 + D.$

$$(D^3-1)/(1+D)=D^2+D+1.$$

- $\mathcal{C}(2,4) = \{0000, 1010, 0101, 1111\} \implies g(D) = 1 + D^2$ $(D^4 - 1)/(1 + D^2) = D^2 + 1.$
- ► II codice $C(4,7) \implies g(D) = 1 + D + D^3$ $(D^7 1)/(1 + D + D^3) = D^4 + D^2 + D + 1.$
- ▶ Il polinomio $D^6 1$ può essere fattorizzato in molte maniere diverse. Ad ogni fattore corrisponde un polinomio generatore g(D) diverso e quindi un codice ciclico diverso.

$$(D^6-1)=(1+D^2)^2(1+D+D^2)^2.$$

Matrice generatrice di un codice ciclico

Dato il codice ciclico C(k, n) con polinomio generatore g(D), dal momento che l'insieme dei polinomi

$$\{g(D), Dg(D), D^2g(D), \dots, D^{k-1}g(D)\}\$$

costituisce una base per il codice, la matrice generatrice del codice è

$$\mathbf{G} = \begin{bmatrix} g_0 & g_1 & \dots & g_{n-k} & 0 & \dots & 0 \\ 0 & g_0 & g_1 & \dots & g_{n-k} & \dots & 0 \\ \vdots & & & & & & \vdots \\ 0 & \dots & 0 & g_0 & g_1 & \dots & g_{n-k} \end{bmatrix}$$

Considerato che $g_0 = 1$, le righe possono essere sommate tra loro per ottenere la matrice generatrice del codice equivalente in forma sistematica.

Controllo di parità per un codice ciclico

Dato il codice ciclico C(k, n) con polinomio generatore g(D), esiste sempre un polinomio $h(D) = h_0 + h_1D + \cdots + h(k)D^k$ tale che

$$h(D) = (D^{n} - 1)/g(D) \implies g(D)h(D) = D^{n} - 1.$$

Sia
$$x(D) = u(D)g(D)$$
 in $C(k, n) \Longrightarrow$

$$v(D) = x(D)h(D) = u(D)g(D)h(D)$$

= $u(D)(D^{n} - 1) = D^{n}u(D) - u(D)$.

Poiché u(D) è un polinomio di grado massimo k-1 e $D^n u(D)$ è di grado minimo n, sappiamo per certo che, se x(D) è in C(k, n), gli n-k coefficienti con indici $k, k+1, \ldots, n-1$ del polinomio v(D) devono essere 0.

Controllo di parità per un codice ciclico

Poiché è v(D) = x(D)h(D), il coefficiente m-esimo del polinomio v(D) si ottiene come la somma di tutti i coefficienti che moltiplicano D^m

$$v_m = x_0 h_m + x_1 h_{m-1} + \cdots + x_m h_0 = \sum_{j=0}^{n-1} x(j) h(m-j).$$

ightharpoonup Abbiamo un set di n-k equazioni del tipo

$$v_m = \sum_{j=0}^{n-1} x(j)h(m-j) = 0, \quad m = k, k+1, \ldots, n-1.$$

Controllo di parità per un codice ciclico

ightharpoonup Le n-k equazioni possono essere riassunte in forma matriciale

$$\mathbf{x}\mathbf{H}^T = \mathbf{0}_{n-k}$$
.

dove la matrice \mathbf{H} , di dimensioni $(n - k) \times n$, è la matrice di controllo di parità del codice ciclico C(k, n).

$$\mathbf{H}^{T} = \begin{bmatrix} h_{k} & h_{k-1} & \dots & h_{0} & 0 & \dots & 0 \\ 0 & h_{k} & h_{k-1} & \dots & h_{0} & \dots & 0 \\ \vdots & & & & & \vdots \\ 0 & \dots & 0 & h_{k} & h_{k-1} & \dots & h_{0} \end{bmatrix}$$

La sindrome può essere calcolata come

$$s = yH^T$$

Esempio di calcolo di matrice generatrice e di controllo di parità

Dato il codice ciclico C(k = 4, n = 7) con polinomio generatore $g(D) = 1 + D + D^3$, la matrice generatrice è

ed in forma sistematica diventa

Esempio di calcolo di matrice generatrice e di controllo di parità

Dato il codice ciclico C(k = 4, n = 7) con polinomio generatore $g(D) = 1 + D + D^3$, il vettore $h(D) = (D^n - 1)/g(D) = 1 + D + D^2 + D^4$. I coefficienti del polinomio sono $h_0 = 1, h_1 = 1, h_2 = 1, h_3 = 0, h_4 = 1$ e la matrice di controllo di parità è

ed in forma sistematica diventa

Metodo alternativo per il calcolo della sindrome

La sindrome associata alla matrice di controllo di parità sistematica si può calcolare usando un metodo alternativo. Al ricevitore si ha

$$\mathbf{y} = \mathbf{x} + \mathbf{e} \implies y(D) = x(D) + e(D)$$

La sindrome di **y** può essere calcolata come il resto della divisione tra polinomi $y(D)/g(D) \implies y(D) = a(D)g(D) + s(D)$.

Metodo alternativo per il calcolo della sindrome

Poiché il grado di s(D) è *minore* del grado di g(D), il grado massimo di s(D) è n-k-1.

▶ Se è e(D) = 0, il canale non introduce errori ed è

$$s(D) = \text{mod} \{x(D), g(D)\} = \text{mod} \{u(D)g(D), g(D)\} = 0$$

▶ Se è $e(D) \neq 0$, la sindrome è

$$s(D) = \text{mod} \{x(D) + e(D), g(D)\}$$

= $\text{mod} \{x(D), g(D)\} + \text{mod} \{e(D), g(D)\}$
= $\text{mod} \{e(D), g(D)\}$

 \triangleright s(D) corrispone alla sindrome ottenuta con la matrice di controllo di parità in forma sistematica.

Ci sono due metodi possibili per effettuare la decodifica dei codici ciclici:

- 1. Approccio classico codici a blocco: La sindrome s(D) mappa un polinomio di grado n-1 su uno di grado n-k-1. Una volta calcolata la sindrome, si identifica un coset ed il pattern di errore corrisponde al coset leader. *Svantaggio*: la complessità di associare tutti i vettori in \mathcal{V} ad uno specifico coset.
- 2. Sfruttare le proprietà dei codici ciclici per derivare un metodo alternativo.

 $e(D) < n - k \implies s(D) = e(D)$.

Teorema. Dato il codice ciclico $\mathcal{C}(k,n)$ con polinomio generatore g(D) e distanza minima d_{min} , sia s(D) la sindrome associata al vettore ricevuto \mathbf{y} , se $w(s(D)) \leq \lfloor \frac{d_{min}-1}{2} \rfloor \implies \hat{e}(D) = s(D)$. Dimostrazione. Per costruzione s(D) e y(D) sono nello stesso coset $C_y = C_s = \{\mathcal{C} + s(D)\}$, poiché si ha $w(\mathbf{s}) \leq \lfloor \frac{d_{min}-1}{2} \rfloor \implies s(D) \leftrightarrow [\mathbf{s},0\ldots,0]$ è il coset leader e quindi la stima dell'errore. In altre parole, poiché $s(D) = \text{mod } \{e(D),g(D)\}$, se il grado di

Esempio di decodifica per codici ciclici

Sia $\mathbf{x} = [0110100]$ una parola del codice ciclico $\mathcal{C}(4,7)$ con polinomio generatore $g(D) = 1 + D + D^3$.

Sia $\mathbf{e} = [0100000]$ l'errore introdotto dal canale. Il vettore ricevuto è $\mathbf{y} = \mathbf{x} + \mathbf{e} = [0010100] \leftrightarrow y(D) = D^2 + D^4$.

$$s(D) = \text{mod} \{y(D), g(D)\} = D$$

Poichè $w(s(D)) = 1 \implies s(D) = \hat{e}(D) \implies \hat{e} = [0100000].$

ightharpoonup Sia $\mathbf{e} = [0000010]$ l'errore introdotto dal canale. Il vettore ricevuto è

$$\mathbf{y} = \mathbf{x} + \mathbf{e} = [0110110] \leftrightarrow y(D) = D + D^2 + D^4 + D^5.$$

$$s(D) = \text{mod} \{y(D), g(D)\} = D^2 + D + 1$$

Poichè $w(s(D)) = 3 \implies s(D) \neq \hat{e}(D)$ e per trovare l'errore bisogna trovare un altro metodo.

Teorema. Dato il codice ciclico C(k, n), sia s(D) la sindrome del vettore ricevuto $\mathbf{y} \Longrightarrow$ la sindrome $s_1(D)$ della parola $\mathbf{y}^{(1)}$ ottenuta dallo shift di ciclico di \mathbf{y} di una posizione si calcola

$$s_1(D) = \text{mod}\left\{y^{(1)}(D), g(D)\right\} = Ds(D) - s_{n-k-1}g(D)$$

Dimostrazione. Poiché vale la relazione y(D) = u(D)g(D) + s(D), la relazione relativa a $y^{(1)}(D)$ è

$$Dy(D) = Du(D)g(D) + Ds(D)$$

= $(Du(D)g(D) + s_{n-k-1})g(D) + Ds(D) - s_{n-k-1}g(D)$

Poiché il grado massimo di $Ds(D) - s_{n-k-1}g(D)$ è $n-k-1 \implies s_1(D) = Ds(D) - s_{n-k-1}g(D)$ è il resto della divisione di Dy(D) per g(D) ed è quindi è la sindrome di $y^{(1)}(D)$.

Esempio di decodifica per codici ciclici

Sia $\mathbf{x} = [0110100]$ una parola del codice ciclico $\mathcal{C}(4,7)$ con polinomio generatore $g(D) = 1 + D + D^3$ ed $\mathbf{e} = [0000010]$ l'errore introdotto dal canale. Il vettore ricevuto è $\mathbf{y} = \mathbf{x} + \mathbf{e} = [0110110] \leftrightarrow y(D) = D + D^2 + D^4 + D^5$.

$$s(D) = \text{mod} \{y(D), g(D)\} = D^2 + D + 1.$$

Lo shift ciclico di **y** è $\mathbf{v}^{(1)} = [0011011] \leftrightarrow \mathbf{v}^{(1)}(D) = D^2 + D^3 + D^5 + D^6$.

$$s_1(D) = \text{mod}\left\{y^{(1)}(D), g(D)\right\} = D^2 + 1 = D(D^2 + D + 1) - D^3 + D + 1.$$

Lo shift ciclico di $\mathbf{y}^{(1)}$ è $\mathbf{y}^{(2)} = [1001101] \leftrightarrow \mathbf{y}^{(2)}(D) = 1 + D^3 + D^4 + D^6$.

$$s_2(D) = \text{mod}\left\{y^{(2)}(D), g(D)\right\} = 1 = D(D^2 + 1) - D^3 + D + 1.$$

Definizione. Dato un vettore \mathbf{v} di n componenti, una sequenza ciclica di zeri di lunghezza ℓ è una successione di ℓ zeri consecutivi in senso ciclico.

Esempi

- 1. n = 7, $\ell = 3$, $\mathbf{v} = [1000101]$;
- 2. n = 7, $\ell = 4$, $\mathbf{v} = [0010100]$;
- 3. n = 15, $\ell = 9$, $\mathbf{v} = [000000110001000]$

Teorema. Dato il codice ciclico C(k, n), con polinomio generatore g(D) e distanza minima d_{min} , tale che tutti i pattern di errore correggibili abbiano una sequenza ciclica di almeno k zeri, ricevuto il vettore $\mathbf{y} = \mathbf{x} + \mathbf{e}$ con $w(\mathbf{e}) \leq \lfloor \frac{d_{min}-1}{2} \rfloor$, l'algoritmo di decodifica a massima verosimiglianza è composto dai seguenti passi

- 1. Calcolo iterativamente le sindromi di $s_i(D)$ per tutti gli shift ciclici di y(D) e computo $w(s_i(D))$;
- 2. Trovo m per cui $w(s_m(D)) \leq \lfloor \frac{d_{min}-1}{2} \rfloor$;
- 3. Stimo $\hat{e}(D) = \text{mod } \{D^{n-m}s_m(D), D^{n-1}\}.$

Dimostrazione.

- 1. Esistenza di m. Poichè $w(\mathbf{e}) \leq \lfloor \frac{d_{min}-1}{2} \rfloor$ e tutti i pattern di errore correggibili hanno una sequenza ciclica di almeno k zeri, esiste uno shift ciclico di m posizioni di \mathbf{y} tale che tutti gli 1 di \mathbf{e} siano compresi nelle prime n-k posizioni di $\mathbf{y}^m \implies s_{m(D)} = e^{(m)}(D)$.
- 2. Stima dell'errore

$$D^{m}(y(D) + D^{n-m}s_{m}(D)) = D^{m}y(D) + D^{n}s_{m}(D)$$

$$= y^{(m)}(D) + D^{n}s_{m}(D)$$

$$= u(D)g(D) + s_{m}(D) + D^{n}s_{m}(D)$$

$$= u(D)g(D) + (D^{n} - 1)s_{m}(D)$$

$$= (u(D) + h(D)s_{m}(D))g(D).$$