Statistical Models for Bursty Events

Smarak Nayak

July 20, 2016

Table of Contents

Introduction

Motivation

Classical extreme value theory assumes that events happen uniformly.

However this is not always the case, in many systems the events occur in bursts.

Examples include both human-created events and physical phenomena:

- Communication
- Financial Trades
- Network Traffic
- Neuron Firing Sequences
- Seismic Activity

Example Process

Earthquake magnitudes in Vipaka, Vanuatu

Example Process After Thresholding

Earthquakes with magnitude ≥ 5.5 in Vipaka, Vanuatu

Notation

Let $J_1, J_2, ...$ be a sequence of i.i.d. random variables that model the jump sizes (event magnitudes).

Let $W_1, W_2, ...$ be a sequence of i.i.d positive random variables that model the waiting times between the jumps.

We can then define $(W_1, J_1), (W_2, J_2), \dots$ to be a sequence of i.i.d $\mathbb{R} \times \mathbb{R}^+$ random variables.

Notation Contd.

Now define the sum of the first n waiting times to be $S(n) := \sum_{i=1}^{n} W_i$

Define the maximum of the first n jumps to be $M(n) := \bigvee_{i=1}^{n} J_i$

Define a renewal process $N(t) := \max\{n \ge 0 : S(n) \le t\}$

Finally we define the Continuous Time Random Maxima (CTRM) to be $V(t):=M(N(t))=\bigvee_{i=1}^{N(t)}J_i$

CTRM Example

A Possible Model

We first assume that the waiting times and jump sizes are independent.

Waiting times W_i are modelled according to a stable distribution with stability parameter $\beta \in (0,1)$, skewness parameter 1, location parameter 0, and scale parameter =1.

Jump sizes J_i are modelled according to Generalized Extreme Value (GEV) distribution with location parameter μ , scale parameter σ and shape parameter ψ .

The primary goal is to design methodology that fits models to data sets of bursty events.

Simulated data

$$\mu = 0, \sigma = 1, \psi = 0.3, \beta = 0.7$$

Table of Contents

Introduction

Maximum Likelihood Estimation of β

Convergence

Distribution of Durations

Proposition (Meerschaert and Stoev (2007))

Let F be the cdf of a GEV random variable. Let a be the threshold level, then define T_a as the duration between jumps that have been thresholded at the a-level. Then

$$T_a \sim \left(-\log F(a)\right)^{\frac{-1}{\beta}} X^{\frac{1}{\beta}} D(1).$$

Where D(1) is a random variable of the stable distribution with stability parameter β and skewness parameter 1 and where X is a standard exponential random variable.

Distribution of Durations Contd.

After taking the logarithms of both sides we arrive at

$$\log T_a \sim \frac{1}{\beta} \log X + \log D(1) - \frac{1}{\beta} \log(-\log F(a)).$$

Now we have that,

$$f_{\frac{1}{\beta}\log X}(x) = \frac{d}{dx} \mathbb{P}\left(\frac{1}{\beta}\log X \le x\right)$$
$$= \frac{d}{dx} \mathbb{P}(X \le e^{x\beta})$$
$$= f_X(e^{x\beta})\beta e^{x\beta}.$$

Distribution of Durations Contd.

We also have.

$$f_{\log D}(x) = \frac{d}{dx} \mathbb{P}(\log D \le x)$$
$$= \frac{d}{dx} \mathbb{P}(D \le e^{x})$$
$$= f_{D}(e^{x})e^{x}.$$

Using convolution we arrive at

$$f_{\frac{1}{\beta}\log X + \log D}(x) = \int_{-\infty}^{\infty} f_{\frac{1}{\beta}\log X}(x - y) f_{\log D}(y) dy.$$

Shifting the above expression to the right by $\frac{1}{\beta}\log(-F(a))$ gives us the density of $\log T_a$. That is,

$$f_{\log T_a}(x) = \int_{-\infty}^{\infty} f_{\frac{1}{\beta} \log X} \left(x - y + \frac{1}{\beta} \log(-\log F(a)) \right) f_{\log D}(y) dy.$$

Distribution of Durations Contd.

Substituting our expressions for $f_{\log D}(x)$ and $f_{\frac{1}{2}\log X}(x)$ we get

$$f_{\log T_a}(x)$$

$$= \int_{-\infty}^{\infty} f_X(e^{\beta(x-y+\frac{1}{\beta}\log(-\log F(a)))})\beta e^{\beta(x-y+\frac{1}{\beta}\log(-\log F(a)))} f_D(e^y)e^y dy$$

which simplifies to

$$f_{\log T_a}(x) = \int_{-\infty}^{\infty} -\log F(a)f_X(-\log F(a)e^{\beta(x-y)})\beta e^{\beta(x-y)}f_D(e^y)e^ydy.$$

Likelihood Profile

The above density was used in order to calculate an MLE for the simulated data and the following likelihood profile was generated.

Table of Contents

Convergence

Convergence of Waiting Times

Theorem (Meerschaert and Sikorskii (2011))

Suppose that W_i are i.i.d. and positive with $\mathbb{P}(W_n > t) = ct^{-\beta}$ for all $t > c^{1/\beta}$, some c > 0 and $0 < \beta < 1$. Then

$$n^{-1/\beta}(W_1+...+W_n)\to D \text{ as } n\to\infty.$$

Where D is distributed according to a one-sided stable distribution.

This theorem can be generalised for any waiting times that follow a heavy tailed distribution (i.e mean is not finite) as follows

$$a_nS(n) \Rightarrow D$$
.

Convergence of Waiting Times Contd.

Since we will be working in continuous time, we need to define partial processes.

Define the partial sum-process as $S(t) := \sum_{i=1}^{\lfloor t \rfloor} W_i$

Similarly let the partial max-process be $M(t) := \bigvee_{i=1}^{\lfloor t \rfloor} J_i$

Theorem (Meerschaert and Sikorskii (2011))

Given $a_n S(n) \Rightarrow D$, where the sequence of positive constants $\{a_n\}$ is regular varying with index $-1/\beta$, $(0 < \beta < 1)$, then writing $a(t) := a_t$,

$${a(c)S(ct)}_{t\geq 0} \xrightarrow[c\to\infty]{J_1} {D(t)}_{t\geq 0},$$

where $\{D(t)\}_{t\geq 0}$ is β -stable subordinator.

Convergence of Maxima

Theorem (Lamperti (1964))

Recall $M(n) = \bigvee_{i=1}^{n} J_i$. Suppose there exists constants $b_n > 0$ and d_n such that,

$$\mathbb{P}(M_n \leq b_n x + d_n) = F^n(b_n x + d + n) \Rightarrow G(x).$$

Now set

$$A^c(t) = egin{cases} b_c(M_{\lfloor ct \rfloor} - d_c), & t \geq 1/c \ b_c(J_1 - d_c), & 0 < t < 1/c. \end{cases}$$

Then $A^c \xrightarrow[c \to \infty]{J_1} A$, where $\{A(t)\}_{t \ge 0}$ is an extremal process generated by G. That is

$$\{b(c)(M(ct)-d(c))\}_{t\geq 0} \xrightarrow[c\to\infty]{J_1} \{A(t)\}_{t\geq 0}.$$

Notation for Scaled W_i and J_i

Define $W_i^c := a(c)W_i$ and $J_i^c = b(c)(J_i - d(c))$.

Define the scaled partial sum-process as $S^c(t) := \sum_{i=1}^{\lfloor ct \rfloor} W_i^c$

Define the scaled partial max-process as $M^c(t) := \bigvee_{i=1}^{\lfloor ct \rfloor} J_i^c$

Define a renewal process $N(t) := \max\{n \geq 0 : S^c(n) \leq t\}$

Finally we define the scaled Continuous Time Random Maxima (CTRM) to be $V^c(t):=\bigvee_{i=1}^{N^c(t)}J^c_i$

Convergence of Joint Process

Theorem

Let (W_i^c, J_i^c) be a sequence of i.i.d $\mathbb{R}^+ \times \mathbb{R}$ random vectors such that

$$\{S^c(t), M^c(t)\}_{t\geq 0} \xrightarrow[c\to\infty]{J_1} \{(D(t), A(t))\}_{t\geq 0}$$

where the paths of $\{D(t)\}_{t\geq 0}$ are non-decreasing almost surely. Then,

$$\{V^c(t)\}_{t\geq 0} \xrightarrow[c\to\infty]{J_1} \{(A_-\circ E)_+(t)\}_{t\geq 0},$$

where $E := \inf\{u > 0 : D(u) > t\}$ is the inverse of D.