Applying Support Vector Machine (SVM) Algorithm to identify S&P500 trend

```
Hide
#install.packages("quantmod")
#install.packages("e1071")
library(quantmod)
library(e1071)
# Importing the dataset
startDate = as.Date("2011-01-01")
endDate = as.Date("2018-06-30")
getSymbols("^GSPC", src="yahoo", from=startDate, to=endDate)
[1] "GSPC"
                                                                                              Hide
dataset=data.frame(GSPC)
dim(dataset)
[1] 1886
                                                                                              Hide
str(dataset)
'data.frame':
                1886 obs. of 6 variables:
 $ GSPC.Open
                : num 1258 1273 1269 1276 1274 ...
 $ GSPC.High
                : num 1276 1274 1278 1278 1277 ...
 $ GSPC.Low
               : num 1258 1263 1265 1270 1262 ...
 $ GSPC.Close
                : num 1272 1270 1277 1274 1272 ...
 $ GSPC.Volume : num 4.29e+09 4.80e+09 4.76e+09 4.84e+09 4.96e+09 ...
 $ GSPC.Adjusted: num 1272 1270 1277 1274 1272 ...
                                                                                              Hide
#RSI indicator
relativeStrengthIndex20=RSI(Op(GSPC),n=20)
summary(relativeStrengthIndex20)
```

```
Index
                          rsi
       :2011-01-03
                     Min.
                            :21.67
Min.
1st Qu.:2012-11-15
                     1st Qu.:49.28
                     Median :56.03
Median :2014-10-01
Mean
       :2014-10-01
                     Mean
                            :55.47
3rd Qu.:2016-08-15
                     3rd Qu.:62.19
     :2018-06-29
Max.
                     Max.
                            :85.12
                     NA's
                            :20
```

plot(relativeStrengthIndex20)

Jan 03 2011 Jul 02 2012 Jan 02 2014 Jul 01 2015 Jan 03 2017 Jun 29 2018

Hide

Exponential Moving Average Indicator
exponentialMovingAverage20=EMA(Op(GSPC),n=20)
head(exponentialMovingAverage20)

```
EMA
2011-01-03 NA
2011-01-04 NA
2011-01-05 NA
2011-01-06 NA
2011-01-07 NA
2011-01-10 NA
```

Hide

summary(exponentialMovingAverage20)

```
Index
                          EMA
       :2011-01-03
                     Min.
                            :1158
Min.
1st Qu.:2012-11-15
                     1st Qu.:1438
Median :2014-10-01
                     Median:1957
      :2014-10-01
                     Mean
                           :1890
3rd Qu.:2016-08-15
                     3rd Qu.:2147
                           :2798
     :2018-06-29
Max.
                     Max.
                     NA's
                            :19
```

plot(exponentialMovingAverage20)

Jan 03 2011 Jul 02 2012 Jan 02 2014 Jul 01 2015 Jan 03 2017 Jun 29 2018

Hide

Difference in Exponential Moving Average
exponentialMovingAverageDiff <- Op(GSPC) - exponentialMovingAverage20
head(exponentialMovingAverageDiff)</pre>

GSF	C.Open
2011-01-03	NA
2011-01-04	NA
2011-01-05	NA
2011-01-06	NA
2011-01-07	NA
2011-01-10	NA

Hide

summary(exponentialMovingAverageDiff)

Index GSPC.Open :2011-01-03 Min. :-167.908 Min. 1st Qu.:2012-11-15 1st Qu.: -6.288 Median :2014-10-01 Median : 12.592 Mean :2014-10-01 Mean : 7.432 3rd Qu.:2016-08-15 3rd Qu.: 25.688 Max. :2018-06-29 Max. : 83.325 NA's :19

Hide

plot(exponentialMovingAverageDiff)

Jan 03 2011 Jul 02 2012 Jan 02 2014 Jul 01 2015 Jan 03 2017 Jun 29 2018

Hide

MACD Indicator
MACD <- MACD(Op(GSPC), fast = 12, slow = 26, signal = 9, type = "EMA", histogram = TRUE)
plot(MACD)</pre>

Jan 03 2011 Jul 02 2012 Jan 02 2014 Jul 01 2015 Jan 03 2017 Jun 29 2018

Hide

tail(MACD)

```
macd signal
2018-06-22 0.574743051 0.6812994
2018-06-25 0.471427824 0.6393251
2018-06-26 0.324827483 0.5764256
2018-06-27 0.224507694 0.5060420
2018-06-28 0.056802071 0.4161940
2018-06-29 0.007311846 0.3344176
```

Hide

summary(MACD)

```
Index
                         macd
                                           signal
Min.
       :2011-01-03
                    Min.
                           :-3.44194
                                       Min.
                                             :-3.0188
1st Qu.:2012-11-15
                    1st Qu.:-0.07795
                                       1st Qu.:-0.0489
Median :2014-10-01
                    Median : 0.41028
                                       Median : 0.3901
Mean
      :2014-10-01
                    Mean
                          : 0.28198
                                       Mean : 0.2801
3rd Qu.:2016-08-15
                    3rd Qu.: 0.78858
                                       3rd Qu.: 0.7543
                          : 2.01064
     :2018-06-29
                                       Max. : 1.5568
Max.
                    Max.
                    NA's
                          :25
                                       NA's :33
```

```
MACDsignal <- MACD[,2]
plot(MACDsignal)</pre>
```


Jan 03 2011 Jul 02 2012 Jan 02 2014 Jul 01 2015 Jan 03 2017 Jun 29 2018

Hide

```
# Bollinger Band indicator
BollingerBands <- BBands(Op(GSPC),n=20,sd=2)
tail(BollingerBands)</pre>
```

```
dn mavg up pctB

2018-06-22 2701.463 2754.360 2807.256 0.56078445

2018-06-25 2704.032 2755.327 2806.621 0.37926017

2018-06-26 2707.758 2756.177 2804.596 0.14831230

2018-06-27 2713.733 2757.478 2801.223 0.16821581

2018-06-28 2708.057 2756.364 2804.670 -0.09695981

2018-06-29 2709.668 2756.785 2803.902 0.18530104
```

Hide

summary(BollingerBands)

```
Index
                             dn
                                           mavg
Min.
       :2011-01-03
                      Min.
                              :1075
                                      Min.
                                              :1163
1st Qu.:2012-11-15
                      1st Qu.:1400
                                      1st Qu.:1438
Median :2014-10-01
                      Median :1885
                                      Median :1955
       :2014-10-01
Mean
                      Mean
                             :1844
                                      Mean
                                              :1890
3rd Qu.:2016-08-15
                      3rd Qu.:2094
                                      3rd Qu.:2146
       :2018-06-29
                              :2724
                                              :2802
Max.
                      Max.
                                      Max.
                      NA's
                              :19
                                      NA's
                                              :19
                     pctB
      up
                       :-0.4976
Min.
       :1222
                Min.
1st Qu.:1471
                1st Qu.: 0.3697
Median :2009
               Median : 0.6752
       :1935
                       : 0.5937
Mean
                Mean
3rd Qu.:2183
                3rd Qu.: 0.8456
       :2939
                       : 1.2709
Max.
                Max.
NA's
       :19
                NA's
                       :19
```

plot(BollingerBands)

Hide

```
# % Change BB
PercentageChngpctB <- BollingerBands[,4]</pre>
tail(PercentageChngpctB)
```

```
pctB
2018-06-22 0.56078445
2018-06-25 0.37926017
2018-06-26 0.14831230
2018-06-27 0.16821581
2018-06-28 -0.09695981
2018-06-29 0.18530104
```

Hide

summary(PercentageChngpctB)

```
Index
                           pctB
Min.
       :2011-01-03
                             :-0.4976
                     Min.
1st Qu.:2012-11-15
                     1st Qu.: 0.3697
Median :2014-10-01
                     Median : 0.6752
Mean
       :2014-10-01
                     Mean
                            : 0.5937
3rd Qu.:2016-08-15
                     3rd Qu.: 0.8456
       :2018-06-29
                            : 1.2709
Max.
                     Max.
                     NA's
                             :19
```

plot(PercentageChngpctB)

Jan 03 2011 Jul 02 2012 Jan 02 2014 Jul 01 2015 Jan 03 2017 Jun 29 2018

Hide

Price (Closes above Open = 1, Closes below Open = 0)
Price=ifelse(dataset[4]>dataset[1], 1,0)
tail(Price)

GSP	C.Close
2018-06-22	0
2018-06-25	0
2018-06-26	1
2018-06-27	0
2018-06-28	1
2018-06-29	0

Hide

tail(dataset)

SPC.Op <dbl> 2760.79</dbl>	GSPC.High <dbl> 2764.17</dbl>	GSPC.L <dbl> 2752.68</dbl>	GSPC.Close <dbl></dbl>	GSPC.Volume <dbl></dbl>	GSPC.Adjusted <dbl></dbl>
2760.79	2764.17	2752.68			
		2132.00	2754.88	5450550000	2754.88
2742.94	2742.94	2698.67	2717.07	3655080000	2717.07
2722.12	2732.91	2715.60	2723.06	3555090000	2723.06
2728.45	2746.09	2699.38	2699.63	3776090000	2699.63
2698.69	2724.34	2691.99	2716.31	3428140000	2716.31
2727.13	2743.26	2718.03	2718.37	3565620000	2718.37
	2722.12 2728.45 2698.69	2722.12 2732.91 2728.45 2746.09 2698.69 2724.34	2722.12 2732.91 2715.60 2728.45 2746.09 2699.38 2698.69 2724.34 2691.99	2722.12 2732.91 2715.60 2723.06 2728.45 2746.09 2699.38 2699.63 2698.69 2724.34 2691.99 2716.31	2722.12 2732.91 2715.60 2723.06 3555090000 2728.45 2746.09 2699.38 2699.63 3776090000 2698.69 2724.34 2691.99 2716.31 3428140000

```
6 rows
```

```
plot(Price)
```


Hide

dataset1<-data.frame(relativeStrengthIndex20, exponentialMovingAverage20, MACDsignal, Percentage
ChngpctB, Price)
Size of Data
str(dataset1)</pre>

Hide

dim(dataset1)

[1] **188**6 5

```
#Checking for missing data
d3=dataset1
for(i in 1:ncol(d3))
   {
    print(colnames(d3[i]))
    print(sum(is.na(d3[i])))
   }
[1] "rsi"
[1] 20
[1] "EMA"
[1] 19
[1] "signal"
[1] 33
[1] "pctB"
[1] 19
[1] "GSPC.Close"
[1] 0
                                                                                                Hide
dataset1 = na.omit(dataset1)
#Checking for missing data again
dim(dataset1)
[1] 1853
            5
                                                                                                Hide
d3=dataset1
for(i in 1:ncol(d3))
   {
    print(colnames(d3[i]))
    print(sum(is.na(d3[i])))
   }
[1] "rsi"
[1] 0
[1] "EMA"
[1] 0
[1] "signal"
[1] 0
[1] "pctB"
[1] 0
[1] "GSPC.Close"
[1] 0
                                                                                                Hide
```

```
colnames(dataset1)=c ("RSI20", "EMA20", "MACDsignal", "BB", "Price")
# Exploring the data set components
str(dataset1)
```

```
# Encoding the target feature as factor
dataset1$Price=factor(dataset1$Price, levels = c(0, 1))
```

Hide

```
# Splitting the dataset into the Training set and Test set
library(caTools)
set.seed(123)
split = sample.split(dataset1$Price, SplitRatio = 0.8)
training set = subset(dataset1, split == TRUE)
test set = subset(dataset1, split == FALSE)
# Feature Scaling (Normalization and dropping the predicted variable)
training_set[-5] = scale(training_set[-5])
test set[-5] = scale(test set[-5])
# Applying Kernel SVM Model on the Training set
library(e1071)
classifier = svm(formula = Price ~ .,
                 data = training set,
                 type = 'C-classification',
                 kernel = 'radial')
# Predicting the Test set results
predict_val = predict(classifier, newdata = test_set[-5])
# Confusion Matrix
cm = table(test_set[, 5], predict_val)
print(cm)
```

```
predict_val
0 1
0 3 169
1 2 197
```

```
# Evaluating Model Accuracy on test data set using Confusion Matrix
Model_Accuracy=(cm[1,1] + cm[2,2])/ (cm[1,1] + cm[1,2] + cm[2,1] + cm[2,2])
print("Model Accuracy is")
```

[1] "Model Accuracy is"

Hide

print(Model_Accuracy)

[1] 0.5390836