Consider the following relational schema, which will be referred to as WORKING SCHEMA, which maintains information about a pizza restaurant:

ORDER(ocode: d1, address: d4, date: d5)
PK:{ocode }

ORDER_ITEM(ocode: d1, pcode: d2, size: d6)

PK:{ocode, pcode}

NNV:{size}

FK:{ocode} -> Order On delete cascade

On update cascade

FK:{pcode} -> Pizza On delete cascade

On update cascade

SPECIAL_ITEM(ocode: d1, pcode: d2, icode: d3, comment: d7)

PK:{ocode, pcode, icode}

NNV:{comment}

FK:{ocode,pcode} -> Order_item On delete cascade

On update cascade

Weak referential integrity

FK:{pcode,icode} -> Recipe On delete cascade

On update cascade

Partial referential integrity

PIZZA(pcode: d2, name: d8)

PK:{pcode } NNV:{name}

RECIPE(pcode: d2, icode: d3, weight: d9)

PK:{pcode, icode}

FK:{pcode} -> Pizza On delete cascade

On update cascade

FK:{icode } -> Ingredient

INGREDIENT(icode: d3, name: d10, stock: d11)

PK:{icode } NNV:{stock}

ORDER: The order with code *ocode* must be delivered to the *address* the day *date*.

ORDER ITEM: The order *ocode* includes the pizza *pcode* with size *size*.

SPECIAL_ITEM: The ingredient *icode*, used in the pizza *pcod* for the order *ocode*, must follow the special requirements appearing in the *comment*.

PIZZA: The pizza with code *pcode* is called *name*.

RECIPE: The recipe of the pizza *pcode* contains the ingredient *icode* with a total weight of *weigth* units.

INGREDIENTS: The basic ingredient *icode* is called *name* and there are *stock* units in the restaurant.

Consider the following extension of the previous schema. We will refer to this extension as database (DB). **Empty cells represent null values**

ORDER		
ocode	address	date
01	Mar, 12	1/1/17
02	Rio Grande, 33	
03		2/1/17

ORDER_ITEM		
ocode	pcode	size
01	P1	G
01	P8	М
02	P2	G

PIZZA		
pcode	name	
P1	Ham	
P2	BBQ	
P8	Vegetarian	

RECIPE		
pcode	icode	weight
P1	I1	
P1	12	3
P2	I 1	
P2	13	2
P8	14	4

INGREDIENT		
icode	name	stock
I1	Cheese	1000
12		5
13	Beef	4
14		10

SPECIAL_ITEM		V	
ocode	pcode	icode	Comment
02	P2	13	undercooked

Circle the correct answer for each question.

This test penalizes students' incorrect answers with negative points (1/3) to discourage guessing.

- 1. Consider the foreign key in the relation Order_item FK:{ocode} -> Order. The only operations that may violate the referential integrity are:
 - a) Delete a tuple or update any attributte in the primary key of Order_item, Insert a tuple or update the foreign key in Order
 - b) Delete a tuple or update ocode in Order_item, Insert a tuple or update the foreign key in Order.
 - c) It depends on the referential integrity type (weak, partial, or full).
 - d) Insert a tuple or update the ocode in the Order_item relation, and delete a tuple or update the ocode in the Order relation.
- 2. Let R, S, and T be relations. Considering the cardinalities (card) of these relations, What are the maximum and minimum cardinalities of the expression $R \otimes (S T)$?
 - a) The minimum cardinality is 0, and the maximum is $card(R) \times (card(S) card(T))$
 - b) The minimum cardinality is card(R), and the maximum is $card(R) \times (card(S) card(T))$.
 - c) The minimum cardinality is 0, and the maximum card(R) x card(S).
 - d) The minimum cardinality is card(R) x (card(S) card(T)), and the maximum is card(R) x card(S).
- 3. How can we include the following constraint: "The date of an order cannot be decreased"?
 - a) By adding a transition integrity constraint, that could be implemented using a trigger.
 - b) By adding a table constraint into the Order table, which could be implemented using a "Check" constraint.
 - c) By adding an attribute constraint into the Order table.
 - d) It is no possible to represent this kind of constraint in the relational data model.
- 4. Which statement referring to the working schema is TRUE?
 - a) There cannot be two Pizzas with the same name.
 - b) All pizzas have at least one ingredient in its Recipe.
 - c) It is no possible to use one ingredient with no stock (or stock =0) in any recipe.
 - d) All the recipes use at least one ingredient.
- 5. What query is represented by the following expression?

(Pizza[pcode, name] \bigotimes_{pcode} ((Recipe WHERE weight > 20)[code])) [name]

6. Complete the content of the tables after the execution of the following sentence DELETE FROM Pizza WHERE pcode='P2'

Answers:

- 1.- d
- 2.- c
- 3.- a 4.- d
- 5.- Names of the pizzas with at least one ingredient with a weight greater than 20

ORDER		
ocode	address	date
01	Mar, 12	1/1/17
02	Rio Grande, 33	
03		2/1/17

ORDER_ITEM		
ocode	pcode	size
01	P1	G
01	P8	М
02	P2	G

PIZZĄ		
pcode	name	
P1	Ham	
P2	BBQ	
P8	Vegetarian	

RECIPE		
pcode	icode	weight
P1	I1	
P1	12	3
P2	14	
P2	13	2
P8	14	4

INGREDIENT		
icode	name	stock
I1	Cheese	1000
12		5
13	Beef	4
14		10

SPECIAL_ITEM			
ocode	pcode	icode	Comment
02	P2	13	undercooked