Addition (and subtraction) * Dimersions have to match!

a Addition is commutative and associative.

a Subtraction is not commutative or associative.

Jalar multiplication

$$k \cdot \begin{bmatrix} a & b \end{bmatrix} = \begin{bmatrix} k \cdot a & k \cdot b \end{bmatrix}$$

Zero matrices

Omin is a matrix with m number of rows, and a number of columns, and all of its entries are zeros.

$$A + O = A$$
 $A + (-A) = C$

A+(-A)=0 y-A is called "opposite watrix"

Matrix multiplication

Am, n . B n. p =
$$C_m$$
, p

must
match

 $A = \begin{bmatrix} P_1 \Rightarrow 2 & 6 \\ P_2 \Rightarrow 3 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} P_1 \Rightarrow 2 & 6 \\ P_2 \Rightarrow 3 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} P_1 \Rightarrow 2 & 6 \\ P_2 \Rightarrow 3 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} P_1 \Rightarrow 2 & 6 \\ P_2 \Rightarrow 3 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} P_1 \Rightarrow 2 & 6 \\ P_2 \Rightarrow 3 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} P_1 \Rightarrow 2 & 6 \\ P_2 \Rightarrow 3 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} P_1 \Rightarrow 2 & 6 \\ P_2 \Rightarrow 3 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} P_1 \Rightarrow 2 & 6 \\ P_2 \Rightarrow 3 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} P_1 \Rightarrow 2 & 6 \\ P_2 \Rightarrow 3 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} P_1 \Rightarrow 2 & 6 \\ P_2 \Rightarrow 3 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} P_1 \Rightarrow 2 & 6 \\ P_2 \Rightarrow 3 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} P_1 \Rightarrow 2 & 6 \\ P_2 \Rightarrow 3 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} P_1 \Rightarrow 2 & 6 \\ P_2 \Rightarrow 3 & -1 \end{bmatrix}$
 $A = \begin{bmatrix} P_1 \Rightarrow 2 & 6 \\ P_2 \Rightarrow 3 & -1 \end{bmatrix}$

Makix Addition : * Dimensions must be identical * Add corresponding entries * Is commutative and associative Neutrix Subtraction: * Dimensions must be identical. * Subtract corresponding entries 4 Not commutative, not associative Scaler Multiplication: 4 Each entry is multiplied by the scalar. Opposite matrices: * A + B = 0 > B = -A

Dot product	Ri. Ci nears "dot product of Ri. Ci.
	$P_1 \cdot C_1 = R_{1,1} \cdot C_{1,1} + P_{1,2} \cdot C_{2,1}$
	$\Rightarrow A.8 = \begin{bmatrix} R_{1,1} \cdot C_{1,1} + R_{1,2} \cdot C_{2,1} & R_{1,1} \cdot C_{1,2} + R_{1,2} \cdot C_{2,2} \\ R_{2,1} \cdot C_{1,1} + R_{2,2} \cdot C_{2,1} & R_{2,1} \cdot C_{1,2} + R_{2,2} \cdot C_{2,2} \end{bmatrix}$
Propertia of Matrix multiplication	4 Not commutative: A.B + B.A
	Associative : $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ A Distributive : $A(B+C) = A \cdot B + A \cdot C$
Identity matrix	A. I = A
	Gldensty Gldensty Mehrix T10007
	$I_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad I_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $
Elimination Matrix	$E \cdot A = I$ $E_1 : First row operation$
	4 Elimination E2: Second row operation Metrix
	En: 11th row operation
	* Elimination matrix is also called Inverse Matrix.
	$E \cdot A = I \Rightarrow E = A^{-1}$
Matrix Multiplication	Co Dot product Det product O entries: O212 = [00]
$A = \begin{bmatrix} P_1 \rightarrow 2 & 6 \\ P_2 \rightarrow 3 - 1 \end{bmatrix} B = \begin{bmatrix} 1 \\ -4 \\ 1 \end{bmatrix}$	C2 1