1 Algebraic Topology

Definition 1.1 (de Rham complex). Ω^* is the algebra generated over \mathbb{R} by dx_1, \ldots, dx_n subject to

- 1. $(dx_i)^2 = 0$,
- 2. $dx_i dx_i = -dx_i dx_i, i \neq j$.

The C^{∞} differential forms on \mathbb{R} are elements of

$$\Omega^*(\mathbb{R}^n) = \{ C^{\infty} \text{ functions on } \mathbb{R}^n \} \otimes_{\mathbb{R}} \Omega^*.$$
 (1)

We have $\Omega^*(\mathbb{R}^n) = \bigoplus_{q=0}^n \Omega^q(\mathbb{R}^n)$, where $\Omega^q(\mathbb{R}^n)$ consists of the C^{∞} q-forms on \mathbb{R}^n . We define

$$d: \Omega^q(\mathbb{R}^n) \to \Omega^{q+1}(\mathbb{R}^n), \tag{2}$$

the exterior differentiation, by

- 1. if $f \in \Omega^0(\mathbb{R}^n)$, then $df = \sum \partial f/\partial x_i dx_i$, 2. if $\omega = \sum f_I dx_I$, then $d\omega = \sum df_I dx_I$, where $dx_I =$ $dx_i dx_j \dots$

The wedge product is defined by

$$\tau \wedge \omega = \sum \tau_I \omega_J \, dx_I dx_J = (-1)^{\deg \tau \, \deg \omega} \omega \wedge \tau. \tag{3}$$

Proposition 1.2. d is an antiderivation,

$$d(\tau \wedge \omega) = (d\tau) \wedge \omega + (-1)^{\deg \tau} \tau \wedge d\omega. \tag{4}$$

Proposition 1.3. $d^2 = 0$.

Definition 1.4. The q-th de Rham cohomology of \mathbb{R}^n is the vector space

$$H^q(\mathbb{R}^n) = \{\text{closed } q\text{-forms}\}/\{\text{exact } q\text{-forms}\},$$
 (5)

where closed means in the kernel of d and exact means in the image of d. We denote by $[\omega]$ the cohomology class of ω .

Remark. Only the constant functions are relevant for \mathbb{R}^n ,

$$H^*(\mathbb{R}^n) = \begin{cases} R & \text{in dimension 0,} \\ 0 & \text{otherwise.} \end{cases}$$
 (6)

Definition 1.5. A differential complex is a direct sum of Vector spaces $C = \bigoplus_{q \in \mathbb{Z}} C^q$ if there are homomorpisms

$$\cdots \longrightarrow C^{q-1} \stackrel{d}{\longrightarrow} C^i \stackrel{d}{\longrightarrow} C^{q+1} \longrightarrow \cdots$$

with $d^2 = 0$. The cohomology of C is given by H(C) = $\bigoplus_{q\in\mathbb{Z}}H^q(C)$, with

$$H^{q}(C) = (\ker d \cap C^{q})/(\operatorname{im} d \cap C^{q}). \tag{7}$$

A map $f: A \to B$ between two differential complexes is a chain map it it commutes with the differential operators of A and B, $fd_A = d_B f$. A sequence of vector spaces

$$\dots \longrightarrow V_{q-1} \xrightarrow{f_{i-1}} V_i \xrightarrow{f_i} V_{q+1} \longrightarrow \dots$$

is said to be exact if the image of f_{i-1} is the kernel of f_i . An exact sequence of the form

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$$

is called a short exact sequence. Note that f is injective and g surjective. If f, g are chain maps, there is a long exact sequence of cohomology groups

 f^* , g^* are the naturally induced maps and $d^*[c]$ is obtained through the commutative diagram

$$0 \longrightarrow A^{q+1} \stackrel{f}{\longrightarrow} B^{q+1} \stackrel{g}{\longrightarrow} C^{q+1} \longrightarrow 0$$

$$\downarrow d \qquad \downarrow 0$$

$$0 \longrightarrow A^{q} \stackrel{f}{\longrightarrow} B^{q} \stackrel{g}{\longrightarrow} C^{q} \longrightarrow 0$$

Since g is surjective there is $b \in B^q$ with g(b) = c. Because g(db) = d(gb) = dc = 0, there is $a \in A^{q+1}$ with db = f(a). Then $d^*[c] := [a]$. a is closed because f is injective. To see that the sequence is exact, note that if b is closed then f(a) = 0, and due to injectivity a = 0. On the other hand, f(a) is exact and therefore [f(a)] = 0.

Definition 1.6. $\Omega_c^*(\mathbb{R}^n)$ is the de Rham complex for functions of compact support, $H_c^*(\mathbb{R})$ is its cohomology.

Remark. Only the *n*-forms whose integrals are different from zero are relevant, since if it was zero then its antiderivative can have compact support,

$$H_c^*(\mathbb{R}^n) = \begin{cases} R & \text{in dimension n,} \\ 0 & \text{otherwise.} \end{cases}$$
 (8)

Definition 1.7. $f: \mathbb{R}^m \to \mathbb{R}^n$ induces a pullback on functions

$$f^*(g) = g \circ f. \tag{9}$$

On forms the pullback is defined as

$$f^*(\sum g_I dy_{i_1} \dots dy_{i_q}) = \sum (g_I \circ f) df_{i_1} \dots df_{i_q}, \qquad (10)$$

with $f_i = y_i \circ f$ the i-th component of f, y_i the standard coordinates.

Proposition 1.8. f^* commutes with d.

Definition 1.9. Let $M = U \cup V$ with U, V open. Then we have the inclusions

$$M \leftarrow U \sqcup V \leftarrow U \cap V \tag{11}$$

where \sqcup is the disjoint union(each element has a label indicating wether it's from U or V). Using the inclusions as pushforwards we get

$$\Omega^*(M) \to \Omega^*(U) \oplus \Omega^*(V) \to \Omega^*(U \cap V).$$
 (12)

The Mayer-Vietoris sequence is given by

$$0 \to \Omega^*(M) \to \Omega^*(U) \oplus \Omega^*(V) \to \Omega^*(U \cap V) \to 0, \quad (13)$$

with

$$\Omega^*(U) \oplus \Omega^*(V) \to \Omega^*(U \cap V); (\omega, \tau) \mapsto \tau - \omega.$$
 (14)

Proposition 1.10. They Mayer-Vietoris sequence is exact. This is achieved through partitions of unity ρ ,

$$(\rho_U f) - (-\rho_V f) = f. \tag{15}$$