1/1 point

1/1 point

3. We usually choose a mini-batch size greater than 1 and less than m, because that way we make use of vectorization but not fall into the slower case of batch gradient descent.

False

○ Correct

Correct. Precisely by choosing a batch size greater than one we can use vectorization; but we choose a value less than m so we won't end up using batch gradient descent.

Which of the following do you agree with?

- If you are using batch gradient descent, this looks acceptable. But if you're using mini-batch gradient descent, something is wrong.
- If you are using mini-batch gradient descent or batch gradient descent this looks acceptable.
- No matter if using mini-batch gradient descent or batch gradient descent something is wrong.
- If you are using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

⊗ Incorrect

No. The cost is larger than when the process started, this is not right at all.

Jan 1st:
$$\theta_1=10^{o}C$$

Jan 2nd:
$$\theta_2=10^oC$$

(We used Fahrenheit in the lecture, so we will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what bias correction is doing.)

- $v_2 = 7.5, v_2^{corrected} = 7.5$
- $v_2 = 10$, $v_2^{corrected} = 10$
- (a) $v_2 = 7.5$, $v_2^{corrected} = 10$
- $v_2 = 10$, $v_2^{corrected} = 7.5$

A Expand

$$\bigcirc \alpha = \frac{\alpha_0}{1+3t}$$

$$\alpha = 1.01^i \alpha_0$$

~

Z Expand

(x) Incorrect

Incorrect. This is a good learning rate decay since it is a decreasing function of t.

7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

- \square Decreasing β will shift the red line slightly to the right.
- Increasing β will shift the red line slightly to the right.

✓ Correct

True, remember that the red line corresponds to $\beta=0.9$. In the lecture we had a green line $\beta=0.98$ that is slightly shifted to the right.

Decreasing β will create more oscillation within the red line.

✓ Correct

True, remember that the red line corresponds to $\beta=0.9$, In lecture we had a yellow line $\beta=0.98$ that had a lot of oscillations.

Increasing β will create more oscillations within the red line.

Great, you got all the right answers.

8. Consider this figure: 1/1 point

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5); and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β)
- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)

. Expand

	100	4.0		
	-30	40.0	ARTHUR HITCH	•
ж.	981	1	poin	Sec.

9. Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},...,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)

○ Correct

Great, you got all the right answers.

1/1 point