Shortest Paths in a Graph

Shortest paths with negative weights

Shortest-path problem. Given a digraph G = (V, E), with arbitrary edge lengths $C_{i,j}$, find shortest path from source node s to destination node t. (assume there exists a path from every node to t)

length of shortest $s \sim t$ path = 9 - 3 - 6 + 11 = 11

Shortest paths with negative weights: failed attempts

Dijkstra. May not produce shortest paths when edge lengths are negative.

Dijkstra selects the vertices in the order s, t, w, v

But shortest path from s to t is $s \rightarrow v \rightarrow w \rightarrow t$.

Reweighting. Adding a constant to every edge length does not necessarily make Dijkstra's algorithm produce shortest paths.

Adding 8 to each edge weight changes the shortest path from $s \rightarrow v \rightarrow w \rightarrow t$ to $s \rightarrow t$ which is not the shortest path in the actual graph.

Negative cycles

Def. A negative cycle is a directed cycle for which the sum of its edge lengths is negative.

In the given graph, the cycle marked in bold is a negative cycle and the sum of its edge lengths is -1.

Shortest paths and negative cycles

Lemma 1. If some path $s \sim v$ contains a negative cycle, then there does not exist a shortest path $s \sim v$.

Pf. If there exists such a cycle W, then can build a path $s \sim v$ of arbitrarily negative length by detouring around W as many times as desired.

Shortest paths and negative cycles

Lemma 2. If G has no negative cycles, then there exists a shortest path $s \sim v$ that is simple (no repetition of nodes) and has $\leq n-1$ edges.

Pf.

- Among all shortest paths $s \sim v$, consider one that uses the fewest edges.
- If that path *P* contains a directed cycle *W*, can remove the portion of *P* corresponding to *W* without increasing its length. ■

Shortest-paths and negative-cycle problems

Single-source shortest-paths problem. Given a weighed digraph G = (V, E) with edge lengths $C_{i,j}$ (but no negative cycles) and a source node s, find a shortest path $s \sim v$ for every node v.

Negative-cycle problem. Given a digraph G = (V, E) with edge lengths $C_{i,j}$, find a negative cycle (if one exists).

-3 -3 -4 -4

shortest-paths tree

negative cycle

Shortest paths with negative weights: dynamic programming

Def. $OPT(i, v) = \text{Length of shortest path } s \sim v \text{ (for any } v \in V) \text{ that uses } \leq i \text{ edges.}$

Goal. OPT(n-1, v) for each v.

by Lemma 2, if no negative cycles, there exists a shortest $s \sim v$ path that is simple

Case 1. Shortest path $s \sim v$ uses $\leq i - 1$ edges.

• OPT(i, v) = OPT(i - 1, v).

optimal substructure property

Case 2. Shortest path $s \sim v$ uses exactly *i* edges.

- if (w, v) is the last edge in such shortest path $s \sim v$, incur a cost of C_{wv} .
- Then, select the best path $s \sim w$ using $\leq i 1$ edges.

Bellman equation.

$$OPT(i, v) = \min \left\{ OPT(i-1, v), \min_{(w,v) \in E} \{ OPT(i-1, w) + C_{wv} \} \right\} \quad if \ i > 0$$

Shortest paths with negative weights: Bellman-Ford Algorithm

SHORTEST-PATHS(V, E, C, s)

 $M[0,s] \leftarrow 0.$

FOREACH node $v \in V$:

 $M[0, v] \leftarrow \infty$.

 $O(|V|^3)$

For i = 1 to n - 1

FOREACH node $v \in V$:

$$M[i, v] \leftarrow M[i-1, v].$$

FOREACH edge $(w, v) \in E$:

$$M[i, v] \leftarrow \min \{ M[i, v], M[i-1, w] + C_{wv} \}.$$

$$OPT(i, v) = \begin{cases} 0 & i = 0, v = s \\ \infty & i = 0, v \neq s \\ \min \left\{ OPT(i - 1, v), \min_{(w, v) \in E} \{ OPT(i - 1, w) + C_{wv} \} \right\} & \text{if } i > 0 \end{cases}$$

Example

	a	b	c	d	e	t
0	0	8	∞	∞	∞	∞
1	0	-4	∞	∞	∞	-3
2	0	-4	∞	-5	-6	-3
3	0	-4	-9	-5	-6	-4
4	0	-4	-9	-5	-6	-6
5	0	-4	-9	-5	-6	-6

$$OPT(i, v) = \begin{cases} 0 & i = 0, v = s \\ \infty & i = 0, v \neq s \\ \min \left\{ OPT(i - 1, v), \min_{(w, v) \in E} \{ OPT(i - 1, w) + C_{wv} \} \right\} & \text{if } i > 0 \end{cases}$$

Bellman-Ford Algorithm using Relax() operation

```
Bellman-Ford (G, w, s)
   INITIALIZE-SINGLE-SOURCE (G, s)
   for i = 1 to |G.V| - 1
       for each edge (u, v) \in G.E
           Relax(u, v, w)
   for each edge (u, v) \in G.E
       if v.d > u.d + w(u, v)
           return FALSE
   return TRUE
```

```
Alg.: INITIALIZE(G, s)

1. for each v \in V

2. do d[v] := \infty

3. \pi[v] := NIL

4. d[s] := 0
```

```
Relax(u, v, w)

if d[v] > d[u] + w(u, v) then

d[v] := d[u] + w(u, v);

\pi[v] := u

fi
```

Example

