Правило суммы

Это короткий урок, на котором мы пройдём два простых утверждения. А именно мы научимся вычислять вероятности объединения событий: пройдём правило суммы для объединения несовместных событий, а затем и общий принцип вычисления вероятности объединения событий.

- Желаете кофе со сливками или без?
- Со сливками.
- Сливки я уже все съел.
- Тогда без.
- Отличный выбор, сэр.

Правило суммы

Пусть фиксировано некоторое вероятностное пространство (Ω, F, P) .

Определение. События $A,B\in F$ называются несовместными, если $A\cap B=\emptyset$.

Иными словами, не может одновременно произойти и событие A, и событие B.

Правило суммы. Если события A и B несовместны, то $P(A \cup B) = P(A) + P(B)$.

Интерпретировать событие $A \cup B$ можно, как "имеет место событие A или событие B". Следовательно, $P(A \cup B)$ — вероятность того, что произойдет A или B. Правило суммы вы докажете в следующей задаче, но сначала разберем пример.

Пример

Вы с другом играете в рулетку. Допустим, вы поставили на секции с 3 по 10, а ваш друг — на секции с 15 по 25. Пусть событие A — выигрываете вы (то есть шарик останавливается на одной из секций с 3 по 10). Событие B — выигрывает ваш друг.

Мы хотим посчитать вероятность того, что выиграете вы или ваш друг, то есть вероятность $A\cup B$. Заметим, что вы с другом поставили на множества секций, которые не пересекаются. Таким образом, события A и B несовместны. Значит $P(A\cup B)=P(A)+P(B)$. Если действовать в предположении, что казино честное и все секции равновероятны, то $P(A)=\frac{8}{37}$ и $P(B)=\frac{11}{37}$. Таким образом, вероятность того, что кто-то из вас с другом выиграет, равняется $\frac{8}{37}+\frac{11}{37}=\frac{19}{37}=0.51351351351\dots$

В этом примере мы могли бы обойтись и без правила суммы, а просто явно найти множество элементарных исходов принадлежащих $A \cup B$, после чего поделить его размер на общее число элементарных исходов (потому что в этом примере элементарные исходы равновероятны). Но для более сложных вероятностных пространств правило суммы может быть полезно.

Объединение событий в общем случае

Утверждение. Пусть (Ω, F, P) — некоторое вероятностное пространство, $A, B \in F$ — события. Тогда

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Заметим, что правило суммы является частным случаем этого утверждения, поскольку для несовместных событий A и B вероятность $P(A \cap B) = P(\emptyset) = 0$.

Пример

Пусть два раза независимо подкидывается кубик. Мы хотим посчитать вероятность того, что при первом броске выпало четное число или выпал дубль (то есть в двух бросках выпало одно и то же число). Перечислять все элементарные исходы, которые входят в это событие, довольно долго, воспользуемся формулой. Пусть событие A — при первом броске выпало четное число, B — выпал дубль.

Вероятность A. $P(A) = \frac{1}{9}$

Вероятность B. $P(B)=\frac{6}{36}=\frac{1}{6}$ — всего может выпасть 6 дублей: $11,22,\ldots,66$, а возможных исходов 36.

Такой же ответ можно получить, рассуждая чуть иначе. Какое бы значение ни выпало в первом броске, вероятность получить такое же во втором броске равняется $\frac{1}{6}$, значит вероятность дубля $\frac{1}{6}$. Если говорить более строго, то мы рассматриваем условную вероятность того, что выпал дубль, при фиксированном значении в первом броске — это всегда $\frac{1}{6}$. А дальше расписываем вероятность дубля через формулу полной вероятности перебирая в качестве условия выпавшее значение в первом броске.

Вероятность $A \cap B$. Найдём $P(A \cap B)$. Если выпал дубль и при этом первое число четно, то подходящие исходы это 22,44 и 66. Таким образом, $P(A \cap B) = \frac{3}{36} = \frac{1}{12}$.

Вероятность $A \cup B$. Применим формулу $P(A \cup B) = P(A) + P(B) - P(A \cap B)$. Подставляя полученные выше вероятности, получаем, что

$$P(A \cup B) = \frac{1}{2} + \frac{1}{6} - \frac{1}{12} = \frac{7}{12} = 0.583333333333...$$

Докажите, что $P(A \cup B) = P(A) + P(B) - P(A \cap B).$

Напоминание. Вероятность события X это сумма вероятностей элементарных исходов, входящих в X.

В школе есть два кружка для восьмиклассников – кружок по программированию и кружок по математике. Всего в школе 100 восьмиклассников. На кружок по программированию ходят 25 человек, на кружок по математике ходят 15 человек. При этом ровно
10 восьмиклассников ходят на оба кружка. Среди всех восьмиклассников какова доля восьмиклассников, которые ходят хотя бы на один кружок?
один кружок?
один кружок? Введите численный ответ

Два раза независимо подкидывается кубик.	ыпавших чисел делится на 3 или выпал д	убль.
Ответ округлите до 3 знаков после запятой.		
Введите численный ответ		
Введите численный ответ		
Введите численный ответ Введите число		

На этом уроке мы

- ullet прошли правило суммы: для несовместных событий A и B выполнено $P(A\cup B)=P(A)+P(B)$
- ullet а также узнали формулу вероятности объединения событий в общем случае: $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

Что нас ждёт на следующем уроке

На следующем уроке мы

• познакомимся с комбинаторикой: будем считать количество способов сделать что-то