Semaine n° 3 : du 18 septembre au 22 septembre

Lundi 18 septembre

- Cours à préparer : Chapitre II Fonctions usuelles
 - Partie 6: Fonction exponentielle, fonction logarithme; fonction $x \mapsto x^a$ pour a réel quelconque; exponentielle de base a, logarithme de base a; racines énièmes; croissances comparées.
 - Partie 7.1: Fonctions arcsin et arccos: définitions, propriétés, dérivabilité, dérivées, variations.

Mardi 19 septembre

- Cours à préparer : Chapitre II Fonctions usuelles
 - Partie 7.2 : Fonction arctan : définition, propriétés, dérivabilité, dérivées, variations.
 - Partie 8 : Fonctions hyperboliques sh, ch, th : définitions, propriétés, dérivabilité, dérivées, variations.
- Exercices à corriger en classe
 - Feuille d'exercices n° 2 : exercices 3, 5 et 7.

Jeudi 21 septembre

- Cours à préparer : Chapitre III Calculs algébriques
 - Partie 1 : Somme simple : propriétés, décalage d'indice, renversement d'indices, simplification télescopique; somme double, permutation des Σ ; somme d'une famille finie.
 - Partie 2 : Produit d'une famille finie; factorielle; simplification télescopique.
 - Partie 3.1 : Sommes classiques : $\sum_{k=0}^{n} k$, $\sum_{k=0}^{n} k^2$.
- Exercices à corriger en classe
 - Feuille d'exercices n° 2 : exercices 6, 10.

Vendredi 22 septembre

- Cours à préparer : Chapitre III Calculs algébriques
 - Partie 3.2 : Coefficients binomiaux, formule de Pascal.
 - Partie 3.3 : Fomule du binôme de Newton, factorisation de $a^n b^n$, formule de sommation géométrique.

Échauffements

Lundi 18 septembre

Pas d'exercice : interrogation écrite

Mardi 19 septembre

- Calculer $\left| e^{i\frac{5\pi}{4}} + e^{-i\frac{\pi}{3}} \right|$.
- Cocher toutes les assertions vraies :

Soit f une fonction continue sur [a, b[, strictement décroissante sur [a, b[.

- \square Alors d'après le théorème de la bijection, il existe un unique réel c de [a,b[tel que f(c)=c.
- \square Alors d'après le théorème de la bijection, f est bijective de [a, b[vers]f(a), f(b)[.
- \square Alors f est bijective et f^{-1} est continue et strictement décroissante.
- \square Alors f est dérivable sur a, b et $\forall t \in a, b$, f'(t) < 0.

Jeudi 21 septembre

- Calculer $\frac{\mathrm{d}}{\mathrm{d}x} \left(\ln \sqrt{\frac{1+x}{1-x}} \right)$.
- Cocher toutes les assertions vraies : Soit θ un réel.

$$\Box \sin(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
$$\Box e^{1+i\frac{\pi}{4}} = \frac{e\sqrt{2}}{2}(1+i).$$

$$\Box \cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
$$\Box |e^{\theta(1+i)}| = 1.$$

Vendredi 22 septembre

- Calculer $\lim_{x\to 0} (1+x)^{1/x}$ et $\lim_{x\to 0} 2x \ln(x+\sqrt{x})$. Cocher toutes les assertions vraies :
- Soit $x \in \mathbb{R}$. Alors

$$\Box \cos(\pi - x) = \cos(x)$$

$$\Box \sin(\pi - x) = \sin(x)$$

$$\Box \sin(\pi + x) = \sin(x)$$

$$\Box \sin\left(\frac{\pi}{2} - x\right) = \sin(x)$$

$$\Box \sin\left(\frac{\pi}{2} - x\right) = \sin(x)$$

$$\Box \sin\left(\frac{\pi}{2} - x\right) = \cos(x)$$

$$\Box \sin\left(\frac{\pi}{2} + x\right) = \cos(x)$$

$$\Box \sin\left(\frac{2}{7} + x\right) = \cos(x)$$