Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технологический университет «СТАНКИН»

Кафедра робототехники и мехатроники

О.Д. Егоров

ПРОЕКТИРОВАНИЕ ВАЛОВ КОНИЧЕСКИХ МЕХАТРОННЫХ МОДУЛЕЙ

Методические указания к выполнению курсовой работы по дисциплине «Детали мехатронных модулей, роботов и их конструирование»

Москва 2017 УДК 681.323-181.4:621.824.(075) ББК 34.42 Е 30

Е 30 **Егоров О.** Д. Проектирование валов конических мехатронных модулей // М.: ФГБОУ ВО МГТУ «СТАНКИН», 2017. - 23 с.

Изложены проектный расчет валов конических мехатронных модулей только по кручению, а также их проверочный расчет с учетом кручения и изгиба.

УДК 681.323-181.4:621.824.(0,75) ББК 34.42

- © Егоров О. Д., 2017
- © ФГБОУ ВО МГТУ «СТАНКИН», 2017

СОДЕРЖАНИЕ

введение	4
ПРОЕКТИРОВАНИЕ ВАЛОВ КОНИЧЕСКОГО ПРЯМОЗУБОГО МЕХАТРОННОГО МОДУЛЯ	5
1. Проектный расчет вала двигателя мехатронного модуля	5
2. Проектный расчет входного вала редуктора мехатронного	
модуля	6
3. Геометрические параметры входного вала	8
4. Реакции опор входного вала	10
5. Проектный расчет выходного (тихоходного) вала на	
статическую прочность по текучести	12
6. Геометрические параметры выходного вала	14
7. Проверочный расчет выходного вала на статическую	
прочность по текучести	16
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	22
Приложение	23

ВВЕДЕНИЕ

Мехатронный модуль — функционально и конструктивно самостоятельное изделие, построенное с взаимопроникновением и синергетической аппаратно-программной интеграцией составляющих его элементов, имеющих различную физическую природу и предназначенное для реализации требуемого управляемого функционального движения его выходного звена.

Рассмотрена методика проектирования валов конических мехатронных модулей.

Мехатронные модули конические предназначены для понижения угловых скоростей и повышения вращающих моментов их выходных валов по сравнению с входными валами.

Исходными данными для расчета валов являются: вращающие моменты на входном T_1 и выходном T_2 валах, материалы валов с их характеристиками, усилия в зацеплении зубчатых колес F_r , F_t , F_a .

Необходимо провести проектный и проверочный расчеты валов из условия прочности по текучести, определить линейные и диаметральные параметры валов, линейную базу каждого вала.

ПРОЕКТИРОВАНИЕ ВАЛОВ КОНИЧЕСКОГО ПРЯМОЗУБОГО МЕХАТРОННОГО МОДУЛЯ

1. Проектный расчет вала двигателя мехатронного модуля

На рис. 1 представлена схема конического прямозубого мехатронного модуля вращательного движения, состоящего из двигателя 1, жестко прикрепленного к корпусу редуктора 2, при этом вал 3 двигателя входит в пустотелый вал-шестерню 4 редуктора и передает ему вращающий момент через шпонку 5 и далее через пару конических колес 6 и 7 и шпонку 8 на выходной вал 9.

Рис. 1

Определяем предполагаемый диаметр $d_{\rm дв}$ вала двигателя, изготовленного, например, из стали 40XH с пределом текучести при изгибе $\sigma_{\rm T}=750$ МПа и соответственно с пределом текучести при кручении $\tau_{\rm T}=(0.5...0.6)\sigma_{\rm T}=0.6\cdot750=450$ МПа, нагруженного вращающим моментом $T_1=16$ Н·м, из условия прочности при кручении (рис. 1 и рис. 2) [3]

$$d_{\mathrm{AB}} \ge \sqrt[3]{rac{T_1 \cdot 10^3}{0,2[\tau]}} = \sqrt[3]{rac{16 \cdot 10^3}{0,2 \cdot 225}} = 7,08 \mathrm{\ mm},$$

где $[\tau]$ – допускаемое касательное напряжение при кручении

$$[\tau] = \frac{\tau_{\scriptscriptstyle \mathrm{T}}}{n} = \frac{450}{2} = 225 \; \mathrm{M}\Pi \mathrm{a}.$$

Здесь $n=(2\dots 2,5)$ — коэффициент запаса прочности при кручении. Принимаем диаметр вала двигателя по ГОСТ 6636-69 $d_{\rm дв}=8$ мм. Проверяем диаметр вала двигателя на прочность при кручении с учетом наличия в нем шпоночной канавки [1]

$$\tau = \frac{T_1 \cdot 10^3}{W_{\text{P.H.}}} \le [\tau],$$

где $W_{\rm P.H.}$ — полярный момент сопротивления поперечного сечения вала двигателя по шпоночной канавке

$$W_{\text{P.H.}} = 0.2d_{\text{AB}}^3 - \frac{bt(d_{\text{AB}} - t)^2}{2d_{\text{AB}}} = 0.2 \cdot 8^3 - \frac{2 \cdot 1.2(8 - 1.2)^2}{2 \cdot 8} =$$

 $= 95,464 \text{ mm}^3.$

Здесь b и t — соответственно ширина и глубина шпоночной канавки. Для диаметра $d_{\rm дв}=8$ мм по стандарту b=2 мм, t=1,2 мм [2].

Вычисляем касательное напряжение

$$\tau = \frac{16 \cdot 10^3}{95.464} = 167,6 \text{ M}\Pi a.$$

Следовательно,

$$τ = 167,6 \text{ M}Πa < [τ] = 225 \text{ M}Πa.$$

Условие статической прочности вала при кручении обеспечено. В случае невыполнения условия статической прочности необходимо диаметр $d_{\rm дв}$ вала двигателя увеличить или выбрать материал вала с более высоким пределом текучести.

2. Проектный расчет входного вала редуктора мехатронного модуля

Внутренний диаметр d_0 входного вала (втулки) редуктора мехатронного модуля равен диаметру $d_{\rm дв}$ вала двигателя, т.е. $d_0=d_{\rm дв}$ (рис. 2).

Определяем наружный диаметр $d_{1\rm B}$ входного вала редуктора, изготовленного, например, из стали $40{\rm X}$ с пределом текучести при изгибе $\sigma_{\rm T}=690$ МПа (рис. 2)

$$d_{1B} = (1.5 \dots 1.6) d_0 = 1.5 \cdot 8 = 12 \text{ MM}.$$

Рис. 2

Проверяем его на прочность по текучести при кручении с учетом, что он пустотелый и имеет шпоночную канавку

$$\tau = \frac{T_1 \cdot 10^3}{W_{\text{P.H.}}} \le [\tau],$$

где $W_{\text{Р.H.}}$ — полярный момент сопротивления поперечного сечения входного вала редуктора по шпоночной канавке [4]

$$\begin{split} W_{\text{P.H.}} &= 0.2 d_{1\text{B}}^3 \left[1 - \left(\frac{d_0}{d_{1\text{B}}} \right)^4 \right] - \frac{b t_1 (d_0 - t_1)^2}{d_0} = \\ &= 0.2 \cdot 12^3 \left[1 - \left(\frac{8}{12} \right)^4 \right] - \frac{2 \cdot 1 (8 - 1)^2}{8} = 264,23 \text{ mm}^3. \end{split}$$

Здесь b и t_1 — соответственно ширина и глубина шпоночной канавки входного отверстия $d_0=d_{\rm дв}$ вала (втулки) редуктора (рис. 2). Для $d_0=8$ мм имеем по стандарту b=2 мм, $t_1=1$ мм.

Вычисляем касательное напряжение при кручении

$$\tau = \frac{T_1 \cdot 10^3}{W_{\text{P.H.}}} = \frac{16 \cdot 10^3}{264,23} = 60,55 \text{ M}\Pi \text{a.}$$

Определяем предел текучести материала вала при кручении

$$\tau_{\rm T} = 0.6\sigma_{\rm T} = 0.6 \cdot 690 = 414 \, {\rm M}\Pi{\rm a}.$$

Находим допускаемое касательное напряжение

$$[\tau] = \frac{\tau_{\scriptscriptstyle \mathrm{T}}}{n} = \frac{414}{2} = 207 \ \mathrm{M}\Pi \mathrm{a}.$$

Таким образом

$$\tau = 60,55 \text{ M}\Pi \text{a} < [\tau] = 207 \text{ M}\Pi \text{a}.$$

Условие статической прочности входного вала редуктора мехатронного модуля по текучести при кручении обеспечено.

При невыполнении условия прочности необходимо наружный диаметр $d_{1\mathrm{B}}$ входного вала редуктора увеличить или выбрать материал вала с более высоким пределом текучести.

Расчет на статическую прочность входного вала с учетом изгиба и кручения не проводим, так как его диаметр значительно увеличен, т.е. в 1,5 раза по сравнению с расчетным из условия кручения, и кроме того, наибольшее нормальное напряжение возникает в сечении вала, соответствующего зацеплению колеса и сплошного вала-шестерни, изготовленного как единое целое, диаметр которого в этом месте равен внутреннему диаметру d_{1f} шестерни.

3. Геометрические параметры входного вала

Линейные размеры участков вала (рис. 2): линейная база вала, т.е. расстояние между его опорами (рис. 2) при установке вала на конических или радиально-упорных подшипниках враспор [2]

$$\ell = (1, 2 \dots 1, 5)a$$
,

где a — *консольная часть вала-шестерни*, т.е. расстояние между серединой шестерни и левой опорой вала

$$a = T + C_5 + C_2 + C_1 - \Delta;$$

где T — монтажная высота конического подшипника. Для радиальноупорного подшипника в формуле T заменяют на B — ширину радиально-упорного подшипника; $C_5 = (3 \dots 4)$ мм — расстояние от подшипника до конической части вала; $C_2 = (8 \dots 10)$ мм — ширина конической части вала; $C_1 = (b_1/2)\cos\delta_1$ — половина ширины зубчатого венца шестерни; b_1 — ширина зубчатого венца шестерни; δ_1 — угол делительного конуса шестерни; Δ - смещение точки приложения радиальной реакции от торца подшипника [2]

$$\Delta = 0.5T - \frac{d_{1\Pi} + D_{1\Pi}}{4} tg\alpha,$$

T — монтажная высота подшипника; $d_{1\Pi}$ — внутренний диаметр подшипника шестерни; $D_{1\Pi}$ — наружный диаметр подшипника шестерни; $\alpha=14^\circ$ и 15° - угол контакта тел качения с кольцами подшипника. Для радиально-упорных подшипников в формуле заменяют T на B — ширину радиально-упорного подшипника и применяем $a=12^\circ$ и 26° . Конкретное значение угла a определяют по стандартам (таблицам) для выбранного типа подшипника [1].

Диаметральные размеры участков вала (рис. 2): наружный диаметр

$$d_{1B} = (1.5 \dots 1.6) d_0;$$

диаметр под подшипники

$$d_{1\pi} = d_{1B} + (2 ... 5)$$
 MM;

диаметр под распорную втулку

$$d = d_{1\pi} - (1 \dots 2)$$
MM.

Внутренний диаметр распорной втулки входного вала

$$d_{\rm B} = d_{1\pi} + (1 \dots 2)_{\rm MM}.$$

Внешний диаметр распорной втулки входного вала

$$d_{\rm H} = d_{\rm B} + (6 \dots 8)$$
 MM.

Внешний диаметр стакана

$$d_{\rm CT} = D_{1\Pi} + 2C_{6}$$

где $C_6 = (4 ... 6)$ мм — толщина стенки стакана. Ширина упорного буртика

$$C_3 = (5 \dots 6)$$
 MM.

Ширина канавки для выхода инструмента

$$C_4 = 3 \text{ MM}.$$

4. Реакции опор входного вала

Входной вал мехатронного модуля находится под действием вращающего момента T_1 и двух изгибающих моментов в вертикальной плоскости, возникающих от действия радиальной F_{r_1} и осевой F_{a_1} сил, а также изгибающего момента в горизонтальной плоскости от окружной силы F_{t_1} (рис. 3).

Рисуем схему вала и на ней расставляем все указанные силы в соответствии с их действительным расположением на шестерне. Затем рассматриваем схему вала, находящегося под действием только радиальной F_{r_1} и осевой F_{a_1} сил.

Опоры A и B заменяем реактивными силами R_A^B и R_B^B . Их направления выбираем произвольно (вверх или вниз).

Для нахождения значений реакций составляем уравнения статики.

В вертикальной плоскости

$$\Sigma M_A^{\text{B}} = R_B^{\text{B}} \,\ell - F_{r_1} a + F_{a_1} \frac{d_1}{2} = 0.$$

Откуда реакция R_B^B будет равна

$$R_B^{\rm B} = \frac{F_{r_1}a - F_{a_1}\frac{d_1}{2}}{\ell}.$$

$$\Sigma M_B^B = R_A^B \ell - F_{r_1}(a + \ell) + F_{a_1} \frac{d_1}{2} = 0.$$

Откуда реакция R_A^B будет равна

$$R_A^{\rm B} = \frac{F_{r_1}(a + \ell) - F_{a_1} \frac{d_1}{2}}{\ell}.$$

Рис. 3

Если значение одной или обеих реакций получилось отрицательным, необходимо их на схеме зачеркнуть R^B и направить в противоположную сторону. Затем значения этих реакций записать с плюсом и рассматривать в дальнейшем схему вала со всеми приложенными внешними силами и найденными реакциями в соответствии с их действительными направлениями.

Проверяем правильность нахождения реакций

$$\Sigma F_{\nu} = 0.$$

Рассматриваем схему вала, находящегося под действием окружной силы F_{t_1} .

В горизонтальной плоскости

$$\Sigma \mathbf{M}_{A}^{\Gamma} = R_{B}^{\Gamma} \,\ell - F_{t_1} \alpha = 0.$$

Откуда реакция опоры B равна

$$R_B^{\Gamma} = \frac{F_{t_1}a}{\ell}.$$

$$\Sigma \mathbf{M}_{B}^{\Gamma} = -F_{t_{1}}(a + \ell) + R_{A}^{\Gamma} \ell = 0.$$

Откуда реакция опоры A равна

$$R_A^{\Gamma} = \frac{F_{t_1}(a + \ell)}{\ell}.$$

Проверяем правильность нахождения реакций

$$\Sigma F_{\chi}=0.$$

Суммарные реакции в опорах A и B

$$R_{A_{\Sigma}} = \sqrt{(R_A^{\mathrm{B}})^2 + (R_A^{\mathrm{\Gamma}})^2};$$

$$R_{B_{\Sigma}} = \sqrt{(R_B^{\rm B})^2 + (R_B^{\rm \Gamma})^2}.$$

Найденные реакции опор будут нужны при выборе подшипников для входного вала мехатронного модуля.

5. Проектный расчет выходного (тихоходного) вала на статическую прочность по текучести

Материал выходного вала и его механические характеристики выбираем такие же, как и для входного вала.

Определяем диаметр выходного конца тихоходного вала из условия статической прочности по текучести при кручении для схемы вала

с зубчатым колесом, имеющим ступицу $\ell_{\rm cr} \ge d_{\rm 2\kappa}$ (рис. 4). (Ступица колеса может быть расположена симметрично или несимметрично относительно зубчатого венца колеса.)

$$d_2 = \sqrt[3]{\frac{T_2 \cdot 10^3}{0,2[\tau]}} = \sqrt[3]{\frac{31,36 \cdot 10^3}{0,2 \cdot 207}} = 9,12 \text{ mm,}$$

где T_2 – вращающий момент на колесе

$$T_2 = T_1 u \eta = 16 \cdot 2 \cdot 0.98 = 31.36 \text{ Hm};$$

u=2 — передаточное отношение зубчатой передачи; $\eta=0.98$ — коэффициент полезного действия; $[\tau]$ — допускаемое касательное напряжение равное $[\tau]=207$ МПа (см. п. 2).

Принимаем диаметр выходного конца тихоходного вала $d_2 = 10$ мм.

Проверяем выходной конец вала на статическую прочность при кручении с учетом наличия в нем шпоночной канавки

$$au = \frac{T_2 \cdot 10^3}{W_{\text{P.H.}}} \le [\tau],$$

где $W_{\rm P.H.}$ — полярный момент сопротивления поперечного сечения вала по шпоночной канавке

$$W_{\text{P.H.}} = 0.2d_2^3 - \frac{bt(d_2 - t)^2}{2d_2} = 0.2 \cdot 10^3 - \frac{3 \cdot 1.8(10 - 1.8)^2}{2 \cdot 10} =$$

 $= 181,84 \text{ mm}^3,$

Здесь b и t соответственно ширина и глубина шпоночной канавки. Для $d_2=10$ мм имеем по стандарту b=3 мм, t=1,8 мм. Вычисляем касательное напряжение

$$au = \frac{31,36 \cdot 10^3}{181,84} = 172,46 \text{ M}\Pi a.$$

Следовательно

$$\tau$$
 = 172,46 MΠa < [τ] = 207 ΜΠa.

Условие статической прочности выходного конца тихоходного вала по текучести при кручении обеспечено.

В случае невыполнения условия статической прочности необходимо диаметр d_2 вала увеличить или выбрать материал вала с более высоким пределом текучести.

6. Геометрические параметры выходного вала

Линейные размеры участков вала (рис. 4): линейная база вала, т.е. расстояние между его опорами (рис. 4) при установке вала на конических или радиально-упорных подшипниках враспор

$$\ell = a + c$$
,

где a — расстояние от полюса P зацепления колеса с шестерней до левой опоры вала

$$a \ge \frac{d_{\text{K}}}{2tg\delta_2} + \frac{D_{1\Pi}}{2} + C_6 + \Delta;$$

c — расстояние от полюса P до правой опоры

$$c = \ell_{\rm cr} - C_2 - C_P + C_3 + \Delta.$$

В этих формулах $d_{\rm K}$ — средний делительный диаметр колеса; δ_2 — угол делительного конуса колеса; $D_{1\Pi}$ — наружный диаметр подшипника шестерни; $C_6 \approx (4 \dots 6)$ мм — толщина стенки стакана; Δ - смещение точки приложения радиальной реакции от торца подшипника

$$\Delta = 0.5T - \frac{d_{2\Pi} + D_{2\Pi}}{4} tg\alpha,$$

T — монтажная высота конического подшипника. Для радиально-упорных подшипников в формуле T заменяют на B — ширину радиально-упорного подшипника; $d_{2\Pi}$ — внутренний диаметр подшипника колеса; $D_{2\Pi}$ — наружный диаметр подшипника колеса; α — угол контакта тел качения с кольцами подшипника. Для конических подшипников $\alpha=14^\circ$ и 15° , для радиально-упорных подшипников $\alpha=12^\circ$ и 26° . Конкретное значение угла α определяют по стандартам (таблицам) для выбранного типа подшипника [1]; $\ell_{\rm cr}$ — длина ступицы колеса

$$\ell_{\rm CT} = (1.0 \dots 1.5) d_{2\kappa};$$

 $d_{2\kappa}$ — диаметр вала под колесом; C_2 — расстояние от левого края ступицы колеса до зубчатого венца. Для упрощения определения линейной базы вала можно спроектировать зубчатое колесо так, чтобы внутренняя точка А зубчатого венца была расположена на одной линии с краем ступицы. В этом случае $C_2 = 0$; C_P — расстояние от полюса P колеса до левого края зубчатого венца колеса

$$C_P \approx \frac{b_2}{2} \cos \delta_2$$
;

 b_2 — ширина зубчатого венца колеса; $C_3 = (5 \dots 10)$ мм — ширина распорного кольца.

Длина распорного участка вала

$$C_1 = a - C_2 - C_P - \Delta.$$

Линейные размеры вала необходимо уточнить после эскизной компоновки мехатронного модуля.

Диаметральные размеры участков вала (рис. 4): под подшипниками

$$d_{2\pi} = d_2 + (2 \dots 5)$$
 мм;

под зубчатым колесом

$$d_{2K} = d_{2\Pi} + (4 \dots 5) \text{ MM}.$$

Диаметр упорного бурта для зубчатого колеса

$$d_4 = d_{2K} + (8 \dots 10)$$
 MM.

Диаметр распорной втулки

$$d_3 = d_{2\pi} + (8 \dots 10)$$
 мм.

7. Проверочный расчет выходного вала на статическую прочность по текучести

Выходной вал находится под действием вращающего момента T_2 и двух изгибающих моментов в вертикальной плоскости, возникающих от действия радиальной F_{r_2} и осевой F_{a_2} сил, а также изгибающего момента в горизонтальной плоскости от окружной силы F_{t_2} (рис. 5).

Для нахождения наиболее опасных сечений вала необходимо построить эпюры изгибающих моментов в вертикальной $M_{\rm u}^{\rm B}$ и горизонтальной $M_{\rm u}^{\rm G}$ плоскостях и крутящего момента $T_{\rm 2K}$.

Рисуем схему вала и на ней расставляем все указанные силы в соответствии с их действительным расположением на колесе (рис. 5).

Затем рассматриваем схему вала, находящегося под действием только радиальной F_{r_2} и осевой F_{a_2} сил.

Опоры A и B заменяем реактивными силами R_A^B и R_B^B . Их направление выбираем произвольно (вверх или вниз).

Для нахождения значений реакций составляем уравнения статики:

$$\Sigma M_{A} = R_{B}^{B}(a+c) - F_{a_{2}} \frac{d_{K}}{2} - F_{r_{2}}a = 0.$$

Откуда реакция $R_{\rm B}^{\rm B}$ будет равна

$$R_{\rm B}^{\rm B} = \frac{F_{a_2} \frac{d_{\rm K}}{2} + F_{r_2} a}{a+c}.$$

$$\Sigma M_{\rm B} = R_{\rm A}^{\rm B}(a+c) - F_{a_2} \frac{d_{\rm K}}{2} + F_{r_2} c = 0.$$

Откуда

$$R_{\rm A}^{\rm B} = \frac{F_{a_2} \frac{d_{\rm K}}{2} - F_{r_2} c}{a + c}.$$

Если значение одной или обеих реакций получились отрицательными, необходимо их на схеме зачеркнуть R^{B} и направить в противоположную сторону. Затем значения этих реакций записать с плюсом и рассматривать в дальнейшем схему вала со всеми приложенными внешними силами и найденными реакциями в соответствии с их действительными направлениями.

Проверяем правильность нахождения реакций

$$\Sigma F_{\nu} = 0.$$

Определяем изгибающие моменты в вертикальной плоскости. Записываем уравнение моментов на первом участке вала $0 \le x_1 \le a$

$$M_{\rm M_1}^{\rm B}=R_{\rm A}^{\rm B}x_1.$$

Если $x_1 = 0$, то $M_{\mu_1}^{\scriptscriptstyle B} = 0$. Если $x_1 = a$, то $M_{\mu_1}^{\scriptscriptstyle B} = R_{\scriptscriptstyle A}^{\scriptscriptstyle B} a$.

Аналогично поступаем на втором участке вала $0 \le x_2 \le c$

$$M_{H_2}^B = R_B^B x_2$$
.

Если $x_2 = 0$, то $M_{\mu_2}^{\scriptscriptstyle B} = 0$. Если $x_2 = c$, то $M_{\mu_2}^{\scriptscriptstyle B} = R_{\rm B}^{\scriptscriptstyle B} c$.

Строим эпюру изгибающих моментов в вертикальной плоскости на сжатых волокнах, т.е. если под действием силы (момента) вал изгибается в виде чаши или , то сжатые волокна вала будут сверху и эпюра изгибающих моментов будет расположена на этом участке вала сверху, если в виде зонтика или - сжатые волокна снизу и эпюра изгибающих моментов на этом участке вала будет расположена снизу вала (рис. 5).

В зависимости от того, как будут направлены реакции $R_{\rm A}^{\rm B}$ и $R_{\rm B}^{\rm B}$ эпюры на участках вала могут быть расположены как сверху от оси, так и снизу, но скачок между значениями моментов первого и второго участков должен быть равен F_{a_2} $d_{\rm K}/2$.

На рис. 5 представлен один из <u>возможных</u> вариантов эпюры изгибающих моментов $M_{\rm u}^{\rm B}$ в вертикальной плоскости.

В зависимости от величины и направления реакций R_A^B и R_B^B эпюра изгибающих моментов M_μ^B может иметь другой вид.

Рассмотрим схему вала, нагруженного окружной силой F_{t_2} (рис. 5).

Опоры A и B заменяем реактивными силами R_A^Γ и R_B^Γ . Их направление выбираем произвольно, но лучше противоположно направлению силы F_{t_2} .

Составляем уравнения статики:

$$\Sigma \mathbf{M}_A = R_B^{\Gamma}(a+c) - F_{t_2}a = 0.$$

Откуда реакция R_B^{Γ} равна

$$R_B^{\Gamma} = \frac{F_{t_2}a}{a+c}.$$

$$\Sigma M_B = F_{t_2}c - R_A^{\Gamma}(a+c) = 0.$$

Откуда

$$R_A^{\Gamma} = \frac{F_{t_2}c}{a+c}.$$

Проверка:

$$\Sigma F_{\chi}=0.$$

Определяем изгибающие моменты в горизонтальной плоскости: на первом участке $0 \le x_1 \le a$

$$\mathsf{M}^{\scriptscriptstyle\Gamma}_{\scriptscriptstyle\mathsf{H}_1}=R^{\scriptscriptstyle\Gamma}_{A}x_1.$$

Если $x_1 = 0$, то $M_{u_1}^{\Gamma} = 0$. Если $x_1 = a$, то $M_{u_1}^{\Gamma} = R_A^{\Gamma} a$;

на втором участке $0 \le x_2 \le c$

$$\mathsf{M}^{\scriptscriptstyle\Gamma}_{\scriptscriptstyle{\mathsf{H}_2}}=R^{\scriptscriptstyle{\Gamma}}_Bx_2.$$

Если $x_2 = 0$, то $M_{\mu_2}^{\Gamma} = 0$. Если $x_2 = c$, то $M_{\mu_2}^{\Gamma} = R_B^{\Gamma} c$.

Строим эпюру изгибающих моментов в горизонтальной плоскости на сжатых волокнах (рис. 5).

Вычисляем крутящий момент на валу от действия окружной силы ${\cal F}_{t_2}$

$$T_{2\kappa} = T_2 = F_{t_2} \frac{d_{\kappa}}{2}.$$

Строим эпюру крутящего момента (рис. 5). Из эпюр видно, что наиболее опасным сечением вала является сечение под колесом, так как в этом месте на вал действуют наибольшие изгибающие моменты в двух плоскостях и крутящий момент. Действие максимальных изгибающих моментов в двух плоскостях заменяем суммарным моментом

$$\mathbf{M}_{\mathbf{m}_{\Sigma}} = \sqrt{\left(\mathbf{M}_{\mathbf{m}_{max}}^{\mathbf{B}}\right)^{2} + \left(\mathbf{M}_{\mathbf{m}_{max}}^{\mathbf{\Gamma}}\right)^{2}} \,.$$

Таким образом, вал находится под действием суммарного изгибающего момента $M_{u_{\Sigma}}$ и крутящего момента $T_{2\kappa}$.

Проверяем вал на статическую прочность с учетом нормальных и касательных напряжений по энергетической гипотезе прочности

$$\sigma_{\text{\tiny 3KB}} = \sqrt{\sigma_{\text{\tiny M}_{max}}^2 + 3\tau^2} \le [\sigma]_{\text{p}},\tag{1}$$

где $\sigma_{u_{max}}$ – максимальное нормальное напряжение при изгибе вала с учетом шпоночной канавки под колесом

$$\sigma_{_{\mathrm{H}_{max}}} = \frac{\mathrm{M}_{_{\mathrm{H}_{\Sigma}}}}{W_{_{\mathrm{O.H.}}}} = \frac{\mathrm{M}_{_{\mathrm{H}_{\Sigma}}}}{0.1d_{_{\mathrm{K}}}^3 - \frac{bt(d_{_{\mathrm{K}}} - t)^2}{2d_{_{\mathrm{K}}}}};$$

 $W_{\text{о.н.}}$ — осевой момент сопротивления поперечного сечения вала по шпоночной канавке

$$W_{\text{O.H.}} = 0.1 d_{\text{K}}^3 - \frac{bt(d_{\text{K}} - t)^2}{2d_{\text{K}}}.$$

Шпонку на выходном валу под колесом необходимо взять такой же, как и для его выходного конца, т.е. b=3 мм, t=1,8 мм, так как с увеличением диаметра вала и геометрических параметров шпонки $W_{\text{о.н.}}$ и $W_{\text{р.н.}}$ растут, следовательно, нормальные и касательные напряжения уменьшаются;

т – касательное напряжение при кручении вала с учетом шпоночной канавки

$$\tau = \frac{T_2}{W_{\text{p.H.}}} = \frac{T_2}{0.2d_{\text{K}}^3 - \frac{bt(d_{\text{K}} - t)^2}{2d_{\text{K}}}};$$

 $W_{\rm p.h.}$ — полярный момент сопротивления поперечного сечения вала по шпоночной канавке

$$W_{\text{p.H.}} = 0.2d_{\text{K}}^3 - \frac{bt(d_{\text{K}} - t)^2}{2d_{\text{K}}};$$

 $[\sigma]_{\mathfrak{p}}$ – допускаемое нормальное напряжение при растяжении

$$\left[\sigma\right]_{\mathrm{p}} = \frac{\sigma_{\mathrm{Tp}}}{[n]} \; ;$$

 $\sigma_{\rm Tp} = 690~{\rm M\Pi a}$ — предел текучести материала вала при растяжении; $[n] = 1,5 \dots 2,5$ — допускаемый коэффициент запаса.

Если условие (1) выполняется, это означает, что статическая прочность вала по текучести обеспечена. В случае невыполнения условия (1), необходимо диаметр $d_{\rm K}$ вала под колесом увеличить.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Гуревич Ю. Е., Выров Б. Я., Косов М. Г., Кузнецов А. П. Инженерные основы расчетов деталей машин: учебник. М.: КНОРУС, 2013.-480 с.
- 2. **Дунаев П. Ф., Леликов О. П.** Конструирование узлов и деталей машин: учеб. пособие. М.: Высш. шк., 1985. 416 с.
- 3. **Егоров О.** Д. Конструирование механизмов роботов: учебник. М.: Абрис, 2012. 444 с.
- 4. **Решетов** Д. **Н.** Детали машин: учебник. М.: Машиностроение, 1989. 496 с.

Приложение

Механические характеристики сталей

Нормализованные (Н), улучшенные (У) и объемно-закаленные стали (ОЗ)					
Марка стали	Предел проч- ности $\sigma_{\rm B}$, МПа	Предел теку- чести $\sigma_{\scriptscriptstyle T}$, МПа	Твердость	Термо-об- работка	
1	2	3	4	5	
40	600	320	192-228	У	
45	600-700	320	167-194 HB	Н	
	650-750	350	180-207 HB	У	
	700-800	400	194-222 HB	У	
	750-850	450	207-236 HB	У	
	800-900	550	223-250 HB	У	
	850-950	600	236-263 HB	У	
50	700-800	370-420	212-235 HB	У	
50Γ	800	550	241-285 HB	У	
35X	650	450	187 HB	У	
40X	700-800	400	200-230 HB	Н	
	750-850	500	215-243 HB	У	
	800-900	550	230-257 HB	У	
	850-950	600	243-271 HB	У	
	900-100	700	257-285 HB	У	
40HX	850-950	600	250-280 HB	У	
	900-1000	700	265-290 HB	У	
20XH3A	1000	850	293-341 HB	У	
38XA	900	800	269-321 HB	У	
37XH3A	1100	950	321-387 HB	У	
40XHMA	1100	950	293-375 HB	У	
45	1000	750	38-42 HRC	O3	
50	620	340	48-52 HRC	О3	

