Compact spaces

2016-05-12 10:00

Cover and compact

Definition (Cover)

A collection \mathcal{O} of open subsets of the topological space X is called an open cover if $\cup \mathcal{O} = X$.

Cover and compact

Definition (Cover)

A collection \mathcal{O} of open subsets of the topological space X is called an open cover if $\cup \mathcal{O} = X$.

Definition (Compact space)

A topological space X is called **compact** if every open cover of X has a finite subcollection that is also an open cover of X.

Examples

ullet The space ${\mathbb R}$ is not compact

- ullet The space ${\mathbb R}$ is not compact
- The subspace $A = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{N}\}$ of \mathbb{R} is compact.

- ullet The space $\mathbb R$ is not compact
- The subspace $A = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{N}\}$ of \mathbb{R} is compact.
- Any finite topological space is compact.

- ullet The space ${\mathbb R}$ is not compact
- The subspace $A = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{N}\}$ of \mathbb{R} is compact.
- Any finite topological space is compact.
- The subspace $(0,1] \subseteq \mathbb{R}$ is not compact.

Cover of subspace

Definition (Cover of subspace)

Let $Y \subseteq X$. A collection \mathcal{O} of subsets of X is said to cover Y if $Y \subseteq \cup \mathcal{O}$.

Cover of subspace

Definition (Cover of subspace)

Let $Y \subseteq X$. A collection \mathcal{O} of subsets of X is said to cover Y if $Y \subset \cup \mathcal{O}$.

Lemma

Let $Y \subseteq X$ be a subspace. Then Y is compact if an only if every covering of Y by open sets (in X) contains a finite subcollection covering Y.

• Assume that Y is compact. Let $\mathcal{O} = \{U_{\alpha}\}$ be a covering of Y, where each U_{α} is open in X.

- Assume that Y is compact. Let $\mathcal{O} = \{U_{\alpha}\}$ be a covering of Y, where each U_{α} is open in X.
- Then $\{U_{\alpha} \cap Y\}$ is a cover of Y by open sets in Y. By compactness of Y, we have that there is a finite subset $\{U_1, U_2, \ldots, U_r\} \subseteq \mathcal{O}$ such that

$$Y = (U_1 \cap Y) \cup \cdots \cup (U_r \cap Y).$$

- Assume that Y is compact. Let $\mathcal{O} = \{U_{\alpha}\}$ be a covering of Y, where each U_{α} is open in X.
- Then $\{U_{\alpha} \cap Y\}$ is a cover of Y by open sets in Y. By compactness of Y, we have that there is a finite subset $\{U_1, U_2, \ldots, U_r\} \subseteq \mathcal{O}$ such that

$$Y = (U_1 \cap Y) \cup \cdots \cup (U_r \cap Y).$$

• It follows then that $\{U_i\} \subseteq \mathcal{O}$ is a finite open cover of Y.

- Assume that Y is compact. Let $\mathcal{O} = \{U_{\alpha}\}$ be a covering of Y, where each U_{α} is open in X.
- Then $\{U_{\alpha} \cap Y\}$ is a cover of Y by open sets in Y. By compactness of Y, we have that there is a finite subset $\{U_1, U_2, \ldots, U_r\} \subseteq \mathcal{O}$ such that

$$Y = (U_1 \cap Y) \cup \cdots \cup (U_r \cap Y).$$

- It follows then that $\{U_i\} \subseteq \mathcal{O}$ is a finite open cover of Y.
- Now, let \mathcal{O}' be a cover of Y by open sets in Y. For each $U'_{\alpha} \in \mathcal{O}'$, let U_{α} open in X such that $U'_{\alpha} = U_{\alpha} \cap Y$. Then $\{U_{\alpha}\}$ covers Y.

- Assume that Y is compact. Let $\mathcal{O} = \{U_{\alpha}\}$ be a covering of Y, where each U_{α} is open in X.
- Then $\{U_{\alpha} \cap Y\}$ is a cover of Y by open sets in Y. By compactness of Y, we have that there is a finite subset $\{U_1, U_2, \ldots, U_r\} \subseteq \mathcal{O}$ such that

$$Y = (U_1 \cap Y) \cup \cdots \cup (U_r \cap Y).$$

- It follows then that $\{U_i\} \subseteq \mathcal{O}$ is a finite open cover of Y.
- Now, let \mathcal{O}' be a cover of Y by open sets in Y. For each $U'_{\alpha} \in \mathcal{O}'$, let U_{α} open in X such that $U'_{\alpha} = U_{\alpha} \cap Y$. Then $\{U_{\alpha}\}$ covers Y.
- Now, if $\{U_{\alpha_i}\}_{i=1}^r$ covers Y, we have that $\{U'_{\alpha_i}\}_{i=1}^r\subseteq \mathcal{O}'$ covers Y as well.

Every closed subset of a compact space is compact.

Every closed subset of a compact space is compact.

Every closed subset of a compact space is compact.

Proof

• Let $Y \subseteq X$ with Y closed and X compact. Let \mathcal{O} be a cover of Y by open sets in X.

Every closed subset of a compact space is compact.

- Let $Y \subseteq X$ with Y closed and X compact. Let \mathcal{O} be a cover of Y by open sets in X.
- Then $\mathcal{O}' = \mathcal{O} \cup \{X Y\}$ is an open cover of X. Since X is compact, a finite subcollection $\mathcal{F} \subseteq \mathcal{O}'$ covers X.

Every closed subset of a compact space is compact.

- Let $Y \subseteq X$ with Y closed and X compact. Let \mathcal{O} be a cover of Y by open sets in X.
- Then $\mathcal{O}' = \mathcal{O} \cup \{X Y\}$ is an open cover of X. Since X is compact, a finite subcollection $\mathcal{F} \subseteq \mathcal{O}'$ covers X.
- Then $\mathcal{F} \{X Y\}$ is a subcollection of \mathcal{O} and is a finite subcover of Y.

Theorem (Compact in Hausdorff) Every compact subset of a Hausdorff space is closed.

Theorem (Compact in Hausdorff) Every compact subset of a Hausdorff space is closed.

Every compact subset of a Hausdorff space is closed.

Proof

• Let $Y \subseteq X$ with Y compact and X Hausdorff. We will prove that X - Y is open.

Every compact subset of a Hausdorff space is closed.

- Let $Y \subseteq X$ with Y compact and X Hausdorff. We will prove that X Y is open.
- Let $x_0 \in X Y$. For each $y \in Y$, let U_y , V_y be disjoint neighborhoods of x_0 , y respectively.

Every compact subset of a Hausdorff space is closed.

- Let $Y \subseteq X$ with Y compact and X Hausdorff. We will prove that X Y is open.
- Let $x_0 \in X Y$. For each $y \in Y$, let U_y , V_y be disjoint neighborhoods of x_0 , y respectively.
- Then $\{V_y\}_{y\in Y}$ is an open cover of Y. Choose $y_1, y_2, \ldots, y_r \in Y$ such that $Y \subseteq V_{y_1} \cup \cdots \cup V_{y_r}$.

Every compact subset of a Hausdorff space is closed.

- Let $Y \subseteq X$ with Y compact and X Hausdorff. We will prove that X Y is open.
- Let $x_0 \in X Y$. For each $y \in Y$, let U_y , V_y be disjoint neighborhoods of x_0 , y respectively.
- Then $\{V_y\}_{y\in Y}$ is an open cover of Y. Choose $y_1, y_2, \ldots, y_r \in Y$ such that $Y \subseteq V_{y_1} \cup \cdots \cup V_{y_r}$.
- It follows that $U_{y_1} \cap \cdots \cap U_{y_r}$ is a neigborhood of x_0 that is disjoint from $V_{y_1} \cup \cdots \cup V_{y_r}$ and so is contained in X Y.

A corollary

This statement follows from the proof of the previous theorem:

Corollary

If $Y\subseteq X$ is compact, where X is Hausdorff, and $X\not\in Y$, there are disjoint open sets U,V such that $X\in U$ and $Y\subseteq V$.

Theorem

Let $f: X \to Y$ be continuous, with X compact. Then f(X) is compact.

Theorem

Let $f: X \to Y$ be continuous, with X compact. Then f(X) is compact.

• Let $\{V_{\alpha}\}$ be an open cover of f(X).

Theorem

Let $f: X \to Y$ be continuous, with X compact. Then f(X) is compact.

- Let $\{V_{\alpha}\}$ be an open cover of f(X).
- Then $\{f^{-1}(V_{\alpha})\}$ is an open cover of X. Since X is compact, there are $\alpha_1, \ldots, \alpha_n$ such that $X \subseteq f^{-1}(V_{\alpha_1}) \cup \cdots \cup f^{-1}(V_{\alpha_n})$.

Theorem

Let $f: X \to Y$ be continuous, with X compact. Then f(X) is compact.

- Let $\{V_{\alpha}\}$ be an open cover of f(X).
- Then $\{f^{-1}(V_{\alpha})\}$ is an open cover of X. Since X is compact, there are $\alpha_1, \ldots, \alpha_n$ such that $X \subset f^{-1}(V_{\alpha_1}) \cup \cdots \cup f^{-1}(V_{\alpha_n})$.
- It follows that $f(X) \subseteq V_{\alpha_1} \cup \cdots \cup V_{\alpha_n}$. \square

Let $f: X \to Y$ be a continuous and biyective function, where X is compact and Y is Hausdorff. Then f is a homeomorphism.

Since f is continuous and biyective, in order to show that f
is a homeomorphism it is enough to show it is closed.

Compact spaces

- Since f is continuous and biyective, in order to show that f
 is a homeomorphism it is enough to show it is closed.
- Let $C \subseteq X$ be closed. Since X is compact, we have that C is compact.

- Since f is continuous and biyective, in order to show that f
 is a homeomorphism it is enough to show it is closed.
- Let $C \subseteq X$ be closed. Since X is compact, we have that C is compact.
- Since f is continuous, we have that f(C) is compact.

- Since f is continuous and biyective, in order to show that f
 is a homeomorphism it is enough to show it is closed.
- Let $C \subseteq X$ be closed. Since X is compact, we have that C is compact.
- Since f is continuous, we have that f(C) is compact.
- Finally, since Y is Hausdorff, we have that f(C) is closed. \Box

If X and Y are compact spaces, then $X \times Y$ is compact.

• First, we assume that we have spaces X, Y, with Y compact. Let $x_0 \in X$ and $N \subseteq X \times Y$ open such that $\{x_0\} \times Y \subseteq N$. We will prove then that there is a neighborhood W of x_0 such that $W \times Y \subseteq N$.

- First, we assume that we have spaces X, Y, with Y compact. Let $x_0 \in X$ and $N \subseteq X \times Y$ open such that $\{x_0\} \times Y \subseteq N$. We will prove then that there is a neighborhood W of x_0 such that $W \times Y \subseteq N$.
- For each $y \in Y$, since $(x_0, y) \in N$, which is open in $X \times Y$, there is a basis element $U_y \times V_y \subseteq N$ containing (x_0, y) . The collection $\{U_y \times V_y\}$ covers the compact set $\{x_0\} \times Y$, and so we can cover it with finitely many such basis elements: $U_1 \times V_1, \ldots, U_n \times V_n$.

- First, we assume that we have spaces X, Y, with Y compact. Let $x_0 \in X$ and $N \subseteq X \times Y$ open such that $\{x_0\} \times Y \subseteq N$. We will prove then that there is a neighborhood W of x_0 such that $W \times Y \subseteq N$.
- For each $y \in Y$, since $(x_0, y) \in N$, which is open in $X \times Y$, there is a basis element $U_y \times V_y \subseteq N$ containing (x_0, y) . The collection $\{U_y \times V_y\}$ covers the compact set $\{x_0\} \times Y$, and so we can cover it with finitely many such basis elements: $U_1 \times V_1, \ldots, U_n \times V_n$.
- Let $W = U_1 \cap \cdots \cap U_n$. Then W is a neighborhood of x_0 . We prove the finite subcover also cover the *tube* $W \times Y$.

- First, we assume that we have spaces X, Y, with Y compact. Let $x_0 \in X$ and $N \subseteq X \times Y$ open such that $\{x_0\} \times Y \subseteq N$. We will prove then that there is a neighborhood W of x_0 such that $W \times Y \subseteq N$.
- For each $y \in Y$, since $(x_0, y) \in N$, which is open in $X \times Y$, there is a basis element $U_y \times V_y \subseteq N$ containing (x_0, y) . The collection $\{U_y \times V_y\}$ covers the compact set $\{x_0\} \times Y$, and so we can cover it with finitely many such basis elements: $U_1 \times V_1, \ldots, U_n \times V_n$.
- Let $W = U_1 \cap \cdots \cap U_n$. Then W is a neighborhood of x_0 . We prove the finite subcover also cover the *tube* $W \times Y$.
- Let $(x, y) \in W \times Y$. Then $(x_0, y) \in U_j \times V_j$ for some j. Since $x \in W$ implies $x \in U_j$, it follows that $(x, y) \in U_i \times V_i$, and so $W \times Y \subseteq N$.

• We now assume X, Y are compact spaces, and let \mathcal{O} be an open cover of $X \times Y$.

- We now assume X, Y are compact spaces, and let \mathcal{O} be an open cover of $X \times Y$.
- Given $x \in X$, since $\{x\} \times Y$ is compact and is covered by \mathcal{O} , it can also be covered by finitely many U_1, \ldots, U_n elements of \mathcal{O} . Let $N = U_1 \cup \cdots \cup U_n$.

- We now assume X, Y are compact spaces, and let \mathcal{O} be an open cover of $X \times Y$.
- Given $x \in X$, since $\{x\} \times Y$ is compact and is covered by \mathcal{O}_{1} , it can also be covered by finitely many U_{1}, \ldots, U_{n} elements of \mathcal{O} . Let $N = U_1 \cup \cdots \cup U_n$.
- By the tube lemma, there is a neighborhood W_x of x such that $W \times Y \subseteq N$. Then the collection $\{W_X\}$ covers X. Since X is compact, there is a finite subcollection W_1, \ldots, W_m covering X.

Compact spaces

- We now assume X, Y are compact spaces, and let \mathcal{O} be an open cover of $X \times Y$.
- Given $x \in X$, since $\{x\} \times Y$ is compact and is covered by \mathcal{O} , it can also be covered by finitely many U_1, \ldots, U_n elements of \mathcal{O} . Let $N = U_1 \cup \cdots \cup U_n$.
- By the *tube lemma*, there is a neighborhood W_X of X such that $W \times Y \subseteq N$. Then the collection $\{W_X\}$ covers X. Since X is compact, there is a finite subcollection W_1, \ldots, W_m covering X.
- Finally, since the finite collection of tubes $W_1 \times Y, \ldots, W_m \times Y$ covers $X \times Y$, and each tube can be covered by a finite subcollection of \mathcal{O} , we are done. \square

Definition (Finite intersection property)

Let \mathcal{C} be a collection of subsets of X. We say that \mathcal{C} has the finite intersection property if for every finite subcollection $\{F_1, \ldots, F_r\} \subseteq \mathcal{C}$ we have that $F_1 \cap \cdots \cap F_r \neq \emptyset$.

Definition (Finite intersection property)

Let C be a collection of subsets of X. We say that C has the finite intersection property if for every finite subcollection $\{F_1, \ldots, F_r\} \subseteq C$ we have that $F_1 \cap \cdots \cap F_r \neq \emptyset$.

Theorem

A topological space X is compact if an only if for every collection of closed sets \mathcal{C} that has the finite intersection property, we have that $\cap \mathcal{C} \neq \emptyset$.

Compact spaces

Definition (Finite intersection property)

Let \mathcal{C} be a collection of subsets of X. We say that \mathcal{C} has the finite intersection property if for every finite subcollection $\{F_1, \ldots, F_r\} \subseteq \mathcal{C}$ we have that $F_1 \cap \cdots \cap F_r \neq \emptyset$.

Theorem

A topological space X is compact if an only if for every collection of closed sets C that has the finite intersection property, we have that $\cap C \neq \emptyset$.

• Given a collection \mathcal{O} of subsets of X, define the collection $\mathcal{C} = \{X - U \mid U \in \mathcal{O}\}$. Then we have:

Definition (Finite intersection property)

Let C be a collection of subsets of X. We say that C has the finite intersection property if for every finite subcollection $\{F_1, \ldots, F_r\} \subseteq C$ we have that $F_1 \cap \cdots \cap F_r \neq \emptyset$.

Theorem

A topological space X is compact if an only if for every collection of closed sets C that has the finite intersection property, we have that $\cap C \neq \emptyset$.

- Given a collection \mathcal{O} of subsets of X, define the collection $\mathcal{C} = \{X U \mid U \in \mathcal{O}\}$. Then we have:
 - $m{\mathcal{O}}$ is a collection of open sets if and only if $m{\mathcal{C}}$ is a collection of closed sets.

Definition (Finite intersection property)

Let C be a collection of subsets of X. We say that C has the finite intersection property if for every finite subcollection $\{F_1, \ldots, F_r\} \subseteq C$ we have that $F_1 \cap \cdots \cap F_r \neq \emptyset$.

Theorem

A topological space X is compact if an only if for every collection of closed sets \mathcal{C} that has the finite intersection property, we have that $\cap \mathcal{C} \neq \emptyset$.

- Given a collection \mathcal{O} of subsets of X, define the collection $\mathcal{C} = \{X U \mid U \in \mathcal{O}\}$. Then we have:
 - O is a collection of open sets if and only if C is a collection of closed sets.
 - \mathcal{O} is a cover of X if and only if $\cap \mathcal{C} = \emptyset$.

Definition (Finite intersection property)

Let $\mathcal C$ be a collection of subsets of X. We say that $\mathcal C$ has the finite intersection property if for every finite subcollection $\{F_1,\ldots,F_r\}\subseteq \mathcal C$ we have that $F_1\cap\cdots\cap F_r\neq\emptyset$.

Theorem

A topological space X is compact if an only if for every collection of closed sets C that has the finite intersection property, we have that $\cap C \neq \emptyset$.

- Given a collection \mathcal{O} of subsets of X, define the collection $\mathcal{C} = \{X U \mid U \in \mathcal{O}\}$. Then we have:
 - O is a collection of open sets if and only if C is a collection of closed sets.
 - \mathcal{O} is a cover of X if and only if $\cap \mathcal{C} = \emptyset$.
 - The finite subcolection $\{U_1, \ldots, U_n\} \subseteq \mathcal{O}$ covers X if and only if the intersection of the corresponding $X = U_{i+1}$

Theorem

Let X be a totally ordered set with the least upper bound property (every non-empty subset that has an upper bound has a least upper bound). Then, in the ordered topology, every closed interval in X is compact.

Theorem

Let X be a totally ordered set with the least upper bound property (every non-empty subset that has an upper bound has a least upper bound). Then, in the ordered topology, every closed interval in X is compact.

• Let $a, b \in X$, a < b, and let \mathcal{O} be a covering of [a, b] by sets open in [a, b] with respect to the subspace topology (which is the same as the order topology on [a, b]). We wish to prove there is a finite subcover of \mathcal{O} .

Theorem

Let X be a totally ordered set with the least upper bound property (every non-empty subset that has an upper bound has a least upper bound). Then, in the ordered topology, every closed interval in X is compact.

- Let $a, b \in X$, a < b, and let \mathcal{O} be a covering of [a, b] by sets open in [a, b] with respect to the subspace topology (which is the same as the order topology on [a, b]). We wish to prove there is a finite subcover of \mathcal{O} .
- We prove first that if $x \in [a, b]$, $x \neq b$, then there is a point $y \in [a, b]$, y > x, such that the inverval [x, y] can be covered by at most two elements of \mathcal{O} .

Theorem

Let X be a totally ordered set with the least upper bound property (every non-empty subset that has an upper bound has a least upper bound). Then, in the ordered topology, every closed interval in X is compact.

- Let $a, b \in X$, a < b, and let \mathcal{O} be a covering of [a, b] by sets open in [a, b] with respect to the subspace topology (which is the same as the order topology on [a, b]). We wish to prove there is a finite subcover of \mathcal{O} .
- We prove first that if $x \in [a, b]$, $x \neq b$, then there is a point $y \in [a, b]$, y > x, such that the inverval [x, y] can be covered by at most two elements of \mathcal{O} .
- If x has an immediate successor $y \in X$, then $y \in [a, b]$ and $[x, y] = \{x, y\}$

Corollary

Every closed interval in $\mathbb R$ is compact.

Corollary

Every closed interval in $\mathbb R$ is compact.

Theorem

A subset $A \subseteq \mathbb{R}^n$ is compact if and only if is closed and bounded in the euclidian metric d, or in the metric ρ . $(\rho(x, y) = \max |x_i - y_i|)$

Maximum value theorem

Theorem (Maximum value theorem)

Let $f: X \to Y$ be continuous, where Y is a totally ordered set with the order topology. If X is compact, there are points $c, d \in X$ such that $f(c) \le f(x) \le f(d)$ for every $x \in X$.

The reals are uncountable

Theorem

Let X be a non-empty compact Hausdorff space. If every point of X is a limit point of X, then X is uncountable.

The reals are uncountable

Theorem

Let X be a non-empty compact Hausdorff space. If every point of X is a limit point of X, then X is uncountable.

Corollary

Every closed interval in \mathbb{R} is uncountable.