TR-1000

Specifications

Circuit:

10 Transistor Superheterodyne

Frequency Coverage:

MW 530~1,605 Kc (566~187 m)

SW₁ 1.7~4 Mc (176.5~75 m)

SW₂ 4~9.8 Mc (75~30.6 m)

SW₃ 9.8~22 Mc (30.6~13.6 m)

MW Built-in Ferrite Bar Antenna Antenna System:

SW Built-in Telescopic Antenna

Jack for External Antenna

Intermediate Frequency: 455 Kc

MW 25.5 dB/m $(19\mu V/m)$

Maximum Sensitivity: (at 50 mW output with 6 dB S/N)

 SW_1 4.5 dB (1.7 μ V) SW_2 3.5 dB (1.5 μ V)

 SW_3 3 dB (1.4 μ V)

Selectivity:

40 dB at 10 Kc off resonance, at 1,400 Kc

Output Power: 820 mW (undistorted)

1,300 mW (maximum)

Current Drain:

 $20\ \text{mA}$ at zero signal, $245\ \text{mA}$ at $820\ \text{mW}$ output

Speaker:

Oval Type, $4 \times 6''$ (10imes15 cm), PM dynamic, $8\,\Omega$

Power Source:

Four "D" Size Flashlight Batteries, 6V in total, or House Current by

using SONY AC Power Adapter

Dimensions:

 $10-3/8 \text{ (W)} \times 8-9/16 \text{ (H)} \times 4-1/16'' \text{ (D)}$

 $(264 \times 218 \times 103 \text{ mm})$

Weight:

5 lbs. 8 ozs. (2.5 Kgs.) with Batteries

SERVICING GUID

Block Diagram

Removal of Chassis

- (1) Remove the two Back Cover Holding Screws and open the Back Cover.
- (2) Remove the Knobs by pulling them out:
- (3) Remove the Power ON/OFF Switch Button by pulling it up.
- (4) Remove the three Jacks by removing the corresponding Nuts from the Cabinet
- (5) Unsolder the two leads at the speaker terminals.
- (6) Remove the five Nuts marked with \triangle shown in Fig. 1.
- (7) Remove the Chassis from the Cabinet gently taking care not to catch the Power ON/OFF Switch to the Cabinet.

Removal of RF Circuit Board

- (1) Unsolder the Braided Wire (marked with \triangle shown in Fig. 1) and the ground terminal of the Tuning Capacitor at the RF Circuit Board.
- (2) Remove the five Screws marked with \square shown in Fig. 1.
- (3) Remove the RF Circuit Board from the Chassis gently taking care not to cut the leads.

Removal of IF Circuit Board

- (1) Remove the two Screws marked with \bigcirc shown in Fig. 1.
- (2) Remove the IF Circuit Board from the Chassis gently taking care not to cut the leads.

 If it is necessary to remove the IF Circuit Board completely from the Chassis, unsolder all the leads on the IF Circuit Board.

Removal of AF Circuit Board

- (1) Remove the two Screws marked with shown in Fig. 1.
- (2) Unsolder all the leads going from it to other points on the AF Circuit Board.

(Fig. 1)

Frequency Coverage and Tracking Adjustment

Preparation for Adjustments

☆ Receiver to be adjusted

Power Source Voltage:

Keep 6 Volts during the adjustments.

Volume Control Setting:

Set at mechanical 80% position.

Tone Control Setting:

Turn clockwise to the full.

Fine Tuning Capacitor Setting:

Set the slit mark on the Fine Tuning Knob in the horizontal direction.

All Trimmer Capacitor except SW1 Antenna Trimmer Capacitor Setting:

Set at mechanical mid position. (Set the SW1 Antenna Trimmer Capacitor at zero capacitance position when SW1 Tracking Adjustment is performed.)

☆ Signal Source:

Use a SSG (Standard Signal Generator) which can deliver RF signals

modulated at 30% with $1,000 \, \text{c/s}$.

☆ Load for Output:

Connect an 8Ω resistor instead of speaker.

☆ Output Meter:

Connect across the load resistor 8Ω .

(VTVM can be used also.)

☆ Rated Output:

50 mW (0.63 V across the 8Ω resistor)

☆ Antenna:

Use a Loop Antenna at MW Band Adjustment. (Use a Dummy Antenna shown in Fig. 2 after pulling out the Pin Connector attached to the lead coming from the Telescopic Antenna on the RF Circuit Board at SW Band Adjustments.)

MW Band

a) Frequency Coverage Adjustment

(1) Set the Band Setting Switch to MW.

(2) Set the Tuning Capacitor at the maximum capacitance position by turning the Tuning Knob of the Receiver counter-clockwise to the full.

SSG — Receiver

(3) Deliver a 520 Kc signal from the SSG.

(Fig. 2)

- (4) Adjust the core of the MW OSC Coil (L_{209}) to tune to the signal.
- (5) Set the Tuning Capacitor at the minimum capacitance position by turning the Tuning Knob of the Receiver clockwise to the full.
- (6) Deliver a 1,680 Kc signal from the SSG.
- (7) Adjust the MW OSC Trimmer Capacitor (C_{2-9}) to tune to the signal.
- (8) Repeat the above procedures (2 \sim 7) until the frequency range between 520 Kc and 1,680 Kc is fully covered.

b) Tracking Adjustment

- (1) Deliver a 620 Kc signal from the SSG.
- (2) Tune to the signal by turning the Tuning Knob of the Receiver.
- (3) Adjust the position of the MW ANT Coil (L_{201}) along the Ferrite Bar and the core of the MW RF Coil (L_{205}) in turn to obtain the maximum output.
- (4) Deliver a 1,400 Kc signal from the SSG.
- (5) Tune to the signal by turning the Tuning Knob of the Receiver.
- (6) Adjust the MW ANT Trimmer Capacitor (C_{2-1}) and the MW RF Trimmer Capacitor (C_{2-5}) in turn to obtain the maximum output.
- (7) Repeat the above procedures $(1 \sim 6)$ until the maximum output is obtained.

SW1 Band

a) Frequency Coverage Adjustment

- (1) Set the Band Setting Switch to SW₁.
- (2) Set the Tuning Capacitor at the maximum capacitance position by turning the Tuning Knob of the Receiver counter-clockwise to the full.
- (3) Deliver a 1.65 Mc signal from the SSG.
- (4) Adjust the core of the SW_1 OSC Coil (L_{210}) to tune to the signal.
- (5) Set the Tuning Capacitor at the minimum capacitance position by turning the Tuning Knob of the Receiver clockwise to the full.
- (6) Deliver a 4.2 Mc signal from the SSG.
- (7) Adjust the SW $_1$ OSC Trimmer Capacitor (C_{2-10}) to tune to the signal.
- (8) Repeat the above procedures (2 \sim 7) until the frequency range between 1.65 Mc and 4.2 Mc is fully covered.

b) Tracking Adjustment

- (1) Deliver a 1.65 Mc signal from the SSG.
- (2) Tune to the signal by turning the Tuning Knob of the Receiver.
- (3) Adjust the core of the SW₁ ANT Coil (L_{202}) and the core of the SW₁ RF Coil (L_{206}) in turn to obtain the maximum output.
- (4) Deliver 4.2 Mc signal from the SSG.
- (5) Tune to the signal by turning the Tuning Knob of the Receiver.
- (6) Adjust the SW₁ ANT Trimmer Capacitor (C_{2-2}) and the SW₁ RF Trimmer Capacitor (C_{2-6}) in turn to obtain the maximum output.
- (7) Repeat the above procedures $(1 \sim 6)$ until the maximum output is obtained.

SW2 Band

a) Frequency Coverage Adjustment

- (1) Set the Band Setting Switch to SW₂.
- (2) Set the Tuning Capacitor at the maximum capacitance position by turning the Tuning Knob of the Receiver counter-clockwise to the full.
- (3) Deliver a 3.9 Mc signal from the SSG.
- (4) Adjust the core of the SW_2 OSC Coil (L_{211}) to tune to the signal.
- (5) Set the Tuning Capacitor at the minimum capacitance position by turning the Tuning Knob of the Receiver clockwise to the full.
- (6) Deliver a 10.2 Mc signal from the SSG.
- (7) Adjust the SW_2 OSC Trimmer Capacitor (C_{2-11}) to tune to the signal.
- (8) Repeat the above procedures $(2\sim7)$ until the frequency range between 3.9 Mc and 10.2 Mc is fully covered.

b) Tracking Adjustment

- (1) Deliver a 3.9 Mc signal from the SSG.
- (2) Tune to the signal by turning the Tuning Knob of the Receiver.
- (3) Adjust the core of the SW $_2$ ANT Coil (L_{203}) and the core of the SW $_2$ RF Coil (L_{207}) in turn to obtain the maximum output.
- (4) Deliver a 10.2 Mc signal from the SSG.
- (5) Tune to the signal by turning the Tuning Knob of the Receiver.

- (6) Adjust the SW₂ ANT Trimmer Capacitor (C_{2-3}) and the SW₂ RF Trimmer Capacitor (C_{2-7}) in turn to obtain the maximum output.
- (7) Repeat the above procedures $(1 \sim 6)$ until the maximum output is obtained.

SW3 Band

a) Frequency Coverage Adjustment

- (1) Set the Band Setting Switch to SW₃.
- (2) Set the Tuning Capacitor at the maximum capacitance position by turning the Tuning Knob of the Receiver counter-clockwise to the full.
- (3) Deliver a 9.5 Mc signal from the SSG.
- (4) Adjust the core of the SW_3 OSC Coil (L_{212}) to tune to the signal.
- (5) Set the Tuning Capacitor at the minimum capacitance position by turning the Tuning Knob of the Receiver clockwise to the full.
- (6) Deliver a 22.8 Mc signal from the SSG.
- (7) Adjust the SW $_3$ OSC Trimmer Capacitor (C $_{2-12}$) to tune to the signal.
- (8) Repeat the above procedures $(2\sim7)$ until the frequency range between 9.5 Mc and 22.8 Mc is fully covered.

b) Tracking Adjustment

- (1) Deliver a 9.5 Mc signal from the SSG.
- (2) Tune to the signal by turning the Tuning Knob of the Receiver.
- (3) Adjust the core of the SW₃ ANT Coil (L_{204}) and the core of the SW₃ RF Coil (L_{208}) in turn to obtain the maximum output.
- (4) Deliver a 22.8 Mc signal from the SSG.
- (5) Tune to the signal by turning the Tuning Knob of the Receiver.
- (6) Adjust the SW $_3$ ANT Trimmer Capacitor (C_{2-4}) and the SW $_3$ RF Trimmer Capacitor (C_{2-8}) in turn to obtain the maximum output.
- (7) Repeat the above procedures $(1 \sim 6)$ until the maximum output is obtained.

To String the Dial Cord

- 6 -

Mounting Diagram

RF Section

- Printed Side -

—Parts Side—

Mounting Diagram

IF Section

-Parts Side -

-Parts Side -

Mounting Diagram

AF Section

- Printed Side -

-Parts Side-

Electrical Parts List

Part No.	Symbol	Description	Part No.	Symbol	Description
1-501-007-01	Tel. ANT	Antenna, telescopic			Resistor
1-507-036-02	Ext. ANT	Jack, external antenna	1 001 750 11	VR ₁	Tone Control, 5 K Ω
1-401-277-12	L ₂₀₁	Coil, MW ferrite bar antenna	1-221-752-11	VR ₂	Volume Control, 5K Ω
-274-11	L ₂₀₂	Coil, SW ₁ antenna	1-240-465-11	R ₂₀₁	470Ω ½W Carbon
-27 <i>5</i> -11	L ₂₀₃	Coil, SW ₂ antenna	-513-11	R ₂₀₂	47K Ω // //
1-425-233-11	L ₂₀₄	Coil, SW ₃ antenna	1-242-697-11	R ₂₀₃	10KΩ // //
-232-11	L ₂₀₅	Transformer, MW RF	1-240-484-11	R ₂₀₄	3K Ω // //
-246-11	L ₂₀₆	Transformer, SW ₁ RF	-483-11	R ₂₀₅	2.7Κ Ω // //
-247-11	L ₂₀₇	Transformer, SW ₂ RF	-483-11	R ₂₀₆	2.7Κ Ω // //
-233-11	L ₂₀₈	Transformer, SW ₃ RF		R ₂₀₇	deleted
1-405-275-11	L ₂₀₉	Coil, MW oscillator	1-240-457-11	R ₂₀₈	220 Ω ½W Carbon
-276-11	L ₂₁₀	Coil, SW ₁ oscillator	-508-11	R ₂₀₉	30K Ω // //
-277-11	L ₂₁₁	Coil, SW ₂ oscillator	-473-11	R ₂₁₀	1KΩ // //
-278-11	L ₂₁₂	Coil, SW ₃ oscillator	1-244-516-11	R ₂₁₁	62KΩ // //
1-407-050-11	L ₂₁₃	Inductor, micro	-418-11	R ₂₁₂	5.1 Ω // //
1-403-119-11	IFT ₂₀₁	Transformer, IF single tuned		R ₂₁₃	deleted
-152-11	IFT ₃₀₁	Transformer, IF single tuned	1-240-528-11	R ₂₁₄	200KΩ ½W Carbon
-154-11	CF ₃₀₁	Filter, ceramic	-438-11	R ₂₁₅	36Ω // //
-153-11	CF ₃₀₂	Filter, ceramic (with C ₃₀₃)	-443-11	R ₂₁₆	56 Ω // //
1-423-100-11	T ₄₀₁	Transformer, driver	1-244-461-11	R ₂₁₇	330 Ω // //
1-427-088-11	T ₄₀₂	Transformer, output	-460-11	R ₂₁₈	300 Ω // //
,	402	· ·	1-240-447-11	R ₂₁₉	82 Ω // //
1-520-069-11	ME	Meter, tuning	1-244-461-11	R ₂₂₀	330 Ω // //
1-507-011-01	J ₁	Jack, auxiliary input	1-240-457-11	R ₂₂₁	220 Ω // //
-011-01	J ₂	Jack, detector output	-473-11	R ₂₂₂	1ΚΩ " "
-011-01	J ₂	Jack, earphone	-486-11	R ₂₂₃	3.6K Ω // //
-126-11	J ₄	Jack, external power input	-483-11	R ₂₂₄	2.7ΚΩ // //
1-518-006-05	PL ₁	Lamp, dial	-457-11	R ₂₂₅	220 Ω // //
-006-05		Lamp, dial	1-244-465-11	R ₃₀₁	470 Ω // //
	PL ₂	Switch, band setting	1-221-637-11	1	50K Ω Adjustable
1-513-314-11	S _{201~212}	Switch, dial lamp	1-244-497-11	R ₃₀₂	10KΩ ½W Carbon
1-514-078-00	S ₄₀₁	Switch, power on/off	-468-11	R ₃₀₃	
-191-11	S ₄₀₂	·	-466-11 -457-11	R ₃₀₄	
1-502-069-11	SP	Speaker (V : total		R ₃₀₅	220 Ω // //
1-528-001-00	Batt.	Battery, 6V in total	-523-11	R ₃₀₆	120ΚΩ // //
		Tanasistan OSC 403	-487-11	R ₃₀₇	3.9KΩ // //
	X ₂₀₁	Transistor 2SC403	1-231-016-11	R ₃₀₈	470Ω (Built in Encapsulated
	X ₂₀₂	// 2SC403	. 644 464 11		Component)
N.	X ₂₀₃	// 2SC401	1-244-484-11	R ₃₀₉	3KΩ ½8W Carbon
	X ₃₀₁	// 2SC404	-497-11	R ₃₁₀	10ΚΩ // //
	X ₃₀₂	// 2SC404	1-221-632-11	R ₃₁₁	200 Ω Adjustable
	X ₃₀₃	// 2SB378	1-244-483-11	R ₃₁₂	2.7K Ω ½W Carbon
	X ₄₀₁	// 2SC402	-475-11	R ₃₁₃	1.2ΚΩ // //
	X ₄₀₂	// 2SC401	-497-11	R ₃₁₄	10ΚΩ // //
	X ₄₀₃	// 2SB383	1-201-864-11	R ₄₀₁	5.6K Ω // Composition
	X ₄₀₄	// 2SB383	-872-11	R ₄₀₂	560 Ω // //
	D ₂₀₁	Diode 1T240A	-951-11	R ₄₀₃	20 Ω // //
-	D ₂₀₂	// 1T23A	-113-11	R ₄₀₄	150K Ω // //
	D ₃₀₁	// 1T23G	-278-11	R ₄₀₅	30 Ω // //
	D ₃₀₂	// 1T240A	-277-11	R ₄₀₆	300 Ω // //
	Th ₄₀₁	Thermistor CS-47	-968-11	R ₄₀₇	51 Ω // //

-continued-

Part No.	Symbol	Description	Part No.	Symbol	Description
1-201-650-11	R ₄₀₈	1.8KΩ ½W Composition	1-101-959-11	C ₂₂₅	10pF Ceramic
-401-11	R ₄₀₉	2.2Ω ¼W //	1-103-688-11	C226	3600pF Styrol
-859-11	R ₄₁₀	360Ω ¹ /8Ω //	1-101-882-11	C ₂₂₇	51pF Ceramic
-863-11	R ₄₁₁	2.2K Ω // //	1-105-411-11	C ₂₂₈	0.01μF Mylar
-868-11	R ₄₁₂	100ΚΩ // //	-829-12	C ₂₂₉	0.0047 <i>μ</i> F <i>//</i>
1-244-477-11	R ₄₁₃	1.5K Ω // Carbon	1-101-140-11	C ₂₃₀	0.005μF Ceramic
			-142-11	C ₂₃₁	0.02 <i>μ</i> F <i>//</i>
		Capacitor	-955-11	C ₂₃₂	5PF //
1-151-133-11	C _{1-1~3}	Tuning Capacitor, 3 gang	-871-11	C ₂₃₃	30PF //
-134-11	C ₁₋₄	Tuning Capacitor, fine	1-103-610-11	C ₂₃₄	240pF Styrol
1-141-011-00	C _{2-1~12}	Trimmer Capacitor, 2 unit	1-121-282-11	C ₃₀₁	10μF 12V Electrolytic
1-101-959-11	C ₂₀₁	10pF Ceramic	-290-11	C ₃₀₂	100μF 3V //
-955-11	C ₂₀₂	5pF //		C ₃₀₃	68pF Ceramic (Attached to CF ₃₀₂)
-959-11	C ₂₀₃	10pF //	1-121-322-11	C ₃₀₄	50μF 6V Electrolytic
-860-11	C ₂₀₄	9pF //	1-101-142-11	C ₃₀₅	0.02μF Ceramic
-867-11	C ₂₀₅	24pF //	-956-11	C ₃₀₆	6pF //
-141-11	C ₂₀₆	0.01 μF //	1-121-291-11	C ₃₀₇	100μ F 6V Electrolytic
-141-11	C ₂₀₇	0.01 μF <i>//</i>		C ₃₀₈	(Built in IFT ₃₀₁)
1-121-290-11	C ₂₀₈	100μF 3V Electrolytic		C ₃₀₉	0.01μ F (Built in Encapsulated
1101-955-11	C ₂₀₉	5pF Ceramic			Component)
-871-11	C ₂₁₀	30pF //		C ₃₁₀	0.01μ F (Built in Encapsulated ,
-871-11	C ₂₁₁	30pF //			Component)
-876-11	C ₂₁₂	39pF //	1-103-658-11	C ₃₁₁	200pF Styrol
1-105-411-11	C ₂₁₃	0.01 μF Mylar	1-121-161-11	C ₃₁₂	500μ F 6V Electrolytic
1-101-140-11	C ₂₁₄	0.005 <i>µ</i> F Ceramic	-282-11	C ₄₀₁	10μF 12V //
-142-11	C ₂₁₅	0.02 <i>μ</i> F //		C ₄₀₂	-deleted
į	C ₂₁₆	(Built in IFT ₂₀₁)	1-121-315-11	C ₄₀₃	100μF 6V Electrolytic
	C ₂₁₇	deleted	-287-11	C ₄₀₄	50μF 3V <i>//</i>
1-101-141-11	C ₂₁₈	0.01μF Ceramic	-315-11	C ₄₀₅	100μF 6V //
-955-11	C ₂₁₉	5pF //	1-105-419-12	C ₄₀₆	0.22μF Mylar
1-103-664-11	C ₂₂₀	360pF Styrol	-827-12	C ₄₀₇	0.0033 <i>μ</i> F <i>″</i>
1-101-862-11	C ₂₂₁	18pF Ceramic	-315-11	C ₄₀₈	$100 \mu F$ 6V Electrolytic
-959-11	C ₂₂₂	10pF //	-287-11	C ₄₀₉	50μF 3V //
1-103-678-11	C ₂₂₃	1300pF Styrol	1-127-019-11	C ₄₁₀	0.1 μF <i>μ</i>
1-101-864-11	C224	20pF Ceramic	1-105-821-12	C ₄₁₁	0.001 μF Mylar

(1)

(2)

(3)

(4)

SONY CORPORATION

No. 2

PRODUCTION CHANGE

(Change of Former Service Manual at Page 13)

Former Type

Serial No. Up to 14,400

Part No.	Description	Q'ty
X-38214-01-	Cabinet Ass'y	1
X-38214-02-	// front	1
X-38214-03-	// . back	1
3-998-001-01	Battery Cylinder	1
0-039-796-00	Screw, back cover holding	2

New Type

Serial No. 14,401 and After

Part No.	Description	Q'ty
X-38214-31-1	Cabinet Ass'y	1
X-38214-32-1	<pre>// , front</pre>	1
3-821-471-01	// , back	1
3-998-010-04	Battery Cylinder	1
7-621-661-66	Screw, back cover holding	2

Additional

Part No.	Description	Q'ty
3-823-043-02	Lid, battery	1
-048-02	Special Nut	3
-049-01	Coil, spring	2
-050-01	Pin, ext. antenna	2 2
-058-03	Knob, lock	1
-059-02	Plate, lock	1
-060-01	Spring, lock	1
7-621-461-46	Screw, machine $+T3\times6$	3
-721-61	" tapping $+R2.6\times5$	3
7-624-106-01	Retaining Ring, E-3	2

Deleted

Part No.	Description	Q'ty
7-621-999-33	Screw, hexagonal 3×22	4
0-039-768-00	Cushion	2
7-624-104-01	Retaining Ring, E-2	2
1-507-036-02	Jack, antenna	1

—Cabinet—

SONY CORPORATION

SONY®

TR Service Bulletin No. 67-2

Serial No. 117,921 and after

DATE: August 25, 1967

SUBJECT:

- 1. Replacement of SW3 OSC Coil.
- 2. Addition of a Ceramic Capacitor.
- 3. Replacement of Tuning Capacitor and Mount for Tuning Capacitor.

REASON:

To avoid a frequency drift.

DESCRIPTION:

	Part Number		Remarks	
Parts	Old Type New Type			
SW3 OSC Coil	1-405-278-11	1-405-278-12	Lower Q	
C 2 3 5 Ceramic Capactior	Nil	1-101-951-11	1pF±0.5pF 25WV See Fig.1	
Tuning Capacitor	1-151-133-11	1-151-159-11	Less capacitance fluctuation	
Mount for Tuning Capacitor	3-821-445-03	3-821-445-04	See Fig. 3	

- 1. Mounting and Schematic Diagrams are shown in Fig. 1 (A) and (B).
- 2. The changed positions of the Mount for Tuning Capacitor are shown in Fig. $_{\mbox{\scriptsize 5}}$

Fig. 1(B) Schematic Diagram

Fig. 1(A) Mounting Diagram

TR Service Bulletin No. 67-1

Serial No. 118,481 and after

DATE: August 25, 1967

SUBJECT:

Replacement of IFT301 and C306.

REASON:

To improve the efficiency of adjustment.

DESCRIPTION:

	Part Nun	nber	
Parts	Old Type	New Type	Remarks
IFT 301	1-403-152-11	1-403-157-11	Pre-Peaking IFT
C 306	1-101-956-11	1-101-957-11	6pF→ 7pF±0.5pF 25WV According to the above change

Fig. 2(A) Mounting Diagram

Rzie 56

X203 2SC401

Fig. 2 (B) Schematic Diagram

NOTE:

For the same reason, a ceramic capacitor (1pF+0.5pF 25WV, 1-101-951-11) was added between SW3 OSC Coil and SW3 ANT Coil in the sets with serial No. 104, 476 — 118, 481.

Mounting and Schematic Diagrams are shown in Fig. 2(A) and (B).

2. When replacing the Tuning Capacitor of the old type by one of new type, never fail to change the Mount for Tuning Capacitor together.

TR Service Bulletin No. 67-2

Serial No. 117,921 and after

DATE: August 25, 1967

SUBJECT:

- 1. Replacement of SW3 OSC Coil.
- 2. Addition of a Ceramic Capacitor.
- 3. Replacement of Tuning Capacitor and Mount for Tuning Capacitor.

REASON:

To avoid a frequency drift.

DESCRIPTION:

D	Part Number		Remarks	
Parts	Old Type New Type			
SW3 OSC Coil	1-405-278-11	1-405-278-12	Lower Q	
C 235 Ceramic Capactior	Nil	1-101-951-11	lpF <u>+</u> 0.5pF 25WV See Fig.1	
Tuning Capacitor	1-151-133-11	1-151-159-11	Less capacitance fluctuation	
Mount for Tuning Capacitor	3-821-445-03	3-821-445-04	See Fig. 3	

- 1. Mounting and Schematic Diagrams are shown in Fig. 1 (A) and (B).
- 2. The changed positions of the Mount for Tuning Capacitor are shown in Fig. \upbeta

SONY CORPORATION

Fig. 1(A) Mounting Diagram

Fig. 1(B) Schematic Diagram

X:03 2SC401

NOTE:

1. For the same reason, a ceramic capacitor ($1pF\pm0.5pF$ 25WV, 1-101-951-11) was added between SW3 OSC Coil and SW3 ANT Coil in the sets with serial No. 104, 476 — 118, 481.

Mounting and Schematic Diagrams are shown in Fig. 2(A) and (B).

RF Section — Printed Side —

Fig. 2(A) Mounting Diagram

Fig. 2 (B) Schematic Diagram

2. When replacing the Tuning Capacitor of the old type by one of new type, never fail to change the Mount for Tuning Capacitor together.

(Old Type) (New Type)
Fig. 3. Mount for Tuning Capacitor

TR-1000

No. 2

PRODUCTION CHANGE

(Change of Former Service Manual at Page 13)

Former Type

Serial No. Up to 14,400

Part No.	Description	Q'ty
X-38214-01- X-38214-02- X-38214-03- 3-998-001-01 0-039-796-00	Cabinet Ass'y // , front // , back Battery Cylinder Screw, back cover holding	1 1 1 1 2

New Type

Serial No. 14,401 and After

Part No.	Description	Q'ty
X-38214-31-1 X-38214-32-1 3-821-471-01	Cabinet Ass'y // , front // , back	1 1 1
3-998-010-04 7-621-661-66	Battery Cylinder Screw, back cover holding	1 2

Additional

Part No.	Description	Q'ty
3-823-043-02	Lid, battery	1
-048-02	Special Nut	3
-049-01	Coil, spring	2 2
-050-01	Pin, ext. antenna	2
-058-03	Knob, lock	1
-059-02	Plate, lock	1
-060-01	Spring, lock	1
7-621-461-46	Screw, machine +T3×6	3
-721-61	" tapping $+R2.6 \times 5$	3
7-624-106-01	Retaining Ring, E-3	2

Deleted

Part No.	Description	Q'ty
7-621-999-33	Screw, hexagonal 3×22	4
0-039-768-00	Cushion	2
7-624-104-01	Retaining Ring, E-2	2
1-507-036-02	Jack, antenna	1

-1000

Exploded Diagram

—Cabinet—

SONY CORPORATION