

Data Collection and Preprocessing Phase

Date	24 April 2024
Team ID	team-739906
Project Title	Identifying Airline Passenger Satisfaction Using Machine Learning
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis.

Section	Description											
Data Overview	▶ data.describe()											
	₹	Gender		Age	Class	Flight Distance	Inflight wifi service	Departure/ Arrival time convenient	Ease of Online booking	Gate location		
		count	10580.000000	10580.000000	10580.000000	10580.0	10580.000000	10580.000000	10580.000000	10580.000000		
		mean	0.497448	39.798677	0.592439	0.0	2.723913	3.059735	2.755577	2.976560		
		std	0.500017	15.144005	0.622437	0.0	1.337066	1.534992	1.409658	1.281976		
		min	0.000000	7.000000	0.000000	0.0	0.000000	0.000000	0.000000	1.000000		
		25%	0.000000	27.000000	0.000000	0.0	2.000000	2.000000	2.000000	2.000000		
		50%	0.000000	40.000000	1.000000	0.0	3.000000	3.000000	3.000000	3.000000		
		75%	1.000000	51.000000	1.000000	0.0	4.000000	4.000000	4.000000	4.000000		
		max 8 rows ×	1.000000 21 columns	85.000000	2.000000	0.0	5.000000	5.000000	5.000000	5.000000		

Anomalies

data['Departure Delay in Minutes']=np.where(data['Departure Delay in Minutes']>0.1,0,data['Departure Delay in Minutes'])
data['Departure Delay in Minutes']=np.where(data['Departure Delay in Minutes']<0.1,0,data['Departure Delay in Minutes'])

data['Arrival Delay in Minutes']=np.where(data['Arrival Delay in Minutes']>0.1,0,data['Arrival Delay in Minutes']) data['Arrival Delay in Minutes']=np.where(data['Arrival Delay in Minutes']<0.1,0,data['Arrival Delay in Minutes']

Data Preprocessing Code Screenshots

] data=pd.read_csv("/content/test.csv")										
] data.head()										
		Unnamed: 0	id	Gender	Age	Type of Travel	Class	Flight Distance	Inflight wifi service	Departure/ Arrival time convenient	Ease of Online booking
Loading Data	0	0	19556	Female	52	Business travel	Eco	160	5	4	3
	1	1	90035	Female	36	Business travel	Business	2863	1	1	3
	2	2	12360	Male	20	Business travel	Eco	192	2	0	2
	3	3	77959	Male	44	Business travel	Business	3377	0	0	0
	4	4	36875	Female	49	Business travel	Eco	1182	2	3	4
	5 rows × 24 columns										

Handling Null values	data.dropna(inplace=True) data.isnull().sum() Gender
Data Transform ation	<pre>from sklearn.preprocessing import LabelEncoder le=LabelEncoder() data['Gender'] = le.fit_transform(data['Gender']) data['Class'] = le.fit_transform(data['Class']) data['satisfaction'] = le.fit_transform(data['satisfaction'])</pre>
Save Processed Data	<pre>[] import pickle import warnings with open("mod.pkl","wb") as f: pickle.dump(random,f)</pre>

