S. Christensen

P. Le Borne, B. Schroeter, B. Schultz

Sheet QF04P

Mathematical Finance: QF

In-Tutorial exercises (for discussion on Tuesday, 21/11/2023)

In-Tutorial Exercise 1. We consider a stochastic process $X = (X_0, X_1, X_2)$ on the probability space $(\Omega, \mathcal{P}(\Omega), P)$ with $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$ and $p_1, p_2 > 0$. The process X is given by the following tree.

Let $\mathcal{F} = (\mathcal{F}_0, \mathcal{F}_1, \mathcal{F}_2)$ be the filtration generated by X.

- a) Assume a=3. Is there a probability measure P such that X is a martingale w.r.t. \mathcal{F} (i.e. are there reasonable values for p_1 and p_2)?
- b) Assume $a = \frac{5}{4}$. Determine a probability measure P (i.e. find values for p_1, \ldots, p_4) such that X is a martingale w.r.t \mathcal{F} .

In-Tutorial Exercise 2. We consider a price process $S = (S^0, S^1)$ with time horizon n = 2. The process S and a predictable process S are given by the following tree.

- a) How can you tell by just looking at the tree representation that φ^1 is predictable?
- b) Determine a predictable process φ^0 such that $\varphi = (\varphi^0, \varphi^1)$ is a self-financing trading strategy with initial capital $V_0(\varphi) = 10$.
- c) Determine the associated value process $V(\varphi)$.