Practical & Oral Exam: An Practical & Oral exam will be held based on the above syllabus.

Course Name			Teaching Scheme (Contact Hours)		Credits Assigned			
Code		Theory	Practical	Theory	Practical	Total		
ITL502	Security Lab		02		01	01		

	Course Name	Examination Scheme							
		Theory							
Course Code		Internal Assessment			End Sem Exam	Exam Duration (in Hrs)	Term Work	Pract / Oral	Total
		Test1	Test 2	Avg.					
ITL502	Security Lab						25	25	50

Lab Objectives:

Sr.	Lab Objectives				
No.					
The La	The Lab experiments aims:				
1	To apply the knowledge of symmetric cryptography to implement classical ciphers.				
2	To analyze and implement public key encryption algorithms, hashing and digital signature				
	algorithms.				
3	To explore the different network reconnaissance tools to gather information about networks.				
4	To explore the tools like sniffers, port scanners and other related tools for analyzing.				
5	To Scan the network for vulnerabilities and simulate attacks.				
6	To set up intrusion detection systems using open-source technologies and to explore email security.				

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On succe	ssful completion, of course, learner/student will be able to:	
1	Illustrate symmetric cryptography by implementing classical ciphers.	L1,L2
2	Demonstrate Key management, distribution and user authentication.	L1,L2
3	Explore the different network reconnaissance tools to gather information about networks	L1,L2, L3
4	Use tools like sniffers, port scanners and other related tools for analyzing packets in a network.	L1,L2,L3
5	Use open-source tools to scan the network for vulnerabilities and simulate attacks.	L1,L2,L3
6	Demonstrate the network security system using open source tools.	L1,L2

Prerequisite: Basic concepts of Computer Networks & Network Design, Operating System

Hardware & Software Requirements:

Hardware Requirement:	Software requirement:
PC With following Configuration 1. Intel Core i3/i5/i7 Processor	1. Windows or Linux Desktop OS
2. 4 GB RAM	2. wireshark
3. 500 GB Harddisk	3. ARPWATCH
	4. Kismet, NetStumbler
	5. NESSU

DETAILED SYLLABUS:

Sr. No.	Detailed Content	Hours	LO Mapping
I	Classical Encryption techniques (mono-alphabetic and poly-alphabetic substitution techniques: Vigenere cipher, playfair cipher)	04	LO1
II	1)Block cipher modes of operation using a)Data Encryption Standard b)Advanced Encryption Standard (AES). 2)Public key cryptography: RSA algorithm. 3)Hashing Techniques: HMAC using SHA 4)Digital Signature Schemes – RSA, DSS.	06	LO2
III	 Study the use of network reconnaissance tools like WHOIS, dig, traceroute, nslookup to gather information about networks and domain registrars. Study of packet sniffer tools Wireshark, :- a. Observer performance in promiscuous as well as non-promiscuous mode. Show the packets can be traced based on different filters. 	04	LO3
IV	 Download and install nmap. Use it with different options to scan open ports, perform OS fingerprinting, ping scan, tcp port scan, udp port scan, etc. 	04	LO4
V	a) Keylogger attack using a keylogger tool.b) Simulate DOS attack using Hping or other toolsc) Use the NESSUS/ISO Kali Linux tool to scan the network for vulnerabilities.	04	LO5
VI	 Set up IPSec under Linux. Set up Snort and study the logs. Explore the GPG tool to implement email security 	04	LO6

Text Books

- 1 Build your own Security Lab, Michael Gregg, Wiley India.
- 2 CCNA Security, Study Guide, TIm Boyles, Sybex.
- 3 Hands-On Information Security Lab Manual, 4th edition, Andrew Green, Michael Whitman,

Herbert Mattord.

4 The Network Security Test Lab: A Step-by-Step Guide Kindle Edition, Michael Gregg.

References:

- 1 Network Security Bible, Eric Cole, Wiley India.
- 2 Network Defense and Countermeasures, William (Chuck) Easttom.
- Principles of Information Security + Hands-on Information Security Lab Manual, 4th Ed., Michael E. Whitman, Herbert J. Mattord.
- 4 IITB virtual Lab: http://cse29-iiith.vlabs.ac.in/
- 5 https://www.dcode.fr/en

Sr.No	Experiment Title				
1.	Breaking the Mono-alphabetic Substitution Cipher using Frequency analysis method.				
2.	Design and Implement a product cipher using Substitution ciphers.				
3.	Cryptanalysis or decoding Playfair, vigenere cipher.				
4.	Encrypt long messages using various modes of operation using AES or DES.				
5.	Cryptographic Hash Functions and Applications (HMAC): to understand the need, design and applications of collision resistant hash functions.				
6.	Implementation and analysis of RSA cryptosystem and Digital signature scheme using RSA.				
7.	Study the use of network reconnaissance tools like WHOIS, dig, traceroute, nslookup to gather information about networks and domain registrars.				
8.	Study of packet sniffer tools wireshark: - a. Observer performance in promiscuous as well as non-promiscuous mode. b. Show the packets can be traced based on different filters.				
9.	Download, install nmap and use it with different options to scan open ports, perform OS fingerprinting, ping scan, tcp port scan, udp port scan, etc.				
10.	Study of malicious software using different tools: a) Keylogger attack using a keylogger tool. b) Simulate DOS attack using Hping or other tools c) Use the NESSUS/ISO Kali Linux tool to scan the network for vulnerabilities.				
11.	Study of Network security by a) Set up IPSec under Linux. b) Set up Snort and study the logs. c) Explore the GPG tool to implement email security				

Term Work: Term Work shall consist of at least 12 to 15 practicals based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Practical & Oral exam will be held based on the above syllabus.