# AUTOMATY A GRAMATIKY

#### **Pavel Surynek**

Univerzita Karlova v Praze

Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky

#### Nedeterminismus

#### **Nedeterministický** konečný automat

- $\triangle$  A = (Q,X, $\delta$ ,S<sub>0</sub>,F)
  - Q konečná neprázdná množina stavů
  - X konečná neprázdná abeceda
  - δ: Q×X  $\rightarrow$  2<sup>Q</sup> přechodová funkce, kde 2<sup>Q</sup> je množina všech podmnožin Q
  - S₀⊆Q množina počátečních stavů
  - F⊆Q množina přijímajících stavů
- popis analogicky k deterministické verzi
  - stavový diagram, tabulka
- slovo  $w=x_1x_2...x_n$ , kde  $x_i \in X$  pro i=1,2,...,n
  - posloupnost q<sub>0</sub>,q<sub>1</sub>,...q<sub>n</sub>, kde q<sub>i</sub>∈Q pro j=0,1,...,n je **výpočet** NKA A nad slovem w, jestliže  $q_0 \in S_0$  a  $q_i \in \delta(q_{i-1}, x_i)$  pro i=1,2,...,n
    - navíc je to výpočet přijímající, když q<sub>n</sub>∈F
  - L(A) = {w | w∈X\* ∧ existuje přijímající výpočet A nad w}
    - aby bylo w přijato, stačí "uhádnout" přijímající výpočet
      - idea: "NKA hádá vždy správně"
    - $K_n = \{ w \mid w \in \{a,b\}^* \land (\exists u,v \in \{a,b\}^*)[w = ubv \land |v| = n-1] \}$ , pro n=1,2,...
      - snadno lze zkonstruovat NKA A<sub>n</sub>, že L(A<sub>n</sub>)=K<sub>n</sub>

#### Souvislost s deterministickým KA (1)

- Nedeterministické KA přijímají regulární jazyky
  - □ Jazyk přijímaný (deterministickým) konečným automatem A = (Q,X, $\delta$ ,q<sub>0</sub>,F) je přijímán nedeterministickým konečným automatem A<sup>n</sup> = (Q,X, $\delta$ <sup>n</sup>,{q<sub>0</sub>},F), kde
    - $\delta^n(q,x)=\{\delta(q,x)\}$ , pro  $q\in Q$  a  $x\in X$
  - uvažujme NKA A =  $(Q,X,\delta,S_0,F)$ 
    - rozšířená přechodová funkce u NKA  $\delta^*: 2^Q \times X^* \rightarrow 2^Q$ , kde

      - $\delta^*(\Sigma, w) = \bigcup_{q \in \delta^*(\Sigma, v)} \delta(q, x)$  pro  $\Sigma \subseteq Q$  a  $w \in X^*$ , kde w = vx pro  $v \in X^*$  a  $x \in X$
    - pro w∈X\* platí, že w∈L(A), jestliže  $\delta^*(S_0, w) \cap F \neq \emptyset$

#### Souvislost s deterministickým KA (2)

- NKA nepřijímají nic víc než regulární jazyky
  - □ Jazyk přijímaný nedeterministickým KA A =  $(Q,X,\delta,S_0,F)$  je přijímán deterministickým KA A<sup>d</sup>=(2<sup>Q</sup>, X, δ<sup>d</sup>, S<sub>O</sub>, F<sup>d</sup>), kde
    - $\bullet$   $\delta^d(\Sigma, x) = \delta^*(\Sigma, x)$  pro  $\Sigma \subseteq Q$  a  $x \in X$
    - $\blacksquare \mathsf{F}^{\mathsf{d}} = \{ \Sigma \mid \Sigma \subseteq \mathsf{Q} \land \Sigma \cap \mathsf{F} \neq \emptyset \}$
    - paralelně sledujeme všechny možné výpočty
  - při konstrukci Ad lze rovnou vyřadit nedosažitelné stavy
- U KA nedeterminismus nepřidal výpočetní sílu, pro jiné výpočetní modely ale toto platit nemusí.
  - došlo ke zjednodušení návrhu automatu
    - uvažte KA pro jazyk K<sub>n</sub>
  - zjednodušení náhledu uzávěrových vlastností
    - uvažte sjednocení jazyků

#### Další uzávěrové vlastnosti (1)

- Regulární jazyky jsou uzavřené na konkatenaci
  - K, L jazyky nad X pak K.L = {u.v | u∈K ∧ v∈L } je konkatenace K a L
  - Jsou-li K a L regulární, pak K.L je regulární
    - $\blacksquare$  K = L(A), kde A=(Q<sub>A</sub>,X, $\delta$ <sub>A</sub>,q<sub>AO</sub>,F<sub>A</sub>) je KA
    - L = L(B), kde B =  $(Q_B, X, \delta_B, q_{BO}, F_B)$  je KA
    - zkonstruujeme NKA C, že L(C) = K.L
      - nedeterministicky propojíme přijímající stavy A a počáteční stav B

■ 
$$C = (Q_A \cup Q_B, X, \delta_C, S_{CO}, F_B)$$
  

$$= \begin{cases} \{\delta_B(q, x)\} \text{ pro } q \in Q_B \end{cases}$$
■  $\delta_C(q, x) = \begin{cases} \{\delta_A(q, x)\} \text{ pro } q \in Q_A, \text{ že } \delta_A(q, x) \notin F_A \end{cases}$ 

$$= \begin{cases} \{\delta_A(q, x), q_{BO}\} \text{ pro } q \in Q_A, \text{ že } \delta_A(q, x) \in F_A \end{cases}$$

$$= \begin{cases} \{q_{AO}, q_{BO}\}, \text{ když } q_{AO} \notin F_A \end{cases}$$

$$= \begin{cases} \{q_{AO}\}, \text{ když } q_{AO} \notin F_A \end{cases}$$

#### Další **uzávěrové** vlastnosti (2)

- Regulární jazyky jsou uzavřené na iteraci
  - □ L je jazyk nad X, pak iterace L je L\* =  $\bigcup_{i=0}^{\infty} L^i$ , kde
    - $\blacksquare L^0 = \{\lambda\}, L^1 = L, L^{i+1} = L.L^i = L^i.L^i$
  - Je-li L regulární, pak L\* je regulární
    - L = L(A), kde A=( $Q_{\Delta}$ , X,  $\delta_{\Delta}$ ,  $q_{\Delta\Omega}$ ,  $F_{\Delta}$ ) je KA
    - zkonstruujeme NKA C, že L(C) = L\*
      - nedeterministicky propojíme přijímající a počáteční stav A
      - $\blacksquare$  C = (Q<sub>A</sub>U{q<sub>C0</sub>}, X,  $\delta_C$ , {q<sub>A0</sub>,q<sub>C0</sub>}, F<sub>A</sub>U{q<sub>C0</sub>})  $\delta_{C}(q,x) = \begin{cases} \{\delta_{A}(q,x)\} & \text{pro } q \in Q_{A}, \text{ že } \delta_{A}(q,x) \notin F_{A} \\ \{\delta_{A}(q,x), q_{A0}\} & \text{pro } q \in Q_{A}, \text{ že } \delta_{A}(q,x) \in F_{A} \\ \emptyset & \text{pro } q = q_{C0} \end{cases}$

#### Další uzávěrové vlastnosti (3)

- Regulární jazyky jsou uzavřené na zrcadlový obraz
  - □ L je jazyk nad X, pak L<sup>R</sup>={w|w∈X\*∧ (∃u∈L)u<sup>R</sup>=w } je zrcadlový obraz L
  - □ Je-li L regulární, pak L<sup>R</sup> je regulární
    - L = L(A), kde A=( $Q_A$ , X,  $\delta_A$ ,  $q_{AO}$ ,  $F_A$ ) je KA
    - zkonstruujeme NKA C, že L(C) = L<sup>R</sup>
      - zaměníme počáteční a přijímající stavy, otočíme přechody
        - v deterministické variantě nelze
      - $C = (Q_A, X, \delta_C, F_A, \{q_{A0}\}), kde$ 
        - $\delta_{C}(q, x) = \{ p \mid q = \delta_{A}(p, x) \}$

#### Uzavřenost na kvocienty

- Kvocienty regulárních jazyků jsou regulární
  - Nechť R je regulární jazyk a L je libovolný jazyk nad X, pak L\R a R/L jsou regulární jazyky.
    - $\blacksquare$  R = L(A), kde A=(Q<sub>\(\Delta\)</sub>, X, \(\delta\_\(\Delta\), q<sub>\(\Delta\)</sub>, F<sub>\(\Delta\)</sub>) je KA
    - zkonstruujeme NKA C, že L(C) = L\R
      - $\blacksquare$  C = (Q<sub> $\Delta$ </sub>, X,  $\delta$ <sub>C</sub>, S<sub>CO</sub>, F<sub> $\Delta$ </sub>), kde
        - $= S_{CO} = \{q \mid q \in Q \land (\exists w \in L) \delta_A^*(q_{AO}, w) = q\}$
        - $\delta_{C}(q, x) = \{ \delta_{\Delta}(q, x) \}$  pro q∈Q<sub>Δ</sub> a x∈X
    - zkonstruujeme KA D, že L(D) = R/L
      - $\blacksquare$  D = (Q<sub>\(\Delta\)</sub>, X, \(\delta\_\), q<sub>\(\Delta\)</sub>, F<sub>\(\Delta\)</sub>), kde
        - $= F_D = \{q \mid q \in Q \land (\exists w \in L) \delta_A^*(q, w) \in F_A\}$

## **Dvousměrné** automaty

- Přidáme možnost volby následujícího čteného symbolu
  - u standardního KA vždy následující buňka pásky
  - dvousměrný automat
    - následující, předchozí nebo stejná buňka
  - 2KA A=(Q, X,  $\delta$ , q<sub>0</sub>,F)
    - Q konečná neprázdná množina stavů
    - X konečná neprázdná abeceda
    - $\delta: Q \times X \rightarrow Q \times \{-1, 0, 1\}$ 
      - druhá komponenta výstupu určuje následující čtenou buňku
        - -1 předchozí buňka na pásce
        - **0** stejná buňka
        - +1 následující buňka na pásce (jako u KA)
    - $\mathbf{q}_0 \in \mathbf{Q} \mathbf{počáteční stav}$
    - F ⊆Q přijímající stavy
  - nedeterministická verze N2KA B=(Q, X,  $\delta$ , S<sub>0</sub>,F)
    - $\bullet \delta: Q \times X \to 2^{Q \times \{-1, 0, 1\}}$ 
      - $2^{Q \times \{-1, 0, 1\}}$  je množina všech podmnožin  $Q \times \{-1, 0, 1\}$
    - $S_0 \subseteq Q$  množina počátečních stavů



# Výpočet dvousměrného automatu

- $\square$  2KA A = (Q, X, δ, q<sub>0</sub>, F)
  - □ lze se omezit na  $\delta'$ : Q×X  $\rightarrow$  Q×{-1, 1}
    - výpočet na místě nahradíme jeho výsledkem v okamžiku přesunu na další buňku
      - $\delta'(q,x) = \delta(p_i,x)$ , kde  $i \in \mathbb{N}_0$  je takové, že  $\delta(p_i,x)_2 \neq 0$ ,  $p_1 = q$  a  $[p_{j+1}, 0] = \delta(p_j,x)$  pro j = 1,2, ..., i-2
  - při výpočtu se pak střídá dopředný a zpětný chod
    - speciálně přijímající výpočet začíná dopředným chodem a končí dopředným
      - počet chodů v přijímajícím výpočtu je lichý

|    | а     | b     |
|----|-------|-------|
| →1 | 1,+1  | 2, +1 |
| ←2 | 2, +1 | 3, -1 |
| 3  | 1,+1  | 3, -1 |



#### Ekvivalence KA a 2KA (1)

- $KAA = (Q_{\Delta}, X, \delta_{\Delta}, q_{\Omega}, F_{\Delta}) \Rightarrow 2KAB$ 
  - ihned: B =  $(Q_A, X, \delta_B, q_0, F_A)$ , kde  $\delta_B(q,x) = [\delta_A(q,x), +1]$  pro q  $\in Q$  a  $x \in X$
- $2KA \Rightarrow KA$ 
  - omezme se na deterministický 2KA
    - bez újmy na obecnosti  $\delta$ : Q×X  $\rightarrow$  Q×{-1, 1}
  - i-tá přechodová (*crossing*) posloupnost
    - posloupnost stavů v <u>přijímajícím</u> výpočtu při práci nad symboly x<sub>i-1</sub> a x<sub>i</sub> (tj. nad (i-1)-ní a i-tou buňkou) ve slově w=x<sub>1</sub>x<sub>2</sub>...x<sub>n</sub>
      - směry výpočtu se střídají
        - dopředný chod pracuje se symbolem x<sub>i</sub>
        - zpětný chod pracuje se symbolem x<sub>i-1</sub>
      - posloupnosti jsou liché délky
    - stavy se v přechodové posloupnosti na lichých resp. sudých pozicích neopakují
      - jinak zacyklení, tj. nepřijímající výpočet
  - umíme ověřit, zda dvě dané přechodové posloupnosti po sobě mohou v přijímajícím výpočtu následovat



**Př.:** [q1, q2,q3] je i-tá přechodová posloupnost

#### Ekvivalence KA a 2KA (2)

- □ (deterministický) 2KA A =  $(Q_A, X, \delta_A, q_{AO}, F_A)$ 
  - □ definujeme ekvivalentní KA B =  $(Q_B, X, \delta_B, q_{BO}, F_B)$ :
    - Q<sub>B</sub> nechť je množina všech přechodových posloupností vzhledem k A
      - Q<sub>B</sub> konečná ← pod-posloupnosti na sudých resp. lichých pozicích jsou bez opakování stavů

    - $δ_B([q_1,q_2,...,q_k], x)=\{[p_1,p_2,...,p_l] | [p_1,p_2,...,p_l] může následovat po [q_1,q_2,...,q_k] při čtení x}$ 
      - definujeme pro každou přechodovou posloupnost  $[q_1,q_2,...,q_k] \in Q_B$ a x∈X

### Ekvivalence KA a 2KA (3)

- nedeterministický 2KA A
  - stavy se v přechodových posloupnostech mohou opakovat
    - omezíme se na prosté přechodové posloupnosti
      - jestliže  $[q_0,i_0]$ ,  $[q_1,i_1]$ , ...,  $[q_{\alpha},i_{\alpha}]$ , ...,  $[q_{\beta},i_{\beta}]$ ,....,  $[q_k,i_k]$ , kde  $[q_{\alpha},i_{\alpha}]=[q_{\beta},i_{\beta}]$ , je přijímající výpočet, pak  $[q_0,i_0]$ ,  $[q_1,i_1]$ , ...,  $[q_{\alpha},i_{\alpha}]$ ,  $[q_{\beta+1},i_{\beta+1}]$ ,....,  $[q_k,i_k]$  je rovněž přijímající výpočet
      - jestliže w∈L(A), pak existuje prostý výpočet, který přijímá w
      - v přechodových posloupnostech vzhledem k prostým přijímajícím se neopakují stavy na lichých ani sudých pozicích
  - přechodová funkce je nedeterministická
    - návaznost přechodových posloupností se bude ověřovat nedeterministicky
  - množina počátečních stavů
    - $S_{B0} = \{[q] \mid q \in S_0\}$