Recall that a basis is a set which is both spanning and linearly independent.

Recall that a basis is a set which is both spanning and linearly independent.

In the last class we proved the following result:

Recall that a basis is a set which is both spanning and linearly independent.

In the last class we proved the following result:

Theorem

Let S be a nonempty finite subset of a vector space V. Then there is a set β in S with β a basis for span(S).

Recall that a basis is a set which is both spanning and linearly independent.

In the last class we proved the following result:

Theorem

Let S be a nonempty finite subset of a vector space V. Then there is a set β in S with β a basis for span(S).

▶ Idea: We can remove vectors from a finite set until we get to a linearly independent case WITHOUT losing the spanning property!

Recall that a basis is a set which is both spanning and linearly independent.

In the last class we proved the following result:

Theorem

Let S be a nonempty finite subset of a vector space V. Then there is a set β in S with β a basis for span(S).

- ► Idea: We can remove vectors from a finite set until we get to a linearly independent case WITHOUT losing the spanning property!
- ► The proof hinged on the fact that such a basis is the LARGEST linearly independent subset of S.

An example

Find a basis for span(S) where

$$S = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\-2 \end{bmatrix} \right\}.$$

An example

Find a basis for span(S) where

$$S = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\-2 \end{bmatrix} \right\}.$$

We need to find the largest LI subset.

An example

Find a basis for span(S) where

$$S = \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix} \right\}.$$

We need to find the largest LI subset. To find it, consider the homogeneous problem.

$$\begin{bmatrix} 1 & 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & 1 & -2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \end{bmatrix} = 0$$

and use row reduction.

```
\begin{bmatrix} 1 & 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & 1 & -2 \end{bmatrix}
```

$$\begin{bmatrix} 1 & 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & 1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & 1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

Examine the columns with "leading ones". If we *removed* the others, we would have a LI set!

$$\begin{bmatrix} 1 & 0 & 1 & 1 & -1 \\ 0 & 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & 1 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

Examine the columns with "leading ones". If we *removed* the others, we would have a LI set! So

$$\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\}$$

is the basis for span(S).

Exercise

Find the a basis for the span of the following sets of vectors:

$$A = \left\{ \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-6\\-3 \end{bmatrix}, \begin{bmatrix} -1\\-5\\1\\0 \end{bmatrix} \right\}$$

$$B = \left\{ t^3 + t^2 - 2t + 1, t^2 + 1, t^3 - 2t, 2t^3 + 3t^2 - 4t + 3 \right\}$$

Hint for *B*: write the coefficients of the polynomials as column vectors.

Set A:

$$\begin{bmatrix} 1 & 0 & 1 & 1 & -1 \\ 1 & 1 & 0 & 1 & -5 \\ 0 & 2 & 1 & -6 & 1 \\ -1 & 1 & -1 & -3 & 0 \end{bmatrix}$$

Set A:

$$\begin{bmatrix} 1 & 0 & 1 & 1 & -1 \\ 1 & 1 & 0 & 1 & -5 \\ 0 & 2 & 1 & -6 & 1 \\ -1 & 1 & -1 & -3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1 & -1 \\ 0 & 1 & -1 & 0 & 4 \\ 0 & 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Set A:

$$\begin{bmatrix} 1 & 0 & 1 & 1 & -1 \\ 1 & 1 & 0 & 1 & -5 \\ 0 & 2 & 1 & -6 & 1 \\ -1 & 1 & -1 & -3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1 & -1 \\ 0 & 1 & -1 & 0 & 4 \\ 0 & 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

So

$$\left\{ \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\-1 \end{bmatrix} \right\}$$

is the largest LI subset and basis for span(A).

Set B: Use:

$$ax^3 + bx^2 + cx + d \leftrightarrow \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

Set B: Use:

$$ax^3 + bx^2 + cx + d \leftrightarrow \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

System matrix:

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 1 & 1 & 0 & 3 \\ -2 & 0 & -2 & -4 \\ 1 & 1 & 0 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Set B: Use:

$$ax^3 + bx^2 + cx + d \leftrightarrow \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

System matrix:

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 1 & 1 & 0 & 3 \\ -2 & 0 & -2 & -4 \\ 1 & 1 & 0 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

So our basis is made up of the polynomials corresponding to the first and second columns:

$$\{t^3+t^2-2t+1,t^2+1\}.$$

▶ A basis is both linearly independent and spanning.

▶ A basis is both linearly independent and spanning. We should feel comfortable establishing if a given set is a basis or not by verifying these properties.

- ▶ A basis is both linearly independent and spanning. We should feel comfortable establishing if a given set is a basis or not by verifying these properties.
- ▶ In general, a vector space can have lots of different bases.

- ► A basis is both linearly independent and spanning. We should feel comfortable establishing if a given set is a basis or not by verifying these properties.
- ▶ In general, a vector space can have lots of different bases. We should feel ok with *finding* a basis for a given space.

- ▶ A basis is both linearly independent and spanning. We should feel comfortable establishing if a given set is a basis or not by verifying these properties.
- ▶ In general, a vector space can have lots of different bases. We should feel ok with *finding* a basis for a given space.
- ► There seems to be some sort of "sweet spot" where a set of vectors becomes a basis.

- ▶ A basis is both linearly independent and spanning. We should feel comfortable establishing if a given set is a basis or not by verifying these properties.
- ▶ In general, a vector space can have lots of different bases. We should feel ok with *finding* a basis for a given space.
- ► There seems to be some sort of "sweet spot" where a set of vectors becomes a basis. Roughly speaking:
 - ▶ Not spanning \sim Not enough vectors.
 - \blacktriangleright Not linearly independent \sim Too many vectors.

- ▶ A basis is both linearly independent and spanning. We should feel comfortable establishing if a given set is a basis or not by verifying these properties.
- ▶ In general, a vector space can have lots of different bases. We should feel ok with *finding* a basis for a given space.
- ► There seems to be some sort of "sweet spot" where a set of vectors becomes a basis. Roughly speaking:
 - ▶ Not spanning \sim Not enough vectors.
 - ▶ Not linearly independent \sim Too many vectors.

We will now work on theory to make the "sweet spot" concrete.

Basis gives the maximum number of LI vectors

Theorem

Let V be a vector space with finite basis $\beta = \{v_1, \dots, v_n\}$. Let $W = \{w_1, \dots, w_r\}$ be a set of linearly independent vectors. Then $r \leq n$.

Basis gives the maximum number of LI vectors

Theorem

Let V be a vector space with finite basis $\beta = \{v_1, \dots, v_n\}$. Let $W = \{w_1, \dots, w_r\}$ be a set of linearly independent vectors. Then $r \leq n$.

Proof.

This is a simple proof (on the board) assuming that each vector can be represented as a column in \mathbb{R}^n . (which we may find later is actually not as huge an assumption as you might think!) Please come chat with me for a proof which does not use this assumption (it uses induction).

Dimension

An immediate corollary of the theorem is that if β and γ are two basis for a vector space V, then

$$|\beta| = |\gamma|.$$

Dimension

An immediate corollary of the theorem is that if β and γ are two basis for a vector space V, then

$$|\beta| = |\gamma|.$$

(they have the same number of vectors).

Dimension

An immediate corollary of the theorem is that if β and γ are two basis for a vector space V, then

$$|\beta| = |\gamma|.$$

(they have the same number of vectors). Hence the *size* of a basis is unique!

Definition

The **dimension**, $\dim(V)$, of a vector space is the size of a basis for the space.

Corollary

Corollary

Let V be a vector space. Then

1. if L is a linearly independent subset of V then $|L| \leq \dim(V)$.

Corollary

- 1. if L is a linearly independent subset of V then $|L| \leq \dim(V)$.
- 2. if D is a subset of V and $|D| > \dim(V)$ then D is linearly dependent.

Corollary

- 1. if L is a linearly independent subset of V then $|L| \leq \dim(V)$.
- 2. if D is a subset of V and $|D| > \dim(V)$ then D is linearly dependent.
- 3. if G is a spanning set for V then $|G| \ge \dim(V)$.

Corollary

- 1. if L is a linearly independent subset of V then $|L| \leq \dim(V)$.
- 2. if D is a subset of V and $|D| > \dim(V)$ then D is linearly dependent.
- 3. if G is a spanning set for V then $|G| \ge \dim(V)$.
- 4. if F is a subset of V and $|F| < \dim(V)$ then F does not span V.

Corollary

- 1. if L is a linearly independent subset of V then $|L| \leq \dim(V)$.
- 2. if D is a subset of V and $|D| > \dim(V)$ then D is linearly dependent.
- 3. if G is a spanning set for V then $|G| \ge \dim(V)$.
- 4. if F is a subset of V and $|F| < \dim(V)$ then F does not span V.

Extension to Basis

A final theorem:

Theorem

If L_1 is a linearly independent subset of a vector space V. Suppose $|L_1|=m$ and $\dim(V)=n$. Then there exists n-m vectors L_2 with $L_1\cup L_2$ a basis for V.

This theorem tells us that we can always assume that we have a basis with some known LI vectors.