

ECOM-5064
July 1966

AD

ROCKET-BORNE OZONESONDE

By

JAGIR S. RANDHAWA

CLEARINGHOUSE FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION			
Hardcopy	Microfiche		
\$1.00	\$.50	23 pp	10

1 ARCHIVE COPY

D D C

OCT 12 1966

ATMOSPHERIC SCIENCES LABORATORY
WHITE SANDS MISSILE RANGE, NEW MEXICO

ECOM

UNITED STATES ARMY ELECTRONICS COMMAND

DDC AVAILABILITY NOTICE

Distribution of this report is unlimited.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

ROCKET-BORNE OZONESONDE

by

JAGIR S. RANDHAWA

DA PROJECT 1L013001A91A

ECON - 5064

July 1966

ATMOSPHERIC SCIENCES LABORATORY
WHITE SANDS MISSILE RANGE, NEW MEXICO

Distribution of this
report is unlimited

ACKNOWLEDGEMENT

I wish to acknowledge the help received from the staff
of the Schellenger Research Laboratories, Texas Western
College, El Paso, for the fabrication of the instrument.

ABSTRACT

A stratospheric ozonesonde has been developed which utilizes the chemiluminescent principle for the measurement of ozone concentration after deployment from an Arcas rocket vehicle. A sample bottle empties as it is carried to low pressures of high altitudes and is ejected above the stratopause level. Flow into the bottle results from the differential pressure as the instrument descends on a drag parachute. Ozone in the environment flows over the detector and the photons produced by the destruction of ozone molecules on the chemiluminescent material are monitored by a photomultiplier tube. The output signal is transmitted on a carrier frequency of 1680 megacycles and received at the ground by AN/GMD-1 equipment. The instrument is calibrated with known concentrations of ozone and flow rate. Results of one firing are presented.

CONTENTS

	<u>Page</u>
ABSTRACT -----	iii
INTRODUCTION -----	1
INSTRUMENT -----	1
RESULTS -----	5
CONCLUSIONS -----	5
REFERENCES -----	7

INTRODUCTION

It is well known that the vertical distribution of atmospheric ozone shows large variations with latitude, season and weather conditions. Ozone measurements had been made primarily with balloons using Paetzold and Piscalar (1961), Brewer and Milford (1960) and Regener (1960, 1964) instruments and by a few rocket probes (Johnson et al., 1952) using different types of solar spectrometers. These balloon-sondes do not reach the stratopause level of the atmosphere. Recently a rocket-borne ozonesonde (Randhawa, 1966), which utilized the chemiluminescent principle for ozone detection, was developed and fired with the Arcas rocket at White Sands Missile Range, New Mexico. A serious disadvantage of these earlier sondes was that they could not be fired during daylight because of contamination of the photomultiplier output by the stray light. There is a pressing need for an ozonesonde which can be deployed at any time of day or night.

INSTRUMENT

The rocket-borne ozonesonde (Figure 1), a "self-pumping" type, consists of three main parts: power supply, sample bottle including photomultiplier tube and chemiluminescent detector, and telemetry circuit. The photomultiplier tube and the associated high-voltage supply circuitry are potted in black silicone rubber and mounted inside the bottle as shown in Figure 2. The channel for the flow of the air into the bottle is made from teflon and provides two 90° turns to eliminate the stray-light effect. The chemiluminescent detector is mounted across the photomultiplier tube. Ozone in the environment flows over the detector and the photons produced by the destruction of ozone molecules on the chemiluminescent material are monitored by the photomultiplier tube. The output signal is transmitted on a carrier frequency of 1680 megacycles and received at the ground by AN/GMD-1 equipment (Clark and McCoy, 1965).

The ozonesonde is deployed from an Arcas rocket vehicle above the stratopause level. The bottle empties itself as it is carried to low pressures of high altitudes. Flow into the bottle results from the differential pressure as the instrument descends on a 15-foot diameter radar-reflective parachute. The intensity of the emitted light is directly proportional to the ozone flux entering the detector. This flux is equal to the product of ozone concentration and the flow rate. Thus, in order to measure ozone concentration, the flow rate into the detector must be known. As the instrument falls (120 m sec^{-1} at 50 km and 30 m sec^{-1} at 30 km) through the atmosphere of increasing density, the pressure inside the bottle tends to equilibrate with the external pressure, thus leading to a net flow of air into the bottle through the inlet channel. This flow rate can be expressed as

$$\text{flow rate} = \frac{V_i T_i}{P_a T_i} a [\frac{dP_i}{dt} - P_i \frac{d\ln T_i}{dt}]$$

where V_i = Bottle volume

T_i = Air temperature inside the bottle

FIGURE 1. Rocket-Borne Ozonesonde.

FIGURE 2. Schematic Diagram of Rocket-Borne Ozonesonde.

FIGURE 3. Ozone Distribution with Height.

P_i = Pressure inside the bottle

T_a = Ambient external temperature

P_a = Ambient external pressure

t = Time

This expression can be simplified considerably if one assumes $P_i \approx P_a$ and $T_i \approx T_a$ which is quite reasonable. As the instrument falls, the bottle will be cooled continuously during descent; therefore, the second term, which is one order of magnitude less than the first term, will always add to the flow rate.

The ozonesonde is calibrated before launch by the use of an ozone generator (Regener, 1964). Ozonized air of known concentration and flow rate is injected into the bottle and sensitivity is set in the proper range.

RESULTS

The rocket-borne ozonesonde was fired on February 3, 1966 at 1300 MST and deployed at 60 km altitude. The radar track of the parachute yielded altitude and fall rate vs time. As the payload (which weighs $3\frac{1}{2}$ kg) descended on the parachute, ozone concentration was sampled continuously. The reduced data are presented in Figure 3, which shows a discontinuous profile because of high sensitivity setting. This profile clearly shows two peaks, one near 20 km and the other between 30 and 40 km and is in agreement with previously reported profiles (Randhawa, 1966) obtained with a different rocket-borne ozonesonde.

CONCLUSIONS

A rocket-borne ozonesonde, which incorporates a "self-pumping" feature and operates on the chemiluminescent principle, has monitored the atmospheric ozone concentration to higher altitudes than had been possible by earlier methods. The system is capable of providing information on the detailed structure of the upper stratosphere and is thus considered suitable for synoptic observations in the Meteorological Rocket Network.

REFERENCES

- Brewer, A. W., and J. R. Milford, 1960: The Oxford-Kew Ozonesonde. Proc. Roy. Soc. London, A. 256, 470.
- Clark, G. Q., and J. G. McCoy, 1965: Measurements of Stratospheric Temperature. J. App. Meteorol., 4, 365-370.
- Johnson, F. S., J. D. Purcell, R. Tousey, and K. Watanabe, 1952: Direct Measurements of the Vertical Distribution of Atmospheric Ozone to 70 km Altitude, J. Geophys. Res., 57, 157-176.
- Paetzold, H. K., and F. Piscalar, 1961: Measurement of Vertical Ozone Distribution by Means of an Optical Radiosonde. Beitr. Phys. Atmosphäre, 34 (2), 53-68.
- Randhawa, J. S., 1966: Ozone Measurements with Rocket-Borne Ozonesondes. J. Geophys. Res., 71, 15 August.
- Regener, V. H., 1960: On a Sensitive Method for the Recording of Atmospheric Ozone. J. Geophys. Res., 65, 3975-3977.
- Regener, V. H., 1964: Measurement of Atmospheric Ozone with Chemiluminescent Method. J. Geophys. Res., 69, 3795-3800.

ATMOSPHERIC SCIENCES RESEARCH PAPERS

1. Webb, W.L., "Development of Droplet Size Distributions in the Atmosphere," June 1954.
2. Hansen, F. V., and H. Rachele, "Wind Structure Analysis and Forecasting Methods for Rockets," June 1954.
3. Webb, W. L., "Net Electrification of Water Droplets at the Earth's Surface," *J. Meteorol.*, December 1954.
4. Mitchell, R., "The Determination of Non-Ballistic Projectile Trajectories," March 1955.
5. Webb, W. L., and A. McPike, "Sound Ranging Technique for Determining the Trajectory of Supersonic Missiles," #1, March 1955.
6. Mitchell, R., and W. L. Webb, "Electromagnetic Radiation through the Atmosphere," #1, April 1955.
7. Webb, W. L., A. McPike, and H. Thompson, "Sound Ranging Technique for Determining the Trajectory of Supersonic Missiles," #2, July 1955.
8. Barichivich, A., "Meteorological Effects on the Refractive Index and Curvature of Microwaves in the Atmosphere," August 1955.
9. Webb, W. L., A. McPike and H. Thompson, "Sound Ranging Technique for Determining the Trajectory of Supersonic Missiles," #3, September 1955.
10. Mitchell, R., "Notes on the Theory of Longitudinal Wave Motion in the Atmosphere," February 1956.
11. Webb, W. L., "Particulate Counts in Natural Clouds," *J. Meteorol.*, April 1956.
12. Webb, W. L., "Wind Effect on the Aerobee," #1, May 1956.
13. Rachele, H., and L. Anderson, "Wind Effect on the Aerobee," #2, August 1956.
14. Beyers, N., "Electromagnetic Radiation through the Atmosphere," #2, January 1957.
15. Hansen, F. V., "Wind Effect on the Aerobee," #3, January 1957.
16. Kershner, J., and H. Bear, "Wind Effect on the Aerobee," #4, January 1957.
17. Hoidal, G., "Electromagnetic Radiation through the Atmosphere," #3, February 1957.
18. Querfeld, C. W., "The Index of Refraction of the Atmosphere for 2.2 Micron Radiation," March 1957.
19. White, Lloyd, "Wind Effect on the Aerobee," #5, March 1957.

20. Kershner, J. G., "Development of a Method for Forecasting Component Ballistic Wind," August 1957.
21. Layton, Ivan, "Atmospheric Particle Size Distribution," December 1957.
22. Rachele, Henry and W. H. Hatch, "Wind Effect on the Aerobee," #6, February 1958.
23. Beyers, N. J., "Electromagnetic Radiation through the Atmosphere," #4, March 1958.
24. Prosser, Shirley J., "Electromagnetic Radiation through the Atmosphere," #5, April 1958.
25. Armendariz, M., and P. H. Taft, "Double Theodolite Ballistic Wind Computations," June 1958.
26. Jenkins, K. R. and W. L. Webb, "Rocket Wind Measurements," June 1958.
27. Jenkins, K. R., "Measurement of High Altitude Winds with Loki," July 1958.
28. Hoidale, G., "Electromagnetic Propagation through the Atmosphere," #6, February 1959.
29. McLardie, M., R. Helvey, and L. Traylor, "Low-Level Wind Profile Prediction Techniques," #1, June 1959.
30. Lamberth, Roy, "Gustiness at White Sands Missile Range," #1, May 1959.
31. Beyers, N. J., B. Hinds, and G. Hoidale, "Electromagnetic Propagation through the Atmosphere," #7, June 1959.
32. Beyers, N. J., "Radar Refraction at Low Elevation Angles (U)," Proceedings of the Army Science Conference, June 1959.
33. White, L., O. W. Thiele and P. H. Taft, "Summary of Ballistic and Meteorological Support During IGY Operations at Fort Churchill, Canada," August 1959.
34. Hainline, D. A., "Drag Cord-Aerovane Equation Analysis for Computer Application," August 1959.
35. Hoidale, G. B., "Slope-Valley Wind at WSMR," October 1959.
36. Webb, W. L., and K. R. Jenkins, "High Altitude Wind Measurements," *J. Meteorol.*, 16, 5, October 1959.
37. White, Lloyd, "Wind Effect on the Aerobee," #9, October 1959.
38. Webb, W. L., J. W. Coffman, and G. Q. Clark, "A High Altitude Acoustic Sensing System," December 1959.
39. Webb, W. L., and K. R. Jenkins, "Application of Meteorological Rocket Systems," *J. Geophys. Res.*, 64, 11, November 1959.

40. Duncan, Louis, "Wind Effect on the Aerobee," #10, February 1960.
41. Helvey, R. A., "Low-Level Wind Profile Prediction Techniques," #2, February 1960.
42. Webb, W. L., and K. R. Jenkins, "Rocket Sounding of High-Altitude Parameters," *Proc. GM Rel. Symp.*, Dept. of Defense, February 1960.
43. Armendariz, M., and H. H. Monahan, "A Comparison Between the Double Theodolite and Single-Theodolite Wind Measuring Systems," April 1960.
44. Jenkins, K. R., and P. H. Taft, "Weather Elements in the Tularosa Basin," July 1960.
45. Beyers, N. J., "Preliminary Radar Performance Data on Passive Rocket-Borne Wind Sensors," *IRE TRANS. MIL ELECT.*, MIL-4, 2-3, April-July 1960.
46. Webb, W. L., and K. R. Jenkins, "Speed of Sound in the Stratosphere," June 1960.
47. Webb, W. L., K. R. Jenkins, and G. Q. Clark, "Rocket Sounding of High Atmosphere Meteorological Parameters," *IRE Trans. Mil. Elect.*, MIL-4, 2-3, April-July 1960.
48. Helvey, R. A., "Low-Level Wind Profile Prediction Techniques," #3, September 1960.
49. Beyers, N. J., and O. W. Thiele, "Meteorological Wind Sensors," August 1960.
50. Armijo, Larry, "Determination of Trajectories Using Range Data from Three Non-colinear Radar Stations," September 1960.
51. Carnes, Patsy Sue, "Temperature Variations in the First 200 Feet of the Atmosphere in an Arid Region," July 1961.
52. Springer, H. S., and R. O. Olsen, "Launch Noise Distribution of Nike-Zeus Missiles," July 1961.
53. Thiele, O. W., "Density and Pressure Profiles Derived from Meteorological Rocket Measurements," September 1961.
54. Diamond, M. and A. B. Gray, "Accuracy of Missile Sound Ranging," November 1961.
55. Lamberth, R. L. and D. R. Veith, "Variability of Surface Wind in Short Distances," #1, October 1961.
56. Swanson, R. N., "Low-Level Wind Measurements for Ballistic Missile Application," January 1962.
57. Lamberth, R. L. and J. H. Grace, "Gustiness at White Sands Missile Range," #2, January 1962.
58. Swanson, R. N. and M. M. Hoidal, "Low-Level Wind Profile Prediction Techniques," #4, January 1962.

59. Rachele, Henry, "Surface Wind Model for Unguided Rockets Using Spectrum and Cross Spectrum Techniques," January 1962.
60. Rachele, Henry, "Sound Propagation through a Windy Atmosphere," #2, February 1962.
61. Webb, W. L., and K. R. Jenkins, "Sonic Structure of the Mesosphere," *J. Acous. Soc. Amer.*, 34, 2, February 1962.
62. Tourin, M. H. and M. M. Hoidal, "Low-Level Turbulence Characteristics at White Sands Missile Range," April 1962.
63. Miers, Bruce T., "Mesospheric Wind Reversal over White Sands Missile Range," March 1962.
64. Fisher, E., R. Lee and H. Rachele, "Meteorological Effects on an Acoustic Wave within a Sound Ranging Array," May 1962.
65. Walter, E. L., "Six Variable Ballistic Model for a Rocket," June 1962.
66. Webb, W. L., "Detailed Acoustic Structure Above the Tropopause," *J. Applied Meteorol.*, 1, 2, June 1962.
67. Jenkins, K. R., "Empirical Comparisons of Meteorological Rocket Wind Sensors," *J. Appl. Meteor.*, June 1962.
68. Lamberth, Roy, "Wind Variability Estimates as a Function of Sampling Interval," July 1962.
69. Rachele, Henry, "Surface Wind Sampling Periods for Unguided Rocket Impact Prediction," July 1962.
70. Traylor, Larry, "Coriolis Effects on the Aerobee-Hi Sounding Rocket," August 1962.
71. McCoy, J., and G. Q. Clark, "Meteorological Rocket Thermometry," August 1962.
72. Rachele, Henry, "Real-Time Prelaunch Impact Prediction System," August 1962.
73. Beyers, N. J., O. W. Thiele, and N. K. Wagner, "Performance Characteristics of Meteorological Rocket Wind and Temperature Sensors," October 1962.
74. Coffman, J., and R. Price, "Some Errors Associated with Acoustical Wind Measurements through a Layer," October 1962.
75. Armendariz, M., E. Fisher, and J. Serna, "Wind Shear in the Jet Stream at WS-MR," November 1962.
76. Armendariz, M., F. Hansen, and S. Carnes, "Wind Variability and its Effect on Rocket Impact Prediction," January 1963.
77. Querfeld, C., and Wayne Yunker, "Pure Rotational Spectrum of Water Vapor, I: Table of Line Parameters," February 1963.

78. Webb, W. L., "Acoustic Component of Turbulence," *J. Applied Meteorol.*, 2, 2, April 1963.
79. Beyers, N. and L. Engberg, "Seasonal Variability in the Upper Atmosphere," May 1963.
80. Williamson, L. E., "Atmospheric Acoustic Structure of the Sub-polar Fall," May 1963.
81. Lamberth, Roy and D. Veith, "Upper Wind Correlations in Southwestern United States," June 1963.
82. Sandlin, E., "An analysis of Wind Shear Differences as Measured by AN/FPS-16 Radar and AN/GMD-1B Rawinsonde," August 1963.
83. Diamond, M. and R. P. Lee, "Statistical Data on Atmospheric Design Properties Above 30 km," August 1963.
84. Thiele, O. W., "Mesospheric Density Variability Based on Recent Meteorological Rocket Measurements," *J. Applied Meteorol.*, 2, 5, October 1963.
85. Diamond, M., and O. Essenwanger, "Statistical Data on Atmospheric Design Properties to 30 km," *Astro. Aero. Engr.*, December 1963.
86. Hansen, F. V., "Turbulence Characteristics of the First 62 Meters of the Atmosphere," December 1963.
87. Morris, J. E., and B. T. Miers, "Circulation Disturbances Between 25 and 70 kilometers Associated with the Sudden Warming of 1963," *J. of Geophys. Res.*, January 1964.
88. Thiele, O. W., "Some Observed Short Term and Diurnal Variations of Stratospheric Density Above 30 km," January 1964.
89. Sandlin, R. E., Jr. and E. Armijo, "An Analysis of AN/FPS-16 Radar and AN/GMD-1B Rawinsonde Data Differences," January 1964.
90. Miers, B. T., and N. J. Beyers, "Rocketsonde Wind and Temperature Measurements Between 30 and 70 km for Selected Stations," *J. Applied Meteorol.*, February 1964.
91. Webb, W. L., "The Dynamic Stratosphere," *Astronautics and Aerospace Engineering*, March 1964.
92. Low, R. D. H., "Acoustic Measurements of Wind through a Layer," March 1964.
93. Diamond, M., "Cross Wind Effect on Sound Propagation," *J. Applied Meteorol.*, April 1964.
94. Lee, R. P., "Acoustic Ray Tracing," April 1964.
95. Reynolds, R. D., "Investigation of the Effect of Lapse Rate on Balloon Ascent Rate," May 1964.

96. Webb, W. L., "Scale of Stratospheric Detail Structure," *Space Research V*, May 1964.
97. Barber, T. L., "Proposed X-Ray-Infrared Method for Identification of Atmospheric Mineral Dust," June 1964.
98. Thiele, O. W., "Ballistic Procedures for Unguided Rocket Studies of Nuclear Environments (U)," Proceedings of the Army Science Conference, June 1964.
99. Horn, J. D., and E. J. Trawle, "Orographic Effects on Wind Variability," July 1964.
100. Hoidale, G., C. Querfeld, T. Hall, and R. Mireles, "Spectral Transmissivity of the Earth's Atmosphere in the 250 to 500 Wave Number Interval," #1, September 1964.
101. Duncan, L. D., R. Ensey, and B. Engebos, "Athena Launch Angle Determination," September 1964.
102. Thiele, O. W., "Feasibility Experiment for Measuring Atmospheric Density Through the Altitude Range of 60 to 100 KM Over White Sands Missile Range," October 1964.
103. Duncan, L. D., and R. Ensey, "Six-Degree-of-Freedom Digital Simulation Model for Unguided, Fin-Stabilized Rockets," November 1964.
104. Hoidale, G., C. Querfeld, T. Hall, and R. Mireles, "Spectral Transmissivity of the Earth's Atmosphere in the 250 to 500 Wave Number Interval," #2, November 1964.
105. Webb, W. L., "Stratospheric Solar Response," *J. Atmos. Sci.*, November 1964.
106. McCoy, J. and G. Clark, "Rocketsonde Measurement of Stratospheric Temperature," December 1964.
107. Farone, W. A., "Electromagnetic Scattering from Radially Inhomogeneous Spheres as Applied to the Problem of Clear Atmosphere Radar Echoes," December 1964.
108. Farone, W. A., "The Effect of the Solid Angle of Illumination or Observation on the Color Spectra of 'White Light' Scattered by Cylinders," January 1965.
109. Williamson, L. E., "Seasonal and Regional Characteristics of Acoustic Atmospheres," *J. Geophys. Res.*, January 1965.
110. Armendariz, M., "Ballistic Wind Variability at Green River, Utah," January 1965.
111. Low, R. D. H., "Sound Speed Variability Due to Atmospheric Composition," January 1965.
112. Querfeld, C. W., "Mie Atmospheric Optics," *J. Opt. Soc. Amer.*, January 1965.
113. Coffman, J., "A Measurement of the Effect of Atmospheric Turbulence on the Coherent Properties of a Sound Wave," January 1965.

114. Rachele, H., and D. Veith, "Surface Wind Sampling for Unguided Rocket Impact Prediction," January 1965.
115. Ballard, H., and M. Izquierdo, "Reduction of Microphone Wind Noise by the Generation of a Proper Turbulent Flow," February 1965.
116. Mireles, R., "An Algorithm for Computing Half Widths of Overlapping Lines on Experimental Spectra," February 1965.
117. Richard, H., "Inaccuracies of the Single-Theodolite Wind Measuring System in Ballistic Application," February 1965.
118. D'Arcy, M., "Theoretical and Practical Study of Aerobee-150 Ballistics," March 1965.
119. McCoy, J., "Improved Method for the Reduction of Rocketsonde Temperature Data," March 1965.
120. Mireles, R., "Uniqueness Theorem in Inverse Electromagnetic Cylindrical Scattering," April 1965.
121. Coffman, J., "The Focusing of Sound Propagating Vertically in a Horizontally Stratified Medium," April 1965.
122. Farone, W. A., and C. Querfeld, "Electromagnetic Scattering from an Infinite Circular Cylinder at Oblique Incidence," April 1965.
123. Rachele, H., "Sound Propagation through a Windy Atmosphere," April 1965.
124. Miers, B., "Upper Stratospheric Circulation over Ascension Island," April 1965.
125. Rider, L., and M. Armendariz, "A Comparison of Pibal and Tower Wind Measurements," April 1965.
126. Hoidale, G. B., "Meteorological Conditions Allowing a Rare Observation of 24 Micron Solar Radiation Near Sea Level," *Meteorol. Magazine*, May 1965.
127. Beyers, N. J., and B. T. Miers, "Diurnal Temperature Change in the Atmosphere Between 30 and 60 km over White Sands Missile Range," *J. Atmos. Sci.*, May 1965.
128. Querfeld, C., and W. A. Farone, "Tables of the Mie Forward Lobe," May 1965.
129. Farone, W. A., Generalization of Rayleigh-Gans Scattering from Radially Inhomogeneous Spheres," *J. Opt. Soc. Amer.*, June 1965.
130. Diamond, M., "Note on Mesospheric Winds Above White Sands Missile Range," *J. Applied Meteorol.*, June 1965.
131. Clark, G. Q., and J. G. McCoy, "Measurement of Stratospheric Temperature," *J. Applied Meteorol.*, June 1965.
132. Hall, T., G. Hoidale, R. Mireles, and C. Querfeld, "Spectral Transmissivity of the Earth's Atmosphere in the 250 to 500 Wave Number Interval," #3, July 1965.

133. McCoy, J., and C. Tate, "The Delta-T Meteorological Rocket Payload," June 1964.
134. Horn, J. D., "Obstacle Influence in a Wind Tunnel," July 1965.
135. McCoy, J., "An AC Probe for the Measurement of Electron Density and Collision Frequency in the Lower Ionosphere," July 1965.
136. Miers, B. T., M. D. Kays, O. W. Thiele and E. M. Newby, "Investigation of Short Term Variations of Several Atmospheric Parameters Above 30 KM," July 1965.
137. Serna, J., "An Acoustic Ray Tracing Method for Digital Computation," September 1965.
138. Webb, W. L., "Morphology of Noctilucent Clouds," *J. Geophys. Res.*, 70, 18, 4463-4475, September 1965.
139. Kays, M., and R. A. Craig, "On the Order of Magnitude of Large-Scale Vertical Motions in the Upper Stratosphere," *J. Geophys. Res.*, 70, 18, 4453-4462, September 1965.
140. Rider, L., "Low-Level Jet at White Sands Missile Range," September 1965.
141. Lamberth, R. L., R. Reynolds, and Morton Wurtele, "The Mountain Lee Wave at White Sands Missile Range," *Bull. Amer. Meteorol. Soc.*, 46, 10, October 1965.
142. Reynolds, R. and R. L. Lamberth, "Ambient Temperature Measurements from Radiosondes Flown on Constant-Level Balloons," October 1965.
143. McCluney, E., "Theoretical Trajectory Performance of the Five-Inch Gun Probe System," October 1965.
144. Pena, R. and M. Diamond, "Atmospheric Sound Propagation near the Earth's Surface," October 1965.
145. Mason, J. B., "A Study of the Feasibility of Using Radar Chaff For Stratospheric Temperature Measurements," November 1965.
146. Diamond, M., and R. P. Lee, "Long-Range Atmospheric Sound Propagation," *J. Geophys. Res.*, 70, 22, November 1965.
147. Lamberth, R. L., "On the Measurement of Dust Devil Parameters," November 1965.
148. Hansen, F. V., and P. S. Hansen, "Formation of an Internal Boundary over Heterogeneous Terrain," November 1965.
149. Webb, W. L., "Mechanics of Stratospheric Seasonal Reversals," November 1965.
150. U. S. Army Electronics R & D Activity, "U. S. Army Participation in the Meteorological Rocket Network," January 1966.
151. Rider, L. J., and M. Armendariz, "Low-Level Jet Winds at Green River, Utah," February 1966.

152. Webb, W. L., "Diurnal Variations in the Stratospheric Circulation," February 1966.
153. Beyers, N. J., B. T. Miers, and R. J. Reed, "Diurnal Tidal Motions near the Stratopause During 48 Hours at WSMR," February 1966.
154. Webb, W. L., "The Stratospheric Tidal Jet," February 1966.
155. Hall, J. T., "Focal Properties of a Plane Grating in a Convergent Beam," February 1966.
156. Duncan, L. D., and Henry Rachele, "Real-Time Meteorological System for Firing of Unguided Rockets," February 1966.
157. Kays, M. D., "A Note on the Comparison of Rocket and Estimated Geostrophic Winds at the 10-mb Level," *J. Appl. Meteor.*, February 1966.
158. Rider, L., and M. Armendariz, "A Comparison of Pibal and Tower Wind Measurements," *J. Appl. Meteor.*, 5, February 1966.
159. Duncan, L. D., "Coordinate Transformations in Trajectory Simulations," February 1966.
160. Williamson, L. E., "Gun-Launched Vertical Probes at White Sands Missile Range," February 1966.
161. Randhawa, J. S., "Ozone Measurements with Rocket-Borne Ozonesondes," March 1966.
162. Armendariz, Manuel, and Laurence J. Rider, "Wind Shear for Small Thickness Layers," March 1966.
163. Low, R. D. H., "Continuous Determination of the Average Sound Velocity over an Arbitrary Path," March 1966.
164. Hansen, Frank V., "Richardson Number Tables for the Surface Boundary Layer," March 1966.
165. Cochran, V. C., E. M. D'Arcy, and Florencio Ramirez, "Digital Computer Program for Five-Degree-of-Freedom Trajectory," March 1966.
166. Thiele, O. W., and N. J. Beyers, "Comparison of Rocketsonde and Radiosonde Temperatures and a Verification of Computed Rocketsonde Pressure and Density," April 1966.
167. Thiele, O. W., "Observed Diurnal Oscillations of Pressure and Density in the Upper Stratosphere and Lower Mesosphere," April 1966.
168. Kays, M. D., and R. A. Craig, "On the Order of Magnitude of Large-Scale Vertical Motions in the Upper Stratosphere," *J. Geophys. Res.*, April 1966.
169. Hansen, F. V., "The Richardson Number in the Planetary Boundary Layer," May 1966.
170. Ballard, H. N., "The Measurement of Temperature in the Stratosphere and Mesosphere," June 1966.

171. Hansen, Frank V., "The Ratio of the Exchange Coefficients for Heat and Momentum in a Homogeneous, Thermally Stratified Atmosphere," June 1966.
172. Hansen, Frank V., "Comparison of Nine Profile Models for the Diabatic Boundary Layer," June 1966.
173. Rachele Henry, "A Sound-Ranging Technique for Locating Supersonic Missiles," May 1966.
174. Farone, W. A., and C. W. Querfeld, "Electromagnetic Scattering from Inhomogeneous Infinite Cylinders at Oblique Incidence," *J. Opt. Soc. Amer.* 56, 4, 476-480, April 1966.
175. Mireles, Ramon, "Determination of Parameters in Absorption Spectra by Numerical Minimization Techniques," *J. Opt. Soc. Amer.* 56, 5, 644-647, May 1966.
176. Reynolds, R., and R. L. Lamberth, "Ambient Temperature Measurements from Radiosondes Flown on Constant-Level Balloons," *J. Appl. Meteorol.*, 5, 3, 304-307, June 1966.
177. Hall, James T., "Focal Properties of a Plane Grating in a Convergent Beam," *Appl. Opt.*, 5, 1951, June 1966
178. Rider, Laurence J., "Low-Level Jet at White Sands Missile Range," *J. Appl. Meteorol.*, 5, 3, 283-287, June 1966.
179. McCluney, Eugene, "Projectile Dispersion as Caused by Barrel Displacement in the 5-Inch Gun Probe System," July 1966.
180. Armendariz, Manuel, and Laurence J. Rider, "Wind Shear Calculations for Small Shear Layers," June 1966.
181. Lamberth, Roy L., and Manuel Armendariz, "Upper Wind Correlations in the Central Rocky Mountains," June 1966.

~~UNCLASSIFIED~~

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) U. S. Army Electronics Command Ft. Monmouth, New Jersey		2a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED
2b. GROUP		
3. REPORT TITLE ROCKET-BORNE OZONESONDE		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)		
5. AUTHOR(S) (Last name, first name, initial) Randhawa, Jagir S.		
6. REPORT DATE July 1966	7a. TOTAL NO. OF PAGES 7	7b. NO. OF REFS 7
8a. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S REPORT NUMBER(S) ECOM - 5064	
b. PROJECT NO. DA 1L013C01A91A	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)	
c.		
d.		
10. AVAILABILITY/LIMITATION NOTICES Distribution of this report is unlimited.		
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY U. S. Army Electronics Command Atmospheric Sciences Laboratory White Sands Missile Range, New Mexico	
13. ABSTRACT <i>A stratospheric ozonesonde has been developed which utilizes the chemiluminescent principle for the measurement of ozone concentration after deployment from an Arcas rocket vehicle. A sample bottle empties as it is carried to low pressures of high altitudes and is ejected above the stratopause level. Flow into the bottle results from the differential pressure as the instrument descends on a drag parachute. Ozone in the environment flows over the detector and the photons produced by the destruction of ozone molecules on the chemiluminescent material are monitored by a photomultiplier tube. The output signal is transmitted on a carrier frequency of 1680 megacycles and received at the ground by AN/GMD-1 equipment. The instrument is calibrated with known concentrations of ozone and flow rate. Results of one firing are presented.</i>		

DD FORM 1473
1 JAN 64

UNCLASSIFIED

Security Classification

UNCLASSIFIED
Security Classification

14. KEY WORDS	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	ROLE	WT
<p>1. Ozone Concentration 2. Ozonesonde 3. Meteorological Rockets 4. Atmospheric Sounding</p>						
INSTRUCTIONS						
<p>1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (<i>corporate author</i>) issuing the report.</p> <p>2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.</p> <p>2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.</p> <p>3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.</p> <p>4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.</p> <p>5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.</p> <p>6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.</p> <p>7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.</p> <p>7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.</p> <p>8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.</p> <p>8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.</p> <p>9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.</p> <p>9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (<i>either by the originator or by the sponsor</i>), also enter this number(s).</p>						
<p>10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:</p> <p>(1) "Qualified requesters may obtain copies of this report from DDC."</p> <p>(2) "Foreign announcement and dissemination of this report by DDC is not authorized."</p> <p>(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through ."</p> <p>(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through ."</p> <p>(5) "All distribution of this report is controlled. Qualified DDC users shall request through ."</p> <p>If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.</p> <p>11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.</p> <p>12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (<i>paying for</i>) the research and development. Include address.</p> <p>13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.</p> <p>It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).</p> <p>There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.</p> <p>14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.</p>						

UNCLASSIFIED
Security Classification