С. Р. Насыров

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ. ЧИСЛОВЫЕ РЯДЫ. МЕРА ЖОРДАНА.

Рекомендовано к опубликованию и размещению на сайте Казанского (Приволжского) федерального университета Учебно-методической комиссии Института математики и механики им. Н. И. Лобачевского, Протокол № 4 от 15 февраля 2018 г.

Рецензент кандидат физ.-мат. наук, доцент Р. Н. Гумеров

Несобственные интегралы. Числовые ряды. Мера Жор- дана: Учебное пособие / С. Р. Насыров. – Казань: Казанский (Приволжский) федеральный университет, 2018. – 60 с.

Данное учебно пособие предназначено для студентов, обучающихся в бакалавриате по направлениям «Математика», «Математика и компьютерные науки». В нем излагаются основы теории несобственных интегралов, числовые ряды, а также мера Жордана.

Материал соответствует программе курса «Математический анализ» для студентов-математиков, действующей в Казанском (Приволжском) федеральном университете.

[©] Казанский (Приволжский) федеральный университет, 2018

[©] С. Р. Насыров, 2018

1 Несобственные интегралы

1.1 Определение несобственного интеграла

Если функция f интегрируема по Риману на отрезке [a;b], то говорят, что f интегрируема в собственном смысле на [a;b]. Если f не интегрируема в собственном смысле на [a;b], то выражение $\int_a^b f(x) dx$ называют neco6-ственным интегралом Римана. Кроме того, neco6ственным интегралами называют выражения вида $\int_a^{+\infty} f(x) dx$, $\int_{-\infty}^b f(x) dx$, $\int_{-\infty}^{+\infty} f(x) dx$.

В дальнейшем будем рассматривать несобственные интегралы вида $\int_a^b f(x) dx$, где $-\infty \le a < b \le +\infty$.

Если $a \neq -\infty$ и для любого $t \in [a;b)$ функция f интегрируема по Риману на [a;t], то будем говорить, что интеграл $\int_a^b f(x)dx$ является несобственным интегралом c единственной особенностью на верхнем пределе интегрирования (в точке b). Аналогично определяется несобственный интеграл c единственной особенностью на ниженем пределе интегрирования (в точке a). Несобственные интегралы c единственной особенностью на верхнем или на нижнем пределе интегрирования называются простейшими несобственными интегралами. Сначала мы займемся исследованием простейших несобственных интегралов.

Говорят, что интеграл $\int_a^b f(x) dx$ с единственной особенностью в точке b сходится, если существует конечный предел

$$\alpha := \lim_{t \to b-} \int_{a}^{t} f(x) dx.$$

В этом случае число α называют значением несобственного интеграла $\int_a^b f(x) dx$. Если интеграл $\int_a^b f(x) dx$ не сходится, то говорят, что он расходится.

Аналогично определяются несобственный интеграл с единственной особенностью в точке a и его сходимость. Сходимость несобственного интеграла $\int_a^b f(x)dx$ в этом случае означает существование конечного предела $\beta:=\lim_{t\to a+}\int_t^b f(x)dx$. Число β называется значением интеграла.

Примеры. 1) $\int_0^1 \frac{dx}{x}$. Функция $f(x) = \frac{dx}{x}$ интегрируема на любом отрезке [t;1], 0 < t < 1, но не интегрируема на отрезке [0;1], так как не ограничена на этом отрезке. (Фактически функция f не определена в точке 0, но как бы мы ни определили ее в этой точке, интеграл в собственном смысле не существует!) Имеем

$$\int_{t}^{1} \frac{dx}{x} = \ln x|_{t}^{1} = -\ln t \to +\infty, \quad t \to 0 + .$$

Следовательно, несобственный интеграл с единственной особенностью в точке 0 расходится.

2) $\int_0^1 \frac{dx}{\sqrt{x}}$. Этот интеграл также простейший с единственной особенностью на нижнем пределе. Он сходится, так как

$$\int_{t}^{1} \frac{dx}{\sqrt{x}} = 2\sqrt{x}|_{t}^{1} = 2(1 - \sqrt{t}) \to 2, \quad t \to 0+,$$

и его значение равно 2.

3) $\int_0^{+\infty} \frac{dx}{1+x^2}$. Этот интеграл имеет единственную особенность в точке $+\infty$. Имеем

$$\int_0^{+\infty} \frac{dx}{1+x^2} = \lim_{t \to +\infty} \int_0^t \frac{dx}{1+x^2} = \lim_{t \to +\infty} \operatorname{arctg} t = \frac{\pi}{2}.$$

1.2 Свойства простейших несобственных интегралов

Поскольку изучение интегралов с особенностью на нижнем пределе совершенно аналогично изучению интегралов с особенностью на верхнем пределе, мы ограничимся рассмотрением только интегралов с особенностью на верхнем пределе.

Теорема 1 (линейность). Пусть $\int_a^b f(x)dx$ и $\int_a^b g(x)dx - \partial \epsilon a$ сходящихся несобственных интеграла с единственной особенностью в точке b. Тогда для любых α , $\beta \in \mathbb{R}$ интеграл $\int_a^b [\alpha f(x) + \beta g(x)] dx$ сходится u

$$\int_{a}^{b} [\alpha f(x) + \beta g(x)] dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$
 (1.1)

 \mathcal{A} оказательство. Для любого $t \in (a;b)$ в силу линейности собственных интегралов справедлива формула

$$\int_{a}^{t} [\alpha f(x) + \beta g(x)] dx = \alpha \int_{a}^{t} f(x) dx + \beta \int_{a}^{t} g(x) dx.$$
 (1.2)

Устремляя $t \to b-$ видим, что правая часть (1.2) стремится к правой части (1.1). Следовательно, левая часть имеет конечный предел. Это означает, что интеграл $\int_a^b [\alpha f(x) + \beta g(x)] dx$ сходится и справедливо (1.1).

Теорема 2 (аддитивность). Если $\int_a^b f(x)dx$ — несобственный интеграл с единственной особенностью в точке b, то для любой точки $c \in (a;b)$ сходится интеграл $\int_c^b f(x)dx$ и справедливо равенство

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Обратно, если для некоторого $c \in (a;b)$ сходится интеграл $\int_c^b f(x)dx$, то сходится и интеграл $\int_a^b f(x)dx$.

Доказательство проведите самостоятельно.

Теорема 3 (формула Ньютона-Лейбница). Пусть функция f непрерывна на [a;b) и F — некоторая первообразная функции f на [a;b). Несобственный интеграл $\int_a^b f(x) dx$ сходится тогда и только тогда, когда существует конечный предел $F(b-) := \lim_{x \to b-} F(x)$. При этом

$$\int_{a}^{b} f(x)dx = F(b-) - F(a). \tag{1.3}$$

 \mathcal{A} оказательство. Для любого $t \in (a;b)$ по формуле Ньютона-Лейбница для собственных интегралов имеем

$$\int_{a}^{t} f(x)dx = F(t) - F(a) \tag{1.4}$$

Если существует конечный $\lim_{x\to b^-} F(x)$, то существует конечный предел правой части равенства (1.4). Следовательно, существует конечный предел и левой части (1.4). Это означает, что $\int_a^b f(x)dx$ сходится. Переходя к пределу в (1.4), получаем (1.3).

Замечание. На практике полагают $F(b) = \lim_{x\to b^-} F(x)$ и формулу Ньютона-Лейбница для несобственных интегралов записывают в том же виде, что и для собственных:

$$\int_{a}^{b} f(x)dx = F(x)|_{x=a}^{b} = F(b) - F(a).$$

Примеры.

1)
$$\int_0^1 \frac{dx}{\sqrt{1-x^2}} = \arcsin x \Big|_0^1 = \frac{\pi}{2}.$$
2)
$$\int_1^{+\infty} \frac{dx}{x^2} = -\frac{1}{x} \Big|_1^{+\infty} = 1.$$

Теорема 4 (интегрирование по частям). Пусть функции f и g непрерывно дифференцируемы на [a;b). Если существует конечный предел $\lim_{x\to b^-} [f(x)g(x)]$, то из сходимости одного из интегралов $\int_a^b f(x)g'(x)dx$, $\int_a^b g(x)f'(x)dx$ следует сходимость другого, и справедливо соотношение

$$\int_{a}^{b} g(x)f'(x)dx = \lim_{x \to b^{-}} [f(x)g(x)] - f(a)g(a) - \int_{a}^{b} f(x)g'(x)dx.$$
 (1.5)

Доказательство. Для любого $t \in (a;b)$ справедлива формула интегрирования по частям для собственных интегралов

$$\int_{a}^{t} g(x)f'(x)dx = f(t)g(t) - f(a)g(a) - \int_{a}^{t} f(x)g'(x)dx.$$
 (1.6)

Если, к примеру, сходится интеграл $\int_a^b f(x)g'(x)dx$, то правая часть (1.6) имеет конечный предел при $t \to b-$. Значит, конечный предел имеет и левая часть. Это означает, что интеграл $\int_a^b g(x)f'(x)dx$ сходится. Переходя к пределу в (1.6) при $t \to b-$, получаем (1.5).

Замечание. На практике часто пишут вместо

$$\lim_{x \to b^{-}} [f(x)g(x)] - f(a)g(a),$$

как и в случае собственных интегралов, $f(x)g(x)|_{x=a}^{b}$.

Теорема 5 (замена переменных). Пусть $\varphi: [\alpha; \beta) \to [a; b)$ — непрерывно дифференцируема, строго монотонно возрастает и обладает свойствами: $\varphi(\alpha) = a$, $\lim_{t\to\beta} \varphi(t) = b$. Тогда если один из несобственных интегралов $\int_a^b f(x)dx$, $\int_\alpha^\beta f(\varphi(\tau))\varphi'(\tau)d\tau$ сходится, то сходится и другой и они равны:

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(\tau))\varphi'(\tau)d\tau. \tag{1.7}$$

Доказательство. Пусть сначала сходится интеграл $\int_a^b f(x)dx$. Для любого t из интервала $(\alpha; \beta)$ справедлива формула замены переменных в собственном интеграле:

$$\int_{a}^{\varphi(t)} f(x)dx = \int_{\alpha}^{t} f(\varphi(\tau))\varphi'(\tau)d\tau. \tag{1.8}$$

Устремим $t \to \beta-$. Тогда $\varphi(t) \to b$ и левая часть (1.8) имеет конечный предел, равный $\int_a^b f(x) dx$. Следовательно, и правая часть (1.8) имеет тот же конечный предел. Это означает, что интеграл $\int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt$ сходится и справедливо (1.7).

Обратно, пусть сходится $\int_{\alpha}^{\beta} f(\varphi(\tau)) \varphi'(\tau) d\tau$. Тогда из строгой монотонности φ следует, что

$$\int_{a}^{u} f(x)dx = \int_{\alpha}^{\varphi^{-1}(u)} f(\varphi(\tau))\varphi'(\tau)d\tau.$$

При этом $\varphi^{-1}(u) \to \beta$, $u \to b-$. Далее рассуждаем так же, как и в первом случае. Теорема доказана.

Замечание. При замене переменных несобственный интеграл может перейти в собственный.

Примеры.

1)

$$\int_0^1 \ln x = x \ln x |_0^1 - \int_0^1 x d \ln x = -\int_0^1 x \cdot \frac{dx}{x} = -\int_0^1 dx = -1.$$

Отметим, что при вычислениях мы использовали следующий табличный предел: $\lim_{x\to 0+}(x\ln x)=0$.

2)

$$\int_0^{+\infty} x e^{-x} dx = -\int_0^{+\infty} x d(e^{-x}) = -x e^{-x} \Big|_0^{+\infty} + \int_0^{+\infty} e^{-x} dx = -e^{-x} \Big|_0^{+\infty} = 1,$$

так как $\lim_{x\to+\infty} xe^{-x} = 0$.

3) $\int_0^1 \frac{dx}{\sqrt{1-x^2}} = \int_0^{\pi/2} \frac{\cos t dt}{\cos t} = \int_0^{\pi/2} dt = 0.$

Здесь сделана замена переменных $x = \sin t$, при этом несобственный интеграл перешел в собственный.

1.3 Признаки сходимости несобственных интегралов от неотрицательных функций

Пусть $\int_a^b f(x)dx$ — простейший несобственный интеграл с особенностью в точке b и функция f неотрицательна. Тогда функция $F(t) := \int_a^t f(x)dx$ является монотонно возрастающей функцией на [a;b). Поэтому существует конечный или бесконечный предел $\lim_{t\to b^-} F(t)$. Если предел конечен, то несобственный интеграл сходится, если бесконечен, то интеграл расходится, но ему можно приписать значение $+\infty$. В этом случае говорят, что $uhmerpan\ pacxodumca\ \kappa\ +\infty$.

Итак, в случае неотрицательной подинтегральной функции простейшему несобственному интегралу можно приписать конечное или бесконечное значение. В этом существенное отличие от случая, когда подинтегральная функция не знакопостоянна! Если функция f меняет знак на любом интервале (t;b), содержащемся в (a;b), то часто интегралу

нельзя приписать никакого определенного значения (если не существует $\lim_{t\to b^-} F(t)$).

Теорема 1 (признак сравнения в форме неравенства). Пусть даны два несобственных интеграла $\int_a^b f(x)dx$ и $\int_a^b g(x)dx$ с единственной особенностью в точке b. Если $0 \le f(x) \le g(x)$, $x \in [a;b)$, то из сходимости интеграла $\int_a^b g(x)dx$ следует сходимость интеграла $\int_a^b f(x)dx$; из расходимости интеграла $\int_a^b f(x)dx$ следует расходимость интеграла $\int_a^b g(x)dx$.

Доказательство. Для любого $t \in (a; b)$ имеем

$$F(t) := \int_a^t f(x)dx \le \int_a^t g(x)dx =: G(t).$$

Пусть интеграл $\int_a^b g(x)dx$ сходится. Тогда существует конечный предел $\lim_{x\to b^-} G(x)$. В силу монотонного возрастания функции G получаем $G(t) \leq \lim_{x\to b^-} G(x) < +\infty$. Следовательно, функция G ограничена. Из неравенства $F(t) \leq G(t)$, $t \in (a;b)$, следует, что монотонно возрастающая функция F также ограничена сверху. По свойству монотонных функций существует конечный предел $\lim_{x\to b^-} F(x)$. Это означает сходимость интеграла $\int_a^b f(x)dx$. Второе утверждение теоремы сразу следует из первого.

Теорема 2 (признак сравнения в предельной форме). Пусть даны два несобственных интеграла $\int_a^b f(x)dx$ и $\int_a^b g(x)dx$ с единственной особенностью в точке b. Пусть f(x)>0, g(x)>0, $x\in [a;b)$, и существует предел $\alpha:=\lim_{x\to b-}\frac{f(x)}{g(x)}$. Если $\alpha<+\infty$, то из сходимости интеграла $\int_a^b g(x)dx$ следует сходимость интеграла $\int_a^b f(x)dx$. Если $\alpha>0$, то из расходимости интеграла $\int_a^b g(x)dx$ следует расходимость интеграла $\int_a^b f(x)dx$.

Доказательство. 1) Пусть $\alpha < +\infty$. В силу свойств предела функции $\forall \, \varepsilon > 0 \, \exists \, c \in (a;b) \colon \forall x \in (c;b) \, \frac{f(x)}{g(x)} < \alpha + \varepsilon$, т.е. $f(x) < (\alpha + \varepsilon)g(x)$. Если интеграл $\int_a^b g(x) dx$ сходится, то в силу теоремы 2 предыдущего пункта для любого $d \in (c;b)$ интеграл $\int_d^b g(x) dx$ сходится. В силу линейности интегралов сходится интеграл $\int_d^b (\alpha + \varepsilon)g(x) dx$. По теореме 1

сходится интеграл $\int_a^b f(x)dx$. Тогда сходится и интеграл $\int_a^b f(x)dx$.

2) Если $\alpha > 0$, то $\lim_{x \to b^-} \frac{g(x)}{f(x)} = \frac{1}{\alpha} < +\infty$ и утверждение следует из доказанного в п. 1).

Примеры.

1)

$$\int_{1}^{+\infty} \frac{dx}{x^{p}} = \left. \frac{x^{1-p}}{1-p} \right|_{1}^{+\infty} = \frac{1}{1-p}, \quad p > 1.$$

При p < 1 аналогичными вычислениями показываем, что

$$\int_{1}^{+\infty} \frac{dx}{x^p} = +\infty.$$

Наконец, при p = 1 имеем

$$\int_{1}^{+\infty} \frac{dx}{x^p} = \ln x|_{1}^{+\infty} = +\infty.$$

Итак, интеграл $\int_1^{+\infty} \frac{dx}{x^p}$ сходится тогда и только тогда, когда p>1 .

2

$$\int_0^1 \frac{dx}{x^p} = \left. \frac{x^{1-p}}{1-p} \right|_0^1 = \frac{1}{1-p}, \quad p < 1.$$

При p > 1 видим, что

$$\int_0^1 \frac{dx}{x^p} = +\infty.$$

Наконец, при p=1 получаем

$$\int_0^1 \frac{dx}{x^p} = \ln x |_0^1 = +\infty.$$

Итак, интеграл $\int_0^1 \frac{dx}{x^p}$ сходится тогда и только тогда, когда p < 1.

3) Основываясь на примере 2), получаем, что для конечных a и b интегралы вида $\int_a^b \frac{dx}{(x-a)^p}, \ \int_a^b \frac{dx}{(b-x)^p}$ сходятся тогда и только тогда, когда p<1 .

Из теоремы 2 с использованием этих примеров следуют следующие важные для практики утверждения.

Теорема 3. Рассмотрим несобственный интеграл $\int_a^{+\infty} f(x) dx$ от неотрицательной функции f с единственной особенностью на верхнем пределе. Предположим, что существует $\lim_{x\to+\infty} x^p f(x) = \alpha$. Если p>1 и $\alpha<+\infty$, то интеграл $\int_a^{+\infty} f(x) dx$ сходится. Если $p\leq 1$ и $\alpha>0$, то интеграл $\int_a^{+\infty} f(x) dx$ расходится.

Теорема 4. Рассмотрим несобственный интеграл $\int_a^b f(x)dx$ от неотрицательной функции f с единственной особенностью на верхнем пределе $b \in \mathbb{R}$. Предположим, что существует $\lim_{x\to b^-} (b-x)^p f(x) = \alpha$. Если p<1 и $\alpha<+\infty$, то интеграл $\int_a^b f(x)dx$ сходится. Если $p\geq 1$ и $\alpha>0$, то интеграл $\int_a^b f(x)dx$ расходится.

Упражнение. Сформулируйте и докажите утверждения, аналогичные теоремам 3 и 4 для интегралов с особенностями на нижнем пределе.

Примеры.

1) Интеграл

$$\int_{2}^{+\infty} \frac{dx}{x^2(1+x)}$$

сходится, так как $\frac{1}{x^2(1+x)} \sim \frac{1}{x^3}, \ p=3>1$.

2) Интеграл

$$\int_0^1 \frac{dx}{\sin x}$$

расходится, так как $\frac{1}{\sin x} \sim \frac{1}{x}$, p=1.

3) Интеграл

$$\int_0^1 \ln^2 x dx$$

сходится, т. к. для любого $p \in (0,1)$ имеем $\lim_{x\to 0+} (x^p \ln^2 x) = 0$.

1.4 Несобственные интегралы от незнакопостоянных функций

Теорема 1 (критерий Коши). Интеграл $\int_a^b f(x)dx$ с единственной особенностью на верхнем пределе сходится тогда и только тогда, когда

 $\forall \varepsilon > 0 \ \exists t_{\varepsilon} \in (a;b) \colon \forall t', t'' \in (t_{\varepsilon};b)$

$$\left| \int_{t'}^{t''} f(x) dx \right| < \varepsilon.$$

Доказательство. Пусть $F(t)=\int_a^t f(x)dx$. Несобственный интеграл $\int_a^b f(x)dx$ сходится тогда и только тогда. когда существует конечный предел $\lim_{t\to b^-} F(t)$. В силу критерия Коши существования предела функции это будет тогда и только тогда, когда $\forall\, \varepsilon>0\,\,\exists\, t_\varepsilon\in(a;b)\colon\forall\, t',\,\,t''\in(t_\varepsilon;b)$ $|F(t')-F(t'')|<\varepsilon$. Но

$$|F(t') - F(t'')| = \left| \int_a^{t'} f(x)dx - \int_a^{t''} f(x)dx \right| = \left| \int_{t'}^{t''} f(x)dx \right|.$$

Это завершает доказательство теоремы.

Говорят, что несобственный интеграл $\int_a^b f(x)dx$ сходится абсолютно, если сходится интеграл $\int_a^b |f(x)|dx$.

Теорема 2 (признак абсолютной сходимости). Если интеграл $\int_a^b f(x) dx$ сходится абсолютно, то он сходится.

Доказательство. Пусть $\int_a^b |f(x)| dx$ сходится. Тогда по критерию Коши $\forall \, \varepsilon > 0 \; \exists \, t_\varepsilon \in (a;b) \colon \forall \, t' \, , \; t'' \in (t_\varepsilon;b)$

$$\left| \int_{t'}^{t''} |f(x)| dx \right| < \varepsilon.$$

Следовательно, при таких t', t''

$$\left| \int_{t'}^{t''} f(x) dx \right| \le \left| \int_{t'}^{t''} |f(x)| dx \right| < \varepsilon.$$

По критерию Коши интеграл $\int_a^b f(x)dx$ сходится.

Замечание. Обратное неверно. Существуют интегралы, которые сходятся, но не сходится абсолютно. Такие интегралы называются условно cxoдящимися.

Теорема 3 (признак Дирихле). Интеграл $\int_a^b f(x)g(x)dx$ сходится, если:

- 1) функция f непрерывна на [a;b) и имеет ограниченную первообразную F на [a;b);
 - 2) функция g непрерывно дифференцируема и монотонна на [a;b) ;
 - 3) $\lim_{x\to b^-} g(x) = 0$.

Доказательство. Применим к интегралу $\int_a^b f(x)g(x)dx$ критерий Коши. Для любых $t',\ t''\in (a;b)$ имеем

$$\int_{t'}^{t''} f(x)g(x)dx = \int_{t'}^{t''} g(x)dF(x) = F(x)g(x)|_{t'}^{t''} - \int_{t'}^{t''} F(x)g'(x)dx. \quad (1.9)$$

Выберем константу M>0 так, чтобы $|F(x)|\leq M,\;x\in[a;b)$.

Так как функция g монотонна на [a;b), то ее производная либо неотрицательна, либо неположительна на [a;b). Пусть, для определенности, $g'(x) \geq 0$, $x \in [a;b)$. Так как $\lim_{x \to b^-} g(x) = 0$, по определению предела $\forall \, \varepsilon > 0 \, \exists \, t_\varepsilon \in (a;b) \colon \forall \, x \in (t_\varepsilon;b)$ выполняется неравенство

$$|g(x)| \le \frac{\varepsilon}{4M} \,.$$

Оценим слагаемые в правой части (1.9). Имеем

$$\left| F(x)g(x)|_{t'}^{t''} \right| \leq |F(t'')||g(t'')| + |F(t')||g(t')| \leq
\leq M(|g(t'')| + |g(t')|) \leq M\left(\frac{\varepsilon}{4M} + \frac{\varepsilon}{4M}\right) = \frac{\varepsilon}{2}, \quad t', t'' \in (t_{\varepsilon}; b). \quad (1.10)$$

Кроме того,

$$\left| \int_{t'}^{t''} F(x)g'(x)dx \right| \leq \left| \int_{t'}^{t''} |F(x)||g'(x)|dx \right| \leq M \left| \int_{t'}^{t''} |g'(x)|dx \right| =$$

$$= M \left| \int_{t'}^{t''} g'(x)dx \right| = M|g(t'') - g(t')| \leq M(|g(t'')| + |g(t')| \leq$$

$$\leq M \left(\frac{\varepsilon}{4M} + \frac{\varepsilon}{4M} \right) = \frac{\varepsilon}{2}, \quad t', t'' \in (t_{\varepsilon}; b). \quad (1.11)$$

Применяя к оценке правой части (1.9) неравенство треугольника, с учетом (1.10) и (1.11), получаем

$$\left| \int_{t'}^{t''} f(x)g(x)dx \right| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \quad t', t'' \in (t_{\varepsilon}; b).$$

По критерию Коши интеграл $\int_a^b f(x)g(x)dx$ сходится.

Теорема 4 (признак Абеля). Интеграл $\int_a^b f(x)g(x)dx$ сходится, если

- 1) функция f непрерывна на [a;b) и несобственный интеграл $\int_a^b f(x) dx$ $cxo \partial umcs;$
 - (a;b) функция (a;b) (a;b) (a;b)
 - 3) функция g ограничена на [a;b).

Доказательство. Функция g монотонна и ограничена на [a;b). Следовательно, существует конечный предел $\alpha:=\lim_{x\to b^-}g(x)$. Применим признак Дирихле к несобственному интегралу $\int_a^b f(x)(g(x)-\alpha)dx$. Первообразная $F(x)=\int_a^x f(t)dt$ функции f имеет конечный предел при $x\to b-$, поэтому она ограничена. Функция $g(x)-\alpha$ непрерывно дифференцируема, монотонна на [a;b), и $\lim_{x\to b^-}(g(x)-\alpha)=0$. Следовательно, $\int_a^b f(x)(g(x)-\alpha)dx$ сходится. В силу линейности сходится интеграл

$$\int_a^b f(x)g(x)dx = \int_a^b f(x)(g(x) - \alpha)dx + \alpha \int_a^b f(x)dx.$$

Примеры.

1) Интеграл

$$\int_0^1 \frac{\sin\frac{1}{1-x}}{\sqrt{1-x}} \, dx$$

сходится абсолютно, так как

$$\left| \frac{\sin \frac{1}{1-x}}{\sqrt{1-x}} \right| \le \frac{1}{\sqrt{1-x}} = \frac{1}{(1-x)^{1/2}}$$

и интеграл $\int_0^1 \frac{dx}{(1-x)^{1/2}}$ сходится.

2) Интеграл

$$\int_{1}^{+\infty} \frac{\sin x}{x} \, dx \tag{1.12}$$

сходится по признаку Дирихле. Действительно, пусть $f(x) = \sin x$, g(x) = 1/x. Функция f имеет ограниченную первообразную

$$F(x) = -\cos x, \quad |F(x)| \le 1.$$

Функция g непрерывно дифференцируема, монотонна и стремится к нулю при $x \to +\infty$.

Покажем, что интеграл (1.12) не сходится абсолютно. Применим признак сравнения. Имеем

$$\left| \frac{\sin x}{x} \right| \ge \frac{\sin^2 x}{x} = \frac{1 - \cos 2x}{2x}.$$

Достаточно доказать, что $\int_1^{+\infty} \frac{\sin^2 x}{x} dx$ расходится. Если бы этот интеграл сходился, то сходился бы и интеграл

$$\int_{1}^{+\infty} \frac{dx}{x} = 2 \int_{1}^{+\infty} \frac{\sin^2 x}{x} dx + \int_{1}^{+\infty} \frac{\cos 2x}{x} dx.$$

(Интеграл $\int_1^{+\infty} \frac{\cos 2x}{x} dx$ сходится по признаку Дирихле, это показывается так же, как и выше для интеграла $\int_1^{+\infty} \frac{\sin x}{x} dx$). Однако интеграл $\int_1^{+\infty} \frac{dx}{x}$ расходится.

Таким образом, интеграл (1.12) сходится условно.

1.5 Несобственные интегралы общего вида

Пусть дан несобственный интеграл $\int_a^b f(x) dx$ и на (a,b) существует конечное число точек $t_1 < t_2 < \ldots < t_n$ таких, что интегралы

$$\int_{a}^{t_{1}} f(x)dx, \ \int_{t_{1}}^{t_{2}} f(x)dx, \ \dots, \ \int_{t_{n-1}}^{t_{n}} f(x)dx, \ \int_{t_{n}}^{b} f(x)dx$$

являются простейшими несобственными интегралами. Если все эти интегралы сходятся, то интеграл $\int_a^b f(x)dx$ называется cxodsumumcs, и его значение равно сумме значений соответствующих простейших интегралов. В противном случае интеграл называется pacxodsumumcs.

Отметим, что это определение не зависит от выбора точек t_{j} .

Примеры.

1) Рассмотрим интеграл

$$\int_0^{+\infty} \frac{\sin x}{x} \, dx. \tag{1.13}$$

Разобъем его на два простейших интеграла:

$$\int_0^1 \frac{\sin x}{x} \, dx + \int_1^{+\infty} \frac{\sin x}{x} \, dx.$$

Первый интеграл имеет особенность на нижнем предел и является сходящимся, поскольку $\frac{\sin x}{x} \to 1$, $x \to 0$. Сходимость второго интеграла доказана выше. Следовательно, интеграл (1.13) сходится.

2) Интеграл

$$\int_0^{+\infty} \frac{dx}{x^p} \, dx \tag{1.14}$$

разобъем на два простейших. Первый

$$\int_0^1 \frac{dx}{x^p} \, dx$$

сходится при p < 1, второй

$$\int_{1}^{+\infty} \frac{dx}{x^{p}} dx$$

при p < 1. Следовательно, интеграл (1.14) не сходится ни при каких значениях параметра p.

3) Интеграл

$$\int_0^2 \frac{dx}{\sqrt{1-x}} \, dx$$

сходится, так как сходятся интегралы

$$\int_0^1 \frac{dx}{\sqrt{1-x}} \, dx \quad \text{и} \quad \int_1^2 \frac{dx}{\sqrt{1-x}} \, dx.$$

1.6 Интеграл, понимаемый в смысле главного значения по Коши

Рассмотрим пример. Несобственный интеграл

$$\int_0^1 \frac{dx}{x - 1/2}$$

расходится, так как простейшие несобственные интегралы

$$\int_0^{1/2} \frac{dx}{x - 1/2}, \quad \int_{1/2}^1 \frac{dx}{x - 1/2}$$

расходятся. Таким образом, не существует предела

$$\lim_{t',t''\to 1/2} \left(\int_0^{t'} \frac{dx}{x-1/2} + \int_{t''}^1 \frac{dx}{x-1/2} \right).$$

Однако если выбирать t' t'' не произвольно, а симметрично относительно точки (1/2), то предел существует:

$$\lim_{\varepsilon \to 0+} \left(\int_0^{1/2-\varepsilon} \frac{dx}{x - 1/2} + \int_{1/2+\varepsilon}^1 \frac{dx}{x - 1/2} \right) =$$

$$= \lim_{\varepsilon \to 0+} \left(\ln \left| x - \frac{1}{2} \right|_0^{1/2-\varepsilon} + \ln \left| x - \frac{1}{2} \right|_{1/2+\varepsilon}^1 \right) =$$

$$= \lim_{\varepsilon \to 0+} \left(\ln \varepsilon - \ln(1/2) + \ln(1/2) - \ln \varepsilon \right) = 0.$$

Этот пример наводит на следующее определение.

Пусть несобственный интеграл $\int_a^b f(x)dx$ имеет единственную особенность в точке $c \in (a;b)$. Говорят, что этот интеграл существует в смысле главного значения по Коши, если существует конечный предел

$$\lim_{\varepsilon \to 0+} \left[\int_a^{c-\varepsilon} f(x) dx + \int_{c+\varepsilon}^b f(x) dx \right].$$

Этот предел обозначают

v.p.
$$\int_a^b f(x)dx$$
.

Пример. Пусть функция φ непрерывно дифференцируема на [a;b]. Тогда для любого $c\in(a;b)$ существует интеграл в смысл главного значения по Коши

v.p.
$$\int_a^b \frac{\varphi(x)dx}{x-c}$$
.

Действительно,

$$\frac{\varphi(x)}{x-c} = \frac{\varphi(x) - \varphi(c)}{x-c} + \varphi(c) \frac{1}{x-c},$$

И

$$\begin{split} \lim_{\varepsilon \to 0+} \left[\int_a^{c-\varepsilon} \frac{\varphi(x)dx}{x-c} + \int_{c+\varepsilon}^b \frac{\varphi(x)dx}{x-c} \right] &= \\ &= \lim_{\varepsilon \to 0+} \left[\int_a^{c-\varepsilon} \frac{(\varphi(x) - \varphi(c))dx}{x-c} + \int_{c+\varepsilon}^b \frac{(\varphi(x) - \varphi(c))dx}{x-c} \right] + \\ &+ \varphi(c) \lim_{\varepsilon \to 0+} \left[\int_a^{c-\varepsilon} \frac{dx}{x-c} + \int_{c+\varepsilon}^b \frac{dx}{x-c} \right] = \\ &= \int_a^c \frac{(\varphi(x) - \varphi(c))dx}{x-c} + \int_c^b \frac{(\varphi(x) - \varphi(c))dx}{x-c} + \\ &+ \varphi(c) \lim_{\varepsilon \to 0+} \left[\ln|x-c||_a^{c-\varepsilon} + \ln|x-c||_{c+\varepsilon}^b \right] = \\ &= \int_a^b \frac{(\varphi(x) - \varphi(c))dx}{x-c} + \ln\frac{b-c}{c-a}. \end{split}$$

Последний интеграл существует как несобственный, поскольку имеет особенность только в точке c и в силу дифференцируемости функции φ в этой точки точке

$$\exists \lim_{x \to c} \frac{(\varphi(x) - \varphi(c))}{x - c} = \varphi'(c).$$

2 Числовые ряды

2.1 Сходимость числового ряда

Числовым рядом называется формальная сумма

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \ldots + a_n + \ldots,$$

где a_n — некоторая числовая последовательность.

Yастичной (точнее, n-й частичной) cyммой ряда $\sum_{n=1}^{\infty} a_n$ называется величина $S_n:=\sum_{k=1}^n a_k$. Говорят, что pяд $\sum_{n=1}^{\infty} a_n$ cxoдится, если существует конечный предел $\lim_{n\to\infty} S_n$. При этом число $S:=\lim_{n\to\infty} S_n$ называется cyммой pяда $\sum_{n=1}^{\infty} a_n$ и пишут

$$S = \sum_{n=1}^{\infty} a_n.$$

Если psd не сходится, то говорят, что он pacxodumcs. Если $\lim_{n\to\infty}S_n=+\infty$ или $\lim_{n\to\infty}S_n=-\infty$, то говорят, что ряд pacxodumcs κ $+\infty$ unu $-\infty$.

Примеры.

1) Покажем, что ряд

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots = \sum_{k=1}^{\infty} \frac{1}{k\cdot (k+1)}$$

сходится. Его частичные суммы

$$S_n = \sum_{k=1}^{\infty} \frac{1}{k \cdot (k+1)} = \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1}\right) =$$

$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \ldots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1} \to 1,$$
 $n \to \infty$. Таким образом, ряд сходится и его сумма равна 1.

2) Геометрическая прогрессия

$$1 + q + q^2 + q^3 + \ldots + q^n + \ldots = \sum_{k=1}^{\infty} q^{k-1}$$

имеет частичные суммы

$$S_n = \sum_{k=1}^n q^{k-1} = \frac{1-q^n}{1-q}.$$

Если |q| < 1, то $\lim_{n \to \infty} q^n = 0$ и $S = \lim_{n \to \infty} S_n = \frac{1}{1-q}$. Если $|q| \ge 1$, то ряд расходится.

2.2 Критерий Коши. Необходимое условие сходимости ряда

Теорема (критерий Коши). Числовой ряд $\sum_{n=1}^{\infty} a_n$ сходится тогда и только тогда, когда $\forall \varepsilon > 0 \ \exists N : \forall n \geq m \geq N$ выполнено неравенство

$$\left|\sum_{k=m}^{n} a_k\right| < \varepsilon.$$

Доказательство. Воспользуемся критерием Коши для последовательностей. Числовой ряд $\sum_{n=1}^{\infty} a_n$ сходится тогда и только тогда, когда сходится последовательность частичных сумм S_n . В свою очередь, это будет тогда и только тогда, когда последовательность S_n фундаментальна, т. е. $\forall \, \varepsilon > 0 \, \exists \, N \colon \forall \, n \geq m \geq N \, |S_n - S_{m-1}| < \varepsilon$. (Понятно, что можно брать S_{m-1} вместо S_m .) Остается заметить, что $\sum_{k=m}^n a_k = S_n - S_{m-1}$.

Следствие (необходимое условие сходимости ряда). Eсми pяд $\sum_{n=1}^{\infty} a_n \ cxo\partial umc$ я, $mo \ a_n \to 0, \ n \to \infty$.

Для доказательства достаточно взять в условии теоремы m=n.

Вывод: при исследовании сходимости ряда следует начинать, как правило, с проверки необходимого условия сходимости $\lim_{n\to\infty}a_n=0$. Если это условие не выполняется, то ряд сходиться не может. Если оно выполняется. то ряд может и сходиться, и расходиться, и исследование сходимости требует использования дополнительных признаков или критериев.

Примеры.

1) Рассмотрим сумму геометрической прогрессии

$$\sum_{n=1}^{\infty} q^n.$$

Имеем $q^n \to 0$ тогда и только тогда, когда |q| < 1. Следовательно, при $|q| \ge 1$ ряд расходится.

2) Так называемый гармонический ряд

$$\sum_{n=1}^{\infty} \frac{1}{n} \, .$$

Для него выполняется необходимое условие сходимости ряда: $\frac{1}{n} \to 0$, $n \to \infty$. Покажем, что, тем не менее, ряд расходится. Для этого применим критерий Коши. Установим, что

$$\exists \varepsilon > 0 : \ \forall N \ \exists n \ge m \ge N : \quad \sum_{k=m}^{n} \frac{1}{k} > \varepsilon.$$

Возьмем $\varepsilon=1/2$. Для любого натурального N пусть m=N , n=2N-1 . Тогда

$$\sum_{k=N}^{2N-1} \frac{1}{k} > \sum_{k=N}^{2N-1} \frac{1}{2N} = \frac{1}{2N} \sum_{k=N}^{2N-1} 1 = \frac{1}{2}.$$

Итак, по критерию Коши ряд расходится.

2.3 Сходимость ряда с неотрицательными членами

Отметим на некоторую аналогию между рядами $\sum_{n=1}^{\infty} a_n$ и несобственными интегралами $\int_a^{+\infty} f(x) dx$. При этом аналогом частичной суммы $\sum_{k=1}^n a_k$ выступают интегралы $\int_a^x f(t) dt$.

Теорема. Pяд $\sum_{n=1}^{\infty} a_n$ с неотрицательными членами сходится тогда и только тогда, когда последовательность его частичных сумм ограничена.

 \mathcal{L} оказательство. Так как все $a_n \geq 0$, последовательность S_n является монотонно возрастающей. Но монотонная последовательность имеет конечный предел тогда и только тогда, когда она ограничена.

Следующая теорема позволяет достаточно просто исследовать сходимость рядов с использованием сравнения рядов с интегралами. Например, ряду

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

можно сопоставить интеграл

$$\int_{1}^{+\infty} \frac{dx}{\sqrt{x}},$$

сходимость которого очевидна. Так как интеграл сходится, то отсюда можно вывести сходимость ряда.

Теорема (интегральный признак сходимости ряда). Пусть дана невозрастающая функция $f:[1;+\infty) \to [0;+\infty)$. Ряд $\sum_{n=1}^{\infty} f(n)$ сходится тогда и только тогда, когда сходится интеграл $\int_{1}^{+\infty} f(x) dx$.

Доказательство. Пусть k=[x]. Тогда $f(k+1) \leq f(x) \leq f(k)$. Интегрируя, получаем

$$f(k+1) \le \int_k^{k+1} f(x)dx \le f(k).$$

Суммируя эти неравенства, имеем

$$\sum_{k=1}^{n-1} f(k+1) \le \int_1^n f(x) dx \le \sum_{k=1}^{n-1} f(k)$$

или

$$S_n - f(1) \le \int_1^n f(x)dx \le S_{n-1}.$$
 (2.1)

Если ряд $\sum_{n=1}^{\infty} f(n)$ сходится, то последовательность S_n сходится, следовательно, ограничена, т. е. существует M>0 такое, что $S_n\leq M$, $n\geq 1$. Обозначим $F(x)=\int_1^x f(t)dt$. Тогда в силу неотрицательности f и (2.1)

$$F(x) \le \int_{1}^{n+1} f(t)dt \le S_n \le M,$$

где n=[x]. Значит монотонно возрастающая функция F ограничена сверху, поэтому имеет конечный предел при $x\to +\infty$. Это означает сходимость интеграла $\int_1^{+\infty} f(x) dx$.

Обратно, из сходимости интеграла следует. что функция F ограничена сверху, т. е. существует константа C>0 такая, что $|F(x)|\leq C$, $x\geq 1$. Используя (2.1), получаем, что $S_n\leq f(1)+C$, $n\geq 1$. Из предыдущей теоремы следует, что ряд $\sum_{n=1}^{\infty}f(n)$ сходится.

Примеры.

- 1) Рассмотрим ряд $\sum_{n=1}^{\infty} \frac{1}{n^p}$. Если $p \leq 0$, то этот ряд расходится, так как не выполняется необходимое условие сходимости ряда. Пусть теперь p>0. Тогда функция $f(x)=\frac{1}{x^p}$ неотрицательна и монотонно убывает на $[1;+\infty)$. Интеграл $\int_1^{+\infty} \frac{dx}{x^p}$ сходится тогда и только тогда, когда p>1. Следовательно, ряд $\sum_{n=1}^{\infty} \frac{1}{n^p}$ сходится тогда и только тогда, когда p>1.
- 2) Ряд $\sum_{n=2}^{\infty} \frac{1}{n \ln^2 n}$ сходится. Действительно, функция $f(x) = \frac{1}{x \ln^2 x}$ неотрицательна и монотонно убывает на $[2; +\infty)$, а интеграл

$$\int_{2}^{+\infty} \frac{dx}{x \ln^{2} x} = \int_{2}^{+\infty} \frac{d \ln x}{\ln^{2} x} = \int_{\ln 2}^{+\infty} \frac{dt}{t^{2}} = 1$$

сходится. (Конечно, то обстоятельство, что суммирование начинается с 2 не существенно!)

2.4 Верхний и нижний пределы последовательности

По теореме Больцано-Вейерштрасса из любой ограниченной последовательности x_n можно выделить сходящуюся в \mathbb{R} подпоследовательность. Если последовательность не ограничена, то тогда существует ее подпоследовательность, сходящаяся либо к $+\infty$ либо к $-\infty$. В любом случае, из любой последовательности можно выделить подпоследовательность, сходящуюся в \mathbb{R} к некоторому числу a. Будем называть число a частичным пределом последовательности x_n . Обозначим через $A(x_n)$ множество всех частичных пределов последовательности x_n . Как мы показали, это множество непусто.

Примеры. 1) Рассмотрим последовательность $1, -1, 1, -1, 1, -1, \dots$ Очевидно, что множество частичных пределов $A(x_n) = \{-1, 1\}$.

- 2) Пусть $x_n = (-1)^n + \frac{1}{n}$. Тогда $A(x_n) = \{-1, 1\}$.
- 3) Занумеруем множество рациональных чисел \mathbb{Q} натуральными числами. В результате получаем последовательность x_n . Что можно сказать про $A(x_n)$?
- 4) Пусть натуральное число $n = \overline{\alpha_1 \alpha_2 \dots \alpha_k}$, т. е. α_j цифры числа n в его десятичной записи. Рассмотрим последовательность $x_n = 0, \alpha_1 \alpha_2 \dots \alpha_k$. Выпишем несколько первых членов последовательности:

$$0, 1; 0, 2; 0, 3; \dots; 0, 9; 0, 10; 0, 11; 0, 12; \dots$$

Тогда $A(x_n)=[0,1;1]$. Действительно, пусть $x\in[0,1;1]$. Тогда x можно представить в виде бесконечной десятичной дроби $x=0,\beta_1\beta_2\dots$ Пусть $y_n=0,\beta_1\beta_2\dots\beta_n$. Существует натуральное число k_n такое, что $y_n=x_{k_n}$. Тогда $\lim_{n\to\infty}x_{k_n}=\lim_{n\to\infty}y_n=x$. С другой стороны, множество членов последовательности лежит в [0,1;1], поэтому $A(x_n)$ лежит в [0,1;1].

Теорема 1. Для любой числовой последовательности x_n множество $A(x_n)$ содержит свои точные верхнюю и нижнюю грани.

Доказательство. Рассмотрим для примера случай точной верхней

грани. Пусть $a=\sup A(x_n)\in\mathbb{R}$. В силу свойств sup существует последовательность $a_m\in A(x_n)$, сходящаяся к a. Так как $a_m\in A(x_n)$, существует x_{n_m} такое, что $|x_{n_m}-a_m|<\frac{1}{m}$. (Можно выбирать номера n_m последовательно таким образом, чтобы они возрастали с ростом m.) Тогда $|x_{n_m}-a|\leq |x_{n_m}-a_m|+|a_m-a|<\frac{1}{m}+|a_m-a|\to 0,\ m\to\infty$. Следовательно, $\lim_{m\to\infty}x_{n_m}=a$, т. е. $a\in A(x_n)$.

Если $a=-\infty$, то $A(x_n)=\{-\infty\}$ содержит одну точку — точку a. Если $a=+\infty$, то последовательность x_n не ограничена сверху, следовательно содержит подпоследовательность, сходящуюся к $+\infty$. Теорема доказана.

Определение. Число $\sup A(x_n)$ называется верхним пределом последовательности x_n , a $\inf A(x_n)$ — нижним пределом.

Обозначается верхний предел $\overline{\lim}_{n\to\infty}x_n$, а нижний — $\underline{\lim}_{n\to\infty}x_n$. Очевидна следующая

Теорема 2. Справедливо неравенство

$$\underline{\lim}_{n\to\infty} x_n \le \overline{\lim}_{n\to\infty} x_n.$$

Последовательность x_n сходится тогда и только тогда, когда выполняется равенство $\overline{\lim}_{n\to\infty} x_n = \underline{\lim}_{n\to\infty} x_n$, при этом

$$\lim_{n \to \infty} x_n = \overline{\lim}_{n \to \infty} x_n = \underline{\lim}_{n \to \infty} x_n.$$

Теорема 3 (характеристическое свойство верхнего предела). Вещественное число а является верхним пределом последовательности x_n тогда и только тогда, когда выполняются два условия:

- 1) $\forall \varepsilon > 0 \ \exists N \colon \forall n \geq N \ (x_n < a + \varepsilon);$
- 2) $\forall \varepsilon > 0 \ \forall N \colon \exists n \ge N \ (x_n > a \varepsilon).$

Замечание. Если имеет место условие $\exists N \colon \forall n \geq N \ (x_n \in A)$, то множество A называется ловушкой последовательности x_n . Если имеет место условие $\forall N \colon \exists n \geq N \ (x_n \in A)$, то множество A называется кормушкой последовательности x_n . Число $a \in \mathbb{R}$ является верхним пределом последовательности x_n тогда и только тогда, когда $\forall \varepsilon > 0$ множество $(-\infty; a + \varepsilon)$ является ловушкой x_n , а $(-\infty; a - \varepsilon)$ — кормушкой.

Доказательство. Необходимость. Пусть $a = \overline{\lim}_{n \to \infty} x_n$. Предположим, что 1) не имеет место. Тогда $\exists \, \varepsilon > 0 \, \, \forall \, N \colon \exists \, n \geq N \, \, (x_n \geq a + \varepsilon)$. Это означает, что существует подпоследовательность x_{n_k} , для которой выполняется неравенство $x_{n_k} \geq a + \varepsilon$. Выделим из x_{n_k} сходящуюся подпоследовательность $x_{n_{k_j}}$. Ее предел α удовлетворяет условию $\alpha \geq a + \varepsilon > a$. Таким образом, существует $\alpha \in A(x_n)$ такое, что $\alpha > a$. Это противоречит тому, что $a = \overline{\lim}_{n \to \infty} x_n$.

Теперь предположим, что условие 2) не выполняется. Тогда $\exists N$: $\forall n \geq N \ (x_n \leq a - \varepsilon)$. Таким образом, для любой сходящейся подпоследовательности x_{n_k} с некоторого номера выполняется неравенство $x_{n_k} \leq a - \varepsilon$. Значит, и любой частичный предел β последовательности x_n удовлетворяет неравенству $\beta \leq a - \varepsilon$. Поэтому $a \leq a - \varepsilon$ — противоречие.

Достаточность. Пусть выполняются 1) и 2). Из 1) следует, что для любого $\varepsilon > 0$ любой частичный предел α удовлетворяет неравенству $\alpha \leq a + \varepsilon$. Следовательно, $\alpha \leq a$, т. е. a — мажоранта множества $A(x_n)$ и $\sup A(x_n) \leq a$. Из 2) следует, что для любого $\varepsilon > 0$ существует подпоследовательность x_{n_k} , удовлетворяющая неравенству $x_{n_k} > a - \varepsilon$. Выделим из x_{n_k} подпоследовательность, сходящуюся к некоторому β . Тогда $\beta \in A(x_n)$, $\beta \geq a - \varepsilon$. Следовательно, $\sup A(x_n) \geq a$, откуда $\sup A(x_n) = a$. Теорема доказана.

Теорема 4 (характеристическое свойство нижнего предела). Вещественное число а является нижним пределом последовательности x_n тогда и только тогда, когда выполняются два условия:

- 1) $\forall \varepsilon > 0 \ \exists N \colon \forall n \geq N \ (x_n > a \varepsilon);$
- 2) $\forall \varepsilon > 0 \ \forall N \colon \exists n \ge N \ (x_n < a + \varepsilon).$

Упражнения. 1) Сформулируйте аналоги теорем 3 и 4 для случая, когда точка $a=\pm\infty$.

2) Докажите, что

$$\overline{\lim}_{n \to \infty} x_n = \lim_{n \to \infty} \sup_{m \ge n} x_m, \quad \underline{\lim}_{n \to \infty} x_n = \lim_{n \to \infty} \inf_{m \ge n} x_m.$$

Замечание. Утверждение упражнения 2) объясняет другие часто встречающиеся обозначения для верхнего и нижнего пределов: $\limsup_{n\to\infty} x_n$ и $\liminf_{n\to\infty} x_n$.

2.5 Теоремы сравнения для знакопостоянных рядов

Для рядов с неотрицательными членами последовательность частичных сумм монотонно возрастает. Поэтому сходимость таких рядов равносильна ограниченности последовательности частичных сумм.

Теорема 1. Пусть $0 \le a_n \le b_n$, $n \ge 1$. Если ряд $\sum_{n=1}^{\infty} b_n$ сходится, то сходится и ряд $\sum_{n=1}^{\infty} a_n$. Если ряд $\sum_{n=1}^{\infty} a_n$ расходится, то и ряд $\sum_{n=1}^{\infty} b_n$ расходится.

Доказательство. Пусть $S_n = \sum_{k=1}^n a_k$, $\Sigma_n = \sum_{k=1}^n b_k$ — частичные суммы. Так как a_k , $b_k \geq 0$, то последовательности S_n , Σ_n возрастают. Если ряд $\sum_{n=1}^\infty b_n$ сходится, то последовательность $\Sigma_n = \sum_{k=1}^n b_k$ имеет конечный предел Σ , следовательно, ограничена сверху числом Σ . Из неравенства $0 \leq S_n \leq \Sigma_n \leq \Sigma$, $n \geq 1$, следует, что монотонная последовательность S_n ограничена, поэтому имеет конечный предел. Это означает сходимость ряда $\sum_{n=1}^\infty a_n$. Теорема доказана.

Замечание. Сходимость ряда не зависит от величины первых членов. Поэтому теорема 1 справедлива и в случае, если условие $0 \le a_n \le b_n$ выполняется при $n \ge n_0$, где n_0 — некоторое число. Это же справедливо и для других признаков.

Теорема 2. Пусть $a_n, b_n > 0, n \ge 1$.

- 1) Если $\overline{\lim}_{n\to\infty}\frac{a_n}{b_n}<+\infty$, то из сходимости ряда $\sum_{n=1}^\infty b_n$ следу-ет сходимость ряда $\sum_{n=1}^\infty a_n$.
- 2) Если $\lim_{n\to\infty}\frac{a_n}{b_n}>0$, то из расходимости ряда $\sum_{n=1}^\infty b_n$ следует расходимость ряда $\sum_{n=1}^\infty a_n$.

Доказательство. 1) Пусть $\overline{\lim}_{n\to\infty} \frac{a_n}{b_n} = \alpha < +\infty$. Выберем β так, чтобы $\alpha < \beta < +\infty$. По характеристическому свойству верхнего предела $\exists N \colon \forall n \geq N \ (\frac{a_n}{b_n} < \beta)$. Следовательно, $a_n < \beta b_n$, $n \geq N$. Если ряд $\sum_{n=1}^{\infty} b_n$ сходится, то ряд $\sum_{n=1}^{\infty} (\beta b_n)$ также сходится. По теореме 1 сходится ряд $\sum_{n=1}^{\infty} a_n$.

2) Если $\alpha = \underline{\lim}_{n \to \infty} \frac{a_n}{b_n} > 0$, то $\overline{\lim}_{n \to \infty} \frac{b_n}{a_n} = \frac{1}{\alpha} < +\infty$, и остается применить утверждение 1).

Теорема 3. Пусть a_n , $b_n > 0$ и $\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n}$, $n \ge 1$. Если ряд $\sum_{n=1}^{\infty} b_n$ сходится, то ряд $\sum_{n=1}^{\infty} a_n$ также сходится.

Доказательство. Имеем

$$\frac{a_2}{a_1} \cdot \frac{a_3}{a_2} \cdot \frac{a_4}{a_3} \cdot \dots \cdot \frac{a_n}{a_{n-1}} \le \frac{b_2}{b_1} \cdot \frac{b_3}{b_2} \cdot \frac{b_4}{b_3} \cdot \dots \cdot \frac{b_n}{b_{n-1}},$$

то есть

$$\frac{a_n}{a_1} \le \frac{b_n}{b_1}, \ n \ge 1.$$

Следовательно, $a_n \leq \frac{a_1}{b_1} b_n$, $n \geq 1$, и в силу теоремы 1 получаем утверждение нашей теоремы.

Теорема 4 (признак Даламбера). Пусть $a_n > 0$, $n \ge 1$. Если выполняется неравенство $\overline{\lim}_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$, то ряд $\sum_{n=1}^{\infty} a_n$ сходится. Если $\underline{\lim}_{n\to\infty} \frac{a_{n+1}}{a_n} > 1$, то ряд $\sum_{n=1}^{\infty} a_n$ расходится.

Доказательство. Пусть $\alpha=\overline{\lim}_{n\to\infty}\frac{a_{n+1}}{a_n}<1$. Фиксируем некоторое число $q\in(\alpha;1)$. По характеристическому свойству верхнего предела $\exists N:$ $\forall n\geq N$

$$\frac{a_{n+1}}{a_n} \le q = \frac{q^{n+1}}{q^n}.$$

Ряд $\sum_{n=1}^{\infty}q^n$ сходится, так как q<1. По теореме 3 сходится ряд $\sum_{n=1}^{\infty}a_n$. Пусть теперь $\beta:=\varliminf_{n\to\infty}\frac{a_{n+1}}{a_n}>1$. Фиксируем число $q\in(1;\beta)$. Тогда

$$\frac{a_{n+1}}{a_n} \ge q = \frac{q^{n+1}}{q^n}, \ n \ge N,$$

для некоторого N . Так как ряд $\sum_{n=1}^{\infty}q^n$ расходится (q>1), по теореме 3 ряд $\sum_{n=1}^{\infty}a_n$ также расходится.

Теорема 5 (радикальный признак Коши) $\Pi y cm b$ $a_n \geq 0$ npu $n \geq 1$. Ecnu $\overline{\lim}_{n \to \infty} \sqrt[n]{a_n} < 1$, mo psd $\sum_{n=1}^{\infty} a_n$ cxodumcs, ecnu $\overline{\lim}_{n \to \infty} \sqrt[n]{a_n} > 1$, mo psd $\sum_{n=1}^{\infty} a_n$ pacxodumcs.

Доказательство. Пусть $\alpha := \overline{\lim}_{n \to \infty} \sqrt[n]{a_n} < 1$. Фиксируем число $q \in (\alpha; 1)$. В силу характеристического свойства верхнего предела заключаем, что $\exists N \colon \forall n \geq N \ (\sqrt[n]{a_n} < q)$, т. е. $a_n < q^n$. Так как ряд $\sum_{n=1}^{\infty} q^n$ сходится (q < 1), по теореме 1 сходится ряд $\sum_{n=1}^{\infty} a_n$.

Пусть теперь $\alpha := \overline{\lim}_{n \to \infty} \sqrt[n]{a_n} > 1$. Тогда существует подпоследовательность n_k такая, что при достаточно больших k имеет место неравенство $\sqrt[n_k]{a_{n_k}} > 1$, т. е. $a_{n_k} > 1$. Но тогда $a_n \not\to 0$, $n \to \infty$. Следовательно, не выполняется необходимое условие сходимости ряда $\sum_{n=1}^{\infty} a_n$, и ряд расходится.

Примеры.

1) Ряд $\sum_{n=1}^{\infty} \frac{1}{n!}$ сходится по признаку Даламбера, так как

$$a_n = \frac{1}{n!}, \quad \frac{a_{n+1}}{a_n} = \frac{1}{n+1} \to 0 < 1, \ n \to \infty.$$

2) Ряд $\sum_{n=1}^{\infty} \frac{1}{n^n}$ сходится по радикальному признаку Коши, так как

$$\sqrt[n]{a_n} = \frac{1}{n} \to 0 < 1, \ n \to \infty.$$

3) Ряд $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ сходится по признаку Даламбера, так как

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!} = \frac{n^n}{(n+1)^n} = \frac{1}{\left(1 + \frac{1}{n}\right)^n} \to \frac{1}{e} < 1, \quad n \to \infty.$$

- 4) Рассмотрим ряд $\sum_{n=1}^{\infty} \frac{2^n}{((-1)^n+2)^n}$. Имеем $\sqrt[n]{a_n} = \frac{2}{(-1)^n+2}$. По радикальному признаку Коши ряд расходится, так как $\overline{\lim}_{n\to\infty} \sqrt[n]{a_n} = 2 > 1$.
- 5) Теперь рассмотрим ряд $\sum_{n=1}^{\infty} \frac{1}{n^p}$. Так как $\frac{a_{n+1}}{a_n} \to 1$, $\sqrt[n]{a_n} \to 1$, $n \to \infty$, то ни признак Даламбера, ни признак Коши не дают ответа, сходится ряд или нет. Однако мы знаем, что при p>1 ряд сходится, при $p \le 1$ расходится. Этот пример показывает, что для исследования некоторых рядов нужны более тонкие признаки, чем признаки Коши и Даламбера. Одним из таких признаков является признак Раабе.

Теорема 6 (признак Раабе). Пусть $a_n > 0$, $n \ge 1$. Если

$$\underline{\lim}_{n \to \infty} n \left(1 - \frac{a_{n+1}}{a_n} \right) > 1,$$

то ряд $\sum_{n=1}^{\infty} a_n$ сходится.

Если

$$\overline{\lim}_{n \to \infty} n \left(1 - \frac{a_{n+1}}{a_n} \right) < 1,$$

то ряд $\sum_{n=1}^{\infty} a_n$ расходится.

Доказательство. 1) Пусть $\beta:=\varliminf_{n\to\infty}n\left(1-\frac{a_{n+1}}{a_n}\right)>1$. Фиксируем $\lambda\in(1;\beta)$. Тогда $\exists N\colon\forall n\geq N$

$$n\left(1-\frac{a_{n+1}}{a_n}\right) > \lambda \Longrightarrow \frac{a_{n+1}}{a_n} < 1-\frac{\lambda}{n} < 1-\frac{\lambda}{n+1}.$$

Докажем, что при 0 < x < 1 выполняется неравенство

$$1 - \lambda x < (1 - x)^{\lambda}.$$

Действительно, функция $f(x):=1-\lambda x-(1-x)^\lambda$ имеет производную

$$f'(x) = -\lambda(1 - (1 - x)^{\lambda - 1}) < 0, \ x \in (0; 1),$$

следовательно она строго монотонно убывает на [0;1]. Из неравенства f(x) < f(0) = 0 следует доказываемое неравенство. Применяя его, получаем

$$\frac{a_{n+1}}{a_n} < 1 - \frac{\lambda}{n+1} < \left(1 - \frac{1}{n+1}\right)^{\lambda} = \left(\frac{n}{n+1}\right)^{\lambda} = \frac{b_{n+1}}{b_n},$$

где $b_n = \frac{1}{n^{\lambda}}$. Итак,

$$\frac{a_{n+1}}{a_n} < \frac{b_{n+1}}{b_n}, \quad n \ge N.$$

Так как ряд $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^{\lambda}}$ сходится, то по признаку сравнения (теорема 3) ряд $\sum_{n=1}^{\infty} a_n$ сходится.

2) Пусть
$$\gamma:=\overline{\lim}_{n\to\infty}n\left(1-\frac{a_{n+1}}{a_n}\right)<1$$
. Тогда $\exists N\colon \forall n\geq N$
$$n\left(1-\frac{a_{n+1}}{a_n}\right)<1\Longrightarrow \frac{a_{n+1}}{a_n}>\frac{b_{n+1}}{b_n},$$

где $b_n = \frac{1}{n-1}$. Ряд $\sum_{n=2}^{\infty} b_n = \sum_{n=2}^{\infty} \frac{1}{n-1}$ расходится, поэтому по признаку сравнения (теорема 3) ряд $\sum_{n=1}^{\infty} a_n$ расходится. Теорема доказана.

Замечание. Если выполняется одно из равенств

$$\underline{\lim_{n \to \infty}} \, n \left(1 - \frac{a_{n+1}}{a_n} \right) = 1$$
 или $\overline{\lim_{n \to \infty}} \, n \left(1 - \frac{a_{n+1}}{a_n} \right) = 1,$

то из этого нельзя вывести информацию о сходимости (расходимости ряда) без дополнительных исследований. Однако есть более тонкие признаки, например, признак Гаусса, которые позволяют иногда доказывать сходимость (расходимость) рядов.

Примеры. 1) Применим признак Раабе к исследованию сходимости ряда

$$\sum_{n=1}^{\infty} \frac{n!}{(x+1)(x+2)\cdot\ldots\cdot(x+n)},$$

где x — некоторое число, не являющееся целым отрицательным. Имеем

$$\frac{a_{n+1}}{a_n} = \frac{n+1}{x+n+1},$$

$$\lim_{n\to\infty} n\left(1 - \frac{a_{n+1}}{a_n}\right) = \lim_{n\to\infty} n\left(1 - \frac{n+1}{x+n+1}\right) = \lim_{n\to\infty} n\frac{x}{x+n+1} = x.$$

Если x > 1, то ряд сходится, если x < 1, то ряд расходится. Если x = 1, то получаем по существу гармонический ряд, который тоже расходится.

$$\sum_{1}^{\infty} \frac{\left(\frac{n}{e}\right)^n}{n!}.$$

Имеем

$$\frac{a_{n+1}}{a_n} = \left(\frac{n+1}{n}\right)^n \frac{1}{e},$$

откуда с использованием замены переменной и правила Лопиталя получаем

$$\lim_{n \to \infty} n \left(1 - \frac{a_{n+1}}{a_n} \right) = \lim_{n \to \infty} n \left(1 - \frac{1}{e} \left(1 + \frac{1}{n} \right)^n \right) =$$

$$= \lim_{x \to 0+} \frac{1 - \frac{1}{e} (1+x)^{1/x}}{x} = -\lim_{x \to 0+} \frac{1}{e} (1+x)^{1/x} \left(\frac{\ln(1+x)}{x} \right)' =$$

$$= -\frac{1}{e} \lim_{x \to 0+} (1+x)^{1/x} \lim_{x \to 0+} \frac{\frac{1}{1+x} x - \ln(1+x)}{x^2} =$$

$$-\lim_{x \to 0+} \frac{x - (1+x) \ln(1+x)}{x^2} = -\lim_{x \to 0+} \frac{-\ln(1+x)}{x} = \frac{1}{2} < 1.$$

Следовательно, ряд расходится.

2.6 Некоторые дополнительные свойства числовых рядов

- 1) Если сходятся ряды $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$, то для любых λ , $\mu \in \mathbb{R}$ сходится и ряд $\sum_{n=1}^{\infty} (\lambda a_n + \mu b_n)$, и $\sum_{n=1}^{\infty} (\lambda a_n + \mu b_n) = \sum_{n=1}^{\infty} \lambda a_n + \sum_{n=1}^{\infty} \mu b_n$.
- 2) Сходимость ряда не зависит от первых членов: для любого N ряд $\sum_{n=1}^{\infty} a_n$ сходится тогда и только тогда, когда сходится ряд $\sum_{n=N}^{\infty} a_n$.
- 3) Группировка членов ряда. Пусть $l_1 < l_2 < \ldots < l_n < \ldots$ некоторая последовательность натуральных чисел. Рассмотрим ряд $\sum_{n=1}^{\infty} a_n$ и последовательность $b_1 = \sum_{n=1}^{l_1}, \ b_2 = \sum_{l_1+1}^{l_2}, \ldots, b_n = \sum_{l_{n-1}+1}^{l_n} \ldots$

Если ряд $\sum_{n=1}^{\infty} a_n$ сходится, то сходится и ряд $\sum_{n=1}^{\infty} b_n$, и суммы этих рядов равны. Действительно, n-я частичная сумма ряда $\sum_{n=1}^{\infty} b_n$ равна

$$\sum_{k=1}^{n} b_k = \sum_{j=1}^{l_n} a_j,$$

т.е. совпадает с l_n -й частичной суммой S_{l_n} ряда $\sum_{n=1}^{\infty} a_n$. Так как последовательность S_n имеет конечный предел, ее подпоследовательность также имеет тот же конечный предел.

Обратное утверждение неверно. Рассмотрим расходящийся ряд

$$\sum_{n=1}^{\infty} (-1)^n = 1 - 1 + 1 - 1 + \dots$$

Сгруппируем его члены таким образом:

$$(1-1) + (1-1) + (1-1) + \ldots = 0 + 0 + 0 + \ldots$$

В результате получаем сходящийся ряд. Однако справедливо следующее утверждение.

Теорема. Пусть

$$b_n = \sum_{l_{n-1}+1}^{l_n} a_n. (2.2)$$

Если $a_n \to 0$, $n \to \infty$, и последовательность $l_n - l_{n-1}$ (число членов в сумме (2.2)) ограничена, то из сходимости ряда $\sum_{n=1}^{\infty} b_n$ следует сходимость ряда $\sum_{n=1}^{\infty} a_n$.

Для доказательства рассмотрим частичные суммы ряда $\sum_{n=1}^{\infty} a_n$. Имеем

$$\sum_{n=1}^{p} a_n = \sum_{k=1}^{q} b_k + \sum_{n=l_q+1}^{p} a_n,$$

где q таково, что $l_q \leq p \leq l_{q+1}$. При $p \to \infty$ имеем $q \to \infty$ и суммы $\sum_{k=1}^q b_k \to \sum_{k=1}^\infty b_k$. Докажем, что $\sum_{n=l_q+1}^p a_n \to 0$, $p \to \infty$.

Пусть $l_n - l_{n-1} \le M$ для любого n. Тогда, с использованием необходимого условия сходимости ряда, получаем

$$\left| \sum_{n=l_q+1}^{p} a_n \right| \le \sum_{n=l_q+1}^{p} |a_n| \le \sum_{n=l_q+1}^{l_{q+1}} |a_n| \le$$

$$\le (l_{q+1} - l_q) \max_{l_q+1 \le n \le l_{q+1}} |a_n| \le M \max_{l_q+1 \le n \le l_{q+1}} |a_n| \to 0,$$

 $p \to \infty$. Теорема доказана.

2.7 Признаки Дирихле и Абеля

Теорема 1 (признак Дирихле). Pя $\partial \sum_{n=1}^{\infty} a_n b_n$ $cxo \partial umc$ я, ecnu

- 1) последовательность a_n монотонна;
- $2) \lim_{n\to\infty} a_n = 0;$

3) последовательность частичных сумм $B_n = \sum_{k=1}^n b_k$ ряда $\sum_{k=1}^\infty b_k$ ограничена.

Доказательство. Для $n \ge m > 1$ имеем

$$\sum_{k=m}^{n} a_k b_k = \sum_{k=m}^{n} a_k (B_k - B_{k-1}) = \sum_{k=m}^{n} a_k B_k - \sum_{k=m}^{n} a_k B_{k-1} =$$

$$= \sum_{k=m}^{n} a_k B_k - \sum_{k=m-1}^{n-1} a_{k+1} B_k = \sum_{k=m}^{n} a_k B_k - \sum_{k=m}^{n} a_{k+1} B_k + a_{n+1} B_n - a_m B_{m-1} =$$

$$= \sum_{k=m}^{n} (a_k - a_{k+1}) B_k + a_{n+1} B_n - a_m B_{m-1}.$$

Последовательность a_n монотонна. Без ограничения общности можно считать, что a_n монотонно убывает. Так как $\lim_{n\to\infty}a_n=0$, то $a_n\geq 0,\ n\geq 1$. Кроме того, существует C>0 такое, что $|B_k|\leq C,$ $k\geq 1$. Тогда

$$\left| \sum_{k=m}^{n} a_k b_k \right| \le \sum_{k=m}^{n} |a_k - a_{k+1}| |B_k| + |a_{n+1}| |B_n| + |a_m| |B_{m-1}| \le$$

$$\le C \left(\sum_{k=m}^{n} |a_k - a_{k+1}| + |a_{n+1}| + |a_m| \right) = C \left(\sum_{k=m}^{n} (a_k - a_{k+1}) + a_{n+1} + a_m \right) =$$

$$= C((a_m - a_{n+1}) + a_m + a_{n+1}) = 2Ca_m.$$

Для любого $\varepsilon>0$ выберем N так, чтобы $a_m<\frac{\varepsilon}{2C}$. Тогда при $n\geq m\geq N$ получаем

$$\left|\sum_{k=m}^{n} a_k b_k\right| < \varepsilon.$$

По критерию Коши ряд $\sum_{n=1}^{\infty} a_n b_n$ сходится.

Теорема 2 (признак Абеля). Pя $\partial \sum_{n=1}^{\infty} a_n b_n \ cxo \partial umc$ я, если

- 1) последовательность a_n монотонна;
- 2) последовательность a_n ограничена;
- 3) ряд $\sum_{k=1}^{\infty} b_k$ сходится.

 \mathcal{A} оказательство. Из условий 1) и 2) следует, что существует конечный предел $a:=\lim_{n\to\infty}a_n$. Тогда

$$\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} (a_n - a) b_n + \sum_{n=1}^{\infty} a b_n.$$

Первый ряд $\sum_{n=1}^{\infty} (a_n - a)b_n$ сходится по признаку Дирихле, так как последовательность $(a_n - a)$ монотонна и стремится к нулю, а последовательность частичных сумм ряда $\sum_{k=1}^{\infty} b_k$ имеет конечный предел, следовательно, ограничена. Второй ряд $\sum_{n=1}^{\infty} ab_n$ сходится в силу условия 3). Тогда в силу линейности и ряд $\sum_{n=1}^{\infty} a_n b_n$ сходится.

Пример. Рассмотрим ряд

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n}.$$

Если $x = 2\pi n$, $n \in \mathbb{N}$, то ряд очевидно сходится. Пусть $x \neq 2\pi n \ \forall n \in \mathbb{N}$. Покажем, что в этом случае ряд сходится по признаку Дирихле. Действительно, пусть $a_n = \frac{1}{n}$, $b_n = \sin nx$. Очевидно, что a_n монотонно убывает и стремится к нулю. Рассмотрим частичные суммы

$$B_n = \sum_{k=1}^n b_k = \sum_{k=1}^n \sin kx.$$

Имеем

$$2\sin\frac{x}{2}B_n = \sum_{k=1}^n 2\sin\frac{x}{2}\sin kx = \sum_{k=1}^n \left(\cos\frac{(2k-1)x}{2} - \cos\frac{(2k+1)x}{2}\right) =$$

$$= \left(\cos\frac{x}{2} - \cos\frac{3x}{2}\right) + \left(\cos\frac{x}{2} - \cos\frac{3x}{2}\right) + \dots +$$

$$+ \left(\cos\frac{(2n-1)x}{2} - \cos\frac{(2n+1)x}{2}\right) =$$

$$= \cos\frac{x}{2} - \cos\frac{(2n+1)x}{2} = 2\sin\frac{nx}{2}\sin\frac{(n+1)x}{2}.$$

Следовательно,

$$|B_n| = \left| \frac{\sin \frac{nx}{2} \sin \frac{(n+1)x}{2}}{\sin \frac{x}{2}} \right| \le \frac{1}{|\sin \frac{x}{2}|}.$$

Итак, последовательность B_n ограничена, поэтому исходный ряд сходится по признаку Дирихле.

Теорема 3 (признак Лейбница). Пусть a_n — монотонно убывающая последовательность $u\lim_{n\to\infty}a_n=0$. Тогда ряд

$$a_1 - a_2 + a_3 - a_4 + \ldots + (-1)^{n+1} a_n$$

сходится.

Справедливость признака Лейбница легко обосновывается с помощью признака Дирихле, если положить $b_n = (-1)^{n+1}$.

2.8 Признак абсолютной сходимости ряда

Ряд $\sum_{n=1}^{\infty} a_n$ называется *абсолютно сходящимся*, если сходится ряд $\sum_{n=1}^{\infty} |a_n|$.

Теорема 1. Абсолютно сходящийся ряд сходится.

Доказательство. Так как $|\sum_{k=m}^n a_k| \le \sum_{k=m}^n |a_k|$, утверждение сразу следует из критерия Коши.

Замечание. Если ряд сходится, то $\sum_{n=1}^{\infty} a_n$, то отсюда не следует, что сходится ряд $\sum_{n=1}^{\infty} |a_n|$.

Пример. Ряд $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ сходится по признаку Лейбница, но не сходится абсолютно, так как гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится.

Если psd сходится, но не сходится абсолютно, то говорят, что он $cxodumcs\ ycлosho.$ Справедлива

Теорема 2. Если ряд $\sum_{n=1}^{\infty} a_n$ сходится условно, то для любого числа $A \in \overline{\mathbb{R}}$ существует биекция $f: \mathbb{N} \to \mathbb{N}$ такая, что ряд $\sum_{n=1}^{\infty} a_{f(n)}$ сходится к числу A.

Таким образом, сумма ряда существенно зависит от порядка следования его членов. Однако для абсолютно сходящихся рядов сумма не зависит от порядка суммирования.

Теорема 3. Если ряд $\sum_{n=1}^{\infty} a_n$ сходится абсолютно, то для любой биекции $f: \mathbb{N} \to \mathbb{N}$ ряд $\sum_{n=1}^{\infty} a_{f(n)}$ сходится абсолютно, причем к той же сумме.

Доказательство. Имеем

$$\sum_{k=1}^{n} |a_{f(k)}| \le \sum_{j=1}^{l} |a_j| \le \sum_{j=1}^{\infty} |a_j| < +\infty,$$

где $l=\max\{f(1),f(2),\ldots,f(n)\}$. Следовательно, последовательность частичных сумм ряда $\sum_{n=1}^{\infty}|a_{f(n)}|$ ограничена и ряд сходится.

Теперь докажем, что ряд $\sum_{n=1}^{\infty} a_{f(n)}$ сходится к той же сумме, что и ряд $\sum_{n=1}^{\infty} a_n$. По критерию Коши $\forall \varepsilon > 0$ $\exists N \colon \forall n \geq m \geq N$ $\sum_{k=m}^{n} |a_n| < \varepsilon$. Рассмотрим частичную сумму $S_N = \sum_{k=1}^{N} a_k$. Любое a_k является одновременно некоторым $a_{f(l_k)}$, где $l_k = f^{-1}(k)$. Пусть $\widetilde{m} = \max_{1 \leq k \leq N} l_k$. Ясно, что $\widetilde{m} \geq N$. Пусть $n \geq \widetilde{m}$. Тогда для некоторого $L \geq N$

$$\left| \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} a_{f(k)} \right| \ge \sum_{k=N}^{L} |a_n| < \varepsilon,$$

так как при вычитании любой член a_k первой суммы будет сокращаться с некоторым членом второй суммы, если k < N. Из этого неравенства следует, что последовательности частичных сумм рядов $\sum_{n=1}^{\infty} a_{f(n)}$ и $\sum_{n=1}^{\infty} a_n$ имеют одинаковый предел. Теорема доказана.

2.9 Произведение рядов

Рассмотрим два ряда

$$a_0 + a_1x + a_2x^2 + \ldots + a_nx^n + \ldots, \quad b_0 + b_1x + b_2x^2 + \ldots + b_nx^n + \ldots$$

Формально перемножим эти два ряда как два многочлена бесконечной степени, сгруппировав члены с одинаковыми степенями переменной x:

$$a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1 + a_2b_0)x^2 + \dots + (a_0b_n + a_1b_{n-1} + \dots + a_nb_0)x^n + \dots = \sum_{n=0}^{\infty} c_n x^n,$$

где $c_n=a_0b_n+a_1b_{n-1}+\ldots+a_nb_0$. Это наводит на следующее определение. Произведением числовых рядов $\sum_{n=0}^{\infty}a_n$ и $\sum_{n=0}^{\infty}b_n$ называется ряд $\sum_{n=0}^{\infty}c_n$, где $c_n=\sum_{j=0}^na_jb_{n-j}$.

Теорема (Мертенс). 1) Если ряды $\sum_{n=0}^{\infty} a_n$ и $\sum_{n=0}^{\infty} b_n$ сходятся, причем по крайней мере один из них сходится абсолютно, то произведение сходится и

$$\sum_{n=0}^{\infty} \sum_{j=0}^{n} a_j b_{n-j} = \sum_{n=0}^{\infty} a_n \sum_{k=0}^{\infty} b_k.$$

- 2) Если оба ряда $\sum_{n=0}^{\infty} a_n$ и $\sum_{n=0}^{\infty} b_n$ сходятся абсолютно, то и их произведение сходится абсолютно.
- 3) Если оба ряда сходятся условно, то их произведение не обязано сходиться.

Доказательство. 1) Пусть

$$B = \sum_{n=0}^{\infty} b_n, \ B_n = \sum_{k=0}^{n} b_k, \ \beta_n = B - B_n = \sum_{k=n+1}^{\infty} b_k.$$

Частичная сумма произведения равна

$$\sum_{k=0}^{n} c_k = a_0 b_0 + (a_0 b_1 + a_1 b_0) + (a_0 b_2 + a_1 b_1 + a_2 b_0) \dots +$$

$$+ (a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0) = a_0 B_n + a_1 B_{n-1} + \dots + a_n B_0 =$$

$$= a_0 (B - \beta_n) + a_1 (B - \beta_{n-1}) + \dots + a_n (B - \beta_0) =$$

$$= (a_0 + a_1 + \dots + a_n) B - a_0 \beta_n - a_1 \beta_{n-1} - \dots - a_n \beta_0 = A_n B - \gamma_n,$$

где

$$A_n = \sum_{k=0}^n a_k, \quad \gamma_n = a_0 \beta_n + a_1 \beta_{n-1} + \ldots + a_n \beta_0.$$

При $n \to \infty$ имеем $A_n \to A := \sum_{k=0}^\infty a_n$ и $A_n B \to A B$. Если мы докажем, что $\gamma_n \to 0$, то тогда последовательность $\sum_{k=0}^n c_k$ частичных сумм будет сходиться к AB. Это и будет означать, что произведение рядов сходится к AB.

Пусть ряд $\sum_{n=0}^{\infty} a_n$ сходится абсолютно. Обозначим через α его сумму $\sum_{n=0}^{\infty} |a_n|$. Можно считать, что $\alpha>0$. Так как $B_n\to B$, то $\beta_n\to$

 $0,\ n\to\infty$. Фиксируем $\varepsilon>0$. Тогда $\exists N\colon \forall n\geq N\ |\beta_n|<\frac{\varepsilon}{2\alpha}$. Кроме того, последовательность β_n ограничена, т.е. $\exists M>0\colon |\beta_n|\leq M$. Имеем при $n\geq N$

$$|\gamma_{n}| \leq \sum_{k=1}^{n-N} |a_{k}| |\beta_{n-k}| + \sum_{n-N+1}^{n} |a_{k}| |\beta_{n-k}| \leq \frac{\varepsilon}{2\alpha} \sum_{k=1}^{n-N} |a_{k}| + M \sum_{n-N+1}^{n} |a_{k}| \leq \frac{\varepsilon}{2} + M \sum_{k=n-N+1}^{n} |a_{k}|.$$

По критерию Коши

$$\exists N_1: \ \forall n \geq m \geq N_1 \left(\sum_{k=m}^n |a_k| < \frac{\varepsilon}{2M}\right).$$

Если $n \ge N + N_1$, то

$$M \sum_{k=n-N+1}^{n} |a_k| < M \frac{\varepsilon}{2M} = \frac{\varepsilon}{2}$$

и $|\gamma_n|<arepsilon$. Это означает, что $\gamma_n o 0$, $n o \infty$, что и требовалось доказать.

2) Если оба ряда $\sum_{n=0}^{\infty} a_n$ и $\sum_{n=0}^{\infty} b_n$ сходятся абсолютно, то

$$\sum_{k=0}^{n} |c_k| = \sum_{k=0}^{n} (|a_0||b_k| + |a_1||b_{k-1}| + \dots + |a_k||b_n|) \le$$

$$\le \sum_{k=0}^{n} |a_k| \sum_{j=0}^{n} |b_j| \le \sum_{k=0}^{\infty} |a_k| \sum_{j=0}^{\infty} |b_j| < +\infty.$$

Так как частичные суммы ряда $\sum_{k=0}^{\infty} |c_k|$ с неотрицательными членами ограничены сверху, этот ряд сходится.

3) Приведем пример рядов, которые сходятся, но их произведение расходится. Пусть $a_n=b_n=\frac{(-1)^n}{\sqrt{n+1}}$. Ряды $\sum_{n=0}^\infty a_n$ и $\sum_{n=0}^\infty b_n$ сходятся по признаку Лейбница. Рассмотрим n-й член произведения

$$c_n = \frac{1}{\sqrt{1}} \cdot \frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{n}} + \dots + \frac{1}{\sqrt{n+1}} \cdot \frac{1}{\sqrt{1}} = \sum_{k=0}^n \frac{1}{\sqrt{k+1}} \cdot \frac{1}{\sqrt{n-k+1}}.$$

По неравенству о среднем арифметическом и среднем геометрическом

$$\sqrt{(k+1)(n-k+1)} \le \frac{n+2}{2},$$

поэтому

$$c_n \ge \sum_{k=0}^n \frac{2}{n+2} = \frac{2(n+1)}{n+2} \ge 1,$$

т. е. $c_n \not\to 0$, $n \to \infty$. Таким образом, не выполняется необходимое условие сходимости ряда $\sum_{n=0}^\infty c_n$, т. е. ряд расходится.

3 Мера Жордана

Мера Жордана является вспомогательным инструментом для построения кратного интеграла Римана. На плоскости (в \mathbb{R}^2) мера Жордана множества — это его площадь, в \mathbb{R}^3 — объем, в \mathbb{R}^n — n-мерный объем. Однако подходы к определению меры (площади, объема) существуют разные. Дело в том, что не любому множеству в \mathbb{R}^n можно сопоставить неотрицательное число (его меру), которое обладает свойством: мера объединения непересекающихся множеств равна сумме мер каждого из множеств. Основная задача теории меры заключается в следующем. Разбить все множество подмножеств \mathbb{R}^n на две части — Σ и Σ^c . Элементы из Σ называются измеримыми множествами, элементы из Σ^c — неизмеримыми. На Σ определить функцию (меру) $\mu: \Sigma \to \mathbb{R}$, при этом Σ и μ обладают свойствами:

- 1) $\forall A \in \Sigma \ \mu(A) \ge 0$;
- 2) $\forall A, B \in \Sigma \ A \cap B, A \cup B, A \setminus B \in \Sigma;$
- 3) если $A, B \in \Sigma, A \cap B = \emptyset$, то $\mu(A \cup B) = \mu(A) + \mu(B)$.

Мы будем строить σ и меру μ (меру Жордана), обладающие дополнительными естественными свойствами:

- 4) Если φ некоторое движение в \mathbb{R}^n , то $\forall A \in \Sigma$ множество $\varphi(A) \in \Sigma$ и $\mu(\varphi(A)) = \mu(A)$;
 - 5) Множество Σ содержит все параллелепипеды вида

$$[a_1;b_1] \times [a_2;b_2] \times \ldots \times [a_n;b_n],$$

при этом $\mu([a_1;b_1]\times [a_2;b_2]\times\ldots\times [a_n;b_n])=\prod_{k=1}^n(b_k-a_k)$.

3.1 Внутренняя и внешняя меры Жордана

Двоичным кубом ранга k в \mathbb{R}^n назовем множество вида

$$\left[\frac{m_1}{2^k}; \frac{m_1+1}{2^k}\right] \times \left[\frac{m_2}{2^k}; \frac{m_2+1}{2^k}\right] \times \ldots \times \left[\frac{m_n}{2^k}; \frac{m_n+1}{2^k}\right],$$

где $m_1, m_2, \ldots, m_n \in \mathbb{Z}$.

Пусть множество $A \subset \mathbb{R}^n$. Обозначим через $l_*(k;a)$ число двоичных кубов ранга k, содержащихся в A° , а через $l^*(k;a)$ число двоичных кубов ранга k, пересекающихся с A^- . Пусть

$$\mu_*(k;a) = l_*(k;a) \cdot \frac{1}{2^{kn}}, \quad \mu^*(k;a) = l^*(k;a) \cdot \frac{1}{2^{kn}}.$$

Отметим, что величина $\frac{1}{2^{kn}}$ — это объем двоичного куба ранга k в \mathbb{R}^n , поэтому величины $\mu_*(k;a)$ и $\mu^*(k;a)$ имеют важный геометрический смысл: это объемы фигур, составленных из двоичных кубов ранга k, которые соответственно лежат во внутренности или пересекаются с замыканием множества A.

Лемма. Для любого $A \subset \mathbb{R}^n$ и любого $k \in \mathbb{Z}$

$$0 \le \mu_*(k; a) \le \mu_*(k+1; a) \le \mu^*(k+1; a) \le \mu^*(k; a)$$

Доказательство. Неравенство $0 \le \mu_*(k;a)$ очевидно. Неравенство $\mu_*(k+1;a) \le \mu^*(k+1;a)$ следует из того, что $A^\circ \subset A^-$. Осталось доказать, что

$$\mu_*(k;a) \le \mu_*(k+1;a),$$
(3.1)

$$\mu^*(k+1;a) \le \mu^*(k;a). \tag{3.2}$$

Докажем сначала (3.1). Пусть Q — двоичный куб ранга k, который содержится в A° . Этот куб состоит из ровно 2^n двоичных кубов ранга (k+1), поэтому $l_*(k+1;a) \geq 2^n l_*(k;a)$. Умножая это неравенство на $\frac{1}{2^{n(k+1)}}$, получаем (3.1).

Теперь докажем (3.2). Если двоичный куб Q ранга k не пересекается с A^- , то и составляющие его кубы ранга (k+1) не пересекается с A^- . Если же Q пересекается с A^- , то некоторые составляющие его 2^n

куба ранга (k+1) пересекаются с A^- , некоторые могут не пересекаться. В результате получаем неравенство $l^*(k+1;a) \leq 2^n l^*(k;a)$, откуда следует (3.2). Лемма доказана.

Следствие. Пусть множество A ограничено. Тогда последовательности $\mu_*(k;A)$ и $\mu^*(k;A)$ монотонны, ограничены и, следовательно, имеют конечные пределы

$$\mu_*(A) := \lim_{k \to \infty} \mu_*(k; A), \quad \mu^*(A) := \lim_{k \to \infty} \mu^*(k; A).$$

Величины $\mu_*(A)$ и $\mu^*(A)$ называются внутренней и внешней мерой Жордана множества A.

Теорема. Для любых ограниченных множеств $A, B \subset \mathbb{R}^n$ имеют место следующие утверждения.

- 1) $0 \le \mu_*(A) \le \mu^*(A) < +\infty$.
- 2) *Ecau* $A \subset B$, mo $\mu_*(A) \leq \mu_*(B)$, $\mu^*(A) \leq \mu^*(B)$.
- 3) $Ecnu\ A \cap B = \emptyset$, $mo\ \mu_*(A \cup B) \ge \mu_*(A) + \mu_*(B)$.
- 4) $\mu^*(A \cup B) \le \mu^*(A) + \mu^*(B)$.
- 5) $\mu^*(\partial A) = \mu^*(A) \mu_*(A)$.
- 6) $\mu_*(A^\circ) = \mu_*(A), \ \mu^*(A^-) = \mu^*(A).$

Доказательство. 1) Для любого $k \in \mathbb{Z}$ имеем $l_*(k;A) \leq l^*(k;A)$, так как если куб $Q \subset A^\circ$, то $Q \subset A^-$, т.е. $Q \cap A^- \neq \emptyset$. Умножая это неравенство на $\frac{1}{2^{kn}}$ получаем $\mu_*(k;A) \leq \mu^*(k;A)$. Устремляя k к бесконечности, получаем нужное неравенство.

2) Если $A\subset B$, то $A^{\circ}\subset B^{\circ}$ и $A^{-}\subset B^{-}$. Следовательно,

$$l_*(k; A) \le l_*(k; B), \quad l^*(k; A) \le l^*(k; B).$$

Умножая эти неравенства на $\frac{1}{2^{kn}}$ и устремляя k к бесконечности, получаем справедливость 2).

3) Имеем $A^{\circ} \cup B^{\circ} \subset (A \cup B)^{\circ}$, причем $A^{\circ} \cap B^{\circ} = \emptyset$. Следовательно, двоичные кубы ранга k, которые входят в множества A° и B° не пересекаются и входят в число двоичных кубов ранга k, содержащихся в $(A \cup B)^{\circ}$. Следовательно, $l_{*}(k;A \cup B) \geq l_{*}(k;A) + l_{*}(k;B)$, откуда следует нужное неравенство.

4) Имеем $(A \cup B)^- = A^- \cup B^-$. Поэтому если куб Q пересекается с $(A \cup B)^-$, то он пересекается либо с A^- , либо с B^- . Следовательно,

$$l^*(k; A \cup B) \le l^*(k; A) + l^*(k; B).$$

Из этого неравенства следует требуемое.

5) Поскольку граница ∂A является замкнутым множеством, имеем $(\partial A)^- = \partial A$. Рассмотрим двоичный куб Q. Условие $Q \cap (\partial A)^- \neq \emptyset$ равносильно условию $Q \cap \partial A \neq \emptyset$. Последнее выполняется тогда и только тогда, когда $Q \cap A^- \neq \emptyset$ и $Q \not\subset A^\circ$. Отсюда следует, что

$$l^*(k; \partial A) = l^*(k; A) - l_*(k; A).$$

Требуемое равенство следует отсюда умножением на объем куба ранга k и предельным переходом.

6) Так как $(A^\circ)^\circ=A^\circ,\ (A^-)^-=A^-,\ {\rm тo}\ l_*(k;A^\circ)=l_*(k;A),$ $l^*(k;A^-)=l^*(k;A).$ Отсюда следуют нужные равенства.

3.2 Мера Жордана в \mathbb{R}^n . Множества меры нуль

Пусть A — ограниченное множество в \mathbb{R}^n . Множество A называется uз-меримым (по Жордану), если $\mu_*(A) = \mu^*(A)$. При этом число

$$\mu(A) := \mu_*(A) = \mu^*(A)$$

называется мерой Жордана множества A. Множество A называется множеством меры нуль или нуль-множеством, если оно измеримо и $\mu(A)=0$.

Отметим следующие свойства множеств меры нуль.

- 1) Ограниченное множество A является множеством меры нуль тогда и только тогда, когда $\mu^*(A) = 0$.
- 2) Любое подмножество множества меры нуль является множеством меры нуль.
- 3) Объединение конечного числа множеств меры нуль является множеством меры нуль.

Доказательство. 1) Необходимость очевидна из определения. Пусть $\mu^*(A)=0$. Из теоремы, п. 1, следует, что $0\leq \mu_*(A)\leq \mu^*(A)=0$. Тогда $\mu_*(A)=\mu^*(A)=0$. Следовательно, A измеримо и $\mu(A)=0$.

2) Пусть $B \subset A$ и A является нуль-множеством. Так как A ограничено, то и B ограничено. Из теоремы, п. 2, следует, что

$$0 \le \mu^*(B) \le \mu^*(A) = 0.$$

Значит, $\mu^*(B) = 0$. В силу свойства 1) B является нуль-множеством.

3) Достаточно доказать, что если A и B — нуль-множества, то $A \cup B$ — нуль-множество. Так как A и B ограничены, то $A \cup B$ также ограничено. По предыдущей теореме, п. 4,

$$0 \le \mu^*(A \cup B) \le \mu^*(A) + \mu^*(B) = 0.$$

Значит, $\mu^*(A \cup B) = 0$, т.е. $A \cup B$ — нуль-множество в силу свойства 1).

3.3 Критерии измеримости

Теорема 1 (первый критерий измеримости). Ограниченное множество A измеримо тогда и только тогда, когда его граница ∂A является нуль-множеством.

Доказательство. Множество A измеримо $\iff \mu_*(A) = \mu^*(A) \iff \mu^*(\partial A) = \mu^*(A) - \mu_*(A) = 0 \iff \partial A - 0$ -множество.

Пример. Множество $A=\mathbb{Q}\cap[0;1]$ не измеримо по Жордану. Действительно, $A^-=[0;1]$, $A^\circ=\emptyset$, $\partial A=A^-\setminus A^\circ=[0;1]$. Нетрудно видеть, что $l^*(k;\partial A)=2^k+2$, $k\in N$, так как двоичные кубы ранга k, пересекающиеся с $(\partial A)^-=[0;1]$ суть $\left[\frac{m-1}{2^k};\frac{m}{2^k}\right]$, $m=0,\ 1,\ 2\dots,2^k+1$. Имеем $\mu^*(k;\partial A)=\frac{2^k+2}{2^k}\to 1$, $k\to\infty$. Таким образом, $\mu^*(\partial A)\neq 0$ и по теореме 1 A не может быть измеримым множеством.

Теорема 2 (второй критерий измеримости). Ограниченное множество A измеримо тогда и только тогда, когда A^- и A° являются измеримыми множествами одинаковой меры. При этом

$$\mu(A^{-}) = \mu(A^{\circ}) = \mu(A).$$

$$\mu_*(A^\circ) = \mu_*(A) = \mu(A) = \mu^*(A) = \mu^*(A^-)$$

И

$$\mu_*(A^\circ) \le \mu^*(A^\circ) \le \mu^*(A^-) = \mu_*(A^\circ).$$

Отсюда следует, что $\mu_*(A^\circ)=\mu^*(A^\circ)=\mu(A)$. Это означает, что множество A° измеримо и $\mu(A^\circ)=\mu(A)$.

Аналогично показывается, что

$$\mu_*(A^\circ) \le \mu_*(A^-) \le \mu^*(A^-) = \mu_*(A^\circ).$$

Следовательно, $\mu_*(A^-) = \mu^*(A^-) = \mu(A)$, т. е. множество A^- измеримо и $\mu(A^-) = \mu(A)$.

Обратно, пусть A^- и A° являются измеримыми множествами одинаковой меры. Тогда

$$\mu(A^{\circ}) = \mu_*(A^{\circ}) \le \mu_*(A) \le \mu^*(A) \le \mu^*(A^{-}) = \mu(A^{-}) = \mu(A^{\circ}).$$

Значит, все величины, входящие в это соотношение, равны, в частности, $\mu_*(A) = \mu^*(A) = \mu(A^\circ) = \mu(A^-)$. Это означает, что множество A измеримо и $\mu(A^-) = \mu(A^\circ) = \mu(A)$.

3.4 Свойства измеримых множеств

Теорема 1. Если множества A и B измеримы, то множества $A \cup B$, $A \cap B$, $A \setminus B$ также измеримы.

Доказательство. Так как множества A и B измеримы, они ограничены. Поэтому в силу первого критерия измеримости достаточно доказать, что границы множеств являются нуль-множествами $A \cup B$, $A \cap B$, $A \setminus B$.

Рассмотрим множество $A \cup B$. Его граница

$$\partial(A \cup B) = (A \cup B)^- \cap ((A \cup B)^c)^- = (A^- \cup B^-) \cap (A^c \cap B^c)^- \subset$$

$$\subset (A^- \cup B^-) \cap A^c \cap B^c = (A \cap A^c \cap B^c) \cup (B \cap A^c \cap B^c) \subset$$

$$\subset (A \cap A^c) \cup (B \cap B^c) = \partial A \cup \partial B.$$

Так как ∂A и ∂B — множества меры нуль, то $\partial A \cup \partial B$ также множество меры нуль. Следовательно $\partial (A \cup B)$ является подмножеством нуль-множества, т.е. само является нуль-множеством.

Аналогично доказывается, что множества $\partial(A \cap B)$ и $\partial(A \setminus B)$ являются подмножествами множества $\partial A \cup \partial B$, поэтому они также являются нуль-множествами (установите это самостоятельно!). Теорема доказана.

Теорема 2 (монотонность меры). Если A и B — измеримые множества и $A \subset B$, то $\mu(A) \leq \mu(B)$.

Доказательство очевидно.

Теорема 3. Eсли A и B — измеримы, то

$$\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B).$$

Доказательство. 1) Сначала рассмотрим случай, когда $A\cap B=\emptyset$. Тогда $\mu(A\cap B)=0$. Докажем, что $\mu(A\cup B)=\mu(A)+\mu(B)$. Используя ранее доказанные свойства, получаем

$$\mu_*(A \cup B) \ge \mu_*(A) + \mu_*(B) = \mu(A) + \mu(B) =$$

$$= \mu^*(A) + \mu^*(B) \ge \mu^*(A \cup B) \ge \mu_*(A \cup B).$$

Отсюда делаем вывод, что $\mu_*(A \cup B) = \mu^*(A \cup B) = \mu(A) + \mu(B)$.

2) Общий случай. Имеем $A \cup B = A \cup (B \setminus A), \ A \cap (B \setminus A) = \emptyset$. Кроме того, $B = (A \cap B) \cup (B \setminus A), \ (A \cap B) \cap (B \setminus A) = \emptyset$. В силу 1) $\mu(A \cup B) = \mu(A) + \mu(B \setminus A), \ \mu(B) = \mu(A \cap B) + \mu(B \setminus A), \$ откуда следует требуемое равенство.

Следствие 1. E c n u A u B - u s m e p u m u, m o

$$\mu(B \setminus A) = \mu(B) - \mu(A \cap B).$$

Следствие 2. Если множества $A_1, A_2 \dots, A_m$ измеримы, то $\bigcup_{k=1}^m A_k$ измеримо и

$$\mu\left(\cup_{k=1}^{m} A_k\right) \le \sum_{k=1}^{m} \mu(A_k).$$

Доказательство. Для двух множеств это следует сразу из теоремы 3. Далее применяем метод математической индукции.

Теорема 4. Пусть множества A_1 , A_2, \ldots, A_m измеримы и $\mu(A_i \cap A_j) = 0$, $i \neq j$. Тогда $\mu(\bigcup_{k=1}^m A_k) = \sum_{k=1}^m \mu(A_k)$.

Доказательство. При m=2 имеем

$$\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2) - \mu(A_1 \cap A_2) = \mu(A_1) + \mu(A_2).$$

Предположим теперь, что утверждение теоремы справедливо для случая k множеств, $2 \le k \le m-1$ ($m \ge 3$). Докажем, что тогда оно справедливо и для m множеств. Имеем $\cup_{k=1}^m A_k = \cup_{k=1}^{m-1} A_k \cup A_m$. При этом

$$\mu\left(\bigcup_{k=1}^{m-1} A_k \cap A_m\right) = \mu\left(\bigcup_{k=1}^{m-1} (A_k \cap A_m)\right) \le \bigcup_{k=1}^{m-1} \mu(A_k \cap A_m) = 0.$$

Применяя наше предположение индукции для двух, а затем для m множеств, получаем

$$\mu\left(\cup_{k=1}^{m} A_{k}\right) = \mu\left(\cup_{k=1}^{m-1} A_{k} \cup A_{m}\right) = \mu\left(\cup_{k=1}^{m-1} A_{k}\right) + \mu(A_{m}) = \sum_{k=1}^{m} \mu(A_{k}) + \mu(A_{m}) = \sum_{k=1}^{m} \mu(A_{k}) + \mu(A_{m}) = \sum_{k=1}^{m} \mu(A_{k}).$$

3.5 Произведение измеримых множеств

Изучим вопрос об измеримости и мере произведения измеримых множеств. Чтобы различать меры Жордана в пространствах различной размерности, будем обозначать меру Жордана в \mathbb{R}^n через μ_n .

Заметим также, что множество Q является двоичным кубом ранга k в $\mathbb{R}^{n=m}$ тогда и только тогда, когда Q можно представить в виде произведения: $Q=Q_1\times Q_2$, где Q_1 и Q_2 — двоичные кубы ранга k в пространствах \mathbb{R}^n и \mathbb{R}^m .

Теорема. Если A- измеримое множество в \mathbb{R}^n , B- измеримое множество в \mathbb{R}^m , то $A\times B-$ измеримое множество в \mathbb{R}^{n+m} и

$$\mu_{n+m}(A \times B) = \mu_n(A)\mu_m(B).$$

Доказательство. Предварительно установим, что справедливы два равенства: 1) $(A \times B)^{\circ} = A^{\circ} \times B^{\circ}$; 2) $(A \times B)^{-} = A^{-} \times B^{-}$.

1) Возьмем точку $z\in A\times B$. Она имеет вид z=(x,y), где $x\in A$, $y\in B$. При этом $\|z\|^2=\|x\|^2+\|y\|^2$, так как

$$z = (z_1, z_2, \dots, z_{n+m}) = (x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_m),$$

откуда

$$||z||^2 = \sum_{i=1}^{n+m} z_i^2 = \sum_{i=1}^n z_i^2 + \sum_{i=n+1}^{n+m} z_i^2 = \sum_{i=1}^n x_i^2 + \sum_{j=1}^m y_j^2 = ||x||^2 + ||y||^2.$$

Пусть $z_0=(x_0,y_0)\in (A\times B)^\circ$. Тогда существует $O_\varepsilon(z_0)\in A\times B$. Пусть $\delta=\frac{\varepsilon}{2}$ Если $x\in O_\delta(x_0),\ y\in O_\delta(y_0),\ {\rm To}\ z=(x,y)\in O_\varepsilon(z_0),\ {\rm Tak}$ как $\|z-z_0\|^2=\|x-x_0\|^2+\|y-y_0\|^2<\delta^2+\delta^2=\varepsilon^2,\ {\rm otky}$ да $z\in A\times B$. Следовательно, $x_0\in O_\delta(x_0)\subset A,\ y_0\in O_\delta(y_0)\subset B$. Значит, $x_0\in A^\circ,\ y_0\in B^\circ$. Итак мы доказали, что $(A\times B)^\circ\subset A^\circ\times B^\circ$.

Обратно, пусть $z_0 = (x_0, y_0) \in A^{\circ} \times B^{\circ}$, т. е. $x_0 \in A^{\circ}$, $y_0 \in B^{\circ}$. Тогда существуют ε_1 , $\varepsilon_2 > 0$ такие, что $O_{\varepsilon_1}(x_0) \subset A$, $O_{\varepsilon_2}(y_0) \subset B$. Пусть $\varepsilon = \min\{\varepsilon_1, \varepsilon_2\}$. Тогда $O_{\varepsilon}(z_0) \subset O_{\varepsilon_1}(x_0) \times O_{\varepsilon_2}(y_0) \subset A \times B$. Действительно, если $z = (x, y) \in O_{\varepsilon}(z_0)$, то $||x - x_0||^2 \le ||z - z_0||^2 < \varepsilon^2 \le \varepsilon_1^2$, откуда следует, что $x \in O_{\varepsilon_1}(x_0)$. Аналогично $y \in O_{\varepsilon_2}(y_0)$. Итак, $O_{\varepsilon}(z_0) \subset A \times B$, т. е. $z_0 \in (A \times B)^{\circ}$. Это означает, что $A^{\circ} \times B^{\circ} \subset (A \times B)^{\circ}$.

2) Вспомним характеризацию точек прикосновения через последовательности. Точка $z_0 = (x_0, y_0)$ принадлежит $(A \times B)^-$ тогда и только тогда, когда $\exists z_k = (x_k, y_k) \in A \times B \colon z_k \to z_0, \ k \to \infty \iff \exists x_k \in A \colon x_k \to x_0$ и $\exists y_k \in B \colon y_k \to y_0 \iff x_0 \in A^-$ и $y_0 \in B^- \iff z_0 \in A^- \times B^-$.

Теперь докажем теорему. Рассмотрим множество двоичных кубов Q ранга k, лежащих в $(A \times B)^{\circ} = A^{\circ} \times B^{\circ}$. Любой куб Q представим в виде $Q = Q_1 \times Q_2$, где Q_1 — двоичный куб ранга k, лежащий в A° , Q_2 — двоичный куб ранга k, лежащий в B° . Обратно, если Q_1 — двоичный куб ранга k, лежащий в B° , то Q является двоичным кубом ранга k, лежащим в $(A \times B)^{\circ}$. Отсюда следует, что $l_*(k;A \times B) = l_*(k;A) \times l_*(k;B)$. Умножая последнее равенство на $2^{-k(n+m)}$, получаем $2^{-k(n+m)}l_*(k;A \times B) = 2^{-kn}l_*(k;A) \times 2^{-km}l_*(k;B)$ или

 $\mu_*(k;A\times B)=\mu_*(k;A)\times \mu_*(k;B)$. Переходя к пределу при $k\to\infty$, получаем $\mu_*(A\times B)=\mu_*(A)\times \mu_*(B)$.

Аналогично устанавливаем, что $l^*(k; A \times B) = l^*(k; A) \times l^*(k; B)$ (обоснуйте это самостоятельно!). Как и в случае внутренней меры, отсюда следует, что $\mu^*(A \times B) = \mu^*(A) \times \mu^*(B)$.

Так как множества A и B измеримы, то $\mu_*(A) = \mu^*(A) = \mu_n(A)$, $\mu_*(B) = \mu^*(B) = \mu_m(B)$. Значит, $\mu_*(A \times B) = \mu^*(A \times B) = \mu_n(A) \times \mu_m(B)$, т. е. множество $A \times B$ измеримо и $\mu_{n+m}(A \times B) = \mu_n(A)\mu_m(B)$.

3.6 Классы измеримых множеств

- 1) Любой отрезок [a;b] измерим и $\mu([a;b]) = b a$.
- а) Пусть сначала концы a и b отрезка [a;b] являются двоичными числами ранга N . Тогда они являются также и двоичными числами ранга $k \geq N$. При этом,

$$l_*(k; [a; b]) = (b - a)2^k - 2, \quad l^*(k; [a; b]) = (b - a)2^k + 2,$$

откуда

$$\mu_*(k; [a; b]) = (b - a) - 2^{1-k}, \quad \mu^*(k; [a; b]) = (b - a) + 2^{-1-k}.$$

Имеем

$$\lim_{k \to \infty} \mu_*(k; [a; b]) = \lim_{k \to \infty} \mu^*(k; [a; b]) = b - a,$$

поэтому $\mu_*([a;b]) = \mu_*([a;b]) = b-a$. Итак, отрезок [a;b] измерим и $\mu([a;b]) = b-a$.

б) Пусть теперь a и b — произвольные действительные числа. Можно считать, что $a \neq b$. Для любого $k \in \mathbb{N}$ числа a и b принадлежат некоторым двоичным кубам $[a_k; c_k]$ и $[b_k; d_k]$ ранга k. Следовательно, $a_k \leq a \leq c_k, \ b_k \leq b \leq d_k$. При этом кубы (отрезки) $[a_k; c_k]$ вложены друг в друга, и их длины стремятся к нулю. Следовательно, по принципу вложенных отрезков $a_k, \ c_k \to a, \ k \to \infty$. Аналогично $b_k, \ d_k \to b, \ k \to \infty$. При достаточно больших k имеем $c_k < b_k$, при этом

 $[c_k;b_k]\subset [a;b]\subset [a_k;d_k]$. По свойству внутренней и внешней мер с учетом п. а)

$$c_k - b_k = \mu([c_k; b_k]) = \mu_*([c_k; b_k]) \le \mu_*([a; b]) \le$$

$$\le \mu^*([a; b]) \le \mu^*([a_k; d_k]) = \mu^*([a_k; d_k]) = d_k - a_k.$$

При $k \to \infty$ получаем

$$b-a = \lim_{k \to \infty} (c_k - b_k) \le \mu_*([a;b]) \le \mu^*([a;b]) \le \lim_{k \to \infty} (d_k - a_k) = b - a.$$

Отсюда $\mu_*([a;b]) = \mu^*([a;b]) = b-a$, отрезок [a;b] измерим и его мера $\mu([a;b]) = b-a$.

Следствие 1. Любой парамлеменинед $\prod_{i=1}^{n} [a_i; b_i]$ измерим и

$$\mu\left(\prod_{i=1}^{n} [a_i; b_i]\right) = \prod_{i=1}^{n} (b_i - a_i).$$

Следствие 2. Любое конечное множество в \mathbb{R}^n является нульмножеством.

Пусть C — кривая в \mathbb{R}^n с представлением

$$x = x(t) = (x_1(t), x_2(t), \dots, x_n(t), 0 \le t \le 1.$$

Kpuвая C называется cnpямляемой, если

$$l(C) = \sup_{\tau} \sum_{i=1}^{p} \sqrt{\sum_{k=1}^{n} (x_i(t_k) - x_i(t_{k-1}))^2} < +\infty,$$

где супремум берется по всем разбиениям $0=t_0 < t_1 < \ldots < t_p=1$ отрезка [0;1]. Число l(C) называется длиной кривой C.

Теорема 1. Пусть C- спрямляемая кривая в \mathbb{R}^n , $n\geq 2$. Тогда C является нуль-множеством.

Доказательство. Пусть l- длина кривой C. Фиксируем $m\in\mathbb{N}$. Разобъем кривую C на (2m) частей $C_1,\,C_2,\ldots,C_{2m}$ длины $\frac{l}{2m}$ точками

 $P_1,\ P_2,\dots,P_{2m-1}$. Рассмотрим куб Q_k центром в точке P_k и длиной стороны $\frac{l}{m}$. Тогда $C_k\cup C_{k+1}\subset Q_k$, поэтому $C\subset \cup_{k=1}^{2m-1}G_k$. Отсюда следует, что

$$0 \le \mu^*(C) \le \sum_{k=1}^{2m-1} \mu^*(Q_k) = \sum_{k=1}^{2m-1} \mu(Q_k) = (2m-1) \left(\frac{l}{m}\right)^n \le \frac{2l^n}{m^{n-1}} \to 0,$$

 $m \to \infty$. Следовательно, $\mu^*(C) = 0$, т. е. C является нуль-множеством.

Следствие. Пусть D — ограниченная область в \mathbb{R}^2 , граница которой является спрямляемой кривой C. Тогда D измерима.

Теорема 2. График непрерывной функции, определенной на компактном множестве в \mathbb{R}^n , является нуль множеством в \mathbb{R}^{n+1} .

Доказательство. Пусть $f:A\to\mathbb{R}$ — непрерывная функция, A — компактное множество в \mathbb{R}^n . По теореме Кантора функция f равномерно непрерывна, т. е.

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x_1, x_2 \in A \quad (\|x_1 - x_2\| < \delta \Longrightarrow |f(x_1) - f(x_2)| < \varepsilon).$$

Рассмотрим множество двоичных кубов ранга k, которые пересекаются с $A^- = A$. Так как множество A компактно, то их число ограничено. Обозначим эти кубы через Q_1, Q_2, \ldots, Q_l . Отметим, что диаметр каждого куба Q_j равен $\frac{\sqrt{n}}{2^n}$. Пусть $k = k(\delta)$ выбрано настолько большим, что $\frac{\sqrt{n}}{2^n} < \delta$. Обозначим $M_i = \max_{x \in Q \cap A} f(x)$, $m_i = \min_{x \in Q \cap A} f(x)$. Эти величины существуют в силу теоремы Вейерштрасса. В силу выбора δ имеем $M_i - m_i < \varepsilon$. Следовательно, график $\Gamma_f \subset \bigcup_{i=1}^l Q_i \times [m_i; M_i]$. Тогда

$$\mu^*(\Gamma) \le \sum_{i=1}^l \mu^*(Q_i \times [m_i; M_i]) = \sum_{i=1}^l \mu(Q_i \times [m_i; M_i]) =$$

$$= \sum_{i=1}^l \mu(Q_i)(M_i - m_i) \le \varepsilon \sum_{i=1}^l \mu(Q_i) = \varepsilon \mu^*(k; A).$$

Итак, для любых $\varepsilon > 0$ и $k \geq k(\delta)$ имеем $\mu^*(\Gamma) \leq \varepsilon \mu^*(k;A)$. Устремляя $k \to \infty$, получаем $\mu^*(\Gamma) \leq \varepsilon \mu^*(A)$. Наконец, устремляя ε к нулю, получаем $\mu^*(\Gamma) \leq 0$, откуда следует, что $\mu^*(\Gamma) = 0$.

Пример. Покажем, что шар $B_n(R) := \{x \in \mathbb{R}^n \mid \|x\| \leq R\}$, R > 0, измерим. Действительно, это — ограниченное множество, и его границу можно представить как объединение графиков двух непрерывных функций $x_n = \sqrt{R^2 - \sum_{i=1}^{n-1} x_i^2}$, $x_n = -\sqrt{R^2 - \sum_{i=1}^{n-1} x_i^2}$, заданных на компактном множестве $B_{n-1}(R)$. Поскольку по доказанной теореме эти графики являются нуль-множествами, по свойствам множеств меры нуль и граница $\partial B_n(R)$ является нуль-множеством. По первому критерию измеримости шар $B_n(R)$ измерим.

3.7 Преобразования измеримых множеств

I) Сдвиг. Пусть $A \subset \mathbb{R}^n$, $c \in \mathbb{R}^n$. Определим множество

$$c + A := \{c + x \mid x \in A\}.$$

Будем говорить, что множество c+A получено из множества A cdeurom на eekmop c.

Теорема. Если множество A измеримо, для любого $c \in \mathbb{R}^n$ множество c + A также измеримо и $\mu(c + A) = \mu(A)$.

Доказательство. 1) Рассмотрим случай, когда множество A является параллелепипедом $\Pi = \prod_{i=1}^n [a_i; b_i]$. Тогда $c + \Pi = \prod_{i=1}^n [c_i + a_i; c_i + b_i]$ — параллелепипед, следовательно, измеримое множество. Его мера

$$\mu(c+\Pi) = \prod_{i=1}^{n} [(c_i + b_i) - (c_i + a_i)] = \prod_{i=1}^{n} (b_i - a_i) = \mu(\Pi).$$

2) Пусть теперь A — произвольное измеримое множество. Рассмотрим двоичные кубы $Q_1,\ Q_2,\dots,Q_l$, ранга k, которые содержатся в A° и двоичные кубы $Q_1',\ Q_2',\dots,Q_m'$, ранга k, которые пересекаются с A^- . Тогда $\sum_{i=1}^l \mu(Q_i) = \mu_*(k;A)$, $\sum_{i=1}^m \mu(Q_i') = \mu^*(k;A)$. Имеем

$$\bigcup_{i=1}^{l} (c+Q_i) = c + \bigcup_{i=1}^{l} Q_i \subset c + A \subset c + \bigcup_{i=1}^{m} Q_i' = \bigcup_{i=1}^{m} (c+Q_i').$$

Для любых $i \neq j$ очевидно, что

$$\mu((c+Q_i)\cap(c+Q_j))=0, \quad \mu((c+Q_i')\cap(c+Q_j'))=0,$$

поэтому

$$\mu_*(k; A) = \sum_{i=1}^l \mu(Q_i) = \sum_{i=1}^l \mu(c + Q_i) = \mu\left(\bigcup_{i=1}^l (c + Q_i)\right) =$$

$$= \mu_*\left(\bigcup_{i=1}^l (c + Q_i)\right) \le \mu_*(c + A) \le \mu^*(c + A) \le \mu^*\left(\bigcup_{i=1}^m (c + Q_i')\right) =$$

$$= \mu\left(\bigcup_{i=1}^m (c + Q_i')\right) = \sum_{i=1}^m \mu(c + Q_i') = \sum_{i=1}^m \mu(Q_i') = \mu^*(k; A).$$

Итак, $\mu_*(k;A) \leq \mu_*(c+A) \leq \mu^*(c+A) \leq \mu^*(k;A)$. Устремляя $k \to \infty$, получаем $\mu(A) \leq \mu_*(c+A) \leq \mu^*(c+A) \leq \mu(A)$, откуда следует, что $\mu_*(c+A) = \mu^*(c+A) = \mu(A)$. Это означает, что множество c+A измеримо и $\mu(c+A) = \mu(A)$.

Пусть $\phi: \mathbb{R}^n \to \mathbb{R}^n$ — произвольное обратимое линейное отображение. В курсе линейной алгебры доказывается, что любое такое преобразование можно представить в виде суперпозиции следующих отображений:

I)
$$(x_1, x_2, ..., x_n) \mapsto (\alpha x_1, x_2, ..., x_n), \ \alpha \neq 0,$$

II) $(x_1, x_2, ..., x_{i-1}, x_i, x_{i+1}, x_{i+2}, ..., x_n) \mapsto (x_1, x_2, ..., x_{i-1}, x_{i+1}, x_i, x_{i+2}, ..., x_n),$
III) $(x_1, x_2, ..., x_n) \mapsto (x_1 + x_2, x_2, ..., x_n).$

Лемма. Пусть Q — некоторый куб в \mathbb{R}^n , являющийся произведением отрезков. При линейном преобразовании ϕ одного из типов I-III куб Q переходит в измеримое множество, мера которого равна $\mu(Q)$ для преобразований типа II или III и $|\alpha|\mu(Q)$ для преобразований типа I.

Доказательство. I) Поскольку последние (n-1) координат не меняются, а первая умножается на α , с учетом теоремы мере произведения достаточно рассмотреть случай n=1. Имеем Q=[a;b], $\alpha Q=[\alpha a;\alpha b]$, $\alpha>0$; $\alpha Q=[\alpha b;\alpha a]$, $\alpha<0$. Следовательно, αQ измеримо как отрезок и $\mu(\alpha Q)=\alpha(b-a)$, $\alpha>0$; $\mu(\alpha Q)=-\alpha(b-a)$, $\alpha<0$. Итак, $\mu(\alpha Q)=|\alpha|\mu(Q)$.

II) Достаточно рассмотреть случай n=2. Преобразование $(x_1,x_2)\mapsto (x_2,x_1)$ переводит квадрат $[a;b]\times [c;d]$ в квадрат $[c;d]\times [a;b]$, т. е. измеримое множество той же меры.

III) Достаточно рассмотреть случай n=2. Преобразование $(x_1,x_2)\mapsto (x_1+x_2,x_2)$ переводит квадрат $Q=[a;b]\times [c;d]$ в параллелограмм с вершинами (a+c;c), (a+d;d), (b+c;c), (b+d;d). Очевидно это — измеримое множество. Найдем его меру. Так как при сдвиге мера не меняется, то осуществим сдвиг параллелограмма на вектор (-(a+c),-c). В результате получаем параллелограмм с вершинами (0,0), (d-c,d-c), (b-a,0), (b-a+d-c,d-c). Так как d-c=b-a=q, где q-длина стороны квадрата, то получаем параллелограмм с вершинами (0,0), (q,q), (q,0), (2q,q). Разделим этот параллелограмм прямой $\{x_1=q\}$ на два треугольника, которые пересекаются по стороне, т. е. множеству меры нуль. Сдвигая правый треугольник влево, можно составить из них квадрат в вершинами (0,0), (0,q), (q,0), (q,q), причем треугольники также пересекаются по множеству меры нуль. Учитывая это и инвариантность меры при параллельных переносах, видим, что мера образа квадрата совпадает с мерой квадрата со стороной q. Итак, $\mu(\phi(Q)) = q^2 = \mu(Q)$. Лемма доказана.

Следствие. Если ϕ — линейное невырожденное преобразование в \mathbb{R}^n одного из типов I-III, Q — куб в \mathbb{R}^n , то его образ $\phi(Q)$ измерим u $\mu(\phi(Q)) = |\det[\phi]|\mu(Q)$, где $[\phi]$ — матрица отображения ϕ .

Доказательство. В случае I) матрица $[\phi]$ матрица диагональна и на ее главной диагонали стоят единицы, за исключением одного элемента, равного α . Таким образом, $\det[\phi] = \alpha$. Во втором и третьем случаях очевидно $\det[\phi] = 1$.

Теорема 1. Если ϕ — линейное невырожденное преобразование в \mathbb{R}^n , A — произвольное измеримое множество в \mathbb{R}^n , то его образ $\phi(A)$ измерим и $\mu(\phi(A)) = |\det[\phi]|\mu(A)$, где $[\phi]$ — матрица отображения ϕ .

 \mathcal{A} оказательство. а) Сначала рассмотрим случай, когда ϕ — линейное преобразование в \mathbb{R}^n одного из видов I-III. Используем ту же идею доказательства, что и для параллельного переноса. Пусть двоичные кубы $Q_1,\ Q_2,\ldots,Q_l$ ранга k содержатся в A° , двоичные кубы $Q_1',\ Q_2',\ldots,Q_m'$

ранга k пересекаются с A^- . Тогда

$$\bigcup_{i=1}^{l} Q_i \subset A \subset \bigcup_{i=1}^{m} Q_i', \quad \bigcup_{i=1}^{l} \phi(Q_i) \subset \phi(A) \subset \bigcup_{i=1}^{m} \phi(Q_i').$$

В силу предыдущей леммы

$$\mu(\phi(Q_i)) = |\det[\phi]|\mu(Q_i), \quad \mu(\phi(Q_i')) = |\det[\phi]|\mu(Q_i').$$

Применяя те же рассуждения, что и для случая параллельного переноса, получаем

$$\sum_{i=1}^{l} \mu(\phi(Q_i)) \le \mu_*(\phi(A)) \le \mu^*(\phi(A)) \le \sum_{i=1}^{m} \mu(\phi(Q_i)),$$

откуда

$$|\det[\phi]|\mu_*(k;A) = |\det[\phi]| \sum_{i=1}^l \mu(Q_i) \le \mu_*(\phi(A)) \le$$

$$\le \mu^*(\phi(A)) \le |\det[\phi]| \sum_{i=1}^m \mu(Q_i') = |\det[\phi]| \mu^*(k;A).$$

При $k \to \infty$ величины $\mu_*(k;A)$, $\mu^*(k;A)$ стремятся к $\mu(A)$, поэтому из последнего неравенства получаем

$$|\det[\phi]|\mu(A) \le \mu_*(\phi(A)) \le \mu^*(\phi(A)) \le |\det[\phi]|\mu(A).$$

Значит, $\mu_*(\phi(A)) = \mu^*(\phi(A)) = |\det[\phi]|\mu(A)$. Это доказывает, что множество $\phi(A)$ измеримо и $\mu(\phi(A)) = |\det[\phi]|\mu(A)$.

б) В общем случае представим ϕ в виде $\phi = \phi_1 \circ \phi_2 \circ \ldots \circ \phi_p$, где ϕ_j имеют вид I-III. Так как для них утверждение леммы уже установлено, имеем

$$\mu(\phi(A)) = \mu(\phi_1 \circ \phi_2 \circ \dots \circ \phi_p(A)) = |\det[\phi_1]| \cdot |\det[\phi_2]| \cdot \dots \cdot |\det[\phi_p]| \mu(A) =$$
$$= |\det[\phi_1 \circ \phi_2 \circ \dots \circ \phi_p]| \mu(A) = |\det[\phi]| \mu(A).$$

Теорема 1 доказана.

Теперь рассмотрим любое ортогональное преобразование в \mathbb{R}^n . Так как определитель матрицы этого преобразования равен по модулю единице, получаем, что при ортогональном преобразовании мера множеств

не меняется. Так как мера не меняется и при сдвиге, получаем, что справедлива

Теорема 2. При любом движении в \mathbb{R}^n измеримые множества переходят в измеримые той же меры.

Литература

- [1] Никольский С.М. *Курс математического анализа, т. 1.* М.: Наука, 1973. 432 с.
- [2] Зорич В.А. Математический анализ, ч. І. М.: Наука, 1981. 243 с.
- [3] Шерстнев А.Н. Конспект лекций по математическому анализу. Казань: КГУ, 2009. – 374 с.
- [4] Кудрявцев Л.Д. Mатематический анализ, т.1.- М.: Высшая школа, 1973. 614 с.
- [5] Фихтенгольц Г.М. Kypc дифференциального и интегрального исчисления, m. 1. М.: Физматлит, 2001. 616 с.
- [6] Демидович Б.П. Сборник задач по математическому анализу. М.: МГУ, ЧеРо, 1997. 624 с.
- [7] Гелбаум Б., Олмстед Дж. *Контрпримеры в анализе.* М.: Мир, 1967. 251 с.

Оглавление

1	Несобственные интегралы							
	1.1	Определение несобственного интеграла	3					
	1.2	Свойства простейших несобственных						
		интегралов	4					
	1.3	Признаки сходимости несобственных интегралов от неотри-						
		цательных функций	8					
	1.4	Несобственные интегралы от						
		незнакопостоянных функций	11					
	1.5	Несобственные интегралы общего вида	15					
	1.6	Интеграл, понимаемый в смысле						
		главного значения по Коши	16					
2	Числовые ряды							
	2.1	Сходимость числового ряда	19					
	2.2	Критерий Коши. Необходимое условие сходимости ряда	20					
	2.3	Сходимость ряда с неотрицательными членами	22					
	2.4	Верхний и нижний пределы последовательности	24					
	2.5	Теоремы сравнения для знакопостоянных рядов	27					
	2.6	Некоторые дополнительные свойства числовых рядов	32					
	2.7	Признаки Дирихле и Абеля	33					
	2.8	Признак абсолютной сходимости ряда	36					
	2.9	Произведение рядов	37					
3	Me	ра Жордана	41					
	3.1	Внутренняя и внешняя меры Жордана	42					
	3.2	Мера Жордана в \mathbb{R}^n . Множества меры нуль	44					

3.3	Критерии измеримости	•	٠			•	•			45
3.4	Свойства измеримых множеств				ı				•	46
3.5	Произведение измеримых множеств .								•	48
3.6	Классы измеримых множеств				ı				•	50
3.7	Преобразования измеримых множеств									53