OPTICAL INFORMATION RECORDING MEDIUM AND ITS PRODUCTION

Patent number:

JP11213446

Publication date:

1999-08-06

Inventor:

OTA HIROYUKI; OTOWA MAYUMI; YAMADA NOBORU; ONO EIJI

Applicant:

MATSUSHITA ELECTRIC IND CO LTD

Classification:

- international:

G11B7/24; G11B7/24; G11B7/24; B41M5/26; G11B7/26

- european:

Application number: JP19980011776 19980123

Priority number(s):

Abstract of JP11213446

PROBLEM TO BE SOLVED: To provide an optical information recording medium which is an optical information recording medium having a recording film reversibly changed in optical characteristics and essentially consisting of at least one selected from among GeXN and GeXON and has excellent weatherability and a good recording erasure characteristic and repeating characteristic selected by incorporating at least one element selected from among group VIII element, group IIa element and Au in the material component X of the layer described above and a process for producing the same.

SOLUTION: An optical disk is manufactured by successively laminating a protective layer 2 consisting of ZnS/SiO2, a GeN layer 7, a Ge-Sb-Te recording film 3, a GeNiN layer 8 and a reflection layer 5 consisting of an Al alloy on a polycarbonate resin substrate 1. The protective layer described above is formed by reactive sputtering in a gaseous mixture contg. rare gas and nitrogen by using a material contg. Ge and X or any among Ge, X and N as a

target.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-213446

(43)公開日 平成11年(1999)8月6日

(51) Int.CL.6	識別記号		FΙ				
G11B 7/2	24 534		G11B 7	7/24		534M	
	•					534N	
	511		•			511	
	5 3 5					535G	
B41M 5/2	26		7	7/26		531	
	•	審查請求	東京橋 水橋未	の数12	OL	(全 8 頁)	最終頁に続く
(21)出願番号	特膜平10-11776		(71)出額人	0000058	321		
				松下電	業室都	株式会社	
(22)出顧日	平成10年(1998) 1月23日		大阪府門真市大字門真1006番地				番地
			(72)発明者	大田 耳	含之		1
				大阪府	門真市	大字門真1006	番地 松下電器
				產業株式	式会社	内	
		-	(72)発明者	音羽〕	其由美)
,	•			大阪府	門真市	大字門真1006	番地 松下電器
·			14	產業株式	式会社	内	
			(72)発明者	山田	异		
				大阪府	判其市	大字門真1006	潘地 松下電器
	•			産業株	式会社	内	
			(74)代理人	弁理士	池内	寛幸 (外	.1名)
						•	最終頁に続く

(54) 【発明の名称】 光学情報記録媒体及びその製造方法

(57)【要約】

【課題】 光学特性が可逆的に変化する記録膜と、Ge XN及びGe XONから選ばれる少なくとも一つを主成分とする保護層とを有する光学情報記録媒体であって、前記層の材料成分Xが、VIII族元素、III a 族元素及び A u から選ばれる少なくとも一つの元素を含むことにより、耐候性に優れ、良好な記録消去特性及び繰り返し特性を有する光学情報記録媒体及びその製造方法を提供する

【解決手段】 ポリカーボネート樹脂基板1の上に、2 nS・SiO2の保護層2・GeN層7・Ge-Sb-Te記録膜3・GeNiN層8・A1合金の反射層5を順次積層し、光ディスクを作製する。前記保護層は、GeとX、若しくはGe、X、Nの何れかを含む材料をターゲットとし、希ガスと窒素とを含む混合ガス中で反応性スパッタリングにより形成する。

【特許請求の箆囲】

【請求項1】 光学特性が可逆的に変化する記録膜と、GeXN及びGeXONから選ばれる少なくとも一つを主成分とする保護層とを有する光学情報記録媒体であって、前記保護層の材料成分Xが、VIII族元素、IIIa族元素及びAuから選ばれる少なくとも一つの元素を含むことを特徴とする光学情報記録媒体。

1

【請求項2】 前記保護層の材料成分のVIII族元素が、 Fe、Co、Niから選ばれる少なくとも一つの元素を 含む請求項1に記載の光学的情報記録媒体。

【請求項3】 前記保護層の材料成分のIIIa族元素 が、Y及びLaから選ばれる少なくとも一つの元素を含 む請求項1に記載の光学的情報記録媒体。

【請求項4】 GeXN及びGeXONから選ばれる少なくとも一つを主成分とする保護層が、記録膜の少なくとも一方の側に接している請求項1に記載の光学情報記録媒体。

【請求項5】 記録膜の両側に接してGeXN及びGeXONから選ばれる少なくとも一つを主成分とする保護層を有し、前記層の材料成分Xの平均含有量が、前記記 20録膜の両側で異なる請求項1に記載の光学情報記録媒体。

【請求項6】 記録膜の両側に $G \in X N 及 V G \in X O N$ から選ばれる少なくとも一つを主成分とする保護層を有し、前記記録膜のレーザー入射側に位置する前記層の平均組成が($G \in I_{-y}X_y$) aO_bN_c (但し、a>0、 $b\geq 0$ 、c>0、 $0\leq y\leq 1$)、レーザー入射側と反対側に位置する層の平均組成が($G \in I_{-z}X_z$) dO_eN_f (但し、d>0、 $e\geq 0$ 、f>0、 $0\leq z\leq 1$)であり、かつ0 $\leq y< z$ の関係にある請求項1または5の何れかに 30 記載の光学情報記録媒体。

【請求項7】 GeXN及びGeXONから選ばれる少なくとも一つを主成分とする保護層に含まれる<math>GeLXとの平均組成比が、($Ge_{1-y}Xy$) $_{a}O_{b}N_{c}$ (但し、a>0、 $b\geq0$ 、c>0、 $0< y\leq0$. 5)で表される範囲内にある請求項1に記載の光学情報記録媒体。

【請求項8】 GeXN及びGeXONから選ばれる少なくとも一つを主成分とする保護層の平均組成比が、

(GeX)・O・Nをそれぞれ頂点とするの三元組成図において、組成点

A ((G e X) 90.0O0.0N10.0) . B ((G e X) 83.4O13.3N3.3) .

C (GeX) 35.0O_{0.0}N_{65.0}), D (GeX) 31.1O_{55.1}N_{13.8}),

で囲まれた範囲内にある請求項1に記載の光学情報記録 媒体。

【請求項9】 GeXN及びGeXONから選ばれる少なくとも一つを主成分とする保護層の膜厚が1nm以上である請求項1に記載の光学情報記録媒体。

【請求項10】 記録膜が、Te、Se及びSbから選 50

2

ばれる少なくとも一つの元素を主成分とする相変化材料 である請求項1に記載の光学情報記録媒体。

【請求項11】 記録膜が、Te、Sb及びGeの三元 素を主成分とする相変化材料である請求項1に記載の光 学情報記録媒体。

【請求項12】 光学特性が可逆的に変化する記録膜と、GeXN及びGeXONから選ばれる少なくとも一つを主成分とする保護層とを有する光学情報記録媒体の製造方法であって、前記保護層を、GeとX、若しくはGe、X、Nの何れかを含む材料をターゲットとし、希ガスと窒素とを含む混合ガス中で反応性スパッタリングにより形成することにより前記保護層の材料成分Xとして、VIII族元素、III a 族元素及びA u から選ばれる少なくとも一つの元素を含ませることを特徴とする光学情報記録媒体の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、レーザー光線の照射等の光学的な手段を用いて、情報を高密度、高速度に記録することができる光学記録情報媒体及びその製造方法に関するものである。

[0002]

【従来の技術】情報を大容量に記録でき、高速での再生及び書き換えが可能な媒体として、光磁気記録媒体や相変化型記録媒体等が知られている。これら光記録媒体は、レーザー光を局所的に照射することにより生じる記録材料の光学特性の違いを記録として利用したものであり、例えば光磁気記録媒体では、磁化状態の違いにより生じる、反射光偏光面の回転角の違いを記録として利用している。また、相変化型記録媒体は、特定波長の光に対する反射光量が結晶状態と非晶質状態とで異なることがする反射光量が結晶状態と非晶質状態とで異なることを記録として利用しているものであり、レーザーの出力パワーを変調させることにより記録の消去と上書きの記録を同時に行うことができるため、高速で情報信号の書き換えが可能であるという利点がある。

【0003】光記録媒体の層構成例を図4A、図4Bに示す。基板1には、ポリカーボネート、ポリメチルメタクリレート (PMMA) 等の樹脂、またはガラス等が用いられ、一般的にはレーザー光線を導くための案内溝が施されている。

【0004】記録膜3は、光学特性の異なる状態間を変化しうる物質から成り、書き換え型の相変化型光ディスクの場合、Te-Sb-Ge、Te-Sn-Ge、Te-Sb-Ge-Se、Te-Sn-Ge-Au、Ag-In-Sb-Te、In-Sb-Se、及びIn-Te-Se等を主成分とする材料が知られている。

【0005】反射層5は、一般にAu、Al、Cr等の金属、または金属の合金より成り、放熱効果や記録膜の効果的な光吸収を目的として設けられるが、必須の層ではない。

【0006】また、図4中では省略したが、光学情報記録媒体の酸化やほこり等の付着の防止を目的として、反射層5の上にオーバーコート層を設けた構成、または紫外線硬化樹脂を接着剤として用い、ダミー基板を張り合わせた構成等が一般的に用いられている。

【0007】保護層2、4、6は、記録膜材料の酸化、蒸発や変形を防止するといった記録膜の保護機能を担うと共に、その膜厚を調節することによって光記録媒体の吸収率や記録部分、消去部分の間の反射率差の調節が可能となるため、媒体の光学特性の調節機能も同時に担っ 10 ている。また、保護層を構成する材料の条件としては、上記目的を満たすばかりでなく、記録膜の構成材料或いは基板との接着性が良いこと、保護層自身がクラックを生じない耐候性の良い膜であることが不可欠である。

【0008】これらの保護層が記録膜に接して用いられる場合は、記録材料の光学的変化を損なわない材料でなければならない。例えば図4Bに示すように、保護層を二層とし異なる材料を用いることにより、基板との接着性に優れた媒体を得る提案や、情報の繰り返し記録の特性に優れた媒体を得る提案が知られている。

【0009】保護層2.4.6の材料としては、2nS等の硫化物、 SiO_2 、 Ta_2O_5 、 Al_2O_3 等の酸化物、GeN、 Si_3N_4 、 Al_3N_4 等の窒化物、GeON、SiON、AlON等の窒酸化物、他、炭化物、フッ化物等の誘電体、或いはこれらの適当な組み合わせ等が各種提案されているが、専ら適用されている材料としては $2nS-SiO_2$ が挙げられる。

【0010】なお、保護層を異なる物質の複合材料とすることにより、良好な膜質を得る技術は公知である。例えば特開昭63-50931号公報には、窒化アルミニ 30 ウムと窒化シリコンの複合誘電体に酸化アルミニウムと酸化シリコンのうち少なくとも一種を添加し、その屈折率を限定することにより基板との接着性に優れた良好な膜質の保護層を得る例が開示されている。また、特開平2-105351号公報には、保護層をシリコン及びインジウムの窒化物からなる複合誘電体とすることにより基板との接着性が良く延性に富んだ膜を得る例が開示されている。さらに、特開平2-265051号公報、特開平2-265052号公報には、保護膜がSi、N、Siより比電気抵抗の小さい元素より成ることにより、 40 膜割れが生じにくく記録膜の保護機能に優れた保護層を得る例が開示されている。

[0011]

【発明が解決しようとする課題】記録の書き換えを多数回にわたって繰り返すと、記録膜と保護層との間で構成原子の相互拡散、記録膜組成の経時変化といった現象が見られることが最近判明した。このことは、信号の書き換えを繰り返すと、信号の振幅が徐々に低下し、また、記録マークのマーク位置のジッター値が大きくなり記録信号のエラーレートが高くなるため、書き換えの繰り返50

4

し可能な回数が限られてしまうといった問題点がある。 【0012】しかしながら、生産時の製造条件の制御の し易さという点を考慮すると、良好な膜質が得られる製 造条件のマージンが広い保護層材料が求められる。ま た、更に長期にわたっての保存が可能な媒体が好ましい ことはいうまでもない。

【0013】本発明は、上記課題を解決するため、より 一層耐候性に優れ、良好な記録消去特性及び繰り返し特 性を有する光学情報記録媒体及びその製造方法を提供す ることを目的とする。

[0014]

【課題を解決するための手段】前記目的を達成するため、本発明の光学情報記録媒体は、光学特性が可逆的に変化する記録膜と、GeXN及びGeXONから選ばれる少なくとも一つを主成分とする保護層とを有する光学情報記録媒体であって、前記保護層の材料成分Xが、VIII族元素、IIIa族元素及びAuから選ばれる少なくとも一つの元素を含むことを特徴とする。これにより、GeN若しくはGeONの何れかを主成分とする層を設けた場合に比べ、更に耐候性に優れた媒体を得ることが可能となる。

【0015】前記光学情報記録媒体においては、前記保護層の材料成分のVIII族元素が、Fe、Co、Niから選ばれる少なくとも一つの元素を含むことが好ましい。また、前記保護層の材料成分のIIIa族元素が、Y及びLaから選ばれる少なくとも一つの元素を含むことが好ましい。特に耐候性に優れるので、XがIIIa族元素である場合にはY、Laを選び、XがVIII族元素である場合にはFe、Co、Niを選ぶのが好ましい。

【0016】また前記光学情報記録媒体においては、GeXN及びGeXONから選ばれる少なくとも一つを主成分とする保護層が、記録膜の少なくとも一方の側に接していることが好ましい。

【0017】また前記光学情報記録媒体においては、記録膜の両側に接してGeXN及びGeXONから選ばれる少なくとも一つを主成分とする保護層を有し、前記層の材料成分Xの平均含有量が、前記記録膜の両側で異なることが好ましい。

【0018】また前記光学情報記録媒体においては、記録膜の両側にGe XN及びGe XONから選ばれる少なくとも一つを主成分とする保護層を有し、前記記録膜のレーザー入射側に位置する前記層の平均組成が(Ge l-yXy)aObNc(但し、a>0、 $b\geq0$ 、c>0、0 $\leq y\leq1$)、レーザー入射側と反対側に位置する層の平均組成が(Ge l-zXz)dOeNf(但し、d>0、 $e\geq0$ 、f>0、 $0\leq z\leq1$)であり、かつ0 $\leq y< z$ の関係にあることが好ましい。

【0019】また前記光学情報記録媒体においては、GeXN及びGeXONから選ばれる少なくとも一つを主成分とする保護層に含まれるGeとXとの平均組成比

5

が、($Ge_{1-y}X_y$) $_aO_bN_c$ (但し、a>0 、 $b\ge 0$ 、c>0 、 $0< y\le 0$. 5)で表される範囲内にあることが好ましい。

【0020】また前記光学情報記録媒体においては、GeXN及びGeXONから選ばれる少なくとも一つを主成分とする保護層の平均組成比が、(GeX)・O・Nをそれぞれ頂点とするの三元組成図において、組成点A((GeX)90.0O0.0N10.0)、B((GeX)83.4O13.3N3.3)、C((GeX)35.0O0.0N65.0)、D((GeX)31.1O55.1N13.8)、で囲まれた範囲内にあることが好ましい。

【0021】また前記光学情報記録媒体においては、GeXN及びGeXONから選ばれる少なくとも一つを主成分とする保護層の膜厚が、1nm以上であることが好ましい。

【0022】また前記光学情報記録媒体においては、記録膜が、Te、Se及びSbから選ばれる少なくとも一つの元素を主成分とする相変化材料であることが好ましい。また前記光学情報記録媒体においては、記録膜が、Te、Sb及びGeの三元素を主成分とする相変化材料 20 であることが好ましい。

【0023】次に本発明の光学情報記録媒体の製造方法は、光学特性が可逆的に変化する記録膜と、GeXN及びGeXONから選ばれる少なくとも一つを主成分とする保護層とを有する光学情報記録媒体の製造方法であって、前記保護層を、GeとX、若しくはGe、X、Nの何れかを含む材料をターゲットとし、希ガスと窒素とを含む混合ガス中で反応性スパッタリングにより形成することにより前記保護層の材料成分Xとして、VIII族元素、IIIa族元素及びAuから選ばれる少なくとも一つの元素を含ませることを特徴とする。

【0024】これにより、記録材料との密着性に更に優れた良好な膜質の窒化物層若しくは窒酸化物層が得られる。

[0025]

【発明の実施の形態】以下、本発明の実施形態について 図面を用いながら具体的に説明する。本発明に関する光 学情報記録媒体の層構成の一例を図1に示す。これは図 4Bの構成において保護層6、4をそれぞれ拡散防止層 7、8に置き換えたものである。

【0026】拡散防止層7、8は、記録膜3と保護層2、4との原子拡散、特に保護層中に硫黄または硫化物が含まれる場合、これらの成分の拡散防止を主な目的として設けられる。この層を設ける位置は記録膜3のいずれか一方であっても両側であってもよいが、記録膜と保護層との拡散をより効果的に防止するためには両側に設けることが好ましい。拡散防止層中に含有される成分が情報の繰り返し記録後で記録膜に拡散等する場合もありうるが、このような場合であっても、記録膜の光学変化を妨げにくい材料を、拡散防止層の構成材料として用い50

ればよい。

【0027】なお、本発明の光学情報記録媒体の構成は、上記構成に限定されるものではなく、拡散防止層8と反射層5の間に他の材料からなる層を設ける構成、保護層2を全て拡散防止層7の材料で置き換えた構成、または反射層のない構成、反射層が二層である構成等、種々の構成に適用することが可能である。

【0028】以下の説明では説明を簡略化するため図2に示した構成で、基板1に厚さ0.6mm、直径120mmのディスク状ポリカーボネート樹脂、誘電体層2、4にはZnSにSiO2を20mol%含む混合物、記録膜3には、Ge-Sb-Te合金を主成分とする相変化型材料、反射層5にはAl合金を用いた例について述べる。但し、記録膜材料としては、例えばGe-Sb-Te系合金の他に、例えばTe-Sn-Ge、Te-Sb-Ge-Se、Te-Sn-Ge-Au、Ag-In-Sb-Te、In-Sb-Se、In-Te-Se等、種々の材料を用いることが可能であり、反射層5の材料、保護層2、4についても他の材料を用いることができる。

【0029】拡散防止層7、8は本発明の特徴を成す部分であり、GeXN若しくはGeXONの何れかを主成分とし、Xが、IIIa族元素またはVIII族元素またはAuのうち少なくとも1つの元素を含む材料とする。なお、XはY、La、Fe、Co、NIを含むことが好ましい。

【0030】この拡散防止層7、8は、基本的にはゲルマニウムに窒化物またはゲルマニウムの窒酸化物であるが、例えば従来提案されている窒化硼素、窒化アルミニウムまたは窒化硅素等の窒化物とは全く性質が異なる。すなわち、従来提案されているこれら窒化物では、内部応力または滑性等が原因で記録膜及び/または基板との密着性が非常に乏しく、また保護層の構成元素または記録膜の構成元素の何れかの移動を抑制する作用効果は全く見受けられない。これに対して本発明の窒化ゲルマニウムまたは窒酸化ゲルマニウムでは、元素の移動を抑制する効果があるとともに密着性も良好であり、本発明はこのように傑出した特性を備えた窒化ゲルマニウムまたは窒酸化ゲルマニウムに、より一層の耐候性、繰返し特性を付与できる発明である。

【0031】また、保護層中にAr、Kr等のスパッタガス成分のうち希ガスや、H、C、 H_2O 等が不純物として含まれることがあるが、これら不純物の濃度を10atom%以下に抑えることにより、不純物が含有されない場合と同様の特性を得ることができる。

【0032】拡散防止層7、8の平均組成比は、図3に示す(GeX)・O・Nをそれぞれ頂点とする三元組成図において、組成点

A ((G e X) 90.0O0.0N10.0) , B ((G e X) 83.4O13.3N3.3) , C ((G e X) 35.0O

7

0.0 N 65.0) 、 D ((G e X) 31.1 O 55.1 N 13.8) 、 で囲まれた範囲内にあることが好ましく、 E ((G e X) 65.0 O 0.0 N 35.0) 、 F ((G e X) 53.9 O 9.20 N 36.9) 、 C ((G e X) 35.0 O 0.0 N 65.0) 、 D ((G e X) 31.1 O 55.1 N 13.8) 、 で囲まれた範囲内にあることが望ましい。

【0033】この組成範囲の根拠は、窒素または酸素と結合していないGe、またはXの何れかが過剰に存在する(以下、余剰GeまたはXと称す)場合、余剰GeまたはXが記録膜に拡散し、記録膜の光学変化を妨げる傾 10向にあり、逆にGe、またはXと結合していない窒素または酸素が過剰に存在する場合、これらの原子が同じく記録膜になだれ込み、記録の妨げとなる傾向を示す。

【0034】拡散防止層7、8中に含有されるGe・Xの平均組成比の範囲は、XがGeに対して50atom%以下であることが好ましい。このGe・Xの組成割合の根拠は、Xの含有量がGe含有量の50atom%より多いと、物質Xが記録の繰り返し後で記録膜へなだれ込んで記録膜の光学変化を妨げてしまう傾向が顕著となる場合があり、10atom%よりも少ないと、GeN若しくはG20eON何れかへの物質Xの添加効果があまり顕著でない場合がある。

【0035】拡散防止層7、8の膜厚は1nm以上であることが必要である。これは膜厚が1nm以下である場合、拡散防止層としての効果が低下するためであり、拡散防止層の膜厚の上限としては、例えば記録膜にレーザ光の入射側では当該記録膜を記録・または再生できるレーザ光強度が得られる範囲である。なお、レーザ光強度は、レーザパワーまたは適用する記録膜の材料に依存し、適宜設定できる。

【0036】次に、これら光学情報記録媒体の製造方法について述べる。上記光学情報記録媒体を構成する多層膜を作製する方法としては、スパッタリング法、真空蒸着、CVD等の方法が可能であるが、ここではスパッタリング法を用いた場合を例に説明し、図3にその成膜装置の一例の概略図を示す。

【0037】真空容器9には排気口15を通して真空ポンプ(図示省略)を接続してあり、真空容器9内を高真空に保つことができるようになっている。ガス供給口14からは、一定流量のAr等の希ガス、窒素、酸素、ま40たはこれらの混合ガスを供給することができるようになっている。図3中10は基板であり、基板の自公転を行うための駆動装置11に取り付けられている。

【0038】12はスパッタ膜の材料成分を含むスパッタターゲットであり、陰極13に接続されている。ここでは、ターゲット12として直径10cm厚さ6mmのディスク状のものを用いた。陰極13は図示は省略したが、スイッチを通して直流電源または高周波電源に接続されている。また、真空容器9を接地することにより、真空容器9及び基板10は陽極に保たれている。

R

【0039】記録膜3、及び保護層2を成膜する際は、Arに窒素を2.5vol.%混合したガスを、全圧がそれぞれ1.0mTorr、0.5mTorrとなるように一定の流量で供給し、陰極にそれぞれDC1.27W/cm²、RF5.10W/cm²のパワーを投入して行った。

【0040】反射層5を成膜する際は、Arガスを全圧 3.0mTorrになるように供給し、DC4.45W/cm²の パワーを投入して行った。スパッタガス中の希ガスとし ては、Ar以外にもKr等のスパッタ可能な希ガスが用 いられる。

【0041】拡散防止層7、8を成膜する際は、GeとX、若しくはGe、X、Nとを含む材料をターゲットとし、XをIIIa族元素またはVIII族元素のうち少なくとも1つの元素を含む材料とする。成膜ガスは希ガスと窒素を含む混合ガスとし、反応性スパッタリングにより製造する。膜質が硬質である場合、または膜の内部応力が大きい場合等、必要に応じて微量の酸素を成膜ガス中に混合することにより、良好な膜質の層を得ることができる場合がある。

【0042】本実施の形態の例として、図1に示した光学情報記録媒体の構成で、拡散防止層7をGeN、拡散防止層8をGeNiN、とした場合を(1)、拡散防止層7をGeN、拡散防止層8をGeLaNとした場合を(2)とする。また、比較例として拡散防止層7、8をいずれもGeNとした場合を(0)とする。なお、上記(0)~(2)の拡散防止層7、8の膜厚はそれぞれ10nm、20nmで共通とした。

【0043】また、GeNiN層、GeLaN層、GeN層を成膜する際は、ターゲット材料をそれぞれGeNi、GeLa、Geとし、GeNiN膜、GeLaN膜中に含有されるNi、La原子数のGe原子数に対する比率は共に25atom%となるようにした。

【0044】さらに、拡散防止層7、8を成膜する際のスパッタガスはArと窒素との混合ガス、スパッタガス 圧は10mTorr、スパッタパワー密度は6.37W/cm²で全て共通とし、拡散防止層7を成膜する際のスパッタガス中の窒素分圧を40vol.%で一定、拡散防止層8を成膜する際のスパッタガス中の窒素分圧をvol.20%、30vol.%、40vol.%と変化させて成膜を行った。

【0045】以上の媒体を評価した結果を(表1)に示す。特性評価は耐候性、及び記録の繰り返し特性について行った。耐候性の評価は、90℃、80%の加速試験を200時間行い、100時間毎に光学顕微鏡にて剥離の有無を観察した。200時間後まで剥離が全く観察されなかったものを○、100時間後では剥離は無く、200時間後で剥離が発生したものを△、100時間後で剥離が観察されたものを×として示した。

【0046】記録の繰り返し特性は、EFM信号方式により最短マーク長が 0.61μ mとなる場合について3Tから11Tの長さのマークを記録し、マークの前端間

Q

及び後端間のジッター値をウィンドウ幅Tで割った値 (以下ジッター値)が、10万回の繰り返し記録後で前 端間、後端間共に13%を越えないものを○、10万回 後で前端間、後端間ジッター値のうち少なくとも一方が*

*13%を越えたものを×として示した。 【0047】 【表1】

	成	脱ガ	文 中 0	D 窒 案	分氏		
媒体番号	2 0 vol. %		30	vol. %	4 0 vol. %		
	接宿性	似り返し	接着性	鷽り返し	接着性	偽り返し	
(0)	0	0	Δ	0	×	0	
(1)	0	0	0	0	0	0	
(2)	0	0	0	0	0	0	

【0048】また、拡散防止層8をGeN、拡散防止層7をGeNiN、GeLaNとし、拡散防止層8を成膜する際のスパッタガス中の窒素分圧を30vol.%で一定、拡散防止層7を成膜する際のスパッタガス中の窒素分圧を40vol.%、50vol.%、60vol.%と変化させた以外は(1)(2)と同条件で作製した媒体をそれぞ※

※れ(3)、(4)とする。この場合の比較例として拡散 防止層7、8を共にGeNとした場合の媒体を(0) とする。これらの媒体を評価した結果を(表2)に示す。

10

【0049】 【表2】

0

0

成段ガス中の窒 発分圧 做体器号 4 0 vol. % 5 0 vol. % 6 0 vol. % 接着性 繰り返し 接着性 口口を 接位性 繰り返し (0)0 0 Δ \circ 0 × (3) 0 0 0 0 O 0

【0050】以上、(表1)及び(表2)の結果より、 拡散防止層としてGeNiN、またはGeLaNを用い た場合、GeNのみの場合に比べて、記録の繰り返し特 性を損ねることなく耐候性が向上していることがわか る。

(4)

【0051】次に、拡散防止層7、8をそれぞれGe N、GeNiNとし、GeLaN膜中に含まれるCr原 子数のGe原子数に対する比率を5%、10%、20 %、30%、50%、60%と変化させたディスクを作☆ ★製し、これらの媒体を順に(5)(6)(7)(8) (9)(10)とする。ディスクの層構成は上記既述の ディスク(0)~(4)と同様とし、拡散防止層7を成 膜する際の窒素分圧を40vol.%で一定、拡散防止層8 のそれをvol.20%、30vol.%、40vol.%、50vo 1.%、60vol.%と変化させた。これらのディスクの評 価結果を(表3)に示す。

0

【0052】 【表3】

		成	膜ガジ	ζ ф 0	森 瓊 C	分氏		
媒体番号 N i		20vol.%		3 () vol. %	4 0 vol. %		
	ュ*1)	接符性	似り返し	接行性	繰り返し	接付性	口り返し	
(0)	0	0	0	Δ	0	×	Ò	
(5)	5	0	0	Δ	0	Δ	0	
(6)	10	0	0	0	0	0	0	
(7)	20	0	0	0	0	0	0	
(8)	3 0	0	0	0	0	0	0	
(9)	40	0	0	0 .	0	0	0	
(10)	50	0	Δ	0	0	0	0	
(11)	60	0	×	0	Δ	0	Δ	

(間均*1) N i 量=N i / (G e + N i)

11

【0053】 (表3) より、Ni含有量がGeに対して 10atom%以上になるとNiの添加効果が現われ始める ことがわかる。但し、Cr含有量がGeに対して60at om%以上となると記録の繰り返し特性が悪化する。これ はNiがGeに比べ窒素と結合しにくく、窒素と結合し ない余剰Crが膜中に過剰に存在し、これらの原子が記 録膜へなだれ込んで記録の繰り返し特性が悪化している ためと考えられる。以上より、GeNiN膜中のNi含 有量は、Geに対して50%以下が好ましいといえる。 【0054】上記の説明では、X成分としてNi及びL 10 ·aを例に説明したが、Xの元素はNi及びLaに限定さ れるものではなく、上述したように拡散防止層に含有さ れるXは、情報の繰返しにともない仮に記録膜に拡散等 しても、記録膜の光学特性に与える影響が少ない元素で あれば良く、このような元素としてはNi及びLa以外 に、Au、またはYなどの他のIIIa族元素、またはF e、Coなどの他のVIII族元素があり、その何れを用い ても効果の差は若干見られるものの本質的には含有の効 果があり、その含有量についてもほぼ同様であった。

【発明の効果】以上述べたように、記録膜の少なくとも一方に接してGeXN若しくはGeXONを主成分とする保護層を設け、XをAu、IIIa族元素またはVIII族元素のうち少なくとも1つの元素を含む材料とすることにより、耐候性に優れ、かつ情報信号の記録消去の繰り返し特性にも優れた光情報記録媒体を得ることが可能に*

*なる。

【図面の簡単な説明】

【図1】本発明の一実施例の光情報記録媒体の一層構成 を示す断面図。

12

【図2】本発明の一実施例の(GeX)・O・Nの組成範囲を示す三角組成図。

【図3】本発明の一実施例の成膜装置の一例を示す図。

【図4】従来の光情報記録媒体の層構成例を示す断面図で、Aは4層構成の光記録媒体の断面図、Bは5層構成の光記録媒体の断面図、Bは5層構成の光記録媒体の断面図。

【符号の説明】

- 1 基板
- 2 保護層
- 3 記錄膜
- 4 保護層
- 5 反射層
- 6 保護層
- 7 拡散防止層
- 8 拡散防止層
- 9 真空容器
- 10 基板
 - 11 基板駆動装置
- 12 ターゲット
- 13 陰極
- 14 ガス供給口
- 15 排気口

【図1】

[0055]

[図2]

[図3]

【図4】

フロントページの続き

G11B 7/26

(51) Int. Cl. 6

識別記号

5 3 1

FΙ

B 4 1 M 5/26

X

(72)発明者 大野 鋭二

大阪府門真市大字門真1006番地 松下電器

産業株式会社内