Formula Sheet EE2M11

MaybE_Tree and Blazico

2022-09-07

1 Part 1

Principal Argument	$-\pi < \operatorname{Arg}(z) \le \pi$	
Triangle	$\int z_1 \pm z_2 \le z_1 + z_2 $	
Inequality	$ z_1 \pm z_2 \ge z_1 - z_2 $	
Limits to Infinity	$\begin{cases} z_1 \pm z_2 \le z_1 + z_2 \\ z_1 \pm z_2 \ge z_1 - z_2 \end{cases}$ $\begin{cases} \lim_{z \to z_0} f(z) = \infty \iff \lim_{z \to z_0} \frac{1}{f(z)} = 0 \\ \lim_{z \to \infty} f(z) = L \iff \lim_{z \to 0} f\left(\frac{1}{z}\right) = L \end{cases}$	L must be finite, maybe??
	CR1 u v	
Cauchy- Riemann	$ \begin{array}{ccc} x & \frac{du}{dx} & \frac{dv}{dx} \\ y & \frac{du}{dy} & \frac{dv}{dy} \end{array} $	For $f(x,y) = u(x+y) + iv(x,y)$
	$y = \frac{du}{dy} = \frac{dv}{dy}$	
Harmonic Check	$\frac{\delta^2 u}{\delta x^2} + \frac{\delta^2 u}{\delta y^2} = 0 \implies \frac{\iint\limits_D f(z)}{\operatorname{Area}(D)} = f(z_c)$	For f(x,y) = u(x+y) + iv(x,y) Around a circular domain D with centerpointn z_c
Exponential	$e^z = e^x(\cos y + i\sin y)$	
Power	$z^w = e^{w \log(z)}$	
Log	$Log(z) = \ln z + i \arg(z)$	$-\pi < Arg(z) < \pi$
Trig Functions	$\begin{cases} \sin z = \frac{1}{2i} (e^{iz} - e^{-iz}) \\ \cos z = \frac{1}{2} (e^{iz} + e^{-iz}) \\ \sinh z = \frac{1}{2} (e^{z} - z^{-z}) = -i \sin(iz) \\ \cosh z = \frac{1}{2} (e^{z} + e^{-z}) = \cos(iz) \end{cases}$	Range of sin and cos is not longer ± 1 .
Zakarian	$\begin{cases} \sin z = \sin x \cosh y + i \cos x \sinh y \end{cases}$	
Identities	$\begin{cases} \cos z = \cos x \cosh y - i \sin x \sinh y \end{cases}$	
Highschool	$\int \sin(z+w) = \sin z \cos w + \cos z \sin w$	
Identities	$\cos(z+w) = \cos z \cos w - \sin z \sin w$	

Cauchy's First Formula $2\pi i f(z_0) = \int_C \frac{f(z)}{(z-z_0)}$ Cauchy's Second Formula $\frac{2\pi i}{n!} f^{[n]}(z_0) = \int_C \frac{f(z)}{(z-z_0)^{n+1}}$ Parama $\int_C f(z) dz = \int_a^b f(z(t)) z'(t) dt$ For n = 0, 1, 2, ...

2 Part 2

Taylor Theorem
$$\begin{cases} f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n \\ a_n = \frac{f^{[n]}(z_0)}{n!} \end{cases}$$
 Binomial
$$z^n + n = z_1 \cdot z_2 \cdot z_3 \cdot \dots$$

$$z_1 \text{ represents the } n \text{th root of } \sqrt[n]{z^n}$$