

3

Image segmentation □ Problem Aim Classify each pixel Tasks How many segments? How many objects in an image?

Image segmentation □ How? Before Computer VisionGestalt: whole or group Gestalt: whole or group

* Whole is greater than sum of its parts

* Relationships among parts can yield new properties/features

Psychologists identified series of factors that predispose set of
elements to be grouped (by human visual system)

*"I stand at the window and see a house, trees, sky.

Theoretically I might say there were 327 brightnesses and
nuances of colour. Do I have "327"? No. I have sky, house,
and trees." Max Wertheimer (1880-1943) Computer Vision's era
 Segmentation as clustering (K-means, GAMMs and EM, Mean Shift, ...)
 Segmentation as grouping by boundaries
 Graph-based segmentation Segmentation as energy minimization Region-based segmentation (->Thresholding, Region growing) Edge detection segmentation Deep learning algorithms

8

10

Image segmentation ■ How? ->Computer Vision's era Segmentation as grouping by boundaries □ Main idea Edge-based methods Algorithms: Watershed - good for hierarchical segmentation • the image is regarded as a topographic landscape with ridges and valleys Level-sets https://members.accu.org/index.php/journals/1469 https://hub.gke2.mybinder.org/user/scikit-image-- + Fast (apply filters) - if there are too many edges or less contrast objects

9

11

Image segmentation **(3)** □ How? ->Computer Vision's era Segmentation as energy minimization Markov Random Fields (MRFs) and Conditional Random Fields (CRFs) Rich probabilistic model for images Built in local, modular way - Get global effects from only learning/modeling local ones
 After conditioning, get a Markov Random Field (MRF) Algorithms Grab-Cut (2004) Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. *IEEE Transactions on pattern analysis and machine intelligence*, 23(11), 1222-1239. + Very powerful, get global results by defining local interactions Only works for sub modular energy functions (binary)
Only approximate algorithms work for multi-label case

12

Image segmentation

How? ->Computer Vision's era

Machine learning algorithms

Before deep learning

CRF + pixels/Superpixels

Jamie Shotton
https://citeseery.ist.psu.edu/document?reid=rep18type=pdf8doi=0
3a265706269523598728314ebi1143a175072

CRFs https://pub.ist.ac.at/~chl/papers/i

Sliding window

http://yann.lecun.com/exdb/publis/pdf/farabet-pami-13.pdf
https://ronan.collobet.com/pub/matos/2014_scene_icml.pdf

Deep learning era

Unet, Unet++, U2net &co
see https://causiayer.o
SegNet
Deeplab
FCN
DenseNet

Please check
https://github.com/mrgloom/awesome-semantic-segmentation

13 14

Image segmentation

Problem (modern formulation)

Road
Sidewalk
Pule
Pule
Viraft Sign
Vira

16

15

17 18

Image segmentation Detectron Feature extraction Feature pyramid network Different backbones (ResNet) Proposal generator Target tasks BB prediction BB classification BB classification Pixel-level classification inside a BB (segmentation) Loss = Loss(classific) + Loss(bb) + Loss(mask) Loss(mask) = cross-entropy Focal loss Non-local NN https://arxiv.org/pdf/1711.07971.pdf n-local NN https://arxiv.org/por/TTTLUT971.pdf Long-range dependencies Recurrent operations (repeated convolutions = local neighbourhood) Non-local operations Mean of all positions of an input =a very large receptive field Self-attention (machine translation) CRF (graphical models)

Image segmentation □ YOLACT (You Only Look At CoefficienTs) https://github.com/dbolya/yolact https://arxiv.org/pdf/1904.02689.pdf

25 26

Image segmentation ■ More details https://arxiv.org/pdf/2001.05566.pdf https://heartbeat.fritz.ai/a-2019-guide-to-semantic-segmentation-ca8242f5a7fc https://paperswithcode.com/sota/instancehttps://link.springer.com/article/10.1007/s13735-

27 28

