Introduction

The Kepler mission was designed to locate Earth sized planets using an objects transit data as it orbits a star. The goal of this model is to utilize the Kepler telescope's data to help classify whether an object is a confirmed exoplanet, or a false positive. There are a number of objects which are classified as "candidates" and require additional research. This model can help point to which candidates can likely be confirmed exoplanets.

Imports

```
In [1]:
         import numpy as np
         import pandas as pd
         from functions import *
         import matplotlib.pyplot as plt
         %matplotlib inline
         import seaborn as sns
         from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score
         from sklearn.pipeline import Pipeline
         # Classification Models
         from sklearn.linear_model import LogisticRegression
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.naive_bayes import GaussianNB
         from sklearn.svm import SVC
         import xgboost as xgb
         from sklearn.metrics import plot_confusion_matrix, classification_report,accuracy_score, f1_score, precision_score, recall_score
         # Scalers
         from sklearn.impute import SimpleImputer
         from sklearn.preprocessing import StandardScaler
         from sklearn.preprocessing import MinMaxScaler
         from sklearn.preprocessing import Normalizer
         from sklearn.preprocessing import RobustScaler
         # Categorical Create Dummies
         from sklearn.preprocessing import OneHotEncoder
```

EDA

```
In [2]: df = pd.read_csv(r'Data\KeplerData.csv',skiprows=76)
In [3]: import random random.seed(40521)
In [4]: df.head()
```

[4]:	kepid	kepoi_name	kepler_name	koi_disposition	koi_pdisposition	koi_score	koi_fpflag_nt	koi_fpflag_ss	koi_fpflag_co	koi_fpflag_ec	koi_fwm_srao	koi_fwm_sdeco	koi_fwm_prao	koi_fwm_
	0 10797460	K00752.01	Kepler-227 b	CONFIRMED	CANDIDATE	1.000	0	0	0	0	0.430	0.940	-0.00020	-0.
	1 10797460	K00752.02	Kepler-227 c	CONFIRMED	CANDIDATE	0.969	0	0	0	0	-0.630	1.230	0.00066	-0.
	2 10811496	K00753.01	NaN	CANDIDATE	CANDIDATE	0.000	0	0	0	0	-0.021	-0.038	0.00070	0.
	3 10848459	K00754.01	NaN	FALSE POSITIVE	FALSE POSITIVE	0.000	0	1	0	0	-0.111	0.002	0.00302	-0.

0

0

0

0 ...

-0.010

0.230

0.00008

-0.

5 rows × 70 columns

4 10854555

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9564 entries, 0 to 9563
Data columns (total 70 columns):

K00755.01 Kepler-664 b

CONFIRMED

CANDIDATE

1.000

Column Non-Null Count Dtype ----kepid 9564 non-null int64 0 9564 non-null 1 kepoi name object 2365 non-null 2 kepler name object koi_disposition 9564 non-null object 4 koi_pdisposition 9564 non-null object 5 koi score 8054 non-null float64 koi_fpflag_nt 9564 non-null int64 6 koi_fpflag_ss 9564 non-null int64 koi_fpflag_co 9564 non-null int64 koi fpflag ec 9564 non-null int64 9 10 koi disp prov 9564 non-null object koi_period 9564 non-null float64 11 12 koi_time0bk 9564 non-null float64 koi time0 9564 non-null float64 koi eccen 9201 non-null float64 15 koi_longp 0 non-null float64 koi impact 9201 non-null float64 16 17 koi duration 9564 non-null float64 koi ingress 0 non-null float64 koi_depth 9201 non-null float64 19 20 koi_ror 9201 non-null float64 koi_srho 9243 non-null float64 koi fittype 9564 non-null object 23 koi_prad 9201 non-null float64 koi_sma 9201 non-null float64 24 25 koi incl 9200 non-null float64 26 koi teq 9201 non-null float64 koi_insol float64 27 9243 non-null koi dor 9201 non-null float64 29 koi limbdark mod 9201 non-null object 30 koi_max_sngle_ev 8422 non-null float64 koi_max_mult_ev 8422 non-null float64 koi_model_snr 32 9201 non-null float64 koi count 9564 non-null int64 33 8422 non-null float64 koi num transits koi_tce_plnt_num 9218 non-null float64

```
36 koi_tce_delivname 9218 non-null
                                       object
37
    koi_quarters
                        8422 non-null
                                       float64
    koi_bin_oedp_sig
                       8054 non-null
                                       float64
    koi_trans_mod
                       9201 non-null
                                       object
39
40
    koi_steff
                       9201 non-null
                                       float64
   koi_slogg
                       9201 non-null
                                       float64
42
    koi_smet
                       9178 non-null
                                       float64
    koi_srad
                       9201 non-null
                                       float64
43
    koi_smass
                       9201 non-null
                                       float64
44
45
    koi_sage
                       0 non-null
                                       float64
    koi_sparprov
                       9201 non-null
                                       object
47
    ra
                       9564 non-null
                                       float64
48
    dec
                       9564 non-null
                                       float64
49
    koi_kepmag
                       9563 non-null
                                       float64
50
    koi_gmag
                       9523 non-null
                                       float64
                       9555 non-null
                                       float64
51
    koi_rmag
52
    koi_imag
                       9410 non-null
                                       float64
53
    koi_zmag
                       8951 non-null
                                       float64
                       9539 non-null
                                       float64
54
    koi_jmag
55
    koi_hmag
                       9539 non-null
                                       float64
    koi kmag
                       9539 non-null
                                       float64
57
    koi_fwm_stat_sig
                       8488 non-null
                                       float64
58
    koi_fwm_sra
                       9058 non-null
                                       float64
    koi_fwm_sdec
                       9058 non-null
                                       float64
    koi_fwm_srao
                       9109 non-null
                                       float64
60
61 koi fwm sdeco
                       9109 non-null
                                       float64
62
    koi_fwm_prao
                       8734 non-null
                                       float64
    koi_fwm_pdeco
                       8747 non-null
                                       float64
    koi_dicco_mra
                       8965 non-null
                                       float64
    koi dicco mdec
                       8965 non-null
                                       float64
    koi_dicco_msky
                       8965 non-null
                                       float64
    koi_dikco_mra
67
                       8994 non-null
                                       float64
    koi_dikco_mdec
                       8994 non-null
                                       float64
68
    koi_dikco_msky
                       8994 non-null
                                       float64
dtypes: float64(54), int64(6), object(10)
```

memory usage: 5.1+ MB

In [6]: df.describe()

Out[6]:		kepid	koi_score	koi_fpflag_nt	koi_fpflag_ss	koi_fpflag_co	koi_fpflag_ec	koi_period	koi_time0bk	koi_time0	koi_eccen	. koi_fwm_srao	koi_fwm_sdeco	koi_fwm_prao	koi_t
	count	9.564000e+03	8054.000000	9564.000000	9564.000000	9564.000000	9564.000000	9564.000000	9564.000000	9.564000e+03	9201.0	. 9109.000000	9109.000000	8734.000000	8
	mean	7.690628e+06	0.480829	0.208595	0.232748	0.197512	0.120033	75.671358	166.183251	2.454999e+06	0.0	0.316136	-0.165817	-0.000097	
	std	2.653459e+06	0.476928	4.767290	0.422605	0.398142	0.325018	1334.744046	67.918960	6.791896e+01	0.0	. 20.254777	20.534655	0.058225	
	min	7.574500e+05	0.000000	0.000000	0.000000	0.000000	0.000000	0.241843	120.515914	2.454954e+06	0.0	742.430000	-417.900000	-4.000000	
	25%	5.556034e+06	0.000000	0.000000	0.000000	0.000000	0.000000	2.733684	132.761718	2.454966e+06	0.0	-0.600000	-0.680000	-0.000210	
	50%	7.906892e+06	0.334000	0.000000	0.000000	0.000000	0.000000	9.752831	137.224595	2.454970e+06	0.0	-0.000500	-0.034000	0.000000	
	75%	9.873066e+06	0.998000	0.000000	0.000000	0.000000	0.000000	40.715178	170.694603	2.455004e+06	0.0	. 0.570000	0.500000	0.000240	

1.000000 129995.778400 1472.522306 2.456306e+06

0.0 ...

549.500000

712.500000

1.190000

1.000000

1.000000

8 rows × 60 columns

max 1.293514e+07

1.000000

465.000000

```
df.koi_pdisposition.value_counts()
                           4847
         FALSE POSITIVE
         CANDIDATE
                           4717
         Name: koi_pdisposition, dtype: int64
 In [8]:
          (df.koi_disposition == df.koi_pdisposition).value_counts()
         True
                  7200
 Out[8]:
         False
                  2364
         dtype: int64
          df_FP = df.loc[df.koi_disposition == "FALSE POSITIVE"]
In [10]:
          (df_FP.koi_disposition == df_FP.koi_pdisposition).value_counts()
         True
                  4839
Out[10]:
         False
         dtype: int64
In [11]:
          for col in df.columns:
              print(df[col].isna().value_counts())
                  9564
         False
         Name: kepid, dtype: int64
         False
                  9564
         Name: kepoi_name, dtype: int64
                  7199
         True
         False
                  2365
         Name: kepler_name, dtype: int64
         False
                  9564
         Name: koi_disposition, dtype: int64
                  9564
         False
         Name: koi_pdisposition, dtype: int64
         False
                  8054
         True
                  1510
         Name: koi_score, dtype: int64
                  9564
         False
         Name: koi_fpflag_nt, dtype: int64
         False
                  9564
         Name: koi_fpflag_ss, dtype: int64
                  9564
         Name: koi_fpflag_co, dtype: int64
         False
                  9564
         Name: koi_fpflag_ec, dtype: int64
         False
                  9564
         Name: koi_disp_prov, dtype: int64
         False
                  9564
         Name: koi_period, dtype: int64
         False
                  9564
         Name: koi_time0bk, dtype: int64
         False
                  9564
         Name: koi_time0, dtype: int64
         False
                  9201
         True
                   363
```

```
Name: koi_eccen, dtype: int64
True
        9564
Name: koi_longp, dtype: int64
False
        9201
True
          363
Name: koi_impact, dtype: int64
False
         9564
Name: koi_duration, dtype: int64
True
        9564
Name: koi_ingress, dtype: int64
False
         9201
True
          363
Name: koi_depth, dtype: int64
False
         9201
True
          363
Name: koi_ror, dtype: int64
False
         9243
          321
True
Name: koi_srho, dtype: int64
False
         9564
Name: koi_fittype, dtype: int64
False
         9201
True
          363
Name: koi_prad, dtype: int64
         9201
False
True
          363
Name: koi_sma, dtype: int64
False
         9200
True
          364
Name: koi_incl, dtype: int64
False
         9201
True
          363
Name: koi_teq, dtype: int64
False
         9243
True
          321
Name: koi_insol, dtype: int64
False
         9201
True
          363
Name: koi_dor, dtype: int64
False
         9201
True
          363
Name: koi_limbdark_mod, dtype: int64
False
         8422
True
         1142
Name: koi_max_sngle_ev, dtype: int64
False
         8422
True
         1142
Name: koi_max_mult_ev, dtype: int64
False
         9201
True
          363
Name: koi_model_snr, dtype: int64
False
         9564
Name: koi_count, dtype: int64
False
         8422
True
         1142
Name: koi_num_transits, dtype: int64
False
         9218
True
          346
Name: koi_tce_plnt_num, dtype: int64
```

False 9218 True 346 Name: koi_tce_delivname, dtype: int64 False 8422 True 1142 Name: koi_quarters, dtype: int64 False 8054 True 1510 Name: koi_bin_oedp_sig, dtype: int64 False True 363 Name: koi_trans_mod, dtype: int64 False 9201 True 363 Name: koi_steff, dtype: int64 False 9201 True 363 Name: koi_slogg, dtype: int64 False 9178 True 386 Name: koi_smet, dtype: int64 9201 False True 363 Name: koi_srad, dtype: int64 False 9201 True 363 Name: koi_smass, dtype: int64 True 9564 Name: koi_sage, dtype: int64 False 9201 True 363 Name: koi_sparprov, dtype: int64 False 9564 Name: ra, dtype: int64 9564 False Name: dec, dtype: int64 False 9563 True 1 Name: koi_kepmag, dtype: int64 False 9523 True 41 Name: koi_gmag, dtype: int64 9555 False True 9 Name: koi_rmag, dtype: int64 False 9410 True 154 Name: koi_imag, dtype: int64 False 8951 True 613 Name: koi_zmag, dtype: int64 False 9539 True 25 Name: koi_jmag, dtype: int64 False 9539 True 25 Name: koi_hmag, dtype: int64 False 9539 True 25

```
Name: koi_kmag, dtype: int64
         8488
False
True
         1076
Name: koi_fwm_stat_sig, dtype: int64
False
         9058
True
Name: koi_fwm_sra, dtype: int64
False
         9058
True
Name: koi_fwm_sdec, dtype: int64
False
True
Name: koi_fwm_srao, dtype: int64
False
         9109
True
          455
Name: koi_fwm_sdeco, dtype: int64
False
         8734
          830
True
Name: koi_fwm_prao, dtype: int64
False
         8747
True
Name: koi_fwm_pdeco, dtype: int64
False
         8965
True
Name: koi_dicco_mra, dtype: int64
False
         8965
True
          599
Name: koi_dicco_mdec, dtype: int64
False
         8965
True
          599
Name: koi_dicco_msky, dtype: int64
False
         8994
          570
True
Name: koi_dikco_mra, dtype: int64
         8994
False
True
          570
Name: koi_dikco_mdec, dtype: int64
         8994
False
True
Name: koi_dikco_msky, dtype: int64
```

Drop obvious columns (ID etc) and rows of missing data

Initial Column Drop

```
In [12]:
           len(df.columns)
Out[12]:
In [13]:
           df.head()
                 kepid kepoi_name kepler_name koi_disposition koi_pdisposition koi_score koi_fpflag_nt koi_fpflag_ss koi_fpflag_co koi_fpflag_ec ... koi_fwm_srao koi_fwm_sdeco koi_fwm_prao koi_fwm_
Out[13]:
          0 10797460
                          K00752.01
                                     Kepler-227 b
                                                    CONFIRMED
                                                                      CANDIDATE
                                                                                     1.000
                                                                                                      0
                                                                                                                   0
                                                                                                                                 0
                                                                                                                                               0 ...
                                                                                                                                                             0.430
                                                                                                                                                                            0.940
                                                                                                                                                                                        -0.00020
                                                                                                                                                                                                        -0.
                                                                                                      0
                                                                                                                   0
                                                                                                                                 0
          1 10797460
                                                    CONFIRMED
                                                                      CANDIDATE
                                                                                     0.969
                                                                                                                                               0 ...
                                                                                                                                                            -0.630
                                                                                                                                                                            1.230
                                                                                                                                                                                                        -0.
                         K00752.02
                                     Kepler-227 c
                                                                                                                                                                                         0.00066
```

kepid	kepoi_name	kepler_name	${\bf koi_disposition}$	${\bf koi_pdisposition}$	koi_score	koi_fpflag_nt	koi_fpflag_ss	koi_fpflag_co	koi_fpflag_ec	 koi_fwm_srao	koi_fwm_sdeco	koi_fwm_prao	koi_fwn
10811496	K00753.01	NaN	CANDIDATE	CANDIDATE	0.000	0	0	0	0	 -0.021	-0.038	0.00070	
10848459	K00754.01	NaN	FALSE POSITIVE	FALSE POSITIVE	0.000	0	1	0	0	 -0.111	0.002	0.00302	-
10854555	K00755.01	Kepler-664 b	CONFIRMED	CANDIDATE	1.000	0	0	0	0	 -0.010	0.230	0.00008	
rows × 70 c	olumns												

In [15]: df_initial_drop = df.drop(drop_initial,axis=1)

In [16]: df_initial_drop.head()

> kepoi_name koi_disposition koi_pdisposition koi_score koi_fpflag_nt koi_fpflag_ss koi_fpflag_co koi_fpflag_ec koi disp prov koi period ... koi fwm srao koi fwm sdeco koi fwm prao k 0 K00752.01 CONFIRMED CANDIDATE 1.000 0 0 0 0 q1_q17_dr25_sup_koi 9.488036 ... 0.430 0.940 -0.00020 K00752.02 CONFIRMED CANDIDATE 0.969 0 0 0 q1_q17_dr25_sup_koi 54.418383 ... -0.630 1.230 0.00066 0.000 0 0 0 -0.021 2 K00753.01 CANDIDATE CANDIDATE 0 q1_q17_dr25_sup_koi 19.899140 ... -0.038 0.00070 3 K00754.01 FALSE POSITIVE FALSE POSITIVE 0.000 0 q1_q17_dr25_sup_koi 1.736952 ... -0.111 0.002 0.00302 K00755.01 CONFIRMED CANDIDATE 1.000 0 0 0 0 q1_q17_dr25_sup_koi -0.010 0.230 0.00008 2.525592 ...

5 rows × 65 columns

Drop rows of missing data

for col in df_initial_drop.columns: print(df_initial_drop[col].isna().value_counts())

False 9564

In [17]:

Name: kepoi_name, dtype: int64

False

Name: koi_disposition, dtype: int64

False 9564

Name: koi_pdisposition, dtype: int64

False 8054 True 1510

Name: koi_score, dtype: int64

9564 False

Name: koi_fpflag_nt, dtype: int64

False 9564

Name: koi_fpflag_ss, dtype: int64

False 9564

Name: koi_fpflag_co, dtype: int64

9564 False

```
Name: koi_fpflag_ec, dtype: int64
False
         9564
Name: koi_disp_prov, dtype: int64
False
         9564
Name: koi_period, dtype: int64
False
         9564
Name: koi_time0bk, dtype: int64
False
         9564
Name: koi_time0, dtype: int64
False
         9201
True
          363
Name: koi_eccen, dtype: int64
False
         9201
True
          363
Name: koi_impact, dtype: int64
False
         9564
Name: koi_duration, dtype: int64
False
         9201
True
          363
Name: koi_depth, dtype: int64
False
         9201
True
          363
Name: koi_ror, dtype: int64
False
         9243
True
          321
Name: koi srho, dtype: int64
False
         9564
Name: koi_fittype, dtype: int64
False
         9201
True
          363
Name: koi_prad, dtype: int64
False
         9201
True
          363
Name: koi_sma, dtype: int64
False
         9200
True
          364
Name: koi_incl, dtype: int64
False
         9201
True
          363
Name: koi_teq, dtype: int64
False
        9243
True
          321
Name: koi_insol, dtype: int64
False
         9201
True
          363
Name: koi_dor, dtype: int64
False
         9201
True
          363
Name: koi_limbdark_mod, dtype: int64
         8422
False
True
         1142
Name: koi_max_sngle_ev, dtype: int64
False
         8422
True
         1142
Name: koi_max_mult_ev, dtype: int64
False
         9201
True
Name: koi_model_snr, dtype: int64
False
         9564
```

```
Name: koi_count, dtype: int64
False
         8422
True
         1142
Name: koi_num_transits, dtype: int64
False
         9218
True
          346
Name: koi_tce_plnt_num, dtype: int64
False
         9218
True
          346
Name: koi_tce_delivname, dtype: int64
False
         8422
True
         1142
Name: koi_quarters, dtype: int64
False
         8054
True
         1510
Name: koi_bin_oedp_sig, dtype: int64
False
         9201
          363
True
Name: koi_trans_mod, dtype: int64
False
         9201
True
          363
Name: koi_steff, dtype: int64
False
         9201
True
          363
Name: koi_slogg, dtype: int64
False
         9178
True
          386
Name: koi_smet, dtype: int64
False
         9201
True
          363
Name: koi_srad, dtype: int64
False
         9201
True
          363
Name: koi_smass, dtype: int64
False
         9201
True
          363
Name: koi_sparprov, dtype: int64
False
         9564
Name: ra, dtype: int64
        9564
False
Name: dec, dtype: int64
False
         9563
True
            1
Name: koi_kepmag, dtype: int64
False
         9523
True
           41
Name: koi_gmag, dtype: int64
False
         9555
True
            9
Name: koi_rmag, dtype: int64
False
         9410
True
          154
Name: koi_imag, dtype: int64
False
         8951
True
          613
Name: koi_zmag, dtype: int64
False
         9539
True
           25
Name: koi_jmag, dtype: int64
```

```
False
                  9539
         True
                    25
         Name: koi_hmag, dtype: int64
         False
                  9539
         True
                    25
         Name: koi_kmag, dtype: int64
         False
                  8488
                  1076
         True
         Name: koi_fwm_stat_sig, dtype: int64
         False
         True
         Name: koi_fwm_sra, dtype: int64
         False
                  9058
         True
         Name: koi_fwm_sdec, dtype: int64
         False
         True
                   455
         Name: koi_fwm_srao, dtype: int64
                  9109
         False
         True
                   455
         Name: koi_fwm_sdeco, dtype: int64
         False
                  8734
         True
                   830
         Name: koi_fwm_prao, dtype: int64
         False
         True
                   817
         Name: koi_fwm_pdeco, dtype: int64
         False
                  8965
         True
         Name: koi_dicco_mra, dtype: int64
         False
                  8965
         True
                   599
         Name: koi_dicco_mdec, dtype: int64
         False
                  8965
         True
                   599
         Name: koi_dicco_msky, dtype: int64
         False
                  8994
         True
                   570
         Name: koi_dikco_mra, dtype: int64
         False
                  8994
         True
                   570
         Name: koi_dikco_mdec, dtype: int64
         False
                  8994
         True
         Name: koi_dikco_msky, dtype: int64
In [18]:
          df_initial_drop = df_initial_drop.dropna(subset=
                                                    ['koi_score','koi_quarters','koi_fwm_stat_sig',
                                                     'koi_dicco_mra','koi_model_snr','koi_zmag',
                                                     'koi_fwm_sra','koi_smet','koi_gmag','koi_rmag',
                                                     'koi_imag'], how='any')
In [19]:
          for col in df_initial_drop.columns:
              print(df_initial_drop[col].isna().value_counts())
```

False 6682 Name: kepoi_name, dtype: int64

```
False
         6682
Name: koi_disposition, dtype: int64
False
         6682
Name: koi_pdisposition, dtype: int64
False
         6682
Name: koi_score, dtype: int64
False
         6682
Name: koi_fpflag_nt, dtype: int64
False
         6682
Name: koi_fpflag_ss, dtype: int64
False
         6682
Name: koi_fpflag_co, dtype: int64
False
         6682
Name: koi_fpflag_ec, dtype: int64
False
         6682
Name: koi_disp_prov, dtype: int64
False
         6682
Name: koi_period, dtype: int64
False
         6682
Name: koi_time0bk, dtype: int64
False
         6682
Name: koi_time0, dtype: int64
False
         6682
Name: koi_eccen, dtype: int64
False
         6682
Name: koi impact, dtype: int64
False
         6682
Name: koi_duration, dtype: int64
False
         6682
Name: koi_depth, dtype: int64
False
         6682
Name: koi_ror, dtype: int64
False
         6682
Name: koi_srho, dtype: int64
False
         6682
Name: koi_fittype, dtype: int64
False
         6682
Name: koi_prad, dtype: int64
False
         6682
Name: koi_sma, dtype: int64
False
         6682
Name: koi_incl, dtype: int64
False
         6682
Name: koi_teq, dtype: int64
False
         6682
Name: koi_insol, dtype: int64
False
         6682
Name: koi_dor, dtype: int64
False
         6682
Name: koi_limbdark_mod, dtype: int64
False
         6682
Name: koi_max_sngle_ev, dtype: int64
False
         6682
Name: koi_max_mult_ev, dtype: int64
False
         6682
Name: koi_model_snr, dtype: int64
False
         6682
Name: koi_count, dtype: int64
False
        6682
```

```
Name: koi_num_transits, dtype: int64
False
         6682
Name: koi_tce_plnt_num, dtype: int64
False
         6682
Name: koi_tce_delivname, dtype: int64
False
         6682
Name: koi_quarters, dtype: int64
False
         6682
Name: koi_bin_oedp_sig, dtype: int64
False
         6682
Name: koi_trans_mod, dtype: int64
False
         6682
Name: koi_steff, dtype: int64
False
         6682
Name: koi_slogg, dtype: int64
False
         6682
Name: koi_smet, dtype: int64
False
         6682
Name: koi_srad, dtype: int64
False
         6682
Name: koi_smass, dtype: int64
False
         6682
Name: koi_sparprov, dtype: int64
False
         6682
Name: ra, dtype: int64
False
         6682
Name: dec, dtype: int64
False
         6682
Name: koi_kepmag, dtype: int64
False
         6682
Name: koi_gmag, dtype: int64
False
         6682
Name: koi_rmag, dtype: int64
False
         6682
Name: koi_imag, dtype: int64
False
         6682
Name: koi_zmag, dtype: int64
False
         6682
Name: koi_jmag, dtype: int64
False
         6682
Name: koi_hmag, dtype: int64
False
         6682
Name: koi_kmag, dtype: int64
False
         6682
Name: koi_fwm_stat_sig, dtype: int64
False
         6682
Name: koi_fwm_sra, dtype: int64
False
         6682
Name: koi_fwm_sdec, dtype: int64
False
         6682
Name: koi_fwm_srao, dtype: int64
False
         6682
Name: koi_fwm_sdeco, dtype: int64
False
         6682
Name: koi_fwm_prao, dtype: int64
False
         6682
Name: koi_fwm_pdeco, dtype: int64
False
         6682
Name: koi_dicco_mra, dtype: int64
```

```
False 6682
Name: koi_dicco_mdec, dtype: int64
False 6682
Name: koi_dicco_msky, dtype: int64
False 6682
Name: koi_dikco_mra, dtype: int64
False 6682
Name: koi_dikco_mdec, dtype: int64
False 6682
Name: koi_dikco_msky, dtype: int64
```

Plots of Some Best Features After Modeling

```
In [20]: len(df_initial_drop.columns)
Out[20]: 65
In [21]: fig1,ax = plt.subplots()
    plt.boxplot(df_initial_drop.koi_prad);
    plt.title("Boxplot of Planetary Radius")
    plt.ylabel("Radius");
```



```
plt.hist(df_initial_drop.koi_prad);
plt.title("Histogram of Planetary Radius")
plt.xlabel("Radius")
plt.ylabel("Freq");
```



```
In [23]:
    plt.boxplot(df_initial_drop.koi_count)
    plt.title("Boxplot of Planetary Candidates")
    plt.ylabel("Candidates");
```



```
In [24]:
    plt.hist(df_initial_drop.koi_count)
    plt.title("Histogram of Planetary Candidates")
    plt.xlabel("Candidates")
    plt.ylabel("Freq");
```



```
In [25]:
    plt.boxplot(df_initial_drop.koi_dor)
    plt.title("Boxplot of Distance from Star")
    plt.ylabel('Distance');
```


In [26]: plt.hist(df_initial_drop.koi_dor);


```
In [27]: fig,hs = plt.subplots(figsize=(10,10))
    sns.heatmap(df_initial_drop.corr()>.75, center=0);
```



```
In [28]:
    add_drops = ['koi_sparprov','koi_trans_mod','koi_tce_delivname','koi_limbdark_mod','koi_fittype','koi_disp_prov']
    dropped_df = df_initial_drop.loc[:,add_drops]
    fig, axes = plt.subplots(figsize=(10,10),nrows=2,ncols=3)
    for i in range(len(add_drops)):
        row = i%3
        col = i//3
        axis = axes[col,row]
        name = add_drops[i]
        sns.histplot(dropped_df,x=name,ax=axis)
        plt.tight_layout()
```



```
In [29]:
    add_drops = ['koi_sparprov','koi_trans_mod','koi_tce_delivname','koi_limbdark_mod','koi_fittype','koi_disp_prov']
    df_initial_drop = df_initial_drop.drop(add_drops,axis=1)
```

In [30]: df_initial_drop.info()

	tradical and an addition	CC02		عدد فياد
2	koi_pdisposition koi score		non-null	object float6
4	koi fpflag nt		non-null	int64
5	koi_fpflag_ss		non-null	int64
6	koi_fpflag_co		non-null	int64
7	koi_fpflag_ec		non-null	int64
8	koi_period		non-null	float6
9	koi_time0bk		non-null	float6
10	koi_time0		non-null	float6
11	koi eccen		non-null	float6
12	koi_impact		non-null	float6
13	koi_duration		non-null	float6
14	koi depth		non-null	float6
15	koi_ror		non-null	float6
16	koi_srho		non-null	float6
17	koi_prad		non-null	float6
18	koi_sma		non-null	float6
19	koi incl		non-null	float6
20	koi_teq		non-null	float6
21	koi_insol		non-null	float6
22	koi dor		non-null	float6
23	koi_max_sngle_ev		non-null	float6
24	koi max mult ev		non-null	float6
25	koi_model_snr		non-null	float6
26	koi_count		non-null	int64
27	koi num transits		non-null	float6
28	koi tce plnt num		non-null	float6
29	koi_quarters		non-null	float6
30	koi_bin_oedp_sig		non-null	float6
31	koi_steff	6682	non-null	float6
32	_ koi_slogg	6682	non-null	float6
33	koi_smet	6682	non-null	float6
34	koi_srad	6682	non-null	float6
35	koi_smass	6682	non-null	float6
36	ra	6682	non-null	float6
37	dec	6682	non-null	float6
38	koi_kepmag	6682	non-null	float6
39	koi_gmag	6682	non-null	float6
40	koi_rmag	6682	non-null	float6
41	koi imag	6682	non-null	floate
42	koi_zmag	6682	non-null	floate
43	koi_jmag	6682	non-null	floate
44	koi_hmag	6682	non-null	floate
45	koi_kmag	6682	non-null	floate
46	koi_fwm_stat_sig	6682	non-null	floate
47	koi_fwm_sra	6682	non-null	floate
48	koi_fwm_sdec	6682	non-null	float6
49	koi_fwm_srao	6682	non-null	float6
50	koi fwm sdeco	6682	non-null	float6
51	koi_fwm_prao		non-null	float6
52	koi_fwm_pdeco	6682	non-null	float6
53	koi_dicco_mra		non-null	float6
54	koi_dicco_mdec		non-null	float6
55	koi_dicco_msky		non-null	float6
56	koi_dikco_mra		non-null	float6
57	koi_dikco_mdec		non-null	float6
58	koi_dikco_msky		non-null	float6
	/		5), object(

EDA Results

- · Using 55 initial features for modeling
- Several features contain outliers, plan will be to use a robust scaler to scale the outliers
- A few features are also multicollinear, removing from model
- · Will remove candidates to predict at the end of the model
- Target Variable: koi_disposition
- Classes in target variable are close in weight, not planning on any balancing

Build initial model with pipeline and log regression

Removing Candidates from Data

• Will be using final model to predict if Confirmed or False Positive at end

Train Test Data

```
In [36]: X = df_processed.drop(['koi_disposition','koi_pdisposition','kepoi_name'],axis=1)
    y = df_processed['koi_disposition']
In [37]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=40521)
```

```
In [38]:
         y_train.value_counts()/len(y_train)*100
        FALSE POSITIVE
                        57.854688
Out[38]:
        CONFIRMED
                        42.145312
        Name: koi_disposition, dtype: float64
        Initial Logistic Regression Model
In [39]:
         initial_pipeline = Pipeline([('ss', StandardScaler()),
                                  ('log',LogisticRegression(random_state=40521))])
In [40]:
         initial_model = run_class_model(initial_pipeline, X_train, y_train, X_test, y_test)
        *****************
             Classification Report: Train
                       precision
                                  recall f1-score
                                                   support
             CONFIRMED
                           1.00
                                    0.99
                                             0.99
                                                      1717
        FALSE POSITIVE
                           0.99
                                    1.00
                                             1.00
                                                      2357
                                                      4074
                                             1.00
              accuracy
                           1.00
                                    0.99
                                             0.99
                                                      4074
             macro avg
                           1.00
          weighted avg
                                    1.00
                                             1.00
                                                      4074
        ****************
             Classification Report: Test
                       precision
                                  recall f1-score
                                                   support
             CONFIRMED
                           0.98
                                    0.99
                                             0.99
                                                       438
        FALSE POSITIVE
                           0.99
                                    0.99
                                             0.99
                                                       581
                                             0.99
                                                      1019
              accuracy
             macro avg
                           0.99
                                    0.99
                                             0.99
                                                      1019
          weighted avg
                           0.99
                                    0.99
                                             0.99
                                                      1019
```

Initial Findings/Results

In [42]:

- Performs well for an initial model, primarily looking for F1 Score
- Model is able to predict too well. After further investigation, there are columns included in the model which are already used to calculate the disposition (target variable) and should be removed

	kepoi_name	koi_disposition	${\bf koi_pdisposition}$	koi_score	koi_fpflag_nt	koi_fpflag_ss	koi_fpflag_co	koi_fpflag_ec	koi_period	koi_time0bk	I	koi_fwm_srao	koi_fwm_sdeco	koi_fwm_prao	koi_fwm
0	K00752.01	CONFIRMED	CANDIDATE	1.000	0	0	0	0	9.488036	170.538750		0.430	0.940	-0.00020	-(
1	K00752.02	CONFIRMED	CANDIDATE	0.969	0	0	0	0	54.418383	162.513840		-0.630	1.230	0.00066	-(
3	K00754.01	FALSE POSITIVE	FALSE POSITIVE	0.000	0	1	0	0	1.736952	170.307565		-0.111	0.002	0.00302	-(
4	K00755.01	CONFIRMED	CANDIDATE	1.000	0	0	0	0	2.525592	171.595550		-0.010	0.230	0.00008	-(
8	K00114.01	FALSE POSITIVE	FALSE POSITIVE	0.000	0	1	1	0	7.361790	132.250530		-13.450	24.090	0.00303	-(

Confounding Features Removal and Initial Model Rebuild

```
X.columns
Index(['koi_score', 'koi_fpflag_nt', 'koi_fpflag_ss', 'koi_fpflag_co',
       'koi_fpflag_ec', 'koi_period', 'koi_time0bk', 'koi_time0', 'koi_eccen',
```

```
'koi_impact', 'koi_duration', 'koi_depth', 'koi_ror', 'koi_srho',
                 'koi_prad', 'koi_sma', 'koi_incl', 'koi_teq', 'koi_insol', 'koi_dor',
                'koi_max_sngle_ev', 'koi_max_mult_ev', 'koi_model_snr', 'koi_count',
                'koi_num_transits', 'koi_tce_plnt_num', 'koi_quarters',
                'koi_bin_oedp_sig', 'koi_steff', 'koi_slogg', 'koi_smet', 'koi_srad',
                'koi_smass', 'ra', 'dec', 'koi_kepmag', 'koi_gmag', 'koi_rmag',
                'koi_imag', 'koi_zmag', 'koi_jmag', 'koi_hmag', 'koi_kmag',
                'koi_fwm_stat_sig', 'koi_fwm_sra', 'koi_fwm_sdec', 'koi_fwm_srao',
                'koi_fwm_sdeco', 'koi_fwm_prao', 'koi_fwm_pdeco', 'koi_dicco_mra',
                'koi_dicco_mdec', 'koi_dicco_msky', 'koi_dikco_mra', 'koi_dikco_mdec',
                'koi_dikco_msky'],
               dtype='object')
In [43]:
          c_features = ['koi_score', 'koi_max_mult_ev', 'koi_fpflag_nt', 'koi_fpflag_ss', 'koi_fpflag_co', 'koi_fpflag_ec', 'koi_ror',
                         'ra','dec','koi_kepmag','koi_gmag','koi_hmag','koi_imag','koi_jmag','koi_kmag','koi_zmag','koi_dikco_msky',
                       'koi dicco mra', 'koi dicco mdec', 'koi dicco msky', 'koi time0', 'koi time0bk', 'koi srad'
          df_revised = df_processed.drop(c_features,axis=1)
          candidates_revised = candidates_df.drop(c_features,axis=1)
In [44]:
          fig,hs = plt.subplots(figsize=(10,10))
          sns.heatmap(df_revised.corr()>.75, center=0);
```


Train Test Data Rebuilt

```
In [48]: len(X_r.columns)
Out[48]: 33
```

Remodel

Classification Report: Train

	precision	recall	+1-score	support
CONFIRMED FALSE POSITIVE	0.88 0.92	0.90 0.91	0.89 0.91	1735 2339
accuracy macro avg weighted avg	0.90 0.90	0.90 0.90	0.90 0.90 0.90	4074 4074 4074

Classification Report: Test

	precision	recall	f1-score	support
CONFIRMED	0.85	0.90	0.88	420
FALSE POSITIVE	0.93	0.89	0.91	599
accuracy			0.89	1019
macro avg	0.89	0.90	0.89	1019
weighted avg	0.90	0.89	0.90	1019

Remodeled Findings

- Model performed worse overall which was expected
- Base Model F1 Score is 90%

List of models

- Logistic Regression
- K Nearest Neighbors
- Gaussian Naive Bayes
- Random Forest
- ADA Boost
- Gradient Boost
- XG Boost
- Support Vector Machines

Model 1 - Logistic Regression

In [53]:

gslog_model = run_class_model(log_gridsearch, X_train_r, y_train_r, X_test_r, y_test_r)

Classification Report: Train

	precision	recall	f1-score	support
CONFIRMED	0.88	0.90	0.89	1735
FALSE POSITIVE	0.93	0.91	0.92	2339
accuracy			0.91	4074
macro avg	0.90	0.90	0.90	4074
weighted avg	0.91	0.91	0.91	4074

Classification Report: Test

	precision	recall	f1-score	support
CONFIRMED	0.85	0.90	0.87	420
FALSE POSITIVE	0.93	0.89	0.91	599
accuracy			0.89	1019
macro avg	0.89	0.89	0.89	1019
weighted avg	0.90	0.89	0.89	1019

```
In [54]: gslog_model.best_params_
Out[54]: {'log_C': 10, 'log_solver': 'lbfgs'}

In [55]: f1_score(y_test_r, gslog_model.predict(X_test_r), pos_label='CONFIRMED', average='weighted')
Out[55]: 0.8943748637621077
```

Logistic Results

• Performs roughly the same as the base log model

```
Model 2 - KNN
In [56]:
          knn_pipe = Pipeline([('rb', RobustScaler()),
                               ('knn', KNeighborsClassifier())])
          knn_grid = [{'knn__n_neighbors': [2,5],
                       'knn__weights' : ['uniform', 'distance'],
                       'knn__leaf_size': [30,50]
                      }]
          knn_gridsearch = GridSearchCV(estimator=knn_pipe,
                                        param_grid=knn_grid,
                                        scoring='f1_weighted',
                                        cv=5)
In [58]:
          gsknn_model = run_class_model(knn_gridsearch, X_train_r, y_train_r, X_test_r, y_test_r)
              Classification Report: Train
                         precision
                                      recall f1-score
                                                        support
              CONFIRMED
                             1.00
                                       1.00
                                                  1.00
                                                           1735
         FALSE POSITIVE
                             1.00
                                       1.00
                                                  1.00
                                                           2339
               accuracy
                                                  1.00
                                                           4074
                             1.00
                                                  1.00
                                                           4074
              macro avg
                                        1.00
           weighted avg
                             1.00
                                        1.00
                                                  1.00
                                                           4074
```

Classification Report: Test

	precision	recall	f1-score	support
CONFIRMED FALSE POSITIVE	0.86 0.97	0.96 0.89	0.91 0.93	420 599
accuracy macro avg	0.92	0.93	0.92 0.92	1019 1019

weighted avg 0.92 0.92 0.92 1019

```
In [59]:
         gsknn_model.best_params_
        {'knn_leaf_size': 30, 'knn_n_neighbors': 2, 'knn_weights': 'distance'}
In [60]:
         knn_grid2 = [{'knn__n_neighbors': [3,5],
                     'knn_weights' : ['uniform', 'distance'],
                     'knn__leaf_size': [40,50]
                    }]
In [61]:
         knn_gridsearch2 = GridSearchCV(estimator=knn_pipe,
                                     param_grid=knn_grid2,
                                     scoring='f1_weighted',
                                     cv=5)
In [62]:
         gsknn_model2 = run_class_model(knn_gridsearch2, X_train_r, y_train_r, X_test_r, y_test_r)
         ****************
```

Classification Report: Train

	precision	recall	f1-score	support
CONFIRMED FALSE POSITIVE	0.91 0.99	0.98 0.93	0.94 0.96	1735 2339
accuracy			0.95	4074

masna ava	0.95	0.96	0.95	4074					
macro avg									
weighted avg	0.95	0.95	0.95	4074					
********	******	******	******	*******					
Classification Report: Test									
	precision	recall	f1-score	support					
CONFIRMED	0.87	0.97	0.91	420					
FALSE POSITIVE	0.98	0.89	0.93	599					
TALSE TOSTITUE	0.30	0.05	0.33	333					
accuracy			0.93	1019					
accui acy			0.00	1010					

0.93

0.92

0.93

1019

1019

0.92

0.93


```
In [63]: gsknn_model2.best_params_
Out[63]: {'knn_leaf_size': 40, 'knn_n_neighbors': 3, 'knn_weights': 'uniform'}
```

KNN Results

macro avg

weighted avg

- Too overfit
- Reducing overfit does not improve the test performance substantially.

Gaussian Naive Bayes

```
In [64]: gnb_pipe = Pipeline([('ss', StandardScaler()),
```

```
('gnb', GaussianNB())])
gnb_model = run_class_model(gnb_pipe, X_train_r, y_train_r, X_test_r, y_test_r)
```

Classification Report: Train

n recall	f1-score	support
5 0.97	0.91	1735
8 0.87	0.92	2339
	0 02	4074
1 0.92	0.91	4074
2 0.92	0.92	4074
	5 0.97 8 0.87 1 0.92	5 0.97 0.91 8 0.87 0.92 0.92 1 0.92 0.91

Classification Report: Test

	precision	recall	f1-score	support
CONFIRMED	0.84	0.96	0.90	420
FALSE POSITIVE	0.97	0.87	0.92	599
accuracy			0.91	1019
macro avg	0.90	0.92	0.91	1019
weighted avg	0.92	0.91	0.91	1019

• Performs better than Logistic but worse than KNN

Random Forest Classifer

```
In [65]:
         rf_pipe = Pipeline([('rb', RobustScaler()),
                           ('RF', RandomForestClassifier(random_state=40521))])
         rf_grid = [{'RF__max_depth': [2,11],
                    'RF__min_samples_split': [3,7],
                    'RF__min_samples_leaf': [3,7],
                    'RF oob score': [True, False],
                   }]
In [66]:
         gs_rf = GridSearchCV(estimator = rf_pipe,
                            param_grid = rf_grid,
                            scoring = 'f1_weighted',
                            cv = 3)
In [67]:
         gsrf_model = run_class_model(gs_rf, X_train_r, y_train_r, X_test_r, y_test_r)
        ****************
             Classification Report: Train
                      precision
                                  recall f1-score support
             CONFIRMED
                           0.98
                                    0.99
                                             0.98
                                                      1735
        FALSE POSITIVE
                           0.99
                                    0.99
                                             0.99
                                                      2339
                                             0.99
                                                      4074
             accuracy
                           0.99
                                    0.99
                                             0.99
                                                      4074
             macro avg
                           0.99
                                    0.99
                                             0.99
          weighted avg
                                                      4074
        ****************
```

Classification Report: Test

	precision	recall	f1-score	support
CONFIRMED	0.97	0.97	0.97	420
FALSE POSITIVE	0.98	0.98	0.98	599
accuracy			0.97	1019
macro avg	0.97	0.97	0.97	1019
weighted avg	0.97	0.97	0.97	1019

RF Results

• Best performing model so far

ADA Boost

Classification Report: Train

	precision	recall	f1-score	support
CONFIRMED FALSE POSITIVE	0.97 0.99	0.98 0.98	0.98 0.98	1735 2339
accuracy macro avg weighted avg	0.98 0.98	0.98 0.98	0.98 0.98 0.98	4074 4074 4074

Classification Report: Test

	precision	recall	f1-score	support
CONFIRMED	0.96	0.95	0.96	420
FALSE POSITIVE	0.97	0.97	0.97	599
accuracy			0.97	1019
macro avg	0.97	0.96	0.96	1019
weighted avg	0.97	0.97	0.97	1019


```
Out[73]: {'ada__learning_rate': 1.0, 'ada__n_estimators': 100}
```

ADA Boost Results

• Performs well too, similar to Random Forest.

Gradient Boost

	precision	recall	f1-score	support
CONFIRMED	0.96	0.97	0.97	1735
FALSE POSITIVE	0.98	0.97	0.97	2339
accuracy			0.97	4074
macro avg	0.97	0.97	0.97	4074
weighted avg	0.97	0.97	0.97	4074

Classification Report: Test

	precision	recall	f1-score	support
CONFIRMED	0.95	0.95	0.95	420
FALSE POSITIVE	0.96	0.96	0.96	599
accuracy			0.95	1019
macro avg	0.95	0.95	0.95	1019
weighted avg	0.95	0.95	0.95	1019

```
In [77]: gsgra_model.best_params_
Out[77]: {'gra_learning_rate': 1.0, 'gra_n_estimators': 100}
```

Gradient Boost Results

• Does not perform as well as Random Forest or ADA boost

XG Boost

```
In [78]:
          test_xg_pipe = Pipeline([('rb', RobustScaler()),
                              ('xg', xgb.XGBClassifier(random_state=40521,
                                                        min_child_weight=3, subsample=.65))])
In [79]:
          test_xg_grid = [{'xg_learning_rate': [2,1.5,1.0],
                            'xg__n_estimators': [150,100,50],
                            'xg_gamma': [.5,1,2],
                            'xg__max_depth': [1,2],
                            'xg__colsample_bytree': [.6,.7],
                          }]
In [80]:
          gs_xg_test = GridSearchCV(estimator = test_xg_pipe,
                               param_grid = test_xg_grid,
                               scoring = 'f1_weighted',
                               cv = 3)
In [81]:
          gsxg_model = run_class_model(gs_xg_test, X_train_r, y_train_r, X_test_r, y_test_r)
```

Classification Report: Train

	precision	recall	f1-score	support
CONFIRMED	0.99	0.99	0.99	1735
FALSE POSITIVE	0.99	0.99	0.99	2339
accuracy			0.99	4074
macro avg	0.99	0.99	0.99	4074
weighted avg	0.99	0.99	0.99	4074

Classification Report: Test

	precision	recall	f1-score	support
CONFIRMED	0.94	0.96	0.95	420
FALSE POSITIVE	0.97	0.95	0.96	599
accuracy			0.96	1019
macro avg	0.96	0.96	0.96	1019
weighted avg	0.96	0.96	0.96	1019

In [82]: gsxg_model.best_params_

Out[82]: {'xg__colsample_bytree': 0.7, 'xg__gamma': 0.5,

'xg__learning_rate': 1.0,

```
'xg_max_depth': 2,
'xg_n_estimators': 50}

In [83]: f1_score(y_test_r,gsxg_model.predict(X_test_r), pos_label='CONFIRMED',average='weighted')

Out[83]: 0.9578789661993234
```

XG Boost Results

• Also appears overfit, but test data remains well and balanced

```
Support Vector Machines
In [84]:
         svm pipe = Pipeline([('mms',MinMaxScaler(feature range=(-1,1))),
                             ('ss', StandardScaler()),
                             ('svm', SVC(random_state=40521))])
         svm_grid = [{'svm_C': [1.5,1.0,.5],
                      'svm_gamma': ['scale','auto'],
                      'svm_kernel': ['linear','poly','rbf','sigmoid'],
                   }]
In [85]:
         gs_svm = GridSearchCV(estimator = svm_pipe,
                             param_grid = svm_grid,
                             scoring = 'f1_weighted',
                             cv = 3)
In [86]:
         gssvm model = run class model(gs svm, X train r, y train r, X test r, y test r)
         *****************
             Classification Report: Train
                       precision
                                   recall f1-score
                                                     support
             CONFIRMED
                            0.92
                                     0.95
                                               0.93
                                                        1735
        FALSE POSITIVE
                            0.96
                                     0.94
                                               0.95
                                                        2339
                                               0.94
                                                        4074
              accuracy
             macro avg
                            0.94
                                     0.94
                                               0.94
                                                        4074
          weighted avg
                            0.94
                                     0.94
                                               0.94
                                                        4074
```

Classification Report: Test

	precision	recall	f1-score	support
CONFIRMED FALSE POSITIVE	0.90 0.96	0.95 0.93	0.93 0.95	420 599
accuracy macro avg weighted avg	0.93 0.94	0.94 0.94	0.94 0.94 0.94	1019 1019 1019

```
In [87]: gssvm_model.best_params_
Out[87]: {'svm_C': 1.5, 'svm_gamma': 'scale', 'svm_kernel': 'rbf'}
```

SVM Results

- Performs slightly worse than the others
- Difficult to hypertune parameters due to long run times

Table of Classification Results

```
In [89]: model_table = pd.DataFrame({"Models": model_names})
```

```
model_table['Accuracy'] = [round(accuracy_score(y_test_r,all_models[m].predict(X_test_r)),4)
                                        for m in range(len(all models))]
In [91]:
           model_table['F1 Score'] = [round(f1_score(y_test_r,all_models[m].predict(X_test_r),
                                                        pos label='CONFIRMED', average='weighted'),4)
                                                        for m in range(len(all_models))]
In [92]:
           model_table['Precision'] = [round(precision_score(y_test_r,all_models[m].predict(X_test_r),
                                                                pos_label='CONFIRMED'),4)
                                                                  for m in range(len(all_models))]
In [93]:
           model_table['Recall'] = [round(recall_score(y_test_r,all_models[m].predict(X_test_r),
                                                          pos_label='CONFIRMED'),4)
                                                           for m in range(len(all models))]
In [94]:
           model_table.sort_values(by="F1 Score")
Out[94]:
                          Models Accuracy F1 Score Precision Recall
          0
                 Logistic Regression
                                     0.8940
                                              0.8944
                                                        0.8529 0.8976
          2
                                     0.9087
                                              0.9094
                Gaussian Naive Bayes
                                                        0.8413 0.9595
                K Nearest Neighbors
                                     0.9195
                                              0.9200
                                                        0.8611 0.9595
         7 Support Vector Machines
                                     0.9372
                                              0.9374
                                                        0.9027 0.9500
          5
                     Gradient Boost
                                     0.9549
                                              0.9549
                                                       0.9452 0.9452
          6
                         XG Boost
                                     0.9578
                                              0.9579
                                                       0.9374 0.9619
          4
                        ADA Boost
                                     0.9657
                                              0.9656
                                                        0.9639 0.9524
          3
                     Random Forest
                                     0.9725
                                              0.9725
                                                        0.9667 0.9667
```

Best Model - Random Forest Rerun

Classification Report: Train

	precision	recall	f1-score	support
CONFIRMED	0.98	0.99	0.98	1735
ALSE POSITIVE	0.99	0.99	0.99	2339
accuracy			0.99	4074
macro avg	0.99	0.99	0.99	4074
weighted avg	0.99	0.99	0.99	4074
	ALSE POSITIVE accuracy macro avg	CONFIRMED 0.98 ALSE POSITIVE 0.99 accuracy macro avg 0.99	CONFIRMED 0.98 0.99 ALSE POSITIVE 0.99 0.99 accuracy macro avg 0.99 0.99	CONFIRMED 0.98 0.99 0.98 ALSE POSITIVE 0.99 0.99 0.99 accuracy 0.99 0.99 0.99

Classification Report: Test

	precision	recall	f1-score	support
CONFIRMED	0.97	0.97	0.97	420
FALSE POSITIVE	0.98	0.98	0.98	599
accuracy			0.97	1019
•				
macro avg	0.97	0.97	0.97	1019
weighted avg	0.97	0.97	0.97	1019

```
In [96]: gsrf_model.best_params_
Out[96]: {'RF_max_depth': 11,
    'RF_min_samples_leaf': 3,
    'RF_min_samples_split': 3,
```

Most Important Features

0.01838207, 0.00439084, 0.0008144, 0.00569433, 0.00549999, 0.00466091, 0.02677922, 0.00379381, 0.00310466, 0.12484579,

'RF__oob_score': True}

```
0.00471029, 0.00305824, 0.02494728, 0.02593881, 0.0134457,
                 0.00932311, 0.0507407, 0.05453414])
           features = pd.DataFrame(columns=['Features','Coef'])
           features['Features'] = X_r.columns
           features['Coef']= gsrf_model.best_estimator_.named_steps["RF"].feature_importances_
           features.sort_values(by='Coef').tail(5)
Out[98]:
                    Features
                                Coef
                koi_model_snr 0.058161
                     koi_dor 0.065962
          14
                   koi_count 0.079148
                    koi_prad 0.120955
          24 koi_fwm_stat_sig 0.124846
In [99]:
           features.sort_values(by='Coef').head(5)
Out[99]:
                             Coef
                 Features
                 koi_eccen 0.000000
              koi_quarters 0.000814
          26 koi_fwm_sdec 0.003058
          23
                 koi_rmag 0.003105
          22
                 koi_smass 0.003794
In [100..
           best_features = ['koi_prad','koi_count','koi_dor']
```

RePlot the distrubutions and relationship with the target variable

Important Feature Descriptions

koi_dor: The distance between the planet and the star at mid-transit divided by the stellar radius.koi_count: Number of planets candidates identified in a system.koi_prad: The radius of the planet. Planetary radius is the product of the planet star radius ratio and the stellar radius.

Using model to predict candidates

In [104	cand	candidates_revised															
Out[104		kepoi_name	koi_disposition	koi_pdisposition	koi_period	koi_eccen	koi_impact	koi_duration	koi_depth	koi_srho	koi_prad	•••	koi_rmag	koi_fwm_stat_sig	koi_fwm_sra	koi_fwm_sdec	koi_fw
	2	K00753.01	CANDIDATE	CANDIDATE	19.899140	0.0	0.969	1.78220	10800.0	7.29555	14.60		15.390	0.278	19.800321	48.134120	
	37	K00760.01	CANDIDATE	CANDIDATE	4.959319	0.0	0.831	2.22739	9800.0	1.46169	12.21		15.209	0.705	19.477804	48.727566	
	58	K00777.01	CANDIDATE	CANDIDATE	40.419504	0.0	0.911	3.36200	6260.0	1.89549	7.51		15.463	0.027	19.621127	50.080316	
	62	K00780.02	CANDIDATE	CANDIDATE	7.240661	0.0	1.198	0.55800	556.0	8.66412	19.45		15.283	0.058	19.588885	50.229960	
	63	K00115.03	CANDIDATE	CANDIDATE	3.435916	0.0	0.624	3.13300	23.2	0.47024	0.55		12.732	0.858	19.192473	46.276160	
	9536	K08297.01	CANDIDATE	CANDIDATE	229.957537	0.0	1.175	7.59000	400.0	0.04708	43.78		10.435	0.088	19.731896	50.771610	
	9542	K07982.01	CANDIDATE	CANDIDATE	376.379890	0.0	0.305	13.99000	1140.0	1.10893	3.26		15.598	0.952	19.440301	46.973120	
	9552	K08193.01	CANDIDATE	CANDIDATE	367.947848	0.0	0.902	4.24900	1300.0	5.58716	3.72		15.656	0.877	19.848905	46.961420	
	9560	K07986.01	CANDIDATE	CANDIDATE	1.739849	0.0	0.043	3.11400	48.5	0.50770	0.72		14.687	0.089	19.100625	47.163770	
	9562	K07988.01	CANDIDATE	CANDIDATE	333.486169	0.0	0.214	3.19900	639.0	85.88623	19.30		10.880	0.052	19.784200	47.145142	

1589 rows × 36 columns

```
In [105..
          predictions = gsxg_model.best_estimator_.predict(candidates_revised.drop(
              ['kepoi_name','koi_disposition','koi_pdisposition'],axis=1))
In [106..
          candidates predictions = candidates revised.copy()
In [107.
          candidates predictions['Predictions'] = predictions
In [108..
          candidates_predictions.Predictions.value_counts()/len(candidates_predictions)*100
         CONFIRMED
                            59.597231
Out[108..
         FALSE POSITIVE
                            40,402769
         Name: Predictions, dtype: float64
In [109..
          candidates_predictions.loc[:,['kepoi_name','koi_disposition','Predictions']].head()
Out[109...
             kepoi_name koi_disposition
                                          Predictions
          2
               K00753.01
                            CANDIDATE FALSE POSITIVE
```

Final Results and Conclusion

CANDIDATE

CANDIDATE

CANDIDATE

CANDIDATE

CONFIRMED

CONFIRMED

CONFIRMED

CONFIRMED

37

58

62

63

K00760.01

K00777.01

K00780.02

K00115.03

- 1. Best performing classifier model for this dataset is Random Forest Classifier with an F1 score of 97%. However, other models performed just as well.
- 2. Important features in determining the disposition include: a. Distance of Planet from Star (7%) b. Number of planet candidates in the system (8%) c. Planetary Radius (11%)
- 3. 33 features and ~5,100 rows of data were used in training the model a. Of these data points, ~2,900 were false positive, 2,200 were confirmed exoplanets
- 4. ~1,600 candidate exoplanets were run through the model a. Of these planets, 56% are predicted to be confirmed exoplanets b. Additional data should be collected on these predictions and focus should be placed on these.