CS4416 - Tutorial 4

Normalization

- **1.** Let R(ABCDE) be a relation in Boyce-Codd Normal Form (BCNF). If ABC is the only key for R, describe all the nontrivial functional dependencies that hold for R.
- 2. Which of the following relations is in Boyce-Codd Normal Form (BCNF)?

```
a. R(ABCD) FD's: BD \rightarrow C ; AB \rightarrow D ; AC \rightarrow B ; BD \rightarrow A yes
```

b. R(ABCD) FD's:
$$C \rightarrow B$$
; $BC \rightarrow A$; $A \rightarrow C$; $BD \rightarrow A$

3. Which of the following relations is in Third normal form (3NF)?

a.
$$R(ABCD)$$
 FD's: $ACD \rightarrow B$; $AC \rightarrow D$; $D \rightarrow C$; $AC \rightarrow B$ yes

b.
$$R(ABCD)$$
 FD's: $ABD \rightarrow C$; $CD \rightarrow A$; $AC \rightarrow B$; $AC \rightarrow D$ yes

c.
$$R(ABCD) FD's: A \rightarrow B : B \rightarrow A : A \rightarrow D : D \rightarrow B$$
 yes

d.
$$R(ABCD)$$
 FD's: $AB \rightarrow C$; $ABD \rightarrow C$; $ABC \rightarrow D$; $AC \rightarrow D$

e.
$$R(ABCD)$$
 FD's: $AB \rightarrow C$; $BCD \rightarrow A$; $D \rightarrow A$; $B \rightarrow C$

f. R(ABCD) FD's:
$$B \rightarrow C$$
; $AC \rightarrow D$; $ABD \rightarrow C$; $BCD \rightarrow A$ no

g.
$$R(ABCD)$$
 FD's: $C \rightarrow B$; $A \rightarrow B$; $CD \rightarrow A$; $BCD \rightarrow A$

h.
$$R(ABCD) FD's: C \rightarrow B ; B \rightarrow A ; AC \rightarrow D ; AC \rightarrow B$$

- **4.** Decompose the following relations into a set of relations in 3NF preserving all FDs.
 - a. $R(ABCD) FD's: AB \rightarrow C; ABD \rightarrow C; ABC \rightarrow D; AC \rightarrow D$
 - b. R(ABCD) FD's: $AB \rightarrow C$; $BCD \rightarrow A$; $D \rightarrow A$; $B \rightarrow C$
 - c. R(ABCD) FD's: B \rightarrow C; AC \rightarrow D; AB \rightarrow D; BD \rightarrow A
 - d. R(ABCDE) FD's: D \rightarrow C, D \rightarrow E, BC \rightarrow A, BC \rightarrow D, BCD \rightarrow A
 - e. R(ABCDEF), FD's: $B \rightarrow F$, BCD $\rightarrow A$, $C \rightarrow D$, $D \rightarrow B$, EF $\rightarrow C$, AC $\rightarrow B$

Use the **synthesis** algorithm from lecture 8. To find the minimal basis of FD use the following laws for removing FDs and attributes from the LHS of an FD:

- 1. Reflexivity: if $B \subseteq A$ then $A \rightarrow B$
- 2. Transitivity: if $A \rightarrow B$ and $B \rightarrow C$ then $A \rightarrow C$
- 3. Pseudo transitivity: if $A \rightarrow B$ and $BC \rightarrow D$ then $AC \rightarrow D$
- 4. Augmentation: if $A \rightarrow B$ then $AC \rightarrow B$

Note: Watch for FDs with the same RHS.

Solutions to Q4:

a. FD Basis:
$$AB \rightarrow C$$
; $AC \rightarrow D$

Key: AB

Decomposition:

R1 = {ABC} with AB \rightarrow C R2 = {ACD} with AC \rightarrow D

b. FD Basis: $D \rightarrow A$; $B \rightarrow C$

Key: BD

Decomposition:

 $R1 = {AD}$ with $A \rightarrow D$ $R2 = {BC}$ with $B \rightarrow C$

 $R3 = \{BD\}$ for the key

c. AB \rightarrow D is implied by B \rightarrow C and AC \rightarrow D by law 4.

FD Basis: $B \rightarrow C$; $AC \rightarrow D$; $BD \rightarrow A$

Keys: AB, BD

Decomposition:

 $R1 = \{BC\} B \rightarrow C$

 $R2 = \{ACD\} AC \rightarrow D$

 $R3 = \{ABD\} BD \rightarrow A$

d. FD Basis: $D \rightarrow C$, $D \rightarrow E$, $BC \rightarrow A$, $BC \rightarrow D$

Keys: BC, BD

Decomposition step 1:

 $R1 = \{CD\} D \rightarrow C$

 $R2 = \{DE\} D \rightarrow E$

 $R3 = \{ABC\} BC \rightarrow A$

 $R4 = \{BCD\} BC \rightarrow D$

Decomposition step 2:

 $R5 = R1 \cup R2 = \{CDE\} D \rightarrow C, D \rightarrow E$

 $R6 = R3 \cup R4 = \{ABCD\} BC \rightarrow A, BC \rightarrow D$

e.

(i) Find a minimal basis

Note that $C \rightarrow D$ and $D \rightarrow B$ imply $C \rightarrow B$. Then $C \rightarrow B$ implies $AC \rightarrow B$.

Thus, we can get rid of $AC \rightarrow B$.

Note that BCD \rightarrow A is the same as CD \rightarrow A because D \rightarrow B.

Then note that $CD \rightarrow A$ is the same as $C \rightarrow A$ because $C \rightarrow D$.

Thus we can replace BCD \rightarrow A by C \rightarrow A.

Finally, the minimal basis is $B \rightarrow F$, $C \rightarrow A$, $C \rightarrow D$, $D \rightarrow B$, $EF \rightarrow C$.

(ii) Find the keys

Each key must contain E.

Consider:

 ${EF}^{+}={ABCDEF}$ key

Any superset of $\{EA\}$ will be a superkey. Thus, all keys are $\{EB\}$, $\{EC\}$, $\{ED\}$, $\{EF\}$.

(iii) Decomposition

The corresponding decomposition is:

```
R_1 = \{BF\}, FD's: B \rightarrow F
R_2 = \{AC\}, FD's: C \rightarrow A
R_3 = \{CD\}, FD's: C \rightarrow D
R_4 = \{BD\}, FD's: D \rightarrow B
R_5 = \{CEF\}, FD's: EF \rightarrow C
R_6 = \{BE\}
R_7 = \{DE\}
```

Furthermore, we can combine R_2 and R_3 into $R_8 = \{ACD\}$ with $C \rightarrow A$ and $C \rightarrow D$.