5. Truth Trees

- A **truth tree** is an alternative structure for examining all the ways that a compound proposition, say *X*, can be true.
- **Unlike a truth table**, the size of a **truth tree** does not grow exponentially as a function of the number of propositional variables in *X*; instead, the size of a truth tree varies depending on the number of logical connectives in *X*, and the order in which we **grow the tree**.
- We place *X* at the **root** of a truth tree: the **root** is at the top of the tree and the rest of the tree **"grows"** down from there using **branching rules**.

BRANCHING RULES FOR TRUTH TREES (A.K.A. SEMANTIC TABLEAUX)

Splitting Rule Non-Splitting Rule

avb a b م ا م b

Splitting Rule (De Morgaris Laws) Non-Splitting Rule

7(avb) 1 7a 7b

Splitting Rule Non-Splitting Rule

(Implication Law)

One More Non-Splitting Rule

(Double Negation Law)

Three More Splitting Rules

7(a⇔b) a 7a 7b b

(Biconditional Law a ← b = (a1b) V (7a17b))

HOW TO GROW A TRUTH TREE

▶ Truth trees grow from the root (at the top), by branching rules, down to the leaves (at the bottom).

- ▶ Each proposition in a truth tree is called unchecked until
 - o it is a literal (just an atom or just the negation of an atom), or
 - its branching rule has been applied to all paths stemming down from the proposition's location in the tree.
- > Starting from the top, one unchecked proposition at a time, apply the branching rule of each unchecked proposition to all paths that stem down from the unchecked proposition.
- ▷ Once the branching rule has been applied, the proposition becomes checked√

▶ **Fact.** From each **leaf** (at the bottom of the tree so far), there is a unique path going back up to the root.

- ▶ A path from a leaf back to the root is called **inactive** or **closed** if it contains an atom as well as that atom's negation; otherwise the path is called **active** or **open**.
- ▶ A path from a leaf back to the root is called **complete** if there are no unchecked propositions on that path.
- **Each complete open path tells us one way that will make the root true.**
- ▶ The tree is complete (i.e. done growing) when each path from leaf to root is closed or complete.

Example 5.1. Grow a complete truth tree for the compound proposition $P: (a \to \neg b) \to (b \land c)$.

Here is Example 5.1 again, showing one step at a time:

FINDING A DNF FOR THE ROOT OF A TRUTH TREE

To summarize:

- To find a DNF for a compound proposition *X*, we grow a complete truth tree with *X* at its root.
- Each complete open path gives one **conjunctive clause** consisting of the conjunction of the literals found on that path going from the leaf back up to the root.
- \circ The disjunction of all such conjunctive clauses gives a DNF for P.

DETERMINING WHETHER THE ROOT OF A TRUTH TREE IS A CONTRADICTION

Question to Ponder.

Suppose we grow a complete truth tree with X at its root. What does it mean if **all paths are closed/inactive** ("dead")?

It means the root can never be true. i.e. the root is a contradiction.

Example 5.2. Use a truth tree to determine whether each of the following compound propositions is a contradiction. If it is not a contraction, give all counterexamples (that is, give all truth assignments that make the proposition true, thereby certifying that the proposition is not a contradiction).

Since all paths are "dead" the root is never True. So the root is a contradiction

Since there is an open path, the root can be True. So the root is not a contradiction.

Counterexample (to prove root is not a contradiction)

When P=F and Q=F, the root is True

DETERMINING WHETHER A SET OF COMPOUND PROPOSITIONS IS CONSISTENT

- A set $\{P_1, P_2, \dots, P_n\}$ of compound propositions is called **consistent** if there exists at least one truth assignment that makes all the propositions P_1, \dots, P_n true at the same time.
- If $\{P_1, P_2, \dots, P_n\}$ is not consistent, then, for each possible truth assignment, at least one of the propositions P_i is false; in this case, the set $\{P_1, P_2, \dots, P_n\}$ is called **inconsistent**. In this case, the conjunction $P_1 \wedge \dots \wedge P_n$ is a contradiction.

Equivalently, a set $\{P_1, P_2, \dots, P_n\}$ is...

- \triangleright **consistent** if the conjunction $P_1 \land \cdots \land P_n$ is *not* a contradiction.
- ightharpoonup inconsistent if the conjunction $P_1 \wedge \cdots \wedge P_n$ is a contradiction. This document is available free of charge on **Studocu**

- \spadesuit To test whether the set $\{P_1, P_2, \dots, P_k\}$ is consistent
 - o grow a tree with root

- \circ if all paths are dead, then $(P_1 \wedge P_2 \wedge \cdots \wedge P_k)$ is a contradiction, which means $(P_1 \wedge P_2 \wedge \cdots \wedge P_k)$ can never be true, which means $\{P_1, P_2, \dots, P_k\}$ is inconsistent.
- \circ if one path (or more) is alive (complete active path), then these paths give the truth assignments that prove that $(P_1 \wedge P_2 \wedge \cdots \wedge P_k)$ can be true, which translates to showing that $(P_1 \wedge P_2 \wedge \cdots \wedge P_k)$ is consistent.

Example 5.3. Use a truth tree to determine whether the following set of four compound

propositions is consistent:
$$\left\{\underbrace{x \land \neg y}_{P_1}, \underbrace{\neg((p \lor s) \to x)}_{P_2}, \underbrace{x \leftrightarrow \neg p}_{P_3}, \underbrace{\neg(s \lor y)}_{P_4}\right\}$$

The tree's only path so far is already dead, so the root (which corresponds to the conjunction $P_1\Lambda P_2\Lambda P_3\Lambda P_4$) is a contradiction

: the set {P1,P2,P3,P4} is inconsistent.

Exercise 5.4. Consider the same propositions P_1 , P_2 , P_3 , P_4 from Example 5.3. Determine whether the set $\{P_2, P_3, P_4\}$ is consistent, first, using a truth tree, then using a truth table.

Since there exists at least one complete active path the root can be true

: the set {P2,P3,P4} is consistent.

The open path tells us a truth assignment for which P2 NP3 NPy is true, namely, when P=T, y=F, S=F, X=F

Exercise Verify the above answer using a truth table.

STUDY GUIDE

Important terms and concepts:

- truth trees (semantic tableaux) branching rules open vs. closed paths
- using a truth tree to find a DNF for a given proposition
- using a truth tree to check whether a proposition is a contradiction
- using a truth tree to determine whether a set of propositions is consistent/inconsistent

Exercises Sup.Ex. §1 # 4b, 7b

Sup.Ex. §1 # 1 Is $\{P_1, P_2, P_3, P_4\}$ consistent? Is $\{P_1, P_2, P_3\}$ consistent? Is $\{P_2, P_3\}$ consistent?

Rosen §1.2 # 9–11 This document is available free of charge on