# Power Optimization in FPGA Design of BCD Adder using Clock Gating

FPGA Based System Design – 22EC2020

- ALDRIN G (URK22EC1019)

# **BCD ADDER**

# Verilog code (BEHAVIOURAL MODELING):

```
module bcd_adder (
  input [3:0] a,
  input [3:0] b,
  output reg [3:0] sum,
  output reg cout
);
  reg [4:0] temp_sum;
  always @(*)
  begin
    temp_sum = a + b;
    if (temp_sum > 4'd9)
    begin
       sum = temp_sum + 4'd6;
       cout = 1;
    end
    else
    begin
       sum = temp_sum[3:0];
       cout = 0;
    end
  end
endmodule
```

# **Power Optimized Code using Clock Gating Technique:**

```
module bcd adder (
  input [3:0] a,
  input [3:0] b,
  output reg [3:0] sum,
  output reg cout
);
  reg [4:0] temp sum;
  reg [3:0] prev a, prev b;
  always @(*)
  begin
    // Check if there is any change in the inputs
    if (a != prev_a || b != prev_b)
    begin
       // Update temporary sum and store previous inputs
       temp sum = a + b;
       prev a = a;
       prev b = b;
       if (temp sum > 4'd9)
       begin
         sum = temp sum + 4'd6;
         cout = 1;
       end
       else
       begin
         sum = temp sum[3:0];
         cout = 0;
       end
     end
  end
endmodule
```

#### **Key Differences after Design Optimization**

**Objective**: Reduce toggling activity in the BCD adder to save power by updating only when inputs change.

#### **Modifications**:

- 1. Previous State Registers (prev\_a, prev\_b): Store the last state of inputs a and b.
- 2. Condition for Computation: Add a check in the always block to update temp\_sum only when a or b changes.

**Result**: This minimizes unnecessary updates, reducing switching activity and saving power by avoiding redundant computations.

#### **Applying Clock Gating for Power Optimization**

- 1. **Purpose of Clock Gating**: Reduces power consumption by activating logic only when necessary.
- 2. Clock Gating Mechanism: Adds a clock enable signal to control when the logic block executes.
- 3. **Effect on BCD Adder**: Ensures the BCD adder updates only when there's a change in inputs, reducing unnecessary computations.
- 4. Simulation in Combinational Logic:
  - Since the BCD adder is a combinational block (without a clock signal), we simulate clock gating.
  - o Implement a condition to perform addition only if a or b changes.
- 5. **Power Savings**: Minimizes toggling activity and power consumption by preventing redundant updates to temp sum.

## **Comparision Table:**

| Power Parameter        | Unoptimized<br>Design | Optimized<br>Design | Power Reduction<br>(W) | Percentage Reduction (%) |
|------------------------|-----------------------|---------------------|------------------------|--------------------------|
| Total On-Chip<br>Power | 2.88 W                | 0.228 W             | 2.652 W                | 92.08%                   |
| Dynamic Power          | 2.801 W               | 0.157 W             | 2.644 W                | 94.39%                   |
| Static Power           | 0.078 W               | 0.071 W             | 0.007 W                | 8.97%                    |

#### UNOPTIMIZED BCD ADDER

# Power Report Summary:





### **Schematic:**



#### **OPTIMIZED BCD ADDER**

# Power Report Summary:



### **Schematic:**

