MATHEMATICS METHODS

MAWA Semester 2 (Units 3 and 4) Examination 2017 Calculator-free

Marking Key

© MAWA, 2017

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

the end of week 1 of term 4, 2017

Section One: Calculator-free (52 Marks)

Question 1(a)

Solution	
k + 2k + 0.5k + 0.5k + k = 1	
5k = 1	
$k = \frac{1}{}$	
5	
Marking key/mathematical behaviours	Marks
correctly solves for k.	1

Question 1(b)

440011011 1/0)	
Solution	
No, This is not a discrete probability distribution as $P(5)$ has a negative value and probabilities need to positive.	
Marking key/mathematical behaviours	Marks
recognises the properties of discrete probability distributions	1
 relates above property back to the question to justify answer 	1

Question 1(c)

Question 1(c)	
Solution	
$\mu = np = 90$	
$\therefore \sigma^2 = 6^2 = 36$	
$\sigma^2 = np(1-p)$	
36 = 90(1-p) Expand and solve for p	
$\therefore p = 0.6$	
$\frac{6}{10}n = 90$ Sub value of p and solve for n.	
Marking key/mathematical behaviours	Marks
determines variance	1
 solves for parameter, p 	1
 solves for parameter, n 	1

Solution	
A census involves every member of the population being tested/questioned/investigated	
Marking key/mathematical behaviours	Marks
indicates the need to include every member of the population	1

Question 2(b)

Solution There would be no stoves left to sell as all of them would have broken down.	
Marking key/mathematical behaviours	Marks
 indicates that there would be no items left for sale (no marks for cheaper or quicker) 	1

Question 2(c)

Solution Use the unique serial numbers to select a random sample or similar	
Marking key/mathematical behaviours	Marks
 indicates use of a suitable random selection method (based on serial numbers or other method) 	1

Question 2(d)

Solution Using the list of the serial numbers, select every 400 th stove	
Marking key/mathematical behaviours	Marks
indicates use of a suitable selection method	1

Question 3(a) (i)

Solution	
$(2 + \cos x) \times 1 - (-\sin x)x + 2 + \cos x + x \sin x$	
$f'(x) = \frac{(2 + \cos x)^{2} + (-\cos x)^{2}}{(2 + \cos x)^{2}} = \frac{2 + \cos x + x \sin x}{(2 + \cos x)^{2}}$	
Marking key/mathematical behaviours	Marks
correct use of the quotient rule	1
differentiates correctly	1

Question 3(a) (ii)

Solution	
$f'(x) = (3 + 2\cos 2x)e^{3x + \sin 2x}$	
Marking key/mathematical behaviours	Marks
correct use of the chain rule	1
differentiates correctly	1

Page 3 © MAWA 2017

Question 3(b)

Solution

Differentiating both sides: $f''(x)f(x) + f'(x)^2 = 0$

so
$$f''(x) = -\frac{f'(x)^2}{f(x)}$$

But
$$f'(x) = \frac{1}{f(x)}$$
 and so $f''(x) = -\frac{1}{f(x)^3}$ i.e. $f''(x)f(x)^3 = -1$

Marking key/mathematical behaviours	Marks
uses product rule correctly	1
• obtains correct expression for $f''(x)$	1
• replaces $f'(x)$ with $\frac{1}{f(x)}$	1

Question 4(a)(i)

Solution	
Approximately 200 samples are involved	
Marking key/mathematical behaviours	Marks
States the number of samples (allow 190 to 210)	1

Question 4(a)(ii)

Solution	
Find the mean of the sample proportions, (from the graph) ≈ 0.4	
May use sample proportion as an estimate of the population proportion	
Marking key/mathematical behaviours	
identifies sample proportion as 0.4 (by reference to the graph or calculation)	1
uses the sample proportion as an estimate for the population proportion	1

Question 4(b)

Solution	
 Survey is restricted to listeners of one particular station and therefore not representative of the population 	
Survey is using a self-selection model and this indicates bias	
Timing may exclude some groups of people	
Access to a telephone is presumed	
People could respond more than once	
Nature of the question means football fans may be more likely to respond	
Marking key/mathematical behaviours	Marks
Lists one possibility	1
Lists a second possibility	1

MATHEMATICS METHODS SEMESTER 2 (UNITS 3 AND 4) EXAMINATION Question 5

Solution
Note that:

$$y = 1 - 4x^2 \Rightarrow y' = -8x$$

$$\therefore \int \frac{10x}{1 - 4x^2} dx = -\frac{10}{8} \int \frac{-8x}{1 - 4x^2} dx$$

$$= -\frac{5}{4} \ln|1 - 4x^2| + c$$

Marking key/mathematical behaviours	
• Recognises $\frac{f'(x)}{f(x)}$	1
 Determines (or uses) derivative of denominator 	1
 Uses constants to achieve numerator of -8x 	1
Finds integral accurately	1

Question 6(a)

Solution	
Since $5^{-2} = \frac{1}{25}$ we have $\log_5 \left(\frac{x + 24y}{25} \right) = \ln_5 (x + y)$ (#)	
i.e. $\frac{x + 24y}{25} = x + y$ and hence $y = -24x$	
Marking key/mathematical behaviours	Marks
Obtains equation (#) or equivalent	1
Obtains correct answer	1

Question 6(b)(i)

Solution If $a > b$ then $\log_a b < 0$ i.e. negative	
Marking key/mathematical behaviours	Marks
obtains correct answer	1

Question 6(b)(ii)

9	lutior	_
, 7 ()	ILITIOI	- 1

If $a \neq b$ then $\log_a b$ and $\log_b a$ have opposite signs (#) and are unequal.

So a = b if $\log_a b = \log_b a$

Marking key/mathematical behaviours	Marks
• deduces that $\log_a b$ and $\log_b a$ have opposite signs if $a \neq b$	1
complete proof correctly	1

Question 7(a)

Solu	ıtion	
A	=	$-\int_1^4 \left(-\frac{8}{\sqrt{x}}\right) dx$
	=	$\int_1^4 \frac{8}{\sqrt{x}} \ dx$

Marking key/mathematical behaviours	Marks
sets up integral in either form	1

Question 7(b)

Question 7(c)

Solution
$$\int_{1}^{a} -\frac{8}{\sqrt{x}} dx = -25$$

$$\Rightarrow -16\sqrt{a} + 16 = -25$$

$$-16\sqrt{a} = -41$$

$$a = \frac{41^{2}}{16^{2}}$$

· correctly evaluates the integral

Marking key/mathematical behaviours	Marks
correctly states the equation to be solved	1
• solves for a	1

Question 8(a)

Marking key/mathematical behaviours	Marks
uses the correct integral	1
equates the pdf to one and solves for c	1
• Clearly states why $c = -2$ has been rejected	1

Question 8(b)

Solution $E(x) = \int_{-\infty}^{\infty} xw(x)dx$ $= \int_{12}^{32} x(\frac{1}{20})dx$ $= \left[\frac{1}{20} \times \frac{x^2}{2}\right]_{12}^{32}$ $= \frac{1}{40}(32^2 - 12^2)$ = 22 $\therefore E(x) = 22$

Marking key/mathematical behaviours	Marks
Substitutes into the correct formula	1
Integrates correctly and arrives at the required answer	1

Question 8(c)

Solution

- (i) From the graph, read the relative frequencies for the parking times (0,30] mins and (30, 60] mins → Pr (at most 60 minutes) = 0.38 + 0.42 = 0.8.
- (ii) relative frequency of vehicles parked between 1 and 1.5hrs = 0.14. $200 \times 0.14 = 28$ vehicles.
- (iii) Answers will vary.

One possible answer: The data shows that 80% of the vehicles are parked for at most 60 minutes. Businesses that would tailor to this time length could be a nearby café or a mini mall with a few necessities stores (ie. Grocery store, bakery, pharmacy, clothing shop).

(iv) Answers will vary.

One possible answer: On which day of the week was the data collected?

Marking key/mathematical behaviours	Marks
sums the two relative frequencies required	1
 multiplies the relative frequency by the total number of parked cars 	1
 links to a type of business requiring less than 1 hour of parking 	1
 links question to day of the week or other plausible variable. 	1

Question 9(a)

Solution

Since the graph has a vertical asymptote at x = -3, b = 3

Since the point (-2,2) lies on the graph, $2 = \log_a(-2+3) + c$, i.e. c = 2

Since the point (0,3) lies on the graph, $3 = \log_a + 2$, i.e. $\log_a(3) = 1$

and hence a = 3

Marking key/mathematical behaviours	Marks
 evaluates a b and c correctly 	1, 1, 1

Page **8** © MAWA 2017

Question 9(b)

Marking key/mathematical behaviours	Marks
asymptote at x = 4	1
• y intercept at (0,1)	1
• x intercept at (-4,0)	1
graph of standard logarithm function reflected in both axes	1