

planetmath.org

Math for the people, by the people.

nil is a radical property

Canonical name NillsARadicalProperty
Date of creation 2013-03-22 14:12:58
Last modified on 2013-03-22 14:12:58

Owner mclase (549) Last modified by mclase (549)

Numerical id 5

Author mclase (549)

Entry type Proof Classification msc 16N40

 $Related\ topic \qquad Properties Of Nil And Nilpotent I deals$

We must show that the nil property, \mathcal{N} , is a radical property, that is that it satisfies the following conditions:

- 1. The class of \mathcal{N} -rings is closed under homomorphic images.
- 2. Every ring R has a largest \mathcal{N} -ideal, which contains all other \mathcal{N} -ideals of R. This ideal is written $\mathcal{N}(R)$.
- 3. $\mathcal{N}(R/\mathcal{N}(R)) = 0$.

It is easy to see that the homomorphic image of a nil ring is nil, for if $f: R \to S$ is a homomorphism and $x^n = 0$, then $f(x)^n = f(x^n) = 0$.

The sum of all nil ideals is nil (see proof http://planetmath.org/node/5650here), so this sum is the largest nil ideal in the ring.

Finally, if N is the largest nil ideal in R, and I is an ideal of R containing N such that I/N is nil, then I is also nil (see proof http://planetmath.org/node/5650here). So $I \subseteq N$ by definition of N. Thus R/N contains no nil ideals.