CMI - 2020-2021: DS-Analysis Calculus -11 Some remarks

We begin with an interpretation of the gradient of a function.

For $x, y \in \mathbb{R}^n$, it is known that $|x \cdot y| \le ||x|| \ ||y||$; also, equality holds if and only if y = cx for some $c \in \mathbb{R}$.

In particular, if x, y are both unit vectors, then $|x \cdot y| \le 1$, and equality holds if and only if y = x, or y = -x. So we have $-1 \le x \cdot y \le 1$. Also, if y = x, then $x \cdot y = 1$, and if y = -x, then $x \cdot y = -1$.

Let $f: U \to \mathbb{R}$ be a function with continuous partial derivatives, where $U \subseteq \mathbb{R}^n$ is an open set.

Let $x \in U$. Suppose $\nabla f(x) \neq 0$. Then $\xi = \nabla f(x)/(||\nabla f(x)||)$ is the unit vector in the direction of the vector $\nabla f(x)$. Clearly $\nabla f(x) = ||\nabla f(x)|| \xi$.

Let $z \in \mathbb{R}^n$ be a unit vector. We know that $D_z f(x) = \nabla f(x) \cdot z$ is the directional derivative of f in the direction of z at the point x. Therefore we have, as ||z|| = 1,

$$D_z f(x) = \nabla f(x) \cdot z = ||\nabla f(x)|| \xi \cdot z.$$

As ξ , z are both unit vectors we get $||D_z f(x)|| \leq || \nabla f(x)||$ for any unit vector z. Recall that $D_z f(x)$ indicates the rate of change of f in the direction of z. Thus we have the following.

Theorem 1 Assumptions and notations as above. Let $\nabla f(x) \neq 0$. Then

- (i) The direction of the vector $\nabla f(x)$ is the direction of maximal increase of the function f at the point x. Moreover, $||\nabla f(x)||$ is the rate of increase in the direction of maximal increase.
- (ii) The direction of the vector $-\nabla f(x)$ is the direction of maximal decrease of the function f at the point x. Moreover, $-||\nabla f(x)||$ is the rate of decrease in the direction of maximal decrease.

Next we review some properties of convex functions.

A set $C \subseteq \mathbb{R}^n$ is said to be *convex* if for every $x, y \in C$, and every real number $\alpha \in [0, 1]$, the point $\alpha x + (1 - \alpha)y \in C$.

Examples: Open balls, closed balls, open rectangles, closed rectangles, quadrants,

A function $f: C \to \mathbb{R}$, where $C \subseteq \mathbb{R}^n$ is a convex set, is said to be *convex*, if for every $x, y \in C$, and every $0 \le \alpha \le 1$, we have

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

If for every $x, y \in C$, and every $0 < \alpha < 1$, we have

$$f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y),$$

then f is said be *strictly convex*.

A real valued function g defined on a convex set $C \subseteq \mathbb{R}^n$ is said to be concave if the function f = -g is convex. The function g is strictly concave if (-g) is strictly convex.

Three results on convex functions are given below.

Theorem 2 Let C be an open convex set. Let $f: C \to \mathbb{R}$ have continuous first order partial derivatives. Then f is convex over C if and only if

$$f(y) \ge f(x) + \nabla f(x) \cdot (y - x),$$

for all $x, y \in C$.

Theorem 3 Let C be an open convex set. Let $f: C \to \mathbb{R}$ have all continuous first and second order partial derivatives. Let H(x) denote the Hessian of f at x. Then f is convex over C if and only if for each $x \in C$, all the eigenvalues of H(x) are ≥ 0 , that is, if and only if for each $x \in C$, the matrix H(x) is non-negative definite.

The function f is strictly convex over C if and only if H(x) is strictly positive definite for each $x \in C$.

Theorem 4 Let $C \subseteq \mathbb{R}^n$ be an open convex set. Let $f: C \to \mathbb{R}$ be a convex function. Then any relative minimum of f is a global minimum of f. Also the set $\Gamma = \{x \in C : f \text{ attains global minimum } \}$ is a convex set.

Example: Quadratic function. Let Q be an $(n \times n)$ real symmetric strictly positive definite matrix, $b \in \mathbb{R}^n$. Let

$$f(x) = \frac{1}{2}xQx^t - bx^t, \ x \in \mathbb{R}^n.$$

Then it can be seen that f is a strictly convex function on \mathbb{R}^n .

Descent methods are used for iteratively solving unconstrained minimisation problems. Starting from an initial point x_0 , one determines, according to a fixed rule, a direction of movement; and then moves in that direction to a relative minimum of the objective function on that line. At the new point, a new direction is determined, again by the same rule, and the procedure is repeated. In this way, one gets a sequence $\{x_k\}$ of points, possibly approaching the global minimum point x^* . The basic difference between the various descent methods is the 'rule' by which successive directions are determined.

We will now describe briefly the *method of steepest descent*. This is one of the simplest and theoretically well-studied method. Its technique has basically inspired many other methods. We assume $U = \mathbb{R}^n$ for convenience.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function satisfying:

- (i) f is a strictly convex function;
- (ii) f has continuous first order partial derivatives;
- (iii) f has a global minimum.

By (i) and (iii), note that the global minimum is unique; denote it by x^* . Also, $\nabla f(x^*) = 0$ at the global minimum x^* .

Recall that we have been regarding $\nabla f(x)$ as a n-dimensional row vector. For certain notational convenience, we set n-dimensional column vector $g(x) = \nabla f(x)^t$. Also, when there is no ambiguity, we may suppress the argument x and, for example, write g_k for $g(x_k) = \nabla f(x_k)^t$. (Depending on the context, x may be regarded as a row vector or column vector.)

The method of steepest descent is defined by the iterative algorithm

$$x_{k+1} = x_k - \alpha_k g_k, \ k = 0, 1, 2, \cdots,$$

where 'step-size' α_k is a non-negative number (possibly) minimising $f(x_k - \alpha g_k)$. In other words, from the point x_k , we search along the direction of the negative gradient $(-g_k)$ to a minimum point on this line; this minimum point is taken to be x_{k+1} .

Theorem 5 Assumptions as above. In addition, assume that there is a constant $\beta > 0$ such that for any x, y,

$$|| \nabla f(x) - \nabla f(y)|| \le \beta ||x - y||.$$

Then the method of steepest descent, taking the step-size as $\alpha_k = (1/\beta)$ for all k, generates a sequence $\{x_k\}$ such that

$$0 \le f(x_k) - f(x^*) \le \frac{\beta}{2(k+1)} ||x_0 - x^*||^2.$$

So
$$f(x_k) \to f(x^*)$$
 as $k \to \infty$.

Suppose f is the quadratic function. As Q is a strictly positive definite matrix, there are $0 < a \le A < \infty$, such that $a \le \lambda \le A$, where λ is any eigenvalue of Q.

In this case, α_k minimising $f(x_k - \alpha_k g_k)$ can be explicitly found. It can be proved that $x_k \to x^*$; hence $f(x_k) \to f(x^*)$.

Let r = (A/a); clearly $r \ge 1$. If r is close to 1, the convergence can be very fast.

In general, if the initial point x_0 is close to x^* the convergence rate is faster.

For more information on steepest descent method, various other methods, comparison of methods, etc. there are many books. Two such books are mentioned below.

- 1. R. Fletcher: *Practical Methods of Optimization*. Second edition. John Wiley, 2004.
- 2. D. G. Luenberger: *Linear and Non-linear Programming*. Second edition. Springer (India), 2008.