

Bloque 2: Algoritmos y Computabilidad

Estrategia de Ramificación y Acotación (Branch and Bound)

Tema 3. Complejidad computacional [4 horas]

- 3.1 Complejidad computacional de un problema. Problemas P vs NP
- 3.2 Ramificación y Acotación

Objetivos

- Introducción a la técnica de Ramificación y Acotación (Branch&Bound)
- Valor de la relajación

Formalización de un problema

- 1. Elegir las variables de decisión
- 2. Expresar las **restricciones** del problema en función de estas variables
- 3. Determinar la función objetivo

En una **formulación declarativa**, se trata no tanto de plantear cómo resolver el problema, sino de especificar cómo representar el problema. Puede existir más de una forma de representar dicho modelo.

Problema de la mochila

- El problema de la mochila, o *knapsack* en inglés (KS), es uno de los 21 problemas NP-Completo de la lista de Richard Karp (1972). https://es.wikipedia.org/wiki/Problema de la mochila
- Este problema se usó como base de varios criptosistemas asimétricos (Merkle-Hellman, Graham-Shamir).

http://www.tierradelazaro.com/criptosistema-de-la-mochila

Dado un conjunto de ítems I, y una mochila de capacidad K, encontrar el subconjunto de ítems en I que maximice el valor de la mochila sin exceder la capacidad de la misma, K

Formalización problema de la mochila

Variables de decisión

 x_i , denota si un ítem forma parte de la solución o no

$$x_i = \begin{cases} 1, & \text{si el ítem está en la mochila} \\ 0, & \text{si el ítem no está en la mochila} \end{cases}$$

Restricciones

$$\sum_{i \in I} w_i x_i \le K$$
$$x_i \in \{0,1\}$$

• Función objetivo

$$Maximizar \sum_{i \in I} v_i x_i$$

Parámetros:

K: capacidad de la mochila w_i : peso del ítem i v_i : valor del ítem i

Mochila de una dimensión

Maximizar
$$45x_1 + 48x_2 + 35x_3$$

Dado,
$$5x_1 + 8x_2 + 3x_3 \le 10$$

 $x_i \in \{0, 1\} \ (i \in 1...3)$

Búsqueda exhaustiva

Ramificación y Acotación

- 2 pasos iterativos
 - Ramificación (*Branch*)
 - Acotación (Bound)
- Ramificación
 - Divide el problema en subproblemas (al igual que la búsqueda exhaustiva)
- Acotación
 - Busca una estimación óptima de la mejor solución del subproblema
 - Maximizar: límite superior
 - Minimizar: límite inferior
- ¿Cómo encontrar la estimación óptima?

Ramificación y Acotación

Maximizar
$$45x_1 + 48x_2 + 35x_3$$

Dado,
$$5x_1 + 8x_2 + 3x_3 \le 10$$

 $x_i \in \{0, 1\} \quad (i \in 1..3)$

- ¿Cómo encontrar una estimación óptima?
 - Relajación!
- Optimizar es el arte de relajar las restricciones

- ¿Qué podemos relajar?
 - La restricción de capacidad

n= número de elementos, 3

i	Vi	Wi	
1	45	5	
2	48	8	
3	35	3	
K = 10			

n= número de elementos, 3

i	V_{i}	Wi	
1	45	5	
2	48	8	
3	35	3	
K = 10			

Value Room Estimate

estimate = value + bound \$80 \$45 \$35

29/09/2021 - AP (JQG)

20

29/09/2021 - AP (JQG)

21

Branch and Bound, DFS

- Empezamos con el nodo raíz y lo metemos en una lista (append) de nodos vivos
- Mientras haya nodos en la lista de nodos vivos, hacemos un pop de la lista
 - Comprobamos si en el nodo actual hay espacio libre en la mochila
 - Comprobamos si la mejor estimación (bound) podría mejorar la solución incumbente (el mejor valor obtenido hasta el momento)
 - Si el valor obtenido en el nodo actual mejora la mejor solución hasta el momento, actualizamos el valor de la mejor solución, y los ítems elegidos para obtener esa solución (taken)
 - Si no hemos llegado al final del árbol:
 - Ramificamos (*branch*) por la derecha (*append*)
 - Ramificamos (*branch*) por la izquierda (*append*)

De esta forma, cuando hagamos el *pop* empezaremos a ramificar por la izquierda

node
index
taken
value
room
estimate

Modelo de la mochila

Maximizar
$$45x_1 + 48x_2 + 35x_3$$

Dado,
$$5x_1 + 8x_2 + 3x_3 \le 10$$

 $x_i \in \{0, 1\} \ (i \in 1...3)$

¿Podríamos relajar algo más?

• Si los objetos fueran fraccionables

Maximizar
$$45x_1 + 48x_2 + 35x_3$$

Dado,
$$5x_1 + 8x_2 + 3x_3 \le 10$$

 $0 \le x_i \le 1$ $(i \in 1...3)$

Relajación lineal

Modelo de la mochila

- ¿Qué implicación tiene la relajación lineal en el problema de la mochila?
 - Podemos ordenar en orden decreciente por la 'densidad' V_i / W_i
- ¿Cómo se resuelve ahora la relajación lineal?
 - Seleccionar ítems mientras quepan en la mochila
 - Seleccionar una fracción del último ítem
- En este ejemplo
 - $V_1/W_1 = 9$, $V_2/W_2 = 6$, $V_3/W_3 = 11.7$
 - Orden 3,1,2
 - Seleccionamos ítems 3 y 1
 - Seleccionamos ¼ del ítem 2
 - Estimación: 92

i	V_{i}	Wi
1	45	5
2	48	8
3	35	3
K = 10		

29/09/2021 - AP (JQG)

30