

UNIWERSYTET JAGIELLOŃSKI W KRAKOWIE WYDZIAŁ MATEMATYKI I INFORMATYKI INSTYTUT MATEMATYKI

ADAM CZEPIELIK

PRODUKT MIAR I INNE MIARY PRODUKTOWE

PRACA LICENCJACKA NAPISANA POD KIERUNKIEM PROFESORA PIOTRA TWORZEWSKIEGO

KRAKÓW 2017

Spis treści

Wstęp		3
1.	Podstawowe definicje	4
2.	Produkt miar	6
3.	Własności produktu miar	11
4.	Miary produktowe definiowane przez całkę	12
Literatura		16

WSTĘP

Mając dwie przestrzenie z miarami: $(X_1, \mathfrak{M}_2, \mu_1)$ i $(X_1, \mathfrak{M}_2, \mu_1)$ możemy spytać, jak mierzyć zbiory zawarte w iloczynie kartezjańskim (produkcie) $X_1 \times X_2$. Chcielibyśmy przy tym, żeby szukane miary (μ) spełniały warunek prostokąta, czyli dla każdego zbioru postaci $A \times B$, gdzie $A \in \mathfrak{M}_1$ oraz $B \in \mathfrak{M}_2$, zachodziła zależność

$$\mu(A \times B) = \mu_1(A)\mu_2(B).$$

Dla dowolnych X_1 i X_2 skonstruujemy, za klasyczną pracą Herberta Federera [F], miarę zewnętrzną μ^* równą infimum po wszystkich przeliczalnych pokryciach mierzonego zbioru prostokątami mierzalnymi z sumy $\sum_{i=1}^{\infty} \mu_1(A_i)\mu_2(B_i)$, liczonej dla wszystkich $A_i \times B_i$ należących do pokrycia. Tę miarę zewnętrzną będziemy zawężać bądź to, idąc za Stanisławem Łojasiewiczem [Ł], do σ -algebry generowanej na $X_1 \times X_2$ przez prostokąty mierzalne, bądź, za Federerem [F], do σ -algebry zbiorów mierzalnych względem μ^* . Powstała miara, nazywana produktem miar, jest jak się okaże, największą miarą produktową (tj. spełniającą warunek prostokąta), a w niektórych wypadkach jedyną.

W pierwszym rozdziale przedstawimy podstawowe definicje z teorii miary, do których będziemy się odwoływali w dalszej części pracy. W drugim zostanie przedstawiona konstrukcja produktu miar w oparciu o wyżej scharakteryzowaną miarę zewnętrzną. W rozdziale trzecim zostaną wskazane dwie ważne własności produktu miar: jest to największa miara produktowa, a jeśli jest σ -skończona, to jest jedyna. W rozdziale czwartym przyjrzymy się kilku przestrzeniom w których możemy zdefiniować inne miary produktowe i przyjrzymy się relacjom między tymi miarami.

O ile poszczególne twierdzenia, stanowiące kroki konstrukcji produktu miar, są zaczerpnięte z książki Federera, to dowody które prezentujemy w tej pracy są bądź autorskie, bądź stanowią modyfikacje dowodów przedstawionych w pracy magisterskiej Małgorzaty Rożek [R], poświęconej miarom produktowym. Przedstawiona w rozdziale czwartym konstrukcja miary produktowej przez całkę po przekrojach oraz przykłady miar pochodzących od miary Lebesgue'a i liczącej również pochodzą z tej pracy, choć szerzej omawiamy założenia poszczególnych konstrukcji. Pozostałe przykłady w rozdziale czwartym są natomiast autorskie.

1. Podstawowe definicje

Niech X będzie dowolnym, niepustym zbiorem. Dalej będziemy nazywać X "przestrzenią". Przez $\{A_i\}$ będziemy oznaczać przeliczalną rodzinę zbiorów indeksowaną liczbami naturalnymi (całkowitymi dodatnimi). W dalszej części pracy będziemy też używać oznaczenia $\{A_{ij}\}$ dla oznaczenia rodziny przeliczalnej indeksowanej parami liczb naturalnych.

Definicja 1.1 (σ -ALGEBRA)

Rodzinę \mathfrak{M} podzbiorów X nazywamy σ -algebrą jeżeli:

- $(1) \emptyset \in \mathfrak{M},$
- (2) $A \in \mathfrak{M} \Rightarrow X \setminus A \in \mathfrak{M}$,
- (3) $\{A_i\} \in \mathfrak{M} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathfrak{M}.$

Parę (X,\mathfrak{M}) będziemy nazywać przestrzenią mierzalną.

Obserwacja 1.2

Przecięcie σ -algebrą.

Dowód. Niech \mathfrak{M}_1 i \mathfrak{M}_2 będą σ-algebrami. Sprawdzimy warunki z **definicji 1.1** dla $\mathfrak{M}_1 \cap \mathfrak{M}_2$:

- (1) Zbiór pusty z założenia należy zarówno do \mathfrak{M}_1 jak i do \mathfrak{M}_2 . Zatem należy do przecięcia.
- (2) $A \in \mathfrak{M}_1 \cap \mathfrak{M}_2$
 - Z definicji przecięcia: $A \in \mathfrak{M}_1 \wedge A \in \mathfrak{M}_2$
 - Z warunku (2) definicji 1.1: $X \setminus A \in \mathfrak{M}_1 \wedge X \setminus A \in \mathfrak{M}_2$
 - Z definicji przecięcia: $X \setminus A \in \mathfrak{M}_1 \cap \mathfrak{M}_2$
- $(3) \{A_i\} \in \mathfrak{M}_1 \cap \mathfrak{M}_2$
 - Z definicji przecięcia: $\{A_i\} \in \mathfrak{M}_1 \land \{A_i\} \in \mathfrak{M}_2$
 - Z warunku (3) **definicji 1.1**: $\bigcup_{i=1}^{\infty} A_i \in \mathfrak{M}_1 \wedge \bigcup_{i=1}^{\infty} A_i \in \mathfrak{M}_2$
 - Z definicji przecięcia: $\bigcup_{i=1}^{\infty} A_i \in \mathfrak{M}_1 \cap \mathfrak{M}_2$

Dzięki powyższej obserwacji możemy postawić następującą definicję:

Definicja 1.3 (σ -ALGEBRA GENEROWANA)

Niech \mathcal{E} będzie dowolną rodziną zbiorów. Zdefiniujmy σ -algebrę generowaną przez \mathcal{E} jako przecięcie wszystkich σ -algebr zawierających \mathcal{E} .

Ponieważ \mathcal{E} zawiera się w przynajmniej jednej σ -algebrze (2^X) powyższa definicja jest poprawna. Łatwo też zauważyć, że σ -algebra generowana przez \mathcal{E} jest najmniejszą w sensie inkluzji σ -algebrą zawierającą \mathcal{E} .

Definicja 1.4 (MIARA)

Funkcję $\mu: \mathfrak{M} \to [0, +\infty]$ nazywamy miarą jeżeli:

- (1) $\mu(\emptyset) = 0$
- (2) $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$, gdy $\{A_i\} \subset \mathfrak{M}$ jest ciągiem zbiorów parami rozłącznych.

Trójkę (X,\mathfrak{M},μ) , gdzie \mathfrak{M} jest σ -algebrą, a μ określoną na niej miarą, nazywamy przestrzenią z miarą.

Mówimy, że A ma miarę skończonq jeżeli $\mu(A) < +\infty$ oraz, że A ma miarę σ -skończonq jeżeli istnieje taka rodzina zbiorów $\{A_i\}$ o miarach skończonych, że $A \subset \bigcup_{i=1}^{\infty} A_i$. Miarę μ nazywamy skończoną (odp. σ -skończoną), jeżeli X ma miarę skończoną (odp. σ -skończoną).

Definicja 1.5 (MIARA ZEWNĘTRZNA)

Funkcję $\mu^*: 2^X \to [0, +\infty]$ nazywamy miarą zewnętrzną jeżeli:

- (1) $\mu^*(\emptyset) = 0$
- (2) $\mu^*(A) \leq \mu^*(B)$ gdy $A \subset B$
- (3) $\mu^*(\bigcup_{i=1}^{\infty} A_i) \leqslant \sum_{i=1}^{\infty} \mu^*(A_i)$

Definicja 1.6 (WARUNEK CARATHEODORY'EGO, ZBIORY MIERZALNE)

Zbiór A nazywamy mierzalnym względem miary zewnętrznej μ^* jeżeli spełnia następującą zależność nazywaną warunkiem Caratheodory'ego:

$$\forall T \subset X : \mu^*(T) = \mu^*(T \cap A) + \mu^*(T \setminus A)$$

Istotne jest przy tym następujące twierdzenie:

Twierdzenie 1.7 ([Ł] V. §2. Tw. 1). Rodzina zbiorów mierzalnych względem miary zewnętrznej jest σ -algebrą, a miara zewnętrzna do niej zawężona jest miarą.

2. Produkt miar

Niech $(X_1, \mathfrak{M}_1, \mu_1)$ oraz $(X_2, \mathfrak{M}_2, \mu_2)$ będą przestrzeniami z miarami.

Definicja 2.1 (PROSTOKAT MIERZALNY)

Każdy zbiór postaci $K=A\times B$, gdzie $A\in\mathfrak{M}_1, B\in\mathfrak{M}_2$ będziemy nazywali prostokątem mierzalnym.

Definicja 2.2 (σ -ALGEBRA PRODUKTOWA)

Generowaną przez rodzinę wszystkich prostokątów mierzalnych σ -algebrę będziemy nazywali σ -algebrą produktową i oznaczali $\mathfrak{M}_1 \otimes \mathfrak{M}_2$.

Definicję σ -algebry produktowej wprowadzamy według [Ł]. Oprócz tej σ -algebry będziemy też używać innej, wprowadzonej według [F], w której $\mathfrak{M}_1 \otimes \mathfrak{M}_2$ się zawiera.

Definicja 2.3 (PRZEKRÓJ)

Jeżeli $E \subset X_1 \times X_2$, $a_1 \in X_1$, $a_2 \in X_2$, to zbiory:

$$E_{a_1} = \{x_2 \in X_2 : (a_1, x_2) \in E\} \subset X_2$$

$$E^{a_2} = \{x_1 \in X_1 : (x_1, a_2) \in E\} \subset X_1$$

nazywamy przekrojami zbioru E na poziomach odpowiednio a_1 i a_2 .

Przekroje posiadają następującą własność, z której będziemy korzystać w rozdziale czwartym:

Twierdzenie 2.4 ([Ł] IV. §2. Tw. 3). Jeżeli E należy do $\mathfrak{M}_1 \otimes \mathfrak{M}_2$, to E_{a_1} należy do \mathfrak{M}_2 oraz E^{a_2} należy do \mathfrak{M}_1 .

Definicja 2.5 (MIARA PRODUKTOWA)

Miarę μ określoną na przestrzeni $(X_1 \times X_2)$ w σ -algebrze zawierającej $\mathfrak{M}_1 \otimes \mathfrak{M}_2$ będziemy nazywać miarą produktową, jeżeli spełnia warunek prostokąta, czyli dla każdego prostokąta mierzalnego $K = A \times B$:

$$\mu(K) = \mu_1(A)\mu_2(B).$$

Skonstruujemy teraz, za [F], pewną szczególną miarę produktową nazywaną produktem miar.

Niech $\{K_i\} = A_i \times B_i$ będzie rodziną prostokątów mierzalnych. Określmy funkcję ρ , która każdej takiej rodzinie przypisuje wartość w $[0, +\infty]$ według wzoru:

$$\rho(\{K_i\}) = \sum_{i=1}^{\infty} \mu_1(A_i)\mu_2(B_i).$$

Definicja 2.6

Określmy funkcję $\mu^*: 2^{X_1 \times X_2} \to [0, +\infty]$ w ten sposób, że dla każdego $E \subset X_1 \times X_2$:

$$\mu^*(E) = \inf \left\{ \rho(\{K_i\}) \mid \{K_i\} : E \subset \bigcup_{i=1}^{\infty} K_i \right\}.$$

Będziemy dowodzić, że funkcja określona powyższą definicją jest miarą zewnętrzną. Następnie pokażemy, że prostokąty mierzalne są μ^* -mierzalne. Będziemy potrzebowali następującego lematu:

Lemat 2.7. Niech $f: X \to \mathbb{R}_+$ będzie funkcją przyjmującą wartości rzeczywiste, nieujemne, zaś $\{A_i\} \subset X$ rodziną niepustych podzbiorów X. Wówczas:

$$\sum_{i=1}^{\infty} \inf \{ f(a_i) : a_i \in A_i \} = \inf \left\{ \sum_{i=1}^{\infty} f(a_i) : a_1 \in A_1, a_2 \in A_2, \dots a_i \in A_i \dots \right\}.$$

Dowód. (1) Dowodzimy nierówność \leq

Wiemy, że:

$$\forall a_1 \in A_1 : \inf f(A_1) \leqslant f(a_1)$$

 $\forall a_2 \in A_2 : \inf f(A_2) \leqslant f(a_2)$
 \vdots
 $\forall a_i \in A_i : \inf f(A_i) \leqslant f(a_i)$
 \vdots

Jeżeli $\forall a_1 \in A_1, a_2 \in A_2, \dots$ $\sum_{i=1}^{\infty} f(a_i)$ jest rozbieżna to żądana nierówność jest oczywista. Jeżeli dla pewnych a_i jest ona zbieżna, to z uwagi na nieujemność f jest to zbieżność bezwzględna. Wtedy ze względu na powyższe oszacowanie zbieżna jest też suma $\sum_{i=1}^{\infty} \inf_{a_i \in A_i} f(a_i)$ i mamy:

$$\forall a_1 \in A_1, a_2 \in A_2, \dots \sum_{i=1}^{\infty} \inf\{f(a_i) : a_i \in A_i\} \leqslant \sum_{i=1}^{\infty} f(a_i)$$

Z definicji infimum dostajemy wówczas:

$$\sum_{i=1}^{\infty} \inf_{a_i \in A_i} f(a_i) \leqslant \inf \left\{ \sum_{i=1}^{\infty} f(a_i) : a_1 \in A_1, a_2 \in A_2, \dots \right\}$$

(2) Dowodzimy nierówność ≥

Jeżeli suma $\sum_{i=1}^{\infty} \inf\{f(a_i) : a_i \in A_i\}$ jest rozbieżna, to nierówność jest oczywista. Przypuśćmy zatem, że jest (bezwzględnie) zbieżna. Ustalmy $\epsilon > 0$. Z definicji infimum mamy:

$$\exists a_1 \in A_1 : \quad f(a_1) < \inf f(A_1) + \frac{\epsilon}{2}$$

$$\exists a_2 \in A_2 : \quad f(a_2) < \inf f(A_2) + \frac{\epsilon}{4}$$

$$\vdots$$

$$\exists a_i \in A_i : \quad f(a_i) < \inf f(A_i) + \frac{\epsilon}{2^i}$$

Po przesumowaniu stronami dostajemy, że:

$$\forall \epsilon > 0 \ \exists a_1 \in A_1, a_2 \in A_2, \dots : \sum_{i=1}^{\infty} f(a_i) < \inf \left\{ \sum_{i=1}^{\infty} f(a_i) : a_1 \in A_1, a_2 \in A_2, \dots \right\} + \epsilon,$$

co jest równoważne żądanej nierówności.

Twierdzenie 2.8. Funkcja μ^* określona w **definicji 2.6** jest miarą zewnętrzną

Dowód. Sprawdzimy po kolei warunki z definicji miary zewnętrznej:

(1)
$$\mu^*(\emptyset) = 0$$

Iloczyn kartezjański zbiorów pustych jest zbiorem pustym, a ciąg zbiorów pustych pokrywa zbiór pusty. Zatem mamy:

$$0 \leqslant \inf \left\{ \sum_{i=1}^{\infty} \mu_1(A_i) \mu_2(B_i) | \{K_i\} : \emptyset \subset \bigcup_{i=1}^{\infty} K_i \right\} \leqslant \sum_{i=1}^{\infty} \mu_1(\emptyset) \mu_2(\emptyset) = 0$$

Pierwsza nierówność wynika z nieujemności składników sumy, druga z tego, że pokrycie puste należy do rodziny pokryć z której bierzemy infimum.

(2) $\mu^*(A) \leqslant \mu^*(B)$ gdy $A \subset B$ Każde pokrycie zbioru B jest pokryciem zbioru A. Zatem określając $\mu^*(A)$ bierzemy infimum po większym (w sensie inkluzji) zbiorze w stosunku do $\mu^*(B)$. Stąd mamy żądaną nierówność.

(3)
$$\mu^*(\bigcup_{i=1}^{\infty} E_i) \leqslant \sum_{i=1}^{\infty} \mu^*(E_i)$$

$$\sum_{i=1}^{\infty} \mu^{*}(E_{i}) = \sum_{i=1}^{\infty} \inf \left\{ \rho(\{(K_{i})_{j}\}) \middle| \{(K_{i})_{j}\} : E_{i} \subset \bigcup_{j=1}^{\infty} (K_{i})_{j} \right\} =$$

$$= \inf \left\{ \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \mu_{1}(A_{ij}) \mu_{2}(B_{ij}) \middle| \{(K_{i})_{j}\} : \forall_{i \in \mathbb{N}} E_{i} \subset \bigcup_{j=1}^{\infty} (K_{i})_{j} \right\} =$$

$$= \inf \left\{ \sum_{(i,j) \in \mathbb{N}^{2}} \mu_{1}(A_{ij}) \mu_{2}(B_{ij}) \middle| \{K_{ij}\} : \forall_{i \in \mathbb{N}} E_{i} \subset \bigcup_{j=1}^{\infty} K_{ij} \right\} \geqslant$$

$$\geqslant \inf \left\{ \sum_{l=1}^{\infty} \mu_{1}(A_{l}) \mu_{2}(B_{l}) \middle| \{K_{l}\} : \bigcup_{i=1}^{\infty} E_{i} \subset \bigcup_{l=1}^{\infty} K_{l} \right\} = \mu^{*}(\bigcup_{i=1}^{\infty} E_{i})$$

Pierwsza równość polega na rozpisaniu definicji μ^* , druga na zastosowaniu **lematu 2.7** i rozpisaniu definicji ρ , trzecia na zmianie sposobu indeksowania. Nierówność wynika stąd, że rodzina tych pokryć w których każdy zbiór E_i jest pokrywany "osobno" zawiera się w rodzinie wszystkich pokryć.

Udowodnimy teraz, że prostokąty mierzalne są μ^* -mierzalne, a więc sprawdzimy dla nich warunek Caratheodory'ego. Dzięki **twierdzeniu 1.7** wiemy bowiem, że zbiory μ^* -mierzalne tworzą

 σ -algebrę. Jeżeli prostokąty mierzalne należą do tej σ -algebry, to σ -algebra przez nie generowana ($\mathfrak{M}_1 \otimes \mathfrak{M}_2$) się w niej zawiera. W dalszej części pracy będziemy się poruszać bądź po całej σ -algebrze zbiorów μ^* -mierzalnych (za [F]), bądź po σ -algebrze produktowej.

Najpierw poczynimy jednak następującą obserwację:

Obserwacja 2.9

Niech $A \times B$ i $C \times D$ będą prostokątami mierzalnymi. Wówczas:

(1) Ich przecięcie można przedstawić jako:

$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$$

Łatwo przy tym zauważyć że zbiór po prawej stronie równości jest prostokątem mierzalnym.

(2) Ich różnicę można przedstawić jako:

$$(A \times B) \setminus (C \times D) = (A \setminus C) \times B \cup (A \cap C) \times (B \setminus D)$$

Zbiory po prawej stronie równości są rozłącznymi prostokątami mierzalnymi.

(3) Ponadto możemy zauważyć, że:

$$\mu_1(A \setminus C)\mu_2(B) + \mu_1(A \cap C)\mu_2(B \setminus D) + \mu_1(A \cap C)\mu_2(B \cap D) =$$

$$= (\mu_1(A) - \mu_1(A \cap C))\mu_2(B) + \mu_1(A \cap C)(\mu_2(B \setminus D) + \mu_2(B \cap D)) =$$

$$= (\mu_1(A) - \mu_1(A \cap C))\mu_2(B) + \mu_1(A \cap C)\mu_2(B) =$$

$$= (\mu_1(A) - \mu_1(A \cap C) + \mu_1(A \cap C))\mu_2(B) = \mu_1(A)\mu_2(B)$$

Twierdzenie 2.10 (Warunek Caratheodory'ego dla prostokątów mierzalnych). Niech $E = A \times B$ bedzie prostokątem mierzalnym. Wówczas dl każdego $T \subset X$:

$$\mu^*(T) = \mu^*(T \cap E) + \mu^*(T \setminus E)$$

Dowód. Nierówność \leq wynika z własności μ^* jako miary zewnętrznej (własność (3) w **definicji** 1.5). Będziemy więc dowodzić nierówność \geq . Jeżeli $\mu^*(T) = \infty$ to jest ona oczywista. Rozważmy więc przypadek $\mu^*(T) \leq \infty$

Niech $\{K_i\}$ będzie dowolnym pokryciem T prostokątami mierzalnymi. Skonstruujmy teraz nowe pokrycie $\{L_j\}$ w taki sposób, że każdy zbiór z $\{K_i\}$ dzielimy na przecięcie z E oraz podział różnicy $K_i \setminus E$ na dwa prostokąty mierzalne według **obserwacji 2.9, (2)**. Dzięki **obserwacji 2.9, (3)** widzimy, że $\rho(\{K_i\}) = \rho(\{L_j\})$.

Każdy zbiór z $\{L_j\}$ zawiera się bądź w E, bądź jego dopełnieniu. Odpowiednie podrodziny $\{L_j\}$ są więc pewnymi pokryciami $T \cap E$ oraz $T \setminus E$. Podsumowując, mamy:

$$\rho(\{K_i\}) = \rho(\{L_j\}) = \rho(\{L_j\} \cap E) + \rho(\{L_j\} \setminus E) \geqslant$$

$$\geqslant \inf \left\{ \rho(\{S_i\}) : T \cap E \subset \bigcup_{i=1}^{\infty} S_i \right\} + \inf \left\{ \rho(\{S_i\}) : T \setminus E \subset \bigcup_{i=1}^{\infty} S_i \right\} = \mu^*(T \cap E) + \mu^*(T \setminus E)$$

Ponieważ nierówność zachodzi dla wszystkich pokryć $\{K_i\}$ zbioru T przechodząc do granicy dostajemy:

 $\mu^*(T) = \inf \left\{ \rho(\{K_i\}) : T \subset \bigcup_{i=1}^{\infty} K_i \right\} \geqslant \mu^*(T \cap E) + \mu^*(T \setminus E)$

Wiemy więc, że μ^* zawężone do σ -algebry zbiorów μ^* -mierzalnych bądź σ -algebry $\mathfrak{M}_1 \otimes \mathfrak{M}_2$ jest miarą. Będziemy ją odtąd oznaczać symbolem " μ " i nazywać "produktem miar" μ_1 i μ_2 . Udowodnimy teraz, że jest to miara produktowa.

Twierdzenie 2.11 (Produkt miar jest miarą produktową). Niech $A \in \mathfrak{M}_1$ i $B \in \mathfrak{M}_2$. Wówczas $\mu(A \times B) = \mu_1(A)\mu_2(B)$.

Dowód. Nierówność \leq wynika wprost z **definicji 2.6** ($A \times B$ jest pokryciem samego siebie), skupimy się więc na dowodzie nierówności \geq . Dowód przeprowadzimy w trzech krokach.

- (1) Weźmy dowolne pokrycie $\{K_i\}$ zbioru $A \times B$ prostokątami mierzalnymi. Przecinając rodzinę $\{K_i\}$ z $A \times B$ i zamieniając różnice zbiorów na skończone sumy prostokątów mierzalnych, tak jak w dowodzie **twierdzenia 2.10** dostaniemy nowe pokrycie $\{L_i\}$ o tej samej wartości ρ . Każdy zbiór z $\{L_i\}$ zawiera się bądź w prostokącie $A \times B$, bądź w jego dopełnieniu. Po odjęciu tych drugich dostaniemy dolne oszacowanie $\rho(\{K_i\})$ przez $\rho(\{L_i\} \cap (A \times B))$. Zatem każde pokrycie, którego różnica z $A \times B$ jest niepusta, można oszacować pod względem ρ przez pokrycie "niewystające" (nowe pokrycie będzie miało mniejszą lub równą wartość ρ).
- (2) Jeżeli $\{K_i\}$ jest takim pokryciem, że $\bigcup_{i=1}^{\infty} K_i \setminus (A \times B) = \emptyset$, to sprawdzimy, czy zbiory K_i są rozłączne. Jeśli tak, to przecinając nachodzące na siebie prostokąty, zamieniając różnice na prostokąty i każdy z nowo utworzonych prostokątów biorąc do nowego pokrycia tyle razy, w ilu prostokątach z poprzedniego pokrycia się zawierał, dostaniemy nowe pokrycie, o tej samej wartości ρ . Odejmując teraz powtarzające się prostokąty dostaniemy oszacowanie dolne (pod względem ρ) pokrycia nierozłącznego przez rozłączne.
- (3) Weźmy teraz "niewystające", rozłączne pokrycie $\{K_i\} = \{A_i \times B_i\}$. Dla prostokąta mierzalnego zachodzi równość:

$$\mu_1(A_i)\mu_2(B_i) = \int_{X_1} \mu_2((K_i)_{x_1}) d\mu_1.$$

Mamy też:

$$\rho(\{K_i\}) = \sum_{i=1}^{\infty} \mu_1(A_i)\mu_2(B_i) = \sum_{i=1}^{\infty} \int_{X_1} \mu_2((K_i)_{x_1}) d\mu_1 = \int_{X_1} \sum_{i=1}^{\infty} \mu_2((K_i)_{x_1}) d\mu_1 =$$

$$= \int_{X_1} \mu_2\left(\left(\bigcup_{i=1}^{\infty} K_i\right)_{x_1}\right) d\mu_1 = \int_{X_1} \mu_2((A \times B)_{x_1}) d\mu_1 = \mu_1(A)\mu_2(B)$$

Trzecia równość wynika z twierdzenia o przejściu granicznym (por. [Ł] VI. §1. (1.13)), czwarta z rozłączności zbiorów K_i .

Z powyższych punktów wynika, że dla każdego pokrycia $\{K_i\}$ zachodzi $\rho(\{K_i\}) \geqslant \mu_1(A)\mu_2(B)$, co jest równoważne dowodzonej nierówności.

3. Własności produktu miar

W tym rozdziale udowodnimy, w oparciu o pracę [R], dwa twierdzenia dotyczące związku produktu miar z innymi miarami produktowymi. Przez \mathfrak{M} będziemy oznaczać σ -algebrę zbiorów μ^* mierzalnych

Twierdzenie 3.1 (Produkt miar jest największą miarą produktową). Niech μ będzie produktem miar, ν dowolną miarą produktową, zaś $E \in \mathfrak{M}$. Wówczas $\nu(E) \leq \mu(E)$.

Dowód. Weźmy dowolne $\{K_i\}$ - pokrycie E prostokątami mierzalnymi. Wówczas

$$\nu(E) \leqslant \sum_{i=1}^{\infty} \nu(K_i) = \sum_{i=1}^{\infty} \mu(K_i) = \rho(\{K_i\})$$

Z dowolności wyboru $\{K_i\}$ mamy: $\nu(E) \leq \inf \left\{ \rho(\{K_i\}) \mid \{K_i\} : E \subset \bigcup_{i=1}^{\infty} K_i \right\} = \mu(E)$

Twierdzenie 3.2.

Niech $E \in \mathfrak{M}$. Jeżeli E ma miarę μ σ -skończoną (gdzie μ oznacza produkt miar), to dla każdej miary produktowej ν zachodzi równość $\mu(E) = \nu(E)$.

Dowód. Najpierw rozważymy przypadek, gdy E ma miarę skończoną, a potem przypadek σ -skończony.

(1) Weźmy dowolne $\{K_i\}$ pokrycie E prostokątami mierzalnymi, rozłącznymi (pokrycie rozłączne możemy uzyskać z każdego pokrycia $\{L_i\}$ biorąc $K_i = L_i \setminus \bigcup_{k=1}^{i-1} L_k$, ewentualnie rozbijając różnicę na prostokąty tak jak w **obserwacji 2.9**), takimi że dla $K = \bigcup_{i=1}^{\infty} K_i$: $\mu(K) \leq \infty$. Z **twierdzenia 3.1** mamy:

$$\nu(K \setminus E) \leqslant \mu(K \setminus E)$$
$$\nu(K) - \nu(E) \leqslant \mu(K) - \mu(E)$$

Mamy również:

$$\nu(K) = \nu(\bigcup_{i=1}^{\infty} K_i) = \sum_{i=1}^{\infty} \nu(K_i) = \sum_{i=1}^{\infty} \mu(K_i) = \mu(\bigcup_{i=1}^{\infty} K_i) = \mu(K)$$

Pierwsza i piąta równość biorą się z rozpisania wprowadzonej wyżej definicji K, druga i czwarta z własności (2) z definicji miary (**definicja 1.4**), trzecia z definicji miary produktowej (**definicja 2.5**). Zatem

$$-\nu(E) \leqslant -\mu(E)$$
$$\mu(E) \leqslant \nu(E)$$

Z twierdzenia 3.1 mamy też nierówność przeciwną, a zatem $\mu(E) = \nu(E)$.

(2) Niech E ma miarę μ σ -skończoną. Z definicji istnieje taki ciąg $\{S_i\}$ zbiorów o mierze μ skończonej, że $E \subset \bigcup_{i=1}^{\infty} S_i$. Bez straty ogólności załóżmy, że zachodzi nie tylko zawieranie ale też równość $E = \bigcup_{i=1}^{\infty} S_i$ (w razie potrzeby przecinając $\{S_i\}$ z E), oraz , że $\{S_i\}$

składa się ze zbiorów rozłącznych (w razie potrzeby biorąc $S_i' = S_i \setminus \bigcup_{k=1}^{i-1} S_k$). Wówczas:

$$\nu(E) = \nu(\bigcup_{i=1}^{\infty} S_i) = \sum_{i=1}^{\infty} \nu(S_i) = \sum_{i=1}^{\infty} \mu(S_i) = \mu(\bigcup_{i=1}^{\infty} S_i) = \mu(E)$$

Środkowa równość wynika z tego, że zbiory należące do $\{S_i\}$ mają miary skończone, więc można do nich zastosować własność otrzymaną w punkcie (1).

Naturalnie, gdy zarówno μ_1 , jak i μ_2 są miarami σ -skończonymi, to ich produkt miar też jest miarą σ -skończoną.

4. Miary produktowe definiowane przez całkę

Definicja 4.1

Dla dowolnego $E \in \mathfrak{M}_1 \otimes \mathfrak{M}_2$ określmy funkcję:

$$\Phi_E: X_1 \ni x_1 \longrightarrow \mu_2(E_{x_1}) \in [0, +\infty]$$

Jeżeli dla dowolnego E, Φ_E jest μ_1 -mierzalna, to możemy określić funkcję:

$$\nu(E) = \int_{X_1} \Phi_E \, \mathrm{d}\mu_1.$$

Twierdzenie 4.2. Zdefiniowana wyżej funkcja ν jest miarą produktową.

Dowód. Najpierw sprawdzimy warunki bycia miarą:

- (1) $\nu(\emptyset) = 0$ Łatwo zauważyć, że: $\nu(\emptyset) = \int_{X_1} \Phi_{\emptyset} d\mu_1 = \int_{X_1} 0 d\mu_1 = 0.$
- (2) $\nu(\bigcup_{i=1}^{\infty}A_i)=\sum_{i=1}^{\infty}\nu(A_i)$, gdy $\{A_i\}\subset\mathfrak{M}_1\otimes\mathfrak{M}_2$ jest ciągiem zbiorów rozłącznych.

$$\nu\left(\bigcup_{i=1}^{\infty} A_i\right) = \int_{X_1} \Phi_{\bigcup_{i=1}^{\infty} A_i} d\mu_1 = \int_{X_1} \mu_2\left(\left(\bigcup_{i=1}^{\infty} A_i\right)_{x_1}\right) d\mu_1 = \int_{X_1} \sum_{i=1}^{\infty} \mu_2((A_i)_{x_1}) d\mu_1 = \sum_{i=1}^{\infty} \int_{X_1} \mu_2((A_i)_{x_1}) d\mu_1 = \sum_{i=1}^{\infty} \nu(A_i)$$

Pokażemy teraz, że ν spełnia warunek prostokąta:

$$\nu(A \times B) = \int_{X_1} \Phi_{A \times B} \, d\mu_1 = \int_{X_1} \chi_A \cdot \mu_2(B) \, d\mu_1 = \int_A \mu_2(B) \, d\mu_1 = \mu_2(B) \mu_1(A)$$

Warunek z **definicji 4.1**, że dla dowolnego E, Φ_E jest μ_1 -mierzalna, nie zawsze jest spełniony:

Przykład 4.3

Weźmy $X_1 = X_2 = [0, 1]$. Niech L_1 oznacza pierwszą miarę Lebesgue'a, a \mathcal{L}_1 σ -algebrę zbiorów mierzalnych względem tej miary. Weźmy $\mathfrak{M}_1 = \mathcal{L}_1 \cap [0, 1]$, $\mu_1 = L_1$ oraz $\mathfrak{M}_2 = 2^{X_2}$ i miarę liczącą (przypisującą zbiorowi liczbę jego elementów) jako μ_2 .

Niech $A = ([0,1] \times V) \cap \{(x,x) : x \in [0,1]\}$, gdzie V oznacza zbiór Vitalego. Dla każdego $x_1 \in X_1$ mamy:

$$\mu_2(A_{x_1}) = \begin{cases} 1 & \text{gdy } x_1 \in V \\ 0 & \text{gdy } x_1 \notin V \end{cases}$$

Zatem $\Phi_A^{-1}((\frac{1}{2},+\infty)) = V \notin \mathfrak{M}_1$. Całka nie jest więc definiowalna.

Możemy sformułować twierdzenie dające pewien warunek wystarczający do tego, żeby dla dowolnego E, Φ_E była μ_1 -mierzalna:

Twierdzenie 4.4 ([R] Tw. 2.14). Jeżeli $(X_1, \mathfrak{M}_1, \mu_1)$ i $(X_2, \mathfrak{M}_2, \mu_2)$ są przestrzeniami z miarami, a μ_2 jest σ -skończona, wtedy dla dowolnego E funkcja Φ_E jest μ_1 -mierzalna.

PRZYKŁADY

Zobaczmy teraz kilka przykładów miar produktowych definiowanych przez całkę. Będziemy się poruszali w przestrzeni $X_1 \times X_2 = [0,1]^2$ i sprawdzali jaką miarę ma przekątna, czyli zbiór $D = \{(x,x) \in X_1 \times X_2 : x \in [0,1]\}$. Pokażemy najpierw, że przekątna jest mierzalna w $\mathfrak{M}_1 \otimes \mathfrak{M}_2$.

Lemat 4.5. Zbiór
$$D = \{(x, x) \in X_1 \times X_2 : x \in [0, 1]\}$$
 należy do $\mathfrak{M}_1 \otimes \mathfrak{M}_2$

Dowód. Określmy funkcję: $f:[0,1]^2\ni (x,y)\to x-y\in\mathbb{R}$. Funkcja f jest ciągła, a D jest przeciwobrazem zera przez f. Zbiór D należy zatem do $\mathcal{B}([0,1])\otimes\mathcal{B}([0,1])$ (gdzie \mathcal{B} oznacza σ -algebrę zbiorów borelowskich). Ponieważ $\mathcal{B}([0,1])\subset 2^{[0,1]}$, to $\mathcal{B}([0,1])\otimes\mathcal{B}([0,1])\subset \mathfrak{M}_1\otimes\mathfrak{M}_2$.

Przykład 4.6 ([R] Prz. 2.15, [F] 2.6.3 (1))

Odwróćmy **przykład 4.3** i weźmy $\mathfrak{M}_1=2^{X_1},\ \mathfrak{M}_2=L_1,\ \mu_1$ - miarę liczącą i μ_2 - miarę Lebesgue'a. Wówczas:

$$\nu(D) = \int_{X_1} \Phi_D \, d\mu_1 = \int_{X_1} \mu_2(D_{x_1}) \, d\mu_1 = \int_{X_1} \mu_2(\{x_1\}) \, d\mu_1 = \int_{X_1} 0 \, d\mu_1 = 0$$

Każde przecięcie przekątnej jest pojedynczym punktem więc ma miarę Lebesgue'a 0. Całka z zera daje oczywiście zero.

Zobaczmy teraz ile jest równa miara produktowa D.

Przykład 4.7

Niech $\{K_i\}$, gdzie $K_i = A_i \times B_i$ będzie dowolnym pokryciem D.

Niech \mathcal{A} oznacza taki podzbiór D, że $(x,x) \in \mathcal{A} \Leftrightarrow \exists A_i, \mu_1(A_i) < +\infty : X_1 \ni x \in A_i$ oraz niech \mathcal{B} oznacza taki podzbiór D, że $(x,x) \in \mathcal{B} \Leftrightarrow \exists B_i, \mu_2(B_i) = 0 : X_2 \ni x \in B_i$. Każdy zbiór $A_i \in \mathfrak{M}_1$ taki, że $\mu_1(A_i) < +\infty$ jest skończony, zatem suma ich wszystkich jest co najwyżej przeliczalna (rozważamy tylko pokrycia przeliczalne). Podobnie suma wszystkich B_i takich, że $\mu_2(B_i) = 0$ ma miarę Lebesgue'a 0. Wobec tego:

$$\mu_2(\{x \in X_2 : (x, x) \in \mathcal{A} \cup \mathcal{B}\}) \le \mu_2(\{x \in X_2 : (x, x) \in \mathcal{A}\}) + \mu_2(\{x \in X_2 : (x, x) \in \mathcal{B}\}) = 0 + 0 = 0.$$

Ponieważ zaś $\mu_2(\{x \in X_2 : (x,x) \in D\}) = 1$ musi istnieć taki $x \in [0,1]$, że $(x,x) \notin \mathcal{A}$ oraz $(x,x) \notin \mathcal{B}$. Ale to dowodzi, że istnieje taki $K_i = A_i \times B_1$, że $\mu_1(A_i) = +\infty$ oraz $\mu_2(B_i) > 0$. To zaś dowodzi, że $\rho(\{K_i\}) = \infty$. Ponieważ $\{K_i\}$ było dowolnie wybrane, to $\mu(D) = +\infty$.

Mamy miarę produktową w której przekątna ma miarę 0 i taką w której ma miarę $+\infty$. Skonstruujemy teraz taką rodzinę miar ν_{α} , ża dla każdego $\alpha \in \mathbb{R}$, $\nu_{\alpha}(D) = \alpha$.

Przykład 4.8 ([R] PRZ. 2.16)

Niech E będzie dowolnym zbiorem mierzalnym w wyżej określonej σ -algebrze produktowej. Postawmy:

$$\nu_{\alpha}(E) = \nu(E) + \alpha \cdot \mu_2(\{x \in [0, 1] : (x, x) \in E\})$$

gdzie ν oznacza miarę zdefiniowaną w **przykładzie 4.6**. Udowodnimy, że jest to miara produktowa.

- (1) $\nu_{\alpha}(\emptyset) = \nu(\emptyset) + \mu_2(\emptyset) = 0$
- (2) Dla rodziny zbiorów rozłącznych $\{K_i\}$:

$$\nu_{\alpha}\left(\bigcup_{i=1}^{\infty} K_{i}\right) = \nu\left(\bigcup_{i=1}^{\infty} K_{i}\right) + \alpha \cdot \mu_{2}\left(\left\{x \in [0, 1] : (x, x) \in \bigcup_{i=1}^{\infty} K_{i}\right\}\right) =$$

$$= \sum_{i=1}^{\infty} \nu(K_{i}) + \sum_{i=1}^{\infty} \alpha \cdot \mu_{2}\left(\left\{x \in [0, 1] : (x, x) \in K_{i}\right\}\right) = \sum_{i=1}^{\infty} \nu_{\alpha}(K_{i})$$

(3) $\nu_{\alpha}(A \times B) = \mu_1(A)\mu_2(B)$ Jeżeli $\mu_1(A)\mu_2(B) = +\infty$ to $\nu(A \times B) = +\infty$, skąd również $\nu_{\alpha}(A \times B) = +\infty$. Jeżeli $\mu_1(A)\mu_2(B) \leq \infty$ to A lub B zawiera tylko skończoną liczbę punktów. Wtedy $\{x \in [0,1] : (x,x) \in A \times B\}$ jako zawierający skończoną liczbę punktów ma miarę Lebesgue'a 0. Zatem $\nu_{\alpha}(A \times B) = \nu(A \times B) + 0 = \mu_1(A)\mu_2(B)$.

Zobaczmy teraz przykłady miar produktowych dla innej przestrzeni. Weźmy $X_1 = X_2 = [0,1]$ oraz $\mathfrak{M}_1 = \mathfrak{M}_2 = 2^{[0,1]}$. Jako miary weźmiemy μ_1 - miarę liczącą oraz miarę μ_2 zdefiniowaną następująco:

$$\mu_2(E) = \begin{cases} 0 & \text{gdy } E \text{ przeliczalny} \\ +\infty & \text{gdy } E \text{ nieprzeliczalny} \end{cases}$$

Nie będziemy się tym razem poruszali w σ -algebrze produktowej, tylko w σ -algebrze zbiorów mierzalnych względem miary zewnętrznej μ^* pochodzącej (jak w **definicji 2.6**) od wyżej określonych μ_1 i μ_2 . Oznaczmy tę σ -algebrę przez \mathfrak{M} . Udowodnimy, że $\mathfrak{M}=2^{X_1\times X_2}$:

Lemat 4.9. Jeżeli
$$E \subset [0,1]^2$$
, to E jest μ^* -mierzalny

Dowód. Będziemy sprawdzali warunek Caratheodory'ego dla E. Niech T będzie dowolnym podzbiorem $[0,1]^2$. Będziemy dowodzić, że $\mu^*(T) = \mu^*(T \setminus E) + \mu^*(T \cap E)$. Rozważmy dwa przypadki:

- (1) T jest przeliczalny Jeżeli T jest przeliczalny, to możemy go przedstawić jako sumę $\bigcup_{i=1}^{\infty} \{t_i\}$, gdzie $\{t_i\}$ są jednopunktowe. Zbiory jednopunktowe są prostokątami mierzalnymi (przyjmijmy zapis $t_{iX_1} \times t_i^{X_2}$) zaś $\mu_1(t_{iX_1})\mu_2(t_i^{X_2}) = 1 \cdot 0 = 0$. Stąd również $\mu^*(t_i) = 0$. Mamy zatem $\mu^*(T) = \mu^*(\bigcup_{i=1}^{\infty} \{t_i\}) \leqslant \sum_{i=1}^{\infty} \mu^*(\{t_i\}) = 0$, a więc $\mu^*(T) = 0$. $\mu^*(T \setminus E)$ oraz $\mu^*(T \cap E)$ jako miary podzbiorów T też są równe 0.
- (2) T jest nieprzeliczalny Jeżeli T jest nieprzeliczalny, to dowolne jego przeliczalne pokrycie $\{K_i\}$ prostokątami mierzalnymi zawiera prostokąt nieprzeliczalny $K = A \times B$. Łatwo zauważyć, że $\mu_1(A) = +\infty$ lub $\mu_2(B) = +\infty$. Zatem $\rho(\{K_i\}) = +\infty$ dla dowolnego

pokrycia $\{K_i\}$. Jeżeli T jest nieprzeliczalny,to przynajmniej jeden z dwóch jego rozłącznych podzbiorów: $T \setminus E$ i $T \cap E$ też jest nieprzeliczalny. Stosując do niego analogiczne rozumowanie otrzymujemy w dowodzonej równości $+\infty = +\infty$.

Zobaczmy teraz ile jest równa miara przekątnej w produkcie miar, tu rozumianym jako $\mu^*|_{\mathfrak{M}}$ zamiast $\mu^*|_{\mathfrak{M}_1\otimes\mathfrak{M}_2}$.

Przykład 4.10

Rozumowanie będzie podobne do tego w przykładzie 4.7. Weźmy:

- $\{K_i\}$, gdzie $K_i = A_i \times B_i$ dowolne pokrycie D prostokątami mierzalnymi
- zbiór $A \subset D$ taki, że $(x, x) \in A \Leftrightarrow \exists A_i, \, \mu_1(A_i) < \infty : X_1 \ni x \in A_i$
- zbiór $\mathcal{B} \subset D$ taki, że $(x,x) \in \mathcal{B} \Leftrightarrow \exists B_i, \, \mu_2(B_i) = 0 : X_2 \ni x \in B_i$

Każdy zbiór $A_i \in \mathfrak{M}_1$ taki, że $\mu_1(A_i) < +\infty$ jest skończony, zatem suma ich wszystkich jest co najwyżej przeliczalna. Podobnie suma wszystkich B_i takich, że $\mu_2(B_i) = 0$ jest co najwyżej przeliczalna więc ma miarę μ_2 0. Zatem podobnie jak w **4.7**:

$$\mu_2(\{x \in X_2 : (x, x) \in \mathcal{A} \cup \mathcal{B}\}) \leqslant \mu_2(\{x \in X_2 : (x, x) \in \mathcal{A}\}) + \mu_2(\{x \in X_2 : (x, x) \in \mathcal{B}\}) = 0 + 0 = 0$$

Ponieważ zaś $\mu_2(\{x \in X_2 : (x, x) \in D\}) = +\infty$ musi istnieć taki $x \in [0, 1]$, że $(x, x) \notin \mathcal{A}$ oraz $(x, x) \notin \mathcal{B}$. Z tego wynika, że istnieje taki $K_i = A_i \times B_1$, że $\mu_1(A_i) = +\infty$ oraz $\mu_2(B_i) > 0$. To zaś dowodzi, że $\rho(\{K_i\}) = +\infty$, zatem z dowolności wyboru $\{K_i\}$: $\mu(D) = +\infty$.

Przyjrzyjmy się teraz miarom definiowanym przez całkę. Najpierw pokażemy, że w obecnym przypadku miara z **definicji 4.1** jest dobrze zdefiniowana. Musimy sprawdzić dwie własności. Po pierwsze, w przypadku σ -algebry produktowej μ_2 -mierzalność przekrojów potrzebną do zdefiniowania funkcji Φ dostawaliśmy z **twierdzenia 2.4**, którego teraz nie możemy zastosować. Po drugie, żadna z miar nie jest σ -skończona, więc nie możemy zastosować **twierdzenia 4.4** do udowodnienia μ_1 -mierzalności. Możemy jednak zaobserwować następujące fakty:

Obserwacja 4.11

- (1) Każdy zbiór ma jakąś moc, więc każdy jest mierzalny zarówno względem μ_1 , jak i μ_2 . W szczególności wszystkie przekroje są mierzalne.
- (2) Z powyższego wynika, że wszystkie funkcje są mierzalne zarówno względem μ_1 , jak i μ_2 , w szczególności miary przekrojów.

Możemy teraz zmierzyć przekątną:

Przykład 4.12

$$\nu(D) = \int_{X_1} \Phi_D \, \mathrm{d}\mu_1 = \int_{X_1} \mu_2(D_{x_1}) \, \mathrm{d}\mu_1 = \int_{X_1} \mu_2(\{x_1\}) \, \mathrm{d}\mu_1 = \int_{X_1} 0 \, \mathrm{d}\mu_1 = 0$$

Każde przecięcie przekątnej jest pojedynczym punktem więc jako przeliczalny ma miarę μ_2 0. Zamieńmy kolejność miar i weźmy jako μ_1 miarę przypisującą 0 zbiorom przeliczalnymi i $+\infty$ nieprzeliczalnym oraz μ_2 - miarę liczącą.

Przykład 4.13

$$\nu(D) = \int_{X_1} \mu_2(\{x_1\}) d\mu_1 = \int_{X_1} 1 d\mu_1 = \mu_1(X_1) = +\infty$$

Każde przecięcie przekątnej jest pojedynczym punktem więc ma miarę μ_2 1. Całka z jedynki jest równa mierze zbioru po którym całkujemy. [0,1] jest nieprzeliczalny, więc ma miarę $+\infty$.

Widzimy więc, że dla miary produktowej definiowanej przez całkę ma znaczenie kolejność w której bierzemy miary (oczywiście o ile obydwie istnieją).

Mamy więc miary produktowe w których przekątna ma miarę nieskończoną i taką w której ma miarę 0. Naturalnym byłoby spytać czy istnieje taka miara w której przekątna będzie miała niezerową miarę skończoną.

Zauważmy, że gdyby taka miara (przyjmijmy oznaczenie μ_f) istniała, to zawęziwszy przestrzeń $X_1 \times X_2$ do D, σ -algebrę $\mathfrak{M} = 2^{[0,1]^2}$ do 2^D oraz μ_f do nowej σ -algebry, dostalibyśmy przestrzeń z niezerową miarą skończoną określoną na zbiorze potęgowym zbioru mocy continuum, w której każdy pojedynczy punkt ma miarę 0. Tymczasem, jak podaje [Ł] (s. 118), Banach i Kuratowski udowodnili, że przy założeniu hipotezy continuum taka przestrzeń nie może istnieć.

Przykład 4.14

Weźmy teraz dowolne przestrzenie X_1 i X_2 ze zbiorami potęgowymi jako σ -algebrami i miarami liczącymi. Pokażemy, że (1): σ -algebra zbiorów μ^* -mierzalnych to zbiór potęgowy $X_1 \times X_2$ i (2): produkt miar w tej σ -algebrze, to miara licząca.

- (1) Sprawdzimy warunek Caratheodory'ego. Weźmy dowolne zbiory T i E zawarte w $X_1 \times X_2$ i sprawdźmy, czy $\mu^*(T) = \mu^*(T \setminus E) + \mu^*(T \cap E)$.

 Jeżeli T jest skończony to możemy go (i jego podzbiory z prawej strony równania) przedstawić jako skończoną sumę (rozłącznych) punktów. Ponieważ punkty jako prostokąty mierzalne mają miarę $\mu^*(\{(x,x)\}) = \mu_1(\{(x,x)\})\mu_2(\{(x,x)\}) = 1 \cdot 1 = 1$, warunek sprowadza się do prostej własności teoriomnogościowej $\#(T) = \#(T \setminus E) + \#(T \cap E)$.

 Jeżeli T jest nieskończony, to każde jego pokrycie zawiera prostokąt mocy nieskończonej. Dla każdego takiego prostokąta K zachodzi $\mu_1(K) = +\infty$ lub $\mu_2(K) = +\infty$. Wobec tego $\mu^*(T) = +\infty$. Suma mnogościowa zbiorów skończonych jest skończona, więc zbiór $T \setminus E$ lub zbiór $T \cap E$ (dające w sumie T) jest nieskończony. Stosując do tego nieskończonego zbioru to samo rozumowanie dostajemy w warunku $+\infty = +\infty$.
- (2) Jeżeli moc T jest skończona i równa n, to $\mu(T) = \mu(\bigcup_{i=1}^n \{t_i\}) = \sum_{i=1}^n \mu(\{t_i\}) = \sum_{i=1}^n 1 = n$. Jeżeli T jest nieskończony, to każde jego pokrycie zawiera prostokąt mocy nieskończonej, więc $\mu(T) = +\infty$.

LITERATURA

- [F] Federer H. Geometric Measure Theory, Springer-Verlag, 1996 (reprint of 1969 edition)
- [Ł] Łojasiewicz J. Wstęp do teorii funkcji rzeczywistych, PWN, 1973
- [R] Rożek M. Miary Produktowe, 1991, Praca magisterska, Wydział Matematyki i Fizyki UJ