ЛАБОРАТОРНАЯ РАБОТА № 8 ИССЛЕДОВАНИЕ СХЕМЫ С ОБЩИМ ЭМИТТЕРОМ

1. Измерение коэффициента β

1.1. Соберите схему. Тип транзистора T и E_{κ} должны соответствовать варианту задания. Амперметры должны быть в режиме **DC** (**Mode: DC**).

- 1.2. Изменение E_6 вызывает изменение тока базы I_6 и тока коллектора I_{κ} . Изменяя E_6 , установите ток коллектора $I_{\kappa 1}$ в соответствии с вариантом задания с точностью \pm **0,2 мA**. Измерьте ток базы I_{61} и ток коллектора $I_{\kappa 1}$.
- 1.3. Изменяя E_6 , установите ток коллектора $I_{\kappa 2}$ примерно на 0,1-0,5 мА больше $I_{\kappa 1}$. Измерьте ток базы I_{62} и ток коллектора $I_{\kappa 2}$.
 - 1.4. Рассчитайте коэффициент β транзистора по формуле

$$\boldsymbol{\beta} = \frac{\boldsymbol{I}_{\text{K2}} - \boldsymbol{I}_{\text{K1}}}{\boldsymbol{I}_{62} - \boldsymbol{I}_{61}}.$$

2. Схема с общим эмиттером с фиксированным током базы

2.1. Соберите схему. Тип транзистора T и E_{κ} должны соответствовать варианту задания. Амперметр должен быть в режиме DC (Mode: DC).

2.2. Рассчитайте R_{κ} и R_1 (при расчетах I_{κ} и E_{κ} должны соответствовать варианту задания, коэффициент β возьмите из первого задания)

$$egin{align} U_{69} &pprox oldsymbol{0,2} oldsymbol{B;} \ U_{K9} &pprox oldsymbol{E}_{ ext{ iny K}} / oldsymbol{2;} \ oldsymbol{R}_{ ext{ iny K}} &= \left(oldsymbol{E}_{ ext{ iny K}} - oldsymbol{U}_{ ext{ iny K}}
ight) / oldsymbol{I}_{ ext{ iny K}}; \ oldsymbol{I}_{6} &pprox oldsymbol{I}_{ ext{ iny K}} / oldsymbol{eta}_{;} \ oldsymbol{R}_{1} &= \left(oldsymbol{E}_{ ext{ iny K}} - oldsymbol{U}_{69}
ight) / oldsymbol{I}_{6}. \ \end{align}$$

- 2.3. Установите рассчитанные R_{κ} и R_1 в схему. Подайте с Function Generator на вход схемы синусоидальный сигнал с амплитудой $U_{\text{вх}} = 1$ мВ и частотой 1 к Γ ц.
- 2.4. Изменяя R_1 , установите ток коллектора I_{κ} в соответствии с вариантом задания (чем меньше R_1 , тем больше I_{κ}).
- 2.5. Подайте с **Function Generator** на вход схемы синусоидальный сигнал с амплитудой $U_{\text{вх}} = 10 \text{ мB}$ и частотой $1 \text{ к}\Gamma \text{ц}$. Измерьте с помощью маркеров **Oscilloscope** амплитуду $U_{\text{вх}}$ и $U_{\text{вых}}$ и рассчитайте коэффициент усиления схемы по напряжению:

$$oldsymbol{K}_{
m u} = oldsymbol{U}_{
m Bbix} / oldsymbol{U}_{
m Bx}; \ oldsymbol{K}_{
m u} \left[oldsymbol{\pi} oldsymbol{G}
ight] = oldsymbol{20 lg} oldsymbol{k}_{
m u} igg| .$$

- 2.6. Установите на **Bode Plotter** пределы измерения коэффициента усиления по напряжению от 0 дБ (I=0 dB) до 60 дБ (F=60 dB) и частоты от 1 Γ ц (I=1 Hz) до 200 М Γ ц (F=200 MHz).
 - 2.7. С помощью **Bode Plotter** определите:
 - а) максимальный коэффициент усиления схемы по напряжению $K_{\rm u}$ [д**Б**];
 - б) низшую $f_{\text{н гр}}$ и высшую $f_{\text{в гр}}$ граничные частоты полосы пропускания *;
 - в) частоту единичного усиления f_1 **.
- 2.8. Сравните коэффициент усиления по напряжению измеренный с помощью **Bode Plotter** с рассчитанным в пункте 2.5. Сделайте выводы.
- 2.9. Изменяя $U_{\text{вх}}$, добейтесь, чтобы выходной сигнал $U_{\text{вых}}$ имел максимальную амплитуду при минимальных искажениях. Измерьте с помощью маркеров **Oscilloscope** амплитуду $U_{\text{вх}}$ и $U_{\text{вых}}$.

^{*} Полоса пропускания — полоса частот, в диапазоне которой $K_{\rm u}$ [дБ] уменьшается не более чем на 3 дБ от своего максимального значения при неизменной амплитуде входного сигнала. Наименьшая и наибольшая частота полосы пропускания называется соответственно низшей и высшей граничной частотой.

^{**} Частота единичного усиления – частота, на которой модуль коэффициента усиления равен единице ($K_{\rm u}$ [дБ] = 20 lg 1 = 0 дБ).

3. Схема с общим эмиттером с фиксированным напряжением база - эмиттер

3.1. Соберите схему. Тип транзистора T и E_{κ} должны соответствовать варианту задания. Амперметр должен быть в режиме DC (Mode: DC).

3.2. Рассчитайте R_{κ} , R_1 и R_2 (при расчетах I_{κ} и E_{κ} должны соответствовать варианту задания, коэффициент β возьмите из первого задания)

```
egin{align} egin{aligned} oldsymbol{U_{69}} &pprox oldsymbol{0,2} oldsymbol{B}; \ oldsymbol{U_{K9}} &pprox oldsymbol{E_{K}} / oldsymbol{2}; \ oldsymbol{R_{K}} &= \left(oldsymbol{E_{K}} - oldsymbol{U_{K9}}
ight) / oldsymbol{I_{K}}; \ oldsymbol{I_{R2}} &pprox oldsymbol{k_{\mu}} oldsymbol{I_{K9}} & oldsymbol{2} \leq oldsymbol{k_{\mu}} \leq oldsymbol{5}; \ oldsymbol{R_{12}} &= oldsymbol{U_{K9}} / oldsymbol{I_{R2}}; \ oldsymbol{I_{R1}} &= oldsymbol{I_{R2}} + oldsymbol{I_{6}}; \ oldsymbol{R_{11}} &= oldsymbol{(E_{K}} - oldsymbol{U_{69}}) / oldsymbol{I_{R1}}. \end{aligned}
```

- 3.3. Установите рассчитанные R_{κ} , R_1 и R_2 в схему. Подайте с Function Generator на вход схемы синусоидальный сигнал с амплитудой $U_{\rm Bx} = 1$ мВ и частотой 1 к Γ ц.
- 3.4. Изменяя R_1 , установите ток коллектора I_{κ} в соответствии с вариантом задания (чем меньше R_1 , тем больше I_{κ}).
- 3.5. Подайте с **Function Generator** на вход схемы синусоидальный сигнал с амплитудой $U_{\text{вх}} = 10 \text{ мB}$ и частотой $1 \text{ к} \Gamma \text{ц}$. Измерьте с помощью маркеров **Oscilloscope** амплитуду $U_{\text{вх}}$ и $U_{\text{вых}}$ и рассчитайте коэффициент усиления схемы по напряжению:

$$oldsymbol{K}_{\mathrm{u}} = oldsymbol{U}_{\mathrm{BMX}} / oldsymbol{U}_{\mathrm{BX}}; \ oldsymbol{K}_{\mathrm{u}} \left[\mathbf{д} \mathbf{G}
ight] = \mathbf{20} \ \mathbf{lg} \left| oldsymbol{K}_{\mathrm{u}} \right|.$$

- 3.6. Установите на **Bode Plotter** пределы измерения коэффициента усиления по напряжению от 0 д**Б** ($\mathbf{I} = \mathbf{0}$ d**B**) до 60 д**Б** ($\mathbf{F} = 60$ d**B**) и частоты от 1 Гц ($\mathbf{I} = 1$ Hz) до 200 МГц ($\mathbf{F} = 200$ MHz).
 - 3.7. С помощью **Bode Plotter** определите:
 - а) максимальный коэффициент усиления схемы по напряжению $K_{\rm u}$ [д**Б**];
 - б) низшую $f_{\text{н гр}}$ и высшую $f_{\text{в гр}}$ граничные частоты полосы пропускания;
 - в) частоту единичного усиления f_1 .
- 3.8. Сравните коэффициент усиления по напряжению измеренный с помощью **Bode Plotter** с рассчитанным в пункте 3.5. **Сделайте выводы**.
- 3.9. Изменяя $U_{\text{вх}}$, добейтесь, чтобы выходной сигнал $U_{\text{вых}}$ имел максимальную амплитуду при минимальных искажениях. Измерьте с помощью маркеров **Oscilloscope** амплитуду $U_{\text{вх}}$ и $U_{\text{вых}}$.
- 3.10. Подайте с **Function Generator** на вход схемы синусоидальный сигнал с амплитудой $U_{\text{вх}} = 1 \text{ мB}$ и частотой $1 \text{ к}\Gamma$ ц.
- 3.11. Изменяя R_1 , установите ток коллектора I_{κ} в **1,5** раза больше заданного в варианте (чем меньше R_1 , тем больше I_{κ}).
- 3.12. Изменяя $U_{\text{вх}}$, добейтесь, чтобы выходной сигнал $U_{\text{вых}}$ имел максимальную амплитуду при минимальных искажениях. Измерьте с помощью маркеров **Oscilloscope** амплитуду $U_{\text{вх}}$ и $U_{\text{вых}}$.
- 3.13. Сравните результаты измерения $U_{\text{вх}}$ и $U_{\text{вых}}$, выполненные в пункте 3.12 с соответствующими измерениями, выполненными в пункте 3.9. Сделайте выводы.

Варианты заданий

Вариант	T	$I_{\scriptscriptstyle m K}$, mA	$E_{\scriptscriptstyle \mathrm{K}}$, B
	Models/Library/transistor/Model		
1	T101	0,72	11,2
2	T102	0,82	12,2
3	T103	0,92	13,2
4	T104	1,02	14,2
5	T105	1,12	15,2
6	T106	1,22	16,2
7	T107	1,32	17,2
8	T108	1,42	18,2
9	T109	1,52	19,2
10	T110	1,62	20,2
11	T111	1,72	21,2
12	T112	1,82	22,2
13	T113	1,92	23,2
14	T114	2,02	24,2
15	T115	2,12	25,2
16	T116	2,22	26,2
17	T117	2,32	27,2
18	T118	2,42	28,2
19	T119	2,52	29,2
20	T120	2,62	30,2
21	T121	0,74	11,4
22	T122	0,84	12,4
23	T123	0,94	13,4
24	T124	1,04	14,4
25	T125	1,14	15,4
26	T126	1,24	16,4
27	T127	1,34	17,4
28	T128	1,44	18,4
29	T129	1,54	19,4
30	T130	1,64	20,4
31	T131	1,74	21,4
32	T132	1,84	22,4
33	T133	1,94	23,4
34	T134	2,04	24,4
35	T135	2,14	25,4
36	T136	2,24	26,4
37	T137	2,34	27,4
38	T138	2,44	28,4
39	T139	2,54	29,4
40	T140	2,64	30,4
41	T141	0,76	11,6
42	T141	0,70	17,0