Advanced Time Series

Lecture 6: Time-to-event and PdM II

Gleb Ivashkevich

Today

Time-to-event and PdM \rightarrow transformer and t. s.:

- Cox proportional hazards model
- survival analysis and deep learning
- transformers for time series

Survival analysis and predictive maintenance

Survival analysis

Concept 1:

- **survival function:** probability of surviving past t

$$S(t) = P(T>t)$$

Survival analysis

Concept 2:

- hazard function: conditioned event rate

$$\lambda(t) = -rac{S'(t)}{S(t)}$$

Hazard function deciphered

Concept 2:

hazard function: conditioned event rate

$$\lambda(t) = -rac{P(T>t+dt)-P(T>t)}{S(t)dt}$$

Hazard function deciphered

Concept 2:

hazard function: conditioned event rate

$$\lambda(t) = -rac{P(T>t+dt)-P(T>t)}{S(t)dt}$$

Proportional hazards

Concept 3:

- **proportional** hazards model (Cox regression)

$$\lambda(t) = \lambda_0(t) \exp(a_i X_i)$$

Hazards and s. f.

Concept 4:

- **cumulative** hazard

$$\Lambda(t) = \int_0^t \lambda(au) d au o S(t) = \exp(-\Lambda(t))$$
 cumulative hazard

Survival models

non-parametric	semi-parametric	parametric	ML
Kaplan-Meier	Cox PH	AFT models	survival trees, etc.
Nelson-Aalen			

Survival data

Covariates X_i^k : a vector (i) per object (k)

Lifespan T^k

Event was observed? C^k

Notes:

- one vector of covariates for entire lifespan
- some events are **censored** (object "died", but for a different reason)

Survival data: extensions

Covariates may vary with time $X_i^k(t)$

For example:

- each object is measured multiple times

Cox regression: likelihood

How can we train Cox PH?

Full likelihood is not specified (because of baseline hazard). Partial

likelihood (for individual object and no ties):

$$L_i = rac{\lambda(t^i|X^i)}{\sum_{t^j \geq t^i} \lambda(t^i|X^j)} = rac{\expig(a_lpha X^i_lphaig)}{\sum_{t^j \geq t^i} \expig(a_lpha X^j_lphaig)}$$

$$L = \prod L_i$$

PdM data setup: slices

PdM data setup: sessions

One vector of covariates for entire session.

No need for time varying covariates.

Realistic PdM

Some considerations:

- model each type of failure **separately** (slices/sessions ended with a different failure are censored)
- session-based analysis for post-mortem analysis
- try session-based models for real-time predictions with **expanding windows** (may work for frequent failures)

DL and survival analysis

Some considerations:

- ^(partial)likelihoods are known for semi-parametric and parametric models
- encode time series: encoder
- push them into the appropriate model
- use Cox or something else as a baseline

DL and survival analysis

For example, for CoxPH:

- if you're lucky, you may train encodings, which work well in PH model:

$$\lambda(t) = \lambda_0(t) \exp(a_i X_i)$$

DL and survival analysis

Non-specific to time series:

- DeepSurv
- <u>DeepHit</u>

Transformer architectures for time series

Transformers

Why?

- typical sequential models (RNNs) may still **not catch** temporal dynamics well
- **attention** layer may fix this
- but they are still **sequential**

Transformers are still encoder-decoder.

Attention

Multi-head attention

Transformers: forecasting

Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting

- innovation: **convolutional attention** (queries, keys and values are computed by conv layer)
- very good performance compared to other architectures

Transformers: forecasting

Transformers: forecasting

Other papers

Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting

Next time

- representation learning for time series
- VAMPnets
- various autoencoder architectures
- wrap-up

questions?