Universidade Tecnológica Federal do Paraná

Engenharia de Software II

Luan Bodner do Rosário 1509950

PROJETO 1 - PLANEJAMENTO DE DESENVOLVIMENTO DE SOFTWARE

Departamento de Ciência da Computação (DACOM)

Conteúdo

1	Planejamento	2
2	Tabela de Atividades e Precedência 2.1 Rede de atividades	6
3	Horários de Trabalho	9
4	Bibliografia	12

1 Planejamento

Este documento tem o intuíto de definir e dividir as principais tarefas do sistema a ser implementado para a disciplina de Engenharia de Software 2.

Para a definição das tarefas será utilizado o método EAP(Estrutura Analítica do Projeto) e com base nessa divisão, será utilizado o PERT(Program Evaluation and Review Technique) para fazer a estimativa de tempo de cada uma dessas partes do sistema. A EAP do projeto é definida conforme:

1. Hemosystem

1.1. Documentação

- 1.1.1. Perspective Base Reading
- 1.1.2. Atualização do Documento de Requisitos
- 1.1.3. Diagramas de Caso de Uso
- 1.1.4. Diagramas de Classe
- 1.1.5. Revisão dos Documentos

1.2. Desenvolvimento

- 1.2.1. Criação das classes base
- 1.2.2. Definição do BD
- 1.2.3. Revisão do BD
- 1.2.4. Implementação das funcionalidades definidas pelo usuário
- 1.2.5. Implementação da Interface entre as classes
- 1.2.6. Definição das views do BD

1.3. Interface

- 1.3.1. Definição das telas
- 1.3.2. Conectar a interface com as funcionalidades

1.4. Testes

As tarefas a serem implementadas prévia às tarefas de programação são:

- 1. Documentação do Projeto
 - (a) Perspective Base Reading: Tarefa já concluida e documentada no laudo presente no repositório do Projeto.
 - (b) Atualização do Documento de Requisitos: Tarefa já concluida e documentada no laudo presente no repositório do Projeto.
 - (c) Diagrama de Classe: Tarefa que ainda deverá ser realizada pelo Projetista Josimar Loch para que possa ser levado para revisão e refinamento.
 - Estimativa de tempo para término da tarefa :
 Dada pela Fórmula : TE = O + 4 M + P / 6
 Tempo Otimista (O) = 2.5h
 Tempo Mais Provável (M) = 3.5h
 Tempo Pessimista (P) = 5h
 Tempo Esperado Total = 3.5h
 - (d) Diagrama de Caso de Uso : Também sob a responsabilidade do Projetista do projeto.
 - \bullet Estimativa de tempo para término da tarefa : Tempo Otimista (O) = 2h Tempo Mais Provável (M) = 3h Tempo Pessimista (P) = 4h Tempo Esperado Total = 3h
 - (e) Controle de Qualidade : Após a realização da primeira fase da criação de diagramas, ou mesmo concorrentemente com a sua realização, os diagramas devem ser analisados e refinados para que o processo de programação ocorra o mais rápido possível. Controle de qualidade será uma tarefa conjunta entre todos os membros da equipe.
 - Estimativa de tempo para término da tarefa :
 Tempo Otimista (O) = 1h
 Tempo Mais Provável (M) = 2h
 Tempo Pessimista (P) = 3h
 Tempo Esperado Total = 2.5h
 - (f) Revisão: Após a revisão ser concluída e os erros listados previamente na análise PBR e encontrados na documentação forem encontrados, a documentação deverá passar por mudanças e submetidos em forma final. Responsabilidade do Projetista Josimar.
 - \bullet Estimativa de tempo para término da tarefa : Tempo Otimista (O) = 0.5h Tempo Mais Provável (M) = 1h Tempo Pessimista (P) = 3h Tempo Esperado Total = 1.25h

Esses diagramas devem estar em um formato acessível para que o Programador Felipe Veiga Ramos possa lê-los com mais facilidade.

Todas essas sub-etapas podem (e devem) ser feitas concorrentemente.

As ferramentas utilizadas nessa parte do desenvolvimento são:

(a) Astah

- (b) Github
- (c) Issue Tracker/Github

2. Infraestrutura

(a) Criação do Banco de Dados : Após a realização dos diagramas, o banco de dados deve ser criado com base nos dados necessários. Isso será uma tarefa conjunta entre o Projetista e o Programador. Tempo Otimista (O)=0.5h

Tempo Mais Provável (M) = 0.6h

Tempo Pessimista (P) = 0.7h

Tempo Esperado Total = 0.6h

(b) Revisão/Testes de conexão BD : O banco deve ser revisado pelo Gerente do Projeto para evitar erros. Tempo Otimista (O) = 1h

Tempo Mais Provável (M) = 1.5h

Tempo Pessimista (P) = 2h

Tempo Esperado Total = 1.5h

As ferramentas utilizadas nessa parte do projeto está sujeito a escolha do Programador e Projetista.

3. Desenvolvimento

(a) Criação das Classes Base: Criação das estruturas básicas e classes básicas para as operações lógicas do sistema a ser implementado. Todas as tarefas do desenvolvimento é tarega do Programador. Tempo Otimista (O) = 2h

Tempo Mais Provável (M) = 3h

Tempo Pessimista (P) = 4h

Tempo Esperado Total = 3h

(b) Implementação das funcionalidades : Com base nos diagramas e casos de uso definidos no documento original do projeto e o documento revisado com informações novas, as funcionalidades devem ser implementadas. Tempo Otimista (O) = 12h

Tempo Mais Provável (M) = 15h

Tempo Pessimista (P) = 20h

Tempo Esperado Total = 40h

(c) Implementação da interface entre as classes : Após as partes singulares do sistema estiverem implementadas, as partes do sistema devem ser conectadas de acordo com as especificações feitas. Tempo Otimista (O) = 5h

Tempo Mais Provável (M) = 6h

Tempo Pessimista (P) = 8h

Tempo Esperado Total = 10h

(d) Definição das views do BD : Por questões de segurança, deve-se criar views diferentes no banco para cada nível de prioridade dos usuários. Tempo Otimista (O) = 4h

Tempo Mais Provável (M) = 6h

Tempo Pessimista (P) = 8h

Tempo Esperado Total = 9h

4. Interface

(a) Definição das telas : Após o programa estiver completado, a interface com o usuário deve ser definida. Tempo Otimista (O) = 3h

Tempo Mais Provável (M) = 4h

Tempo Pessimista (P) = 5h

Tempo Esperado Total = 5.5h

(b) Conectar a interface com as funcionalidades: Após a interface estiver "desenhada", os módulos resultantes devem ser conectados ao código do programa e suas entradas/saídas. Tempo Otimista (O) = 4h

Tempo Mais Provável (M) = 6h

Tempo Pessimista (P) = 8h

Tempo Esperado Total = 8h

5. Testes: Com o programa completo, ou mesmo durante o seu desenvolvimento, o Testador Paulo Batista deve fazer os testes básicos definidos no PBR para verificar se o programa está funcionando corretamente. Tempo Otimista (O) = 4h

Tempo Mais Provável (M) = 7h

Tempo Pessimista (P) = 8h

Tempo Esperado Total = 8h

2 Tabela de Atividades e Precedência

Atividade	Descrição	Atividades Prec.	Duração
A	Diagramas de Caso de Uso	-	3h
В	Diagramas de Classe	A	3.5h
С	Controle de Qualidade	В	2.5h
D	Revisão dos Documentos	С	1.25h
Е	Criação das Classes básicas	С	3h
F	Criação do Banco	D	0.6h
G	Definir os campos		
	das tabelas	F	2h
Н	Criar métodos para		
	lidar com o banco	F	10h
I	Criar métodos para		
	interligar os		
	módulos do sistema	О	11h
J	Definir métodos		
	para registro dos doadores	Е	2.5h
K	Definir métodos		
	para registro dos exames	Е	3.5h
L	Definir métodos para verificar		
	a segurança quanto		
	às bolsas de sangue	Е	3h
M	Definir as pesquisas		
	possíveis dentro do banco	G,H,R	10h
N	Criar Interface para		
	os usuários	K,J,L	5h
О	Conectar a interface com		
	a aplicação e o banco de dados	N	5h
Р	Testar funcinalidade dos métodos	I	3h
Q	Testar as entradas da interface	I	5h
R	Testar a conexão com		
	o Banco de dados	F	1.5h

A partir desta tabela de atividades, é possível contrurir o grafo que mostra o caminho crítico do projeto e auxilia no planejamento do projeto.

O grafo que representa as tarefas desta tabela foi contruido por meiro da linguagem .DOT. Ela é mostrada na imagem a seguir.

2.1 Rede de atividades

Por meio desta rede, podemos fazer o cálculo do caminho crítico, que é uma soma simples do maior caminho possível até que se chegue no final do projeto. Verificamos então que o caminho crítico é dado pela imagem a seguir:

Como planejado, foram montadas as redes de caminho para "cedo", de acordo com a fórmula :

$$Cedo = max(Cedoanterior + durao) \tag{1}$$

Figura 1: Rede de atividades

Figura 2: Caminho Crítico

E também para o caminho de tempo "tarde", de acordo com a fórmula:

$$Tarde = min(Tardeposterior - durao)$$
 (2)

Portanto, a rede e os pesos das arestas do grafo "cedo"na figura 3 e para o grafo "tarde"na figura 4. Assim, por meio dos cálculos necessários, verificamos que a somatória dos caminhos críticos são semelhantes para cedo e tarde, que coloca o projeto dentro dos padrões, não sendo necessário fazer nenhum ajustamento quanto ao tempo de cada uma das tarefas listadas listadas.

3 Horários de Trabalho

Primeira Seção:

• Início: 6:30 da manhã, 24/05

• Término : 11:00 da manhã, 24/05

Segunda Seção:

• Início : 9:00 da manhã, 14/06

 $\bullet\,$ Término : 11:00 da manhã14/06

Terceira Seção:

• Início : 14:00 da tarde, 14/06

• Término : 15:00 da tarde. 14/06

Quarta Seção:

• Início : 10:00 da tarde, 15/06

 $\bullet\,$ Término : 13:00 da tarde. 15/06

Figura 3: Caminho Cedo

Figura 4: Caminho Tarde

4 Bibliografia

http://www.workbreakdownstructure.com/

http://projetoseti.com.br/criar-a-estrutura-analitica-do-projeto-eap/

http://stakeholdernews.com.br/artigo/estimativas-tempo-e-custo-investimentos/

http://www.ime.usp.br/rvicente/PERT CPM