Awater 5-13

What is Claimed:

- 1 1. Wireless radiofrequency data communication system comprising:
- a base-station comprising multiple first sets and a signal processing-unit, wherein each first
- set comprises a transmitter- and receiver-unit provided with a transmitter and a receiver and
- at least one antenna which is connected to the transmitter- and receiver-unit, wherein the
- signal processing-unit is connected with each of the first sets for processing signals
- received by the first sets and processing signals to be transmitted by the first sets, and
- multiple second sets, wherein each second set comprises a transmitter- and receiver-unit
- 8 provided with a transmitter and a receiver and at least one antenna which is connected to
- 9 the transmitter- and receiver-unit, characterised in that, the signal processing-unit comprises
- information about the transfer-functions of radiofrequency signals from each of the
- antennas of the first sets to each of the antennas of the second sets and/or vice versa, and
- wherein the transmitters and receivers, both in the first sets and in the second sets, operate
- on essentially the same radiofrequency or radiofrequency-band, and wherein the signal
- processing-unit processes the signals received by the first sets and processes the signals to
- be transmitted by the first sets on the basis of said transfer functions such that for each
- second set of a plurality of the second sets an individual communication channel is formed
- with the base-station wherein these communication channels are generated simultaneously
- and separately from each other.
- 1 2. Wireless radiofrequency data communication system according to claim 1,
- 2 characterised in that, the communication channels are duplex communication channels.
- 1 3. Wireless radiofrequency data communication system according to claim 2,
- 2 characterised in that, the number of first sets is N and, in use, the number of second sets is M,
- 3 wherein N is greater than M, wherein the signal processing-unit is provided with an inputport
- 4 for imputing M signals to be received by the respective M second sets, wherein the processing
- 5 unit is arranged to process the M signals in combination on the basis of the information of the
- transfer-functions to obtain N transmit-signals which are fed to the respective N first sets for
- being transmitted by the first sets to the second sets and wherein the processing unit is

Awater 5-13

- arranged to process the M signals in combination in such a way that the M signals are received
- 9 separately by the respective M second sets if the second sets each receive the N transmit-
- signals, thereby establishing M of said simultaneous communication channels.
- 4. Wireless radiofrequency data communication system according to claim 3,
- 2 characterised in that, the processing unit is arranged to, in use, process, on the basis of the
- 3 information about the transfer-functions **H**, the M signals **Q** to obtain the N transmit-signals
- 4 R, to be transmitted by the first sets, according to
- $\mathbf{R} = \mathbf{P}_{\mathrm{D}} \mathbf{Q}, \qquad (\mathbf{A})$
- resulting in that the M signals **Q** are received separately by the respective second sets if the
- second sets each receive the N transmit-signals, where $P_D = [\mathbf{H}^* (\mathbf{H}^* \mathbf{H})^{-1}]^T$ is the pseudo-
- inverse for \mathbf{H}^{T} and where \mathbf{H}^{*} is the complex conjugated and transposed of \mathbf{H} , wherein \mathbf{H} is a
- 9 complex [N * M] matrix containing transfer functions h_{ii} (i=1,...,N; j=1,...,M), wherein h_{ii} is
- the transfer function for transmission from the jth second set of the M second sets to the ith first
- set of the N first sets, and where \mathbf{Q} is a complex M dimensional vector $[Q_1, Q_2, ..., Q_i, ..., Q_M]^T$
- wherein Q_i is the signal to be transmitted to the jth second set of the M second sets and where
- 13 $\mathbf{R} = [R_1, R_2, ..., R_i, ..., R_N]^T$ wherein R_1 is the transmit-signal to be transmitted by the i^{th} first set
- 14 of the N first sets.
- 1 5. Wireless radiofrequency data communication system according to claim 1,
- 2 characterised in that,
- the number of first sets is N and, in use, the number of second sets is M, wherein
- 4 N is greater than M, wherein, in use, each of the M second sets transmits a signal so that M
- signals are transmitted to be received in combination by the first sets wherein the signal
- 6 processing-unit is arranged to process in combination signals received by each of the first sets
- on the basis of the information about the transfer-functions to recover the M signals
- 8 transmitted by the M second sets separately from each other, thereby obtaining M of said
- 9 simultaneous communication channels.
- 1 6. Wireless radiofrequency data communication system according to claim 5,
- 2 characterised in that, the processing unit is arranged to, in use, process, on the basis of the

3

Awater 5-13

- 3 information about the transfer-functions H, the signals r which are received by the first sets, to
- 4 calculate an estimation \mathbf{x} est of the M signals \mathbf{x}^{c} which were transmitted by the M second sets,
- 5 according to the mathematical expression
- $\mathbf{x} \ \text{est} = \mathbf{P}_{\mathbf{U}} \ \mathbf{r}, \qquad \mathbf{(B)}$
- 7 where $\mathbf{P}_{U} = [(\mathbf{H}^* \mathbf{H})^{-1} \mathbf{H}^*]$ is the pseudo-inverse for \mathbf{H} and where \mathbf{H}^* is the complex conjugated
- and transposed of **H**, wherein **H** is a complex [N * M] matrix containing transfer functions h_{ij}
- 9 (i=1,...,N; j=1,...,M), wherein h_{ij} is the transfer function for transmission from the jth second set
- of the M second sets to the ith first set of the N first sets, r is a complex N dimensional vector
- [$r_1,...,r_i,...,r_N$] with r_i the signal received by the i^{th} first set of the N first sets, \mathbf{x} _est is a
- complex M dimensional vector $[x_est_1,...,x_est_i,...,x_est_M]^T$ where x_est_i is an estimation of
- 13 x_j^c , and where x_j^c is a complex M-dimensional vector $[x_j^c,...,x_j^c,...,x_M^c]^T$, with x_j^c being the
- signal transmitted by the jth second set of the M second sets.
 - 1 7. Wireless radiofrequency data communication system according to claim 6,
 - 2 characterised in that each second set comprises a serial-to-parallel/parallel-to-serial unit, which
 - 3 unit, in use, splits the data signal of said second set in a multiple of signals, and means for
 - 4 modulating these signals on different frequencies according to the Inverse Fast Fourier
 - 5 Transformation, and wherein each first set comprises a unit for executing a Fast Fourier
 - 6 Transformation on the signals received by said first set and means for combining the
 - 7 transformed signals in order to recover said data-signal.
 - 1 8. Wireless radiofrequency data communication system comprising in use:
 - \bullet k₁ multiple first groups, wherein each first group comprises a transmitter-unit and at least
 - one antenna which is connected to the transmitter-unit for transmitting a signal; and
 - \bullet k₂ multiple second groups, wherein each second group comprises a receiver-unit and at
 - 5 least one antenna which is connected to the receiver-unit,
 - 6 characterised in that, the wireless radiofrequency data communication system
 - further comprises a signal processing-unit which is, if $k_1 > k_2$, connected to each of, the first
 - 8 groups and which is, if $k_1 < k_2$, connected to each of, the second groups, wherein the signal
 - 9 processing-unit comprises information about the transfer-functions of radiofrequency signals

1

2

3

4 5

6

7

Awater 5-13

10 from each of the first groups to each of the second groups and/or vice versa, and wherein, each 11 of the transmitter-units, of the first groups operates on essentially the same radiofrequency or 12 radiofrequency band, and wherein, in use, if $k_1 > k_2$, the signal processing-unit processes k_2 data-signals to be transmitted to the k₂ second groups for obtaining k₁ signals which are 13 14 supplied to the respective first groups to be transmitted, wherein the k₂ data signals are 15 processed on the basis of said transfer functions in such a manner that the respective second groups will receive separately the respective k₂ data-signals, thereby establishing k₂ 16 17 simultaneous communication channels, and wherein, in use, if $k_1 < k_2$, the signal processingunit processes k₂ signals, which are received by the respective second groups on the basis of 18 19 said transfer functions in such way that an estimation is made of the k₁ signals transmitted by 20 the first groups, thereby establishing k₁ simultaneous communication channels.

9. Wireless radiofrequency data communication system according to claim 8, characterised in that each first group comprises a serial-to-parallel/parallel-to-serial unit, which unit, in use, splits the data signal in a multiple of signals, and means for modulating these signals on different frequencies according to the Inverse Fast Fourier Transformation, and wherein each second group comprises a unit for executing a Fast Fourier Transformation on the signals received by said second group and means for combining the transformed signals in order to recover said data-signal.