Probabilités

Table des matières

1.	Cadre général de la théorie des probabilités	2
	1.1. Espace probabilisé général · · · · · · · · · · · · · · · · · · ·	2
	1.2. Exemples d'espace probabilisés · · · · · · · · · · · · · · · · · ·	4
	1.2.1. Univers $\Omega = \mathbb{R} \cdot \cdots \cdot $	4

1. Cadre général de la théorie des probabilités

1.1. Espace probabilisé général

Définition 1.1. Soit Ω un ensemble. On appelle *tribu* sur Ω une famille $\mathcal F$ de parties de Ω vérifiant:

- 1. \mathcal{F} est non-vide : $\emptyset \in \mathcal{F}$,
- 2. la stabilité par passage au complémentaire : $\forall A \in \mathcal{F}, A^c \in \mathcal{F}$,
- 3. la stabilité par union dénombrable : $\forall (A_n)_{n>1} \in \mathcal{F}^{\mathbb{N}}, \bigcup_{n>1} A_n \in \mathcal{F}$.

Définition 1.2. Soit Ω un ensemble et \mathcal{F} une tribu sur Ω . On appelle *mesure de probabilité* une mesure $P: \mathcal{F} \to \mathbb{R}_+$ vérifiant $P(\Omega) = 1$.

Définition 1.3. Soit Ω un ensemble, \mathcal{F} une tribu sur Ω et P une mesure de probabilité sur (Ω, \mathcal{F}) . On appelle espace probabilisé le triplet (Ω, \mathcal{F}, P) , on dit que Ω est l'univers et que \mathcal{F} sont les événements.

Remarque 1.4. Dans le cadre discret, on avait souvent $\mathcal{F} := \mathcal{P}(\Omega)$. Dans le cadre général, on aura souvent $\mathcal{F} \subseteq \mathcal{P}(\Omega)$.

Définition 1.5. Soit $(A_n)_{n>1}$ une suite d'événements sur (Ω, \mathcal{F}, P) . On dit que $(A_n)_{n>1}$ est un système complet si elle vérifie :

- 1. les A_n sont disjoints deux à deux,
- 2. la probabilité de l'union des A_n est 1.

Proposition 1.6. Soit $(A_n)_{n\geq 1}$ un système complet sur (Ω,\mathcal{F},P) . Alors on a

$$\forall B \in \mathcal{F}, P(B) = \sum_{n=1}^{+\infty} P(B \cap A_n).$$

 $\textit{D\'{e}monstration}. \ \text{On pose} \ C \coloneqq \bigcup\nolimits_{n \geq 1} A_n, \ \text{puisque} \ P(C) = 1, \ \text{on a} \ P(C^c) = 0 \ \text{d'où} \ P(B \cap C^c) = 0.$ Soit $B \in \mathcal{F}$, on en déduit

$$\begin{split} P(B) &= P(B \cap C) + P(B \cap C^c) \\ &= P(B \cap C) \\ &= P\left(\bigcup_{n \geq 1} B \cap A_n\right) \\ &= \sum_{n=1}^{+\infty} P(B \cap A_n) \text{ par } \sigma\text{-additivit\'e de } P. \end{split}$$

Corollaire 1.7. Soit $\left(A_n\right)_{n\geq 1}$ un système complet sur (Ω,\mathcal{F},P) . Alors pour tout $B\in\mathcal{F}$ on a

1.
$$P(B) = \sum_{n=1}^{+\infty} P(A_n) P(B|A_n)$$

$$\begin{split} &1.\ P(B) = \sum_{n=1}^{+\infty} P(A_n) P(B|A_n), \\ &2.\ \forall i \geq 1, P(A_i|B) = \frac{P(A_i) P(B|A_i)}{\sum_{n=1}^{+\infty} P(A_n) P(B|A_n)}. \end{split}$$

Théorème 1.8. (Continuité de la mesure de probabilité) Soit (Ω, \mathcal{F}, P) un espace probabilisé.

1. Soit $(A_n)_{n\geq 1}$ une suite croissante d'événements. Alors on a

$$\lim_{n\to +\infty} P(A_n) = P\Biggl(\bigcup_{n\geq 1} A_n\Biggr).$$

2. Soit $(A_n)_{n\geq 1}$ une suite décroissante d'événements. Alors on a

$$\lim_{n\to +\infty} P(A_n) = P\Biggl(\bigcap_{n\geq 1} A_n\Biggr).$$

Démonstration.

1. Pour tout $n \geq 1$, on pose $B_n \coloneqq A_n \setminus A_{n-1}$ avec $A_0 = \emptyset$, tel que les $(B_n)_{n \geq 1}$ forme un système complet sur $\bigcup_{n \geq 1} A_n$, on en déduit alors

$$P\bigg(\bigcup_{n\geq 1}A_n\bigg)=P\bigg(\bigcup_{n\geq 1}B_n\bigg)=\sum_{n=1}^{+\infty}P(B_n)=\sum_{n=1}^{+\infty}P(A_n)-P(A_{n-1})$$

on reconnait une somme téléscopique et on a donc

$$P\bigg(\bigcup_{n\geq 1}A_n\bigg)=\lim_{n\to +\infty}P(A_n)-P(A_0)=\lim_{n\to +\infty}P(A_n).$$

2. On obtient directement le résultat par passage au complémentaire.

Définition 1.9. Soit $(A_n)_{n>1}$ une suite d'événements de (Ω, \mathcal{F}, P) .

• On appelle *limite supérieure* de la suite $(A_n)_{n>1}$ la valeur

$$\limsup_{n\to +\infty}A_n\coloneqq \bigcap_{n\geq 1}\bigcup_{k\geq n}A_k$$

intuitivement on considère les éléments qui appartiennent à une infinité d'événements.

• On appelle limite inférieure de la suite $\left(A_{n}\right)_{n\geq1}$ la valeur

$$\limsup_{n\to +\infty}A_n\coloneqq \bigcup_{n\geq 1}\bigcap_{k\geq n}A_k.$$

Corollaire 1.10. Soit $\left(A_n\right)_{n\geq 1}$ une suite d'événements de (Ω,\mathcal{F},P) . Alors on a

$$P\bigg(\limsup_{n\to +\infty}A_n\bigg)=\lim_{m\to +\infty}\lim_{n\to +\infty}P\bigg(\bigcup_{k=m}^nA_k\bigg)$$

$$P\left(\liminf_{n \to +\infty} A_n\right) = \lim_{m \to +\infty} \lim_{n \to +\infty} P\left(\bigcap_{k=m}^n A_k\right)$$

Proposition 1.11. Soit $\left(A_n\right)_{n\geq 1}$ une suite d'événements de (Ω,\mathcal{F},P) . Alors on a

$$P\!\left(\bigcup_{n\geq 1}A_n\right)\leq \sum_{n=1}^{+\infty}A_n.$$

Démonstration. On sait que le résultat est vérifié pour un nombre fini d'événements. Par passage à la limite et par continuité de la mesure P on a

$$P\bigg(\bigcup_{n\geq 1}A_n\bigg)=\lim_{m\to +\infty}P\bigg(\bigcup_{n=1}^mA_n\bigg)\leq \lim_{m\to +\infty}\sum_{n=1}^mP(A_n)=\sum_{n=1}^{+\infty}P(A_n).$$

Définition 1.12. Soit *A* un événement de (Ω, \mathcal{F}, P) .

- On dit que A est négligeable si P(A) = 0.
- On dit que A est presque-sûr si P(A) = 1.

Corollaire 1.13. Soit (Ω, \mathcal{F}, P) un espace probabilisé. Alors

- L'union dénombrable d'événements négligeables est négligeable.
- L'intersection dénombrable d'événements presque-sûrs est presque-sûre.

Proposition 1.14. Soit $\mathcal A$ une famille d'événements de $(\Omega,\mathcal F,P)$. Alors il existe une unique tribu $\sigma(\mathcal A)$ telle que $\sigma(\mathcal A)$ soit la plus petite tribu contenant $\mathcal A$.

Démonstration. Il existe au moins une tribu contenant \mathcal{A} , à savoir $\mathcal{P}(\Omega)$. Alors l'intersection de toutes les tribus contenant \mathcal{A} est une tribu et convient.

Définition 1.15. Soit \mathcal{A} une famille d'événements de (Ω, \mathcal{F}, P) . On appelle *tribu engendrée* par \mathcal{A} , notée $\sigma(\mathcal{A})$, la tribu de la Proposition 1.14.

Exemple 1.16. Soit *A* un événement de (Ω, \mathcal{F}, P) . Alors $\sigma(\{A\}) = \{\emptyset, A, A^c, \Omega\}$.

1.2. Exemples d'espace probabilisés

Définition 1.17. Soit (E, \mathcal{O}) un espace topologique. On appelle *tribu borélienne* sur E, notée $\mathcal{B}(E)$, la tribu engendrée par les intervalles ouverts de E, c'est-à-dire $\mathcal{B}(E) \coloneqq \sigma(\mathcal{O})$.

Lemme 1.18. Soit $(\mu_n)_{n\geq 1}$ une suite de mesures de probabilité sur (Ω,\mathcal{F}) et $(\lambda_n)_{n\geq 1}$ une suite de nombres réels positifs telle que $\sum_{n=1}^{+\infty}\lambda_n=1$. Alors $\mu=\sum_{n=1}^{+\infty}\lambda_n\mu_n$ est une mesure de probabilité sur (Ω,\mathcal{F}) .

1.2.1. Univers $\Omega = \mathbb{R}$

Exemple 1.19. (Mesure de Dirac) Soit $x \in \mathbb{R}$, l'application $\delta_x : \mathcal{B}(\mathbb{R}) \to \mathbb{R}_+$ définie par

$$\forall A \in \mathcal{B}(\mathbb{R}), \delta_x(A) = \begin{cases} 0 \text{ si } x \not \in A \\ 1 \text{ si } x \in A \end{cases}$$

est une mesure de probabilité sur \mathbb{R} .

Exemple 1.20. (Mesure uniforme sur $\{1,...,n\}$) L'application $\mu = \frac{1}{n} \sum_{k=1}^{n} \delta_k$ est une mesure uniforme sur \mathbb{R} .

Exemple 1.21. (Mesure de Poisson) Soit $\lambda > 0$, l'application $\mu = \sum_{n=1}^{+\infty} e^{-\lambda} \frac{\lambda^n}{n!} \delta_n$ est une mesure de Poisson sur \mathbb{R} .

Définition 1.22. Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction borélienne. On dit que f est une *densité de probabilité* sur \mathbb{R} si elle vérifie :

1. pour λ -presque tout $x \in \mathbb{R}$, $f(x) \geq 0$,

2.
$$\int_{\mathbb{R}} f(x) \, \mathrm{d}\lambda(x) = 1.$$

Lemme 1.23. Soit f une densité de probabilité sur \mathbb{R} . Alors l'application $\mu_f:\mathcal{B}(\mathbb{R})\to\mathbb{R}_+$ définie par $\forall A\in\mathcal{B}(\mathbb{R}), \mu_f(A)=\int_A f(x)\,\mathrm{d}\lambda(x)$ est une mesure de probabilité sur \mathbb{R} .

Démonstration. On a bien $\forall A \in \mathcal{B}(\mathbb{R}), \mu_f(A) \geq 0$. De plus $\mu_f(\mathbb{R}) = 1$. Soit $(A_n)_{n \geq 1}$ une suite d'éléments de $\mathcal{B}(\mathbb{R})$ deux à deux disjoints. On pose $A \coloneqq \bigcup_{n \geq 1} A_n$, alors $\mathbb{1}_A = \sum_{n=1}^{+\infty} \mathbb{1}_{A_n}$ et

$$\mu_f(A) = \int_A f(x) \,\mathrm{d}\lambda(x) = \int_{\mathbb{R}} \mathbbm{1}_A(x) f(x) \,\mathrm{d}\lambda(x) = \int_{\mathbb{R}} \sum_{n=1}^{+\infty} \mathbbm{1}_{A_n}(x) f(x) \,\mathrm{d}\lambda(x)$$

d'après le théorème de convergence monotone on a

$$\mu_f(A) = \lim_{m \to +\infty} \int_{\mathbb{R}} \sum_{n=1}^m \mathbbm{1}_{A_n} f(x) \,\mathrm{d}\lambda(x) = \lim_{m \to +\infty} \sum_{n=1}^m \mu_f(A_n) = \sum_{n=1}^{+\infty} \mu_f(A_n).$$

Donc μ_f est bien une mesure de probabilité sur $\mathbb{R}.$

Remarque 1.24. On dit que μ_f est une mesure de densité f.