Página www Contenido **>>** Página 1 de 22 Regresar Full Screen Cerrar

Abandonar

Datos Categóricos: Clase 6

Juan Carlos Correa

23 de marzo de 2022

Punto 2 del primer parcial

La Encuesta de calidad de vida 2007 presenta información sobre si en un hogar tienen vehículo particular (0:No y 1: Sí), si tienen motocicleta y si tienen algún negocio en la casa además del estrato. La información se presenta en la siguiente tabla. Realice un análisis descriptivo.

		Negocio en la	casa	0	1
Estrato	VehíPar	Motocicleta			
1	0	0		1732	92
		1		101	5
	1	0		11	1
		1		1	0
2	0	0		5109	385
		1		466	47
	1	0		131	14
		1		30	5
3	0	0		3816	254
		1		446	58
	1	0		217	17
		1		35	7
4	0	0		1268	131
		1		148	6
	1	0		155	4
		1		31	2
5	0	0		94	3
		1		6	1
	1	0		919	50
		1		87	4
6	0	0		0	0
		1		0	0
	1	0		416	2
		1		31	3

Página www

Página de Abertura

Contenido

Página 2 de 22

Regresar

Full Screen

Cerrar

Página de Abertura

Contenido

Página 3 de 22

Regresar

Full Screen

Cerrar

Abandonar

Prueba LRT para H_o : $\pi_1 = \pi_2$ vs. H_1 : $\pi_1 \neq \pi_2$ La prueba de la razón de verosimilitud para este problema la construimos así:

$$L(\pi_1, \pi_2) = \pi_1^a (1 - \pi_1)^b \pi_2^c (1 - \pi_2)^d$$

Bajo H_0 tenemos

$$L(\pi_1 = \pi_2 = \pi) = \pi^{a+c}(1-\pi)^{b+d}$$

- El e.m.v. bajo el modelo restricto es $\hat{\pi} = (a+c)/N$.
- Los e.m.v. bajo el modelo irrestricto son $\hat{\pi}_1 = a/(a+b)$ y $\hat{\pi}_2 = c/(c+d)$.

Por lo tanto

$$G^{2} = -2\log(\lambda) = 2\log\left(\frac{\hat{\pi}_{1}^{a}(1-\hat{\pi}_{1})^{b}\hat{\pi}_{2}^{c}(1-\hat{\pi}_{2})^{d}}{\hat{\pi}^{a+c}(1-\hat{\pi})^{b+d}}\right) \sim \chi_{dim(\Omega)-dim(\omega)}^{2}$$

donde $dim(\Omega) - dim(\omega) = 2 - 1 = 1$.

Página de Abertura

Contenido

Página 4 de 22

r agina 4 uc 22

Regresar

Full Screen

Cerrar

Abandonar

La siguiente tabla presenta información sobre el uso de seda dental entre los estudiantes de primer semestre (2008) en UNal-Sede Medellín

	Sí usa	No usa
Hombres	334	318
Mujeres	248	117

Queremos ver si el uso de la seda dental es el mismo entre hombres y mujeres.

```
Página www
```

```
Página de Abertura
```

Contenido

Full Screen

Cerrar

Abandonar

Comparación de Proporciones de Dos Poblaciones

dif.prop.TLC<-function(x1,n1,x2,n2,nivel=0.05,bilateral=T){
 if(x1==0) x1<-0.5
 p1<-x1/n1
 if(x2==0) x2<-0.5
 p2<-x2/n2
 n<-n1+n2</pre>

p.p<-(x1+x2)/n
z<-(p1-p2)/sqrt(p.p*(1-p.p)/n)
proba<-pnorm(abs(z),lower.tail=F)
if(bilateral==T) valor.p<-2*proba</pre>

else valor.p<-proba

dif.prop<-p1-p2
list(p1=p1,p2=p2,dif.prop=dif.prop,z=z,valor.p=valor.p)
}</pre>

```
Página www
Página de Abertura
                    dif.prop.LRT \leftarrow-function(x1,n1,x2,n2,nivel=0.05){
                      if(x1==0) x1<-0.5
   Contenido
                       p1 < -x1/n1
                      if(x2==0) x2<-0.5
       >>
                      p2 < -x2/n2
                      n < -n1 + n2
                      p.p < -(x1+x2)/n
                      G2<-2*log(p1^x1*(1-p1)^(n1-x1)*p2^x2*(1-p2)^(n2-x2)
                    x2)/(p.p^(x1+x2)*(1-p.p)^(n-x1-x2)))
 Página 6 de 22
                      valor.p<-pchisq(G2,1,lower.tail=F)</pre>
                      dif.prop<-p1-p2
   Regresar
                      list(p1=p1,p2=p2,dif.prop=dif.prop,G2=G2,valor.p=valor.p)
  Full Screen
    Cerrar
```

```
Página www
                    > # Datos de odontología de estudiantes UNal (2008-I)
                    > # población 1: Hombres 334+318
                    > # población 2: Mujeres 248+117
Página de Abertura
                    > # Respuesta: Uso de seda dental Hombres 334, Mujeres 248
  Contenido
                    > dif.prop.TLC(334,652,248,365)
                   $p1
       >>
                    [1] 0.5122699
                   $p2
                    Γ17 0.679452
 Página 7 de 22
                   $dif.prop
                    [1] -0.1671821
   Regresar
                    $z
                    [1] -10.77619
  Full Screen
                   $valor.p
                    [1] 4.459911e-27
    Cerrar
```

```
Página www

Página de Abertura

> dif.prop.LRT(334,652,248,365)
$p1
[1] 0.5122699

$p2
[1] 0.679452

$dif.prop
[1] -0.1671821

Página 8 de 22
```

Regresar \$valor.p

\$G2

[1] 1.880696e-07

[1] 27.15201

Cerrar

Full Screen

La siguiente tabla presenta el uso de cepillo dental por parte de los primíparos I-2008 UNal-Sede Medellín.

	Sí usa cepillo	No usa
Hombres	649	4
Mujeres	364	1

Full Screen

Cerrar

```
Página www
Página de Abertura
                    > p1<-4/653
                    > p2<-1/365
   Contenido
                    > muestra.hombres<-rbinom(10000,653,p1)</pre>
                    > muestra.mujeres<-rbinom(10000,365,p2)</pre>
       >>
                    > dife<-muestra.hombres/653-muestra.mujeres/365</pre>
                    > summary(dife)
                          Min.
                                    1st Qu. Median
                                                                 Mean
                                                                          3rd Qu.
                                                                                           Max.
                    -0.0149100 \quad 0.0006461 \quad 0.0033860 \quad 0.0034210 \quad 0.0061260 \quad 0.0199100
                    > length(dife[dife>0])/length(dife)
 Página 10 de 22
                    [1] 0.8149
                    > hist(dife,main='p1-p2',ylab='Densidad',xlab='Diferencia')
   Regresar
```

-0.005156391 0.011042816

Cerrar

Full Screen

Página de Abertura

Muestreando sólo con N fijo

Contenido

El modelo de probabilidad observado es

 $P(A = a, B = b, C = c) = \frac{N!}{a!b!c!d!} \pi_{11}^a \pi_{12}^b \pi_{21}^c \pi_{22}^d$

→

Página 12 de 22

donde d = N - a - b - c y π_{ij} es la probabilidad de la (i, j)ésima celda, i, j = 1, 2.

Regresar

La hipótesis de interés corriente es

Full Screen

 H_0 : Independencia de las dos respuestas ó

 $H_0: \pi_{ij} = \pi_{i+}\pi_{+j}, \quad i, j = 1, 2.$

Cerrar

Página de Abertura

Contenido

Página 13 de 22

Regresar

Full Screen

Cerrar

Abandonar

La siguiente tabla presenta información sobre el problema de la onicofagia (comerse las uñas) y el de morder cosas entre primiparos I-2008 UNal-Sde Medellín

	Morder Cosas SI	NO
Onicofagia SI	155	91
NO	293	434

```
Página www

> chisq.test(matrix(c(155,91,293,434),ncol=2))

Pégina de Abertura

Pearson's Chi-squared test with Yates' continuity correction

data: matrix(c(155, 91, 293, 434), ncol = 2)
X-squared = 37.2339, df = 1, p-value = 1.048e-09

> chisq.test(matrix(c(155,91,293,434),ncol=2),simulate.p.value=T)

Pearson's Chi-squared test with simulated p-
```

data: matrix(c(155, 91, 293, 434), ncol = 2)

X-squared = 38.1424, df = NA, p-value = 0.0004998

value (based on 2000

replicates)

Página 14 de 22

Regresar

Full Screen

Cerrar

Página de Abertura

Contenido

Página 15 de 22

Regresar

Full Screen

Cerrar

Abandonar

Prueba de hipótesis Monte Carlo

Las pruebas de hipótesis vía Monte Carlo no dependen de resultados asintóticos y algunos las consideran pruebas exactas. Vamos a ilustrar el procedimiento en un esquema de muestreo multinomial.

Clasificación II

		1		Total
Clasificación I	1	n_{11}	n_{12}	n_{1+}
	2	n_{21}	n_{22}	n_{2+}
Total		n_{+1}	n_{+2}	n_{++}

la hipótesis a verificar es

$$H_0: \pi_{ij} = \pi_{i+}\pi_{+j} \qquad \forall i j$$

Algoritmo

1. Genere una muestra $(n_{11}^*, n_{12}^*, n_{21}^*, n_{22}^*)$ de una distribución multinomial

$$MN\left(n_{++}, \frac{n_{1+}n_{+1}}{n_{++}}, \frac{n_{1+}n_{+2}}{n_{++}}, \frac{n_{2+}n_{+1}}{n_{++}}, \frac{n_{2+}n_{+2}}{n_{++}}, \right)$$

2. Calcule el estadístico χ^2 para la muestra anterior

$$\chi^{2} = \sum_{i} \sum_{j} \frac{\left(n_{ij}^{*} - e_{ij}^{*}\right)^{2}}{e_{ij}^{*}}$$

- 3. Repita los dos pasos anteriores M veces, digamos M=1000, y calcule la distribución empírica del χ^2 . Calcule el percentil α superior, digamos χ^2_{α} .
- 4. Para los datos originales calcule χ_c^2 . Si Este es valor es mayor que el valor crítico hallado en el punto anterior, rechace H_0 .

Página www

Página de Abertura

Contenido

→

Página 16 de 22

Regresar

Full Screen

Cerrar

```
Página www
Página de Abertura
    Contenido
             >>
 Página 17 de 22
     Regresar
    Full Screen
```

Cerrar

```
# Datos de primiparos
# Morder Objetos
   Si No
# 155 91
            Si Onicofagia
   283 434 No.
tabla<-matrix(c(155,91,283,434),ncol=2,byrow=T)
# Prueba bootstrap
prueba.boot.ind<-function(tabla,nboot=10000){</pre>
n<-sum(tabla)
  proba<-tabla/n
  marg1<-colSums(proba)</pre>
  marg2<-rowSums(proba)</pre>
  prob.ho<-marg1%*%t(marg2)</pre>
res<-rmultinom(nboot,n,c(prob.ho[1,],prob.ho[2,]))
calc.chi<-function(x)chisq.test(matrix(x,ncol=2,byrow=T))$statistic</pre>
res<-apply(res,2,calc.chi)
chi.obs<-chisq.test(tabla)$statistic</pre>
valor.p<-sum(ifelse(res>=chi.obs,1,0))/length(res)
plot(density(res,from=0),main='Distribución Nula Bootstrap',ylab='Densidad')
abline(v=0)
list(chi.obs=chi.obs,valor.p=valor.p)
```


Página www Página de Abertura Contenido **>>** Página 19 de 22 Regresar Full Screen

Cerrar

Abandonar

Distribución Nula Bootstrap


```
Página www
                          # Prueba bootstrap mejorada
                          # Se tiene en cuenta la aleatoriedad del estimador
Página de Abertura
                          prueba.boot.ind.mej<-function(tabla,nboot=10000){</pre>
                          n<-sum(tabla)
                            proba<-tabla/n
   Contenido
                            marg1<-colSums(proba)</pre>
                          # Recuerde que p.gorro~N(pi,pi(1-p1)/n)
                          pi.1m<-rnorm(nboot,mean=marg1[1],sd=sqrt(marg1[1]*(1-marg1[1])/n))
                            marg2<-rowSums(proba)</pre>
          >>
                          pi.m1 < -rnorm(nboot, mean=marg2[1], sd=sqrt(marg2[1]*(1-marg2[1])/n))
                          prob.multi<-cbind(pi.1m*pi.m1,pi.1m*(1-pi.m1),(1-pi.1m)*pi.m1,(1-pi.1m)*(1-pi.m1))
                          genera.multi<-function(pis,n) rmultinom(1,n,pis)</pre>
                          res<-matrix(unlist(apply(prob.multi,1,genera.multi,n)),ncol=4,byrow=T)
 Página 20 de 22
                          calc.chi<-function(x)chisq.test(matrix(x,ncol=2,byrow=T))$statistic</pre>
                          res<-apply(res,1,calc.chi)
                          chi.obs<-chisq.test(tabla)$statistic</pre>
                          valor.p<-sum(ifelse(res>=chi.obs,1,0))/length(res)
    Regresar
                          plot(density(res,from=0),main='Distribución Nula Bootstrap',ylab='Densidad')
                          abline(v=0)
                          list(chi.obs=chi.obs,valor.p=valor.p)
   Full Screen
```

Cerrar

\$valor.p
[1] 0

Regresar

Página 21 de 22

Full Screen

Cerrar

Página de Abertura

Contenido

Página 22 de 22

Regresar

Full Screen

Cerrar

Abandonar

Distribución Nula Bootstrap

