Corso di Laurea in Informatica Algebra. a.a. 2023-24. Canale 1. Compito a casa del 16/11/2023

Esercizio 1. Consideriamo \mathbb{Z}_8 . Applicando il teorema fondamentale di omomorfismo caratterizzare tutti i gruppi quoziente di \mathbb{Z}_8 .

Suggerimento: ricordate la struttura dei sottogruppi di \mathbb{Z}_8 e definite opportune applicazioni $\mathbb{Z}_8 \to \mathbb{Z}_8$.

Esercizio 2. Dimostrare che il gruppo degli automorfismi del gruppo di Klein V_4 è isomorfo a S_3 .

Suggerimento: osserviamo preliminarmente che un automorfismo trasforma sempre l'identità nell'identità e quindi manda l'insieme costituito dai restanti 3 elementi di V_4 in sé stesso. Esiste allora una mappa naturale $S_3 \to \operatorname{Aut}(V_4)$ che è un isomorfismo di gruppi.

Esercizio 3. Per le seguenti permutazioni di S_8 determinare : inversa, decomposizione in cicli disgiunti, ordine, parità.

Esercizio 4. Sia $\sigma = (13564) \in S_9$. Sia $\tau = (45)(842)(793) \in S_9$.

Determinare σ^{-1} e τ^{-1} .

Determinare $\tau \sigma \tau^{-1}$.

Determinare (se esiste) $\tau \in S_9$ tale che $\beta = \tau \alpha \tau^{-1}$ con:

- $\alpha = (4657)(98123)$ $\beta = (5746)(123)(89)$:
- $\alpha = (1357)$ $\beta = (2468)$

Esercizio 5. Dimostrare che esiste in S_{30} un sottogruppo di ordine 209. Suggerimento: 30 = 11 + 19; $209 = 11 \cdot 19$.

1