ERT Refleksjonsnotat 19-20 Uke 44

Navn: Lars André Roda Jansen

Dato:

Læringsutbytte:

Tre på topp ERT-19:

1. Kondensator

Kapasitansen C_n til en kondensator i serie vil tilsvare invers av summen av kapasitansene. Kapasitansen C_n til en kondensatorer i parallell vil tilsvare summen av kapasitansene.

Ved likespenning så vil strømmen I i en kondenstator tilsvare null, fordi I = C * dv/dt, og hvis v er konstant, så blir det 0. I =/= 0 hvis dv/dt =/= 0.

Når vi kobler en motstand i serie med en kondensator så kan vi sette opp en differensiallikning som et uttrykk for spenningen i kretsen. Denne kretsen kalles typisk for en RC-krets

2. Spole

Induktansen L_n til en spole i serie vil tilsvare summen av induktansene L_0 + ... + L_n. Induktansen L_n til en spole i parallell vil tilsvare invers av summen av induktansene L_0 + ... + L_n.

Spenningen V i en spole vil være 0 ved likestrøm fordi V = L * di/dt.

En spole og motstand i en serie kalles for en RL krets, og man kan lage ett uttrykk til strømmen I i formen av en differensiallikning.

3. Opp- og utladning

Hvis vi ser på uttrykket man får ut av kondensator eller en spole i en RC- eller en RL-krets, så vil man se att for en kondensator, når t -> inf, så vil spenning v(t) = V, og strømmen i(t) = 0, som en åpen krets.

For en spole, når $t \rightarrow \inf$, så vil strømmen i(t) = V/R, og spenning v(t) = V, som en ideel leder.

Tre på topp ERT-20:

1. Stasjonær tilstand

En krets er i stasjonær tilstand når den har en kosntant strøm og en konstant spenning. En spole i en krets med stasjonær tilstand vil ha en spenning v(t) = 0 fordi spolen sin spenning er proporsjonal med endringen i strøm. En kondensator i en krets med stasjonær tilstand vil ha en strøm i = 0 fordi dens strøm er proporsjonal

med endring i spenning. Det er nyttig å kunne beregne med stasjonær tilstand fordi noen komponenter, som kondensator og spoler, har unike egenskaper ved stasjonær tilstand.

2. Transient

En krets er i en transient tilstand når den er i en endringsperiode, altså går mot en stasjonær verdi. En spole vil ha en spenning når den er i en krets som er i en transient tilstand, samme med en kondensator og strøm. En transient strøm og spenning kan beskrives som en differensial likning der strømmen og spenningen går mot en sluttverdi når t -> inf. Det er nyttig å kunne gjøre beregninger med transient tilstand fordi man kan benytte seg av en spolens eller kondensatorens unike egenskaper når kretsen er i en transient tilstand.

3. Tidskonstant

En tidskonstant er en beregnet mengde med tid som beskriver hvor lang tid en krets bruker på å nå stasjonærtilstand. Den blir bestemt av selve kretsen.

Bilder:

Bilder...

Hvor langt (hvilken oppgave) kom du i løpet av fredagen? Tekst...

Hva lurer jeg på?:

Tekst...

ERT 19

Oppgave 1

Oppo 1)	c'(t) = 7,	$v(\tau) = V_0 - cox(2n + \tau)$	il+)= C - d v(t)
	; (+)= C	· (Vo. (- sent 2 rf c) · 2 rf)	
	2 -	V ₀ C v 2 r f så (2 r f t)	

Oppgave 2

Oppy 2)	î (+) = Jo.	(2nft)	v(+)= L di(+)
	v(t) = 2]	2 n t ien (2 n f t)	

Oppgave 3

0 44 3)	v(7) = 0 k	60	₹\	÷	С	d	t	U	(t)
	i(t)=0								

Oppo	8/	RC de Vo	+ 4=	V	ild = C	d v (t)
V =	2 R	+ Vc		i over m	atition of	C er lih
1,4	R C	de vc + L	9. C.			

Oppg			= 0		UEG	& i	(t)	t>0	7
	RC.	L	υ _è +	Ve =	V				-
	v _c +	rc	UE = .	V RC		J	= 72	c c	1
	ů+	الم ل	- A	V	e	ér			
de l	ve e'	hT +	d ve	e ^{AT}	= 4	Ve	T		
					edi		5 0	6	
, c	ž e	. 5 =	Vex	- +	C	•	/.	د کم	
(た=	U +	Cē	λτ					
	Vc =	V+	Ce	<u> </u> -	t				
	•	:0							
		c = ~ v	0						
(<i>ት</i> (4)	= v (1 ~	c 8	المع	= V	- v	e Rit	
	i (c)	ء ح	d	U _è (t)				
	ί(+)	= C	· (c	- (-	TC)	Ve	- RC	e	
	ć (4)	= 1 R	Ve	RL T					

110			
<i>α</i>) .	0)	. () - 11	11 \ - 2
() MAD	121	1/(20)=1	(1/20)-0
	~	6	000.0
		<	

Oppo 13)	<i>ν</i> =	îR	+	O _L
	<i>ν</i> =	i R	+ 4	di i (t)
	de	î (t)	+ <u>R</u>	i = 1 U

Oppgave 1	4		1 1	1 1				1 1			
2/19/4)											
	de	: 6	t) + 2	2 ,	= <u>L</u>	V	ŀ	ec	t		
	de	16	e) et	t + E	- Ĉ	er.	ē	21	/e	2	
	d	(:14	el et	t) <u>-</u>	<u> </u>	Ve:	R t).(St	
	?(t	e L	- t =	R U	/ e *	R T	+ 0		-	e Fr	-
	į(t)	= 12	V+	D e	_R						
	2 (0)	- 3	\ ₀								
	R V	+ i									
		1	7 = 3	- 7	20						
	i (t)	= 16	2 V -	(],-	R	V)e	~ R	t			
			de ?								
			, • <u>£</u>								
		= 10	? (J _o -	RU)e	RT					

ERT 20

Oppgave 1

- a) Sann
- b) Sann
- c) Usann
- d) Sann
- e) Sann
- f) Sann
- g) Sann
- h) Usann
- i) Usann
- j) Sann

Oppgave 3

Dyrs 51	U	٤	V _R	+	vc							i	(t)	= (C	L	<i>-</i>	V _e	(z))					-
	U	¥	v	+	12	i G	5																	sv	, [
	U	`~	Ų	+	R	C-0	gl Cz	Ų	6																
2	L	O.	(~)	*	R	<u></u>	Z(+)	, =	R	<u>)</u>			K												
Ž	£	V _c	(1)	+	υz	د (یح	U		ŀ	e	,		12	C	`_	/	0	6_	1	Ō	6_	1	o	2	(
Z	<u>_</u> (U _C	e		=	()e	-		[-	ζ	de														
ų	et	`=	U	e	4	D		l	0	e e	-														
v.	7	Ξ	U	+	D	e ^{-t}																			
U _c ((t)	≿	U	+	7	ct																			
Cel	(0)	٤	0																						
И	+	70	" 1	Ø ~	L																				
U _C	(t)	, =	U	_	U	e-t	-	ч	c.	S	υ														
CE	4	<u>~</u>	হ	1	-	e ^{-t}	5																		

Deter en stasjonærverdi når t <= 0 som er v_c = 10V

