## Contrôle: Calcul littéral, angles dans un triangle et fractions

## /4 Exercice 1 : Cours

- 1. Énoncer la propriété concernant la mesure des angles d'un triangle équilatéral.
- 2. Dans chacun des cas suivants, calculer la mesure du 3<sup>me</sup> angle, puis en déduire la nature exacte des triangles : (pas de démonstration mais écrire les calculs)
  - (a) Le triangle ABC est tel que :  $\widehat{BAC} = 42$  et  $\widehat{ACB} = 96$ .
  - (b) Le triangle EFG est tel que :  $\widehat{FEG} = 60$  et  $\widehat{EFG} = 60$ .
  - (c) Le triangle IJK est tel que :  $\widehat{JIK} = 45$  et  $\widehat{JKI} = 90$
- /1,5 **Exercice 2** : Soit GTZ un triangle isocèle en T, tel que :  $\widehat{GTZ}=112$  .
  - 1. Faire un schéma à main levée puis calculer la mesure de l'angle  $\widehat{TZG}$ . (Une démonstration est attendue)
  - /4 Exercice 3 : Pour chacune des questions de cet exercice vous rédigerez des démonstrations en vous appuyant sur les propriétés vues en cours.
    - 1. Calculer la mesure de l'angle  $\widehat{UPO}$ .
- 2. Calculer la mesure de l'angle  $\widehat{BED}$ .





/4 Exercice 4 : Pour chaque ligne, entourer la ou les propositions correctes.

| L'expression       | peut aussi s'écrire : |                    |                              |                                   |
|--------------------|-----------------------|--------------------|------------------------------|-----------------------------------|
| $2a \times 3b$     | $23 \times ab$        | 6ab                | $(2+3) \times ab$            | $2 \times 3 \times a \times b$    |
| $4 \times x + x^2$ | $4(x+x^2)$            | $4 \times x^3$     | $5 \times x^2$               | x(4+x)                            |
| 5x(1+7x)           | $5x + 35x^2$          | 5x + 35x           | $5x \times 1 + 5x \times 7x$ | $5x \times 1 \times 5x \times 7x$ |
| $3 + 5 \times 7$   | $(3+5) \times 7$      | $3 + (5 \times 7)$ | $3 \times 7 + 5 \times 7$    | $(3 \times 7) + (5 \times 7)$     |
| 2z + 3 + 4z + 5    | 6z + 8                | $14 \times z$      | 2z + 4z + 3 + 5              | (2+3+4+5)z                        |

- 71,5 **Exercice 5**: Tester si l'expression 3x + 2 = 5x 4 est vraie pour x = 2 puis pour x = 3.
- /5,5 Exercice 6:
  - 1. Parmi les nombres suivants : 17; 233; 2115; 2523; 210; 468; 57
  - (a) Quels sont ceux qui sont divisibles par 2?
  - (b) Quels sont ceux qui sont divisibles par 3?
  - (c) Quels sont ceux qui sont divisibles par 5?
  - (d) Quels sont ceux qui sont divisibles par 9?
    - 2. Quel est le critère de divisibilité par 4? Donner un exemple.
    - 3. Simplifier les fractions suivantes le plus possible :  $\frac{54}{10}$