به نام خدا

طراحی سیستمهای دیجیتال

گزارش پروژه

دانشكده مهندسي كامپيوتر

دانشگاه صنعتی شریف

فرشاد بهاروند

اعضای گروه:

عماد زیناوقلی، مازیار شمسیپور، بردیا محمدی جواد هزاره، پویا یوسفی

نيم سال دوم ٠٠_٩٩

فهرست

٢																														ر	يف	ظا	وف	ح	ر.	ث
٣																														_				.ما		م
٣																										. (بتم	ري	گو	J	١	ف	ري	تع		
۴																									ر		باظ									
۴													ر	Ś	ىين	يم	تا	و	ز	عت	۱_	···	ر ه	ظ												
۴																										IE	EE	Ξ 7	754	د با	ارو	ند	تا	اسا		
۵			•			•		•		•						•	•			•				•	ده	ماد	ىت	اس	۪د	ور	م	عع	۱-	مر		
۶																								٢	ت	يس	س	ی	ر :	ما	مع	٠ ر	فر	سي	و م	تو
۶												į	آر	ز	ه ا	اد	فا	ست	١	اد	رد	نرا	و ذ	, (ىت	یس	س	ن	باء	هر	سر	في	ىتر	اين		
۶																	•			ر	نزا	ء ار	خت	پ	, بد	، کی	وك	بل	ی	ىا;	مه	ئرا	اگ	دي		
۶																										ما	له	نو	۱ج	م	ن	يه	ص	تو		
۶								•		•						•	•			•				نم	···	ىي	س ر	تح	خ	در	ر ،	تا	÷	سأ	,	
٧																					ر	صا	حاء	_	ج	تاب	ِ ن	و	ی	از	الد	بيه	ش	٦	ون	ر
٧																																				
٧																				Ĺ	ς	ىاز	ـهـ	ب	ر نثر	لے	کا	ل	و نا	J	َ	يە	َص	تو		
٧																											en									
٧													. G	oi	de	n]	M	ode	el	با	ے	ای	نه													

شرح وظايف

مقدمه

تعريف الگوريتم

الگوریتم مورد استفاده الگوریتم ضرب ماتریسی Cannon میباشد در این الگوریتم با تقسیم کردن ماتریسهای ورودی و خروجی به بلاکهای k*k که در آن k عدد ثابتی میباشد میخواهیم با داشتن تعدادی پردازنده که به صورت موازی کار میکنند عملیات ضرب ماتریسی را بهبود ببخشیم. به طور مثال ماتریسها زیر را در نظر بگیرید:

$$A = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1\mu} \\ \vdots & \ddots & & \vdots \\ A_{\lambda 1} & A_{\lambda 2} & \dots & A_{\lambda \mu} \end{bmatrix} \quad B = \begin{bmatrix} B_{11} & B_{12} & \dots & B_{1\gamma} \\ \vdots & \ddots & & \vdots \\ B_{\mu 1} & B_{\mu 2} & \dots & B_{\mu \gamma} \end{bmatrix}$$
(1)

که در آن هر $A_{ij}B_{ij}$ یک بلاک k*k میباشد. (توجه میکنیم که سایز ماتریسها اگر بخش پذیر به k نباشد با اضافه کردن صفر آن را بخش پذیر میکنیم) با این اوصاف طبق قاعده می ضرب بلوکی میدانیم که بلاک C_{ij} در ماتریس جواب از رابطه ی زیر محاسبه می شود.

$$C_{ij} = \sum_{x=0}^{\mu} A_{ix} B_{xj} \tag{Y}$$

با داشتن تعداد تعداد مشخصی ضرب کننده ی ماتریسی k*k میتوانیم این به طور موازی با استفاده از آنها حاصل نهایی $A \times B$ را محاسبه کنیم.

قراردادهای ریاضی

توجه میکنیم که در ادامه ی این گزارش و توضیحات لازمه در نظر میگیریم که ماتریسهای ورودی $A_{mr} \times B_{rn} = C_{mn}$ خواهند بود و بنابراین ماتریس خروجی به صورت $B_{rn} \times B_{rn} = C_{mn}$ خواهد بود. همچنین لازم است که توجه داشته باشید که وقتی ماتریسها را به فرم بلوکی می نویسیم مقادیر زیر را تعریف میکنیم:

$$\mu = \left\lceil \frac{r}{k} \right\rceil \tag{14}$$

$$\lambda = \left\lceil \frac{m}{k} \right\rceil \tag{٣.7}$$

$$\gamma = \left\lceil \frac{n}{k} \right\rceil \tag{7}$$

از این نمادها به کرّات در طول گزارش استفاده خواهد شد. توجه میکنیم که علت اینکه سقف این حاصل تقسیمها را در نظر گرفتیم همان است که اگر اندازه ی ماتریسها بر k بخش پذیر نباشد با اضافه کردن صفر به انتهای آن باعث بخش پذیری می شویم.

نحوهی عملکرد از نظر مساحت و تایمینگ

از آنجایی که هر ضرب کننده ی ماتریسی در حدود k^3 کلاک سایکل زمان میبرد و محاسبه ی هر بلوک C_{ij} با توجه به معادله ۲ به μ بار به ضرب ماتریسی نیاز دارد. همچنین برای محاسبه ی تمام بلوک ها باید $\lambda \gamma$ بار محاسبات بالا را انجام دهیم با این حال اگر فرض کنیم که تعداد پردازنده ها μ باشد آنگاه می توانیم ببینیم که تعداد کلاک سایکل ها تقریبا برابر با عبارت زیر است:

استاندارد 754 IEEE

محاسبات در این پروژه از استاندارد Single-precision floating-point محاسبات در این پروژه از استاندارد پیروی می کند که به طور مختصر به شرح آن می پردازیم.

در این استاندارد اعداد اعشار با سه بخش sign ، fraction ، exponent مشخص می شوند که سهم هر یک از آنها مانند مثال زیر است:

و هر عدد طبق فرمول زیر به این نمایش در میآید:

value =
$$(-1)^{sign} \times 2^{(E-127)} \times (1 + \sum_{i=1}^{23} b_{23-i} 2^{-i})$$
 (3)

توصیف معماری سیستم

اینترفیسهای سیستم و قرارداد استفاده از آن

دیاگرامهای بلوکی سختافزار

توصيف ماجولها

ساختار درختي سيستم

طراحی سیستم های دیجیتال گزارش پروژه

دانشكده مهندسي كامپيوتر

روند شبیهسازی و نتایج حاصل

توصيف TestBenchها

توصیف روند کلی شبیهسازی

توصيف Golden Model

مقایسهی خروجیهای نهایی با Golden Model