Incidence des réductions polynomiales pour la résolution d'instances SAT difficiles

VARET Adrien - ENTAKLI Romain - D'ARRIGO Valentin 23 mai 2018

Résumé

La réduction polynomiale est un outil particulièrement important en théorie de la complexité, au regard notamment de l'analyse de problèmes en vue de déterminer la classe de complexité à laquelle ils appartiennent. Cet outil a particulièrement été étudié au niveau théorique, mais il semblerait qu'au niveau pratique, ce type d'étude ait beaucoup moins été développé. L'objet de ce projet porte sur cette seconde question. Depuis une dizaine d'années, des progrès spectaculaires ont été réalisés pour la résolution pratique du problème de la satisfiabilité (SAT), à tel point que de nombreuses instances industrielles, issues de problèmes réels donc, sont exprimées dans les termes d'instances SAT, et sont résolues très efficacement par les solveurs de l'état de l'art. Il n'en demeure pas moins vrai que certaines instances sont toujours extrêmement difficiles à résoudre. Nous focaliserons d'ailleurs cette étude sur ce type d'instances. Il s'agit ici d'étudier certaines transformations polynomiales et d'analyser leur incidence sur la résolution pratique de ces instances difficiles. La question étant de savoir si des transformations permettent de réduire la difficulté et dans quelles proportions. Nous étudierons notamment les réductions, qui, partant d'une instance SAT quelconque, permettent d'exprimer celles-ci sous forme 3-SAT, sous forme d'instances de la 3-COLORATION (de graphes), de CSP (CSP correspond aux "Constraint Satisfaction Problems" et constitue une généralisation de SAT), voire des retraductions vers le formalisme SAT.

Lien du projet source :

https://github.com/AdrienVaret/ReductionsPolynomiales

Table des matières

1	Introduction	3
2	Description du sujet	4
3	Recherche bibliographique 3.1 L'environnement d'une compétition	5 5 6 7 8 8
	4.2 Réduction polynomiale	8
5	Travaux effectués 5.1 Réductions polynomiales implémentées 5.1.1 SAT vers 3-SAT 5.1.2 3-SAT vers 3-COLORATION 5.1.3 3-COL vers CSP 5.1.4 3-SAT vers VERTEX-COVER 5.1.5 SAT vers CLIQUE 5.1.6 CSP vers SAT 5.1.7 SAT vers CSP 5.1.8 3COL vers SAT 5.2 Application pour les résultats 5.3 Les tests effectués	9 9 10 11 12 13 14 15 15
6	Synthèse des résultats 6.1 Synthèse globale	17 17 17 18 20
7	Gestion de projet 7.1 Diagramme de Gantt prévisionnel	21 21 22
8	Conclusion8.1 Difficultés rencontrées	23 23 23
9	ANNEXES	24

1 Introduction

Depuis le début de l'informatique, on cherche sans cesse à essayer d'optimiser les algorithmes le plus possible afin que ces derniers soient le plus rapide possible. Mais à l'heure d'aujourd'hui, on pourrait être tenté de penser que cette recherche frénétique d'?optimisation soit devenu obsolète. En effet, de nos jours, même les machines dites 'bas de gamme' sont considérées comme puissantes en comparaison avec les machines d'il y a dix ans. Cette hausse exponentielle des capacités des machines a également pour conséquence la résolution de certains problèmes qui ne pouvaient être traités auparavant ainsi que le traitement d'instances beaucoup plus grandes.

Néanmoins, cette recherche d'optimisation n'est toujours pas obsolète. En effet afin de répondre à certaines problématiques dans le monde de la recherche, ou encore à des problèmes concrets, on cherche à résoudre des problèmes dits 'difficiles' avec des instances de très grande taille qui sont très lourds à résoudre, même pour les machines actuelles.

Notre sujet de TER, qui sera expliqué plus en détail dans la partie suivante, va porter sur cette recherche d'optimisation et peut constituer une suite à l'UE 'complexité' étudiée pendant le premier semestre. Dans ce compte-rendu, nous effectuerons une approche pratique et théorique sur notre sujet, puis nous détaillerons et commenterons les résultats obtenus.

Ce projet fait partie de l'UE "TER" du Master 1 Informatique de l'Université d'Aix-Marseille (AMU). Il est encadré par les enseignants chercheurs suivants :

JEGOU Phillipe et OSTROWSKI Richard

2 Description du sujet

Le but de notre sujet de TER est dans un premier temps d'effectuer une recherche bibliographique afin de déterminer les meilleurs solveurs de l'état de l'art pour différents problèmes (SAT, CSP, COLORATION etc ...). Une fois cette liste établie, nous allons devoir continuer cette recherche bibliographique afin d'identifier et d'obtenir des instances dites difficiles de ces différents problèmes.

Après l'obtention des instances et la prise en main des solveurs, nous allons devoir implémenter toute une série de réduction polynomiales autour de ces problèmes. L'objectif va être de déterminer si les transformations des instances via les différentes réductions implémentées sont ou non avantageuse en terme de temps de résolution (c'est a dire si l'instance obtenu suite à une réduction polynomiale se résoud plus rapidement que l'instance initiale).

Ensuite, nous allons développer une application prenant en paramètre un fichier contenant tous les résultats obtenus afin de nous permettre de visualiser les résultats et de nous faciliter leur interprétation. Une fois tous les tests effectués, nous allons donc utiliser cette application afin de savoir quelle réduction a été éfficace sur quel type d'instance et inversement, puis nous listerons la totalité de ces résultats sous forme de tableaux, et les synthétiseront sous forme de graphes. Comme mentionné dans l'introduction, il y a surtout eu beaucoup d'études théoriques à ce sujet, mais pas énormément de pratique. Il est possible que nous trouvions de bonnes surprises.

3 Recherche bibliographique

A travers cette section, nous allons étudier les réductions polynomiales lors de compétitions SAT. Ces compétitions s'organisent sous forme de concours, dans lesquels plusieurs équipes s'affrontent. Le challenge est de pouvoir fournir plusieurs solveurs, capables de résoudre des fichiers contenant des clauses et instances, qui se comptent en milliers, voire en millions.

La recherche bibliographique s'est orientée grâce à la **compétition organisée en 2017**¹. Ainsi, tout les solveurs et résultats qui seront présentés dans cette partie concerneront l'issue de cette compétition, sauf indication contraire.

3.1 L'environnement d'une compétition

Les compétitions SAT durent environ sur une période de un mois (autour de Mai). Les candidatures ouvrent et les équipes peuvent inscrire leurs membres. Ils ont ensuite un mois pour produire ce qui est requis par les règles de la compétition. Les résultats sont alors annoncés annuellement lors de la SAT Conference, organisée généralement fin Août. En voici les principales règles ²:

Le code source de tout solveur SAT doit être mis à disposition des jurys (déposé sous licence, permettant l'utilisation de ces derniers dans le domaine de la recherche), à l'exception des solveurs de type NoLimits.

Une à deux page(s) de description du solveur doit(vent) être fourni(s) afin d'en faire une bonne utilisation. Les auteurs et co-auteurs d'un solveur, dans une description doivent correspondre aux auteurs inscrits sur le site d'admission.

Les solveurs SAT doivent être conformes à la norme DIMACS (voir la compétition 2009 pour plus de détails).

La visualisation graphique des modèles (en cas d'instances satisfaisables) doit être obligatoire (sauf pour les solveurs No-Limits). En parallèle, toute formule dite UNSAT se doit d'être amenée d'une preuve.

Chaque équipe participante doit soumettre 20 nouvelles instances benchmarks. 10 d'entre-elles se doivent d'être "intéressantes" : ni trop faciles (Solvables par MiniSat en moins d'une minute), ni trop difficiles (non solvables par un des solveurs des participants en plus d'une heure).

^{1.} https://baldur.iti.kit.edu/sat-competition-2017/

^{2.} https://baldur.iti.kit.edu/sat-competition-2017/index.php?cat=rules

3.2 Les différents types de solveurs

Lors de compétitions, plusieurs types de solveurs doivent/peuvent être réalisés par les équipes concurrentes. En voici la liste principale :

— Agile Solvers	— NoLimits Solvers
— Incremental Solvers	— Parralel Solvers
— Main Solvers	— Random Solvers

- Les solveurs Agiles suivent la piste de simples solveurs SAT de façon rapide et avec une faible surchage, adaptés à la résolution d'instances SAT pas trop dures. (exemple: Glucose)
- Les solveurs Incrémentaux génèrent des instances SAT de façon incrémentielle (exemple : Candy Incremental)
- Les solveurs Main suivent la piste des solveurs séquentiels SAT (exemple : Maple LCM)
- Les solveurs NoLimits sont dit solveurs à carte blanche. En effet, les modalités de rendu de ces solveurs sont différentes des autres types de solveurs. Ici, le code source & les certificats de solutions ne sont pas obligatoirement requis). Seuls de nouveaux benchmarks jamais étudiés les années précédentes seront utilisés dans cette catégorie.(exemple: Cadical)
- Les solveurs Parallèles suivent la piste des solveurs SAT parallèles conçus pour les ordinateurs possédants plusieurs processeurs ou noyaux de processeurs. (utilisation de threads...). (exemple: painless)
- Les solveurs Random suivent la piste des solveurs de type Main tout en générant des instances satisfaisables de façon aléatoire. (exemple: Score2SAT)

3.3 Zoom sur deux types de solveurs SAT

1.3.1 – Le solveur parallèle Glucose³

Le solveur Glucose est un solveur basé sur un schéma de scores (présenté pour la première fois en 2009). il résout les clauses en déterminant si elles sont satisfaisables ou non. Depuis 2014, Glucose se caractérise comme étant un solveur travaillant en parallèle. Lors de compétitions, Glucose à remporté les prix suivants (les plus récents):

- 1. Certified UNSAT, Applications 2nde Place, 2015
- 2. Parallel SAT+UNSAT Applications 4ème place, 2015

Au classement général, le solveur Glucose développé par Gilles Audemard (CRIL 4) et Laurent Simon (LaBRI 5) a été classé meilleur solveur parallèle de la SAT Race 2015 (et troisième dans la catégorie 'résolution incrémentale'). Il est bon à noter que Glucose 3.0 se base en grande partie sur le Solveur MiniSat 6 .

Aujourd'hui, Glucose est l'un des solveurs les plus reconnus en France (étant produit essentiellement par des francophones). Il utilise essentiellement les méthodes de résolutions d'instances (DPLL, propagation unitaire et valuation partielle notamment).

1.3.2 – Le solveur CaDiCal⁷

Le but du développement de CaDiCal était en premier lieu d'obtenir un solveur CDCL (Conflict-Driven Clause Learning), facile d'utilisation et de compréhension. Le but était de simplifier radicalement le design et les structures internes des données, mais actuellement, ce but n'est atteint que partiellement. Cependant, ce solveur reste performant quant à ses résultats lors de compétitions :

- 1. Certified SAT+UNSAT Applications 1ère Place, 2017
- 2. Parallel SAT+UNSAT Applications 3ème place, 2017

^{3.} http://www.labri.fr/perso/lsimon/glucose/

^{4.} http://www.cril.univ-artois.fr/

^{5.} http://www.labri.fr/

^{6.} http://minisat.se/

^{7.} http://fmv.jku.at/cadical/

4 Approche théorique et définitions utiles

4.1 Logique propositionnelle et problème SAT

Soit V un ensemble de variables propositionnelles. On définit l'ensemble des formules propositionnelles sur V de la façon suivante :

- 1. toute variable $x \in V$ est une formule.
- 2. si Φ et Ψ et sont des formules, alors $\Phi \vee \Psi$, $\Phi \wedge \Psi$, $\Phi \Rightarrow \Psi$ et $\neg \Phi$ sont des formules.

Ces formules peuvent être évaluées (à vrai ou à faux) en associant une valeur de vérité à chaque variable. Ainsi étant donné une formule Φ et une interprétation $GI: F \to \{0,1\}$, on définit F(I) comme étant la valeur de vérité obtenue en remplaçant dans Φ chaque variable par son interprétation et en appliquant les règles usuelles de la logique booléenne. Si F(I)=1 on dit que I satisfait Φ ou que I est un modèle de Φ . On note $mod(\Phi)$ l'ensemble des modèles de Φ . Le problème SAT est un problème de décision qui prend en entrée une formule propositionnelle et détermine si cette formule est ou non satisfaisable, on peut le définir de la façon suivante :

entrée : une formule propositionnelle
question : est-elle satisfaisable (oui ou non)?

4.2 Réduction polynomiale

Soient π_1 et π_2 deux problèmes de décision. Une réduction polynomiale de π_1 à π_2 est une application $r: I(\pi_1) \to I(\pi_2)$ telle que :

 $\forall x \in I(\pi_1) : x \in I^+(\pi_1) \Leftrightarrow r(x) \in I^+(\pi_2)$ r est calculable en temps polynomial.

5 Travaux effectués

5.1 Réductions polynomiales implémentées

Cette partie explique en détail l'intégralité des travaux que nous avons effectué. Par rapport aux outils utilisés, tous les programmes implémentés ont été codés en Java. Les formules propositionnelles ⁸ et les graphes ⁹ sont modélisés sous le format DIMACS les instances des problèmes CSP sont modélisées sous le format XCSP ¹⁰

5.1.1 SAT vers 3-SAT

Pour transformer une instance de SAT en une instance de 3-SAT, il faut parcourir l'ensemble des clauses de l'instance initiale et appliquer une des modifications suivantes en fonction de la taille de la clause :

- Si la clause initiale est de longueur 1, l'unique littéral présent dans la clause initiale sera triplé dans la clause finale, par exemple, la clause x deviendra $x \lor x \lor x$.
- Si la clause initiale est de longueur 2, la nouvelle clause contiendra les deux littéraux de la clause initiale, puis on lui ajoutera un des deux littéraux. Par exemple, la clause $x \vee y$ peut devenir $x \vee y \vee x$.
- Si la clause initiale est de longueur 3, elle correspond déjà au spécificités de 3-SAT et n'est pas modifiée.
- Si la clause est de longueur supérieure à 3, alors on va tout d'abord créer une première clause contenant les deux premiers littéraux de la clause initiale suivi d'un littéral intermédiaire (noté a) instancié à vrai. On va ensuite créer une seconde clause contenant a ainsi que le troisième littéral de la clause initiale, suivi d'un autre littéral intermédiaire. On va répéter cette opération jusqu'à ce qu'il reste un ou deux littéraux non traités, la dernière clause sera composée d'un littéral intermédiaire instancié à faux ainsi que du ou des deux derniers littéraux de la clause initiale. Par exemple la clause $v \lor w \lor x \lor y \lor z$ donnera l'ensemble de clauses suivant :

$$\{v \lor w \lor a; \neg a \lor x \lor b; \neg b \lor y \lor z\}$$

Remarque: Une réduction SAT -> 3SAT' à aussi été implémentée. Celle-ci ne modifie uniquement les clauses de taille 3. En effet, posséder moins de littéraux dans nos clauses pourrait peut-être améliorer le temps de résolution.

^{8.} Format DIMACS CNF : http://people.sc.fsu.edu/jburkardt/data/cnf/cnf.html

^{9.} Format DIMACS pour graphe : http://people.sc.fsu.edu/ jburkardt/data/cnf/cnf.html

^{10.} Site officiel de XCSP: http://www.xcsp.org/).

5.1.2 3-SAT vers 3-COLORATION

Pour effectuer cette réduction polynomiale, on doit transformer une instance de 3-SAT en un graphe. Soit ϕ une formule propositionnelle instance de 3-SAT, on va tout d'abord créer deux sommets pour chaque variable x de ϕ , un pour son affectation à vrai et un autre pour son affectation à faux, une arête va relier chaque nouveau couple de sommet créé de cette manière. Par la suite, on notera V_1 cet ensemble de sommets.

Ensuite, il faut créer trois sommets particuliers appelés Vrai, Faux et Neutre (par la suite, on les notera respectivement T, F, N). On va ensuite relier le sommet N à tous les sommets de V_1 .

Maintenant, il faut encore modéliser les contraintes pour chaque clause, pour cela, on va définir un gadget OR qui est de la forme suivante :

FIGURE 1 – Schéma d'un gadget OR

Il faut maintenant parcourir l'ensemble des clauses de ϕ puis pour chaque clause, créer un gadget OR et connecter aux trois sommets d'entrée (coloriés en bleu) aux sommets de V_1 associés aux littéra ?ux présents dans la clause, puis connecter le sommets de sortie (colorié en rouge) aux sommets F et N décrits précédemment. Par exemple, la formule ϕ ayant pour ensemble de clause $\{a \lor b \lor \neg c; \neg b \lor c\}$ deviendra le graphe suivant :

FIGURE 2 – Transformation de ϕ en instance 3- COL

5.1.3 3-COL vers CSP

Soit G un graphe. Pour chaque sommet de G, on va faire correspondre une variable CSP ayant pour domaine $\{0,1,2\}$, correspondant aux 3 couleurs que peut prendre le sommet. Puis pour chaque arête du graphe G on ajoute la même contrainte entre les deux sommets. Cette contrainte va autoriser les couples suivants (supports) :

$$\{(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)\}.$$

Avec le format XCSP, il est également possible de renseigner les couples que la contrainte interdit (conflicts), dans notre cas, ce serait donc :

$$\{(0,0),(1,1),(2,2)\}$$

-- Exemple :

Soit G le graphe suivant :

Figure 3 – Graphe G à 3 sommets

L'instance CSP correspondante est la suivante :

X : < a, b, c >

 $D: \langle D_a = D_b = D_c = \{0, 1, 2\} \rangle$

 $C: < C_{ab}, C_{ac}, C_{bc} >$

 $R: \langle RC_{ab} = RC_{bc} = RC_{ac} = \{(0,1), (0,2), (1,0), (1,2), (2,0), (2,1)\} > 0$

5.1.4 3-SAT vers VERTEX-COVER

Soit ϕ l'instance initiale de 3-SAT. On va tout d'abord récupérer l'ensemble des variables de ϕ et pour chacune d'elles, on va créer deux sommets, un pour l'affectation positive de la variable, un autre pour l'affectation négative. Ces deux sommets seront ensuite reliés par une arête. On note V_1 l'ensemble des sommets créés de cette manière.

Ensuite, il faut parcourir l'ensemble des clauses de ϕ puis créer un sommet pour chaque littéral, chacun reliés entre eux (comme ϕ est une instance de 3-SAT, on obtient donc un triangle par clause). Pour chaque sommet créé de cette manière, on va également créer une arête le reliant à son équivalent de V_1 . Pour ce problème de couverture on fixe k au nombre de clauses de ϕ .

Par exemple, pour la formule ϕ ayant l'ensemble de clauses suivant : $\{a \lor b \lor \neg c, \neg a \lor \neg b \lor c, a \lor \neg b \lor \neg c\}$, on obtiendrait le graphe suivant :

FIGURE 4 – Transformation de ϕ en une instance de VERTEX-COVER(k=3)

5.1.5 SAT vers CLIQUE

Soit ϕ l'instance initiale de SAT. On va parcourir l'ensemble des clauses de ϕ et pour chaque littéral, on va créer un nouveau sommet. Ensuite, on va connecter chaque sommet créé de cette manière à tous les autres sommets des autres clauses n'étant pas associés à sa négation. Comme pour la transformation précédente, on va fixer k au nombre de clause de ϕ .

Par exemple, soit ϕ l'instance de SAT possédant l'ensemble de clauses suivant : $\{a \lor b, \neg a \lor b, \neg a \lor \neg b\}$, si l'on applique la transformation décrite ci-dessus à ϕ , on obtient le graphe suivant :

FIGURE 5 – Transformation de ϕ en une instance de CLIQUE(k=3)

5.1.6 CSP vers SAT

Les transformations de CSP vers SAT sont particulières car il en existe plusieurs, nous avons décidé d'en implémenter deux : le direct encoding et le support encoding.

La première étape est commune aux deux transformations, pour chaque variable CSP x, on va créer n variables propositionnelles (n étant la taille du domaine de x) qui vont modéliser toutes les valeurs que peut prendre x. On doit maintenant modéliser les deux faits suivants :

- Une variable doit prendre au moins une valeur
- Une variable doit prendre au plus une valeur

Le premier fait peut être modélisé par la simple clause $x_1 \vee ... x_n$. Pour le second fait, il faut créer $\frac{n-(n-1)}{2}$ clauses de deux négations entre deux variables différentes.

Pour la seconde étape, cela va dépendre de la transformation utilisée. Le direct encoding va encoder les couples interdits, alors que le support encoding va encoder les couples autorisés. Pour illustrer, prenons le CSP suivant :

$$X: \langle a, b \rangle$$

 $D: \langle D_a = D_b = \{0, 1, 2\} \rangle$
 $C: \langle C_{ab} \rangle$
 $R: \langle RC_{ab} = \{(0, 0), (1, 1), (2, 2)\} \rangle$

Les couples présents dans la relation modélisent les couples interdits.

Si on applique le direct encoding à ce CSP, nous obtenons la formule suivante

En revanche, si l'on applique le support encoding à ce CSP, nous obtenons la formule suivante :

Remarque : Pour cette réduction, un convertisseur externe de fichier XCSP à été utilisé en raison de la complexité de la syntaxe de ce format. Nous n'avons pas pu en effet, écrire un programme traduisant l'intégralité des formules XCSP en SAT. Un programme externe nous a donc été fourni

par M.TERRIOUX Cyril, ce qui nous a permis d'effectuer des tests plus poussés sur les instances de CSP2017. ¹¹.

5.1.7 SAT vers CSP

Il faut savoir qu'une clause sous forme normale conjonctive est non satisfaisable s'il y a au moins une de ses clauses qui est insatisfaite. Ainsi, il existe une seule interprétation possible afin de rendre une clause instatisfaite.

Par exemple, la clause $\neg a \lor b \lor c$ à une seule interprétation qui la rend insatisfaite. Il s'agit de : a=1, b=c=0.

Sachant cela, pour transformer une instance de SAT en une instance de CSP, il faut pour chaque variable de l'instance SAT créer une variable dans l'instance CSP. Elles ont toutes pour domaine $\{0,1\}$.

Il faut ensuite créer une nouvelle contrainte pour chaque clause de l'instance SAT. Cette contrainte porte sur l'ensemble des variables de la clause.

Cette contrainte va forcer les variable à ne pas prendre les valeurs qui seront susceptibles de rendre la clause insatisfaisable.

Traitons cette réduction sur un exemple précis. Soit ϕ l'instance SAT suivante :

$$\begin{array}{c} a \lor b \lor c \\ a \lor b \lor \neg c \\ b \lor \neg c \\ a \lor c \lor \neg a \end{array}$$

L'instance de CSP obtenue sera donc la suivante :

```
\begin{array}{l} X: < a,b,c> \\ D: < D_a = D_b = \{0,1\} > \\ C: < C_{abc}, C_{bc}, C_{aca} > \\ R: < RC_{abc} = \{(0,0,0),(0,0,1)\} \, RC_{bc} = \{(0,1)\} \, RC_{aca} = \{(0,0,1)\} > \end{array}
```

^{11.} http://www.lsis.org/terriouxc/

5.1.8 3COL vers SAT

Afin de transformer un graphe 3-COL en instances SAT, il faut respecter les conditions d'un graphe 3-COL suivantes :

- Il faut au moins une couleur par sommet
- Il faut au plus une couleur par sommet
- La même couleur ne peut se retrouver sur deux sommets voisins

Illustrons cela à travers un exemple, soit G le graphe suivant :

FIGURE 6 - Graphe G 3-COL à 3 sommets

Pour se simplifier l'écriture des instances, prenons C=1; A=2; B=3; Les instances SAT pour ce graphe seront les suivantes :

$1r \vee 1g \vee 1b$	$\neg 2r \lor \neg 2b$	$\neg 1b \lor \neg 2b$
$2r\vee 2g\vee 2b$	$\neg 2g \lor \neg 2b$	$\neg 2r \lor \neg 3r$
$3r \vee 3g \vee 3b$	$\neg 3r \lor \neg 3g$	$\neg 2g \lor \neg 3g$
$\neg 1r \vee \neg 1g$	$\neg 3r \lor \neg 3b$	$\neg 2b \lor \neg 3b$
$\neg 1r \lor \neg 1b$	$\neg 3g \lor \neg 3b$	$\neg 3r \lor \neg 1r$
$\neg 1g \vee \neg 1b$	$\neg 1r \lor \neg 2r$	$\neg 3g \lor \neg 1g$
$\neg 2r \lor \neg 2g$	$\neg 1g \lor \neg 2g$	$\neg 3b \lor \neg 1b$

5.2 Application pour les résultats

Afin que l'on puisse traiter nos résultats plus efficacement, nous avons mis en place une application basique, capable de lire un fichier contenant tous les résultats de tests, et de les afficher sous forme de tableau afin d'avoir un aperçu de chaque caractéristique de chaque test.

L'application possède également plusieurs options :

- La recherche d'un test en particulier par critères (réduction, solveur...).
- La filtration de tests par critères (ratio, benchmark...)
- Le déplacement des cellules du tableau pour organiser les résultats comme bon nous semble.

Ainsi, il est par exemple possible d'effectuer la requête suivante : lister tous les résultats donc l'instance initiale est une instance de SAT, qui a au moins 1000 clauses et qui est résolue par le solveur glucose, le tout trié par ratio de temps décroissant. Cette application est disponible sur le répositoire git sous le nom de **StatsWindow.jar**

5.3 Les tests effectués

Au total, nous avons pu effectuer environ 900 tests. Presque toutes les réductions ont pu être testées, sauf SAT vers CLIQUE et SAT vers VERTEX COVER ces dernières étant trop coûteuses pour traiter des instances de grande taille. Nous avons essayé d'utiliser des benchmarks assez populaires, et pas trop anciens et nous avons essayé de sélectionner des instances qui n'étaient ni trop lentes, ni trop rapides à résoudre bien que nous n'ayons pas eu le choix dans certains cas.

En page 24, aux annexes, nous expliquons comment sont organisés les résultats, afin de pouvoir comprendre au mieux tout ce qui à été fait.

6 Synthèse des résultats

6.1 Synthèse globale

Voici les différentes observations et commentaires que nous avons pu faire concernant les différentes réductions effectuées :

- SAT -> 3SAT (SAT09): Dans la majorité des cas, les temps d'exécutions initiaux et finaux étaient similaires. Néanmoins, nous avons eu quelques bonnes surprises sur les benchs bioinfo et c32sat. Il est également intéréssant de noter que contrairement à ce que nous pensions, cette transformation peut avoir une influence sur les formules n'ayant pas de clauses de taille supérieure à 3 (cette transformation transforme toutes les clauses en clauses de taille 3, même les unaires et binaires).
- SAT -> 3SAT' (SAT09, bioinfo et c32sat) : Pour le benchmark bioinfo, cette transformation a été concluante étant donné qu'elle a donné des résultats encore plus intéréssant que la transformation classique SAT -> 3SAT. En revanche, pour c32sat, le résultat n'a pas été concluant
- 3COL -> SAT : Pour cette transformation, le résultat est sans appel : les instances de 3COL transformées en instances de SAT sont résolues beaucoup rapidement.
- 3COL -> CSP : Pour cette transformation, le résultat est sans appel, les instances de 3COL transformées en instances de CSP sont résolues beaucoup plus lentement.
- CSP -> SAT : Pour cette transformation, le résultat est beaucoup plus nuancé. Par rapport à la compétition CPAI08, les problèmes du benchmark coloring (coloration de graphes) se résolvent beaucoup mieux une fois transformés en instance de SAT. En revanche, les tests sur les benchmarks geom et rand n'ont pas obtenus de résultats satisfaisants. Par rapport à la compétition CSP2017, des résultats positifs ont été observés sur les benchmarks Blackhole, Dubois et Haystacks, en revanche, les benchmarks Random et Hanoi ont obtenu des résultats non satisfaisants.

Bien qu'il y ait des cas intéressants, on peut se rendre compte qu'à chaque fois qu'il y en a un, il s'agit d'une réduction vers SAT. Ce qui laisse penser que SAT est le format le plus rapide. Trouver un problème auquel SAT peut se réduire et se résolvant plus vite que ce dernier semble être quelque chose de beaucoup plus complexe.

6.2 Remarques sur les solveurs

- 3COL -> SAT: on remarque que les solveurs lingeling et cadical sont plus performants que glucose et minisat.
- CSP -> SAT (CSP2017) : le solveur minisat est plutôt lent.
- Glucose et minisat ont tendance à avoir le même comportement au niveau des tests. Cela est surement du au fait que glucose à été développé à partir de minisat.

6.3 Graphes d'exécution moyen des solveurs

Ci-dessous, 5 graphes ont été établis concernant les réductions effectuées. Les valeurs en abscisses correspondent aux différents benchmarks sur lesquels les réductions ont été testées, les valeurs en ordonnées correspondent au ratio moyen entre le temps initial et le temps final pour chaque benchmarks. La ligne rouge représente la ligne médiane entre réduction efficace et inefficace. (ratio). En abscisses, on trouve les différents benchmarks utilisés.

FIGURE 7 - Réduction SAT->3SAT (3SAT')

FIGURE 8 – Réduction XCSP3->SAT

0.8 - 0.6 - 0.4 - 0.2 - 3COL -> CSP complete random

FIGURE 9 – Réduction 3COL->SAT

FIGURE 11 – Réduction XCSP2->SAT

6.4 Tableau récapitulatif

Reduction	Compétition	Benchmark	Etat	Notes
SAT->3SAT	SAT09	aprove09	+	
		bitverif(countbitsarray	-	
		bitverif(icbrt)	\sim	
		bitverif(minxor)	-	
		bitverif(maxand)	+	
		bitverif(minand)	+	
		bitverif(minxorminand)	+	cadical désavantageux
		bitverif(minandmaxor)	-	
		bitverif(countbitswegner)	-	
		bitverif(smulo)	-	
		bioinfo	++	sauf lingeling dans certains cas
		c32sat	++	
		diagnosis	-	
3COL->SAT		$\operatorname{complete}$		avec lingeling/cadical
		random	+++	${\rm avec\ lingeling/cadical}$
3COL->CSP		complete		
		random		
CSP->SAT	CPAI08	coloring	++	sauf une instance
		geom		
		rand		que des timeout pour SAT
				La réduction est $+$ avantageuse sur des
				gros graphes générés aléatoirement
	CSP2017	Random-B-2-23-23		_
		Random-d-t010		sauf pour minisat
		Blackhole	+	
		Dubois	+	
		Hanoi	-	
		Haystachs	+++	sauf pour minisat
SAT->3SAT'	SAT09	bioinfo	++	sauf une instance
		c32SAT		

Table 1 – Table au récapitulatif des différents tests

7 Gestion de projet

7.1 Diagramme de Gantt prévisionnel

FIGURE 12 – Planning prévisionnel du travail à effectuer

7.2 Diagramme de Gantt final

FIGURE 13 – Planning du travail réalisé

8 Conclusion

8.1 Difficultés rencontrées

Tout au long de notre projet, nous avons pu rencontrer certaines difficultés. Les plus importantes ont été les suivantes :

- Certaines réductions se sont avérées coûteuse et infaisables sur de grosses instances. L'exemple de SAT -> CLIQUE à été le plus probant car nous devions stocker chaque variable modélisée par chaque sommet.
- Des difficultés niveau formalisation ont été observées aussi. La réduction de CSP vers SAT à été complexe à réaliser notamment du aux différences de syntaxe au niveau de CSP, qui est beaucoup plus complète et complexe.

8.2 Conclusion

Pour conclure, nous pouvons dire que la réalisation de ce projet nous a été entièrement bénéfique. Dans un premier temps, il nous a permis d'approfondir l'UE de complexité que nous avions fortement apprécié. Effectivement, nous avons découvert de nouvelles réductions polynomiales et approfondi nos connaissances sur CSP qui étaient limitées au peu que nous avons étudié au cours de l'UE Intelligence artificielle.

Nous considérons également que ce projet nous a été bénéfique car il nous a permis de faire un premier pas dans l'univers de la recherche, de plus, avoir pu travailler au sein du LIS et être encadré et aidé par les différentes conditions nous a permis d'effectuer ce projet dans des conditions optimales. Nous avons sur garder un cap pour maintenir un travail constant et efficace.

Concernant la suite de cette étude, nous pourrions dans un premier temps tester les réductions implémentées sur d'autres séries de benchmarks. Nous pourrions aussi implémenter d'autres réductions pour étudier leur comportement. En effet, bien que nous avons réussi à obtenir un bon jeu de résultats avec des cas intéressants, nous considérons que cette étude n'est pas complète et qu'elle mériterait d'être poursuivie. Là est tout l'intêret de la recherche, on ne peut s'arrêter aussi vite!

Nous tenions à remercier les enseignants encadrants qui ont su nous épauler tout au long, à travers leurs réponses rapides via mail, ou leur présence quasi-constante lors de la réalisation du projet.

9 ANNEXES

A travers ces annexes (nombreuses), vous pourrez retrouver tout les résultats des tests effectués. Etant conscients que le nombre de test effectués est monstrueux, nous avons associé à chaque test un identifiant en début de tableau, utile pour vous repérer à travers les différentes données des tableaux tout au long de l'annexe. Voici les caractéristique relevées de chaque test :

— La compétition	— Le fichier de sortie
— Le benchmark utilisé	— V1'
— Le résultat de satisfaisabilité	— V2'
— La réduction effectuée	— V3'
— Le fichier initial	— V4'
— V1	— V5'
— V2	— V6'
— V3	— Le ratio
— V4	— Le solveur utilisé
— V5	— Le temps initial
— V6	— Le temps final
— Le ratio	— Le ratio
Legende:	
— V 1 :	2. CSP : nombre de clauses
1. SAT ou CSP : nombre de variables	- V4 :
2. Graph : nombre de sommets	1. SAT : nombre de clauses de taille 2
— V2 :	2. CSP : nombre de relations
1. SAT : nombre de clauses	— V5 :
2. CSP: nombre de domaines	1. SAT : nombre de clauses de taille 3
3. Graph : nombre d'arêtes	- V6 :
— V3 : 1. SAT : nombre de clauses de taille 1	1. SAT : nombre de clauses de taille > 3
1. DITT : HOHIDIC de cladoes de ballie I	1. Dili . Hombie de cladocs de tame > 0

ATTENTION : Les valeurs V signifient les valeurs concernant les **fichiers initiaux** alors que les V 'signifient les nombres dans les *fichiers finaux* (après réduction).

Numéro test	Benchmark	SAT	Réduction	Compétition
$ID_{101} -> ID_{105}$	coloring	UNSAT	CSP TO SAT	CPAI08
ID_106 -> ID_110	coloring	SAT	CSP TO SAT	CPAI08
ID_111-> ID_115	coloring	UNSAT	CSP TO SAT	CPAI08
$ID_{116} -> ID_{120}$	geom	UNSAT	CSP TO SAT	CPAI08
ID_121 -> ID_130	geom	SAT	CSP TO SAT	CPAI08
$ID_131 -> ID_146$	aprove09	UNSAT	SAT TO 3SAT	SAT09
$ID_147 -> ID_162$	bitverif(countbitsarray)	UNSAT	SAT TO 3SAT	SAT09
$ID_{163} -> ID_{178}$	bitverif(icbrt)	UNSAT	SAT TO 3SAT	SAT09
$ID_179 -> ID_194$	bitverif(minxor)	UNSAT	SAT TO 3SAT	SAT09
$ID_195 -> ID_210$	bitverif(minxorminand)	UNSAT	SAT TO 3SAT	SAT09
$ID_211 -> ID_226$	bitverif(minxorminand)	UNSAT	SAT TO 3SAT	SAT09
$ID_227 -> ID_242$	bitverif(smulo)	UNSAT	SAT TO 3SAT	SAT09
$ID_243 -> ID_290$	crypto(desgen)	SAT	SAT TO 3SAT	SAT09
$ID_291 -> ID_322$	crypto(md5gen)	UNSAT	SAT TO 3SAT	SAT09
$ID_323 -> ID_338$	bioinfo	UNSAT	SAT TO 3SAT	SAT09
$ID_339 -> ID_354$	bioinfo	UNSAT	SAT TO 3SAT'	SAT09
$ID_355 -> ID_370$	bioinfo	UNSAT	SAT TO 3SAT	SAT09
$ID_371 -> ID_386$	bioinfo	UNSAT	SAT TO 3SAT'	SAT09
$ID_387 -> ID_402$	bioinfo	UNSAT	SAT TO 3SAT	SAT09
$ID_403 -> ID_418$	bioinfo	UNSAT	SAT TO 3SAT'	SAT09
$ID_419 -> ID_434$	bioinfo	UNSAT	SAT TO 3SAT	SAT09
$ID_435 -> ID_450$	bioinfo	UNSAT	SAT TO 3SAT'	SAT09
$ID_451 -> ID_498$	c32sat	UNSAT	SAT TO 3SAT	SAT09
$ID_499 -> ID_514$	c32sat	UNSAT	SAT TO 3SAT'	SAT09
$ID_515 -> ID_530$	diagnosis	UNSAT	SAT TO 3SAT	SAT09
$ID_{531} -> ID_{586}$	complete	UNSAT	3COL TO SAT	NULL
$ID_{587} -> ID_{782}$	random	UNSAT	3COL TO SAT	NULL
$ID_{783} -> ID_{844}$	random	UNSAT	3COL TO CSP	NULL
$ID_845 -> ID_864$	Random-B-2-23-23	UNSAT	CSP TO SAT	CSP2017
$ID_865 -> ID_881$	Random-D-t010	UNSAT	CSP TO SAT	CSP2017
$ID_882 -> ID_889$	Blackhole	UNSAT	CSP TO SAT	CSP2017

Table 2 – Identification des tests de façon générale

Numéro test	Initial File	V1	V2	V3	V4	V5	V6	Ratio
ID_101-> ID_105	normalized-myciel-5g-5-ext.xml	47	236	1	1	0	0	NULL
ID_106-> ID_110	normalized-le-450-5a-5-ext.xml	450	5714	1	1	0	0	NULL
ID_111-> ID_115	normalized-le-450-5a-4-ext.xml	450	5714	1	1	0	0	NULL
ID_116-> ID_120	normalized-geo50-20-d4-75-94_ext.xml	50	496	1	496	0	0	NULL
ID_121-> ID_125	normalized-geo50-20-d4-75-19_ext.xml	50	498	1	498	0	0	NULL
ID_126-> ID_130	normalized-geo50-20-d4-75-46_ext.xml	50	433	1	433	0	0	NULL
ID_131-> ID_146	AProVE09-20.cnf	33054	108377	2	51324	55013	2038	3.278
$ID_147->ID_162$	countbitsarray02_32.cnf	4252	12563	2	8374	4187	0	2.954
$ID_163->ID_178$	$icbrt1_32.cnf$	11309	33833	2	22554	11277	0	2.991
$ID_179->ID_194$	minxor128.cnf	54258	160469	2	106978	53489	0	2.957
$ID_195 > ID_210$	minxorminand064.cnf	40042	119357	2	79590	39785	0	2.980
$ID_211->ID_226$	minandmaxor032.cnf	24448	73151	2	48766	24383	0	2.992
$ID_227->ID_242$	$\mathrm{smulo}016.\mathrm{cnf}$	2945	8738	2	5824	2912	0	2.967
$ID_243->ID_258$	gss-13-s100.cnf	30867	92735	64	59830	32841	0	3.004
$ID_259->ID_274$	gss-14-s100.cnf	31229	93855	64	60488	33303	0	3.005
$ID_275 -> ID_290$	gss-17-s100.cnf	31318	94116	64	60636	33416	0	3.005
$ID_291->ID_306$	gus-md5-06.cnf	68953	224868	129	91550	133189	0	3.261
$ID_307 -> ID_322$	gus-md5-07.cnf	69097	225325	129	91744	133452	0	3.260
$ID_323->ID_354$	q_query_3_L200_coli.sat.cnf	670867	3513333	59077	795777	2146608	511871	5.237
$ID_355->ID_386$	q_query_3_L150_coli.sat.cnf	486992	2456708	45577	599727	10431108	380296	5.004
$ID_387 -> ID_418$	$q_query_3_144_lambda.cnf$	31540	179264	4112	39373	92004	21775	5.683
$ID_419->ID_450$	$q_query_3_l45_lambda.cnf$	32313	161529	4190	40231	94818	22290	4.998
$ID_451->ID_466$	post-c32s-col400-16.cnf	286329	839692	1	559794	279897	0	2.932
$ID_467 -> ID_482$	post-c32s-ss-8.cnf	53752	148393	1	98928	49464	0	2.760
$ID_483 -> ID_514$	post-cbmc-aes-d-r2-noholes.cnf	276895	1607567	40271	1154041	332345	80910	5.805
$ID_515->ID_530$	ACG-10-5p0.cnf	123925	539763	5498	437089	69976	27200	4.355
$ID_531->ID_534$	comp10.graph	10	45	0	0	0	0	NULL
$ID_{535} > ID_{538}$	comp25.graph	25	300	0	0	0	0	NULL
$ID_539->ID_542$	comp50.graph	50	1225	0	0	0	0	NULL
$ID_{543} > ID_{546}$	comp100.graph	150	11175	0	0	0	0	NULL
$ID_{547} -> ID_{550}$	comp150.graph	150	11175	0	0	0	0	NULL
$ID_{551} > ID_{554}$	comp200.graph	200	19900	0	0	0	0	NULL

Numéro test	Initial File	V1	V2	V3	V4	V_5	V6	Ratio
ID_555-> ID_558	comp250.graph	250	31125	0	0	0	0	NULL
$ID_{559} > ID_{562}$	comp300.graph	300	44850	0	0	0	0	NULL
$ID_{563} > ID_{566}$	comp350.graph	350	61075	0	0	0	0	NULL
$ID_{567} > ID_{570}$	comp400.graph	400	79800	0	0	0	0	NULL
$ID_{571} > ID_{574}$	comp450.graph	450	101025	0	0	0	0	NULL
$ID_{575-} ID_{582}$	comp500.graph	500	124750	0	0	0	0	NULL
$ID_{583} > ID_{586}$	comp1000.graph	1000	449500	0	0	0	0	NULL
$ID_{587} > ID_{590}$	rand-300-01.graph	300	4485	0	0	0	0	NULL
$ID_{591} > ID_{594}$	rand-300-02.graph	300	8970	0	0	0	0	NULL
$ID_{595} > ID_{598}$	rand-300-03.graph	300	13455	0	0	0	0	NULL
$ID_{599} > ID_{602}$	rand-300-04.graph	300	17940	0	0	0	0	NULL
$ID_{603} > ID_{606}$	rand-300-05.graph	300	22425	0	0	0	0	NULL
$ID_{607} -> ID_{610}$	rand-300-06.graph	300	26910	0	0	0	0	NULL
$ID_{611} > ID_{614}$	rand-300-07.graph	300	31394	0	0	0	0	NULL
$ID_{615} > ID_{618}$	rand-300-08.graph	300	35880	0	0	0	0	NULL
$ID_619->ID_622$	rand-300-09.graph	300	40365	0	0	0	0	NULL
$ID_{623} > ID_{626}$	rand-400-01.graph	400	7980	0	0	0	0	NULL
$ID_{627} > ID_{630}$	rand-400-02.graph	400	7980	0	0	0	0	NULL
$ID_{631} > ID_{634}$	rand-400-03.graph	400	15960	0	0	0	0	NULL
$ID_{635} > ID_{638}$	rand-400-04.graph	400	23940	0	0	0	0	NULL
$ID_{639} > ID_{642}$	rand-400-05.graph	400	39900	0	0	0	0	NULL
$ID_{643} > ID_{646}$	rand-400-06.graph	400	49800	0	0	0	0	NULL
$ID_{647-} ID_{650}$	rand-400-07.graph	400	55860	0	0	0	0	NULL
$ID_{651} > ID_{654}$	rand-400-08.graph	400	63840	0	0	0	0	NULL
$ID_{655} > ID_{658}$	rand-400-09.graph	400	71820	0	0	0	0	NULL
$ID_{659} > ID_{662}$	rand-500-01.graph	500	12475	0	0	0	0	NULL
$ID_{663} > ID_{666}$	rand-500-02.graph	500	24950	0	0	0	0	NULL
$ID_{667} > ID_{670}$	rand-500-03.graph	500	37425	0	0	0	0	NULL
$ID_671->ID_674$	rand-500-04.graph	500	49900	0	0	0	0	NULL
$ID_{675} > ID_{678}$	rand-500-05.graph	500	63375	0	0	0	0	NULL
$ID_679->ID_682$	rand-500-06.graph	500	74850	0	0	0	0	NULL
$ID_683 -> ID_686$	rand-500-07.graph	500	87325	0	0	0	0	NULL

Numéro test	Initial File	V1	V2	V3	V4	V_5	V6	Ratio
ID_687-> ID_690	rand-500-08.graph	500	99800	0	0	0	0	NULL
ID_691-> ID_694	rand-500-09.graph	500	112275	0	0	0	0	NULL
$ID_{695} > ID_{698}$	rand-750-001.graph	750	2008	0	0	0	0	NULL
ID_699-> ID_702	rand-750-005.graph	750	10043	0	0	0	0	NULL
ID_703-> ID_706	rand-750-01.graph	750	20087	0	0	0	0	NULL
ID_707-> ID_710	rand-750-02.graph	750	40175	0	0	0	0	NULL
ID_711-> ID_714	rand-750-03.graph	750	60262	0	0	0	0	NULL
ID_715-> ID_718	rand-750-04.graph	750	80350	0	0	0	0	NULL
$ID_{719} > ID_{722}$	rand-750-05.graph	750	100437	0	0	0	0	NULL
$ID_{723-} ID_{726}$	rand-750-06.graph	750	120525	0	0	0	0	NULL
$ID_{727-} ID_{730}$	rand-750-07.graph	750	140612	0	0	0	0	NULL
$ID_731->ID_734$	rand-750-08.graph	750	160700	0	0	0	0	NULL
$ID_{735} > ID_{738}$	rand-750-09.graph	750	180787	0	0	0	0	NULL
$ID_{739} > ID_{742}$	rand-1000-001.graph	999	4995	0	0	0	0	NULL
$ID_{743-} ID_{746}$	rand-1000-005.graph	999	24975	0	0	0	0	NULL
$ID_{747-} ID_{750}$	rand-1000-01.graph	999	49950	0	0	0	0	NULL
$ID_{751} > ID_{754}$	rand-1000-02.graph	999	99900	0	0	0	0	NULL
$ID_{755-} ID_{758}$	rand-1000-03.graph	999	149850	0	0	0	0	NULL
$ID_{759} > ID_{762}$	rand-1000-04.graph	999	199800	0	0	0	0	NULL
$ID_{763} > ID_{766}$	rand-1000-05.graph	999	249750	0	0	0	0	NULL
$ID_{767-} ID_{770}$	rand-1000-06.graph	999	299700	0	0	0	0	NULL
$ID_{771-} ID_{774}$	rand-1000-07.graph	999	349650	0	0	0	0	NULL
$ID_{775-} ID_{778}$	rand-1000-08.graph	999	399600	0	0	0	0	NULL
$ID_{779-} ID_{782}$	rand-1000-09.graph	999	449550	0	0	0	0	NULL
$ID_{783} > ID_{783}$	comp10.graph	10	45	0	0	0	0	NULL
$ID_{784} > ID_{784}$	comp25.graph	25	300	0	0	0	0	NULL
$ID_{785} > ID_{785}$	comp50.graph	50	1225	0	0	0	0	NULL
$ID_{786} > ID_{786}$	comp100.graph	100	4950	0	0	0	0	NULL
$ID_{787} > ID_{787}$	comp150.graph	150	11175	0	0	0	0	NULL
$ID_{788-} ID_{788}$	comp200.graph	200	19900	0	0	0	0	NULL
ID_789-> ID_789	comp250.graph	250	31125	0	0	0	0	NULL
ID_790-> ID_790	comp300.graph	300	44850	0	0	0	0	NULL

Numéro test	Initial File	V1	V2	V3	V4	V5	V6	Ratio
ID_791-> ID_791	comp350.graph	350	61075	0	0	0	0	NULL
$ID_{792} > ID_{792}$	comp400.graph	400	79800	0	0	0	0	NULL
ID_793-> ID_793	comp450.graph	450	101025	0	0	0	0	NULL
$ID_{794} > ID_{794}$	comp500.graph	500	124750	0	0	0	0	NULL
$ID_{795} > ID_{795}$	comp1000.graph	1000	449500	0	0	0	0	NULL
$ID_{796} > ID_{796}$	rand-300-01.graph	300	4485	0	0	0	0	NULL
$ID_{797} > ID_{797}$	rand-300-02.graph	300	8970	0	0	0	0	NULL
$ID_{798} > ID_{798}$	rand-300-03.graph	300	13455	0	0	0	0	NULL
$ID_{799} > ID_{799}$	rand-300-04.graph	300	17940	0	0	0	0	NULL
$ID_{800} > ID_{800}$	rand-300-05.graph	300	22425	0	0	0	0	NULL
$ID_801 -> ID_801$	rand-300-06.graph	300	26910	0	0	0	0	NULL
$ID_802 -> ID_802$	rand-300-07.graph	300	31394	0	0	0	0	NULL
$ID_{803} > ID_{803}$	rand-300-08.graph	300	35880	0	0	0	0	NULL
$ID_804 -> ID_804$	rand-300-09.graph	300	40365	0	0	0	0	NULL
$ID_805 -> ID_805$	rand-400-01.graph	400	7980	0	0	0	0	NULL
$ID_806 -> ID_806$	rand-400-02.graph	400	15960	0	0	0	0	NULL
$ID_807 -> ID_807$	rand-400-03.graph	400	23940	0	0	0	0	NULL
$ID_808 -> ID_808$	rand-400-04.graph	400	31920	0	0	0	0	NULL
$ID_809 -> ID_809$	rand-400-05.graph	400	39900	0	0	0	0	NULL
$ID_810->ID_810$	rand-400-06.graph	400	49800	0	0	0	0	NULL
$ID_811->ID_811$	rand-400-07.graph	400	55860	0	0	0	0	NULL
$ID_812 -> ID_812$	rand-400-08.graph	400	63840	0	0	0	0	NULL
$ID_813 -> ID_813$	rand-400-09.graph	400	71820	0	0	0	0	NULL
$ID_814 -> ID_814$	rand-500-01.graph	500	12475	0	0	0	0	NULL
$ID_815 -> ID_815$	rand-500-02.graph	500	24950	0	0	0	0	NULL
$ID_816 -> ID_816$	rand-500-03.graph	500	37425	0	0	0	0	NULL
$ID_817 -> ID_817$	rand-500-04.graph	500	49900	0	0	0	0	NULL
$ID_818 -> ID_818$	rand-500-05.graph	500	63375	0	0	0	0	NULL
$ID_819 -> ID_819$	rand-500-06.graph	500	74850	0	0	0	0	NULL
$ID_820->ID_820$	rand-500-07.graph	500	87325	0	0	0	0	NULL
$ID_821->ID_821$	rand-500-08.graph	500	99800	0	0	0	0	NULL
$ID_822->ID_822$	rand-500-09.graph	500	112275	0	0	0	0	NULL

Numéro test	Initial File	V1	V2	V3	V4	V_5	V6	Ratio
ID_823-> ID_823	rand-750-001.graph	750	2008	0	0	0	0	NULL
ID_824-> ID_824	rand-750-005.graph	750	10043	0	0	0	0	NULL
$ID_825 -> ID_825$	rand-750-01.graph	750	20087	0	0	0	0	NULL
ID_826-> ID_826	rand-750-02.graph	750	40175	0	0	0	0	NULL
ID_827-> ID_827	rand-750-03.graph	750	60262	0	0	0	0	NULL
ID_828-> ID_828	rand-750-04.graph	750	80350	0	0	0	0	NULL
ID_829-> ID_829	rand-750-05.graph	750	100437	0	0	0	0	NULL
ID_830-> ID_830	rand-750-06.graph	750	120525	0	0	0	0	NULL
ID_831-> ID_831	rand-750-07.graph	750	140612	0	0	0	0	NULL
$ID_832 -> ID_832$	rand-750-08.graph	750	160700	0	0	0	0	NULL
$ID_833->ID_833$	rand-750-09.graph	750	180787	0	0	0	0	NULL
$ID_834 -> ID_834$	rand-1000-001.graph	999	4995	0	0	0	0	NULL
$ID_835 -> ID_835$	rand-1000-005.graph	999	24975	0	0	0	0	NULL
$ID_836 -> ID_836$	rand-1000-01.graph	999	49950	0	0	0	0	NULL
$ID_837 -> ID_837$	rand-1000-02.graph	999	99900	0	0	0	0	NULL
$ID_838 -> ID_838$	rand-1000-03.graph	999	149850	0	0	0	0	NULL
$ID_839 -> ID_839$	rand-1000-04.graph	999	199800	0	0	0	0	NULL
$ID_840 -> ID_840$	rand-1000-05.graph	999	249750	0	0	0	0	NULL
$ID_841 -> ID_841$	rand-1000-06.graph	999	299700	0	0	0	0	NULL
$ID_842 -> ID_842$	rand-1000-07.graph	999	349650	0	0	0	0	NULL
$ID_843 -> ID_843$	rand-1000-08.graph	999	399600	0	0	0	0	NULL
$ID_844->ID_844$	rand-1000-09.graph	999	449550	0	0	0	0	NULL
$ID_845 -> ID_848$	rand-2-23-253-131-0.xml	23	253	1	253	0	0	NULL
$ID_849 -> ID_852$	rand-2-23-253-131-1.xml	23	253	1	253	0	0	NULL
$ID_853 -> ID_856$	rand-2-23-253-131-5.xml	23	253	1	253	0	0	NULL
$ID_857 -> ID_860$	rand-2-23-253-131-6.xml	23	253	1	253	0	0	NULL
ID_861-> ID_864	rand-2-23-253-131-9.xml	23	253	1	253	0	0	NULL
$ID_865 -> ID_868$	rand-2-40-8-753-010-01.xml	40	753	1	753	0	0	NULL
$ID_869->ID_873$	rand-2-40-8-753-010-03.xml	40	753	1	753	0	0	NULL
$ID_874->ID_877$	rand-2-40-8-753-010-04.xml	40	753	1	753	0	0	NULL
ID_878-> ID_881	rand-2-40-8-753-010-06.xml	40	753	1	753	0	0	NULL
ID_882-> ID_885	Blackhole-4-04-0_X2.xml	0	0	0	0	0	0	NULL
ID_886 -> ID_889	BlackHole-4-04-0_X2.xml	0	0	0	0	0	0	NULL

Table 3 – Identification des tests par rapport à leur valeurs initiales

Numéro test	Final File	V1'	V2'	V3'	V4'	V5'	V6'	Ratio
$ID_{101} -> ID_{105}$	normalized-myciel-5g-5-ext.cnf	235	1697	0	1650	0	47	7.221
ID_106-> ID_110	normalized-le-450-5a-5-ext.cnf	2250	33520	0	33070	0	450	14.897
ID_111-> ID_115	normalized-le-450-5a-4-ext.cnf	1800	26006	0	25556	0	450	14.447
ID_116-> ID_120	normalized-geo50-20-d4-75-94_ext.cnf	1000	59157	0	59107	0	50	59.157
$ID_121->ID_125$	normalized-geo50-20-d4-75-19_ext.cnf	1000	59246	0	59196	0	50	59.246
ID_126-> ID_130	normalized-geo50-20-d4-75-46_ext.cnf	1000	52787	0	52737	0	50	52.787
ID_131-> ID_146	AProVE09-20_3sat.cnf	35920	111243	0	0	111243	0	3.096
$ID_147->ID_162$	countbitsarray02_32_3sat.cnf	4252	12563	0	0	12563	0	2.954
$ID_163->ID_178$	icbrt1_32_3sat.cnf	11309	33833	0	0	33833	0	2.991
ID_179-> ID_194	minxor128_3sat.cnf	54258	160469	0	0	160469	0	2.957
ID_195-> ID_210	minxorminand064_3sat.cnf	40042	119357	0	0	1193570	0	2.980
$ID_211->ID_226$	minandmaxor032_3sat.cnf	24448	73151	0	0	73151	0	2.992
$ID_227->ID_242$	smulo016_3sat.cnf	2945	8738	0	0	8738	0	2.967
$ID_243->ID_258$	gss-13-s100_3sat.cnf	30867	92735	0	0	92735	0	3.004
$ID_259->ID_274$	gss-14-s100_3sat.cnf	31229	93855	0	0	93855	0	3.005
$ID_275 -> ID_290$	$gss-17-s100_3sat.cnf$	31318	94116	0	0	94116	0	3.005
$ID_291->ID_306$	$gus-md5-06_3sat.cnf$	68953	224868	0	0	224868	03.261	
$ID_307 -> ID_322$	$gus-md5-07_3sat.cnf$	69097	225325	0	0	225325	0	3.260
$ID_323->ID_338$	q_query_3_L200_coli_3sat.cnf	1304368	4146834	0	0	4146834	0	3.179
$ID_339->ID_354$	q_query_3_L200_coli_3satbis.cnf	1304368	4146834	59077	795999	3291980	0	3.179
$ID_355-> ID_370$	q_query_3_L150_coli_3sat.cnf	954843	2924559	0	0	2924559	0	3.062
$ID_371->ID_386$	q_query_3_L150_coli_3satbis.cnf	954843	2924559	45577	599727	2279255	0	3.062
$ID_387 -> ID_402$	q_query_3_lambda_3sat.cnf	60591	186315	0	0	186315	0	3.074
$ID_403->ID_418$	q_query_3_l44_lambda_3satbis.cnf	60591	186315	4112	39373	142830	0	3.074
$ID_419->ID_434$	q_query_3_l45_lambda_3sat.cnf	62044	191260	0	0	191260	0	3.082
$ID_435->ID_450$	q_query_3_l45_lambda_3satbis.cnf	62044	191260	4190	40231	146839	0	3.082
$ID_451->ID_466$	$post-c32s-col400-16_3sat.cnf$	286329	839692	0	0	839692	0	2.293
$ID_467->ID_482$	post-c32s-ss-8_3sat.cnf	53752	148393	0	0	148393	0	2.760
$ID_483->ID_498$	post-cbmc-aes-d-r2-noholes_3sat.cnf	1010737	2341409	0	0	2341409	0	2.316
$ID_499->ID_514$	post-cbmc-aes-d-r2-noholes_3satbis.cnf	1010737	2341409	40271	1154041	1147097	0	2.316
$ID_515->ID_530$	ACG-10-5p0_3sat.cnf	205525	621363	0	0	621363	0	3.023
$ID_{531} -> ID_{534}$	comp10.cnf	30	175	0	165	10	0	5.833

Numéro test	Final File	V1'	V2'	V3'	V4'	V5'	V6'	Ratio
$ID_{535} > ID_{538}$	comp25.cnf	75	1000	0	975	25	0	13.333
$ID_539 -> ID_542$	comp50.cnf	150	3875	0	3825	50	0	25.833
$ID_{543} > ID_{546}$	comp100.cnf	450	34125	0	33975	150	0	75.833
$ID_{547-} ID_{550}$	comp150.cnf	450	34125	0	33975	150	0	75.833
$ID_{551} > ID_{554}$	comp200.cnf	600	60500	0	60300	200	0	10.833
$ID_{555} > ID_{558}$	comp250.cnf	750	94375	0	94125	250	0	125.833
$ID_{559} > ID_{562}$	comp300.cnf	900	135750	0	135450	300	0	150.833
$ID_{563} > ID_{566}$	comp350.cnf	1050	184625	0	184275	350	0	175.833
$ID_{567} -> ID_{570}$	comp400.cnf	1200	241000	0	240600	400	0	200.833
$ID_{571} > ID_{574}$	comp450.cnf	1350	304875	0	304425	450	0	225.833
$ID_575 > ID_582$	comp500.cnf	1500	376250	0	375750	500	0	250.833
$ID_{583} > ID_{586}$	comp1000.cnf	3000	1502500	0	1501500	1000	0	500.833
$ID_587 -> ID_590$	rand-300-01.cnf	900	14655	0	14355	300	0	16.283
$ID_{591} > ID_{594}$	rand-300-02.cnf	900	28110	0	27810	300	0	31.233
$ID_{595} > ID_{598}$	rand-300-03.cnf	900	41565	0	41265	300	0	46.183
$ID_{599} > ID_{602}$	rand-300-04.cnf	900	55020	0	54720	300	0	61.133
$ID_{603} > ID_{606}$	rand-300-05.cnf	900	68475	0	68175	300	0	76.083
$ID_{607-} ID_{610}$	rand-300-06.cnf	900	81930	0	91630	300	0	91.033
$ID_611->ID_614$	rand-300-07.cnf	900	95382	0	95082	300	0	105.98
$ID_615 > ID_618$	rand-300-08.cnf	900	108840	0	108540	300	0	120.933
$ID_619->ID_622$	rand-300-09.cnf	900	1222295	0	121995	300	0	1358.105
$ID_623->ID_626$	rand-400-01.cnf	1200	25540	0	25140	400	0	21.283
$ID_627->ID_630$	rand-400-02.cnf	1200	25540	0	25140	400	0	21.283
$ID_631->ID_634$	rand-400-03.cnf	1200	49480	0	49080	400	0	41.233
$ID_{635} > ID_{638}$	rand-400-04.cnf	1200	73420	0	73020	400	0	61.183
$ID_639->ID_642$	rand-400-05.cnf	1200	151000	0	150600	400	0	125.833
$ID_643->ID_646$	rand-400-06.cnf	1200	151000	0	150600	400	0	160.933
$ID_647->ID_650$	rand-400-07.cnf	1200	169180	0	168780	400	0	18.088
$ID_651->ID_654$	rand-400-08.cnf	1200	193120	0	192720	400	0	160.933
$ID_{655-} ID_{658}$	rand-400-09.cnf	1200	21706	0	216660	400	0	18.083
$ID_659->ID_662$	rand-500-01.cnf	1500	39425	0	38925	500	0	26.283
$ID_{663} > ID_{666}$	rand-500-02.cnf	1500	76850	0	76350	500	0	51.233

Numéro test	Final File	V1'	V2'	V3'	V3' V4'		V6'	Ratio
$ID_{667-} ID_{670}$	rand-500-03.cnf	1500	114275	0	113775	500	0	76.183
$ID_{671} > ID_{674}$	rand-500-04.cnf	1500	151700	0	151200	500	0	101.133
$ID_675->ID_678$	rand-500-05.cnf	1500	192125	0	191625	500	0	128.083
$ID_679->ID_682$	rand-500-06.cnf	1500	226550	0	226050	500	0	151.033
$ID_{683} > ID_{686}$	rand-500-07.cnf	1500	263975	0	263475	500	0	175.983
ID_687-> ID_690	rand-500-08.cnf	1500	301400	0	300900	500	0	200.933
ID_691-> ID_694	rand-500-09.cnf	1500	338825	0	338325	500	0	225.883
$ID_{695} > ID_{698}$	rand-750-001.cnf	1500	338825	0	338325	500	0	225.883
ID_699-> ID_702	rand-750-005.cnf	2250	33129	0	32379	750	0	14.724
$ID_{703} > ID_{706}$	rand-750-01.cnf	2250	63261	0	62511	750	0	28.116
ID_707-> ID_710	rand-750-02.cnf	2250	123525	0	122775	750	0	54.9
ID_711-> ID_714	rand-750-03.cnf	2250	183786	0	183036	750	0	81.682
ID_715-> ID_718	rand-750-04.cnf	2250	244050	0	243300	750	0	108.466
$ID_{719} > ID_{722}$	rand-750-05.cnf	2250	304311	0	303561	750	0	135.249
$ID_{723-} ID_{726}$	rand-750-06.cnf	2250	364575	0	363825	750	0	162.033
$ID_{727-} ID_{730}$	rand-750-07.cnf	2250	424836	0	424086	750	0	188.816
$ID_{731} > ID_{734}$	rand-750-08.cnf	2250	485100	0	484350	750	0	215.6
$ID_{735-} ID_{738}$	rand-750-09.cnf	2250	545361	0	544611	750	0	242.382
$ID_{739-} ID_{742}$	rand-1000-001.cnf	2997	18981	0	17982	999	0	6.333
$ID_{743-} ID_{746}$	rand-1000-005.cnf	2997	78921	0	77922	999	0	26.333
$ID_{747-} ID_{750}$	rand-1000-01.cnf	2997	153846	0	152847	999	0	51.333
$ID_{751} > ID_{754}$	rand-1000-02.cnf	2997	303696	0	302697	999	0	101.333
$ID_{755-} ID_{758}$	rand-1000-03.cnf	2997	453546	0	452547	999	0	151.333
$ID_{759-} ID_{762}$	rand-1000-04.cnf	2997	603396	0	602397	999	0	201.333
$ID_{763} > ID_{766}$	rand-1000-05.cnf	2997	753246	0	752247	999	0	251.333
$ID_{767-} ID_{770}$	rand-1000-06.cnf	2997	903096	0	902097	999	0	301.333
$ID_{771} > ID_{774}$	rand-1000-07.cnf	2997	1052946	0	1051947	999	0	351.333
$ID_{775-} ID_{778}$	rand-1000-08.cnf	2997	1202796	0	1201797	999	0	401.333
$ID_{779} > ID_{782}$	rand-1000-09.cnf	2997	1352646	0	1351647	999	0	451.333
$ID_{783} > ID_{783}$	comp10.xml	10	45	1	1	0	0	4.5
$ID_{784} > ID_{784}$	comp25.xml	25	300	1	1	0	0	12.0
$ID_{785} > ID_{785}$	comp50.xml	50	1225	1	1	0	0	24.5

Numéro test	Final File	V1'	V2'	V3'	V4'	V5'	V6'	Ratio
$ID_{786} > ID_{786}$	comp100.xml	100	4950	1	1	0	0	49.5
$ID_{787} > ID_{787}$	comp150.xml	150	11175	1	1	0	0	74.5
ID_788-> ID_788	comp200.xml	200	19900	1	1	0	0	99.5
ID_789-> ID_789	comp250.xml	250	31125	1	1	0	0	124.5
ID_790-> ID_790	comp300.xml	300	44850	1	1	0	0	149.5
ID_791-> ID_791	comp350.xml	350	61075	1	1	0	0	174.5
$ID_{792} > ID_{792}$	comp400.xml	400	79800	1	1	0	0	199.5
ID_793-> ID_793	comp450.xml	450	101025	1	1	0	0	224.5
$ID_{794} > ID_{794}$	comp500.xml	500	124750	1	1	0	0	249.5
$ID_{795} > ID_{795}$	comp1000.xml	1000	449500	1	1	0	0	449.5
$ID_{796} > ID_{796}$	rand-300-01.xml	300	4485	1	1	0	0	14.95
ID_797-> ID_797	rand-300-02.xml	300	8970	1	1	0	0	29.9
ID_798-> ID_798	rand-300-03.xml	300	13455	1	1	0	0	44.85
ID_799-> ID_799	rand-300-04.xml	300	17940	1	1	0	0	59.8
ID_800-> ID_800	rand-300-05.xml	300	22425	1	1	0	0	74.75
ID_801-> ID_801	rand-300-06.xml	300	26910	1	1	0	0	89.7
ID_802-> ID_802	rand-300-07.xml	300	31394	1	1	0	0	104.646
$ID_803 -> ID_803$	rand-300-08.xml	300	35880	1	1	0	0	119.6
ID_804-> ID_804	rand-300-09.xml	300	40365	1	1	0	0	134.55
$ID_805 -> ID_805$	rand-400-01.graph	400	7980	1	1	0	0	19.95
$ID_806 -> ID_806$	rand-400-02.graph	400	15960	1	1	0	0	39.9
$ID_807 -> ID_807$	rand-400-03.graph	400	23940	1	1	0	0	59.85
ID_808-> ID_808	rand-400-04.graph	400	31920	1	1	0	0	79.8
ID_809-> ID_809	rand-400-05.graph	400	39900	1	1	0	0	99.75
ID_810-> ID_810	rand-400-06.graph	400	49800	1	1	0	0	124.5
ID_811-> ID_811	rand-400-07.graph	400	55860	1	1	0	0	139.65
ID_812-> ID_812	rand-400-08.graph	400	63840	1	1	0	0	159.6
ID_813-> ID_813	rand-400-09.graph	400	71820	1	1	0	0	179.55
ID_814-> ID_814	rand-500-01.xml	500	12475	1	1	0	0	24.95
$ID_815 -> ID_815$	rand-500-02.xml	500	24950	1	1	0	0	49.9
ID_816-> ID_816	rand-500-03.xml	500	37425	1	1	0	0	74.85
ID_817-> ID_817	rand-500-04.xml	500	49900	1	1	0	0	99.8

Numéro test	Final File	V1'	V2'	V3'	V4'	V5'	V6'	Ratio
ID_818-> ID_818	rand-500-05.xml	500	63375	1	1	0	0	126.75
ID_819-> ID_819	rand-500-06.xml	500	74850	1	1	0	0	149.7
ID_820-> ID_820	rand-500-07.xml	500	87325	1	1	0	0	174.65
ID_821-> ID_821	rand-500-08.xml	500	99800	1	1	0	0	199.6
$ID_822->ID_822$	rand-500-09.xml	500	112275	1	1	0	0	224.55
$ID_823->ID_823$	rand-750-001.xml	750	2008	1	1	0	0	2.677
$ID_824->ID_824$	rand-750-005.xml	750	10043	1	1	0	0	13.390
$ID_825 -> ID_825$	rand-750-01.xml	750	20087	1	1	0	0	26.782
$ID_826 -> ID_826$	rand-750-02.xml	750	40175	1	1	0	0	55.566
$ID_827 -> ID_827$	rand-750-03.xml	750	60262	1	1	0	0	80.349
$ID_828->ID_828$	rand-750-04.xml	750	80350	1	1	0	0	107.133
$ID_829->ID_829$	rand-750-05.xml	750	100437	1	1	0	0	133.916
$ID_830->ID_830$	rand-750-06.xml	750	120525	1	1	0	0	160.7
$ID_831 -> ID_831$	rand-750-07.xml	750	140612	1	1	0	0	187.482
$ID_832->ID_832$	rand-750-08.xml	750	160700	1	1	0	0	214.266
$ID_833->ID_833$	rand-750-09.xml	750	180787	1	1	0	0	241.049
$ID_834 -> ID_834$	rand-1000-001.xml	999	4995	1	1	0	0	5.0
$ID_835 -> ID_835$	rand-1000-005.xml	999	24975	1	1	0	0	25.0
$ID_836 -> ID_836$	rand-1000-01.xml	999	49950	1	1	0	0	50.0
$ID_837 -> ID_837$	rand-1000-02.xml	999	99900	1	1	0	0	100
$ID_838 -> ID_838$	rand-1000-03.xml	999	149850	1	1	0	0	150
$ID_839 -> ID_839$	rand-1000-04.xml	999	199800	1	1	0	0	200
$ID_840->ID_840$	rand-1000-05.xml	999	249750	1	1	0	0	250
ID_841-> ID_841	rand-1000-06.xml	999	299700	1	1	0	0	300
$ID_842->ID_842$	rand-1000-07.xml	999	349650	1	1	0	0	350
$ID_843 -> ID_843$	rand-1000-08.xml	999	399600	1	1	0	0	400
$ID_844->ID_844$	rand-1000-09.xml	999	449550	1	1	0	0	450
$ID_845 -> ID_848$	rand-2-23-253-131-0.cnf	529	38985	0	38962	0	23	73.695
$ID_849->ID_852$	rand-2-23-253-131-1.cnf	529	38985	0	38962	0	23	73.695
$ID_853->ID_856$	rand-2-23-253-131-5.cnf	529	38985	0	38962	0	23	73.695
$ID_857 -> ID_860$	rand-2-23-253-131-6.cnf	529	38985	0	38962	0	23	73.695
$ID_861 -> ID_864$	rand-2-23-253-131-9.cnf	529	38985	0	38962	0	23	73.695

Numéro test	Final File	V1'	V2'	V3'	V4'	V5'	V6'	Ratio
$ID_865 -> ID_868$	rand-2-40-8-753-010-01.cnf	320	6013	0	5973	0	40	18.790
$ID_869 -> ID_873$	rand-2-40-8-753-010-03.cnf	320	6013	0	5973	0	40	18.790
$ID_874 -> ID_877$	rand-2-40-8-753-010-04.cnf	320	6013	0	5973	0	40	18.790
$ID_878->ID_881$	rand-2-40-8-753-010-06.cnf	320	6013	0	5973	0	40	18.790
$ID_882 -> ID_885$	Blackhole- $4-04-0$ _X2.cnf	11278	200	0	0	0	11278	0.017
$ID_886 -> ID_899$	$Blackhole-4-04-1_X2.xml$	11278	200	0	0	0	11278	0.017

Table 4 – Identification des tests par rapport à leur valeurs finales

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_101	choco	glucose	14.316	24.876	0.575
ID_102	choco	lingeling	14.316	56.5	0.253
ID_103	choco	minisat	14.316	16.824	0.851
ID_104	choco	picosat	14.316	115.508	0.124
ID_105	choco	cadical	14.316	27.863	0.514
ID_106	choco	glucose	8.152	0.34	23.976
ID_107	choco	lingeling	8.152	0.33	24.703
ID_108	choco	minisat	8.152	0.076	107.263
ID_109	choco	picosat	8.152	0.036	226.444
ID_110	choco	cadical	8.152	0.057	143.018
ID_111	choco	glucose	2.096	0.051	41.098
ID_112	choco	lingeling	2.096	0.018	116.444
ID_113	choco	minisat	2.096	0.042	49.905
ID_114	choco	picosat	2.096	0.016	131
ID_115	choco	cadical	2.096	0.042	49.905
ID_116	choco	glucose	47.836	343.7	0.139
ID_117	choco	lingeling	47.836	900.0	TIMEOUT
ID_118	choco	minisat	47.836	857.016	0.056
ID_119	choco	picosat	47.836	900.0	TIMEOUT
ID_120	choco	cadical	47.836	243.624	0.196
ID_121	choco	glucose	33.764	78.876	0.428
ID_122	choco	lingeling	33.764	108.638	0.311
ID_123	choco	minisat	33.764	16.892	1.999
ID_124	choco	picosat	33.764	900.0	TIMEOUT
ID_125	choco	caldical	33.764	78.252	0.431
ID_126	choco	glucose	3.328	53.025	0.063
ID_127	choco	lingeling	3.328	85.552	0.039
ID_128	choco	minisat	3.328	17.536	0.19
ID_129	choco	picosat	3.328	87.054	0.038
ID_130	choco	cadical	3.328	77.6	0.043
ID_131	glucose	glucose	38.244	33.916	1.128

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_132	glucose	lingeling	38.244	22.568	1.695
ID_133	glucose	minisat	38.244	31.136	1.228
ID_134	glucose	cadical	38.244	25.096	1.524
ID_135	lingeling	glucose	28.828	33.916	0.85
ID_136	lingeling	lingeling	28.828	22.568	1.277
ID_137	lingeling	minisat	28.828	31.136	0.926
ID_138	lingeling	cadical	28.828	25.096	1.149
ID_139	minisat	glucose	39.576	33.916	1.167
ID_140	minisat	lingeling	39.576	22.568	1.754
ID_141	minisat	minisat	39.576	31.136	1.271
ID_142	minisat	cadical	39.576	25.096	1.577
ID_143	cadical	glucose	42.996	33.916	1.268
ID_144	cadical	lingeling	42.996	22.568	1.905
ID_145	cadical	minisat	42.996	31.136	1.381
ID_146	cadical	cadical	42.996	25.096	1.713
ID_147	glucose	glucose	341.95	389.44	0.878
ID_148	glucose	lingeling	341.95	495.312	0.69
ID_149	glucose	minisat	341.95	900.0	TIMEOUT
ID_150	glucose	cadical	341.95	44.116	7.751
ID_151	lingeling	glucose	403.836	389.44	1.037
ID_152	lingeling	lingeling	403.836	495.312	0.815
ID_153	lingeling	minisat	403.836	900.0	TIMEOUT
ID_154	lingeling	cadical	403.836	44.116	9.154
ID_155	minisat	glucose	900.0	389.44	2.311
ID_156	minisat	lingeling	900.0	495.312	1.817
ID_157	minisat	minisat	900.0	900.0	TIMEOUT
ID_158	minisat	cadical	900.0	44.116	20.401
ID_159	cadical	glucose	43.964	389.44	0.113
ID_160	cadical	lingeling	43.964	495.312	0.089
ID_161	cadical	minisat	43.964	900.0	TIMEOUT
ID_162	cadical	cadical	43.964	44.116	0.997

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_163	glucose	glucose	8.164	8.016	1.018
ID_164	glucose	lingeling	8.164	11.8	0.692
ID_165	glucose	minisat	8.164	8.24	0.991
ID_166	glucose	cadical	8.164	9.59	0.851
ID_167	lingeling	glucose	12.127	8.016	1.513
ID_168	lingeling	lingeling	12.127	11.8	1.028
ID_169	lingeling	minisat	12.127	8.24	1.472
ID_170	lingeling	cadical	12.127	9.59	1.265
ID_171	minisat	glucose	8.208	8.016	1.024
ID_172	minisat	lingeling	8.208	11.8	0.696
ID_173	minisat	minisat	8.208	8.24	0.996
ID_174	minisat	cadical	8.208	9.59	0.856
ID_175	cadical	glucose	9.476	8.016	1.182
ID_176	cadical	lingeling	9.476	11.8	0.803
ID_177	cadical	minisat	9.476	8.24	1.15
ID_178	cadical	cadical	9.476	9.59	0.988
ID_179	glucose	glucose	217.816	216.812	1.005
ID_180	glucose	lingeling	217.816	326.892	0.666
ID_181	glucose	minisat	217.816	829.316	0.263
ID_182	glucose	cadical	217.816	900.0	TIMEOUT
ID_183	lingeling	glucose	323.608	216.812	1.493
ID_184	lingeling	lingeling	323.608	326.892	0.99
ID_185	lingeling	minisat	323.608	829.316	0.39
ID_186	lingeling	cadical	323.608	900.0	TIMEOUT
ID_187	minisat	glucose	786.428	216.812	3.627
ID_188	minisat	lingeling	786.428	326.892	2.406
ID_189	minisat	minisat	786.428	829.316	0.948
ID_190	minisat	cadical	786.428	900.0	TIMEOUT
ID_191	cadical	glucose	845.092	216.812	3.898
ID_192	cadical	lingeling	845.092	326.892	2.585
ID_193	cadical	minisat	845.092	829.316	1.019

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_194	cadical	cadical	845.092	900.0	TIMEOUT
ID_195	glucose	glucose	178.784	170.976	1.046
ID_196	glucose	lingeling	178.784	132.352	1.351
ID_197	glucose	minisat	178.784	130.688	1.368
ID_198	glucose	cadical	178.784	74.288	2.407
ID_199	lingeling	glucose	145.268	170.976	0.85
ID_200	lingeling	lingeling	145.268	132.352	1.098
ID_201	lingeling	minisat	145.268	130.688	1.112
ID_202	lingeling	cadical	145.268	74.288	1.955
ID_203	minisat	glucose	147.104	170.976	0.86
ID_204	minisat	lingeling	147.104	132.352	1.111
ID_205	minisat	minisat	147.104	130.688	1.126
ID_206	minisat	cadical	147.104	74.288	1.98
ID_207	cadical	glucose	73.3	170.976	0.429
ID_208	cadical	lingeling	73.3	132.352	0.554
ID_209	cadical	minisat	73.3	130.688	0.561
ID_210	cadical	cadical	73.3	74.288	0.987
ID_211	glucose	glucose	41.148	43.104	0.955
ID_212	glucose	lingeling	41.148	255.944	0.161
ID_213	glucose	minisat	41.148	54.812	0.751
ID_214	glucose	cadical	41.148	24.148	1.704
ID_215	lingeling	glucose	254.66	43.104	5.908
ID_216	lingeling	lingeling	254.66	255.944	0.995
ID_217	lingeling	minisat	254.66	54.812	4.646
ID_218	lingeling	cadical	254.66	24.148	10.546
ID_219	minisat	glucose	51.016	43.104	1.184
ID_220	minisat	lingeling	51.016	255.944	0.199
ID_221	minisat	minisat	51.016	54.812	0.931
ID_222	minisat	cadical	51.016	24.148	2.113
ID_223	cadical	glucose	22.812	43.104	0.529
ID_224	cadical	lingeling	22.812	255.944	0.089

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_225	cadical	minisat	22.812	54.812	0.416
ID_226	cadical	cadical	22.812	24.148	0.945
ID_227	glucose	glucose	5.968	6.424	0.929
ID_228	glucose	lingeling	5.968	8.56	0.697
ID_229	glucose	minisat	5.968	14.644	0.408
ID_230	glucose	cadical	5.968	3.829	1.559
ID_231	lingeling	glucose	6.022	6.424	0.937
ID_232	lingeling	lingeling	6.022	8.56	0.704
ID_233	lingeling	minisat	6.022	14.644	0.411
ID_234	lingeling	cadical	6.022	3.829	1.573
ID_235	minisat	glucose	13.984	6.424	2.177
ID_236	minisat	lingeling	13.984	8.56	1.634
ID_237	minisat	minisat	13.984	14.644	0.955
ID_238	minisat	cadical	13.984	3.829	3.652
ID_239	cadical	glucose	3.56	6.424	0.554
ID_240	cadical	lingeling	3.56	8.56	0.416
ID_241	cadical	minisat	3.56	14.644	0.243
ID_242	cadical	cadical	3.56	3.829	0.93
ID_243	glucose	glucose	18.248	18.283	0.998
ID_244	glucose	lingeling	18.248	11.332	1.61
ID_245	glucose	minisat	18.248	6.221	2.933
ID_246	glucose	cadical	18.248	26.616	0.686
ID_247	lingeling	glucose	10.032	18.283	0.549
ID_248	lingeling	lingeling	10.032	11.332	0.885
ID_249	lingeling	minisat	10.032	6.221	1.613
ID_250	lingeling	cadical	10.032	26.616	0.377
ID_251	minisat	glucose	5.84	18.283	0.319
ID_252	minisat	lingeling	5.84	11.332	0.515
ID_253	minisat	minisat	5.84	6.221	0.939
ID_254	minisat	cadical	5.84	26.616	0.219
ID_255	cadical	glucose	24.704	18.283	1.351

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_256	cadical	lingeling	24.704	11.332	2.18
ID_257	cadical	minisat	24.704	6.221	3.971
ID_258	cadical	cadical	24.704	26.616	0.928
ID_259	glucose	glucose	25.304	27.224	0.929
ID_260	glucose	lingeling	25.304	15.644	1.617
ID_261	glucose	minisat	25.304	20.26	1.249
ID_262	glucose	cadical	25.304	43.292	0.584
ID_263	lingeling	glucose	15.292	27.224	0.562
ID_264	lingeling	lingeling	15.292	15.644	0.977
ID_265	lingeling	minisat	15.292	20.26	0.755
ID_266	lingeling	cadical	15.292	43.292	0.353
ID_267	minisat	glucose	19.128	27.224	0.703
ID_268	minisat	lingeling	19.128	15.644	1.223
ID_269	minisat	minisat	19.128	20.26	0.944
ID_270	minisat	cadical	19.128	43.292	0.442
ID_271	cadical	glucose	37.44	27.224	1.375
ID_272	cadical	lingeling	37.44	15.644	2.393
ID_273	cadical	minisat	37.44	20.26	1.848
ID_274	cadical	cadical	37.44	43.292	0.865
ID_275	glucose	glucose	52.32	63.264	0.827
ID_276	glucose	lingeling	52.32	194.564	0.269
ID_277	glucose	minisat	52.32	58.04	0.901
ID_278	glucose	cadical	52.32	208.26	0.251
ID_279	lingeling	glucose	156.144	63.264	2.468
ID_280	lingeling	lingeling	156.144	194.564	0.803
ID_281	lingeling	minisat	156.144	58.04	2.69
ID_282	lingeling	cadical	156.144	208.26	0.75
ID_283	minisat	glucose	46.096	63.264	0.729
ID_284	minisat	lingeling	46.096	194.564	0.237
ID_285	minisat	minisat	46.096	58.04	0.794
ID_286	minisat	cadical	46.096	208.26	0.221

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_287	cadical	glucose	190.008	63.264	3.003
ID_288	cadical	lingeling	190.008	194.564	0.977
ID_289	cadical	minisat	190.008	58.04	3.274
ID_290	cadical	cadical	190.008	208.26	0.912
ID_291	glucose	glucose	17.852	22.044	0.81
ID_292	glucose	lingeling	17.852	61.436	0.291
ID_293	glucose	minisat	17.852	14.188	1.258
ID_294	glucose	cadical	17.852	33.076	0.54
ID_295	lingeling	glucose	54.095	22.044	2.454
ID_296	lingeling	lingeling	54.095	61.436	0.881
ID_297	lingeling	minisat	54.095	14.188	3.813
ID_298	lingeling	cadical	54.095	33.076	1.635
ID_299	minisat	glucose	12.512	22.044	0.568
ID_300	minisat	lingeling	12.512	61.436	0.204
ID_301	minisat	minisat	12.512	14.188	0.882
ID_302	minisat	cadical	12.512	33.076	0.378
ID_303	cadical	glucose	39.368	22.044	1.786
ID_304	cadical	lingeling	39.368	61.436	0.641
ID_305	cadical	minisat	39.368	14.188	2.775
ID_306	cadical	cadical	39.368	33.076	1.19
ID_307	glucose	glucose	65.472	70.748	0.925
ID_308	glucose	lingeling	65.472	143.6	0.456
ID_309	glucose	minisat	65.472	41.972	1.56
ID_310	glucose	cadical	65.472	38.456	1.703
ID_311	lingeling	glucose	135.28	70.748	1.912
ID_312	lingeling	lingeling	135.28	143.6	0.942
ID_313	lingeling	minisat	135.28	41.972	3.223
ID_314	lingeling	cadical	135.28	38.456	3.518
ID_315	minisat	glucose	41.49	70.748	0.586
ID_316	minisat	lingeling	41.49	143.6	0.289
ID_317	minisat	minisat	41.49	41.972	0.989

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_318	minisat	cadical	41.49	38.456	1.079
ID_319	cadical	glucose	37.192	70.748	0.526
ID_320	cadical	lingeling	37.192	143.6	0.259
ID_321	cadical	minisat	37.192	41.972	0.886
ID_322	cadical	cadical	37.192	38.456	0.967
ID_323	glucose	glucose	128.5	101.652	1.264
ID_324	glucose	lingeling	128.5	293.704	0.438
ID_325	glucose	minisat	128.5	220.252	0.583
ID_326	glucose	cadical	128.5	168.316	0.763
ID_327	lingeling	glucose	204.228	101.652	2.009
ID_328	lingeling	lingeling	204.228	293.704	0.695
ID_329	lingeling	minisat	204.228	220.252	0.927
ID_330	lingeling	cadical	204.228	168.316	1.213
ID_331	minisat	glucose	417.468	101.652	4.107
ID_332	minisat	lingeling	417.468	293.704	1.421
ID_333	minisat	minisat	417.468	220.252	1.895
ID_334	minisat	cadical	417.468	168.316	2.48
ID_335	cadical	glucose	186.476	101.652	1.834
ID_336	cadical	lingeling	186.476	293.704	0.635
ID_337	cadical	minisat	186.476	220.252	0.847
ID_338	cadical	cadical	186.476	168.316	1.108
ID_339	glucose	glucose	128.5	99.893	1.286
ID_340	glucose	lingeling	128.5	273.704	0.469
ID_341	glucose	minisat	128.5	212.432	0.605
ID_342	glucose	cadical	128.5	152.3	0.844
ID_343	lingeling	glucose	204.228	99.893	2.044
ID_344	lingeling	lingeling	204.228	273.704	0.746
ID_345	lingeling	minisat	204.228	212.432	0.961
ID_346	lingeling	cadical	204.228	152.3	1.341
ID_347	minisat	glucose	417.468	99.893	4.179
ID_348	minisat	lingeling	417.468	273.704	1.525

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_349	minisat	minisat	417.468	212.432	1.965
ID_350	minisat	cadical	417.468	152.3	2.741
ID_351	cadical	glucose	186.476	99.893	1.867
ID_352	cadical	lingeling	186.476	273.704	0.681
ID_353	cadical	minisat	186.476	212.432	0.878
ID_354	cadical	cadical	186.476	152.3	1.224
ID_355	glucose	glucose	67.216	71.46	0.941
ID_356	glucose	lingeling	67.216	496.488	0.135
ID_357	glucose	minisat	67.216	205.708	0.327
ID_358	glucose	cadical	67.216	108.632	0.619
ID_359	lingeling	glucose	495.056	71.46	6.928
ID_360	lingeling	lingeling	495.056	496.488	0.997
ID_361	lingeling	minisat	495.056	205.708	2.407
ID_362	lingeling	cadical	495.056	108.632	4.557
ID_363	minisat	glucose	126.516	71.46	1.77
ID_364	minisat	lingeling	126.516	496.488	0.255
ID_365	minisat	minisat	126.516	205.708	0.615
ID_366	minisat	cadical	126.516	108.632	1.165
ID_367	cadical	glucose	97.256	71.46	1.361
ID_368	cadical	lingeling	97.256	496.488	0.196
ID_369	cadical	minisat	97.256	205.708	0.473
ID_370	cadical	cadical	97.256	108.632	0.895
ID_371	glucose	glucose	67.216	61.018	1.102
ID_372	glucose	lingeling	67.216	281.602	0.239
ID_373	glucose	minisat	67.216	180.177	0.373
ID_374	glucose	cadical	67.216	140.766	0.478
ID_375	lingeling	glucose	495.056	61.018	8.113
ID_376	lingeling	lingeling	495.056	281.602	1.758
ID_377	lingeling	minisat	495.056	180.177	2.748
ID_378	lingeling	cadical	495.056	140.766	3.517
ID_379	minisat	glucose	126.516	61.018	2.073

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_380	minisat	lingeling	126.516	281.602	0.449
ID_381	minisat	minisat	126.516	180.177	0.702
ID_382	minisat	cadical	126.516	140.766	0.899
ID_383	cadical	glucose	97.256	61.018	1.594
ID_384	cadical	lingeling	97.256	281.602	0.345
ID_385	cadical	minisat	97.256	180.177	0.54
ID_386	cadical	cadical	97.256	140.766	0.691
ID_387	glucose	glucose	169.872	158.22	1.074
ID_388	glucose	lingeling	169.872	148.69	1.142
ID_389	glucose	minisat	169.872	105.44	1.611
ID_390	glucose	cadical	169.872	116.32	1.46
ID_391	lingeling	glucose	166.868	158.22	1.055
ID_392	lingeling	lingeling	166.868	148.69	1.122
ID_393	lingeling	minisat	166.868	105.44	1.583
ID_394	lingeling	cadical	166.868	116.32	1.435
ID_395	minisat	glucose	105.44	158.22	0.666
ID_396	minisat	lingeling	105.44	148.69	0.709
ID_397	minisat	minisat	105.44	105.44	1
ID_398	minisat	cadical	105.44	116.32	0.906
ID_399	cadical	glucose	116.32	158.22	0.735
ID_400	cadical	lingeling	116.32	148.69	0.782
ID_401	cadical	minisat	116.32	105.44	1.103
ID_402	cadical	cadical	116.32	116.32	1
ID_403	glucose	glucose	169.872	182.117	0.933
ID_404	glucose	lingeling	169.872	164.636	1.032
ID_405	glucose	minisat	169.872	136.292	1.246
ID_406	glucose	cadical	169.872	129.0	1.317
ID_407	lingeling	glucose	166.868	182.117	0.916
ID_408	lingeling	lingeling	166.868	164.636	1.014
ID_409	lingeling	minisat	166.868	136.292	1.224
ID_410	lingeling	cadical	166.868	129.0	1.294

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_411	minisat	glucose	145.952	182.117	0.801
ID_412	minisat	lingeling	145.952	164.636	0.887
ID_413	minisat	minisat	145.952	136.292	1.071
ID_414	minisat	cadical	145.952	129.0	1.131
ID_415	cadical	glucose	143.968	182.117	0.791
ID_416	cadical	lingeling	143.968	164.636	0.874
ID_417	cadical	minisat	143.968	136.292	1.056
ID_418	cadical	cadical	143.968	129.0	1.116
ID_419	glucose	glucose	184.212	136.488	1.35
ID_420	glucose	lingeling	184.212	168.668	1.092
ID_421	glucose	minisat	184.212	98.296	1.874
ID_422	glucose	cadical	184.212	98.212	1.876
ID_423	lingeling	glucose	161.692	136.488	1.185
ID_424	lingeling	lingeling	161.692	168.668	0.959
ID_425	lingeling	minisat	161.692	98.296	1.645
ID_426	lingeling	cadical	161.692	98.212	1.646
ID_427	minisat	glucose	134.944	136.488	0.989
ID_428	minisat	lingeling	134.944	168.668	0.8
ID_429	minisat	minisat	134.944	98.296	1.373
ID_430	minisat	cadical	134.944	98.212	1.374
ID_431	cadical	glucose	123.256	136.488	0.903
ID_432	cadical	lingeling	123.256	168.668	0.731
ID_433	cadical	minisat	123.256	98.296	1.254
ID_434	cadical	cadical	123.256	98.212	1.255
ID_435	glucose	glucose	184.212	150.299	1.226
ID_436	glucose	lingeling	184.212	204.405	0.901
ID_437	glucose	minisat	184.212	115.917	1.589
ID_438	glucose	cadical	184.212	123.584	1.491
ID_439	lingeling	glucose	161.692	150.299	1.076
ID_440	lingeling	lingeling	161.692	204.405	0.791
ID_441	lingeling	minisat	161.692	115.917	1.395

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_442	lingeling	cadical	161.692	123.584	1.308
ID_443	minisat	glucose	134.944	150.299	0.898
ID_444	minisat	lingeling	134.944	204.405	0.66
ID_445	minisat	minisat	134.944	115.917	1.164
ID_446	minisat	cadical	134.944	123.584	1.092
ID_447	cadical	glucose	123.256	150.299	0.82
ID_448	cadical	lingeling	123.256	204.405	0.603
ID_449	cadical	minisat	123.256	115.917	1.063
ID_450	cadical	cadical	123.256	123.584	0.997
ID_451	glucose	glucose	38.615	40.253	0.959
ID_452	glucose	lingeling	38.615	99.032	0.39
ID_453	glucose	minisat	38.615	21.384	1.806
ID_454	glucose	cadical	38.615	36.26	1.065
ID_455	lingeling	glucose	117.98	40.253	2.931
ID_456	lingeling	lingeling	117.98	99.032	1.191
ID_457	lingeling	minisat	117.98	21.384	5.517
ID_458	lingeling	cadical	117.98	36.26	3.254
ID_459	minisat	glucose	24.844	40.253	0.617
ID_460	minisat	lingeling	24.844	99.032	0.251
ID_461	minisat	minisat	24.844	21.384	1.162
ID_462	minisat	cadical	24.844	36.26	0.685
ID_463	cadical	glucose	39.96	40.253	0.993
ID_464	cadical	lingeling	39.96	99.032	0.404
ID_465	cadical	minisat	39.96	21.384	1.869
ID_466	cadical	cadical	39.96	36.26	1.102
ID_467	glucose	glucose	126.252	45.216	2.792
ID_468	glucose	lingeling	126.252	125.655	1.005
ID_469	glucose	minisat	126.252	25.016	5.047
ID_470	glucose	cadical	126.252	40.656	3.105
ID_471	lingeling	glucose	165.55	45.216	3.661
ID_472	lingeling	lingeling	165.55	125.655	1.317

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_473	lingeling	minisat	165.55	25.016	6.618
ID_474	lingeling	cadical	165.55	40.656	4.072
ID_475	minisat	glucose	900.0	45.216	19.904
ID_476	minisat	lingeling	900.0	125.655	7.162
ID_477	minisat	minisat	900.0	25.016	35.977
ID_478	minisat	cadical	900.0	40.656	22.137
ID_479	cadical	glucose	53.216	45.216	1.177
ID_480	cadical	lingeling	53.216	125.655	0.424
ID_481	cadical	minisat	53.216	25.016	2.127
ID_482	cadical	cadical	53.216	40.656	1.309
ID_483	glucose	glucose	121.508	199.276	0.61
ID_484	glucose	lingeling	121.508	900.0	TIMEOUT
ID_485	glucose	minisat	121.508	900.0	TIMEOUT
ID_486	glucose	cadical	121.508	74.1	1.64
ID_487	lingeling	glucose	900.0	199.276	4.516
ID_488	lingeling	lingeling	900.0	900.0	TIMEOUT
ID_489	lingeling	minisat	900.0	900.0	TIMEOUT
ID_490	lingeling	cadical	900.0	74.1	12.146
ID_491	minisat	glucose	900.0	199.276	4.516
ID_492	minisat	lingeling	900.0	900.0	TIMEOUT
ID_493	minisat	minisat	900.0	900.0	TIMEOUT
ID_494	minisat	cadical	900.0	74.1	12.146
ID_495	cadical	glucose	60.065	199.276	0.301
ID_496	cadical	lingeling	60.065	900.0	TIMEOUT
ID_497	cadical	minisat	60.065	900.0	TIMEOUT
ID_498	cadical	cadical	60.065	74.1	0.811
ID_499	glucose	glucose	121.508	250.312	0.485
ID_500	glucose	lingeling	121.508	900.0	TIMEOUT
ID_501	glucose	minisat	121.508	900.0	TIMEOUT
ID_502	glucose	cadical	121.508	81.996	1.482
ID_503	lingeling	glucose	900.0	250.312	3.596

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_504	lingeling	lingeling	900.0	900.0	TIMEOUT
ID_505	lingeling	minisat	900.0	900.0	TIMEOUT
ID_506	lingeling	cadical	900.0	81.996	10.976
ID_507	minisat	glucose	900.0	250.312	3.596
ID_508	minisat	lingeling	900.0	900.0	TIMEOUT
ID_509	minisat	minisat	900.0	900.0	TIMEOUT
ID_510	minisat	cadical	900.0	81.996	10.976
ID_511	cadical	glucose	60.065	250.312	0.24
ID_512	cadical	lingeling	60.065	900.0	TIMEOUT
ID_513	cadical	minisat	60.065	900.0	TIMEOUT
ID_514	cadical	cadical	60.065	81.996	0.733
ID_515	glucose	glucose	15.365	21.517	0.714
ID_516	glucose	lingeling	15.365	26.8	0.573
ID_517	glucose	minisat	15.365	45.216	0.34
ID_518	glucose	cadical	15.365	30.016	0.512
ID_519	lingeling	glucose	24.838	21.517	1.154
ID_520	lingeling	lingeling	24.838	26.8	0.927
ID_521	lingeling	minisat	24.838	45.216	0.549
ID_522	lingeling	cadical	24.838	30.016	0.827
ID_523	minisat	glucose	23.848	21.517	1.108
ID_524	minisat	lingeling	23.848	26.8	0.89
ID_525	minisat	minisat	23.848	45.216	0.527
ID_526	minisat	cadical	23.848	30.016	0.795
ID_527	cadical	glucose	32.635	21.517	1.517
ID_528	cadical	lingeling	32.635	26.8	1.218
ID_529	cadical	minisat	32.635	45.216	0.722
ID_530	cadical	cadical	32.635	30.016	1.087
ID_531	color6	glucose	0.001	0.005	0.2
ID_532	color6	lingeling	0.001	0.003	0.333
ID_533	color6	minisat	0.001	0.003	0.333
ID_534	color6	cadical	0.001	0.003	0.333

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_535	color6	glucose	0.001	0.005	0.2
ID_536	color6	lingeling	0.001	0.003	0.333
ID_537	color6	minisat	0.001	0.007	0.143
ID_538	color6	cadical	0.001	0.002	0.5
ID_539	color6	glucose	0.002	0.012	0.167
ID_540	color6	lingeling	0.002	0.002	1
ID_541	color6	minisat	0.002	0.007	0.286
ID_542	color6	cadical	0.002	0.003	0.667
ID_543	color6	glucose	0.015	0.055	0.273
ID_544	color6	lingeling	0.015	0.008	1.875
ID_545	color6	minisat	0.015	0.04	0.375
ID_546	color6	cadical	0.015	0.006	2.5
ID_547	color6	glucose	0.06	0.162	0.37
ID_548	color6	lingeling	0.06	0.012	5
ID_549	color6	minisat	0.06	0.119	0.504
ID_550	color6	cadical	0.06	0.012	5
ID_551	color6	glucose	0.117	0.354	0.331
ID_552	color6	lingeling	0.117	0.02	5.85
ID_553	color6	minisat	0.117	0.26	0.45
ID_554	color6	cadical	0.117	0.018	6.5
ID_555	color6	glucose	0.282	0.701	0.402
ID_556	color6	lingeling	0.282	0.032	8.812
ID_557	color6	minisat	0.282	0.492	0.573
ID_558	color6	cadical	0.282	0.029	9.724
ID_559	color6	glucose	0.621	1.256	0.494
ID_560	color6	lingeling	0.621	0.045	13.8
ID_561	color6	minisat	0.621	0.836	0.743
ID_562	color6	cadical	0.621	0.045	13.8
ID_563	color6	glucose	0.621	2.035	0.305
ID_564	color6	lingeling	0.621	0.057	10.895
ID_565	color6	minisat	0.621	1.378	0.451

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_566	color6	cadical	0.621	0.04	15.525
ID_567	color6	glucose	2.028	2.991	0.678
ID_568	color6	lingeling	2.028	0.076	26.684
ID_569	color6	minisat	2.028	2.052	0.988
ID_570	color6	cadical	2.028	0.052	39
ID_571	color6	glucose	3.281	4.265	0.769
ID_572	color6	lingeling	3.281	0.093	35.28
ID_573	color6	minisat	3.281	2.952	1.111
ID_574	color6	cadical	3.281	0.092	35.663
ID_575	color6	glucose	5.024	5.784	0.869
ID_576	color6	lingeling	5.024	0.117	42.94
ID_577	color6	minisat	5.024	4.11	1.222
ID_578	color6	cadical	5.024	0.123	40.846
ID_579	color6	glucose	5.024	5.784	0.869
ID_580	color6	lingeling	5.024	0.117	42.94
ID_581	color6	minisat	5.024	4.11	1.222
ID_582	color6	cadical	5.024	0.123	40.846
ID_583	color6	glucose	52.836	47.888	1.103
ID_584	color6	lingeling	52.836	0.468	112.897
ID_585	color6	minisat	52.836	33.124	1.595
ID_586	color6	cadical	52.836	0.4	132.09
ID_587	color6	glucose	0.046	0.062	0.742
ID_588	color6	lingeling	0.046	0.024	1.917
ID_589	color6	minisat	0.046	0.05	0.92
ID_590	color6	cadical	0.046	0.036	1.278
ID_591	color6	glucose	0.031	0.77	0.04
ID_592	color6	lingeling	0.031	0.1	0.31
ID_593	color6	minisat	0.031	0.064	0.484
ID_594	color6	cadical	0.031	0.11	0.282
ID_595	color6	glucose	0.05	0.131	0.382
ID_596	color6	lingeling	0.05	0.014	3.571

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_597	color6	minisat	0.05	0.109	0.459
ID_598	color6	cadical	0.05	0.015	3.333
ID_599	color6	glucose	0.08	0.212	0.377
ID_600	color6	lingeling	0.08	0.021	3.81
ID_601	color6	minisat	0.08	0.159	0.503
ID_602	color6	cadical	0.08	0.022	3.636
ID_603	color6	glucose	0.126	0.288	0.438
ID_604	color6	lingeling	0.126	0.024	5.25
ID_605	color6	minisat	0.126	0.211	0.597
ID_606	color6	cadical	0.126	0.026	4.846
ID_607	color6	glucose	0.168	0.388	0.433
ID_608	color6	lingeling	0.168	0.029	5.793
ID_609	color6	minisat	0.168	0.269	0.625
ID_610	color6	cadical	0.168	0.031	5.419
ID_611	color6	glucose	0.222	0.459	0.484
ID_612	color6	lingeling	0.222	0.032	6.938
ID_613	color6	minisat	0.222	0.331	0.671
ID_614	color6	cadical	0.222	0.033	6.727
ID_615	color6	glucose	0.256	0.589	0.435
ID_616	color6	lingeling	0.256	0.038	6.737
ID_617	color6	minisat	0.256	0.405	0.632
ID_618	color6	cadical	0.256	0.039	6.564
ID_619	color6	glucose	0.31	0.692	0.448
ID_620	color6	lingeling	0.31	0.043	7.209
ID_621	color6	minisat	0.31	0.456	0.68
ID_622	color6	cadical	0.31	0.045	6.889
ID_623	color6	glucose	0.043	0.062	0.694
ID_624	color6	lingeling	0.043	0.011	3.909
ID_625	color6	minisat	0.043	0.054	0.796
ID_626	color6	cadical	0.043	0.011	3.909
ID_627	color6	glucose	0.043	0.062	0.694

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_628	color6	lingeling	0.043	0.011	3.909
ID_629	color6	minisat	0.043	0.054	0.796
ID_630	color6	cadical	0.043	0.011	3.909
ID_631	color6	glucose	0.083	0.155	0.535
ID_632	color6	lingeling	0.083	0.018	4.611
ID_633	color6	minisat	0.083	0.127	0.654
ID_634	color6	cadical	0.083	0.019	4.368
ID_635	color6	glucose	0.244	0.486	0.502
ID_636	color6	lingeling	0.244	0.037	6.595
ID_637	color6	minisat	0.244	0.353	0.691
ID_638	color6	cadical	0.244	0.036	6.778
ID_639	color6	glucose	0.547	1.153	0.474
ID_640	color6	lingeling	0.547	0.054	10.13
ID_641	color6	minisat	0.547	0.725	0.754
ID_642	color6	cadical	0.547	0.055	9.945
ID_643	color6	glucose	0.547	1.153	0.474
ID_644	color6	lingeling	0.547	0.054	10.13
ID_645	color6	minisat	0.547	0.425	1.287
ID_646	color6	cadical	0.547	0.055	9.945
ID_647	color6	glucose	0.652	1.393	0.468
ID_648	color6	lingeling	0.652	0.061	10.689
ID_649	color6	minisat	0.652	0.927	0.703
ID_650	color6	cadical	0.652	0.062	10.516
ID_651	color6	glucose	0.809	1.628	0.497
ID_652	color6	lingeling	0.809	0.067	12.075
ID_653	color6	minisat	0.809	1.132	0.715
ID_654	color6	cadical	0.809	0.069	11.725
ID_655	color6	glucose	0.989	1.946	0.508
ID_656	color6	lingeling	0.989	0.073	13.548
ID_657	color6	minisat	0.989	1.31	0.755
ID_658	color6	cadical	0.989	0.076	13.013

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_659	color6	glucose	0.068	0.114	0.596
ID_660	color6	lingeling	0.068	0.015	4.533
ID_661	color6	minisat	0.068	0.088	0.773
ID_662	color6	cadical	0.068	0.017	4
ID_663	color6	glucose	0.168	0.314	0.535
ID_664	color6	lingeling	0.168	0.03	5.6
ID_665	color6	minisat	0.168	0.23	0.73
ID_666	color6	cadical	0.168	0.03	5.6
ID_667	color6	glucose	0.354	0.657	0.539
ID_668	color6	lingeling	0.354	0.042	8.429
ID_669	color6	minisat	0.354	0.492	0.72
ID_670	color6	cadical	0.354	0.045	7.867
ID_671	color6	glucose	0.603	1.171	0.515
ID_672	color6	lingeling	0.603	0.055	10.964
ID_673	color6	minisat	0.603	0.755	0.799
ID_674	color6	cadical	0.603	0.056	10.768
ID_675	color6	glucose	0.951	1.851	0.514
ID_676	color6	lingeling	0.951	0.07	13.586
ID_677	color6	minisat	0.951	1.204	0.79
ID_678	color6	cadical	0.951	0.07	13.586
ID_679	color6	glucose	1.256	2.384	0.527
ID_680	color6	lingeling	1.256	0.082	15.317
ID_681	color6	minisat	1.256	1.606	0.782
ID_682	color6	cadical	1.256	0.084	14.952
ID_683	color6	glucose	1.627	2.951	0.551
ID_684	color6	lingeling	1.627	0.092	17.685
ID_685	color6	minisat	1.627	2.032	0.801
ID_686	color6	cadical	1.627	0.103	15.796
ID_687	color6	glucose	2.066	3.536	0.584
ID_688	color6	lingeling	2.066	0.102	20.255
ID_689	color6	minisat	2.066	2.658	0.777

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_690	color6	cadical	2.066	0.103	20.058
ID_691	color6	glucose	2.488	4.255	0.585
ID_692	color6	lingeling	2.488	0.113	22.018
ID_693	color6	minisat	2.488	2.842	0.875
ID_694	color6	cadical	2.488	0.121	20.562
ID_695	color6	glucose	0.02	15.186	0.001
ID_696	color6	lingeling	0.02	49.185	4.066
ID_697	color6	minisat	0.02	11.516	0.002
ID_698	color6	cadical	0.02	25.772	0.001
ID_699	color6	glucose	0.036	0.073	0.493
ID_700	color6	lingeling	0.036	0.013	2.769
ID_701	color6	minisat	0.036	0.061	0.59
ID_702	color6	cadical	0.036	0.015	2.4
ID_703	color6	glucose	0.123	0.191	0.644
ID_704	color6	lingeling	0.123	0.029	4.241
ID_705	color6	minisat	0.123	0.149	0.826
ID_706	color6	cadical	0.123	0.029	4.241
ID_707	color6	glucose	0.446	0.667	0.669
ID_708	color6	lingeling	0.446	0.049	9.102
ID_709	color6	minisat	0.446	0.433	1.03
ID_710	color6	cadical	0.446	0.05	8.92
ID_711	color6	glucose	1.021	1.504	0.679
ID_712	color6	lingeling	1.021	0.071	14.38
ID_713	color6	minisat	1.021	1.037	0.985
ID_714	color6	cadical	1.021	0.072	14.181
ID_715	color6	glucose	1.754	2.98	0.589
ID_716	color6	lingeling	1.754	0.111	15.802
ID_717	color6	minisat	1.754	2.291	0.766
ID_718	color6	cadical	1.754	0.134	13.09
ID_719	color6	glucose	2.662	4.863	0.547
ID_720	color6	lingeling	2.662	0.142	18.746

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_721	color6	minisat	2.662	3.273	0.813
ID_722	color6	cadical	2.662	0.12	22.183
ID_723	color6	glucose	3.631	4.897	0.741
ID_724	color6	lingeling	3.631	0.132	27.508
ID_725	color6	minisat	3.631	3.744	0.97
ID_726	color6	cadical	3.631	0.131	27.718
ID_727	color6	glucose	4.773	6.453	0.74
ID_728	color6	lingeling	4.773	0.148	32.25
ID_729	color6	minisat	4.773	4.713	1.013
ID_730	color6	cadical	4.773	0.148	32.25
ID_731	color6	glucose	5.996	8.409	0.713
ID_732	color6	lingeling	5.996	0.169	35.479
ID_733	color6	minisat	5.996	6.102	0.983
ID_734	color6	cadical	5.996	0.164	36.561
ID_735	color6	glucose	7.292	10.853	0.672
ID_736	color6	lingeling	7.292	0.187	38.995
ID_737	color6	minisat	7.292	7.48	0.975
ID_738	color6	cadical	7.292	0.19	38.379
ID_739	color6	glucose	0.016	0.05	0.32
ID_740	color6	lingeling	0.016	0.025	0.64
ID_741	color6	minisat	0.016	0.038	0.421
ID_742	color6	cadical	0.016	0.012	1.333
ID_743	color6	glucose	0.73	0.246	2.967
ID_744	color6	lingeling	0.73	0.034	21.471
ID_745	color6	minisat	0.73	0.182	4.011
ID_746	color6	cadical	0.73	0.034	21.471
ID_747	color6	glucose	1.094	0.838	1.305
ID_748	color6	lingeling	1.094	0.059	18.542
ID_749	color6	minisat	1.094	0.615	1.779
ID_750	color6	cadical	1.094	0.056	19.536
ID_751	color6	glucose	4.783	3.175	1.506

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_752	color6	lingeling	4.783	0.109	43.881
ID_753	color6	minisat	4.783	2.477	1.931
ID_754	color6	cadical	4.783	0.111	43.09
ID_755	color6	glucose	9.674	6.27	1.543
ID_756	color6	lingeling	9.674	0.165	58.63
ID_757	color6	minisat	9.674	5.236	1.848
ID_758	color6	cadical	9.674	0.168	57.583
ID_759	color6	glucose	17.136	10.078	1.7
ID_760	color6	lingeling	17.136	0.212	80.83
ID_761	color6	minisat	17.136	7.926	2.162
ID_762	color6	cadical	17.136	0.211	81.213
ID_763	color6	glucose	31.245	18.009	1.735
ID_764	color6	lingeling	31.245	0.296	105.557
ID_765	color6	minisat	31.245	13.676	2.285
ID_766	color6	cadical	31.245	0.29	107.741
ID_767	color6	glucose	51.968	22.819	2.277
ID_768	color6	lingeling	51.968	0.362	143.558
ID_769	color6	minisat	51.968	17.869	2.908
ID_770	color6	cadical	51.968	0.361	143.956
ID_771	color6	glucose	67.361	32.171	2.094
ID_772	color6	lingeling	67.361	0.75	89.815
ID_773	color6	minisat	67.361	20.879	3.226
ID_774	color6	cadical	67.361	0.547	123.146
ID_{775}	color6	glucose	96.17	42.148	2.282
ID_776	color6	lingeling	96.17	0.552	174.221
ID_777	color6	minisat	96.17	36.478	2.636
ID_778	color6	cadical	96.17	0.551	174.537
ID_779	color6	glucose	120.63	55.641	2.168
ID_780	color6	lingeling	120.63	0.633	190.569
ID_781	color6	minisat	120.63	42.904	2.812
ID_782	color6	cadical	120.63	0.981	122.966

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_783	color6	btd	0.001	0.07	0.014
ID_784	color6	btd	0.001	0.023	0.043
ID_785	color6	btd	0.002	0.062	0.032
ID_786	color6	btd	0.015	0.31	0.048
ID_787	color6	btd	0.06	1.569	0.038
ID_788	color6	btd	0.117	6.105	0.019
ID_789	color6	btd	0.282	16.926	0.017
ID_790	color6	btd	0.621	40.888	0.015
ID_791	color6	btd	0.621	72.65	0.009
ID_792	color6	btd	2.028	132.976	0.015
ID_793	color6	btd	3.281	226.952	0.014
ID_794	color6	btd	5.024	300.17	0.017
ID_795	color6	btd	52.836	900.0	TIMEOUT
ID_796	color6	btd	0.046	0.36	0.128
ID_797	color6	btd	0.031	0.859	0.036
ID_798	color6	btd	0.05	1.898	0.026
ID_799	color6	btd	0.08	3.671	0.022
ID_800	color6	btd	0.126	5.319	0.024
ID_801	color6	btd	0.168	7.867	0.021
ID_802	color6	btd	0.222	9.905	0.022
ID_803	color6	btd	0.256	13.345	0.019
ID_804	color6	btd	0.31	16.534	0.019
ID_805	color6	btd	0.043	0.738	0.058
ID_806	color6	btd	0.083	3.251	0.026
ID_807	color6	btd	0.146	7.638	0.019
ID_808	color6	btd	0.244	13.48	0.018
ID_809	color6	btd	0.382	21.108	0.018
ID_810	color6	btd	0.547	31.17	0.018
ID_811	color6	btd	0.652	38.315	0.017
ID_812	color6	btd	0.809	47.901	0.017
ID_813	color6	btd	0.989	57.648	0.017

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_814	color6	btd	0.068	1.97	0.035
ID_815	color6	btd	0.168	8.873	0.019
ID_816	color6	btd	0.354	20.919	0.017
ID_817	color6	btd	0.603	35.912	0.017
ID_818	color6	btd	0.951	57.19	0.017
ID_819	color6	btd	1.256	75.745	0.017
ID_820	color6	btd	1.627	98.389	0.017
ID_821	color6	btd	2.066	123.92	0.017
ID_822	color6	btd	2.488	148.507	0.017
ID_823	color6	btd	0.02	744.53	2.686
ID_824	color6	btd	0.036	1.402	0.026
ID_825	color6	btd	0.123	7.315	0.017
ID_826	color6	btd	0.446	28.389	0.016
ID_827	color6	btd	1.021	69.134	0.015
ID_828	color6	btd	1.754	108.38	0.016
ID_829	color6	btd	2.662	181.16	0.015
ID_830	color6	btd	3.631	226.664	0.016
ID_831	color6	btd	4.773	291.306	0.016
ID_832	color6	btd	5.996	367.243	0.016
ID_833	color6	btd	7.292	438.077	0.017
ID_834	color6	btd	0.016	0.998	0.016
ID_835	color6	btd	0.73	10.313	0.071
ID_836	color6	btd	1.094	53.506	0.02
ID_837	color6	btd	4.783	204.804	0.023
ID_838	color6	btd	9.674	433.81	0.022
ID_839	color6	btd	17.136	734.672	0.023
ID_840	color6	btd	31.245	900.0	TIMEOUT
ID_841	color6	btd	51.968	900.0	TIMEOUT
ID_842	color6	btd	67.361	900.0	TIMEOUT
ID_843	color6	btd	96.17	900.0	TIMEOUT
ID_844	color6	btd	120.63	900.0	TIMEOUT

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_845	btd	glucose	73.2	900.0	TIMEOUT
ID_846	btd	lingeling	73.2	900.0	TIMEOUT
ID_847	btd	minisat	73.2	900.0	TIMEOUT
ID_848	btd	cadical	73.2	900.0	TIMEOUT
ID_849	btd	glucose	61.254	900.0	TIMEOUT
ID_850	btd	lingeling	61.254	900.0	TIMEOUT
ID_851	btd	minisat	61.254	900.0	TIMEOUT
ID_852	btd	cadical	61.254	900.0	TIMEOUT
ID_853	btd	glucose	68.5295	900.0	TIMEOUT
ID_854	btd	lingeling	68.5295	900.0	TIMEOUT
ID_855	btd	minisat	68.5295	900.0	TIMEOUT
ID_856	btd	cadical	68.5295	900.0	TIMEOUT
ID_857	btd	glucose	71.7252	900.0	TIMEOUT
ID_858	btd	lingeling	71.7252	900.0	TIMEOUT
ID_859	btd	minisat	71.7252	900.0	TIMEOUT
ID_860	btd	cadical	71.7252	900.0	TIMEOUT
ID_861	btd	glucose	77.3368	900.0	TIMEOUT
ID_862	btd	lingeling	77.3368	900.0	TIMEOUT
ID_863	btd	minisat	77.3368	900.0	TIMEOUT
ID_864	btd	cadical	77.3368	900.0	TIMEOUT
ID_865	btd	glucose	10.9388	14.43	0.758
ID_866	btd	lingeling	10.9388	51.64	0.212
ID_867	btd	minisat	10.9388	9.292	1.177
ID_868	btd	cadical	10.9388	13.036	0.839
ID_869	btd	glucose	11.5232	14.132	0.815
ID_870	btd	lingeling	11.5232	45.104	0.255
ID_871	btd	minisat	11.5232	9.488	1.215
ID_872	btd	cadical	11.5232	13.12	0.878
ID_873	btd	cadical	11.5232	13.12	0.878
ID_874	btd	glucose	13.0765	14.334	0.912
ID_875	btd	lingeling	13.0765	58.908	0.222

Numéro test	Solver Init	Solver Fin	Initial Time	Final Time	Ratio
ID_876	btd	minisat	13.0765	11.244	1.163
ID_877	btd	cadical	13.0765	12.412	1.054
ID_878	btd	glucose	11.915	14.773	0.807
ID_879	btd	lingeling	11.915	66.912	0.178
ID_880	btd	minisat	11.915	9.06	1.315
ID_881	btd	cadical	11.915	16.512	0.722
ID_882	btd	glucose	0.424	0.13	3.262
ID_883	btd	lingeling	0.424	0.44	0.964
ID_884	btd	minisat	0.424	0.086	4.93
ID_885	btd	cadical	0.424	0.207	2.048
ID_886	btd	glucose	0.432	0.091	4.747
ID_887	btd	lingeling	0.432	0.489	0.883
ID_888	btd	minisat	0.432	0.086	5.023
ID_889	btd	cadical	0.432	0.172	2.512

Table 5 – Identification des tests par rapport à leurs solveurs et temps d'exécution