

УДК 621.313

АЛЬТЕРНАТИВНАЯ ЭНЕРГЕТИКА НА СЛУЖБЕ У НЕФТЯННИКОВ •••••• ALTERNATIVE ENERGY IN THE SERVICE OF THE OIL INDUSTRY

Попов Сергей Анатольевич

кандидат технических наук, доцент, Кубанский государственный технологический университет sa popov@inbox.ru

Асташов Максим Александрович

аспирант, Кубанский государственный технологический университет i.am.jlaku@gmail.com

Попова Светлана Валентиновна

аспирант, Кубанский государственный технологический университет s.sv23@mail.ru

Ивашкин Илья Ильич

аспирант, Кубанский государственный технологический университет warmuru@mail.ru

Елфимов Михаил Александрович

аспирант, кафедры электротехники и электрических машин, Кубанский государственный технологический университет elfimovma@mail.ru

Черкасский Павел Андреевич

аспирант, Кубанский государственный технологический университет i.am.jlaku@gmail.com

Аннотация. Статья посвящена повышению эффективности добычи тяжелой нефти посредством применения гибридных систем энергообеспечения месторождений на основе возобновляемых и не традиционных источников энергии.

Ключевые слова: альтернативная энергетика, тяжелая нефть, битумная нефть, экология, возобновляемые источники энергии, не традиционные источники энергии, энергетика, энергетический кризис.

Popov Sergey Anatolevich

Ph.D. in Engineering, Associate Professor, Kuban state technological university sa_popov@inbox.ru

Astashov Maksim Aleksandrovich

Graduate student, Kuban state technological university i.am.jlaku@gmail.com

Popova Svetlana Valentinovna

Graduate student, Kuban state technological university s.sv23@mail.ru

Ivashkin Ilya Ilich

Graduate student, Kuban state technological university warmuru@mail.ru

Elfimov Mikhail Alexandrovich

Graduate student, chairs of electrical engineering and electrical machines, Kuban state technological university elfimovma@mail.ru

Cherkassky Pavel Andreevich

Post-graduate student, Kuban state technological university i.am.jlaku@gmail.com

Annotation. The article is devoted to improving the efficiency of heavy oil production through the use of hybrid energy supply systems for fields based on renewable and nontraditional energy sources.

Keywords: alternative energy, heavy oil, bituminous oil, ecology, renewable energy sources, non-traditional energy sources, energy, energy crisis.

ефть относится к не возобновляемым источникам энергии. Потребление энергии (в том числе нефти) и соответственно спрос на нее постоянно растет. Это связано как с увеличением численности населения (к 2030 году – 9 млрд человек), так и с повышением уровня жизни, а это неизменно сопровождается повышением потребления энергии.

Поскольку основные «сливки» в мировой нефтедобыче уже сняты, нефтяные компании просто вынуждены переключаться на менее привлекательные месторождения тяжелой /высоковязкой/битумной нефти. Именно в ней сосредоточены основные мировые запасы углеводородов. Вслед за Канадой, поставившей на свой баланс запасы тяжелой/битумной нефти, то же самое сделала и Венесуэла, имеющая огромные ее запасы в поясе реки Ориноко. Этот «маневр» вывел Венесуэлу на первое место в

мире по запасам нефти. Значительные запасы битумной нефти есть и в России, а также во многих других нефтедобывающих странах.

Огромные запасы тяжелой нефти и природных битумов требуют разработки инновационных технологий добычи, транспорта и переработки сырья. В настоящее время операционные затраты по добыче тяжелой нефти и природных битумов могут в 3–4 раза превосходить затраты на добычу легкой нефти. Результаты разработки месторождений высоковязкой нефти в России пока не внушают особого оптимизма. Требуется дальнейшее совершенствование технологий и оборудования для повышения эффективности добычи. В то же время потенциал к снижению себестоимости добычи тяжелой нефти есть, и многие компании готовы принимать в ее добыче активное участие. Добыча и переработка тяжелой высоковязкой нефти энергоемка и, как следствие, во многих случаях низкорентабельна и даже убыточна.

Альтернативная энергетика может решить эту задачу. Начало по развитию альтернативных источников энергии уже положено. По оценкам экспертов возобновляемые источники энергии уже к 2035 году будут обеспечивать планету энергией на уровне 45-ти процентов. Альтернативные источники энергии – это не миф, они экологически чище и безопаснее по сравнению с традиционными источниками энергии – нефтью и газом, могут автономно использоваться в труднодоступных местах и при различных климатических условиях.

Широкое распространение получают гибридные системы энергоснабжения на основе возобновляемых источников энергии (солнце, ветер, вода и др.) [1–3]. Разработанные учеными Кубанского государственного технологического университета под руководством к.т.н. Попова С.А. гибридные ветросолнечные генераторы, позволяют вырабатывать электроэнергию, так необходимую для добычи и переработки тяжелой битумной нефти, при низком уровне ветра, нулевом солнце, в различных климатических условиях и в любых труднодоступных местах [4–9]. Особенность данной установки заключается в том, что электроэнергия может вырабатываться с высокой эффективностью при малой активности альтернативных источников энергии, а самое главное — суммировать энергию всех задействованных источников. Энергетические системы с использованием гибридных ветро-солнечных генераторов могут работать абсолютно автономно в арктических условиях, в пустыне, в горах, на болотистой местности, на любом удалении от традиционных электрических сетей, что делает их удобными, более эффективными и необходимыми при энергообеспечении добычи и переработки тяжелой нефти.

Внедрение гибридных автономных энергетических систем на основе альтернативных (возобновляемых) и не традиционных источников энергии позволит снизить затраты на добычу и производство тяжелой нефти, а также расширит спектр возможностей по внедрению новых технологий и оборудования.

Литература

- 1. Попов С.А., Марченко С.И., Голова В.В., Шевелев С.С. Электромашинный ветро-солнечный преобразователь: Технические и технологические системы // Материалы десятой международной научной конференции «ТТС-17» (22–24 ноября 2017 года); ФГБОУ ВО «КубГТУ», КВВАУЛ им. А.К. Серова. Краснодар: Издательский Дом Юг, 2017. С. 78–82.
- 2. Попов С.А., Асташов М.А., Нечесов В.Е., Вершняк А.В. Обоснование применения гибридных ветро-солнечных энергоустановок на основе электромеханических преобразователей // Современные электротехнические и информационные комплексы и системы. Армавир : АМТИ, 2019. С. 76–79.
- 3. Черкасский П.А., Попова С.В., Асташов М.А. Повышение эффективности работы распределительной сети путём применения альтернативных подходов // Современные электротехнические и информационные комплексы и системы. Армавир : АМТИ, 2019. С. 115–117.
- 4. Патент № 171597 (РФ) Электромашинный ветро-солнечный преобразователь / С.А. Попов. Опубл. 07.06.2017 г. Бюл. № 16.
- 5. Патент № 2629017 (РФ) Гибридная аксиальная электрическая машина-генератор / С.А. Попов, М.С. Попов. Опубл. 24.08.2017 г. Бюл. № 24.
- 6. [^] Патент № 2633376 (РФ) Гибридный аксиальный ветро-солнечный генератор / С.А. Попов, М.С. Попов. Опубл. 12.10.2017 г. Бюл. № 29.
- 7. Патент №2633377 (РФ) Гибридная электрическая машина генератор / С.А. Попов, М.С. Попов, А.И. Михед. Опубл. 12.10.2017 г. Бюл. № 29.
- 8. Патент № 2639714 (РФ) Ветро солнечный генератор со сдвоенным ротором / С.А. Попов. Опубл. 22.12.2017 г. Бюл. № 36.
- 9. Патент № 2643522 Гибридный ветро-солнечный генератор / С.А. Попов, М.С. Попов. Опубл. 02.02.2018 г. Бюл. № 4.

References

1. Popov S.A., Marchenko S.I., Golova V.V., Shevelev S.S. Electric machine wind-solar converter-user: Technical and technological systems // Materials of the tenth international scientific conference «TTS-17» (November 22–24, 2017); FSBOU VPO «KubGTU», A.K. Serov KVWAUL. – Krasnodar: Publishing house – South, 2017. – P. 78–82.

- 2. Popov S.A., Astashov M.A., Nechesov V.E., Vershnyak A.V. Justification of the hybrid wind-solar power installations based on the electromechanical converters // Modern electrotechnical and information complexes and systems. Armavir: AMTI, 2019. P. 76–79.
- 3. Cherkasskiy P.A., Popova S.V., Astashov M.A. Distribution network operation efficiency increase by means of the alternative approaches application // Modern electrotechnical and information complexes and systems. Armavir : AMTI, 2019. P. 115–117.
- 4. Patent № 171597 (RF) Electric machine wind-solar converter / S.A. Popov. Publication 07.06.2017. Bulletin № 16
- 5. Patent № 2629017 (RF) Hybrid axial electric machine generator / S.A. Popov, M.S. Popov. Publication 24.08.2017. Bulletin № 24.
- 6. Patent № 2633376 (RF) Hybrid axial wind-solar generator / S.A. Popov, M.S. Popov. Publication 12.10.2017. Bulletin № 29.
- 7. Patent № 2633377 (RF) Hybrid electric machine-generator / S.A. Popov, M.S. Popov, A.I. Mikhed. Publication 12.10.2017. Bulletin № 29.
- 8. Patent № 2639714 (RF) Wind solar generator with a double rotor / S.A. Popov. Publication 22.12.2017. Bulletin № 36.
- 9. Patent № 2643522 Hybrid wind-solar generator / S.A. Popov, M.S. Popov. Publication 02.02.2018. Bulletin № 4.