5	-110 >	F	1
S	<11U>	Escary,	Jean-Louis

- <120> Method for the determination of at least one functional polymorphism
 in the nucleotide sequence of a preselected candidate gene and its applications
- 15 <130> 21349/5
 - <150> FR 0015838

<151> 2000-12-06

25 <160> 24

<170> PatentIn version 3.1

20

<211> 20

		56		21349/5
	<210> 1			Escary
	<211> 20			
5	<212> DNA			
	<213> Homo sapiens			
10				
10	<400> 1			
	gcctcttatg tacccacaaa		20	
15	<210> 2			
	<211> 20			
20	<212> DNA			
20	<213> Homo sapiens			
25	<400> 2			
	caccagtaaa gcaaaggtca		20	
	<210> 3			

19

<212>	· DNA
<213>	Homo sapiens

5

<400> 3 cacccatttc aaccagtcta

10

<210> 4

<211> 19

15 <212> DNA

<213> Homo sapiens

20

<400> 4 agctggcata cgaatcaat

25 <210> 5

<211> 535

<212> DNA

30

	<400> 5
5	gcctcttatg tacccacaaa aatctatttt caaaaaaagtt gctctaagaa tatagttatc 60
5	aagttaagta aaatgtcaat agccttttaa tttaattttt aattgtttta tcattctttg 120
	caataataaa acattaactt tatacttttt aatttaatgt atagaataga
10	ggatatgtaa atagatacac agtgtatatg tgattaaaat ataatgggag attcaatcag 240
	aaaaaagttt ctaaaaaaggc tctggggtaa aagaggaagg aaacaataat gaaaaaaatg 300
15	tggtgagaaa aacagctgaa aacccatgta aagagtgtat aaagaaagca aaaagagaag 360
	tagaaagtaa cacaggggca tttggaaaat gtaaacgagt atgttcccta tttaaggcta 420
20	ggcacaaagc aaggtcttca gagaacctgg agcctaaggt ttaggctcac ccatttcaac 480
	cagtotagoa goatotgoaa catotacaat ggoottgaco tttgotttac tggtg 535
	<210> 6
25	<211> 655
	<212> DNA

<213> Homo sapiens

30

cacccatttc aaccagtcta gcagcatctg caacatctac aatggccttg acctttgctt 60 5 tactggtggc cctcctggtg ctcagctgca agtcaagctg ctctgtgggc tgtgatctgc 120 ctcaaaccca cagcctgggt agcaggagga ccttgatgct cctggcacag atgaggagaa 180 tctctctttt ctcctgcttg aaggacagac atgactttgg atttccccag gaggagtttg 240 10 gcaaccagtt ccaaaaggct gaaaccatcc ctgtcctcca tgagatgatc cagcagatct tcaatctctt cagcacaaag gactcatctg ctgcttggga tgagaccctc ctagacaaat 360 15 tctacactga actctaccag cagctgaatg acctggaagc ctgtgtgata cagggggtgg 420 gggtgacaga gactcccctg atgaaggagg actccattct ggctgtgagg aaatacttcc 480 aaagaatcac tctctatctg aaagagaaga aatacagccc ttgtgcctgg gaggttgtca 540 20 gagcagaaat catgagatct ttttctttgt caacaaactt gcaagaaagt ttaagaagta 600 aggaatgaaa actggttcaa catggaaatg attttcattg attcgtatgc cagct 655 25 <210> 7

<211> 20

<400> 6

30 <212> DNA

5	<400> 7 ctcctgcttg aaggacagac	;	20
	<210> 8		
10	<211> 20		
	<212> DNA		
15	<213> Homo sapiens		
20	<400> 8 cctggggaaa tccaaagtca		20
	<210> 9		
25	<211> 20		
20	<212> DNA		
	<213> Homo sapiens		
30			

<400> 9

The stand of the s

	gttgtcagag cagaaatcat	20
5	<210> 10	
	<211> 20	
	<212> DNA	
10	<213> Homo sapiens	
	<400> 10	
15	gttgacaaag aaaaagatct	20
	<210> 11	
20	<211> 20	
	<212> DNA	
25	<213> Homo sapiens	
	<400> 11	
30	acacagctga caggctacag	20

<210> 12

	<211> 18
5	<212> DNA
Э	<213> Homo sapiens
10	<400> 12

<213> Homo sapiens

gtcacagcct gcatgaac 18 <210> 13 15 <211> 20 <212> DNA

<400> 13 25 gacgagacca tgaaggagtt 20 <210> 14 30

<212> DNA

<211> 16

<213>	Homo	sapiens
-------	------	---------

<400> 14

ccggcctggt acactg

16

10 <210> 15

<211> 16

<212> DNA

15

<213> Homo sapiens

20 <400> 15

agccagtgcg cttacc

16

<210> 16

25

<211> 18

<212> DNA

	<400> 16 cacattgcca aacacgat	18
5	<210> 17	
	<211> 20	
10	<212> DNA	
	<213> Homo sapiens	
15		
	<400> 17	
	tgtctaggtg ctggaggtta	20
20	<210> 18	
	<211> 18	
	<212> DNA	

30 <400> 18 gcttgcgtgg tagagaca

<213> Homo sapiens

18

	<210> 19	
E	<211> 20	
5	<212> DNA	
	<213> Homo sapiens	
10		
	<400> 19 aagcacttga aggagaaggt	20
15	<210> 20	
	<211> 20	
20	<212> DNA	
	<213> Homo sapiens	
25		
20	<400> 20	
	agttctggac ctgagaggag	20
30	<210> 21	

<211> 18

	<212> DNA	
5	<213> Homo sapiens	
10	<400> 21 aaaccgccca gagtagaa	18
	<210> 22	
15	<211> 20	
	<212> DNA	
	<213> Homo sapiens	
20		
	<400> 22 cccttgatga acttcctctt	20
25	<210> 23	
	<211> 20	
30	<212> DNA	

5	<400> 23 ctcctcatcc ttcctctttc	20
	<210> 24	
10	<211> 19	
	<212> DNA	
15	<213> Homo sapiens	
	<400> 24	
	ctcctggctc tcatcagtc	19
20		