微積分II演習

- 第7回 多変数関数の極限・連続性、R²の開集合・閉集合 -

担当:佐藤 弘康

未発表問題:2.1, 2.3(2), 2.5, 2.10(4), 2.11(2,5), 2.13, 2.14, 3.3~3.8, 4.2(3), 4.3, 4.5, 5.1(2~7), 5.2

例題 8.
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2} = 0$$
 を $\varepsilon - \delta$ 論法を用いて証明せよ.

解.
$$\lim_{(x,y)\to(a,b)} f(x,y) = \alpha$$
 とは,

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \sqrt{(x-a)^2 + (y-b)^2} < \delta \Longrightarrow |f(x,y) - \alpha| < \varepsilon$$
 (7.1)

だから、勝手な ε に対し、(7.1)を満たす δ を求めればよい。

$$\left| \frac{x^2 y^2}{x^2 + y^2} - 0 \right| = \frac{x^2 y^2}{x^2 + y^2} \le \frac{x^2 + y^2}{4}$$

であるから、任意の $\varepsilon>0$ に対し $\sqrt{x^2+y^2}<\delta=2\sqrt{\varepsilon}$ ならば、 $\left|\frac{x^2y^2}{x^2+y^2}\right|<\varepsilon$ が 成り立つ.

問題 7.1. 次の極限を求めよ $(arepsilon - \delta$ 論法を用いて証明せよ).

(1)
$$\lim_{(x,y)\to(0,0)} xy \log(x^2 + y^2)$$

(2)
$$\lim_{(x,y)\to(0,0)} (x+y)\sin\frac{1}{x}\sin\frac{1}{y}$$

(3)
$$\lim_{(x,y)\to(0,0)} (1+x^2y^2)^{\frac{1}{x^2+y^2}}$$

(4)
$$\lim_{(x,y)\to(0,0)} \frac{1-\cos(x^2+y^2)}{x^2+y^2}$$

(5)
$$\lim_{(x,y)\to(1,1)} \frac{x(1-y^n) - y(1-x^n) - x^n + y^n}{(1-x)(1-y)(x-y)} \qquad (n \in \mathbf{N})$$

例題 9. \mathbf{R}^2 上で定義された関数 f(x,y)=xy が連続関数であることを $\varepsilon-\delta$ 論法を用いて証明せよ.

解. \mathbb{R}^2 上の関数 f(x,y) が点 (a,b) で連続とは,

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \sqrt{(x-a)^2 + (y-b)^2} < \delta \Longrightarrow |f(x,y) - f(a,b)| < \varepsilon$$
 (7.2)

だから、勝手な ε に対し、(7.2)を満たす δ を求めればよい。

$$|xy - ab| = |xy - ay + ay - ab|$$

$$\leq |x - a||y| + |a||y - b|$$

$$\leq |x - a|(|y - b| + |b|) + |a||y - b|.$$

 $\sqrt{(x-a)^2 + (y-b)^2} < \delta$ ならば, $|x-a| < \delta$, $|y-b| < \delta$ であるから,

$$|xy - ab| < \delta(\delta + |b|) + |a|\delta = \delta(|a| + |b| + \delta)$$

を得る。したがって, $|xy-ab|<\varepsilon$ とするためには, $\delta<1$ かつ $\delta<\frac{\varepsilon}{1+|a|+|b|}$ を仮定すればよいことがわかる。つまり, ε に対して $\delta=\min\left\{1,\frac{\varepsilon}{1+|a|+|b|}\right\}$ とおけばよい.以上は任意の $(a,b)\in\mathbf{R}^2$ で成り立つので,f(x,y) は \mathbf{R}^2 上連続である。

問題 7.2. 次の ${\bf R}^2$ 上で定義された関数が連続関数であることを, $\varepsilon-\delta$ 論法を用いて証明せよ.

- (1) f(x,y) = x + y
- (2) $f(x,y) = x^2 + y^2$
- (3) $f(x,y) = \sqrt{xy}$

問題 7.3. 次の関数の定義域を求めよ、また、その集合は開集合か、閉集合か、

- (1) $f(x,y) = \log(2x x^2 y^2)$
- (2) $f(x,y) = \sqrt{1-|x|-|y|}$

問題 7.4. 次の \mathbb{R}^2 の部分集合は開集合か、閉集合か、

- (1) $\{(x,y) \mid |x| \le a, |y| > b\}$
- (2) $\{(x,y) \mid xy > 0\}$
- (3) $\{(x,0) \mid a < x < y\}$

問題 7.5. R² の部分集合

$$A = \left\{ \left(x, \sin \frac{1}{x} \right) \mid 0 < x \le \frac{1}{2\pi} \right\}$$

の閉包Cl(A)を求めよ.

□ レポート問題

問題 7.6. $\lim_{(x,y)\to(0,0)}\frac{x^2y}{x^2+y^2}=0$ を $\varepsilon-\delta$ 論法を用いて証明せよ.

□ 前回の復習と捕捉

 \Diamond 問題 4.4 の解 (3) 対数関数の性質より、 $|\log x - \log a| < \varepsilon$ は

$$-a(1 - e^{-\varepsilon}) < x - a < a(e^{\varepsilon} - 1)$$

$$(7.3)$$

と同値である。したがって、 $|x-a|<\delta=a(1-e^{-\varepsilon})$ とすれば、(7.3) が成り立つことがわかる。

(4)

$$\left| e^{-|x|} - e^{-|a|} \right| = e^{\min\{-|a|, -|x|\}} \left(e^{\left| |x| - |a| \right|} - 1 \right) \le e^{-|a|} \left(e^{|x-a|} - 1 \right)$$

であるから、例題5と同様に $\delta = \log(1 + e^{|a|}\varepsilon)$ とおけばよい.

((4)の別解)

$$x \ge 0 \implies 0 \le 1 - e^{-x} \le x \tag{7.4}$$

を用いて、 $f(x) = e^{-|x|}$ が一様連続であることを示す。

(i) $y > x \ge 0$ \$\text{ \$\text{\$a\$} \$i\$,

$$\left| e^{-|x|} - e^{-|y|} \right| = \left(e^{-x} - e^{-y} \right) = e^{-x} \left(1 - e^{-(y-x)} \right) < y - x.$$

(ii) $y < x \le 0$ ならば,

$$|e^{-|x|} - e^{-|y|}| = (e^x - e^y) = e^x (1 - e^{-(x-y)}) < x - y.$$

(iii) x > 0 > y ならば,

$$\begin{aligned} \left| e^{-|x|} - e^{-|y|} \right| &= \left| e^{-x} - e^{y} \right| \\ &= \left| (e^{-x} - 1) + (1 - e^{y}) \right| \\ &\leq \left| e^{-x} - 1 \right| + \left| 1 - e^{y} \right| \\ &= (1 - e^{-x}) + (1 - e^{-(-y)}) \\ &< x + (-y). \end{aligned}$$

(i) (ii) (iii) より, $|x-y|<\varepsilon$ ならば $|f(x)-f(y)|<\varepsilon$ であるから,f(x) は一様連続である.

注意:(7.4) は,関数 $f(x) = e^{-x}$ に平均値の定理 (教科書 I p.77, 定理 3.2) を適用して得られる.

(6) 任意に与えた $\varepsilon>0$ に対し, $\delta=\min\left\{1,\frac{\sqrt{a^2+1}}{1+2|a|}\varepsilon\right\}$ とおく.このとき, $|x-a|<\delta$ ならば,

$$\left| \sqrt{x^2 + 1} - \sqrt{a^2 + 1} \right| = \frac{|x^2 - a^2|}{\sqrt{x^2 + 1} + \sqrt{a^2 + 1}}$$

$$\leq \frac{(|x - a| + 2|a|)|x - a|}{\sqrt{a^2 + 1}}$$

$$\leq \frac{(1 + 2|a|)}{\sqrt{a^2 + 1}} \cdot |x - a| < \varepsilon$$
(7.5)

となり、f(x) は点 $a \in \mathbf{R}$ で連続であることがわかる.ここで、任意の $a \in \mathbf{R}$ に対して $\frac{\sqrt{a^2+1}}{1+2|a|} \ge \frac{1}{\sqrt{5}}$ が成り立つので、 $\delta = \min\left\{1, \frac{\varepsilon}{\sqrt{5}}\right\}$ としても (7.5) は成立する.この δ は a に依らずに定まるので f(x) は一様連続である.

(7) $\left|\sin\frac{1}{x} - \sin\frac{1}{y}\right| < \left|\frac{1}{x} - \frac{1}{y}\right| = \frac{|x - y|}{|x||y|}.$

ここで、関数 $f(x)=\sin\frac{1}{x}$ の定義域は $[1,+\infty)$ だから、 $\frac{1}{|x||y|}<1$. したがって、 $|x-y|<\varepsilon$ ならば $|f(x)-f(y)|<\varepsilon$ となるので f(x) は一様連続である.

 \square レポート問題 (問題 5.1(1)) の解 $f(x) = \frac{1}{x}, (x > 0)$ が一様連続でないことを示す.

(解1) f(x) は連続だから、任意の $a \in (0,\infty)$ と $\varepsilon > 0$ に対して、ある $\delta > 0$ が存在し $|x-a| < \delta$ ならば、

$$\left|\frac{1}{x} - \frac{1}{a}\right| < \varepsilon \tag{7.6}$$

が成り立つ。(7.6)は

$$-\frac{a^2\varepsilon}{1+a\varepsilon} < x - a < \frac{a^2\varepsilon}{1-a\varepsilon}$$

と同値だから、aを十分小さい $(1>a\varepsilon$ を満たすような) 正の数とすると、 $|x-a|<\delta$ を満たすx が (7.6) を満たすための最大の δ は $\frac{a^2\varepsilon}{1+a\varepsilon}$ である。しかし、a を 0 に近づけていくと、 δ も 0 に近づくから、十分小さいすべての数に共通する $\delta>0$ を定めることはできない。したがって、f(x) は一様連続ではない。

(解2) f(x) が,

$$\exists \varepsilon > 0, \ \forall \delta > 0, \ \exists x, y \in (0, \infty), \ |x - y| < \delta$$
 かつ $|f(x) - f(y)| \ge \varepsilon$ (7.7)

を満たすことを示す (一様連続であることの否定命題). 任意の δ に対し、 $\delta'=\min\{\delta,1\}$ とおき、 $x=\delta',\ y=\frac{\delta'}{2}$ とすると、

$$|f(x) - f(y)| = \left| \frac{1}{\delta'} - \frac{2}{\delta'} \right| = \frac{1}{\delta'} \ge 1$$

となるから、 $\varepsilon = 1$ は (7.7) を満たすことがわかる。したがって、f(x) は一様連続ではない。

(解3)
$$x_n = \frac{1}{n}, y_n = \frac{1}{n+1}$$
 とおくと,

$$|x_n - y_n| = \frac{1}{n(n+1)}, \quad |f(x_n) - f(y_n)| = 1$$

となる。十分大きいnをとれば, $\frac{1}{n(n+1)}$ はいくらでも小さくできるから,任意の δ に対して $|x_{n_{\delta}}-y_{n_{\delta}}|<\delta$ かつ $|f(x_{n_{\delta}})-f(y_{n_{\delta}})|=1$ を満たす $x_{n_{\delta}},y_{n_{\delta}}$ が存在する。したがって,f(x)は一様連続ではない。

注意:「 $\lim_{n\to\infty}(x_n-y_n)=0$ かつ、 $\lim_{n\to\infty}(f(x_n)-f(y_n))=1$ だから、問題 5.2 の結果より、f(x) は一様連続でなはない」と言ってもよい.

(解4) f(x) が一様連続であると仮定する. $a_n = \frac{1}{n}$ で与えられる数列 $\{a_n\}$ は集合 $(0,\infty)$ の Cauchy 列である. しかし, $f(a_n) = n$ だから数列 $\{f(a_n)\}$ は Cauchy 列ではない.これは,教科書 I, p.165 の補題 5.14 に矛盾する.したがって,f(x) は一様連続ではない.

口 **訂正** 第5回のプリントの例題7の解説中で、「 $|x-a| < \delta$ が (5.1) を満たすための最大の δ は $\log(n) - \log(n-\varepsilon) = \log\left(\frac{n}{n-\varepsilon}\right)$ であるが」とありますが、この性質を満たす最大の δ は $\log\left(\frac{n}{n-\varepsilon}\right)$ ではなく $\log\left(\frac{n+\varepsilon}{n}\right)$ です。

また, 第6回のプリント1ページの「◇ **問題 4.3 の解**」は「◇ **問題 4.4 の解**」の 間違いです。