elata Management Copy # 5

DMS-DR-1205 CR-120,023 OCTOBER 1972

-SPACE SHUTTLE-

AN INVESTIGATION OF THE LANDING CHARACTERISTICS OF THE NASA-MSC AUGUST 1969 BASELINE ORBITER CONFIGURATION IN GROUND EFFECT

by Edmond B. Chambliss, MSC David Millikan, T A&M

SADSAC SPACE SHUTTLE
AEROTHERMODYNAMIC
DATA MANAGEMENT SYSTEM

CONTRACT NASS-4016
MARSHALL SPACE FLIGHT CENTER

SPACE DIVISION CHRYSLER CORPORATION

This document should be referenced as NASA CR-120,023

NASA Series Number: S-0008

DMS-DR-1205 CR-120,023 OCTOBER, 1972

SADSAC/SPACE SHUTTLE

WIND TUNNEL TEST DATA REPORT

CONFIGURATION:	NASA-MSC Test Series S-VIII - Phase 2 NASA-MSC August 1969 Baseline Orbiter Model S-4				
TEST PURPOSE:	Define the landing aerodynamic characteristics of the				
CONFIGURATION: NASA-MSC August 1969 Baseline Orbiter Model S-4					
	ground effect				
TEST FACILITY:	Texas A&M University Low Speed Wind Tunnel				
TESTING AGENCY: NASA-MSC					
TEST NO. & DATE:	NASA-MSC Test S-VIII - Phase 2 - August 1970				
FACILITY COORDINA	TOR: NASA-MSC Ray Nelson				
PROJECT ENGINEER(S): NASA-MSC Edmond B. Chambliss				
	Texas A&M David Millikan				
TEST PURPOSE: Define the landing aerodynamic characteristics of the NASA-MSC August 1969 Baseline Orbiter Configuration in ground effect TEST FACILITY: Texas A&M University Low Speed Wind Tunnel TESTING AGENCY: NASA-MSC TEST NO. & DATE: NASA-MSC NASA-MSC Test S-VIII - Phase 2 - August 1970 FACILITY COORDINATOR: NASA-MSC Ray Nelson PROJECT ENGINEER(S): NASA-MSC Edmond B. Chambliss Texas A&M David Millikan					

DATA MANAGEMENT SERVICES

LIAISON: 7/C Zarraneske	DATA OPERATIONS:	HC Curricule	
for V. WOSparks		H. C.Zimmerle	

RELEASE APPROVAL: N. D. Kemp, Supervisor
Aero Thermo Data Group

CONTRACT NAS8-4016

AMENDMENT 174

DRL 297-84a

This report has been prepared by Chrysler Corporation Space Division under a Data Management Contract to the NASA. Chrysler assumes no responsibility for the data presented herein other than its display characteristics.

FACILITY COORDINATOR:

Mr. Ray Nelson Manned Spacecraft Center EAO Flight Technology Bldg. 16, Code EX24 Houston, Texas 77058

Phone (713) 483-5972

PROJECT ENGINEERS:

Mr. Edmond B. Chambliss Manned Spacecraft Center EAO Flight Technology Bldg. 16, Room 232 Code EX2 Houston, Texas 77058

Phone (713) 483-5972

Mr. David Millikan Aeronautical Engineering Dept. Wind Tunnel Texas A&M University College Station, Texas

Phone (713) 845-1028

SADSAC LIAISON:

Mr. V. W. Sparks Chrysler Corporation Huntsville Division 102 Wynn Drive Huntsville, Alabama 35805

Phone (205) 895-1560

SADSAC OPERATIONS

Mr. H. C. Zimmerle Chrysler Corporation Space Division P. O. Box 29200 New Orleans, Louisiana 70129

Phone (504) 255-2304

TABLE OF CONTENTS

]	PAGE NUMBER
SUMMA	ARY			2
NOME	NCLATUI	RE		3
CONF	IGURAT:	IONS INVESTIGATED		7
TEST	FACIL	ITY DESCRIPTION		8
DATA	REDUC'	TION		9
TABLI	ES	•		٠
	I	DATASET COLLATION SHEETS		10
<i>:</i>	II	TEST CONDITIONS		19
	III	MODEL COMPONENTS DESCRIPTIONS		20
	IV	INDEX OF MODEL FIGURES	-	24
	v	INDEX OF DATA FIGURES		25
FIGUI	RES			
	MODEL			27
	DATA		,	46

AN INVESTIGATION OF THE LANDING CHARACTERISTICS OF THE NASA-MSC AUGUST 1969 BASELINE ORBITER CONFIGURATION IN GROUND EFFECT

Ву

Edmond B. Chambliss and David Milliken

SUMMARY

A 0.05 scale model of the NASA-MSC August 1969 Baseline Shuttle Craft was tested in Texas A&M University's 7- x 10-foot Low Speed Wind Tunnel Facility. The purpose of the test was to determine the landing aerodynamic characteristics of the shuttle craft vehicle in ground effect and to evaluate control surface hinge moments experienced in the cruise and landing operational phases of flight. Analysis of the final data will allow evaluation of vehicle flight stability in ground effect and estimation of vehicle control surface power system requirements.

This test was a continuation of NASA-MSC Test Series VIII - Phase 1. The Phase 1 test results are presented in DMS-DR-1060.

NOMENCLATURE General

SYMBOL	SADSAC SYMBOL	DEFINITION
<u>———</u>		speed of sound; m/sec, ft/sec
. C _p	CP	pressure coefficient; $(p_1 - p_{\omega})/q$
M	MACH	Mach number; V/a
p		pressure; N/m ² , psf
q	Q(NSM) Q(PSF)	dynamic pressure; 1/2 pV ² , N/m ² , psf
RN/L	RN/L	unit Reynolds number; per m, per ft
v		velocity; m/sec, ft/sec
α	ALPHA	angle of attack, degrees
β -	BETA	angle of sideslip, degrees
ψ	PSI	angle of yaw, degrees
φ	PHI	angle of roll, degrees
ρ		mass density; kg/m ³ , slugs/ft ³
	Refe	rence & C.G. Definitions
A _b		base area; m ² , ft ²
b	BREF	wing span or reference span; m, ft
c.g.		center of gravity
$m{\ell}_{ ext{REF}}$	LREF	reference length or wing mean aerodynamic chord; m, ft
S .	SREF	wing area or reference area; m^2 , ft^2
•	MRP	moment reference point
	XMRP .	moment reference point on X axis
	YMRP	moment reference point on Y axis
	ZMRP	moment reference point on Z axis
SUBSCRIPTS b 1 s t	<u>5</u>	base local static conditions total conditions

3

NOMENCLATURE (Continued)

Body-Axis System

SYMBOL	SADSAC SYMBOL	DEFINITION
$^{\mathrm{C}}\!\mathrm{N}$	CIN	normal-force coefficient; $\frac{\text{normal force}}{qS}$
$\mathtt{C}_{\mathbf{A}}$	CA	axial-force coefficient; axial force qS
$C_{\mathbf{Y}}$	CY	side-force coefficient; $\frac{\text{side force}}{qS}$
$\mathtt{CA}_{\mathtt{b}}$	CAB	base-force coefficient; $\frac{\text{base force}}{q^S}$
		$-A_b(p_b - p_{\infty})/qS$
$^{\mathrm{C}}\!_{\mathbf{A_f}}$	CAF	forebody axial force coefficient, c_{A} - $c_{A_{b}}$
$C_{\mathbf{m}}$	CLM	pitching-moment coefficient; pitching moment qS $\boldsymbol{\ell}_{\text{REF}}$
C_n	CYN	yawing-moment coefficient; yawing moment qSb
C.L	CBL	rolling-moment coefficient; rolling moment qSb
•		Stability-Axis System
c _L	CL	lift coefficient; lift qS
c_D	CD	drag coefficient; <u>drag</u> qS
c_{D_b}	CDB	base-drag coefficient; base drag
$\mathbf{c}_{\mathbf{D_{f}}}$	CDF	forebody drag coefficient; C_D - C_{D_b}
$C_{\mathtt{Y}}$	CY ·	side-force coefficient; $\frac{\text{side force}}{qS}$
$C_{\mathbf{m}}$	CLM	pitching-moment coefficient; pitching moment qs $\boldsymbol{\ell}_{\text{REF}}$
c_n	CLIN	yawing-moment coefficient; yawing moment qSb
c	CSL	rolling-moment coefficient; rolling moment qSb
T/D	T/D	lift-to-drag ratio; ${ m c_L/c_D}$

NOMENCLATURE (Continued)

Surface Definitions

SYMBOL	SADSAC SYMBOL	DEFINITION
it	HORIZT	horizontal tail incidence, positive when trailing edge down; degrees
∂ a	AILRON	aileron, total aileron deflection angle, degrees, (left aileron-right aileron)/2
∂ e	ELEVIR	elevator, surface deflection angle, positive deflection, trailing edge down; degrees
$oldsymbol{\delta_{r}}$	RUDDER	rudder, surface deflection angle, positive deflection, trailing edge to the left; degrees
$oldsymbol{\delta} \mathbf{a_L}$	AIL-L	left aileron, surface deflection angle, positive deflection, trailing edge down; degrees
$oldsymbol{\delta}_{ ext{a}_{ ext{R}}}$	AIL-R	right aileron, surface deflection angle, positive deflection, trailing edge down; degrees

ADDITIONS TO SADSAC NOMENCLATURE FOR MSC-S-VIII PHASE 2

SYMBOL	SADSAC SYMBOL	DEFINITION
$oldsymbol{\delta_{f}}$	FLAP	flap, surface deflection angle and configuration. A parameter value of 15.0 denotes 15° deflection of full exposed span flaps, and a value of 15.6 denotes 15° deflection of 60% exposed span flaps. Positive deflection is trailing edge down.
h b	н/в	ground plane distance measured to the quarter- chord of the wing m.a.c. at zero angle of attack, divided by the reference span.
$\mathtt{c}_{\mathtt{h}_{e}}$	СНЕ	elevator hinge moment coefficient based on elevator area and m.a.c.,
		$c_{h_e} = \frac{\text{elevator hinge moment}}{q \ S_e \ \overline{c}_e}$
$\mathrm{c_{h_r}}$	CHR	rudder hinge moment coefficient based upon rudder area and m.a.c.,

CONFIGURATIONS INVESTIGATED

Shuttle Craft Model S-4 is a 0.05 scale model of the MSC Orbiter Shuttle configuration as of August 13, 1969.

Components	
B ₁	0.05 Scale Model of NASA-MSC August 1969 Baseline Orbiter Fuselage
w_2	MSC Orbiter S-4 Wing
Н6	MSC Orbiter S-4 Horizontal Tail
v_3	MSC Orbiter S-4 Vertical Stabilizer
S _{X.Y}	spoilers, subscript denotes spoiler configuration and chordwise location on the wing. For example, $^{S}10.15$ is spoiler configuration $^{S}10$ located at $^{X}/^{C}$ = .15.
R_{1}	rocket nozzle
Т	transition strips, #80 grit on wing, horizontal tail, and vertical tail, located at $X/C = .10$.

Combinations of the component parts used to form the configurations investigated are shown in Table I. Figures 2 through 13 present the complete model geometry and various model component geometries. The model components are identical to those used for NASA-MSC Test Series VIII-Phase 1 except that different spoilers were used for this test. The spoiler configurations presented in Figures 8 and 9 are comprehensive for Phase 1 and 2.

TEST FACILITY DESCRIPTION

The Texas A&M University Low Speed Wind Tunnel is a continuous closed circuit horizontal single return facility. The overall circuit length is 397.5 feet; the tunnel is constructed of steel supported above the ground on concrete pillars. The rectangular 7 foot by 10 foot test section is 16 feet long, and it is operated at atmospheric pressure through a speed range from zero to 300 feet per second. The tunnel is powered by a 1250 KVA synchronous electric motor which drives a 12 1/2-foot diameter Curtiss Electric propeller; the controls for the motor and its auxiliaries are located in the control room. Cooling of the tunnel circuit during warm weather is accomplished by spraying the outside of the tunnel shell with water; this keeps the tunnel circuit temperature within 10°F of ambient temperatures to protect models and to maintain tolerable test section working conditions for model configuration changes. The 7 x 10 test section incorporates an external pyramid balance system which separates and independently measures the aerodynamic components.

The external balance used in the test was a Dynametrics, Inc., pyramid balance located on the first floor of the tunnel facility and was directly beneath the test section turntable. With the model mounted on the single strut, Figure 14, the model pitch mechanism rotation center was located over the external balance center.

A ground plane was installed at an arbitrary, pre-determined height and supported rigidly with extra support posts and interlacing guy wires in addition to adjustable corner posts. Figure 15 presents a stream wise view of ground plane installation in the tunnel.

For a more detailed description of this tunnel refer to the Low Speed Wind Tunnel Facility Handbook published by the Space Technology Division, Texas A&M University, College Station, Texas.

DATA REDUCTION

Longitudinal and lateral-directional aerodynamic coefficients were measured with the externally mounted Dynametrics, Inc., pyramid balance of the facility. The aerodynamic forces acting of the model were resolved by the balance into three-force and three-moment components measured along and about a wind axis system having its origin at the model trunnion position.

Moments were taken about two reference C.G. locations: 50% body length and 60% body length. The following data were used in the data reduction:

Model Trunnion Position:

Fuselage Station	37.468	in.
Body Line	0.0	in.
Water Line	2.927	in.

Aerodynamic Reference Position

(60% $\ell_{\rm B}$, 50% ${\rm Z_{B_{max}}}$)

$s_{ m REF}$	2.3 ft ²
LREF	0.6121 ft
$\mathtt{B}_{\mathrm{REF}}$	3.9946 ft
XMRP	41.396 in.
YMRP	0.0
ZMRP	6.396 in. (W. L.)

Hinge Moment Reference Data

Elevator Area (Total)	78.592 in ²
Elevator Mean Aerodynamic Chord	3.298 in.
Rudder Area	26.046 in ²
Rudder Mean Aerodynamic Chord	2.937 in.

TABLE I. NASA-MSC TEST SVIII-Phese 2 DATA SET COLLATION SHEET

M POSTTEST PARAMETERS / VALUES MACH/RUN NOS. DATA SET SCHD. of RUNS **Se** CONFIGURATION IDENTIFIER 8+ 8r 1/6 H.M. 0.25 RG9001 B, W2 H6 V3 55.7 (Part A) 0 No B 0 002 B, W2 H6 V3 0 Yes 003 0 004 005 006 007 008 009 +25 010 +30 011 2 B 0 0 -20 012 013 014 -10 B, W2 H6 V3 L 45.6 017 018 019 020 55 31 37 43 49 67 75 76 1 .C.Y.N CBL CPBASE CHE , CHR coefficients: A,A,= 2,0,1,2,3,4,5,6,7,8,9,10,12,14,16,20,25,0 IDPVAR(2)|NDV α or β SCHEDULES B, - 0, -15, -10, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 10, 15, 0

☐ PRETEST

												□ P	RET	EST
DAMA GRANT				•								Ø P	OSTI	EST
DATA SET IDENTIFIER	CONFIGURATION		PACH/RUN NOS.	NO. of					PARK	METER	S/VALUE	S		
		αβ	0.25	RUNS	<u> </u>	84	Sr	it	h/b	H.M.				
KG9021	B, W2 H6 V3 L	08,	21 (Part A)		-5	45.6	-10	0		Yes			 	
022		AO	22		+15				_	1			+	-
023		OB	23						_			- -	+	 .
024		A. O	24				-20		_	 			+	
025		OB	25				T		 			_	+	
026		A. O	26		-25					 - - 			 	
027		OB.	27						_				 	
028		4,0	28				-10							
029		OB.	29			+-	-10	-					 	
030		A40	30		-15			+					ļ	<u> </u>
031		OB.	31		73	-	1							
052	·	A 0	32				7	-					<u> </u>	
033		0 B.	33				-20	-}-	-					
034	. •	A. 0	34		Y	•	_ 🔻 📗			▼				
035	B, W2 H6 V3				0	0	0	Y	-	No				
036	DIVIZ 116 V3	╫┼┼╂	35				- -	-6	_	Yes		·		
		╫┼┼╂┈	36		+5	-	- -		estro-		· .			
037		╫┼┼╂	37		+15	\bot			-					
038		╂┼┼┼╂	38		+25	-	- -		_					
039		#	39		130									
040	<u> </u>	7 7	40		-5		•	*	-	V				-
1	7 13	19	25 31	3	7	43		49)	55	61	67		75 76
CN	I. CA. I CLM	<u> </u>	I CYN CBL		PBA	5 <u>5</u>	CH.E		CHR					1
COEFFICII	ENTS: α , $A\mu$	P.0 - 14	-109.5 -	9.0		3,5.					IDPVA	R(1) ID	PVAR(2) NDV
α or β SCHEDULE:	-7.5, -7.0,		6.0, -4, -2, 0		2.	3.4	5,0				·	. , ,	\-	.,
. Someonia	6,7,8,9,1	0,12,14	16, 20, 25	0		'	"	-						

TABLE I. NASA--MSCTEST SVIII - Phase 2 DATA SET COLLATION SHEET (Continued)

☐ PRETEST

M POSTTEST MACH/RUN NOS. DATA SET PARAMETERS / VALUES SCHD. CONFIGURATION IDENTIFIER RUNS Se Sf Sr Lx 1/6 H.M. 0.25 B, W2 H6 V3 RG9 041 Part A) -15 042 -25 043 -30 044 B, W2 H6V3L 45.0 045 -25 046 047 048 0 049 50 B, W2 H6 V3 0 052 053 054 055 -30 056 057 058 (Part B-059 .15 Yes 060 49 75 76 1 CLM CPBASE CHE CHR COEFFICIENTS: A = 0, -12, -8, -6, -4, -2, 0, 2, 4, 5, 6,IDPVAR(1) IDPVAR(2) NDV **SCHEDULES**

SCHD.

α β

DATA SET

IDENTIFIER

CONFIGURATION

RG9061 B, WZ H6V3

073 B, W2 H6 V3 L

																	RET OST	
MAC	HR		105.	NO. of				PAI	RA/	ME	TEI	श	/V	446	IES	 <u> </u>		
	0.25			RUNS	Se	Sf	8,	- <u>i</u>	t	h/1	> H	I.M.						
	3	(Par		-	-5		0		0			'es						
	14	<u>- Se</u>	<u> </u>		+5							Τ.						1
	5				-10									1		-		<u> </u>
	6				-15													1
	7				-25	7 🔻												
	10				0	25,0												
	11					15.6												
	12					15.0										,,_		
	13					45.6				$oldsymbol{\perp}$								
	15					0			V	\perp								
	17							<u> </u>	4	\perp								
	18					*	\perp	<u> -</u>	6									
	19					45,6												
	20				<u> </u>	45.0												1
	21			j	-5	•			\sqcup									
	22				_ 🛊 _	45.6				\perp								
	26				-25	•				\perp	\perp							
	28			<u> </u>	-30	45.0	\perp			\perp		Ш						
	29					15.6	\perp			1								
	30				.	15.0	7	1		#	١,							

COEFFICIENTS: IDPVAR(1) IDPVAR(2) NDV α or β SCHEDULES

TABLE I. NASA-MSC TEST SVIII-Phase 2 DATA SET COLLATION SHEET (Continued)

TA SET	CONFIGU	IRATION	S	Ci.i).	MAC	HIRL	NN	OS.	NO.				PAK	RAM	ETE	RS	/VALUES			
NTIFIER			C	ιβ		025			RUNS	Se	δf	δr	1	1/1	H.	M.				
59081	B, W2	H6V3L	A	60		31	(Par	tB		-25	15.0	0		0.1						
082		<u> </u>	\bot	Ш		32	- Se	<u> </u>			15.6									
083		ļ	-11	$\perp \downarrow \downarrow$	┛	33			<u> </u>	-15	1		<u> </u>							
084			_	Ш	.	34			_	+	15.0			, ,						1
085			_	11	_	35			L	-5										
086			-	$\perp \! \! \! \! \! \! \! \! \! \! \perp$	-	36				1	15.6									
087		 	$\perp \parallel \perp$	\coprod	-	37				0	4									
088		<u></u>	4	11	1	38				+	15.0		4							
089		<u> </u>	$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Ш	<u> </u>	44				-15			0							
090			\parallel	\coprod	 	45			<u> </u>	•	15.6									
091			-#	\coprod	<u> </u>	53				-25	45.6									
092		·	\coprod	$\bot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$		54				-15	•									
093			-11	$\perp \downarrow$	1	55				4	45.0									
094			Ш	11	<u> </u>	56				-5	•									
095	· · · · · · · · · · · · · · · · · · ·	<u> </u>	$\bot\!\!\!\!\bot$	$\bot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	<u> </u>	57				4	45.6							·		
096		<u> </u>	Ш	11		58				0	•									
097			1	11		59					45.0									
098	B, W2	H6 V3	A.	1		60					•									
099			\prod	\coprod	<u> </u>	61				•	25.6							T		
100		7	1	1	<u> </u>	63	*	'		-30	0	•			4)				
	7	13	19		. 2		3			37	43		4			55	61	67		75 <i>7</i>
C.N.	I. CA.	. I CLM	سلب	<u>ري</u>		CYI	<u> </u>	CB	<u>L.</u>	CP.B/	SE	CHI		CH	R.	1		ساب		
OEFFICIE or B	NTS: —					·········											IDPVAR	(1) [1]	DPVAR(2) ND

☐ PRETEST

TABLE I. NASA-MSC TEST SVIII-Phase 2 DATA SET COLLATION SHEET (Continued)

																	RET. OST:	
TA SET CONFIGURATION	SCHL			UN 1	ics,	NO.				PAR	AME	TE	RS/	VAL	JES			
	α	β	0.25			RUNS	Se	Sf	δr	人大	1/2	HJ	И.				T	T
9101 B, W2 H6 V3	As	0	64	(Par			0	0	0	-2	.15			_		+	+	+-
102 B, W2 H6 V3 L	AG		3	- Se	#1			45,6	Ť	-6	1	16	>		+		-	┼
103			66				1	45.0	+		╢	╁┼					 	┼
104			67			 -	-25				 	+					_	ــــ
105			68				 			1-1		- -					ļ	<u> </u>
106 B, W2 V3	As	† 	69				- 30	45.6		_ V		ļ .					<u> </u>	
107	75		70							-								L
108	++						-	45.0	_ _			.						
	++	 	7/					15.0				1_1						
109	+		72				_	15.6		_								
110	+		73					0										
111 B, V3	1		74				_	•		-								
112 B, W2 V3 H6L	Ab		75				-30	15.0		0					 			\vdash
113 ,			76	j			1 i l	15.6		Ī					+	+		-
114			80				-25	7			\dashv	 	_			 		
115	Π		81					15.0	1-1	-H		-				 		
116	\top		82				-5	1	+	-++					 			
117			83					100	+				+	-		· ·		
118	11		B4		_			5.6	+	-			 	 				
119	111				\dashv		0	Y	+					4	↓			
120			85					5.0		\perp	$\dashv \dashv$							
— + · · · · · · · · · · · · · · · · · ·	Y		36				-30	15.0	1	▼	*	*						
	19	. 25		3			7	43		49			55	6	1	67		75
.CN. CA. CLM	<u> </u>	.Y	C.Y.A	L_{\perp}	CBI	- (<u> PBA</u>	SE .	CHE		CHR) 1		1		. 1		T
COEFFICIENTS: -	,													тт	DPVAR	(1) ID	17AD (2	A I M

TABLE I. NASA--MSC TEST SVIII-Phise - DATA SET COLLATION SHEET (Continued)

ATA SET	CONT		s	Chī	MA	CH/R	'/N/ /	1/25	NO.				PAR	PAME	- / 5	25	1/1	LUES		POST	res'
ENTIFIER		GURATION	C			0.25			of RUNS	δe	84	5r	Lt	h	H.	1.		- DES	,		$\overline{\Gamma}$
G9 121	B, W2	H6V3L	A	60		87	(Par	†B		-30	45.6		0	.15						+	+
122			1	,		88	- Se				45.0		Ĭ	1.12	10	5				_	+
123			_ A	5		17	(Par				1			,20		-	-			-	
124						2	- 5e	21,2		-	45.6		 	1	 			+		-	+
125						3				-30		1	†				-	+		-	-
126						4				1	45.0			1							
127				П		5				-15	.1	-	1		1-1		 -		_		-
128				\prod		6				J	45.6	1	- -	† †	1		- 		_		-
129						7				-5	1					+			_	-	+-
130				\prod		8					45.0	1					+	+	+-		
131				Ш		9				0	J					- 		_			_
132				Ш		10				Ī	45.6				1-1-	+		1		-	
133						//					15.6							_	+		
134						12				•	15.0					+	+-	+			-
135				П		13				-5	1 10	11					_	+		+	
136						14				h 1	15.6	11				+		+	-	+	_
137		<u></u>				15				-15	1	11					1			1	
138	·			П		16				-	15.0	11				_	+-	╁┈	+	-	
139						17				25		1	1			+	1-	 	+	+	
140		7	1	1		18	1				15.6	4	•		-	 		 	+	1	
	7	13	19		. 2	5	3	1	3		43	7	49	<u> </u>		<u> </u>	6		67		75.
CN.	I. CA	L. CLA	۸	<u>C</u>	<u> </u>	CYA	Ī.,	CB			SE	CHE			,			1	67	F	75
OEFFICI	ENTS: —												P. I.					DPWAD	(1) Tr	OPVAR (2) NIT

DATA SET	CONFIGU	PATION.	SCi	ιÙ.	MACH	/RO	UN	NCS.	NO.				PAR	PAM	1571	- K-> C		1/41	UES	X P	051	1 E S
DENTIFIER			α	ß	02				of RUNS	δe	8+	Sr	ix	h/	14.	M		VAL	UES.	Т	T	T
G9 141	B, WzH	613L	A5	0	10	î	Par	B.		-30	15.6	0			Ye			-	+	+	+	+=
142			•		20	- 1		1.2		T	15.0		Ť	1	15			 	-	 -	-	┼
143			Az		1	1	Par	TB			1	1-1-	++-	,30	_	\vdash		 	 	 	 	+
144					2	_ -	Se	†B			15,6	-	 - -	†′ዯ		-+	<u> </u>		 	 	 	┼
145					3					-25	1		+					 	 		 -	
146					4	T				1	15.0	 		┼╼╂╴	-			ļ	 -	 -	-	
147					5					-15	1210	-		╁╼╂╌	+-+			 -	 	 	 	
148					6	\top				1	15.6		H	┼╂	-				 		 	┼
149					7					_	12.0		 		╁┼	\dashv						
150					8	T		i		J	15.0		++-	- -	+			-			 	-
151			\prod		9					0					+	+		······	 			
152		•			10	T					15.6		- -		+-1	+			 	ļ		├
153					11	T					45.6			 	1-1	-						-
154	·				12	1					45.0	\dashv			┼┼	+-						
155					13		\neg			-5	13.0	+-			╁┼	+	<u> </u>					├
156			Ш		14	T					45.6	-				+						-
157				П	15	1	\dashv			-15	1	+			+	+						
158				$\top 1$	16		十				45.0					+						<u> </u>
159		· · · · · · · · · · · · · · · · · · ·		П	17	T	\top			-25	1	1			╁┼╂	+						
160	+		+	1	18	T	1			1	15.6	1				+-	_					
1	7	13	19	· · ·	2.5	-	31		3		ا ن.د 43	Y	49					<u>l</u>	<u>_</u>			Ĺ
CN.	L CA	. CLM.	1 . !	CY	. L.CY	N		CBL			<u>55</u>			CH1		55		61		67		75 1
COEFFICIE	ENTS:	12				3			7					<u></u>	<u> </u>	ــــ	<u> </u>	<u> </u>	DIVERSE	<u> </u>		
α or β SCHEDULES	,	76	- ;/,	7	12 - 8	1 4	- 6	<u> </u>	<i>t,</i> -	<u>2, C</u>	0	4,5	<u>-</u>					1D	PVAR(THIDD	VAR(2	2) N

																			□ PR	RETE	ST	
	,)	PO	STT	EST	
DATA SET IDENTIFIER	CONFIC	URATION	<u> </u>	ChD.	MAC			NOS.	NO. of					RAMA	FTER	S/	VALUE	25]
			α		-	<u> 225</u>		ļ	RUNS	δe	δf	<u>dr</u>	人大	1/6	H.M	•						
RG9 161		V3H6L	A.	20			(Pai			-30	45.6	0	0		Yes							1
162		<u> </u>		1 🛊		20	-5	21.3		+	45.0			1		T.					 ;	1
163	B, W2 H	16/3 5 11.15	A	0-5		41	Par	tc)		0	0			_	No							1
164	(:	I)		-1		42			L					-								1
165			Ш.	0		43								_					i			
166			Ш	11		44																
167	· · · · · · · · · · · · · · · · · · ·	<u> </u>	Ш	5		45																1
168	B, W2 !	46 V351015		5		46										 	1					1
169		I)				47								-								İ
170			\prod	0		48								_	 	1						1
171				-1		49								_	† † †	 -						
172			+	-5		50									 - 	†						l
17.3	B.WzH	6V3T(I)	Aa	0		51								_		<u> </u>	+					
174	B. H61	13T(II)	1	Ī	I	52										 	+					
175	B. Wa	HUT (T)	П			53										+	+		. 			
176	B. W	2T(T)	4		T	54				1	1	+				 	+		-+			
177	B.W.	4. Va T	AB	Π		55					-++	_			Vac	 	+		-+			
178	B. Wa H	VaP.T	פון			57					+				Yes	 	+					
179	B.WZ	HOV3R,	\sqcap			58				1	-	+-				 	╁┈┼					
180	B. W. 4	, Va	1			59		,			1		4		1	 -	++					
1	7	13	19	<u> </u>			<u></u>	1		7					<u> </u>	<u> </u>						I
C.N.	CA	ı CLM	19	CV	25	_	'N .			PBA	43		49		5:))	61		67	····	75 76	
COEFFICI	FNTC -	SEA.		<u> </u>		<u> </u>	N	<u> </u>) <u> </u>		E P	SH	<u></u>							
α or β	Z. 24	$As \rightarrow C$	} :	-12	,-8,	-6	-4	, - 1	2,0,	2,4	,5,6	27	8.9	10,	12,	0		PVAR(]	l) IDP	VAR(2)) NDV	
SCHEDULE	s 💥	$Aq \rightarrow 0$		20	-14	<u>آ رہ</u>	12, -	8	<u>-6</u>	4,-	20	2,4	1,51	6,7	<i>e, 9</i>	10	,12,		B, O			
	_ <u>~</u>	710	7	-10,	-8 ,	- 6	, -7	-2	<u>, 0,</u>	2,1	4,5,	G,	2.5 j	7,7	15,	8,8	5,9	, <u>10,</u>	12,	0		a p.
NOT	F: (I)	Indicate	2.	ma	del	inv	ert	ed										-	_			

TABLE II
TEST CONDITIONS
TEST S-VIII Phase 2

MACH NUMBER	REYNOLDS NUMBER per unit length	DYNAMIC PRESSURE (pounds/sq. inch)	STAGNATION TEMPERATURE (degrees Fahrenheit)
0.25	1.7 x 10 ⁶ /ft	70.0 psf	95.0
1			
	·		1
			•
:			

BALANCE UTILIZED	Dynametrics	Inc External P	yramid Balance
CAPACITY:		ACCURACY:	COEFFICIENT TOLERANCE:
LF <u>-100</u>	0 to 3000 lb	±0.1 lb	±0.008
sr <u>-100</u>	<u>0 to 10</u> 00 1b	±0.1 lb	±0.002
DF <u>-100</u>	<u>10 to 100</u> 0 1b	±0,1 1b	±0.0021
PM <u>-200</u>	0 to 2000 ft-1b	±0.1 ft-1b	±0.041
YM <u>-100</u>	0 to 1000 ft-1b	±0 1 £+-1h	±0.002
гм −200	0 to 2000 ft-1b	+0 1 ft-1b	+0.016

MODEL COMPONENTS DESCRIPTIONS

MODEL COMPONENT: BODY - B7		
GENERAL DESCRIPTION: 0.05 Scale Model o Baseline Orbiter Fuselage	f NASA - MSC Au	gust 1969
DRAWING NUMBER: Texas A and M Research and	I Instrument Shops	Dra wing
Number Orbiter - 1		
<u>DIMENSIONS</u> :	FULL-SCALE	MODEL SCALE
Length	1380 in.	69.0 in.
Max. Width	2 <u>29.92 in.</u>	11.496 in.
Max. Depth	255.84 in.	12.792 in.
Fineness Ratio (total length to max. width) Area	6,002	6.002
Area	•	
Max. Cross-Sectional	324.0 ft ² .	0.810 ft ² .
Planform	1919.6 ft ² .	4.799 ft ² .
Wetted	des een mes dat das des ses ses Annie en mes de	500 000 000 mil die den opp den
Base (Horizontal Tail Off) (Horizontal Tail On)	158.4 ft ² . 146.0 ft ²	0.396 ft ² . 0.365 ft ²

TABLE III (CONTINUED)

MODEL COMPONENTS DESCRIPTIONS

GENERAL DESCRIPTION- HSC OR	BITFR S-4, 0.05 SC	ALF .
DRAWING NUMBER- ORBITER-7	TEXAS A+H UNIV	
DIMENSIONS		
TOTAL DATA	*	
TOTAL DATA	(FT)	MODEL (IN)
AREA		-
SPAN (EQUIVALENT)	920.0	
ASPECT RATIO	80.00	48.000
TAPER RATIO	6.957	6.957
DIFHEDRAL ANGLE, DEC	U U _ U _ U _ U _ U _ U _ U _	0.353
DIEHEDRAL ANGLE, DEGINCIDENCE ANGLE, DEG	/ 000U	7.000
SHEEN MAIN ANISTES THE		4.000
LEADING FDGF	14.000	46.000
TRAILING EDGE 0.25 FLFMENT LINF	-1.400	
	9,252	-1.400 9.262
CHORDS	74236	3,202
ROOT (HING STA. 0.0)	17.00	10.200
TIP, (FQUIVALENT)	6.00	3.600
MEAN AERODYNAMIC	12.38	7.430
•25 MAC COORDINATES	•	
X (EROM BODY NOSE)	61.82	37.092
Y (FROM BODY CL)	16.81	10.087
Y (FROM BODY CL) AIRFOIL SECTION	<u> </u>	
ROOT	NACA 00:	14-64
TIP	NACA 001	10-64
		•
EXPOSED DATA		
****		· · · · · · · · · · · · · · · · · · ·
AREA	619.9	223.156
SPAN (EQUIVALENT) ASPECT RATIO	50.84	
TAPER RATIO	5.971	5.971
CHORDS	417	0.417
	14.38 _	
TIP, (EQUIVALENT)		8.626
MEAN AERODYNAHIC	6.00 10.77	3.600
.25 MAC COORDINATES		6.461
X (FROM BODY NOSE)	62.89	77 770
Y (FROM BODY CL)	22.71	- · · · - -
		13.623
		•
DIMENSIONS OBTAINED	FROM MODEL DRAWING	is.

TABLE III (CONTINUED) MODEL COMPONENTS DESCRIPTIONS

MODEL COMPONENT- HORIZONTAL TAIL (H6)

DRAWING NUMBER- ORBITFR-4 1	TEXAS A+M UNIV	
DIMENSIONS	·	
TOTAL DATA	FULL SCALE	HODEL
4	(FT)	(IN)
AREA	390.4	140.562
SPAN (EQUIVALENT)	42.75	25,650
ASPECT RATIO TAPER RATIO DIEHEDRAL ANGLE, DEG	4.681	4.681
TAPER RATIO	0.353	0.353
DIEHEDRAL ANGLE, DEG	0.000	0.000
INCIDENCE ANGLE, DEG	0.000	0.000
SWEEP BACK ANGLE, DEG		
LEADING EDGF	10.200	10.200
TRAILING EDGE		-12.900
0.25 ELEMENT LINE	2.962	
CHORDS		
ROOT (WING STA. 0.0)	13.50	8.100
		2.860
TIP, (EQUIVALENT) MEAN AERODYNAMIC	9.83	5.900
•25 MAG GUURDINATES		
X (FROM BODY NOSE)	113.09	67.855
		5.391
AIRFOIL SECTION		
ROOT	NACA DOS	12-64
TIP	NACA 001	2-64
·		
EXPOSED DATA	······································	
40 15 15 15 15 15 15 15 15 15 15 15 15 15		
AREA	239.5	86.203
SPAN (FQUIVALENT)	30.42	18.250
ASPECT RATIO.	3.864	3.864
TAPER RATIO	0.434	0.434
CHORDS		
ROOT (HING STA. 0.0)	10.98	6.587
TIP, (EQUIVALENT)	4.77	2.860
MFAN AFRODYNAMIC	8,28	4.971
.25 MAC COORDINATES	•	
X (FROM BODY NOSE)		68.031
Y (FROM BODY CL)	12.77	7.663
DIMENSIONS OBTAINED	FROM MODEL DRAWING	<u>s</u>

TABLE III (CONTINUED)

MODEL COMPONENTS DESCRIPTIONS

MODEL COMPONENT- VERTICAL STABLIZEF (V3)

GENERAL DESCRIPTION- MSC ORBITEP S-4, 0.05 SCALE

DRAHING NUMBER- ORBITER-6 TEXAS A+M UNIV

DIMFNSIONS

•	•	
EXPOSED DATA		
	(FT)	(IN)
AREA	241.2	86.821
SPAN (EQUIVALENT)	15.42	9.250
ASPECT RATIO	0.986	0.986
TAPER RATIO	0.470	
DIEHEDRAL ANGLE, DEG	0.000	0.000
	0.000	0.000
SWEEP BACK ANGLE, DEG		9.000
LEADING EDGE	45,000	45.000
TRAILING EDGE	14.997	
0.25 ELEMENT LINE	34.822	34.822
CHORDS		040000
ROOT (WING STA. O. D)	21.29	12.772
TIP, (FQUIVALENT)		6.000
MEAN AERODYNAHIC	16.33	9.798
-25 MAC COORDINATES		
X. (FROM_BODY NOSE)	106.70	64.018
Z (FROM EXPOSED ROOT CHORD)		4.069
AIRFOIL SECTION	3410	4.003
ROOT	NACA 0012)-Ku
IIP		

DIMENSIONS OBTAINED FROM MODEL DRAWINGS

TABLE IV. INDEX OF MODEL FIGURES

			Page
Figure	1.	Axis System	28
Figure	2.	Model Geometry, Configuration B ₁ W ₂ H ₆ V ₃	29
Figure	3.	Fuselage B ₁	30
Figure	4.	Wing W ₂	31
Figure	5.	Horizontal Tail H ₆	32
Figure	6.	Vertical Tail V ₃	33
Figure	7.	Model Rocket Engine Nozzle R ₁	34
Figure	8.	Spoiler Configuration	35
Figure	9.	Model Spoilers	36
Figure	10.	Flap Configuration	40
Figure	11.	Landing Gear Configuration	41
Figure	12.	Model Pressure Orifices	42
Figure	13.	Hinge Moment Instrumentation	43
Figure	14.	Configuration Mounted on Single Strut with Mirror Image System	44
Figure	15.	Ground Plane Dimensions and Installation),5

25

TITLE	PLOTTED COEFFICIENTS SCHEDULE	CONDITIONS VARYING	PAGES
Ground Effect with Maximum Flap Deflection	А	ELEVIR, H/B	98-104
Ground Effect with Minimum Flap Deflection	А	ELEVTR, H/B	105-111
Spoiler Effect	D	BETA, Configuration	112-119
Component Build-up with Transition Strips	c	Configuration	120-123
Effect of Transition Strips	C	Configuration	124-127

PLOTTED COEFFICIENTS SCHEDULE

Note: Moment reference point (c.g.) is at 60% body length unless otherwise noted. On the plots, the 50% c.g. data is denoted in the titles.

9

- (A) CN, CA, CIM vs. ALPHA
 CIM vs. CN
 CHE vs. ALPHA
 CIM vs. ALPHA, CN, c.g. at 50% body length
- (C) CN, CA, CLM vs. ALPHA CLM vs. ALPHA, c.g. at 50% body length

(B) CY, CYN, CBL, CHR vs. BETA CYN vs. BETA, c.g. at 50% body length (D) CN, CA, CLM, CY, CYN, CBL vs. ALPHA CLM, CYN vs. ALPHA, c.g. at 50% body length.

MODEL FIGURES

Notes:

- 1. Positive directions of force coefficients moment coefficients, and angles are indicated by arrows.
- 2. For clarity, origins of wind and stability axes have been displaced from the center of gravity.

Figure 1. Axis systems, showing direction and sense of force and moment coefficients, angle of attack, and sideslip angle

Figure 2 . – Model geometry. Configuration $B_1W_2H_6V_3$ (all dimensions in inches)

Figure 3. - Fuselage B_1 (all dimensions in inches)

Figure 4. - Wing W_2 (all dimensions in inches)

Figure 5. - Horizontal tail H_6 (all dimensions in inches)

Figure 6. - Vertical Tail V_3 (all dimensions in inches)

Figure 7. - Model Rocket Engine Nozzle R_1 (all dimensions in inches)

Figure 8. - Spoiler configuration. (all dimensions in inches)

Figure 9. - Model Spoilers (all dimensions in inches)

Figure 9. - Continued.

Figure 9. - Continued.

The outboard edge of Spoilers $_{10-11}$ is located a constant 1.00 inches inboard of the wing tip while each is mounted perpendicular to the wing chord plane at x/c = 0.15

Figure 9. - Concluded.

Figure 10. - Flap configuration. (all dimensions in maches)

Figure 11. - Landing gear configuration. (all dimensions in inches)

Figure 12. - Model Pressure Orifices (all dimensions in inches)

Figure 13. - Hinge Moment Instrumentation (all dimensions in inches)

Figure 14. Configuration mounted on single strut with mirror image system.

Figure 15. – Ground Plane Dimensions and Installation (all dimensions in feet)

DATA FIGURES

Tabulations of the plotted data and corresponding source data are available from SADSAC Operations.

.25 MACH

PAGE

ļ

PAGE

. 25

PAGE

PAGE

. 25

PAGE

[!] 7

PAGE

.25 MACH

PAGE

C-2

PAGE 13

PAGE 14

MACH .25

. 25

PAGE

. 25

PAGE

PAGE

PAGE

PAGE

MACH . 25

PAGE

PAGE

. 25

PAGE

. 25

MACH

PAGE

PAGE

. 25

PAGE

.25

PAGE

PAGE

PAGE

. 25

PAGE

. 25

PAGE

PAGE

PAGE

.25 MACH

. 25

PAGE

. 25

PAGE

PAGE

PAGE

. 25

PAGE

PAGE

PAGE

PAGE

PAGE

PAGE

PAGE

.25 MACH

PAGE

PAGE

PAGE

PAGE

PAGE

.25

PAGE

. 25

PAGE

C-3

PAGE

PAGE

PAGE

. 25

PAGE .

PAGE

PAGE

79

MACH .25

MAÇH

PAGE

. 25

PAGE

PAGE

PAGE

PAGE

PAGE

PAGE

PAGE

. 25

PAGE

PAGE

MACH

PAGE

. 25

PAGE

PAGE

PAGE

PAGE

PAGE

PAGE

PAGE

MACH

. 25

MACH

. 25

PAGE

PAGE

PAGE

.25 MACH

PAGE

MACH