RL: DEEP RL

План

- □ Deep Q learning
- Experience replay
- Double Q-learning
- ☐ Dueling Network

Взаимодействие среды и агента. МDР

Базовые определения

$$G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = r_{t+1} + \gamma (r_{t+2} + \gamma r_{t+3} + \dots) = r_{t+1} + \gamma G_{t+1}$$

$$V^{\pi}(s) = E_{\pi}[G_t | s_t = s]$$

$$Q^{\pi}(s) = E_{\pi}[G_t | s_t = s, a_t = a]$$

Рекуррентные формулы

$$Q^{\pi}(s) = E_{s_{t+1}}[r_t + \gamma V^{\pi}(s_{t+1})]$$

$$Q^{\pi}(s) = E_{s_{t+1}, a_{t+1} \sim \pi}[r_t + Q^{\pi}(s_{t+1}, a_{t+1})]$$

Оптимальная политика

Для всех
$$\pi, s, a: Q^{\pi^*}(s, a) \ge Q^{\pi}(s, a)$$

$$\pi^*(s) = argmax_a Q^{\pi^*}(s, a)$$

Уравнение Беллмана

$$Q^*(s_t, a) = E_{s_{t+1}} \left[r_t + \max_{a'} Q^* \left(s_{t+1}, a' \right) \right]$$

Q - learning

Шаг обучения

$$Q(s_t, a_t) < - Q(s_t, a_t) + \alpha \left(r_t + \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t) \right)$$

Q-learning как минимизация MSE

$$L = \left(r_t + \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t)\right)^2$$

$$\nabla L = 2\left(r_t + \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t)\right)$$

Какая проблема?

Реальный мир

Сколько приблизительно состояний?

$$S = 2^{210*160*8*3}$$

Проблема

□ Пространство состояний может быть очень большим или непрерывным

- □ Два решения:
 - □ Бинаризация пространства состояний
 - □ Функциональная аппроксимация агента

□ Что из этого лучше подойдет для Atari?

От таблицы к аппроксимации

- Для таблицы:
 - Для всех состояний и действий мы должны запомнить Q(s,a)
- □ Аппроксимация:
 - Аппроксимация Q(s,a) некоторой функцией
 - Например линейной функцией

$$argmin_{w,b} \left(r_t + \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t) \right)^2$$

Вопрос: что мы используем, классификация или регрессию?

Возможные архитектуры

Аппроксимация Q-learning

- Q-values
 - $\hat{Q}(s_t, a_t) = r_t + \max_{a'} Q(s_{t+1}, a')$
- □ Целевая функция:

•
$$L = \left(Q(s_t, a_t) - \left[r_t + \max_{a'} Q(s_{t+1}, a')\right]\right)^2$$

□ Шаг градиента:

$$w_{t+1} = w_t - \alpha \frac{\partial L}{\partial w}$$

Аппроксимация Q-learning

- □ Целевая функция:
 - $L = \left(Q(s_t, a_t) \hat{Q}(s_t, a_t) \right)^2$
- Q-learning
 - $\hat{Q}(s_t, a_t) = r_t + \gamma \max_{a'} Q(s_{t+1}, a')$
- ☐ SARSA
 - $\hat{Q}(s_t, a_t) = r_t + \gamma Q(s_{t+1}, a_{t+1})$
- Expacted Value SARSA:

$$\hat{Q}(s_t, a_t) = r_t + \gamma E_{\pi} Q(s_{t+1}, a_{t+1})$$

Deep Q-learning

Какую нейросеть применить для этой задачи?

Deep Q-learning

Проблема

- □ Обучаемая выборка не независима, т.е. изображения не являются независимыми одинаково распределенными величинами
- Модели забывают о частях среды, которые они не посещали в течение определенного времени
- Снижение темпов обучения

□ Идеи?

Много агентов

- Идея: Использовать несколько агентов
- скорее всего, они будут исследовать разные части среды
- □ Более стабильное обучение
- □ Требует множество взаимодействий

Вопрос: агент автономный транспорт.

Какие проблемы?

Experience replay

- Идея: сохранить несколько прошлых итераций
- <*s*,*a*,*r*,*s*'>
- Обучение проходит на случайных подвыборках

□ Подвыборки ближе к независимым

□ более старые взаимодействия были получены при более слабой политике

Replay buffer

Experience replay

- □ Мы аппроксимируем Q(s,a) нейронной сетью
- □ Используем *experience replay* для обучения

□ Вопрос: какие из перечисленных алгоритмов можем использовать?

- Q-learning
- SARSA
- CEM
- Expected Value SARSA

При обучение on-policy алгоритмов

- Не использовать (или использовать не большой) experience replay
- Можно компенсировать сессиями параллельных игр

Лево или право?

N-gram trick

Идея:

$$s_t \neq o(s_t)$$

$$s_t \approx (o(s_{t-n}), a_{t-n}, ..., o(s_{t-1}), a_{t-1}, o(s_t))$$

Одна игра

Несколько игр

N-gram trick

- □ Предполагается марковость n-го порядка:
- □ Работает для скоростей/ускорений
- □ Потерпим неудачу, если информация выходит за рамки N кадров
- □ Непрактично для больших N

Автокорреляция

Target network

• Идея: использовать сеть с замороженными весами для расчета таргета.

$$L(\theta) = E_{s \sim S, a \sim A} \left(Q(s_t, a_t, \theta) - \left[r_t + \gamma \max_{a'} Q(s_{t+1}, a', \bar{\theta}) \right] \right)^2$$

где $ar{ heta}$ - замороженные веса

Hard target network:

Обновлять $ar{ heta}$ каждые n шагов и устанавливать значения heta

• Soft target network:

Обновлять $\bar{\theta}$ каждый шаг:

$$\bar{\theta} = (1 - \alpha)\bar{\theta} + \alpha\theta$$

Playing Atari with Deep Reinforcement Learning (2013, DeepMind)

Обновление весов:

$$L(\theta) = E_{s \sim S, a \sim A} \left(Q(s_t, a_t, \theta) - \left[r_t + \gamma \max_{a'} Q(s_{t+1}, a', \bar{\theta}) \right] \right)^2$$

Обновление $ar{ heta}$ каждые 5000 шагов обучения

Experience replay

 10^6 последних переходов

Мы используем оператор тах для расчета таргета

$$L(s,a) = \left(Q(s,a) - \left[r_t + \gamma \max_{a'} Q(s',a')\right]\right)^2$$

Проблема

(мы хотим чтобы $E_{s\sim S,a\sim A}[L(s,a)]=0$)

Mean(data)~0.001

Mean(data)~ 0.8482

• Если мы обновляем Q(s,a) в соответствии с $r_t + \gamma \max_{a'} Q(s',a')$, мы будем иметь завышенную оценку

$$E[\max_{a'} Q(s', a')] \ge \max_{a'} E[Q(s', a')]$$

Double Q-learning (NIPS 2010)

$$y = r_t + \gamma \max_{a'} Q(s', a')$$
 Q-learning target $y = r_t + \gamma \max_{a'} Q(s', argmax_{a'}Q(s', a'))$ Q-learning target

Идея: использовать 2 оценки q-values: Q^A , Q^B

Q-learning Они должны компенсировать несоответствия друг друга, т.к. они независимы.

$$y = r_t + \gamma \max_{a'} Q^A(s', argmax_{a'}Q^B(s', a'))$$
 Double Q-learning

Double Q-learning (NIPS 2010)

Algorithm 1 Double Q-learning

```
1: Initialize Q^A, Q^B, s
 2: repeat
       Choose a, based on Q^A(s,\cdot) and Q^B(s,\cdot), observe r, s'
 3:
       Choose (e.g. random) either UPDATE(A) or UPDATE(B)
 4:
       if UPDATE(A) then
 5:
         Define a^* = \arg \max_a Q^A(s', a)
 6:
         Q^A(s,a) \leftarrow Q^A(s,a) + \alpha(s,a) \left(r + \gamma Q^B(s',a^*) - Q^A(s,a)\right)
 8:
      else if UPDATE(B) then
         Define b^* = \arg \max_a Q^B(s', a)
       Q^{B}(s,a) \leftarrow Q^{B}(s,a) + \alpha(s,a)(r + \gamma Q^{A}(s',b^{*}) - Q^{B}(s,a))
10:
       end if
11:
      s \leftarrow s'
12:
13: until end
```

Сможем ли мы скомбинировать этот алгоритм с DQN?

Deep Reinforcement Learning with Double Q-learning (Deepmind, 2015)

Идея: использовать основную сеть для выбора действия

$$y_{dqn} = r_t + \gamma \max_{a'} Q(s', a', \bar{\theta})$$

$$y_{ddqn} = r_t + \gamma Q(s', argmax_{a'}Q(s', a', \theta), \bar{\theta})$$

	DQN	Double DQN	Double DQN (tuned)
Median	47.5%	88.4%	116.7%
Mean	122.0%	273.1%	475.2%

Experience replay

State	Action	Reward	Next state
s_0	a_0	0	s_1
s_1	a_1	0	s_2
s_(n-1)	a_(n-1)	0	s_n
s_n	a_n	100	s_(n+1)
s_(n+1)	a_(n+1)	0	s_(n+2)

Experience replay: приоритезация (DeepMind, 2016)

Идея: семплировать переходы из буфера более грамотно

Мы хотим назначить вероятности для каждого перехода. Можем использовать абсолютное значение TD ошибки перехода как вероятности

TD-error
$$\delta = Q(s,a) - (r + \gamma Q(s',argmax_{a'}Q(s',a',\theta'),\bar{\theta})$$
 $p = |\delta|$ $P(i) = \frac{p_i^{\alpha}}{\sum_k p_k^{\alpha}}$ здесь α параметр приоритета $(0 - \text{равномерный выбор})$

Какую видите проблему?

Experience replay: приоритезация (DeepMind, 2016)

Решение: корректно обучать используя importance-sampling weights

$$w_i = \left(\frac{1}{N} \frac{1}{P(i)}\right)^{\beta}$$
 где β параметр

Таким образом мы семплируем $P(i) = \frac{p_i^{lpha}}{\sum_k p_k^{lpha}}$ и умножая ошибку на w_i

Experience replay: приоритезация (DeepMind, 2016)

Дополнительные детали

Нормировка весов на $1/\max_i w_i$

При записи переходов в experience replay, принимаем maximal priority $p_t = \max_{i < t} p_i$

https://youtu.be/UXurvvDY93o

Dueling Network Architectures for Deep Reinforcement Learning (DeepMind, 2016)

Идея: изменить архитектуру НС

Advantage function A(s,a) = Q(s,a) - V(s)

Таким образом Q(s,a) = A(s,a) + V(s)

Hasselt, Marc Lanctot, Nando de Freitas, "Dueling Network Architectures for Deep Reinforcement **Dueling DQN** Learning", arXiv preprint, 2015 Q(s,a)State V(s) Q(s,a)State Only change the network structure

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van

Проблема?

Dueling Network Architectures for Deep Reinforcement Learning (DeepMind, 2016)

Имеем дополнительную степень свободы

Какой вариант лучше?

Dueling Network Architectures for Deep Reinforcement Learning (DeepMind, 2016)

Решение: требуем $\max_{\alpha' \in |A|} A(s, \alpha'; \theta, \alpha)$ равнялось нулю

Таким образом Q функция рассчитывается как:

$$Q(s, \alpha, \alpha, \beta) = V(s; \theta, \beta) + \left(A(s, \alpha; \theta, \alpha) - \max_{\alpha' \in |A|} A(s, \alpha'; \theta, \alpha)\right)$$

Авторы статьи также предложили следующий способ расчета Q-values:

$$Q(s, \alpha, \alpha, \beta) = V(s; \theta, \beta) + \left(A(s, \alpha; \theta, \alpha) - \frac{1}{|A|} \sum_{\alpha'} A(s, \alpha'; \theta, \alpha)\right)$$

Этот вариант повышает стабильность оптимизации

Асинхронное обучение для DLR (DeepMind, 2016)

Rainbow (DeepMind, 2017)

Rainbow (2017, Deepmind)

R2D2: (Deepmind, 2018)

- LSTM
- Distributed Prioritized Experience replay
- N-step DQN
- Reword re-scaling
- Double DQN
- Dueling DQN

Медианная производительность: 1920% от человеческой