BAB I

PENDAHULUAN

1.1 Latar Belakang

Pabrik kimia merupakan susunan atau rangkaian berbagai unit pengolahan yang terintegrasi satu sama lain secara sistematis dan rasional. Tujuan pengoperasian pabrik kimia secara keseluruhan adalah mengubah bahan baku menjadi produk yang lebih bernilai guna. Dalam pengoperasiannya pabrik akan selalu mengalami permasalahan seperti regulasi atau pengontrolan berbagai variabel proses dan gangguan (disturbance) dari lingkungan eksternal. Selama beroperasi, pabrik diharuskan mempertimbangkan aspek keteknikan, keekonomisan, dan kondisi sosial agar proses yang terjadi di dalam pabrik tidak terpengaruh secara signifikan oleh perubahan-perubahan eksternal tersebut dan tercapai proses yang stabil.

Agar proses selalu stabil, dibutuhkan instalasi alat-alat pengendalian. Alat-alat pengendalian yang dimaksud antara lain kontroler, sensor, aktuator, sistem alarm, pengendali jarak jauh, dan lain sebagainya. Alat-alat pengendalian ini dipasang dengan tujuan menjaga keamanan dan keselamatan kerja, memenuhi spesifikasi produk yang diinginkan, menjaga peralatan proses dapat berfungsi sesuai yang diingkan dalam desain, menjaga operasi pabrik tetap ekonomis, dan memenuhi persyaratan lingkungan.

Untuk memenuhi persyaratan di atas, diperlukan pengawasan (monitoring) yang terus menerus terhadap operasi pabrik kimia dan intervensi dari luar (external intervention) untuk mencapai tujuan operasi. Hal ini dapat terlaksana melalui suatu rangkaian peralatan (alat ukur, pengendali, dan komputer) serta intervensi manusia (plant managers dan plants operators) yang secara bersama membentuk control system. Dalam pengoperasian pabrik, diperlukan berbagai prasyarat dan kondisi operasi tertentu sehingga diperlukan usaha-usaha pemantauan terhadap kondisi operasi pabrik dan pengendalian proses supaya kondisi operasinya stabil (Liu et al., 2023).

1.2 Rumusan Masalah

Dalam keberjalanan suatu proses produksi di industri dibutuhkan penjagaan untuk kualitas dan kuantitas dari suatu proses tersebut. Penjagaan tersebut merupakan suatu sistem yang disebut sebagai pengendalian proses. Pengendalian proses dilakukan untuk menekan atau mengurangi human error

dan meningkatkan efisiensi dalam keakuratan reaksi sebuah alat yang bekerja secara otomatis terhadap suatu gangguan dibandingkan dengan alat yang digerakkan secara manual. Maka dari itu diperlukan pemahaman dalam pengoperasian sistem pengendali dan variasi dari segi proportional (P), proportional integral (I), dan proportional integral derivative (PID).

1.3 Tujuan Praktikum

- Mampu mengoperasikan suatu proses dengan sistem pengendali.
- 2. Mampu mengevaluasi proses dengan variasi sistem pengendali umpan balik atau feedback controller (Proportional (P), Proportional Integral (I), dan Proportional Integral Deritatived (PID).
- 3. Mampu mengkaji grafik hubungan antara level dan elapsed time terhadap set point, interval data, PID, dan variasi oriface.

1.4 Manfaat Praktikum

- Mahasiswa diharapkan mampu mengetahui pengoperasian suatu proses 1. dengan sistem pengendali.
- 2. Mahasiswa dapat mampu mengevaluasi proses dengan variasi sistem pengendali umpan balik atau feedback controller (Proportional (P), Proportional integral (I), dan Proportional Integral Derivative (PID).
- Mahasiswa diharapkan mampu mengkaji grafik hubungan antara level dan 3. elapsed time terhadap set point, interval data, PID, dan variasi oriface.

Process Laboratory

BAB II

TINJAUAN PUSTAKA

2.1 Pengendalian Proses

Sistem pengendalian adalah susunan komponen-komponen fisik yang dirakit sedemikian rupa sehingga berfungsi untuk mengendalikan sistem itu sendiri atau sistem lain yang berhubungan dengan sebuah proses baik dalam keadaan open loop atau close loop (Benner, 1993). Dalam pengertian lain sistem pengendalian adalah suatu proses/pengendalian terhadap suatu atau beberapa besaran sehingga berada pada suatu harga atau range tertentu. Hampir semua proses dalam dunia industri membutuhkan peralatan-peralatan otomatis untuk mengendalikan parameter-parameter prosesnya. Otomatisasi tidak saja diperlukan demi kelancaran operasi, keamanan, ekonomi, maupun mutu produk, tetapi lebih merupakan kebutuhan pokok. Dalam sebuah industri tidak mungkin jika tidak melibatkan pengendalian proses, contohnya pengendalian disuatu proses pengilangan minyak.

Ada banyak parameter yang harus dikendalikan di dalam suatu proses. Di antaranya yang paling umum adalah tekanan (pressure) di dalam sebuah vessel atau pipa dan reaktor, aliran (flow) di dalam pipa, suhu (temperature) di unit proses seperti heat exchanger, atau permukaan zat cair (level) di sebuah tangki, dan konsentrasi bahan kimia (Dong et al., 2024). Selain itu, ada beberapa parameter lain diluar keempat parameter di atas yang cukup penting dan juga perlu dikendalikan karena kebutuhan spesifik proses, diantaranya: pH di industri petrokimia, water cut (BS & W) di ladang minyak mentah, warna produk di suatu fasilitas pencairan gas (NGL) dan sebagainya.

Pengetahuan mengenai proses merupakan salah satu kunci utama keberhasilan dalam pengontrolan parameter yang harus dikendalikan. Pengendalian otomatis memegang peranan penting dan memberikan kemudahan dalam mendapatkan performansi dalam suatu sistem dinamik, mempertinggi kualitas, menurunkan biaya produksi, dan mempertinggi laju produksi, serta meniadakan pekerjaan-pekerjaan rutin yang harus dilakukan oleh manusia. Namun, semua peran operator manual digantikan oleh sebuah alat yang disebut controller. Tugas membuka dan menutup valve tidak lagi dikerjakan oleh operator tetapi atas perintah controller. Untuk keperluan pengendalian otomatis, valve harus dilengkapi dengan alat yang disebut actuator sehingga unit valve yang sekarang menjadi unit yang disebut control valve. Semua peralatan

pengendalian inilah (controller dan control valve) yang disebut sebagai instrumentasi pengendalian proses.

Controller merupakan sebuah sistem yang ditambahkan pada plant untuk mendapatkan karakteristik sistem keseluruhan yang diharapkan. Pengendalian PID merupakan pengendalian yang digunakan untuk memperbaiki sistem melalui perbaikan respon sistem yang dihasilkan. Perbaikan respons sistem menggunakan PID ini dapat mengurangi dan menghilangkan nilai error steady state serta meningkatkan kecepatan respon untuk mencapai set point.

2.2 Pengendalian Proportional (P)

Pengendalian proposional merupakan suatu pengendali yang isyarat keluarannya (p(t)) proporsional terhadap kesalahan (e(t)), yaitu beda antara set point-nya dengan hasil pengukuran yang secara matematis dapat dinyatakan sebagai berikut:

$$\Delta Q_{\text{output}} = K_{\text{Cerror}} \tag{2.1}$$

Berdasarkan pendekatan tersebut dimana K_c adalah *proportional gain* yang menunjukkan *responsiveness controller* terhadap proses *setting up. Proportional gain* dapat diatur untuk membuat keluaran pengendali berubah dengan sensitivitas yang diperlukan terhadap penyimpangan antara *set point* dengan variabel terkendali.

Pengendali proporsional memiliki 2 parameter yaitu: pita proporsional (proportional band) dan konstanta proporsional. Derah kerja efektif controller dicerminkan oleh proportional band, sedangkan konstanta proporsional menunjukkan nilai faktor penguatan terhadap sinyal kesalahan, K_C. Hubungan antara proportional band (PB) dengan konstanta proportional (K_C) ditunjukkan sebagai berikut:

$$PB = \left(\frac{1}{K_C}\right) x \, 100\% \tag{2.2}$$

Sistem pengendalian ini merupakan bentuk sistem pengendalian proses yang sangat sederhana dengan proses yang sangat cepat terhadap set point dan gangguan pada proses, tetapi mempunyai karakteristik besaran steady state error yang besar.

Ciri-ciri pengontrol proporsional:

- Apabila nilai Kc kecil, pengontrol proporsional hanya mampu melakukan koreksi kesalahan yang kecil sehingga akan menghasilkan respon sistem yang lambat (menambah *rise time*).
- 2. Apabila nilai Kc dinaikkan, respon/tanggapan sistem akan semakin cepat

mencapai keadaan mantapnya (mengurangi rise time).

- 3. Namun, jika nilai K_C diperbesar sehingga mencapai harga yang berlebihan, akan mengakkibatkan sistem bekerja tidak stabil atau respon sistem akan berosilasi/terjadinya overshoot.
- 4. Nilai K_C dapat diatur sedemikian sehingga mengurangi steady state error, tetapi tidak menghilangkannya.

Pengendalian Proportional Integral (PI)

Pengendali PI adalah sistem pengendali gabungan antara pengendali proporsional dan integral. Pengendali integral digunakan untuk mengeliminasi error dengan mengintegralkan error pada periode tertentu hingga error "nol" atau tidak ada *error* sama sekali. Bentuk keluaran pengendali tergantung pada integral dari kesalahan isyarat pada seluruh waktu, dimana:

$$\Delta Q_{\text{output}} = \text{Ki} \int i. \ dt$$
 (2.3)

$$\Delta Q_{\text{output}} = \text{Ki} \int i. \, dt$$

$$\text{atau}$$

$$p(t) = \bar{p} + \frac{1}{\tau_i} \int_0^t e(t) dt$$
(2.3)

= integral gain atau " reset rate" (repeat/minute) Ki

= Waktu integral atau waktu reset τ_{i}

Pengendalian integral dikenal pula sebagai "reset" yang mempunyai respon yang relatif lambat tapi cukup efektif untuk pengendalian proses yang berlangsung cepat, mengandung unsur gangguan yang besar dan didominasi oleh adanya sifat deadtime pada transportasi produk. Pengaruhnya terhadap steady state error relatif kecil. Pengendalian ini biasa digunakan untuk mengurangi adanya offset antara set point dan process variable.

Pengendalian Proportional Integral Derivative (PID) 2.4

Pengendalian Proportional Integral Derivative (PID) adalah suatu jenis pengendalian sistem yang menggabungkan tiga elemen kontrol yang berbeda, yakni proporsional, integral, dan derivatif. Deritative controller dikenal dengan aksi kecepatan, pre-act, atau pengendali antisipatif. Fungsinya adalah mengantisipasi kelakukan isyarat kesalahan yang akan terjadi dengan memperhatikan kecepatan perubahan dan memprediksi perubahan. Pengendali derivative dapat mempercepat respon awal sistem dan mengurangi overshoot (sinyal melebihi set point). Kontrol PID ini digunakan untuk menentukan nilai

 K_p , T_i , dan T_d . Derivatif kontrol ini umumnya dikenal juga sebagai "rate". Nilai dari parameter ini pada dasarnya berarti seberapa jauh di detik kedepannya ingin memprediksi laju perubahannya. Model persamaan yang digunakan adalah:

$$\Delta Q_{output} = Kd \frac{de}{dt}$$
 (2.5)

$$p(t) = \bar{p} + \tau_D \frac{de}{dt}$$
 (2.6)

Kd= time constant

 τ_D = waktu derivative

Model *derivative* tidak pernah berdiri sendiri tetapi selalu bersama proporsional atau proporsional integral karena kontrol *derivative* hanya akan berubah saat ada perubahan *error*, sehingga saat *error* statis (tetap), kontrol ini tidak akan bereaksi. Dalam pengendalian PID ada tiga parameter yang dapat diatur yaitu Kc, τ_i dan τ_D . Dalam kontrol PID sendiri perlu dihindari terjadinya *derivative kick* (gangguan yang besar) dengan mengatur parameter-parameter yang ada.

2.5 Metode Ziegler-Nichols

Penalaan (tuning) metode Ziegler-Nichols merupakan suatu metode yang digunakan untuk menyetel nilai parameter PID untuk menghasilkan sistem (yang tidak diketahui fungsi alihnya) yang stabil dengan overshoot maksimum 25%. Metode ini dirancang untuk menentukan parameter optimal dari kontroler PID agar sistem dapat beroperasi dengan efisien dan stabil. Dengan pendekatan empiris yang mengandalkan pengamatan respons sistem terhadap perubahan input, metode Ziegler-Nichols memungkinkan penyesuaian yang cepat dan efektif, sehingga sangat berguna dalam berbagai aplikasi industri, mulai dari pengendalian proses hingga sistem otomatisasi.

Metode Ziegler-Nichols untuk penalaan kontroler PID dimulai dengan mengatur kontroler PID dengan nilai integral (K_i) dan diferensial (K_d) sama dengan nol, hanya gain proporsional (K_p) yang aktif. Kemudian, tingkatkan secara bertahap nilai K_p hingga sistem mulai menunjukkan perilaku osilasi (fluktuasi) yang tidak stabil. Nilai K_p pada titik ketika sistem mengalami osilasi ini disebut dengan K_{MAX} (nilai maksimum di mana sistem masih dapat beroperasi tetapi sudah mulai berosilasi). Selama osilasi, frekuensi yang terbentuk dinamakan f₀. Setelah mencapai K_{MAX}, turunkan nilai K_p ke tingkat yang lebih rendah, yang biasanya ditetapkan pada sekitar 50-75% dari K_{MAX}. Terakhir, gunakan nilai f₀ untuk menetapkan nilai integral (T_i) dan diferensial (T_d) gain

berdasarkan rumus yang ditentukan oleh Ziegler-Nichols. Umumnya, rumus untuk menetapkan parameter PID adalah sebagai berikut:

$$K_{p} = 0.6 \times K_{MAX} \tag{2.7}$$

$$T_{i} = \frac{1}{2 \times f_{0}} \tag{2.8}$$

$$T_{d} = \frac{1}{8 \times f_0} \tag{2.9}$$

(Ellis, 2012)

2.6 PCT 50 Level Control

Gambar 2.1 PCT50 level control

PCT 50 adalah proses kontrol level yang menggunakan air sebagi fluida kerja untuk keamanan dan kenyamanan penggunan. Air yang disimpan di tangki penampung bawah ditransfer ke bejana proses atas (*upper process vessel*) melalui pompa sentrifugal kecepatan variabel yang terendam. Konektor pelepas cepat memungkinkan tabung *outlet* pompa fleksibel untuk dilepaskan untuk membantuk *priming* pompa setelah mengisi tangka bawah dengan air. Pengaturan saluran masuk vertikal dalam bejana proses memungkinkan visualisasi air yang masuk ke bejana, terlepas dari ketinggian air dan *integral non-valve* (*check valve*) yang tidak terpisahkan bertujuan untuk mencegah air mengalir kembali (*back flow*) ke bejana penampung ketika kecepatan pompa dikurangi atau dihentikan. Katup bola sebaris (CV1) di atas konektor pelepas cepat memungkinkan aliran air yang masuk ke bejana proses divariasikan, tidak tergantung pada kecepatan pompa, agar sesuai dengan demonstrasi tertentu.

Ketinggian air di dalam bejana proses diukur dengan menggunakan sensor tekanan elektronik yang dipasang di tepi bejana. Satu sisi sensor tekanan terhubung didalam bejana proses dan sisi lainnya terbuka ke atmosfer sehingga memungkinkan tekanan di dalam bejana proses diukur secara relatif terhadap

atmosfer. Oleh karena itu, sensor ini mengukur tingkat air di dalam bejana proses. Level ketinggian juga ditunjukkan pada skala di sisi bejana proses. Air mengalir dari bejana proses kembali ke tangki penampung bawah melalui dua saluran keluar di dasar bejana proses. Aliran melalui saluran keluar utama bersifat kontinyu. Aliran melalui *outlet* kedua dapat dijalankan dan dihentikan oleh katup solenoid (SOL) dengan kendali jarak jauh. Kedua *outlet* dilengkapi dengan katup bola yang dioperasikan secara manual (CV2 dan CV3) yang memungkinkan aliran air divariasikan secara terus menerus agar sesuai dengan demonstrasi tertentu. Kedua *outlet* juga dilengkapi dengan lubang yang dapat diubah-ubah (3 dan 5) yang memungkinkan aliran ditetapkan pada ukuran yang telah ditentukan. Ukuran lubang diubah dengan membuka tutup plastik yang berisi lubang dan menggantinya dengan alternatif yang diperlukan. Pemasangannya menggunakan segel cincin 'O' dan hanya membutuhkan pengencangan dengan tangan. Ukuran alternatif lubang disimpan dalam lubang berulir di bagian depan pelat dasar saat tidak digunakan.

Overflow dalam bejana proses berfungsi mengembalikan air ke tangki penampung sehingga pengisian berlebih pada bejana proses saat penggunaan dapat dicegah. Sensor tekanan yang mengukur level, pompa sentrifugal, dan katup selenoida terhubung ke electrifcal interface yang menggabungkan pengkondisian sinyal yang diperlukan, sehingga proses dapat dioperasikan langsung dari PC menggunakan satu port USB. Perangkat lunak komputer yang disertakan dengan PCT50 memungkinkan kontrol proses level dan pencatatan data respons menggunakan PC. Opsi lainnya, perangkat lunak ini memungkinkan pencatatan data hanya saat mengoperasikan proses dari jarak jauh menggunakan pengontrol PID. Ketika diisi dengan air, PCT50 mandiri hanya membutuhkan pasokan listrik utama ke converter DC in-line dan koneksi ke PC melalui port USB. Unit ini dikeringkan menggunakan pembuangan air yang terletak di bagian belakang.

BAB III METODE PRAKTIKUM

3.1 Rancangan Praktikum

3.1.1 Rancangan Praktikum

Gambar 3.1 Rancangan praktikum

3.1.2 Penetapan Variabel

3.2 Bahan dan Alat yang Digunakan

3.2.1 Bahan

Aquadest 8 Liter

3.2.2 Alat

PCT 50 Level Control

3.3 Gambar Alat

Gambar 3.2 Alat PCT 50 level control dan bagian-bagiannya

(1)	Upper Process Vessel	(9)	Quick Release Conenector
(2)	Level Sensor	(10)	Centrifugal Pump
(3)	Manual Discharge Port	(11)	Water Discharge
(4)	Electrical interface	(12)	Alternative sizes of orifice
(5)	Solenoid Discharge Port	(CV1)	Control Valve 1
(6)	Overflow	(CV2)	Control Valve 2
(7)	Inlet	(CV3)	Control Valve 3
(8)	Integral non-return valve	(SOL)	Solenoid Drain Valve

3.4 Cara Kerja

3.4.1 Installing Software Armfield Level Control

- 1. *Instal driver* terlebih dahulu dengan pergi ke *this PC*, klik kanan lalu pilih *properties* kemudian pilih *device manager*.
- Masukkan USB ke laptop, setelahnya akan muncul COM 5 dengan tanda seru. Pastikan PCT-50 telah menyala dengan indikator lampu hijau yang menyala.
- 3. Hilangkan tanda seru dengan meng-update atau memperbaharui driver. Cari folder PCT-50 lalu pilih ikon urutan kedua dari atas kemudian pilih install dengan mengikuti langkah-langkah pada driver. Laptop akan secara otomatis restart setelah proses installing selesai.
- 4. Pastikan USB terhubung dengan sempurna agar koneksi antara alat PCT-50 dengan laptop tidak terputus tiba-tiba. Pastikan juga saat hendak digunakan tidak dalam keadaan scanning.

3.4.2 Pelaksanaan Praktikum

a. Mencari level maksimum

- Tancapkan kabel power alat pada sumber listrik;
- 2. Lakukan kalibrasi alat dengan prosedur sebagai berikut:
 - Tutup katup keluaran CV2 di dasar bejana proses, lalu tuangkan sekitar 10 mm aquadest ke dalam bejana proses.
- 2) Buka *outlet valve* CV2 dan biarkan *aquadest* mengali dari bejana proses ke bak penampung sehingga bejana proses kosong.
 - 3) Pastikan bahwa katup penguras di bagian belakang tangki bak tertutup dengan rapat, lalu isi tangki bak bagian bawah dengan aquadest bersih hingga kira-kira 30 mm di bawah lubang di bagian depan tangki.
 - 4) Pastikan flow control valve CV1 benar-benar terbuka pada inlet bejana proses sehingga aquadest dapat mengalir ke bejana saat pompa sedang berjalan.
 - 5) Pastikan katup keluaran CV2 terbuka penuh di dasar bejana proses untuk memungkinkan aquadest kembali ke tangki bak saat bejana proses terisi aquadest.

- 6) Pastikan katup keluaran CV2 terbuka penuh di dasar bejana proses untuk memungkinkan aquadest kembali ke tangki bak saat bejana proses terisi aquadest.
- 7) Pastikan katup CV3 terbuka penuh di atas solenoid valve SOL untuk mengalirkan aquadest kembali ke tangki bak saat solenoid valve terbuka dan bejana proses berisi aquadest.
- Buka katup penguras untuk mengeluarkan air yang ada di tangki bak.
- 3. Membuka *valve* CV2 dan menutup katup penguras;
- 4. Isi tangki dengan *aquadest* sebanyak 8 liter;
- Nyalakan komputer/laptop yang sudah terinstall software PCT-50;
- 6. Mengatur *sample interval* dan *fixed duration* pada menu *sample configuration* sesuai variabel yang telah ditentukan.
- 7. Mengatur variabel (pump speed, set point, proportional band, integral time, derivative time, dan mode of operation) yang telah di tentukan pada menu PID.
- Operasikan alat sesuai dengan variabel yang ditentukan dengan mengklik power on serta go untuk merecord data yang didapat;
- Amati grafik yang didapat pada menu grafik, ambil dan simpan data hasil praktikum sesuai dengan data yang tertera pada aplikasi PCT-50 (excel);
 - Jika waktu sudah mencapai yang diinginkan, lakukan penurunan pump speed untuk mengembalikan air ke tangki.
 - Lakukan langkah 7-9 dengan variabel yang berbeda (mode operasi)

b. Mencari nilai PID

- Memastikan keadaan tangki bejana proses kosong.
- Mengatur variabel (set point dan proportional band) yang telah ditentukan pada menu PID.
- 3. Mode pengoperasian dilakukan pada mode *automatic*
- Operasikan alat sesuai dengan variabel yang ditentukan dengan mengklik power on serta go untuk merecord data yang didapat
- Amati grafik yang didapat pada menu grafik. Jika sudah stabil, cek data untuk mendapatkan nilai PC
- 6. Nilai PC dimasukkan dan dihitung ke dalam perhitungan excel.

- 7. Input hasil perhitungan di excel ke menu PID.
- Operasikan alat dan amati grafik, ambil dan simpan data hasil praktikum sesuai dengan data yang tertera pada aplikasi PCT-50 (excel).
- Setelah semua dilakukan, lakukan pembersihan alat dengan membuka katup penguras sehingga air pada tangki terkuras keluar, pastikan air pada tangki dan bejana proses benar-benar hilang.
- 10. Setelah dibersihkan dan dikeringkan, alat dapat dimatikan secara bertahap.

Gambar 3.3 Langkah-langkah penggunaan software Armfield PCT 50

Process Laboratory

DAFTAR PUSTAKA

- Bennet, S. (1993). Development of the PID controller. *IEEE Control Systems*, 13(6), 58-62. doi: 10.1109/37.248006
- Dong, W., He, F., Wang, J., Wu, N., & Li, X. (2004). Modeling and numerical analysis of PID-controlled phase-change transpiration cooling. *International Journal of Thermal Sciences*, 196, 108729. https://doi.org/10/1016/j.ijthermalsci.2023.108729.
- Ellis, G. (2012). Chapter 6 Four Types of Controllers. Control System Design Guide (Fourth Edition), 97-119. https://doi.org/10.1016/B978-0-12-385920-4.00006-0
- Liu, H., Yu, Q., & Wu, Q. (2023). PID control model based on back propagation neural network optimized by adversarial learning-based grey wolf optimization. *Applied Sciences*, 13(8), 4767. https://doi.org/10.3390/app13084767.
- Smith, C.A. & Armando B. Corripio. (1997). Principles and Practice of Automatic Proses Control Second Edition. New York: John Willey & Sons, Inc.

Process Laboratory