AVALIAÇÃO DE TÉCNICAS DE EXTRAÇÃO DE CARACTERÍSTICAS E CLASSIFICADORES NA ANÁLISE DE TUMORES CEREBRAIS

Iara Leodoro Teotonio de Souza Universidade de Marília (UNIMAR) <u>iaraleodoro09@gmail.com</u>

Giovane Santos Silva
Universidade de Marília (UNIMAR)
giovanesantos1999@gmail.com

RESUMO

Este visa comparar diferentes técnicas de extração de características e classificadores na tarefa de classificação de tumores cerebrais em imagens de ressonância magnética (MRI). Utilizamos *Histogram of Oriented Gradients* (HOG) e *Local Binary Patterns* (LBP) como métodos de extração de características, e avaliamos três classificadores: *Naive Bayes, K-Nearest Neighbors* (KNN) e *Support Vector Machine* (SVM).

Palavras-chave: Classificação de tumores cerebrais, HOG, LBP, Naive Bayes, KNN, SVM.

1. INTRODUÇÃO

A classificação precisa de tumores cerebrais em imagens de MRI é crucial para diagnósticos médicos eficientes. Técnicas de aprendizado de máquina podem melhorar a acurácia do diagnóstico automatizado. Este estudo compara a eficácia de HOG e LBP na extração de características e avalia o desempenho dos classificadores Naive Bayes, KNN e SVM.

2. METODOLOGIA

Para a extração de características, foram utilizadas duas técnicas principais. O *Histogram of Oriented Gradients* (HOG) foi empregado para capturar informações sobre a orientação dos gradientes nas imagens, fornecendo uma representação detalhada da estrutura e forma dos tumores. O *Local Binary Patterns* (LBP), por sua vez, foi utilizado para analisar a textura das imagens, ajudando na identificação das características.

3. RESULTADOS E DISCUSSÕES

Características	Classificador	Acurácia	Precisão	Recall	F1-Score
HOG	Naive Bayes	0.6834	0.6524	0.6664	0.6519
HOG	KNN	0.9291	0.9306	0.9254	0.9252
HOG	SVM	0.9672	0.9659	0.9644	0.9649
LBP	Naive Bayes	0.4546	0.5095	0.4810	0.4341
LBP	KNN	0.8322	0.8228	0.8250	0.8233
LBP	SVM	0.6415	0.6553	0.6406	0.6391

Os resultados indicam que a combinação de HOG com SVM apresentou a melhor performance geral, alcançando uma acurácia de 96.72%, seguida pela combinação de HOG com KNN. O método LBP teve desempenho inferior em todos os classificadores, com o pior desempenho observado no Naive Bayes (acurácia de 45.46%).

4. CONCLUSÃO

A extração de características utilizando HOG demonstrou ser superior a LBP na classificação de tumores cerebrais em imagens de MRI. Entre os classificadores, o SVM mostrou o melhor desempenho. Futuras melhorias podem incluir a combinação de múltiplas técnicas de extração de características, ajustes de hiperparâmetros dos classificadores, e a utilização de redes neurais profundas para uma maior acurácia na classificação.