Detailed and adaptive surface reconstruction of implicit models

Bernhard Manfred Gruber 2014-12-10

What are implicit models?

Explict surface models

Implict surface models

- Parametric
- Functional (iso surface)
- Boundary Representation
- Constructive Solid Geomtry
- Sweeps
- •

What are implicit models?

$$f(x,y,z) = x^{2} + y^{2} + z^{2} - 5^{2}$$

$$f(x,y,z) < 0 \quad inside$$

$$f(x,y,z) > 0 \quad outside$$

$$f(x,y,z) = 0 \quad surface$$

$$S = \{(x, y, z) \mid x^2 + y^2 + z^2 = 5^2\}$$

Motivation

Explicit surfaces

- Wide support
- Render
- Process
- Store
- Edit
- Distribute
- Sell
- ...

Implicit surfaces

- Exact
- Expressive
- Small memory
- Ray tracing
- ...

Previous work - Enlight

Enlight

Swept volumes

Data model

Raycast

Problem statement

Surface mesh extraction from Enlight's data model

- 1. Determine state of the art
- 2. Prototypic implementation and comparison runtime, memory, complexity, visual quality, errors, divergence, numeric, mesh quality, feature conservation, adaptivity
- 3. Intensive testing on selected models. Is there a "best" algorithm? Under which circumstances? How to select best suited algorithm?

Approaches

- Direct intersection
- Point cloud based
- Voxel based
- Dexel based

Direct intersection

- Most naïve, probably most accurate
- David Rosen,
 Seamless Intersection Between
 Triangle Meshes,
 2008

Triangle triangle intersection

Tomas Möller,
 A fast triangle-triangle intersection test,
 1997

Cube vs. cube

Cylinder vs. cylinder

Cylinder vs. cylinder - Delaunay

Cylinder head

Point cloud based

Sample surface,
 e.g. 3 orthongal raycasts,
 reconstruct surface from points

Surface reconstruction from point cloud

 Fausto Bernardini et al.,
 The ball-pivoting algorithm for surface reconstruction,
 1999

•

Ball pivoting algorithm

Voxel based

 Leif Kobbelt et al.,
 Feature sensitive surface extraction from volume data,
 2001

Dexel based

Yongfu Ren et al.,
 Feature conservation and conversion of Tri-dexel volumetric models to polyhedral surface models for product prototyping,
 2008

D

Goal

- Implement presented approaches
- Create appropriate test suite (models)
- Evaluate algorithms
- Try to find "best" algorithm or hybrid
- Development on "best" algorithm will be continued at RISC ...

Schedule

Time	Milestone
October	DPR3: Technical lecture, infrastructure code, some test models
November	Exposè, direct triangle-triangle intersection
December	DPR3: Thesis introduction, point cloud based approaches
January	Voxel based approaches
February	Dexel based approaches
March	Comparing implementations, introductory and fundamental chapters
April/May	Implementation chapters, adjusting implementations, more test models
June	Finishing touches and submission

Thank you!

Questions?