2.13 1) Montrons par récurrence que la suite $(u_n)_{n\in\mathbb{N}}$ est minorée par 3.

Initialisation: L'inégalité $u_1 = 5 \geqslant 3$ est triviale.

Hérédité: Supposons que $u_n \geqslant 3$ pour un certain $n \in \mathbb{N}$.

Il s'agit de prouver que $u_{n+1} \geqslant 3$, c'est-à-dire que $u_{n+1} - 3 \geqslant 0$.

$$u_{n+1} - 3 = \frac{1}{2} \left(u_n + \frac{9}{u_n} \right) - 3 = \frac{u_n}{2} + \frac{9}{2u_n} - 3$$
$$= \frac{u_n^2 - 6u_n + 9}{2u_n} = \frac{(u_n - 3)^2}{2u_n} \geqslant 0$$

En effet $(u_n - 3)^2 \ge 0$ et $u_n \ge 3$ implique $2 u_n \ge 6 > 0$.

2) Pour prouver que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante, il faut montrer que $u_{n+1} \leq u_n$, c'est-à-dire $u_{n+1} - u_n \leq 0$, pour tout $n \in \mathbb{N}$.

$$u_{n+1} - u_n = \frac{1}{2} \left(u_n + \frac{9}{u_n} \right) - u_n = \frac{u_n}{2} + \frac{9}{2u_n} - u_n = \frac{9}{2u_n} - \frac{u_n}{2}$$
$$= \frac{9 - u_n^2}{2u_n} = \frac{(3 + u_n)(3 - u_n)}{2u_n} \leqslant 0$$

En effet, l'inégalité $u_n \geqslant 3$ implique :

- (a) $3 + u_n \ge 6 \ge 0$
- (b) $-u_n \leqslant -3$, d'où suit $3 u_n \leqslant 0$
- (c) $2u_n \geqslant 6 > 0$