Aula 2: Contextualização: alfabeto, palavra, linguagem formal e gramática.

Prof. Lucio A. Rocha

Engenharia de Computação Universidade Tecnológica Federal do Paraná, UTFPR Câmpus Apucarana, Brasil

2° semestre / 2023

Sumário

Teoria da Computação

Seção 1

- Lida com modelos matemáticos de computação.
- Herança da década de 50: teorias sobre processamento de linguagens naturais.
- Estudo de linguagens artificiais.
- Estudo de linguagens de programação de computadores.

- Aplicações:
 - Compiladores.
 - Modelagem de Redes Lógicas.
 - Modelagem de Circuitos Lógicos.
 - Modelagem de Sistemas Biológicos.
 - Linguagens Matemáticas.
 - Entre muitas outras.

- Aplicações:
 - Análise Léxica.
 - Reconhecer palavras do vocabulário do programa.
 - Ex.: Palavras-chave, operadores, constantes, símbolos
 - Análise Sintática.
 - Ex.: comandos simples (if-else, switch, for, etc.), blocos, estrutura do programa como um todo.
 - Análise Semântica.
 - Verificar relacionamentos entre partes do código no programa.
 - Ex.:
 int metodo(int X);
 ...
 int A,B;
 A=metodo(B);

- Linguagem Formal: é a linguagem descrita com regras e composta de palavras de um alfabeto.
- A sintaxe da linguagem possui base lógica e matemática.
- Linguagem de Programação:
 - É uma linguagem formal.
 - É livre, i.e., sem qualquer significado associado.
 - Porém, exige interpretação/tradução do seu significado.

- Abordagem deste curso:
 - Análise de linguagens lineares abstratas.
 - Linguagens associadas a problemas na Computação.
- Classificação dos formalismos das linguagens:
 - Axiomático
 - Denotacional
 - Operacional

- Formalismo Axiomático:
 - Componentes da linguagem s\u00e3o associados a regras.
 - Regras permitem afirmar o que será verdadeiro após a execução de cada cláusula.
 - Formalismo Gerador: verifica se uma palavra é gerada por uma dada gramática.
 - Abordagem é sobre Gramáticas.

- Formalismo Denotacional:
 - Restrito às Expressões Regulares (ER).
 - Valor denotado por uma construção com ER.
 - Formalismo Gerador: verifica se uma palavra da linguagem é gerada.
 - Define um domínio com um conjunto de palavras admissíveis na linguagem.

- Formalismo Operacional:
 - Autômato (ou Máquina Abstrata).
 - Estados
 - Instruções primitivas
 - Definição de como cada instrução modifica em cada estado.
 - Máquina Abstrata
 - Suficientemente simples
 - Não gera dúvidas sobre a execução do código
 - Formalismo Reconhecedor: verifica se uma entrada é válida
 - Principais Máquinas Abstratas:
 - Autômato Finito
 - Autômato com Pilha
 - Máquina de Turing

Seção 2

- Linguagem: é um conjunto de palavras formadas por símbolos.
- Palavra: é um conjunto de símbolos de um alfabeto. Palavras de uma linguagem são formadas com regras de produção.
- Alfabeto: é o conjunto de símbolos válidos na linguagem.
- Ex.:
 - Alfabeto da Língua Portuguesa: $A = \{a, b, c, d, ..., z\}$
 - Alfabeto de linguagem de máquina: $B = \{0, 1\}$

- Palavra:
 - Prefixo: qualquer sequência inicial de símbolos da palavra.
 - Sufixo: qualquer sequência final de símbolos da palavra.
 - Subpalavra: qualquer sequência de símbolos contíguos da palavra.

- Exemplo: w=abcb, $\Sigma = \{a, b, c\}$
 - Prefixos: ε , a, ab, abc, abcb (e apenas estes)
 - Sufixos: ε , b, cb, bcb, abcb (e apenas estes)
 - Subpalavra: qualquer prefixo ou sufixo é uma subpalavra.

- Em uma linguagem de programação como C:
 - Uma palavra é um programa.

- Concatenação de palavras
 - Justaposição da primeira palavra com a segunda palavra.
 - Propriedades:
 - Elemento Neutro: $\varepsilon w = w = w \varepsilon$
 - Associatividade: v(wt)=(vw)t

- Exemplos de Concatenação de palavras
 - Seja $A = \{a, b\}$ um alfabeto. Para as palavras v = aa e w = bb
 - vw = aabb
 - $v\varepsilon = v = aa$
 - $\mathbf{v}^0 = \varepsilon$
 - $w^2 = bbbb$

- Linguagem Formal
 - Uma linguagem é um conjunto de palavras sobre um alfabeto.
 - Uma linguagem formal L é aquela que, dado um alfabeto A:

$$L \subseteq A^*$$

- Palavra (sentença ou string): é um conjunto concatenado de símbolos de uma dada linguagem.
- A palavra vazia (nenhum símbolo) é indicada por ε .
- Se A é um alfabeto, então:
 - A* (clausura de A): é o conjunto de todas as palavras formadas com símbolos de A.
 - $A^{+} = A^{*} \varepsilon$

- Exemplo:
 - Seja $B = \{0, 1\}$ o alfabeto para a linguagem:

•
$$L = \{0^n 1^n \mid n \ge 0\}$$

- Quais das seguintes palavras são válidas nesta linguagem?
 - ε
 - 01
 - 0110
 - 0011

Gramática:

- A gramática define as regras para a formação de palavras válidas para uma dada linguagem.
- Produções: é o conjunto de regras de formação de palavras.
- Alfabeto: é o conjunto de símbolos da linguagem E o conjunto de símbolos auxiliares:
 - Símbolos terminais: símbolos da linguagem.
 - Símbolos não-terminais: símbolos auxiliares. Indicam o ponto de partida para formação de palavras na linguagem.

Definição formal de Gramática:

$$G = (V_T, V_N, \mathbb{P}, S_i)$$

- V_T : alfabeto de símbolos terminais.
- V_N: alfabeto de símbolos não-terminais.
- P: conjunto de regras (produções), expressos na forma:
 - $\alpha \to \beta$, onde $\alpha \in V_N^+, \beta \in V^*$
 - S_i : símbolo sentencial, símbolo não-terminal inicial ou axioma:
 - ullet é o símbolo de início da produção de palavras na linguagem. $S_i \in V_N$

Produções:

$$E \rightarrow D$$

 Indica que o símbolo ou sequência de símbolos E (o lado esquerdo) pode ser substituído pelo símbolo ou sequência de símbolos D (o lado direito) na formação de uma palavra, a partir do símbolo sentencial.

• Exemplo:

$$G_1 = (\{0,1\}, \{Z\}, \{Z \to 0Z1, Z \to \varepsilon\}, Z)$$

- As duas produções são:
 - $Z \rightarrow 0Z1$: onde há o símbolo Z é possível substitui-lo pela sequência 0Z1.
 - Z → ε: onde há o símbolo Z é possível substitui-lo pela palavra vazia ε (ou seja, eliminá-lo).

- Derivação:
 - É a substituição do lado esquerdo de uma produção de uma gramática pelos símbolos do lado direito:

$$Z \Rightarrow 0Z1 \Rightarrow 01$$

- O resultado da derivação pode ser:
 - Sentença: Forma sentencial apenas com os símbolos terminais.
 - Forma sentencial: Sequência de símbolos, terminais ou não terminais, que pode ser derivada a partir do símbolo sentencial da gramática.

- Derivação:
 - Dadas duas formas sentenciais gama γ e delta δ :
 - $\gamma \Rightarrow \delta$: δ é imediatamente derivável de γ com uma única produção.
 - $\gamma \Rightarrow^+ \delta$: δ é derivável de γ pela aplicação de uma ou mais produções.
 - Exemplo:
 - 0Z1 é imediatamente derivável de Z
 - 01 é imediatamente derivável de 0.71
 - 01 é derivável de Z

- Derivação: Reconhecimento de sentenças válidas.
 - A sentença sigma σ faz parte da linguagem L se há sequências de derivações a partir do símbolo sentencial S que leve a σ :

$$S \Rightarrow^+ \sigma$$

• Exemplo: Seja a gramática:

$$G_1 = (\{0,1\}, \{Z\}, \{Z \to 0Z1, Z \to \varepsilon\}, Z)$$

- Quais sentenças são válidas nesta gramática G_1 ?
 - 01
 - 010
 - 0011
 - 0110
 - ε

Derivação: Reconhecimento de sentenças válidas.

$$G_1 = (\{0,1\}, \{Z\}, \{Z \to 0Z1, Z \to \varepsilon\}, Z)$$

- $01: Z \Rightarrow 0Z1 \Rightarrow 01$ (válida)
- $010: Z \Rightarrow 0Z1 \Rightarrow ? \text{ (inválida)}$
- $0011: Z \Rightarrow 0Z1 \Rightarrow 00Z11 \Rightarrow 0011$ (válida)
- $0110: Z \Rightarrow 0Z1 \Rightarrow ? \text{ (inválida)}$
- ε : $Z \Rightarrow \varepsilon$ (válida)

- Classificação de Gramáticas
 - Gramáticas podem ter produções com diferentes graus de complexidade em seu formato:
 - Quantos símbolos no lado esquerdo?
 - Como os símbolos que aparecem no lado esquerdo podem aparecer no lado direito (recursividade)?
 - Quanto menor for a restrição no formato das produções, maior será o poder de expressão da gramática
 - Podem representar gramáticas mais complexas.
 - Mais complexo o método de reconhecimento de sentenças.