Домашняя работа 1

ФКН ВШЭ ОМВ Весенний семестр 2025

(теория)

1. (6 баллов: 1+2+2+1) Пусть задан вектор $u \in \mathbb{C}^n$: $||u||_2 = 1$. Найдите все $\alpha \in \mathbb{C}$, для которых $A = I - \alpha u u^*$ является: 1) эрмитовой 2) косоэрмитовой 3) унитарной 4) нормальной. Для пункта 3) также нарисуйте найденные α на комплексной плоскости.

- 2. (16 баллов: 7+9)
 - (a) Докажите, что для любой косоэрмитовой $K \in \mathbb{C}^{n \times n}$ матрица:

$$Q = (I - K)^{-1}(I + K) \tag{1}$$

Версия от: 30.01.25 Дедлайн: 13.02.25 в 23:59

будет унитарной.

- (b) Найдите множество всех унитарных матриц, которые представимы в виде (1).
- 3. (14 баллов) Докажите, что

$$||A||_{1\to 2} \le ||A||_2 \le \sqrt{n} ||A||_{1\to 2}, \quad \forall A \in \mathbb{C}^{m \times n}.$$

Указание: В случае использования констант эквивалентности векторных норм необходимо обосновывать это значение констант.

- 4. **(16 баллов: 3+6+7)** Обозначим $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ и $A_n = \begin{bmatrix} 0 & 1 \\ 1/n & 0 \end{bmatrix}, n \in \mathbb{N}.$
 - (a) Обоснуйте сходимость $A_n \to A, n \to \infty$ исходя из определения сходимости с помощью норм.
 - (b) Найдите собственные разложения $A_n = S_n \Lambda_n S_n^{-1}$ и проверьте существование пределов для каждой из S_n, Λ_n и S_n^{-1} . Почему не у всех из этих матриц существует предел?
 - (c) Найдите разложения Шура $A_n = U_n T_n U_n^{-1}$ и проверьте существование пределов для каждой из U_n, T_n и U_n^{-1} .
- 5. **(7 баллов)** Докажите, что нормальная матрица является унитарной тогда и только тогда, когда все ее собственные значения по модулю равны 1.
- 6. (13 баллов: 6+7)
 - (a) Докажите, что для любой $A \in \mathbb{C}^{m \times n}$, $m \ge n$, справедливо:

$$||A||_2 \le ||A||_F \le \sqrt{n} ||A||_2.$$

- (b) Найдите все матрицы $A \in \mathbb{C}^{n \times n}$, удовлетворяющие $||A||_F = \sqrt{n} ||A||_2$.
- 7. **(12 баллов: 4+4+4)** Дана нормальная матрица $A \in \mathbb{C}^{n \times n}$ и её разложение Шура $A = U\Lambda U^*$.
 - (a) Запишите сингулярное разложение матрицы A, используя матрицы U и Λ .
 - (b) Покажите, что $\sigma_1(A) = \max_i |\lambda_i(A)|$.
 - (c) Приведите пример матрицы $A \in \mathbb{C}^{2\times 2}$, не являющейся нормальной и для которой полученное в (b) выражение неверно.
- 8. (16 баллов). Докажите, что для множителя W (см. обозначения в лекциях) из полярного разложения матрицы $A \in \mathbb{R}^{m \times n}$, m > n выполняется:

$$\frac{\|A^{\top}A - I\|_2}{\|A\|_2 + 1} \le \|A - W\|_2 \le \|A^{\top}A - I\|_2.$$

Замечание: Неравенство дает соотношение между двумя мерами близости (в смысле спектральной нормы) матрицы A к ортогональной: $\|A^{\top}A - I\|$ и $\min_{Q:Q^{\top}Q=I}\|A - Q\|$.

Домашняя работа 1

(теория)

Версия от: 30.01.25 Дедлайн: 13.02.25 в 23:59

Бонусные задачи

1. **(20 б. баллов)**. Назовем норму $\|\cdot\|^*$ двойственной к $\|\cdot\|$ над $\mathbb{R}^{m\times n}$, если

$$||A||^* = \max_{B: ||B||=1} \operatorname{Tr} (AB^\top).$$

Докажите, что

- (a) $(\|A\|^*)^* = \|A\|;$
- (b) норма $\|\cdot\|$ унитарно-инвариантна тогда и только тогда, когда унитарно-инвариантна $\|\cdot\|^*.$
- 2. (30 б. баллов). Докажите субмультипликативность векторной р-нормы матрицы:

$$||A||_{p,\text{vec}} \equiv ||\text{vec}(A)||_p$$

при $1 \le p \le 2$.

3. (50 б. баллов). Решите задачу 8 для произвольной унитарно-инвариантной нормы $\|\cdot\|$:

$$\frac{\|A^{\top}A - I\|}{\|A\|_2 + 1} \le \|A - W\| \le \|A^{\top}A - I\|.$$

Считайте известным неравенство $||AB|| \le ||A||_2 ||B||$.