ASSIGNMENT - 4

Assignment Date	28 october
Student Name	Ms. M. Priyadharshini
Student Roll Number	913219106004
Maximum Marks	2 marks

3.2 BI-VARIATE ANALYSIS

#pairplot
sns.pairplot(f1)
plt.show()

3.3 MULTI-VARIATE ANALYSIS

In [19... #scatterplot for Age, Annual Income (k\$) and Spending Score (1-100)
sns.scatterplot(x=f1.iloc[:200,:]["Age"],y=f1.iloc[:200,:]["Annual Income (k\$)"],hue=f1.iloc[:200,:]["Spending Score (1-100)"])
plt.show()

4) PERFORM DESCRIPTIVE STATISTICS ON THE DATASET

In [20... f1.describe()

Out[20]: CustomerID Age Annual Income (k\$) Spending Score (1-100) count 200.000000 200.000000 200.000000 200.000000 60.560000 mean 100.500000 38.850000 50.200000 std 57.879185 13.969007 26.264721 15.000000 1.000000 min 1.000000 18.000000 **25**% 50.750000 28.750000 41.500000 34.750000 61.500000 **50%** 100.500000 36.000000 50.000000 **75%** 150.250000 49.000000 78.000000 73.000000 max 200.000000 70.000000 137.000000 99.000000

[< 1	f1.mode(f1.mode(numeric_only=True)					
ut[21]:	Custo	omerID	Age	Annual Income (k\$)	Spending Score (1-100)		
	0		32.0	54.0	42.0		
	1	2	NaN	78.0	NaN		
	2	3	NaN	NaN	NaN		
	3	4	NaN	NaN	NaN		
	4	5	NaN	NaN	NaN		
	195	196		NaN	NaN		
	196	197		NaN	NaN		
	197	198		NaN	NaN		
	198 199	199 200		NaN NaN	NaN NaN		
					NaN		
	200 rows Ã	Á∫— 4	colun	nns			
In [22	f1.median(numeric_only=True)						
Out[22]:	CustomerID Age Annual Income (k\$) Spending Score (1-100) dtype: float64			100.5 36.0 61.5 0) 50.0			
In [23	f1.skew(numeric_only=True)						
Out[23]:	Customer Age Annual I Spending dtype: f	Income (0.000000 0.485569 0.321843 00) -0.047220			
In [24…	f1.kurt(numeric_only=True)						
Out[24]:	Customer Age Annual I Spending dtype: f	Income (g Score float64	(1-1				
n [25	#find t			umns			
ut[25]:	Customer Gender Age Annual I Spending dtype: i	Income (g Score		0 0 0 0 0			

```
In [23... f1.skew(numeric_only=True)
Out[23]: CustomerID 0.000000
Age 0.485569
Annual Income (k$) 0.321843
Spending Score (1-100) -0.047220
dtype: float64
In [24... f1.kurt(numeric_only=True)
Out[24]: CustomerID -1.200000
Age -0.671573
Annual Income (k$) -0.098487
Spending Score (1-100) -0.826629
dtype: float64
             5) HANDLE MISSING VALUES
In [25... #find the null columns
f1.isnull().sum()
Out[25]: CustomerID
Gender
Age
Annual Income (k$)
Spending Score (1-100)
dtype: int64
            6) FIND THE OUTLIERS AND REPLACE THE OUTLIERS
InA [36-- #find outliers-Annual Income (k$)
plt.boxplot(f1["Annual Income (k$)"])
plt.show()
             140
                                              0
             120
             100
               60
              40
               20
Q1: 41.0
Q3: 78.0
IQR: 37.0
In [38...
              upperOutlayers=Q3+1.5*IQR
lowerOutlayers=Q1-1.5*IQR
print(upperOutlayers)
print(lowerOutlayers)
 In [39…
              In [40…
              #find outliers-Spending Score (1-100) plt.boxplot(f1["Spending Score (1-100)"]) plt.show()
             Q1: 41.0
Q3: 78.0
IQR: 37.0
              upperOutlayers=Q3+1.5*IQR
lowerOutlayers=Q1-1.5*IQR
print(upperOutlayers)
print(lowerOutlayers)
 In [39…
              In [40...
              #find outliers-Spending Score (1-100)
plt.boxplot(f1["Spending Score (1-100)"])
plt.show()
```



```
#find outliers-Age
plt.boxplot(f1["Age"])
plt.show()
```

7) CHECK FOR CATEGORICAL COLUMNS AND PERFORM ENCODING

```
In [43- from sklearn.preprocessing import LabelEncoder

In [45- encod=LabelEncoder() f1['Spending Score (1-100)']=encod.fit_transform(f1['Spending Score (1-100)'])

In [48- print(f1["Spending Score (1-100)"].unique())

[29 66 4 63 30 62 78 1 58 12 82 13 11 65 27 54 23 81 59 3 67 25 51 24
71 2 76 15 20 61 28 22 53 45 37 32 42 50 44 35 31 40 36 41 46 49 38 39
43 34 47 48 33 75 79 9 7 26 57 72 5 8 77 10 80 60 17 74 16 14 73 0
64 68 21 52 70 56 19 55 69 18 6]
```

```
8) SCALING THE DATA
 In [49...
                 from sklearn.preprocessing import scale
 In [50…
                 x=f1.drop(columns=['Gender'],axis=1)
                 x.head()
  Out[50]:
                CustomerID Age Annual Income (k$) Spending Score (1-100)
                0
                             1 19
                                                            15
                                                                                          29
                1 2 21 15
                                                                                          66
                             3 20
                                                            16
                2
                                                                                          4
                3 4 23
                                            16
                                                                                          63
                              5 31
                                                             17
                                                                                          30
In [52... x.mean()
 Out[52]: 1.570012358055777e-17
In [54... x.std()
 Out[54]: 1.0
               9) PERFORM CLUSTERING ALGORITHM
In [56... from sklearn.cluster import KMeans
                Wrom sklearn.cluster import kneans
wcss=[]
for i in range (1,11):
    kmeans-KMeans(n_clusters=i, init='k-means++',random_state=0)
    kmeans.fit(x)
    wcss.append(kmeans.inertia_)
In [57... wcss
Out[57]: [791.99999999998,
508.44874485439107,
368.58328054500737,
257.092939027723,
206.35125359279914,
156.94571620133909,
140.89593744774663,
125.07516278994356,
114.558989071571418,
101.0295653122749]
In [52... x.mean()
 Out[52]: 1.570012358055777e-17
In [54... x.std()
 Out[54]: 1.0
              9) PERFORM CLUSTERING ALGORITHM
In\hat{A} [56... from sklearn.cluster import KMeans
                Wcss=[]
for i in range (1,11):
    kmeans=KMeans(n_clusters=i, init='k-means++',random_state=0)
                  kmeans.fit(x)
wcss.append(kmeans.inertia_)
In [57... wcss
 Out[57]: [791.999999999998, 508.44874485439107, 368.58328054500737,
                257.0929393027723,
206.35125359279914,
                206.35125359279914,
156.94571620133905,
140.89593744774663,
125.07516278994356,
114.55898071571418,
101.0295653122749]
```

```
#BUILD MODEL
                                                                                                                                   \label{lem:model-KMeans} $$ \underset{\mbox{\ensuremath{model-KMeans}(n_clusters=5,init='k-means++',random_state=0)} $$ y_k means=k model.fit_predict(x) $$
In [64…
                                                                                                                                      kmodel.labels_
   Out[64]: 
array([0, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 1, 0, 4, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 2, 0, 0, 0, 1, 1, 1, 1, 1, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2
                                                                                                                                                                                                   dtype=int32)
                                                                                                                                                                                                                plt.scatter(x[y_kmeans==0,0],x[y_kmeans==0,1],s=100,c='red',label='Cluster 1')
plt.scatter(x[y_kmeans==1,0],x[y_kmeans==1,1],s=100,c='blue',label='Cluster 2')
plt.scatter(x[y_kmeans==2,0],x[y_kmeans==2,1],s=100,c='pink',label='Cluster 3')
plt.scatter(x[y_kmeans==3,0],x[y_kmeans==3,1],s=100,c='green',label='Cluster 4')
plt.scatter(x[y_kmeans==4,0],x[y_kmeans==4,1],s=100,c='orange',label='Cluster 5')
plt.scatter(x[y_kmeans=d,0],x[y_kmeans=d,1],s=100,c='orange',label='Cluster 5')
plt.scatter(x[y_kmeans=d,0],x[y_kmeans=d,1],s=100,c='orange',label='Cluster 5')
plt.scatter(x[y_kmeans=d,0],x[y_kmeans=d,1],s=100,c='orange',label='Cluster 5')
plt.scatter(x[y_kmeans=d,0],x[y_kmeans=d,1],s=100,c='orange',label='Cluster 5')
plt.scatter(x[y_kmeans=d,0],x[y_kmeans=d,1],s=100,c='pink',label='Cluster 3')
plt.scatter(x[y_kmeans=d,0],x[y_kmeans=d,0],x[y_kmeans=d,0],x[y_kmeans=d,0],x[y_kmeans=d,0],x[y_kmeans=d,0],x[y_kmeans=d,0],x[y_kmeans=d,0],x[y_kmeans=d,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Clusters of cutomers
                                                                                                                                                                                                                                                   2.0
                                                                                                                                                                                                                                                   1.5
                                                                                                                                                                                                             Spending Score(1-100)
                                                                                                                                                                                                                                                   1.0
                                                                                                                                                                                                                                                   0.5
                                                                                                                                                                                                                                                   0.0
                                                                                                                                                                                                                                             -1.0
                                                                                                                                                                                                                                          -1.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    -0.5 0.0 0.5
Annual Income (k$)
                                                                                                                                                                                                                                                                                                                                       -1.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.0
```