DBSCAN

ML2: Al Concepts and Algorithms (SS2025)

Faculty of Computer Science and Applied Mathematics

University of Applied Sciences Technikum Wien

Lecturer: Rosana de Oliveira Gomes

Authors: B. Knapp, M. Blaickner, S. Rezagholi, R.O. Gomes

Regression

KNN regression Regression trees Linear regression Multiple regression Ridge and Lasso regression Neural networks

Classification

KNN classification Classification trees Ensembles & boosting Random Forest Logistic regression Naive Bayes Support vector machines Neural networks

Supervised learning

Clustering

k-means
Hierachical clustering
DB-scan

Non-supervised learning

Data handling

EDA
Data cleaning
Feature selection
Class balancing
etc

Dimensionality reduction

PCA / SVD tSNE MDS

Covered in a separate lecture.

Clustering Recap

- Unsupervised learning method that aggregates data into different groups (clusters) according to their similarities.
- Given the unlabeled data, clustering does not have a metric to measure algorithmic performance – often such methods rely on domain interpretation.
- Common Algorithms: K-Means Clustering, DBScan, Hierarchical clustering, Mean-Shift Clustering, Gaussian Mixture Model (GMM).

Types of clustering algorithms

Exclusive clustering: A single data point exclusively belongs to one cluster.

Overlapping clustering: A single data point may belong to multiple clusters.

<u>Hierarchical clustering</u>: Groups are created according to hierarchical similarities.

Probalistic clustering: Clusters are created using probability distribution.

K-Means Recap

K-Means is the most popular clustering method.

It is a method that divides the dataset into k-clusters (defined by the user).

Each data point belong to only one cluster.

Algorithm:

- 1. Specify number of clusters *k*.
- 2. Randomly initialize the cluster's centroids (see Iteration 1).
- 3. Calculate distance between each data points and centroids and assign data points to the nearest centroid.
- 4. Recalculate mean of the centroid based on all assigned data points.
- 5. Repeat until convergence.

DBSCAN: Density-Based Spatial Clustering for Applications with Noise

Clusters are dense spaces in the region separated by lower-density regions.

- DBSCAN is a clustering algorithm sensitive to density which explicitly allows noise points (points that are not in any cluster).
- In density-based clustering points are subdivided into **dense regions** separated by **low density** regions.
 - 1. How do we measure density?
 - 2. What is a dense region?

DBSCAN: Epsilon

 ε -k-Dense Region: A ball of radius ε that contains at least k points.

The ε -ball around the red point includes 4 other points.

DBSCAN: Hyperparameter k

k tells us how many points we need (within ϵ) to start a new cluster.

Example: k=4.

Step 1:

The **red** point is a **randomly** selected starting point.

The **orange** points are in the ε -ball around the red point. They are called **core points**.

Since $k \le 5$ we start a new cluster around the red point.

DBSCAN: Growing a Cluster

Step 2:

We consider the ϵ -balls around all core points.

DBSCAN: Growing a Cluster

Step 3:

Points within ε-reach of core points are **added** to the cluster.

If the newly added points are **core points** (their ϵ -ball contains more than k points) then we consider their ϵ -balls (as in step 2) in an iterative procedure.

This procedure is **repeated** until no more points can be reached.

DBSCAN: Growing a Cluster

Border points:

Points that can be reached from a cluster but that do not have enough ε-neighbours to be **core points** are called **border points**.

Border points are cluster members but they are no longer used in the iterative cluster-growing procedure.

Points that cannot be reached at all are called **noise points**.

DBSCAN: Finished Cluster

The red cluster is finalized.

DBSCAN: Final Result

We may start another cluster with the remaining points (depends on k and ϵ).

Since k=4 and none of the remaining points have more than 4 ϵ -neighbors all remaining points are classified as noise points.

This is the final result for k=4: One cluster and the rest is noise.

If we use the same value for ε but **change to k=3** then we obtain a second cluster of three points.

We start with a random point.

All 3 **green** points are core points but they do not lead to additional cluster members.

The final result for k=3:

One cluster of 9 points, one cluster of 3 points, and 1 noise point.

Density-Connected Points

Density edge

 A density edge exists between two core points q and p if there is a point p₁ such that both p and q are within distance ε of p₁.

 A point p is density-connected to a point q if there is a path of edges from p to q.

DBSCAN: Core, Border, and Noise Points

Point types:

- Core points
- Border points
- Noise points

DBSCAN: Summary

- A point is a core point if it has more than a specified number of points (hyperparameter k) within its ε-radius.
- The number of ϵ -neighbors of a **border point** is less than k but the point itself is in the ϵ -neighborhood of a core point.
- A noise point is any point that is neither a core point nor a border point.

Quiz

In DBSCAN, which of the following best describes the role of the minPts (k) parameter?

- A. Minimum distance between two core points
- B. Minimum number of points required to form a core point
- C. Minimum variance within a cluster
- D. Minimum number of clusters the algorithm should produce

Consider a dataset with two clusters of very different densities. What is the most likely result of applying DBSCAN with a fixed ϵ ?

- A. Both clusters will be identified correctly
- B. Only the denser cluster will be identified correctly; the sparser one may be split or treated as noise
- C. DBSCAN will automatically adjust ε for each region
- D. DBSCAN will merge both clusters into one

DBSCAN: Example

- k=4
- Point A and the other red points are core points, because each of the respective ε-balls contains at least 4 points (including the point itself). They form a single cluster because they are all reachable from one another.
- Points B and C are **border points** since they are reachable from A (via other core points) and thus belong to A's cluster as well.
- Point N is a **noise point** since it is neither a core point nor directly reachable.

DBSCAN: Stochasticity of the Algorithm

- DBSCAN is not deterministic. Even with the same parameters you do not necessarily obtain identical results.
- Border points that are reachable from multiple clusters can be part
 of any of these clusters, depending on the order of cluster
 processing (determined by random choice of starting points).
- For the majority of points (the core points) the results will be identical.

DBSCAN: Determining ε and k

Ideally ε and k are determined by domain knowledge (example: a physical distance for ε).

Choosing minPts (k): common values of k are at least D+1, where D refers to the number of dimensions (features).

- In the case of noisy data, increase the value of k to avoid false clusters.

Choosing ε:

Elbow method: For points in a cluster, their kth nearest neighbors are at roughly the same distance.

- 1. Compute the distance to each point's k-th nearest neighbor
- 2. Sort the distances in ascending order
- 3. Plot the sorted distances
- 4. Look for the **"elbow" point** in the plot this is your candidate for ε .

DBSCAN: Alternatives to the Euclidean Distance

The radius ε is a hyperparameter.

Any metric (distance function satisfying the mathematical properties of a metric) can be used.

- <u>Euclidean metric:</u> default (works well in a **continuous vector space** where features are equally scaled and meaningful.
- Non-Euclidean metric: dependent of use case.
 Categorical data → e.g. Jaccard distance
 Text/Sequence data → e.g. cosine distance
 GPS data → e.g. haversine distance
 Graph-structured data → geodesic distance

Several metrics are implemented in SK-Learn:

When does DBSCAN work well?

- Data with noise or outliers Naturally handles and labels noise points.
- No need to predefine number of clusters The number emerges from the data.

When does DBSCAN work well?

DBSCAN can find certain clusters that can not be obtained using the k-means algorithm.

By Chire - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17085332

When does DBSCAN fail?

- Varying densities A single global ε makes it hard to detect clusters of varying densities.
- High-dimensional data Distance metrics lose meaning in high dimensions, leading to poor clustering.
- Parameter sensitivity Performance can be very sensitive to ε and minPts (k); needs careful tuning.

 $k=4, \epsilon=9.92$

When does DBSCAN fail?

epsilon=0.5, k=4

DBSCAN: More Counterexamples

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

Takeaway

- DBSCAN is highly effective for clustering low-dimensional, noisy, and non-spherical datasets where cluster shapes are complex and the number of clusters is unknown.
- DBSCAN is less effective for high-dimensional data or data with clusters of varying density.
- Hyperparameters:
 Too small ε → many small clusters and noise
 Too large ε → merges distinct clusters into one
 Too small minPts → more noise, sensitive to outliers
 Too large minPts → may miss small clusters

Next up: Dimensionality Reduction

Assignment: DBSCAN

a) Explain DBSCAN via visualizations.

Use self-made images or even hand drawings (of which you take a photo).

Use self-written explanations.

Do not copy from the lecture slides or the internet (neither text nor images).

b) Implement a (basic) version of DBSCAN.

Run it on 3 test sets of your choice. Run a library-version of k-means on the same test sets and compare the results with DBSCAN. Visualize the results for DBSCAN and k-means.

Literature

Giuseppe Bonaccorso. Machine Learning Algorithms - 2nd Edition. Birmingham: Packt Publishing, 2018.

