

AARHUS SCHOOL OF ENGINEERING

SUNDHEDSTEKNOLOGI OG INFORMATIONS- OG KOMMUNIKATIONSTEKNOLOGI BACHELORPROJEKT

AUTOMATISK ULTRALYDSSCANNER

Accepttest

Charlotte Søgaard Kristensen (201371015) Mathias Siig Nørregaard (201270810) Marie Kirkegaard (201370526)

Vejleder Associate Professor Michael Alrøe Aarhus School of Engineering

Indholdsfortegnelse

Indhold	lsfortegnelse	1
Kapitel	1 Versionshistorik	2
Kapitel	2 Indledning	9
Kapitel	3 Testresultat	4
Kapitel	4 Testformalia	
4.1	Godkendelseskriterier	5
4.2	Testprocedure	5
4.3	Forsøgsopstilling	
Kapitel	5 Tests af funktionelle krav	6
5.1	Test: UC1: Hovedscenarie	6
5.2	Test: UC2: Hovedscenarie	7
5.3	Test: UC2: Undtagelse: Juster 3D billedets skæring	8
5.4	Test: UC2: Undtagelse: Juster 3D billedets skæring	Ć
5.5	Test: UC2: Undtagelse: Dybdebillede er forvrænget	1(
5.6	Test: UC3: Hovedscenarie	11
5.7	Test: UC3: Udvidelse: Operatør pauser scanning	12
5.8	Test: UC3: Undtagelse: Operatør stopper Robotarm	13
5.9	Test: UC4: Hovedscenarie	14
Kapitel	6 Ikke-funktionelle krav	15
6.1	Usability	15
6.2	Performance	
Rilag	·	20

Version	Dato	Ansvarlig	Beskrivelse	
1.0	2016-09-21	MK, CSK	Første version af accepttest af de funktionel-	
			le og ikke-funktionelle krav.	
1.1	2016-09-29	CSK, MK, MSN	Rettelser efter kommentarer vejledermøde	
			og reviewgruppe.	
1.2	2016-10-04	MSN	Streamlinet denne efter kravspecificationen	
1.3	2016-10-05	MSN	Rettet test af Use Case 1	
1.4	2016-10-26	CSK	Rettet efter vejledermøde	
1.5	2016-11-08	CSK	Rettet efter tilføjelser til Use Case 2 og Use	
			Case 3	
1.6	2016-11-23	CSK, MK	Rettet til efter rettelser i kravspæcifikation	
1.7	2016-12-02	CSK	Rettet til efter mødet med Lars Bolvig og	
			rettelser/tilføjelser i kravspæcifikation	

Tabel 1.1: Versionshistorik

Indledning 2

Formålet med en accepttest er at få testet de funktionelle, use cases, og ikke-funktionelle krav fra kravsspecifikationen, bilag 7.

Accepttesten udføres typisk overfor kunden og er med til at sikre, at det færdige produkt lever op til kundens krav. Forkortelser og forklaring på forsøgsopstillingen, kan findes i bilag 16 Sætningsliste. Sætningslisten skal være tilgængelig under udførslen af accepttesten som opslagsværk for systemets standard positurer.

Testresultat 3

Nedenfor angives det overordnede testresultat	
[] Accepttesten er gennemført uden anmærkni	nger eller fejl
- resultatet accepteres.	
[] Accepttesten er gennemført med ubetydelige	e anmærkninger eller fejl.
- resultatet accepteres.	
[] Accepttesten er gennemført med betydelige	anmærkninger eller fejl.
- resultatet accepteres ikke.	
Godkendt af:	
Bachelorvejleder	
Dacheiorvejieaer	
Michael Alrøe	Dato
Michael Allye	Dato
Bachelorgruppens repræsentant	
Duonesery, appene representation	
Charlotte Søgaard Kritensen (201371015)	Dato

Testformalia 4

4.1 Godkendelseskriterier

Godkendelsen af systemtesten består af to trin:

- 1. Godkendelse af det overordnede dokument Accepttest. Dette gøres under afsnittet Testresultat, resultatet markeres med X og underskrives under "Godkendt af:".
- 2. Godkendelse af de enkelte dele i accepttesten. De enkelte dele i accepttesten godkendes, når testene af funktionelle og ikke-funktionelle krav er gennemført step for step og med resultater i overensstemmelse med de forventede resultater.

4.2 Testprocedure

De funktionelle og ikke-funktionelle krav vil blive testet som beskrevet under hver test. I feltet "resultat" markerer testpersonen 'Godkendt' eller 'Ikke godkendt' ud for det enkelte teststep. Godkendt betyder fejlfri gennemførsel. Ikke godkendt betyder, at teststeppet ikke kan gennemføres og godkendes. De fejl, der fører til, at steppet ikke kan gennemføres bliver beskrevet i et bilag til accepttesten, hvori fejlen bliver nærmere beskrevet.

For at kunne gennemføre accepttest af funktionelle og ikke-funktionelle krav er det vigtigt, at systemet er stillet korrekt op, og at opstillingen kan stilles op på samme måde igen. Der refereres til opstillingerne i bilaget 'Sætningsliste'.

4.3 Forsøgsopstilling

For at kunne reproducere testen, er det valgt ikke at benytte patienter, i stedet er et testobjekt, som er udformet som et bryst blevet anvendt, som erstatning for aktøren Patient. Der bliver benyttet en ultralydsdummy for at markere ultralydsprobens bane. Testobjektet er beklædt med ler, hvor ultralydsdummyen, bestående af en pind, kan markere banen i leret.

Under hver test, er forsøgsopstillingen og de pågældende aktører blevet beskrevet, som er en forudsætning for, at testene kan gennemføres.

Aktøren Testperson agerer i denne accepttest Operatør, hvilket betder Testperson betjener Automatisk Ultralydsscanner uden at have forudsætningen om at kende til ultralyd.

Tests af funktionelle krav

5.1 Test: UC1: Hovedscenarie

Use Case Navn: Start system

Forsøgsopstilling:

• Computeren er tændt

• Robotarm er tilsluttet

• Robotarm står i Ikke-standard Positur

Aktører:

• Testperson

• Robotarm

	Test	Visuelle resultat	Godkendt
1.1	Testperson trykker på 'AutoSo-	Menuen 'Startup Menu' vises på	
	nography.exe' på computerens	GUI	
	skrivebord		
2.1	Testpersonen venter på, at Ro-	Robotarm er stoppet	
	botarm flytte sig og stoppet i en		
	ny position		
2.2	På Robotarms touchskærm	En ny skærm vises, hvor der er	
	trykker Testperson på 'Move'-	mulighed for at aflæse koordina-	
	fanen øverst på GUI'en	ter i højre side	
2.3	I højre hjørne af Robotarms	Z-koordinatet i rammen 'TCP'	
	skærm trykker Testperson på	under 'Feature'-rammen er shif-	
	'Feature'-dropdownen, og der	tet cirka +400 mm og farverne	
	vælges 'Base'	på knapperne i venstre side er	
		skiftet.	
2.4	Testperson aflæser hver tekst-	$Med en margin på \pm 1 mm er Ro-$	
	boks i rammen 'TCP' og note-	botarms nuværende koordinater	
	rer, at de matcher hvert koordi-	tilsvarende Positurn 'Standard	
	nat angivet i 'Standard Positur'	Positur's koordinater	
	i bilaget 'Sætningsliste'		

Tabel 5.1: Test: UC1: Hovedscenarie

5.2 Test: UC2: Hovedscenarie

Use Case Navn: 3D scan brystområde Forsøgsopstilling:

- PC Applikation er startet
- 3D kamera er tilsluttet
- Testobjekt er placeret inden for afgrænsning

- \bullet Testperson
- Testobjekt
- 3D kamera

	Test	Visuelle resultat	$\mathbf{Godkendt}$
1.1	Testperson trykker på knappen	Skærmbilledet skifter til menuen	
	[3D Scan] på GUI's 'Startup	'3D Scan Menu'	
	Menu'		
2.1	Testperson trykker på knappen	På GUI bliver knappen [OK]	
	[Scan] på GUI's '3D Scan Menu'	tilgængelig	
3.1	Testperson tjekker, om der er	Menuen '3D Scan Menu' viser	
	et dybdebillede på menuen '3D	noget andet end et sort billede	
	Scan Menu'		
4.1	Testperson trykker på knappen	Menuen 'Startup Menu' vises på	
	[OK] i menuen '3D Scan Menu'	GUI. Knappen [Ultralydsscan]	
		er tilgængelig	

Tabel 5.2: Test: UC2: Hovedscenarie

5.3 Test: UC2: Undtagelse: Juster 3D billedets skæring

Use Case Navn: 3D scan brystområde Forsøgsopstilling:

- PC Applikation er startet
- 3D kamera er tilsluttet
- Testobjekt er placeret indenfor afgrænsning

- Testperson
- Testobjekt
- 3D kamera

	Test	Visuelle resultat	$\mathbf{Godkendt}$
1.1	Testperson trykker på knappen	Skærmbilledet skifter til menu-	
	[3D Scan] på GUI's 'Startup	en '3D Scan Menu'	
	Menu'		
A1.1	Testperson vælger nye Y Min og	GUI viser de nye værdier	
	X Min interval på GUI's track		
	bars		
A2.1	Testperson gennemgår tests fra	Visuelle resultater fra punkt 2.1	
	Hovedscenariet i UC2: 3D scan	til punkt 4.1 i Tabel 5.2	
	brystområde i Tabel 5.2 fra		
	punkt 2.1 til punkt 4.1		

Tabel 5.3: Test: UC2: Undtagelse: Juster 3D billedets skærring

5.4 Test: UC2: Undtagelse: Juster 3D billedets skæring

Use Case Navn: 3D scan brystområde Forsøgsopstilling:

- PC Applikation er startet
- 3D kamera er tilsluttet
- Testobjekt er placeret indenfor afgrænsning

- \bullet Testperson
- Testobjekt
- 3D kamera

	Test	Visuelle resultat	Godkendt
1.1	Testperson trykker på knappen	Skærmbilledet skifter til menu-	
	[3D Scan] på GUI's 'Startup	en '3D Scan Menu'	
	Menu'		
A1.1	Testperson vælger nye Y Min og	GUI viser de nye værdier	
	X Min interval på GUI's track		
	bars		
A2.1	Testperson gennemgår tests fra	Visuelle resultater fra punkt 2.1	
	Hovedscenariet i UC2: 3D scan	til punkt 4.1 i Tabel 5.2	
	brystområde i Tabel 5.2 fra		
	punkt 2.1 til punkt 4.1		

Tabel 5.4: Test: UC2: Undtagelse: Juster 3D billedets skærring

5.5 Test: UC2: Undtagelse: Dybdebillede er forvrænget

Use Case Navn: 3D scan brystområde Forsøgsopstilling:

- PC Applikation er startet
- 3D kamera er tilsluttet
- Testobjekt er placeret indenfor afgrænsning

- Testperson
- Testobjekt
- 3D kamera

	Test	Visuelle resultat	Godkendt
1.1	Testperson trykker på knappen	Skærmbilledet skifter til menu-	
	[3D Scan] på GUI's 'Startup	en '3D Scan Menu'	
	Menu'		
2.1	Testperson trykker på knappen	På GUI bliver knappen [OK]	
	[Scan] på GUI's '3D Scan Menu'	tilgængelig	
3.1	Testperson tjekker, om der er	Menuen '3D Scan Menu' viser	
	et dybdebillede på menuen '3D	noget andet end et sort billede	
	Scan Menu'		
B1.1	Testperson trykker på knappen		
	[Scan]		
B2.1	Testperson gennemgår tests fra	Visuelle resultater fra punkt 1.1	
	Hovedscenariet i UC2: 3D scan	til punkt 4.1 i Tabel 5.2	
	brystområde i Tabel 5.2 fra		
	punkt 1.1 til punkt 4.1		

Tabel 5.5: Test: UC2: Undtagelse: Dybdebillede er forvrænget

5.6 Test: UC3: Hovedscenarie

Use Case Navn: Ultralydsscan brystområde Forsøgsopstilling:

- PC Applikation er startet
- Robotarm er tilsluttet
- Ultralydsdummy er fastmonteret Robotarm
- Testobjekt har ikke skiftet position siden udførslen af UC2: 3D scan brystområde
- Målebånd til opmåling af Ultralydsdummysbane

- Testperson
- Testobjekt
- Ultralydsdummy
- Robotarm

	Test	Visuelle resultat	Godkendt
1.1	Testperson trykker på knap-	Skærmbilledet skifter til menuen	
	pen [Ultralydsscan] på GUI's	'Ultralydsscan Menu'	
	'Startup Menu'		
2.1	Testperson venter på Robotarm	Robotarm er stoppet	
	stopper		
2.2	Testperson benytter et må-	Ultralydsdummys bane på Te-	
	lebånd til at tjekke den marke-	stobjekt har et maximum mel-	
	rede bane på Testobjekt	lemrum på 5 cm	
3.1	Testperson gennemgår tests fra	Visuelle resultater fra punkt 2.1	
	UC1: Start system i Tabel 5.1 fra	til punkt 2.4 i Tabel 5.1	
	punkt 2.1 til punkt 2.4		

Tabel 5.6: Test: UC3: Hovedscenarie

5.7 Test: UC3: Udvidelse: Operatør pauser scanning

Use Case Navn: Ultralydsscan brystområde Forsøgsopstilling:

- PC Applikation er startet
- Robotarm er tilsluttet
- Ultralydsdummy er fastmonteret Robotarm
- Testobjekt har ikke skiftet position siden UC2: 3D scan brystområde
- Målebånd til opmåling af Ultralydsdummysbane

- Testperson
- Testobjekt
- Ultralydsdummy
- \bullet Robotarm

	Test	Visuelle resultat	Godkendt
1.1	Testperson trykker på knap-	Skærmbilledet skifter til menu-	
	pen [Ultralydsscan] på GUI's	en 'Ultralydsscan Menu'	
	'Startup Menu'		
A1.1	Testperson trykker på knap-	Robotarm med Ultralydsdum-	
	pen [Pause], mens Robotarm	my stopper med at flytte sig på	
	med Ultralydsdummy scanner	Testobjekt	
	Testobjekt		
A2.1	Testperson trykker på knappen	Robotarm genoptager scanning	
	[Pause]	af Testobjekt	
2.1	Testperson gennemgår tests fra	Visuelle resultater fra punkt 2.1	
	hovedforløbet i UC2: Ultralyds-	til punkt 3.1 i Tabel 5.1	
	scan brystområde i Tabel 5.6 fra		
	punkt 2.1 til punkt 3.1		

Tabel 5.7: Test: UC3: Udvidelse: Operatør pauser scanning

5.8 Test: UC3: Undtagelse: Operatør stopper Robotarm

Use Case Navn: Ultralydsscan brystområde Forsøgsopstilling:

- PC Applikation er startet
- Robotarm er tilsluttet
- Ultralydsdummy er fastmonteret Robotarm
- Testobjekt har ikke skiftet position siden UC2: 3D scan brystområde

- Testperson
- Testobjekt
- Ultralydsdummy
- Robotarm

	Test	Visuelle resultat	Godkendt
1.1	Testperson trykker på knap-	Skærmbilledet skifter til menu-	
	pen [Ultralydsscan] på GUI's	en 'Ultralydsscan Menu'	
	'Startup Menu'		
B1.1	Testperson trykker på knappen	Robotarm med Ultralydsdumy	
	[Stop], mens Robotarm med Ul-	stopper med at flytte sig på	
	tralydsscanner scanner Testob-	Testobjekt	
	jekt		
B2.1	Testperson gennemgår tests fra	Visuelle resultater fra punkt 2.1	
	UC1: Start system i Tabel 5.1	til punkt 2.4 i Tabel 5.1	
	fra punkt 2.1 til punkt 2.4		

Tabel 5.8: Test: UC3: Undtagelse: Operatør stopper Robotarm

5.9 Test: UC4: Hovedscenarie

Use Case Navn: Stop system

Forsøgsopstilling:

- System er startet
- Robotarm er tilsluttet

- Testperson
- \bullet Robotarm

	Test	Visuelle resultat	$\mathbf{Godkendt}$
1.1	Testperson trykker på knappen	Vinduet lukker ned	
	[Luk Knap] i GUI's øverste højre		
	hjørne		
2.1	Testperson gennemgår tests fra	Visuelle resultater fra punkt 2.1	
	UC1: Start System i Tabel 5.1	til punkt 2.4 i Tabel 5.1	
	fra punkt 2.1 til punkt 2.4		

Tabel~5.9:~Test:~UC4:~Hoved scenarie

Ikke-funktionelle krav

Accepttest af ikke-funktionelle krav, hvor der kun testes på must-krav.

6.1 Usability

U1. PC Applikation skal have en GUI

Forsøgsopstilling:

1. PC Applikation er startet

Aktører:

1. Testperson

Test	Visuelt resultat	$\operatorname{Godkendt}$
Testperson trykker på 'AutoSono-	Menuen 'Startup Menu' vises på	
graphy.exe' på computerens skrive-	GUI	
bord		

Tabel 6.1: Usability 1

6.2 Performance

P1. Scanningen med 3D kamera og ultralydsscanning skal max tage 10 minutter til sammen

Forsøgsopstilling:

- 1. PC Applikation er startet
- 2. 3D kamera er tilsluttet
- 3. Ultralydsdummy er fastmonteret Robotarm
- 4. Robotarm er tilsluttet
- 5. Stopur

- 1. Testperson
- 2. Testobjekt
- 3. 3D kamera
- 4. Ultralydsdummy
- 5. Robotarm

Test	Visuelt resultat	Godkendt
Testperson starter stopur	Stopur er startet	
Testperson trykker på knappen [3D	Skærmbilledet skifter til menuen	
Scan] på GUI's 'Startup Menu'	'3D Scan Menu'	
Testperson trykker på knappen	UC2: 3D scan gennemføres, og	
[Scan] på GUI's '3D Scan Menu'	menuen '3D Scan Menu' viser noget	
	andet end et sort billede	
Testperson trykker på knappen	Menuen 'Startup Menu' vises på	
[OK] på GUI's '3D Scan Menu'	GUI og knappen [Ultralydsscan] er	
	tilgængelig	
Testperson trykker på knappen [Ul-	UC3: Ultralydsscan gennemføres,	
tralydsscan] på GUI's 'Startup Me-	og Robotarm fører Ultralydsscan-	
nu'	ner rundt på Testobjekt	
Testperson slukker for stopur, når	Stopur viser 10 minutter eller der-	
Robotarm stopper	under	

Tabel 6.2: Performance 1

6.2. Performance ASE

P2. Startoptid på PC Applikation skal være max 30 sekunder

Forsøgsopstilling:

- 1. Computer skal være tændt
- 2. Stopur

Aktører:

1. Testperson

Test	Visuelt resultat	Godkendt
Testpersonen starter stopur	Stopur er startet	
Testperson trykker på 'AutoSono-	Menuen 'Startup Menu' vises på	
graphy.exe' på computerens skrive-	GUI	
bord		
Testpersonen venter på, at Robo-	Robotarm er stoppet	
tarm starter og derefter stopper		
med at flytte sig		
Testpersonen slukker for stopur,	Stopur viser 30 sekunder eller der-	
når Robotarm stopper	under	

Tabel 6.3: Performance 2

${\bf P3.~3D}$ kamera skal max bruge 1 minut om at tage 3D billedet

Forsøgsopstilling:

- 1. PC Applikation er startet
- 2. 3D kamera er tilsluttet
- 3. Testobjekt ligger indenfor afgrænsning
- 4. Stopur

- 1. Testperson
- 2. 3D kamera
- 3. Testobjekt

Test	Visuelt resultat	Godkendt
Testpersonen starter stopur	Stopur er startet	
Testperson trykker på knappen [3D	Skærmbilledet skifter til menuen	
Scan] på GUI's 'Startup Menu'	'3D Scan Menu'	
Testperson trykker på knappen	UC2: 3D scan gennemføres, og	
[Scan] på GUI's '3D Scan Menu'	menuen '3D Scan Menu' viser noget	
	andet end et sort billede	
Testpersonen slukker for stopur	Stopur viser 1 minut eller derunder	

Tabel 6.4: Performance 3

6.2. Performance ASE

P4. PC Applikation skal max bruge 1 minut på at færdiggøre brystområdets positurer til Robotarm

Forsøgsopstilling:

- 1. PC Applikation er startet
- 2. 3D kamera er tilsluttet
- 3. Testobjekt ligger indenfor afgrænsning
- 4. Stopur

- 1. Testperson
- 2. 3D kamera
- 3. Testobjekt

Test	Visuelt resultat	Godkendt
Testperson trykker på knappen [3D	Skærmbilledet skifter til menuen	
Scan] på GUI's 'Startup Menu'	'3D Scan Menu'	
Testperson trykker på knappen	UC2: 3D scan gennemføres, og	
[Scan] på GUI's '3D Scan Menu'	menuen '3D Scan Menu' viser noget	
	andet end et sort billede	
Testpersonen starter en timer	Timer starter.	
Testperson trykker på knappen	Menuen [Startup Menu] vises på	
[OK] på '3D Scan Menu'	GUI	
Testperson slukker for stopur, når	Stopur viser 1 minut eller derunder	
knappen [Ultralydsscan Knap] vi-		
ses på GUI's 'Startup Menu'.		

Tabel 6.5: Performance 4

Bilag

Bilag 7 Kravspecifikation Bilag 16 Sætningsliste