Skript Numerik I

bei Prof. Dr. Blank im WS14/15

Gesina Schwalbe

28. Oktober 2014

Inhaltsverzeichnis

1	Einf	ührung		1
2	Line	are Gle	eichungssysteme: Direkte Methoden	3
	2.1	Gaußs	ches Eliminationsverfahren	3
		2.1.1	Vorwärtselimination	3
		2.1.2	Rückwärtselimination	5
		2.1.3	Vorsicht	5
		2.1.4	Weitere algorithmische Anmerkungen	5
		2.1.5	Dreieckszerlegung	5
		2.1.6	Vorwärtssubstitution	6
		2.1.7	Gauß-Eleminator zur Lösung von $Ax = b$	6
		2.1.8	Rechenaufwand gezählt in "flops"	6
		2.1.9	Definition: Landau-Symbole	6
		2.1.10	Allgemeines zur Aufwandsbetrachtung	6
			Formalisieren des Gauß-Algorithmus	6
		2.1.12	Lemma (Eigenschaften der L_k -Matrizen)	6
		2.1.13	Satz (LR- oder LU-Zerlegung)	6
	2.2	Gaußs	ches Eliminationsverfahren mit Pivotisierung	6
		2.2.1	Spaltenpivotisierung (=partielle/ halbmaximale Pivotisierung)	7
		2.2.2	Bemerkungen	7
		2.2.3	Satz: Dreieckszerlegung mit Permutationsmatrix	7
		2.2.4	Lösen eines Gleichungssystems $Ax = b$	8
		2.2.5	Bemerkungen	8
		2.2.6	Beispiel zur Pivotisierung	8
3	Fehl	leranaly	/se	9
	3.1	Zahlen	ndarstellung und Rundungsfehler	9
		3.1.1	Definition: Gleitkommazahl	10
		3.1.2	Bemerkung	10
		3.1.3	Beispiel	10
		3.1.4	Verteilung der Maschinenzahlen	11
		3.1.5	Bezeichnungen	11
		3.1.6	Rundungsfehler	12
		3.1.7	Bemerkung	13
		3.1.8	Auslöschung von signifikanten Stellen	13

In halts verzeichn is

3.2	Kondition eines Problems			
	3.2.1	Definition: Problem	14	
	3.2.2	Definition: absoluter und relativer Fehler	14	
	3.2.3	Wiederholung: Normen	14	
	3.2.4	Definition: Matrixnorm	15	
	3.2.5	Definition: Frobeniusnorm, p-Norm, Verträglichkeit	15	
	3.2.6	Bemerkungen	15	
	3.2.7	Definition: absolute und relative Normweise Kondition	16	
	3.2.8	Lemma	16	
	3.2.9	Beispiel: Kondition der Addition	17	
	3.2.10	Beispiel: Lösen eines Gleichungssystems	18	
	3.2.11	Definition: Kondition einer Matrix	20	
	3.2.12	Lemma (Neumannsche Reihe)	20	
	3.2.13	Bemerkung	21	
	3.2.14	Beispiel: Kondition eines nichtlinearen Gleichungssystems	22	
	3.2.15	Beispiel	22	
	3.2.16	Definition: Komponentenweise Kondition	23	
	3.2.17	Lemma	23	
	3.2.18	Beispiel	24	
3.3	Stabili	tät von Algorithmen	25	
	3.3.1	Bemerkung	25	

1 Einführung

06.10.2014

2 Lineare Gleichungssysteme: Direkte Methoden

Sei $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$. Gesucht ist $x \in \mathbb{R}^n$ mit

$$A \cdot x = b$$

Weitere Voraussetzungen sind die Existenz und Eindeutigkeit einer Lösung. Bemerkung:

- Ein verlässlicher Lösungsalgorithmus überprüft dies und behandelt alle Fälle.
- Die Cramersche Regel ist ineffizient (s. Einführung).
- Das Inverse für $x = A^{-1} \cdot b$ aufzustellen ist ebenso ineffizient, denn es ist keine Lösung für alle $b \in \mathbb{R}^n$ verlangt und der Algorithmus wird evtl. instabil aufgrund vieler Operationen.
- ⇒ Invertieren von Matrizen vermeiden!!
- ⇒ Lösen des Linearen Gleichungssystems!!

2.1 Gaußsches Eliminationsverfahren

Das Verfahren wurde 1809 von Friedrich Gauß, 1759 von Josepf Louis Lagrange beschrieben und war seit dem 1. Jhd. v. Chr. in China bekannt.

2.1.1 Vorwärtselimination

Das Gaußverfahren gilt der Lösung eines linearen Gleichungssystems der Form

$$Ax = b$$

mit $A = (a_{ij})_{i,j \leq n} \in K^{n \times n}$ Matrix und $b = (b_i)_{i \leq n} \in K^n$ Vektor. Der zugehörige Algorithmus sieht folgendermaßen aus:

2 Lineare Gleichungssysteme: Direkte Methoden

(i-te Zeile)
$$- (1. \text{ Zeile}) \cdot \frac{a_{i1}}{a_1 1} \Rightarrow a_{i1} = 0$$

$$\downarrow \downarrow$$

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ + a_{22}^{(1)}x_2 + \cdots + a_{2n}^{(1)}x_n = b_2^{(1)} \\ \vdots & \vdots & \vdots \\ a_{nn}^{(1)}x_n = b_n^{(1)}$$

$$\downarrow \downarrow$$

mit

$$a_{ij}^{(1)} = a_{ij} - a_{1j} \cdot \frac{a_{i1}}{a_{11}}$$
 für $i, j = 2, \dots, n$
 $b_i^{(1)} = b_i - b_1 \cdot \frac{a_{i1}}{a_{11}}$ für $i = 2, \dots, n$

In jedem Schritt werden die Einträge der k-ten Spalte analog unterhalb der Diagonalen (also $k = 1, \dots, n-1$) eliminiert:

$$(i\text{-te Zeile}) - (k\text{-te Zeile}) \cdot \frac{a_{ik}}{a_{kk}} \qquad \qquad \text{für } i = k+1, \cdots, n$$

Die Reihe

$$A \to A^{(1)} \to A^{(2)} \to \cdots \to A^{(n-1)}$$

wird bis zum n-ten Schritt fortgeführt, d.h. bis eine obere Dreiecksgestalt eintritt:

$$\underbrace{\begin{pmatrix} a_{11} & \cdots & \cdots & a_{1n} \\ & a_{22}^{(1)} & \cdots & a_{2n}^{(1)} \\ & & \ddots & \vdots \\ 0 & & & a_{nn}^{(n-1)} \end{pmatrix}}_{:=R} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \underbrace{\begin{pmatrix} b_1 \\ b_2^{(1)} \\ \vdots \\ b_n^{(n-1)} \end{pmatrix}}_{:=z}$$

$$Rx = z \tag{2.1.1}$$

wobei für $i = k + 1, \dots, n$ die Einträge wie folgt aussehen:

$$l_{ik} := \frac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}}$$

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - a_{kj}^{(k-1)} \cdot l_{ik}$$

$$b_i^{(k)} = b_i^{(k-1)} - b_k^{(k-1)} \cdot l_{ik}$$

$$(2.1.2)$$

$$(2.1.3)$$

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - a_{kj}^{(k-1)} \cdot l_{ik}$$
 für $j = k+1, \dots, n$ (2.1.3)

$$b_i^{(k)} = b_i^{(k-1)} - b_k^{(k-1)} \cdot l_{ik}$$
(2.1.4)

Dieser Prozess wird Vorwärtselimination genannt.

2.1.2 Rückwärtselimination

Für die Lösung des Gleichungssystems ist dann noch die Rückwärtssubstitution nötig:

$$x_1 = \frac{b_1^{(n-1)}}{a_{nn}^{(n-1)}} \tag{2.1.5}$$

$$x_{1} = \frac{b_{1}^{(n-1)}}{a_{nn}^{(n-1)}}$$

$$x_{n-1} = \frac{b_{n-1}^{(n-2)} - a_{n-1,n}^{(n-1)} \cdot x_{n}}{a_{(n-1)(n-1)}^{(n-2)}}$$

$$x_{k} = \frac{b_{k}^{(k-1)} - \sum_{j=k+1}^{n} a_{kj}^{(k-1)} x_{j}}{a_{kk}^{(k-1)}}$$

$$(2.1.5)$$

$$x_k = \frac{b_k^{(k-1)} - \sum_{j=k+1}^n a_{kj}^{(k-1)} x_j}{a_{kk}^{(k-1)}}$$
(2.1.7)

2.1.3 Vorsicht

Algorithmen 2.1.1 und 2.1.2 sind nur ausführbar, falls für die sog. **Pivotelemente** $\mathbf{a}_{\mathbf{k}\mathbf{k}}^{(\mathbf{k}-\mathbf{1})}$ gilt:

$$a_{kk}^{(k-1)} \neq 0$$
 für $k = 1, \cdots, n$

Dies ist auch für invertierbare Matrizen nicht immer gewährleistet.

2.1.4 Weitere algorithmische Anmerkungen

Matrix A und Vektor b sollten möglichst nie überschrieben werden! (Stattdessen kann eine Kopie überschrieben werden.)

Das Aufstellen von A und b ist bei manchen Anwendungen das teuerste, sie gehen sonst verloren. In 2.1.1 wird das obere Dreieck von A überschrieben. Dies ist möglich, da in (2.1.3) nur die Zeilen $k+1,\cdots,n$ mithilfe der k-ten bearbeitet werden. Am Ende steht R im oberen Dreieck von A und z in b.

Die l_{ik} werden spaltenweise berechnet und können daher anstelle der entsprechenden Nullen (in der Kopie) von A gespeichert werden, d.h.:

$$\widetilde{L} := (l_{ik}) \tag{2.1.8}$$

und R werden sukzessive in A geschrieben.

IMAGE MISSING

Der Vektor z und anschließend der Lösungsvektor x kann in (eine Kopie von) b geschrieben werden. Wird eine neue rechte Seite b betrachtet, muss 2.1.1 nicht komplett neu ausgeführt werden, da sich \widetilde{L} nicht ändert. Es reicht 2.1.4 zu wiederholen.

IMAGE MISSING

2.1.5 Dreieckszerlegung

Die Dreieckszerlegung einer Matrix A entspricht dem Verfahren aus 2.1.1, nur ohne die Zeile (2.1.4).

2.1.6 Vorwärtssubstitution

Die Vorwärtssubstitution entspricht der in 2.1.4 bzw. dem Verfahren aus 2.1.1 ohne die Bestimmung von l_{ik} und R, also nur Schritt 2.1.4.

2.1.7 Gauß-Eleminator zur Lösung von Ax = b

- 1 Dreieckszerlegung
- 2 Vorwärtssubstitution $b_i^{(k)} = b_i^{(k-1)} b_k^{(k-1)} \cdot l_{ik}$
- 3 Rückwärtssubstitution $x_k = \frac{b_k^{(k-1)} \sum_{j=k+1}^n a_{kj}^{(k-1)} x_j}{a_{kk}^{(k-1)}}$

2.1.8 Rechenaufwand gezählt in "flops"

"flops" = floating point operations MISSING

2.1.9 Definition: Landau-Symbole

MISSING

2.1.10 Allgemeines zur Aufwandsbetrachtung

MISSING

2.1.11 Formalisieren des Gauß-Algorithmus

MISSING

13.10.2014

2.1.12 Lemma (Eigenschaften der L_k -Matrizen)

MISSING

2.1.13 Satz (LR- oder LU-Zerlegung)

MISSING

2.2 Gaußsches Eliminationsverfahren mit Pivotisierung

MISSING

2.2.1 Spaltenpivotisierung (=partielle/ halbmaximale Pivotisierung)

2.2.2 Bemerkungen

2.2.3 Satz: Dreieckszerlegung mit Permutationsmatrix

Beweis 15.10.2014 (Fortsetzung)

$$PA = LR$$

$$R = A^{(n-1)}$$

$$= L_{n-1}P_{\tau_{n-1}} \dots L_1P_{\tau_1}A$$

Da τ_i nur zwei Zahlen $\geq i$ vertauscht, ist

15.10.2014

$$\Pi_i := \tau_{n-1} \circ \dots \tau_i$$
 für $i = 1, \dots (n-1)$

eine Permutation der Zahlen $\{i, \ldots, n\}$, d.h. insbesondere gilt:

$$\begin{split} \Pi_i(j) &= j & \text{für } j = 1, \dots, (i-1) \\ \Pi_i(j) &\in \{i, \dots, n\} & \text{für } j = i, \dots, n \,. \\ P_{\Pi_{i+1}} &= (e_1, \dots e_i, e_{\Pi_{i+1}(i+1)}, \dots, e_{\Pi_{i+1}(n)}) \\ &= \begin{pmatrix} I_i & 0 \\ 0 & P_\sigma \end{pmatrix} \end{split}$$

Damit folgt:

$$\begin{split} P_{\Pi_{i}(i+1)} \cdot P_{\Pi_{i+1}}^{-1} &= P_{\Pi_{i+1}} \cdot \begin{pmatrix} I_{i} & 0 \\ \hline -l_{i+1,i} & \\ 0 & \vdots & I_{n-i} \end{pmatrix} \cdot \begin{pmatrix} I_{i} & 0 \\ 0 & P_{\sigma}^{-1} \end{pmatrix} \\ &= \begin{pmatrix} I_{i} & 0 \\ 0 & P_{\sigma} \end{pmatrix} \cdot \mathbb{I} \cdot \cdot \begin{pmatrix} I_{i} & 0 \\ \hline \cdot & -l_{i+1,i} & \\ 0 & \vdots & P_{\sigma}^{-1} \\ \hline -l_{n,i} & 0 \end{pmatrix} \\ &= \begin{pmatrix} I_{i} & 0 \\ \hline -l_{\Pi_{i+1}(i+1),i} & \\ 0 & \vdots & I_{n-i} \\ \hline -l_{\Pi_{i+1}(n),i} & \\ &= I - (P_{\Pi_{i+1}}l_{i})e_{i}^{T} \\ &=: \widehat{L}_{i} \end{split}$$

und

$$R = L_{n-1}$$

2 Lineare Gleichungssysteme: Direkte Methoden

Nach Lemma 2.1.12 gilt daher, es existiert eine Permutation Π_1 mit

$$P_{\Pi_1} \cdot A = LR$$
,

wobei R obere Dreiecksgestalt hat und

$$L = \begin{pmatrix} 1 & & & 0 \\ l_{\Pi_2(2),1} & \ddots & & \\ \vdots & \ddots & 1 & \\ l_{\Pi_n(n),1} & \cdots & l_{\Pi_n(n),n-1} & 1 \end{pmatrix}$$
 mit $|l_{ij}| \le 1$

gilt.

- **2.2.4** Lösen eines Gleichungssystems Ax = b
- 2.2.5 Bemerkungen
- 2.2.6 Beispiel zur Pivotisierung

3 Fehleranalyse

$$\begin{array}{c|c} \widetilde{f} \text{ statt } f \\ x+\epsilon \text{ statt } x \\ \hline \text{Eingabe} \end{array} \longrightarrow \begin{array}{c|c} \widetilde{f} \text{ statt } f \\ (\text{z.B. durch Rundung}) \\ \hline \end{array} \longrightarrow \begin{array}{c|c} \widetilde{f}(x+\epsilon) \text{ statt } f(x) \\ \hline \text{Resultat} \\ \hline \end{array}$$

Bei der Fehleranalyse liegt das Hauptaugenmerk auf

Eingabefehler

z.B.Rundungsfehler, Fehler in Messdaten, Fehler im Modell (falsche Parameter)

Fehler im Algorithmus

- z.B. Rundungsfehler durch Rechenoperationen, Approximationen (z.B. Ableitung durch Differenzenquotient oder die Berechnung von Sinus durch abgebrochene Reihenentwicklung)
- 1. Frage Wie wirken sich Eingabefehler auf das Resultat unabhängig vom gewählten Algorithmus aus?
- 2. Frage Wie wirken sich (Rundungs-)Fehler des Algorithmus aus? Und wie verstärkt der Algorithmus Eingabefehler?

3.1 Zahlendarstellung und Rundungsfehler

Auf (Digital-)Rechnern können nur endlich viele Zahlen realisiert werden. Die wichtigsten Typen sind:

• ganze Zahlen (integer):

$$z=\pm\sum_{i=0}^m z_i\beta_i \qquad \text{mit} \quad \begin{array}{l} \beta=\text{Basis des Zahlensystems (oft }\beta=2) \\ z_i\in\{0,\cdots\beta-1\} \end{array}$$

• Gleitpunktzahlen (floating point)

3.1.1 Definition: Gleitkommazahl

Eine Zahl $x \in \mathbb{Q}$ mit einer Darstellung

$$x = \sigma \cdot (a_1 \cdot a_2 \cdots a_t)_{\beta} \cdot \beta^e = \sigma \beta^e \cdot \sum_{\nu=1}^t a_{\nu} \beta^{-\nu+1}$$

$$\begin{array}{ll} \beta \in \mathbb{N} & \text{Basis des Zahlensystems} \\ \sigma \in \{\pm 1\} & \text{Vorzeichen} \\ m = (a_1.a_2 \cdots a_t)_{\beta} & \text{Mantisse} \\ = \sum_{\nu=1}^t a_{\nu} \beta^{-\nu+1} \\ a_i \in \{0, \cdots, \beta-1\} & \text{Ziffern der Mantisse} \\ t \in \mathbb{N} & \text{Mantissenlänge} \\ e \in \mathbb{Z} & \text{mit } e_{min} \leq e \leq e_{max} \text{ Exponent} \end{array}$$

heißt Gleitkommazahl mit t Stellen und Exponent e zur Basis b. Ist $a_1 \neq 0$, so heißt x normalisierte Gleitkommazahl

3.1.2 Bemerkung

- a) 0 ist keine normalisierte Gleitkommazahl, da $a_1 = 0$ ist.
- b) $a_1 \neq 0$ stellt sicher, dass die Gleitkommadarstellung eindeutig ist.
- c) In der Praxis werden auch nicht-normalisierte Darstellungen verwendet.
- d) Heutige Rechner verwenden meist $\beta = 2$, aber auch $\beta = 8, \beta = 16$.

3.1.3 Beispiel

bit-Darstellung nach IEEE-Standard 754 von floating point numbers Sei die Basis $\beta=2.$

einfache Genauigkeit (float) Speicherplatz
$$t$$
 e_{min} e_{max} doppelte Genauigkeit (double) 64bits = 8Bytes 52 -1022 1023

Darstellung im Rechner (Bitmuster) für float:

$$\boxed{s \mid b_0 \cdots b_7 \mid a_2 \cdots a_{24}}$$
 (Da $a_1 \neq 0$, also $a_1 = 1$ gilt, wird a_1 nicht gespeichert)

Interpretation $(s, b, a_i \in \{0, 1\} \forall i)$

• s Vorzeichenbit:
$$\sigma = (-1)^s \Rightarrow \begin{array}{l} \sigma(0) = 1 \\ \sigma(1) = -1 \end{array}$$

• $b = \sum_{i=0}^{7} b_i \cdot 2^i \in \{1, \dots, 254\}$ speichert den Exponenten mit $e = \overline{b} - 127$ (kein Vorzeichen nötig)

Basiswert Beachte: $b_0 = \cdots = b_7 = 0$ sowie $b_0 = \cdots = b_7 = 0$ sind bis auf Ausnahmen keine gültigen Exponenten

- $m = (a_1.a_2 \cdots a_{24}) = 1 + \sum_{\nu=2}^{24} a_{\nu} 2^{1-\nu}$ stellt die Mantisse dar, $a_1 = 1$ wird nicht abgespeichert.
- Besondere Zahlen per Konvention:

("denormalized" number)

20.10.2014

Betragsmäßig größte Zahl:

$$\boxed{0 \mid 01 \cdots 1 \mid 1 \cdots 1}$$
 $x_{max} = (2 - 2^{-23}) \cdot 2^{127} \approx 3, 4 \cdot 10^{38}$

Betragsmäßig kleinste Zahl:

$$\boxed{0 \mid 0 \cdots 0 \mid 0 \cdots 0 }$$
 $x_{min} = (2 - 2^{-23}) \cdot 2^{-126} = 2^{-149} \approx 1, 4 \cdot 10^{-45}$

3.1.4 Verteilung der Maschinenzahlen

ungleichmäßig im Dezimalsystem, z. B.

$$x = \pm a_1.a_2a_3 \cdot 2^e \qquad -2 \le e \le 1 \qquad a_i \in \{0, 1\}$$
 IMAGE MISSING

ist im Dualsystem gleichmäßig verteilt.

3.1.5 Bezeichnungen

overflow es ergibt sich eine Zahl, die betragsmäßig größer ist als die größte maschinendarstellbare Zahl

underflow entsprechend, betragsmäßig kleiner als die kleinste positive Zahl

Bsp.: overflow beim integer b = e + 127

$$\begin{array}{cccc} b & = 254 & 11111110 \\ & + & 3 & \underline{00000011} \\ b + 3 = 257 \bmod 2^8 & = & 1 & \underline{100000001} \end{array}$$

3.1.6 Rundungsfehler

Habe $x \in \mathbb{R}$ die normalisierte Darstellung

$$x = \sigma \cdot \beta^{e} \left(\sum_{\nu=1}^{t} a_{\nu} \beta^{1-\nu} + \sum_{\nu=t+1}^{\infty} a_{\nu} \beta^{1-\nu} \right)$$
$$= \sigma \cdot \beta^{e} \left(\sum_{\nu=1}^{t} a_{\nu} \beta^{1-\nu} + \beta^{1-t} \sum_{l=1}^{\infty} a_{t+l} \beta^{-l} \right)$$

mit $e_{min} \leq e \leq e_{max}$, dann wird mit fl(x) die gerundete Zahl bezeichnet, wobei fl(x) eindeutig gegeben ist durch die Schranke an den **absoluten Rundungsfehler**

$$|fl(x) - x| \le \begin{cases} \frac{1}{2}\beta^{e+1+t} & \text{bei symmetrischem Runden} \\ \beta^{e+1+t} & \text{bei Abschneiden} \end{cases}$$

Für die relative Rechengenauigkeit folgt somit

$$\frac{|fl(x) - x|}{|x|} \le \begin{cases} \frac{1}{2}\beta^{1-t} & \text{bei symmetrischem Runden} \\ \beta^{1-t} & \text{bei Abschneiden} \end{cases}$$

Die Maschinengenauigkeit des Rechners ist daher durch

$$eps = \beta^{1-t}$$
 (für float $\approx 10^{-7}$, für double $\approx 10^{-16}$)

gegeben.

Die Mantissenlänge bestimmt also die Maschinengenauigkeit. Bei einfacher Genauigkeit ist fl(x) bis auf ungefähr 7 signifikante Stellen genau.

Im Folgenden betrachten wir symmetrisches Runden und definieren daher

$$\tau \coloneqq \frac{1}{2}eps$$

Weiterhin gilt:

a) Die kleinste Zahl am Rechner, welche größer als 1 ist, ist

$$1 + eps$$

b) Eine Maschinenzahl x repräsentiert eine Eingabemenge

$$E(x) = \{ \widetilde{x} \in \mathbb{R} : |\widetilde{x} - x| \le \tau |x| \}$$

IMAGE MISSING

3.1.7 Bemerkung

Gesetze der arithmetischen Operationen gelten i.A. nicht, z.B.

- x Maschinenzahl $\Rightarrow fl(x + \nu) = x$ für $|\nu| < \tau |x|$
- Assoziativ- und Distributivgesetze gelten nicht, z.B. für $\beta=10,\,t=3,\,a=0,1,\,b=105,\,c=-104$ gilt:

$$fl(a + fl(a + c)) = 1, 1$$

$$fl(fl(a + b) + c) = fl(fl(105, 1) + (-104))$$

$$= fl(105 - 104)$$

$$= 1 \quad f$$

⇒ Für einen Algorithmus ist die Reihenfolge der Operationen wesentlich! Mathematisch äquivalente Formulierungen können zu verschiedenen Ergebnissen führen.

3.1.8 Auslöschung von signifikanten Stellen

Sei $x = 9,995 \cdot 10^{-1}, y = 9,984 \cdot 10^{-1}$. Runde auf drei signifikante Stellen und berechne x - y:

$$\begin{split} \widetilde{f}(x,y) &\coloneqq fl(fl(x) - fl(y)) = fl(1,00 \cdot 10^0 - 9,98 \cdot 10^{-1}) \\ &= fl(0,02 \cdot 10^{-1}) \\ &= fl(2,00 \cdot 10^{-3}) \\ f(x,y) &\coloneqq x - y \\ &\coloneqq 0,0011 = 1,1 \cdot 10^{-3} \end{split}$$

Daraus ergibt sich der relative Fehler

$$\frac{|\widetilde{f}(x,y) - f(x,y)|}{|f(x,y)|} = \frac{|2 \cdot 10^{-3} - 1, 1 \cdot 10^{-3}|}{|1, 1 \cdot 10^{-3}|} = 82\%$$

Der Grund hierfür ist, dass das Problem der Substraktion zweier annähernd gleich großer Zahlen schlecht konditioniert ist.

Zwei Regeln:

- 1) Umgehbare Substraktion annähernd gleich großer Zahlen vermeiden!
- 2) Unumgängliche Substraktion möglichst an den Anfang des Algorithmus stellen! (siehe später)

3.2 Kondition eines Problems

Es wird das Verhältnis

 $\frac{Ausgabefehler}{Eingabefehler}$

untersucht.

3.2.1 Definition: Problem

Sei $f:U\subseteq\mathbb{R}^n\mapsto\mathbb{R}^m$ mit U offen und sei $x\in U$. Dann bezeichne (f,x) das Problem, zu einem gegebenen x die Lösung f(x) zu finden.

3.2.2 Definition: absoluter und relativer Fehler

Sei $x \in \mathbb{R}^n$ und $\tilde{x} \in \mathbb{R}^n$ eine Näherung an x. Weiterhin sei $\|\cdot\|$ eine Norm auf \mathbb{R}^n .

- a) $\|\widetilde{x} x\|$ heißt absoluter Fehler
- b) $\frac{\|\widetilde{x}-x\|}{\|x\|}$ heißt **relativer Fehler**

Da der relative Fehler skalierungsinvariant ist, d.h. unabhänging von der Wahl von x ist, ist dieser i.d.R. von größerem Interesse. Beide Fehler hängen von der Wahl der Norm ab! Häufig werden Fehler auch komponentenweise gemessen:

Für
$$i = 1, \dots, n$$
: $|\widetilde{x}_i - x_i| \le \delta$ (absolut)
 $|\widetilde{x}_i - x_i| \le \delta |x_i|$ (relativ)

3.2.3 Wiederholung: Normen

Euklidische Norm
$$(l_2\text{-Norm})$$
: $||x||_2 \coloneqq \sqrt{\sum_{i=1}^n |x_i|^2}$

$$IMAGE \ MISSING$$
Maximumsnorm $(l_\infty\text{-Norm})$: $||x||_\infty \coloneqq \max\{|x_i|: i=1,\cdots n\}$

$$IMAGE \ MISSING$$
Summennorm $(l_1\text{-Norm})$: $||x||_1 \coloneqq \sum_{i=1}^n |x_i|$

$$IMAGE \ MISSING$$
Hölder-Norm $(l_p\text{-Norm})$: $||x||_p \coloneqq \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$

3.2.4 Definition: Matrixnorm

Auf dem \mathbb{R}^n sei die Norm $\|\cdot\|_a$ und auf dem \mathbb{R}^m die Norm $\|\cdot\|_b$ gegeben. Dann ist die zugehörige **Matrixnorm** gegeben durch:

$$||A||_{a,b} := \sup_{x \neq 0} \frac{||Ax||_b}{||x||_a}$$

$$= \sup_{||x||_a = 1} ||Ax||_b$$
(3.2.1)

Also ist $||A||_{a,b}$ die kleinste Zahl c > 0 mit

$$||Ax||_b \le c||x||_a \qquad \forall x \in \mathbb{R}^n$$

3.2.5 Definition: Frobeniusnorm, p-Norm, Verträglichkeit

Sei $A \in \mathbb{R}^{m \times m}$.

- a) **Frobeniusnorm** (Schurnorm): $||A||_F := \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}^2|}$
- b) **p-Norm**: $||A||_p := ||A||_{p,p}$
- c) Eine Matrixnorm heißt verträglich mit den Vektornormen $\|\cdot\|_a, \|\cdot\|_b$, falls gilt ¹:

$$||Ax||_b \le ||A|| \cdot ||x||_a \quad \forall x \in \mathbb{R}^n$$

3.2.6 Bemerkungen

a) Die Normen $\|\cdot\|_F$ und $\|\cdot\|_p$ sind **submultiplikativ**, d.h.

$$||A \cdot B|| \le ||A|| \cdot ||B||$$

b) Die Norm $\|\cdot\|_{1,1}$ wird auch **Spaltensummennorm** genannt:

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|$$

Sie ist das Maximum der Spaltensummen².

c) Die Norm $\|\cdot\|_{\infty,\infty}$ wird auch **Zeilensummennorm** genannt³:

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|$$

 $^{^1}$ Beachte: $\|A\|_{a,b}$ ist die kleinste Norm im Gegensatz zu $\|A\|,$ welche hier beliebig ist.

 $^{^2\}mbox{Beweis:}$ siehe Übungsblatt3

³Beweis: siehe Übungsblatt 3

- d) Die Frobeniusnorm $\|\cdot\|_F$ ist verträglich mit der euklidischen Norm $\|\cdot\|_2$
- e) Die Wurzeln aus den Eigenwerten von A^TA heißen **Singulärwerte** σ_i von A. Mit ihnen kann die $\|\cdot\|_{2,2}$ Norm dargestellt werden⁴:

$$||A||_2 = \max\{\sqrt{\mu} : A^T A \cdot x = \mu x \text{ für ein } x \neq 0\}$$
$$= \sigma_{max}$$

3.2 a) Normweise Konditionsanalyse

3.2.7 Definition: absolute und relative Normweise Kondition

Sei (f,x) ein Problem mit $f:U\in\mathbb{R}^n\to\mathbb{R}^m$ und $\|\cdot\|_a$ auf \mathbb{R}^n und $\|\cdot\|_b$ auf \mathbb{R}^m eine Norm.

a) Die absolute normweise Kondition eines Problems (f, x) ist die kleinste Zahl $\kappa_{abs} > 0$ mit

$$||f(\widetilde{x}) - f(x)||_{b} \leq \kappa_{abs}(f, x)||\widetilde{x} - x||_{a} + o(||\widetilde{x} - x||_{a})$$

$$\left(f(\widetilde{x}) - f(x) = \underbrace{f'(x)(\widetilde{x} - x) + o(||\widetilde{x} - x||)}_{Taylorentwicklung} \quad \text{für } \widetilde{x} \to x\right)$$

$$(3.2.2)$$

b) Die **relative normweise Kondition** eines Problems (f, x) mit $x \neq 0, f(x) \neq 0$ ist die kleinste Zahl $\kappa_{rel} > 0$ mit

$$\frac{\|f(\widetilde{x}) - f(x)\|_{b}}{\|f(x)\|_{b}} \le \kappa_{abs}(f, x) \frac{\|\widetilde{x} - x\|_{a}}{\|x\|_{a}} + o\left(\frac{\|\widetilde{x} - x\|_{a}}{\|x\|_{a}}\right) \qquad \text{für } \widetilde{x} \to x$$
 (3.2.3)

- c) Sprechweise:
 - \bullet falls κ "klein" ist, ist das Problem "gut konditioniert"
 - falls κ "groß" ist, ist das Problem "schlecht konditioniert"

3.2.8 Lemma

Falls f diffenrenzierbar ist, gilt

$$\kappa_{abs}(f, x) = ||Df(x)||_{a.b}$$
(3.2.4)

und für $f(x) \neq 0$

$$\kappa_{rel}(f, x) = \frac{\|x\|_a}{\|f(x)\|_b} \cdot \|Df(x)\|_{a,b}$$
(3.2.5)

wobei Df(x) die Jakobi-Matrix bezeichnet.

⁴Beweis: siehe Übungsblatt 3

3.2.9 Beispiel: Kondition der Addition

 $f(x_1, x_2) := x_1 + x_2, f : \mathbb{R}^2 \to \mathbb{R}.$ Wähle l_1 -Norm auf \mathbb{R}^2 (und \mathbb{R})

$$Df(x_1, x_2) = (\nabla f^T) = (\frac{\partial}{\partial x_1} f, \frac{\partial}{\partial x_2} f)$$

= (1, 1) (Matrix!)

damit

$$\kappa_{abs}(f, x) = \|Df(x)\|_{1,1}$$

$$= \|Df(x)\|_{1}$$

$$= 1$$

$$\kappa_{rel}(f, x) = \frac{\|x\|_{1}}{\|f(x)\|_{1}} | \cdot \|Df(x)\|_{1}$$

$$= \frac{|x_{1}| + |x_{2}|}{|x_{1} + x_{2}|}$$
(Matrix-Norm!!)
$$= 1$$

Daraus folgt: Die Addition zweier Zahlen mit gleichem Vorzeichen ergibt

$$\kappa_{rel} = 1$$

Die Subtraktion zweier annähernd gleich großer Zahlen ergibt eine sehr schlechte relative Konditionierung:

$$\kappa_{rel} \gg 1$$

Zum Beispiel in 3.1.8: Es ist

$$x = \begin{pmatrix} 9,995 \\ -9,984 \end{pmatrix} \cdot 10^{-1}$$
$$\tilde{x} = fl(x) = \begin{pmatrix} 1 \\ -9,98 \cdot 10^{-1} \end{pmatrix}$$

also

$$\begin{aligned} \frac{|f(\widetilde{x}) - f(x)|}{|f(x)|} &= \frac{0,9}{1,1} = 0, \overline{81} \\ &\leq \kappa_{rel}(f,x) \cdot \frac{\|\widetilde{x} - x\|_1}{\|x\|_1} \\ &= \kappa_{rel}(f,x) \cdot 4, 6 \cdot 10^{-4} \end{aligned}$$

3.2.10 Beispiel: Lösen eines Gleichungssystems

Sei $A \in \mathbb{R}^{n \times n}$ invertierbar und $b \in \mathbb{R}^n$. Es soll

$$Ax = b$$

gelöst werden. Die mögliche Lösungen in A und in b lassen sich folgendermaßen ermitteln:

a) Betrachte die Störungen in b:

$$f: b \mapsto x = A^{-1}b$$

Berechne dann $\kappa(f,b)$ und löse

$$A(x + \Delta x) = b + \Delta b$$

$$f(b + \Delta b) - f(b) = \Delta x$$

$$= A^{-1} \cdot \Delta b \qquad \text{da } x = A^{-1}b$$

$$\Rightarrow \|\Delta x\| = \|A^{-1}\Delta b\|$$

$$\leq \|A^{-1}\| \cdot \|\Delta b\| \qquad \forall b, \Delta b$$

wobei $\|\cdot\|$ auf $\mathbb{R}^{n\times n}$ die zum $\|\mathbb{R}^n\|$ zugeordnete Matrix-Norm sei.

Die Abschätzung ist **scharf**, d.h. es gibt ein $\Delta b \in \mathbb{R}^n$, so dass "=" gilt, nach Definition 3.2.4.

Also gilt

$$\kappa_{abs}(f,b) = ||A^{-1}|| \tag{3.2.6}$$

unabhängig von b. $(x \mapsto Ax \quad \kappa_{abs})$

Ebenso folgt die scharfe Abschätzung

$$\frac{\|f(b+\Delta b) - f(b) - f(b)\|}{\|f(b)\|} = \frac{\|\Delta x\|}{\|x\|}$$

$$\leq \frac{\|A^{-1}\| \cdot \|b\|}{\|x\|} \cdot \frac{\|\Delta b\|}{\|b\|}$$

Damit

$$\kappa_{rel}(f, b) = ||A^{-1}|| \cdot \frac{||b||}{||A^{-1} \cdot b||}$$
(3.2.7)

Da $||b|| \le ||A|| \cdot ||x|| = ||A|| \cdot ||x|| = ||A|| \cdot ||A^{-1}b||$ folgt:

$$\kappa_{rel}(f, b) \le ||A|| \cdot ||A^{-1}||$$
(3.2.8)

für alle (möglichen rechten Seiten) b. 3.2.8 ist scharf in dem Sinne, dass es ein $\widetilde{b} \in \mathbb{R}^n$ gibt mit

$$\|\widetilde{b}\| = \|A\| \cdot \|\widetilde{x}\|$$

und somit

$$\kappa_{rel}(f, \widetilde{b}) = ||A|| \cdot ||A^{-1}|| \tag{3.2.9}$$

b) betrachte Störungen in A: löse also

$$(A + \Delta A)(x + \Delta x) = b$$
$$f : A \mapsto x = A^{-1}b$$
$$\mathbb{R}^{n \times n} \to \mathbb{R}^n$$

und berechne $\kappa(f,A)$ mittels Ableitung $Df(A):\mathbb{R}^{n\times n}\to\mathbb{R}^n$:

$$C \mapsto Df(A)C = \frac{d}{dt} \left((A + tC)^{-1} \cdot b \right) \Big|_{t=0}$$
$$= \frac{d}{dt} \left((A + tC)^{-1} \right) \Big|_{t=0} \cdot b$$

Weiterhin gilt

$$\frac{d}{dt}\left((A+tC)^{-1}\right)\Big|_{t=0} = -A^{-1}CA^{-1}$$

da

$$0 = \frac{d}{dt}I$$

$$= \frac{d}{dt}\left((A+tC)(A+tC)^{-1}\right)$$

$$= C(A+tC)^{-1} + (A+tC) \cdot \frac{d}{dt}(A+tC)^{-1}$$

$$\Leftrightarrow \frac{d}{dt}(A+tC)^{-1}$$

$$= -(A+tC)^{-1} \cdot C(A+tc)^{-1},$$

falls (A+tC) invertierbar ist. Für t klein genug ist das gewährleistet, da A invertierbar ist (s. Lemma 3.2.12).

$$\Rightarrow Df(A)C = -A^{-1}CA^{-1}b$$

Somit folgt

$$\begin{split} \kappa_{abs}(f,A) &= \|Df(A)\| \\ &= \sup_{\substack{C \neq 0 \\ C \in \mathbb{R}^{n \times n}}} \frac{\|A^{-1}CA^{-1}b\|}{\|C\|} \\ &= \sup_{\substack{C \neq 0 \\ C \in \mathbb{R}^{n \times n}}} \frac{\|A^{-1}\| \cdot \|C\| \cdot \|A^{-1}b\|}{\|C\|} \\ &= \|A^{-1}\| \cdot \|x\| \\ &\leq \|A^{-1}\|^2 \cdot \|b\| \end{split}$$

$$\kappa_{rel}(f, A) = \frac{\|A\|}{\|f(A)\|} \cdot \|Df(A)\|$$

$$\leq \|A\| \cdot \|A^{-1}\|$$
(3.2.10)

c) betrachte Störungen in A und b:

$$(A + \Delta A)(x + \Delta x) = (b + \Delta b)$$

Für κ müsste $\|(A,b)\|$ festgelegt werden. Dies wird jedoch nicht betrachtet. Es gilt jedoch folgende Abschätzung für invertierbare Matrizen $A \in \mathbb{R}^{n \times n}$ und Störungen $\Delta A \in \mathbb{R}^{n \times n}$ mit $\|A^{-1}\| \cdot \|\Delta A\| < 1$:

$$\frac{\|\Delta x\|}{\|x\|} \le \|A\| \cdot \|A^{-1}\| \cdot (1 - \|A^{-1}\| \cdot \|\Delta A\|) \cdot \underbrace{\left(\frac{\|\Delta b\|}{\|b\|} + \frac{\|\Delta A\|}{\|A\|}\right)}_{\neq \frac{\|(\Delta A, \Delta b)\|}{\|(A, b)\|}}$$
(3.2.11)

Beweis: s. Übungsblatt

3.2.11 Definition: Kondition einer Matrix

Sei $\|\cdot\|$ eine Norm auf $\mathbb{R}^{n\times n}$ und $A\in\mathbb{R}^{n\times n}$ eine reguläre Matrix. Die Größe

$$\kappa_{\|\cdot\|}(A) = cond_{\|\cdot\|} \coloneqq \|A\| \cdot \|A^{-1}\|$$

heißt Kondition der Matrix bzgl. der Norm $\|\cdot\|$.

Ist $\|\cdot\|$ von einer Vektor-Norm $\|\cdot\|_p$ induziert, bezeichnet $cond_p(A)$ die $cond_{\|\cdot\|_p}(A)$. Wir schreiben cond(A) für $cond_2(A)$.

 $cond_{\|\cdot\|}(A)$ schätzt die relative Kondition eines linearen GLS Ax = b für alle möglichen Störungen in b oder in A ab und diese Abschatzung ist scharf.

Es stellt sich nun die Frage:

Wann existiert die Inverse der gestörten invertierbaren Matrix A?

$$A + \Delta A = A(I + A^{-1}\Delta A)$$

$$\|C\| < 1$$

$$(I - C)^{-1} = \sum_{k=0}^{\infty} C^k$$

$$\|(I - C)^{-1}\| \le \frac{1}{1 - \|C\|}$$

27.10.2014

3.2.12 Lemma (Neumannsche Reihe)

Sei $C \in \mathbb{R}^{n \times n}$ mit ||C|| < 1 und mit einer submultiplikativen Norm $||\cdot||$, so ist (I - C) invertierbar und es gilt:

$$(I - C)^{-1} = \sum_{k=0}^{\infty} C^k$$

Weiterhin gilt:

$$||(I-C)^{-1}|| \le \frac{1}{1-||C||}$$

Beweis Es gilt zu zeigen, dass $\sum_{k=1}^{\infty} C^k$ existiert: Sei q := ||C|| < 1, dann gilt:

$$\begin{split} \|\sum_{k=0}^m C^k\| &\leq \sum_{k=0}^m \|C^k\| & \text{Dreiecksungleichung} \\ &\leq \sum_{k=0}^m \|C\|^k & \text{da } \|\cdot\| \text{ submultiplikativ} \\ &= \sum_{k=0}^m q^k \\ &= \frac{1-q^{m+1}}{1-q} \\ &\leq \frac{1}{1-\|C\|} & \forall m, \text{ da } q < 1 \text{ (geometr. Reihe)} \end{split}$$

Daraus folgt bereits, dass $\sum_{k=1}^{\infty} C^k$ existiert (nach Majorantenkriterium). Weiter gilt dann:

$$(I - C) \sum_{k=1}^{\infty} C^k = \lim_{m \to \infty} (I - C) \sum_{k=1}^{m} C^k$$
$$= \lim_{m \to \infty} (C^0 - C^{m+1})$$
$$= I$$

3.2.13 Bemerkung

a) Für symmetrische, positiv definite Matrix $A \in \mathbb{R}^{n \times n}$ gilt⁵:

$$\kappa_2(A) = \frac{\lambda_{max}}{\lambda_{min}} \tag{3.2.13}$$

b) Eine andere Darstellung von $\kappa(A)$ ist

$$\kappa(A) := \frac{\max\limits_{\|x\|=1} \|Ax\|}{\min\limits_{\|x\|=1} \|Ax\|} \in [0, \infty]$$
 (3.2.14)

Diese ist auch für nicht invertierbare und rechteckige Matrizen wohldefiniert. Dann gilt offensichtlich:

 $^{^5}$ Beweis: siehe Übungsblatt 3

3 Fehleranalyse

- c) $\kappa(A) \ge 1$
- d) $\kappa(\alpha A) = \kappa(A)$ für $0 \neq \alpha \in \mathbb{R}$ (skalierungsinvariant)
- e) $A \neq 0$ und $A \in \mathbb{R}^{n \times n}$ ist genau dann singulär, wenn $\kappa(A) = \infty$. Wegen der Skalierungsinvarianz ist die Kondition zur Überprüfung der Regularität von A besser geeignet als die Determinante.

3.2.14 Beispiel: Kondition eines nichtlinearen Gleichungssystems

Sei $f: \mathbb{R}^n \to \mathbb{R}^n$ stetig differenzierbar und $y \in \mathbb{R}^n$ gegeben. Löse

$$f(x) = y$$

Gesucht:

$$\kappa(f^{-1}, y)$$

mit f^{-1} Ausgabe und y Eingabe.

Sei Df(x) invertierbar, dann existiert aufgrund des Satzes für implizite Funktionen die inverse Funktion f^{-1} lokal in einer Umgebung von y mit $f^{-1}(y) = x$, sowie

$$D(f^{-1})(y) = (Df(x))^{-1}$$

Hiermit folgt:

$$\kappa_{abs}(f^{-1}, y) = \|(Df(x))^{-1}\|$$

$$\kappa_{rel}(f^{-1}, y) = \frac{\|f(x)\|}{\|x\|} \cdot \|(Df(x))^{-1}\|$$
(3.2.15)

Für skalare Funktionen $f: \mathbb{R} \to \mathbb{R}$ folgt somit:

$$\kappa_{rel}(f^{-1}, y) = \frac{|f(x)|}{|x|} \cdot \frac{1}{|f'(x)|}$$

Falls $|f'(x)| \to 0$ ist es eine schlechte absolute Kondition. Für $|f'(x)| \gg 0$ ist es eine gute absolute Kondition.

IMAGE MISSING

Damit bedeutet eine kleine Störung in y eine große Störung in x.

3.2 a) Komponentenweise Konditionsanalyse

3.2.15 Beispiel

Falls A Diagonalmatrix hat, sind die Gleichungen unabhängig voneinander (entkoppelt). Die erwartete relative Kondition wäre dann – wie bei skalaren Gleicungen – stets gleich

1. Ebenso sind Störungen nur in der Diagonale zu erwarten. Jedoch:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & \epsilon \end{pmatrix}$$

$$\Rightarrow A^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & \epsilon^{-1} \end{pmatrix}$$

$$\Rightarrow \kappa_{\infty} = \kappa_{2} = \frac{1}{\epsilon}$$
 für $0 < \epsilon \le 1$

3.2.16 Definition: Komponentenweise Kondition

Sei (f, x) ein Problem mit $f(x) \neq 0$ und $x = (x_i)_{i=1,\dots,n}$ mit $x_1 \neq 0$ für alle $i = 1, \dots, n$. Die **komponentenweise Kondition** von (f, x) ist die kleinste Zahl $k_{rel} \geq 0$, so dass:

$$\frac{\|f(\widetilde{x}) - f(x)\|_{\infty}}{\|f(x)\|_{\infty}} \le \kappa_{rel} \cdot \max_{i} \frac{|\widetilde{x_i} - x_i|}{|x_i|} + o\left(\max_{i} \frac{|\widetilde{x_i} - x_i|}{|x_i|}\right) \qquad \text{für } \widetilde{x} \to x$$

Vorsicht:

$$\frac{\|\widetilde{x} - x\|_{\infty}}{\|x\|_{\infty}} \neq \max_{i} \frac{|\widetilde{x}_{i} - x_{i}|}{|x_{i}|}$$

3.2.17 Lemma

Sei f differenzierbar und fasse $|\cdot|$ komponentenweise auf, d.h. $|x| = \begin{pmatrix} |x_1| \\ \vdots \\ |x_n| \end{pmatrix}$. Dann gilt:

$$\kappa_{rel} = \frac{\| \|Df(x)| \cdot |x| \|_{\infty}}{\|f(x)\|_{\infty}}$$
(3.2.16)

Beweis Vergleiche seien ebenfalls komponentenweise zu verstehen. Nach dem Satz von Taylor gilt:

$$\begin{split} f_i(\widetilde{x}) - f_i(x) &= \left(\frac{\partial f_i}{\partial x_i}(x), \cdots, \frac{\partial f_i}{\partial x_n}(x)\right) \cdot \begin{pmatrix} \widetilde{x}_1 - x_1 \\ \vdots \\ \widetilde{x}_n - x_n \end{pmatrix} + o\left(\|\widetilde{x} - x\|\right) \\ &\Rightarrow |f_i(\widetilde{x}) - f_i(x)| \leq |Df(x)| \cdot \begin{pmatrix} |x_1| \cdot \frac{\widetilde{x}_1 - x_1}{|x_1|} \\ \vdots \\ |x_n| \cdot \frac{\widetilde{x}_n - x_n}{|x_n|} \end{pmatrix} + o\left(\max_i \frac{\widetilde{x}_i - x_i}{|x_i|}\right) & \text{da } x_i \text{ fest und } \widetilde{x}_i \to x_i \\ &\leq |Df(x)| \cdot |x| \cdot \max_i \frac{\widetilde{x}_i - x_i}{|x_i|} + o\left(\max_i \frac{\widetilde{x}_i - x_i}{|x_i|}\right) \\ &\Rightarrow \frac{\|f(\widetilde{x}) - f(x)\|_{\infty}}{\|f(x)\|_{\infty}} \leq \frac{\|\|Df(x)| \cdot |x|\|_{\infty}}{\|f(x)\|_{\infty}} \cdot \max_i \frac{\widetilde{x}_i - x_i}{|x_i|} + o\left(\max_i \frac{\widetilde{x}_i - x_i}{|x_i|}\right) \end{split}$$

Wähle $\tilde{x}_i = x_j + h \cdot sign \frac{\partial f_i}{\partial x_j}(x)$ mit h > 0, dann gilt:

$$|Df_i(x)(\widetilde{x}-x)| = Df_i(x)(\widetilde{x}-x)$$

und in obiger Rechnung gilt Gleichheit. Also folgt, dass

$$\frac{\|\|Df(x)\|\cdot|x|\|_{\infty}}{\|f(x)\|_{\infty}} = \kappa_{rel}$$

3.2.18 Beispiel

a) Komponentenweise Kondition der Multiplikation

$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) := x \cdot y$$

$$\Rightarrow Df(x,y) = (y,x)$$

$$\Rightarrow \kappa_{rel}(x,y) = \frac{\left\| (|y|,|x|) \cdot \binom{|x|}{|y|-} \right\|_{\infty}}{|x \cdot y|}$$

$$= \frac{2 \cdot |x| \cdot |y|}{|x \cdot y|}$$

$$= 2$$

b) Komponentenweise Kondition eines linearen Gleichungssystems: Löse Ax=b mit möglichen Störungen in b, also zu

$$f: b \mapsto A^{-1}b$$

$$\kappa_{rel} = \frac{\| |A^{-1}| \cdot |b| \|_{\infty}}{\|A^{-1}b\|_{\infty}}$$

Falls A eine Diagonalmatrix ist, folgt:

$$\kappa_{rel} = 1$$

c) Komponentenweise Kondition des Skalarproduktes:

$$\langle x, y \rangle \coloneqq \sum_{i=1}^{n} x_i y_i = x^T y$$

$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x, y) = \langle x, y \rangle$$

$$\Rightarrow Df(x, y) = (y^T, x^T)$$

$$\kappa_{rel} = \frac{\left\| \left| (y^T, x^T) \right| \cdot \left| \begin{pmatrix} x \\ y \end{pmatrix} \right| \right\|_{\infty}}{\left\| \langle x, y \rangle \right\|_{\infty}}$$

$$= \frac{2 \cdot |y^T| \cdot |x|}{|\langle x, y \rangle|}$$

$$= 2 \cdot \frac{\langle |x|, |y| \rangle}{|\langle x, y \rangle|}$$

$$= 2 \cdot \frac{\cos(|x|, |y|)}{\cos(x, y)}$$

da
$$cos(x, y) = \frac{\langle y, x \rangle}{\|x\|_2 \cdot \|y\|_2}$$
.

Falls x und y nahezu senkrecht aufeinander stehen, kann das Skalarprodukt sehr schlecht konditioniert sein.

Zum Beispiel für
$$x = \widetilde{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 und $y = \begin{pmatrix} 1 + 10^{-10} \\ -1 \end{pmatrix}$, $\widetilde{y} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

IMAGE MISSING

3.3 Stabilität von Algorithmen

Bislang: Kondition eines gegebenen Problems (f, x).

Nun stellt sich die Frage: Was passiert durch das Implementieren am Rechner?

Ein "stabiler" Algorithmus sollte ein gut konditioniertes Problem nicht "kaputt machen".

IMAGE MISSING

3.3 a) Vorwärtsanalyse

Die Fehlerfortpflanzung durch die einzelnen Rechenschritte, aus denen die Implementierung aufgebaut ist, wird abgeschätzt.

3.3.1 Bemerkung

Für die Rechenoperationene $+,-,\cdot,/$, kurz ∇ , gilt:

$$fl(a\nabla b) = (a\nabla b) \cdot (1 + \epsilon)$$
$$= (a\nabla b) \cdot \frac{1}{1 + \mu}$$
(3.3.17)

mit $|\epsilon|, |\mu| < eps.$

Index

Basis, 10	Mantisse, 10			
double, 10	Neumannsche Reihe, 20 Norm, 14			
Dreieckszerlegung, 3, 5 entkoppelt, 22	Euklidische Norm, 14 Frobeniusnorm, 15			
Fehler, 9, 14 absoluter, 14	Hölder-Norm, 14 Matrixnorm, 15			
absoluter Rundungsfehler, 12 relativer, 14	Maximumsnorm, 14 Spaltensummennorm, 15 submultiplikative, 15			
floating point, 9, 10 floating point operations, 6	Summennorm, 14 verträglich, 15			
flops, 6 Frobeniusmatrix, 6	normalisierte Gleitkommazahl, 10 normweise Kondition, 16			
Gauß-Eleminator, 6 Gaußsches Eliminationsverfahren, 3, 6 Genauigkeit Maschinengenauigkeit, 12	p-Norm, 15 Permutationsmatrix, 7 Pivotelement, 5 Pivotisierung, 7			
relative Rechengenauigkeit, 12 Gleitkommazahl, 10	halbmaximale, 7 partielle, 7 Spalten-, 7 vollständige, 7			
integer, 9				
Kondition absolute normweise, 16	Zeilen-, 7 Problem, 14			
gut/schlecht konditioniert, 16 komponentenweise, 23 Kondition der Addition, 17 Matrix, 20	Rückwärtssubstitution, 5 Rechenaufwand, 6 Rundungsfehler, 9			
Konditionsanalyse komponentenweise, 22	scharf, 18 Singulärwert, 16 Stabilität, 25			
Landau-Symbole, 6 LR-Zerlegung, 6	Stabilität des Algorithmus, 9			
LU-Zerlegung, 6	Verfahren von Crout, 6			

Index

Vorwärtselimination, 3, 7 Vorwärtssubstitution, 3, 4, 6

 $\begin{array}{c} {\rm Zahlendarstellung,\ 9} \\ {\rm Zeilensummennorm,\ 15} \end{array}$