Chapter 2 — Calculus of exponential functions

Exercise 2.2 - Review of limits and differentiation

1 a
$$\lim_{h \to 3} (5h + 4)$$

= $5 \times 3 + 4$
= 19

b
$$\lim_{h \to -2} (4 - 6h)$$

= $4 - 6 \times (-2)$

$$\mathbf{c} \lim_{h \to 0} (6h^2 - 3h + 2)$$

$$= 0 - 0 + 2$$

$$= 2$$

2 a
$$\lim_{x \to 0} \frac{2x^2 + 7x + 3}{x - 1}$$

= $\frac{3}{-1}$
= -3

b
$$\lim_{x \to 2} \frac{x^2 + 4x}{x + 2}$$
$$= \frac{2^2 + 4 \times 2}{2 + 2}$$
$$= \frac{4 + 8}{4}$$
$$= \frac{12}{4}$$
$$= 3$$

= 3

c
$$\lim_{x \to -3} \frac{x^2 + 4x}{x + 1}$$

= $\frac{(-3)^2 + 4(-3)}{-3 + 1}$

= $\frac{9 - 12}{-2}$

= $\frac{-3}{-2}$

= $\frac{3}{2}$

3 a
$$\lim_{h \to -3} \frac{h^2 - h - 12}{h + 3}$$

= $\lim_{h \to -3} \frac{(h - 4)(h + 3)}{(h + 3)}$
= $\lim_{h \to -3} (h - 4)$
= $-3 - 4$
= -7

$$\mathbf{b} \lim_{h \to 0} \frac{h^2 + 4h}{h}$$

$$= \lim_{h \to 0} \frac{h(h+4)}{h}$$

$$= \lim_{h \to 0} (h+4)$$

$$= 4$$

$$c \lim_{x \to 3} \frac{x^2 - x - 6}{3 - x}$$

$$= \lim_{x \to 3} \frac{(x - 3)(x + 2)}{-(x - 3)}$$

$$= \lim_{x \to 3} -(x + 2)$$

$$= -5$$

$$4 a \lim_{h \to 0} (4x^2 + 5xh - h^2)$$

$$= (4x^2 + 5x \times 0 - 0)$$

$$= 4x^2$$

$$b \lim_{h \to 0} \frac{3x^2h + 4h^2}{h}$$

$$= \lim_{h \to 0} \frac{h(3x^2 + 4h)}{h}$$

$$= \lim_{h \to 0} (3x^2 + 4h)$$

$$= (3x^2 + 4 \times 0)$$

$$= 3x^2$$

$$5 f(x) = x^2 - 6x$$

$$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{(x + h)^2 - 6(x + h)] - [x^2 - 6x]}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 6x - 6h - x^2 + 6x}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2 - 6h}{h}$$

$$= \lim_{h \to 0} (2x + h - 6)$$

$$= \lim_{h \to 0} (2x + h - 6)$$

$$= 2x - 6$$

$$f'(x) = 5 + 3x - 2x^2$$

$$f'(x) = \lim_{h \to 0} \frac{5 + 3x + 3h - 2(x + h)^2] - [5 + 3x - 2x^2]}{h}$$

$$= \lim_{h \to 0} \frac{5 + 3x + 3h - 2(x + h)^2}{h} - [5 + 3x - 2x^2]$$

$$= \lim_{h \to 0} \frac{3h - 4xh - 2h^2}{h}$$

$$= \lim_{h \to 0} \frac{3h - 4xh - 2h^2}{h}$$

$$= \lim_{h \to 0} 3 - 4x - 2h$$

$$= \lim_{h \to 0} 3 - 4x$$

7	a	0.1	0.95958226		
		0.01	0.92050153		
		0.001	0.91671065		
		0.0001	0.91633271		
		0.00001	0.91629493		
		0.000001	0.91629115		
		0.0000001	0.91629077		
		For $a = 2.5$			
		$\lim_{h \to 0} \frac{a^h - 1}{h} \to 0.91629$			
	b	0.1	1.00265093		
		0.01	0.96009103		
		0.001	0.95596809		
		0.0001	0.9555571		
		0.00001	0.95551601		
		0.000001	0.9555119		
		0.0000001	0.95551149		
		For $a = 2.6$			
		$\lim_{h\to 0}\frac{a^h-1}{h}\to$	0.95551		
	c	0.1	1.04425375		
		0.01	0.99820089		
		0.001	0.99374521		
		0.0001	0.9933011		
		0.00001	0.99325671		
		0.000001	0.99325227		
		0.0000001	0.99325182		
		For $a = 2.7$			
		$\lim_{h\to 0}\frac{a^h-1}{h}\to$	0.99325		
	d	0.1	1.08449223		
		0.01	1.03493824		
		0.001	1.03014966		
		0.0001	1.02967242		
		0.00001	1.02962472		
		0.000001	1.02961995		
		0.0000001	1.02961947		
		For $a = 2.8$			
		$\lim \frac{a^h-1}{a^h} \to$	1.02962		
		$h \to 0$ h	1.02)02		
•	9	0.1	1.1234575		
		0.01	1.07039895		
		0.001	1.06527774		
		0.0001	1.06476742		
		0.00001	1.06471641		
		0.000001	1.0647113		
		0.0000001	1.06471079		
		For $a = 2.9$			
		$\lim_{h\to 0}\frac{a^h-1}{h}\to$	1.06471		

2.5	2									
	f	0.1	1.05170844							
	•	0.01	1.00501603							
		0.001	1.00049949							
			1.00049349							
			1.00000433							
		0.000001								
		0.0000001								
		For $a = 2.718$	28							
		$\lim_{h \to 0} \frac{a^h - 1}{h} \to$	1.00000							
8	to	$h \to 0$ h decimal places:								
	a	7.3891								
	b	20.0855								
	c	1.6487								
9	to	3 decimal plac	es:							
		0.736								
		1.396								
		2.472								
10		$y = 8x - x^2$								
10	а	2	1) (()							
		$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x + 1)}{h}$	$\frac{-h}{h}$							
		Cit								
		$\frac{dy}{dt} = \lim \frac{8(x)}{x}$	$\frac{dy}{dx} = \lim_{h \to 0} \frac{\left[8(x+h) - (x+h)^2\right] - \left[8x - x^2\right]}{h}$							
		$=\lim_{x\to 0}\frac{8x+x}{x}$	$\frac{8h - x^2 - 2xh - h^2 - 8x + x^2}{h}$							
			**							
		$=\lim_{h\to 0}\frac{8h-1}{h}$	$=\lim_{h\to 0} \frac{8h-2xh-h^2}{h}$							
		$=\lim_{h\to 0}\frac{h(8-2x-h)}{h}$								
		$=\lim_{h\to 0}(8-1)$	2x - h							
			,							
		=8-2x								
		$\frac{dy}{dx} = 8 - 2x$								
		ил								
	b	at $x = 2$, $\frac{dy}{dx} =$	8 - 4 = 4							
		*****	gent at $x = 2$: $m = 4$							
	c	at $x = 2$, $y = 1$								
			agent at (2, 12) and $m = 4$:							
		y - 12 = 4(x - 1)								
		y - 12 = 4x -								
		y = 4x +	4							
11		$y = x^3 - 3x^2$								
11			, W.,)							
	$\frac{a}{d}$	$\frac{y}{x} = \lim_{h \to 0} \frac{f(x+h)}{h}$	$\frac{1-f(x)}{x}$							
	d.	$v = \int (r + h)^{n}$	$(x^3 - 3(x+h)^2) - [x^3 - 3x^2]$							
	$\frac{d}{dt}$	$\frac{y}{x} = \lim_{h \to 0} \frac{1}{x}$	$\frac{3^3 - 3(x+h)^2] - [x^3 - 3x^2]}{h}$							
		$=\lim_{h\to 0}$	$\frac{x^2h + 3xh^2 + h^3 - 3x^2 - 6xh - 3h^2 - x^3 + 3x^2}{h}$							
			$\frac{3xh^2 + h^3 - 6xh - 3h^2}{h}$							
			••							
		$=\lim_{x\to 0}\frac{h(3x^2+1)}{x^2}$	$\frac{-3xh+h^2-6x-3h)}{h}$							
		$h \to 0$	h							

$$= \lim_{h \to 0} (3x^2 + 3xh + h^2 - 6x - 3h)$$
$$= 3x^2 - 6x$$

$$\frac{dy}{dx} = 3x^2 - 6x$$

For *x*-intercepts: y = 0

$$x^3 - 3x^2 = 0$$

$$x^2(x-3) = 0$$

$$x = 0 \text{ or } 3$$

$$x = 0$$
 or 3
At $x = 3$: $\frac{dy}{dx} = 27 - 18 = 9$

Equation of tangent at (3, 0) with m = 9: $y - y_1 = m(x - x_1)$ y - 0 = 9(x - 3)

$$y = 9x - 27$$

12 a
$$f(x) = x^3 - 4x$$

For *x*-intercepts: y = 0

$$x^3 - 4x = 0$$

$$x(x^2 - 4) = 0$$

$$x(x-2)(x+2) = 0$$

$$x = -2, 0, 2$$

b
$$y = x^3 - 4x$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{[(x+h)^3 - 4(x+h)] - [x^3 - 4x]}{h}$$
$$= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - 4x - 4h - x^3 + 4x}{h}$$

$$= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3 - 4h}{h}$$

$$= \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2 - 4)}{h}$$

$$= \lim_{h \to 0} (3x^2 + 3xh + h^2 - 4)$$

$$=3x^2-4$$

$$\frac{dy}{dx} = 3x^2 - 4$$

c at
$$x = -2$$
: $\frac{dy}{dx} = 3(-2)^2 - 4$

$$= 8$$

at
$$x = 0$$
: $\frac{dy}{dx} = 3(0)^2 - 4$

$$= -4$$

at
$$x = 2$$
: $\frac{dy}{dx} = 3(2)^2 - 4$

d The gradient of the tangent at x = -2 and x = 2 is m = 8. Therefore, since the gradients are equal, the tangents are parallel.

parametric parametric parametric
$$\frac{1}{x+h} - \frac{1}{x}$$

$$= \frac{x - (x+h)}{(x+h)x}$$

$$= \frac{x - x - h}{(x+h)x}$$

$$= \frac{-h}{(x+h)x}$$

$$\mathbf{b} \ f(x) = \frac{1}{x}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{\frac{1}{(x+h)} - \frac{1}{x}}{h}$$

$$= \lim_{h \to 0} \frac{-h}{(x+h)x} \times \frac{1}{h} \quad \text{using part a.}$$

$$= \lim_{h \to 0} \frac{-1}{(x+h)x}$$

$$= \frac{-1}{x^2}$$

14 a LHS:

$$\frac{1}{(x+h-2)} - \frac{1}{(x-2)}$$

$$= \frac{(x-2) - (x+h-2)}{(x+h-2)(x-2)}$$

$$= \frac{x-2-x-h+2}{(x+h-2)(x-2)}$$

$$= \frac{-h}{(x+h-2)(x-2)} = \text{RHS as required}$$

$$\mathbf{b} \lim_{h \to 0} \frac{-1}{(x-2)(x+h-2)}$$

$$= \frac{-1}{(x-2)(x-2)}$$

$$= \frac{-1}{(x-2)^2}$$

$$c y = \frac{1}{(x-2)}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{\frac{1}{(x+h-2)} - \frac{1}{(x-2)}}{h}$$

$$= \lim_{h \to 0} \frac{-h}{(x+h-2)(x-2)} \times \frac{1}{h} \text{from part a}$$

$$= \lim_{h \to 0} \frac{-1}{(x+h-2)(x-2)}$$

$$= \frac{-1}{(x-2)^2} \text{from part b}$$

$$\frac{dy}{dx} = \frac{-1}{(x-2)^2}$$

d
$$9x + y - 7 = 0$$

 $y = -9x + 7$
Gradient = -9
For parallel tangent:
 $\frac{-1}{(x-2)^2} = -9$
 $(x-2)^2 = \frac{1}{9}$
 $x-2 = \pm \frac{1}{3}$
 $x = 2 + \frac{1}{3}, \ 2 - \frac{1}{3}$
 $x = \frac{5}{2}, \frac{7}{2}$

Exercise 2.3 – The exponential function

1 a $f(x) = 4^x$

y-intercept: (0, 1)

points: (1, 4) and $\left(-1, \frac{1}{4}\right)$

asymptote: y = 0

b $f(x) = 4^{-x}$

y-intercept: (0, 1)

points: $\left(1, \frac{1}{4}\right)$ and (-1, 4)

asymptote: y = 0

c $f(x) = -4^x$

y-intercept: (0, -1)

points: (1, -4) and $\left(-1, \frac{-1}{4}\right)$

asymptote: y = 0

2 For $y = 10^x$

y-intercept: (0, 1)

points: (1, 10) and $\left(-1, \frac{1}{10}\right)$

asymptote: y = 0

For $y = 10^{-x}$

y-intercept: (0, 1)

points: $\left(1, \frac{1}{10}\right)$ and (-1, 10)

asymptote: y = 0

3 a $f(x) = 4e^x$

y-intercept: (0, 4)

points: (1, 4e) and $\left(-1, \frac{4}{e}\right)$

approx.: (1, 10.87) and (-1, 1.47)

asymptote: y = 0

- **b** The function $f(x) = e^x$ has been dilated by a factor of 4 from the *x*-axis to give $f(x) = 4e^x$.
- **4 a** $f(x) = -5e^x$

y-intercept: (0, -5)

points: (1, -5e) and $\left(-1, \frac{-5}{e}\right)$

approx.: (1, -13.59) and (-1, -1.84)

asymptote: y = 0

b The function $f(x) = e^x$ has been reflected in the x-axis and dilated by a factor of 5 from the x-axis to give $f(x) = -5e^x$.

5 a $f(x) = e^{-x} + 3$

y-intercept: (0, 4)

points:
$$(1, 3 + \frac{1}{e})$$
 and $(-1, 3 + e)$

approx.: (1, 3.368) and (-1, 5.718)

asymptote: y = 3

- **b** The function $f(x) = e^x$ has been reflected in the y-axis and translated vertically up by 3 units to give $f(x) = e^{-x} + 3$.
- **6 a** $f(x) = e^{2x} + 3$

y-intercept: (0, 4)

points:
$$(1, 3 + e^2)$$
 and $\left(-1, 3 + \frac{1}{e^2}\right)$

approx.: (1, 10.389) and (-1, 3.135)

asymptote: y = 3

- **b** The function $f(x) = e^x$ has been dilated by a factor of $\frac{1}{2}$ from the y-axis and translated vertically up by 3 units to give $f(x) = e^{2x} + 3$
- 7 **a** $f(x) = e^{2x} 3$

For y-intercept: (0, -2)

For *x*-intercept:

$$e^{2x} - 3 = 0$$

$$e^{2x} = 3$$

$$\ln e^{2x} = \ln 3$$

$$2x \ln e = \ln 3$$

$$2x = \ln 3$$

$$x = \frac{1}{2} \ln 3 \cong 0.549$$

Intercepts: $\left(\frac{1}{2}\ln 3, 0\right)$ and (0, -2)

b asymptote: y = -3

- **c** The function $f(x) = e^x$ has been dilated by a factor of $\frac{1}{2}$ from the y-axis and translated vertically down by 3 units to give $f(x) = e^{2x} - 3$
- **8 a** $f(x) = 4 2e^{-x}$

For y-intercept: (0, 2)

For *x*-intercept:

$$4 - 2e^{-x} = 0$$

$$e^{-x} = 2$$

$$\ln e^{-x} = \ln 2$$

$$-x \ln e = \ln 2$$

$$x = -\ln 2 \cong -0.693$$

Intercepts: $(-\ln 2, 0)$ and (0, 2)

b asymptote: y = 4

- **c** The function $f(x) = e^x$ has been dilated by a factor of 2 from the x-axis, reflected in the x-axis, reflected in the y-axis and translated vertically up by 4 units to give $f(x) = 4 - 2e^{-x}.$
- **9 a** $f(x) = 4e^{\frac{x}{2}}$

y-intercept: (0, 4)

points:
$$\left(1, 4\sqrt{e}\right)$$
 and $\left(-1, \frac{4}{\sqrt{e}}\right)$

approx.: (1, 6.595) and (-1, 2.426)

asymptote: y = 0

b The function $f(x) = e^x$ has been dilated by a factor of 2 from the y-axis and dilated by a factor of 4 from the x-axis,

to give
$$f(x) = 4e^{\frac{x}{2}}$$

10 a $y = 3e^{-x/2} - 6$

For y-intercept: (0, -3)

For *x*-intercept:

$$3e^{\frac{-x}{2}} - 6 = 0$$

$$3e^{\frac{-x}{2}} = 6$$

$$e^{\frac{-x}{2}} = 2$$

$$\ln e^{\frac{-x}{2}} = \ln 2$$

$$-\frac{x}{2}\ln e = \ln 2$$

- $x = -2 \ln 2 \cong -1.386$
- Intercepts: $(-2 \ln 2, 0)$ and (0, -3)
- **b** asymptote: y = -6

- **c** The function $y = e^x$ has been dilated by a factor of 2 from the y-axis and dilated by a factor of 3 from the x-axis, reflected in the y-axis and translated vertically down by 6 units to give $y = 3e^{-\frac{x}{2}} 6$.
- **11 a** $3e^x + 8 = 5e^x$

$$2e^{x} = 8$$

$$e^{x} = 4$$

$$\ln\left(e^{x}\right) = \ln 4$$

$$x \ln e = \ln 4$$

$$x = \ln 4$$

- **b** x = 1.3862944
 - x = 1.386 $e^x = 5$
- 12 a

$$\ln e^x = \ln 5$$

$$x \ln e = \ln 5$$

$$x = \ln 5$$

$$x \cong 1.609$$

b $e^x = \frac{1}{2}$

$$\ln e^x = \ln \frac{1}{2}$$

$$x \ln e = \ln \frac{1}{2}$$

$$x = \ln \frac{1}{2}$$

$$x \cong -0.693$$

 $e^x = 2.6$

$$\ln e^x = \ln 2.6$$

$$x \ln e = 2.6$$

$$x = \ln 2.6$$

$$x \cong 0.956$$

$$e^{-x} = 6$$

$$\ln e^{-x} = \ln 6$$

$$-x\ln e = \ln 6$$

$$x = -\ln 6$$

$$x = 11.0$$
$$x \cong -1.792$$

e
$$3 = 2e^x$$

$$e^x = 1.5$$

$$\ln e^x = \ln 1.5$$

$$x \ln e = \ln 1.5$$

$$x = \ln 1.5$$

$$x \approx 0.405$$

f
$$3e^{-x} - 10 = 0$$

$$e^{-x} = \frac{10}{3}$$

$$\ln e^{-x} = \ln \left(\frac{10}{3} \right)$$

$$-x\ln e = \ln\left(\frac{10}{3}\right)$$

$$x = -\ln\left(\frac{10}{3}\right)$$

$$x \cong -1.204$$

13 a $(e^x - 1)(e^x - 2) = 0$

$$(e^x - 1) = 0$$
 or $(e^x - 2) = 0$

$$e^{x} = 1 \text{ or } 2$$

$$x = \ln 1$$
 or $\ln 2$

$$x = 0, \ln 2$$

b
$$(e^x - 1)(e^x + 3) = 0$$

$$(e^x - 1) = 0$$
 or $(e^x + 3) = 0$

$$e^x = 1 \text{ or } -3$$

$$x = \ln 1$$
 and $e^x > 0$, $\therefore e^x \neq -3$

$$\dot{}=0$$

$$\mathbf{c} (e^{-x} - 1)(e^{2x} - 4) = 0$$

$$(e^{-x} - 1) = 0$$
 or $(e^{2x} - 4) = 0$

$$e^{-x} = 1$$
 or $e^{2x} = 4$

$$-x = \ln 1$$
 $2x = \ln 4$

$$x = 0 \qquad 2x = 2\ln 2$$

$$x = \ln 2$$

$$x = 0, \ln 2$$

d
$$(3e^{-x} - 2)(2e^x - 1) = 0$$

$$(3e^{-x} - 2) = 0$$
 or $(2e^x - 1) = 0$

$$e^{-x} = \frac{2}{3}$$
 or $e^x = \frac{1}{2}$

$$-x = \ln \frac{2}{3} \qquad x = \ln \frac{1}{2}$$

$$-x = \ln 2 - \ln 3$$
 $x = \text{In } 1 - \text{In } 2$

$$x = \ln 3 - \ln 2$$
 $x = -\ln 2$

$$x = (\ln 3 - \ln 2), -\ln 2$$

$$x = \ln \frac{3}{2}, -\ln 2$$

e
$$(2e^{x} + 1)(e^{x} - 4) = 0$$

 $(2e^{x} + 1) = 0$ or $(e^{x} - 4) = 0$
 $e^{x} = -\frac{1}{2}$
 $e^{x} \neq -\frac{1}{2}$ $e^{x} = 4$
 $e^{x} \neq -\frac{1}{2}$ $e^{x} = 4$
f $(3e^{x} - 2)(e^{x} + 4) = 0$
 $(3e^{x} - 2) = 0$ or $(e^{x} + 4) = 0$
 $e^{x} = \frac{2}{3}$
 $e^{x} = -4$
 $e^{x} - 15e^{-x} = 2$
 $e^{x} - \frac{15}{e^{x}} = 2$
 $e^{x} - \frac{15}{e^{x}} = 2$
 $(e^{x})^{2} - 15 = 2e^{x}$
 $(e^{x})^{2} - 2e^{x} - 15 = 0$
Let $a = e^{x}$
 $a^{2} - 2a - 15 = 0$
 $(a - 5)(a + 3) = 0$
 $a = 5$ or $a = -3$
 $e^{x} = 5$ or $e^{x} = -3$
 $x = \ln 5$, $e^{x} \neq -3$
 $x = 1.61$ (to 2 decimal places)
15 a $5e^{x} - 12e^{-x} - 11 = 0$
 $5(e^{x})^{2} - 12e^{-x} - 11 = 0$
 $5(e^{x})^{2} - 11e^{x} - 12 = 0$
Let $a = e^{x}$
 $5a^{2} - 11a - 12 = 0$
 $(a - 3)(5a + 4) = 0$
 $a = 3$ or $a = -\frac{4}{5}$
 $e^{x} = 3$ or $e^{x} = -\frac{4}{5}$
 $x = \ln 3$
b $3e^{x} + 6e^{-x} = 11$
 $3(e^{x})^{2} + 6 = 11e^{x}$
 $3(e^{x})^{2} - 11e^{x} + 6 = 0$
Let $a = e^{x}$
 $3a^{2} - 11a + 6 = 0$
 $(a - 3)(3a - 2) = 0$
 $a = 3$ or $a = \frac{2}{3}$
 $e^{x} = 3$ or $e^{x} = \frac{2}{3}$
 $e^{x} = 3$ or $e^{x} = \frac{2}{3}$
 $e^{x} = 3$ or $e^{x} = \frac{2}{3}$

c
$$2e^{x} = 9 + 5e^{-x}$$

 $2e^{x} - 5e^{-x} = 9$
 $2e^{x} - \frac{5}{e^{x}} = 9$
 $2(e^{x})^{2} - 5 = 9e^{x}$
 $2(e^{x})^{2} - 9e^{x} - 5 = 0$
Let $a = e^{x}$
 $2a^{2} - 9a - 5 = 0$
 $(a - 5)(2a + 1) = 0$
 $a = 5 \text{ or } a = -1/2$
 $e^{x} = 5 \text{ or } e^{x} = -1/2$
 $x = \ln 5, e^{x} \neq -1/2$
 $x = \ln 5$
d $e^{x} = 25e^{-x}$
 $e^{x} - \frac{25}{e^{x}} = 0$
 $(e^{x})^{2} - 25 = 0$
Let $a = e^{x}$
 $a^{2} - 25 = 0$
 $(a - 5)(a + 5) = 0$
 $a = 5 \text{ or } a = -5$
 $e^{x} = 5 \text{ or } e^{x} = -5$
 $x = \ln 5, e^{x} \neq -5$
 $x = \ln 5$
16 a $e^{x} > 1$
 $\ln e^{x} > \ln 1$
 $x \ln e > 0$
 $x > 0$
b $e^{-x} < e$
 $\ln e^{-x} < \ln e$
 $-x \ln e < 1$
 $x > -1$
c $e^{2x} \ge 4$
 $\ln e^{2x} \ge \ln 4$
 $2x \ln e \ge \ln 4$
 $2x \ln e \ge \ln 4$
 $2x \ln e \ge \ln 6$
 $(1 - x) \ln e \le \ln 6$
 $1 - x \le \ln 6$
 $1 - \ln 6 \le x$
 $x \ge 1 - \ln 6$
17 a $y = 2e^{-x} + 1$
 y -intercept: $(0, 3)$
points: $(1, 1, \frac{2}{e})$ and $(-1, 1, 1, 2e)$
approx.: $(1, 1.736)$ and $(-1, 6.437)$
asymptote: $y = 1$

- **b** *y*-intercept is (0, 3) for y < 3: x > 0
- **c** For $2e^{-x} + 1 < 0$: the curve would be below the *x*-axis. But y > 1 for all *x* values, so curve is never below the *x*-axis.

Hence $2e^{-x} + 1 < 0$ has no real solutions.

18 a $f(x) = 4 - e^x$

For y-intercept: (0, 3)

For *x*-intercept:

$$4 - e^x = 0$$

$$e^{x} = 4$$

$$\ln e^x = \ln 4$$

 $x = \ln 4 \cong 1.386$

Intercepts: $(\ln 4, 0)$ and (0, 3)

b For y = 0: $x = \ln 4$

Observing the graph:

For
$$y > 0$$
: $x < \ln 4$

c For x = 0: y = 3

Observing the graph:

For
$$x \ge 0$$
: $y \le 3$

If the domain is restricted to $x \ge 0$

then the range is $y \le 3$ or $y \in [-\infty, 3]$

Exercise 2.4 – Differentiation of exponential functions

1 a $y = e^{10x}$

$$y = e^u$$

$$\frac{\mathrm{d}y}{\mathrm{d}u} = e^u$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 10e^u$$

$$=10e^{10x}$$

$$\mathbf{b} \quad y = e^{\frac{1}{3}x}$$

$$\text{Let } u = \frac{1}{3}x$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{3}$$

$$y = e^u$$

$$\frac{\mathrm{d}y}{\mathrm{d}u} = e^u$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3}e^u$$

$$=\frac{1}{3}e^{\frac{1}{3}x}$$

 $\mathbf{c} \quad \mathbf{y} = e^{\frac{x}{4}}$

Let
$$u = \frac{x}{4}$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{4}$$

$$y = e^u$$

$$\frac{\mathrm{d}y}{\mathrm{d}u} = e^u$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{4}e^{\frac{x}{4}}$$

d $y = e^{-x}$

Let
$$u = -x$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = -1$$

$$y = e^u$$

$$\frac{\mathrm{d}y}{\mathrm{d}u} = e^u$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$$

$$\frac{\mathrm{d}y}{1} = -e^{-x}$$

e $y = 2e^{3x}$

Let
$$u = 3x$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} = 3$$

$$y = 2e^u$$

$$\frac{\mathrm{d}y}{\mathrm{d}u} = 2e^u$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 \times 2e^u$$

$$=6e^{3x}$$

	f	$y = 4e^{-5}x$
		Let $u = -5x$
		$\frac{\mathrm{d}u}{\mathrm{d}x} = -5$
		$y = 4e^u$
		$\frac{\mathrm{d}y}{\mathrm{d}u} = 4e^u$
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$
		$\frac{\mathrm{d}y}{\mathrm{d}x} = -5 \times 4e^u$
		$=-20e^{-5x}$
2	a	$y = e^{6x-2}$
		Let u = 6x - 2
		$\frac{\mathrm{d}u}{\mathrm{d}x} = 6$
		$y = e^u$
		$\frac{\mathrm{d}y}{\mathrm{d}u} = e^u$
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 6e^u$
		U.A
		$=6e^{6x-2}$
	b	$= 6e^{6x-2}$ $y = e^{8-6x}$
	b	$= 6e^{6x-2}$ $y = e^{8-6x}$ Let $u = 8 - 6x$
	b	$= 6e^{6x-2}$ $y = e^{8-6x}$
	b	$= 6e^{6x-2}$ $y = e^{8-6x}$ Let $u = 8 - 6x$ $\frac{du}{dx} = -6$ $y = e^{u}$
	b	$= 6e^{6x-2}$ $y = e^{8-6x}$ Let $u = 8 - 6x$ $\frac{du}{dx} = -6$ $y = e^{u}$ $\frac{dy}{du} = e^{u}$
	b	$= 6e^{6x-2}$ $y = e^{8-6x}$ Let $u = 8 - 6x$ $\frac{du}{dx} = -6$ $y = e^{u}$ $\frac{dy}{dx} = e^{u}$
	b	$= 6e^{6x-2}$ $y = e^{8-6x}$ Let $u = 8 - 6x$ $\frac{du}{dx} = -6$ $y = e^{u}$ $\frac{dy}{du} = e^{u}$
	b	$= 6e^{6x-2}$ $y = e^{8-6x}$ Let $u = 8 - 6x$ $\frac{du}{dx} = -6$ $y = e^{u}$ $\frac{dy}{du} = e^{u}$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $\frac{dy}{dx} = -6 \times e^{u}$ $= -6e^{8-6x}$
	b c	$= 6e^{6x-2}$ $y = e^{8-6x}$ Let $u = 8 - 6x$ $\frac{du}{dx} = -6$ $y = e^{u}$ $\frac{dy}{du} = e^{u}$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $\frac{dy}{dx} = -6 \times e^{u}$ $= -6e^{8-6x}$ $y = 2e^{5x+3}$
		$= 6e^{6x-2}$ $y = e^{8-6x}$ Let $u = 8 - 6x$ $\frac{du}{dx} = -6$ $y = e^{u}$ $\frac{dy}{du} = e^{u}$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $\frac{dy}{dx} = -6 \times e^{u}$ $= -6e^{8-6x}$ $y = 2e^{5x+3}$ Let $u = 5x + 3$
		$= 6e^{6x-2}$ $y = e^{8-6x}$ Let $u = 8 - 6x$ $\frac{du}{dx} = -6$ $y = e^{u}$ $\frac{dy}{du} = e^{u}$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $\frac{dy}{dx} = -6 \times e^{u}$ $= -6e^{8-6x}$ $y = 2e^{5x+3}$ Let $u = 5x + 3$ $\frac{du}{dx} = 5$
		$= 6e^{6x-2}$ $y = e^{8-6x}$ Let $u = 8 - 6x$ $\frac{du}{dx} = -6$ $y = e^{u}$ $\frac{dy}{du} = e^{u}$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $\frac{dy}{dx} = -6 \times e^{u}$ $= -6e^{8-6x}$ $y = 2e^{5x+3}$ Let $u = 5x + 3$ $\frac{du}{dx} = 5$ $y = 2e^{u}$
		$= 6e^{6x-2}$ $y = e^{8-6x}$ Let $u = 8 - 6x$ $\frac{du}{dx} = -6$ $y = e^{u}$ $\frac{dy}{du} = e^{u}$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $\frac{dy}{dx} = -6 \times e^{u}$ $= -6e^{8-6x}$ $y = 2e^{5x+3}$ Let $u = 5x + 3$ $\frac{du}{dx} = 5$
		$= 6e^{6x-2}$ $y = e^{8-6x}$ Let $u = 8 - 6x$ $\frac{du}{dx} = -6$ $y = e^{u}$ $\frac{dy}{du} = e^{u}$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $\frac{dy}{dx} = -6 \times e^{u}$ $= -6e^{8-6x}$ $y = 2e^{5x+3}$ Let $u = 5x + 3$ $\frac{du}{dx} = 5$ $y = 2e^{u}$ $\frac{dy}{du} = 2e^{u}$
		$= 6e^{6x-2}$ $y = e^{8-6x}$ Let $u = 8 - 6x$ $\frac{du}{dx} = -6$ $y = e^{u}$ $\frac{dy}{du} = e^{u}$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $\frac{dy}{dx} = -6 \times e^{u}$ $= -6e^{8-6x}$ $y = 2e^{5x+3}$ Let $u = 5x + 3$ $\frac{du}{dx} = 5$ $y = 2e^{u}$ $\frac{dy}{dx} = 2e^{u}$

 $=10e^{5x+3}$

d
$$y = 4e^{7-2x}$$

Let $u = 7 - 2x$

$$\frac{du}{dx} = -2$$

$$y = 4e^{u}$$

$$\frac{dy}{du} = 4e^{u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = -2 \times 4e^{u}$$

$$= -8e^{7-2x}$$

$$y = -3e^{8x+1}$$
Let $u = 8x + 1$

$$\frac{du}{dx} = 8$$

$$y = -3e^{u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = 8 \times -3e^{u}$$

$$= -24e^{8x+1}$$
f $y = -2e^{6-5x}$
Let $u = 6 - 5x$

$$\frac{du}{dx} = -5$$

$$y = -2 \times e^{u}$$

$$\frac{dy}{du} = -2e^{u}$$

$$\frac{dy}{du} = -2e^{u}$$

$$\frac{dy}{du} = -2e^{u}$$

$$\frac{dy}{du} = -2e^{u}$$

$$\frac{dy}{du} = -6e^{-5x}$$
Let $u = 6 - 9x$

$$\frac{du}{dx} = -9$$

$$y = 10e^{u}$$

$$\frac{dy}{du} = 10e^{u}$$

$$\frac{dy}{du} = -9$$

$$y = 10e^{u}$$

$$\frac{dy}{du} = -9 \times 10e^{u}$$

$$= -90e^{6-9x}$$

b
$$y = -5e^{3x+4}$$
Let $u = 3x + 4$

$$\frac{du}{dx} = 3$$

$$y = -5e^{u}$$

$$\frac{dy}{du} = -5e^{u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = 3 \times -5e^{u}$$

$$= -15e^{3x+4}$$
c $y = 6e^{-7x}$
Let $u = -7x$

$$\frac{du}{dx} = -7$$

$$y = 6e^{u}$$

$$\frac{dy}{du} = 6e^{u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = -42e^{-7x}$$
d $y = 2e^{\frac{x}{2}+1}$
Let $u = \frac{x}{2} + 1$

$$\frac{du}{dx} = \frac{1}{2}$$

$$y = 2e^{u}$$

$$\frac{dy}{du} = 2e^{u}$$

$$\frac{dy}{du} = 2e^{u}$$

$$\frac{dy}{du} = \frac{1}{2} \times 2e^{u}$$

$$= e^{\frac{x}{2}+1}$$
e $y = 3e^{2-\frac{x}{3}}$
Let $u = 2 - \frac{x}{3}$

$$\frac{du}{dx} = -\frac{1}{3}$$

$$y = 3e^{u}$$

$$\frac{dy}{du} = 3e^{u}$$

$$\frac{dy}{du} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{du} = 3e^{u}$$

$$f y = -4e^{\frac{x}{4}+5}$$

$$Let u = \frac{x}{4} + 5$$

$$\frac{du}{dx} = \frac{1}{4}$$

$$y = -4e^{u}$$

$$\frac{dy}{du} = -4e^{u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = \frac{1}{4} \times -4e^{u}$$

$$= -e^{\frac{x}{4}+5}$$

$$4 y = e^{3x+2}$$
$$\frac{dy}{dx} = 3e^{3x+2}$$

Answer is A

5 a $f(x) = 2(e^x + 1)$

$$= 2e^{x} + 2$$

$$f'(x) = 2e^{x}$$
b
$$f(x) = 3e^{2x}(e^{x} + 1)$$

$$= 3e^{3x} + 3e^{2x}$$

$$f'(x) = 9e^{3x} + 6e^{2x}$$

$$c f(x) = 5(e^{-4x} + 2x)$$

= $5e^{-4x} + 10x$
 $f'(x) = -20e^{-4x} + 10$
= $-10(2e^{-4x} - 1)$

 $=3e^{2x}(3e^x+2)$

d
$$f(x) = (e^x + 2)(e^{-x} + 3)$$

= $e^0 + 3e^x + 2e^{-x} + 6$
= $3e^x + 2e^{-x} + 7$
 $f'(x) = 3e^x - 2e^{-x}$

6 a
$$f(x) = \frac{3e^{3x} + e^{-6x}}{e^x}$$

$$= \frac{3e^{3x}}{e^x} + \frac{e^{-6x}}{e^x}$$

$$= 3e^{2x} + e^{-7x}$$

$$f'(x) = 6e^{2x} - 7e^{-7x}$$

$$f(x) = \frac{4e^{7x} - 2e^{-x}}{e^{-2x}}$$
$$= \frac{4e^{7x}}{e^{-2x}} - \frac{2e^{-x}}{e^{-2x}}$$
$$= 4e^{9x} - 2e^{x}$$
$$f'(x) = 36e^{9x} - 2e^{x}$$

$$y = e^{x^2 + 3x}$$
Let $u = x^2 + 3x$

$$\frac{du}{dx} = 2x + 3$$

$$y = e^u$$

$$\frac{dy}{du} = e^u$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x}$$

 $y = e^{x^2 - 3x + 1}$

Let
$$u = x^2 - 3x + 1$$

$$\frac{du}{dx} = 2x - 3$$

$$y = e^u$$

$$\frac{dy}{du} = e^u$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = (2x - 3)e^{x^2 - 3x^{+1}}$$

Let
$$u = x^{2}-2x$$

Let $u = x^{2} - 2x$

$$\frac{du}{dx} = 2x - 2$$

$$y = e^{u}$$

$$\frac{dy}{du} = e^{u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = (2x - 2)e^{x^{2}-2x}$$

$$= 2(x - 1)e^{x^{2}-2x}$$

$$f(x) = y = e^{2-5x}$$
Let $u = 2 - 5x$

$$\frac{du}{dx} = -5$$

$$y = e^{u}$$

$$\frac{dy}{du} = e^{u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = -5e^{2-5x}$$

8 a
$$f(x) = y = e^{6-3x+x^2}$$
Let $u = 6 - 3x + x^2$

$$\frac{du}{dx} = -3 + 2x$$

$$y = e^u$$

$$\frac{dy}{du} = e^u$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = (2x - 3)e^{6-3x+x^2}$$
b
$$g(x) = y = e^{x^3+3x-2}$$
Let $u = x^3 + 3x - 2$

$$\frac{du}{dx} = 3x^2 + 3$$

$$y = e^u$$

$$y = e^{u}$$

$$\frac{dy}{du} = e^{u}$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = (3x^{2} + 3)e^{x^{3} + 3x - 2}$$

c
$$h(x) = y = 3e^{4x^2 - 7x}$$

Let $u = 4x^2 - 7x$

$$\frac{du}{dx} = 8x - 7$$

$$y = 3e^u$$

$$\frac{dy}{du} = 3e^u$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = 3(8x - 7)e^{4x^2 - 7x}$$

d
$$y = -5e^{1-2x-3x^2}$$
Let $u = 1 - 2x - 3x^2$

$$\frac{du}{dx} = -2 - 6x$$

$$y = -5e^u$$

$$\frac{dy}{du} = -5e^u$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$\frac{dy}{dx} = -5(-2 - 6x)e^u$$

$$= 10(1 + 3x)e^{1-2x-3x^2}$$

9
$$y = 6e^{x^3 - 5x}$$

 $\frac{dy}{dx} = (3x^2 - 5) \times 6e^{x^3 - 5x}$
 $= 6(3x^2 - 5)e^{x^3 - 5x}$
Answer is **A**

10
$$f(x) = 5e^{9-4x}$$

Let $u = 9 - 4x \ y = 5e^u$
 $\frac{du}{dx} = -4 \frac{dy}{du} = 5e^u$
 $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
 $\frac{dy}{dx} = 5e^u \times (-4)$
 $f'(x) = -20e^{9-4x}$
 $f'(2) = -20e$
11 $g(x) = 2e^{2^{-3x+2}}$
Let $u = x^2 - 3x + 2 \ y = 2e^u$
 $\frac{du}{dx} = 2x - 3 \frac{dy}{du} = 2e^u$
 $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
 $\frac{dy}{dx} = 2e^u \times (2x - 3)$
 $g'(x) = 2(2x - 3)e^{2^{-3x+2}}$
Let $u = x^2 + 3x \ y = -5e^u$
 $\frac{du}{dx} = 2x + 3 \frac{dy}{du} = -5e^u$
 $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
 $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
 $\frac{dy}{dx} = -5e^u \times (2x + 3)$
 $h'(x) = -5(2x + 3)e^{2^{+3x}}$
Let $u = x^2 + 3x - 4$ so $\frac{du}{dx} = 2x + 3$
 $y = e^{x^2 + 3x - 4}$
Let $u = x^2 + 3x - 4$ so $\frac{du}{dx} = 2x + 3$
 $y = e^x \cos \frac{dy}{du} = e^u$
By the Chain rule:
 $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
 $\frac{dy}{dx} = (2x + 3)e^u$
 $\frac{dy}{dx} = (2x + 3)e^u$
 $\frac{dy}{dx} = (2x + 3)e^u$
 $\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x^2 + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x + 3x - 4}$
 $\frac{dy}{dx} = (2x + 3)e^{x + 3x - 4}$

y = 5x - 4

14
$$y = e^{-3x} - 2$$

 $m_T = \frac{dy}{dx} = -3e^{-3x}$
When $x = 0$, $m_T = -3e^{-3(0)} = -3$ and $m_P = \frac{1}{3}$
When $x = 0$, $y = e^{-3(0)} - 2 = 1 - 2 = -1$
Equation of tangent with $m_T = -3$ which passes through the point $(x_1, y_1) = (0, -1)$ is given by $y - y_1 = m_T(x - x_1)$
 $y + 1 = -3(x - 0)$
 $y = -3x - 1$
Equation of perpendicular line with $m_P = \frac{1}{3}$ which passes through the point $(x_1, y_1) = (0, -1)$ is given by $y - y_1 = m_P(x - x_1)$
 $y + 1 = \frac{1}{3}(x - 0)$
 $y = \frac{1}{3}x - 1$
15 a $f(x) = e^{-2x+3} - 2e$
 $f'(x) = -2e^{-2x+3}$
 $f'(-2) = -2e^{-2(-2)+3} = -2e^7$
b $-2e^{-2x+3} = -2$
 $e^{-2x+3} = e^0$
Equating indices $-2x + 3 = 0$
Equating indices $-2x + 3 = 0$
Equating indices $-2x + 3 = 0$
 $-2x = -3$
 $x = \frac{3}{2}$
16 a $f(x) = \frac{e^{3x} + 2}{e^x} = e^{2x} + 2e^{-x}$
 $f'(1) = 2e^2 - 2e^{-1} = 2e^2 - \frac{2}{e}$
b $2e^{2x} - 2e^{-x} = 0$
 $e^{2x} - e^{-x} = 0$
 $e^{2x} - e^{-x} = 0$
 $e^{-x}(e^{3x} - 1) = 0$
 $e^{-x} = 0$ or $e^{3x} - 1 = 0$
Not Possible $e^{3x} = 1$
 $e^{3x} = e^0$

Exercise 2.5 - Applications of exponential **functions**

1 a
$$N(t) = 500e^{0.46t}$$

 $N(0) = 500e^{0}$
 $= 500$

Initially there were 500 bacteria present on the culture plate.

b
$$N(5) = 500e^{0.46 \times 5}$$

= $500e^{2.3}$
= 4987.0912

After 5 hours there were 4987 bacteria present on the culture plate.

c
$$N(t) = 500e^{0.46t}$$

 $N'(t) = 500e^{0.46t} \times 0.46$
 $N'(t) = 230e^{0.46t}$
 $N'(5) = 230e^{0.46 \times 5}$
 $= 230e^{2.3}$
 $= 2294.062$

After 5 hours, the bacteria is increasing at a rate of 2294 bacteria/hour.

2 a
$$L = L_0 e^{0.599t}$$

When $t = 0$, $L = 11$

$$11 = L_0 e^{0.599(0)}$$

$$L_0 = 11$$

b So
$$L = 11e^{0.599t}$$

$$\frac{dL}{dt} = 0.599 \times 11e^{0.599t}$$

$$\frac{dL}{dt} = 6.589e^{0.599t}$$

c When
$$t = 3$$
 then

$$\frac{dL}{dt}$$
 = 6.589 $e^{0.599(3)}$ = 39.742 mm/month

When it is 3 months old, the bilby is growing at a rate of 39.742 mm/month.

3 a
$$M(t) = M_0 e^{-0.005t}$$

$$M(0) = M_0 e^0$$

Given
$$M(0) = 50$$

$$50 = M_0 e^0$$

$$M_0 = 50$$

b
$$M(t) = 50e^{-0.005t}$$

$$M(10) = 50e^{-0.005 \times 10}$$
$$= 50e^{-0.05}$$

$$=47.561471$$

After 10 days, 47.56 grams of the substance remains.

$$\mathbf{c} \qquad M(t) = 50e^{-0.005t}$$

$$M'(t) = 50e^{-0.005t} \times -0.005$$

$$M'(t) = -0.25e^{-0.005t}$$

$$M'(10) = -0.25e^{-0.005 \times 10}$$

$$= -0.25e^{-0.05}$$
$$= -0.23780736$$

Rate of decay of the substance after 10 days is 0.24 grams/day.

4 a $y = y_0 e^{-0.6t}$

at
$$t = 0$$
, $y = 200 : 200 = y_0 e^0$

$$y_0 = 200$$

b
$$y = 200 e^{-0.6t}$$

at
$$t = 1$$
: $y = 200 e^{-0.6}$

$$y = 109.76233$$

After 1 hour there will be 110 grams of δ -gluconolactone present.

c at
$$y = 50$$
: $50 = 200 e^{-0.6t}$

$$e^{-0.6t} = 0.25$$

$$\ln e^{-0.6t} = \ln 0.25$$

$$-0.6t \ln e = \ln 0.25$$

$$t = \frac{\ln 0.25}{-0.6}$$

t = 2.3104906 hours

t = 2 hours 19 minutes

It would take 2 and a quarter hours to reduce to a level of 50 grams.

d
$$v = 200 e^{-0.6t}$$

$$\frac{dy}{dx} = 200 \, e^{-0.6t} \times (-0.6)$$

$$\frac{dy}{dx} = -120 e^{-0.6t}$$

at
$$t = 2$$
: $\frac{dy}{dx} = -120 e^{-0.6 \times 2}$

$$\frac{dy}{dx} = -120 e^{-1.2}$$

$$= -36.143305$$

The rate of change in the δ -gluconolactone after 2 hours is -36.1 grams/hour, or decreasing at a rate of 36.1 grams/hour.

5 a
$$y = y_0 e^{-0.18t}$$

at
$$t = 0$$
, $y = 10 : 10 = y_0 e^0$

$$y_0 = 10$$

b
$$y = 10 e^{-0.18t}$$

at
$$t = 2$$
: $y = 10 e^{-0.18 \times 2}$

$$y = 10 \, e^{-0.36}$$

$$y = 6.9767623$$

After 2 days there will be 7 grams of the gas present.

c at
$$y = 5$$
: $5 = 10 e^{-0.18t}$

$$e^{-0.18t} = 0.5$$

$$\ln e^{-0.18t} = \ln 0.5$$

$$-0.18t \ln e = \ln 0.5$$

$$t = \frac{\ln 0.5}{-0.18}$$

$$t = 3.8508177$$
 days

$$t = 4 \, \mathrm{days}$$

It would take 4 days for the gas to reduce to half its original mass.

d
$$y = 10 e^{-0.18t}$$

$$\frac{dy}{dx} = 10 e^{-0.18t} \times (-0.18)$$

$$\frac{dy}{dx} = -1.8 \, e^{-0.18t}$$

at
$$t = 5$$
: $\frac{dy}{dx} = -1.8 e^{-0.18 \times 5}$

$$\frac{dy}{dx} = -1.8 e^{-0.9}$$

$$=-0.73182519$$

The rate of decay in the radon-222 gas after 5 days is 0.73 grams/day.

$$\mathbf{6} \ A = A_0 \times e^{rt}$$

a
$$A_0 = 1000; r = 0.05$$

b
$$A = 1000 e^{0.05t}$$

i at
$$t = 1$$

$$A = 1000 e^{0.05}$$

$$= 1051.2711$$

Amount: \$1051.27

ii at
$$t = 5$$

$$A = 1000 e^{0.05 \times 5}$$

$$= 1000 e^{0.25}$$

Amount: \$1284.03

iii at
$$t = 10$$

 $A = 1000 e^{0.05 \times 10}$
 $= 1000 e^{0.5}$
 $= 1648.7213$

Amount: \$1648.72

$$\mathbf{c} \quad \frac{dA}{dt} = 1000 \, e^{0.05t} \times 0.05$$
$$\frac{dA}{dt} = 50 \, e^{0.05t}$$

i at
$$t = 1$$

$$\frac{dA}{dt} = 50 e^{0.05}$$

$$= 52.563555$$

Rate increasing: \$52.56/year

ii at
$$t = 5$$

$$\frac{dA}{dt} = 50 e^{0.05 \times 5}$$

$$= 50 e^{0.25}$$

$$= 64.201271$$

Rate increasing: \$64.20/year

iii at
$$t = 10$$

$$\frac{dA}{dt} = 50 e^{0.05 \times 10}$$

$$= 50 e^{0.5}$$

$$= 82.436064$$

Rate increasing: \$82.44/year

d at A = 2000: 2000 = 1000
$$e^{0.05t}$$

 $e^{0.05t} = 2$
 $\ln e^{0.05t} = \ln 2$
 $0.05t \ln e = \ln 2$
 $t = \frac{\ln 2}{0.05} = 13.862944$

It would take 14 years for the investment of \$1000 to double in value.

7 a When
$$t = 0$$
, $T = 95 - 20 = 75$
 $75 = T_0 e^{-z(0)}$
 $75 = T_0$
So $T = 75e^{-zt}$
b $T = 75e^{-0.034t}$

$$\frac{dT}{dt} = -0.034 \times 75e^{-0.034t}$$

$$\frac{dT}{dt} = -2.55e^{-0.034t}$$

When
$$t = 15$$
 then
$$\frac{dT}{dt} = -2.55e^{-0.034(15)} = -1.531$$
°C/min

Decreases at the rate of −1.531°C/min

8
$$P = P_0 e^{kt}$$

a at
$$t = 0$$
, $P = 500$: $500 = P_0 e^0$

$$P_0 = 500$$
b at $t = 10$, $P = 675$: $675 = 500e^{10k}$

$$e^{10k} = \frac{675}{500}$$

$$\ln e^{10k} = \ln \frac{27}{20}$$

10k ln
$$e = \ln \frac{27}{20}$$

$$k = \frac{\ln \frac{27}{20}}{10}$$

$$k = 0.03001046$$

$$k = 0.03 \text{ (to two decimal places)}$$

c
$$P = 500e^{0.03t}$$

at $t = 50$: $P = 500e^{0.03 \times 50}$
 $= 500e^{1.5}$
 $= 2240.8445$

Population on 1 January 1900 would have been 2240 people.

$$\mathbf{d} P = 500e^{0.03t}$$

$$\frac{dP}{dt} = 500e^{0.03t} \times 0.03$$

$$\frac{dP}{dt} = 15e^{0.03t}$$

$$At t = 50: \frac{dP}{dt} = 15e^{0.03 \times 50}$$

$$= 15e^{1.5}$$

$$= 67.225336$$

In the year 1900, the population was increasing at a rate of 67 people/year.

9
$$m(t) = ae^{-kt}$$

a at $m(0) = 2$: $m(0) = ae^0$
 $a = 2$
at $m(3) = 1.1$: $m(3) = 2e^{-3k}$
 $2e^{-3k} = 1.1$
 $e^{-3k} = 0.55$
 $\ln e^{-3k} = \ln 0.55$
 $-3k = \ln 0.55$
 $k = \frac{\ln 0.55}{-3}$
 $k = 0.199279$

k = 0.2 (to one decimal places)

b
$$m(t) = 2e^{-0.2t}$$

 $\frac{dm}{dt} = 2e^{-0.2t} \times -0.2$
 $= -0.4e^{-0.2t}$
c at $t = 6$: $\frac{dm}{dt} = -0.4e^{-0.2 \times 6}$
 $= -0.4e^{-1.2}$
 $= -0.12047768$

The rate of decay of the isotope after 6 hours is 0.12 kg/hour.

d at
$$m(t) = 1$$
: $1 = 2e^{-0.2t}$
 $e^{-0.2t} = 0.5$
 $\ln e^{-0.2t} = \ln 0.5$
 $-0.2t \ln e = \ln 0.5$
 $t = \frac{\ln 0.5}{-0.2}$
 $t = 3.4657359$

The half-life of the isotope is 3.5 hours.

10 a
$$A = A_0 e^{-kt}$$

When $t = 0$, $A = 120$

$$120 = A_0 e^{-k(0)}$$

$$120 = A_0$$

$$A_0 = 120$$

b
$$A = 120e^{-kt}$$

$$90 = 120e^{-2k}$$

$$\frac{3}{4} = e^{-2k}$$

$$-2k = \log_e\left(\frac{3}{4}\right)$$

$$k = -\frac{1}{2}\log_e\left(\frac{3}{4}\right)$$

$$k = \frac{1}{2} \log_e \left(\frac{4}{3} \right) = 0.144$$

$$\mathbf{c} \ A = 120e^{kt}, \ k = \frac{1}{2}\log_e\left(\frac{4}{3}\right)$$

$$\frac{dA}{dt} = -120(0.144)e^{kt}$$

$$\frac{dA}{dt} = -16.68e^{kt}$$

When
$$t = 5$$

$$\frac{dA}{dt} = -16.68e^{k(5)} \simeq -8.411 \text{ units/min}$$

Therefore the gas is decomposing at a rate of 8.411 units/min.

- **d** As $t \to \infty$, $A \to 0$. Technically the graph approaches the line A = 0 (asymptotic behavior, so never reaches A = 0exactly) however, the value of A would be so small, that in effect, after a long period of time, there is no gas left.
- **11 a** $P = P_0 e^{0.016t}$

When t = 0, P = 8.2 million

$$8.2 = P_0 e^{0.016(0)}$$

$$8.2 = P_0$$

Thus $P = 8.2e^{0.016t}$

When 2015, t = 2015 - 1950 = 65

$$P = 8.2e^{0.016(65)} = 23.2$$
 million

b $20 = 8.2e^{0.016(t)}$

Solve for t using technology

$$t = 55.72$$

Therefore August, 2005

$$\mathbf{c} \frac{dP}{dt} = 0.016 \times 8.2e^{0.016t}$$

$$\frac{dP}{dt} = 0.1312e^{0.016t}$$

When 2000,
$$t = 2000 - 1950 = 50$$

$$\frac{dP}{dt} = 0.1312e^{0.016(50)} = 0.29199$$
Change in population is 0.29 million/year.

d
$$\frac{dP}{dt} = 0.016 \times 8.2e^{0.016t}$$

$$\frac{dP}{dt} = 0.1312e^{0.016t}$$

$$0.1312e^{0.016t} > 0.4$$

Solve using CAS:

$$0.1312e^{0.016t} > 0.4$$

Therefore in the year 2019.

12 a $P = P_0 e^{-kh}$

When
$$h = 0.5$$
, $P = 66.7 \rightarrow 66.7 = P_0 e^{-0.5k}$

When
$$h = 1.5$$
, $P = 52.3 \rightarrow 52.3 = P_0 e^{-1.5k}$

Solve using technology: $P_0 = 75.32$ cm of mercury, k = 0.24So $P = 75.32e^{-0.24h}$

 $P = 75.32e^{-0.24h}$

$$\frac{dP}{dh} = -0.24 \times 75.32e^{-0.24h}$$

$$\frac{dP}{dh} = -18.08e^{-0.24h}$$

When h = 5

$$\frac{dP}{dh} = -18.08e^{-0.24(5)} = -5.45$$
 cm of mercury/km

The rate is falling at 5.45 cm of mercury/km

13 a $T = T_0 e^{kt}$

When t = 0, T = 30

$$30 = T_0 e^{k(0)}$$

$$T_0 = 30$$

b When t = 7 days and k = 0.387

$$T = 30e^{0.378(7)}$$

$$T = 30e^{2.709}$$

 $T = 450\,000$ tadpoles

$$\mathbf{c} \frac{dT}{dt} = 0.387 \times 30e^{0.387t}$$

$$\frac{dT}{dt} = 11.61e^{0.387t}$$

When t = 3 then

$$\frac{dT}{dt}$$
 = 11.61 $e^{0.387(3)}$ = 37 072 tadpoles/day

14 a
$$P(t) = 83 - 65e^{-0.2t}, t \ge 0$$

$$P(0) = 83 - 65e^0$$

$$= 18$$

There were 18 possums initially.

b
$$P(1) = 83 - 65e^{-0.2}$$

$$= 30$$

The population has increased by 12.

c Let P = 36

$$\therefore 36 = 83 - 65e^{-0.2t}$$

$$\therefore 65e^{-0.2t} = 47$$

$$\therefore e^{-0.2t} = \frac{47}{65}$$

$$\therefore -0.2t = \log_e \left(\frac{47}{65}\right)$$

$$\therefore t = -5\log_e\left(\frac{47}{65}\right)$$

The population doubled in 1.62 months.

d $P(t) = 83 - 65e^{-0.2t}, t \ge 0$

Horizontal asymptote at P = 83. Points (0, 18), (1, 30)and (1.62, 36) lie on, or close to, the graph.

P(t) (possums) (1.6, 36) (0.18)t (months) **e** The presence of the asymptote at P = 83 shows that as $t \to \infty$, $P \to 83$. The population can never exceed 83 so the population cannot grow to 100.

15
$$T = 20 + 75e^{-0.062t}$$

a at
$$t = 0$$
: $T = 20 + 75e^0$
 $T = 20 + 75$
 $T = 95$

The temperature of the coffee was 95 °C when it was first

b negative exponential curve from (0, 95) with a horizontal asymptote of y = 20.

c The coffee will cool to a temperature of approximately

20 °C.
d at
$$T = 65:65 = 20 + 75e^{-0.062t}$$

 $45 = 75e^{-0.062t}$
 $e^{-0.062t} = \frac{45}{75}$
 $\ln e^{-0.062t} = \ln \frac{3}{5}$
 $-0.062t \ln e = \ln \frac{3}{5}$
 $t = \frac{\ln \frac{3}{5}}{-0.062}$
 $t = 8.239123$

It takes 8.24 minutes for the coffee to cool to a temperature of 65 °C.

$$e T = 20 + 75e^{-0.062t}$$

$$\frac{dT}{dt} = 75e^{-0.062t} \times (-0.062)$$

$$\frac{dT}{dt} = -4.65e^{-0.062t}$$
at $t = 10$:
$$\frac{dT}{dt} = -4.65e^{-0.062 \times 10}$$

$$\frac{dT}{dt} = -4.65e^{-0.62}$$

$$\frac{dT}{dt} = -2.5014416$$

After 10 minutes, the coffee is cooling at a rate of 2.5 °C/minute.

The temperature is decreasing, so the rate of change will be negative.

be negative.
16
$$T = T_0 e^{-kt} + A$$

a $A = 30$
at $t = 0$, $T = 200$: $200 = T_0 e^0 + 30$
 $T_0 = 170$
b at $t = 5$, $T = 150$: $150 = 170e^{-5k} + 30$
 $120 = 170e^{-5k}$
 $e^{-5k} = \frac{120}{170}$
 $\ln e^{-5k} = \ln \frac{12}{17}$

$$-5k \ln e = \ln \frac{12}{17}$$
$$k = \frac{\ln \frac{12}{17}}{-5}$$
$$k = 0.06966134$$

k = 0.0697 (to four decimal places)

$$\mathbf{c} \quad T = 170e^{-0.0697t} + 30$$

d at
$$t = 15$$
: $T = 170e^{-0.0697 \times 15} + 30$
 $T = 170e^{-1.0455} + 30$
 $T = 89.757723$

The metal ball has cooled to a temperature of 89.8 °C after a further 10 minutes.

$$\mathbf{e} \quad \frac{dT}{dt} = 170e^{-0.0697t} \times (-0.0697)$$

$$\frac{dT}{dt} = -11.849e^{-0.0697t}$$

$$at t = 15 : \frac{dT}{dt} = -11.849e^{-0.0697 \times 15}$$

$$\frac{dT}{dt} = -4.1651133$$

The rate of change in the metal ball after a further 15 minutes is -4.2 degrees/minute.

f at
$$T = 40:40 = 170e^{-0.0697t} + 30$$

 $10 = 170e^{-0.0697t}$
 $e^{-0.0697t} = \frac{10}{170}$
 $\ln e^{-0.0697t} = \ln \frac{1}{17}$
 $-0.0697t \ln e = -\ln 17$
 $t = \frac{\ln 17}{0.0697}$
 $t = 40.648685$

The temperature of the metal ball cools to 40 °C after 40.65 minutes.

g From the graph, the temperature of the metal ball is always greater than 30 °C, the temperature of the room, so if left in the room it will never reach a temperature of 10 °C.

Exercise 2.6 - Review: exam practice

1 **a**
$$\lim_{x \to 3} (6x - 1) = 6 \times 3 - 1$$

= 17
b $\lim_{x \to 3} \frac{2x^2 - 6x}{x - 3} = \lim_{x \to 3} \frac{2x(x - 3)}{(x - 3)}$
= $\lim_{x \to 3} 2x$
= 6

CHAPTER 2 Calculus of exponential funct

$$c \lim_{x\to 1} \frac{2x^2 + 3x - 5}{x^2 - 1} = \lim_{x\to 1} \frac{(2x + 5)(x - 1)}{(x - 1)(x + 1)}$$

$$= \lim_{x\to 1} \frac{(2x + 5)}{(x + 1)}$$

$$= \frac{7}{2}$$

$$d \lim_{x\to 0} \frac{3x - 5}{2x - 1} = \frac{-5}{-1}$$

$$= 5$$

$$2 \text{ a } y = 4 - x^2$$

$$\frac{dy}{dx} = \lim_{h\to 0} \frac{f(x + h) - f(x)}{h}$$

$$= \lim_{h\to 0} \frac{4 - x^2 - 2xh - h^2 - 4 + x^2}{h}$$

$$= \lim_{h\to 0} \frac{-2xh - h^2}{h}$$

$$= \lim_{h\to 0} (-2x - h)$$

$$= -2x$$

$$\frac{dy}{dx} = -2x$$

$$\frac{dy}{dx} = \lim_{h\to 0} \frac{f(x + h) - f(x)}{h}$$

$$\frac{dy}{dx} = \lim_{h\to 0} \frac{f(x + h) - f(x)}{h}$$

$$= \lim_{h\to 0} (-2x - h)$$

$$= -2x$$

$$\frac{dy}{dx} = -2x$$

$$\frac{dy}{dx} = \lim_{h\to 0} \frac{f(x + h) - f(x)}{h}$$

$$= \lim_{h\to 0} \frac{x^2 + 2xh + h^2 + 4x + 4h - x^2 - 4x}{h}$$

$$= \lim_{h\to 0} \frac{2xh + h^2 + 4h}{h}$$

$$= \lim_{h\to 0} \frac{h(2x + h + 4)}{h}$$

$$= \lim_{h\to 0} (2x + h + 4)$$

$$= 2x + 4$$

$$\frac{dy}{dx} = 2x + 4$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{\left[(x+h)^2 + (x+h) \right] - \left[x^2 + x \right]}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 + x + h - x^2 - x}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2 + h}{h}$$

$$= \lim_{h \to 0} \frac{h(2x + h + 1)}{h}$$
$$= \lim_{h \to 0} (2x + h + 1)$$
$$= 2x + 1$$

$$\frac{dy}{dx} = 2x + 1$$

c y = x(x + 1)

2.6

3
$$f(x) = (x + 5)^2$$

a $f(x) = x^2 + 10x + 25$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{[(x + h)^2 + 10(x + h) + 25] - [x^2 + 10x + 25]}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 + 10x + 10h + 25 - x^2 - 10x - 25}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2 + 10h}{h}$$

$$= \lim_{h \to 0} \frac{h(2x + h + 10)}{h}$$

$$= \lim_{h \to 0} (2x + h + 10)$$

$$= 2x + 10$$

$$f'(x) = 2x + 10$$

b $f'(-5) = 2(-5) + 10 = 0$

The function has a stationary point at $x = -5$.

c for y-intercept, $x = 0$:
$$f'(0) = 10$$

d at $x = -2$: $f'(-2) = -4 + 10$

$$= 6$$

4 a $e^{x+1} = 6$

$$\ln e^{(x+1)} = \ln 6$$

$$(x + 1) \ln e = \ln 6$$

$$x + 1 = \ln 6$$

$$x = \ln 6 - 1$$

$$x = 0.7917595$$

$$x = 0.792(3 \text{ d.p.})$$
b $2e^{4-x} = 5 = 0$
 $2e^{4-x} = 5$

$$e^{(4-x)} = \ln 2.5$$

$$(4-x) \ln e = \ln 2.5$$

$$4 - x = \ln 2.5$$

$$x = 3.0837093$$

$$x = 3.084(3 \text{ d.p.})$$
c $e^{-2x} = 8$

$$\ln e^{(-2x)} = \ln 8$$

$$(-2x) \ln e = \ln 8$$

$$-2x = \ln 8$$

$$x = \frac{\ln 8}{-2}$$

$$x = -1.0397208$$

$$x = -1.040(3 \text{ d.p.})$$
d $4 - e^{x-2} = 0$

$$e^{x-2} = 4$$

$$\ln e^{(x-2)} = \ln 4$$

$$(x - 2) \ln e = \ln 4$$

$$x = \ln 4 + 2$$

$$x = 3.3862944$$

x = 3.386 (3 d.p.)

5 a $e^{2x} - 2e^x = 0$

 $(e^x)^2 - 2e^x = 0$

Let
$$a = e^x$$

 $(a)^2 - 2a = 0$
 $a(a-2) = 0$
 $a = 0$ or $(a-2) = 0$
 $a = 0$ or $a = 2$
 $e^x = 0$ $e^x = 2$
 $e^x \neq 0$ $x = \ln 2$
 $\therefore x = \ln 2$

$$\therefore x = \ln 2$$
b $(e^{x} + 1)(e^{x} - 3) = 0$
 $(e^{x} + 1) = 0$ or $(e^{x} - 3) = 0$
 $e^{x} = -1$ $e^{x} = 3$
 $e^{x} \neq -1$ $x = \ln 3$
 $\therefore x = \ln 3$

c
$$e^{2x} + 2e^x = 8$$

Let $a = e^x$
 $(a)^2 + 2a = 8$
 $a^2 + 2a - 8 = 0$
 $(a + 4)(a - 2) = 0$
 $(a + 4) = 0$ or $(a - 2) = 0$
 $a = -4$ or $a = 2$
 $e^x = -4$ $e^x = 2$
 $e^x \neq -4$ $x = \ln 2$
 $\therefore x = \ln 2$

$$\therefore x = \ln x$$
d $2e^{2x} - 9e^x + 4 = 0$
Let $a = e^x$
 $2(a)^2 - 9a + 4 = 0$
 $2a^2 - 9a + 4 = 0$
 $(2a - 1)(a - 4) = 0$
 $(2a - 1) = 0$ or $(a - 4) = 0$
 $a = 0.5$ or $a = 4$
 $e^x = 0.5$

$$x = \ln \frac{1}{2} \qquad e^x = 4$$

$$= -\ln 2$$

$$\therefore x = -\ln 2, \ln 4$$
6 a $f(x) = -5^x$

$$f(2) = -5^2$$

= -25
b $y = 5^x$ contains the points (0, 1) and (1, 5).
 $y = -5^x$ contains the points (0, -1) and (1, -5).

c Since $5^{-x} = \left(\frac{1}{5}\right)^x$, an alternative form for the rule is

7 **a** $y = 2e^x + 1$ The asymptote is y = 1. y-intercept: Let x = 0.

 $y = 2e^0 + 1$ y = 2 + 1v = 3

The y-intercept is (0, 3).

As the y-intercept is above the positive asymptote, there is no *x*-intercept.

Growth shape

The domain is R and the range is $(1, \infty)$.

b $y = 3 - 3e^{-\frac{x}{2}}$ The asymptote is y = 3. y-intercept: Let x = 0. $y = 3 - 3e^0$ v = 0The y-intercept is (0, 0).

(0, 0) is also the x-intercept.

If x = -2, then y = 3 - 3e < 0.

The domain is R and the range is $(-\infty, 3)$.

c $y = -\frac{1}{4}e^{x+1}$ The asymptote is y = 0. y-intercept: Let x = 0.

The y-intercept is $\left(0, -\frac{e}{4}\right)$.

There are no x-intercepts as the x-axis is an asymptote. Let x = -1.

Another point on the graph is $\left(-1, -\frac{1}{4}\right)$

The domain is R and the range is R^- .

8 a
$$y = -2e^x - 3$$

Asymptote: y = -3

y intercept: Let x = 0

$$\therefore y = -2e^0 - 3$$

$$\therefore y = -5$$

$$(0, -5)$$

There will not be an x intercept.

Domain R, range $(-\infty, -3)$.

b
$$y = 4e^{-3x} - 4$$

Asymptote: y = -4

y intercept: Let x = 0

$$\therefore y = 4e^0 - 4$$

$$\therefore y = 0$$

The origin is also the *x* intercept.

Point: Let
$$x = -\frac{1}{3}$$

Domain R and range $(-4, \infty)$.

c
$$y = 5e^{x-2}$$

Asymptote: y = 0

There is no x intercept.

y intercept: Let x = 0

$$\therefore y = 5e^{-2}$$

$$(0, 5^{e-2})$$

Point: Let x = 2

$$\therefore y = 5e^0$$

$$\therefore y = 5$$

Domain R and range R^+ .

9 a
$$y = 2e^{1-3x} - 4$$

Asymptote: y = -4

y intercept: Let x = 0

$$\therefore y = 2e^{-1} - 4$$

$$(0, 2e-4)$$

This point lies above the asymptote so there will be an x intercept. Approximately, 2e - 4 = 1.4.

$$x$$
 intercept: Let $y = 0$

$$\therefore 2e^{1-3x} - 4 = 0$$

$$\therefore 2e^{1-3x} = 4$$

$$\therefore e^{1-3x} = 2$$

Convert to logarithm form

$$\therefore 1 - 3x = \log_{e}(2)$$

$$\therefore 3x = 1 - \log_{e}(2)$$

$$\therefore x = \frac{1}{3}(1 - \log_e(2))$$

The *x* intercept is $\left(\frac{1}{3}(1 - \log_{e}(2)), 0\right)$ which is approximately (-0.1, 0).

Point: Let
$$x = \frac{1}{3}$$

$$\therefore y = 2e^0 - 4$$

$$\therefore y = -2$$

$$(0, 2e - 4)$$

$$0$$

$$(\frac{1}{3}(1 - \log_e(2)), 0)$$

$$y = 2e^{1 - 3x} - 4$$

b
$$y = 3 \times 2^x - 24$$

Asymptote: y = -24

y intercept: Let x = 0

$$\therefore y = 3 \times 2^0 - 24$$

$$= -21$$

$$(0, -21)$$

x intercept: Let y = 0

$$\therefore 3 \times 2^{x} - 24 = 0$$
$$\therefore 2^{x} = 8$$
$$\therefore x = 3$$

(3, 0)

Domain R and range $(-24, \infty)$.

10 Reflection in the x-axis and translated vertically up by 2 units.

Curve of the form: $y = -Ae^x + 2$

Passes through the point (0, 1): $1 = -Ae^0 + 2$

$$A = 1$$

Possible equation: $y = -e^x + 2$ $y = 2 - e^{x}$

Answer is A

11 a
$$y = e^{-\frac{1}{3}x}$$

 $\frac{dy}{dx} = -\frac{1}{3}e^{-\frac{1}{3}x}$

b
$$y = 3x^4 - e^{-2x^2}$$

 $\frac{dy}{dx} = 12x^3 + e^{-2x^2}(-4x) = 12x^3 + 4xe^{-2x^2}$

$$\mathbf{c} \quad y = \frac{4e^x - e^{-x} + 2}{3e^{3x}}$$
$$y = \frac{4}{3}e^{-2x} - \frac{1}{3}e^{-4x} + \frac{2}{3}e^{-3x}$$
$$\frac{dy}{dx} = -\frac{8}{3}e^{-2x} + \frac{4}{3}e^{-4x} - 2e^{-3x}$$

12
$$f(x) = \frac{1}{2}e^{3x} + e^{-x}$$

 $f'(x) = \frac{3}{2}e^{3x} - e^{-x}$
 $f'(0) = \frac{3}{2}e^{0} - e^{0} = \frac{1}{2}$

13 a $f(x) = ae^x + b$

Asymptote is y = 11 so b = 11.

Equation becomes $f(x) = ae^x + 11$.

The graph passes through the origin so f(0) = 0.

$$\therefore ae^0 + 11 = 0$$
$$\therefore a + 11 = 0$$
$$\therefore a = -11$$

 $\therefore a = -11$

The rule for the function is $f(x) = -11e^x + 11$ with a = -11, b = 11.

The domain of the graph is R so as a mapping the function is written $f: R \to R$, $f(x) = -11e^x + 11$.

 $\mathbf{b} \quad \mathbf{y} = Ae^{nx} + k$

The asymptote is y = 4 so k = 4 and the equation becomes $y = ae^{nx} + 4.$

Substitute the point (0, 5)

$$\therefore 5 = ae^0 + 4$$

$$\therefore 5 = a + 4$$

$$\therefore a = 1$$

The equation becomes $y = e^{nx} + 4$.

Substitute the point $(-1, 4 + e^2)$

$$\therefore 4 + e^2 = e^{-n} + 4$$

$$\therefore e^2 = e^{-n}$$

$$\therefore 2 = -n$$

$$\therefore n = -2$$

The equation is $y = e^{-2x} + 4$.

14 a
$$y = Ae^{-x^2}$$

When
$$x = 0$$
, $y = 5$

$$5 = Ae^0$$

$$A = 5$$

b Thus
$$y = 5e^{-x^2}$$
.

$$\frac{dy}{dx} = -2x \times 5e^{-x^2}$$

$$\frac{dy}{dx} = -10xe^{-x^2}$$

c i When
$$x = -0.5$$
, $\frac{dy}{dx} = -10(-0.5)e^{-(-0.5)^2} = 3.89$

ii When
$$x = 1$$
, $\frac{dy}{dx} = -10(1)e^{-(1)^2} = -3.68$

d at
$$x = 1$$
: $y = 5e^{-1} \frac{dy}{dx} = -10e^{-1}$
$$= \frac{5}{e} = -\frac{10}{e}$$

point: $\left(1, \frac{5}{e}\right)$ gradient of tangent, $m = -\frac{10}{e}$

equation of tangent:

$$y - \frac{5}{e} = -\frac{10}{e}(x - 1)$$

$$ey - 5 = -10(x - 1)$$

$$ey - 5 = -10x + 10$$

10x + ey - 15 = 0 as required

15 $m(t) = ae^{-kt}$

a at
$$m(0) = 4$$
: $m(0) = ae^0$

$$a = 4$$

at
$$m(6) = 2.8$$
: $m(6) = 4e^{-6k}$
 $4e^{-6k} = 2.8$

$$4e = 2.0$$

$$e^{-6k} = 0.7$$

$$\ln e^{-6k} = \ln 0.7$$

$$-6k \ln e = \ln 0.7$$

$$k = \frac{\ln 0.7}{-6}$$

$$k = 0.05944582$$

k = 0.059 (to three decimal places)

b
$$m(t) = 4e^{-0.059t}$$

$$\frac{dm}{dt} = 4e^{-0.059t} \times -0.059$$

$$= -0.236e^{-0.059t}$$

c at
$$t = 6$$
: $\frac{dm}{dt} = -0.236e^{-0.059 \times 6}$
= $-0.236e^{-0.354}$
= -0.16564249

The rate of decay of the isotope after 6 hours is 0.17 g/hour.

16
$$P(t) = A e^{kt}$$
 where *P* is in thousands

a at
$$P(0) = 250$$
: $P(0) = A e^0$
 $A = 250$
at $P(10) = 400$: $P(100) = 250e^{10k}$
 $250e^{10k} = 400$
 $e^{10k} = \frac{8}{5}$
 $\ln e^{10k} = \ln \frac{8}{5}$
 $10k \ln e = \ln \frac{8}{5}$
 $k = \frac{\ln \frac{8}{5}}{10}$
 $k = 0.04700036$

k = 0.047 (to three decimal places)

b at
$$t = 15$$
: $P(15) = 250 e^{0.047 \times 15}$
= $250 e^{0.705}$
= 505.96167

The population at the beginning of the year 2015 was 506 000 (to the nearest thousand).

c at
$$P(t) = 750$$
: $P(t) = 250 e^{0.047t}$
 $750 = 250 e^{0.047t}$
 $e^{0.047t} = 3$
 $\ln e^{0.047t} = \ln 3$
 $0.047t \ln e = \ln 3$
 $t = \frac{\ln 3}{0.047}$
 $t = 23.37473$

Population will reach 750 000 during the year 2023.

17
$$P(t) = P_0 e^{kt}$$

a at
$$P(0) = 500$$
: $P(0) = P_0 e^0$

$$P_0 = 500$$
at $P(8) = 1000$: $P(8) = 500e^{8k}$

$$500e^{8k} = 1000$$

$$e^{8k} = 2$$

$$\ln e^{8k} = \ln 2$$

$$8k \ln e = \ln 2$$

$$k = \frac{\ln 2}{8}$$

$$k = \frac{1}{8} \ln 2$$
 as required

b at
$$t = 40$$
: $P(40) = 500 e^{\frac{1}{8} \ln 2 \times 40}$
= $500 e^{5 \ln 2}$
= $500 e^{\ln 2^5}$
= 500×2^5
= 16000

After 40 hours, the colony would contain 16 000 bacteria.

$$c P(t) = 500 e^{\left(\frac{1}{8}\ln 2\right)t}$$

$$P'(t) = 500 e^{\left(\frac{1}{8}\ln 2\right)t} \times \left(\frac{1}{8}\ln 2\right)$$

$$= \left(\frac{125}{2}\ln 2\right) e^{\left(\frac{1}{8}\ln 2\right)t}$$
at $t = 8$:
$$P'(8) = \left(\frac{125}{2}\ln 2\right) e^{\left(\frac{1}{8}\ln 2\right)\times 8}$$

$$= \left(\frac{125}{2}\ln 2\right) e^{(\ln 2)}$$

$$= \left(\frac{125}{2}\ln 2\right) \times 2$$

= 125 ln 2 bacteria/hour as required.

d when
$$P'(t) = 250 \ln 2$$
:

when
$$P'(t) = 250 \ln 2$$
:
 $250 \ln 2 = \left(\frac{125}{2} \ln 2\right) e^{\left(\frac{1}{8} \ln 2\right)t}$
 $e^{\left(\frac{1}{8} \ln 2\right)t} = 4$
 $\ln e^{\left(\frac{1}{8} \ln 2\right)t} = \ln 4$
 $\left(\frac{1}{8} \ln 2\right) t \ln e = \ln 4$
 $t = \frac{8 \times \ln 4}{\ln 2}$
 $= \frac{8 \times \ln 2^2}{\ln 2}$
 $= \frac{8 \times 2 \ln 2}{\ln 2}$
 $= 16$

The colony will be increasing at twice its rate of increase at 8 hours after 16 hours.

18
$$m(t) = ae^{-kt}$$

a at
$$m(0) = 30$$
: $m(0) = ae^0$
 $a = 30$

b 20% disintegrated, so 80% of mass is present after 2 hours. Mass = 80% of 30 mg.

$$= 24 \, \text{mg}.$$

After 2 hours, 24 mg of the radioactive substance was present.

c at
$$m(2) = 24$$
: $m(2) = 30e^{-2k}$
 $30e^{-2k} = 24$
 $e^{-2k} = 0.8$
 $\ln e^{-2k} = \ln 0.8$
 $-2k \ln e = \ln 0.8$
 $k = \frac{\ln 0.8}{-2}$
 $k = 0.11157178$

k = 0.1116 (to four decimal places)

d at
$$t = 5$$
: $m(t) = 30e^{-0.1116t}$
 $m(5) = 30e^{-0.1116 \times 5}$
 $= 30e^{-0.558}$
 $= 17.170579$

After a further 3 hours, the amount of the substance remaining was 17.17 mg.

e
$$m(t) = 30e^{-0.1116t}$$

$$\frac{dm}{dt} = 30e^{-0.1116t} \times -0.1116$$

$$=-3.348e^{-0.1116t}$$

At rate of decay of 1 mg/hour:

$$\frac{dm}{dt} = -1$$

$$-3.348e^{-0.1116t} = -1$$

$$e^{-0.1116t} = \frac{1}{3.348}$$

$$\ln e^{-0.1116t} = \ln \left(\frac{1}{3.348} \right)$$

$$-0.1116t \ln e = \ln 1 - \ln 3.348$$

$$0.1116t = \ln 3.348$$

$$t = \frac{\ln 3.348}{0.1116}$$

$$t = 10.827627$$

Substance is disintegrating at a rate of 1 mg/hour after 10.8 hours (to one decimal place).

19
$$A = A_0 e^{rt}$$

a
$$A_0 = 10\,000$$
, $r = 0.045$, $t = 6$: $A = 10\,000e^{0.045 \times 6}$
= $10\,000e^{0.27}$
= $13\,099.645$

After 6 years, the investment would amount to \$13 099.65.

b For the investment to triple in value: $A = 30\,000$

$$A = 10\,000e^{0.045t}$$

$$30\,000 = 10\,000e^{0.045t}$$

$$e^{0.045t} = 3$$

$$\ln e^{0.045t} = \ln 3$$

 $0.045t \ln e = \ln 3$

$$t = \frac{\ln 3}{0.045}$$

$$t = 24.413606$$

It would take 24 years and 5 months for the investment to triple in value.

20
$$T = T_0 e^{-kt} + A$$

a
$$A = 28$$

at
$$t = 0$$
, $T = 100:100 = T_0 e^0 + 28$
 $100 = T_0 + 28$
 $T_0 = 72$

b at
$$t = 3$$
, $T = 76:76 = 72e^{-3k} + 28$
 $48 = 72e^{-3k}$
 $e^{-3k} = \frac{48}{72}$
 $\ln e^{-3k} = \ln \frac{2}{3}$
 $-3k \ln e = \ln \frac{2}{3}$
 $k = \frac{\ln \frac{2}{3}}{-3}$
 $k = -\frac{1}{3} \ln \left(\frac{2}{3}\right)$

$$k = \frac{1}{3} \ln \left(\frac{3}{2} \right)$$
 as required

c
$$T = 72e^{-\left(\frac{1}{3}\ln\frac{3}{2}\right)t} + 28$$

d at
$$t = 6$$
: $T = 72e^{-\left(\frac{1}{3}\ln\frac{3}{2}\right)6} + 28$

$$= 72e^{-\left(2\ln\frac{3}{2}\right)} + 28$$

$$= 72e^{-\left(\ln\frac{9}{4}\right)} + 28$$

$$= 72e^{\ln\frac{4}{9}} + 28$$

$$= 72 \times \frac{4}{9} + 28$$

Temperature of the water after 6 minutes is 60 °C.

e Since the room is kept at a constant temperature of 28 °C, the water will never cool below this level.