

Projet 5

Segmentez des clients d'un site e-commerce

Élaborez un modèle de clustering

Étapes du projet

- Problématique et Contexte
- Description du jeu de données
- Création des données RFM+S
- Analyse Exploratoire
- Apprentissage non supervisé
- Analyse approfondie des segments
- Plan de maintenance du modèle
- Conclusion

Contexte et problématique métier

Contexte

Projet 05

- Entreprise : Olist, entreprise brésilienne de vente sur les marketplaces.
- Rôle: accompagner Olist dans leur projet de monter une équipe Data.

- Résoudre une urgence
 - o Fournir les requêtes SQL pour le Dashboard Customer Experience.
- Segmentation client
 - Explorer et analyser les données fournies.
 - Segmentation des clients avec des algorithmes d'apprentissage non supervisé (clustering).
 - Analyse approfondie des segments obtenus pour une exploitation optimale par l'équipe Marketing.
 - Proposer un plan de maintenance basé sur une simulation de fréquence de mise à jour du modèle.

Description du jeu de données

Origine des Données

• **Données fournies par Olist**, la plus grande plateforme de vente en ligne au Brésil.

Contenu des Données

- Informations sur 95 831 commandes réalisées entre 2016 et 2018.
- Inclut des détails sur le statut des commandes, les prix, les paiements, les performances de livraison, et les avis clients.

Tables utilisées

- Commandes (orders)
- Clients (customers)
- Paiements (order_pymts)
- Reviews (order_reviews)

Création des données RFM+S

Données des commandes

- Centralisation des informations concernant les commandes.
- Jointure des tables orders, customers, order_pymts et order_reviews.
- Colonne retenues: identifiant, date d'achat, ID client, montant, score de satisfaction.
- Dates des commandes: entre 03/10/2016 et 29/08/2018.

Données client

- Chaque ligne du tableau représente un client unique
- Agrégation des informations des commandes pour chaque client.
 - Identifiant unique du client
 - Récence: Nombre de jours écoulés depuis la dernière commande. 0
 - **Fréquence** : Nombre total de commandes effectuées par le client.
 - Montant dépensé: Somme totale des dépenses réalisées par le client.
 - Score de satisfaction : Moyenne des notes attribuées par le client aux commandes passées.

Commandes (95831)

_					
	order_id	order_purchase	customer_uniqu	payment_value	review_score
0	e481f51cbdc5467	2017-10-02 10:56	7c396fd4830fd04	38.71	4.0
1	53cdb2fc8bc7dce	2018-07-24 20:41	af07308b275d75	141.46	4.0
2	47770eb9100c2d	2018-08-08 08:38	3a653a41f6f9fc3	179.12	5.0
3	949d5b44dbf5de	2017-11-18 19:28	7c142cf63193a14	72.20	5.0
4	ad21c59c0840e6	2018-02-13 21:18	72632f0f9dd73df	28.62	5.0

Clients (2017: 41824)

	recency	frequency	monetary_value	avg_review_score
customer_uniqu				
0000f46a3911fa	296		86.22	3.0
0000f6ccb0745	80		43.62	4.0
0004aac84e0df	47		196.89	5.0
0005e1862207b	302		150.12	4.0
0006fdc98a402f	166		29.00	3.0
00082cbe03e47	42		126.26	5.0
000a5ad9c4601	142		91.28	4.0
000bfa1d2f1a4	93		46.85	4.5
000c8bdb58a29	19		29.00	5.0
000de6019bb59	136		257.44	2.0

Apprentissage non supervisé

Stratégie

- Segmentation client de référence
 - Données de l'année 2017
 - 41 824 clients / 43 100 commandes

Traitement

Standardisation / Normalisation

Algorithmes de clustering testés

- K-means
- **DBSCAN**

Choix du nombre de clusters (k)

- Méthode du coude
- Coefficient de silhouette
- Faisabilité métier

Pas assez de clusters (k trop petit)

- Groupes sont trop larges et hétérogènes
- Perte d'informations
- Peu exploitable pour le marketing

Trop de clusters (k trop grand)

- Risque de sur-ajustement (*overfitting*)
- difficile à interpréter et à utiliser en pratique.

Nombre optimal de clusters (bon équilibre)

- Groupes homogènes et exploitables.
- Segmentation est claire et utile pour l'entreprise.
- Différences entre segments sont significatives.

Algorithmes de clustering : K-means

Algorithme de regroupement (clustering) qui divise un ensemble de données en k clusters en minimisant l'inertie (somme des distances intra-cluster).

Principe

- Choisir k centroids initiaux
- Assigner chaque point au centroid le plus proche
- Recalculer les centroids comme la moyenne des points assignés
- Répéter jusqu'à convergence (centroids ne bougent plus)

K-means clustering on the digits dataset (PCA-reduced data) Centroids are marked with white cross

🦾 Méthode du coude (Elbow Method)

Déterminer le nombre optimal de clusters (k)

- Analyse de l'inertie intra-cluster
- Somme des distances des points à leur centre de cluster (WCSS, SSD)
- En fonction du nombre de clusters (k)

Recherche

- Point de coude sur la courbe
- Equilibre précision et simplicité

Doit être compléter par

Coefficient de silhouette

Coefficient de silhouette

Mesure la qualité du regroupement des clusters

- Cohésion intra-cluster
- Séparation inter-cluster

Interprétation des valeurs

- Compris entre -1 et 1
- Doit être élevé pour indiquer un bon clustering

Nombre de clusters choisis

- n clusters = 7
- Score de silhouette moyen est 0.4324

Analyse approfondie des segments

Visualisation des clusters

	recency	frequency	monetary	avg_review_score	cluster
customer_unique_id					
0000f46a3911fa3c0805444483337064	296		86.22	3.0	
0000f6ccb0745a6a4b88665a16c9f078	80		43.62	4.0	
0004aac84e0df4da2b147fca70cf8255	47		196.89	5.0	
0005e1862207bf6ccc02e4228effd9a0	302		150.12	4.0	
0006fdc98a402fceb4eb0ee528f6a8d4	166		29.00	3.0	

Indices de qualité des clusters

Inertie: 42620.24 (élevé) Score Silhouette: 0.43

Indice de Davies-Bouldin (DBI): 0.83

Indice de Calinski-Harabasz : 20387.68

Interprétation

- Clusters sont relativement bien définis (Silhouette = 0.43)
- Bonne séparation entre clusters (DBI = 0.76 et CHI élevé)

Distribution des clusters

Visualisation par réduction de dimensions

Visualisation t-SNE

Visualisation PCA

Statistiques descriptives des clusters

Moyennes et écarts-types des variables pour chaque segment

- Moyenne: tendance centrale des variables pour chaque cluster, permettant d'identifier les valeurs typiques
- écarts-type : variabilité au sein de chaque cluster, indiquant si les comportements des clients sont homogènes ou diversifiés

ldentification des segments clés et stratégies adaptées

Cluster	Profil client	Nombre de clients	Récence	Fréquence	Montant dépensé	Score moyen des avis	Stratégie
0	* Nouveaux Clients Satisfaits	18 231	70,14	1,00	123,36	4,74	Programme de fidélité et email de bienvenue personnalisé
1	② Clients Inactifs Satisfaits	12 709	236,30	1,00	124,93	4,74	Promotions spéciales et rappels de produits populaires
2	X Clients Inactifs et Insatisfaits	3 302	235,40	1,00	134,79	2,09	Identifier les raisons de l'insatisfaction et proposer des solutions ciblées
3	Nouveaux Clients Déçus	4 850	59,71	1,00	144,40	1,90	Analyser le parcours d'achat et améliorer l'expérience client
4	of Clients à Potentiel Élevé	1149	123,58	2,10	281,94	4,20	Programmes de fidélité et recommandations personnalisées
5	Clients Premium	174	155,05	1,06	2327,53	3,80	Offres VIP et service client premium
6	💰 Clients Dépensiers	1 409	135,94	1,00	813,42	4,39	Offres spéciales et recommandations basées sur l'historique d'achat

Algorithmes de clustering: DBSCAN

DBSCAN

Algorithme de clustering qui regroupe des points proches les uns des autres en fonction de la densité.

- N'exige pas de spécifier le nombre de clusters à l'avance.
- Utile pour les données avec des formes de clusters arbitraires.
- Identifier les points de bruit.

Principaux paramètres de DBSCAN

- eps: Distance maximale entre deux points pour qu'ils soient considérés comme voisins.
- min_samples : Nombre minimum de points dans un voisinage pour qu'un point soit considéré comme un noyau de cluster.

Difficultés

Choix du nombre clusters.

Résultats

- Clusters peu interprétables et moins intéressants.
- Profils client très similaires.
- Certains clusters contiennent très peu de clients.
- Métriques de qualité des clusters : bonnes mais ne surpassent pas celles obtenues avec K-Means.

Analyse de la stabilité des segments

Fin de période	Inertie	Silhouette	ARI	Homogeneity	Completeness	Delta Inertie	Delta Silhouette
2017 (baseline)	42620.2368	0.4323					
2018-01-31	44312.0628	0.4323	0.9948	0.9885	0.9845	0.0397	0.0002
2018-02-28	47007.8855	0.4245	0.9587	0.9134	0.9445	0.1029	0.0181
2018-03-31	47544.2227	0.4316	0.9871	0.9744	0.9678	0.1155	0.0017
2018-04-30	47888.4922	0.4254	0.9530	0.9066	0.9268	0.1236	0.0161
2018-05-31	50031.7873	0.3387	0.5135	0.6492	0.5912	0.1739	0.2166
2018-06-30	50169.0351	0.4251	0.9476	0.9008	0.9153	0.1771	0.0169
2018-07-31	51326.7586	0.4351	0.8880	0.8067	0.8715	0.2043	0.0063
2018-08-31	53388.6962	0.4233	0.9385	0.8895	0.9053	0.2527	0.0208

🚧 Plan de maintenance du modèle

Déterminer la meilleure fréquence d'entraînement

- **Exécutant le code de surveillance** sur une fenêtre glissante (par exemple, tous les mois)
- Analyse l'évolution des métriques de dérive
- Compléter ces métriques par des informations commerciales (par ex : campagnes saisonnières, changements de produits)

Fréquence Recommandée

Tous les 4 mois

Justification

Stabilité et Dérive des Clusters

- Clusters relativement stables sur des périodes de 4 mois
- Dérive significative observée après 4 mois (en mai 2018)

Équilibre entre Stabilité et Réactivité

- Maintenir un équilibre entre la stabilité des clusters
- Réactivité aux changements dans les données
- Minimiser les coûts et les efforts associés à des mises à jour trop fréquentes

Résultats

- Identification des segments clés
- Analyse approfondie des segments
- Recommandations marketing ciblées
- Plan de maintenance du modèle

Technologies utilisées

- SQL
- Python
- scikit-learn, pandas, seaborn

Merci 🙏

Avez-vous des questions?

Dépôt GitHub

Documentation

- Brazilian E-Commerce Public Dataset by Olist
- <u>Yellowbrick Clustering Evaluation Examples</u>
- KMeans scikit-learn 1.6.1 documentation
- <u>Drift Tracking: A Complete Guide | TrueFoundry</u>