Cl2613: Algoritmos y Estructuras III

Blai Bonet

Universidad Simón Bolívar, Caracas, Venezuela

Enero-Marzo 2015

Caminos de costo mínimo sobre DAGs

Bellman-Ford soluciona el problema de caminos de costo mínimo desde un vértice fuente para grafos generales en tiempo $\Theta(VE)$

En grafos acíclicos podemos mejorar el desempeño de forma significativa explotando un orden topológico del grafo

El algoritmo funciona para pesos arbitrarios

Caminos de costo mínimo sobre DAGs

© 2014 Blai Bonet CI2613

Caminos de costo mínimo sobre DAGs: Pseudocódigo

```
bool Caminos-Mas-Cortos-Sobre-DAG(G, w, s):
    Ordenar los vértices de G de forma topológica

Inicializar-vertice-fuente(G, s)
foreach Vertice u ∈ V en orden topológico
foreach Vertice v ∈ adyacentes[u]
Relajar(u, v, w)
```

© 2014 Blai Bonet Cl2613 © 2014 Blai Bonet Cl2613

Caminos de costo mínimo sobre DAGs: Ejemplo

 $s,t,y,z,x\\(s,t),(s,y),(t,x),(t,y),(t,z),(y,x),(y,z),(z,x)$

© 2014 Blai Bonet

CI2613

CI2613

Caminos de costo mínimo sobre DAGs: Ejemplo

$$s, t, y, z, x$$

 $(s, t), (s, y), (t, x), (t, y), (t, z), (y, x), (y, z), (z, x)$

© 2014 Blai Bonet

CI2613

Caminos de costo mínimo sobre DAGs: Ejemplo

$$s,t,y,z,x\\ (s,t),(s,y),(t,x),(t,y),(t,z),(y,x),(y,z),(z,x)$$

Caminos de costo mínimo sobre DAGs: Ejemplo

s, t, y, z, x (s, t), (s, y), (t, x), (t, y), (t, z), (y, x), (y, z), (z, x)

© 2014 Blai Bonet

CI2613

Caminos de costo mínimo sobre DAGs: Ejemplo

$$s,t,y,z,x\\(s,t),(s,y),(t,x),(t,y),(t,z),(y,x),(y,z),(z,x)$$

© 2014 Blai Bonet

CI2613

Caminos de costo mínimo sobre DAGs: Pseudocódigo

```
bool Caminos-Mas-Cortos-Sobre-DAG(G, w, s):
    Ordenar los vértices de G de forma topológica

Inicializar-vertice-fuente(G, s)
foreach Vertice u ∈ V en orden topológico
foreach Vertice v ∈ adyacentes[u]
Relajar(u, v, w)
```

Caminos de costo mínimo sobre DAGs: Ejemplo

$$s,t,y,z,x\\(s,t),(s,y),(t,x),(t,y),(t,z),(y,x),(y,z),(z,x)$$

© 2014 Blai Bonet

CI2613

Caminos de costo mínimo sobre DAGs: Análisis

- **1** El ordenamiento topológico toma tiempo $\Theta(V+E)$
- 2 La inicialización toma tiempo $\Theta(V)$
- 3 Las relajaciones toman tiempo $\Theta(E)$
- 4 Tiempo total: $\Theta(V+E) + \Theta(V) + \Theta(E) = \Theta(V+E)$

© 2014 Blai Bonet Cl2613 © 2014 Blai Bonet

© 2014 Blai Bonet CI2613

Caminos de costo mínimo sobre DAGs: Correctitud

Teorema

Sea G=(V,E) un digrafo con vértice fuente s, sin ciclos y con pesos $w:E\to\mathbb{R}$. Al terminar Caminos-Mas-Cortos-Sobre-DAG, $d[v]=\delta(s,v)$ para todo vértice v y el grafo de predecesores es un árbol de caminos más cortos

Prueba: si v no es alcanzable desde s, por Invariante 2, $d[v] = \delta(s, v) = \infty$

Si v es alcanzable desde s, sea $p=(v_0,v_1,\ldots,v_k)$ un camino más corto de $v_0=s$ a $v_k=v$

Por ordenamiento, los vértices en p son procesados en orden v_0,\ldots,v_k

Las aristas de p son relajadas en orden (v_0, v_1) , (v_1, v_2) , ..., (v_{k-1}, v_k)

Por Invariante 4, al finalizar el algoritmo, $d[v] = \delta(s, v)$. Por Invariante 5, al finalizar, el grafo de predecesores es un árbol de caminos más cortos

© 2014 Blai Bonet CI2613

Aplicación: Control de proyectos

El grafo PERT contiene dos vértices designados s y t que denotan el comienzo y el final del proyecto

Un camino de costo mínimo de s a t representa una **secuencia crítica de actividades** tales que cualquier retraso en alguna de ellas, retrasaría la culminación del proyecto

El costo $\delta(s,t)$ de s a t en el grafo PERT es una cota inferior al tiempo de finalización del proyecto

© 2014 Blai Bonet CI2613

Aplicación: Control de proyectos

El algoritmo anterior se utliza en el área de control de proyectos para detectar el **camino crítico** en un diagrama PERT

PERT (Project Evaluation and Review Technique) es una técnica desarrollada a mediados de los 50s por la Armada de los E.E.U.U. en el contexto del desarrollo del **submarino nuclear Polaris**

Un diagrama PERT es un DAG G=(V,E) donde los vértices denotan **hitos en el proyecto** (momentos donde se alcanza algún objetivo) y las aristas denotan **actividades**

Los pesos $w:E\to\mathbb{R}$ denotan los **tiempos esperados de duración** de las actividades

© 2014 Blai Bonet CI2613