Description

A sum-of-squares (SOS) integer is an integer that can be written as the sum of the squares of precisely two integers. For example, n = 5 is a SOS integer because $5 = 1^2 + 2^2$. Even 1 is a SOS integer because $1 = 0^2 + 1^2$.

But 7 is not a SOS integer, you can see that adding any two integers of the form 0^2 , 1^2 , or 2^2 will not give you 7. Notice we did not have to try 3^2 , 4^2 , or anything larger because these squares already exceed 7.

Given an integer, tell me if it is an SOS integer.

A Potentially Helpful Function

We have included a function to compute square roots of integers (rounded down):

unsigned int integer_sqrt(unsigned int x);

This will return the greatest integer d such that $d*d \le x$. In particular, if the parameter x is a perfect square (like 0, 1, 4, 9, 16, etc.) then it returns the square root of x. This is already in soln/sos.cpp from sos.tar.gz that you download from eClass. You may choose to use it or ignore it.

Input

Input consists of a single line containing a single integer n. Here, $0 \le n \le 4,000,000,000$.

Output

Output a single line consisting of the text sum of squares or not sum of squares, indicating the answer for n.

Sample Input 1

3

Sample Output 1

not sum of squares

Explanation: It is easy to check that 3 is not a SOS integer. If $3 = a^2 + b^2$ for some integers a, b, then a, b < 2 because $2^2 > 3$. But any choice of a and b being 0 or 1 does not equal 3.

Sample Input 2

29

Sample Output 2

sum of squares

Explanation: $29 = 2^2 + 5^2$

Sample Input 3

399999999

Sample Output 3

not sum of squares

Explanation: You will have to take my word for it, or check it with your own program!

Sample Input 4

400000000

Sample Output 4

sum of squares

Explanation: $4000000000 = 36000^2 + 52000^2$

Sample Input 5

0

Sample Output 5

sum of squares

Explanation: $0 = 0^2 + 0^2$