PEDENED

Access DB# 90/50

SEARCH REQUEST FORM

Scientific and Technical Information Center

Requester's full Name: <u>_</u>	Devesh Khare Examiner #:	77931 Date: 3/27/2003	
Art Unit: 1623 Pho	one Number <u>605-1199</u>	Serial Number: 09/828,276	
Mail Box: <u>CM1-8B19</u> and Bldg/F MAIL	Room Location: <u>CM1-8A13</u> Res	ults Format Preferred (circle): <u>PAPER</u> DISK E-	
1			
		e searches in order of need.	

		specifically as possible the subject matter to be	
		acronyms, and registry numbers, and combine with a special meaning. Give examples or relevant	
	ease attach a copy of the cover shee		
		·	
Title of Invention: See Bib I	Data Sheet		
Inventors (please provide full na	mes): See Bib Data Sheet	10-04	
		•	
Earliest priority Filing Date:	See Bib Data Sheet		
For Sequence Searches Only Ple	ase include all pertinent informatio	n (parent, child, divisional, or issued patent	
numbers) along with the appropria	te serial number.		
DI			
	-	unds in claim 1 and 10 (claims 1-16) and	
heir pharmaceutical compos	sitions. A copy of the claims	is provided.	
The Bib Data Sheet	which discloses the inventor	names, title of the invention, and the	
arliest priority filing date is	also provided.		
, , , , , , , , , , , , , , , , , , , ,	,		
Note: Please return the conv	of the claims with the searc	h	
	of the claims with the searc	h. Point of Contact: Paul Schulwitz	
Thank you.		TECHNICAL INFO. SPECIALIST	
	_	CM1 6B06 TEL. (703) 305-1954	
**************************************	HEABLE COPY	*********	
STAFF USE ONLY	Type of Search	Vendors and cost where applicable	
Searcher:	NA Sequence (#)	STN 1241,40	
Searcher Phone #:	AA Sequence (#)	Dialog	
Searcher Location:	Structure (#) 8	Questel/Orbit	
Date Searcher Picked Up: 3/28 Bibliographic			
Date Completed: 4/3	Litigation	Lexis/Nexis	
Gearcher Prep & Review Time: 💆		Sequence Systems	
Clerical prep time:	Patent Family		
Online Time: <u>\$2</u>	Other		
PTO-1590 (1-2000)			

NODE ATTRIBUTES:

NSPEC IS RC AT 18 DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 18

STEREO ATTRIBUTES: NONE

L2 3214 SEA FILE=REGISTRY SSS FUL L1 L3 STR

NODE ATTRIBUTES:

NSPEC IS RC AT 18
DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 18

STEREO ATTRIBUTES: NONE

L4 15 SEA FILE=REGISTRY SUB=L2 SSS FUL L3 L30 10 SEA FILE=HCAPLUS ABB=ON PLU=ON L4

=> d ibib abs hitstr 130 1-10

L30 ANSWER 1 OF 10 HCAPLUS COPYRIGHT 2003 ACS ACCESSION NUMBER: 1993:204739 HCAPLUS

DOCUMENT NUMBER: 118:204739

TITLE: 2',3'-O-Cyclic derivatives of ribonucleosides and

their 5'-phosphonates: synthesis and anti-HIV

activity

AUTHOR(S): Atrazheva, E. D.; Lukin, M. A.; Yasko, M. V.;

Shushkov, T. V.; Tarussova, N. B.; Kraevskii, A.;

Balzarini, Jan; De Clercq, Erik

CORPORATE SOURCE: V. A. Engel'khardt Inst. Mol. Biol., Moscow, 117984,

Russia

SOURCE: Medicinal Chemistry Research (1991), 1(2), 155-65

CODEN: MCREEB; ISSN: 1054-2523

DOCUMENT TYPE: Journal LANGUAGE: English

AB Several 2',3'-O-orthoesters, 2',3'-O-ketals and 2',3'-O-acetals of ribonucleosides and their 5'-phosphonates were synthesized. In come cases urine diastereomers were either isolated from the racemate mixts. or stereospecifically synthesized. Some nucleosides and their 5'-phosphonates were effective in suppressing HIV-1 replication in MT-4 cells. Of the nucleosides, 2',3'-O-methoxymethyleneguanosine (both R and S diastereomers) and 2',3'-O-methoxymethylenecytidine showed some anti-HIV activity. However, a more pronounced anti-HIV activity, with selectivity indexes of 2-3 orders of magnitude, was exhibited by the 5'-hydrogenphosphonates of 2',3'-O-methoxymethyleneadenosine (R diastereomer), 2',3'-O-methoxymethylenecytidine, 2',3'-O-methoxymethyleneadenosine 5'-hydroxymethylphosphonate (R diastereomer).

IT 4137-31-9P 143992-71-6P

RL: SPN (Synthetic preparation); PREP (Preparation)

(prepn. of and human immunodeficiency virus inhibition by)

RN 4137-31-9 HCAPLUS

CN Adenosine, 2',3'-O-methylene- (7CI, 8CI, 9CI) (CA INDEX NAME)

RN 143992-71-6 HCAPLUS

CN Adenosine, 2',3'-O-methylene-, 5'-(hydrogen phosphonate) (9CI) (CA INDEX NAME)

L30 ANSWER 2 OF 10 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1992:427016 HCAPLUS

DOCUMENT NUMBER:

117:27016

TITLE:

1-Alkylthioalkylation of nucleoside hydroxyl functions

and its synthetic applications: a new versatile

method in nucleoside chemistry

AUTHOR(S):

Zavgorodnii, S.; Polyanskii, M.; Besidskii, E.;

Kryukov, V.; Sanin, A.; Pokrovakaya, M.; Gurskaya, G.;

Lonnberg, Harri; Azhaev, A.

CORPORATE SOURCE:

Chimtech Ltd., Moscow, 117871, USSR

SOURCE:

Tetrahedron Letters (1991), 32(51), 7593-6

CODEN: TELEAY; ISSN: 0040-4039

DOCUMENT TYPE:

LANGUAGE:

Journal English

GT

Treatment of appropriately protected nucleosides I (B = Thy, BzCyt, BzAde, IbGua; R = H) with a mixt. of acetic acid, acetic anhydride and dialkyl sulfoxide was shown to give O-(1-alkylthioalkylated) nucleosides I (R = CH2SMe) that were oxidized to the corresponding sulfoxides and sulfones I [R = CH2S(O)nMe, n = 1, 2], or converted via O-halomethyl derivs. I (R = CH2Br, CH2Cl) to various O-substituted nucleosides, e.g., II, [B1 = Thy, Cyt, Ade, Gua; R1 = CH2F, CH2N3, CH2CN, CH2OMe, CH2P(O)(OH)2].

IT 139434-75-6P

RL: SPN (Synthetic preparation); PREP (Preparation)

(prepn. of)

RN 139434-75-6 HCAPLUS

CN Adenosine, N-benzoyl-2',3'-O-methylene- (9CI) (CA INDEX NAME)

L30 ANSWER 3 OF 10 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1990:441207 HCAPLUS

DOCUMENT NUMBER:

113:41207

TITLE:

Synthesis of the 2-chloro analogs of

3'-deoxyadenosine, 2', 3'-dideoxyadenosine, and 2',3'-didehydro-2',3'-dideoxyadenosine as potential antiviral agents [Erratum to document cited in

CA110(21):193310x]

AUTHOR(S):

Rosowsky, Andre; Solan, Vishnu C.; Sodroski, Joseph

G.; Ruprecht, Ruth M.

CORPORATE SOURCE:

Dana-Farber Cancer Inst., Harvard Med. Sch., Boston,

MA, 02115, USA

SOURCE:

Journal of Medicinal Chemistry (1990), 33(4), 1270

CODEN: JMCMAR; ISSN: 0022-2623

DOCUMENT TYPE:

Journal LANGUAGE: English

Errors in the text have been cor. The errors were not reflected in the AB abstr. or the index entries.

IT119530-61-9P

> RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and detritylation of (Erratum))

RN119530-61-9 HCAPLUS

CN Adenosine, 5'-O-[bis(4-methoxyphenyl)phenylmethyl]-2-chloro-2',3'-Omethylene- (9CI) (CA INDEX NAME)

IT 119530-63-1P

RL: SPN (Synthetic preparation); PREP (Preparation)

(prepn. of (Erratum))

119530-63-1 HCAPLUS RN

Adenosine, 2-chloro-2',3'-O-methylene- (9CI) (CA INDEX NAME) CN

Absolute stereochemistry.

L30 ANSWER 4 OF 10 HCAPLUS COPYRIGHT 2003 ACS ACCESSION NUMBER: 1989:193310 HCAPLUS

DOCUMENT NUMBER: 110:193310

TITLE:

Synthesis of the 2-chloro analogs of

3'-deoxyadenosine, 2',3'-dideoxyadenosine, and 2',3'-didehydro-2',3'-dideoxyadenosine as potential

antiviral agents

AUTHOR(S): Rosowsky, Andre; Solan, Vishnu C.; Sodroski, Joseph

G.; Ruprecht, Ruth M.

CORPORATE SOURCE: Dana-Farber Cancer Inst., Harvard Med. Sch., Boston, SOURCE:

DOCUMENT TYPE: LANGUAGE: OTHER SOURCE(S): GI

MA, 02115, USA

Journal of Medicinal Chemistry (1989), 32(5), 1135-40

CODEN: JMCMAR; ISSN: 0022-2623

Journal English

CASREACT 110:193310

2-Chloro-3'-deoxyadenosine (I), 2-chloro-2',3'-dideoxyadenosine (II), and AΒ 2-chloro-2',3'-didehydro-2',3'-dideoxyadenosine (III) were synthesized from 2-chloroadenosine as candidate antiretroviral agents on the basis that 2-chloro substitution would prevent enzymic deamination and increase efficacy relative to 2',3'-dideoxyadenosine. Redn. of 2-chloro-5'-O-(4,4'-dimethoxytrityl)-2',3'-O-thiocarbonyladenosine (IV) with Bu3SnH, followed by detritylation with AcOH, unexpectedly gave a mixt. of I and 2-chloroadenine. Treatment of the crude Bu3SnH redn. product with 1,1'-thiocarbonyldiimidazole, followed by another cycle of Bu3SnH redn. and detritylation with silica gel afforded II and a byproduct identified as 2-chloro-2',3'-O-methyleneadenosine. Treatment of IV with 1,3-dimethyl-2-phenyl-1,3,2-diazaphospholidine followed by silica gel detritylation afforded III. II and III were tested for activity against human immunodeficiency virus (HIV) in a cultured human T4+ lymphocyte cell line. At a concn. of 100 .mu.M, II inhibited reverse transcriptase (RT) prodn. by 97%, while 2',3'-dideoxyadenosine (V) gave >99% inhibition. In growth assays against uninfected T4+ cells, however, 100 .mu.M II gave 23% inhibition while 100 .mu.M V was nontoxic. At a nontoxic concn. of 20 .mu.M, RT prodn. was 75% inhibited by V but only 43% inhibited by II. Thus, a 2-chloro substituent increased host cell toxicity but decreased antiretroviral activity. III was more cytotoxic than II, and antiviral effects could not be measured above 20 .mu.M, where there was only 75% inhibition of RT prodn. Because of the decreased therapeutic index of III relative to II and V, >90% inhibition of viral protein synthesis at a noncytotoxic concn. could not be achieved. In growth assays with cultured human T and B lymphocytes, 100 .mu.M I gave 60-70% growth inhibition, while the IC50 against mouse fibroblasts was only 30 .mu.M. The high cytotoxicity of I precluded consideration of this compd. as an antiviral agent.

IT 119530-61-9P

> RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and detritylation of)

RN 119530-61-9 HCAPLUS

CN Adenosine, 5'-O-[bis(4-methoxyphenyl)phenylmethyl]-2-chloro-2',3'-O-methylene- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 119530-63-1P

RL: SPN (Synthetic preparation); PREP (Preparation)

(prepn. of)

RN 119530-63-1 HCAPLUS

CN. Adenosine, 2-chloro-2',3'-O-methylene- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L30 ANSWER 5 OF 10 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1987:472985 HCAPLUS

DOCUMENT NUMBER:

107:72985

TITLE:

A proton magnetic resonance study of the effects of polyamine and divalent metal ions on diadenosine 5',

5'''-P1, P4-tetraphosphate base stacking

AUTHOR(S):

Westkaemper, Richard B.

CORPORATE SOURCE:

Sch. Pharm., Virginia Commonwealth Univ., Richmond,

VA, 23298, USA

SOURCE:

AB

Biochemical and Biophysical Research Communications

(1987), 144(2), 922-9

CODEN: BBRCA9; ISSN: 0006-291X

DOCUMENT TYPE:

Journal English

LANGUAGE:

Complexation of putrescine, spermidine, spermine, and Mg2+ with diadenosine 5', 5'''-P1, P4-tetraphosphate induces an upfield shift in the NMR signals for the H-2 and H-8 protons. The upfield shifts in H-2 indicate that cation complexation enhances intramol. adenine stacking interactions. The resonances for H-2 and H-8 of neutral analogs of 5',5'-dinucleotides appear farther upfield relative to the appropriate monomeric models than those for the corresponding dinucleotide; redn. of intra-chain phosphate repulsion is the origin of cation induced enhancement of diadenosine 5',5'''-P1,P4-tetraphosphate base stacking.

IT 109828-20-8P 109828-21-9P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and hydrolysis of)

RN 109828-20-8 HCAPLUS

CN Adenosine, 2',3'-O-methylene-, 5',5'''-butanedioate (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

PAGE 2-A

NH2

RN 109828-21-9 HCAPLUS

CN Adenosine, 2',3'-O-methylene-, 5',5'''-heptanedioate (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L30 ANSWER 6 OF 10 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1986:551228 HCAPLUS

DOCUMENT NUMBER:

105:151228

TITLE:

Biological activity of new 2-5A analogs

AUTHOR(S):

Pauwels, R.; De Clercq, E.; Balzarini, J.; Sawai, H.; Imbach, J. L.; Gosselin, G.; Huss, S.; Reese, C. B.;

Serafinowska, H.; et al.

CORPORATE SOURCE:

Rega Inst. Med. Res., Univ. Leuven, Louvain, B-3000,

Belg.

SOURCE:

Chemica Scripta (1986), 26(1), 141-5

CODEN: CSRPB9; ISSN: 0004-2056

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB Of a series of newly synthesized 2'-5' oligoadenylate (2-5A) analogs (with modifications in the ribose-phosphate backbone), several compds. proved effective as antimitogenic and antiproliferative agents. The antimitogenic activity was based upon the inhibition of DNA and protein synthesis in synchronized (serum-starved) Balb/c 3T3 cells, whereas the antiproliferative activity was detd. by monitoring the inhibition of murine leukemia L1210 cell growth. The antiproliferative effects of 2-5 A analogs correlated closely with their inhibitory effects on DNA and protein synthesis. When considered on a monomer equiv. basis, the mixed adenosine-cordycepin (1:2) cotrimer was more active than the cordycepin monomer, the phosphoramidate-linked adenosine trimer was less active than the aminoadenosine monomer, whereas the aristeromycin trimer, the xyloadenosine tri- and tetramers and the mixed adenosine-xyloadenosine (1:2, 2:1, 2:2, 1:3) tri- or tetramers were about equally active as either

the aristeromycin or xyloadenosine monomer. It is likely that the latter 2-5A analogs owe their biol. activity to degrdn. to their monomer units.

IT 85818-47-9 103998-32-9

RL: BIOL (Biological study)

(DNA and protein synthesis response to)

RN 85818-47-9 HCAPLUS

CN Adenosine, adenylyl-(2'.fwdarw.5')-adenylyl-(2'.fwdarw.5')-2',3'-0-methylene- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 103998-32-9 HCAPLUS

CN Adenosine, adenylyl-(2'.fwdarw.5')-adenylyl-(2'.fwdarw.5')-adenylyl-(2'.fwdarw.5')-2',3'-O-methylene-(9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

PAGE 2-A

NH2

PAGE 2-B

NH2

L30 ANSWER 7 OF 10 HCAPLUS COPYRIGHT 2003 ACS ACCESSION NUMBER: 1986:130202 HCAPLUS

DOCUMENT NUMBER: 104:130202

TITLE: 2',3'-O-Methylene derivatives of ribonucleosides AUTHOR(S): Norman, David G.; Reese, Colin B.; Serafinowska,

Halina T.

CORPORATE SOURCE: Dep. Chem., King's Coll., Strand/London, WC2R 2LS, UK

SOURCE: Synthesis (1985), (8), 751-4

CODEN: SYNTBF; ISSN: 0039-7881

DOCUMENT TYPE: Journal LANGUAGE: English

OTHER SOURCE(S): CASREACT 104:130202

GI

5'-O,N6-Ditrityladenosine (I), prepd. from adenosine, was refluxed with CH2Br2, NaOH, CH2Cl2, H2O, and cetyltrimethylammonium bromide and the product was detritylated with AcOH-H2O at reflux to give methyleneadenosine II (yield 50% based on I). Analogous methylenation of 5'-O-trityluridine gave 2',3'-O-methylene-5'-O-trityluridine (III) which was detritylated to give 2',3'-O-methyleneuridine. Also prepd. was N4-benzoyl-2',3'-O-methylenecytidine from III.

IT 4137-31-9P 101072-38-2P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and tritylation of)

RN 4137-31-9 HCAPLUS

CN Adenosine, 2',3'-O-methylene- (7CI, 8CI, 9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 101072-38-2 HCAPLUS

CN Adenosine, 2',3'-O-methylene-N-(triphenylmethyl)-5'-O-(triphenylmethyl)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

L30 ANSWER 8 OF 10 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1983:213907 HCAPLUS

DOCUMENT NUMBER:

98:213907

TITLE:

Analogs and analog inhibitors of ppp(A2'p)nA. Their

stability and biological activity

AUTHOR(S):

Haugh, Margaret C.; Cayley, P. Jane; Serafinowska, Halina T.; Norman, David G.; Reese, Colin B.; Kerr,

Ian M.

CORPORATE SOURCE:

Imp. Cancer Res. Fund Lab., London, UK

SOURCE: E

European Journal of Biochemistry (1983), 132(1), 77-84

CODEN: EJBCAI; ISSN: 0014-2956

DOCUMENT TYPE:

Journal

LANGUAGE:

English

AB Higher oligomers of ppp(A2'p)nA (n = 2-6) together with (A2'p)nA,

(A2'p)2A3'OCH3, (A2'p)2A2',3'CH2, (A2'p)2dA, dA2'p)2dA, their 5'-monophosphates and diphosphates and 5'-S-methylphosphorothioates have been investigated for relative stability and biol. activity in mouse and human cells and mouse, human, and rabbit cell-free systems. The oligomers from trimer to heptamer inhibited protein and DNA synthesis when introduced into intact mouse cells and activated the ppp(A2'p)nA-dependent RNase at below nanomolar concns. in mouse cell exts. The 5'-diphosphates pp(A2'p)2A and corresponding analogs were active both in cell-free systems and on introduction into intact cells. The exception to this was the all 3'-deoxyadenosine analog pp(dA2'p)2dA which failed to activate the ppp(A2'p)nA-dependent nuclease in the mouse L and human (Daudi and HeLa) cell exts. tested. Of the active analogs the 3'-OCH3 appeared to be the most stable in the cells and systems employed. On the other hand the non-phosphorylated 'core' (A2'p)2A and its 3'-substituted analogs were inactive in mouse L and Ehrlich ascites tumor cell-free systems and had no effect on intact (nonpermeabilized) 3T3 cells. In intact mouse L cells or exts. from interferon-treated human (Daudi) cells, the 5'-monophosphate, p(A2'p)2A mimicked the action of ppp(A2'p)2A, possibly through conversion to the 5'-diphosphate or 5'-triphosphate. The 5'-S-methylphosphorothioate derivs. of the 3'-substituted analogs are both more stable to exonucleolytic cleavage and unlikely to be converted to the 5'-diphosphates or 5'-triphosphates. They are analog inhibitors of ppp(A2'p)nA in mouse L cell exts. How widely they will be effective in a variety of cell-free systems and intact cells remains to be established. The 5'-diphosphate pp(A2'p)2A and corresponding analogs were not equally active, nor was the 5'-S-methylphosphorothioate [CH3Sp(A2'p)2A2',3'CH2] equally effective as an analog inhibitor, in different cell-free systems. This emphasizes the apparent differences in the properties of the ppp(A2'p)nA-dependent RNases from different sources. Accordingly, in looking for a generally effective analog inhibitor of ppp(A2'p)2A its activity in a variety of exts. should be tested, and in any search for further analogs for potential clin. use, human cells and exts. should be employed.

IT 85818-42-4 85818-43-5 85818-47-9 85856-74-2

RL: BIOL (Biological study)

(stability and biol. activity of, RNase activation in relation to, in human and lab. animal system)

RN 85818-42-4 HCAPLUS

CN Adenosine, 5'-O-[hydroxy(phosphonooxy)phosphinyl]adenylyl-(2'.fwdarw.5')-adenylyl-(2'.fwdarw.5')-2',3'-O-methylene- (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

∠OPO3H2

RN 85818-43-5 HCAPLUS
CN Adenosine, 5'-O-phosphonoadenylyl-(2'.fwdarw.5')-adenylyl-(2'.fwdarw.5')2',3'-O-methylene- (9CI) (CA INDEX NAME)

RN 85818-47-9 HCAPLUS

CN Adenosine, adenylyl-(2'.fwdarw.5')-adenylyl-(2'.fwdarw.5')-2',3'-0-methylene- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 85856-74-2 HCAPLUS

CN Adenosine, 5'-O-[hydroxy(methylthio)phosphinyl]adenylyl-(2'.fwdarw.5')-adenylyl-(2'.fwdarw.5')-2',3'-O-methylene- (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

__ SMe

L30 ANSWER 9 OF 10 HCAPLUS COPYRIGHT 2003 ACS 1979:168881 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER:

90:168881

TITLE:

4'-Substituted nucleosides. 5. Hydroxymethylation of

AUTHOR(S):

nucleoside 5'-aldehydes Jones, Gordon H.; Taniguchi, Masao; Tegg, Derek;

Moffatt, John G.

CORPORATE SOURCE:

Inst. Mol. Biol., Syntex Res., Palo Alto, CA, USA Journal of Organic Chemistry (1979), 44(8), 1309-17

SOURCE:

Searched by Paul Schulwitz (703)305-1954

CODEN: JOCEAH; ISSN: 0022-3263

DOCUMENT TYPE: Journal LANGUAGE: English

Crossed aldol condensation between variously substituted nucleoside AΒ 5'-aldehydes and HCHO in the presence of aq. NaOH led, following rate-limiting Cannizzaro redn., to the corresponding 4'-hydroxymethylnucleoside derivs. The speed and overall efficiency of the above reactions were improved by incorporating a borohydride redn. of the initial aldol product rather than relying upon the normal Cannizzaro redn. Such reactions conducted with 2',3'-unsubstituted nucleoside 5'-aldehydes gave mixts. of 4'-hydroxymethylnucleosides epimeric at C-3', presumably via a reverse aldol cleavage followed by recyclization. Hence the use of base stable 2',3'-O-protecting groups is recommended for these reactions. In the case of 2',3'-O-isopropylidene derivs. of N6-benzoyladenosine and N4-benzoylcytidine 5'-aldehydes, some exchange of the acetonide by a methylene group was obsd. and mechanism is proposed. For extension to the 2'-deoxynucleoside series, the corresponding hydroxymethylation of 3'-O-benzylthymidine 5'-aldehyde followed by catalytic hydrogenolysis led to 4'-hydroxymethylthymidine. Synthesis of a no. of new, variously protected nucleoside 5'-aldehydes are described.

IT 63592-94-9P

RN 63592-94-9 HCAPLUS

CN Adenosine, N-benzoyl-4'-C-(hydroxymethyl)-2',3'-O-methylene- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L30 ANSWER 10 OF 10 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1977:453510 HCAPLUS

DOCUMENT NUMBER: 87:53510

TITLE: Synthetic routes to 4'-hydroxymethylnucleosides

AUTHOR(S): Youssefhey, R.; Tegg, D.; Verheyden, J. P. H.; Jones,

G. H.; Moffatt, J. G.

CORPORATE SOURCE: Inst. Mol. Biol., Syntex Res., Palo Alto, CA, USA

SOURCE: Tetrahedron Letters (1977), (5), 435-8

CODEN: TELEAY; ISSN: 0040-4039

DOCUMENT TYPE: LANGUAGE:

Journal English

GΙ

AB The aldehydes I (R = CHO, R1 = H) [R22 = (CH2)5, R3 = uracil; R2 = Me, R3 = N6-benzoyladenine] on treatment with HCHO and aq. NaOH at room temp. gave 38-9% I (R = R1 = CH2OH, R2, R3 as before) which on hydrolysis with 9:1 CF3CO2H-H2O gave the unprotected 4'-hydroxymethyl nucleosides. The acetoxymethyl compd. II, prepd. from 3-O-benzyl-1,2-O-isopropylidene-.alpha.-D-allofuranose by sequential NaIO4 oxidn., condensation with HCHO and aq. NaOH at 20.degree. for 4 days, hydrogenolysis, acetylation, and acetolysis, condensed with a variety of heterocyclic bases. E.g., II with chloropurine in MeCN at 55.degree. for 2 h in the presence of Hg(CN)2 and SnCl4 gave 84% 9-(4-acetoxymethyl-2,3,5-tri-O-acetyl-.beta.-Dribofuranosyl)-6-chloropurine which with NH3(1) gave 4'hydroxymethyladenosine.

IT 63592-94-9P

> RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. of)

63592-94-9 HCAPLUS RN

Adenosine, N-benzoyl-4'-C-(hydroxymethyl)-2',3'-O-methylene- (9CI) CN INDEX NAME)

NODE ATTRIBUTES:

NSPEC IS RC AT 18 DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 18

STEREO ATTRIBUTES: NONE

L2 3214 SEA FILE=REGISTRY SSS FUL L1 L5 STR

Ak~C~Ak Ak~C~Cb 19 @20 21 22 @23 24

Cb~C~Cb 25 @26 27

VAR G1=20/23/26 NODE ATTRIBUTES:

NSPEC IS RC AT 18

CONNECT IS E1 RC AT 19

CONNECT IS E1 RC AT 21

CONNECT IS E1 RC AT CONNECT IS E1 RC AT CONNECT IS E1 RC AT 25 CONNECT IS E1 RC AT DEFAULT MLEVEL IS ATOM GGCAT IS MCY SAT AT 24 IS MCY SAT AT GGCAT GGCAT IS MCY SAT AT 27 DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 27

STEREO ATTRIBUTES: NONE

L6____ 2399 SEA FILE=REGISTRY SUB=L2 SSS FUL L5 1068 SEA FILE=HCAPLUS ABB=ON PLU=ON L6 Large # of hols
only a few printed

=> d-ibib abs hitstr-1-3-500-502 1066-1068

L31 ANSWER 1 OF 1068 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

2002:831353 HCAPLUS

DOCUMENT NUMBER:

138:73419

TITLE:

Gel formation properties of a uracil-appended

cholesterol gelator and cooperative effects of the

complementary nucleobases

AUTHOR(S):

Snip, Erwin; Koumoto, Kazuya; Shinkai, Seiji Chemotransfiguration Project, Japan Science and CORPORATE SOURCE:

Technology Corporation (JST), Kurume, Fukuoka,

839-0861, Japan

SOURCE:

Tetrahedron (2002), 58(43), 8863-8873

CODEN: TETRAB; ISSN: 0040-4020

PUBLISHER:

Elsevier Science Ltd.

DOCUMENT TYPE:

Journal

LANGUAGE:

English

GΙ

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

The authors designed and synthesized a uracil-appended cholesterol gelator I in order to control the gel stability and the gel morphol. by addn. of the complementary and non-complementary nucleobase derivs. Compd. I forms columnar stacks in cyclohexane due to the van der Waals interaction (cholesterol-cholesterol interaction) and the intergelator hydrogen bonding between uracil moieties. Addn. of a 'monomeric' adenosine, II, into the gel only decreases the stability with increasing the concn. destabilization is ascribed to a lack of intergelator hydrogen bonding accompanied with forming the complementary base pairs between I and II. In contrast, addn. of an adenine-appended cholesterol induces a different behavior; with increasing concn. the mixed gel is initially stabilized and then destabilized, giving rise to a max. at the ratio of I/adenine-appended cholesterol = 1:1 for the Tgel plot. One may consider, therefore, that when the additive has a common, column-forming cholesterol

moiety, the cholesterol-cholesterol interaction can operate cooperatively with the complementary base pairing. In addn., the gel fiber structure is clearly changed by the addn. of the adenine-appended cholesterol. Taking the fact that there is no report for such an additive effect inducing a structural change with maintaining the gel stability into consideration, the authors' attempt at combining cholesterol columnar stacks with the nucleobase additives provides a new methodol. to control the stability and the morphol. of organogels.

IT 213552-31-9P

RL: NUU (Other use, unclassified); SPN (Synthetic preparation); PREP (Preparation); USES (Uses)

(prepn. of uracil-appended cholesterol gelator and effects on gel stability and morphol. using complementary and non-complementary nucleobases)

RN 213552-31-9 HCAPLUS

CN Adenosine, 5'-0-[(1,1-dimethylethyl)diphenylsilyl]-2',3'-0-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 362-75-4, 2',3'-O-Isopropylidene adenosine

RL: RCT (Reactant); RACT (Reactant or reagent)

(prepn. of uracil-appended cholesterol gelator and effects on gel stability and morphol. using complementary and non-complementary nucleobases)

RN 362-75-4 HCAPLUS

CN Adenosine, 2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

REFERENCE COUNT: 42 THERE ARE 42 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L31 ANSWER 2 OF 1068 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 2002:816750 HCAPLUS

DOCUMENT NUMBER: 138:39493

TITLE: Adenosine 5'-0-(1-Boranotriphosphate) Derivatives as

Novel P2Y1 Receptor Agonists

AUTHOR(S): Nahum, Victoria; Zuendorf, Gregor; Levesque, Sebastien

A.; Beaudoin, Adrien R.; Reiser, Georg; Fischer, Bilha

CORPORATE SOURCE: Department of Chemistry Gonda-Goldschmied Medical

Research Center, Bar-Ilan University, Ramat-Gan,

52900, Israel

SOURCE: Journal of Medicinal Chemistry (2002), 45(24),

5384-5396

CODEN: JMCMAR; ISSN: 0022-2623

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal LANGUAGE: English

OTHER SOURCE(S): CASREACT 138:39493

P2-receptors (P2-Rs) represent important targets for novel drug development. Most ATP analogs proposed as potential drug candidates have short-comings such as limited receptor-selectivity and limited stability that justify the search for new P2-R agonists. Therefore, a novel series of nucleotides based on the adenosine 5'-O-(1-boranotriphosphate) (ATP-.alpha.-B) scaffold was developed and tested as P2Y1-R agonists. An efficient four-step one-pot synthesis of several ATP-.alpha.-B analogs from the corresponding nucleosides was developed, as well as a facile method for the sepn. of the diastereoisomers (A and B isomers) of the chiral products. The potency of the new analogs as P2Y1-R agonists was evaluated by the agonist-induced Ca2+ release of HEK 293 cells stably transfected with rat-brain P2Y1-R. ATP-.alpha.-B A isomer was equipotent with ATP (EC50 = 2 .times. 10-7 M). However, 2-MeS- and 2-Clsubstitutions on ATP-.alpha.-B (A isomer) increased the potency of the agonist up to 100-fold, with EC50 values of 4.5 .times. 10-9 and 3.6 .times. 10-9 M, compared to that of the ATP-.alpha.-B (A isomer). Diastereoisomers A of all ATP-.alpha.-B analogs were more potent in inducing Ca2+ release than the corresponding B counterparts, with a 20-fold difference for 2-MeS-ATP-.alpha.-B analogs. The chem. stability of the new P2Y1-R agonists was evaluated by 31P NMR under physiol. and gastric-juice pH values at 37 .degree.C, with rates of hydrolysis of 2-MeS-ATP-.alpha.-B of 1.38 .times. 10-7 s-1 (t1/2 of 1395 h) and 3.24 .times. 10-5 s-1 (t1/2 = 5.9 h), resp. The enzymic stability of the new analogs toward spleen NTPDase was evaluated. Most of the new analogs were poor substrates for the NTPDase, with ATP-.alpha.-B (A isomer) hydrolysis being 5% of the hydrolysis rate of ATP. Diastereoisomers A and B exhibited different stability, with A isomers being significantly more stable, up to 9-fold. Furthermore, A isomers that are potent P2Y1-R agonists barely interact with NTPDase, thus exhibiting protein selectivity. Therefore, on the basis of our findings, the new, highly water-sol., P2Y1-R agonists may be considered as potentially promising drug candidates.

IT 478867-98-0

RL: RCT (Reactant); RACT (Reactant or reagent)

(prepn. of adenosine boranotriphosphate derivs. as novel P2Y1 receptor agonists)

RN 478867-98-0 HCAPLUS

CN Borate(4-), trihydro[2',3'-O-(1-methylethylidene)adenosine 5'.fwdarw.P-[triphosphato(III,V,V)-.kappa.P](4-)]-, triammonium hydrogen, (T-4)- (9CI) (CA INDEX NAME)

→ H +

REFERENCE COUNT:

57 THERE ARE 57 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L31 ANSWER 3 OF 1068 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 2002:789678 HCAPLUS

DOCUMENT NUMBER: 138:24909

TITLE: Synthesis and Evaluation of Analogs of

5'-([(Z)-4-Amino-2-butenyl]methylamino)-5'-

deoxyadenosine as Inhibitors of Tumor Cell Growth,

Trypanosomal Growth, and HIV-1 Infectivity

AUTHOR(S): Marasco, Canio J., Jr.; Kramer, Debora L.; Miller,

John; Porter, Carl W.; Bacchi, Cyrus J.; Rattendi, Donna; Kucera, Louis; Iyer, Nathan; Bernacki, Ralph;

Pera, Paula; Sufrin, Janice R.

CORPORATE SOURCE: Grace Cancer Drug Center, Department of Pharmacology

and Therapeutics, Roswell Park Cancer Institute,

Buffalo, NY, 14263, USA

SOURCE: Journal of Medicinal Chemistry (2002), 45(23),

5112-5122

CODEN: JMCMAR; ISSN: 0022-2623

PUBLISHER:

American Chemical Society

DOCUMENT TYPE:

Journal

LANGUAGE:

English

OTHER SOURCE(S):

CASREACT 138:24909

A well-defined series of 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'deoxyadenosine analogs was designed and synthesized in order to further ascertain the optimal structural requirements for S-adenosylmethionine decarboxylase inhibition and potentially to augment and perhaps sep. their antiproliferative and antitrypanosomal activities. Most structural modifications had a deleterious affect on both the antitrypanosomal and antineoplastic activity of 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'deoxyadenosine. However, di-O-acetylation of the parent compd. produced a potential prodrug that caused markedly pronounced inhibition of trypanosomal and neoplastic cell growth and viability. Moreover, the acetylated deriv. of 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'deoxyadenosine did inhibit HIV-1 growth and infectivity, whereas the parent compd. did not.

IT 478161-16-9P

RL: PAC (Pharmacological activity); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)

(synthesis and evaluation of analogs of aminobutenylmethylaminodeoxyade nosine as inhibitors of tumor cell growth trypanosomal growth and HIV infectivity)

478161-16-9 HCAPLUS RN

Adenosine, 2-amino-5'-[[(2Z)-4-amino-2-butenyl]methylamino]-5'-deoxy-2',3'-CN O-(1-methylethylidene) - (9CI) (CA INDEX NAME)

Absolute stereochemistry. Double bond geometry as shown.

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

362-75-4 24514-56-5 ΙT

RL: RCT (Reactant); RACT (Reactant or reagent) (synthesis and evaluation of analogs of aminobutenylmethylaminodeoxyade nosine as inhibitors of tumor cell growth trypanosomal growth and HIV infectivity)

362-75-4 HCAPLUS RN

CN Adenosine, 2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

RN 24514-56-5 HCAPLUS
CN Adenosine, 5'-chloro-5'-deoxy-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 30685-38-2P 34245-49-3P 478161-08-9P 478161-09-0P 478161-10-3P 478161-11-4P 478161-13-6P 478161-14-7P 478161-15-8P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(synthesis and evaluation of analogs of aminobutenylmethylaminodeoxyade nosine as inhibitors of tumor cell growth trypanosomal growth and HIV infectivity)

RN 30685-38-2 HCAPLUS

CN Adenosine, 2-amino-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

RN 34245-49-3 HCAPLUS
CN Adenosine, 5'-deoxy-5'-(methylamino)-2',3'-O-(1-methylethylidene)- (9CI)
(CA INDEX NAME)

Absolute stereochemistry.

RN 478161-08-9 HCAPLUS

CN Adenosine, 5'-[[(4-cyanophenyl)methyl]methylamino]-5'-deoxy-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

RN 478161-09-0 HCAPLUS

CN Adenosine, 5'-[[(2-cyanophenyl)methyl]methylamino]-5'-deoxy-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 478161-10-3 HCAPLUS

CN Adenosine, 5'-[[[4-(aminomethyl)phenyl]methyl]methylamino]-5'-deoxy-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

RN 478161-11-4 HCAPLUS

CN Adenosine, 5'-[[[2-(aminomethyl)phenyl]methyl]methylamino]-5'-deoxy-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 478161-13-6 HCAPLUS

CN Adenosine, 2-amino-5'-chloro-5'-deoxy-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

RN 478161-14-7 HCAPLUS
CN Adenosine, 2-amino-5'-deoxy-5'-(methylamino)-2',3'-O-(1-methylethylidene)(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 478161-15-8 HCAPLUS
CN Adenosine, 2-amino-5'-deoxy-5'-[[(2Z)-4-[[(1,1-dimethylethoxy)carbonyl]amino]-2-butenyl]methylamino]-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Double bond geometry as shown.

REFERENCE COUNT: 27 THERE ARE 27 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L31 ANSWER 500 OF 1068 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1986:497864 HCAPLUS

DOCUMENT NUMBER: 105:97864

TITLE: Synthesis and antiviral activity of certain nucleoside

5'-phosphonoformate derivatives

AUTHOR(S): Vaghefi, Morteza M.; McKernan, Patricia A.; Robins,

Roland K.

CORPORATE SOURCE: Cancer Res. Cent., Brigham Young Univ., Provo, UT,

84602, USA

SOURCE: Journal of Medicinal Chemistry (1986), 29(8), 1389-93

CODEN: JMCMAR; ISSN: 0022-2623

DOCUMENT TYPE: Journal LANGUAGE: English

OTHER SOURCE(S): CASREACT 105:97864

GΙ

AB EtO2CP(O)Cl2 was prepd. and condensed with adenosine, guanosine, 2'-deoxyadenosine, and 2'-deoxyguanosine to yield nucleotides I (R,Rl = OH; RRl = OCMe2O; R = OAc, Rl = H; R2 = adenine, guanine). Alk. treatment of I gave phosphonates II (R3 = H, OH). Treatment of I (R,Rl = OH) with NH3-MeOH gave (aminocarbonyl)phosphonate III. II (R3 = H, R2 = adenine) exhibited the most potent antiviral activity of the group of nucleotides tested in vitro and was most active against herpes viruses, esp. HSV-2 (ED50 = 40.mu.M). All of the compds. tested were nontoxic to confluent Vero cells at .ltoreq. 5 .times. 103 .mu.M.

IT 362-75-4

RL: RCT (Reactant); RACT (Reactant or reagent)
 (phosphorylation of)

RN 362-75-4 HCAPLUS

CN Adenosine, 2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 102831-57-2P

RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. and deisopropylidenation of)

RN 102831-57-2 HCAPLUS

CN Adenosine, 2',3'-O-(1-methylethylidene)-, 5'-[(ethoxycarbonyl)phosphonochloridate] (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L31 ANSWER 501 OF 1068 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1986:479310 HCAPLUS

DOCUMENT NUMBER: 105:79310

TITLE: N6-Substituted deoxyribose analogs of adenosines

INVENTOR(S): Hamilton, Harriet W.; Bristol, James A.; Moos, Walter;

Trivedi, Bharat K.; Taylor, Michael; Patt, William C.

PATENT ASSIGNEE(S): Warner-Lambert Co., USA

SOURCE: Eur. Pat. Appl., 69 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
	A2 A3 B1		EP 1985-307717	19851025
R: AT, BE,	CH, DE	, FR, GB,	IT, LI, LU, NL, SE	
AU 8548888	A1		AU 1985-48888	19851021
AU 575438	B2	19880728		
FI 8504153			FI 1985-4153	19851023
. FI 81587	В			
FI 81587	С	19901112		
ZA 8508154	Α	19860625	ZA 1985-8154	19851023
DK 8504884	Α	19860427	DK 1985-4884	19851024
NO 8504278	Α	19860428	NO 1985-4278	19851025
NO 165495	В	19901112		
NO 165495	С	19910220		
JP 61148194	A2	19860705	JP 1985-237759	19851025
ES 548238	A 1	19861201	ES 1985-548238	19851025
AT 41158	Ė	19890315	AT 1985-307717	19851025
CA 1260931	A1	19890926	CA 1985-493849	19851025
CN 85108658	Α	19860716	CN 1985-108658	19851026
CN 1013448	В	19910807		
ES 555142	A1	19871101	ES 1986-555142	19860520
PRIORITY APPLN. INFO.	:		US 1984-665217	19841026
			US 1984-665232	19841026
			US 1984-665233	19841026
			US 1985-772315	19850906
			EP 1985-307717	19851025

GI

5'-Deoxyadenosines I (R1 = cycloalkyl, CH2CHPh2, 1-indanyl, 1-tetralinyl, CHMeCH2Ph, 1-naphthylmethyl; R2 and R3 are H, alkyl, alkanoyl, etc.; R4 = Me, halomethyl, CH2SMe) were prepd., and they showed antipsychotic, antihypertensive, and analgesic activity. 6-(2,2-Diphenylethylamino)purine was treated with a 5-deoxyribose deriv. to give

```
I (R1 = CH2CHPh2, R2 = R3 = H, R4 = Me).
IT
     3369-66-2P 103626-39-7P 103626-41-1P
     103626-42-2P 103626-44-4P 103626-45-5P
     103626-46-6P 103626-49-9P 103626-50-2P
    103626-51-3P 103626-53-5P 103626-58-0P
     103626-64-8P 103639-11-8P 103667-48-7P
     103729-37-9P
     RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
     (Reactant or reagent)
        (prepn. and reaction of)
     3369-66-2 HCAPLUS
RN
CN
    Adenosine, N-cyclohexyl-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX
     NAME)
```

Absolute stereochemistry.

RN 103626-39-7 HCAPLUS
CN Adenosine, 2',3'-O-(1-methylethylidene)-N-(1-methyl-2-phenylethyl)-, (S)(9CI) (CA INDEX NAME)

RN 103626-41-1 HCAPLUS

CN Adenosine, 5'-chloro-N-cyclohexyl-5'-deoxy-2',3'-O-(1-methylethylidene)-, monohydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry.

HCl

RN 103626-42-2 HCAPLUS

CN Adenosine, N-cyclohexyl-5'-S-methyl-2',3'-O-(1-methylethylidene)-5'-thio-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 103626-44-4 HCAPLUS

CN Adenosine, 5'-chloro-N-cyclopentyl-5'-deoxy-2',3'-O-(1-methylethylidene)-, monohydrochloride (9CI) (CA INDEX NAME)

HCl

RN 103626-45-5 HCAPLUS
CN Adenosine, N-cyclopentyl-5'-S-methyl-2',3'-O-(1-methylethylidene)-5'-thio(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 103626-46-6 HCAPLUS
CN Adenosine, 5'-S-methyl-2',3'-O-(1-methylethylidene)-N-(1-methyl-2-phenylethyl)-5'-thio-, (S)- (9CI) (CA INDEX NAME)

RN 103626-49-9 HCAPLUS

CN Adenosine, 5'-chloro-5'-deoxy-N-(2,3-dihydro-1H-inden-1-yl)-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 103626-50-2 HCAPLUS

CN Adenosine, N-(2,3-dihydro-1H-inden-1-yl)-5'-S-methyl-2',3'-O-(1-methylethylidene)-5'-thio-(9CI) (CA INDEX NAME)

RN 103626-51-3 HCAPLUS

CN Adenosine, 5'-chloro-5'-deoxy-N-(2,3-dihydro-1H-inden-1-yl)-2',3'-O-(1-methylethylidene)-, monohydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry.

● HCl

RN 103626-53-5 HCAPLUS

CN Adenosine, 5'-chloro-5'-deoxy-N-(2,2-diphenylethyl)-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

RN 103626-58-0 HCAPLUS

CN Adenosine, N-cyclopentyl-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 103626-64-8 HCAPLUS

CN Adenosine, N-(2,3-dihydro-1H-inden-1-yl)-2',3'-0-(1-methylethylidene)-, (R)- (9CI) (CA INDEX NAME)

RN 103639-11-8 HCAPLUS

CN Adenosine, 5'-chloro-5'-deoxy-2',3'-O-(1-methylethylidene)-N-(1-methyl-2-phenylethyl)-, (S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 103667-48-7 HCAPLUS

CN Adenosine, 5'-chloro-5'-deoxy-N-(2,3-dihydro-1H-inden-1-yl)-2',3'-O-(1-methylethylidene)-, (R)- (9CI) (CA INDEX NAME)

RN 103729-37-9 HCAPLUS

CN Adenosine, N-(2,3-dihydro-1H-inden-1-yl)-2',3'-O-(1-methylethylidene)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

L31 ANSWER 502 OF 1068 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1986:474858 HCAPLUS

DOCUMENT NUMBER: 105:74858

TITLE: Mevalonate-5-diphosphate decarboxylase:

stereochemical course of ATP-dependent phosphorylation

of mevalonate 5-diphosphate

AUTHOR(S): Iyengar, Radha; Cardemil, Emilio; Frey, Perry A.

CORPORATE SOURCE: Dep. Quim., Univ. Santiago, Santiago, Chile

SOURCE: Biochemistry (1986), 25(16), 4693-8

CODEN: BICHAW; ISSN: 0006-2960

DOCUMENT TYPE: Journal LANGUAGE: English

AB Chicken liver mevalonate 5-diphosphate carbxoylase catalyzes the reaction

of mevalonate 5-diphosphate (MVADP) with ATP to produce isopentenyl diphosphate, ADP, CO2, and inorg. phosphate. The overall reaction

involves an anti elimination of the tertiary hydroxyl and carboxyl groups. To investigate the mechanism for transfer of the terminal phosphoryl group of ATP to the C-3 O atom of MVADP, the reaction was carried out using stereospecifically labeled (SP)-adenosine 5'-O-(3-thio[3-1702,180]triphosphate) ([.gamma.-1702,180]ATP.gamma.S) in place of ATP. The configuration of the [170,180]thiophosphate produced was found to be RP, corresponding to overall inversion of configuration at the P atom in the thiophosphoryl group transfer step. This result was consistent with the direct transfer of the thiophosphoryl group from (SP)-[.gamma.-1702,180]ATP.gamma.S to MVADP at the active site. The result did not indicate the involvement of a covalent thiophosphoryl-enzyme on the reaction pathway.

IT 362-75-4

RL: PROC (Process).

(conversion of, to oxygen-18-labeled adenosine)

RN 362-75-4 HCAPLUS

CN Adenosine, 2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L31 ANSWER 1066 OF 1068 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1958:11156 HCAPLUS

DOCUMENT NUMBER: 52:11156

ORIGINAL REFERENCE NO.: 52:2027g-i,2028a-b

TITLE: Esters of adenosine with organic and inorganic acids

AUTHOR(S): Huber, Gerhard

CORPORATE SOURCE: Forschungslab. Zellstoff-Fabrik Waldhof,

Mannheim-Waldhof, Germany

SOURCE: Chem. Ber. (Berlin) (1956), 89, 2853-62

DOCUMENT TYPE: Journal LANGUAGE: Unavailable

The m.p. and Rf value in H2O-satd. BuOH were detd. for esters of adenosine (I). The 2',3'-isopropylidene deriv. of I (II) (Rf 0.60) (5 g.) and 30 ml. Ac2O in 100 ml. C5H5N after 2 days yields 6.3 g. II N(6),5'-diacetate-EtOH, Rf 0.85, m. 113-14.degree., which reacts with 10% aq. AcOH to form I 5'-acetate, Rf 0.23. I 2',3',5'-triacetate, sirup, has Rf 0.67. II (5 g.) and 20 ml. (EtCO)2O in 125 ml. C5H5N yield 5 g. II 5'-propionate, sirup, Rf 0.75, which reacts with 10% aq. AcOH to form I 5'-propionate, m. 170-2.degree. (H2O and MeOH), Rf 0.44. Other esters prepd. similarly are: I 2',3',5'-tripropionate, sirup, Rf 0.72; II N(6),5'-dibutyrate, sirup, Rf 0.90; I 5'-butyrate, m. 97-8.degree., Rf 0.48; I dibutyrate, sirup; I trilaurate, sirup; I dipalmitate, sirup; I distearate, amorphous powder; I dioleate, sirup; I tribenzoate, m.

100-4.degree.; II 5'-p-nitrobenzoate, powder, Rf 0.80; I 5'-p-nitrobenzoate, Rf 0.30; I tris(p-nitrobenzoate), m. 220.degree. (decompn.); I tris(p-aminobenzoate), amorphous, m. approx. 200.degree.; II 5'-nicotinate, m. 182-3.degree., Rf 0.65; I 5'-nicotinate, m. 157-8.degree., Rf 0.30; I trinicotinate, amorphous, m. approx. 95.degree.; II 5'-isonicotinate, m. 179-81.degree., Rf 0.60; I 5'-isonicotinate, Rf 0.26; I triisonicotinate, Rf 0.70; II 5'-acid succinate, Rf 0.15; I 5'-acid succinate, m. 172-4.degree., Rf 0.40 in 60% ag. PrOH; II 5'-acid phthalate, m. 163-5.degree., Rf 0.15; I bis(acid phthalate), m. 132-4.degree., Rf 0.58. I (5 g.) in C5H5N treated with 4.5 ml. ClSO3H in CHCl3, the product treated with PbO in H2O, the filtered soln. treated with Ag2SO4, refiltered, treated with excess BaCO3, satd. with H2S, filtered, treated with CO2 and concd., and the residue pptd. from H2O with EtOH, yields 12 g. Ba salt of I tris(acid sulfate), Rf 0.22 in 60% aq. PrOH, converted to the Na salt by Na2SO4 or cation exchange resins. Similarly starting with II is prepd. the Ba salt of I 5'-monosulfate, Rf 0.52 in 60% aq. PrOH. I and fuming HNO3 yield a mixt. of I dinitrate, Rf 0.83, and inosine dinitrate, Rf 0.70, m. 190-6.degree. (gas evolution) (aq. dioxane).

IT 86529-23-9, Adenosine, 2',3'-O-isopropylidene-, 5'-(benzyl
phosphorochloridate)
 (esters)

RN 86529-23-9 HCAPLUS

CN Adenosine, 2',3'-O-(1-methylethylidene)-, 5'-(phenylmethyl phosphorochloridate) (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 109816-78-6 HCAPLUS

CN Adenosine, N-acetyl-2',3'-O-isopropylidene-, 5'-acetate (6CI) (CA INDEX NAME)

RN 113453-89-7 HCAPLUS

CN Butyramide, N-[9-(2,3-0-isopropylidene-.beta.-D-ribofuranosyl)-9H-purin-6-yl]-, butyrate (6CI) (CA INDEX NAME)

Absolute stereochemistry.

L31 ANSWER 1067 OF 1068 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1957:90775 HCAPLUS

DOCUMENT NUMBER: 51:90775

ORIGINAL REFERENCE NO.: 51:16493i,16494a

TITLE: Nucleotides. XLI. Mixed anhydrides as intermediates in

the synthesis of dinucleoside phosphates

AUTHOR(S): Hall, R. H.; Todd, Alexander; Webb, R. F.

CORPORATE SOURCE: Univ. Chem. Lab., Cambridge, UK

SOURCE: J. Chem. Soc. (1957) 3291-6

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB cf. C.A. 51, 14743i. 5'-Adenosine 5'-uridine phosphate (I) was chosen as a model for an investigation of methods suitable for the synthesis of dinucleoside phosphates. Reactions involving condensation of nucleoside benzyl phosphorochloridates with appropriately protected nucleoside derivs. gave low yields (about 20%). The reaction of the phosphorochloridates with 2,6-lutidine diphenyl phosphate or

trifluoroacetate gave the mixed anhydrides which gave excellent yields (70%) of I. Similar mixed anhydrides of nucleoside phosphites and diphenyl H phosphate were used to prep. the dinucleoside phosphites which were converted via the phosphorochloridate into I.

86529-23-9, Adenosine, 2',3'-O-isopropylidene-, 5'-(benzyl: IT phosphorochloridate)

(and its condensation with nucleosides)

86529-23-9 HCAPLUS RN

Adenosine, 2',3'-O-(1-methylethylidene)-, 5'-(phenylmethyl CN phosphorochloridate) (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L31 ANSWER 1068 OF 1068 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1957:66670 HCAPLUS

DOCUMENT NUMBER: 51:66670 ORIGINAL REFERENCE NO.: 51:12121b-h

AUTHOR(S):

SOURCE:

TITLE: Some thionophosphate and phosphoroamidate derivatives

of adenosine and certain steroids Wolff, Manfred E.; Burger, Alfred CORPORATE SOURCE: Univ. of Virginia, Charlottesville J. Am. Chem. Soc. (1957), 79, 1970-1

CODEN: JACSAT; ISSN: 0002-7863

DOCUMENT TYPE: Journal LANGUAGE: Unavailable

Et3N (20.2 g.) in 100 cc. dry C6H6 added dropwise with stirring to 38.0 g. Et2NP(O)Cl2 and 18.8 g. PhOH in 300 cc. refluxing dry C6H6 during 45 min., the mixt. refluxed 3 hrs., cooled, and filtered, the filtrate evapd. in vacuo, and the residue treated with 100 cc. dry Et2O, filtered, and fractionated gave 22.5 g. Et2NP(O) - (OPh)Cl (I), b0.4 118.degree., nD25 1.507. The appropriate compd. to be thionophosphorylated (1 equiv.) added with stirring to 1-10 equivs. 3.8% K in dry Me3COH under N, the mixt. dild. with Me3COH at 25.degree. to give a clear soln., the soln. treated dropwise with (EtO)2PSCl as a 30-40% soln. in Me3COH (equiv. to the amt. of K) at 25.degree., refluxed 1-3 hrs. with stirring, and evapd. in vacuo, and the residue dissolved in MeOH or EtOH, filtered, and concd. in vacuo gave the corresponding O,O-di-Et thionophosphate derivs. (II). In this manner were prepd. the following O,O-di-Et thionophosphates (% yield, m.p. or b.p./mm., and optical consts. given): Me 2,3-isopropylidene-5-Dribofuranosidyl, yellow, 66, 135.degree./0.07 (nD30 1.466), [.alpha.]D30 -46.5.degree. (c 3.81, Me2CO); 3-cholesteryl, plates, 66, 110-11.degree.

(from 95% EtOH) (all m.ps. are cor.), [.alpha.]D23 -31.2.degree. (c 2.00, CHCl3); 3-ergosteryl, 58, 124-5.degree. (from EtOH-C6H6), [.alpha.]D23 -50.0.degree. (c 3.30, CHCl3); 3-estronyl, 46, 78-9.degree. (from petr. ether and EtOH), [.alpha.]D23 86.0.degree. (c 4.33, CHCl3). 2, '3'-Isopropylideneadenosine treated similarly with exactly 1 equiv. K, the mixt. kept 0.5 hr. at room temp., adjusted to pH 7 with 5% HCl, and evapd. in vacuo, the residue extd. with MeOH, and the residue from the MeOH ext. triturated with dry Et20 gave 0,0-di-Et 0-(2',3'-isopropylidene-5'-adenosyl) thionophosphate (III), hygroscopic, m. 120-30.degree. [picrate, m. 175-6.degree. (from 95% EtOH)]. Crude sirupy III from a similar run in 300 cc. 0.1N H2SO4 kept 2 days at 27.degree., neutralized to pH 7 with Ba(OH)2, and evapd. in vacuo, the powd. residue extd. continually with MeOH, and the ext. concd. in vacuo at 27.degree. to incipient crystn., heated to boiling, and dild. with petr. ether yielded 37% O,O-di-Et O-(5'-adenosyl) thionophosphate, m. 178-80.degree. (from EtOH), [.alpha.]D23 -15.1.degree. (c 2.15, 5% HCl). 2',3'-Isopropylideneadenosine (6.15 g.), 0.02 mole Me3COK, and 4.95 g. I gave in the usual manner oily O-Ph O-(2',3'-isopropylidene-5'-adenosyl) phosphorodiethylamidate (IV); picrate monohydrate, yellow, m. 141-3.degree. (from EtOH). Similarly was prepd. the O-Et analog (V) of IV, glass; picrate hemihydrate, yellow, m. 169-70.degree. with softening at 160.degree. (from EtOH). Crude V hydrolyzed with dil. H2SO4 in the usual manner gave O-Et O-(5'-adenosyl) phosphorodiethylamidate, glass; yellow picrate, m. 138-40.degree. with sintering at 125.degree. (decompn.) (from hot H2O).

IT 86529-23-9, Adenosine, 2',3'-O-isopropylidene-, 5'-(benzyl
phosphorochloridate)
 (derivs.)

RN 86529-23-9 HCAPLUS

CN Adenosine, 2',3'-O-(1-methylethylidene)-, 5'-(phenylmethyl phosphorochloridate) (9CI) (CA INDEX NAME)

NODE ATTRIBUTES:

NSPEC IS RC AT 18 DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED NUMBEP OF NODES IS 18

STEREO ATTRIBUTES: NONE

L2 3214 SEA FILE=REGISTRY SSS FUL L1 L9 STR

 $N \sim Ak \sim C \sim Ak \sim N$ 28 19 @20 21 29

N~Ak~C~Cb~N 30 22 @23 24 31 N^-Cb--C--Cb--N 32 25 @26 27 33

VAR G1=20/23/26 NODE ATTRIBUTES: NSPEC IS RC AT 18 DEFAULT MLEVEL IS ATOM GGCAT IS MCY SAT AT 24 GGCAT IS MCY SAT AT 25
GGCAT IS MCY SAT AT 27
DEFAULT ECLEVEL IS LIMITED
ECOUNT IS X13 C AT 19
ECOUNT IS X13 C AT 21
ECOUNT IS X13 C AT 22
ECOUNT IS X13 C AT 24
ECOUNT IS X13 C AT 25
ECOUNT IS X13 C AT 25
ECOUNT IS X13 C AT 27

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 33

STEREO ATTRIBUTES: NONE

CLTO _____O^SEA FILE=REGISTRY SUB=L2 SSS FUL L9

NODE ATTRIBUTES:
NSPEC IS RC AT 18
DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES: RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 18

STEREO ATTRIBUTES: NONE

L2 3214 SEA FILE=REGISTRY SSS FUL L1 L11 STR

VAR G1=F/CL/BR
NODE ATTRIBUTES:
NSPEC IS RC AT 18
DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES: RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 19 STEREO ATTRIBUTES: NONE

L12 58 SEA FILE=REGISTRY SUB=L2 SSS FUL L11 L33 67 SEA FILE=HCAPLUS ABB=ON PLU=ON L12

 \Rightarrow d ibib abs hitstr_1-3_45=50_64-67

L33 ANSWER 1 OF 67 HCAPLUS COPYRIGHT 2003 ACS

2002:284191 HCAPLUS ACCESSION NUMBER:

137:79168

DOCUMENT NUMBER:

TITLE: Oligonucleosides with a nucleobase-including backbone,

> Part 7, syn and anti conformations of a (5'-8)-ethynediyl-linked adenosine dimer

Bhardwaj, Punit Kumar; Vasella, Andrea AUTHOR(S):

Laboratorium fur Organische Chemie, ETH-Honggerberg, CORPORATE SOURCE:

HCI, Zurich, CH-8093, Switz.

SOURCE: Helvetica Chimica Acta (2002), 85(3), 699-711

CODEN: HCACAV; ISSN: 0018-019X Verlag Helvetica Chimica Acta

PUBLISHER:

DOCUMENT TYPE: Journal English LANGUAGE:

CASREACT 137:79168 OTHER SOURCE(S):

GI

AB The conformational anal. of (I) was carried out in (D6) DMSO and in mixts. of (D6)DMSO and CDC13 to evaluate the syn/anti conformations, relevant to the pairing propensity of this type of nucleotide analog. The HO-C(5') of (right) unit a and of (left) unit b of I form an intramol. H-bond to N(3). In (D6)DMSO, the C(5')-OH...N(3) H-bond in unit a is partially broken, while that in unit b persists to a larger extent. The syn conformation prevails for unit a and particularly for unit b. The furanosyl moieties adopt predominantly a 2'-endo conformation that is largely independent of

I

the solvent.

IT 292642-48-9

RL: MSC (Miscellaneous)

(model compds. for the conformational anal. of (5'-8)-ethynediyl-linked adenosine dimer and the effects of intramol. hydrogen bonds)

RN 292642-48-9 HCAPLUS

CN Benzamide, N-[8-chloro-9-[6,7-dideoxy-2,3-0-(1-methylethylidene)-7-(trimethylsilyl)-.beta.-D-allo-hept-6-ynofuranosyl]-9H-purin-6-yl]-(9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

REFERENCE COUNT: 42 THERE ARE 42 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L33 ANSWER 2 OF 67 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 2001:48526 HCAPLUS

DOCUMENT NUMBER: 134:208043

TITLE: Oligonucleosides with a nucleobase-including backbone-

part 4: a convergent synthesis of ethynediyl-linked

adenosine tetramers

AUTHOR(S): Gunji, Hiroki; Vasella, Andrea

CORPORATE SOURCE: Laboratorium fur Organische Chemie, ETH-Zentrum,

Zurich, CH-8092, Switz.

SOURCE: Helvetica Chimica Acta (2000), 83(12), 3229-3245

CODEN: HCACAV; ISSN: 0018-019X

PUBLISHER: Verlag Helvetica Chimica Acta

DOCUMENT TYPE: Journal LANGUAGE: English

LANGUAGE: English
OTHER SOURCE(S): CASREACT 134:208043

AB Ethynediyl-linked adenosine tetramer oligoribonucleosides were prepd. via iodination, 1,3-dipolar cycloaddn., and coupling of iodinated dimer with alkyne nucleosides. There is no UV evidence for a base-base interaction

in the protected and deprotected dimers and tetramers.

292642-52-5 292642-53-6RL: RCT (Reactant); RACT (Reactant or reagent)

(prepn. of ethynediyl-linked adenosine tetramer oligonucleosides via

iodination, 1,3-dipolar cycloaddn., and coupling reactions)

RN 292642-52-5 HCAPLUS

IT

CN Benzamide, N-[8-chloro-9-[6,7-dideoxy-2,3-O-(1-methylethylidene)-5-O-(triethylsilyl)-7-(trimethylsilyl)-.beta.-D-allo-hept-6-ynofuranosyl]-9H-purin-6-yl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

RN 292642-53-6 HCAPLUS

CN Benzamide, N-[8-chloro-9-[6,7-dideoxy-2,3-O-(1-methylethylidene)-5-O-(triethylsilyl)-7-(trimethylsilyl)-.alpha.-L-talo-hept-6-ynofuranosyl]-9H-purin-6-yl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

IT 328241-11-8P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. of ethynediyl-linked adenosine tetramer oligonucleosides via iodination, 1,3-dipolar cycloaddn., and coupling reactions)

RN 328241-11-8 HCAPLUS

CN Benzamide, N-[8-chloro-9-[6,7-dideoxy-2,3-O-(1-methylethylidene)-5-O-(triethylsilyl)-.beta.-D-allo-hept-6-ynofuranosyl]-9H-purin-6-yl]- (9CI)

(CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

REFERENCE COUNT:

28 THERE ARE 28 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L33 ANSWER 3 OF 67 HCAPLUS COPYRIGHT 2003 ACS 2000:502875 HCAPLUS

ACCESSION NUMBER:

133:238228

DOCUMENT NUMBER: TITLE:

Oligonucleosides with a nucleobase-including backbone

part 2 synthesis and structure determination of

adenosine-derived monomers

AUTHOR(S):

Gunji, Hiroki; Vasella, Andrea

CORPORATE SOURCE:

Laboratorium fur Organische Chemie, ETH-Zentrum,

Zurich, CH-8092, Switz.

SOURCE:

Helvetica Chimica Acta (2000), 83(7), 1331-1345

CODEN: HCACAV; ISSN: 0018-019X

PUBLISHER:

Verlag Helvetica Chimica Acta

DOCUMENT TYPE:

Journal

LANGUAGE:

English

Ι

OTHER SOURCE(S):

CASREACT 133:238228

GI

AB The synthesis and structure detn. of adenosine-derived monomeric, e.g. I, building blocks for new oligonucleotides via addn. of propargylic silyl ethers with partially protected adenosine, are described.

IT 292642-44-5P 292642-45-6P 292642-48-9P 292642-49-0P 292642-52-5P 292642-53-6P

I

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(synthesis and structure detn. of adenosine-derived monomers via addn. of propargylic silyl ethers with partially protected adenosines)

RN 292642-44-5 HCAPLUS

CN Adenosine, N-benzoyl-8-chloro-2',3'-O-(1-methylethylidene)-5'-O-(triethylsilyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

RN 292642-45-6 HCAPLUS

CN Adenosine, N-benzoyl-8-chloro-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

RN 292642-48-9 HCAPLUS

CN Benzamide, N-[8-chloro-9-[6,7-dideoxy-2,3-0-(1-methylethylidene)-7-(trimethylsilyl)-.beta.-D-allo-hept-6-ynofuranosyl]-9H-purin-6-yl]-(9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

RN 292642-49-0 HCAPLUS

CN Benzamide, N-[8-chloro-9-[6,7-dideoxy-2,3-O-(1-methylethylidene)-7-(trimethylsilyl)-.alpha.-L-talo-hept-6-ynofuranosyl]-9H-purin-6-yl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

RN 292642-52-5 HCAPLUS

CN Benzamide, N-[8-chloro-9-[6,7-dideoxy-2,3-0-(1-methylethylidene)-5-0-(triethylsilyl)-7-(trimethylsilyl)-.beta.-D-allo-hept-6-ynofuranosyl]-9H-purin-6-yl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (+).

RN 292642-53-6 HCAPLUS

CN Benzamide, N-[8-chloro-9-[6,7-dideoxy-2,3-O-(1-methylethylidene)-5-O-(triethylsilyl)-7-(trimethylsilyl)-.alpha.-L-talo-hept-6-ynofuranosyl]-9H-purin-6-yl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

REFERENCE COUNT: 37 THERE ARE 37 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L33 ANSWER 45 OF 67 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1979:439769 HCAPLUS

DOCUMENT NUMBER:

91:39769

TITLE:

Nucleosides and nucleotides. XXVII. Synthesis of 2-

and 8-cyanoadenosines and their derivatives

AUTHOR(S):

LANGUAGE:

Matsuda, Akira; Nomoto, Yuji; Ueda, Tohru

CORPORATE SOURCE:

Fac. Pharm. Sci., Hokkaido Univ., Sapporo, 060, Japan

SOURCE:

Chemical & Pharmaceutical Bulletin (1979), 27(1),

183-92

CODEN: CPBTAL; ISSN: 0009-2363

DOCUMENT TYPE:

Journal English

AB A facile displacement of a methylsulfonyl group in adenosines with cyanide ion is described. Treatment of protected 8-(methylsulfonyl)adenosines with NaCN in DMF gave the 8-cyanoadenosine. The conversion of the cyano group to the Me imidate, methoxycarbonyl, carbamoyl, and carboxylic acid was achieved. Similar reaction was carried out with 2-(methylsulfonyl)adenosine to give the 2-cyanoadenosine and their derivs. The NMR and CD spectra of these 2- and 8-substituted adenosines are given. The 8-substituted adenosines possess syn-conformations while the

2-substituted derivs. prefer anti-conformations, as confirmed by the CD and NMR spectra.

IT 13089-45-7

RN

RL: RCT (Reactant); RACT (Reactant or reagent)
 (methylthiolation of)

13089-45-7 HCAPLUS

CN Adenosine, 8-bromo-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

L33 ANSWER 46 OF 67 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1979:168903 HCAPLUS

DOCUMENT NUMBER:

90:168903

TITLE:

Photochemical cyclization of 2',3'-O-isopropylidene-8-

phenylthioadenosine to the 8,5'(R)- and

8,5'(S)-cycloadenosines (nucleosides and nucleotides -

XVIII)

AUTHOR(S):

Matsuda, A.; Tezuka, M.; Ueda, T.

CORPORATE SOURCE:

Fac. Pharm. Sci., Hokkaido Univ., Sapporo, Japan

SOURCE:

Tetrahedron (1978), 34(16), 2449-52 CODEN: TETRAB; ISSN: 0040-4020

DOCUMENT TYPE:

Journal

LANGUAGE:

English

GI

AB 2',3'-O-isopropylidene-8-phenylthioadenosine, prepd. (85.3%) by reaction of 2',3'-O-isopropylidene-8-bromoadenosine with NaSPh in abs. MeOH (60.degree., room temp., overnight), cyclized to cycloadenosines I (R = .alpha.-, .beta.-OH, R12 = CMe2) on irradn. (MeCN, Me3COOH, 4 h). Deacetonation (HCl, 85-90.degree., 1 h) of the latter derivs. gave I (R = .alpha.-, .beta.-OH, R1 = H).

IT 13089-45-7

RL: RCT (Reactant); RACT (Reactant or reagent)

(thiophenoxylation of)

Ι

RN 13089-45-7 HCAPLUS

CN Adenosine, 8-bromo-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L33 ANSWER 47 OF 67 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1979:121924 HCAPLUS

DOCUMENT NUMBER:

90:121924

TITLE:

Studies on nucleosides and nucleotides. LXXXI.

Carbon-13 magnetic resonance spectra of 8-substituted purine nucleotides. Effects of various phosphate groups on the chemical shifts and conformation of

nucleotides

AUTHOR(S):

Uesugi, Seiichi; Ikehara, Morio

CORPORATE SOURCE:

Fac. Pharm. Sci., Osaka Univ., Suita, Japan

SOURCE:

Chemical & Pharmaceutical Bulletin (1978), 26(10),

3040-9

CODEN: CPBTAL; ISSN: 0009-2363

DOCUMENT TYPE: LANGUAGE:

Journal English

13C-NMR spectra of 8-substituted purine nucleotides including the 2'-, 3'-, 2',3'-cyclic, 5'- and 3',5'-cyclic phosphates of 8-bromoadenosine and the 5'phosphates of 8-bromoguanosine, 8-methylinosine and 2-methylthio-8-methylinosine. All the 8-substituted nucleotides showed a characteristic upfield shift (-0.9 to -3.7 ppm) of the 2'-C with respect to the corresponding parent nucleotides. These results show that they take a syn conformation in aq. soln. to some extent. It was concluded from consideration of the sugar puckerings in the published PMR data that the 5'-phosphate of 8-bromoadenosine takes a more rigid syn conformation than the 2'-, 3'- and 2', 3'-cyclic phosphates. It is also suggested that 8-bromoadenosine has a flexible glycosidic conformation similar to those for the latter compds. in water while in Me2SO it adopts a more rigid conformation. The 5'-phosphates of the other 8-substituted nucleosides were also assumed to adopt a rigid syn conformation. The influences of various types of phosphate groups on the C chem. shifts are also discussed. Relatively large upfield shifts were obsd. for the C(4') signal of the 8-substituted 5'-nucleotides which has been assumed to be a reflection of a high population of non-gg conformations about the C(4')-C(5') bond.

IT 13089-45-7

RL: PRP (Properties)
 (carbon-13 NMR of)

RN 13089-45-7 HCAPLUS

CN Adenosine, 8-bromo-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L33 ANSWER 48 OF 67 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1978:597854 HCAPLUS

DOCUMENT NUMBER:

89:197854

TITLE:

Conformational analysis of 2',3'-O-isopropylidene

adenosine derivatives by proton NMR

AUTHOR(S):

Gaudemer, Alain; Nief, Francois; Pontikis, Renee;

Zylber, Jean

CORPORATE SOURCE:

Lab. Chim. Coord. Bioorg., Univ. Paris Sud, Orsay, Fr.

SOURCE:

Organic Magnetic Resonance (1977), 10, 135-45

CODEN: ORMRBD; ISSN: 0030-4921

DOCUMENT TYPE:

Journal

LANGUAGE:

French

AB Conformational anal. using 1H NMR is reported for 36 derivs. of 2',3'-O-isopropylideneadenosine with substituents at C-5', C-8, and N-6. Conformational modifications were assigned to specific interactions between the sugar and purine moieties and to solvent effects.

IT 13089-45-7 20789-78-0

RL: PRP (Properties)

(conformation of, NMR study of)

RN 13089-45-7 HCAPLUS

CN Adenosine, 8-bromo-2', 3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

RN 20789-78-0 HCAPLUS

Adenosine, 8-bromo-2',3'-O-(1-methylethylidene)-, 5'-(4-CN methylbenzenesulfonate) (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L33 ANSWER 49 OF 67 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1978:424683 HCAPLUS

DOCUMENT NUMBER:

Convenient synthesis of some purine 8,5'-imino TITLE:

cyclonucleosides

Sasaki, Tadashi; Minamoto, Katsumaro; Itoh, Hidemi AUTHOR(S):

Fac. Eng., Nagoya Univ., Nagoya, Japan CORPORATE SOURCE:

Journal of Organic Chemistry (1978), 43(12), 2320-5 SOURCE:

CODEN: JOCEAH; ISSN: 0022-3263

DOCUMENT TYPE: Journal

LANGUAGE: English GI

- Purine 8,5'-imino and aminimino cyclonucleosides were prepd. from 2',3'-O-isopropylidene-5'-O-tosyl-8-bromoadenosine (I) and anhyd. hydrazine. Treating I with anhyd. hydrazine in EtOH gave 8,5'-aminiminoadenine II (R = NH2)(III), which was oxidized to the corresponding 8,5'-imino cyclonucleoside II (R = H)(IV). The N-amino group in III was quant. protected with hot AcOH and phthalic anhydride to give II (R = AcNH,phthalimido). Acidic treatment of III and IV gave the deblocked parent cyclonucleosides, whereas treating II (R = NH2, AcNH, phthalimido) with nitrous acid gave inosine analogs, e.g. V (R1 = phthalimido)(VI). Dephthaloylation of VI with NH2NH2-MeOH gave V (R1 = NH2) as a 1:1 complex with the released phthalizine-1,4-dione, which was deblocked with 90% CF3CO2H. Treating V (R1 = NH2) or its deblocked analog with MeOH-concd. HCl (3:1) gave VII.
- IT 20789-78-0

RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction of, with hydrazine)

- RN 20789-78-0 HCAPLUS
- CN Adenosine, 8-bromo-2',3'-O-(1-methylethylidene)-, 5'-(4-methylbenzenesulfonate) (9CI) (CA INDEX NAME)

L33 ANSWER 50 OF 67 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1977:90174 HCAPLUS

DOCUMENT NUMBER:

86:90174

TITLE:

Synthesis of 8-carbamoyl- and 8-carboxyadenosine

AUTHOR(S):

3',5'-cyclic phosphates Naka, Takehiko; Honjo, Mikio

CORPORATE SOURCE:

Cent. Res. Div., Takeda Chem. Ind., Ltd., Osaka, Japan

SOURCE:

Chemical & Pharmaceutical Bulletin (1976), 24(9),

2052-6

CODEN: CPBTAL; ISSN: 0009-2363

DOCUMENT TYPE:

LANGUAGE:

Journal English

GI

Reaction of 8-bromo-cAMP (cAMP = adenosine 3',5'-cyclic phosphate) (I) with KCN in hot DMF gave 8-carbamoyl-cAMP (II). II was hydrolyzed with AΒ aq. NaOH to 8-carboxy-cAMP, which was converted to cAMP by heating in Me2SO. A similar reaction of 8-bromo-5'-AMP or 8-bromo-2',3'-O-

isopropylideneadenosine with KCN in DMF yielded 8-bromoadenosine or 8,5'-anhydro-2',3'-O-isopropylidene-8-hydroxyadenosine (III), resp. Treatment of 5'-nucleotides with hot aq. DMF afforded the corresponding nucleosides.

IT 13089-45-7

RL: RCT (Reactant); RACT (Reactant or reagent)

(cyclization of)

RN 13089-45-7 HCAPLUS

CN Adenosine, 8-bromo-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L33 ANSWER 64 OF 67 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1967:403214 HCAPLUS

DOCUMENT NUMBER: 67:3214

TITLE: Studies of nucleosides and nucleotides. XXXII.

Purine cyclonucleosides. 3. Synthesis of 2'-deoxy-

and 3'-deoxyadenosine from adenosine

AUTHOR(S): Ikehara, Morio; Tada, Hiroshi

CORPORATE SOURCE: Fac. Pharm. Sci., Univ. Hokkaido, Hokkaido, Japan

SOURCE: Chemical & Pharmaceutical Bulletin (1967), 15(1),

94-100

CODEN: CPBTAL; ISSN: 0009-2363

DOCUMENT TYPE: Journal LANGUAGE: English

GI For diagram(s), see printed CA Issue.

AB cf. CA 63: 2030b: 64: 17700e. A mixt. of 2

cf. CA 63: 2030b; 64: 17700e. A mixt. of 2 g. 2',3'-O-isopropylideneadenosine and 2.2 g. N-bromoacetamide in 20 ml. dry CHCl3 was refluxed 5 hrs., the solvent was removed, and the residue was taken up in 50 ml. EtOAc, washed with 10% NaHSO4, NaHCO3, and water, dried, and distd. to give 1.2 g. 8-bromo-2',3'-O-isopropylideneadenosine (I), m. 215-17.degree. (EtOH). I (1.38 g.) was acetylated with 6 ml. Ac2O in 35 ml. pyridine at room temp. overnight, 20 ml. EtOH was added, and the mixt. was kept at room temp. 2 hrs. to give 1.01 g. 5'-O-acetyl-8-bromo-2',3'-O-isopropylideneadenosine (II), m. 158-60.degree. (EtOH). A mixt. of 4 g. 5'-O-acetyl-2',3'-O-isopropylideneadenosine and 5 g. N-bromoacetamide in 50 ml. CHCl3 was refluxed 6 hrs. and worked up as above to give 3 g. II, m. 155-6.degree. (EtOH). A soln. of 1 g. II in 30 ml. 98% HCO2H was kept at room temp. 20 hrs. under dry conditions, 20 ml. EtOH was added, and the solvent was distd. in vacuo to give 600 mg. 5'-O-acetyl-8-bromoadenosine (III). III (998 mg.) was dried by azeotropic distn. with dry pyridine,

and then in 60 ml. dry pyridine, 499 mg. p-MeC6H4SO2Cl was added with ice cooling, and the stoppered mixt. was refrigerated 60 hrs., worked up dissolved in 20 ml. MeOH satd. with NH3 at 0.degree., and refrigerated for 21 hrs. to give 155 mg. 8-bromo-2'-O-p-tolylsulfonyladenosine (IV), m. 220-3.degree. (decomp.) (50% iso-PrOH). The residue from the mother liquor was recrystd. from 50% iso-PrOH to give a p-tolylsulfonylated mixt. contg. needles, m. 176-7.degree. and granulous crystals, m. 213.degree. (decomp.). A mixt. of 510 mg. IV in 60 ml. BuOH was refluxed with 81.5 mg. thiourea 2 hrs., the solvent was evapd. in vacuo, and the residue in 10 ml. EtOH was chromatographed on 70 g. cellulose powder and eluted with 100 parts BuOH satd. with water and 1 part concd. NH3. Fractions of 10 ml. each were collected. Fractions 11-18 were evapd. to give 167 mg. 8,2'-anhydro-9-.beta.-D-arabinofuranosyl-8-mercaptoadenine (V), m. 191-4.degree. (water), [.alpha.]23.5D -187.2.degree. (c 1.0, H2O). p-tolylsulfonylated mixt. above (1.67 g.) was refluxed with 277 mg. thiourea in 100 ml. BuOH 2 hrs., the solvent was evapd. in vacuo, and the residue in 10 ml. EtOH was chromatographed on 120 g. cellulose powder and eluted as above. Fractions 12-23 were evapd. to give 8,2'-anhydro-8mercapto-(3-O-p-tolylsulfonyl-9-.beta.-D-arabinofuranosyl)adenine (VI), m. 196-7.degree. (2:1 EtOH-water), [.alpha.]23D -70.8.degree. (c 0.5, pyridine). Fractions 28-30 were evapd. to give 8,3'-anhydro-8-mercapto-9-.beta.-D-xylofuranosyladenine (VII), colors at 231-2.degree., decompd. at 250.degree. Fractions 31-4 gave 110 mg. V and a minor component presumably 8-mercapto-2'(or 3')-O-p-tolylsulfonyladenosine. V (210 mg.) was refluxed in 20 ml. water with 1.5 g. Raney Ni 6 hrs., the mixt. was filtered, and the filtrate and washings were evapd. in vacuo to give 2'-deoxyadenosine, m. 187-8.degree.. VII (10 mg.) was refluxed in 10 ml. H2O with Raney Ni for 1 hr. to give 3'-deoxyadenosine (cordycepin). VI (67 mg.) was refluxed in 14 ml. PrOH and 7 ml. water with 500 mg. Raney Ni for 5.5 hrs., the mixt. was filtered, and the filtrate was evapd. in vacuo to give 3'-0-p-tolylsulfonyl-2'-deoxyadenosine, m. 156-70.degree..

IT 13089-45-7P 13089-46-8P

RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepn. of)

RN 13089-45-7 HCAPLUS

CN Adenosine, 8-bromo-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 13089-46-8 HCAPLUS

Absolute stereochemistry.

L33 ANSWER 65 OF 67 HCAPLUS COPYRIGHT 2003 ACS

1967:85984 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 66:85984

Bromination of adenosine nucleosides and nucleotides. TITLE:

AUTHOR(S): Ikehara, Morio; Uesugi, Seiichi; Kaneko, Masakatsu

Hokkaido Univ., Sapporo, Japan CORPORATE SOURCE:

Chemical Communications (London) (1967), (1), 17-18 SOURCE:

CODEN: CCOMA8; ISSN: 0009-241X

DOCUMENT TYPE: Journal English LANGUAGE:

A soln. of di-Na adenosine 5'-monophosphate in 0.1N NaOH treated very slowly with 1 mole Br in H2O at room temp., the mixt. kept 7 hrs., adsorbed on a Dowex 1 column (HCO2- form), and eluted with 0.1N HCO2H gave 81% di-Na 8-bromoadenosine 5'-monophosphate. Under similar conditions 100% 8-bromoadenine and 66% 8-bromo-2'-deoxyadenine were obtained from, resp., adenine and 2'-deoxyadenine. 2',3'-O-Isopropylideneadenosine (1 millimole) dissolved in 15 ml. dioxane and 15 ml. 10% Na2HPO4, treated with 1.5 equiv. Br, the mixt. agitated 5 hrs. at room temp., kept overnight, and extd. with CHCl3 gave 80% 8-bromo-2',3'-Oisopropylideneadenosine, m. 224-5.degree..

IT 13089-45-7P

RL: SPN (Synthetic preparation); PREP (Preparation)

(prepn. of)

13089-45-7 HCAPLUS RN

Adenosine, 8-bromo-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME) CN

HCAPLUS COPYRIGHT 2003 ACS L33 ANSWER 66 OF 67

ACCESSION NUMBER:

1966:465763 HCAPLUS

DOCUMENT NUMBER:

65:65763

ORIGINAL REFERENCE NO.: TITLE:

65:12275g-h,12276a

Synthesis of purine cyclonucleoside having an

8,2'-O-anhydro linkage

AUTHOR(S):

Ikehara, Morio; Tada, Hiroshi; Muneyama, Kei; Kaneko,

Masakatsu

CORPORATE SOURCE:

Hokkaido Univ., Sapporo, Japan

SOURCE:

J. Am. Chem. Soc. (1966), 88(13), 3165-7

CODEN: JACSAT; ISSN: 0002-7863

DOCUMENT TYPE:

Journal English

LANGUAGE:

For diagram(s), see printed CA Issue.

The synthesis of the 1st purine cydonucleoside I having an O-anhydro AΒ linkage was reported (CA 62, 13220d). The prepn. involved bromination of 2',3'-O-isopropylideneadenosine to its 8-bromo deriv. (II), acetylation of II to 5'-O-acetyl-8-bromo-2',3'-O-isopropylideneadenosine (III), hydrolysis of III with HCO2H to 5'-O-acetyl-8-bromoadenosine (IV), and p-toluenesulfonation of IV followed by deacetylation, debromination, and desulfonation (use of BzONa in HCONMe2 2 hrs. at 100-5.degree.) to give I, [.alpha.]19D -121.6.degree. (c 0.75, pyridine), which was purified by column chromatography on cellulose. Refluxing I 2 hrs. in 0.1N H2SO4 afforded 9-glycosyl-8-hydroxyadenine and 8-hydroxyadenine, and I treated with BzONa in HCONMe2 in the presence of BzOH gave 9-(2-0 benzoyl-.beta.-D-ribofuranosyl)-8-hydroxyadenine.

IT

13089-45-7, Adenosine, 8-bromo-2',3'-O-isopropylidene-13089-46-8, Adenosine, 8-bromo-2',3'-O-isopropylidene-, 5'-acetate

(prepn. of)

13089-45-7 HCAPLUS RN

CN Adenosine, 8-bromo-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

13089-46-8 HCAPLUS RN

CN Adenosine, 8-bromo-2',3'-O-isopropylidene-, 5'-acetate (7CI, 8CI) (CA INDEX NAME)

Absolute stereochemistry.

L33 ANSWER 67 OF 67 HCAPLUS COPYRIGHT 2003 ACS

1962:60818 HCAPLUS ACCESSION NUMBER:

56:60818 DOCUMENT NUMBER: ORIGINAL REFERENCE NO.: 56:11692d-q

Nucleosides and nucleotides. VI. Synthesis of TITLE:

9-(5'-deoxy-5'-iodo-.beta.-D-ribofuranosyl)-2,8-

dichloroadenine AUTHOR(S): Kanazawa, Teiichi

CORPORATE SOURCE: Tokyo Inst. Technol.

Nippon Kagaku Zasshi (1960), 81, 1299-302 SOURCE:

DOCUMENT TYPE: LANGUAGE: Unavailable

9-(2',3'-0-Isopropylidene-.beta.-D-ribofuranosyl)-2,8-dichloroadenine (I) (1.45 g.), prepd. by acetonyzing of 2,8-dichloroadenosine, kept with p-toluenesulfonyl chloride in pyridine 1 day gave 1.3 g. 9-(2,3-0-isopropylidene-5-0-p-tolylsulfonyl-.beta.-D-ribofuranosyl)-2,8dichloroadenine (II) (amorphous). II (1.3 g.) heated with NaI in Me2CO in

a sealed tube 1.5 hrs. gave 0.77 g. 9-(2,3-0-isopropylidene-5-deoxy-5-iodo-.beta.-D-ribofuranosyl)-2,8-dichloroadenine (III), m. 172.degree.

[.alpha.]25D -23.1.degree. (c 2.25, dioxane), .lambda. 267 m.mu.,

.epsilon. 12,200. III hydrolyzed with HNO3 in dioxane 32 hrs. at 10.degree. thereafter 8 hrs. at 20.degree. gave 85% 9-(5-deoxy-5-iodo-.beta.-D-ribofuranosyl)-2,8-dichloroadenine (IV), m. 175.degree. (decompn.). An EtOH soln. of 13.5 g. HgCl2 was added to a 0.1N NaOH soln. of 10.2 g. 2,8-dichloroadenine (V) contg. Celite, and resulting V HgCl2 salt (VI) with Celite carrier was filtered off and washed. VI treated with 2,3-di-O-acetyl-5-deoxy-5-iodo-D-ribofuranosyl chloride (VII), prepd. from 7.7 g. 1,2,3-tri-O-acetyl-5-deoxy-5-iodo-.beta.-D-ribofuranose (VIII), gave 10 g. 9-(2,3-O-acetyl-5-deoxy-5-iodo-.beta.-D-ribofuranosyl)-2,8-dichloroadenine (IX), m. 183-5.degree.. V (1 g.) reduced with NH3 24 hrs. at 0.degree. in MeOH gave 0.8 g. IV. VII, prepd. from 5 g. VIII, boiled with 8.8 g. VI in xylene and the resulting sirup chromatographed gave 0.8 g. IX and 0.15 g. [2,3-di-O-acetyl-5-deoxy-5-(2,8-dichloroadenyl)-D-ribofuranosyl]-2,8-dichloroadenine (X).

RN 96535-65-8 HCAPLUS

CN Adenosine, 2,8-dichloro-2',3'-O-isopropylidene- (7CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 96984-02-0 HCAPLUS

CN Adenosine, 2,8-dichloro-5'-deoxy-5'-iodo-2',3'-O-isopropylidene- (7CI) (CA INDEX NAME)

$$\begin{array}{c|c} Me & O & R & R & N & C1 \\ \hline Me & O & R & R & N & C1 \\ \hline Me & O & R & R & N & N & C1 \\ \hline Me & O & N & N & N & N & C1 \\ \hline Me & O & N & N & N & N & N & N \\ \hline Me & O & N & N & N & N & N & N \\ \hline Me & O & N & N & N & N & N & N \\ \hline Me & O & N & N & N & N & N & N \\ \hline Me & O & N & N & N & N & N & N \\ \hline Me & O & N & N & N & N & N & N \\ \hline Me & O & N & N & N & N & N & N \\ \hline Me & O & N & N & N & N & N & N \\ \hline Me & O & N & N & N & N & N & N \\ \hline Me & O & N & N & N & N & N & N \\ \hline Me & O & N & N & N & N & N & N \\ \hline Me & O & N & N & N & N & N & N \\ \hline Me & O & N & N & N & N & N & N \\ \hline Me & O & N & N & N & N & N \\ \hline Me & O & N & N & N & N & N \\ \hline Me & O & N & N & N & N & N \\ \hline Me & O & N & N & N & N & N \\ \hline Me & O & N & N & N & N & N \\ \hline Me & O & N & N & N & N & N \\ \hline Me & O & N & N & N & N \\ \hline Me & O & N & N & N & N \\ \hline Me & O & N & N & N & N \\ \hline Me & O & N & N & N & N \\ \hline Me & O & N & N & N & N \\ \hline Me & O & N & N & N \\ \hline Me & O & N & N & N & N \\ \hline Me & O & N & N & N & N \\ \hline Me & O & N & N & N \\ \hline Me & O & N & N & N \\ \hline Me & O & N & N & N \\ \hline Me & O & N & N & N \\ \hline Me & O & N & N & N \\ \hline Me & O & N & N & N \\ \hline Me & O & N & N & N \\ \hline Me & O & N & N & N \\ \hline Me & O & N & N & N \\ \hline Me & O & N & N & N \\ \hline Me & O & N & N & N \\ \hline Me & O & N & N & N \\ \hline Me & O & N & N & N \\ \hline Me & O & N & N & N \\ \hline Me & O & N & N & N \\ \hline Me & O & N & N & N \\ \hline Me & O & N & N & N \\ \hline Me & O & N & N & N \\ \hline Me & O & N & N \\ \hline Me & O & N & N & N \\ \hline Me & O & N & N \\ \hline Me & O & N & N \\ \hline Me & O & N & N \\ \hline Me & O & N & N \\ \hline Me & O & N & N \\ \hline Me & O & N & N \\ \hline Me & O & N & N \\ \hline Me & O & N & N \\ \hline Me & O & N & N \\ \hline Me & O & N & N \\ \hline Me & O & N & N \\ \hline Me & O & N & N \\ \hline Me & O & N & N \\ \hline Me & O & N & N \\ \hline Me & O & N \\ \hline Me & O & N & N \\ \hline Me & O & N \\ \hline Me & O & N & N \\ \hline Me & O & N \\ \hline Me &$$

NODE ATTRIBUTES:

NSPEC IS RC AT 18
DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 18

STEREO ATTRIBUTES: NONE

L2 3214 SEA FILE=REGISTRY SSS FUL L1 L14 STR

NODE ATTRIBUTES:

NSPEC IS RC AT 18
CONNECT IS E3 RC AT 5
CONNECT IS E2 RC AT 19
DEFAULT MLEVEL IS ATOM
GGCAT IS LOC AT 19
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 20

STEREO ATTRIBUTES: NONE

L15 556 SEA FILE=REGISTRY SUB=L2 SSS FUL L14
L34 824 SEA FILE=HCAPLUS ABB=ON PLU=ON L15

only a few Refs priAted.

=> d ibib abs hitstr 134 1-3 400-402 821-824

L34 ANSWER 1 OF 824 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

2002:831353 HCAPLUS

DOCUMENT NUMBER:

CORPORATE SOURCE:

138:73419

TITLE:

Gel formation properties of a uracil-appended

cholesterol gelator and cooperative effects of the

complementary nucleobases

AUTHOR(S):

Snip, Erwin; Koumoto, Kazuya; Shinkai, Seiji Chemotransfiguration Project, Japan Science and Technology Corporation (JST), Kurume, Fukuoka,

839-0861, Japan

SOURCE:

Tetrahedron (2002), 58(43), 8863-8873

CODEN: TETRAB; ISSN: 0040-4020

PUBLISHER:

Elsevier Science Ltd.

DOCUMENT TYPE:

LANGUAGE: E

Journal English

GT

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

The authors designed and synthesized a uracil-appended cholesterol gelator AB I in order to control the gel stability and the gel morphol. by addn. of the complementary and non-complementary nucleobase derivs. Compd. I forms columnar stacks in cyclohexane due to the van der Waals interaction (cholesterol-cholesterol interaction) and the intergelator hydrogen bonding between uracil moieties. Addn. of a 'monomeric' adenosine, II, into the gel only decreases the stability with increasing the concn. destabilization is ascribed to a lack of intergelator hydrogen bonding accompanied with forming the complementary base pairs between I and II. In contrast, addn. of an adenine-appended cholesterol induces a different behavior; with increasing concn. the mixed gel is initially stabilized and then destabilized, giving rise to a max. at the ratio of I/adenine-appended cholesterol = 1:1 for the Tgel plot. One may consider, therefore, that when the additive has a common, column-forming cholesterol moiety, the cholesterol-cholesterol interaction can operate cooperatively with the complementary base pairing. In addn., the gel fiber structure is clearly changed by the addn. of the adenine-appended cholesterol. Taking the fact that there is no report for such an additive effect inducing a structural change with maintaining the gel stability into consideration, the authors' attempt at combining cholesterol columnar stacks with the nucleobase additives provides a new methodol. to control the stability and the morphol. of organogels.

IT 362-75-4, 2',3'-O-Isopropylidene adenosine
RL: RCT (Reactant); RACT (Reactant or reagent)

(prepn. of uracil-appended cholesterol gelator and effects on gel stability and morphol. using complementary and non-complementary nucleobases)

RN 362-75-4 HCAPLUS

CN Adenosine, 2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

REFERENCE COUNT: 42 THERE ARE 42 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L34. ANSWER 2 OF 824 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 2002:816750 HCAPLUS

DOCUMENT NUMBER: 138:39493

TITLE: Adenosine 5'-O-(1-Boranotriphosphate) Derivatives as

Novel P2Y1 Receptor Agonists

AUTHOR(S): Nahum, Victoria; Zuendorf, Gregor; Levesque, Sebastien

A.; Beaudoin, Adrien R.; Reiser, Georg; Fischer, Bilha

CORPORATE SOURCE: Department of Chemistry Gonda-Goldschmied Medical

Research Center, Bar-Ilan University, Ramat-Gan,

52900, Israel

SOURCE: Journal of Medicinal Chemistry (2002), 45(24),

5384-5396

CODEN: JMCMAR; ISSN: 0022-2623

PUBLISHER: American Chemical Society

DOCUMENT TYPE: Journal LANGUAGE: English

OTHER SOURCE(S): CASREACT 138:39493

AB P2-receptors (P2-Rs) represent important targets for novel drug development. Most ATP analogs proposed as potential drug candidates have short-comings such as limited receptor-selectivity and limited stability that justify the search for new P2-R agonists. Therefore, a novel series of nucleotides based on the adenosine 5'-O-(1-boranotriphosphate) (ATP-.alpha.-B) scaffold was developed and tested as P2Y1-R agonists. An efficient four-step one-pot synthesis of several ATP-.alpha.-B analogs from the corresponding nucleosides was developed, as well as a facile method for the sepn. of the diastereoisomers (A and B isomers) of the chiral products. The potency of the new analogs as P2Y1-R agonists was evaluated by the agonist-induced Ca2+ release of HEK 293 cells stably transfected with rat-brain P2Y1-R. ATP-.alpha.-B A isomer was equipotent with ATP (EC50 = 2 .times. 10-7 M). However, 2-MeS- and 2-C1-substitutions on ATP-.alpha.-B (A isomer) increased the potency of the agonist up to 100-fold, with EC50 values of 4.5 .times. 10-9 and 3.6 .times. 10-9 M, compared to that of the ATP-.alpha.-B (A isomer).

Diastereoisomers A of all ATP-.alpha.-B analogs were more potent in inducing Ca2+ release than the corresponding B counterparts, with a 20-fold difference for 2-MeS-ATP-.alpha.-B analogs. The chem. stability of the new P2Y1-R agonists was evaluated by 31P NMR under physiol. and gastric-juice pH values at 37 .degree.C, with rates of hydrolysis of 2-MeS-ATP-.alpha.-B of 1.38 .times. 10-7 s-1 (t1/2 of 1395 h) and 3.24 .times. 10-5 s-1 (t1/2 = 5.9 h), resp. The enzymic stability of the new analogs toward spleen NTPDase was evaluated. Most of the new analogs were poor substrates for the NTPDase, with ATP-.alpha.-B (A isomer) hydrolysis being 5% of the hydrolysis rate of ATP. Diastereoisomers A and B exhibited different stability, with A isomers being significantly more stable, up to 9-fold. Furthermore, A isomers that are potent P2Y1-R agonists barely interact with NTPDase, thus exhibiting protein selectivity. Therefore, on the basis of our findings, the new, highly water-sol., P2Y1-R agonists may be considered as potentially promising drug candidates.

IT 16658-10-9P 478702-40-8P 478702-41-9P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. of adenosine boranotriphosphate derivs. as novel P2Y1 receptor agonists)

RN 16658-10-9 HCAPLUS

CN Adenosine, 2',3'-O-(methoxymethylene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 478702-40-8 HCAPLUS

CN Adenosine, 2',3'-O-(methoxymethylene)-2-(methylthio)- (9CI) (CA INDEX NAME)

RN 478702-41-9 HCAPLUS

CN Adenosine, 2-chloro-2',3'-O-(methoxymethylene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

REFERENCE COUNT:

57 THERE ARE 57 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L34 ANSWER 3 OF 824 HCAPLUS COPYRIGHT 2003 ACS ACCESSION NUMBER: 2002:789678 HCAPLUS

DOCUMENT NUMBER:

138:24909

TITLE:

Synthesis and Evaluation of Analogs of 5'-([(Z)-4-Amino-2-butenyl]methylamino)-5'-

deoxyadenosine as Inhibitors of Tumor Cell Growth,

Trypanosomal Growth, and HIV-1 Infectivity

AUTHOR(S):

Marasco, Canio J., Jr.; Kramer, Debora L.; Miller, John; Porter, Carl W.; Bacchi, Cyrus J.; Rattendi, Donna; Kucera, Louis; Iyer, Nathan; Bernacki, Ralph;

Pera, Paula; Sufrin, Janice R.

CORPORATE SOURCE:

Grace Cancer Drug Center, Department of Pharmacology

and Therapeutics, Roswell Park Cancer Institute,

Buffalo, NY, 14263, USA

SOURCE:

Journal of Medicinal Chemistry (2002), 45(23),

5112-5122

CODEN: JMCMAR; ISSN: 0022-2623

PUBLISHER:

American Chemical Society

DOCUMENT TYPE:

Journal

LANGUAGE: English

OTHER SOURCE(S): CASREACT 138:24909

AB A well-defined series of 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'deoxyadenosine analogs was designed and synthesized in order to further
ascertain the optimal structural requirements for S-adenosylmethionine
decarboxylase inhibition and potentially to augment and perhaps sep. their
antiproliferative and antitrypanosomal activities. Most structural
modifications had a deleterious affect on both the antitrypanosomal and
antineoplastic activity of 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'deoxyadenosine. However, di-O-acetylation of the parent compd. produced a
potential prodrug that caused markedly pronounced inhibition of
trypanosomal and neoplastic cell growth and viability. Moreover, the
acetylated deriv. of 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'deoxyadenosine did inhibit HIV-1 growth and infectivity, whereas the
parent compd. did not.

IT 362-75-4

RL: RCT (Reactant); RACT (Reactant or reagent)
(synthesis and evaluation of analogs of aminobutenylmethylaminodeoxyade
nosine as inhibitors of tumor cell growth trypanosomal growth and HIV
infectivity)

RN 362-75-4 HCAPLUS

CN Adenosine, 2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 30685-38-2P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(synthesis and evaluation of analogs of aminobutenylmethylaminodeoxyade nosine as inhibitors of tumor cell growth trypanosomal growth and HIV infectivity)

RN 30685-38-2 HCAPLUS

CN Adenosine, 2-amino-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

REFERENCE COUNT:

27 THERE ARE 27 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L34 ANSWER 400 OF 824 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1985:95990 HCAPLUS

DOCUMENT NUMBER:

102:95990

TITLE:

Synthesis of adenosine 8-sulfonic acid and some of its

derivatives

AUTHOR(S):

Zavgorodnii, S. G.; Tsilevich, T. L.; Florent'ev, V.

L.

CORPORATE SOURCE:

SOURCE:

Inst. Mol. Biol., Moscow, USSR

Bioorganicheskaya Khimiya (1984), 10(10), 1371-5

CODEN: BIKHD7; ISSN: 0132-3423

DOCUMENT TYPE:

LANGUAGE:

Journal Russian

GI

I

AB Adenosinesulfonic acids I [R = H, R1 = R2 = 4-MeOC6H4CH2; R-R2 = H; R = P(O)(OH)2, R1 = R2 = H; R = R2 = H, R1 = P(O)(OH)2; R = R1 = H, R2 = P(O)(OH)2; RR1 = P(O)(OH), R2 = H] were prepd. by treatment of the corresponding C-8 bromo derivs. with Na2SO3. I [R = O(H)2P(O)OP(O)(OH)OP(O)(OH), O(H) = R2 = H; O(H) = R1, O(H) = R1 were also prepd., and I possessed syn conformations in soln.

IT 94834-94-3P

RN 94834-94-3 HCAPLUS

CN 9H-Purine-8-sulfonic acid, 6-amino-9-[2,3-0-[(4-methoxyphenyl)methylene]-.beta.-D-ribofuranosyl]-, monosodium salt (9CI) (CA INDEX NAME)

Absolute stereochemistry.

Na

IT 92890-90-9

RL: RCT (Reactant); RACT (Reactant or reagent)
 (substitution reaction of, with sodium sulfite, sulfonic acid derivs.
 from)

RN 92890-90-9 HCAPLUS

CN Adenosine, 8-bromo-2',3'-0-[(4-methoxyphenyl)methylene]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L34 ANSWER 401 OF 824 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1985:95979 HCAPLUS

DOCUMENT NUMBER:

102:95979

TITLE:

Studies on chemical synthesis of antimetabolites. 33.

Studies directed toward the total synthesis of

sinefungin. I. Synthesis of 4-(5'-deoxyuridin-5'-yl)-

4-nitrobutyronitrile, 4-(5'-deoxyadenosin-5'-yl)-4-

nitrobutyramide and closely related nucleosides Mizuno, Yoshihisa; Tsuchida, Kiyomi; Tampo, Hajime Fac. Pharm. Sci., Hokkaido Univ., Sapporo, 060, Japan

Chemical & Pharmaceutical Bulletin (1984), 32(8),

2915-24

CODEN: CPBTAL; ISSN: 0009-2363

DOCUMENT TYPE: Journal LANGUAGE: English

The synthesis of 1-(5,6-dideoxy-6-nitro-.beta.-D-ribo-AΒ

hexofuranosyl)uracil, 9-(5,6-dideoxy-6-nitro-.beta.-D-ribo-

hexofuranosyl)adenine, 4-(5'-deoxyuridin-5'-yl)-4-nitrobutyronitrile and

4-(5'-deoxyadenosin-5'-yl)-4-nitrobutyramide from 2',3'-0-

isopropylideneuridine-5'-aldehyde (I) was achieved by aldol condensation with MeNO2 or O2N(CH2)3CO2Me, Michael reaction of I with CH2:CHCN or CH2:CHCO2Me, and conversion of the uracil nucleoside into the adenine nucleoside by transglycosylation. The chem. developed for the prepn. of these compds. should be useful in the total synthesis of the nucleoside antibiotics sinefungin and A9145C, which are potent inhibitors of certain

S-adenosylmethionine-dependent methyltransferases.

IT 362-75-4

AUTHOR(S):

SOURCE:

CORPORATE SOURCE:

RL: RCT (Reactant); RACT (Reactant or reagent) (oxidn. and condensation of, with nitromethane)

362-75-4 HCAPLUS RN

Adenosine, 2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L34 ANSWER 402 OF 824 HCAPLUS COPYRIGHT 2003 ACS

1985:46215 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 102:46215

Cyclonucleoside formation and ring cleavage in the TITLE:

reaction of 2',3'-O-isopropylideneadenosine with benzoyl chloride and its substituted derivatives

Anzai, Kentaro; Uzawa, Jun AUTHOR(S):

Inst. Phys. Chem. Res., Wako, 351, Japan CORPORATE SOURCE:

Journal of Organic Chemistry (1984), 49(26), 5076-80 SOURCE:

CODEN: JOCEAH; ISSN: 0022-3263

DOCUMENT TYPE: Journal LANGUAGE: English

OTHER SOURCE(S): CASREACT 102:46215

AB Reaction conditions suitable for the formation of 8,5'-O-cycloadenosine derivs. in the reaction of isopropylideneadenosine I (R1 = R2 = R3 = H)(II) BzCl and substituted benzoyl chlorides were investigated. Thus, reaction of II with p-toluoyl chloride in a CH2Cl2-Et3N mixt. afforded 8,5'-O-cyclonucleosides III (R1 = R2 = R3 = p-MeC6H4CO) (34%) and III (R1 = H, R2 = R3 = p-MeC6H4CO) (11%), a noncyclized acylate I (R1 = R2 = R3 = p-MeC6H4CO) (30%), and a ring-cleaved imidazole compd. (12%). The structures of these compds. were detd. by 13C NMR.

IT 93135-59-2P

RN 93135-59-2 HCAPLUS

CN Adenosine, N-(aminocarbonyl)-2',3'-0-(1-methylethylidene)- (9CI) (CA INDEX NAME)

IT 362-75-4

RL: RCT (Reactant); RACT (Reactant or reagent) (reaction of, with benzoyl chlorides, cyclization in)

RN 362-75-4 HCAPLUS

CN Adenosine, 2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L34 ANSWER 821 OF 824 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1961:93506 HCAPLUS

DOCUMENT NUMBER: 55:93506
ORIGINAL REFERENCE NO.: 55:17640c-f

TITLE: Synthesis of nucleotide coenzymes and related

compounds

AUTHOR(S): Shabarova, Z. A.; Ryabova, T, S.; Prokof'ev, M. A.

CORPORATE SOURCE: M. V. Lomonosov State Univ., Moscow

SOURCE: Doklady Akad. Nauk S.S.S.R. (1961), 136, 1116-19

DOCUMENT TYPE: Journal LANGUAGE: Unavailable

cf. CA 54, 11040h; Moffatt and Kharana, CA 53, 5274b. Me ester of N-(2',3'-isopropylideneadenosine-5'-benzylphos phoro)phenylalanine hydrogenated in EtOH in the presence of Et3N over Pd black gave 70% corresponding phosphate, isolated as the Et3N salt (I), m. 92-4.degree. (decompn.), Rf 0.47 in satd. aq. BuOH. Stirring Ba ribose 5-phosphate with ion exchange resin KU-2 (H-form) in H2O gave after neutralization with Bu3N, tributylammonium ribose 5-phosphate (II); similarly were prepd. tributylammonium glucose 6-phosphate (IIA) and tributylamine salts of H3PO4 and H4P2O7. I treated with HCl in dioxane, the mixt. filtered, treated with a pyridine soln. of II, kept 3 days at room temp., and chromatographed in 96% EtOH-0.5M NH40Ac gave spots, of which one was caused by 2',3'-isopropylideneadenosine 5'-diphosphoribose (III), while the 2nd spot was of lower Rf. This was eluted and refluxed briefly with 0.01N HCl and again chromatographed, showing spots indicative of adenosine, ribose, adenosine diphosphate, and adenosine 5'-phosphate. Yield of III was estd. at 25%. I similarly treated with IIA 3 days gave 37% (estd.) 2',3'-isopropylideneadenosine 5'-diphosphoglucose (Rf 0.47 in 96% EtOH-0.5M NH4OAc), along with the adenosine 5'-monophosphate. Similarly, I and Bu3N phosphate or pyrophosphate gave 27-39% isopropylideneadenosine di- and triphosphates, detected electrophoretically.

RN 362-75-4 HCAPLUS

CN Adenosine, 2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L34 ANSWER 822 OF 824 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1961:93503 HCAPLUS

DOCUMENT NUMBER: 55:93503

ORIGINAL REFERENCE NO.: 55:17637i,17638a-i,17639a-d

TITLE: High-energy phosphates. X. The preparation of

triesters of pyrophosphoric acid and their use in the

synthesis of nucleotide derivatives

AUTHOR(S): Synthesis of nucleotide derivatives

Cramer, Friedrich; Wittmann, Rolf

CORPORATE SOURCE: Univ. Heidelberg, Germany SOURCE: Chem. Ber. (1961), 94, 328-37

DOCUMENT TYPE: Journal LANGUAGE: Unavailable

AΒ Triesters of pyrophosphoric acid, obtainable from (EtO)2P(O)OC(OEt):CHCO2Et (I) and monoesters of H3PO4, react with amines, alcs., and acid anions with the transfer of the monoester moiety. P1-(15-Adenosyl) P2-diethyl pyrophosphate (II) behaved as an activated adenosinephosphoric acid and transferred the nucleotide residue to bases, alcs., and acids. PhOP(O)(OH)2 (III) (0.348 g.) and 1.48 g. I in 10 cc. Et20 kept 1 hr. at 20.degree., treated with 5 cc. CHCl3 and 3 cc. cyclohexylamine, filtered after 24 hrs. from 0.087 g. bis(cyclohexylammonium) salt of [(PhO)P(O)(OH)]20, concd. to 5 cc., and treated with petr. ether gave 0.518 g. cyclohexylamine salt (IV) of the cyclohexylamide of III, m. 192-3.degree. (CHCl3-petr. ether). III treated in the usual manner with I, the resulting triester treated after 1 hr. with cooling with dry NH3, and filtered, the residue washed with dry Et20 and dissolved in MeOH, and the soln. treated with a small amt. of cyclohexylamine, filtered, concd., treated with C, and dild. with Et20 yielded 0.296 g. cyclohexylamine sallt (V) of the amine of III, m. 220-7.degree. (with sintering at 179-84.degree.) resolidifying and remelting at 237-40.degree.. Similar results were obtained with PhNH2 and p-02NC6H4NH2. II (0.348 g.) and 1.48 g. I in 10 cc. Et20 kept 1 hr. at 20.degree., treated with 3 cc. PhCH2OH and 5 cc. C5H5N, dild. after 48 hrs. with dil. NH4OH and extd. with Et2O, the ext. reextd. with NH4OH, the aq. phase treated with 2 cc. cyclohexylamine, concd. at 45.degree. with occasional removal of the ppt. by filtration, the resulting sirup dissolved in 50 cc. CHCl3, the soln. washed with H2O, combined with the original filter residue, dissolved in Me2CO, and dild. with petr. ether yielded 0.562 g. cyclohexylamine salt of PhCH2O(PhO)P(O)OH, m. 147-9.degree. (repptd. from CHCl3-Me2CO with petr. ether). The triester

fron III and I treated 48 hrs. at 50.degree. with 0.74 g. BuOH in 4 cc. C5H5N, concd., treated with 2 cc. cyclohexylamine and 30 cc. H2O, and worked up yielded 0.509 g. cyclohexylamine salt of PhO(BuO)P(O)OH (VI), m. 110-11.degree. (Me2CO-CHCl3-petr. ether). Similar results were obtained with iso-PrOH and p-O2NC6H4CH2OH. III (0.348 g.) in 10 cc. dry Et2O treated with 1.480 g. I and after 1 hr. at 20.degree. with 0.10 g. isopropylidenadenosine (from adenosine and Me2CO with ZnCl2), kept 48 hrs. at 20.degree. and 6 hrs. at 40.degree., concd. in vacuo at 45.degree., dissolved in a little dil. NH4OH, washed with Et2O, treated with 1 cc. cyclohexylamine, concd. in vacuo at 40.degree., dissolved in Me2CO, filtered, treated with 20 cc. H2O, washed with CHCl3, and evapd. in vacuo, and the residue repptd. several times from Me2CO with petr. ether yielded 0.096 g. Ph isopropylideneadenosine-5'-phosphate (VII), m. 210-12.degree.. Anhyd. H3PO4 (0.196 g.), 0.404 g. Et3N, 5 cc. PhCH2OH, and 1.48 g. I kept 48 hrs. at 40.degree., dild. with 20 cc. Et2O and extd. with dil. NH4OH, and ext. passed through a column of Amberlite IR-120 in NH4OH, the eluate evapd., the residue extd. with 98% EtOH, the ext. concd. and dild. with Me2CO, the ppt. dissolved in 3N H2SO4 and extd. with Et2O, and the ext. treated with excess cyclohexylamine gave 0.352 g. salt of PhCH2OP(O)(OH)2, m. 232-5.degree.. Anhyd. H3PO4 (0.196 g.) in 10 cc. PhCH2OH and 2.96 g. I kept 72 hrs. at 40.degree., dild. with 20 cc. Et20 and extd. with dil. NH4OH, and the ext. treated with cooling with 3N H2SO4 yielded 0.268 g. (PhO)2P(O)OH, m. 78.degree.. III (0.348 g.) in 2 cc. C5H5N and 0.74 g. I kept 48 hrs. at 40.degree., dild. with 50 cc. H2O, and treated with 2 cc. cyclohexylamine gave 0.38 g. bis(cyclohexylamine) salt (VIII) of [(PhO)(HO)P(O)]20, m. 255-8.degree. (cor.) (H2O). Similarly were prepd. the bis(cyclohexylamine) salt (IX) of [(p-ClC6H4O)(HO)P(O)]2O, m. 276-9.degree. (cor.), and the bis(cyclohexylamine) salt (X) of [(p-MeC6H4O)(HO)P(O)]2O, m. 270-3.degree. (cor.), in 73.8 and 78.4% yield, resp. The triester from III and I treated after 1 hr. with 50 cc. Et20 and with cooling with 0.428 g. 2,6-lutidine, the Et2O phase decanted after 10 min., the residue washed with cold Et2O, treated with 0.832 g. p-ClC6H4OP(O)(OH)2 in 5 cc. C5H5N, kept 6 hrs. at 40.degree., and evapd. in vacuo, and the residue dissolved in H2O, passed through Amberlite IR-120, and added to aq. cyclohexylamine gave 0.415 g. bis(cyclohexylamine) salt (XI) of p-ClC6H4O(HO)P(O)OP(O)(OH)OPh, m. 262.degree. (cor.) (aq. EtOH-C5H5N). (EtO)2P(O)(OPh)OH and H3PO4 gave similarly PhO(HO)P(O)OP(O)(OH)2 (XII). III (0.348 g.) in 10 cc. Et2O and 1.48 g. I kept 1 hr. at 20.degree., treated with 2.44 g. BzOH in 15 cc. C5H5H, kept 14 hrs. at 40.degree., and evapd. in vacuo, the residue dissolved in 20 cc. H2O, washed with 20 cc. Et2O, stirred 3 hrs. with 2 cc. PhNH2, and extd. with Et2O gave 0.137 g. (PhO)(BzO)P(O)OH, m. 161.degree.. Adenosine-5'-phosphoric acid (0.694 g.), 0.74 g. Bu3N, and 0.296 g. I in 20 cc. dry HCONMe2 stirred 2-3 hrs. at 20.degree., dild. with about 150 cc. dry Me2CO, treated with 0.6 g. NaI in Me2CO, and centrifuged gave 0.912 g. Na salt (XIII) of II.H2O. XIII (0.261 g.) in 2 cc. abs. MeOH and 1 cc. dry C5H5N kept 3 hrs. at 50.degree., concd., chromatographed (descending) 16 hrs. with 7:1:2 iso-PrOH-NH3-H2O (solvent A) on Whatman 3MM paper, the band, Rf 0.35, cut out and eluted with 300 cc. MeOH in small portions, and the eluate concd., filtered, dild. with Me2CO and Et2O, and centrifuged yielded 0.157 g. NH4 salt of Me adenosine 5'-phosphate-H2O (XIV). XIII (0.261 g.) in 2 cc. dry HCONMe2 and 0.396 g. cyclohexylamine kept 12 hrs. at 20.degree. and evapd. in vacuo at 35.degree., and the residue chromatographed on paper gave 0.206 g. NH4 salt of adenosine-5'-phosphoric acid cyclohexylamide-4H2O (XV), Rf 0.52. XIII (0.261 g.), 0.87 g. III, 2 cc. HCONMe2, and 2 cc. C5H5N kept 48 hrs. at 20.degree. and evapd. in vacuo at 35.degree., the residue dissolved in

a little H2O, treated with 2 cc. cyclohexylamine, dild. with 200 cc. MeOH and some Me2CO, filtered, and evapd., and the residue chromatographed in the usual manner on paper gave 0.242 g. di-NH4 P1-(5'-adenosyl) P2-phenyl pyrophosphate-5H2O (XVI), Rf 0.36. XIII (0.262 g.) in 2 cc. dry C5H5N, 0.61 g. BzOH, 0.505 g. Et3N, and 1 cc. C5H5N kept 12 hrs. at 40.degree., treated 2 hrs. with 2 cc. PhNH2, and worked up gave 0.034 g. adenosine-5'-phosphoric benzoic anhydride, m. 159-61.degree.. values with 8:1:1 iso-PrOH-concd. NH4OH-H2O were detd. (descending) for the following compds.: III 0.08, p-ClC6H4OP(O)(OH)2 0.14, p-MeC6H4OP(O)(OH)2 0.09, (EtO)2P(O)OH 0.58, PhCH2O(PhO)P(O)OH 0.73, VI 0.73, p-O2NC6H4O(PhO)P(O)OH 0.69, IV 0.72, benzylamide of III 0.65, anilide of III 0.64, p-nitranilide of III 0.67, V 0.38, VIII 0.42, IX 0.51, X 0.45, XI 0.45, XII 0.02, I, 0.60 and 0.89, isopropylideneadenosine 0.69, VII 0.55. The Rf values with solvent A and with 2:1 iso-PrOH-1% aq. (NH4)2SO4 (given in this order) were detd. for the following compds.: adenosine-5'-phosphoric acid (XVII), 0.10, 0.34; 3'-isomer of XVII, 0.14, 0.43; diadenosyl pyrophosphate, 0.11, 0.25; XIII, 0.22-0.56, 0.62; amide of XVII, 0.22, 0.32; XV, 0.54, 0.68; XIV, 0.35, 0.45; XVI, 0.37, 0.46. 362-75-4, Adenosine, 2',3'-O-isopropylidene-

IT (prepn. of)

RN362-75-4 HCAPLUS

CN Adenosine, 2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L34 ANSWER 823 OF 824 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1959:2115 HCAPLUS

DOCUMENT NUMBER: 53:2115

ORIGINAL REFERENCE NO.: 53:401g-i,402a-g

TITLE: Synthesis of 6-(dimethylamino)-9-(.beta.-D-

ribofuranosyl)purine 5'-phosphate

AUTHOR(S): Andrews, K. J. M.; Barber, W. E.

Roche Products Ltd., Welwyn Garden City, UK J. Chem. Soc. (1958) 2768-71 CORPORATE SOURCE:

SOURCE:

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

To 16 g. 6-(dimethylamino)-2-(methylthio)purine in 100 ml. EtOH was added 38 ml. aq. 2N NaOH followed by 22 g. HgCl2 in 100 ml. EtOH, and the solid filtered off, washed with H2O, EtOH, and Et2O, and dried giving 25 g. HgCl complex (I). I (13.5 g.) and 13.5 g. Hyflo Supercel (IA) in 250 ml. PhCl was distd. to remove half the PhCl (and residual H2O), treated with acetochlororibofuranose (II) [from 12 g. tetra-O-acetyl-.beta.-Dribofuranose (IIA)] in 100 ml. dry PhCl, stirred and refluxed 3 hrs.,

filtered hot, the insol. material extd. with hot CHCl3 until the exts. were colorless, the combined PhCl-CHCl3 solns. evapd. in vacuo and the residue dissolved in 150 ml. CHCl3, the CHCl3 soln. washed with 2 50-ml. portions 30% aq. KI, then H2O, dried, treated with C, and evapd. in vacuo giving 16.3 g. yellow-brown glass (III). The III in 25 ml. dry MeOH and 200 ml. 5N MeOH-NH3 kept 24 hrs. at room temp. then evapd. in vacuo gave 4.2 g. 6-(dimethylamino)-2-(methylthio)-9-(.beta.-D-ribofuranosyl)purine, m. 174-5.degree. (H2O), [.alpha.]20D -43.6.degree. (c 1.6, MeOH). The III (crude 6-dimethylamino-2-(methylthio)-9-[(2',3',5'-tri-O-acetyl)-.beta.-Dribofuranosyl]purine from 32 g. I and 28 g. II) in 1.5 l. MeOH and about 80 g. freshly prepd. Raney Ni stirred and refluxed 1 hr., filtered through IA, the filtrate evapd. in vacuo, the residual gum, 300 ml. MeOH, and 3 ml. N MeONa refluxed 1 hr. (pH kept above 8 by adding more MeONa, if necessary), evapd. to dryness, the residue dissolved in a few ml. H2O, the H2O soln. dild. with boiling Me2CO, the Me2CO soln. dild. with boiling Me2CO, the Me2CO soln. evapd. in vacuo, the Me2CO evapns. repeated twice, and the solid product recrystd. from H2O and Me2CO gave 12.1 g. 6-dimethylamino-9-(.beta.-D-ribofuranosyl)purine (IV), fluffy needles, m. 182-3.degree., [.alpha.]20D -58.5.degree. (c 2.3, H2O). IV (9 g.), 450 ml. dry Me2CO, 36 g. anhyd. CuSO4, and 36 g. p-MeC6H4SO3H in 200 ml. Me2CO stirred 0.5 hr., filtered, the insol. washed with Me2CO, the combined filtrate and washings poured into 30 g. anhyd. Na2CO3 in 400 ml. H2O, extd. with CHCl3, and the CHCl3 exts. evapd. in vacuo gave 6.8 g. 6-dimethylamino-9-[(2',3'-O-isopropylidene)-.beta.-D-ribofuranosyl]purine (V), needles, m. 176-7.degree. (EtOH). To 4.07 g. PhCH2P(OH)2 in 33 ml. dry C6H6 was added 4.9 g. Ph2PCl, stirred, 3.33 g. Et3N in 33 ml. dry C6H6 added in 10 min., stirred 1 hr. at room temp., the Et3N.HCl filtered off, the filtrate treated with 5 g. dry V and 2.7 ml. 2,6-lutidine, stirred 0.5 hr. at room temp., filtered, the filtrate evapd. in vacuo at room temp., the residue dissolved in 100 ml. CHCl3, the CHCl3 soln. washed with H2O, satd. aq. NaHCO3, and H2O, dried, and evapd. in vacuo at room temp. giving 7.8 g. crude 6-dimethylamino-9-[(2',3'-0-isopropylidene)-.beta.-Dribofuranosyl]purine 5'-benzyl H phosphite (VI), pale yellow oil. The VI in 80 ml. dry C6H6 and 2 g. N-chlorosuccinimide was stirred 2 hrs. at room temp., 80 ml. MeCN and 160 ml. satd. aq. NaHCO3 soln. added, stirred 6 hrs., kept 9 hrs., the aq. phase sepd., filtered, and the filtrate freed of residual MeCN by evapn. in vacuo below 30.degree.; half of the residual aq. soln. was cooled in ice H2O, the pH adjusted to about 2 and extd. with CHCl3, the CHCl3 exts. dried, evapd. in vacuo at room temp., the residue (2.2 g.) immediately dissolved in 100 ml. EtOH, 100 ml. H2O added, the soln. treated with C, filtered, the filtrate hydrogenated (2 hrs.) over 0.5 g. PdO2 and 0.5 g. 10% Pd-C, filtered, the filtrate evapd. in vacuo, the residue refluxed 2 min. with 3 ml. H2O to remove the isopropylidene group, cooled, dild. to turbidity with Me2CO, and set aside 3 days at 0.degree. gave 0.5 g. 6-dimethylamino-9-(.beta.-D-ribofuranosyl)purine 5'-phosphate (VIII), m. 225.degree. (decompn.), [.alpha.]20D -51.degree. (c 1.98, H2O), .lambda. 268 m.mu. (.epsilon. 18,300), Rf0.39, ultraviolet absorbent, contains P, developed with PrOH-aq. NH3 (d. 0.88)-H2O(60:30:10). To 10 g. 4,5-diamino-6-(dimethylamino)-2-(methylthio)pyrimidine in 400 ml. 2N AcONa, 25 ml. 2N HCl, and 5 ml. AcOH at 80.degree. was added 20 g. NaNO2 in 200 ml. H2O, kept 0.5 hr. at 95.degree., and cooled giving 9.3 g. 6-(dimethylamino)-2-(methylthio)-8azapurine (VIII), needles, m. 262.degree.; the VIII HgCl2 complex, prepd. as above (12 g.), and II (from 9.5 g. IIA as above) gave the crude tri-O-acetylribosyl compd. which deacetylated with MeOH-NH3 gave 49.5% 6-(dimethylamino)-2-(methylthio)-9-(.beta.-D-ribofuranosyl)-8-azapurine (IX), m. 146.5-8.degree. (H2O). IX (400 mg.), 100 ml. EtOH, and about 3

g. Raney Ni refluxed 1 hr., filtered through IA, and the filtrate evapd. in vacuo gave 70 mg. 6-(dimethylamino)-9-(.beta.-D-ribofuranosyl)-8-azapurine, m. 216.degree. (aq. EtOH). IV (290 mg.), 37 ml. dry BzH, and 750 mg. ZnCl2 shaken 24 hrs., poured into 50 ml. dry Et2O, the solid filtered off, dissolved in 4.3 ml. EtOCH2CH2OH, the soln. treated with 3.2 ml. 2N aq. NaOH, kept 10 min., filtered, and the filtrate evapd. in vacuo gave 100 mg. 6-(dimethylamino)-9-[(2',3'-O-benzylidene)-.beta.-D-ribofuranosyl]purine, m. 172.degree. (EtOH). IV showed possibly a slight but not appreciable activity against Sarcoma 180; on a molar basis this activity was of the same order as for the purine. The activity of VII is under investigation.

IT 19083-21-7, Adenosine, 2',3'-O-isopropylidene-N,N-dimethyl(and derivs.)

RN 19083-21-7 HCAPLUS

CN Adenosine, N,N-dimethyl-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 110422-67-8, Adenosine, 2',3'-O-benzylidene-N,N-dimethyl-(prepn. of)

RN 110422-67-8 HCAPLUS

CN Adenosine, 2',3'-O-benzylidene-N,N-dimethyl- (6CI) (CA INDEX NAME)

L34 ANSWER 824 OF 824 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1958:113751 HCAPLUS

DOCUMENT NUMBER: 52:113751

ORIGINAL REFERENCE NO.: 52:20177g-i,20178a-b

TITLE: Purine N-oxides. I. Monooxides of aminopurines

AUTHOR(S): Stevens, Marcus A.; Magrath, David I.; Smith, Herman

W.; Brown, George Bosworth

CORPORATE SOURCE: Cornell Univ. Med. Coll., New York, NY

SOURCE: ' J. Am. Chem. Soc. (1958), 80, 2755-8

CODEN: JACSAT; ISSN: 0002-7863

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

N-Monooxides were isolated from the mixts. resulting from the oxidation of adenine, adenosine, 2',3'-isopropylideneadenosine (I), or 2,6-diaminopurine with H2O2-AcOH. Adenine (10 g.) in 60 ml. hot AcOH cooled to 20.degree., 37 ml. 30% H2O2 added, the soln. held at room temp. 4.5 days, and filtered yielded 84% adenine N-oxide (II), decomp. 297-307.degree.. II (250 mg.) in 100 ml. H2O contg. 1 ml. NH4OH shaken 6 hrs. with 3 ml. Raney Ni under 1 atm. H yielded 220 mg. adenine, m. 350.degree.. Anhyd. adenosine (10 g.) in 500 ml. Ac0H and 50 ml. 30% H2O2 held 6 days at room temp., cooled in an ice bath, stirred with 4 g. 5% Pd-C, filtered, and the filtrate evapd. to 250 ml. in vacuo, and allowed to evap. yielded 10.8 g. adenosine N-oxide (III), m. 155.degree., decomp. 160.degree.. III (30 mg.) in N HCl refluxed 15 min. yielded II. I (2.0 g.) in 100 ml. AcOH and 10 ml. 30% $\rm H2O2$ held 5 days at room temp., stirred 1 day with 0.5 g. 10% Pd-C at 20.degree., filtered, evapd. in vacuo at room temp., the residue in 15 ml. hot EtOH treated with C, cooled, the resulting gel warmed with 10 ml. EtOH, and the soln. cooled slowly yielded 845 mg. 2',3'-isopropylidene N-oxide (IV), m. 176-8.degree. (decompn.). IV (5 mg.) in 2 ml. N HCl boiled 2 min. yielded about 60% II. 2,6-Diaminopurine (V) (410 mg.) in 23 ml. AcOH and 1.8 ml. 30% H2O2 stirred 3 days at 25-30.degree., the soln. cooled to 0.degree., stirred 1 day at room temp. with 125 mg. 10% Pd-C, filtered, the filtrate evapd. to dryness in vacuo at 25-30.degree., the residue in 10 ml. H2O dissolved by addn. of NH4OH, the soln. dild. to 2 l., the pH adjusted to 10.8, chromatographed on Dowex-1, and eluted with NH4Cl yielded 13.5% 2,6-diaminopurine N-oxide (VI). VI (7.5 mg.) hydrogenated over Raney Ni

RN 5167-12-4 HCAPLUS

CN Adenosine, 2',3'-O-(1-methylethylidene)-, 1-oxide (9CI) (CA INDEX NAME)

NODE ATTRIBUTES:
NSPEC IS RC AT 18
DEFAULT MLEVEL IS ATOM

DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 18

STEREO ATTRIBUTES: NONE

L2 3214 SEA FILE=REGISTRY SSS FUL L1 L18 STR

NODE ATTRIBUTES:

NSPEC IS RC AT 18
CONNECT IS E3 RC AT 5
CONNECT IS E1 RC AT 21
DEFAULT MLEVEL IS ATOM
GGCAT IS LOC AT 21

DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED

NUMBER OF NODES IS 22

STEREO ATTRIBUTES: NONE

L19 246 SEA FILE=REGISTRY SUB=L2 SSS FUL L18 63 SEA FILE=HCAPLUS ABB=ON PLU=ON L19

only a few Refs. Printed

=> d_ibib abs hitstr 135 1-3 40-45 60-63

L35 ANSWER 1 OF 63 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

2002:271942 HCAPLUS

DOCUMENT NUMBER:

136:291358

TITLE:

Diagnostic uses of 2-substituted adenosine

carboxamides

INVENTOR(S):

Leung, Edward

PATENT ASSIGNEE(S):

King Pharmaceuticals Research and Development, Inc.,

USA

SOURCE:

U.S., 17 pp.

CODEN: USXXAM

DOCUMENT TYPE:

Patent English

LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

I	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-					
τ	JS 6368573	B1	20020409	US 1999-440330	19991115
RIOR	ITY APPLN.	INFO.:		US 1999-440330	19991115

OTHER SOURCE(S):

MARPAT 136:291358

The invention concerns a method for measuring myocardial function in a mammal in need of such measurement by: (a) administering 2-substituted adenosine carboxamide derivs. at a dosage rate of less than 1 .mu.g/kg/min, preferably between about 0.01 and 1 .mu.g/kg/min; and then: (b) performing a technique on the mammal to detect myocardial function. The method can be used to diagnose myocardial dysfunction by electrophysiol. anal. or by imaging the vasculature of the heart, esp. under conditions that simulate stress.

ΙT 120225-76-5

> RL: ADV (Adverse effect, including toxicity); DGN (Diagnostic use); BIOL (Biological study); USES (Uses)

(diagnostic uses of 2-substituted adenosine carboxamides)

RN 120225-76-5 HCAPLUS

Benzenepropanoic acid, 4-[2-[[6-amino-9-[N-ethyl-2,3-0-(1-CN methylethylidene)-.beta.-D-ribofuranuronamidosyl]-9H-purin-2yl]amino]ethyl]-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

PAGE 1-B

— OBu−t

2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L35 ANSWER 2 OF 63 HCAPLUS COPYRIGHT 2003 ACS ACCESSION NUMBER: 2001:904207 HCAPLUS

DOCUMENT NUMBER:

136:37902

TITLE:

Preparation of 2-aminocarbonyl-9H-purine nucleosides and their uses in treatment of respiratory disease, as

A2a receptor agonists and anti-inflammatory agents

INVENTOR(S):

Mantell, Simon John; Stephenson, Peter Thomas

PATENT ASSIGNEE(S):

Pfizer Limited, UK; Pfizer Inc.

SOURCE:

PCT Int. Appl., 198 pp. CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PA'	TENT	NO.		KI	ND	DATE			Α	PPLI	CATI	ON NO	o. :	DATE			
									_								
WO	2001	0943	68	Α	1	2001	1213		W	0 20	01-1	в973		2001	0605		
	W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	ΒZ,	CA,	CH,	CN,
		co,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FI,	GB,	GD,	GE,	GH,
		GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KP,	KR,	KZ,	LC,	LK,	LR,
		LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NO,	NZ,	PL,	PT,

```
RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US,
            UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
        RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
             DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF,
             BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
     US 2002058641
                      Α1
                           20020516
                                          US 2001-874007
                                                            20010605
     EP 1292604
                      A1
                           20030319
                                          EP 2001-934242
                                                           20010605
            AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
            IE, SI, LT, LV, FI, RO, MK, CY, AL, TR
PRIORITY APPLN. INFO.:
                                       GB 2000-14048
                                                        A 20000606
                                                        A 20000725
                                        GB 2000-18246
                                        GB 2000-24920
                                                        A 20001011
                                        US 2000-214307P P
                                                           20000627
                                        US 2000-225236P P
                                                           20000815
                                       US 2000-245243P P
                                                           20001102
                                       WO 2001-IB973
                                                        W 20010605
OTHER SOURCE(S):
                        MARPAT 136:37902
```

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

2-Aminocarbonyl-9H-purine nucleosides I wherein R, R2 are independently H, AB alkyl; R1 is H, substituted alkyl, fluorenyl; R3 is H, alkyl, cycloalkyl, benzyl; R4 is substituted azetidin-3-yl, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, homopiperidin-3-yl or homopiperidin-4-yl; R3R4 taken together with the nitrogen atom to which they are attached, represent azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, homopiperidinyl or homopiperazinyl, each being optionally substituted on a ring nitrogen or carbon atom by alkyl or cycloalkyl; R5 is CH2OH, amide; X is substituted alkylene; RX or R2X with the nitrogen atom to which they are attached, represent azetidin-3-yl, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, homopiperidin-3-yl or homopiperidin-4-yl; Y is CO, CS, SO2, C=N(CN); were prepd. as A2a receptor agonists and anti-inflammatory agents. nucleoside II was prepd. and tested as A2a receptor agonist and anti-inflammatory agent. Title compds. were tested for biol. activity as A2a receptor agonists and anti-inflammatory agents and all were found to have an IC50 of less than 100 nM.

ΙT 380222-92-4P 380222-93-5P 380222-94-6P

> RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. of 2-aminocarbonyl-9H-purine nucleosides and uses in treatment of respiratory disease, as A2a receptor agonists and anti-inflammatory agents)

380222-92-4 HCAPLUS RN

9H-Purine-2-carboxylic acid, 6-[(2,2-diphenylethyl)amino]-9-[N-ethyl-2,3-0-CN (1-methylethylidene) - .beta. - D-ribofuranuronamidosyl] -, ethyl ester (9CI) (CA INDEX NAME)

RN 380222-93-5 HCAPLUS

CN 9H-Purine-2-carboxylic acid, 6-[(2,2-diphenylethyl)amino]-9-[N-ethyl-2,3-0-(1-methylethylidene)-.beta.-D-ribofuranuronamidosyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 380222-94-6 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-1-[6-[(2,2-diphenylethyl)amino]-2[[[2-[[[[1-(2-pyridinyl)-4-piperidinyl]amino]carbonyl]amino]ethyl]amino]ca
rbonyl]-9H-purin-9-yl]-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA
INDEX NAME)

PAGE 1-B

REFERENCE COUNT:

THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L35 ANSWER 3 OF 63 ACCESSION NUMBER:

HCAPLUS COPYRIGHT 2003 ACS 2001:872195 HCAPLUS

DOCUMENT NUMBER:

136:163634

2

TITLE:

7-Nitrobenzofurazan (NBD) derivatives of 5'-N-ethylcarboxamidoadenosine (NECA) as ne

5'-N-ethylcarboxamidoadenosine (NECA) as new fluorescent probes for human A3 adenosine receptors

AUTHOR(S):

Macchia, Marco; Salvetti, Francesca; Bertini, Simone; Di Bussolo, Valeria; Gattuso, Lisa; Gesi, Marco;

Hamdan, Mahmoud; Klotz, Karl-Norbert; Laragione, Teresina; Lucacchini, Antonio; Minutolo, Filippo; Nencetti, Susanna; Papi, Chiara; Tuscano, Daniela;

Martini, Claudia

CORPORATE SOURCE:

Dipartimento di Scienze Farmaceutiche, Universita di

Pisa, Pisa, 56126, Italy

SOURCE: Bioorganic & Medicinal Chemistry Letters (2001),

11(23), 3023-3026

CODEN: BMCLE8; ISSN: 0960-894X

PUBLISHER:

Elsevier Science Ltd.

DOCUMENT TYPE:

Journal

LANGUAGE:

English

GΙ

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

New fluorescent ligands for adenosine receptors (ARs), obtained by the insertion, in the N6 position of NECA, of NBD-moieties with linear alkyl spacers of increasing length, proved to possess a high affinity and selectivity for the A3 subtype expressed in CHO cells. In fluorescence microscopy assays, compd. I, the most active and selective for human A3-AR, permitted visualization and localization of this human receptor subtype, showing its potential suitability for internalization and trafficking studies in living cells.

Ι

IT 396718-59-5P 396718-60-8P 396718-61-9P

396718-62-0P 396718-63-1P 396718-64-2P

396718-65-3P 396718-67-5P 396718-69-7P

396718-71-1P 396718-75-5P 396718-77-7P

396718-79-9P 396718-81-3P 396718-83-5P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(nitrobenzofurazan derivs. of ethylcarboxamidoadenosine as fluorescent probes for human A3 adenosine receptors)

RN 396718-59-5 HCAPLUS

CN Carbamic acid, [2-[[9-[N-ethyl-2,3-O-(1-methylethylidene)-.beta.-D-ribofuranuronamidosyl]-9H-purin-6-yl]amino]ethyl]-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

RN 396718-60-8 HCAPLUS

CN Carbamic acid, [4-[[9-[N-ethyl-2,3-0-(1-methylethylidene)-.beta.-D-ribofuranuronamidosyl]-9H-purin-6-yl]amino]butyl]-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 396718-61-9 HCAPLUS

CN Carbamic acid, [6-[[9-[N-ethyl-2,3-0-(1-methylethylidene)-.beta.-D-ribofuranuronamidosyl]-9H-purin-6-yl]amino]hexyl]-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

RN 396718-62-0 HCAPLUS

CN Carbamic acid, [8-[[9-[N-ethyl-2,3-O-(1-methylethylidene)-.beta.-D-ribofuranuronamidosyl]-9H-purin-6-yl]amino]octyl]-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 396718-63-1 HCAPLUS

CN Carbamic acid, [10-[[9-[N-ethyl-2,3-O-(1-methylethylidene)-.beta.-D-ribofuranuronamidosyl]-9H-purin-6-yl]amino]decyl]-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

RN 396718-64-2 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-[(2-aminoethyl)amino]-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 396718-65-3 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-[(4-aminobutyl)amino]-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)-(9CI) (CA INDEX NAME)

RN 396718-67-5 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-[(6-aminohexyl)amino]-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-0-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 396718-69-7 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-[(8-aminooctyl)amino]-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

RN 396718-71-1 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-[(10-aminodecyl)amino]-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 396718-75-5 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)-1-[6-[[2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]ethyl]amino]-9H-purin-9-yl]- (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 2-A

RN 396718-77-7 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)-1-[6-[[4-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]butyl]amino]-9H-purin-9-yl]- (9CI) (CA INDEX NAME)

RN 396718-79-9 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)-1-[6-[[6-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]hexyl]amino]-9H-purin-9-yl]- (9CI) (CA INDEX NAME)

RN 396718-81-3 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)-1-[6-[[8-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]octyl]amino]-9H-purin-9-yl]- (9CI) (CA INDEX NAME)

RN 396718-83-5 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)-1-[6-[[10-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]decyl]amino]-9H-purin-9-yl]- (9CI) (CA INDEX NAME)

PAGE 2-A NO2

REFERENCE COUNT:

13 THERE ARE 13 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L35 ANSWER 40 OF 63 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1989:193332 HCAPLUS

DOCUMENT NUMBER:

110:193332

TITLE:

Preparation of adenosine-5'-carboxamide derivatives as

adenosine-2 receptor agonists, antipsychotics, and antihypertensives and pharmaceutical compositions

containing them

INVENTOR(S):

Hutchison, Alan J.

PATENT ASSIGNEE(S): SOURCE:

Ciba-Geigy A.-G., Switz. Eur. Pat. Appl., 17 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 277917	A2	19880810	EP 1988-810050	19880129
EP 277917	A3	19900328		

```
R: AT, BE, CH, DE, ES, FR, GB, GR, IT, LI, LU, NL, SE
                             19880805
                                             FI 1988-405
                                                               19880129
     FI 8800405
                       Α
                                                               19880202
     JP 63201196
                        A2
                             19880819
                                             JP 1988-21410
     DD 284679
                        A5
                             19901121
                                             DD 1988-312611
                                                               19880202
                             19880805
                                                               19880203
     DK 8800544
                        Α
                                             DK 1988-544
     NO 8800469
                        Α
                             19880805
                                             NO 1988-469
                                                               19880203
     AU 8811233
                        A1
                             19880818
                                             AU 1988-11233
                                                               19880203
                                             HU 1988-509
                                                               19880203
     HU 46334
                        A2
                             19881028
     HU 199155
                        В
                             19900129
                                                               19880203
     ZA 8800755
                        Α
                             19891025
                                             ZA 1988-755
PRIORITY APPLN. INFO.:
                                         US 1987-11169
                                                               19870204
                          MARPAT 110:193332
OTHER SOURCE(S):
GI
```

The title compds. [I; R2 = H, alkyl, aralkyl; R3 = H, OH; R5 = NRR1 where AB R = H, alkyl and R1 = cycloalkyl, cycloalkylalkyl, 2-norbornanyl, etc.; R6 = R4NHCO where R4 = H, alkyl, aralkyl, cycloalkyl, hydroxyalkyl] (II) and their pharmaceutically acceptable salts, useful as adenosine-2 receptor agonists, antipsychotics, antithrombotics, and antihypertensives, are prepd. A mixt. of 2-chloro-2',3'-O-isopropylideneadenosine-5'-Nethylcarboxamide and 2-phenethylamine was heated at 130.degree. for 2 h to give 2-(2-phenethylamino)-2',3'-O-isopropylideneadenosine-5'-Nethylcarboxamide, which was heated with 1N HCl at 65.degree. for 1 h to give 2-(2-phenethylamino)-5'-N-ethylcarboxamide (III). In vivo studies of the adenosine-2 receptor agonistic activity of II using spontaneously hypertensive rats showed that II effectively lowered the blood pressure without any significant effect on the heart rate. One thousand tablets were prepd. from III 100.00, lactose 2400.00, corn starch 125.00, polyethyleneglycol 6000 150.00, Mg stearate 40.00 g, and water q.s.

IT 120225-76-5P 120225-77-6P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and reaction of, in prepn. of adenosinecarboxamide derivs. as CNS and cardiovascular agents)

RN 120225-76-5 HCAPLUS

CN Benzenepropanoic acid, 4-[2-[[6-amino-9-[N-ethyl-2,3-O-(1-methylethylidene)-.beta.-D-ribofuranuronamidosyl]-9H-purin-2-yl]amino]ethyl]-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

PAGE 1-B

∠OBu−t

. . . .

RN 120225-77-6 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-[(2-phenylethyl)amino]-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 120225-75-4 120225-76-5

RL: RCT (Reactant); RACT (Reactant or reagent) (reaction of, in prepn. of adenosinecarboxamide derivs. as CNS and cardiovascular agents)

RN 120225-75-4 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-2-chloro-9H-purin-9-yl)-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 120225-76-5 HCAPLUS

CN Benzenepropanoic acid, 4-[2-[[6-amino-9-[N-ethyl-2,3-O-(1-methylethylidene)-.beta.-D-ribofuranuronamidosyl]-9H-purin-2-yl]amino]ethyl]-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

PAGE 1-B

∠OBu−t

L35 ANSWER 41 OF 63 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1989:24223 HCAPLUS

DOCUMENT NUMBER:

110:24223

TITLE:

Conformational analysis of 8-substituted

isopropylidene derivatives of adenosine-5'-carboxylic

AUTHOR(S):

Timoshchuk, V. A.; Ermolenko, T. M.; Akhrem, A. A. Beloruss. Inst. Epidemiol. Mikrobiol., Minsk, USSR

CORPORATE SOURCE: SOURCE:

Zhurnal Organicheskoi Khimii (1988), 24(6), 1214-20

CODEN: ZORKAE; ISSN: 0514-7492

DOCUMENT TYPE:

Journal LANGUAGE: Russian

NMR data confirms that for 2',3'-O-isopropylidene derivs. of adenosine 5'-carboxylic acid the most probable conformation is C4'-endo, O4'-exo, and C1'-endo. Compds. of this series are characterized principally by a syn-conformation of the heterocycle around the N-glycosidic bond relative to the ribose fragment of the mols. CD data confirmed that conformations are stabilized by a spatial convergence of the N3 heterocyclic atom and the carboxyl group.

IT101966-36-3 101966-40-9 101966-46-5

RL: PRP (Properties)

(conformation of, NMR and CD in relation to)

101966-36-3 HCAPLUS RN

.beta.-D-Ribofuranuronamide, 1-deoxy-1-(6,8-diamino-9H-purin-9-yl)-N-ethyl-CN 2,3-O-(1-methylethylidene) - (9CI) (CA INDEX NAME)

RN 101966-40-9 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-8-(methylamino)-9H-purin-9-yl]-1-deoxy-N-methyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 101966-46-5 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-8-(dimethylamino)-9H-purin-9-yl]-1-deoxy-N-methyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L35 ANSWER 42 OF 63 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1986:627200 HCAPLUS

DOCUMENT NUMBER: 105:227200

TITLE: Synthesis of uronic acid nucleosides. II. Synthesis

of 8-substituted adenosine-5'-carboxamides

AUTHOR(S): Akhrem, A. A.; Ermolenko, T. M.; Timoshchuk, V. A.

CORPORATE SOURCE: Beloruss. Nauchno-Issled. Inst. Epidemiol. Mikrobiol.,

Minsk, USSR

SOURCE: Zhurnal Organicheskoi Khimii (1985), 21(8), 1800-5

CODEN: ZORKAE; ISSN: 0514-7492

DOCUMENT TYPE: Journal

LANGUAGE: Russian

GI

Searched by Paul Schulwitz (703)305-1954

Amides of 8-substituted adenosine-5'-carboxylic acid were prepd. Starting from the Me ester of 8-bromo-2',3'-O-isopropylideneadenosine-5'-carboxylate and the Et ester of 8-bromoadenosine-5'-carboxylate were obtained the amide, methylamide, dimethylamide, and the ethylamide of the corresponding acid, which contained bromo-, amino, methylamino-, dimethylamino-, ethylamino-, and mercapto groups in position 8 of the adenine base. Thus, treating adenosine I (R = OMe, X = Br) with NH3 in MeOH at 18-25.degree. gave 82% I (R = NH2, X = Br). The selectivity of primary and secondary amines, on the ester group and 8-bromoadenine residue was demonstrated.

IT 101966-40-9P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and hydrolysis of)

RN 101966-40-9 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-8-(methylamino)-9H-purin-9-yl]-1-deoxy-N-methyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 101966-36-3P 101966-46-5P

RL: SPN (Synthetic preparation); PREP (Preparation)

(prepn. of)

RN 101966-36-3 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-1-(6,8-diamino-9H-purin-9-yl)-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 101966-46-5 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-8-(dimethylamino)-9H-purin-9-yl]-1-deoxy-N-methyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L35 ANSWER 43 OF 63 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1984:56841 HCAPLUS

DOCUMENT NUMBER:

100:56841

TITLE:

Fibrinolytic formulations containing adenosine

derivatives

PATENT ASSIGNEE(S):

Tanabe Seiyaku Co., Ltd., Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 3 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

1

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

JP 58174324 A2 19831013 JP 1982-58507 19820407 PRIORITY APPLN. INFO.: JP 1982-58507 19820407

GI

AB Formulations contg. I (R1 and R2 = propionyl or R1 + R2= methoxyethylidene) activate fibrinolysis. Thus, 2',3'-0-dipropionyladenosine-5'-carboxylic acid butylamide(I) [88480-43-7] 70, D-mannitol 73, and corn starch 50 g were mixed using 5 g hydroxypropyl cellulose as binder, granulated, combined with 2 g Mg stearate, and made into tablets. I was prepd. by the acylation of adenosine-5'-carboxylic acid butylamide [35788-23-9] with propionic anhydride.

IT 62622-82-6P

RL: PREP (Preparation)

(prepn. of, for fibrinolysis activation)

RN 62622-82-6 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-y1)-N-butyl-1-deoxy-2,3-O-(1-methoxyethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L35 ANSWER 44 OF 63 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1984:26035 HCAPLUS

DOCUMENT NUMBER: 100:26035

TITLE: Fibrinolytic formulations containing adenosine

derivatives

PATENT ASSIGNEE(S): Tanabe Seiyaku Co., Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 8 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent Japanese

LANGUAGE:

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 58174323	A2	19831013	JP 1982-58506	19820407
PRIORITY APPLN. INFO.	:		JP 1982-58506	19820407
GI				

AB Fibrinolytic formulations contain I (R1 and R2 = H, alkanoyl, etc.; R3 = C1-3 alkylamino, alkenylamino, etc.). Thus, adenosine-5'-carboxylic acid cyclohexylamide [35788-32-0] was treated with Me orthoacetate [56893-90-4] to give 2',3'-O-methoxyethylideneadenosine-5'-carboxylic acid cyclohexylamide (II) [88255-85-0]. Tablets contg. 1% I were described. The min. effective oral dose for the hemolytic activity of II in rats was 30 mg/kg.

IT 62622-78-0P 88255-90-7P

RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. and fibrinolytic activity of)

RN 62622-78-0 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-2,3-O-(1-methoxyethylidene)- (9CI) (CA INDEX NAME)

RN 88255-90-7 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-0-(1-methoxyethylidene)-N-2-propenyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L35 ANSWER 45 OF 63 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1980:215696 HCAPLUS

DOCUMENT NUMBER: 92:215696

TITLE: N1, N6-Ethenoadenosine-5'-(N-ethyl carboxamide)

AUTHOR(S): Prasad, Raj Nandan; Tietje, Karin

CORPORATE SOURCE: Org. Chem. Res., Abbott Lab., Ltd., Montreal, QC, H4P

1A5, Can.

SOURCE: Nucl. Acid Chem. (1978), Volume 2, 701-7. Editor(s):

Townsend, Leroy B.; Tipson, R. Stuart. Wiley: New

York, N. Y. CODEN: 42TBAU

CODEN: 42TBA

DOCUMENT TYPE: Conference LANGUAGE: English

GΙ

AB Ethenoadenosine I was prepd. by cyclization of adenosine II with ClCH2CHO. II was prepd. from acid III by 3 methods, e.g., by sequential chlorination with SOCl2, amidation with EtNH2, and deisopropylidenation.

IT 39491-53-7P

RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. and deisopropylidenation of)

RN 39491-53-7 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L35 ANSWER 60 OF 63 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1976:59956 HCAPLUS

DOCUMENT NUMBER: 84:59956

TITLE: Adenosine-5'-carboxylic acid amides INVENTOR(S): Stein, Herman Hal; Prasad, Raj N.

PATENT ASSIGNEE(S): Abbott Laboratories, USA

SOURCE: U.S., 7 pp. Division of U.S. 3,864,483.

CODEN: USXXAM

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 5

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
us 3914415	Α	19751021	US 1974-492950	19740730
US 4029884	Α	19770614	US 1972-236980	19720322
US 3864483	Α	19750204	US 1973-370084	19730614
PRIORITY APPLN. INFO.	:		US 1971-125893	19710318
			US 1972-236980	19720322
			US 1973-370084	19730614

- GI For diagram(s), see printed CA Issue.
- AB I (e.g., R1 = H, R2 = H, adamantyl, cyclopropyl, Et, PhOCH2CH2, allyl, 2,6-Me2C6H3, HOCH2CH2; R1 = R2 = allyl) (34 compds.), possessing cardiovascular and antiinflammatory activities, were prepd. by treatment of 2',3'-O-isopropylideneadenosine-5'-carboxylic acid chloride with R1R2NH followed by hydrolysis with 1N HCl.
- IT 39491-51-5P 39491-53-7P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and deblocking of)

RN 39491-51-5 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-methyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 39491-53-7 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

IT 58048-27-4P

RL: SPN (Synthetic preparation); PREP (Preparation)

(prepn. of)

RN 58048-27-4 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-0-(1-methylethylidene)-N-2-propenyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$\begin{array}{c} \text{Me} \\ \text{Me} \\ \text{O} \\ \text{R} \\ \text{R} \\ \text{N} \\$$

L35 ANSWER 61 OF 63 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1976:44606 HCAPLUS

DOCUMENT NUMBER: 84:44606

TITLE: Compounds for increasing coronary partial pressure of

oxygen in mammals

INVENTOR(S): Stein, Herman Hal; Prasad, Raj N.

PATENT ASSIGNEE(S): Abbott Laboratories, USA

SOURCE: U.S., 7 pp. Division of U.S. 3,864,483.

CODEN: USXXAM

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 5

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

```
US 3914414
                           19751021
                                          US 1974-492949
                                                           19740730
                      Α
    US 4029884
                      Α
                           19770614
                                          US 1972-236980
                                                           19720322
    US 3864483
                      Α
                           19750204
                                          US 1973-370084
                                                           19730614
    US 3966917
                      Α
                           19760629
                                          US 1975-590548
                                                           19750626
PRIORITY APPLN. INFO.:
                                       US 1971-125893
                                                           19710318
                                       US 1972-236980
                                                           19720322
                                       US 1973-370084
                                                           19730614
                                       US 1974-492949
                                                           19740730
```

AB Adenosine-5'-carboxamides, useful as antihypertensive agents, were prepd. by treating 2',3'-O-isopropylideneadenosine-5'-carbonyl chloride (I) with amines followed by acid hydrolysis. Thus, I with NH3 2 hr at -50.degree. gave 55% 2',3'-O-isopropylideneadenosine-5'-carboxamide (II). Treatment of II with 1N HCl at 60-70.degree. for 45 min gave adenosine-5'-carboxamide.

IT 57872-94-3P 57872-95-4P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses) (prepn. and antihypertensive activity of)

RN 57872-94-3 HCAPLUS RN 57872-95-4 HCAPLUS

L35 ANSWER 62 OF 63 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1975:156656 HCAPLUS

DOCUMENT NUMBER: 82:156656

TITLE: 1,N6-Etheno-5'-adenosine carboxamides

INVENTOR(S): Prasad, Raj N.; Garmaise, David L.

PATENT ASSIGNEE(S): Abbott Laboratories, USA

SOURCE:

U.S., 3 pp. CODEN: USXXAM

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 3830796	Α	19740820	US 1972-317326	19721221
US 3931401	Α	19760106	US 1974-472029	19740521
PRIORITY APPLN.	INFO.:		US 1972-317326	19721021

GI For diagram(s), see printed CA Issue.

AB Adenosines (I; R = Et, allyl, cyclobutyl), useful as antianginals and antihypertensives, were prepd. Thus, 2',3'-O-isopropylideneadenosine 5'-carboxylic acid chloride was treated with EtNH2 at -50 to -35.degree. to give the 5'-(N-ethylcarboxamide) which, treated 1 hr with 1N HCl, gave adenosine 5'-(N-ethylcarboxamide) II. Treatment of II with ClCH2CHO gave I (R = Et). The allyl and cyclobutyl derivs. were similarly prepd.

IT 39491-53-7P

RN 39491-53-7 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

L35 ANSWER 63 OF 63 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1973:16454 HCAPLUS

DOCUMENT NUMBER:

78:16454

TITLE:

SOURCE:

Adenosine-5'-carboxamides

INVENTOR(S):

Stein, Herman Hal; Prasad, Raj Nandan

PATENT ASSIGNEE(S):

Abbott Laboratories Ger. Offen., 12 pp.

CODEN: GWXXBX

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT: 5

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 2213180	A	19720928	DE 1972-2213180	19720317
CA 1019727	A1	19771025	CA 1972-135283	19720222
GB 1386656	Α	19750312	GB 1972-8446	19720223
ZA 7201222	Α	19721129	ZA 1972-1222	19720224
CH 551446	Α	19740715	CH 1972-3873	19720316
FR 2130364	A5	19721103	FR 1972-9349	19720317
SE 405363	С	19790315	SE 1972-3515	19720317
SE 405363	В	19781204		
RIORITY APPLN. INF	0.:		US 1971-125893	19710318

GI For diagram(s), see printed CA Issue.

AB Four title compds. (I, R = H; R1 = NH2, NHMe, NMe2, and NHEt), useful in the treatment of angina pectoris and circulatory disturbances and as antihypertensives, were prepd. Chlorination of I (RR = CMe2, R1 = OH) with SOC12 to give I (RR = CMe2, R1 = C1), followed by treatment with amines, R1H, and hydrolysis with N HCl gave the corresponding title compd.

IT 39491-51-5P 39491-53-7P

RN 39491-51-5 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-methyl-2,3-0-(1-methylethylidene)- (9CI) (CA INDEX NAME)

RN 39491-53-7 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

NODE ATTRIBUTES:
NSPEC IS RC AT 18
DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES: RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 18

STEREO ATTRIBUTES: NONE

L2 3214 SEA FILE=REGISTRY SSS FUL L1 L20 STR

NODE ATTRIBUTES:
CONNECT IS E2 RC AT 9
DEFAULT MLEVEL IS ATOM
DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 36

STEREO ATTRIBUTES: NONE

1000

L21 0_SEA FILE=REGISTRY SUB=L2 SSS FUL L20

```
ŧ
=> d que 129
L1
                  STR
             10
                  14
                    17
```

NODE ATTRIBUTES:

NSPEC IS RC AT 18 DEFAULT MLEVEL IS ATOM DEFAULT ECLEVEL IS LIMITED

GRAPH ATTRIBUTES:

RING(S) ARE ISOLATED OR EMBEDDED NUMBER OF NODES IS 18

STEREO ATTRIBUTES: NONE

L2	3214	SEA	FILE=REGISTRY SSS FU	L L1	
L22	36416	SEA	FILE=HCAPLUS ABB=ON	PLU=ON	HYPERTENSION/CT
L25	5576	SEA	FILE=HCAPLUS ABB=ON	PLU=ON	ISCHEMIA+OLD/CT
L26	2613	SEA	FILE=HCAPLUS ABB=ON	PLU=ON	ANTI-ISCHEMIC AGENTS/CT
L27	4987	SEA	FILE=HCAPLUS ABB=ON	PLU=ON	VASODILATION/CT
<u>L28</u>	8845	SEA	FILE=HCAPLUS ABB=ON	PLU=ON	VASODILATORS/CT
L28 L29	39	SEA	FILE=HCAPLUS ABB=ON	PLU=ON	L2 AND (L22 OR HYPERTENS? OR
		Ĺ25	OR L26 OR ISCHEM? OR	L27 OR	L28 OR VASODIL? OR SYMPATHET? (2
		AIRI	LOCK? OR PROPHYLACT?)		

=> d <u>ibib</u> abs hitstr 129 1-39

L29 ANSWER 1 OF 39 HCAPLUS COPYRIGHT 2003 ACS 2002:332678 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 136:350561

TITLE:

Use of P2Y12 receptor antagonists as platelet

aggregation inhibitors

INVENTOR(S): Boyer, Jose L.; Olins, Gillian M.; Yerxa, Benjamin R.;

Douglass, James G.

PATENT ASSIGNEE(S): USA

SOURCE: U.S. Pat. Appl. Publ., 43 pp., Cont.-in-part of U.S.

Ser. No. 643,138.

CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 4

PATENT INFORMATION:

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
	US 2002052337	A1	20020502	US 2001-934970	20010821
	US 2002128224	A1	20020912	US 2002-87551	20020227
	US 2003008834	A1	20030109	US 2002-82998	20020227
PRIOF	RITY APPLN. INFO.	:		US 2000-643138 A2	20000821
				US 2001-934970 A2	20010821

OTHER SOURCE(S): MARPAT 136:350561

AB The invention discloses a method of preventing or treating diseases or conditions assocd. with platelet aggregation and treating thrombosis. The method involves administering to a subject a pharmaceutical compn. comprising a therapeutic effective amt. of P2Y12 receptor antagonist compd., to bind the P2Y12 receptors on platelets and inhibit ADP-induced platelet aggregation. The P2Y12 receptor antagonist compds. disclosed include mononucleoside polyphosphates and dinucleoside polyphosphates.

TT 401619-32-7 401619-52-1 401619-57-6 401620-06-2 420131-31-3 420131-40-4

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(P2Y12 receptor antagonists as platelet aggregation inhibitors)

RN 401619-32-7 HCAPLUS

CN Adenosine 5'-(trihydrogen diphosphate), 2',3'-O-(2-phenylethylidene)(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 401619-52-1 HCAPLUS

CN Adenosine 5'-(pentahydrogen tetraphosphate), 2',3'-O-(2-phenylethylidene), P'''.fwdarw.5'-ester with uridine (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

RN 401619-57-6 HCAPLUS

CN Adenosine 5'-(pentahydrogen tetraphosphate), 2',3'-0-(2-phenylethylidene)-, P'''.fwdarw.5'-ester with 2',3'-0-(2-phenylethylidene)uridine (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

__ Ph

PAGE 2-A

0

RN 401620-06-2 HCAPLUS

CN Adenosine, N-[2-(methylthio)ethyl]-2',3'-0-(2-phenylethylidene)-2-[(3,3,3-trifluoropropyl)thio]-, 5'-[hydrogen (difluorophosphonomethyl)phosphonate] (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 420131-31-3 HCAPLUS

CN Adenosine 5'-(pentahydrogen tetraphosphate), 2',3'-0-(2-phenylethylidene)-, P'''.fwdarw.5'-ester with adenosine (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

RN 420131-40-4 HCAPLUS

CN Adenosine 5'-(pentahydrogen tetraphosphate), N-[2-(methylthio)ethyl]-2',3'-O-(2-phenylethylidene)-2-[(3,3,3-trifluoropropyl)thio]-,
P'''.fwdarw.5'-ester with 2',3'-O-(2-phenylethylidene)adenosine (9CI) (CA INDEX NAME)

PAGE 1-B

L29 ANSWER 2 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 2002:271942 HCAPLUS

DOCUMENT NUMBER: 136:291358

TITLE: Diagnostic uses of 2-substituted adenosine

carboxamides

INVENTOR(S):
Leung, Edward

PATENT ASSIGNEE(S): King Pharmaceuticals Research and Development, Inc.,

USA

SOURCE: U.S., 17 pp.

CODEN: USXXAM

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 6368573	B1	20020409	US 1999-440330	19991115
PRIORITY APPLN. INFO.	:		US 1999-440330	19991115

OTHER SOURCE(S): MARPAT 136:291358

AB The invention concerns a method for measuring myocardial function in a mammal in need of such measurement by: (a) administering 2-substituted adenosine carboxamide derivs. at a dosage rate of less than 1 .mu.g/kg/min, preferably between about 0.01 and 1 .mu.g/kg/min; and then: (b) performing a technique on the mammal to detect myocardial function. The method can be used to diagnose myocardial dysfunction by electrophysiol. anal. or by imaging the vasculature of the heart, esp. under conditions that simulate stress.

IT 120225-76-5

RL: ADV (Adverse effect, including toxicity); DGN (Diagnostic use); BIOL (Biological study); USES (Uses)

(diagnostic uses of 2-substituted adenosine carboxamides)

RN 120225-76-5 HCAPLUS

CN Benzenepropanoic acid, 4-[2-[[6-amino-9-[N-ethyl-2,3-0-(1-methylethylidene)-.beta.-D-ribofuranuronamidosyl]-9H-purin-2-yl]amino]ethyl]-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

__OBu−t

THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS REFERENCE COUNT: 2 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L29 ANSWER 3 OF 39 HCAPLUS COPYRIGHT 2003 ACS 2001:904207 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER:

TITLE:

136:37902

Preparation of 2-aminocarbonyl-9H-purine nucleosides and their uses in treatment of respiratory disease, as

A2a receptor agonists and anti-inflammatory agents

INVENTOR(S):

Mantell, Simon John; Stephenson, Peter Thomas

PATENT ASSIGNEE(S):

Pfizer Limited, UK; Pfizer Inc.

SOURCE:

PCT Int. Appl., 198 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PAT	ENT	NO.		KI	ND	DATE			А	PPLI	CATI	ои ис	o. :	DATE				
									_									
WO	2001	0943	68	Α	1	2001	1213		W	O 20	01-1	в973	,	2001	0605			
	W:	ΑE,	AG,	AL,	AM,	AT,	ΑU,	ΑZ,	ΒA,	BB,	BG,	BR,	BY,	ΒZ,	CA,	CH,	CN,	
		co,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FI,	GB,	GD,	GE,	GH,	
		GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	ΚE,	KG,	KP,	KR,	ΚZ,	LC,	LK,	LR,	
		LS.	LT.	T.U.	T.V.	MA.	MD.	MG.	MK.	MN.	MW.	MX.	MZ.	NO.	NZ.	PI.	PT.	

```
RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US,
             UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
         RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
             DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF,
             BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
    US 2002058641
                             20020516
                                           US 2001-874007
                                                              20010605
                       A1
     EP 1292604
                             20030319
                                            EP 2001-934242
                                                              20010605
                       Α1
         R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR
PRIORITY APPLN. INFO.:
                                          GB 2000-14048
                                                           A 20000606
                                                           Α
                                                              20000725
                                          GB 2000-18246
                                          GB 2000-24920
                                                           A 20001011
                                         US 2000-214307P P 20000627
                                         US 2000-225236P P 20000815
                                         US 2000-245243P P 20001102
                                         WO 2001-IB973
                                                           W 20010605
OTHER SOURCE(S):
                         MARPAT 136:37902
GI
```

-

- * STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY AVAILABLE VIA OFFLINE PRINT *
- 2-Aminocarbonyl-9H-purine nucleosides I wherein R, R2 are independently H, AB alkyl; R1 is H, substituted alkyl, fluorenyl; R3 is H, alkyl, cycloalkyl, benzyl; R4 is substituted azetidin-3-yl, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, homopiperidin-3-yl or homopiperidin-4-yl; R3R4 taken together with the nitrogen atom to which they are attached, represent azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, homopiperidinyl or homopiperazinyl, each being optionally substituted on a ring nitrogen or carbon atom by alkyl or cycloalkyl; R5 is CH2OH, amide; X is substituted alkylene; RX or R2X with the nitrogen atom to which they are attached , represent azetidin-3-yl, pyrrolidin-3-yl, piperidin-3-yl, piperidin-4-yl, homopiperidin-3-yl or homopiperidin-4-yl; Y is CO, CS, SO2, C=N(CN); were prepd. as A2a receptor agonists and anti-inflammatory agents. Thus, nucleoside II was prepd. and tested as A2a receptor agonist and anti-inflammatory agent. Title compds. were tested for biol. activity as A2a receptor agonists and anti-inflammatory agents and all were found to have an IC50 of less than 100 nM.
- IT 380222-88-8P 380222-90-2P 380222-92-4P 380222-93-5P 380222-94-6P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. of 2-aminocarbonyl-9H-purine nucleosides and uses in treatment of respiratory disease, as A2a receptor agonists and anti-inflammatory agents)

RN 380222-88-8 HCAPLUS

CN 9H-Purine-2-carboxylic acid, 6-[(2,2-diphenylethyl)amino]-9-[2,3-O-(1methylethylidene)-.beta.-D-ribofuranosyl]-, ethyl ester (9CI) (CA INDEX NAME)

RN 380222-90-2 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-deoxy-1-[6-[(2,2-diphenylethyl)amino]-2-(ethoxycarbonyl)-9H-purin-9-yl]-2,3-0-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 380222-92-4 HCAPLUS

CN 9H-Purine-2-carboxylic acid, 6-[(2,2-diphenylethyl)amino]-9-[N-ethyl-2,3-0-(1-methylethylidene)-.beta.-D-ribofuranuronamidosyl]-, ethyl ester (9CI) (CA INDEX NAME)

RN 380222-93-5 HCAPLUS

CN 9H-Purine-2-carboxylic acid, 6-[(2,2-diphenylethyl)amino]-9-[N-ethyl-2,3-0-(1-methylethylidene)-.beta.-D-ribofuranuronamidosyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 380222-94-6 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-1-[6-[(2,2-diphenylethyl)amino]-2[[[2-[[[1-(2-pyridinyl)-4-piperidinyl]amino]carbonyl]amino]ethyl]amino]ca
rbonyl]-9H-purin-9-yl]-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA
INDEX NAME)

PAGE 1-B

REFERENCE COUNT: 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L29 ANSWER 4 OF 39 HCAPLUS COPYRIGHT 2003 ACS ACCESSION NUMBER: 2000:911265 HCAPLUS

ACCESSION NUMBER: DOCUMENT NUMBER:

134:66148

TITLE:

Induction of pharmacological stress with

alkynyladenosine A2A adenosine receptor agonists

INVENTOR(S):

Linden, Joel M.; Glover, David K.; Beller, George A.;

MacDonald, Timothy

PATENT ASSIGNEE(S):

University of Virginia Patent Foundation, USA

SOURCE:

PCT Int. Appl., 36 pp. CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PAT	rent	NO.		KI	ND	DATE			Α	PPLI	CATI	ON NO	0.	DATE			
WO	2000	0787	74		2	2000	1228		W	0 20	 υ-00	s160:	29	2000	0612		
WO	2000	0787	74	A.	3	2001	0712										
	W:	ΑE,	AG,	AL,	AM,	ΑT,	ΑU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	CA,	CH,	CN,	CR,
		CU,	CZ,	DE,	DK,	DM,	DZ,	EE,	ES,	FI,	GB,	GD,	GE,	GH,	GM,	HR,	HU,
		ID,	IL,	IN,	IS,	JP,	KE,	KG,	KP,	KR,	ΚZ,	LC,	LK,	LR,	LS,	LT,	LU,
		LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	NO,	NZ,	PL,	PT,	RO,	RU,	SD,	SE,
		SG,	SI,	SK,	SL,	ТJ,	TM,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VN,	YU,	ZA,
		ZW,	AM,	AZ,	BY,	KG,	ΚZ,	MD,	RU,	ТJ,	TM						
	RW:	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZW,	AT,	BE,	CH,	CY,
		DE,	DK,	ES,	FI,	FR,	GB,	GR,	IE,	IT,	LU,	MC,	NL,	PT,	SE,	BF,	ВJ,
		CF,	CG,	CI,	CM,	GΑ,	GN,	GW,	ML,	MR,	NE,	SN,	TD,	TG			
BR	2000	0117	25	Α		2002	0326		B	R 20	00-1	1725		2000	0612		
ΕP	1194	440		A.	2	2002	0410		\mathbf{E}_{i}	P 20	00-9	4133	5	2000	0612		
	R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,
		ΙE,	SI,	LT,	LV,	FI,	RO										
JР	2003	5024	33	T	2	2003	0121		J	P 20	01-5	04939	9	2000	0612		
ИО	2001	0059	74	Α		2002	0214		N	20	01-5	974		2001	1206		

PRIORITY APPLN. INFO.:

US 1999-336198 A 19990618 WO 2000-US16029 W 20000612

OTHER SOURCE(S):

MARPAT 134:66148

AB A method is provided employing alkynyladenosine A2A adenosine receptor agonists as **vasodilators** to detect the presence and assess the severity of coronary artery stenosis. Prepn. of alkynyladenosine derivs. is also described.

IT 141018-25-9P 141018-26-0P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and reaction; alkynyladenosine A2A adenosine receptor agonist for induction of pharmacol. stress and diagnosis of coronary artery stenosis)

RN 141018-25-9 HCAPLUS

CN Adenosine, 2-iodo-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 141018-26-0 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-(6-amino-2-iodo-9H-purin-9-yl)-1-deoxy-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L29 ANSWER 5 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1998:34074 HCAPLUS

DOCUMENT NUMBER: 128:188277

TITLE:

Adenosine receptor agonists: synthesis and biological

evaluation of the diastereoisomers of

2-(3-hydroxy-3-phenyl-1-propyn-1-yl)NECA

AUTHOR(S):

Camaioni, Emidio; Di Francesco, Emanuela; Vittori,

CORPORATE SOURCE:

Sauro; Volpini, Rosaria; Cristalli, Gloria Dipartimento di Scienze Chimiche, Universita di

Camerino, Camerino, 62032, Italy

SOURCE:

Bioorganic & Medicinal Chemistry (1997), 5(12),

2267-2275

CODEN: BMECEP; ISSN: 0968-0896

Elsevier Science Ltd.

PUBLISHER: DOCUMENT TYPE:

Journal

LANGUAGE:

English

Among the recently reported 2-(ar)alkynyl derivs. of 5'-Nethylcarboxamidoadenosine (NECA), the (R,S)-2-(3-hydroxy-3-phenyl-1-propyn-1-yl)NECA [(R,S)-PHPNECA or SCH 59761] was found to be a very potent agonist at Al and A2A receptor subtypes, with a Ki of 2.5 nM and 0.9 nM, resp. Furthermore, this compd. showed an inhibitory activity on platelet aggregation 16-fold higher than NECA, being the most potent anti-aggregatory nucleoside reported so far. Since this compd. bears a chiral carbon in the side chain, the diastereoisomer sepn. was undertaken both by chiral HPLC and by a stereospecific synthetic method. Binding assays have shown that the (S)-diastereomer is about fivefold more potent and selective than the (R)-diastereomer as agonist of the A2A receptor subtype [(S)-PHPNECA, KiA2A = 0.5 nM; (R)-PHPNECA, KiA2A = 2.6 nM]. Functional studies indicated that (S)-PHPNECA possesses marked vasodilating activity and produces a relevant decrease in heart rate. Moreover, the (S)-diastereomer proved to be about ten times more potent than the (R)-diastereomer in inducing cardiovascular effects, in in vivo hemodynamic studies. However, the greatest difference between these two enantiomers resulted in the platelet aggregation test: in fact, the (R)-diastereomer displayed an inhibitory activity similar to that of NECA, whereas the (S)-diastereomer was 37-fold more active than NECA as an inhibitor of rabbit platelet aggregation, induced by ADP. These data suggest that (S)-PHPNECA could be a useful tool to investigate the mode of binding of agonists to the platelet adenosine receptor subtype.

IT 203794-22-3P 203794-23-4P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); PRP (Properties); RCT (Reactant); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation); RACT (Reactant or reagent)

(synthesis and biol. evaluation of diastereoisomers of 2-(3-hydroxy-3-phenyl-1-propyn-1-yl)NECA as adenosine receptor

RN 203794-22-3 HCAPLUS

.beta.-D-Ribofuranuronamide, 1-[6-amino-2-[(3S)-3-[[[(1R)-1-(1-amino-2-[(3S)-3-[([(1R)-1-(1-amino-2-[(3S)-3-[(1-amino-2-[(1-CN naphthalenyl)ethyl]amino]carbonyl]oxy]-3-phenyl-1-propynyl]-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

RN 203794-23-4 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-[(3R)-3-[[[[(1R)-1-(1-naphthalenyl)ethyl]amino]carbonyl]oxy]-3-phenyl-1-propynyl]-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

PAGE 1-B

IT 162936-24-5

RL: RCT (Reactant); RACT (Reactant or reagent)
(synthesis and biol. evaluation of diastereoisomers of
2-(3-hydroxy-3-phenyl-1-propyn-1-yl)NECA as adenosine receptor
agonists)

RN 162936-24-5 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-2-iodo-9H-purin-9-yl)-1-deoxy-N-ethyl-2,3-0-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 203794-21-2P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
(Reactant or reagent)
 (synthesis and biol. evaluation of diastereoisomers of
 2-(3-hydroxy-3-phenyl-1-propyn-1-yl)NECA as adenosine receptor
 agonists)
203794-21-2 HCAPLUS

RN 203794-21-2 HCAPLUS
CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-(3-hydroxy-3-phenyl-1-propynyl)-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

REFERENCE COUNT: 27 THERE ARE 27 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

HCAPLUS COPYRIGHT 2003 ACS L29 ANSWER 6 OF 39

ACCESSION NUMBER:

1997:761605 HCAPLUS

DOCUMENT NUMBER:

128:34983

TITLE:

Preparation of nucleosides as A3 adenosine receptor

INVENTOR(S):

agonists

Jacobson, Kenneth A.; Jeong, Heaok Kim; Siddiqi, Suhaib M.; Johnson, Carl R.; Secrist, John A., III;

Tiwari, Kamal N.

PATENT ASSIGNEE(S):

United States Dept. of Health and Human Services, USA

SOURCE:

U.S., 35 pp., Cont.-in-part of U.S. Ser. No. 274,628.

CODEN: USXXAM

DOCUMENT TYPE:

Patent English

LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO. DATE
		-	
US 5688774	Α	19971118	US 1995-396111 19950228
US 5773423	Α	19980630	US 1994-274628 19940713
PRIORITY APPLN. I	NFO.:		US 1993-91109 B2 19930713
			US 1993-163324 B2 19931206
			US 1994-274628 A2 19940713

MARPAT 128:34983 OTHER SOURCE(S):

GΙ

AΒ Title nucleosides I (R = H, Y; R1 = benzyl, halobenzyl; R2 = H, halo, alkylamino; X1 = H, alkyl; X2 = alkylamido; X3, X4 = independently H, OH, NH2, N3, halo, Bz) were prepd. as A3 adenosine receptor agonists. The present invention also provides a method of selectively activating an A3 adenosine receptor in a mammal, which method comprises acutely or chronically administering to a mammal in need of selective activation of its A3 adenosine receptor a therapeutically or **prophylactically** effective amt. of a compd. which binds with the A3 receptor so as to stimulate an A3 receptor-dependent response. Thus, N3-(3-iodobenzyl)-9-Me adenine was prepd. and showed an affinity at rat brain adenosine receptors (Ki = 2.23-48.3 .mu.M).

IT 163042-89-5P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(prepn. of nucleosides as a adenosine receptor agonists)

RN 163042-89-5 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-, cyclic 2,3-carbonothioate (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 170966-20-8P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. of nucleosides as a adenosine receptor agonists)

RN 170966-20-8 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-[[(3-aminophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-2,3-0-(1-methylethylidene)- (9CI) (CA INDEX NAME)

L29 ANSWER 7 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1997:12370 HCAPLUS

DOCUMENT NUMBER:

126:75189

TITLE:

Preparation of N6-(phenylalkyl)adenosine derivatives having selective affinity to adenosine A3 receptor

INVENTOR(S):

Mitsuya, Morihiro; Takeshita, Hiroshi; Ihara, Masaki

PATENT ASSIGNEE(S):

Banyu Pharma Co Ltd, Japan Jpn. Kokai Tokkyo Koho, 12 pp.

SOURCE:

CODEN: JKXXAF

DOCUMENT TYPE:

Patent

LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 08269083	A2	19961015	JP 1995-101772	19950403
PRIORITY APPLN. INFO.	:	JP	1995-101772	19950403

OTHER SOURCE(S):

MARPAT 126:75189

GI

AΒ The title compds. (I; Ar = Ph, arom. heterocyclyl; Q = lower alkylene; R1 = Cl, lower alkyl, alkoxy, or alkylthio, NR4R5; wherein R4 , R5 = H, lower alkyl; R2 = HOCH2, H2NCO, N-alkylcarbamoyl; R3 = H, OH, NH2, lower alkoxy) or pharmaceutically acceptable salts thereof, which have reduced side effects, are prepd. A remedy for hypertension, unstable angina pectoris, acute myocardial infarction, and/or brain nerve disorders contg. I is claimed. Thus, 1-(2,6-dichloro-9H-purin-9-yl)-2,3-0-isopropylidene-.beta.-D-ribofuranuronic acid (prepn. given) was condensed with 3-(2-thiazolyl)benzylamine hydrochloride (prepn. given) in EtOH at room temp. for 15 h and then with methylamine using 1-ethyl-3-(3dimethylaminopropyl) carbodiimide hydrochloride in CHCl3, followed by treatment with aq. 85% HCO2H, to give the title compd. (II). II showed Ki (competitive binding inhibition const.) of 6,990 and 1.00 for adenosine Al receptor prepn. from rat homogenized brain and adenosine A3 receptor of Rat basophilic leukemia mast cells (RBL-2H3), resp.

IT 184847-93-6P 184847-94-7P 184847-95-8P

Ι

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. of N6-(phenylalkyl)adenosine derivs. having selective affinity to adenosine A3 receptor for disease treatment)

RN 184847-93-6 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[2-chloro-6-[[[3-(2-thiazolyl)phenyl]methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

RN 184847-94-7 HCAPLUS

.beta.-D-Ribofuranuronic acid, 1-[2-chloro-6-[[[3-(2-thiazolyl)phenyl]methyl]amino]-9H-purin-9-yl]-1-deoxy-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 184847-95-8 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-N-methyl-1-[2-(methylamino)-6-[[[3-(2-thiazolyl)phenyl]methyl]amino]-9H-purin-9-yl]-2,3-O-(1-methylethylidene)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

L29 ANSWER 8 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1996:616599 HCAPLUS

DOCUMENT NUMBER:

125:317355

TITLE:

SOURCE:

Preparation of adenosine derivatives having antihypertensive, cardioprotective, anti-

ischemic and antilipolytic properties

INVENTOR(S):

Spada, Alfred P.; Fink, Cynthia A.; Myers, Michael R.

PATENT ASSIGNEE(S):

Rhone-Poulenc Rorer Pharmaceuticals Inc., USA U.S., 27 pp., Cont.-in-part of U.S. Ser. No. 229,882,

abandoned.

CODEN: USXXAM

DOCUMENT TYPE:

Patent English

LANGUAGE:

: 6

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND DATE	А	PPLICATION NO.	DATE		
US 5561134	A 19961	1001 U	S 1994-316761	19941003		
US 5364862	A 19941	1115 ປ	S 1992-955783	19921002		
CA 2188147	AA 19951	19951026 CA 1995-2188147 199504				
	C 20010		1 1990 210011.	13330113		
WO 9528160	A1 19951	1026 W	O 1995-US4800	19950419		
W: AM, AT,	AU, BB, BG,	BR, BY, CA,	CN, CZ, DE, DK,	, EE, ES, FI, GB,		
GE, HU,	IS, JP, KE,	KG, KP, KR,	KZ, LK, LR, LT,	, LU, LV, MD, MG,		
MN, MW,	MX, NO, NZ,	PL, PT, RO,	RU, SD, SE, SG,	, SI, SK, TJ, TT,		
UA, UG						
RW: KE, MW,	SD, SZ, UG,	AT, BE, CH,	DE, DK, ES, FR	, GB, GR, IE, IT,		
LU, MC,	NL, PT, SE,	BF, BJ, CF,	CG, CI, CM, GA,	GN, ML, MR, NE,		
SN, TD,	TG					
AU 9522949	A1 19951	L110 A	J 1995-22949	19950419		

```
AU 684635
                       B2
                             19971218
     EP 758897
                       Α1
                             19970226
                                            EP 1995-916451
                                                              19950419
         R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, NL, PT, SE
     CN 1148811
                             19970430
                       Α
                                            CN 1995-193170
                                                              19950419
     CN 1086704
                       В
                             20020626
     HU 75331
                       A2
                             19970528
                                            HU 1996-2829
                                                              19950419
     BR 9507327
                       Α
                             19971007
                                            BR 1995-7327
                                                              19950419
     JP 09512020
                       T2
                             19971202
                                            JP 1995-527171
                                                              19950419
                       A2
                             20000607
                                            EP 2000-103467
                                                              19950419
     EP 1006115
     EP 1006115
                       Α3
                             20000628
         R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, PT, IE
                       C2
     RU 2166319
                             20010510
                                            RU 1996-121567
                                                              19950419
     NZ 284357
                       Α
                             20010629
                                            NZ 1995-284357
                                                              19950419
     CZ 289528
                             20020213
                                            CZ 1996-3032
                                                              19950419
                       B6
     PL 182942
                                            PL 1995-316961
                       В1
                             20020531
                                                              19950419
     US 5736554
                       Α
                            19980407
                                            US 1995-455361
                                                              19950531
     US 5652366
                       Α
                            19970729
                                            US 1995-484811
                                                              19950607
     NO 9604438
                       Α
                            19961018
                                            NO 1996-4438
                                                              19961018
     FI 9604218
                       Α
                            19961217
                                            FI 1996-4218
                                                              19961018
                                            CZ 2001-2885
     CZ 290897
                       В6
                            20021113
                                                              20010808
PRIORITY APPLN. INFO.:
                                         US 1990-587884
                                                           B2 19900925
                                                           A2 19921002
                                         US 1992-955783
                                         US 1994-229882
                                                           B2 19940419
                                         US 1994-316761
                                                           A 19941003
                                                           A3 19950419
                                         CZ 1996-3032
                                         EP 1995-916451
                                                           A3 19950419
                                         WO 1995-US4800
                                                           W 19950419
OTHER SOURCE(S):
                         MARPAT 125:317355
```


AB The adenosine derivs. I [K = N or NO; Q = CH2 or O; T = R1R2NCO or R3OCH2; X = (un)substituted alkylene, cycloalkylene or cycloalkenylene Y = NR4, O or S; a = 0 or 1; Z = substituted pyrrolyl, pyrazolyl, indolyl, etc.; R1-5 = H, alkyl, aryl or heterocyclyl; R5,R6 = H, alkyl, aralkyl, etc.] are prepd. as antihypertensive, cardioprotective, antiischemic, and antilipolytic agents.

IT 165115-09-3P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT

(Reactant or reagent)

(intermediate in prepn. of adenosine deriv. drug)

RN 165115-09-3 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)-1-[6-[[6-(2-thienyl)-3-cyclohexen-1-yl]amino]-9H-purin-9-yl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

HCAPLUS COPYRIGHT 2003 ACS L29 ANSWER 9 OF 39

ACCESSION NUMBER:

1995:997439 HCAPLUS

DOCUMENT NUMBER:

124:202956

TITLE:

Preparation of adenosine derivatives having antihypertensive, cardioprotective, anti-

ischemic and antilipolytic properties.

INVENTOR(S):

Spada, Alfred P.; Fink, Cynthia A.; Myers, Michael R.

PATENT ASSIGNEE(S):

Rhone-Poulenc Rorer Pharmaceuticals Inc., USA

SOURCE:

PCT Int. Appl., 75 pp.

DOCUMENT TYPE:

CODEN: PIXXD2 Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PA:	FENT	NO.		KI	ND	DATE			A:	PPLI	CATI	ON N	o. 	DATE			
WO	WO 9528160 A1			1	19951026			WO 1995-US4800 1995					0419				
	W:	AM,	ΑT,	AU,	BB,	BG,	BR,	BY,	CA,	CN,	CZ,	DE,	DK,	EE,	ES,	FI,	GB,
		GE,	HU,	IS,	JP,	ΚE,	KG,	KP,	KR,	KZ,	LK,	LR,	LT,	LU,	LV,	MD,	MG,
		MN,	MW,	MX,	NO,	NZ,	PL,	PT,	RO,	RU,	SD,	SE,	SG,	SI,	SK,	ТJ,	TT,
		UA,	UG														
	RW:	KE,	MW,	SD,	SZ,	ŪG,	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	ΙE,	ΙΤ,
		LU,	MC,	NL,	PT,	SE,	BF,	ВJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	ML,	MR,	ΝE,
		SN,	TD,	TG													
US	5561	134		Α		1996:	1001		បៈ	S 19	94-3	1676	1	1994	1003		
AU	9522	949		A.	1	1995	1110		Αl	J 19	95-2	2949		1995	0419		
AU	6846	35		B	2	1997	1218										

SE

OTHER SOURCE(S):

MARPAT 124:202956

GI

AB Title compds. [I; K = N, NO, CH; Q = CH2, O; T = R3R4NCO, R5OCH2; X = (substituted) alkylene, cycloalkylene, cycloalkenylene; Y = NR6, O, S; a = 0, 1; R1, R2 = H, alkyl, aralkyl, carbamoyl, acyl, alkoxycarbonyl, aralkoxycarbonyl, aryloxycarbonyl; R1R2 = CO, CS, etc.; R3-R8 = H, alkyl, aryl, heterocyclyl; Z = Q1, Q2; Z1 = N, CR7, (CH)mC5, (CH)mN; m = 1, 2; Z2 = N, NR8, O, S; n = 0, 1; R9, R10 = H, OH, alkyl, hydroxyalkyl, alkylmercapto, thioalkyl, alkoxy, amino, acyl, halo, carbamoyl, etc.], were prepd. Thus, trans-2-(2-thienyl)cyclohex-4-enylamine, 6-chloropurine, and Et3N were refluxed in EtOH to give N6-[trans-2-(2-thienyl)-cyclohex-4-enyl]adenosine. The latter bound to adenosine Al and A2 receptors with IC50 = 1.66 nM and 55 nM, resp., and induced vasorelaxation in swine coronary artery with IC50 = 0.73 .mu.M.

IT 173935-07-4P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. of adenosine derivs. having antihypertensive, cardioprotective, anti-ischemic and antilipolytic properties)

173935-07-4 HCAPLUS RN

.beta.-D-Ribofuranuronamide, 1-deoxy-N-ethyl-2,3-0-(1-methylethylidene)-1-CN [6-[[6-(2-thienyl)-3-cyclohexen-1-yl]amino]-9H-purin-9-yl]-, (1S-trans)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

L29 ANSWER 10 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1995:837438 HCAPLUS

DOCUMENT NUMBER:

123:257265

TITLE:

Preparation of N6-benzyladenosine-5'-uronamides,

modified xanthine ribosides, and related compounds as

adenosine A3 receptor agonists.

INVENTOR(S):

Jacobson, Kenneth A.; Gallo-Rodriguez, Carola; Von Galen, Philip J. M.; Von Lubitz, Dag K. J. E.; Jeong,

Heaok Kim

PATENT ASSIGNEE(S):

United States Dept. of Health and Human Services, USA

SOURCE:

PCT Int. Appl., 175 pp.

DOCUMENT TYPE:

CODEN: PIXXD2 Patent

LANGUAGE:

English

3

FAMILY ACC. NUM. COUNT: PATENT INFORMATION:

PAT	TENT NO.	KIND	DATE	APPLICATION NO.	DATE
		-			
WO	9502604	A1	19950126	WO 1994-US7835	19940713
	W: AU, C	A, JP			
	RW: AT, B	E, CH, DE	, DK, ES, FR,	GB, GR, IE, IT, LU	, MC, NL, PT, SE
ΑU	9473310	A 1	19950213	AU 1994-73310	19940713
EΡ	708781	A 1	19960501	EP 1994-923445	19940713
EΡ	708781	B1	20011004		

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE
AT 206432 E 20011015 AT 1994-923445 19940713

PRIORITY APPLN. INFO.: US 1993-91109 A 19930713
US 1993-163324 A 19931206
WO 1994-US7835 W 19940713

OTHER SOURCE(S):

MARPAT 123:257265

GI

ABTitle compds. [I; R1 = RaRbNCO, HORc; Ra, Rb = H, alkyl, amino, haloalkyl, aminoalkyl, cycloalkyl, BOC-aminoalkyl; RaRbN = heterocyclyl; Rc = alkyl, amino, haloalkyl, aminoalkyl, cycloalkyl, BOC-aminoalkyl; R2 = H, halo, alkyl ether residue, amino, alkylamino, alkenyl, alkynyl, thio, alkylthio; R3 = (R) - and (S) - 1 - phenylethyl, (substituted) PhCH2, substitutedphenylethyl] and related compds., were prepd. Thus, 2-chloro-N6-(3iodobenzyl) adenine was refluxed with hexamethyldisilazane and cat. (NH4)2SO4 to give a silyl deriv. which was refluxed with N-Me I-O-acetyl-2,3-dibenzoyl-.alpha.,.beta.-D-ribofuronamide and trimethylsilyl triflate in dichloroethane to give 2-chloro-N6-(3iodobenzyl)-9-[5-(methylamido)-2,3-di-O-benzoyl-.beta.-Dribofuranosyl]adenine. The latter was stirred with NH3 in MeOH for 16 h to give 68.7% 2-chloro-N6-(3-iodobenzyl)-9-[5-(methylamido)-.beta.-Dribofuranosyl]adenine. This showed Ki = 0.23 nM in a radioligand binding assay at rat brain A3 receptors.

IT 362-75-4, 2',3'-Isopropylideneadenosine

RL: RCT (Reactant); RACT (Reactant or reagent)

(prepn. of N6-benzyladenosine-5'-uronamides, modified xanthine ribosides, and related compds. as adenosine A3 receptor agonists)

RN 362-75-4 HCAPLUS

CN Adenosine, 2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

IT 19234-66-3P 23754-29-2P 152918-54-2P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. of N6-benzyladenosine-5'-uronamides, modified xanthine ribosides, and related compds. as adenosine A3 receptor agonists)

RN 19234-66-3 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 23754-29-2 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-O-(1-methylethylidene)-, methyl ester (9CI) (CA INDEX NAME)

RN 152918-54-2 HCAPLUS

CN Benzenesulfonic acid, 4-[[[9-[N-methyl-2,3-O-(1-methylethylidene)-.beta.-D-ribofuranuronamidosyl]-9H-purin-6-yl]amino]methyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L29 ANSWER 11 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1995:508300 HCAPLUS

DOCUMENT NUMBER:

122:291434

TITLE:

2-Aralkynyl and 2-Heteroalkynyl Derivatives of Adenosine-5'-N-Ethyluronamide as Selective A2a

Adenosine Receptor Agonists

AUTHOR(S):

Cristalli, Gloria; Camaioni, Emidio; Vittori, Sauro;

Volpini, Rosaria; Borea, Pier Andrea; Conti, Annamaria; Dionisotti, Silvio; Ongini, Ennio;

Monopoli, Angela

CORPORATE SOURCE:

Dipartimento di Scienze Chimiche, Universita di

Camerino, Camerino, 62032, Italy

SOURCE:

Journal of Medicinal Chemistry (1995), 38(9), 1462-72

CODEN: JMCMAR; ISSN: 0022-2623

PUBLISHER:

American Chemical Society

DOCUMENT TYPE: LANGUAGE:

Journal English

Ι

GI

A series of new 2-aralkynyl and 2-heteroaralkynyl derivs. of AΒ 5'-(N-carboxamido)adenosine NECA, e.g. I [R = H, Ph, C6H4R1-4, 2-pyridyl, 2-furyl, 2-thiazolyl; R1 = Me, OMe, OH, NH2, F], were synthesized and studied in binding and functional assays to assess their potency for the A2a compared to A1 adenosine receptors. Compds. bearing an arom. or heteroarom. ring, conjugated to the triple bond, showed generally weaker activity at the A2a receptor and lower selectivity (A2a vs A1) than the alkylalkynyl derivs. previously reported. However, the (4-formylphenyl)ethynyl deriv. showed affinity in the low nanomolar range and high selectivity (about 160-fold) for the A2a receptor. The presence of heteroatoms improved vasorelaxant activity, I (R = 2-thiazolyl) being the most potent in the series. Introduction of methylene groups between the triple bond and the Ph ring favored the A2a binding affinity, and the 5-phenyl-1-pentynyl deriv. was found to be highly potent and selective (about 180-fold) at A2a receptors. With regard to platelet activity, the presence of arom. or heteroarom. rings decreased the potency in comparison with that of NECA and of N-ethyl-1'-deoxy-1'-(6-amino-2-hexynyl-9H-purin-9yl)-.beta.-D-ribofuranuronamide (HENECA). Introduction of a methylene group was effective in increasing antiaggregatory potency only when this group is linked to a heteroatom. From these data and those previously reported, the structure-activity relationships derived for the 2-alkynyl-substituted ribose uronamides would indicate that selective potentiation of A2a receptor affinity could be obtained by arom. rings not conjugated with the triple bond or by heteroarom. groups. As for A2a receptors on platelets, the presence of arom. rings, either conjugated or unconjugated to the triple bond, is detrimental for the antiaggregatory activity. Some of the compds. included in this series retain interesting vasodilating properties and merit further investigation for their potential in the treatment of cardiovascular disorders.

IT 141018-26-0

RL: RCT (Reactant); RACT (Reactant or reagent)

(prepn. of aralkynyl and heteroalkynyl derivs. of carboxamidoadenosine as selective A2a adenosine receptor agonists)

RN 141018-26-0 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-(6-amino-2-iodo-9H-purin-9-yl)-1-deoxy-

2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 162936-24-5P 162936-39-2P 162936-40-5P 162936-41-6P 162936-42-7P 162936-43-8P

162936-44-9P 162936-45-0P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. of aralkynyl and heteroalkynyl derivs. of carboxamidoadenosine as selective A2a adenosine receptor agonists)

RN 162936-24-5 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-2-iodo-9H-purin-9-yl)-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 162936-39-2 HCAPLUS

CN Benzenepropanoic acid, 4-[[6-amino-9-[N-ethyl-2,3-O-(1-methylethylidene)-.beta.-D-ribofuranuronamidosyl]-9H-purin-2-yl]ethynyl]- (9CI) (CA INDEX NAME)

$$NH_2$$
 NH_2
 NH_2

RN 162936-40-5 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-(5-phenyl-1-pentynyl)-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 162936-41-6 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-[3-(1H-imidazol-1-yl)-1-propynyl]-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

RN 162936-42-7 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-[3-(1-piperidinyl)-1-propynyl]-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 162936-43-8 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-[3-(4-methyl-1-piperazinyl)-1-propynyl]-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-0-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 162936-44-9 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-[3-(4-morpholinyl)-1-propynyl]-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

RN 162936-45-0 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-[3-(4-thiomorpholinyl)-1-propynyl]-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-0-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L29 ANSWER 12 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1995:346678 HCAPLUS

DOCUMENT NUMBER:

122:106395

TITLE:

preparation of adenosine sulfohydrocarbon radicals for

treatment of **ischemia** or hypoxia in mammals

INVENTOR(S):

Jacobson, Kenneth A.; Maillard, Michel C.

PATENT ASSIGNEE(S):

United States Dept. of Health and Human Services, USA

SOURCE:

PCT Int. Appl., 42 pp. CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

English

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE
----WO 9402497 A1 19940203 WO 1993-US6590 19930713

W: AU, CA, JP

RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE

AU 9347724 A1 19940214 AU 1993-47724 19930713 US 5498605 A 19960312 US 1994-278704 19940721 PRIORITY APPLN. INFO.: US 1992-914428 A 19920715 WO 1993-US6590 W 19930713

MARPAT 122:106395

OTHER SOURCE(S):

GI

AB The adenosine derivs., e.g. I, wherein at least one of R1-R6 is a sulfohydrocarbon radical, the remaining R groups are non-sulfohydrocarbon radicals, and W is -OCH2-, -NHCH2-, -SCH2-, or -NH(CO)-. Thus, 6-chloropurine riboside reacted with sulfonylamine in BuOH and NEt3 gave N6-p-sulfophenyladenosine. Methods of prepg. such compds., as well as methods of using such compds. to treat ischemia or hypoxia in mammals and pharmaceutical compns. contg. such compds. as the active ingredients, are also described. Binding of I with A1 and A2 adenosine receptors at rat brain is reported.

IT 3250-02-0

RL: RCT (Reactant); RACT (Reactant or reagent) (reaction of, in prepn. of adenosine sulfohydrocarbon radicals)

RN 3250-02-0 HCAPLUS

CN Adenosine, 2',3'-O-(ethoxymethylene)- (9CI) (CA INDEX NAME)

L29 ANSWER 13 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1995:261298 HCAPLUS

DOCUMENT NUMBER: 123:228787

TITLE: Preparation of adenosine analogs as antihypertensives

and antiischemics.

INVENTOR(S): Spada, Alfred P.; Fink, Cynthia A.; Myers, Michael R.

PATENT ASSIGNEE(S): Rhone-Poulenc Rorer Pharmaceuticals Inc., USA

SOURCE: U.S., 25 pp. Cont.-in-part of U.S. Ser. No. 587,884,

abandoned. CODEN: USXXAM

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 6

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5364862	A	19941115	US 1992-955783	19921002
CA 2092305	AA	19920326	CA 1991-2092305	19910925
AT 147074	E	19970115	AT 1991-917927	19910925
ES 2095960	Т3	19970301	ES 1991-917927	19910925
SG 80526	A1	20010522	SG 1996-3118	19910925
US 5561134	Α	19961001	US 1994-316761	19941003
US 5736554	Α	19980407	US 1995-455361	19950531
US 5652366	Α	19970729	US 1995-484811	19950607
PRIORITY APPLN.	INFO.:		US 1990-587884 B2	19900925
			US 1992-955783 A2	19921002
			US 1994-229882 B2	19940419
			US 1994-316761 A1	19941003

OTHER SOURCE(S): MARPAT 123:228787

GI

$$Q^{1=} \xrightarrow{(\mathbb{Z}^2)_n} \mathbb{R}^b \qquad \qquad Q^{2=} \xrightarrow{(\mathbb{Z}^2)_n} \mathbb{R}^a$$

AB Title compds. [I; K = N, NO, CH; Q = CH2, O; T = R2, R1R2NCO, R3OCH2; X = alkylene, cycloalkylene, cycloalkenylene; Y = NR4, O, S; a = 0, 1; Z = Q1, Q2; Z1 = N, CR5, (CH)mCR5, (CH)mN; m = 1, 2; Z2 = N, NR6, O, S; n = 0, 1; R1-R6 = H, alkyl, aryl, heterocyclyl; Ra, Rb = H, OH, alkyl, hydroxyalkyl, alkylmercaptyl, thioalkyl, alkoxy, alkoxyalkyl amino, alkylamino, carboxyl, acyl halo, carbamoyl, alkylcarbamoyl, aryl, heterocyclyl; R', R'' = H, alkyl, aralkyl, carbamoyl, alkylcarbamoyl, dialkylcarbamoyl, acyl, alkoxycarbonyl, aralkoxycarbonyl, aryloxycarbonyl; R'R'' = CO, CS, CHORc, CRdRe; Rc, Rd, Re = H, alkyl; RdRe = atoms to form a cycloalkyl ring; with provisos], were prepd. Thus, N6-[trans-2-(thiophen-2-yl)cyclohex-1-yl]adenosine, prepd. from 6-chloropurine riboside and the corresponding amine, at 5 mg/kg orally in rats reduced mean arterial blood pressure and heart rate by 45% and 22%, resp.

IT 165115-09-3P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. of adenosine analogs as antihypertensives and antiischemics)

RN 165115-09-3 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)-1[6-[[6-(2-thienyl)-3-cyclohexen-1-yl]amino]-9H-purin-9-yl]- (9CI) (CA
INDEX NAME)

L29 ANSWER 14 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1994:621999 HCAPLUS

DOCUMENT NUMBER:

121:221999

TITLE:

Preparation of adenosine kinase-inhibiting purine

nucleoside analogs as antiinflammatory agents

INVENTOR(S):

Firestein, Gary Steven; Ugarkar, Bheemarao Ganapatrao; Miller, Leonard Paul; Gruber, Harry Edward; Bullough, David Andrew; Erion, Mark David; Castellino, Angelo

John

PATENT ASSIGNEE(S):

SOURCE:

Gensia, Inc., USA PCT Int. Appl., 114 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent English LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND DATE	APPLICATION NO. DATE
		18 WO 1994-US1340 19940203
W: AT,	AU, BB, BG, BR, C	A, CH, CN, CZ, DE, DK, ES, FI, GB, HU, JP,
KP,	KR, LK, LU, MG, M	IN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE,
SK,	JA, UZ	
RW: AT,	BE, CH, DE, DK, E	S, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE,
BF,	BJ, CF, CG, CI, C	M, GA, GN, ML, MR, NE, SN, TD, TG
AU 9462365	A1 199408	29 AU 1994-62365 19940203
EP 682519	A1 199511	22 EP 1994-909558 19940203
R: CH,	E, FR, GB, IT, L	J
		08 US 1994-349125 19941201
PRIORITY APPLN. I	IFO.:	US 1993-14190 A 19930203
		US 1989-408707 B2 19890915
		US 1990-466979 B2 19900118
		US 1991-647117 B2 19910123
		US 1991-812916 B2 19911223
		US 1994-192645 B1 19940203
		WO 1994-US1340 W 19940203
OTHER SOURCE(S):	MARPAT 12	1:221999

AΒ Novel nucleosides I [A = O, CH2, S; B' = (CH2)nB, alkenyl, alkynyl; B = H, alkyl, alkoxy, NH2, alkylamino, etc.; C1, C2 = H, acyl, hydrocarbyloxycarbonyl, or C1C2 = C(:0), .alpha.-alkoxyalkylidene; X = CD; D = H, halo, alkyl, cyano, CO2H, etc.; Y = N, CE; E = H, halo, alkyl, alkylthio; F = alkyl, aryl, halo, cyano, indolyl, pyrrolidinyl, etc.; G = H, halo, alkyl, alkoxy, alkylamino, alkylthio; n = 1-4], prepd. by multistep procedures which are described, selectively inhibit adenosine kinase and are useful in treatment of conditions characterized by an inflammatory response. Such conditions include sepsis, arthritis, autoimmune disease, burns, psoriasis, conjunctivitis, etc. Thus, mice with endotoxemia resulting from injection of Escherichia coli lipopolysaccharide showed a dose-dependent increase in survival in response to i.v. injection of the adenosine kinase inhibitor, 4-amino-1-(5-amino-5-deoxy-1-.beta.-D-ribofuranosyl)-3-bromopyrazolo[3,4d]pyrimidine-HCl; this effect was antagonized by the adenosine receptor antagonist 8-(p-sulfophenyl)theophylline.

IT 20789-78-0 21950-36-7

RL: RCT (Reactant); RACT (Reactant or reagent)
(prepn. of adenosine kinase-inhibiting purine nucleoside analogs as antiinflammatory agents)

RN 20789-78-0 HCAPLUS

CN Adenosine, 8-bromo-2',3'-O-(1-methylethylidene)-, 5'-(4-methylbenzenesulfonate) (9CI) (CA INDEX NAME)

RN 21950-36-7 HCAPLUS
CN Adenosine, 5'-amino-5'-deoxy-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

$$\begin{array}{c} \text{Me} \\ \text{Me} \\ \text{O} \\ \text{R} \\ \text{R} \\ \text{O} \\ \text{N} \\$$

IT 144927-45-7P 158077-68-0P 158077-70-4P
158077-71-5P 158077-74-8P
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
(Reactant or reagent)

(prepn. of adenosine kinase-inhibiting purine nucleoside analogs as antiinflammatory agents)

RN 144927-45-7 HCAPLUS

CN Adenosine, 8-bromo-N-formyl-2',3'-O-(1-methylethylidene)-, 5'-(4-methylbenzenesulfonate) (9CI) (CA INDEX NAME)

RN 158077-68-0 HCAPLUS
CN Adenosine, 5',8-diazido-5'-deoxy-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 158077-70-4 HCAPLUS

CN 9H-Purine, 6-(2,3-dihydro-1H-indol-1-yl)-9-[2,3-O-(1-methylethylidene)-.beta.-D-ribofuranosyl]- (9CI) (CA INDEX NAME)

RN 158077-71-5 HCAPLUS

CN 9H-Purine, 6-(2,3-dihydro-1H-indol-1-yl)-9-[2,3-O-(1-methylethylidene)-5-O-[(4-methylphenyl)sulfonyl]-.beta.-D-ribofuranosyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 158077-74-8 HCAPLUS

CN Adenosine, 5',8-diazido-5'-deoxy-N-formyl-2',3'-O-(1-methylethylidene)-(9CI) (CA INDEX NAME)

L29 ANSWER 15 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1993:496074 HCAPLUS

DOCUMENT NUMBER: 119:96074

Preparation of adenosine derivatives as cardiovascular TITLE:

agents.

INVENTOR(S): Matsuda, Akira; Azebiru, Toichi; Yamaguchi, Toyofumi;

Watanabe, Yoko; Miyashita, Takanori

Yamasa Shoyu Co., Ltd., Japan PATENT ASSIGNEE(S): SOURCE:

Jpn. Kokai Tokkyo Koho, 29 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO. DATE
JP 05025195	A2	19930202	JP 1991-202598 19910717
JP 3025559	B2	20000327	•
PRIORITY APPLN. INFO.	:		JP 1990-191285 A1 19900719
			JP 1990-218690 A1 19900820

MARPAT 119:96074 OTHER SOURCE(S):

GΙ

The title compds. [I; R1 = (un)substituted carbamoyl, CO2H, AB

alkoxycarbonyl, CH2-N3, (un) substituted aminomethyl, etc.; R2 = (hydroxy)alkyl], useful for treatment of brain ischemia, heart ischemia, and hypertension, are prepd. E.g., 2-iodoadenosine was condensed with acetone, the resulting 2',3'-O-isopropylidene deriv. in MeCN-CHCl3 was oxidized with K periodate in H2O, the product was esterified with MeOH, the resulting Me ester was treated with methanolic NH3, the resulting carboxamide was heated with 1-hexyne in DMF contg. Pd(PPh3)2, CuCl, and Et3N, and the resulting 2-(1-hexynyl)-2',3'-isopropylideneadenosine-4'-carboxamide was deprotected to give 2-(1-hexynyl)-adenosine-4'-carboxamide, which had an ED50 of 0.13 .mu.g/Kg in spontaneously hypertensive mice.

IT 142102-95-2P

> RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(prepn. of, as cardiovascular agent)

RN 142102-95-2 HCAPLUS

Adenosine, 5'-deoxy-2-(1-hexynyl)-5'-[[(methylamino)thioxomethyl]amino]-CN 2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

```
TΤ
    141018-25-9P 141018-26-0P 142102-84-9P
     142102-85-0P 142102-86-1P 142102-87-2P
     142102-90-7P 142102-91-8P 142102-92-9P
     142102-93-0P 142102-94-1P 142103-01-3P
     142103-03-5P 142103-04-6P 149037-59-2P
     149037-60-5P 149037-61-6P
     RL: SPN (Synthetic preparation); PREP (Preparation)
        (prepn. of, as intermediate for cardiovascular agents)
RN
    141018-25-9 HCAPLUS
    Adenosine, 2-iodo-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)
CN
```

RN 141018-26-0 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-(6-amino-2-iodo-9H-purin-9-yl)-1-deoxy-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 142102-84-9 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-(6-amino-2-iodo-9H-purin-9-yl)-1-deoxy-2,3-O-(1-methylethylidene)-, methyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 142102-85-0 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-[6-amino-2-(1-hexynyl)-9H-purin-9-yl]-1-deoxy-2,3-0-(1-methylethylidene)-, methyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 142102-86-1 HCAPLUS

CN Adenosine, 2-(1-hexynyl)-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 142102-87-2 HCAPLUS

CN Adenosine, 5'-azido-5'-deoxy-2-(1-hexynyl)-2',3'-O-(1-methylethylidene)-(9CI) (CA INDEX NAME)

RN 142102-90-7 HCAPLUS
CN Adenosine, 5'-amino-5'-deoxy-2-(1-hexynyl)-2',3'-0-(1-methylethylidene)(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 142102-91-8 HCAPLUS
CN Adenosine, 5'-deoxy-5'-(formylamino)-2-(1-hexyny1)-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

RN 142102-92-9 HCAPLUS

CN Adenosine, 5'-(acetylamino)-5'-deoxy-2-(1-hexynyl)-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 142102-93-0 HCAPLUS

CN Adenosine, 5'-deoxy-2-(1-hexynyl)-2',3'-O-(1-methylethylidene)-5'[(methylsulfonyl)amino]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 142102-94-1 HCAPLUS

CN Adenosine, 5'-deoxy-2-(1-hexynyl)-5'-[[(methylamino)carbonyl]amino]-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

RN 142103-01-3 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-(1-hexynyl)-9H-purin-9-yl]-1-deoxy-2,3-0-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 142103-03-5 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-(1-hexynyl)-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

RN 142103-04-6 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-(1-hexynyl)-9H-purin-9-yl]-N-cyclopropyl-1-deoxy-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 149037-59-2 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-2-iodo-9H-purin-9-yl)-1-deoxy-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$\begin{array}{c} \text{Me} \\ \text{Me} \\ \text{S} \\ \text{S} \\ \text{N} \\ \text{N} \\ \text{NH}_2 \\ \end{array}$$

RN 149037-60-5 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-[6-amino-2-(3-hydroxy-1-propynyl)-9H-purin-9-yl]-1-deoxy-2,3-O-(1-methylethylidene)-, methyl ester (9CI) (CA INDEX NAME)

RN 149037-61-6 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-(3-hydroxy-1-propyny1)-9H-purin-9-yl]-1-deoxy-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L29 ANSWER 16 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1993:234420 HCAPLUS

DOCUMENT NUMBER:

118:234420

TITLE:

Adenosine kinase inhibitors

INVENTOR(S):

Browne, Clinton E.; Ugarkar, Bheemarao G.; Mullane, Kevin M.; Gruber, Harry E.; Bullough, David A.; Erion,

Mark D.; Castellino, Angelo

PATENT ASSIGNEE(S):

Gensia Pharmaceuticals, Inc., USA

SOURCE:

Eur. Pat. Appl., 87 pp.

DOCUMENT TYPE:

CODEN: EPXXDW Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

14

PATENT INFORMATION:

PATE	NT N	10.		KI	ND	DATE			Α	PPLI	CATI	ои и	ο.	DATE			
									_								
EP 4	9661	17		Α	1	1992	0729		E	P 19	92-3	0058	0	1992	0123		
EP 496617		В	1	1999	1201												
1	p.	ΔΨ	BE	CH	DE	DK	FS	FR	GB	GR	TT.	T.T	T.II.	MC	NT.	РΨ	SE

CA	2100863	}	AA	19920724		CA	1992-210086	63	19920121
WO	9212718	}	A1	19920806		WO	1992-US515		19920121
	W: AL	, CA,	FI, NO						
AU	665184		В2	19951221		ΑU	1992-13599		19920121
AU	9213599)	A1	19920827					
JP	0511259	15	A2	19930507		JΡ	1992-10094		19920123
$_{ m IL}$	100742		A1	19960618		IL	1992-100742	2	19920123
AT	187175		E	19991215		ΑT	1992-300580)	19920123
NO	9302628	}	Α	19930923		ИО	1993-2628		19930721
NO	180418		В	19970106					
NO	180418		С	19970416					
US	5646128	}	Α	19970708		US	1994-349125	5	19941201
PRIORITY	APPLN.	INFO.	:		US	199	1-647117	Α	19910123
					US	199	1-812916	Α	19911223
					បន	198	9-408707	В2	19890915
					US	199	0-466979	B2	19900118
					WO	199	2-US515	W	19920121
					US	199	3-14190	В2	19930203
					US	199	4-192645	В1	19940203

OTHER SOURCE(S):

MARPAT 118:234420

GΙ

- AB Nucleoside analogs I [A = O, CH2, S; B = (un)substituted C1-4 alkyl; C, C1 = H, protective group(s); X = (un)substituted CH; Y = N, (un)substituted CH; F = alkyl, aryl, aralkyl, halogen, (un)substituted NH2, substituted OH or SH, cyano, cyanoalkyl; G = H, halogen, alkyl, alkoxy, alkylamino, alkylthio] were prepd. Thus, the analog II was prepd. from the pyrimidinone via the azide. II has an adenosine kinase-inhibiting ED50 of <10 nM and was effective in improving post-ischemic functional recovery in isolated guinea pig heart and in preclin. angina models.
- IT 21950-36-7

RL: RCT (Reactant); RACT (Reactant or reagent)
 (formylation of)

- RN 21950-36-7 HCAPLUS
- CN Adenosine, 5'-amino-5'-deoxy-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry. Rotation (-).

IT 144927-50-4P 144927-52-6P

RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. and deisopropylidenation of)

RN 144927-50-4 HCAPLUS

CN Adenosine, 5'-deoxy-5'-(formylamino)-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 144927-52-6 HCAPLUS

CN 9H-Purine, 9-[2,3-O-(1-methylethylidene)-5-O-[(4-methylphenyl)sulfonyl]-.beta.-D-ribofuranosyl]-6-(octahydro-1H-indol-1-yl)- (9CI) (CA INDEX NAME)

IT 144927-45-7P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and reaction of, with azide)

RN 144927-45-7 HCAPLUS

CN Adenosine, 8-bromo-N-formyl-2',3'-O-(1-methylethylidene)-, 5'-(4-methylbenzenesulfonate) (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 144927-51-5P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and tosylation of)

RN 144927-51-5 HCAPLUS

CN 9H-Purine, 9-[2,3-O-(1-methylethylidene)-.beta.-D-ribofuranosyl]-6-(octahydro-1H-indol-1-yl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L29 ANSWER 17 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1992:470205 HCAPLUS

DOCUMENT NUMBER:

117:70205

TITLE:

Nucleosides and nucleotides. 112.

2-(1-Hexyn-1-yl)adenosine-5'-uronamides: a new entry

of selective A2 adenosine receptor agonists with

potent antihypertensive activity

AUTHOR(S):

Homma, Hiroshi; Watanabe, Yohko; Abiru, Toichi;

CORPORATE SOURCE:

Murayama, Toshihiko; Nomura, Yasuharu; Matsuda, Akira Fac. Pharm. Sci., Hokkaido Univ., Sapporo, 060, Japan

SOURCE:

Journal of Medicinal Chemistry (1992), 35(15), 2881-90

CODEN: JMCMAR; ISSN: 0022-2623

DOCUMENT TYPE:

YPE: Journal English

LANGUAGE:

GΙ

Chem. modifications of the potent A2 adenosine receptor agonist AΒ 2-(hexynyl)adenosine I (R = R1, R2 = OH) (II) at the 5'-position have been carried out to find more potent and selective A2 agonists. These analogs were evaluated for adenosine A1 and A2 receptor binding affinity in rat brain tissues and antihypertensive effects in spontaneously hypertensive rats (SHR). Among the series of compds., I (R = R3, R4 = cyclopropyl) had the most potent affinity to the A2 receptor with a Ki of 2.6 nM, which is essentially the same as that of the parent agonist II. However, the most selective agonist for the A2 receptor was 2-(1-hexyn-1-y1) adenosine-5'-N-methyluronamide I (R = R3, R4 = Me) with a Ki of 11 nM and a 162-fold selectivity. Therefore, the A1/A2 selectivity was consequently increased. Other 5'-deoxy-5'-substituted derivs., e.g. I [R = R1, R2 = C1 (III); R = R3, R4 = H, Me, NHMe), were also prepd. Amongthese nucleosides, no active compds. with potent or selective affinities to both receptors were found except III. Although glycosyl conformations and sugar-puckering of these nucleosides were studied by 1H NMR spectroscopy, there were no pos. correlations between active and inactive agonists. I (R = R3, R4 = H, cyclopropyl) had a potent hypotensive effect at ED30 values of 0.18 and 0.17 .mu.g/kg, resp., upon i.v. administration to anesthetized SHR.

IT 142102-85-0P 142102-90-7P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and amidation of)

RN 142102-85-0 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-[6-amino-2-(1-hexynyl)-9H-purin-9-yl]-1-deoxy-2,3-0-(1-methylethylidene)-, methyl ester (9CI) (CA INDEX NAME)

RN 142102-90-7 HCAPLUS

CN Adenosine, 5'-amino-5'-deoxy-2-(1-hexynyl)-2',3'-O-(1-methylethylidene)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 142102-86-1P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and azidolysis of)

RN 142102-86-1 HCAPLUS

CN Adenosine, 2-(1-hexynyl)-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

IT 142102-84-9P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and coupling of, with hexyne)

RN 142102-84-9 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-(6-amino-2-iodo-9H-purin-9-yl)-1-deoxy-2,3-O-(1-methylethylidene)-, methyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 142102-91-8P 142102-92-9P 142102-93-0P

142102-94-1P 142102-95-2P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and deblocking of)

RN 142102-91-8 HCAPLUS

CN Adenosine, 5'-deoxy-5'-(formylamino)-2-(1-hexynyl)-2',3'-0-(1-methylethylidene)- (9CI) (CA INDEX NAME)

RN 142102-92-9 HCAPLUS

CN Adenosine, 5'-(acetylamino)-5'-deoxy-2-(1-hexynyl)-2',3'-0-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 142102-93-0 HCAPLUS

CN Adenosine, 5'-deoxy-2-(1-hexynyl)-2',3'-O-(1-methylethylidene)-5'[(methylsulfonyl)amino]- (9CI) (CA INDEX NAME)

RN 142102-94-1 HCAPLUS

CN Adenosine, 5'-deoxy-2-(1-hexynyl)-5'-[[(methylamino)carbonyl]amino]-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 142102-95-2 HCAPLUS

CN Adenosine, 5'-deoxy-2-(1-hexynyl)-5'-[[(methylamino)thioxomethyl]amino]-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 142103-01-3 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-(1-hexynyl)-9H-purin-9-yl]-1-deoxy-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

RN 142103-02-4 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-(1-hexynyl)-9H-purin-9-yl]-1-deoxy-N-methyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 142103-03-5 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-(1-hexynyl)-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

RN 142103-04-6 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-(1-hexynyl)-9H-purin-9-yl]-N-cyclopropyl-1-deoxy-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

Me
$$\frac{H}{N}$$
 $\frac{H}{N}$ \frac

RN 142103-05-7 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-(1-hexynyl)-9H-purin-9-yl]-1-deoxy-2,3-O-(1-methylethylidene)-N-propyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 142103-06-8 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-(1-hexynyl)-9H-purin-9-yl]-N-butyl-1-deoxy-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

IT 141018-26-0P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and esterification of)

RN 141018-26-0 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-(6-amino-2-iodo-9H-purin-9-yl)-1-deoxy-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 142102-87-2P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn., chlorination, and redn. of)

RN 142102-87-2 HCAPLUS

CN Adenosine, 5'-azido-5'-deoxy-2-(1-hexynyl)-2',3'-O-(1-methylethylidene)-(9CI) (CA INDEX NAME)

IT 141018-25-9P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn., oxidn., and coupling of, with hexyne)

RN 141018-25-9 HCAPLUS

CN Adenosine, 2-iodo-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L29 ANSWER 18 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1992:236101 HCAPLUS

DOCUMENT NUMBER: 116:236101

TITLE: Preparation of new adenosine derivatives as

cardiovascular agents.

INVENTOR(S):
Gadient, Fulvio

PATENT ASSIGNEE(S): Sandoz-Patent-G.m.b.H., Germany

SOURCE: Ger. Offen., 8 pp.

CODEN: GWXXBX

DOCUMENT TYPE:

Patent

LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 4025879	A1	19920220	DE 1990-4025879	19900816

```
CA 2064869
                       AA
                            19920217
                                            CA 1991-2064869
                                                             19910813
                            19920305
                                            WO 1991-CH170
                                                             19910813
    WO 9203463
                       Α1
         W: AU, CA, CS, FI, HU, JP, KR, PL, SU, US
         RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LU, NL, SE
    AU 9183032
                            19920317
                                           AU 1991-83032
                                                             19910813
                       Α1
    AU 638600
                       B2
                            19930701
    EP 496852
                       A1
                            19920805
                                            EP 1991-913964
                                                             19910813
         R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE
    HU 60504
                       Α2
                            19920928
                                            HU 1992-1080
                                                             19910813
     JP 05502889
                       Т2
                            19930520
                                            JP 1991-513113
                                                             19910813
     ZA 9109267
                            19930524
                                            ZA 1991-9267
                                                             19911212
                       Α
                                            RO 1992-152
     RO 110236
                       В1
                            19951130
                                                             19920213
PRIORITY APPLN. INFO.:
                                         DE 1990-4025879 A
                                                             19900816
                                         WO 1991-CH170
                                                          A 19910813
OTHER SOURCE(S):
                         MARPAT 116:236101
```

GI

AΒ The title compds. [I; R1 = H, alkyl, cycloalkyl, Ph, (substituted) phenylalkyl; R2 = H, alkyl, halo, cycloalkyl; R3 = CH2OH, CONHR4; R4 = H, alkyl, cycloalkyl; X = 0, S], useful for the treatment of hypertension, thrombolism, supraventricular tachycardia, etc. (no data), were prepd. Cyclocondensation of 1'-deoxy-1'-(6-p-methoxyanilino-2methyl-9-purinyl)-.beta.-D-ribofuranuronic acid N-ethylamide with 1,1'-carbonyldi-1H-imidazole in DMF at room temp. for 5 h gave I [R1 = p-MeOC6H4, R2 = Me, R3 = EtNHCO, X = O]. IT 141426-21-3P 141426-22-4P 141426-23-5P 141426-24-6P 141426-25-7P 141426-26-8P 141426-27-9P 141426-28-0P 141426-29-1P 141426-30-4P 141426-31-5P 141426-32-6P 141426-33-7P 141426-34-8P 141426-35-9P 141426-36-0P 141426-37-1P 141426-38-2P 141426-39-3P 141426-40-6P 141426-41-7P 141426-42-8P 141426-43-9P 141448-37-5P RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(prepn. of, as cardiovascular agent)

RN 141426-21-3 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-N-ethyl-1-[6-[(4-methoxyphenyl)amino]-2-methyl-9H-purin-9-yl]-, cyclic 2,3-carbonate (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 141426-22-4 HCAPLUS

CN Adenosine, N-cyclohexyl-, cyclic 2',3'-carbonate (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 141426-23-5 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-(cyclopentylamino)-2-methyl-9H-purin-9-yl]-1-deoxy-N-ethyl-, cyclic 2,3-carbonate (9CI) (CA INDEX NAME)

RN 141426-24-6 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-(cyclopentylamino)-9H-purin-9-yl]-1-deoxy-N-ethyl-, cyclic 2,3-carbonate (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 141426-25-7 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-(cyclohexylamino)-9H-purin-9-yl]-1-deoxy-N-ethyl-, cyclic 2,3-carbonate (9CI) (CA INDEX NAME)

RN 141426-26-8 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-N-ethyl-1-[6-[(4-methoxyphenyl)amino]-9H-purin-9-yl]-, cyclic 2,3-carbonate (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 141426-27-9 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-N-ethyl-1-[6-(phenylamino)-9H-purin-9-yl]-, cyclic 2,3-carbonate (9CI) (CA INDEX NAME)

RN 141426-28-0 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-N-ethyl-1-[6-[(4-fluorophenyl)amino]-9H-purin-9-yl]-, cyclic 2,3-carbonate (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 141426-29-1 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-[(4-chlorophenyl)amino]-9H-purin-9-yl]-1-deoxy-N-ethyl-, cyclic 2,3-carbonate (9CI) (CA INDEX NAME)

RN 141426-30-4 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-(cyclohexylamino)-2-methyl-9H-purin-9-yl]-1-deoxy-N-ethyl-, cyclic 2,3-carbonate (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 141426-31-5 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-N-ethyl-1-[2-methyl-6-[(1-methylethyl)amino]-9H-purin-9-yl]-, cyclic 2,3-carbonate (9CI) (CA INDEX NAME)

RN 141426-32-6 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-N-ethyl-1-[2-methyl-6-(phenylamino)-9H-purin-9-yl]-, cyclic 2,3-carbonate (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 141426-33-7 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-N-ethyl-1-[6-[(4-fluorophenyl)amino]-2-methyl-9H-purin-9-yl]-, cyclic 2,3-carbonate (9CI) (CA INDEX NAME)

RN 141426-34-8 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-[(4-chlorophenyl)amino]-2-methyl-9H-purin-9-yl]-1-deoxy-N-ethyl-, cyclic 2,3-carbonate (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 141426-35-9 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-N-ethyl-1-[6-[(4-methoxyphenyl)amino]-2-methyl-9H-purin-9-yl]-, cyclic 2,3-carbonothioate (9CI) (CA INDEX NAME)

RN 141426-36-0 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-2-methyl-9H-purin-9-yl)-1-deoxy-N-ethyl-, cyclic 2,3-carbonate (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 141426-37-1 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-N-ethyl-1-[6-[(4-methoxyphenyl)amino]-9H-purin-9-yl]-, cyclic 2,3-carbonothioate (9CI) (CA INDEX NAME)

RN 141426-38-2 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-[(4-chlorophenyl)amino]-2-methyl-9H-purin-9-yl]-1-deoxy-N-ethyl-, cyclic 2,3-carbonothioate (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 141426-39-3 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-N-ethyl-1-[6-[(4-fluorophenyl)amino]-2-methyl-9H-purin-9-yl]-, cyclic 2,3-carbonothioate (9CI) (CA INDEX NAME)

RN 141426-40-6 HCAPLUS

CN Adenosine, N-(4-methoxyphenyl)-, cyclic 2',3'-carbonate (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 141426-41-7 HCAPLUS

CN Adenosine, N-(4-chlorophenyl)-, cyclic 2',3'-carbonate (9CI) (CA INDEX NAME)

RN 141426-42-8 HCAPLUS

CN Adenosine, N-(1-ethylpropyl)-, cyclic 2',3'-carbonate (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 141426-43-9 HCAPLUS

CN Adenosine, 2-methyl-, cyclic 2',3'-carbonate (9CI) (CA INDEX NAME)

RN 141448-37-5 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-deoxy-N-ethyl-1-[6-[(1-methylethyl)amino]-9H-purin-9-yl]-, cyclic 2,3-carbonate (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L29 ANSWER 19 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1992:59857 HCAPLUS

DOCUMENT NUMBER: 116:59857

TITLE: Nucleosides and nucleotides. 103.

2-Alkynyladenosines: a novel class of selective

adenosine A2 receptor agonists with potent

antihypertensive effects

AUTHOR(S): Matsuda, Akira; Shinozaki, Misao; Yamaguchi, Toyofumi;

Homma, Hiroshi; Nomoto, Rie; Miyasaka, Tadashi;

Watanabe, Yohko; Abiru, Toichi

CORPORATE SOURCE: Fac. Pharm. Sci., Hokkaido Univ., Sapporo, 060, Japan

SOURCE: Journal of Medicinal Chemistry (1992), 35(2), 241-52

CODEN: JMCMAR; ISSN: 0022-2623

DOCUMENT TYPE: Journal LANGUAGE: English

OTHER SOURCE(S): CASREACT 116:59857

GI

AΒ The synthesis and receptor-binding activities at A1 and A2 adenosine receptors for a series of 2-alkynyladenosines, are described. The Pd-catalyzed cross-coupling reaction of 2-iodoadenosine (I; R = iodo) with various terminal alkynes in the presence of bis(triphenylphosphine)palladi um dichloride and CuI in DMF contg. NEt3 gives 2-alkynyladenosines I [R = C.tplbond.CR2,R2 = Et, Pr, Bu, pentyl, hexyl, heptyl, octyl, decyl, dodecyl, tetradecyl, hexadecyl, CH2OH, CH2CH2OH, CH2OMe, CH2O (CH2) 3Me]. An economical synthetic method for the prepn. of 9-(2,3,5-tri-0-acetyl-1-.beta.-D-ribofuranosyl)-6-chloro-2-iodopurine (II; R2 = iodo), which is a precursor of I (R = iodo) is also included. Several transformation reactions of 2-(1-octyn-1-yl) adenosine I [R = C.tplbond.C (CH2-Me] and 2-(1-ethyn-1-yl) adenosine I (R = C.tplbond.CH) and a similar cross-coupling reaction of 6-chloropurine deriv. II (R2 = H) and 8-bromoadenosine III with 1-octyne are also reported. Many of these 2-alkynyladenosines tested for Al and A2 adenosine receptor binding activities in rat brain are selective for the A2 adenosine receptor. Among them, 2-(1-hexyn-1-yl) adenosine has the highest affinity for both A1 and A2 receptors with Ki values of 126.5 and 2.8 nM, resp. structure-activity relationship of this series of compds. including 6- or 8-alkynylpurine nucleosides and 2-alkyl- and 2-alkenyladenosines is discussed in terms of potency at both receptor subtypes. Addnl., how hypotensive activity and heart rate decrease brought on by I (R =C.tplbond.CR3) and some other compds. with spontaneously hypertensive rats are proportional to the order of the potency to both A1 and A2 binding affinities, are described. Thus, 2-alkynyladenosines are interesting and promising as antihypertensive agents that should be considered for further detailed preclin. evaluation. TT 137915-39-0P 137915-40-3P

Searched by Paul Schulwitz (703)305-1954

RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepn. of)

RN 137915-39-0 HCAPLUS

CN Adenosine, 2',3'-O-(3-ethoxy-3-oxopropylidene)-2-iodo-, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 137915-40-3 HCAPLUS

CN Adenosine, 2',3'-O-(3-ethoxy-3-oxopropylidene)-2-iodo-, (S)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L29 ANSWER 20 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1992:6922 HCAPLUS

DOCUMENT NUMBER:

116:6922

TITLE:

Preparation of 2-aralkoxy- and 2-alkoxyadenosine

derivatives as coronary vasodilators and

antihypertensive agents

INVENTOR(S):

Olsson, Ray A.; Thompson, Robert D.

PATENT ASSIGNEE(S): SOURCE:

Whitby Research, Inc., USA PCT Int. Appl., 31 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION:

PATENT NO.				KIND DATE													
WO							WO 1991-US1023										
	W:	ΑU,	BB,	BG,	BR,	CA,	FI,	HU,	JP,	ΚP,	KR,	LK,	MC,	MG,	MW,	NO,	RO,
		SD,	SU														
	RW:	ΑT,	BE,	BF,	ВJ,	CF,	CG,	CH,	CM,	DE,	DK,	ES,	FR,	GΑ,	GB,	GR,	IT,
		LU,	ML,	MR,	NL,	SE,	SN,	TD,	ΤG								
	5140																
AU	9173	255		A.	1	1991	0918		A	U 19	91-7	3255		1991	0214		
AU	6457	84		B	2	1994	0127										
EP	5155	14		A.	1	1992	1202		E	P 19	91-9	0481	3	1991	0214		
EP	5155	14		В:	1	2000	0830										
	R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE		
	0550								J	P 19	91-5	0557	1	1991	0214		
	3160																
	1959																
	21509																
	20748																
US	3649	4		E		2000	0111		U	S 19	93-9	8180		1993	0726		
PRIORITY	Y APPI	LN.	INFO	. :				τ	JS 1	990~	4822	82	Α	1990	0220		
									10 1	991-	US10:	23	Α	1991	0214		
OTHER SO	DURCE	(S):			MAR	PAT :	116:6	5922									

AB Title compds. I [R1 = (substituted) C1-6 hydrocarbyl, cyclic hydrocarbyl, (substituted) Ph, (substituted) thienyl, (substituted) naphthyl, (substituted) indolyl, etc.; R2 = (hydroxy) C1-4 hydrocarbyl; X = 2H or O; B = O, N; with provisos] were prepd. as adenosine A2 receptor agonists useful as coronary vasodilators and antihypertensives. Thus, n-BuLi in hexanes was added to a soln. of 4-FlC6H4(CH2)2OH in THF at 10.degree.. The soln. was stirred 15 min at room temp., then 2-chloro-2',3'-O-(ethoxymethylidene)adenosine was added and the mixt. was refluxed 4 days. The resulting product was deprotected by HOAc hydrolysis to give 2-[2-(4-fluorophenyl)ethoxy]adenosine (II). II at 0.9 nM gave a half-maximal increase in coronary blood flow in guinea pigs vs. 49.7 nM

for adenosine.

IT 24639-06-3 56720-43-5

RL: RCT (Reactant); RACT (Reactant or reagent)

(alkoxylation of, in prepn. of adenosine A2 receptor agonists)

RN 24639-06-3 HCAPLUS

CN Adenosine, 2-chloro-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 56720-43-5 HCAPLUS

CN Adenosine, 2-chloro-2',3'-O-(ethoxymethylene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 137817-86-8P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and hydrolysis of, in prepn. of adenosine A2 receptor agonists)

RN 137817-86-8 HCAPLUS

CN Adenosine, 2',3'-O-(1-methylethylidene)-2-(3-phenylpropoxy)- (9CI) (CA INDEX NAME)

Me
$$\frac{HO}{R}$$
 $\frac{N}{R}$ $\frac{N}{N}$ $\frac{O}{NH_2}$ $\frac{Ph}{N}$

L29 ANSWER 21 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1991:185903 HCAPLUS

DOCUMENT NUMBER: 114:185903

TITLE: 2-Aralkoxyadenosines: potent and selective agonists

at the coronary artery A2 adenosine receptor

AUTHOR(S): Ueeda, Masayuki; Thompson, Robert D.; Arroyo, Luis H.;

Olsson, Ray A.

CORPORATE SOURCE: Dep. Intern. Med., Univ. South Florida, Tampa, FL,

33612, USA

SOURCE: Journal of Medicinal Chemistry (1991), 34(4), 1340-4

CODEN: JMCMAR; ISSN: 0022-2623

DOCUMENT TYPE: Journal

LANGUAGE: English

GΙ

AB A Langendorff guinea pig heart prepn. served for the assay of agonist potency of 26 2-aralkoxyadenosines I (R = Ph, Ph(CH2)n, R1C6H4CH2CH2, R2CH2CH2, n = 2-5; R1 = 2-, 3-, 4-F, 2-, 3-, 4-Cl, 2-, 3-, 4-MeO, 2-, 3-, 4-Me, R2 = 2-, 3-thienyl, 3-indolyl, 1-, 2-naphthyl, 3,4-(MeO)2C6H3, 3,4,5-(MeO)3C6H2] at the Al and A2 receptors of, resp., the atrioventricular node (conduction block) and coronary arteries (vasodilation). All of the analogs are weak agonists at the Al receptor, requiring concns. >9 .mu.M to cause heart block. At the A2 receptor 2-phenethoxyadenosine (I; R= PhCH2CH2) is the most potent of the 2-phenylalkyladenosines. The activity of ring-substituted (F, Cl, CH3,

and OCH3) 2-phenethoxyadenosines increases ortho < meta < para. The EC50s of coronary vasodilation of 190 pM and an Al/A2 selectivity ratio of 44000. Aryl groups such as thienyl, indoloyl, or naphthyl also support A2 agonist activity. Although the 2-oxoadenosine is 3 times more potent than 2-aminoadenosine, the activities of the Ph derivs. are markedly different; 2-phenoxyadenosine (I; R = Ph) is 23 times weaker than 2-(phenylamino) adenosine (CV-1808).

IT 24639-06-3 56720-43-5

RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction of, with lithium alkoxides or phenoxides, aralkoxyadenosines
 via)

RN 24639-06-3 HCAPLUS

CN Adenosine, 2-chloro-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 56720-43-5 HCAPLUS

CN Adenosine, 2-chloro-2',3'-O-(ethoxymethylene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L29 ANSWER 22 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1991:185902 HCAPLUS

DOCUMENT NUMBER:

114:185902

TITLE:

2-Alkoxyadenosines: potent and selective agonists at

the coronary artery A2 adenosine receptor

AUTHOR(S): Ueeda, Masayuki; Thompson, Robert D.; Arroyo, Luis H.;

Olsson, Ray A.

Dep. Intern. Med., Univ. South Florida, Tampa, FL, CORPORATE SOURCE:

33612, USA

Journal of Medicinal Chemistry (1991), 34(4), 1334-9 SOURCE:

CODEN: JMCMAR; ISSN: 0022-2623

DOCUMENT TYPE:

Journal

LANGUAGE:

English

OTHER SOURCE(S):

CASREACT 114:185902

A Langendorff guinea pig heart prepn. served for the assay of agonist activity of a series of 24 2-alkoxyadenosines at the A1 and A2 adenosine receptors of, resp., the atrioventricular node (conduction block) and coronary arteries (vasodilation). Activities are low at the Al receptor and do not show a clear relationship to the size or hydrophobicity of the C(2) substituent. All the analogs are more potent at the A2 receptor, activity varying directly with the size and hydrophobicity of the alkyl group. The most potent analog in this series, 2-(2-cyclohexylethoxy) adenosine, has an EC50 of 1 nM for coronary vasodilation and is 8700-fold selective for the A2 receptor.

IT 56720-43-5 131973-27-8

RL: RCT (Reactant); RACT (Reactant or reagent)

(reaction of, with alcs., alkoxyadenosine receptor agonists via)

56720-43-5 HCAPLUS RN

Adenosine, 2-chloro-2',3'-O-(ethoxymethylene)- (9CI) (CA INDEX NAME) CN

Absolute stereochemistry.

131973-27-8 HCAPLUS RN

Adenosine, 2-chloro-2',3'-O-(1-methylethylidene)-5'-O-[tris(4-CN methoxyphenyl)methyl]- (9CI) (CA INDEX NAME)

L29 ANSWER 23 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1990:42

1990:424426 HCAPLUS

DOCUMENT NUMBER:

113:24426

TITLE:

AUTHOR(S):

2-(Arylalkylamino)adenosin-5'-uronamides: a new class

of highly selective adenosine A2 receptor ligands

Hutchison, Alan J.; Williams, Michael; De Jesus,

Reynalda; Yokoyama, Rina; Oei, Howard H.; Ghai, Geetha R.; Webb, Randy L.; Zoganas, Harry C.; Stone, George

A.; Jarvis, Michael F.

CORPORATE SOURCE:

SOURCE:

Pharm. Div., Ciba-Geigy Corp., Summit, NJ, 07901, USA

Journal of Medicinal Chemistry (1990), 33(7), 1919-24

CODEN: JMCMAR; ISSN: 0022-2623

DOCUMENT TYPE:

LANGUAGE:

Journal English

OTHER SOURCE(S):

CASREACT 113:24426

GI

The synthesis and receptor-binding profiles at adenosine receptor subtypes for a series of 2-arylalkylamino-adenosine-5'-uronamides is described. Halogenated 2-phenethylamino analogs such as I (R = Cl) show greater than 200-fold selectivity for the A2 receptor subtype on the basis of rat brain receptor binding. The general structure-activity relationship of this series of compds. is discussed both in terms of potency at A2 receptors as well as receptor subtype selectivity. It is possible to introduce a hydrophilic carboxyalkyl substituent to this series such as in CGS 21680A (I; R = HO2CCH2CH2) and still retain good potency and selectivity for A2 receptors. In addn., functional data in a perfused working rat heart model shows that these compds. possess full agonist properties at A2 receptors with I (R = HO2CCH2CH2) having a greater than 1500-fold sepn. between A2 (coronary vasodilatory) and A1 (neg. chronotropic) receptor mediated events.

IT 127258-33-7P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and amination of)

RN 127258-33-7 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-2-chloro-9H-purin-9-y1)-N-cyclopropyl-1-deoxy-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 120225-76-5P 120225-77-6P 127258-31-5P 127258-34-8P 127258-36-0P 127258-38-2P 127258-39-3P 127258-41-7P 127258-43-9P 127258-45-1P

RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. and deisopropylidenation of)

RN 120225-76-5 HCAPLUS

CN Benzenepropanoic acid, 4-[2-[[6-amino-9-[N-ethyl-2,3-0-(1-methylethylidene)-.beta.-D-ribofuranuronamidosyl]-9H-purin-2-yl]amino]ethyl]-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

∠ OBu−t

RN 120225-77-6 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-[(2-phenylethyl)amino]-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry:

RN 127258-31-5 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-[(2-phenylethyl)amino]-9H-purin-9-yl]-1-deoxy-N-methyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 127258-34-8 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-[(2-phenylethyl)amino]-9H-purin-9-yl]-N-cyclopropyl-1-deoxy-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 127258-36-0 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-[(phenylmethyl)amino]-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

RN 127258-38-2 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-[[2-(4-chlorophenyl)ethyl]amino]-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 127258-39-3 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-[[2-(4-fluorophenyl)ethyl]amino]-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

RN 127258-41-7 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-[methyl(2-phenylethyl)amino]-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 127258-43-9 HCAPLUS

CN Acetic acid, [4-[2-[[6-amino-9-[N-ethyl-2,3-O-(1-methylethylidene)-.beta.-D-ribofuranuronamidosyl]-9H-purin-2-yl]amino]ethyl]phenoxy]-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

∠OBu−t

RN 127258-45-1 HCAPLUS

CN Benzeneacetic acid, 4-[2-[[6-amino-9-[N-ethyl-2,3-O-(1-methylethylidene)-.beta.-D-ribofuranuronamidosyl]-9H-purin-2-yl]amino]ethyl]-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 120225-75-4P 127258-29-1P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and deisopropylidenation or amination of)

RN 120225-75-4 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-2-chloro-9H-purin-9-yl)-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 127258-29-1 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-2-chloro-9H-purin-9-yl)-1-deoxy-N-methyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 24639-06-3P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and permanganate oxidn. of)

RN 24639-06-3 HCAPLUS

CN Adenosine, 2-chloro-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

IT 72209-19-9P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn., chlorination, and amidation of)

RN 72209-19-9 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-(6-amino-2-chloro-9H-purin-9-yl)-1-deoxy-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

$$\begin{array}{c|c} Me & H & CO_2H \\ \hline Me & O & R & R \\ \hline Me & N & N & C1 \\ \hline Me & NH_2 & NH_2 & NH_2 \\ \end{array}$$

L29 ANSWER 24 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1989:497690 HCAPLUS

DOCUMENT NUMBER: 111:97690

TITLE: Preparation of N-6-aralkyladenosines having selective

adenosine A2 receptor binding activity and pharmaceutical compositions containing them

INVENTOR(S): Bridges, Alexander James; Ortwine, Daniel Fred;

Trivedi, Bharat Kalidas

PATENT ASSIGNEE(S): Warner-Lambert Co., USA SOURCE: PCT Int. Appl., 66 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

LANGUAGE: Englis FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

A1 . 19880505 WO 1987-US2719 19871019 WO 8803147 AU, BB, BG, BR, DK, FI, HU, JP, KP, KR, LK, MC, MG, MW, NO, RO, SD, SU, US, US RW: AT, BE, BJ, CF, CG, CH, CM, DE, FR, GA, GB, IT, LU, ML, MR, NL, SE, SN, TD, TG AU 8782761 19880525 AU 1987-82761 19871019 Α1 DK 8803577 Α 19880629 DK 1988-3577 19880629 19880629 NO 8802887 Α 19880629 NO 1988-2887 PRIORITY APPLN. INFO.: US 1986-925185 19861031 19870828 US 1987-90830 WO 1987-US2719 19871019 MARPAT 111:97690 OTHER SOURCE(S):

GΙ

$$X^2$$
 X^3
 X^1
 X^2
 X^3
 X^1
 X^2
 X^3
 X^1
 X^2
 X^3
 X^4
 X^4

AΒ The title compds. [I; Ar = Q1, Q2, Q3; A = O, S; X1, X2, X3, Y1, Y2, Y3 = Q1H, halo, alkyl, alkylthio, alkoxy, etc.; R2, R3 = H, alkanoyl, (substituted) benzoyl; or R2R3 = alkylidene; Z = (substituted) Me, dihydroxyphosphono, etc.] and their pharmaceutically acceptable acid addn. salts, useful as cardiovascular agents, analgesics, antipsychotics, etc., are prepd. (E)-2-(2,6-Dimethylphenyl)nitroethene (prepn. given) was treated with PhMgBr in toluene at -30.degree. and the resulting diarylnitroethene was reduced with LiAlH4 to give 2-(2,6-dimethylphenyl)-2phenylethylamine, which was refluxed with 6-chloropurine riboside in EtOH contg. Et3N for 15 h to give N-6-[2-(2,6-dimethylphenyl)-2phenylethyl]adenosine (II). In an adenosine receptor binding study, II was > 6 times more strongly bound to A2 receptors than to A1 receptors.

IT 120355-78-4P RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and reaction of, in prepn. of adenosine derivs. as analgesic and cardiovascular and CNS agents)

RN 120355-78-4 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-deoxy-1-[6-[[2-(3,5-dimethoxyphenyl)-2-(2methylphenyl)ethyl]amino]-9H-purin-9-yl]-2,3-0-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L29 ANSWER 25 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1989:213284 HCAPLUS

DOCUMENT NUMBER:

110:213284

TITLE:

Preparation of 1'-deoxy-1'-(6-amino-9-purinyl)]-.beta.-

D-ribofuranuronic acid amides and thioamides as antihypertensives and pharmaceutical compositions

containing them

INVENTOR(S):

Gadient, Fulvio; Vogel, Arnold

PATENT ASSIGNEE(S):

Sandoz A.-G., Switz.

SOURCE:

Brit. UK Pat. Appl., 35 pp.

CODEN: BAXXDU

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
				-
GB 2203149	A 1	19881012	GB 1988-7750	19880331
GB 2203149	B2	19910213		
DE 3810551	A1	19881103	DE 1988-3810551	19880329
FR 2613367	A1	19881007	FR 1988-4356	19880330

BE	1002151	A 5	19900807		ΒE	1988-374	19880330
CH	676121	Α	19901214		CH	1988-1228	19880331.
${ t IL}$	85969	A1	19920329		IL	1988-85969	19880404
UA	8814151	A1	19881006		AU	1988-14151	19880405
UA	609109	B2	19910426 [.]				
FI	8801571	Α	19881007		FI	1988-1571	19880405
FI	87463	В	19920930				
FI	87463	С	19930111				
DK	8801834	Α	19881007		DK	1988-1834	19880405
SE	8801236	Α	19881017		SE	1988-1236	19880405
JP	63258892	A2	19881026		JР	1988-84974	19880405
NL	8800862	Α	19881101		NL	1988-862	19880405
ES	2007177	A6	19890601		ES	1988-1031	19880405
HU	48902	A2	19890728		HU	1988-1638	19880405
HU	201955	В	19910128				
ZA	8802384	Α	19891227		ZA	1988-2384	19880405
AT	8800873	Α	19910415		ΑT	1988-873	19880405
AT	393507	В	19911111				
\mathtt{PL}	155212	В1	19911031		PL	1988-271671	19880405
CA	1326017	A1	19940111		CA	1988-563261	19880405
US	5219840	Α	19930615		US	1991-693891	19910501
PRIORITY	APPLN. INFO.:			DE	198	37-3711561	19870406
				DE	198	37-3711562	19870406
				DE	198	37-3711563	19870406
				DE	198	37-3711564	19870406
				US	198	38-176913	19880404
				US	198	39-455662	19891221
OTHER SC	DURCE(S):	CA	SREACT 110:21	1328	34;	MARPAT 110:21	3284

GΙ

AB The title compds. [I; R1 = H, alkyl, hydroxyalkyl, mercaptoalkyl, aminoalky, cycloalkylalkyl, etc.; R2 = H, alky, hydroxyalky, mercaptoalkyl, aminoalkyl, cycloalkyl, etc.; R3 = H, alkyl, hydroxyalkyl, mercaptoalkyl, aminoalkyl; R6 = halo, alkyl, cycloalkyl, cyano, alkoxy, mercapto, amino, etc.; X = O, S], useful as antihypertensives (no data), are prepd. 1'-Deoxy-1'-(2-methyl-6-cyclopentylamino-9-purinyl)-2,3-isopropylidene-.beta.-D-ribofuranuronic acid N-ethylamide (prepn. given) (1.4 g) in 10 mL 90% F3CCO2H was allowed to stand at room temp. for 1 h to

give 1'-deoxy-1'-(2-methyl-6-cyclopentylamino-9-purinyl)-.beta.-D-ribofuranuronic acid N-ethylamide.

IT 120465-39-6P 120465-42-1P 120465-43-2P

120465-44-3P 120465-45-4P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and reaction of)

RN 120465-39-6 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-(cyclopentylamino)-2-methyl-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-0-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 120465-42-1 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[2-chloro-6-(cyclopentylamino)-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-0-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 120465-43-2 HCAPLUS

CN Adenosine, 2-chloro-N-cyclopentyl-2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 120465-44-3 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-[2-chloro-6-(cyclopentylamino)-9H-purin-9-yl]-1-deoxy-2,3-0-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 120465-45-4 HCAPLUS

CN .beta.-D-Ribofuranuronothioamide, 1-[6-(cyclopentylamino)-2-methyl-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

L29 ANSWER 26 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1989:193332 HCAPLUS

DOCUMENT NUMBER:

110:193332

TITLE:

Preparation of adenosine-5'-carboxamide derivatives as adenosine-2 receptor agonists, antipsychotics, and antihypertensives and pharmaceutical compositions

containing them

INVENTOR(S):

Hutchison, Alan J.

PATENT ASSIGNEE(S):

Ciba-Geigy A.-G., Switz. Eur. Pat. Appl., 17 pp.

SOURCE:

CODEN: EPXXDW

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PA	TENT NO.	к	IND	DATE	,	APPLICATION NO.	DATE
· EP	277917		 A2	19880810		EP 1988-810050	19880129
EP	277917		A3	19900328			
	R: AT,	BE, CH	, DE,	, ES, FR,	GB, G	R, IT, LI, LU, NL,	, SE
FI	8800405		A.	19880805		FI 1988-405	19880129
JP	63201196		A2	19880819		JP 1988-21410	19880202
DD	284679		A5	19901121		DD 1988-312611	19880202
DK	8800544		A	19880805		DK 1988-544	19880203
NO	8800469		A	19880805		NO 1988-469	19880203
AU	8811233		A1	19880818		AU 1988-11233	19880203
HU	46334		A2	19881028		HU 1988-509	19880203
HU	199155		В	19900129			
ZA	8800755		A	19891025		ZA 1988-755	19880203
PRIORITY	Y APPLN.	INFO.:			US	1987-11169	19870204
OTHER SO	DURCE(S):		MAI	RPAT 110:	193332		
CT							

GI

The title compds. [I; R2 = H, alkyl, aralkyl; R3 = H, OH; R5 = NRR1 where R = H, alkyl and R1 = cycloalkyl, cycloalkylalkyl, 2-norbornanyl, etc.; R6 = R4NHCO where R4 = H, alkyl, aralkyl, cycloalkyl, hydroxyalkyl] (II) and their pharmaceutically acceptable salts, useful as adenosine-2 receptor agonists, antipsychotics, antithrombotics, and antihypertensives, are prepd. A mixt. of 2-chloro-2',3'-O-isopropylideneadenosine-5'-N-ethylcarboxamide and 2-phenethylamine was heated at 130.degree. for 2 h to give 2-(2-phenethylamino)-2',3'-O-isopropylideneadenosine-5'-N-ethylcarboxamide, which was heated with 1N HCl at 65.degree. for 1 h to give 2-(2-phenethylamino)-5'-N-ethylcarboxamide (III). In vivo studies of the adenosine-2 receptor agonistic activity of II using spontaneously hypertensive rats showed that II effectively lowered the blood pressure without any significant effect on the heart rate. One thousand tablets were prepd. from III 100.00, lactose 2400.00, corn starch 125.00, polyethyleneglycol 6000 150.00, Mg stearate 40.00 g, and water q.s.

IT 120225-76-5P 120225-77-6P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and reaction of, in prepn. of adenosine carboxamide derivs. as CNS and cardiovascular agents)

RN 120225-76-5 HCAPLUS

CN Benzenepropanoic acid, 4-[2-[[6-amino-9-[N-ethyl-2,3-O-(1-methylethylidene)-.beta.-D-ribofuranuronamidosyl]-9H-purin-2-yl]amino]ethyl]-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

∠OBu-t

RN 120225-77-6 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-[6-amino-2-[(2-phenylethyl)amino]-9H-purin-9-yl]-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 120225-75-4 120225-76-5

RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction of, in prepn. of adenosinecarboxamide derivs. as CNS and
 cardiovascular agents)

RN 120225-75-4 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-2-chloro-9H-purin-9-yl)-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

RN 120225-76-5 HCAPLUS

CN Benzenepropanoic acid, 4-[2-[[6-amino-9-[N-ethyl-2,3-0-(1-methylethylidene)-.beta.-D-ribofuranuronamidosyl]-9H-purin-2-yl]amino]ethyl]-, 1,1-dimethylethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-B

— OBu−t

L29 ANSWER 27 OF 39 HCAPLUS COPYRIGHT 2003 ACS ACCESSION NUMBER: 1986:497868 HCAPLUS

DOCUMENT NUMBER:

105:97868

TITLE:

N6-Substituted N-alkyladenosine-5'-uronamides:

bifunctional ligands having recognition groups for Al

and A2 adenosine receptors

AUTHOR(S):

Olsson, R. A.; Kusachi, Shozo; Thompson, Robert D.;

Ukena, Dieter; Padgett, William; Daly, John W.

CORPORATE SOURCE: SOURCE:

Coll. Med., Univ. South Florida, Tampa, FL, 33612, USA Journal of Medicinal Chemistry (1986), 29(9), 1683-9

CODEN: JMCMAR; ISSN: 0022-2623

DOCUMENT TYPE:

OTHER SOURCE(S):

Journal English

LANGUAGE:

CASREACT 105:97868

GI

Nineteen title uronamides I (R = Et, Me2CH, Me, PhCH2, etc; R1 = Me, Et2CH, cyclohexyl, p-MeOC6H4, Et2CH, etc.) were prepd. from inosine II by sequential oxidn. with CrO3 to give uronic acid, treatment with SO2Cl2 in DMF to give 6-chloro-5'-uronic acid chloride, amidation with RNH2 to give 6-chloro uronamides, and a treatment with R1NH2 at elevated temp. to give I. Coronary vasodilating activity and potency of I at adenosine receptors are given.

IT 362-75-4

RN

RL: RCT (Reactant); RACT (Reactant or reagent)

(oxidn. of) 362-75-4 HCAPLUS

CN Adenosine, 2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

L29 ANSWER 28 OF 39 HCAPLUS COPYRIGHT 2003 ACS

1980:129239 HCAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 92:129239

Modification of the 5' position of purine nucleosides. TITLE:

Synthesis and some cardiovascular properties of

adenosine-5'-(N-substituted) carboxamides

AUTHOR(S): Prasad, Raj Nandan; Bariana, Dilbagh S.; Fung,

Anthony; Savic, Milica; Tietje, Karin; Stein, Herman

H.; Brondyk, Harold; Egan, Richard S.

CORPORATE SOURCE: Org. Chem. Res., Abbott Lab., Ltd., Montreal, QC, H3C

3K6, Can.

SOURCE: Journal of Medicinal Chemistry (1980), 23(3), 313-19

CODEN: JMCMAR; ISSN: 0022-2623

DOCUMENT TYPE:

Journal LANGUAGE: English

GI

About 35 adenosinecarboxamides I [R = H, R1 = Me, Et, PhOCH2CH2, Et2NCH2CH2, cyclopropyl, CH2:CHCH2, Ph, adamantyl, etc.; R = R1 = CH2:CHCH2; or (RNR1) = piperidino, morpholino, etc.] and several analogs of I contg. N1-oxide function or 2',3'-substituents were prepd. from II. II was chlorinated with SOC12, the acid chloride was amidated, and the product was deisopropylidenated to give I. Alternatively II was deisopropylidenated and then converted into the ClCH2CH2 ester, which was amidated to give I. All the compds. prepd. were evaluated for coronary sinus PO2 activity in dogs (extensive data given). 1H-NMR spectra of some of the compds. were examd. and conformations are discussed.

IT 19234-66-3

RL: RCT (Reactant); RACT (Reactant or reagent) (chlorination or deisopropylidenation of)

RN 19234-66-3 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-0-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 39491-49-1P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and amidation of)

RN 39491-49-1 HCAPLUS

CN .beta.-D-Ribofuranuronoyl chloride, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 35788-22-8P 54925-48-3P 72758-39-5P

72758-40-8P 72758-41-9P

RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. and deisopropylidenation of)

RN 35788-22-8 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-0-(1-

methylethylidene) - (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 54925-48-3 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-methoxy-2,3-0-(1-methylethylidene)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 72758-39-5 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-0-(1-methylethylidene)-N-phenyl- (9CI) (CA INDEX NAME)

RN 72758-40-8 HCAPLUS

CN Glycine, N-[1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-0-(1-methylethylidene)-.beta.-D-ribofuranuronoyl]-, ethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 72758-41-9 HCAPLUS

CN Benzoic acid, 2-[[1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-0-(1-methylethylidene)-.beta.-D-ribofuranuronoyl]amino]-, ethyl ester (9CI) (CA INDEX NAME)

IT 39491-53-7P 58048-27-4P 58048-28-5P

RL: SPN (Synthetic preparation); PREP (Preparation) (prepn., deisopropylidenaton, and cardiovascular properties of)

RN 39491-53-7 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 58048-27-4 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-O-(1-methylethylidene)-N-2-propenyl- (9CI) (CA INDEX NAME)

RN58048-28-5 HCAPLUS

.beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-N-cyclopropyl-1-CN deoxy-2,3-0-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L29 ANSWER 29 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1979:538137 HCAPLUS

DOCUMENT NUMBER: 91:138137

TITLE: Inhibition of adenosine uptake in human erythrocytes

by adenosine-5'-carboxamides, xylosyladenine,

dipyridamole, hexobendine, and p-

nitrobenzylthioguanosine

AUTHOR(S): Turnheim, Klaus

Pharmakol. Inst., Univ. Wien, Vienna, Austria CORPORATE SOURCE: Biochemical Pharmacology (1978), 27(18), 2191-7 SOURCE:

CODEN: BCPCA6; ISSN: 0006-2952

DOCUMENT TYPE: Journal LANGUAGE: English

Adenosine (I) uptake by human erythrocytes at 0.degree. consisted of a saturable and a concn.-proportional component, the latter representing uptake into a pericellular compartment inaccessible to inulin. apparent Km for I was 2.4 .times. 10-6M. Xylosyladenine and adenosine-5'-carboxamide derivs. were weak inhibitors of the saturable component of I uptake with apparent Ki values .gtoreq.10-fold higher than the Km for I. The affinity of the I nucleosides appeared to depend on the 3'-hydroxyl group and its erythro configuration, and also on the 5'-substituent. Dipyridamole, hexobendine, and p-nitrobenzylthioguanosine had Ki values .gtoreq.10-fold lower than the Km for I. The steric requirements for the binding of adenine furanosides to the putative smooth muscle receptors mediating vasodilation, and of the saturable cellular uptake mechanism, were different.

IT 39491-53-7

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)

(adenosine transport by erythrocyte response to)

RN 39491-53-7 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L29 ANSWER 30 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1979:80897 HCAPLUS

DOCUMENT NUMBER: 90:80897

TITLE: Effects of a 2',3',5'-substituted adenosine derivative

on systemic and coronary hemodynamics and on cardiac

metabolism in the anesthetized dog

AUTHOR(S): Schuetz, W.; Raberger, G.; Kraupp, O.

CORPORATE SOURCE: Pharmakol. Inst., Univ. Wien, Vienna, Austria

SOURCE: Arzneimittel-Forschung (1978), 28(11), 2079-82

CODEN: ARZNAD; ISSN: 0004-4172

DOCUMENT TYPE: Journal LANGUAGE: English

GΙ

AB The adenosine deriv. 744-98 (I) [62622-78-0] (5 .mu.g/kg, i.v.) increased 5 fold the coronary sinus outflow in anesthetized, closed chest dogs. This increase remained 3 times higher than the control level 4 h after I administration. Total peripheral resistance decreased markedly, accompanied by a baroreceptor-mediated increased in heart rate, left ventricular pressure curve, and myocardial O consumption. The myocardial O extn. ratio for glucose [50-99-7] greatly exceeded the aerobic metabolic requirement. Blood sugar levels and glucose uptake by the heart increased, whereas plasma free fatty acid levels decreased markedly, without consistent changes in myocardial free fatty acid balance.

IT 62622-78-0

RL: BIOL (Biological study)

(circulation and heart metab. response to)

RN 62622-78-0 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-2,3-O-(1-methoxyethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L29 ANSWER 31 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1979:67008 HCAPLUS

DOCUMENT NUMBER: 90:67008

TITLE: Evidence for glucagon-releasing activity of vasoactive

adenosine analogs in the conscious dog

AUTHOR(S): Schuetz, W.; Raberger, G.; Kraupp, O.

CORPORATE SOURCE: Pharmakol. Inst., Univ. Wien, Vienna, Austria

SOURCE:

Naunyn-Schmiedeberg's Archives of Pharmacology (1978),

304(3), 249-54

CODEN: NSAPCC; ISSN: 0028-1298

DOCUMENT TYPE:

Journal

LANGUAGE: English

An investigation was carried out in conscious dogs concerning the effects AB of 3 adenosine derivs., 744-96 [35920-39-9], 744-98 [62622-78-0], 744-99 [61014-07-1], with pronounced and long-lasting coronary dilator activity, on glucagon [9007-92-5] release. All 3 compds. (10 .mu.g/kg, i.v.) induced a sustained increase in plasma glucose and a decrease in plasma free fatty acids concn.; concomitantly, plasma glucagon levels rose 2-3 fold. Changes in plasma insulin [9004-10-8] concn. were relatively small and not significant. A simultaneous fall in arterial blood pressure was also obsd. A lowering of blood pressure of similar magnitude by Na nitroprusside infusion in control expts. failed to show any effect on plasma glucagon level.

IT 62622-78-0

RL: BIOL (Biological study)

(glucagon release response to)

RN 62622-78-0 HCAPLUS

.beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-y1)-1-deoxy-N-ethyl-2,3-O-(1-methoxyethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L29 ANSWER 32 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1978:499693 HCAPLUS

DOCUMENT NUMBER: 89:99693

TITLE: Coronary dilatory action of adenosine analogs: a

comparative study

Raberger, G.; Schuetz, W.; Kraupp, O. AUTHOR(S):

CORPORATE SOURCE: Pharmakol. Inst., Univ. Wien, Vienna, Austria

SOURCE: Archives Internationales de Pharmacodynamie et de

> Therapie (1977), 230(1), 140-9CODEN: AIPTAK; ISSN: 0003-9780

DOCUMENT TYPE: Journal LANGUAGE: English

The coronary-dilatory action of 23 adenosine [58-61-7] analogs was investigated on a comparative basis after i.v. administration to anesthetized dogs. Substitution in position 5' of adenosine with a CO2H group and esterification led to a 50-100-fold increase in coronary

efficacy (flow increase integrated over the time of action). Amidation of the carboxylic acid analog further enhanced the coronary efficacy. The most effective analog, adenosine-5'-ethylcarboxamide [35920-39-9], showed 20,000 times greater activity than adenosine. Addnl. substitution in positions 2' and 3' with NO2, O-methoxymethylidene, or O-methoxyethylidene resulted in a delayed onset and prolonged duration of action.

IT 39491-53-7 66822-84-2

RL: BIOL (Biological study)

(coronary vasodilatory activity of)

RN 39491-53-7 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 66822-84-2 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-2,3-O-ethylidene- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L29 ANSWER 33 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1978:152935 HCAPLUS

DOCUMENT NUMBER: 88:152935

TITLE: Acylated .beta.-D-1-(6-amino-9H-purin-9-yl)-1-

deoxyribofuranuronic acid ethyl amides

INVENTOR(S):

Klemm, Kurt; Pruesse, Wolfgang; Schoetensack,

Wolfgang; Kraupp, Otto

PATENT ASSIGNEE(S):

Byk-Gulden Lomberg Chemische Fabrik G.m.b.H., Fed.

Rep. Ger.

SOURCE:

Ger. Offen., 25 pp.

CODEN: GWXXBX

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 2730846.	A1	19780119	DE 1977-2730846	19770708
PRIORITY APPLN. INFO.	:		LU 1976-75374	19760713
GI				

- AB The title compds. I (R = Ac, COEt) were prepd. by acylating I (R = H). Thus, I (R = H) was treated with MeC(OMe)3 to give 2,3-O-methoxyethylidene deriv., which was hydrolyzed with aq. HOAc to give 85% I (R = Ac). I had vasodilator, antihypertensive, and stimulating effects on the heart (no data).
- IT 62622-81-5P 66255-01-4P 66255-02-5P RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent) (prepn. and hydrolysis of)

RN 62622-81-5 HCAPLUS

.beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-O-(1-CN ethoxypropylidene)-N-ethyl-, (R)- (9CI) (CA INDEX NAME)

RN 66255-01-4 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-N-ethyl-2,3-O-(1-methoxyethylidene)-, (R)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 66255-02-5 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-N-ethyl-2,3-O-(1-methoxyethylidene)-, (S)- (9CI) (CA INDEX NAME)

L29 ANSWER 34 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1978:7312 HCAPLUS

DOCUMENT NUMBER: 88:7312

TITLE: .beta.-D-1-(6-Amino-9H-purin-9-yl)-1-

deoxyribofuranuronic acid derivatives

INVENTOR(S):
Kraupp, Otto

PATENT ASSIGNEE(S): Byk Gulden Lomberg Chemische Fabrik G.m.b.H., Fed.

Rep. Ger.

SOURCE: Ger. Offen., 35 pp.

CODEN: GWXXBX

DOCUMENT TYPE: Patent LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 2610985	A1	19770929	DE 1976-2610985	19760316
PRIORITY APPLN. INFO.	:		DE 1976-2610985	19760316
GI				

- AB The title compds. I (R = NO2, R2 = CHOMe) were prepd. by treating I (R = H) with HNO3 or HC(OMe)3. The amide II was obtained by treating Me ester with H2N(CH2)12NH2. I and II had renal **vasodilator**, antihypertensive, heart stimulant, hypolipemic, and glucose mobilizing activity (no data).
- IT 62622-77-9P

RL: SPN (Synthetic preparation); PREP (Preparation)

(prepn. of)

RN 62622-77-9 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-2,3-O-(methoxymethylene)- (9CI) (CA INDEX NAME)

L29 ANSWER 35 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER:

1977:171786 HCAPLUS

DOCUMENT NUMBER:

86:171786

TITLE:

1-Deoxy-2,3-O-alkylideneribofuranuronic acid

derivatives

INVENTOR(S):

Klemm, Kurt; Mengel, Rudolf; Schoetensack, Wolfgang;

Kraupp, Otto

PATENT ASSIGNEE(S):

Byk-Gulden Lomberg Chemische Fabrik G.m.b.H., Fed.

Rep. Ger.

SOURCE:

Ger. Offen., 39 pp.

CODEN: GWXXBX

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 2632951	A1	19770210	DE 1976-2632951	19760722
PRIORITY APPLN. INFO	.:		LU 1975-73052	19750724
GI				

AB (Aminopurinyl) deoxyribofuranuronamides I [X = RC(OR1), R = H, Me, Et, R1 = Me, Et; R2 = NHR3, R3 = Et, Bu, CHMe2] and ester I [X = RC(OR1), R = Me,

R1 = Me, R2 = OMe], possessing inotropic and vasodilating activities, were prepd. in 31-96% yields by a.) aminolysis of I [X = MeC(OMe), R2 = OMe], b.) acylation of I (X = H2, R2 = NHR3) by RC(OR1)3, and acylation of I (X = H2, R2 = OMe) using RC(OR1)3.

IT 62622-77-9P 62622-78-0P 62622-79-1P 62622-80-4P 62622-81-5P 62622-82-6P 62622-83-7P 62622-84-8P RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. of)

RN 62622-77-9 HCAPLUS

.beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-2,3-O-(methoxymethylene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 62622-78-0 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-N-ethyl-2,3-O-(1-methoxyethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 62622-79-1 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-O-(1-methoxyethylidene)-N-methyl- (9CI) (CA INDEX NAME)

RN 62622-80-4 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-0-(1-methoxyethylidene)-, methyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 62622-81-5 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-O-(1-ethoxypropylidene)-N-ethyl-, (R)- (9CI) (CA INDEX NAME)

RN 62622-82-6 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-N-butyl-1-deoxy-2,3-O-(1-methoxyethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 62622-83-7 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-O-(1-methoxyethylidene)-N-(1-methylethyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 62622-84-8 HCAPLUS

CN .beta.-D-Ribofuranuronamide, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-O-(1-ethoxypropylidene)-N-ethyl-, (S)- (9CI) (CA INDEX NAME)

L29 ANSWER 36 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1976:516540 HCAPLUS

DOCUMENT NUMBER: 85:116540

TITLE: Modification of the 5' position of purine nucleosides.

1. Synthesis and biological properties of alkyl

adenosine-5'-carboxylates

AUTHOR(S): Prasad, Raj N.; Fung, Anthony; Tietje, Karin; Stein,

Herman; Brondyk, Harold D.

CORPORATE SOURCE: Abbott Lab., Ltd., Montreal, QC, Can.

SOURCE: Journal of Medicinal Chemistry (1976), 19(10), 1180-6

CODEN: JMCMAR; ISSN: 0022-2623

DOCUMENT TYPE: Journal

LANGUAGE: English

GΙ

AB Of 16 title esters (I; R = lower alkyl, substituted alkyl, allyl, propargyl, cyloalkyl), prepd. by the reaction of the appropriate alc. with adenosine-5'-carboxylic acid chloride [41110-75-2], most were nontoxic and caused prolonged increases in coronary sinus PO2 when administered to anesthetized dogs. The Et ester (I, R = Et) [50663-70-2] was most active, giving a rapid increase of PO2 on the order of 100% lasting .apprx.30 min when given i.v. at 50 .mu.g/kg. Structure-activity relations were discussed.

IT 59882-05-2P

RL: SPN (Synthetic preparation); PREP (Preparation)

(prepn. and cleavage of)

RN 59882-05-2 HCAPLUS

CN .beta.-D-Ribofuranuronothioic acid, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-O-(1-methylethylidene)-, S-ethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 39491-49-1P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and reaction with alcs.)

RN 39491-49-1 HCAPLUS

CN .beta.-D-Ribofuranuronoyl chloride, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 23754-29-2P

RL: SPN (Synthetic preparation); PREP (Preparation) (prepn. and **vasodilating** activity of)

RN 23754-29-2 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-0-(1-methylethylidene)-, methyl ester (9CI) (CA INDEX NAME)

IT 59882-06-3P

RL: SPN (Synthetic preparation); PREP (Preparation)

(prepn. of)

RN 59882-06-3 HCAPLUS

.beta.-D-Ribofuranuronic acid, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-0-(1-CN methylethylidene)-, monosodium salt (9CI) (CA INDEX NAME)

Absolute stereochemistry.

Na

IT 35803-48-6P 35803-49-7P 41110-90-1P

RL: SPN (Synthetic preparation); PREP (Preparation)

(prepn. of, as **vasodilator**) 35803-48-6 HCAPLUS

RN

.beta.-D-Ribofuranuronic acid, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-0-(1-CN

methylethylidene)-, ethyl ester (9CI) (CA INDEX NAME)

RN 35803-49-7 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2',3'-0-(1-methylethylidene)-, 1-methylethyl ester (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 41110-90-1 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-O-(1-methylethylidene)-, 1-methylpropyl ester (9CI) (CA INDEX NAME)

IT 59881-97-9

RL: RCT (Reactant); RACT (Reactant or reagent)
 (reaction of, with alkyl halide)

RN 59881-97-9 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-0-(1-methylethylidene)-, monothallium(1+) salt (9CI) (CA INDEX NAME)

Absolute stereochemistry.

● T1(I)

IT 19234-66-3

RL: BIOL (Biological study)

(vasodilator)

RN 19234-66-3 HCAPLUS

CN .beta.-D-Ribofuranuronic acid, 1-(6-amino-9H-purin-9-yl)-1-deoxy-2,3-0-(1-methylethylidene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L29 ANSWER 37 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1975:514827 HCAPLUS

DOCUMENT NUMBER: 83:114827

TITLE: 2-Alkoxyadenosines

INVENTOR(S): Honjo, Mikio; Marumoto, Ryuji; Yoshioka, Yoshio

PATENT ASSIGNEE(S): Takeda Chemical Industries, Ltd., Japan

SOURCE:

Jpn. Kokai Tokkyo Koho, 4 pp.

CODEN: JKXXAF

DOCUMENT TYPE:

Patent Japanese

LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE _____ ____ _____ JP 50053393 A2 19750512 JP 1973-105286 19730918 PRIORITY APPLN. INFO.: JP 1973-105286 19730918 2-Haloadenosines, where the 2'- and 3'-OH groups are protected, are treated with an aliph. alc. and base to give 2',3'-protected 2-alkoxyadenosines. 2-Alkoxyadenosines are prepd. by hydrolysis. The protected products have coronary vasodilatory, hypotensive, and diuretic activities (no data). Thus, a mixt. of 6.6 g 2-chloroadenosine, 55 ml HC(OEt)3, 10 ml DMF, and 0.8 g p-toluenesulfonic acid was stirred at 30.degree. for 0.5 hr, poured into aq. NaHCO3, and extd. with CHC13 to qive 2',3'-O-ethoxymethylidene deriv. which was heated with 3 g NaOH in 62 ml BuOH at 90.degree. for 1 hr to give 2',3'-O-ethoxymethylidene-2butoxyadenosine. Hydrolysis in 40% aq. AcOH at 35.degree. for 2 days gave 2-butoxyadenosine. Similarly prepd. was 2-pentyloxyadenosine. ΙT 56720-42-4P 56720-43-5P RL: SPN (Synthetic preparation); PREP (Preparation)

(prepn. of)

RN 56720-42-4 HCAPLUS

Adenosine, 2-butoxy-2',3'-O-(ethoxymethylene)- (9CI) (CA INDEX NAME) CN

Absolute stereochemistry.

RN 56720-43-5 HCAPLUS

Adenosine, 2-chloro-2',3'-0-(ethoxymethylene)- (9CI) (CA INDEX NAME) CN

L29 ANSWER 38 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1975:479518 HCAPLUS

DOCUMENT NUMBER: 83:79518

TITLE: Synthesis and coronary vasodilating activity

of 2-substituted adenosines

AUTHOR(S): Marumoto, Ryuji; Yoshioka, Yoshio; Miyashita, Osamu;

Shima, Shunsuke; Imai, Kinichi; Kawazoe, Katsuyoshi;

Honjo, Mikio

CORPORATE SOURCE: Cent. Res. Div., Takeda Chem. Ind., Osaka, Japan

SOURCE: Chemical & Pharmaceutical Bulletin (1975), 23(4),

759-74

CODEN: CPBTAL; ISSN: 0009-2363

DOCUMENT TYPE: Journal LANGUAGE: English

AB 2-Haloadenosines were prepd. by acetylation of 2-haloinosines followed by chlorination and amination. 2-Alkoxyadenosines were prepd. by protection of 2'- and 3'-OH groups of 2-chloroadenosine (I) or 2-chloroinosine, followed by substitution of the C atom with alkoxy group. The reaction of 5-amino-4-cyano-1-.beta.-D-ribofuranosylimidazole with CS2 afforded 2,6-di-mercapto-9-.beta.-D-ribofuranosylpurine, which was converted to 2-mercaptoadenosine and its S-substituted derivs. 2-Phenylaminoadenosine (II) was prepd. from 2-phenylamino-2',3',5'-tri-O-acetylinosine, which was prepd. by acetylation of 2-phenylaminoinosine with AcCl in HOAc. O-substituted 2-hydroxyadenosines, S-substituted 2-mercaptoadenosines, N2-substituted 2-aminoadenosines, 2-alkyl- and -aryl-adenosines were prepd. among which several compds. had coronary vasodilating potency. II showed not only a strong potency, but also a longer duration of the effect than that of I.

IT 56720-42-4P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(prepn. and deblocking of)

RN 56720-42-4 HCAPLUS

CN Adenosine, 2-butoxy-2',3'-0-(ethoxymethylene)- (9CI) (CA INDEX NAME)

IT 56720-43-5P

RL: SPN (Synthetic preparation); PREP (Preparation)

(prepn. of)

RN 56720-43-5 HCAPLUS

CN Adenosine, 2-chloro-2',3'-O-(ethoxymethylene)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L29 ANSWER 39 OF 39 HCAPLUS COPYRIGHT 2003 ACS

ACCESSION NUMBER: 1974:10272 HCAPLUS

DOCUMENT NUMBER: 80:10272

TITLE: Ethyl adenosine-5'-carboxylate. Potent vasoactive

agent in the dog

AUTHOR(S): Stein, Herman H.

CORPORATE SOURCE: Dep. Gen. Pharmacol., Abbott Lab., North Chicago, IL,

USĀ

SOURCE: Journal of Medicinal Chemistry (1973), 16(11), 1306-8

CODEN: JMCMAR; ISSN: 0022-2623

DOCUMENT TYPE: Journal LANGUAGE: English

AB Et adenosine-5'-carboxylate (I) [35803-57-7] produced a marked,

long-lasting increase in coronary sinus pO2 in dogs, indicating that I

functioned as a coronary vasodilator. I was effective when

given i.v. (.leq.0.10 mg/kg), intraduodenally, or orally (.geq.0.15

mg/kg). I was not a substrate or an inhibitor for an adenosine deaminase [9026-93-1] or adenylate deaminase [9025-10-9], and was apparently not

metab. by the organism. The instantaneous effect of I after i.v. administration suggested a direct action on cardivascular receptors. The toxicity of I was >1000 mg/kg orally and .sim.700 mg/kg i.v.

IT 362-75-4

RL: RCT (Reactant); RACT (Reactant or reagent) (oxidn. of)

RN 362-75-4 HCAPLUS

CN Adenosine, 2',3'-O-(1-methylethylidene)- (9CI) (CA INDEX NAME)