

2025. 9. 12

Power System Planning Department

Yong-gu Ha

Global Energy & Solution Leader

- oo FS with RE
- 01 ESS for FS
- P-Load Shedding
- 03 KEPCO-FSES

00 Frequency Stability with RE

Challenges of future power system

The frequency stability decreases as the renewable energy increases.

00 Frequency Stability with RE

Preparing a plan in terms of facility, policy and system to stabilize the frequency

Facility Reinforcement – ESS for FS

Status of ESS for FS

Year	Capacity (MW)	Substation (No.)
2014	52	2
2015	184	7
2016	140	4
2022	50	1
'23~'24	978	6
Total	1,404	20

The configuration of ESS

PMS (Power Management System)

The Part of managing ESS including PCS and BMS

PCS (Power Conditioning System)

The Part that charges or discharges power to the battery by converting DC to AC according to the PMS command

BMS (Battery Management System)

Battery monitoring, protection, control, etc.

ESS Classification

① FR-ESS(Frequency Regulation-ESS)

Replace G/F portion of generators by controlling ESS

Substitution for G/F reserve of low cost generators

FR-ESS Performance

ESS Performance in Korea

② FS-ESS(Frequency Stability-ESS)

- A Generator capacity tripped for transient stability in contingency
- A' Generator capacity tripped for transient and frequency stability in contingency
- B Congestion for frequency stability in contingency
- A Generator capacity tripped for transient and frequency stability in contingency with FS-ESS
- B' Congestion for frequency stability in contingency with FS-ESS
- ✓ Utilize fast response of ESS → Increase effective inertia
- ✓ Control of ESS(Discharge) in case of generator trips → Minimize frequency drop
- √ Keep the frequency above 59.2Hz → Prevent wide-scale power outage by UFR(59Hz)
- ✓ Improve the lowest point of frequency by using fast responsive characteristics of ESS

02 Participatory Load Shedding

Policy Introduction – Participatory Load Shedding

New Policy

 Participatory Load Shedding is to automatically and urgently cut off customer loads contracted with KEPCO in case of frequency drop due to power system failure.

Customer

Large-capacity customers who wish to participate using dedicated lines of 22.9kV or higher

Participatory Load Shedding

❖ KEPCO received The Management Grand Award in 2024.

01~02 The effect of ESS and PLS

FS-ESS and Participatory Load Shedding Performance

Frequency Trend with FS-ESS and Participatory Load Shedding

System Development – Frequency Stability Evaluation System

The frequency nadir has a linear correlation with inertia, reserve and load.

Predicting Frequency Nadir By using FNI(Frequency Nadir Index)

- 39 [GW], FNI = 0.1121 G/F + 0.3103 Inertia + 158.3 49 [GW], FNI = 0.1267 G/F + 0.2741 Inertia + 172.2 59 [GW], FNI = 0.1524 G/F + 0.2492 Inertia + 193.1 69 [GW], FNI = 0.1782 G/F + 0.2225 Inertia + 217.3 79 [GW], FNI = 0.2010 G/F + 0.1983 Inertia + 243.7 89 [GW], FNI = 0.2274 G/F + 0.1742 Inertia + 264.1
- FNI[MW/0.1Hz] is INDEX, which represents the amount of change in the generator that affects the frequency nadir fluctuation of 0.1Hz

$$\checkmark \ \mathsf{FNI} = A \bullet (1 + S_1 \triangle P) \bullet \ \mathit{GF} + B \bullet (1 + S_2 \triangle P) \bullet \ \mathit{I} + C \bullet (1 + S_3 \triangle P)$$

* A, B, C, S1, S2, S3 are parameters of sensitivity with inertia, reserve and load.

$$\checkmark$$
 $f_{Nadir} = 60 - \Delta f = 60 - \frac{Amount of Gen. Tripped}{FNI \times 10} [Hz]$

The method of Frequency Stability Evaluation

IEEE Access

SPECIAL SECTION ON IEEE POWER & ENERGY SOCIETY SECTION

Received 6 June 2025, accepted 15 July 2025, date of publication 24 July 2025, date of current version 31 July 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3592248

RESEARCH ARTICLE

Frequency Stability Evaluation Based on Conservative Piecewise-Linearized Frequency Nadir Model in South Korea

YONGBEOM SON^{1,2}, (Graduate Student Member, IEEE), MINHYEOK CHANG^{©1}, (Graduate Student Member, IEEE), CHIWON SEO¹, (Student Member, IEEE), SUNGWOO KANG¹, (Member, IEEE), YONGGU HA², (Member, IEEE), JONGAN KIM², (Member, IEEE), MYUNGHWAN CHOI^{©2}, (Member, IEEE), MINHAN YOON³, (Member, IEEE), AND GILSOO JANG^{©2}, (Senior Member, IEEE)

03 KEPCO-FSES

KEPCO-FSES Configuration

Step1 Receiving network data(PSS/E DB) regularly from SCADA

Calculating power system inertia and critical inertia

Evaluating frequency stability by comparing above data

Printing the evaluation results and related information

Step2

Step3

Step4

03 KEPCO-FSES

Online Frequency Stability Evaluation System HMI

✓ Data: Inertia, Reserve, Net Load, Frequency Stability and etc.

03 KEPCO-FSES

FNI 857.7 MW/0.1Hz S-FNI 790.3 MW/0.1Hz	최대: 857.7 19: 39: 21 최소: 531.2 10: 07: 24	Net 부하 51,942.7 мw 전체 부하 54,442.8 мw	최대: 52,352.8 00:01:56 최소: 31,486.5 12:43:34	계통관성 418.4 gws	최대: 418.4 19: 33: 53 최소: 307.0 12:37:43
발전기 ROOM 11,671.2 мw	최대: 16,716.8 15: 58: 11 최소: 6,760.8 01: 10: 31	1차 예비력 2,477.7 мw G/F 2,243.8 мw ESS 233.9 мw	최대: 2,477.7 19: 39: 21 최소: 1,472.8 10: 07: 24	임계관성 149.2 _{GWs}	최대: 188.8 10: 07: 24 최소: 149.2 19: 39: 21

59.65	Hz
6,861.7	MW
866.0 (600.0)	MW
700.0 (400.0)	MW
1,425.6	MW/0.1Hz
1,244.2	MW/0.1Hz
181.5	MW/0.1Hz
1.7	
	6,861.7 866.0 (600.0) 700.0 (400.0) 1,425.6 1,244.2 181.5

Power System Interconnection Team bestha@kepco.co.kr