Отчет о выполнении лабораторной работы 1.1.4 Измерение интенсивности радиационного фона

Костылев Владислав, Б01-208

8 сентября 2022 г.

Аннотация

В работе используется применение методов обработки экспериментальных данных для изучения статических закономерностей при измерении интенсивности радиационного фона с использованием: счетчика Гейгера-Мюллера (СТС-6), блока питания, компьютера с интерфейсом связи со счетчиком.

1 Теоретическая справка

Если случайные события (регистрация частиц) однородны во времени и каждое последующее событие не зависит от того, когда и как случилось предыдущее событие, то такой процесс называется пуассоновским, а результаты — количество отсчетов в одном опыте — подчиняются так называемому распределению Пуассона. При больших числах отсчет это распределение стремится к нормальному.

Стандартная ошибка одного измерения:

$$\sigma = \sqrt{n} \tag{1}$$

Формула (1) показывает, что с вероятностью 68% измеренное число частиц п отличается от искомого среднего не более чем на \sqrt{n} . Результат измерений записывается так:

$$n_0 = n \pm \sqrt{n} \tag{2}$$

Пусть мы провели серию из N измерений, в результате которых получены числа частиц $n_1, n_2, n_3, \ldots, n_N$. Эти результаты мы использовали для того, чтобы определить, как сильно значения полученные в отдельных измерениях, отличаются от истинного значения. При N измерениях среднее значение числа сосчитанных за одно измерение частиц равно:

$$\overline{n} = \frac{1}{N} \sum_{i=1}^{N} n_i \tag{3}$$

А стандартную ошибку отдельного измерения можно оценить по формуле:

$$\sigma_{om\theta} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (n_i - \overline{n})^2}.$$
 (4)

В соответствии с формулой (1) следует ожидать, что эта ошибка будет близка к $\sqrt{n_i}$, т.е. $\sigma_{omd} \approx \sigma_i = \sqrt{n_i}$, где в качестве n_i можно подставить любое из измеренных значений n. Ближе всего к значению σ_{omd} , определенному по формуле (4), лежит, конечно, величина $\sqrt{\overline{n}}$, т.е.

$$\sigma_{om\theta} \approx \sqrt{\overline{n}}.$$
 (5)

Величина \overline{n} из формулы (3), полученная путем усреднения результатов по серии из N опытов, конечно, тоже не вполне точно совпадает с истинным средним значением n_0 и сама является случайной величиной. Теория вероятностей показывает, что стандартная ошибка отклонения \overline{n} от n_0 может быть определена по формуле:

$$\sigma_{\overline{n}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (n_i - \overline{n})^2} = \frac{\sigma_{om\theta}}{\sqrt{N}}.$$
 (6)

Обычно наибольший интерес представляет не абсолютная, а относительная точность измерений. Для рассмотренной серии из N измерений по 10 с относительная ошибка отдельного измерения (ожидаемое отличие любого из n_i от n_0):

$$\varepsilon_{om\theta} = \frac{\sigma_{om\theta}}{n_i} \approx \frac{1}{\sqrt{n_i}}.$$

Аналогичным образом определяется относительная ошибка в определении среднего по всем измерениям значения \overline{n} :

$$\varepsilon_{\overline{n}} = \frac{\sigma_{\overline{n}}}{\overline{n}} = \frac{\sigma_{om\theta}}{\overline{n}\sqrt{N}} \approx \frac{1}{\sqrt{\overline{n}N}}.$$
(7)

2 Используемое оборудование

Космические лучи обнаруживают с помощью ионизации, которую они производят, используя счетчик Гейгера-Мюллера. Счетчик представляет собой наполненный газом сосуд с двумя электродами. Частицы космических лучей ионизируют газ, выбивают электроны из стенок сосуда. Те, сталкиваясь с молекулами газа, выбивают из них электроны. Таким образом, получается лавина электронов, следовательно, через счетчик резко увеличивается ток.

Погрешность измерения потока частиц с помощью счетчика Гейгера-Мюллера мала по сравнению с изменениями самого потока, то есть его флуктуациями.

3 Методика измерений

- 1. Ознакомление с устройством установки.
- 2. Включение питания компьютера и установки. После загрузки компьютера запуск программы **STAT** и таким образом начинается проведение основного эксперимента.
- 3. По окончании основного эксперимента сохранение полученных данных в таблицу для последующей обработки.
- 4. Для каждого числа импульсов происходит подсчет числа случаев и доли случаев.
- 5. Объединения соседние ячейки таблицы 1, получаем новые данные, а именно, число срабатываний счетчика за 40 сек.
- 6. По полученным данным происходит построение гистограмм и графиков распределения Гаусса.

4 Результаты измерений и обработка данных

Воспользовавшись формулой (3), посчитаем среднее число частиц:

$$\overline{n_{20}} = 20.56$$

$$\overline{n_{40}} = 41.10$$

Воспользовавшись формулой (4), посчитаем стандартную ошибку отдельного измерения:

$$\sigma_{omd20} = 4.80$$

$$\sigma_{omd40} = 7.13$$

Убедимся в справедливости формулы (5):

$$4.80 \approx \sqrt{20.56} = 4.54$$

$$7.13 \approx \sqrt{41.10} = 6.41$$

Найдем среднеквадратичное отклонение для средних значений по формуле (6):

$$\sigma_{\overline{n20}} = \frac{\sigma_{omd20}}{\sqrt{200}} = 0.33$$

$$\sigma_{\overline{n40}} = \frac{\sigma_{omd40}}{\sqrt{100}} = 0.71$$

По завершении основного эксперимента мы получаем следующие данные:

Число импульсов	3	4	5	6	7	8	9	10	11
Число случаев	3	8	17	26	35	34	42	56	43
Доля случаев	0.0075	0.02	0.0425	0.065	0.0875	0.085	0.105	0.14	0.1075
Число импульсов	12	13	14	15	16	17	18	19	20
Число случаев	39	31	18	18	5	12	5	4	4
Доля случаев	0.0075	0.02	0.0425	0.065	0.0875	0.085	0.105	0.14	0.1075

Таблица 1. Данные для гистограммы, t=10 сек

По данным построим гистограмму, а также распределение Гаусса, пользуясь формулой:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{\frac{-(x-\overline{n})^2}{2\sigma^2}} \tag{8}$$

№ Опыта:	1	2	3	4	5	6	7	8	9	10
0	21	15	22	16	16	25	15	21	25	23
10	18	27	14	18	18	21	24	20	24	13
20	20	17	21	18	18	15	15	18	13	21
30	17	16	22	29	19	22	23	25	20	11
40	29	22	18	25	17	22	25	24	19	26
50	27	31	25	15	17	26	24	25	20	22
60	23	23	20	19	20	17	15	31	24	17
70	28	19	19	18	26	31	22	26	23	29
80	10	20	32	14	14	18	31	25	24	22
90	22	20	21	13	23	30	13	13	17	21
100	18	25	22	15	17	18	22	27	20	20
110	20	19	18	28	14	12	17	18	19	25
120	25	20	21	19	29	22	25	14	28	16
130	13	19	14	13	17	19	22	19	22	20
140	29	25	18	23	23	16	29	19	20	21
150	25	19	16	26	15	14	24	21	25	26
160	24	25	19	19	20	15	24	23	12	18
170	23	22	17	24	24	34	21	19	18	18
180	18	16	29	10	22	28	21	16	16	18
190	19	24	15	27	17	14	28	24	16	23

Таблица 2. Число срабатываний счетчика за 20 сек

Обработав данные, используя язык программирования Python, мы получаем соответствующее число случаев и долю случаев для определенного числа импульсов.

Число импульсов	10	11	12	13	14	15	16	17
Число случаев	2	1	2	7	8	10	10	12
Доля случаев	0.01	0.005	0.01	0.035	0.04	0.05	0.05	0.06
Число импульсов	18	19	20	21	22	23	24	25
Число случаев	19	17	15	12	16	11	13	16
Доля случаев	0.095	0.085	0.075	0.06	0.08	0.055	0.065	0.08
Число импульсов	26	27	28	29	30	31	32	34
Число случаев	6	4	5	7	1	4	1	1
Доля случаев	0.03	0.02	0.025	0.035	0.005	0.02	0.005	0.005

Таблица 3. Данные для гистограммы, $t=20~{
m cek}$

Далее взяв сумму между каждыми двумя соседними ячейками Таблицы 2, мы получаем новую таблицу данных:

№ Опыта:	1	2	3	4	5	6	7	8	9	10
0	36	38	41	36	48	45	32	39	44	37
10	37	39	33	33	34	33	51	41	48	31
20	51	43	39	49	45	58	40	43	49	42
30	46	39	37	46	41	47	37	57	48	52
40	30	46	32	56	46	42	34	53	26	38
50	43	37	35	49	40	39	46	26	35	44
60	45	40	51	39	44	32	27	36	41	42
70	54	41	39	48	41	44	42	29	45	51
80	49	38	35	47	30	45	41	58	40	36
90	34	39	50	37	34	43	42	31	52	39

Таблица 4. Число срабатываний счетчика за 40 сек

Проделав те же действия программно, что и с Таблицей 2, получаем следующее:

Число импульсов	26	27	29	30	31	32	33	34	35
Число случаев	2	1	1	2	2	3	3	4	3
Доля случаев	0.02	0.01	0.01	0.02	0.02	0.03	0.03	0.04	0.03
Число импульсов	36	37	38	39	40	41	42	43	44
Число случаев	4	6	3	9	4	7	5	4	4
Доля случаев	0.04	0.06	0.03	0.09	0.04	0.07	0.05	0.04	0.04
Число импульсов	45	46	47	48	49	50	51	52	53
Число случаев	5	5	2	4	4	1	4	2	1
Доля случаев	0.05	0.05	0.02	0.04	0.04	0.01	0.04	0.02	0.01
Число импульсов	54	56	57	58					
Число случаев	1	1	1	2					
Доля случаев	0.01	0.01	0.01	0.02					

Таблица 5. Данные для гистограммы, t=40 сек

Получим окончательный результат для n_{10} и n_{40} :

$$n_{20} = \overline{n_{20}} \pm \sigma_{\overline{n_{20}}} = 20.56 \pm 0.33$$

$$n_{40} = \overline{n_{40}} \pm \sigma_{\overline{n_{40}}} = 41.10 \pm 0.71$$

Посчитаем относительную ошибку полученных распределений:

$$\varepsilon_{20} = \frac{1}{\sqrt{\overline{n_{20}} * N}} = 0.015596 = 1.5\%$$

$$\varepsilon_{40} = \frac{1}{\sqrt{\overline{n_{40}}*N}} = 0.015595 = 1.5\%$$

5 Обсуждение результатов

После обработки данных, можем заметить, что относительная ошибка полученных данных для 20 сек и 40 сек, почти одинаковы, их небольшое отличие вызвано неточностью языка программирования, а именно отбрасыванием последних разрядов у знаковых чисел.

 $\overline{n_{20}}$ и $\overline{n_{40}}$ отличаются, как это и должно быть, в ≈ 2 , опять же неточность вызвана погрешностью программного измерения результатов.

6 Заключение

В ходе лабораторной работы были получены случайно изменяющиеся со временем данные об интенсивности потока космических частиц, а также были применены методы обработки данных для изучения статистических закономерностей при измерении интенсивности радиационного фона.