

coursera

Data Analysis with Python > Week 6 > Submit your Project and Review Others

< Previous

Next >

X

House Sales in King County, USA

- Reading: Project Scenario
- **Ungraded External Tool:** Lab for Final Project
- Peer-graded Assignment: Submit your Project and Review Others Grading in progress
- **Review Your Peers:** Submit your Project and Review Others

Final Exam

Digital Badge

Acknowledgments

Peer-graded Assignment: Submit your Project and Review Others

Reviews 2 left to complete

i It looks like this is your first peer-graded assignment. Learn more

Search

Links or files from other learners aren't verified for security by Coursera. If a file appears suspicious, use your preferred antivirus software before opening.

House Sale

KB by Karm Bhatt December 28, 2022

♡ Like 🏳 Flag this submission

PROMPT

Question 1) Display the data types of each column using the attribute dtypes, then take a screenshot and submit it, include your code in the image.

RUBRIC

1 a) Does the assignment use the data attribute dtypes to get the data type and display the following image

Unnamed: 0	1nt64
id	int64
date	object
price	float64
bedrooms	float64
bathrooms	float64
sqft_living	int64
sqft_lot	int64
floors	float64
waterfront	int64
view	int64
condition	int64
grade	int64
sqft_above	int64
sqft_basement	int64
yr_built	int64
yr_renovated	int64
zipcode	int64
lat	float64
long	float64
sqft_living15	int64
sqft_lot15	int64
dtype: object	

1 pt Yes

PROMPT

Question 2) Drop the columns "id" and "Unnamed: 0" from axis 1 using the method drop(), then use the method describe() to obtain a statistical summary of the data. Take a screenshot and submit it, make sure the inplace parameter is set to True. Your output should look like this:

RUBRIC

Question 2) Does the assignment drop the colunms "id" and "Unnamed: 0"

use the method describe() to obtain a statistical summary of the dataframe and produce the result. Note the missing collumns

PROMPT

Question 3) use the method value_counts to count the number of houses with unique floor values, use the method .to_frame() to convert it to a dataframe. Your output should look like this:

	floors
1.0	10680
2.0	8241
1.5	1910
3.0	613
2.5	161
3.5	8

Υ

RUBRIC

	floors
1.0	10680
2.0	8241
1.5	1910
3.0	613
2.5	161
3.5	8

O 0.5 pts

They used the method **value_counts** on the correct column but did not produce the plot.

1 pt Yes

PROMPT

Question 4) use the function *boxplot* in the seaborn library to produce a plot that can be used to determine whether houses with a waterfront view or without a waterfront view have more price outliers. Your output should look like this with the code that produced it (the colors may be different):

RUBRIC

O nnts

Question 4) was the following plot produced:

PROMPT Question 6) Fit a linear regression model to predict the price using the feature 'sqft_living' then calculate the R^2. Take a screenshot of your code and the value of the R^2 .

in [60]: x = df[['sqft_living']]
v = df.nricel

RUBRIC

Question 6) Was a linear regression model fit and a R^2 of approximately 0.49285 calculated?

O pts No

Question 9) Create and fit a Ridge regression object using the training data, setting the regularization parameter to 0.1 and calculate the R^2 using the test data. Take a screenshot for your code and the R^2 from sklearn.linear_model import Ridge rm = Ridge(alpha=0.1) rm.fit(x_train, y_train) RUBRIC Question 9) Was the R^2 of approximately 0.647? 0 pts No 1 pt Partially complete

