

SEQUENCE LISTING

<110> Hattori, Fumiyuki Sugimura, Keijiro Furuya, Mayumi <120>

Therapeutic Methods and Agents for Diseases Associated with Decreaed Expression of AOP-1 Gene or AOP-1

<130> 58777.000012

<140> 10/642,272 2003-08-18 <141>

<150> PCT/JP02/01358

<151> 2001-02-18

<150> JP 41003/2001 2001-02-16 <151>

<160> 32

<170> PatentIn version 3.3

<210>

<211> 1542

<212> DNA

<213> Homo sapiens

<400>

ctgaagatgg cggctgctgt aggacggttg ctccgagcgt cggttgcccg acatgtgagt 60 gccattcctt ggggcatttc tgccactgca gccctcaggc ctgctgcatg tggaagaacg 120 agcttgacaa atttattgtg ttctggttcc agtcaagcaa aattattcag caccagttcc 180 tcatgccatg cacctgctgt cacccagcat gcaccctatt ttaagggtac agccgttgtc 240 300 aatggagagt tcaaagacct aagccttgat gactttaagg ggaaatattt ggtgcttttc 360 ttctatcctt tggatttcac ctttgtgtgt cctacagaaa ttgttgcttt tagtgacaaa gctaacgaat ttcacgatgt gaactgtgaa gttgtcgcag tctcagtgga ttcccacttt 420 480 agccatcttg cctggataaa tacaccaaga aagaatggtg gtttgggcca catgaacatc 540 gCactcttgt cagacttaac taagcagatt tcccgagact acggtgtgct gttagaaggt tctggtcttg cactaagagg tctcttcata attgacccca atggagtcat caagcatttg 600 agcgtcaacg atctcccagt gggccgaagc gtggaagaaa ccctccgctt ggtgaaggcg 660 ttccagtatg tagaaacaca tggagaagtc tgcccagcga actggacacc ggattctcct 720 acgatcaagc caagtccagc tgcttccaaa gagtactttc agaaggtaaa tcagtagatc 780 840 acccatgtgt atctgcacct tctcaactga gagaagaacc acagttgaaa cctgctttta tcattttcaa gatggttatt tgtagaaggc aaggaaccaa ttatgcttgt attcataagt 900 attactctaa atgttttgtt tttgtaattc tggctaggac cttttaaaca tggttagttg 960 ctagtacagg aatcgtttat tggtaacatc ttggtggctg gctagctagt ttctacagaa 1020

cataatttgc	ctctatagaa	ggctattctt	agatcatgtc	tcaatggaaa	cactcttctt	1080	
tcttagcctt	acttgaatct	tgcctataat	aaagtagagc	aacacacatt	gaaagcttct	1140	
gatcaacggt	cctgaaattt	tcatcttgaa	tgtctttgta	ttaaactgaa	ttttctttta	1200	
agctaacaaa (gatcataatt	ttcaatgatt	agccgtgtaa	ctcctgcaat	gaatgtttat	1260	
gtgattgaag	caaatgtgaa	tcgtattatt	ttaaaaagtg	gcagagtgac	ttaactgatc	1320	
atgcatgatc	cctcatccct	gaaattgagt	ttatgtagtc	attttactta	ttttattcat	1380	
tagctaactt	tgtctatgta	tatttctaga	tattgattag	tgtaatcgat	tataaaggat	1440	
atttatcaaa ·	tccagggatt	gcattttgaa	attataatta	ttttctttgc	tgaagtattc	1500	
attgtaaaac	atacaaataa	catatttaaa	caaaaaaaa	aa		1542	
	us norvegio	cus					
<400> 2 gctatcgtgg	ctcttgcgtt	ctctgaagat	ggcggcagct	gcgggaaggt	tgctctggtc	60	
ctcggtggct	cggcctgcga	gcactatttt	ccggagtatt	tctgcctcaa	cagttcttag	120	
gcctgttgct	tctagaagaa	cctgcttgac	agacatgctg	tggtctgcct	gtccccaagc	180	
aaagtttgcc ·	tttagcacca	gttcttcatt	ccacacccct	gctgtcaccc	agcatgcgcc	240	
ccattttaaa	ggtactgctg	ttgtcaatgg	agagttcaaa	gagctgagtc	tcgacgactt	300	
taaggggaaa ·	tacttggtgc	ttttcttcta	ccctttggat	ttcacatttg	tgtgtcctac	360-	
agaaattgtt	gctttcagtg	acaaagccaa	tgagtttcat	gacgtaaact	gtgaagtagt	420	
tgcggtttct	gtggattccc	acttcagtca	tcttgcctgg	atcaacacgc	caagaaagaa	480	
tggtggtttg	ggccacatga	acatcacgct	gttgtcggac	ttaactaagc	agatatcccg	540	
agactacgga (gtactgttgg	aaagtgctgg	cattgcgctc	agaggtctct	tcattattga	600	
ccctaatggt	gtcatcaagc	acctgagtgt	caatgacctt	ccggtgggcc	gaagtgtgga	660	
agaaccactc	cgtttggtaa	aggcgttcca	gtttgtggag	acccatggag	aagtctgccc	720	
acccaactgg a	acaccagagt	cccctacgat	caagccaagt	ccaacagctt	caaaagagta	780	
ctttgagaag (gtccatcaat	aataggtcat	cctatgtctg	ctggtttacc	tgaagcttct	840	
catgccaaaa	gagagcccca	gctggaatcc	tgaagattat	ttatagaatg	gcaaaaacct	900	
caccatgctt	gtgtttataa	gtactgctcc	atgggctttg	taattttaag	acaggttcag	960	
gttaaaggtg g	gccagctcct	tccatagctg	tccttactag	ggacttcttg	atggctacca	1020	
attctctaca a	agtgcttggt	ccccatttct	tagatcatgt	cttcagaggg	ttaagatttc	1080	
ttagcctgcc	ctgaagcttg	gtctacagtg	aagtagcaca	tagcaccagt	acttagtgaa	1140	
atgaagtagc a	acatagcgcc	agcacttagt	gaaatgaagt Page		gccagcactt	1200	

2010222001 toto210220 0100102221 theetetta 2111110102	1260
agtgaaagct tctgatcaag gtcctgaaat ttcctcttgg atttttgtta attatgctga	
atttcccatt attttttagt gtagtcatta actcacagtg tccttgtgtg ttctaaggta	1320
ttgatgagtt ataatcatga aggactatgt ttctaaaaca ctatgtcatt ttcttttctt	1380
caagtgctgg atgtaaagaa taaaaataaa cattaagata aaaaaaaaaa	1433
<210> 3 <211> 1382 <212> DNA <213> Mus sp.	
<400> 3 ctactcctcg gtatctccgc ctatcgtgcc tcttgcgtgc tctgaagatg gcggcagctg	60
cgggaaggtt gctctggtcc tcggttgctc gtcatgcaag tgctatttcc cggagtattt	120
ctgcctcaac agttcttagg cctgttgctt ctagaagaac ctgtttgaca gacatactgt	180
ggtctgcctc tgcccaagga aagtcagcct ttagcaccag ttcctctttc cacaccctg	240
ctgtcaccca gcacgcgccc tattttaaag gtactgctgt tgtcaatgga gagttcaaag	300
	360
agctgagtct cgacgacttt aagggaaaat acttggtgct tttcttctac cctttggatt	420
tcacatttgt gtgtcctaca gaaattgttg ctttcagtga caaagccaat gaatttcatg	
atgtaaactg tgaagtagtt gcagtttcag tggattccca cttcagtcat cttgcctgga	480
tcaacacacc aagaaagaat ggtggtttgg gccacatgaa catcacactg ttgtcggata	540
taactaagca gatatcccga gactacggag tgctgttgga aagtgctggc attgcactca	600
gaggtctctt cattattgac cctaatggtg tcgtcaagca cctgagtgtc aacgaccttc	660
cggtgggccg cagtgtggaa gaaacactcc gtttggtaaa ggcgttccag tttgtagaga	720
cccatggaga agtctgccca gccaactgga caccagagtc ccctacgatc aagccaagtc	780
caacagcttc caaagagtac tttgagaagg tccatcagta ggccatccta tgtctgcaat	840
tacctgaagc ttttcaggcc aaaaaagagc cccagctgga atccttccaa tgccttgaag	900
attatttata gaatggcaaa acctcattat gtttgtgttt ataagtactg ctccacaggc	960
tttgtaattc taagacaggt tcaggctctc taaaggtggc tagctgcttc catagctgcc	1020
cttactaggg acttcttggt ggctaaccaa ttctccccga gtgctttgcc cccattctt	1080
ggatcatgtc cttagagggt aagcattctt tcccttagcc tgccctgaac cttggtctac	1140
agtgaagtag cacatagtgc cagtacttgg tgaaatgaag tagcacatag caccagcact	1200
taatggaagc ttctgatcaa ggtcctaaaa tttcctcttg aatttttgtg aattatgctg	1260
aatttccctt ttttttttt taaacagtgt ccttgtgtgt tctgaggtat tgaagaggta	1320
taatcatgaa ggactatgtc taatccataa gtcattttct tcaagagctg gatatataga	1380
at	1382

<210> <211> 256 <212> PRT Homo sapiens <400> Met Ala Ala Ala Val Gly Arg Leu Leu Arg Ala Ser Val Ala Arg His 1 10 15 Val Ser Ala Ile Pro Trp Gly Ile Ser Ala Thr Ala Ala Leu Arg Pro 20 25 30 Ala Ala Cys Gly Arg Thr Ser Leu Thr Asn Leu Leu Cys Ser Gly Ser 35 40 45 Ser Gln Ala Lys Leu Phe Ser Thr Ser Ser Ser Cys His Ala Pro Ala 50 55 60 Val Thr Gln His Ala Pro Tyr Phe Lys Gly Thr Ala Val Val Asn Gly 65 70 75 80 Glu Phe Lys Asp Leu Ser Leu Asp Asp Phe Lys Gly Lys Tyr Leu Val 85 90 95 Leu Phe Phe Tyr Pro Leu Asp Phe Thr Phe Val Cys Pro Thr Glu Ile 100 105 110 Val Ala Phe Ser Asp Lys Ala Asn Glu Phe His Asp Val Asn Cys Glu 115 120 125 Val Val Ala Val Ser Val Asp Ser His Phe Ser His Leu Ala Trp Ile 130 140 Asn Thr Pro Arg Lys Asn Gly Gly Leu Gly His Met Asn Ile Ala Leu 145 150 155 160 Leu Ser Asp Leu Thr Lys Gln Ile Ser Arg Asp Tyr Gly Val Leu Leu 165 170 175 Glu Gly Ser Gly Leu Ala Leu Arg Gly Leu Phe Ile Ile Asp Pro Asn 180 185 190 Gly Val Ile Lys His Leu Ser Val Asn Asp Leu Pro Val Gly Arg Ser 195 200 205

Val Glu Glu Thr Leu Arg Leu Val Lys Ala Phe Gln Tyr Val Glu Thr 210 215 220 His Gly Glu Val Cys Pro Ala Asn Trp Thr Pro Asp Ser Pro Thr Ile 225 230 235 240

Lys Pro Ser Pro Ala Ala Ser Lys Glu Tyr Phe Gln Lys Val Asn Gln 245 250 255

<210>

5 257 <211>

<212> **PRT**

Rattus norvegicus

<400>

Met Ala Ala Ala Gly Arg Leu Leu Trp Ser Ser Val Ala Arg Pro 1 10 15

Ala Ser Thr Ile Phe Arg Ser Ile Ser Ala Ser Thr Val Leu Arg Pro 20 25 30

Val Ala Ser Arg Arg Thr Cys Leu Thr Asp Met Leu Trp Ser Ala Cys 35 40 45

Pro Gln Ala Lys Phe Ala Phe Ser Thr Ser Ser Phe His Thr Pro 50 55 60

Ala Val Thr Gln His Ala Pro His Phe Lys Gly Thr Ala Val Val Asn 65 70 75 80

Gly Glu Phe Lys Glu Leu Ser Leu Asp Asp Phe Lys Gly Lys Tyr Leu 85 90 95

Val Leu Phe Phe Tyr Pro Leu Asp Phe Thr Phe Val Cys Pro Thr Glu

Ile Val Ala Phe Ser Asp Lys Ala Asn Glu Phe His Asp Val Asn Cys 115 120 125

Glu Val Val Ala Val Ser Val Asp Ser His Phe Ser His Leu Ala Trp 130 140

Ile Asn Thr Pro Arg Lys Asn Gly Gly Leu Gly His Met Asn Ile Thr 145 150 155 160 160

Leu Leu Ser Asp Leu Thr Lys Gln Ile Ser Arg Asp Tyr Gly Val Leu 165 170 175

Leu Glu Ser Ala Gly Ile Ala Leu Arg Gly Leu Phe Ile Ile Asp Pro 180 185 190

Asn Gly Val Ile Lys His Leu Ser Val Asn Asp Leu Pro Val Gly Arg Page 5

Ser Val Glu Glu Pro Leu Arg Leu Val Lys Ala Phe Gln Phe Val Glu 210 215 220

Thr His Gly Glu Val Cys Pro Pro Asn Trp Thr Pro Glu Ser Pro Thr 225 230 235 240

Ile Lys Pro Ser Pro Thr Ala Ser Lys Glu Tyr Phe Glu Lys Val His 245 250 255

Gln

<210>

6 257 <211>

PRT <212> <213> Mus sp.

<400>

Met Ala Ala Ala Gly Arg Leu Leu Trp Ser Ser Val Ala Arg His 10 15

Ala Ser Ala Ile Ser Arg Ser Ile Ser Ala Ser Thr Val Leu Arg Pro 20 25 30

Val Ala Ser Arg Arg Thr Cys Leu Thr Asp Ile Leu Trp Ser Ala Ser 35 40 45

Ala Gln Gly Lys Ser Ala Phe Ser Thr Ser Ser Phe His Thr Pro 50 60

Ala Val Thr Gln His Ala Pro Tyr Phe Lys Gly Thr Ala Val Val Asn 65 70 75 80

Gly Glu Phe Lys Glu Leu Ser Leu Asp Asp Phe Lys Gly Lys Tyr Leu 85 90 95

Val Leu Phe Phe Tyr Pro Leu Asp Phe Thr Phe Val Cys Pro Thr Glu

Ile Val Ala Phe Ser Asp Lys Ala Asn Glu Phe His Asp Val Asn Cys
115 120 125

Glu Val Val Ala Val Ser Val Asp Ser His Phe Ser His Leu Ala Trp 130 135 140

Ile Asn Thr Pro Arg Lys Asn Gly Gly Leu Gly His Met Asn Ile Thr 145 150 155 160 Page 6

Leu Leu Ser Asp Ile Thr Lys Gln Ile Ser Arg Asp Tyr Gly Val Leu 165 170 175 Leu Glu Ser Ala Gly Ile Ala Leu Arg Gly Leu Phe Ile Ile Asp Pro 180 185 190 Asn Gly Val Val Lys His Leu Ser Val Asn Asp Leu Pro Val Gly Arg Ser Val Glu Glu Thr Leu Arg Leu Val Lys Ala Phe Gln Phe Val Glu 210 220 Thr His Gly Glu Val Cys Pro Ala Asn Trp Thr Pro Glu Ser Pro Thr 225 230 235 240 Ile Lys Pro Ser Pro Thr Ala Ser Lys Glu Tyr Phe Glu Lys Val His Gln <210> 21 <211> <212> DNA <213> Artificial Sequence <220> <223> Forward Primer <400> 7 tgcagtttca gtggattccc a 21 <210> <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer <400> 8 ttcatgtggc ccaaacca 18 <210> 28 <211> <212> DNA <213> Artificial Sequence <220> <223> Probe <400> 9 28 tcttgcctgg atcaacacac caagaaag

Page 7

<210> <211> <212> <213>	DNA Artificial Sequence	
<220> <223>	Forward Primer	
<400> ccctct	10 gctt gctgatgtga ct	22
	11 20 DNA Artificial Sequence	
<220> <223>	Reverse Primer	
<400> cctgta	11 agcg atgccctcat	20
<212>	29	
<220> <223>	Probe	
<400> agcttg	12 tccc agaattacgg cgtgttgaa	29
	13 19 DNA Artificial Sequence	
<220> <223>	Forward Primer	
	13 gaag agaggcatg	19
<210> <211> <212> <213>	14 18 DNA Artificial Sequence	
<220> <223>	Reverse Primer	
	14 ccgt cctttcca	18
<210>	15	

<212> <213>	DNA Artificial Sequence	
<220> <223>	Probe	
<400> tggaga	15 cctg ggcaatgtgg ctg	23
<210> <211> <212> <213>	17	
<220> <223>	Forward Primer	
<400> acgggt	16 gctc agcctcc	17
<210> <211> <212> <213>	18	
<220> <223>	Reverse Primer	
<400> aggctt	17 gtgc cctgcttc	18
<210> <211> <212> <213>		
<220> <223>	Probe	
<400> cagcct	18 gcac tgaggagatc cctca	25
<210> <211> <212> <213>	19 28 DNA Artificial Sequence	
<220> <223>	Forward Primer	
<400> aaccgc	19 ggtc gtggctcttg cgttctct	28
<210><211><211><212><213>	20 30 DNA Artificial Sequence	
<220>		

Page 9

<223>	Reverse Primer	
	20 gctt attgatggac cttctcaaag	30
<210> <211> <212> <213>	21 20 DNA Artificial Sequence	
<220> <223>	Forward Primer	
	21 attg ccgcctgctc	20
<210> <211> <212> <213>	20	
<220> <223>	Reverse Primer	
	22 gtgg aataaggcct	20
<210> <211> <212> <213>	25	
<220> <223>	Probe	
<400> aatcac	23 gacc cactgcaagg aacca	25
<210> <211> <212> <213>		
<400> tgcacca	24 acca actgcttag	19
<210> <211> <212> <213>	25 19 DNA Artificial Sequence	
<220> <223>	Reverse Primer	
<400> ggatgca	25 aggg atgatgttc	19
<210>	26	

<212>	23 DNA Artificia	l Sequence	!				
<220> <223> F	Probe						
	26 ctg tggato	ggccc ctc					23
<211> 8 <212> 0	27 377 DNA Rattus no:	rvegicus					
	27	atcat ccac	atatee (200101100	cacacactea	+aacc+ccaa	60
					cacgcagtca		
					accgccgtgg		120
					gtggtcctct		180
					tttagcgacc		240
cttccgaa	ag ctaggo	tgcg aggt	gctggg a	agtgtctgtg	gactctcagt	tcacccacct	300
ggcctgga	atc aataco	ccac ggaa	ggaggg a	aggcttgggc	ccactgaata	tccctctgct	360
tgctgatg	gtg actaaa	agct tgtc	ccagaa 1	ttacggcgtg	ttgaaaaatg	atgagggcat	420
cgcttaca	agg ggccto	cttta tcat	cgatgc (caagggtgtc	cttcgccaga	tcacagtcaa	480
cgacctac	ct gtggga	acgct ctgt	agatga g	ggctctccgc	ctcgtccagg	cctttcagta	540
tacagato	gag catggg	gaag tctg	tcctgc 1	tggctggaag	cccggcagtg	acaccatcaa	600
acccaatg	gtg gatgad	agca agga	atactt d	ctccaaacac	aactgagatg	ggtaaacatc	660
ggtgagco	tg aatcc	ggat ctca	cctgcg d	cccttacctg	gatgtcctgt	gctggcccag	720
aaaacgct	ag atctto	ctct acat	tctaaa g	ggggctggag	gctaggccga	ggctttctca	780
					gcacacccag		840
		itaaa gtat	_		J J	333 3	877
<211> 1 12	28 198 PRT Rattus nor	vegicus					
<400> 2	28						
Met Ala 1	Ser Gly A		s Ile Gl	ly Lys Pro 10	Ala Pro Asp	Phe Thr 15	

Gly Thr Ala Val Val Asp Gly Ala Phe Lys Glu Ile Lys Leu Ser Asp 20 25 30

Tyr Arg Gly Lys Tyr Val Val Leu Phe Phe Tyr Pro Leu Asp Phe Thr Page 11

35	40	45
	• •	

Phe	va1 50	Cys	Pro	Thr	Glu	Ile 55	Ile	Ala	Phe	Ser	Asp 60	His	Ala	Glu	Asp	
Phe 65	Arg	Lys	Leu	Gly	Cys 70	Glu	۷al	Leu	Gly	va1 75	Ser	val	Asp	ser	Gln 80	
Phe	Thr	His	Leu	Ala 85	Trp	Ile	Asn	Thr	Pro 90	Arg	Lys	Glu	Gly	Gly 95	Leu	
Gly	Pro	Leu	Asn 100	Ile	Pro	Leu	Leu	Ala 105	Asp	۷al	Thr	Lys	Ser 110	Leu	Ser	
Gln	Asn	Tyr 115	Gly	٧a٦	Leu	Lys	Asn 120	Asp	Glu	Gly	Ile	Ala 125	Туг	Arg	Gly	
Leu	Phe 130	Ile	Ile	Asp	Ala	Lys 135	Gly	val	Leu	Arg	Gln 140	Ile	Thr	Val	Asn	
Asp 145	Leu	Pro	۷al	Gly	Arg 150	Ser	val	Asp	Glu	Ala 155	Leu	Arg	Leu	val	Gln 160	
Ala	Phe	Gln	Tyr	Thr 165	Asp	Glu	His	Gly	Glu 170	val	Cys	Pro	Ala	Gly 175	Trp	
Lys	Pro	Gly	Ser 180	Asp	Thr	Ile	Lys	Pro 185	Asn	٧al	Asp	Asp	Ser 190	Lys	Glu	
Tyr	Phe	Ser 195	Lys	His	Asn											
<210 <211 <212 <213	> 5 > 0	9 60 NA Iomo	sapi	iens												
<400 atgg		9 ga a	aggco	gtgt	g cg	ıtgct	gaag	g gg q	gaco	gcc	cagt	gcag	gg (atca	itcaat	60
ttcg	agca	ıga a	ıggaa	agta	aa tg	gaco	agto	, aag	gtgt	ggg	gaag	cati	aa a	aggad	tgact	120
gaag	gcct	gc a	itgga	ittco	a to	jttca	ıtgaç	ttt	ggag	gata	atad	ggca	agg (tgta	ıccagt	180
gcag	gtco	tc a	icttt	aato	c to	tato	caga	aaa	ıcacç	gtg	ggcd	aaag	ga 1	gaag	jagagg	240
catg	ttgg	jag a	cttg	ggca	a tg	jtgad	tgct	gac	aaag	gatg	gtgt	ggc	ga 1	gtgt	ctatt	300
gaag	atto	tg t	gato	ctcac	t ct	cago	jagad	cat	tgca	itca	ttgg	gccgd	ac a	actgg	tggtc	360
catg	aaaa	ag c	agat	gact	t gg	ıgcaa	aggt	gga	aatg	gaag	aaag	jtaca	ıaa g	gacag	gaaac	420
gctg	gaag	jtc g	tttg	gctt	g tg	ıgtgt	aatt	ggg		gccc age		aaca	itt (cctt	ggatg	480

<210> 30

<211> 154 <212> PRT

<213> Homo sapiens

<400> 30

Met Ala Thr Lys Ala Val Cys Val Leu Lys Gly Asp Gly Pro Val Gln 10 15

Gly Ile Ile Asn Phe Glu Gln Lys Glu Ser Asn Gly Pro Val Lys Val 20 25 30

Trp Gly Ser Ile Lys Gly Leu Thr Glu Gly Leu His Gly Phe His Val 35 40 45

His Glu Phe Gly Asp Asn Thr Ala Gly Cys Thr Ser Ala Gly Pro His 50 55 60

Phe Asn Pro Leu Ser Arg Lys His Gly Gly Pro Lys Asp Glu Glu Arg 65 70 75 80

His Val Gly Asp Leu Gly Asn Val Thr Ala Asp Lys Asp Gly Val Ala 85 90 95

Asp Val Ser Ile Glu Asp Ser Val Ile Ser Leu Ser Gly Asp His Cys $100 \hspace{1cm} 105 \hspace{1cm} 110$

Ile Ile Gly Arg Thr Leu Val Val His Glu Lys Ala Asp Asp Leu Gly 115 120 125

Lys Gly Gly Asn Glu Glu Ser Thr Lys Thr Gly Asn Ala Gly Ser Arg 130 135 140

Leu Ala Cys Gly Val Ile Gly Ile Ala Gln 145 150

<210> 31 <211> 7

<211> 7 <212> PRT

<213> Rattus norvegicus

<400> 31

His Ile Ser Val Asn Asp Leu 1 5

```
<210> 32
<211> 7
<212> PRT
<213> Rattus norvegicus
<400> 32
His Leu Ser Val Asn Asp Leu
1 5
```