CSC3001 Discrete Mathematics

Homework 2

Deadline: 23:59, Sunday, July 3, 2022

The details should be provided, and you can refer to any theorem in the lecture notes without proof. Otherwise, please provide a proof or cite the reference for that.

1. Let f_n be the *n*-th Fibonacci number, i.e. $f_1 = f_2 = 1$, $f_{n+2} = f_{n+1} + f_n$. Prove that

$$f_1 + f_2 + \dots + f_n = f_{n+2} - 1.$$

2. Let g_n satisfy the same recurrence as Fibonacci sequence, but have different initial values: $g_1 = a, g_2 = b, g_{n+2} = g_{n+1} + g_n$. Prove that

$$g_1 + g_2 + \dots + g_n = g_{n+2} - b.$$

3. Find all sequences $\{a_n\}_{n\in\mathbb{N}}$ satisfying

$$a_{n+2} - 2a_{n+1} + a_n = 2.$$

- 4. How many subsets of the set $\{1, 2, 3, ..., n\}$ contain no adjacent integers? E.g. for n = 3 there are 5 such subsets: \emptyset , $\{1\}$, $\{2\}$, $\{3\}$, $\{1, 3\}$.
- 5. Find and prove closed form formulas for generating functions

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

of the following sequences

- (a) $a_n = a^n$, where $a \in \mathbb{R}$;
- (b) $a_n = \binom{m}{n}$, where $m \in \mathbb{N}$;
- (c) $a_n = f_n$, where f_n is the *n*-th Fibonacci number (assume $f_0 = 0, f_1 = f_2 = 1$).
- 6. Let $a, b \in \mathbb{N}^+$. Prove that

(a)
$$\gcd(2^a - 1, 2^b - 1) = 2^{\gcd(a,b)} - 1$$
.

- (b) $(2^a 1) \mod (2^b 1) = 2^{a \mod b} 1.$
- 7. Prove that all numbers in the sequence

$$1007, 10017, 100117, 1001117, \dots$$

are divisible by 53.

- 8. Show that $(3^{77} 1)/2$ is odd and composite.
- 9. Using the formula

$$\binom{n}{m} = \frac{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-m+1)}{m \cdot (m-1) \cdot \dots \cdot 2 \cdot 1}$$

Prove that $\binom{p}{k}$ is divisible by p for 0 < k < p. Deduce by induction on n that $n^p \equiv_p n$.

10. Find

$$(3p)!/p^3 \mod p$$

for prime p > 3.

11. Using the identity

$$(1+x)^n(1+x)^n = (1+x)^{2n}$$

prove that

$$\sum_{m=0}^{n} \binom{n}{m} \binom{n}{n-m} = \binom{2n}{n}.$$

Deduce that

$$\sum_{m=0}^{n} \binom{n}{m}^2 = \binom{2n}{n}.$$

- 12. Show steps to find
 - (a) the greatest common divisor of 1234567 and 7654321.
 - (b) the greatest common divisor of $2^3 3^5 5^7 7^9 11$ and $2^9 3^7 5^5 7^3 13$.

- 13. A robot walks around a two-dimensional grid. He starts out at (0; 0) and is allowed to take four different types of steps as
 - 1. (+2, -1)
 - 2. (+1, -2)
 - 3. (+1, +1)
 - 4. (-3, 0)

Prove that this robot can never reach (0, 2).

14. Let $m \in \mathbb{N}$ with m > 1. Prove that if $ac \equiv bc \pmod{m}$, then

$$a \equiv b \pmod{\frac{m}{\gcd(c,m)}}$$

15. Modular Exponentiation: in cryptography, it is very important to be able to calculate $b^n \pmod{m}$ efficiently, where $n \in \mathbb{N}, b \in \mathbb{N}$ and $m \in \mathbb{N}/\{0,1\}$. In general, b^n will be very large, e.g., $b^n = 7^{222}$, so it is not practical to calculate b^n first and then compute the modulus. There is an efficient strategy to find a remainder by using binary expansion of n to compute b^n :

$$b^n = b^{a_{k-1}2^{k-1} + \dots + a_1 \cdot 2 + a_0} = \prod_{j=0}^{k-1} b^{a_j 2^j}, \quad a_0, \dots, a_{k-1} \in \{0, 1\}$$

By noting $b^{2^{j+1}} = b^{2^j} \cdot b^{2^j}$ and modular multiplication, $b^n \mod m$ can be calculated.

- (a) Find $7^{222} \pmod{11}$ by the binary expansion (show iteration).
- (b) Find $7^{222} \pmod{11}$ by Fermat's little theorem.
- 16. Show with the help of Fermat's little theorem that if n is a positive integer, then $42|n^7-n$.
- 17. Find all solutions, if any, solutions to the system

$$x \equiv 5 \pmod{6}$$

$$x \equiv 3 \pmod{10}$$

$$x \equiv 8 \pmod{15}$$

18. Label the first prime number 2 as P_1 . Label the second prime number 3 as P_2 . Similarly, label the *n*-th prime number as P_n . Prove that $P_n < 2^{2^n}$ for an arbitrary $n \in \mathbb{N}^+$. Hint: consider $P_1P_2\cdots P_{n-1}+1$.

- 19. In a round-robin tournament, every team plays every other team exactly once and each match has a winner and a loser. We say that the team p_1, p_2, \dots, p_m form a cycle if p_1 beats p_2 , p_2 beats p_3 , \dots , p_{m-1} beats p_m , and p_m beats p_1 . Show that if there is a cycle of length m ($m \ge 3$) among the players in a round-robin tournament, there must be a cycle of three of these players. Hint: Use the well-ordering principle.
- 20. Nim is a famous game in which two players take turns removing items from a pile of n items. For every turn, the player can remove one, two, or three items at a time. The player removing the last match loses. Use strong induction to show that, **if each player plays the best strategy possible**, the first player wins if n = 4j, 4j + 2, or 4j + 3 for some non-negative integer j and the second player wins in the remaining case when n = 4j + 1 for some nonnegative integer j. (For your interest, refer the general NIM game to this link)