PID exercises

Kjartan Halvorsen

2018-02-20

1 A PID controller with anti-windup

The figure below taken from Åström & Wittenmark shows a block-diagram of a PID controller with anti-windup.

Figure 8.10 Controller with antiwindup. A system in which the actuator output is measured is shown in (a) and a system in which the actuator output is estimated from a mathematical model is shown in (b).

Consider the PID controller as having the output signal v(t) and three input signals: The control error $e(t) = y_{ref}(t) - y(t)$, the output feedback signal y(t) and the output signal of the actuator model u(t).

1. Determine the transfer functions in

$$V(s) = F_u(s)Y(s) + F_e(s)E(s) + F_u(s)U(s).$$

- 2. Determine the pole(s) of the controller.
- 3. Determine the steady-state output of the controller for step input signals (all at once) $Y(s) = \frac{\alpha}{s}$, $E(s) = \frac{\beta}{s}$ and $U(s) = \frac{\gamma}{s}$.
- 4. How should we interpret the steady-state value if the actuator is not saturating, so that u(t) = v(t)?

1.1 Solution

1. Transfer functions

$$V = -KT_d s Y + KE + 1/s \left(K/T_i E + 1/T_t (U - V) \right)$$

$$V + 1/(T_t s) V = -KT_d s Y + (K + K/(T_i s)) E + 1/(T_t s) U$$

$$V = \frac{-KT_d s}{1 + 1/(T_t s)} Y + \frac{K + K/(T_i s)}{1 + 1/(T_t s)} E + \frac{1/(T_t s)}{1 + 1/(T_t s)}$$

$$V = \frac{-KT_d s^2}{s + 1/T_t} Y + \frac{K(s + 1/T_i)}{s + 1/T_t} E + \frac{1/T_t}{s + 1/T_t} U$$

2. Final value for step-response from the three insignals:

$$\lim_{t \to \infty} v(t) = \lim_{s \to 0} s \frac{-KT_d s^2}{s + 1/T_t} \alpha/s + \lim_{s \to 0} s \frac{K(s + 1/T_i)}{s + 1/T_t} \beta/s + \lim_{s \to 0} s \frac{1/T_t}{s + 1/T_t} \gamma/s$$

$$\lim_{t \to \infty} v(t) = 0 \cdot \alpha + \frac{KT_t}{T_i} \beta + \gamma$$

3. Interpretation: Output of controller does not grow, even with constant error signal e(t). If u=v, then the final value must be $v(\infty)=\gamma$. This can only happen if $\beta = 0$, i.e. the control error is zero. So, as long as the actuator does not saturate, the controller will give zero steady-state error. If the actuator does saturate, then $\$v(\infty)$ $> \gamma$ \$ and so $\beta > 0$, i.e. there will be a steady-state error

The effect of PID controller parameters

Assume a certain system being controlled by a PID regulator, $U(s) = (K_P + K_I \frac{1}{s} + K_I \frac{1}{s})$ K_Ds)E(s). In the figure below shows four step responses for the parameter triples

i)
$$K_P = 1$$
 $K_I = 0$ $K_D = 0$

$$ii)$$
 $K_P = 1$ $K_I = 1$ $K_D = 0$

$$iii)$$
 $K_P = 1$ $K_I = 0$ $K_D = 1$ $iv)$ $K_P = 1$ $K_I = 1$ $K_D = 1$

$$iv)$$
 $K_P = 1$ $K_I = 1$ $K_D = 1$

Match each one of the parameter triples to one of the step responses. Justify your answer!

3 Ziegler-Nichols ultimate gain tuning

Ziegler and Nichols developed their tuning rules for PID regulators given that the system can be approximated as a first order system with time delay: $G(s) = \frac{e^{-sT}}{s+a}$. We perform a resonance test according to Ziegler-Nichols' ultimate gain method and with the proportional gain $K=5=K_u$ we get the closed-loop step response seen below

- 1. What is the period T_u and angular frequency ω_u of the oscillations?
- 2. Determine the parameters T and a in the transfer function G(s).
- 3. Tune a PI regulator

$$u(t) = K_p \left(e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau \right)$$

according to Ziegler-Nichols' recipe.

Controller type	K_p	T_i	T_d
Р	$0.5K_u$		
PI	$0.45K_u$	$T_{u}/1.2$	
PD	$0.8K_u$		$T_u/8$
PID	$0.6K_u$	$T_u/2$	$T_u/8$

- 4. The Nyquist plot of the resulting loop gain $G_o(s) = F(s)G(s)$ is shown below. What are the stability margins?
- 5. The cross-over frequency is $\omega_c = 0.39 \text{ rad/s}$ with the tuned PI controller. Determine a sampling period h for a discrete-time implementation of the PI controller, such that the phase margin is reduced by about 10° .

3.1 Solution

- 1. Period $T_u=(12-1.5)/5=2.1$ sec. Corresponding to $\omega_u=\frac{2\pi}{T_u}=3.0$ rad/s.
- 2. The loop gain is $G_o(s) = 5\frac{\mathrm{e}^{-sT}}{s+a}$. Since we have undamped oscillations of frequency $\omega_u = 3 \text{ rad/s}$, then the closed-loop system must have poles on the imaginary axis at $\pm i\omega_u$. That is have $1 + G_o(i\omega_u) = 0$ or $G_o(i\omega_u) = -1$. The Nyquist curve goes through the critical point -1. We get the equations

$$|G_o(i\omega_u)| = 1$$

$$\arg G_o(i\omega_u) = \pi$$

$$F(s) = 0.45K_u(1 + \frac{1.2}{T_u s}) = 2.25(1 + \frac{1.2}{2.1s}).$$

- 4. Phase margin about 100 degrees, amplitude margin about 2.
- 5. The discretization gives a delay of about h/2, which contributes with negative phase to the loop gain. We get $G_{d,o}(i\omega) \approx \mathrm{e}^{-i\omega h/2} G_o(i\omega)$. At the cross-over frequency, the negative phase contribution from delay is $\arg \mathrm{e}^{-i\omega_c h/2} = -\omega_c h/2 = -10*pi/180$ which gives $\omega_c h = 2*20*pi/180 = 0.35$ Note: rule-of-thumb says $\omega_c h \approx 0.15 0.5$. Here: $h = 0.35/0.39 \approx 0.90$ s.