SRN							
			1.50	_	, ,		

5550/76.

PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE21EC141A

March 2022: END SEMESTER ASSESSMENT- B.TECH. I SEMESTER **UE21EC141A** –**Electronic Principles and Devices**

Tin	ne: 1	80 mins Answer All Questions Max Marks:	100					
1.	a	Explain the following: (i) First and Second Diode Approximations (ii) Illustration of Logical OR Operation using Diode (iii) Avalanche breakdown	6M					
	b	Solve the following using second approximation for a diode. (i) Determine Vo and ID Determine I and V ₀ , for the circuit shown below $ \begin{array}{c} +10 \text{ V} \\ 2.2 \text{ k}\Omega \end{array} $ $ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	8M					
	c	Using Shockley's equation, Find the diode current I_d for a silicon Diode, if the applied voltage V_D =0.72 and Reverse Saturation Current is 2 x 10^{-12} A at a temp of 30^0 C. Consider (η =1). Find the new current I_d if the Temperature is increased to 50^0 C	6M					
2.	a	With a neat diagram and Waveform explain the working principle of Full wave Bridge Rectifier with C Filter						
	b	Derive the expression for I _{dc} , I _{rms} for centre Tap Full wave Rectifier and hence find the efficiency and ripple factor of the Rectifier.	6M					
¥	С							
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						

		SRN SRN					
3.	a	Realize the Following Gates using NAND gates only	6 M				
		(i) OR gate (ii) XOR gate (iii) NOR gate					
Ī	b	Simplify the given Boolean expression and implement the circuit using Basic gates	4 M				
		$\overline{\left(\overline{X}Y + \overline{X} + XY\right) + \left(X\overline{Y}\right)}$					
	С	With a neat diagram explain 4:1 Multiplexer and derive the Boolean expression and Logic diagram using function Table	6 M				
	d	Explain 3 bit Asynchronous up-counter with Circuit diagram, Characteristic Table and timing Diagram.	4M				
4.	a	With a neat diagram, explain the V-I characteristics of NPN BJT Common Base configuration. Find the value of I_C , α and β if $I_E = 1.5 \text{mA}$ and $I_B = 25 \mu\text{A}$.					
	Ъ	Explain Communication System with a neat block diagram.	6 M				
	С	With respect to Cellular Communication, define the following 1) Hand off 2) Roaming 3) Co-channel Interference	6 M				
5 a	a	Define Embedded System and Mention the various applications of Embedded systems with examples	6M				
	b	Draw the Data Flow Model of ARM Processor and explain the same.	8M				
	С	Describe any three of the following (i) Random Access Memory (RAM) (ii) Wireless communication interface (iii) Onboard Communication Interface (iv) Microcontroller (v) ARM 7 Current Program Status Register	6M				

T = T