

HOME DOWNLOAD SALES EBOOK SITE MAP

Significance Test for Linear Regression

Assume that the error term ϵ in the linear regression model is independent of x, and is normally distributed, with zero mean and constant variance. We can decide whether there is any **significant relationship** between x and y by testing the null hypothesis that $\beta = 0$.

Problem

Decide whether there is a significant relationship between the variables in the linear regression model of the data set faithful at .05 significance level.

Solution

We apply the Imfunction to a formula that describes the variable eruptions by the variable waiting, and save the linear regression model in a new variable eruption.lm.

```
> eruption.lm = lm(eruptions ~ waiting, data=faithful)
```

Then we print out the F-statistics of the significance test with the summary function.

```
> summary(eruption.lm)
call:
lm(formula = eruptions ~ waiting, data = faithful)
Residuals:
    Min
             1Q Median
                             30
-1.2992 -0.3769 0.0351 0.3491 1.1933
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                        0.16014
                                          <2e-16 ***
(Intercept) -1.87402
                                  -11.7
                                          <2e-16 ***
waiting
             0.07563
                        0.00222
                                   34.1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.497 on 270 degrees of freedom
Multiple R-squared: 0.811,
                                Adjusted R-squared: 0.811
F-statistic: 1.16e+03 on 1 and 270 DF, p-value: <2e-16
```

Answer

As the p-value is much less than 0.05, we reject the null hypothesis that $\beta = 0$. Hence there is a significant relationship between the variables in the linear regression model of the data set faithful.

Note

Further detail of the summary function for linear regression model can be found in the R documentation.

Search this site:

Search

R Tutorial eBook

R Tutorials

R Introduction Elementary Statistics with R Qualitative Data **Ouantitative Data** Numerical Measures Probability Distributions Interval Estimation Hypothesis Testing Type II Error Inference About Two Populations Goodness of Fit Analysis of Variance Non-parametric Methods Simple Linear Regression Estimated Simple Regression Equation Coefficient of

Determination

> help(summary.lm)				
< Coefficient of Determination	up	Co	onfidence Interval f Reg	or Linear
Tags: Elementary Statistics with R summary faithful	error term	linear regression	significance test	lm

Significance Test for Linear Regression		
Confidence Interval for Linear Regression		
Prediction Interval for Linear Regression		
Residual Plot		
Standardized Residual		
Normal Probability Plot of Residuals		
Multiple Linear Regression		
Logistic Regression		
GPU Computing with R		

Recent Articles

- Deep Learning in R
 August 14, 2016
- Installing CUDA Toolkit 7.5 on Fedora 21 Linux
 September 10, 2015
- Installing CUDA Toolkit 7.5 on Ubuntu 14.04 Linux
 September 10, 2015
- Hierarchical Linear Model
 July 22, 2013

 ${\it Copyright} \ @\ 2009 - 2018\ Chi\ Yau\ All\ Rights\ Reserved \\ Theme\ design\ by\ styleshout\ Fractal\ graphics\ by\ zyzstar\ Adaptation\ by\ Chi\ Yau$