Blown-up toric surfaces with nonpolyhedral effective cone

Jenia Tevelev University of Massachussets, Amherst (Joint with With Castravet, Laface, Ugagluia, Crelle, 2023) September 19, 2024

Contents

1	A normal Q-factorial projective variety	2
2	Neron-Severi spaces	3
3	Nef cone	3
4	Linear system	3
5	Stable base locus	4
6	Semi-ample Fibration Theorem	4
7	Kleimen Criterion	4
8	Some questions asked by Fulton	5
9	Some strategies for proving these sort of things	5
10	Application of this to the study of effective cones	5
11	Some examples 11.1 Hassett spaces	5 5

Motivation Understand birational geometry of $\overline{\mathcal{M}}_{0,n}$, the moduli space of stable rational curves with n markings.

 $M_{0,n} = \{\text{*some diagram involving } \mathbb{P}^{1*}\}/\operatorname{PGL}(2)$

is a smooth affine variety of dimension n = 3.

 $\overline{M}_{0,n} \supset M_{0,n}$ smooth projective variety.

Universal families

$$\begin{array}{ccc} U_n & \text{something in } \mathbb{P}^1 & \text{drawing} \\ \downarrow & & \downarrow & & \downarrow \\ \overline{M}_{0,n} & M_{0,n} & \partial \overline{M}_{0,n} \end{array}$$

- simple normal crossings divisor.
- Stable rational curve = tree of \mathbb{P}^1 with n different & smooth points.
- Nodal singularities $(xy = 0) \subset \mathbb{C}^2$.
- Every compact component should have at least 3 "special" points.

Lemma.
$$U_n \cong \overline{M}_{0,n+1}$$
,

$$\overline{M}_{0,n+1} \longrightarrow \overline{M}_{0,n}$$

is a forgetful map + stabilizer.

Let's talk a bit about $M_{0,4}$.

$$M_{0,4} = \{0, 1, \infty, x\} = \mathbb{P}^1 - \{0, 1, \infty\}$$

There's only one compactification of this: $\overline{M}_{0,4} = \mathbb{P}^1$. What are the fibers? Drawings of fibers at $0, 1, \infty$.

 \mathbb{P}^1 = pencil of conics through $p_1, p_2, p_3, p_4 \in \mathbb{P}^2$. So in this case

$$U_q = Bl_4 \mathbb{P}^2$$
del Pezzo surface of degree ?
$$\bigcup_{\overline{M}_{0.5}}$$

1 A normal Q-factorial projective variety

Let X be a normal \mathbb{Q} -factorial projective variety.

$$\operatorname{Pic}(X) \subset \operatorname{Cl}(X)$$
 Cartier divisors
Weil divisors

Definition. \mathbb{Q} -factorial: every $D \in Cl(X)$ is \mathbb{Q} -Cartier (in $D \in Pic(X)$ for some m > 0.

$$D \in Cl(X)$$
 $C \subset X$ integral curve, $D \cdot C \in \mathbb{Q}$

2 Neron-Severi spaces

$$\begin{split} N'(X) &= \{\sum_{\alpha_i \in \mathbb{R}} \alpha_i D_i\} / \equiv & D \equiv 0 \text{ if } D \cdot C = 0 \forall C \subset X \\ N_1(X) &= \left\{\sum_{\alpha_i \in \mathbb{R}} \alpha_i C_i \right\} / \equiv & C \equiv 0 \text{if } D \cdot C = 0 \forall D \subset X \end{split}$$

- N'(X) and $N_1(X)$ are dual (intersection pairing) finite-dimensional vector spaces.
- *Pseudo-effective cone* Eff $\subset N^1(X)$ closure of the cone spanned by numerical classes of effective divisors.
- *Cone of curves (Mori cone)*: $NE(X) \subset N_1(X)$ closure of the cone spanned by numerical classes of effective curves.

3 Nef cone

$$\begin{aligned} Nef(X) &= NE(X)^{\vee} \\ &= \{D: D \cdot C \geqslant 0 \forall C \in NE(X)\} \end{aligned}$$

4 Linear system

$$D \in Cl(X) \qquad |D| = \mathbb{P}H^0(X, \mathcal{O}_X(D)) = \{D \geqslant 0 : D \sim D\}$$

where $\mathcal{O}_X(D)$ is the divisorial sheaf. Notice that this is nonempty iff D is effective.

Now consider a rational map

$$\phi_D: X \xrightarrow{rat} |D|^{\vee}$$

$$x \longmapsto \{D^1 \in |D|: X \in D^1\}$$

Base locus: $BS|D| = \bigcap_{D^1 \in |D|} D^1$

$$D = Fix(D) + M$$

on the left, divisorial part of the base locus, on the right mobile part.

$$\phi_D = \phi_M$$

BS(D) = empty then D is called *free* for globally generated.

D is a pullback by a hyperplane:

$$\begin{split} \phi_D: X &\longrightarrow \mathbb{P}^r = |D| \\ \mathcal{O}(D) &= \phi_D^* \mathcal{O}(1) \implies D \text{ is Cartier} \end{split}$$

5 Stable base locus

$$\mathbb{B}(D) = \bigcap_{\mathfrak{m}>0} Bs \, |\mathfrak{m}D|$$

D is called *semiample* if $\mathbb{B}(D)$ =empty iff mD is free for some m > 0.

D semiample implies D is nef.

6 Semi-ample Fibration Theorem

Theorem. D semiample $\implies \phi_{|\mathfrak{mD}|}: X \to Y$ does not depend on $\mathfrak{m} \gg 0$ and divisible. Connected fibers, Y normal (not necessarily \mathbb{Q} -factorial).

Theorem (Zariski). $D \in Pic(X)$, Bs |D| is finite $\Longrightarrow D$ is semiample.

Corollary. dim X = 2, $D \in Pic(X)$ effective, $Fix(D) = 0 \implies D$ is semiample.

- If $\varphi_{|D|}$ is a closed embedding, them D is called *very ample*.
- $D \in Cl(X)$ is called ample if mD is very ample for some m > 0.
- $D \in Cl(X)$ is big if $\dim \phi_{|\mathfrak{m}D|}(X) = \dim X$ for some $\mathfrak{m} > 0 \iff h^0(X, \mathfrak{m}D) \sim_{\mathfrak{m}} \dim X$ if $\mathfrak{m} \gg 0$ and divisible, $\stackrel{Itaka}{\Longleftrightarrow} \phi_{|\mathfrak{m}D|}$ is birational.

7 Kleimen Criterion

Even though amppleness and bigness are defined using linear system, they are numerical properies.

Theorem (Kleimen Criterion). $D \in Cl(X)$ is ample iff $D \in Interior\ Nef(X)$. This implies that $Nef(X) \subset Eff(X)$

$$D \in Cl(X) = D \in Interior \, Eff(X)$$

$$\iff mD = Effective \, and \, ample \, for \, some \, m > 0$$

And what you need for that is

Lemma (Kodaira's lemma). D big, A effective, then mD - A is also effective for some m > 0

$$0\, \to\, {\mathfrak O}({\mathfrak m}{\mathsf D}-{\mathsf A})\, \to\, {\mathfrak O}({\mathfrak m}{\mathsf D})\, \to\, {\mathfrak O}({\mathfrak m}{\mathsf D})|_{\mathsf A}\, \to\, 0$$

this implies mD - A is effective.

This is the end of the review.

8 Some questions asked by Fulton

 $\partial \overline{M}_{0,n}$ components. There's some stratification of this space by their divisors. There are some things called *F-curves*.

Example. In the surface case, $\overline{M}_{0,5} = Bl_4 \mathbb{P}^2$ there are five $\binom{5}{10} = 10$ of them. They are called *(-1)-curves*. If you look at the effective cone of this blow up, it is generated by these 10 curves.

Conjecture (Fulton-Fuber). NE($\overline{M}_{0,n}$ is generated by F-curves. Still poen

Conjecture (Fulton, it is wrong). Eff($\overline{M}_{0,n}$ is generated by boundary divisors.

There are many other extremal rays (Gutrvet-Jenia 2013), also because it is not a rational polyhedral cone (not finitely generated) (2023 paper).

9 Some strategies for proving these sort of things

LEt's go back to the setting where X is a normal \mathbb{Q} -factorial projective variety. Look a birational (and \mathbb{Q} -factorial) maps $f: X \xrightarrow{bir} Y$ and f is regular in codimension 1. Then $D \subset X$ is called f-exceptional if dim f(D) < dim D, equivalently, f is not an isomorphism at a generic point g ∈ D. f (or Y)is called a *birational contraction* if there are no f^{-1} -exceptional divisors.

Question (Misha). Is contraction always regular? No.

f (or Y)is called *small* \mathbb{Q} -*factorial modification* if there are no f or f^{-1} exceptional divisors. So basically this means that f is an isomorphism in codimension 1.

And finally, a rational map $f: X \xrightarrow{rat} Y$ of \mathbb{Q} -factorial varieties is called *rational contraction* if f is a composition of birational contractions and morphisms with connected fibers (between \mathbb{Q} -factorial varieties).

Principle The birational geometry of X is the study of brational contractions of X.

10 Application of this to the study of effective cones

If $f: X \xrightarrow{bir} Y$ is a birational contraction, then its exceptional divisors are extremal rays of Eff(X).

11 Some examples

11.1 Hassett spaces

These are the simplest examples of birational contractions.

(I talk about genus zero but most of this can be extended).

Choose some positive numers $a_1, \dots a_n > 0$ with $\sum_i a_i > 2$. They are called *rational weights*. The birational contraction is

$$\overline{M}_{0,n} \longrightarrow \overline{M}_{0,n;\bar{\mathfrak{a}}} = \text{ moduli space of } \bar{\mathfrak{a}}\text{-stable rational curves}$$

where the bar over a should be an arrow like a vector.

- Semi -log canonical.
- $\omega_c(\sum_i a_i p_i)$ ample \iff p_i are not at the nodes.
- # of nodes on $R + \sum_{p_i \in R} a_i > 2$.
- $I \subset \{1, ..., n\}, p_i = p_j, i, j \in I \implies \sum_{i \in I} a_i \leq 1$

Example.

Choose

$$(1,\ldots,1)\longrightarrow \overline{M}_{0,n}$$

where $(1,\underbrace{x,\ldots,x}_{n-1})$ so that $1+(n-1)x=2+\epsilon$ with $\epsilon\ll 1$. So there is a heavy point,

So for example stable curve \mathbb{P}^1 , $p_1, \ldots, p_n \in \mathbb{P}^1$ with a=1, $p_i \neq p_1$. So not all p_i with i>1 are equal. Now do

$$p_1 \to \infty$$
 $p_2 \to 0$

and the rest of the points $p_3, \ldots, p_n \in \mathbb{C}$. What happens is that not all of them are zero. So what is the moduli. It's very simple: $\overline{M}_{0,n;\bar{\alpha}} = \mathbb{P}^{n-3}$. The map $\overline{M}_{0,n} \to \mathbb{P}^{n-3}$ is called the *Kapranov map*.

Then there's a drawing of to curves that intersect in a curve, and we map them to $\overline{M}_{0,n;\bar{a}}$, which is only one of the original lines (the one where p_1 lives) and the second one has been contracted to a point. So there is a contraction:

$$|I^c| \geqslant 3 \implies \Delta_I \text{ is contracted}$$

 $\implies \text{Every } \Delta_I \text{is contracted}$

Exercise. • Take a bunch of triangles and see how many vertices they cover. Show that $\left|\bigcup_{i\in I}\Gamma_i\right|\geqslant |I|+2$. If |I|=1 or |I|=n-2 we have stric equality. Here |I| is the number of triangles that you chose and Γ_i is a triangle which is just three vertices. In fact, there are n-2 black triangles when you have a black-and-white triangulation of n vertices. This is the *hypertree condition*

• Strict inequality for 1 < |I| < n-2 unless the triangulation is a *connected sum* . This is the *irreducible hypertree condition*.

So what does that have to do. So an *irreducible hypertree* is given by those inequalitites. We have: $\Gamma_1, \ldots, \Gamma_n$ irreducible hypersurve. and then: hypertree curve

$$\Gamma_i = \{a, b, c\}$$

$$\Gamma_j = \{\alpha, x, y\}$$

If it is not an octahedron there will surely be vertices with more than two black triangles.

Question. Is this curve the union of the two lines that pass through $\{a, b, c\}$ and $\{a, x, y\}$ So the curve is locally the union of coordinate axes.

$$M_{0,n} \subset Morphisims(\mathcal{C}_{\Gamma}, \mathbb{P}^1)$$

which is linear on every component of C_{Γ} .

drawing of 4 lines the components of the curve
$$\longrightarrow \mathbb{P}^1$$
 with intersections numbered

So the intersection points go to some 6 points in \mathbb{P}^1 . The choice of these 6 points is (the moduli space?).

And then we do

$$M_{0,n}\subset Morph(\mathcal{C}_{\Gamma},\mathbb{P}^1)\to Pic(\mathcal{C}_{\Gamma})$$

We have done

$$C_{\Gamma} \stackrel{\varphi}{\longrightarrow} \mathbb{P}^1 \longrightarrow \varphi^* \mathcal{O}(1)$$

So we have

$$M_{0,n} \longrightarrow (\mathbb{C}^*)^{n-3}$$

which is birational by Riemann-Roch.

So what is the exceptional locus D_{Γ} ? A general point of D_{Γ} .

We do a map $C_{\Gamma} \to \mathbb{P}^2$. Choose a point $x \in \mathbb{P}^2$ and project from X and get n points on \mathbb{P}^1 .

Theorem (Castoret-Jenia). Γ is irreducible hypertree $\implies D_{\Gamma} \subset M_{0,n}$ is an irreducible

divisor. $\overline{D}_{\Gamma} \subset \overline{M}_{0,n}$ is an exceptional divisor

$$\begin{array}{c} D_{\Gamma} & \longrightarrow \text{contracted} \\ \downarrow & \downarrow \\ M_{0,n} & \longrightarrow (\mathbb{C}^*)^{n-3} \\ \downarrow & \downarrow \\ \overline{M}_{0,n} & \xrightarrow{\text{contraction!}} \text{compactified Jacobian} \\ \\ \text{contained} \\ \downarrow \\ \overline{D}_{\Gamma} \end{array}$$

So D_{Γ} is an exceptional ray of $Eff(\overline{M}_{0,n})$.

Theorem (Castravet, Laface, Jenia, Ugaglic). Eff($\overline{M}_{0,n}$ is infinitely generated for $n \ge 10$.

Lemma. Let $f: X \xrightarrow{rat}$ be a rational contraction. Then

$$Eff(X) f. g. \implies Eff(Y) f.g.$$

Other properties preserved by rational contractions are: being a MDS, having a SQS with nef but not semiample divisor, etc.

Proof. **Case 1** When f is a birational contraction. In this case you just notice that the effective cone of Y is going to be a pushforward of the effective cone of X:

$$Eff(Y) = f_* Eff(X)$$

for

$$f_*: N^1(X) \to N^1(Y)$$

Case 2 f is a morphism. There is no pushforward of divisors! But we still have a pushforward, but for cycles:

$$f_*: N_1(X) \rightarrow N_1(Y)$$

And then there is the $Mov_1(X) = cone$ spanned by *movable* curves on X, where movable means that the curve moves in a family that covers X.

Theorem (Bookson Demaria PP).

$$Eff(X) = Mov_1(X)$$

Proof. If the effective cone is polyhedral (finitely generated) then $Mov_1(X)$ is polyhedral. Then if you look at

$$f_*: Mov_1(X) \to Mov_1(Y)$$

is surjective, which implies that $Mov_1(Y)$ is also polyhedral. And then using duality we conclude that Eff(Y) is polyhedral.

Goal To find a rational contraction of $\overline{M}_{0.1}$ with a non-polyhedral effective cone.

Step 1 This requires going back to Hassett spaces. So take the weights $(1 = 0, 1 = \infty, \varepsilon, ..., \varepsilon)$ with $\varepsilon \ll 1$. This means that the stable curves are chains of \mathbb{P}^1 .

Drawing of many curves (little arcs) one after the other with 0 in the left most

and ∞ in the rightmost.

So Permutahedron= $\mathbb{P} = \overline{M}_{0,n;\bar{\alpha}} = LM$ = Losev-Manin Space.

And the permutahedron is the convex hull $\{\sigma(1), \sigma(2), \dots, \sigma(k)\}_{\sigma \in S_k} \subset \mathbb{R}^k$. So for k = 3 it is a hexagon.

Universality property (This is their lemma with Anna Maria) Every projective toric variety $\mathbb{P}(\Delta)$ is a rational contraction of the toric variety associated to the permutahedron, and therefore, $\overline{M}_{0,n}$ for $n \gg 0$.

Unfortunately, this is not what you want because $\mathrm{Eff}(\mathbb{P}(\Delta))$ is polyhedral (generated by toric boundary divisors).

Step 2 Now choose another Hassett space (the last one of this talk). Now choose $(1, 1, \underbrace{x, \dots, x})$

with $kx = 1 + \varepsilon \ll 1$. So it looks like this

$$\overline{M}_{0,n;a} = Bl_e LM$$

and there is a drawing of how the exepctional divisor E looks likein this blow-up.

Theorem (Universality theorem 2). (and therefore the blow up of a toric variety at only one point is...) Every $Bl_e \mathbb{P}(\Delta)$ is a rational contraction of $Bl_e \mathbb{P}$ (permutahedron) (and also $\overline{M}_{0,n}$.)

Remark. $\Delta \subset \mathbb{R}^2$ lattice polygon. Then $\mathrm{Bl}_{e} \mathbb{P}(\Delta)$ can be wild!

There is a drawing of a polygon made up from joining some specific points on a 6×6 square lattice. In this example $Bl_{\varepsilon}\,\mathbb{P}_{\Delta}$ has a non-polyhedral effective cone. (Misha: it is singular because it contains integer points inside.) There is an elliptic curve inside this surface $C\subset Bl_{\varepsilon}\,\mathbb{P}_{\Delta}$ given by $C:y^2+y=x^3-x^2-24x+54$. And then

$$Nef(X) \subset LC X = \{D : S^2 \geqslant 0 \text{ is very ample}\} \subset Eff X$$

and C is away from singularities and has intersection 0, that is, $C^2=0$. Also $\mathcal{O}(C)|_C=\mathrm{Pic}^0(C)$ and in fact $\mathcal{O}(C)|_C=(1,5)$ has infinite order, so $h^0(\mathfrak{m}C)=1\forall \mathfrak{m}>0$. And what this means is that C is not the fiber of an elliptic curve. But any multiple of C is just C. So C is not on a facet of $\mathrm{Eff}(X)$.

Theorem (Nikulin). Eff(Surface) is polyhedral \implies Eff is generated by hesf? curves. So Eff is polyhedral \implies C is on the facet.

$$mC \sim xA + yB$$
 for some x and y

$$\implies h^0(mC) > 1$$

contradiction.

11.2 Two more anomalies

Theorem (Goto-Nishida-Watamabe). There exists $\mathbb{P}(a,b,c)$ such that $X = \mathrm{Bl}_{\mathfrak{e}} \mathbb{P}(a,b,c)$ (in characteristic 0) has a nef, big, not semi-ample divisor.

Conjecture (Conjectural anomaly). If you take $Bl_e \mathbb{P}(9,10,13)$ then the effective cone looks like this: drawing of to lines intersecting at a point. One of the lines is E and the other is $D^2 = 0$. All you have to prove is that nothing oustide of the shaded area (acute angle region) is effective. This is equivalent to $\mathbb{P}(9,10,13)$ has an irrational seshodri constant.

The conjecture is that almost every surface has a point with an irradional Seshadri constant, but no example is known.

This would imply Nagata conjecture for $9 \cdot 10 \cdot 13$ points on \mathbb{P}^2 .

There is this world of blown up toric surfaces whose geometry is very