Power Fit

Depending on the data, sometimes it is good to approximate the data by a power fit. This means that we want to have a least-square curve of the form $y = f(x) = Ax^M$ where M is a known constant (M can be +ve or -ve integer).

$$Ax^2$$
, Ax^3 , Ax^4 , ... \rightarrow +ve powers $\frac{A}{x}$, $\frac{A}{x^2}$, ... \rightarrow -ve powers

The only constant need to be determined is A.

The root mean square error is
$$E_2(f) = \left[\frac{1}{N}\sum_{k=1}^N |f(x_k) - y_k|^2\right]^{\frac{1}{2}}$$

 $E_2(f)$ will be minimum if $\sum_{k=1}^{N} (f(x_k) - y_k)^2$ is minimum.

$$E(f) = \sum_{k=1}^{N} (Ax_k^M - y_k)^2$$

$$\frac{dE}{dA} = 0 \Rightarrow \sum_{k=1}^{N} 2(Ax_k^M - y_k) \cdot \frac{d}{dA}(Ax_k^M - y_k) = 0$$

$$\sum_{k=1}^{N} (Ax_k^M - y_k)(x_k^M) = 0$$

$$\sum_{k=1}^{N} (Ax_k^{2M} - x_k^M y_k) = 0 \Rightarrow \sum_{k=1}^{N} Ax_k^{2M} - \sum_{k=1}^{N} x_k^M y_k = 0$$

$$A\sum_{k=1}^{N} x_k^{2M} - \sum_{k=1}^{N} x_k^{M} y_k = 0 \Rightarrow A\sum_{k=1}^{N} x_k^{2M} = \sum_{k=1}^{N} x_k^{M} y_k$$

$$A = \frac{\sum_{k=1}^{N} x_k^M y_k}{\sum_{k=1}^{N} x_k^{2M}}$$

Example: Consider the data

x_k	1	2	3	4
y_k	2	5	8	15

Find the least-squares power fit $y = Ax^2$ for the data. Also find the root mean square error $E_2(f)$.

The formula for $A = \frac{\sum_{k=1}^{N} x_k^M y_k}{\sum_{k=1}^{N} x_k^{2M}} \rightarrow A = \frac{\sum_{k=1}^{4} x_k^2 y_k}{\sum_{k=1}^{4} x_k^4}$

 $\begin{array}{ccc} x_k^M & x_k^M y_k & (x_k^M)^2 \end{array}$

		1	Ţ	
x_k	y_k	x_k^2	$x_k^2 y_k$	x_k^4
1	2	1	2	1
2	5	4	20	16
3	8	9	72	81
4	15	16	240	256
Sum:			334	354

$$\Rightarrow A = \frac{334}{354} = 0.9435$$

The least-squares power fit is $f(x) = y = Ax^2 = 0.9435x^2$

The root mean square error $E_2(f) = \left[\frac{1}{N}\sum_{k=1}^{N}(f(x_k) - y_k)^2\right]^{\frac{2}{2}}$ $E_2(f) = \left[\frac{1}{4} \sum_{k=0}^{4} (0.9435x_k^2 - y_k)^2\right]^{\frac{1}{2}}$ $= \left[\frac{1}{4} \left\{ (0.9435(1)^2 - 2)^2 + (0.9435(2)^2 - 2)^2 + (0.9435(3)^2 - 2)^2 + (0.9435(4)^2 - 2)^2 \right\} \right]^{\frac{1}{2}}$ $= \left[\frac{1}{4} \{ (0.9435 - 2)^2 + (3.774 - 5)^2 + (8.4915 - 8)^2 + (15.096 - 15)^2 \} \right]^{\frac{1}{2}}$ $= \left[\frac{1}{4} \left\{ (-1.0565)^2 + (-1.226)^2 + (0.4915)^2 + (0.096)^2 \right\} \right]^{\frac{1}{2}}$ $= \left[\frac{1}{4} \left\{ 1.11619 + 1.50308 + 0.24157 + 0.00922 \right\} \right]^{2}$ $=\left[\frac{2.87006}{4}\right]^{\frac{1}{2}}$