

Análise, otimização e paralelismo num algoritmo k-means

Computação Paralela

1º Semestre 1º Ano Mestrado em Engenharia Informática Escola de Engenharia – Universidade do Minho

Trabalho realizado por:

- Duarte Lucas PG50345
- Tiago Ribeiro PG50779

CONCEITOS ABORDADOS

Vetorização

Realizar uma operação matemática em vários elementos, ao mesmo tempo

Loop-unrolling

Redução de instruções que controlem o ciclo

Inlining

Remover chamadas a funções complexas

TEMPOS DE EXECUÇÃO

	#1	#2	#3	#4	#5	Média
-O2 Time	6.32	9.14	5.87	6.08	5.91	6.66
-02 CPI	0.56	0.83	0.54	0.54	0.54	0.60
-O3 Time	7.33	9.93	7.62	9.20	10.31	8.88
-03 CPI	0.94	1.25	0.95	1.15	1.32	1.12

CONCEITOS ABORDADOS

Parelelismo

Técnica de programação que permite que várias tarefas sejam executadas simultaneamente

Data Racing

Controlo no tempo de acesso aos dados por diversas threads

OpenMP

Biblioteca de programação paralela carga pelas várias que permite o desenvolvimento de aplicações multithread

Balanceamento da Carga

Distribuição da threads

TEMPOS DE EXECUÇÃO

	CC (mil milhões)	#I (mil milhões	СРІ	Texec (s)
Sequencial 4 clusters	7.2	18.3	0.4	2.43
Sequencial 32 clusters	40.9	94.8	0.4	13.39
Paralelo 16T 4C	8.9	18.4	0.5	0.96
Paralelo 16T 4C	44.0	87.6	0.5	1.68

03

Versão paralela em CUDA

CONCEITOS ABORDADOS

Técnica de programação que permite que várias tarefas sejam executadas simultaneamente

Data Racing

Controlo no tempo de acesso aos dados por diversas threads

CUDA

Programação paralela que permite o desenvolvimento de aplicações multithread

Utilização da GPU

Maximizar o tempo de GPU para tirar o melhor partido

CICLO DE VIDA DO ALGORITMO

Cálculo dos clusters

Cálculo dos centroids

Inicialização das amostras e estruturas Apresentação do output

CÁLCULO DOS CLUSTERS

- Cada thread percorre o array de amostras;
- Armazena o somatório dos pontos na estrutura dos somatórios.

CÁLCULO DOS CENTROIDS

- São criadas tantas threads quantos clusters;
- Percorrem o array e coletam dados para calcular os novos centroids.

ESPECIFICAÇÕES DA GPU

	VRAM	Frequência a memória	Tamanho do Bus de memória	Largura de banda da memória	N° de SMM's
Tamanho/Ve locidade	2 GB	2446 MHz	64 bits	40.1 GB/s	3

ARQUITETURA E TESTES

ARQUITETURA GPU

- Microarquitectura Pascal
- Capacidade de computação 6.1
- Máximo de threads a correr: 6144

TESTES A REALIZAR

- 8 mil amostras (~64KB)
- 100 mil amostras (~800KB)
- 10 milhões amostras (~8MB)

RESULTADOS

4 CLUSTERS	(1)	(2)	(3)
8 mil (~64KB)	0.098	0.175	0.240
100 mil (~800KB)	0.116	0.165	0.166
10 milhões (~8MB)	1.284	. 1.410	1.385

32 CLUSTERS	(1)	(2)	(3)
8 mil (~64KB)	0.106	0.175	0.242
100 mil (~800KB)	0.155	0.192	0.194
10 milhões (~8MB)	2.014	2.332	2.213

COMPARAÇÃO ENTRE VERSÕES

	4 Clusters	Speedup	32 Clusters	Speedup
Sequencial	2.43	1	13.39	1
OpenMP (16 threads)	0.96	2.53	1.68	7.97
Cuda Versão (1)	1.28	1.90	2.01	6.66

SPEEDUP

DISTRIBUIÇÃO DO TEMPO

FIM Conclusões Trabalho Futuro