$1^{\underline{a}}$ Lista de Exercícios - Cálculo 3 Ciências da Computação

1 Funções de uma variável real a duas ou três variáveis reais.

Exercício 1.1. Desenhe a imagem:

- 1. F(t) = (1, t)
- 2. F(t) = (2t 1, t + 2)
- 3. $F(t) = (sent, sen^2t)$
- 4. $F(t) = (e^t cost, e^t cost)$ com $t \ge 0$
- 5. F(t) = (sent, t)
- 6. $F(t) = (t, t, \frac{1}{t}) com t > 0$
- 7. $F(t) = (t, cost, sent) \ com \ t > 0$
- 8. $F(t) = (e^{-t}cost, e^{-t}sent, e^{-t}) com t \ge 0$

Exercício 1.2. Sejam F, G, H funções de uma variável assumindo valores em \mathbb{R}^3 . Classifique as seguintes afirmações como verdadeiras(V) ou falsas(F). Se verdadeiro demonstre, caso contrário forneça um contra-exemplo.

- 1. () $F \wedge G = G \wedge F$
- 2. () $F \wedge (G+H) = F \wedge G + F \wedge H$
- 3. ()F.(G + H) = F.G + F.H
- 4. () $Se \lim_{t\to t_0} F(t)=0$ $e ||G(t)|| \le M, \forall t\in \mathbb{R} \ com \ M>0$ $ent\~ao \lim_{t\to t_0} F(t).G(t)=0$
- 5. () Se $\lim_{t\to t_0}F(t)=0$ e $||G(t)||\leq M, \forall t\in\mathbb{R}\ com\ M>0$ então $\lim_{t\to t_0}F(t)\wedge G(t)=0$

Exercício 1.3. Seja $F:[a,b] \longrightarrow \mathbb{R}^2$ contínua, mostre que existe M>0 tal que $||F(t)|| \leq M$

Exercício 1.4. Calcule $\frac{dF}{dt}$ e $\frac{d^2F}{dt^2}$, isto é, a primeira e a segunda derivada, respectivamente.

- 1. $F(t) = (3t^2, e^{-t}, ln(t^2 + 1))$
- 2. $F(t) = (\sqrt[3]{t^2}, \cos(t^2), 3t)$
- 3. $F(t) = (sen(5t), cos(4t), -e^{-2t})$

Exercício 1.5. Determine a equação da reta tangente à trajetória da função no ponto dado.

- 1. F(t) = (cost, sent, t) em $F(\frac{\pi}{3})$
- 2. $F(t) = (\frac{1}{t^2}, \frac{1}{t}, t^2)$ em F(2)

Exercício 1.6. Dizemos que uma curva $\delta : [a,b] \longrightarrow \mathbb{R}^2$, com derivada contínua, está parametrizada pelo comprimento de arco se $||\delta'(s)|| = 1$ para todo $s \in [a,b]$. Verifique se as curvas abaixo estão parametrizadas pelo comprimento de arco.

- 1. $\delta(s) = (\cos(s), \sin(s)) \cos s \ge 0$
- 2. $\delta(s) = (2\cos(\frac{s}{2}), 2sen(\frac{s}{2})) \ com \ s \ge 0$

Exercício 1.7. Se duas curvas , γ e δ , possuem a mesma imagem, isto é, $Im\gamma = Im\delta$ então podemos afirmar que os seus comprimentos também são iguais? Se verdadeiro prove, se for falso dê um contra-exemplo.