求解变分不等式和互补问题的一种迭代法*

孙德锋 (中科院应用数学研究所)

AN ITERATIVE METHOD FOR SOLVING VARIATIONAL INEQUALITY PROBLEMS AND COMPLEMENTARITY PROBLEMS

Sun Defeng
(Institute of Applied Mathematics, Academia Sinica)

Abstract

In absense of (strong) monotonicity, basing on the concepts of extragradient and inexact line searches, we give a global convergent method for solving variational inequality problems and complementarity problems when the mapping F is pseudomonotone. Throughout this paper, we only assume that the mapping F is of contunuity.

1 引 言

最近,有限维的非线性变分不等式和互补问题的研究有了较快的发展,具体可见 Harker 和 Pang^[8] 的综述性文献.但是,在没有(强)单调性及可微性的条件下,却没有一个实用的算法.本文的主要兴趣是研究一种迭代算法一外梯度,在连续性和伪单调性条件下,证明了算法的全局收敛性(定理 3.1).

定义 1.1 设 X 为 R "中一非空子集 $_{,F}$ 为 R "到自身的映射 . 变分不等式问题 VI(X,F) 是指求 $_{x}$ " $\in X$ 使得

$$F(x^*)^T(y-x^*) \geqslant 0, \quad \forall y \in X. \tag{1.1}$$

记 VI(X, F) 的解集为

$$Q = \{x \cdot \in X \mid F(x \cdot)^{T} (y - x \cdot) \ge 0, \quad \forall y \in X\}.$$
 (1.2)

当 F 为连续映射且 X 为闭集时 Q 必为闭集 (空集也看作闭集).

定义 1.2 设 X 为 R 中 - 凸锥 ,F 为 R 到自身的映射 , 广义互补问题 GCP(X,F)

^{*1992}年11月20日收到.

是指求 $x^* \in X$ 使得

$$F(x^*) \in X^* \quad \exists \quad F(x^*)^T x^* = 0,$$
 (1.3)

其中 X^* 表示X的对偶锥,i.e.,

$$X^* = \{ y \in R^n \mid y^T x \ge 0, \quad \forall x \in X \}.$$

Karamardian [11] 建立了广义互补问题和变分不等式问题的关系.

性质 $1.3^{[11]}$ 设 X 是 - 凸锥,则 $x^* \in X$ 是 VI(X, F) 的解当且仅当 x^* 是 GCP(X, F) 的解 .

因此,每一广义互补问题都是一变分不等式问题,故我们的主要兴趣放在(1.1)上.

定义 1.4 称映射 $F: R'' \rightarrow R''$

(a) 在集合 X 上单调,如果

$$[F(x) - F(y)]^{T}(x - y) \geqslant 0, \quad \forall x, y \in X;$$
(1.4)

(b) 在集合 X 上伪单调,如果

$$F(y)^{T}(x-y) \geqslant 0 \Rightarrow F(x)^{T}(x-y) \geqslant 0, \quad \forall \ x,y \in X;$$
 (1.5)

(c) 在集台 X 上强单调,如果存在正数 α 使得

$$[F(x) - F(y)]^{T}(x - y) \ge \alpha ||x - y||_{2}^{2}, \quad \forall x, y \in X.$$
 (1.6)

各种单调性的关系,可见[12].

当映射 F 在 X 上强单调时,解的存在唯一性容易得到并且亦有办法求解;当 F 仅为单调或伪单调时,VI(X,F) 可能无解 . 然而,如果某 — Slater 型约束品性成立,伪单调性即可保证解的存在性 [11.9];但是却没有相应的方法求解 .

当映射 F 单调,且 Lipschitz 连续时, i.e., 存在常数 L > 0 使得

$$||F(x) - F(y)||_{2} \le L ||x - y||_{2}, \quad \forall x, y \in X,$$
 (1.7)

Korpelevich [13] 利用外插技术,提出了一种外梯度法 (Extragradient Method), 迭代公式如下

$$\begin{cases} \overline{x}^{k} = P(x^{k} - \alpha F(x^{k})) \\ x^{k+1} = P(x^{k} - \alpha F(\overline{x}^{k})) \end{cases}$$
 (1.8)

其中 $\alpha > 0$ 是一数值参数 ,P(x) 表示在 I_2 - 范数意义下 x 到 X 的投影 ,i.e.,

$$P(x) = \operatorname{argmin}\{\|y - x\|_{2}, \quad \forall \ y \in X\}. \tag{1.9}$$

定理 $1.5^{[13]}$ 设 X 为 R 中非空闭凸集. 假设 F 在 X 上单调 ,Lipschitz 连续 (Lipschitz 常数 L > 0), $Q \neq \emptyset$ 及

$$0 < \alpha < 1/L, \tag{1.10}$$

则存在 $x^* \in Q$, 使得由 (1.8) 产生的点列 $\{x^k\}$ 收敛到 x^* .

Korpelevich 算法的优点是仅需单调性,而不像其它的一些算法需要强单调性,如 [5,15]; 缺点是外梯度法也需要 Lipschitz 常数,而实际上这也是不容易实现的,如可见 Polak [17] 的评论. 正是由于依赖于 Lipschitz 常数,Korpelevich 的外梯度法一直没有受到重视. 本文的讨论中,我们将去掉 F 的 Lipschitz 连续这一条件而代以连续性条件并且

指出单调性假设可用伪单调性代替;另外,本文的算法亦是 Korpelevich 外梯度法的推广. 在第2节,我们给出一些基本引理.算法和收敛性结果是第3节的主要内容.数值结果在第4节给出.最后一节给出一些讨论.

2 基本引理

在下面几节中,总假定 X 是 R^n 中非空闭凸集.设 G 是任意固定的、对称的 $n \times n$ 正定矩阵,定义 x 的 G — 范数为

$$\|x\|_{G} = \|G^{\frac{1}{2}}x\|_{2},\tag{2.1}$$

其中 $G^{\frac{1}{2}}$ 为与 G 同维数的对称正定阵且 $G^{\frac{1}{2}} \cdot G^{\frac{1}{2}} = G$. 定义 $P_{G,x}(x)$ 为 x 在 G — 范数意义下到 X 的投影 ,i.e.,

$$P_{G,x}(x) = \operatorname{argmin}\{\|y - x\|_{G}, \quad \forall \ y \in X\}. \tag{2.2}$$

当 $G = I \ \mathcal{D} \ X$ 是框形约束时, 投影 $P_{Gx}(x)$ 的计算十分简单.

在不引起混淆的情况下, 我们将用 $P_{\alpha}(x)$ (或 P(x)) 代替 $P_{\alpha x}(x)$.

引理 2.1 设 $P(\cdot)$ 为在 G- 范数下到 X 上的投影算子,则

- (a) 如果 $y \in X$ 则 $[P(x) x]^T G[y P(x)] \ge 0$;
- (b) $||P(x)-z||_G^2 \le ||x-z||_G^2 ||P(x)-x||_G^2$, $\forall z \in X$;
- (c) $[P(y) P(x)]^T G(y x) \ge 0, \quad \forall x, y \in R^n$;
- $(d) \quad \left\|P(y)-P(x)\right\|_{G} \leq \left\|y-x\right\|_{G}, \quad \forall \ x,y \in R^{''}.$

引理 2.1 容易证明, 当 G = I 时可见 Zarantonello [19]; 当 $G \neq I$ 时,证明类似.

下面的结果是 Gafni 和 Bertsekas $^{[6]}$ 的一个结论的推广 . 当 G=I 时 , Calamai 和 Moré $^{[2]}$ 也证明了这个结论 . 这里我们的证明类似 [2].

引理 2.2 设 $P(\cdot)$ 为在 G- 范数意义下到 X 上的投影算子 任给 $x \in R^n$ 及 $d \in R^n$, 如下定义的函数

$$\psi(\alpha) = \|P(x + \alpha d) - x\|_{G} / \alpha, \quad \alpha > 0$$
(2.3)

是反序(非增)的.

证明 任给 $\alpha > \beta > 0$. 如果 $P(x + \alpha d) = P(x + \beta d)$, 则 $\psi(\alpha) \leq \psi(\beta)$. 故只需考虑 $P(x + \alpha d) \neq P(x + \beta d)$ 的情形 . 容易验证当 $\nu^T G(u - \nu) > 0$ 时 , 有

$$\frac{\|u\|_{G}}{\|v\|_{G}} \le \frac{u^{T}G(u-v)}{v^{T}G(u-v)}.$$
 (2.4)

设 $u = P(x + \alpha d) - x$ 及 $v = P(x + \beta d) - x$, 则引理 2.1 之 (a) 意味着 $u^T G(u - v)$ $\leq \alpha d^T G[P(x + \alpha d) - P(x + \beta d)]$, 以及

$$v^T G(u-v) \geqslant \beta d^T G[P(x+\alpha d) - P(x+\beta d)].$$

另外,因为 $\alpha > \beta$,引理 2.1 之(c) 表明

$$d^{T}G[P(x+\alpha d)-P(x+\beta d)]>0$$

(若取等号必与 $P(x + \alpha d) \neq P(x + \beta d)$ 矛盾).

从而有 $\nu^T G(u-\nu) > 0$. 由不等式 (2.4) 即得本引理的结论.

引理 $2.3^{[4]}$ 设 $P(\cdot)$ 为在 G- 范数意义下到 X 上的投影算子,则 x^{\cdot} 是 IV(X,F) 的解当且仅当

$$x' = P(x' - \alpha G^{-1}F(x'))$$
 (2.5)

对某一或任一 $\alpha > 0$ 成立.

定义

$$x(\alpha) = P(x - \alpha G^{-1}F(x)), \quad \alpha > 0.$$
 (2.6)

下面的结果对我们的算法是重要的。

定理 2.4 假设 F(x) 在 X 上连续 $P(\cdot)$ 为在 G — 范数意义下到 X 上的投影算 子 $\beta_0 > 0$ 是 — 常数 $S \subset X \setminus Q$ 是一有界闭集 ,则存在正数 δ 使得对任意 $x \in S$ 及 $\alpha \in (0, \delta]$ 有

$$||x(\alpha) - x||_{G}^{2} / \alpha^{2} \geqslant \beta_{0} ||G^{-1}[F(x(\alpha)) - F(x)]||_{G}^{2}.$$
(2.7)

证明 由于 $S \subset X \setminus Q$ 是一有界闭集且 F 在 X 上连续,则由引理 2.3 知存在正数 δ_0 使得对任意 $x \in S$ 有

$$||x(1) - x||_{G} \ge \delta_{0} > 0. \tag{2.8}$$

由引理 2.2, 知对任意 $x \in S$ 及 $\alpha \in (0,1]$ 有

$$\|x(\alpha) - x\|_{G} / \alpha \ge \|x(1) - x\|_{G} \ge \delta_{0}.$$
 (2.9)

由 F(x) 的连续性知 F(x) 在有界闭集上一致连续. 再由引理 2.1 之 (d) 知存在正数 δ 使得对任意 $x \in S$ 及 $\alpha \in (0, \delta]$ 有 (设 $\delta \leq 1$)

$$\|G^{-1}[F(x(\alpha)) - F(x)]\|_{G} \le \delta_{0} / \sqrt{\beta_{0}}.$$
 (2.10)

结合 (2.9) 与 (2.10) 知对任意 $x \in S$ 及 $\alpha \in (0, \delta)$ 有

$$\|x(\alpha) - x\|_{G}^{2} / \alpha^{2} \geqslant \beta_{0} \|G^{-1}[F(x(\alpha)) - F(x)]\|_{G}^{2}$$

证毕.

3 算法及收敛性质

给定常数 $s \in (0, +\infty)$, $\eta, \beta \in (0, 1)$ 及 $x^0 \in X$.

下面给出求 VI(X, F) 的一种外梯度法

$$\begin{cases} \vec{x}^{k} = P_{G,X}(x^{k} - \alpha_{k}G^{-1}F(x^{k})), \\ x^{k+1} = P_{G,X}(x^{k} - \alpha_{k}G^{-1}F(\vec{x}^{k})) \end{cases}$$
(3.1)

其中 $\alpha_k = s\beta^{m_k}$ 是第 k 步的步长且 m_k 是使下式成立的最小非负整数

$$\eta \| \overline{x}^k - x^k \| / \alpha_k^2 \ge \| G^{-1} [F(\overline{x}^k) - F(x^k]) \|_G^2,$$
 (3.2)

 $k = 0,1,2,\cdots$

注 3.1 若 $x^k \in X \setminus Q$, 则在定理 2.4 中特别取 $S = \{x^k\}$ 可知我们能够在有限步内得到 α_k .

下面的结果是本文的主要结论.

定理 3.1 假设 $X \in \mathbb{R}^n$ 中非空闭凸集 $_*F(x)$ 在 X 上连续且伪单调且 $Q \neq \emptyset$,则存在 $z \in \mathbb{Q}$ 使得由 (3.1) 产生的点列 $\{x^k\}$ 收敛到 $z \in \mathbb{Q}$.

证明 任取 $x^* \in Q$,由引理 2.1 之 (b) 可得

$$\|x^{k+1} - x^*\|_{G}^{2} \leq \|x^{k} - \alpha_{k}G^{-1}F(\overline{x}^{k}) - x^*\|_{G}^{2} - \|x^{k} - \alpha_{k}G^{-1}F(\overline{x}^{k}) - x^{k+1}\|_{G}^{2}$$

$$= \|x^{k} - x^*\|_{G}^{2} - \|x^{k} - x^{k+1}\|_{G}^{2} + 2\alpha_{k}F(\overline{x}^{k})^{T}(x^* - x^{k+1})$$

$$= \|x^{k} - x^*\|_{G}^{2} - \|x^{k} - x^{k+1}\|_{G}^{2} + 2\alpha_{k}F(\overline{x}^{k})^{T}(x^* - \overline{x}^{k} + \overline{x}^{k} - x^{k+1})$$

$$\leq \|x^{k} - x^*\|_{G}^{2} - \|x^{k} - x^{k+1}\|_{G}^{2} + 2\alpha_{k}F(\overline{x}^{k})^{T}(\overline{x}^{k} - x^{k+1}), \tag{3.3}$$

上面的最后一个不等式利用了伪单调性条件推出的式子 $F(\overline{x}^k)^T(\overline{x}^k-x^*) \ge 0$ (注

意 $F(x^*)^T (\overline{x}^k - x^*) \ge 0$). 由 (3.3) 式右边展开知

$$\|x^{k+1} - x^*\|_G^2 \le \|x^k - x^*\|_G^2 - \|x^k - \overline{x}^k\|_G^2 - \|\overline{x}^k - x^{k+1}\|_G^2 + 2[x^k - \alpha_k G^{-1} F(\overline{x}^k) - \overline{x}^k]^T G(x^{k+1} - \overline{x}^k).$$
(3.4)

下面估计 (3.4) 式的最后一项, 在引理 2.1 之 (a) 中取 $x = x^k - \alpha_k G^{-1} F(x^k)$ 及 $y = x^{k+1}$ 则有

$$[x^{k} - \alpha_{k}G^{-1}F(x^{k}) - \overline{x}^{k}]^{T}G(x^{k+1} - \overline{x}^{k}) \leq 0.$$

故

$$2[x^{k} - \alpha_{k} G^{-1} F(\bar{x}^{k}) - \bar{x}^{k}]^{T} G(x^{k+1} - \bar{x}^{k})$$

$$\leq 2\alpha_{k} \{G^{-1} [F(x_{k}) - F(\bar{x}^{k})]\}^{T} G(x^{k+1} - \bar{x}^{k})$$

$$\leq \alpha_{k}^{2} \|G^{-1} [F(x^{k}) - F(\bar{x}^{k})]\|_{G}^{2} + \|x^{k+1} - \bar{x}^{k})\|_{G}^{2}$$
(3.5)

(根据 Cauchy - Schwartz 不等式得到).

把 (3.5) 代入 (3.4) 得到

$$\|x^{k+1} - x^*\|_{G}^{2} \leq \|x^{k} - x^*\|_{G}^{2} - \|x^{k} - x^{k}\|_{G}^{2} - \|x^{k} - x^{k+1}\|_{G}^{2}$$

$$+ \alpha_{k}^{2} \|G^{-1}[F(x^{k}) - F(\overline{x}^{k})]\|_{G}^{2} + \|\overline{x}^{k} - x^{k+1}\|_{G}^{2}$$

$$\leq \|x^{k} - x^*\|_{G}^{2} - \|x^{k} - \overline{x}^{k}\|_{G}^{2} + \eta \|x^{k} - \overline{x}^{k}\|_{G}^{2} \qquad (\Pi \ \ \ \ \ \) \ \exists \|x^{k} - x^*\|_{G}^{2} - (1 - \eta) \|x^{k} - \overline{x}^{k}\|_{G}^{2}.$$

$$(3.6)$$

定义

$$dist(x, Q) = \inf\{\|x - x^*\|_C | x^* \in Q\}.$$
 (3.7)

由于 (3.6) 式对任意 $x^* \in Q$ 都成立, 故

$$\left[\operatorname{dist}(x^{k+1}, Q)\right]^{2} \le \left[\operatorname{dist}(x^{k}, Q)\right]^{2} - (1 - \eta) \|x^{k} - \overline{x}^{k}\|_{G}^{2}, \tag{3.8}$$

i.e., 序列 $\{x^k\}$ 相对于集合 Q 为 Féjer — 单调的. 容易验证每一 Féjer — 单调序列都是有界的. 固定 $x^k \in Q$. 假设

$$\lim_{k \to \infty} \operatorname{dist}(x^{k}, Q) = \delta_{0} > 0, \tag{3.9}$$

则

$$\{x^k\} \subset S \triangleq \{x \in X \mid \delta_0 \leq \operatorname{dist}(x, Q), \|x - x^*\|_G \leq \|x^0 - x^*\|_G\}.$$
 (3.10)

S 为一有界闭集且 $S \subset X \setminus Q$. 由定理 2.4 知存在一正数 δ 使得对所有 $x \in S$ 及 $\alpha \in (0, \delta]$ 都有下列式子成立

$$\eta \|x(\alpha) - x\|_{G}^{2} / \alpha^{2} \ge \|G^{-1}[F(x(\alpha)) - F(x)]\|_{G}^{2}$$

从而推知

$$\alpha_{k} \ge \min\{\beta\delta, s\} > 0 \quad \forall k.$$
 (3.11)

结合 (3.11) 及引理 2.3 知

$$\inf\{\|x^k - \overline{x}^k\|_{\mathcal{G}}\} \triangleq \varepsilon_0 > 0. \tag{3.12}$$

由 (3.8) 知 $\{dist(x^k, O)\}$ 是单调递减序列且满足

$$(1-\eta)\|x^{k} - \overline{x}^{k}\|_{G}^{2} \le \left[\operatorname{dist}(x^{k}, Q)\right]^{2} - \left[\operatorname{dist}(x^{k+1}, Q)\right]^{2}. \tag{3.13}$$

(3.13) 式右边极限为零,故有

$$\lim_{k \to \infty} \|x^k - \overline{x}^k\|_{G} = 0. \tag{3.14}$$

(3.14) 与 (3.12) 是矛盾的,故 (3.9) 的假设不成立.而 $\{ dist(x^k,Q) \}$ 是单调递减序列,其极限存在且有限,从而有

$$\lim_{k \to \infty} \operatorname{dist}(x^k, Q) = 0. \tag{3.15}$$

由于 $\{x^k\}$ 有界 (3.15) 意味着 $\{x^k\}$ 的任何聚点都是 Q(Q) 为闭集 (3.15) 意味着 $\{x^k\}$ 的任何聚点都是 Q(Q) 为闭集 (3.15) 中的点 (3.15) 即知存在 (2^k) 中的点 (3.15) 不证 证 (3.15) 不证 (3.15) 不证

注 3.2 当 F(x) 在 X 上 Lipschitz 连续时,即 (1.7) 式成立,则

$$\alpha_k \ge \min\{s, \beta \sqrt{\eta} / L\rho(G^{-1})\},$$
(3.16)

其中 $\rho(A)$ 表示矩阵 A 的谱半径.

注 3.3 当 X 为 R^* 中非空紧致凸集时 Q 非空 $^{\{4\}}$. 当 X 为一般闭凸集时 Q 非空的讨论见 $\{8\}$.

注 3.4 当 X 由下列约束条件定义时

$$X = \{x \in \mathbb{R}^n \mid g_i(x) \le 0, i = 1, \dots, m; h_i(x) = 0, j = 1, \dots, p\}$$

投影 $P_{g,x}(\cdot)$ 的计算很难实现. 但在一些标准约束品性下,VI(X,F) 可以转化为一类广义

互补问题,当然问题的规模从 n 维扩充到 n+m+p 维. 该约束品性类似于非线性规划情形^[8]. 对于互补问题来说,投影的计算容易的多. 在实际计算中我们总是作此变化. 特别 G = I 时,对于互补问题来说,约束区域往往为一框形区域,投影很容易实现.

4 数值实验

在下面的数值例子中取 $\beta = \frac{1}{2}$, $\eta = 0.95$, G = I, 并且,以 $\varphi(x) = F(x)^T [x - P(x)] = F(x)^T [x - P(x)] \le \varepsilon^2$ 作为停机准则.

例 1 本例研究 Harker 和 Pang^[7] 研究过的一类线性互补问题,这类问题直接用 Lemke^[14] 的转轴方法的运算次数是指数次的 .F(x) = Dx + c,其中

$$D = \begin{bmatrix} 1 & 2 & 2 & \cdots & 2 \\ 0 & 1 & 2 & \cdots & 2 \\ 0 & 0 & 1 & \cdots & 2 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}, \qquad c = (-1, -1, \dots, -1)^{T}.$$

此问题的一个平凡解是 $(0,0,\cdots,0,1)^T$. 同 [7],[10] 一样,我们取初始点 $x^0=(0,0,\cdots,0)^T$. 对 Korpelevich 的外梯度法取步长 $\alpha=\frac{\sqrt{\eta}}{\sqrt{2}n}$,其中 n 为变量个数,对于本文的算法取初始步长 $s=\frac{\sqrt{\eta}}{2\sqrt{2}n}$,取 $\epsilon^2=n\cdot 10^{-14}$.

 变量的个数
 10
 20
 50
 100
 200'
 500

 迭代次数
 227
 434
 /
 /
 /
 /

表 1 Korpelevich 外梯度法计算结果

"/"表示迭代次数超过 1000 次.

表 2 本文的算法的计算结果

变量个数	10	20	50	100	200	500
迭代次数	150	202	305	372	456	593
内部迭代次数	5	5	13	16	21	43

表 1 和表 2 清楚的显示了本文方法的有效性;若直接采用 Lemke 的转轴方法,当 n = 128 时,就由于工作量过大导致失败(见[10]中的例 9).

例 2 下面考虑 F(x) 为非线性的例子.

$$F(x) = F_1(x) + F_2(x), x = (x_1, \dots, x_n)^T,$$
 定义

 $X = \{x \in R^n \mid x_i \ge 0, i = 1, \dots, n\}.$

对于此非线性映射 F(x) 并非 Lipschilz 连续, 故只考虑本文方法的计算效果.

取初始步长 $s = \frac{\sqrt{\eta}}{4}$, 初始点 $x^0 = (0, \dots, 0)^T$, $\epsilon^2 = n \cdot 10^{-14}$, 其中 n 表示问题的维数 .

农 3 年 大 月 仏 的 月 开 和 木								
变量个数	10	20	50	100				
迭代次数	58	60	61	62				
内部迭代次数	57	59	60	60				

表 3 本文方法的计算结果

5 讨论

据文献 [15] 知,本文方法是当 G 固定时逐次线性逼近的修正形式 [15]; 其它的逼近方法 需要计算映射在 Fréchet 意义下或 Bouligand 可微意义下的导数,由于我们只假设 F(x) 连续,这方面的内容没有涉及,具体可见 [7,8,9,10,16]. 如果假设 F(x) 在 Fréchet 意义下连续 可微,求问题 VI(X,F) 的基本方法为 Josephy-Newton 法 [8],但此方法仅有局部收敛性; 最近,作者结合本文的外梯度法及牛顿类算法给出了一种解 VI(X,F) 的混合方法,该方法 具有全局收敛性和局部超线性(或二次)收敛性,具体内容总结在 [18] 中.

对于非线性变分不等式和互补问题,当 F(x)为伪单调时,解的存在性方面有许多结论,但却没有相应的算法与之适应,无疑本文给出的方法拟合了理论和算法上的距离.

关于初始步长s的选取,可以在每步用 s^k 来代替,这方面有许多讨论,故此这里不再涉及,仅指出在实际中为减少迭代次数,节省机时,适当选取 s^k 是必要的,并且亦不困难。

致谢 作者与何炳生博士的有益讨论使得定理 3.1 的证明得以简化,在此作者表示感谢,同时作者对一审稿者的有益建议和评述表示感谢。

参考文献

- Ahn, Byong-hun, Iterative Methods for Linear Complementarity Problem with Upperbounds and Lowerbounds, Mathematical Programming, 26 (1983), 295-315.
- 2 Calamai, P.H. and Moré, J. J., Projected Gradient Methods for Linearly Constrained Problems, Mathematical Programming, 39 (1987), 93-116.
- 3 Dafermos, S., An Iterative Scheme for Variational Inequalities, Mathematical Programming, 26 (1983), 40-47.
- 4 Eaves, B.C., On the Basic Theorem of Complementarity, Mathematical Programming, 1(1971), 68-75.
- 5 Fukushima, M., Equivalent Differentiable Optimization Problems and Descent Methods for Asymmetric Variational Inequality Problems, Mathematical Programming, 53 (1992), 99-110.
- 6 Gafni, e. H. and Bertsekas, D. P., Two-metric Projection Methods for constrained Optimization, SIAM Journal On Control and Optimization 22 (1984), 836-964.
- Harker, P. T. and Pang, J. S., A damped-Newton Method for the Linear Complementarity Problem, in: G. Allgower and K. Georg, eds, Computational solutions of Nonlinear Systems of Equations, Lectures in Applied Mathematics, Vol. 26 (American Mathematical society, Providence, RI, (1990), 265-284.
- 8 Harker, P.T. and Pang, J. S., Finite-Dimensional Variational Inequality and Nonlinear Complementarity Problems: A Survey of Theory, Algorithms and Applications, Mathematical Programming, 48 (1990), 161-220.
- 9 Harker, P.T. and Pang, J.S., Modelling and Computational of Equilibria: A Variational Inequality Approach (Academic Press, NewYork, 1991).
- 10 Harker, P.T. and Xiao, B., Newton's Method for the Nonlinear Complementarity Problems: A B-differentiable Equation Approach, Mathematical Programming, 48 (1990), 339-357.
- 11 Karamardian, S., Generalized Complementarity Problems, JOTA, 8(1971), 747-756.
- 12 Karamardian, S. and Schaible, S., Seven Kinds of Monotone Maps, JOTA, 66(1990), 37-46.
- 13 Korpelevich, G. M., The Extragradient Method for Finding Saddle Points and Other Problems, Ekonomika imatematicheskie metody, 12 (1976), 747-756.
- 14 Lemke, C.E., On Complementarity Pivot Theory, in Mathematics of the Decision Sciences, G. B. Dantzig and A.F. Veinott (Eds), 1968.
- 15 Pang, J.S. and Chan, D., Iterative Methods for Variational and Complementarity Problems, Mathematical Prgramming, 24 (1982), 284-313.
- 16 Pang, J.S. and Qi, L., Nonsmooth Equations: Motivation and Algorithms, forthcoming in SIAM J. Optimization 3 (1993).
- 17 Polak, E., An Historical Survey of computational Methods in Optimal control, SIAM Rev. 15 (1973), 553-584.
- 18 Sun, D.F., A Hybrid Method for Nonlinear Complementarity Problem, manuscript.
- 2 Zarantonello, E. H., Projection on Convex Sets in Hilbert Space and Spectral Theory, in E. H. Zarantonello, ed., Contribuions to Nonlinear Functional Analysis (Academic Pressm, NewYork, 1971).