

постановка задачи и основные определения

$$f(x^*) = \min_{x \in X} f(x); \quad f(x^*) = \max_{x \in X} f(x),$$
 (1a)

где $X = \left\{ x \middle| \begin{array}{l} g_j(x) = 0, & j = 1, \dots, m; & m < n \\ g_j(x) \leq 0, & j = m+1, \dots, p \end{array} \right\}, m$ и p — числа; f(x) — целевая функция, $g_j(x), j = 1, \dots, p$, — функции, задающие ограничения (условия).

Будем считать функции f(x); $g_j(x), j=1,...,p$, дважды непрерывно дифференцируемыми на множестве R^n , а функции $g_j(x)$, задающие ограничения, — называть для краткости просто ограничениями. При p=m задача (1a) со смешанными ограничениями преобразуется в задачу с ограничениями типа равенств, а при m=0 в задачу с ограничениями типа неравенств.

УСЛОВНЫЙ ЭКСТРЕМУМ ПРИ ОГРАНИЧЕНИЯХ ТИПА НЕРАВЕНСТВ

Постановка задачи

Даны дважды непрерывно дифференцируемые целевая функция $f(x) = f\left(x_1, \ldots, x_n\right)$ и функции ограничений $g_j(x) = g_j\left(x_1, \ldots, x_n\right) \leq 0, \ j=1,\ldots,m,$ определяющие множество допустимых решений X .

Требуется исследовать функцию f(x) на экстремум, т.е. определить точки $x^* \in X$ ее локальных минимумов и максимумов на множестве X:

$$f(x^*) = \min_{x \in X} f(x); \quad f(x^*) = \max_{x \in X} f(x), \tag{1}$$

где
$$X = \{ x \mid g_j(x) \le 0, j = 1,...,m \}.$$

Утверждение 1 (необходимые условия минимума (максимума) первого порядка).

Пусть x^* – точка локального минимума (максимума) в задаче (1). Тогда найдется такое число $\lambda_0^* \ge 0$ и вектор $\lambda^* = (\lambda_1^*, \dots, \lambda_m^*)^T$, не равные одновременно нулю и такие, что выполняются условия:

• стационарности обобщенной функции Лагранжа по х :

$$\frac{\partial L(x^*, \lambda_0^*, \lambda^*)}{\partial x_i} = 0, \qquad i = 1, \dots, n ; \qquad (2 a)$$

• допустимости решения:

$$g_{i}(x^{*}) \le 0, \quad j = 1, ..., m;$$
 (2 6)

• неотрицательности для условного минимума:

$$\lambda_j^* \ge 0, \quad j = 1, \dots, m \tag{2 B}$$

(неположительности для условного максимума: $\lambda_{j}^{*} \leq 0, \ j = 1,...,m$);

• дополняющей нежесткости:

$$\lambda_{j}^{*} g_{j}(x^{*}) = 0, \quad j = 1, ..., m.$$
 (2 Γ)

Если при этом градиенты активных в точке x^* ограничений линейно независимы (выполняется условие регулярности), то $\lambda_0^* \neq 0$.

Замечания.

- 1. Если в решаемой задаче ограничения записаны в форме $g_j(x) \ge 0$, то их необходимо переписать в виде, используемом в (1): $-g_j(x) \le 0$.
- 2. Далее будем использовать *множество индексов ограничений, активных в* точке x^* , которое обозначим через J_a .
- 3. Точка экстремума, удовлетворяющая системе (2) при $\lambda_0^* \neq 0$, называется регулярной, а при $\lambda_0^* = 0$ нерегулярной. Случай $\lambda_0^* = 0$ отражает вырожденность ограничений.
- 4. Из условия дополняющей нежесткости следует, что если ограничение в точке x^* пассивное, т.е. $g_j(x^*) < 0$, то $\lambda_j^* = 0$, а если активное, т.е. $g_j(x^*) = 0$, то $\lambda_j^* \ge 0$ (для минимума) и $\lambda_j^* \le 0$ (для максимума).

Утверждение 2 (достаточные условия минимума (максимума) первого порядка).

Пусть имеется точка (x^*,λ^*) , удовлетворяющая системе (2) при $\lambda_0^* \neq 0$, число активных ограничений в точке x^* совпадает с числом n переменных (при этом условие регулярности выполняется). Если $\lambda_j^* > 0$ для всех $j \in J_a$, то точка x^* — точка условного локального минимума. Если $\lambda_j^* < 0$ для всех $j \in J_a$, то x^* — точка условного локального максимума в задаче (1).

Утверждение 3 (необходимое условие минимума (максимума) второго порядка).

Пусть x^* – регулярная точка минимума (максимума) в задаче (1) и имеется решение (x^*,λ^*) системы (2). Тогда второй дифференциал классической функции Лагранжа, вычисленный в точке (x^*,λ^*) , неотрицателен (неположителен):

$$d^{2}L(x^{*},\lambda^{*}) \ge 0 \qquad (d^{2}L(x^{*},\lambda^{*}) \le 0)$$
 (3)

для всех $dx \in R^n$ таких, что

$$dg_{j}(x^{*}) = 0, \quad j \in J_{a}, \quad \lambda_{j}^{*} > 0 \quad (\lambda_{j}^{*} < 0);$$

$$dg_{j}(x^{*}) \le 0, \quad j \in J_{a}, \quad \lambda_{j}^{*} = 0.$$

Утверждение 4 (достаточные условия экстремума второго порядка).

Пусть имеется точка (x^*,λ^*) , удовлетворяющая системе (2) при $\lambda_0^* \neq 0$. Если в этой точке $d^2L(x^*,\lambda^*)>0$ ($d^2L(x^*,\lambda^*)<0$) для всех ненулевых $dx \in R^n$ таких, что

$$dg_{j}(x^{*}) = 0, \quad j \in J_{a}, \quad \lambda_{j}^{*} > 0 \quad (\lambda_{j}^{*} < 0);$$

$$dg_{j}(x^{*}) \leq 0$$
, $j \in J_{a}$, $\lambda_{j}^{*} = 0$,

то точка x^* является точкой локального минимума (максимума) в задаче (1).

УСЛОВНЫЙ ЭКСТРЕМУМ ПРИ СМЕШАННЫХ ОГРАНИЧЕНИЯХ

Постановка задачи

Даны дважды непрерывно дифференцируемые целевая функция $f(x) = f\left(x_1, \dots, x_n\right)$ и функции ограничений типа равенств и неравенств: $g_j(x) = 0$, $j = 1, \dots, m; \quad g_j(x) \leq 0, \quad j = m+1, \dots, p, \text{ определяющие множество допустимых}$ решений X .

Требуется исследовать функцию f(x) на экстремум, т.е. определить точки $x^* \in X$ ее локальных минимумов и максимумов на множестве X:

$$f(x^*) = \min_{x \in X} f(x); \quad f(x^*) = \max_{x \in X} f(x), \tag{4}$$

где
$$X = \begin{cases} x \mid g_j(x) = 0, \ j = 1, ..., m; m < n \\ g_j(x) \le 0, \ j = m+1, ..., p \end{cases}$$

Утверждение 5 (необходимые условия минимума (максимума) первого порядка).

Пусть x^* – точка локального минимума (максимума) в задаче (4). Тогда найдется такое число $\lambda_0^* \ge 0$ и вектор $\lambda^* = (\lambda_1^*, \dots, \lambda_p^*)^T$, не равные одновременно нулю и такие, что выполняются условия:

• стационарности обобщенной функции Лагранжа по х:

$$\frac{\partial L(x^*, \lambda_0^*, \lambda^*)}{\partial x_i} = 0, \qquad i = 1, \dots, n;$$
 (5 a)

• допустимости решения:

$$g_{i}(x^{*}) = 0, j = 1,...,m;$$
 $g_{i}(x^{*}) \le 0, j = m+1,...,p;$ (5 6)

• неотрицательности для условного минимума:

$$\lambda_j^* \ge 0, \quad j = m+1, \dots, p \tag{5 B}$$

(неположительности для условного максимума: $\lambda_{j}^{*} \leq 0, j = m+1,...,p$);

• дополняющей нежесткости:

$$\lambda_{j}^{*} g_{j}(x^{*}) = 0, \quad j = m+1, \dots, p.$$
 (5 Γ)

Если при этом градиенты активных ограничений-неравенств и ограничений-равенств в точке x^* линейно независимы (выполняется *условие регулярности*), то $\lambda_0^* \neq 0$.

Утверждение 6 (достаточные условия минимума (максимума) первого порядка).

Пусть имеется точка (x^*,λ^*) , удовлетворяющая системе (5) при $\lambda_0^* \neq 0$, суммарное число активных ограничений-неравенств в точке x^* и ограничений-равенств совпадает с числом п переменных (при этом условие регулярности выполняется). Если $\lambda_j^* > 0$ для всех $j \in J_a$, то точка x^* — точка условного локального минимума в задаче (4). Если $\lambda_j^* < 0$ для всех $j \in J_a$, то x^* — точка условного локального максимума.

Утверждение 7 (необходимые условия минимума (максимума) второго порядка).

Пусть x^* – регулярная точка минимума (максимума) в задаче (4) и имеется решение (x^*,λ^*) системы (5). Тогда второй дифференциал классической функции Лагранжа, вычисленный в точке (x^*,λ^*) , неотрицателен (неположителен):

$$d^{2}L(x^{*},\lambda^{*}) \ge 0$$
 $(d^{2}L(x^{*},\lambda^{*}) \le 0)$

для всех $dx \in R^n$ таких, что

$$dg_{j}(x^{*}) = 0, \ j = 1,...,m \ u \ j \in J_{a}, \ \lambda_{j}^{*} > 0 \ (\lambda_{j}^{*} < 0);$$

$$dg_{j}(x^{*}) \le 0, \ j \in J_{a}, \ \lambda_{j}^{*} = 0.$$

Утверждение 8 (достаточные условия экстремума второго порядка).

Пусть имеется точка (x^*,λ^*) , удовлетворяющая системе (5) при $\lambda_0^* \neq 0$. Если в этой точке $d^2L(x^*,\lambda^*)>0$ ($d^2L(x^*,\lambda^*)<0$) для всех ненулевых $dx \in R^n$ таких, что

$$dg_{j}(x^{*}) = 0, \ j = 1,...,m \ u \ j \in J_{a}, \ \lambda_{j}^{*} > 0 \ (\lambda_{j}^{*} < 0);$$

$$dg_{j}(x^{*}) \le 0, \ j \in J_{a}, \ \lambda_{j}^{*} = 0,$$

то точка x^* является точкой локального минимума (максимума) в задаче (4).