

Laboratório 11 – Programação Dinâmica Inteligência Artificial para Robótica Móvel – CT-213

Aluno: Caio Graça Gomes

Professor: Marcos Ricardo Omena de Albuquerque Maximo

Introdução:

Nesse laboratório, teve-se por objetivo implementar três algoritmos de programação dinâmica para solução de um Processo Decisório de Markov (*MDP*). Os algoritmos implementados serão os de avaliação de política (*policy evaluation*), iteração de valor (*value iteration*) e iteração de política (*policy iteration*). Deve-se avaliar e encontrar políticas ótimas em uma ambiente de *grid world*.

Metodologia e descrição em alto nível do algoritmo utilizado:

O problema consistiu em um *grid world* com 5 ações possíveis: STOP, UP, LEFT, RIGHT e DOWN, além de obstáculos e limites do *grid* como barreiras. A ação STOP é sempre executada com probabilidade 1, enquanto as outras ações têm uma certa probabilidade de serem executadas corretamente. Se uma ação não é executada corretamente, o resultado das demais ações acontece com igual probabilidade. O MDP tem fator de desconto γ (que será adotado como 1 em uma parte do experimento, e 0,98 como outra parte) e a recompensa é -1 para cada instante que o agente passa em uma célula que não é a objetivo. Há uma única célula objetivo no *grid*, onde o agente recebe recompensa 0.

O algoritmo *policy evaluation* se baseia na equação de Bellman de expectativa, será adotada uma solução iterativa (Gauss-Jacobi) do sistema linear associado às equações de Bellman.

$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s)r(s,a) + \gamma \sum_{a \in A} \sum_{s' \in S} \pi(a|s)p(s'|s,a)v_{\pi}(s')$$

O algoritmo de iteração de valor se baseia em iterar diretamente de acordo com a equação da otimalidade de Bellman:

$$v_*(s) = \max_{a \in A} (r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) v_{\pi}(s'))$$

Já o algoritmo de iteração de política alterna entre avaliação de política (3 vezes, nesse laboratório) e aprimoramento de política. Uma política gulosa *greedy* é obtida ao fazer:

$$\pi'(s) = argmax_{a \in A}(r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a)v_{\pi}(s'))$$

Quando existir mais de uma ação ótima, é dada a mesma probabilidade para cada uma ser executada.

Os três algoritmos foram testados em *test_dynamic_programming.py*, sob duas diferentes circunstâncias: primeiramente fez-se CORRECT_ACTION_PROBABILITY = 1.00 e GAMMA = 1.00, e então CORRECT_ACTION_PROBABILITY = 0.80 e GAMMA =0.98. Ao término, foram comparados seus desempenhos.

Resultados do test_dynamic_programming.py:

Figura 1: Policy Evaluation na primeira condição.

```
Value function:

[ -384.09, -382.73, -381.19, * , -339.93, -339.93]

[ -380.45, -377.91, -374.65, * , -334.92, -334.93]

[ -374.34, -368.82, -359.85, -344.88, -324.92, -324.93]

[ * , -344.12, -315.05, -250.02, -229.99, * ]

[ * , -344.12, * , -200.01, -145.00, 0.00]

Policy:

[ SURDL , SURDL , SURDL , * , SURDL , SURDL ]

[ SURDL , SURDL , SURDL , * , SURDL , SURDL ]

[ SURDL , SURDL , SURDL , SURDL , SURDL ]

[ SURDL , SURDL , SURDL , SURDL , SURDL ]

[ SURDL , SURDL , SURDL , SURDL , SURDL ]

[ SURDL , SURDL , SURDL , * , SURDL , SURDL ]

[ SURDL , SURDL , SURDL , SURDL , SURDL , SURDL ]

[ SURDL , SURDL , SURDL , SURDL , SURDL , SURDL ]

[ SURDL , SURDL , SURDL , SURDL , SURDL , SURDL ]

[ SURDL , SURDL , SURDL , SURDL , SURDL , SURDL ]
```

Figura 3: Policy Iteration na primeira condição.

Val		nctic									
											0]
											0]
											0]
]
										0]	
]
]
]
]
]
]

Figura 5: Value Iteration na segunda condição.

Figura 2: Value Iteration na primeira condição.

	 	 	 ·	 ·	 	
Va]						
Va]						

Figura 4: Policy Evaluation na segunda condição.

	-47.1					
licy:						

Figura 6: Policy Iteration na segunda condição.

	 	 ·	 	 	 	
Val						
Val						
[53]
[52]
1						42]
[30]
[1
]						00]
Pol						
[]
[]
1]
]]
]]
]]

Pol						
Val						
1						
1						
1						
1						
1						
1						
]						
[
1						
1						
1						

Conforme esperado, os algoritmos de *policy iteration* e *value iteration* convergiram para um mesmo valor, no caso, encontraram os valores e políticas ótimos. Percebe-se ainda, um desempenho não muito razoável do algoritmo de *policy evaluation*, que melhorou seu desempenho (aproximou-se dos valores do *policy* e *value iteration*) ao fazer o gamma ser 0.98.