DS-GA.1013 Mathematical Tools for Data Science : Homework Assignment 0 Yves Greatti - yg390

1. Projections

- (a) False Consider $b_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $b_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, they form a basis of \mathbf{R}^2 . When using the definition $\mathcal{P}_{\mathcal{S}} x = \sum_{i=1}^n \langle x, b_i \rangle b_i$ we would expect that $\mathcal{P}_{\mathcal{S}} b_1 = b_1$. However $\mathcal{P}_{\mathcal{S}} b_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix} \neq b_1$.
- (b) True Let $S^{\perp}=\{x|\langle x,y\rangle=0, \forall y\in S\}$ a subspace of an inner product space X, then $S^{\perp\perp}=\{x|\langle x,y\rangle=0, \forall y\in S^{\perp}\}$. The inner product being symmetric, $S\subseteq S^{\perp\perp}$. Since for any vector $x\in X$, we have x=y+z where $y\in S, z\in S^{\perp}$, using Gram-schmidt orthonormalization process, we can find a basis of S and S^{\perp} which express any vector of X as a linear combination of these two basis and combining these two basis together forms a new basis for X so $\dim X=\dim S+\dim S^{\perp}$. If $\dim X=n$ and $\dim S=m$ then $\dim S^{\perp}=n-m$. Similarly $\dim S^{\perp\perp}=n-(n-m)=m$ so $\dim S^{\perp\perp}=\dim S$, so $S^{\perp\perp}\subseteq S$ and since the dimension of a space or subspace is the cardinality of its basis, thus $S=S^{\perp\perp}$.
- (c) True consider $m{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$, we want $m{w} = \begin{bmatrix} \frac{\sum_{i=1,n} v_i}{n} \\ \vdots \\ \frac{\sum_{i=1,n} v_i}{n} \end{bmatrix}$. The orthogonal

projection of v onto the vector b is defined as $\frac{v.b}{\|b\|^2}$, take $b = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$.

2. Scalar linear approximation

(a) First we write $\mathrm{E}[(ax+b-y)^2]=\mathrm{E}[((ax-y)-(-b))^2]$, we know that the best mean-squared error minimizer of a random variable is its mean so $-b=\mathrm{E}[ax-y]=a\,\mathrm{E}[x]-\mathrm{E}[y]=a\mu_x-\mu_y$. Substituting b in the expression we want to minimize gives us:

$$\begin{split} \mathrm{E}[(ax+b-y)^2] &= \mathrm{E}[(ax-y-(a\mu_x-\mu_y))^2] \\ &= \mathrm{E}[\{a(\mu_x-x)-(y-\mu_y)\}^2] \\ &= a^2\,\mathrm{E}[(x-\mu_x)^2] + \mathrm{E}[(y-\mu_y)^2] - 2a\,\mathrm{E}[(x-\mu_x)(y-\mu_y)] \\ &= a^2\sigma_x^2 + \sigma_y^2 - 2\,a\,\mathrm{Cov}(x,y) \end{split}$$

Let $f(a)=a^2\sigma_x^2+\sigma_y^2-2\,a\operatorname{Cov}(x,y)$, then $f'(a)=2(\sigma_x^2a-\operatorname{Cov}(x,y))$ and $f''(a)=2\sigma_x^2$. The function is strictly convex, and its second derivative is positive, thus its minimizer is $a=\frac{\operatorname{Cov}(x,y)}{\sigma_x^2}=\rho_{x,y}\,\frac{\sigma_y}{\sigma_x}$.

1

3. Gradients

- (a) Compute the gradient of $f(x) = b^T x$ where $b \in \mathbf{R}^d$ and $f : \mathbf{R}^d \to \mathbf{R}$. $\frac{\partial f(x)}{x_j} = \sum_i b_i \frac{\partial x_i}{\partial x_j} = b_i$, thus $\nabla f(x) = b$.
- (b) Compute the gradient of $f(x)=x^TAx$ where $A\in\mathbf{R}^{d\times s}$ and $f:\mathbf{R}^d\to\mathbf{R}$. $f(x)=x^TAx=\sum_{i=1}^d\sum_{j=1}^da_{ij}x_ix_j$, then

$$\frac{\partial f}{\partial x_k} = \sum_{i=1}^d \sum_{j=1}^d a_{ij} \frac{\partial x_i x_j}{x_k}$$

$$= \sum_{i=1}^d \sum_{j=1}^d a_{ij} (x_j \delta_{ik} + x_i \delta_{jk})$$

$$= \sum_{i=1}^d \sum_{j=1}^d a_{ij} x_j \delta_{ik} + \sum_{i=1}^d \sum_{j=1}^d a_{ij} x_i \delta_{jk}$$

$$= \sum_{j=1}^d a_{kj} x_j + \sum_{i=1}^d a_{ik} x_i$$

$$= (Ax)_k + (Ax)_k^T$$

thus $\nabla f(x) = (A + A^T)x$.