NITROGÉN TARTALMÚ HETEROCIKLUSOS VEGYÜLETEK REZGÉSI SPEKTROSZKÓPIÁJA

Készítette: Endrédi Henrietta

Témavezető: Dr. Billes Ferenc

> Fizikai Kémia Tanszék 2004

Tartalomjegyzék

1. BEVEZETÉS	1
1. KVANTUMKÉMIAI BEVEZETŐ	3
1.1 A csoportelmélet alapjai	4
1.1.1 Szimmetria elemek és szimmetriaműveletek	4
1.1.2 A Pontcsoport fogalma és jellemzői	4
1.1.3 A szimmetriaoperációk mátrixreprezentációi	5
1.2 Kvantumkémia alapjai	6
1.2.1 A nem relativisztikus kvantummechanika	7
1.2.2 A Born-Oppenheimer tétel	8
1.2.3 Egyelektron módszer	10
1.2.4 Független részecske modell	11
1.3 Hartree-Fock modellek	12
1.3.1 A Hartree-Fock módszer	12
1.3.2 A Hartree-Fock-Roothan módszer	14
1.3.3 A post-Hartree-Fock módszerek	16
1.4 Az elektronsűrűség elmélete	18
1.4.1 Sűrűségfunkcionál elmélet DFT	19
1.5 Alkalmazott módszerek	22
1.6 Normálkoordináta-analízis	23
1.6.1 A molekularezgések kvantummechanikája	23
1.6.2 Belső koordináták	24
1.6.3 Mozgásegyenlet a belső koordináták terében	25
1.6.4 $A \mid GF-\lambda E \mid = 0$ sajátértékegyenlet megoldása	27
1.6.5 A rezgési módok jellege	27
2. INFRAVÖRÖS ÉS RAMAN SPEKTROSZKÓPIA:MÉRŐMŰSZERI	EK ÉS MÉRÉS2
2.1 Infravörös spektroszkópia	29
2.1.1 Mérési alapfogalmak	29
2.1.2 Az infravörös spektrométerek típusai	30
2.1.3 Infravörös színképek mérése	32
2.2 Raman spektroszkópia	34
2.2.1 Mérési alapfogalmak	34
2.2.2 Fourier transzformációs Raman spektrométerek	34
2.2.3 Raman színkének mérése	35

3. NITROGÉNTARTALMÚ ÖTTAGÚ HETEROCIKLUSOS VEGY	ÜLETEK
REZGÉSI SPEKTROSZKÓPIÁJA	36
3.1 Az azolok biológiai jelentősége	37
3.2 A vizsgált vegyületek szerkezetének és rezgési spektroszkóp	piájának irodalmi
áttekintése	37
3.2.1 <i>Pirrol</i>	37
3.2.2 Pirazol	38
3.2.3 Imidazol	38
3.2.4 Triazolok	39
3.2.5 <i>Tetrazol</i>	40
3.3 Kísérleti munka	40
3.3.1 A deutero vegyületek előállítása	40
3.3.2 A spektrumok mérése	41
3.4 Számítások	43
3.4.1 Kvantumkémiai számítások	43
3.4.2 Normálkoordináta analízis	43
3.5 Eredmények, értékelés	45
3.5.1 Optimált geometria	45
3.5.2 Molekula energia és tautomerizáció	47
3.5.3 Rezgési erőállandók	50
3.5.4 Rezgési frekvenciák	51
3.5.4.1 Síkbeli rezgési módok	51
3.5.4.2 Merőleges rezgési módok	59
3.6 Összefoglalás	62
4. A PIRAZINOK REZGÉSI SPEKTROSZKÓPIÁJA	64
4.1 A pirazinok biológiai jelentősége	64
4.2 A pirazinok irodalmának áttekintése	64
4.3 Kísérleti adatok	65
4.4 Kvantumkémiai számítások	65
4.4.1 Geometriai adatok	66
4.4.2 Rezgési erőállandók	68
4.5 Rezgési frekvenciák	69
4.5.1 CH rezgési módok	70
4.5.1.1 Pirazin gyűrű	70

4.5.1.2 A metil csoport	72
4.5.2 Szubsztituens effektusok	73
4.5.3 A szubsztituensek rezgési módjai	75
4.5.4 Izotóp effektus	76
4.6 Összefoglalás	78
5. A FENOTIAZINOK REZGÉSI SPEKTROSZKÓPIÁJA	79
5.1 A fenotiazinok biológiai jelentősége	79
5.2 A fenotiazinok irodalmi áttekintése	79
5.3 Kísérleti adatok	80
5.4 Kvantumkémiai számítások	80
5.4.1 Geometriai paraméterek	81
5.5 Rezgési frekvenciák	83
5.5.1 C-H vegyértékrezgések, síkbeli és síkra merőleges rezgési módok	83
5.5.2 A metil csoport rezgésifrekvenciái	85
5.5.3 Az aldehid csoport jellemző C-H és C-O rezgési frekvenciái	87
5.5.4 Az alkohol csoport jellemző C-H és C=O és O-H rezgési frekvenciái	89
5.5.5 Az S=O rezgési frekvenciái	90
5.5.6 A fenotiazin gyűrű rezgési frekvenciái	91
5.6 Összefoglalás	92
6. IRODALOMJEGYZÉK	93
FÜGGELÉK	
Nitrogéntartalmú öttagú heterociklusos vegyületek rezgési spektroszkópiája Ábrák (F.3.1 – F.3.9) Táblázatok (F.3.1 – F.3.20) Pirazinok rezgési spektroszkópiája Ábrák (F.4.1 – F.4.8) Táblázatok (F.4.1 – F.4.12) Fenotiazinok rezgési spektroszkópiája Ábrák (F.5.1 – F.5.6) Táblázatok (F.5.1 – F.5.8) Publikált folyóiratcikkek másolata	2 2 6 25 25 28 42 42 45

Köszönetnyilvánítás

Szeretném megköszönni **Dr. Billes Ferencnek,** témavezetőmnek azt, hogy felkeltette érdeklődésemet a rezgési spektroszkópia iránt, lehetővé tette számomra a diplomamunka majd doktori disszertáció megírását. Időt és türelmet nem kímélő segítségét, magyarázatait, és áldozatkész munkáját.

Köszönet illeti a Budapesti Műszaki és Gazdaságtudományi Egyetem Fizikai és Kémiai Tanszék Spektroszkópia Csoportjában dolgozókat, akikhez megoldásra váró problémáimmal fordulhattam. Köszönetemet szeretném kifejezni Dr. Zrinyi Miklós tanszékvezetőnek a tanszékre történő befogadásáért, a Varga József alapítványnak az anyagi támogatásért.

Szeretnék köszönetet mondani a MTA KKKI Rezgési Spektroszkópia Csoport tagjainak, kiemelten Dr. Keresztury Gábornak, akik lehetővé tették számomra a Raman és infravörös spektrumok felvételét, valamint szakmai tanácsaikkal bővítették ismereteimet.

Végül köszönöm szüleimnek és férjemnek, a türelmet és a támogató légkört, amellyel segítették munkámat.

Bevezetés

keretében N-tartalmú Doktori munkám heterociklusos vegyületek rezgési spektroszkópiájával foglalkoztam. Az N-taralmú heterociklusos vegyületek számos biológiailag aktív vegyületben előfordulnak, azonosításukhoz, az élőszervezetben kifejtett hatásmechanizmusok jobb megismeréséhez szükségünk van ezen vegyületek szerkezetének, spektroszkópiai tulajdonságainak minél teljesebb ismeretére.

A **N-heterociklusos** vegyületek vizsgálatának hagyományai vannak a Budapesti Műszaki Egyetem Fizikai Kémia Tanszéken. Szerettem volna ezt a munkát kibővíteni a N-tartalmú öttagú heterociklusos vegyületek (az imidazol, a pirazol, az 1,2,3,-triazol, az 1,2,4-triazol és a tetrazol) vizsgálatával.

A hamburgi egyetemről német kolléga kérésére kutatásom kiterjedt egy **N-tartalmú hattagú heterociklus**os vegyületre (a pirazolra), valamint metil és klór szubsztituált származékaira.

Munkám során foglalkoztam **N-metil-(10H)-fenotiazin**okkal és **N-metil-(10H)-fenotiazin-oxidok**kal gyógyhatású készítmények szintézisének alapanyagai. Ezeket a kolozsvári Babeş-Bólyai Egyetem Biokémia Tanszékén magyar kollégák szintetizálták.

A N-tartalmú heterociklusos vegyületek szerkezetének és rezgési spektroszkópiai tulajdonságainak vizsgálatával célom átfogó, részletes kép kialakítása a vizsgált vegyületekről. Célom elérésének érdekében mind kísérleti, mind elméleti munkát végeztem.

- A kísérleti munka nagyobb része a vizsgált vegyületek infravörös és Raman spektrumainak felvétele, valamint ezen spektrumok számítógép segítségével történő értékelése volt
- A N-tartalmú öttagú heterociklusok esetében az NH csoportokat deuteráltam, és mértem a színképeiket.
- Az elméleti munka során kvantumkémiai számításokat végeztem, a N-tartalmú öt és hattagú heterociklusos vegyületek esetében töltés sűrűség funkcionál (DFT) módszert alkalmaztam, míg a vizsgált fenotiazinoknál HF számításokat végeztem. Célom az volt, hogy a skálafaktor optimalizálás révén a számított frekvenciákat a kísérletihez illesszem, és ezúton meghatározzam a rezgési módok jellegét.

A vizsgált vegyületek közül a N-tartalmú öt és hattagú heterociklusokkal részletesebben is foglalkoztunk, mely munka eredményeit közleményekben foglaltunk össze [1, 2, 3, 4, 5]. A A fenotiazinokkal kapcsolatban elért eredményeink publikálása most van előkészületben.

Értekezésemben először röviden összefoglalom számításaim kvantumkémiai alapjait, a normálkoordináta analízis módszerét, az infravörös és Raman spektroszkópia alapjait, majd a fenti sorrendben vegyületcsoportokként ismertetem munkám irodalmi előzményeit, a végzett vizsgálatokat és az eredményeket.

1 Kvantumkémiai bevezető

A kvantumkémia [6-10] a modern szerkezetvizsgáló módszerek fontos eszköze. Adatokat szolgáltat a molekula számos tulajdonságáról, többek között térszerkezetéről és spektroszkópiai tulajdonságairól. A számított töltéseloszlás információt ad a molekula reaktivitásáról, míg energiája alapján becsülhető a molekula stabilitása. Felhasználható szintézisek tervezéséhez, a lehetséges reakcióutak vizsgálatához, vagy akár a végtermékek tulajdonságainak (pl. konformációs vagy energetikai) jellemzéséhez.

A molekulák térszerkezetének és jellemzőinek kvantumkémiai úton történő számítására alkalmas módszerek három csoportra oszthatók.

- Jól alkalmazhatók az ab initio módszerek, melyek az elektron és az atommagok töltésén és tömegén, közelítő geometriai paramétereken kívül semmilyen más bemenő paramétert nem igényelnek. A módszer nagyon számítás igényes. Napjainkban a felső határ körülbelül 50-60 atomot tartalmazó molekuláknál húzható meg, de nagyszimmetriájú molekuláknál ez magasabb is lehet.
- A szemiempirikus eljárások egyes integrálok kísérleti értékekkel való helyettesítésével,
 míg mások elhanyagolásával közelítőleg oldják meg a Schrödinger egyenletet.
- A molekulamechanikai módszerek a molekulában lévő atomokra a molekulán belül ható
 erőket veszik figyelembe az erőállandó paramétereken keresztül. Ezek modellezhetők a
 klasszikus mechanikai modellel: rúgókkal összekötött tömegpontokkal, elektrosztatikus
 kölcsönhatásokkal kiegészítve.

Mielőtt a fent említett számításos kémiai módszerek ismertetésébe kezdenék, szeretném a témához szervesen kapcsolódó csoportelmélet alapjait röviden összefoglalni. Teszem ezt azért, mert a molekuláris szimmetria felismerése és felhasználása segít eligazodni a molekulapálya-elméletben, a forgási, a rezgési, valamint az elektronszínképek értelmezésében, egyszerűvé teszi a kiválasztási szabályokat.

1.1. A csoportelmélet alapjai

1.1.1 Szimmetriaelemek és szimmetriaműveletek

Szimmetrikus objektumok esetén mindig található olyan szimmetria művelet, melyet elvégezve az illető objektumon a transzformáció után kapott alak az eredetitől megkülönböztethetetlen lesz.

Általánosan *szimmetriaelemnek* nevezzük azokat a geometriai fogalmakat, melyek segítségével szimmetriaműveletek hajthatók végre. A szimmetriaelemekhez tartozó *szimmetriaműveletek* (operációk) az adott testet önmagára képezik le.

1.1.1.táblázat: Szimmetriaelemek és szimmetriaműveletek

Szimmetriaelemek	Szimmetriaműveletek	Szimbólum
Sík	Tükrözés a síkra	σ
Tengely	Forgatás a tengely körül	C
pont (szimmetriacentrum)	Tükrözés a szimmetria centrumon keresztül	i
Giroid	Forgatásos tükrözés	S
Azonosság	Azonosság operáció	Е

A szimmetriaműveletek szimbólumait alsó indexekkel szokás ellátni. Ha 360/n fokkal forgatunk, a művelet jele C_n^k . Ha a műveletet többször egymásután elvégezzük, ezt felső indexben jelöljük. Egy szimmetriaelem több szimmetriaműveletet is generálhat. Pl. $C_6^2 = C_3^1$, $S_6^3 = i$. Az alakzat fő szimmetriatengelyét (legnagyobb fogású tengely) magában foglaló szimmetriasíkot vertikálisnak nevezzük és σ_v -vel jelöljük. Az erre merőleges szimmetriasík a horizontális sík jele σ_h . Ha a vertikális sík a főtengelyre merőleges tengelyek között van, a síkot és a műveletet diagonálisnak nevezzük és σ_d betűjellel látjuk el.

1.1.2. A pontcsoport fogalma és jellemzői

Csoportnak nevezünk egy halmazt, ha a halmaz bármely elemei között elvégezve az adott műveletet igaz a műveleti zártság, az asszociativitás, létezik egységelem és a csoport minden

elemének létezik a csoporton belül inverze. Amennyiben a fentieken kívül a kommutativitás is érvényes, a csoport neve kommutatív csoport.

Esetünkben a halmaz elemei a szimmetriaműveletek, vagy *operációk*, a csoporton belüli művelet pedig az operációk szorzása, azaz egymás utáni elvégzése. A csoport neve *szimmetriacsoport* vagy *pontcsoport*. A függelékben helyeztem el egy algoritmust, amely az egyes alakzatok szimmetriacsoportba való besorolását könnyíti meg.

A csoport elemeinek azon részhalmaza, melynek elemei egymáshoz algebrai értelemben hasonlóak, a csoport egy *osztályát* alkotják. A csoport elemeinek számát a *csoport rend*jének nevezzük. Végigtekintve az összes lehetséges pontcsoporton azt tapasztaljuk, hogy E, i, σ_h műveletek mindig különálló osztályokat alkotnak, míg ugyanazon osztályba kerülnek a csoport σ_v műveletei is.

1.1.3 A szimmetriaoperációk mátrixreprezentációi

Vizsgáljuk meg egy P(x, y, z) térbelei pont viselkedését egy szimmetriaművelet hatására. Tegyük fel, hogy a művelet a P pontot a P' (x', y', z') pontba viszi át, tehát

$$\hat{A} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} \implies \hat{A} \text{ a szimmetriaművelet.}$$

Pl. ha $\hat{A}=C_2$

$$C_{2z} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ -y \\ z \end{pmatrix}$$

Ez a művelet egy mátrixszal reprezentálható:

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ -y \\ z \end{pmatrix}$$

A teljes szimmetriacsoport reprezentálásához olyan mátrixsorozatot kell találnunk, melynek mindegyik tagja egy-egy szimmetriaművelethez rendelhető, valamint együttesen a csoport minden tulajdonságát képviseli. Ebben segít az a matematikai tétel mely szerint a

négyzetes mátrixok megfelelő hasonlósági transzformációval *blokkdiagonális* alakra hozhatóak. Speciális esetben a hasonlósági transzformáció eredménye *diagonális* mátrix.

A hasonlósági transzformáció lépcsős mátrix alakra hozza, így a transzformált mátrixokon a mátrixszorzás művelete a blokkos szerkezetet megőrzi, a szorzatmátrix is azonos dimenziójú blokkokból áll, mint a kiindulási mátrix, vagyis a mátrixok azonos indexű blokkjai együttesen szintén a csoportot reprezentálják. Egy ilyen mátrixreprezentációt *reducibilisnek* mondunk, ha dimenziója ismétlődés miatt csökkenthető. Ha egy mátrix reprezentáció dimenziója tovább nem csökkenthető, a mátrix *irreducibilis*.

Az irreducibilis reprezentációk konvencionális jelölése a következő: az egydimenziós reprezentációk betűjele A vagy B, a kétdimeziósaké E, a háromdimenziósakat T-vel vagy F-vel jelöljük. Ha az egydimenziós reprezentáció a főtengely körüli forgatásra szimmetrikus (azaz karaktere +1), a jele A, ha antiszimmetrikus (azaz karaktere -1), a jele B. A főtengelyre merőleges C_2 forgatásra, illetve ha ez nincs, a σ_v síkra való tükrözésre a szimmetria jele alsó indexben 1, az antiszimmetriáé 2. A σ_h tükrözésre a szimmetriát felső indexben ' jel, az antiszimmetriát '' jel mutatja. Inverziós centrumra való szimmetriát alsó indexben g, az antiszimmetriát u betű jelöli.

1.2 A kvantumkémia alapjai

Egy N atommagból és n elektronból álló rendszer Schrödinger egyenlete $\hat{H}\Psi = E\Psi$ formában irható fel, ahol \hat{H} a rendszer Hamilton operátora, E a rendszer sajátenergiája. Elektronokból és atommagokból álló rendszer Hamilton operátorát a következőképpen írhatjuk fel:

$$\hat{H} = -\frac{\hbar^2}{2m} \sum_{i=1}^n \Delta_i - \sum_{\alpha=1}^N \frac{\hbar^2}{2M_{\alpha}} \Delta_{\alpha} + e^2 \left[\sum_{\alpha=1}^N \sum_{i=1}^N \frac{Z_{\alpha}Z_{\beta}}{R_{\alpha\beta}} + \sum_{i=1}^N \sum_{j=1}^N \frac{1}{r_{ij}} - \sum_{i=1}^N \sum_{\alpha=1}^N \frac{Z_{\alpha}}{r_{i\alpha}} \right]$$
(1.2.1)

Az első tag n darab elektron kinetikus energia operátora, az egyes elektronok kinetikus energia operátorainak egyszerű összege (T_e). A második tag a magok kinetikus energiáját írja le (T_n). A szögletes zárójelben vannak a potenciális energia tagok, ezek rendre a következők: mag-mag taszítás (V_{nn}), elektron-elektron taszítás (V_{ee}), valamint a mag-elektron vonzás (V_{ne}),

ahol Z a magtöltés, m az elektronok, M az atommagok tömege. A szummajelekben az $\alpha < \beta$ és i< j feltételek kizárják, hogy a magok közötti, illetve az elektronok közötti kölcsönhatást duplán vegyük figyelembe.

A V_{nn} gyakorlatilag nem függ az elektronok koordinátáitól, mivel az atommagok az elektronokhoz képest relatíve mozdulatlanok, így a kifejezés konstansnak tekinthető.

A Hamilton operátornak vannak olyan tagjai, melyek csak egy elektron koordinátájától függenek:

$$\hat{H}_{1} = \sum_{i=1}^{n} \left(-\frac{\hbar^{2}}{2m} \Delta_{i} - \sum_{\alpha} \frac{e^{2} Z_{\alpha}}{r_{\alpha i}} \right) = \sum_{i=1}^{n} \hat{h}_{1}(i)$$
(1.2.2)

Vannak olyan tagok is melyek két elektron koordinátájától függenek

$$\hat{H}_2 = \sum_{i} \sum_{\langle j} \frac{e^2}{r_{ij}} = \sum_{i} \sum_{j} \hat{h}(i, j)$$
 (1.2.3)

Az így felépített Schrödinger egyenletet a hidrogén molekulaionnál nagyobb molekulánál zárt analitikus formában nem lehet megoldani. A numerikus megoldásnak a számítógépek teljesítőképessége szab határt, ezért a kvantumkémia módszerei a hullámfüggvények változók szerinti szétválasztásán alapulnak, melyek valamilyen közelítéssel járnak. Arra kell törekedni, hogy ezek a közelítések ne zavarják meg a fizikai képet, de a számításokat egyszerűsítsék.

1.2.1 A nem-relativisztikus kvantummechanika

A Schrödinger-egyenlet már önmagában is tartalmaz egy komoly elhanyagolást, a relativisztikus effektusok elhagyását. Ilyen relativisztikus effektus a spin-pálya csatolás, mely az elektronok spinmomentumának és pályamenti mozgásából adódó mágneses momentumának a kölcsönhatásából származik. A nem-relativisztikus elméletben a spin-pálya csatolás bevezetését a tapasztalat teszi szükségessé, a spektrumvonalak felhasadását, az elmélet által jósolt degenerációtól való eltérést csak így lehet értelmezni.

A hullámfüggvénynek több változót kell tartalmaznia, a térbeli koordináták mellett a spinkoordinátákat is. Ahhoz, hogy a Ψ spinpálya függvényt szét tudjuk választani egy pálya és egy spinfüggvény szorzatára, az szükséges, hogy a relativisztikus egyenlet Hamilton-operátorában a spinoperátort el tudjuk különíteni a nem relativisztikus résztől. Ezt legegyszerűbben úgy tehetjük meg, ha minden $\hat{L} \cdot \hat{S}$ (impulzusmomentum operátor \times spinoperátor) alakú operátort elhanyagolunk. Ekkor jutunk a nem-relativisztikus egyenletekhez, és kapjuk a következőket:

- A spinpálya függvény szétesik egy pálya és egy spin függvény szorzatára.
- A spintől az energia nem függ, a spin és a pályamomentumok egymástól teljesen függetlenek, spin- pálya csatolás nincs.

A relativisztikus effektusokat, melyek nagyobb rendszámú elemeknél jelentősek, a nemrelativisztikus elmélethez illesztett egyszerű összefüggésekkel veszik figyelembe.

1.2.2 A Born-Oppenheimer tétel

A kvantummechanika fontos közelítése a Born-Oppenheimer tétel, melynek lényege a mag- és az elektronmozgás szétválasztása. Az elektronok tömege a magok tömegéhez képest elhanyagolható, így a két részecsketípus sebessége jelentősen különbözik, ami lehetővé teszi szeparálásukat.

A rendszer Hamilton operátora (amiben $\hat{H}_e = \hat{T}_e + \hat{V}_{ee} + \hat{V}_{ne}$) az elektronok és a magok Hamilton operátorainak összege, így a parciális differenciálegyenlet változói szétválaszthatók, a két egyenlet külön-külön megoldható.

$$\hat{H}_e \Psi_e = E_e \Psi_e$$
 az elektronmozgás Schrödinger-egyenlete. (1.2.4)

$$\hat{T}_n \Psi_n = E_n \Psi_n$$
 ebben csak a magok kinetikus energiája szerepel (1.2.5)

a magmozgás Schrödinger egyenlete:

$$(\hat{T} + E_e)\Psi_n = E\Psi_n \tag{1.2.6}$$

Az E_e=E_e(1,2,...N) adott, rögzített magkonfigurációnál jelenti az elektronenergiát.

A magmozgást leíró egyenletből (1.2.5) következik, hogy E_n a magmozgás potenciális energiája. A különböző magkonfigurációkhoz tartozó elektronenergiák a *potenciális-energia hiperfelület* egy-egy pontját jelentik. E felület kritikus pontjai igen nagy jelentőséggel bírnak. A felület minimumai jelentik az adott molekula stabilis állapotait, vagyis az izomereket, az elsőrendű nyeregpontok pedig az átmeneti állapotokat.

A potenciálfelület a koordináták szerinti első és második differenciálhányadosokkal jellemezhető. Az első parciális deriváltak egy vektor elemeiként értelmezhetők, ezt nevezzük *gradiens vektor*nak, melynek egyes elemei az illető atomra ható erőkomponenseket képviselik. A második deriváltak mátrixba rendezhetők, ezt a 3nx3n-es mátrixot nevezzük *Hess-mátrixnak* vagy *erőállandó mátrix*nak.

A sokváltozós potenciálfelületen a Hess-mátrix sajátértékei döntik el a kérdéses pont jellegét. Ha minden sajátérték pozitív, a sokdimenziós felület lokális minimumában vagyunk, ha közülük egy, kettő, stb. negatív akkor első-, másod-, stb. n–rendű nyeregpontról beszélünk. A molekulák rezgési spektroszkópiai szempontból értékes adatait a lokális minimumnál számítjuk. Az elsőrendű nyeregpontoknak a minimumokhoz viszonyított energiáit azonosíthatjuk a reakciók aktiválási energiáival. Értelemszerűen ez a pont két minimumot köt össze, melyek megkereshetők, ha mindkét irányba elindulunk a legmeredekebb lejtőn, ezáltal megadva egy-egy reakció lehetséges útját. Különböző elektronállapotokhoz különböző hiperfelületek tartoznak, melyek között az átmenet az elektronok gerjesztésével valósulhat meg.

A fent tárgyalt sztatikus modell nem megfelelő, mivel a magok rezgését és forgását teljesen elhanyagolja. A potenciálfelületet kvantumkémiai számításokból kapjuk, de a magmozgásokat folytonosaknak tekintjük. Megbízhatóbb eredményt érünk el, ha olyan módszerrel dolgozunk, melyben figyelembe vesszük a rezgési állapotokat, méghozzá úgy, hogy a potenciálminimumokhoz parabolát illesztünk. Ez az ún. *harmonikus közelítés*, mely elég jó becslést ad az energiaminimumok környezetében, azaz a kis rezgési kvantumszámú állapotokban (v=0, v=1).

A valódi Born-Oppenheimer modellben figyelembe kell vennünk az atommagok kinetikus energiáját is. Ha megoldjuk a magmozgás Schrödinger egyenletét (1.2.4), akkor megkapjuk a magok rezgő- és forgómozgását leíró hullámfüggvényt, Ψ_N -t, valamint a rendszer teljes E energiáját. Ekkor a mikrorendszer állapotát a $\Psi_e\Psi_N$ szorzathullámfüggvény írja le, és E

jellemzi. Az E-r diagramot *energia-hiperfelületnek* nevezzük, és a potenciálfelületnek csak azon pontjai értelmezhetőek rajta, amelyek megoldásai az 1.2.7 egyenletnek.

$$\hat{H}\Psi_{e}\Psi_{n} = E\Psi_{e}\Psi_{n} \tag{1.2.7}$$

Mivel a rezgések és a forgások kvantáltak, a potenciálfelület stabilis tartományai mentén diszkrét pontokat, illetve a rezgési amplitúdó bejelölésével diszkrét szakaszokat kapunk, melyek mutatják a molekula lehetséges rezgőmozgását az adott állapotban.

1.2.3 Az egyelektron módszer

A következő lépésben az elektronok koordinátáitól függő hullámfüggvényt egyelektronos hullámfüggvények szorzataként írjuk fel, ezek a függvények csak egy-egy elektron koordinátáitól függenek.

$$\Psi(1,2,...n) = \psi_1(1)\psi_2(2)...\psi_n(n)$$

Ez a hullámfüggvény azonban nem tesz eleget a Pauli-elvnek, miszerint a rendszert leíró hullámfüggvénynek két elektron felcserélésére nézve antiszimmetrikusnak kell lennie. Ezen a gondon úgy lehetünk úrrá, ha determináns alakú hullámfüggvényt, ún. Slater-determinánst alkalmazunk:

$$\Phi = \frac{1}{\sqrt{n!}} \begin{vmatrix} \varphi_{1}(1) \dots & \varphi_{1}(n) \\ \vdots & \vdots & \vdots \\ \varphi_{n}(1) \dots & \varphi_{n}(n) \end{vmatrix}$$
(1.2.8)

Itt $\varphi_i(j)$ a j-edik elektron állapotát leíró i-edik egyelektron hullámfüggvény.

Ezt nyugodtan megtehetjük, mivel a determináns kifejtése tulajdonképpen az egyes elemeinek (az egyelektron hullámfüggvényeknek) a lineárkombinációja, és tudjuk, hogy hullámfüggvények lineárkombinációja is hullámfüggvény. Mivel a Pauli-elv a teljes hullámfüggvényre vonatkozik, nem hagyhatjuk figyelmen kívül a spint, így a determináns hullámfüggvény spinpályafüggvényekből tevődik össze.

Ahhoz, hogy a hullámfüggvényt szorzat alakban írhassuk fel, a Hamilton operátort egyelektronos operátorok összegeként kell felírnunk. Ebből a szempontból közelítve a Hamilton operátort felbonthatjuk nulla, egy, illetve két elektrontól függő részekre, melyek a következők:

A Hamilton operátornak csak a magok koordinátájától függő része:

$$\hat{H}_o = e^2 \sum_{\alpha} \sum_{\beta} \frac{Z_{\alpha} Z_{\beta}}{R_{\alpha\beta}} \tag{1.2.9}$$

Mivel az atommagok relatíve mozdulatlanok, a fenti kifejezés konstansnak tekinthető.

A Hamilton operátornak vannak olyan részei, amelynek tagjai egyetlen elektron koordinátáitól függenek:

$$\hat{H}_{1} = \sum_{i=1}^{n} \left(-\frac{h^{2}}{2m} \nabla_{i}^{2} - \sum_{\alpha} \frac{e^{2} Z_{\alpha}}{r_{\alpha i}} \right) = \sum_{i=1}^{n} \hat{h}_{1}(i)$$
(1.2.10)

illetve két elektron koordinátájától függenek :

$$\hat{H}_2 = \sum_{i} \sum_{j} \frac{e^2}{r_{ij}} = \sum_{i} \sum_{j} \hat{h}_2(i, j)$$
 (1.2.11)

A \hat{H}_2 biztosítja, hogy a teljes Hamilton operátort ne egyelektronos operátorok összegeként írjuk fel. Ezt a tagot elhanyagolva egy hidrogénszerű atom modelljét kapjuk.

1.2.4 A független részecske modell

Minden egyes elektron a többi által létrehozott térben mozog, de formálisan az összes többitől függetlenül, így a reá ható potenciál csak az illető elektron koordinátáitól függ, tehát egy elektronos.

$$\sum_{i} \sum_{\langle j} \frac{e^2}{r_{ij}} \to \sum_{i}^{n} V_i^{eff}(i) \tag{1.2.12}$$

Ilymódon sikerült szétbontanunk a Hamilton operátort egyelektronos operátorok összegére:

$$\widehat{H} \cong \sum_{i=1}^{n} (\widehat{h}(i) + V_i^{eff}(i)) = \sum_{i=1}^{n} \widehat{F}(i)$$
(1.2.13)

$$\hat{F}(i)$$
 – a Fock operátor.

Ha egyetlen elektront a magok erőterébe helyezve megoldjuk a Schrödinger egyenletet, eredményül egyértelműen egymáshoz rendelhető molekulapálya és sajátérték sorozatot kapunk. Az elektronokat a lehető legalacsonyabb energiájú pályára párosával és ellentétes spinnel elhelyezve felépíthető a molekula elektronszerkezete, és az elektronok közti taszítási potenciál számítható.

1.3 Hartree-Fock modellek

1.3.1 A Hartree-Fock módszer

Az egyelektronos közelítésből kiindulva a (1.2.9)-(1.2.11) egyenleteket felhasználva felírhatjuk az energia várható értékét:

$$E = \left\langle \Phi \middle| \hat{H} \Phi \right\rangle = \left\langle \Phi \middle| \hat{H}_0 \Phi \right\rangle + \left\langle \Phi \middle| \sum_{i=1}^n \hat{h}_1(i) \Phi \right\rangle + \left\langle \Phi \middle| \sum_{i=1}^n \sum_{j=1}^n \hat{h}_2(ij) \Phi \right\rangle$$
(1.3.1)

ahol Φ a keresett Slater determináns:

Keressük az energia minimumához tartozó φ_i függvényeket. Ez variációs probléma. Kikötjük, hogy a φ_i -k ortonolmáltak. Bevezetve az átlagos elektrontaszítási potenciált az un. Hartree-Fock egyenlethez jutunk:

$$\hat{F}(i)\varphi_i = \sum_j \varepsilon_{ij}\varphi_j \qquad \mathbf{i} = \mathbf{1}, \mathbf{2}, ..., \mathbf{n}$$
(1.3.2)

ahol n az elektronok száma és $\hat{F}(i)$ a Fock operátor.

Írhatjuk az egyenletet mátrix alakban is

$$\hat{F}\varphi = \varphi\varepsilon = \hat{F}(\varphi_1\varphi_2...\varphi_n) = (\varphi_1\varphi_2...\varphi_n) \begin{pmatrix} \varepsilon_{12} & \varepsilon_{12} & ... & \varepsilon_{1n} \\ \varepsilon_{21} & ... & & \\ \vdots & & & \\ \varepsilon_{n1} & ... & & \varepsilon_{nn} \end{pmatrix}$$
(1.3.3)

Ahol φ sorvektor, ε (epszilon) négyzetes mátrix, mely szimmetrikus, így hasonlósági transzformációval diagonizálható, Q legyen a megfelelő transzformáló mátrix:

$$\hat{F}\varphi Q = \varphi Q Q^{-1} \varepsilon Q = \hat{F}\varphi' = \varphi' \varepsilon' \tag{1.3.4}$$

Ennek komponensei:

$$\hat{F}(i)\varphi_i' = \varepsilon_i'\varphi_i' \qquad \qquad \mathbf{i} = \mathbf{1}, \mathbf{2}, ..., \mathbf{n}$$
 (1.3.5)

Ezt az egyenletet kanonikus Hartree-Fock egyenletnek nevezik.

A Hartree-Fock egyenlet megoldása tipikus iterációs probléma. \hat{F} -ben szerepelnek a kiszámítandó egyelektron függvények. Felveszünk valahogy egy kezdeti egyelektron függvény sorozatot, megszerkesztjük vele a Fock operátort, majd megoldva vele a HF egyenleteket új függvénysorozatot kapunk. Ezzel új operátorhoz jutunk, majd folytatjuk az eljárást egészen a konvergenciáig. Ha elérjük, azt mondjuk, hogy a rendszer önkonzisztens. A módszer neve SCF (Self Consistent Field). Megoldva a HF egyelektronos egyenleteket, megkapjuk a keresett determináns hullámfüggvényt, valamint a rendszer energiáját.

Bár a φ_i függvényeknek és a hozzájuk tartozó ε sajátértékeknek nincs fizikai értelmük, mégis rendelhetünk hozzájuk szemléletes képet, nevezetesen a *molekulapálya modellt*. A φ_i írja le az i-edik elektron állapotát, ε_i pedig az energiáját. Ezeket az egyelektron függvényeket pályáknak nevezzük, az ε_i mennyiségeket pedig pályaenergiának.

Egyszerűsödik a HF módszer, ha a φ_i függvényekre megszorításokat vezetünk be. Az egyelektronos pályákat célszerű úgy választani, hogy a molekula pontcsoportjának valamely irreducibilis reprezentációjának a bázisát képezzék. Ezeket a pályákat szimmetriapályáknak nevezzük. Szokásos megszorítás az, hogy Ψ_i pályára két elektron ültethető az egyik α , a másik β spinnel. Amíg tehát a megszorítás nélküli HF pályák mind különböző energiájúak, addig a

megszorításos HF (RHF) módszer kétszeresen betöltött térbeli pályákat vesz figyelembe. Amennyiben minden egyes pálya kétszeresen betöltött, zárt héjú rendszerekről beszélünk, ha léteznek félig betöltött pályák is, nyílthéjú a rendszerünk. Zárthéjú rendszereknél az energiakifejezés némiképp módosul:

$$E = E_0 + \sum_{i=1}^{n/2} \varepsilon_i + \left\langle \psi_i(i) \middle| \hat{h}_1 \psi_i(i) \right\rangle$$
 (1.3.6)

ugyanis minden ψ_i pályafüggvény kétszer szerepel a determinánsban, egyszer α , egyszer pedig β spinnel. Azok az integrálok, melyekben ellentétes spinű függvények vannak, a spinfüggvények ortogonalitása miatt kiesnek.

1.3.2 A Hartree-Fock-Roothan módszer

A Hartree-Fock egyenletek numerikus megoldása az atomok esetében a gömbszimmetria miatt viszonylag egyszerű, mivel a háromváltozós függvények szögfüggő részét változtatás nélkül átvehetjük a H atom megoldásából, és csak az r függő részét kell variálnunk.

A molekulák alacsonyabb szimmetriája és sokkal bonyolultabb térbeli alakja ezt a numerikus megoldást használhatatlanná teszi. Roothan eljárása szerint a molekulapályákat ismert, 3 dimenziós atompályafüggvények lineális kombinációjaként írjuk fel (LCA-MO):

$$\psi_{i} = \sum c_{i\mu} \chi_{\mu} \tag{1.3.7}$$

$$\chi_{\mu} \text{ bázis függvény.}$$

Feladatunk a megfelelő számú és minőségű bázisfüggvény kiválasztása. Az RHF modellből kiindulva legyen egy zárthéjú rendszerünk 2n elektronnal és n kétszeresen betöltött pályával. Ha behelyettesítjük (1.3.7)-et a kanonikus HF egyenletbe (1.3.5) a következőt kapjuk:

$$\hat{F}(i) \sum_{\mu=1}^{m} c_{i\mu} \chi_{\mu} = \varepsilon_i \sum_{\mu=1}^{m} c_{i\mu} \chi_{\mu}$$
(1.3.8)

Ha az egyenletet balról megszorozzuk χ_{ν} -vel és képezzük a megfelelő skalárszorzatot, a következő eredményre jutunk:

$$\sum_{\mu=1}^{m} F_{\nu\mu} c_{i\mu} = \varepsilon_{i} \sum_{\mu=1}^{m} S_{\nu\mu} c_{i\mu}$$

$$\text{ahol } F_{\nu\mu} = \left\langle \chi_{\nu} \middle| \hat{F}(i) \chi_{\mu} \right\rangle \text{ \'es } S_{\nu\mu} = \left\langle \chi_{\nu} \middle| \chi_{\mu} \right\rangle$$

$$(1.3.9)$$

A (1.3.9)-es egyenlet mátrixformában is irható:

$$\mathbf{F}\mathbf{c}_{i} = \varepsilon_{i} \mathbf{S}\mathbf{c}_{i} \tag{1.3.10}$$

Az F és S (m×m) -es mátrixok, c_i pedig m elemű oszlopvektor. Az n darab egyenletet egyetlen mátrixegyenlet segítségével is leírhatjuk, ha c_i vektorokat egymás mellé téve mátrixot képezünk:

$$FC=SC\varepsilon$$
 (1.3.11)

Választunk egy kiindulási $c^o_{i\mu}$ sorozatot, melynek segítségével egy kiindulási F^0 mátrixot képezünk ezután megoldva a (1.3.11) Hartree-Fock-Roothan-egyenleteket új $c^1_{i\mu}$ -ket számítunk, az eljárást addig folytatjuk míg az előirt SCF kritériumot el nem érjük. A módszer neve **Hartree-Fock-Roothan-(HFR)**-eljárás.

 χ_{μ} bázisfüggvényként használhatunk Slater típusú (STO), Ae^{-kr} alakú pályákat és Gauss típusú (GTO) Ae^{-kx^2} függvényeket. A Slater típusú pályák abban különböznek a hidrogénszerű függvényektől, hogy nincs bennük csomógömb, de a függvény lefutása nagyon hasonló. A Gauss típusú pályák nem adják vissza a hidrogénszerű függvények éles csúcsát az atommag helyén, és az exponenciális is túl hirtelen lefutású, viszont sokkal gyorsabb velük a számítás. Ezért gyakori módszer, hogy az STO-kat GTO-k lineáris kombinációjával állítják elő:

$$\chi_{\text{STO}} = \sum_{i=1}^{r} d_{i} g_{i}$$
 (1.3.12)

A fenti kifejezésben a g_i függvényeket primitív Gauss függvényeknek, az így definiált bázist (χ_{STO}) pedig kontrahált bázisnak nevezik.

A bázisokat gyakran egészítik ki polarizációs és diffúz függvényekkel. A polarizációs függvények a bázisfüggvények deriváltjait szimulálják. A derivált az atom helyi környezetéről ad információt, ez a módszer helyettesíti az atomok közé elhelyezett bázisfüggvényeket.

A polarizált függvényeket vagy a bázis neve után tett * -gal vagy zárójelben megfelelő betűkkel jelöljük. Például a 6-31G* azt jelenti, hogy a molekula minden atomján 6-31G bázist használunk, és a nem hidrogén atomokon egy sorozat (6 db) d típusú függvényt, a 6-31G** esetében az előző bázist még kiegészítjük a H atomokon 3-3 p-típusú függvénnyel is.

A diffúz függvények kisebb impulzusmomentum-kvantumszámú és kis pályaexponensű függvényeket jelentenek, és gyengén kölcsönható rendszerek, valamint anionok vizsgálatánál használjuk. Jelölésük: + (ha csak a nehéz atomokon alkalmazzuk) vagy ++ (ha minden atomra teszünk belőlük), például 6-31+G**.

Az elektroneloszlást nagyon erősen befolyásolja a bázisba felvett atompályák exponense. Ha eltérő molekulákban azonos exponensű atompályákat használunk, akkor merevséget viszünk a rendszerbe. A bázispályák számának megduplázásával (double zeta) vagy triplázásával (triple zeta) elérjük, hogy a számítás során hol a diffúzabb, hol a kompaktabb komponens lesz az atom környezetétől függően jobban betöltött. A javulás a legbelső pályák esetében nem nagy, de a vegyérték pályák esetében jelentős. Ezért olyan bázist is használhatunk, ahol csak a vegyértékhéj pályáit duplázzuk vagy triplázzuk meg (valence split DZ, TZ).

A bázis növelése során energia határértékhez tartunk, ezt hívják Hartree-Fock limitnek, mely az egyetlen elektronkonfigurációval végezhető legjobb számítást jelenti. Ha nagyobb bázist alkalmazunk, a meghatározandó koefficiensek száma nő, és egy bizonyos határ felett nem tudjuk megoldani az egyenletet.

1.3.3 A post-Hartree-Fock módszerek

A Hartree-Fock módszer fő hiányossága, hogy az elektronok mozgása közötti korrelációt nem írhatjuk le pontosan. Egy elméleti modell két irányban javítható. Ha a kiindulási pont kis bázison végzett Hartree-Fock számítás, akkor a modell finomítása történhet a bázis javításával, az elektron korreláció figyelembevételével, vagy mindkettővel egyszerre.

Gyakorlati szempontból mind a nagyon nagy bázis, mind a teljes konfigurációs hatás figyelembevétele kivitelezhetetlen. Általában korlátozott bázison az elektronkorreláció korlátozott mértékű figyelembevételével dolgozunk, és a fő feladat olyan optimum megtalálása, ahol a modell a lehető legkisebb számítási munka mellett a kívánt pontossággal leírja a molekula jellemzőit.

A Schrödinger egyenletet nem lehet egyetlen elektronkonfigurációval, azaz a pályák és az elektronok egyértelmű egymáshoz rendelésével pontosan kifejezni, és ezen a bázis növelése sem segít, csak olyan hullámfüggvény, amely több elektronkonfigurációt képvisel. Ekkor a rendszer hullámfüggvényét a különböző elektronkonfigurációk lineáris kombinációjából állítjuk elő. Teljes konfigurációs kölcsönhatáson (angolul full CI) az összes elképzelhető elektronkonfiguráció figyelembevételét értjük. Ez az adott bázison elvégezhető legpontosabb számítás, végtelen nagy bázis esetén ez a Schrödinger egyenlet megoldása nem relativisztikus esetben.

1.3.1 ábra. A kvantumkémiai számítások az egzakt relativisztikus kvantummechanikától a ma alkalmazott módszerekig

A másik irány a nyitás a nagy rendszerek felé. Mivel a HF számítások leginkább időigényes része a fellépő kételektron integrálok kiszámítása, kézenfekvő megoldás a kevésbé fontos integrálok elhanyagolása, a megmaradók empirikus formulákkal való közelítése. Így jutunk el az ab initio számításokból az ún. szemiempirikus módszerekig, melyek alkalmazásával több száz atomos rendszerek tanulmányozhatók.

A még több atomot tartalmazó molekuláris módszerek számítógépi modellezésére létezik egy alapvetően más megközelítés is. Az atomokat tömegpontoknak tekintve, a kötéseket tömegpontok közötti rugókkal helyettesítve, az így nyert rendszert klasszikus mechanikai módszerekkel számítva molekulamechanikai eljárást alkalmaztunk, mely eljárások viszonylag használható eredményre vezetnek több ezer atomos rendszerek konformációs és egyéb kérdéseinek megválaszolásában.

1.4 Az elektronsűrűség elmélete

A Hohenberg-Kohn tétel lehetővé teszi, hogy a hullámfüggvényen alapuló módszereket olyan módszerrel váltsuk fel, melynek alapja az elektronsűrűség.

Az elektronsűrűség megmutatja, hogy a tér egyes tartományaiban milyen valószínűséggel találunk elektronokat. Az elektronsűrűség 3 változós térbeli függvény $\rho(r)$, melyet ha a három változó szerint az egész térre integrálunk, az elektronok számát kapjuk:

$$\int \rho(r)dr = n \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \Psi^{*}(1,2,....n) \Psi(1,2,....n) dr_{1} dr_{2} \dots dr_{n}$$
(1.4.1)

Valamely molekula elektronsűrűség eloszlása attól függ, hogy az elektronokra milyen V(r) külső potenciál hat. Az adott elektronsűrűség a külső potenciált egyértelműen meghatározza. Ezt a megállapítást nevezzük az első *Hohenberg-Kohn tétel*nek.

A fenti tétel igen lényeges következménnyel jár: egy kvantummechanikai rendszerben az alapállapot elektronsűrűsége minden megfigyelhető mennyiséget egyértelműen meghatároz.

Az elektronsűrűségre jellemző, hogy mérhető fizikai mennyiség, közvetlen kapcsolatban áll a rendszer energiájával és geometriájával. A háromdimenziós tér függvénye, lehetőség van arra, hogy a molekulán belüli atomi illetve, kötési sajátságok szerint partícionáljuk, és így megkülönböztetjük pl. a molekula reaktív centrumait és egyéb karakterisztikus részeit.

1.4.1 A sűrűségfunkcionál elmélet (DFT)

A sűrűségfunkcionál elmélet fő kérdése az, hogy adott részecskeszám mellett hogyan számítható az alapállapot elektronsűrűsége, ha az elektronra ható külső potenciált ismerjük.

A molekulát úgy építjük fel, hogy n elektronból álló felhőt képezünk, és ebbe tesszük bele a magokat. A magok hatását az elektrongázra külső potenciálként tekintjük, és e szerint csoportosítjuk a rendszer egyes kölcsönhatásait.

Az energia várható értéke:

$$E[\rho] = T[\rho] + V_{ee}[\rho] + V_{ne}[\rho] \tag{1.4.2}$$

Az (1.4.2) egyenletben szereplő $T[\rho]$ a kinetikus energia funkcionál, V_{ne} a külső potenciál energia járuléka, míg V_{ee} az elektronok potenciális energiáját veszi figyelembe. A V_{ne} kifejezhető az elektronsűrűség segítségével. Ezt behelyettesítve a fenti egyenletbe az energia funkcionál a következő alakban írható:

$$E[\rho] = F[\rho] + \int \rho(r)v(r)dr \tag{1.4.3}$$

Az $F[\rho]$ két részből áll, a kinetikus energia funkcionálból valamint az elektrontaszítási funkcionálból:

$$F[\rho] = T[\rho] + V_{\rho\rho}[\rho] \tag{1.4.4}$$

az un. Hohenberg-Kohn funkcionál, adott részecske szám mellett tekintet nélkül a molekula típusára mindig ugyanaz, mivel a külső potenciáltól független.

Az elektronsűrűség meghatározásának lehetőségét a *második Hohenberg-Kohn tétel* nyújtja. E szerint létezik egy $E_{HK}[\rho]$ energiafunkcionál, melyre igaz az, hogy ha $\rho_0(r)$ az adott rendszer alapállapotának sűrűsége, és E_0 az alapállapot energiája, akkor $E[\rho] > E_0$ bármely $\rho \neq \rho_0$ "próba" sűrűségre, és $E[\rho_0] = E_0$.

Keressük tehát az energiafunkcionál minimumát.

$$\delta \left| E_{HK}[\rho] - \mu \left(\int \rho(r) dr - n \right) \right| = 0 \tag{1.4.5}$$

melyből a következő egyenletek adódnak:

$$\frac{\delta E_{HK}[\rho]}{\delta \rho(r)} = \mu \text{ , illetve } \frac{\delta F[\rho]}{\delta \rho(r)} + v(r) = \mu$$
 (1.4.6)

Sajnos, az $E_{HK}[\rho]$ -ban szereplő $F[\rho]$ ismeretlen. A probléma megoldására Kohn és Sham fejlesztett ki eljárást, melynek lényege, hogy a feladat megoldása során olyan referenciarendszerrel dolgozunk, melyben nincsenek az elektronok közti kölcsönhatások, és melynek az alapállapotához tartozó sűrűsége éppen olyan, mint a kölcsönható rendszeré. Az ilyen rendszer Schrödinger egyenlete szétesik egyelektronos egyenletekre.

A kérdés már csak az, hogy hogyan lehet megválasztani az egy elektronos függvényeket, hogy az energia várható értéke minimális legyen. E kérdés megválaszolásban a *Kohn-Sham egyenlet* segít:

$$\left[-\frac{\hbar^2}{2m} \Delta + v_{eff}(r) \right] \varphi_i = \varepsilon_i \varphi_i \tag{1.4.7}$$

Ahol v_{eff} :

$$v_{eff}(r) = v(r) + \frac{\delta J[\rho]}{\delta \rho(r)} + \frac{\delta E_{xc}[\rho]}{\delta \rho(r)}$$
(1.4.8)

 $J[\rho]$ jelenti a V_{ee} -ből a klasszikus Coulomb tagot, E_{xc} a kicserélődési–korrelációs funkcionál, v(r) pedig a rendszerre ható külső potenciál.

Az 1.4.7 számú egyenlet tökéletes formai hasonlóságot mutat a HF egyenlettel. Azt is mondhatjuk, hogy a Hartree-Fock elmélet a sűrűségfunkcionál elmélet egy olyan speciális esete, melyben az E_{xc}-ből a korrelációs tagokat elhagyjuk, a kicserélődési tagot pedig a kicserélődési integrállal helyettesítjük.

A (1.4.7) egyenletet az SCF módszerek szerint kezeljük, tehát iteratív úton jutunk az optimális Kohn-Sham-pályákhoz. A sűrűség ismeretében a rendszer energiája a következőképpen fejezhető ki:

$$E[\rho] = \sum_{i} \left\langle \varphi_{i} \middle| \frac{-h^{2}}{2m} \nabla^{2} \varphi_{i} \right\rangle + \int \rho(r) v(r) dr + \int \rho(r) \frac{1}{r_{ii}} dr + E_{xc}[\rho]$$
 (1.4.9)

A fenti kifejezésben az E_{xc} kicserélődési funkcionál ismeretlen. Szétválasztva az E_{xc} funkcionált egy kicserélődési és egy korrelációs részre:

$$E_{rc}[\rho] = E_{r}[\rho] + E_{c}[\rho] \tag{1.4.10}$$

Az $E_x[\rho]$ kicserélődési funkcionál alakját homogén elektrongázra Dirac vezette le, mely formulát az un. lokális sűrűség közelítésben használjuk (local density approximation, LDA):

$$E_x^{LDA} = -\frac{3}{2} \left(\frac{3}{4\pi}\right)^{1/3} \int \rho^{3/4} dr \tag{1.4.11}$$

A korrelációs tag számítására Vosko, Wilk és Nusair dolgozott ki egy sorozat LSD (local spin density) közelítésen alapuló funkcionált (VWN funkcionál).

Ha figyelembe vesszük a funkcionáloknak nemcsak ρ -tól, hanem azok deriváltjaitól ($\nabla \rho$ -tól, $\nabla^2 \rho$ -tól) való függését, az így származtatott formulákat nem lokális, vagy gradienssel korrigált funkcionáloknak nevezzük. Ilyen pl. a Becke által 1988-ban kidolgozott formula:

$$E_x^{B88} = E_x^{LDA} - b \int \frac{\rho^{4/3} x^2}{(1 + 6b \sinh^{-1} x)} dr$$
 (1.4.12)

melyben b empirikusan illesztett paraméter, és x tartalmazza az elektronsűrűség gradiensét.

A hibrid módszerekben az E_{xc} , a HF kicserélődési és a DFT kicserélődési-korrelációs funkcionálok valamilyen kombinációját alkalmazzák. A Becke hibridfunkcionál módszereket a következő kifejezéssel jellemezhetjük:

$$A*E_{X}^{Slater}+(1-A)*E_{X}^{HF}+B*\Delta E_{X}^{Becke}+E_{C}^{VWN}+C*\Delta E_{C}^{non-local} \tag{1.4.13}$$

ahol: $A*E_X^{Slater}$ a Slater kicserélődési tag, $(1-A)*E_X^{HF}$ a Hartree-Fock kicserélődési tag, $B*\Delta E_X^{Becke}$ a Becke kicserélődési tag, E_C^{VWN} a korrelációs tag, $C*\Delta E_C^{non-local}$ a nem lokális korrelációs tag, mely tartalmaz lokális és nem lokális korrelációs tagokat, melyeket Perdew határozott meg.

Az 1.4.13 kifejezésben szereplő (A, B, C) konstansok értékét Becke határozta meg kísérleti értékek alapján. (A=0,80, B=0,72, C=0,72)

1.5 Az alkalmazott módszerek

Munkám során a 94-es és 98-as Gaussian programcsomag Becke3P86/6-311G** [3,4] DFT módszerét használtam az általam vizsgált N-tartalmú öt és hattagú heterociklusos molekulákkal kapcsolatos kvantumkémiai számítások elvégzésére. Ez szintén tartalmazza a Slater, a HF, és a Becke kicserélődési tagot, valamint lokális és nem lokális korrelációs függvényt. A Becke által meghatározott konstansokkal ebben a módszerben közvetve kísérleti értékeket is beviszünk a számításokba.

Az általam vizsgált fenotiazin származékok színképeinek értelmezésének elősegítésére HF/6-31G** számításokat alkalmaztam.

1.6 Normálkoordináta-analízis

1.6.1 A molekularezgések kvantummechanikája

Az előző fejezetekben a kvantumkémia fő feladatának megoldásához a Hamilton operátor potenciális-energia tagját szedtük szét elemeire. A kérdést azonban más oldalról is megközelíthetjük, ha az időtől független Schrödinger egyenletet rezgő mozgásokra szeretnénk megoldani. Ehhez szükség van a potenciális energia konkrét alakjára. Ezért azt a molekula egyensúlyi helyzete körül Taylor-sorba fejtjük (kisamplitúdójú rezgések).

A nullad- és az elsőrendű tagok értéke zérus, mivel az egyensúlyi helyzet a potenciális energia zérus pontja, és ebben a helyzetben a rezgést fenntartó erők összege zérus (a potenciális energia első, koordináták szerinti deriváltja adja meg az erőt). Mivel az egyensúlyi helyzet az origó, a tőle való kitérés megegyezik a koordinátával (δq=q).

Harmonikus közelítésről beszélünk, ha csak a másodrendű tagokat vesszük figyelembe, egyébként anharmonikus a kisamplitúdójú rezgés. Ekkor a potenciális energia:

$$V = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{\partial^{2} V}{\partial q_{j} \partial q_{i}} \right)_{0} q_{i} q_{j}$$
(1.6.1)

A képletben szereplő együtthatók (a potenciális energia koordináták szerinti második deriváltjai) az f_{ii} erőállandók.

A Schrödinger egyenlet megoldását olyan koordináták (Q) rendszerében keressük, melyekben az szétesik egyetlen koordinátától függő differenciálegyenletekre. Ez akkor következik be, ha a potenciális energia felírható tiszta kvadratikus alakban:

$$2V = \sum_{i=1}^{n} \lambda_{i} Q_{i}^{2} = \underline{\widetilde{Q}} \underline{\Lambda} \underline{Q}$$
(1.6.2)

 λ_i –k állandók, $\underline{\Lambda}$ ezek diagonális mátrixa.

Ily módon a megoldandó differenciálegyenletek a következő alakot öltik:

$$-\frac{\hbar^2}{2}\frac{\partial^2 \Psi_i}{\partial Q_i^2} + \frac{1}{2}\lambda_i Q_i^2 \Psi_i = E_i \Psi_i \tag{1.6.3}$$

Megoldásként kapjuk az energia sajátértékeket:

$$E_{i,v_i} = \hbar \sqrt{\lambda_i} (v_i + \frac{1}{2})$$
(1.6.4)

valamint a sajátfüggvényeket:

$$\Psi_{i,\nu_i} = H_{\nu_i} \left(\frac{\sqrt{\lambda_i}}{\hbar} Q_i \right) \exp\left(-\frac{1}{2} \lambda_i Q_i^2 \right)$$
(1.6.5)

 v_i : az iedik rezgési módhoz (normálkoordinátához) tartozó rezgési kvantumszám, H_{vi} pedig v_i –ed rendű Hermite polinom.

A λ_i állandók pedig a rezgések klasszikus mechanikai leírását figyelembe véve:

$$\lambda_{i} = 4\pi^{2} v_{i}^{2} \tag{1.6.6}$$

v_i a rezgés sajátfrekvenciája.

1.6.2 Belső koordináták

A molekulák rezgő mozgását nem inerciarendszerben, hanem a molekula tömegközéppontjához kötött *belső koordináta* rendszerben tárgyaljuk. Ezek a koordináták a molekula geometriai elemeinek a változásai (*S koordináták*), ezért sokkal jobban tükrözik a molekula geometriai felépítését, mint a Descartes koordináták.

Az S koordinátáknak négy alaptípusa van:

- 1. Kötéshossz-változás (nyújtás)
- 2. Vegyértékszög-változás (síkbeli hajlítás)
- 3. Azimutszög-változás (térbeli hajlítás)
- 4. Torziósszög-változás (csavarás)

A derékszögű kitérés-koordináták áttranszformálhatók S koordinátákba:

$$\underline{\underline{S}} = \underline{\underline{B}} \cdot \underline{\underline{r}}$$

$$(1.6.7)$$

és fordítva:

$$\underline{\underline{r}} = \underline{\underline{A}} \cdot \underline{\underline{S}} \qquad \underline{\underline{A}} \cdot \underline{\underline{B}} = \underline{\underline{E}_r} \qquad \underline{\underline{B}} \cdot \underline{\underline{A}} = \underline{\underline{E}_s}$$

$$(1.6.8)$$

 $\underline{E_S}$, és $\underline{E_r}$ egységmátrixok, az A és B általános (nem négyzetes) mátrixok. A B mátrix elemeit a kvantumkémiai számítások során, vagy más módon kapott geometriai paraméterekből számíthatjuk.

1.6.3 Mozgásegyenlet a belső koordináták terében

A derékszögű koordináták rendszerében a mozgási energia a következőképpen írható fel:

$$2T = \underbrace{\widetilde{r}}_{\underline{M}} \underbrace{\underline{M}}_{\underline{r}}$$
(1.6.9)

ahol - M egy 3N méretű négyzetes diagonális mátrix, elemei az atomok tömegei.

Behelyettesítve az (1.6.8) összefüggést megkapjuk a belső koordinátákban kifejezett mozgási energiát:

$$2T = \underbrace{\widetilde{S}}_{\underline{\underline{A}MA}} \underbrace{\widetilde{S}}_{\underline{\underline{S}}} = \underbrace{\widetilde{S}}_{\underline{\underline{G}}^{-1}} \underbrace{\underline{S}}_{\underline{\underline{S}}}$$
(1.6.10)

melyben a G⁻¹ a kinetikus energia mátrix a belső koordináták terében:

$$\underline{\underline{G}^{-1}} = \underline{\underline{\widetilde{A}}}\underline{\underline{M}}\underline{\underline{A}} \tag{1.6.11}$$

Ugyanitt a potenciális energia a következő alakot ölti:

$$2V = \underline{\widetilde{S}} \underline{F} \underline{S}$$
 (1.6.12)

ahol F – erőállandó mátrix.

A mozgásegyenlet ebben a térben:

$$\frac{\delta}{\delta t} \frac{\delta L}{\delta \dot{S}} - \frac{\delta L}{\delta S} = 0 \tag{1.6.13}$$

Ahol az L Lagrange függvény:

$$L=T-V$$
 (1.6.14)

Ezt behelyettesítve, és figyelembe véve, hogy a kinetikus energia csak a koordináta idő szerinti deriváltjától, a potenciális energia pedig csak a koordinátától függ, a megoldandó differenciálegyenlet mátrix alakban a következő lesz:

$$\underline{\underline{G^{-1}}}\underline{\underline{S}} + \underline{\underline{F}}\underline{S} = 0 \tag{1.6.15}$$

Ennek a homogén másodrendű differenciálegyenlet-rendszernek a megoldását a következő alakban keressük:

$$S = \sum_{0} \exp(j\sqrt{\lambda}t)$$

Így homogén lineáris egyenletrendszerhez jutunk, melynek nem triviális megoldása, ha az S_0 sajátvektor együttható-mátrixának determinánsa zérus:

$$|G^{-1}\lambda - F| = 0 \text{ vagy}$$
 $|GF - \lambda E| = 0$ (1.6.16)

Ennek az egyenletnek a sajátértékei a λ_i mennyiségek, sajátvektorai az $S_{0,i}$ vektorok, G pedig az inverz kinetikus energia mátrix. A molekula normálrezgéseit a λ_i értékek ismeretében a következő egyenletrendszerből lehet meghatározni:

$$\underline{\underline{GFL}} = \underline{\underline{L}\Lambda} \tag{1.6.17}$$

melyben L az S_{0,i} vektorok mátrixa, Λ pedig a sajátértékek diagonális mátrixa.

A normálrezgések frekvenciáját a λ_i sajátértékekből kapjuk meg következő összefüggés alapján:

$$v_i = \frac{1}{2\pi} \sqrt{\lambda_i}$$

1.6.4 A |GF-λE|=0 sajátértékegyenlet megoldása

A |GF-λE|=0 sajátértékegyenlet megoldásához ismernünk kell a G és az F mátrixok elemeit.

A G mátrix elemei viszonylag könnyen meghatározhatóak az 1.6.8 és az 1.6.11 kifejezések alapján, mivel az 1.6.8 -ban szereplő B mátrix elemeit - mint említettük - a molekula geometriai adataiból számíthatjuk.

A rezgési sajátérték-egyenlet megoldására, a rezgési frekvenciák és rezgési módok (rezgésalakok) számítására és átlátható formába hozására számítógépes programok állnak rendelkezésünkre, melyek bemenő adatai mindössze az atomok minősége, a geometriai paraméterek (melyekből az atomi koordináták számolhatók), valamint a belső koordináták definiciója és a kvantumkémiai úton számított erőállandók.

A kvantumkémiai módszerrel számított rezgési erőállandók kissé eltérnek a tényleges erőállandóktól, ezért a velük számított rezgési frekvenciák nem adják vissza pontosan a mért értékeket. A kémiailag azonos vagy hasonló atomokat tartalmazó belső koordináták erőállandóinak számításakor fellépő rendszeres relatív hibák nagyjából azonosak. Ha tehát a számított erőállandó mátrix megfelelő sorait és oszlopait megfelelő szorzó faktor, a skálafaktor négyzetgyökével, beszorozzuk, közelítőleg a helyes frekvenciákat kapjuk. Így a számított erőállandókat a vizsgált vegyület jól hozzárendelt kísérleti frekvenciáira skálázzuk, olyan skálafaktorokat (s_i) számítunk ki, hogy a kísérleti és számított frekvenciák eltérése minimális legyen.

$$F_{ij} = (s_i/s_j)^{1/2} F_{ij,sz\acute{a}m}$$
 (1.6.18)

Az így számított skálafaktorok jó eredménnyel alkalmazhatók más, elsősorban rokon vegyületek hasonló kémiai jellegű belső koordinátáira.

1.6.5 A rezgési módok jellege

A rezgési módok jellegén azt értjük, hogy az adott rezgési módban az egyes belső koordináták (szimmetriakoordináták) milyen súllyal vesznek részt. Ezt az energiának az adott

koordinátára eső része határozza meg. A normál rezgések ennek megfelelően kétféle módon jellemezhetők:

- (a) a rezgésalakok leírásával (geometriai ábrázolásával)
- (b) a rezgési energia belső koordináták köti eloszlásának megadásával.

A normál koordináta analízis célja az, hogy megállapítsuk, hogy az egyes rezgési módokban a molekula egyes alkotórészeinek mozgása, azaz a belső koordináták, milyen súllyal vesznek részt. Ennek egyik egyszerű lehetősége azt megnézni, hogy az adott rezgési módhoz tartozó sajátvektorban (az L mátrix megfelelő oszlopában), az egyes belső koordinátákhoz tartozó komponenseket. A gyakorlat azonban azt mutatatta, hogy a belső koordináták valódi súlyát a rezgési energiában való súlyuk adja meg. A Qi normálrezgés energiájának az Sj belső koordinátára eső része:

$$\frac{P_{ij}}{\sum_{j=1}^{n} L_{ji}^{-1} L_{ij}} = \frac{L_{ji}^{-1} L_{ij}}{\sum_{j=1}^{n} L_{ji}^{-1} L_{ij}}$$
(1.6.19)

ahol P_{ij} az ún. potenciális energiaeloszlási mátrix (PED) egy eleme, L_{ij}^{-1} és L_{ij} pedig annak az L^{-1} mátrixnak és inverzének az eleme, amely kapcsolatot teremt a normálkoordináták és a belső koordináták között. A PED mátrix a következőképpen határozható meg:

$$\underline{\underline{P}} = \underline{\underline{\widetilde{L}}}^{-1} \otimes \underline{\underline{L}}^{-1}$$
(1.6.20)

Ha vizsgáljuk az egyes rezgési módok PED-jét, egyes belső koordináta típusok dominálnak. Ilyen esetekben *csoportrezgésekről* beszélünk. Ha adott típusú nyújtások dominálnak, *vegyértékrezgésekről* van szó, szokásos jelölésük: v. Ha a síkbeli deformáció dominál, jele általában β , merőleges deformáció dominálása esetén γ , általános deformációs dominancia esetében δ , a torziós rezgési módé τ .

A normál koordináta analízishez szükséges, a fent részletezett mátrixokkal való műveletekhez a BME Fizikai Kémia Tanszéken készült, megfelelő programokat használtam.

2. Infravörös és Raman spektroszkópia: mérőműszerek és mérés

A kutató munkám során mértem az általam vizsgált vegyületek infravörös és Raman színképeit. Ebben a fejezetben kívánom összefoglalni az említett két optikai rezgési spektroszkópiai módszer elméleti hátterét, az infravörös és a Raman spektrométerek felépítését, működési elvüket, jellemző paramétereiket, valamint a mintakészítési technikákat [11].

2.1. Infravörös spektroszkópia

2.1.1. Mérési alapfogalmak

A mintára érkező I_0 intenzitású fény arról részben visszaverődik (I_r), részben a mintában elnyelődik (I_a), a maradék az, amit a minta átereszt (I_t). Ennek megfelelően:

$$I_r + I_a + I_t = I_o (2.1)$$

Végigosztva mindkét oldalt I₀-val

$$r + a + t = 1 \tag{2.2}$$

ahol *r* neve *reflektancia*, *a* neve *abszorptancia*, míg *t* a *transzmittancia*. Utóbbit T-vel is szokták jelölni. Mind három mennyiség a mintára jellemző módon függ a fény frekvenciájától (hullámhosszától), azaz jellegzetes spektrumot ad.

Leggyakrabban *elnyelési színképeket* mérünk. Külön fényútban vagy alkalommal mérjük a minta által áteresztett (I_t) és a referencia (összehasonlító) által áteresztett (I_{to}) fényintenzitást. A referencia mindenben hasonló a mintához (ugyanolyan tartó, ugyanolyan az oldószer rétegvastagsága, stb.), csak a mérendő anyagot nem tartalmazza. Ebben az esetben a mintáról visszavert I_r fényintenzitás azonosnak vehető a referenciáról visszaverttel. Ilyenkor az I_0 - I_r fényintenzitások tekinthetők a mintákba belépő fény intenzitásának, és

$$T = \frac{I_{\iota}}{I_{\iota o}} \tag{2.3}$$

Az áteresztést általában %-ban adják meg. Igyekeznek olyan optikai körülményeket teremteni, hogy a reflektált fény intenzitása elhanyagolható legyen. Áteresztésben a színkép jellegzetes sávjainak helyei minimumként jelentkeznek.

Az abszorbeált fény mértéke az abszorbancia:

$$A = lg(\frac{I_{to}}{I_{t}}) = -lgT \tag{2.4}$$

Az abszorpciós spektrumban az elnyelési sávoknak maximumuk van. A *Lambert-Beer* törvény értelmében az oldatok abszorbanciája arányos az oldott anyag koncentrációjával (*c*):

$$A = \alpha .l.c \tag{2.5}$$

ahol $\alpha(\tilde{v})$ a moláris abszorpciós koefficiens. Az koncentrációt mol/dm³-ben, az l rétegvastagságot cm-ben adjuk meg.

Az abszorbanciát, illetve a transzmittanciát az energiával és a frekvenciával arányos hullámszám (∇) függvényében ábrázoljuk, a hullámszámot cm $^{-1}$ egységekben mérjük.

2.1.2. Az infravörös spektrométerek típusai

Az IR spektrométerek energia - intenzitás függvényeket mérnek. Az energiát *hullámszám*ban, cm⁻¹ egységekben adják meg, az intenzitást transzmisszióban (T, áteresztés) %-ban, vagy abszorbanciában (2.4 definíció) kapjuk.

Kutató munkám során Michelson interferométeres Fourier transzformációs IR spektrométert használtam, így ennek a mérőműszernek szeretném a működési elvét bővebben kifejteni.

2.1.2.1. Fourier transzformációs spektrométerek müködése

A Fourier transzformációs (FT) Michelson interferométeres IR spektrométerek egysugarasak, azaz a mintát és a referenciát egymás után veszik fel. A 2.1. ábrán FT-IR spektrométer optikai vázlata látható.

2.1 ábra: FT-IR spektrométer felépítése

A fényforrás és a detektor között Michelson interferométer van. A *Michelson interferométerben* a fényforrásból a mintán átmenő fény egy félig áteresztő fényosztóra (beam splitter) kerül. Ez a fénysugarat két részre osztja: az egyik felét átereszti, a másik részét erre merőlegesen visszaveri. Mind a két fénysugár egy-egy tükörre kerül. Az áteresztett fény mozgó tükörre kerül, amelyet egyenletes sebességgel mozgatnak. A maximális elmozdulási távolság néhány cm. A másik rész az álló tükörre kerül. A két tükörről a fénysugarak visszaverődnek, és a fényosztón a köztük lévő optikai útkülönbségnek megfelelően interferálnak. A fényosztó a FIR tartományban vékony polietilén-tereftalát fólia ("Mylar"), a MIR és NIR tartományban KBr-ra párologtatott Au réteg.

Az optikai rendszer beállítására fehér fényt vetítenek be az interferométer előtt. A mozgó tükör helyzetének pontosabb beállítására helyzetjelző lézerrel a mérő interferométerhez rögzítve azzal együtt egy másik interferométer is mozog. Ennek a monokromatikus fénysugarai a fényosztón úgy interferálnak, hogy világos és sötét csíkok követik egymást. A csíkok helyzete pontosan meghatározható, intenzitás-maximumukat egy másik detektor méri.

A tükörmozgatás miatt a két fénysugár útkülönbsége, és ennek következtében az eredő fénysugár intenzitása is változik. Az eredő fénysugár kerül a detektorra. Intenzitását az útkülönbség függvényében ábrázolva interferogramot kapunk. A rendszert számítógép vezérli, az interferogramot mintavételezzük és digitalizáljuk. Az interferogramból numerikus Fourier transzformációval kapjuk az egysugaras infravörös színképet. A minta és a referencia spektrumából állítható elő a szokásos kétsugaras IR transzmittancia színkép.

2.1.2.2. Az FT-IR spektrométerek jellemzői

- *multiplex (Felgett) előny*: a teljes frekvenciatartományban egyidőben mérünk, a jel-zaj viszony ezért jelentősen javul;
- Jaquinot előny: nincs rés, amely korlátozza az optikai rendszerben a fényerőt, ezért a mérés érzékenyebb;
- Connes előny: a mozgó tükör helyzetét lézer ellenőrzi; a lézerrel interferenciacsíkokat állítanak elő, amelyek sűrűsége csak a lézersugár hullámhosszától függ, ezért jól reprodukálhatók; ezzel biztosítható az egyenletes mintavételezés és a mérés ismétlése (akkumuláció) során a tükör helyzetének jó reprodukálása;
- szórt fény előny: a fénysugarat adott frekvenciával szaggatva (amplitúdó moduláció) szaggatóval (chopper, pl. rezgő tükör) a szórt fény minimálisra csökkenthető (ezzel azonban a fényintenzitás fele elvész), vagy az "álló" tükröt mozgatva fázismodulációt állítva elő, érünk el hasonló eredményt.

Az FT-IR spektrométerrel elérhető *felbontás* a mozgó tükör maximális mozgatási távolságától (Δx) függ:

$$\delta v = \frac{1}{2 \Delta x} \tag{2.6}$$

A nevezőben az elérhető maximális optikai útkülönbség áll. Ezt nemcsak a mozgó tükör mozgatási úthosszának növelésével lehet növelni, hanem úgy is, hogy mind a két tükör mozog. Ekkor a két tükör ugyanannak a mozgó lapnak a két oldalán van. Ezáltal a maximális optikai útkülönbség a maximális úthossz négyszerese.

A numerikus Fourier transzformáció eredménye az, hogy a spektrum maximumai mellett mellék-maximumok ("lábak") állnak elő. Ezek eltávolítása (*apodizáció*: a lábak eltávolítása) céljából az interferogramot megfelelő apodizációs függvénnyel szorozva Fourier transzformálják. Ez az eljárás a lábakat kiküszöböli, de rontja a felbontást.

2.1.3 Infravörös színképek mérése

Az infravörös színképek mérését on-line számítógépbe telepített vezérlő programmal vezéreljük. Be kell állítani az ismétlések (scan) számát, a mintavételi sűrűséget. Ezek a programok általában tartalmazzák a digitálisan tárolt színképek feldolgozási lehetőségeit is: a transzmittanciáról abszorbanciára és viszont transzformációt, az alapvonal kiegyenesítését, a sávok helyének, területének, magasságának meghatározását, színképek összehasonlítását, kivonását, összeadását, sávfelbontást, színképekből való kivágást, stb.

2.1.3.1. Gáz- és folyadékminták mérése áteresztésben

A folyadék- és gázfázisú minták mérésére *küvettákat* használunk. Ezek az IR fényt áteresztő planparallel lapokkal (véglapok, ablakok) határolt edények. A lapok egymással párhuzamosan állnak, a fénysugár irányára merőlegesen. A küvettatestet és a véglapokat a *küvettatartó* fogja össze. A *véglapok* (ablakok) anyaga általában KBr esetleg NaCl a MIR tartományban, polietilén a FIR tartományban, kvarc vagy speciális üveg a NIR tartományban.

A legkisebb *gázküvetták* 100 (esetleg 50) mm hosszúak, üvegből készülnek. A hosszabb küvetták esetében az optikai úthosszt (1 – pár száz m) növelik olymódon, hogy a küvettákban elhelyezett tükrökön a fény többször oda-vissza verődik, és csak ez után léphet ki a küvettából. A

folyadékküvetták általában néhány század mm-től 1 mm rétegvastagságig készülnek. Az optikai úthosszt a véglapok közzétett távtartókkal állítják be. Ezek ólomból, aluminiumból esetleg műanyagokból készülnek. A változtatható rétegvastagságú küvetták úthossza mikrométercsavarral állítható, folyadéktartályuk van, amelyből a szükséges folyadék pótolható, illetve amelybe a felesleg visszafolyik.

A folyadékmintát a küvettába injekciós fecskendővel a betöltő nyíláson át, a gázokat csap furatán át töltik be.

Ha a folyadékküvetták rétegvastagsága összemérhető az IR fény hullámhosszával, akkor rétegvastagságuk (d) - üresen mérve őket – meghatározható a spektrumban észlelt interferencia jelenség alapján. Ha a $\Delta \nabla$ hullámszám intervallumban n számú interferencia maximumot mérünk, akkor : $d = \frac{n}{2 \Delta \nabla} (2.7.)$

2.1.3.2. Szilárd minták vizsgálata abszorpcióban/transzmisszióban

A szilárd minták legnagyobb részének spektrumát a MIR és NIR tartományokban (400 cm⁻¹-nél nagyobb hullámszám értékeknél) *KBr pasztillában* veszik fel. A pasztillázó anyagok nagytisztaságúak, a vizsgálandó tartományban nincs szelektív elnyelésük, és folytonos elnyelésük is kismértékű.

A pasztillakészítéshez a KBr-t és a KI-t szárítószekrényben 105 °C-on kiszárítjuk, exszikkátorban lehűtjük. A vizsgálandó anyagot általában 1-2 mg/g KBr koncentrációban a KBr-rel összemérjük. A mintát golyósmalomban porrá őröljük, esetleg achátmozsárban finom porrá dörzsöljük, majd a port *hidraulikus préssel* 800-1000 N/cm² nyomással *présformában* pasztillává préseljük. Célszerű a bezárt levegő kiszívatása préselés közben. A KBr megömlik, és szilárd oldat képződik. Hasonló módon készül tiszta KBr-ből az összehasonlító. A jó pasztilla üvegszerűen átlátszó.

Ha a minta erősen elnyel, akkor a mérés *ismétlése* segíthet. Ezzel a gyenge jelet felerősítjük, a jel-zaj viszony \sqrt{n} -szeresére nő, n az ismétlések száma.

2.2. Raman spektroszkópia

2.2.1. Mérési alapfogalmak

A Raman színképeknél a fő szerepet a fényszórás játssza. Mivel a Rayleigh szórás intenzitása jóval nagyobb, mint a Raman szórásé, az előbbit ki kell szűrni. Az, hogy milyen legkisebb hullámszámú eltolódást tudunk mérni, a szűrés minőségétől függ. A rezgési spektroszkópia szempontjából a nagyon kis (100–150 cm⁻¹-nél kisebb) eltolódásoknak - kivéve a rácsrezgéseket - alárendelt szerepük van.

A Raman sávok intenzitása, első közelítésben a gerjesztő fény hullámszámának negyedik hatványával arányos, ezért célszerű minél kisebb hullámhosszú gerjesztő fényt alkalmazni. Az újabb műszerek jó részében közeli infravörös fénnyel, Nd-YAG lézerrel gerjesztik a Raman spektrumot, míg a Raman mikroszkópok az Nd-YAG lézer közeli IR vonalának első felharmonikusát használják gerjesztésre. A gerjesztési hullámszám így kb. a felére nő. Bár itt gyenge a Raman szórás, előnye ennek a megoldásnak, hogy kisebb az esélye a floureszcencia zavaró hatásának.

2.2.2. Fourier transzformációs Raman spektrométerek

A gyakorlatban mind diszperziós, mind Fourier transzformációs műszereket használnak. Kutató munkám során FT-Raman spektrométerrel dolgoztam, így a diszperziós műszerek ismertetésétől eltekintenék.

A Fourier transzformációs mérés alkalmazása a Raman spektrometriában azon alapul, hogy a mintáról szórt fényt tekintjük a Michelson interferométer fényforrásának. A 2.2 ábra FT-Raman spektrométert mutat be. A fényforrás Nd-YAG lézer, amelynek 1064 nm-es hullámhosszú vonalát használják a Raman színkép gerjesztésére. A mintát a mintakamrában a gerjesztő fény útjában helyezik el. Innen a fény a Rayleigh szórás kiszűrésére egy szűrőn át kerül a Michelson interferométerbe. A detektorok előtt további szűrés van, ami által a gerjesztő fénysugár oldalait is kiszűrik, viszont ezáltal a mérhető legkisebb Raman eltolódás 100-150 cm⁻¹ lesz. A használatos detektorok: InGaAs, Ge, Si, esetleg fotoelektronsokszorozó. A félvezetőket a detektorzaj csökkentése érdekében folyékony nitrogénnel hűteni kell, melyet a mérés megkezdése előtt kell megtenni. A fehér fény bevetítése (forgatható tükör segítségével) az optikai rendszer beállításához szükséges. A helyzetjelző lézer rubin vagy He-Ne lézer funkciója itt is az FT-IR spektrométernél elmondottakhoz hasonló.

2.2. ábra FT-Raman spektrométer felépítése

2.3. Raman színképek mérése

A Raman színképek mérését, mint az infravörös színképekét is, az on-line számítógépbe telepített vezérlő programmal vezéreljük, mely egyben tartalmazza a színképek feldolgozási lehetőségeit is. Méréskor be kell állítani a polariációt (párhuzamos, merőleges, vagy nem kell), az ismétlések (scan) számát, a mintának a gerjesztő fénynyalábba való helyezését (jusztálás).

Raman színképeket folyadék vagy szilárd fázisban mérünk. *Szilárd minták* esetében mintaelőkészítésre nem nagyon van szükség. A lézerfény útjába egy kis tartó kerül, amelyben a tiszta szilárd mintát elhelyezzük. Probléma akkor van, ha a minta érzékeny, hő hatására bomlik. Ilyenkor a gerjesztő lézerfény teljesítményét a lehető legkisebbre kell választani, és az ismétlések számát kell növelni.

Folyadék minták mérésére üvegkapillárist használunk. Ebbe töltjük a mintát, majd a gerjesztő fénysugár útjába toljuk.

3 N-tartalmú öttagú heterociklusos vegyületek rezgési spektroszkópiája

A N-tartalmú heterociklusos vegyületek vizsgálatával célom az volt, hogy egységes képet alakítsak ki ezen vegyületek szerkezeti és rezgési spektroszkópiai tulajdonságairól.

Célom elérésének érdekében mind kísérleti, mind elméleti munkát végeztem. A kísérleti munka két részből tevődött össze. Egyik részét a megfelelő deutero vegyületek előállítása jelentette. Másik részét a vizsgált vegyületek infravörös és Raman spektrumainak mérése, valamint ezen spektrumok számítógép segítségével történő értékelése alkotta. Az elméleti munka keretén belül kvantumkémiai számításokat végeztem a Gaussian 94-es és 98-as programcsomag B3P86/6-311G** valamint HF-6-311G** módszerével. Célom az volt, hogy a számított frekvenciákat a kísérletiekhez illesszem, és ezúton meghatározzam a rezgési módok jellegét, értékeljem a színképet.(3.1 ábra.)

3.1. ábra. A kutatómunka részfeladatai és összefüggései

3.1. Az azolok biológiai jelentősége

Az azolok számos biológiailag aktív vegyületben előfordulnak, az imidazol az élő szervezetet alkotó fehérjéket felépítő egyik aminosav, a hisztidin alapgyűrűje. A purinvázas vegyületek alapgyűrűje egy imidazol és egy pirimidin gyűrűből áll. Fontosabb purinvázas vegyületek például a nukleinsavakban előforduló purinbázisok, az adenin és a guanin.

Az 1-4 magnitrogént tartalmazó alapvegyületeknek és származékaiknak az élő szervezetben kifejtett és ismert hatásait a gyógyszertervezésben hasznosítják.

- A jól ismert láz és fájdalomcsillapító gyógyszer, az amidazophen pirazol gyűrűt tartalmaz.
- A vészes vérszegénység gyógyítására B₁₂ vitamint használnak, mely imidazol gyűrűt tartalmaz.
- A Beri-Beri betegség, B₁ vitamin hiányában alakul ki, ugyanis a B₁ vitamin a szervezetben,
 a glükóz oxidációban vesz részt, így közvetve az agyműködést segíti. A B₁ vitamin triazol
 gyűrűt tartalmaz, hasonlóan a penicillinekhez.
- A pentametilén-tetrazol szívműködést és légzést fokozó anyag.

3.2 A vizsgált vegyületek szerkezetének és rezgési spektroszkópiájának irodalmi áttekintése

Az N-tartalmú öttagú gyűrűs heterociklusos vegyületek szerkezeti és rezgési spektroszkópiai vizsgálatának kiterjedt irodalma van. Ebben a fejezetben a vizsgált vegyületek szerkezetének és rezgési spektroszkópiájának már korábban publikált eredményeit foglaltam össze.

3.2.1. Pirrol

A pirrol első infravörös spektrumát már a 20. század elején publikálták [15]. Később Manzoni-Ansidei és Rolla [15] is mérték a pirrol infravörös spektrumát. Lord és Miller [16] nevéhez fűződik a pirrol, az 1-deuteropirrol és a pentadeuteropirrol első átfogó rezgési spektroszkópia elemzése, melyet számos hasonló jellegű munka követtett [17, 18, 19]. Scott [20] a vizsgált vegyület infravörös és Raman spektrumának publikálása mellett GVFF módszerrel kvantumkémiai számításokat is végzett. A pirrol rezgési alapfrekvenciával Deward és Ford [21] is foglalkozott, MINDO/3 szemiempirikus kvantumkémiai számításokat végezve. A következő, a pirrol rezgési spektroszkópiai tulajdonságait vizsgáló átfogó kísérleti munka szerzői Navarro és Orza [22-26]. Publikációjukban részletesen értelmezték a pirrol valamint a pirrolnak és összes lehetséges deuterált származékának infravörös (folyadék és gőzhalmazállapotú) és Raman

spektrumát valamint GF módszerrel számították a vizsgált vegyületek rezgési frekvenciáit. Zahariev [27] a Gribov [28] féle elméletet alkalmazva számította a pirrol és deuterált származékainak rezgési frekvenciáit. Xie [29] munkatársaival a pirrol rezgési spektroszkópiai vizsgálatához Hartree-Fock számítást végzett 4-21G báziskészlettel. Simandiras [30] a vizsgált molekula rezgési alapfrekvenciáinak meghatározására DZ+P báziskészlettel, MP2 számítási módszert alkalmazott. Kostic [31] és munkatársai a pirrol Raman és infravörös spektrumának felvétele mellett, Urey-Bradley erőtérrel számították a vizsgált vegyület rezgési frekvenciáit. Klots [32] a vizsgált vegyület infravörös és Raman színképeit mind folyadék, mind gőzhalmazállapotban mérte. Billes és Geidel [33] a pirrol és deuterált származékainak infravörös és Raman spektrumait vették fel, a mért színképek jelhozzárendelést kvantumkémiai számítások (DFT Becke 3P86 és Becke 3LYP/ 6-311G**) segítségével végezték.

3.2.2. Pirazol

A pirazol rezgési spektroszkópiai vizsgálatával foglalkozó publikációk száma csekély. Zecchina [34] volt az első, aki több mint harminc évvel ezelőtt tette közzé a pirazol molekula rezgési frekvenciáinak értelmezését. Őt követte King [35], aki a vizsgált molekula mátrix izolációs spektrumát vette fel. Majoube [36] közleményében a pirazol átfogó rezgési spektroszkópiai elemzését találhatjuk meg. Mérte a pirazol és a deuterált pirazol infravörös spektrumát mind oldott halmazállapotban széntetrakloridban, mind gőzhalmazállapotban, valamint a Raman színképeket is felvette. Emellett egyszerű frekvenciaszámításokat is végzett Urey-Bradley és általános vegyérték erőteret (GVFF) alkalmazva. Durig [37] és munkatársai a pirazol FT-Raman színképét mérték szilárd és olvadék halmazállapotban, valamint a vizsgált vegyület rezgési frekvenciáinak meghatározása céljából Hartree-Fock számításokat végeztek 3-21G báziskészlettel.

3.2.3. Imidazol

Lényegesen nagyobb hangsúlyt kapott a szakirodalomban az imidazol molekula rezgési spektroszkópiája. Josien [38] munkatársaival már a 60-as évek elején átfogó munkát jelentetett meg az imidazol és deuterált származékai infravörös és Raman színképeiről. A vizsgált molekulák infravörös spektrumait mérte mind folyadék halmazállapotban, vizes oldatban, mind gőzhalmazállapotban. Raman színképeket folyadék mintákról készítettek. Corders és Waiter [39] az imidazol és néhány imidazol származék infravörös spektrumát publikálta, valamint a vizsgált molekulák rezgési alapfrekvenciáinak meghatározásának céljából egyszerű GVFF számításokat végezett. Colombo [40] az imidazol infravörös spektrumát KBr pasztillában vette fel, míg a Raman

spektrumot vizes oldatban mérte. A spektrumok értelmezése céljából szemiempirikus CNDO/ 2 számítási módszert alkalmazott. Majoube [41] szintén publikálta az imidazol Raman spektrumát. A 80-as évek elején Fan [42] munkatársaival az imidazol és néhány deuterált származéka rezgési frekvenciáit számította Hartree-Fock módszerrel, 4-21G báziskészlettel. Markham [43] és munkatársai a pirazol és az N-deuteroimidazol Raman spektrumainak felvétele mellett HF/6-311++G** módszerrel számították a vizsgált molekulák rezgési alapfrekvenciáit.

3.2.4. Triazolok

1,2,3-triazol

A triazol geometriai paramétereinek és rezgési spektrumának vizsgálata nem áll a kutatások középpontjában, csupán néhány közlemény található ebben a témában az eddig megjelent szakirodalomban. Borello [44] munkásságának köszönhető az 1,2,3-triazol első publikált infravörös spektruma. Bergtrup [45] a triazolok geometriai paramétereinek meghatározásához gázfázisú elektrondiffrakciós és mikrohullámú spektroszkópiai méréseket valamint ab initio számításokat (HF-SCF-DZ) végzett. Tönkvist [46] MP2 módszerrel 6-31G* bázissal végzett számításainak középpontjában az 1H-1,2,3-triazol és a 2H-1,2,3-triazol egyensúlyi geometriája, rezgési erőtere és rezgési frekvenciái álltak.

1,2,4-triazol

Deutsch [47] röntgendiffrakciós módszerrel határozta meg az 1,2,4-triazol molekula kristályszerkezetét. Chiang és Lu [48] a vizsgált molekula szerkezetének valamint rg geometriájának meghatározásának céljából gázfázisú elektrondiffrakciós méréseket végzett. Saidi-Idrissi [49] az 1,2,4-triazol és származékainak protonálódási és deprotonálódási folyamatait vizsgálta. Vizsgálataikat szemiempirikus CNDO/2 számításokkal egészítették ki, meghatározták a vizsgált molekulák re geometriáját. Palmer munkatársaival [50] a triazol és a tetrazol tautomerizálódási mechanizmusával foglalkozott. Jeffrey [51] a 1,2,4-triazol szerkezetét neutrondiffrakciós mérésekkel határozta meg, melynek eredményeit kvantumkémia számításokkal támasztotta alá. Kudchadker [52] a vizsgált molekulák, valamint deuterált származékaik infravörös és Raman színképeit vette fel. Movshovich [53] és munkatársai kutatásainak középpontjában az 1,2,4-triazol és 1-metil származéka, valamint ezek átmeneti fém komplexeinek infravörös spektrumainak értelmezése állt.

3.2.5. Tetrazol

Wilson[54] Urey-Bradley erőteret alkalmazva normálkoordináta analízissel a tetrazol rezgési frekvenciáit határozta meg. Sokolova [55] és munkatársai a vizsgált alapvegyület és néhány egyszerű származék infravörös spektrumának felvétele mellett kvantumkémiai számításokat is végzett. Egyszerű GF mátrix módszert használt a felvett spektrumok értelmezésének elősegítésére. Sushkonak [56] közleményében a tetrazol és az N-deutrotetrazol infravörös spektrumát és szemiempirikus MNDO módszerrel számított rezgési frekvenciáit találhatjuk meg.

3.3. Kísérleti munka

A 96%-os tisztaságú pirrolt, a 99,5%-os imidazolt, a 98%-os pirazolt, a Fluka Chemie állította elő. A pirrol deuterált származékát a d₅-pirrolt C/D/N Isotopes Inc gyártotta, tisztasága 98%. Az 1H-1,2,3-triazol, az 1,2,4-triazol 97%-os, míg az 1H-tetrazol 98%-os tisztaságát az Aldrich szavatolta. Ezeket a vegyületeket minden további tisztítás nélkül használtam a mérésekhez.

3.3.1. A deutero vegyületek előállítása

Az alapvegyületek deuterált származékait Bak [57] által publikált deuterálási eljárás alapján állítottam elő. A folyadék halmazállapotú pirrolhoz 20 órán keresztül állandó kevergetés mellett szobahőmérsékleten háromszoros nehézvíz felesleget adtak, majd a fázisok szétválasztása után Na₂CO₃-on száradt a termék, végül a tisztítás desztillációval történt. A szintén folyadék halmazállapotú 1,2,3-triazol deuterálási folyamatának első lépéseként 0,5 cm³ triazolt és 1,5 cm³ nehézvizet ampullába mértem. Az elegyet tartalmazó lezárt ampullát 1 napig rázógépbe helyeztem, majd a két fázist rázótölcsérben szétválasztottam, végül Na₂CO₃-on szárítottam.

A szilárd halmazállapotú vegyületek (pirazol, imidazol, 1,2,4-triazol és a tetrazol) deuterálásakor kétnyakú csiszolatos gömblombikot használtam. Ennek egyik nyakához visszafolyó hűtőt csatlakoztattam kalcium-kloridos feltéttel, másik nyakához pedig csiszolatos csepegtető tölcsért, ami szintén kalcium kloridos feltéttel volt lezárva. A csepegtető tölcsér segítségével 3x-os mennyiségű nehézvíz felesleget adagoltam a lombikban lévő vegyülethez. Az elegyet 48 órán keresztül melegítettem. A deuterált vegyületeket vákuum szárítószekrényben kristályosítottam ki.

3.3.2. A spektrumok mérése

3.3.2.1. Infravörös spektrumok

A vizsgált vegyületek infravörös színképeinek felvételére különböző típusú Fourier transzformációs Michelson interferométeres infravörös spektrométereket használtuk:

- FTIR Perkin –Elmer System 2000
- Shimadzu FTIR 3300
- ATT Mattson Genius 1

Az infravörös spektrumok felvétele során alkalmazott paraméterek a következők voltak:

- 400-4000 cm⁻¹ hullámszám tartomány
- 2 cm⁻¹ felbontás
- 512 scan

A pirrol és deuterált származékai infravörös spektrumát mind folyadék mind gőz halmazállapotban mértük. Az 1,2,3-triazol folyadék, valamint az 1D-1,2,3-triazol és 2D-1,2,3-triazol infravörös spektrumának mérésére folyadékküvettát használtam. A pirazol, imidazol, 1,2,4-triazol és a tetrazol valamint deuterált származékaik infravörös színképét szilárd halmazállapotban, KBr-es pasztillába történő beágyazásos technika alkalmazásával mértem.

3.3.2.2. Raman színképek felvétele

A pirrol, az 1D-deuteropirrol és a pentadeutero-pirrol Raman spektrumait Perkin Elmer 2000R típusú NIR-FT Raman berendezésen mérték. A pirazol, imidazol, triazolok és tetrazol valamint deuterált származékaik színképeit Nicolet-FT-Raman 950 típusú spektrométeren vettem fel.

A Raman spektrumok felvétele során alkalmazott paraméterek a következők voltak:

- 200-3600 cm⁻¹ hullámszám tartomány
- 2 cm⁻¹ felbontás
- 512 scan
- 300 mW gerjesztő lézer teljesítmény
- 1064 nm hullámhosszú monokromatikus fény

A vizsgált vegyületekről mind polarizált (merőleges és párhuzamos), mind normál Raman felvételek készültek. A pirrolról és az 1,2,3-triazolról folyadék halmazállapotban, míg a többi szilárd vegyületről szilárd és olvadék állapotban mértem a Raman spektrumot.

Ha polarizátort használunk, akkor a polarizátor polarizációs síkjának helyzetétől függően különböző színképeket kapunk.

A lézersugár haladási iránya –x, polarizációs síkja z. A szórt fény haladási irányának tengelye x, a szórt fényt polarizátorral analizáljuk, amely egyszer a z polarizációt engedi át (I_z vagy I_{II}) aztán az y polarizációt (I_y vagy I_I). A depolarizációs arány: $\rho = I_y/I_z$. Ez a hányados a teljesen szimmetrikus specieshez tartozó rezgési módokra kisebb, mint 3 /₄, minden más módhoz tartozó sávra 3 /₄.

Az olvadék Raman spektrumokat a Fizikai Kémia Tanszéken kifejlesztett mintatartó segítségével mértük. Ennek vázlatos rajza a 3.3.1 ábrán látható. A minta tartó kapillárist üvegtokba (jóminőségű üvegcső) helyeztük. Az üvegcsőre fémspirált tekertünk, ezt a csőhöz, pl. vízüveggel hozzáragaszttottuk. A fémspirált kis, változtatható feszültséggel fűttöttük (2-6 V). A mintatartó kapillárist teljesen megtöltöttük a vizsgált vegyülettel, majd fokozatosan melegíteni kezdtük a kapillárisban lévő anyagot. A kapilláris alsó felében lévő anyag megolvadt, míg a felette lévő rész szilárd maradt, megakadályozva ezzel azt, hogy a megolvadt rész a levegővel érintkezzen.

3.3.1 ábra. olvadék minták mérésére kifejlesztett mintatartó rajza

3.4. Számítások

3.4.1. Kvantumkémiai számítások

A vizsgált N-tartalamú öttagú heterociklusos vegyületek rezgési színképei értelmezésének elősegítésére kvantumkémia számításokat végeztem. A számításokhoz Gaussian 94 programcsomagot DFT módszerrel, Becke3P86 funkcionállal 6-311G** báziskészlettel alkalmaztam. [58]

Az első lépésben a vizsgált molekulák közelítő geometriai [45, 59, 60, 61, 62, 63, 64] paramétereiből (kötéstávolságok kötésszögek, atomok kapcsolódási sorrendje) kiindulva térszerkezetüket optimáltam, majd ehhez az energia minimumhoz tartozó potenciális energia függvényt a koordináták szerint kétszer differenciálva adódtak az erőállandók.

A kvantumkémiai számítások eredmény fájljai tartalmazzák a részünkre szükséges optimált geometriát, a rezgési erőteret, a számított rezgési frekvenciákat, a megfelelő rezgési mód szimmetria specieszét és az infravörös intenzitásokat.

3.4.2. Normálkoordináta analízis

A *normálkoordináta analízis* alkalmazásával célom az volt, hogy a rezgési módok jellegét meghatározzam. Ehhez mindenek előtt megfelelő koordinátákat kell kiválasztani, ezekkel a molekularezgések mozgásegyenleteit megoldani, majd a rezgési módok jellegét a bennük szereplő koordináták súlya alapján meghatározni.

A 3N-6 számú független koordináta kiválasztásánál a következőket vettem figyelembe [65, 11]:

- Ha egy atom centrumnak tekinthető, azaz kettőnél több (k számú) atom csatlakozik hozzá, akkor a centrális atom körül felvehető független kötésszögek és azimutszögek együttes száma 2k-3.
- Az n-atomos gyűrű esetében célszerű az n nyújtási koordinátát felvenni és n-3 síkbeli és
 n-3 torziós koordinátát. Síkgyűrű belső szögeinek összege állandó, ezért n-1 független

síkbeli deformációs koordináta vehető fel maximálisan. Öttagú gyűrűre az optimális koordináták az alábbiak (lásd 3.4.1. ábrát).

 a belső koordináták lineárkombinációjával új, bizonyos céloknak jobban megfelelő koordináták képezhetők.(lásd 3.4.1 táblázat)

A kvantumkémiai számítások eredményfájljából kiemelve az optimált térszerkezethez tartozó derékszögű atomi koordinátákat majd a definiált belső koordinátákat és az atomtömegeket használva számíthatjuk az inverz kinetikus energia mátrixot (**G** mátrix). A belső koordináták ilyen deformációja miatt a **G mátrix**ban a nyújtás-nyújtás kölcsönhatási elemek mól/tömeg, a nyújtás-deformáció koordináták mól/tömeg/hosszúság, a deformáció-deformáció elemek mól/tömeg/hosszúság² dimenziójúak.

Az **F mátrix** (erőállandó mátrix), mely a potenciális energia tagokat tartalmazza, szintén megtalálható a kvantumkémiai számítások eredményfájljában. Az **F** elemeinek dimenziója nem

egységes: a nyújtás-nyújtás kölcsönhatási elemeket erő/hosszúság, a nyújtás-deformáció elemeké erő, a deformáció-deformáció elemeké erő×hosszúság.

A normálkoordináta analízis lépéseit az 1.5 fejezetben részletesen összefoglaltam. A skálázásnál használt skálafaktorokat a Függelékben helyeztem el (F.3.7-F.3.9 táblázat).

3.5. Az eredmények értékelése

3.5.1. Az optimált geometria

A kvantumkémiai számítások eredményeképpen megkapjuk az izolált molekula energia minimumához tartozó (r_e) optimált térszerkezetét. A számítások eredményeként kapott pirrol, imidazol, pirazol, 1,2,3-triazol, 1,2,4-triazol és tetrazol molekulákon belüli kötésszögeket, torziós szögeket és kötéstávolságokat a 3.5.1. és 3.5.2 táblázatban foglaltam össze. A molekulák szerkezeti képletei és a vizsgált molekuláknak a szakirodalomban található, különböző módszerekkel kapott geometriai paramétereit tartalmazó táblázatokat a Függelékben (F.3.1-F.3.6 táblázatok, 5-10 old.)helyeztem el.

Az imidazol, a pirazol, az 1H-1,2,3 triazol, az 1H-1,2,4-triazol, az 1H és 2H-tetrazol molekulák a C_s pontcsoportba tartoznak, míg a pirrol, az 2H-1,2,3-triazol, valamint 4H-1,2,4-triazol magasabb szimmetriájuk miatt a C_{2v} -be.

3.5.1 táblá	ázat: A v	izsgált veg	gyületek B	3P86/6-311	G**kvantur	nkémiai mó	dszerrel szái	mított kötést	ávolságai
Paraméter	Pirrol ^a	Imidazol	Pirazol	1H-1,2,3- Triazol	2H-1,2,3- Triazol	1H-1,2,4- Triazol	4H-1,2,4- Triazol	1H- Tetrazol	2H- Tetrazol
N(1)-N(2)			1,338	1,339	1,319	1,346	1,373	1,325	1,319
N(1)-C(2)	1,368	1,360							
C(2)-N(3)		1,309	-						
C(2)-C(3)	1,374								
N(2)-N(3)				1,294	1,319			1,248	1,319
N(3)-N(4)								1,341	1,301
N(2)-C(3)		-	1,326			1,358	1,362		
N(3)-C(4)		1.371	-	1,358	1,329				
N(4)-C(5)							1,362	1,287	1,350
C(3)-N(4)						1,315	1,362		
C(3)-C(4)	1,374	-	1,408						
C(4)-C(5)		1,368	1,376	1,370	1,401		1,362		
C(5)-N(1)		1,373	1,353	1,353	1,353	1,358		1,362	1,322
N(1)-H(6)	1,005	1,006	1,006	1,007		1,007		0,993	
N(2)-H(6)					1,007				1,009
N(4)-H(6)							1,006		
C(2)- $H(7)$	1,078	1,080	-						
C(3)-H(7)		-	1,080			1,0792	1,078		
C(3)-H(8)	1,079								
C(5)-H(7)								1,068	1,007

C(4)-H(7)				1,077	1,077			
C(4)-H(8)		1,079	1,078					
C(4)-H(9)	1,079							
C(5)- $H(8)$				1,076	1,077	1,0794	1,078	
C(5)-H(9)		1,077	1,078					
C(5)- $H(10)$	1,078							

A kötéstávolságok mértékegysége angström. Az atomok számozása a Függelékben található. ^a[33]

Paraméter	3.5.2 táblázat: A	vizsgált v	vegyületek	B3P86/	6-311G**k	vantumkén	niai módsze	rrel számíto	tt vegyért	ék szögei
N(1)-N(2)-N(3)	Paraméter	Pirrol ^a	Imidazol	Pirazol						
N(2)-N(3)-N(4) N(1)-N(2)-C(3) N(1)-C(2)-N(3) N(1)-C(2)-C(3) 107,6 N(1)-C(5)-N(4) N(3)-N(4)-C(5) C(2)-N(3)-C(4) N(2)-C(3)-C(4) N(2)-C(3)-N(4) N(3)-C(4)-C(5) N(4)-C(5) N(4)-C(5)-N(1) N(3)-C(4)-C(5) C(3)-C(4) C(4)-C(5)-N(1) N(3)-C(4)-C(5) N(1)-C(2)-N(1)-C(2) N(3)-C(4)-C(5) N(1)-N(2)-C(3)-N(4) N(3)-C(4)-C(5) N(1)-N(2)-C(3)-N(4) N(3)-C(4)-C(5) N(1)-N(2)-N(2)-N(2)-N(2)-N(2)-N(2)-N(2)-N(2					Triazol	Triazol	Triazol	Triazol	Tetrazol	Tetrazol
N(2)-N(3)-N(4) N(1)-N(2)-C(3) N(1)-C(2)-N(3) N(1)-C(2)-C(3) 107,6 N(1)-C(5)-N(4) N(3)-N(4)-C(5) C(2)-N(3)-C(4) N(2)-C(3)-C(4) N(2)-C(3)-N(4) N(3)-C(4)-C(5) N(4)-C(5) N(4)-C(5)-N(1) N(3)-C(4)-C(5) C(3)-C(4) C(4)-C(5)-N(1) N(3)-C(4)-C(5) N(1)-C(2)-N(1)-C(2) N(3)-C(4)-C(5) N(1)-N(2)-C(3)-N(4) N(3)-C(4)-C(5) N(1)-N(2)-C(3)-N(4) N(3)-C(4)-C(5) N(1)-N(2)-N(2)-N(2)-N(2)-N(2)-N(2)-N(2)-N(2	N(1)-N(2)-N(3)				107,1	116,9			106,8	114,9
N(1)-N(2)-C(3) N(1)-C(2)-N(3) N(1)-C(2)-N(3) N(1)-C(2)-N(3) N(1)-C(3)-N(4) N(3)-N(4)-C(5) N(4) N(3)-N(4)-C(5) N(1)-N(2)-N(3)-N(4)-N(4)-N(3)-N(4)-N(4)-N(4)-N(4)-N(4)-N(4)-N(4)-N(4					,	,				
N(1)-C(2)-C(3) 107,6 107,6 105,3 105,7 106,2 105,7 106,2 105,7 106,2 105,7 106,2 105,7 106,2 105,7 106,2 105,7 106,2 105,7 106,2 105,7 106,2 105,7 106,2 105,7 106,2 105,7 106,2 105,7 106,2 1				104,2			101,8	104,5		
N(1)-C(5)-N(4) N(3)-N(4)-C(5) C(2)-N(3)-C(4) 107,4 C(2)-N(1)-C(5) 109,9 N(2)-N(3)-C(4) N(3)-C(4)-C(5) N(4)-C(5)-N(1) C(3)-N(4)-C(5) C(3)-N(4)-C(5) C(4)-N(1)-C(2) C(3)-N(4)-C(5) C(4)-N(1)-C(2) C(3)-N(4)-N(2) C(3)-N(4)-N(2) C(3)-N(4)-N(2) C(4)-N(1)-N(2) C(5)-N(1) C(4)-N(1)-C(2) C(5)-N(1) N(1)-C(2)-H(6) N(1)-N(2)-H(6) N(1)-C(2)-H(7) N(3)-C(4)-H(8) C(2)-C(3)-H(8) N(4)-C(5)-H(8) C(3)-C(4)-H(8) C(4)-C(5)-H(6) C(3)-C(4)-H(8) C(4)-C(5)-H(6) C(3)-C(4)-H(8) C(4)-C(5)-H(6) C(3)-C(4)-H(8) C(4)-C(5)-H(6) C(3)-C(4)-H(8) C(4)-C(5)-H(6) C(4)	N(1)-C(2)-N(3)		111,7							
N(3)-N(4)-C(5)	N(1)-C(2)-C(3)	107,6								
C(2)-N(3)-C(4)	N(1)-C(5)-N(4)								115,3	101,3
C(2)-C(3)-C(4) 107,4 109,9 102,8 102,8 111,9 109,2 111,9 109,2 111,0 100,4 100,6 100,7 113,2 114,3 112,1 102,6 104,5 100,5	N(3)-N(4)-C(5)								105,7	106,2
C(2)-N(1)-C(5) N(2)-N(3)-C(4) N(2)-C(3)-N(4) N(3)-C(4)-C(5) N(4)-C(5)-N(1) C(3)-N(4)-C(5) C(4)-C(5)-N(1) C(4)-N(1)-C(2) C(5)-N(1)-N(2) N(1)-C(2)-H(6) N(1)-C(2)-H(6) N(1)-C(2)-H(7) N(2)-C(3)-H(7) N(3)-C(4)-H(8) C(2)-C(3)-H(8) C(2)-C(3)-H(8) C(2)-C(3)-H(8) C(3)-C(4)-H(8) C(2)-C(3)-H(7) N(4)-C(5)-H(8) C(3)-C(4)-H(9) C(3)-N(4)-H(6) C(3)-C(4)-H(9) C(3)-C(4)-H(9) C(3)-C(4)-H(9) C(3)-C(4)-H(9) C(3)-C(4)-H(9) C(3)-C(4)-H(9) C(3)-C(4)-H(9) C(3)-C(4)-H(9) C(3)-C(4)-H(9) C(3)-C(4)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(9) C(4)-C(5)-H(8) C(4)-C	C(2)-N(3)-C(4)		105,3							
N(2)-N(3)-C(4) N(2)-C(3)-C(4) N(2)-C(3)-N(4) N(3)-C(4)-C(5) N(4)-C(5)-N(1) C(3)-N(4)-C(5) C(3)-C(4)-C(5) C(4)-C(5)-N(1) C(4)-N(1)-C(2) C(5)-N(1)-N(2) N(1)-C(2)-H(6) N(1)-C(2)-H(6) N(1)-C(2)-H(7) N(2)-C(3)-H(7) N(3)-C(4)-H(8) C(2)-C(3)-H(8) N(4)-C(5)-H(8) N(4)-C(5)-H(8) N(4)-C(5)-H(8) N(4)-C(5)-H(7) C(3)-C(4)-H(8) C(3)-C(4)-H(9) C(3)-C(4)-H(8) C(3)-C(4)-H(9) C(3)-C(4)-H(8) C(3)-C(4)-H(9) C(3)-C(4)-H(8) C(3)-C(4)-H(9) C(3)-C(4)-H(9) C(3)-C(4)-H(9) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(9) C(4)-C(5)-H(8) C(4)-C	C(2)-C(3)-C(4)									
N(2)-C(3)-C(4) N(2)-C(3)-N(4) N(3)-C(4)-C(5) N(4)-C(5)-N(1) C(3)-N(4)-C(5) C(3)-C(4)-C(5) C(4)-C(5)-N(1) C(4)-N(1)-C(2) C(5)-N(1)-N(2) N(1)-C(2)-H(6) N(1)-C(2)-H(6) N(1)-C(2)-H(7) N(3)-C(4)-H(7) N(3)-C(4)-H(8) C(2)-C(3)-H(8) N(4)-C(5)-H(8) N(4)-C(5)-H(8) C(3)-C(4)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(9) C(4)-C(5)-H(8) C(4)-C		109,9								
N(2)-C(3)-N(4) N(3)-C(4)-C(5) N(4)-C(5)-N(1) C(3)-C(4)-C(5) C(3)-C(4)-C(5) C(3)-C(4)-C(5) C(4)-N(1)-C(2) C(5)-N(1)-N(2) N(1)-C(2)-H(6) N(1)-N(2)-H(6) N(2)-N(1)-H(6) N(2)-C(4)-H(7) N(3)-C(4)-H(8) C(2)-C(3)-H(7) N(3)-C(4)-H(8) C(2)-C(3)-H(7) N(4)-C(5)-H(7) C(3)-C(4)-H(8) C(3)-C(4)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(8)						102,8				
N(3)-C(4)-C(5) N(4)-C(5)-N(1) C(3)-N(4)-C(5) C(3)-C(4)-C(5) C(3)-C(4)-C(5) C(4)-C(5)-N(1) C(4)-N(1)-C(2) C(5)-N(1)-N(2) N(1)-C(2)-H(6) N(1)-N(2)-H(6) N(1)-C(2)-H(7) N(3)-C(4)-H(7) N(3)-C(4)-H(8) C(2)-C(3)-H(8) C(2)-C(3)-H(7) N(4)-C(5)-H(8) C(3)-C(4)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(9) C(3)-C(4)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(9) C(4)-C				111,9	109,2					
N(4)-C(5)-N(1) C(3)-N(4)-C(5) C(3)-C(4)-C(5) C(4)-C(5)-N(1) C(4)-N(1)-C(2) C(5)-N(1)-N(2) N(1)-C(2)-H(6) N(1)-C(2)-H(6) N(1)-C(2)-H(7) N(3)-C(4)-H(7) N(3)-C(4)-H(8) C(2)-C(3)-H(8) C(2)-C(3)-N(4)-H(8) C(2)-C(3)-N(4)-H(8) C(2)-C(3)-N(4)-H(8) C(3)-C(4)-H(7) C(3)-N(4)-H(8) C(3)-C(4)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(9)							115,3	113,2		
C(3)-N(4)-C(5) C(3)-C(4)-C(5) C(4)-C(5)-N(1) C(4)-N(1)-C(2) C(5)-N(1)-N(2) N(1)-C(2)-H(6) N(1)-N(2)-H(6) N(1)-C(2)-H(7) N(2)-N(1)-H(6) N(1)-C(2)-H(7) N(3)-C(4)-H(7) N(3)-C(4)-H(8) C(2)-C(3)-H(7) N(4)-C(5)-H(8) N(4)-C(5)-H(7) C(3)-N(4)-H(6) C(3)-C(4)-H(8) C(4)-C(5)-H(9)	. , . , . ,		110,7		108,7	108,6				
C(3)-C(4)-C(5) C(4)-C(5)-N(1) C(4)-N(1)-C(2) C(5)-N(1)-N(2) N(1)-C(2)-H(6) N(1)-N(2)-H(6) N(1)-C(2)-H(7) N(3)-C(4)-H(7) N(3)-C(4)-H(8) C(2)-C(3)-H(8) N(4)-C(5)-H(8) N(4)-C(5)-H(8) C(3)-C(4)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(9)								-	114,3	112,1
C(4)-C(5)-N(1) C(4)-N(1)-C(2) C(5)-N(1)-N(2) N(1)-C(2)-H(6) N(1)-C(2)-H(6) N(1)-C(2)-H(6) 105,0 107,3 103,8 1103,8 108,5 103,4 110,5 104,5 101,2 N(1)-C(2)-H(6) N(1)-N(2)-H(6) N(2)-N(1)-H(6) N(2)-C(3)-H(7) N(3)-C(4)-H(8) C(2)-C(3)-H(8) N(4)-C(5)-H(8) N(4)-C(5)-H(7) C(3)-N(4)-H(6) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(8) 125,7 120,9 121,5 121,7 120,9 121,5 121,7 120,9 123,1 126,6 127,7 123,7 128,3 C(3)-C(4)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(9) 125,7 131,9 133,4 130,4 130,4 130,4							102,6	104,5		
C(4)-N(1)-C(2) 107,3 113,1 110,9 103,4 110,5 104,5 101,2 N(1)-C(2)-H(6) 125,0 126,6 118,9 119,3 121,5 119,9 122,7 N(1)-N(2)-H(6) 118,9 121,5 119,9 120,9 122,7 N(2)-N(1)-H(6) 121,3 122,4 119,5 121,5 121,5 120,9 N(1)-C(2)-H(7) 121,3 122,4 119,5 121,7 120,9 121,5 N(3)-C(4)-H(8) 125,7 121,4 123,1 127,7 126,6 127,7 N(4)-C(3)-H(7) 126,6 127,7 126,7 123,9 N(4)-C(5)-H(8) 125,7 128,3 123,7 123,7 C(3)-C(4)-H(8) 125,7 133,4 130,4 130,4 C(4)-C(5)-H(8) 132,7 131,9 133,4 130,4 130,4			40-0		4000	100 -				
C(5)-N(1)-N(2) N(1)-C(2)-H(6) N(1)-N(2)-H(6) N(2)-N(1)-H(6) N(2)-N(1)-H(6) N(3)-C(4)-H(7) N(3)-C(4)-H(8) C(2)-C(3)-H(8) N(4)-C(5)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(9) 113,1 125,0 126,6 110,5 110,9 110,4 110,5 1119,9 104,5 110,5 1119,9 104,5 110,5 119,9 101,2 121,5 113,1 119,3 119,3 110,5 119,9 104,5 121,5 104,5 119,9 101,2 122,7 121,5 121,7 120,9 121,5 121,7 121,5 120,9 121,5 121,7 121,5 120,9 123,1 123,7 126,6 127,7 123,9 123,7 126,7 123,7 126,7 123,9				106,7	103,8	108,5				
N(1)-C(2)-H(6)			107,3		1100	100.4	110.5	104.5	101.0	
N(1)-N(2)-H(6) N(2)-N(1)-H(6) N(1)-C(2)-H(7) N(3)-C(3)-H(7) N(3)-C(4)-H(8) C(2)-C(3)-H(8) N(4)-C(5)-H(8) N(4)-C(5)-H(7) C(3)-N(4)-H(6) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(9) C(5)-H(8) C(4)-C(5)-H(9) C(5)-H(8) C(4)-C(5)-H(9) C(5)-H(8) C(4)-C(5)-H(9) C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(9) C(5)-H(8) C(4)-C(5)-H(9) C(5)-H(8) C(4)-C(5)-H(9) C(5)-H(8) C(4)-C(5)-H(9) C(5)-H(8) C(4)-C(5)-H(9) C(5)-H(8) C(4)-C(5)-H(9) C(5)-H(8) C(4)-C(5)-H(9) C(5)-H(8) C(5)-H(8) C(5)-H(8) C(6)-C(5)-H(8) C(6)-C(5)-H(9) C(7)-C(7)-H(8) C(7)-C(7)-H(7)-H(7)-H(7)-H(7)-H(7)-H(7)-H(7)-H		125.0	1066	113,1		103,4	110,5	104,5	101,2	
N(2)-N(1)-H(6) N(1)-C(2)-H(7) N(2)-C(3)-H(7) N(3)-C(4)-H(8) C(2)-C(3)-H(8) N(4)-C(5)-H(8) N(4)-C(5)-H(7) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(5)-H(9) C(5)-H(8) C(4)-C(5)-H(9) C(5)-H(8) C(4)-C(5)-H(9) C(5)-H(9) C(5)-H(8) C(4)-C(5)-H(9) C(5)-H(9) C(5)-H(9) C(7)-C(7)-H(8) C(7)-C(7)-H(7)-H(8) C(7)-C(7)-H(7)-H(8) C(7)-C(7)-H(7)-H(8) C(7)-C(7)-H(7)-H(8		125,0	126,6	1100	119,3	121.5	110.0			100.7
N(1)-C(2)-H(7) N(2)-C(3)-H(7) N(3)-C(4)-H(7) N(3)-C(4)-H(8) C(2)-C(3)-H(8) N(4)-C(3)-H(7) N(4)-C(5)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(8) C(3)-C(4)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(4)-C(5)-H(9) C(5)-H(9) C(5)-H(8) C(4)-C(5)-H(9) C(5)-H(9) C(5)-H(8) C(4)-C(5)-H(9) C(5)-H(9) C(5)-H(9) C(5)-H(9) C(5)-H(9) C(5)-H(9) C(5)-H(9) C(5)-H(9) C(5)-H(9) C(5)-H(8) C(6)-C(5)-H(9) C(7)-C(8)-C(8)-C(8)-C(8)-C(8)-C(8)-C(8)-C(8				118,9		121,5	119,9		120.0	122,/
N(2)-C(3)-H(7) N(3)-C(4)-H(7) N(3)-C(4)-H(8) C(2)-C(3)-H(8) N(4)-C(3)-H(7) N(4)-C(5)-H(8) N(4)-C(5)-H(7) C(3)-C(4)-H(8) C(3)-C(4)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(9) 122,4 119,5 120,9 121,5 120,9 121,5 120,9 120,		121.2							120,9	
N(3)-C(4)-H(7) N(3)-C(4)-H(8) C(2)-C(3)-H(8) N(4)-C(3)-H(7) N(4)-C(5)-H(8) N(4)-C(5)-H(7) C(3)-C(4)-H(8) C(3)-C(4)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(9) 132,7 131,9 120,9 120,9 120,9 121,7 120,9		121,3	122.4	110.5			121.5			
N(3)-C(4)-H(8) C(2)-C(3)-H(8) N(4)-C(3)-H(7) N(4)-C(5)-H(8) N(4)-C(5)-H(7) C(3)-N(4)-H(6) C(3)-C(4)-H(8) C(3)-C(4)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(9) 121,4 121,4 123,1 127,7 126,6 127,7 126,7 123,9 123,7			122,4	119,3	121.7	120.0	121,3			
C(2)-C(3)-H(8) N(4)-C(3)-H(7) N(4)-C(5)-H(8) N(4)-C(5)-H(7) C(3)-N(4)-H(6) C(3)-C(4)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(9) 125,7 121,1 127,7 126,6 127,7 126,7 123,9 123,7			121.4		121,/	120,9				
N(4)-C(3)-H(7) N(4)-C(5)-H(8) N(4)-C(5)-H(7) C(3)-N(4)-H(6) C(3)-C(4)-H(8) C(3)-C(4)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(8) C(4)-C(5)-H(9) 123,1 126,6 127,7 126,7 123,9 123,7	. , . , . ,	125.7	121,4							
N(4)-C(5)-H(8) N(4)-C(5)-H(7) C(3)-N(4)-H(6) C(3)-C(4)-H(8) C(3)-C(4)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(9) 132,7 131,9 126,6 127,7 123,9 126,7 123,9 123,7 123,9 123,7 123,9 123,7 123,9 123,7 123,9 123,7 123,9 123,7 123,9 123,7 123,9 123,7 123,9 123,9 123,7 123,9 123,9 123,7 123,9 123,7 123,9 123,7 123,9 123,7 123,9 123,7 123,9 123,7 123,9 123,9 123,7 123,9 123,7 123,9 123,9 123,7 123,9 123,9 123,7 123,9 12		123,7					123 1	127.7		
N(4)-C(5)-H(7) C(3)-N(4)-H(6) C(3)-C(4)-H(8) C(3)-C(4)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(9) 123,7 126,7 123,9 123,7 123,7 123,9							,	_		
C(3)-N(4)-H(6) C(3)-C(4)-H(8) C(3)-C(4)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(9) 123,7 128,3 133,4 130,4							120,0	12/,/	126.7	123.0
C(3)-C(4)-H(8) C(3)-C(4)-H(9) C(4)-C(5)-H(8) C(4)-C(5)-H(9) 125,7 131,9 130,4 130,4	. , . , . , , ,							123.7	120,7	123,9
C(3)-C(4)-H(9) 125,7 C(4)-C(5)-H(8) 132,7 131,9				128 3				143,1		
C(4)-C(5)-H(8) C(4)-C(5)-H(9) 132,7 131,9 133,4 130,4		125.7		120,3						
C(4)-C(5)-H(9) 132,7 131,9		123,1			133 4	130.4				
			132 7	131 9	155, 1	150, 1				
C(4)-C(5)-H(10) 121,3		121 3	152,7	131,7						

Az 3.5.2 táblázatban a feltüntetett vegyértékszögek fokokban vannak megadva. Az atomok számozása a

Függelékben található. ^a[33]

A táblázatból kitűnik:

- adott vegyületen belül, a nitrogén-nitrogén kötéstávolság attól függően változik, hogy a hidrogén melyik nitrogénen van. Legszembetűnőbb ez a különbség az 1H-tetrazol és 2H-tetrazol esetében 7,1×10⁻² Å, az 1H-1,2,3-triazol és a 2H-1,2,3-triazolnál ez a különbség 2,5×10⁻² Å, az 1,2,4-triazolok között ez az érték 2,7×10⁻² Å.
- a vizsgált vegyületekben a szén-szén távolság kb. 1.37 Å, kivéve a 2H-1,2,3-triazolt és a pirazolt, mely vegyületekben az említett kötéstávolság 1.4 Å-nál nagyobb kötéstávolság is előfordul
- a nitrogén-hidrogén kötések rövidebbek, mint a szén-hidrogén kötések, a legkisebb N-H kötéstávolság az 1H-tetrazolé. Ez a nitrogén nagy elektronnegatívitásával magyarázható.

A *szakirodalomban található*, a vizsgált vegyületek geometriai paramétereire vonatkozó adatokat elektron [66, 67], röntgen [68, 69, 70] és neutrondiffrakciós [71], valamint mikrohullámú spektroszkópiai [72, 73] mérésekből kapták.

A mérések mellett mind szemiempirikus, mind ab initio kvantumkémiai számítások készültek a vizsgált vegyületek geometriai paraméterinek és meghatározásának céljából. A Hartree-Fock [42, 74, 75, 76] számításokat többféle báziskészlettel készítették (6-31G, 6-31G**, 6-311G**). Az elektron korreláció figyelembe vétele céljából a vizsgált vegyületekre [72] MP2*, CNDO, MP4, QCIDS, és sűrűség funkcionál módszereket használtak.

A kvantumkémiai számítások értékelésénél figyelembe kell venni, hogy ezek izolált molekulákra, míg a mérések a reális, tehát az intermolekuláris kölcsönhatásokkal torzított molekulahalmazokra vonatkoznak. A kapott kötéstávolságokat és szögeket a kísérleti eredményekkel összevetve <u>a sűrűség funkcionál elmélet</u>tel [78] számított geometria áll legközelebb a kísérleti értékekhez. Összehasonlítva a DFT módszerrel számított és a mért MW adatokat, megállapíthatjuk, hogy a BeckeLYP-el a gyűrűben lévő atomok közötti kötéstávolságok közelebb álltak a kísérleti értékekhez, mint a Becke3P86-os esetén. Viszont a gyűrűbeli és az XYH (X, Y-CN) kötésszögek esetében a Becke3P86 számítási módszer alkalmazása a célravezető, ha a kísérleti értékekhez közelálló adatokat akarunk kapni. A szemiempirikus módszerekkel számolt N-H kötés hosszabbnak, az ab initio számítások eredményeként kapott kötéstávolság pedig rövidebbnek adódott, mint a kísérleti értékek [77].

3.5.2. Molekulaenergia és tautomerizáció

A vizsgált triazol és tetrazol vegyületek több <u>tautomer</u> formában léteznek. Az irodalomban számos kísérleti munka és kvantumkémiai számítás eredményeit találhatjuk arra vonatkozóan, adott körülmények között melyik a stabilabb forma.

Az 1,2,3-triazol 1H-1,2,3-triazol és 2H-1,2,3-triazol formában létezhet. Az 1H forma szimmetriája C_s, míg a 2H-é C_{2v}. Törnkvist [46] az 1,2,3-triazol egyensúlyi geometriáját vizsgálta. A molekulák geometriájának meghatározására kvantumkémiai számításokat végzett, az MP2/6-31G* módszert alkalmazta. Számításai eredményéből megállapította, hogy a 2H-forma stabilabb, mint az 1H, mivel a 2H-1,2,3-triazol energiájára alacsonyabb értéket kapott. A 2H-1,2,3-triazol számított dipólusmomentuma az 1H-1,2,3-triazolénál nagyobb, ez összhangban van a kísérleti értékekkel. Meghatározta a C-N nyújtási erőállandót, melyet az 1H-triazolnál 7,904 mdyn/Å -nek, míg a 2H formáét 7,54 mdyn/Å -nek találta. Az 1H-1,2,3-triazol C-C nyújtási erőállandója 7,912 mdyn/Å a 2H-1,2,3-triazolé pedig 7,297 mdyn/Å. Ezek az értékek azt mutatják, hogy az 1H formában a szén-szén kötés kettős kötés jellegű, míg a másik tautomer formában ez az egyes és kettes kötés között van.

Erre a megállapításra jutott M. H. Palmer [50] is, aki UV spektrumok felvétele és ab initio számítások segítségével megállapította, hogy gőzfázisban a 2H-1,2,3-triazol stabilabb konformer, míg az 1,2,4-triazol molekula esetében általában az 1H-1,2,4-triazol fordul gyakrabban elő.

M. Yanez [79] STO-3G, HF/3-21G, és HF/6-31G módszerrel, bázisskészlettel végzett kvantumkémiai számításai alapján az 1H-1,2,4-triazol gőzfázisban gyakrabban fordul elő, mint a 4H-1,2,4-triazol, mely inkább oldatban stabilabb.

Faniran [80] megfigyelései szerint az 1,2,4-triazol rácsrezgései nagyon érzékenyek a hőmérséklet változására. A vizsgált vegyület színképében a 40 cm⁻¹ frekvencia értéknél látható sáv szobahőmérséklettől alacsonyabb hőmérsékletig haladva egyre intenzívebbé válik.

A Borello [44] által felvett gázfázisú spektrumban öt. C-típusú sáv található. Ez az 1H forma előfordulását bizonyítja, mivel a 2H-1,2,3-triazolnak két síkra merőleges IR aktív rezgési módja van, míg az 1H-1,2,3-triazol C_s szimmetriájának következtében öt van.

Bertgrup [45] gázfázisú elektrondiffrakciós és mikrohullámú spektroszkópiai méréseket valamint ab initio számításokat végzett. Beszámolt arról, hogy Hartree-Fock SCF DZ bázissal végzett számításai alapján a 2H-1,2,3-triazol a stabilabb vegyület, mivel a két tautomer forma közötti energia különbség $\Delta E_{1H \Rightarrow 2H} = -14,7kJ/mol$. Különbséget figyelt meg a gáz és kristály fázisú 2H-triazol gyűrű szerkezete között, melyet azzal magyarázott, hogy az alkalmazott

kvantumkémiai módszer nem elég rugalmas ahhoz, hogy megfelelően leírja a delokalizált π rendszert.

Törnkvist [46] számításai alapján nem lehet kizárni azt a lehetőséget, hogy mindkét forma egyszerre van jelen, mivel a 2H formára jellemző frekvenciák nagyon közel, vagy esetleg ugyanannál az értéknél jelennek meg, mint a másik tautomer formáé. Törnkvist azzal magyarázza a Borello és Betgrup eredményei közti különbséget, hogy a Borello által használt anyag kismennyiségű vizet tartalmazott, és a víz jelenléte nagymértékben befolyásolja a két forma közötti egyensúlyt.

A két lehetséges tetrazol izomer közül a számítások [80] alapján a gőzfázisban a 2H-tetrazol, míg oldószerben az 1H-tetrazol a gyakrabban előforduló forma. A megfigyelt jelenség az 1H tetrazol nagyobb polarizálhatóságával magyarázható.

Ultraibolya spektrumok [81] és kvantumkémiai számítások alapján a lehetséges triazol és tetrazol konformerek közül a legstabilabbak a következő molekulák: 2H-1,2,3-triazol, 1H-1,2,4-triazol és 2H-tetrazol.

Az 3.5.3. táblázatban összefoglaltam a Becke3P86 DFT/6-311G** kvantumkémiai számításokkal kapott molekula energiákat. A táblázat tartalmazza a vizsgált triazol és tetrazol molekulák r_e egyensúlyi geometriához és a zéruspont energiával korrigált r₀ geometriához tartozó molekula energia értékeket. Az r₀-hoz tartozó energia értékek a rezgési alapállapothoz tartoznak, így jobban tükrözik a tényleges viszonyokat. A számított energia adatok alapján az 1H-1,2,3-triazol, a 4H-1,2,4-triazol és az 1H-tetrazol a legstabilabb konformer. Az energia különbség a tetrazol tautomerek között kisebb, mint a triazolok esetében.

3.5.3. táblázat : Szá	imított molekula en	ergiák (kJ/mol)		
Molekula	E _e (r _e energia)	E ₀ (r ₀ energia)	ΔE_e	ΔE_0
1H-1,2,3triazol ^a	-637815,73	-637659,78	E_{2H} - E_{1H} = -20,80	E_{2H} - E_{1H} = -18,67
2H-1,2,3triazol ^a	-637836,53	-637578,45		
1H-1,2,3triazol ^b	-631217,00		E_{2H} - E_{1H} = -14,72	
2H-1,2,3triazol ^b	-631231,72			
1H-1,2,4triazol ^a	-637888,19	-637730,14	E_{1H} - E_{4H} = -29,78	E_{1H} - E_{4H} = -22,31
4H-1,2,4triazol ^a	-637858,41	-637707,83		
1H-1,2,4triazol ^c	-632228,14		E_{1H} - E_{4H} = -28,22	
4H-1,2,4triazol ^c	-632199,92			
1H-tetrazol ^a	-679900,71	-679776,32	E_{2H} - E_{1H} = -13,30	E_{1H} - E_{4H} = -11,51

2H-tetrazol ^a	-679914,01	-679787,83		
1H-tetrazol ^c	-674103,52		E_{2H} - E_{1H} = -7,06	
2H-tetrazol ^c	-674110,58			

^a saját munka Becke 3P86/6-311G**, ^b Ref[66] HF/DZ, ^c Ref [80] HF/6-316*//6-31G

3.5.3. Rezgési erőállandók

A kvantumkémia számítások eredmény fájlja tartalmazza a rezgési erőállandók mátrixát derékszögű koordinátákban, hartree/bohr² egységekben. Az erőállandókat kémiailag jobban értelmezhető, belső koordináta rendszerbe áttranszformáltuk, a szokásos mértékegységeket alkalmazva melyek a következők: $10^2 \, \mathrm{Nm}^{-1}$ nyújtás-nyújtás, $10^{-10} \mathrm{N}$ nyújtás-deformáció és $10^{-18} \, \mathrm{Nm}$ deformáció-deformáció esetében. A számított erőállandóknak a kísérleti frekvenciákhoz való illesztéséhez skálafaktorokat használunk.

Az erőállandók nagyon érzékenyek a vizsgált N-heterociklusos öttagú gyűrű elektronszerkezetének a változására (lásd 3.5.4 táblázat):

3.5.4 táblázat : A	3.5.4 táblázat : A vizsgált molekulák gyűrűinek skálázott erőállandói (10 ² Nm ⁻¹ , 10 ⁻¹⁸ Nm)												
Belsö koordináták	Pir-rol ^a	Pira-	Imida-	1H-1,2,3-	2H-1,2,3-	1H-1,2,4-	4H-1,2,4-	1H-	2H-				
Deiso koordinatak	PII-101	zol	zol	triazol	triazol	triazol	triazol	tetrazol	tetrazol				
R ₁₂	5,832	6,277	5,876	5,285	6,634	5,734	4,775	5,506	6,635				
R ₂₃	6,462	7,705	7,313	7,120	6,334	7,430	7,919	7,499	6,019				
R ₃₄	5,204	6,129	5,415	5,918	7,172	6,010	6,308	5,016	7,173				
R ₄₅	6,462	7,248	6,640	7,010	5,930	7,570	6,308	7,945	6,279				
R ₅₁	5,832	6,949	5,731	6,674	7,172	6,565	7,919	7,055	7,628				
$\phi 215 - a_1*(\phi 123 + \phi 451)$ + $a_2*(\phi 234 + \phi 345)$	1,672	1,893	1,843	1,937	1,834	2,105	1,816	2,066	2,071				
b ₁ *(φ123-b451)+ b ₂ *(φ345-φ234)	1,512	1,700	1,674	1,755	1,756	1,951	1,699	1,999	2,064				
τ2345-													
$a_1*(\tau 1234+\tau 3451)$	0,444	0,504	0,469	0,442	0,508	0,460	0,411	0,350	0,386				
$+a_2*(\tau 4512+\tau 5123)$													
b ₁ *(τ3451-τ1234) +b ₂ *(τ5123-τ4512)	0,565	0,475	0,522	0,481	0,496	0,489	0,528	0,436	0,359				
a1 =	cos 144°	$a^{2} = co$	s 72°		$b1 = 1 - \cos$	72°	b2 =	$b2 = \cos 72^{\circ} - \cos 144^{\circ}$					

R: kötéstávolság, φ vegyértékszög, τ torziós szög. . ^a[32]

A táblázat alapján elmondható:

- A pirrolhoz képest egy, két vagy három nitrogén bevitele a gyűrűbe az erőállandók jelentős növekedését vonja maga után mind a kötéstávolságok mind a kötésszögek esetében.
- Ellentétes tendencia figyelhető meg a torziós szögeket jellemző erőállandóknál, melyek értékei csökkennek, a legkisebb értékek a négy nitrogént tartalmazó tetrazol molekula esetében kaptunk.
- Nagymértékben befolyásolja az erőállandókat a hidrogének pozíciója, nevezetesen az, hogy melyik nitrogénen (triazolok és tetrazol) helyezkednek el. Ez különösen szembetűnő az 1,2,3-triazolnál és a tetrazolnál. Annak a nitrogénnek, amelyiken a hidrogén elhelyezkedik a szomszédaival való kötését jellemző nyújtási erőállandója lecsökken.

3.5.4. Rezgési frekvenciák

A pirazol, az imidazol, az 1H-1,2,3-triazol, az 1H-1,2,4-triazol, az 1H-tetrazol és a 2H-tetrazol szimmetriája C_s , a pirrol, 2H-1,2,3-triazol és a 4H-1,2,4-triazol a C_{2v} pontcsoportba tartoznak.

Mivel sík molekulák, 2N-3 síkbeli és N-3 síkra merőleges rezgési módjuk van. Ezek közül jellegzetes csoportrezgések az NH és a CH csoportok vegyértékrezgései. A 3.5.5. táblázat mutatja be a rezgési módok megoszlását.

3.5.5 Táblázat	A vizsgá	A vizsgált molekulák rezgési módjainak száma									
Rezgési módok száma	Pirrol	Imidazol	Pirazol	1,2,3-triazol	1,2,4-triazol	Tetrazol					
Síkbeli	17	15	15	13	13	11					
Merőleges	7	6	6	5	5	4					
νСН	4	3	3	2	2	1					
νNH	1	1	1	1	1	1					

3.5.4.1. Síkbeli rezgési módok

3.5.4.1.1. CH és NH vegyértékrezgések

Az általam vizsgált N-tartalmú öttagú heterociklusos vegyületek **infravörös spektrum**ára jellemző, hogy 2500 és 3400 cm⁻¹ között kiterjedt sávrendszer jelenik meg, mely a kialakuló <u>intra- és intermolekuláris</u> hidrogénkötések következménye. Az infravörös spektrum intenzitása a rezgés közben fellépő dipólusmomentum változástól függ. Az asszociáció dipólusmomentum növekedésével járt, ezért az ilyen rezgési módokhoz tartozó sávok rendkívül intenzívek. Az asszociáció a monomer molekula csoportfrekvenciáinak csökkenését, a sávok kiszélesedését és intenzitás-növekedését idézi elő.

A kialakuló hidrogénkötések következtében az infravörös színképben megjelenő széles sávrendszer által elfedett sávok azonosítását kétféleképpen valósíthatjuk meg:

• Raman spektrumok felvételével:

A Raman spektrumban az intenzitás a polarizálhatósági tenzor elemeinek a változásától függ. A hidrogénkötéses szerkezeti elemek a Raman spaktrumban nem adnak erős sávokat. Ez lehetővé teszi, hogy az asszociációs sávok által az infravörös színképben elfedett sávok a Raman spektrumban jól észlelhetők legyenek.

Az 3.5.1 ábrán az imidazol infravörös és Raman spektruma látható, melyből kitűnik, hogy az imidazol infravörös spektrumát széles több maximumos sávrendszer jellemzi a 3400-2500 cm⁻¹ frekvencia tartományban, míg a Raman spektrumban 3141 és 3122 cm⁻¹ frekvenciánál két éles csúcs jelenik meg, melyet a vizsgált molekula CH vegyértékrezgéseihez rendelhetők.

Megállapíthatjuk hogy a Raman spektrumban a kölcsönhatástól mentes sávok viszonylag intenzívebbek, mint a kölcsönhatásosak (pl v_{CH} sávok).

3.5.1 ábra. Az imidazol infravörös és Raman spektruma

Az összes általam vizsgált vegyület infravörös színképére jellemző az említett széles sávrendszer a nagyobb frekvenciájú tartományokban. Azért az imidazol színképét emeltem ki, mert az imidazol az a vegyület, mely vizsgálataim szerint leginkább hajlamos a hidrogén kötések kialakítására. A pirrol, a pirazol, a triazolok és a tetrazol általam felvett infravörös és Raman spektrumait a Függelékben (F.3.1-F.3.8 ábrák, 2-4 old.) gyűjtöttem össze.

• Deuterálással

Deuterovegyületek előállításával az alapvegyületekben kialakuló NH^{···}N kölcsönhatások csökkennek, így a deuterovegyületek színképében kevesebb sáv jelenik meg, és a jelhozzárendelés egyszerűbbé válik. A deuterálás következtében a NH vegyértékrezgések frekvenciái eltolódtak. Így például a tetrazol vNH-ja az infravörös spektrumban 3447 cm⁻¹-nél látható, míg a deutero-tetrazol esetében a ND vegyértékrezgéshez rendelhető sáv 2552 cm⁻¹-nél jelenik meg.

3.5.2 ábra. A tetrazol és a deuterotetrazol infravörös és Raman spektrumai

A deuterált vegyületekről felvett spektrumok alapján kitűnik, hogy a deuterálás nem volt sem teljesen végbemenő, sem szelektív folyamat, ellenben egyensúlyra vezetett. Ezért csak részben könnyítette meg a spektrumok értékelését, mivel nem az összes hidrogén cserélődött le deutériumra, így a deuterovegyületek spektrumaiban az asszociációs sávok ugyanúgy megtalálhatóak, mint az alapvegyületek spektrumaiban, igaz kisebb intenzitással

Deuterálás során a vizsgált vegyületekben az egyes tömegszámú hidrogént (¹H) kettes tömegszámú deutériumra (²H) cseréljük ki, így a hidrogén atomtömege duplázódik, ami a vizsgált vegyületek rezgési spektrumaiban jelentős változást von maga után.

A disszertációm első fejezetében ismertettem, hogy a rezgési frekvenciákat megkapjuk a sajátérték egyenletet kell megoldanunk:

$$|GF - \lambda E| = 0$$

Ahol az F az erőállandó mártix, az E egység mátrix, míg a λ frekvenciákat tartalmazza ($\lambda = 4\pi^2 v^2$), G a kinetikus energia mátrix érzékeny az izotóphelyettesítésre, hisz a G a geometriai paraméterek mellett, a vizsgált molekula atomjainak a tömegeit is tartalmazza. A leírtak alapján, a deuterálás következtében a G mátrix egyes diagonális elemeinek számértéke csökken. Így a XD vegyértékrezgésre jellemző frekvencia közelítőleg $\sqrt{1/2}$ -szerese lesz az XH nyújtási frekvenciának.

A mért spektrumokból levont következtetéseket támasztják alá a kvantumkémiai számítások, miszerint a vizsgált molekulák vNH rezgési frekvenciára 3300-3500 cm⁻¹, míg deuteroszármazékaik vND frekvenciáira 2600-2400cm⁻¹ közötti értékek adódnak. A N-tartalmú öttagú heterociklusos vegyületek CH vegyértékrezgései a 3100-3200 cm⁻¹ frekvenciatartományban találhatóak (lásd 3.5.6.táblázat).

	3.5.6 táblázat: A vizsgált molekulák és deutero származékaik vNH(D), vCH(D) frekvenciái cm ⁻¹												
Rezgési mód													
νNH	3530			3447		3517		3490(2)		3490(4)		3447	
								3446(1)		3446(1)			
νND		2593			2535		2583		2470(2)		2566(4)		2537
									2413(1)		2536(1)		
νCH	3134	3134		3150	3150	3145	3145	3142(2)	3142(2)	3139(4)	3139(4)		
	3114	3114		3131	3131	3117	3117	3144(1)	3145(1)	3135(4)	3135(4)		
				3116	3116	3115	3115	3124(1)	3124(1)	3108(1)	3108(1)	3102	3102
										3101(1)	3101(1)		
νCD		2339			2351		2342		2378		2348		2374
		2304											

A deuteroimidazol Raman spektrumában 2342 cm $^{-1}$ frekvenciaértéknél éles sáv jelenik meg (3.5.3 ábra.). Josien [38] a deuteroimidazol gőz infravörös színképében ebben a tartományban a $v_{\rm CD}$ rezgési mód sávját találta. Cordes és Walter [39] a tetradeutero-imidazol molekulánál hasonló jelenségről számoltak be.

3.5.3 ábra. A deuteroimidazol infravörös és Raman spektruma

Az 1,2,4-deutero-triazol Raman spektrumában 2348 cm⁻¹-nél éles sáv jelenik meg, melyről Bellocq [38] is beszámol. Hasonló a helyzet a deuterotetrazol Raman spektrumában megjelenő 2374 cm⁻¹-es vállal (3.5.4 ábra.).

3.5.4 ábra. Az 1,2,4-deuterotriazol és a deuterotetrazol Raman spektrumának részlete

Mindezekből arra következtettem, hogy a vizsgált molekuláknak nemcsak a nitrogénjén lévő hidrogénje, hanem szénen lévő hidrogénje a deuterálás folyamán szintén lecserélődött deutériumra. Ennek az oka, hogy a magnitrogének –M elektron effektusai a CH kötéseket fellazítják, ami négy magnitrogén esetében már különösen jelentős. A C-atomok töltései erősen pozítivak (pl az 1H-tetrazol esetében q_c=0,228).

3.5.4.1.2. Az NH és a CH síkbeli deformációs rezgési módjai

Az NH síkbeli deformációs rezgési módokhoz (β_{NH}) rendelhető sávok a színképben 1600-1400 cm⁻¹ frekvencia tartományban találhatók. A kvantumkémiai számítások alapján elmondható hogy nem csoportrezgés, mivel erős keveredést mutat mind a CH síkbeli deformációval, mind a gyűrű vegyértéknyújtásával és síkbeli deformációival.

A vizsgált vegyületek deutero származékainak β_{ND} rezgési módjaként azonosítható sávok az infravörös és Raman színképek 700-900cm $^{-1}$ tartományában találhatóak.

3.5.5 ábra. : A pirazol és a deuteropirazol infravörös és Raman spektrumának részlete

Különösnek találtuk, hogy a deuterovegyületek β_{ND} illetve β_{CD} rezgési módjához tartozó frekvencia érték mintegy a kétharmada az alapvegyületek megfelelő síkbeli deformációs rezgési frekvenciáénak. Ezért a következő modellszámítást végeztük el [83].

A számunkra érdekes G mátrix eleme φφ a következő egyenlettel jellemezhető:

$$G_{\phi\phi} = \rho_{1,2}^{2} \mu_{1} + \rho_{2,3}^{2} \mu_{3} + \left(3 \rho_{1,2}^{2} + 3 \rho_{2,3}^{2} + 2 \rho_{1,2} \rho_{2,3}\right) \mu_{2}$$
(3.5.1)

Ahol a ρ a kitérés koordináta és 1/r-rel egyenlő (r a kötéstávolság), μ pedig az atomtömeg reciproka (1/m)

$$G_{\#} = \left(\frac{1}{1,000}\right)^{2} \frac{1}{1} + \left(\frac{1}{1,370}\right)^{2} \frac{1}{12} + \left(3\left(\frac{1}{1,000}\right)^{2} + 3\left(\frac{1}{1,370}\right)^{2} + 2\left(\frac{1}{1,000}\right)\left(\frac{1}{1,370}\right)\right) \frac{1}{14} = 1.37$$
Deuterálás hatására a $G_{\phi\phi}$ így változik:

$$G_{\emptyset} = \left(\frac{1}{1,000}\right)^{2} \frac{1}{2} + \left(\frac{1}{1,370}\right)^{2} \frac{1}{12} + \left(3\left(\frac{1}{1,000}\right)^{2} + 3\left(\frac{1}{1,370}\right)^{2} + 2\left(\frac{1}{1,000}\right)\left(\frac{1}{1,370}\right)\right) \frac{1}{14} = \frac{0.87}{1000}$$

A számítások tehát alátámasztották jelhozzárendelésünk helyességét, mivel:

$$\frac{v_{D}}{v_{H}} \approx \sqrt{\frac{G_{\phi\phi D}}{G_{\phi\phi H}}} = \sqrt{\frac{0.87}{1.37}} = \sqrt{0.635} = 0.80$$

A CH kötés síkbeli deformációja a vizsgált molekulák színképeiben az 1500-900 cm⁻¹ tartományban jelenik meg. Ezekben a rezgésekben mintegy 30-60%-ban vesz részt a CH deformáció, emellett a gyűrű vegyértéknyújtásai és síkbeli deformációs koordinátái és az NH síkbeli deformáció is szerepet játszik benne.

A vizsgált vegyületek és deutero származékaik mért és számított frekvenciáit összefoglaló táblázatokat a Függelékben helyeztem el (F.3.10-F.3.20. táblázat, 14-24 old).

3.5.4.1.3 A gyűrű vegyértékrezgései és síkbeli deformációs rezgési módjai

A kvantumkémia számítások alapján a gyűrű vegyértékrezgéséről és síkbeli deformációs rezgési módjáról elmondható hogy nem csoportrezgések, mivel erős keveredést mutatnak mind egymással mind az NH, mind a CH síkbeli deformációs módjaival.

Példaként az imidazol molekulára kapott mért és számított frekvenciákat, tartalmazó táblázatot (3.5.5.) emelném ki.

3.5.5. táblázat Az imidazol kísérleti és számított alapfrekvenciái (cm⁻¹)

	Kísérleti	frekvenc	iák								Számíto	ott frekvend	iák	PED (%)
	Infravör	ös				Raman									
										Hozzá-	HF/	HF/	B3P86/	B3P86/6	5-
	Mát-	Szi-	Szi-	Vizes	Gőz ^b	Szi-	Szi-	Olva-	Vizes	rendelés ^c	4-	6-31	6-311	311G**	С
	rix ^a	lárd ^b	<u>lárd</u> ^c	<u>oldat</u> ^b		lárd ^d	lárd ^c	dék ^c	<u>oldat^d</u>		21G ^e	++G*f	G^{**c}		
A'	3504	2800	3517	-	3518	3430	-	-	-	3517	3518	3928	3517	vNH99	
	-	3145	3146	3156	3160	-	3143	3144	3160	3143	3161	3458	3145	νCH98	
	-	3125	3124	3131	3135	3128	3123	3123	3133	3123	3133	3429	3117	νCH99	
	-	3125	3101	3131	3135	3110	3110	3110	3060	3110	3083	3428	3115	νCH99	
	1518	1541	1448	1532	1530	1495	1448	1449p	1490	1448	1545	1730	1441	vrg61	βCH21 βNH15
	1480	1448	-	1485	1480	1445	1404	1404	1430p	1404	1474	1652	1395	vrg57	βСН38
	1412	1329	1328	1428	1405	1325	1326	1326p	1328p	1328	1397	1578	1342	vrg49	βrg12 βNH35
	1404	1263	1263	1328	1330	1260	1265	1261p	1260p	1265	1334	1497	1270	vrg63	всн30
	1325	1146	-	1259	1260	1144	1188	1186p	1160p	1188	1259	1404	1182	vrg16	, βCH79
	1252	1104	1098	1160	-	1098	1100	1099	1135p	1098	1145	1250	1086	vrg94	•
	1125	1060	1058	1135	1127	1050	1062	1064	1065	1062	1132	1231	1061	vrg40	βCH43 βNH14
	1074	-	-	1094	1074	-	-	1013	-	1013	1083	1183	1015	vrg47	βCH22 βNH23
	1056	-	-	1067	1055	-	988	981	-	988	1059	1153	1001	vrg47	βrg12 βCH37
	900	938	923	865	890	930	924	928	935	923	926	1018	909	βrg83	βСН15
Α"	850	837	831	914	930	868	833	837	860	831	853	998	808	γCH90	•
	810	760	758	842	809	753	_	-	750	758	806	967	758	, γCH100)
	732	-	-	757	723	-	-	674dp	-	674	729	836	679	γCH99	
	662	660	661	666	668	655	-	663dp	-	663	659	727	661	γrg97	
	636	624	621	620	626	626	-	-	620	621	635	686	627	γrg85	
	545	-	-	-	513	-	-	538	-	538	514	561	520	γrg12	γΝΗ88

[⇒] átlagos eltérés a mért és számított frekvenciák között: 8,89 cm⁻¹, ⇒ átlagos relatív eltérés: 0,98 % p: polarizált, dp:depolarizált, v:vegyértéknyújtás, γ:merőleges deformáció, β:síkbeli deformáció, rg:gyűrű aRef. [35], BRef. [38], saját munka, Ref. [40], Ref. [42], Ref. [43], nemskálázott

A gyűrű vegyértékrezgésekhez rendelhető sávok a vizsgált vegyületek színképében az $1000-1500~{\rm cm}^{-1}$ tartományban találhatók. A 3.5.6 ábrán az 1,2,3-triazolnak néhány gyűrűvegyértékrezgését ($\nu_{\rm rg}$) jelöltem meg, melyek az infravörös spektrumban szép éles sávokként jelennek meg.

A színkép 800-900 cm⁻¹ tartományában lévő sávok a vizsgált vegyületek gyűrű síkbeli deformációs rezgéseihez (β_{rg}) rendelhetőek.(lásd 3.5.6 ábra.)

3.5.6. ábra. Az 1,2,3-triazol infravörös spektrumának részlete

3.5.4.2. Merőleges rezgési módok

A N-tartalmú öttagú heterociklusos vegyületek merőleges deformációs rezgéseire jellemző sávok, az 1000 cm⁻¹ alatti tartományban találhatók az infravörös és Raman színképekben.

Az NH merőleges deformációs rezgéshez rendelhető sávokra az 450-600 cm⁻¹ frekvenciatartomány jellemző. A CH merőleges deformációs rezgések a 700-900 cm⁻¹ tartományban vannak. A gyűrű deformációs (torziós) rezgések a 600-700 cm⁻¹közti tartományban jelennek meg a spektrumban.

A deuterovegyületek γ_{ND} és γ_{CD} rezgéseit 500-400 cm $^{-1}$ közötti frekvenciaértékek jellemzik.

A normálkoordináta számítások alapján az NH deformációs rezgések bizonyos esetekben keverednek a gyűrű merőleges deformációs rezgési módjával, míg a CH merőleges deformációs rezgések lokalizált csoportrezgések.

A pirrol (Függelék 3.10 táblázat, 14 old) esetében mind NH (480 cm⁻¹), mind a CH (868, 826, 736, 712 cm⁻¹) csoportok merőleges deformációs rezgési módjai csoportrezgések, hasonlóan a gyűrű merőleges deformációs módjaihoz mely a Raman spektrumban található 651 cm⁻¹ és 620 cm⁻¹ sávokkal jellemezhetőek. Az 1D-pirrol (Függelék 3.10 táblázat, 14 old) Raman spektrumában 364 cm-1 hullámszámnál lévő sáv a normálkoordináta analízis alapján 91%-ban γND.

Az imidazol (lásd 3.5.5 táblázat) esetében az 538 cm⁻¹-es alapfrekvenciát 12%-ban gyűrű merőleges deformáció és 88%-ban NH merőleges deformáció adja. Ezzel szemben a deuteroimidazol (Függelék F.3.14 táblázat, 18 old.) olvadékról felvett Raman spektrumban a 434 cm⁻¹-nél látható sáv a számítások alapján 92%-ban γND, azaz csoportrezgésnek mondható.

Az imidazol spektrumában a 831 cm⁻¹-nél és a 674 cm⁻¹-nél látható sávok 98% illetve 99%-ban γCH jellegűek. Az imidazol olvadék Raman spektrumában 661 cm⁻¹-nél és 621 cm⁻¹-nél található sávok egyértelműen γrg-hez rendelhetők.

A pirazol esetében (Függelék F.3.11. táblázat, 15 old) az 520 cm⁻¹-nek számított frekvencia 84%-ban γNH-ból, míg 14%-ban γrg-ből tevődik össze. A deuterált származék olvadék Raman spektrumában 426 cm⁻¹-nél látható sáv viszont az ND csoport merőleges deformációs rezgési módjához rendelhető.

A pirazol olvadék Raman spektrumában a 765 cm⁻¹-es és a 654 cm⁻¹-es csúcsok γCH-k. A pirazol gyűrű merőleges deformációs rezgési módjaihoz rendelhető sávok a Raman spektrumban 653 cm⁻¹ és 615 cm⁻¹-nél vannak.

Az 1H-1,2,3-triazolnál (Függelék F.3.15. táblázat, 19 old.) a számítások alapján három sáv is részben γNH jellegű: nevezetesen a 712 cm⁻¹-es és 656 cm⁻¹-es sávok, melyekben egyaránt 37%-os a részvétele a 62%-os γrg jelleg mellett, míg az 590 cm⁻¹-esben 11% a gyűrű merőleges deformációja, a γNH-é pedig 89%. Ezzel szemben a spektrumban a 786 cm⁻¹-es és

838 cm⁻¹-es hullámszámértékeknél megjelenő sávok 100%-ig a CH merőleges deformációs rezgésekhez rendelhetőek.

A 2H-1,2,3-triazolnál (Függelék F.3.16. táblázat, 20 old.) a számítások 550 cm $^{-1}$ -nél 90%-os γ NH-t mutatnak , míg a 797 cm $^{-1}$ -es és a 838 cm $^{-1}$ -es sávokat a CH merőleges deformáció jellemzi. Szintén csoportrezgések a 698 cm $^{-1}$ -es és a 838 cm $^{-1}$ -es sávok melyeket a γ rg jellemez.

Az 1H-1,2,4-triazol (Függelék F.3.17. táblázat, 21 old.) esetében az 550 cm⁻¹-es alapfrekvenciát 16%-ban gyűrű merőleges deformáció és 83%-ban NH merőleges deformáció adja. A 4H-1,2,4-triazol esetében az 530 cm⁻¹ frekvenciával jellemezhető γNH csoportrezgés. A potenciális energia eloszlás alapján elmondható, hogy az 1H-1,2,4-triazol 926 cm⁻¹-es és 884 cm⁻¹-es valamint a 4H-1,2,4-triazol (Függelék F.3.18. táblázat, 22 old.) 865 cm⁻¹-es és 865 cm⁻¹-es frekvenciával jellemezhető rezgési módjában a CH merőleges deformáció egyedül vesz részt, mint ahogy egyértelműen γrg csoportrezgések az 1H-1,2,4-triazol 681 cm⁻¹-es és a 4H-1,2,4-es triazol 649 cm⁻¹-es és 681cm⁻¹-es sávjai.

A deuterotriazolok (Függelék F.3.15.-F.3.18 táblázatok, 19-22 old.) ND merőleges deformációs csoportrezgései a számítások alapján a következők: 1D-1,2,3-triazol→501 cm⁻¹, 2D-1,2,3-triazol→432 cm⁻¹, 1D-1,2,4-triazol→430 cm⁻¹, 4D-1,2,4-triazol→430 cm⁻¹.

Az 1H-tetrazolnál (Függelék F.3.19. táblázat, 23 old) a gyűrű és az NH merőleges deformációk nagy keveredést mutatnak, míg a 906 cm⁻¹ frekvenciával jellemezhető sáv γCH deformáció- mely hasonlóan a 2H-tetrazoléhoz- potenciális energia eloszlás alapján egyedül vesz részt ebben a rezgési módban.

A 2H-tetrazol (Függelék F.3.20. táblázat, 24 old) infravörös spektrumában az 575 cm⁻¹-nél lévő sáv a számítások alapján a 71%-ban γNH és 21%-ban γrg, míg a 675 cm⁻¹ hullámszámú sáv 84 %-ban γrg és 15%-ban NH merőleges deformáció. A 2H-tetrazol gyűrű egyedüli merőleges csoportrezgése a 658 cm⁻¹-es melynek jellege merőleges deformáció.

A deuterotetrazolok (F.3.19.-F.3.20 táblázatok, 23-24 old.) ND merőleges deformációs rezgési módjához tartozó sáv az 1D-tetrazol Raman spektrumában 470 cm⁻¹-nél, míg a 2D-tetrazolnál 451 cm⁻¹-nél jelenik meg.

3.6. Összefoglalás

Doktori disszertációm egy részében a N-tartalmú öttagú heterociklusos alapvegyületek szerkezeti és rezgési spektroszkópiai tulajdonságait kívántam összefoglalni.

Infravörös, Raman és olvadék Raman felvételeket készítettem az imidazol, a pirazol, az 1,2,3-triazol, az 1,2,4-triazol és a tetrazol vegyületekről.

A felvett *infravörös spektrumokon* látható hogy a vizsgált molekulákban rendkívül erős hidrogénkötések kialakulása következtében az NH vegyértékrezgéseknek igen széles sávrendszer felel meg, a 3400-2000 cm⁻¹ tartományban. Az asszociáció a monomer sáv frekvenciacsökkenését és kiszélesedését idézi elő, ez megnehezíti a sávok hozzárendelését.

Mivel a *Raman spektrumban* az intenzitás a polarizálhatósági tenzor elemeinek a változásától függ, az ilyen sávok itt lényegesen kevésbé intenzívek. Ez lehetővé teszi, hogy az asszociációs sávok által az infravörös színképben elfedett sávok a Raman spektrumban jól észlelhetőek legyenek.

Deutero vegyületek előállításával próbáltuk a NH^{···}N kölcsönhatásokat csökkenteni, és ezzel a sáv hozzárendelést megkönnyíteni, de sajnos ez nem minden esetben volt célravezető, mivel a deuterálás egyensúlyra vezető folyamat. A deuterálás következtében a ND frekvenciák az alacsonyabb hullámszám értékek felé tolódtak el az alapvegyületek NH-iéhoz képest.

Meglepő módon azt tapasztaltuk, hogy a deuterálás következtében nem csak a N-en lévő hidrogén cserélődött le deutériumra, hanem részben a N mellett lévő C hidrogénje is. Ezt a megállapítást támasztja alá, például a deuteroimidazol Raman színképében 2342 cm⁻¹-nél található nagyon éles sáv.

A színképek értelmezésének elősegítése céljából kvantumkémiai erőtér és normálkoordináta számításokat is végeztünk. A Gaussian 94/DFT programcsomag Becke3P86/ módszerét alkalmaztuk 6-311G** báziskészlettel. A számítások eredménye az optimalizált geometria, a rezgési erőtér, frekvenciákhoz tartozó rezgési kép, a megfelelő rezgési mód szimmetria speciesze valamint az infravörös intenzitások. Skálafaktor legkisebb négyzetes optimalizálással a számított frekvenciákat a kísérletiekhez illesztettük.

A kvantumkémiai számításokat elvégeztük a vizsgált vegyületek összes lehetséges tautomer formájára, valamint deuterált származékaikra.

A deutero vegyületekkel ellenőrizni lehet az alapvegyületekre skálázással előállított erőtér jóságát. Az tapasztaltuk, hogy a számított erőtér aránylag jól visszaadta a deuterált molekulák frekvenciáit.

A potenciális energia eloszlás alapján a vizsgált vegyületekre egységesen jellemző, hogy a gyűrű nyújtások nagy keveredést mutatnak a CH és NH síkbeli deformációkkal. Ezzel szemben a CH és az NH vegyértékrezgésekről egyértelműen elmondható, hogy csoportrezgések.

4. Pirazinok rezgési spektroszkópiája

4.1. A pirazinok biológiai jelentősége

A pirazin és származékai számos természetes ízesítőanyag és szerves komplex vegyület alkotó anyagaként ismertek. A pirazin gyűrű részt vesz olyan vegyületekben, melyek felelősek az italok és az ételek ízének, aromájának kialakításáért, ilyeneket például a tea, a kávé, a sajtok és a főtt húsok tartalmaznak.

A 2-klór- és a 2,6-diklórpirazin gyógyszer- és agráripari intermedier.

A 2-metilpirazint használják rovarirtó szerekben pigmentként, az etilén és telítetlen szerves vegyületek polimerizációjához katalizátorként, és vörösréz futtatások világosító szereként. A dimetilpirazinok részt vesznek olyan vegyületekben, melyek számos étel aromáját, ízét kölcsönzik, így többek között 2,3-dimetilpirazin származékok találhatók a spárgában, a kávéban, a burgonyában, használják őket szószok, italok és édességek készítésekor. A 2,5-dimetilpirazin származékok a marhahús, a ribizli, a gabona alkotóelemei. A 2,6-dimetilpirazin kötött formában kimutatható a kakaóban, a kávéban és a burgonyában.

4.2. A pirazinok irodalmának áttekintése

A pirazin, valamint metil és klór származékainak rezgési spektroszkópiai vizsgálatával foglalkozó tanulmányok száma kevés. A pirazin infravörös és Raman spektrumát különböző szerzők már publikálták [83-87]. Kartha [88] a 2,6-diklórpirazin rezgési módjait azonosította.

A vizsgált klórpirazinok mért spektrumainak értelmezése céljából kvantumkémiai számítások készültek [95-100], melyek szemiempirikus és HF módszerrel történtek. Billes [13] munkatársaival a pirazin, a piridazin és a pirimidin molekulákat vizsgálta Möller–Plessett pertubációs és sűrűség funkcionál (DFT) módszer segítségével.

Thalladi [89] a 2-metil, a 2,3-dimetil-, a 2,5-dimetil- és a 2,6-dimetilpirazinok szerkezetét vizsgálta röntgendiffrakcióval. Kartha [88] a 2-metilpirazin infravörös és Raman spektrumának sávhozzárendelését publikálta. Infravörös színképeket készített a vegyületekről mind gőz, mind folyadék halmazállapotban, a Raman spektrumokat folyadék fázisban mérte. Arenas kutatómunkájának középpontjában a 2-metilpirazin [90], a 2,3-dimetilpirazin[91], a 2,5-dimetilpirazin [92] és a 2,6-

dimetilpirazin [93] állt. Ezen vegyületek infravörös és Raman spektrumainak értelmezése céljából szemiempirikus MINDO/3 számításokat végzett.

4.3 Kísérleti adatok

A vizsgálataink során használt pirazin Fluka, a 2-klórpirazin valamint a 2-metil és a dimetilpirazinok EGA, a 2,6-diklórpirazin ICN termék volt, 97-99%-os tisztasági fokkal.

A pirazin fehér kristályos anyag, míg a 2-klór, a 2-metil, a 2,3-dimetil és a 2,5-dimetilpirazin átlátszó folyadék. A 2,6-diklórpirazin enyhén sárga, míg a 2,6-dimetilpirazin fehér kristályos vegyület.

A vizsgált vegyületek *infravörös spektrumait* Nicolet Magna 750 FT-IR spektrométeren a 4000 - 400 cm⁻¹ tartományban 1 cm⁻¹ felbontással mértük. A szilárd mintákból KBr pasztilla készült, míg a folyadékokat KBr ablakok között vékony folyadékfilmként vettük fel. A pirazin, a 2-klór és a 2-metilpirazin gőz spektrumainak mérésére 10 cm-es küvettát és 0,125 cm⁻¹-es felbontást használtunk.

A Raman spektrumokat Nicolet 950 FT-Raman típusú készüléken a 3600 -150 cm⁻¹ tartományban, a Nd-YAG lézer 1064 nm-es hullámhosszúságú vonalával gerjesztve mértük, 100 mW teljesítménnyel, 2 cm⁻¹ felbontással és 512 scannel. Az összes vizsgált pirazin szármasék normál Raman színképét felvettük, míg polarizált Raman spektrumokat csak a pirazinról, valamint 2-klór, 2-metil és 2,3-dimetil szubsztituált származékairól készítettünk.

4.4 Kvantumkémiai számítások

A kvantumkémiai számítások nagy segítséget jelentenek a vizsgált molekulák szerkezetének és rezgési spektroszkópiai tulajdonságainak vizsgálata során. Számításainkat sűrűség funkcionál (DFT) módszerrel, Becke3P86 funkcionál [94] alkalmazásával, 6-311G(d,p) báziskészlettel, a Gaussian 94 programcsomag [123] felhasználásával végeztük.

A kvantumkémiai számítások első lépését a geometriai optimalizálás jelentette, melyet erőtér és frekvenciaszámítás követett. A potenciális energiát az atomok derékszögű koordinátái szerint kétszer differenciálva adódtak a rezgési erőállandók. A geometriai adatokat és az erőállandókat a normálkoordináta analízisben használtuk fel, melyben az erőteret belső koordináták rendszerébe vittük

át, majd a számított frekvenciákat az erőállandókra alkalmazott skálafaktorok segítségével illesztettük a kísérleti értékekhez. Munkánk eredménye jobb számított frekvenciák mellett a PED (potenciális energia eloszlás), mely az adott rezgési mód jellegét adja meg. A normál koordináta analízishez a BME Fizikai Kémia Tanszékén készült programokat használtuk fel.

Vizsgálataink középpontjában az említett vegyületek mellett a metilpirazinok esetében a lehetséges izomerek, a klórpirazinoknál pedig a ³⁵Cl és a ³⁷Cl izotópok optimált geometriája, rezgési frekvenciája, rezgési módjai álltak.

4.4.1. Geometriai adatok

A vizsgált molekulák egy része sík szerkezetű, így a pirazin a D_{2h} pontcsoportba, míg a 2-klórpirazin a C_s -be a 2,6-diklórpirazin pedig a C_{2v} pontcsoportba tartozik.

A metilpirazinok esetében a metil csoport(ok) belső forgása következtében több konformer fordulhat elő. Feltételeztük, hogy a metil csoporto(ko)n lévő hidrogének közül egy a gyűrű síkjában van, míg a másik kettő e sík alatt illetve felett helyezkedik el. Így a szubsztituensek hidrogénjeinek térbeli helyzete alapján különböztettük meg a vizsgált metil- és dimetilpirazinokat, melyeket 0-val , illetve 1-el jelöltünk. Ennek megfelelően a vizsgált metilpirazinok a C_s , illetve a C_{2v} pontcsoportba sorolhatók.

A számítások alapján a lehetséges 2-metilpirazin konformációs izomerek közül a (0) konformernek van a kisebb zérusponti energiája.

Az egyes dimetilpirazinok közül az alábbiak adódtak a legstabilabbnak: a 2,3-dimetilpirazin(0,0), a 2,5-dimetilpirazin(1,1) és a 2,6-dimetilpirazin(0,0). (Függelék F.4.1 táblázat, 28. old.)

Elmondható, hogy a (0,0) és az (1,1) jelelölésű konformerek energiái közelálló értékek. A szimmetriának köszönhetően a (0,1) illetve (1,0) jelölésű izomerek energiája megegyező. Kivételt képez a 2,5-dimetilpirazin, melynél a kvantumkémiai számítások alapján a 2,5-dimetilpirazin(0,0) és a 2,5-dimetilpirazin(0,1) molekulák energiájára is azonos értéket kaptunk.

Ha megvizsgáljuk a pirazin gyűrű paramétereinek változását a szubsztitúció függvényében, látjuk, hogy mind a szubsztituensek minősége (klór vagy metil), mind a szubsztitúció mértéke (egyszeres, kétszeres) befolyásolja a kötéstávolságokat és kötésszögeket (Függelék, F.4.2 és F.4.3 táblázat, 29-30. old.).

A klór szubsztituensek -I>+M effektusának köszönhetően a N1-C2, illetve a C3-N4 kötések rövidülnek. Különösen a 2-klórpirazin esetében jelentős a N1-C2 kötéstávolság változása. Egy újabb Cl

bevitele a C6-N1 illetve a N4-C5 kötéstávolságok csökkenését vonja maga után. A kötésszögek változása nem jelentős.

A metil csoportokra jellemző +I >-M effektus a klószubsztitúcióval teljesen ellentétes hatást fejt ki a pirazin gyűrűre. Az NC kötések megnyúlnak. Különösen szembetűnő ez a változás a 2,3-dimetilpirazin C3-N4 kötésénél. Szintén nő a C5-C6 távolság, ez nyomon követhető a 2,5- és 2,6-dimetilpirazin esetében. A pirazin gyűrű szögeinek változása a metil szubsztitúció hatására jelentősnek mondható, különösen az N1-C2-C3, valamint az N4-C5-C6 szögek csökkenése figyelemreméltó.

Ha megvizsgáljuk a metil csoportok geometriai paramétereit a metil- és dimetilpirazinok esetében jelentős eltéréseket nem tapasztalunk, bár a C7-H11 kötéstávolság hosszabb a 2,5-dimetilpirazinban a többi metilszubsztituált pirazin megfelelő kötéstávolságánál (Függelék F.4.3, táblázat 30. old).

4.4.2. Rezgési erőállandók

A kvantumkémiai számítások eredményfájlja tartalmazza az erőállandókat derékszögű koordinátákban, hartree/bohr² egységekben. Ezeket az erőállandókat transzformáljuk át a belső koordináták rendszerébe 10² Nm⁻¹, 10⁻¹8 N és 10⁻¹8 Nm mértékegységeket használva, a nyújtás-nyújtás, nyújtás-deformáció és a deformáció-deformáció erőállandók esetében. A gyűrű belső koordinátáinak definiálásához a Pulay [65] és munkatársai által kidolgozott rendszert alkalmaztuk. A vizsgált molekulák erőállandóit, belsőkoordináta rendszerét, valamint a használt skálafaktorokat tartalmazó táblázatokat a Függelék F.4.4 és F.4.5 táblázatában (31-33 old.) helyeztem el.

A pirazin diagonális nyújtási erőállandói két csoportra oszthatók: nevezetesen azokra, melyek az NC és azokra, melyek a CC nyújtással hozhatók összefüggésbe. Az első klór szubsztitúcióval a vicinális CC erőállandók csökkentek, míg a bevitt Cl-hez legközelebb álló három NC-hez tartozó erőállandó értéke emelkedett. A második klór bevitelével mind a négy NC nyújtáshoz tartozó erőállandó értéke nőtt, a CC erőállandók pedig kiegyenlítődtek, alig különböztek a pirazinéitól.

A 2-metilpirazin esetében a CC nyújtáshoz tartozó erőállandó értéke számottevően nem változott a pirazinéhoz képest, míg a 2,6-dimetilpirazin esetében a gyűrűben található két CC nyújtási állandó kiegyenlítette egymást, és jóval nagyobb lett, mint a monoszubsztituált pirazin esetében. Az NC nyújtási koordinátákhoz tartozó erőállandók nagyobbak a metilszubsztituált pirazinok esetében, mint az alapmolekulában.

4.5. Rezgési frekvenciák

A spektrumok sávhozzárendelésének elősegítésére mind kísérleti, mind számításos módszert alkalmaztunk. A vizsgált vegyületek infravörös és Raman spektrumait a Függelékben helyeztem el (Függelék F.4.1-F.4.8 ábra, 25-27. old.)

Vizsgáltuk a gőz halmazállapotú mintákról készült, az infravörös spektrumokban található sávok kontúrjait. A pirazin, a 2-klór-és a 2-metilpirazin gőzspektrumában jól láthatók a forgási szerkezetek, a P, a Q és az R ágak. A teljesség igénye nélkül néhány példát kiemelnék. A 3.5.1.ábrán a 2-klórpirazin infravörös spektrumában 768 cm⁻¹-nél C típusú sávot azonosíthatunk.

4.5.1 ábra. A 2-klórpirazin infravörös spektrumának részlete

Szemléletes példa a B típusra a pirazin infravörös színképében 1413 cm⁻¹-nél megjelenő sáv.

A Raman spektrum depolarizációs hányadosából az adott rezgési mód szimmetria speciesére következtethettünk. Erre szép példa a 2,3-dimetilpirazin párhuzamosan és merőlegesen polarizált Raman spektruma (4.5.3. ábra).

4.5.3 ábra. A 2,3-dimetilpirazin párhuzamosan és merőlegesen polarizált Raman spektruma

Vannak sávok, melyek nagyon közel jelennek meg egymáshoz és átfednek, a színképben csupán burkoló görbét látunk. Az átfedő sávokat görbeillesztéssel bontottuk fel.

A vizsgált vegyületek spektrumai értelmezésének elősegítése, valamint rezgési spektroszkópiai tulajdonságainak jobb áttekinthetősége végett kvantumkémiai erőtérrel normálkoordináta számításokat is végeztünk. Ezek eredményét: a számított frekvenciákat és a potenciális energia eloszlást tartalmazó táblázatokat (F.4.6-F.4.12 táblázat, 34-41 old) a Függelékben helyeztem el. Elmondható, hogy a mért és számított frekvenciák közötti átlagos eltérés a vizsgált vegyületek esetében 1% alatt van.

4.5.1 CH rezgési módok

4.5.1.1. A pirazin gyűrű

A pirazin C-H vegyértékrezgései 3062, 3060, 3053, és 3015 cm⁻¹-nél jelennek meg a spektrumban. A monoklór, illetve a monometil származékoknál az ezekhez a rezgési módokhoz tartozó frekvenciák 3086, 3070 és 3055 cm⁻¹ hullámszámnál találhatók.

A diszubsztituált klór és metil pirazinoknál két vCH sávot várunk. A 2,6-diklórpirazin infravörös spektrumában a C-H vegyértékrezgések 3104 és 3099 cm⁻¹-nél jelennek meg, míg a diszubsztituált metilszármazékok esetében ez az érték mintegy 25-40 cm⁻¹-gyel alacsonyabb (4.5.4. ábra).

4.5.4 ábra. A 2,6-diklór és a 2,6-dimetilpirazin infravörös spektrumának részlete

A CH síkbeli deformációs rezgésekre a vizsgált vegyületek spektrumában az 1600-1000 cm⁻¹ tartomány a jellemző. A kvantumkémiai számítások alapján elmondható, hogy ezen rezgések nem csoportrezgések, hiszen nagy keveredést mutatnak mind a gyűrű vegyértéknyújtásaival és síkbeli deformációival, mind a szubsztituensek nyújtásaival és hajlításaival. Így pl. a 2-klórpirazin folyadékról készített infravörös spektrumban az 1459, az 1377 és az 1287 cm⁻¹-nél található sávok a kvantumkémiai számítások alapján 65%-ban βCH és 32%-ban gyűrű nyújtásból tevődnek össze. A 2,6-diklórpirazin Raman spektrumában 1172 cm⁻¹-nél található sáv 32%-át βCH, 46%-át vrg, és 11%-át βrg adja. A metil- és dimetilpirazinoknál a gyűrű C-H síkbeli deformációi nagymértékben keverednek a metil csoportokhoz tartozó βCH koordinátákkal, és zömmel az 1450 - 1250 cm⁻¹ hullámszám tartományban jelennek meg a spektrumban.

A vizsgált vegyületeknél a CH merőleges deformációk egyértelműen csoportrezgések. A pirazin infravörös, illetve Raman spektrumában az 1020, a 985, a 976 és a 785 cm⁻¹–nél megjelenő sávok γCH-k. A 2-klórpirazin esetében a 954, a 929 és a 844 cm⁻¹, míg a 2-metilpirazin esetében a 943, a 931 és a 814 cm⁻¹ értékek jellemzik a CH merőleges deformációs rezgési módokat. A diszubsztituált pirazinok esetében két γCH jelenik meg a spektrumban. Ez a 2,6-diklór szubsztitúció esetében 897 és 875 cm⁻¹-t jelent, míg a metilpirazinoknál a 2,3-dimetilpirazinnál a 969 és a 848 cm⁻¹, a 2,5-dimetilszubsztituáltnál a 937 és a 860 cm⁻¹, végül a 2,6-dimetilpirazin esetében a 936 és a 865 cm⁻¹ a jellemző értékek.

Megállapíthatjuk tehát, hogy a dimetilpirazinoknál jobban elkülönülnek - mintegy 70 cm⁻¹-rel - a γC-H rezgési módok, mint a 2,6-diklórpirazin esetében.

4.5.1.2. A metil csoport

A metilpirazinok metil csoportjaihoz tartozó vCHm vegyértékrezgések sávjai a spektrumban a 3000-2900 cm⁻¹ tartományban jelennek meg. A 2-metilpirazin vCHm frekvenciái a 2,5-dimetilpirazinéhoz közelálló értékeket mutatnak, míg a 2,3 és 2,6-dimetilpirazinoknak az ehhez a rezgési módokhoz tartozó frekvenciái egymáshoz hasonlóak (4.5.5 ábra).

A metil csoport C-H-hoz tartozó hajlítási rezgési módjainak egy része csoportrezgés, más része nagy keveredést mutat a gyűrű vegyértéknyújtásaival és a C-Cm nyújtásokkal. A normál koordináta analízis alapján a metil csoportok CHm síkbeli deformációs rezgési módjaihoz rendelhető frekvenciák két csoportra oszthatók. A βCHm-hez tartozó sávok nagy része a spektrum 1330-1490 cm⁻¹ tartományában található, míg kisebbik hányaduk, zömmel a dimetilpirazinok esetében, az 1000 cm⁻¹ hullámszám közelében van. A 2-metilpirazinnál az 1000 cm⁻¹-nél kissé magasabb frekvencia a jellemző.

4.5.5 ábra. A 2-metil és a 2,5-dimetilpirazin Raman spektrumának részlete

A metil csoportokhoz tartozó C-H merőleges deformáció nem csoportrezgés, a számítások alapján jelentős keveredést mutat a gyűrű, valamint a szubsztituens síkbeli és merőleges mozgásaival. A γCHm-hoz tartozó sávok a vizsgált vegyületek spektrumában a 750-1000 cm⁻¹ tartományban jelennek meg.

4.5.2. Szubsztituens effektusok

A gyűrű vegyértékrezgései a vizsgált vegyületek infravörös és Raman spektrumainak 1500-1000 cm⁻¹ hullámszám tartományában keresendők. A pirazin gyűrűnek a lélegző rezgése az alapvegyületnél 1015 cm⁻¹, klór szubsztituáció hatására ez az érték 1049cm⁻¹-re, további klór bevitel hatására 1131cm⁻¹-re emelkedik.

A metil csoport hatása a pirazin gyűrű lélegző rezgésére is szembetűnő. Ez a vrg a 2-metilpirazin esetében 1195 cm⁻¹-nél található a spektrumban, míg diszubsztituáltak esetében további frekvencianövekedést tapasztalható: a 2,3-dimetilpirazin 1202 cm⁻¹, 2,5-dimetilpirazinnál 1206 cm⁻¹ és 2,6-dimetil származéknál a legnagyobb mértékű az eltolódás, ott a sáv 1211cm⁻¹-nél jelenik meg (4.5.6. ábra)

4.5.6 ábra. A pirazin, a 2,6-diklórpirazin és a 2,6-dimetilpirazin infravörös spektrumának részlete.

A vizsgált vegyületek gyűrűjének vegyértéknyújtásai és síkbeli deformációi nagy keveredést mutatnak egymással és a szubsztituensek nyújtási és hajlítási mozgásával egyaránt, az egyes rezgési

módok %-os megoszlására felvilágosítást csak a normálkoordináta analízis ad. (lásd Függelék F.4.6. - F.4.12 táblázatok, 34-41 old.)

A pirazin spektrumában az 1019 cm⁻¹ hullámszámnál látható sáv a normálkoordináta analízis alapján 79% βrg és 16%-ban vrg. A monoklór származék spektrumában ez a sáv 1010 cm⁻¹-nél jelenik meg, a 2,6-diklórpirazin infravörös színképében 1003 cm⁻¹-nél látható. Ennek a βrg sávnak a pozíciója a 2-metilpirazin infravörös spektrumában 1021 cm⁻¹, míg a 2,5-dimetilpirazin esetében ez az érték 1039 cm⁻¹.

A pirazin gyűrű síkbeli deformációs módjaihoz tartozó frekvenciákra mind a klór, mind a metil szubsztitúció csökkentő hatással van. Ez a tendencia a szubsztituensek számával nő. Az elmondottakat támaszthatjuk alá további példákkal: a pirazin Raman spektrumában 698 cm⁻¹-nél látható sáv egyértelműen βrg. A 2-klórpirazinnál az ehhez a rezgési módhoz tartozó sáv már 618-nál cm⁻¹-nél látható, míg a diszubsztituált klór pirazin esetében 654 cm⁻¹, de ez a PED alapján csak 64%-ban βrg, 19%-ban vrg és 12%-ban vCCl. A 2-metilpirazin infravörös spektrumában 637 cm⁻¹-nél lévő sáv a számítások alapján βrg 75%-ban és vCC 16%-ban. A pirazinhoz képest legnagyobb mértékű frekvenciacsökkenést a 2,6-dimetilpirazin esetében figyelhetünk meg, mely vegyületnél az infravörös színképekben az 571 cm⁻¹-nél lévő sáv a PED alapján 69%-ban βrg és 21%-ban vCC.

A pirazin gyűrű merőleges deformációs rezgési módjaira a vizsgált vegyületek spektrumainak 1000 cm⁻¹ alatti hullámszám tartománya a jellemző. A pirazin γrg-jei 755, 417 és 338 cm⁻¹ hullámszámnál találhatók, a 2-klórpirazin esetében ezek az értékek 744, 413 és 188 cm⁻¹-re módusulnak, újabb klór atom bevitele további frekvencia csökkenést eredményez: nevezetesen ebben az esetben a sávok helye 732, 456 és 159 cm⁻¹. A kvantumkémiai számítások alapján a metilpirazinok gyűrűjének merőleges deformációi nem csoportrezgések, hiszen itt nagy keveredést mutatnak a C-C síkbeli és merőleges mozgásai. Természetesen ennél a vegyület családnál is találhatók olyan frekvenciák, melyek részben vagy teljes egészében a γrg-hez rendelhetők, pl. a 2-metilpirazin esetében ezek helye 748 és 408 cm⁻¹. A 2,3-dimetilpirazin Raman spektrumában a számítások alapján a 444 cm⁻¹-nél lévő sáv 76 %-ban, míg a 721 cm⁻¹-es sáv 51 %-ban a gyűrű merőleges deformációs mozgásából adódik. A 2,5-dimetilpirazin esetében a 735 és a 420 cm⁻¹-es sáv egyértelműen γrg jellegű, míg a 499 cm⁻¹-es csak 65%-ban az. A 2,6-dimetilpirazin színképeiben található 533, 444, és 214 cm⁻¹-es sávok a PED alapján csak 20-40%-ban rendelhetők a gyűrű síkra merőleges deformációihoz.

4.5.3. A szubsztituensek rezgési módjai

A vC-Cl rezgési módok a klórpirazinok spektrumaiban az 1200 cm⁻¹ alatti tartományban jelennek meg. A potenciális energia eloszlás alapján e vegyértéknyújtási koordináták keveredést mutatnak más koordinátákkal.

A 2-klórpirazin C-Cl vegyértéknyújtása az 1128 cm⁻¹-es és a 767 cm⁻¹-es sávhoz tartozó rezgési módban is szerepet játszik, de a legnagyobb PED-je (53%) a 434 cm⁻¹-esében van.

A 2,6-diklórpirazin Raman spektrumában látható erős sávok (733 és 572 cm⁻¹) C-Cl nyújtásához rendelhetők. A 2-klórpirazin Raman spektrumában 309 cm⁻¹-nél megjelenő sáv a C-Cl síkbeli deformációjához rendelhető.

A 2,6-diklórpirazin βCCl-jei a Raman spektrumban 374 és 202 cm⁻¹ frekvenciánál jelennek meg. A C-Cl merőleges deformációhoz rendelhető sávok a klórpirazinok Raman spektrumaiban a 450-150 cm⁻¹ tartományban találhatók. Nem csoportrezgések, ugyanis ezen rezgési módok kialakításában a C-Cl merőleges deformáció mellett a gyűrű merőleges deformációi is részt vesznek.

A metilpirazinok νC-Cm rezgési módjait a spektrumban 1300 cm⁻¹ alatt észleltük. A gyűrű vázának nyújtási, illetve síkbeli deformációs koordinátáival gyakran keverednek.

A 2-metilpirazin Raman színképében látható gyenge sáv 355 cm⁻¹-nél C-Cm síkbeli deformációként azonosítható, míg a 2,3-dimetilpirazin esetében erre a rezgési módra a 424 és a 281 cm⁻¹ frekvencia jellemző.

A 2,5-dimetilpirazin βC-Cm sávja 391 és 281 cm⁻¹ hullámszámnál található a Raman spektrumban. A 2,6-dimetilpirazin βC-Cm-jei közel állnak a 2,3-dimetilpirazinéihez: 417, illetve 288 cm⁻¹ hullámszámnál jelennek meg.

A metil, valamint a 2,3, a 2,5 és a 2,6 dimetilpirazinok C-Cm merőleges deformációjához rendelhető sávok a vizsgált molekulák színképeinek 500 cm⁻¹ alatti hullámszám tartományában jelennek meg, nem csoportrezgések, a gyűrű merőleges deformációival keveredve alakítják ki az adott rezgés jellegét.

A 2-metilpirazin infravörös spektrumában 466 cm⁻¹-nél található sáv C-C merőleges deformációhoz rendelhető.

A 2,3-dimetilpirazin C-Cm merőleges deformációi a 492 és a 446 cm⁻¹-es sávokhoz tartozó rezgési módokban is szerepet játszanak, de a legnagyobb PED-jük (71%) a 246 cm⁻¹-es sávhoz tartozó rezgési módban van. A 2,5-dimetilpirazin γC-Cm sávjai 488 és 329 cm⁻¹ hullámszámnál találhatók a Raman spektrumban. A 2,6-dimetilpirazin infravörös spektrumában 535 és 444 cm⁻¹-nél látható gyenge sávok, valamint a Raman színképében 213 cm⁻¹-nél talált sávhoz tartozó rezgési mód C-Cm merőleges deformációkból és a gyűrű merőleges deformációs mozgásaiból tevődik össze.

4.5.4 Izotóp effektus

Kvantumkémiai számítások segítségével vizsgáltuk a ³⁵Cl és ³⁷Cl izotópoknak a klórpirazinok rezgési spektroszkópiai tulajdonságaira kifejtett hatását. A G mátrixba behelyettesítettük a 35 illetve 37 izotópoknak megfelelő tömegeket, és ezzel számítottuk ki a rezgési frekvenciákat. Vizsgáltuk a 2-klórpirazin esetében a ³⁵Cl és ³⁷Cl izotópokat a 2,6-diklórpirazinnál pedig valamennyi (³⁵Cl-³⁵Cl, ³⁵Cl-³⁷Cl, ³⁷Cl-³⁷Cl) lehetséges változatot figyelembe vettük.

A C-Cl vegyértékrezgést a számítások alapján jelentősen nem befolyásolja a ³⁵Cl és ³⁷Cl helyettesítés. Csupán néhány reciprok centiméternyi változást figyelhetünk meg a két izotópomer számított frekvenciái között (4.1.táblázat).

Az izotóp effektus talán a C-Cl síkbeli deformációnál a legszembetűnőbb, a 2-klórpirazinnál (³⁵Cl) ez az érték 304 cm⁻¹, míg a 37-es izotópjánál 296 cm⁻¹. A 2,6- diklórpirazin esetében ez az eltérés mindössze néhány reciprok centiméter.

A diszubszituciót tekintve a C-Cl merőleges deformációnál az izotóp eltolódás kis mértékű, míg a monoszubsztituens esetén jelentősebb, ugyanis a ³⁵Cl izotopomer számított frekvenciája 8 cm⁻¹-gyel magasabb, mint a ³⁷Cl helyettesített molekuláé.(422 illetve 414 cm⁻¹).

4.1.táblázat. A 2-klór és 2,6-diklórpirazin és ³⁵Cl és ³⁷Cl izotópjainak mért és számított alapfrekvenciái

2-klórpirazin				2,6-dik	**			
^a Mért	Számított		^a Mért	Számított			Hozzárendelelés ^b	
	³⁵ Cl	³⁷ Cl		³⁵⁻³⁵ Cl	³⁵⁻³⁷ Cl	³⁷⁻³⁷ Cl		
3076	3079	3079	3104	3100	3100	3100	νCH	
3066	3073	3073	3099	3096	3096	3096	νCH	
3059	3059	3059					νСН	
1563	1565	1568	1549	1547	1547	1547	βrg, vrg	
1532	1542	1547	1539	1451	1541	1541	βrg, vrg	
1458	1445	1445	1413	1407	1407	1407	βCH, vrg	
1381	1379	1378	1375	1372	1373	1372	βCH, vrg	
1285	1278	1277	1230	1229	1228	1228	βCH, vrg	
1203	1219	1224					vrg	
1162	1165	1164	1172	1170	1170	1170	vrg, βCH	
			1168	1167	1167	1167	vrg, βCH	
			1151	1143	1143	1143	vrg, βCH	
1133	1127	1126					vCCl, vrg, βrg	
1049	1045	1047					vrg, βCH	
1009	1006	1002	1003	1001	1001	1002	vrg, βCH	
960	969	969					γСН	
930	936	936	941	919	920	919	γСН	
			875	870	869	869	γСН	
846	846	846					γСН	
			831	832	832	832	vCCl, vrg, βrg	
764	765	760					βrg, vCCl	
744	749	749					γrg	
			733	737	737	737	γrg, vCCl	
			655	655	654	654	βrg, vrg	
613	615	610					βrg	
			572	581	580	581	γrg, vCCl	
480	482	482					γrg, vCCl	
			470	470	468	469	νCCl, βCCl, βrg	
428	422	414	457	464	464	464	γCCl, βCCl, βrg	
410	409	409	411	396	392	394	γrg	
			374	373	371	372	γCCl, βCCl, βrg	
309	304	296					βCC1	
			202	202	200	201	βCC1	
186	163	163		175	175	175	γCCl, γrg	
				159	157	159	γCCl, γrg	

^aA Raman és az infravörös spektrumban talált, a számított frekvenciákhoz legközelebb álló értékek.

 $^{^{}b}$ rg: gyűrű, v: nyújtás, β :síkbeli hajlítás, γ : merőleges deformáció

4.6. Összefoglalás

A metil és klór szubsztituált pirazinok egyszerű, de mégis szemléletes példájának segítségével tanulmányozhattuk, hogy milyen hatást gyakorolnak ezek a csoportok az azinok geometriájára és rezgési spektroszkópiai tulajdonságaira.

Fontos kiemelni, hogy a monoszubsztitució, illetve a 2,5-ös helyzetben történt metil szubsztitúció aszimmetrikus, míg a 2,6 diklór és a 2,3 valamint a 2,6 dimetil csoportok rávitele a pirazingyűrűre szimmetrikus molekulához vezetett, így vizsgálhattuk a szimmetria hatását ezen vegyületek szerkezetére, erőállandóira és rezgési frekvenciáira.

A klór atomok -I>+M, valamint a metil csoportok +I>-M effektusa nemcsak a szubsztituensek közvetlen környezetére van hatással, hanem megváltoztatja a pirazin gyűrű egész π elektron rendszerét, ezáltal az egész molekulára kihatással van. A második metil csoport vagy klór atom rávitele a pirazin gyűrűre zömmel felerősíti a hatást, néha azonban nem hoz jelentős változást a monoszubsztituált vegyületekhez képest.

A klór szubsztituenseknek köszönhetően a vCH-hoz rendelhető sávok a spektrumban magasabb hullámszám értékeknél jelennek meg.

Mind a metil, mind a klór szubsztituensek hatására a pirazinhoz képest a gyűrű vegyértékrezgésekhez tartozó frekvenciái egyre magasabb értékeket vesznek fel.

A gyűrű merőleges deformációihoz rendelhető sávok a szubsztituált pirazinok spektrumában alacsonyabb hullámszámnál jelennek meg, mint a pirazin esetében.

A normál koordinátaanalízisből egyértelműen látszik, hogy a szubsztituensek vegyérték és síkbeli, sőt merőleges deformációs mozgásai is nagy keveredést mutatnak a gyűrű vegyérték nyújtási és síkbeli, valamint merőleges deformációival. Kivételt képeznek az alacsony frekvenciáknál jelentkező merőleges deformációk, melyek csoportrezgések.

A klórpirazinok esetében tanulmányozott izotópeffektus a modellszámítások alapján bizonyos rezgési módok esetében 10 cm⁻¹ körüli frekvenciaeltolódást is jelenthet.

5. Fenotiazinok rezgési spektroszkópiája

5.1. A fenotiazinok biológiai jelentősége

A fenotiazinok a bioaktiv molekulák osztályának jelentős részét képviselik. A fenotiazinokat számos területen használják, így [109-112] pl.:

- antioxidánsként,
- nyugtató gyógyszerek hatóanyagaként,
- polimerizációs folyamatokban iniciátorként,
- napenergiát megkötő anyagokban,.
- Egyes 10-metil-(10H)-fenotiazin származékok ígéretes gyógyszer alapanyagok

5.2. A fenotiazinok irodalmának áttekintése

Az általunk vizsgált N-metil-fenotiazin, valamint N-metil-fenotiazin-oxid molekulák, valamint alkohol és aldehid származékainak rezgési spektroszkópiai vizsgálatával foglalkozó közlemények száma kevés.

A szakirodalomban zömmel előállításukkal [113-114], valamint szerkezetükkel foglalkozó publikációkat találunk, melyekben csupán néhány egyszerű fenotiazinnak kísérleti módszerekkel meghatározott szerkezetével foglalkoznak [115-118].

A kvantumkémiai számítások másik alternatívát jelentenek a fenotiazinok szerkezetének meghatározására. Néhány fenotiazin származék szerkezetét szemiempirikus INDO módszerrel számították [120], míg az N-vinilfenotiazinok esetében AM1 módszerrel [121] számított szerkezeti adatokat találtunk a szakirodalomban. Xia-Song Li [122] munkatársaival az N-szubsztituált fenotiazin szerkezetéről átfogó cikket publikált, melyben mind szemiempirikus (CNDO, AM1, PM3), mind ab-initio (HF/STO-3G, HF/3-21G*, HF/6-31*) számításokkal kapott eredményeit foglalta össze.

Legjobb tudomásom szerint az általunk vizsgált N-metil-fenotiazinok és N-metil-fenotiazinoxidok rezgési spektroszkópiájával foglalkozó tudományos publikáció nem található a szakirodalomban. Ezen értekezéssel párhuzamosan a témában elért eredményeinket két közleményben szeretnénk publikálni.

5.3. Kísérleti adatok

A vizsgálataink során használt 10-metil-(10H)-fenotiazint, 10-metil-(10H)-fenotiazin-3-karbaldehidet, 10-metil-(10H)-fenotiazin-3-il-metanolt, 10-metil-(10H)-fenotiazin-5-oxidot, 10-metil-(10H)-fenotiazin-3-karbaldehid-5-oxidot és 10-metil-(10H)-fenotiazin-3-il-metanol-5-oxidot a kolozsvári Babeş-Bólyai Egyetem Biokémia Tanszékén, Majdik Kornélia csoportjában szintetizálták. A megjelenésüket tekintve fehér, vagy enyhén sárgás kristályos anyagok.

A vizsgált vegyületek *infravörös spektrumait* Nicolet Magna 750 FT-IR spektrométeren 4000-400cm⁻¹ tartományban 1 cm⁻¹ felbontással mértük. A szilárd mintákból KBr pasztilla készült.

A *Raman spektrumokat* Nicolet 950 FT-Raman típusú készüléken, a 3600-150cm⁻¹ mérési tartományban, a Nd-YAG lézer 1064 nm-es hullámhosszúságú vonalával gerjesztve mértük, 100 mW teljesítménnyel, 2 cm⁻¹ felbontással és 512 scannel.

5.4. Kvantumkémiai számítások

A kvantumkémiai számítások nagy segítséget jelentenek a vizsgált molekulák szerkezetének és rezgési spektroszkópiai tulajdonságainak vizsgálata során. Számításainkat Hartree-Fock módszerrel 6-31G** báziskészlettel, a Gaussian 98 programcsomag [124] felhasználásával végeztük.

A kvantumkémiai számítások menetét már az elméleti összefoglalóban, illetve az előző fejezetekben részleteztem, itt csupán annyit említenék meg, hogy kisebb nehézséget jelentett a 3N-6 db független belső koordináta definiálása (a molekula geometriai paramétereinek, a kötéshosszaknak és a vegyértékszögeknek a változásai a rezgések folyamán). Nehézséget jelentett a molekula felépítése:

- a molekula az S-N vonal mentén meghajlik,
- molekula váza merevebb, mint az várható lenne.
- Emiatt egyes erőállandók a szokásosnál lényegesen nagyobbak

A kvantumkémiai számítások eredményeként kaptuk az ezekhez a kémiailag jól értelmezhető koordinátákhoz tartozó rezgési erőállandókat. Ezeket a kísérleti hullámszám értékekhez illesztettük (u.n. skálázás). A skálázott rezgési erőállandókat használtuk fel arra, hogy a hullámszám értékeket rezgési módokhoz rendeljük, és meghatározzuk a rezgési módok jellegét.

Természetesen itt is - mint az öt és hattagú N-tartalmú-heterociklusok esetében – a kvantumkémiai számítások és azt követő normál koordináta analízis együttes eredménye az optimált geometriai adatokon, a rezgési erőtéren, a rezgési frekvenciákon, az infravörös és Raman intenzitásokon kívül a potenciális energia eloszlás, mely az adott rezgési mód jellegét adja meg.

5.4.1. Geometriai paraméterek

A vizsgált fenotiazinokat a továbbiakban a hivatalos elnevezésüktől eltérően fogom elnevezni, ennek az az oka, hogy a kvantumkémiai számításokból kifolyólag az alapgyűrűre teljesen más számozást kellett használnom, mint amit a szerves kémia alkalmaz. Így pl. a 10-metil-(10H)-fenotiazin gyűrű számozása a IUPAC nomenklatúra szerint a következő:

E szerint a 10-es és 1-es, az 5ös és 4-es, a 10-es és 6-os valamint az 5-ös és 9-es számú C atomok közötti atomoknak nincsen száma, viszont, ha ezen molekula szerkezetét meg akarom határozni, a kvantumkémiai számításokban erre a négy atomra is szükségem van. Így én a következő számozást alkalmaztam:

Egyúttal egyszerűsített elnevezést is használok, melynek alapján a molekula neve: MFT. (Az alapvegyületre a továbbiakban a MFT rövidítést alkalmazom)

Az alábbiakban a vizsgált molekulák rajza mellé az általam használt számozás alapján kapott neveket, zárójelben, pedig a hivatalos elnevezést helyeztem el.

- MFT (10-metil-(10H)-fenotiazin)
- MFT-13-aldehid (10-metil-(10H)-fenotiazin-3-karbaldehid)
- 13-hidroximetil -MFT (10-metil-(10H)-fenotiazin-3-il-metanol)
- **MFT-2-oxid** (10-metil-(10H)-fenotiazin-5-oxid)

• MFT-13-aldehid-2-oxid (10-metil-(10H)-fenotiazin-3-karbaldehid-5-oxid)

• 13-hidroximetil-MFT-2-oxid

(10-metil-(10H)-fenotiazin-3-il-metanol-5-oxid)

Ha megvizsgáljuk a MFT gyűrű paramétereinek változását a szubsztitúció függvényében, látjuk, hogy a szubsztituensek minősége (aldehid vagy alkohol) befolyásolja a kötéstávolságokat és a kötésszögeket. A vizsgált molekulák számított geometriai paramétereit tartalmazó táblázatokat a Függelékben helyeztem el (F.5.1 és F.5.2 táblázat Függelék 42. old..

A 5.1. táblázatban a vizsgált MFT-ok és MFT-2-oxid molekulák néhány, a szubsztitúció függvényében jelentősen változó geometriai paraméterét foglaltam össze.

5.1. táblázat. Az vizsgált MFT-ok és MFT-2-oxidok néhány geometriai paraméterének változása a szubsztitúció függvényében

Szubszt.	kötéstávolság(A)			vegyértéks	szög(fok)	torziós szög (fok)		
R	N-C	S-C	S=O	CNC	CSC	CCNC	CCSC	
-	1,4085	1,7741		118,1	98,1	44,0	37,5	
CH ₂ OH	,	1,7742		118,2	98,0	43,7	37,4	
СНО	1,4118 1,3992	1,7733		118,5	97,9	43,0	37,2	
-	1,4096	1,7806	1 ,4840	116,9	95,3	44,0	43,9	
CH ₂ OH	1,4094	1,7806	1,4841	116,9	95,2	43,8	43,8	
СНО	1,4124 1,4006	1,7801	1,4833	117,3	95,2	42,8	43,1	

A táblázatból kitűnik, hogy míg az alkohol csoport kevésbé hat a gyűrű szerkezetére, addig az aldehid szubsztitúció jelentősen megnyújtja az N-C kötéstávolságot. Ezzel ellentétben a MFT-2-oxid S-O kötéstávolsága az aldehid csoport bevitelével csökken.

Összehasonlítva a MFT és MFT-2-oxid alapgyűrűk CNC és CSC szögeit látjuk, hogy a MFT-ban a kötésszögek nagyobbak, a CCNC és CCSC torziós szögek pedig kisebbek, mint a MFT-2-oxidokban.

Aldehid szubsztitúció hatására mind a CNC, mind a CSC vegyértékszögek nőnek, a CCNC és a CCSC torziós szögek pedig csökkenek, akár a MFT, akár a MFT-2-oxid molekulák geometriai paramétereit nézzük. Az alkohol csoport hatása az alapmolekula kötéseire és torziós szögeire nem számottevő.

5.5. Rezgési frekvenciák

5.5.1. C-H vegyértékrezgések, síkbeli és síkra merőleges rezgési módok

5.5.1 A gyűrű C-H rezgési frekvenciái

A vizsgált vegyületek mért és számított alapfrekvenciáit tartalmazó táblázatokat a Függelékben helyeztem el (F5.3-F.5.8. táblázat, 49-63 old.)

A MFT (Függelék, F.5.3 táblázat, 49 old.) és a MFT-2-oxid (Függelék, F.5.6 táblázat, 56 old) molekulák gyűrűjéhez kapcsolódó C-H vegyértékrezgések a számítások (PED) alapján egyértelműen csoportrezgések, melyeket a 3150-2900 cm⁻¹ frekvencia tartomány jellemez.

Az aldehid és hidroximetil szubsztituált MFT és MFT-2-oxid molekulák infravörös és Raman spektrumaiban a gyűrűhöz közvetlenül kapcsolódó hidrogének vCH-ihoz rendelhető sávok az alapvegyületekhez (MFT: 5.1. ábra, MFT-2-oxid: 5.2. ábra) képest 20-30 cm⁻¹-rel alacsonyabb hullámszámnál találhatók.

5.1. ábra. Az MFT infravörös és Raman spektruma

A MFT és a MFT-2-oxid alapmolekulák és hidroximetil származékaik aromás gyűrűinek rezgési módjai csatolódnak, míg az aldehideknél ilyen csatolás nem jelentkezik. A szétcsatolás az aldehidek erős M effektusának következménye.

A CH csoportok síkbeli deformációs rezgései a vizsgált vegyületek infravörös és Raman spektrumaiban az 1550-1450, valamint az 1370-1200 és az 1170-1120 cm⁻¹ tartományaiban találhatók. A normálkoordináta számítások alapján elmondható, hogy ezen rezgések nem csoportrezgések, hiszen nagy keveredést mutatnak a gyűrűk vegyértéknyújtásaival és síkbeli deformációs mozgásaival. Így például az MFT spektrumában 1259 cm⁻¹-nél található sáv a számítások alapján 21%-ban a gyűrűnyújtásokból és 61%-ban βCH-kból áll.

Szép példa az MFT-2-oxid infravörös spektrumában az 1138 cm⁻¹-es sáv, mely a potenciális energia eloszlás alapján 24%-ban a gyűrű vegyértéknyújtásból, 13%-ban a gyűrű síkbeli deformációiból és 54%-ban CH csoportok síkbeli deformációiból tevődik össze.

5.2. ábra. A MFT-2-oxid infravörös és Raman spektruma

A CH csoportok síkra merőleges deformációjához rendelhető sávok a spektrumban az 1050-780 cm⁻¹ tartományban találhatók, zömmel csoportrezgések, vannak kivételek, melyek száma az alkohol, de főleg az aldehid szubsztitúció esetében megnő.

A MFT infravörös és Raman spektrumában a γCH-khoz rendelhető sávok 20-40cm⁻¹-rel alacsonyabb hullámszám értéknél jelennek meg, mint MFT-2-oxid molekula esetében.

Az alap és az aldehiddel szubsztituált molekulák színképeit összehasonlítva kitűnik, hogy az aldehid szubsztitució a CH csoportok merőleges deformációinak frekvencia eltolódását vonja maga után, nevezetesen 5-15 cm⁻¹-rel alacsonyabb frekvencia érték jellemzi a MFT-13-aldehid és a MFT-13-aldehid-2-oxidot ilyen rezgési módjait, mint a MFT és a MFT-2-oxid molekulák γCH-it.

A CH₂OH szubsztituens további 5-10 cm⁻¹-es csökkenést eredményez a CH csoportok merőleges deformációját jellemző frekvencia értékekben az aldehid szubsztituált molekulákéhoz képest.

5.5.2 A metil csoport rezgési frekvenciái

A N-en lévő metil csoport vegyértékrezgéseiként azonosítható sávok a vizsgált vegyületek spektrumaiban 3000-2800 cm⁻¹ tartományban találhatóak. Kettő közülük 3000-2960 cm⁻¹ között, míg egy 2800-2860 cm⁻¹ tartományban jelenik meg.

Az aldehid szubsztituens 15 cm⁻¹, a CH₂OH szubsztituens további 5-10 cm⁻¹ frekvencia csökkenést eredményez a metil csoportok vegyértékrezgéseit jellemző frekvencia értékekben az alapvegyületéhez (a MFT-hoz) képest. Ez az aldehid és a hidroximetil csoportok erős –I és -M, illetve –I és +M hatásával hozható összefüggésbe.

A vizsgált MFT-2-oxid származékokban hasonló tendencia figyelhető meg, csak kisebb mértékű az eltérés az CHO (5-10 cm⁻¹) és a hidroximetil (10-15 cm⁻¹) szubsztituált vegyületek és az alapvegyület (MFT-2-oxid) megfelelő sávjaihoz képest.

A MFT metil csoportjának C-H síkbeli deformációs rezgési módjai a számítások alapján 1589, 1568 és 1231 cm⁻¹-nél jelennek meg az infravörös spektrumban.

A MFT-13-aldehid ezen rezgési módjához tartozó frekvenciák közül kettő egyértelműen azonosítható, ezek helye 1595 és 1231 cm⁻¹, míg az 1572 és az 1559 cm⁻¹-es sávok rezgési módjaiban 24-24%-ban vesznek részt a gyűrűk nyújtásai és C-H síkbeli deformációi.

A 13-hidroximetil-MFT molekula metil csoportjához tartózó C-H síkbeli deformáció az alapvegyülethez képest mintegy 50-70 cm⁻¹ frekvencia értékkel (1529, 1511, 1163 cm⁻¹) eltolódva található meg a spektrumban.

A MFT-2-oxid metil csoportjának síkbeli rezgési módjai a Raman spektrumban 1581, 1578 és 1217 cm⁻¹-nél találhatók.

A MFT-13-aldehid-2-oxid Raman spektrumában a metil csoport C-H síkbeli deformációjához rendelhető sávok 1605, 1587 és 1231 cm⁻¹-nél jelennek meg, ez mintegy 5-10 cm⁻¹ eltolódást jelent az alapvegyületéhez képest.

A 13-hidroximetil-MFT-2-oxid molekula infravörös spektrumának 1596, 1545 és 1212 cm⁻¹-nél sávjai βCHm rezgési módokhoz rendelhetők (5.3. ábra).

5.3. ábra. Az 13-hidroximetil-MFT-2-oxid infravörös és Raman spektruma

A metil csoport C-H merőleges deformációi módjai a számítások alapján 10-30%-ban keverednek a CH-k síkbeli deformációival. Ezek a Raman spektrum 400 cm⁻¹ alatti tartományában jelennek meg, de itt sem csoportrezgésként vannak jelen, hanem a gyűrű síkbeli deformációja, valamint N-C síkbeli deformációja is részt vesz ezen rezgési módok kialakításában.

A MFT Raman spektrumában 352 cm⁻¹-nél lévő sáv 11%-ban βrg, 10 %-ban βNC és 53%-ban γCHm, míg a 282 cm⁻¹-es 14%-ban βrg, 23%-ban βNC és 35%-ban γCHm. A többi vizsgált vegyületre vonatkozó részletes adatokat a Függelékben elhelyezett táblázatokban találhatunk (F.5..3-F.5.3.8 táblázatok, 49-62 old.), melyek alapján megállapítható, hogy a szubsztitúció ezekre a rezgési módokra nincs jelentős hatással.

5.5.3 Az aldehid csoport jellemző C-H és CO rezgési frekvenciái

Az MFT-13-aldehid (5.4. ábra), (Függelék F.5.4 táblázat, 51. old.) és az MFT-13-aldehid-2-oxid (5.5. ábra), (Függelék F.5.7. táblázat 58. old.) aldehid csoportjának C-H vegyértékrezgése az infravörös spektrumban 2823 cm⁻¹-nél jelenik meg.

5.4. ábra. A MFT-13-aldehid infravörös és Raman spektruma

A MFT-13-aldehid és MFT-13-aldehid-2-oxid Raman spektrumában 1462 cm⁻¹-nél látható sáv részben az aldehid csoport C-H síkbeli deformációjához, részben a C=O vegyértéknyújtásokhoz rendelhető.

Az MFT-13-aldehid infravörös spektrumában 1107 cm⁻¹-nél található sáv az aldehid csoport C-H merőleges deformációs rezgési módjaként azonosítható, mely a számítások alapján 15%-ban gyűrű vegyértéknyújtásokból, 72%-ban az aldehid C-H merőleges deformációjából áll.

A MFT-13-aldehid-2-oxid molekulánál erre a rezgési módra vonatkozó potenciális energia eloszlás a következőként alakul: az 1108 cm⁻¹-es sáv vrg 17%, vNC 11%, γCHa 67%.

A MFT-13-aldehid infravörös spektrumában 1687 cm⁻¹-nél lévő sávhoz a C=O csoport vegyértékrezgése rendelhető. A MFT-13-aldehid-2-oxid vCO rezgési módja infravörös spektrumban 1685 cm⁻¹-nél található.

Az MFT-13-aldehid Raman spektrumában 762 cm⁻¹-nél lévő sávhoz az aldehid csoport C=O-jának síkbeli deformációja rendelhető, mely nem csoportrezgés mivel a kialakításában 30% βCO mellett 20%-ban a gyűrű vegyértéknyújtása, 11%-ban gyűrű síkbeli és 12%-ban a gyűrű merőleges deformációja is szerepet játszik.

Az MFT-13-aldehid-2-oxid spektrumában 772 cm⁻¹-nél található sáv a számítások alapján vrg 25%-ban, βrg 22%-ban és βCO 20 %-ban.

A számítások alapján a vizsgált MFT- és MFT-2-oxid aldehid C=O merőleges deformációs rezgése 226, illetve 228 cm⁻¹ frekvencia értékkel jellemezhető.

5.5 ábra. A MFT-13-aldehid-2-oxid infravörös és Raman spektruma

Mindezek alapján megállapítható, hogy az aldehid csoport rezgési frekvenciáiban jelentős változás nem tapasztalható, ha a MFT és a MFT-2-oxidot származékokat összehasonlítjuk.

5.5.4. Az alkohol csoport jellemző C-H és C-O és O-H rezgési frekvenciái

A számítások alapján a C-H és a C-O, valamint az O-H csoportok vegyértékrezgései csoportfrekvenciák, míg a síkbeli és merőleges deformációkról ez nem mondható el, hisz nagy keveredést mutatnak a gyűrű síkbeli és merőleges deformációjával, valamint a gyűrű vegyértéknyújtásaival.

Az 5.2 táblázatban az alkohol csoport jellemző C-H, C-O és O-H rezgési frekvenciáit foglaltam össze.

Molekula	Rezgési mód									
	С-Н			C-O			О-Н			
	ν	β	γ	ν	β	γ	ν	β	γ	
13-hidroximetil-MFT	2925,2857	1608,1468	1026,1010	1079	741	260	3576	1203	331	
13-hidroximetil-	2919,2870	1506,1445	1027,1007	1079	713	275	3339	1206	342	

5.2. táblázat. A hidroximetil csoportok jellegzetes frekvenciái

A táblázatból kitűnik, hogy a vizsgált MFT (Függelék F.5.5 táblázat. 53-54. old.) és MFT-2-oxid (Függelék F.5.8 táblázat, 60-62. old.) alkoholok jellemző frekvenciái között már nagyobb különbségek vannak, mint az aldehidek esetében voltak. Különösen látszik ez a C-H vegyértékrezgések esetében, ahol az eltérés a 13-hidroximetil-MFT és az 13-hidroximetil-MFT-2-oxid molekula megfelelő rezgési frekvenciái között 6 és 13 cm⁻¹.

A vizsgált molekulák C-H csoportjainak síkbeli deformációit összehasonlítva látható, hogy az 13-hidroximetil-MFT spektrumában az ehhez a rezgési módhoz rendelhető sávok jóval magasabb frekvencia értékeknél jelennek meg, mint a MFT-2-oxid származék esetében. Feltételezzük, hogy ennek oka, hogy a 13-hidroximetil-MFT-2-oxid molekula S=O csoportjának oxigénje, és az alkohol szubsztituens C-H csoportjának hidrogénje között hidrogén hidas kölcsönhatás alakul ki.

A C-O, C-H és az O-H rezgési módok frekvenciái között jelentős számbeli eltérést nem figyelhetünk meg, kivéve az O-H vegyértékrezgést és C-H síkbeli deformációt.

5.5.5 Az S = O rezgési frekvenciái

MFT-2-oxid

A vizsgált MFT-2-oxid S=O vegyértéknyújtása a Raman spektrumban az 1168 és az 1101 cm⁻¹-nél lévő sávokhoz rendelhető. A PED szerint megoszlik a két rezgési mód között.

Az MFT-13-aldehid-2-oxid vSO rezgését jellemző sávok a Raman spektrumban 1163 és 1014 cm⁻¹-nél, míg a hidroximetil származék Raman spektrumában 1143 és 1100 cm⁻¹-nél jelennek meg (5.6. ábra).

5.6. ábra. A MFT-2-oxid, a MFT-13-aldehid-2-oxid és a 13-hidroximetil-MFT-2-oxid infravörös spektrumának részlete

A potenciális energia eloszlás alapján az MFT-2-oxid Raman spektrumában levő 520 cm⁻¹-es sávban a legnagyobb a S=O síkbeli deformáció %-os megoszlása 23%, míg a 398 cm⁻¹-es sávban 12%-ban és a 193 cm⁻¹-esben 17%-ban vesz részt a gyűrű síkbeli és merőleges deformációja mellett.

Az aldehid származék Raman spektrumában 404 cm⁻¹-nél található sáv S=O deformáció, mely 13%-ban vrg, 31%-ban γrg 14%-ban βSO és 18%-ban γSO-ból áll. Hasonló a 217 cm⁻¹-es számított frekvencia rezgési módja is, melyben az S=O síkbeli és merőleges deformáció mellett a gyűrűk síkbeli és merőleges deformációi is szerepelnek.

A 13-hidroximetil-MFT-2-oxid mért spektrumai és számított frekvenciái alapján elmondható, hogy az 520, a 398, a 250 és a 193 cm⁻¹ Raman sávokhoz részben az S=O síkbeli deformációja rendelhető. A potenciális energia eloszlás alapján (lásd a Függelék F.5.8. táblázatát) az előbb említett βSO nem csoportrezgés, mivel a gyűrű síkbeli és merőleges deformációja mellett az S=O csoport merőleges deformációjával nagy keveredést mutat.

5.5.6 A fenotiazingyűrű rezgési frekvenciái

A vizsgált vegyületek gyűrűinek vegyértéknyújtásai, valamint síkbeli és merőleges deformációi néhány kivételtől eltekintve nem csoportrezgések, mivel nagy keveredést mutatnak egymással és a szubsztituensek síkbeli és merőleges deformációival egyaránt.

A MFT gyűrű vegyértékrezgéseihez rendelhető sávok az infravörös és Raman spektrumok 1670 -1550, 1470-1320, 1160-1050 cm⁻¹, valamint 890-700 és 550-350 cm⁻¹ tartományaiban jelennek meg.

- Az 1670-1550, és az 1470-1320 cm⁻¹-es sávok jellege $\rightarrow \text{ vrg \'es } \beta \text{CH}$
- Az 1160-1050 cm⁻¹-es sávok \rightarrow vrg és β rg
- Az 890-700 valamint 550-350 cm⁻¹-es sávok \rightarrow vrg, β rg és γ rg

Összehasonlítva a MFT és a MFT-2-oxid vegyértékrezgéseit jellemző frekvenciákat, kitűnik, hogy a MFT-2-oxidéi általában 4-10 cm⁻¹-rel magasabbak.

A MFT aromás gyűrűk síkbeli deformációs rezgési módjaira a vizsgált vegyületek spektrumainak 1200-1050 és 850-350 cm⁻¹ hullámszámok közötti tartományai jellemzők. A βrg deformációra jellemző csoportrezgés nem fordul elő. A MFT-2-oxid aromás gyűrűk síkbeli deformációját alacsonyabb frekvencia értékek jellemzik, mint a MFT-éit. Az aldehid és alkohol szubsztituált származékok aromás gyűrűinek síkbeli deformációs rezgéseihez rendelhető sávok a spektrumban jelentősen alacsonyabb hullámszám értékeknél jelennek meg, mint az alapvegyületében. Ez az aldehid és alkohol csoportok erős induktív és mezomer effektusával magyarázható.

A vizsgált vegyületek aromás gyűrűinek merőleges deformációjához rendelhető sávok a spektrum 1000 cm⁻¹ alatti hullámszám tartományában találhatók. A γrg deformációk sávjai két csoportra oszhatók: a 800-300 cm⁻¹ tartománybeliekre melyek γrg és βrg jellegűek és 200 cm⁻¹ alattiakra, melyek egyértelműen csoportrezgések.

Összehasonlítva a MFT és a MFT-2-oxid alapvegyületek aromás gyűrűi merőleges deformációs rezgéseinek számított frekvencia értékeit az aldehid és CH₂OH szubsztituált származékok γrg frekvencia értékeivel, megállapíthatjuk, hogy a MFT gyűrűk merőleges deformációihoz rendelhető sávok a spektrumban mind alacsonyabb hullámszám értékeknél jelennek meg. Az hidroximetil és aldehid csoportok síkbeli és merőleges deformációi keverednek a aromás gyűrűk merőleges deformációival.

5.6. Összefoglalás

Munkánk során hat N-metil MFT származék rezgési színképeit mértük, és értelmeztük. Kvantumkémiai számításokkal optimáltuk a molekulák szerkezetét, és számítottuk rezgési spektroszkópiai tulajdonságaikat. A színképsávok sávhozzárendelését ezeknek az eredményeknek alapján, normálkoordináta analízissel segítve végeztük.

Összehasonlítottuk az MFT, valamint az MFT-2-oxid, valamint aldehid és hidroximetil szubsztituált származékaiknak rezgési spektroszkópiai tulajdonságait.

Külön hangsúlyt fektettünk a hidroximetil és az aldehid csoportok jellegzetes rezgési alapfrekvenciáinak meghatározására, azonosítására, mind a MFT, mind a MFT-2-oxid származékok esetében.

A nagy molekulák nagyszámú rezgési módjának értelmezése nem egyszerű. Nagyon sok a hasonló jellegű rezgési mód. Ugyanakkor kevés az olyan sáv, amelyről egyértelműen kijelenthető, hogy csoportrezgés. Ilyenek például a C-H vegyértékrezgések és merőleges deformációik.

Megállapítottuk, hogy az aromás vCH rezgési frekvenciák a 3020-3090 cm⁻¹ tartományba esnek. A két alapmolekula és az alkoholok esetében a két aromás gyűrű rezgési módjai csatolódnak, míg az aldehideknél ilyen csatolás nem jelentkezik. A szétcsatolódás az aldehidek erős –M effektusának következménye.

Az alifás CH vegyértékrezgéseknél egyrészt az N-CH₃ csoportokhoz tartozók, másrészt az aldehid, illetve a hidroximetil csoportokhoz tartozók szigorúan csak csoporton belül keverednek. Megjelenési tartományuk 2980-2850 cm⁻¹.

A gyűrűk vegyérték és deformációs mozgásai egyértelmű keveredést mutatnak a szubsztituensek mozgásaival. Jó példa erre a gyűrű azon vegyértékrezgése, melyben a C-H csoportok síkbeli deformációi is részt vesznek.

A számítások alapján a S=O síkbeli és merőleges deformációs mozgásai egymással keverednek, amihez még a gyűrű merőleges deformációs mozgásai is hozzájárulnak. Ennek oka a molekula hajlított, nem sík szerkezete.

1. Irodalomjegyzék

- 1. F. Billes, H. Endrédi, G. Jalsovszky, J.Mol. Structure (THEOCHEM), 465 (1999) 157.
- 2. F. Billes, H. Endrédi, G. Keresztury, J. Mol. Structure (THEOCHEM), 530, (2000) 183-200.
- 3. F.Billes, H. Endredi, B. Várady, Studia Universitatis Babeş-Bolyai, Physica, (2001), 136-144, Special Issue.
- 4. H.Endredi, F.Billes, S. Holly: J. Mol. Structure (THEOCHEM), 633, (2003), 73-82.
- 5. H. Endrédi F. Billes, G. Keresztury: J. Mol. Structure (THEOCHEM) 677, (2004), 211-225.
- 6. Dr. Veszprémi Tamás: Elméleti kémia (Műegyetemi Kiadó, Budapest, 1996)
- 7. Dr. Veszprémi Tamás, Dr. Fehér Miklós: A kvantumkémia alapjai és alkalmazása (Műszaki Könyvkiadó, Budapest, 2002)
- 8. M.J.Frisch, Ae Frisch, J.B. Foresman: Gaussian 94 User's reference
- 9. M.J.Frisch, Ae Frisch, J.B. Foresman: Gaussian 98 User's reference
- 10. Keserű György, Csonka Gábor: Molekulamodellezés (Kézirat,1993)
- 11. G. Fogarasi. P. Pulay, in J. R. During (Ed.) in Vibrational Spectra and Structure, Vol 14, (1985) 125-219
- 12. Billes Ferenc: Rezgési spektroszkópia (egyetemi belső jegyzet, Budapest, 2004)
- 13. F. Billes, E.Geidel, Spectrochim Acta A 53 (1997) 2537.
- W. W. Coblentz, Investigation of Infra-red Spectra, Carnegie Institute, Washington DC, 1905.
- 15. R. Maroni-Ansidei, M. Rolla, Atti Accad. Lincei 27 (1938) 410.
- 16. R. C. Lord, F. A. Miller, J. Chem. Phys. 10 (1942) 328.
- 17. P. Mirone, Gazz. Chim. Ital. 86 (1956) 165.
- 18. N. K. Sicorow, L. P. Kalashnikova, Opt. Spectrosc. 26 (1968) 247.
- 19. A. Lautié, A. Novak, J. Chim. Phys. 69 (1972) 1332.
- 20. D. W. Scott, J. Mol. Spectrosc. 37 (1971) 77.
- 21. M. J. S. Dewar, G. P. Ford, J. Am. Chem. Soc. 99 (1977) 1685.
- 22. R. Navarro, J. M. Orza, An. Quim. 79 (1983) 557.
- 23. R. Navarro, J. M. Orza, An. Quim. 79 (1983) 571
- 24. R. Navarro, J. M. Orza, An. Quim. 80 (1984) 59.

- 25. R. Navarro, J. M. Orza, An. Quim. 81.(1985) 5.
- 26. J. M. Orza, Escribano, J. Chem Soc. Farad. Trans. 2, 81 (1985) 653
- 27. O. Zakherieva, D. Paneva, M. Gozdicki, J.Mol. Struct. 348 (1985) 115.
- 28. L. A. Gribov, V. A. Demetiev, Metods and algorithm of calculations in the theory of vibrational spectra of moleculs (Nauka, Moscow, 1981).
- 29. Y. Xie, K. Fan, J. E. Boggs, Mol. Phys. 58 (1986) 401.
- 30. E. D. Simandiras, N. C. Handy, R. D. Amos, J. Phys. Chem. 92 (1988) 1739.
- 31. R. Kostic, S. A. Stepanyan, D. Rajkovic, I. E. Davidova, L. A. Gribov, J. Serb. Chem. Soc. 58 (1993) 659.
- 32. T. D. Klots, R. D. Chirico, W. V. Steele, Spectrochim. Acta 50A (1994) 765.
- 33. E. Geidel, F. Billes, Theochem, 507 (2000) 75-87.
- 34. A. Zecchina, L. Cerutti, S. Coluccia, E. Borello, J. Chem. Soc. B, (1967) 1363.
- 35. S. T. King, J. Phys. Chem., 74 (1970) 2133.
- 36. M. Majoube, J. Raman Spectr. 20 (1989) 49.
- 37. J. R. Durig, M. M. Bergana, W. M. Zunic, J. Raman. Spectrosc., 23 (1992) 357.
- 38. A-M. Bellocq, C. Perchard, A. Novak, M.-L. Josien, J. Chim. Phys., 62 (1965) 1334.
- 39. M. Cordes de N. D., J. L. Walter, Spectrochim. Acta A, 24A (1968) 237.
- 40. L. Colombo, P. Blenckmann, B. Schrader, R. Scheiner, Th. Plesser, J. Chem. Phys., 61 (1974) 3270.
- 41. M. Majoube, Proc. 6th Int. Conf. Raman Spectrosc., 2 (1978) 76.
- 42. K. Fan, Y. Xie, J. E. Boggs, J. Mol. Struct., 136 (1986) 339.
- 43. L. M. Markham, L. C. Mayne, B. S. Hudson, M. Z. Zgierski, J. Phys. Chem., 97 (1993) 10319.
- 44. E. Borello, A. Zecchina, E. Guglielminotti: J. Chem. Soc. B, (1969), 309
- 45. M. Begtrup, C. J. Nielsen, L. Nygaard, S. Samdal, C. E. Sjorgen, G. O. Sorensen: Acta Chem. Scandinavica 42, 500, (1988)
- 46. Törnkvist, C.; Bergman, J.; Liedberg, B.: J. Phys. Chem. 95, 3123, (1991)
- 47. H. Deusch, Berichte 69(1965) 550.
- 48. J. F. Chiang, K. C. Lu: Journal of Molecular Structure, 41 (1977) 223.
- 49. M. Saidi-Idrissi, H. Sauvaitre, C. Garrigou-Langrange, J.Chim.Phys. 80 (1983) 739
- 50. M. H. Palmer, I. Simpson, J. R. Wheeler: Z. Naturforsch, 36a, (1981) 1246.
- 51. G. A. Jeffrey: J. Theochem, 108 (1984) 1.
- 52. S. A. Kudchadker, C. N. R. Rao: *Indian J. Chemistry*, 11 (1973)140.

- 53. D. Ya Movshovich, V.N. Sheynker, et al., Zh. Obshch. Khim. 11 (1975) 629.
- 54. J. R. Wilson, Dissertation, Washington State University 1970
- 55. M. M. Sokolova, V. V. Melynikov, et al., Zh. Obshch. Khim. 11 (1975) 1744.
- 56. N. I. Sushko, N. A. Matveeva, et al., Zh. Prikl. Spektrosk. 53 (1990) 323.
- 57. B. Bak, D. Christensen, L. Hansen, J. Rastrup-Andersen, J. Chem. Phys. 24 (1956) 720.
- 58. Gaussian 92/DFT, Revision F.3, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. W. Wong, J. B. Foresman, M. A. Robb, M. Head-Gordon, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, (1993).
- 59. D. Christen, J. H. Griffiths, J. Sheridan: Z. Naturforsch. 37a (1982)1378.
- 60. B. M. Craven, R. K. MCMullan, J. D. Bell, H. C. Freeman: Acta Cryst. B33(1977) 2585.
- 61. F. Török, Á. Hegedüs, P. Pulay: Theoret. Chim. Acta, 32 (1973) 145.
- 62. T. La Cour, S. E. Rasmussen: Acta Chem. Scandinavica, 27 (1973)1845.
- 63. J. F. Chiang, K. C. Lu: Journal of Molecular Structure, 41, 223, (1977)
- 64. G. A. Jeffrey: J. Theochem, 108, 1, (1984)
- 65. P. Pulay, G. Fogarasy, F. Pang, J. Boggs, J. Am. Chem. Soc. 101 (1979) 2550
- 66. G. Fogarasi, P. Pulay in Vibrational Spectra and Structure, 4, (1985), 125-209
- 67. M.Bergtrup, C.J. Nielsen, L. Nygaard, S. Samdal, C. E. Sjoergen, G.O. Soerensen, Acta. Chem. Scand. A 42 (1988) 500.
- 68. L. Nygaard, D. Christensen, J. T. Nielsen, E. J. Pedersen, O. Snerling, E. Vestergaard,G. O. Sørensen, J. Mol. Struct., 22 (1974) 401.
- 69. S. Martinez-Carrera, Acta Cryst., 20 (1966) 783.
- 70. G. Will, Z. Kristallogr., 129 (1969) 211.
- 71. H. Deutschl, Berichte 69, (1965), 550.
- 72. B. M. Craven, R. K. McMullan, J. D. Bell, H. C. Freeman, Acta Cryst., B33 (1977) 585.
- 73. D. Christen, J. H. Griffiths, J. Sheridan, Z. Naturforsch., 37a (1982) 1378.
- 74. K. Bolton, R.D. Broxn, F.R. Burden, A. Mishra, J. Mol. Struct. 27, (1975), 261.
- 75. O. Mó, J. L. G. de Paz, M. Yañez, J. Phys. Chem., 90 (1986) 5597.
- 76. O. Mó, M. Yańez, A. Llamas-Saitz, C. Foces-Foces, J. Elguero, Tetrahedron, 51 (1995) 7045.

- 77. M. Meyer, J. Mol. Struct.(Theochem), 304 (1994) 45.
- 78. L. Colombo, P.Bleckman, B. Schrader, R. Schneider, Th. Plesser: The Journal of Chemical Physics, 61, (1974), 3270-3278
- 79. A. L. Llamas-Saiz, C. Foces-Foces, O. Mo, M. Yanez, E. Elguero, J. Elguero: J. Comp. Chem., 16 (1995) 263-272,
- 80. J. A. Faniran, J. E. Bertie, Lattice vibrations of 1,2,4-Triazole
- 81. O. Mo, J. L. G. de Paz, M. Yanez: J. Phys. Chem., 90 (1986) 5597-5604
- 82. M. H. Palmer, I. Simpson, J. R. Wheeler: Z. Naturforsch, 36a (1981) 1246.
- 83. E. B. Wilson, J. C. Decius, P. C. Cross, The Theory of Infrared and Raman Vibrational Spectra (McGraw-Hil, New York, 1955)
- 84. V. Schettino, G. Sbrana, R. Righini, Chem. Phys. Lett. 13 (1972) 284.
- 85. G. Sbrana, V. Schettino, R. Righini, J. Chem. Phys. 59 (1973) 2441.
- 86. J. Zarembowitch, L. Bokobza-Sebagh, Spechtochim. Acta 32A (1976) 605.
- 87. T. F. Kovalev, Yu. V. Kamensky, V. A. Ignatova, Yu. P. Romodan, E. Lukevich, Latv. Zinat. Akad. Vestis Kim. Ser. (1977) 223.
- 88. J. F. Arenas, J. T. Lopez-Navarrete, J. C. Otero, J. I. Marcos, a. Cardenate, J. Chem. Soc., Faraday Trans. 281 (1985) 405.
- 89. S. B. Kartha, Can. J. Spectrosc. 27 (1982) 1.
- 90. V. R. Thalladi, A. Gehrke, R. Boese, New J. Chem. 24 (2000) 463.
- 91. J. F. Arenas, J. T. López-Navarrete, J. I. Marcos and J. C. Otero, J. Chem. Soc., Faraday Tans. 2, 84 (1988) 53.
- 92. F. Arenas, J. T. López-Navarrete, J. I. Marcos and J. C. Otero, J. Mol. Struct., 192 (1989) 107
- 93. F. Arenas, J. T. López-Navarrete, J. I. Marcos and J. C. Otero, J. Mol. Struct., 162 (1987) 263
- 94. F. Arenas, J. T. López-Navarrete, J. I. Marcos and J. C. Otero, J. Mol. Struct., 197 (1989) 87
- 95. J. P. Perdew, Phys. Rew. B, 33 (1981) 8822.
- 96. B. K. Wieberg, J. Mol. Struct. 244 (1991) 61.
- 97. G. Nagarajan, J. Sci. Ind. Res. 21B (1962) 255&519.
- 98. M. Scrocco, C. di Lauri, S. Califano, Spechtrochim. Acta 21 (1965) 571.
- 99. N. Nishi, M. Kinoshita, T. Nakashima, R. Shimada, Y. Kanada, Mol. Phys. 33 (1977) 31.

- 100. J. F. Arenas, J. Marcos, J.T. Lopez-Navarrete, J. Mol. Struct. 142 (1986) 295.
- 101. F. Billes, H. Mikosch, Structural Chem. 3 (1992) 307.
- L. Nygaard, J.T. Nielsen, J. Kircheiner, G. Maltesen, J. Rastrup-Andersen, G. O. Sorensen, J. Mol. Struct. 3 (1969) 491.
- 103. K. Takeshita, Y. Yamamoto, J. Chem. Phys. 101 (1994) 2198.
- 104. E.D. Simandiras, N.C. Handy, R.D. Amos, J. Phys. Chem. 92 (1988) 1739
- 105. E. Geidel, Dissertation, Hamburg, 1998.
- I. Hargittai, J. Brunvoll, C. Foces-Foces, A. Llamas-Saitz, J. Elguero, J. Mol. Struct.,
 291 (1993) 211.
- 107. F. K. Larsen, M. S. Lehmann, I. Søtofte, S. E. Rasmussen, Acta Chem. Scand., 24 (1970) 3248.
- 108. T. La Cour, S. E. Rasmussen, Acta. Chem. Scand., 27 (1973) 1845.
- 109. C. Perchard, A.-M. Bellocq, A. Novak, J. Chim. Phys., 62 (1965) 1344.
- 110. B. J. Bormans, G. deWith, F. C. Mijlhoff, Spechtrochim. Acta. 42 (1977) 121.
- 111. C. M. Gooley, H. Keyzerr, F. Setchell, Nature 223 (1969) 80.
- W. J. Albery, A. W. Foulds, K. J. Hall, A. R. Hillman, R. G. Edgell, A. F. Orchard, Nature 282 (1979) 793.
- 113. I. I. Abu-Abdoun, A. Ledwith, Eur. Polym. J. 33, (1997) 1671.
- 114. T. Yamamura, K. Suzi, T. Yamaguchi, T. Nishiyama, Bull. Chem. Soc. Jpn. 70 (1997) 413.
- 115. M. Tosa, Cs. Paizs, C. Majdik, P. Moldovan, L. Novak, P. Kolonits, E. Szabó, L. Poppe, F. D. Irimie, Journal of Molecular Catalysis B, Enzymatic 17 (2002) 241.
- 116. M. Tosa, Cs. Paizs, C. Majdik, P. Moldovan, L. Novak, P. Kolonits, L. Poppe, F. D. Irimie, Tetrahedron Assymmetry 13 (2002) 211-221.
- 117. S. C. Chu and D. V. Helm, Acta Cryst B30 (1974) 2489.
- 118. J. J. H. Mc Dowell, Acta Cryst B32 (1976) 5.
- 119. T Uchida, M. Ito, K. Kozawa, Bull. Chem. Soc. Jpn.56 (1983) 577.
- M. C. Apreda, F. H. Cano, C. Foces-Foces, F. Lopez-Ruperez, J. C. Conesa, J. Soria.
 J. Chem. Soc. Perkin trans 2 (1987) 575.
- 121. Y. C. Liu, Y. B. Ding, Z. L. Liu, Acta Chem. Sin., 48 (1990) 1199
- 122. X. S. Gao, J. K. Feng, Q. Jia, Y. C. Liu, J. Z. Sun, Acta. Chem. Sin., 54 (1996) 1159.
- 123. V. K. Turchaninov, A. I. Vokin, N. N. Chipanina, Russ. Chem. Bull., 47 (1998) 8.
- 124. X. S. Li, L. Liu, T. W. Mu, Q. X. Huo, Y. C. Liu Res. Chem. Intermed., 26 (2000) 375.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheesseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Drappich, J. M. Millam, A. D. Daniels, K. N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Menucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala. Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon. E. S. Replogle and J. A. Pople, Gaussian 98, Gaussian, Inc., 1998.

Függelék

F.1.1 ábra: Algoritmus az egyes szimmetriacsoportokba való besoroláshoz

Hullámszám (1/cm)
F.3.1.ábra. Az imidazol infravörös és Raman spektruma

F.3.2 .ábra. Az N-deuteroimidazol infravörös és Raman spektruma

F.3.3.ábra. Az 1,2,3-triazol infravörös és Raman spektruma

F.3.4. ábra. Az 1,2,3-N-deutero-triazol Raman spektruma

F.3.5.ábra. Az 1,2,4-triazol normál és polarizált Raman spektruma

F.3.6 ábra. Az 1.2.4-deuterotriazol Raman és olvadék Raman spektruma

F.3.7. ábra. A tetrazol infravörös és Raman spektruma

Hullámszám (1/cm) F.3.8.ábra. Az N-deuterotetrazol infravörös és Raman spektruma

4

F.3.9. ábra. A vizsgált N-tartalmú-heterociklusos vegyületek szerkezete

F.3.1. táblázat A pirrol kísérleti és számított geometriai paraméterei

Paraméter ^a	Mért		Számított				
	MW^b	MW ^{b,c} Corrected	RHF ^d MIDI-4	MP2 ^e DZP	MP2 ^f 6-31G*	B3P86 and B3LYP ^{g,h} 6-311G(d,p)	
N1C2	1,730	1,370	1,362	1,375	1,373	1368	
C2C3	1,382	1,382	1,362	1,391	1,383	1,374	
C3C4	1,417	1,417	-	1,424	1,418	1419	
N1H6	0,996	1,000	0,996	1,007	1,011	1005	
C2H7	1,076	1,091	1,078	1,078	1,081	1078	
C3H8	1,077	1,088	1,079	1,079	1,082	1079	
N1C2C3	107,7	107,7	108,2	107,4	107,4	107,6	
C2C3C4	107,4	107,4	-	107,4	107,5	107,4	
C2N1C5	109,8	109,8	109,6	110,3	110,2	109,9	
C2N1H6	125,1	125,1	-	125,1	124,9	125,0	
N1C2H7	121,5	126,2	121,2	121,2	121,2	121,3	
C2C3H8	125,5	126,3	129,9	127,2	125,6	125,7	

^a a kötéstávolságok angströmben, a kötésszögek fokokban értendők.

b Ref. 100

^c Ref. 29

^d Ref. 101

e Ref. 102

^f Ref. 103

^g A két módszer azonos geometriai eredményeket adott

h Ref. 33

F.3.2 táblázat A pirazol kísérleti és számított geometriai paraméterei

Paraméter ^a		Kísér	leti			Sz	zámított	
	ED^b	MW^c	X-ra	$\mathbf{a}\mathbf{y}^{\mathrm{d},\mathrm{e}}$	HF/3- 21G ^f	MP2/6-31G** ^{g,h}	B3LYP/6- 31G** ^h	B3P86/6- 311G** ⁱ
N(1)-N(2)	133,8	134,9	134,4	135,2	137,9	134,8	135,0	133,8
N(2)-C(3)	132,3	133,1	133,3	132,8	131,3	134,7	133,3	132,6
C(3)-C(4)	139,1	141,6	137,8	138,9	141,9	140,6	141,4	140,8
C(4)-C(5)	136,9	137,2	138,2	137,1	136,3	138,5	138,1	137,6
C(5)-N(1)	133,9	135,9	132,5	133,7	135,6	136,0	135,9	135,3
N(1)-H(6)	101,0	99,8	104,0	91,0	99,3	100,7	100,8	100,6
C(3)-H(7)	-	107,8	-	90,0	106,5	107,7	108,2	108,0
C(4)-H(8)	108,0	107,6	107,0	94,0	106,4	107,6	107,9	107,8
C(5)-H(9)	-	107,7	-	104,0	106,5	107,3	108,0	107,8
N(1)-N(2)-C(3)	104,9	104,1	104,8	103,7	104,6	103,4	103,9	104,2
N(2)-C(3)-C(4)	111,8	111,9	111,4	111,8	111,8	112,1	112,1	111,9
C(3)-C(4)-C(5)	104,0	104,5	104,7	105,1	105,0	104,9	104,5	104,4
C(4)-C(5)-N(1)	107,5	106,4	107,1	106,3	107,1	105,7	106,1	106,7
C(5)-N(1)-N(2)	111,7	113,1	111,9	113,0	111,6	113,9	113,3	113,1
N(2)-N(1)-H(6)	119,0	118,4	118,0	-	119,3	118,6	119,9	118,9
N(2)-C(3)-H(7)	-	119,3	-	-	122,3	119,1	119,5	119,5
C(3)-C(4)-H(8)	128,0	128,8	127,0	-	127,4	128,2	128,3	128,3
C(4)-C(5)-H(9)	-	132,1	-	-	130,6	132,4	132,0	131,9

^aa kötéstávolságok angströmben a kötésszögek fokokban értendők

^bRef. 104 ^fRef. 37

cRef. 67 gRef. 75

^dRef. 105 hRef. 78

^eRef. 106 ⁱsaját munka

F.3.3. táblázat Az imidazol mért és számított geometriai paraméterei

Paraméter ^a		Kísér	leti				Számított	
	ND^b	MW^c	X-ra	ay ^{d,e}	HF/4- 21G ^f	HF/6-31G* ^g	HF/6-31++G**h	B3P86/6- 311G** ⁱ
N(1)-C(2)	133,7	136,4	134,9	133,7	136,3	134,9	135,0	136,0
C(2)-N(3)	131,6	131,4	132,6	131,1	131,2	128,9	129,1	130,9
N(3)-C(4)	136,7	138,2	137,8	138,1	138,1	137,2	137,1	137,1
C(4)- $C(5)$	135,7	136,4	135,8	131,1	136,2	135,0	135,3	136,8
C(5)-N(1)	136,2	137,7	136,9	137,3	137,6	137,2	137,2	137,3
N(1)-H(6)	103,8	99,8	104,8	111	99,1	99,3	-	100,6
C(2)- $H(7)$	107,7	107,9	108,2	101	107,7	-	-	108,0
C(4)- $H(8)$	136,7	107,8	95,8	98	107,7	-	-	107,9
C(5)-H(9)	107,1	107,9	103,1	98	107,1	-	-	107,7
N(1)-C(2)-N(3)	112,0	112,0	111,3	114,2	112,0	112,2	112,1	111,7
C(2)-N(3)-C(4)	105,1	104,9	105,4	102,6	104,9	105,3	105,5	105,3
N(3)-C(4)-C(5)	109,9	110,7	109,8	111,2	110,7	110,5	110,4	110,7
C(4)-C(5)-N(1)	106,1	105,5	106,3	107,5	105,5	105,2	105,2	105,0
C(5)-N(1)-C(2)	107,0	106,9	107,2	104,4	106,9	106,8	106,9	107,3
C(2)-N(1)-H(6)	127,2	-	-	-	126,2	-	-	126,6
N(1)-C(2)-H(7)	123,5	-	-	-	122,5	-	-	122,4
N(3)-C(4)-H(8)	121,8	-	-	-	121,4	-	-	121,4
C(4)-C(5)-H(9)	131,1	-		-	132,6	-	-	132,7

^aa kötéstávolságok angströmben a kötésszögek fokokban értendők

bRef. 60 fRef. 42 cRef. 72 gRef. 76 dRef. 68 hRef. 43 eRef. 69 isaját munka

F.3.4 táblázat Az 1,2,3-triazol mért és számított geometriai paraméterei^a

Paraméter ^b		1H-1,2,3-triazo	ol		2H-1,2	,3-triazol	
	RHF	MP2	B3P86	Kísérleti	RHF	MP2	B3P86
	DZ^{c}	6-31G* ^d	6-311G** ^e	ED^{c}	DZ^{c}	6-31G* ^d	6-311G** ^e
N1N2	1,376	1,351	1,340	1,323	1,349	1,332	1,319
N2N3	1,290	1,329	1,294	1,323	1,349	1,332	1,319
N3C4	1,377	1,360	1,358	1,347	1,317	1,351	1,330
C4C5	1,358	1,380	1,371	1,401	1,413	1,394	1,401
C5N1	1,353	1,354	1,351	1,347	1,317	1,351	1,330
NH6	0,991	1,014	1,008	1,026	0,990	1,014	1,007
C4H7	1,059	1,080	1,077	1,099	1,061	1,080	1,078
C5H8	1,060	1,079	1,077	1,099	1,061	1,080	1,078
N1N2N3	106,6	106,3	107,1	117,3	114,0	117,7	117,0
N2N3C4	109,9	108,7	109,2	-	104,2	102,0	102,9
N3C4C5	108,1	109,5	108,7	-	108,8	109,1	108,6
C4C5N1	105,1	103,2	103,3	-	108,8	109,1	108,6
C5N1N2	110,3	112,3	111,7	-	104,2	102,0	102,9
NNH6 ^f	119,9	118,7	119,3	-	132,0	121,1	121,5
C5C4H7	130,6	129,1	129,6	130,8	120,0	130,5	130,4
C4C5H8	132,3	133,6	138,4	130,8	120,0	130,5	130,4

^aaz atomok számozása az függelékben található (III.A és III.B)

^dRef. 46

^esaját munka

^ba kötéstávolságok angströmben,a kötésszögek fokokban értendőek

cRef. 66

^f 1H tautomernél N2N1H6, 2H tautomernél N1N2H6

F.3.5 táblázat Az 1,2,4-triazol mért és számított geometria paraméterei^a

		1H-1,2,4-triazol								4	H-1,2,4-tria	zol
Para- méter ^b		Kísérleti			Számi	ított		Számított				
meter	X-ray ^c	MW^{d}	ED^e			HF		B3P86		HF		B3P86
				CNDO/2 ^f	STO-3G ^g	3-21G ^g	6-31G ^g	6-311G** ^h	STO-3G ^g	3-21G ^g	6-31G ^g	6-311G** ^h
N1N2	1,354	1,381	1,380	1,378	1,388	1,395	1,363	1,346	1,384	1,373	1,367	1,373
N2C3	1,330	1,328	1,329	1,318	1,326	1,305	1,307	1,319	1,315	1,291	1,296	1,303
C3N4	1,353	1,354	1,348	1,345	1,402	1,379	1,371	1,358	1,420	1,436	1,391	1,362
N4C5	1,350	1,280	1,305	1,320	1,321	1,308	1,311	1,315	1,315	1,291	1,296	1,362
C5N1	1,344	1,375	1,377	1,354	1,374	1,348	1,343	1,346	1,384	1,373	1,397	1,303
NH6	-	0,998	0,990	-	1,024	0,993	0,988	1,007	1,021	0,995	0,985	1,007
C3H7	-	1,078	1,054	-	1,083	1,061	1,061	1,079	1,083	1,062	1,062	1,078
C5H8	-	1,078	1,054	-	1,084	1,063	1,063	1,079	1,083	1,063	1,062	1,078
N1N2C3	101,8	102,7	102,7	102,7	101,6	102,5	103,2	101,8	110,8	110,9	109,9	107,4
N2C3N4	114,5	113,0	113,8	114,2	115,7	114,1	113,5	115,3	107,0	106,6	107,5	110,3
C3N4C5	104,3	106,8	105,7	104,9	102,3	104,0	104,1	102,6	107,0	106,6	107,5	104,5
N4C5N1	107,1	109,0	108,7	109,0	110,5	110,1	109,4	109,8	110,8	110,9	109,9	110,3
C5N1N2	112,2	108,5	108,9	109,2	109,8	109,2	109,8	110,5	104,4	104,9	105,2	107,4
CNH6 ⁱ	-	124,0	130,2	-	131,0	130,8	129,8	129,6	127,8	127,5	127,5	127,7
N4C3H7	-	118,5	119,2	-	122,4	123,0	122,1	123,2	126,3	125,7	125,8	130,4
N4C5H8	-	120,5	120,3	-	126,9	126,0	126,2	126,7	126,3	125,7	125,8	130,4

^aaz atomok számozása a függelékben IV.A és IV.B ábrán látható

^ba kötéstávolságok angströmben, a kötésszögek fokokban értendők ^cRef. 47 ^dRef. 73 ^eRef. 49 ^fRef. 50 ^gRef. 74

ⁱ 1H tautomernél N2N1H6, 2H tautomernél N1N2H6 ^hsaját munka

F.3.6 táblázat
A tetrazol számított geometria paraméterei^a

Paraméter ^b		1.	H-tetrazol		2H-tetrazol						
	MNDO ^c		HF^d		B3P86		HF^{d}		B3P86		
-		STO-3G	3-21G	6-31G	6-311G** ^e	STO-3G	3-21G	6-31G	6-311G** ^e		
N1N2	1,342	1,387	1,385	1,353	1,342	1,375	1,350	1,319	1,319		
N2N3	1,275	1,310	1,278	1,270	1,283	1,318	1,304	1,291	1,319		
N3N4	1,328	1,410	1,415	1,372	1,355	1,400	1,372	1,365	1,301		
N4C5	1,351	1,320	1,229	1,304	1,309	1,327	1,308	1,311	1,350		
C5N1	1,396	1,371	1,346	1,343	1,342	1,373	1,356	1,331	1,322		
NH6	1,004	1,025	0,994	0,989	1,008	1,029	0,994	0,988	1,009		
C5H7	1,082	1,084	1,061	1,061	1,077	1,081	1,059	1,059	1,077		
N1N2N3	107,3	105,8	106,5	106,6	106,0	105,6	105,9	106,4	115,0		
N2N3N4	112,3	111,1	110,4	110,5	111,4	106,3	107,0	106,9	105,5		
N3N4C5	107,3	105,5	105,5	106,5	105,7	113,5	112,2	111,1	106,2		
N4C5N1	104,9	109,3	109,8	108,0	108,3	100,9	102,3	102,4	112,8		
C5N1N2	108,1	108,3	107,8	108,4	108,6	113,7	112,5	113,2	100,5		
NNH6 ^f	122,6	121,7	120,6	120,7	120,4	123,2	123,6	124,0	122,7		
N4C5H7	129,0	130,4	127,7	126,4	126,7	124,9	124,5	124,9	123,8		

^aaz atomok számozása a függelékben V.A és V.B ábrán látható

^ba kötéstávolságok angströmben,a kötésszögek fokokban értendőek

^cRef. 56 ^dRef. 74 ^esaját munka

^f 1H tautomernél N2N1H6, 2H tautomernél N1N2H6

F.3.7.táblázat

A pirrol, a pirazol és az imidazol erőállandói

Belső koordináták ^a			illandók ^b	1 /1/		
-			ázatlan	skálázott		- · · ·
	Pirrol	Pirazol	Imidazol	<u>Pirrol</u>	Pirazol	Imidazo
r12	6,388	6,663	7,020	5,83	6,277	5,876
r23	7,078	8,179	8,737	6,462	7,705	7,313
r34	5,700	6,507	6,470	5,204	6,129	5,415
r45	7,078	7,694	7,933	6,462	7,248	6,640
r51	6,388	7,377	6,847	5,832	6,949	5,731
r16	6,898	7,495	7,466	6,297	6,573	6,846
r37 ^c	-	5,787	-		5,318	-
r27 ^{d,e}	5,337	-	5,794	4,873	-	5,313
r38 ^e	5,303	-	-	4,842	-	-
r48	-	5,866	5,806	-	5,391	5,324
r49 ^e	5,303	-	-	-	-	-
r59	-	5,842	5,877		5,369	5,389
r510 ^e	5,337	-	-	4,872	-	-
φ216-φ516	0,459	0,520	0,454	0,442	0,498	0,388
ф437-ф237 ^с	-	0,487	-	-	0,466	-
ф327-ф127 ^{d,e}	0,458	-	0,510	0,441	-	0,436
φ348-φ238 ^e	0,421	-	-	4,054	-	-
φ348-φ548	-	0,419	0,483	-	0,401	0,413
φ349-φ549 ^e	0,421	-	-	4,054	-	-
φ459-φ159	-	0,456	0,451	-	0,436	0,386
φ4510-φ1510 ^e	0,458	-	-	0,441	-	-
$\phi 215 - a_1*(\phi 123 + \phi 451) + a_2*(\phi 234 + \phi 345)$	1,756	2,029	1,959	1,672	1,893	1,843
$b_1*(\phi 123-\phi 451)+b_2*(\phi 345-\phi 234)$	1,585	1,822	1,779	1,513	1,700	1,674
06215	0,713	0,907	0,832	0,712	0,805	0,769
θ7234 ^c	-	1,942	-	-	1,606	-
θ7123 ^{d,e}	1,425	_	1,476	1,412	_	1,268
θ8234 ^e	1,675	_	-	1,659	_	-
θ8543	-	1,715	1,657	_	1,418	1,423
09154	-	1,624	1,451	_	1,343	1,246
θ9543	1,675	-	-	1,659	-	-
θ10154 ^e	1,425	_	-	1,412	-	_
τ2345-	,			,		
$a_1*(\tau 1234+\tau 3451)+a_2*(\tau 4512+\tau 5123)$	0,445	0,568	0,508	0,444	0,504	0,469
$b_1*(\tau 3451-\tau 1234)+b_2*(\tau 5123-\tau 4512)$	0,567	0,535	0,565	0,565	0,475	0,522

^ar:kötéshossz változása, φ:a kötés szögek változása, θ:diéderes szög változása,

τ: torziós szög változás; az atomokszámozása az X ábrán látható ba nyújtás egysége 10² N m⁻¹, a síkbeli deformáció egysége 10⁻⁸ N, a meröleges deformáció és a torzió egysége 10⁻¹⁸ Nm

 $^{^{\}rm d}$ imidazol ^cpirazol ^epirrol

F.3.8. táblázat : A vizsgált triazol és tetrazol molekulák gyűrűjéhez tartozó skálázott diagonális eröállandók^a

Belső koodináták ^{b,c}	1H-1,2,3-triazol	2H-1,2,3-triazol	1H-1,2,4-triazol	4H-1,2,4-triazol	1H-tetrazol	2H-tetrazol
R_{12}	5,285	6,634	5,734	4,775	5,506	6,635
R_{23}	7,120	6,334	7,430	7,919	7,499	6,019
R_{34}	5,918	7,172	6,010	6,308	5,016	7,173
R ₄₅	7,010	5,930	7,570	6,308	7,945	6,279
R_{51}	6,674	7,172	6,565	7,919	7,055	7,628
ϕ_{215} - a_1 *(ϕ_{123} + ϕ_{451}) + a_2 *(ϕ_{234} + ϕ_{345})	1,937	1,834	2,105	1,816	2,066	2,071
$b_1*(\phi_{123}-\phi_{451})+b_2*(\phi_{345}-\phi_{234})$	1,755	1,756	1,951	1,699	1,999	2,064
$\tau 2345 - a1*(\tau 1234 + \tau 3451) + a2*(\tau 4512 + t5123)$	0,442	0,508	0,460	0,411	0,350	0,386
$b_1*(\tau_{3451}-\tau_{1234})+b_2*(\tau_{5123}-\tau_{4512})$	0,481	0,496	0,489	0,528	0,436	0,359

 $^{^{\}rm a}$ az erőállandók mértékegysége $10^2~{\rm Nm}^{\text{--}1}$ illetve $10^{\text{--}18}~{\rm Nm}$

F.3.9. táblázat: Alkalmazott skálafaktorok

a rezgési mód jellege		Tria	Tetrazolok			
					1H-	2H-
	1H-1,2,3-	2H-1,2,3-	1H-1,2,4-	4H-1,2,4-	1,2,3,4-	1,2,3,4-
gyűrű vegyérték rezgés	0,8933	0,8879	0,8656	0,8999	0,9221	0,9200
gyűrű síkbeli deformáció	0,8910	0,8457	0,9798	0,8885	0,9170	0,9906
gyűrű merőleges deformáció	0,8993	0,9226	0,9138	0,9800	0,8201	0,8045
CH vegyérték rezgés	0,9085	0,9142	0,9034	0,9187	0,8872	0,8845
CH síkbeli deformáció	1,0298	0,9869	0,9971	0,9478	0,7704	0,7727
CH merőleges deformáció	0,9692	0,8758	1,0466	1,1033	1,0742	0,9977
NH vegyérték rezgés	0,8000	0,8531	0,8830	0,9045	0,8824	0,8905
NH síkbeli deformáció	1,0341	1,0023	0,8266	1,0431	0,7504	0,8794
NH merőleges deformáció	1,0927	0,8896	0,8826	0,8857	0,9170	0,8088

 $[^]b$ az atomok számozása az függelék IIIA, IIIB, IVA, IVB, VA, VB ábráján látható R: nyújtás, ϕ :sikbeli deformáció, τ : torzió c a $_1$ = cos 144 o , a_2 = cos 72 o , b_1 = 1 - cos 72 o , b_2 = cos 72 o - cos 144 o

F.3.10. táblázat

A pii	rol és a N	I-deuteropirrol mért	és számított a frek pirrol	venciái cm ⁻¹						ŊΓ	-pirrol				
	Kísérlet	; a	Számított				Kíséi	rloti a		IN-L	-piiroi Számít	ott			
	Kisciici	Becke3P86/6-					KISCI		Recke3F	e3P86/6-					
		311G(d,p)			PED (%) ^b					G(d,p)				PED (%) ^b	
A	2520					Α.	2607	^			1 00				_
A_1	3530	3530	vCH 99			A_1			2593		I 98				
	3134	3134	vCH 98				3134		135		H 98				
	3114	3114	vCH 99	0.611 40			3114		114		I 99	0.CII	50		
	1469	1465	vrg 47	βCH 49			1467		459		g 47	βСН			
	1382	1382	vrg 62	βCH 28			1386		382		g 61	βСН			
	1142	1138	vrg 83	βCH 13			1137		129		g 80	βСН			
	1075	1066	vrg 49	βCH 47			1079		066		g 51	bCH			
	1015	1007	vrg 51	βCH 48			1013		004		g 51	βСН			
	882	879	βrg 84	βCH 12			871		366		g 84	βСН	11		
\mathbf{A}_2	868	877	γCH 87			A_2	871		377	•	I 87				
	712	687	γCH 99				712		587		I 99				
_	620	632	γrg 87			_	621		532		g 87				
3_{1}	3127	3127	γCH 99			\mathbf{B}_1	3127		127	•	I 99				
	3103	3103	γCH 99				3103		103		I 99				
	1530	1531	vrg 54	βCH 25	βNH 19		1509		510		g 65	βСН			
	1418	1424	vrg 54	bNH 36			1358		360		g 74	βND	13		
	1286	1281	βСН 86				1286		261	•	H 92				
	1127	1134	vrg 34	βСН 36	βNH 28		1072		05		g 26	βСН			
	1048	1038	vrg 46	βСН 46			913		002		g 25	βrg		βND 32	
	841	857	βrg 92				830		323		g 52	βND	40		
B_2	826	831	γСН 86			B_2	836		327	•	I 89				
	736	727	γСН 94				731		23	•	I 97				
	651	644	γrg 94				609		519		g 85				
	480	483	γNH 93				364	3	75	γNI	91				
tlag	gos eltérés	s a mért és számított	frekvenciák közör	tt				1H:	6,14	cm ⁻¹	1D:	8,15c	m ⁻¹		
•		eltérés a mért és szá						1H:		,72%	1D:	0,9			

aRef. 32 bv: vegyértékrezgés, β:síkbeli deformáció, γ:merőleges deformáció, rg: gyűrű

F.3.11 táblázat

A pirazol mért és számított frekvenciái (cm⁻¹)

		Kísérleti frekver			venciák				Számított fi			PED (%)				
		I	nfravörös	CCI			Ram	nan	1 7:	Hozzá-	$\mathrm{UBFF}^{\mathrm{b}}$	HF 3-	B3P86	B3P86/6-3	311G**°	
	Mátrix ^a	Szilárd ^b	Szilárd ^c	CCl ₄ old. ^b	Gőz ^b	Szilárd ^c	Olvadék ^d	Olvadék ^c	Vizes old. ^a	rendelt ^c		21G ^d	6- 311G** ^c			
A'	3492	-	3446	3480	3523	-	-	-	-	3446	3523	3678	3447	vNH99		
	-	-	3156	-	3155	3147	3145	3143p	3150	3156	3151	3304	3150	νCH98		
	-	-	3124	-	3137	3124	3124	3124	3132	3124	3134	3280	3131	νCH99		
	-	-	-	-	3126	3114	3114	3110	3119	3114	3128	3273	3116	νCH99		
	1538	1557	-	1530	1531	1539	1536	1532	1538	1539	1526	1564	1537	vrg55	βСН23	βΝΗ19
	1448	1465	1459	1447	1447	1471	1471	1471	1476	1459	1440	1439	1458	vrg50	βСН13	βΝΗ32
	1392	1396	1397	1393	1395	1397	1398	1396	1399	1397	1405	1373	1399	vrg59	βrg12	βСН24
	1346	1357	1359	1354	1358	1359	1357	1356p	1356	1359	1348	1359	1361	vrg52	βСН34	βΝΗ11
	1240	1266	-	1254	1254	1261	1260	1257p	1260	1261	1253	1236	1256	vrg40	βСН44	βΝΗ14
	1125	1149	1151	1153	1159	1153	1152	1149p	1151	1153	1150	1138	1165	vrg77	βСН14	
	1125	1138	1138	1122	1121	1137	1144	1140	1138	1138	1129	1073	1124	vrg62	βСН26	βNH11
	1032	1056	1034	1054	1054	1034	1056	1040p	1050	1034	1052	1010	1034	vrg49	βСН49	
	1018	1045	-	1018	1009	1013	1046	1036	1038	1013	1010	977	1030	vrg43	βСН51	
	920	936	918	932	924	914	-	912	930	914	954	935	915	βrg80	βСН15	
	905	918	-	907	908	903	912	907	915	903	901	914	894	βrg93		
Α"	873	891	840	878	879	836	1034?	-	867	840	882	1025	817	γrg10	үСН90	
	832	840	772	-	833	776	880	-	834	772	835	948	772	үСН93		
	745	765	668	-	745	-	835	671dp	772	668	742	826	690	үСН91		
	678	654	-	674	674	-	778	655	657	655	677	665	659	γrg94		
	608	619	615	614	623	-	653	-	612	615	619	645	607	γrg91		
	544	877	-	532	516		618	-	-	520 ^e	519	606	516	γrg14	γΝΗ86	

Átlagos eltérés a mért és számított frekvenciák között: 6,76 cm⁻¹ Átlagos relatív eltérés a mért és számított frekvenciák között: 0,72 %

p: polarizált, dp: depolarizált ^aRef. 35

^aRef. 35 bRef. 36 csaját munka dRef. 37 ebecsült frekvenciák

F.3.12 táblázat
Az N-D-pirazol mért és számított frekvenciái (cm⁻¹)

				Kísérlet	eti frekvenciák			Számított frekvenciák				PED (%)		
		Infr	avörös			Raman		Hozzá-	UBFF ^a	B3P86		B3P86/	6-311G*	
	Szilárd ^a	Szilárd ^b	CCl ₄ old. ^a	Gőz ^a	Szilárd ^b	Olvadék ^b	Vizes old. ^a	rendelt ^b		6- 311G** ^b				
A'	-	2513	-	2640	2523	2543	-	2513	2583	2535	vND97			
	-	3150	-	3155	3149	3143p	3146	3150	3151	3150	νCH98			
	-	3125	-	3136	3124	3126	3126	3125	3134	3131	νСН99			
	-	3114	-	3126	3114	3110	3115	3114	3128	3116	νСН99			
	1492	1532	1510	1515	1497	-	1505	1532	1505	1518	vrg66	βСН28		
	1419	1422	1424	1414	1421	1423	1424	1421	1411	1415	vrg60	βСН31		
	1373	1391	1380	1378	1399	1394	1381	1391	1389	1387	vrg63	βСН25		
	1310	1322	1317	1318	1318	1320p	1322	1322	1346	1329	vrg74	βСН12		
	1204	1205	1209	1210	1204	1207p	1209	1205	1199	1211	vrg30	βСН61		
	1134	1140	1137	1136	1136	1137p	1141	1140	1127	1142	vrg75	βСН20		
	1067	1048	1064	1050	1050	1050	1066	1048	1079	1046	vrg39	βСН49		
	1025	1026	1023	1021	1025	1031	1032	1026	1017	1026	vrg55	βСН43		
	921	951	952	955	-	956	-	951	954	949	vrg20	βrg36	βСН13	
	905	904	915	915	91	909	914	904	917	903	vrg87	βrg12		
	858	-	863	858	853	-	858	853	849	857	βСН48	βND39		
A"	894	-	878	879	809	-	-	809	881	817	үСН90			
	838	771	-	831	771	-	772	771	829	769	үСН93			
	752	-	-	743	-	674	-	689	739	688	γСН97			
	662	636	664	655	-	633	657	636	659	640	γrg93			
	628	589	615	610	-	591	620	589	616	594	γrg93			
	606	-	428	406	_	426	-	426	401	406	γND91			

Átlagos eltérés a mért és számított frekvenciák között: 5,62 cm⁻¹

Átlagos relatív eltérés a mért és számított frekvenciák között: 0,60 %

aRef. 36

^bsaját munka

p: polarizált, dp: depolarizált

F.3.13 táblázat

Az imidazol mért és számított frekvenciái (cm⁻¹)

					Kís€	érleti frekvei	nciák					Számított [/]	frekvenciák		_
		7	Infravörös	Viena			7	Raman	Visco	Hozzá-	HF	HF	B3P86		I
	<u>Mátrix</u> ^a	Szilárd ^b	Szilárd ^c	Vizes old. ^b	Gőz ^b	Szilárd ^d	Szilárd ^c	Olvadék ^e	Vizes old. ^d	rendelt ^c	4- 21G ^e	6- 31++G* ^f	6-311G** ^c		
A'	3504	2800	3517	-	3518	3430	-	-	-	3517	3518	3928	3517	vNH99)
	-	3145	3146	3156	3160	-	3143	3144	3160	3143	3161	3458	3145	νCH98	!
	-	3125	3124	3131	3135	3128	3123	3123	3133	3123	3133	3429	3117	νCH99	,
	-	3125	3101	3131	3135	3110	3110	3110	3060	3110	3083	3428	3115	νCH99	,
	1518	1541	1448	1532	1530	1495	1448	1449p	1490	1448	1545	1730	1441	vrg61	βCH21 β
	1480	1448	-	1485	1480	1445	1404	1404	1430p	1404	1474	1652	1395	vrg57	βСН38
	1412	1329	1328	1428	1405	1325	1326	1326p	1328p	1328	1397	1578	1342	vrg49	βrg12 β
	1404	1263	1263	1328	1330	1260	1265	1261p	1260p	1265	1334	1497	1270	vrg63	βСН30
	1325	1146	-	1259	1260	1144	1188	1186p	1160p	1188	1259	1404	1182	vrg16	βСН79
	1252	1104	1098	1160	-	1098	1100	1099	1135p	1098	1145	1250	1086	vrg94	ļ
	1125	1060	1058	1135	1127	1050	1062	1064	1065	1062	1132	1231	1061	vrg40	βСН43 β
	1074	-	-	1094	1074	-	-	1013	-	1013	1083	1183	1015	vrg47	βCH22 β
	1056	-	-	1067	1055	-	988	981	-	988	1059	1153	1001	vrg47	βrg12 β
	900	938	923	865	890	930	924	928	935	923	926	1018	909	βrg11	βrg72 β
	892	895	898	828	866	895	890	902	915	898	896	982	874	βrg81	I
A"	850	837	831	914	930	868	833	837	860	831	853	998	808	үСН90	I
	810	760	758	842	809	753	-	-	750	758	806	967	758	γCH100	0
	732	-	-	757	723	-	-	674dp	-	674	729	836	679	үСН99	
	662	660	661	666	668	655	-	663dp	-	663	659	727	661	γrg97	
	636	624	621	620	626	626	-	-	620	621	635	686	627	γrg85	
	545			-	513	_		538		539	514	561	520	γrg12	γΝΗ88

Átlagos eltérés a mért és számított frekvenciák között: 8,89 cm⁻¹

Átlagos relatív eltérés a mért és számított frekvenciák között: 0,98 %

p: polarizált, dp: depolarizált

eRef.

^bRefs. 38,107 ^aRef. 35 ^csaját munka ^dRef. 77 38

^fRef. 43, skálázatlan

F.3.14 táblázat Az N-D-imidazol mért és számított frekvenciái (cm⁻¹)

			Kísé	erleti frekv	enciák			Szá	mított frekvei	nciák		PED (%)
		Infravör	rös		Raman		Hozzá-	HF	HF	B3P86		B3P86/6-311G**b
	Szilárd ^a	Szilárd ^b	Vizes.old. ^a	Szilárd ^b	Olvadék ^b	Vizes old. ^a	rendelt ^{ab}	3-21G ^c	6- 31++G** ^d	6- 311G** ^b		
A'	2132	2584	-	-	-	-	2584	2587	2888	2583	vND98	
	3140	-	-	3141	3141	-	3141	3161	3458	3145	νCH99	
	3120	3122	-	3122	3122	-	3122	3134	3429	3117	vCH99	
	3120	3117	-	-	3118	-	3117	3083	3428	3115	vCH99	
	1495	1424	1507	-	1429p	1506	1424	1524	1714	1426	vrg69	βСН25
	1475	1384	1479	1398	-	1485	1384	1470	1644	1390	vrg58	βCH37
	1355	1276	1355	1275	1277p	1359	1276	1332	1499	1283	vrg70	βrg10 βCH10 βND10
	1317	1262	1320	1262	1260p	1323	1262	1321	1480	1263	vrg63	βСН21
	1241	1192	1247	1182		1252	1182	1255	1394	1175	vrg11	βСН86
	1134	1087	-	1087	1089	-	1087	1129	1235	1080	vrg94	
	1101	-	1132	-	1035	1136	1035	1118	1217	1044	vrg35	βСН57
	1060	-	1102	1008	1013	1106	1008	1059	1155	1002	vrg45	βrg17 βCH36
	960	895	1065	901	-	1069	895	921	1009	896	vrg43	βСН51
	914	-	942	889	-	948	889	909	1000	889	vrg19	βrg65 βCH12
	875	-	-	796	-	-	796	838	916	784	vrg11	βrg14 βND72
A"	924	-	904	815	-	911	815	853	998	807	үСН92	
	836	759	-	768	-	862	759	806	967	757	үСН97	
	746	668	830	669	671dp	841	668	729	835	678	үСН96	
	672	662	747	-	657	760	662	659	723	657	γrg95	
	652	618	660	608	-	670	608	632	662	604	γrg94	
	615	-	615	-	434	622	434	383	427	404	γND92	

Átlagos eltérés a mért és számított frekvenciák között: 5,94 cm⁻¹

Átlagos relatív eltérés a mért és számított frekvenciák között: 0,79 %

p: polarizált, dp: depolarizált ^aRef. 38, 107 ^bsaját munka

cRef.75

dRef. 43

F.3.15 táblázat

^aAz 1H-1,2,3-triazol és az 1D-1,2,3-triazol mért és számított frekvenciái (cm⁻¹)

			1H-1,2,3-tri	iazol				1D-	1,2,3-triazol		
	Mért ^b	Számíto	tt		PED (%) ^d		Mért ^b	Számított ^b		PED (%)	d
	(hozzá-	MP2	B3P86				(hozzá-		B3P8	86	
	rendelt)	6-31G* ^c	6-311G** ^b				rendelt)		6-3110	J** ^a	
.,	2255	2662	22.55)HI(00)			21.16	21.45	CII/(00)		
A'	3357	3662	3357	νNH(99)			3146	3145	νCH(98)		
	3146	3349	3144	νCH(98)			3123	3124	νCH(99)		
	3123	3330	3124	νCH(99)	0.011(1.4)	0344(40)	-	2413	νND(99)	0.011(2.0)	
	1525	1551	1523	vrg(41)	βCH(14)	βNH(43)	1465	1474	vrg(61)	βCH(30)	
	1419	1518	1428	vrg(49)	βCH(29)	βNH(11)	1411	1405	νrg(45)	βCH(50)	
	1380	1410	1375	vrg(21)	βCH(52)	βNH(21)	1279	1283	νrg(21)	βCH(52)	β ND(22)
	1250	1270	1249	vrg(95)			1251	1246	vrg(91)		
	1149	1224	1139	vrg(84)			1126	1124	vrg(77)	βCH(17)	
	1114	1165	1109	vrg(59)	βCH(37)		1104	1101	vrg(56)	$\beta CH(4)$	
	1079	1108	1087	vrg(58)	βCH(32)		1025	1026	vrg(64)	βCH(16)	$\beta rg(14)$
	976	1083	1009	vrg(77)	βrg(10)		932	936	vrg(38)	$\beta rg(42)$	βCH(12)
	953	976	941	vrg(10)	$\beta rg(73)$	βCC(15)	920	918	βrg(83)		
	889	950	908	βrg(95)			-	862	νrg (11)	βrg(36)	βND(50)
A''	838	831	864	γCH(100)			-	862	γCH(90)	γrg(10)	
	786	733	767	γCH(100)			-	767	γCH(100)	, , ,	
	702	728	712	γrg(62)	γNH(37)		-	683	γrg(99)		
	665	660	656	γrg(62)	γNH(37)		-	600	γrg(87)		
	590	586	589	γrg(89)	γNH(11)		-	501	γND(92)		
Átlas	gos eltérés a n	nért és számíto	ott frekvenciák	között		1H:	9,66 cm ⁻¹	1D:	3,45 cm ⁻¹		
			számított frekv		tt.	1H:	1,05%	1D:	0,38%		
	·		kek F 6 16 táhl			munka	1,0070	^c Ref 13 ská			

^atovábbi kísérleti frekvencia értékek F.6.16 táblázatban

^bsaját munka

^cRef. 13, skálázatlan

 $^{^{}cd}\nu$: vegyértékrezgés, β :síkbeli deformáció, γ :merőleges deformáció, rg: gyűrű

F.3.16 táblázat ^aAz 2H-1,2,3-triazol és az 2D-1,2,3-triazol mért és számított frekvenciái (cm⁻¹)

					2H-1,2,3	-triazol				2D	-1,2,3-triazo	ol
	Me (hozzár I ^a		Sz MUBF ^a	ámított MP2 6-31G*°			PED (% B3P86 311G** ^b) ^d	Mért ^b (hozzá- rendelt)	Számított	B3I 6-311	
\mathbf{A}_1	3200	3357	3215	3668	3357	νNH(99)			3152	3142	νCH(98)	
	3088	3146	3078	3343	3142	νCH(98)			-	2470	νND(97)	
	1522	1419	1496	1492	1396	vrg(47)	βCH(45)		1387	1396	vrg(46)	βCH(45)
	1448	1241	1460	1301	1240	vrg(98)			1252	1240	vrg(98)	
	1221	1093	1227	1191	1108	vrg(55)	βCH(43)		1103	1103	vrg(83)	βCH(14)
	1066	1071	1064	1131	1051	vrg(78)	βrg(20)		1037	1049	vrg(54)	βrg(44)
	954	953	954	982	926	vrg(17)	βrg(72)		920	921	vrg(14)	βrg(77)
A_2	910	838	918	846	842	γCH(100))		-	843	γCH(91)	
	620	665	628	669	662	γrg(100)			-	662	γrg(91)	
B_1	3000	3123	3023	3327	3127	νCH(99)			-	3127	νCH(99)	
	1637	1525	1638	1533	1517	vrg(33)	βNH(52)	βrg(13)	1465	1458	vrg(60)	βrg(34)
	1373	1380	1394	1451	1385	vrg(39)		βNH(35)	1279	1283	vrg(81)	βND(14)
	1221	1223	1227	1321	1238	vrg(58)	βCH(35)	•	1176	1181	vrg(22)	βCH(61) βND(15)
	1111	1132	1126	1154	1130	vrg(65)	βCH(28)		981	976	vrg(28)	βCH(28) βND(41)
	982	889	966	962	895	βrg(95)			-	870	βrg(68)	βND(22)
B_2	833	797	841	833	793	γCH(99)			-	790	γCH(99)	
	787	698	757	733	704	γrg(90)			-	666	γrg(88)	
	700	550	699	560	550	γNH(90)			-	432	γNH(91)	
Átlas	os eltérés	a mért és	s számított	frekvenciák	között			1H: 8,10 cm ⁻¹	1D:	6,50 cm ⁻¹		
	-			mított frekv		zött		1H: 0,74%	1D:	0,39%		
aD of		TITOLOG W		át munko		6. ekálázatla		222. 0,7170	1.0.	3,2770		

aRef. 52

^aRef. 52 ^bsaját munka ^cRef. 46, skálázatlan ^dv: vegyértékrezgés, β:síkbeli deformáció, γ:merőleges deformáció, rg: gyűrű

F.3.17. táblázat ^aAz 1H-1,2,4-triazol és az 1D-1,2,4-triazol mért és számított frekvenciái (cm⁻¹)

				1H-1	,2,4-tri	azol					1D-1,2	4-triazol			
		Mért		Számított			PED (%) ^d]	Mért	Szá	mított]	PED (%) ^d	
				$MUBF^{a}$		F	33P86				MUBI	Fa B3P86			
	I^a	II_p	III^c			6-3	11G** ^c		I^a	II^c		6-3110	j** ^c		
۸'	3200	-	3446	3231	3446	νNH(99)			3140	312	27 311	4 3108	νCH(99)		
	3140	-	3119	3114	3108	νCH(99)			3110	310	310	7 3101	νCH(99)		
	3110	_	3098	3107	3101	νCH(99)			2360	2530 ^e	236	9 2535	νND(97)		
	1540	1485	1482	1540	1489	vrg(53)	βCH(40)		1540) 144	18 153	5 1482	vrg(55)	βCH(42)	
	1495	1381	1379	1516	1385	vrg(43)	βCH(24)	βNH(25)	1487	7 138	34 149	8 1361	vrg(44)	βCH(48)	
	1473	1363	1361	1482	1336	vrg(43)	βCH(27)	βNH(20)	1425	5 129	9 144	8 1292	vrg(76)		
	1390	1275	1272	1366	1265	vrg(69)	βCH(20)		1355	5 126	58 134	7 1262	vrg(67)	βCH(20)	βrg(10)
	1280	1260	1255	1285	1230	vrg(51)	βCH(39)		1230	121	2 121	7 1208	vrg(52)	βCH(42)	
	1190	1183	1146	1189	1138	vrg(70)	βCH(13)	β rg(15)	1180) 114	118	2 1134	vrg(68)	βCH(18)	βrg(12)
	1155	1151	1062	1148	1074	vrg(62)	βNH(29)		1070) 110	107	8 1033	vrg(77)	βCH(1)	
	1070	1063	1054	1079	1045	vrg(68)	βCH(19)	βrg(12)	990) 98	37 95	6 987	vrg(21)	βrg(70)	
	965	985	980	962	977	vrg(23)	βrg(70)		965	5 95	59 94	2 958	vrg(17)	βrg(78)	
	930	971	955	936	946	vrg(13)	βrg(76)		875	5 82	21 87	4 812	vrg(15)	βND(74)	
١"	990	934	926	993	932	γCH(94)			920) 92	25 90	9 958	γCH(95)		
	885	891	884	894	878	γCH(96)			930	88	38 99	2 878	γCH(96)		
	693	682	681	720	674	γrg(94)			660	67	70 64	8 670	γrg(94)		
	660	645	649	648	656	γrg(88)	γNH(11)		640	62	29 63	8 626	γrg(89)		
	640	-	550	638	550	γrg(16)	γNH(83)		565	5 43	50 54	8 430	γND(90)	γrg(10)	
_				ámított frekv rt és számítot		között			1H:	9,43 cm	-1 1D:	11,70cm			
ınag	sos iciali	v CIUCI	cs a me	ii CS SZamillO	i HCKV	CIICIAN NUZU	,,,,		1H:	0,78%	1D:	0,96%			
Daf	50	h	D C 52	h a == áman da	1, .	1		Casiót assura		el 14					

^aRef. 52 ^bRef. 53, hozzárendelés nincs megadva ^csaját munka ^ebecsült

 $[^]d\nu$: vegyértékrezgés, β :síkbeli deformáció, γ :merőleges deformáció, rg: gyűrű

F.3.18. Táblázat ^aAz 4H-1,2,4-triazol és az 4D-1,2,4-triazol mért és számított frekvenciái (cm⁻¹)

		4H-1,2,4	-triazol			4D-1	,2,4-triazol		
	Mért ^b	Számított ^b	PE	$D\%^{c}$	Mért ^b	Számított ^b		PED (%)	
	(hozzá-		B3P86		(hozzá-		B3P	86	
	rendelt)		6-311G**		rendelt)		6-311	G**	
\mathbf{A}_1	3490	3490	νNH(99)		3134	3139	νCH(99)		
A_1	3146	3139	vCH(99)		2686	2566	νND(97)		
	1482	1474	veri(55) vrg(61)	βCH(37)	1473	1470	vrg(62)	βCH(36)	
	1255	1257	vrg(79)	βCH(17)	1256	1251	vrg(75)	βCH(20)	
	1057	1075	vrg(66)	βCH(32)	1090	1071	vrg(66)	βCH(29)	
	997	996	vrg(77)	$\beta rg(13)$	988	995	vrg(81)	F - (-)	
	895	895	βrg(89)		898	909	βrg(81)	βrg(13)	
A_2	865	856	γCH(100)		862	856	γCH(96)		
_	681	679	γrg(100)		678	679	γrg(96)		
B_1	3130	3135	νCH(99)		3127	3135	νCH(99)		
	1494	1492	vrg(48)	βNH(47)	1448	1444	vrg(77)	βCH(13)	
	1379	1384	vrg(62)	βNH(21)	1313	1316	vrg(68)	βND(19)	βrg(10)
	1183	1185	βCH(77)	vrg(18)	1186	1185	βCH(79)	vrg(18)	
	1062	1082	vrg(66)	βNH(31)	929	928	vrg(26)	βND(13)	βrg(58)
	926	927	βrg(80)	vrg(14)	825	826	βrg(28)	βND(59)	
B_2	883	890	γCH(100)		889	890	γCH(95)		
_	649	648	γrg(96)		629	625	γrg(88)		
	530	530	γNH(93)		410	409	γND(92)		
Átla	gos eltérés a	mért és számít	ott frekvenc	iák között		4H:	5,06 cm	-1 4D:	11,22 cm ⁻¹
	_			ekvenciák között		4H:	0,44%		

^a Ref 52 ^bsaját munka

^cν: vegyértékrezgés, β:síkbeli deformáció, γ:merőleges deformáció, rg: gyűrű

F.3.19. táblázat Az 1H- és az 1D-terazolnak a mért és számított frekvenciái (cm⁻¹)

					1	H-tetraz	zol					1	D-tetrazo	1	
	N	Mért			zámított			PED (%) ^d		Mé	rt	Szám	nított	
	(hozz	árende	elt)	GF mátrix م	MNDO ^a			B3P86			Hozzár	endelt	MNDO	В3Р8	6 PED (%) ^d
	I ^a	II_p	III^{c}	módszer ^a			6-	311G** ^c			I^b	II^c		6-311	G** ^c
A'		-	3447	3158	-	3447	νNH(99)				-	3152	-	3102	νCH(99)
	3050	-	3102	3056	-	3102	νCH(99)				-	2565	-	2537	νND(97)
	1518	1519	1441	1507	1520	1428	vrg(92)			1520	1414	1519	1420	vrg(86) βCH(10)	
	1450	1449	1384	1456	1449	1371	vrg(67)	βNH(19)			1449	1336	1442	1336	$vrg(83)$ [$\beta ND(7)$]
	1440	1440	1259	1434	1424	1267	vrg(99)				1440	1253	1414	1261	vrg(94)
	1259	1256	1159	1261	1264	1181	vrg(51)	βrg(10)	βCH(13)	βNH(23)	1256	1138	1243	1143	$vrg(61)$ $\beta rg(12)$ $\beta CH(18)$
	1251	1251	1084	1249	1248	1078	vrg(34)	$\beta rg(44)$	βCH(19)		1190	1071	1238	1071	$vrg(24)$ $\beta rg(56)$ $\beta CH(18)$
	1082	1081	1015	1092	1066	1021	vrg(59)	βCH(10)	βNH(19)		1049	1012	1051	1016	$vrg(87)$ $\beta CH(12)$
	1048	1046	1002	1045	1037	1005	vrg(49)	βrg(23)	βNH(22)		1012	958	999	966	vrg(95)
	1012	1010	969	993	998	973	vrg(14)	βrg(73)			906	934	906	934	$vrg(46)$ $\beta rg(19)$ $\beta CH(33)$
	908	904	925	902	906	922	vrg(23)	βrg(38)	βCH(28)		800	755	791	759	$vrg(10)$ $\beta ND(81)$
A"	1140	1143	906	1146	1142	905	γCH(99)				1140	889	1140	905	γCH(96)
	938	932	663	939	938	680	γrg(88)		γNH(11)		850	665	849	673	γrg(100)
	665	659	658	667	669	647	γrg(52)		γNH(46)		663	588	650	598	γrg(90)
	-	-	578	500	472	578	γrg(60)		γNH(39)		-	470	414	470	γND(93)
Átlas	os eltér	és a n	nért és s	zámított frek	venciák	között				1H:	7,01	cm ⁻¹	1D:		9,92 cm ⁻¹
, -		os eltérés a mért és számított frekvenciák között os relatív eltérés a mért és számított frekvenciák között								1H:	-	1%	1D:		0,73%

^aRef. 55. ^bRef. 56. ^csaját munka ^dv: vegyértékrezgés, β:síkbeli deformáció, γ:merőleges deformáció, rg: gyűrű

F.3.20 táblázat
Az 2H- és az 2D-tetrazolnak a mért és számított frekvenciái (cm⁻¹)

		2H-	tetrazol ^a					2D-tetrazol		
	Mért	Számított ^b		PED (%) ^c		Mért	Számított ^b		PED (%) ^c
	(hozzá-		B3P86)		(hozzá-		В3	P86	
	rendelt) ^b		6-311G*	**		rendelt) ^b		6-31	1G**	
A'	3447	3447	νNH(99)			3152	3102	νCH(99)		
	3102	3102	νCH(99)			2565	2537	νND(97)		
	1453	1456	vrg(60)	βNH(32)		1414	1420	vrg(81)	βCH(12)	
	1329	1321	vrg(46)	βNH(36)	βrg(10)	1269	1268	vrg(86)		
	1258	1264	vrg(84)	βCH(11)		1253	1249	vrg(75)	βrg(10)	[βND(7)]
	1252	1229	vrg(99)			1220	1216	vrg(95)		
	1145	1148	vrg(63)	$\beta rg(23)$		1092	1096	vrg(77)	βrg(17)	
	1086	1096	vrg(68)	βrg(14)	βCH(10)	1057	1062	vrg(30)	βrg(20)	βCH(46)
	1050	1049	vrg(51)	βCH(34)		991	995	vrg(17)	βrg(72)	
	992	990	vrg(17)	$\beta rg(53)$	βCH(28)	983	986	vrg(16)	βrg(60)	βCH(21)
	969	967	βrg(87)			834	851	vrg(16)	$\beta rg(13)$	βND(69)
A"	906	906	γCH(100)			889	906	γCH(95)		
	663	675	γrg(84)	γNH(15)		665	658	γrg(96)		
	658	648	γrg(100)			588	627	γrg(90)	$[\gamma ND(8)]$	
	575	571	γNH(71)	γrg(21)		451	451	γND(89)	γrg(11)	
Átlago	os eltérés a mért és	s számított frekve	nciák között				2H:	5.57 cm ⁻¹	2D:	12.63 cm ⁻¹
, -	s relatív eltérés a			között			2H:	0,58%	2D:	1,13%

^aTovábbi kísérleti adatokat a F.3.19-es táblázat tartalmaz

^bsaját munka

^cv: vegyértékrezgés, β:síkbeli deformáció, γ:merőleges deformáció, rg: gyűrű

F.4.1. ábra. A pirazin infravörös spektruma

F.4.2 ábra. A 2,6-diklórpirazin infravörös és Raman spektruma

F.4.3. ábra. A 2-metilpirazin gőz infravörös spektruma részlet

F.4.4. ábra A 2-metilpirazin infravörös és Raman spektrumai

F 4.5. ábra. A 2-metilpirazin merőlegesen és párhuzamosan polarizált Raman spektruma

F.4.6. ábra. A 2,3-dimetilpirazin normál és polarizált Raman spektruma

F.4.7. ábra. A 2,5-dimetilpirazin infravörös és Raman spektruma

F.4.8 ábra. A 2,6-dimetilpirazin infravörös és Raman spektruma

F.4.1. táblázat . A vizsgált metilpirazin konformerek vibrációs zérus-pont energia értékei (cal/mol)

Molekula	A	hidrogén atom hely	zete a metilcsoportl	ban
Wiolekula	0,0	0,1	1,0	1,1
2-metilpirazin	0			77.6
2,3-dimetilpirazin	0	0.59	0.74	0
2.5-dimetilpirazin	1.0	1.0	2.5	0
2.6-dimetilpirazin	0	44.1	44.1	0.1

F.4.2 táblázat A pirazin gyűrű geometriai paramétereinek változása a szubsztitució hatására^a

paraméter		р	irazin		2-klór- pirazin		2,6-dik	klórpirazin	
	$ED^{b}_{r_{\alpha}{}^{0}}$	MP2/6 - 31G* ^c	MP2/6- 311G** ^c	DFT/6- 311G** ^d		${ED^c\atop r_\alpha}^0$	MP2/6-31G*c	MP2/6- 311G** ^c	BP3/6- 311G** ^d
N1C2	1,339	1,344	1,343	1,331	1,312	1,334	1,333	1,331	1,316
C2C3	1,403	1,396	1,398	1,391	1,397	1,391	1,399	1,401	1,394
C3N4	1,339	1,344	1,343	1,331	1,325	1,343	1,341	1,340	1,327
N4C5	1,339	1,344	1,343	1,331	1,334	1,343	1,341	1,340	1,327
C5C6	1,403	1,396	1,398	1,391	1,387	1,391	1,399	1,401	1,394
C6N1	1,339	1,344	1,343	1,331	1,335	1,334	1,333	1,331	1,316
C2(H,Cl)7	1,115	1,088	1,087	1,087	1,743	1,736	1,729	1,726	1,736
C6(H,Cl)10	1,115	1,088	1,087	1,087	1,086	1,736	1,729	1,726	1,736
N1C2C3	122	122	122	122	123	124	123	123	123
C2C3N4	122	122	122	122	121	120	121	121	120
C3N4C5	116	115	115	116	117	117	117	117	118
N4C5C6	122	122	122	122	122	120	121	121	120
C6N1C2	116	115	115	116	116	114	115	115	116

^a A kötéstávolságok angströmben, a vegyértékszögek fokokban értendők

^b[19] , ED: elektrondiffakció (kísérleti érték)

^{°[20]} ^d saját munka B3P86/6-311G**

F.4.3 áblázat : A pirazin és a metilpirazinok számított^a gyűrű paraméterei^b

Paraméter	pirazin	2-metilpirazin	2,3-dimetilpirazin	2,5-dimetilpirazin	2,6-dimetilpirazin
		[0]	(0,0)	(1, 1)	(0,0)
N1-C2	1,331	1,334	1,331	1,335	1,332
C2-C3	1,391	1,400	1,410	1,396	1,399
C3-N4	1,331	1,327	1,331	1,327	1,326
N4-C5	1,331	1,333	1,333	1,335	1,332
C5-C6	1,331	1,387	1,385	1,396	1,399
C2-H7	1,087				
C2-C7		1,497	1,497	1,496	1,498
C3-H8	1,087	1,088		1,088	1,087
C3-C8			1,497		
C5-H9	1,087	1,088	1,086		1,087
C5-C9				1,496	
C6-H10	1,087	1,088	1.086	1,088	
C6-C10					1,498
N1-C2-C3	122,1	120,4	121,0	119,9	120,5
C2-C3-N4	122,1	122,9	121,0	1229	122,4
C3-N4-C5	115,9	116,1	117,3	117,1	116,4
N4-C5-C6	122,1	121,6	121,7	119,9	122,4
N1-C2-H7	120,9				
N1-C2-C7		117,9	117,3	117,7	117,9
C2-C3-H8	120,9	120,4		120,5	120,7
C2-C3-C8			121,7		
N4-C5-H9	120,9	117,2	117,9		116,8
N4-C5-C9				117,7	
N1-C6-H10	120,9	116,8	117,9	116,6	
N1-C6-C10					117,9

F.4.3. táblázat folytatása: A pitrazin és a metilpirazinok számított ^a geometriai paraméterei

paraméter	2-metilpirazin	2,3-dimetilpirazin	2,5-dimetilpirazin	2,6-dimetilpirazin
	(0)	(0,0)	(1,1)	(0,0)
C7-H11	1,089	1,089	1,091	1,091
C7-H12	1,094	1,095	1,093	1,093
C7-H13	1,094	1,095	1,093	1,093
C3-H14		1,089		
C3-H15		1,095		
C3-H16		1,095		
C5-H14			1,091	
C5-H15			1,093	
C5-H16			1,093	
C6-H14				1,091
C6-H15				1,093
C6-H16				1,093
C2-C7-H11	109,3	109,1	111,6	109,3
C2-C7-H12	111,3	111,4	110,3	111,2
C2-C7-H13	111,3	111,4	110,3	111,2
C3-C8-H14		109,1		
C3-C8-H15		111,4		
C3-C8-H16		111,4		
C5-C9-H14			111,6	
C5-C9-H15			110,3	
C5-C9-H16			110,3	
C6-C10-H14				109,3
C6-C10-H15				111,2
C6-C10-H16				111,2

^aBecke3P86/6-311G(d,p)

^bA kötéshosszak angströmben a vegyértékszögek fokokban értendők

F.4.4. táblázat A pirazin, a 2-klórpirazin, a 2,6-diklórpirazin erőállandói és az alkalmazott skálafaktorok

	Pirazin ^e		2-klórpir	azin ^f	2,6-diklórpirazin ^f		
Belső koordináták ^a	Erő-	Optimalizált	Erő-	Optimalizált	Erő-	Optimalizált	
	<u>állandó</u> ^b	skálafaktorok	<u>állandó</u> ^b	skálafaktorok	<u>állandó</u> ^b	skálafaktorok	
r12	7,207	0,9280	7,603	0,9335	7,539	0,9385	
r23	6,646	0,9280	6,393	0,9335	6,524	0,9385	
r34	7,207	0,9280	7,848	0,9335	7,756	0,9385	
r45	7,207	0,9280	7,262	0,9335	7,756	0,9385	
r56	6,646	0,9280	6,699	0,9335	6,523	0,9385	
r16	7,207	0,9280	7,558	0,9335	7,539	0,9385	
r27 ^c	5,095	0,9142	3,377	0,9435	3,575	0,9643	
r38	5,095	0,9142	5,221	0,9346	5,257	0,9346	
r59	5,095	0,9142	5,208	0,9346	5,257	0,9346	
r610 ^d	5,095	0,9142	5,197	0,9346	3,575	0,9643	
φ172-φ372	0,573	0,9467	0,909	0,9765	0,909	0,9765	
φ283-φ483	0,573	0,9467	0,536	0,9458	0,532	0,9458	
φ495-φ695	0,573	0,9467	0,538	0,9458	0,532	0,9458	
φ5106-φ1106	0,573	0,9467	0,542	0,9458	0,909	0,9765	
φ612-φ123+φ234-φ345+	1,346	0,9508	5,155	0,9765	5,094	0,9876	
φ456–φ561							
2*\phi612-\phi132-\phi243+2*\phi345-	1,195	0,9508	1,159	0,9765	1,149	0,9876	
φ456–φ561							
φ132-φ243+φ456-φ561	1,384	0,9508	1,1550	0,9756	1,580	0,9876	
θ7312	0,895	0,9843	0,267	0,9656	0,268	0,9636	
θ 8423	0,895	0,9843	0,226	0,9636	0,215	0,9356	
θ9465	0,895	0,9843	0,233	0,9636	0,215	0,9356	
θ10516	0,895	0,9843	0,227	0,9356	0,268	0,9636	
τ1234-τ2345+τ3456-	0,343	0,9693	0,311	0,9465	0,291	0,9465	
τ4561+τ5612-τ6123							
$\tau 1234 - \tau 3456 + \tau 4561 - \tau 6123$	0,208	0,9693	0.182	0,9465	0,181	0,9465	
τ1234-	0,242	0,9693	0,235	0,9465	0,222	0,9465	
2*τ2345+τ3456+τ4561-							
2*τ5612+τ6123							

^ar:kötéstávolság változása, φ:kötésszög változás, θ:diéderesszög változás, ^{c,d} az r27 és az r38 koordináták esetében Cl atom van a H helyett a klór szubsztituált pirazinokban

τ: torziósszög változás;

^b a nyújtások egysége 10² N m⁻¹, a deformációk egysége 10⁻¹⁸ Nm

^eMP2/6-31G* ^fDFT/6-311G**

F.4.5 táblázat A metilpirazinok erőállandói és alkalmazott skálafaktorai

	2-m	netilpirazin	2,3-di	metilpirazin	2,5-di	imetilpirazin	2,6-0	limetilpirazin
Belső koordináták ^{a,b}	Erő-	- I		Optimalizált	Erő-	Optimalizált	Erő-	Optimalizált
	állandó	skálafaktor	állandó	skálafaktor	állandó	skálafaktor	állandó	skálafaktor
r _{1,2}	7,033	0,912	7,443	0,945	7,166	0,925	7,424	0,954
$r_{2,3}$	6,257	0,912	6,307	0,945	6,408	0,925	6,618	0,954
r _{3,4}	7,531	0,912	7,443	0,945	7,922	0,925	7,901	0,954
r _{4,5}	7,207	0,912	7,689	0,945	7,166	0,925	7,901	0,954
r _{5,6}	6,479	0,912	6,307	0,945	6,408	0,925	6,618	0,954
$r_{1,6}$	7,504	0,912	7,689	0,945	7,922	0,925	7,424	0,954
r _{2,7}	4,503	0,925	4,710	0,974	4,609	0,946	4,734	0,974
r _{3,8}	4,933	0,923	4,710	0,974	5,089	0,946	5,044	0,918
5,9	5,102	0,923	5,175	0,937	4,609	0,946	5,044	0,918
6,10	5,084	0,923	5,175	0,937	5,089	0,946	4,734	0,974
$\phi_{1,7,2} - \phi_{3,7,2}$	0,855	0,988	0,930	0,937	0,920	0,968	0,863	0,998
$\phi_{2,8,3} - \phi_{4,8,3}$	0,572	0,987	0,930	0,937	0,554	0,960	0,538	0,932
$\phi_{4,9,5} - \phi_{6,9,5}$	0,563	0,987	0,539	0,947	3,350	0,968	0,538	0,932
$\phi_{5,10,6} - \phi_{1,10,6}$	0,567	0,987	0,539	0,947	0,554	0,960	0,863	0,998
$\phi_{6,1,2} - \phi_{1,2,3} + \phi_{2,3,4} - \phi_{3,4,5} + \phi_{4,5,6} - \phi_{5,6,1}$	5,269	0,964	5,373	0,974	5,382	0,988	5,369	0,975
$2\phi_{6,1,2} - \phi_{1,2,3} - \phi_{2,3,4} - 2\phi_{3,4,5} - \phi_{4,5,6} - \phi_{5,6,1}$	1,186	0,964	1,218	0,974	1,294	0,988	1,205	0,975
$\phi_{1,2,3} - \phi_{2,3,4} + \phi_{4,5,6} - \phi_{5,6,1}$	1,154	0,964	1,158	0,974	1,616	0,988	1,583	0,975
$\theta_{7,1,3,2} - \theta_{7,3,1,2}$	0,27	0,975	0,287	0,906	0,359	0,935	0,271	0,974
$\theta_{8,2,4,3} - \theta_{8,4,2,3}$	0,222	0,920	0,287	0,906	0,282	0,966	0,228	0,967
$\theta_{9,4,6,5} - \theta_{9,6,4,5}$	0,222	0,920	0,231	0,967	1,293	0,935	0,228	0,967
$\theta_{10,1,5,6} - \theta_{10,5,1,6}$	0,223	0,920	0,231	0,967	0,282	0,966	0,346	0,974
$\tau_{1,2,3,4} - \tau_{2,3,4,5} + \tau_{3,4,5,6} - \tau_{4,5,6,1} + \tau_{5,6,2,1} - \tau_{6,1,2,3}$	0,319	0,943	0,313	0,947	0,376	0,975	0,317	0,966
$\zeta_{1,2,3,4} = \tau_{3,4,5,6} = \tau_{4,5,6,1} = \tau_{6,1,2,3}$	0,186	0,943	0,187	0,947	0,568	0,975	0,189	0,966
$\tau_{1,2,3,4} - 2\tau_{2,3,4,5} + \tau_{3,4,5,6} + \tau_{4,5,6,1} - 2\tau_{5,6,2,1} + \tau_{6,1,2,3}$	0,226	0,943	0,220	0,947	0,489	0,975	0,221	0,966
27,11	5,222	0,975	4,999	0,975	4,888	0,927	4,926	0,920
D _{7,12}	5,156	0,975	4,804	0,975	4,819	0,927	4,866	0,920
07,13	5,181	0,975	4,804	0,975	4,819	0,927	4,866	0,920
•,, •,11,2,7	0,924	0,964	0,832	0,918	0,895	0,9350	0,902	0,910
↓12,2,7 ↓12,2,7	0,882	0,964	0,821	0,918	0,855	0,9350	0,859	0,910
112,2,7 ∮13,2,7	0,877	0,964	0,821	0,918	0,855	0,9350	0,859	0,910
τ _{11,7,2,1}	0,682	0,956	0,707	0,9320	0,765	0,954	0,636	0,901

F.4.5 táblázat folytatása A metilpirazinok erőállandói és alkalmazott skálafaktorai

	2-m	etilpirazin	2,3-di	metilpirazin	2,5-di	metilpirazin	2,6-dimetilpirazin		
Belső koordináták ^{a,b}			Erő-	Optimalizált	Erő-	Optimalizált	Erő-	Optimalizált	
	állandó	állandó skálafaktor á		skálafaktor	állandó	skálafaktor	állandó	skálafaktor	
$\tau_{12,7.2,1}$	0,677	0,956	0,653	0,932	0,766	0,954	0,627	0,902	
$\tau_{13,7.2,1}$	0,637	0,956	0,653	0,932	0,766	0,954	0,627	0,902	
$r_{8,14}$			5,086	0,935					
$r_{8,15}$			4,886	0,935					
r _{8,16}			4,886	0,935					
$\phi_{14,3,8}$			0,898	0,962					
$\phi_{15,3,8}$			0,887	0,962					
$\phi_{16,3,8}$			0,887	0,962					
$\tau_{14,8,3,4}$			0,699	0,929					
$ au_{15,8,3,4}$			0,651	0,929					
$\tau_{16,8,3,4}$			0,651	0,929					
$r_{9,14}$					4,689	0,896			
r _{9,15}					4,605	0,896			
$r_{9,16}$					4,605	0,896			
$\phi_{14,5,9}$					0,905	0,966			
ф15,5,9					0,903	0,966			
$\phi_{16,5,9}$					0,903	0,966			
$\tau_{14,9,5,4}$					0,761	0,935			
$\tau_{15,9,5,4}$					0,763	0,935			
$\tau_{16,9,5,4}$					0,763	0,935			
$r_{10,14}$						-	4,861	0,908	
r _{10,15}							4,799	0,908	
r _{10,16}							4,799	0,908	
Φ14,6,10							0,965	0,989	
Φ _{15,6,10}							0,912	0,989	
φ _{16,6,10}							0,912	0,989	
τ _{14,10,6,1}							0,715	0,919	
τ _{15,10,6,1}							0,704	0,919	
τ _{16,10,6,1}							0,704	0,919	

ar: kötéstávolság változása, φ: kötésszög változás, θ:diéderesszög változás, τ torzió; ba nyújtások egysége 10² N m-1, a deformációké 10-18 Nm

F.4.6 táblázat A pirazin számított és mért frekvenciái

		Számított			Mért ^a		PEDb
	DFT ^b 6-311G**	MP2 ^c 6-31G*	MP2 ^c 6-31G*	IR gőz	IR szilárd	RA olvadék	(%)
A_g 1	1012	1041	1003	-	-	1015p	vrg94
A_g 2	3042	3244	3060	-	-	3053p	νСН99
B_{3g} 3	1344	1396	1356	-	-	1353f	vrg11βCH87
B_{2g} 4	772	747	743	-	-	755f	γCH90γrg10
B_{2g} 5	964	949	946	-	-	976 ^f	γCH10γrg90
Ag 6a	595	605	590	-	-	601 ^f	βrg92
B _{3g} 6b	594	718	673	-	-	698dp	βrg92
B _{3g} 7b	3057	3225	3041	-	-	3062dp	νСН99
Ag 8a	1584	1641	1585	-	-	1579p	vrg64βCH28
B3g 8b	1542	1589	1528	-	-	1522dp	vrg80βCH12
Ag 9a	1225	1281	1242	-	-	1235p	vrg34βCH66
B _{1g} 10a	911	944	941	-	-	925f	үСН99
B _{3u} 11	778	801	799	785	790	-	үСН97
B _{1u} 12	1013	1040	1011	1020	1019	-	vrg24βrg70
B _{1u} 13	3041	3226	3042	3017	3015	-	νСН99
B _{2u} 14	1343	1365	1315	1335	1339	-	vrg98
B _{2u} 15	1062	1113	1075	1063	1065	-	vrg66βCH32
A _u 16a	340	344	339	-	-	-	γrg95
B _{3u} 16b	426	424	420	417	417	-	γrg97
A _u 17a	950	961	958	-	-	-	үСН93
B _{1u} 18a	1138	1176	1139	1135	1128	- VI	rg50βrg28βCH20
B _{1u} 19a	1481	1531	1486	1484	1485	-	vrg24βCH74
B _{2u} 19b	1410	1471	1425	1413	1411	-	vrg34βCH65
B _{2u} 20b	3063	3240	3055	3069	3060	-	νСН99

Átlagos eltérés a mért és a számított frekvenciák között: 8,48 cm⁻¹

Százalékos eltérés: 0,69%

^aIR: infravörös RA: Raman, p: polarizált, dp: depolarizált

bBecke3P86/6-311G**

v: nyújtás, β: síkbeli deformáció, γ: merőleges deformáció, rg: gyűrű

F.4.7 táblázat. A 2-klórpirazin mért és számított frekvenciái

		Mért .	/cm ⁻¹	Számított / cm ⁻¹			
Infi	ravörös		Raman			PED	
gőz	folyadék	normál	merőlegese n polarizált	párhuzamosa n polarizált	B3P86/ 6- 311G**		
3076		3085	3087	3085	3079	νCH 95%	
3066	3067				3073	νCH 95%	
	3059	3058	3059	3060	3059	νCH 95%	
	1562	1562	1563	1563	1565	vrg 73%, βCH 21%	
1532	1518	1518	1518	1516	1542	vrg 88%	
1460	1458	1458	1461	1459	1445	$\beta CH~60\%$, vrg 36%	
1381	1388	1382	1388	1379	1379	βCH 58%, vrg 39%	
1285	1287	1288	1288	1288	1278	βCH 69%, vrg 28%	
1203	1196	1177			1219	vrg 98%	
1179	1176	1159	1162	1174	1165	βCH 38%, vrg 50%,	
1133	1132	1134	1136	1136	1127	vrg 47%, βCH 16%, νCCl 17%	
1049	1048	1049	1050	1050	1045	vrg 74%, βCH 17%	
1009	1010	1011	1012	1012	1006	βrg 65%, vrg 34%	
	954	960	959		969	γСН 98%	
930	927		926		936	γСН 99%	
841	844	817	846		846	γСН 93%	
768	762	762	764	764	765	βrg 68%, vCCl 18%	
744	743	744	745	744	749	γrg 99	
	618	613	620	620	615	βrg 84	
480	478	435	479	479	482	νCCl 53, γrg 46	
435	434	428	432	429	422	γCCl 59 βrg 32	
410	410				409	γrg 99	
		309	309	309	304	βCC1 88	
		186	188	188	163	γrg 71, γCCl 28	

Átlagos eltérés a mért és a számított frekvenciák között: $3,24~\mathrm{cm}^{-1}$

Százalékos eltérés: 0,44%

v: nyújtás rg:gyűrű

β: hajlítás γ:merőleges deformáció

F.4.8. táblázat A 2,6-diklórpirazin mért és számított frekvenciái

Mért / cm ⁻¹		Számított / cm ⁻¹	
Infravörös	Raman	B3P86/6-311G**	PED
3104	3103	3100	νCH 99%
3099	3078	3096	νCH 99%
1549	1551	1547	vrg 65% βrg 28%
1539	1543	1541	vrg 78% βrg 19%
1413	1407	1407	v rg 55%βCH 35%
1375		1372	vrg 60% βCH 32%
1230	1199	1228	vrg 47% βCH 47%
1172	1172	1170	γCH 60 %, γrg 37%
1168		1167	vrg 47% βCH 42%
1151	1142	1143	vrg 70% βCH 25%
1003	1003	1002	vrg 62% vCCl 23%
948	941	919	γСН 88%
875		869	βrg 30% vCCl 41% vrg 25%
829	831	832	βrg 54% vrg 40% vCCl 13%
732	733	737	γrg 25% νCCl 54%
	655	654	βrg 71% vrg 16%
	572	581	γrg 51% νCCl 44%
470	473	469	vCCl 30% βCCl 27% βrg 35%
457		464	γCCl 33% βCCl 36% βrg 20%
	411	394	γrg 72% γCCl 32%
	374	372	γCCl 33% βCCl 30% βrg 26%
	202	201	βCCl 87
		175	γrg 45% γCCl 54%
		159	γrg 65% γCCl 35%

Átlagos eltérés a mért és a számított frekvenciák között: 5,85 cm⁻¹ Százalékos eltérés: 0,74%

v: nyújtás rg:gyűrű

β: hajlítás γ:merőleges deformáció

F.4.9. táblázat A 2-metilpirazin mért és számított frekvenciái

	Mért / cm ⁻¹								Számított / cm ⁻¹			
	Infavörös ^a	Raman ^a			ravörös ^b			Raman ^b		DFT Becke 3P86/311G**	PED / %	
	folyadék	folyadék	folyac	lék	•	gőz						
1					3085	sh					3100	νCH100
2	3071				3067	VS					3069	νCH100
3	3057	3056	3053	S	3051	sh		3056	S	p	3056	vCH97
4	3037	3035	3037	sh	3020	m		3039	S	p	3038	vCHm99
5	3008		3007	m	3009	m					3013	vCHm98
6	2965	2965	2965	sh	2976	m	A	2966	W	p	2978	vCHm99
7	1581	1580	1579	m	1583	m	A	1582	m	p d	1581	βCH24, vrg61
8	1528	1528	1526	S	1536	m	A	1528	VW	p	1536	βCH10, vrg79
9	1476	1490	1477	VS	1476	S	A				1481	βCH57, vrg32,
10	1446	1450	1445	C.				1446	VW	d	1451	0CUm52 1mc20
11	1440	1430	1419	s sh				1437	VW	p n	1431	βCHm52, vrg38 βCHm22, βCH77
12	1399	1395	1419	VS	1400	vs		1397	VW	p n	1399	vrg30, βCH55
13	1377	1377	1375	sh	1400	VS		1377	W	p p	1377	βsCHm67, vrg25
14	1303	1303	1303	S	1301	S	A	1304	W	d p	1304	βCH75, vrg15
15	1249	1249	1249	S	1250	S	A	1249	m	р	1242	νCC30, vrg27 , βrg22
16		,	1195	sh	1181	m		1183	sh	р	1197	vrg97
17	1176	1179	1176	S	1175	W		1179	W	р	1175	vrg67, βCH24
18	1059	1058	1059	VS	1058	W	В	1060	S	р	1049	vrg74, βCH19
19	1039		1040	sh				1036	sh	p p	1036	βCHm59, γCH19
20	1021	1020	1019	vs	1021	m	В	1021	s	p d	1015	vrg25, βrg60
21	977	979	977	m	980	W	C	979	vvw		970	γCHm53, vrg30
22			943	sh						•	951	γCH100
										d		·
23		931						931	VVW	р	919	γCH100
24	830	827	830	vs	827	vs	C	829	m	р	820	vrg32, νCC23, βrg4
25	790	814				. 2		814	sh	p d	814	үСН95
26	748	750	749	m	750	vw	С	749	VW	u p	755	γrg100
27	637	636	636	W	634	vw	В	637	W	p p	632	βrg75, vCC16
28	560		559	VW				559	W	p p	552	βrg75, vCC21
29	466	467	465	m	463	vw	C	465	VW	p p	466	γrg43, γCC50
30	406	406	404	vs	406	VS	C	408	VVW	p p	402	γrg100
31	356	354						355	VW	p d	343	βCC83, γrg41
32 33		207						207	W	р	188 50°	γrg74, γCC24 γCHm95

Átlagos eltérés a mért és a számított frekvenciák között: 4,24 cm $^{-1}$ Százalékos eltérés: 0,64% a Irodalom(90) b saját munka, c becsült frekvenciák, v: nyújtás, rg:gyűrű, β: hajlítás, γ :merőleges deformáció

F.4.10. táblázat A 2,3-dimetilpirazin mért és számított frekvenciái

F.4.1	0. táblázat A	2,3-dimetil	•		mitott fr	ekven	ciai	l	1	
		Т	Mért / cm					Számított / cm ⁻¹		
	Infarvörös ^a	Raman ^a	Infravö			aman ^b		DFT Becke 3P86/311G**	PED / %	
	folyadék	folyadék	folyad	<u>ék</u>	folya	dék				
1					3083	sh	p	3080	νCH 99	
2					3059	sh	p	3062	νCH 99	
3	3049	3047	3050	S	3049	m	р	3052	νCHm 100	
4					3018	sh	р	3026	νCHm 100	
5	2994	2992	2995	S	2995	W	р	2993	νCHm 99	
6					2982	sh	р	2968	νCHm 99	
7	2951	2950	2953	S	2952	sh	р	2939	νCHm 100	
8	2922	2920	2922	S	2921	VS	p	2914	νCHm 100	
9	1572		1572	VW	1578	m	p	1580	vrg 70, βCH14	
10	1537	1568			1560	sh	p	1568	vrg 70, βrg 10	
11	1463	1460	1463	sh	1462	VW	dp	1462	vrg 34, βCH 38	
12	1444	1444	1445	m	1445	W	dp	1438	βCHm 78, βCH 20	
13	1426				1434	sh	dp	1428	vrg 11 , βCHm 54, βCH 14	
14		1426	1427	S	1426	W	р	1418	βCHm 80, βCH 18	
15	1403	1402	1403	VS				1410	vrg 36, vCC 23, βCHm 18	
16					1401	W	р	1401	βCHm 70, βCH 14	
17	1373	1373	1373	S	1373	W	p	1373	βCHm 81, βCH 7	
18	1311		1311	W				1331	βCHm 81, βCH 7	
				VV						
19	1267	1266	1267	W	1267	W	р	1261	vrg 34, βCHm 38, βCH 8	
00	1250	1240	1250		1240			1257	vrg 39, vCC 18, βrg 19, βCF	
20	1250	1249	1250	m m	1248	sh	р	1257	18	
21	1202		1202	W	1234	sh	dp	1221	vrg 82, βCH 10	
	1-0-		1-0-	.,	120 .	0	чр		vrg 19, vCC 18, βrg 19,	
22	1169	1169	1169	VS	1171	W	р	1162	βCHm 16	
23	1080	1080	1080	W	1080	s	p p	1077	vrg 62, βCH 28	
							•		γCC 18, βCHm 60, γCHm	
24	1016	1016	1016	m	1015	VW	р	1032	18	
25			988	S	996	sh	dp	990	βCHm 67, γCHm 16	
									β rg 15 , γ CHm 47, β CHm	
26	987	986			986	VVW	dp	977	16	
27	969	968	969	VS	970	W	p	969	γCH 100	
		00.5			0.2.2			244	vrg 21, γCHm 60, βCHm	
28	0.0.5	895			933	VVW	р	944	16	
29	882	881	883	m	884	VW	dp	884	vCC 24, βrg 60	
30	848	846	849	S	847	VW	dp	852	γCH 97	
31		756			755	VW	р	758	γCHm 90, γCC 7	
32	717	720	719	m	721	VS	р	728	γrg 51, vCC 37, βrg 6	
33	592	594	592	VW	594	m	р	592	vCC 10, βrg 78	
34	539	540	539	W	540	m	dp	540	vCC 25, βrg 68	
35			492	VW	510	VVW	dp	503	γCC 59, γrg 39	

F.4.10. táblázat folytatása A 2,3-dimetilpirazin mért és számított frekvenciái

			Mért / cm ⁻¹		Számított / cm ⁻¹				
_	Infarvörös ^a	Raman ^a	Infravörös ^b	Raman ^b		Raman ^b		DFT Becke 3P86/311G**	PED / %
	folyadék	folyadék	folyadék						
36	447	444		446	W	dp	446	γCC 24, γrg 76	
37	427	425		424	vvw	p	415	βCC 86, γrg 6	
38	280	281		281	m	dp	284	βCC 89	
39				246	vvw	dp	270	γCC 71, γrg 25	
40		150		152	vvw	dp	152	γCHm 99	
41							140°	γrg 89	
42							105°	γCHm 92 γrg 5	

Átlagos eltérés a mért és a számított frekvenciák között: $4,24~\mathrm{cm}^{-1}$

Százalékos eltérés: 0,47%

^aIrodalom(90) bsaját munka cbecsült frekvenciák v: nyújtás rg:gyűrű γ:merőleges deformáció m:metil

F.4.11. táblázat A 2,5-dimetilpirazin mért és számított frekvenciái

		Mé	rt / cm ⁻¹	Számított / cm ⁻¹				
	Infarvörös ^a	Raman ^a	Infravörös ^b	Ramar	ı ^b	DFT Becke 3P86/311G**	PED / %	
	folyadék	folyadék	folyadék	folyadé	ék	31.90/3110		
1	3081		3080 m			3071	vCH 97	
2			3072 sh	3055	sh	3068	νCH 97	
3	3031	3030	3036 sh	3033	S	3032	vCHm 98	
4	3003		3003 vs	3006	sh	3002	vCHm 98	
5		2980	2985 sh	2986	W	2985	vCHm 99	
6	2965	2960	2965 m	2964	m	2969	νCHm 100	
7	2926	2921	2925 vs	2921	VS	2930	vCHm 99	
8		2881		2884	sh	2890	vCHm 97	
9		1583		1584	S	1587	vrg 66, βCH16	
10	1534	1526	1533 m	1528	W	1538	vrg 81, βrg 10	
11	1488		1489 vs			1484	vrg65, βCH 24	
12	1453		1452 s	1446	W	1446	βCHm 65, βCH 21	
13		1442	1436 sh			1432	βCHm 77, βCH 21	
14	1414		1413 m			1413	βCHm 73, βCH 27	
15				1401	W	1405	βCHm 67, βCH 27	
16	1379	1378	1379 s	1379	m	1368	βCHm 83, βCH 9	
17				1360	W	1360	βCHm 84, vCC 15	
18	1327		1327 vs			1323	vrg 36, vCC 23, βCHm 18	
19	1281	1304	1281 w	1304	W	1296	vrg 22, βCH 67	
20	1256		1256 m			1251	βrg 27, vCC 18, βCH 35	
21	1232	1231	1232 w	1230	S	1229	vrg 38, vCC 39, βCH 10	
22				1204	W	1204	vrg 95	

F.4.11. táblázat folytatása : A 2,5-dimetilpirazin mért és számított frekvenciái

		Mé	ert / cm ⁻¹				Számított / cm	-1
	Infarvörös ^a	Raman ^a	Infrav	Infravörös ^b Raman ^b			DFT Becke 3P86/311G**	PED / %
	folyadék	folyadék	folya	ıdék	folyad	ék	3F80/311G	
23	1037	1039	1039	VS	1038	VW	1036	vrg 37, βrg 43, βCH 13
24			1036	sh	1033	VW	1031	γCH 38, γCHm 48
25		1020	1028	sh	1021	W	1024	βCHm 60, γCH 16, νCC 14
26		980			981	VW	989	βCHm 14, γCHm 59
27	961		960	m			950	vrg 25 , γCHm 35, βCHm 11
28	937	931	936	sh	931	VW	944	γCH 100
29	880		880	m			880	γCH 83, βCHm 14
30		860	861	sh	860	VS	853	vrg 52, vCC 17, βrg 28
31	742	750	742	sh	750	VW	765	γrg 95
32	737		738	m			730	vrg 18, vCC 55, βrg 23
33		650	654	vw	650	W	651	vrg 15, vCC 75, βCC 6
34		499			499	m	496	νCC 26, γrg 61
35			484	vvw	488	sh	488	γCC 54, γrg 28
36	420		410	VS			415	γrg 100
37		397			391	W	381	βCC 72, βrg 11
38		330			329	m	320	γCC 75, γrg 14
39	290				281	vw	280	βCC 78, γrg 8
40					124	W	120	γCC 17, γrg 69
41							62°	γCHm 93
42							58 ^c	γCHm 90

Átlagos eltérés a mért és a számított frekvenciák között: 3,24 cm⁻¹

Százalékos eltérés: 0,44%

a Irodalom (92)
 b saját munka
 c becsült frekvenciák
 v: nyújtás
 rg:gyűrű
 m:metil
 β: hajlítás
 γ:merőleges deformáció

F.4.12. táblázat. A 2,6-dimetilpirazin mért és számított frekvenciái

			,	***************************************	re es szamitott men		
-				Számított / cm ⁻¹			
	Infavö	örös ^a	Rama	DFT Becke PED / %			
	folyadék	szilárd	folyadék	szilárd	folyadék	folyadék	3P86/311G**
1	3039			3040	3040 s	3040 s	3034 vCH 98
2		3034	3028		3027 sh	3028 sh	3030 νCH 98
3		3019		3018	3014 m	3017 s	3011 νCHm 99
4					2997 sh	2994 sh	2990 νCHm 99
5	2981	2987	2977		2988 m	2976 sh	2987 νCHm 99
6	2963	2960	2962	2973	2963 m	2954 sh	2968 νCHm 100
_ 7	2928	2925	2924	2924	2925 s	2922 vs	2925 vCHm 99

Az F.4.12. táblázat folytatása: A 2,6-dimetilpirazin mért és számított frekvenciái

112	1.1.12. 000	<u> </u>	ytatasa. A	111011		Számított / cm ⁻¹				
	Infavč	örös ^a	Rama	Mért / c	Infravö	orös ^b	Ram	an ^b	DFT Becke	PED / %
	folyadék	szilárd	folyadék	szilárd	folyadé	èk	folyadé	k	3P86/3	11G**
9	1590	1591	1591	1592	1585	m	1593	W	1597	vrg 66, βCH14
10	1571	1570	1569	1574	1571	m	1574	W	1569	vrg 83, βrg 10
11	1490	1493	1487	1495	1485	W	1493	vw	1486	βCHm 55, βCH 24 vrg10
12	1459				1469	sh	1460	vw	1468	βCHm 77, βCH 22
4.0	1.450	1.150								vrg 39, vCC 9, βCH
13	1452	1452	1454	1451	1455	VS			1451	13, βCHm 39 vrg 41, vCC 11, βCH
14		1417			1426	sh	1425	w	1420	24, βCHm 10
15	1415	- 1-7	1409	1413	1414	VS	1411			βCHm 73, βCH 17
16	1395	1398		1383	1398	W	1384			βCHm 33, βCH 61
										βCHm 51, βCH 21, vrg11,
17	1380	1377	1379	1373	1380	VS	1374	W	1386	βCH 11
18	1327	1334			1354	sh	1332	vw	1348	βCHm 71, βCH12
19	1280	1277	1279	1263	1283	m	1286	m	1280	vrg 17, vCC 27, βrg 27, βCH
20	1255	1263	1279	1203	1256	S		vvw		vrg 16, vCC 11, βCH 55
21	1194	1197	1192	1196	1230	s sh		vvw		vrg 92
22	1167	1164	1159	1165	1165	VS	1165			vrg 56, βCH 366
23	1067	1071	1067	1071	1052	sh	1071			vCC 15, βCHm 61, γCHm 18
24	1036	10/1	1037	1037	1032	sh	1033			vrg 14, vCC 24, γCHm 47
25	1022	1023	1020	1020	1022	S	1021			vrg 27, βrg 41, βCHm 14
26	1022	1020	982	995	1022	٥	1021	, 2	1019	βrg 16, γCHm 44, βCHm 16
27	976	978			975	W	955	vw	965	vrg 20 , γCHm 52, βCHm 11
28	936	935	933	937	934	m	938	vw	940	γCH 95
										vrg 28, vCC 13, βrg
29					928	sh	920	vvw	930	11, γCHm 32
30	865	889		887	888	W	886	vvw	866	γCH 97
31	745	747	745	747	746	m	757	VW	758	γCHm 96
32	708	710	709	712	709	m	712	VW	712	vrg 33, vCC 27, βrg 36
33	567	571	568	568	567	W	567	m	566	vCC 21, βrg 69
34		534	553	554	556	sh	554	m	551	νCC 22, βrg 69
35			533	535	534	VW	535	VW	540	γCC 69, γrg 22
36	444	439	44.0	443	444	VW	443	VVW	447	γCC 78, γrg 22
37 38	412 283	410	410	416 289	410	W	417	vvw	407	βCC 85, γrg 6
39	283		284	214			288 213	w m	273 205	βCC 89 γCC 58, γrg 39
40			199	414				sh	186	γCC 38, γ1g 39 γCC 12, γrg 83
41				68					61	γCHm 100
42				33					41 ^c	γCHm 98

Átlagos eltérés a mért és a számított frekvenciák között: $4,45~\rm cm^{-1}$ Százalékos eltérés: 0,64%

^aIrodalom(91) ^bsaját munka ^cbecsült frekvenciák ν : nyújtás, rg:gyűrű, β : hajlítás, γ :merőleges deformáció, m: metil

F.5.1. ábra. A MFT infravörös és Raman spektruma

F.5.4 ábra. A MFT-2-oxid infravörös és Raman spektruma

F.5.5 ábra. A MFT-13-aldehid-2-oxid infravörös és Raman spektruma

F.5.6 ábra. A 13-hidroximetil-MFT-2-oxid infravörös és Raman spektruma

44

F.5.1. táblázat

A vizsgált molekulák számított geometriai paraméterei: MFT származékok^a

Paraméterek	MFT	MFT-13-aldehid	13-hidroximetil- MFT
N1-C4	1,408	1,412	1,408
N1-C6	1,408	1,399	1,408
S2-C3	1,774	1,773	1,774
S2-C5	1,774	1,773	1,774
C3-C4	1,396	1,395	1,396
C3-C7	1,383	1,383	1,383
C4-C8	1,390	1,389	1,390
C5-C6	1,396	1,398	1,394
C5-C11	1,383	1,380	1,383
C7-C9	1,386	1,385	1,386
C7-H20	1,075	1,075	1,075
C8-C10	1,386	1,386	1,386
C8-H23	1,073	1,073	1,073
C9-C10	1,382	1,381	1,382
C9-H21	1,075	1,075	1,075
C10-H22	1,075	1,076	1,075
C11-C13	1,386	1,388	1,387
C11-H19	1,075	1,077	1,076
C12-C14	1,386	1,074	1,384
C12-H16	1,073	1,073	1,073
C13-C14	1,382	1,389	1,386
C13-H18	1,075		
C13-C18		1,478	1,514
C14-H17	1,075	1,074	1,075
N1-C15	1,446	1,448	1,446
C15-H24	1,089	1,089	1,089
C15-H25	1,081	1,081	1,082
C15-H26	1,081	1,081	1,082
C18-O27		1,192	1,401
C18-H28		1,096	1,088
C18-H29			1,084
027-H30			0,943
C4-N1-C6	118,1	118,5	118,1
C3-S2-C5	96,1	97,9	98,0
S2-C3-C4	118,7	118,6	118,7
C4-C3-C7	120,6	120,4	120,7
N1-C4-C3	118,5	119,4	119,2
C3-C4-C8	118,5	118,5	118,5
S2-C5-C6	118,7	118,9	118,9
C6-C5-C11	120,6	120,3	120,7
N1-C6-C5	119,1	119,3	119,3

A F.5.1. táblázat folytatása

A vizsgált molekulák számított geometriai paraméterei: MFT származékok^a

paraméter	MFT	MFT-13-aldehid	13-hidroximetil- MFT
C5-C6-C12	118,5	118,7	118,1
C3-C7-H20	119,2	119,3	119,2
C4-C8-C10	120,6	102,5	120,6
C4-C8-H23	120,3	120,3	120,3
C7-C9-C10	119,2	119,2	119,2
C7-C9-H21	120,1	120,1	120,1
C8-C10-C9	119,2	120,6	120,6
C8-C10-H22	119,2	119,2	120,2
C5-C11-C13	120,5	120,7	120,6
C5-C11-H19	119,2	119,1	118,8
C6-C12-C14	120,6	120,6	120,8
C6-C12-H16	120,3	120,2	120,3
C11-C13-C14	119,2	119,0	118,1
C11-C13-H18	119,2	120,2	120,9
C12-C14-C13	120,6	120,6	121,1
C12-C14-H17	119,2	120,4	119,4
N1-C15-H24	113,7	113,6	113,7
N1-C15-H25	109,0	108,9	109,0
H24-C15-H25	108,5	113,6	108,5
H25-C15-H26	108,0	107,9	107,9
C13-C18-O27		124,5	113,2
C13-C18-H28		115,0	109,6
C13-C18-H29			110,2
H28-C18-H29			107,1

A kötéstávolságok angströmben, a vegyértékszögek fokokban értendők a HF/6-31G**

F 5.2. táblázat

A vizsgált molekulák számított geometriai paraméterei: MFT-2-oxid származékok^a,

paraméterek	MFT -2-oxid	MFT-13-aldehid-2-oxid	13-hidroximetil- MFT-2-oxid
N1-C4	1,410	1,412	1,409
N1-C6	1,410	1,401	1,410
S2-C3	1,781	1,780	1,781
S2-C5	1,781	1,780	1,781
C3-C4	1,393	1,393	1,394
C3-C7	1,380	1,380	1,380
C4-C8	1,390	1,389	1,390
C5-C6	1,396	1,394	1,394
C6-C12	1,390	1,396	1,391
C5-C11	1,380	1,388	1,383
C7-C9	1,386	1,385	1,385
C7-H20	1,075	1,074	1,074
C7-H21	1,074		
C8-C10	1,387	1,387	1,387
C8-H23		1,073	1,073
C8-H24	1,073		
C9-C10	1,383	1,383	1,383
C9-H21		1,075	1,075
C9-H22	1,075		
C10-H22		1,076	1,076
C10-H23	1,076		
C11-C13	1,385	1,387	1,387
C11-H19	1,074	1,076	1,076
C12-C14	1,387	1,379	1,385
C12-H16	1,073	1,072	1,073
C13-C14	1,383	1,391	1,389
C13-H18	1,075		
C13-C18	1,075	1,480	1,515
C14-H17	1,076	1,074	1,075
N1-C15	1,447	1,450	1,447
C15-H24		1,089	1,089
C15-H25	1,089	1,081	1,081
C15-H26	1,081	1,081	1,081
C15-H27	1,081		·
C18-O27	•	1,191	1,401
C18-H28		1,095	1,088
C18-H29		•	1,084
027-H30			0,944
S2-O20	1,484		- , -
S2-O29	,	1,483	
S2-O31		,	1,484

A F.5.2 táblázat folytatása
A vizsgált molekulák számított geometriai paraméterei: MFT-2-oxid származékok^a,

paraméterek	MFT-2-oxid	MFT-13-aldehid-2-oxid	13-hidroximetil- MFT-2-oxid
C4-N1-C6	116,9	117,3	116,9
C5-S2-C3	95,3	95,2	95,2
C5-S2-O20	108,8		
C5-S2-O29		108,4	
C5-S2-O31			108,8
S2-C3-C4	118,0	118,2	118,0
N1-C4-C3	118,9	119,3	119,0
S2-C5-C6	118,0	118,5	118,0
N1-C6-C5	118,9	119,0	119,1
C3-C7-C9	119,6	119,6	119,6
C3-C7-H20		118,9	118,9
C3-C7-H21	118,9		
C4-C8-C10	120,2	120,1	120,6
C10-C8-H23		119,3	119,3
C10-C8-H24	119,3		
C7-C9-C10	119,2	119,2	119,2
C7-C9-H21		120,3	120,3
C7-C9-H22	120,3		
C8-C10-C9	121,2	121,1	121,2
C9-C10-H22		118,9	119,9
C9-C10-H23	119,9		
C5-C11-C13	119,6	119,8	120,3
C13-C11-H19	121,5	121,4	121,3
C6-C12-C14	120,6	120,1	120,3
C6-C12-H16	120,6	120,5	120,6
C11-C13-C14	119,2	119,1	118,1
C11-C13-H18	120,3	120,4	121,1
C12-C14-C13	121,2	121,1	121,7
C12-C14-H17	119,0	120,2	119,2
C6-N1-C15	118,6	118,9	118,6
N1-C15-H24		113,4	113,5
N1-C15-H25	113,5	108,9	109,0
N1-C15-H26	109,0	109,0	109,0
N1-C15-H27	109,0		
H26-C15-H27	108,0		
H25-C15-H26		108,0	108,0
C13-C18-O27		124,2	113,1
C13-C18-H28		115,1	109,6
C13-C18-H29			110,0
O27-C18-28		120,7	111,1
C18-O27-H30			109,4

A kötéstávolságok angströmben a vegyértékszögek fokban értendők

^aHF/6-31G**

F.5.3. táblázat A MFT mért és számított frekvenciái (cm⁻¹)

	Mért Mért			7	Számított			
	Infravörös		HF/6-31G**		PED	(%)		
1		3132	3135	vCH1 94				
2	3096	0102	3093	vCH2 89				
3	0000	3093	3091	vCH1 96				
4	3089	0000	3083	vCH2 91				
5		3067	3070	vCH2 95				
6	3055	3063	3059	vCH2 99				
7	3035	3053	3048	vCH1 99				
8	3000	2999	2996	vCHm 96				
9	2960	2960	2960	vCHm 95				
2 3 4 5 6 7 8 9	2912	2918	2906	vCH1 95				
11	2861	2861	2868	vCHm 99				
	1669		1666	vrg1 43 βrg3	10 βCH2	18		
12 13	1651		1651	vrg1 41 βrg3	15 βCH2	16		
14	1644	1640	1644	vrg1 30 βrg1	12 β rg2	10		
15		1608	1598	3CHm 73				
16		1591	1591	3CHm 45 γCHm				
17	1568	1578	1571	3CHm 23 γCHm				
18		1562	1557	vrg1 21 βCH2	•		γCHm 12	
19			1548	ν rg1 20 β rg3	•	20		
20	1498	1517	1514	vrg1 25 βCH2		~		
21	1457	1457	1457	vrg3 24 βrg3				
22	1426	1425	1408	βrg2 22 vrg3	•		01145	
23	1360	1221	1363	vrg2 14 βrg2	-	21	γCHm 15	
24 25	1327 1287	1331 1289	1321 1287	vrg1 27 βCH2		26	vNC 21	
26		1259	1257	vrg2 22 βrg3 vrg2 21 βCH1			VINCZI	
27	1259	1239	1259	vrg1 21 βCH1				
28		1240	1232	3CHm 73 γCHm	•	20		
29			1203	vrg1 14 $vrg2$		10	βCHm 34	√CHm 10
30	1166	1163	1179	vrg1 38 βCH2			pormi	701111111
31	1155	1154	1156	vrg1 11 βrg2		13	βCH1 43	
32	1137	1140	1136	vrg1 13 βrg3	_		'	
33	1127		1129	vrg1 23 βrg3	-	35		
34	1119	1106	1118	vrg1 79				
35			1099	vrg3 39 βCH1	35			
36		1078	1074	βrg1 13 vrg3	19 β rg3	17	νCH1 15	γCH2 13
37	1057	1057	1058	vrg1 20 βrg1	$36 \gamma rg2$	10	vrg3 10	νNC 11
38		1051	1056	vrg1 75				
39		1035	1037	γCH2 76				
40	1031	1035	1033	γCH1 81	04			
41	070		999	γCH1 16 γCH2				
42 43	978	072	991	γCH1 71 γCH2		27		
	972 915	973 918	978	vrg3 16 γCH1		21		
44	915	910	912	γCH1 40 γCH2	40			

A F.5.3. táblázat folytatása A MFT mért és számított frekvenciái (cm⁻¹)

	Mért		Trekvenetar (et			Szán	nított		
	Infravörös	s Raman	HF/6-31G**				PED (%) ^a	
45	904		902	γCH1	35	γCH2 31			
46	864	860	868	βrg1	17	vrg2 15	vrg3	21	βrg3 17
47	789		786	γCH1	32	γCH2 39			
48	786		781	γCH1	49	γCH2 22			
49	767	765	772	βr g1	20	βrg2 11	γrg3	12	γCH2 18
50	746	755	746	γrg3	73				
51	728	727	731	βrg1	39	βrg3 37			
52	696	696	682	vrg1	28	γrg2 27	γrg3	35	
53	670	671	662	βr g 1	47				
54	610	604	619	βr g2	41				
55	579	584	587	βr g1	46	βrg2 23			
56	534	538	532	βr g1	19	γrg3 38			
57	486	495	487	γrg3	74				
58		453	456	βr g1	25	βrg2 33	β rg3	25	
59	454		449	vrg2	27	βrg2 33	γrg3	35	
60	444	444	444	γrg2			γrg3	47	
61	429	428	429	βrg2					
62	408	405	390	βr g2					
63		532	350		11		γ CHm	53	
64		340	343	βr g1					
65		295	292	βr g2			vrg3		
66		282	292	βr g2	14	,	γ CHm		
67		243	237	vrg2			γ NC	23	
68		243	234	γrg2	65				
69		141	145	, 0	14	, 0	vrg3	18	γrg3 14
70			113	∨rg2			vrg3	21	
71			75	γrg2					
72			11	β rg1	25	γrg2 45	vrg3	14	

Átlagos eltérés a mért és számított frekvenciák között: 5,13 cm⁻¹

Átlagos relatív eltérés a mért és számított frekvenciák között 0,77%

 $^{^{}a}\nu$: vegyértékrezgés, β :síkbeli deformáció, γ :merőleges deformáció, rg: gyűrű, m: metil

^{*} becsült érték

F.5.4. táblázat A MFT-13-aldehid mért és számított frekvenciái (cm⁻¹)

	Mért		55 52411110010	nekvenciai (c		nított		
	-		HF/6-31G*	*	Szun	PED (%) ^a		
1	3090	3107	3090	vCH2 99				
2	3082	3081	3086	vCH1 98				
3	3074		3075	vCH2 99				
4		3067	3066	vCH1 86				
5	3059	3059	3059	vCH1 95				
6	3048	3052	3046	νCH2 99				
7	3036	3010	3033	νCH1 81				
8	2980	2982	2981	vCHm 99				
9	2945	2944	2945	vCHm 99				
10	2849	2846	2855	vCHm 99				
11	2823	2824	2821	νCHa 99				
12	1687	1679	1688	β rg3 32	βCH2 13	vCO 84		
13	1672		1664	βrg3 54	vCO 26	βCHa 12		
14	1653	1652	1647	∨rg1 24	vrg2 24	βrg2 13		
15	1638	4.500	1642	βrg2 13	vrg2 43	β rg2 19		
16	1598	1596	1592	βCH2 13	βCHm 54			
17	1595	4570	1585	βCHm 86	0.40	0.0110.00	0011 04	
18	1572	1572	1573	vrg1 17	vrg3 16	βCH2 26	βCHm 24	
19	1559 1550	1559	1559	vrg1 34	vrg3 12	βCH2 10	βCHm 16	
20 21	1550 1498	1559 1497	1556 1506	vrg1 34	vrg3 10	βCH2 11	βCHm 24	
22	1498	1462	1467	βrg2 17 νCO 12	βrg2 23 βCHa 56	βCH1 28 vrg2 24		
23	1443	1443	1443	βrg2 18	νrg2 34	βCH1 10	βCC 13	
24	1417	1419	1418	βrg2 18	vrg3 18	βrg3 11	βCH2 15	
25	1374	1378	1372	νrg1 34	βCH2 39	ρι 90	ροπ 2 το	
26	1331	1330	1328	βrg3 10	βCH2 28	νNC 17		
27	1291	1293	1291	βrg2 14	vrg3 26	βCH2 30		
28	1259	1255	1252	vrg2 17	βCH1 54	ļ		
29	1253		1249	βr g 2 29	, βCH2 51			
30		1231	1221	βCHm 83	•			
31	1205	1204	1200	β rg2 26	β rg3 10	βCH2 10		
32		1195	1192	β rg2 24	vrg2 13	βCH1 15		
33	1166	1168	1185	β rg2 29	βCHm 15	vrg1 35		
34	1144	1145	1146	β rg2 28	vrg3 12	β rg3 22	βCH2 15	
35	1139		1135	∨rg2 17	β rg2 24	βCH1 24	βCC 11	
36	1128	1128	1131	βrg2 16	βrg2 32	βCH1 10	βCC 11	
37	1120	1118	1111	vrg2 41	grg3 11	γCHa 21		
38	1107	1107	1107	vrg2 15	γCHa 72			
39	1103	4000	1102	βrg2 45	vNC 20			
40	1055	1083	1086	vrg3 62	0.04	0. 004	00114 40	
41	1055	1056	1066	vrg1 20	vrg2 31	βrg2 21	βCH1 16	
42 43	1038 1036	1045 1038	1039 1031	γrg3 15	γCH2 73	,CC 16		
40	1030	1030	1001	∨rg1 17	γCH1 37	γCC 16		

A F.5.4. táblázat folytatása A MFT-13-aldehid mért és számított frekvenciái (cm⁻¹)

	Mért			,	Szán	nított		
			HF/6-31G*	*				
44	1004	1006	995	γrg2 11	γCH1 80			
45	963	960	962	γCH2 78	70111 00			
46	902	909	912	βrg2 19	γCH1 48			
47	892	894	889	√rg1 48	,			
48	880	880	877	γCH2 74				
49	858	859	866	, √rg1 39				
50	811		800	βrg2 42	γrg3 38			
51	809		789	βrg2 10	γCH1 41	γCC 29		
52	759	762	775	vrg1 20	βrg3 12	γrg3 11	βCO 10	
53	754	753	754	∨rg1 41	γrg2 14		-	
54	733	734	731	β rg2 27	βrg2 14	γrg2 25		
55	710	711	709	vrg1 32	βrg2 29	βrg3 20		
56	671	671	662	∨rg1 14	β rg2 31	β rg3 24	βCO 11	
57	603	594	611	β rg2 39	γrg3 13			
58	565	576	563	∨rg1 30	β rg2 28			
59	552	554	558	∨rg1 33	β rg2 24	γrg2 18		
60	525	536	529	∨rg1 20	βrg2 38	γrg3 10		
61	493	492	496	∨rg1 34	βrg2 39			
62	472	474	467	∨rg1 12	γrg2 30	γrg3 42		
63	447	446	447	∨rg1 52	β rg2 17			
64	434	436	437	∨rg1 29	γrg2 29			
65	408	385	391	β rg2 46	γrg2 10	γrg3 11		
66		374	370	β rg2 39	β rg 3 12			
67		348	354	∨rg1 10	βrg2 23	βrg2 14	γrg2 15	γNC 14
68		320	319	∨rg1 18	vrg3 10	βrg3 12	γrg3 12	
69		300	297	∨rg1 18	β rg 3 13	βCH2 10	βNC 35	
70		282	279	∨rg1 24	γrg2 22	γCH2 15		
71		274	272	β rg2 47	βNC 16	- 10	00	- 40
72		241	228	γrg2 22	γrg3 18	γCH2 12		γCHa 12
73		199	192	β rg2 10	γrg2 24	γrg3 23	βCH2 18	
74		151	149	βCH2 23	γNC 38	17		
75			129*	βrg2 19	γrg2 27	γNC 17	0001	
76			114*	βrg2 36	γrg2 18	γrg3 15	γCO 21	0.40
77			101*	βrg2 12	γrg2 15	γrg3 12	γCH2 18	γNC 13
78			45*	γrg2 31	γrg3 45			

Átlagos eltérés a mért és számított frekvenciák között: 5,11 cm⁻¹

Átlagos relatív eltérés a mért és számított frekvenciák között:0,82%

^av: vegyértékrezgés, β: síkbeli deformáció, γ: merőleges deformáció, rg: gyűrű, a: aldehid, m: metil

^{*} becsült érték

F.5.5 táblázat A 13-hidroximetil-MFT mért és számított frekvenciái (cm⁻¹)

26 1427 1427 1425 βCHa 44 γCHa 12 βOH 20 27 1395 1406 1394 βCHa 40 γCHa 20 βOH 13	
31G** 3576 3090 3082 3085 3085 3082 4 3070 3058 3064 3062 0.00 0	
2 3090 3082 3082 3082 yCH198 3 3070 3058 3064 yCH199 5 3054 3055 3057 yCH296 6 3054 3055 3057 yCH294 7 3039 3044 yCH299 8 3024 3028 3032 yCH899 9 2970 2972 2976 yCHm99 10 2934 2944 2939 yCHm99 11 2925 2926 2924 yCHa99 12 2857 2862 2866 yCHa99 14 1688 1689 1699 yrg328 βrg3 39 βCH2 12 15 1675 1675 1675 1675 yrg124 yrg2 27 βrg2 19 βCH1 13 16 1650 1646 1651 yrg123 βCHa 47 yrg137 yrg3 12 γCHa 13 19 1576 1574 1573 yrg128 βrg3 24 βCH2 28 20 1567 1561 1561 βCHm2	
2 3090 3082 3082 3082 yCH198 3 3070 3058 3064 yCH199 5 3054 3055 3057 yCH296 6 3054 3055 3057 yCH294 7 3039 3044 yCH299 8 3024 3028 3032 yCH899 9 2970 2972 2976 yCHm99 10 2934 2944 2939 yCHm99 11 2925 2926 2924 yCHa99 12 2857 2862 2866 yCHa99 14 1688 1689 1699 yrg328 βrg3 39 βCH2 12 15 1675 1675 1675 1675 yrg124 yrg2 27 βrg2 19 βCH1 13 16 1650 1646 1651 yrg123 βCHa 47 yrg137 yrg3 12 γCHa 13 19 1576 1574 1573 yrg128 βrg3 24 βCH2 28 20 1567 1561 1561 βCHm2	
3 3082 3070 3058 3064 3062	
4 3070 3058 3064 vCH1 99 5 3054 3055 3057 vCH2 94 7 3039 3044 vCH2 99 8 3024 3028 3032 vCH2 89 9 2970 2972 2976 vCHm 99 10 2934 2944 2939 vCHm 99 11 2925 2926 2924 vCHa 99 12 2857 2862 2866 vCHm 99 13 2838 2831 2847 vCHm 99 14 1688 1689 1699 vrg3 28 βrg3 39 βCH2 12 15 1675 1675 1675 vrg1 24 vrg2 27 βrg2 19 βCH1 13 16 1650 1646 1651 vrg1 24 βrg2 20 βCH1 12 17 1607 1603 1608 vrg1 23 βCHa 47 18 1595 1595 1597 vrg1 37 vrg3 12 γCHa 13 19 1576 1574 1573 vrg1 28 βrg3 24 βCH2	
5 3058 3062 vCH2 96 6 3054 3055 3057 vCH2 94 7 3039 3044 vCH2 99 8 3024 3028 3032 vCH2 89 9 2970 2972 2976 vCHm 99 10 2934 2944 2939 vCHm 99 11 2925 2926 2924 vCHa 99 12 2857 2862 2866 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vCHa 99 vFalse pCHa 12 vrg 2 27 βrg2 19 βCH1 12 vrg 2 44 βrg2 20 βCH1 12 vrg 3 12 vCHa 13	
6 3054 3055 3057 vCH2 94 7 3039 3044 vCH2 99 8 3024 3028 3032 vCH2 89 9 2970 2972 2976 vCHm 99 10 2934 2944 2939 vCHm 99 11 2925 2926 2924 vCHa 99 12 2857 2862 2866 vCHa 99 13 2838 2831 2847 vCHm 99 14 1688 1689 1699 vrg3 28 βrg3 39 βCH2 12 15 1675 1675 1675 vrg1 24 vrg2 27 βrg2 19 βCH1 13 16 1650 1646 1651 vrg1 24 yrg2 27 βrg2 19 βCH1 13 17 1607 1603 1608 vrg1 23 βCHa 47 18 1595 1595 1597 vrg1 37 vrg3 12 γCHa 13 19 1576 1574 1573 vrg1 28 βrg3 24 βCH2 28 20 1567 1561 1	
7 3039 3024 3028 3032 vCH2 99 9 2970 2972 2976 vCHm 99 10 2934 2944 2939 vCHm 99 11 2925 2926 2924 vCHa 99 12 2857 2862 2866 vCHa 99 13 2838 2831 2847 vCHm 99 14 1688 1689 1699 vrg3 28 βrg3 39 βCH2 12 15 1675 1675 1675 vrg1 24 vrg2 27 βrg2 19 βCH1 13 16 1650 1646 1651 vrg1 24 yrg2 27 βrg2 19 βCH1 13 17 1607 1603 1608 vrg1 23 βCHa 47 18 1595 1595 1597 vrg1 37 vrg3 12 γCHa 13 19 1576 1574 1573 vrg1 28 βrg3 24 βCH2 28 20 1567 1561 1561 βCHm 26 γCHm 66 21 1529 βrg1 21 βrg2 12 βCH1 27 βCH2 11	
8 3024 3028 3032 νCH289 9 2970 2972 2976 νCHm99 10 2934 2944 2939 νCHm99 11 2925 2926 2924 νCHa99 12 2857 2862 2866 νCHa99 13 2838 2831 2847 νCHm99 14 1688 1689 1699 vrg3 28 βrg3 39 βCH2 12 15 1675 1675 1675 vrg1 24 vrg2 27 βrg2 19 βCH1 13 16 1650 1646 1651 vrg244 βrg2 20 βCH1 12 17 1607 1603 1608 vrg123 βCHa 47 18 1595 1595 1597 vrg137 vrg3 12 γCHa 13 19 1576 1574 1573 vrg128 βrg3 24 βCH2 28 20 1567 1561 1561 βCHm 26 γCHm 66 21 1529 1522 βrg121 βrg2 12 βCH1 27 βCH2 11 <td< td=""><td></td></td<>	
9 2970 2972 2976 vCHm 99 10 2934 2944 2939 vCHm 99 11 2925 2926 2924 vCHa 99 12 2857 2862 2866 vCHa 99 13 2838 2831 2847 vCHm 99 14 1688 1689 1699 vrg3 28 βrg3 39 βCH2 12 15 1675 1675 1675 vrg1 24 vrg2 27 βrg2 19 βCH1 13 16 1650 1646 1651 vrg2 44 βrg2 20 βCH1 12 17 1607 1603 1608 vrg1 23 βCHa 47 18 1595 1595 1597 vrg1 37 vrg3 12 γCHa 13 19 1576 1574 1573 vrg1 28 βrg3 24 βCH2 28 20 1567 1561 1561 βCHm 26 γCHm 66 21 1529 1529 βCHm 30 γCHm 15 22 1521 1522 βCHm 77 γCHm 15 24 1466	
10 2934 2944 2939 vCHm 99 11 2925 2926 2924 vCHa 99 12 2857 2862 2866 vCHa 99 13 2838 2831 2847 vCHm 99 14 1688 1689 1699 vrg3 28 βrg3 39 βCH2 12 15 1675 1675 1675 vrg1 24 vrg2 27 βrg2 19 βCH1 13 16 1650 1646 1651 vrg1 24 βrg2 20 βCH1 12 17 1607 1603 1608 vrg1 23 βCHa 47 18 1595 1595 1597 vrg1 37 vrg3 12 γCHa 13 19 1576 1574 1573 vrg1 28 βrg3 24 βCH2 28 20 1567 1561 1561 βCHm 26 γCHm 66 21 1529 1529 βCHm 30 γCHm 66 22 1521 1522 βCHm 77 γCHm 15 24 1466 1468 1468 vrg2 27 vrg3 28 βCC 20 βCH	
11	
12 2857 2862 2866 νCHa 99 13 2838 2831 2847 νCHm 99 14 1688 1689 1699 νrg3 28 βrg3 39 βCH2 12 15 1675 1675 1675 νrg1 24 νrg2 27 βrg2 19 βCH1 13 16 1650 1646 1651 νrg2 44 βrg2 20 βCH1 12 17 1607 1603 1608 νrg1 23 βCHa 47 18 1595 1595 1597 νrg1 37 νrg3 12 γCHa 13 19 1576 1574 1573 νrg1 28 βrg3 24 βCH2 28 20 1567 1561 1561 βCHm 26 γCHm 66 21 1529 1529 βCHm 30 γCHm 66 22 1521 1522 βrg1 21 βrg2 12 βCH1 27 βCH2 11 23 1499 1500 1511 βCHm 77 γCHm 15 24 1466 1468 1468 νrg2 27 νrg3 28 βCC 20 βCHa 22 25	
13 2838 2831 2847 νCHm 99 14 1688 1689 1699 νrg3 28 βrg3 39 βCH2 12 15 1675 1675 1675 νrg1 24 νrg2 27 βrg2 19 βCH1 13 16 1650 1646 1651 νrg2 44 βrg2 20 βCH1 12 17 1607 1603 1608 νrg1 23 βCHa 47 18 1595 1595 1597 νrg1 37 νrg3 12 γCHa 13 19 1576 1574 1573 νrg1 28 βrg3 24 βCH2 28 20 1567 1561 1561 βCHm 26 γCHm 66 21 1529 βCHm 30 γCHm 66 22 1521 βCHm 77 γCHm 15 24 1466 1468 1468 γrg2 27 γrg3 28 βCC 20 βCHa 22 25 1452 1458 1462 γrg2 31 γrg3 24 βCH1 13 βCC 11 βCHa 44 26 1427 1427 1425 βCHa 44 γCHa 12 βOH 20	
14 1688 1689 1699 vrg3 28 βrg3 39 βCH2 12 15 1675 1675 vrg1 24 vrg2 27 βrg2 19 βCH1 13 16 1650 1646 1651 vrg2 44 βrg2 20 βCH1 12 17 1607 1603 1608 vrg1 23 βCHa 47 18 1595 1595 1597 vrg1 37 vrg3 12 γCHa 13 19 1576 1574 1573 vrg1 28 βrg3 24 βCH2 28 20 1567 1561 1561 βCHm 26 γCHm 66 21 1529 βrg1 21 βrg2 12 βCH1 27 βCH2 11 23 1499 1500 1511 βCHm 77 γCHm 15 24 1466 1468 1468 vrg2 27 vrg3 28 βCC 20 βCHa 22 25 1452 1458 1462 vrg2 31 vrg3 24 βCH1 13 βCC 11 β 26 1427 1427 1425 βCHa 44 γCHa 12 βOH 20 27 1395 1406 <td></td>	
15	
16 1650 1646 1651 vrg2 44 βrg2 20 βCH1 12 17 1607 1603 1608 vrg1 23 βCHa 47 18 1595 1595 1597 vrg1 37 vrg3 12 γCHa 13 19 1576 1574 1573 vrg1 28 βrg3 24 βCH2 28 20 1567 1561 1561 βCHm 26 γCHm 66 21 1529 βCHm 30 γCHm 66 22 1521 βCHm 77 γCHm 15 23 1499 1500 1511 βCHm 77 γCHm 15 24 1466 1468 1468 vrg2 27 vrg3 28 βCC 20 βCHa 22 25 1452 1458 1462 vrg2 31 vrg3 24 βCH1 13 βCC 11 β 26 1427 1427 1425 βCHa 44 γCHa 12 βOH 20 27 1395 1406 1394 βCHa 40 γCHa 20 βOH 13	
17	
18	
19	
20 1567 1561 1561 βCHm 26 γCHm 66 21 1529 1529 βCHm 30 γCHm 66 22 1521 βrg1 21 βrg2 12 βCH1 27 βCH2 11 23 1499 1500 1511 βCHm 77 γCHm 15 24 1466 1468 1468 vrg2 27 vrg3 28 βCC 20 βCHa 22 25 1452 1458 1462 vrg2 31 vrg3 24 βCH1 13 βCC 11 β 26 1427 1427 1425 βCHa 44 γCHa 12 βOH 20 27 1395 1406 1394 βCHa 40 γCHa 20 βOH 13	
21 1529 βCHm 30 γCHm 66 22 1521 βrg1 21 βrg2 12 βCH1 27 βCH2 11 23 1499 1500 1511 βCHm 77 γCHm 15 24 1466 1468 1468 γrg2 27 γrg3 28 βCC 20 βCHa 22 25 1452 1458 1462 γrg2 31 γrg3 24 βCH1 13 βCC 11 β 26 1427 1427 1425 βCHa 44 γCHa 12 βOH 20 27 1395 1406 1394 βCHa 40 γCHa 20 βOH 13	
22 1521 1522 βrg121 βrg2 12 βCH1 27 βCH2 11 23 1499 1500 1511 βCHm 77 γCHm 15 24 1466 1468 1468 vrg2 27 vrg3 28 βCC 20 βCHa 22 25 1452 1458 1462 vrg2 31 vrg3 24 βCH1 13 βCC 11 β 26 1427 1427 1425 βCHa 44 γCHa 12 βOH 20 27 1395 1406 1394 βCHa 40 γCHa 20 βOH 13	
23 1499 1500 1511 βCHm 77 γCHm 15 24 1466 1468 1468 vrg2 27 vrg3 28 βCC 20 βCHa 22 25 1452 1458 1462 vrg2 31 vrg3 24 βCH1 13 βCC 11 β 26 1427 1427 1425 βCHa 44 γCHa 12 βOH 20 27 1395 1406 1394 βCHa 40 γCHa 20 βOH 13	
24 1466 1468 1468 vrg2 27 vrg3 28 βCC 20 βCHa 22 25 1452 1458 1462 vrg2 31 vrg3 24 βCH1 13 βCC 11 β 26 1427 1427 1425 βCHa 44 γCHa 12 βOH 20 27 1395 1406 1394 βCHa 40 γCHa 20 βOH 13	
25	
26 1427 1427 1425 βCHa 44 γCHa 12 βOH 20 27 1395 1406 1394 βCHa 40 γCHa 20 βOH 13	βCHa 10
27 1395 1406 1394 βCHa 40 γCHa 20 βOH 13	poria
28 1376 1368 1367 vrg189	
29 1330 1331 1321 vrg1 10 βrg1 14 βCH1 13 βCH2 23	vCC 19
30 1289 1290 1289 vrg1 23 βCH1 17 βCH2 23	,
31 1260 1260 1274 vrg2 14 vrg3 11 βCH1 30 βCH2 21	
	βCH2 16
33 1214 1212 1220 vrg1 15 vrg2 13 βCH1 38 βCC 19	p
34 1201 1203 1209 βrg1 10 βCH2 13 βCHa 31 βOH 22	
	βОН 18
36 1172 1183 βrg1 32 vrg3 30 βCHm 23	P - · ·
37 1169 1163 βCHm 68 γCHm 18	
38 1159 1161 1155 vrg2 23 βrg2 13 βCH1 22 βCC 13	
39 1148 βrg1 21 βrg2 18 βrg3 11 βCH2 12	
40 1141 1141 1139 βrg1 25 βrg2 10 νrg3 11 βrg3 13	
41 1125 1123 1127 vrg2 30 vrg3 17	

A F.5.5. táblázat folytatása A 13-hidroximetil-MFT mért és számított frekvenciái (cm⁻¹)

		lért	liert es szamite		Szán	nitott		
	-	s Raman	HF/6-		SZUII	PED (%) ^a		
			31G**			()		
42	1120	4405	1110	βrg2 26	vrg3 10	βrg3 13	vCC 19	
43	1106	1105	1105	vrg236	βrg2 21	vrg3 12		
44		1079	1077	vCO 63	, 0	J		
45	1057	1055	1070	vrg122	vrg2 25	βrg2 13	vCO 13	
46	1037	1037	1029	grg2 13	γCH1 56	γCC 22		
47	1026		1022	γrg3 14	•	γCHa 38		
48	1010		1010	γrg3 10	γCH2 40	βCHa 13	γCHa 36	
49	992		994	γrg2 10	γCH1 80	•	·	
50	937	937	944	γCH2 72	·			
51	901	910	909	γCH171	γCC 13			
52	886	899	893	√rg1 79	·			
53	879	881	878	∨rg1 25	γCH2 41			
54	860	860	851	βrg146	νCH2 32			
55	814		791	γCH1 51	γCC 37			
56	760		768	∨rg127	γrg2 26			
57	748	745	756	√rg1 33	γrg3 21			
58	741	738	732	βrg142	βCO 32			
59	726	725	726	∨rg141	βrg3 22			
60	697	696	697	∨rg1 29	βrg2 43			
61	650		643	β rg1 29	βrg2 13	βrg3 14		
62	590	590	590	∨rg118	γrg2 24	γrg3 10		
63	584		569	∨rg1 24	βrg1 48			
64	540	541	545	βrg1 51	γrg3 15			
65		517	517	∨rg1 25	βrg1 30	γrg2 14		
66	493	493	481	∨rg1 13	βrg1 33			
67		454	452	γrg2 26	γ rg 3 57			
68		442	446	∨rg148	β rg2 17			
69	435	435	439	∨rg1 32	γrg2 26			
70		389	385	βrg1 34	γOH 14			
71		377	377	βrg1 48				
72		347	353	, ,	γCHm 34	γOH 20		
73		331	337	βrg1 10	γOH 42			
74		316	321	vrg142				
75		289	296		γCHm 41			
76		280	274	βrg1 42	βCC 19			
77		260	246	vrg116		γrg3 16		
78		202	199	vrg121			βCH2 22	
79		186	178	vrg1 24	γrg2 14	γrg3 17	γCH2 19	
80		148	146	βCH2 12	γCC 55			
81		131	118	βrg141	γrg2 33	:		
82			89*	βrg1 39	γrg2 11	γrg3 21		

A F.5.5. táblázat 2. folytatása

A 13-hidroximetil-MFT mért és számított frekvenciái (cm⁻¹)

	Mér			Számított
	Infravörös	Raman	HF/6- 31G**	PED (%) ^a
83 84			55* 37*	βrg1 23 γrg2 24 γrg3 27 γrg2 25 γrg3 46 γCH2 10

Átlagos eltérés a mért és számított frekvenciák között: 5,48 cm⁻¹

Átlagos relatív eltérés a mért és számított frekvenciák között:0,80%

av: vegyértékrezgés, β: síkbeli deformáció, γ: merőleges deformáció, rg: gyűrű, a: alkohol, m: metil

^{*} becsült érték

F.5.6. táblázat A MFT-2-oxid mért és számított frekvenciái (cm⁻¹)

	Mér	1		Kveneiai (em	Szám	ított	
	Infravörös		HF/6-31G	**	Szaili	PED (%) ^a	
1	IIIIuvoros		3085			1 LD (70)	
1		3088 3078	3081	vCH199			
2	2067			vCH199			
	3067	3070	3067	vCH199			
4	3052	2022	3048	vCH199			
5	3035	3032	3031	vCH2 99			
6	3025	2010	3027	νCH2 99			
7	3009	3019	3014	vCH2 99			
8	2992	2999	2995	νCH2 99			
9	2027	2958	2962	vCHm 99			
10	2927	2930	2927	vCHm 99			
11	2840	2839	2838	vCHm 99	0.44	0 0 11	0.0114.40
12	1653	1010	1656	βrg1 16	vrg2 44	. •	
13	1644	1646	1642	βrg1 23	vrg2 35	βrg2 20	βCH1 13
14	1637	4000	1635	∨rg1 74	0.47	0011040	
15	1603	1606	1603	vrg137	vrg3 17	βCH2 13	
16	1584	1587	1581	βCHm 84	011 05		
17	1575	1577	1578	βCHm 73	γCHm 25	0011004	
18	1551	1651	1554	vrg111	βrg3 14	βCH2 34	
19	1537	4.400	1541	βCHm 25	γCHm 73	00114 00	0.0110.40
20	1493	1490	1500	∨rg1 15	. •	βCH1 29	βCH2 10
21	1480	1479	1480	vrg3 23	βCH2 59		
22	1449	1450	1444	∨rg242	βCH1 29		
23	1357	1366	1374	vrg132	γCHm 11		
24	1340	1319	1315	vrg127	βCH2 12	vNC 16	
25	1290	1288	1290	vrg1 12	vrg3 19	•	
26	1255	1256	1255	vrg1 34	βCH1 15	•	
27		1247	1246	vrg1 16	βCH1 25	βCH2 28	
28		1213	1217	βCHm 62	γCHm 26		
29	4.470	1198	1199	vrg2 28	βCH1 41		
30	1179	1178	1187	vrg1 38	βCHm 10		
31	1170	1168	1159	βrg1 28	vSO 68		
32	1152	1145	1147	βrg1 18	vrg3 18		βCH2 14
33	1138	1131	1135	vrg2 24	βrg2 13	βCH1 52	
34	1125	4404	1123	βrg1 29	βrg2 14		
35	4000	1101	1114	βrg1 34	vSO 42		
36	1099	4000	1099	vrg236	βrg2 21	βCH1 18	
37		1082	1090	βrg1 27	βrg3 15		
38	4000	1074	1074	∨rg1 14	γCH2 59		- -
39	1065		1064	vrg1 14	vrg2 26	βrg2 21	βCH1 17
40	1059		1059	vrg1 15	vrg3 11	γCH1 45	
41		1052	1057	βrg1 18	vrg3 26	β rg 3 13	γCH1 19

A F.5.6. táblázat folytatása A MFT-2-oxid mért és számított frekvenciái (cm⁻¹)

42 1 43 1 44 1 45 9 46 9 47 8 48 49 50 7	1047 1040 1028 947 942 865 846	952 945 873 840 809	1044 1034 1025 949 931 866 832	vrg1 14 vrg1 30 γCH1 86 vrg1 10 γCH1 89 vrg1 74	Szám γCH2 55 γrg3 30 γCH2 73	PED (%) ^a γCH2 11		
43 1 44 1 45 9 46 9 47 8 48 8 49 50 7	1040 1028 947 942 865 846	1036 952 945 873 840 809	1034 1025 949 931 866 832	vrg1 30 γCH1 86 vrg1 10 γCH1 89	vrg3 30	γCH2 11		
44 1 45 9 46 9 47 8 48 8 49 50 7	1028 947 942 865 846	952 945 873 840 809	1025 949 931 866 832	γCH1 86 νrg1 10 γCH1 89	J	γCH2 11		
45	947 942 865 846	945 873 840 809	949 931 866 832	γCH1 86 νrg1 10 γCH1 89	γCH2 73			
46 47 48 48 49 50	942 865 846 767	945 873 840 809	931 866 832	γCH1 89	γCH2 73			
47 48 49 50	865 846 767	873 840 809	866 832					
48 49 50	846 767	840 809	832	√rg174				
49 50	767	809						
50			040	γCH2 90				
		707	813	γCH1 88				
51		767	787	vrg1 32	γrg2 24	γrg3 10		
	762	759	759	∨rg1 24	βrg2 12	γrg2 15	βrg3 11	
52	749		749	β rg130	γrg3 31			
53	706	727	711	∨rg1 13	β rg1 18	β rg2 21	γrg2 11	
54	670	670	687	∨rg1 31	β rg2 24	β rg3 25		
55		626	627	vrg1 12	βrg2 31	β rg3 36		
56	606	607	591	∨rg111	βrg1 56			
57	587	589	584	β rg148	γrg2 13			
58		553	540	β rg138	γrg2 20	γrg3 13		
59	529	530	531	β rg163				
60		520	520	∨rg1 13	β rg2 10	β rg3 14	βSO 23	
61 4	441	458	441	γrg2 59	γrg3 17			
	440	433	435	∨rg1 28	γrg3 36			
63		411	406	βrg1 62				
64		398	394	βrg1 37	γrg3 17	βSO 12		
65		369	345	βNC 25	γCHm 48			
66		331	341	βrg1 51	γrg2 13	γrg3 12		
67		317	326	∨rg1 26	βrg3 11	γrg3 20	γNC 14	
68		284	289	∨rg1 14		γCHm 36		
69		250	249	γrg2 22	γrg3 23	βSO 16		
70		216	211	βrg1 19	βrg2 12	β rg3 15	γrg3 12	γNC 21
71		193	210	γrg2 30	γrg3 26	βSO 17		
72		138	142	γrg2 42	γrg3 28	γNC 17		
73			133*	β rg138	γNC 35			
74			126*	βrg1 47	γrg2 14	γrg3 15		
75			55*	β rg1 13	γrg2 46	γrg3 34		

Átlagos eltérés a mért és számított frekvenciák között: 4,98 cm⁻¹

Átlagos relatív eltérés a mért és számított frekvenciák között:0,81%

^av: vegyértékrezgés, β: síkbeli deformáció, γ: merőleges deformáció, rg: gyűrű

^{*} becsült érték

F.5.7. táblázat: A MFT-13-aldehid-2-oxid mért és számított frekvenciái (cm⁻¹)

	Mér					CKVCIICIA		ámított					
	Infravörös	Raman	HF¤6	-31G**			DZ		D %	a			
1	3104		3091	νСН	99								
2	3085	3071	3076	νCH	99								
3	3069	3071	3062	νCH	99								
4	3057	3057	3050	νCH	37	vCC	61						
5	3048	0007	3044	νCH	90	VOO	0.						
6	3023	3028	3033	νCH	78	vCC	21						
7	3006	3005	3012	νCH	92	V 0 0	- '						
8	2941	2942		νCHm	99								
9	2924	2916	11	νCHm									
10	2835	2835	11	νCHm	99								
11	2823	2824	2824	νCHa	99								
12	1683	1685	1692	νCO	80	βСН	17						
13		1680	1661	νrg2	33	vCO	13	βСНа	22				
14	1661	1653	1653	vrg2	29	βСН	10	νCO	13	βСНа	20		
15	1612	1612	1636	vrg1	36	β rg1	10	vrg2	27				
16	1604	1605	1601	β CHm	75								
17	1588	1587		βCHm		γ CHm	52						
18	1573	1573	1576	vrg1	18	vrg3	17	βСН	32				
19	1565			βCHm		γCHm	67						
20	1549	1549	1558	vrg1	45	vrg3	11	βСН	13				
21	1499	1498	1483	vrg1	10	βrg2	27	βСН	43				
22	1475	1470	1466	vrg2	41	βСН	11	βСС	14				
23	1462	1462	1463	νCO	18	βСНа	30	vrg2	39				
24	1418	1416	1422	βrg1	14	vrg3	23	β rg3	12	βСН	20		
25	1385	1384	1375	vrg1	37	βСН	15	0.011	~ =	3.50	40		
26	1335	1327	1326	vrg1	20	βrg3	10	βСН	35	νNC	16		
27	1295	1310	1292	βrg1	10	vrg3	24	βСН	36				
28	1259	1259	1256	_	15	βCH	58	004	17				
29 30	1254	1231	1246 1233	βrg1	23	βrg3 «C⊌m	13 25	βСН	17				
31	1213	1231	1209	βCHm vrg1	10	γCHm vrg2	16	vrg3	10	βrg3	1/	βСН	27
32	1213	1201	1200	βrg1	23	vrg2	16	βCH	16	pigo	17	рСп	21
33	1171	1172	1183	vrg1	21	vrg3	16	•	24				
34	1160	1163	1147	βrg1	30	vrg3	10	βrg3	22	βСН	12	vSO	20
35	1140	1139	1137	vrg2	27	βCH	40	βCC	12	роп	'-	,00	
36	1129	1129	1116	βrg1	12	vrg2	26	βrg2	15	βСН	10	βСС	12
37	1116	1114	1111	vrg2	13	grg3	16	γCH	10	γCHa	28	,	
38	1108		1108	vrg1	17	vNC	11	γCHa	67		-		
39	1097	1096	1086	vrg1	10	vrg3	63	,					
40	1063	1070	1072	βrg2	63	vNC	15						
41	1046	1044	1048	vrg2	12	βr g2	50	βСН	20				
42	1045		1047	γrg2	12	γCH	54	γCC	21				

A F.5.7. táblázat folytatása A MFT-13-aldehid-2-oxid mért és számított frekvenciái (cm⁻¹)

	Mér					Szá	ámított						
	Infravörös	Raman	HF/6-	31G**			SZC		D %	a			
43	1029	1032	1039	γrg3	16	γСН	76						
44	1025	1024	1021	γCH	83	7011	, 0						
45	1018	1001	1014	vSO	87								
46	977	975	977	vrg1	10	γСН	71						
47	922	926	922	γCH	76	γCC	18						
48	895	900	894	vrg1	80	•							
49	863	868	869	βr g 1	12	γ CH	67						
50	851	851	865	vrg1	21	vrg2	12	vrg3	10	β rg3	10	γСН	13
51	830	814	810	βrg1	23	γrg3	40						
52		807	800	γСН	45	γ CC	35						
53	771	772	772	νrg1	11	vrg3	14	β rg3	22	βСО	20		
54	766	763	763	vrg1	49	γrg2	30						
55	718	719	726	vrg1	27	βrg2	17	γrg2	19				
56		702	692	vrg1	20	βrg1	11	βr g2	22	β rg3	24		
57	668	668	652	vrg1	17	βrg2	32	β rg3	17				
58	603	603	606	βrg1	39	γrg3	15						
59	590	587	596	βrg1	74	0	00	0					
60	566	567	552	βrg1	36	γrg2	22	γrg3	14				
61	538	532	546	βrg1	78 40	0	20	0.1.0	4.4				
62	515	513	523	vrg1	16	βrg1	30	βNC	11				
63	496 459	499 455	484 453	vrg1	27 41	βrg2	10	γrg3	12				
64 65	436	433 412	429	γrg2	41 27	γrg3 βrg1	27 14	wra3	17				
66	430	390	398	vrg1 βrg1	18	ρι g ι γ rg 2	26	γrg3	17				
67		381	380	βrg1	49	γιgz	20						
68		370	361	vrg1	25	βΝC	13	γCHm	19				
69		336	341	vrg1	15	βrg1	11	γNC		γCHm	15		
70		324	315	vrg1	37	βrg1	22	βrg3	22	701			
71		280	293	vrg1	23	βNC		γCHm					
72		271	281	vrg1	14	γrg2	20	γrg3	17	γ CH	14		
73		252	253	vrg1	10	βCH	15	βCO	10	βSO	16		
74			226*	γČΗ	10	γNC	18	γSO	22	γCO	22		
75			205*	vrg1	29	γrg2	14	•		•			
76			145*	βrg1	13	βСН	21	γΝC	32				
77			142*	γrg2	25	γrg3	26	γSO	20				
78			132*	βrg1	10	γrg2	23	γrg3	12	βСН	11	γNC	17
79			109*	βrg1	53	γrg3	12						
80			94*	βrg1	43	γrg2	10	γ CH	21	γ NC	13		
81			42*	γrg2	36	γrg3	48						
<u>΄</u>	1,7,7		C	1	1 1	:44. 6 07	-1						

Átlagos eltérés a mért és számított frekvenciák között: 6,07 cm⁻¹

Átlagos relatív eltérés a mért és számított frekvenciák között:0,87 %

^av: vegyértékrezgés, β: síkbeli deformáció, γ: merőleges deformáció, rg: gyűrű, a: aldehid, m: metil * becsült érték

F.5.8. táblázat A 13-hidroximetil-MFT -2-oxid mért és számított frekvenciái (cm⁻¹)

	Méi	ı		Számított Számított										
	Infravörös	Raman	HF/6-3	HF/6-31G** PED % ^a										
1	3339		3339	νOH	99									
2		2002	3084	νCH	99									
3	3085	3082	3083	νCH	99									
4	3071	3072	3078	νCH	98									
5	3063	3060	3064	νCH	99									
6			3063	νCH	99									
7	3051	3050	3054	νCH	95									
8	3022	3010	3013	νCH	93									
9	2979	2981	2981	νCHm	99									
10	2935	2938	2945	vCHm	99									
11 12	2919 2870	2922 2886	2928 2873	νCHa νCHa	99 99									
13	2849	2862	2856	vCHm	99									
14	1659	2002	1661	vrg	14	vrg2	45	βrg2	16	βСН	15			
15	1648	1651	1643	vrg2	59	βrg2	13	βCH	17	роп	.0			
16		1621	1634	vrg	41	γrg2	29	ρσ	• •					
17	1611	1610	1616	vrg	24	βrg1	26	vrg2	19					
18	1594	1586	1596	βCHm	92	, 0		Ü						
19	1548		1545	βCHm	42	gCHm	44							
20	1530		1529	βrg2	30	βСН	43							
21			1511	βCHa	68	•								
22	1506	1503	1507	βCHm	32	gCHm	60							
23	1497	1495	1497	ν r g	19	βr g2	15	βСН	47					
24	1472	1479	1477	vrg2	39	βСН	19	βСС	20					
25	1445	1446	1445	vrg2	27	βrg2	11	βСН	15	βСНа	28			
26	1411	1418	1404	∨rg2	13	βСНа	30	βΟΗ	22					
27				vrg	10	-	26	βОН	22					
28	1351	1355	1355	vrg	16	βСН	25	γCHm	18	0.61	. .		4.0	
29	1318	1318	1315	vrg	14	βrg1	14	vrg2		βСН	34	νNC	19	
30	1291	1302	1284	vrg	15	vrg2	14	βСН	48					
31 32	1263	1270 1224	1272 1223	vrg2	21 17	βCH vra2	44 18	βСН	30	BCC	17			
33			1223	vrg βCH	70	vrg2 βCHa	28	рОП	JZ	βСС	1 /			
34		1212	1213	βCHm	45	gCHm	29							
35	1206	1204	1203	βrg2	13	βCH	16	βСНа	24	βОН	11			
36	1197	1196	1188	vrg	17	ν rg 2	12	βCHm		βСНа		βОН	12	
37	1175	1175	1178	vrg2	22	βСН	27	βCHm	13	, - · · · · ·	-	1	_	
38	1165	1166	1150	vrg2	32	βCH	32	βСС	14					
39		1143	1140	vrg	10	, βrg2	13	vSO	47					
40	1121	1127	1120	vrg2	61	βСН	14							
41		1123	1118	ν r g2	62	βСН	10							

F.5.8. táblázat A 13-hidroximetil-MFT -2-oxid mért és számított frekvenciái (cm⁻¹)

	Mér		2-0XIQ III				tott				
	Infravörös	Raman	HF/6-3	1G**) % ^a	· · ·			
42	1100	1004	1100	vrg	11	vrg2	12	νNC	16	νSO	37
43		1079	1078	νCO	75						
44	1064	1064	1068	νrg	11	vrg2	10	β rg2	62		
45	1050		1052	βrg2	68						
46	1040	1038	1043	vrg2	12	βrg2	55	βСН	12		
47	4007	1031	1032	γrg2	14	γCH	56	γCC	27		
48	1027 1007	1006	1020	γrg2	17	γCHa	76				
49 50	988	1006 987	1001	γrg2	10	γCHa	84				
50 51	954	957 950	997 949	γrg2 γCH	19 65	γCH βCHa	44 11				
52	904	911	905	γCH	76	γCC	19				
53	891	885	887	νrg	22	βrg1	13	vrg2	25	βrg2	14
54	861		866	γCH	80	pi g i	10	v19 –		pi g 2	
55	847		845	βrg1	27	vrg2	11	βrg2	18	νCH	11
56	808		792	γrg2	13	γCH	45	γCC	29		
57		783	781	βrg1	13	γrg2	50	, γCH		γ CC	10
58	757	750	758	β rg1	25	βrg2	11	γrg2	39		
59	724	725	723	vrg	33	βrg2	18	γrg2	18		
60	713	710	713	βrg2	42	βCO	30	, 5			
61	674	671	677	vrg	34	βrg2	44				
62	636		630	νrg	17	βrg1	14	βrg2	34	βСО	10
63	587		596	βrg1	33	β rg2	23				
64	576	579	581	βr g1	37	βr g2	10	γrg2	23		
65		549	549	βr g1	30	βr g2	20	γrg2	11	γSO	13
66	541	539	540	vrg	10	βrg1	48	γrg2	16		
67	529	524	521	vrg	38	βrg2	17	βSO	12	000	4.4
68	468	467	468	vrg	17	βr g1	22	γrg2	15	βСО	11
69 70	448 424	437 422	445 424	γrg2	69 28	Qra1	11	gra2	16	vra2	21
71	424	406	404	vrg vrg	13	βrg1 γrg2	11 31	βrg2 βSO		γrg2 γSO	21 18
72		379	385	βrg1	36	γrg2 γrg2	14	γOH	26	γου	10
73		370	364	βrg1	26	βNC	11	7011	20		
74		342	344	βr g 1	17	γΟΗ	48				
75		334	331	vrg	15	γrg2	21	γΝC	12	γ CHm	16
76		311	313	vrg	30	βrg2	41	•		•	
77		285	283	βr g 1	11	βNC	26	γ CHm	45		
78		275	278	β rg1	19	γ rg 2	35	βСН	10	βSO	10 γCO 25
79		239	233	γSO	12	β rg2	12	γrg2	16	βСН	13 γNC 11
80			217*	βrg1	15	γrg2	18	βSO		γSO	20
81			183*	, g βrg1	13	βrg2	12	, γrg2		, γCH	22

F.5.8. táblázat

A 13-hidroximetil-MFT -2-oxid mért és számított frekvenciái (cm⁻¹)

	Mér Infravörös	t Raman	HF/6-3	Számított HF/6-31G** PED %a								
82 83 84				γrg2 βrg1 βrg1	28 11 43	γNC γrg2 γrg2	28 27 32	γNC		.NC	15	
85 86 87			96* 55* 37*	βrg1 γrg2 γrg2	27 39 48	γrg2 γCO γCO	21 47 39	γСН	21	γNC	15	

Átlagos eltérés a mért és számított frekvenciák között: 4,83 cm⁻¹

Átlagos relatív eltérés a mért és számított frekvenciák között:0,65%

^av: vegyértékrezgés, β: síkbeli deformáció, γ: merőleges deformáció, rg: gyűrű, a: alkohol, m: metil

^{*} becsült érték