Cálculos

En los Ejercicios 1 a 5, indique si la función ν dada es una norma euclidiana para el dominio integral dado

- 1. La función ν para \mathbb{Z} dada por $\nu(n) = n^2$ para $n \neq 0$ en \mathbb{Z} .
 - **Solución:** Sí, es una norma euclidiana. Para ver esto, recordemos que $|\cdot|$ es una norma euclidiana en \mathbb{Z} . Para la Condición 1, encontramos q y r tales que a=bq+r donde r=0 o |r|<|b|. Entonces, seguramente tenemos $\nu(r)=0$ o $\nu(r)=r^2< b^2=\nu(b)$, porque r y b son enteros. Para la Condición 2, note que $\nu(a)=a^2\leq a^2b^2=\nu(ab)$ para a y b no nulos, porque a y b son enteros.
- 2. La función ν para $\mathbb{Z}[x]$ dada por $\nu(f(x)) = (\text{grado de } f(x))$ para $f(x) \neq 0$ en $\mathbb{Z}[x]$.

Solución: No, ν no es una norma euclidiana. Sea a=x y b=2x en $\mathbb{Z}[x]$. No existen $q(x), r(x) \in \mathbb{Z}[x]$ que satisfagan x=(2x)q(x)+r(x) donde el grado de r(x) es menor que 1.

3. La función ν para $\mathbb{Z}[x]$ dada por $\nu(f(x)) =$ (el valor absoluto del coeficiente del término de mayor grado no nulo de f(x)) para $f(x) \neq 0$ en $\mathbb{Z}[x]$.

Solución: No, ν no es una norma euclidiana. Sea a=x y b=x+2 en $\mathbb{Z}[x]$. No existen $q(x), r(x) \in \mathbb{Z}[x]$ que satisfagan x=(x+2)q(x)+r(x) donde el valor absoluto del coeficiente del término de mayor grado en r(x) es menor que 1.

4. La función ν para \mathbb{Q} dada por $\nu(a) = a^2$ para $a \neq 0$ en \mathbb{Q} .

Solución: No, no es una norma euclidiana. Sea a=1/2 y b=1/3. Entonces $\nu(a)=(1/2)^2=1/4>1/36=\nu(1/6)=\nu(ab)$, por lo que se viola la Condición 2.

5. La función ν para \mathbb{Q} dada por $\nu(a) = 50$ para $a \neq 0$ en \mathbb{Q} .

Solución: Sí, es una norma euclidiana, pero no es útil. Sea $a,b \in \mathbb{Q}$. Si $b \neq 0$, sea q = a/b. Entonces a = bq + 0, lo que satisface la Condición 1. Para la Condición 2, si tanto a como b son no nulos, entonces $\nu(a) = 50 \leq 50 = \nu(ab)$.

6. Refiriéndose al Ejemplo 46.11, exprese realmente el mcd 23 en la forma $\lambda(22,471) + \mu(3,266)$ para $\lambda, \mu \in \mathbb{Z}$.

Solución: Tenemos 23 = 3(138) - 1(391), pero 138 = 3,266 - 8(391), entonces

$$23 = 3[3, 266 - 8(391)] - 1(391) = 3(3, 266) - 25(391).$$

Ahora 391 = 7(3, 266) - 22,471, entonces

$$23 = 3(3,266) - 25[7(3,266) - 22,471] = 25(22,471) - 172(3,266).$$

7. Encuentre un mcd de 49,349 y 15,555 en \mathbb{Z} .

Solución: Realizando el algoritmo de la división, obtenemos

$$49,349 = (15,555)3 + 2,684,$$

$$15,555 = (2,684)6 - 549,$$

$$2,684 = (549)5 - 61,$$

$$549 = (61)9 + 0,$$

entonces el mcd es 61.

8. Siguiendo la idea del Ejercicio 6 y refiriéndose al Ejercicio 7, exprese el mcd positivo de 49,349 y 15,555 en \mathbb{Z} en la forma $\lambda(49,349) + \mu(15,555)$ para $\lambda, \mu \in \mathbb{Z}$.

Solución: Tenemos 61 = 5(549) - 2,684, pero 549 = 6(2,684) - 15,555, entonces

$$61 = 5[6(2,684) - 15,555] - 2,684 = 29(2,684) - 5(15,555).$$

Ahora 2,684 = 49,349 - 3(15,555), entonces

$$61 = 29[49, 349 - 3(15, 555)] - 5(15, 555) = 29(49, 349) - 92(15, 555).$$

9. Encuentre un mcd de $x^{10} - 3x^9 + 3x^8 - 11x^7 + 11x^6 - 11x^5 + 19x^4 - 13x^3 + 8x^2 - 9x + 3$ v

Solución: Usamos el algoritmo de la división.

$$x^{10} - 3x^9 + 3x^8 - 11x^7 + 11x^6 - 11x^5 + 19x^4 - 13x^6 - 3x^5 + 3x^4 - 9x^3 + 5x^2 - 5x + 2$$

$$= x^4 - 2x$$

$$x^{10} - 3x^9 + 3x^8 - 9x^7 + 5x^6 - 5x^5 + 2x^4$$

$$-(x^4 - 2x)(x^6 - 3x^5 + 3x^4 - 9x^3 + 5x^2 - 5x + 2)$$

$$= -2x^7 + 6x^6 - 6x^5 + 17x^4 - 13x^3 + 8x^2 - 9x + 3$$

$$\div x^6 - 3x^5 + 3x^4 - 9x^3 + 5x^2 - 5x + 2$$

$$= -2x$$

$$-2x^7 + 6x^6 - 6x^5 + 18x^4 - 10x^3 + 10x^2 - 4x$$

$$-(-2x)(x^6 - 3x^5 + 3x^4 - 9x^3 + 5x^2 - 5x + 2)$$

$$= -x^4 - 3x^3 - 2x^2 - 5x + 3$$

$$\div x^6 - 3x^5 + 3x^4 - 9x^3 + 5x^2 - 5x + 2$$

$$= -x^4 - 3x^3 - 2x^2 - 5x + 3$$

$$\div x^6 - 3x^5 + 3x^4 - 9x^3 + 5x^2 - 5x + 2$$

$$= 1/x$$

$$-x^4 - 3x^3 - 2x^2 - 5x + 3$$

$$\div x^4 - 3x^3 + 3x^2 - 5x + 2$$

$$= -x^2 + 6x - 19$$

$$\div x^2 - 6x + 19$$

$$= x$$

$$\div x^3 + 2x - 1$$

Un mcd es $x^3 + 2x - 1$.

10. Describa cómo se puede usar el algoritmo euclidiano para encontrar el mcd de n miembros a_1, a_2, \ldots, a_n de un dominio euclidiano.

Solución: Use el algoritmo euclidiano para encontrar el mcd d_2 de a_2 y a_1 . Luego úselo para encontrar el mcd d_3 de a_3 y d_2 . Luego úselo nuevamente para encontrar el mcd d_4 de a_4 y d_3 . Continúe este proceso hasta encontrar el mcd d_n de a_n y d_{n-1} . El mcd de los n miembros a_1, a_2, \ldots, a_n es d_n .

11. Usando su método ideado en el Ejercicio 10, encuentre el mcd de 2178, 396, 792 y 726.

Solución: Usamos la notación de la solución del ejercicio anterior con $a_1=2178$, $a_2=396$, $a_3=792$ y $a_4=726$. Tenemos 2178=5(396)+198 y 396=2(198)+0, por lo que $d_2=198$. Tenemos 792=4(198)+0 así que $d_3=198$. Tenemos 726=3(198)+132, 198=1(132)+66, y 132=2(66)+0. Así, el mcd de 2178, 396, 792 y 726 es $d_4=66$.

Bibliografía

- 1. John B. Fraleigh, Neal E. Brand. A First Course in Abstract Algebra, 7th Edition, Pearson.
- 2. Thomas W. Judson. Abstract Algebra, Theory and Applications, Stephen F. Austin State University.