Chapter 3 The Linear Mixed Effects Model

3.1 The Linear Mixed Model

• In the previous chapter we focused on the *multivariate regression model*

$$y_i = X_i \beta + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, V_i),$$

where

- $\triangleright y_i$ the vector of responses for the *i*th subject
- $\triangleright X_i$ design matrix describing structural component
- $\triangleright V_i$ covariance matrix describing the correlation structure

• Alternative intuitive approach: Each subject in the population has her own subject-specific mean response profile over time

• The evolution of each subject in time can be described by a linear model

$$y_{ij} = \tilde{\beta}_{i0} + \tilde{\beta}_{i1}t_{ij} + \varepsilon_{ij}, \quad \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2),$$

where

 $\triangleright y_{ij}$ the *j*th response of the *i*th subject

 $hd \widetilde{eta}_{i0}$ is the intercept and \widetilde{eta}_{i1} the slope for subject i

• Assumption: Subjects are randomly sampled from a population \Rightarrow subject-specific regression coefficients are also sampled from a population of regression coefficients

$$\tilde{\beta}_i \sim \mathcal{N}(\beta, D)$$

• We can reformulate the model as

$$y_{ij} = (\beta_0 + b_{i0}) + (\beta_1 + b_{i1})t_{ij} + \varepsilon_{ij},$$

where

- $\triangleright \beta$ s are known as the *fixed effects*
- $\triangleright b_i$ s are known as the *random effects*
- In accordance for the random effects we assume

$$b_i = \begin{bmatrix} b_{i0} \\ b_{i1} \end{bmatrix} \sim \mathcal{N}(0, D)$$

• Put in a general form

$$\begin{cases} y_i = X_i \beta + Z_i b_i + \varepsilon_i, \\ b_i \sim \mathcal{N}(0, D), \quad \varepsilon_i \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_{n_i}), \end{cases}$$

with

 $\triangleright X$ design matrix for the fixed effects β

 $\triangleright Z$ design matrix for the random effects b_i

 $\triangleright b_i$ and ε_i are assumed independent

3.2 Interpretation

- Fixed and random effects:
 - $\triangleright \beta_j$ denotes the change in the average y_i when x_j is increased by one unit
 - $\triangleright b_i$ are interpreted in terms of how a subset of the regression parameters for the ith subject deviates from those in the population
- Advantageous feature: population + subject-specific predictions
 - $\triangleright \beta$ describes mean response changes in the population
 - $\triangleright \beta + b_i$ describes individual response trajectories

- Example: We fit a linear mixed model for the AIDS dataset assuming
 - ▷ different average longitudinal evolutions per treatment group (fixed part)
 - > random intercepts & random slopes (random part)

$$\begin{cases} \sqrt{\text{CD4}_{ij}} = \beta_0 + \beta_1 \text{Time}_{ij} + \beta_2 \{\text{ddI}_i \times \text{Time}_{ij}\} + b_{i0} + b_{i1} \text{Time}_{ij} + \varepsilon_{ij}, \\ \\ b_i \sim \mathcal{N}(0, D), \quad \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2) \end{cases}$$

• Note: We did not include a main effect for treatment due to randomization

	Value	Std.Err.	t-value	p-value
β_0	7.189	0.222	32.359	< 0.001
β_1	-0.163	0.021	-7.855	< 0.001
eta_2	0.028	0.030	0.952	0.342

• No evidence of differences in the average longitudinal evolutions between the two treatments

- <u>Interaction & nonlinear terms</u>: As we have seen in the previous chapter (see pp. 59–64), often
 - b the effect of some predictors may be nonlinear (e.g., time effect), and/or
 - > the effect of some predictors on the outcome may be influenced from other predictors (e.g., different average longitudinal evolutions per treatment group)
- In such cases, we need to consider more elaborate models that contain terms to capture these features, namely
 - > polynomials or splines to model nonlinearities

- When such terms are included in the model, the interpretation of the parameters can become quite complicated
- To understand a complex mixed model we can visualize it using **effect plots**
- Example: We fit a model to the PBC dataset for serum bilirubin that contains
 - ▶ fixed effects:
 - * nonlinear time effect with splines, main effect of sex, age and baseline prothrombin
 - * interaction effects of sex with nonlinear time, age and baseline prothrombin
 - > random effects: nonlinear time effect

• The model has the form:

$$\begin{split} \log(\texttt{serBilir}_{ij}) &= \beta_0 + \beta_1 N(\texttt{Time}_{ij})_1 + \beta_2 N(\texttt{Time}_{ij})_2 + \beta_3 \texttt{Female}_i + \beta_4 \texttt{Age}_i + \\ \beta_5 \texttt{basePro}_i + \beta_6 \{\texttt{Female}_i \times \texttt{Age}_i\} + \\ \beta_7 \{\texttt{Female}_i \times \texttt{basePro}_i\} + \beta_8 \{\texttt{Female}_i \times N(\texttt{Time}_{ij})_1\} + \\ \beta_9 \{\texttt{Female}_i \times N(\texttt{Time}_{ij})_2\} + b_{i0} + b_{i1} N(\texttt{Time}_{ij})_1 + \\ b_{i2} N(\texttt{Time}_{ij})_2 + \varepsilon_{ij} \end{split}$$

where

 \triangleright the terms $N(\mathtt{Time}_{ij})_1$ and $N(\mathtt{Time}_{ij})_2$ denote the basis for a natural spline with two degrees of freedom

$$\triangleright b_i \sim \mathcal{N}(0, D)$$
 and $\varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$

- In this model not all coefficients have a direct interpretation in isolation
- Hence to understand the model we depict
 - b how the average longitudinal profiles evolve over time,
 - > separately for males and females, and prothrombin time of 10.6 sec
 - be for the average age of 49 years old
 - ▷ including also the corresponding 95% pointwise confidence intervals
 - (in the app different ages and prothrombin times can be selected)

3.3 Hierarchical vs Marginal

- How do the random effects capture correlation:
 - □ Given the random effects, the measurements of each subject are independent (conditional independence assumption)

$$p(y_i \mid b_i) = \prod_{j=1}^{n_i} p(y_{ij} \mid b_i)$$

► Marginally (integrating out the random effects), the measurements of each subject are correlated

$$p(y_i) = \int p(y_i \mid b_i) p(b_i) db_i \quad \Rightarrow \quad y_i \sim \mathcal{N}(X_i \beta, Z_i D Z_i^\top + \sigma^2 \mathbf{I}_{n_i})$$

Graphical representation of the conditional independence assumption

- Hence, with random effects we again model the correlations in the repeated measurements of each subject
- Notes: In using random effects for modeling the covariance matrix
 - > The more random effects we include the more flexibly we capture the correlations
 - ▷ By using random effects (other than random intercept alone) we also directly allow for heteroscedasticity (i.e., non-constant variances in time)
 - Nevertheless, we do assume a particular type of structure for the correlations and the variances − they are not allowed completely free
 - > Random effects work equally well with balanced or unbalanced data

• Let's try the app...

- Hierarchical formulation
 - \triangleright a model for y_i given b_i , and a model for b_i
 - $\triangleright D$ is the covariance matrix of the random effects \Rightarrow needs to be positive definite

- Marginal formulation
 - \triangleright a model for y_i , and a specific form of the marginal covariance matrix $V_i = Z_i D Z_i^\top + \sigma^2 \mathbf{I}_{n_i}$
 - \triangleright only V_i needs to be positive definite
 - $\triangleright V_i$ can be positive definite without D being positive definite

The hierarchical model implies the marginal one, not vice versa

• A simple example: Random-intercepts model

$$\begin{cases} y_{ij} = \beta_0 + \beta_1 t_{ij} + b_{i0} + \varepsilon_{ij}, \\ \\ b_{i0} \sim \mathcal{N}(0, \sigma_b^2), \quad \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2). \end{cases}$$

Random Intercepts

• Implied marginal covariance matrix has the form

$$V_i = \sigma_b^2 \mathbf{1}_{n_i} \mathbf{1}_{n_i}^\top + \sigma^2 \mathbf{I}_{n_i}$$

it assumes

- \triangleright constant variance $\sigma_b^2 + \sigma^2$ over time, and
- \triangleright equal positive correlation $\rho = \sigma_b^2/(\sigma_b^2 + \sigma^2)$ between the measurements of any two time points (aka *intra-class correlation*)
- it is known as the compound symmetric covariance matrix

- Note that we could also have a compound symmetric covariance matrix with negative intra-class correlation
 - > such a matrix could never have come from a mixed model

Random intercepts **imply** compound symmetry but

Compound symmetry **does not imply** random intercepts

- What are the implications of this?
- Statistical software that fit mixed models under ML actually fit the implied marginal model
 - b we can construct examples where two mixed models have exactly the same implied marginal model
 - based on the fitted model we **cannot** say under which model the data have been generated
- We can only do it under a Bayesian approach (because there we actually fit the hierarchical model)

3.4 Estimation

• Fixed effects: For known marginal covariance matrix $V_i = Z_i D Z_i^{\top} + \sigma^2 I_{n_i}$, the fixed effects are estimated using generalized least squares

$$\hat{\beta} = \left(\sum_{i=1}^{n} X_i^{\top} V_i^{-1} X_i\right)^{-1} \sum_{i=1}^{n} X_i^{\top} V_i^{-1} y_i$$

- ullet Variance Components: The unique parameters in V_i are estimated based on either maximum likelihood (ML) or restricted maximum likelihood (REML)
 - > REML provides unbiased estimates for the variance components in small samples

- Two-step iterative procedure
 - \triangleright Step 0: Set initial values for D and σ^2
 - hd Step 1: Calculate the covariance matrix $\widehat{V}_i^{it=k}$ and following the fixed effects $\hat{eta}^{it=k}$
 - hd Step 2: Update $\widehat{V}_i^{it=k+1}$ using REML or ML
 - ▷ Step 3: Check convergence criterion, if not satisfied return to Step 1

Steps 1-3 are repeated until convergence is attained

- Estimation of random effects
 - based on a fitted mixed model, estimates for the random effects are based on the posterior distribution:

$$p(b_i \mid y_i; \theta) = \frac{p(y_i \mid b_i; \theta) \ p(b_i; \theta)}{p(y_i; \theta)}$$

$$\propto p(y_i \mid b_i; \theta) p(b_i; \theta),$$

in which θ is replaced by its MLE $\hat{\theta}$

- This is a whole distribution
 - in the linear mixed model we have seen, this posterior distribution has a closed-form:

$$[b_i \mid y_i; \theta] \sim \mathcal{N}\Big\{DZ_i^{\top}V_i^{-1}(y_i - X_i\beta), DZ_i^{\top}KZ_iD\Big\},$$

with

$$K = V_i^{-1} - V_i^{-1} X_i \left(\sum_{i=1}^n X_i^{\top} V_i^{-1} X_i \right)^{-1} X_i^{\top} V_i^{-1}$$

- To obtain estimates for the random effects we typically use measures of location from this posterior distribution (e.g., mean or mode)
- Due to the fact that in linear mixed models we obtain a normal distribution (in which the mean and mode coincide), we use as estimates of the random effects the means of these distributions

$$\widehat{b}_i = DZ_i^{\top} V_i^{-1} (y_i - X_i \beta)$$

• These estimates are called the *empirical Bayes* estimates of the random effects

- Estimates of the random effects are very useful in prediction
 - ▷ in this context there is an important difference between the marginal models we have seen in Chapter 2 and the mixed models of this chapter
- In particular, the predictions from a marginal model are

$$\widehat{y}_i^{marg} = X_i \widehat{\beta}$$

whereas from the mixed model we obtain

$$\widehat{y}_i^{subj} = X_i \widehat{\beta} + Z_i \widehat{b}_i$$

- The difference is that
 - \triangleright from the marginal model we obtain predictions for the 'average' patient having characteristics X_i (i.e., age, sex, etc.)
 - \triangleright from the mixed model we obtain predictions for the 'average' patient that has characteristics X_i and observed data y_i (i.e., they have a subject-specific nature)
- The predictions $X_i\widehat{\beta} + Z_i\widehat{b}_i$ we obtain from the mixed model are called the Best Linear Unbiased Predictions (BLUPs)
 - riangle 'linear' because they are a linear combination of \widehat{eta} and \widehat{b}_i
 - > 'unbiased' because their average equals the true subject-specific mean
 - ▷ 'best' because they have the smallest variance of all linear predictors

- Example: To see an example of the difference between the marginal and subject-specific predictions, we compare the two sets of predictions for the complex linear mixed model we have seen in Section 3.2 (pp.151–154) for 16 randomly selected patients

 - ▷ blue lines denote the subject-specific predictions
 - ▷ black circles the observed data

• We clearly observe that the subject-specific predictions are much closer to the data of each individual patient than the marginal ones

3.5 Mixed-Effects Models in R

- R> There are two primary packages in R for mixed models analysis:
 - ▷ Package nlme
 - * fits linear & nonlinear mixed effects models, and marginal models for normal data
 - * allows for both random effects & correlated error terms
 - * several options for covariances matrices and variance functions
 - ▶ Package Ime4
 - * fits linear, nonlinear & generalized mixed effects models
 - * uses only random effects
 - * allows for nested and crossed random-effects designs

- R> The basic function to fit linear mixed models in the **nlme** package is <u>lme()</u>, and has three basic arguments

 - > random: a formula specifying the random-effects structure

R> The data frame that contains all variables should be in the *long format*

Subject	У	time	gender	age
1	5.1	0.0	male	45
1	6.3	1.1	male	45
2	5.9	0.1	female	38
2	6.9	0.9	female	38
2	7.1	1.2	female	38
2	7.3	1.5	female	38
	:	:	ŧ	ŧ

R> The code used to fit the linear mixed model for the AIDS dataset (pp.148) is as follows

```
lmeFit <- lme(CD4 ~ obstime + obstime:drug, data = aids,
    random = ~ obstime | patient)
summary(lmeFit)</pre>
```


R> The same fixed-effects structure but only random intercepts

```
lme(CD4 ~ obstime + obstime:drug, data = aids,
random = ~ 1 | patient)
```

R> The same fixed-effects structure, random intercepts & random slopes, with a diagonal covariance matrix (using the pdDiag() function)

```
lme(CD4 ~ obstime + obstime:drug, data = aids,
random = list(patient = pdDiag(form = ~ obstime)))
```


- R> The basic function to fit linear mixed models in the **Ime4** package is **lmer()**, and has two basic arguments
 - ▶ formula: a formula specifying the response vector, the fixed- and random-effects
 structure
- R> Again the data should be in the long format

R> The analogous code to fit the linear mixed model for the AIDS dataset (pp.148) is as follows

```
summary(lmerFit)
```


R> To fit the same model but with a diagonal matrix for the random effects the call becomes:

3.6 Nested and Crossed Random Effects*

- In the previous examples the primary type of correlated data we have seen is longitudinal data
 - > correlations stems from the fact that we measure *the same* outcome repeatedly in time for each subject
- Another commonly encountered feature that induces correlation is clustering, e.g.,
 - > patients are clustered within hospitals
 - > children are clustered within schools or families

▷ . . .

- Example: In the Glaucoma data we have a multilevel clustered design (see pp.11)
 - > each location is nested within the hemifield
 - ▷ each hemifield is nested within the eye
 - ▷ each eye is nested within the patient

Measurements in the same cluster are expected to be (positively) correlated

- To account for the correlations in each level of the multilevel structure we can include level-specific random effects
- Continuing in the Glaucoma data example, we focus (for simplicity) in the higher two levels, namely the patient and the eye
 - > we fit a linear mixed model with a separate random effect per level

$$\begin{cases} \text{VF}_{ijk} = \beta_0 + \beta_1 \text{Time}_{ijk} + b_i + u_{ij} + \varepsilon_{ijk} \\ b_i \sim \mathcal{N}(0, \sigma^2_{patient}), & u_{ij} \sim \mathcal{N}(0, \sigma^2_{eye}), \\ \varepsilon_{ijk} \sim \mathcal{N}(0, \sigma^2) \end{cases}$$

where

- \triangleright VF $_{ijk}$ denotes the k-th visual field sensitivity measurement for the j-th eye of the i-th patient
- \triangleright Time_{ijk} denotes the corresponding time point this measurement was taken
- $\triangleright b_i$ is the random effect for the patients the measurements of the *i*-th patient are correlated because all these measurements share the *same* random effect b_i
- $\triangleright u_{ij}$ is the random effect for the eye within the patient the measurements of the j-th eye of the i-th patient are more correlated than the measurements of the j'-th eye because they share the <u>same</u> random effect u_{ij}

• The estimated variance components from the Glaucoma data are:

$$\triangleright \sigma_{patient} = 4.3$$

$$\triangleright \sigma_{eye} = 5.8$$

$$\triangleright \sigma = 7.9$$

- Based on these variance components we can compute the corresponding correlations, i.e.,

$$\frac{\sigma_{patient}^2 + \sigma_{eye}^2}{\sigma_{patient}^2 + \sigma_{eye}^2 + \sigma^2} = 0.46$$

> and measurements from different eyes

$$\frac{\sigma_{patient}^2}{\sigma_{patient}^2 + \sigma_{eye}^2 + \sigma^2} = 0.16$$

- It goes without saying, that if the correlations in the data are more complex, we could include additional random effects
- Example: Continuing in the Glaucoma example, by including only random intercepts terms we assume that the correlations are constant in time
 - > as we have previously discussed, this may be a simplistic assumption for longitudinal data

We extend the model by including a random slopes terms in the patient level, i.e.,

$$\begin{cases} \text{VF}_{ijk} = \beta_0 + \beta_1 \text{Time}_{ijk} + b_{i0} + b_{i1} \text{Time}_{ijk} + u_{ij} + \varepsilon_{ijk} \\ b_i \sim \mathcal{N}(0, D_{patient}), & u_{ij} \sim \mathcal{N}(0, \sigma_{eye}^2), \\ \varepsilon_{ijk} \sim \mathcal{N}(0, \sigma^2) \end{cases}$$

 \triangleright now, in the patient level we have a covariance matrix D

• The estimated variance components from the Glaucoma data are:

$$\triangleright \sigma_{patient,int} = 4.7$$

$$\triangleright \sigma_{patient,slp} = 0.4$$

$$\triangleright \mathsf{corr}_{\mathit{patient}, int-slp} = -0.4$$

$$\triangleright \sigma_{eye} = 5.8$$

$$\triangleright \sigma = 7.8$$

- The examples we have seen so far in this section refer to settings in which the measurements of one level are *nested* within another level
 - be due to this feature, the random effects we have used in the previous examples of the Glaucoma data are called *nested random effects*
- However, there are also settings in which we have different types of groupings of measurements that are not nested
 - in these cases we use crossed random effects

- Example: One feature of visual field sensitivity measurements is that they exhibit the so-called *Global Visit Effect* (see pp.12)
 - ▷ in particular, for some visits some patients showed strangely low sensitivity to the stimuli
 - in the next visit, their sensitivity levels improved
 - it is not possible this low sensitivity to be due to Glaucoma because it is an irreparable disease
 - b hence, the low sensitivity measurements are attributed to other reasons (e.g., tiredness)
- To capture this Global Visit Effect we can include a random effect for each visit
 - > this random effect is **not** nested to the previously used random effects

Hence, our model now becomes

$$\begin{cases} \text{VF}_{ijk} = \beta_0 + \beta_1 \text{Time}_{ijk} + b_i + \mathbf{v}_k + \varepsilon_{ijk} \\ b_i \sim \mathcal{N}(0, \sigma_{patient}^2), & \mathbf{v}_k \sim \mathcal{N}(0, \sigma_{visit}^2), \\ \varepsilon_{ijk} \sim \mathcal{N}(0, \sigma^2) \end{cases}$$

• The estimated variance components from the Glaucoma data are:

$$\triangleright \sigma_{patient} = 5.9$$

$$\triangleright \sigma_{visit} = 0.8$$

$$\triangleright \sigma = 8.9$$

3.7 Mixed Models with Correlated Errors

- We have seen two classes of models for longitudinal data, namely
 - ▶ Marginal Models

$$y_i = X_i \beta + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, V_i), \quad \text{and}$$

Conditional Models ✓

$$\begin{cases} y_i = X_i \beta + Z_i b_i + \varepsilon_i, \\ b_i \sim \mathcal{N}(0, D), \quad \varepsilon_i \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_{n_i}) \end{cases}$$

 It is also possible to combine the two approaches and obtain a linear mixed model with correlated error terms

$$\begin{cases} y_i = X_i \beta + Z_i b_i + \varepsilon_i, \\ b_i \sim \mathcal{N}(0, D), \quad \varepsilon_i \sim \mathcal{N}(0, \Sigma_i), \end{cases}$$

where, as in marginal models, we can consider different forms for Σ_i

• The corresponding marginal model is of the form

$$y_i \sim \mathcal{N}(X_i\beta, Z_iDZ_i^\top + \Sigma_i)$$

Features

- \triangleright both b_i and Σ_i try to capture the correlation in the observed responses y_i
- > this model does not assume conditional independence
- Choice between the two approaches is to a large extent philosophical
 - ▷ Random Effects: trajectory of a subject dictated by time-independent random effects ⇒ the shape of the trajectory is an inherent characteristic of this subject.
 - > Serial Correlation: attempts to more precisely capture features of the trajectory by allowing subject-specific trends to vary in time

Often in practice it is **not** possible to include both a serial correlation term and many random effects because of numerical problems

- Example: In the AIDS dataset we investigate the fit of a mixed model with exponential serial correlation and increasing number of random effects in particular:

 - ▶ Model II: random intercepts & random slopes

the fixed-effects part includes linear and quadratic slopes and their interaction with treatment

	Model I	Model II
Intercept	7.173	7.214
\mathtt{Time}_{ij}	-0.247	-0.251
\mathtt{Time}^2_{ij}	0.007	0.007
$\mathtt{ddI}_i \times \mathtt{Time}_{ij}$	0.186	0.154
$\texttt{ddI}_i \times \texttt{Time}^2_{ij}$	-0.013	-0.010

• We observe small differences in the estimated fixed effects

	Model I	Model II
ϕ	2.29	0.52
95% CI	(1.62; 3.23)	(0.08; 3.45)

- However, we observe a more profound effect in the estimated parameter of the exponential serial correlation structure
 - ▷ as we include more random effects, less information is available for estimating the serial correlation structure note length of 95% Cls

• Numerical problems:

- > The model is fitted with the exponential serial correlation structure,
- but if you instead tried the Gaussian serial correlation structure, then the models do not appropriately converge (Hessian matrix of the MLEs is not positive-definite)

3.8 Time-Varying Covariates*

- Up to now we have only included in mixed models covariates, which were fixed from baseline (except of course the time variable)
- However, often we may also be interested in assessing how a longitudinal outcome is associated with a covariate whose value changes over time
 - ▷ such covariates are called time-varying covariates
- Example: In the PBC dataset we are interested in the effect of prothrombin time on serum bilirubin prothrombin time has also been collected longitudinally during follow-up

- The handling of time-varying covariates poses some *important challenges*:
 - 1. Not always the longitudinal outcome and the time-varying covariate are collected at the same time points
 - 2. The longitudinal outcome at a particular time point t may depend not only on the value of the covariate at the same time point but also at other time points
 - 3. There are two types of time-varying covariates, endogenous and exogenous
 - \triangleright a time-varying covariate is *exogenous* if its distribution at time t is conditionally independent of all preceding outcomes
 - > a time-varying covariate is *endogenous* if it is not exogenous

• The formal definitions of exogenous and endogenous time-varying covariates are:

$$p\{x_i(t) \mid \mathcal{H}_i^Y(t), \mathcal{H}_i^X(t)\} = p\{x_i(t) \mid \mathcal{H}_i^X(t)\}$$
$$p\{x_i(t) \mid \mathcal{H}_i^Y(t), \mathcal{H}_i^X(t)\} \neq p\{x_i(t) \mid \mathcal{H}_i^X(t)\}$$

where

- $\triangleright \mathcal{H}_i^Y(t) = \{y_i(t_{i1}), \dots, y_i(t_{ik}); t_{ik} \leq t\}$ denotes the set of longitudinal measurements up to time t
- $\triangleright \mathcal{H}_i^X(t) = \{x_i(t_{i1}), \dots, x_i(t_{ik}); t_{ik} \leq t\}$ denotes the set of covariate measurements up to time t

- These features complicate postulating an appropriate model with such covariates
- A procedure to follow when working with time-varying covariates
 - Determine if the covariate is endogenous or exogenous
 - * if it is exogenous, then
 - we can proceed by postulating a standard mixed (or marginal) model, and
 - the longitudinal outcome at time t can only be associated with past covariate measurements, i.e., $\mathcal{H}^X_i(t)$
 - * if it is endogenous, then more complicated types of analysis are required (joint models or marginal structural models) that fall outside the scope of this course

- Next, determine how to link the time-varying covariate to the longitudinal outcome (association structure)
 - * the longitudinal outcome at t is associated to the covariate at which time points (the same, previous time points, etc.)
 - * Note: If the scientific interest is focused on a particular type of association structure but in reality the longitudinal outcomes is differently associated to the time-varying covariate, then the estimated association of interest may be diluted (biased) unless a specific type of analysis is followed (a marginal model with independent error terms, i.e., linear regression and corrected standard errors using the sandwich estimator)

- Depending on the chosen association structure in the previous step, and if the time-varying covariate is not measured at the same time points as the longitudinal outcome, then a form of interpolation may be required
- Example: In the PBC dataset we are interested in the effect of prothrombin time on serum bilirubin

$$\log(\mathtt{serBilir}_{ij}) = \beta_0 + \beta_1 N(\mathtt{Time}_{ij})_1 + \beta_2 N(\mathtt{Time}_{ij})_2 + \beta_3 \mathtt{Female}_i + \beta_4 \mathtt{Age}_i + \beta_5 \mathtt{Prothr}_{ij} + b_{i0} + b_{i1} N(\mathtt{Time}_{ij})_1 + b_{i2} N(\mathtt{Time}_{ij})_2 + \varepsilon_{ij}$$

the covariance matrix of the random effects is assumed to be diagonal

	Value	Std.Err.	t-value	p-value
β_0	0.347	0.366	0.948	0.343
β_1	1.772	0.139	12.738	< 0.001
β_2	1.266	0.197	6.422	< 0.001
β_3	-0.233	0.184	-1.263	0.207
β_4	-0.000	0.006	-0.080	0.936
eta_5	0.036	0.008	4.675	< 0.001

ullet Log serum bilirubin at time t is strongly related with the prothrombin time at the same time point — a unit increase of prothrombin time at follow-up time t increases the expected log serum bilirubin at the same follow-up time by 0.036

• We continue on the same example, but now we allow the log serum bilirubin at time t to be associated with the prothrombin time at previous time points as well – in particular:

$$\log(\texttt{serBilir}_{ij}) = \beta_0 + \beta_1 N(\texttt{Time}_{ij})_1 + \beta_2 N(\texttt{Time}_{ij})_2 + \beta_3 \texttt{Female}_i + \beta_4 \texttt{Age}_i + \beta_5 \texttt{CumProthr}_{ij} + b_{i0} + b_{i1} N(\texttt{Time}_{ij})_1 + b_{i2} N(\texttt{Time}_{ij})_2 + \varepsilon_{ij}$$

the covariance matrix of the random effects is assumed to be diagonal

- CumProthr_{ij} denotes the cumulative effect of prothrombin time
 - be proposed by proposed proposed by proposed proposed proposed by the proposed propo

	Value	Std.Err.	t-value	p-value
β_0	0.728	0.361	2.015	0.044
β_1	1.700	0.159	10.686	< 0.001
β_2	1.256	0.210	5.974	< 0.001
β_3	-0.245	0.187	-1.311	0.191
β_4	-0.000	0.006	-0.007	0.995
β_5	0.009	0.004	2.462	0.014

ullet Log serum bilirubin at time t is strongly related with the cumulative prothrombin time up to the same time point — a unit increase of the cumulative prothrombin time up to follow-up time t increases the expected log serum bilirubin at the same follow-up time by 0.009

3.9 Model Building

- Mixed models consist of two parts, namely

 - > random effects that describe how specific regression coefficients deviate from the overall mean described by the fixed effects
 - * the random effects also model the correlations in the repeated measurements
- Interest can either be
 - > on the fixed-effects part alone (e.g., does treatment influence the average evolutions) or
 - ▷ on both parts (e.g., to obtain subject specific predictions)

3.9 Model Building (cont'd)

- The general model building strategy we have seen in the previous chapter for marginal models also applies in the case of mixed models more specifically:
 - 1. Put all the covariates of interest in the fixed-effects part, considering possible nonlinear terms and/or interactions between them do NOT remove the ones that are not significant
 - 2. Then select an appropriate random-effects structure that adequately describes the correlations in the repeated measurements
 - * typically we start from random intercepts and include each time an additional random effect term to see if we improve the fit (i.e., random slopes, quadratic random slopes, etc.)
 - * you should be a bit anti-conservative, i.e., do not favor a simpler covariance matrix if the p-value is just non-significant

3.9 Model Building (cont'd)

- 3. Finally, return to the mean part and exclude non significant covariates
 - * first start by testing the nonlinear & interaction terms

3.10 Hypothesis Testing

- Similarly to the marginal models of Chapter 2, in mixed models we can use standard inferential tools for performing hypothesis testing

 - ▷ Likelihood ratio tests
- Following the model building strategy described above, we will again split the types of hypothesis tests in two parts:
 - ⊳ first, describe how can we choose the appropriate covariance matrix, and
 - > second, focus on hypothesis testing for the mean part of the model

• Hypothesis testing for $V_i = Z_i D Z_i^{\top} + \sigma^2 I_{n_i}$: Assuming the same mean structure, we can fit a series of mixed models and choose the one that best describes the covariances

- In general, we distinguish between two cases
 - > comparing two mixed models with *nested* covariance matrices
 - > comparing two mixed models with *non-nested* covariance matrices
- Note: Model A is nested in Model B, when Model A is a special case of Model B
 - ▷ i.e., by setting some of the parameters of Model B at some specific value we obtain Model A

• For **nested** models the preferable test for selecting V_i is the likelihood ratio test (LRT):

$$LRT = -2 \times \{\ell(\hat{\theta}_0) - \ell(\hat{\theta}_a)\} \sim \chi_p^2$$

where

- $\triangleright \ell(\hat{\theta}_0)$ the value of the log-likelihood function under the null hypothesis, i.e., the special case model
- $\triangleright \ell(\hat{\theta}_1)$ the value of the log-likelihood function under the alternative hypothesis, i.e., the general model
- $\triangleright p$ denotes the number of parameters being tested
- Note: Provided that the mean structure in the two models is the same, we can either compare the REML of ML likelihoods of the models (preferable is REML)

Though, there is a **technical** complication when we compare nested mixed models for which one model has more random effects than the other

- To illustrate the issue, consider the hypothesis test between the random intercepts and the random intercepts & random slopes models
 - > random intercepts model

$$y_{ij} = X\beta + b_{i0} + \varepsilon_{ij}, \qquad b_{i0} \sim \mathcal{N}(0, \sigma_{b_1}^2)$$

▷ random intercepts & random slopes model

$$y_{ij} = X\beta + b_{i0} + b_{i1}t + \varepsilon_{ij}, \qquad b_{i0} \sim \mathcal{N}(0, D)$$

with

$$D = \begin{bmatrix} \sigma_{b_1}^2 & \sigma_{b_{12}} \\ \sigma_{b_{12}} & \sigma_{b_2}^2 \end{bmatrix}$$

• Hence, the hypotheses to be tested are

$$H_0: \quad \sigma_{b_2}^2 = \sigma_{b_{12}} = 0$$

$$H_a: \ \sigma_{b_2}^2 \neq 0 \text{ or } \sigma_{b_{12}} \neq 0$$

- ullet What is the problem? The null hypothesis for $\sigma_{b_2}^2$ is on the boundary of its corresponding parameter space
 - \triangleright statistical tests derived from standard ML theory assume the H_0 is an interior point of the parameter space
 - \triangleright the classical asymptotic χ^2 distribution for the likelihood ratio test statistic does not apply

- ullet For simple settings (as the one above), it has been proposed to use a mixture of χ^2 distributions to derive p-values, namely
 - \triangleright 50% from the χ^2 distribution with degrees of freedom the number of parameters being tested, and
 - \triangleright 50% from the χ^2 distribution with degrees of freedom the number of parameters who are not on the boundary under H_0
- Nonetheless, it has been suggested that this solution does not always work satisfactorily
 - ▷ e.g., see package **RLRsim** in R and the references therein

- Example: In the AIDS dataset we compare two mixed models with linear and quadratic slopes in the fixed effects, and in the random effects
 - $ho M_1$: random intercepts & linear random slopes
 - $ho M_2$: random intercepts, linear random slopes & quadratic random slopes
- Hence, the covariance matrices of the random effects under the two models are

$$egin{aligned} m{M_1} : D = egin{bmatrix} \sigma_{b_1}^2 & \sigma_{b_{12}} \ \sigma_{b_{12}} & \sigma_{b_2}^2 \end{bmatrix} \quad ext{and} \quad m{M_2} : D = egin{bmatrix} \sigma_{b_1}^2 & \sigma_{b_{12}} & \sigma_{b_{13}} \ \sigma_{b_{13}} & \sigma_{b_{23}} & \sigma_{b_{23}} \ \sigma_{b_{13}} & \sigma_{b_{23}} & \sigma_{b_{3}} \end{bmatrix} \end{aligned}$$

• And, the hypotheses being tested are

$$H_0: \quad \sigma_{b_3}^2 = \sigma_{b_{13}} = \sigma_{b_{23}} = 0$$

 H_a : at least one different from zero

• The likelihood ratio test gives:

	df	logLik	LRT	p-value	Mixture p-value
M_1	9	-3573.88			
M_2	12	-3570.71	6.34	0.0961	0.0690

- About the two *p*-values
 - \triangleright The first p-value is based on the classic χ^2 distribution with degrees of freedom the number of parameters being tested, i.e., in this case 3
 - ▶ The second p-value is based on the mixture of χ^2 distributions with 3 degrees of freedom (i.e., the classic one) and 2 degrees of freedom (the number of parameters not on the boundary under H_0), respectively
- ullet We observe that the classic p-value is more conservative
 - \triangleright as we have seen in the previous section (see pp.211), when choosing the appropriate random effects we should be more liberal, and hence the mixture of χ^2 distribution is to be preferred

- When we have **non-nested** models we **cannot** use standard tests anymore
 - > the alternative in this case is to use the information criteria AIC or BIC

When we compare two **non-nested** models we choose the model that has the **lowest** AIC/BIC value

- Example: In the PBC dataset we want to compare two mixed models with a spline effect of time and its interaction with sex in the fixed effects, and in the random effects
 - $ightharpoonup M_1$: random intercepts & linear random slopes, with an unstructured matrix for these random effects
 - $ightharpoonup M_2$: random intercepts, & nonlinear random slopes with splines, with a diagonal matrix for these random effects

In the fixed-effects part and in the random-effects part of model M_2 : the splines are natural cubic splines with 2 internal knots

These models are not nested and hence to compare them we use the AIC and BIC values

• The AIC and BIC values for the two models are:

	df	logLik	AIC	BIC
M_1	10	-1522.38	3064.75	3120.45
M_2	10	-1438.53	2897.06	2952.76

▶ Both AIC and BIC suggest that the model with the nonlinear random slopes is better than the model with the linear random slopes

- ullet Notes: Hypothesis testing for the covariance matrix V_i
 - > The aforementioned procedures assume that the fixed-effects structure of the mixed models to be compared are the same
 - * under this assumption we can compare mixed models fitted with the restricted maximum likelihood (REML) method
 - * otherwise the models should be fitted with maximum likelihood (ML)
 - > The AIC and BIC do not always select the same model when they disagree
 - * AIC typically selects the more elaborate model, whereas
 - * BIC the more parsimonious model

- Hypothesis testing for the regression coefficients β : We assume that first a suitable choice for the covariance matrix has been made
- In the majority of the cases we compare nested models, and hence standard tests can be used

- We distinguish between two cases
 - > tests for individual coefficients
 - bets for groups of coefficients

- Everything works in the same manner as we have seen for marginal models in Chapter 2 (see pp.103–106)
 - ▷ hence, we are not going to repeat the details here
- Example: We have fitted the following model to the Prothro dataset:

$$\begin{cases} & \operatorname{pro}_{ij} \ = \ (\beta_0 + b_{i0}) + (\beta_1 + b_{i1}) N(\operatorname{Time}_{ij})_1 + (\beta_2 + b_{i2}) N(\operatorname{Time}_{ij})_2 + \\ & (\beta_3 + b_{i3}) N(\operatorname{Time}_{ij})_3 + \beta_4 \operatorname{predn}_i + \\ & \beta_5 \{ \operatorname{predn}_i \times N(\operatorname{Time}_{ij})_1 \} + \beta_6 \{ \operatorname{predn}_i \times N(\operatorname{Time}_{ij})_2 \} + \\ & \beta_7 \{ \operatorname{predn}_i \times N(\operatorname{Time}_{ij})_3 \} + \varepsilon_{ij} \end{cases}$$

$$b_i \sim \mathcal{N}(0, D) \qquad D \text{ is a diagonal matrix, } \qquad \varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$$

ightharpoonup The terms $N(\mathtt{Time}_{ij})_1$, $N(\mathtt{Time}_{ij})_2$ and $N(\mathtt{Time}_{ij})_3$ denote the basis for a natural cubic spline with three degrees of freedom to model possible nonlinearities in the time effect

- We are interested in
 - > the main effect of treatment,
 - b the overall effect of time, and
 - b the overall effect of treatment (i.e., main effect + interactions)
- Under the postulated model the main effect of treatment is given by parameter β_4 , i.e.,

$$H_0: \beta_4 = 0$$

$$H_a: \beta_4 \neq 0$$

• The output of the model gives: ...

	Value	Std.Err.	t-value	p-value
β_0	72.357	1.435	50.423	< 0.001
β_1	-12.131	3.953	-3.069	0.002
β_2	31.954	3.445	9.274	< 0.001
β_3	34.015	4.706	7.228	< 0.001
β_4	-4.154	2.057	-2.019	0.044
β_5	14.621	5.679	2.575	0.010
β_6	-7.809	5.040	-1.549	0.121
β_7	-3.253	7.177	-0.453	0.650

- Hence, a significant treatment effect at baseline (strange!)
 - \triangleright the t-value in the output is the estimated coefficient divided by its standard error
- For the overall effect of time, we are interested in the hypothesis:

$$H_0: \beta_1 = \beta_2 = \beta_3 = \beta_5 = \beta_6 = \beta_7 = 0$$

 H_a : at least one coefficient different from 0

• To test this hypothesis we can use an F-test but appropriately constructing the contrasts matrix

• We obtain

F-value
$$df_1$$
 df_2 p-value 23.555 6 1939 < 0.0001

• For the overall treatment effect, we obtain the hypothesis:

$$H_0: \quad \beta_4 = \beta_5 = \beta_6 = \beta_7 = 0$$

 H_a : at least one coefficient different from 0

- This cannot be tested with an F-test because of technical reasons
 - by the denominator degrees of freedom are not the same for the main effect and the terms involving time
- As an alternative we can use the likelihood ratio test
 - ▷ i.e., we compare the model we fitted with the model that only has the nonlinear effect of time in the fixed effects

• The likelihood ratio test gives

	df	logLik	AIC	BIC	LRT	p-value
without Treatment	9	-13240.53	26499.06	26553.02		
with Treatment	13	-13229.80	26485.59	26563.53	21.47	0.0003

3.11 Residuals

- As we have similarly done for marginal models in Chapter 2, before extracting conclusions from mixed models, we will first need to validate the underlying assumptions they make
- To do this we can use the residuals of the model

- In the setting of mixed models we have two types of residuals
 - ► Marginal residuals: These are based on the implied marginal model behind a linear mixed model (see pp.155)
 - Conditional residuals: These are based on the hierarchical representation of the mixed model and utilize the empirical Bayes estimates of the random effects (see pp.169)

- The exact definitions are as follows:
 - ▶ Marginal residuals:

$$\begin{cases} y_i = X_i \beta + \varepsilon_i^*, & \varepsilon_i^* \sim \mathcal{N}(0, Z_i D Z_i^\top + \sigma^2 \mathbf{I}_{n_i}) \\ \\ r_i^{marg} = y_i - X_i \widehat{\beta} \end{cases}$$

- \triangleright These residuals predict the marginal errors ε_i^*
- ▷ They can be used to
 - * investigate misspecification of the mean structure $X_i \beta$
 - * validate the assumptions for the within-subjects covariance structure $Z_iDZ_i^\top+\sigma^2\mathbf{I}_{n_i}$

Conditional residuals Conditional residual residuals Conditional residual residuals Conditional residual resid

$$\begin{cases} y_i = X_i \beta + Z_i b_i + \varepsilon_i, & b_i \sim \mathcal{N}(0, D), & \varepsilon_i \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_{n_i}) \\ \\ r_i^{cond} = y_i - X_i \widehat{\beta} - Z_i \widehat{b}_i \end{cases}$$

- riangleright These residuals predict the conditional errors $arepsilon_i$
- - * investigate misspecification of the hierarchical mean structure $X_i\beta + Z_ib_i$
 - * validate the assumptions for the within-subjects variance structure σ^2

• Example: We evaluate the assumptions behind the following model fitted to the Prothro dataset:

$$\begin{cases} \operatorname{pro}_{ij} = (\beta_0 + b_{i0}) + (\beta_1 + b_{i1})N(\operatorname{Time}_{ij})_1 + (\beta_2 + b_{i2})N(\operatorname{Time}_{ij})_2 + \\ (\beta_3 + b_{i3})N(\operatorname{Time}_{ij})_3 + \beta_4 \operatorname{predn}_i + \beta_5 \{\operatorname{predn}_i \times N(\operatorname{Time}_{ij})_1\} + \\ \beta_6 \{\operatorname{predn}_i \times N(\operatorname{Time}_{ij})_2\} + \beta_7 \{\operatorname{predn}_i \times N(\operatorname{Time}_{ij})_3\} + \varepsilon_{ij}, \end{cases}$$

$$b_i \sim \mathcal{N}(0,\operatorname{diag}\{D\}), \quad \varepsilon_{ij} \sim \mathcal{N}(0,\sigma^2)$$

 $N(\cdot)$ denotes a natural cubic spline basis

by plotting

- > the standardized marginal residuals versus fitted values per treatment group
- > the standardized conditional residuals versus fitted values per treatment group
- ▷ QQ-plot of the standardized conditional residuals

Observations

- behavior the plots of the residuals versus the fitted values do show a slightly systematic
- by the QQ-plots do not show big discrepancies from normality

3.12 Review of Key Points

- Mixed effects models constitute an alternative modeling framework for analyzing grouped/clustered data
 - ▷ basic idea: sample units in the same group/cluster share the same random effects
 - > the random effects are *unobserved* variables that induce correlation
- From a practical viewpoint, mixed models provide a more flexible framework to model correlations when
 - b we have unbalanced data and/or
 - b the correlation structure has a complicated form (e.g., multilevel designs)

3.12 Review of Key Points (cont'd)

- The random effects can be estimated using empirical Bayes methodology
 - mixed models provide subject-specific predictions that are more accurate than marginal predictions
- Mixed models can be extended to include correlated error terms
 - > this is in the same spirit as the marginal models of Chapter 2
 - b however, this extension often makes the model computationally unstable

3.12 Review of Key Points (cont'd)

Hypothesis testing

- be for the covariance structure and for nested models likelihood ratio tests are most often used, for non-nested models AIC/BIC
- \triangleright for the mean structure t and F tests with appropriate degrees of freedom

Residuals

- > standard residuals plots are used to check the model assumptions
- > marginal and conditional residuals available