In the Name of God

Signals and Systems

Project Phase 2

Spring Semester 1403-04
Department of Electrical Engineering

Sharif University of Technology Instructor: Dr. B. Khalaj

Due Date: 1404/04/13

Project members:

Seyed Mohammad Hasan Mirshafiei 402102551

Mohammad Javad Yousefi 402102776

- Project Report -

1. Theoretical Questions

1.1.1 Two-Dimensional Correlation

In this project, you will perform character recognition using correlation. Although correlation is a technique traditionally used for comparing one-dimensional signals, it can also be adapted for image processing tasks such as template matching.

Your goal is to investigate how this one-dimensional correlation method can be used to compare images or parts of images (e.g., character segments). This approach is at the heart of the recognition method used in this project.

1.1.1 Questions

- 1. What is the mathematical definition of correlation between two signals? Explain it in your own words and write the standard formula. What does the correlation value represent? (5)
- Correlation is a mathematical operation that measures the similarity between two signals. It functions by sliding one signal across another and calculating a "similarity

score" at each position. The position where this score is maximized indicates the point of greatest alignment between the two signals. This process allows us to determine if a specific, smaller pattern is "hidden" within a larger signal and, if so, to locate its precise position.

Mathematical Formula

For two discrete signals, f[n] and g[n], the cross-correlation, denoted by the symbol \star , is defined as:

$$(f\star g)[n] = \sum_{k=-\infty}^{\infty} f[k]\cdot g[n+k]$$

In this formula, n represents the amount of shift, or "lag," between the two signals.

An Example:

Let's assume we have a $long \ signal \ (f)$ and a $short \ pattern \ (g)$, and our goal is to find where the pattern g is located within the main signal f.

By calculating the correlation for different shift values (n), we will search for the point where the similarity score is maximized.

Calculation for Several Shift Values (n):

Case 1:
$$n = 0 (No Shift)$$

$$Score = (2 \times 8) + (1 \times 9) + (8 \times 3) = 16 + 9 + 24 = 49$$

Case 2: n = 1 (Pattern shifted one unit to the right)

Score =
$$(1 \times 8) + (8 \times 9) + (9 \times 3) = 8 + 72 + 27 = 107$$

Case 3: n = 2

$$Score = (8 \times 8) + (9 \times 9) + (3 \times 3) = 64 + 81 + 9 = 154$$

Case 4: n = 3

Score =
$$(9 \times 8) + (3 \times 9) + (1 \times 3) = 72 + 27 + 3 = 102$$

By reviewing the scores, we observe that the maximum value (the peak) is **154**, which occurs at a shift of n = 2.

What the Correlation Value Represents

The output of these calculations provides the following information:

Peak of the Output Signal: The maximum correlation value (in our example, **154**) represents the degree of similarity. The larger this number, the more closely the pattern matches that segment of the signal.

Position of the Peak: The position where the peak occurs (in our example, **n=2**) tells us that the best alignment is achieved by shifting the pattern g by 2 units to the right. This result correctly shows us that the pattern [8, 9, 3] begins at the third element (index 2) of the signal f.

- Research and explain how a method designed for one-dimensional signals can be used to compare images or image segments. Describe your proposed approach clearly. (Do not explain 2D correlation.) (2.5)
- To apply a one-dimensional correlation method for comparing images (which are two-dimensional structures), we must first transform the 2D image data into a 1D signal. The proposed approach for this is a process called "Flattening".

Proposed Approach: Image Flattening

This approach consists of the following steps:

- 1. **Transforming the Image into a 1D Signal:** A 2D image is essentially a matrix of pixels. To convert it into a 1D signal, we proceed row by row:
 - First, we take all the pixels from the first row of the image and place them sequentially in a 1D array.
 - Next, we take the pixels from the **second row** and append them to the end of the array created in the previous step.
 - This process continues for all rows until the very last row of the image.

At the end of this process, we will have a single, long vector (or 1D array) that contains all the pixel information from the 2D image.

Applying 1D Correlation: Now that both the image segment (e.g., a segmented character) and the reference template have been converted into 1D signals, we can directly apply the standard 1D correlation formula (as described in Question 1) to them.

3. **The Comparison Process:** To recognize a character, we first flatten the segmented character image into a vector. Then, we flatten each reference template (e.g., for numbers 0-9) and compute the 1D correlation between the character's vector and each template's vector. The template that produces the **highest correlation score** is chosen as the final recognition result.

1.1.2 Image Blurring and Degradation Modeling

Blurring in images often results from motion, out-of-focus lenses, or deliberate smoothing filters. In signal processing terms, this can be modeled as the output of a system applied to an image. For example:

$$H_{\rm blur}(z) = \frac{1-p}{1-pz^{-1}}$$

This is a recursive 1D IIR filter (Infinite Impulse Response), often used for exponential smoothing or blurring.

1.1.2 Questions

1. Explain how this 1D filter is applied to images, and also explain the parameter *p* and its effect on the filter's performance. (5)

In image processing, 2D images are typically represented as matrices with rows and columns of pixel values. s. To apply $H_{blur}(Z)$ a 1D filter like to an image, we process the image one dimension at a time. either along the rows (horizontally) or along the columns (vertically).

the filter's operation can be understood through its difference equation:

$$ig(1-pz^{-1}ig)Y=(1-p)X$$
 $Y\left[n
ight]-pY\left[n-1
ight]=(1-p)X\left[n
ight]$

For each row or column, the filter starts with an initial condition: Y(-1) = 0 and computes y[n] sequentially for n = 0,1,2,...

For:

$$0$$

$$h\left[n
ight] =\left(rac{p-1}{p}
ight) p^{n}u\left[n
ight]$$

 P^n is a decaying exponential:

- If p is close to 0: P^n decays quickly so h[n] has a large negative initial value and fades rapidly, implying minimal blurring
- If p is close to 1: P^n decays slowly so h[n] has a smaller negative amplitude but persists longer, increasing the blurring
- 2. If we assume that we have the blur transformation function (blur kernel) of the channel, can we recover a high-quality and clean image? Why? (2.5)

To invert the blurred image to the original image we should $\,\,H_{blur}^{-1}\,\,$ apply to the blurred image.

We can show that $H_{blur}(Z)$ the is Invertible so we can reconstruct the original image

$$rac{1}{H_{bure}} = rac{1 - pz^{-1}}{1 - p^{-1}}$$

Cause of that the denominator is zero only at p=1 this is invertible.

1.1.3 Sampling Rate and Resolution Effects

In image processing, sampling corresponds to the image resolution. Reducing the resolution is equivalent to downsampling the image, which affects the frequency content and the ability to extract fine details such as the shape of characters. If sampling is too coarse, important features may be lost. In this project, we test how much the resolution can be reduced while still enabling character recognition via correlation.

1.1.3 Questions

1. Do a bit of research on 2D sampling theory and briefly summarize your understanding. (5)

Sampling and Resolution

In image processing, sampling is the process of converting a continuous, analog image (like a real-world scene) into a discrete, digital format (a set of pixels). This is achieved by measuring the brightness values at regular points on a grid.

The distance between these points defines the sampling rate, which is directly related to the image's resolution. The closer the points are, the higher the sampling rate and, consequently, the higher the resolution, allowing for finer details to be captured.

The Nyquist Sampling Theorem

This fundamental theorem states that to perfectly reconstruct an image from its samples without losing information, the sampling rate must be at least twice the highest frequency present in the image.

- **High frequencies** in an image represent areas with rapid changes, such as sharp edges, fine lines, and complex textures. The distinct shape of a license plate character is composed of high-frequency information.
- Low frequencies represent smooth and uniform areas of an image.

Aliasing: The Consequence of Insufficient Sampling

If the sampling rate is less than the Nyquist rate (a condition known as **undersampling**), an artifact called **aliasing** occurs. In this phenomenon, high-frequency information is incorrectly interpreted as lower frequencies. In practice, this error manifests as **jagged**, "stair-step" edges on what should be smooth, diagonal lines.

'Connection to the Project'

When we **downsample** the license plate image, we are reducing its sampling rate. As long as this rate remains high enough, the sharp, high-frequency details of the characters are preserved. However, when the resolution is reduced too much, aliasing degrades the precise shape of the characters. This loss of critical feature information is the primary reason why the correlation-based recognition algorithm fails at low sampling rates.

2. Implementation

"Ideal case"

Part I & II: Plate Segmentation and Recognition (ideal.py)

The initial phase of this project is divided into two primary parts: first, analyzing an ideal license plate image to segment it into its constituent characters, and second, recognizing each character to reconstruct the full plate number. This process is executed through the following three stages:

1. **Preprocessing**: Preparing the image for analysis.

- 2. **Character Segmentation**: Finding and isolating each individual character on the plate.
- 3. **Character Recognition**: Identifying each segmented character using template matching.

1. Image Preprocessing

Cropping:

Given that the input image is considered ideal and static, the first step is to isolate the license plate area using predefined pixel coordinates. This step defines the Region of Interest (ROI), which ensures that subsequent processing is focused, efficient, and less prone to errors from background noise.

Thresholding:

The cropped image is first converted to grayscale. Subsequently, a fixed threshold is applied to convert it into a binary (pure black and white) image. The THRESH_BINARY_INV mode was used specifically to render the characters in white (pixel value 255) and the background in black (pixel value 0), which is the ideal format for contour detection.

2. Character Segmentation

Contour Detection

Using the cv2.findContours function, the boundaries of all distinct white objects (the characters) in the binary image are identified.

Contour Filtering

As minor noise or imperfections might also be detected as contours, a filtering process is applied based on geometric properties. Only contours whose height and aspect ratio fall within the expected range of a standard character are retained; all others are discarded.

Sorting

The remaining valid contours are sorted based on their x-axis position. This ensures the characters are processed in the correct left-to-right order, which is essential for reconstructing the final plate string.

9 3 D 4 3 2 8

Standardization (Padding)

To improve the accuracy of the template matching stage, a fixed **5-pixel border (padding)** is added to all sides of each segmented character. This standardization step ensures that the segmented characters share a similar framing and aspect ratio to the reference templates, which is crucial for an accurate comparison.

```
Step 1: Segmenting characters from the license plate...Segmented characters saved successfully!Saving location: c:\Users\mirsh\Desktop\S&S_Project\segmented_characters
```

3. Character Recognition

Template Matching

The core of the recognition logic resides in this section. The system iterates through each segmented character and compares it against a predefined library of reference templates. These templates are located in the numbers folder and contain high-quality images of numbers (0-9) as well as letters (A-D).

Correlation Coefficient

The comparison is performed using the **Normalized Cross-Correlation Coefficient** (TM_CCOEFF_NORMED) as the similarity metric. This method returns a score between -1.0 and +1.0, where a higher value indicates a greater similarity. The template that yields the highest correlation score is selected as the correct identification for the character.

```
Step 2: Recognizing segmented characters...

Recognized Plate: 93D4328
--- Correlation Report ---
Character: 9 -> Correlation: 1.00
Character: 3 -> Correlation: 1.00
Character: D -> Correlation: 1.00
Character: 4 -> Correlation: 0.98
Character: 3 -> Correlation: 1.00
Character: 2 -> Correlation: 1.00
Character: 8 -> Correlation: 1.00
```

(This section output of the rest of the license plates of the cars)

```
Character: 8 -> Correlation: 1.00
Character: C -> Correlation: 1.00
Character: 7 -> Correlation: 0.98
Character: 4 -> Correlation: 0.98
```

```
Recognized Plate: 98C7445
--- Correlation Report ---
Character: 9 -> Correlation: 1.00
Character: 8 -> Correlation: 1.00
Character: C -> Correlation: 1.00
Character: 7 -> Correlation: 0.98
Character: 4 -> Correlation: 0.98
Character: 4 -> Correlation: 0.98
Character: 5 -> Correlation: 0.98
```

5 6 A 7 4 9 5

```
Recognized Plate: 56A7495
--- Correlation Report ---
Character: 5 -> Correlation: 0.98
Character: 6 -> Correlation: 1.00
Character: A -> Correlation: 0.98
Character: 7 -> Correlation: 0.98
Character: 4 -> Correlation: 0.98
Character: 9 -> Correlation: 1.00
Character: 5 -> Correlation: 0.98
```

79B1208

```
Recognized Plate: 79B1208
--- Correlation Report ---
Character: 7 -> Correlation: 0.98
Character: 9 -> Correlation: 1.00
Character: B -> Correlation: 1.00
Character: 1 -> Correlation: 1.00
Character: 2 -> Correlation: 1.00
Character: 0 -> Correlation: 1.00
Character: 8 -> Correlation: 1.00
```

Part III: Analysis of the Robustness of a License Plate Recognition Algorithm Against Image Quality Reduction Using the Subsampling Method (*ideal resize analysis.py*)

This section of the project achieves two primary objectives, which are detailed below:

- A comparison between two down-sampling methods: Subsampling and interpolation-based resizing using the OpenCV library.
- 2. An analysis of license plate recognition at various down-sampling rates to identify the algorithm's **breaking point**.

Subsampling Technique

To simulate a lower-resolution input, we employed the **subsampling** technique using NumPy's array slicing (image[::rate, ::rate]). In this method, for a given rate N, only one pixel is selected from every N pixels in the rows and columns; the rest are completely discarded. Unlike methods such as OpenCV's resize function, this approach does not perform any

averaging or interpolation, meaning it does not generate new pixel values. This technique provides a pure model of information loss, similar to capturing an image with a lower-resolution camera sensor.

Character Segmentation and Recognition Pipeline

After down-sampling the license plate image in the initial step, the following pipeline is executed to segment and recognize the characters:

- Character Segmentation: The license plate area is first cropped from the smaller, down-sampled image. Then, using image processing techniques such as binary thresholding and contour detection, each character is isolated from the background.
- **Dynamic Padding:** To standardize the segmented characters for comparison against the reference templates, a **dynamic border (padding)** is added. The size of this padding is scaled proportionally to the down-sampling factor, starting from a base of 5 pixels on each side for the original, full-resolution image. This ensures the character's aspect ratio is not distorted.
- Template Matching: Finally, each segmented character is compared against a set
 of high-resolution reference templates. To perform the comparison, the highresolution template is resized down to the exact dimensions of the small character
 using the cv2.resize function. The correlation coefficient between the two images
 is then calculated, and the template with the highest score is selected as the
 recognized character.

Quantitative Results

The following table summarizes the system's performance at various subsampling rates. As observed, with an increasing rate N (and decreasing quality), the average correlation coefficient gradually decreases.

Step 1: Establishing dynamic ground truth> Dynamic Ground Truth established as: '93D4328'. Step 2: Analyzing effects of plate subsampling			
- 1 - 11			
	Analysis Results		1.6
Rate (1 in N)	Recognized Plate	Avg. Correlation	Correct?
1	 93D4328	0.9966	Yes
2	93D4328	0.9517	Yes
3	93D4328	0.8485	Yes
4	93D4328	0.9281	Yes
5	93D4328	0.9708	Yes
6	93D4328	0.9024	Yes
7	93D4328	0.8732	Yes
8	93D4328	0.8162	Yes
9	93D432B	0.8574	No
10	93D4320	0.8449	No
11	93D4328	0.7919	Yes
12	9304188	0.7170	No
13	93043	0.7002	No
14	9304336	0.5994	No
15	91026	0.5917	No
16	02A	0.6374	No
17	A388	0.5997	No
18	916417A	0.5260	No
19	08A2A	0.5215	No
20	A503A	0.5015	No

Visual Analysis

To better understand the results, the following plots were generated at the breaking point (N=9).

• Plot 1: Comparison of Down-sampling Methods This plot clearly illustrates the visual difference between the two methods. The image on the left (Subsampling) has a harsh, jagged appearance due to pixel removal, while the image on the right (Resize) appears soft and blurry due to pixel combination.

Down-sampling Method Comparison at Failure Rate (1 in 9)

Subsampled Method (Pixel Skipping) Dimensions: 85x19

 Plot 2: Analysis of the Failing Character This plot shows the root cause of the recognition error. The character '8' extracted from the plate is compared with two reference templates, '8' and 'B'. As shown in the plot's title, its correlation coefficient with the incorrect template ('B') was slightly higher than with the correct one ('8'), leading to the misidentification.

Analysis for char '8' (read as 'B')
Correlation with '8': 0.7765 | Correlation with 'B': 0.8034

• Plot 3: Overall Performance Graph This comprehensive graph shows the overall trend of the system's performance. The blue line (accuracy) indicates the exact breaking point of the algorithm, while the red line (correlation) visualizes the gradual decline in the system's "confidence" as the image quality degrades.

(This section output of the rest of the license plates of the cars)

Down-sampling Method Comparison at Failure Rate (1 in 8)

Subsampled Method (Pixel Skipping)
Dimensions: 95x22

🥃 98 C 7445

Resize Method (Open CV library) Dimensions: 95x22

Step 1: Establishing dynamic ground truth-> Dynamic Ground Truth established as: '98C7445'.Step 2: Analyzing effects of plate subsampling					
Subsampling Analysis Results Rate (1 in N) Recognized Plate Avg. Correlation Correct?					
1	98C7445	0.9885	Yes		
2	98C7445	0.9483	Yes		
3	98C7445	0.8677	Yes		
4	98C7445	0.9375	Yes		
5	98C7445	0.8986	Yes		
6	98C7445	0.9565	Yes		
7	98C7445	0.9526	Yes		
8	98C75	0.8492	No		
9	98C7445	0.8142	Yes		
10	96C75	0.7996	No		
11	C76	0.8309	No		
12	98C74	0.7527	No		
13	96076	0.6936	No		
14	676	0.5928	No		
15	475	0.5592	No		
16	A8419	0.5811	No		
17	98C75	0.5594	No		
18	41A	0.4881	No		
19	AA474	0.5299	No		
20	5AC75	0.4990	No		

Down-sampling Method Comparison at Failure Rate (1 in 12)

Subsampled Method (Pixel Skipping)
Dimensions: 64x15

Resize Method (Open CV library) Dimensions: 64x15

Analysis for char '5' (read as '9') Correlation with '5': 0.5888 | Correlation with '9': 0.6609

Step 1: Establishing dynamic ground truth> Dynamic Ground Truth established as: '56A7495'.				
Step 2: Analyzin	Step 2: Analyzing effects of plate subsampling			
Cubarralian	Analysia Danyles			
	Analysis Results Recognized Plate	Ava Connolation	Correct?	
rate (1 III N)	Necognizeu Place	Avg. Correlation	Corrects	
1	56A7495	0.9856	Yes	
2	56A7495	0.9445	Yes	
3	56A7495	0.8666	Yes	
4	56A7495	0.9294	Yes	
5	56A7495	0.8927	Yes	
6	56A7495	0.9684	Yes	
7	56A7495	0.9319	Yes	
8	56A7495	0.8344	Yes	
9	56A7495	0.8394	Yes	
10	56A7495	0.8515	Yes	
11	56A7495	0.7502	Yes	
12	56A7499	0.7302	No	
13	56A7495	0.6989	Yes	
14	66A7496	0.6450	No	
15	84A19	0.6074	No	
16	5847AA5	0.5431	No	
17	56A7A95	0.5883	No	
18	94A7499	0.5388	No	
19	475	0.4958	No	
20	AA87	0.5373	No	

Down-sampling Method Comparison at Failure Rate (1 in 9)

Subsampled Method (Pixel Skipping) Dimensions: 85x19

Resize Method (Open CV library) Dimensions: 85x19

Analysis for char '8' (read as 'B') Correlation with '8': 0.7827 | Correlation with 'B': 0.8262

Step 1: Establishing dynamic ground truth-> Dynamic Ground Truth established as: '79B1208'.Step 2: Analyzing effects of plate subsampling Subsampling Analysis Results			
	Recognized Plate	Avg. Correlation	Correct?
1	79B1208	0.9970	Yes
2	79B1208	0.9532	Yes
3	79B1208	0.8499	Yes
4	79B1208	0.9151	Yes
5	79B1208	0.9256	Yes
6	79B1208	0.9326	Yes
7	79B1208	0.9181	Yes
8	79B1208	0.8655	Yes
9	79B120B	0.8750	No
10	7901206	0.8516	No
11	81208	0.7551	No
12	7981208	0.7032	No
13	81298	0.6658	No
14	819	0.6591	No
15	81218	0.6088	No
16	81A	0.5799	No
17	79848	0.6124	No
18	837AA	0.5949	No
19	84AAA	0.5552	No
20	1A84	0.5189	No

"Realistic case"

Part I: Attempt to extract the license plate characters from realistic folder:

```
PS C:\Users\mirsh> & C:\Users/mirsh/AppData/Local/Programs/Python/Python312/python.exe "c:\Users/mirsh/Desktop/S&S_Project/ideal.py"

Step 1: Segmenting characters from the license plate...

Could not proceed with recognition as no characters were segmented.
```

The main reason for this error is the destructive effect of blur on the character edges. Blur transforms sharp boundaries into a soft gray gradient that is unrecognizable to the algorithm.

During the thresholding stage, these soft edges cause the character shapes in the blackand-white image to become fragmented. As a result, the contour detection function identifies numerous incomplete and scattered contours instead of finding the complete outlines of the characters.

In the final stage, the algorithm filters these contours based on their dimensions. Since none of these fragments match the size of a real character, they are all rejected, and the final list remains empty.

Part II & III & VI: The report for Parts 2 & 3 & 6 of the project is in *realistic.pdf*, and the corresponding code is in *realistic.ipynb*.

Part IV: Character Recognition on Deblurred Images

The outputs from the *realistic.ipynb* script, which are the deblurred images, are saved in the results folder. In this section, these images are fed into the *ideal.py* character recognition script. The recognition results for each deblurred license plate are presented below.

Part V: Analysis of the Robustness of the License Plate Recognition Algorithm Against Subsampling on deblurred Realistic Images (*ideal_resize_analysis.py*)

In this section, the deblurred images that were saved in the results folder will be fed into the downsampling analysis script originally written for the ideal case. As the algorithm for this script has been explained previously, only the outputs are presented below.

Quantitative Results

```
PS C:\Users\mirsh\ & C:\Users\mirsh/AppData/Local/Programs/Python/Python312/python.exe "c:/Users\mirsh/Desktop/S&S_Project/ideal_resize_analysis.py"
Step 1: Establishing dynamic ground truth...

-> Dynamic Ground Truth established as: '79B1208'.
Step 2: Analyzing effects of plate subsampling...
 --- Subsampling Analysis Results ---
                                             | Avg. Correlation
Rate (1 in N) | Recognized Plate
                                                                        | Correct?
                     79B1208
                                               0.8427
                     79B1208
                                               0.8251
                     79B1208
                                              0.8135
                     79B1208
                                               0.8320
                                                                          Yes
6
7
8
9
10
11
12
13
14
15
                     79B1208
                                               0.8105
                     79B1208
                                               0.7801
                     79B1208
                                                                           Yes
                     79B1208
                                               0.8211
                                                                          Yes
                                                                          No
No
No
                     79012A8
                     7901208
                                               0.7166
                     1961248
                                               0.6350
                     7981108
                                               0.5925
                     84309
                                               0.5599
                     812A8
                                               0.5440
16
17
18
                     74A1AA4A
                                               0.4682
                     79848
                                               0.5368
                     1383766
                                                                          No
No
                                               0.5025
19
                                               0.4913
                     A7246
                     7484
                                                                          No
20
                                               0.4585
 -> Failure point identified at 1-in-10 pixels. Generating comparison plots...
Visualizing the difference between Subsampling and Resizing at rate 1-in-10... -> The character 'B' at index 2 was misread as '0'.
```

Visual Analysis

To better understand the results, the following plots were generated at the breaking point (N=10).

Plot 1: Comparison of Down-sampling Methods

Down-sampling Method Comparison at Failure Rate (1 in 10)

Subsampled Method (Pixel Skipping)
Dimensions: 76x18

Resize Method (Open CV library)
Dimensions: 76x18

79 B 1208

Plot 2: Analysis of the Failing Character

Analysis for char 'B' (read as '0')
Correlation with 'B': 0.6257 | Correlation with '0': 0.7716

Segmented Char (from Subsampled Plate)

Plot 3: Overall Performance Graph

(This section output of the rest of the license plates of the cars)

Step 1: Establishing dynamic ground truth> Dynamic Ground Truth established as: '98C7445'.				
Step 2: Analyzing effects of plate subsampling				
Subsampling	Analysis Results			
Rate (1 in N)	Recognized Plate	Avg. Correlation	Correct?	
1	98C7445	0.8309	Yes	
2	98C7445	0.8419	Yes	
3	98C7445	0.8253	Yes	
4	98C7445	0.8261	Yes	
5	98C7445	0.8369	Yes	
6	98C7445	0.8172	Yes	
7	98C7445	0.8009	Yes	
8	98C79	0.7373	No	
9	98C7445	0.7639	Yes	
10	98C75	0.7526	No	
11	58C75	0.6990	No	
12	98C1449	0.6221	No	
13	98C76	0.6288	No	
14	9667449	0.5552	No	
15	C75	0.5570	No	
16	5844A44	0.4759	No	
17	98C15	0.5251	No	
18	3A41A	0.4723	No	
19	AA474	0.4474	No	
20	3A37335	0.4676	No	
-> Failure point identified at 1-in-8 pixels. Generating comparison plots				

Down-sampling Method Comparison at Failure Rate (1 in 8)

Subsampled Method (Pixel Skipping)
Dimensions: 95x22

Resize Method (Open CV library) Dimensions: 95x22

Step 1: Establishing dynamic ground truth> Dynamic Ground Truth established as: '56A7495'.			
Step 2: Analyzir	ng effects of plate sub	sampling	
C. h 1	Annalysis Browles		
	Analysis Results	l Aug Connelation	(Connect)
Rate (I In N)	Recognized Plate	Avg. Correlation	Correct?
1	56A7495	0.8233	Yes
2	56A7495	0.8292	Yes
3	56A7495	0.8086	Yes
4	56A7495	0.8024	Yes
5	56A7495	0.8015	Yes
6	56A7495	0.8030	Yes
7	56A7495	0.7694	Yes
8	56A7495	0.7054	Yes
9	56A7495	0.7352	Yes
10	56A7495	0.6788	Yes
11	94A7A95	0.6448	No
12	56A7465	0.6229	No
13	56A7895	0.5873	No
14	1642495	0.4796	No
15	58475	0.5517	No
16	5AAAAA	0.5076	No
17	56A7295	0.5550	No
18	9447A99	0.4765	No
19	4A4784A	0.4726	No
20	468A	0.4389	No
-> Failure point identified at 1-in-11 pixels. Generating comparison plots			

Down-sampling Method Comparison at Failure Rate (1 in 11)

Subsampled Method (Pixel Skipping) Dimensions: 69x16

Resize Method (Open CV library) Dimensions: 69x16

Step 1: Establishing dynamic ground truth> Dynamic Ground Truth established as: '93D4328'.			
Step 2: Analyzing	g effects of plate subs	ampling	
	Analysis Results		
Rate (1 in N)	Recognized Plate	Avg. Correlation	Correct?
1	93D4328	 0.8339	Yes
2	93D4328	0.8444	Yes
3	93D4328	0.8274	Yes
4	93D4328	0.8104	Yes
5	93D4328	0.8157	Yes
6	93D4328	0.8185	Yes
7	93D4328	0.7664	Yes
8	93D4328	0.7822	Yes
9	93D4328	0.7662	Yes
10	93D4328	0.7778	Yes
11	9304328	0.6999	No
12	9304328	0.6282	No
13	9304328	0.6271	No
14	9104331	0.4885	No
15	31066	0.5002	No
16	A70AA	0.4925	No
17	A38A388	0.4716	No
18	910617A	0.4486	No
19		0.5047	No
20	A403A	0.5044	No
-> Failure point identified at 1-in-11 pixels. Generating comparison plots			

Down-sampling Method Comparison at Failure Rate (1 in 11)

Subsampled Method (Pixel Skipping) Dimensions: 69x16

93 D 4328

Resize Method (Open CV library) Dimensions: 69x16

