Alex Havrilla

alumhavr

Hw 5

Question 1:

Let \mathcal{M} be a Riemann manifold with affien connection ∇ . Let $\gamma: I \to \mathcal{M}$ be a curve. Let $P_{\gamma,t_0,t}: T_{\gamma(t_0)}\mathcal{M} \to T_{\gamma(t)}\mathcal{M}$ be the mapping taking tangent vector V_0 at $\gamma(t_0)$ to V(t) where V is the parallel transport of V_0 along γ .

Let X and Y be vector fields on \mathcal{M} . Consider curve γ as an integral curve for X. Then $\frac{d\gamma}{dt} = X|_{\gamma(t)}$.

Prop 1. Where ∇ is the Riemann connection then

$$\nabla_X Y|_{\gamma(t_0)} = \frac{d}{dt} (P_{\gamma,t_0,t}^{-1} Y|_{\gamma(t)})|_{t=t_0}$$

Proof.

Question 2:

Let \mathcal{M} , $\overline{\mathcal{M}}$

Question 3:

Set $\mathbb{R}^2_+ = \{(x,y) \in \mathbb{R}^2, y > 0\}$

with metric coefficients $g_{11}=g_{22}=\frac{1}{y^2}$ and $g_{12}=0$.

Prop 2. The christoffel symbols of the Riemannian connection are $\Gamma^1_{11} = \Gamma^2_{12} = \Gamma^1_{22} = 0$ and $\Gamma^2_{11} = \frac{1}{y}, \Gamma^1_{12} = \Gamma^2_{22} = \frac{-1}{y}$

Proof. test \Box

Question 4: