## Московский государственный технический университет им. Н.Э. Баумана

Факультет Радиотехнический Кафедра РТ5

Курс «Технологии машинного обучения»

Отчет по лабораторной работе №4 «Линейные модели, SVM и деревья решений»

Выполнил: Руководитель:

студент группы РТ5-61Б: преподаватель каф. ИУ5

Бабасанова Н. С. Гапанюк Ю.Е.

## Задание

- 1. Выберите набор данных (датасет) для решения задачи классификации или регрессии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train\_test\_split разделите выборку на обучающую и тестовую.
  - 4. Обучите следующие модели:
- о одну из линейных моделей (линейную или полиномиальную регрессию при решении задачи регрессии, логистическую регрессию при решении задачи классификации);
  - o SVM;
  - о дерево решений.
- 5. Оцените качество моделей с помощью двух подходящих для задачи метрик. Сравните качество полученных моделей.
- 6. Постройте график, показывающий важность признаков в дереве решений.
- 7. Визуализируйте дерево решений или выведите правила дерева решений в текстовом виде.

## Текст программы

|                       | mean<br>radius | mean<br>texture | mean<br>perimeter | mean<br>area | mean<br>smoothness | mean<br>compactness | mean<br>concavity | mean<br>concave<br>points | mean<br>symmetry | mean<br>fractal<br>dimension | <br>worst<br>radius |
|-----------------------|----------------|-----------------|-------------------|--------------|--------------------|---------------------|-------------------|---------------------------|------------------|------------------------------|---------------------|
| 0                     | 17.99          | 10.38           | 122.80            | 1001.0       | 0.11840            | 0.27760             | 0.30010           | 0.14710                   | 0.2419           | 0.07871                      | 25.380              |
| 1                     | 20.57          | 17.77           | 132.90            | 1326.0       | 0.08474            | 0.07864             | 0.08690           | 0.07017                   | 0.1812           | 0.05667                      | 24.990              |
| 2                     | 19.69          | 21.25           | 130.00            | 1203.0       | 0.10960            | 0.15990             | 0.19740           | 0.12790                   | 0.2069           | 0.05999                      | 23.570              |
| 3                     | 11.42          | 20.38           | 77.58             | 386.1        | 0.14250            | 0.28390             | 0.24140           | 0.10520                   | 0.2597           | 0.09744                      | 14.910              |
| 4                     | 20.29          | 14.34           | 135.10            | 1297.0       | 0.10030            | 0.13280             | 0.19800           | 0.10430                   | 0.1809           | 0.05883                      | 22.540              |
|                       |                |                 |                   |              |                    |                     |                   |                           |                  |                              |                     |
| 564                   | 21.56          | 22.39           | 142.00            | 1479.0       | 0.11100            | 0.11590             | 0.24390           | 0.13890                   | 0.1726           | 0.05623                      | 25.450              |
| 565                   | 20.13          | 28.25           | 131.20            | 1261.0       | 0.09780            | 0.10340             | 0.14400           | 0.09791                   | 0.1752           | 0.05533                      | 23.690              |
| 566                   | 16.60          | 28.08           | 108.30            | 858.1        | 0.08455            | 0.10230             | 0.09251           | 0.05302                   | 0.1590           | 0.05648                      | 18.980              |
| 567                   | 20.60          | 29.33           | 140.10            | 1265.0       | 0.11780            | 0.27700             | 0.35140           | 0.15200                   | 0.2397           | 0.07016                      | 25.740              |
| 568                   | 7.76           | 24.54           | 47.92             | 181.0        | 0.05263            | 0.04362             | 0.00000           | 0.00000                   | 0.1587           | 0.05884                      | 9.456               |
| 569 rows × 30 columns |                |                 |                   |              |                    |                     |                   |                           |                  |                              |                     |

data\_df["target"] = data.target
data\_df
data\_df.isnull().sum()

| mean radius                           | 0 |
|---------------------------------------|---|
| mean texture                          | 0 |
| mean perimeter                        | 0 |
| mean area                             | 0 |
| mean smoothness                       | 0 |
| mean compactness                      | 0 |
| mean concavity                        | 0 |
| mean concave points                   | 0 |
| mean symmetry                         | 0 |
| mean fractal dimension                | 0 |
| radius error                          | 0 |
| texture error                         | 0 |
| perimeter error                       | 0 |
| area error                            | 0 |
| smoothness error                      | 0 |
| compactness error                     | 0 |
| concavity error                       | 0 |
| concave points error                  | 0 |
| symmetry error                        | 0 |
| fractal dimension error               | 0 |
| worst radius                          | 0 |
| worst texture                         | 0 |
| worst perimeter                       | 0 |
| worst area                            | 0 |
| worst smoothness                      | 0 |
| worst compactness                     | 0 |
| worst concavity                       | 0 |
| worst concave points                  | 0 |
| worst symmetry                        | 0 |
| worst fractal dimension               | 0 |
| target                                | 0 |
| dtype: int64                          |   |
| · · · · · · · · · · · · · · · · · · · |   |

data\_df.describe()

|        | mean<br>radius      | mean<br>texture | mean<br>perimeter | mean area   | mean<br>smoothness | mean<br>compactness | mean<br>concavity |  |  |
|--------|---------------------|-----------------|-------------------|-------------|--------------------|---------------------|-------------------|--|--|
| count  | 569.000000          | 569.000000      | 569.000000        | 569.000000  | 569.000000         | 569.000000          | 569.000000 56     |  |  |
| mean   | 14.127292           | 19.289649       | 91.969033         | 654.889104  | 0.096360           | 0.104341            | 0.088799          |  |  |
| std    | 3.524049            | 4.301036        | 24.298981         | 351.914129  | 0.014064           | 0.052813            | 0.079720          |  |  |
| min    | 6.981000            | 9.710000        | 43.790000         | 143.500000  | 0.052630           | 0.019380            | 0.000000          |  |  |
| 25%    | 11.700000           | 16.170000       | 75.170000         | 420.300000  | 0.086370           | 0.064920            | 0.029560          |  |  |
| 50%    | 13.370000           | 18.840000       | 86.240000         | 551.100000  | 0.095870           | 0.092630            | 0.061540          |  |  |
| 75%    | 15.780000           | 21.800000       | 104.100000        | 782.700000  | 0.105300           | 0.130400            | 0.130700          |  |  |
| max    | 28.110000           | 39.280000       | 188.500000        | 2501.000000 | 0.163400           | 0.345400            | 0.426800          |  |  |
| 8 rows | 8 rows × 31 columns |                 |                   |             |                    |                     |                   |  |  |

data\_df.hist(figsize=(20,25))





scaler = MinMaxScaler()

```
scaler.fit(data_df.drop('target', axis=1))
scaled_features = scaler.transform(data_df.drop('target',
```

```
axis=1))
```

```
df feat = pd.DataFrame(scaled features,
                                                                                                          columns=data df.columns[:-1])
                      import seaborn as sns
                     plt.figure(figsize=(20,15))
                      ax = sns.heatmap(df feat.corr(),annot=True)
                     plt.show()
              mean radius - 1 0.32 1 0.99 0.17 0.51 0.68 0.62 0.15 0.51 0.68 0.82 0.15 0.51 0.68 0.097 0.67 0.74 0.22 0.21 0.19 0.38 0.1 0.043 0.97 0.3 0.97 0.94 0.12 0.41 0.53 0.74 0.16 0.00
             mean texture - 0.32 1 0.33 0.32 0.023 0.24 0.3 0.29 0.071 0.076 0.28 0.39 0.28 0.26 0.0066 0.19 0.14 0.16 0.00910.054 0.35 0.91 0.36 0.34 0.078 0.28 0.3 0.3 0.3 0.11 0.1:
          mean perimeter - 1 033 1 0.99 0.21 0.56 0.72 0.85 0.18 0.26 0.69 0.087 0.69 0.74 0.2 0.25 0.23 0.41 0.0820.005 0.97 0.3 0.97 0.4 0.15 0.46 0.56 0.77 0.19 0.05
                 mean area - 0.99 0.32 0.99 1 0.18 0.5 0.69 0.82 0.15 0.28 0.73 0.066 0.73 0.8 0.17 0.21 0.21 0.27 0.072 0.02 0.96 0.29 0.96 0.96 0.12 0.39 0.51 0.72 0.14 0.003
       mean smoothness - 0.17 - 0.023 0.21 0.18 1 0.66 0.52 0.55 0.56 0.59 0.3 0.068 0.3 0.25 0.33 0.32 0.25 0.38 0.2 0.28 0.21 0.036 0.24 0.21 0.81 0.47 0.43 0.5 0.39 0.3
                                 0.51 0.24 0.56 0.5 0.66 1 0.88 0.83 0.6 0.57 0.5 0.046 0.55 0.46 0.14 0.74 0.57 0.64 0.23 0.51 0.54 0.25 0.59 0.51 0.5
                                        0.3 0.72 0.69 0.52 0.88 1 0.92 0.5 0.34 0.63 0.076 0.66 0.62 0.099 0.67 0.69 0.68 0.18 0.45 0.69 0.3 0.73 0.68 0.45 0.75 0.88 0.88 0.41 0.5
     mean concave points - 0.82 0.29 0.85 0.82 0.55 0.83 0.92 1 0.46 0.17 0.7 0.021 0.71 0.69 0.028 0.49 0.44 0.62 0.095 0.26 0.83 0.29 0.86 0.81 0.45 0.67 0.75 0.91 0.38 0.3
          mean symmetry - 0.15 0.071 0.18 0.15 0.56 0.6 0.5 0.46 1 0.48 0.3 0.13 0.31 0.22 0.19 0.42 0.34 0.39 0.45 0.33 0.19 0.091 0.22 0.18 0.43 0.47 0.43 0.43 0.47 0.43
mean fractal dimension -0.31-0.076-0.26-0.28 0.58 0.57 0.34 0.17 0.48 1 .000110.16 0.04-0.09 0.4 0.56 0.45 0.34 0.35 0.69 0.25-0.051-0.21-0.23 0.5 0.46 0.35 0.18 0.33 0.77
                                  0.68 0.28 0.69 0.73 0.3 0.5 0.63 0.7 0.3 0.0001 1 0.21 0.97 0.95 0.16 0.36 0.33 0.51 0.24 0.23 0.72 0.19 0.72 0.75 0.14 0.29 0.38 0.53 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.00
              texture error -0.097 0.39 0.0870.0660.0680.0460.076 0.021 0.13 0.16 0.21 1 0.22 0.11 0.4 0.23 0.19 0.23 0.41 0.28 0.11 0.41 -0.1 0.0830.0740.0920.069 0.12 0.13 0.04
                                       0.28 0.69 0.73 0.3 0.55 0.66 0.71 0.31 0.04 0.97 0.22 1 0.94 0.15 0.42 0.36 0.56 0.27 0.24 0.7 0.2 0.72 0.73 0.13 0.34 0.42 0.55 0.11 0.085
                                 0.74 0.26 0.74 0.8 0.25 0.46 0.62 0.69 0.22 0.09 0.95 0.11 0.94 1 0.075 0.28 0.27 0.42 0.13 0.13 0.76 0.2 0.76 0.81 0.13 0.28 0.39 0.54 0.0740.018
        smoothness error - 0.220,0066 0.2 0.17 0.33 0.14 0.099 0.028 0.19 0.4 0.16 0.4 0.15 0.075 1 0.34 0.27 0.33 0.41 0.43 0.23 0.075 0.22 0.18 0.31 0.0560.058 0.1 0.11 0.1
      compactness error - 0.21 0.19 0.25 0.21 0.32 0.74 0.67 0.49 0.42 0.56 0.36 0.23 0.42 0.28 0.34 1 0.8 0.74 0.39 0.8 0.2 0.14 0.26 0.2 0.23 0.68 0.
           concavity error - 0.19 0.14 0.23 0.21 0.25 0.57 0.69 0.44 0.34 0.45 0.33 0.19 0.36 0.27 0.27 0.8 1 0.77 0.31 0.73 0.19 0.1 0.23 0.19 0.1 0.48 0.66
    concave points error - 0.38 0.16 0.41 0.37 0.38 0.64 0.68 0.62 0.39 0.34 0.51 0.23 0.56 0.42 0.33 0.74 0.77 1 0.31 0.61 0.36 0.087 0.39 0.34 0.22 0.45 0.55 0.6 0.14 0.31
          symmetry error - 0.1 0.00910.0820.072 0.2 0.23 0.18 0.095 0.45 0.35 0.24 0.41 0.27 0.13 0.41 0.39 0.31 0.31 1 0.37 0.13 0.077 0.1 0.11 0.013 0.06 0.037 0.03 0.39 0.078
 fractal dimension error -0.0430.0540.00550.02 0.28 0.51 0.45 0.26 0.33 0.69 0.23 0.28 0.24 0.13 0.43 0.8 0.73 0.61 0.37 1 0.0370.00320.0010.023 0.17 0.39 0.38 0.22 0.11 0.5
               worst radius - 0.97 0.35 0.97 0.96 0.21 0.54 0.69 0.83 0.19 0.25 0.72 0.11 0.7 0.76 0.23 0.2 0.19 0.36 0.13 0.037 1 0.36 0.99 0.98 0.22 0.48 0.57 0.79 0.24 0.093
             worst texture - 0.3 0.91 0.3 0.29 0.036 0.25 0.3 0.29 0.091 0.051 0.19 0.41 0.2 0.2 0.075 0.14 0.1 0.087 0.0770.0032036 1 0.37 0.35 0.23 0.36 0.37 0.36 0.23 0.22
          worst perimeter - 0.97 0.36 0.97 0.96 0.24 0.59 0.73 0.86 0.22 -0.21 0.72 -0.1 0.72 -0.1 0.72 0.76 -0.22 0.26 0.23 0.39 -0.1 -0.001 0.99 0.37 1 0.98 0.24 0.53 0.62 0.82 0.27 0.14
                 worst area - 0.94 0.34 0.94 0.96 0.21 0.51 0.68 0.81 0.18 0.23 0.75 0.083 0.73 0.81 0.18 0.22 0.75 0.083 0.73 0.81 0.18 0.2 0.19 0.34 0.11 0.023 0.98 0.35 0.98 1 0.21 0.44 0.54 0.75 0.21 0.08
       worst smoothness - 0.12 0.078 0.15 0.12 0.81 0.57 0.45 0.45 0.45 0.43 0.5 0.14 0.074 0.13 0.13 0.31 0.23 0.17 0.22 0.013 0.17 0.22 0.23 0.24 0.21 1 0.57 0.52 0.55 0
      worst compactness - 0.41 0.28 0.46 0.39 0.47 0.87 0.75 0.67 0.47 0.46 0.29 0.092 0.34 0.28 0.056 0.68 0.48 0.45 0.06 0.39 0.48 0.36 0.53 0.44 0.5
          worst concavity - 0.53 0.3 0.56 0.51 0.43 0.82 0.88 0.75 0.43 0.35 0.38 -0.069 0.42 0.39 0.058 0.64 0.66 0.55 0.037 0.38 0.57 0.37 0.62 0.54 0.52 0.89 1 0.86 0.53 0.0
    worst concave points - 0.74 0.3 0.77 0.72 0.5 0.82 0.86 0.91 0.43 0.18 0.53 -0.12 0.55 0.54 0.1 0.48 0.44 0.6 0.03 0.22 0.79 0.36 0.82 0.75 0.55 0.8 0.86 1 0.5 0.5
          worst symmetry - 0.16 0.11 0.19 0.14 0.39 0.51 0.41 0.38 0.7 0.33 0.095 0.13 0.11 0.074 0.11 0.28 0.2 0.14 0.39 0.11 0.24 0.23 0.27 0.21 0.49 0.61 0.53 0.5 1 0.54
worst fractal dimension -0.0071 0.12 0.0510.0037 0.5 0.69 0.51 0.37 0.44 0.77 0.05-0.0460.085 0.018 0.1 0.59 0.44 0.31 0.078 0.59 0.093 0.22 0.14 0.08 0.62 0.81 0.69 0.51 0.54 1
                                  ilius - Tror - T
                         corr matrix = df feat.corr().abs()
                      # Верхний треугольник матрицы, чтобы не учитывать дубли
                                                                                            corr matrix.where(np.triu(np.ones(corr matrix.shape),
                      upper
k=1).astype(bool))
                      to drop = [column for column in upper.columns if any(upper[column] > 0.8)]
                     df reduced = df feat.drop(columns=to drop)
                     df reduced
plt.figure(figsize=(20,15))
ax = sns.heatmap(df reduced.corr(),annot=True)
plt.show()
```



```
X = df reduced
y = data_df["target"]
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,
random state=42)
# ----- Логрег
from sklearn.linear model import LogisticRegression
logreg = LogisticRegression(random state=42)
logreg.fit(X train, y train)
y_pred_logreg = logreg.predict(X_test)
# ---- SVM
from sklearn.svm import LinearSVC, SVC
# X = X.iloc[:, :2]
# svm = LinearSVC(C=1.0, loss='hinge')
svm = SVC(kernel='rbf', C=1.0, gamma='scale')
svm.fit(X, y)
y pred svm = svm.predict(X test)
```

```
# ----- Дерево решений
from sklearn.tree import DecisionTreeClassifier, plot_tree

tree = DecisionTreeClassifier(max_depth=3, random_state=42)
tree.fit(X_train, y_train)
y_pred_tree = tree.predict(X_test)

from sklearn.metrics import accuracy_score, classification_report
# print("Jorper accuracy:", accuracy_score(y_test, y_pred_logreg))
# print("SVM accuracy:", accuracy_score(y_test, y_pred_svm))
# print("Дерево решений accuracy:", accuracy_score(y_test, y_pred_tree))

print("\nЛогрег репорт\n", classification_report(y_test, y_pred_logreg, digits=4))
print("\nSVM репорт\n", classification_report(y_test, y_pred_svm, digits=4))
print("\nДерево решений репорт\n", classification_report(y_test, y_pred_svm, digits=4))
print("\nДерево решений репорт\n", classification_report(y_test, y_pred_tree, digits=4))
```

| Логрег репорт  |           |        |          |         |
|----------------|-----------|--------|----------|---------|
|                | precision | recall | f1-score | support |
| 9              | 0.9516    | 0.8806 | 0.9147   | 67      |
| _              |           |        |          |         |
| 1              | 0.9365    | 0.9752 | 0.9555   | 121     |
| accuracy       |           |        | 0.9415   | 188     |
| macro avg      | 0.9441    | 0.9279 | 0.9351   | 188     |
| weighted avg   | 0.9419    | 0.9415 | 0.9409   | 188     |
| weighted avg   | 0.5415    | 0.3413 | 0.3403   | 100     |
|                |           |        |          |         |
| SVM репорт     |           |        |          |         |
|                | precision | recall | f1-score | support |
|                |           |        |          |         |
| 0              | 0.9552    | 0.9552 | 0.9552   | 67      |
| 1              | 0.9752    | 0.9752 | 0.9752   | 121     |
|                |           |        |          |         |
| accuracy       |           |        | 0.9681   | 188     |
| macro avg      | 0.9652    | 0.9652 | 0.9652   | 188     |
| weighted avg   | 0.9681    | 0.9681 | 0.9681   | 188     |
| 5 5            |           |        |          |         |
|                |           |        |          |         |
| Дерево решений | репорт    |        |          |         |
|                | precision | recall | f1-score | support |
|                |           |        |          |         |
| 0              | 0.8971    | 0.9104 | 0.9037   | 67      |
| 1              | 0.9500    | 0.9421 | 0.9461   | 121     |
|                |           |        |          |         |
| accuracy       |           |        | 0.9309   | 188     |
| macro avg      | 0.9235    | 0.9263 | 0.9249   | 188     |
| weighted avg   | 0.9311    | 0.9309 | 0.9310   | 188     |
|                |           |        |          |         |

```
# Важность признаков в дереве решений feature_importances = tree.feature_importances_ plt.barh(X.columns, feature_importances) plt.xlabel("Важность признаков") plt.ylabel("Признаки") plt.title("Важность признаков в дереве решений") plt.show()
```



# Визуализация дерева решений plt.figure(figsize=(10, 6)) plot\_tree(tree, feature\_names=X.columns, class\_names=["malignant", "benign"], filled=True) plt.show()



# Правила дерева решений в текстовом виде from sklearn.tree import export\_text tree rules = export text(tree, feature names=list(X.columns))

print("Правила решений дерева в текстовом виде:")
print(tree\_rules)

```
Правила решений дерева в текстовом виде:
 --- mean radius <= 0.38
    --- worst symmetry <= 0.36
       |--- mean texture <= 0.42
       | |--- class: 1
       |--- mean texture > 0.42
       | |--- class: 1
    |--- worst symmetry > 0.36
       |--- mean compactness <= 0.25
       | |--- class: 1
        |--- mean compactness > 0.25
       | |--- class: 0
 --- mean radius > 0.38
    --- mean texture <= 0.23
       --- compactness error <= 0.14
           --- class: 1
       |--- compactness error > 0.14
       | |--- class: 0
    |--- mean texture > 0.23
       |--- mean smoothness <= 0.20
            |--- class: 0
        --- mean smoothness > 0.20
           |--- class: 0
```