Metadata:

• Tags: #TLA

• Course: Theorie des langages et Automates

• Started On: 2020-10-21

Previous Chapter : <u>TLA- Les Langages Régulier et les expressions régulières</u>

• Next Chapter:

Slides

Summary

TLA-Les Automates finis

- qu'est ce que c'est?
 - un modele qui permet de reconaitre les mots d'un langages réguliers

Introduction

Automates Finis Deterministes

- un Automate d'états Finis Déterministe (AFD) est un 5-uplet M=(E,A,t,i,F) où :
 - E est un ensemble finis détats
 - A un alphabet (Alphabet d'entrée)
 - t une application ExA→E (Fonction de transition)
 - cette applicateion genere une seule image pour chaque couple (etat, symbole)
 - i in E : état initial
 - F subset or equals E : ensemble des états finaux
 - o etats pour lesquels un mot est accépté.
- Représentation d'un AFD:
 - · soit M un AFD
 - On représente M par un Graphe Orienté et étiqueté
- Fonction de Transition:
 - représentée par une Matrice de Transition
 - Utilité d'un ATF en theorie des langages :
 - L'afid lit le premier symbole s1 du mot w
 - l'afd va passer à un autre etat, disons e1 tel que t(i,s1)=e1

- l'afid lit le second symbole S2 du mot w et passe a léetat e2 tel que t(e1,s2)=e2
- l'afd poursuit ce processus de lecture jusqu'a l'arricée ç un etat en tel que t(en-1, sn) = en
- o l'afd lit donc les n symboles du mot w
- o si en in F, le mot w est reconnu par l'afd, sinon le mot est refus é

Transition itérée

- Application de l'ensemble E x A* → E definie par :
 - t*(e,epsilon)=e // condition d'arret
 - o t*(e,w)=t(t*(e,v),a) pour tout mot w = va ou a in A et

Reconaissance des mots par un AFD

Reconaissance d'in mot

Soit M(E, A, T, i, F) un AFD soit w = s1, s2, sk inA*

* on dit que w est reconnu par m si la sequence de transitions correspondant au symboles de w finit a partir de l'etat initial vers l'un des etats finaux de M

img

- ac
- 1. t(0,a)=1
- 2. t(1,c) = 0 in F
- 3. donc ac est accepté par l'automate
- accbb
 - 1. t(0,a)=1
 - 2. t(1,c)=0
 - 3. t(0,c)=2
 - 4. t(2,b)=3
 - 5. t(3,b)=3 in F donc accepté
- acb
 - 1. t(0,a)=1
 - 2. t(1,c)=0
 - 3. t(0,b)=1 not in F donc pas accepté
- acc
 - 1. t(0,a) = 1
 - 2. t(1,c) = 0
 - 3. t(0,c)=2 not in F donc pas accepté

Remarque:

• u x est recoonnu par afd sissi dans le graphe qui represente M il y a un chemin allant de l'état init vers un des etats finaux etiquetés par le symbole.

THEOREME: Reconnaissance d'un mot

langages reconnus par un afd

- reconaissance de langages:
 - un langage reconnu par M not I(m)

automates finis non deterministes

• exemple:

un automate fini non deterministe est un 5-uplet M(E,A,t,i,F)ou
E comme deterministe

Α

- * t est une application E x A \rightarrow P(E) ensemble des parties de E Remarque:
- a
- les afd deterministes et non deterministes se représente par un grpahe orienté etiqueté
- la reconaissance de mots par un AFND est identique a celle par un AFD
 - Cependant dans un AFD il ya unicité de la lecture d'un mot
- la lecture cu'n mot par un afnd peut ne pas etre unique(voir meme multiple)
- la regle retenue pour decider su in afnd accepte un mot est l'existence d'au moins une lecture allant de létat initial vers un état final de l'afnd

algorithmes de reconaissance de mots

Cas d'un AFD

- demarrage à l'état initial i.
- tant qu'il ya des sybomles non lus, on lit un symbole en entrée ;: de gauche a droite et on cherche la transition correspondante pour aboutir ç l'etat suivant
- s'il nya pas de transition le mot est refusé par l'algorithme
- · lorsque tous les symboles sont lu
 - o si on est sur un etat final le mot est accepté
 - o sinon il est refusé

Cas d'un AFND

• demarrage à l'etat initial

- tant qu'il ya des symboles enentrée non lus, on lit un symbole en entrée de gauche a droite et on cherche la transition correspondante pour aboutir à l'etat suivant
 - s'il ny a pas de transittion on revient en arrière ver le croisement et on choisit une autre transition
 - on repete cette action jsuq'a trouver une transition.
 - S'il n y a pas de transition le mot est refusé et l'algorithme s'arrete (cas d'un blocage)
 - s'il y a plusieurs transitions avec le mmeme symbole d'entrée eon prend une arbitrairement.

Equivalence AFD AFND

Theoreme AFD == AFND pour tout afnd m il existe un afd m' qui lui est equivalent, c'est à dire que L' reconnu le meme langage que M

Algorithme de transformation

- pour chaque etat e' in E' et pour chaque symbole d'entree a in A'
 - conciderer dans M toute sles transitions d'etiquette a issues d'un etat x in e'
- si ce groupe n'est pas encore dans E', créer ce nouvel état e'' et le rajouter a E'.
 - E' ←E' U {e"}
- rajuter la nouvelle transition t'(e',a)=e"
- jusqu'a ce que l'ensemble E' devienne stationnaire

Langage automatique

Definition Langage Automatique est un langage pour lequel on peut trouver un automate fini complet qui l'accepte totalement $L1\ automatique\ ssi\ \exists M\ un\ AFD\ ;\ L(M)=L1$

theoreme: Construction des langages automatiques Soit A un alphabet alots: tout langage reduit a un seul mot sur A est automatique le langage A* est automatique si L et M sont deux langages automatiques alors

- L inter M est automatique
- L+M est Automatique
- L\M est automatique
- Lbar est automatique

pour trouver le complémentaire d'un automate complet, tout etat final devient non final et tout etat non final devient final. C tou :3

Theoreme tout langage fini est automatique Demo: $L = \{m1...mn\}$; nmots $L=\{m1\}u\{m2\}....u\{mn\}$ qui sont automatiques par le theoreme de construction L est automatique demo 2: par récurrence.

<u>up</u>