Data Structures

Lecture: Asymptotic Notations & Complexity
Analysis

By Om Suthar

Asst. Professor,

Lovely Professional University, Punjab

Contents

- Basic Terminology
- Complexity of Algorithm
- Asymptotic Notations
- Review Questions

Basic Terminology

- Algorithm: is a finite step by step list of well-defined instructions for solving a particular problem.
- Complexity of Algorithm: is a function which gives running time and/or space requirement in terms of the input size.
- Time and Space are two major measures of efficiency of an algorithm.

Algorithm

Characteristics of Good Algorithm

- Efficient
 - Running Time
 - Space used
- Efficiency as a function of input size
 - Size of Input
 - Number of Data elements

Time-Space Tradeoff

• By increasing the amount of space for storing the data, one may be able to reduce the time needed for processing the data, or vice versa.

Complexity of Algorithm

- Time and Space used by the algorithm are two main measures for efficiency of any algorithm *M*.
- Time is measured by counting the number of key operations.
- Space is measured by counting the maximum of memory needed by the algorithm.

- Complexity of Algorithm is a function f(n) which gives running time and/or space requirement of algorithm M in terms of the size n of the input data.
- Worst Case: The maximum value of f(n) for any possible input.
- Average Case: The expected or average value of f(n).
- Best Case: Minimum possible value of f(n).

Analysis of Insertion Sort Algorithm

for
$$j\leftarrow 2$$
 to n do c1 n
 $key \leftarrow A[j]$ c2 n-1
 $i \leftarrow j-1$ c3 n-1
while $i>0$ and $A[i]>key$ c4
 $do A[i+1] \leftarrow A[i]$ c5
$$\sum_{j=2}^{n} (tj-1)$$
 c7
$$A[i+1] \leftarrow key$$
 c7
$$\sum_{j=2}^{n} (tj-1)$$
 Total Time = $n(c1+c2+c3+c7)+\sum_{j=2}^{n} tj (c4+c5+c6)$ $-(c2+c3+c5+c6+c7)$

Analysis of Insertion Sort

Total Time =
$$n(c1 + c2 + c3 + c7) + \sum_{j=2}^{n} t_j (c4 + c5 + c6)$$

- $(c2 + c3 + c5 + c6 + c7)$

- Best Case: Elements are already sorted, tj=1 running time = f(n)
- Worst Case: Elements are sorted in reverse order,
 tj=j

```
running time = f(n^2)
```

• Average Case: tj = j/2running time = $f(n^2)$

Rate of Growth

• The rate of growth of some standard functions g(n) is:

$$log_2 n < n < nlog_2 n < n^2 < n^3 < 2^n$$

g(n)	log n	n	n log n	n²	n³	2"
5	3	5	15	25	125	32
10	4	10	40	100	103	103
100	7	100	700	104	10 ⁶	1030
1000	10	103	104	106	109	10300

Asymptotic Notations

Goal: to simplify analysis of running time.

• Useful to identify how the running time of an algorithm increases with the size of the input in the limit.

• Asymptotic is a line that approaches a curve but never touches.

Asymptotic Notations

Special Classes of Algorithms

- Logarithmic: O(log n)
- Linear: O(n)
- Quadratic: O(n²)
- Polynomial: $O(n^k)$, k >= 1
- Exponential: $O(a^n)$, a > 1

Big-Oh (O) Notation

- Asymptotic upper bound
- f(n) = O(g(n)), if there exists constants c and n_0 such that,
- $f(n) <= c g(n) \text{ for } n >= n_0$
- f(n) and g(n) are functions over nonnegative integers.
- Used for Worst-case analysis.

Big-Oh (O) Notation

• Simple Rule:

Drop lower order terms and constant factors.

Example:

- $50n \log n \text{ is } O(n \log n)$
- $8n^2 \log n + 5 n^2 + n \text{ is } O(n^2 \log n)$

Big-Omega (Ω) Notation

Asymptotic lower bound

• $f(n) = \Omega(g(n))$, if there exists constants c and n_0 such that, c g(n) <= f(n) for $n >= n_0$

• Used to describe Best-case running time.

Big-Theta (Θ)Notation

Asymptotic tight bound

- $f(n) = \Theta(g(n))$, if there exists constants c_1 , c_2 and n_0 such that,
- $c_1 g(n) \le f(n) \le c_2 g(n)$ for n >= n_0
- $f(n) = \Theta(g(n))$, iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

Little-Oh (o) Notation

• Non-tight analogue of Big-Oh.

• f(n) = o(g(n)), if for every c, there exists n_0 such that,

$$f(n) < c g(n)$$
 for $n >= n_0$

• Used for comparisons of running times.

// Here c is a constant
for (int i = 1; i <= c; i++)
{
// some O(1) expressions
}

• **O(1):** Time complexity of a function (or set of statements) is considered as O(1) if it doesn't contain loop, recursion and call to any other function.

```
for (int i = 1; i <= n; i += c)</li>{ // some O(1) expressions }
```

```
for (int i = n; i > 0; i -= c){ // some O(1) expressions }
```

• O(n): Time Complexity of a loop is considered as O(n) if the loop variables is incremented / decremented by a constant amount.

```
• for (int i = 1; i <=n; i += c)
     for (int j = 1; j <= n; j += c)
        { // some O(1) expressions
• for (int i = n; i > 0; i = c)
     for (int i = i+1; i <=n; i += c)
         { // some O(1) expressions
```

• $O(n^2)$: Time complexity of nested loops is equal to the number of times the innermost statement is executed.

```
for (int i = 1; i <=n; i *= c)</li>{ // some O(1) expressions }
```

```
for (int i = n; i > 0; i /= c){ // some O(1) expressions }
```

• **O(Logn)** Time Complexity of a loop is considered as O(Logn) if the loop variables is divided / multiplied by a constant amount.

```
for (int i = 2; i <=n; i = pow(i, c))</li>{ // some O(1) expressions }
```

• //Here fun is sqrt or cuberoot or any other constant root

```
for (int i = n; i > 0; i = fun(i))
{ // some O(1) expressions }
```

• **O(LogLogn)** Time Complexity of a loop is considered as O(LogLogn) if the loop variables is reduced / increased exponentially by a constant amount.

```
for (int i = 2; i*i <=n; i++))</li>{ // some O(1) expressions }
```

• $O(\sqrt{n})$ Time Complexity.

Questions

Review Questions

• When an algorithm is said to be better than the other?

• Can an algorithm have different running times on different machines?

 How the algorithm' running time is dependent on machines on which it is executed?

Review Questions

Find out the complexity:

```
function ()
N if (condition)
         for (i=0; i<n; i++) { // simple statements}
   else
      for (j=1; j<n; j++)
        for (k=n; k>0; k--) {// simple statement}
```