1. Show that

$$\mathbb{P}(X = x) = F(x^{+}) - F(x^{-}).$$

2. Let X be such that $\mathbb{P}(X=2) = \mathbb{P}(X=3) = 1/10$ and $\mathbb{P}(X=5) = 8/10$. Plot the CDF F. Use F to find $\mathbb{P}(2 < X \le 4.8)$ and $\mathbb{P}(2 \le X \le 4.8)$.

$x \mid \mathbb{P}(X =$	$F_X(x)$		
2 1/10			
$ \begin{array}{c cccc} 2 & 1/10 \\ 3 & 1/10 \\ 5 & 8/10 \end{array} $	2/10		
5 8/10	10/10		
1 -		•	
0.8			
0.6			
0.6			_
0.4 -			_
0.2			
0.2			
		• · · · · · · · · · · · · · · · · · · ·	
0		0	
	0		10
-5	0	5	10

$$\mathbb{P}(2 < X \le 4.8) = \mathbb{P}(X > 2) \cdot \mathbb{P}(X \le 4.8)$$

$$= \{1 - \mathbb{P}(X \le 2)\} \cdot \mathbb{P}(X \le 4.8)$$

$$= \{1 - F_X(2)\} \cdot F_X(4.8)$$

$$= \{1 - 1/10\} \cdot 2/10$$

$$= 18/100$$

$$\mathbb{P}(2 \le X \le 4.8) = \mathbb{P}(X \ge 2) \cdot \mathbb{P}(X \le 4.8)$$

$$= \{\mathbb{P}(X > 2) + \mathbb{P}(X = 2)\} \cdot \mathbb{P}(X \le 4.8)$$

$$= \{1 - \mathbb{P}(X \le 2) + \mathbb{P}(X = 2)\} \cdot \mathbb{P}(X \le 4.8)$$

$$= \{1 - F_X(2) + \mathbb{P}(X = 2)\} \cdot F_X(4.8)$$

$$= \{1 - 1/10 + 1/10\} \cdot 2/10$$

$$= 2/10$$

3. Prove Lemma 2.15.

4. Let X have probability density function

$$f_X(x) = \begin{cases} 1/4 & : 0 < x < 1\\ 3/8 & : 3 < x < 5\\ 0 & : otherwise. \end{cases}$$

- (a) Find the cumulative distribution function of X.
- (b) Let Y = 1/X. Find the probability density function $f_Y(y)$ for Y

Hint: Consider three cases: $\frac{1}{5} \le y \le \frac{1}{3}$, $\frac{1}{3} \le y \le 1$, and $y \ge 1$

 $x \leq 0$

$$F_X(x) = \int_{-\infty}^x f_X(t)dt = \int_{-\infty}^x 0dt = 0; x \le 0$$

$$F_X(x) = \int_{-\infty}^x f_X(t)dt = \int_{-\infty}^x 0dt = 0; 0 \le x \le 1$$

$$F_X(x) = \int_{-\infty}^x f_X(t)dt; 0 \le x \le 1$$
$$= \int_{-\infty}^x 0dt$$

$$F_X(x) = \int_{-\infty}^x f_X(t)dt \quad x \le 0$$

$$F_X(x) = \int_{-\infty}^x f_X(t)dt \quad 0 \le x \le 1$$

$$F_X(x) = \int_{-\infty}^x f_X(t)dt \quad 1 \le x \le 3$$

$$F_X(x) = \int_{-\infty}^x f_X(t)dt \quad 3 \le x \le 5$$

$$F_X(x) = \begin{cases} 0 & : x \le 0 \\ \frac{x}{4} & : 0 \le x \le 3 \\ \frac{5x-9}{4} & : 3 \le x \le 5 \\ 1 & : x \ge 5. \end{cases}$$