Gr. 344, Seminar (2), EDDP, 12-10, 2020

$$\frac{25}{1 \text{ diù temā}}$$

$$\int \frac{1}{x \cos x} dx = \int \frac{1 + tg^2 \frac{x}{2}}{1 - tg^2 \frac{x}{2}} dx = Y$$

$$x \cos x = \frac{1 - tg^2 \frac{x}{2}}{1 + tg^2 \frac{x}{2}}$$

$$tg \frac{x}{2} = y \implies (tg \frac{x}{2}) dx = dy \implies (tg \frac{x}{2}) dx =$$

$$\frac{1}{2} = \frac{1}{3} \qquad \frac{1}$$

2)
$$\frac{1}{2} \left(1 + t g^2 \frac{\pi}{2} \right) d\pi = dy = 3$$
2) $\left(1 + t g^2 \frac{\pi}{2} \right) d\pi = 2 dy$

$$\int \frac{2dy}{1-y^2} = 2(-1) \int \frac{dy}{y^2-1^2} = -2 \cdot \frac{1}{2} \ln \left| \frac{y-1}{y+1} \right| + C$$

$$\Rightarrow \int = -\ln \left| \frac{4y^2-1}{ty^2-1} \right| + C$$

$$(fg^2) = \frac{1}{\cos^2 x} = 1 + fg^2 x$$

 $(cfg^2) = \frac{1}{\sin^2 x} = 1 + cfg^2 x$

De Sa's e determine multimea volutilor urmatoanelor elevatur diferentiale:

1)
$$\frac{d\tau}{dt} = \frac{\chi - \chi^3}{\chi (1 + \chi^2)}$$
, $t \in (0, \infty)$

2)
$$\frac{dx}{dt} = \frac{t\sqrt{x^2+1}}{x\sqrt{1-t^2}}$$
, $t\in(-1,1)$, $t\in\mathbb{R}$.

3)
$$\frac{dx}{dt} = \frac{1}{(tg^2x+1)(t^2-1)}$$
) $t \in (9, +\infty)$

4)
$$\frac{dx}{dt} = \frac{\cos x \cdot \sin t}{\left(\sin^2 x - 4\right) \left(\cos^2 t + 9\right)}$$
 $\frac{x \in \mathbb{R}}{t \in \mathbb{R}}$

5)
$$\frac{d\tau}{dt} = \frac{x(\ln x) \cdot x^{\frac{1}{2}}}{\ln(\ln x) \cdot (x^{\frac{1}{2}+1})}$$
, $\frac{t + 6R}{x + (3, + \infty)}$
 VG) $\frac{dx}{dt} = \frac{(x^{2}-2x-3)t}{V^{\frac{1}{2}+1}}$, $\frac{t + 6R}{t}$, $\frac{x + 6R}{t}$
 $\frac{dt}{dt} = \frac{(x^{2}-8)(t+1)}{V^{\frac{1}{2}-1}}$, $\frac{t + 6(1, +\infty)}{x + R}$.

8) $\frac{dt}{dt} = \frac{x^{-1}}{t^{2}+3t^{-1}}$, $\frac{t + 6(1, +\infty)}{x + R}$.

8) $\frac{dt}{dt} = \frac{x^{\frac{1}{2}+1}}{x^{2}+4x+5}$, $\frac{x + 6R}{t + R}$.

9) $\frac{dt}{dt} = \frac{x^{\frac{1}{2}+1}}{x^{2}+4x+5}$, $\frac{x + 6R}{t + R}$.

 $\frac{(t+1)\sin x}{t}}{(t^{2}+4t+2)}$, $\frac{x + 6(0, \frac{1}{2})}{t + (-1, +\infty)}$

6) $\frac{dx}{dt} = \frac{(x^{2}-2x-3)t}{V^{\frac{1}{2}+1}}$, $\frac{x + 6R}{t + (-1, +\infty)}$

8. $\frac{dx}{dt} = \frac{(x^{2}-2x-3)t}{(t^{2}+4t+2)}$, $\frac{x + 6R}{t + (-1, +\infty)}$

8. $\frac{dx}{dt} = \frac{(x^{2}-2x-3)t}{(t^{2}+4t+2)}$, $\frac{x + 6R}{t + (-1, +\infty)}$

8. $\frac{dx}{dt} = \frac{(x^{2}-2x-3)t}{(t^{2}+4t+2)}$, $\frac{x + 6R}{t + (-1, +\infty)}$

8. $\frac{dx}{dt} = \frac{(x^{2}-2x-3)t}{(t^{2}+4t+2)}$, $\frac{x + 6R}{t + (-1, +\infty)}$

9. $\frac{dx}{dt} = \frac{t}{\sqrt{t^{2}+1}}$; $\frac{dx}{dt} = \frac{x + R}{t}$

10. $\frac{dx}{dt} = \frac{t}{\sqrt{t^{2}+1}}$; $\frac{dx}{dt} = \frac{x + R}{t}$

11. $\frac{dx}{dt} = \frac{x + R}{t}$

12. $\frac{dx}{dt} = \frac{x + R}{t}$

13. $\frac{dx}{dt} = \frac{x + R}{t}$

14. $\frac{dx}{dt} = \frac{x + R}{t}$

15. $\frac{dx}{dt} = \frac{x + R}{t}$

16. $\frac{dx}{dt} = \frac{x + R}{t}$

17. $\frac{dx}{dt} = \frac{x + R}{t}$

18. $\frac{dx}{dt} = \frac{x + R}{t}$

19. $\frac{dx}{dt} = \frac{x + R}{t}$

10. $\frac{dx}{dt} = \frac{x + R}{t}$

10. $\frac{dx}{dt} = \frac{x + R}{t}$

11. $\frac{dx}{dt} = \frac{x + R}{t}$

11. $\frac{dx}{dt} = \frac{x + R}{t}$

12. $\frac{dx}{dt} = \frac{x + R}{t}$

13. $\frac{dx}{dt} = \frac{x + R}{t}$

14. $\frac{dx}{dt} = \frac{x + R}{t}$

15. $\frac{dx}{dt} = \frac{x + R}{t}$

16. $\frac{dx}{dt} = \frac{x + R}{t}$

17. $\frac{dx}{dt} = \frac{x + R}{t}$

18. $\frac{dx}{dt} = \frac{x + R}{t}$

19. $\frac{dx}{dt} = \frac{x + R}{t}$

19. $\frac{dx}{dt} = \frac{x + R}{t}$

19. $\frac{dx}{dt} = \frac{x + R}{t}$

10. $\frac{dx}{dt} = \frac{x + R}{t}$

10. $\frac{dx}{dt} = \frac{x + R}{t}$

110. $\frac{dx}{dt} = \frac{x + R}{t}$

111. $\frac{dx}{dt} = \frac{x + R}{t}$

112. $\frac{dx}{d$

o pt b(x) \$0, x ER \ \ \-1,34 se sypola variablele.

$$\frac{dx}{x^{2}-2x-3} = \frac{tdt}{\sqrt{x+1}}$$

$$\int \frac{dx}{x^{2}-2x-3} = \int \frac{dx}{(x-1)^{2}-4} = \Im$$

$$2 + 1 = \frac{1}{x}$$

$$dx = dt$$

$$\int \frac{dt}{t^{2}-4} = \frac{1}{x^{2}} \ln \left| \frac{t-2}{t+2} \right| + C \Rightarrow$$

$$\int \frac{dt}{t^{2}+1} = \sqrt{t+1} + C \Rightarrow \left| \frac{t}{t+2} \right| + C \Rightarrow$$

$$\int \frac{t}{x^{2}+1} = \sqrt{t+1} + C \Rightarrow \left| \frac{t}{t+2} \right| + C \Rightarrow$$

$$\int \frac{t}{x^{2}+1} = \sqrt{t+1} + C \Rightarrow \left| \frac{t}{t+2} \right| + C \Rightarrow$$

$$\int \frac{t}{x^{2}+1} = \sqrt{t+1} + C \Rightarrow \left| \frac{t}{t+2} \right| + C \Rightarrow$$

$$\int \frac{t}{x^{2}+1} = \sqrt{t+1} + C \Rightarrow \left| \frac{t}{t+2} \right| + C \Rightarrow$$

$$\int \frac{t}{x^{2}+1} = \frac{t}{t+2} + C \Rightarrow \left| \frac{t}{t+2} \right| + C \Rightarrow$$

$$\int \frac{t}{x^{2}+1} = \frac{t}{t+2} + C \Rightarrow \left| \frac{t}{t+2} \right| + C \Rightarrow$$

$$\int \frac{t}{x^{2}+1} = \frac{t}{t+2} + C \Rightarrow \left| \frac{t}{t+2} \right| + C \Rightarrow$$

$$\int \frac{t}{x^{2}+1} = \frac{t}{t+2} + C \Rightarrow \left| \frac{t}{t+2} \right| + C \Rightarrow$$

$$\int \frac{t}{x^{2}+1} = \frac{t}{t+2} + C \Rightarrow \left| \frac{t}{t+2} \right| + C \Rightarrow$$

$$\int \frac{t}{x^{2}+1} = \frac{t}{t+2} + C \Rightarrow$$

$$\int \frac{t}{x^{2}+1} = \frac{t}{t+2} + C \Rightarrow$$

$$\int \frac{t}{t+2} = \frac{t}{t+2} + C \Rightarrow$$

$$\int \frac{t}{t+2} = \frac{t}{t+2} \Rightarrow$$

$$\int \frac{t}{t+2} \Rightarrow$$

$$\int$$

(a) (c) (c)

(£+1) suix £2+4£+3 $\mathcal{X} \in (0, \mathbb{Z})$ $\mathcal{X} \in (-1, +\infty)$ a: (-1,+00) -342 a(t)= t+1 +2+4+73 6: (0, <u>T</u>) -> R 6(x) = Ani 7 · b(4)=0 =) mix=0 =) &= kT, be Z. dan kurt (0, I), thez at el mu are volutir stationare =) seja rein Vanalilele: dr suit l'eyt+b. Anix = 2tg=2 1+tg=2 1-ttg=2 tg==y=) (1-tg==)(=)dx=dy=) => 2 (1+tg2x)dx = dy S dy = hilyl+C => J= hilyl+C >> don $x \in (0, \frac{\pi}{2}) \Rightarrow x \in (0, \frac{\pi}{9}) \Rightarrow$ 3) B(4) = In (4g 3) $\int \frac{(t+1)dt}{t^2 + 4t + 3} = \int \frac{t+1}{(t^2 + 4t + 4)^{-1} + 3} dt = \int \frac{t+1}{(t+2)^2 - 1} dt = \int \frac{t+2}{(t+2)^2 - 1} dt = \int \frac{t$

 $\int \frac{y-2+1}{y^2-1} \, dy = \int \frac{y}{y^2-1} \, dy - \int \frac{1}{y^2-1} \, dy =$ = = = ln | y²-11 - = ln | y⁻¹ | + C => $\int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{2} \left| \int_{0}^{\infty} \frac{1}{2}$ A(t) = 4 ln | +2+4++3 - 4 ln | +13 = $= \frac{1}{2} \ln \left(\frac{t' + 4t' + 5}{t' + 3} \right) = \frac{1}{2} \ln \left(\frac{t' + 5}{t' + 3} \right) \left(\frac{t' + 5}{t' + 3} \right)$ = 5 ln (t+3) = 3:2 ln | t+3 | = 274+13 (E+1) = Z 4.73 => \ \frac{1}{++B} dt = ln/+3/+C Multime colutulor unificate este B(X) = A(x) + c In (+y==) = h (++3) + the, C>0 In (tg =) = In(c(++3)) = tg(=) = C(6+3) = 2 = anoty (c(++3)) =/ 2= 2 anoty (

minăm A:B:CCRCAI $\frac{1+x^2}{x(1-x)(1+x)} = \frac{A}{x} + \frac{B}{1-x} + \frac{C}{1+x}$ $1+x^2 = A(1-x)(1+x) + Bx(1+x) + Cx(1-x)$ $1+x^2 = A(1-x^2) + Bx + bx^2 + Cx - Cx^2$ $1+x^2 = x^2(-A+b-c) + x(b+c) + A = 0$ $\Rightarrow \begin{vmatrix} -A+B+c=1 \\ B+c=0 \end{vmatrix} \Rightarrow \begin{vmatrix} B-c=2 \\ B+c=0 \end{vmatrix}$ $\Rightarrow \begin{vmatrix} -A+B+c=1 \\ A+A+c=1 \end{vmatrix} \Rightarrow \begin{vmatrix} B-c=2 \\ A+A+c=0 \end{vmatrix}$ $\Rightarrow \begin{vmatrix} -A+B+c=1 \\ A+A+c=1 \end{vmatrix} \Rightarrow \begin{vmatrix} -A+A+c=1 \\ A+A+c=1 \end{vmatrix}$ $\Rightarrow \begin{vmatrix} -A+B+c=1 \\ A+A+c=1 \end{vmatrix} \Rightarrow \begin{vmatrix} -A+A+c=1 \\ A+A+c=1 \end{vmatrix}$ $\Rightarrow \begin{vmatrix} -A+A+c=1 \\ A+A+c=1 \end{vmatrix} \Rightarrow \begin{vmatrix} -A+A+c=1 \\ A+A+c=1 \end{vmatrix} \Rightarrow \begin{vmatrix} -A+A+c=1 \\ A+A+c=1 \end{vmatrix}$ $\Rightarrow \begin{vmatrix} -A+A+c=1 \\ A+A+c=1 \end{vmatrix} \Rightarrow \begin{vmatrix} -A+A+$

Multimes rolutifor implicite ale en este: $\ln \left| \frac{x}{1-x^2} \right| = \ln t + \ln c, \quad \text{(5)}$ $\ln \left| \frac{x}{1-x^2} \right| = \ln \left(ct \right) = \left| \frac{x}{1-x^2} \right| = ct = 0$ $\Rightarrow \frac{x}{1-x^2} = \pm ct = 0$ $\frac{x}{1-x^2} = c_1t = 0$

Mult m. æ este (4) U(5) san (4) U(6).

Tema: restul de exaciles (in afaraide 1, 6, 60).