EE 512 Stochastic Processes

Summary and Review: Part 1

Yibin Xiong

February 2022

1/36

Course Info

- EE 512 Stochastic Processes, Spring 2022
- Instructor: Dr. Ben Reichardt, Associate Professor of Electrical and Computer Engineering (ECE) and Computer Science at USC
- Time & Location: TTH 12:30-13:50, OHE 132
- Topics: overview of probability, Poisson processes, renewal theory, discrete-time Markov chains, continuous-time Markov chains, martingales, random walks, Brownian motion, stochastic integration, stochastic differential equations and finance applications, simulation
 - * Not a measure-theoretic stochastic processes course
- Textbook(s): There is no required textbook but the following are recommended for reference
 - o Ross, S. M. Stochastic Processes.
 - Mikosch, T. *Elementary Stochastic Calculus with Finance in View*, World Scientific, 1998.

Table of Contents

Review of Probability Theory

2 Poisson Processes

Renewal Theory

Common Discrete Distributions

Table 7.1 Discrete Probability Distribution.						
	Probability mass function, $p(x)$	Moment generating function, $M(t)$	Mean	Variance		
Binomial with parameters n, p ; $0 \le p \le 1$	$\binom{n}{x} p^{x} (1-p)^{n-x}$ $x = 0, 1, \dots, n$	$(pe^t + 1 - p)^n$	пр	np(1-p)		
Poisson with parameter $\lambda > 0$	$e^{-\lambda} \frac{\lambda^x}{x!}$ $x = 0, 1, 2, \dots$	$\exp{\{\lambda(e^t-1)\}}$	λ	λ		
Geometric with parameter $0 \le p \le 1$	$p(1-p)^{x-1}$ $x = 1, 2, \dots$	$\frac{pe^t}{1-(1-p)e^t}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$		
Negative binomial with parameters r, p ; $0 \le p \le 1$	$\binom{n-1}{r-1}p^r(1-p)^{n-r}$	$\left[\frac{pe^t}{1-(1-p)e^t}\right]^r$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$		
	$n = r, r + 1, \dots$					

Common Continuous Distributions

Table 7.2 Continuous Probability Distribution.						
	Probability density function, $f(x)$	Moment generating function, $M(t)$	Mean	Variance		
Uniform over (a, b)	$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$		
Exponential with parameter $\lambda > 0$	$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$	$\frac{\lambda}{\lambda - t}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$		
Gamma with parameters $(s,\lambda), \lambda > 0$	$f(x) = \begin{cases} \frac{\lambda e^{-\lambda x} (\lambda x)^{s-1}}{\Gamma(s)} & x \ge 0\\ 0 & x < 0 \end{cases}$	$\left(\frac{\lambda}{\lambda - t}\right)^s$		$\frac{s}{\lambda^2}$		
Normal with parameters (μ, σ^2)	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2} -\infty < x < \infty$	$\exp\left\{\mu t + \frac{\sigma^2 t^2}{2}\right\}$	μ	σ^2		

cf. Sheldon Ross, A First Course in Probability, 9th

Yibin Xiong

Conditioning and Independence

When we talk about events,

Conditional Probability

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A)\mathbb{P}(B|A)}{\mathbb{P}(B)}$$

Law of Total Probability

$$\mathbb{P}\left(A
ight) = \sum_{i} \mathbb{P}\left(A \cap \Omega_{i}
ight) = \mathbb{P}\left(\Omega_{i}
ight) \mathbb{P}\left(A | \Omega_{i}
ight)$$

Law of Total Expectation (see Tower Rule later)

$$\mathbb{E}\left[A\right] = \sum_{i} \mathbb{P}\left(\Omega_{i}\right) \mathbb{E}\left[A|\Omega_{i}\right]$$

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

Conditioning and Independence

Conditional PDF

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_y(y)}$$

Conditional expectation

$$\mathbb{E}[X|Y=t] = \int_{-\infty}^{\infty} x \, f_{X|Y}(x|t) \, dx$$

$$\mathbb{E}[X|Y\leq t] = \int_{-\infty}^{t} \int_{-\infty}^{\infty} x \, f_{X|Y}(x,y) f_{Y}(y) \, dx \, dy$$

• Independence: If X_1, \ldots, X_n are independent

$$\mathbb{E}\left[\prod_{i=1}^{n} X_{i}\right] = \prod_{i=1}^{n} \mathbb{E}\left[X_{i}\right]$$

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)$$

Conditional Expectation & Conditional Variance

Tower Rule (i.e. Total Expectation law applied to r.v.)

$$\mathbb{E}\left[\mathbb{E}\left[X|Y\right]\right] = \mathbb{E}\left[X\right]$$

• More properties:

$$\mathbb{E}[X g(Y)|Y] = g(Y)\mathbb{E}[X|Y]$$

$$\mathbb{E}[\mathbb{E}[X|Y,Z]|Y] = \mathbb{E}[X|Y]$$

Conditional Variance

$$\begin{aligned} \mathsf{Var}\left(X|Y\right) &:= \mathbb{E}\left[\left(X - \mathbb{E}\left[X|Y\right]\right)^2|Y\right] \\ &= \mathbb{E}\left[\mathsf{Var}\left(X|Y\right)\right] + \mathsf{Var}\left(\mathbb{E}\left[X|Y\right]\right) \end{aligned}$$

◆□▶◆□▶◆■▶◆■▶ ● 900

8/36

Important Inequalities

Union Bound:

$$\mathbb{P}\left(igcup_{j=1}^{\infty} E_j
ight) \leq \sum_{j=1}^{\infty} \mathbb{P}\left(E_j
ight)$$

• Markov's inequality: If $X \ge 0$,

$$\mathbb{P}(X \geq k) \leq \frac{\mathbb{E}[X]}{k}$$

• Chebyshev's inequality: $Var(X) < \infty$,

$$\mathbb{P}\left(\left|X - \mathbb{E}\left[X\right]\right| \ge k\right) \le \frac{\mathsf{Var}\left(X\right)}{k^2}$$

Important Inequalities

With the moment generating function, $M(t) = \mathbb{E}\left[e^{tX}\right]$, we have

Chernoff Bound:

$$\mathbb{P}\left(X\geq a\right)\leq e^{-ta}M(t)$$

• Hoeffding's inequality (see Azuma's inequality later): Let X_1, \ldots, X_n be n independent random variables such that $a_i \leq X_i \leq b_i \ \forall i$ almost surely. Let $S_n = X_1 + \cdots + X_n$

$$\mathbb{P}\left(\left|S_{n}-\mathbb{E}\left[S_{n}\right]\right| \geq t\right) \leq 2 \exp\left(-\frac{2t^{2}}{\sum_{i=1}^{n}(b_{i}-a_{i})^{2}}\right)$$

Aside: Properties of MGF

- $\bullet \ \frac{d^n}{dt^n} M(t) \big|_{t=0} = \mathbb{E} \left[X^n \right]$
- If X, Y are independent, $M_{X+Y}(t) = M_X(t)M_Y(t)$

10 / 36

Measure-theoretic Concepts & Consequences

Continuity of Probability

$$\lim_{n \to \infty} \mathbb{P}\left(\bigcup_{j=1}^{n} E_{j}\right) = \mathbb{P}\left(\bigcup_{j=1}^{\infty} E_{j}\right)$$
$$\lim_{n \to \infty} \mathbb{P}\left(\bigcap_{j=1}^{n} E_{j}\right) = \mathbb{P}\left(\bigcap_{j=1}^{\infty} E_{j}\right)$$

• Finitely/Infinitely Many Events Occur

many events occur

$$E_1, E_2, E_2, ...$$

{finitely many E_i } \iff \exists in sufficiently large that for all $j \ge n$ in E_i occurs

{infinitely many E_i } \iff for all n , \exists $j \ge n$ so E_i occurs

occur

 $\bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} E_j$

Measure-theoretic Concepts & Consequences

Borel-Cantelli Lemma

If
$$\sum_{j=1}^{\infty} \mathbb{P}(E_j) < \infty$$
, then $\mathbb{P}(\text{infinitely many } E_j \text{ occur}) = 0$.

For independent events,

$$\sum_{j=1}^{\infty} \mathbb{P}(E_j) < \infty \iff \mathbb{P}(\text{infinitely many } E_j \text{ occur}) = 0$$

Limit Theorems

Strong Law of Large Numbers

Let X_1, X_2, \ldots be i.i.d. random variables with finite mean μ .

$$\mathbb{P}\left(\lim_{n\to\infty}\frac{1}{n}(X_1+\cdots+X_n)=\mu\right)=1$$

(converges almost surely)

Limit Theorems

Strong Law of Large Numbers

Let X_1, X_2, \ldots be i.i.d. random variables with finite mean μ .

$$\mathbb{P}\left(\lim_{n\to\infty}\frac{1}{n}(X_1+\cdots+X_n)=\mu\right)=1$$

(converges almost surely)

Central Limit Theorem

Let X_1, X_2, \ldots be i.i.d. random variables with finite mean μ and finite variance σ^2 .

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{X_1+\cdots+X_n-n\mu}{\sqrt{n}\sigma}\leq a\right)=\Phi(a)$$

(converges in distribution, see also Berry-Esseen Theorem for convergence rate)

Other Things to Note for Solving Problems

For problems about (finding) expectations,

• For any continuous *non-negative* random variable $X \ge 0$,

$$\mathbb{E}\left[X\right] = \int_0^\infty \mathbb{P}\left(X > x\right) \, dx$$

- Recurrence relation!
- Integration by parts
- Conditioning and Bayes rule
- Fubini Theorem: exchange the order of integration

. . .

Table of Contents

Review of Probability Theory

Poisson Processes

Renewal Theory

15 / 36

Poisson and Exponential Random Variables

- Interpretation: Let $X \sim \mathsf{Poisson}(\lambda)$. X represents the number of events happened in unit time. Let $Y \sim \mathsf{Exp}(\lambda)$. Y represents the length of time between 2 consecutive events.
- Poisson is the continuous-time analogue of binomial distribution, and exponential is the continuous-time analogue of geometric distribution.

Poisson and Exponential Random Variables

- Interpretation: Let $X \sim \mathsf{Poisson}(\lambda)$. X represents the number of events happened in unit time. Let $Y \sim \mathsf{Exp}(\lambda)$. Y represents the length of time between 2 consecutive events.
- Poisson is the continuous-time analogue of binomial distribution, and exponential is the continuous-time analogue of geometric distribution.

Binomial Converges to Poisson

Let $X_n \sim \text{Binomial}(n, p_n)$ If $np_n \to \lambda$ as $n \to \infty$,

$$\mathbb{P}(X_n = k) \to e^{-\lambda} \frac{\lambda^k}{k!}$$
 as $n \to \infty$

Poisson and Exponential Random Variables

- Interpretation: Let $X \sim \text{Poisson}(\lambda)$. X represents the number of events happened in unit time. Let $Y \sim \text{Exp}(\lambda)$. Y represents the length of time between 2 consecutive events.
- Poisson is the continuous-time analogue of binomial distribution, and exponential is the continuous-time analogue of geometric distribution.

Binomial Converges to Poisson

Let $X_n \sim \text{Binomial}(n, p_n)$ If $np_n \to \lambda$ as $n \to \infty$,

$$\mathbb{P}(X_n = k) \to e^{-\lambda} \frac{\lambda^k}{k!}$$
 as $n \to \infty$

- Summation of i.i.d. R.V.'s \circ If $X_1 \sim \text{Poisson}(\lambda_1)$ and $X_2 \sim \text{Poisson}(\lambda_2)$ are independent, then $X_1 + X_2 \sim \text{Poisson}(\lambda_1 + \lambda_2).$
 - \circ If $X_1, X_2 \sim \text{Exp}(\lambda)$ are i.i.d., then $X_1 + X_2 \sim \text{Gamma}(2, \lambda)$.

February 2022

16 / 36

Poisson Process: Motivation

- ⊳ Stochastic processes: think not just of random variables, but random variables ordered in time.
- > Assumptions for a Poisson process
 - Bernoulli process (i.i.d. Bernoulli trials) with infinitesimal length of time intervals
 - at most 1 event can happen in an infinitesimal length of time (we disregard the "multiple events" cases that has small probability $o(\delta_t)$)

Poisson Process: Motivation

- \triangleright Stochastic processes: think not just of random variables, but random variables ordered in time.
- > Assumptions for a Poisson process
 - Bernoulli process (i.i.d. Bernoulli trials) with infinitesimal length of time intervals
 - at most 1 event can happen in an infinitesimal length of time (we disregard the "multiple events" cases that has small probability $o(\delta_t)$)
- ightharpoonup Counting process: $N(t) \in \mathbb{N} \cup \{0\}$ represents the number of events happened up to time t.

Independent and Stationary Increments

- A counting process has **independent increments** if the number of events that occur in *disjoint* time intervals are *independent*.
- o A counting process has **stationary increments** if the distribution of the number of events occurred in any time interval depends *only* on the length of the interval (so independent of where the time interval is).

Poisson Process: Definitions

Poisson Process

A **Poisson process** with rate λ is a counting process with

- i) N(0) = 0
- ii) independent increments
- iii) the number of events in any time interval of length t, denoted as N(t+s)-N(s), follows Poisson (λt)
- - Count: the number of events occurred by t. $N(t) \sim \mathsf{Poisson}(\lambda t)$
 - Interarrival time: the time between 2 consecutive events n-1 and n. $X_n \sim \mathsf{Exp}(\lambda)$
 - Arrivial time: the time until event n occurred. $S_n = \sum_{i=1}^n X_i \sim \operatorname{Gamma}(n,\lambda)^{-1}$

Yibin Xiong Part 1: Poisson and Renewal February 2022

18 / 36

¹a Gamma distribution whose first parameter is a natural number is called Erlang distribution.

Poisson Process: Definitions

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

19 / 36

Memoryless Property

In Poisson processes, the **memoryless property** has its meanings in two folds:

- o Independent increments, and thus i.i.d. interarrival times
- * also holds for renewal processes, see next chapter
- \circ The exponential r.v. is (the only continuous) r.v. that satisfies $\forall s, t > 0$:

$$\mathbb{P}\left(X>s+t|\,X>t\right)=\mathbb{P}\left(X>s\right)$$

Combining and Splitting Poisson Processes

21/36

Poisson Process: More Important Results

Minimum of 2 independent Exponential random variables

Let $X_1 \sim \mathsf{Exp}(\lambda_1), X_2 \sim \mathsf{Exp}(\lambda_2)$ be independent. Then

- $\circ \ Z := \min\{X_1, X_2\} \sim \mathsf{Exp}(\lambda_1 + \lambda_2)$
- $\circ \mathbb{P}(X_1 < X_2) = \frac{\lambda_1}{\lambda_1 + \lambda_2}$
- \circ Z is independent of the events $\{X_1 < X_2\}, \{X_1 > X_2\}$

Conditional Distribution of Arrival Times

For a Poisson process, conditioned on N(t) = n, the set of arrival times $\{S_1, \ldots, S_n\}$ and a set of n i.i.d. Uniform(0,t) variables $\{U_1, \ldots, U_n\}$ has the same distribution.

* An important theorem for simulation and problem solving

- ◆□▶◆@▶◆意▶◆意▶ · 意 · かへぐ

22 / 36

Non-homogeneous Poisson Processes

 \triangleright For **non-homogeneous** Poisson processes with rate $\lambda(t)$,

$$orall \, r \geq s \geq 0 : \mathit{N}(r) - \mathit{N}(s) \sim \mathsf{Poisson}\left(\int_{s}^{r} \lambda(t) \, dt
ight)$$

* It still has independent increments, but probably not stationary.

Example: $M/G/\infty$ queuing system

Consider a queuing system that has infinite servers and the customer arrivals is a Poisson process with rate λ .

- $S_n :=$ the time that *n*-th customer arrives
- T := the service time that each server needs
- Y(t) := the number of customers in service at time t.

$$Y(t) \sim \mathsf{Poisson}\left(\lambda \int_0^t \mathbb{P}\left(T > x\right) \, dx\right)$$

23 / 36

Example: $M/G/\infty$ Queue

$$N(t) = \#$$
 customers arrived by time $t \sim Poisson(\lambda t)$.

Y(t) still inservice

Condition on $N(t) = n$
 $\Rightarrow \{S_1, S_2, ..., S_n\} \sim \{U_1, U_2, ..., U_n\} \}$
 $\uparrow iid$. Uniform(0,t)

Consider one of these customers.

P[still in service at time t] = $P[Ut T > t]$
 $\Rightarrow \{S_n, S_n\} = \{U_n, U_n\} \}$
 $\Rightarrow \{U_n, U_n\} \} = \{U_n, U_n\} \} \}$

This does not depend on $n!$
 $\Rightarrow \{U_n, U_n\} \} \} \}$
 $\Rightarrow \{U_n, U_n\} \} \} \}$
 $\Rightarrow \{U_n, U_n\} \} \} \}$

This does not depend on $n!$
 $\Rightarrow \{U_n, U_n\} \} \} \} \}$
 $\Rightarrow \{U_n, U_n\} \} \}$
 $\Rightarrow \{U_n, U_n\} \} \} \}$
 $\Rightarrow \{U_n, U_n\} \}$
 \Rightarrow

Y(t) ~ Poisson (At + [P[T>x] dx) /

Compound Poisson Processes

 \triangleright A stochastic process $\{X(t): t \ge 0\}$ is said to be a **compound Poisson process** if it can be represented by

$$X(t) = \sum_{t=0}^{N(t)} X_t$$

where $\{N(t): t \geq 0\}$ is a Poisson process and $\{X_i\}_{i=1}^{\infty}$ are i.i.d. random variables that are *independent* of the process $\{N(t): t \geq 0\}$.

- ullet Tower rule: $\mathbb{E}\left[X(t)
 ight] = \mathbb{E}\left[N(t)
 ight]\mathbb{E}\left[X_i
 ight] = \lambda t\mathbb{E}\left[X_i
 ight]$ (see Wald's identity later)
- $\operatorname{\mathsf{Var}}(X(t)) = \mathbb{E}\left[\mathsf{N}(t)\right]\operatorname{\mathsf{Var}}(X_i) + \operatorname{\mathsf{Var}}\left(\mathsf{N}(t)\right)\mathbb{E}\left[X_i^2\right]^2 = \lambda t\mathbb{E}\left[X_i^2\right]$

4□ > 4□ > 4 = > 4 = > = 90

Table of Contents

Review of Probability Theory

2 Poisson Processes

Renewal Theory

Renewal Processes

Renewal Process

A counting process which has i.i.d. interarrival times is called a **renewal process**.

 \circ If the interarrival times after time t are i.i.d., it is called **delayed** renewal process.

- Renewal processes have independent and stationary increments.
- When determining whether a stochastic process is a renewal process, be careful with
 - ∘ Whether X_1 and $\{X_i, i \ge 2\}$ have the same distribution
 - \circ Whether $\{X_i, i \in \mathbb{N}\}$ are independent, i.e. whether there is some "internal" state of event n that X_{n+1} depends on

Inspection Paradox

Put it in words: When you want to check the interarrival time, you are more likely to fall into a long time interval and wait longer.

Inspection Paradox

Let s be the time of inspection. For any renewal process, $\forall t \geq 0$:

$$\mathbb{E}\left[X_{N(t)+1}\right] \ge \mathbb{E}\left[X_{1}\right]$$

$$\lim_{t \to \infty} \mathbb{E}\left[X_{N(t)+1}\right] = \frac{\mathbb{E}\left[X_{1}^{2}\right]}{\mathbb{E}\left[X_{1}\right]}$$

$$\lim_{t \to \infty} \mathbb{E}\left[S_{N(t)+1} - s\right] = \frac{\mathbb{E}\left[X_{1}^{2}\right]}{2\,\mathbb{E}\left[X_{1}\right]}$$

For a Poisson process with rate λ ,

$$\mathbb{P}\left(X_{N(t)+1} > x\right) = e^{-\lambda x} (1 + \lambda \min\{x, t\})$$

28 / 36

Limit Theorems

We assume we know the distribution of X_i . Let $\mu := \mathbb{E}[X_i]$.

- > Can infinitely many events occur in a finite amount of time?
- No, by strong law of large numbers

$$\mathbb{P}\left(\lim_{n\to\infty}\frac{S_n}{n}=\mu\right)=1$$

so as $n \to \infty$, $S_n \to \infty$ with probability 1.

- \triangleright Distribution of N(t)
 - $\forall 0 \le t < \infty : N(t) < \infty$ with probability 1
 - ullet as $n o \infty$, $N(t) o \infty$ with probability 1

29/36

Limit Theorems

Strong Law for Renewal Processes

$$\mathbb{P}\left(\lim_{t o\infty}rac{ extstyle N(t)}{t}=rac{1}{\mu}
ight)=1$$

Renewal Reward Theorem (weighted version of above)

For a renewal process, let R_1, \ldots be random variables such that the pairs (X_n, R_n) are i.i.d. (i.e. R_n 's are i.i.d. and R_n is independent of X_m for all $n \neq m$).

$$\mathbb{P}\left(\lim_{t\to\infty}\frac{1}{t}\sum_{n=1}^{N(t)}R_n=\frac{\mathbb{E}\left[R_n\right]}{\mathbb{E}\left[X_n\right]}\right)=1$$

◆ロト ◆母ト ◆喜ト ◆喜ト ・ 喜 ・ 夕♀♡・

30 / 36

Application: Proof of Inspection Paradox (waiting time)

Let
$$I(t) := \int_0^t (S_{N(s)+1} - s) \, ds$$
. Then $I(t) = \frac{1}{2} \left(X_1^2 + \dots + X_{N(t)}^2 \right) + \text{Rem}$

$$\frac{1}{2} \sum_{j=1}^{N(t)} X_j^2 \le I(t) \le \frac{1}{2} \sum_{j=1}^{N(t)+1} X_j^2$$

$$\frac{\frac{1}{2} \sum_{j=1}^{N(t)} X_j^2}{N(t)} \cdot \frac{N(t)}{t} \le \frac{I(t)}{t} \le \frac{\frac{1}{2} \sum_{j=1}^{N(t)+1}}{N(t)+1} \cdot \frac{N(t)+1}{t}$$

Take $t \to \infty$, by squeeze theorem we have

$$\lim_{t\to\infty}\int_0^t (S_{N(s)+1}-s)\,ds=\frac{\mathbb{E}\left[X_1^2\right]}{2\mathbb{E}\left[X_1\right]}$$

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

Limit Theorems

Remark: We know that $\mathbb{E}[S_n] = n\mu$, $\text{Var}(S_n) = n\sigma^2$. We have also proved that, almost surely, $\lim_{t\to\infty} \frac{N(t)}{t} = 1$. But we have not shown that $\mathbb{E}[N(t)] \to \pm$.

Wald's Identity

 \triangleright $N \in \{0, 1, ...\}$ is a **stopping time** for the sequence $\{X_1, ...\}$ if the event $\{N = n\}$ ONLY depends on $X_1, ..., X_n$.

* For a renewal process, the stopping time is N(t) + 1, not N(t).

Wald's Identity

 $\triangleright N \in \{0,1,\dots\}$ is a **stopping time** for the sequence $\{X_1,\dots\}$ if the event $\{N=n\}$ ONLY depends on X_1,\dots,X_n .

* For a renewal process, the stopping time is N(t) + 1, not N(t).

Wald's Identity

Let X_1, \ldots, X_n be i.i.d. with $|\mathbb{E}[X_j]| < \infty$. Let N be a stopping time for the sequence with $\mathbb{E}[N] < \infty$.

$$\mathbb{E}\left[\sum_{n=1}^{N} X_n\right] = \mathbb{E}\left[N\right] \mathbb{E}\left[X_j\right]$$

- * A way to compute $\mathbb{E}[N]$
- * Corollary: For a renewal process $\mathbb{E}\left[S_{N(t)+1}\right] = (\mathbb{E}\left[N(t)\right] + 1)\,\mathbb{E}\left[X\right]$

- (ロ) (個) (差) (差) (差) ぞく(e)

33 / 36

Elementary Renewal Theorem

Elementary Renewal Theorem

For a renewal process,

$$\lim_{t\to\infty}\frac{\mathbb{E}\left[N(t)\right]}{t}=\frac{1}{\mu}$$

- * part of the proof uses the corollary of Wald's identity
- * This theorem is about the asymptotic "slope" of the scant line between (0,0) and $(t,\mathbb{E}[N(t)])$. We will see Blackwell's Theorem that shows the asymptotic "slope", or say derivative, at the point $(t,\mathbb{E}[N(t)])$

Blackwell's Theorem

 \triangleright We call the distribution of interarrival times X_i lattice if X_i can only takes on values that are *integer* multiples of d for some d > 0.

* If X_i only takes on rational values, then it is lattice.

Blackwell's Theorem (non-lattice version)

For a renewal process with *non-lattice* interarrival times,

$$\forall \, \delta > 0 : \lim_{t \to \infty} \mathbb{E}\left[N(t + \delta) - N(t) \right] = \frac{\delta}{\mu}$$

Blackwell's Theorem (lattice version)

For a renewal process with *non-lattice* interarrival times,

$$\lim_{n o\infty}\mathbb{E}\left[ext{the number of events happened at }\mathit{nd}
ight]=rac{d}{\mu}$$

35 / 36

References

- Professor Ben Reichardt's Lecture Notes. USC Spring 2022.
- Ross, Sheldon M. A First Course in Probability. Boston: Pearson, 2019.
- Ross, Sheldon M., et al. Stochastic Processes. Vol. 2. New York: Wiley, 1996.