Vetores

Adição de vetores

Se \overrightarrow{AB} e \overrightarrow{BC} são vetores posicionados de maneira que o ponto inicial de \overrightarrow{BC} é o ponto terminal de \overrightarrow{AB} , então a soma $\overrightarrow{AB} + \overrightarrow{BC}$ é o vetor \overrightarrow{AC} do ponto inicial de \overrightarrow{AB} ao ponto final de \overrightarrow{BC} . A definição de adição de vetores é ilustrada abaixo. Você pode ver por que essa definição é algumas vezes chamada **Lei do Triângulo**.

Utilizando-se de coordenadas cartesianas, tem-se:

Multiplicação escalar

Se c é um escalar e ${\bf v}$ é um vetor, então a **multiplicação escalar** $c{\bf v}$ é o vetor cujo comprimento é |c| vezes o comprimento de ${\bf v}$ e cuja direção e sentido são os mesmos de ${\bf v}$ se c>0 e sentido oposto a ${\bf v}$ se c<0. Se c=0 ou v=0, então $c{\bf v}=0$.

Componentes

As coordenadas que descrevem um vetor. Por exemplo, sendo a um componente do vetor a, podemos descrever vetores bi e tridimencionais como:

$$\mathbf{a} = \langle a_1, a_2 \rangle; \ \mathbf{a} = \langle a_1, a_2, a_3 \rangle$$

Usamos a notação $\langle a_1,a_2\rangle$ para o par ordenado que se refere a um vetor para não confundir com o par ordenado (a_1,a_2) que corresponde a um ponto no plano.

Ao somarmos algebricamente vetores, *somamos suas componentes*. Analogamente, ao multiplicarmos estes por escalares, multiplicamos seus componentes.

Vetor posição

O vetor cuja origem corresponde à origem do sistema de coordenadas.

Para qualquer outra representação de início no ponto $A(x_1,y_1,z_1)$ e término no ponto $B(x_2,y_2,z_2)$, temos que o vetor $\bf a$ com representação \overrightarrow{AB} é

$$\mathbf{a}=\langle x_2-x_1,y_2-y_1,z_2-z_1
angle$$

Comprimento

O comprimento de um vetor bidimensional $\mathbf{a}=\langle a_1,a_2
angle$ é

$$|\mathbf{a}|=\sqrt{a_1^2+a_2^2}$$

O comprimento de um vetor tridimensional $\mathbf{a}=\langle a_1,a_2,a_3
angle$ é

$$|{f a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$