

Dashboard > Courses > School Of Engineering & Applied Sciences > B.Tech. > B.Tech. Cohort 2020-2024 > Semester-I Cohort 2020-24 > EECE105L-Odd 2020 > End Sem Exam > End Sem Exam

Started on	Monday, 1 March 2021, 12:15 PM
State	Finished
Completed on	Monday, 1 March 2021, 2:30 PM
Time taken	2 hours 14 mins

Grade 27.00 out of 35.00 (77%)

Question 1

Correct

Mark 1.00 out of 1.00

Determine the bandgap energy (E_g in eV) of a light emitting diode whose operating wavelength is 953 nm.

Given, the Plank's constant is 6.626×10^{-34} Js, the Unit charge is 1.6×10^{-19} C, the velocity of light in the vacuum is 3×10^{8} m/s.

Select one:

- 13.04
- 0.81
- 8.14
- 1.30

Your answer is correct.

The correct answer is: 1.30

${\tt Question}~2$

Incorrect

Mark 0.00 out of 3.00

In the circuit shown below, the input voltage varies in the range of 168 to 248 Volts, R = 6 k Ω , R_L = 8 k Ω and Zener breakdown V_z = 49 Volts. Find the maximum and minimum values of current (in mA) flowing through the Zener diode.

Select one:

- 39.29 and 13.71
- 43.38 and 13.71
- 27.04 and 19.83 X
- 27.04 and 13.71

Your answer is incorrect.

The correct answer is: 27.04 and 13.71

Question $\bf 3$

Incorrect

Mark 0.00 out of 2.00

Which of the following gates best represent the logic circuit shown in figure below?

Select one:

Your answer is incorrect.

The correct answer is:

Correct

Mark 3.00 out of 3.00

Consider the circuit below. Let the maximum power delivered to the load resistor (R_L) is equal to P_{max} . At what value of R_L (in Ω), the load resistor absorbs 87% of P_{max} .

Given V_s =7 V, R_1 =1021 Ω , R_2 =2472 Ω , R_3 =2262 Ω .

Select one:

- 2704.78
- 257.38
- 1492.43
- 1402.71

Your answer is correct.

The correct answer is: 1492.43

Question **5**

Correct

Mark 2.00 out of

2.00

Convert the decimal number 312 into octal

Select one:

- 456
- 470
- 474
- 464

Your answer is correct.

The correct answer is: 470

Correct

Mark 2.00 out of

2.00

Three types of diodes are listed below. Match them with their suitable applications:

LED Electrical to Light energy 🗸

Zener Diode Voltage regulator

PN Junction Diode AC to DC conversion

AC to DC conversion

Your answer is correct.

The correct answer is: LED \rightarrow Electrical to Light energy, Zener Diode \rightarrow Voltage regulator, PN Junction Diode \rightarrow AC to DC conversion

Question 7

Correct

Mark 2.00 out of 2.00

Which of the following expression represents the output of the logic circuit shown in Figure below.

Select one:

- \bigcirc ABC $(\overline{C} + \overline{D})$
- $\bigcirc ABC(\overline{A+D})$
- $\bigcirc \overline{ABC} + (\overline{A+D})$
- \bigcirc $\overline{ABC}(\overline{A+D}) \checkmark$

Your answer is correct.

The correct answer is: $\overline{ABC}(\overline{A+D})$

Correct

Mark 3.00 out of 3.00

Find the value of \boldsymbol{V}_1 (in Volt) in the circuit shown below.

Given $\rm V_B$ =7 V, $\rm I_B$ =12 A, $\rm R_1$ =14 $\Omega, \, \rm R_2$ =22 Ω and $\rm R_3$ =24 $\Omega.$

Select one:

- -56.23
- 66.97
- -66.97
- 56.23

Your answer is correct.

The correct answer is: -56.23

Correct

Mark 4.00 out of 4.00

What is the value of voltage source V_s (in Volt) such that current I_2 =1.1 mA flows in *mesh-2* as shown in the circuit given below.

Given R₁=432 Ω , R₂=625 Ω , R₃=2301 Ω ,R₄=1787 Ω , R₅=2355 Ω and V₁=13 V.

Select one:

- 6.90
- 44.85
- 1.84
- 39.78

Your answer is correct.

The correct answer is: 1.84

Consi	der a bar of silicon doped with 4×10 ¹⁶ cm ⁻³ Phosphorus atoms and kept at room
temp	erature. The minority carrier type is and concentration (in cm $^{ extstyle -3}$) is
Giver	intrinsic carrier concentration $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$
Note: <i>In the given options 10E(x) represents 10^x</i>	
Select one:	
	electrons and 0.56×10E(4)
	holes and 0.56×10E(4)
	electrons and 4.00×10E(16)
	holes and 4.00×10E(16)

Your answer is correct.

Question 10

Mark 1.00 out of

Correct

1.00

The correct answer is: holes and 0.56×10E(4)

Correct

Mark 3.00 out of

3.00

The voltage across diode is 0.6 Volt at point A as shown in the below diode characteristic curve. The dynamic resistance (Ω) and static resistance (Ω) of the diode at point A are _____ and _____, respectively.

Given that the reverse saturation current is 72×10^{-15} A and the non-ideality factor is 1. Assume that the diode is working at 300K.

The Boltzmann constant (k) = $1.38 \times 10^{-23} \text{ JK}^{-1}$, unit charge (q) = $1.6 \times 10^{-19} \text{ C.}$.

Select one:

- O dynamic resistance is 30.55 Ohm and static resistance is 30.55 Ohm
- dynamic resistance is 30.55 Ohm and static resistance is 708.31 Ohm
- odynamic resistance is 708.31 Ohm and static resistance is 708.31 Ohm
- O dynamic resistance is 708.31 Ohm and static resistance is 30.41 Ohm

Your answer is correct.

The correct answer is: dynamic resistance is 30.55 Ohm and static resistance is 708.31 Ohm

Question 12

Correct

Mark 2.00 out of 2.00

An input signal V_i = 14.7sin(ω t) is applied to the circuit shown below. The silicon Zener diode has a Zener breakdown voltage of 4.5 V. When the output is observed across R_L in an oscilloscope. What is the maximum voltage level observed in the positive and negative half cycle of the output?

Given that $R_1 \ll R_L$, and in the positive half cycle, **node** A is positive.

Select one:

- positive half 4.50 V and negative half 0.7 V
- opositive half 0.7 V and negative half 4.50 V
- positive half 4.50 V and negative half 14.70 V
- opositive half 14.70 V and negative half 0.7 V
- positive half 14.70 V and negative half 4.50 V
- opositive half 0.7 V and negative half 14.70 V

Your answer is correct.

The correct answer is: positive half 4.50 V and negative half 0.7 V

Correct

Mark 2.00 out of 2.00

In the given circuit find the value of $\rm V_1$ (in Volt)) across $\rm R_L$

Given that the two identical diodes are made of silicon, V $_{\rm i}$ =24 V, R=16 Ω and R $_{\rm L}$ =20 $\Omega.$

Select one:

- 16.64
- 12.94
- 13.33
- 6.47

Your answer is correct.

The correct answer is: 16.64

Incorrect

3.00

Mark 0.00 out of

Determine the frequency (in kHz) such that the imaginary part of the impedance of the RLC circuit shown below is zero.

Given V_i =10.6sin(ω t) V, R = 4579 Ω , C = 36 nF, L = 28 mH.

Select one:

- 881.92
- 5.01
- 31749.02 X
- 1133.89

Your answer is incorrect.

The correct answer is: 5.01

Question 15	Convert the decimal number 184 into binary
Correct	
Mark 2.00 out of	Select one:
2.00	O 10110100
	O 10101110
	■ 10111000
	O 10111100

Your answer is correct.

The correct answer is: 10111000

