AMENDMENTS TO THE CLAIMS:

The following listing of claims will replace all prior versions of claims in the application.

Claims 1-23 (canceled)

-- Claim 24 (Currently Amended): A thiazole(bi)cycloalkylcarboxanilide of formula (I)

$$F_{2}HC \nearrow Q \\ \nearrow N \nearrow S \\ CH_{3}$$
 (I)

in which

Q represents a group

$$R^{2}$$
(Q-1)

- R¹ represents hydrogen, C_1 - C_8 -alkyl, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; represents C_1 - C_6 -haloalkyl, C_1 - C_4 -haloalkylsulfanyl, C_1 - C_4 -haloalkylsulfinyl, C_1 - C_4 -haloalkylsulfonyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or represents -COR⁷, -CONR⁸R⁹, or -CH₂NR¹⁰R¹¹,
- R² represents C₃-C₁₂-cycloalkyl, C₃-C₁₂-cycloalkenyl, or C₆-C₁₂-bicycloalkyl, or C₆-C₁₂-bicycloalkenyl, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of

- halogen, cyano, hydroxyl, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_6 -haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms, and C_1 - C_6 -haloalkoxy having 1 to 9 fluorine, chlorine, and/or bromine atoms,
- R³ represents fluorine, chlorine, bromine, or methyl,
- m represents 0, 1, 2, 3, or 4,
- R⁷ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents 4-(difluoromethyl)-2-methyl-1,3-thiazol-2-yl,
- R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, or
- R⁸ and R⁹ together with the nitrogen atom to which they are attached form a saturated heterocycle that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl and that has 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulfur, and NR¹³,
- R¹⁰ and R¹¹ independently of one another represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-haloalkyl or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, or
- R¹⁰ and R¹¹ together with the nitrogen atom to which they are attached form a saturated heterocycle that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl and that has 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulfur, and NR¹³, and
- R^{13} represents hydrogen or C_1 - C_6 -alkyl.

CS8484

Claim 25 (Currently Amended): A thiazole(bi)cycloalkylcarboxanilide of formula (I) according to Claim 24 in which

Q represents a group

$$R^3$$
 (Q-1)

represents hydrogen; C_1 - C_6 -alkyl, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -cycloalkyl; represents C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkylsulfanyl, C_1 - C_4 -haloalkylsulfinyl, C_1 - C_4 -haloalkylsulfonyl, halo- C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -COR 7 , -CONR 8 R 9 , or -CH $_2$ NR 10 R 11 ,

R² represents C₃-C₁₂-cycloalkyl, C₃-C₁₂-cycloalkyl, C₃-C₁₂-cycloalkenyl, or C₆-C₁₂-bicycloalkyl, or C₆-C₁₂-bicycloalkenyl, each of which is optionally monoto tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, cyano, hydroxyl, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms, and C₁-C₄-haloalkoxy having 1 to 9 fluorine, chlorine, and/or bromine atoms,

R³ represents fluorine, bromine or methyl,

m represents 0, 1, 2, or 3,

R⁷ represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-cycloalkyl; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents 4-(difluoromethyl)-2-methyl-1,3-thiazol-2-yl,

CS8484

- R^8 and R^9 independently of one another represent hydrogen, C_1 - C_6 -alkyl, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -cycloalkyl; or represents C_1 - C_4 -haloalkyl, halo- C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, or C_3 - C_6 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, or
- R⁸ and R⁹ together with the nitrogen atom to which they are attached form a saturated heterocycle that is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl and that has 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulfur, and NR¹³,
- R¹⁰ and R¹¹ independently of one another represent hydrogen, C₁-C₆-alkyl, or C₃-C₆-cycloalkyl; or represent C₁-C₄-haloalkyl or C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, or
- R¹⁰ and R¹¹ together with the nitrogen atom to which they are attached form a saturated heterocycle that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl and which has 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulfur, and NR¹², and
- R¹³ represents hydrogen or C₁-C₄-alkyl.

Claim 26 (Currently Amended): A thiazole(bi)cycloalkylcarboxanilide of formula (I) according to Claim 24 in which

Q represents a group

$$R^{3}_{m}$$
(Q-1)

R¹ represents hydrogen, methyl, ethyl, n- or isopropyl, n-, iso-, sec-, or tert-butyl, pentyl, or hexyl, methylsulfinyl, ethylsulfinyl, n- or isopropylsulfinyl, n-, iso-, sec-, or tert-butylsulfinyl, methylsulfonyl, ethylsulfonyl, n- or isopropylsulfonyl, n-, iso-, sec-, or tert-butylsulfonyl, methoxymethyl, methoxyethyl, ethoxy-CS8484 - 5 -

methyl, ethoxyethyl, cyclopropyl, cyclopentyl, cyclohexyl, trifluoromethyl, trichloromethyl, trifluoroethyl, difluoromethylsulfanyl, difluorochloromethylsulfanyl, trifluoromethylsulfanyl, trifluoromethylsulfonyl, or trifluoromethoxymethyl; or represents -COR⁷, -CONR⁸R⁹, or -CH₂NR¹⁰R¹¹,

represents C₃-C₁₀-cycloalkyl, C₃-C₁₀-cycloalkenyl, or C₆-C₁₀-bicycloalkyl, er C₆-C₁₀-bicycloalkenyl, each of which is optionally mono- to trisubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, cyano, hydroxyl, methyl, ethyl, n- or isopropyl, n-, iso-, sec-, or tert-butyl, methoxy, ethoxy, n- or isopropoxy, n-, iso-, sec-, or tert-butoxy, trifluoromethyl, difluoromethyl, trichloromethyl, difluorochloromethyl, trifluoromethoxy, difluoromethoxy, trichloromethoxy, or difluorochloromethoxy,

- R³ represents fluorine, bromine, or methyl,
- m represents 0, 1, 2, or 3,
- R⁷ represents hydrogen, methyl, ethyl, n- or isopropyl, tert-butyl, methoxy, ethoxy, tert-butoxy, cyclopropyl; trifluoromethyl, trifluoromethoxy, or 4-(difluoromethyl)-2-methyl-1,3-thiazol-2-yl,
- R⁸ and R⁹ independently of one another represent hydrogen, methyl, ethyl, n- or isopropyl, n-, iso-, sec-, or tert-butyl, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, cyclopropyl, cyclopentyl, cyclohexyl; trifluoromethyl, trichloromethyl, trifluoroethyl, or trifluoromethoxymethyl, or
- R⁸ and R⁹ together with the nitrogen atom to which they are attached form a saturated heterocycle selected from the group consisting of morpholine, thiomorpholine, and piperazine, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, and methyl, where the piperazine is optionally substituted on the second nitrogen atom by R¹³,
- R¹⁰ and R¹¹ independently of one another represent hydrogen, methyl, ethyl, n- or isopropyl, n-, iso-, sec-, or tert-butyl, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, cyclopropyl, cyclopentyl, cyclohexyl; trifluoromethyl, trichloromethyl, trifluoroethyl, or trifluoromethoxymethyl, or
- R¹⁰ and R¹¹ together with the nitrogen atom to which they are attached form a saturated heterocycle selected from the group consisting of morpholine,

thiomorpholine, and piperazine, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, and methyl, where the piperazine is optionally substituted on the second nitrogen atom by R¹³, and represents hydrogen, methyl, ethyl, n- or isopropyl, or n-, iso-, sec-, or tertbutyl.

Claim 27. (Previously Presented) A thiazole(bi)cycloalkylcarboxanilide of formula (I) according to any of Claims 24, 25 or 26 in which R¹ is hydrogen.

Claim 28 (Previously Presented): A process for preparing a thiazole(bi)cycloalkylcarboxanilides of formula (I) according to Claim 24 comprising (1) reacting a carboxylic acid derivative of formula (II)

in which G represents halogen, hydroxyl. or C_1 - C_6 -alkoxy, with an aniline derivative of formula (III)

$$H_2N-Q$$
 (III)

in which Q is as defined for formula (I) in Claim 24, in the presence of an acid binder and in the presence of a diluent to form a compound of formula (I-a)

$$F_2HC$$
 N
 S
 CH_3
 Q
 H
 $(I-a)$

in which Q is as defined for formula (I) in Claim 24, and
(2) optionally reacting a compound of formula (I-a) with a halide of the formula (III)

CS8484

 R^{13}

 R^{1-1} X (IV)

in which

R¹⁻¹ represents C_1 - C_8 -alkyl, C_1 - C_6 -alkylsulfinyl, C_1 - C_6 -alkylsulfonyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; represents C_1 - C_6 -haloalkyl, C_1 - C_4 -haloalkylsulfanyl, C_1 - C_4 -haloalkylsulfinyl, C_1 - C_4 -haloalkylsulfonyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -COR 7 , -CONR 8 R 9 , or -CH $_2$ NR 10 R 11 ,

R⁷, R⁸, R⁹, R¹⁰, and R¹¹ are as defined for formula (I) in Claim 24, and X represents chlorine, bromine, or iodine,

in the presence of a base and in the presence of a diluent.

Claim 29 (Previously Presented): A composition for controlling unwanted microorganisms comprising one or more thiazole(bi)cycloalkylcarboxanilides of formula (I) according to Claim 24 and one or more extenders and/or surfactants.

Claim 30 (Previously Presented): A method for controlling unwanted microorganisms comprising applying an effective amount of one or more thiazole(bi)cycloalkylcarboxanilides of formula (I) according to Claim 24 to the microorganisms and/or their habitat.

Claim 31 (Previously Presented): A process for preparing a composition for controlling unwanted microorganisms comprising mixing one or more thiazole(bi)cycloalkylcarboxanilides of the formula (I) according to Claim 24 with one or more extenders and/or surfactants. --