# Session 1: LSTMs for Earth Observation Time Series

Understanding Recurrent Neural Networks and Long Short-Term Memory

Stylianos Kotsopoulos

**EU-Philippines CoPhil Programme** 



## **Session Overview**

**Duration:** 1.5 hours (90 minutes) **Type:** Theory + Interactive Demos **Goal:** Master LSTM networks for time series forecasting

#### You will learn:

- Why time series analysis is critical for EO
- Limitations of standard neural networks for sequences
- LSTM architecture and how it solves vanishing gradients
- EO applications for LSTM-based forecasting
- How LSTM gates control information flow

#### **Prerequisites:**

- Understanding of CNNs (Day 3)
- Basic neural network training
- Time series concepts
- Python fundamentals

#### **Materials:**

- Theory presentation
- Interactive LSTM notebook
- Gradient demonstration
- Philippine EO examples







## Part 1: Time Series in EO



## **Why Time Series Matter**

Earth observation data is inherently temporal - we observe the same locations repeatedly over time.

#### **Static Analysis (Single Date):**

- Land cover classification
- Feature detection
- Snapshot assessments

#### Time Series Analysis (Multi-Date):

- Vegetation phenology and growth cycles
- Drought onset and recovery
- Crop yield forecasting
- Deforestation detection
- Seasonal pattern analysis
- Climate change trend identification



## The Fourth Dimension of EO



**○** Spatial + Temporal Analysis

While CNNs excel at extracting spatial patterns from individual satellite images, LSTMs excel at extracting temporal patterns from sequences of observations.

Together, they form powerful tools for spatiotemporal analysis.





## **Common EO Time Series**

#### **Vegetation Indices:**

- NDVI: Vegetation health, crop growth, drought stress
- EVI: Better for high-biomass areas (tropical forests)
- SAVI: Reduces soil background effects

#### **SAR Backscatter:**

- VV, VH polarization: Flooding, harvest, vegetation changes
- Coherence: Surface stability over time

#### **Biophysical Parameters:**

- LAI: Crop canopy development
- **FPAR:** Productivity indicator
- LST: Heat stress, urban heat island



# Philippine Seasonal Patterns Dry Season (Nov-Apr)

- Lower NDVI in rain-fed areas
- Reduced soil moisture
- Increased drought risk (Mindanao)

#### **Climate Impacts:**

- El Niño: Prolonged dry conditions, delayed planting, reduced yields
- La Niña: Enhanced rainfall, potential flooding, pest outbreaks

### Wet Season (May-Oct)

- Peak NDVI during growth
- Rice planting seasons
- Flood risk (typhoon-prone)



## Mindanao Case Study

#### (i) Agricultural Context

**Provinces:** Bukidnon and South Cotabato

#### **Major Crops:**

- Corn (maize)
- Rice
- Pineapple
- Coffee
- Sugarcane

#### **2015-2016 El Niño Impact:**

- Severe drought causing significant crop losses
- Need: Predict drought 1-3 months ahead for early interventions





## **LSTM Applications for EO**

#### 1. Drought Forecasting

- Input: NDVI, rainfall, temperature sequences
- Output: Predicted NDVI 1-3 months ahead
- Benefit: Early warning for agricultural planning

#### 2. Crop Yield Prediction

- Input: In-season NDVI, weather, SAR
- Output: Estimated yield at harvest
- Benefit: Food security planning

#### 3. Flood Risk Assessment

- Input: Precipitation, discharge, soil moisture
- Output: Predicted flood probability
- Benefit: Disaster preparedness



## **More Applications**

#### 4. Land Cover Change Detection

- Input: Multi-temporal optical and SAR
- Output: Change probability, anomaly detection
- Benefit: Deforestation monitoring

#### 5. Phenology Monitoring

- Input: NDVI/EVI time series
- Output: Predicted crop stage, harvest date
- Benefit: Precision agriculture





## Part 2: RNN Limitations

## Why Standard Networks Fail

Feedforward Networks (including CNNs) assume inputs are independent.

#### **Problem with Sequential Data:**

- Each input depends on previous inputs
- Context matters: Today's NDVI depends on past weeks
- Fixed input size challenge

**Example:** Predicting next month's vegetation health

- Feedforward: Each month treated independently (no memory)
- But we know: If NDVI declining for 3 months → drought worsening

**Solution:** Networks with **memory** of previous inputs



## **Recurrent Neural Networks**

Key Idea: Add feedback loop to remember previous inputs





## **How RNNs Work**

#### At each time step t:

- 1. Receive input x\_t (e.g., current month's NDVI)
- 2. Combine with previous hidden state h\_{t-1} (memory)
- 3. Compute new hidden state h\_t
- 4. Produce output y\_t
- 5. Pass h\_t to next time step

#### **Mathematical Formulation:**

$$h_t = \tanh(W_{hh} \cdot h_{t-1} + W_{xh} \cdot x_t + b_h)$$
$$y_t = W_{hy} \cdot h_t + b_y$$



## **RNN Advantages**

- Handles variable-length sequences
- Maintains memory across time steps
- Shares weights across time (parameter efficiency)
- Designed for temporal dependencies



## The Vanishing Gradient Problem

#### **Critical Flaw of Standard RNNs:**

When training on long sequences (e.g., 24 months), gradients become extremely small during backpropagation.

#### **Why This Happens:**

Gradients multiply repeatedly:

$$\frac{\partial L}{\partial h_1} = \frac{\partial L}{\partial h_T} \cdot \frac{\partial h_T}{\partial h_{T-1}} \cdot \dots \cdot \frac{\partial h_2}{\partial h_1}$$

If each derivative < 1, product shrinks exponentially





## **Gradient Decay Consequences**

#### Impact:

- Vanishing gradients: Cannot learn long-term dependencies (e.g., drought from 6 months ago)
- Exploding gradients: Less common, but gradients can grow exponentially

#### **EO** Application Impact:

Predicting August drought based on:

- July data: ✓ RNN learns easily
- April-June: △ Partially learned
- January-March: X Lost due to vanishing gradients

But January-March dry season conditions are critical for August prediction!



## Mini-Challenge: Gradient Decay



#### **Calculate Gradient Decay**

Task: How many time steps for gradient of 0.9 to shrink below 0.01?

**Formula:**  $0.9^n < 0.01$ 

**Answer:**  $n = \frac{\log(0.01)}{\log(0.9)} \approx 44 \text{ steps}$ 

#### Meaning:

• Standard RNN: Learn only ~44 recent steps

• Monthly data: Less than 4 years

• 10-day composites: Less than 15 months

This is why LSTMs are essential!







## Part 3: LSTM Architecture

### What is an LSTM?

Long Short-Term Memory networks solve the vanishing gradient problem Key Innovation:

Replace simple hidden state with a memory cell controlled by learnable gates

#### **LSTM Advantages:**

- Learn long-term dependencies (100+ time steps)
- Selective memory: Remember important, forget irrelevant
- Gradient flow preserved through time



## **LSTM Cell Structure**

#### **Components:**

- Cell State (C\_t): Long-term memory "conveyor belt"
- Hidden State (h\_t): Short-term memory and output
- Three Gates: Control information flow





## **The Three Gates**

#### 1. Forget Gate

- Purpose: Decide what to discard from cell state
- Question: "Should I forget old information?"
- Example: Dry season ended → forget drought patterns

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

Output: 0 (forget) to 1 (keep)



## **Input Gate**

#### 2. Input Gate

- Purpose: Decide what new information to add
- Question: "What new information should I remember?"
- Example: Wet season started → remember rainfall pattern

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$C_t^{\sim} = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- i\_t: How much to add (0 to 1)
- C\_tilde\_t: Candidate values



## **Output Gate**

#### 3. Output Gate

- Purpose: Decide what to output from cell state
- Question: "What should I output this time step?"
- Example: Output drought risk based on accumulated evidence

$$o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$$

$$h_t = o_t \cdot \tanh(C_t)$$



## **Cell State Update**

#### **Step 1: Forget old information**

$$C_t = f_t \cdot C_{t-1}$$

#### **Step 2: Add new information**

$$C_t = C_t + i_t \cdot \tilde{C_t}$$

#### **Combined:**

$$C_t = f_t \cdot C_{t-1} + i_t \cdot \tilde{C_t}$$

## Why LSTMs Solve Vanishing Gradients

Key Insight: Cell state acts as gradient highway

#### **Standard RNN:**

Gradient multiplied by weight matrix at each step → decay

#### LSTM:

- Gradient flows through cell state with element-wise operations
- Gate values learned, can be close to 1
- Minimal gradient decay

#### **Result:**

- Learn dependencies over 100+ time steps
- Remember events from months ago
- Forget irrelevant fluctuations



## **Think-Through Discussion**

#### i Drought Monitoring Example

Question: What might the gates do for Mindanao drought?

#### **Forget Gate:**

- Discard normal seasonal fluctuations
- Remove short-term weather noise

#### **Input Gate:**

- Preserve El Niño indicators
- Remember declining NDVI trend
- Store anomalous patterns

**Reflection:** How would gates behave differently for:

- 1. Typical seasonal NDVI decline (expected)
- 2. Anomalous drought event (unexpected)





## Part 4: LSTM for EO

### **LSTM Network Architecture**



#### **Components:**

- Input: Sequence of observations (12 months NDVI)
- LSTM Layers: Extract temporal patterns (1-2 layers)
- Dense Layers: Map LSTM output to prediction
- Output: Predicted value(s)



## **Input Data Preparation**

#### **Sequence Creation (Sliding Window):**

Given monthly NDVI 2015-2021, create training sequences:

Lookback: 12 months Forecast: 1 month ahead

#### **Example:**

- Seq 1: [Jan 2015, ..., Dec 2015] → Predict Jan 2016
- Seq 2: [Feb 2015, ..., Jan 2016] → Predict Feb 2016
- Seq 3: [Mar 2015, ..., Feb 2016] → Predict Mar 2016

Result: Hundreds/thousands of training sequences from multi-year data



## **Multivariate Inputs**

LSTMs use multiple features per time step:

- NDVI (vegetation health)
- Rainfall (water availability)
- Temperature (heat stress)
- Soil moisture
- Previous year same month

```
Input Shape: (samples, time_steps, features)
```

Example: (5000, 12, 4) = 5000 sequences, 12 months, 4 features



## **Training Process**

#### 1. Data Splitting:

• Training: 2015-2019 (80%)

• Validation: 2020 (10%)

• Test: 2021 (10%)

Important: Temporal splits (not random) to avoid leakage

#### 2. Normalization:

• Scale to [0, 1] or standardize (mean=0, std=1)

#### 3. Model Compilation:

• Loss: Mean Squared Error (MSE)

• Optimizer: Adam

• Metrics: RMSE, MAE



### **Training Details**

### 4. Training:

• Batch size: 32-128

• Epochs: 50-200 (early stopping)

Monitor validation loss

#### 5. Evaluation:

- Test set predictions vs actual
- Visualize time series
- Calculate error metrics



### Hyperparameters

| Parameter     | Description        | Typical Range    |
|---------------|--------------------|------------------|
| LSTM units    | Hidden state size  | 32-256 per layer |
| Layers        | LSTM stack depth   | 1-3              |
| Lookback      | Time steps to use  | 6-24 months      |
| Dropout       | Regularization     | 0.1-0.3          |
| Learning rate | Optimization step  | 0.0001-0.01      |
| Batch size    | Samples per update | 32-128           |







# Philippine Applications



### **Mindanao Drought Monitoring**

Objective: Predict drought 1-3 months ahead for Bukidnon & South Cotabato

#### **Data Sources:**

- Sentinel-2 NDVI: 2015-2021 (10-day)
- PAGASA rainfall: Monthly accumulation
- PAGASA temperature: Monthly mean
- El Niño index (ONI): NOAA data

#### **Model Setup:**

- Input: 12-month sequences (NDVI, rainfall, temp, ONI)
- Output: NDVI prediction 1 month ahead
- Architecture: 2 layers (64, 32 units), dropout 0.2



### **Expected Results**

### **Training:**

• Historical: 2015-2019

• Validation: 2020

• Test: 2021

#### **Performance:**

- RMSE < 0.05 on NDVI scale [0-1]
- Early detection 1-3 months in advance
- Correlation with reported crop losses

### **Operational:**

- Monthly predictions as new data arrives
- Alerts to DA, PAGASA, LGUs
- Integration with agricultural advisory systems



### **Session 2 Lab Preview**

! Tomorrow's Hands-On Lab

Session 2 (2.5 hours) implements full workflow:

- Download Sentinel-2 NDVI for Mindanao
- Prepare sequences and training data
- Build and train LSTM model
- Evaluate predictions
- Visualize results
- Discuss operational deployment





### Other Philippine Applications

#### 1. Rice Yield Forecasting (Luzon)

- SAR backscatter + NDVI time series
- Yield 1 month before harvest
- DA food security planning

#### 2. Typhoon Impact Prediction (Visayas)

- Pre-typhoon NDVI, rainfall, wind
- Expected NDVI drop (damage proxy)
- Pre-position relief supplies

### 3. Coral Bleaching (Palawan)

- Sea surface temperature series
- Bleaching risk 2-4 weeks ahead
- DENR early warning for MPAs

#### 4. Urban Growth (Metro Manila)

- Historical built-up area
- Urban expansion locations





## **Interactive Demos**

### **Demo 1: Gate Behavior**

#### Interactive notebook features:

- Set gate values manually
- Observe cell state evolution
- See information flow control
- Understand selective memory





### **Demo 2: Vanishing Gradient**

Side-by-side comparison:

- Standard RNN gradient decay (50 steps)
- LSTM gradient preservation (50 steps)
- Visualization of why LSTMs work



### **Demo 3: NDVI Prediction**

#### Pre-trained LSTM:

- Input: 12 months synthetic Mindanao NDVI
- Predictions vs actual (next 3 months)
- Drought vs normal conditions
- Seasonal pattern capture



### **Notebook Access**

*i* Interactive Materials

#### LSTM Demo Notebook:

- Architecture visualization
- Gradient demonstration
- Mindanao NDVI generation
- Complete model training

**Download Student Version** 

Requirements: TensorFlow 2.x, NumPy, Matplotlib, Pandas







# Hands-On Exercise



### **Build Your First LSTM**

### **Step 1: Data Preparation**

- Generate synthetic Mindanao NDVI (2019-2024)
- Visualize seasonal patterns
- Create sliding window sequences

#### **Step 2: Understand Gradients**

- Calculate vanishing gradient decay
- Compare RNN vs LSTM
- Visualize gradient flow



### **Model Building**

### **Step 3: Build and Train**

```
model = Sequential([
    LSTM(64, return_sequences=True, input_shape=(12, 1)),
    Dropout(0.2),
    LSTM(32),
    Dropout(0.2),
    Dense(16, activation='relu'),
    Dense(1)
    ])
```

#### **Step 4: Evaluate**

- Compare predictions vs actual
- Calculate RMSE and MAE
- Visualize drought prediction accuracy



### **Expected Results**

- Prediction accuracy: MAE < 0.05 NDVI units
- Drought detection: 80%+ accuracy
- Training time: ~3-5 minutes on CPU
- Open Student Notebook to begin!





# Key Takeaways



### **Summary: Time Series**

! Important

#### **Time Series in EO:**

- Unlocks temporal patterns invisible in single images
- Philippine agriculture: Strong seasonal cycles
- Applications: Drought, yield, phenology, change detection
- Fourth dimension beyond spatial analysis



### **Summary: RNNs**

! Important

#### **RNNs and Limitations:**

- Standard networks can't handle sequences
- RNNs add memory via recurrent connections
- Vanishing gradient: Can't learn >10 time steps
- Limits: ~44 steps with 0.9 gradient retention





### **Summary: LSTM**

! Important

#### **LSTM Architecture:**

- Three gates (forget, input, output) control flow
- Cell state = long-term memory "conveyor belt"
- Gradients flow without decay → 100+ steps
- Selective memory: Remember important, forget noise





### **Summary: EO Forecasting**

#### ! Important

#### **LSTM for EO:**

- Input: Sequences via sliding windows
- Architecture: Stacked LSTM + dense layers
- Output: Predicted values 1-N steps ahead
- Training: Temporal splits, MSE loss, Adam

#### **Philippine Context:**

- Mindanao drought: NDVI 1-3 months ahead
- Multivariate: NDVI + rainfall + temp + climate
- Operational: Early warning for agencies



### **Next Session**



**Tomorrow: Hands-On Lab** 

Session 2 implements full LSTM drought monitoring for Mindanao with real Sentinel-2 data!

#### **To Prepare:**

- 1. Python environment with TensorFlow
- 2. Review LSTM concepts from today
- 3. Understand sequence preparation
- 4. Think about drought indicators

Software: Python 3.8+, TensorFlow 2.x, GEE account





### Resources

### **Research Papers**

- Hochreiter & Schmidhuber (1997). "Long Short-Term Memory"
- Gers et al. (2000). "Learning to Forget with LSTM"
- Ndikumana et al. (2018). "Deep RNN for Agricultural Classification"

### **Tutorials**

- Understanding LSTM Networks (colah's blog)
- Keras LSTM Tutorial
- TensorFlow Time Series



### **Philippine EO Data**

- PAGASA Climate Data
- CoPhil Infrastructure
- Google Earth Engine





### **Questions & Discussion**

#### **Think About:**

- What time series problems in your work need LSTM?
- What features beyond NDVI improve drought prediction?
- How far ahead can we realistically forecast?
- What are the limitations and uncertainties?

Contact: skotsopoulos@neuralio.ai



### Thank You!

# Questions?



Day 4: Time Series Analysis, Emerging Trends, and Sustainable Learning - CoPhil 4-Day Advanced Training on AI/ML for Earth Observation, funded by the European Union under the Global Gateway initiative.

