MATH 453 HW 10

Name: Changyu Wu

CWID: A20337986

1. Sec 4.2 #1

(a) Let F_n denote the number of such:

When n=0, there's 1 such subset, which is $\{\emptyset\}$, thus, $F_0=1$

When n=1, there are 2 such subsets, they are $\{\emptyset\}$ and $\{1\}$, thus, $F_1=2$

When $n \ge 2$, conditioning on whether n is in the subsets:

- (1) If n is not in the subsets, then there are n-1 numbers left that we can form the subsets from, we know that there are F_{n-1} such subsets
- (2) If n is in the subsets, since no two consecutive integers are allowed, the number n-1 cannot be in the subsets, hence, we have n-2 numbers left to form the subsets from, therefore, there are F_{n-2} ways to do so

Hence, when $n \ge 2$, there are $F_n = F_{n-1} + F_{n-2}$ such subsets

Thus, the number of subsets of [n] that do not contain consecutive integers are:

$$F_n = \begin{cases} 1 & n = 0 \\ 2 & n = 1 \\ F_{n-1} + F_{n-2} & n \ge 2 \end{cases}$$

(b) Let F_n denote the number of such binary numbers:

When n = 0, there's 1 such binary, thus, $F_0 = 1$,

When n = 1, there are 2 such binary numbers, they are 0 and 1, thus, $F_1 = 2$,

When $n \ge 2$, conditioning on whether the binary number ends with 0:

- (1) If the binary number ends with 0, then the $(n-1)^{th}$ digit cannot be 0, so, there are F_{n-2} such binary numbers
- (2) If the binary number doesn't end with 0 (ends with 1), then there are F_{n-1} such binary numbers

Hence, when $n \ge 2$, there are $F_n = F_{n-1} + F_{n-2}$ such subsets

Thus, the number of n- digit binary numbers that do not contain adjacent 0's is:

$$F_n = \begin{cases} 1 & n = 0 \\ 2 & n = 1 \\ F_{n-1} + F_{n-2} & n \ge 2 \end{cases}$$

(c) Let F_n denote the number of ways to climb a flight in this fashion:

When n=0, there's 1 way to climb a flight, do nothing, thus, $F_0=1$

When n = 1, there's 1 way to climb a flight, thus, $F_1 = 1$

When $n \ge 2$, conditioning on how to reach the n^{th} stair:

- (1) Reach the n^{th} stair directly from the $(n-2)^{th}$ stair, then there are F_{n-2} ways to climb the first n-2 stairs
- (2) Reach the n^{th} stair from the $(n-1)^{th}$ stair, then there are F_{n-1} ways to climb the first n-1 stairs

Hence, when $n \ge 2$, there are $F_n = F_{n-1} + F_{n-2}$ ways to climb a flight

Thus, the number of ways to climb a flight of n stairs is:

$$F_n = \begin{cases} 1 & n = 0 \\ 1 & n = 1 \\ F_{n-1} + F_{n-2} & n \ge 2 \end{cases}$$

2. Sec 4.2 #2

Conditioning on the number of 2-tiles at the end of the tiling:

(1) When n is even, let F_{2i} , $0 \le i \le \frac{n}{2}$, denote the number of ways to tile the board:

When i = 0, meaning there's 0 2-tile at the end, which means it ends with a 1-tile, therefore, there are F_{2i-1} ways to tile the remaining 2i boards

When i = 1, meaning there's 1 2-tile at the end, which means the third last board is a 1-tile, there are F_{2i-3} ways to tile the remaining 2i-2 boards

When i = 2, meaning there are 2 2-tiles at the end, which means the fifth last board is a 1-tile, there are F_{2i-5} ways to tile the remaining 2i-4 boards

When $i=\frac{n}{2}$, meaning there are $\frac{n}{2}$ 2-tiles, there are $F_0=1$ ways to tile the remaining 0 board

Therefore, in total, there are $1+F_1+F_3+\cdots+F_{2i-1}$ ways to tile the board (2) When n is odd, let F_{2i+1} , $0 \le i \le \frac{n-1}{2}$, denote the number of ways to tile the board: When i = 0, meaning there's 0 2-tile at the end, since 2i + 1 is an odd number, at

least 1 1-tile will be used, therefore, there are 2i boards left with F_{2i} ways to tile

When i = 1, meaning there's 1 2-tile, similarly, there are F_{2i-2} ways to tile the remaining 2i - 1 boards

When i=2, meaning there are 2 2-tiles, there are F_{2i-4} ways to tile the remaining 2i - 3 boards

When $i = \frac{n-1}{2}$, meaning there are $\frac{n-1}{2}$ 2-tiles, there are F_0 ways to tile the remaining 1 board

Therefore, in total, there are $F_{2i} + F_{2i-2} + F_{2i-4} + \cdots + F_0$ ways to tile the board

To sum up, we use 2n + 1 and 2n to denote odd number of boards and even number of boards, thus, there are $F_{2n} = 1 + \sum_{k=0}^{n-1} F_{2k+1}$ or $F_{2n+1} = \sum_{k=0}^{n} F_{2k}$ ways to tile the entire board, depending on the number of boards

3. Sec 4.2 #10

- (b) Conditioning on whether the first square is alone by itself (covered by a 1-tile), or covered by a 2-tile with another square (square 2 or square n):
 - (1) If it is alone by itself, then there are n-1 squares left with β_{n-1} ways to tile them
 - (2) If it is not alone by itself, then there are n-2 squares left with eta_{n-2} ways to tile them

Therefore, in total, there are $\beta_n = \beta_{n-1} + \beta_{n-2}$ ways to tile the *n*-bracelets

We define $\beta_0 = 2$, because there are 2 different 0-bracelet, closed and open, we define $\beta_1 = 1$, because there's only 1 way to tile a 1-bracelet as it cannot be closed

(c) Answer 1: Since $L_0=2$, $L_1=1$ and $F_0=F_1=1$, $L_2=L_0+L_1>F_2=F_0+F_1$, therefore, $L_3=L_1+L_2>F_3=F_1+F_2$... $L_n=L_{n-2}+L_{n-1}>F_n=F_{n-2}+F_{n-1}$ because one of L_{n-2} and L_{n-1} is bigger than both F_{n-2} and F_{n-1} , and the other is at least equal, only when n=1, $L_1=F_1$ thus, $L_n\geq F_n$ for all $n\geq 0$

Answer 2: $Lucas\ number$ is the number of ways to tile a n-bracelet, which is circular, the head and tail can be connect, while $Fibonacci\ number$ is the number of ways to tile a n-board, whose head and tail cannot to connect, therefore, for all $n \geq 2$, the number of ways to tile a circular n-bracelet is more than the number of ways to tile a n-board. When n=0, $L_0=2$ and $F_0=1$, when n=1, $L_1=F_1=1$, therefore, for all $n \geq 0$, $L_n \geq F_n$

4. Sec 4.2 #11

How many ways are there to tile a *n*-bracelet?

Answer 1: There are L_n ways

Answer 2: Conditioning on whether the bracelet is closed:

- (1) The bracelet is open. Then the question is equivalent to tiling a n-board, which has F_n ways of doing so
- (2) The bracelet is closed. Then the first and the n^{th} bracelets are covered by a 2-tile, which leaves us n-2 bracelets to tile, and there are F_{n-2} ways of doing so

Therefore, there are in total F_n+F_{n-2} ways to tile a n-bracelet. Thus, $L_n=F_n+F_{n-2}$

5. Sec 4.3 #1

$$3x^{4} = 3S(4,0)(x)_{0} + 3S(4,1)(x)_{1} + 3S(4,2)(x)_{2} + 3S(4,3)(x)_{3} + 3S(4,4)(x)_{4}$$

$$= 3(x)_{1} + 21(x)_{2} + 18(x)_{3} + 3(x)_{4}$$

$$-x^{3} = -(x)_{1} - 3(x)_{2} - (x)_{3}$$

$$4x = 4(x)_{1}$$
Therefore, $3x^{4} - x^{3} + 4x + 10 = 6(x)_{1} + 18(x)_{2} + 17(x)_{3} + 3(x)_{4}$

6. Sec 4.3 #2

$$3(x)_4 = 3x(x-1)(x-2)(x-3)$$

$$-12(x)_3 = -12x(x-1)(x-2)$$

$$4(x)_1 = 4x$$
Therefore, $3(x)_4 - 12(x)_3 + 4(x)_1 - 17 = 3x^4 - 30x^3 + 69x^2 - 38x - 17$

7. Sec 4.3 #6

Since
$$(x)^{(n)} = x(x+1)(x+2) \dots (x+n-1), (-1)^n(x)^{(n)} = (-1)^n x(x+1)(x+2) \dots (x+n-1),$$
 and $(-x)_n = (-x)(-x-1)(-x-2) \dots (-x-n+1) = (-1)^n (x+1)(x+2) \dots (x+n-1),$ Therefore, for any $n \ge 0$, $(-x)_n = (-1)^n (x)^{(n)}$

8. Sec 4.3 #7

Since

$$s(n,k) = (-1)^{n+k}c(n,k)$$

Multiply both sides by x^k and we get:

$$s(n,k)x^{k} = (-1)^{n+k}c(n,k)x^{k}$$

then sum over all $k \geq 0$:

$$\sum_{k>0} s(n,k)x^k = \sum_{k>0} (-1)^{n+k} c(n,k)x^k$$

we know that

$$\sum_{k\geq 0} s(n,k)x^k = (x)_n$$

therefore

$$\sum_{k>0} (-1)^{n+k} c(n,k) x^k = (x)_n$$

Replace x with -x and we get:

$$\sum_{k>0} (-1)^{n+k} c(n,k) (-x)^k = (-x)_n$$

The left-hand side equals:

$$\sum_{k>0} (-1)^{n+k} c(n,k) (-1)^k (x)^k = \sum_{k>0} (-1)^{n+2k} c(n,k) (x)^k = \sum_{k>0} (-1)^n c(n,k) (x)^k$$

Because 2k is an even number, it wouldn't have effect on the sign of the equation

Therefore, we get:

$$\sum_{k \ge 0} (-1)^n c(n, k)(x)^k = (-x)_n$$

In the previous question, we proved that

$$(-x)_n = (-1)^n (x)^{(n)}$$

Therefore

$$\sum_{k>0} (-1)^n c(n,k)(x)^k = (-1)^n (x)^{(n)}$$

Cancel the constant $(-1)^n$ on both sides and eventually, we get:

$$\sum_{k \ge 0} c(n, k)(x)^k = (x)^{(n)}$$

9. Sec 4.3 #8

Using the Binomial Theorem, we know that

$$(1+x)^n = \sum_{k>0} \binom{n}{k} x^k$$

And Theorem 4.3.4 tells us that

$$x^k = \sum_{j=0}^k S(k,j)(x)_j$$

Therefore, we get

$$(1+x)^n = \sum_{k\geq 0} \binom{n}{k} \left(\sum_{j=0}^k S(k,j)(x)_j \right) = \sum_{k\geq 0} \sum_{j=0}^k \binom{n}{k} S(k,j)(x)_j$$

Then, we switch the order of summation to get:

$$(1+x)^n = \sum_{j \ge 0} \sum_{k \ge j} \binom{n}{k} S(k,j)(x)_j = \sum_{j \ge 0} (x)_j \sum_{k \ge j} \binom{n}{k} S(k,j)$$

Therefore, the coefficient of $(x)_i$ is:

$$a_k = \sum_{k \ge j} \binom{n}{k} S(k, j)$$