Integrales de funciones de varias variables Ingeniería

- 1 Integración de funciones de dos variables
 - Integrales dobles en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Aplicaciones: áreas y valor medio
- 2 Integrales múltiples y la fórmula del cambio de variables
 - Integrales triples en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Fórmula del cambio de variables
 - Integrales dobles en coordenadas polares
 - Integrales triples en coordenadas cilíndricas y esféricas
- 3 Ejemplos varios

- Integración de funciones de dos variables
 - Integrales dobles en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Aplicaciones: áreas y valor medio
- Integrales múltiples y la fórmula del cambio de variables
 - Integrales triples en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Fórmula del cambio de variables
 - Integrales dobles en coordenadas polares
 - Integrales triples en coordenadas cilíndricas y esféricas
- 3 Ejemplos varios

- Integración de funciones de dos variables
 - Integrales dobles en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Aplicaciones: áreas y valor medio
- 2 Integrales múltiples y la fórmula del cambio de variables
 - Integrales triples en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Fórmula del cambio de variables
 - Integrales dobles en coordenadas polares
 - Integrales triples en coordenadas cilíndricas y esféricas
- 3 Ejemplos varios

- 1 Integración de funciones de dos variables
 - Integrales dobles en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Aplicaciones: áreas y valor medio
- 2 Integrales múltiples y la fórmula del cambio de variables
 - Integrales triples en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Fórmula del cambio de variables
 - Integrales dobles en coordenadas polares
 - Integrales triples en coordenadas cilíndricas y esféricas
- 3 Ejemplos varios

- 1 Integración de funciones de dos variables
 - Integrales dobles en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Aplicaciones: áreas y valor medio
- 2 Integrales múltiples y la fórmula del cambio de variables
 - Integrales triples en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Fórmula del cambio de variables
 - Integrales dobles en coordenadas polares
 - Integrales triples en coordenadas cilíndricas y esféricas
- 3 Ejemplos varios

Definición de integral triple sobre rectángulos

FIGURA 15.29 Partición de un sólido con celdas cúbicas de volumen ΔV_k .

Sea f una función definida y acotada en un **rectángulo o caja** R. Definimos una partición de R, formada por n^3 subrectángulos y formamos la suma de Riemann $S_n = \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n f(x_i, y_j, z_k) \Delta V_{ijk}$. Si el límite lím $_{\parallel P \parallel \to 0} S_n$ existe para cualquier elección de (x_i, y_j, z_k) , se dice que f es **integrable** sobre R y que la integral triple de f sobre f es el límite de las sumas f f . La integral se denota por

$$\iiint_R f(x,y,z)dV = \iiint_R f(x,y,z)dx dy dz.$$

Definición de integral triple sobre otras regiones

Sea f una función definida y acotada en una región acotada, R. Definimos una partición de R, formada por rectángulos y consideramos sólo los rectángulos incluidos en R; formamos la suma de Riemann $S_n = \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n f(x_i, y_j, z_k) \Delta V_{ijk}$. Si el límite $\lim_{\|P\| \to 0} S_n$ existe, para cualquier elección de (x_i, y_j, z_k) , se

dice que
$$f$$
 es **integrable** sobre R y que la integral triple de f sobre R es el límite de las sumas S_n . La integral se denota por

$$\iiint_R f(x,y,z)dV = \iiint_R f(x,y,z)dx dy dz.$$

Propiedades de las integrales triples

1 Si f es continua en una región cerrada y acotada R, entonces f es integrable en R.

Si f y g son funciones integrables sobre la región cerrada y acotada R, entonces:

$$2 \iiint_{R} [f(x,y,z) + g(x,y,z)] dV =$$

$$\iiint_{R} f(x,y,z) dV + \iiint_{R} g(x,y,z) dV.$$

$$3\iint_{R} cf(x,y,z)dV = c\iiint_{R} f(x,y,z)dV.$$

4 Si
$$f(x, y, z) \le g(x, y, z)$$
 para todo $(x, y, z) \in R$,
$$\iiint_{R} f(x, y, z) dV \le \iiint_{R} g(x, y, z) dv.$$

Propiedades de las integrales triples

5 Si R_1 y R_2 son dos regiones tales que $R_1 \cap R_2 = \emptyset$ y f es acotada e integrable en cada una de ellas, entonces f es integrable en $R_1 \cup R_2$ y

$$\iiint_{R_1 \cup R_2} f(x, y, z) dV = \iiint_{R_1} f(x, y, z) dV + \iiint_{R_2} f(x, y, z) dV.$$

- 1 Integración de funciones de dos variables
 - Integrales dobles en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Aplicaciones: áreas y valor medio
- 2 Integrales múltiples y la fórmula del cambio de variables
 - Integrales triples en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Fórmula del cambio de variables
 - Integrales dobles en coordenadas polares
 - Integrales triples en coordenadas cilíndricas y esféricas
- 3 Ejemplos varios

<u>Teor</u>ema de Fubini

Teorema

Si f es continua en la región R y

• R es rectangular $(R = [a, b] \times [c, d] \times [e, m])$, entonces

$$\iiint_{R} f(x, y, z) dV = \int_{a}^{b} \int_{c}^{d} \int_{e}^{m} f(x, y, z) dz dy dx$$
$$= \int_{c}^{d} \int_{a}^{b} \int_{e}^{m} f(x, y, z) dz dx dy...$$

• R está definida por $a \le x \le b$, $g_1(x) \le y \le g_2(x)$ y $h_1(x,y) \le z \le h_2(x,y)$, con g_1 y g_2 continuas en [a,b], y h_1 y h_2 continuas en $\{(x,y): a \le x \le b, g_1(x) \le y \le g_2(x)\}$, entonces

$$\iiint_R f(x,y,z)dV = \int_a^b \int_{g_1(x)}^{g_2(x)} \int_{h_1(x,y)}^{h_2(x,y)} f(x,y,z)dz \, dy \, dx.$$

• Hay otros casos...

Teorema de Fubini

Si f es continua en $D \subset \mathbb{R}^3$, $\iiint_D f(x,y,z) dV = \int_a^b \int_c^d \int_e^g f(x,y,z) dz dy dx = \dots$

Aplicaciones: Volumen

Definición

Si D es un sólido (cuerpo que ocupa una región en \mathbb{R}^3 que es cerrada y acotada), su volumen es

$$V = \iiint_D dV$$
.

Aplicaciones: Valor medio de una función de tres variables

Definición

Sea f una función integrable sobre una región acotada R. Entonces:

Valor promedio de
$$f$$
 sobre $R = \frac{1}{\text{volumen de } R} \iiint_R f \, dV$.

Aplicaciones: Masa y centro de masa

Si un sólido D tiene densidad en cada punto dada por una función integrable $\delta(x,y,z)$, su masa se calcula por

$$M = \iiint_D \delta dV$$

y las coordenadas de su centro de masa vienen dadas por $(\bar{x}, \bar{y}, \bar{z})$, donde

$$\bar{x} = \frac{M_{yz}}{M} = \frac{\iiint_D x \delta dV}{\iiint_D \delta dV} \quad \bar{y} = \frac{M_{xz}}{M} = \frac{\iiint_D y \delta dV}{\iiint_D \delta dV} \quad \bar{z} = \frac{M_{xy}}{M} = \frac{\iiint_D z \delta dV}{\iiint_D \delta dV}$$

Observación: cuando δ es constante, el centro de masa se llama centroide.

Ejemplo: masa

Plantee una integral para calcular la masa del sólido comprendido entre las superficies dadas por $z=x^2+3y^2$ y $z=8-x^2-y^2$, si la densidad en cada punto viene dada por $\delta(x,y,z)=xy+xe^z$. SOL: (pag.862)

Dibujito

- Integración de funciones de dos variables
 - Integrales dobles en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Aplicaciones: áreas y valor medio
- 2 Integrales múltiples y la fórmula del cambio de variables
 - Integrales triples en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Fórmula del cambio de variables
 - Integrales dobles en coordenadas polares
 - Integrales triples en coordenadas cilíndricas y esféricas
- 3 Ejemplos varios

Reminder...

Para resolver por sustitución la integral

$$I=\int_0^{\frac{\pi}{10}}5\cos(5x)dx,$$

planteamos: u = 5x; du = 5dx y

$$I = \int_0^{\frac{\pi}{2}} \cos u \, du = 1.$$

En general, dada $g:[A,B] \rightarrow [a,b]$, biyectiva,

$$\int_{a}^{b} f(x)dx = \int_{A}^{B} f(g(u))|g'(u)|du.$$

En el ejemplo:

$$g:[0,\frac{\pi}{2}]\to[0,\frac{\pi}{10}]$$
 $g(u)=x=\frac{u}{5}$ $I=\int_0^{\frac{\pi}{2}}5\cos\left(5\frac{u}{5}\right)\frac{1}{5}du$

Transformaciones en el plano

Ejemplo:

$$r(\rho, \theta) = (\rho \cos \theta, \rho \sin \theta), \qquad 0 \le \rho \le 1; \ 0 \le \theta \le 2\pi.$$

Representar gráficamente el dominio S y la imagen R de r.

Verificar que $r(\rho,0)$, $0 \le \rho \le 1$, es el segmento $[0,1] \times 0$; y que $r(\frac{1}{2},\theta)$, $0 \le \theta \le 2\pi$, es la circunferencia con centro en (0,0) y radio $\frac{1}{2}$.

Esta transformación no es inyectiva en la frontera de S (todos los puntos $(0,\theta)$ tienen imagen (0,0)), pero sí lo es en el interior de S.

Fórmula del cambio de variables

Para calcular

$$\iint_R f(x,y)dx\,dy$$

se puede definir una transformación

$$T: S \to R$$
 biyectiva $T(u, v) = (x, y) = (x(u, v), y(u, v))$

Se puede probar que **si** f es continua, x y y tienen derivadas paciales de primer orden continuas y el jacobiano de la transformación, J(u, v), solo se anula en puntos aislados o nunca, **entonces**

$$\iint_R f(x,y)dx\,dy = \iint_S f(x(u,v),y(u,v))|J(u,v)|du\,dv$$

$$\iint_{R} f(x,y)dA \simeq \sum_{i=1}^{n} \sum_{j=1}^{n} f(x_{i},y_{j}) \Delta A_{ij}$$

$$\begin{aligned} |(\Delta u r_u) \times (\Delta v r_v)| &= |r_u \times r_v| \Delta u \Delta v \\ r_u \times r_v &= \begin{vmatrix} i & j & k \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & 0 \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & 0 \end{vmatrix} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{vmatrix} k = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} k \end{aligned}$$

Definición

El Jacobiano de la transfomación T(u, v) = (x(u, v), y(u, v)) es

$$\frac{\partial(x,y)}{\partial(u,v)} = \left| \begin{array}{cc} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{array} \right|.$$

$$\iint_R f(x,y)dA \simeq \sum_{i=1}^n \sum_{j=1}^n f(x_i,y_j) \Delta A_{ij}$$

$$\Delta A_{ij} \simeq \left| \frac{\partial(x,y)}{\partial(u,v)} \right| (u_i,v_j) \Delta u_i \Delta v_j$$

$$\iint_{R} f(x,y)dA \simeq \sum_{i=1}^{n} \sum_{j=1}^{n} f(x_{i},y_{j}) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \Delta u_{i} \Delta v_{j}$$

FÓRMULA DEL CAMBIO DE VARIABLES

Teorema

Supóngase que T es una transformación biyectiva de S en R, tal que sus componentes tienen derivadas parciales continuas de primer orden en S y cuyo Jacobiano es no nulo en S. Supóngase que f es continua en R. Entonces:

$$\iint_{R} f(x,y)dA = \iint_{S} f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv.$$

Observación: el teorema también vale si \mathcal{T} no es inyectiva en puntos de la frontera de S.

- Integración de funciones de dos variables
 - Integrales dobles en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Aplicaciones: áreas y valor medio
- 2 Integrales múltiples y la fórmula del cambio de variables
 - Integrales triples en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Fórmula del cambio de variables
 - Integrales dobles en coordenadas polares
 - Integrales triples en coordenadas cilíndricas y esféricas
- 3 Ejemplos varios

Integrales dobles en coordenadas polares

FIGURA 15.21 La región $R: g_1(\theta) \le r \le g_2(\theta), \alpha \le \theta \le \beta$, está contenida en la región con forma de abanico $Q: 0 \le r \le a, \alpha \le \theta \le \beta$. La partición de Q mediante arcos de circunferencia y rayos induce una partición de R.

$$A = \frac{1}{2}\theta \cdot r^2,$$

Radio interior:
$$\frac{1}{2} \left(r_k - \frac{\Delta r}{2} \right)^2 \Delta \theta$$

Radio exterior:
$$\frac{1}{2} \left(r_k + \frac{\Delta r}{2} \right)^2 \Delta \theta$$
.

FIGURA 15.22 La observación de que

$$\Delta A_k = \begin{pmatrix} \text{área del sec-} \\ \text{tor más grande} \end{pmatrix} - \begin{pmatrix} \text{área del sec-} \\ \text{tor más pequeña} \end{pmatrix}$$

nos conduce a la fórmula $\Delta A_k = r_k \Delta r \Delta \theta$.

Transformación:

$$T(r,\theta) = (r\cos\theta, r\sin\theta)$$

Jacobiano:

$$\begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} = |r| = r.$$

Ejemplo

¿Cómo se calcula el volumen del sólido que es la parte del primer octante que se encuentra bajo el gráfico de la función $f(x,y) = x^2 + y^2$ y sobre el cuarto de círculo centrado en el origen y de radio 1 en el primer cuadrante del plano xy?

Planteo: $V = \iint_R f(x, y) dA$

SOLUCIÓN en coordenadas rectangulares:

$$V = \int_0^1 \int_0^{\sqrt{1-x^2}} (x^2 + y^2) dy dx$$
$$= \int_0^1 \left(x^2 \sqrt{1-x^2} + \frac{(\sqrt{1-x^2})^3}{3} \right) dx$$
$$= \int_0^1 \left(\frac{2}{3} x^2 \sqrt{1-x^2} + \frac{1}{3} \sqrt{1-x^2} \right) dx$$

Ver fórmulas 45 y 46 del final del libro (repasar análisis 1)

Ejemplo

¿Cómo se calcula el volumen del sólido que es la parte del primer octante que se encuentra bajo el gráfico de la función $f(x,y) = x^2 + y^2$ y sobre el cuarto de círculo centrado en el origen y de radio 1 en el primer cuadrante del plano xy?

Planteo: $V = \iint_R f(x, y) dA$

SOLUCIÓN en coordenadas polares:

$$x = r \cos \theta;$$
 $y = r \sin \theta$

$$V = \int_0^1 \int_0^{\frac{\pi}{2}} (r^2 \cos^2 \theta + r^2 \sin^2 \theta) r \, d\theta \, dr = \int_0^1 \int_0^{\frac{\pi}{2}} r^3 \, d\theta \, dr = \frac{\pi}{8}$$

Aplicación al cálculo de áreas

Cálculo de áreas de superficies planas y acotadas. Si la región plana R es acotada, su área es $A = \iint_{R} dA$.

Ejemplo: hallar el área fuera del círculo r=1 y dentro de la cardioide $r=1+\cos\theta$.

Representar y buscar intersecciones en coordenadas polares.

- 1 Integración de funciones de dos variables
 - Integrales dobles en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Aplicaciones: áreas y valor medio
- 2 Integrales múltiples y la fórmula del cambio de variables
 - Integrales triples en coordenadas rectangulares
 - Integrales iteradas y Teorema de Fubini
 - Fórmula del cambio de variables
 - Integrales dobles en coordenadas polares
 - Integrales triples en coordenadas cilíndricas y esféricas
- 3 Ejemplos varios

Fórmula del cambio de variables: coordenadas cilíndricas

Definimos la transformación T a través de sus funciones componentes:

$$g(r, \theta, z) = x = r \cos \theta;$$
 $h(r, \theta, z) = y = r \sin \theta;$ $k(r, \theta, z) = z$

Jacobiano:

$$x = r\cos\theta, \qquad y = r\sin\theta, \qquad z = z$$

$$J(r,\theta,z) = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z} \end{vmatrix} = \begin{vmatrix} \cos \theta & -r \sin \theta & 0 \\ \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix} = r \cos^{2} \theta + r \sin^{2} \theta = r.$$

Ejemplo: coordenadas cilíndricas

Ejemplo:

Sea D la región acotada abajo por el cono $z=\sqrt{x^2+y^2}$ y arriba por el paraboloide $z=2-x^2-y^2$. Plantear una integral que dé el volumen de D.

Solución:

$$2 - x^{2} - y^{2} = \sqrt{x^{2} + y^{2}}$$

$$\left(\sqrt{x^{2} + y^{2}} + \frac{1}{2}\right)^{2} = \frac{9}{4}$$

$$x^{2} + y^{2} = 1 \qquad x^{2} + y^{2} = 4$$

$$V = \int_{0}^{2\pi} \int_{0}^{1} \int_{r}^{2-r^{2}} r \, dz \, dr \, d\theta.$$

Fórmula del cambio de variables: coordenadas esféricas

Definimos la transformación T a través de sus funciones componentes:

$$g(\rho, \theta, \phi) = x = \rho \sin \phi \cos \theta;$$
 $h(\rho, \theta, \phi) = y = \rho \sin \phi \sin \theta;$ $k(\rho, \theta, \phi) = z = \rho \cos \phi$

Jacobiano:

$$x = \rho \operatorname{sen} \phi \cos \theta, \quad y = \rho \operatorname{sen} \phi \operatorname{sen} \theta, \quad z = \rho \cos \phi$$

$$J(\rho, \phi, \theta) = \begin{vmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \theta} \\ \frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial \theta} \end{vmatrix} = \rho^2 \operatorname{sen} \phi.$$

Ejemplo: coordenadas esféricas

Ejemplo:

Sea D la región acotada abajo por el cono $z=\sqrt{x^2+y^2}$ y arriba por el plano z=1. Plantear una integral que dé el volumen de D.

Solución:

$$1 = \sqrt{x^2 + y^2}$$

$$x^2 + y^2 = 1$$

$$V = \int_0^{2\pi} \int_0^{\frac{\pi}{4}} \int_0^{\sec\phi} \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta.$$

Otros ejemplos

1) Escriba dos integrales iteradas para hallar $\iint_R f(x, y) dA$ sobre la región R dada en el gráfico.

Otros ejemplos

2) ¿Qué calcula la integral $\int_0^1 \int_0^{2-x^2} (4-x^2-y^2) dy dx$? ¿Cuánto vale? SOLUCIÓN:

$$\int_0^1 \int_0^{2-x^2} (4-x^2-y^2) dy \, dx = \frac{158}{35} \simeq 4,5143$$

Otros ejemplos

3) Plantee 6 integrales para hallar el volumen del prisma de la figura:

SOLUCIÓN:

$$V = \int_0^1 \int_0^{1-z} \int_0^2 dx \, dy \, dz = \int_0^1 \int_0^{1-y} \int_0^2 dx \, dz \, dy = \dots$$

