Constraints Satisfaction Problems

Dr. Sandareka Wickramanayake

Reference

 Artificial Intelligence - A Modern Approach – Chapter 6 – Sections 1 and 4.

Constraint Satisfaction Problems (CSPs)

- In a standard search problem:
 - State is a "black box" to the search algorithm it is not aware of the internal structure of the states.
 - Internal data structure of states can only be accessed by problemspecific functions.
 - Successor function, heuristic function, and goal test

• CSP:

- States and goal test of a CSP conforms to a standard structure and a simple representation
 - This allows search algorithms to take advantage of the structure of states and use general-purpose heuristics instead of problem-specific ones.

Constraint Satisfaction Problems(CSPs)

- CSP is defined by
 - A set of variables $X = \{X_1, X_2, ..., X_n\}$, where each X_i , can take values from domain D_i
 - A set of constraints, $C = \{C_1, C_2, ..., C_m\}$
- A domain, $D_{i,}$ consists of a set of allowable values, $\{v_1, v_2, ..., v_k\}$ for variable X_i
- E.g., if *X_i* is Boolean the domain is {*true, false*}
- Different variables can have different domains of different sizes.

Constraint Satisfaction Problems(CSPs)

- Each constraint C_j involves a subset of X and specifies legal combinations of values for that subset
- A state is defined by an assignment of values to all or some of the variables, $\{X_i = v_i, X_i = v_i, ...\}$
 - E.g., If X_1 and X_2 both have the domain $\{1,2,3\}$, then the constraint saying that X_1 must be greater than X_2 can be written as $\langle (X_1, X_2), \{(3,1), (3,2), (2,1)\} \rangle$ or $\langle (X_1, X_2), X_1 \rangle X_2 \rangle$

Constraint Satisfaction Problems(CSPs)

- An assignment that doesn't violate any constraint is called a consistent or legal assignment.
- If every variable is assigned a value, it is a complete assignment.
- A solution to a CSP is a complete and consistent assignment.
 - E.g., One that has all variables assigned with values and satisfies all the constraints

Example: Map-Coloring

Constraint graph

Nodes – Variables

Edges – Connect any two
variables that participate in a
constraint.

- Variables WA, NT, Q, NSW, V, SA, T
- Domains D_i = {red, green, blue}
- Constraints: adjacent regions must have different colors
 - e.g., WA ≠ NT, Q ≠ NW, ... etc.
 - Legal values under the constraint WA ≠ NT are;
 (WT,NT) ε {(red,green), (red,blue), (green,red), (green,blue), (blue,red), (blue,green)}

Example: Map-Coloring

Solutions are complete and consistent assignments, e.g., WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green.

Why Formulate a Problem as a CSP?

- Provide a natural representation for a wide variety of problems.
- CPS solvers are fast and efficient.
- Can quickly eliminate a large portion of the search space that violates the constraints which an atomic state-space searcher cannot.
 - E.g., Once we have chosen SA = blue in the Australia problem, we can conclude that none of the five neighboring variables can take on the value.

Real-world CSPs

- Class Assignment problems
 - E.g., who teaches what class
- Timetabling problems
 - E.g., which class is offered when and where?
- Transportation Scheduling
- Factory Scheduling

Notice that many real-world problems involve real-valued variables

Variations on the CSP Formalism

- Type of variables
 - Discrete variables
 - Finite domains:
 - n variables, each having a domain of size d, leads to O(dⁿ) possible complete assignments
 - E.g., Map coloring problems and 8-queens
 - Infinite domains:
 - Integers, strings, etc.
 - E.g., job scheduling, where variables are start/end days for each job
 - Continuous variables
 - E.g., start/end times for Hubble Space Telescope observations
 - · Liner programming.

Variations on the CSP Formalism

- Type of constraints
 - Unary constraints involving a single variable.
 - E.g., SA ≠ green
 - Binary constraints involving pairs of variables.
 - E.g., SA ≠ WA
 - Global constraints involving an arbitrary number of variables.

Local Search for CSPs

- Hill-climbing, simulated annealing, and others can be used for CSPs
 - Typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators reassign variable values
- Initial state: Some assignment to all variables. E.g., random
- Successor function: Usually changes the value of a single variable
- Variable selection: Randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - E.g., hill-climb with h(n) = total number of violated constraints

Min-conflicts Example

- A two-step solution for an 8-queens problem using min-conflicts heuristic
- At each stage a queen is chosen for reassignment in its column
- The algorithm moves the queen to the min-conflict square, breaking ties randomly.

Local Search for CSPs

```
function MIN-CONFLICTS(csp, max steps) return solution
 or failure
 inputs: csp (a constraint satisfaction problem),
     max steps (the number of steps allowed before
 giving up)
 current \leftarrow an initial complete assignment for csp
 for i = 1 to max steps do
     if current is a solution for csp
     then return current
     var \leftarrow a randomly chosen, conflicted variable
 from VARIABLES[csp]
     value \leftarrow the value v for var that minimize
 CONFLICTS (var, v, current, csp)
     set var = value in current
 return failure
```