VERILOG ASSIGNMENT

PROBLEM STATEMENT

To create a simple CPU using Verilog that performs the following instructions on 8-bit

- Add
- Subtract
- Increment
- Decrement
- AND
- OR
- NOT

APPROACH

The CPU Unit takes a 19-bit instruction as input. This instruction is split into a 3-bit operation, and two 8-bit operands. The 3-bit operation is passed into a decoder which gives an 8-bit control bus as output. The ALU takes the control bus and operands as input, and performs the operations on them and gives the required output.

Operation Code (3 bits)	Operand 1 (8 bits)	Operand 2 (8 bits)
----------------------------	--------------------	--------------------

FILES USED:-

FullAdder.v – Contains two modules: HalfAdder and FullAdder

- HalfAdder takes two one-bit inputs(A, B), and outputs the sum and carry bits generated by them. Sum is the XOR of the two inputs and carry is the AND of the two inputs.
- FullAdder takes three one-bit inputs(A,B and Ci), and outputs the sum and carry bits generated by them. It uses two HalfAdder modules.

ADD_SUB.v - Contain two modules : ADD and SUB

- ADD takes two 8-bit buses and outputs the sum of the two. It uses 8 FullAdder modules to compute the result. It uses Ripple Carry Addition principle.
- SUB takes two 8-bit buses and outputs the difference(A-B). The result is obtained by adding A to the 2's complement of B using the ADD module. 2's complement is obtained by taking NOT of B and incrementing.

AND_OR_NOT.v – Contains three modules : AND, OR and NOT.

- AND takes two 8-bit buses and outputs the logic AND of the two.
- OR takes two 8-bit buses and outputs the logic OR of the two.
- NOT takes one 8-bit bus and outputs the logic NOT.

INC_DEC.v – Contains two modules : INC and DEC.

- INC takes an 8-bit bus and outputs the number obtained by incrementing it.
- DEC takes an 8-bit bus and outputs the number obtained by decrementing it.

CPU.v – Central Processing Unit.

- Takes a 19-bit instruction as input. Seperates the instruction to a 3-bit operation, and two 8-bit operands.
- Implements a 3x8 decoder taking the operation as input and an 8-bit control bus as output.
- Sends the operands and control bus to the ALU.
- Output of the ALU is the result.

ALU.v – Arithmetic and logic unit.

- Takes the two 8-bit operands and an 8-bit control bus as inputs and outputs an 8-bit result.
- Uses the seven modules and stores their outputs.
- Takes AND of the the seven modules with the corresponding control bus signal.
- Finally it takes OR of all the seven to give the final output.

SNAPSHOT OF GTKWAVE OUTPUT

