

CLAIMS

We Claim:

1. 1. A method of communicating data streams, the method comprising:
 2. a. packetizing one or more data streams into isochronous data packets;
 3. b. encapsulating one or more isochronous data packets according to a real-time transport protocol to form a real-time transport protocol data packet; and
 4. c. sending the real-time transport protocol data packets from a transmitting device to a receiving device over a non-isochronous compliant network.
1. 2. The method of claim 1 wherein the transmitting device is coupled to a first isochronous compliant network and the receiving device is coupled to a second isochronous compliant network.
1. 3. The method of claim 2 wherein the first isochronous compliant network and the second isochronous compliant network each comprise an IEEE 1394 compliant bus architecture.
1. 4. The method of claim 3 wherein the first isochronous compliant network and the second isochronous compliant network are coupled via the non-isochronous compliant network.
1. 5. The method of claim 4 wherein the non-isochronous compliant network comprises an Internet Protocol network.
1. 6. The method of claim 5 wherein the Internet Protocol network comprises an Ethernet/Internet Protocol network.

1 7. The method of claim 2 further comprising generating a cycle record for each isochronous
2 cycle of the first isochronous compliant network, wherein each cycle record includes a
3 relative timing marker that indicates a timing of the real-time transport protocol data
4 packet relative to the cycle master of the first isochronous compliant network.

1 8. The method of claim 1 wherein the real-time transport protocol defines a real-time
2 transport protocol header and a real-time transport protocol data payload for each real-
3 time transport protocol data packet.

1 9. The method of claim 8 wherein the real-time transport protocol data payload comprises
2 one or more isochronous cycle records.

1 10. The method of claim 9 wherein each of the one or more isochronous cycle records
2 comprises zero or more isochronous data packets.

1 11. The method of claim 10 wherein each isochronous data packet comprises an IEEE 1394
2 isochronous data packet.

1 12. The method of claim 11 wherein each IEEE 1394 isochronous data packet includes an
2 IEEE 1394 data payload formatted according to an IEC 61883-1 compliant Common
3 Isochronous Protocol (CIP).

1 13. The method of claim 8 wherein the real-time transport protocol header includes a
2 timestamp, the timestamp is defined by a value of the isochronous cycle start transaction
3 corresponding to the receipt of a first isochronous data packet included in a particular
4 real-time transport protocol data packet.

1 14. The method of claim 1 wherein each real-time transport protocol data packet includes at
2 least a portion of an isochronous cycle record.

1 15. An apparatus for communicating data streams, the apparatus comprising:
2 a. means for packetizing one or more data streams into isochronous data packets;
3 b. means for encapsulating one or more isochronous data packets according to a real-
4 time transport protocol to form a real-time transport protocol data packet; and
5 c. means for sending the real-time transport protocol data packets from a
6 transmitting device to a receiving device over a non-isochronous compliant
7 network.

1 16. The apparatus of claim 15 wherein the transmitting device is coupled to a first
2 isochronous compliant network and the receiving device is coupled to a second
3 isochronous compliant network.

1 17. The apparatus of claim 16 wherein the first isochronous compliant network and the
2 second isochronous compliant network each comprise an IEEE 1394 compliant bus
3 architecture.

1 18. The apparatus of claim 17 wherein the first isochronous compliant network and the
2 second isochronous compliant network are coupled via the non-isochronous compliant
3 network.

1 19. The apparatus of claim 18 wherein the non-isochronous compliant network comprises an
2 Internet Protocol network.

- 1 20. The apparatus of claim 19 wherein the Internet Protocol network comprises an
2 Ethernet/Internet Protocol network.
- 1 21. The apparatus of claim 16 further comprising means for generating a cycle record for
2 each isochronous cycle of the first isochronous compliant network, wherein each cycle
3 record includes a relative timing marker that indicates a timing of the real-time transport
4 protocol data packet relative to the cycle master of the first isochronous compliant
5 network.
- 1 22. The apparatus of claim 15 wherein the real-time transport protocol defines a real-time
2 transport protocol header and a real-time transport protocol data payload for each real-
3 time transport protocol data packet.
- 1 23. The apparatus of claim 23 wherein the real-time transport protocol data payload
2 comprises one or more isochronous cycle records.
- 1 24. The apparatus of claim 23 wherein each of the one or more isochronous cycle records
2 comprises zero or more isochronous data packets.
- 1 25. The apparatus of claim 24 wherein each isochronous data packet comprises an IEEE 1394
2 isochronous data packet.
- 1 26. The apparatus of claim 25 wherein each IEEE 1394 isochronous data packet includes an
2 IEEE 1394 data payload formatted according to an IEC 61883-1 compliant Common
3 Isochronous Protocol (CIP).

- 1 33. The apparatus of claim 32 wherein the real-time transport protocol data payload
2 comprises one or more isochronous cycle records.

- 1 34. The apparatus of claim 31 wherein each of the one or more isochronous cycle records
2 comprises zero or more isochronous data packets.

- 1 35. The apparatus of claim 33 wherein each isochronous data packet comprises an IEEE 1394
2 isochronous data packet.

- 1 36. The apparatus of claim 35 wherein each IEEE 1394 isochronous data packet includes an
2 IEEE 1394 data payload formatted according to an IEC 61883-1 compliant Common
3 Isochronous Protocol (CIP).

- 1 37. The apparatus of claim 32 wherein the real-time transport protocol header includes a
2 timestamp, the timestamp is defined by a value of the isochronous cycle start transaction
3 corresponding to the receipt of a first isochronous data packet included in a particular
4 real-time transport protocol data packet.

- 1 38. The apparatus of claim 29 wherein the transmitting circuit is further configured to
2 packetize one or more data streams into the one or more isochronous data packets.

- 1 39. The apparatus of claim 29 wherein the transmitting circuit is further configured to receive
2 the one or more isochronous data packets from another device.

- 1 40. The apparatus of claim 29 wherein the receiving circuit is further configured to parse the
2 one or more isochronous data packets from each received real-time transport protocol
3 data packet.

- 1 41. The apparatus of claim 40 wherein each received real-time transport protocol data packet
2 includes at least a portion of an isochronous cycle record.

- 1 42. The apparatus of claim 41 wherein each isochronous cycle record comprises zero or more
2 isochronous data packets.

- 1 43. A network of devices to communicate data streams, the network of devices comprising:
 - 2 a. a transmitting device configured to encapsulate one or more isochronous data
3 packets according to a real-time transport protocol, thereby forming a real-time
4 transport protocol data packet, and to transmit the real-time transport protocol data
5 packets;
 - 6 b. a first isochronous compliant network coupled to the transmitting device;
 - 7 c. a receiving device configured to receive the real-time transport protocol data
8 packets;
 - 9 d. a second isochronous compliant network coupled to the receiving device; and
 - 10 e. a non-isochronous compliant network coupled to the first isochronous compliant
11 network and the second isochronous compliant network to transmit the real-time
12 transport protocol data packets from the transmitting device to the receiving
13 device.

- 1 44. The network of devices of claim 43 wherein the first isochronous compliant network and
2 the second isochronous compliant network each comprise an IEEE 1394 compliant bus
3 architecture.

1 52. The network of devices of claim 47 wherein the real-time transport protocol header
2 includes a timestamp, the timestamp is defined by a value of the isochronous cycle start
3 transaction corresponding to the receipt of a first isochronous data packet included in a
4 particular real-time transport protocol data packet.

1 53. The network of devices of claim 43 wherein the transmitting device is further configured
2 to packetize one or more data streams into the one or more isochronous data packets.

1 54. The network of devices of claim 43 wherein the transmitting device is further configured
2 to receive the one or more isochronous data packets from another device.

1 55. The network of devices of claim 43 wherein the receiving device is further configured to
2 parse the one or more isochronous data packets from each received real-time transport
3 protocol data packet.

1 56. The network of devices of claim 55 wherein each received real-time transport protocol
2 data packet includes at least a portion of an isochronous cycle record.

1 57. The network of devices of claim 56 wherein each isochronous cycle record comprises
2 zero or more isochronous data packets.

1 58. A method of communicating data streams, the method comprising:
2 a. packetizing one or more data streams into IEEE 1394 compliant isochronous data
3 packets;
4 b. encapsulating one or more IEEE 1394 compliant isochronous data packets
5 according to a real-time transport protocol to form a real-time transport protocol
6 data packet; and

7 c. sending the real-time transport protocol data packets from a transmitting device to
8 a receiving device over a non-isochronous compliant network.

1 59. The method of claim 58 wherein the transmitting device is coupled to a first IEEE 1394
2 compliant bus architecture and the receiving device is coupled to a second IEEE 1394
3 compliant bus architecture.

1 60. The method of claim 59 wherein the non-isochronous compliant network comprises an
2 Internet Protocol network.

1 61. The method of claim 60 wherein the Internet Protocol network comprises an
2 Ethernet/Internet Protocol network.

1 62. The method of claim 59 further comprising generating a cycle record for each
2 isochronous cycle of the first IEEE 1394 compliant bus architecture, wherein each cycle
3 record includes a relative timing marker that indicates a timing of the real-time transport
4 protocol data packet relative to the cycle master of the first IEEE 1394 compliant bus
5 architecture.

1 63. The method of claim 58 wherein the real-time transport protocol defines a real-time
2 transport protocol header and a real-time transport protocol data payload for each real-
3 time transport protocol data packet.

1 64. The method of claim 63 wherein the real-time transport protocol data payload comprises
2 one or more 1394 compliant isochronous cycle records.

1 65. The method of claim 64 wherein each of the one or more isochronous cycle records
2 comprises zero or more isochronous data packets.

1 66. The method of claim 65 wherein each IEEE 1394 isochronous data packet includes an
2 IEEE 1394 data payload formatted according to an IEC 61883-1 compliant Common
3 Isochronous Protocol (CIP).

1 67. The method of claim 58 wherein the real-time transport protocol header includes a
2 timestamp, the timestamp is defined by a value of the isochronous cycle start transaction
3 corresponding to the receipt of a first 1394 compliant isochronous data packet included in
4 a particular real-time transport protocol data packet.

1 68. The method of claim 58 further comprising parsing the one or more IEEE 1394 compliant
2 isochronous data packets from each real-time transport protocol data packet received by
3 the receiving device.

1 69. The method of claim 58 wherein each real-time transport protocol data packet includes at
2 least a portion of an isochronous cycle record.