Київський національний університет імені Тараса Шевченка Міністерство освіти і науки України Київський національний університет імені Тараса Шевченка Міністерство освіти і науки України

Кваліфікаційна наукова праця на правах рукопису

ОЛІХ ОЛЕГ ЯРОСЛАВОВИЧ

УДК 534.29, 537.312.5/.6/.9

ДИСЕРТАЦІЯ

АКУСТО-ІНДУКОВАНІ ЕФЕКТИ В ОПРОМІНЕНИХ ТА НЕОПРОМІНЕНИХ НАПІВПРОВІДНИКОВИХ СТРУКТУРАХ

Спеціальність 104— «Фізика та астрономія» 10— Природничі науки

Подається на здобуття наукового ступеня доктора фізико-математичних наук

Дисертація містить результати власних досліджень. Використання ідей, результатів і текстів інших авторів мають посилання на відповідне джерело

_______О.Я. Оліх

Науковий консультант Іванов Іван Іванович доктор фізико-математичних наук, професор

КІДАТОНА

Оліх О. Я. Акусто-індуковані ефекти в опромінених та неопромінених напівпровідникових структурах. - Кваліфікаційна наукова праця на правах рукопису.

Дисертація на здобуття наукового ступеня доктора фізико-математичних наук за спеціальністю 104 «Фізика та астрономія» (10 – Природничі науки). - Київський національний університет імені Тараса Шевченка, Київ, 2018.

Зміст анотації

Ключові слова: ультразвук, гамма-опромінення, кремній, бар'єрні структури, акусто-дефектна взаємодія, перенесення заряду, оборотні зміни.

Список публікацій здобувача

ABSTRACT

Olikh O. Ya. Акусто-індуковані ефекти в опромінених та неопромінених напівпровідникових структурах. - Кваліфікаційна наукова праця на правах рукопису.

Дисертація на здобуття наукового ступеня доктора фізико-математичних наук за спеціальністю 104 «Фізика та астрономія» (10 — Природничі науки). - Taras Shevchenko National University of Kyiv, Kyiv, 2018.

Зміст анотації

Ключові слова: ultrasound, gamma-rays, silicon, barrier structures, acousto-defect interaction, charge transport, reversible change.

Список публікацій здобувача

Зміст

		Р
Вступ		5
Розділ	1. Оформление различных элементов	6
1.1	Форматирование текста	6
1.2	Ссылки	6
1.3	Формулы	6
	1.3.1 Ненумерованные одиночные формулы	6
	1.3.2 Ненумерованные многострочные формулы	6
	1.3.3 Нумерованные формулы	8

Вступ

обґрунтування вибору теми дослідження (висвітлюється зв'язок теми дисертації із сучасними дослідженнями у відповідній галузі знань шляхом критичного аналізу з визначенням сутності наукової проблеми або завдання);

мета і завдання дослідження відповідно до предмета та об'єкта дослідження;

методи дослідження (перераховуються використані наукові методи дослідження та змістовно відзначається, що саме досліджувалось кожним методом; обґрунтовується вибір методів, що забезпечують достовірність отриманих результатів та висновків);

наукова новизна отриманих результатів (аргументовано, коротко та чітко представляються основні наукові положення, які виносяться на захист, із зазначенням відмінності одержаних результатів від відомих раніше);

особистий внесок здобувача (якщо у дисертації використано ідеї або розробки, що належать співавторам, разом з якими здобувачем опубліковано наукові праці, обов'язково зазначається конкретний особистий внесок здобувача в такі праці або розробки; здобувач має також додати посилання на дисертації співавторів, у яких було використано результати спільних робіт);

апробація матеріалів дисертації (зазначаються назви конференції, конгресу, симпозіуму, семінару, школи, місце та дата проведення);

Структура та обсяг дисертації. Дисертація складається із вступу, п'яти розділів, висновків та списку використаних джерел. Загальних обсяг дисертації складає ??ТотРадеѕ сторінки з 0 рисунками та 0 таблицями.

За наявності у вступі можуть також вказуватися:

зв'язок роботи з науковими програмами, планами, темами, грантами - вказується, в рамках яких програм, тематичних планів, наукових тематик і грантів, зокрема галузевих, державних та/або міжнародних, виконувалося дисертаційне дослідження, із зазначенням номерів державної реєстрації науково-дослідних робіт і найменуванням організації, де виконувалася робота; практичне значення отриманих результатів - надаються відомості про використання результатів досліджень або рекомендації щодо їх практичного використання.

Розділ 1. Оформление различных элементов

- 1.1 Форматирование текстаМы можем сделать жирный текст и курсив.
- 1.2 СсылкиСошлёмся на формулу: формула (1.2).
- **1.3 Формулы**Благодаря пакету *icomma*, LATEX одинаково хорошо воспринимает в качестве десятичного разделителя и запятую (3,1415), и точку (3.1415).
- **1.3.1 Ненумерованные одиночные формулы**Вот так может выглядеть формула, которую необходимо вставить в строку по тексту: $x \approx \sin x$ при $x \to 0$.

А вот так выглядит ненумерованая отдельностоящая формула с подстрочными и надстрочными индексами:

$$(x_1 + x_2)^2 = x_1^2 + 2x_1x_2 + x_2^2$$

При использовании дробей формулы могут получаться очень высокие:

$$\frac{1}{\sqrt{2} + \frac{1}{\sqrt{2} + \frac{1}{\sqrt{2} + \cdots}}}$$

В формулах можно использовать греческие буквы:

$$\alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta\iota\kappa\lambda mu\nu\xi\pi\varpi\rho\varrho\sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega\Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega$$

Для красивых дробей (например, в индексах) можно добавить макрос \slantfrac и писать $\frac{1}{2}$ вместо 1/2.

1.3.2 Ненумерованные многострочные формулыВот так можно написать две формулы, не нумеруя их, чтобы знаки равно были строго друг под другом:

$$f_W = \min\left(1, \max\left(0, \frac{W_{soil}/W_{max}}{W_{crit}}\right)\right),$$

$$f_T = \min\left(1, \max\left(0, \frac{T_s/T_{melt}}{T_{crit}}\right)\right),$$

Выровнять систему ещё и по переменной x можно, используя окружение alignedat из пакета amsmath. Вот так:

$$|x| = \begin{cases} x, & \text{если } x \geqslant 0 \\ -x, & \text{если } x < 0 \end{cases}$$

Здесь первый амперсанд (в исходном \LaTeX описании формулы) означает выравнивание по левому краю, второй — по x, а третий — по слову «если». Команда \quad делает большой горизонтальный пробел.

Ещё вариант:

$$|x| =$$

$$\begin{cases} x, \text{если } x \geqslant 0 \\ -x, \text{если } x < 0 \end{cases}$$

Кроме того, для нумерованых формул alignedat делает вертикальное выравнивание номера формулы по центру формулы. Например, выравнивание компонент вектора:

$$\mathbf{N}_{o1n}^{(j)} = \sin\phi \, n(n+1) \sin\theta \, \pi_n(\cos\theta) \, \frac{z_n^{(j)}(\rho)}{\rho} \, \hat{\mathbf{e}}_r + \\ + \sin\phi \, \tau_n(\cos\theta) \, \frac{\left[\rho z_n^{(j)}(\rho)\right]'}{\rho} \, \hat{\mathbf{e}}_\theta + \\ + \cos\phi \, \pi_n(\cos\theta) \, \frac{\left[\rho z_n^{(j)}(\rho)\right]'}{\rho} \, \hat{\mathbf{e}}_\phi \,.$$

$$(1.1)$$

Ещё об отступах. Иногда для лучшей «читаемости» формул полезно немного исправить стандартные интервалы LATEX с учётом логической структуры самой формулы. Например в формуле 1.1 добавлен небольшой отступ \, между основными сомножителями, ниже результат применения всех вариантов отступа:

\!
$$f(x) = x^2 + 3x + 2$$
по-умолчанию $f(x) = x^2 + 3x + 2$
\\ $f(x) = x^2 + 3x + 2$
\\ quad $f(x) = x^2 + 3x + 2$
\\ quad $f(x) = x^2 + 3x + 2$
\\ quad $f(x) = x^2 + 3x + 2$

Можно использовать разные математические алфавиты:

ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPORSTUVWXYZ

Посмотрим на систему уравнений на примере аттрактора Лоренца:

$$\begin{cases} \dot{x} = \sigma(y - x) \\ \dot{y} = x(r - z) - y \\ \dot{z} = xy - bz \end{cases}$$

А для вёрстки матриц удобно использовать многоточия:

$$\begin{pmatrix}
a_{11} & \dots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \dots & a_{nn}
\end{pmatrix}$$

1.3.3 Нумерованные формулы А вот так пишется нумерованая формула:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{1.2}$$

Нумерованых формул может быть несколько:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6} \tag{1.3}$$

Впоследствии на формулы (1.2) и (1.3) можно ссылаться.

Сделать так, чтобы номер формулы стоял напротив средней строки, можно, используя окружение multlined (пакет mathtools) вместо multline внутри окружения equation. Вот так:

$$1 + 2 + 3 + 4 + 5 + 6 + 7 + \dots + + 50 + 51 + 52 + 53 + 54 + 55 + 56 + 57 + \dots + + 96 + 97 + 98 + 99 + 100 = 5050$$
(1.4)

Используя команду \labelcref из пакета cleveref, можно красиво ссылаться сразу на несколько формул (1.2-1.4), даже перепутав порядок ссылок $(\labelcref{eq:equation1,eq:equation3,eq:equation2})$.