CS & IT ENGINEERING

Operating Systems

Memory Management

Lecture No. 2

By- Dr. Khaleel Khan Sir

TOPICS TO BE COVERED Linking

Address Binding

Contiguous Allocation

Benefit: (i) Space Efficiency (ii) Reusability Flenibity: Drawbacks;

-> Jime inefficiency

-> Security Threat

Address Binding: Association quattributes to entities; (Binding Time) - entity: Variable -> Compile Jime -> Load Jime → Size (ZB) -> Run Jime Address -> Value (Anth) int x=5 Lord Time

rom 0.5 perspective:	
Address Binding: Ass to	oc. g Instrustate units of the Program memory Localions (Addresses)
int a,b,c) $c = a+b;$	Memory Memory a b
Instans []: Load RI, a []z: Load Rz, b []z: Load Rz, b []z: Add RI, Rz []u: Store C, RI	(i) (I) STATIC (ii) L.T) STATIC (ii) L.T) Daynamic
Ju: Store C, R,	P i

Memory Mgmnt. Jechniques

7 unctions

1) Allocation 2) protection

3) Free Stale Mannt.

4) Deallacation

& Goals

-> Efficient utilization

9 Memory;

Hragmentation

- Ability of Mem Manager to manage enecution of a larger program in Small memory greas;

Vistual Memory

Pisk

Piscoke

Memory

(i) Overlays (ii) Partitions

Contiguous (CG) (Centralized)

Non-Contiguous (NCG)

Zaistributed

2 Pars Assembler:

Pars 1: 70 kg?

Pars 1: FokB Mut Pars 2: 80 KB Enclusive

Symbol Table: 30 KB

Common Rts: 20 KB

overlag Bocden: 10 KB

(210 KB)

Symb Teth 30K

Comm the 20K

ONL. Driver lok

Pass 2 } 90K

Overlay Tree 9 a Program

Min. Mem Regid to enecute This Program (overlays) = Mare Path Lengths from x rot to Leaf } = 26 KB

| Partition = 1 Process

Allocation:

From: (50 KB)

Pastition Alloc Policies:

- 1) Tim Tit: Dim free hig enough
- 2) Best Fit: Smallest Tree big enough
- 3) worst Fit: largest Free
- 4) Nent Fit : Secret for free mg Enough Pertition Commences from Law Alloc. (Farter)

Performance:

- 1) Internal Fragmentation:
- 2) Enternal Fragmentation: X 3) ægree g M. Pr: Limited

 - 4) Mare Process Size: Limited
 - 5) Allbc-Policy: Best Filt

Variable Partitions (M.V.T) JA-0/IP-0 (DISK P2 P3 P4 P5-.. 100K 25K 120K 200K U-Area 23 KB & OKB = 37 KB 0.5 : 3 mall free likes U-Ayrea

erformance: 1) Int. Frag: X 2) Ent. Frag :/

3) Degree 9 M.Pr: Flenible

4) Marc. Process: Flerible

Prem: 90KB

7 rue Space: 13 3

Ent. Fragmentation

Compaction

-> Jime Consuming

130kg

Addrs. Binding

	os		os		os		os
Partition 1 (2MB)	Process-1		Process-1		Process-1		Process-1
Partition 2 (6MB)	Process-2	P2 and P4 Completed	Hole 6MB	P6 and P7 Arrive	P6 4MB Hole 2MB	Arrive	P6 4MB Hole 2MB
Partition 3 (3MB)	Process-3		Process-3		Process-3		Process-3
Partition 4 (4MB)	Process-4		Hole 4MB		P7 3MB Hole 1MB		P7 3MB Hole 1MB
Partition 5 (6MB)	Process-5		Process-5		Process-5		Process-5
N	Iain Memor	у					Can't Load P8

The capacity of a memory unit is defined by the number of words multiplied by the number of bits/word. How many separate address and data lines are needed for a memory of 4K x 16?

- (a) 10 address, 16 data lines
- (b) 11 address, 8 data lines
- (c) 12 address, 16 data lines
 - (d) 12 address, 12 data lines

Consider a Memory System having 6 Partitions of sizes 200K; 400K; 600K; 500K; 300K; 250K. There are 4 Processes of sizes: 357K; 210K; 468K; 49K. Using Best Fit Allocation Policy, what Partitions are not allocated/remains Unallocated?

$$357 \longrightarrow 400$$

$$210 \longrightarrow 250$$

$$468 \longrightarrow 500$$

$$49 \longrightarrow 200$$

Consider the following Memory Map in which blank regions are not in use and hatched regions are in use. Using Variable Partitions with no Compaction:

The sequence of requests for blocks of sizes 300K, 25K, 125K, 50K can be satisfied if we use:

Increasing Addresses

- (A.) Either first fit or best fit policy (any one)
- B. First fit but not best fit policy
- C. Best fit but not first fit policy
- D. None of the above.

Consider a System with Memory of size 1000KBytes. It uses Variable Partitions with no Compaction. Presently there are 2 partitions of sizes 200K & 260K respectively.

(i) What is the allocation request of the Process which would always be denied?

A. 131 K

C. 181 K

B. 151 K

D. 541 K

(ii) The smallest Allocation Request which could be denied is:

A. 131 K

c. 181 K

B. 151 K

D. 541 K

Consider a System having Memory of size 2⁴⁶ Bytes, uses Fixed Partitioning. It is divided into fixed size Partitions each of size 2²⁴ Bytes. The OS maintains a Process Table with one entry per Process. Each entry has, two fields: First, is a pointer pointing to Partition in which the Process is loaded and Second, Field is Process ID(PID). The Size of PID is 4Bytes.

Calculate

- (a) The Size of Pointer to the nearest Byte.
- (b) Size of Process Table in Bytes if the System has 500 Processes.

Consider a System Using Variable Partition with no Compaction

Free holes	4K; 8K; 20K; 2K
Program size	2K; 14K; 3K; 6K; 10K; 20K; 2K
Time for Execution	4; 10; 2; 1; 4; 1; 8

Using Best Fit Allocation Policy and FCFS CPU Scheduling Technique, Find the Time of Loading & Time of Completion of each program. The Burst Times are in Seconds.

- The hole created by next fit is never larger than the hole created by best fit
- B. The hole created by worst fit is always larger than the hole created by first fit
- The hole created by first fit is always larger than the hole created by next fit
- The hole created by best fit is never larger than the hole created by first fit

