1. RAMDE – Requirements and Model-driven Engineering

David Pereira José Proença

MScCCSE 2021/22

CISTER – ISEP Porto, Portugal

https://cister-labs.github.io/ramde2122

Propositional Logic - Practicing

Natural Deduction

Natural Deduction Rules

Last RAMDE's class...

On the last class, you were introduced to Propositional Logic:

- its syntax and semantics
- normal forms: negative, disjunctive, and conjunctive
- rules for natural deduction

During this class...

You will be exposed to the practice of construction proofs about Propositional Logic's formulae using Natural Deduction

Warning: Becoming comfortable with this type of mathematics is not an easy task! Bare with me and be pattient! Train a lot by doing the exercises at home once again, to start solidifying the types of proof patterns that naturally will appear...

Recalling the rules of introduction and elimination: conjunction

Introduction

If we know that both φ and ψ is hold, then so does their conjunction.

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \wedge \mathbf{I}$$

Elimination

If know that $\varphi \wedge \psi$, then we can conclude that either of them also holds in isolation.

$$\frac{\varphi \wedge \psi}{\varphi} \wedge \mathsf{E}_{\mathsf{I}} \qquad \qquad \frac{\varphi \wedge \psi}{\psi} \wedge \mathsf{E}_{\mathsf{r}}$$

Quick exercise

Exercise

Prove that if $\varphi \wedge \psi$ holds, then $\psi \wedge \varphi$ also holds. That is $\varphi \wedge \psi \vdash \psi \wedge \varphi$

$$\begin{array}{c|ccc}
1 & \varphi \wedge \psi \\
2 & \varphi & \wedge \mathsf{E}_I(1) \\
3 & \psi & \wedge \mathsf{E}_r(1) \\
4 & \psi \wedge \varphi & \wedge \mathsf{I}(2,3)
\end{array}$$

Recalling the rules of introduction and elimination: disjunction

Introduction

We can construct a new disjunction $\varphi \lor \psi$ if we know that either φ or ψ hold.

$$\frac{\varphi}{\varphi \vee \psi} \vee \mathbf{I}_{I} \qquad \qquad \frac{\psi}{\varphi \vee \psi} \vee \mathbf{I}_{r}$$

Elimination

The elimination, in this case, assumes the form of introducing a new formula θ in case we can derive θ from both φ and ψ , and we know that $\varphi \lor \psi$ holds.

$$\begin{array}{ccc} & [\varphi] & [\psi] \\ & \vdots & \vdots \\ \frac{\varphi \vee \psi & \theta & \theta}{\theta} & \vee \mathbf{E} \end{array}$$

Quick exercise

Exercise

Prove that if $(\varphi \lor \psi) \land \theta$ holds, then $(\varphi \land \theta) \lor (\psi \land \theta)$ also holds.

1	$(\varphi \lor \psi) \land \theta$				
2	$\varphi \lor \psi$	$\wedge E_I(1)$		<u>:</u>	
3	θ	$\wedge E_r(1)$	7	ψ	
4	φ		8	$\psi \wedge \theta$	\wedge I(8,3)
5	$\varphi \wedge \theta$	$\wedge I(4,3)$	9	$(\varphi \wedge \theta) \vee (\psi \wedge \theta)$	$\vee \mathbf{I}_r(8)$
6	$\bigg \hspace{0.1cm} (\varphi \wedge \theta) \vee (\psi \wedge \theta)$	$\vee \mathbf{I}_{I}(5)$	10	$(\varphi \wedge \theta) \vee (\psi \wedge \theta)$	\vee E (2, 4-6, 7-9)
	:				6/26

6/26

Recalling the rules of introduction and elimination: Negation

Introduction

If we can derive false from φ , then we can conclude that φ does not hold, that is, its negation $\neg \varphi$ holds.

$$\begin{array}{c} [\varphi] \\ \vdots \\ \hline \neg \varphi \end{array} \neg \mathbf{I}$$

Elimination

If we know that $\neg \varphi$ is false, then ew can conclude that φ holds.

$$\frac{\neg \neg \varphi}{\varphi} \neg \mathbf{E}$$

Recalling the rules of introduction and elimination: False

Introduction

If we assume φ and, still, we are able to derive $\neg \varphi$, then we can conclude false. In fact, we found a contradiction!

$$\begin{array}{c} \varphi \\ \vdots \\ \neg \varphi \\ \bot \end{array} \bot \blacksquare$$

Elimination

From false, ew can conclude anything!

$$\frac{\perp}{\varphi}$$
 \perp **E**

Quick exercise

Exercise

Prove that if $\neg(\varphi \lor \psi)$ holds, then $\neg \varphi \land \neg \psi$ also holds.

1	$\neg(\varphi\vee\psi)$			l ,	
				· ·	
2	igg arphi	$\wedge E_I(1)$	7		$\vee \mathbf{I}_r(6)$
		/\ E /(1)	8		otI $(1,7)$
3	$\varphi \lor \psi$	$\vee \mathbf{I}_{I}(2)$			(-, -,
			9	$\neg \psi$	\neg I (6-8)
4		\perp I $(1,3)$	10	$\neg \varphi \wedge \neg \psi$	۸ ۱ (۶ ۵)
5	$\neg \varphi$	¬ I (2−4)	10	$ \varphi \wedge \psi$	\wedge I (5,8)

Natural Deduction Rules - Implication

Introduction of implication

If we assume φ and we can derive ψ from it, then we can conclude that $\varphi \to \psi$.

$$\begin{array}{c} [\varphi] \\ \vdots \\ \hline \psi \\ \hline \varphi \to \psi \end{array} \to \mathbf{I}$$

Elimination of implementation

From false, we can conclude whatever we want.

$$\frac{\varphi \to \psi \qquad \varphi}{\psi} \to \mathbf{E}$$

Quick exercise

Exercise

Prove that if $(\varphi \lor \psi) \to \theta$ and φ hold, then $\psi \to \theta$ also holds.

$$\begin{array}{c|cccc}
1 & (\varphi \lor \psi) \to \theta \\
2 & \varphi \\
\hline
3 & \psi \\
4 & \varphi \lor \psi & \lor \mathbf{I}_{I}(2) \\
5 & \theta & \to \mathbf{E}(1,4) \\
6 & \psi \to \theta & \to \mathbf{I}(3-5)
\end{array}$$

Natural Deduction Rules - Derived rules

$$\frac{\varphi \to \psi \qquad \neg \psi}{\neg \varphi} \text{ MT} \qquad \qquad \frac{\varphi}{\neg \neg \varphi} \neg \neg \mathbf{I}$$

$$[\neg \varphi] \qquad \qquad \vdots \qquad \qquad \frac{\bot}{\varphi \vee \neg \varphi} \text{ ET}$$

Exercise

Prove that $\varphi \to \psi, \neg \psi \vdash \neg \varphi$

1
$$\varphi \rightarrow \psi$$

$$\neg \psi$$

$$\varphi$$

$$\psi \longrightarrow \mathbf{E}(1,3)$$

$$5 \mid \perp \perp \perp (3,4)$$

6
$$\neg \varphi$$
 $\neg I(3-5)$

Exercise

Prove that $\varphi \vdash \neg \neg \varphi$

- 1 φ
- $2 \qquad \boxed{\neg \varphi}$
- $\exists \qquad \mid F \qquad \perp \mathbf{I}(1,2)$
- 4 $\neg \varphi$ $\neg \mathsf{I}(2-3)$

Exercise

Prove that $\neg \varphi \rightarrow F \vdash \varphi$

- \perp **I**(1, 2)
- ¬**I**(2−3) ¬**E**(4)

Exercise

Whatever φ we have $\vdash \varphi \lor \neg \varphi$

- - 2
 - 3 $\vee \mathbf{I}_r(2)$
 - \perp **I**(1,3) 4
 - $\neg I(2-4)$ 5
 - $\forall I_{I}(5)$

- \perp I(1,6)
- $\neg\neg(\varphi \lor \neg\varphi) \qquad \neg\mathsf{I}(1-7)$ $\neg\mathsf{E}(8)$

Lets continue with more exercises

Exercise

Build the derivations for each of the statements below:

- $\vdash (\varphi \land \psi) \rightarrow \psi$
- $\vdash \varphi \rightarrow (\varphi \lor \psi)$
- $\vdash (\varphi \lor \psi) \to (\psi \lor \varphi)$
- $\theta \to (\varphi \to \psi), \neg \psi, \theta \vdash \neg \varphi$
- $\bullet \theta, \neg \varphi \vdash \neg (\theta \to \varphi)$
- $(\psi \land \theta) \rightarrow \neg \delta, \varphi \rightarrow \delta, \theta, \varphi \vdash \neg \psi$
- $(\psi \to \varphi) \land (\varphi \to \psi) \vdash (\varphi \land \psi) \lor (\neg \varphi \land \neg \psi)$

Solutions for each of the statements are given in the slides that follow...

Solution for $\vdash (\varphi \land \psi) \rightarrow \psi$

$$\begin{array}{c|cccc}
1 & & \varphi \wedge \psi \\
2 & & \psi & \wedge \mathbf{E}_{l}(1) \\
3 & & (\varphi \wedge \psi) \rightarrow \psi & \rightarrow \mathbf{I}(1-2)
\end{array}$$

Solution for $\vdash \varphi \rightarrow (\varphi \lor \psi)$

Solution for $\vdash (\varphi \lor \psi) \to (\psi \lor \varphi)$

$$\begin{array}{c|cccc}
1 & & \varphi \lor \psi \\
\hline
2 & & & \\
3 & & \psi \lor \varphi & \lor \mathbf{I}_r(2)
\end{array}$$

$$\begin{array}{c|ccccc}
4 & & \psi \\
\hline
5 & & \psi \lor \varphi & \lor \mathbf{I}_l(4)
\end{array}$$

Solution for $\theta \to (\varphi \to \psi), \neg \psi, \theta \vdash \neg \varphi$

$$\begin{array}{c|c}
1 & \varphi \to \psi \\
2 & \neg \psi
\end{array}$$

$$2 \mid \neg \psi$$

$$\varphi$$

$$egin{array}{cccc} \hline \psi & & \rightarrow \mathbf{E}(1,4) \end{array}$$

$$\begin{array}{c|cccc}
4 & & \varphi \\
5 & & \psi & \rightarrow \mathbf{E}(1,4) \\
6 & & \bot & & \bot \mathbf{I}(2,5) \\
7 & & \neg \varphi & & \neg \mathbf{I}(4-6)
\end{array}$$

Solution for $\theta, \neg \varphi \vdash \neg (\theta \rightarrow \varphi)$

$$\begin{array}{c|cccc}
1 & \theta \\
2 & \neg \varphi \\
\hline
3 & \theta \rightarrow \varphi \\
4 & \varphi & \rightarrow \mathbf{E}(1,3) \\
5 & \bot & \bot \mathbf{I}(2,4) \\
6 & \neg(\theta \rightarrow \varphi) & \neg \mathbf{I}(3-5)
\end{array}$$

Solution for $(\psi \land \theta) \rightarrow \neg \delta, \varphi \rightarrow \delta, \theta, \varphi \vdash \neg \psi$

$$\begin{array}{ccc}
1 & (\psi \land \theta) \rightarrow \neg \delta \\
2 & \varphi \rightarrow \delta \\
3 & \theta \\
4 & \varphi
\end{array}$$

$$\begin{array}{c|ccc}
5 & & \psi \\
\hline
6 & & \psi \wedge \theta & & \wedge \mathbf{I}(5,3) \\
7 & & \neg \delta & & \rightarrow \mathbf{E}(1,6)
\end{array}$$

$$\begin{vmatrix} & & & & \\ & & & \\ & \delta & & \rightarrow \mathbf{E}(2,4) \\ & 9 & & \bot & \bot \mathbf{I}(7,8) \\ & 10 & & \neg \psi & & \neg \mathbf{I}(5-9) \end{vmatrix}$$

Solution for $(\psi \to \varphi) \land (\varphi \to \psi) \vdash (\varphi \land \psi) \lor (\neg \varphi \land \neg \psi)$ (1)

Solution for $(\psi \to \varphi) \land (\varphi \to \psi) \vdash (\varphi \land \psi) \lor (\neg \varphi \land \neg \psi)$ (II)

Solution for $(\psi \to \varphi) \land (\varphi \to \psi) \vdash (\varphi \land \psi) \lor (\neg \varphi \land \neg \psi)$ (III)

$$\begin{array}{c|cccc}
 & \vdots \\
 & \neg \varphi \wedge \neg \psi & \wedge \mathbf{I}(10, 16) \\
 & 18 & (\varphi \wedge \psi) \vee (\neg \varphi \wedge \neg \psi) & \vee \mathbf{I}_r(17) \\
 & 19 & \bot & \bot \mathbf{I}(4, 18) \\
 & 20 & \neg \neg ((\varphi \wedge \psi) \vee (\neg \varphi \wedge \neg \psi)) & \neg \mathbf{I}(4-19) \\
 & 21 & (\varphi \wedge \psi) \vee (\neg \varphi \wedge \neg \psi) & \neg \mathbf{E}(20)
\end{array}$$