

international collegiate programming contest INDONESIA NATIONAL CONTEST INC 2024

Problem I Count DFS Tree

You are currently studying a tree traversal algorithm called the Depth First Search (DFS). Suppose you have a rooted tree of n nodes (numbered from 1 to n) with a depth of K (numbered from 1 to K). The root (the node at depth 1) is located at node 1. All leaves are located at the same depth, that is, at depth K. Node i has an array of children nodes i0, which could be empty if i1 is a leaf node. The pseudocode of the algorithm is presented as follows.

```
DFS(u, depth):
  let res be an empty array
  append depth to res

for each v in c[u]:
   let D be an array initialized with DFS(v, depth + 1)
  for each x in D:
     append x to res

return res
```

Consider the trees in the following illustration. The return values of DFS (1, 1) for the tree on the left and the tree on the right are [1, 2, 3, 3, 3] and [1, 2, 3, 2, 3], respectively.

Denote $f_K(n)$ as the number of **distinct** return values of DFS (1, 1) across all trees consisting of n nodes and all leaves are located in depth K. You are given M integers: A_1, A_2, \ldots, A_M . Determine the value of $f_K(A_1) \times f_K(A_2) \times \cdots \times f_K(A_M)$. As the answer can be very large, find the answer modulo $998\,244\,353$.

Input

The first line consists of two integers K M ($1 \le K, M \le 100\,000$).

The following line consists of M integers A_i ($K \le A_i \le 200\,000$).

Output

Output a single integer representing the value of $f_K(A_1) \times f_K(A_2) \times \cdots \times f_K(A_M)$ modulo $998\,244\,353$.

international collegiate programming contest INDONESIA NATIONAL CONTEST INC 2024

Sample Input #1

3	2
5	6

Sample Output #1

6

Explanation for the sample input/output #1

The value of $f_3(5)$ and $f_3(6)$ are 2 and 3, respectively. The illustration on the description shows the trees of 5 nodes that give distinct return values of DFS(1, 1). The following illustration is for the trees of 6 nodes.

Sample Input #2

100000 1 200000

Sample Output #2

269130693