Algorytm Floyda-Warshalla

	2	∞	∞	1
2	0	1	4	8
∞	1	0	2	∞
∞	4	2	0	10
1	8	∞	10	0

Znajduje najkrótsze ścieżki między każdą parą wierzchołków

Algorytm Floyda-Warshalla

$$\begin{bmatrix} 0 & 2 & \infty & \infty & 1 \\ 2 & 0 & 1 & 4 & 8 \\ \infty & 1 & 0 & 2 & \infty \\ \infty & 4 & 2 & 0 & 10 \\ 1 & 8 & \infty & 10 & 0 \end{bmatrix}$$

$$W^{(0)} = \begin{bmatrix} 0 & 2 & \infty & \infty & 1 \\ 2 & 0 & 1 & 4 & 8 \\ \infty & 1 & 0 & 2 & \infty \\ \infty & 4 & 2 & 0 & 10 \\ 1 & 8 & \infty & 10 & 0 \end{bmatrix}$$

$$P^{(0)} = \begin{bmatrix} v_1 & v_1 & \text{Nil} & \text{Nil} & v_1 \\ v_2 & v_2 & v_2 & v_2 & v_2 \\ \text{Nil} & v_3 & v_3 & v_3 & \text{Nil} \\ \text{Nil} & v_4 & v_4 & v_4 & v_4 \\ v_5 & v_5 & \text{Nil} & v_5 & v_5 \end{bmatrix}$$

ścieżki przechodzące przez v_1

ścieżki przechodzące przez v_1 v_2

ścieżki przechodzące przez v_1 v_2 v_3

$$W^{(3)} = \begin{bmatrix} 0 & 2 & 3 & 5 & 1 \\ 2 & 0 & 1 & 3 & 3 \\ 3 & 1 & 0 & 2 & 4 \\ 5 & 3 & 2 & 0 & 6 \\ 1 & 3 & 4 & 6 & 0 \end{bmatrix}$$

$$P^{(3)} = \begin{vmatrix} v_1 & v_1 & v_2 & v_3 & v_1 \\ v_2 & v_2 & v_2 & v_3 & v_1 \\ v_2 & v_3 & v_3 & v_3 & v_1 \\ v_2 & v_3 & v_4 & v_4 & v_1 \\ v_5 & v_1 & v_2 & v_3 & v_5 \end{vmatrix}$$

$$W^{(4)} = \begin{bmatrix} 0 & 2 & 3 & 5 & 1 \\ 2 & 0 & 1 & 3 & 3 \\ 3 & 1 & 0 & 2 & 4 \\ 5 & 3 & 2 & 0 & 6 \\ 1 & 3 & 4 & 6 & 0 \end{bmatrix} \qquad P^{(4)} = \begin{bmatrix} v_1 \\ v_2 \\ v_2 \\ v_2 \\ v_5 \end{bmatrix}$$

$$P^{(4)} = \begin{vmatrix} v_2 & v_2 & v_2 & v_3 & v_1 \\ v_2 & v_3 & v_3 & v_3 & v_1 \\ v_2 & v_3 & v_4 & v_4 & v_1 \\ v_5 & v_1 & v_2 & v_3 & v_5 \end{vmatrix}$$

 v_1

 v_2

 v_2

 v_1

 v_1

 v_3

 v_3

$$W^{(5)} = \begin{bmatrix} 0 & 2 & 3 & 5 & 1 \\ 2 & 0 & 1 & 3 & 3 \\ 3 & 1 & 0 & 2 & 4 \\ 5 & 3 & 2 & 0 & 6 \\ 1 & 3 & 4 & 6 & 0 \end{bmatrix}$$

$$P^{(5)} = \begin{bmatrix} v_1 & v_1 & v_2 & v_3 & v_1 \\ v_2 & v_2 & v_2 & v_3 & v_1 \\ v_2 & v_3 & v_3 & v_3 & v_1 \\ v_2 & v_3 & v_4 & v_4 & v_1 \\ v_5 & v_1 & v_2 & v_3 & v_5 \end{bmatrix}$$

 v_1

 v_1

$$W^{(5)} = \begin{bmatrix} 0 & 2 & 3 & 5 & 1 \\ 2 & 0 & 1 & 3 & 3 \\ 3 & 1 & 0 & 2 & 4 \\ 5 & 3 & 2 & 0 & 6 \\ 1 & 3 & 4 & 6 & 0 \end{bmatrix} \qquad P^{(5)} = \begin{bmatrix} 0 & 2 & 3 & 5 & 1 \\ 2 & 0 & 1 & 3 & 3 \\ 3 & 1 & 0 & 2 & 4 \\ 1 & 3 & 4 & 6 & 0 \end{bmatrix}$$

$$P^{(5)} = \begin{bmatrix} v_1 & v_1 & v_2 & v_3 & v_1 \\ v_2 & v_2 & v_2 & v_3 & v_1 \\ v_2 & v_3 & v_3 & v_3 & v_1 \\ \hline v_2 & v_3 & v_4 & v_4 & v_1 \\ \hline v_5 & v_1 & v_2 & v_3 & v_5 \end{bmatrix}$$

$$W^{(5)} = \begin{bmatrix} 0 & 2 & 3 & 5 & 1 \\ 2 & 0 & 1 & 3 & 3 \\ 3 & 1 & 0 & 2 & 4 \\ 5 & 3 & 2 & 0 & 6 \\ 1 & 3 & 4 & 6 & 0 \end{bmatrix} \qquad P^{(5)} = \begin{bmatrix} 0 & 2 & 3 & 5 & 1 \\ 2 & 0 & 1 & 3 & 3 \\ 3 & 1 & 0 & 2 & 4 \\ 1 & 3 & 4 & 6 & 0 \end{bmatrix}$$

$$P^{(5)} = \begin{bmatrix} v_1 & v_1 & v_2 & v_3 & v_1 \\ v_2 & v_2 & v_2 & v_3 & v_1 \\ v_2 & v_3 & v_3 & v_3 & v_1 \\ \hline v_2 & v_3 & v_4 & v_4 & v_1 \\ \hline v_5 & v_1 & v_2 & v_3 & v_5 \end{bmatrix}$$

$$W^{(5)} = \begin{bmatrix} 0 & 2 & 3 & 5 & 1 \\ 2 & 0 & 1 & 3 & 3 \\ 3 & 1 & 0 & 2 & 4 \\ \hline 5 & 3 & 2 & 0 & 6 \\ 1 & 3 & 4 & 6 & 0 \end{bmatrix} \qquad P^{(5)} = \begin{bmatrix} 0 & 2 & 3 & 5 & 1 \\ 2 & 0 & 1 & 3 & 3 \\ \hline 0 & 2 & 4 & 5 \\ \hline 0 & 3 & 4 & 6 & 0 \end{bmatrix}$$

$$P^{(5)} = \begin{bmatrix} v_1 & v_1 & v_2 & v_3 & v_1 \\ v_2 & v_2 & v_2 & v_3 & v_1 \\ v_2 & v_3 & v_3 & v_3 & v_1 \\ \hline v_2 & v_3 & v_4 & v_4 & v_1 \\ \hline v_5 & v_1 & v_2 & v_3 & v_5 \end{bmatrix}$$