Übungen zum Ferienkurs Lineare Algebra WS 14/15

3. Übung: Dartsellungsmtrizen, Determinanten, Eigenwerte

3.1 Darstellungsmatrizen I

Es sei V ein zwei-dimensionaler reeller Vektorraum mit Basis $B = \{b_1, b_2\}$

$$c_1 := b_2$$
 $c_2 := \frac{1}{2}b_1 + \frac{\sqrt{3}}{2}b_2$ $c_3 := \frac{1}{2}b_1 - \frac{\sqrt{3}}{2}b_2$

- a) Zeigen Sie, dass auch $C = \{c_1, c_2\}$ eine Basis von V ist, und stellen Sie c_3 als Linearkombination dar.
- b) Berechnen Sie $f(c_3)$ und $g(c_3)$ aus den linearen Abb. f, g mit $f(c_1) := c_2 \quad f(c_2) := c_1 \quad g(c_1) := c_2 \quad g(c_2) := c_3$
- c) Berechnen Sie folgende Darstellungsmatrizen: $D_{C,C}(f), D_{C,C}(g), D_{C,B}(f), D_{B}(f), D_{C}(f \circ g), D_{C}(g \circ g)$

3.2 Darstellungsmatrizen II

Es seien die Basen $B_1 = \{(-1, -2, 4), (1, 1, 1), (3, 4, 3)\} \in \mathbb{R}^{3 \times 3}$ und $C_1 = \{(1, 2), (-1, 0)\} \in \mathbb{R}^{2 \times 2}$ gegeben.

- a) Bestimmen Sie Darstellungsmatrizen $D_{B,C}(\varphi)$ für $\varphi := \varphi_A : \mathbb{R}^3 \to \mathbb{R}^2$ mit $A = \begin{pmatrix} 2 & 0 & 4 \\ 3 & 1 & 5 \end{pmatrix}$.
- b) Es sei die lineare Abb. $\psi: \mathbb{R}^3 \to \mathbb{R}^2$ gegeben durch $D_{B_1,C_1} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$. Bestimmen Sie $\psi((3,3,8))$.

3.3 Basis gesucht

Es sei $V = \mathbb{R}[x]_{\leq 2}$ der reelle Vektorrraum der Polynome vom Grad kleiner 3 mit der kanonischen Basis $E = \{1, x, x^2\}.$

$$\varphi: V \to \mathbb{R}^3, (a_0 + a_1 x + a_2 x^2) \mapsto \begin{pmatrix} 9a_0 + 8a_1 + 7a_2 \\ 6a_0 + 5a_1 + 4a_2 \\ 3a_0 + 2a_1 + a_2 \end{pmatrix}$$

Gesucht ist eine Basis $B:=\{b_1,b_2,b_3\}$ des \mathbb{R}^3 , mit $b_3=e_1$ und $D_{E,B}(\varphi)$ mit $\lambda,\mu\in\mathbb{R}$:

$$D_{E,B}(\varphi) = \begin{pmatrix} 0 & 1 & \lambda \\ 1 & 0 & \mu \\ 0 & 0 & 0 \end{pmatrix}$$

- a) Bestimmen Sie b_1, b_2, λ, μ .
- b) Begründen Sie, dass B wirklich eine Basis ist.

3.4 Basiswechsel und Dartsellungsmatrizen I (Z 18)

Sei
$$\varphi: \mathbb{R}^3 \to \mathbb{R}^2$$
, $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + x_2 + x_3 \\ 2x_1 - x_2 \end{pmatrix}$ eine lineare Abb.

Zusätzlich seien die Basen $B = \{(1 -4 2), (2 -7 3), (0 1 -2)\}$ und $C = \{(4 7), (-2 -4)\}$ bekannt.

- a) Berechnen Sie die Basiswechselmatrizen $S_{E,B}, S_{B,E}, S_{E,C}, S_{C,E}$ mit E als der Standardbasis.
- b) Berechnen Sie die Darstellungsmatrix $D_{B,C}(\varphi)$.

3.5 Basiswechsel und Dartsellungsmatrizen II

Zusätzlich zur kanonischen Basis $E = \{1, x, x^2\}$ ist die Basis $B = \{x^2 + x + 2; 2x + 1; 7x + 3\}$ gegeben. $\varphi: V \to V$ sei $\varphi(f(x)) = f(x-2) - f'(x) + f(1)$.

- a) Zeigen Sie, dass φ eine lin. Abb. ist.
- b) Geben Sie die Matrizen $D_E(\varphi), S_{E,B}, S_{B,E}, D_B(\varphi)$ an.

3.6 Berechnen von Determinanten

a)
$$\begin{pmatrix} 1 & -2 & -1 & 0 \\ 0 & 1 & 4 & 1 \\ 9 & 2 & 3 & -1 \\ 8 & 2 & 3 & -1 \end{pmatrix}$$

b)
$$\begin{pmatrix} -4 & 2 & 4 & 0 & -5 \\ 1 & -2 & -1 & 3 & 4 \\ 1 & -2 & -1 & 4 & 5 \\ 0 & 0 & -1 & -7 & 0 \\ -3 & -1 & 1 & -1 & 5 \end{pmatrix}$$

3.7 Determinantenmultiplikationssatz

Eine Matrix $A \in k^{n \times n}$ heißt

- (i) nilpotent, wenn es ein $k \in \mathbb{N}$ gibt, mit $A^n = 0$ für $n \ge k$.
- (ii) idempotent, wenn $A^2 = A$.
- (iii) selbstinvers, wenn $A^2 = I_n$.

Geben Sie jeweils ein Beispiel an für

- a) eine nilpotente Matrix, außer der Nullmatrix.
- b) eine idempotente Matrix, außer Null- und Einheitsmatrix.
- c) eine selbstinverse Matrix, außer der Einheitsmatrix.

3.8 Adjunkte

Gegeben seien die folgenden Matrizen über \mathbb{R} :

$$A = \begin{pmatrix} -4 & 8 & -2 \\ -2 & -1 & 2 \\ -1 & 2 & -1 \end{pmatrix}, B = \begin{pmatrix} -2 & 2 & 0 & 1 \\ 5 & 1 & -3 & -2 \\ 5 & -1 & -1 & 0 \\ 0 & 3 & 0 & 0 \end{pmatrix}$$

- a) Berechnen Sie die die Adjunkte C von A und D von B.
- b) zur Kontrolle: Berechnen Sie die Produkte $A \cdot C, C \cdot A$.

3.9 Charakteristisches Polynom, Eigenwerte, Eigenräume

Berechnen Sie jeweils χ_A , die Eigenwerte und die Eigenräume über dem Körper \mathbb{C} .

a)
$$A = \begin{pmatrix} 4 & -4 & 3 \\ 0 & -2 & 1 \\ 0 & 0 & -4 \end{pmatrix}$$

b)
$$B = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & 1 \\ 4 & 2 & 1 \end{pmatrix}$$

3.10 Matrix diagonalisieren

Es sei $A=\begin{pmatrix}2&2&-2\\-2&7&-3\\-2&4&0\end{pmatrix}\in\mathbb{R}^{3\times 3}$. Berechnen Sie die Eigenräume von A. Geben Sie weiter eine invertierbare Matrix $S\in GL_3(\mathbb{R})$ und eine Diagonalmatrix $D\in\mathbb{R}^{3\times 3}$ an, so dass $S^{-1}AS=D$ gilt.

3.11 Grenzwerte der Matrixeinträge

Gegeben sei die Matrix

$$A = \begin{pmatrix} 0, 3 & 0, 1 \\ -0, 3 & 0, 7 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

Für $n \in \mathbb{N}$ und $i, j \in 1, 2$ sei $a_{ij}^{(n)}$ der Eintrag in Position (i, j) der Matrix A^n . Berechnen Sie die Matrix $A^{\infty} \in \mathbb{R}^{2 \times 2}$, die in Position (i, j) gerade den Eintrag $\lim_{n \to \infty} a_{ij}^{(n)}$ haben soll. (Tipp: Diagonalisieren!)

3