

AGENDA

PROBLEM STATEMENT

02

01

Complex Operations:
Mine expansion
complicates tracking,
hindering efficient
management.

Missed Demand:

Inefficient production fails to meet unchanged demand, disappointing customers.

Lost Trust: Clients lose faith as the mine's inefficiency damages its reputation.

03

OBJECTIVE

Improved Efficiency: Enhance overall efficiency by optimizing operations with the monitoring system.

MINING PROCESS

- Digger Operations: Digging, loading ore into trucks after drilling and blasting.
- Truck Cycle Efficiency: Well-organized waiting, loading, hauling, and tipping.
- Optimized Crusher Queue: Efficiently offload ore for smooth crusher operations.

VITAL FINDINGS FROM 46,000 OPERATIONS TO OPTIMIZE CYCLE EFFICIENCY

- A TOTAL OF 46,000 cycles analyzed, "TruckCycle" highest (22,000), "AuxMobileCycle" lowest (200).
- "LoaderCycle" has only 15 units, while others have more equipment.
- Average payload stable on weekdays (around 223 tons), lower on other days. Loading/dumping low at 5-6 and 17-18, peaks at 6-7 hours.

ESSENTIAL PLAYERS & PRODUCTION TRENDS REVEALED TO MAXIMIZE MINING OUTPUT

- "Truck" and "Shovel" classes contribute 50% to total production, while "Loader" class has the lowest contribution.
- Top-performing trucks (DT5227, DT5405, DT5221) achieve 56% target rate, while DT5248 and DT5281 perform poorly (33% to 36%).
- "Loader" class closely aligns with planned rate (4% to 5%), but "Shovel" class falls below average (5% to 9%).

CLASS-WISE ANALYSIS EXPLORES TOP CAUSES & IMPACT OF MINING DOWNTIME

- Leading causes of downtime: Obstacle detection (1258) and unscheduled technology downtime (1184).
- Highest downtime reasons in shovel and truck classes: Unscheduled process down delay.
- Total delays across classes: 8782. Trucks (5678) experienced the most delays, followed by shovels (2425).

EFFICIENCY SPOTLIGHT: TOP-PERFORMING MACHINES & CYCLE DURATIONS IN MINING OPERATIONS EXAMINED

- Top-performing machines EX7026, EX8044, and EX8051 demonstrate excellent overall performance with high availability (78%), performance (94%), and quality (71%) scores.
- Loader class machines 994H and WA1200, along with shovel class machine LBH R9400, exhibit high loading efficiency, ranging from 106.8 to 68.3.
- Truck class experiences the longest average cycle duration of approximately 26 minutes, while Loader and Shovel classes have shorter durations ranging from 7 to 9 minutes.

MINING SITE EFFICIENCY: HIGH-IMPACT LOCATIONS & PRODUCTION HUBS EXPLORATION

- 12 specific locations account for around 70.38% of all visits, including DS_PC3, DS_PC1, DS_PC3_WASTE_3, DS_PC3_WASTE_2, DS_C1, DS_W5_BI12, DS_W5_BN10, DS_OB31_NORTH_2, DS_OB31_NORTH_1, DS_W3_AX11, DS_SJS_AV05, and DS_W5_BN10_2.
- 10 crushing sites refine about 77.8% of the production, including DS_PC3, DS_PC1, DS_PC3_WASTE_3, DS_PC3_WASTE_2, DS_C1, DS_W5_BI12, DS_W5_BN10, DS_W3_AX11, DS_OB31_NORTH_2, DS_OB31_NORTH_1, DS_W5_BN10_2, and DS_SJS_AV05.
- DS_PC1_ROM7 has the highest wait time of 1.64 hr/min, while DS_PC3_ROM9 has the least wait time at 0.17 hr/min.

ENHANCING TRUCK OPERATIONS BY ASSESSING MILEAGE, PAYLOAD, & MAINTENANCE EFFICIENCY

- Best-performing trucks: DT5292, DT5172, DT5272 based on their availability, performance, quality, and OEE scores of 84%, 97%, 82%, and 67%. Least efficient trucks: DT5235 and DT5223.
- DT5211, DT5296, and DT5223 excel in mileage performance at 4.68 m/s. DT5236 and DT5275 showcase high payload capacity (108K to 104K).
- Trucks DT5236 and DT5275 have the highest cycle completion, indicating operational efficiency. DT5269 and DT5308 cover an average distance of 9.5 km to 8.7 km per cycle.

RECOMMENDATIONS

Optimize Cycle Efficiency:

- Improve "AuxMobileCycle" operations with targeted optimization efforts.
- Address payload fluctuations on certain days and hours to reduce inefficiencies.
- Enhance productivity of "LoaderCycle" through focused operator training.

Maximize Mining Output:

- Improve performance of underperforming trucks (DT5248, DT5281) to match top performers.
- Analyze and enhance "Loader" class processes to increase its contribution to production.
- Implement strategies to improve the efficiency of the "Shovel" class.

Enhance Truck Operations:

- Schedule preventive maintenance for top-performing trucks (DT5292, DT5172, DT5272).
- Share best practices to improve the performance of all trucks.
- Optimize truck routes and reduce idle times during loading/unloading processes.

APPENDIX

DATA ASSUMPTIONS:

- Fuel used and TMPH are transformed values, and their product gives total fuel consumption, ensuring efficiency analysis.
- Total distance for truck cycles is derived from twice the Empty Travel Distance and Travel Inclined Distance, optimizing routes.
- Focus on Truck Cycles and Loading Cycles, less on AuxMobile Cycle, to identify maintenance needs based on 60% operational time.

TOOLS USED:

- Python: Used for data cleaning, preparation, and quick analysis.
- MySQL: Employed for data analysis, storage, and executing stored procedures.
- Tableau: Utilized to create live interactive dashboards for data visualization.

THANK YOU!

