- n elem permutációja, a permutáció inverziószáma. Bástyaelhelyezés, inverzióban álló bástyapárok, determináns, felső háromszögmátrix determinánsa.
 - 1. N elem permutációja

Az $\underline{e}_1,\underline{e}_2,\ldots,\underline{e}_n$ tetsz. sorrendje esetén a vektorok úgy oszthatók csoportokba, hogy a csoportokon belül ciklikus helycsere történik.

Pélo	la:							
1	2	3	4	5	6	7	8	Orbitok: $(\underline{e}_1, \underline{e}_5, \underline{e}_3)$,
<u>e</u> ₃	<u>e</u> 8	<u>e</u> 5	<u>e</u> ₇	<u>e</u> 1	<u>e</u> 6	<u>e</u> 2	<u>e</u> ₄	$(\underline{e}_8, \underline{e}_2, \underline{e}_7, \underline{e}_4), (\underline{e}_6)$

Megf: Ez a csoportokra osztás egyértelmű.

Def: A fenti csoportok a sorrendhez tartozó permutáció orbitjai. **Megf:** Az $\underline{e}_1, \underline{e}_2, \dots, \underline{e}_n$ vektorok tetszőleges sorrendjén egy cserét elvégezve az orbitok száma pontosan 1-gyel változik.

Ugyanez igaz a páros méretű orbitok számára is.

Köv: Az $\underline{e}_1, \underline{e}_2, \dots, \underline{e}_n$ vektorok tetsz. sorrendjére ekvivalensek:

- (1) a sorrend ps sok cserével kapható $(\underline{e}_1, \underline{e}_2, \dots, \underline{e}_n)$ -ből,
- (2) a sorrend orbitjai számának paritása megegyezik n paritásával,
- (3) a sorrend páros méretű orbitjainak száma páros.

Bármelyik teljesül a fentiek közül, akkor a megfelelő hiperkocka térfogata pozitív.

Biz: Az $\underline{e}_1, \underline{e}_2, \dots, \underline{e}_n$ sorrendnek n orbitja van, és ezekből a páros méretűek száma 0.

Megj: Hagyományosan egy harmadik módszert használunk az előjel meghatározására.

2. A permutáció inverziószáma

Def: Az $f: A \rightarrow B$ függvény bijekció, ha minden B-beli elem pontosan egy A-beli képeként áll elő.

Def: A $\sigma:\{1,2,\ldots,n\} \to \{1,2,\ldots,n\}$ bijekciót n elem permutációjának nevezzük. Az ilyen permutációk halmaza S_n . Megf: Az $\underline{e}_1,\underline{e}_2,\ldots,\underline{e}_n$ vektorok tetsz. sorrendjéhez tartozik egy egyértelmű σ permutáció, amelyre $\sigma(i)=j$, ha e_i j-dik a sorban.

Def: A $\sigma \in S_n$ permutációban az $\{i,j\}$ pár inverzióban áll, ha i és j nagyságviszonya fordított $\sigma(i)$ és $\sigma(j)$ nagyságviszonyához képest. A $\sigma \in S_n$ permutáció $I(\sigma)$ -val jelölt inverziószáma a σ szerint inverzióban álló párok száma.

Megf: (1) Szomsz. vektorok cseréjekor $I(\sigma)$ 1-gyel változik. (2) Két tetsz. vektor cseréjekor $I(\sigma)$ mindig páratlannal változik. Biz: (1) A két felcserélt vektor viszonya megfordul, minden más pár ugyanolyan marad, mint korábban volt.

Biz: (2) Ha a felcserélt vektorok között k másik vektor van, akkor ugyanez a csere megkapható 2k+1 szomszédos vektorpár cseréjének egymásutánjaként. Az inverziószám így (2k+1)-szer változik 1-gyel, ezért összességében páratlannal változik.

Köv: Az egységvektorok egy sorrendjéhez tartozó σ permutáció inverziószáma pontosan akkor páros, ha ez a sorrend páros sok vektorcserével kapható az $(\underline{e}_1,\ldots,\underline{e}_n)$ sorrendből. Köv: A σ permutációhoz tartozó hiperkocka térfogatának előjele $(-1)^{I(\sigma)}$. Hogyan határozható meg gyorsan ez az előjel?

3. Bástyaelhelyezés

Az $(\underline{e}_1,\ldots,\underline{e}_n)$ tetsz. sorrendjéhez tekintsük azt az $n\times n$ méretű mátrixot, aminek az oszlopai az egységvektorok az adott sorrendben. A mátrixbeli 1-esek bástyaelhelyezést alkotnak: minden sorban és minden oszlopban pontosan egy db 1-es áll. Legyen σ a sorrendhez tartozó permutáció. Mit jelent, hogy az $\{i,j\}$ pár σ szerint inverzióban áll? Azt, hogy e_i és e_j közül a bal oldaliban az 1-es lejjebb van. Az inverzióban álló vektorpárok tehát pontosan azok, amelyekben az 1-esek ÉK-DNy pozícióban állnak egymáshoz képest. Köv: Az $(\underline{e}_1,\ldots,\underline{e}_n)$ egy sorrendjéhez tartozó σ permutáció inverziószáma megegyezik megfelelő bástyaelhelyezésben ÉK-DNy pozícióban álló bástyapárok számaval.

4 m x 4 m x 4 m x 2 x 4 m x 4 m x

él	d	a					
						0	
			0				
0							
					0		
	0						
				0			
							0
		0					

4. Inverzióban álló bástyapárok

5. Determináns

Def: Az $A \in \mathbb{R}^{n \times n}$ négyzetes mátrix determinánsa det $A = |A| = \sum_{\sigma \in S_n} (-1)^{I(\sigma)} \prod_{i=1}^n a_{i,\sigma(i)}$, ahol $a_{i,j}$ az i-dik sornak j-dik eleme. A $(-1)^{I(\sigma)} \prod_{i=1}^n a_{i,\sigma(i)}$ szorzat a determináns kifejtési tagja. Megj: (1) Az A mátrix determinánsa tehát az A bástya-elhelyezéseihez tartozó szorzatok előjeles összege, ahol az előjel akkor pozitív, ha az ÉK-DNy pozícióban álló bástyapárok száma páros. (2) Csak négyzetes mátrixnak van determinánsa, másfélének nincs. (3) 2×2 -es és 3×3 -as mátrixok esetén a determináns az oszlopok által feszített paralelotop előjeles területe ill. térfogata. Def: Az $A \in \mathbb{R}^{n \times k}$ mátrix transzponáltja az az $A^{\top} \in \mathbb{R}^{k \times n}$ mátrix, aminek az i-dik sor j-dik eleme az A mátrix j-dik sorának i-dik eleme $\forall i, j$.

Tétel: Ha A négyzetes mátrix, akkor $|A| = |A^{T}|$.

Biz: Az A mátrix bármely bástyaelhelyezését meghatározó elemek A^{\top} -ban is bástyaelhelyezést alkotnak. Két bástya pontosan akkor alkot ÉK-DNy párt A-ban, ha A^{\top} -ban is ÉK-DNy-i párt alkotnak. Ezért $\det(A)$ -ban ugyanazokat a kifejtési tagokat (ugyazzal az előjellel) kell összeadni, mint $\det(A^{\top})$ -ban.

Köv: Ha egy tulajdonság általában igaz a determináns oszlopaira, akkor a megfelelő tulajdonság a determináns soraira is teljesül. Megj: Egy $n \times n$ determináns kiszámításához n! kifejtési tagot kell összegezni. Ez rengeteg munka. Gyorsabb módszer adódik, ha megfigyeljük, hogy az ESÁ-ok hogyan változtatják a determinánst. Allítás: Ha $A = (\underline{u}_1, \underline{u}_2, \dots, \underline{u}_n) \in \mathbb{R}^{n \times n}$ és $\underline{v} \in \mathbb{R}^n$, akkor (1) $|\underline{u}_1, \dots, \underline{u}_i + \underline{v}, \dots, \underline{u}_n| = |\underline{u}_1, \dots, \underline{u}_i, \dots, \underline{u}_n| + |\underline{u}_1, \dots, \underline{v}, \dots, \underline{u}_n|$, Biz: A bal oldali determináns minden kifejtési tagjának az i-dik oszlopbeli tényezője a \underline{u}_i és \underline{v} egy koordinátájának összege. Ha felbontjuk a zárójelet, a kifejtési tagból két szorzat lesz. Ezek a szorzatok pedig épp a jobb oldali determinánsok kifejtési tagjái.

```
Allítás: Ha A = (\underline{u}_1, \underline{u}_2, \dots, \underline{u}_n) \in \mathbb{R}^{n \times n} és \underline{v} \in \mathbb{R}^n, akkor (1) |\underline{u}_1, \dots, \underline{u}_i + \underline{v}, \dots, \underline{u}_n| = |\underline{u}_1, \dots, \underline{u}_i, \dots, \underline{u}_n| + |\underline{u}_1, \dots, \underline{v}, \dots, \underline{u}_n|, (2) |\underline{u}_1, \dots, \lambda \underline{u}_i, \dots, \underline{u}_n| = \lambda |\underline{u}_1, \dots, \underline{u}_i, \dots, \underline{u}_n| \ \forall \lambda \in \mathbb{R},
```

- (3) $\underline{u}_i = \underline{0} \Rightarrow |A| = 0$,
- (4) $|\underline{u}_1, \ldots, \underline{u}_i, \ldots, \underline{u}_i, \ldots, \underline{u}_n| = -|\underline{u}_1, \ldots, \underline{u}_i, \ldots, \underline{u}_i, \ldots, \underline{u}_n|$.
- (5) Ha A-nak van két egyforma oszlopa, akkor |A| = 0.

Köv: ESÁ hatása négyzetes A mátrix determinánsára:

- Sort λ-val szorozva a determináns λ-szorosra változik.
- (2) Sorcsere hatására a determináns ellentettjére változik.
- (3) A j-dik sort kicserélve az i-dik és j-dik sor összegére a determináns nem változik.

Def: Az A négyzetes mátrix főátlója az A mindazon elemei, amelyek sor- és oszlopindexe megegyezik.

A determináns kiszámolása ESÁ-okkal

$$\begin{vmatrix} \textbf{P\'elda:} \\ 3 & 0 & 1 & 11 \\ 2 & 2 & 1 & 2 \\ 1 & 0 & 1 & 3 \\ 0 & 1 & 1 & 7 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 0 & 9 \\ 2 & 2 & 1 & 2 \\ 1 & 0 & 1 & 3 \\ 0 & 1 & 1 & 7 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 0 & 9 \\ 2 & 2 & 1 & 2 \\ 1 & 0 & 1 & 3 \\ 0 & 1 & 1 & 7 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 0 & 9 \\ 0 & 6 & 1 & -16 \\ 0 & 2 & 1 & -6 \\ 0 & 1 & 1 & 7 \\ 0 & 0 & 1 & 1 & 7 \\ 0 & 0 & -5 & -58 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 0 & 9 \\ 0 & 1 & 1 & 7 \\ 0 & 0 & -5 & -58 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 0 & 9 \\ 0 & 1 & 1 & 7 \\ 0 & 0 & 1 & 20 \\ 0 & 0 & 0 & 42 \end{vmatrix} = 1 \cdot 1 \cdot 1 \cdot 42 = 42$$

Megj: A determináns kiszámításához képezhetünk LA mátrixot. Ehhez nem kötelező Gauss-eliminációt használni, bármilyen ESÁ-sal dolgozhatunk a cél érdekében. Nem muszáj v1-ket sem gyártani: elég a felső háromszögmátrixig (vagy csupa0 sorig) eljutni. Sőt: mindent, amit a sorokkal megtehetünk, azt hasonló módon az oszlopokkal is elvégezhetjük. Ez néha célszerűbb lehet, mint kizárólag csak ESÁ-ok alkalmazása.

イロトイクトイミトイモト を めなの

6. Felső háromszögmátrix determinánsa

Def: Az A négyzetes mátrix főátlója az A mindazon elemei, amelyek sor- és oszlopindexe megegyezik. Ha A főátlója alatt csak 0-k állnak, akkor A felső háromszögmátrix.

Megf: (1) Minden LA négyzetes mátrix felső háromszögmátrix.

Biz: Ha egy sor v1-e a főátlótól balra van, akkor a felette levő soré is. Az első soré nem ilyen, ezért minden v1 a főátlón vagy attól jobbra áll, így a főátló alatt minden elem 0.