Homework2

Jon Campbell

```
library(tidyverse)
library(knitr)
library(PSweight)
```

Part 1

Question 1

```
hsr <- read.table("data/hw2/HSR.txt", header = TRUE)
#p_z = P(Y(z)==1)
#target estimand is ATE p_1 - p_2
X <- apply(hsr[,c(1,3,4,5,6,7,8,12)], MARGIN = 2, factor)
Z <- factor(hsr$pg)
Y <- factor(hsr$i_aqoc)</pre>
```

a)

```
#checking balance via ASD
plot(prop_score_summary, metric = "ASD")
```


From the love plot we see that most of the covariates have an ASD above 0.1 when unweighted but perform much better with IPW. mcs_sd and severity2 are slightly above 0.1 and race2 is around 0.35 under IPW. The covariates are perfected balanced with overlap weighing.

Looking at he distribution of IPW there are 2 observations with high weights relative to the sample.

b)

```
tibble(
  prop_score = prop_scores,
  trt = Z
) |>
  ggplot(aes(x = prop_score, fill = trt)) +
  geom_density(alpha = 0.5)
```


plot(prop_score_summary, metric = "ASD")

From the density plot of propensity scores by group, there is good overlap. The love plot shows good balance with overlap weighting and IPW weighting.

c)

```
unweighted <- prop_score_summary$unweighted.sumstat[,1:2]
colnames(unweighted) <- c("unweighted.trt1", "unweighted.trt2")

ipw_weighted <- prop_score_summary$IPW.sumstat[,1:2]
colnames(ipw_weighted) <- c("IPW.trt1", "IPW.trt2")

overlap_weighted <- prop_score_summary$overlap.sumstat[,1:2]
colnames(overlap_weighted) <- c("overlap.trt1", "overlap.trt2")

tab1 <- cbind(unweighted, ipw_weighted, overlap_weighted) |> round(4)
tab1 |>
    kable()
```

	unweighted.tr	t1unweighted.tr	t2IPW.trt1	IPW.trt2	2 overlap.trt1	overlap.trt2
i_age	40.4571	39.6532	41.5684	41.1479	41.1248	41.1248
$as.factor(i_sex)1$	0.7619	0.6532	0.7181	0.7071	0.7152	0.7152
as.factor(i_race)1	0.8381	0.6416	0.7601	0.7205	0.8236	0.8236
as.factor(i_race)2	0.0095	0.2197	0.0269	0.1371	0.0200	0.0200
as.factor(i_race)3	0.0571	0.0116	0.0374	0.0372	0.0380	0.0380
as.factor(i_race)4	0.0667	0.0694	0.0765	0.0597	0.0752	0.0752
as.factor(i_educ)	2 0.0190	0.0116	0.0145	0.0114	0.0165	0.0165
as.factor(i_educ)	0.0952	0.0289	0.0561	0.0455	0.0608	0.0608
as.factor(i_educ)	4 0.3905	0.2254	0.2862	0.3152	0.3064	0.3064
as.factor(i_educ)	0.2571	0.4277	0.3621	0.3514	0.3213	0.3213
as.factor(i_educ)	0.2286	0.3064	0.2771	0.2765	0.2950	0.2950
as.factor(i_insu)2	0.2571	0.3064	0.2515	0.2761	0.2535	0.2535
as.factor(i_insu)3	0.0000	0.0058	0.0000	0.0035	0.0000	0.0000
as.factor(i_insu)5	0.0571	0.0405	0.0309	0.0307	0.0254	0.0254
as.factor(i_drug)	1 0.9905	0.9769	0.9941	0.9846	0.9925	0.9925
as.factor(i_seve)2	0.2381	0.2312	0.2176	0.2794	0.2508	0.2508
as.factor(i_seve)3	0.4667	0.4509	0.3963	0.4118	0.4453	0.4453
as.factor(i_seve)4	0.1905	0.1329	0.1755	0.1478	0.1587	0.1587
com_t	2.9143	1.7168	2.4733	2.4398	2.3778	2.3778
pcs_sd	41.4148	48.2981	46.1089	46.6206	45.3764	45.3764
mcs_sd	48.9392	48.4198	48.1294	46.9954	48.4299	48.4299

```
d)
  ps.hsr <- as.factor(pg) ~ i_age + as.factor(i_sex) + as.factor(i_race) + as.factor(i_educ)</pre>
  ate.ipw <- PSweight(ps.formula = ps.hsr, yname = "i_aqoc", data = hsr</pre>
                        , weight = "IPW")
  ate.overlap <- PSweight(ps.formula = ps.hsr, yname = "i_aqoc", data = hsr</pre>
                        , weight = "overlap")
Question 2
a)
b)
c)
Question 3
a)
b)
c)
d)
e)
```

```
brscn <- read.table("data/hw2/brscn.txt", header = TRUE)</pre>
```

Question 1

Part 3 (optional)

Question 1