Minimum Variance

Problem description

- Network of N nodes. A given node N_i
 - has a fixed upload capacity, C_i
 - has a variable number of connections, K_i
- Network is an NxN matrix of binary values (i.e. connected or not)
- We have a fitness function, F(m)
 - F takes a NxN binary matrix
 - o and returns the variance in download rates

Brute-force solution

- A brute force solution would test every possible state
- For a given row, R_i
 - Number of combinations is equal to the number of subsets
 - \circ Thus 2^m 1, where m = min(N, C_i/5)
- For entire matrix, number of combinations close to 2^{n*n}
- Not feasible to calculate directly

So how about we rephrase this as an optimisation problem?

Optimisation problem

- Attempts to maximise (or minimise) a function, g(x)
 - where x is a discrete state of the problem
- Perfect fit for our situation
 - we have well defined state, i.e. the binary matrix
 - o and a function to minimise, F (m)
- Many techniques to solve or approximate this class of problem
 - Hill climbing
 - Random walks
 - Simulated annealing
 - o etc.

Lets look at hill climbing

Hill climbing

- Start with some state
 - o doesn't matter which, can be random
- Each cycle, pick a neighbouring state to move to
 - o pick neighbouring state with best value of fitness function
- When we can't find a better neighbour, we have found a maximum
 - Unfortunately, it might just be a local maxima
- We can alleviate the problem of local maxima
 - Stochastic hill climbing: pick a random better neighbour
- Still not guaranteed to find an optimal solution
 - But might give us a helpful approximation

I implemented a stochastic hill climber but it always gets stuck in local minima

We need something more reliable Perhaps simulated annealing?

But wait, what does our simulation do?

Our simulation

- Represents state as a sparse NxN matrix
- Each node attempts to maximise its own download rate
 - by moving to neighbouring state
 - o and regularly reevaluating metric
 - o basically, hill climbing on smaller scale
- Maximising majority of download rates ~= minimising variance
 - Because large peers unable to maximise their download
 - Therefore, we are optimising to minimise variance
- Unlike a hill climber, we allow backtracking
 - never converges to a fixed solution
 - never gets stuck either
- I believe our simulation is approximating minimum variance