Introduction to Machine Learning for Social Scientists

Class 10: Unsupervised learning/Distance Metrics

Edgar Franco Vivanco

Stanford University
Department of Political Science
edgarf1@stanford.edu

Summer 2018

Homework 4. Due Wednesday August 8th at midnight

Group Project materials.

Due Tuesday August 14th at midnight

Homework 5. Available on Wednesday August 8th, Due Wednesday August 15th

Plan for the day

- 1. Loose ends: General review of concepts
- 2. Introducing unsupervised learning.
- 3. Text similarity and distance.

General concepts:

- Inference vs. Prediction
- Supervised vs. Unsupervised
- Regression vs. Classification
- Training, test and validation sets
- Overfitting
- Performance metrics

LASSO, intuition:

- ► High dimensionality: $n \le p$, or $n \approx p$
- Regularization: is a process of introducing additional information in order to prevent overfitting (λ).
- Shrinkage

LASSO Penalty: Geometry

LASSO Regression

$$E(y_0 - \hat{f}(x_0))^2 = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon)$$

MSE, and refers expected test MSE to the average test MSE that we would obtain if we repeatedly estimated f using a large number of training sets, and tested each at x₀.

$$E(y_0 - \hat{f}(x_0))^2 = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon)$$

- MSE, and refers expected test MSE to the average test MSE that we would obtain if we repeatedly estimated f using a large number of training sets, and tested each at x₀.
- Variance refers to the amount by which \hat{f} would change if we estimated it using a different training data set.

$$E(y_0 - \hat{f}(x_0))^2 = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon)$$

- MSE, and refers expected test MSE to the average test MSE that we would obtain if we repeatedly estimated f using a large number of training sets, and tested each at x₀.
- ightharpoonup Variance refers to the amount by which \hat{f} would change if we estimated it using a different training data set.
- In general, more flexible statistical methods have higher variance.

$$E(y_0 - \hat{f}(x_0))^2 = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon)$$

- MSE, and refers expected test MSE to the average test MSE that we would obtain if we repeatedly estimated f using a large number of training sets, and tested each at x₀.
- ▶ Variance refers to the amount by which \hat{f} would change if we estimated it using a different training data set.
- In general, more flexible statistical methods have higher variance.
- On the other hand, bias refers to the error that is introduced by approximating a real-life problem, which may be extremely complicated, by a much simpler model.

$$E(y_0 - \hat{f}(x_0))^2 = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon)$$

- MSE, and refers expected test MSE to the average test MSE that we would obtain if we repeatedly estimated f using a large number of training sets, and tested each at x₀.
- ▶ Variance refers to the amount by which \hat{f} would change if we estimated it using a different training data set.
- In general, more flexible statistical methods have higher variance.
- On the other hand, bias refers to the error that is introduced by approximating a real-life problem, which may be extremely complicated, by a much simpler model.
- ► Generally, more flexible methods result in less bias.

Bias-Variance

Bias/variance trade-off

Other supervised learning tools:

- Linear Discriminant Analysis
- Quadratic Discriminant Analysis
- K-Nearest neighbors
- Ridge regression
- Principal Component Regression
- Tree based methods
- Support Vector Machines

Logistics

Supervised vs Unsupervised Learning

Clustering

Supervised learning: Predict or estimate an *output*, usually quantitative (wage) or categorical (Republican/Democrat), based on a set of *inputs*.

Supervised learning: Predict or estimate an *output*, usually quantitative (wage) or categorical (Republican/Democrat), based on a set of *inputs*.

- Clear goal: predict a response variable.

Supervised learning: Predict or estimate an *output*, usually quantitative (wage) or categorical (Republican/Democrat), based on a set of *inputs*.

- Clear goal: predict a response variable.
- Clear set of tools: multiple regression, logit, LASSO, etc.

Supervised learning: Predict or estimate an *output*, usually quantitative (wage) or categorical (Republican/Democrat), based on a set of *inputs*.

- Clear goal: predict a response variable.
- Clear set of tools: multiple regression, logit, LASSO, etc.
- Clear understanding of how to assess the quality the results: test MSE, cross-validation.

Supervised learning: Predict or estimate an *output*, usually quantitative (wage) or categorical (Republican/Democrat), based on a set of *inputs*.

- Clear goal: predict a response variable.
- Clear set of tools: multiple regression, logit, LASSO, etc.
- Clear understanding of how to assess the quality the results: test MSE, cross-validation.

Supervised learning: Predict or estimate an *output*, usually quantitative (wage) or categorical (Republican/Democrat), based on a set of *inputs*.

- Clear goal: predict a response variable.
- Clear set of tools: multiple regression, logit, LASSO, etc.
- Clear understanding of how to assess the quality the results: test MSE, cross-validation.

Unsupervised learning: We observe only the inputs, but no measure for the outputs. Our task is to learn relationships and structures from such data.

- No clear goal: exploratory data analysis.

Supervised learning: Predict or estimate an *output*, usually quantitative (wage) or categorical (Republican/Democrat), based on a set of *inputs*.

- Clear goal: predict a response variable.
- Clear set of tools: multiple regression, logit, LASSO, etc.
- Clear understanding of how to assess the quality the results: test MSE, cross-validation.

- No clear goal: exploratory data analysis.
- No clear way to check our work (because we don't know the true answer.)

Supervised learning: Predict or estimate an *output*, usually quantitative (wage) or categorical (Republican/Democrat), based on a set of *inputs*.

- Clear goal: predict a response variable.
- Clear set of tools: multiple regression, logit, LASSO, etc.
- Clear understanding of how to assess the quality the results: test MSE, cross-validation.

- No clear goal: exploratory data analysis.
- No clear way to check our work (because we don't know the true answer.)
- Still important and useful!

Supervised learning: Predict or estimate an *output*, usually quantitative (wage) or categorical (Republican/Democrat), based on a set of *inputs*.

- Clear goal: predict a response variable.
- Clear set of tools: multiple regression, logit, LASSO, etc.
- Clear understanding of how to assess the quality the results: test MSE, cross-validation.

- No clear goal: exploratory data analysis.
- No clear way to check our work (because we don't know the true answer.)
- Still important and useful!

▶ Goal is to ascertain, on the basis of $x_1, x_2, ..., x_n$, whether the observations fall into relatively distinct groups.

- ▶ Goal is to ascertain, on the basis of $x_1, x_2, ..., x_n$, whether the observations fall into relatively distinct groups.
- These groups are interesting because the may correspond to some category or quantity of interest.

Today (and Tuesday): Cluster press releases Goal: partition documents such that:

- similar documents are together
- dissimilar documents are apart

Method: Clustering methods Game Plan:

- 1) What makes two data points (i.e. documents) similar?
- 2) How do we find a good partition?
- 3) How do we interpret the clusters?

Key Terms:

- (Multidimensional) Space
- Distance
- Euclidean Distance
- Cosine Distance
- Cluster Analysis / Clustering
- K-means
- Centroid

- Similar use of language → complicated

- Similar use of language → complicated
- Similar word count vectors *→* simple

- Similar use of language → complicated
- Similar word count vectors *→* simple

Similar = Geometrically Close Dissimilar = Geometrically Distant

Consider a document-term matrix

$$X = \begin{pmatrix} 1 & 2 & 0 & \dots & 0 \\ 0 & 0 & 3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \dots & 3 \end{pmatrix}$$

Consider a document-term matrix

$$X = \begin{pmatrix} 1 & 2 & 0 & \dots & 0 \\ 0 & 0 & 3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \dots & 3 \end{pmatrix}$$

By transforming our text into a word count vector, we are representing it as a point in a multidimensional space

Consider a document-term matrix

$$X = \begin{pmatrix} 1 & 2 & 0 & \dots & 0 \\ 0 & 0 & 3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \dots & 3 \end{pmatrix}$$

By transforming our text into a word count vector, we are representing it as a point in a multidimensional space

- Provides a geometry

Consider a document-term matrix

$$X = \begin{pmatrix} 1 & 2 & 0 & \dots & 0 \\ 0 & 0 & 3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \dots & 3 \end{pmatrix}$$

By transforming our text into a word count vector, we are representing it as a point in a multidimensional space

- Provides a geometry
- Natural notions of distance and similarity

Consider a document-term matrix

$$X = \begin{pmatrix} 1 & 2 & 0 & \dots & 0 \\ 0 & 0 & 3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \dots & 3 \end{pmatrix}$$

By transforming our text into a word count vector, we are representing it as a point in a multidimensional space

- Provides a geometry
- Natural notions of distance and similarity
- Tools from linear algebra to calculate distances mathematically.

Texts in Space

 $Doc1 = "Wait? No wait." \Leftrightarrow (2,1)$

Texts in Space

Doc1 = "Wait? No wait." \rightsquigarrow (2,1) Doc2 = "No, wait! No, no, no!" \rightsquigarrow (1,4)

Texts in Space

 $Doc1 = "Wait? No wait." \rightsquigarrow (2,1)$

 $Doc2 = "No, wait! No, no, no!" \rightsquigarrow (1, 4)$

Suppose
$$X_1 = (1,4)$$
 and $X_2 = (2,1)$.

$$d(\mathbf{X}_1, \mathbf{X}_2) = d(\mathbf{X}_2, \mathbf{X}_1) = \sqrt{(x_{1,1} - x_{2,1})^2 + (x_{1,2} - x_{2,2})^2}$$

$$d(\mathbf{X}_1, \mathbf{X}_2) = d(\mathbf{X}_2, \mathbf{X}_1) = \sqrt{(x_{1,1} - x_{2,1})^2 + (x_{1,2} - x_{2,2})^2}$$
$$= \sqrt{(1 - 2)^2 + (4 - 1)^2}$$

$$d(\mathbf{X}_{1}, \mathbf{X}_{2}) = d(\mathbf{X}_{2}, \mathbf{X}_{1}) = \sqrt{(x_{1,1} - x_{2,1})^{2} + (x_{1,2} - x_{2,2})^{2}}$$
$$= \sqrt{(1 - 2)^{2} + (4 - 1)^{2}}$$
$$= \sqrt{10}$$

Suppose
$$X_1 = (1,4)$$
 and $X_2 = (2,1)$.

The Euclidean distance (aka norm) between X_1 and X_2 (or from X_1 and X_2) is the length of the line segment connecting them.

$$d(\mathbf{X}_{1}, \mathbf{X}_{2}) = d(\mathbf{X}_{2}, \mathbf{X}_{1}) = \sqrt{(x_{1,1} - x_{2,1})^{2} + (x_{1,2} - x_{2,2})^{2}}$$
$$= \sqrt{(1 - 2)^{2} + (4 - 1)^{2}}$$
$$= \sqrt{10}$$

This generalizes beyond 2 dimensions!

The Euclidean distance (aka norm) between X_1 and X_2 (or from X_1 and X_2) is the length of the line segment connecting them.

$$d(\mathbf{X}_{1}, \mathbf{X}_{2}) = d(\mathbf{X}_{2}, \mathbf{X}_{1}) = \sqrt{(x_{1,1} - x_{2,1})^{2} + (x_{1,2} - x_{2,2})^{2}}$$
$$= \sqrt{(1 - 2)^{2} + (4 - 1)^{2}}$$
$$= \sqrt{10}$$

This generalizes beyond 2 dimensions!

$$d(\boldsymbol{X}_1,\boldsymbol{X}_2) = \sqrt{(x_{1,1}-x_{2,1})^2+(x_{1,2}-x_{2,2})^2+\cdots+(x_{1,p}-x_{2,p})^2}$$

The Euclidean distance (aka norm) between X_1 and X_2 (or from X_1 and X_2) is the length of the line segment connecting them.

$$d(\mathbf{X}_{1}, \mathbf{X}_{2}) = d(\mathbf{X}_{2}, \mathbf{X}_{1}) = \sqrt{(x_{1,1} - x_{2,1})^{2} + (x_{1,2} - x_{2,2})^{2}}$$
$$= \sqrt{(1 - 2)^{2} + (4 - 1)^{2}}$$
$$= \sqrt{10}$$

This generalizes beyond 2 dimensions!

$$d(\mathbf{X}_{1}, \mathbf{X}_{2}) = \sqrt{(x_{1,1} - x_{2,1})^{2} + (x_{1,2} - x_{2,2})^{2} + \dots + (x_{1,p} - x_{2,p})^{2}}$$
$$= \sqrt{\sum_{p=1}^{P} (x_{1p} - x_{2p})^{2}}$$

Test your knowledge

The Euclidean distance between any documents X_1 and X_2 is:

$$d(\mathbf{X}_1, \mathbf{X}_2) = \sqrt{\sum_{p=1}^{P} (x_{1p} - x_{2p})^2}$$

Suppose:

- $ightharpoonup X_1 = \mathsf{Oh} \; \mathsf{na} \; \mathsf{na} \; \mathsf{na}.$
- $ilde{X}_2 = ext{Oh, me? Na.}$

Calculate the euclidean distance between these two documents.

Test your knowledge

The Euclidean distance between any documents X_1 and X_2 is:

$$d(X_1, X_2) = \sqrt{\sum_{p=1}^{P} (x_{1p} - x_{2p})^2}$$

Suppose:

- **X**₁ = Oh na na na.
- $ilde{X}_2 = ext{Oh, me? Na.}$

Calculate the euclidean distance between these two documents.

$$\sqrt{(1-1)^2+(3-1)^2+(0-1)^2}=\sqrt{5}$$

Problem(?) with Euclidean Distance

$$X_1 = (2,1)$$
 $X_2 = (1,4)$
 $d(X_1, X_2) = \sqrt{(1-2)^2 + (4-1)^2}$
 $= \sqrt{10}$

Problem(?) with Euclidean Distance

$$X_1 = (2,1)$$
 $X_2 = (1,4)$
 $X_3 = 2X_1 = (4,2)$
 $d(X_3, X_2) = \sqrt{(4-1)^2 + (2-4)^2}$
 $= \sqrt{13}$

Euclidean distance depends on document-length.

Cosine Similarity

Takes into consideration documents length.

- Takes into consideration documents length.
- Measures cosine of the angle (θ) between vectors.

- Takes into consideration documents length.
- Measures cosine of the angle (θ) between vectors.
- Measure of similarity (rather than distance) ranging between 0 and 1.

- Takes into consideration documents length.
- Measures cosine of the angle (θ) between vectors.
- Measure of similarity (rather than distance) ranging between 0 and 1.
- To convert to distance (or dissimilarity), take $1-\cos\theta$.

- Takes into consideration documents length.
- Measures cosine of the angle (θ) between vectors.
- Measure of similarity (rather than distance) ranging between 0 and 1.
- To convert to distance (or dissimilarity), take $1-\cos\theta$.

- ► Similar = Geometrically close
- Euclidean distance
- Cosine distance
- Many more! (as always...)

- ► Similar = Geometrically close
- Euclidean distance
- Cosine distance
- Many more! (as always...)

Why do we care?

- ▶ Distances → clustering.
- Other applications
 - Plagiarism,
 - Diffusion of policy

- ► Similar = Geometrically close
- Euclidean distance
- Cosine distance
- Many more! (as always...)

Why do we care?

- ▶ Distances → clustering.
- Other applications
 - Plagiarism,
 - Diffusion of policy

Wednesday

- How do we find a good partition?
- ▶ How do we interpret the clusters?

Flake press releases

- Arizona senator Jeff Flake
- We already have the files preprocessed and available in 'FlakeMatrix.RData'

R!

Michal Kosinski The End of Privacy

Keynote "The End of Privacy", Dr. Michal Kosinski

Bonus Slides

For those who heart math.

Pythogorean
 Theorem: Side with length a

- Pythogorean
 Theorem: Side with length a
- Side with length b and right triangle

- Pythogorean
 Theorem: Side with length a
- Side with length b
 and right triangle
- $c = \sqrt{a^2 + b^2}$

- Pythogorean
 Theorem: Side with length a
- Side with length b and right triangle

$$- c = \sqrt{a^2 + b^2}$$

 Extends beyond 2 dimensions

Vector (Euclidean) Length

Suppose X_i is a document (row from an $N \times K$ document-term matrix).

Then, we will define its length as

$$||X_{i}|| = \sqrt{(X_{i} \cdot X_{i})}$$

$$= \sqrt{(X_{i1}^{2} + X_{i2}^{2} + X_{i3}^{2} + \dots + X_{iK}^{2})}$$

$$= \sqrt{\sum_{k=1}^{K} X_{ik}^{2}}$$

$$\cos\theta = \left(\frac{X_1}{||X_1||}\right) \cdot \left(\frac{X_2}{||X_2||}\right)$$

$$\cos \theta = \left(\frac{X_1}{||X_1||}\right) \cdot \left(\frac{X_2}{||X_2||}\right)$$

$$\frac{(4,2)}{||(4,2)||} = (0.89, 0.45)$$

$$\cos\theta = \left(\frac{X_1}{||X_1||}\right) \cdot \left(\frac{X_2}{||X_2||}\right)$$

$$\frac{(4,2)}{||(4,2)||} = (0.89, 0.45)$$

$$\frac{(2,1)}{||(2,1)||} = (0.89, 0.45)$$

$$\cos \theta = \left(\frac{X_1}{||X_1||}\right) \cdot \left(\frac{X_2}{||X_2||}\right) \\
\frac{(4,2)}{||(4,2)||} = (0.89, 0.45) \\
\frac{(2,1)}{||(2,1)||} = (0.89, 0.45) \\
\frac{(1,4)}{||(1,4)||} = (0.24, 0.97)$$

$$\cos \theta = \left(\frac{X_1}{||X_1||}\right) \cdot \left(\frac{X_2}{||X_2||}\right) \\
\frac{(4,2)}{||(4,2)||} = (0.89, 0.45) \\
\frac{(2,1)}{||(2,1)||} = (0.89, 0.45) \\
\frac{(1,4)}{||(1,4)||} = (0.24, 0.97) \\
(0.89, 0.45) \cdot (0.24, 0.97) = 0.65$$

$$\cos\theta = \left(\frac{X_1}{||X_1||}\right) \cdot \left(\frac{X_2}{||X_2||}\right)$$

$$\frac{(4,2)}{||(4,2)||} = (0.89, 0.45)$$

$$\frac{(2,1)}{||(2,1)||} = (0.89, 0.45)$$

$$\frac{(1,4)}{||(1,4)||} = (0.24, 0.97)$$

$$(0.89, 0.45) \cdot (0.24, 0.97) = 0.65$$

$$\cos \text{ dissimilarity} = 1 - \cos\theta$$

$$\cos \theta = \left(\frac{X_1}{||X_1||}\right) \cdot \left(\frac{X_2}{||X_2||}\right)$$

$$\frac{(4,2)}{||(4,2)||} = (0.89, 0.45)$$

$$\frac{(2,1)}{||(2,1)||} = (0.89, 0.45)$$

$$\frac{(1,4)}{||(1,4)||} = (0.24, 0.97)$$

$$(0.89, 0.45) \cdot (0.24, 0.97) = 0.65$$

$$\cos \text{ dissimilarity } = 1 - \cos \theta$$

$$\cos \theta = \left(\frac{X_1}{||X_1||}\right) \cdot \left(\frac{X_2}{||X_2||}\right)$$

$$\frac{(4,2)}{||(4,2)||} = (0.89, 0.45)$$

$$\frac{(2,1)}{||(2,1)||} = (0.89, 0.45)$$

$$\frac{(1,4)}{||(1,4)||} = (0.24, 0.97)$$

$$(0.89, 0.45) \cdot (0.24, 0.97) = 0.65$$

$$\cos \text{ dissimilarity } = 1 - \cos \theta$$