Lógica CC Licenciatura em Ciências da Computação

Luís Pinto

Departamento de Matemática Universidade do Minho

1º. semestre, 2020/2021

2.2 Semântica do Cálculo Proposicional

Definição 40:

Os valores lógicos do CP são o verdadeiro e o falso.

Estes valores serão denotados por 1 e 0, respetivamente.

Definição 41: Uma função $v: \mathcal{F}^{CP} \longrightarrow \{0,1\}$ é uma *valoração* quando satisfaz as seguintes condições:

- **a)** $v(\bot) = 0$,
- **b)** $v(\neg \varphi) = f_{\neg}(v(\varphi))$, para todo $\varphi \in \mathcal{F}^{CP}$,
- **c)** $v(\varphi \Box \psi) = f_{\Box}(v(\varphi), v(\psi))$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$ e para todo $\Box \in \{\land, \lor, \to, \leftrightarrow\}$,

onde $f_{\neg}, f_{\wedge}, f_{\vee}, f_{\rightarrow}, f_{\leftrightarrow}$ são as *funções boleanas* determinadas pelas *tabelas de verdade* dos respetivos conetivos; concretamente:

Definição 41 (cont.):

$$\begin{array}{cccc}
f_{\neg}: & \{0,1\} & \longrightarrow & \{0,1\} \\
0 & \mapsto & 1 \\
1 & \mapsto & 0
\end{array}$$

Definição 41 (cont.):

Proposição 42: Seja v uma valoração e sejam φ, ψ fórmulas do CP. Então,

- a) $v(\neg \varphi) = 1$ sse $v(\varphi) = 0$; $v(\neg \varphi) = 1 v(\varphi)$;
- **b)** $v(\varphi \wedge \psi) = 1$ sse $v(\varphi) = 1$ e $v(\psi) = 1$; $v(\varphi \wedge \psi) = minimo(v(\varphi), v(\psi))$;
- c) $v(\varphi \lor \psi) = 1$ sse $v(\varphi) = 1$ ou $v(\psi) = 1$; $v(\varphi \lor \psi) = m\acute{a}ximo(v(\varphi), v(\psi));$
- **d)** $v(\varphi \rightarrow \psi) = 1$ sse $v(\varphi) = 0$ ou $v(\psi) = 1$;
- **e)** $v(\varphi \leftrightarrow \psi) = 1$ sse $v(\varphi) = v(\psi)$.

Dem.: Exercício.

Proposição 43: Seja $f: \mathcal{V}^{CP} \longrightarrow \{0, 1\}$ uma função. Então, existe uma e uma só valoração v t.q. v(p) = f(p), para todo $p \in \mathcal{V}^{CP}$.

Dem.: Consequência imediata do Princípio de recursão estrutural para fórmulas do CP.

Definição 44: O valor lógico de uma fórmula φ para uma valoração v é $v(\varphi)$.

Exemplo 45: Sejam v_1 a única valoração t.q. $v_1(p) = 0$, para todo $p \in \mathcal{V}^{CP}$, e v_2 a única valoração t.q.

$$v_2(p)=\left\{egin{array}{ll} 1 & ext{se } p\in\{p_0,p_2\} \ 0 & ext{se } p\in\mathcal{V}^\mathit{CP}-\{p_0,p_2\} \end{array}
ight..$$

Sejam ainda $\varphi = (p_1 \lor p_2) \to (p_1 \land p_2)$ e $\psi = \neg p_1 \leftrightarrow (p_1 \to \bot)$. Então:

- a) Como $v_1(p_1) = v_1(p_2) = 0$, $v_1(p_1 \lor p_2) = 0$, donde, de imediato, segue $v_1(\varphi) = 1$. (Exercício: verifique que $v_2(\varphi) = 0$.)
- **b)** Como $v_1(p_1) = 0$, por um lado, temos $v_1(\neg p_1) = 1$ e, por outro, temos $v_1(p_1 \to \bot) = 1$. Assim, $v_1(\psi) = 1$. (Exercício: verifique que $v_2(\psi) = 1$; em particular, observe que v_2 e v_1 atribuem o mesmo valor lógico à única variável proposicional que ocorre em ψ .)

Proposição 46: Sejam v_1 e v_2 valorações e seja φ uma fórmula do CP. Se, para todo $p \in var(\varphi)$, $v_1(p) = v_2(p)$, então $v_1(\varphi) = v_2(\varphi)$.

Dem.: Por indução estrutural em fórmulas do CP.

Seja $P(\varphi)$ a condição: para todo $p \in var(\varphi), v_1(p) = v_2(p) \Rightarrow v_1(\varphi) = v_2(\varphi).$

para todo
$$p \in Var(\varphi), V_1(p) = V_2(p) \Rightarrow V_1(\varphi) = V_2(\varphi).$$

- a) $P(\perp)$ é verdadeira, pois $v_1(\perp)=0=v_2(\perp)$, por definição de valoração.
- **b)** Suponhamos que p' é uma variável proposicional e que, para todo $p \in var(p')$, $v_1(p) = v_2(p)$.

Assim, como $p' \in var(p') (= \{p'\})$, temos $v_1(p') = v_2(p')$.

Deste modo, para qualquer $p' \in \mathcal{V}^{CP}$, P(p') é verdadeira.

Dem. Proposição 46 (cont.):

c) Mostremos que $P(\varphi_1)$ e $P(\varphi_2)$ implicam $P(\varphi_1 \square \varphi_2)$, para todo $\varphi_1, \varphi_2 \in \mathcal{F}^{CP}$ e para todo $\square \in \{\land, \lor, \to, \leftrightarrow\}$.

Suponhamos que, para todo $p \in var(\varphi_1 \Box \varphi_2), v_1(p) = v_2(p)$.

Então, como $var(\varphi_1 \Box \varphi_2) = var(\varphi_1) \cup var(\varphi_2)$, para $i \in \{1, 2\}$, tem-se $v_1(p) = v_2(p)$, para todo $p \in var(\varphi_i)$.

Daqui, aplicando as hipóteses de indução $P(\varphi_1)$ e $P(\varphi_2)$, segue que $v_1(\varphi_1) = v_2(\varphi_1)$ e $v_1(\varphi_2) = v_2(\varphi_2)$.

Assim, $v_1(\varphi_1 \Box \varphi_2) = f_{\Box}(v_1(\varphi_1), v_1(\varphi_2)) = f_{\Box}(v_2(\varphi_1), v_2(\varphi_2)) = v_2(\varphi_1 \Box \varphi_2)$, e, portanto, $P(\varphi_1 \Box \varphi_2)$ é verdadeira.

d) Exercício: demonstrar que $P(\varphi_1)$ implica $P(\neg \varphi_1)$, para todo $\varphi_1 \in \mathcal{F}^{CP}$.

Definição 47:

- 1 Uma fórmula φ é uma *tautologia* quando, para qualquer valoração v, $v(\varphi) = 1$.
- Uma fórmula φ é uma *contradição* quando, para qualquer valoração v, $v(\varphi) = 0$.

Notação 48:

A notação $\models \varphi$ significará que φ é uma tautologia.

A notação $\not\models \varphi$ significará que φ não é uma tautologia.

Exemplo 49:

1 A fórmula $\psi = \neg p_1 \leftrightarrow (p_1 \rightarrow \bot)$ do exemplo anterior é uma tautologia.

De facto, dada uma valoração arbitrária v, sabemos que $v(p_1) = 0$ ou $v(p_1) = 1$, e:

- (a) caso $v(p_1)=0$, então $v(\neg p_1)=1$ e $v(p_1\to \bot)=1$, donde $v(\psi)=1$.
- (b) caso $v(p_1) = 1$, então $v(\neg p_1) = 0$ e $v(p_1 \to \bot) = 0$, donde $v(\psi) = 1$.

Exemplo 49 (cont.):

2 Para todo $\varphi \in \mathcal{F}^{\mathit{CP}}$, $\varphi \land \neg \varphi$ é uma contradição.

De facto, dada uma valoração arbitrária v, sabemos que $v(\varphi)=0$ ou $v(\varphi)=1$, e:

- (a) caso $\nu(\varphi) = 0$, então, de imediato, sabemos $\nu(\varphi \land \neg \varphi) = 0$.
- (b) caso $v(\varphi) = 1$, então $v(\neg \varphi) = 0$, donde $v(\varphi \land \neg \varphi) = 0$.
- 3 As fórmulas $p_0, \neg p_0, p_0 \lor p_1, p_0 \land p_1, p_0 \rightarrow p_1, p_0 \leftrightarrow p_1$ não são tautologias nem contradições. (Porquê?)

Proposição 50: Para todo $\varphi \in \mathcal{F}^{CP}$,

- **1** φ é tautologia se e só se $\neg \varphi$ é contradição;
- $\mathbf{2}\ \varphi$ é contradição se e só se $\neg \varphi$ é tautologia.

Dem.: Exercício.

Observação 51:

Sabendo que φ não é uma tautologia, não podemos concluir que φ é uma contradição.

Analogamente, sabendo que φ não é uma contradição, não podemos concluir que φ é uma tautologia.

Tenha-se em atenção que existem fórmulas que não são tautologias, nem são contradições (como vimos no exemplo anterior).

Observação 52:

Pela Proposição 46, para decidir se uma fórmula φ é uma tautologia, basta calcular o valor lógico de φ para $2^{\#var(\varphi)}$ valorações (o número de atribuições, possíveis, às variáveis proposicionais de φ).

Tal pode ser descrito através de uma *tabela de verdade*, como se segue.

Observação 52 (cont.):

Introduzimos: uma coluna para cada variável proposicional de φ ; uma coluna para φ ; e colunas (auxiliares) para cada uma das restantes subfórmulas de φ .

Introduzimos linhas para cada uma das atribuições, possíveis, de valores de verdade às variáveis proposicionais de φ (*i.e.*, sequências de 0's e 1's de comprimento igual ao número de variáveis proposicionais em φ).

Preenchemos as colunas respeitantes às variáveis proposicionais com essas atribuições.

Nas restantes posições pos_{ij} da tabela, escrevemos o valor lógico da fórmula respeitante à coluna j, para uma valoração que satisfaz as atribuições às variáveis proposicionais na linha i.

Exemplo 53: Seja φ a fórmula $(\neg p_1 \rightarrow \neg p_2) \leftrightarrow (p_2 \rightarrow p_1)$.

Da tabela de verdade para φ , apresentada de seguida, podemos concluir que φ é uma tautologia, uma vez que φ assume o valor lógico 1, para todas as possíveis atribuições de valores de verdade às variáveis proposicionais de φ .

p_1	p_2	$\neg p_1$	$\neg p_2$	$\neg p_1 \rightarrow \neg p_2$	$p_2 \rightarrow p_1$	$\mid (\neg p_1 \! o \! \neg p_2) \! \leftrightarrow \! (p_2 \! o p_1) \mid$
1	1	0	0	1	1	1
1	0	0	1	1	1	1
0	1	1	0	0	0	1
0	0	1	1	1	1	1

Tabela de verdade de $(\neg p_1 \rightarrow \neg p_2) \leftrightarrow (p_2 \rightarrow p_1)$.

Teorema 54 (Generalização): Sejam p uma variável proposicional e sejam φ e ψ fórmulas do CP. Se φ é uma tautologia, então $\varphi[\psi/p]$ é também uma tautologia.

Dem.: Qualquer que seja a valoração v, demonstra-se, por indução estrutural na fórmula φ , que a valoração v' definida, a partir de v e de ψ , do seguinte modo

$$v'(p') = \left\{ egin{array}{ll} v(\psi) & ext{se } p' = p \ \\ v(p') & ext{se } p' \in \mathcal{V}^{CP} - \{p\} \end{array}
ight.$$

é tal que $\mathbf{v}'(\varphi) = \mathbf{v}(\varphi[\psi/\mathbf{p}])$.

Portanto, se φ é uma tautologia, $v'(\varphi) = 1$ e, pela igualdade anterior, $v(\varphi[\psi/p]) = 1$.

Assim, qualquer que seja a valoração v, $v(\varphi[\psi/p]) = 1$, *i.e.*, $\varphi[\psi/p]$ é uma tautologia.

Exemplo 55:

A fórmula $p_0 \vee \neg p_0$ é uma tautologia.

Logo, para qualquer fórmula ψ , a fórmula $(p_0 \vee \neg p_0)[\psi/p_0] = \psi \vee \neg \psi$ é ainda uma tautologia.

Definição 56: Uma fórmula φ diz-se *logicamente equivalente* a uma fórmula ψ (notação: $\varphi \Leftrightarrow \psi$) quando a fórmula $\varphi \leftrightarrow \psi$ é uma tautologia, ou seja, quando para qualquer valoração v, $v(\varphi) = v(\psi)$.

Exemplo 57: Para toda a fórmula φ , $\neg \varphi \Leftrightarrow (\varphi \to \bot)$.

A demonstração deste resultado pode ser sintetizada numa *tabela de verdade*, como se segue:

φ	$\neg \varphi$	$\varphi \to \perp$	$\neg \varphi \leftrightarrow (\varphi \rightarrow \bot)$
1	0	0	1
0	1	1	1

Tabela de verdade de $\neg \varphi \leftrightarrow (\varphi \rightarrow \bot)$.

Na primeira linha da tabela, é demonstrado que o valor lógico de $\neg \varphi \leftrightarrow (\varphi \rightarrow \bot)$ é 1 para qualquer valoração para a qual φ assuma o valor lógico 1.

Na segunda linha da tabela, é demonstrado que o valor lógico de $\neg \varphi \leftrightarrow (\varphi \rightarrow \bot)$ é 1 para qualquer valoração para a qual φ assuma o valor lógico 0.

Proposição 58: A relação de equivalência lógica satisfaz as seguintes propriedades:

- **1** para todo $\varphi \in \mathcal{F}^{CP}$, $\varphi \Leftrightarrow \varphi$ (*reflexividade*);
- **2** para todo $\varphi, \psi \in \mathcal{F}^{CP}$, se $\varphi \Leftrightarrow \psi$, então $\psi \Leftrightarrow \varphi$ (*simetria*);
- 3 para todo $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$, se $\varphi \Leftrightarrow \psi$ e $\psi \Leftrightarrow \sigma$, então $\varphi \Leftrightarrow \sigma$ (*transitividade*).

Dem.: Para mostrar 1, temos que mostar que, para todo $\varphi \in \mathcal{F}^{\mathit{CP}}$, a fórmula $\varphi \leftrightarrow \varphi$ é uma tautologia.

De facto, dado $\varphi \in \mathcal{F}^{CP}$, para qualquer valoração v, $v(\varphi) = v(\varphi)$, donde $v(\varphi \leftrightarrow \varphi) = 1$, e, consequentemente, $\varphi \leftrightarrow \varphi$ é uma tautologia.

(Exercício: mostrar 2 e 3.)

Corolário 59: A relação de equivalência lógica é uma relação de equivalência em \mathcal{F}^{CP} .

Dem.: Imediata, a partir da proposição anterior.

Proposição 60: As seguintes equivalências lógicas são válidas.

$$(\varphi \lor \psi) \lor \sigma \Leftrightarrow \varphi \lor (\psi \lor \sigma) \qquad (\varphi \land \psi) \land \sigma \Leftrightarrow \varphi \land (\psi \land \sigma)$$

$$(associatividade)$$

$$\varphi \lor \psi \Leftrightarrow \psi \lor \varphi \qquad \varphi \land \psi \Leftrightarrow \psi \land \varphi$$

$$(comutatitvidade)$$

$$\varphi \lor \varphi \Leftrightarrow \varphi \qquad \varphi \land \varphi \Leftrightarrow \varphi$$

$$(idempotencia)$$

$$\varphi \lor \bot \Leftrightarrow \varphi \qquad \varphi \land \neg \bot \Leftrightarrow \varphi$$

$$(elemento\ neutro)$$

$$\varphi \lor \neg \bot \Leftrightarrow \neg \bot \qquad \varphi \land \bot \Leftrightarrow \bot$$

(elemento absorvente)

$$\varphi \lor (\psi \land \sigma) \Leftrightarrow (\varphi \lor \psi) \land (\varphi \lor \sigma) \quad \varphi \land (\psi \lor \sigma) \Leftrightarrow (\varphi \land \psi) \lor (\varphi \land \sigma)$$
(distributividade)

$$\neg(\varphi \lor \psi) \Leftrightarrow \neg\varphi \land \neg\psi \qquad \neg(\varphi \land \psi) \Leftrightarrow \neg\varphi \lor \neg\psi$$
 (leis de De Morgan)

$$\neg\neg\varphi \Leftrightarrow \varphi$$

$$\varphi \to \psi \Leftrightarrow \neg \psi \to \neg \varphi$$

(lei da dupla negação)

(contrarrecíproco)

$$\varphi \leftrightarrow \psi \Leftrightarrow (\varphi \to \psi) \land (\psi \to \varphi)$$

$$\varphi \to \psi \Leftrightarrow \neg \varphi \lor \psi$$

$$\varphi \lor \psi \Leftrightarrow \neg \varphi \to \psi$$

$$\varphi \wedge \psi \Leftrightarrow \neg(\neg \varphi \vee \neg \psi)$$

$$\neg \varphi \Leftrightarrow \varphi \to \perp$$

$$\bot \Leftrightarrow \varphi \land \neg \varphi$$

(expressão de um conetivo em termos de outros conetivos)

Notação 61:

Uma vez que a conjunção é uma operação associativa, utilizaremos a notação $\varphi_1 \wedge ... \wedge \varphi_n$ (com $n \in \mathbb{N}$) para representar qualquer associação, através da conjunção, das fórmulas $\varphi_1,...,\varphi_n$ duas a duas.

Analogamente, e uma vez que a disjunção é tambem uma operação associativa, utilizaremos a notação $\varphi_1 \lor ... \lor \varphi_n$ para representar qualquer associação, através da disjunção, das fórmulas $\varphi_1, ..., \varphi_n$ duas a duas.

Em ambos os casos, quando n = 1, as notações anteriores representam simplesmente a fórmula φ_1 .

Teorema 62 (Substituição): Sejam $p \in \mathcal{V}^{CP}$ e $\varphi_1, \varphi_2 \in \mathcal{F}^{CP}$. Então: $\varphi_1 \Leftrightarrow \varphi_2$ sse para todo $\psi \in \mathcal{F}^{CP}$, $\psi[\varphi_1/p] \Leftrightarrow \psi[\varphi_2/p]$.

Dem.:

- i) Suponhamos que para todo $\psi \in \mathcal{F}^{CP}$, $\psi[\varphi_1/p] \Leftrightarrow \psi[\varphi_2/p]$. Então, em particular, teremos que $p[\varphi_1/p] \Leftrightarrow p[\varphi_2/p]$. Logo, por definição de substituição, $\varphi_1 \Leftrightarrow \varphi_2$.
- ii) Suponhamos agora que $\varphi_1 \Leftrightarrow \varphi_2$. Vamos demonstrar, por indução estrutural em fórmulas do CP, que, para todo $\psi \in \mathcal{F}^{CP}$, $P(\psi)$, onde $P(\psi)$ é a condição: $\psi[\varphi_1/p] \Leftrightarrow \psi[\varphi_2/p]$.

Dem. Teorema 62 (cont.):

- a) Por definição de substituição, $\bot [\varphi_1/p] = \bot = \bot [\varphi_2/p]$. Assim, como a relação \Leftrightarrow é reflexiva, $\bot \Leftrightarrow \bot$, ou equivalentemente $\bot [\varphi_1/p] \Leftrightarrow \bot [\varphi_2/p]$, e, portanto, $P(\bot)$ é verdadeira.
- **b)** Seja $p' \in \mathcal{V}^{CP}$. Consideremos dois casos.
 - **b.1)** Caso p'=p. Então, por definição de substituição, $p'[\varphi_1/p] = \varphi_1$ e $p'[\varphi_2/p] = \varphi_2$. Assim, como por hipótese $\varphi_1 \Leftrightarrow \varphi_2$, segue que $p'[\varphi_1/p] \Leftrightarrow p'[\varphi_2/p]$,
 - **b.2)** Caso $p' \neq p$. Então, por definição de substituição, $p'[\varphi_1/p] = p'$ e $p'[\varphi_2/p] = p'$. Assim, tal como em a), por \Leftrightarrow ser reflexiva, $p'[\varphi_1/p] \Leftrightarrow p'[\varphi_2/p]$.

Assim, para qualquer $p' \in \mathcal{V}^{CP}$, P(p') é verdadeira.

Dem. Teorema 62 (cont.):

c) Seja ψ_1 uma fórmula e suponhamos $P(\psi_1)$ (H.I.), tendo em vista mostrar que $P(\neg \psi_1)$ é verdadeira, ou, dito por outras palavras, pretende-se mostar que $(\neg \psi_1)[\varphi_1/p] \leftrightarrow (\neg \psi_1)[\varphi_2/p]$ é uma tautologia.

Seja v uma valoração. Então:

```
V((\neg \psi_1)[\varphi_1/p])
          = V(\neg \psi_1[\varphi_1/p])
                                        (definição de substituição)
          = f_{\neg}(v(\psi_1[\varphi_1/p]))
                                        (definição de valoração)
          = f_{\neg}(v(\psi_1[\varphi_2/p])) (*)
          = v(\neg \psi_1[\varphi_2/p]) (definição de valoração)
          = V((\neg \psi_1)[\varphi_2/\rho])
                                     (definição de substituição).
onde a igualdade assinalada com (*) é consequência da HI,
pois da HI, por definição de \Leftrightarrow, \psi_1[\varphi_1/p] \leftrightarrow \psi_1[\varphi_2/p] é uma
tautologia, donde, em particular, v(\psi_1[\varphi_1/p]) = v(\psi_1[\varphi_2/p]).
Assim sendo, v((\neg \psi_1)[\varphi_1/p] \leftrightarrow (\neg \psi_2)[\varphi_2/p]) = 1 e, portanto,
a fórmula (\neg \psi_1)[\varphi_1/p] \leftrightarrow (\neg \psi_2)[\varphi_2/p] é uma tautologia.
```

Dem. Teorema 62 (cont.):

d) Para completar a prova, falta mostar que, para todo

```
\square \in \{\land, \lor, \rightarrow, \leftrightarrow\} e para todo \psi_1, \psi_2 \in \mathcal{F}^{\acute{CP}}, se P(\psi_1) e P(\psi_2), então P(\psi_1 \square \psi_2). (Exercício.)
```

Exemplo 63: Sejam φ e ψ fórmulas. Então,

$$\neg(\neg\varphi\wedge\psi) \Leftrightarrow \neg\neg\varphi\vee\neg\psi \Leftrightarrow \varphi\vee\neg\psi.$$

Justificações

- (1) Lei de De Morgan.
- (2) Dada uma variável proposicional p ∉ var(ψ) (que existe sempre, pois o número de variáveis proposicionais que ocorrem em φ é finito), pelo Teorema da Substituição, como ¬¬φ ⇔ φ, (p ∨ ψ)[¬¬φ/p] ⇔ (p ∨ ψ)[φ/p] e assim, uma vez que (p ∨ ψ)[¬¬φ/p] = ¬¬φ ∨ ψ e (p ∨ ψ)[φ/p] = φ ∨ ψ, segue-se que ¬¬φ ∨ ψ ⇔ φ ∨ ψ.

Donde, como \Leftrightarrow é transitiva, podemos concluir a equivalência lógica entre a primeira fórmula e a última fórmula, ou seja,

$$\neg(\neg\varphi\wedge\psi)\Leftrightarrow\varphi\vee\neg\psi.$$

Definição 64:

Seja $X \subseteq \{\bot, \neg, \land, \lor, \rightarrow, \leftrightarrow\}$ um conjunto de conetivos.

X diz-se *completo* quando, para todo $\varphi \in \mathcal{F}^{CP}$, existe $\psi \in \mathcal{F}^{CP}$ tal que $\varphi \Leftrightarrow \psi$ e todos os conetivos de ψ estão em X.

Proposição 65: Os conjuntos de conetivos $\{\rightarrow, \neg\}$, $\{\rightarrow, \bot\}$, $\{\land, \neg\}$ e $\{\lor, \neg\}$ são completos.

Dem.: Vamos demonstrar que $\{\rightarrow, \neg\}$ é um conjunto completo de conetivos. (A demonstração de que os outros conjuntos de conetivos mencionados são completos é deixada como exercício.)

Para tal, comecemos por definir, por recursão estrutural em fórmulas, a função $f: \mathcal{F}^{CP} \longrightarrow \mathcal{F}^{CP}$ como a única função t.q.:

- **a)** $f(\bot) = \neg(p_0 \to p_0);$
- **b)** f(p) = p, para todo $p \in \mathcal{V}^{CP}$;
- **c)** $f(\neg \varphi) = \neg f(\varphi)$, para todo $\varphi \in \mathcal{F}^{CP}$;
- **d)** $f(\varphi \to \psi) = f(\varphi) \to f(\psi)$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$;
- **e)** $f(\varphi \lor \psi) = \neg f(\varphi) \to f(\psi)$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$;
- **f)** $f(\varphi \wedge \psi) = \neg (f(\varphi) \rightarrow \neg f(\psi))$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$;
- **g)** $f(\varphi \leftrightarrow \psi) = \neg((f(\varphi) \to f(\psi)) \to \neg(f(\psi) \to f(\varphi)))$, para todo $\varphi, \psi \in \mathcal{F}^{CP}$.

Dem. Proposição 65 (cont.):

Lema: Para todo $\varphi \in \mathcal{F}^{CP}$, $\varphi \Leftrightarrow f(\varphi)$ e os conetivos de $f(\varphi)$ estão no conjunto $\{\rightarrow, \neg\}$.

Dem.: Por indução estrutural em φ . Exercício.

Do lema anterior concluimos de imediato que $\{\rightarrow, \neg\}$ é um conjunto completo de conetivos, pois, para toda a fórmula φ , existe uma fórmula ψ —a fórmula $f(\varphi)$ — tal que $\varphi \Leftrightarrow \psi$ e os conetivos de ψ estão no conjunto $\{\rightarrow, \neg\}$.

Exemplo 66: Da demonstração da proposição anterior, podemos concluir que a fórmula

$$f((\neg p_1 \land p_2) \rightarrow \bot) = \neg(\neg p_1 \rightarrow \neg p_2) \rightarrow \neg(p_0 \rightarrow p_0)$$

é logicamente equivalente a $(\neg p_1 \land p_2) \rightarrow \bot$ e os seus conetivos estão no conjunto $\{\rightarrow, \neg\}$.

Definição 67: As variáveis proposicionais e as negações de variáveis proposicionais são chamadas *literais*.

Definição 68: Fórmulas do CP das formas

i)
$$(I_{11} \vee ... \vee I_{1m_1}) \wedge ... \wedge (I_{n1} \vee ... \vee I_{nm_n})$$

ii)
$$(I_{11} \wedge ... \wedge I_{1m_1}) \vee ... \vee (I_{n1} \wedge ... \wedge I_{nm_n})$$

em que os l_{ij} são literais e n, bem como os m_i , pertencem a \mathbb{N} , serão designadas por *formas normais conjuntivas* (FNC) e *formas normais disjuntivas* (FND), respetivamente.

Exemplo 69:

- a) Todo o literal l é simultaneamente uma forma normal conjuntiva e disjuntiva (na definição de formas normais, basta tomar n = 1, $m_1 = 1$ e $l_{11} = l$).
- **b)** A fórmula $p_1 \wedge \neg p_2 \wedge \neg p_0$ é uma FNC (faça-se $n=3, m_1=1, m_2=1, m_3=1, l_{11}=p_1, l_{21}=\neg p_2$ e $l_{31}=\neg p_0$) e é também uma FND (faça-se $n=1, m_1=3, l_{11}=p_1, l_{12}=\neg p_2$ e $l_{13}=\neg p_0$). Também a fórmula $p_1 \vee p_2$ é, em simultâneo, uma FND e uma FNC. Mais geralmente, conjunções de literais e disjunções de literais são, em simultâneo, formas normais conjuntivas e disjuntivas.
- **c)** A fórmula $(p_1 \lor p_0) \land (p_0 \lor \neg p_1)$ é uma FNC, mas não é uma FND.
- **d)** A fórmula $\neg(p_1 \lor p_0)$ não é nem uma FNC nem uma FND.

Proposição 70: Para todo $\varphi \in \mathcal{F}^{CP}$, existe uma forma normal conjuntiva φ^c tal que $\varphi \Leftrightarrow \varphi^c$ e existe uma formal normal disjuntiva φ^d tal que $\varphi \Leftrightarrow \varphi^d$.

Dem.: Dada uma fórmula φ , uma forma normal conjuntiva e uma formal normal disjuntiva logicamente equivalentes a φ podem ser obtidas através das seguintes transformações:

 Eliminar equivalências, implicações e ocorrências do absurdo, utilizando as equivalências lógicas

$$\varphi_1 \leftrightarrow \varphi_2 \Leftrightarrow (\varphi_1 \to \varphi_2) \land (\varphi_2 \to \varphi_1), \varphi_1 \to \varphi_2 \Leftrightarrow \neg \varphi_1 \lor \varphi_2 e$$

 $\bot \Leftrightarrow \varphi_1 \land \neg \varphi_1.$

- Mover negações que se encontrem fora de conjunções ou disjunções para dentro delas, utilizando as leis de De Morgan.
- 3. Eliminar duplas negações.
- **4.** Aplicar a distributividade entre a conjunção e a disjunção.

Exemplo 71: Seja $\varphi = ((\neg p_1 \lor p_2) \to p_3) \land p_0$. Então:

$$\begin{array}{c} \varphi \\ \Leftrightarrow ((\neg p_1 \lor p_2) \to p_3) \land p_0 \\ \Leftrightarrow (\neg (p_1 \lor p_2) \lor p_3) \land p_0 \\ \Leftrightarrow (\neg (p_1 \lor p_2) \lor p_3) \land p_0 \\ \Leftrightarrow ((p_1 \land \neg p_2) \lor p_3) \land p_0 \\ \Leftrightarrow (p_1 \lor p_3) \land (\neg p_2 \lor p_3) \land p_0 \end{array}$$

e a última fórmula é uma FNC;

sendo a última fórmula uma FND.

Observação 72:

Consideremos de novo a Proposição 70 e a sua demonstração.

Uma demonstração alternativa, que permite obter uma FND e uma FNC logicamente equivalentes a uma dada fórmula φ , pode ser feita com recurso à tabela de verdade de φ .

Em particular, vejamos como obter uma FND φ^d , logicamente equivalente a φ , a partir da tabela de verdade de φ .

Se φ é uma contradição ou uma tautologia, basta tomar, respetivamente, uma FND que seja uma contradição e uma FND que seja uma tautologia; por exemplo, tome-se, respetivamente, φ^d = p₀ ∧ ¬p₀ e φ^d = p₀ ∨ ¬p₀.

Doutro modo, sem perda de generalidade, suponhamos, que p₁, p₂,..., p_n são as variáveis proposicionais que ocorrem em φ¹. A tabela de verdade de φ terá 2ⁿ linhas e pode ser representada da seguinte forma:

	p_1	p_2	 p_{n-1}	<i>p</i> _n	φ
	1	1	 1	1	<i>b</i> ₁
linha $i ightarrow$	÷	:	:	:	:
	$a_{i,1}$	<i>a</i> _{i,2}	 <i>a</i> _{i,n-1}	a _{i,n}	b _i
	÷	:	:	:	:
	0	0	 0	0	b_{2^n}

onde, para cada $i \in \{1, ..., 2^n\}$, $b_i = v_i(\varphi)$ para toda a valoração v_i tal que $v_i(p_i) = a_{i,j}$ para todo $j \in \{1, ..., n\}$.

¹Note-se que uma fórmula que não é tautologia nem é contradição terá que ter pelo menos uma variável proposicional. (Exercício)

Para cada $i \in \{1, ..., 2^n\}$ tal que $b_i = 1$ seja

$$lpha_{i,j} = \left\{ egin{array}{ll} oldsymbol{p}_j & ext{se } a_{i,j} = 1 \
eg oldsymbol{p}_j & ext{se } a_{i,j} = 0 \end{array}
ight. \quad ext{(para todo } j \in \{1, \dots, n\})$$

e seja

$$\beta_i = \alpha_{i,1} \wedge \alpha_{i,2} \wedge \cdots \wedge \alpha_{i,n}.^2$$

Finalmente, suponhamos que $i_1, i_2, ..., i_k$ são as linhas para as quais $b_{i_r} = 1$, e tome-se

$$\varphi^{\mathbf{d}} = \beta_{\mathbf{i_1}} \vee \beta_{\mathbf{i_2}} \vee \cdots \vee \beta_{\mathbf{i_k}}.$$

Prova-se que φ^d assim definida, de facto, é uma FND e é logicamente equivalente a φ .

²Note-se que o valor lógico na linha i da tabela de verdade de β_i é 1 enquanto que em todas as outras linhas é 0.

Exemplo 73: Consideremos $\varphi = ((p_3 \to p_1) \lor (\neg p_1 \leftrightarrow \bot)) \land p_2$. Denotemos por ψ a subfórmula $(p_3 \to p_1) \lor (\neg p_1 \leftrightarrow \bot)$ de φ . A tabela de verdade de φ é:

p_1	p_2	p ₃	1	$\neg p_1$	$p_3 \rightarrow p_1$	$\neg p_1 \leftrightarrow \bot$	$ \psi $	φ
1	1	1	0	0	1	1	1	1
1	1	0	0	0	1	1	1	1
1	0	1	0	0	1	1	1	0
1	0	0	0	0	1	1	1	0
0	1	1	0	1	0	0	0	0
0	1	0	0	1	1	0	1	1
0	0	1	0	1	0	0	0	0
0	0	0	0	1	1	0	1	0

As linhas para as quais φ tem valor lógico 1 são a 1ª, a 2ª e a 6ª. Portanto, uma FND logicamente equivalente a φ é:

$$(p_1 \wedge p_2 \wedge p_3) \vee (p_1 \wedge p_2 \wedge \neg p_3) \vee (\neg p_1 \wedge p_2 \wedge \neg p_3).$$

Definição 74: Seja *v* uma valoração.

- 1 Dada uma fórmula do CP φ , dizemos que v satisfaz φ (ou que v é modelo de φ), e escrevemos $v \models \varphi$, quando $v(\varphi) = 1$.

 Quando v não satisfaz φ (i.e., quando $v(\varphi) = 0$), escrevemos $v \not\models \varphi$.
- 2 Dado um conjunto de fórmulas do CP Γ, dizemos que v satisfaz Γ (ou que v é modelo de Γ), e escrevemos $v \models \Gamma$, quando v satisfaz todas as fórmulas de Γ.
 - Quando v $n\~{a}o$ satisfaz Γ (i.e., quando existe $\varphi \in \Gamma$ t.q. $v \not\models \varphi$ ou, equivalentemente, quando existe $\varphi \in \Gamma$ t.q. $v(\varphi) = 0$) escrevemos $v \not\models \Gamma$.

Exemplo 75: Seja v_0 a valoração que atribui o valor lógico 0 a todas as variáveis proposicionais.

- 1 $v_0 \models p_1 \leftrightarrow p_2 \text{ e } v_0 \models \neg p_1 \land \neg p_2;$
- 2 $v_0 \not\models p_1 \lor p_2 e v_0 \not\models p_1 \leftrightarrow \neg p_2$;
- $v_0 \models \{p_1 \leftrightarrow p_2, \neg p_1 \land \neg p_2\} \text{ (por 1)};$
- $\mathbf{v}_0 \not\models \{p_1 \leftrightarrow p_2, p_1 \lor p_2\} \ (\mathbf{v}_0 \text{ não satisfaz a } 2^a \text{ fórmula});$
- 5 $v_0 \not\models \{\neg p_1 \land \neg p_2, p_1 \leftrightarrow \neg p_2\}$ (v_0 não satisfaz a 2^a fórmula).

Observação 76: Dado que no conjunto vazio não há qualquer fórmula, tem-se, trivialmente, que:

para toda a valoração v, $v \models \emptyset$.

Definição 77: Seja Γ um conjunto de fórmulas do CP.

- T diz-se um conjunto (*semanticamente*) *consistente* ou *satisfazível* quando alguma valoração satisfaz Γ.
- Γ diz-se um conjunto (semanticamente) inconsistente ou insatisfazível quando não há valorações que satisfaçam Γ.

Exemplo 78:

a) Como vimos no exemplo anterior, o conjunto de fórmulas $\Delta_1 = \{p_1 \leftrightarrow p_2, \neg p_1 \land \neg p_2\}$ é satisfeito pela valoração v_0 desse exemplo.

Portanto, Δ_1 é consistente.

b) O conjunto $\Delta_2 = \{p_1 \leftrightarrow p_2, p_1 \lor p_2\}$, considerado no exemplo anterior, não é satisfeito pela valoração v_0 .

Mas, Δ_2 é satisfeito, por exemplo, pela valoração que atribui valor lógico 1 a qualquer variável proposicional.

Logo, Δ_2 é também consistente.

Exemplo 78 (cont.):

c) O conjunto $\Delta_3 = \{ \neg p_1 \land \neg p_2, p_1 \leftrightarrow \neg p_2 \}$, considerado no exemplo anterior, é inconsistente.

Dem.:

Suponhamos que existe uma valoração v que satisfaz Δ_3 .

Então, $v(\neg p_1 \land \neg p_2) = 1$, e portanto $v(p_1) = 0$ e $v(p_2) = 0$, e $v(p_1 \leftrightarrow \neg p_2) = 1$.

Ora, de $v(p_2)=0$, segue $v(\neg p_2)=1$ e daqui e de $v(p_1)=0$, segue $v(p_1\leftrightarrow \neg p_2)=0$, o que contradiz $v(p_1\leftrightarrow \neg p_2)=1$.

Logo, não podem existir valorações que satisfaçam Δ_3 e, assim, Δ_3 é inconsistente.

Proposição 79: Sejam Γ e Δ conjuntos de fórmulas do CP tais que $\Gamma \subseteq \Delta$. Então:

- i) se Δ é consistente, então Γ é consistente;
- ii) se Γ é inconsistente, então Δ é inconsistente.

Dem.: Exercício.

Definição 80: Seja φ uma fórmula do CP e seja Γ um conjunto de fórmulas do CP.

- 1 Dizemos que φ é uma consequência semântica de Γ, e escrevemos Γ $\models \varphi$, quando, para toda a valoração v, se $v \models \Gamma$, então $v \models \varphi$.
- 2 Escrevemos $\Gamma \not\models \varphi$ quando φ *não é consequência semântica* de Γ , *i.e.*, quando para alguma valoração v se tem $v \models \Gamma$ e, no entanto, $v \not\models \varphi$.

Observação 81: Da definição anterior, aplicando as definições de satisfação de uma fórmula e satisfação de um conjunto de fórmulas, segue de imediato que:

- 1 Γ $\models \varphi$ se e só se para toda a valoração v, se para todo $\psi \in \Gamma$, $v(\psi) = 1$, então $v(\varphi) = 1$.
- 2 $\Gamma \not\models \varphi$ se e só se para alguma valoração v se tem, para todo $\psi \in \Gamma$, $v(\psi) = 1$, bem como $v(\varphi) = 0$.

Exemplo 82:

- **1** Seja $\Gamma = \{p_1, \neg p_1 \lor p_2\}$. Então:
 - 1 $\Gamma \models p_1$.

(Se tomarmos uma valoração v tal que $v \models \Gamma$, *i.e.*, uma valoração tal que $v(p_1) = 1$ e $v(\neg p_1 \lor p_2) = 1$, em particular, temos $v(p_1) = 1$.)

 $\Gamma \models p_2$.

(Tomando uma valoração v tal que $v(p_1)=1$ e $v(\neg p_1 \lor p_2)=1$, temos $v(\neg p_1)=0$ e, daqui e de $v(\neg p_1 \lor p_2)=1$, segue $v(p_2)=1$.)

 $\Gamma \models p_1 \wedge p_2$.

(Tomando uma valoração v tal que $v(p_1)=1$ e $v(\neg p_1 \lor p_2)=1$, temos necessariamente $v(p_1)=1$ e $v(p_2)=1$ (como vimos nos exemplos anteriores) e, por isso, temos $v(p_1 \land p_2)=1$.)

Exemplo 82 (cont.):

- **1** Recorde que $\Gamma = \{p_1, \neg p_1 \lor p_2\}$.

(Existem valorações v tais que $v \models \Gamma$ e $v(p_3) = 0$. Por exemplo, a valoração que atribui valor lógico 1 a p_1 e p_2 e valor lógico 0 às restantes variáveis proposicionais é uma tal valoração.)

5 $\Gamma \not\models \neg p_1 \lor \neg p_2$.

(Por exemplo, para a valoração v_1 tal que $v_1(p_i) = 1$, para todo $i \in \mathbb{N}_0$, temos $v_1 \models \Gamma$ e, no entanto, $v_1(\neg p_1 \lor \neg p_2) = 0$.)

6 $\Gamma \models p_3 \vee \neg p_3$.

(Se tomarmos uma valoração v tal que $v \models \Gamma$, temos $v(p_3 \lor \neg p_3) = 1$. De facto, $p_3 \lor \neg p_3$ é uma tautologia e, como tal, o seu valor lógico é 1 para qualquer valoração (em particular, para aquelas valorações que satisfazem Γ).)

Exemplo 82 (cont.):

- 2 Para todo $\varphi, \psi \in \mathcal{F}^{CP}$, $\{\varphi, \varphi \to \psi\} \models \psi$. De facto, para qualquer valoração v, se $v(\varphi) = 1$ e $v(\varphi \to \psi) = 1$, então $v(\psi) = 1$.
- 3 Já a afirmação "para todo $\varphi, \psi \in \mathcal{F}^{CP}, \{\varphi \to \psi\} \models \psi$ " é falsa. Por exemplo, $\{p_1 \to p_2\} \not\models p_2$ (uma valoração v tal que $v(p_1) = v(p_2) = 0$ satisfaz $\{p_1 \to p_2\}$ e não satisfaz p_2).

Proposição 83: Para todo $\varphi \in \mathcal{F}^{CP}$, $\models \varphi$ se e só se $\emptyset \models \varphi$. **Dem.**:

Suponhamos que φ é uma tautologia.

Então, para toda a valoração v, $v \models \varphi$.

Assim, a implicação " $v \models \emptyset \Rightarrow v \models \varphi$ " é verdadeira (o seu consequente é verdadeiro), pelo que, $\emptyset \models \varphi$.

Reciprocamente, suponhamos agora que $\emptyset \models \varphi$, *i.e.*, suponhamos que para toda a valoração v,

$$\mathbf{v} \models \emptyset \Rightarrow \mathbf{v} \models \varphi$$
.

Seja v uma valoração arbitrária.

Pretendemos mostrar que $v \models \varphi$.

Ora, trivialmente, $v \models \emptyset$ (Observação 76).

Assim, da suposição, segue imediatamente $v \models \varphi$.

Observação 84:

Se Γ é um conjunto de fórmulas inconsistente, então $\Gamma \models \varphi$, para todo $\varphi \in \mathcal{F}^{CP}$. (Porquê?)

Como tal, é possível ter-se $\Gamma \models \varphi$ sem que existam valorações que satisfaçam Γ .

Notação 85: Muitas vezes, no contexto da relação de consequência semântica, usaremos a vírgula para denotar a união de conjuntos e escrevemos uma fórmula para denotar o conjunto singular composto por essa fórmula.

Assim, por exemplo, dadas fórmulas $\varphi, \psi, \varphi_1, ..., \varphi_n$ e conjuntos de fórmulas Γ, Δ , escrevemos:

- a) $\Gamma, \Delta \models \varphi$ como abreviatura para $\Gamma \cup \Delta \models \varphi$;
- **b)** $\Gamma, \varphi \models \psi$ como abreviatura para $\Gamma \cup \{\varphi\} \models \psi$;
- **c)** $\varphi_1, ..., \varphi_n \models \varphi$ como abreviatura para $\{\varphi_1, ..., \varphi_n\} \models \varphi$.

Proposição 86: Sejam φ e ψ fórmulas e sejam Γ e Δ conjuntos de fórmulas.

- a) Se $\varphi \in \Gamma$, então $\Gamma \models \varphi$.
- **b)** Se $\Gamma \models \varphi$ e $\Gamma \subseteq \Delta$, então $\Delta \models \varphi$.
- c) Se $\Gamma \models \varphi$ e $\Delta, \varphi \models \psi$, então $\Delta, \Gamma \models \psi$.
- d) $\Gamma \models \varphi \rightarrow \psi$ se e só se $\Gamma, \varphi \models \psi$.
- e) Se $\Gamma \models \varphi \rightarrow \psi$ e $\Gamma \models \varphi$, então $\Gamma \models \psi$.

Demonstração da Proposição 86:

a) Se $\varphi \in \Gamma$, então $\Gamma \models \varphi$

Dem.:

Suponhamos que $\varphi \in \Gamma$.

Seja v uma valoração e suponhamos que v satisfaz Γ .

(Queremos mostrar que v satisfaz φ , *i.e.*, $v(\varphi) = 1$.)

Então, da definição de satisfação de conjuntos, sabemos que v atribui valor lógico 1 a todas as fórmulas de Γ .

Assim, dado que por hipótese $\varphi \in \Gamma$, temos $\nu(\varphi) = 1$.

Dem. da Proposição 86 (cont.):

b) Se
$$\Gamma \models \varphi$$
 e $\Gamma \subseteq \Delta$, então $\Delta \models \varphi$

Dem.:

Seja v uma valoração.

Suponhamos que v satisfaz Δ .

Assim, em particular, ν satisfaz Γ , pois (por hipótese) $\Gamma \subseteq \Delta$.

Donde, pela hipótese de que φ é uma consequência semântica de Γ , segue que $\nu(\varphi) = 1$.

Dem. da Proposição 86 (cont.):

- c) Exercício.
- d) $\Gamma \models \varphi \rightarrow \psi$ se e só se $\Gamma, \varphi \models \psi$

Dem.:

⇒) Seja v uma valoração.

Suponhamos que ν satisfaz $\Gamma \cup \{\varphi\}$.

Então, por definição de satisfação de conjuntos, v satisfaz Γ e $v(\varphi)=1$ (*).

Assim, como v satisfaz Γ , da hipótese $\Gamma \models \varphi \rightarrow \psi$ segue que $v(\varphi \rightarrow \psi) = 1$.

Daqui e de (*) segue $v(\psi) = 1$.

←) Exercício.

Dem. da Proposição 86 (cont.):

e) Se $\Gamma \models \varphi \rightarrow \psi$ e $\Gamma \models \varphi$, então $\Gamma \models \psi$

Dem.:

Seja v uma valoração.

Suponhamos que v satisfaz Γ .

Então, da hipótese $\Gamma \models \varphi \rightarrow \psi$, podemos concluir que $\nu(\varphi \rightarrow \psi) = 1$ e, da hipótese $\Gamma \models \varphi$, podemos concluir que $\nu(\varphi) = 1$.

De $v(\varphi \to \psi) = 1$ e de $v(\varphi) = 1$ segue $v(\psi) = 1$.

Proposição 87: Sejam $\varphi, \varphi_1, ..., \varphi_n$ fórmulas, onde $n \in \mathbb{N}$. As seguintes proposições são equivalentes:

- i) $\varphi_1,...,\varphi_n \models \varphi$;
- ii) $\varphi_1 \wedge ... \wedge \varphi_n \models \varphi$;
- iii) $\models (\varphi_1 \wedge ... \wedge \varphi_n) \rightarrow \varphi$.

Dem.: A equivalência entre ii) e iii) é um caso particular de d) da proposição anterior.

A equivalência entre i) e ii) pode ser demonstrada a partir da equivalência mais geral: para todo o conjunto Γ de fórmulas,

$$\Gamma, \varphi_1, ..., \varphi_n \models \varphi$$
 se e só se $\Gamma, \varphi_1 \wedge ... \wedge \varphi_n \models \varphi$,

a qual pode ser demonstrada por indução em n (exercício).

A equivalência entre i) e iii) segue, então, por transitividade.

Proposição 88: Seja φ uma fórmula do CP e seja Γ um conjunto de fórmulas do CP. Então:

 $\Gamma \models \varphi$ se e só se $\Gamma \cup \{\neg \varphi\}$ é semanticamente inconsistente.

Dem.:

 \Rightarrow) Tendo em vista uma contradição, suponhamos que $\Gamma \cup \{\neg \varphi\}$ é semanticamente consistente, *i.e.*, suponhamos que existe uma valoração v que satisfaz $\Gamma \cup \{\neg \varphi\}$.

Então, v satisfaz Γ e $v(\neg \varphi) = 1$, *i.e.*, $v(\varphi) = 0$ (*). Contudo, da hipótese, uma vez que v satisfaz Γ , podemos concluir que $v(\varphi) = 1$, o que é contraditório com (*).

Logo, por redução ao absurdo, $\Gamma \cup \{\neg \varphi\}$ é semanticamente inconsistente.

Dem. Proposição 88 (cont.):

 \Leftarrow) Suponhamos que v satisfaz Γ.

Então, $v(\neg \varphi) = 0$, de outra forma teríamos $v(\neg \varphi) = 1$, donde, como v satisfaz Γ , $\Gamma \cup \{\neg \varphi\}$ seria semanticamente consistente, contrariando a hipótese.

Logo,
$$v(\varphi) = 1$$
.

Mostrámos, assim, que toda a valoração que satisfaz Γ também satisfaz φ e, portanto, $\Gamma \models \varphi$.