FAMILY NAME
GIVEN NAME(S)
STUDENT NUMBER
SIGNATURE
Instructions: No calculators or other aids allowed. This test has 3 questions whose values are given immediately after the question numbers. Total marks = 40. Write solutions in the spaces provided, using the backs of the pages if necessary. (Suggestion: If you have to continue a question, you may use the back of the previous page.) Aspects of any question which are indicated in boldface will be regarded as crucial during grading. Show your work. The duration of this test is 50 minutes.
1. (13 marks) Solve the problem: Maximize $z = -x_1 + 3x_2 + 2x_3$ subject to the constraints
$ 6x_1 - 3x_2 - 2x_3 \le 6 -x_1 + x_2 + x_3 \le 1 , x_1 \ge 0, x_2 \ge 0, x_3 \ge 0. 2x_1 + 2x_2 + 3x_3 \le 6 $
Tableau Tableau 2
1 x 1 x x x x x x x x x x x x x x x x x
-1 (D) 1 0 1 0 1 ×2 -1 1 1 0 1 0 1
2230016 & 4010-214
1-3-2000 -20103013
Tableau 3 x 1 0 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 2 1

 $\begin{array}{ccc}
 & 3 & O \\
 & 2 & O \\
 & \text{Page 1 of 3}
\end{array}$

2. (14 marks) Solve the problem: Maximize $3x_1 + x_2 - 2x_3$ subject to the constraints

$x_1+x_2-2x_3\leq -2\ 3x_1+4x_2-4x_3=0$, $x_1\geq 0, x_2\geq 0, x_3\geq 0.$ phase 1 Tableau (1) phase 1 Tableau (2)	
1x, x2 x3 x4 4, 42 1x, x2 x3 x4 4, 42	
4, -1-12-11824-400-114	2
42 3 (A)-4 0 0 1 0 x 3 1 -1 0 0 4	0
1-2-3210012 40-1003	-2
phase 1, Tableau (3)	
X, X3 X3 X4 Y, Y3	
×3 -4 0 1 -1 1 4 2	
x	
0000110	Ŋ
[Im phase 1, x4 is the slack in -x,-x,+2x,=25	
y and y are arupara	\$J
phase 2, Tableau D phase 2, Tableau D	
X X X XX	
$x_3 - 401712 x_30 \darkleft 1 - \darkleft 3 3$	
x 3 1 0 - 1 2 x 1 2 0 2 4	
7-10117040-316	,)
The xy-column includes this problem is unbounded Page 2 of 3 above	2)

3. (13 marks) Suppose in solving a certain canonical linear programming problem by the simplex method we encounter the following tableau:

Now let M be any fixed, but unspecified, non-negative number. Find $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ (depending

on M), which is **feasible** for the problem, such that, at $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$, the problem has **objective** value greater than or equal to M.

is feasible with
$$2 = 6x_2 + 5x_3$$

= 5 M