ECON4570/6560: Problem Set 4

Due by 11:59pm on Nov 30, 2024.

1. Consider observations (Y_{it}, X_{it}) from the linear panel data model

$$Y_{it} = X_{it}\beta_1 + \alpha_i + \lambda_i t + u_{it},$$

where $t = 1, \dots, T$; $i = 1, \dots, n$; and $\alpha_i + \lambda_i t$ is an unobserved individual specific time trend that potentially correlated with X_{it} . How would you estimate β_1 consistently? Please write down your procedure in details.

2. Suppose we have the following AR(2) process

$$y_t = 0.3y_{t-1} + 0.1y_{t-2} + \varepsilon_t,$$

where $\varepsilon_t \backsim WN(0,1)$

- (a) Determine whether y_t is weakly stationary? Please justify your answer.
- (b) Compute $E(y_t)$, $Var(y_t)$ and $Cov(y_t, y_{t-k})$ for k = 1, 2.
- (c) Compute the ACF ρ_k for k = 1, 2.
- (d) Compute the PACF a_{kk} for k = 1, 2.
- 3. Suppose we have the following AR(1) process

$$y_t = 2 + y_{t-1} + \varepsilon_t,$$

where $\varepsilon_t \backsim WN(0,1)$ for all $t, y_0 \backsim WN(0,1)$ and is independent of ε_t for all t,

- (a) Compute $E(y_t)$, $Var(y_t)$ and $Cov(y_t, y_{t-k})$ for k = 1, 2.
- (b) Compute the ACF ρ_k for k = 1, 2.
- (c) Compute the PACF a_{kk} for k = 1, 2.