11612733 杜子豪

• 3.E---

• 17.

Since V/U is finite dimensional, denote $n=\dim V/U$

Thus suppose v_1+U,\ldots,v_n+U is basis of V/U where $v_1,\ldots,v_n\in V$

We can get v_1, \ldots, v_n is linearly independent and $v_i \not\in U$

Let
$$W = \operatorname{span}(v_1, \ldots, v_n)$$

Thus $\dim W = n = \dim V/U$

$$\forall v \in V, \exists a_1, \dots a_n \in F$$
, s.t. $v + U = a_1(v_1 + U) + \dots + a_n(v_n + U) = a_1v_1 + \dots + a_nv_n + U$

Hence
$$v-(a_1v_1+\cdots+a_nv_n)\in U$$

Since
$$a_1v_1+\cdots+a_nv_n\in W$$
, $v=[v-(a_1v_1+\cdots+a_nv_n)]+[a_1v_1+\cdots+a_nv_n]$ and $U,W\subset V$

$$V = W + U$$

Suppose $w \in W \cap U$, $w = b_1v_1 + \cdots + b_nv_n$

Since
$$w \in U$$
, $w + U = b_1v_1 + \cdots + b_nv_n + U = 0 + U$

Thus
$$b_1=\cdots=b_n=0$$

$$W \cap U = \{0\}$$
 Hence $V = W \oplus U$

• 18.

Suppose such S exist

$$\forall u \in U, Tu = S \circ \pi(u) = S(0+U) = 0$$
, it follows that $U \subset \operatorname{null} T$

Suppose $U \subset \operatorname{null} T$

Define
$$S \in \mathcal{L}(V/U,W): S(v+U) = Tv$$

If
$$v_1 + U = v_2 + U, v_1 - v_2 \in U$$
, thus $T(v_1 - v_2) = 0 \Rightarrow Tv_1 = Tv_2$

Thus it is well defined and obvious it is linear

$$\forall v \in V, S \circ \pi(v) = S(v+U) = Tv$$

Hence such S satisfies the condition

- 20.
 - о a.

$$orall S_1, S_2 \in \mathcal{L}(V/U,W)$$
 and $orall \lambda_1, \lambda_2 \in \mathrm{F}$

$$\Gamma(\lambda_1S_1+\lambda_2S_2)=(\lambda_1S_1+\lambda_2S_2)\circ\pi=\lambda_1S_1\circ\pi+\lambda_2S_2\circ\pi=\lambda_1\Gamma(S_1)+\lambda_2\Gamma(S_2)$$

Thus it is linear

o b.

$$\Gamma(S)=0$$
 iff $S\circ\pi(v)=0$ for $\forall v\in V$ iff $S(v+U)=0$ for $\forall v\in V$ iff $S=0$

Thus it is injective

o C.

By problem 18.

Denote $M = \{T \in \mathcal{L}(V, W) : Tu = 0 \text{ for every } u \in U\}$

Since $orall T\in \mathcal{L}(V,W)$ s.t. $U\subset \operatorname{null} T$ are euivalent to exist $S\in \mathcal{L}(V/U,W)$ s.t. $T=S\circ \pi,$

we get $M=\operatorname{range}\Gamma$

- 3.F——
- 1.

Since choose arbitrary $v \in V$, suppose $f \in \mathcal{L}(V, \mathbb{F}), f(v) = a \in \mathbb{F}$

If a = 0 for all v, f is a zero map

If not, we can find some v s.t. $f(v) = a \neq 0$

Thus $orall \lambda \in \mathrm{F}, rac{\lambda}{a} f(v) = \lambda$ it follows that f is surjective

• 3.

Extend v to a basis of V as v, v_2, \ldots, v_n

Thus the dual basis of v,v_2,\ldots,v_n is the list $arphi_1,\ldots,arphi_n$ s.t. $arphi_j(v_k)=1$ for j
eq k and $arphi_j(v_j)=1$

Hence we can find such φ

• 7.

Since
$$arphi_j(x^k)=rac{(x^k)^{(j)}}{j!}(0)=rac{k(k-1)\cdots(k-j+1)x^{k-j}}{1\cdots j}(0)$$

If
$$j=k, arphi_j(x^j)=1,$$
 if not $arphi_j(x^k)=0$

Hence it is the basis of the basis $1, x, \ldots, x^m$ of $\mathcal{P}_m(\mathbb{R})$

- 8.
- o а.

Suppose
$$a_m(x-5)^m + \cdots + a_1(x-5) + a_0 = 0$$

Since only the first part contains x^m thus a_m must equals 0

Thus we reduce the formula to m-1 degree $a_{m-1}(x-5)^{m-1}+\cdots+a_1(x-5)+a_0$

Repeat this procedure, we get $a_m = \cdots = a_0$

Thus it is a linearly independent list with right length

It is a basis

o h

Define
$$arphi_j(p) = rac{p^{(j)}(5)}{i!}$$

Thus by problem 7, it is a basis of the dual space of $\mathcal{P}_m(\mathbb{R})$

• 11.

Suppose such (c_1,\ldots,c_m) and (d_1,\ldots,d_n) exist

Hence
$$A = [c_1, \dots, c_m]^T [d_1, \dots, d_n] = [d_1 c, d_2 c, \dots, d_n c]$$

This implies that each column is a scalar multiple of c

Hence span
$$(d_1c, \ldots, d_nc) = \operatorname{span}(c)$$
, rank $A = 1$

On the contrary, if $\operatorname{rank} A=1$, all the column is a scalar multiple of a vector

Thus
$$A = [d_1 c, \ldots, d_n c]$$
 and can be written as $A = [c_1, \ldots, c_m]^T [d_1, \ldots, d_n]$

- 14.
 - a.

$$T'(\varphi) = \varphi \circ T(p) = \varphi(x^2p + p'') = (2xp + x^2p' + p''')|_{x=4} = 8p(4) + 16p'(4) + p'''(4)$$

٥b.

$$T'(arphi)(x^3) = arphi \circ T(x^3) = arphi(x^5 + 6x) = \int_0^1 (x^5 + 6x) dx = rac{1}{6} + 3 = rac{19}{6}$$

• 16.

Define
$$S(T) = T'$$

Thus
$$S(T)=0$$
 iff $T'=0$ iff $\varphi\circ T=0$ iff $T=0$ Hence S is injective

Since
$$\dim \mathcal{L}(V,W) = \dim \mathcal{L}(W',V')$$
 and $S \in \mathcal{L}(\mathcal{L}(V,W),\mathcal{L}(W',V'))$

S is surjective

Hence S is isomorphic

• 20.

$$\forall \varphi \in W^0, \forall w \in W, \varphi(w) = 0$$

Since
$$U \subset W$$
, $\forall u \in U$, we have $\varphi(u) = 0$

Hence $W^0\subset U^0$

• 23.

$$\forall \varphi \in (U \cap W)^0, \forall w \in W, u \in U, \varphi(w) = 0, \varphi(u) = 0$$

Hence
$$(U \cap W)^0 \subset U^0 + W^0$$

From problem 20, we have $(U \cap W)^0 \supset U^0 + W^0$

Hence they are equal

• 26.

Denote
$$W = \{v \in V : \varphi(v) = 0 \text{ for every } \varphi \in \Gamma\}$$

Thus
$$\forall \varphi \in W^0, \forall v \in W, \varphi(v) = 0$$

This implies that $W^0=\Gamma$

• 28.

```
Since \operatorname{null} T' = \operatorname{span}(\varphi), \varphi \circ Tv = 0 for all v \in V

Hence \operatorname{range} T \subset \operatorname{null} \varphi

Since \operatorname{null} T = (\operatorname{range} T)^0 = \operatorname{span}(\varphi), \dim(\operatorname{range} T)^0 = 1

\dim\operatorname{range} T + \dim(\operatorname{range} T)^0 = \dim W \Rightarrow \dim\operatorname{range} T = \dim W - 1
```

• 32.

o a to b

Since T is invertible, $\dim \operatorname{range} T = \dim V = n$, which is also colomn rank of $\mathcal{M}(T)$. Thus the colomn of $\mathcal{M}(T)$ is linearly independent

• b to c

It is a linearly independent list with right length ${\rm Hence} \ {\rm it} \ {\rm spans} \ {\rm F}^{n,1}$

o c to d

Since the rank of row of $\mathcal{M}(T)$ equals the rank of colomn of $\mathcal{M}(T)$, which is n Hence the row is linearly independent

• d to e

It is a linearly independent list with right length Hence it spans $\mathbf{F}^{1,n}$

∘ e to a

Since it spans $F^{1,n}$

the rank of row of $\mathcal{M}(T)$ equals the rank of colomn of $\mathcal{M}(T)$, which is n

Thus $\dim \operatorname{range} T = n = \dim V$

Which implise T is invertible