IN THE CLAIMS

- 1. (Currently Amended) A method for generating an undeniable signature $(y_1,...,y_t)$ on a set of data, the method comprising the following steps:
- [[-]] transforming the set of data [[(m)]] to a sequence of a predetermined number [[(t)]] of blocks $(x_1,[[...,]] x_t)$, the [[se]] blocks being members of an Abelian group, [[this]] the transformation being a one way function [[,]]; and
- [[-]] applying to each block $[[(x_i)]]$ a group homomorphism [[(f)]] to obtain a resulting value $[[(y_i)]]$, in which a number of elements of an initial group [[(G)]] is larger than the number of elements [[(d)]] of a destination group [[(H)]].
- 2. (Currently Amended) The method of claim 1, wherein the initial group [[(G)]] is formed by a set of invertible integers modulo n, [[i.e.]] denoted as Z_n^* .
- 3. (Currently Amended) The method according to claim 2, wherein the group homomorphism [[(f)]] computation is based on computation of a residue character (χ) on [[a]] the set of elements invertible integers Z_n^* .
- 4. (Currently Amended) The method according to claim 3, wherein the residue character (χ) computation [[in]] is based on a parameter (π) serving as a key.
- 5. (Currently Amended) The method according to the claim 4, wherein this key parameter (π) is determined such as by: $\pi \cdot \overline{\pi} = n$, $\overline{\pi}$ being the complex conjugate of π .
- 6. (Currently Amended) The method according to claim 2, wherein the group homomorphism [[(f)]] computation is determined [[in]] by raising an element of Z_n^* to the power of r(q-1), in which $n = p \cdot q$ such that p = rd + 1 and q are prime, gcd(r, d) = 1, gcd(q 1, d) = 1, then by computing a discrete logarithm.

- 7. (Original) The method according to claim 6, wherein the group homomorphism is calculated using a factorization of n.
- 8. (Currently Amended) The method according to claim 1, wherein the length of the signature is dependent of the number of elements of the destination group [[(d)]] and the number of blocks [[(t)]].
- 9. (Currently Amended) The method according to claim 4, wherein the parameter $[[(\pi)]]$ is a secret key on an asymmetric <u>public/secret</u> key pair <u>public/secret</u>.
- 10. (Currently Amended) A [[M]]method of confirming by a Verifier an undeniable signature $(y_1, ..., y_t)$ of a set of data [[(m)]] generated by a Signer taking into account a predefined security parameter [[(k)]] of the confirmation protocol, this Signer having a public/secret key pair, this method comprising the following steps:
- [[-]] obtaining a personal value (ρ) from the Signer, this personal value being part of the public key (G, H, d, ρ , (e_1 , ... e_s)) of the Signer[[,]];
 - [[-]] extracting a first sequence of elements $(e_1, \dots e_s)$ from the public key[[,]];
 - [[-]] generating a second sequence of elements $(g_1, ... g_s)$ from the personal value $(\rho)[[,]]$:
 - [[-]] generating a third sequence of elements $(x_1, ..., x_t)$ from the set of data (m)[[,]]:
- [[-]] randomly picking challenge parameters r_i ϵ G and a_{ij} ϵ Z_d for $i=1,\ldots,k$ and $j=1,\ldots,s+t$ and computing a challenge value $u_i=dr_i+a_{i1}g_1+\ldots a_{is}g_s+a_{is}+_1[[y]]\underline{x}_1+\ldots+a_{is}+_t[[y]]\underline{x}_t[[,]]$;
 - [[-]] sending by the Verifier the challenge value u_j to the Signer[[,]]:
- [[-]] receiving from the Signer a commitment value ($\langle v_i \rangle$), this commitment value ($\langle v_i \rangle$) being calculated by the Signer based on a response value $v_i = f(u_i)[[,]]$;
 - [[-]] sending by the Verifier the challenge parameters r_i and a_{ij} to the Signer[[,]]:

- [[-]] verifying by the Signer whether $u_i = dr_i + a_{i1}g_1 + ... a_{is}g_s + a_{is} + _1[[y]]\underline{x}_1 + ... + a_{is} + _t[[y]]\underline{x}_t$, and in the positive event, opening by the Signer the commitment on the response value $(v_i)[[,]]$; and
 - [[-]] verifying by the Verifier whether $v_i = a_{i1}e_1 + ... + a_{is}e_s + a_{is} + a_{is}$
- 11. (Currently Amended) A method for denying to a Verifier by a Signer on an alleged non-signature (z1, ..., zt) of a set of data (m), this signature being supposedly generated according to claim 1 by the Signer, this Signer having a public/secret key pair, this method taking into account a predefined security parameter (ℓ) of the denial protocol and comprising the following steps:
- [[-]] obtaining by the Verifier a personal value (ρ) of the Signer, this personal value being part of the public key (G, H, d, ρ , (e₁, ... e_s)) of the Signer[[,]];
- [[-]] extracting by the Verifier a first sequence of elements $(e_1, ... e_s)$ from the public key[[,]]:
- [[-]] generating by the Verifier and the Signer a second sequence of elements $(g_1, ... g_s)$ from the personal value (ρ) [[,]]:
- [[-]] generating by the Verifier and the Signer a third sequence of elements $(x_1, ..., x_i)$ from the set of data (m)[[,]]:
 - [[-]] calculating by the Signer [[the]] \underline{a} true signature $(y_1,...,\,y_t)[[,]]$; and
- [[-]] repeating the following steps ℓ times, ℓ being the predetermined security parameter[[,]]:
 - [[-]] randomly picking by the Verifier challenge parameters $r_j \, \epsilon \, G$ and $a_{ji} \, \epsilon \, Z_d$ for i = 1, ..., s and j = 1, ..., t and $\lambda \, \epsilon \, Z_p^*$ where p is the smallest prime dividing d[[,]];

- [[-]] computing $u_j := dr_j + a_{j1}g_1 + ... \ a_{js}g_s + \lambda x_j$, and $w_j := a_{j1}e_1 + ... \ a_{js}e_s + \lambda z_j$ for j = 1...t[[,]]:
 - [[-]] sending by the Verifier the challenge values u_j and w_j to the Signer[[,]];
 - [[-]] computing by the Signer a response test value $TV_j := (z_j y_j) \bullet :$
 - [[-]] for each j = 1 to t, determining whether the test value $TV_j = 0$ [[,]]:
- [[-]] in the negative event, calculating a test parameter λ_j according to the following formula : w_j - v_j , = λ_j (z_j - y_j):
- [[-]] determining an intermediate value [[IV]] (IV), [[this]] the intermediate value (IV) being equal to one valid test parameter [[λ]] (λ) and in case of no valid test parameter is found, selecting as the intermediate value (IV) a random value [[,]];
- [[-]] sending a commitment value CT based on the intermediate value [[IV]] (IV), to the Verifier[[,]];
- [[-]] sending by the Verifier the challenge parameters r_j , a_{ji} and test parameter [[λ]] (λ) to the Signer[[,]];
- [[-]] verifying by the Signer whether $u_j = dr_j + a_{j1}g_1 + ... a_{js}g_s + \lambda x_j$ and $w_j := a_{jl}e_1 + ... a_{js}e_s + \lambda z_j$ for j = 1 ... t hold, in the positive event, the Signer opens the commitment on the intermediate value (IV) to the Verifier[[.]]; and
- [[-]] verifying by the Verifier that the test parameter [[λ]] $(\underline{\lambda})$ is equal to the intermediate value [[IV]] (\underline{IV}) .
- 12. (Currently Amended) The method of claim 11, in which the determination of the valid test parameter comprises [[the]] \underline{a} check whether (w_j-v_j) , and (z_j-y_j) are not equal to 0.

13. (Currently Amended) The method of claim 11, in which j > 1, the determination of the valid test parameter comprises [[the]] \underline{a} check whether $(w_j - v_j)$ and $(z_j - y_j)$ are not equal to 0, and that all of the test parameters are the same.