

The Patent Office Concept House Cardiff Road Newport

Newport South Wales NP10 800

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed Provided

Dated 21 March 2003

Best Available Copy

An Executive Agency of the Department of Trade and Industry

Patents Form 1/77

THE PATENT OFFICE B 13 JUL 2002 The Patent Office Cardiff Road Newport - - - -NP9 1RH

Request for grant of a patent

NEWPORT

1.	Your Reference 0216301.2	PLB/CC/W532 16.110 02 F733221-1 D02846 P01/7700 0.00-0216301.2		
3.	Full name, address and postcode of the or each Applicant Country/state of incorporation (if applicable)	Per-Tec Limited Manchester School of Engineering The University of Manchester Simon Building Oxford Road Manchester M13 9PL Incorporated in: England & Wales		
4.	Title of the invention	Improvements In and Relating to Electrode Mounting Apparatus		
·5	Name of agent Address for service in the UK to which all correspondence should be sent Patents ADP number	APPLEYARD LEES 15 CLARE ROAD HALIFAX HX1 2HY 190001		
6.	Priority claimed to:	Country Application number Date of filing		
7.	Divisional status claimed from:	Number of parent application Date of filing		
8.	Is a statement of inventorship and of right to grant a patent required in support of this application?	YES		

<u> </u>		
9. Enter the number of sheets for any of the following items you are filing with this form. Do not count copies of the same document	-	
Continuation sheets of this form		
Description	19 x 2	
Claim(s)	7 x 2	
Abstract	dr.	
Drawing(s)	11 x 2	
 If you are also filing any of the following, state how many against each item 		
Priority documents		
Translation of priority documents		
Statement of inventorship and right to grant a patent (PF 7/77)		
Request for a preliminary examination and search (PF 9/77)	1 /	
Request for substantive examination (PF 10/77)	1	
Any other documents (please specify)		
11.	We request the grant of a patent on the basis Signature	sis of this application. Date
	APPLEYARD LEES	12 July 2002
	Appleyard Lees	
12. Contact	Paul Brandon – 0161 835 9655	

OUPLICATE

Improvements In and Relating to Electrode Mounting Apparatus

Field of the Invention

5

10

25

The present invention relates to mounting apparatus for electrodes and to pollutant removal systems incorporating In particular, but without limitation, the same. for apparatus mounting relates to invention present pollutants, separation ο£ in the used electrodes especially particulates from gas streams.

Background to the Invention

15 It is known to attempt to separate particulate pollutants from a gas stream by charging (ionising) the particulates, typically by corona discharge from an electrode and using the electro-static properties of the charged particulates to separate them from the gas flow stream. This is referred to as electrostatic precipitation.

The present inventor has found that while it is possible to operate such a system on a small scale for a short period of time, the performance of any such equipment degrades over time. It is believed that one reason for such degradation is the tendency of current to flow from the electrode to earth. Typically the nearest earth is the mounting bracket for the electrode support.

obviate or overcome disadvantages of the prior art, whether referred to herein or otherwise.

Summary of the Invention

According to the present invention in a first aspect, there is provided a mounting apparatus for an electrode, the mounting apparatus comprising a body with means for mounting an electrode, whereby in use the body is partly about the electrode and the electrode projects from the body, the apparatus further comprising at least one external protrusion on the body.

Such an apparatus provides a tortuous route for current from the electrode along the body thus reducing current leakage.

15

20

10

Suitably, the body is generally cylindrical and the projection is generally radial relative thereto. Suitably, the body has a relatively thinner cylindrical elongate section. Suitably, the relatively thinner cylindrical elongate section is towards the distal end of the body. A less thick ceramic over an electrode is believed to encourage burn off of deposited carbon-based pollutants.

25 Suitably, the at least one protrusion is annular (ie 360°) about the body.

Suitably, the body and the at least one protrusion are a one piece structure.

30

Suitably, the body at least partly comprises a high electrical resistance material. Suitably, that part of the body to be in contact with the electrode comprises a

high electrical resistance material. A suitable high electrical resistance material is ceramic material

Suitably, the electrode mounting apparatus is suitable for a pollutant removal system.

Suitably, the apparatus comprises a section of or attached to the body which section comprises means for permitting the body to be mounted.

10

Suitably, the body is substantially circular cylindrical.

Suitably, the non-protruding regions substantially cylindrical.

15

20

25

30

Suitably, the at least one protrusion is generally conical externally. Suitably, the at least one protrusion is at least partly hollow. Suitably, the at least one protrusion is rebated. Suitably, the protrusions are tapered.

Suitably, all of the body comprises substantially the same material. This reduces manufacturing costs and helps minimise problems caused by differing thermal expansion coefficients for other materials.

Suitably, there are a plurality of protrusions spaced along the body. Suitably, the protrusions are substantially similar. Suitably, the protrusions are equally spaced along the body.

Suitably, the body is generally cylindrical.

Suitably, the body includes a hole therethrough for mounting an electrode therein. Suitably, the hole is longitudinal.

According to the present invention in a second aspect there is provided an electrode mounting apparatus comprising a mounting apparatus according to the first aspect of the invention, the apparatus further comprising an electrode about which the body is located.

10

Suitably, the electrode is mounted from one end only.

Suitably, the electrode projects from an end of the body for forming a corona discharge.

15

20

25

30

According to the present invention in a third aspect, there is provided a pollutant removal system for at least partly removing at least one pollutant from a gas flow stream, the system comprising an electrode mounting apparatus according to any preceding aspect of the invention.

Suitably, the system comprises means for diverting pollutants to a pollutant remover. In the case of particulate pollutants the remover may be a filter.

Suitably, the system comprising means for charging particulates in the gas stream and a tube through which the gas stream at least partly flows, whereby the tube is at least partly porous to the gas stream and the apparatus additionally comprises means for collecting at least one pollutant.

Suitably, the tube is at least partly about the charging means. Suitably, the charging means comprises an electrode.

5 Suitably, the tube is perforated. Suitably, the tube comprises a plurality of holes therethrough. Suitably, the holes are evenly spaced. Suitably, the holes are evenly sized. Suitably, the perforated region of the tube is substantially annular. Suitably, the perforated region of the tube extends for a substantial length thereof.

Suitably, the tube comprises at least one slot therethrough. Suitably, a plurality of slots is provided. Suitably, the slots are substantially evenly distributed about the tube. Suitably, the at least one slot runs longitudinally along the tube.

15

20

Suitably, a major portion of the tube is porous. Alternatively a minor portion of the tube is porous.

Suitably, the tube is circular in cross-section. Suitably, the tube comprises an inlet and an outlet.

Suitably, the cross-sectional area of the tube decreases along its length from the input to the output thereof.

Suitably, the electrode is mounted at one end thereof only.

30 Suitably, there is a first gas flow path from an apparatus gas inlet to an apparatus gas outlet and a second gas flow path from the apparatus gas inlet to the apparatus gas outlet. The first and second gas flow paths may be in

common for a part thereof. Suitably, a filter is located in the second gas flow path. Suitably, the tube is located in the first and second gas flow paths. The tube acts to split the gas flows and concentrate at least one pollutant in one flow path for subsequent removal.

Suitably, the arrangement comprises a gas flow tube for the second flow path, which gas flow tube comprises a slot for the first gas flow path to join the second gas flow path.

10

15

20

25

Suitably, the first gas flow path splits from the second gas flow path at a separator for diverting pollutant to the pollutant removing means. Suitably, the separator is generally conically shaped with an opening for one of the gas flow paths therethrough.

Suitably, the system comprises a first expansion tube in gas apparatus communication with an fluid the diverting tube extends from the first Suitably, expansion tube to a second expansion tube defined by the Suitably, there is a third expansion tube about the into which gas can flow through the diverting tube Suitably, a filter is located between (in diverting tube. respect of gas flow) the second and third expansion tubes.

Suitably, the filter comprises an electrically regenerative filter.

30 Suitably, the system is for removing pollutants from an exhaust gas stream, preferably a vehicle exhaust gas stream.

Suitably, the system is for use in an exhaust gas flow stream. Suitably, the system is for use in a vehicle exhaust gas flow stream, preferably a diesel exhaust.

5 Suitably, the electrode is for corona discharge ionisation of a gas flow stream.

Brief Description of the Drawings

25

- The present invention will now be described, by way of example only, with reference to the drawings that follow; in which:
- Figure 1 is a plan view of a first mounting body for mounting an electrode according to a first embodiment of the present invention.
- Figure 2 is a plan view of a second mounting body for mounting an electrode according to a second embodiment of the present invention.
 - Figure 3 is an enlarged sectional view of Figure 1, the section being taken along a plane of the axis of the body of Figure 1.
 - Figure 4 is a cross-sectional view of a mounting body for mounting an electrode according to a third embodiment of the present invention.
- 30 Figure 5 is a cross-sectional schematic view of a particulate diversion apparatus according to an embodiment of the present invention.

Figure 6 is a schematic, perspective, partly cut-away view of the apparatus of Figure 5.

Figures 7-10 are cross-sectional schematic views similar to Figure 5 of second to fifth embodiments of the present invention.

Figure 11 is a perspective illustration of elements of the Figure 10 embodiments.

Figure 12 is a cross-sectional view of a mounting body as shown in Figure 10.

Description of the Preferred Embodiments

15

Referring to Figure 1 of the drawings that follow, there is shown a plan view of an electrode mounting body 2, made from a ceramic, electrically substantially non-conducting material, here Alumina or SINTOX (trade mark).

20

25

30

10

is substantially circular cylindrical includes a cylindrical hole 4 (dashed lines) along the axis thereof through which an electrode 6 is to be The electrode 6 projects from a first end 8 of the body 2, which projecting portion of electrode 6 (see Figure 3) forms a corona discharge electrode in use. second end 10 (opposite first end 8) of body 2 allows the electrode to be connected to a power source (not shown). It is noted that the electrode 6 is mounted from one end only. Thus the electrode 6 has a mounting end (second end 16) and an electrode projecting end (first end 8).

From the first end 8, the body 2 is initially generally circular cylindrical. The body 2 is then interrupted by three substantially similar protrusions 12a, 12b and 12c. The protrusions 12a, 12b and 12c are described in more detail in relation to Figure 3 below. The protrusions 12a, 12b and 12c are separated from one another and from the first end 8 of body 2.

again circular cylindrical until it reaches a shoulder 14 leading to an outwardly flared section 16 from which there is a first step 18 and a second step 20. The section of body 2 from shoulder 14 to second end 10 provides a structure for the body 2 to be held in a mounting bracket (not shown) or the like. Typically, the mounting bracket will be of a hard anodised metallic material, typically aluminium. It is to the mounting bracket that the protrusions 12a, 12b and 12c discourage current flow.

The protrusions 12a, 12b and 12c are separated from the bracket mounting structure by a distance substantially greater than the distance from the protrusions to the first end 8. In this case the distance measured in each case to the most distant protrusion.

25

Figure 2 of the drawings that follow is an electrode mounting body substantially similar to that of Figure 1 except that it varies in the dimensions used.

Referring now to Figure 3 of the drawings that follow, there is shown an enlarged view of the section of electrode 2 incorporating the protrusions 12a, 12b, 12c.

Only the protrusion 12a will be described in detail as the other protrusions 12b and 12c are substantially similar.

Considered from first end 8, protrusion 12a comprises an inverted cone 22 that tapers towards the first end 8 with an internally truncated hollow volume 24 whereby the path from the projecting portion of electrode 6 to earth is substantially increased and made significantly more tortuous.

10

20

5

The cones 22 form flared flanges, extending outwardly towards the electrode projecting first end 8 of the body 2.

15 The cone 22 forms a protrusion shoulder 26.

In this example the diameter of the hole 4 for the electrode 6 is about one-third of the diameter of body 2 (measured at a region and which the body 2 constantly is cylindrical). In this example the protrusion shoulders 26 protrude for about half of the diameter of the body 2 (measured at a region at which the body 2 is constantly cylindrical).

25 The external angle A of the cone 22 to the body 2 (where it is of constant diameter for a region) is 130°. The internal angle of the cone (between faces) is 16°.

The protrusions provide a tortuous conductivity pathway 30 from the electrode reducing current loss.

The mounting arrangement described herein is preferably for a pollutant, preferably a particulate removal system

in which a gas stream passes the charged electrode, which charges particulates in the gas stream which can then be separated from the gas stream by electrostatic separation. Such a system incorporating the mounting arrangement described above is described briefly with reference to Figure 4 of the drawings that follow.

Figure 4 show an alternative mounting arrangement embodiment in which similar reference numerals are used for like parts. The annular cones 22 are move inclined and further tapered than the embodiments of Figures 1-3. The diameters of the cones 22 may vary. Where the diameters vary, there will be an increase in diameter from the first end to the second end.

15

5

It will be appreciated that the number, spacing and shape of the protrusions may vary.

Referring to Figure 5 of the drawings that follow, there
is shown an apparatus 102 for diverting pollutants,
especially particulates from gas streams. The apparatus
102 is mounted in a vehicle exhaust (not shown), typically
in a silencer thereof, through which inflowing exhaust gas
enters at 104 and exits at 106.

25

30

The apparatus 102 comprises an outer body 108, typically of sheet steel. Within body 108 there is defined a first expansion chamber 110 defined by internal wall 112 leading to a perforated elongate tubular field tube 114 defining a chamber mounted to outer body 108 by internal walls 112 and 116.

The tube 114 comprises a tube inlet 118 in first expansion chamber 110 and a tube outlet 120 in a second expansion chamber 122 defined in part by internal wall 116. The tube 114 is circular cylindrical and its cross-sectional diameter decreases at a constant rate from the tube inlet 118 to the tube outlet 120. The tube 114 is perforated by a multiplicity of evenly sized and spaced circular holes from the tube inlet 118 to the intersection of tube 114 with internal wall 116. From internal wall 116 to tube outlet 120 the tube 114 is, solid. A major proportion, around 80% of the tube 114 is holes in the perforated region thereof. The tube 114 is substantially porous to gas flow.

10

located about is third expansion chamber 124 15 Third expansion chamber 124 perforated tube 114. defined by internal walls 112 and 116. A further gas flow path is provided from third expansion chamber 124 to second expansion chamber 122 via filter 126 fitted to an outlet 128 in internal wall 116 of third expansion chamber 20 The filter 126 is an electrically regenerative filter such as that available from 3M under part number wired for electrical is 126 filter The SK-1739. regeneration though, for simplicity, this is not shown. The exhaust gas can pass to second expansion chamber 122 25 to apparatus outlet 106.

The electrode 6 is shown in the ceramic electrode holder body 2 and projects into tube 114 along the axis thereof for part of the length of the perforated section thereof. Electrode 6 projects into the part of tube 114 in third expansion chamber 124. Electrode 6 is connected to a high voltage power supply 134 by connection means 136.

It is noted that two gas flow paths are provided between gas inlet 106 and gas outlet 108. First 138 and second 140 gas flow paths 138 and 140 respectively are indicated by respective lines and arrow heads. First flow path 138 follows the following route: inlet 104, first expansion chamber 110, tube 114, second expansion chamber 122 to outlet 106. Second flow path 140 follows the following route: inlet 104, first expansion chamber 110, tube 114, third expansion chamber 124, filter 126, second expansion chamber 122 to outlet 106.

Figure 6 shows the apparatus 108 with the outer body 8 cut-away for clarity.

15

20

25

30

In use, the electrode 2 is charged to 40kV negative polarity. When vehicle exhaust gas enters the tube 114, a substantial proportion of particulates are ionised as they pass the electrode 2. Charged particulates are attracted to the floating earth perforated chamber wall 114. momentum of the particulates and the acceleration acquired from their attraction to tube 114 generally causes them to pass through the perforated wall of tube 114. said that the particulates are diverted into a second gas flow stream separate from the first gas flow stream. filter 126 is in one of the gas flow streams only, here the second gas flow stream. Some of the exhaust gas exits tube outlet 120 following first flow path 138. However, a proportion of the exhaust gas follows second flow path 140 and helps convey the diverted particulates to filter 126. The exhaust gas then passes through filter 126 which collects particulates being conveyed to it by the exhaust gas.

Referring to Figures 7-9 of the drawings that follow, three further embodiments of the present invention are shown, similar to the Figures 5 & 6 embodiment except as set out below. In Figures 7-9 like reference numerals are used for parts similar to the Figures 5 & 6 embodiment.

is of 114 embodiment the tube Figure 7 the In tapering instead of substantially constant diameter The Figure 7 embodiment may not perform as downstream. well as the Figures 5 & 6 embodiment, though it is still believed to be an improvement out known proposals and may be easier to manufacture.

15 In the Figure 8 embodiment the perforations in tube 114 are replaced by four equally spaced longitudinal slots, of which three are visible (at least in part) 146a, 146b and 146c. The slots 146 are porous to gas flow, but only provide gaps through tube 114 for a minor proportion thereof. Thus, particulates diverted towards tube 114 are far less likely to pass therethrough. As a result the more pollutant concentrated gas flow tends to be along first flow path 138 in which, in this embodiment, filter 126 is located.

25

10

Additionally in Figure 8, a catalytic converter 148 is located in the second flow path 140, though it is noted that the apparatus 102 can function upstream and/or downstream of a catalytic converter.

30

Figure 8 also shows a further modification in which a perforated section of tube 114 extends to the mounting arrangement 150 of electrode 130.

The embodiment of Figure 9 operates in a manner substantially similar to that of the Figure 8 embodiment, except that a perforated section 152 of tube 114 is provided for a minor proportion thereof.

Thus both the Figure 8 and 9 embodiments provide gas porous regions only for a minor portion of tube 114.

Referring to Figures 10 and 11 of the drawings that 10 follow, there is shown a gas flow arrangement apparatus 160 for use in a pollutant removal device in which outer The apparatus 160 walls are not shown for clarity. comprises an ionising electrode 162 in an electrode mount electrode partly surrounded by an 15 Electrode 162 extends into an electrode tube 168 which terminates in an outwardly diverging end 170. Spaced from electrode tube 168 is a second gas flow path tube 172 having a generally conically shaped entrance 174 with a The opening 176 is substantially central opening 176. 20 inside the diameter of the walls of electrode tube 168. About tube 172 is a Tube 172 terminates in an exit 178. partly removing for at least filter 180 catalytic pollutants from a gas stream passing therethrough.

25

30

Operation of the embodiment of Figures 10 and 11 is similar to that of the embodiment described above. Exhaust gases, carrying pollutants, enter the apparatus 160 upstream of electrode 162, and pass over hood 166 which serves to help prevent pollutant build up on electrode 162. The electrode 162 is charged to ionise pollutants in the gas flow, which pollutants are therefore attracted to the walls of electrode tube 168 as they flow

downstream, leaving relatively cleaner gas towards the The conical opening of second centre of the flowstream. gas flow path tube 172 serves to help deflect pollutant into a first gas flow path (indicated schematically by arrows labelled 182, while the second gas flow path is The first gas flow indicated by arrows labelled 184). path 182 passes through filter 180, which removes some pollutants, and rejoins second gas flow path 184 through a slot 186 in tube 172 downstream to the filter 100. slot 186 is relatively small compared to the surface area The pressure difference either side of slot of tube 172. 186 is believed to encourage now relatively cleaner gas from the first gas flow path downstream of filter 180 to rejoin the second gas flow path. Second gas flow path 104 passes through second gas flow path tube 172 carrying relatively cleaner gas. The rejoined gas streams, pass out of the apparatus at exit 178.

5

10

15

20

25

30

Referring to Figure 12 of the drawings that follow, an alternative electrode mounting arrangement is shown. Both the electrode mount 164 and electrode hood 166 are formed from a ceramic material.

The electrode mount 164 includes annular protrusions 188 of decreasing diameter towards the distal end 190 thereof. A relatively thinner elongate cylindrical section 192 is provided at the distal end of the mount 164, which increases the electric field in that region externally of the mount 164 when an electrode is active, encouraging bum-back of carbon based deposits. This is believed to result from sparking.

Hood 166 substantially surrounds (except for one end 194) electrode mount 164 and helps reduce deposits on the mount 164. The hood 166 is generally cylindrical, open at one end 194, with the other end having a complementary seating 196 for the electrode mount 164. In use an electrode projects from the open end 194 of hood 166.

It is noted that although the maximum exterior diameter of each generally conically shaped protrusion 83 decreases in a downstream direction, the minimum internal diameters are substantially the same ±10% between protrusions. This is believed to provide additional burn-off pointers if required.

15 Although the first and second gas flow streams are shown separately in the same tube or area of the apparatus, this is for explanatory purposes only and it will be appreciated that in these regions the gas flows are intermingled.

20

25

30

5

10

the embodiments resistive organic barrier of coating may be provided over the inner surface of the tube (eg 114 in Figure 6) downstream of the beginning of the coating is preferably over barrier The substantially all of the inner surface of the tube. coating is TLHB/02 available from Camcoat Performance Coatings of 127 Hoyle Street, Bewsey Industrial Estate, It is believed that Warrington, WA5 5LR, United Kingdom. agglomerated reducing the discharge rate of the particulates along the tube by providing the coating, the particulates are more likely to stay in the vicinity of the tube.

It is noted that there may be a plurality of apparatus as described above in a gas flow path, in series or in parallel.

5 Although preferred embodiment are described above in relation to the diversion of particulates from an exhaust gas flow stream, the apparatus can be used to divert particulates in other gas flow streams. However, it is believed currently that the present invention is of particular benefit when used in an internal combustion engine exhaust gas flow.

Accordingly, embodiments of the present invention can divert particulates from a gas stream, the efficiency thereof being enhanced by providing a porous field tube, and with a particulate removal means, such as the filter described herein, can remove particulates from a gas stream.

The apparatus 102 may be placed upstream or downstream of an exhaust catalytic converter (not shown).

Instead of a d.c. voltage, high frequency a.c. may be usable.

25

30

15

The reader's attention is directed to all papers and documents which are filed concurrently with or previous to this specification in connection with this application and which are open to public inspection with this specification, and the contents of all such papers and documents are incorporated herein by reference.

All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive.

Each feature disclosed in this specification (including any accompanying claims, abstract and drawings), may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.

15

20

10

The invention is not restricted to the details of the foregoing embodiment(s). The invention extend to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.

Claims

- 1. A mounting apparatus for an electrode, the mounting apparatus comprising a body with means for mounting an electrode, whereby in use the body is partly about the electrode and the electrode projects from the body, the apparatus further comprising at least one external protrusion on the body.
- 10 2. A mounting apparatus for an electrode according to claim 1, in which the body is generally cylindrical and the projection is generally radial relative thereto.
- 15 3. A mounting apparatus for an electrode according to claim 1 or claim 2, in which the body has a relatively thinner cylindrical elongate section.
- 4. A mounting apparatus for an electrode according to claim 3, in which the relatively thinner cylindrical elongate section is towards the distal end of the body.
- 5. A mounting apparatus for an electrode according to any preceding claim, in which the at least one protrusion is annular (ie 360°) about the body.
- 6. A mounting apparatus for an electrode according to any preceding claim, in which the body and the at least one protrusion are a one piece structure.
 - 7. A mounting apparatus for an electrode according to any preceding claim, in which the body at least

partly comprises a high electrical resistance material.

- 8. A mounting apparatus for an electrode according to claim 7, in which that part of the body to be in contact with the electrode comprises a high electrical resistance material.
- A mounting apparatus for an electrode according to
 any preceding claim, in which the body is substantially circular cylindrical.
- 10. A mounting apparatus for an electrode according to any one of claims 1 to 8, in which the nonprotruding regions are substantially cylindrical.
 - 11. A mounting apparatus for an electrode according to any preceding claim, in which the at least one protrusion is generally conical externally.
- 12. A mounting apparatus for an electrode according to claim 11, in which the at least one protrusion is at least partly hollow.
- 25 13. A mounting apparatus for an electrode according to claim 12, in which the at least one protrusion is rebated.
- 14. A mounting apparatus for an electrode according to any one of claims 11 to 13, in which the protrusions are tapered.

20

- 15. A mounting apparatus for an electrode according to any preceding claim, in which all of the body comprises substantially the same material.
- 5 16. A mounting apparatus for an electrode according to any preceding claim, in which there are a plurality of protrusions spaced along the body.
- 17. A mounting apparatus for an electrode according to claim 16, in which the protrusions are substantially similar.
- 18. A mounting apparatus for an electrode according to claim 16 or claim 17, in which the protrusions are equally spaced along the body.
- 19. A mounting apparatus for an electrode according to any preceding claim, in which the body includes a hole therethrough for mounting an electrode therein.
 - 20. A mounting apparatus for an electrode according to claim 19, in which the hole is longitudinal.
- 25 21. An electrode mounting apparatus comprising a mounting apparatus according to any one of claims 1 to 20, the apparatus further comprising an electrode about which the body-is located.
- 30 22. An electrode mounting apparatus according to claim 21, in which the electrode is mounted from one end only.

23. An electrode mounting apparatus according to claim 21 or claim 22, in which the electrode projects from an end of the body for forming a corona discharge.

5

24. A pollutant removal system for at least partly removing at least one pollutant from a gas flow stream, the system comprising an electrode mounting apparatus according to any preceding claim.

10

- 25. A pollutant removal system according to claim 24, in which the system comprises means for diverting pollutants to a pollutant remover.
- 15 26. A pollutant removal system according to claim 24 or claim 25, in which the system comprising means for charging particulates in the gas stream and a tube through which the gas stream at least partly flows, whereby the tube is at least partly porous to the gas stream and the apparatus additionally comprises means for collecting at least one pollutant.
- 27. A pollutant removal system according to claim 27, in which the tube is at least partly about the charging means.
 - 28. A pollutant removal system according to claim 27, in which the charging means comprises an electrode.
- 30 29. A pollutant removal system according to any one of claims 24 to 28, in which the tube is perforated.

- 30. A pollutant removal system according to claim 29, in which the tube comprises a plurality of holes therethrough.
- 5 31. A pollutant removal system according to claim 30, in which the holes are evenly spaced.
 - 32. A pollutant removal system according to claim 30 or claim 31, in which the holes are evenly sized.

33. A pollutant removal system according to any one of claims 29 to 32, in which the perforated region of the tube is substantially annular.

- 15 34. A pollutant removal system according to any one of claims 29 to 33, in which the perforated region of the tube extends for a substantial length thereof.
- 35. A pollutant removal system according to any one of claims 24 to 29, in which the tube comprises at least one slot therethrough.
 - 36. A pollutant removal system according to claim 35, in which a plurality of slots is provided.
 - 37. A pollutant removal system according to claim 35 or claim 36, in which the slots are substantially evenly distributed about the tube.

25

30 38. A pollutant removal system according to any one of claims 35 to 37, in which the at least one slot runs longitudinally along the tube.

- A pollutant removal system according to claim 26, 39. in which the tube is circular in cross-section.
- A pollutant removal system according to claim 26, 40. in which the tube comprises an inlet and an outlet. 5
- A pollutant removal system according to claim 40, 41. in which the cross-sectional area the tube of decreases along its length from the input to the output thereof. 10
 - A pollutant removal system according to any one of 42. claims 24 to 41, in which the electrode is mounted at one end thereof only.
- A pollutant removal system according to any one of 43. claims 24 to 42, in which there is a first gas flow path from an apparatus gas inlet to an apparatus gas outlet and a second gas flow path from the apparatus gas inlet to the apparatus gas outlet. 20
 - A pollutant removal system according to claim 43, 44. in which the first and second gas flow paths are in common for a part thereof.
- 25 A pollutant removal system according to claim 43 or 45. claim 44, in which a filter is located in the second gas flow path.
- A pollutant removal system according to any one of 46. 30 claims 43 to 45, in which the tube is located in the first and second gas flow paths.

15

- 47. A pollutant removal system according to any one of claims 43 to 46, in which the arrangement comprises a gas flow tube for the second flow path, which gas flow tube comprises a slot for the first gas flow path to join the second gas flow path.
- 48. A pollutant removal system according to any one of claims 43 to 47, in which the first gas flow path splits from the second gas flow path at a separator for diverting pollutant to the pollutant removing means.
- 49. A pollutant removal system according to claim 48, in which the separator is generally conically shaped with an opening for one of the gas flow paths therethrough.
- 50. A mounting apparatus for an electrode, which apparatus is substantially as described herein, with reference to the accompanying drawings.
 - 51. A pollutant removal system substantially as described here, with reference to the accompanying drawings.

25

5

Ravae 4

JANGE 8

158/YO

FIGURE !

Figure 12

The state of the s

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.