Finding Exoplanets

Project #4

Methods of Research

In order to find Exoplanets located light years away, researchers use some of the

following methods

Direct Imaging

- Micro Lensing
- Transit Method
- Radial Velocity
- Astrometry

Transit Method

- The transit method consists of using a stars brightness to determine the existence of an exoplanet
- Researches looks for dips in the brightness of a star that suggest the presence of a planet
- The longer the dip → the larger the planet
- The wider the dip \longrightarrow the farther the planet is from its star

Goals of the Project

- Use the transit method to locate an exoplanet
- Use the data from the transit to create a graphical representation of the light dip flux
- This data can help us infer the size, orbital velocity, and composition of the exoplanet

Methods

- Creating a model for the observed flux

- Using the observational data from exoplanet GJ 436 b which was found by using the

transit method we plotted the light dip flux

The data was then compared to the modeled flux and fitted within the model

Results

Chi Square Values:

- 0.15
- 64.8

Light Curve:

- t0= 2.3 hours
- t = 1 hour
- delta = 0.008

Flux = 0.992

Conclusion

 The project aided in showing the effectiveness of the transit method when searching for exoplanets

- From the data researchers were able to determine the orbital period and determine that the planet is hot neptune like planet

- Around 76% of exoplanets have been discovered via the transit method