

Shenzhen CTL Testing Technology Co., Ltd. Tel: +86-755-89486194 Fax: +86-755-26636041

Jackychen Luy G: Luy G:

FCC PART 15 SUBPART C TEST REPORT

FCC Part 15.247

Report Reference No...... CTL1402140186-WF

Compiled by

(position+printed name+signature) .: File administrators Jacky Chen

Name of the organization performing

the tests Test Engineer Tracy Qi

(position+printed name+signature) .:

Approved by

(position+printed name+signature) .: Manager Tracy Qi

Date of issue...... Mar. 05, 2014

Test Laboratory Name Shenzhen CTL Testing Technology Co., Ltd.

Address Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road,

Nanshan District, Shenzhen, China 518055

Applicant's name...... DORRY ELECTRONICS INTERNATIONAL CO.,LTD

Address F/2, 3-4 Lane, Guangya Yuan, Bantian Town, Longgang District,

Shenzhen City, China

Test specification:

Standard FCC Part 15.247: Operation within the bands 902–928 MHz, 2400–

2483.5 MHz, and 5725-5850 MHz.

TRF Originator...... Shenzhen CTL Testing Technology Co., Ltd.

Master TRF...... Dated 2011-01

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Tablet PC

FCC ID...... Z75Q88

Trade Mark N/A

102T, TB-926, TB-936, N900D

802.11n(40MHz): 2422~2452

802.11g: 6/9/12/18/24/36/48/54 Mbps

802.11n: up to 150 Mbps

Antenna Gain -2dBi

Antenna type: Internal

Result Positive

V1.0 Page 2 of 96 Report No.: CTL1402140186-WF

TEST REPORT

Test Report No. :	CTL1402140186-WF	Mar. 05, 2014	
	01L1402140100-W1	Date of issue	

Equipment under Test : Tablet PC

Model /Type : Q88

Listed Modes : Q89, Q77, Q99, TB-788, TB-708, TB-720D, TB-723G, TB-102T,

TB-926, TB-936, N900D

Applicant : DORRY ELECTRONICS INTERNATIONAL CO.,LTD

Address : F/2, 3-4 Lane, Guangya Yuan, Bantian Town, Longgang

District, Shenzhen City, China

Manufacturer : DORRY ELECTRONICS INTERNATIONAL CO.,LTD

Address : F/2, 3-4 Lane, Guangya Yuan, Bantian Town, Longgang

District, Shenzhen City, China

Test Result according to the standards on page 4:	Positive O
	Positive O

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>s</u>	UMMARY	<u></u>
G	eneral Remarks	
Ε	quipment Under Test	
	hort description of the Equipment under Test (EUT)	
	UT operation mode	
	UT configuration	
	OTE	
	elated Submittal(s) / Grant (s) odifications	
IVI	ouncations	
I	EST ENVIRONMENT	
	LA XI	
	ddress of the test laboratory	
	est Facility	
	nvironmental conditions	
	onfiguration of Tested System	
	tatement of the measurement uncertainty	
	quipments Used during the Test	
S	ummary of Test Result	
I	EST CONDITIONS AND RESULTS	<u></u>
	O CTL CTL	
	onducted Emissions Test	
	adiated Emission Test	
	dB Bandwidth Measurement	
	aximum Peak Output Power	
	and Edge Measurement	
	ower Spectral Density Measurement	
	purious RF Conducted Emission	
	peration Frequency Range of 20dB Bandwidth ntenna Requirement	
	F Exposure esting Tech	
т	EST SETUP PHOTOS OF THE EUT	

V1.0 Page 4 of 96 Report No.: CTL1402140186-WF

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Part 15.247:</u> Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2009: American National Standard for Testing Unlicensed Wireless Devices.

ANSI C63.4-2003

KDB Publication No. 558074 D01 v03r01 Guidance on Measurements for Digital Transmission Systems

V1.0 Page 5 of 96 Report No.: CTL1402140186-WF

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Feb. 24, 2014
Testing commenced on	:	Feb. 24, 2014
Testing concluded on	:	Mar. 05, 2014

2.2. Equipment Under Test

Power supply system utilised

Power supply voltage	:	•	120V / 60 Hz	0 1	115V / 60Hz
		0	12 V DC	0 2	24 V DC
		0	Other (specified in blank bel	low)	

DC3.7V from battery

Description of the test mode

IEEE 802.11b/g/n: Thirteen channels are provided to the EUT, but only eleventh channels used for USA.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	(1)	2462
5	2432	: ::::	
6	2437		CP.,//
7	2442		

2.3. Short description of the Equipment under Test (EUT)

A Tablet PC support Wi-Fi 802.11b/g/n.

For more details, refer to the user's manual of the EUT.

Serial number: Prototype

2.4. EUT operation mode

Test Mode:

- 1. The EUT has been tested under normal operating condition.
- 2. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed. Channel low (2412MHz), mid (2442MHz) and high (2462MHz) with highest data rate are chosen for full testing.

3. Test Mode:

Test Mode(TM)	Description	Remark
1	Transmitting	802.11 b
2	Transmitting	802.11 g
3	Transmitting	802.11 n HT20
4	Transmitting	802.11 n HT40

2.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

○ - supplied by the manufacturer

supplied by the lab

Notebook PC
 Manufacturer : DELL

Model No.: PP18L

2.6. NOTE

1. The EUT is an 802.11b/g/n Tablet PC, The functions of the EUT listed as below:

	Test Standards	Reference Report
WLAN 802.11b/g, 802.11n	FCC Part 15 Subpart C (Section15.247)	CTL1308301369-WF

2. The frequency bands used in this EUT are listed as follows:

Frequency Band(MHz)	2400-2483.5	5150-5350	5470-5725	5725-5850
802.11b		- A		_
802.11g	N A NA	·	2//	_
802.11n(20MHz)	V		5/4/ - 1	_
802.11n(40MHz)	10		0 - 0	_

3. The EUT incorporates a SISO function, Physically, the EUT provides two completed transmitter and two completed receivers.

Modulation Mode	TX Function
802.11b	1TX
802.11g	1TX
802.11n (20MHz)	1TX
802.11n (40MHz)	1TX

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: **Z75Q88** filing to comply with of the FCC Part 15.247 Rules.

2.8. Modifications

No modifications were implemented to meet testing criteria.

V1.0 Page 7 of 96 Report No.: CTL1402140186-WF

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd. Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road, Nanshan District, Shenzhen, China 518055

The sites are constructed in conformance with the requirements of ANSI C6230, ANSI C63.4 (2003) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December 19, 2013.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

3.4. Configuration of Tested System

Fig. 2-1 Configuration of Tested System

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	Above 1GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2013/07/12	2014/07/11
EMI Test Receiver	R&S	ESCI3	103710	2013/07/10	2014/07/09
EMI Test Receiver	R&S	ESPI	1164.6407.07	2013/07/10	2014/07/09
Spectrum Analyzer	Agilent	E4407B	MY45108355	2013/07/06	2014/07/05
Controller	EM Electronics	Controller EM 1000	N/A	2013/07/06	2014/07/05
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2013/07/12	2014/07/11
Horn Antenna	SCHWARZBECK	BBHA9170	1562	2013/07/12	2014/07/11
Active Loop Antenna	SCHWARZBECK	FMZB1519	1519-037	2013/07/12	2014/07/11
LISN	R&S	ENV216	101316	2013/07/10	2014/07/09
LISN	R&S	ESH2-Z5	860014/010	2013/07/10	2014/07/09
LISN	SCHWARZBECK	NSLK8127	8127687	2013/07/10	2014/07/09
Microwave Preamplifier	HP	8349B	3155A00882	2013/07/10	2014/07/09
Amplifier	HP	8447D	3113A07663	2013/07/10	2014/07/09
Transient Limiter	Com-Power	LIT-153	532226	2013/07/10	2014/07/09
Wideband Peak Power Meter	Anritsu	ML2495A	6K00003382	2013/07/10	2014/07/09

3.7. Summary of Test Result

FCC PART 15		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.247(a)(2)	6dB Bandwidth	PASS
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b)	Maximum Peak Output Power	PASS
FCC Part 15.247(e)	Power Spectral Density	PASS
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge Compliance of RF Emission	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS

Remark: The measurement uncertainty is not included in the test result.

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
AC Power Conducted Emission	Normal Link	11 Mbps	1
24	11b/DSSS	11 Mbps	1/6/11
Maximum Peak Conducted Output Power Power Spectral Density	11g/OFDM	54 Mbps	1/6/11
6dB Bandwidth Spurious RF conducted emission	11n(20MHz)/OFDM	65Mbps	1/6/11
spanous IXI Conducted emission	11n(40MHz)/OFDM	150Mbps	3/6/9
3 28	11b/DSSS	11 Mbps	1/6/11
N	11g/OFDM	54 Mbps	1/6/11
Radiated Emission 30MHz~1GHz	11n(20MHz)/OFDM	65Mbps	1/6/11
19	11n(40MHz)/OFDM	150Mbps	3/6/9
Cx	11b/DSSS	11 Mbps	1/6/11
	11g/OFDM	54 Mbps	1/6/11
Radiated Emission 1GHz~10th Harmonic	11n(20MHz)/OFDM	65Mbps	1/6/11
	11n(40MHz)/OFDM	150Mbps	3/6/9
	11b/DSSS	11 Mbps	1/11
	11g/OFDM	54 Mbps	1/11
Band Edge Compliance of RF Emission	11n(20MHz)/OFDM	65Mbps	1/11
	11n(40MHz)/OFDM	150Mbps	3/9

Note1: According exploratory test, EUT will have maximum output power in those data rate, so those data rate were used for all test.

V1.0 Page 10 of 96 Report No.: CTL1402140186-WF

4. TEST CONDITIONS AND RESULTS

4.1. Conducted Emissions Test

TEST CONFIGURATION

TEST PROCEDURE

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following:

Fraguenav		Maximum RF	Line Voltage	(dBµv)
Frequency (MHz)	CLA	SS A		CLASS B
(**************************************	Q.P.	Ave.	Q.P.	Ave.
0.15 - 0.50	79	66	66-56*	56-46*
0.50 - 5.00	73	60	56	46
5.00 - 30.0	73	60	60	50

^{*} Decreasing linearly with the logarithm of the frequency

For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

- 1. Please follow the guidelines in ANSI C63.4-2003.
- 2. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 4. All the support units are connecting to the other LISN.
- 5. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 6. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 7. Both sides of AC line were checked for maximum conducted interference.
- 8. The frequency range from 150 kHz to 30 MHz was searched.
- 9. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

The RBW/VBW for 150KHz to 30MHz: 9KHz

TEST RESULTS

SCAN TABLE: "Voltage (9K-30M)FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT:

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.186000	55.60	10.2	64	8.6	QP	L1	GND
0.202000	51.40	10.2	64	12.1	QP	L1	GND
0.206000	51.40	10.2	63	12.0	QP	L1	GND
1.526000	39.50	10.3	56	16.5	QP	L1	GND

MEASUREMENT RESULT:

Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE
0.186000	47.00	10.2	54			L1	GND
0.190000	44.80	10.2	54 54	9.2 13.5		L1 1.1	GND

SCAN TABLE: "Voltage (9K-30M)FIN"
Short Description: 150K-30M Voltage

Level [dBµV] 80 70 60 50 40 30 20 10 0 4M 5M 6M 150k 600k 800k 1M 2M ЗМ 30M 300k 400k 8M 10M 20M Frequency [Hz]

MEASUREMENT RESULT:

и и и МЕЗ

Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE
0.186000	55.10	10.2	64	9.1	QP	N	GND
0.194000	52.00	10.2	64	11.9	QP	N	GND
0.202000	51.30	10.2	64	12.2	QP	N	GND

MEASUREMENT RESULT:

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.186000	46.00	10.2	54	8.2	AV	N	GND
0.190000	44.00	10.2	54	10.0	AV	N	GND
0.234000	41.40	10.2	52	10.9	AV	N	GND

V1.0 Page 13 of 96 Report No.: CTL1402140186-WF

4.2. Radiated Emission Test

TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

V1.0 Page 14 of 96 Report No.: CTL1402140186-WF

FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

TEST PROCEDURE

- 1. The testing follows FCC KDB Publication No. 558074 (Measurement Guidelines of DTS), the EUT was setup according to ANSI C63.4: and tested according to ANSI C63.10 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT was placed on a turn table which is 0.8m above ground plane.
- 3. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to 360°C to acquire the highest emissions from EUT
- 4. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. Span = wide enough to fully capture the emission being measured; RBW = 1 MHz for f >1 GHz, 120 kHz for f < 1 GHz; VBW ≧ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Repeat above procedures until all frequency measurements have been completed.

Note:

When doing emission measurement above 1GHz, the horn antenna will be bended down a little (as horn antenna has the narrow beamwidth) in order to keeping the antenna in the "cone of radiation" of EUT. The 3dB beamwidth is 60 degrees for H-plane and 90 degrees for E-plane.

LIMIT

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (μV/m)
30-88	3	40.0	100
88-216	astino	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

TEST RESULTS

802.11b

CH	Antenna	Frequency	Reading	Factor	Measure	Limit	Margin	Detector
		(MHz)	Level	(dB)	Level	(dBuV/m)	(dB)	
		((dBuV/m)	()	(dBuV/m)	(3.2.3.3.3.)	()	
	V	2412.0	71.9	30.8	102.7	Fundamental	/	PK
	V	307.4	12.4	14.8	27.2	46	-18.8	QP
	V	500.0	15.0	19.7	34.7	46	-11.3	QP
1	V	3200.0	42.8	-0.6	42.2	54(note3)	-11.8	PK
'	V	4825.0	47.2	2.6	49.8	54(note3)	-4.2	PK
	V	7239.0	51.6	8.1	59.7	74	-13.3	PK
	V	7236.0	44.0	8.9	52.9	54	-1.1	AV
	Н	24000.0	59.1	-8.9	50.2	54(note3)	-3.8	PK
	V	2437.0	71.5	31.2	102.7	Fundamental	/	PK
	V	317.1	12.1	15.2	27.3	46	-18.7	QP
	V	571.6	13.4	21.2	34.6	46	-11.4	QP
	V	3200.0	43.6	-0.6	43.0	54(note3)	-11.0	PK
6	V	4876.0	49.0	2.8	51.8	54(note3)	-2.2	PK
	V	7315.5	54.5	8.8	63.3	74	-10.7	PK
	V	7311.0	43.9	8.1	52.0	54	-2.0	AV
	Н	24000.0	59.1	-8.9	50.2	54(note3)	-3.8	PK
	V	2462.0	70.5	30.9	101.4	Fundamental		PK
	V	326.3	12.6	14.9	27.5	46	-18.5	QP
	Н	582.0	12.9	21.2	34.1	46	-11.9	QP
11	V	3200.0	44.1	-0.6	43.5	54(note3)	-10.5	PK
	V	4927.0	45.1	3.0	48.1	54(note3)	-5.9	5 PK
	V	7383.5	50.1	8.9	59.0	74	-15.0	PK
	V	7386.0	43.9	8.9	52.8	54	-1.2	AV
	Н	24000.0	59.4	-8.9	50.3	54(note3)	-3.7	PK

Note: 1. Measure Level = Reading Level + Factor.

- 2. The test results which are attenuated more than 20 dB below the permissible value limit (the test frequency range: 9kHz~30MHz, 18GHz~25GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

802.11g

002.1								
CH	Antenna	•	Reading	Factor	Measure	Limit	Margin	Detector
		(MHz)	Level	(dB)	Level	(dBuV/m)	(dB)	
			(dBuV/m)		(dBuV/m)			
	V	2411.9	70.1	31.9	102.0	Fundamental	1	PK
	Н	296.8	13.4	15.7	29.1	46	-17.9	QP
	Н	567.4	14.6	21.3	35.9	46	-10.1	QP
1	V	3200	50.0	-13.4	36.6	54(note3)	-17.4	PK
' [V	4824.0	43.6	2.6	46.2	54(note3)	-7.8	PK
	V	7236.0	36.7	8.9	45.6	54	-8.4	AV
	V	7239.0	50.2	8.9	59.1	74	-14.9	PK
	Н	24000.0	59.1	-8.9	50.2	54(note3)	-3.8	PK
	V	2437.0	70.3	31.2	101.5	Fundamental	/	PK
	V	302.6	12.2	14.8	27.0	46	-19.0	QP
	V	599.9	13.8	21.2	35.0	46	-11.0	QP
6	V	3200.0	41.4	-0.6	40.8	54(note3)	-13.2	PK
	V	4876.0	45.6	2.8	48.4	54(note3)	-5.6	PK
	V	7298.5	43.1	8.8	51.9	54(note3)	-2.1	PK
	Н	24000.0	58.7	-8.9	49.8	54(note3)	-4.2	PK
	V	2462.3	70.9	30.9	101.8	Fundamental	I	PK
	Н	589.7	13.7	21.2	34.9	46	-11.1	QP
	V	286.6	12.5	14.7	27.2	46	-18.8	QP
11	V	3200.0	42.7	-0.6	42.1	54(note3)	-11.9	PK
'	V	4927.0	45.9	3.0	48.9	54(note3)	-5.1	PK
	V	7386.0	37.4	8.9	46.3	54	-7.7	AV
	V	7392.0	51.8	8.9	60.7	74	-13.3	PK
	Н	24000.0	59.1	-8.9	50.2	54(note3)	-3.8	PK

Note: 1. Measure Level = Reading Level + Factor.

Pesting Technology

^{2.} The test results which are attenuated more than 20 dB below the permissible value limit (the test frequency range: 9kHz~30MHz, 18GHz~25GHz), therefore no data appear in the report.

^{3.} This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

802.11n(20MHz)

	Antonna		Pooding	Eactor	Measure	Limit	Margin	Dotoctor
СП	Antenna	Frequency (MHz)	Reading Level	Factor	Level		Margin	Detector
		(1711 12)	(dBuV/m)	(dB)		(dBuV/m)	(dB)	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0440.4		00.7	(dBuV/m)	C d t - l	,	DIC
	V	2412.1	69.8	30.7	100.3	Fundamental	1	PK
	Н	597.9	14.0	21.2	35.2	46	-10.8	QP
	Н	311.8	12.5	15.1	27.6	46	-18.4	QP
1	V	3200.0	42.8	-0.6	42.2	54(note3)	-11.8	PK
	V	4824.0	42.3	2.6	44.9	54(note3)	-9.1	PK
	V	7236.0	33.9	8.9	43.8	54	-10.2	AV
	V	7239.0	46.2	8.9	55.1	74	-18.9	PK
	Н	24000.0	59.1	-8.9	50.2	54(note3)	-3.8	PK
	V	2437.0	69.8	31.2	101.0	Fundamental	/	PK
	Н	561.6	13.6	21.2	34.8	46	-11.2	QP
	Н	343.3	13.2	16.0	29.2	46	-16.8	QP
	V	3200.0	42.5	-0.6	41.9	54(note3)	-12.1	PK
6	V	4876.0	45.2	2.8	48.0	54(note3)	-6.0	PK
	V	7307.0	54.6	8.8	63.4	74	-10.6	PK
	V	7310.6	41.0	8.8	49.8	54	-4.2	AV
	Н	24000.0	59.1	-8.9	50.2	54(note3)	-3.8	PK
	V	2462.0	70.1	30.9	101.0	Fundamental	1	PK
	Н	300.1	13.6	14.7	28.3	46	-17.7	QP
	Н	553.8	13.5	21.2	34.7	46	-11.3	QP
	V	3200.0	43.2	-0.6	42.6	54(note3)	-11.4	PK
11	V	4924.0	42.7	3.0	45.7	54(note3)	-8.3	PK
	V	7375.0	50.1	9.0	59.0	74	-15.0	PK
	V	7378.3	34.0	9.0	42.9	54	-11.1	AV
	Н	24000.0	57.0	-8.9	48.1	54(note3)	-5.9	PK

Note: 1. Measure Level = Reading Level + Factor.

Chi Testing Technology

^{2.} The test results which are attenuated more than 20 dB below the permissible value limit (the test frequency range: 9kHz~30MHz, 18GHz~25GHz), therefore no data appear in the report.

^{3.} This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

802.11n(40MHz)

Antenna						_	Detector
	(MHz)		(dB)		(dBuV/m)	(dB)	
		(dBuV/m)		(dBuV/m)			
V	2423.6	67.9	31.8	99.7	Fundamental	1	PK
Н	341.9	14.2	16.0	30.2	46	-15.8	QP
Н	564.0	14.5	21.2	35.7	46	-10.3	QP
V	3200.0	42.6	-0.6	42.0	54(note3)	-12.0	PK
V	4844.0	41.2	2.6	43.8	54(note3)	-10.2	PK
V	7290.0	44.5	8.8	53.3	54(note3)	-0.7	PK
Н	24000.0	59.1	-8.9	50.2	54(note3)	-3.8	PK
V	2437.0	68.6	31.2	99.8	Fundamental	1	PK
Н	291.9	12.9	14.8	27.7	46	-18.3	QP
Н	553.3	13.6	21.2	34.8	46	-11.2	QP
V	3200.0	42.1	-0.6	41.5	54(note3)	-12.5	PK
V	4874.0	41.6	2.8	44.4	54(note3)	-9.6	PK
V	7349.2	32.4	9.0	41.4	54	-12.6	AV
V	7358.0	46.6	9.0	55.6	74	-18.4	PK
Н	24000.0	59.1	-8.9	50.2	54(note3)	-3.8	PK
V	2453.6	66.7	30.9	97.6	Fundamental	1	PK
Н	586.3	14.1	21.2	35.3	46	-10.7	QP
Н	294.3	13.4	14.8	28.2	46	-17.8	QP
V	3200.0	42.6	-0.6	42.0	54(note3)	-12.0	PK
V	4904.0	41.9	2.9	44.8	54(note3)	-9.2	PK
V	7349.4	32.2	9.0	41.2	54	-12.8	AV
V	7349.5	45.6	9.0	54.6	74	-19.4	PK
Н	24000.0	58.4	-8.9	49.5	54(note3)	-4.5	PK
	Antenna V H H V V V H V V H V V V V V V V V V	H 341.9 H 564.0 V 3200.0 V 4844.0 V 7290.0 H 24000.0 V 2437.0 H 291.9 H 553.3 V 3200.0 V 4874.0 V 7349.2 V 7358.0 H 24000.0 V 2453.6 H 586.3 H 294.3 V 3200.0 V 4904.0 V 7349.4 V 7349.5	Antenna Frequency (MHz) Reading Level (dBuV/m) V 2423.6 67.9 H 341.9 14.2 H 564.0 14.5 V 3200.0 42.6 V 4844.0 41.2 V 7290.0 44.5 H 24000.0 59.1 V 2437.0 68.6 H 291.9 12.9 H 553.3 13.6 V 3200.0 42.1 V 4874.0 41.6 V 7349.2 32.4 V 7358.0 46.6 H 24000.0 59.1 V 2453.6 66.7 H 586.3 14.1 H 294.3 13.4 V 3200.0 42.6 V 4904.0 41.9 V 7349.4 32.2 V 7349.5 45.6	Antenna Frequency (MHz) Reading Level (dBuV/m) Factor (dB) V 2423.6 67.9 31.8 H 341.9 14.2 16.0 H 564.0 14.5 21.2 V 3200.0 42.6 -0.6 V 4844.0 41.2 2.6 V 7290.0 44.5 8.8 H 24000.0 59.1 -8.9 V 2437.0 68.6 31.2 H 291.9 12.9 14.8 H 553.3 13.6 21.2 V 3200.0 42.1 -0.6 V 4874.0 41.6 2.8 V 7349.2 32.4 9.0 V 7358.0 46.6 9.0 H 24000.0 59.1 -8.9 V 2453.6 66.7 30.9 H 586.3 14.1 21.2 H 294.3 13.4 14.8	Antenna Frequency (MHz) Reading Level (dBuV/m) Factor (dB) Measure Level (dBuV/m) V 2423.6 67.9 31.8 99.7 H 341.9 14.2 16.0 30.2 H 564.0 14.5 21.2 35.7 V 3200.0 42.6 -0.6 42.0 V 4844.0 41.2 2.6 43.8 V 7290.0 44.5 8.8 53.3 H 24000.0 59.1 -8.9 50.2 V 2437.0 68.6 31.2 99.8 H 291.9 12.9 14.8 27.7 H 553.3 13.6 21.2 34.8 V 3200.0 42.1 -0.6 41.5 V 4874.0 41.6 2.8 44.4 V 7349.2 32.4 9.0 41.4 V 7358.0 46.6 9.0 55.6 H 24000.0 59.1	Antenna Frequency (MHz) Reading Level (dBuV/m) Factor Level (dBuV/m) Measure Level (dBuV/m) Limit (dBuV/m) V 2423.6 67.9 31.8 99.7 Fundamental H 341.9 14.2 16.0 30.2 46 H 564.0 14.5 21.2 35.7 46 V 3200.0 42.6 -0.6 42.0 54(note3) V 4844.0 41.2 2.6 43.8 54(note3) V 7290.0 44.5 8.8 53.3 54(note3) V 7290.0 44.5 8.8 53.3 54(note3) V 7290.0 59.1 -8.9 50.2 54(note3) V 2437.0 68.6 31.2 99.8 Fundamental H 291.9 12.9 14.8 27.7 46 H 553.3 13.6 21.2 34.8 46 V 3200.0 42.1 -0.6 41.5 54(note3) <td>Antenna Frequency (MHz) Reading Level (dBuV/m) Fractor (dBuV/m) Measure (dBuV/m) Limit (dBuV/m) Margin (dB) V 2423.6 67.9 31.8 99.7 Fundamental / H 341.9 14.2 16.0 30.2 46 -15.8 H 564.0 14.5 21.2 35.7 46 -10.3 V 3200.0 42.6 -0.6 42.0 54(note3) -12.0 V 4844.0 41.2 2.6 43.8 54(note3) -10.2 V 7290.0 44.5 8.8 53.3 54(note3) -0.7 H 24000.0 59.1 -8.9 50.2 54(note3) -3.8 V 2437.0 68.6 31.2 99.8 Fundamental / H 291.9 12.9 14.8 27.7 46 -18.3 H 553.3 13.6 21.2 34.8 46 -11.2 V 3200.0</td>	Antenna Frequency (MHz) Reading Level (dBuV/m) Fractor (dBuV/m) Measure (dBuV/m) Limit (dBuV/m) Margin (dB) V 2423.6 67.9 31.8 99.7 Fundamental / H 341.9 14.2 16.0 30.2 46 -15.8 H 564.0 14.5 21.2 35.7 46 -10.3 V 3200.0 42.6 -0.6 42.0 54(note3) -12.0 V 4844.0 41.2 2.6 43.8 54(note3) -10.2 V 7290.0 44.5 8.8 53.3 54(note3) -0.7 H 24000.0 59.1 -8.9 50.2 54(note3) -3.8 V 2437.0 68.6 31.2 99.8 Fundamental / H 291.9 12.9 14.8 27.7 46 -18.3 H 553.3 13.6 21.2 34.8 46 -11.2 V 3200.0

Note: 1. Measure Level = Reading Level + Factor.

Testing Technology

^{2.} The test results which are attenuated more than 20 dB below the permissible value limit (the test frequency range: 9kHz~30MHz, 18GHz~25GHz), therefore no data appear in the report.

^{3.} This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

The worst case of Radiated Emission below 1GHz:

SWEEP TABLE: "test (30M-1G)"
Short Description: Fi Field Strength Detector Meas. Start Stop IF Transducer Time Bandw.

Frequency Frequency 30.0 MHz 1.0 GHz 300.0 ms 120 kHz MaxPeak JB1

MEASUREMENT RESULT:

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
30.000000	24.20	21.1	40.0	15.8		0.0	0.00	HORIZONTAL
62.980000	17.10	8.4	40.0	22.9		0.0	0.00	HORIZONTAL
146.400000	26.50	14.3	43.5	17.0		0.0	0.00	HORIZONTAL
309.360000	42.00	15.7	46.0	4.0		0.0	0.00	HORIZONTAL
315.180000	43.50	15.8	46.0	2.5		0.0	0.00	HORIZONTAL
949.560000	36.30	26.6	46.0	9.7		0.0	0.00	HORIZONTAL

SWEEP TABLE: "test (30M-1G)"
Short Description: Field Strength Short Description: Stop Start Detector Meas. IF Transducer Frequency Frequency 30.0 MHz 1.0 GHz Time Bandw. MaxPeak 300.0 ms 120 kHz

MEASUREMENT RESULT:

Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
30.000000	25.40	21.1	40.0	14.6		0.0	0.00	VERTICAL
158.040000	27.70	14.0	43.5	15.8		0.0	0.00	VERTICAL
309.360000	29.30	15.7	46.0	16.7		0.0	0.00	VERTICAL
398.600000	34.80	18.0	46.0	11.2		0.0	0.00	VERTICAL
528.580000	32.30	20.5	46.0	13.7		0.0	0.00	VERTICAL
935.980000	33.10	26.5	46.0	12.9		0.0	0.00	VERTICAL

V1.0 Page 21 of 96 Report No.: CTL1402140186-WF

4.3. 6dB Bandwidth Measurement

TEST CONFIGURATION

TEST PROCEDURE

- 1. The testing follows FCC KDB Publication No. 558074 (Measurement Guidelines of DTS).
- 2. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW. The 6 dB bandwidth must be greater than 500 kHz.
- 4. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

LIMIT

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST RESULTS

Product	• •	Tablet PC
Test Item	• •	6dB Occupied Bandwidth
Test Mode		Mode 1: Transmit by 802.11b

Channel No.	Frequency	Occupied Bandwidth	Limit	Result
	(MHz)	(kHz)	(kHz)	
01	2412	9400	500	Pass
06	2437	9200	500	Pass
11	2462	9700	500	Pass
	C	Testing T	echnolo	

Channel 01 (2412MHz)

5 MHz/

Span 50 MHz

Center 2.437 GHz

Report No.: CTL1402140186-WF

Channel 11 (2462MHz)

Product	:	Tablet PC
Test Item		6dB Occupied Bandwidth
Test Mode	:	Mode 2: Transmit by 802.11g

Channel No.	Frequency	Occupied Bandwidth	Limit	Result
	(MHz)	(kHz)	(kHz)	
01	2412	16500	500	Pass
06	2437	16600	500	Pass
11	2462	16600	500	Pass

Channel 01 (2412MHz)

Report No.: CTL1402140186-WF

Channel 06 (2437MHz)

Product	:	Tablet PC
Test Item		6dB Occupied Bandwidth
Test Mode		Mode 3: Transmit by 802.11n (20MHz)

Channel No.	Frequency	Occupied Bandwidth	Limit	Result
	(MHz)	(kHz)	(kHz)	
01	2412	17500	500	Pass
06	2437	17800	500	Pass
11	2462	17800	500	Pass

Channel 01 (2412MHz)

Channel 06 (2437MHz)

Report No.: CTL1402140186-WF

Product	:	Tablet PC
Test Item		6dB Occupied Bandwidth
Test Mode	:	Mode 4: Transmit by 802.11n (40MHz)

Channel No.	Frequency	Occupied Bandwidth	Limit	Result
	(MHz)	(kHz)	(kHz)	
03	2422	35800	500	Pass
06	2437	35800	500	Pass
09	2452	35800	500	Pass

Channel 03 (2422MHz)

Report No.: CTL1402140186-WF

Channel 09 (2452MHz)

V1.0 Page 30 of 96 Report No.: CTL1402140186-WF

4.4. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to C63.10 -2009 and KDB558074, The EUT was directly connected to the power meter / spectrum analyzer and antenna output port as show in the block diagram as TEST CONFIGURATION shows.

Use the wideband power meter to test peak power and record the result.

LIMIT

The Peak Output Power Measurement limits are 30dBm.

TEST RESULTS

Product	• •	Tablet PC	1
Test Item	• •	Power Output	7
Test Mode	:	Mode 1: Transmit by 802.11b	

Channel No.	Frequency	Measurement Power Output	Limit	Result
	(MHz)	(dBm)	(dBm)	
1	2412	9.89	30.00	Pass
6	2437	9.84	30.00	Pass
11	2462	9.83	30.00	Pass

Product	:	Tablet PC
Test Item	• •	Power Output
Test Mode	:	Mode 2: Transmit by 802.11g

Channel No.	Frequency	Measurement Power Output	Limit	Result
	(MHz)	(dBm)	(dBm)	
1	2412	9.81	30.00	Pass
6	2437	9.86	30.00	Pass
11	2462	9.82	30.00	Pass

Report No.: CTL1402140186-WF

Product : Tablet PC

Test Item : Power Output

Test Mode : Mode 3: Transmit by 802.11n(20MHz)

Channel No.	Frequency	Measurement Power Output	Limit	Result
	(MHz)	(dBm)	(dBm)	
1	2412	9.86	30.00	Pass
6	2437	9.83	30.00	Pass
11	2462	9.85	30.00	Pass

Product	:	Tablet PC	
Test Item	:	Power Output	
Test Mode	:	Mode 4: Transmit by 802.11n(40MHz)	

Channel No.	Frequency (MHz)	Measurement Power Output (dBm)	Limit (dBm)	Result
3	2422	9.86	30.00	Pass
6	2437	9.82	30.00	Pass
9	2452	9.84	30.00	Pass
		Testing	Techno	100 Co.,

V1.0 Page 32 of 96 Report No.: CTL1402140186-WF

4.5. Band Edge Measurement

TEST CONFIGURATION

TEST PROCEDURE

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10 and FCC KDB Publication No. 558074 (Measurement Guidelines of DTS) with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBM= 300KHz to measure the peak field strength and set RBW to 1MHz and VBW to 10Hz to measure the average radiated field strength.

The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW and VBW to 100 kHz, to measure the conducted peak band edge.

Connect the spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described below (be sure to enter all losses between the unlicensed wireless device output and the spectrum analyzer).

- Span: Set Span for minimum 50 MHz Reference Level: 110 dB μ V (corrected for gains and losses of test antenna factor, preamp gain and cable loss) Attenuation: 10 dB
- Sweep Time: Coupled Resolution Bandwidth: Up to and including 1 GHz = ≥ 100 kHz
- Resolution Bandwidth: Above 1 GHz = 1 MHz Video Bandwidth: Below 1 GHz = 300 kHz
- Video Bandwidth: Up to and including 1 GHz =≥ 3 MHz for peak and 10 Hz for average
- Detector: Peak

Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel.

LIMIT

- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209(see Section 15.205(c)).

Frequency (MHz)	Limit Average (dBuv/m)	Limit Peak (dBuv/m)
Below 2390 or Above 2483.5	54	74

TEST RESULTS

Engineer: Happy		
Site: AC5	Time: 2014/03/05	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal	
EUT: Tablet PC	Power: AC 120V/60Hz	
Note: Mode1:Transmit at channel 2412MHz by 802.11b		

Report No.: CTL1402140186-WF

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: Tablet PC	Power: AC 120V/60Hz
Note: Mode1:Transmit at channel 2/12MHz by	802 11h

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: Tablet PC	Power: AC 120V/60Hz
Note: Mode1:Transmit at channel 2412MHz by	802.11b

Report No.: CTL1402140186-WF

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: Tablet PC	Power: AC 120V/60Hz
Note: Mode1:Transmit at channel 2/12MHz by	802 11h

Engineer: Happy		
Site: AC5	Time: 2014/03/05	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal	
EUT: Tablet PC	Power: AC 120V/60Hz	
Note: Mode1:Transmit at channel 2462MHz by	802 11h	

Time: 2014/03/05
Margin: 0

Polarity: Horizontal

Report No.: CTL1402140186-WF

EUT: Tablet PC Power: AC 120V/60Hz
Note: Mode1:Transmit at channel 2462MHz by 802.11b

Engineer: Happy Site: AC5

Limit: FCC_Part15.209_RE(3m)
Probe: BBHA 9120D_499(1-18GHz)

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: Tablet PC	Power: AC 120V/60Hz
Note: Mode1:Transmit at channel 2462MHz by	802.11b

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: Tablet PC	Power: AC 120V/60Hz
Note: Mode1:Transmit at channel 2462MHz by	802.11b

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: Tablet PC	Power: AC 120V/60Hz
Note: Mode2:Transmit at channel 2412MHz by	802 11a

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: Tablet PC	Power: AC 120V/60Hz
Note: Mode2:Transmit at channel 2412MHz by	802.11g

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: Tablet PC	Power: AC 120V/60Hz

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: Tablet PC	Power: AC 120V/60Hz

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: Tablet PC	Power: AC 120V/60Hz
Note: Mode2:Transmit at channel 2462MHz by 802.11g	

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: Tablet PC	Power: AC 120V/60Hz
Note: Mode2:Transmit at channel 2462MHz by	802 11a

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: Tablet PC	Power: AC 120V/60Hz
Niete Mede O'Trese estit et els esse el 0400MI le les 00	0.44

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: Tablet PC	Power: AC 120V/60Hz

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: Tablet PC	Power: AC 120V/60Hz

Engineer: Happy Site: AC5

EUT: Tablet PC

Limit: FCC_Part15.209_RE(3m)
Probe: BBHA 9120D_499(1-18GHz)

Time: 2014/03/05
Margin: 0

Polarity: Horizontal

Power: AC 120V/60Hz

Report No.: CTL1402140186-WF

Note: Mode3:Transmit at channel 2412MHz by 802.11n20MHz

6-WF	
	6-WF

Engineer: Happy		
Site: AC5	Time: 2014/03/05	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical	
EUT: Tablet PC	Power: AC 120V/60Hz	
Note: Mode3:Transmit at channel 2412MHz by	802 11n20MHz	

 Engineer: Happy
 Time: 2014/03/05

 Site: AC5
 Time: 2014/03/05

 Limit: FCC_Part15.209_RE(3m)
 Margin: 0

 Probe: BBHA 9120D_499(1-18GHz)
 Polarity: Vertical

Power: AC 120V/60Hz

Report No.: CTL1402140186-WF

Note: Mode3:Transmit at channel 2412MHz by 802.11n20MHz

EUT: Tablet PC

Note: Mode3:Transmit at channel 2462MHz by 802.11n20MHz

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: Tablet PC	Power: AC 120V/60Hz

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: Tablet PC	Power: AC 120V/60Hz
Note: Mode3:Transmit at channel 2462MHz by	802 11n20MHz

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: Tablet PC	Power: AC 120V/60Hz
Note: Mode3:Transmit at channel 2462MHz by 802.11n20MHz	

Note: Mode3:Transmit at channel 2462MHz by 802.11n20MHz

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: Tablet PC	Power: AC 120V/60Hz

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: Tablet PC	Power: AC 120V/60Hz
Note: Mode/:Transmit at channel 2/22MHz by	802 11p/0MHz

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal
EUT: Tablet PC	Power: AC 120V/60Hz
Note: Mode4:Transmit at channel 2422MHz by 802.11n40MHz	

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: Tablet PC	Power: AC 120V/60Hz
Note: Mode4:Transmit at channel 2422MHz by	802.11n40MHz

 Engineer: Happy

 Site: AC5
 Time: 2014/03/05

 Limit: FCC_Part15.209_RE(3m)
 Margin: 0

 Probe: BBHA 9120D_499(1-18GHz)
 Polarity: Vertical

 EUT: Tablet PC
 Power: AC 120V/60Hz

 Note: Mode4:Transmit at channel 2422MHz by 802.11n40MHz

ge 61 of 96 Report No.: CTL1402140186-WF

Engineer: Happy		
Site: AC5	Time: 2014/03/05	
Limit: FCC_Part15.209_RE(3m)	Margin: 0	
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal	
EUT: Tablet PC	Power: AC 120V/60Hz	
Note: Mode/:Transmit at channel 2/52MHz by	802 11n40MHz	

Engineer: Happy				
Site: AC5	Time: 2014/03/05			
Limit: FCC_Part15.209_RE(3m) Margin: 0				
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Horizontal			
EUT: Tablet PC Power: AC 120V/60Hz				
Note: Mode4:Transmit at channel 2452MHz by 802.11n40MHz				

Note: Mode4:Transmit at channel 2452MHz by 802.11n40MHz

Engineer: Happy	
Site: AC5	Time: 2014/03/05
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical
EUT: Tablet PC	Power: AC 120V/60Hz

Engineer: Happy				
Site: AC5	Time: 2014/03/05			
Limit: FCC_Part15.209_RE(3m)	Margin: 0			
Probe: BBHA 9120D_499(1-18GHz)	Polarity: Vertical			
EUT: Tablet PC Power: AC 120V/60Hz				
Note: Mode4:Transmit at channel 2452MHz by 802 11n40MHz				

V1.0 Page 65 of 96 Report No.: CTL1402140186-WF

4.6. Power Spectral Density Measurement

TEST CONFIGURATION

TEST PROCEDURE

The EUT was tested according to KDB558074 D01 v03r01 for compliance to FCC 47CFR 15.247 requirements.

Set RBW= 3 kHz, VBW≥10KHz, SPAN to 1.5 times greater than the EBW,.

LIMIT

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST RESULTS

Product	:	Tablet PC
Test Item		Power Spectral Density
Test Mode		Mode 1: Transmit by 802.11b

Channel No.	Frequency (MHz)	Measurement PPSD (dBm/3KHz)	Limit (dBm/3KHz)	Result	
01	2412	-9.58	8	Pass	
06	2437	-9.86	8	Pass	
11	2462	-12.25	8	Pass	
	an C.	7 Testi	ng Teck	indiog	

Channel 01 (2412MHz)

Report No.: CTL1402140186-WF

Channel 06 (2437MHz)

Channel 11 (2462MHz)

Product	:	Tablet PC	
Test Item		Power Spectral Density	
Test Mode	:	Mode 2: Transmit by 802.11g	

Channel No.	Frequency (MHz)	Measurement PPSD (dBm/3KHz)	Limit (dBm/3KHz)	Result
01	2412	-18.67	8	Pass
06	2437	-18.67	8	Pass
11	2462	-18.59	8	Pass

Channel 01 (2412MHz)

Channel 06 (2437MHz)

Report No.: CTL1402140186-WF

Span 25 MHz

Center 2.462 GHz

Product	:	Tablet PC	
Test Item		Power Spectral Density	
Test Mode		Mode 3: Transmit by 802.11n (20MHz)	

Channel No.	Frequency (MHz)	Measurement PPSD (dBm/3KHz)	Limit (dBm/3KHz)	Result
01	2412	-17.49	8	Pass
06	2437	-17.20	8	Pass
11	2462	-18.05	8	Pass

Channel 01 (2412MHz)

Channel 06 (2437MHz)

Report No.: CTL1402140186-WF

Span 25 MHz

Center 2.462 GHz

Product	:	Tablet PC	
Test Item		Power Spectral Density	
Test Mode		Mode 4: Transmit by 802.11n (40MHz)	

Channel No.	Frequency (MHz)	Measurement PPSD (dBm/3KHz)	Limit (dBm/3KHz)	Result
03	2422	-21.07	8	Pass
06	2437	-21.52	8	Pass
09	2452	-21.20	8	Pass

Report No.: CTL1402140186-WF

5 MHz/

Span 50 MHz

Center 2.452 GHz

V1.0 Page 74 of 96 Report No.: CTL1402140186-WF

4.7. Spurious RF Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

The EUT was tested according to KDB558074 D01 v03r01 for compliance to FCC 47CFR 15.247 requirements.

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2009 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBM= 300KHz to measure the peak field strength, and measure frequeny range from 30MHz to 26.5GHz.

LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

TEST RESULTS

Product	Tablet PC
Test Item	RF Antenna Conducted Spurious
Test Mode	Mode 1: Transmit by 802.11b

Product	:	Tablet PC
Test Item		RF Antenna Conducted Spurious
Test Mode		Mode 2: Transmit by 802.11g

Product	: Tablet PC	
Test Item	Item : RF Antenna Conducted Spurious	
Test Mode	est Mode : Mode 3: Transmit by 802.11n (20MHz)	

Product	:	Tablet PC
Test Item	: RF Antenna Conducted Spurious	
Test Mode		Mode 4: Transmit by 802.11n (40MHz)

V1.0 Page 82 of 96 Report No.: CTL1402140186-WF

4.8. Operation Frequency Range of 20dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The EUT was tested according to KDB558074 D01 v03r01 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 100 kHz, Span greater than RBW.

LIMIT

20 dB bandwidth of the emission is contained within the operation frequency band.

TEST RESUTL

Product	• •	Tablet PC
Test Item	• •	Operation Frequency Range of 20dB Bandwidth
Test Mode	1	Mode 1: Transmit by 802.11b

Channel 01 (2412MHz)

Channel 11 (2462MHz)

Product	:	Tablet PC
Test Item		Operation Frequency Range of 20dB Bandwidth
Test Mode	:	Mode 2: Transmit by 802.11g

Product	:	Tablet PC
Test Item		Operation Frequency Range of 20dB Bandwidth
Test Mode	:	Mode 3: Transmit by 802.11n (20MHz)

5 MHz/

Center 2.462 GHz

Span 50 MHz

Product	:	Tablet PC
Test Item		Operation Frequency Range of 20dB Bandwidth
Test Mode	:	Mode 4: Transmit by 802.11n (40MHz)

Channel 03 (2422MHz)

Channel 09 (2452MHz)

V1.0 Page 87 of 96 Report No.: CTL1402140186-WF

4.9. Antenna Requirement

STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

ANTENNA CONNECTED CONSTRUCTION

The directional gains of antenna used for transmitting is -2.0 dBi, and the antenna connector is designed with permanent attachment and no consideration of replacement. Please see EUT photo for details.

V1.0 Page 88 of 96 Report No.: CTL1402140186-WF

4.10. RF Exposure

STANDARD APPLICABLE

According to § 1.1307 (b)(1), system operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

This is a portable device. Per KDB 447498 D01 v05, the device used distance is 5mm from body.

LIMIT

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm2)	Average Time (Minutes)
(A) Limits for Occ	cupational/ Contr	ol Exposures		
300-1500			F/300	6
1500-100,000			5	6
(B) Limits for Ger	neral Population	Uncontrolled Expe	osures	
300-1500			F/1500	6
1500-100,000			1	30

F= Frequency in MHz

MEASUREMENT RESULTS

Per KDB 447498 D01 V05

This is a Wi-Fi function and the Max peak output power is 9.89dBm (9.8mW) lower than low threshold 10 mW in general population category.

The SAR measurement is not necessary.

5. Test Setup Photos of the EUT

V1.0 Page 91 of 96 Report No.: CTL1402140186-WF

6. External and Internal Photos of the EUT

External Photos of EUT

V1.0

V1.0 Page 94 of 96 Report No.: CTL1402140186-WF

Internal Photos of EUT

