A variation on SVD based image compression

Постановка задачі

Завдання алгоритму - стиснути зображення з мінімальними втратами інформації та з максимальною економією пам'яті. Автори використовують модифіковану версію алгоритму SVD, який, за їхніми словами, ефективніший за оригінальний алгоритм, оскільки потребує на 30% менше пам'яті для зберігання значень та векторів. Ця варіація алгоритму передбачає - попередня обробку зображення перестановкою - після чого воно обробляється оригінальним SVD алгоритмом - післяобробку - інвертованою перестановкою із попередньої обробки. Після опису алгоритму автори беруть різні зображення та перевіряють ефективність даного алгоритму порівнюючи з найпоширенішими. Після цього добавляють декілька покращень пов'язаних з пам'яттю.

Опис алгоритму власними словами

SVD розклад матриці

Означення

На вхід у нас є зображення - \mathbf{A} . Розглядаємо його як матрицю. Наша задача розкласти нашу матрицю на 3 компоненти $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$ [* - тут і надалі означатиме, що матриця є транспонованою (transposed)] , де: - \mathbf{A} - вхідна матриця - $\mathbf{\Sigma}$ - діагональна матриця, де елементи є невід'ємними та посортованими звеху-вниз у незростаючому порядку - \mathbf{U} , \mathbf{V}^* - ліва та права сингулярні матриці Також: - \mathbf{r} - ранг, розмірність матриці $\mathbf{\Sigma}$

Кроки

- 1. Знайти добуток АА*, А*А
- 2. Знайти власні значення (eigenvalues) матриці $\mathbf{A}\mathbf{A}^*$ та $\mathbf{A}^*\mathbf{A}$ (позначимо їх як λ_n)
- 3. власні значення матриці AA*: такі λ , де det(AA* λI) = 0
- 4. власні значення матриці A*A: такі λ , де det(A*A λI) = 0
- 5. Знайти сингулярні значення (singular values) матриці \mathbf{AA}^* або $\mathbf{A}^*\mathbf{A}$ з власних значень позначимо їх як ∂_n
- 6. Для SVD сингулярні значення ϵ квадратні корені власних значень матриць $\mathbf{A}\mathbf{A}^*$ або $\mathbf{A}^*\mathbf{A}$
- 7. Сформувати Σ
- 8. створити список $(\partial_1,...\partial_n)$, де $\partial_i \geq \partial_j \geq 0, i < j$
- 9. $\Sigma = diag(\partial_1, ... \partial_n)$
- 10. Знайти V^* з власних значень та матриці A^*A
- 11. Підставляємо кожне λ_n в рівняння $A^*A \lambda I = 0$ та знаходимо розв'язки рівнянь, що у нас вийшли (іншими словами знаходимо власні вектори)
- 12. Вектори-розв'язки сформують матрицю V
- 13. Дістанемо **V*** з **V**
- 14. Знайти U виразивши її з рівняння $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$

Визначення розмірності

В подальших кроках ми шукаємо оптимальне значення \mathbf{r} , таке щоб інформація, що залишилася максимально реперезентативно описувала зображення. Чим менше значення \mathbf{r} тим менше пам'яті займатиме отримане зображення, але тим більші будуть втрати даних (зображення виглядатиме менш чітко) і навпаки. Суть в тому що значення \mathbf{r} не впливає на розмірність вихідної матриці \mathbf{A} і

зображення буде тих самих розмірів після того як ми це все перемножимо.

Кінцеві розмірності матриць:

- $\mathbf{A}^r[n \times m]$
- $\mathbf{U}^r[n \times r]$, \mathbf{U}_r це перші r колонок \mathbf{U}
- ullet $\Sigma r[r imes r], \Sigma r$ це верхня-ліва підматриця Σ
- $\mathbf{V}^{*r}[r \times m]$, \mathbf{V}^{*r} це перші г рядків \mathbf{V}^{*r}

SSVD модифікація

Перш за все, слід зразу зауважити, що SSVD це лише модифікація звичайного SVD, яка передбачає додаткову попередню обробку матриці перед SVD-декомпозицією і кінцеву обробку опісля інвертовано. Попередня обробка складається із перетворення матриці A в Матрицю X=S(A). Автори наводять наступну формулу для визначення якому індексу в матриці X належатиме елемент A[i,j]:

$$X[\lfloor i/n \rfloor n + \lfloor j/n \rfloor, (i \bmod n)n + j \bmod n] = A[i, j]$$

Кінцева обробка відбуваєтсья аналогічною інвертованою формулою, але вже для визначення індексів для **А.**

У багатьох випадках, при роботі з матрицею \mathbf{X} (SSVD алгоритм) можна отримати до 30% економії пам'яті у порівнянні з робтою з матрицею \mathbf{A} (оригінальний SVD). Не у всіх випадках можна отримати значного підвищення ефективності. Насправді коли ми працюємо з чіткими зображеннями ліній чи геометричних фігур, SSVD буде менш ефективним. Тому його в рази краще використовувати при обробці фотографій.

Оцінка складності алгоритму

Розглянемо складність SVD декомпозиції:

Для простоти будемо вважати що ми завжди маємо справу з матрицями розмірності $[n \times n]$, де n - більше значення кількості колонок і рядків матриці. В реальності різциця між шириною і висотою зображення незначна, а розмірності матриць на які ми розкладаємо зображення менші ніж розмірність самого зображеня, а ми беремо верхнє значення. Оцінки складності алгоритмів (множення матриць, пошук визначника тощо)

- Транспоновану матрицю ми можемо взяти за 0 (1)
- Brute-force множення матриць займає $o(n^3)$, хоча алгоритм Копперсміта-Вінограда справляється за $o(n^2, 3728...)$
- 1 крок: складається з транспонування і множення матриць, тому складність 0 (n^2, 3728..)
- 2 крок: пошук детермінанта (і власних значень (eigenvalues), звичайно) займає 0 (n^2, 3728...)
- 3 крок: пошук кореня (1)
- 4 крок: посортувати Σ можна за 0 (nlogn)
- 5 крок:
 - 1. Підставляємо кожне λ_n в рівняння $A^*A \lambda I = 0$ та знаходимо розв'язки рівнянь, що у нас вийшли (іншими словами знаходимо власні вектори)
 - 2. O(n^2,3728..)
 - 3. Нормалізувати вектори O (n^2)
 - 4. Дістанемо **V*** з **V** це (1)

• 6 крок: Знайти $U = A(\Sigma V) = AV\Sigma^* : o(n^2, 3728...) + o(1) + o(n^2, 3728...) = o(n^2, 3728...)$

Результат

Як бачимо - максимальна складність алгоритму на кожному із етапів не більше ніж $0(n^2, 3728..)$, отже загальна складість нашого алгоритму дорівнює:

 $O(n^2,3728...)$.

Посилання на оригінальну статтю

Використані посилання

http://web.mit.edu/be.400/www/SVD/Singular_Value_Decomposition.htm http://www.d.umn.edu/~mhampton/m4326svd_example.pdf https://youtu.be/P5mlg91as1c

Виконали Забульський Володимир та Вей Роман