IFT2125-6001 TA: Maëlle Zimmermann

Démonstration 1

1

Question: Implémenter en python un algorithme pour calculer le plus petit commun multiple de deux nombres a et b.

Solution: Le plus petit commun multiple (ppcm) de deux nombres a et b est donné par le produit $a \times b$ divisé par le plus grand commun diviseur (pgcd) de a et b. On peut implémenter les deux algorithmes suivants en python.

```
#Algorithme d'Euclide pour plus grand diviseur commun
def pgcd(a, b):
    while b:
        a, b = b, a % b
    return a

#Algorithme pour plus petit multiple commun
def ppcm(a, b):
    return a * b // pgcd(a, b)
```

$\mathbf{2}$

Question: Déclarer une liste, un tuple et un set contenant les éléments 1,2,3,4 en python et énoncer les principales différences. Implémenter une méthode de tri d'une liste.

Solution: Un set est un ensemble non ordonné d'éléments. Une liste et un tuple sont une séquence d'éléments, donc chaque élément correspond à un indice. A noter qu'en python le premier élément est indexé par 0 et non 1. La principale différence entre un tuple et une liste est qu'un tuple ne peut être modifié une fois qu'il est déclaré.

```
tup1=(1,2,3,4)
set1={1,2,3,4}

#On peut aussi declarer un tuple ou un set a partir d'une liste
tup2=tuple([1,2,3,4])
set2=set([1,2,3,4])

#Algorithme du tri par insertion
def insertionsort(alist)
    for i in range(1,len(alist))
        x = alist[i]
        j = i-1
        while j >= 0 and x < alist[j]
        alist[j+1] = alist[j]
        j = j-1
        alist[j+1] = x
    return alist</pre>
```

3

Question: Implémenter en python un algorithme pour calculer na \ddot{i} vement $\det(A)$.

Solution: La formule naïve pour calculer le déterminant d'une matrice A de taille $m \times m$ est:

$$\det(A) = \sum_{i=1}^{m} (-1)^{i+j} \ a_{ij} \ \det(A_{i,j})$$

où a_{ij} est le $j^{\text{ème}}$ élément de la $i^{\text{ème}}$ ligne de A, et $A_{i,j}$ est la matrice obtenue en effaçant la $i^{\text{ème}}$ ligne et la $j^{\text{ème}}$ colonne de A.

La ligne i dans la formule ci-dessus peut être choisie aléatoirement. Nous prenons par défaut la première ligne de A, ainsi nous fixons i = 0 dans l'algorithme python. Nous implémentons une fonction pour calculer la sous-matrice $A_{i,j}$, et une fonction qui calcule récursivement le déterminant de la matrice A.

```
def submatrix(A, i, j):
    return [[A[x][y] for y in range(len(A)) if y != j]
    for x in range(len(A)) if x != i]

#Algorithme naif du calcul de determinant
def det(A):
    i = 0  #indice de ligne fixe
    s = 0
    if len(A) == 1:
```

```
return A[0][0]
else:
  for j in range(len(A)):
    s += (-1)**(i+j) * A[i][j] * det(submatrix(A, i, j))
    return s
```

4

Question: Prouver que:

1.
$$n^2 + n \in O(n^3)$$

2.
$$n^2 \in \Omega(n \log(n))$$

3.
$$2^{n+1} \in \Theta(2^n)$$

4.
$$n^6 - n^5 + n^4 \in \Theta(n^6)$$

5.
$$\log(n) \in O(\sqrt{n})$$

Solution: Il y a souvent plusieurs façons de faire ces preuves. Nous allons en voir quelques unes. Notons d'abord que l'on peut utiliser les implications suivantes:

i.
$$\lim_{n \to \infty} f(n)/g(n) \in \mathbf{R}^+ \quad \Rightarrow \quad O(f(n)) = O(g(n)).$$

ii.
$$\lim_{n \to \infty} f(n)/g(n) = 0 \quad \Rightarrow \quad O(f(n)) \subset O(g(n)).$$

iii.
$$\lim_{n \to \infty} f(n)/g(n) = +\infty \quad \Rightarrow \quad \Omega(f(n)) \subset \Omega(g(n)).$$

1. On peut simplement utiliser la définition de O(f(n)):

$$O(f(n)) = \{t : \mathbf{N} \to \mathbf{R}^* \mid \exists n_0 \in \mathbf{N}, \exists c \in \mathbf{R}^+ : \forall n \ge n_0, \ t(n) \le cf(n)\}$$

$$\underbrace{n^2 + n \le n^2 + n^2}_{\forall n > 1} = \underbrace{2n^2 \le 2n^3}_{\forall n > 1}.$$

Ainsi $\exists n_0 = 1$ et c = 2 tel que $\forall n \ge n_0$, on a $n^2 + n \le cn^3$, et donc $n^2 + n \in O(n^3)$.

2. On utilise la règle de l'Hôpital:

$$\lim_{n \to \infty} f(n)/g(n) = \lim_{x \to \infty} f'(x)/g'(x)$$

On calcule la limite:

$$\lim_{n \to \infty} \frac{n^2}{n \log(n)} = \lim_{n \to \infty} \frac{n}{\log(n)} = \lim_{n \to \infty} \frac{1}{1/n} = +\infty.$$

Ainsi $\Omega(n^2) \subset \Omega(n \log(n))$, donc $n^2 \in \Omega(n \log(n))$.

3. On calcule la limite:

$$\lim_{n \to \infty} \frac{2^{n+1}}{2^n} = \lim_{n \to \infty} \frac{2}{1} = 2.$$

Ainsi $O(2^{n+1}) = O(2^n)$, donc $2^{n+1} \in \Theta(2^n)$.

4. Alternativement au calcul de limite qui nécessiterait d'appliquer plusieurs fois la règle de l'Hôpital, on peut faire:

$$O(n^{6} - n^{5} + n^{4}) = O(\frac{1}{2}n^{6} + (\frac{1}{2}n^{6} - n^{5}) + n^{4})$$

$$= \underbrace{O(\max\{\frac{1}{2}n^{6}, \frac{1}{2}n^{6} - n^{5}, n^{4}\})}_{\text{car } 1/2n^{6} - n^{5} \ge 0, \ \forall n \ge 2}$$

$$= O(\frac{1}{2}n^{6}) = O(n^{6}).$$

Ainsi $n^6 - n^5 + n^4 \in \Theta(n^6)$.

5. On calcule la limite en utilisant la règle de l'Hôpital:

$$\lim_{n \to \infty} \frac{\log(n)}{\sqrt{n}} = \lim_{n \to \infty} \frac{1/n}{\frac{1}{2}n^{-\frac{1}{2}}} = \lim_{n \to \infty} \frac{2}{n^{\frac{1}{2}}} = 0.$$

Ainsi $O(\log(n)) \subset O(\sqrt{n})$ et donc $\log(n) \in O(\sqrt{n})$.

5

Question: Prouver par induction que les permutations (12) et (12...m) engendrent S_m , l'ensemble des permutations de $\{1, 2, ...m\}$.

Solution: Nous prouvons la proposition en deux parties. D'abord, nous prouvons par induction sur m que S_m est engendré par l'ensemble des transpositions (permutations qui échangent deux éléments et préservent tous les autres).

<u>Cas de base: m=2:</u> L'ensemble S_2 ne contient que la permutation identité et la permutation (12). Comme Id = (12)(12), c'est vrai.

Etape d'induction: Soit m > 2. Supposons que la proposition est vraie pour S_{m-1} . Soit une permutation $\sigma \in S_m$.

- Si σ laisse m fixe, alors la restriction de σ à $\{12...m-1\}$ est engendrée par des transpositions (qui laissent m fixe) par hypothèse d'induction.
- Sinon, $\sigma(m) = y \neq m$. Soit la transposition $\tau = (m \ y)$, alors la permutation $\sigma \tau$ fixe m et comme précédemment elle est engendrée par des transpositions. Comme $\sigma = \sigma \tau \tau^{-1} = (\sigma \tau)\tau$, on conclut que σ est engendrée par des transpositions.

Dans un second temps, nous prouvons que toutes les transpositions de $\{1, 2, \dots m\}$ sont engendrées par (12) et $(12 \dots m)$. En effet, nous constatons d'abord que toute transposition du type $(k \ k+1)$ où $1 \le k \le m-1$ est engendrée par (12) et $\gamma = (12 \dots m)$:

$$\begin{cases} \gamma^{-1}(12)\gamma = (23) \\ \gamma^{-1}(23)\gamma = (34) \\ \vdots \\ \gamma^{-1}(m-2\ m-1)\gamma = (m-1\ m). \end{cases}$$

Puis nous prouvons que toute transposition de la forme $(1\ k)$ pour $2 \le k \le m$ s'écrit comme produit de transpositions du type précédent. En effet, pour $k \ge 3$ nous avons

$$(1 \ k) = (k \ k - 1)(1 \ k - 1)(k \ k - 1).$$

Finalement il reste à constater que toute transposition $(x \ y)$ peut s'écrire comme le produit $(1 \ x)(1 \ y)(1 \ x)$ pour conclure que toute transposition de $\{1, 2, \dots m\}$ peut être engendrée par (12) et $(12 \dots m)$.