

Total

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Estudios Superiores Aragón Plan de Estudios

64.0

Ingeniería en Computación Robótica Clave Semestre Créditos Área sugerido Interacción Hombre-Máquina 8 8.0 Módulo de salida Adquisición y Procesamiento de Señales Curso Modalidad Teórico Tipo Carácter Optativo **Horas** Semana Semestre **Teóricas** Teóricas 4.0 64.0 **Prácticas** 0.0 **Prácticas** 0.0

Seriación indicativa	
Asignatura antecedente	Ninguna
Asignatura subsecuente	Ninguna

Total

4.0

Objetivo general: Conocer las bases y fundamentos de la robótica, los distintos tipos de robots, así como sus clasificaciones para el diseño y construcción de aplicaciones robóticas.

Na	o. Tema		Horas Semestre	
No.			Prácticas	
1	INTRODUCCIÓN	4.0	0.0	
2	SISTEMAS DE CONTROL Y SENSORES	12.0	0.0	
3	COMPONENTES MECÁNICOS DE UN ROBOT	8.0	0.0	
4	CINEMÁTICA	10.0	0.0	
5	DINÁMICA	10.0	0.0	
6	LENGUAJES DE PROGRAMACIÓN	12.0	0.0	
7	SELECCIÓN DE UN SISTEMA ROBÓTICO	8.0	0.0	
	Total	64.0	0.0	
	Suma total de horas	6	4.0	

Contenido Temático

1. INTRODUCCIÓN

Objetivo: Comprender los conceptos básicos de la robótica, para identificar los diferentes tipos de robots que hay en la actualidad, así como sus principales aplicaciones.

- 1.1 Antecedentes de la robótica.
- 1.2 Tipos de robots y sus componentes.
- 1.2.1 Robots estacionarios.
- 1.2.2 Robots móviles.
- 1.2.3 Otras clasificaciones.
- 1.3 Ejemplos comerciales.
- 1.3.1 Aplicaciones.
- 1.3.2 Tipos de órganos terminales para realizar distintos tipos de trabajos.
- 1.3.3 Ejemplos de uso.

2. SISTEMAS DE CONTROL Y SENSORES

Objetivo: Conocer las diferentes técnicas para el control de sistemas robóticos y los tipos de sensores necesarios para su interacción con el entorno.

- 2.1 Sistemas de control en la robótica.
- 2.1.2 Sistemas de control MIMO.
- 2.1.3 Sistemas de control adaptativos.
- 2.2 Sensores aplicados a robots.
- 2.2.1 Sensores de posición de velocidad.
- 2.2.2 Sensores de fuerza.
- 2.2.3 Sensores de presencia.
- 2.2.4 Sistemas de visión.

3. COMPONENTES MECÁNICOS DE UN ROBOT

Objetivo: Identificar los elementos mecánicos básicos que componen un robot.

- 3.1 Actuadores.
- 3.1.1 Tipos.
- 3.1.2 Clasificación.
- 3.1.3 Selección.
- 3.2 Transmisiones y reductores.
- 3.3 Frenos.
- 3.4 Órganos terminales.
- 3.4.1 Garras.
- 3.4.2 Herramientas.
- 3.4.3 Otros dispositivos.
- 3.5 Mecanismos por eslabones.

4. CINEMÁTICA

Objetivo: Conocer las diferentes formas de análisis del espacio en el que se mueve un sistema robótico.

- 4.1 Descripción de las articulaciones.
- 4.2 El espacio cartesiano.
- 4.3 Cinemática directa.
- 4.3.1 Tipos de estructura y notación de D y H.
- 4.3.2 Sistemas de referencia.
- 4.4 Cinemática inversa.
- 4.4.1 Métodos de solución.
- 4.5 Cinemática de movimiento.
- 4.5.1 Matriz Jacobiana.
- 4.5.6 Matriz Jacobiana inversa.

5. DINÁMICA

Objetivo: Analizar los aspectos físicos que se presentan en un sistema robótico en movimiento.

- 5.1 Distribución de masa en los eslabones.
- 5.2 Sistemas de accionamiento.
- 5.3 Aplicación de Newton Euler y Euler Lagrange.
- 5.4 Simulación dinámica.

6. LENGUAJES DE PROGRAMACIÓN

Objetivo: Comprender el uso e importancia de los lenguajes de programación en la robótica.

- 6.1 Los tres niveles de programación.
- 6.2 Problemas involucrados en la programación.
- 6.3 Tipos de lenguajes.
- 6.4 Descripción de paquetes existentes para la programación de robots.
- 6.5 Generación de un programa de control para un robot.

7. SELECCIÓN DE UN SISTEMA ROBÓTICO

Objetivo: Identificar los elementos necesarios para diseñar o seleccionar un robot según sus características técnicas.

- 7.1 Selección del tipo de robot.
- 7.2 Programas de cómputo para diseño.
- 7.3 La célula integrada de manufactura.
- 7.4 Robots educativos.

Estrategias didácticas		Evaluación del aprendizaje		Recursos	
Exposición	()	Exámenes parciales	(X)	Aula interactiva	()
Trabajo en equipo	(X)	Examen final	(X)	Computadora	(X)
Lecturas	()	Trabajos y tareas	(X)	Plataforma tecnológica	(X)
Trabajo de investigación	(X)	Presentación de tema	()	Proyector o Pantalla LCD	(X)
Prácticas (taller o laboratorio)	()	Participación en clase	(X)	Internet	(X)
Prácticas de campo	()	Asistencia	()		
Aprendizaje por proyectos	(X)	Rúbricas	()		
Aprendizaje basado en problemas	(X)	Portafolios	()		
Casos de enseñanza	()	Listas de cotejo	()		
Otras (especificar)		Otras (especificar)		Otros (especificar)	

	Perfil profesiográfico
Título o grado	 Poseer un título a nivel licenciatura en Ingeniería en Computación, Ciencias de la Computación, Matemáticas Aplicadas a la Computación o carreras cuyo perfil sea afín al área de Interacción Hombre-Maquina.
Experiencia docente	 Poseer conocimientos y experiencia profesional relacionados con los contenidos de la asignación a impartir. Tener la vocación para la docencia y una actitud permanentemente educativa a fin de formar íntegramente al alumno: Para aplicar recursos didácticos. Para motivar al alumno. Para evaluar el aprendizaje del alumno, con equidad y objetividad.
Otra característica	 Poseer conocimientos y experiencia pedagógica referentes al proceso de enseñanza-aprendizaje. Tener disposición para su formación y actualización, tanto en los conocimientos de su área profesional, como en las pedagógicas. Identificarse con los objetivos educativos de la institución y hacerlos propios. Tener disposición para ejercer su función docente con ética profesional: Para observar una conducta ejemplar fuera y dentro del aula. Para asistir con puntualidad y constancia a sus cursos. Para cumplir con los programas vigentes de sus asignaturas.

Bibliografía básica	Temas para los que se recomienda
Appin Knowledge Solutions (2007).	
Robotics.	1, 5 y 7
Massachussets, USA: Infinity Science Press.	
Ollero, B. A. (2001).	
Robótica, manipuladores y robots móviles.	1,2,3,4,5,6 y 7
México: Alfaomega.	
Reyes, C. F. (2012).	
Matlab aplicado a robótica y mecatrónica.	1,2,3,4 y 7
México: Alfaomega.	
Salido, J. (2010).	
Cibernética aplicada.	1,2,3,4,5 y 6
México: RA-MA Alfaomega.	
Srinivas, J. (2009).	
Robotics, control and programming.	1,2,3,4,5,6 y 7
Oxford: Alpha Science International.	

Torres, F. (2002).	
Robots y sistemas sensoriales.	1,2,3,4,5,6 y 7
España: Pearson Education.	

Bibliografía complementaria	Temas para los que se recomienda	
Bolton, W. (2010).		
Mecatrónica, sistemas de control electrónico en la ingeniería	1,2,3,4,5,6 y 7	
mecánica y eléctrica.		
México: Alfaomega.		
Braunl, T. (2003).		
Embedded robotics.	1,2,3,4,5,6 y 7	
Germany: Springer.		
Utz, H. y Kaufmann, U. (2016).		
Computer and robotic vision.	1,2,6 y 7	
UK: Koros Press.		

