CHAPITRE 11

Table des matières

I Modes de définition	2
II Limites	4
III Limites et inégalités	8
IV Suites extraites	11
V Suites récurrentes	13
VI Comparaison de suites	16
VII Suites complexes	19
VIII Annexe	23

Première partie Modes de définition

Ι

Définition: Une suite peut être définie

— <u>Explicitement</u> On dispose pour tout $n \in \mathbb{N}$ de l'expression de u_n en fonction de n.

$$ex \forall n \in \mathbb{N}_*, u_n = \frac{\ln(n)}{n} e^{-n}$$

— Par récurrence On connait u_{n+1} en fonction de u_0, u_1, \ldots, u_n

$$\underbrace{\text{ex}}_{n} \begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, u_{n+1} = \sin(u_n) \end{cases}$$

- <u>Implicitement</u> $\forall n \in \mathbb{N}, u_n$ est le seul nombre verifiant une certaine propriété
 - $\boxed{\text{ex}} u_n \text{ est le seul réel vérifiant } x^5 + nx 1 = 0$

Deuxième partie Limites

II Limites

Définition: Soit u une suite réelle et $\ell \in \mathbb{R}$. On dit que

- u converge vers ℓ
- u_n tends vers ℓ quand n tends vers $+\infty$
- ℓ est une limite de u

 \sin

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geqslant N, \quad |u_n - \ell| \leqslant \varepsilon \\ (\ell - \varepsilon \leqslant u_n \leqslant \ell + \varepsilon)$$

Figure 1 – Définition de la limite

Définition: Soit u une suite réelle.

On dit que u tends vers $+\infty$ si

$$\forall M \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \geqslant N, u_n \geqslant M$$

On dit que u tends vers $-\infty$ si

$$\forall m \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \geqslant N, u_n \leqslant m$$

Définition: Une suite qui ne converge pas est dite divergente (on dit qu'elle diverge). C'est le cas si cette suite n'a pas de limite quand elle tends vers $\pm \infty$.

Théorème (Unicité de la limite (réelle)): Soit
$$u \in \mathbb{R}^{\mathbb{N}}$$
, $(\ell_1, \ell_2) \in \overline{\mathbb{R}}^2$ Si $\begin{cases} u_n \xrightarrow[n \to +\infty]{n \to +\infty} \ell_1 \\ u_n \xrightarrow[n \to +\infty]{n \to +\infty} \ell_2 \end{cases}$ alors $\ell_1 = \ell_2$

REMARQUE:

Si u_n tends vers ℓ quand n tends vers $+\infty$, on écrit $u_n \xrightarrow[n \to +\infty]{} \ell$ ou $\lim_{n \to +\infty} u_n = \ell$ ou $\lim_{n \to +\infty} u_n = \ell$

Proposition: Toute suite convergente est bornée

Proposition: Soient $u \in \mathbb{R}^{\mathbb{N}}$ et $v \in \mathbb{R}^{\mathbb{N}}$. On pose $\ell_1 = \lim u_n$ et $\ell_2 = \lim v_n$

- 1. si $\ell_1 \in \mathbb{R}$ et $\ell_2 \in \mathbb{R}$ alors $u_n + v_n \to \ell_1 + \ell_2$
- 2. si $\ell_1 \in \mathbb{R}$ et $\ell_2 = +\infty$ alors $u_n + v_n \to +\infty$
- 3. si $\ell_1 \in \mathbb{R}$ et $\ell_2 = -\infty$ alors $u_n + v_n \to -\infty$
- 4. si $\ell_1 = \ell_2 = +\infty$, alors $u_n + v_n \to +\infty$

IILimites

5. si
$$\ell_1 = \ell_2 = -\infty$$
, alors $u_n + v_n \to -\infty$

Proposition: Soient u et v deux suites réelles. On pose $\ell_1 = \lim u_n$ et

1. si
$$\ell_1 \in \mathbb{R}$$
 et $\ell_2 \in \mathbb{R}$, alors $u_n v_n \to \ell_1 \ell_2$

2. si
$$\begin{cases} \ell_1 \in \mathbb{R}_*^+, \ell_2 = +\infty \text{ alors } u_n v_n \to +\infty \\ \ell_1 \in \mathbb{R}_*^-, \ell_2 = +\infty \text{ alors } u_n v_n \to -\infty \end{cases}$$

3. si
$$\begin{cases} \ell_1 \in \mathbb{R}_*^+, \ell_2 = -\infty \text{ alors } u_n v_n \to -\infty \\ \ell_1 \in \mathbb{R}_*^-, \ell_2 = -\infty \text{ alors } u_n v_n \to +\infty \end{cases}$$

1. si
$$\ell_1 \in \mathbb{R}$$
 et $\ell_2 \in \mathbb{R}$, alors $u_n v_n \to \ell_1 \ell_2$
2. si
$$\begin{cases} \ell_1 \in \mathbb{R}_*^+, \ell_2 = +\infty \text{ alors } u_n v_n \to +\infty \\ \ell_1 \in \mathbb{R}_*^-, \ell_2 = +\infty \text{ alors } u_n v_n \to -\infty \end{cases}$$
3. si
$$\begin{cases} \ell_1 \in \mathbb{R}_*^+, \ell_2 = -\infty \text{ alors } u_n v_n \to -\infty \\ \ell_1 \in \mathbb{R}_*^-, \ell_2 = -\infty \text{ alors } u_n v_n \to +\infty \end{cases}$$
4. si
$$\begin{cases} \ell_1 = -\infty, \ell_2 = +\infty \text{ alors } u_n v_n \to -\infty \\ \ell_1 = -\infty, \ell_2 = -\infty \text{ alors } u_n v_n \to +\infty \\ \ell_1 = +\infty, \ell_2 = +\infty \text{ alors } u_n v_n \to +\infty \end{cases}$$

Proposition: Soit $(u_n)_{n\in\mathbb{N}}$ une suite de \mathbb{R}_* .Donc, $\forall n\in\mathbb{N}, u_n\neq 0$ On pose $\ell = \lim u_n$ (si elle existe).

1. si
$$\ell = +\infty$$
 alors, $\frac{1}{u_n} \to 0$

2. si
$$\ell = 0$$
 alors, $\left| \frac{1}{u_n} \right| \to +\infty$

On pose $\ell = \min u_n$ (si elle existe).

1. si $\ell = +\infty$ alors, $\frac{1}{u_n} \to 0$ 2. si $\ell = 0$ alors, $\left| \frac{1}{u_n} \right| \to +\infty$ A Si le signe de u_n ne se stabilise pas $\frac{1}{u_n}$ n'a pas de limite $\boxed{\text{ex}} \ u_n = \frac{(-1)^n}{n}$ 3. si $\ell \in \mathbb{R}^*$, alors $\frac{1}{u_n} \xrightarrow[n \to +\infty]{} \frac{1}{\ell}$

$$\boxed{\text{ex}} u_n = \frac{(-1)^n}{n}$$

3. si
$$\ell \in \mathbb{R}^*$$
, alors $\frac{1}{u_n} \xrightarrow[n \to +\infty]{} \frac{1}{\ell}$

Troisième partie Limites et inégalités

Proposition: Soient u et v deux suites réelles convergentes de limites respectives ℓ_1 et $\ell_2.$ On suppose que

$$\forall n \in \mathbb{N}, u_n \leqslant v_n$$

Remarque:

Si
$$\begin{cases} u_n \to \ell_1 \in \mathbb{R} \\ v_n \to \ell_2 \in \mathbb{R} \\ \forall n \in \mathbb{N}, u_n < v_n \end{cases}$$

REMARQUE: $\begin{cases} u_n \to \ell_1 \in \mathbb{R} \\ v_n \to \ell_2 \in \mathbb{R} \\ \forall n \in \mathbb{N}, u_n < v_n \end{cases}$ on n'a pas forcément $\ell_1 < \ell_2$ $\boxed{\text{ex}} \ \forall n \in \mathbb{N}_*, \frac{1}{n+1} < \frac{1}{n} \text{ mais les deux convergent vers 0}$

Proposition: Soient u et v deux suites réelles telles que

$$\forall n \in \mathbb{N}, u_n < v_n$$

1. si
$$u_n \to +\infty, v_n \to +\infty$$

$$\forall n \in \mathbb{N}, u_n < v_n$$
 1. si $u_n \to +\infty, v_n \to +\infty$ 2. si $v_n \to -\infty, u_n \to -\infty$

Théorème (Théorème des "gendarmes"): Soient u, v et w trois suites réelles telles que

$$\forall n \in \mathbb{N}, u_n \leqslant v_n \leqslant w_n$$

On suppose que u et w convergent vers la même limite $\ell \in \mathbb{R}$. Alors, vconverge vers ℓ

Théorème (Limite monotone): 1. Soit u une suite croissante majorée par M.

Alors, u converge et $\lim u_n \leq M$

- 2. Soit u une suite croissante non majorée. Alors, $u_n \xrightarrow[n \to +\infty]{} +\infty$
- 3. Soit u une suite décroissante minorée par m. Alors, u converge et $\lim u_n \geqslant m$
- 4. Soit u une suite décroissante non minorée. Alors, $u_n \xrightarrow[n \to +\infty]{} -\infty$

Définition: Soient u et v deux suites réelles. On dit que u et v sont adjacentes si

- u est croissante
- v est décroissante
- $u_n v_n \xrightarrow[n \to +\infty]{} 0$

Théorème: Soient u et v deux suites adjacentes. Alors, u et v convergent vers la même limite.

Théorème (Théorème des segments emboîtés): Soit (I_n) une suite de segments (non vide) décroissante

$$\forall n \in \mathbb{N}, I_{n+1} \subset I_n$$

On note
$$\ell(I)$$
 la longueur d'un intervalle I .
Si $\ell(I_n) \xrightarrow[n \to +\infty]{} 0$ alors $\bigcap_{n \in \mathbb{N}} I_n$ est un singleton.

Quatrième partie

Suites extraites

Définition: Soit $u \in \mathbb{R}^{\mathbb{N}}$ et $\varphi : \mathbb{N} \to \mathbb{N}$ <u>strictement croissante</u>. On dit que $(u_{\varphi(n)})$ est une **suite extraite** de u ou une **sous suite** de u. On dit alors que φ est une extractrice

Lemme: Soit $\varphi: \mathbb{N} \to \mathbb{N}$ strictement croissante. Alors,

$$\forall n \in \mathbb{N}, \varphi(n) \geqslant n$$

Proposition: Soit $u \in \mathbb{R}^{\mathbb{N}}$ de limite $\ell \in \overline{\mathbb{R}}$ et $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante alors $u_{\varphi(n)} \xrightarrow{\mathbb{R}^n \setminus \mathbb{R}^n} \ell$.

Proposition: Si (u_{2n}) et (u_{2n+1}) ont la même limite ℓ alors $u_n \xrightarrow[n \to +\infty]{} \ell$

Théorème (Théorème de Bolzano-Weierstrass): Soit (u_n) une suite réelle bornée. Alors, il existe $\varphi: \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $\left(u_{\varphi(n)}\right)$ converge.

Cinquième partie Suites récurrentes

Définition: On dit que u est une suite récurrente linéaire d'ordre 2 à coefficients constants s'il existe $(a,b)\in\mathbb{C}$ tels que

$$\forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n$$

L'équation caractéristique associée est

$$(C): z^2 = az + b \text{ avec } z \in \mathbb{C}$$

Proposition: Avec les notations précédentes,

1. Si (C) a 2 racines simples $r_1 \neq r_2$ alors

$$\exists (A,B) \in \mathbb{C}^2, \forall n \in \mathbb{N}, u_n = Ar_1^n + Br_2^n$$

2. Si (C) a une racine double $r \in \mathbb{C}$ alors

$$\exists (A,B) \in \mathbb{C}^2, \forall n \in \mathbb{N}, u_n = (An+B)r^n$$

Proposition: avec les notations précédentes et avec $(a,b) \in \mathbb{R}^2$ et $(u_n) \in \mathbb{R}^{\mathbb{N}}$

1. Si (C) a deux racines simples $r_1 \neq r_2$ alors

$$\exists (A, B) \in \mathbb{R}^2, \forall n \in \mathbb{N}, u_n = Ar_1^n + Br_2^n$$

2. Si (C) a une racine simple $r \in \mathbb{R}$ alors

$$\exists (A,B) \in \mathbb{R}^2, \forall n \in \mathbb{N}, u_n = (An+B)r^n$$

3. Si (C) a deux racines complexes conjuguées $re^{i\theta}$ avec $r\in\mathbb{R}^+_*$ et $\theta\in\left[0,\frac{\pi}{2}\right[$ alors

$$\exists (A,B) \in \mathbb{R}^2, \forall n \in \mathbb{N}, u_n = r^n (A\cos(n\theta) + B\sin(n\theta))$$

REMARQUE:

Étude de $u_{n+1} = f(u_n)$

- 1. On choisit rapidement la fonction f (au moins le tableau de variation)
- 1'. (OPTIONNEL) on représente graphiquement la fonction f et la droite d'équation y=x pour conjecturer sa limite
- 2. On utilise le tableau de variation pour vérifier que (u_n) est bien définie par récurrence

$$P(n)$$
: " u_n existe et $u_n \in \mathscr{D}_f$ "

14

- 3. On étudie le signe de f(x) x
- 4. On cherche les intervalles stables par f:

$$f(I) \subset I$$

les plus petits possible (ça permet de montrer que la suite est majorée (minorée) en particulier ceux sur lesquels f(x) - x ne change pas de signe

- 4'. Donc on utilise le théorème de la limite monotone
- 4". Sinon, on essaie l'inégalité (voir théorème) des accroissements finis : Soit ℓ un point fixe de $f:f(\ell)=\ell$

$$\forall n \in \mathbb{N}, |u_{n+1} - \ell| = |f(u_n) - f(\ell)| = M |u_n - \ell|$$

où M est un majorant de |f| Si $0\leqslant M\leqslant 1$ alors

$$\forall n \in \mathbb{N}, |u_n - \ell| \leqslant M^n |u_n - \ell| \xrightarrow[n \to +\infty]{} 0$$

donc $u_n \xrightarrow[n \to +\infty]{} \ell$

5. si (u_n) a une limite et si f continue alors $\lim(u_n)$ est une point fixe de f

Sixième partie Comparaison de suites

VI

Définition: Soient u et v deux suites réelles. On dit que u est dominée par v si

$$\exists M \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \geqslant N, |u_n| \leqslant M |v_n|$$

Dans ce cas, on note u = O(v) ou $u_n = O(v_n)$ et on dit que "u est un grand

Proposition: O est une relation réfléctive et transitive.

Définition: Soient u et v deux suites. On dit que u est négligeable devant v si

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geqslant N, |u_n| \leqslant \varepsilon \, |v_n|$$

Dans ce cas, on note u = o(v) ou $u_n = o(v_n)$ ou on le lit "u est un petit o

Proposition: o est une relation transitive, non-réfléctive

Proposition: Soient u et v deux suites.

- --o(u) + o(u) = o(u)
- $-v \times o(u) = o(uv)$ $-o(u) \times o(v) = o(uv)$ -o(o(u)) = o(u)

Définition: Soient u et v deux suites. On dit que u et v sont équivalentes \sin

$$u = v + o(v)$$

i.e.

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geqslant N, |u_n - v_n| \leqslant \varepsilon |v_n|$$

Dans ce cas, on le note $u \sim v$

Proposition: \sim est une relation d'équivalence

Proposition: Soient $(u,v) \in \mathbb{R}^{\mathbb{N}}$. On suppose que v ne s'annule pas à partir d'un certain rang

1.
$$u = o(v) \iff \left(\frac{u_n}{v_n}\right)$$
 bornée
2. $u = o(v) \iff \frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 0$
3. $u \sim v \iff \frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 1$

2.
$$u = o(v) \iff \frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 0$$

3.
$$u \sim v \iff \frac{u_n}{v_n} \xrightarrow[n \to +\infty]{} 1$$

Proposition (Suites de références): 1. $\ln^{\alpha}(n) = o(n^{\beta})$ avec $(\alpha, \beta) \in (\mathbb{R}_{*}^{+})^{2}$ 2. $n^{\beta} = o(a^{n})$ avec $\beta > 0$ et a > 13. $a^{n} = o(n!)$ avec a > 14. $n! = o(n^{n})$

1.
$$\ln^{\alpha}(n) = o(n^{\beta})$$
 avec $(\alpha, \beta) \in$

$$2 \quad n^{\beta} = o(a^n) \text{ avec } \beta > 0 \text{ et } a > 1$$

3.
$$a^n = o(n!)$$
 avec $a > 1$

4.
$$n! = o(n^n)$$

Lemme (Exercice 10 du TD): Soit
$$u \in (\mathbb{R}_*^+)^{\mathbb{N}}$$

Si $\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} \ell < 1$ avec $\ell \in \mathbb{R}$, alors $u_n \xrightarrow[n \to +\infty]{} 0$

Septième partie Suites complexes

Proposition: Si ℓ_1 et ℓ_2 sont deux limites de u alors $\ell_1 = \ell_2$

FIGURE 4 – Unicité de la limite de suites complexes

Proposition: Les limites de somme, produit, quotient de suites complexes respectent les mêmes lois que pour les suites réelles. \Box

Théorème: Soit $u \in \mathbb{C}^{\mathbb{N}}$ et $\ell \in \mathbb{C}$.

$$u_n \xrightarrow[n \to +\infty]{} \ell \iff \begin{cases} \mathfrak{Re}(u_n) \xrightarrow[n \to +\infty]{} \mathfrak{Re}(\ell) \\ \mathfrak{Im}(u_n) \xrightarrow[n \to +\infty]{} \mathfrak{Im}(\ell) \end{cases}$$

 $\begin{array}{ll} \textbf{Proposition:} & \text{Soit } u \in \mathbb{C}^{\mathbb{N}} \text{ et } \ell \in \mathbb{C}. \\ \text{Si } u_n \to \ell \text{ alors } |u_n| \to |\ell| \\ \end{array}$

Proposition: Tous les résultats (sauf ceux avec des limites infinies!) concernant les suites extraites sont encore valables dans $\mathbb C$ y compris le théorème de Bolzano-Weierstrass (mais avec une autre preuve).

Théorème (Bolzano Weierstrass): Soit $u \in \mathbb{C}^{\mathbb{N}}$ bornée. Il existe $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $(u_{\varphi(n)})$ converge.

Huitième partie Annexe

VIII Annexe

Proposition: Soit $f: I \to I$ continue et $(u_n)_{n \in \mathbb{N}}$ définie par

$$\begin{cases} u_0 \in I \\ \forall n \in \mathbb{N}, u_{n+1} = f(u_n) \end{cases}$$

Si (u_n) converge vers $\ell \in \mathbb{R}$ alors $f(\ell) = \ell$ i.e. $(\ell \text{ est un point fixe de } f)$

REMARQUE:

Soit $u \in \mathbb{R}^{\mathbb{N}}$ et $f : \mathbb{R} \to \mathbb{R}$ dérivable telle que $u_{n+1} = f(u_n)$. Soit $\ell \in \mathbb{R}$ un point fixe de f. Donc, $f(\ell) = \ell$.

 $|f'(\ell)| > 1$:

 $|f'(\ell)| < 1$:

Par contre, si $|f'(\ell)| = 1$, on ne sait pas.

Remarque (Suite arithético-géométrique):

$$(*): \forall n \in \mathbb{N}, u_{n+1} = au_n + b = f(u_n)$$

Méthode 1

— On cherche v une suite constante solution de (*):

$$\exists C \in \mathbb{R}, \forall n \in \mathbb{N}, v_n = C$$

donc

$$\forall n \in \mathbb{N}, C = aC + b = f(C)$$

Si
$$a \neq 1$$
: $C = \frac{b}{1-a}$
Soit u qui vérifie (*). On pose $w = u - v$.

$$\forall n \in \mathbb{N}, w_{n+1} = u_{n+1} - v_{n+1}$$

$$= au_n + b - av_n - b$$

$$= a(u_n - v_n)$$

$$= aw_n$$

VIII Annexe

Donc $\forall n \in \mathbb{N}, w_{n+1} = aw_n + 0$: équation homogène associée à (*) (w_n) est géométrique donc

$$\forall n \in \mathbb{N}, w_n = w_0 a^n$$

et donc

$$\forall n \in \mathbb{N}, u_n = w_0 a^n + \frac{b}{1 - a}$$

MÉTHODE 2

$$\varphi: \mathbb{R}^{\mathbb{N}} \longrightarrow \mathbb{R}^{\mathbb{N}}$$

$$(u_n) \longmapsto (u_{n+1} - au_n)$$

 φ morphisme de groupes additifs

$$\varphi(u) = (b) \iff u = v + w \text{ avec } w \in \text{Ker}(\varphi)$$

$$w \in \text{Ker}(\varphi) \iff \varphi(w) = 0$$

$$\iff \forall n \in \mathbb{N}, w_{n+1} - aw_n = 0$$

$$\iff \forall n \in \mathbb{N}, w_{n+1} = aw_n$$