

# یادگیری عمیق

مدرس: محمدرضا محمدی زمستان ۱۴۰۱

# شبكههاي عصبى كانولوشني

**Convolutional Neural Networks** 

## نرمالسازی دستهای (Batch Normalization)

- آموزش شبکههای عمیق کار دشواری است
- نرمالسازی دستهای یکی از تکنیکهایی است که همگرایی شبکههای عمیق را شتاب میدهد
  - نرمالسازی در ورودی شبکههای عمیق هم بسیار مهم است
    - مثال: تخمين قيمت خانه
    - مجموعه داده Boston Housing Price
    - نسبتا کوچک: ۴۰۴ داده آموزشی، ۱۰۲ داده آزمون
    - ویژگیهای مجموعه داده دارای مقیاسهای متفاوتی هستند
      - قیمتها برحسب هزار دلار هستند



#### مثال: تخمين قيمت خانه

```
mean = train_data.mean(axis=0)
std = train_data.std(axis=0)
train_data -= mean
train_data /= std
test_data -= mean
test_data /= std
```

- ویژگیهای مجموعه داده دارای مقیاسهای متفاوتی هستند
- نرمالسازی ویژگیها باعث سادهتر شدن فرآیند بهینهسازی میشود





#### مثال: تخمين قيمت خانه

• نرمال بودن دادهها هم در زمان آموزش و هم در زمان آزمون بسیار اثر گذار است

- ✓ adam\_original/train
- adam\_original/validation
- adam\_normalized/train
- adam\_normalized/validation



### نرمال سازی دستهای (Batch Normalization)

- نرمالسازی تأثیر چشمگیری بر عملکرد بهینهسازی دارد
  - به خصوص برای شبکههای کانولوشنی

$$rac{\mathbf{x}-\widehat{oldsymbol{\mu}}_{\mathfrak{B}}}{\widehat{oldsymbol{\sigma}}_{\mathfrak{B}}}$$

- خروجی یک واحد از یک دسته 🗷 را در نظر بگیرید
  - میخواهیم میانگین آن صفر و واریانس آن یک شود
- و  $\widehat{m{\sigma}}_{m{arphi}}$  به ترتیب میانگین عددی و انحراف معیار عددی نمونههای این دسته هستند  $\widehat{m{\phi}}_{m{arphi}}$ 
  - مشتق این تابع به سادگی قابل محاسبه است

### نرمال سازی دستهای (Batch Normalization)

• میانگین و واریانس عددی به صورت مستقل برای هر واحد محاسبه میشود



(D میانگین هر کانال (به طول  $\bullet$ 

(D واریانس هر کانال (به طول  $\bullet$ 

 $(N \times D)$  نرمالشده  $x \bullet$ 

 $(N \times D)$  y خروجی: •



$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{ij}$$

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{ij} - \mu_j)^2 + \epsilon$$

$$\widehat{x}_{ij} = \frac{x_{ij} - \mu_j}{\sigma_j}$$

Learnable scale and shift 
$$y_{ij} = \gamma_j \hat{x}_{ij} + \beta_j$$

## نرمالسازی دستهای: زمان آزمون

- برآوردهای میانگین و واریانس به minibatch بستگی دارند
  - نمی توان این کار را در زمان آزمون انجام داد!
- از میانگین متحرک مقادیر ( $\mu$  و  $\sigma^2$ ) در حین آموزش استفاده میشودullet
  - در زمان آزمون BN به یک عملگر خطی تبدیل می شود!
  - مى تواند با لايه كاملاً متصل يا كانولوشنى قبل تركيب شود

$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{ij}$$

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{ij} - \mu_j)^2$$

$$\widehat{x}_{ij} = \frac{x_{ij} - \mu_j}{\sigma_i}$$

$$y_{ij} = \gamma_j \hat{x}_{ij} + \beta_j$$

## نرمالسازی دستهای

• معمولاً بعد از لایههای خطی و قبل از تابع فعالسازی غیرخطی استفاده میشوند

- جریان گرادیان را بهبود میبخشد
- آموزش شبکههای عمیق را سادهتر میکند!
- اجازه میدهد از نرخ یادگیری بالاتر استفاده کنیم و همگرایی را سرعت میدهد
  - حساسیت به مقداردهی اولیه کاهش مییابد
- نویزی بودن تخمین میانگین و انحراف معیار باعث جلوگیری از بیشبرازش میشود
  - در زمان آموزش به نوعی عمل منظّمسازی را انجام میدهد
    - در زمان آزمون سرباری اضافه نمی کند
      - مى تواند با لايه خطى قبل تركيب شود



#### BN براى لايههاى كانولوشنى

## Batch Normalization for fully-connected layers

$$x: N \times D$$

$$\mu, \sigma: 1 \times D$$

$$\gamma, \beta: 1 \times D$$

$$y = \gamma \frac{x - \mu}{\sigma} + \beta$$

## Batch Normalization for convolutional layers

$$x: N \times W \times H \times C$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$\mu, \sigma: 1 \times 1 \times 1 \times C$$

$$\gamma, \beta: 1 \times 1 \times 1 \times C$$

$$y = \gamma \frac{x - \mu}{\sigma} + \beta$$

```
import torch
from torch import nn
def batch norm (X, gamma, beta, moving mean, moving var, eps, momentum):
    # Use 'is grad enabled' to determine whether the current mode is training mode or prediction mode
    if not torch.is grad enabled():
        # If it is prediction mode, directly use the mean and variance obtained by moving average
        X hat = (X - moving mean) / torch.sqrt(moving var + eps)
    else:
        assert len(X.shape) in (2, 4)
        if len(X.shape) == 2:
            # When using a fully-connected layer, calculate the mean and variance on the feature dimension
            mean = X.mean(dim=0)
            var = ((X - mean) ** 2).mean(dim=0)
        else:
            # When using a two-dimensional convolutional layer, calculate the mean and variance on the
            # channel dimension (axis=1). Here we need to maintain the shape of 'X', so that the
            # broadcasting operation can be carried out later
            mean = X.mean(dim=(0, 2, 3), keepdim=True)
            var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)
        # In training mode, the current mean and variance are used for the standardization
        X \text{ hat} = (X - \text{mean}) / \text{torch.sqrt}(\text{var} + \text{eps})
        # Update the mean and variance using moving average
        moving mean = momentum * moving mean + (1.0 - momentum) * mean
        moving var = momentum * moving var + (1.0 - momentum) * var
    Y = gamma * X hat + beta # Scale and shift
    return Y, moving mean.data, moving var.data
```

17

### نرمال سازى لايهاى (Layer Normalization)

Batch Normalization for fully-connected layers

$$x: N \times D$$

$$\mu, \sigma: 1 \times D$$

$$\gamma, \beta: 1 \times D$$

$$y = \gamma \frac{x - \mu}{\sigma} + \beta$$

Layer Normalization for fully-connected layers

$$x: N \times D$$

$$\mu$$
,  $\sigma$ :  $N \times 1$ 

$$\gamma, \beta: 1 \times D$$

$$y = \gamma \frac{x - \mu}{\sigma} + \beta$$

### نرمال سازى لايهاى (Layer Normalization)

Layer Normalization for fully-connected layers

$$x: N \times D$$

$$\mu$$
,  $\sigma$ :  $N \times 1$ 

$$\gamma, \beta: 1 \times D$$

$$y = \gamma \frac{x - \mu}{\sigma} + \beta$$

• نرمالسازی لایهای برای هر نمونه محاسبات را به صورت جداگانه انجام میدهد

- رفتار آن در زمان آموزش و آزمون کاملا یکسان است و نیازی به ذخیرهسازی مقادیر ندارد
  - برای لایههای بازگشتی هم به سادگی قابل اعمال است
    - در هر زمان محاسبات را جداگانه انجام میدهد

### نرمال سازی نمونهای (Instance Normalization)

Batch Normalization for convolutional layers

$$x: N \times W \times H \times C$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$\mu, \sigma: 1 \times 1 \times 1 \times C$$

$$\gamma, \beta: 1 \times 1 \times 1 \times C$$

$$y = \gamma \frac{x - \mu}{\sigma} + \beta$$

Instance Normalization for convolutional layers

$$x: N \times W \times H \times C$$

$$\downarrow \qquad \downarrow \qquad \qquad \downarrow$$

$$\mu, \sigma: N \times 1 \times 1 \times C$$

$$\gamma, \beta: 1 \times 1 \times 1 \times C$$

$$y = \gamma \frac{x - \mu}{\sigma} + \beta$$

## مقایسه روشهای نرمالسازی



### مقایسه روشهای نرمالسازی



Figure 5. Sensitivity to batch sizes: ResNet-50's validation error of BN (left) and GN (right) trained with 32, 16, 8, 4, and 2 images/GPU.

#### نتایج ILSVRC



#### Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

(ILSVRC 2015)

ResNet, 152 layers

• شبکه ResNet برنده مسابقه ۱LSVRC'15 با خطای ۳.۵۷٪ شد

• با ۱۵۲ لایه، انقلابی در عمق شبکههای کانولوشنی به وجود آورد





**Iterations** 

- اگر تعداد لایههای کانولوشنی ساده را بسیار زیاد کنیم چه اتفاقی میافتد؟
- چرا شبکه عمیقتر هم در آموزش و هم در آزمون عملکرد ضعیفتری دارد؟
  - البته مشكل از overfitting نيست!
  - فرضیه: مشکل در مسئله بهینهسازی است
  - بهینهسازی مدلهای عمیقتر دشوارتر است
- عملکرد مدلهای عمیق تر باید حداقل به خوبی مدلهای با عمق کمتر باشد
  - می توان وزنهای مدل کم عمق را به لایه های نخست شبکه عمیق کپی کرد و لایه های اضافی را به گونه ای تنظیم کرد که نگاشت همانی را انجام دهند
- ایده ResNet آن است که لایههای شبکه بجای آموختن نگاشت مطلوب، باقیمانده آن را یاد بگیرند



باید  $f(\mathbf{x})$  بجای  $f(\mathbf{x}) - \mathbf{x}$  آموخته شود



- از تعداد زیادی بلوک باقیمانده تشکیل شده است
- هر بلوک باقیمانده دارای ۲ لایه کانولوشنی ۳×۳ است
- به طور دورهای، تعداد فیلترها ۲ برابر شده و رزولوشن مکانی نصف میشود
  - در ابتدا دارای یک لایه کانولوشنی است
- پس از آخرین بلوک باقیمانده، ابعاد دادهها با استفاده از Average Pooling کاهش می یابد و یک لایه FC برای دسته بندی استفاده می شود
- برای مسئله ImageNet عمقهای مختلف شبکه شامل ۳۴، ۵۰، ۱۰۱ و ۱۵۲ استفاده شدهاند
- در شبکههای عمیقتر، از لایه کانولوشنی ۱×۱ برای بهبود بهرهوری استفاده شده است

| layer name | output size | 18-layer                                                                           | 34-layer                                                                           | 50-layer                                                                                                      | 101-layer                                                                                                     | 152-layer                                                                                                        |
|------------|-------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| conv1      | 112×112     | 7×7, 64, stride 2                                                                  |                                                                                    |                                                                                                               |                                                                                                               |                                                                                                                  |
|            |             | 3×3 max pool, stride 2                                                             |                                                                                    |                                                                                                               |                                                                                                               |                                                                                                                  |
| conv2_x    | 56×56       | $\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times2$     | $\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times3$     | $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$                  | $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$                  | $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$                     |
| conv3_x    | 28×28       | $\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$ | $\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$ | $ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $  | $ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $  | $   \begin{bmatrix}     1 \times 1, 128 \\     3 \times 3, 128 \\     1 \times 1, 512   \end{bmatrix} \times 8 $ |
| conv4_x    | 14×14       | $\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$        | $\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$     | $ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 6 $ | $\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$              | $ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 36 $   |
| conv5_x    | 7×7         | $\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$        | $\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$        | $ \left[\begin{array}{c} 1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048 \end{array}\right] \times 3 $    | $ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $ | $ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $    |
|            | 1×1         | average pool, 1000-d fc, softmax                                                   |                                                                                    |                                                                                                               |                                                                                                               |                                                                                                                  |
| FLOPs      |             | $1.8 \times 10^{9}$                                                                | $3.6 \times 10^9$                                                                  | $3.8 \times 10^9$                                                                                             | 7.6×10 <sup>9</sup>                                                                                           | 11.3×10 <sup>9</sup>                                                                                             |