Math 421

Friday, September 12

Announcements

- Homework 1 due at 11:59 pm
 - Don't forget the collaboration statement
 - You may work with others, consult outside resources if needed, but all written work must be your own.
 - Follow the uploading instructions on Gradescope – including indicating on which pages of your document the problem solutions can be found.
 - Practice good proof writing techniques!

Sets – Definition

Definition: A **set**, S, is an unordered collection of **elements**.

Notation -

```
x \in S - x is an element of S
```

 $x \notin S - x$ is not an element of S

 $T \subseteq S$ – every element in the set T is also in the set S i.e. $x \in T$ implies $x \in S$.

Examples:

Some Important Sets

- lacktriangle $\mathbb R$ denotes the **real numbers**
- Q denotes the **rational numbers** numbers of the form $\frac{p}{q}$ where p, q are integers and $q \neq 0$.
- Z denotes the integers
- N denotes the natural numbers
- Ø denotes the **empty set** the set with no elements

True or False?

If $x \in \emptyset$, then x is an odd number and an even number.

Set Builder Notation

Small, finite sets can be denoted using braces { }.

```
Example: {2, 3, 5, 7}
```

Larger finite, or infinite, sets can also be described by properties of their elements via the notation

```
{[variable]:[properties]}.
```

Examples:

• $\{n:n\in\mathbb{N} \text{ and } n \text{ is odd}\}$

• $\{x: x \in \mathbb{R} \text{ and } 1 \le x < 3\}$

Set Operations

Let A and B be two subsets of a set S.

• **Union** - $A \cup B = \{x \in S : x \in A \text{ or } x \in B\}$

• Intersection - $A \cap B = \{x \in S : x \in A \text{ and } x \in B\}$

More Set Operations

Let A and B be two subsets of a set S.

• Complement - $A^c = \{x \in S : x \notin A\}$

• Set Difference - $B - A = \{x \in S : x \in B \text{ and } x \notin A\}$

Example – Proving Subset Relation

Theorem: If A and B are subsets of a set S, then $A \cap B \subseteq A \cup B$. Discussion.

Proof.

True or False

1.
$$\{1, 1, 2, 3\} = \{1, 2, 3\}$$

2.
$$\{3, 2, 1\} = \{1, 2, 3\}$$

Q: How do we determine if two sets are equal?

Chapter 1: Introduction

Section 1: The set N of Natural Numbers

The Natural Numbers

The natural numbers $\mathbb{N} = \{1, 2, 3, ...\}$ are the *unique* mathematical object satisfying five axioms (listed in the textbook), including:

Axiom N5: If $S \subseteq \mathbb{N}$ is a subset where

- 1. $1 \in S$,
- 2. $n + 1 \in S$ whenever $n \in S$,

then $S = \mathbb{N}$.

Informal justification:

 $1 \in S$, so $2 = 1 + 1 \in S$, so $3 = 2 + 1 \in S$, so...

Mathematical Induction

Used when – you need to prove a statement for a discrete set of cases, i.e. prove P_n is true for all $n \in \mathbb{N}$.

Process – Let $P_1, P_2, P_3, ...$ be a list of statements that may or may not be true. Show

 (I_1) Basis Step: P_1 is true

(I₂) Inductive Step: If P_n is true, then P_{n+1} is true.

Example 1

Theorem: If $n \in \mathbb{N}$, then

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

What proof technique should we use? Why?

ightharpoonup Do you believe the statement? Verify for n=2,3.

Inductive Proof Structure

 P_n :

Base Case:

Inductive Step:

Activity - Proof

Theorem: For positive integers n,

$$\sum_{j=1}^{n} (2j-1) = 1+3+5+\dots+(2n-1) = n^2$$

What proof technique should we use? Why?

ightharpoonup Do you believe the statement? Verify for n=2,3.

Activity – Inductive Proof Structure

 P_n :

Base Case:

Inductive Step: