ECE 103 Lab 1 Report

Problem 1:

In this problem we were tasked at creating a vector of numbers from 1 through 100, and creating a second vector that includes every even number from the first vector.

- 1. Defined vector x = 1-100 and vector y = empty
- 2. For loop through vector x
- 3. If statement if mod of current x value and 2 is equal to 0, append to y vector

y =																
	Column	Columns 1 through 16														
	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32
	Column	s 17	through	32												
	34	36	38	40	42	44	46	48	50	52	54	56	58	60	62	64
Columns 33 through 48																
	66	68	70	72	74	76	78	80	82	84	86	88	90	92	94	96
	Column	s 49	through	50												
	98	100														

Problem 2:

In this problem we were tasked at calculating the value of $x(t) = 3cos(2\pi ft + 0.1)$ for values of t = 0, 0.1, 0.2, 0.3, 0.4 and f = 10, 15, 20.

- 1. Defined vector t and f with values above
- 2. Defined empty matrix x with dimensions of vector t and f
- 3. Nested for loop cycling through t and f plugging them into function defined above and inserting into matrix x

Problem 3:

In this problem we want to find the largest value of t for which $e^{1.2}cos(wt)$ and t^3 are less than 10, for w=35, 40, 45.

- 1. Define vector omega with 35, 40, 45 and vector t with 0, 0, 0
- 2. For loop through omega vector

- 3. Nested while loop testing whether t and omega plugged in from vectors cause functions to be below 10, if yes, add 0.01 to the specific t, and rerun the while loop
- 4. Once t has been found where condition is not fulfilled, move to next omega from vector via for loop.

```
t = 2.1600 2.1600 2.1600
```

Problem 4:

In this problem we are asked to create a vector of values from the function $x(t) = cos(2\pi t + 0.2) + 3sin(\pi^2 t)$ with 15 equally spaced t-inputs from 0 to 1, and find the max value, the min value, the mean of the vector, and the indices of the values that are greater than 4.

- 1. Defined an empty vector, and define a value interval as 1/15
- 2. Starting at t=0, for loop 15 times plugging in t into the function defined above, appending result into the vector, and adding the interval to t at every loop
- 3. Use max function to find max of the vector
- 4. Use the min function to find the min of the vector
- 5. Use the mean function to find the mean of the vector
- 6. Use find function to find the indices of all of the values in the vector that are greater than 4

```
vector_4 =
 Columns 1 through 9
   3.9203
            5.0927
                     4.9357
                              3.2152
                                       0.2636 -3.0915 -5.8037 -6.9828 -6.2248
 Columns 10 through 15
  -3.7653 -0.3953
                     2.8287
                              4.9646
                                       5.5089
                                                4.5392
Max:
   5.5089
Min:
  -6.9828
Average:
   0.6004
Items larger than 4:
                   14
                         15
        3 13
```

Problem 5:

In this problem, we were tasked with plotting the functions: $s1 = sin(2\pi f_1 t)$, $s2 = sin(2\pi f_2 t + 0.4)$, and s3 = s1 + s2 where f1 = 0.2, f4 = 0.425 on an interval of t = 0:0.1:10.

- 1. Create a vector t with the interval defined above and define s1, s2, and s3
- 2. Plot s1, s2, and s3 against t using the plot function and the hold on function
- 3. Add a title, legend, axis labels, and plot colors for the different functions

Problem 6:

In this problem, we created our own function named MySinc, which approximates the sinc function in matlab.

- 1. Create a new .m file which defines the function MySinc
- 2. Checks if input is equal to 0, if it is, set output to 1, else set the output to sin(input)/input
- 3. In another file, define a linspace from -2pi to 2pi, and use the function arrayfun with MySinc and sinc inputting the linspace, equaling it to two vectors y1 and y2
- 4. Plot y1 and y2 against the range -2pi to 2pi, with legend, title, axis labels, and plot colors.

