Возможные решения задач. 9 класс

Вариант 1

Задача 1. Камеры

Обозначим длину дистанции за L. Тогда скорость пятого бегуна равна $v_5=\frac{L}{\Delta t}$, четвёртого — $v_4=\frac{L}{2\Delta t},\ldots$, первого — $v_1=\frac{L}{5\Delta t}$. По условию, тренер пробежал дистанцию L. До старта второго бегуна он бежал со скоростью $\frac{v_1}{\alpha}$, от старта второго до старта третьего — со скоростью $\frac{v_2}{\alpha}$ и так далее:

$$L = \frac{v_1}{\alpha} \Delta t + \frac{v_2}{\alpha} \Delta t + \frac{v_3}{\alpha} \Delta t + \frac{v_4}{\alpha} \Delta t + \frac{v_5}{\alpha} \Delta t = \left(\frac{1}{5} + \frac{1}{4} + \frac{1}{3} + \frac{1}{2} + 1\right) \frac{L}{\alpha}$$

$$\alpha = \frac{1}{\frac{1}{5} + \frac{1}{4} + \frac{1}{3} + \frac{1}{2} + 1} = \frac{60}{137}$$

Задача 2. Качели

У котла есть 2 режима работы: 1) нагреватель работает постоянно, температура в котле меньше некоторого T_m , 2) температура в котле равна T_m , нагреватель работает на поддержание температуры (непостоянно). Напишем уравнение теплового баланса в первом режиме для промежутка времени Δt :

$$N\Delta mc(T - T_0) = P\Delta t$$

где N — количество людей, принимающих душ, Δm — масса горячей воды, израсходованной одним человеком за время $\Delta t, c$ — теплоёмкость воды, T_0 и T — температуры на входе и выходе котла соответственно, P — мощность нагревателя. Выражая T и замечая, что расход воды одним человеком $\frac{\Delta m}{\Delta t} = \mu$ — постоянная величина:

 $T(N) = T_0 + \frac{P}{\mu c} \frac{1}{N} = 10^{\circ} \text{C} + \frac{k}{N}$

Два случая, представленные в условии (N=3 и N=7), не удовлетворяют этой зависимости, значит один из них соответсвует второму режиму работы котла. Ясно, что это случай N=3, так как чем меньше N, тем больше T, при этом $T \leq T_m$. Следовательно, $T_m=T(3)=80$ °C, $k=7(T(7)-T_0)=350$ °C. Найдём температуру в котле, когда душ принимают 6 человек:

$$T(6) = 10^{\circ} \text{C} + \frac{350^{\circ} \text{C}}{6} = 68\frac{1}{3}^{\circ} \text{C}$$

Это значение меньше T_m , а значит можно пользоваться полученной зависимостью T(N).