Representation stability - Church 1. Configuration Spaces + multiplicity stability 2 Square free spokynomials + Combinatrial Stability 3 Congruence subgroups + unductive stability 4. FI modules + finite generation 5 FI groups + uniform generating sets 6. Unifying homological stability + representation estability. Configuration Spaces . Confn(M) = space of n-element subsets SCM cg. Confn (a) = K (Braid (n); 1) This (Amold, Cohen) $H_*(Conf_n(\mathbb{C}), \mathbb{Z}) \xrightarrow{\cong} H_*(Conf_{hrs}(\mathbb{C}); \mathbb{Z}) \quad n \ge 2 \times \mathbb{Z}$ = H* (Maps (5, 8, 5);2) $H_{*}(Conf_{n}(\mathbb{C}), \mathbb{Q}) = \begin{cases} \mathbb{Q} & \text{if } \mathbb{Q} \\ \mathbb{Q} & \text{if } \mathbb{Q} \end{cases}$ The (McDuff, Segal) for any open M, M* (Confn(M); Z) => H* (Confn+ (M); Z)) you n>> × Why not M closed? We do not have a map Confin (M) -X > Confiner (M) H, (Confn (52); Z) = Z/(2n-2) Z The (Church) H* (Confn(M); Q) = H* (Confn+1(M); Q) for n>* Not Irve for (; 7) as we need to average By transfer: Reduced to understanding with S_n -university with unite S_n -sup $H^*(Conf_n(n); Q)$ We do have maps Confirm - Grifn Thm: decomposition of Hi (Confn(M); Q) is stable for n>4i.

deg-10 polynomials in F3 [+] ~> 30 # square-free deg 10 palynomials ~ 33,366 = 2.33 over all squarefree any # of linear factors = 29,526/39366 = 75.0038% Def": Confr = space of squarefree deg-n polynomials Note: Redefinition of Confr Conf2 = { T2+bT+c | b2-4c +0 } Grothendick Leschetz. | Cont n (Fq) = 9" \(\int_1)^i q^i \dim H' (Conf n C; Q) = qn - qn-1 P(n, n2, ...) - Xp: Con/n (Fq) - Q x, (f) = P(# linear factors, quadratic factors,...) $\chi_{\mathbf{p}} \colon S_{\mathbf{n}} \longrightarrow \mathbb{R}$ x, (5) = P(# 1- yles, #2- gc/es, ...) $\sum_{f \in Conf_n(\mathbb{F}_q)} \chi_p(f) = q^n \sum_{f \in Conf_n(G)} \chi_p(G), \chi_p \sum_{g} J_{nmer} \text{ broduct as } S_n \text{ refresentations}$ TR": For any P(x, x, ...) \(\text{Hi}(Confn (\mathbb{G}), \mathbb{Q}), \times_p \in \text{is constant for n \(\geq 2 \); \(\text{deg P} \)
\(\text{Confn} \)
\(\te Th ((hanay): H, (SIn Z; Z) -> H, (SIn+17; Z) n 3 3 * Fails for conquence subgroups: $\Gamma_n(p) = \text{ler} \left(SL_n Z \longrightarrow SL_n(2/p) \right)$ cn: H, ([, (p); Z) = sl, Z/p Pr(b) IrpA - A mod b Dy: given TS {1,2,..,n} SI = {MESIn(2) My=Sy if i&T or j&T}, [(4) = SI_T(2) \ \(\Gamma\)(\(\hat{h}\)) eg: T= [1,2] SLT 2 = (1,0) For n=2, H_i ([, (p); 7) = redim H_i ([, 4); 7)
T = (n)

Д.												
	FI-	category of	firite sets	and inclusi	ons							
		module										
	En:	T → SL _T Z	make	SL.Z a	n FI grou	þ						
		$T \longmapsto \Gamma_{T}(p)$			=		مد (۲۵)	an FI	:-module			
	Conf -	-(M) = Inj	· (+ M)									
		- GafT(M)		Spaces	Hi Canh (M	ىن (2; (.	an Fi	I - moolule				
					7.7	,,,,						
Dal":	an	FI-module	V is finited	y generated	۔ یں∃ گنر	· un that	"sban" V	٠.				
υ Τκ [™] :					J V	., .	,					
	v d	ve an FI-n	nodule/@	TFAE								
		is finitely										
		Multiplicity .			be Vn							
		Combinatorial										
h ^m .			9	0	W P 3n							
	V	in an FI-	module /	TFAE								
		is finitely		,								
		inductive sta		= colim v	/_							
				75[n]								
Th ^m	;											
	R- n	oetherion =	FI-mod	les /R am	e Noetheria	n						
	/	linitely gener					nd)					
	` "	8			0 8	0						
6.		,	,					, , , ,				
	Aut	(Fn) , Ani	r t_[k] = y	ker (Aut (1	=)> Au	$t(N_n^k)$	slep nilp	stent squot	i ents			
+k^`:					"							
	Aut.	(K) is igoner	ested by e	lements coup	borted on	unifoemly	small y	sklittings	F. = A + B	Ӌ(а)= А	41 = sid	
		0	7			v 7		, ,	,	·	- 115	
	١ —	→ Aut, [1] -	→ Aut (Fn)	مالہ ←	a → 1							
		normal gener										
		J										