Álgebra lineal II, Grado en Matemáticas

Reserva

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora. Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

Importante: utilice una única cara para estas definiciones. Si utiliza más espacio no se tendrá en cuenta.

- (a) Endomorfismo diagonalizable.
- (b) Subespacios generalizados asociados a un autovalor.
- (c) Matriz de Gram de un producto escalar.
- (d) Signatura de una forma cuadrática.

Ejercicio 1: (2 puntos)

Sea V un \mathbb{K} -espacio vectorial y ϕ y ψ dos formas lineales de V en \mathbb{K} . Demuestre que la aplicación $f: V \times V \to K$ definida por $f(u,v) = \phi(u) \cdot \psi(v)$ es una forma bilineal.

Ejercicio 2: (2 puntos)

Encuentre la matriz en la base canónica de la simetría de \mathbb{R}^3 que transforma el vector (1,2,0) en el vector (-1,-2,0).

Ejercicio 3: (4 puntos)

sea $f: \mathbb{R}^4 \to \mathbb{R}^4$ un endomorfismo definido por

$$f(x_1, x_2, x_3, x_4) = (x_1 + bx_2, x_2, ax_3 + x_4, -x_3 - ax_4), \text{ con } a, b \in \mathbb{R}$$

- (a) Estudie para qué valores de a y b el endomorfismo es diagonalizable.
- (b) Para $a = \sqrt{2}$ y b = 1 encuentre la forma canónica de Jordan $J = \mathfrak{M}_{\mathcal{B}}(f)$. Respecto a la base \mathcal{B} , determine los subespacios invariantes irreducibles.