Serial No. 09/840,359 November 1, 2002 Page 2

W.K.

9. A surface acoustic wave device comprising:

a quartz substrate;

a piezoelectric thin film disposed on said quartz substrate;

comb electrodes disposed between said quartz substrate and said piezoelectric thin film; and

the normalized film thickness H/ λ of said piezoelectric thin film is at least about 0.20, wherein the film thickness of said piezoelectric thin film is H, and the wavelength of a surface acoustic wave is λ ; wherein

the Euler angles of said quartz substrate are within the range such that the power flow angle PFA of a Rayleigh wave is within about \pm 2.5°; and

the Euler angles of said quartz substrate are within the range such that the electromechanical coupling coefficient for a spurious wave $K_{\rm sp}^2$ is not larger than about 0.1%.

Please cancel claim 2 without prejudice or disclaimer of the subject matter contained therein.

Please add the following new claim 14:

14. A surface acoustic wave device, comprising:

a quartz substrate;

a piezoelectric thin film disposed on said quartz substrate;

comb electrodes disposed between said quartz substrate and said piezoelectric thin film; and

the normalized film thickness H/ λ of said piezoelectric thin film is at least about 0.20, wherein the film thickness of said piezoelectric thin film is H, and the wavelength of a surface acoustic wave is λ ; wherein

the Euler angles of said quartz substrate are within a range such that the power flow angle PFA of a Rayleigh wave is within about \pm 2.5°;

•

RA

Serial No. 09/840,359 November 1, 2002 Page 3

said range of the Euler angles set such that the PFA is within about \pm 2.5° is within an area surrounded by lines which are represented by the following equations:

 $\theta = 201.77292 - 8.1909*\psi + 0.3257*\psi^2 - 0.00532*\psi^3 + 0.0000286691*\psi^4 \text{ and } 3 \leqq \psi$ $\leqq 40;$

 θ =-2.3333* ψ +221.33 and $40 \le \psi \le 43$;

 θ =-20.667* ψ +1009.7 and 43 $\leq \psi \leq$ 44.5;

 $\psi = 242.92932 - 2.46296^*\theta - 0.04285^*\theta^*2 + 0.000792121^*\theta^*3 - 0.00000316309^*\theta^*4$ and $60 \leqq \psi \leqq 106;$

 θ =60 and 28 \leq ψ \leq 70;

 θ =1.39744* ψ ^2-78.37179* ψ +1158.8 and 27.5 $\leq \psi \leq$ 32;

 θ =9.8429+15.55204* ψ -1.0153* ψ ^2+0.0306* ψ ^3-0.00038175* ψ ^4 and 3 $\leq \psi \leq$ 32;

 θ =60 and $0 \le \psi \le 4$;

 ψ =0 and $60 \le \theta \le 180$;

 θ =180 and $0 \le \psi \le 4$; and

the Euler angles of said quartz substrate are within a range such that the electromechanical coupling coefficient for a spurious wave, $K_{\rm sp}^2$ is not larger than about 0.05%;

said range of the Euler angles set such that $K_{\rm sp}^2$ is not larger than about 0.05% is within an area surrounded by lines which are represented by the following equations:

 θ =461.5-51.23992*ψ+3.55894*ψ^2-0.12153*ψ^3+0.00171*ψ^4 and 12 \leq ψ \leq 25.5:

 θ =-10* ψ +425 and 24 $\leq \psi \leq$ 25.5;

 θ =-88.97104+38.79904* ψ -1.80561* ψ ^2+0.03334* ψ ^3-0.000217323* ψ ^4 and 27 $\leq \psi \leq$ 43;

 θ =-0.013928594* ψ ^4+2.255507173* ψ ^3-

 $136.803833233*\psi^2+3684.063042727*\psi-37024.00$ and $33 \le \psi \le 43$;

θ=0.0009461088154*ψ^4-0.178399621211*ψ^3+12.5950972795403*ψ^2-395.999782194768*ψ+4763.57 and $33 \le \psi \le 55$;

(out

 θ =60 and $29 \le \psi \le 55$;

 $\theta \text{=} 0.01724063^*\psi^{\Lambda} 3\text{-} 1.20723413^*\psi^{\Lambda} 2\text{+} 24.63357158^*\psi\text{-} 58 \text{ and } 16 \leqq \psi \leqq 30;$

 θ =0.0139* ψ ^2+0.9028* ψ +79 and 79 $\leq \psi \leq$ 100;

 ψ =0 and 78 \leq θ \leq 180;

 θ =180 and $0 \le \psi \le 13$;

 θ =180 and 24 $\leq \psi \leq$ 29.

