	haven readxl here foreign	tidyverse dplyr broom lubridate	gtsummary ggplot2 corrplot	ggpubr GGally Imtest rsq psych MASS car	lattice caret pROC LogisticDx Mfp hoslem.test ResourceSelection performance largesamplehl	survival survminer mfp

data <-read dta('data.dta') read excel read_sav read.csv summary(data) data %>% mutate(across(where(is.labelled), as_factor)) data %>% mutate(dur = data\$doa %--% data\$dod) %>% mutate(dur = as.duration(dur)) data %>% mutate(dur_days = dur /ddays(1)) data %>% mutate(category = cut(data\$IV, c(0, 140, 160, 300), labels = c('a', 'b', 'c')))data %>% group_by(event) %>% summarise(mean.age = mean(age), sd.age = sd(age), mean.gcs = mean(gcs), sd.gcs = sd(gcs)) data %>% count(event, iv) data %>% filter(num.iv > value, num.iv >=40) data %>% mutate(bmi = weight/(height^2)) %>% mutate(overweight = if_else(bmi

>=25.0,'overwt','not overwt'))

90, by = 10

new_data <- expand.grid(iv1 = c(a, b, c), iv2 = c('yes', 'no'), iv3 = seq(from = 10, to = anova(model1, model2, test="Chisq") tidy(model1, conf.int = T) tidy(model1, conf.int = T, exp = T) augment(model1, type.predict = 'link' or 'response') predict(final.m, type = 'link' or'term' or 'response') fit.m <- augment(model1, type.predict = 'response') |> mutate(pred.class = factor(ifelse(.fitted > 0.5, 'yes', 'no'))) confusionMatrix(fit.m\$dmdx, fit.m\$pred.class) roc <- roc(data\$dv, model1\$fitted.values)</pre> auc(roc) fit.hl <- gof(model1, g = 8)fit.hl\$gof plot(model1) influence.measures(model1) hoslem.test(data\$dv, fitted(model1), g = 10) performance hosmer(model1, n bins = 10) hltest(model1, G = 10)prem.final.res <-lrm(dv ~ iv1 + iv2 + iv3, data = data, y = TRUE, x = TRUEresiduals(prem.final.res, type = "gof")

 $model1 \leftarrow glm(dv \sim iv1 + iv2 + iv3, family =$

 $model2 \leftarrow glm(dv \sim iv1 + iv2 + iv3 + iv1:iv2, family =$

binomial(link = 'logit'), data = data)

binomial(link = 'logit'), data = data)

summary(model1)

PROFESSOR DR. KAMARUL IMRAN MUS (AMC No. 3:4450) (NRS. 102) Medical Lecturer Depertment of Community Medicine School of Madical Sciences Health Compus, University Statin Majayla 16190 Kubang Kerlan, Kelantan

```
tbl_summary(by = dv) %>% add_overall()
%>% as_gt()
data %>% select(iv1, iv2) %>%
tbl_summary(statistic =
list(all_continuous() ~ "{mean} ({sd})"))
tbl_regression(model, exp = T)
```

```
model1 \leftarrow Im(dv \sim iv1 + iv2 + iv3, data =
model2 < -lm(dv \sim iv1 + iv2 + iv3 + iv1:iv2,
data = data)
tidy(model, conf.int = TRUE)
anova(model1, model2)
augment(model1)
augment(model1, newdata = new data)
plot(model1)
ncvTest(model1)
bp.test(model1)
shapiro.test(model1$residuals)
aug.model<- augment(model1) %>%
ggplot(aes(x = iv, y = .resid)) +
geom_point() + geom_smooth()
res.mod <- residuals(model1)
hist(res.mod)
plot(resid no outlier$.fitted,
resid no outlier$.resid, abline(h=0,
col="red", lty=2))
cook <- 4/((nrow(data)-
length(model1$coefficients)-2))
plot(model1, which = 4, cook.levels = cook)
non.influen.obs <- aug.model %>%
filter(.std.resid < 2 & .std.resid > -2)
```

```
KM <- survfit(Surv(time = dur_days, event == 'dead')
~ 1, type = "kaplan-meier", data = data)
summary(KM)
ggsurvplot(KM, surv.median.line = "hv")
quantile(KM, probs = c(0.25, 0.50, 0.75))
survfit(Surv(time = dur days, event == 'dead') ~ sex,
type = "kaplan-meier", data = data)
summary(KM, times = c(t1, t2, t3))
survdiff(Surv(time = dur_days, event == 'dead') ~ sex,
data = data, rho = 0 or 1)
cox1 <- coxph(Surv(time = dur days, event = event
== 'dead') \sim iv1 +iv2 +iv3, data = data)
tidy(cox, conf.int = T, exp=T)
cox2 <- coxph(Surv(time = dur_days, event = event
== 'dead') \sim iv1 + iv2 + iv3 + iv1:iv2, data = data)
anova(model1, model2, test = 'Chisq')
augment(cox1, data = data)
augment(cox1, newdata = new_data)
predict(cox1l, newdata = new data, type = 'risk') or
'expected' or 'lp'
basehaz(cox1)
ggcoxfunctional(Surv(time = dur_days, event = event
== 'dead') ~ iv1 + iv2 +iv3, data = data))
phm <- cox.zph(cox.model, transform = 'km', global =
TRUE)
plot(phm)
cox.zph(cox.model, transform = 'rank' or 'log')
resid.cox <- resid(cox.model, type = "score") or
martingale/deviance/schoenfeld/dfbeta/scaledsch
plot(data$iv, resid.cox[,2], ylab="name residuals")
```


PROFESSOR DR. KAMARUL IMRAN MUSA (MMC No.: 34450) (NSR: 135728) Medical Lecturer Department of Community Medicine School of Medical Sciences Health Centipus, Universit Satins Malaysia 16150 Kubang Kerian. Kelantan