Improved Progressive BKZ Algorithms and Their Precise Cost Estimation by Sharp Simulator

Yuncong Zhang

April 10, 2020

- Introduction
- 2 Preliminaries
 - Mathematical Definitions
 - Enumeration Algorithm
 - LLL Algorithm
- Previous BKZ Algorithms
 - Basic BKZ Algorithm
 - BKZ 2.0
 - Progressive BKZ
- 4 Improved Progressive BKZ
 - Optimizing Parameters
 - Estimating Enumeration Cost
 - Blocksize Strategy
 - BKZ Rounds
 - Pre/Post-Processing

The Shortest Vector Problem (SVP):

- Given the lattice $L = L(\vec{b}_1, \dots, \vec{b}_n)$
- Find the shortest non-zero vector $\vec{v}^* \in L$

Current algorithms for solving SVP:

Blockwise: LLL, BKZ

Enumeration

Seiving

Blockwise algorithms:

- Efficiency: polynomial time for appropriate parameters
- Quality: exponential approximation factor

Enumeration algorithms:

- Efficiency: exponential
- Quality: exact solution

Relationships:

- Blockwise algorithms invokes enumeration algorithm on local blocks
- Enumeration algorithm requires preprocessing by blockwise algorithms

BKZ Algorithms:

- Basic BKZ (proposed by C. P. Schnorr in 1994)
- BKZ 2.0
- Progressive BKZ

Preliminaries

- Mathematical Definitions
- Enumeration Algorithm
- LLL Algorithm

Gram-Schmidt Basis for $B = (\vec{b}_1, \dots, \vec{b}_n)$:

- $B^* := (\vec{b}_1^*, \cdots, \vec{b}_n^*)$
- $\bullet \ \vec{b}_i^* := \vec{b}_i \sum_{j=1}^{i-1} \mu_{ij} \cdot \vec{b}_j^*$
- $\mu_{ij} := \langle \vec{b}_i, \vec{b}_j^*
 angle / \| \vec{b}_j^* \|^2$ called GS coefficients

Properties:

- $\operatorname{vol}(L) := \det(L) := \det(B) = \det(B^*) = \prod_{i=1}^n \|\vec{b}_i^*\|$
- Gram-Schmidt Assumption (GSA): $\|\vec{b}_i^*\|^2/\|\vec{b}_1\|^2 = r^{i-1}$, where $r \in [3/4,1)$ is GSA constant

Figure: Gram-Schmidt orthogonalization and volume of lattice

Projection $\pi_i: \mathbb{R}^n o \operatorname{span}(\vec{b}_1, \cdots, \vec{b}_{i-1})^{\perp}$

$$\pi_i(\mathbf{v}) := \vec{\mathbf{v}} - \sum_{j=1}^{i-1} \langle \vec{\mathbf{v}}, \vec{b}_j^* \rangle \vec{b}_j^* / \|\vec{b}_j^*\|$$
 (1)

which effectively removes the proportion of the vector inside the space span($\vec{b}_1, \dots, \vec{b}_{i-1}$).

Remark

Gram-Schmidt reduction can be rewritten as: $\vec{b}_i^* = \pi_i(\vec{b}_i)$

Projective local block

$$L_{[i:j]} := \pi_i(L(\vec{b_i}, \vec{b_{i+1}}, \cdots, \vec{b_j}))$$
 (2)

Use $B_i := L_{[i:i+\beta-1]}$ when the blocksize β is clear

Figure: Projection π_2 on a lattice

Gaussian Huristic: for convex set S

- $|S \cap L| \approx \operatorname{vol}(S)/\operatorname{vol}(L)$
- $\operatorname{GH}(L) := (\operatorname{vol}(L)/V_n(1))^{1/n}$ approximation of $\lambda_1(L)$

Remark

 $V_n(R)$ is the volume of the n-dimensional ball.

$$V_n(R) = R^n \cdot \frac{\pi^{n/2}}{\Gamma(n/2+1)}$$

Modified Gaussian heuristic for local blocks:

- For local blocks B_i and small blocksize β , $GH(B_i)$ is often smaller than $\lambda_1(L)$
- Approximates $\lambda_1(L)$ with $\tau_i GH(B_i)$ instead

where

$$\tau_i := \frac{\|\vec{b}_{n-i+1}^*\|}{V_i(1)^{-1/i} \cdot \prod_{j=n-i+1}^n \|\vec{b}_i^*\|^{1/i}}$$

is called modified Gaussian heuristic constant.

Enumeration Algorithm

Given a lattice basis $B=(\vec{b}_1,\cdots,\vec{b}_n)$, finds the shortest vector \vec{v}^*

$$\vec{v}^* = a_1 \vec{b}_1 + a_2 \vec{b}_2 + \dots + a_n \vec{b}_n \qquad \forall i \in [n]$$

Observation:

- $\|\pi_i(a_i\vec{b}_i + \cdots + a_n\vec{b}_n)\| = \|\pi_i(\vec{v}^*)\| \le \|\vec{v}^*\| \approx R_i$
- For i = n, $|a_n| \le R_n / \|\vec{b}_n^*\|$
- Fix a_n, \dots, a_{i+1} , then $|a_i|$ is bounded

Enumeration Algorithm

Searching tree:

- Root: zero vector 0
- Children of \vec{v} (at depth k): $\vec{v} + a_{n-k}\vec{b}_{n-k} \quad \forall a_{n-k} \in \mathbb{Z}$ bounded by R_{n-k} projected by $\pi_{n-k+1}(\cdot)$
- Nodes at depth k: $\forall \vec{v} \in \mathbb{R}^n$ with $\|\pi_k(\vec{v})\|$ bounded by R_{n-k+1}

Enumeration Algorithm

Figure: Searching Tree

LLL Algorithm

Previous BKZ Algorithms

Basic BKZ Algorithm

BKZ 2.0

Progressive BKZ

Optimizing Parameters
Sistimating Enumeration Cost
Blocksize Strategy
RZ Rounds
Pre/Post-Processing

Improved Progressive BKZ

Optimizing Parameters
Estimating Enumeration Cost
Blocksize Strategy
BKZ Rounds
Pre/Post-Processing

Optimizing Parameters

Estimating Enumeration Cost

Blocksize Strategy

Optimizing Parameters
Estimating Enumeration Cost
Blocksize Strategy
BKZ Rounds
Pre/Post-Processing

BKZ Rounds

Optimizing Parameters
Estimating Enumeration Cost
Blocksize Strategy
BKZ Rounds
Pre/Post-Processing

Pre/Post-Processing

Introduction Preliminaries Previous BKZ Algorithms Improved Progressive BKZ Optimizing Parameters
Estimating Enumeration Cost
Blocksize Strategy
BKZ Rounds
Pre/Post-Processing

Q/A