Math 129 Problem Set 3

Lev Kruglyak

February 19, 2022

I did not collaborate with anyone for this problem set

Problem 2.19. Let R be a commutative ring and fix elements $a_1, a_2, \ldots, a_n \in R$. Prove that

$$\begin{vmatrix} 1 & a_1 & \cdots & a_1^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & \cdots & a_n^{n-1} \end{vmatrix} = \prod_{1 \le r < s \le n} (a_s - a_r).$$

We'll proceed by induction. Clearly if n = 1 we get the desired result. Now suppose for some n that

$$\begin{vmatrix} 1 & a_1 & \cdots & a_1^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & a_n & \cdots & a_n^{n-1} \end{vmatrix} = \prod_{1 \le r < s \le n} (a_s - a_r).$$

Note that for any polynomial $f(t) = t^n + c_{n-1}t^{n-1} + \cdots + c_1t + c_0$, we have the equality of determinants:

$$\begin{vmatrix} 1 & a_1 & \cdots & a_1^{n-1} & a_1^n \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & a_n & \cdots & a_n^{n-1} & a_n^n \\ 1 & a_{n+1} & \cdots & a_{n+1}^{n-1} & a_{n+1}^n \end{vmatrix} = \begin{vmatrix} 1 & a_1 & \cdots & a_1^{n-1} & f(a_1) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & a_n & \cdots & a_n^{n-1} & f(a_n) \\ 1 & a_{n+1} & \cdots & a_{n+1}^{n-1} & f(a_{n+1}) \end{vmatrix}.$$

This can be seen by simply performing repeated column operations; to the last column of the matrix add c_0 times the first column, c_1 times the second column, etc. Set $f(t) = \prod_{i=1}^{n} (t - a_i)$. Then

$$\begin{vmatrix} 1 & \cdots & a_1^{n-1} & a_1^n \\ \vdots & \ddots & \vdots & \vdots \\ 1 & \cdots & a_n^{n-1} & a_n^n \\ 1 & \cdots & a_{n+1}^{n-1} & a_{n+1}^n \end{vmatrix} = \begin{vmatrix} 1 & \cdots & a_1^{n-1} & f(a_1) \\ \vdots & \ddots & \vdots & \vdots \\ 1 & \cdots & a_n^{n-1} & f(a_n) \\ 1 & \cdots & a_{n+1}^{n-1} & a_{n+1}^n \end{vmatrix} = \begin{vmatrix} 1 & \cdots & a_1^{n-1} & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 1 & \cdots & a_n^{n-1} & 0 \\ 1 & \cdots & a_{n+1}^{n-1} & f(a_{n+1}) \end{vmatrix}$$
$$= f(a_{n+1}) \left(\prod_{1 \le r < s \le n} (a_s - a_r) \right) = \prod_{1 \le r < s \le n+1} (a_s - a_r).$$

This completes the inductive step.

Problem 2.21. Let α be an algebraic integer and let f be a monic polynomial over \mathbb{Z} (not necessarily irreducible) such that $f(\alpha) = 0$. Show that $\operatorname{disc}(\alpha)$ divides $N^{\mathbb{Q}[\alpha]}f'(\alpha)$.

Since f(x) is a monic polynomial vanishing at α , it must be a polynomial multiple of the minimal irreducible polynomial for α , $m_{\alpha}(x)$. Say $f(x) = m_{\alpha}(x)g(x)$ for some $g(x) \in \mathbb{Z}[x]$. Then by Theorem 2.8, $\operatorname{disc}(\alpha) = \pm N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]} m'_{\alpha}(\alpha)$. But

$$N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]} f'(\alpha) = N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]} m'_{\alpha}(\alpha) g(\alpha) + N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]} m_{\alpha}(\alpha) g'(\alpha)$$
$$= \pm g(\alpha) \operatorname{disc}(\alpha)$$

Thus $\operatorname{disc}(\alpha) \mid \mathcal{N}_{\mathbb{Q}}^{\mathbb{Q}[\alpha]} f'(\alpha)$.

Problem 2.22. Let K be a number field of degree n over \mathbb{Q} and fix algebraic integers $\alpha_1, \ldots, \alpha_n \in K$. Prove that $\operatorname{disc}(\alpha_1, \ldots, \alpha_n) \equiv 0$ or $1 \mod 4$.

We know that $d = \operatorname{disc}(\alpha_1, \ldots, \alpha_n)$ is in \mathbb{Z} ; we will first show that $d \equiv 0$ or 1 mod 4. Letting $\alpha_1, \ldots, \alpha_n$ denote the embeddings of K in \mathbb{C} , we know that d is the square of the determinant $|\sigma_i(\alpha_j)|$. This determinant is a sum of n! terms, one for each permutation of $\{1, \ldots, n\}$. Let P denote the sum of the terms corresponding to even permutations, and let N denote the sum of the terms (without negative signs) corresponding to odd permutations. Thus $d = (P - N)^2 = (P + N)^2 - 4PN$.

We'll prove that $P+N \in \mathbb{Z}$ and $PN \in \mathbb{Z}$. First note that P+N and PN are algebraic integers, being sums and products of algebraic integers. Pick some normal extension L of \mathbb{Q} containing K, and let σ be any automorphism of L. Then for any complex embedding σ_i , $\sigma\sigma_i$ is also a complex embedding, so $\{\sigma\sigma_1,\ldots,\sigma\sigma_n\}$ is a permutation of $\{\sigma_1,\ldots,\sigma_n\}$. Let $\pi\in S_n$ be the permutation such that $\sigma\sigma_i=\sigma_{\pi(i)}$.

If π is an even permutation, pick any even permutation $\tau \in S_n$ so we have $\sigma(\sigma_{\tau(1)}(\alpha_1) + \cdots + \sigma_{\tau(n)}(\alpha_n)) = \sigma_{\pi\tau(1)}(\alpha_1) + \cdots + \sigma_{\pi\tau(n)}(\alpha_n)$. Since $\pi\tau$ is even, every term on the left is sent to a term on the right so $\sigma(P) = P$ and $\sigma(N) = N$. Thus $\sigma(P+N) = P+N$ and $\sigma(PN) = PN$. Similarly if π is an odd permutation, we get $\sigma(P) = N$ and $\sigma(N) = P$. Since L is a normal extension, and P+N and PN are preserved by every automorphism of L, P+N, $PN \in \mathbb{Q}$ and so P+N, $PN \in \mathbb{Z}$ since they are algebraic integers.

Finally $d = (P+N)^2 - 4PN \equiv (P+N)^2 \mod 4$ so $d \equiv 0$ or $1 \mod 4$.

Problem 2.23. Just as with the trace and norm, we can define the relative discriminant disc_K^L of an n-tuple, for any pair of number fields $K \subset L$, [L:K] = n.

- (a) Generalize Theorems 2.6-2.8 and the corollary to Theorem 2.6
- (b) Let $K \subset L \subset M$ be number fields; [L:K] = n, [M:L] = m and let $\{\alpha_1, \ldots, \alpha_n\}$ and $\{\beta_1, \ldots, \beta_m\}$ be bases for L over K and M over L respectively. Establish the formula:

$$\operatorname{disc}_{K}^{M}(\alpha_{1}\beta_{1},\ldots,\alpha_{n}\beta_{m}) = (\operatorname{disc}_{K}^{L}(\alpha_{1},\ldots,\alpha_{n}))^{m} \operatorname{N}_{M}^{L} \operatorname{disc}_{L}^{M}(\beta_{1},\ldots,\beta_{m}).$$

- (c) Let K and L be number fields satisfying the conditions to Corollary 1, Theorem 12. Show that $\operatorname{disc}(T) = \operatorname{disc}(R)^{[L:Q]} \cdot \operatorname{disc}(S)^{[K:Q]}$.
- (a) The proofs of all of the theorems are basically the same, just replacing trace and nrm with relative traces. For any pair of number fields $K \subset L$ with [L:K] = n:

Theorem 2.6.

$$\operatorname{disc}_K^L(\alpha_1,\ldots,\alpha_n) = |T_K^L(\alpha_i\alpha_j)|.$$

Corollary. $\operatorname{disc}_K^L(\alpha_1,\ldots,\alpha_n) \in K$; and if all of the α_i are algebraic integers then $\operatorname{disc}_K^L(\alpha_1,\ldots,\alpha_n) \in \mathbb{A} \cap K$.

Theorem 2.7. disc $_K^L(\alpha_1,\ldots,\alpha_n)=0$ if and only if α_1,\ldots,α_n are linearly dependent over K.

Theorem 2.8. Suppose $L = K[\alpha]$, and let $\alpha_1, \ldots, \alpha_n$ be the conjugates of α over K. Then

$$\operatorname{disc}_{K}^{L}(1, \alpha, \dots, \alpha^{n-1}) = \prod_{1 \le r < s \le n} (a_{r} - a_{s})^{2} = \pm \operatorname{N}_{K}^{L}(f'(\alpha)).$$

(b)

(c)

Problem 2.28. Let $f(x) = x^3 + ax + b$, a and $b \in \mathbb{Z}$, and assume f is irreducible over \mathbb{Q} . Let α be a root of f.

- (a) Show that $f'(\alpha) = -(2a\alpha + 3b)/\alpha$.
- (b) Show that $2a\alpha + 3b$ is a root of $\left(\frac{x-3b}{2a}\right)^3 + a\left(\frac{x-3b}{2a}\right) + b$. Use this to find $N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(2a\alpha + 3b)$.
- (c) Show that $disc(\alpha) = -(4a^3 + 27b^2)$.
- (d) Suppose $\alpha^3 = \alpha + 1$. Prove that $\{1, \alpha, \alpha^2\}$ is an integral basis for $\mathbb{A} \cap \mathbb{Q}[\alpha]$. Do the same if $\alpha^3 + \alpha = 1$.
- (a) Note that $f'(x) = 3x^2 + a$ and $\alpha^3 + a\alpha + b = 0$ so $\alpha^2 = \frac{-a\alpha b}{\alpha}$. Thus $f'(\alpha) = 3\left(\frac{-a\alpha b}{\alpha}\right) + a = 0$

 $-(2a\alpha + 3b)/\alpha$ so we are done.

- (b) Since plugging in $x=2a\alpha+3b$ to $\frac{x-3b}{2b}$ gives α , clearly $2a\alpha+3b$ is a root of $\left(\frac{x-3b}{2a}\right)^3+a\left(\frac{x-3b}{2a}\right)+b$. This polynomial is irreducible because it is simply a linear substitution of an irreducible polynomial. Then by Theorem 2.4, the norm of $2a\alpha+3b$ is simply the negative ratio of the x^0 and x^3 coefficients, so $N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(2a\alpha+3b)=27b^3+4a^3b$.
- (c) Note that by Theorem 2.8, $\operatorname{disc}(\alpha) = \pm N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]} f'(\alpha)$ where f is the minimal polynomial for α . By (a), $\operatorname{disc}(\alpha) = -N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]} (2a\alpha + 3b)/\alpha = -N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]} (-1)N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]} (2a\alpha + 3b)/N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(\alpha)$. $N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(-1) = -1$ and $N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(\alpha) = -b$ so by (b), $\operatorname{disc}(\alpha) = -(27b^3 + 4a^3b)/b = -27b^2 4a^3$.
- (d) First we'll prove a convenient lemma relating the discriminant to an integral basis.

Claim. Let α be an algebraic integer of degree d. Then $\{1, \alpha, \dots, \alpha^{d-1}\}$ is an integral basis for $\mathbb{Q}[\alpha]$ if $\operatorname{disc}(\alpha)$ is squarefree.

Proof. Let $\{\beta_1, \ldots, \beta_{d-1}\}$ be an integral basis for $\mathbb{Q}[\alpha]$. Then there is some matrix $A \in M_{d \times d}(\mathbb{Z})$ such that

$$\operatorname{disc}(\alpha) = \operatorname{disc}(1, \alpha, \dots, \alpha^{d-1}) = (\det A)^2 \operatorname{disc}(\beta_1, \dots, \beta_{d-1}).$$

However since $\operatorname{disc}(\alpha)$ is squarefree, $\det A = \pm 1$ therefore $1, \alpha, \dots, \alpha^{d-1}$ is an integral basis for $\mathbb{Q}[\alpha]$.

If $\alpha^3 = \alpha + 1$ then α has minimal polynomial $x^3 - x - 1$, which is irreducible by the rational root theorem. Then by (c) $\operatorname{disc}(\alpha) = -23$ which is a squarefree integer so $\{1, \alpha, \alpha^2\}$ is an integral basis for $\mathbb{Q}[\alpha]$. If $\alpha^3 + \alpha = 1$ then α has minimal polynomial $x^3 + x - 1$ which is again irreducible by the rational root theorem. Then $\operatorname{disc}(\alpha) = -31$ which is squarefree integer so $\{1, \alpha, \alpha^2\}$ is an integral basis for $\mathbb{Q}[\alpha]$.

Problem 2.33. Let $\omega = e^{2\pi i/m}$, $m \ge 3$. We know that $N(\omega) = \pm 1$ since ω is a unit. Show that the + sign holds.

Note that since m > 2, ± 1 are not conjugates of ω . Also the product of ω^i and $\overline{\omega^i}$ is 1 because $\overline{\omega^i} = \omega^{m-i}$. Thus $N(\omega) = 1$ because it is the product of all of the conjugates of ω .

Problem 2.34. Let $\omega = e^{2\pi i/m}$ for m a positive integer.

- (a) Show that $1 + \omega + \omega^2 + \cdots + \omega^{k-1}$ is a unit in $\mathbb{Z}[\omega]$ if k is relatively prime to m.
- (b) Let $m=p^r, p$ a prime. Show that $p=u(1-\omega)^n$ where $n=\varphi(p^r)$ and u is a unit in $\mathbb{Z}[\omega]$.
- (a) Suppose k is relatively prime to m. Then k has a modular inverse modulo m so there is some ℓ such that $k\ell \equiv 1 \mod m$ and so $\omega^{k\ell} = \omega$. This gives us the element of $\mathbb{Z}[\omega]$,

$$\frac{1-\omega}{1-\omega^k} = \frac{1-\omega^{k\ell}}{1-\omega^k} = 1+\omega^k+\cdots+\omega^{k(\ell-1)}.$$

This is actually an inverse to $1 + \omega + \omega^2 + \cdots + \omega^{k-1}$, since

$$\frac{1-\omega}{1-\omega^k}(1+\omega+\omega^2+\cdots+\omega^{k-1}) = \frac{1-\omega}{1-\omega^k}\frac{1-\omega^k}{1-\omega} = 1.$$

So $1 + \omega + \omega^2 + \dots + \omega^{k-1} \in \mathbb{Z}[\omega]^{\times}$.

(b) Recall that Lemma 2 of Theorem 2.10 states that

$$p = \prod_{p \nmid k}^{p^r} (1 - \omega^k).$$

(a) implies that $(1 - \omega^k) = u_k(1 - \omega)$, for $u_k = 1 + \omega + \omega^2 + \cdots + \omega^{k-1} \in \mathbb{Z}[\omega]^{\times}$. Since there are $\varphi(p^r)$ terms in the product, it follows that $p = u(1 - \omega)^{\varphi(p^r)}$ where $u = \prod_{p \nmid k}^{p^r} u_k$.

Problem 2.35. Set $\theta = \omega + \omega^{-1}$ for $\omega = e^{2\pi i/m}$, $m \ge 3$.

- (a) Show that ω is a root of a polynomial of degree 2 over $\mathbb{Q}[\theta]$.
- (b) Show that $\mathbb{Q}[\theta] = \mathbb{R} \cap \mathbb{Q}[\omega]$ and that $\mathbb{Q}[\omega]$ has degree 2 over this field.
- (c) Show that $\mathbb{Q}[\theta]$ is the fixed field of the automorphism σ of $\mathbb{Q}[\omega]$ given by $\sigma(\omega) = \omega^{-1}$. Note that σ is just complex conjugation.
- (a) Clearly ω is a root of $x^2 \theta x + 1 \in \mathbb{Q}[\theta, x]$ since $\omega^2 \theta \omega + 1 = \omega^2 \omega^2 1 + 1 = 0$.
- (b) Since $\omega \notin \mathbb{R}$ yet $\theta \in \mathbb{R}$, $\mathbb{Q}[\theta] \subsetneq \mathbb{Q}[\omega]$. This combined with (a) means that $[\mathbb{Q}[\omega] : \mathbb{Q}[\theta]] = 2$. So we have $\mathbb{Q}[\theta] \subset \mathbb{R} \cap \mathbb{Q}[\omega] \subsetneq \mathbb{Q}[\omega]$. By the degree tower property,

$$[\mathbb{R} \cap \mathbb{Q}[\omega] : \mathbb{Q}[\theta]] = \frac{[\mathbb{Q}[\omega] : \mathbb{Q}[\theta]]}{[\mathbb{Q}[\omega] : \mathbb{R} \cap \mathbb{Q}[\omega]]} < 2$$

yet $[\mathbb{Q}[\omega] : \mathbb{Q}[\theta]] = 2$ so $[\mathbb{R} \cap \mathbb{Q}[\omega] : \mathbb{Q}[\theta]] = 1$ and thus $\mathbb{Q}[\theta] = \mathbb{R} \cap \mathbb{Q}[\omega]$. This also implies that $[\mathbb{Q}[\omega] : \mathbb{R} \cap \mathbb{Q}[\omega]] = 2$.

(c) Since σ is just complex conjugation, the fixed field of σ in $\mathbb{Q}[\omega]$ is $\mathbb{R} \cap \mathbb{Q}[\omega] = \mathbb{Q}[\theta]$, since \mathbb{R} is the fixed field of σ in \mathbb{C} .

5