Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2009/2010 AL2 - Algebra 2: Gruppi, Anelli e Campi Prof. F. Pappalardi Tutorato 2 - 14 Ottobre 2009

Tutorato 2 - 14 Ottobre 2009 Matteo Acclavio, Luca Dell'Anna

www.matematica3.com

Esercizio 1.

Dimostrare che se G è un gruppo privo di sottogruppi non banali allora è finito ed ha ordine p con p primo.

Esercizio 2.

Descrivere esplicitamente il gruppo D_5 delle simmetrie del pentagono.

Esercizio 3.

Sia $G = GL_3(K)$ ove K è un campo con 5 elementi. Calcolare l'ordine di G e dimostrare che:

- Il gruppo delle matrici diagonali è un sottogruppo non normale di G e se ne determini l'ordine;
- Il gruppo delle matrici scalari è un sottogruppo normale di G e se ne determini l'ordine;
- Il gruppo delle matrici triangolari (superiori o inferiori) è un sottogruppo non normale di G e se ne determini l'ordine;
- Il gruppo delle matrici triangolari con tutti 1 sulla diagonale è un sottogruppo non normale di G e se ne determini l'ordine;
- Il gruppo delle matrici con determinante 1 è un sottogruppo normale di G e se ne determini l'ordine.

In ciascuno dei casi sopra, si stabiliscano eventuali inclusioni dei gruppi presi in considerazione e si dica se essi sono normali negli eventuali gruppi contenenti.

Per chi soffre di insonnia: Ripetere quanto fatto sopra per un generico $GL_n(\mathbb{F}_q)$.

Esercizio 4.

Dimostrare che $\mathbb{Z} = \langle p, q \rangle$ con p, q primi.

Esercizio 5.

Sia (G, \cdot) un gruppo. Dimostrare che se $\forall g \in G$ si ha che $g \cdot g = 1$ allora G è abeliano.

Esercizio 6.

In A_4 si considerino i seguenti sottogruppi:

- $H = \langle (12)(34) \rangle$
- $V = \{id, (12)(34), (13)(24), (14)(23)\}$

Verificare che $H \subseteq V$, $V \subseteq A_4$ e che H non è normale in A_4

Esercizio 7.

Verificare che l'insieme dei polinomi a coefficienti in \mathbb{Z} , con l'operazione di somma, è un gruppo.

Stabilire se è abeliano e dimostrare che non è ciclico.

Stabilire, inoltre, se $\langle 3,X\rangle=\langle 3X\rangle$ e descrivere esplicitamente gli elementi dei due sottogruppi.