

正基科技股份有限公司

SPECIFICATION

SPEC. NO.		REV:	1.0
DATE:	07. 25.2014	<u>~</u>	
PRODUCT	NAME:	AP6356	1

	APPROVED	CHECKED	PREPARED	DCC ISSUE
NAME				

AMPAK

AP6356

2x2 WiFi + Bluetooth4.1 Module Spec Sheet

Revision History

Date	Revision Content	Revised By	Version
2014/07/25	-Preliminary	Brian	1.0
			(
	4	- 4	
		. 6	10
		9,7/	
	Magra II	V & 6	9

Contents

Co	ontents	2
1.	Introduction	4
2.		
3.	Deliverables	6
	3.1 Deliverables	
	3.2 Regulatory certifications	
4.	General Specification	
	4.1 General Specification	7
	4.2 Voltages	
	4.2.1 Absolute Maximum Ratings	
	4.2.2 Recommended Operating Rating	
	The module requires two power supplies: VBAT and VDDIO	7
5.	WiFi RF Specification	8
	5.1 2.4GHz RF Specification	
	5.2 5GHz RF Specification	
6.	Bluetooth Specification	
	6.1 Bluetooth Specification	
7.	Pin Assignments	
	7.1 Pin Outline	
	7.2 Pin Definition	
8.	Dimensions	
	8.1 Physical Dimensions	
	8.2 Layout Recommendation	20
9.	External clock reference	21
	9.1 SDIO Pin Description	21
10	.Host Interface Timing Diagram	22
	10.1 Power-up Sequence Timing Diagram	22
	10.2 SDIO Default Mode Timing Diagram	
	10.3 SDIO High Speed Mode Timing Diagram	25
	10.4 SDIO Bus Timing Specifications in SDR Modes	26
	10.5 SDIO Bus Timing Specifications in DDR50 Mode	
	.Recommended Reflow Profile	
12	. Package Information	
	12.1Label	
	bel C→ Inner box label	
La	bel D→ Carton box label	30

12.2 Dimension	. 31
12.3 MSL Level / Storage Condition	. 33

1. Introduction

AMPAK Technology would like to announce a low-cost and low-power consumption module which has all of the WiFi and Bluetooth functionalities. The highly integrated module makes the possibilities of web browsing, VoIP, Bluetooth headsets applications. With seamless roaming capabilities and advanced security, also could interact with different vendors' 802.11a/b/g/n/ac 2x2 Access Points in the wireless LAN.

The wireless module complies with IEEE 802.11 a/b/g/n/ac 2x2 MIMO standard and it can achieve up to a speed of 867Mbps with dual stream in 802.11n to connect the wireless LAN. The integrated module provides SDIO/PCIe interface for WiFi, UART / PCM interface for Bluetooth.

This compact module is a total solution for a combination of WiFi + BT technologies. The module is specifically developed for Smart phones and Portable devices.

2. Features

- Lead Free design which is compliant with ROHS requirements.
- 802.11a/b/g/n/ac dual-band radio with virtual-simultaneous dual-band operation
- Dual-stream spatial multiplexing up to 867 Mbps data rate.
- Supports 20, 40, 80 MHz channels with optional SGI(256 QAM modulation)
- Supports IEEE 802.11 ac/n beam forming.
- Supports IEEE 802.15.2 external coexistence interface to optimize bandwidth utilization with other co-located wireless technologies such as LTE, GPS, or WiMAX.
 - Supports standard SDIO/PCle interfaces.
- BT host digital interface:
 - HCI UART (up to 4 Mbps)
 - PCM for audio data
- Complies with Bluetooth Core Specification Version 4.1 with provisions for supporting future specifications. With Bluetooth Class 1 or Class2 transmitter operation.
- Supports extended synchronous connections (eSCO), for enhanced voice quality by allowing for retransmission of dropped packets.
- Adaptive frequency hopping (AFH) for reducing radio frequency interference.

A simplified block diagram of the module is depicted in the figure below.

3. Deliverables

3.1 Deliverables

The following products and software will be part of the product.

- Module with packaging
- **Evaluation Kits**
- Software utility for integration, performance test.
- Product Datasheet.
- Agency certified pre-tested report with the adapter board.

3.2 Regulatory certifications

The product delivery is a pre-tested module, without the module level certification. For module approval, the platform's antennas are required for the certification.

4. General Specification

4.1 General Specification

Model Name	AP6356
Woder Name	AF0330
Product Description	Support WiFi/Bluetooth functionalities
Dimension	L x W x H: 15 x 13 x 1.5 (typical) mm
WiFi Interface	Support SDIO/PCIe
BT Interface	UART / PCM
Operating temperature	-10°C to 65°C
Storage temperature	-40°C to 85°C
Humidity	Operating Humidity 10% to 95% Non-Condensing

4.2 Voltages

4.2.1 Absolute Maximum Ratings

Symbol	Description		Min.	Max.	Unit
VBAT	Input supply Voltage		-0.5	5.5	V
VDDIO	Digital/Bluetooth/SDIO/ I/O Voltage			3.8	V

4.2.2 Recommended Operating Rating

The module requires two power supplies: VBAT and VDDIO.

	Min.	Тур.	Max.	Unit
Operating Temperature	-10	25	65	deg.C
VBAT	3.0	3.6	4.8	V
VDDIO	1.7	-	3.6	V

5. WiFi RF Specification

5.1 2.4GHz RF Specification

Conditions: VBAT=3.6V; VDDIO=3.3V; Temp:25°C

Feature	Description
WLAN Standard	IEEE 802.11a/b/g/n/ac WiFi compliant
Frequency Range	2.400 GHz ~ 2.497 GHz (2.4 GHz ISM Band)
Number of Channels	2.4GHz: Ch1 ~ Ch14
Modulation	802.11b : DQPSK, DBPSK, CCK
Modulation	802.11 g/n : OFDM /64-QAM,16-QAM, QPSK, BPSK
	802.11b /11Mbps : 16 dBm ± 1.5 dB @ EVM ≤ -9dB
	802.11g /54Mbps : 15 dBm \pm 1.5 dB @ EVM \leq -25dB
Output Power	802.11n /MCS7 : 14 dBm ± 1.5 dB @ EVM ≤ -28dB
. 110	802.11ac/256-QAM(R=3/4) : 13 dBm \pm 1.5 dB @ EVM \leq -30dB
	802.11ac/256-QAM(R=5/6) : 11 dBm \pm 1.5 dB @ EVM \leq -32dB
SISO Possivo	- 1Mbps PER @ -94 dBm, typical
SISO Receive Sensitivity (11b,20MHz)	- 2Mbps PER @ -92 dBm, typical
@8% PER	- 5.5Mbps PER @ -89 dBm, typical
@0701 LIX	- 11Mbps PER @ -87 dBm, typical
	- 6Mbps PER @ -91 dBm, typical
V .	- 9Mbps PER @ -90 dBm, typical
SISO Receive	- 12Mbps PER @ -89 dBm, typical
Sensitivity (11g,20MHz)	- 18Mbps PER @ -86 dBm, typical
@10% PER	- 24Mbps PER @ -83 dBm, typical
	- 36Mbps PER @ -80 dBm, typical
(0	- 48Mbps PER @ -75 dBm, typical
	- 54Mbps PER @ -73 dBm, typical
	- 6Mbps PER @ -92 dBm, typical
	- 9Mbps PER @ -92 dBm, typical
MIMO Dessive	- 12Mbps PER @ -91 dBm, typical
MIMO Receive	- 18Mbps PER @ -89 dBm, typical
Sensitivity (11g,20MHz) @10% PER	- 24Mbps PER @ -86 dBm, typical
W 10 /0 1 LIX	- 36Mbps PER @ -83 dBm, typical
	- 48Mbps PER @ -78 dBm, typical
	- 54Mbps PER @ -76 dBm, typical

	- MCS=0 PER @ -91 dBm, typical
SISO Receive	- MCS=1 PER @ -88 dBm, typical
	- MCS=2 PER @ -86 dBm, typical
Sensitivity (11n,20MHz)	- MCS=3 PER @ -82 dBm, typical
@10% PER	- MCS=4 PER @ -79 dBm, typical
@10701 LIX	- MCS=5 PER @ -74 dBm, typical
	- MCS=6 PER @ -73 dBm, typical
	- MCS=7 PER @ -71 dBm, typical
	- MCS=0 PER @ -92 dBm, typical
	- MCS=1 PER @ -91 dBm, typical
	- MCS=2 PER @ -89 dBm, typical
MINAO D	- MCS=3 PER @ -86 dBm, typical
MIMO Receive	- MCS=4 PER @ -82 dBm, typical
Sensitivity (11n,20MHz)	- MCS=5 PER @ -77 dBm, typical
@10% PER	- MCS=6 PER @ -75 dBm, typical
The second	- MCS=7 PER @ -74 dBm, typical
A 117	- MCS=8 PER @ -89 dBm, typical
18.00	- MCS=15 PER @ -70 dBm, typical
	- MCS=0 PER @ -88 dBm, typical
Ref h	- MCS=1 PER @ -85 dBm, typical
0100 0	- MCS=2 PER @ -83 dBm, typical
SISO Receive	- MCS=3 PER @ -80 dBm, typical
Sensitivity (11n,40MHz)	- MCS=4 PER @ -76 dBm, typical
@10% PER	- MCS=5 PER @ -72 dBm, typical
	- MCS=6 PER @ -70 dBm, typical
	- MCS=7 PER @ -69 dBm, typical
	- MCS=0 PER @ -90 dBm, typical
	- MCS=1 PER @ -88 dBm, typical
	- MCS=2 PER @ -86 dBm, typical
MIMO Receive Sensitivity (11n,40MHz)	- MCS=3 PER @ -83 dBm, typical
	- MCS=4 PER @ -79 dBm, typical
	- MCS=5 PER @ -75 dBm, typical
@10% PER	- MCS=6 PER @ -73 dBm, typical
	- MCS=7 PER @ -72 dBm, typical
	- MCS=8 PER @ -88 dBm, typical
	- MCS=15 PER @ -69 dBm, typical
SISO Receive	- MCS=0, NSS1 PER @ -90 dBm, typical

Sensitivity	- MCS=1, NSS1 PER @ -87 dBm, typical
(11ac,20MHz) @10%	- MCS=2, NSS1 PER @ -86 dBm, typical
PER	- MCS=3, NSS1 PER @ -82 dBm, typical
	- MCS=4, NSS1 PER @ -79 dBm, typical
	- MCS=5, NSS1 PER @ -74 dBm, typical
	- MCS=6, NSS1 PER @ -72 dBm, typical
	- MCS=7, NSS1 PER @ -71 dBm, typical
	- MCS=8, NSS1 PER @ -68 dBm, typical
	- MCS=0, NSS1 PER @ -90 dBm, typical
	- MCS=1, NSS1 PER @ -89 dBm, typical
	- MCS=2, NSS1 PER @ -88 dBm, typical
14114 C D :	- MCS=3, NSS1 PER @ -85 dBm, typical
MIMO Receive	- MCS=4, NSS1 PER @ -82 dBm, typical
Sensitivity	- MCS=5, NSS1 PER @ -77 dBm, typical
(11ac,20MHz) @10% PER	- MCS=6, NSS1 PER @ -76 dBm, typical
FER	- MCS=7, NSS1 PER @ -74 dBm, typical
	- MCS=8, NSS1 PER @ -70 dBm, typical
11.40	- MCS=0, NSS2 PER @ -90 dBm, typical
V 11.4	- MCS=8, NSS2 PER @ -66 dBm, typical
R. S. B.	- MCS=0, NSS1 PER @ -87 dBm, typical
	- MCS=1, NSS1 PER @ -85 dBm, typical
W.	- MCS=2, NSS1 PER @ -83 dBm, typical
SISO Receive	- MCS=3, NSS1 PER @ -80 dBm, typical
Sensitivity	- MCS=4, NSS1 PER @ -76 dBm, typical
(11ac,40MHz) @10%	- MCS=5, NSS1 PER @ -72 dBm, typical
PER	- MCS=6, NSS1 PER @ -70 dBm, typical
	- MCS=7, NSS1 PER @ -69 dBm, typical
	- MCS=8, NSS1 PER @ -64 dBm, typical
	- MCS=9, NSS1 PER @ -63 dBm, typical
	- MCS=0, NSS1 PER @ -89 dBm, typical
* = =	- MCS=1, NSS1 PER @ -88 dBm, typical
MIMO Receive	- MCS=2, NSS1 PER @ -86 dBm, typical
Sensitivity	- MCS=3, NSS1 PER @ -83 dBm, typical
(11ac,40MHz) @10%	- MCS=4, NSS1 PER @ -78 dBm, typical
PER	- MCS=5, NSS1 PER @ -75 dBm, typical
	- MCS=6, NSS1 PER @ -73 dBm, typical

	- MCS=8, NSS1 PER @ -68 dBm, typical
	- MCS=9, NSS1 PER @ -66 dBm, typical
	- MCS=0, NSS2 PER @ -87 dBm, typical
	- MCS=9, NSS2 PER @ -62 dBm, typical
Maximum Input Laval	802.11b : -10 dBm
Maximum Input Level	802.11g/n : -20 dBm
Antenna Reference Small antennas with 0~2 dBi peak gain	

5.2 5GHz RF Specification

Conditions : VBAT=3.6V ; VDDIO=3.3V ; Temp:25 $^{\circ}$ C

Feature	Description			
WLAN Standard	IEEE 802.11a/n 2x2, WiFi compliant			
Frequency Range	4.900 GHz ~ 5.845 GHz (5.0 GHz ISM Band)			
Number of Channels	5.0GHz: Please see the table ¹			
	802.11a : OFDM /64-QAM,16-QAM, QPSK, BPSK			
Modulation	802.11n : OFDM /64-QAM,16-QAM, QPSK, BPSK			
	802.11ac : OFDM /256-QAM			
	802.11a /54Mbps : 13 dBm ± 1.5 dB @ EVM ≤ -25dB			
Output Power	802.11n /MCS7 : 12 dBm ± 1.5 dB @ EVM ≤ -28dB			
	802.11ac /MCS9 : 10 dBm ± 1.5 dB @ EVM ≤ -32dB			
	- 6Mbps PER @ -90 dBm, typical			
	- 9Mbps PER @ -89 dBm, typical			
	- 12Mbps PER @ -88 dBm, typical			
SISO Receive Sensitivity	- 18Mbps PER @ -85 dBm, typical			
(11a,20MHz) @10% PER	- 24Mbps PER @ -82 dBm, typical			
	- 36Mbps PER @ -79 dBm, typical			
	- 48Mbps PER @ -74 dBm, typical			
	- 54Mbps PER @ -72 dBm, typical			

	1	
	- 6Mbps	PER @ -91 dBm, typical
	- 9Mbps	PER @ -91 dBm, typical
	- 12Mbps	PER @ -90 dBm, typical
MIMO Receive Sensitivity	- 18Mbps	PER @ -88 dBm, typical
(11a,20MHz) @10% PER	- 24Mbps	PER @ -85 dBm, typical
	- 36Mbps	PER @ -82 dBm, typical
	- 48Mbps	PER @ -77 dBm, typical
	- 54Mbps	PER @ -73 dBm, typical
	- MCS=0	PER @ -90 dBm, typical
	- MCS=1	PER @ -87 dBm, typical
	- MCS=2	PER @ -85 dBm, typical
SISO Receive Sensitivity	- MCS=3	PER @ -82 dBm, typical
(11n,20MHz) @10% PER	- MCS=4	PER @ -78 dBm, typical
	- MCS=5	PER @ -73 dBm, typical
	- MCS=6	PER @ -72 dBm, typical
	- MCS=7	PER @ -70 dBm, typical
	- MCS=0	PER @ -91 dBm, typical
201 -	- MCS=1	PER @ -90 dBm, typical
	- MCS=2	PER @ -88 dBm, typical
	- MCS=3	PER @ -85 dBm, typical
MIMO Receive Sensitivity	- MCS=4	PER @ -81 dBm, typical
(11n,20MHz) @10% PER	- MCS=5	PER @ -76 dBm, typical
V	- MCS=6	PER @ -75 dBm, typical
	- MCS=7	PER @ -73 dBm, typical
	- MCS=8	PER @ -90 dBm, typical
	- MCS=15	PER @ -70 dBm, typical
	- MCS=0	PER @ -87 dBm, typical
	- MCS=1	PER @ -84 dBm, typical
	- MCS=2	PER @ -82 dBm, typical
SISO Receive Sensitivity	- MCS=3	PER @ -79 dBm, typical
(11n,40MHz) @10% PER	- MCS=4	PER @ -75 dBm, typical
	- MCS=5	PER @ -71 dBm, typical
	- MCS=6	PER @ -69 dBm, typical
	- MCS=7	PER @ -68 dBm, typical
MILO D	- MCS=0	PER @ -89 dBm, typical
MIMO Receive Sensitivity	- MCS=1	PER @ -87 dBm, typical
(11n,40MHz) @10% PER	- MCS=2	PER @ -85 dBm, typical
	<u> </u>	- 71

	- MCS=3 PER @ -82 dBm, typical
	<u> </u>
	- MCS=4 PER @ -78 dBm, typical
	- MCS=5 PER @ -74 dBm, typical
	- MCS=6 PER @ -72 dBm, typical
	- MCS=7 PER @ -71 dBm, typical
	- MCS=8 PER @ -87 dBm, typical
	- MCS=15 PER @ -68 dBm, typical
	- MCS=0, NSS1 PER @ -88 dBm, typical
	- MCS=1, NSS1 PER @ -86 dBm, typical
	- MCS=2, NSS1 PER @ -84 dBm, typical
SISO Receive Sensitivity	- MCS=3, NSS1 PER @ -81 dBm, typical
(11ac,20MHz) @10% PER	- MCS=4, NSS1 PER @ -77 dBm, typical
(11ac,2011112) @10701 EIX	- MCS=5, NSS1 PER @ -72 dBm, typical
40	- MCS=6, NSS1 PER @ -71 dBm, typical
V	- MCS=7, NSS1 PER @ -70 dBm, typical
17 173	- MCS=8, NSS1 PER @ -66 dBm, typical
	- MCS=0, NSS1 PER @ -90 dBm, typical
10 m	- MCS=1, NSS1 PER @ -89 dBm, typical
V 11.00	- MCS=2, NSS1 PER @ -87 dBm, typical
100	- MCS=3, NSS1 PER @ -84 dBm, typical
MIMO Receive Sensitivity	- MCS=4, NSS1 PER @ -80 dBm, typical
	- MCS=5, NSS1 PER @ -75 dBm, typical
(11ac,20MHz) @10% PER	- MCS=6, NSS1 PER @ -74 dBm, typical
46	- MCS=7, NSS1 PER @ -73 dBm, typical
	- MCS=8, NSS1 PER @ -69 dBm, typical
	- MCS=0, NSS2 PER @ -89 dBm, typical
	- MCS=8, NSS2 PER @ -65 dBm, typical
	- MCS=0, NSS1 PER @ -86 dBm, typical
Ø 1	- MCS=1, NSS1 PER @ -83 dBm, typical
	- MCS=2, NSS1 PER @ -81 dBm, typical
	- MCS=3, NSS1 PER @ -78 dBm, typical
SISO Receive Sensitivity	- MCS=4, NSS1 PER @ -75 dBm, typical
(11ac,40MHz) @10% PER	- MCS=5, NSS1 PER @ -70 dBm, typical
(· · · · · · · · · · · · · · · · · · ·	- MCS=6, NSS1 PER @ -69 dBm, typical
	- MCS=7, NSS1 PER @ -68 dBm, typical
	- MCS=8, NSS1 PER @ -63 dBm, typical
	- MCS=9, NSS1 PER @ -62 dBm, typical
	- IVIOS-3, INSST FER W -02 UDIII, typical

	- MCS=0, NSS1 PER @ -88 dBm, typical
	- MCS=1, NSS1 PER @ -86 dBm, typical
-	- MCS=2, NSS1 PER @ -84 dBm, typical
	- MCS=3, NSS1 PER @ -81 dBm, typical
	- MCS=4, NSS1 PER @ -78 dBm, typical
MIMO Receive Sensitivity	- MCS=5, NSS1 PER @ -73 dBm, typical
(11ac,40MHz) @10% PER	- MCS=6, NSS1 PER @ -72 dBm, typical
	- MCS=7, NSS1 PER @ -71 dBm, typical
	- MCS=8, NSS1 PER @ -66 dBm, typical
	- MCS=9, NSS1 PER @ -65 dBm, typical
	- MCS=0, NSS2 PER @ -86 dBm, typical
	- MCS=9, NSS2 PER @ -61 dBm, typical
A	- MCS=0, NSS1 PER @ -83 dBm, typical
	- MCS=1, NSS1 PER @ -80 dBm, typical
V	- MCS=2, NSS1 PER @ -78 dBm, typical
17 17	- MCS=3, NSS1 PER @ -74 dBm, typical
SISO Receive Sensitivity	- MCS=4, NSS1 PER @ -71 dBm, typical
(11ac,80MHz) @10% PER	- MCS=5, NSS1 PER @ -68 dBm, typical
	- MCS=6, NSS1 PER @ -66 dBm, typical
100	- MCS=7, NSS1 PER @ -64 dBm, typical
	- MCS=9, NSS1 PER @ -60 dBm, typical
	- MCS=9, NSS1 PER @ -58 dBm, typical
V	- MCS=0, NSS1 PER @ -84 dBm, typical
	- MCS=1, NSS1 PER @ -83 dBm, typical
	- MCS=2, NSS1 PER @ -81 dBm, typical
	- MCS=3, NSS1 PER @ -77 dBm, typical
	- MCS=4, NSS1 PER @ -74 dBm, typical
MIMO Receive Sensitivity	- MCS=5, NSS1 PER @ -71 dBm, typical
(11ac,80MHz) @10% PER	- MCS=6, NSS1 PER @ -69 dBm, typical
	- MCS=7, NSS1 PER @ -67 dBm, typical
	- MCS=8, NSS1 PER @ -63 dBm, typical
	- MCS=9, NSS1 PER @ -61 dBm, typical
	- MCS=0, NSS2 PER @ -82 dBm, typical
	- MCS=9, NSS2 PER @ -57 dBm, typical
	- MCS=9, NSS2 PER @ -57 dBm, typical
Maximum Input Level	802.11a/n: -30 dBm

¹5GHz(20MHz) Channel table

Band (GHz)	Operating Channel Numbers	Channel center frequencies(MHz)
	36	5180
5.15GHz~5.25GHz	40	5200
5.15GHZ~5.25GHZ	44	5220
	48	5240
	52	5260
5.25GHz~5.35GHz	56	5280
5.25GHZ 5.55GHZ	60	5300
	64	5320
	100	5500
	104	5520
	108	5540
	112	5560
	116	5580
5.5GHz~5.7GHz	120	5600
	124	5620
	128	5640
	132	5660
	136	5680
	140	5700
62.67 1	149	5745
5.725GHz~5.825GHz	153	5765
5./25UHZ~5.825UHZ	157	5785
	161	5805

6. Bluetooth Specification

6.1 Bluetooth Specification

Conditions: VBAT=3.6V; VDDIO=3.3V; Temp:25°C

Feature	Description		A			
General Specification	- 1					
Bluetooth Standard	Bluetooth V4.1	of 1, 2 and 3 Mbps.	O D			
Host Interface	UART					
Antenna Reference	Small antennas	s with 0~2 dBi peak (gain			
Frequency Band	2402 MHz ~ 24	80 MHz				
Number of Channels	79 channels	79 channels				
Modulation	FHSS, GFSK,	FHSS, GFSK, DPSK, DQPSK				
RF Specification		V 3				
. 11.00.	Min.	Typical.	Max.			
Output Power (Class 1.5)	100	10 dBm				
Output Power (Class 2)	18.11	2 dBm				
Sensitivity @ BER=0.1% for GFSK (1Mbps)		-86 dBm				
Sensitivity @ BER=0.01% for π/4-DQPSK (2Mbps)	1.	-86 dBm				
Sensitivity @ BER=0.01% for 8DPSK (3Mbps)		-80 dBm				
	GFSK (1Mbps):-20dBm					
Maximum Input Level	π/4-DQPSK (2	π/4-DQPSK (2Mbps) :-20dBm				
	8DPSK (3Mbps	8DPSK (3Mbps) :-20dBm				

7. Pin Assignments

7.1 Pin Outline

7.2 Pin Definition

NO	Name	Туре	Description			
1	GND	B.	Ground connections			
2	WL/BT_ANT0	I/O	RF I/O port0			
3	GND		Ground connections			
4	GND	_	Ground connections			
5	GND		Ground connections			
6	GND		Ground connections			
7	GND		Ground connections			
8	GND		Ground connections			
9	WL_ANT1	I/O	RF I/O port1			
10	GND		Ground connections			
11	GND	_	Ground connections			
12	PCIE_PERST	I	PCIE system reset			
13	XTAL_OUT	0	External Crystal out			

14	XTAL IN	I	External Crystal in/ Single clock source in		
15	WL REG ON	I	Low asserting reset for WiFi core		
16	WL_HOST_WAKE	0	WLAN to wake-up HOST		
17	SDIO_DATA_CMD	I/O	SDIO command line		
18	SDIO_DATA_CLK	I/O	SDIO clock line		
19	SDIO_DATA_3	I/O	SDIO data line 3		
20	SDIO_DATA_2	I/O	SDIO data line 2		
21	SDIO_DATA_0	I/O	SDIO data line 0		
22	SDIO_DATA_1	I/O	SDIO data line 1		
23	GND	-	Ground connections		
24	PCIE_PME_L	0	PCIE power management event output		
25	VIN_LDO	Р	Internal Buck voltage generation pin		
26	VIN_LDO_OUT	Р	Internal Buck voltage generation pin		
27	PCM_SYNC	I/O	PCM sync signal		
28	PCM_IN		PCM data input		
29	PCM_OUT	0	PCM Data output		
30	PCM_CLK	I/O	PCM clock		
31	LPO	I	External Low Power Clock input (32.768KHz)		
32	GND	- 2	Ground connections		
33	PCIE_REFCLK_N	10	PCIE differential clock inputs 100MHz differential		
34	VDDIO	P	I/O Voltage supply input		
35	PCIE_REFCLK_P	_[::	PCIE differential clock inputs 100MHz differential		
36	VBAT	Р	Main power voltage source input		
37	PCIE_CLKREQ_L	0	PCIE clock request signal		
38	BT_REG_ON		Low asserting reset for Bluetooth core		
39	GND		Ground connections		
40	UART_TXD	0	Bluetooth UART interface		
41	UART_RXD	I	Bluetooth UART interface		
42	UART_RTS_N	0	Bluetooth UART interface		
43	UART_CTS_N	l	Bluetooth UART interface		
44	PCIE_RDN	I	PCIE receiver differential pair		
45	PCIE_RDP	l	PCIE receiver differential pair		
46	PCIE_TDN	0	PCIE transmitter differential pair		
47	PCIE_TDP	0	PCIE transmitter differential pair		
48	GPIO8_9	I	Mode selection, 1=PCIE mode , 0=SDIO mode		
49	BT_WAKE	I	HOST wake-up Bluetooth device		
50	BT_HOST_WAKE	0	Bluetooth device to wake-up HOST		

8. Dimensions

8.1 Physical Dimensions

(Unit: mm)

8.2 Layout Recommendation

(Unit: mm)

< TOP VIEW >

External clock reference

External LPO signal characteristics

Specification	Units
32.768	kHz
±30	ppm
30 - 70	%
1600 to 3300	mV, p-p
Square-wave or sine-wave	- P
>100k	Ω
<5	pF
<1	Hz
0.7Vio - Vio	V
	32.768 ±30 30 - 70 1600 to 3300 Square-wave or sine-wave >100k <5 <1

9.1 SDIO Pin Description

The module supports SDIO version 3.0 for all 1.8V 4-bit UHSI speeds: SDR50(100 Mbps), SDR104(208MHz) and DDR50(50MHz, dual rates) in addition to the 3.3V default speed(25MHz) and high speed (50 MHz). It has the ability to stop the SDIO clock and map the interrupt signal into a GPIO pin. This 'out-of-band' interrupt signal notifies the host when the WLAN device wants to turn on the SDIO interface. The ability to force the control of the gated clocks from within the WLAN chip is also provided.

- Function 0 Standard SDIO function (Max BlockSize / ByteCount = 32B)
- Function 1 Backplane Function to access the internal System On Chip (SOC) address space (Max BlockSize / ByteCount = 64B)
- Function 2 WLAN Function for efficient WLAN packet transfer through DMA (Max BlockSize/ByteCount=512B)

SDIO Pin Description

SD 4-Bit Mode			
DATA0	Data Line 0		
DATA1	Data Line 1 or Interrupt		
DATA2	Data Line 2 or Read Wait		
DATA3	Data Line 3		
CLK	Clock		
CMD	Command Line		

Host Interface Timing Diagram

10.1 Power-up Sequence Timing Diagram

The module has signals that allow the host to control power consumption by enabling or disabling the Bluetooth, WLAN and internal regulator blocks. These signals are described below.

Additionally, diagrams are provided to indicate proper sequencing of the signals for carious operating states. The timing value indicated are minimum required values: longer delays are also acceptable.

- * WL REG ON: Used by the PMU to power up or power down the internal regulators used by the WLAN section. When this pin is high, the regulators are enabled and the WLAN section is out of reset. When this pin is low the WLAN section is in reset.
- BT REG ON: Used by the PMU to power up or power down the internal regulators used by the BT section. Low asserting reset for Bluetooth. This pin has no effect on WLAN and does not control any PMU functions. This pin must be driven high or low (not left floating).

WLAN=ON, Bluetooth=ON

WLAN=OFF, Bluetooth=OFF

WLAN=ON, Bluetooth=OFF

WLAN=OFF, Bluetooth=ON

10.2 SDIO Default Mode Timing Diagram

Parameter	Symbol	Minimum	Typical	Maximum	Unit
SDIO CLK (All values are referred to minimu	m VIH and mo	aximum VIL ^b)	5.5		
Frequency – Data Transfer mode	fPP	0	-	25	MHz
Frequency – Identification mode	fOD	0		400	kHz
Clock low time	tWL	10	-0	-9	ns
Clock high time	tWH	10	<u></u> 33	- 13	ns
Clock rise time	tTLH	-		10	ns
Clock low time	tTHL	0		10	ns
Inputs: CMD, DAT (referenced to CLK)					
Input setup time	tISU	5	_	-	ns O
Input hold time	tIH	5	6. -	i -	ns
Outputs: CMD, DAT (referenced to CLK)				Λ	
Output delay time – Data Transfer mode	tODLY	0	-	14	ns
Output delay time – Identification mode	tODLY	0	_	50 🖒	ns

a. Timing is based on CL \leq 40pF load on CMD and Data.

b. $min(Vih) = 0.7 \times VDDIO$ and $max(Vil) = 0.2 \times VDDIO$.

10.3 SDIO High Speed Mode Timing Diagram

Parameter	Symbol	Minimum	Typical	Maximum	Unit			
SDIO CLK (all values are referred to minimum VIH and maximum VIL ^b)								
Frequency – Data Transfer Mode	∫ fPP	0	_	50	MHz			
Frequency – Identification Mode	fOD	0	-	400	kHz			
Clock low time	tWL	7	_	_	ns			
Clock high time	tWH	7	_	_	ns			
Clock rise time	tTLH	_	_	3	ns			
Clock low time	tTHL	_	_	3	ns			
Inputs: CMD, DAT (referenced to CLK)								
Input setup Time	tISU	6	_	_	ns			
Input hold Time	tIH	2	_	_	ns			
Outputs: CMD, DAT (referenced to CLK)								
Output delay time – Data Transfer Mode	tODLY	-	_	14	ns			
Output hold time	tOH	2.5	_	_	ns			
Total system capacitance (each line)	CL	_	_	40	pF			

a Timing is based on CL ≤ 40 pF load on CMD and Data.

www.ampak.com.tw

min(Vih) = 0.7 × VDDIO and max(Vil) = 0.2 × VDDIO.

10.4 SDIO Bus Timing Specifications in SDR Modes

Clock timing(SDR Modes)

Parameter	Symbol	Minimum	Maximum	Unit	Comments
_	t _{CLK}	40	_	ns	SDR12 mode
		20	_	ns	SDR25 mode
		10	- 4	ns	SDR50 mode
		4.8	- 🙏	√ns	SDR104 mode
_	t _{CR} , t _{CF}	-	0.2 × tcuk	ns	t_{CR} , t_{CF} < 2.00 ns (max) @100 MHz, C_{CARD} = 10 pF
					t _{CR} , t _{CF} < 0.96 ns (max) @208 MHz, C _{CARD} = 10 pF
Clock duty	-	30	70	%	-

Card Input timing (SDR Modes)

Symbol	Minimum	Maximum	Unit	Comments	
SDR104 Mo	ode				
t _{IS}	1.70 ^a	-	ns	C _{CARD} = 10 pF, VCT = 0.975V	
t _{IH}	0.80	-	ns	CARD = 5 pF, VCT = 0.975V	
SDR50 Mod	le				
t _{IS}	3.00	-	ns 🦟	C _{CARD} = 10 pF, VCT = 0.975V	
t _{IH}	0.80	_	ns	C _{CARD} = 5 pF, VCT = 0.975V	

a. SDIO 3.0 specification value is 1.40 ns.

Card output timing (SDR Modes up to 100MHz)

Symbol	Minimum	Maximum	Unit	Comments
t _{ODLY}	_	7.85 ^a	ns	t _{CLK/} ≥ 10 ns C _L = 30 pF using driver type B for SDR50
t _{ODLY}	_	14.0	ns	t _{CLK} ≥ 20 ns C _L = 40 pF using for SDR12, SDR25
t _{OH}	1.5	_	ns	Hold time at the t _{ODLY} (min) C _L = 15 pF

a. SDIO 3.0 specification value is $7.5\ ns.$

Card output timing (SDR Modes 100MHz to 208MHz)

Symbol	Minimum	Maximum	Unit	Comments
t _{OP}	0	2	UI	Card output phase
Δt _{OP}	-350	+1550	ps	Delay variation due to temp change after tuning
t _{ODW}	0.60	-	UI	t _{ODW} =2.88 ns @208 MHz

- Δt_{OP} = +1550 ps for junction temperature of Δt_{OP} = 90 degrees during operation
- $\Delta t_{OP} = -350$ ps for junction temperature of $\Delta t_{OP} = -20$ degrees during operation
- Δt_{OP} = +2600 ps for junction temperature of Δt_{OP} = -20 to +125 degrees during operation

10.5 SDIO Bus Timing Specifications in DDR50 Mode

Parameter	Symbol	Minimum	Maximum	Unit	Comments
_	t _{CLK}	20	_	ns	DDR50 mode
_	t_{CR} , t_{CF}	_	0.2 × tCLK	ns	t _{CR} , t _{CF} < 4.00 ns (max) @50 MHz, C _{CARD} = 10 pF
Clock duty	-	45	55	% (_

Data Timing

Parameter	Symbol	Minimum	Maximum	Unit	Comments
Input CMD		<u></u>			
Input setup time	t _{ISU}	6	-	ns	C _{CARD} < 10pF (1 Card)
Input hold time	t _{IH} //	0.8	-	ns	C _{CARD} < 10pF (1 Card)
Output CMD	W.	>			
Output delay time	toply	-	13.7	ns	C _{CARD} < 30pF (1 Card)
Output hold time	ton	1.5	_	ns	C _{CARD} < 15pF (1 Card)
Input DAT					
Input setup time	t _{ISU2x}	3	-	ns	C _{CARD} < 10pF (1 Card)
Input hold time	t _{IH2x}	0.8	_	ns	C _{CARD} < 10pF (1 Card)
Output DAT					
Output delay time	t _{ODLY2x}	-	7.85 ^a	ns	C _{CARD} < 25pF (1 Card)
Output hold time	t _{ODLY2x}	1.5	_	ns	C _{CARD} < 15pF (1 Card)

a SDIO 3.0 specification value is 7.0 ns.

11. Recommended Reflow Profile

Referred to IPC/JEDEC standard.

Peak Temperature: <250°C Number of Times : ≤2 times

12. Package Information

12.1Label

Label A→ Anti-static and humidity notice

Label B→ MSL caution / Storage Condition

	Caution This bag contains MOISTURE-SENSITIVE DEVICES Halark, see adjaces bar code label
1.	Calculated shelf life in sealed bag: 12 months at <40°C and <90% relative humidity (RH)
2.	Peak package body temperature:**C
3.	After bag is opened, devices that will be subjected to reflow solder or other high temperature process must be
	a) Mounted within: hours of factory conditions # blank, see adjacent bar code label \$30°C/60% RH, or
	b) Stored per J-STD-033
4.	Devices require bake, before mounting, if:
	a) Humidity Indicator Card reads >10% for level 2a - 5a devices or >60% for level 2 devices when read at $23\pm5^{\circ}$ 0
	b) 3a or 3b are not met
5.	If baking is required, refer to IPC/JEDEC J-STD-033 for bake procedure
Ba	ag Seal Date:
	Note: Level and body temperature defined by IPC/JEDEC J-STD-020

Label C→ Inner box label.

Model: P/N: 99P-W01-0048R Qty: Date Code :

Label D→ Carton box label .

12.2 Dimension

- 1. 10 sprocket hole pitch cumulative tolerance ± 0.20 .
- 2. Carrier camber is within 1 mm in 250 mm.
- 3. Material: Black Conductive Polystyrene Alloy.
- 4. All dimensions meet EIA-481-D requirements.
- 5. Thickness: 0.30±0.05mm.
- 6. Packing length per 22" reel: 98.5 Meters.(1:3)
- 7. Component load per 13" reel: 1500 pcs.

12.3 MSL Level / Storage Condition

LEVEL
Caution 4
This bag contains 4
MOISTURE-SENSITIVE DEVICES
Do not open except under controlled conditions
1. Calculated shelf life in sealed bag: 12 months at< 40° and
< 90% relative humidity(RH)
225°C 240°C 250°C 260°C
2. Peak package body temperature:
 After bag is opened, devices that will be subjected to reflow solder or other high temperature process must a) Mounted within: 48 hours of factory conditions <30°C/60% RH, OR b) Stored at <10% RH
 Devices require bake, before mounting, if: a)Humidity Indicator Card is>10%when read at 23±5℃ b)3a or 3b not met
5. If baking is required, devices may be baked for 24 hours at 125±5℃
Note: If device containers cannot be subjected to high temperature or shorter bake times are desired,
reference IPC/JEDEC J-STD-033 for bake procedure
Bag Seal Date: See-SEAL DATELABEL
Note:Level and body temperature defined by IPC/JEDED J-STD-020

※NOTE: Accumulated baking time should not exceed 96hrs