Кластеризация и ЕМ-алгоритм

Полина Кириченко

Факультет компьютерных наук Высшая школа экономики

X наблюдаемые переменные, а Y скрытые. Цель: научиться предсказывать Y.

■ Обучение с учителем (supervised learning)

■ Обучение без учителя (unsupervised learning)

X наблюдаемые переменные, а Y скрытые. Цель: научиться предсказывать Y.

 $lue{}$ Обучение с учителем (supervised learning) Дан набор < X, Y >

 $lue{}$ Обучение без учителя (unsupervised learning) Дан только набор < X >

X наблюдаемые переменные, а Y скрытые. Цель: научиться предсказывать Y.

- lacktriangle Обучение с учителем (supervised learning) Дан набор $\langle X,Y \rangle$
 - Легко сказать, правильный ли ответ выдаёт алгоритм
- $lue{}$ Обучение без учителя (unsupervised learning) Дан только набор < X >
 - Непонятно, как определить хорошую работу алгоритма, нет "правильного ответа"

X наблюдаемые переменные, а Y скрытые. Цель: научиться предсказывать Y.

- $lue{}$ Обучение с учителем (supervised learning) Дан набор < X, Y >
 - Легко сказать, правильный ли ответ выдаёт алгоритм
- $lue{}$ Обучение без учителя (unsupervised learning) Дан только набор < X >
 - Непонятно, как определить хорошую работу алгоритма, нет "правильного ответа"
 - Можем использовать результат не только для предсказания Y

Кластеризация

Дано:

- X множество объектов
- Y множество номеров кластеров
- ightharpoonup
 ho(x,x') функция расстояния между объектами
- lacktriangle обучающая выборка объектов $X^m = \{x_1, \dots, x_m\} \subset X$

Кластеризация

Дано:

- X множество объектов
- Y множество номеров кластеров
- ightharpoonup
 ho(x,x') функция расстояния между объектами
- lacktriangle обучающая выборка объектов $X^m = \{x_1, \dots, x_m\} \subset X$

Задача: разбить выборку на непересекающиеся подмножества, чтобы в смысле метрики ρ

- объекты одного кластера были как можно ближе
- объекты разных кластеров существенно отличались.

Неоднозначность решения

- Нет однозначно наилучшего критерия качества кластеризации
- Часто число кластеров неизвестно заранее и устанавливается в соответствии с некоторым субъективным критерием
- Результат кластеризации существенно зависит от метрики

K-means

Минимизация суммарного квадратичного отклонения точек кластеров от центров их кластеров:

$$SCORE = \sum_{i=1}^{K} \sum_{x \in C_i} ||x - c_i||^2$$

где
$$C_i$$
 – кластеры, $c_i = \frac{1}{|C_k|} \sum_{x \in C_k} x$ – центры

K-means

- Выбрать К центров кластеров
- 2 Отенести каждую точку к ближайшему кластеру
- 3 Пересчитать центр каждого кластера
- 4 K шагу 2, до сходимости SCORE

На каждой итерации O(kn) операций. Каждый шаг итерации сокращает SCORE.

Clustering

- Hard clustering: each object belongs to a cluster or not
- Soft clustering: a likelihood of belonging to the cluster

Distribution models

Mixture of distributions $P_{\theta}(x) = \sum_i \pi_i p_{\theta_i}(x)$ where $\sum_i \pi_i = 1$ and $p_{\theta_i}(x)$ – individual pdf

ΕM

Model
$$\mathscr{P} = \{P_{\theta} | \theta \in \Theta\}$$

Data $X \sim \mathscr{L}(X) \in \mathscr{P}$
and latent Z with $P(X)$

EM for GMM

GMM
$$p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)$$

 $\theta = (\pi, \mu, \Sigma)$
 $X \sim \text{GMM}, Z - \text{gaussian index}$

ΕM

Model
$$\mathscr{P} = \{P_{\theta} | \theta \in \Theta\}$$

Data $X \sim \mathscr{L}(X) \in \mathscr{P}$
and latent Z with $P(X)$

Likelihood $p(X|\theta) = \sum_{Z} p(X, Z|\theta) \rightarrow \max$ But Z are unknown!

EM for GMM

GMM
$$p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)$$

 $\theta = (\pi, \mu, \Sigma)$
 $X \sim \text{GMM}, Z - \text{gaussian index}$

Likelihood In
$$p(X, Z|\theta) = \sum_{n} \sum_{k} Z_{nk} \ln (\pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k))$$
 where Z_{nk} an indicator $X_n \in Gaus_k$

ΕM

Model
$$\mathscr{P} = \{P_{\theta} | \theta \in \Theta\}$$

Data $X \sim \mathscr{L}(X) \in \mathscr{P}$
and latent Z with $P(X)$

Likelihood $p(X|\theta) = \sum_{Z} p(X, Z|\theta) \rightarrow \max$ But Z are unknown!

Expectation
$$\mathbb{E}_Z \ln p(X, Z|\theta) = \sum_Z p(Z|X, \theta^{old}) \ln p(X, Z|\theta)$$
 using posterior prob. $p(Z|X, \theta^{old})$

EM for GMM

GMM
$$p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)$$

 $\theta = (\pi, \mu, \Sigma)$
 $X \sim \text{GMM}, Z - \text{gaussian index}$

Likelihood In $p(X, Z|\theta) = \sum_{n} \sum_{k} Z_{nk} \ln (\pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k))$ where Z_{nk} an indicator $X_n \in Gaus_k$

$$\begin{split} \mathbb{E}_{Z} \ln p(X, Z | \pi, \mu, \Sigma) &= \\ &= \sum_{n} \sum_{k} \mathbb{E} Z_{nk} \left(\ln \pi_{k} \mathcal{N}(x_{n} | \mu_{k}, \Sigma_{k}) \right) \\ \text{where } \mathbb{E} Z_{nk} &= P(Z_{nk} = 1 | X, \theta^{old}) \end{split}$$

ΕM

Model
$$\mathscr{P} = \{P_{\theta} | \theta \in \Theta\}$$

Data $X \sim \mathscr{L}(X) \in \mathscr{P}$
and latent Z with $P(X)$

Likelihood $p(X|\theta) = \sum_{Z} p(X, Z|\theta) \rightarrow \max$ But Z are unknown!

Expectation
$$\mathbb{E}_Z \ln p(X, Z|\theta) = \sum_Z p(Z|X, \theta^{old}) \ln p(X, Z|\theta)$$
 using posterior prob. $p(Z|X, \theta^{old})$

EM for GMM

GMM
$$p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \Sigma_k)$$

 $\theta = (\pi, \mu, \Sigma)$
 $X \sim \text{GMM}, Z - \text{gaussian index}$

Likelihood In $p(X, Z|\theta) = \sum_{n} \sum_{k} Z_{nk} \ln (\pi_k \mathcal{N}(x_n|\mu_k, \Sigma_k))$ where Z_{nk} an indicator $X_n \in Gaus_k$

$$\begin{array}{l} \mathbb{E}_{Z} \ln p(X, Z | \pi, \mu, \Sigma) = \\ = \sum_{n} \sum_{k} \mathbb{E} Z_{nk} \left(\ln \pi_{k} \mathcal{N}(x_{n} | \mu_{k}, \Sigma_{k}) \right) \\ \text{where } \mathbb{E} Z_{nk} = P(Z_{nk} = 1 | X, \theta^{old}) \end{array}$$

Maximization of $\mathbb{E}_Z \ln p(X, Z|\theta)$ with respsect to θ

lacktriangle Инициалиация $heta^{old}$

■ Е-шаг. Вычислить апостериорные вероятности для скрытых переменных:

$$p(Z|X,\theta^{old}) = \frac{p(X,Z|\theta)}{p(X|\theta)} = \frac{p(X|Z,\theta)p(Z|\theta)}{\int p(X|Y,\theta)p(Y|\theta)dY}$$

(формула Байеса + формула полной вероятности)

Ожидаемое значение функции полного правдоподобия:

$$Q(\theta|\theta^{old}) = \sum_{Z} p(Z|X, \theta^{old}) \ln p(X, Z|\theta)$$

■ М-шаг. Пересчёт параметров:

$$\theta^{new} = arg \max_{\theta} Q(\theta | \theta^{old})$$

Таким образом увеличивается ожидаемое правдоподобие, вычисляемое на Е-шаге.

 Вычислить логарифм правдоподобия, выполнять алгоритм до сходимости

Доказательство

Улучшаем $Q(\theta|\theta^{old})$ вместо $\ln p(X|\theta)$, почему это работает?

KL-divergence

Kullback-Leibler divergence is a measure of the difference between two pdf P and Q (often P - prior, Q - estimated approximation of P).

- Generally : $D_{KL}(P||Q) = E_P\left[\ln \frac{P}{Q}\right]$
- Discrete: $D_{KL}(P||Q) = \sum_i p_i \ln \frac{p_i}{q_i}$
- Continuous: $D_{KL}(P||Q) = \int_{\mathbb{R}} p(x) \ln \frac{p(x)}{q(x)} dx$.

 $D_{KL}(P||Q) \ge 0$ with equality iff P = Q alomost everywhere (without proof)

Доказательство

$$Q(\theta|\theta^{old}) = \sum_{Z} p(Z|X, \theta^{old}) \ln p(X, Z|\theta)$$

- In $p(X|\theta) = \mathcal{L}(q,\theta) + D_{KL}(q||p) \ge \mathcal{L}(q,\theta)$ where q(Z) is distribution over Z
- E-step: $\mathcal{L}(q,\theta) \to \max_q \text{ with fixed } \theta^{old} \Rightarrow \mathcal{L}(q,\theta) = Q(\theta|\theta^{old}) + \text{const}$
- M-step: $\mathcal{L}(q, \theta) o \max_{\theta} \Rightarrow Q(\theta | \theta^{old}) o \max_{\theta}$

■ Инициализация μ_k, Σ_k, π_k

■ Е-шаг. Вычислить апостериорные вероятности:

$$\gamma_{nk} = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_i \pi_i \mathcal{N}(x_n | \mu_i, \Sigma_i)}$$

 π_k — априорная вероятность, γ_{nk} — апостериорная вероятность ("responsibility")

■ М-шаг. Пересчёт параметров:

$$N_k = \sum_{n=1}^N \gamma_{nk}, \quad \pi_k = \frac{N_k}{N},$$

$$\mu'_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} x_n,$$

$$\Sigma'_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} (x_n - \mu'_k) (x_n - \mu'_k)^T$$

■ Логарифм функции правдоподобия, к шагу 2

Incremental EM

 $\mathsf{A}-\mathsf{mini}\text{-}\mathsf{batch},$ update just the summands corresponding to data points from A

$$\pi_k^{new} = \frac{N_k^{new}}{N}$$

$$\mu_k^{new} = \mu_k^{old} + \frac{1}{N_k^{new}} \sum_{n \in A} (\gamma_{nk}^{new} - \gamma_{nk}^{old}) (x_n - \mu_k^{old})$$

$$\begin{split} \boldsymbol{\Sigma}_k^{new} &= \boldsymbol{\Sigma}_k^{old} + \frac{1}{N_k^{new}} \big(\sum_{n \in A} (\boldsymbol{\gamma}_{nk}^{new} - \boldsymbol{\gamma}_{nk}^{old}) \left((\boldsymbol{x}_n - \boldsymbol{\mu}_k^{new}) (\boldsymbol{x}_n - \boldsymbol{\mu}_k^{new})^T - \boldsymbol{\Sigma}_k^{old} \right) + \\ &\quad + N_k^{old} (\boldsymbol{\mu}_k^{new} - \boldsymbol{\mu}_k^{old}) (\boldsymbol{\mu}_k^{new} - \boldsymbol{\mu}_k^{old})^T \big) \end{split}$$

Stochastic optimization

With responsibilities γ_{nk} computed for mini-batch on E-step, M-step is:

$$\frac{\partial \ln p(X|\pi,\mu,\Sigma)}{\partial \mu_k} = \Sigma_k^{-1} \sum_{n \in A} \gamma_{nk} (x_n - \mu_k)$$

$$\frac{\partial \ln p(X|\pi,\mu,\Sigma)}{\partial \Sigma_k} = \sum_{n \in A} \frac{\gamma_{nk}}{2} (-\Sigma_k^{-1} + \Sigma_k^{-1} (x_n - \mu_k)(x_n - \mu_k) \Sigma_k^{-1})$$

$$\frac{\partial \ln p(X|\pi,\mu,\Sigma)}{\partial \pi_k} = \sum_{n \in A} \frac{\gamma_{nk}}{\pi_k}$$

 Σ re-estimation formula contains matrix subtraction: to stay positive definite add $+\epsilon$ to diagonal

Learning rate

- lacktriangledown $\frac{c}{t}$ or $\frac{c}{\sqrt{t}}$ where c is constant
- Momentum $\Delta\theta_{t+1} = \alpha\Delta\theta_t + \beta g_t$
- \blacksquare Adagrad $\Delta \theta_t = rac{lpha}{\sqrt{\sum_{ au=1}^t g_ au^2}} g_t$
- Adadelta

Эксперименты на модельных данных

PMC.: Comparison of Stochastic Gradient EM with learning rates $\frac{c}{t}$ and $\frac{c}{\sqrt{t}}$, Adadelta and incremental EM. 2 epochs training with mini-batch size equal to 1. Constants c are chosen as showing the best quality in cross-validation, Adadelta hyperparameters are chosen as suggested in the original paper.

Эксперименты на модельных данных

PMC.: Each set of 4 pictures corresponds to a particular dataset. Picture's left column: mean error and log likelihood after viewing 10, 30, 50 and 100% of the dataset for Stochastic Gradient EM with learning rate $\frac{0.05}{\sqrt{t}}$ and Incremental EM. Picture's right column: mean error and log likelihood after 1 and 2 iterations of classic EM.

Эксперименты на модельных данных

Выводы

- SG-EM с тепом обучения $\frac{c}{t}$ не сильно хуже «навороченных» методов оптимизации
- Инкрементный метод лучше SG-EM, но не для всякой модели будут формулы пересчёта

Спасибо за внимание!