(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 1 février 2001 (01.02.2001)

PCT

(10) Numéro de publication internationale WO 01/07424 A1

- (51) Classification internationale des brevets⁷: C07D 277/42, 277/56, 417/00, A61K 31/426, A61P 5/02
- (21) Numéro de la demande internationale:

PCT/FR00/02095

- (22) Date de dépôt international: 21 juillet 2000 (21.07.2000)
- (25) Langue de dépôt:

français

(26) Langue de publication:

français

- (30) Données relatives à la priorité: 99/09496 22 juillet 1999 (22.07.1999) FR
- (71) Déposant (pour tous les États désignés sauf US): SOCIETE DE CONSEILS DE RECHERCHES ET D'APPLICATIONS SCIENTIFIQUES (S.C.R.A.S.) [FR/FR]; 51/53, rue du Docteur Blanche, F-75016 Paris (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): MOINET,

Christophe [FR/FR]; 148, rue d'Aulnay, F-92290 Chatenay Malabry (FR). SACKUR, Carole [FR/FR]; 16, rue Michel le Comte, F-75003 Paris (FR). THURIEAU, Christophe [FR/FR]; 84, avenue Kléber, F-75016 Paris (FR).

- (74) Mandataire: BOURGOUIN, André; Beaufour Ipsen S.C.R.A.S., Direction de la Propriété Industrielle, 42, rue du Docteur Blanche, F-75016 Paris (FR).
- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,

[Suite sur la page suivante]

(54) Title: 2-ARYLIMINO-2,3-DIHYDROTHIAZOLES, AND THEIR USE THEREOF AS SOMATOSTATIN RECEPTOR LIGANDS

(54) Titre: 2-ARYLIMINO-2,3-DIHYDROTHIAZOLES ET LEUR UTILISATION COMME LIGANDS DES RECEPTEURS DE LA SOMATOSTATINE

(57) Abstract: The invention concerns novel 2-arylimino-2,3-dihydrothiazole derivatives of general formula (I), their preparation methods and their use as medicines, in particular for treating pathological conditions or diseases wherein one (or several) somatostatin receptors is/are involved. Said pathological conditions include in particular acromegaly, pituitary adenoma or endocrine gastroenteropancreatic tumours including the carcinoid syndrome, and gastrointestinal bleeding. In general formula (I), R1 represents in particular an alkyl, aralkyl, cyclohexyl radical optionally substituted by an amino radical or R1 represents a -C(R11)(R12)-CO-R10 radical wherein R11 represents H, R12 represents in particular H, carbocyclic or heterocyclic alkyl, cycloalkyl or aralkyl and R10

represents in particular an aminoalkylamino radical; R2 represents a carcyclic or heterocyclic aryl radical optionally substituted; R3 represents in particular COR5 or a carbocyclic or heterocyclic alkyl, adamantyl, aryl radical optionally substituted, carbocyclic or heterocyclic aralkyl optionally substituted on the aryl group; and R5 represents a radical fixed by a nitrogen atom to the group CO.

(57) Abrégé: L'invention a pour objet de nouveaux dérivés de 2-arylimino-2,3-dihydrothiazoles de formule générale (I), leurs procédés de préparation et leur utilisation en tant que médicaments, en particulier dans le traitement des états pathologiques ou des maladies dans lesquels un (ou plusieurs) des récepteurs de la somatostatine est (sont) impliqué(s). Ces états incluent en particulier l'acromégalie, les adénomes hypophysaires ou les tumeurs gastroentéropancréatiques endocriniennes dont le syndrome carcinoïde, et les saignements gastro-intestinaux. R1 représente notamment un radical alkyle, aralkyle ou cyclohexyle éventuellement substitué par un radical amino ou R1 représente un radical -C(R11)(R12)-CO-R10 dans lequel R11 représente H, R12 représente notamment H, alkyle, cycloalkyle ou aralkyle carbocyclique ou hétéocyclique et R10 représente notamment un radical aminoalkylamino; R2 représente un radical aryle carbocyclique ou hétérocyclique éventuellement substitué; R3 représente notamment COR5 ou un radical alkyle, adamantyle, aryle carbocyclique ou hétérocyclique éventuellement substitué, aralkyle carbocyclique ou hétérocyclique et R10 représente notamment COR5 ou un radical alkyle, adamantyle, aryle carbocyclique ou hétérocyclique et R10 représente notamment con R1 représente notamment con R1 représente notamment con R1 représente notamment et le

MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée:

- Avec rapport de recherche internationale.
- Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues.

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT. WO 01/07424 PCT/FR00/02095

2-ARYLIMINO-2,3-DIHYDROTHIAZOLES ET LEUR UTILISATION COMME LIGANDS DES RECEPTEURS DE LA SOMATOSTATINE

La présente demande a pour objet de nouveaux dérivés de 2-arylimino-2,3-dihydrothiazoles et leurs procédés de préparation. Ces produits ont une bonne affinité avec certains sous-types de récepteurs de la somatostatine et présentent donc d'intéressantes propriétés pharmacologiques. L'invention concerne également ces mêmes produits en tant que médicaments, des compositions pharmaceutiques les contenant et leur utilisation pour la préparation d'un médicament destiné à traiter les états pathologiques ou les maladies dans lesquels un (ou plusieurs) des récepteurs de la somatostatine est (sont) impliqué(s).

La somatostatine (SST) est un tétradécapeptide cyclique qui a été isolé pour la première fois de l'hypothalamus en tant que substance inhibitrice de l'hormone de croissance (Brazeau P. et al., *Science* 1973, 179, 77-79). Elle intervient également en tant que neurotransmetteur dans le cerveau (Reisine T. et al., *Neuroscience* 1995, 67, 777-790; Reisine et al., *Endocrinology* 1995, 16, 427-442). Le clonage moléculaire a permis de montrer que la bioactivité de la somatostatine dépend directement d'une famille de cinq récepteurs liés à la membrane.

10

15

20

25

L'hétérogénéité des fonctions biologiques de la somatostatine a conduit à des études pour essayer d'identifier les relations structure-activité des analogues peptidiques sur les récepteurs de la somatostatine, ce qui a amené la découverte de 5 sous-types de récepteurs (Yamada et al., *Proc. Natl. Acad. Sci. U.S.A*, 89, 251-255, 1992; Raynor, K. et al, *Mol. Pharmacol.*, 44, 385-392, 1993). Les rôles fonctionnels de ces récepteurs sont actuellement activement étudiés. Les affinités avec les différents sous-types de récepteurs de la somatostatine ont été associés au traitement des désordres / maladies suivants. L'activation des sous-types 2 et 5 a été associée à la suppression de l'hormone de croissance (GH) et plus particulièrement à celle des adénomes sécrétant GH (acromégalie) et de ceux sécrétant l'hormone TSH. L'activation du sous-type 2 mais pas du sous-type 5 a été associée au traitement des adénomes sécrétant la prolactine. D'autres indications associées avec l'activation des sous-types de récepteurs de la somatostatine sont la resténose, l'inhibition de la sécrétion d'insuline et/ou de glucagon

WO 01/07424 PCT/FR00/02095

5

10

15

20

25

30

35

et en particulier le diabète mellitus, l'hyperlipidémie, l'insensiblité à l'insuline, le Syndrome X, l'angiopathie, la rétinopathie proliférative, le phénomène de Dawn et la néphropathie; l'inhibition de la sécrétion d'acide gastrique et en particulier les ulcères peptiques, les fistules entérocutanées et pancréaticocutanées, le syndrome du colon irritable, le syndrome de Dumping, le syndrome des diarrhées aqueuses, les diarrhées reliées au SIDA, les diarrhées induites par la chimiothérapie, la pancréatite aiguë ou chronique et les tumeurs gastrointestinales sécrétrices; le traitement du cancer comme les hépatomes; l'inhibition de l'angiogénèse, le traitement des désordres inflammatoires comme l'arthrite; le rejet chronique des allogreffes; l'angioplastie; la prévention des saignements des vaisseaux greffés et des saignements gastrointestinaux. Les agonistes de la somatostatine peuvent aussi être utilisés pour diminuer le poids d'un patient.

Parmi les désordres pathologiques associés à la somatostatine (Moreau J.P. et al., Life Sciences, 1987, 40, 419; Harris A.G. et al., The European Journal of Medicine, 1993, 2, 97-105), on peut donc citer par exemple : l'acromégalie, les adénomes hypophysaires, la maladie de Cushing, les gonadotrophinomes et les prolactinomes, les effets secondaires cataboliques des glucocorticoïdes, le diabète insulinodépendant, la rétinopathie diabétique, la néphropathie diabétique, l'hyperthyroïdie, le gigantisme, les tumeurs gastroentéropancréatiques endocriniennes dont le syndrome carcinoïde, le VIPome, l'insulinome, la nésidioblastose, l'hyperinsulinémie, le glucagonome, le gastrinome et le syndrome de Zollinger-Ellison, le GRFome ainsi que le saignement aigu des varices œsophagiennes, le reflux gastroœsophagien, le reflux gastroduodénal, la pancréatite, les fistules entérocutanées et pancréatiques mais aussi les diarrhées, les diarrhées réfractaires du syndrome d'immunodépression acquise, la diarrhée chronique sécrétoire, la diarrhée associée avec le syndrome de l'intestin irrité, les troubles liés au peptide libérateur de gastrine, les pathologies secondaires aux greffes intestinales, l'hypertension portale ainsi que les hémorragies des varices chez des malades avec cirrhose, l'hémorragie gastro-intestinale, l'hémorragie de l'ulcère gastroduodénale, la maladie de Crohn, les scléroses systémiques, le dumping syndrome, le syndrome du petit intestin, l'hypotension, la sclérodermie et le carcinome thyroïdien médullaire, les maladies liées à l'hyperprolifération cellulaire comme les cancers et plus particulièrement le cancer du sein, le cancer de la prostate, le cancer thyroïdien ainsi que le cancer pancréatique et le cancer colorectal, les fibroses et plus particulièrement la fibrose du rein, la fibrose du foie, la fibrose du poumon, la fibrose de la peau, également la fibrose du système nerveux central ainsi que celle du nez et la fibrose induite par la chimiothérapie, et d'autres domaines thérapeutiques comme, par exemple, les céphalées y compris les céphalées associées aux tumeurs hypophysaires, les douleurs, les accès de panique, la chimiothérapie, la cicatrisation des plaies, l'insuffisance rénale résultant

5

10

15

25

d'un retard de croissance, l'obésité et retard de croissance lié à l'obésité, le retard de croissance utérin, la dysplasie du squelette, le syndrome de Noonan, le syndrome d'apnée du sommeil, la maladie de Graves, la maladie polykystique des ovaires, les pseudokystes pancréatiques et ascites, la leucémie, le méningiome, la cachexie cancéreuse, l'inhibition des H pylori, le psoriasis ainsi que la maladie d'Alzheimer. On peut également citer l'ostéoporose.

La déposante a trouvé que les composés de formule générale (I) décrits ci-après présentaient une affinité et une sélectivité pour les récepteurs de la somatostatine. Comme la somatostatine et ses analogues peptidiques ont souvent une mauvaise biodisponibilité par voie orale et une faible sélectivité (Robinson, C., *Drugs of the Future*, 1994, 19, 992; Reubi, J.C. et al., *TIPS*, 1995, 16, 110), lesdits composés, agonistes ou antagonistes non-peptidiques de la somatostatine, peuvent être avantageusement utilisés pour traiter les états pathologiques ou les maladies tels que présentés ci-dessus et dans lesquels un (ou plusieurs) des récepteurs de la somatostatine est (sont) impliqué(s). De manière préférentielle, lesdits composés peuvent être utilisés pour le traitement de l'acromégalie, des adénomes hypophysaires ou des tumeurs gastroentéropancréatiques endocriniennes dont le syndrome carcinoïde.

Les composés de la présente invention répondent à la formule générale (I)

$$R2$$
 N
 $R1$
 $R3$
 $R4$
 $R1$

sous forme racémique, d'énantiomère ou toutes combinaisons de ces formes, dans laquelle :

R1 représente amino(C_2 - C_7)alkyle, aminoalkylarylalkyle, un radical (C_1-C_{15}) alkyle, aminoalkylcycloalkylalkyle, (C₃-C₇)cycloalkyle, (C₃-C₆)cycloalkylalkyle, cyclohexénylalkyle, (C_1-C_6) alkyl (C_3-C_6) cycloalkyle, alkényle, alkynyle, aryle carbocyclique comptant au moins deux cycles dont l'un au moins n'est pas aromatique, aralkyle carbocyclique ou hétérocyclique éventuellement substitué sur le groupe aryle, bis-arylalkyle, alkoxyalkyle, furannylalkyle, tétrahydrofurannylalkyle, dialkylaminoalkyle, N-acétamidoalkyle, cyanoalkyle, alkylthioalkyle, arylhydroxyalkyle, aralkoxyalkyle, morpholinoalkyle,

10

pyrrolidinoalkyle, pipéridinoalkyle, N-alkylpyrrolidinoalkyle, N-alkylpipérazinylalkyle ou oxopyrrolidinoalkyle,

ou R1 représente l'un des radicaux représentés ci-dessous :

ou encore R1 représente un radical -C(R11)(R12)-CO-R10;

R2 représente un radical aryle carbocyclique ou hétérocyclique éventuellement substitué,

ou bien R2 représente l'un des radicaux représentés ci-dessous :

R3 représente un radical alkyle, adamantyle, aryle carbocyclique ou hétérocyclique éventuellement substitué, aralkyle carbocyclique ou hétérocyclique éventuellement substitué sur le groupe aryle,

ou R3 représente l'un des radicaux représentés ci-dessous :

ou encore R3 représente un radical -CO-R5;

R4 représente H, alkyle, aralkyle carbocyclique ou hétérocyclique éventuellement situé sur le radical aryle;

ou alors le radical

di alois le fadical represente

représente un radical de formule générale

dans laquelle i représente un entier de 1 à 3;

R5 représente le radical N(R6)(R7);

R6 représente un radical (C₁-C₁₆)alkyle, cycloalkylalkyle, hydroxyalkyle, aryloxyalkyle, aralkyle carbocyclique ou hétérocyclique éventuellement substitué sur le groupe aryle, aralkoxyalkylke, arylhydroxyalkyle, alkoxyalkyle, alkylthioalkyle, alkényle, alkynyle, cyclohexényle, cyclohexénylalkyle, alkylthiohydroxyalkyle, cyanoalkyle,

N-acétamidoalkyle, bis-arylalkyle éventuellement substitué sur les groupes aryle, di-arylalkyle éventuellement substitué sur les groupes aryle, morpholinoalkyle, pyrrolidinoalkyle, pipéridinoalkyle, N-alkylpyrrolidinoalkyle, oxopyrrolidinoalkyle, tétrahydrofurannylalkyle, N-benzylpyrrolidinoalkyle, N-alkylpipérazinylalkyle, N-benzylpipérazinylalkyle, N-benzylpipéridinylalkyle ou N-alkoxycarbonylpipéridinyle, ou R6 représente un radical (C3-C8)cycloalkyle éventuellement substitué par un radical choisi parmi le groupe composé du radical hydroxy et d'un radical alkyle,

ou bien R6 représente l'un des radicaux représentés ci-dessous :

R7 représente H ou un radical alkyle, hydroxyalkyle, mono- ou di-aminoalkyle ou aralkyle;

ou encore le radical -N(R6)(R7) représente le radical de formule générale suivante :

dans laquelle:

R8 représente H, alkyle, hydroxyalkyle, aryle carbocyclique ou hétérocyclique éventuellement substitué, aralkyle éventuellement substitué sur le groupe aryle, alkényle, alkoxyalkyle, cycloalkyle, cycloalkylalkyle, bis-arylalkyle, pipéridinyle, pyrrolidinyle, hydroxy, arylalkényle,

ou R8 représente -X-(CH₂)_b-R9;

10 R9 représente H ou un radical alkyle, alkoxy, aryloxy, aryle carbocyclique ou hétérocyclique éventuellement substitué, morpholinyle, pyrrolidinyle, alkylamino ou N,N'-(alkyl)(aryl)amino;

X représente CO, CO-NH ou SO₂;

Y représente CH ou N;

a représente 1 ou 2;

b représente un entier de 0 à 6;

ou le radical N(R6)(R7) représente un radical de formule générale

dans laquelle:

Z représente CH, O ou S;

c représente un entier de 0 à 4;

ou encore le radical N(R6)(R7) représente l'un des radicaux représentés ci-dessous :

R10 représente un radical amino(C₂-C₇)alkylamino, ((aminoalkyl)aryl)alkylamino, ((aminoalkyl)cycloalkyl)alkylamino, pipérazinyle, homopipérazinyle,

ou R10 représente le radical représenté ci-dessous :

R11 représente H;

R12 représente H ou un radical alkyle, (C₃-C₇)cycloalkyle, aralkyle carbocyclique ou hétérocyclique éventuellement substitué, propargyle, allyle, hydroxyalkyle, alkylthioalkyle, arylalkylalkoxyalkyle, arylalkylthioalkoxyalkyle;

ou les composés de l'invention seront des sels des composés de formule générale (I).

- Lorsque les composés de formule générale (I) comprendront des radicaux R1, R2, R3, R4, R6, R8, R9 ou R12 incluant un radical aryle substitué ou aralkyle substitué sur le groupe aryle, lesdits radicaux aryle ou aralkyle seront de préférence tels que :
 - Pour R1, lorsque le groupe aryle est substitué, il peut l'être de 1 à 5 fois (outre la liaison qui le relie au reste de la molécule) par des radicaux choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle, alkoxy, alkylthio, haloalkyle, haloalkoxy, aryle, aralkoxy ou SO₂NH₂. Le cas échéant, deux substituants peuvent être reliés entre eux et former un cycle, par exemple en représentant ensemble un radical méthylènedioxy ou propylène.

10

15

20

25

30

- Pour R2, lorsque le groupe aryle est substitué, il peut l'être de 1 à 5 fois (outre la liaison qui le relie au reste de la molécule). Le radical aryle peut être substitué par des radicaux choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle, alkoxy, alkylthio, haloalkyle, alkényle, haloalkoxy, nitro, cyano, azido, SO₂N, mono- ou di-alkylamino, aminoalkyle, aralkoxy ou aryle. Le cas échéant, deux substituants peuvent être reliés entre eux et former un cycle, par exemple en représentant ensemble un radical méthylènedioxy, éthylènedioxy ou propylène.
 - Pour R3, lorsque le(s) groupe(s) aryle(s) (provenant d'un radical aryle ou aralkyle) est (sont) substitué(s), il(s) peu(ven)t l'être, selon le cas, de 1 à 5 fois (outre la liaison qui le(s) relie au reste de la molécule). Les radicaux aryle ou aralkyle carbocycliques peuvent être substitués de 1 à 5 fois sur le noyau aryle par des radicaux choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle, hydroxy, alkoxy, haloalkyle, haloalkoxy, nitro, cyano, azido, mono- ou di-alkylamino, pyrrolidinyle, morpholinyle, aralkoxy ou aryle. Le cas échéant, deux substituants peuvent être reliés entre eux et former un cycle, par exemple en représentant ensemble un radical alkylènedioxy comptant de 1 à 3 atomes de carbone. Les radicaux aryle ou aralkyle hétérocycliques de R3 peuvent être substitués de 1 à 2 fois sur le noyau par des radicaux choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle.
 - Pour R4, lorsque le groupe aryle est substitué, il peut l'être de 1 à 5 fois (outre la liaison qui le relie au reste de la molécule). Le radical aryle peut être substitué par des

WO 01/07424 PCT/FR00/02095

5

10

15

20

25

30

35

radicaux choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle ou alkoxy.

- Pour R6, lorsque le(s) groupe(s) aryle(s) est (sont) substitué(s), il(s) peu(ven)t l'être de 1 à 5 fois (outre la liaison qui le(s) relie au reste de la molécule). Les substituants éventuels sur les groupes aryle sont choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle, alkoxy, alkylthio, haloalkyle, haloalkoxy, aryle, aryloxy ou SO₂NH₂.
- Pour R8, lorsque le(s) groupe(s) aryle(s) est (sont) substitué(s), il(s) peu(ven)t l'être de 1 à 5 fois (outre la liaison qui le(s) relie au reste de la molécule). Les substituants éventuels sur les groupes aryle sont choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle, haloalkyle, alkoxy, hydroxy, cyano, nitro ou alkylthio.
- Pour R9, lorsque le radical aryle carbocyclique ou hétérocyclique est substitué, il peut l'être de 1 à 5 fois (outre la liaison qui le relie au reste de la molécule). Les substituants éventuels sur le groupe aryle sont choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle, haloalkyle, alkoxy, haloalkoxy, alkylthio, aryle carbocyclique, hydroxy, cyano ou nitro.
- Pour R12, lorsque le radical aryle carbocyclique ou hétérocyclique est substitué, il peut l'être de 1 à 5 fois (outre la liaison qui le relie au reste de la molécule). Les substituants éventuels sur le groupe aryle sont choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle, alkoxy, aryle carbocyclique, aralkoxy, hydroxy, cyano ou nitro.

Par alkyle, lorsqu'il n'est pas donné plus de précision, on entend un radical alkyle linéaire ou ramifié comptant de 1 à 6 atomes de carbone. Par cycloalkyle, lorsqu'il n'est pas donné plus de précision, on entend un système monocyclique carboné comptant de 3 à 7 atomes de carbone. Par alkényle, lorsqu'il n'est pas donné plus de précision, on entend un radical alkyle linéaire ou ramifié comptant de 1 à 6 atomes de carbone et présentant au moins une insaturation (double liaison). Par alkynyle, lorsqu'il n'est pas donné plus de précision, on entend un radical alkyle linéaire ou ramifié comptant de 1 à 6 atomes de carbone et présentant au moins une double insaturation (triple liaison). Par aryle carbocyclique ou hétérocyclique, on entend un système carbocyclique ou hétérocyclique comprenant au moins un cycle aromatique, un système étant dit hétérocyclique lorsque l'un au moins des cycles qui le composent comporte un hétéroatome (O, N ou S). Par haloalkyle, on entend un radical alkyle dont au moins l'un des atomes d'hydrogène (et éventuellement tous) est remplacé par un atome halogène.

Par radicaux alkylthio, alkoxy, haloalkyle, haloalkoxy, aminoalkyle, alkényle, alkynyle et aralkyle, on entend respectivement les radicaux alkylthio, alkoxy, haloalkyle, haloalkoxy, aminoalkyle, alkényle, alkynyle et aralkyle dont le radical alkyle a la signification indiquée précédemment.

Par alkyle linéaire ou ramifié ayant de 1 à 6 atomes de carbone, on entend en particulier 5 les radicaux méthyle, éthyle, propyle, isopropyle, butyle, isobutyle, sec-butyle et tert-butyle, pentyle, néopentyle, isopentyle, hexyle, isohexyle. Par cycloalkyle, on entend en particulier les radicaux cyclopropanyle, cyclobutanyle, cyclopentanyle, cyclohexyle et cycloheptanyle. Par aryle carbocyclique ou hétérocyclique, on entend notamment les radicaux phényle, naphtyle, pyridinyle, furannyle, thiophènyle, indanyle, 10 indolyle, imidazolyle, benzofurannyle, benzothiophènyle, phtalimidyle. Par aralkyle carbocyclique ou hétérocyclique, on entend notamment les radicaux benzyle, phényléthyle, phénylpropyle, phénylbutyle, indolylalkyle, phtalimidoalkyle, naphtylalkyle, furannylalkyle, thiophénylalkyle, benzothiophénylalkyle, pyridinylalkyle et imidazolylalkyle. 15

Lorsqu'il émane une flèche d'une structure chimique, ladite flèche indique le point d'attache. Par exemple :

De préférence, les composés de formule générale (I) seront tels que :

20 R1 représente -C(R11)(R12)-CO-R10 ou l'un des radicaux suivants :

) OMe

[H, OMe]

R2 représente l'un des radicaux suivants :

[CI, Br, F, I, OMe, OEt, CF₃, OCF₃, NO₂, CN, Me, Et, iPr, nBu, tBu, NMe₂, NEt₂]

[CI, Br, F, CF
$$_3$$
, O Me, Me, NO $_2$] * [CI, Br, F, O Me, Me]

[a, F, Me]

[CI, Br, F, Me, OMe, NO_2 , iPr, CF_3]

R3 représente CO-R5 ou l'un des radicaux suivants :

R4 représente H, alkyle, aralkyle carbocyclique ou hétérocyclique éventuellement substitué sur le radical aryle ;

ou alors le radical R4 représente un radical de formule générale

- dans laquelle i représente un entier de 1 à 3;
 - R5 représente l'un des radicaux suivants :

R10

représente l'un des radicaux suivants :

R11

représente H;

R12

représente l'un des radicaux suivants :

étant entendu que pour R4, lorsque le groupe aryle est substitué, il peut l'être de 1 à 5 fois (outre la liaison qui le relie au reste de la molécule) par des radicaux choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle ou alkoxy.

Les composés de l'invention seront de préférence tels que R4 représente H.

Plus préférentiellement, les composés selon l'invention répondront à la formule générale (II)

dans laquelle:

• soit R1 représente l'un des radicaux ci-après

R2 représente l'un des radicaux ci-après

R3 représente l'un des radicaux ci-après

et R4 représente H;

• soit encore R1 représente l'un des radicaux ci-après

5 R2 représente l'un des radicaux ci-après

R3 représente COR5,

R4 représente H,

et R5 représente l'un des radicaux ci-après

soit enfin R1 représente le radical –C(R11)(R12)-CO-R10 dans lequel
 R10 représente le radical

R11 représente H

5 et R12 représente le radical

R2 représente le radical

R3 représente le radical

et R4 représente H.

L'invention concerne de plus des procédés de préparation sur support solide des composés de formule générale (I) décrits précédemment (applicables également aux composés correspondants de formule générale (II)).

5 Selon l'invention, les composés de formule générale (I)a

$$R2$$
 $R1$
 $R3$
 $R4$
(I)a

dans laquelle:

20

R1 représente un radical - CH_2 -A1-NH₂, dans lequel A1 représente un radical - $(CH_2)_n$ -, - $(CH_2)_n$ -O- $(CH_2)_p$ -, aralkylène ou cycloalkylalkylène, n et p représentant des entiers de 1 à 6;

10 R2 et R4 représentent les mêmes radicaux que dans la formule générale (I);

et R3 représente les mêmes radicaux que dans la formule générale (I) excepté les radicaux -CO-R5;

peuvent être préparés par exemple par un procédé caractérisé en ce qu'il comprend les étapes successives suivantes :

- 1) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, d'une résine p-nitrophénylcarbonate de Wang avec un large excès de diamine symétrique R1-NH₂;
 - 2) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, de la résine isolée après l'étape 1) avec un isothiocyanate aromatique de formule générale R2-N=C=S dans laquelle le radical R2 a la même signification que dans la formule générale (I)a;
 - 3) traitement, dans un solvant aprotique comme le dioxane ou le diméthylformamide, de la résine obtenue à l'étape 2) avec le composé de formule générale (III)

15

dans laquelle les radicaux R3 et R4 ont la même signification que dans la formule générale (I)a;

- 4) clivage de la résine dans des conditions acides ;
- 5) traitement dans des conditions basiques du produit obtenu après l'étape 4).
- La préparation de la résine p-nitrophénylcarbonate de Wang est décrite plus loin dans la partie intitulée "PREPARATION DES COMPOSES DE L'INVENTION".

De préférence, pour le procédé ci-dessus, on utilisera pour avoir le large excès de l'étape 1) de l'ordre de 10 à 20 équivalents de diamine R1-NH₂. L'étape 1) s'effectuera de préférence à température ambiante. L'étape 3) s'effectue à une température supérieure à la température ambiante, par exemple à une température comprise entre 60 et 90 °C, en utilisant de l'ordre de 2 à 5 équivalents de composé de formule générale (III). Dans l'étape 4), les conditions acides peuvent par exemple être créées en utilisant un mélange dichlorométhane / acide trifluoroacétique à 50 %, lesdites conditions acides étant de préférence maintenues pendant une durée de l'ordre de 1 à 2 heures. Dans l'étape 5), les conditions basiques peuvent par exemple être créées en utilisant une solution saturée en hydrogénocarbonate de sodium ou par élution sur une cartouche d'alumine basique.

Selon une variante de l'invention, les composés de formule générale (I)b

$$R2$$
 $R1$
 $R3$
 $R4$
(I)b

dans laquelle:

R1 représente les mêmes radicaux que dans la formule générale (I), excepté les radicaux 20 du type - CH_2 -A1-N H_2 , dans lequel A1 représente un radical - $(CH_2)_n$ -,

10

15

25

 $-(CH_2)_n$ -O- $(CH_2)_p$ -, aralkylène ou cycloalkylalkylène, n et p représentant des entiers de 1 à 6, et excepté également les radicaux -C(R11)(R12)-CO-R10;

R2 représente un radical aminoalkylphényle;

R3 représente les mêmes radicaux que dans la formule générale (I) excepté les radicaux -CO-R5;

et R4 représente les mêmes radicaux que dans la formule générale (I);

peuvent être préparés par exemple par un procédé caractérisé en ce qu'il comprend les étapes successives suivantes :

- 1) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, d'une résine p-nitrophénylcarbonate de Wang avec un excès d'aminoalkylaniline de formule générale R2-NH₂ dans laquelle le radical R2 a la même signification que dans la formule générale (I)b;
 - 2) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, de la résine isolée après l'étape 1) avec un isothiocyanate de formule générale R1-N=C=S dans laquelle le radical R1 a la même signification que dans la formule générale (I)b;
 - 3) traitement, dans un solvant aprotique comme le dioxane ou le diméthylformamide, de la résine obtenue à l'étape 2) avec le composé de formule générale (III)

$$R4$$
 $R3$
 O

dans laquelle les radicaux R3 et R4 ont la même signification que dans la formule générale (I)b;

- 4) clivage de la résine dans des conditions acides ;
- 5) traitement dans des conditions basiques du produit obtenu après l'étape 4).

De préférence, pour le procédé ci-dessus, on utilisera pour avoir l'excès de l'étape 1) de l'ordre de 5 à 10 équivalents d'aminoalkylaniline. L'étape 1) s'effectuera de préférence à température ambiante. L'étape 3) s'effectue à une température supérieure à la

20

25

température ambiante, par exemple à une température comprise entre 60 et 90 °C, en utilisant de l'ordre de 2 à 5 équivalents de composé de formule générale (III). Dans l'étape 4), les conditions acides peuvent par exemple être créées en utilisant un mélange dichlorométhane / acide trifluoroacétique à 50 %, lesdites conditions acides étant de préférence maintenues pendant une durée de l'ordre de 1 à 2 heures. Dans l'étape 5), les conditions basiques peuvent par exemple être créées en utilisant une solution saturée en hydrogénocarbonate de sodium ou par élution sur une cartouche d'alumine basique.

Selon une autre variante de l'invention, les composés de formule générale (I)c

$$R2$$
 N
 $R3$
 $R4$
(I)c

dans laquelle:

R1 représente un radical -CH₂-A1-NH₂, dans lequel A1 représente un radical -(CH₂)_n-, -(CH₂)_n-O-(CH₂)_p-, aralkylène ou cycloalkylalkylène, n et p représentant des entiers de 1 à 6;

R2 représente les mêmes radicaux que dans la formule générale (I);

R3 représente un radical -CO-R5;

et R4 et R5 représentent les mêmes radicaux que dans la formule générale (I);

peuvent être préparés par un procédé caractérisé en ce qu'il comprend les étapes successives suivantes :

- 1) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, d'une résine p-nitrophénylcarbonate de Wang avec un large excès de diamine symétrique de formule générale R1-NH₂ dans laquelle le radical R1 a la même signification que dans la formule générale (I)c;
- 2) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, de la résine isolée après l'étape 1) avec un isothiocyanate aromatique de formule générale R2-N=C=S dans laquelle le radical R2 a la même signification que dans la formule générale (I)c;

3) traitement, dans un solvant aprotique comme le dioxane ou le diméthylformamide, de la résine obtenue à l'étape 2) avec l'acide de formule générale (IV)

$$Br$$
 C
 OH
 OH

dans laquelle le radical R4 a la même signification que dans la formule générale (I)c;

4) couplage peptidique;

10

15

20

25

- 5 5) clivage de la résine dans des conditions acides ;
 - 6) traitement dans des conditions basiques du produit obtenu après l'étape 5).

De préférence, pour le procédé ci-dessus, on utilisera pour avoir le large excès de l'étape 1) de l'ordre de 10 à 20 équivalents de diamine symétrique. L'étape 1) s'effectuera de préférence à température ambiante. L'étape 3) s'effectue à une température supérieure à la température ambiante, par exemple à une température comprise entre 60 et 90 °C, en utilisant de l'ordre de 2 à 5 équivalents d'acide de formule générale (IV). Le couplage peptidique de l'étape 4) est effectué par exemple dans le DMF avec des agents de exemple le dicyclohexylcarbodiimide couplage comme par diisopropylcarbodiimide (DIC), un mélange DIC/N-hydroxybenzotriazole (HOBt), l'hexafluorophosphate de benzotriazolyloxytris(diméthylamino)phosphonium (PyBOP), l'hexafluorophosphate de 2-(1*H*-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (HBTU) ou le tétrafluoroborate de 2-(1H-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (TBTU) et des composés aminés. De préférence, les agents de couplage seront utilisés dans des proportions de 4 à 5 équivalents, tout comme les composés aminés, et la réaction aura lieu à une température de l'ordre de la température ambiante pendant une durée de l'ordre de 1 à 24 heures. Dans l'étape 5), les conditions acides peuvent par exemple être créées en utilisant un mélange dichlorométhane / acide trifluoroacétique à 50 %, lesdites conditions acides étant de préférence maintenues pendant une durée de l'ordre de 1 à 2 heures. Dans l'étape 6), les conditions basiques peuvent par exemple être créées en utilisant une solution saturée en hydrogénocarbonate de sodium ou par élution sur une cartouche d'alumine basique.

Selon encore une autre variante, les composés de formule générale (I)d

dans laquelle:

15

R1 représente les mêmes radicaux que dans la formule générale (I), excepté les radicaux du type $-CH_2-A1-NH_2$, dans lequel A1 représente un radical $-(CH_2)_n$, $-(CH_2)_n-O-(CH_2)_p$, aralkylène ou cycloalkylalkylène, n et p représentant des entiers de 1 à 6, et excepté également les radicaux -C(R11)(R12)-CO-R10;

R2 représente un radical aminoalkylphényle;

R3 représente un radical -CO-R5;

et R4 et R5 représentent les mêmes radicaux que dans la formule générale (I);

- peuvent être préparés par un procédé caractérisé en ce qu'il comprend les étapes successives suivantes :
 - 1) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, d'une résine p-nitrophénylcarbonate de Wang avec un excès d'aminoalkylaniline de formule générale R2-NH2 dans laquelle le radical R2 a la même signification que dans la formule générale (I)d;
 - 2) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, de la résine isolée après l'étape 1) avec un isothiocyanate de formule générale R1-N=C=S dans laquelle le radical R1 a la même signification que dans la formule générale (I)d;
- 3) traitement, dans un solvant aprotique comme le dioxane ou le diméthylformamide, de la résine obtenue à l'étape 2) avec l'acide de formule générale (IV)

10

15

20

$$\operatorname{Br} \overset{\operatorname{R4}}{ } \overset{\operatorname{O}}{ } \overset{\operatorname{O}}{ }$$

dans laquelle le radical R4 a la même signification que dans la formule générale (I)d;

- 4) couplage peptidique;
- 5) clivage de la résine dans des conditions acides ;
- 6) traitement dans des conditions basiques du produit obtenu après l'étape 5).

De préférence, pour le procédé ci-dessus, on utilisera pour avoir l'excès de l'étape 1) de l'ordre de 5 à 10 équivalents d'aminoalkylaniline. L'étape 1) s'effectuera de préférence à température ambiante. L'étape 3) s'effectue à une température supérieure à la température ambiante, par exemple à une température comprise entre 60 et 90 °C, en utilisant de l'ordre de 2 à 5 équivalents d'acide de formule générale (IV). Le couplage peptidique de l'étape 4) est effectué par exemple dans le DMF avec des agents de comme par exemple le dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), un mélange DIC/N-hydroxybenzotriazole (HOBt), l'hexafluorophosphate de benzotriazolyloxytris(diméthylamino)phosphonium (PyBOP), l'hexafluorophosphate de 2-(1*H*-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (HBTU) tétrafluoroborate de 2-(1*H*-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (TBTU) et des composés aminés. De préférence, les agents de couplage seront utilisés dans des proportions de 4 à 5 équivalents, tout comme les composés aminés, et la réaction aura lieu à une température de l'ordre de la température ambiante pendant une durée de l'ordre de 1 à 24 heures. Dans l'étape 5), les conditions acides peuvent par exemple être créées en utilisant un mélange dichlorométhane / acide trifluoroacétique à 50 %, lesdites conditions acides étant de préférence maintenues pendant une durée de l'ordre de 1 à 2 heures. Dans l'étape 6), les conditions basiques peuvent par exemple être créées en utilisant une solution saturée en hydrogénocarbonate de sodium ou par élution sur une cartouche d'alumine basique.

Selon une autre variante, les composés de formule générale (I)e

$$R2$$
 N
 $R1$
 $R3$
 $R4$
 $R4$

dans laquelle:

R1 représente les mêmes radicaux que dans la formule générale (I), excepté les radicaux du type -CH₂-A1-NH₂, dans lequel A1 représente un radical -(CH₂)_n-, -(CH₂)_n-O-(CH₂)_p-, aralkylène ou cycloalkylalkylène, n et p représentant des entiers de 1 à 6, et excepté également les radicaux -C(R11)(R12)-CO-R10;

R2 représente les mêmes radicaux que dans la formule générale (I);

R3 représente un radical -CO-R5;

R4 représente H;

R5 représente un radical -NH-CH₂-A1-NH₂, dans lequel A1 représente un radical alkylène linéaire ou ramifié comptant de 1 à 6 atomes de carbone, -(CH₂)_n-O-(CH₂)_p-, aralkylène ou cycloalkylalkylène, n et p représentant des entiers de 1 à 6, ou encore R5 représente le radical N(R6)(R7) répondant à la formule générale suivante :

dans laquelle:

15 R8 représente H;

Y représente N;

a représente 1 ou 2;

peuvent être préparés par un procédé caractérisé en ce qu'il comprend les étapes successives suivantes :

20

25

- 1) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, d'une résine p-nitrophénylcarbonate de Wang avec un large excès de diamine symétrique de formule générale R5-H;
- 2) couplage peptidique avec l'acide de formule générale (IV) sur la résine obtenue à 1'étape 1)

$$\operatorname{Br} \overset{\operatorname{R4}}{\overset{\operatorname{O}}{\longrightarrow}} \operatorname{OH}$$

dans laquelle le radical R4 a la même signification que dans la formule générale (I)e;

- 3) réaction de l'amine primaire de formule générale R1-NH₂ avec l'isothiocyanate de formule générale R2-NCS dans un solvant tel que le diméthylformamide ou le dioxane, R1 et R2 ayant les mêmes significations que dans la formule générale (I)e;
- 4) addition de la thiourée obtenue à l'étape 3) à la résine obtenue à l'étape 2) et chauffage du mélange;
 - 5) clivage de la résine dans des conditions acides ;
 - 6) traitement dans des conditions basiques du produit obtenu après l'étape 5).

De préférence, pour le procédé ci-dessus, on utilisera pour avoir le large excès de l'étape 1) de l'ordre de 10 à 20 équivalents de diamine R5-H. L'étape 1) s'effectuera de préférence à température ambiante. Le couplage peptidique de l'étape 2) est effectué dans le DMF avec un agent de couplage comme par exemple le mélange DIC/N-hydroxybenzotriazole (HOBt). La réaction de l'étape 3) s'effectue de préférence dans un solvant comme le diméthylformamide ou le dioxane. Lors de l'addition de l'étape 4), on utilisera de préférence de 2 à 5 équivalents de thiourée par équivalent de résine; de préférence encore, on chauffera à une température supérieure à la température ambiante, par exemple à une température de 40 à 100 °C (notamment à une température d'environ 80 °C) et pendant une durée de 2 à 24 heures. Dans l'étape 5), les conditions acides peuvent par exemple être créées en utilisant un mélange dichlorométhane / acide trifluoroacétique à 50 %, lesdites conditions acides étant de préférence maintenues pendant une durée de l'ordre de 1 à 2 heures. Dans l'étape 6), les conditions basiques peuvent par exemple être créées en utilisant une solution saturée en hydrogénocarbonate de sodium ou par élution sur une cartouche d'alumine basique.

Selon encore une autre variante, les composés de formule générale (I)f

$$R2$$
 N
 $R1$
 $R3$
 $R4$
(I)f

dans laquelle:

R1 représente un radical -C(R11)(R12)-CO-R10;

R2, R3 et R4 représentent les mêmes radicaux que dans la formule générale (I) ;

5 R10 représente un radical amino(C₂-C₇)alkylamino, ((aminoalkyl)aryl)alkylamino, ((aminoalkyl)cycloalkyl)alkylamino, pipérazinyle, homopipérazinyle,

ou R10 représente le radical représenté ci-dessous :

R11 représente H;

10

20

R12 représente H ou un radical alkyle, (C₃-C₇)cycloalkyle, aralkyle carbocyclique ou hétérocyclique éventuellement substitué, propargyle, allyle, hydroxyalkyle, alkylthioalkyle, arylalkylalkoxyalkyle, arylalkylthioalkoxyalkyle;

peuvent être préparés par un procédé caractérisé en ce qu'il comprend les étapes successives suivantes :

- 1) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, d'une résine p-nitrophénylcarbonate de Wang avec un large excès de diamine symétrique de formule générale R10-H dans laquelle R10 a la même signification que dans la formule générale (I)f;
 - 2) couplage peptidique de la résine obtenue à l'étape 1) avec un acide aminé de formule générale HOOC-C(R11)(R12)-NH-Fmoc dans laquelle R11 et R12 ont la même signification que dans la formule générale (I)f;
 - 3) clivage du groupe Fmoc de la résine obtenue à l'étape 2);

- 4) réaction de la résine obtenue à l'étape 3) avec un isothiocyanate de formule générale R2-NCS dans laquelle R2 a la même signification que dans la formule générale (I)f;
- 5) clivage de la résine dans des conditions acides ;
- 6) traitement dans des conditions basiques du produit obtenu après l'étape 5).
- 5 De préférence, pour le procédé ci-dessus, on utilisera pour avoir le large excès de l'étape 1) de l'ordre de 10 à 20 équivalents de diamine R10-H. L'étape 1) s'effectuera de préférence à température ambiante. Le couplage peptidique de l'étape 2) est effectué par exemple dans le DMF avec des agents de couplage comme par exemple le dicyclohexylcarbodiimide (DCC), le diisopropylcarbodiimide (DIC), un mélange DIC/N-hydroxybenzotriazole (HOBt), l'hexafluorophosphate 10 de benzotriazolyloxytris(diméthylamino)phosphonium (PyBOP), l'hexafluorophosphate de 2-(1H-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (HBTU) ou le tétrafluoroborate de 2-(1H-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (TBTU). La réaction de l'étape 2) s'effectue de préférence à température ambiante et pendant une durée de 1 à 24 heures. La déprotection de l'étape 3) peut être effectuée, par exemple, par un mélange 15 de DMF contenant 20% de pipéridine. L'étape 4) sera de préférence effectuée dans un solvant tel que le diméthylformamide ou le dichlorométhane, l'isothiocyanate étant de préférence ajouté en une proportion de 5 à 10 équivalents par équivalent de résine obtenue à l'étape 3). Dans l'étape 5), les conditions acides peuvent par exemple être créées en utilisant un mélange dichlorométhane / acide trifluoroacétique à 50 %, lesdites 20 conditions acides étant de préférence maintenues pendant une durée de l'ordre de 1 à 2 heures. Dans l'étape 6), les conditions basiques peuvent par exemple être créées en utilisant une solution saturée en hydrogénocarbonate de sodium ou par élution sur une cartouche d'alumine basique.
- L'invention a également pour objet, à titre de médicaments, les composés de formules générales (I) et (II) décrits précédemment ou leurs sels pharmaceutiquement acceptables. Elle concerne aussi des compositions pharmaceutiques comprenant lesdits composés ou leurs sels pharmaceutiquement acceptables, et leur utilisation pour la préparation d'un médicament destiné à traiter les états pathologiques ou les maladies dans lesquels un (ou plusieurs) des récepteurs de la somatostatine est (sont) impliqué(s).
 - En particulier, les composés de formules générales (I) et (II) décrits précédemment ou leurs sels pharmaceutiquement acceptables pourront être utilisés pour la préparation d'un médicament destiné à traiter les états pathologiques ou les maladies choisis parmi le groupe composé des états pathologiques ou des maladies qui suivent : l'acromégalie, les adénomes hypophysaires, la maladie de Cushing, les gonadotrophinomes et les

10

15

20

25

30

35

prolactinomes, les effets secondaires cataboliques des glucocorticoïdes, le diabète insulinodépendant, la rétinopathie diabétique, la néphropathie diabétique, le syndrome X, le phénomène de Dawn, l'angiopathie, l'angioplastie, l'hyperthyroïdie, le gigantisme, les tumeurs gastroentéropancréatiques endocriniennes dont le syndrome carcinoïde, le VIPome, l'insulinome, la nésidioblastose, l'hyperinsulinémie, le glucagonome, le gastrinome et le syndrome de Zollinger-Ellison, le GRFome ainsi que le saignement aigu des varices œsophagiennes, les ulcères, le reflux gastroœsophagien, le reflux gastroduodénal, la pancréatite, les fistules entérocutanées et pancréatiques mais aussi les diarrhées, les diarrhées réfractaires du syndrome d'immunodépression acquise, la diarrhée chronique sécrétoire, la diarrhée associée avec le syndrome de l'intestin irrité, les diarrhées induites par la chimiothérapie, les troubles liés au peptide libérateur de gastrine, les pathologies secondaires aux greffes intestinales, l'hypertension portale ainsi que les hémorragies des varices chez des malades avec cirrhose, l'hémorragie gastro-intestinale, l'hémorragie de l'ulcère gastroduodénale, le saignement des vaisseaux greffés, la maladie de Crohn, les scléroses systémiques, le dumping syndrome, le syndrome du petit intestin, l'hypotension, la sclérodermie et le carcinome thyroïdien médullaire, les maladies liées à l'hyperprolifération cellulaire comme les cancers et plus particulièrement le cancer du sein, le cancer de la prostate, le cancer thyroïdien ainsi que le cancer pancréatique et le cancer colorectal, les fibroses et plus particulièrement la fibrose du rein, la fibrose du foie, la fibrose du poumon, la fibrose de la peau, également la fibrose du système nerveux central ainsi que celle du nez et la fibrose induite par la chimiothérapie, et, dans d'autres domaines thérapeutiques, les céphalées y compris les céphalées associées aux tumeurs hypophysaires, les douleurs, les désordres inflammatoires comme l'arthrite, les accès de panique, la chimiothérapie, la cicatrisation des plaies, l'insuffisance rénale résultant d'un retard de croissance, l'hyperlipidémie, l'obésité et le retard de croissance lié à l'obésité, le retard de croissance utérin, la dysplasie du squelette, le syndrome de Noonan, le syndrome d'apnée du sommeil, la maladie de Graves, la maladie polykystique des ovaires, les pseudokystes pancréatiques et ascites, la leucémie, le méningiome, la cachexie cancéreuse, l'inhibition des H pylori, le psoriasis, le rejet chronique des allogreffes ainsi que la maladie d'Alzheimer et enfin l'ostéoporose.

De préférence, les composés de formules générales (I) et (II) décrits précédemment ou leurs sels pharmaceutiquement acceptables pourront être utilisés pour la préparation d'un médicament destinés à traiter les états pathologiques ou les maladies choisis parmi le groupe composé des états pathologiques ou des maladies qui suivent : l'acromégalie, les adénomes hypophysaires ou les tumeurs gastroentéropancréatiques endocriniennes dont le syndrome carcinoïde, et les saignements gastro-intestinaux.

10

15

Par sel pharmaceutiquement acceptable, on entend notamment des sels d'addition d'acides inorganiques tels que chlorhydrate, sulfate, phosphate, diphosphate, bromhydrate et nitrate ou d'acides organiques tels que acétate, maléate, fumarate, tartrate, succinate, citrate, lactate, méthane sulfonate, p-toluènesulfonate, pamoate, oxalate et stéarate. Entrent également dans le champ de la présente invention, lorsqu'ils sont utilisables, les sels formés à partir de bases telles que l'hydroxyde de sodium ou de potassium. Pour d'autres exemples de sels pharmaceutiquement acceptables, on peut se référer à "Pharmaceutical salts", *J. Pharm. Sci.* 66:1 (1977).

La composition pharmaceutique peut être sous forme d'un solide, par exemple des poudres, des granules, des comprimés, des gélules, des liposomes ou des suppositoires. Les supports solides appropriés peuvent être, par exemple, le phosphate de calcium, le stéarate de magnésium, le talc, les sucres, le lactose, la dextrine, l'amidon, la gélatine, la cellulose, la cellulose de méthyle, la cellulose carboxyméthyle de sodium, la polyvinylpyrrolidine et la cire. Les suspensions comprendront en particulier les suspensions de microparticules à libération prolongée chargées en principe actif (notamment des microparticules en polylactide-co-glycolide ou PLGA - cf. par exemple les brevets US 3,773,919, EP 52 510 ou EP 58 481 ou la demande de brevet PCT WO 98/47489), lesquelles permettent l'administration d'une dose journalière déterminée sur une période de plusieurs jours à plusieurs semaines.

- Les compositions pharmaceutiques contenant un composé de l'invention peuvent aussi se présenter sous forme liquide, par exemple, des solutions, des émulsions, des suspensions ou des sirops. Les supports liquides appropriés peuvent être, par exemple, l'eau, les solvants organiques tels que le glycérol ou les glycols, de même que leurs mélanges, dans des proportions variées, dans l'eau.
- L'administration d'un médicament selon l'invention pourra se faire par voie topique, orale, parentérale, par injection intramusculaire, etc.

La dose d'administration envisagée pour médicament selon l'invention est comprise entre 0,1 mg à 10 g suivant le type de composé actif utilisé.

Ces composés peuvent être préparés selon les méthodes décrites ci-après.

10

15

PREPARATION DES COMPOSES DE L'INVENTION

I) Préparation d'α-bromocétones

PREMIERE METHODE

Cette méthode s'inspire des protocoles décrits dans les publications suivantes: Macholan, L.; Skursky, L. Chem. Listy 1955, 49, 1385-1388; Bestman, H.J.; Seng, F. Chem. Ber. 1963, 96, 465-469; Jones, R.G.; Kornfeld, E.C.; McLaughlin, K.C. J. Am. Chem. Soc. 1950, 72, 4526-4529; Nimgirawath, S.; Ritchie, E.; Taylor, W.C. Aust. J. Chem. 1973, 26, 183-193).

Un acide carboxylique est tout d'abord converti en un chlorure d'acide en utilisant du chlorure d'oxalyle ou de thionyle, ou en l'activant sous forme d'un anhydride à l'aide d'un chloroformiate d'alkyle (par exemple un chloroformiate d'isobutyle, cf. Krantz, A.; Copp, L.J. *Biochemistry* 1991, 30, 4678-4687; ou un chloroformiate d'éthyle, cf. Podlech, J.; Seebach, D. *Liebigs Ann.* 1995, 1217-1228) en présence d'une base (triéthylamine ou N-méthylmorpholine).

Le groupe carboxyle activé est ensuite transformé en diazocétone à l'aide de diazométhane en solution éthérée ou d'une solution commerciale de triméthylsilyldiazométhane (Aoyama, T.; Shiori, T. *Chem. Pharm. Bull.* 1981, 29, 3249-3255) dans un solvant aprotique comme le diéthyléther, le tétrahydrofuranne (THF) ou l'acétonitrile.

La bromation est ensuite effectuée en utilisant un agent bromant comme l'acide hydrobromique dans l'acide acétique, l'acide hydrobromique aqueux dans le diéthyléther ou le dichlorométhane.

15

Préparation 1

2-(4-bromo-3-oxobutyl)-1H-isoindole-1,3(2H)-dione ($C_{12}H_{10}BrNO_3$, MM = 296,12):

Du chlorure d'oxalyle (5,8 ml; 66,7 mmol) est ajouté à Pht-β-Ala-OH (9,96g; 44,5 mmol) dissous dans du dichlorométhane (120ml) et 3 diméthylformamide (DMF). Le mélange est agité pendant 3 heures à température ambiante. Après élimination du solvant, le solide blanc est repris dans un mélange 1:1 de tétrahydrofuranne anhydre et d'acétonitrile (200 ml) puis 49 ml de solution de (triméthylsilyl)diazométhane 2M dans l'hexane (97,9 mmol) sont ajoutés goutte à goutte à 0 °C. Les solvants sont éliminés après une nuit sous agitation à 0 °C. Le solide jaune pâle est alors dissous dans du dichlorométhane (60 ml) et 12 ml d'acide hydrobromique acqueux (48%) sont ajoutés goutte à goutte à 0 °C. Le mélange est agité jusqu'à ce que la température remonte à 15 °C et 50 ml de solution saturée en bicarbonate de sodium sont ajoutés. La phase organique est lavée avec de la saumure puis séchée sur du sulfate de sodium. La cristallisation dans du diéthyléther permet d'obtenir un solide blanc (11,39 g; rendement = 86%).

RMN ¹H (DMSO D6, 100 MHz, δ): 7,83 (s, 4H); 4,36 (s, 2H, CH₂Br); 3,8 (t, 2H, J = 7,1 Hz, NCH₂); 2,98 (t, 2H, J = 6,9 Hz, CH₂CO).

Préparations 2-11

Les composés suivants ont été préparés de façon analogue à la procédure décrite dans la Préparation 1 :

Prép.	R3	Rendt. (%)	Prép.	R3	Rendt. (%)
2*		78	7		67
3*		60	8	CF ₃	51
4*	*	10	9		38
5*	~	69	10		22
6*		41	11		67

^{*} Composés déjà décrits dans la littérature.

DEUXIEME METHODE

5 Le produit de départ est une arylméthylcétone ou une hétéroarylméthylcétone.

L'arylméthylcétone ou l'hétéroarylméthylcétone de départ est convertie en l' α -bromocétone correspondante en utilisant différents agents bromants :

- CuBr₂ (King, L.C.; Ostrum, G.K. *J. Org. Chem.* **1964**, *29*, 3459-3461) chauffé dans de l'acétate d'éthyle ou du dioxane;
- du N-bromosuccinimide dans CCl₄ ou de l'acétonitrile aqueux (Morton, H.E.; Leanna, M.R. *Tetrahedron Lett.* **1993**, *34*, 4481-4484);
 - du brome dans de l'acide acétique glacial ou de l'acide sulfurique;
 - du tribromure de phényltriméthylammonium (Sanchez, J. P.; Parcell, R. P. J. Heterocyclic Chem, 1988, 25, 469-474) à 20-80 °C dans un solvant aprotique comme le THF ou du tribromure de tétrabutylammonium (Kajigaeshi, S.; Kakinami, T.; Okamoto, T.; Fujisaki, S. Bull. Chem. Soc. Jpn. 1987, 60, 1159-1160) dans un mélange dichlorométhane/méthanol à température ambiante;
 - agent bromant sur un support polymère comme du perbromure sur une résine Amberlyst A-26, poly(perbromure d'hydrobromure de vinylpyridinium) (Frechet, J. M.
- J.; Farrall, M. J. J. Macromol. Sci. Chem. 1977, 507-514) dans un solvant protique comme le méthanol à environ 20-35 °C pendant environ 2-10 h.

Préparation 12

 $1-(1-benzofuran-2-yl)-2-bromo-1-\acute{e}thanone$ (C₁₀H₇BrO₂, MM = 239,06) :

A une solution de (benzofuran-2-yl)méthylcétone (2 g; 12,5 mmol) dans du méthanol (40 ml) est ajouté un polymère de perbromure d'hydrobromure de pyridine (8,75 g; 17,5 mmol; 1,4 équivalent). Le mélange résultant est agité à température ambiante pendant 7 heures et la réaction est arrêtée par filtration. Le méthanol est éliminé sous pression réduite et une addition supplémentaire de diéthyléther permet la cristallisation du produit attendu (3,6 g; rendement = 60%).

RMN ¹H (DMSO D6, 100 MHz, δ): 8,09 (s, 1H); 7,98 (d, 1H, J = 6,6 Hz); 7,75 (d, 1H, J = 8,4 Hz); 7,58 (t, 1H, J = 8,4 Hz); 7,4 (t, 1H, J = 7 Hz); 4,83 (s, 2H, CH₂Br).

Préparations 8-12

Les composés suivants ont été préparés de façon analogue à la procédure décrite dans la Préparation 12 :

Prép.	R3	Durée	Rendt. (%)
		de réaction (h)	
13*		8	78
14*		2	62
15*	Br S	10	56
16*	MeO ** MeO OMe	2	53
17*		3	95
18	F *	8	27

^{*} Composé déjà décrit dans la littérature.

II) Synthèse de 2-arylimino-2,3-dihydrothiazoles via synthèse sur phase solide

5 Préparation de la résine p-nitrophénylcarbonate de Wang

10

15

Cette résine a été préparée à partir de résine de Wang, acquise auprès de Bachem ou Novabiochem avec une charge supérieure à 0,89 mmol/g, par une procédure générale bien décrite (cf. Bunin, B.A. *The Combinatorial Index*, Academic Press, 1998, p. 62-63; Dressman, B.A.; Spangle, L.A.; Kaldor, S.W. *Tetrahedron Lett.* 1996, 37, 937-940; Hauske, J.R.; Dorff, P. *Tetrahedron Lett.* 1995, 36, 1589-1592; Cao, J.; Cuny, G.D.; Hauske, J.R. *Molecular Diversity* 1998, 3, 173-179): de la N-méthylmorpholine ou de la pyridine comme base et du 4-nitrophénylchloroformiate sont successivement ajoutés à une résine de Wang pré-gonflée dans du dichlorométhane (DCM) ou du tétrahydrofuranne (THF) à température ambiante. Le mélange est agité pendant la nuit. La résine est alors lavée successivement avec du THF, du diéthyléther et du DCM puis séchée sous pression réduite à 50 °C pendant une nuit.

METHODE A

Préparation de diamines symétriques monoprotégées

Procédure générale: comme déjà décrit dans la littérature (Dixit, D.M.; Leznoff, C.C. *J. C. S. Chem. Comm.* 1977, 798-799; Dixit, D.M.; Leznoff, C.C. *Israel J. Chem.* 1978, 17, 248-252; Kaljuste K.; Unden, A. *Tetrahedron Lett.* 1995, 36, 9211-9214; Munson, M.C.; Cook, A.W.; Josey, J.A.; Rao, C. *Tetrahedron Lett.* 1998, 39, 7223-7226), une résine p-nitrophénylcarbonate de Wang est traitée avec un large excès de diamine symétrique (10-20 équivalents), dans un solvant aprotique comme le DCM ou le DMF, pour donner une résine diamine monoprotégée après agitation pendant la nuit.

20 Préparation de résines thiourées

Procédure générale: des isothiocyanates aromatiques et hétéroaromatiques (5-10 équivalents) sont ajoutés (Smith, J.; Liras, J.L.; Schneider, S.E.; Anslyn, E.V. J.

10

15

20

Org. Chem. 1996, 61, 8811-8818) à des diamines symétriques monoprotégées dans un solvant comme le DCM ou le DMF agité pendant la nuit à température ambiante. Lavée successivement avec du DMF et du DCM, la résine thiourée est isolée puis séchée sous pression réduite à 50 °C pendant une nuit.

Préparation 19

Résine de Wang carbamate de (phénylaminothioyl)éthyle

A une résine de Wang N-carbamate d'éthylène diamine (2 g; 1,72 mmol; 0,86 mmol/g) gonflée dans du DCM (50 ml) est ajouté du phénylisothiocyanate (1 ml; 8,5 mmol; 5 éq.). Après agitation une nuit à température ambiante, la résine est lavée successivement avec du DMF (5 x 20 ml) et du DCM (5 x 20 ml). La réussite du couplage est suivie à l'aide du test ninhydrine de Kaiser (Kaiser, E.; Colescott, R.L.; Bossinger, C.D.; Cook, P.I. *Anal. Biochem.* 1970, 34, 595-598). Une résine jaune pâle (1,79 g) est obtenue avec une charge de 0,648 mmol/g calculée à partir de l'analyse élémentaire du soufre.

Synthèse de 2-arylimino-2,3-dihydrothiazoles

Procédure générale: l'étape de cyclisation régiosélective (Korohoda, M.J.; Bojarska, A.B. *Polish J. Chem.* **1984**, *58*, 447-453; Ragab, F.A.; Hussein, M.M.; Hanna, M.M.; Hassan, G.S.; Kenawy, S.A. *Egypt. J. Pharm. Sci.* **1993**, *34*, 387-400; Hassan, H.Y.; El-Koussi, N.A.; Farghaly, Z.S. *Chem. Pharm. Bull.* **1998**, *46*, 863-866) a lieu dans des solvants aprotiques comme le dioxane ou le DMF à 80 °C pendant

2-3 heures entre la résine thiourée et l'α-bromocétone (2-5 équivalents). La résine est alors lavée successivement avec du DMF, du méthanol et du DCM puis séchée sous pression réduite. La résine 2-arylimino-2,3-dihydrothiazole est clivée dans des conditions acides (DCM/acide trifluoroacétique à 50%) pendant 1-2 heures puis rincée avec du DCM. Le solvant est évaporé et la base libre isolée après traitement dans des conditions basiques (solution saturée en hydrogénocarbonate de sodium), extraction avec du DCM ou élution avec du méthanol dans une cartouche d'alumine basique (500 mg, Interchim).

Exemple 1

10 $N-[3-(2-amino\acute{e}thyl)-4-(4-chloroph\acute{e}nyl)-1,3-thiazol-2(3H)-ylid\grave{e}ne]aniline$ (C₁₇H₁₆ClN₃S, MM = 329,86) :

15

20

A la résine thiourée préparée ci-dessus (100 mg; 64,8 μmol; charge de 0,648 mmol/g) est ajoutée de la 2-bromo-4'-chloroacétophénone (30,2 mg; 129 μmol; 2 éq.) dissoute dans du DMF (1 ml). Le mélange est agité 2 heures à 80 °C. La résine est alors successivement lavée avec du DMF (3 x 2 ml), du méthanol (3 x 2 ml) et du DCM (3 x 2 ml). L'étape de libération, effectuée dans 1 ml de mélange DCM/acide trifluoroacétique à 50%, donne après une heure et demie d'agitation une huile qui est éluée avec du méthanol dans une cartouche d'alumine basique (500 mg, Interchim). La base libre est isolée de façon quantitative (21,3 mg) sous forme d'une huile jaune ayant une pureté mesurée par spectrophotométrie UV de 98% à 220 nm.

RMN ¹H (DMSO D6, 100 MHz) δ : 7,55 (s, 5H); 7,3 (d, 2H, J = 7,1 Hz); 6,99 (d, 2H, J = 7,1 Hz); 6.21 (s, 1H, H azole); 3,74 (t, 2H, J = 6,2 Hz, NCH₂); 3,32 (s large, 2H, NH₂); 2.72 (t, 2H, J = 6,2 Hz, NCH₂). SM/CL : m/z = 330 (M+H)⁺.

Une série de 2-arylimino-2,3-dihydrothiazoles a été synthétisée selon la méthode A à l'aide de notre système robotique (ACT MOS 496) :

Groupes R1:

5 Groupes R2:

[CI, Br, F, CF
$$_3$$
, O Me, Me, NO $_2$]
$$\begin{tabular}{c} \cline{1mm} \cline$$

[a, F, Me]

Groupes R3:

R4 représente H, alkyle, aralkyle carbocyclique ou hétérocyclique éventuellement situé sur le radical aryle ;

5 dans laquelle i représente un entier de 1 à 3;

étant entendu que pour R4, lorsque le groupe aryle est substitué, il peut l'être de 1 à 5 fois (outre la liaison qui le relie au reste de la molécule) par des radicaux choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle ou alkoxy.

METHODE B

10 Préparation de résines de Wang carbamates à partir d'aminoalkylanilines

10

15

20

Procédure générale : comme déjà décrit (Hulme, C.; Peng, J.; Morton, G.; Salvino, J.M.; Herpin, T.; Labaudiniere, R. *Tetrahedron Lett.* **1998**, *39*, 7227-7230), une résine de Wang p-nitrophénylcarbonate est traitée avec un excès d'aminoalkylaniline (5-10 éq.) dans du DCM ou du DMF et agitée à température ambiante durant une nuit. La résine est lavée successivement avec du DMF, du méthanol et du DCM puis séchée une nuit sous pression réduite à 50 °C.

Préparation 20

Résine de Wang carbamate de 4-aminophényléthyle

$$\bigcirc$$

A une résine de Wang p-nitrophénylcarbonate (4,05 g; 3,47 mmol; charge de 0,857 mmol/g) pré-gonflée dans 50 ml de DMF anhydre est ajoutée une solution de 2-(4-aminophényl)éthylamine (2,48 g; 17,3 mmol; 5 éq.) dans 30 ml de DMF anhydre. Le mélange est agité à température ambiante durant une nuit et filtré. La résine est lavée successivement avec du DMF (10 x 30 ml), du méthanol (5 x 30 ml) et du DCM (5 x 30 ml). 3,7 g de résine jaune (charge de 0,8 mmol/g calculée à partir de l'analyse élémentaire de l'azote), donnant un test ninhydrine de Kaiser positif, sont isolés après séchage une nuit sous pression réduite à 50 °C.

Préparation de résines thiourées avec des isothiocyanates aliphatiques

Procédure générale : des isothiocyanates aliphatiques (5-10 équivalents) sont ajoutés à une résine aminoalkylaniline dans un solvant comme le DCM ou le DMF et agités à température ambiante durant une nuit. Lavée successivement avec du DMF et du DCM, la résine thiourée est isolée et séchée sous pression réduite à 50 °C pendant une nuit.

Préparation 21

Résine de Wang carbamate de 4-{[(phényléthylamino)carbothioyl]amino}-phényléthyle

10

15

10 ml de DMF anhydre et du phényléthylisothiocyanate (624 μl, 4 mmol, 10 éq.) sont ajoutés sous atmosphère d'argon à la résine précédemment décrite (0,5 g; 0,4 mmol; charge de 0,8 mmol/g). L'agitation durant une nuit à température ambiante donne un test ninhydrine de Kaiser négatif. La résine est alors successivement lavée avec du DMF (5 x 20 ml) et du DCM (5 x 20 ml). Un séchage sous pression réduite à 50 °C donne 488 mg de résine avec une charge de 0,629 mmol/g calculée à partir de l'analyse élémentaire du soufre.

Synthèse de 2-arylimino-2,3-dihydrothiazoles

Procédure générale : l'étape de cyclisation a lieu dans des solvants aprotiques comme le dioxane ou le DMF à 80 °C pendant 2 heures entre la résine thiourée et l'α-bromocétone (2-5 équivalents). La résine est alors successivement lavée avec du DMF, du méthanol et du DCM puis séchée sous pression réduite. La résine iminothiazole est clivée par traitement dans des conditions acides (DCM/acide trifluoroacétique à 50%) pendant 1-2 heures puis rincée avec du DCM. Le solvant est évaporé et la base libre isolée après extraction dans des conditions basiques (solution saturée en hydrogénocarbonate de sodium), extraction avec du DCM ou élution avec du méthanol dans une cartouche d'alumine basique (500 mg, Interchim).

10

15

Exemple 2

4-(2-aminoéthyl)-N-[4-(4-chlorophényl)-3-phénéthyl-1,3-thiazol-2(3H)-ylidène]aniline (C₂₅H₂₄ClN₃S, MM = 434,01) :

100 mg (62,9 μmol, charge de 0,629 mmol/g) de résine thiourée et de la 2-bromo-4'-chloroacétophénone (30 mg; 125,8 μmol; 2 éq.) sont dissous dans 1 ml de DMF et chauffés à 80 °C pendant 2 heures. La résine est alors lavée successivement avec du DMF (5 x 1 ml), du méthanol (5 x 1 ml) et du DCM (5 x 1 ml). La résine est agitée dans 1 ml de mélange DCM/acide trifluoroacétique à 50% pendant une heure et demie à température ambiante. La résine est rincée avec du DCM (5 x 1 ml) et le filtrat évaporé sous pression réduite. Le résidu, dissous dans du méthanol, est élué dans une cartouche d'alumine basique (500 mg, Interchim) pour donner quantitativement (27,3 mg) le produit attendu sous forme d'un solide (pureté UV de 97% à 220 nm).

RMN ¹H (DMSO D6, 100 MHz) δ : 7,9 (s large, 2H, NH₂); 7,53 (d, 2H, J = 8,5 Hz); 7,32-7,15 (m, 7H); 7,08-6,9 (m, 4H); 6,37 (s, 1H, H azole); 4,07 (m, 2H, NCH₂); 3,03 (m, 2H, NCH₂); 2,88 (m, 4H). SM/LC: m/z = 435 (M+H)⁺.

Une série de 2-arylimino-2,3-dihydrothiazoles a été synthétisée selon la méthode B avec notre système robotique (ACT MOS 496):

- Groupes R1

- Groupes R3 et R4 comme ceux de la méthode A

10

15

20

METHODE C

Synthèse de 2-arylimino-1,3-thiazole-4(3H)-carboxamides

Procédure générale: une étape de cyclisation régiosélective à l'aide d'acide α-bromopyruvique (2-5 éq.) est effectuée à partir de la résine thiourée préparée dans la méthode A dans des solvants aprotiques comme le dioxane ou le DMF à 80 °C durant 2-3 heures. La résine est alors successivement lavée avec du DMF, du méthanol et du DCM puis séchée sous pression réduite. Le couplage peptidique (Knorr, R.; Trzeciak, A.; Bannwarth, W.; Gillessen, D. Tetrahedron Lett. 1989, 30, 1927-1930) a lieu dans le DMF à température ambiante pendant 1-24 heures avec différents agents de couplage classiques (4-5)éq.) comme le dicyclohexylcarbodiimide (DCC). le diisopropylcarbodiimide (DIC), un mélange DIC/N-hydroxybenzotriazole (HOBt), l'hexafluorophosphate de benzotriazolyloxytris(diméthylamino)phosphonium (PyBOP), l'hexafluorophosphate de 2-(1*H*-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (HBTU) ou le tétrafluoroborate de 2-(1*H*-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (TBTU) et des composés aminés (4-5 éq.). La résine 2-arylimino-1,3-thiazole-4(3H)carboxamide est clivée par traitement dans des conditions acides (DCM/acide trifluoroacétique à 50%) pendant 1-2 heures puis rinçage avec du DCM. Le solvant est évaporé et la base libre isolée après traitement dans des conditions basiques (solution saturée en hydrogénocarbonate de sodium), extraction avec du DCM ou élution avec du méthanol dans une cartouche d'alumine basique (500 mg, Interchim).

10

15

20

Exemple 3

3-(4-aminobutyl)-N-benzhydryl-2-[(4-bromophényl)imino]-1,3-thiazole-4(3H)-carboxamide ($C_{27}H_{27}BrN_4OS$, MM = 535,51):

50 mg (27,5 μmol, charge de 0,55 mmol/g) de résine acide carboxylique est activée pendant 15 minutes avec 14,8 mg (0,11 mmol, 4 éq.) de N-hydroxybenzotriazole et 35,3 mg (0,11 mmol, 4 éq.) de TBTU dans 800 μl de DMF anhydre. 20,7 mg (0,11 mmol, 4 éq.) d'aminodiphénylméthane dissous dans 200 μl de DMF anhydre sont alors ajoutés et la résine est filtrée après agitation durant une nuit à température ambiante. Un lavage séquentiel avec du DMF (5 x 1 ml), du méthanol (5 x 1 ml) et du DCM (5 x 1 ml) donne une résine qui est traitée pendant une heure et demie dans des conditions acides (DCM/acide trifluoroacétique à 50 %). La résine est rincée avec du DCM (5 x 1 ml) et le filtrat évaporé sous pression réduite. Le résidu, repris dans du méthanol, est élué dans une cartouche d'alumine basique (500 mg, Interchim) pour donner un solide jaune pâle (8,2 mg; rendement de 55,7 %; pureté UV de 94 % à 220 nm).

RMN ¹H (DMSO D6, 100 MHz, δ): 9,6 (d; 1H; J = 8,6Hz; NH); 7,49 (d; 2H; J = 8,6 Hz); 7,35 (s; 10H); 6,92 (s; 1H; H azole); 6,91 (d; 2H; J = 8,5 Hz); 6,27 (d; 1H; J = 8,5 Hz; NHCH); 4,02 (m; 2H; NCH₂); 3,45 (m large; 2H+2H; NH₂ et NCH₂); 1,55–1,24 (m large; 4H). SM/CL: m/z = 535 (M+H).

Une série de 2-arylimino-1,3-thiazole-4(3H)-carboxamides a été synthétisée selon la méthode C à l'aide de notre système robotique (ACT MOS 496) :

- Groupes R1 et R2 déjà décrits dans la méthode A;
- -R3 = -CO-R5;
- -R4 = H;

- Groupes R5

[H, F]

[H, OMe]

METHODE D

Synthèse de 2-arylimino-1,3-thiazole-4(3*H*)-carboxamides

Procédure générale: une étape de cyclisation régiosélective à l'aide d'acide α -bromopyruvique (2-5 éq.) est effectuée à partir de la résine thiourée préparée dans la méthode B dans des solvants aprotiques comme le dioxane ou le DMF à 80 °C durant

WO 01/07424 PCT/FR00/02095 - 80 -

5

10

15

2-3 heures. La résine est alors successivement lavée avec du DMF, du méthanol et du DCM puis séchée sous pression réduite. Le couplage peptidique (Knorr, R.; Trzeciak, A.; Bannwarth, W.; Gillessen, D. Tetrahedron Lett. 1989, 30, 1927-1930) a lieu dans le DMF à température ambiante pendant 1-24 heures avec différents agents de couplage (4-5)classiques éq.) comme le dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), un mélange DIC/N-hydroxybenzotriazole (HOBt), l'hexafluorophosphate de benzotriazolyloxytris(diméthylamino)phosphonium (PyBOP), l'hexafluorophosphate de 2-(1*H*-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (HBTU) ou le tétrafluoroborate de 2-(1H-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (TBTU) et des composés aminés (4-5 éq.). La résine 2-arylimino-1,3-thiazole-4(3H)carboxamide est clivée par traitement dans des conditions acides (DCM/acide trifluoroacétique à 50%) pendant 1-2 heures puis rincage avec du DCM. Le solvant est évaporé et la base libre isolée après traitement dans des conditions basiques (solution saturée en hydrogénocarbonate de sodium) suivi d'une extraction avec du DCM ou élution avec du méthanol dans une cartouche d'alumine basique (500 mg, Interchim).

10

15

20

Exemple 4

(2Z)-2-{[4-(2-aminoéthyl)phényl]imino}-N-(4-chlorobenzyl)-3-(2-phényléthyl)-2,3-dihydro-1,3-thiazole-4-carboxamide ($C_{27}H_{27}ClN_4OS$, MM = 491,05):

A 200 mg (190 µmol, charge de 0,946 mmol/g) de résine aminée (voir préparation 20) est ajouté du phényléthylisothiocyanate (310 mg; 1,9 mmol; 10 éq.) dans 3 ml de diméthylformamide. L'agitation durant une nuit à température ambiante donne un test ninhydrine de Kaiser négatif. La résine est alors successivement lavée avec du DMF (5 x 3 ml) et du DCM (5 x 3 ml) puis séchée sous vide pendant une heure avant d'ajouter l'acide bromopyruvique (63,4 mg; 380 µmol; 2 éq.) préalablement dilué dans 3 ml de diméthylformamide. Le mélange est agitée pendant 2,5 heures à 80°C. Filtrer et laver la résine au DMF (5 x 3 ml), méthanol (3 x 3 ml) puis DCM (5 x 3 ml). La résine acide carboxylique est préactivée pendant 1 heure avec 244 mg (0,76 mmol; 4 éq.) de TBTU dilué dans 2 ml de DMF anhydre. 110 mg (0,76 mmol; 4 éq.) de 4chlorobenzylamine dissous dans 1 ml de DMF anhydre sont alors ajoutés et la résine est filtrée après une nuit d'agitation à température ambiante. Un lavage séquentiel avec du DMF (5 x 3 ml), du méthanol (3 x 3 ml) et du DCM (3 x 3 ml) donne une résine qui est traitée pendant une heure et demie dans des conditions acides (DCM/acide trifluoroacétique à 50 %). La résine est rincée avec du DCM (5 x 1 ml) et le filtrat évaporé sous pression réduite. Le résidu, repris dans du DCM, est neutralisé avec une solution saturée d'hydrogénocarbonate de sodium pour donner après évaporation un solide (38,2 mg; rendement de 41%; pureté UV de 90% à 210 nm).

RMN ¹H (DMSO D6, 400 MHz, δ): 9,1 (m, 1H); 7,39 (d, 2H, J = 8,4 Hz); 7,33 (d, 2H, J = 8,4 Hz); 7,25 (q, 2H, J = 6,8 Hz); 7,19 (q, 1H, J = 7,2 Hz); 7,11 (m, 4H); 6,8 (d, 2H, J = 8 Hz); 6,75 (s, 1H, *H* azole); 4,34 (d, 2H, J = 6 Hz); 4,27 (t, 2H, J = 6,8 Hz); 3,14 (m, 1H); 2,89 (t, 2H, J = 6,8 Hz); 2,73 (t, 1H, J = 7,2 Hz); 2,62 (m, 2H). SM/CL: m/z = 491,24 (M+H)⁺.

Une série de 2-arylimino-1,3-thiazole-4(3H)-carboxamides a été synthétisée selon la méthode D à l'aide de notre système robotique (ACT MOS 496):

- Groupes R1 et R2 déjà décrits dans la méthode B
- R3 = -CO-R5
- R4 = H
- Groupes R5 déjà décrits dans la méthode C.

METHODE E

10

15

Préparation de résine diamine monoprotégée fonctionnalisée avec l'acide α-5 bromopyruvique

Procédure générale : la résine diamine primaire ou secondaire symétrique monoprotégée (dont la préparation est déjà décrite dans la méthode A) est fonctionnalisée par couplage peptidique avec l'acide α-bromopyruvique (10 éq.), le DIC (10 éq.) et l'HOBt (10 éq.) dans un solvant tel que le DMF à température ambiante. La résine est successivement lavée au DMF puis au DCM après 2 à 24 heures d'agitation avant d'être séchée sous vide. Le test ninhydrine de Kaiser négatif indique une fonctionnalisation complète.

Préparation 22

Résine de Wang N-carbamate de 2-[(3-bromo-2-oxopropanoyl)amino]éthyle

L'HOBt (0,93 g, 6,88 mmol) et l'acide α-bromopyruvique (1,18 g, 6,88 mmol) sont dissous dans 28 ml de DMF (0,5 M). Le DIC (1,07 ml; 6,88 mmol) est ensuite additionné à la seringue pour activer l'acide. Le mélange est agité mélange environ 15

10

15

minutes à température ambiante avant de l'ajouter à la résine de Wang N-carbamate d'éthylène diamine (0,8 g; 0,688 mmol; taux de charge de 0,86 mmol/g). Après 3 heures d'agitation à température ambiante, le test ninhydrine de Kaiser étant négatif, la résine est filtrée et lavée successivement au DMF (5 x 20 ml) puis au DCM (5 x 20 ml) avant d'être séchée sous vide. Une résine ocre (0,812 g) est obtenue avec un taux de charge de 0,525 mmol/g calculé à partir de l'analyse élémentaire du brome.

Synthèse de 2-arylimino-1,3-thiazole-4(3H)-carboxamides

Procédure générale : la formation de la thiourée s'effectue dans un solvant tel que le DMF ou le dioxane en mélangeant une quantité équimolaire d'amine primaire et d'isothiocyanate aromatique ou hétéroaromatique. Après 2 à 24 heures d'agitation à température ambiante, la thiourée (2 à 5 éq.) est additionnée à la résine fonctionnalisée puis chauffée à 80°C pendant 2 à 4 heures. La résine 2-arylimino-1,3-thiazole-4(3H)-carboxamide est clivée par traitement dans des conditions acides (DCM/acide trifluoroacétique à 50%) pendant 1-2 heures puis rinçage avec du DCM. Le solvant est évaporé et la base libre isolée après traitement dans des conditions basiques (solution saturée en hydrogénocarbonate de sodium), extraction avec du DCM ou élution avec du méthanol dans une cartouche d'alumine basique (500 mg, Interchim).

10

Exemple 5

(2Z)-N-(2-aminoéthyl)-3-[2-(3,4-diméthoxyphényl)éthyl]-2-(phénylimino)-2,3-dihydro-1,3-thiazole-4-carboxamide $(C_{22}H_{26}N_4O_3S, MM=426,54):$

18 μl (105 μmol; 2 éq.) de β-(3,4-diméthoxyphényl)éthylamine et 12,6 μl (105 μmol; 2 éq.) de phénylisothiocyanate sont agités dans 1 ml de DMF pendant 18 heures. La thiourée est ajoutée à 100 mg (52,5 μmol; taux de charge de 0,525 mmol/g) de résine (préparation 22) et le mélange chauffé à 80°C pendant 3 heures. La résine est alors filtrée puis lavée successivement avec du DMF (5 x 1 ml), du méthanol (5 x 1 ml) puis du DCM (5 x 1 ml). Sécher la résine sous vide avant d'ajouter 1 ml de mélange DCM/TFA 50%. On agite 1,5 heures à température ambiante, filtre et rince la résine au DCM. Le résidu récupéré après évaporation est ensuite élué avec du méthanol dans une cartouche d'alumine basique pour isoler 22,2 mg (rendement quantitatif; pureté UV de 93,4% à 230 nm) de solide marron correspondant à l'amine libre.

RMN ¹H (DMSO D6, 100 MHz, δ): 8,42 (m, 1H, N*H*); 7,32 (t, 2H, J = 7,1 Hz); 7,08-6,63 (m, 6H); 5,76 (s, 1H, *H* azole); 4,31 (t, 2H, J = 6,6 Hz); 3,72 (s, 6H, OC*H*₃); 3,32 (s large, 2H); 3,17 (m, 2H); 2,89 (m, 2H); 2,62 (m, 2H). SM/CL: m/z = 427,17 (M+H)⁺.

Une série de 2-arylimino-1,3-thiazole-4(3H)-carboxamides a été synthétisée selon la méthode E à l'aide de notre système robotique (ACT MOS 496) :

- Groupes R1:

- Groupes R2 déjà décrits dans la méthode A
- R3 = -CO-R5
- R4 = H
- Groupes R5:

METHODE F

5

10

15

Préparation des résines diamines monoprotégées fonctionnalisées avec des acides aminés N-protégés (Fmoc)

Procédure générale: le couplage peptidique des résines diamines monoprotégées avec des acides aminés N-Fmoc (4 à 10 éq.) commercialement disponibles (Bunin, B.A. *The Combinatorial Index*, Academic Press, **1998**, p. 77-82) s'effectue dans le DMF à température ambiante pendant 1 à 24 heures avec différents agents de couplage classiques (4 à 10 éq.) tels que le dicyclohexylcarbodiimide (DCC), le diisopropylcarbodiimide (DIC), un mélange DIC/N-hydroxybenzotriazole (HOBt), l'hexafluorophosphate de benzotriazolyloxytris(diméthylamino)phosphonium (PyBOP), l'hexafluorophosphate de 2-(1*H*-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (HBTU) ou le tétrafluoroborate de 2-(1*H*-benzotriazol-1-yl)-1,1,3,3-tétraméthyluronium (TBTU). La résine est ensuite successivement lavée avec du DMF et du DCM. La séquence de couplage peut être répétée (1 à 2 fois) jusqu'à ce que le test ninhydrine de Kaiser soit négatif.

Préparation 23

Résine de Wang N-carbamate de 4-[({[(9H-fluoren-9-ylméthoxy)carbonyl]amino}acétyl)amino]butyle

L'acide Fmoc-Gly-OH (2,36 g, 7,94 mmol) est activé avec de l'HOBt (1,07 g, 7,94 mmol) et du DIC (1,25 ml, 7,94 mmol) dans 22 ml de DMF pendant 5 minutes avant

10

20

d'additionner le mélange à la résine de Wang N-carbamate de butylamine (1 g, taux de charge de 0,794 mmol/g) prégonflée dans 10 ml de DMF. Après 18 heures d'agitation à température ambiante, la résine est lavée successivement au DMF (5 x 20 ml) puis au DCM (5 x 20 ml) avant d'être séchée sous vide. 1,27 g de résine jaune pale est ainsi obtenu présentant un test ninhydrine de Kaiser négatif.

Préparation des résines thiourées

Procédure générale: une résine décrite ci-dessus est déprotégée avec un mélange DMF/pipéridine à 20%. Après une heure d'agitation à température ambiante, la résine est filtrée et lavée successivement au DMF puis au DCM. La séquence de déprotection/lavage est répétée une seconde fois et la résine est séchée sous vide. Cette dernière est prégonflée dans un solvant tel que le DMF ou le DCM puis un isothiocyanate aromatique ou hétéroaromatique (5 à 10 éq.) est ajouté. Le mélange est agité 2 à 24 heures à température ambiante avant de filtrer et laver la résine successivement au DMF puis au DCM. La résine est alors séchée sous vide et un test ninhydrine de Kaiser négatif confirme que la réaction de substitution est complète.

Préparation 24

15 Résine de Wang N-carbamate de 4-[({[(1-naphthylamino)carbothioyl]amino}acétyl)amino]butyle

1,27 g de résine ci-dessus (voir préparation 23) sont déprotégés avec 14 ml de DMF/pipéridine à 20%. Le mélange est agité une heure à température ambiante. La résine est alors filtrée puis lavée au DMF (5 x 30 ml) puis au DCM (5 x 30 ml). La séquence de déprotection/lavage est répétée une fois avant de sécher sous vide la résine. 0,781 g de résine jaune pale a ainsi été obtenue avec un taux de charge de 0,758 mmol/g

10

15

calculé d'après l'analyse élémentaire du soufre. A 0,3 g (0,22 mmol) de cette résine thiourée sont additionnés 416 mg (2,2 mmol, 10 éq.) de 1-naphthylisothiocyanate dilués dans 6 ml de DMF. Le mélange est agité 18 heures à température ambiante. La résine est filtrée puis lavée successivement au DMF (5 x 20 ml) puis au DCM (5 x 20 ml). 310 mg de résine jaune pale sont isolés après séchage sous vide avec un taux de charge de 0,66 mmol/g calculé d'après l'analyse élémentaire de l'azote.

Synthèse de 2-arylimino-2,3-dihydrothiazoles

Procédure générale : l'étape de cyclisation régiosélective s'effectue dans des solvants aprotiques comme le dioxane, le DMF ou la N-méthylpyrrolidinone à 80 °C pendant 2 à 3 heures entre la résine thiourée et l'α-bromocétone (2 à 5 éq.). La résine est alors lavée successivement avec du DMF, du méthanol et du DCM puis séchée sous pression réduite. La résine 2-arylimino-2,3-dihydrothiazole est clivée dans des conditions acides (DCM/acide trifluoroacétique à 50%) pendant 1 à 2 heures puis rincée avec du DCM. Le solvant est évaporé et la base libre isolée après traitement dans des conditions basiques (solution saturée en hydrogénocarbonate de sodium) suivi d'une extraction avec du DCM ou élution avec du méthanol dans une cartouche d'alumine basique (500 mg, Interchim).

Exemple 6

N-(4-aminobutyl)-2-((2Z)-4-(4-chlorophényl)-2-(1-naphthylimino)-1,3-thiazol-3(2H)-yl)acétamide ($C_{25}H_{25}ClN_4OS$, MM = 465,02) :

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

80 mg (52,8 μmol, taux de charge de 0,66 mmol/g) de résine thiourée (préparation 24) et 25,1 mg (105,6 mmol, 2 éq.) de 2-bromo-4'-chloroacétophénone sont dilués dans 1 ml de DMF. Le mélange est chauffé à 80°C pendant 2 heures. La résine est filtrée puis lavée avec du DMF (5 x 1 ml), du méthanol (5 x 1 ml) puis du DCM (5 x 1 ml) avant d'être séchée sous vide. On ajoute 1 ml de mélange DCM/TFA 50% et on agite pendant 1,5 heures. La résine est filtrée et rincée au DCM. Le filtrat est évaporé puis redilué dans du méthanol pour élution sur alumine basique. 20,6 mg (rendement de 84%; pureté UV de 94,2 % à 220 nm) de solide jaune sont ainsi isolés après évaporation correspondant à la base libre.

10 RMN ¹H (DMSO D6, 100 MHz, δ) : 8,36 (t, 1H, J = 4,7 Hz, NH); 8,12 (dd, 1H, J = 2,1 et 7,3 Hz); 7,87 (dd, 1H, J = 2,7 et 6,3 Hz); 7,63-7,34 (m, 8H); 7,13 (dd, 1H, J = 1,6 et 6,7 Hz); 6,33 (s, 1H, H azole); 4,44 (s large, 2H); 3,14 (m, 2H); 2,7 (m, 2H); 1,5 (m, 4H). SM/CL : m/z = 465,21 (M+H)⁺.

Une série de 2-arylimino-2,3-dihydrothiazoles a été synthétisée selon la méthode F à l'aide de notre système robotique (ACT MOS 496) :

- R1 = -C(R11R12)-CO-R10
- Groupes R2, R3 et R4 déjà décrits dans la méthode A
- Groupes R10:

$$N \leftarrow N$$
 $N \leftarrow N$
 $N \leftarrow$

- R11 = H
- Groupes R12:

EXEMPLES

10

Ci-après sont repris dans des tableaux des exemples obtenus selon les méthodes A, B, C, D, E et F décrites ci-dessus. Ces exemples sont présentés pour illustrer les procédures ci-dessus et ne doivent en aucun cas être considérés comme une limite à la portée de l'invention.

Les composés obtenus ont été caractérisés grâce à leur temps de rétention (tr) et à la spectrométrie de masse (M+H)⁺.

Les chromatogrammes sont obtenus à partir d'un appareil de chromatographie liquide haute performance (Hewlett-Packard 1100) équipé d'un détecteur UV à balayage. Les conditions suivantes ont été employées pour les mesures des temps de rétention par chromatographie liquide haute performance, sachant que la longueur d'onde d'extraction de chacun des chromatogrammes est de 220 nm :

t (min.)	A (%)	B (%)_
0	90	10
6	15	85
8	15	85

Eluant A : eau + 0,02% d'acide trifluoroacétique ; éluant B : acétonitrile.

Débit : 1 ml/min ; volume injecté : 5 μl ; température : 40 °C. Colonne : Uptisphère 3μm ODS, 50 x 4,6 mm i.d. (Interchim)

Les spectres de masse sont obtenus à partir d'un spectromètre de masse simple quadripôle équipé d'une source électrospray (Micromass, Platforme II).

WO 01/07424

		NH ₂					
	R2 N R3						
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
7		*	91,2	3,09	304,2		
8			93,1	3,38	338,2		
9	*		94	3,56	352,2		
10			93,3	3,42	338,2		
11	*	F .	96,6	3,25	342,2		
12	*	, , , , , , , , , , , , , , , , , , ,	96,4	3,46	365,2		
13	*		91,9	3,86	393,2		
14		* 0	96,4	3,44	358,2		
15	*		95,6	3,34	382,2		
16	*	Br s	94,5	3,7	408		
17	*	*	54,43	2,9	305,2		

	NH ₂						
	R2 N R3						
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
18			50,4	3,14	339,2		
19	*		48,9	3,38	535,2		
20	*		39,3	3,26	339,2		
21	*	F	49,5	3,06	343,2		
22		× × × × × × × × × × × × × × × × × × ×	42,3	3,29	366,2		
23	*		43,4	3,7	394,3		
24	*		56,7	3,16	359,2		
25	*		45,3	3,09	383,2		
26	*	Br	45,7	3,3	409		
27		*	96,8	3,41	332,3		
28			92,8	3,7	366,3		

	NH ₂						
	R2 N R3						
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
29			90,6	3,84	380,3		
30			93,7	3,76	366,3		
31		F .	94,4	3,63	370,2		
32		N ₃ *	89,1	3,82	393,2		
33			90,1	4,12	410,2		
34		* O	96,7	3,83	386,2		
35			95,8	3,67	410,2		
36		Br	93,4	4,17	436,1		
37	*	*	88,4	3,64	329,25		
38	$\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} i$		91,8	4,03	363,2		
39			88,6	4,15	377,2		

		NH ₂					
	R2 N R3						
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
40	* \Z _C		94,1	4,22	363,2		
41	, , , , , ,	F *	95,2	4,1	376,2		
42		N ₃	92,8	4,35	390,2		
43			94,1	4,54	418,2		
44	Z Z		95	4,34	383,1		
45			95,1	4,06	407,2		
46		Br	93	4,7	433,1		
47	1	*	96,4	3,32	332,3		
48			92,9	3,62	366,3		
49	*		95,6	3,76	380,3		
50			95,6	3,64	366,33		

	NH ₂						
	R2 N N R3						
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
51		F	96	3,51	370,2		
52		200	87	3,69	390,2		
53	1		80,9	4,04	421,3		
54		* 0	97,1	3,7	436,1		
55	*		94,6	3,59	410,2		
56	1	Br	95,6	3,92	436,1		
57		*	82,1	3,66	368,2		
58	·		90,7	3,94	402,2		
59	CI		85,5	4,06	416,2		
60	CI O		94,4	4,09	402,2		
61	CI	F	95,1	3,99	406,2		

WO 01/07424

	NH ₂					
	R2 N R3					
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺	
62	CI .	N3 .	93,6	4,21	429,2	
63	CI		93,6	4,39	457,2	
64	CI .	· ci	96	4,22	422,1	
65	CI		91,6	3,96	446,2	
66	CI	Br	94,5	4,65	472	
67		*	97	3,07	348,2	
68			93,6	3,36	382,2	
69			93,4	3,54	396,2	
70			94,7	3,41	382,1	
71		F	96,3	3,24	386,2	
72		N ₃	94,5	3,44	409,1	

NH ₂							
	R2 N R3						
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
73			93,4	3,83	437,2		
74		· Co	95,4	3,41	402,1		
75			95,7	3,32	426,2		
76		Br	92,4	3,64	452,2		
77		*	98,1	3,66	324,2		
78			91,2	3,98	388,2		
79			81,9	4,09	402,2		
80			96,1	4,12	388,2		
81		F .	96,1	4,03	392,2		
82		N ₃	94,2	4,24	415,2		
83			93,3	4,39	443,3		

R2 N R3						
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺	
84		* 0	96,3	4,28	408,1	
85			94,2	4.0	432,2	
86		Br	95,6	4,7	458,1 ·	

-	NH_2				
			,		
	R2 N	_NR3			
	\$-	<u> </u>			
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺
87			97	3,35	338,2
88	*		94	3,51	352,3
89	*		94	3,58	352,3
90		F .	97	3,42	356,2
91	*	FF	86	4,01	422,2
92	*		96	3,99	407,3
93	*	H	7	3,65	391,3
94			92	4,11	378,2
95			95	3,43	435,2
96		Br S	97	3,91	422,1
97			43	3,19	339,2

	NH_2						
			,				
	R2 N N						
	S-	R3					
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
109			82	4,88	478,1		
110		F	92	4,76	482,1		
111	*	F F O	90	5,41	548,1		
112			86	5,13	533,2		
113		ZI	9	4,5	517,1		
114			95	5,49	504,1		
115			80	4,4	561,1		
116		Br	89	5,4	548.0		
117	0 F F		96	4,85	422,2		
118	· F F		91	4,86	436,2		
119	· F F		88	5,08	436,2		

	NH₂							
	R2 N	_N R3						
	Ś-							
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
131	-	FF	97	4,16	450,2			
132	-		96	4,2	435,3			
133	*		21	3,9	419,3			
134	-		88	4,28	406,2			
135			97	3,68	463,3			
136		Br	82	4,09	450,1			
137	H ₂ N S		93	3,44	417,2			
138	H ₂ N S		94	3,5	431,2			
139	H ₂ N S		95	3,71	431,2			
140	H ₂ N	F .	95	3,58	435,2			
141	H ₂ N 0	F F O	94	4,27	501,2			

	NH ₂								
	R2 N R3								
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
165			93	3,52	332,3				
166		*	99	3,76	370,3				
167		N ₃	97	3,9	393,3				
168		F F O	98	4,25	436,2				
169		CI ZO	98	4,14	431,2				
170		F F F	99	4,79	488,2				
171			98	3,74	410,2				
172	*		98	4,28	410,3				
173			98	4,38	392,2				
174	*	CI	98	4,73	456,2				
175			98	4,06	374,3				

	NH ₂									
:										
	R2 N	R3								
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺					
220	CI NO2	F F	91	6,29	567,2					
221	CI NO2		98	5,53	489,2					
222	CI ZO2		96	6,38	489,3					
223	CI ZO ₂		97	6.0	471,2					
224	CI NO ₂	C	98	6,49	535,1					
225	CI		98	3,99	426,3					
226	CI	,	98	4,34	464,2					
227	CI		96	4,43	487,3					
228	CI	F F O	97	4,78	530,2					
229	CI CI	Ci Co	98	4,76	525,2					
230	CI	F F F	96	5,36	582,2					

	NH ₂									
	R2 N	N —R3								
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺					
231	0-		95	4,23	504,3					
232			97	4,7	504,3					
233	0-		98	4,99	486,2					
234		CI	97	5,3	550,2					
235	H ₂ N S	*	96	3,44	411,2					
236	H ₂ N S	*	95	3,94	449,2					
237	H ₂ N S	N ₃ .	96	4,11	472,3					
238	H ₂ N S	F F O	95	4,52	515,2					
239	H ₂ N 0		95	4,39	510,2					
240	H ₂ N S	F F	94	5,01	567,2					
241	H ₂ N		96	3,74	489,2					

NH ₂									
	R2 N R3								
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
245		*	98,1	3,2	290,2				
246			96,9	3,78	324,2				
247		, NO ₂	69,3	3,88	355,2				
248	*	NC NC	99,3	3,79	335,2				
249			99,4	3,86	324,2				
250		N ₃	98	3,97	351,2				
251		Br	98,7	4,14	388,1				
252			93,5	4,24	379,3				
253		F F F	82,4	5,16	446,2				
254	*		98,8	3,7	368,2				
255		*	98,5	3,9	332,3				

NH_2									
	R2 N R3								
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
256			92,3	4,4	366,3				
257		NO	82,3	4,55	397,2				
258		NC NC	98,4	4,48	377,3				
259			97,3	4,49	366,3				
260		N ₃ *	95,4	4,59	393,3				
261		Br	98,7	4,77	430,2				
262			90,9	4,76	421,3				
263		FFFF	98,7	5,72	488,2				
264			97,7	4,33	410,3				
265	H ₂ N S		98,5	3,42	369,2				
266	H ₂ N S	*	94,9	3,91	403,2				

NH_2							
	R2 N	R3					
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
267	H ₂ N 0	* NO ₂	98,1	3,81	434,2		
268	H ₂ N S	NC NC	97,9	3,78	414,1		
269	H ₂ N S		98,1	4,06	403,2		
270	H ₂ N S	N ₃	96,2	4,14	430,2		
271	H ₂ N S	Br	98,3	4,28	467,1		
272	H ₂ N S		96,8	4,5	458,2		
273	H ₂ N N	L L L	98,3	4,92	525,2		
274	H ₂ N S		97,1	3,84	447,2		
275	CI		96,5	4,28	354,2		
276	CI .		93,3	5,02	388,2		
277	CI	* NO2	68,7	4,96	419,2		

	NH_2							
	R2 N R3							
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
278	·	NC NC	97,8	4,86	399,2			
279	· ·		96	5,13	388,2			
280	· · · · · · · · · · · · · · · · · · ·	N ₃	96,9	5,18	415,2			
281	*	Br	98,6	5,31	452,1			
282	CI		89,5	5,54	443,2			
283	CI	E E E	65,5	5,89	510,2			
284	·		97,8	4,89	432,2			
285	CI NO ₂	*	93,2	5,08	369,2			
286	CI NO ₂		94,6	5,31	403,1			
287	CI NO ₂	, NO ₂	97,6	5,07	434,1			
288	CI NO ₂	NC	99,1	5,05	414,1			

		/_NF	12		
:	R2 N	-N R3			
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺
289	o o o o o o o o o o o o o o o o o o o		99,1	5,39	403,1
290	CI NO ₂	N ₃	98,3	5,44	430,2
291	CI NO ₂	Br	99,4	5,47	467,1
292	CI NO ₂		97,4	5,86	458,2
293	CI NO ₂		99,5	5,87	525,1
294	CI NO ₂		98,5	5,21	447,2
295			95,7	4,41	396,3
296			92,9	5,06	430,3
297		NO ₂	54	5,19	461,2
298		Z ^O	91,8	5,07	441,2
299		*	95,8	5,18	430,3

NH ₂									
	R2 N R3								
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
300		N ₃	96	5,28	457,3				
301		Br	96,9	5,45	494,2				
302			87	5,49	485,3				
303		" " " " " " " " " " " " " " " " " " "	35,6	6,18	552,2				
304			96,7	4,97	474,3				
305	F F		83,9	5,24	380,2				
306	F F		92,8	5,39	414,2				
307	F F	NO ₂	92	5,14	445,2				
308	F F	NC *	97,4	5,11	425,1				
309	F		98,1	5,47	414,2				
310	F	N ₃ *	97,2	5,47	441,1				

		/ NH	12	-					
	R2 N R3								
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
311	F F	Br	97	5,52	478,1				
312	F F		93,3	5,99	469,2				
313	F F	F F F	98,3	5,91	536,1				
314	F F		96,5	5,31	458,2				
315			98,7	4,12	340,3				
316			93,4	4,66	374,2				
317		NO ₂	98,9	4,78	405,2				
318		NC \	97,8	4,71	385,2				
319			98,1	4,78	374,2				
320		N ₃	97,2	4,9	401,2				
321		Br	98,8	5,09	438,1				

	R2 N R3								
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
322			95,8	5,07	429,3				
323		L L L	98,5	5,82	496,2				
324			97,5	4,59	418,2				

	NH ₂							
	R2 N R3							
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
325			93	3,71	358,2			
326			68 + 30	4,0 + 4,1	396,2			
327		F F O	69 + 31	4,5 + 4,6	462,2			
328	*		66 + 27	4,7 + 4,8	484,3			
329		\tilde{c}	67 + 31	4,4 + 4,6	457,2			
330			67 + 30	4,3 + 4,5	541,2			
331			62 + 33	3,9 + 4,0	436,2			
332			64 + 30	3,5 + 3,6	447,3			
333			65 + 30	4,7 + 4,9	418,2			
334			68 + 29	3,8 + 3,9	372,3			
335			69 + 29	4,2 + 4,3	410,2			

NH ₂								
	R2 N R3							
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
347	·		62 + 29	5,28 + 5,5	530,3			
348	· s	CI NO ₂	65 + 30	5,21 + 5,38	503,2			
349	· s	N Br	63 + 30	5,03 + 5,24	587,2			
350	* s	HO	64 + 30	5,59 + 5,84	552,3			
351	· s		58 + 28	4,49 + 4,66	482,3			
352	* s	o N	64 + 26	4,01 + 4,11	493,3			
353	* s		65 + 31	5,54 + 5,71	464,2			
354	N ₃	*	57 + 24	4,08 + 4,19	399,3			
355	N ₃		62 + 28	4,52 + 4,7	437,2			
356	N ₃	F F O	62 + 28	5 + 5,2	503,2			
357	N ₃		58 + 26	5,08 + 5,25	525,3			

		NH	2					
	R2 N R3							
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
358	N ₃ .	CI NO ₂	62 + 29	4,98 + 5,19	498,2			
359	N ₃	N Br	62 + 29	4,82 + 4,99	582,2			
360	N ₃	HO	62 + 28	5,39 + 5,58	547,3			
361	N ₃		56 + 26	4,37 + 4,49	477,3			
362	N ₃ .		64 + 32	5,32 + 5,55	459,2			
363	Br F F		94	6,36	505,2			
364	Br F F		98	6,39	542,1			
365	Br F F	F F O	25 + 72	6,74 + 6,77	608,1			
366	Br F F		92	7,07	630,2			
367	Br	$ \begin{array}{c} \vdots \\ \vdots \\$	23 + 73	6,38 + 6,42	603,1			
368	Br F F	Z Br	26 + 69	6,73 + 6,76	687,1			

	NH ₂								
	R2 N R3								
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
369	Br F F	HO	60	7,55	652,3				
370	Br F F		82	6,39	582,1				
371	Br F F	ON	94	5,74	593,2				
372	Br F F		22 + 73	6,68 + 6,74	564,1				
373	O ₂ N		59 + 27	4,88 + 5,13	403,3				
374	O ₂ N		67 + 30	5,35 + 5,44	441,2				
375	O ₂ N	F C C C C C C C C C C C C C C C C C C C	64 + 34	5,84 + 5,92	507,2				
376	O ₂ N		62 + 28	6 + 6,13	529,3				
377	O ₂ N	$\bigcup_{\overline{G}}^{\circ}$	97	5,58	502,2				
378	O ₂ N		65 + 32	5,71 + 5,8	586,2				
379	O ₂ N	HO	49 + 23	6,45 + 6,58	551,3				

NH ₂									
	R2 N N	-R3							
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
380	O ₂ N		61 + 26	5,18 + 5,3	481,2				
381	O ₂ N	o N	45 + 21	4,57 + 4,68	492,3				
382	O ₂ N		84	5,9	463,2				
383	F		56 + 26	4,65 + 4,89	410,2				
384	F		64 + 30	5,29 + 5,47	448,2				
385	F	F F O	65 + 30	5,78 + 5,95	514,2				
386	F		63 + 27	5,8 + 6,02	536,2				
387	F	CI NO2	65 + 31	5,71 + 5,81	509,1				
388	F CI	N Br	62 + 32	5,59 + 5,79	593,1				
389	F	H	30 + 14	6,22 + 6,45	558,3				
390	F		57 + 26	5,01 + 5,2	488,2				

NH ₂								
	R2-N N							
	s_/	<i>></i> —R3		T				
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
391	F		54 + 26	4,46 + 4,61	499,2			
392	F		27 + 11	6,09 + 6,18	470,2			
393		*	63 + 29	4,53 + 4,6	464,3			
394			65 + 30	4,78 + 4,93	502,3			
395		F F O	61 + 28	5,16 + 5,35	568,2			
396			59 + 25	5,3 + 5,42	590,3			
397		CI NO2	60 + 30	5,12 + 5,34	563,2			
398		N N N N N N N N N N N N N N N N N N N	63 + 32	5,01 + 5,17	647,2			
399		H H	59 + 26	5,55 + 5,7	612,4			
400		o N	52 + 14	4,35 + 4,4	553,3			
401			61 + 29	5,36 + 5,64	524,3			

	R2 N R3								
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
402			88,5	4,52	442,1				
403		*	94,6	4,72	432,15				
404		N ₃ *	95	4,78	455,16				
405		CI NO2	98,6	5,19	493,12				
406			95,8	4,99	577,11				
407			95,1	4,44	472,19				
408			96,3	4.0	483,21				
409		Br s	94,5	5,35	498,04				
410			94,1	5,61	454,15				
411			83	5,43	526,03				
412		-	94,9	5,4	515,97				

	NH ₂								
	R2 N $R3$								
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
413		23	93,4	5,52	539,00				
414		CI NO ₂	97,1	5,48	576,95				
415		N Br	92,7	5,69	660,99				
416	*		92,2	5,27	555,98				
417			92	4,7	567,00				
418		Br S	89,7	5,73	581,87				
419			87,8	5,77	538,00				
420	*		84,4	4,74	446,14				
421	·	*	92,6	4,9	436,08				
422	·	N3 .	91,2	5.0	459,10				
423	·		72,4	5.0	487,16				

NH ₂ NH ₂ R3								
Ex.	S/	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
424	·	CI NO ₂	94,9	5,19	497,07			
425	*	Z Br	91,7	5,18	581,05			
426	·		91,5	4,67	476,12			
427	· s	o N	89,6	4,16	487,13			
428	·	Br s	91,7	5,38	501,96			
429	* s		89,9	5,48	458,10			
430	FFO	*	87,1	5,26	484,14			
431	F F O	*	95,7	5,41	474,10			
432	F F O	N ₃ *	94,6	5,51	497,12			
433	F F O	CI ZO ₂	97,4	5,64	535,01			
434	FFO	N Br	96,2	5,69	619,04			

NH ₂							
	R2 N	├ ──R3					
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
435	F F O		94,4	5,21	514,10		
436	F F O		94,7	4,67	525,11		
437	FFO	Br s	92,7	5,84	539,94		
438	FFO		91	5,93	496,09		
439			82,4	4,82	492,18		
440		F	92,2	5,03	482,14		
441		N ₃	90,4	5,08	505,15		
442			33,4	5,14	533,18		
443		CI NO ₂	97,6	5,45	543,07		
444		N Br	93,9	5,26	627,10		
445			93,6	4,78	522,14		

NH ₂									
	R2 N N R3								
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
446			94	4,34	533,15				
447		Br	91,6	5,6	547,98				
448			92,6	5,82	504,14				
449	CI		84,9	5,76	468,08				
450	CI	*	95,4	5,54	458,03				
451	C _C	No.	93,3	5,74	481,03				
452	CI		85,3	6,21	509,06				
453	CI	CI NO ₂	97,4	5,62	518,97				
454	CI	N Br	92	5,91	602,90				
455	CI		91,4	5,54	498,06				
456	CI	o N	91,4	4,98	509,06				

NH ₂									
	R2 N R3								
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
457		Br	88,7	5,9	523,88				
458			88,5	5,88	480,05				
459			88,2	4,69	506,18				
460		F	93,1	4,87	496,15				
461		200	91,2	4,92	519,15				
462			26,9	5,01	547,17				
463		CI NO ₂	93,9	5,26	557,08				
464		Z B	93,2	5,08	641,13				
465			95,7	4,64	536,15				
466		o N	95,3	4,24	547,15				
467	\$	Br	92,3	5,39	562,00				

NH ₂ NH ₂ R3									
Ex. R2 R3 Pureté (%) tr (min.) [M+H] ⁺									
468			92	5,6	518,14				
469			75,3	4,59	494,13				
470	0-	*	97,1	4,73	484,11				
471	-0	N3 .	95,4	4,81	507,11				
472	CI		10,7	4,9	535,14				
473	CI	CI NO2	96,4	5,07	545,02				
474	CI	Z Br	96,5	4,98	629,05				
475	CI		95,2	4,5	524,08				
476	CI O		96	4,06	535,09				
477	CI	Br	95,3	5,22	549,95				
478	CI		94,1	5,36	506,08				

\int NH ₂									
N. N.									
R2 N R3									
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
479		*	45,6	4,95	377,14				
480	CN	*	79	5,17	431,07				
481	CN	NO ₂	56,8	4,84	442,08				
482	, c z	- ·	79,2	5,04	415,07				
483	, CZ	N ₃	78,4	5,25	438,11				
484	, z	F F O	82,6	5,47	481,10				
485	, z		72,6	5,81	503,17				
486	, z	Z Br	79	5,36	560,04				
487	, c	Br	72,1	5,34	480,98				
488	CN		76,9	5.0	441,09				
489			94,5	4,6	386,09				

NH ₂									
	IN IN								
	R2 N	≻ —R3							
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
490		· ci	95,4	5,34	440,04				
491		* NO ₂	95,3	5,05	451,06				
492			95,2	5,23	424,07				
493		N ₃	93,4	5,35	447,07				
494		F F O	96,1	5,67	490,07				
495			88,5	5,84	512,12				
496		N Br	92,9	5,55	569,00				
497		Br s	92,8	5,64	489,95				
498			92	5,03	450,08				
499	, , , , , , , , , , , , , , , , , , ,	*	96,5	4,87	397,11				
500	NO ₂	CI	96,1	5,26	451,06				

$\sqrt{-NH_2}$									
- - -	R2 N	≻ —R3							
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
501	¥0 ₂	NO ₂	96,1	4,95	462,07				
502			96,3	5,15	435,08				
503		N ₃	96,2	5,31	458,11				
504		FFO	96,5	5,57	501,08				
505			89,3	5,86	523,15				
506	- O2	N Br	95,8	5,46	580,03				
507	- 0 n	Br s	94,2	5,45	500,96				
508	- O2		93,5	5,07	461,08				
509		*	98,5	4,29	408,18				
510		· CI	97,2	4,98	462,13				
511		NO ₂	96,4	4,81	473,19				

NH ₂									
	R2-N N								
	s	≻ R3							
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
512			96,3	4,9	446,17				
513		N ₃	94,7	4,93	469,19				
514		F F O	96,9	5,29	512,17				
515			90,6	5,33	534,20				
516		Z Br	96,3	5,15	591,13				
517		Br S	93,5	5,47	512,04				
518			95	4,65	472,19				
519	FF	*	95,5	5,14	420,13				
520	FF	*	95,6	5,63	474,07				
521	FF	NO ₂	93,8	5,35	485,10				
522	F		95,1	5,53	458,09				

	NH ₂								
	R2-N R3								
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
523	F	N ₃	94,2	5,67	481,10				
524	F F	F F O	94,6	5,9	524,09				
525	F F		88,4	6,15	546,11				
526	L. L.	Z Br	92,6	5,83	603,07				
527	F	Br	89,8	5,87	523,97				
528	F		92,3	5,41	484,11				
529			98,2	3,75	380,18				
530		· Ci	96,4	4,35	434,11				
531		NO ₂	96,5	4,19	445,13				
532		*	95,7	4,25	418,14				
533		N ₃	94,4	4,33	441,13				

NH ₂									
	R2-N N								
	s	>—R3							
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
534		F F O	95,5	4,69	484,14				
535			89,5	4,81	506,18				
536		N Br	95,5	4,54	563,08				
537		Br	92,2	4,79	484,03				
538			93,7	4,07	444,14				
539	CI	*	95,4	4,25	416,10				
540	CI	· ci	95,7	5,05	470,07				
541	CI	NO ₂	95,6	4,81	481,05				
542	CI		95,4	4,96	454,07				
543	CI	N ₃	94,4	5,05	477,10				
544	CI	F F O	95,9	5,4	520,04				

NH ₂									
	R2-N R3								
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
545	0-		89,5	5,51	542,11				
546	0-	Z Br	94	5,26	599,02				
547		Br	92,9	5,4	519,93				
548	, o-		92,3	4,72	480,08				
549	Br Br		92	6,01	585,84				
550	Br *	* \(\sum_{\overline{0}}^* \)	96,7	6,18	639,79				
551	Br *	* NO ₂	95,8	5,84	650,83				
552	Br Br		96	6,04	623,81				
553	Br Br	N ₃ *	94,7	6,22	646,85				
554	Br Br	FF	95	6,39	689,82				
555	Br Br		88,8	6,7	711,88				

R2-N-R3								
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
556	Br *		94,9	6,4	768,76			
557	Br .	Br	95	6,35	689,71			
558	Br Br		93,7	6,01	649,83			

	N							
	R2 N	R3						
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
603		F F	93,5	4,91	532,19			
604		CI NO ₂	93,4	4,3	475,16			
605			87,9	3,86	454,20			
606			91,8	4,47	460,25			
607			90,7	3,48	465,21			
608			92	4,55	436,19			
609	N N N N N N N N N N N N N N N N N N N		85,9	5,19	541,25			
610	N N N N N N N N N N N N N N N N N N N	Br	92,4	5,6	591,13			
611	N. S.	N ₃	89,7	5,45	554,23			
612			88,7	5,58	582,28			
613	N N N N N N N N N N N N N N N N N N N	FFF	93,2	6,06	649,24			

	N						
					·		
	R2 N	R3					
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
614		CI NO ₂	94,1	5,55	592,18		
615			90	5,09	571,23		
616	O. 100		93,3	5,91	577,26		
617			91,4	4,53	582,24		
618	2		92,1	5,84	553,22		
619	F Br		76,6	5,06	490,15		
620	F Br	Br	91,2	5,56	539,99		
621	F Br	N ₃ .	86,7	5,39	503,12		
622	F Br		81	5,47	531,15		
623	F Br	F F F	92,2	6,13	598,06		
624	F Br	CI NO 2	84,8	5,59	541,03		

	R2 N R3						
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
639	Br *	*	95	7,28	374,10		
640	CF ₃	*	87	7,62	364,24		
641	, s	*	84	6,75	342,23		
642	SZ *	*	79	6,6	321,24		
643	_z	*	81	4,96	339,29		
644	*	*	82	6,44	324,28		
645		*	83	7,16	338,30		
646	MeO *		59	6,6	356,25		
647		*	86	7,28	402,23		
648		*	84	7,29	346,26		
649	Br	*	85	7,66	388,1		

	R2 N R3							
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
650	CF ₃	*	84	7,96	378,21			
651	·s ·		85	7,14	356,23			
652	NC *	*	73	7,02	335,26			
653	, z-	*	76	5,37	353,29			
654	*	*	83	6,84	338,30			
655	*	*	81	7,51	352,29			
656	MeO OMe	*	75	6,99	370,27			
657		*	77	7,6	416,26			
658			80	7,65	360,25			
659	Br *	*	87	7,37	392,10			
660	CF ₃	F	71	7,7	382,16			

	R2 N R3							
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
661	·s ·	F	63	6,9	360,21			
662	* NC	F	59	6,7	339,23			
663	, z-	F **	80	5,06	357,26			
664	*	F	63	6,61	342,26			
665	*	F *	82	7,28	356,25			
666	MeO *	*	39	6,74	374,22			
667		· · · · · · · · · · · · · · · · · · ·	85	7,42	420,24			
668		*	81	7,39	364,26			
669	Br		93	8,28	443,2			
670	CF ₃		88	8,61	433,2			
671	· s		88	7,7	411,2			

	R2 N N	N R3			
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺
672	NC *		80	7,76	390,26
673	, z-		85	6,08	408,3
674	*		89	7,36	393,3
675			84	8,03	407,3
676	MeO *		81	7,59	425,3
677			83	8,03	471,3
678	*		91	8,24	415,2

	N								
	R2 N R3								
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
679	*	O ₂ N	78	7,41	419,09				
680	*	O ₂ N	75	6,98	369,23				
681		O ₂ N	81	7,51	383,23				
682		O ₂ N *	85	7,46	391,20				
683	NC *	MeO *	74	6,79	351,21				
684	2	MeO *	81	5,18	369,26				
685	*	MeO *	76	6,73	354,26				
686		MeO *	87	7,39	368,27				
687	•	MeO *	80	7,48	376,22				
688	Br		83	8,14	424,11				
689	CF ₃		83	8,37	414,14				
690	NC *		78	7,48	371,21				
691	-z-		85	5,88	389,24				

	R2 N N	N R3			
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺
692	*		79	7,53	374,24
693			83	8,1	388,23
694			77	8,18	452,23
695	•		81	8,14	396,20
696	-		76	7,94	413,16

	R2 N R3							
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
697		* 4-	86	7,41	402,01			
698	OCF ₃	*	93	7,57	360,16			
699		*	74	6,32	361,23			
700	CF ₃	*	88	7,75	344,19			
701	N ₃ *	* *	83	6,88	317,22			
702	Br Br	* •	93	8,33	509,9			
703	$\bigcup_{\overline{O}}^{\overline{O}}$	* 4-	90	8,69	411,99			
704	OMe	* 4-	72	8,16	382,21			
705		* 4-	81	7,27	382,2			
706		*	82	7,7	436,05			
707	OCF ₃	*	91	7,85	394,16			

	N R3						
	R2 S						
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
708		*	80	6,59	395,19		
709	CF ₃	*	87	7,99	378,16		
710	N ₃ *	*	83	7,3	351,2		
711	Br *	*	89	8,58	543,85		
712	CI CI CI	*	89	8,9	446,01		
713	OMe	*	72	8,35	416,19		
714		*	82	7,62	416,19		
715			85	7,84	436,05		
716	OCF ₃	*	88	7,97	394,14		
717		*	75	6,82	395,21		
718	CF ₃ *	*	88	8,13	378,13		

	R2 N N	N R3			
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺
719	N3 *	*	78	7,5	351,2
720	Br *	*	91	8,65	543,86
721	, C	*	89	8,97	446.0
722	OMe	*	75	8,55	416,19
723		*	83	7,84	416,19
724		CF ₃ O	90	8,24	506,01
725	OCF ₃	CF ₃ O	. 88	8,37	464,1
726		CF ₃ O	76	7,43	465,17
727	CF ₃	CF ₃ O	86	8,52	448,1
728	N ₃	CF ₃ O *	84	8,11	421,11
729	Br *	CF ₃ O *	89	8,97	613,8

	R2 N N	N 			
Ex.	S—7	R3	Pureté (%)	tr (min.)	[M+H] ⁺
730	CI CI	CF ₃ O	90	9,24	515,94
731	ОМе	CF ₃ O *	74	8,94	486,17
732		CF ₃ O *	81	8,51	486,16
733		ON-N-	82	8,15	584,93
734	OCF ₃	O N -	81	8,26	543,05
735		ON-	69	7,31	544,1
736	CF ₃ *	O N -	80	8,43	527,07
737	N ₃	O N	82	7,99	500,1
738	Br *	O N	88	8,92	692,79
739	CI	O N	85	9,23	594,87
740	OMe	O N	71	8,84	565,1

	Z _ Z						
	R2 S	R3		_			
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
741		ON	79	8,36	565,08		
742		Z	82	7,77	475,06		
743	OCF ₃		81	7,91	433,13		
744			86	6,72	434,21		
745	CF ₃		82	8,03	417,15		
746	N ₃		74	7,32	390,17		
747	Br Br		86	8,61	582,85		
748	CI		76	8,94	485,01		
749	ОМе	Z	73	8,33	455,19		
750			84	7,59	455,2		
751		CI	67	8,82	525,96		

	N						
	R2 N N	R3					
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
752	OCF ₃	CI	75	8,93	484,08		
753		CI	68	8,08	485,14		
754	CF ₃	CI	75	9,08	468,06		
755	N ₃ *	CI S	78	8,77	441,06		
756	Br *	CI	81	9,56	633,79		
757	C C C C	CI	81	9,77	535,91		
758	OMe	CI	70	9,55	506,12		
759		CI	78	9,21	506,13		

		N							
	R2-N								
Ś R3									
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
760		CF ₃ O *	92,9	5,03	436,23				
761			90,4	5,56	422,33				
762		CF ₃	94,36	4,94	420,26				
763			88,08	5,09	428,30				
764	+		77,6	4,42	423,34				
765		HO	92,4	5,52	480,38				
766			84,6	4,8	402,25				
767			89,8	5,79	462,37				
768	*	CF ₃	91,9	5,12	460,20				
769	OMe *	CF ₃	91,4	5,14	476,21				
770	CF ₃	CF ₃	94,2	5,67	514,18				
771	F	CF ₃	93.0	5,37	464,18				

		N						
	R2-N N	_						
S R3								
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
772	*	CF ₃	94,5	5,64	572,07			
773		CF ₃	87,9	5,76	522,21			
774	*	CF ₃	91,2	5,12	474,23			
775		CF ₃	78,1	5,82	530,27			
776		CF ₃ O *	88,8	4,55	408,22			
777	*		90,7	5,13	394,34			
778	*	CF ₃	92,6	4,45	392,23			
779			88,8	4,65	400,30			
780	*		76,5	3,94	395,33			
781	*	HO	90,8	5,11	452,38			
782	-	*	87,7	4,33	374,29			
783	*		91,5	5,35	434,38			

		N						
	R2-N							
R3								
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
784	OMe *	CF ₃ O *	92,1	4,61	424,25			
785	OMe *		89,3	5,28	410,33			
786	OMe *	CF ₃	95	4,49	408,22			
787	OMe *		82,4	4,74	416,27			
788	OMe *		73,8	3,95	411,30			
789	OMe *	HO	92,9	5,27	468,36			
790	OMe *		84,9	4,39	390,28			
791	OMe *		91,5	5,53	450,37			
792	CF ₃	CF ₃ O	90	5,5	462,19			
793	CF ₃		93,9	6,25	448,31			
794	CF ₃	CF ₃	94,9	5,41	446,22			
795	CF ₃		93,5	5,76	454,26			

R2-N N S R3					
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺
796	CF ₃		89,8	4,95	449,30
797	CF ₃	HO .	92,4	6,22	506,34
798	CE.	*	93	5,52	428,245
799	CF ₃		92,8	6,39	488,34
800	F_	CF ₃ O .	87,6	5,11	412,20
801	F *		92,5	5,9	398,30
802	*	CF ₃	93,5	5	396,20
803	* L——		92,2	5,35	404,26
804	F		90,7	4,41	399,28
805	L—-	HO	94,2	5,87	456,34
806	F *		89,3	5,05	378,23
807	*		90,9	6,07	438,33

		N					
	R2-N						
S R3							
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
808	*	CF ₃ O *	88,8	5,43	520,09		
809	-		94	6,19	506,19		
810	*	CF ₃	95,9	5,33	504,12		
811	*		92,9	5,68	512,15		
812	*		88,9	4,8	507,18		
813	*		92,3	6,17	564,20		
814	*	*	93,9	5,41	486,14		
815	*		93,5	6,35	546,18		
816		CF ₃ O	91,9	5,41	470,25		
817			93	5,98	456,34		
818		CF ₃	91,4	5,29	454,24		
819			90,4	5,49	462,29		

R2-N N						
S R3						
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺	
820			86,5	4,75	457,34	
821		HO	90,5	5,94	514,34	
822			90,1	5,21	436,26	
823			89,7	6,18	496,37	
824	*	CF ₃ O *	79,4	4,56	422,22	
825	*		92,5	5,08	408,32	
826	*	CF ₃	93	4,45	406,23	
827	*		90,2	4,63	414,26	
828	*		76,3	4,01	409,31	
829	*		94	5,08	466,36	
830	*		90,7	4,34	388,25	
831	*		92,9	5,29	448,36	

R2-N S R3						
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺	
832		CF ₃ O *	56	5,3	478,29	
833			83,9	5,7	464,38	
834		CF ₃	82,1	5,19	462,29	
835			80,5	5,31	470,35	
836		· · · · · · · · · · · · · · · · · · ·	70,6	4,8	465,39	
837		· ·	82,9	5,67	522,41	
838			81	5,07	444,33	
839			83,5	5,91	504,41	

$R2^{-N}$ $R3$						
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺	
840		20°	35 + 64	3,68 + 3,78	423,2	
841		ОМе	98	3,7	438,3	
842		CI CI	35 + 63	4,3 + 4,4	446,2	
843			97	3,71	436,3	
844			32 + 65	3,28 + 3,34	447,3	
845			96	3,84	392,3	
846			96	4,18	447,3	
847			30 + 64	3,62 + 3,64	475,3	
848		-	36 + 61	4,46 + 4,61	418,3	
849	F F F	NO ₂	96	5,89	569,1	
850	F F	OMe *	94	6,09	584,2	

R2 N N R3						
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺	
851	F F	<u>0</u>	57 + 39	6,55 + 6,6	592,1	
852	F F F		96	6,16	582,2	
853	F F .		28 + 59	5,53 + 5,61	593,2	
854	F F .		95	6,35	538,2	
855	F F F		54 + 41	6,8 + 6,88	593,3	
856	F F F		94	5,96	621,2	
857	F F F		56 + 39	6,46 + 6,55	564,2	
858	-	No.	34 + 63	4,09 + 4,2	451,3	
859		OMe OMe	96	4,03	466,4	
860	-	CI	33 + 64	4,69 + 4,76	474,3	
861	-		27 + 70	4,04 + 4,07	464,4	

	R2 N N	-R3			
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺
862			33 + 63	3,63 + 3,71	475,4
863			95	4,18	420,4
864			89	4,46	475,4
865			22 + 68	3,94 + 3,98	503,4
866		-	35 + 62	4,9 + 5,01	446,4
867	OMe U	20 ₂	35 + 61	4,39 + 4,52	487,3
868	OMe Ci	OMe *	33 + 63	4,22 + 4,29	502,3
869	OMe C	CI	35 + 62	5,08 + 5,2	510,2
870	o Me		31 + 63	4,26 + 4,34	500,3
871	OMe O		33 + 62	3,82 + 3,91	511,3
872	OMe CI		31 + 62	4,42 + 4,51	456,3

	R2 N N	-R3			
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺
873	2 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		29 + 64	4,66 + 4,72	511,4
874	* 0 0 - - - -		33 + 57	4,11 + 4,2	539,3
875	* 0 - 0 - 0		35 + 62	5,26 + 5,39	482,3
876		ZO, *	32 + 65	3,63 + 3,7	467,3
877		OMe OMe	97	3,69	482,4
878			35 + 62	4,2 + 4,28	490,3
879			94	3,69	480,3
880			28 + 68	3,3 + 3,33	491,3
881			96	3,8	436,3
882			96	4,18	491,4
883			94	3,63	519,3

	R2 ^N N	R3			
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺
884			36 + 61	4,28 + 4,42	462,3
885	OMe *	20°	36 + 62	4,24 + 4,36	517,3
886	OMe OMe	9 S S S S S S S S S S S S S S S S S S S	28 + 69	4,15 + 4,21	532,3
887	OMe	CI	35 + 62	4,84 + 4,96	540,2
888	OMe		33 + 64	4,15 + 4,22	530,3
889	OMe *		32 + 63	3,76 + 3,84	541,3
890	ОМе		32 + 63	4,28 + 4,36	486,3
891	OMe OMe		24 + 73	4,56 + 4,6	541,3
892	OMe OMe		31 + 59	4,05 + 4,11	569,3
893	OMe	-	35 + 61	4,99 + 5,14	512,3
894	0,1	* * *	33 + 64	5,59 + 5,7	576,3 ·

	R2-N N	-R3			
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺
895	O ₂ N .	OMe OMe OMe	35 + 61	5,29 + 5,39	591,3
896	O ₂ N S		26 + 71	6,32 + 6,35	599,2
897	O ₂ N .		34 + 63	5,41 + 5,5	589,3
898	O ₂ N .		35 + 61	4,88 + 4,99	600,3
899	O ₂ N .		35 + 62	5,63 + 5,72	545,3
900	0,1N		34 + 61	5,76 + 5,86	600,3
901	O ₂ N .		34 + 68	5,16 + 5,28	628,3
902	O ₂ N .		98	6,45	571,3
903	N.S.NO	ZO ²	35 + 60	3,84 + 3,93	502,3
904	N S N O	OMe OMe	32 + 62	3,72 + 3,79	517,3
905	N S O	CI	32 + 62	4,59 + 4,68	525,2

	R2 ^N N	-R3			·
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺
906			33 + 61	3,75 + 3,82	515,3
907			29 + 64	3,18 + 3,26	526,3
908	2,50	*	32 + 59	4 + 4,09	471,3
909	N S O		32 + 60	4,28 + 4,38	526,3
910	N S O		34 + 56	3,62 + 3,71	554,3
911	N S S S S S S S S S S S S S S S S S S S		31 + 63	4,58 + 4,66	497,3

R1 $R3$ $R3$							
Ex.	. R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
912	*		6,8 + 91,2	3,6 + 3,76	332,22		
913	*		88,1	3,94	352,19		
914	*		89,6	4,22	380,22		
915	*	0-	61,6	3,95	382,17		
916	*		83,5	3,8	377,19		
917	*	Br	84,2	4,41	430,10		
918	*		70,9	4,24	393,18		
919	*	O ₂ N	84,1	4,1	397,16		
920	*	Br	82,2	4,55	436,05		
921	*		82,8	4,66	392,17		
922		*	98	4,25	380,22		
923			91,1	4,26	400,17		

	R3							
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
924			92,4	4,46	428,21			
925		0-	93,8	4,23	430,20			
926		, Z	86,4	4,14	425,17			
927		Br *	92,3	4,7	478,11			
928		N ₃ *	82	4,56	441,18			
929		O ₂ N	90,9	4,44	445,18			
930		Br s	89,8	4,9	484,07			
931			86,4	5.0	440,17			
932		>	97,2	4,38	394,22			
933		*	86,3	4,48	414,18			
934			92,6	4,68	442,22			
935		P	91	4,44	444,22			

	R1 N $R3$						
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
936		* \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	85,9	4,34	439,18		
937		Br	88,2	4,86	492,12		
938		N ₃ .	83,6	4,71	455,2		
939		O ₂ N	87,8	4,59	459,19		
940		Br	89,8	5.0	498,09		
941			83,9	5,14	454,20		
942	· F		87,7	4,26	384,17		
943	*		94,7	4,5	404,15		
944	*		18,6 + 76,4	4,2 + 4,64	432,18		
945	*		95,2	4,32	434,16		
946	, ·		92	4,46	429,15		
947	, ·	Br	94,4	5,08	482,06		

i	R1 $R3$ $R3$							
Ex.	. R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
948	F .	× × × × × × × × × × × × × × × × × × ×	93	4,86	445,16			
949	*	O ₂ N	94,2	4,82	449,13			
950	*	Br	93,1	5,34	488,03			
951	*		93,7	5,47	444,16			
952	, , , , ,	*	91,5	4,43	400,13			
953			95	4,82	420,12			
954	,		14,8 + 81,2	4,38 + 4,88	448,15			
955	•		95,8	4,64	450,13			
956			95	4,79	445,11			
957		Br	95,4	5,4	498,06			
958	CI .	N ₃	93,9	5,14	461,12			
959	CI .	O ₂ N	94,5	5,12	465,10			

	R1 $R3$								
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
960		Br	94,6	5,62	504,00				
961			96,4	5,74	460,13				
962		*	6,5 + 87,5	4,2 + 4,54	416,19				
963			92,9	4,76	436,17				
964			17,3 + 6,2	4,5 + 4,9	464,21				
965			92,6	4,64	466,17				
966		$\sum_{z} \left(\right)$	89	4,76	461,16				
967		Br	94,1	5,32	514,09				
968		N ₃	92,1	5,09	477,19				
969		O ₂ N	90,5	5,1	481,16				
970		Br	92	5,56	520,02				
971			93	5,72	476,17				

	R1 N $R3$ $R3$							
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
972		*	91,6	4	410,16			
973			89,7	4,28	430,15			
974			83,4	4,46	458,19			
975			96,9	4,19	460,16			
976		, Z	58,2	4,29	455,12			
977		Br	81,4	4,84	508,06			
978		N ₃	85,8	4,64	471,15			
979		O ₂ N	46,8	4,62	475,14			
980		Br	77,4	5,06	514,02			
981			61,7	5,24	470,16			
982		\\ \tag{*}	4,8	3,54	356,15			
983			71,4	4,1	376,14			

	R1 $R3$ $R3$								
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
984			79	4,3	404,17				
985		•	88,3	4.0	406,13				
986	₹ .		12,2	5,32	401,11				
987		Br	46,5	4,72	454,04				
988		200	56,3	4,49	417,15				
989		O ₂ N	13,8	5,52	421,12				
990		Br S	35,3	4,95	460,02				
991			9,1	5,71	416,11				

$N \longrightarrow N \longrightarrow R3$							
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
992	*	* NO ₂	95,3	3,33	367,12		
993	*	* Br	91,9	3,97	400,03		
994	*		92,5	3,64	336,17		
995	*	N ₃	83,7	3,75	363,13		
996	*	E E E	94,7	4,88	458,11		
997	*		93,1	4,03	372,14		
998	*		92,6	3,37	380,14		
999	*		92,1	4,36	362,12		
1000	*	~~.	91	3,32	405,11		
1001	*	* NO ₂	87,8	3,9	397,14		
1002	*	* Br	64,2	4,46	430,09		
1003	*		61,6	4,18	366,23		

R1 $R3$								
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
1004	*	N ₃	45,6	4,26	393,16			
1005	*	F F F	72,4	5,28	488,17			
1006	*		67	4,47	402,17			
1007	*		51,1	3,86	410,16			
1008	*	-	57,6	4,86	392,16			
1009	*	~~.	75,1	3,92	435,16			
1010	· *	NO ₂	90,7	3,24	399,13			
1011	0	Br	79,6	3,79	432,06			
1012	0		74,5	3,55	368,16			
1013		N ₃	58,8	3,62	395,15			
1014	O	F F F	81	4,65	490,15			
1015	· ·		86,8	3,88	404,17			

$N \longrightarrow N \longrightarrow R3$								
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
1016	O **		71,4	3,3	412,13			
1017	*		73,7	4,13	394,15			
1018	0 *		80,5	3,3	437,15			
1019	*	, NO ₂	94,6	4,19	417,10			
1020	*	*	94,8	4,76	450,07			
1021	*		92,9	4,42	386,13			
1022	*	N ₃	88,8	4,56	413,11			
1023	*	L L L L	94,1	5,48	508,13			
1024	*		93,8	4,79	422,13			
1025	*		92,3	4,04	430,15			
1026	*		90	5,08	412,10			
1027	*	N	93,2	3,95	455,13			

R1 $R3$ $R3$							
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
1028	* F	NO ₂	92,6	4,3	435,1		
1029	*	Br	92,8	4,9	470,1		
1030	*		89,2	4,6	404,1		
1031	F *	N ₃	89,2	4,76	431,1		
1032	*	F F F F F F F F F F F F F F F F F F F	94,3	5,6	526,1		
1033	*		93,5	5	440,2		
1034	*		92,4	4,2	448,1		
1035	*		87,9	5,2	430,1		
1036	F *		93,6	4,1	473,2		
1037		NO ₂	80,4	4,16	447,14		
1038		, and the second	72,7	4,72	480,08		
1039			77	4,39	416,14		

N N N N N N N N N N							
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
1040		N ₃	59,2	4,5	443,16		
1041		F F F	16,8	5,98	538,12		
1042			59,5	4,74	452,16		
1043			74	4,02	460,16		
1044			26,3	5,52	442,13		
1045			91	3,82	485,17		
1046		* NO2	89,8	5,09	507,19		
1047		* Display="block" block" block by the block	84,5	5,52	540,09		
1048			86	5,06	476,21		
1049		N ₃	75,6	5,22	503,21		
1050		F F	90,3	6,14	598,15		
1051			85,9	5,38	512,22		

R1 $R3$								
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
1052			81,3	4,68	520,19			
1053			83,3	5,66	502,20			
1054			82	4,92	545,17			
1055		* NO2	93,1	4,34	445,16			
1056		- Br	81,5	4,77	478,10			
1057			79,9	4,46	414,17			
1058		N ₃	70,2	4,56	441,15			
1059		F F	85,8	5,56	536,11			
1060			84,1	4,73	450,19			
1061			78,4	4,12	458,20			
1062			83,3	5,13	440,16			
1063		N	83,1	4,22				

N N N N N N N N N N							
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
1064	^	*	86,6	3,52	338,12		
1065	*	NO ₂	90,4	3,44	383,09		
1066	*		87,3	4,25	422,10		
1067	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Br	85,9	4,04	416,04		
1068	*		70,5	4,4	444,18		
1069	*	F F	80,1	4,83	474,13		
1070	*		80,6	4,34	402,16		
1071	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		80,8	4,37	378,14		
1072	*	CI	86,5	4,77	442,06		
1073			83,4	4,72	405,12		
1074	^ ⁰ ✓ ,		90,5	3,02	340,15		
1075	√ 0 √ ∗	NO ₂	93,5	2,98	385,10		

R1 N N $R3$								
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
1076	\o\		91,7	3,9	424,12			
1077	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Br	90,8	3,62	418,04			
1078	^ 0 \		80,8	4,09	446,18			
1079	/ °✓ ,	F F F	88,1	4,6	476,12			
1080	/ ⁰ ∕ → ,		91,5	3,98	404,16			
1081	^ 0 \	-	89,2	3,87	380,13			
1082	✓° ,	CI S-P	87,3	4,36	444,10			
1083	\°\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		90,6	4,24	407,13			
1084			86,4	4,24	414,15			
1085		NO ₂	91,8	4,21	459,17			
1086			88,2	4,89	498,19			
1087		Br	85,8	4,71	492,12			

R1 N $R3$							
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
1088			76,1	4,9	520,21		
1089		F F F	83,3	5,45	550,17		
1090			84,9	4,9	478,24		
1091			86,1	5,08	454,19		
1092		CI S	78	5,38	518,14		
1093			84,5	5,38	481,21		
1094			37,5	3,36	386,14		
1095		NO ₂	57,1	3,35	431,14		
1096			44	3,78	470,17		
1097		Br ·	42	3,62	464,09		
1098			38,8	4,14	492,21		
1099		FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	45,2	3,98	522,14		

$ \begin{array}{c c} & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\$								
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
1100			33,4	3,99	450,20			
1101			44,7	3,68	426,14			
1102		CI S	33,4	4,08	490,12			
1103			42,4	3,67	453,17			
1104	, F		92,6	4,23	390,14			
1105	, ·	NO ₂	91,9	4,1	439,1			
1106	F .		92,1	5	474,13			
1107	F .	Br	93	4,85	468,04			
1108	· .	0,0	86,5	5,04	496,18			
1109	, ·	FFFFF	92,8	5,5	526,13			
1110	, F		92,8	5,1	454,17			
1111	, F		92	5,1	430,10			

R1 N N $R3$								
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
1112	* F	CI	92,8	5,48	494,08			
1113	* F		92,8	5,1	457,18			
1114		*	93,8	4,6	406,10			
1115		NON CONTRACTOR OF THE CONTRACT	93,6	4,5	451,03			
1116		, L	93,1	5,2	490,10			
1117	·	Br	94,5	5,1	483,99			
1118	· CI		89,54	5,29	512,13			
1119		F F F	95,2	5,6	542,1			
1120			92,8	5,38	470,15			
1121	CI.		93,4	5,3	445,94			
1122		CI	94,7	5,7	510,05			
1123			94,3	5,3	473,04			

R1 N N $R3$								
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
1124			89,5	4,06	400,12			
1125		NO ₂	92,1	4,13	445,13			
1126			88,9	4,81	484,15			
1127		Br	88,8	4,56	478,09			
1128			82,4	4,76	506,20			
1129		L L	88,6	5,36	536,12			
1130			85,7	4,78	464,18			
1131			84	4,94	440,15			
1132		Ci S	64,3	5,38	504,10			
1133			88,4	5,16	467,17			
1134		*	82,7	3,76	446,16			
1135	0	NO ₂	89	3,77	491,14			

N N N N N N N N N N								
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
1136	0-	, L	87,1	4,4	530,13			
1137		Br	84,6	4,21	524,08			
1138	-0		76	4,52	552,19			
1139		L L L	85,6	4,98	582,12			
1140	0-		83,1	4,44	510,21			
1141	0-		88,3	4,6	486,19			
1142	-0	CI	1,5	5,07	550,12			
1143			84	4,75	513,16			

	N $R1$ N $R3$							
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
1144	*		75	4,48	300,16			
1145	*	*	82	4,89	348,16			
1146	*	CI	86,7	4,72	354,09			
1147	*	Br *	89	4,96	398,01			
1148	*	NC *	87	4,37	345,18			
1149	*		90	5,4	396,1			
1150	*	HO	89	5,9	448,2			
1151	*	Br s	85	5	404			
1152	*		85	4,96	360,10			
1153	*		91	4,39	417,14			
1154	*	*	95	5,14	366,21			

	N N S	R1 -N -R3			
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺
1155		*	92	5,52	414,17
1156	*	* CI	95	5,37	420,13
1157		Br *	93	5,6	464,08
1158		NC *	94	5	411,2
1159			91	6,04	462,19
1160		HO	91,5	6,4	514,2
1161		Br	92,6	5,7	470,1
1162			93,8	5,6	426,14
1163			91,4	5,02	483,21
1164	C C	*	96,3	5,55	420,10
1165	CI	*	78,2	5,81	468,10

	N N S	R1 -N -R3			
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺
1166	C C	CI	96,7	5,6	474,06
1167	\bar{c}	Br *	96,9	5,8	517,97
1168	$\overline{0}$	NC NC	94,2	5,18	465,06
1169	ō		94	6,25	516,10
1170	CI CI		96,4	6,52	568,2
1171	CI	Br	94,6	5,9	524.0
1172	CI		94,9	5,81	480,07
1173	CI		91,9	5,25	537,09
1174	MeO *		77,4	5,24	486,16
1175		*	96,8	5,36	402,15
1176			92,4	5,66	450,19

	N N S	R1 -N -R3			
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺
1177		* CI	93,3	5,48	456,12
1178		Br *	93,3	5,7	500,08
1179		NC *	90,7	5,12	447,15
1180			91,9	6,12	498,21
1181		· H	95,1	6,5	550,3
1182	*	Br	92,8	5,7	506.0
1183			94,9	5,74	462,15
1184			91,4	5,13	519,17
1185	0	*	73,6	3,52	346,19
1186	° ,		71,5	4,5	394,17
1187	° , ,	* CI	82,2	4,58	400,10

	R1 N								
Ex.	R1	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
1188	0	Br *	78,6	4,86	444,09				
1189	° *		70,5	5,3 ·	442,17				
1190	° *		76,8	5	406,13				
1191	0		80,5	4,1	463,19				

N									
	R2 N N O R5								
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺				
1192			28,3	3,61	373,15				
1193		Z - + ·	64,3	2,55	396,15				
1194		O N	66,8	3,58	425,13				
1195		· .	51,9	3,47	387,07				
1196		2+1	75,8	4,43	471,21				
1197		2,	66,4	2,38	399,15				
1198		N S O	42,6	3,11	474,14				
1199		2	45,3	4,39	457,18				
1200			64	4,62	485,21				
1201		CIN	55,1	4,09	429,12				
1202		F F	75	4,22	449,13				

N										
	R2-N N O									
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺					
1203		Z - + :	67,9	3,64	417,11					
1204		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	31,7 + 17,3	4,65 + 4,8	429,24					
1205		z .	41,8	3,86	407,14					
1206		> > · · ·	67,8	4,58	487,20					
1207		N	33,2	4,31	415,20					
1208	-	Z-+.	60,9	3,29	438,21					
1209			58	4,29	467,18					
1210		S Z	51,9	4,21	429,15					
1211			70	5,03	513,24					
1212			22,9	3,17	441,19					
1213		N N N N N N N N N N N N N N N N N N N	71,8	3,81	516,16					

R2-N N O R5									
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺				
1214			35,4	5,03	499,23				
1215			64	5,18	527,25				
1216		CI	68,2	4,71	471,19				
1217		Z - ¥ ·	76,5	4,84	491,18				
1218		"	67,6	4,35	459,16				
1219		X .	28,7 + 14,2	5,27 + 5,4	471,30				
1220		z.	66,9	4,52	449,21				
1221			64,1	5,17	529,21				
1222		N	49,7	4,55	423,19				
1223		Z-+,	78,8	3,41	446,17				
1224		° · ·	76,2	4,48	475,15				

R2 N O R5								
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺			
1225		\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	68,3	4,42	437,12			
1226	. 4-		79,6	5,24	521,17			
1227			49,1	3,29	449,20			
. 1228		N S N O	72,2	4	524,15			
1229			69,7	5,22	507,20			
1230			75	5,42	535,20			
1231		CI N.	78	4,93	479,13			
1232	•	F F F	79,1	5,04	499,16			
1233		Z - + .	82,6	4,56	467,13			
1234		× × ×	45 + 24,6	5,53 + 5,7	479,26			
1235		~ · ·	77	4,75	457,18			

R2 N N O R5								
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺			
1236		> · · ·	70,4	5,41	537,18			
1237		>	47,7	4,38	407,12			
1238	CI	Z - + ·	71,3	3,27	430,12			
1239	CI	° :	70,2	4,35	459,10			
1240	CI	s ,	68,1	4,27	421,06			
1241	CI	2 + .	78,8	5,13	505,13			
1242	CI		24	3,17	433,11			
1243	CI	N N N N N N N N N N N N N N N N N N N	74,2	3,86	508,08			
1244	CI		43	5,16	491,08			
1245	CI		71,8	5,38	519,12			
1246	CI	CI N.	69,9	4,85	463,05			

N										
	R2 N N O R5									
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺					
1247	CI CI	F F F	79,2	4,96	483,10					
1248	CI	L → ,	77,9	4,45	451,07					
1249	CI	N .	42,6 + 23,5	5,42 + 5,6	463,20					
1250			70	4,65	441,11					
1251	CI	>	72	5,36	521,12					
1252	, F F		28,2	4,96	441,14					
1253	*	Z→·	65,8	3,69	464,14					
1254	F F	0	51	4,86	493,14					
1255	F F	g ,	64,5	4,79	455,08					
1256	F F	Z ·	72,2	5,55	539,16					
1257	F F	2	27,2	3,59	467,16					

N										
	R2 N O R5									
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺					
1258		N.S	38,6	4,38	542,12					
1259	F F		49,4	5,53	525,16					
1260	F F		60,6	5,73	553,20					
1261	, 	CI	67,7	5,27	497,13					
1262	F F	F F	80,8	5,34	517,12					
1263	FFF	Z - + ;	78	4,92	485,13					
1264	F F	X N	28,5 + 14,4	5,87 + 6,0	497,26					
1265	F	N.	60,5	5,13	475,16					
1266	F	, , , , , , , , , , , , , , , , , , ,	65,7	5,73	555,14					

N									
	R2 N O R5								
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺				
1267		OMe	60	3,86	439,18				
1268		N. N.	88,1	2,89	478,24				
1269		N	89,1	3,83	389,20				
1270		Z - • •	94,3	2,41	396,14				
1271			94	2,33	418,20				
1272		s s	80,3	4,05	533,17				
1273		2	93	4,33	485,23				
1274			90,5	4,27	471,22				
1275			82,4	3,94	423,20				
1276		Br	92,8	4,07	487,10				
1277		Z-+ *	92,3	4,09	463,16				

N										
	R2 N O R5									
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺					
1278			90,6	2,9	430,20					
1279		Д	94,7	3,69	431,14					
1280		>	90,6	4,37	471,21					
1281			86,4	4,51	501,20					
1282		Z ·	93,1	4,16	463,09					
1283	<u>n</u>	OMe N	63,6	5,58	541,11					
1284	F F	N.	82,4	4,23	580,17					
1285	F F	→ N →	87,6	5,63	491,16					
1286	F F	Z ·	91,5	4,03	498,13					
1287	F - Ci	× × ×	89,5	3,91	520,13					
1288	F F	°	82,2	5,61	635,14					

N										
	R2-N N O R5									
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺					
1289	F F	Z+·	92,3	5,9	587,14					
1290	F F		89,9	5,86	573,11					
1291	F .	Z ·	90	5,66	525,14					
1292	<u>0</u>	Br	90,9	5,73	589,02					
1293	ш , , , , , , , , , , , , , , , , , , ,	Z-+ ,	91,2	5,69	565,07					
1294		>	89,4	4,72	532,13					
1295		Z - · ·	93,3	5,44	533,08					
1296		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	93,1	5,95	573,11					
1297			90,1	6,06	603,16					
1298	"	z ·	90,3	5,79	565,00					
1299		OMe	63,6	4,65	515,20					

N							
	R2 N	O R5					
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺		
1300		N.	82,9	3,63	554,24		
1301		N.	85,9	4,67	465,23		
1302		Z - ·	85,4	3,41	472,20		
1303		N N	83,7	3,31	494,23		
1304		N O	84,2	4,79	609,20		
1305		2:	86,5	5,11	561,20		
1306			84,2	5,11	547,19		
1307		· ·	84,8	4,75	499,23		
1308		Z	89	4,89	539,15		
1309		O	85,9	3,76	506,23		
1310		Z + .	88,5	4,59	507,17		

N										
	R2-N N O									
	s	R5								
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺					
1311		z - :	87,8	5,16	547,20					
1312		O N	1,5	5,6	577,22					
1313		Z	89,7	4,99	539,10					
1314		OMe .	65,3	4,81	545,20					
1315			86,7	3,82	584,25					
1316		>	87,6	4,81	495,24					
1317		Z - • •	91	3,63	502,20					
1318			90,2	3,54	524,24					
1319		2 0	85,4	4,91	639,22					
1320		2	85,7	5,21	591,23					
1321			90	5,19	577,22					

N										
	R2-N N O R5									
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺					
1322		z - ·	87,9	4,87	529,22					
1323		Br N.	86,4	5	593,12					
1324		" " " " " " " " " " " " " " " " " " "	87,5	5,01	569,16					
1325			89,7	4	536,23					
1326		Z	89,6	4,73	537,18					
1327		Z:	89,6	5 ['] ,24	577,24					
1328			86,7	5,33	607,24					
1329		2 ·	90,6	5,1	569,10					
1330		OMe	62,1	4,17	467,23					
1331		N.	92,8	3,23	506,28					
1332		N.	81,3	4,14	417,24					

N										
	R2 N O R5									
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺					
1333		Z - • ·	91,9	2,95	424,19					
1334			91,8	2,87	446,24					
1335		, , , o	78,7	4,31	561,19					
1336		Z+:	89,5	4,58	513,25					
1337			91,3	4,54	499,24					
1338		z :	80,3	4,24	451,23					
1339		Br	77,6	4,37	515,12					
1340		Z - + +	85,7	4,37	491,18					
1341			92,3	3,34	458,25					
1342		Z + :	90,8	4,05	459,19					
1343			79,9	4,63	499,25					

WO 01/07424 PCT/FR00/02095

N									
	R2-N								
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺				
1346	*	N ·	56,9 + 24,5	4,07 + 4,2	417,23				
1347		F-\(\bigc\)N-\(\bigc\)	64,6 + 24,4	4,98 + 5,1	526,30				
1348	*	· • · · · · · · · · · · · · · · · · · ·	62,4 + 25,1	3,96 + 4,1	430,25				
1349	*		80,5	3,44	490,37				
1350		2,	65,4 + 27,8	4,9 + 5,0	503,31				
1351	*	N-P-	64,5 + 25,5	5,6 + 5,7	536,35				
1352		N_N-	86,8	3,3	509,30				
1353	*	" F Z → .	64,1 + 29,8	5,02 + 5,1	537,26				
1354	*		60,8 + 32,2	5,37 + 5,5	543,32				
1355	*		59,6 + 31,5	5,24 + 5,3	545,30				
1356		MeO N	61,6 + 24,8	4,69 + 4,8	527,31				

WO 01/07424

		_ x						
	B3-N O							
	R2	R5						
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺			
1357	*		88,7	3,8	536,36			
1358	T		87,5	3,8	528,38			
1359	T .	\rangle 2	58 + 25,2	4,12 + 4,3	417,27			
1360	*	2+:	68,1 + 24,5	5,22 + 5,3	529,31			
1361	*		64,8 + 23,1	5,12 + 5,2	535,19			
1362	F F	N-	61,9 + 21,6	5,46 + 5,5	535,23			
1363	L L	F	90,4	6,06	644,33			
1364	L L L	· •-z	89,7	5,31	548,24			
1365	L L L	\\\\\\\\\\\\\	84,3	4,5	608,34			
1366	E E	z,	95,2	6,06	621,27			
1367	FFF	N-F	90,9	6,6	654,4			

N									
1	P3-N N								
	R2	R5							
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H]+				
1368	FFFF	$N \longrightarrow N \longrightarrow$	84,2	4,41	627,29				
1369	FFFF	L L L Z → ·	92,8	6,12	655,27				
1370	FFFF	N	91,9	6,4	661,33				
1371	FFFFFF		93,2	6,3	663,32				
1372	F F F	MeO N	87,3	5,9	645,32				
1373	E E		87,5	4,7	654,4				
1374	L L L		84,8	4,7	646,38				
1375	F F F	Z	71,8	5,53	535,23				
1376	FFFF	2+.	94,2	6,28	647,32				
1377	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		91,6	6,25	653,22				
1378		N-	63 + 26,1	3,98 + 4,2	441,30				

N								
R2-N N								
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺			
1379		F	64,5 + 28	4,8 + 5,0	550,36			
1380		· •-×	65,1 + 26,9	3,93 + 4,1	454,30			
1381			56,6 + 30,1	3,54 + 3,6	514,40			
1382		N	64,8 + 30,3	4,64 + 4,9	527,34			
1383			64,3 + 28,3	5,33 + 5,6	560,39			
1384		N → N →	64,5 + 24,8	3,5 + 3,6	533,35			
1385		L L L Z → ,	62,9 + 27,5	4,77 + 5,0	561,29			
1386		N.	48,5 + 20,8	5,08 + 5,3	567,36			
1387			61,2 + 27,5	4,98 + 5,2	569,33			
1388		OMe MeO N	58,4 + 22,7	4,5 + 4,7	551,36			
1389			65,1 + 26,4	3,92 + 4,0	560,38			

	N								
	R2-N N O								
	s	R5		<u> </u>					
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺				
1390			63,6 + 26,1	3,92 + 4,1	552,43				
1391		, z	64 + 27,3	4,01 + 4,2	441,30				
1392			66,2 + 28,9	4,96 + 5,2	553,35				
1393			62,8 + 26,6	4,84 + 5,0	559,23				
1394		N	59,4 + 26,3	3,95 + 4,1	445,26				
1395		F	63,7 + 28,7	4,89 + 5,1	554,28				
1396	S	+ 4 -z	62 + 27,9	3,9 + 4,1	458,27				
1397	S	× × ×	58,9 + 28,7	3,48 + 3,5	518,35				
1398			62,9 + 29,3	4,75 + 5,0	531,28				
1399	s ·		63,2 + 28,4	5,46 + 5,7	564,32				
1400	s ·	N_N-	58,3 + 30,4	3,39 + 3,5	537,30				

	N							
	R2 S	N R5			·			
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺			
1401		" \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	61,8 + 28,3	4,88 + 5,0	565,23			
1402			61,5 + 27,9	5,2 + 5,4	571,28			
1403			62,2 + 29,5	5,09 + 5,3	573,28			
1404		OMe N N	60,6 + 26,7	4,54 + 4,7	555,30			
1405			59,2 + 31,8	3,86 + 4,0	564,32			
1406			59,3 + 31,2	3,86 + 4,0	556,37			
1407		Z Z	49,3 + 21,7	4 + 4,2	445,26			
1408		. 4.2	64,4 + 29,7	5,07 + 5,3	557,28			
1409	\$	Z 0	61,7 + 27,9	4,96 + 5,1	563,20			
1410	0,1	N-	62,4 + 25,4	5,24 + 5,4	552,27			
1411	O,N	F-\(\bigc\)_N ->	63,6 + 28,1	5,91 + 6,0	661,33			

		\(\sqrt{\sqrt{N}} \)						
	R2 N S R5							
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺			
1412	0,1	* 4 -2	60,5 + 30,2	5,14 + 5,2	565,25			
1413	O ₂ N S		87,2	4,43	625,36			
1414	O ₂ N S		60,9 + 31,9	5,88 + 6,0	638,30			
1415	O ₂ N S	N - P	61,1 + 31,2	6,47 + 6,6	671,37			
1416	O ₂ N S	N	89,3	4,34	644,35			
1417	O ₂ N	L L L Z → .	66,6 + 25,7	5,96 + 6,0	672,28			
1418	O ₂ N S	N.	65,1 + 25,4	6,25 + 6,3	678,35			
1419	O ₂ N	×	63 + 27,5	6,13 + 6,2	680,32			
1420	O ₂ N	OMe MeO N	54,7 + 29,8	5,75 + 5,8	662,33			
1421	0,1		91,7	4,71	671,38			
1422	0,1N		89,3	4,72	663,41			

	R2 N N O R5								
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺				
1423	0,1	\ \ \ \	49 + 23,9	5,34 + 5,4	552,26				
1424	0,1	2+.	64,1 + 27,2	6,18 + 6,2	664,34				
1425	0,N		62,3 + 27,3	6,13 + 6,2	670,25				

	7				
	R2-N) >(° R5			•
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺
1426			78,4	4,58	463,27
1427		N.	53,4	4,48	471,23
1428			86,2	3,67	526,29
1429		OMe N -	86	4,58	542,25
1430		N	84,9	4,98	546,21
1431		Z → ·	42,9	3,26	494,27
1432			84,4	4,14	522,26
1433			83,2	4,72	570,25
1434			87,1	4,04	530,22
1435		~ ·	45,6	3,16	464,25
1436		Z *:	85,6	4,4	475,20

	>				
	R2-N	, >—~(°			
Ex.	R2	`R5	Pureté (%)	tr (min.)	[M+H] ⁺
1437	*	F F O N	84,2	4,96	541,18
1438		N-P	87,2	3,88	554,28
1439	*	, z.★·;	84,5	4,39	437,23
1440	•	F F F	33,8	5,34	593,17
1441			9,5	4,7	463,24
1442) S O		78,8	5,11	499,20
1443	o Me		46,9	4,98	507,17
1444	8 № 0		87,9	3,88	562,19
1445	OMe 0	OMe N-	85,6	4,95	578,19
1446	OMe CI	N -	84,9	5,3	582,14
1447	OMe CI	~ .	49	3,45	530,19

	R2 N N O R5								
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺				
1448	OMe CI		81,4	4,62	558,18				
1449	Me O O O		83	5,06	606,20				
1450	o Me		84,9	4,42	566,15				
1451	Me O C	Z	40,7	3,5	500,19				
1452	Se C	Z • ,	85,1	4,87	511,13				
1453	\$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	F	87,4	5,33	577,13				
1454	e M O	N-	85,6	4,08	590,24				
1455	o Me 	_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	54,9	4,92	473,21				
1456	OMe C	E	43	5,66	629,13				
1457	oMe C		17,2	5,2	499,20				
1458			77,6	4,3	479,20				

	R2 N N O R5							
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺			
1459		N.	55,3	4,2	487,18			
1460			85,2	3,32	542,22			
1461		OMe N N -►	87	4,22	558,19			
1462		N -	85,9	4,64	562,14			
1463		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	82,9	2,74	510,23			
1464			81,6	3,84	538,20			
1465			84,1	4,41	586,21			
1466			85,5	3,66	546,16			
1467			49,3	2,8	480,20			
1468		Z • ·	81,7	4,11	491,15			
1469		F N	83,7	4,71	557,14			

	R2 N) >(° R5	·		
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺
1470		N - b	82,2	3,59	570,24
1471		Z. → ·	66,1	4,11	453,19
1472		" " " " " " " " " " " " " " " " " " "	29,5	5,12	609,14
1473		, ,	9,9	4,44	479,20
1474			82,8	5,36	491,28
1475		N.	58,2	5,29	499,26
1476			86,5	4,37	554,27
1477		OMe N -	86,6	5,33	570,26
1478		N -	84,1	5,67	574,20
1479		Z-•.	70,3	3,89	522,29
1480			84,2	4,94	550,28

	R2 N N N N N N N N N N N N N N N N N N N								
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺				
1481			84,5	5,44	598,26				
1482			86	4,84	558,24				
1483		\	50,1	3,93	492,29				
1484		Z - • ;	82,5	5,23	503,25				
1485		F O S	79,3	5,68	569,19				
1486		N N	87,3	4,51	582,31				
1487		Z * ;	79,7	5,22	465,25				
1488		F F F .	26,1	6,06	621,20				
1489		, ,	16,1	5,51	491,28				
1490	F		77	5,02	453,22				
1491	*	N.	48,4	4,88	461,16				

	2				
	R2 N N) >(° R5			
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺
1492	*		83,3	3,74	516,22
1493	*	OMe N—N	84,6	4,85	532,2
1494	F	CI N N	84,4	5,23	536,15
1495	F .	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	69,9	3,29	484,23
1496	F		79,5	4,51	512,22
1497	*		81,9	4,96	560,17
1498	*		85,5	4,29	520,16
1499	F		67,7	3,32	454,19
1500	F .	L -	82,7	4,78	465,14
1501	F	F O N	82,1	5,26	531,13
1502	*	N-	84,8	3,95	544,22

	R2 N N) >(° R5			·
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺
1503	F .	· ◆· z	77,5	4,83	427,16
1504	F *	F F F	24	5,6	583,11
1505	F	, ,	17,7	5,12	453,21

N N N O S R5							
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺		
1517	F		88,3	3,88	532,18		
1518	*		90,4	3	487,27		
1519	*		92,8	4,86	443,21		
1520	*		87,8	3,58	478,28		

-	N				,
	R2 N N	O R5			
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺
1521	-	N	90,4	5,2	478,28
1522			79,8	5,37	488,26
1523		0 ₂ N-\(\bigc\)-\(\bigc\)\-\(\bigc\)	90,3	5,13	523,27
1524		CI	81,2	5,7	509,2
1525	-		91	3,88	479,26
1526	-		91,5	5,62	491,29
1527	-		91,1	4,1	536,28
1528		N	91,9	5,68	546,25
1529		CI	92	5,54	512,24
1530	-		91,4	3,7	529,3
1531			92,4	5,49	485,23

	N N							
R2 N O R5								
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺			
1532	-		89,4	4,2	520,28			
1533	MeO *	N	90,1	4,56	452,20			
1534	MeO *		76,8	4,76	462,18			
1535	MeO *	02N-_N-_N-	92,5	4,58	497,22			
1536	MeO *		93,4	3,21	453,21			
1537	MeO *		91,2	5,04	465,22			
1538	MeO *		92,7	3,44	510,22			
1539	MeO *	4- N N-F	89,6	5,14	520,18			
1540	MeO	CI CI	90,2	4,93	486,17			
1541	MeO		89,4	2,98	503,26			
1542	MeO	V	90,9	4,84	459,18			

	N							
	R2-N N	O 						
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺			
1601		Z - *	88,1	3,87	409,24			
1602		N,	90,1	4.0	423,26			
1603		Z - ;	60,2	4,1	443,21			
1604		Z - * :	91	3,9	427,24			
1605		L Z → *	57,6	4,4	493,23			
1606		Z - * .	48,1	4,12	423,27			
1607		C Z - +	45 ,1	4,2	443,22			
1608		F	60,8	4,49	493,24			
1609	*	O ₂ N ,	54,5	3,98	454,26			
1610		CI Z · ·	84	4,19	443,23			
1611		F F N	92,8	4,49	493,25			

	N								
	R2 N N O R5								
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺				
1623	*		48,9	4,66	465,21				
1624	*	Z ·	89	4,46	449,27				
1625		L Z + 1	56,7	4,94	515,24				
1626	*	Z - * *	78,4	4,65	445,25				
1627	*	Z - ·	44,5	4,72	465,21				
1628	*	Z-+·	84,7	5,01	515,24				
1629	*	O ₂ N	73,9	4,5	476,27				
1630	*	Z	76,8	4,74	465,21				
1631	*	F F N	88,6	5,02	515,24				
1632	*	Z - * *	90,6	5,05	499,19				
1633	-	F F F	89,4	5,35	567,21				

	N								
	R2-N N	O 							
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺				
1634	*	Z-:	80,6	4,88	481,28				
1635		Z + ;	90,6	4,49	445,26				
1636		2	91,1	5,14	521,28				
1637		Z-+·	91,2	5,38	541,23				
1638			90	5,1	567,3				
1639		, ·	92,9	4,84	471,28				
1640			88,3	5,13	505,28				
		N							
	R2 N N O R5								
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺				
1641		Z - *	83,5	3,86	423,29				

		N			
	R2-N-N	O (R5			
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺
1642		N.	81,9	4	437,30
1643		Z + :	81,1	4,07	457,25
1644		Z - * *	89,9	3,89	441,27
1645		L	91,5	4,35	507,27
1646		Z - * *	70,6	4,08	437,31
1647		C Z ···	73,2	4,14	457,26
1648	*	Z:	91,7	4,42	507,27
1649		O ₂ N ,	61,9	3,96	468,26
1650		Z · ·	82,6	4,16	457,25
1651	*	F F N	78,5	4,46	507,26
1652	*	Z	80	4,46	491,21

		N			
	R2-N N	O 			
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺
1653		F F F	80,7	4,78	559,24
1654		Z :	90,3	4,28	473,33
1655		Z + :	91,4	3,93	437,30
1656		Z ***	93,5	4,55	513,33
1657		Z-•·	92,8	4,82	533,27
1658		2::	58	4,5	559,3
1659	*	Z .	92,1	4,24	463,32
1660		~ · ·	92,2	4,53	497,29
1661		Z - *	36,9	4,42	445,25
1662	*	N.	31	4,56	459,28
1663	*	Ç-	38,9	4,67	479,24

	R2 N N O R5								
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺				
1675	•	Z - + +	72	4,52	459,28				
1676	*	, + 2	91,1	5,14	535,30				
1677	*	2-1:	89,3	5,4	555,23				
1678	*		52	5,1	581,3				
1679	*	z .	91,3	4,84	485,31				
1680	*	~.	71,7	5,14	519,29				

	N								
	R2-N N O R5								
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺				
1681		*HN HN	72,7	4,26	471,34				
1682		HN	76,3	4,36	485,34				
1683	<u>.</u>	HN	51,6	4,47	485,33				
1684		, HZ	33,6	4,39	501,32				
1685	·	F F F	79,9	4,7	539,29				
1686		E L	76	4,77	555,28				
1687	<u>.</u>	H-\\	53,2	4,34	489,30				
1688		HN	59,2	4,51	505,27				
1689		Br HZ	74,7	4,57	549,21				
1690	<u>.</u>	I Z	82	4,84	547,34				
1691		HN	68,8	4,49	485,32				

		N			
	R2-N N	O (R5			
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺
1692		HN	73,4	4,25	501,37
1693	·	F F O	75,0	4,83	555,27
1694	<u>.</u>	HN	44,5	4,39	489,30
1695		HN	42,7	4,57	505,25
1696	<u>.</u>	HN	79,8	4,97	547,32
1697	<u>.</u>	HN	78,9	4,56	499,39
1698	<u>.</u>	HN	70,8	4,27	531,36
1699	·	HN F	77,5	4,35	507,33
1700		L Z	78,9	4,34	507,33
1701	<u>.</u>	HN F	75,8	4,27	507,32
1702	<u>.</u>	HN	74,9	4,41	507,32

	R2 N								
Ex.	R2	R5	Pureté (%)	tr (min.)	[M+H] ⁺				
1703	<u>.</u>	F F	75,3	4,49	507,29				
1704	<u>.</u>	HN	73,5	4,75	539,22				
1705	<u>.</u>	HN	82,9	4,7	521,31				

\mathbb{R}^{1}							
	N	\$ \display	R5				
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺		
1706	*	N-►	87,3	3,8	448,31		
1707	*	N	86,0	4,3	482,24		
1708	*	,	90,0	2,4	370,24		
1709	*	\\	76,6	3,88	387,26		
1710	*	Z - ·	53,2	3.0	394,2		
1711	*	$N \rightarrow N$	91,2	2,3	449,29		
1712	*		87,7	4,13	443,29		
1713	*		88,3	3,7	419,28		
1714	*		70,8	3,5	437,25		
1715	*		87,0	4,4	469,30		
1716	*	Br	82,5	4,12	485,20		

	$N \longrightarrow N \longrightarrow 0$								
	N N		R5		T .				
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] [†]				
1717	*	2	88,1	2,59	428,29				
1718	*		88,7	2,8	490,35				
1719	*	Z ·	79,0	4,68	529,23				
1720	*	× .	78,0	3,94	399,29				
1721		N-►	87,4	3,7	480,32				
1722	•	N-►	83,1	4,14	514,28				
1723		, ← Z	89,1	2,44	402,24				
1724	•	→	81,5	3,73	419,3				
1725	•	Z - ▶ ·	56,1	3.0	416,2				
1726	•	N N N	90,1	2,3	481,33				
1727	-0		87,3	3,96	475,31				

$N \longrightarrow N \longrightarrow 0$								
	N N		R5					
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺			
1728	-0		75,2	2,9	448,3			
1729			85,7	3,61	451,29			
1730		°	74,5	3,37	469,28			
1731			83,7	4,22	501,32			
1732	\oldsymbol{\chi}{\chi}	Br	86,7	3,95	517,20			
1733			80,6	2,61	460,32			
1734	^ 0 \		80,8	2,8	522,35			
1735		F F F	74,0	4,48	561,23			
1736	,°	· ·	81,2	3,8	431,31			
1737	CI .		87,1	4,76	546,27			
1738	cı !	N -►	85,5	5,16	580,24			

R1 N N O								
	N	s _/	R5					
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺			
1739	CI	, ←Z } \ \=Z	85,5	3,72	468,24			
1740	ci	z → ·	82,1	4,74	485,29			
1741		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	80,7	3,04	492,24			
1742	CI	N N N	87,7	3,4	547,28			
1743	· ·		81,9	4,96	541,23			
1744	C		55,2	2,9	514,27			
1745	ci		87,2	4,7	517,25			
1746	C		73,7	4,39	535,21			
1747	CI		84,3	5,22	567,25			
1748	ci	Br	74,7	4,9	583,16			
1749	cı :	، ا	76,8	3,53	526,28			

N N N N N N N N N N								
F.,	N PI	D5	R5	tr (min)				
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺			
1750	cı		84,3	3,7	588,34			
1751	CI	F F F	74,4	5,41	627,20			
1752	ci	z - :	80,9	4,88	497,31			
1753	F .	N-►	83,4	4,53	516,2			
1754	F.	N	83,2	4,96	550,24			
1755		, ← ⁷	84,1	3,39	438,25			
1756	, ,	z.►.	84,7	4,71	455,28			
1757	F .	z - ▼ ;	56,6	2,8	462,24			
1758	F.	N - N - N - N - N - N - N - N - N - N -	85,0	3.0	517,30			
1759	F.	N , .	84,6	4,9	511,26			
1760	F.		82,1	2,8	484,3			

R1 N N O									
	N R5								
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺				
1761	F .		84,4	4,44	487,27				
1762	F.		52,0	4,3	505,23				
1763	F.		84,5	5,12	537,28				
1764	F.	Br	81,5	4,93	553,17				
1765	F.	0= 2	80,2	3,34	496,29				
1766	F.	N N	85,9	3,5	558,31				
1767	F.	F F F F F F F F F F F F F F F F F F F	53,4	5,39	597,22				
1768	F.	. 4-2	81,6	4,81	467,29				
1769		N →	83,5	3,5	540,32				
1770		N- -	82,4	5,01	574,27				
1771		· ← Z	80,9	3,72	462,30				

N N N N N N N N N N								
Ex.	N R1	R5	R5 Pureté (%)	tr (min.)	[M+H] ⁺			
1772		Z*.	77,9	4,78	479,36			
1773		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	79,3	3,11	486,32			
1774		N N -	85,0	3,4	541,35			
1775			85,3	4,9	535,31			
1776			74,9	3.0	508,34			
1777			83,9	4,58	511,33			
1778		~ · · ·	69,1	4,4	529,3			
1779			83,1	5,1	561,3			
1780		Br	81,8	4,9	577,23			
1781			83,6	3,64	520,34			
1782			80,9	3,7	582,4			

N S R5								
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺			
1783		F F	68,0	5,34	621,28			
1784		× .	76,3	4,85	491,36			

N N N O R5							
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺		
1785		*	77,9	4,44	435,25		
1786		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	78,8	4,83	437,30		
1787		N -	79,5	3,13	464,27		
1788		N N	80,3	3,28	526,38		
1789		0 ₂ N — N N -	86,6	4,67	543,32		
1790		Z .	74,8	2,9	458,32		
1791			81,7	3,99	508,34		
1792		N	86,9	5,41	526,38		
1793		F	86,4	4,85	511,27		
1794		Z.	82,2	5,07	533,35		
1795		N.S.O.	83,1	3,55	536,28		
1796		·	82,3	4,66	471,3		

N N N N N N N N N N								
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺			
1797		F .	86,3	4,41	461,31			
1798		, , , , , , , , , , , , , , , , , , ,	85,1	4,95	505,33			
1799		S N N-	76,0	3,5	532,3			
1800		Zım	81,1	4,87	483,34			
1801	* *	× ×	68,62	3,96	387,33			
1802	*	~	73,4	4,39	389,33			
1803	•	O N -	81,2	2,57	416,32			
1804	*		79,2	2,9	478,3			
1805	*	0 ₂ N	83,2	4,26	495,34			
1806	•	Z * ·	70,2	2,5	410,3			
1807	•		73,3	3,6	460,37			
1808	1	N	75,0	5,01	478,39			

N N N N N N N N N N							
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] [†]		
1809	*	L Z → ·	70,3	4,45	463,31		
1810	**		83,9	4,73	485,37		
1811	*	z , , , , , , , , , , , , , , , , , , ,	76,5	3,14	488,31		
1812	*	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	79,1	4,28	423,35		
1813	•	F .	79,2	3,99	413,29		
1814	•		75,5	4,55	457,33		
1815	<u> </u>	N-► N-F	67,7	3,1	484,3		
1816	•	Zun-	62,7	4,44	435,33		
1817		N	85,7	5,02	471,33		
1818		N +	70,2	5,31	473,37		
1819		O N -	86,6	3,59	500,35		
1820		N. N.	83,8	3,7	562,4		

N N N N N N N N N N							
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺		
1821		0 ₂ N	88,5	5,04	579,32		
1822		Z.★·	39,8	3,3	494,3		
1823			85,8	4,55	544,33		
1824		~~~~	86,4	5,78	562,36		
1825		F Z → .	84,3	5,27	547,25		
1826			69,7	5,58	569,32		
1827			70,3	4,17	572,27		
1828		Z	85,4	5,17	507,34		
1829		F .	82,3	4,91	497,28		
1830			82,4	5,41	541,29		
1831		S N N	79,4	3,8	568,3		
1832		Z	86,9	5,31	519,33		

N N N N N N N N N N								
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺			
1833	CI	N .	86,3	4,99	455,27			
1834	CI	× ·	84,5	5,3	457,30			
1835	CI	O N	88,3	3,42	484,27			
1836	CI		83,6	3,65	546,29			
1837	CI	0 ₂ N-\(\bigc\)\(\bigc\)\(\bigc\)\(\bigc\)	88,8	4,91	563,24			
1838	CI	Z	65,2	3,3	478,24			
1839	CI		87,6	4,5	528,30			
1840	CI	N	90,4	5,68	546,30			
1841	CI	F	82,8	5,31	531,23			
1842	CI	2.*.	68,2	5,57	553,28			
1843	CI	N N N N N N N N N N N N N N N N N N N	72,4	4,11	556,21			
1844	CI	z -:	83,9	5,15	491,29			

N N N N N N N N N N							
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺		
1845	CI	Z ·	86,4	4,93	481,27		
1846	CI		86,3	5,29	525,25		
1847	CI	S N N -	82,6	3,7	552,3		
1848	CI	Z _I	88,1	5,3	503,29		
1849	OMe ·	× ×	82,9	4,25	451,32		
1850	OMe	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	82,1	4,64	453,35		
1851	OMe	O N →	85,6	2,72	480,33		
1852	OMe		82,9	3,16	542,35		
1853	OMe	0 ₂ N-\(\bigc\)\(\bigc\)\(\bigc\)\(\bigc\)	87,7	4,28	559,29		
1854	OMe	Z	75,3	2,82	474,33		
1855	OMe		84,4	3,83	524,32		
1856	OMe	N	87,0	5.0	542,36		

	N N N N N N N N N N								
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺				
1857	OMe .	L Z → .	82,6	4,73	527,28				
1858	OMe		65,8	5,01	549,31				
1859	OMe	N. 10.00	76,4	3,49	552,26				
1860	OMe	> z - ·	80,4	4,54	487,35				
1861	OMe *	H	81,3	4,28	477,30				
1862	OMe	,	79,9	4,59	521,29				
1863	OMe .	S N-	77,5	3,2	548,3				
1864	OMe .	Zm	86,5	4,65	499,32				

N S R5						
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺	
1865		× ×	84,7	4,94	435,29	
1866		N.	85,0	4,66	443,26	
1867			26,2	4,82	494,26	
1868		FN-N-	88,4	4,8	502,28	
1869			83,6	5,48	519,28	
1870			63,17	5,3	451,33	
1871			91,1	3,4	542,3	
1872		* • • z	35,7	4,48	435,20	
1873	*		88,8	3,8	502,26	
1874	*	×	87,1	5,41	533,29	
1875		F 0 2 .	89,5	5,14	513,22	
1876		~ ·	47,8	4,82	455,24	

N S R5					
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺
1877			77,1	5,32	521,24
1878			81,8	5,31	505,26
1879		× × ·	19,7	4,37	395,24
1880	*	F N N	61,4	5,14	511,22
1881		○ N · A	82,7	4,95	463,31
1882		N. N.	82,2	4,71	471,27
1883			67,2	4,84	522,26
1884		F	87,7	4,9	530,28
1885			79,4	5,54	547,28
1886		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	80,8	5,3	479,34
1887			88,9	3,6	570,24
1888		s ,	30,2	4,53	463,23

	N. N.	R1 N S) R5		
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺
1889			88,9	3,98	530,26
1890			84,2	5,42	561,30
1891		Z → ·	75,8	5,17	541,22
1892			85,8	4,86	483,28
1893			71,7	5,33	549,26
1894		2**	86,6	5,34	533,29
1895		× ×	54,1	4,43	423,28
1896		F N N	47,7	5,16	539,26
1897	MeO MeO	N.	74,6	4,44	509,30
1898	MeO MeO	N.	77,6	4,2	517,27
1899	MeO MeO	N-P	38,8	4,53	568,26
1900	MeO MeO	F-\(\bigc\)N->	80,1	4,5	576,3

	,				$\overline{}$
	N	N N N C) R5		
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺
1901	MeO MeO		72,3	5,17	593,30
1902	MeO MeO		77,0	4,88	525,34
1903	MeO MeO		80,5	3,3	616,3
1904	MeO MeO	s ,	34,6	4,03	509,21
1905	MeO .		81,3	3,6	576,2
1906	MeO MeO	N. A.	77,1	5,04	607,31
1907	MeO MeO	L L C Z → .	79,6	4,76	587,24
1908	MeO MeO	~ · ·	77,8	4,38	529,28
1909	MeO MeO		78,0	4,95	595,28
1910	MeO MeO	27.	81,1	4,88	579,29
1911	MeO MeO	N	32,4	3,89	469,29
1912	MeO .	F F N.	49,3	4,7	585,26

	N N N N N N N N N N						
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺		
1913	ō	N.	87,0	5,59	503,20		
1914	ō	N.	88,5	5,3	511,15		
1915	C	N N	69,5	5,28	562,16		
1916	ō	F	89,4	5,3	570,1		
1917			79,1	5,98	587,17		
1918	CI	· \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	82,4	5,84	519,23		
1919	ō		89,5	3,9	610,1		
1920	2	z -▶ ,	27,2	5,12	503,11		
1921	G G		88,6	4,41	570,13		
1922	CI	Z 2	86,4	5,91	601,19		
1923	G G	L L C Z → .	84,9	5,66	581,11		
1924	C	~ · ·	86,4	5,44	523,13		

N N N O R5						
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺	
1925	ō		61,9	5,81	589,16	
1926	ō	Z+,	84,7	5,85	573,15	
1927	CI	N .	36,8	5,1	463,16	
1928	CI	F N N	76,4	5,68	579,13	
1929	•	, v	79,4	4,65	415,30	
1930	•	N.	84,5	4,41	423,29	
1931	*		44,0	4,62	474,29	
1932		F	86,1	4,65	482,3	
1933			78,5	5,33	499,31	
1934	•	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	79,6	5,06	431,33	
1935	:		84,6	3,4	522,30	
1936		\$ N	54,6	4,2	415,21	

N S R5						
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺	
1937	\		85,4	3,7	482,29	
1938	\		83,5	5,21	513,32	
1939		L	85,7	4,92	493,24	
1940			83,0	4,58	435,29	
1941			75,1	5,1	501,31	
1942	\		88,2	5,1	485,31	
1943	•	× × ×	76,1	4,08	375,28	
1944	•	F	81,1	4,9	491,28	

\mathbb{R}^{1}								
	N R5							
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺			
1945		N-P	84,3	4,24	512,26			
1946		$N \rightarrow N$	85,4	3,63	514,25			
1947		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	86,8	3,1	526,27			
1948		F	87,7	4,32	530,23			
1949		0 ₂ N-\(\big N-\rightarrow N-\rightarrow \)	87,5	4,24	557,23			
1950		N N →	88,8	2,9	513,26			
1951		N-1	84,5	4,92	540,28			
1952		N -	87,7	4,49	526,27			
1953		× × × × × ×	62,5	3,66	567,26			
1954		0	89	4,08	542,26			
1955		N-► N-►	87,7	4,38	530,24			
1956		N → N →	82,4	2,7	513,28			

N N N N N N N N N N					
Ex.	N R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺
1957	*	NO ₂	87,7	4,31	557,23
1958		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	91,0	4,44	556,27
1959		N	80,7	3,44	514,25
1960		N-	68,6	4,67	535,24
1961		$N \rightarrow N$	85,3	4,32	526,27
1962		N	83,0	3,75	528,25
1963		N-1	88,7	3,28	540,28
1964		FN-N-	86,8	4,37	544,25
1965		0 ₂ N-\(\bigg \)N-\(\bigg \)	89,4	4,29	571,24
1966		N N - N	86,9	3,1	527,25
1967		N	86,1	4,94	554,29
1968		N-*	87,6	4,54	540,27

N N N N N N N N N N						
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺	
1969		N - N - N - N - N - N - N - N - N - N -	65,4	3,76	581,27	
1970		O — N N →	86,3	4,16	556,28	
1971		F N N-	86,0	4,43	544,25	
1972		$N \rightarrow N$	83,2	2,8	527,3	
1973.		NO ₂	84,8	4,38	571,24	
1974		~~~	87,8	4,5	570,28	
1975		$N \longrightarrow N \longrightarrow$	80,9	3,55	528,26	
1976		N-	62,7	4,71	549,27	
1977		N-►	85,7	4,41	526,29	
1978		$N \rightarrow N$	84,2	3,82	528,27	
1979		N	87,4	3,28	540,28	
1980		F-\(\bigc\)-N\(\bigc\)N->	86,6	4,47	544,24	

N N N O S N S N O									
Ex.	N R1	R5	R5 Pureté (%)	tr (min.)	[M+H] ⁺				
1981		0 ₂ N-\(\big \)N-\(\big \)	86,4	4,38	571,24				
1982		N -► N N -►	85,9	3,1	527,27				
1983		N	85,3	5,06	554,28				
1984		N	85,3	4,66	540,28				
1985			60,8	3,8	581,28				
1986		0-\(\big N-\rightarrow \)	86,1	4,25	556,28				
1987		N → N →	86,4	4,54	544,25				
1988		NNN_	75,9	2,86	527,28				
1989		NO ₂	86,5	4,46	571,24				
1990		N	88,4	4,6	570,29				
1991		N N N N	79,8	3,62	528,27				
1992		N	63,2	4,82	549,26				

R1 N N O								
	N) s_//	R5					
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺			
1993	OMe OMe	N-►	81,8	4,15	572,25			
1994	OMe OMe	N	81,0	3,58	574,25			
1995	OMe OMe	N -	83,5	3,08	586,3			
1996	OMe OMe	F	84,3	4,2	590,27			
1997	OMe	O ₂ N-\(\bigc\)-\(\bigc\)N-\(\bigc\)	85,3	4,12	617,26			
1998	OMe	N N -	86,1	2,91	573,28			
1999	OMe	N-F	85,5	4,74	600,31			
2000	OMe OMe	N-N	87,3	4,37	586,28			
2001	OMe OMe		68,4	3,6	627,28			
2002	OMe OMe	0-_N_N-	85,4	3,98	602,28			
2003	OMe OMe	N N → N → N → N → N → N → N → N → N →	83,1	4,26	590,27			
2004	OMe OMe	N_N-	84,5	2,7	573,26			

R1 N N											
	N S R5										
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺						
2005	OMe OMe	NO ₂	85,9	4,2	617,27						
2006	OMe OMe	0-/ N-+	86,9	4,32	616,31						
2007	OMe OMe	$N \rightarrow N \rightarrow$	81,2	3,4	574,24						
2008	OMe OMe	N-P	69,0	4,54	595,29						
2009		N-►	82,1	4,72	574,25						
2010		N-N N-►	80,1	4,15	576,27						
2011		N - N	83,9	3,53	588,27						
2012		F-\(\bigc\)N-\(\bigc\)	80,8	4,78	592,26						
2013		O ₂ N-\(\big N-\rightarrow N-\rightarrow \)	83,0	4,68	619,26						
2014		N N →	85,6	3,35	575,25						
2015		N	82,9	5,41	602,30						
2016		N	81,9	4,96	588,26						

	N N N N N N N N N N									
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺					
2017			58,6	4,09	629,29					
2018		0	81,7	4,53	604,27					
2019		N	81,4	4,84	592,26					
2020		N_N-	78,7	3,06	575,31					
2021		NO ₂	83,9	4,74	619,25					
2022	-	0-/ N-	82,6	4,89	618,29					
2023		N N N	79,5	3,9	576,27					
2024		N-	64,2	5,15	597,27					

N N N N N N N N N N									
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺				
2025		N-	88,8	4,94	574,23				
2026		FN-N-	88,4	4,96	592,25				
2027		0 ₂ N-\(\bigc\)-\(\bigc\)N-\(\bigc\)	87,7	4,86	619,24				
2028		$N \rightarrow N$	89,7	3,61	575,2				
2029		N-	70,4	5,13	571,25				
2030		N -	88,0	5,58	602,28				
2031		N-P	87,8	5,15	588,26				
2032			76,5	4,24	629,28				
2033		0-\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	88,8	4,7	604,27				
2034		N → N → N →	88,3	5,04	592,25				
2035		NO ₂	89,5	4,96	619,24				
2036		F N N-	87,5	5,41	642,26				

N N N N N N N N N N									
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺				
2037		F	88,9	5,12	610,24				
2038			89,4	5,07	618,27				
2039		$F \longrightarrow K \longrightarrow $	88,7	5,42	687,24				
2040		N	87,7	3,68	580,30				
2041			85,2	4,89	574,23				
2042		FN-N-	84,4	4,9	592,25				
2043		O ₂ N-\(\bigg\)-\(\bigg\)-\(\bigg\)	84,7	4,78	619,23				
2044		N N N -	89,0	3,58	575,25				
2045		N-	61,5	5,16	571,22				
2046		N-N-	83,2	5,57	602,28				
2047		N	84,4	5,1	588,25				
2048			73,2	4,25	629,27				

N N ,0										
N S R5										
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺					
2049		0	85,5	4,64	604,26					
2050		F N N →	85,6	4,99	592,2					
2051		NO ₂	85,7	4,93	619,24					
2052		F	86,2	5,34	642,25					
2053		F	85,1	5,06	610,23					
2054			84,6	5,06	618,27					
2055		$F \xrightarrow{F} NO_2 N N$	85,4	5,37	687,23					
2056		N-	85,8	3,68	580,30					
2057		N-►	68,0	4,37	528,26					
2058		F-(N-N_N-	86,3	4,41	546,22					
2059	0	O ₂ N-√N-►	88,1	4,32	573,19					
2060	0	N	86,1	3	529,25					

	N N N N N N N N N N									
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺					
2061		N-	67,2	4,56	525,25					
2062		N -	91,2	4,98	556,26					
2063		N	87,8	4,56	542,26					
2064			75,6	3,73	583,23					
2065		0-(N-)	88,7	4,16	558,23					
2066	0	F N N	88,4	4,46	546,22					
2067	0	NO ₂	87,4	4,4	573,20					
2068		F	87,7	4,88	596,21					
2069		F——N—N-	87,9	4,56	564,21					
2070	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	87,5	4,51	572,26					
2071		$F \xrightarrow{F} NO_2 N \xrightarrow{N}$	88,8	4,91	641,20					
2072		N-►	86,2	3,08	534,27					

N N N N N N N N N N									
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺				
2073			71,7	4,78	562,25				
2074		FN-N	82,1	4,8	580,23				
2075	*	O ₂ N-\(\bigc\)\(\bigc\)\(\bigc\)\(\bigc\)	82,6	4,68	607,23				
2076		N N	79,5	3,4	563,21				
2077		N-	67,5	4,92	559,23				
2078		~~~~	83,0	5,39	590,27				
2079		N-N	82,5	4,98	576,26				
2080			42,5	4,1	617,23				
2081		0-{_N-\	86,9	4,58	592,26				
2082		NN- -	82,5	4,88	580,23				
2083		NO ₂ N-►	81,4	4,77	607,23				
2084		F	82,3	5,24	630,26				

N N N N N N N N N N									
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺				
2085		FN-N-	83,5	4,97	598,20				
2086			81,6	4,93	606,28				
2087		$F \xrightarrow{F} NO_2 N \xrightarrow{\blacktriangleright}$	82,7	5,25	675,23				
2088		N-N	84,4	3,4	568,26				
2089		N -► N -►	67,0	4,64	562,24				
2090		F-\(\big \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	83,0	4,66	580,23				
2091		O ₂ N-\(\bigce\)_N-\	83,6	4,54	607,22				
2092		$N \rightarrow N$	82,5	3,3	563,25				
2093		N-	84,2	4,8	559,22				
2094		~~~	86,2	5,21	590,29				
2095		N	83,2	4,82	576,28				
2096			62,8	3,99	617,26				

N N O											
	N S R5										
Ex.	R1	R5	Pureté (%)	tr (min.)	[M+H] ⁺						
2097		0-N-N-	86,0	4,44	592,2						
2098		F N N-	85,8	4,72	580,25						
2099		NO ₂	84,0	4,62	607,23						
2100		F	83,4	5,09	630,26						
2101		F——N—N—	84,8	4,8	598,21						
2102		~ N -	83,7	4,78	606,29						
2103		F F NO_2	83,6	5,1	675,24						
2104		N-	5,6	3,05	568,28						

	R2 N N	R1 O R5				
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺
2105	N/NH ₂	Co		81,5	4,9	468,27
2106	N/NH ₂	1		81,4	5,01	465,28
2107	N/NH ₂	1		77,3	5,34	505,31
2108	N/NH ₂	C	F.	73,5	4,7	447,29
2109	N/NH ₂	ō	F F O	70,5	5,28	499,26
2110	N/NH ₂	ō		73,9	5,38	491,30
2111	N/NH ₂	- *	OMe OMe	72,0	4,5	489,31
2112	N/N/NH ₂			73,0	5,5	521,29
2113	N/NH ₂	-	<u></u>	90,0	4,23	381,29
2114	N/NH ₂		7	76,1	5,02	443,30
2115	N/NH ₂		₩.	56,9	4,2	434,32
2116	N/NH ₂	*		79,8	4,29	431,31
2117	NH ₂	*		79,1	4,45	471,35

	R2 N N	R1 O		_	-	
	\$_//	R5				
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺
2118	N/N/NH ₂	*		70,2	3,56	413,29
2119	NH ₂		F	72,4	4,68	465,27
2120	NH ₂			78,3	4,66	457,33
2121	N NH ₂		OMe	90,1	3,41	455,33
2122	N/N/NH ₂	*		82,2	4,38	487,36
2123	N/N/NH ₂	*	1	68,8	2,99	347,34
2124	N/NH ₂	*	-	75,2	4,13	409,33
2125	NH ₂	200		56,9	4,01	513,30
2126	NH ₂			70,1	3,88	510,29
2127	NH ₂	200		77,8	4,16	550,29
2128	N NH ₂	2000	-	67,7	3,49	492,28
2129	N/NH ₂	200		71	4,27	536,28
2130	NH ₂	N 0 0 0	OMe OMe	71,4	3,38	534,30

	R2 N N	R1 O				
Ex.	R5	R5	R1	Pureté (%)	tr (min)	ΓΛΛ+ LJ1 ⁺
2131	NH ₂	2200		67,7	4,29	566,30
2132	N/NH ₂	× 0000		54,5	2,98	426,29
2133	NH ₂	0 0 0		70,1	3,85	488,31
2134	NH ₂			57,1	4,5	462,36
2135	NH ₂			83,2	4,61	459,35
2136	N NH ₂			91,6	4,72	499,40
2137	NN-NH ₂			80,7	3,94	441,32
2138	N NH ₂		FFO	73,9	4,99	493,32
2139	NH ₂			77,5	4,95	485,37
2140	NH ₂		OMe OMe	77,4	3,79	483,36
2141	NH ₂			66,1	4,62	515,38
2142	N NH ₂		•	70,1	3,49	375,33
2143	NN-NH ₂		~··	74,1	4,46	437,35

	R2 N								
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺			
2144	NH ₂	Co	().	93,8	5,14	516,28			
2145	NH ₂	1		90,0	5,27	513,28			
2146	NH ₂	Q +		81,4	5,58	553,30			
2147	NH ₂	1	L	78,6	5,02	495,27			
2148	NH ₂	1	F	81,4	5,51	547,21			
2149	NH ₂	()		85,5	5,62	539,29			
2150	NH ₂	\bar{c}	OMe OMe	78,9	4,86	537,28			
2151	NH ₂	Co ,		83,2	5,76	569,28			
2152	NH ₂	Co	*	90,5	4,62	429,28			
2153	NH ₂	C	-	91,8	5,31	491,31			
2154	NH ₂		₩.	60,4	4,47	482,33			
2155	NH ₂			83,6	4,62	479,31			
2156	NH ₂			79,1	4,72	519,34			

	R2 N N	R1 O				·
Ex.	R5	R5	R1	Pureté (%)	tr (min.)	[M+H] ⁺
2157	NH ₂	*		72,6	3,96	461,31
2158	NH ₂		F F O	75,7	5.0	513,27
2159	NH ₂			79,3	4,99	505,34
2160	NH ₂		OMe OMe	89,6	3,72	503,34
2161	NH ₂	*		89,6	4,7	535,32
2162	NH ₂		*	73,5	3,38	395,32
2163	NH ₂		-	80,1	4,5	457,32
2164	NH ₂	2/3/0		58,8	4,24	561,29
2165	N/N/NH ₂	× 5 0		77,9	4,16	558,27
2166	N NH ₂	N S 0		85,5	4,42	598,29
2167	N/N/NH2	N S O		82,8	3,87	540,27
2168	N/N/NH2	2,5,0	F F	1,54	4,52	592,25
2169	N NH ₂	2000		56,0	4,54	584,25

	R2 N N	R1 O				
	S//	`R5			· · · · · · · · · · · · · · · · · · ·	,
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] [†]
2170	NH ₂	200	OMe OMe	82,5	3,76	582,30
2171	NH ₂	200		71,8	4,58	614,31
2172	NH ₂	2300	•	71,9	3,43	474,30
2173	NH ₂	Z 500		80,9	4,16	536,28
2174	N NH ₂	*	S.	61,9	4,76	510,36
2175	NH ₂			83,1	4,93	507,35
2176	NH ₂			92,0	4,99	547,36
2177	NH ₂	*	L	88,3	4,27	489,35
2178	NH ₂		F F	86,3	5,41	541,29
2179	NH ₂			79,7	5,36	533,36
2180	NH ₂		OMe	82,5	4,13	531,35
2181	NH ₂			74,0	4,99	563,34
2182	NH ₂		<u></u>	76	3,89	423,35

	R2-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	R1 O ← R5				
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺
2183	NH ₂	-		79,8	4,89	485,38

	R2 N N	O —(R5				
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺
2184	NH ₂			80,8	4,43	501,32
2185	N/NH ₂		OMe *	66,2	4,18	545,31
2186	N/NH ₂		F F	64,6	5,18	569,27
2187	N/NH ₂		0 ₂ N .	57,2	4,78	589,30
2188	N/NH ₂			65,7	4,41	529,36
2189	N/NH ₂			65,4	4,52	549,28
2190	`N\\NH ₂		(s)	65,8	4,24	521,29
2191	N/NH ₂		<u></u>	71,4	4,19	481,37
2192	N/NH ₂			83,9	4,8	577,32
2193	N/NH2		CI.	76,5	4,54	583,24
2194	N/NH ₂	Br *		67,2	4,76	473,22
2195	N/N/NH ₂	Br *	OMe *	66,6	4,69	517,20
2196	NH ₂	Br *	FF.	71	5,2	541,18

	R2 N N	~				
Ex.	R5	R5 	R1	Pureté (%)	tr (min.)	[M+H] ⁺
2197	NH ₂	Br	O ₂ N .	69	4,73	561,15
2198	N/NH ₂	Br		74,8	5,04	501,24
2199	N/NH ₂	Br *	CI .	69,5	5,18	521,16
2200	NH ₂	Br	S	79,3	4,8	493,18
2201	N/NH ₂	Br *		74,9	4,79	453,24
2202	N/NH ₂	Br		68,9	5,41	549,20
2203	N/NH ₂	Br	CI CI	68	5,2	555,11
2204	N/N/NH ₂	FF	*	66	5,02	463,27
2205	N/N/NH ₂	FF	OMe *	62,2	4,83	507,28
2206	N/N/NH ₂			65,2	5,48	531,24
2207	N/NH ₂		O ₂ N	66,3	4,99	551,22
2208	N/NH ₂			72,9	5,22	491,31
2209	NH ₂	FF	cı	77,2	5,31	511,24

	R2 N N	O —(R5				
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺
2210	N/NH ₂		(s)	62,8	4,98	483,24
2211	N/NH ₂		*	62,4	4,98	443,31
2212	N/N/NH ₂			69,6	5,55	539,29
2213	N NH ₂		Co.	63,5	5,41	545,19
2214	N/N/NH ₂			41,2	4,09	455,28
2215	N/N/NH ₂	0-0-0	OMe	58,5	3,73	499,35
2216	*N^NH ₂	0-0-		68,8	4,78	523,28
2217	N/N/NH ₂	0	O ₂ N	36,2	4,37	543,28
2218	N/N/NH ₂			42,9	4,1	483,36
2219	N/NH ₂	0-0-0-	CI :	46,1	4,24	503,30
2220	N/NH ₂		(s)	48,4	3,87	475,28
2221	N/NH ₂	-0		39	3,8	435,34
2222	NH ₂	-0		48,3	4,55	531,30

	R2 N N	O { R5				
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺
2223	N/NH ₂	-0	CI .	47	4,33	537,20
2224	NH ₂		*	57,4	4,64	541,34
2225	NH ₂		OMe :	69,1	4,34	585,37
2226	NH ₂		F .	64,6	5,36	609,35
2227	NH ₂		02N	40,2	4,94	629,34
2228	NH ₂			62,6	4,57	569,3
2229	NH ₂		CI	68	4,72	589,31
2230	NH ₂		S	61,2	4,44	561,31
2231	NH ₂		*	61,2	4,37	521,36
2232	N NH ₂			80,7	5,02	617,37
2233	N/N/NH ₂		CI .	74,2	4,77	623,28
2234	N NH ₂	Br	*	68,1	4,99	513,23
2235	N NH ₂	Br	OMe	66,1	4,98	557,22

	R2 N N N	O —(R5				
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺
2236	NH ₂	Br		68,8	5,38	581,20
2237	NH ₂	Br	02N	69,7	4,9	601,19
2238	NH ₂	Br		67,1	5,27	541,23
2239	NH ₂	Br *	CI ·	72,6	5,45	561,16
2240	NH ₂	Br *	(s)	75,6	5,09	533,17
2241	NH ₂	Br ·	 .	74,6	5,08	493,26
2242	NH ₂	Br *		74,2	5,6	589,22
2243	NH ₂	Br *	CI .	70	5,48	595,14
2244	NH ₂		*	63,2	5,24	503,32
2245	NH ₂		OMe :	61,1	5,1	547,30
2246	N/NH ₂		FF	63,3	5,65	571,25
2247	N/NH ₂		02N	63,7	5,15	591,28
2248	N/N/NH ₂			67,2	5,46	531,31

	R2 N N					
ļ — ¬	3	R5		I		
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺
2249	NH ₂		CI :	76	5,58	551,24
2250	NH ₂	- L	S	60,2	5,25	523,26
2251	NH ₂		*	58,8	5,24	483,3
2252	NH ₂	TT TT		72,1	5,76	579,31
2253	NH ₂		CI CI	65,2	5,66	585,20
2254	N NH ₂			36	4,36	495,33
2255	N NH ₂	-	OMe	58,6	3,97	539,36
2256	NH ₂		F F	70	5.0	563,28
2257	N NH ₂	-	O ₂ N .	50,2	4,55	583,28
2258	N NH ₂			43,2	4,34	523,35
2259	NH ₂	-	CI .	52	4,53	543,29
2260	N NH ₂	-0	(s)	52,1	4,16	515,30
2261	N/N/NH ₂	-0	<u></u>	46,2	4,07	475,38

R2 N O R5							
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺	
2262	NH ₂			55,2	4,82	571,33	
2263	N/N/NH2	-0	CI .	51,5	4,63	577,22	

	R2 N	R1						
Ś R5								
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺		
2264	· + N			81,1	4,49	465,35		
2265	* * * * * * * * * * * * * * * * * * *			84,1	4,7	481,36		
2266	× × ×		- ·	65,7	4,78	445,36		
2267	* * * * * * * * * * * * * * * * * * *	+	*	63,0	4,51	399,29		
2268	·>			77,8	5,39	555,37		
2269	· + \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	+	çı	78,5	5,21	485,32		
2270	· N			74,0	5,02	557,37		
2271	† N N		MeO Me	78,1	4,38	525,37		
2272	† N N			89,2	5,42	527,38		
2273	, , , ,	+	FFF	83,0	5,75	537,30		
2274	† NN	CI		67,8	5,87	525,21		
2275	·	CI CI		83,2	5,75	541,16		
2276	· • • • • • • • • • • • • • • • • • • •	CI	*	71,9	6,11	505,25		

	R1 N O								
	S R5								
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺			
2277	· • · · · · · · · · · · · · · · · · · ·		*	70,5	5,14	459,15			
2278	* * * N			74,6	6,44	615,23			
2279	* * * N	C C	<u>-</u>	71,5	5,88	545,10			
2280	* * N	C		80,2	6,43	617,19			
2281	* * * * * * * * * * * * * * * * * * *	CI	MeO Me	93,4	5,82	585,18			
2282	* 	CI		74,9	6,28	587,19			
2283	* 	CI	FF	68,3	6,24	597,14			
2284	* * N			65,8	4,02	463,35			
2285	*			75,8	4,22	479,33			
2286	*		>	69,0	4,21	443,37			
2287	* * * * * * * * * * * * * * * * * * *		*	4,2	4,36	397,33			
2288	* i N			82,7	4,74	553,37			
2289	, , , ,		Ç.	89,8	4,62	483,29			

	R2 $R1$ $R5$							
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺		
2290	*			77,2	4,52	555,33		
2291	× + × × ×		MeO Me	69,3	3,98	523,35		
2292	· • • • • • • • • • • • • • • • • • • •			73,3	4,98	525,34		
2293	· • N			73,1	5,44	535,29		
2294	*	$- \bigcup_{z=0}^{\infty} 0^{z}$		59,4	5,14	482,30		
2295	- N	- O		76,0	5,09	498,28		
2296	· - × × ×	- O2	> .	62,3	5,47	462,32		
2297	·	-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	*	58,6	4,55	416,22		
2298	* * * * * * * * * * * * * * * * * * *			79,5	5,84	572,32		
2299	·	$- \bigcup_{Z}^{0}$	Çī .	74,9	5,3	502,25		
2300	* N			72,7	5,71	574,28		
2301	* N	- O2	MeO OMe	71,1	5,06	542,32		
2302	, , , ,			73,0	5,66	544,29		

	R2 N O S S S S S S S S S S S S S S S S S S							
Ex.	R5	R5	R1	Pureté (%)	tr (min.)	[M+H] ⁺		
2303	· • • • • • • • • • • • • • • • • • • •	, , , , , , , , , , , , , , , , , , ,	FF	64,6	5,62	554,24		
2304	N-	+		92,2	4,62	435,30		
2305	N	+		90,1	4,67	451,29		
2306	7	+	*	84,3	4,76	415,32		
2307	N -	+	*	43,7	4,34	369,27		
2308	7	+		83,7	5,44	525,34		
2309	N	-	CI .	80,3	4,96	455,25		
2310	N -	-		83,7	5,26	527,32		
2311	N	-	OMe MeO	82,8	4,64	495,34		
2312	N	-		94,1	5,44	497,32		
2313	N -	-	FFF	90,1	5,55	507,29		
2314	N	C C		64,7	5,62	495,16		
2315	N -	CI		50,7	5,54	511,15		

	R2 N O S S S S S S S S S S S S S S S S S S							
Ex.	R5	R5 R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺		
2316	N -	CI	\ .	78,0	5,8	475,22		
2317	N	CI	*	20,9	4,86	429,14		
2318	N	CI CI		79,2	6,27	585,15		
2319	N	CI CI	<u>-</u>	46,3	5,58	515,12		
2320	N	CI CI		84,1	6,23	587,20		
2321	N	CI	MeO	91,1	5,64	555,18		
2322	N -	CI		67,8	6,07	557,22		
2323	N -	CI	F	23,9	5,96	567,17		
2324	N			68,1	4,02	433,40		
2325	N			65,6	4,2	449,38		
2326	N		_\.	83,5	4,14	413,39		
2327	N -		*	36,4	3,94	367,35		
2328	N—			87,5	4,82	523,39		

	R2 N	R1	-					
\$∕⁄								
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺		
2329	N		<u>-</u>	65,1	4,42	453,33		
2330	Z			91,7	4,59	525,37		
2331	7		MeO Me	81,5	4,01	493,40		
2332	N -			73,9	4,96	495,39		
2333	N-		F	72,7	5,3	505,33		
2334	N-	Z - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		79,9	4,93	452,35		
2335	N-	- Z O N		81,8	4,88	468,33		
2336	X -	$- \left(\begin{array}{c} 1 \\ 1 \\ 2 \end{array} \right)^{\alpha}$	→	85,9	5,17	432,36		
2337	7	2	*	36,2	4,25	386,28		
2338	N -			93,3	5,62	542,36		
2339	N-	$ \bigcup_{z=0}^{\infty}$	<u>-</u>	76,5	4,96	472,3		
2340	N-	O		84,9	5,53	544,34		
2341	N—		OMe MeO	80,6	4,96	512,34		

R2 N O R5								
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺		
2342	N	0 N		79,6	5,42	514,35		
2343	N-	- Z O N	F	64,9	5,34	524,27		

	R2 N O R5							
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺		
2344	* N		<i>^</i> 0 <i>∕ `</i> .	76,9	4,54	431,32		
2345	* N		\\\\	80,7	5,47	457,38		
2346	*		MeO	82,2	5,19	507,34		
2347	*	F .		82,1	5,38	491,35		
2348	*	F ·	L .	76,7	5,2	495,30		
2349	Z -	F ·	FF	83,1	5,42	531,30		
2350	*			78,5	5,4	547,27		
2351	* N			86,8	5,58	539,33		
2352	* _ N			79,3	5,37	469,38		
2353	* N	F F .	F	83,1	5,18	499,31		
2354	* N	NO ₂	\O\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	82,3	4,32	422,33		
2355	* N	NO ₂	~~~	78,2	5,26	448,39		
2356	* N	NO ₂	MeO	79,7	4,98	498,37		

	R2 N	R1				
	\$	R5				
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺
2357	* N)		80,0	5,2	482,38
2358	z **	NO ₂ *	L	75,3	5.0	486,34
2359	* N	NO ₂ *	F	81,9	5,26	522,30
2360	* N N	NO ₂ *	F F	77,7	5,25	538,29
2361	* N	NO ₂ *		83,9	5,4	530,35
2362	* N	NO ₂ *	·	81,8	5,16	460,38
2363	* NN	NO ₂ *	F	79,3	5,03	490,31
2364	* N	Br	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	82,5	4,01	441,22
2365	* N	Br		80,6	4,98	467,28
2366	* N	Br	MeO	82,7	4,72	517,25
2367	* N	Br *		83,6	5.0	501,26
2368	* N	Br	F.	84,3	4,9	505,23
2369	* N	Br	F	82,5	5,48	541,19

	R2 N O								
	R5								
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺			
2370	* N	Br		86,6	5,5	557,19			
2371	* N	Br *		85,4	5,53	549,24			
2372	x * * x	B .	*	82,3	4,9	479,30			
2373	Z **	Br	F	81,5	5,26	509,21			
2374	* N N		^	83,4	4,23	469,37			
2375	* N N		^	82,3	4,94	495,40			
2376	* N N		MeO	88,1	4,73	545,36			
2377	* N			90,4	4,99	529,39			
2378	* N			90,6	4,92	533,35			
2379	* N N		F	85,2	5,62	569,33			
2380	* N		F.	84,2	5,6	585,33			
2381	* N			85,0	5,54	577,38			
2382	* N			80,6	4,87	507,41			

	R2 N O R5							
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺		
2383	*		F	85,9	5,42	537,34		
2384				74,2	5,32	455,34		
2385			MeO	92,3	5,1	505,32		
2386				78,4	5,23	489,33		
2387			-	71,3	5,12	493,32		
2388		F F	FF	74,4	5,32	529,27		
2389		F	F	68,8	5,29	545,25		
2390		F F ·		77,7	5,44	537,33		
2391		F F	*	80,7	5,24	467,36		
2392		F .	F.	63,3	5,04	497,30		
2393	2	NO ₂	^ 0 √ ⋆	87,4	4,16	420,33		
2394	7	NO ₂ *	~~~ <u>`</u>	82,7	5,12	446,38		
2395		NO ₂	MeO	82,4	4,88	496,35		

	R2 N O R5								
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺			
2396	2	NO ₂		78,0	5,04	480,37			
2397		NO ₂	-	75,9	4 ,9	484,33			
2398		NO ₂	F	71,5	5,16	520,29			
2399		ZO ₂ *	F F .	65,4	5,12	536,30			
2400	Z	NO ₂		76,0	5,28	528,33			
2401		NO ₂	*	93,8	5,03	458,38			
2402		NO ₂	F.	69,2	4,88	488,30			
2403	Z	Вг	_0	68,3	3,88	439,23			
2404	Z Z	Br *		70,8	4,89	465,28			
2405	N N	Br	MeO	76,2	4,72	515,23			
2406	N	Br		76,5	4,88	499,27			
2407		Br	F	90,1	4,88	503,26			
2408		Br	F	78,8	5,36	539,19			

	R2 N	R1						
S								
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] ⁺		
2409		Br		76,1	5,31	555,17		
2410		Br *		80,5	5,29	547,22		
2411		Br *	*	68,2	4,86	477,30		
2412	2	Br	F .	55,7	5,1	507,20		
2413			^	69,2	4,12	467,36		
2414			^	73,6	4,85	493,41		
2415			MeO	73,9	4,72	543,36		
2416	N N			73,4	4,87	527,39		
2417				90,6	4,92	531,36		
2418			F	71,6	5,5	567,32		
2419	N			60,5	5,4	583,32		
2420	N			60,8	5,29	575,36		
2421				58,8	4,82	505,39		

	R2 N N	R1 O R5				
Ex.	R5	R2	R1	Pureté (%)	tr (min.)	[M+H] [†]
2422	Z		F .	54,7	5,29	535,31

	N	Chiral				
	ا	R10				;
	R2 N N	R3				
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H]+
2423	H ₂ N N	*	*	79,8	3,66	476,30
2424	H ₂ N N	*		59,3	3,68	496,26
2425	H ₂ N N	*	F F O	60,5	4,2	580,22
2426	H ₂ N N	*		52,7	3,68	554,24
2427	H ₂ N N		*	72,3	3,87	490,30
2428	H ₂ N N		*	63,8	3,85	510,26
2429	H ₂ N N		F F O	63,0	4,34	594,23
2430	H ₂ N N	*		54,1	3,82	568,25
2431	H ₂ N N		<u> </u>	76,9	3,72	490,30
2432	H ₂ N N	*		70,7	3,73	510,26
2433	H ₂ N N	*	F F O	69,1	4,23	594,24
2434	H ₂ N N			52,7	3,72	568,24

	N	Chiral				
		R10				
	R2 N N	R3				
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H]+
2435	Z - + +		*	76,6	3,92	504,32
2436	H ₂ N	*		64,8	3,9	524,28
2437	H ₂ N N	*	F F O	66,2	4,37	608,24
2438	H ₂ N			59,3	3,86	582,27
2439	NH ₂		*	74,3	3,9	544,32
2440	NH ₂		*	65,4	3,91	564,29
2441	Z Z		F F O	63,8	4,41	648,30
2442	NH ₂	*		57,6	3,92	622,31
2443	NH ₂		*	77,8	4,09	558,34
2444	NH ₂		*	65,5	4,08	578,30
2445	NH ₂	-	F F O	64,3	4,5	662,31
2446	NH ₂			47,6	4,04	636,36

	N	Chiral				
	,,,,,	O R10				
	R2 N N	R3				
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H]+
2447	H ₂ N ,		> *	78,6	3,88	538,28
2448	H ₂ N ,	*		61,2	3,9	558,24
2449	H ₂ N N		F F O	59,8	4,38	642,27
2450	H ₂ N N	*		48,4	3,88	616,30
2451	H ₂ N N		*	79,9	4,06	552,28
2452	H ₂ N N			59,4	4,04	572,25
2453	H ₂ N N		F F O	61,4	4,52	656,29
2454	H ₂ N N			50,0	4,02	630,31
2455	× *	*	> *	76,1	3,74	488,29
2456	* * * * * * * * * * * * * * * * * * *		*	88,3	3,72	508,25
2457	*	*	F F O	84,2	4,21	592,22
2458	2 **			82,1	3,71	566,24

	₩,	Chiral				·
	l	R10				
	R2 N S	R3				
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H]+
2468	H ₂ N N			61,2	4,14	521,25
2469	H ₂ N N		F F O	62,4	4,62	605,25
2470	H ₂ N N			33,1	4,13	579,27
2471	H ₂ N N	*	*	87,3	4,01	501,31
2472	H ₂ N			54,0	4,05	521,25
2473	H ₂ N	*	F F O	69,1	4,51	605,26
2474	H ₂ N	*		35,4	4,04	579,27
2475	H ₂ N N		*	88,4	4,18	515,31
2476	H ₂ N N		*	68,0	4,19	535,28
2477	H ₂ N N		F F O	72,9	4,64	619,25
2478	H ₂ N N	*		32,6	4,17	593,28
2479	NH ₂	*	\\ \tag{*}	92,7	4,18	555,33

	N	Chiral				
		R10				
	R2 N N	R3				
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H]+
2480	NH ₂	*	*	59,4	4,24	575,29
2481	NH ₂	*	F F O	71,8	4,72	659,33
2482	ZH ₂	*		36,4	4,2	633,44
2483	NH ₂	*	*	92,4	4,36	569,34
2484	NH ₂			62,9	4,38	589,32
2485	NH ₂		F F O	71,9	4,82	673,33
2486	NH ₂			32,2	4,36	647,19
2487	H ₂ N N	*	> *	90,2	4,14	549,28
2488	H ₂ N N	*	*	59,7	4,22	569,24
2489	H ₂ N N		F F O	66,6	4,7	653,25
2490	H ₂ N N	*		34,5	4,22	627,27
2491	H ₂ N ,		\\ \tag{*}	91,3	4,32	563,30

	N N N N N N N N N N N N N N N N N N N	Chiral R10 R3				
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H]+
2492	H ₂ N N			60,8	4,35	583,26
2493	H ₂ N N		F F O	73,3	4,8	667,27
2494	H ₂ N N	*		32,9	4,34	641,29
2495	$\left\langle \begin{array}{c} z \\ z \\ \downarrow \\ \star \end{array} \right\rangle$	*	> *	60,4	3,94	499,30
2496	\(\frac{1}{2}\)	*	*	87,0	3,92	519,24
2497	$\left\langle \sum_{k=1}^{-2} \right\rangle$	*	F F O	84,4	4,41	603,24
2498	* / * / * / * / * / * / * / * / * / * /	*		81,4	3,94	577,26
2499	$\left\langle \begin{array}{c} z \\ \\ z \\ \\ \end{array} \right\rangle$			73,9	4,12	513,31
2500	*			91,5	4,09	533,26
2501	\(\frac{z}{z}\)		F F O	89,6	4,54	617,26
2502	\(\frac{z}{z}\)			85,4	4,09	591,27

		Chiral				
	N- N	`R10 -R3				
	R2 S					
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H]+
2503	H ₂ N N		*	77,7	3,8	471,39
2504	H ₂ N .	*	*	37,7	3,82	491,34
2505	H ₂ N N	*	cr	79,7	4,09	525,28
2506	H ₂ N N			58,5	4,23	541,33
2507	H ₂ N N	*	> *	84,6	4.0	485,38
2508	H ₂ N N		*	73,2	4.0	505,34
2509	H ₂ N N		cr *	82,3	4,25	539,29
2510	H ₂ N N			74,2	4,37	555,34
2511	H ₂ N N	*	*	57,5	3,56	417,32
2512	H ₂ N N	*	*	66,9	3,56	437,27
2513	H ₂ N N	*	CI	69,0	3,85	471,26
2514	H ₂ N N			71,1	4.0	487,33

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·	Chiral				
	j	`D40				
	R2 N N	`R10 -R3				
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H]+
Ex.	R10	R2	R3	Pureté	tr (min.)	[M+H]+
2535	H ₂ N N		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	84,7	3,83	505,34
2536	H ₂ N N	*		75,2	3,89	525,30
2537	H ₂ N N	*	Cr ·	75,9	4,17	559,25
2538	H ₂ N ,	*		70,4	4,29	575,30
2539	H ₂ N N	*	*	90,9	4,03	519,35
2540	H ₂ N N	*		71,5	4,04	539,31
2541	H ₂ N N	*	CI	79,2	4,31	573,25
2542	H ₂ N N	~		80,6	4,43	589,33
2543	H ₂ N N	*	>- *	77,2	3,62	451,30
2544	H ₂ N N	*		69,9	3,65	471,27
2545	H ₂ N N	*	CI *	74,8	3,92	505,22
2546	H ₂ N N			66,7	4,06	521,26

		Chiral			. <u></u>	
		`R10				
	R2 N N	-R3				
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H]+
2556	H ₂ N N	*	*	75,6	3,66	555,29
2557	H ₂ N	*	Cr	78,3	3,94	589,26
2558	H ₂ N N			69,7	4,06	605,35
2559	H ₂ N N	*	*	69,1	3,22	467,29
2560	H ₂ N N +			73,7	3,26	487,27
2561	H ₂ N	*	cr *	79,6	3,56	521,20
2562	H ₂ N N	*		73,5	3,72	537,27
2563	H ₂ N N		*	86,1	3,42	481,31
2564	H ₂ N N			77,1	3,43	501,29
2565	H ₂ N N		CI	83,0	3,73	535,22
2566	H ₂ N N	*		71,9	3,86	551,28

	R2 N N	Chiral `R10 -R3				·
Ex.	S—/	R2	R3	Pureté (%)	tr (min.)	[M+H]+
2576	H ₂ N N	*		37,9	3,81	501,28
2577	H ₂ N N	*	CI CI	45,6	4,08	535,21
2578	H ₂ N N	*		34,9	4,2	551,27
2579	H ₂ N N		*	66,2	3,95	495,31
2580	H ₂ N N			44,8	3,96	515,25
2581	H ₂ N N		cr	54,4	4,23	549,24
2582	H ₂ N N			36,5	4,34	565,28

		Chiral						
	R10							
	R2 N N	-R3						
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
2583	H ₂ N N	*		52,2	3,91	465,24		
2584	H ₂ N N	*	Br	55,9	4	529,14		
2585	H ₂ N N		*	51,3	3,9	445,29		
2586	H ₂ N N	*	O ₂ N	57,4	3,9	510,24		
2587	H ₂ N N			54,3	4,04	479,28		
2588	H ₂ N N		Br *	61,7	4,12	543,15		
2589	H ₂ N N		> *	80,0	3,82	465,25		
2590	H ₂ N N	*	O ₂ N *	61,6	3,85	530,20		
2591	H ₂ N N	*		61,1	3,97	499,25		
2592	H ₂ N N	*	Br *	61,3	4,06	563,1		
2593	H ₂ N N		*	84,2	3,96	479,29		
2594	H ₂ N N		O ₂ N	58,8	3,98	544,20		

		Chiral						
	O R10							
	R2 N N	_R3						
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
2595	H ₂ N N	*	*	61,5	4,1	513,26		
2596	H ₂ N N		Br	65,5	4,19	577,1		
	Chiral S O R10 R2 N R3							
Ex.	R10	R2	R3	Pureté	tr (min.)	[M+H] ⁺		
2597	H ₂ N N	*	O ₂ N	28,6	3,7	514,16		
2598	H ₂ N N	*		39,0	3,83	483,24		
2599	H ₂ N N	*	Br	39,9	3,92	547,1		
2600	H ₂ N N		*	53,5	3,8	463,26		
2601	H ₂ N N	*	O ₂ N	28,8	3,83	528,19		
2602	H ₂ N N			31,0	3,96	497,24		
2603	H ₂ N N		Br *	34,0	4,05	561,1		
2604	H ₂ N N	*	\\ \frac{\pi}{2} \\ \fr	64,5	3,72	483,24		

		Chiral						
R10								
	R2 N N	-R3						
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
2605	H ₂ N N	*	O ₂ N	25,4	3,78	548,12		
2606	H ₂ N N	*	*	36,8	3,9	517,20		
2607	H ₂ N N	*	Br	31,2	4	581,1		
2608	H ₂ N N		\\ \tag{*}	72,8	3,86	497,24		
2609	H ₂ N N	•	O ₂ N	31,7	3,9	562,17		
2610	H ₂ N	•	*	40,1	4,02	531,21		
2611	H ₂ N N		Br *	38,2	4,12	595,1		
		Chiral						
	OH O	R10						
	R2 N N	_R3						
Ex.	R10	R2	R3	Pureté	tr (min.)	[M+H] ⁺		
2612	H ₂ N N		*	45,2	3,49	419,24		
2613	H ₂ N N	*	> *	56,6	3,39	439,21		

		Chiral							
	R10								
	R2 N N	_R3							
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
2614	H ₂ N N		*	58,6	3,56	453,23			
		Chiral O							
	I	Ŭ							
	R2 N	R3							
Ex.	R10	R2	R3	Pureté	tr (min.)	[M+H] ⁺			
2615	H ₂ N N	*	*	65,5	3,96	479,28			
2616	H ₂ N N	*	O ₂ N *	50,5	4	544,19			
2617	H ₂ N N			55,7	4,11	513,26			
2618	H ₂ N N		Br *	55,5	4,2	577,13			
2619	H ₂ N N		\	67,1	4,09	493,30			
2620	H ₂ N N		O ₂ N *	53,7	4,11	558,20			
2621	H ₂ N N	*		55,5	4,22	527,27			
2622	H ₂ N N		Br .	72,1	4,3	591,13			

	Chiral								
	R10								
	R2 N N	∠R3							
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
2623	H ₂ N N	*	*	81,1	4,02	513,26			
2624	H ₂ N N		O ₂ N	51,0	4,08	578,18			
2625	H ₂ N N			54,1	4,17	547,21			
2626	H ₂ N N	*	Br *	65,2	4,26	611,11			
2627	H ₂ N N		*	83,9	4,16	527,27			
2628	H ₂ N N		O ₂ N *	60,2	4,18	592,21			
2629	H ₂ N N		*	63	4,3	561,21			
2630	H ₂ N N		Br	74,0	4,36	625,11			
Chiral O R10 R2 N N R3									
Ex.	R10	R2	R3	Pureté	tr (min.)	[M+H] ⁺			
2631	H ₂ N N	*	> *	83,1	4,06	515,26			

		Chiral				
		`R10				·
	R2 N N	∠R3				
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺
2632	H ₂ N ,	*	O ₂ N *	57,8	4,13	580,20
2633	H ₂ N N	*		37,4	4,22	549,23
2634	H ₂ N N	*	Br *	43,3	4,31	613,12
2635	H ₂ N N		*	86,7	4 ,18	529,27
2636	H ₂ N N		O ₂ N	64,3	4,22	594,19
2637	H ₂ N N		*	37,0	4,32	563,25
2638	H ₂ N N		Br	44,3	4,4	627,15
2639	H ₂ N N		*	86,9	4,14	549,23
2640	H ₂ N N		O ₂ N	53,4	4,23	614,17
2641	H ₂ N N	*		37	4,3	583,21
2642	H ₂ N N	*	Br *	45,7	4,4	647,11
2643	H ₂ N N		\\ \tag{*}	88,9	4,24	563,25

	Chiral									
	R ₁₀									
	R2 N N	-R3								
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺				
2644	H ₂ N N	*	O ₂ N	57,3	4,3	628,19				
2645	H ₂ N N	*	*	39,4	4,39	597,22				
2646	H ₂ N N		Br	44,1	4,48	661,15				

	OH C) Chiral						
		R10				1		
R2 N R3								
	s—'							
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
2647	HN NH ₂		0	25,6	3,18	495,23		
2648	HN NH ₂	*	CF ₃	33,1	3,59	533,15		
2649	HN NH ₂	*	NC NC	27,0	3	490,2		
2650	HN NH ₂	*		33,6	3,14	562,16		
2651	HN NH ₂		0-	27,2	3,36	509,21		
2652	HN NH ₂		F ₃	32,5	3,76	547,16		
2653	HN NH ₂		NC	29,7	3,2	504,2		
2654	HN NH ₂	*		34,8	3,32	576,21		
2655	$\left\langle \begin{array}{c} z \\ \overline{z} \end{array} \right\rangle$	*	0-	73,7	2,93	439,15		
2656		*	CF ₃	60,6	3,37	477,14		
2657		*	NC NC	65,1	2,7	434,1		
2658		*		69,3	2,92	506,14		
2659		*		72,5	3,14	453,17		

	OH C	Chiral						
	R2 N N	R3						
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
2660			CF ₃	77,2	3,55	491,14		
2661			NC NC	66,4	2,9	448,1		
2662	$\left\langle \begin{array}{c} \mathbf{I} \\ \mathbf{Z} \\ \mathbf{J} \\$	*		65,9	3,14	520,15		
O Chiral R10 R2 N R3								
Ex.	R10	R2	R3	Pureté	tr (min.)	[M+H] ⁺		
2663	HN NH ₂		P	63,3	3,82	555,21		
		-						
2664	HN NH ₂	*	CF ₃	85,8	4,24	593,19		
2664	HN NH ₂	*		85,8 87,5	4,24 3,8	593,19 550,2		
		*	CF ₃					
2665	HN NH ₂		CF _s	87,5	3,8	550,2		
2665	HN NH ₂	*	CF ₃	87,5 75,1	3,8	550,2 622,22		

	OH O Chiral								
R10									
R2 N R3									
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
2670	*HN NH ₂			79,1	3,94	636,25			
2671		*		82,0	3,55	499,18			
2672	$\left\langle \sum_{z}^{\overline{z}}\right\rangle$	*	CF ₃	82,2	3,93	537,14			
2673		*	NC NC	86,4	3,4	494,2			
2674				90,4	3,52	566,15			
2675			P	88,0	3,72	513,19			
2676			CF ₃	88,8	4,08	551,15			
2677		*	NC NC	88,9	3,6	508,2			
2678				93,6	3,7	580,17			
	O Chiral								
	R10 R2 N R3								
Ex.	R10	R2	R3	Pureté	tr (min.)	[M+H] ⁺			
2679	HN NH ₂		P	59,5	4	569,20			

	OH C					
	N N	`R10 <i>∽</i> R3				
	R2 S					
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺
2680	HN NH ₂	*	CF ₃	82,6	4,37	607,21
2681	HN NH ₂	*	NC NC	74,9	3,9	564,2
2682	HN NH ₂	*		70,6	3,94	636,26
2683	HN NH ₂		P	55,3	4,14	583,24
2684	HN NH ₂	*	CF ₃	85,3	4,49	621,22
2685	HN NH ₂	*	NC NC	86,1	4,1	578,2
2686	HN NH ₂	*		72,7	4,09	650,26
2687	Z Z I	*	P	87,5	3,74	513,20
2688	N NH	*	CF ₃	86,1	4,1	551,16
2689	T N N H	*	NC NC	87,4	3,6	508,2
2690	T N N H	*		87,9	3,73	580,18
2691	T Z I		P	87,2	3,89	527,21
2692	N N N I		CF ₃	88,3	4,24	565,15

OH O Chiral							
R10 R2 N R3							
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺	
2693			NC NC	89,8	3,8	522,2	
2694				92,5	3,86	594,17	
O Chiral R10 R2 N R3							
Ex.	R10	R2	R3	Pureté	tr (min.)	[M+H] ⁺	
2695	HN NH ₂	*	P	69,9	4,14	605,25	
2696	HN NH ₂		CF ₃	81,8	4,55	643,21	
2697	HN NH ₂		NC NC	65,3	4,1	600,2	
2698	HN NH ₂	*		69,2	4,11	672,25	
2699	HN NH ₂		P	74,0	4,28	619,24	
2700	HN NH ₂		CF ₃	69,3	4,67	657,24	
2701	HN NH ₂		NC NC	75,9	4,3	614,2	

OH O Chiral							
R10							
	R3 N N $R3$						
	R2´ \ S						
Ex.	R10	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺	
2712	HN NH ₂		CF ₃	69,7	4,18	632,22	
2713	HN NH ₂	*	NC NC	62,2	3,7	589,2	
2714	HN NH ₂			79,2	3,76	661,23	
2715	HN NH ₂	*	0	56,8	4	608,23	
2716	HN NH ₂		CF ₃	70,5	4,31	646,23	
2717	HN NH ₂		NC NC	62	3,9	603,2	
2718	HN NH ₂			76,9	3,92	675,26	
2719		*	P	75,5	3,63	538,18	
2720		*	CF ₃	79,4	3,96	576,13	
2721	T N H	*	NC NC	73	3,5	533,2	
2722		*		87,0	3,56	605,17	
2723				81,8	3,8	552,18	
2724			CF ₃	80,1	4,11	590,15	

Chiral							
O NH							
R2 N R3							
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺		
2727	*	*	73,7	4,7	488,3		
2728	*		87,1	4,2	508,2		
2729	*		90,3	4,3	522,3		
2730		A Br	78,2	4,5	586,1		
2731	*		73	4,1	533,2		
2732	*	CI	86,4	4,5	542,2		
2733		F F	77,7	4,6	576,2		
2734		F F O	80	4,7	592,2		
2735	*	L L L	76,4	4,9	644,2		
2736	*		81,4	4,6	558,2		
2737		\rightarrow *	79,8	4,4	502,3		

Chiral								
NH NH								
	R2 N R3							
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
2738			87,5	4,4	522,3			
2739			91,4	4,5	536,3			
2740		B B	83,3	4,6	600,1			
2741			82	4,3	547,2			
2742			83,9	4,6	556,2			
2743		F F	85,4	4,7	590,2			
2744		F F 0 .	85,2	4,8	606,2			
2745		F F F	82	4,3	658,2			
2746			86,7	4,7	572,2			
2747		— .	31,6	4,3 ^	506,3			
2748			71,1	4,3	526,2			

Chiral								
O NH								
	R2 N R3							
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺			
2749			89,5	4,4	540,2			
2750		Br	59,6	4,5	604,1			
2751		Z Z	51,3 ·	4,2	551,2			
2752		CI	62,2	4,5	560,2			
2753		F	59,6	4,7	594,2			
2754		F F O	63	4,7	610,2			
2755		п п п п п п п п п п п п п п п п п п п	52,5	4,9	662,2			
2756			67,8	4,6	576,1			
2757		- *	81,1	4,6	516,3			
2758			85,8	4,5	536,3			
2759			85,4	4,7	550,3			

	The state of the s	Chi	ral		
	R2 N N	R3			
Ex.	R2	R3	Pureté (%)	tr (min.)	[M+H] ⁺
2760		Br	76,6	4,7	614,1
2761		$\bigcup_{C} Z$	77,2	4,4	561,2
2762		CI	85,4	4,7	570,2
2763		F	79,7	4,8	604,2
2764		F F O	81,1	4,9	620,2
2765		F F F	79,2	5,1	672,2
2766			82	4,8	586,3

	HN	Chii	ral			
	R2 N N	R10 R3				
Ex.	R2	R10	R3	Pureté (%)	tr (min.)	[M+H]+
2767	*	H ₂ N NH		64,3	3,91	530,20
2768		H ₂ N NH		58,3	3,57	521,22
2769	*	H ₂ N NH		66,7	4,03	564,20
2770	*	H ₂ N NH	$\bigcup_{n=1}^{\infty} O_n^n$	65,1	3,71	541,19
2771		H ₂ N NH	NC NC	56,1	3,58	521,21
2772		H ₂ N NH		42,1	3,93	544,19
2773	*	H ₂ N NH		34,6	3,59	535,22
2774	*	H ₂ N NH		46,9	4,05	578,21
2775	*	H ₂ N NH		33,3	3,73	555,19
2776	*	H ₂ N NH	NC	33,4	3,6	535,22
2777	*	H ₂ N NH		39,6	3,97	558,22
2778		H ₂ N NH	$\sum_{i=1}^{N} \sum_{j=1}^{N} z_{ij}$	47,5	3,63	549,23

	The state of the s	Į	ral			
	R2 N N	R10 R3				
Ex.	R2	R10	R3	Pureté (%)	tr (min.)	[M+H]+
2779	*	H ₂ N NH	, L	50,3	4,09	592,23
2780	*	H ₂ N NH) 202	40,6	3,76	569,19
2781		H ₂ N NH	NC NC	42,7	3,63	549,25
2782	*	H ₂ N NH		35,5	4.0	572,17
2783		H ₂ N NH		33,2	3,69	563,26
2784	*	H ₂ N NH	F F	45	4,1	606,27
2785	*	H ₂ N NH	NO2	36,0	3,82	583,23
2786		H ₂ N NH	NC NC	27,1	3,7	563,26
2787		H ₂ N NH +	CI	73,6	3,98	530,19
2788		H ₂ N NH	Z	62,5	3,64	521,21
2789		H ₂ N NH	FFF	74,8	4,09	564,2
2790		H ₂ N NH		67,7	3,77	541,20

		}	Chir	al			
	R2 N N	R10 R3					
Ex.	R2	R10		R3	Pureté (%)	tr (min.)	[M+H]+
2791		H ₂ N	7 - T	NC NC	71,3	3,65	521,21
2792		H ₂ N	NH *		52,4	4.0	544,18
2793		H ₂ N	NH - *	$\bigcup_{i=1}^{k} Z_{i}$	47,0	3,65	535,22
2794		H ₂ N	ΣΗ *	F F	54,7	4,11	578,22
2795		H ₂ N	NH + +	$\bigcup_{\mathbf{Z}} \mathbf{Q}^{n}$	43,7	3,79	555,20
2796		H ₂ N	* ↑ •	NC NC	44,6	3,67	535,22
2797		H ₂ N	• •- X		53,7	4,03	558,20
2798		H ₂ N	* * HN		51,0	3,69	549,23
2799		H ₂ N	vH +		56,5	4,15	592,23
2800		H ₂ N	NH +) 20°	48,9	3,83	569,20
2801		H ₂ N	NH +	NC NC	46,0	3,7	549,24
2802		H ₂ N	`NH + +	· ·	41,2	4,1	572,21

	, H	C	hiral					
	N NH R3							
Ex.	R3	R2	Pureté (%)	tr (min.)	[M+H] ⁺			
2807	Z 2	*	52,1	3,65	547,22			
2808		*	61,7	3,61	563,24			
2809			54,1	3,91	561,26			
2810	$\bigcup_{0}^{1} Z$	*	56,7	3,69	563,23			
2811	\bigcup_{0}^{1}		54,7	3,65	547,23			
2812	$\bigcup_{C} Z$		63,6	3,96	561,25			
2813	$\left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) = \begin{array}{c} \\ \\ \\ \\ \end{array} \right)$		66,1	4,13	575,26			
2814			34,9	4,29	589,29			
2815		•	69,3	3,66	563,24			
2816	NC NC		47,6	3,66	547,23			

	Chiral						
	O NH						
	R2 N N	R3					
Ex.	R3	R2	Pureté (%)	tr (min.)	[M+H] ⁺		
2817	NC NC		41,4	3,61	563,23		
2818	NC NC		28,5	3,97	561,24		
2819	NC NC		56,4	3,71	563,23		
2820	NC NC		45,6	3,65	547,22		
2821	NC NC		62,6	3,99	561,24		
2822	NC NC	*	42,0	4,17	575,26		
2823	NC NC		45,7	4,32	589,28		
2824	NC	F *	23,5	3,65	551,21		
2825	NC NC		70,9	3,67	563,22		

PROPRIETES PHARMACOLOGIQUES DES PRODUITS DE L'INVENTION

Les composés de la présente invention peuvent et ont été testés en ce qui concerne leur affinité pour différents sous-types de récepteurs de la somatostatine selon les procédures décrites ci-après.

Etude de l'affinité pour les sous-types de récepteurs de la somatostatine humaine :

5

10

15

20

25

L'affinité d'un composé de l'invention pour les sous-types de récepteurs de la somatostatine 1 à 5 (sst₁, sst₂, sst₃, sst₄ et sst₅, respectivement) est déterminée par la mesure de l'inhibition de la liaison de [¹²⁵I-Tyr¹¹]SRIF-14 à des cellules transfectées CHO-K1.

Le gène du récepteur sst₁ de la somatostatine humaine a été cloné sous forme d'un fragment génomique. Un segment *Pst*I-XmnI de 1,5 Kb contenant 100 pb de la région 5' non transcrite, 1,17 Kb de la région codante en totalité, et 230 bp de la région 3' non transcrite est modifié par l'addition du linker Bg1II. Le fragment d'ADN résultant est souscloné dans le site *BamH*I d'un pCMV-81 pour donner le plasmide d'expression chez les mammifères (fourni par Dr. Graeme Bell, Univ. Chicago). Une lignée de cellules clonées exprimant de façon stable le récepteur sst₁ est obtenue par transfection dans des cellules CHO-K1 (ATCC) grâce à la méthode de co-précipitation calcium phosphate. Le plasmide pRSV-neo (ATCC) est inclus comme marqueur de sélection. Des lignées de cellules clonées ont été sélectionnées dans un milieu RPMI 1640 contenant 0,5 mg/ml de G418 (Gibco), clonées en cercle, et multipliées en culture.

Le gène du récepteur sst₂ de la somatostatine humaine, isolé sous forme d'un fragment génomique d'ADN de 1.7 Kb BamHI-HindIII et souscloné dans un vecteur plasmidique pGEM3Z (Promega), a été fourni par le Dr. G. Bell (Univ. of Chicago). Le vecteur d'expression des cellules de mammifères est construit en insérant le fragment BamH1-HindII de 1,7 Kb dans des sites de restriction endonucléase compatibles du plasmide pCMV5. Une lignée de cellules clonées est obtenue par transfection dans des cellules CHO-K1 grâce à la méthode de co-précipitation calcium phosphate. Le plasmide pRSV-neo est inclus comme marqueur de sélection.

10

15

20

25

30

35

Le récepteur sst₃ est isolé comme fragment génomique, et la séquence codante complète est contenue dans un fragment *BamHI/Hind*III de 2,4 Kb. Le plasmide d'expression chez les mammifères, pCMV-h3, est construit par insertion du fragment *NcoI-Hind*III de 2,0 Kb dans le site EcoR1 du vecteur pCMV après modification des terminaisons et addition de linkers EcoR1. Une lignée de cellules clonées exprimant de façon stable le récepteur sst₃ est obtenue par transfection dans des cellules CHO-K1 (ATCC) par la méthode de co-précipitation au phosphate de calcium. Le plasmide pRSV-neo (ATCC) est inclus comme marqueur de sélection. Des lignées de cellules clonées ont été sélectionnées dans un milieu RPMI 1640 contenant 0,5 mg/ml de G418 (Gibco), clonées en cercle, et multipliées en culture.

Le plasmide d'expression du récepteur sst₄ humain, pCMV-HX, a été fourni par le Dr. Graeme Bell (Univ. Chicago). Ce vecteur contient le fragment génomique codant pour le récepteur sst₄ humain de 1,4 Kb *NheI-NheI*, 456 pb de la région 5' non transcrite, et 200 pb de la région 3' non transcrite, cloné dans les sites *XbaI/Eco*R1 de PCMV-HX. Une lignée de cellules clonées exprimant de façon stable le récepteur sst₄ est obtenue par transfection dans des cellules CHO-K1 (ATCC) par la méthode de coprécipitation au phosphate de calcium. Le plasmide pRSV-neo (ATCC) est inclus comme marqueur de sélection. Des lignées de cellules clonées ont été sélectionnées dans un milieu RPMI 1640 contenant 0,5 mg/ml de G418 (Gibco), clonées en cercle, et multipliées en culture.

Le gène correpondant au récepteur sst₅ humain, obtenu par la méthode PCR en utilisant un clone génomique λ comme sonde, a été fourni par le Dr. Graeme Bell (Univ. Chicago). Le fragment PCR résultant de 1,2 Kb contient 21 paires de bases de la région 5' non transcrites, la région codante en totalité, et 55 pb de la région 3' non transcrite. Le clone est inséré dans un site EcoR1 du plasmide pBSSK(+). L'insert est récupéré sous la forme d'un fragment *Hind*III-*Xba*I de 1,2 Kb pour sousclonage dans un vecteur d'expression chez les mammifères, pCVM5. Une lignée de cellules clonées exprimant de façon stable le récepteur sst₅ est obtenue par transfection dans des cellules CHO-K1 (ATCC) par la méthode de co-précipitation au phosphate de calcium. Le plasmide pRSV-neo (ATCC) est inclus comme marqueur de sélection. Des lignées de cellules clonées ont été sélectionnées dans un milieu RPMI 1640 contenant 0,5 mg/ml de G418 (Gibco), clonées en cercle, et multipliées en culture.

Les cellules CHO-K1 exprimant de façon stable l'un des récepteurs sst humain sont cultivées dans un milieu RPMI 1640 contenant 10% de sérum foetal de veau et 0,4 mg/ml de généticine. Les cellules sont collectées avec de l'EDTA 0,5 mM et centrifugées à 500 g pendant environ 5 min à environ 4 °C. Le centrifugat est re-

WO 01/07424 PCT/FR00/02095 - 368 -

5

10

15

20

suspendu dans un milieu tampon 50 mM Tris à pH 7,4 et centrifugé deux fois à 500 g pendant environ 5 min à environ 4 °C. Les cellules sont lysées par sonication et centrifugées à 39000 g pendant environ 10 min à 4 °C. Le centrifugat est re-suspendu dans le même milieu tampon et centrifugé at 50000 g pendant 10 min à environ 4 °C et les membranes dans le centrifugat obtenu sont stockées à - 80 °C.

Des tests d'inhibition compétitive de liaison avec [125I-Tyr11]SRIF-14 sont effectués en double à l'aide de plaques en polypropylène de 96 puits. Les membranes cellulaires (10 µg protéine/puits) sont incubées avec [125I-Tyr11]SRIF-14 (0,05 nM) pendant environ 60 min à environ 37 °C dans un milieu tampon 50 mM HEPES (pH 7,4) comprenant 0,2% BSA, 5 mM de MgCl₂, 200 KIU/ml de Trasylol, 0,02 mg/ml de bacitracine et 0,02 mg/ml de fluorure de phénylméthylsulphonyle.

La [125]I-Tyr¹¹]SRIF-14 liée est séparée de la [125]I-Tyr¹¹]SRIF-14 libre par filtration immédiate à travers des plaques filtres en fibre de verre GF/C (Unifilter, Packard) préimprégné avec 0,1 % de polyéthylènimine (P.E.I.), en utilisant un Filtermate 196 (Packard). Les filtres sont lavés avec du tampon 50 mM HEPES à environ 0-4 °C pendant environ 4 secondes et leur radioactivité est déterminée à l'aide d'un compteur (Packard Top Count).

La liaison spécifique est obtenue en soustrayant la liaison non spécifique (déterminée en présence de 0,1 µM SRIF-14) de la liaison totale. Les données relatives à la liaison sont analysées par analyse en régression non-linéaire assistée par ordinateur (MDL) et les valeurs des constantes d'inhibition (Ki) values sont déterminées.

La détermination du caractère agoniste ou antagoniste d'un composé de la présente invention est effectuée à l'aide du test décrit ci-après.

- 369 -

Test fonctionnel: Inhibition de la production d'AMPc intracellulaire:

Des cellules CHO-K1 exprimant les sous-types de récepteurs de la somatostatine humaine (SRIF-14) sont cultivées dans des plaques à 24 puits dans un milieu RPMI 1640 avec 10% de sérum foetal de veau et 0,4 mg/ml de généticine. Le milieu est changé le jour précédant l'expérience.

Les cellules à raison de 10⁵ cellules/puits sont lavées 2 fois avec 0,5 ml de nouveau milieu RPMI comprenant 0,2 % BSA complété par 0,5 mM de 3-isobutyl-1-méthylxanthine (IBMX) et incubées pendant environ 5 min à environ 37 °C.

La production d'AMP cyclique est stimulée par l'addition de 1 mM de forskoline (FSK) pendant 15-30 minutes à environ 37 °C.

L'effet inhibiteur de la somatostatine d'un composé agoniste est mesuré par l'addition simultanée de FSK (1 μ M) , SRIF-14 (10⁻¹² M to 10⁻⁶ M) et du composé à tester (10⁻¹⁰ M à 10⁻⁵ M).

L'effet antagoniste d'un composé est mesuré par l'addition simultanée de FSK (1μM), SRIF-14 (1 to 10 nM) et du composé à tester (10⁻¹⁰ M to 10⁻⁵ M).

Le milieu réactionnel est éliminé et 200 ml de HCl 0,1 N sont ajoutés. La quantité d'AMPc est mesurée par un test radioimmunologique (Kit FlashPlate SMP001A, New England Nuclear).

Résultats:

5

Les tests effectués selon les protocoles décrits ci-dessus ont permis de montrer que les produits de formule générale (I) définie dans la présente demande ont une bonne affinité pour au moins l'un des sous-types de récepteurs de la somatostatine, la constante d'inhibition K_i étant inférieure au micromolaire pour certains des composés exemplifiés, et en particulier pour les produits repris dans le tableau ci-après.

Formule du composé	K _i (nM)
CF ₃	< 200
N CI NO ₂	< 200
N N N N N N N N N N N N N N N N N N N	< 200
N N N N N N N N N N N N N N N N N N N	< 200
N N S F F	< 200

Formule du composé	K _i (nM)
N S N S N S N S N S N S N S N S N S N S	< 200
N N N CI CI	< 200
N N N N N F F F F	< 200
N N N N N N N N N N N N N N N N N N N	< 200
N N N CN	< 200

Revendications

1. Composé de formule générale (I)

$$R2$$
 $R1$
 $R3$
 $R4$
 $R1$

sous forme racémique, d'énantiomère ou toutes combinaisons de ces formes, dans laquelle :

5 R1 amino(C_2 - C_7)alkyle, aminoalkylarylalkyle, représente un radical (C₃-C₇)cycloalkyle, aminoalkylcycloalkylalkyle, (C_1-C_{15}) alkyle, cyclohexénylalkyle, (C₃-C₆)cycloalkylalkyle, (C_1-C_6) alkyl (C_3-C_6) cycloalkyle, alkényle, alkynyle, aryle carbocyclique comptant au moins deux cycles dont l'un au moins n'est pas aromatique, aralkyle carbocyclique ou hétérocyclique éventuellement substitué sur le groupe aryle, bis-arylalkyle, alkoxyalkyle, furannylalkyle, 10 tétrahydrofurannylalkyle, dialkylaminoalkyle, N-acétamidoalkyle, cyanoalkyle, aralkoxyalkyle, alkylthioalkyle, arylhydroxyalkyle, morpholinoalkyle, pyrrolidinoalkyle, pipéridinoalkyle, N-alkylpyrrolidinoalkyle, N-alkylpipérazinylalkyle ou oxopyrrolidinoalkyle,

ou R1 représente l'un des radicaux représentés ci-dessous :

ou encore R1 représente un radical -C(R11)(R12)-CO-R10;

R2 représente un radical aryle carbocyclique ou hétérocyclique éventuellement substitué,

ou bien R2 représente l'un des radicaux représentés ci-dessous :

R3 représente un radical alkyle, adamantyle, aryle carbocyclique ou hétérocyclique éventuellement substitué, aralkyle carbocyclique ou hétérocyclique éventuellement substitué sur le groupe aryle,

ou R3 représente l'un des radicaux représentés ci-dessous :

ou encore R3 représente un radical -CO-R5;

R4 représente H, alkyle, aralkyle carbocyclique ou hétérocyclique éventuellement situé sur le radical aryle;

dans laquelle i représente un entier de 1 à 3;

R5 représente le radical N(R6)(R7);

R6 représente un radical (C₁-C₁₆)alkyle, cycloalkylalkyle, hydroxyalkyle, aryloxyalkyle, aralkyle carbocyclique ou hétérocyclique éventuellement substitué sur le groupe aryle, aralkoxyalkylke, arylhydroxyalkyle, alkoxyalkyle, alkylthioalkyle,

10

alkényle, alkynyle, cyclohexényle, cyclohexénylalkyle, alkylthiohydroxyalkyle, cyanoalkyle,

N-acétamidoalkyle, bis-arylalkyle éventuellement substitué sur les groupes aryle, di-arylalkyle éventuellement substitué sur les groupes aryle, morpholinoalkyle, pyrrolidinoalkyle, pipéridinoalkyle, N-alkylpyrrolidinoalkyle, oxopyrrolidinoalkyle, tétrahydrofurannylalkyle, N-benzylpyrrolidinoalkyle, N-alkylpipérazinylalkyle, N-benzylpipérazinylalkyle, N-benzylpipéridinylalkyle ou N-alkoxycarbonylpipéridinyle, ou R6 représente un radical (C3-C8)cycloalkyle éventuellement substitué par un radical choisi parmi le groupe composé du radical hydroxy et d'un radical alkyle,

ou bien R6 représente l'un des radicaux représentés ci-dessous :

R7 représente H ou un radical alkyle, hydroxyalkyle, mono- ou di-aminoalkyle ou aralkyle;

ou encore le radical -N(R6)(R7) représente le radical de formule générale suivante :

15 dans laquelle:

R8 représente H, alkyle, hydroxyalkyle, aryle carbocyclique ou hétérocyclique éventuellement substitué, aralkyle éventuellement substitué sur le groupe aryle, alkényle, alkoxyalkyle, cycloalkyle, cycloalkylalkyle, bis-arylalkyle, pipéridinyle, pyrrolidinyle, hydroxy, arylalkényle,

ou R8 représente -X-(CH₂)_b-R9;

R9 représente H ou un radical alkyle, alkoxy, aryloxy, aryle carbocyclique ou hétérocyclique éventuellement substitué, morpholinyle, pyrrolidinyle, alkylamino ou N,N'-(alkyl)(aryl)amino;

X représente CO, CO-NH ou SO₂;

5 Y représente CH ou N;

a représente 1 ou 2;

b représente un entier de 0 à 6;

ou le radical N(R6)(R7) représente un radical de formule générale

dans laquelle:

10 Z représente CH, O ou S;

c représente un entier de 0 à 4;

ou encore le radical N(R6)(R7) représente l'un des radicaux représentés ci-dessous :

R10 représente un radical amino(C₂-C₇)alkylamino, ((aminoalkyl)aryl)alkylamino, ((aminoalkyl)cycloalkyl)alkylamino, pipérazinyle, homopipérazinyle,

ou R10 représente le radical représenté ci-dessous :

R11 représente H;

R12 représente H ou un radical alkyle, (C₃-C₇)cycloalkyle, aralkyle carbocyclique ou hétérocyclique éventuellement substitué, propargyle, allyle, hydroxyalkyle, alkylthioalkyle, arylalkylalkoxyalkyle, arylalkylthioalkoxyalkyle;

ou un sel d'un composé de formule générale (I).

- 2. Composé de formule générale (I) selon la revendication 1, caractérisé en ce que :
- i) pour R1, lorsque le groupe aryle est substitué, il peut l'être de 1 à 5 fois (outre la liaison qui le relie au reste de la molécule) par des radicaux choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle, alkoxy, alkylthio, haloalkyle, haloalkoxy, aryle, aralkoxy ou SO₂NH₂, deux substituants pouvant, le cas échéant, être reliés entre eux et former un cycle, par exemple en représentant ensemble un radical méthylènedioxy ou propylène;
 - ii) pour R2, lorsque le groupe aryle est substitué, il peut l'être de 1 à 5 fois (outre la liaison qui le relie au reste de la molécule) par des radicaux choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle, alkoxy, alkylthio, haloalkyle, alkényle, haloalkoxy, nitro, cyano, azido, SO₂N, mono- ou di-alkylamino,

10

15

20

aminoalkyle, aralkoxy ou aryle, deux substituants pouvant, le cas échéant, être reliés entre eux et former un cycle, par exemple en représentant ensemble un radical méthylènedioxy, éthylènedioxy ou propylène;

- iii) pour R3, lorsque le(s) groupe(s) aryle(s) (provenant d'un radical aryle ou aralkyle) est (sont) substitué(s), il(s) peu(ven)t l'être, selon le cas, de 1 à 5 fois (outre la liaison qui le(s) relie au reste de la molécule), les radicaux aryle ou aralkyle carbocycliques peuvent être substitués de 1 à 5 fois sur le noyau aryle par des radicaux choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle, hydroxy, alkoxy, haloalkyle, haloalkoxy, nitro, cyano, azido, mono- ou di-alkylamino, pyrrolidinyle, morpholinyle, aralkoxy ou aryle, deux substituants pouvant, la cas échéant, être reliés entre eux et former un cycle, par exemple en représentant ensemble un radical alkylènedioxy comptant de 1 à 3 atomes de carbone, tandis que les radicaux aryle ou aralkyle hétérocycliques de R3 peuvent être substitués de 1 à 2 fois sur le noyau par des radicaux choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle;
- iv) pour R4, lorsque le groupe aryle est substitué, il peut l'être de 1 à 5 fois (outre la liaison qui le relie au reste de la molécule) par des radicaux choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle ou alkoxy;
- v) pour R6, lorsque le(s) groupe(s) aryle(s) est (sont) substitué(s), il(s) peu(ven)t l'être de 1 à 5 fois (outre la liaison qui le(s) relie au reste de la molécule), les substituants éventuels sur les groupes aryle étant choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle, alkoxy, alkylthio, haloalkyle, haloalkoxy, aryle, aryloxy ou SO₂NH₂;
- vi) pour R8, lorsque le(s) groupe(s) aryle(s) est (sont) substitué(s), il(s) peu(ven)t l'être de 1 à 5 fois (outre la liaison qui le(s) relie au reste de la molécule), les substituants éventuels sur les groupes aryle étant choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle, haloalkyle, alkoxy, hydroxy, cyano, nitro ou alkylthio;
- vii) pour R9, lorsque le radical aryle carbocyclique est substitué, il peut l'être de 1 à 5 fois (outre la liaison qui le relie au reste de la molécule), les substituants éventuels sur le groupe aryle étant choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle, haloalkyle, alkoxy, haloalkoxy, alkylthio, aryle carbocyclique, hydroxy, cyano ou nitro;

viii) pour R12, lorsque le radical aryle carbocyclique ou hétérocyclique est substitué, il peut l'être de 1 à 5 fois (outre la liaison qui le relie au reste de la molécule), les substituants éventuels sur le groupe aryle étant choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle, alkoxy, aryle carbocyclique, aralkoxy, hydroxy, cyano ou nitro.

3. Composé selon la revendication 1 ou 2, caractérisé en ce que :

R1 représente -C(R11)(R12)-CO-R10 ou l'un des radicaux suivants :

R2 représente l'un des radicaux suivants :

[CI, Br, F, Me, OMe, NO_2 , iPr, CF_3]

R3 représente CO-R5 ou l'un des radicaux suivants :

R4 représente H, alkyle, aralkyle carbocyclique ou hétérocyclique éventuellement substitué sur le radical aryle ;

- dans laquelle i représente un entier de 1 à 3;
 - R5 représente l'un des radicaux suivants :

[Me, Et, nPr, nBu, iBu, iAm, CH_2Ph , CH_2CH_2Ph] N [Me, Et, nPr, nBu, iBu, iAm, CH_2Ph , CH_2CH_2Ph]

R10 représente l'un des radicaux suivants :

R11 représente H;

R12 représente l'un des radicaux suivants :

étant entendu que pour R4, lorsque le groupe aryle est substitué, il peut l'être de 1 à 5 fois (outre la liaison qui le relie au reste de la molécule) par des radicaux choisis indépendamment parmi le groupe composé d'un atome halogène et d'un radical alkyle ou alkoxy.

5 4. Composé selon l'une des revendications 1 à 3, caractérisé en ce qu'il répond à la formule générale (II)

dans laquelle:

• soit R1 représente l'un des radicaux ci-après

R2 représente l'un des radicaux ci-après

R3 représente l'un des radicaux ci-après

- et R4 représente H;
 - soit encore R1 représente l'un des radicaux ci-après

R2 représente l'un des radicaux ci-après

R3 représente COR5,

R4 représente H,

et R5 représente l'un des radicaux ci-après

soit enfin R1 représente le radical –C(R11)(R12)-CO-R10 dans lequel
 R10 représente le radical

R11 représente H

5 et R12 représente le radical

R2 représente le radical

R3 représente le radical

et R4 représente H.

5. Procédé de préparation d'un composé de formule générale (I)a

$$R2$$
 $R1$
 $R3$
 $R4$
 $R4$

dans laquelle:

5

R1 représente un radical - CH_2 -A1-N H_2 , dans lequel A1 représente un radical - $(CH_2)_n$ -, - $(CH_2)_n$ -O- $(CH_2)_p$ -, aralkylène ou cycloalkylalkylène, n et p représentant des entiers de 1 à 6 :

R2 et R4 représentent les mêmes radicaux que dans la formule générale (I) telle que définie dans la revendication 1;

et R3 représente les mêmes radicaux que dans la formule générale (I) telle que définie dans la revendication 1, excepté les radicaux -CO-R5;

- 1) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, d'une résine p-nitrophénylcarbonate de Wang avec un large excès de diamine symétrique R1-NH₂;
- 2) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, de la résine isolée après l'étape 1) avec un isothiocyanate aromatique de formule générale R2-N=C=S dans laquelle le radical R2 a la même signification que dans la formule générale (I)a;
 - 3) traitement, dans un solvant aprotique comme le dioxane ou le diméthylformamide, de la résine obtenue à l'étape 2) avec le composé de formule générale (III)

$$R^4$$
 R^3
 O

dans laquelle les radicaux R3 et R4 sont identiques à ceux qui ont été définis dans la formule générale (I)a;

- 4) clivage de la résine dans des conditions acides ;
- 5) traitement dans des conditions basiques du produit obtenu après l'étape 4).
- 5 6. Procédé de préparation d'un composé de formule générale (I)b

$$R2$$
 N
 $R1$
 $R3$
 $R4$
 $R1$

dans laquelle:

10

20

R1 représente les mêmes radicaux que dans la formule générale (I) telle que définie dans la revendication 1, excepté les radicaux du type - CH_2 -A1-N H_2 , dans lequel A1 représente un radical - $(CH_2)_n$ -, - $(CH_2)_n$ -O- $(CH_2)_p$ -, aralkylène ou cycloalkylalkylène, n et p représentant des entiers de 1 à 6, et excepté également les radicaux -C(R11)(R12)-CO-R10;

R2 représente un radical aminoalkylphényle;

R3 représente les mêmes radicaux que dans la formule générale (I) telle que définie dans la revendication 1, excepté les radicaux -CO-R5;

et R4 représente les mêmes radicaux que dans la formule générale (I) telle que définie dans la revendication 1;

- 1) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, d'une résine p-nitrophénylcarbonate de Wang avec un excès d'aminoalkylaniline de formule générale R2-NH₂ dans laquelle le radical R2 a la même signification que dans la formule générale (I)b;
- 2) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, de la résine isolée après l'étape 1) avec un isothiocyanate de

formule générale R1-N=C=S dans laquelle le radical R1 a la même signification que dans la formule générale (I)b;

3) traitement, dans un solvant aprotique comme le dioxane ou le diméthylformamide, de la résine obtenue à l'étape 2) avec le composé de formule générale (III)

$$R4$$
 $R3$
(III)

- dans laquelle les radicaux R3 et R4 sont identiques à ceux qui ont été définis dans la formule générale (I)b;
 - 4) clivage de la résine dans des conditions acides ;
 - 5) traitement dans des conditions basiques du produit obtenu après l'étape 4).
 - 7. Procédé de préparation d'un composé de formule générale (I)c

$$R2$$
 $R1$
 $R3$
 $R4$
(I)c

10 dans laquelle:

R1 représente un radical - CH_2 -A1-N H_2 , dans lequel A1 représente un radical - $(CH_2)_n$ -, - $(CH_2)_n$ -O- $(CH_2)_p$ -, aralkylène ou cycloalkylalkylène, n et p représentant des entiers de 1 à 6 ;

R2 représente les mêmes radicaux que dans la formule générale (I) telle que définie dans la revendication 1;

R3 représente un radical -CO-R5;

et R4 et R5 représentent les mêmes radicaux que dans la formule générale (I) telle que définie dans la revendication 1;

- 1) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, d'une résine p-nitrophénylcarbonate de Wang avec un large excès de diamine symétrique de formule générale R1-NH₂ dans laquelle le radical R1 a la même signification que dans la formule générale (I)c;
- 5 2) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, de la résine isolée après l'étape 1) avec un isothiocyanate aromatique de formule générale R2-N=C=S dans laquelle le radical R2 a la même signification que dans la formule générale (I)c;
- 3) traitement, dans un solvant aprotique comme le dioxane ou le diméthylformamide, de la résine obtenue à l'étape 2) avec l'acide de formule générale (IV)

$$Br$$
 OH
 OH

dans laquelle le radical R4 est identique à celui qui a été défini dans la formule générale (I)c;

- 4) couplage peptidique;
- 5) clivage de la résine dans des conditions acides ;
- 15 6) traitement dans des conditions basiques du produit obtenu après l'étape 5).
 - 8. Procédé de préparation d'un composé de formule générale (I)d

$$R2$$
 N
 $R1$
 $R3$
 $R4$
(I)d

dans laquelle:

R1 représente les mêmes radicaux que dans la formule générale (I) telle que définie dans la revendication 1, excepté les radicaux du type -CH₂-A1-NH₂, dans lequel A1

15

représente un radical - $(CH_2)_n$ -, - $(CH_2)_n$ -O- $(CH_2)_p$ -, aralkylène ou cycloalkylalkylène, n et p représentant des entiers de 1 à 6, et excepté également les radicaux -C(R11)(R12)-CO-R10;

R2 représente un radical aminoalkylphényle;

5 R3 représente un radical -CO-R5;

et R4 et R5 représentent les mêmes radicaux que dans la formule générale (I) telle que définie dans la revendication 1;

ledit procédé étant caractérisé en ce qu'il comprend les étapes successives suivantes :

- 1) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, d'une résine p-nitrophénylcarbonate de Wang avec un excès d'aminoalkylaniline de formule générale R2-NH₂ dans laquelle le radical R2 a la même signification que dans la formule générale (I)d;
 - 2) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, de la résine isolée après l'étape 1) avec un isothiocyanate de formule générale R1-N=C=S dans laquelle le radical R1 a la même signification que dans la formule générale (I)d;
 - 3) traitement, dans un solvant aprotique comme le dioxane ou le diméthylformamide, de la résine obtenue à l'étape 2) avec l'acide de formule générale (IV)

$$Br$$
 OH
 OH

dans laquelle le radical R4 a la même signification que dans la formule générale (I)d;

- 20 4) couplage peptidique;
 - 5) clivage de la résine dans des conditions acides ;
 - 6) traitement dans des conditions basiques du produit obtenu après l'étape 5).
 - 9. Procédé de préparation d'un composé de formule générale (I)e

dans laquelle:

R1 représente les mêmes radicaux que dans la formule générale (I) telle que définie dans la revendication 1, excepté les radicaux du type - CH_2 -A1-NH₂, dans lequel A1 représente un radical - $(CH_2)_n$ -, - $(CH_2)_n$ -O- $(CH_2)_p$ -, aralkylène ou cycloalkylalkylène, n et p représentant des entiers de 1 à 6, et excepté également les radicaux -C(R11)(R12)-CO-R10;

R2 représente les mêmes radicaux que dans la formule générale (I) telle que définie dans la revendication 1;

R3 représente un radical -CO-R5;

10 R4 représente H;

R5 représente un radical -NH-CH₂-A1-NH₂, dans lequel A1 représente un radical alkylène linéaire ou ramifié comptant de 1 à 6 atomes de carbone, $-(CH_2)_n$ -O- $(CH_2)_p$ -, aralkylène ou cycloalkylalkylène, n et p représentant des entiers de 1 à 6, ou encore R5 représente le radical N(R6)(R7) répondant à la formule générale suivante :

dans laquelle :

R8 représente H;

Y représente N;

a représente 1 ou 2;

- 1) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, d'une résine p-nitrophénylcarbonate de Wang avec un large excès de diamine symétrique de formule générale R5-H;
- 2) couplage peptidique avec l'acide de formule générale (IV) sur la résine obtenue à 1'étape 1)

$$Br$$
 $R4$
 O
 OH
 OH

dans laquelle le radical R4 a la même signification que dans la formule générale (I)e;

- 3) réaction de l'amine primaire de formule générale R1-NH₂ avec l'isothiocyanate de formule générale R2-NCS dans un solvant tel que le diméthylformamide ou le dioxane, R1 et R2 ayant les mêmes significations que dans la formule générale (I)e;
- 4) addition de la thiourée obtenue à l'étape 3) à la résine obtenue à l'étape 2) et chauffage du mélange;
 - 5) clivage de la résine dans des conditions acides ;
 - 6) traitement dans des conditions basiques du produit obtenu après l'étape 5).
 - 10. Procédé de préparation d'un composé de formule générale (I)f

$$R2$$
 N
 $R1$
 $R3$
 $R4$
 $R1$

15 dans laquelle:

R1 représente un radical -C(R11)(R12)-CO-R10;

R2, R3 et R4 représentent les mêmes radicaux que dans la formule générale (I) telle que définie dans la revendication 1;

R10 représente un radical amino(C₂-C₇)alkylamino, ((aminoalkyl)aryl)alkylamino, ((aminoalkyl)cycloalkyl)alkylamino, pipérazinyle, homopipérazinyle,

ou R10 représente le radical représenté ci-dessous :

R11 représente H;

10

15

R12 représente H ou un radical alkyle, (C₃-C₇)cycloalkyle, aralkyle carbocyclique ou hétérocyclique éventuellement substitué, propargyle, allyle, hydroxyalkyle, alkylthioalkyle, arylalkylalkoxyalkyle, arylalkylthioalkoxyalkyle;

- 1) traitement, dans un solvant aprotique comme le dichlorométhane ou le diméthylformamide, d'une résine p-nitrophénylcarbonate de Wang avec un large excès de diamine symétrique de formule générale R10-H dans laquelle R10 a la même signification que dans la formule générale (I)f;
 - 2) couplage peptidique de la résine obtenue à l'étape 1) avec un acide aminé de formule générale HOOC-C(R11)(R12)-NH-Fmoc dans laquelle R11 et R12 ont la même signification que dans la formule générale (I)f;
 - 3) clivage du groupe Fmoc de la résine obtenue à l'étape 2);
 - 4) réaction de la résine obtenue à l'étape 3) avec un isothiocyanate de formule générale R2-NCS dans laquelle R2 a la même signification que dans la formule générale (I)f;
 - 5) clivage de la résine dans des conditions acides ;
- 20 6) traitement dans des conditions basiques du produit obtenu après l'étape 5).
 - 11. A titre de médicament, un produit selon l'une des revendications 1 à 4 ou un sel pharmaceutiquement acceptable dudit produit.
 - 12. Composition pharmaceutique comprenant à titre de principe actif un produit selon l'une des revendications 1 à 4 ou un sel pharmaceutiquement acceptable dudit produit.
- 25 **13.** Utilisation d'un produit selon l'une des revendications 1 à 4 ou d'un sel pharmaceutiquement acceptable dudit produit pour préparer un médicament destiné à

5

10

15

20

25

30

35

traiter les états pathologiques ou les maladies dans lesquels un (ou plusieurs) des récepteurs de la somatostatine est (sont) impliqué(s).

14. Utilisation selon la revendication 13, caractérisée en ce que les états pathologiques ou les maladies à traiter sont choisis parmi le groupe composé des états pathologiques ou des maladies qui suivent : l'acromégalie, les adénomes hypophysaires, la maladie de Cushing, les gonadotrophinomes et les prolactinomes, les effets secondaires cataboliques des glucocorticoïdes, le diabète insulinodépendant, la rétinopathie diabétique, la néphropathie diabétique, le syndrome X, le phénomène de Dawn, l'angioplastie, l'hyperthyroïdie, l'angiopathie, le gigantisme, tumeurs gastroentéropancréatiques endocriniennes dont le syndrome carcinoïde, le VIPome, l'insulinome, la nésidioblastose, l'hyperinsulinémie, le glucagonome, le gastrinome et le syndrome de Zollinger-Ellison, le GRFome ainsi que le saignement aigu des varices œsophagiennes, les ulcères, le reflux gastroœsophagien, le reflux gastroduodénal, la pancréatite, les fistules entérocutanées et pancréatiques mais aussi les diarrhées, les diarrhées réfractaires du syndrome d'immunodépression acquise, la diarrhée chronique sécrétoire, la diarrhée associée avec le syndrome de l'intestin irrité, les diarrhées induites par la chimiothérapie, les troubles liés au peptide libérateur de gastrine, les pathologies secondaires aux greffes intestinales, l'hypertension portale ainsi que les hémorragies des varices chez des malades avec cirrhose, l'hémorragie gastro-intestinale, l'hémorragie de l'ulcère gastroduodénale, le saignement des vaisseaux greffés, la maladie de Crohn, les scléroses systémiques, le dumping syndrome, le syndrome du petit intestin, l'hypotension, la sclérodermie et le carcinome thyroïdien médullaire, les maladies liées à l'hyperprolifération cellulaire comme les cancers et plus particulièrement le cancer du sein, le cancer de la prostate, le cancer thyroïdien ainsi que le cancer pancréatique et le cancer colorectal, les fibroses et plus particulièrement la fibrose du rein, la fibrose du foie, la fibrose du poumon, la fibrose de la peau, également la fibrose du système nerveux central ainsi que celle du nez et la fibrose induite par la chimiothérapie, et, dans d'autres domaines thérapeutiques, les céphalées y compris les céphalées associées aux tumeurs hypophysaires, les douleurs, les désordres inflammatoires comme l'arthrite, les accès de panique, la chimiothérapie, la cicatrisation des plaies, l'insuffisance rénale résultant d'un retard de croissance, l'hyperlipidémie, l'obésité et le retard de croissance lié à l'obésité, le retard de croissance utérin, la dysplasie du squelette, le syndrome de Noonan, le syndrome d'apnée du sommeil, la maladie de Graves, la maladie polykystique des ovaires, les pseudokystes pancréatiques et ascites, la leucémie, le méningiome, la cachexie cancéreuse, l'inhibition des H pylori, le psoriasis, le rejet chronique des allogreffes ainsi que la maladie d'Alzheimer et enfin l'ostéoporose.

WO 01/07424 PCT/FR00/02095 - 412 -

5

15. Utilisation selon la revendication 14, caractérisée en ce que les états pathologiques ou les maladies à traiter sont choisis parmi le groupe composé des états pathologiques ou des maladies qui suivent : l'acromégalie, les adénomes hypophysaires ou les tumeurs gastroentéropancréatiques endocriniennes dont le syndrome carcinoïde, et les saignements gastro-intestinaux.

Internationa lication No PCT/FR 00/02095

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D277/42 C07D277/56 A61K31/426 C07D417/00 A61P5/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) $IPC \ 7 \ CO7D$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

BEILSTEIN Data, CHEM ABS Data, WPI Data, EPO-Internal

Category °	Citation of document, with indication, where appropriate, of	Relevant to claim No	
X	KALCHEVA V ET AL: "Ring tran of oxazoles and their derivat Synthesis of 2,3-dihydro-2-(2-hydroxypheny -4-methylthiazoles by reactio 2-(2-oxopropylthio)benzoxazol amines" LIEBIGS ANNALEN DER CHEMIE, no. 12, December 1993 (1993-1 1319-22, XP002136745 the whole document	ives. limino) n of es with	1-3
<u> </u>	her documents are listed in the continuation of box C.	χ Patent family members are listed	I in annex.
"A" docume consid "E" earlier of filing d "L" docume which citation "O" docume other r "P" docume	ent defining the general state of the art which is not lered to be of particular relevance document but published on or after the international late ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but nan the priority date claimed	"T" later document published after the intor priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the description of particular relevance; the cannot be considered to involve an indocument of particular relevance; the cannot be considered to involve an indocument is combined with one or manents, such combination being obvious the art. "&" document member of the same patents."	n the application but neory underlying the claimed invention at be considered to occument is taken alone claimed invention eventive step when the ore other such docupus to a person skilled
Date of the	actual completion of the international search	Date of mailing of the international se	earch report
7	November 2000	21/11/2000	
Name and r	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Allard, M	

Internationa lication No PCT/FR 00/02095

	Jation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	OMAR A M M E ET AL: "Synthesis and biological evaluation of new 2,3-dihydrothiazole derivatives for antimicrobial, antihypertensive, and anticonvulsant activities" JOURNAL OF PHARMACEUTICAL SCIENCES, vol. 73, no. 8, August 1984 (1984-08), pages 1166-8, XP002136746 the whole document	1-3,11, 12
X	HASSAN H Y ET AL: "Synthesis and antimicrobial activity of pyridines bearing thiazoline and thiazolidinone moieties" CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 46, no. 5, May 1998 (1998-05), pages 863-6, XP002136747 the whole document	1-3,11, 12
X	US 3 345 257 A (DUERR D ET AL) 3 October 1967 (1967-10-03) the whole document	1-3
X	EP 0 683 160 A (SUMITOMO CHEMICAL COMPANY, LIMITED) 22 November 1995 (1995-11-22) the whole document	1-3
X	EP 0 055 458 A (HOECHST AKTIENGESELLSCHAFT) 7 July 1982 (1982-07-07) the whole document	1-3,11, 112
X	EP 0 023 964 A (HOECHST AKTIENGESELLSCHAFT) 18 February 1981 (1981-02-18) the whole document	1-3,11, 12
X	US 4 346 088 A (LANG H J ET AL) 24 August 1982 (1982-08-24) the whole document	1-3,11, 12
X	DATABASE CROSSFIRE 'Online! Beilstein Institut fuer Literatur der organischen Chemie; XP002136748 * Beilstein Registry Number 21007, 6514267 et 208869 * & POL. J. CHEM., vol. 58, no. 4/5/6, 1984, pages 447-454,	1-3

Internationa dication No PCT/FR 00/02095

Ta. Comment
ages Relevant to claim No.
1-3
1-3
1-3
1-3
1-3
1-3
1-3
*

International ication No PCT/FR 00/02095

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Helevant to claim No.
X	DATABASE CROSSFIRE 'Online! Beilstein Institut fuer Literatur der organischen Chemie; XP002136756 * Beilstein Registry Number 6814219 et 6811955 * & SYNTH. COMMUN., vol. 24, no. 4, 1994, pages 495-512,	1-3
A	LIU S ET AL: "Nonpeptide somatostatin agonists with sst4 selectivity: syntheses and structure-activity relationships of thioureas" JOURNAL OF MEDICINAL CHEMISTRY, vol. 41, no. 24, 1998, pages 4693-705, XP002136780 the whole document	1,13

International application No.

PCT/FR00/02095

Continued from field I.2

Claim nos.: 1-3, 11, 12 (all in part)

The initial phase of the search revealed a very large number of documents that were relevant to the novelty of claim nos. 1-3, 11 and 12. So many documents were found that it is impossible to establish which parts of these claims can be considered as defining the subject matter for which protection could legitimately be sought (PCT Art. 6). It was therefore impossible to carry out a meaningful, complete search and provide a complete search report covering the entire scope of these claims. The search and the search report in respect of these claims can only be considered complete to the extent that they address the examples given in the application.

The applicant is advised that patent claims relating to inventions for which no international search has been produced cannot normally be the subject of an international preliminary examination (PCT Rule 66.1(e)). As a general rule, the EPO in its capacity as the authority entrusted with the task of carrying out an international preliminary examination will not conduct a preliminary examination for subjects in respect of which no search has been provided. This also applies to cases where the patent claims were amended after receipt of the international search report (PCT Article 19) or to cases where the applicant presents new patent claims in the course of the PCT Chapter II procedure.

Information on patent family members

Internationa dication No
PCT/FR 00/02095

					T C I / F K	00/02095
Patent document cited in search repor	t	Publication date	F	Patent family member(s)		Publication date
US 3345257	А	03-10-1967	BE CH DE FR GB NL	62727 4398! 121827 134737 102756 28794	58 A 10 B 71 A 51 A	25-03-1964
EP 683160	Α	22-11-1995	BR CN JP US	950143 111324 732407 552114	42 A 79 A	07-11-1995 13-12-1995 12-12-1995 28-05-1996
EP 55458	A	07-07-1982	DE AR AT AU CD ESSSSS ESSIUEL JNOSA	646! 571344	34 A A T B A A D A D A D A D A D A B B A A A B B A A A B B A A A A	29-07-1982 28-09-1984 30-04-1985 15-02-1985 28-02-1985 08-07-1982 04-09-1984 28-03-1985 01-07-1982 01-04-1983 01-07-1983 16-02-1984 16-05-1984 01-09-1983 01-12-1983 01-12-1983 01-12-1983 01-12-1983 01-12-1983 01-09-1985 19-08-1987 29-09-1985 19-08-1982 20-12-1983 24-11-1982
EP 23964	A	18-02-1981	DE AR AR AU CDE ES ES ES ES ES	5335 60037 11562 30620 2865	75 A 19 A 76 A 76 B 80 A 17 D 863 D 863 D 671 A 765 D 672 A	15-01-1981 30-12-1983 31-05-1982 30-12-1983 15-03-1983 01-12-1983 15-01-1981 01-11-1983 24-03-1983 04-01-1981 30-09-1986 16-02-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981

Informফাon on patent family members

International lication No
PCT/FR 00/02095

			00/02095
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 23964	A	ES 8103068 A ES 492874 D ES 8103069 A FI 802094 A HU 182164 B IL 60468 A IL 70114 A JP 56010180 A NO 801995 A,B NO 844120 A US 4346088 A ZA 8003979 A	16-05-1981 16-02-1981 16-05-1981 04-01-1981 28-12-1983 30-11-1984 30-11-1984 02-02-1981 05-01-1981 24-08-1982 24-06-1981
US 4346088	A 24-08-1982	DE 2926771 A AR 229875 A AR 226119 A AR 229876 A AT 2524 T AU 533589 B AU 6003780 A CA 1156240 A DE 3062017 D DK 286580 A EG 14763 A EP 0023964 A ES 492847 D ES 8103065 A ES 492871 D ES 8103066 A ES 492872 D ES 8103067 A ES 492873 D ES 8103068 A ES 492874 D ES 8103069 A FI 802094 A HU 182164 B IL 60468 A IL 70114 A JP 56010180 A NO 801995 A, B NO 844120 A ZA 8003979 A	15-01-1981 30-12-1983 31-05-1982 30-12-1983 15-03-1983 01-12-1983 15-01-1981 01-11-1983 24-03-1983 04-01-1981 30-09-1986 18-02-1981 16-02-1981 16-02-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 04-01-1981 28-12-1983 30-11-1984 30-11-1984 02-02-1981 05-01-1981 05-01-1981

Demande Int ionale No PCT/FR 00/02095

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 C07D277/42 C07D277/56 C07D417/00 A61K31/426 A61P5/02

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 7 CO7D

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

BEILSTEIN Data, CHEM ABS Data, WPI Data, EPO-Internal

atégorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
(KALCHEVA V ET AL: "Ring transformations of oxazoles and their derivatives. Synthesis of 2,3-dihydro-2-(2-hydroxyphenylimino) -4-methylthiazoles by reaction of 2-(2-oxopropylthio)benzoxazoles with amines" LIEBIGS ANNALEN DER CHEMIE, no. 12, décembre 1993 (1993-12), pages 1319-22, XP002136745 le document en entier	1-3

Yoir la suite du cadre C pour la fin de la liste des documents	Les documents de familles de brevets sont indiqués en annexe
"A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent "E" document antérieur, mais publié à la date de dépôt international ou après cette date "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens "P" document publié avant la date de dépôt international, mais	T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention X" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément Y" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier &" document qui fait partie de la même famille de brevets
Date à laquelle la recherche internationale a été effectivement achevée 7 novembre 2000	Date d'expédition du présent rapport de recherche internationale 21/11/2000
Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Fonctionnaire autorisé Allard, M

Demande Inti ionale No PCT/FR 00/02095

	OCUMENTS CONSIDERES COMME PERTINENTS	and the recognition of
Catégorie '	Identification des documents cités, avec, le cas échéant, l'Indicationdes passages pertinents	no. des revendications visées
X	OMAR A M M E ET AL: "Synthesis and biological evaluation of new 2,3-dihydrothiazole derivatives for antimicrobial, antihypertensive, and anticonvulsant activities" JOURNAL OF PHARMACEUTICAL SCIENCES, vol. 73, no. 8, août 1984 (1984-08), pages 1166-8, XP002136746 le document en entier	1-3,11, 12
X	HASSAN H Y ET AL: "Synthesis and antimicrobial activity of pyridines bearing thiazoline and thiazolidinone moieties" CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 46, no. 5, mai 1998 (1998-05), pages 863-6, XP002136747 le document en entier	1-3,11,
X	US 3 345 257 A (DUERR D ET AL) 3 octobre 1967 (1967-10-03) 1e document en entier	1-3
X	EP 0 683 160 A (SUMITOMO CHEMICAL COMPANY, LIMITED) 22 novembre 1995 (1995-11-22) le document en entier	1-3
X	EP 0 055 458 A (HOECHST AKTIENGESELLSCHAFT) 7 juillet 1982 (1982-07-07) le document en entier	1-3,11, 112
X	EP 0 023 964 A (H0ECHST AKTIENGESELLSCHAFT) 18 février 1981 (1981-02-18) le document en entier	1-3,11, 12
X	US 4 346 088 A (LANG H J ET AL) 24 août 1982 (1982-08-24) 1e document en entier	1-3,11, 12
X	DATABASE CROSSFIRE 'en ligne! Beilstein Institut fuer Literatur der organischen Chemie; XP002136748 * Beilstein Registry Number 21007, 6514267 et 208869 * & POL. J. CHEM., vol. 58, no. 4/5/6, 1984, pages 447-454,	1-3

Demande In: :lionale No PCT/FR 00/02095

X DATABASE CROSSFIRE 'en ligne! Beilstein Institut fuer Literatur der organischen Chemie; XP002136749 * Beilstein Registry Number 241201 * & UNIV. KANS. SCI. BULL vol. 24, 1936, page 45, 48 X DATABASE CROSSFIRE 'en ligne! Beilstein Institut fuer Literatur der organischen Chemie; XP002136750 * Beilstein Registry Number 184211 * & J. INDIAN CHEM. SOC., vol. 8, 1931, page 147, 180 X DATABASE CROSSFIRE 'en ligne! Beilstein Institut fuer Literatur der organischen Chemie; XP002136751 * Beilstein Registry Number 4481168 * & J. HETEROCYCL. CHEM., vol. 21, 1984, pages 1377-1380, X DATABASE CROSSFIRE 'en ligne! Beilstein Institut fuer Literatur der organischen Chemie; XP002136752 * Beilstein Registry Number 302398 * & J. FRAKT. CHEM., vol. 87, 1913, page 44 X DATABASE CROSSFIRE 'en ligne! Beilstein Institut fuer Literatur der organischen Chemie; XP002136753 * Beilstein Registry Number 196542 * & J. CHEM. SOC. 1934, page 1175 X DATABASE CROSSFIRE 'en ligne! Beilstein Registry Number 196542 * & J. CHEM. SOC. 1934, page 1175 X DATABASE CROSSFIRE 'en ligne! Beilstein Registry Number 1137874 * & CHEM. PHARM. BULL., vol. 26, 1978, pages 3017-3022, X DATABASE CROSSFIRE en ligne! Beilstein Institut fuer Literatur der organischen Chemie; XP002136758 * Beilstein Institut fuer Literatur der organischen Chemie; XP002136758 * Beilstein Institut fuer Literatur der organischen Chemie; XP002136758 * Beilstein Institut fuer Literatur der organischen Chemie; XP002136758 * Beilstein Institut fuer Literatur der organischen Chemie; XP002136758 * Beilstein Institut fuer Literatur der organischen Chemie; XP002136758 * Beilstein Institut fuer Literatur der organischen Chemie; XP002136758 * Beilstein Institut fuer Literatur der organischen Chemie; XP002136758 * Beilstein Institut fuer Literatur der organischen Chemie; XP002136758 * Beilstein Institut fuer Literatur der organischen Chemie; XP002136758 * Beilstein Institut fuer Literatur der organischen Chemie; XP002136758 * Beilstein Institut fuer Literatur der organisch	adioations : 4 = 4 = -
Beilstein Institut fuer Literatur der organischen Chemie; XP002136749 * Beilstein Registry Number 241201 * & UNIV. KANS. SCI. BULL., vol. 24, 1936, page 45, 48 X DATABASE CROSSFIRE 'en ligne! Beilstein Institut fuer Literatur der organischen Chemie; XP002136750 * Beilstein Registry Number 184211 * & J. INDIAN CHEM. SOC., vol. 8, 1931, page 147, 180 X DATABASE CROSSFIRE 'en ligne! Beilstein Institut fuer Literatur der organischen Chemie; XP002136751 * Beilstein Registry Number 4481168 * & J. HETEROCYCL. CHEM., vol. 21, 1984, pages 1377-1380, X DATABASE CROSSFIRE 'en ligne! Beilstein Institut fuer Literatur der organischen Chemie; XP002136752 * Beilstein Registry Number 302398 * & J. PRAKT. CHEM., vol. 87, 1913, page 44 X DATABASE CROSSFIRE 'en ligne! Beilstein Institut fuer Literatur der organischen Chemie; XP002136753 * Beilstein Registry Number 196542 * & J. CHEM. SOC., 1934, page 1175 X DATABASE CROSSFIRE 'en ligne! Beilstein Institut fuer Literatur der organischen Chemie; XP002136754 * Beilstein Registry Number 1975 X DATABASE CROSSFIRE 'en ligne! Beilstein Institut fuer Literatur der organischen Chemie; XP002136754 * Beilstein Registry Number 1137874 * & CHEM. PhARM. BULL., vol. 26, 1978, pages 3017-3022, X DATABASE CROSSFIRE 'en ligne! Beilstein Institut fuer Literatur der organischen Chemie; XP002136754 * Beilstein Registry Number 1137874 * & CHEM. PhARM. BULL., vol. 26, 1978, pages 3017-3022, X DATABASE CROSSFIRE 'en ligne! Beilstein Institut fuer Literatur der organischen Chemie; XP002136754 * Beilstein Registry Number 4940588 *	ndications visées
Beilstein Institut fuer Literatur der organischen Chemie; XP002136750 * Beilstein Registry Number 184211 * * * * * * * * * * * * * * * * * *	
Beilstein Institut fuer Literatur der organischen Chemie; XP002136751 * Beilstein Registry Number 4481168 * & J. HETEROCYCL. CHEM., vol. 21, 1984, pages 1377-1380, X DATABASE CROSSFIRE en ligne!	·
Beilstein Institut fuer Literatur der organischen Chemie; XP002136752 * Beilstein Registry Number 302398 * & J. PRAKT. CHEM., vol. 87, 1913, page 44 X DATABASE CROSSFIRE 'en ligne! Beilstein Institut fuer Literatur der organischen Chemie; XP002136753 * Beilstein Registry Number 196542 * & J. CHEM. SOC., 1934, page 1175 X DATABASE CROSSFIRE 'en ligne! Beilstein Institut fuer Literatur der organischen Chemie; XP002136754 * Beilstein Registry Number 1137874 * & CHEM. PHARM. BULL., vol. 26, 1978, pages 3017-3022, X DATABASE CROSSFIRE 'en ligne! Beilstein Institut fuer Literatur der organischen Chemie; XP002136755 * Beilstein Registry Number 4940588 *	
Beilstein Institut fuer Literatur der organischen Chemie; XP002136753 * Beilstein Registry Number 196542 * & J. CHEM. SOC., 1934, page 1175 X DATABASE CROSSFIRE 'en ligne! 1-3 Beilstein Institut fuer Literatur der organischen Chemie; XP002136754 * Beilstein Registry Number 1137874 * & CHEM. PHARM. BULL., vol. 26, 1978, pages 3017-3022, 1-2 X DATABASE CROSSFIRE 'en ligne! 1-3 Beilstein Institut fuer Literatur der organischen Chemie; XP002136755 * Beilstein Registry Number 4940588 *	
Beilstein Institut fuer Literatur der organischen Chemie; XP002136754 * Beilstein Registry Number 1137874 * & CHEM. PHARM. BULL., vol. 26, 1978, pages 3017-3022, DATABASE CROSSFIRE 'en ligne! Beilstein Institut fuer Literatur der organischen Chemie; XP002136755 * Beilstein Registry Number 4940588 *	
Beilstein Institut fuer Literatur der organischen Chemie; XP002136755 * Beilstein Registry Number 4940588 *	
vol. 16, 1978, pages 605-609,	

Demande Intuionale No PCT/FR 00/02095

	OCUMENTS CONSIDERES COMME PERTINENTS Identification des documents cités, avec, le cas échéant, l'indicationdes passages pe		las das rougadisations defen
Catégorie °	identification des documents cites, avec, le cas echeant, i indication des passages pe	ertinents	no. des revendications visées
X	DATABASE CROSSFIRE 'en ligne! Beilstein Institut fuer Literatur der organischen Chemie; XP002136756 * Beilstein Registry Number 6814219 et 6811955 * & SYNTH. COMMUN., vol. 24, no. 4, 1994, pages 495-512,		1-3
4	LIU S ET AL: "Nonpeptide somatostatin agonists with sst4 selectivity: syntheses and structure-activity relationships of thioureas" JOURNAL OF MEDICINAL CHEMISTRY, vol. 41, no. 24, 1998, pages 4693-705, XP002136780 le document en entier		1,13

SUITE DES RENSEIGNEMENTS INDIQUES SUR PCT/ISA/ 210

Suite du cadre I.2

Revendications nos.: 1-3, 11, 12 (toutes en partie)

La phase initiale de la recherche a mis en évidence un très grand nombre de documents pertinents quant à la question de la nouveauté des revendictions 1-3, 11 et 12. Tant de documents ont été trouvés qu'il est impossible de déterminer quelles parties de ces revendications peuvent être considérées comme définissant la matière pour laquelle une protection pourrait être légitimement revendiquée (Article 6 PCT). Pour ces raisons, une recherche significative et un rapport de recherche complets sur toute l'étendue de ces revendications sont impossibles. La recherche et le rapport de recherche à l'égard de ces revendications ne peuvent être considérés comme complets que dans la mesure où les exemples de la demande sont visés.

L'attention du déposant est attirée sur le fait que les revendications, ou des parties de revendications, ayant trait aux inventions pour lesquelles aucun rapport de recherche n'a été établi ne peuvent faire obligatoirement l'objet d'un rapport préliminaire d'examen (Règle 66.1(e) PCT). Le déposant est averti que la ligne de conduite adoptée par l'OEB agissant en qualité d'administration chargée de l'examen préliminaire international est, normalement, de ne pas procéder à un examen préliminaire sur un sujet n'ayant pas fait l'objet d'une recherche. Cette attitude restera inchangée, indépendamment du fait que les revendications aient ou n'aient pas été modifiées, soit après la réception du rapport de recherche, soit pendant une quelconque procédure sous le Chapitre II.

Renseignements relatifs aux memores de familles de brevets

Demande Inti Ionale No
PCT/FR 00/02095

			1 - 1			00/02095
	ument brevet cite oport de recherch		Date de publication		embre(s) de la lle de brevet(s)	Date de publication
US	3345257	A	03-10-1967	BE CH DE FR GB NL	627278 A 439858 A 1218210 B 1347371 A 1027561 A 287940 A	25-03-1964
EP	683160	Α	22-11-1995	BR CN JP US	9501434 A 1113242 A 7324079 A 5521145 A	07-11-1995 13-12-1995 12-12-1995 28-05-1996
EP	55458	A	07-07-1982	DE AR AT AU CDE DES ES ES ES ES ES FIU EL JP NOS ZA	3049460 A 231134 A 231978 A 11778 T 542670 B 7906881 A 1173836 A 3168978 D 581181 A 508293 D 8305342 A 518271 D 8402829 A 518272 D 8308549 A 518272 D 8308549 A 518273 D 8308550 A 518274 D 8308551 A 814175 A 184976 B 52259 B 64653 A 57134472 A 814468 A, B 4421757 A 8108968 A	29-07-1982 28-09-1984 30-04-1985 15-02-1985 28-02-1985 08-07-1982 04-09-1984 28-03-1985 01-07-1982 01-04-1983 01-07-1983 16-02-1984 16-05-1984 01-09-1983 01-12-1983 01-12-1983 01-12-1983 01-12-1983 01-12-1983 01-12-1983 01-09-1985 19-08-1987 29-09-1985 19-08-1982 20-12-1983 24-11-1982
EP	23964	Α	18-02-1981	DE AR AR AU CA DE ES ES ES ES	2926771 A 229875 A 226119 A 229876 A 2524 T 533589 B 6003780 A 1156240 A 3062017 D 286580 A 14763 A 492847 D 8103065 A 492871 D 8103066 A 492872 D 8103067 A 492873 D	15-01-1981 30-12-1983 31-05-1982 30-12-1983 15-03-1983 01-12-1983 15-01-1981 01-11-1983 24-03-1983 04-01-1981 30-09-1986 16-02-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981

Renseignements relatifs aux membres de familles de brevets

Demande In tionale No
PCT/FR 00/02095

Document brevet cité au rapport de recherche		Date de publication		embre(s) de la lle de brevet(s)	Date de publication
EP 23964	A		ES ES FI HU IL JP NO NO US ZA	8103068 A 492874 D 8103069 A 802094 A 182164 B 60468 A 70114 A 56010180 A 801995 A,B 844120 A 4346088 A 8003979 A	16-05-1981 16-02-1981 16-05-1981 04-01-1981 28-12-1983 30-11-1984 30-11-1984 02-02-1981 05-01-1981 05-01-1981 24-08-1982 24-06-1981
US 4346088	A	24-08-1982	DE AR AR AU CDE DK EP ES ES ES ES ES FIU IL NO NO ZA	2926771 A 229875 A 226119 A 229876 A 2524 T 533589 B 6003780 A 1156240 A 3062017 D 286580 A 14763 A 0023964 A 492847 D 8103065 A 492871 D 8103066 A 492872 D 8103067 A 492873 D 8103068 A 492874 D 8103069 A 802094 A 182164 B 60468 A 70114 A 56010180 A 801995 A,B 844120 A	15-01-1981 30-12-1983 31-05-1982 30-12-1983 15-03-1983 01-12-1983 15-01-1981 01-11-1983 24-03-1983 04-01-1981 30-09-1986 18-02-1981 16-02-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-02-1981 16-02-1981 16-02-1981 16-02-1981 16-02-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981 16-05-1981