CornLeafNet:Based on K-Means Clustering and Deep Learning

Koneti Anuhya Kothuru Sharvani Nelavalli Sri Nikhitha Padamata Kanishka under the supervision of Dr. Puneet Gupta

Indian Institute of Technology Indore

April 13, 2024

Outline Of The Presentation

- Introduction
- Problem Statement
- Motivation
- Objectives
- Overall Workflow
- O Dataset Description
- Data Pre-processing
- ® CornLeafNet:Steps
- OrnLeafNet:Architecture
- Experimental Results
- Tasks
- References

Introduction

- Agricultural Significance
- Precision Agriculture Needs
- Impact on Food Security
- Technological Advancements

Problem Statement

Problem Statement

 Effectively segmenting the corn leaf from complex backgrounds poses a challenge for accurate disease detection. The problem is addressed by implementing data augmentation techniques and employing a K-means algorithm for segmentation, followed by a Deep Neural Network(DNN) for precise and efficient classification in corn leaf disease detection.

Motivation

- Identifying Corn Leaf Diseases
- Data-driven Agriculture
- Global Food Security
- Application of Deep Learning Models

Objectives

- To develop a robust method for accurately diagnosing three common corn leaf diseases (gray spot, leaf spot, and rust) using a combination of K-means clustering and deep learning models.
- Dataset Pre-processing, i.e. resizing, normalization.
- To do data augmentation in order to achieve a uniform distribution in all classes.
- To develop an efficient deep learning based classification algorithm based on CNNs.
- Evaluate and compare the performance of multiple deep learning models (VGG-16, ResNet18, Inception v3, VGG-19, and an improved deep learning model) for corn disease classification

Overall Workflow

Figure 1: Workflow of CornLeafNet

Phenotypic Corn Dataset

- Type of Data Corn Leaf Images
- Train Dataset Size 900 images
- Test Dataset Size 176 images
- Data Source Location Challenger Al 2018

Table 1: Train Dataset of Corn Leaf Images

S. No	Disease Name	Number of Images
1	Gray Spot	300
2	Leaf Spot	300
3	Rust	300

Table 2: Test Dataset of Corn Leaf Images

S. No	Disease Name	Number of Images
1	Gray Spot	51
2	Leaf Spot	62
3	Rust	63

Samples of Corn Leaf

Table 3: Samples of Corn Diseased Leaf Images

Gray Spot

Leaf Spot

Rust

Samples of Corn Leaf

Table 4: Samples of Corn Diseased Leaf Images

S. No.	Disease Name	lmage	Symptoms	Cause
1	Gray Spot		The initial stage of the disease is light brown spots in the shape of water stains, which extend parallel to the veins and are often rectangular.	Fungal Infection
2	Leaf Spot		These are oval or rectangular, spindle- shaped lesions on the leaves, with yellow-brown halos around them, 5- 10cm long and 1.2-1.5 cm wide. In severe cases, several lesions are con- nected, and the leaves die early.	Fungal Infection

Samples of Corn Leaf

Table 5: Samples of Corn Diseased Leaf Images

S. No.	Disease Name	Image	Symptoms	Cause
3	Rust		It occurs in the middle and upper leaves of the plant. At first, small light-yellow dots scattered or clustered on the front of the leaf, then protruded and expanded to round to oblong, yellowish-brown, or brown, and the surrounding epidermis turned up.	Fungal Infection

Data Pre-processing

- Resizing In order to make the images the same size
- Normalization
 - To ensure that each input pixel has a similar data distribution
 - To scale the normalized data in the range [0,1] or [0, 255]
 - Ensures faster convergence while training the network

CornLeafNet:Steps

- Data Augmentation Techniques
 - Image Augmentation
- Segmentation Techniques
 - K-Means Clustering [1]
- · Convolutional Neural Networks (CNNs)
 - VGG16 [2]
 - ResNet18 [3]
 - VGG19 [4]
 - Inception v3 [5]
 - Proposed Model [4]
 - CornLeafNet[6]
- Evaluation Metrics
 - Accuracy
 - Precision
 - Precision
 - Recall
 - F1-score

K-means Algorithm

Figure 2: Workflow of K-means algorithm

K-means Algorithm

Figure 3: Workflow of K-means algorithm

Figure 4: Architecture of VGG16

¹A. S. Paymode and V. B. Malode, "Transfer learning for multi-crop leaf disease image classification using convolutional neural network vgg," *Artificial Intelligence in Agriculture*, vol. 6, pp. 23–33, 2022, ISSN: 2589-7217.

Figure 5: Architecture of VGG19

²H. Yu *et al.*, "Corn leaf diseases diagnosis based on k-means clustering and deep learning," *IEEE Access*, vol. 9, pp. 143 824–143 835, 2021.

Figure 6: Architecture of ResNet18

³F. Ramzan *et al.*, "A deep learning approach for automated diagnosis and multi-class classification of alzheimer's disease stages using resting-state fmri and residual neural networks," *Journal of Medical Systems*, vol. 44. Dec. 2019. DOI: 10.1007/s10916-019-1475-2.

Inception-v3

Figure 7: Architecture of Inception-v3

⁴C. Wang *et al.*, "Pulmonary image classification based on inception-v3 transfer learning model," *IEEE Access*, vol. 7, pp. 146 533–146 541, 2019, DOI: 10.1109/ACCESS.2019.2946000. ♠ ★ ♠ ★ ♠ ♠ ♠ ♠ ♠

Proposed CNN Framework

Figure 8: Architecture of Proposed CNN Framework

⁵H. Yu *et al.*, "Corn leaf diseases diagnosis based on k-means clustering and deep learning," *IEEE Access*, vol. 9, pp. 143 824–143 835, 2021.

CornLeafNet Framework

Our proposed model comprises the following layers:

- Convolutional Layers
- Oilated Convolutional Layers
- Global Average Pooling & Fully Connected Layers
- Output Layer for 3-Class Classification

CornLeafNet Framework

Figure 9: Illustration of 2-D Dilated Convolutional Layer

⁶J. Du *et al.*, "Brain mri super-resolution using 3d dilated convolutional encoder–decoder network," *IEEE Access*, vol. PP, pp. 1–1, Jan. 2020. DOI: 10.1109/ACCESS.2020.2968395□ ▶ ← ⑤ ▶ ← ⑤ ▶ ← ⑤ ▶ ← ⑤ ▶ ← ⑥ ◆ ← ⑥ ▶ ←

Table 6: Summary of Dataset Results for k=2

Model	Training Accuracy	Testing Accuracy
VGG-16	71.88%	69.8%
VGG-19	62.0%	65.9%
ResNet 18	95.97%	77.84%
Inception v3	93.0%	78.9%
Proposed Model	80.0%	79.5%
CornLeafNet	84.59%	79.54%

Table 7: Summary of Dataset Results for k=4

Model	Training Accuracy	Testing Accuracy
VGG-16	93.75%	85.7%
VGG-19	93.75%	85.2%
ResNet 18	94.72%	83.0%
Inception v3	96.8%	81.8%
Proposed Model	81.0%	79.5%
CornLeafNet	88.33%	86.36%

Table 8: Summary of k=2 Dataset Results:F1 score

Model	Gray Spot	Leaf Spot	Rust
VGG-16	0.17	0.69	0.97
VGG-19	0.62	0.12	0.98
ResNet18	0.71	0.66	0.95
Inception v3	0.63	0.77	0.94
Proposed Model	0.70	0.66	0.99
CornLeafNet	0.67	0.73	0.95

Table 9: Summary of k=2 Dataset Results:Recall

Model	Gray Spot	Leaf Spot	Rust
VGG-16	0.10	0.94	0.95
VGG-19	0.96	0.60	1.00
ResNet18	0.90	0.55	0.90
Inception v3	0.57	0.87	0.89
Proposed Model	0.84	0.55	1.00
CornLeafNet	0.73	0.65	1.00

Table 10: Summary of k=2 Dataset Results:Precision

Model	Gray Spot	Leaf Spot	Rust
VGG-16	0.62	0.54	0.98
VGG-19	0.46	0.80	0.97
ResNet18	0.59	0.83	1.00
Inception v3	0.71	0.68	1.00
Proposed Model	0.61	0.83	0.98
CornLeafNet	0.63	0.83	0.91

Table 11: Summary of k=4 Dataset Results:F1 score

Model	Gray Spot	Leaf Spot	Rust
VGG-16	0.78	0.79	0.98
VGG-19	0.78	0.78	0.98
ResNet18	0.81	0.82	0.99
Inception v3	0.65	0.84	0.89
Proposed Model	0.59	0.79	0.92
CornLeafNet	0.78	0.80	0.99

Table 12: Summary of k=4 Dataset Results:Recall

Model	Gray Spot	Leaf Spot	Rust
VGG-16	0.80	0.76	1.00
VGG-19	0.82	0.73	1.00
ResNet18	0.88	0.76	1.00
Inception v3	0.49	0.90	1.00
Proposed Model	0.47	0.85	1.00
CornLeafNet	0.84	0.74	1.00

Table 13: Summary of k=4 Dataset Results:Precision

Model	Gray Spot	Leaf Spot	Rust
VGG-16	0.76	0.82	0.97
VGG-19	0.74	0.85	0.95
ResNet18	0.75	0.90	0.98
Inception v3	0.96	0.78	0.81
Proposed Model	0.80	0.74	0.84
CornLeafNet	0.73	0.87	0.98

Tasks

Completed Tasks

- Data Pre-Processing.
- Applied CorrnLeafNet on Phenotypic Corn Dataset.

Future Tasks

- Extending CornLeafNet for large datsets.
- Exploring different values of k in k-means clustering for image segmentation to optimize accuracy and efficiency.
- Extending CornLeafNet to classify additional corn leaf diseases

References I

- N. Dhanachandra, K. Manglem, and Y. J. Chanu, "Image segmentation using k-means clustering algorithm and subtractive clustering algorithm," *Procedia Computer Science*, vol. 54, pp. 764–771, 2015, ISSN: 1877-0509.
- [2] A. S. Paymode and V. B. Malode, "Transfer learning for multi-crop leaf disease image classification using convolutional neural network vgg," Artificial Intelligence in Agriculture, vol. 6, pp. 23–33, 2022, ISSN: 2589-7217.
- [3] F. Ramzan et al., "A deep learning approach for automated diagnosis and multi-class classification of alzheimer's disease stages using resting-state fmri and residual neural networks," *Journal of Medical Systems*, vol. 44, Dec. 2019. DOI: 10.1007/s10916-019-1475-2.
- [4] H. Yu et al., "Corn leaf diseases diagnosis based on k-means clustering and deep learning," IEEE Access, vol. 9, pp. 143 824– 143 835, 2021.
- [5] C. Wang et al., "Pulmonary image classification based on inception-v3 transfer learning model," IEEE Access, vol. 7, pp. 146533-146541, 2019. DOI: 10.1109/ACCESS.2019.2946000.
- [6] J. Du, L. Wang, Y. Liu, Z. Zhou, Z. He, and Y. Jia, "Brain mri super-resolution using 3d dilated convolutional encoder-decoder network," *IEEE Access*, vol. PP, pp. 1–1, Jan. 2020. DOI: 10.1109/ACCESS.2020.2968395.

THANK YOU