```
问题 1:
n_Sim <- 50000
sim_meet <- tibble(
 A = runif(n_Sim, min = 0, max = 60),
 B = runif(n_Sim, min = 0, max = 60)
) %>%
 mutate(result = ifelse(abs(A - B) <= 10,
                         "They meet", "They do not"))
p_meet <- sim_meet %>% count(result) %>%
 arrange(n) %>%
 mutate(percent = n / n_Sim)
p_meet
# A tibble: 2 x 3
   result
                         n percent
   <chr>
                   <int>
                               <db7>
1 They meet
                   15343
                              0.307
```

0.693

2 They do not <u>34</u>657

最后一问就是学生不断修改 min = 10, max = 50

问题 2:

(1) 从 flights 数据表中挑选出以下变量: (year, month, day, hour, origin, dep_delay, distance, carrier), 将生产的 新表保存为 flight1。

library(tidyverse)

library(nycflights13)

flight1<-select(flights, year, month, day, hour, origin, dep_delay, distance, carrier)

(2) 从 weather 数据表中挑选出以下变量: (year, month, day, hour, origin, humid, wind_speed), 将生产的新表保存为 weather1.

weather1<-select(weather, year, month, day, hour, origin, humid, wind_speed)</pre>

(3) 将 flight1 表和 weather1 表根据共同变量进行内连接,随机抽取 100000 行数据,将生产的结果保存为 flight_weather。(提示: sample_n()函数,不用重复抽取)

flight_weather <- inner_join(flight1, weather1) %>% sample_n(100000)

(4) 从 flight_weather 表中对三个出发机场按照平均出发延误时间排降序,并将结果保留在 longest_delay 表中。把结果展示出来。

longest_delay<- flight_weather %>% group_by(origin) %>% summarise(ave_delay = mean(dep_delay, na.rm = TRUE)) %>% arrange(desc(ave_delay))

*	origin [‡]	ave_delay *		
1	EWR	15.28442		
2	JFK	12.02980		
3	LGA	10.36975		

(5) 根据出发地 (origin) 在同一个图中画出风速 wind_speed (x 轴) 和出发延误时间 dep_delay (y 轴) 的平滑曲线图

ggplot(data = flight_weather)+geom_smooth(mapping = aes(x = wind_speed, y = dep_delay, linetype = origin))

(6) 根据不同出发地 (origin) 在平行的 3 个图中画出风速 wind_speed (x 轴) 和出发延误时间 dep_delay (y 轴) 的散点图。

ggplot(data = flight_weather) + geom_point(mapping = aes(x = wind_speed, y = dep_delay)) +

(7) 根据 flight_weather 表,画出每个月航班数的直方分布图,x 轴为月份,y 轴是每个月份航班数所占的比例。

(8) 根据 flight_weather 表,画出每个月航班距离的 boxplot 图, x 轴为月份, y 轴为航行距离,根据的航行距离的中位数从低到高对 x 轴的月份进行重新排序。

<mark>y=distance))</mark>

问题 3:

```
###### (1) #######
(H \leftarrow function(p) - sum(p*log(p)))
###### (2) ######
(DKL <\neg \ function(p,q) \ sum(\ p*(log(p)-log(q))\ ))
###### (3) ######
IB \leftarrow list()
IB[[1]] <- c(0.2,0.2,0.2,0.2,0.2)
{\rm IB}[[2]] < - {\rm c}(\,0.8\,,\,0.1\,,\,0.05\,,\,0.025\,,\,0.025\,)
IB[[3]] <- c( 0.05, 0.15, 0.7, 0.05, 0.05)
purrr::map_dbl( IB , H )
[1] 1.6094379 0.7430039 0.9836003
##### (4) ######
Dm <- matrix( NA , nrow=3 , ncol=3 )
for ( i in 1:3 ) {
  for (j in 1:3) {
     \label{eq:definition} \text{Dm}[i,j] <- \text{DKL}(\text{IB}[[j]],\text{IB}[[i]])
  }
}
Dm
```

[,1] [,2] [,3] [1,] 0.0000000 0.866434 0.6258376 [2,] 0.9704061 0.000000 1.8388452 [3,] 0.6387604 2.010914 0.0000000