

Instituto Federal de Educação, Ciência e Tecnologia de Brasília – Câmpus Taguatinga Ciência da Computação – Teoria da Computação Prova Substitutiva – 2°/2019 – Conteúdo Integral Prof. Daniel Saad Nogueira Nunes

Aluno:	
Matrícula:	
Data: 10 de dezembro de 2019	
Dava. 10 de dezembro de 2015	

Duração da prova: 100 minutos

Tabela de notas (uso exclusivo do professor)

Questão	Pontos	Nota
1	3	
2	3	
3	3	
4	3	
5	0	
Total	12	

Observações

- Esta prova tem o total de 2 páginas (incluindo a capa) e 5 questões.
- O número total de pontos é 12.
- Certifique-se de assinar todas as folhas de resposta bem como a capa da prova.
- Leia atentamente todas as questões da prova. A interpretação do problema é crucial para o desenvolvimento correto da resposta.
- Resoluções sem justificativa não serão consideradas.
- É vedado o uso de equipamentos eletrônicos, como celulares, notebooks entre outros.
- A prova será anulada e medidas disciplinares serão tomadas para os alunos que "colarem" durante a avaliação.
- * Certifique-se de assinar todas as folhas de resposta.

Questão 1 (3 pontos)

Considerando a linguagem $A_{\rm MT}$ abaixo.

$$A_{\mathrm{MT}} = \{ \langle M, w \rangle | M \text{ \'e uma MT e } M \text{ aceita } w \}$$

- (a) (2 pontos) Demonstre que $A_{\rm MT}$ é indecidível.
- (b) (1 ponto) A linguagem $A_{\rm MT}$ é reconhecível?

Questão 2 (3 pontos)

Construa uma máquina de Turing que decida a seguinte linguagem:

$$L = \{0^n 1^n 2^n | n \in \mathbb{N}\}$$

Questão 3 (3 pontos)

De acordo com a redutibilidade por mapeamento e funções computáveis:

- (a) (1 ponto) Defina a relação de redutibilidade por mapeamento \leq_m , isto é, defina as noções de função computável e redutibilidade por mapeamento.
- (b) (1 ponto) Sejam A e B duas linguagens. Dado que $A \leq_m B$, o que podemos dizer da dificuldade de B em relação a A?
- (c) (1 ponto) Mostre que se $A \leq_m B$, então $\bar{A} \leq_m \bar{B}$.

Questão 4 (3 pontos)

Mostre que A é Turing-reconhecível se e somente se $A \leq_m A_{MT}$.

Você pode utilizar o seguinte resultado:

Se $C \leq_m D$ e D é Turing-reconhecível, então C também é.

Considere que $A_{\rm MT}$ é reconhecível, não é necessário demonstrar este fato.

Questão 5 (0 pontos)

Escreva tudo o que você aprendeu na disciplina, mas não caiu nas provas.

Se quiser vir a ser alguém na vida, que devore os livros.

Seu Madruga.

* Certifique-se de assinar todas as folhas de resposta.