第三章复习题

一. 选择题

1. 下列函数中在给定的区间上满足罗尔中值定理条件的是()

(A)
$$f(x) = (x-1)^{\frac{3}{2}}$$
, $[0,2]$; (B) $f(x) = x^2 - 4x + 3$, $[1,3]$;

(B)
$$f(x) = x \cos x$$
, $[0,\pi]$; (D) $f(x) = \begin{cases} x+1, & x < 3 \\ 1, & x \ge 3. \end{cases}$, $[0,3]$.

2. 若函数 f(x) 在 x_0 处有 $f'(x_0) > 0$,则(

(A) f(x)在 x_0 的某邻域内单调增加; (B) $f(x_0) \neq 0$; (C) f'(x)在 x_0 处连续; (D) f(x)在 x_0 的某邻域内不一定单调

- 3. 对任意 $x \neq 0$,下列不等式正确的是() (A) $e^{-x} < 1 x$; (B) $e^{-x} < 1 + x$; (C) $e^{-x} > 1 x$; (D) $e^{-x} > 1 + x$.
- **4.** 设函数 y = f(x) 在点 x_0 处满足条件 $f'(x_0) = f''(x_0) = 0$, $f'''(x_0) > 0$, 则下列结论中正确的是(
- (A) $f(x_0)$ 是 f(x) 的极大值; (B) $f(x_0)$ 是 f(x) 的极小值; (C) $f'(x_0)$ 是 f'(x) 的极大值;
- (D) $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点.

5. 设
$$f(x)$$
 二阶连续可导,且 $f'(0) = 0$, $\lim_{x \to 0} \frac{f''(x)}{|x|} = 1$,则有()

- (A) f(0) 是 f(x) 的极大值;
- (B) f(0) 是 f(x) 的极小值;
- (C) (0, f(0)) 是曲线 y = f(x) 的拐点;
- (D) f(0) 不是 f(x) 的极值, (0, f(0)) 也不是曲线 y = f(x) 的拐点.

二. 填空题

7.
$$\lim_{x \to 0^+} x (\ln x)^2 =$$
_____.

8. $a = _$ ______时,函数 $y = a \sin x + \frac{\sin 3x}{3}$ 在 $x = \frac{\pi}{3}$ 处有极值.

9. 曲线
$$y = (x^2 - 4)^{\frac{1}{3}}$$
 的拐点个数为______.

10.
$$\frac{1}{3+x}$$
的 n 阶麦克劳林展开式为(带皮亚诺型余项)_____.

三. 简答题

11. 设
$$f(x)$$
 二次可微,且 $f(0) = 0$, $f'(0) = 1$, $f''(0) = 2$, 求 $\lim_{x \to 0} \frac{f(x) - x}{x^2}$.

12. 计算极限
$$\lim_{x\to\infty} x^2 \left(1 - x\sin\frac{1}{x}\right)$$
.

13. 求数列
$$\left\{\frac{\sqrt{n}}{n+100}\right\}$$
的最大项.

14. 设 $f(x) = \ln(1+x), \forall x \in (-1,1)$, 由 拉 格 朗 日 中 值 定 理 , $\exists \theta \in (0,1)$ 使 得

$$\ln(1+x) - \ln 1 = \frac{1}{1+\theta x} \cdot (x-0), \quad \Re \lim_{x\to 0} \theta.$$

15. 设 f(x), g(x) 在 [a,b] 可导,且 f'(x) > g'(x),当 a < x < b 时下列三个结果哪个正确? 试证明你的判断.

(A)
$$f(x) > g(x)$$
; (B) $f(x) + g(a) > f(a) + g(x)$; (C) $f(x) + g(b) > f(b) + g(x)$.

四. 综合题

16. 讨论方程 $\ln x = ax$ 有几个实根.

17. 求函数 $y = \frac{x^3}{(x-1)^2}$ 的单调区间及极值,并求该函数图形的拐点和渐近线.

18. 设
$$f(x)$$
 二阶连续可导,且 $\lim_{x\to 0} \frac{f(x)}{x} = 0$, $f(1) = 0$, 试证: $\exists \xi \in (0,1)$, 使得 $f''(\xi) = 0$.

19. (1) 设 f(x) 在区间[0,b]上连续,在(0,b)内可导,f(0)=0,f(b)>0. 试证对于任意数值 A,0 < A < f(b),存在 $c \in (0,b)$ 及 $\xi \in (0,c)$,使得 $f'(\xi)c = A$.

(2) 设 $\varphi(x)$ 在[0,1]上连续,在(0,1)内可导,且 $\varphi(0)=0,\varphi(1)=1$,证明:存在不同的

$$\xi, \eta \in (0,1)$$
,使得 $\frac{1}{\varphi'(\xi)} + \frac{2}{\varphi'(\eta)} = 3$.