4.2 Semicontinuous Functions

^a Let f be defined on E, and let x_0 be a limit point of E that lies in E. Then f is said to be upper semicontinuous at x_0 if

$$\limsup_{\substack{x \to x_0 \\ x \in E}} f(x) \le f(x_0).$$

We will usually abbreviate this by saying that f is use at x_0 . Note that if $f(x_0) = +\infty$, then f is automatically use at x_0 ; otherwise, the statement that f is use at x_0 means that given $M > f(x_0)$, there exists $\delta > 0$ such that f(x) < M for all $x \in E$ that lie in the ball $|x - x_0| < \delta$. Intuitively, this means that near x_0 , the values of f do not exceed $f(x_0)$ by a fixed amount.

Similarly, f is said to be lower semicontinuous at x_0 , or lsc at x_0 , if

$$\liminf_{\substack{x \to x_0 \\ x \in E}} f(x) \ge f(x_0).$$

Thus, if $f(x_0) = -\infty$, f is lsc at x_0 , while if $f(x_0) > -\infty$, the definition amounts to saying that given $m < f(x_0)$, there exists $\delta > 0$ such that f(x) > m if $x \in E$ and $|x - x_0| < \delta$. Equivalently, f is lsc at x_0 if and only if -f is use at x_0 .

It follows that f is continuous at x_0 if and only if $|f(x_0)| < +\infty$ and f is both usc and lsc at x_0 .

^aRichard L. Wheeden and Antoni Zygmund. *Measure and integral: An introduction to real analysis*. CRC, 2015, p. 69.

Problem 1. Zygmund p77 exercise 11

Let f be defined on \mathbb{R}^n , and let B(x) denote the open ball $\{y: |x-y| < r\}$ with center x and fixed radius r. Show that the function $g(x) = \sup\{f(y): y \in B(x)\}$ is lsc (lower semi-continuous), and that the function $h(x) = \inf\{f(y): y \in B(x)\}$ is usc (upper semi-continuous) on \mathbb{R}^n . Is the same true for the closed ball $\{y: |x-y| \le r\}$?

(a) lsc

To prove by contradiction, we assume that $g(x) = \sup\{f(y) : y \in B(x)\}$ is not lsc, to be specific, $\exists x_0 \in \mathbb{R}^n$

$$\liminf_{\substack{x \to x_0 \\ x \in \mathbb{R}^n}} g(x) < g(x_0),$$

that is,

$$\liminf_{\substack{x\to x_0\\x\in\mathbb{R}^n}}\sup\{f(y):y\in B(x)\}<\sup\{f(y):y\in B(x_0)\}.$$

Thus, by "lim inf", $\exists x_n \to x_0, \exists \epsilon > 0 \text{ s.t.}$

$$\sup\{f(y) : y \in B(x_n)\} < \sup\{f(y) : y \in B(x_0)\} - \epsilon.$$

By "sup", $\exists y \in B(x_0)$, s.t.

$$f(y) > \sup\{f(y) : y \in B(x_0)\} - \epsilon/2$$

> $\sup\{f(y) : y \in B(x_n)\} + \epsilon/2$.

Note that $\exists n0 \text{ s.t. } |x_{n0} - x_0| < r - |y - x_0|$, we have

$$|y - x_{n0}| < |y - x_0| + |x_{n0} - x_0| < r$$

implying that $y \in B(x_{n_0})$.

Thus,

$$\begin{split} f(y) &> \sup\{f(z): z \in B(x_{n_0})\} + \epsilon/2 \\ &> f(y) + \epsilon/2, \end{split}$$

which is a contradiction.

Therefore, we can conclude that g(x) is lower semicontinuous on \mathbb{R}^n .

.....

(b) usc:

Since f(x) is lsc if and only if -f(x) is usc, to show that h(x) is usc is to show that -h(x) is usc.

$$-h(x) = -\inf\{f(y) : y \in B(x)\} = \sup\{-f(y) : y \in B(x)\}$$
$$= \sup\{\phi(y) : y \in B(x)\}$$

which is lsc by (1).

Thus, we can see that h(x) is use on \mathbb{R}^n .

.....

(c)

For the closed ball $\bar{B} = \{y : |x - y| \le r\}$, the same properties hold.

Problem 2. Zygmund p77 exercise 12

If f(x), $x \in \mathbb{R}^1$, is continuous at almost every point of an interval [a, b], show that f is measurable on [a, b].

Generalize this to functions defined in \mathbb{R}^n .

For a constructive proof, use the subintervals of a sequence of partitions to define a sequence of simple measurable functions converging to f a.e. in [a,b]. Use Theorem 4.12. See also the proof of Theorem 5.54.

Since f(x) is continuous at almost every point of [a, b],

there exists $Z \subset [a,b]$ and s.t. |Z| = 0 and f is continuous on $E = [a,b] \setminus Z$.

Note that Z is measurable, and $E = [a, b] \setminus Z$ is also measurable.

For any finite α , we have

$${x \in [a,b] : f(x) > \alpha} = {x \in E : f(x) > \alpha} \sqcup {x \in Z : f(x) > \alpha}.$$

Note that $\{x \in E : f(x) > \alpha\}$ is measurable since f is continuous, thus measurable on E.

Since $\{x \in Z : f(x) > \alpha\} \subseteq Z$, thus $|\{x \in Z : f(x) > \alpha\}| = 0$, implying that $\{x \in Z : f(x) > \alpha\}$ is also measurable. Thus $\{x \in [a,b] : f(x) > \alpha\}$ is measurable. This means f is measurable on [a,b].

Problem 3. Zygmund p78 exercise 15

Let $\{f_k\}$ be a sequence of measurable functions defined on a measurable set E with $|E| < +\infty$. If $|f_k(x)| \le M_x < +\infty$ for all k for each $x \in E$, show that given $\varepsilon > 0$, there is a closed set $F \subset E$ and a finite M such that $|E - F| < \varepsilon$ and $|f_k(x)| \le M$ for all k and all $x \in F$.

Let

$$E_m:=\left\{|f_k(x)|\leq m, \forall k\in\mathbb{N}\right\}=\bigcap_{k=1}^\infty\left\{|f_k(x)|\leq m\right\}.$$

Notice that E_M being measurable implies that its complement E_M^c is measurable (By Thm 3.17).

Since $E_m \nearrow$, and $\forall x \in E, \exists M_x$ s.t

$$x \in \{|f_k(x)| \le M_x \, \forall k \in \mathbb{N}\} = E_{M_x}$$

We have $E_m \to E$. Hence, by Thm 3.26, we have $\lim_{m \to \infty} |E_m| = |E| < +\infty$.

Thus, $\forall \epsilon > 0$, there exists $M < \infty$, s.t. $\{|f_k(x)| \leq M\}$ for all k and all $x \in E_M$, and

$$|E| - |E_M| = |E \setminus E_M| < \epsilon/2.$$

Since f_k is measurable, by Thm 4.1, we have $\{|f_k(x)| \leq m\}$ measurable for all k, thus, by Thm 3.18, $E_m = \bigcap_{k=1}^{\infty} \{|f_k(x)| \leq m\}$.

For the measurable E_M^c , given $\epsilon > 0$, there exists an open set G s.t.

$$E_M^c \subset G$$
 and $|G \setminus E_M^c| < \epsilon/2$.

Let $F = G^c$ be a close set, we have

$$F \subset E_M$$
 and $|E_M \setminus F| = |E_M \setminus G^c| < \epsilon/2$.

Then,

$$|E \setminus F| = |E \setminus E_M| + |E_M \setminus F| < \epsilon$$

and $|f_k(x)| \leq M$ for all k and all $x \in F$ as required.

Theorem 3.26. Let $\{E_k\}_{k=1}^{\infty}$ be a sequence of measurable sets.

- (i) If $E_k \subset E$, then $\lim_{k \to \infty} |E_k| = |E|$.
- (ii) If $E_k \supset E$ and $|E_k| < +\infty$ for some k, then $\lim_{k \to \infty} |E_k| = |E|$.