Introduction to Data Science

The Linear Model
Prof. Dr. Ralf Lämmel & M.Sc. Johannes Härtel
(johanneshaertel@uni-koblenz.de)

[McElreath20]

The major source for this lecture.

Preprocessing the data

Example

We will again be working with the *!Kung* data set (the height), but we will also consider other columns of the original data set.

Data Science @ Softlang — Johannes Härtel (johanneshaertel@uni-koblenz.de)

Inspecting all columns of the original data set

	height	weight	age	male
1	151.765	47.8256	63.0000	1
2	139.700	36.4858	63.0000	0
3	136.525	31.8648	65.0000	0
4	156.845	53.0419	41.0000	1
5	145.415	41.2769	51.0000	0
6	163.830	62.9926	35.0000	1
7	149.225	38.2435	32.0000	0
8	168.910	55.4800	27.0000	1

The data set includes more than just the height.

Do you have any suggestions what causes the strange distribution of height?

Getting rid of the children

Sorted by age; let's get rid of the children.

height	weight	age	male	
69.8500	7.31417	0.00000	0	
67.9450	7.82446	0.00000	1	
68.5800	8.02291	0.00000	0	
66.6750	8.13631	0.00000	0	
62.8650	7.20077	0.00000	1	
62.2300	7.25747	0.00000	0	
55.8800	4.84776	0.00000	0	
60.9600	6.23689	0.00000	1	

Approximately normal distributed

We face an approximate normal distribution after filtering our entries where the age \leq 18.

Data Science @ Softlang — Johannes Härtel (johanneshaertel@uni-koblenz.de)

Gaussian/normal model of height (a brain-dead model)

Definition

We start defining the height (h_i) of the !Kung people, as a normal distributed (observed) variable, with (unobserved) parameter mean $(\mu, Greek mu)$ and standard deviation $(\sigma, Greek sigma)$.

 $\begin{array}{c} h_i \sim Normal(\mu,\sigma) & \text{[likelihood]} \\ \hline \text{Priors should be } \\ \text{defined based } \\ \text{on pre-data} \\ \text{knowledge.} & \sigma \sim Uniform(0,50) & [\sigma \text{ prior}] \\ \hline \end{array}$

New: Prior predictive simulation

- What does our model think before it sees the data?
- Pre-data knowledge: We know that there are no giants or negative heights, how can we assure this to be impossible in our model?
- We use another kind of simulation, making the prior assumptions of the model explicit.
 - We simulate possible parameters using the prior.
 - We produce synthetic height data accordingly.

Demo

(prior predictive simulation)

Demo Backup (prior predictive simulation)

```
Prior predictive simulation
n < -1e4
  Possible parameters according to the prior.
                                                                   Histogram of height
mu \leftarrow rnorm(n, mean = 178, sd = 20)
sigma \leftarrow runif(n, min = 0, max = 50)
                                                     2000
                                                                            No giants
  Simulated heights.
height <- rnorm(n, mean = mu, sd = sigma)
                                                     200
hist(height)
                                   No negative
                                                                  100
                                                                          200
                                                                                  300
                                   heights .
                                                                       height
```

Implementing and running the model on the data

```
[likelihood]
h_i \sim Normal(\mu, \sigma)
\mu \sim Normal(178, 20)
                      [µ prior]
                                                                  data{
\sigma \sim \text{Uniform}(0, 50) [\sigma prior]
                                        Math
                                                                        vector[346] h;
                                                                  parameters{
                    correspondsTo
                                                                        real mu;
                                                                        real<lower=0,upper=50> sigma;
model <- ulam(alist(</pre>
                                                                  model{
 h ~ dnorm(mu, sigma),
                                                                        sigma \sim uniform(0,50);
 mu \sim dnorm(178, 20),
                                                                        mu ~ normal( 178, 20);
 sigma \sim dunif(0, 50)
                                                                        h ~ normal( mu , sigma );
                                                compilesTo
), data = ...)
                                      ULAM
                                                                                                     STAN
```

Results: Summarizing the posterior

The results when fitting the model on the real data in terms of the (marginal) posterior for the mean (mu, μ) and standard deviation (sigma, σ) parameters.

Data Science @ Softlang — Johannes Härtel (johanneshaertel@uni-koblenz.de)

Linear model

How does the height variable relate to other predictor variables?

Example: How does height relate to weight?

We can see a linear relationship between weight and height if plotting both variables in a scatter plot.

Data Science @ Softlang — Johannes Härtel (johanneshaertel@uni-koblenz.de)

The **linear modeling** strategy

Defining the mean height (mu, μ) as a function of predictor variables (weight).

Recap: brain-dead model:

 $h_i \sim Normal(\mu, \sigma)$

 $\mu \sim Normal(178, 20)$

[µ prior] [\sigma prior]

[likelihood]

 $\sigma \sim \text{Uniform}(0, 50)$

No stochastic, but a

relationship to define

(written not '~' but '=').

the mean (µ, mu)

functional

~ Normal(μ_i , σ)

 $\mu_i = \alpha + \beta (w_i - w_bar)$

Weight of person i.

Mean weight in the data set.

[likelihood]

[linear model]

New **priors** for parameter Greek alpha (α) and Greek beta (β) .

~ Normal(178, 20)

~ Normal(0, 10)

Uniform(0, 50)

[a prior]

[\beta prior]

[\sigma prior]

New: Prior predictive simulation:

What does this model think before seeing the data?

New: Prior predictive simulation

Corresponding code to produce the previous plot.

```
w bar <- mean(df$weight)</pre>
w \leftarrow seg(20, 70, length.out = 40)
# Draw 50 possible lines.
for (i in 1:50) {
 # Possible parameters according to the prior.
 a <- rnorm(1, mean = 178, sd = 20)
 b < - rnorm(1, mean = 0, sd = 10)
 # Simulated mu of heights.
 h \leftarrow a + b * (w - w bar)
 # Plotting the line.
 lines(w, h)
              Data Science @ Softlang — Johannes Härtel (johanneshaertel@uni-koblenz.de)
```

Implementing and running the model on the data

```
\begin{array}{llll} h_{i} & \sim & Normal(\mu_{i},\sigma) & & [likelihood] \\ \mu_{i} & = & \alpha + \beta \, (w_{i} - w\_bar) & [linear model] \\ \\ \alpha & \sim & Normal(178,20) & [\alpha \ prior] \\ \beta & \sim & Normal(0,10) & [\beta \ prior] \\ \sigma & \sim & Uniform(0,50) & [\sigma \ prior] & \textit{Math} \\ \end{array}
```

correspondsTo

```
model <- ulam(alist(
  h ~ dnorm(mu, sigma),
  mu <- a + b * (w - w_bar),
  a ~ dnorm(178, 20),
  b ~ dnorm(0, 10),
  sigma ~ dunif(0, 50)
), data = ...)</pre>
```

```
data{
      vector[346] h;
      real w bar;
      vector[346] w;
parameters{
      real a:
      real b:
      real<lower=0,upper=50> sigma;
model{
      vector[346] mu;
      sigma \sim uniform(0,50);
      b \sim normal(0, 10);
      a \sim normal(178, 20);
      for (i in 1:346) {
       mu[i] = a + b * (w[i] - w bar);
      h ~ normal( mu , sigma );
                                            STAN
```

Data Science @ Softlang — Johannes Härtel (johanneshaertel@uni-koblenz.de)

compilesTo

Results: Summarizing the (marginal_{*}) posterior of <u>a</u>lpha (α), and <u>b</u>eta (β).

previous lecture on details why we use samples)

*averaged over the other parameters

Results: Summarizing the posterior of the mean (µ, mu).

Everything that depends upon parameters has a posterior distribution; hence, also **mean** (μ , **mu**) has a posterior. See the following plot for a smart visualization of this posterior.

Code for producing the previous plot

```
w \leftarrow seq(20, 70, length.out = 40) \# Different possible weights (w)
for (j in 1:100) {
 # Parameters from the posterior (described by samples).
 a <- samples$a[j] # alpha</pre>
 b <- samples$b[j] # beta
 # Implementing the functional relationship.
 mu \leftarrow a + b * (w - w bar)
 # Plotting the line (as overlay).
 lines(w, mu, col = rgb(0,0,0,0, alpha = 0.2))
```

Increasing uncertainty for of the mean (µ, mu)

We can see how the uncertainty increases when dropping some data (in this example we dropped 80% of the data entries).

Data Science @ Softlang — Johannes Härtel (johanneshaertel@uni-koblenz.de)

Two types of uncertainty

This is the uncertainty of the mean (μ, mu) , but not of the height (h).

изиа эсиепсе @ эопиапд — Jonannes напен (Jonannesnaertei@uni-кoblenz.de)

Two types of uncertainty

The lines depict the uncertainty of mean (µ, mu) over weight.

Two types of uncertainty

We can also depict the uncertainty of h (here is the range that should include 98% of the data entries in the model's world).

Code for producing the plot

```
w \leftarrow seq(20, 70, length.out = 40) \# Different possible weights (w).
# Quantiles of h for a particular w.
quantiles <- sapply(seq along(w), function(j) {
 # Extract all parameter vectors from the posterior.
 a <- samples$a
 b <- samples$b
 sigma <- samples$sigma</pre>
 # Implement the functional relation on w.
 mu \leftarrow a + b * (w[j] - w bar)
 # Simulating heights on weight w.
 h <- rnorm(length(mu), mu, sigma)
 # Return the quantiles of the simulated heights.
 return(quantile(h, probs = c(0.99, 0.01)))
})
# plot stuff
lines(w, quantiles[1,], lty = 2, lwd = 2)
lines(w, quantiles[2,], lty = 2, lwd = 2)
                Data Science @ Softlang — Johannes Härtel (johanneshaertel@uni-koblenz.de)
```

Summary

Summary

- A basic Gaussian/normal model of height.
- Prior predictive simulations to check the implications of the priors.
- A basic linear model relating height and weight.
- The difference between stochastic and functional relation connecting variables (~ or =).
- New methods to depict the uncertainty included in the posterior.

References:

[DobsonB18]

[McElreath20]