Asymptotic notation cheat sheet

Rough Guide

class	in English	meaning	key phrases
f(n) = O(g(n))	big-oh	$f(n) \le g(n)$	f(n) is asymptotically no worse than $g(n)$
			f(n) grows no faster than $g(n)$
$f(n) = \Theta(g(n))$	big-theta	$f(n) \approx g(n)$	f(n) is asymptotically equivalent to $g(n)$
			f(n) grows the same as $g(n)$
$f(n) = \Omega(g(n))$	big-omega	$f(n) \ge g(n)$	f(n) is asymptotically no better than $g(n)$
			f(n) grows at least as fast as $g(n)$

Formal Definitions

class	formally	working
f(n) = O(g(n))	$\exists c > 0, \ \exists n_0, \ \forall n > n_0, f(n) \le c \cdot g(n)$	
$f(n) = \Theta(g(n))$	$\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n > n_0, c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$	f(n) = O(g(n)) and $g(n) = O(f(n))$
$f(n) = \Omega(g(n))$	$\exists c > 0, \ \exists n_0, \ \forall n > n_0, c \cdot g(n) \le f(n)$	g(n) = O(f(n))

Using Limits

If
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \begin{cases} 0 & \text{then } f(n) = O(g(n)) \\ \text{some finite, non-zero, positive constant} & \text{then } f(n) = O(g(n)) \\ \infty & \text{then } f(n) = \Omega(g(n)) \end{cases}$$