EXERCICE N°1 Appréhender la définition et la propriété

Soient Ω un univers et A et B deux événements de probabilité non nulle. Dans chaque cas vérifier l'indépendance de A et B.

1)
$$P(A) = 0.3$$
, $P(B) = 0.2$ et $P(A \cap B) = 0.06$.
 $P(A) \times P(B) = 0.3 \times 0.2 = 0.06 = P(A \cap B)$
Ainsi A et B sont indépendants

2)
$$P_A(B)=0.3$$
 , $P(B)=0.5$, $P(A\cap B)=0.15$. $P_A(B)\neq P(B)$ Donc A et B ne sont pas indépendants

3)
$$P(A) = 0.2$$
 $P(B) = 0.6$ $P(A \cup B) = 0.68$.
• Commençons par déterminer $P(A \cap B)$.
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
donc
 $P(A \cap B) = P(A) + P(B) - P(A \cup B) = 0.2 + 0.6 - 0.68 = 0.12$.
• $P(A) \times P(B) = 0.2 \times 0.6 = 0.12 = P(A \cap B)$
Ainsi A et B sont indépendants

4)
$$P(\overline{A}) = 0.7$$
 $P(\overline{B}) = 0.8$ $P(A \cap B) = 0.06$.

• Commençons par déterminer $P(A)$ et $P(B)$.

• $P(\overline{A}) = 1 - P(A) \Leftrightarrow P(A) = 1 - P(\overline{A})$
donc $P(A) = 1 - 0.7 = 0.3$

• $P(\overline{B}) = 1 - P(B) \Leftrightarrow P(B) = 1 - P(\overline{B})$
donc $P(B) = 1 - 0.8 = 0.2$

• $P(A) \times P(B) = 0.3 \times 0.2 = 0.06 = P(A \cap B)$
Ainsi A et B sont indépendants

EXERCICE N°2 Démontrer l'indépendance

Une urne contient 12 boules numérotées de 1 à 12. On tire une boule au hasard.

On note

- D l'événement « obtenir un multiple de deux »,
- T l'événement « obtenir un multiple de trois »,
- N l'événement « obtenir un nombre supérieur ou égal à neuf ».

1) Les événements N et T sont-ils indépendants?

On a d'une part :

$$P(N) = \frac{4}{12} = \frac{1}{3}$$
 et $P(T) = \frac{4}{12} = \frac{1}{3}$ donc $P(N) \times P(T) = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$

d'autre part :

$$P(N \cap T) = \frac{2}{12} = \frac{1}{6}$$

- Ainsi $P(N \cap T) \neq P(N) \times P(T)$

On en déduit que N et T ne sont pas indépendants

Si les événements avaient été indépendants, on aurait eu l'égalité, ce qui n'est pas le cas.

2) Que dire des événements D et N?

On a

d'une part :

$$P(N) = \frac{4}{12} = \frac{1}{3}$$
 et $P(D) = \frac{6}{12} = \frac{1}{2}$ donc $P(N) \times P(D) = \frac{1}{3} \times \frac{1}{2} = \frac{1}{6}$

d'autre part:

$$P(N \cap T) = \frac{2}{12} = \frac{1}{6}$$

Ainsi $P(N \cap T) = P(N) \times P(T)$

On en déduit que N et D sont indépendants .

On apprend ici que N et T s'influencent l'un l'autre (ils ne sont pas indépendants) alors que N et D ne s'influencent pas l'un l'autre...

Essayez de voir cela sans faire de calcul...

EXERCICE N°3 Indépendance vs incompatibilité

Soient Ω un univers et A et B deux événements tels que : P(A) = 0.4 et P(B) = 0.3.

1) Calculer les probabilités de $A \cap B$ et $A \cup B$ si A et B sont indépendants.

■ A et B sont indépendants donc

$$P(A \cap B) = P(A) \times P(B) = 0.4 \times 0.3 = 0.12$$

Ainsi $P(A \cap B) = 0.12$

•
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.4 + 0.3 - 0.12 = 0.58$$

Ainsi $P(A \cup B) = 0.58$

2) Calculer les probabilités de $A \cap B$ et $A \cup B$ si A et B sont incompatibles.

• A et B sont incompatibles donc

$$P(A \cap B) = 0$$

et

$$P(A \cup B) = P(A) + P(B) = 0.4 + 0.3 = 0.7$$

Ainsi
$$P(A \cup B) = 0.7$$

EXERCICE N°4 Des questions à se poser...

Soient Ω un univers et A et B deux événements de probabilité non nulle. Les affirmations suivantes sont-elles vraies ou fausses ? Justifier la réponse.

1) L'événement A et son événement contraire \overline{A} sont indépendants.

Faux

Les événements A et \overline{A} sont incompatibles donc pas indépendants

Les événements A et \overline{A} sont incompatibles donc $P(A \cap \overline{A}) = 0$.

Or $P(A) \neq 0$ et donc $P(\overline{A}) \neq 0$

Si A et \overline{A} étaient indépendants, on aurait $P(A) \times P(\overline{A}) = 0$ ce qui n'est pas le cas.

2) Si A et B sont indépendants alors A et B ne sont pas incompatibles.

Vrai

$$P(A) \neq 0$$
, $P(B) \neq 0$ et A et B sont indépendants

done

$$P(A \cap B) = P(A) \times P(B) \neq 0$$

Ainsi

A et B ne sont pas incompatibles.

3) Si A et B sont indépendants alors $P_A(B) = P_B(A)$.

Faux

Si
$$P(A) \neq P(B)$$

alors

$$P_A(B) = P(B) \neq P(A) = P_B(A)$$

Notez que cela peut arriver mais que ce n'est pas forcément le cas.

4) Si A et B sont indépendants alors \overline{A} et B le sont aussi.

Vrai

$$P(\overline{A} \cap B) = P(B) - P(A \cap B)$$

$$= P(B) - P(A) \times P(B)$$

$$= P(B) \times (1 - P(A))$$

$$= P(B) \times P(\overline{A})$$
(car A et B sont indépendants)
$$= P(B) \times P(\overline{A})$$

Ainsi $P(\overline{A} \cap B) = P(B) \times P(\overline{A})$ qui signifie que \overline{A} et B sont indépendants.

EXERCICE N°5 Réussite et/ou travail

Dans une classe de première de 35 élèves, on a étudié deux caractères :

La réussite et le travail à la maison. Le résultat de cette étude est présenté dans le tableau suivant :

	R	\overline{R}	Total
T	12	9	21
\overline{T}	8	6	14
Total	20	15	35

On choisit un élève au hasard dans cette classe. On note les événements :

R : « L'élève est en situation de réussite »

T : « L'élève travaille à la maison »

Les résultats seront donnés sous forme de fraction irréductible.

1) Déterminer P(R) et $P_T(R)$ et exprimer par une phrase ce que signifie ces résultats.

$$P(R) = \frac{20}{35} = \frac{4}{7}$$

La probabilité qu'un élève réussisse vaut $\frac{4}{7}$.

$$P_T(R) = \frac{12}{21} = \frac{4}{7}$$

La probabilité qu'un élève réussisse sachant qu'il travaille vaut $\frac{4}{7}$.

2) Dans ce contexte, le fait de travailler influence-t-il le fait de réussir ?

$$P_T(R) = P(R)$$

donc R et T sont indépendants.

Ainsi, dans ce contexte, le fait de travailler n'influence pas la réussite

3) Dans ce contexte, le fait de ne pas travailler influence-t'il le fait de ne pas réussir?

$$P(\overline{R}) = \frac{15}{35} = \frac{3}{7}$$

$$P_{\overline{T}}(\overline{R}) = \frac{6}{14} = \frac{3}{7}$$

$$P_{\overline{T}}(\overline{R}) = P(\overline{R})$$

donc \overline{T} et \overline{R} sont indépendants.

Ainsi, dans ce contexte, le fait de ne pas travailler n'influence pas l'échec