Restrict Palindromes

For a string S, we define f(S) as the number of **distinct palindromic**^{\dagger} **substrings**^{\ddagger} of S.

For example, f(abaa) = 4 because we can find the palindrome substrings a, b, aa and aba.

Call a string S good if $f(S) \leq 5$, i.e. it has at most S distinct palindrome substrings.

You are given an integer N. Construct any good string of length N using only lowercase Latin characters. It can be proven that at least one good string exists. You are allowed to print any good string.

Input Format

- The first line of input will contain a single integer T, denoting the number of test cases.
- The first and only line of input contains a single integer N.

Output Format

For each test case, output a string S of length N, using only lowercase Latin characters, with $f(S) \leq 5$.

Constraints

- 1 < T < 100
- $1 \le N \le 100$

Sample 1:

Explanation:

Test Case 1: aa has 2 distinct palindrome substrings, a and aa.

Test Case 2 : f(abaa) = 4 as mentioned in the statement.

 $^{^\}dagger$ A string is called palindromic if it reads the same forwards and backwards.

[‡] A substring is a string that can be obtained by deleting some (possibly zero) characters from the beginning and some (possibly zero) characters from the end.