CS143 Notes: Normalization Theory

INTRODUCTION

Main question

- How do we design "good" tables for a relational database?
 - Typically we start with ER and convert it into tables
 - Still, different people come up with different ER, and thus different tables. Which one is better? What design should we choose?

Book Chapters

- (4th) Chapters 7.1-6, 7.8, 7.10
- (5th) Chapters 7.1-6, 7.8

Warning

• The most difficult and theoretical part of the course. Pay attention!

MOTIVATION & INTUITION

(StudentClass(sid, name, addr, dept, cnum, title, unit) slide)

- **Q:** Is it a good table design?
- REDUNDANCY: The same information mentioned multiple times. Redundancy leads to potential anomaly.
 - 1. UPDATE ANOMALY: Only some information may be updated
 - **Q:** What if a student changes the address?
 - 2. INSERTION ANOMALY: Some information cannot be represented

- **Q:** What if a student does not take any class? 3. DELETION ANOMALY: Deletion of some information may delete others - **Q:** What if the only class that a student takes is cancelled? • **Q:** Is there a better design? What tables would you use? • Q: Any way to arrive at such table design more systematically? - **Q:** Where is the redundancy from? ⟨ Slide on "guessing" missing info ⟩ - FUNCTIONAL DEPENDENCY: Some attributes are "determined" by other attrs * e.g., sid \rightarrow (name, addr), (dept, cnum) \rightarrow (title, unit) * When there is a functional dependency, we may have redundancy. · e.g., (301, James, 11 West) is stored redundantly. So is (CS, 143, database, 04). - DECOMPOSITION: When there is a FD, no need to store multiple instances of this relationship. Store it once in a separate table * (Intuitive normalization of StudentClass table) StudentClass(sid, name, addr, dept, cnum, title, unit) FDs: $sid \rightarrow (name, addr), (dept, cnum) \rightarrow (title, unit)$ 1. $sid \rightarrow (name, addr)$: no need to store it multiple time. separate it out 2. (dept, cnum) \rightarrow (title, unit). separate it out
 - Basic idea of table "normalization"

- Whenever there is a FD, the table may be "bad" (not in normal form)
- We use FDs to "split" or "decompose" table and remove redundancy
- We learn FUNCTIONAL DEPENDENCY and DECOMPOSITION to formalize this.

FUNCTIONAL DEPENDENCY

Overview

- The fundamental tool for normalization theory
- May seem dry and irrelevant, but bear with me. Extremely useful
- Things to learn
 - FD, trivial FD, logical implication, closure, FD and key, projected FD

Functional dependency $X \to Y$

- Notation: u[X] values for the attributes X of tuple u e.g, Assuming $u = (\text{sid: } 100, \text{ name: James, addr: Wilshire}), \quad u[\text{sid, name}] = (100, \text{ James})$
- FUNCTIONAL DEPENDENCY $X \to Y$
 - For any $u_1, u_2 \in R$, if $u_1[X] = u_2[X]$, then $u_1[Y] = u_2[Y]$
 - More informally, $X \to Y$ means that "no two tuples in R can have the same X values but different Y values"

```
(e.g., StudentClass(sid, name, addr, dept, cnum, title, unit))
```

- * $\mathbf{Q}: \operatorname{sid} \to \operatorname{name}$?
- * **Q:** dept, cnum \rightarrow title, unit?
- * **Q:** dept, cnum \rightarrow sid?
- Whether a FD is true or not depends on real-world semantics $\langle \text{examples} \rangle$

$$\begin{array}{c|cccc} A & B & C \\ \hline a_1 & b_1 & c_1 \\ a_1 & b_2 & c_2 \\ a_2 & b_1 & c_3 \end{array} \quad \mathbf{Q: AB} \to \mathbf{C. Is this okay?}$$

Replace c_3 to c_1 .

$$\begin{array}{c|ccc}
A & B & C \\
\hline
a_1 & b_1 & c_1 \\
a_1 & b_2 & c_2
\end{array}$$

NOTE: AB \rightarrow C does not mean no duplicate C values.

Replace b_2 to b_1

 $b_1 \mid c_1$

$$\begin{array}{c|ccc} A & B & C \\ \hline a_1 & b_1 & c_1 \\ a_1 & b_1 & c_2 \\ a_2 & b_1 & c_3 \\ \end{array}$$

Q: AB \rightarrow C. Is this okay?

Q: AB \rightarrow C. Is this okay?

- TRIVIAL functional dependency: $X \to Y$ when $Y \subset X$
 - It is always true regardless of real world semantics (diagram)
- NON-TRIVIAL FD: $X \to Y$ when $Y \not\subset X$ (diagram)
- COMPLETELY NON-TRIVIAL FD: $X \to Y$ with no overlap between X and Y (diagram)

We will focus on completely non-trivial functional dependency.

Implication and Closure

• LOGICAL IMPLICATION

ex)
$$R(A, B, C, G, H, I)$$

 $F: A \to B, A \to C, CG \to H, CG \to I, B \to H$ (set of functional dependencies)

- **Q:** Is $A \to H$ true under F?

F LOGICALLY IMPLIES $A \to H$

 $\langle \text{canonical database method to prove } A \to H \rangle$

If
$$? = h1$$
, then $A \to H$

* **Q:**
$$AG \rightarrow I$$
?

• CLOSURE OF FD F: F⁺

F⁺: the set of all FD's that are logically implied by F.

• CLOSURE OF ATTRIBUTE SET X: X⁺

X⁺: the set of all attrs that are functionally determined by X

- **Q:** What attribute values do we know given (sid, dept, cnum)?

ullet CLOSURE X^+ COMPUTATION ALGORITHM

 $\langle X^+$ computation algorithm slide \rangle

Start with
$$X^+ = X$$

Repeat until no change in X^+

If there is $Y \to Z$ and $Y \subset X^+$, add Z to X^+

 $\langle example \rangle$

$$R(A, B, C, G, H, I)$$
 and $A \to B, A \to C, CG \to H, CG \to I, B \to H$

$$- \mathbf{Q}: \{A\}^+?$$

 $- \mathbf{Q}: \{A,G\}^+$?

• FUNCTIONAL DEPENDENCY AND KEY

- Key determines a tuple and functional dependency determines other attributes. Any formal relationship?
- **Q:** In previous example, is (A, B) a key of R? R(A, B, C, G, H, I) and $A \to B, A \to C, CG \to H, CG \to I, B \to H$
- -X is a KEY of R if and only if
 - 1. $X \to \text{all attributes of } R \text{ (i.e., } X^+ = R)$
 - 2. No subset of X satisfies 1 (i.e., X is minimal)
- PROJECTING FD

$$R(A, B, C, D): A \rightarrow B, B \rightarrow A, A \rightarrow C$$

- **Q:** What FDs hold for R'(B, C, D) which is a projection of R?
- In order to find FD's after projection, we first need to compute F^+ and pick the FDs from F^+ with only the attributes in the projection.

DECOMPOSITION

- (Remind the decomposition idea of StudentClass table)
- Splitting table $R(A_1, \ldots, A_n)$ into two tables, $R_1(A_1, \ldots, A_i)$ and $R_2(A_i, \ldots, A_n)$
 - $\{A_1, \dots, A_n\} = \{A_1, \dots, A_i\} \cup \{A_j, \dots, A_n\}$
 - (Conceptual diagram for $R(X,Y,Z) \to R_1(X,Y)$ and $R_2(Y,Z)$)

• Q: When we decompose, what should we watch out for?

LOSSLESS-JOIN DECOMPOSITION

- $R = R_1 \bowtie R_2$
- Intuitively, we should not lose any information by decomposing R
- Can reconstruct the original table from the decomposed tables
- **Q:** When is decomposition lossless?

$\langle example \rangle$

cnum	sid	name		
143	1	James		
143	2	Elaine		
325	3	Susan		

- **Q:** Decompose into $S_1(cnum, sid)$, $S_2(cnum, name)$. Lossless?

- **Q:** Decompose into $S_1(\text{cnum, sid})$, $S_2(\text{sid, name})$. Lossless?

- DECOMPOSITION $R(X,Y,Z) \Rightarrow R_1(X,Y), R_2(X,Z)$ IS LOSSLESS IF $X \to Y$ OR $X \to Z$
 - That is, the shared attributes are the key of one of the decomposed tables
 - We can use FDs to check whether a decomposition is lossless

Example: StudentClass(sid, name, addr, dept, cnum, title, unit) $sid \rightarrow (name, addr), (dept, cnum) \rightarrow (title, unit)$

* **Q:** Decomposition into $R_1(sid, name, addr)$, $R_2(sid, dept, cnum, title, unit)$. Lossless?

BOYCE-CODD NORMAL FORM (BCNF)

FD, key & redundancy

- Example: StudentClass(sid, name, addr, dept, cnum, title, unit)
 - \mathbf{Q} : sid \rightarrow (name,addr). Does it cause redundancy?
 - After decomposition, Student(sid, name, addr)
 - * \mathbf{Q} : sid \rightarrow (name,addr). Does it still cause redundancy?
 - * Q: Why does the same FD cause redundancy in one case, but not in the other?
- In general, FD $X \to Y$ leads to redundancy if X DOES NOT CONTAIN A KEY.

BCNF definition

- R is in BCNF with regard to F, iff for every non-trivial $X \to Y$, X contains a key
- "Good" table design (no redudancy due to FD)
- Q: Class(dept, cnum, title, unit). dept,cnum \to title,unit.
 - Q: Intuitively, is it a good table design? Any redundancy? Any better design?
 - **Q:** Is it in BCNF?
- Q: Employee(name, dept, manager). name \rightarrow dept, dept \rightarrow manager.
 - **Q:** What is the English interpretation of the two dependencies?
 - **Q:** Intuitively, is it a good table design? Any redundancy? Better design?

- **Q:** Is it in BCNF?
- Remarks: Most times, BCNF tells us when a design is "bad" (due to redundancy from functional dependency.

BCNF normalization algorithm

- Decomposing tables until all tables are in BCNF
 - For each FD $X \to Y$ that violates the condition, separate those attributes into another table to remove redundancy.
 - We also have to make sure that this decomposition is lossless.

• Algorithm

For any R in the schema

If non-trivial $X \to Y$ holds on R, and if X does not have a key

- 1. Compute X⁺ (X⁺: closure of X)
- 2. Decompose R into $R_1(X^+)$ and $R_2(X,\,Z)$ // X is common attributes where Z is all attributes in R except X^+

Repeat until no more decomposition

- Example: ClassInstructor(dept, cnum, title, unit, instructor, office, fax) instructor → office, office → fax (dept, cnum) → (title, unit), (dept, cnum) → instructor.
 - **Q:** What is the English interpretation of the two dependencies?
 - Q: Intuitively, is it a good table design? Any redundancy? Better design?
 - **Q:** Is it in BCNF?
 - Q: Normalize it into BCNF using the algorithm.

NOTE: The algorithm guarantees lossless join decomposition, because after the decomposition based on $X \to Y$, X becomes the key of one of the decomposed table

• Example: $R(A, B, C, G, H, I), A \rightarrow B, A \rightarrow C, G \rightarrow I, B \rightarrow H$. Convert to BCNF.

• Q: Does the algorithm lead to a unique set of relations?

$$\langle \text{e.g.}, R(A, B, C), A \to C, B \to C \rangle$$

Q: What if we start with $A \to C$?

Q: What if we start with $B \to C$?

• Q: $R_1(A,B)$, $R_2(B,C,D)$ with $A \to B$, $B \to A$, $A \to C$. Are R_1 and R_2 in BCNF?

NOTE: We have to check all implied FD's for BCNF, not just the given ones.

MULTI-VALUED DEPENDENCY AND 4NF

Motivation

• Example: Classes, students and TAs. Every TA is for every student.

```
cnum: 143, TA: (tony, james), sid: (100, 101, 103).
cnum: 248, TA: (tony, susan), sid: (100, 102).
```

(entity-relationship diagram)

(Potentially good table design)

		cnum	sid
cnum	ta	143	100
143	tony	143	101
143	james	143	103
248	tony	248	100
	•	248	102

(Potentially bad table design)

cnum	ta	sid
143	tony	100
143	tony	101
143	tony	103
143	james	100
143	james	101
143	james	103
248	tony	100
248	tony	102

- **Q:** Does it have redundancy?
- **Q:** Does it have a FD?
- **Q:** Is it in BCNF?
- **Q:** Where does the redundancy come from?

Note:

- * Two indepedent information (cnum, ta) and (cnum, sid) are put together in one table.
- * No direct connection between ta and student. The connection is through class.
- **Q:** How can we detect this kind of "bad" design?
 - * **Q:** Assume that we have seen only the first 7 tuples in the table. Just based on these, can we "predict" that the table should also contain the 8th tuple?

- * Note:
 - \cdot In each class, every ta appears with every student (ta \times student)
 - · For C_1 , if TA_1 appears with S_1 and TA_2 appears with S_2 , then TA_1 also appears with S_2 .

Multivalued dependency $X \rightarrow Y$

- Definition: for every tuple $u, v \in R$:
 - If u[X] = v[X], then there exists a tuple w such that:
 - 1. w[X] = u[X] = v[X]
 - 2. w[Y] = u[Y]
 - 3. w[Z] = v[Z] where Z is all attributes in R except X and Y

(Explanation using canonical database)

- MVD requires that tuples of a certain form exist: "tuple generating dependency" $\langle \text{Explation using } Y \text{ circle diagram} \rangle$
 - $-X \rightarrow Y$ means that if two tuples in R agree on X, we can swap Y values of the tuples and the two new tuples should still exist in R.
- Example: Class(cnum, ta, sid). cnum --- ta? cnum --- sid?
- COMPLEMENTATION RULE
 - $-X \rightarrow Y$, then $X \rightarrow Z$ where Z is all attributes in R except X and Y
 - Proof: swapping Y is the same as swapping Z
- TRIVIAL MVD
 - $X \rightarrow Y$ is trivial MVD if
 - 1. $Y \subset X$ or
 - $2. X \cup Y = R$

(Prove by canonical database)

$$\begin{array}{c|ccccc}
X & Y & Z \\
\hline
x_1 & y_1 & z_1 \\
x_1 & y_2 & z_2 \\
\hline
x_1 & y_1 & z_2
\end{array}$$

FOURTH NORMAL FORM (4NF)

- Definition: R is in 4NF if for every nontrivial FD $X \to Y$ or MVD $X \twoheadrightarrow Y$, X contains a key
- Q: Relationship beteen BCNF and 4NF?

```
R(A_1, A_2, \dots)
X_1 \to Y_1
X_2 \to Y_2
\dots
Z_1 \twoheadrightarrow U_1
Z_2 \twoheadrightarrow U_2
```

In BCNF, all X_i should contain a key In 4NF, all X_i 's and Z_i 's should contain a key $\langle \text{Vann diagram of BCNF and 4NF} \rangle$

- 4NF removes redundancy from MVD
 - 4NF: no redundancy from MVD and FD.
 - BCNF: no redundancy from FD.

4NF DECOMPOSITION

- First, using all functional dependencies, normalize tables into BCNF. Once the tables are in BCNF, apply the following algorithm to normalize them further into 4NF.
- Algorithm

For any R in the schema

If non-trivial X woheadrightarrow Y holds on R, and if X does not contain a key

Decompose R into $R_1(X,Y)$ and $R_2(X,Z)$ // X is common attributes

where Z is all attributes in R except (X,Y)Repeat until no more decomposition

- Example: Class(cnum, ta, sid). cnum --> ta.
 - **Q:** It is a good table design? Any better design?
 - **Q:** It is in 4NF?

- **Q:** Normalize into 4NF
- Example: Class(dept, cnum, title, ta, sid, sname). dept,cnum \rightarrow title sid \rightarrow sname dept,cnum,title \rightarrow ta
 - **Q:** It is a good table design? Any better design?
 - **Q:** It is in 4NF?
 - **Q:** Normalize into 4NF

- * Note: dept,cnum,title --> ta does not hold once the table is decomposed, but dept,cnum --> ta should still hold.
- * In general, we have to compute the implied MVDs after decomposition.
 - · The derivation can be done using 8 inference rules for MVD (inference rule slides)
- * Formal derivation of implied MVDs is not a major topic of the class. For homeworks and exams, just derive them identify what are "intuitively" implied.

SIMPLIFIED 4NF DEFINITION

- MVD AS A GENERALIZATION OF FD
 - If $X \to Y$, then $X \twoheadrightarrow Y$
 - Proof: If $X \to Y$, swapping Y values does not create new tuples.

(Prove by canonical database)

$$\begin{array}{c|ccccc}
X & Y & Z \\
\hline
x_1 & y_1 & z_1 \\
x_1 & y_2 & z_2
\end{array}$$

$$\rightarrow \begin{array}{c|cccc}
X_1 & y_1 & z_2
\end{array}$$

• Simplified definition of 4NF: R is in 4NF if for every nontrivial MVD X woheadrightarrow Y, X contains a key

- Since $X \to Y$ implies $X \twoheadrightarrow Y$, this is sufficient.

GOOD TABLE DESIGN IN PRACTICE

- Normalization splits tables to reduce redundancy (based on FDs, MVDs).
- However, splitting tables has negative performance implication

```
Example: Instructor: name, office, phone, fax name → office, office → (phone,fax)
(design 1) Instructor(name, office, phone, fax)
(design 2) Instructor(name, office), Office(offce, phone, fax)
Q: Retrieve (name, office, phone) from Instructor. Which design is better?
```

• As a rule of thumb, start with normalized tables and merge them if performance is not good enough

DEPENDENCY-PRESERVATION AND 3NF

- FD is a type of constraint.
- We sometimes may want to make sure that an update does not violate FDs.

```
\langle eg, R(office, fax), office \rightarrow fax. How do we enforce the FD?\rangle
```

```
\langle \text{eg}, R_1(A, B), R_2(A, C). B \rightarrow C. \text{ How to enforce it?} \rangle
```

– Note: FD violation checking can be very expensive. Can we make sure we can enforce FD's without joins?

```
\langle \text{eg}, R_1(A, B), R_2(B, C), A \rightarrow B, B \rightarrow C, A \rightarrow C. How to enforce them?
```

– No need to check $A \to C$ directly $(A \to B, B \to C \text{ implies } A \to C)$. "Local FD checking" possible

DEPENDENCY-PRESERVING DECOMPOSITION

- When we can enforce FD's LOCALLY on each tables without joins after decomposition.
- Q: Does BCNF normalization lead to dependency-preserving decomposition?
- Example 1: ClassInstructor(dept, cnum, title, unit, instructor, office, fax)

```
\begin{array}{c} \text{instructor} \rightarrow \text{office} \\ \text{office} \rightarrow \text{fax} \end{array}
```

 $(dept, cnum) \rightarrow title, unit (dept, cnum) \rightarrow instructor$

- \Rightarrow BCNF: R₁(dept, cnum, title, unit, instructor), R₂(instructor, office), R₃(office, fax)
- **Q:** Is it dependency preserving? Is it generally true?

- Example 2: R(street, city, zip), (street, city) \rightarrow zip, zip \rightarrow city \Rightarrow BCNF: R₁(street, zip), R₂(zip, city).
 - **Q:** Is it dependency preserving?
- Q: Is there an alternative definition of normal form that guarantees dependency preservation?

THIRD-NORMAL FORM (3NF)

- R is in 3NF with regard to F, iff for every non-trivial $X \to Y$ either
 - 1. X contains a key OR
 - 2. Each attr in Y is a member of some key
- Example: R(street, city, zip). (street, city) \rightarrow zip, zip \rightarrow city
 - − **Q:** BCNF?
 - **Q:** 3NF?
- IMPORTANT THEOREM: We can always decompose a relation into 3NF relations such that we can check all FD's locally.
 - This theorem essentially mean that 3NF is a normal form allowing dependency preservation.
 - The second condition of 3NF, "Y is a member of some key", is the "minimal relaxation" of BCNF to allow dependency preservation.
 - * Do not ask me why. I do not have the intuition for the second condition.
- There exists "3NF Synthesis algorithm" that decomposes a table into a set of 3NF tables that preserve dependency.

COMPARISON OF NORMAL FORMS

- Comparison of 3NF and BCNF
 - **Q:** If R is in BCNF, is it in 3NF?
 - **Q:** If R is in 3NF, is it in BCNF?
- Relationship of 3NF, 4NF, BCNF
 - $-4\mathrm{NF} \rightarrow \mathrm{BCNF} \rightarrow 3\mathrm{NF}$ (vann diagram for three normal forms)
- BCNF
 - Removes all redundancy due to FD
 - Does not guarantee dependency-preservation
- 4NF
 - Removes all redundancy due to FD and MVD
 - Does not guarantee dependency-preservation
- 3NF
 - Does not remove all redundancy due to FD or MVD
 - Dependency-preserving decomposition is always possible
 - 3NF is not often used in practice

3NF SYNTHESIS ALGORITHM

- We first need to learn a concept called CANNONICAL COVER. Example) $F: A \to BC, B \to C, A \to B, AB \to C$.
 - **Q:** Is $A \to BC$ necessary?
 - **Q:** Is $AB \rightarrow C$ necessary?
- CANONICAL COVER of $F: F_C$.
 - A minimum set of FD that is equivalent to F
 - * If we delete any FD in F_C , no more equivalence.
 - * If we delete any attribute from a FD in F_C , no more equivalence.
 - * No two FDs in F_C have the same left-hand side

 $\langle eg, R(A,B,C). F: A \rightarrow BC, B \rightarrow C. Is F a canonical cover? \rangle$

 $\langle \text{eg, R(A,B,C) F: A} \rightarrow \text{B, B} \rightarrow \text{AC. Is F a canonical cover?} \rangle$

- **Q:** What is the canonical cover for StudentClass?
- CANONICAL COVER COMPUTATION ALGORITHM
 - 1. Split FDs into non-trivial FDs that have only one attribute on the right side

$$-$$
 eg) ABC \rightarrow ADE \Rightarrow ABC \rightarrow D, ABC \rightarrow E

- 2. Minimize the left side of each FD
 - For each FD, check each attribute in the left side to see if it can be deleted while preserving equivalence
 - eg) AB \rightarrow D, B \rightarrow D \Rightarrow B \rightarrow D, B \rightarrow D
- 3. Delete redundant FDs

$$-$$
 eg) A \rightarrow B, B \rightarrow C, A \rightarrow C \Rightarrow A \rightarrow B, B \rightarrow C

- 4. Merge FDs with the same left-hand side
 - $-AB \rightarrow C, AB \rightarrow D \Rightarrow AB \rightarrow CD$

- Example:

$$R(A, B, C, G, H, I)$$
.

$$F: A \to B, A \to C, CG \to H, CG \to I, B \to H.$$

What is a canonical cover of F?

• Note

- Canonical cover may not be unique
- Most of the time, people easily find a canonical cover by intuition

3NF SYNTHESIS ALGORITHM

• Algorithm

- 1. For every $X \to Y$ in F_C Create a relation $R_i(X,Y)$
- 2. If None of R_i 's contains a key of the original relation Create $R_i(X)$ where X is the key of the original relation
- 3. If R_i and R_j have a common key Merge R_i and R_j
- 4. Remove redundant relation
- (eg, Student(sid, name, street, city, zip))
 - Fc: $sid \rightarrow (name, street, city), (street, city) \rightarrow zip, zip \rightarrow city$
 - Decompose into 3NF
 - 1. R_1 (sid, name, street, city), R_2 (zip, street, city), R_3 (zip, city)
 - 2. -
 - 3. -
 - 4. Remove R₃
- $\langle \text{eg}, R(A, B, C, D, E, F) \rangle$

- Fc:
$$A \to B, B \to D, C \to DE, D \to C$$

- Decompose into 3NF
 - 1. $R_1(A, B), R_2(B, D), R_3(C, D, E), R_4(D, C)$
 - 2. Add $R_5(A, F)$
 - 3. Merge R_3 and R_4
 - 4. -