Báo cáo BTL Python

Đặng Trung Kiên _ B22DCCN426

Ngày 3 tháng 11 năm 2024

1 3.1

Sử dụng thuật toán K-means để phân loại các cầu thủ thành các nhóm có chỉsố giống nha

1.1 Dữ liệu

Dữ liệu được đọc từ file CSV có tên results.csv. Các chỉ số được sử dụng để phân cụm bao gồm:

- Min: Số phút thi đấu
- Age: Tuổi của cầu thủ
- Won%: Tỷ lệ thắng của cầu thủ

1.2 Quy trình

1.2.1 Bước 1: Đọc Dữ liệu

Sử dụng thư viện pandas để đọc dữ liệu từ file CSV.

```
import pandas as pd
data = pd.read_csv('results.csv')
```

1.2.2 Bước 2: Tiền xử lý Dữ liệu

Xóa các hàng có giá trị NaN trong các chỉ số được chọn.

```
features = ['Min', 'Age', 'Won%']
data = data.dropna(subset=features)
```

1.2.3 Bước 3: Phân cụm với K-means

Sử dụng thuật toán K-means để phân cụm dữ liệu thành 3 nhóm.

```
from sklearn.cluster import KMeans
```

```
num_clusters = 3
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
X = data[features]
data['cluster'] = kmeans.fit_predict(X)
```

1.2.4 Bước 4: Đặt Tên Nhóm

Gán tên cho các nhóm đã phân cum.

```
group_names = {
    0: 'Nhóm 1: Cầu thủ xuất sắc',
    1: 'Nhóm 2: Cầu thủ trung bình',
    2: 'Nhóm 3: Cầu thủ kém'
}
data['group_name'] = data['cluster'].map(group_names)
```

1.2.5 Bước 5: Tính Toán Giá Trị Trung Bình

Tính giá trị trung bình cho mỗi nhóm và lưu kết quả.

```
grouped_data = data.groupby('group_name')[features].mean().reset_index()
sorted_grouped_data = grouped_data.sort_values(by='goals', ascending=False)
```

1.2.6 Bước 6: Lưu Kết Quả

Lưu dữ liệu đã phân cụm và dữ liệu nhóm trung bình vào các file CSV.

```
data.to_csv('results3.csv', index=False)
sorted_grouped_data.to_csv('sorted_groups.csv', index=False)
```

$2 \quad 3.3$

Viết chương trình python vẽ biểu đồ rada (radar chart) so sánh cầu thủ với đầu vào như sau: + python radarChartPlot.py -p1 <player Name 1>-p2 <player Name 2>-Attribute

2.1 Dữ liệu

Dữ liệu được đọc từ file CSV có tên results.csv, với định dạng sử dụng dấu chấm phẩy (;) làm dấu phân cách. Các chỉ số cầu thủ cần so sánh sẽ được chỉ định qua tham số dòng lệnh.

2.2 Quy trình

2.2.1 Bước 1: Nhập Thư viện

Các thư viện cần thiết được nhập vào:

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import argparse
```

$2.2.2\,\,$ Bước 2: Định nghĩa Hàm vẽ Biểu đồ Radar

Hàm radar_chart nhân vào các thống kê của hai cầu thủ và danh sách các thuộc tính để vẽ biểu đồ.

```
def radar_chart(player1_stats, player2_stats, attributes):
    num_vars = len(attributes)
    angles = np.linspace(0, 2 * np.pi, num_vars, endpoint=False).tolist()

player1_stats = np.concatenate((player1_stats, [player1_stats[0]]))
    player2_stats = np.concatenate((player2_stats, [player2_stats[0]]))
    angles += angles[:1]
```

```
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
ax.fill(angles, player1_stats, color='blue', alpha=0.25, label='Player 1')
ax.fill(angles, player2_stats, color='red', alpha=0.25, label='Player 2')
ax.set_yticklabels([])
ax.set_xticks(angles[:-1])
ax.set_xticklabels(attributes)
plt.legend(loc='upper right')
plt.title('So sánh cầu thủ')
plt.show()
```

2.2.3 Bước 3: Nhận Tham số Dòng lệnh

Hàm main sử dụng argparse để nhận vào tên của hai cầu thủ và danh sách các chỉ số cần so sánh.

```
def main():
    parser = argparse.ArgumentParser(description='Ve biểu đồ radar so sánh cầu thủ.')
    parser.add_argument('--p1', required=True, help='Tên cầu thủ thứ nhất')
    parser.add_argument('--p2', required=True, help='Tên cầu thủ thứ hai')
    parser.add_argument('--Attribute', required=True, help='Danh sách các chỉ số cần so sánh, cách nhau args = parser.parse_args()
```

2.2.4 Bước 4: Kiểm tra và Lấy Thông tin Cầu thủ

Kiểm tra xem các cầu thủ có tồn tai trong dữ liêu không, và lấy thông tin chỉ số của ho.

```
data = pd.read_csv('results.csv', sep=';')

player1 = args.p1
player2 = args.p2
attributes = args.Attribute.split(',')

if player1 not in data['Player'].values or player2 not in data['Player'].values:
    print(f"Một hoặc cả hai cầu thủ '{player1}' và '{player2}' không tồn tại trong dữ liệu.")
    return

player1_stats = data.loc[data['Player'] == player1, attributes].values.flatten()
player2_stats = data.loc[data['Player'] == player2, attributes].values.flatten()
```

2.2.5 Bước 5: Vẽ Biểu đồ Radar

Cuối cùng, gọi hàm radar_chart để vẽ biểu đồ radar so sánh hai cầu thủ.

```
radar_chart(player1_stats, player2_stats, attributes)
```

2.3 Bước 6: Chay Chương trình

Chương trình được chạy thông qua lệnh sau:

```
if __name__ == '__main__':
    main()
```