Machine Learning and Data Mining

Linear classification

Prof. Alexander Ihler

Supervised learning

Notation

- Features
- Targets
- Predictions \hat{y}

Linear regression Target 20 10 Feature x

"Predictor":

Evaluate line:

$$r = \theta_0 + \theta_1 x_1$$

return r

- Contrast with classification
 - Classify: predict discrete-valued target y

Perceptron Classifier (2 features)

Visualizing for one feature "x":

Perceptrons

- Perceptron = a linear classifier
 - The parameters θ are sometimes called weights ("w")
 - real-valued constants (can be positive or negative)
 - Define an additional constant input "1"
- A perceptron calculates 2 quantities:
 - 1. A weighted sum of the input features
 - 2. This sum is then thresholded by the T(.) function
- Perceptron: a simple artificial model of human neurons
 - weights = "synapses"
 - threshold = "neuron firing"

Notation

Inputs:

- $X_0, X_1, X_2, \dots, X_d,$
- $x_1, x_2, \dots, x_{d-1}, x_d$ are the values of the d features
- $x_0 = 1$ (a constant input)
- $\underline{\mathbf{x}} = (\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_d)$: feature vector (row vector)
- Weights (parameters):
 - $\theta_0, \theta_1, \theta_2, \ldots, \theta_d,$
 - we have d+1 weights
 - one for each feature + one for the constant
 - $\underline{\theta}$ = $(\theta_0, \theta_1, \theta_2, \dots, \theta_d)$: parameter vector (row vector)
- Linear response
 - $-\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_d x_d = \underline{\theta} \cdot \underline{x}'$ then threshold

$$(Matlab)$$
 >> f = th*x'; f = sum(th.*x); yhat = sign(f);

Perceptron Decision Boundary

The perceptron is defined by the decision algorithm:

o(x₁, x₂,..., x_d, x_{d+1}) = 1 (if
$$\underline{\theta}$$
 · $\underline{\mathbf{x}}$ > 0)
= -1 (otherwise)

- The perceptron represents a hyperplane decision surface in ddimensional space
 - A line in 2D, a plane in 3D, etc.
- The equation of the hyperplane is given by

$$\underline{\theta} \cdot \underline{\mathbf{x}}' = 0$$

This defines the set of points that are on the boundary.

Example, Linear Decision Boundary

$$\underline{\theta} = (\theta_1, \theta_2, \theta_0)$$
$$= (.5, -.5, 0)$$

Example, Linear Decision Boundary

Example, Linear Decision Boundary

Separability

- A data set is separable by a learner if
 - There is some instance of that learner that correctly predicts all the data points
- Linearly separable data
 - Can separate the two classes using a straight line in feature space
 - in 2 dimensions the decision boundary is a straight line

Class overlap

- Classes may not be well-separated
- Same observation values possible under both classes
 - High vs low risk; features {age, income}
 - Benign/malignant cells look similar

- Common in practice
- May not be able to perfectly distinguish between classes
 - Maybe with more features?
 - Maybe with more complex classifier?
- Otherwise, may have to accept some errors

Another example

(c) Alexander Ihler 2010-12

Non-linear decision boundary

(c) Alexander Ihler 2010-12

Representational Power of Perceptrons

- What mappings can a perceptron represent perfectly?
 - A perceptron is a linear classifier
 - thus it can represent any mapping that is linearly separable
 - some Boolean functions like AND (on left)
 - but not Boolean functions like XOR (on right)

Adding features

Linear classifier can't learn some functions

Not linearly separable

Adding features

Linear classifier can't learn some functions

$$y = T(bx + c)$$

Not linearly separable

Quadratic features, visualized in original feature space:

$$y = T(a x^2 + b x + c)$$

More complex decision boundary: $ax^2+bx+c=0$

Representational Power of Perceptrons

- What mappings can a perceptron represent perfectly?
 - A perceptron is a linear classifier
 - thus it can represent any mapping that is linearly separable
 - some Boolean functions like AND (on left)
 - but not Boolean functions like XOR (on right)

What kinds of functions would we need to learn the data on the right?

Representational Power of Perceptrons

- What mappings can a perceptron represent perfectly?
 - A perceptron is a linear classifier
 - thus it can represent any mapping that is linearly separable
 - some Boolean functions like AND (on left)
 - but not Boolean functions like XOR (on right)

What kinds of functions would we need to learn the data on the right? Ellipsiodal decision boundary: $a(x_1 - b)^2 + c(x_2 - d)^2 = 0$

Effect of dimensionality

- Data are increasingly separable in high dimension is this a good thing?
- "Good"
 - Separation is easier in higher dimensions (for fixed N)
 - Increase the number of features, and even a linear classifier will eventually be able to separate all the training examples!
- "Bad"
 - Remember training vs. test error? Remember overfitting?
 - Increasingly complex decision boundaries can eventually get all the training data right, but it doesn't necessarily bode well for test data...

Machine Learning and Data Mining

Linear classification: Learning

Prof. Alexander Ihler

Learning the Classifier Parameters

- Learning from Training Data:
 - training data = labeled feature vectors
 - Find parameter values that predict well (low error)
 - error is estimated on the training data
 - "true" error will be on future test data
- Define an objective function $J(\underline{\theta})$:
 - Classifier accuracy (for a given set of weights $\underline{\theta}$ and labeled data)
- Maximize this objective function (or, minimize error)
 - An optimization or search problem over the vector $(\theta_1, \theta_2, \theta_0)$

Learning the Weights from Data

An Example of a Training Data Set

Example	x ₁	x ₂	 x _d	true class label, y
<u>x</u> (1) <u>x</u> (2) <u>x</u> (3) <u>x</u> (4)	3.4 4.1 5.7 2.2	-1.2 -3.1 -1.0 4.1	 7.1 4.6 6.2 5.0	1 -1 -1 1
<u>x</u> (n)	1.2	4.3	 6.1	1

Training a linear classifier

- How should we measure error?
- Natural measure = "fraction we get wrong" (error rate) $\operatorname{err}(\underline{\theta}) = 1/N \sum_{i} \delta(\hat{y}(i) \neq y(i))$ where $\delta(\hat{y}(i) \neq y(i)) = 0$ if $\hat{y}(i) = y(i)$, and 1 otherwise $\delta(\operatorname{Matlab})$ >> yh = sign(th*X'); err = mean(y ~= yh);
 - But, hard to train via gradient descent
 - Not continuous
 - As decision boundary moves, errors change abruptly

Linear regression?

• Simple option: set θ using linear regression

- In practice, this often doesn't work so well...
 - Consider adding a distant but "easy" point
 - MSE distorts the solution

Perceptron algorithm: an SGD-like algorithm

```
While (~done)
```

For each data point j:

```
\hat{y}(j) = T(\underline{\theta} * \underline{x}(j)) : predict output for data point j
\underline{\theta} \leftarrow \underline{\theta} + \alpha (y(j) - \hat{y}(j)) \underline{x}(j) : "gradient-like" step
```

- Compare to linear regression + MSE cost
 - Identical update to SGD for MSE except error uses thresholded $\hat{y}(j)$ instead of linear response $\underline{\theta}$ x' so:
 - (1) For correct predictions, $y(j) \hat{y}(j) = 0$
 - (2) For incorrect predictions, $y(j) \hat{y}(j) = \pm 2$

"adaptive" linear regression: correct predictions stop contributing

Perceptron algorithm: an SGD-like algorithm

While (~done)

For each data point j:

$$\hat{y}(j) = T(\underline{\theta} * \underline{x}(j))$$
 : predict output for data point j

 $\underline{\theta} \leftarrow \underline{\theta} + \alpha (y(j) - \hat{y}(j)) \underline{x}(j)$: "gradient-like" step

y(j)
predicted
incorrectly:
update
weights

Perceptron algorithm: an SGD-like algorithm

While (~done)

For each data point j:

 $\hat{y}(j) = T(\underline{\theta} * \underline{x}(j))$: predict output for data point j

 $\underline{\theta} \leftarrow \underline{\theta} + \alpha (y(j) - \hat{y}(j)) \underline{x}(j)$: "gradient-like" step

Perceptron algorithm: an SGD-like algorithm
 While (~done)

For each data point j:

```
\hat{y}(j) = T(\underline{\theta} * \underline{x}(j)) : predict output for data point j
```

$$\underline{\theta} \leftarrow \underline{\theta} + \alpha (y(j) - \hat{y}(j)) \underline{x}(j)$$
: "gradient-like" step

(Converges if data are linearly separable)

Surrogate loss functions

- Another solution: use a "smooth" loss
 - e.g., approximate the threshold function

- Usually some smooth function of distance
 - Example: "sigmoid", looks like an "S"

Class $y = \{0, 1\}$...

Now, measure e.g. MSE

$$J(\underline{\theta}) = \frac{1}{m} \sum_{j} \left(\sigma(f(x^{(i)})) - y^{(i)} \right)^{2}$$

- Far from the decision boundary: |f(.)| large, small error
- Nearby the boundary: |f(.)| near 1/2, larger error

Classification error =
$$MSE = 2/9$$

$$MSE = (0^2 + 1^2 + .2^2 + .25^2 + .05^2 + ...)/9$$

Beyond misclassification rate

- Which decision boundary is "better"?
 - Both have zero training error (perfect training accuracy)
 - But, one of them seems intuitively better…

- Side benefit of "smoothed" error function
 - Encourages data to be far from the decision boundary
 - See more examples of this principle later...

Training the Classifier

- Once we have a smooth measure of quality, we can find the "best" settings for the parameters of f(X1,X2) = a*X1 + b*X2 + c
- Example: 2D feature space
 parameter space

Training the Classifier

- Once we have a smooth measure of quality, we can find the "best" settings for the parameters of f(X1,X2) = a*X1 + b*X2 + c
- Example: 2D feature space ⇔ parameter space

Training the Classifier

- Once we have a smooth measure of quality, we can find the "best" settings for the parameters of f(X1,X2) = a*X1 + b*X2 + c
- Finding the minimum loss J(.) in parameter space...

• [a b c] = ?

[arctan(a/b), c] = [-pi/4, 1]

Finding the Best MSE

- As in linear regression, this is now just optimization
- Methods:
 - Gradient descent
 - Improve loss by small changes in parameters ("small" = learning rate)
 - Or, substitute your favorite optimization algorithm...
 - Coordinate descent
 - Stochastic search
 - Genetic algorithms

Gradient Equations

• MSE (note, depends on function $\sigma(.)$)

$$J(\underline{\theta} = [a, b, c]) = \frac{1}{N} \sum_{i} (\sigma(ax_1^{(i)} + bx_2^{(i)} + c) - y^{(i)})^2$$

 What's the derivative with respect to one of the parameters?

$$\frac{\partial J}{\partial a} = \frac{1}{N} \sum_{i} 2 \left(\sigma(\theta \cdot x^{(i)}) - y^{(i)} \right) \, \partial \sigma(\theta \cdot x^{(i)}) \, x_1^{(i)}$$

Error between class and prediction

Sensitivity of prediction to changes in parameter "a"

Similar for parameters b, c [replace x₁ with x₂ or 1 (constant)]

Saturating Functions

- Many possible "saturating" functions
- "Logistic" sigmoid (scaled for range [0,1]) is

$$\sigma(z) = 1 / (1 + \exp(-z))$$

Derivative is

(to predict: threshold at ½)

$$\partial \sigma(z) = \sigma(z) (1-\sigma(z))$$

Matlab Implementation:

```
function s = sig(z)
% value of [0,1] sigmoid
    s = 1 ./ (1+exp(-z));

function ds = dsig(x)
% derivative of (scaled) sigmoid
    ds = sig(z) .* (1-sig(z));
```

For range [-1, +1]: $\rho(z) = 2 \sigma(z) -1$ $\partial \rho(z) = 2 \sigma(z) (1 - \sigma(z))$

To predict: threshold at zero

Logistic regression

- Intepret $\sigma(\underline{\theta} x')$ as a probability that y = 1
- Use a negative log-likelihood loss function
 - If y = 1, cost is log Pr[y=1] = log $\sigma(\underline{\theta} x')$ - If y = 0, cost is - log Pr[y=0] = - log $(1 - \sigma(\underline{\theta} x'))$
- Can write this succinctly:

$$J(\underline{\theta}) = -\frac{1}{m} \sum_{i} y^{(i)} \log \sigma(\theta \cdot x^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta \cdot x^{(i)}))$$
Nonzero only if y=1
Nonzero only if y=0

Logistic regression

- Intepret $\sigma(\underline{\theta} \mathbf{x}')$ as a probability that $\mathbf{y} = \mathbf{1}$
- Use a negative log-likelihood loss function
 - If y = 1, cost is log Pr[y=1] = log $\sigma(\underline{\theta} x')$
 - If y = 0, cost is log Pr[y=0] = log (1 $\sigma(\underline{\theta} x')$)
- Can write this succinctly:

$$J(\underline{\theta}) = -\frac{1}{m} \sum_{i} y^{(i)} \log \sigma(\theta \cdot x^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta \cdot x^{(i)}))$$

• Convex! Otherwise similar: optimize $J(\theta)$ via ...

Classification error = MSE = 2/9

Gradient Equations

Logistic neg-log likelihood loss:

$$J(\underline{\theta}) = -\frac{1}{m} \sum_{i} y^{(i)} \log \sigma(\theta \cdot x^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta \cdot x^{(i)}))$$

 What's the derivative with respect to one of the parameters?

$$\frac{\partial J}{\partial a} = -\frac{1}{m} \sum_{i} y^{(i)} \frac{1}{\sigma(\theta \cdot x^{(i)})} \, \partial \sigma(\theta \cdot x^{(i)}) \, x_1^{(i)} + (1 - y(i)) \dots$$
$$= -\frac{1}{m} \sum_{i} y^{(i)} (1 - \sigma(\theta \cdot x^{(i)})) \, x_1^{(i)} - (1 - y^{(i)}) \dots$$

Surrogate loss functions

• Replace 0/1 loss $\Delta_i(\theta) = \delta \left(T(\theta x^{(i)}) \neq y^{(i)} \right)$ with something easier:

0/1 Loss

Logistic MSE

$$J_i(\theta) = 4\left(\sigma(\theta x^{(i)}) - y^{(i)}\right)^2$$

Logistic Neg Log Likelihood

$$J_i(\underline{\theta}) = -y^{(i)} \log \sigma(\theta \cdot x^{(i)}) + \dots$$

Summary

- Linear classifier ⇔ perceptron
- Visualizing the decision boundary
- Measuring quality of a decision boundary
 - Logistic sigmoid + MSE criterion
 - Logistic Regression
- Learning the weights of a linear classifer from data
 - Reduces to an optimization problem
 - Perceptron algorithm
 - For MSE or Logistic NLL, we can do gradient descent
 - Gradient equations & update rules
- Extending features and separability