

Notes for Project

- Deadline for submission: April 23rd, 2021
 - Choose one out of the three topics
 - Make sure to arrange submission earlier than the deadline
- Cite research paper (Endnote)

Exam

- 3 hours
- All topics covered in this course
- Open-book
- Format:
 - 30 questions: multiple choice, true/false, fill in blanks
 - 3 long questions (with sub questions)

FIGURE 10.16 Flowchart for appropriate methods of statistical inference for categorical data

contingency table?

 $R \times C$ contingency table,

R > 2, C > 2

Use chi-square test

for $R \times C$ tables

page 415

No

 $n_D \ge 20$: Normal Theory test:

$$X^2 = \left(\left| n_A - \frac{n_D}{2} \right| - \frac{1}{2} \right)^2 / \left(\frac{n_D}{4} \right)$$

or
$$X^2 = (|n_A - n_B| - 1)^2 / (n_A + n_B)$$

- n_D <20: Exact test: (a) $p = 2 \times \sum_{k=0}^{n_A} {n_D \choose k} \left(\frac{1}{2}\right)^{n_D}$ if $n_A < n_D/2$
 - **(b)** $p = 2 \times \sum_{k=n_A}^{n_D} {n_D \choose k} \left(\frac{1}{2}\right)^{n_D} \text{ if } n_A > n_D/2$
 - (c) p = 1 if $n_A = n_D/2$

or 2×2 contingencytable methods if no confounding is present, or the Mantel-Haenszel test if confounding is present pages 374, 382, 660

- No more than 1/5 of the cells have expected values <5
- No cell has an expected value <1
- Continuity correction is not needed

Descriptive statistics

- Measures of location e.g. mean, median, mode
- Measures of spread e.g. standard deviation
- Graphic methods e.g. boxplot, stem-and-leaf plot
 - Symmetric distribution
 - Unsymmetric distribution (skewed to the right / left)

Probability distribution

- Discrete vs. continuous
- Measure of location
- Measure of spread
- Standardization of a normal variable
- Z-table

TABLE 3	The norma	l distribution	(continued)	
x	A*	B♭	C:	D⁴
1.82	.9656	.0344	.4656	.9312
1.83	.9664	.0336	.4664	.9327
1.84	.9671	.0329	.4671	.9342
1.85	.9678	.0322	.4678	.9357
1.86	.9686	.0314	.4686	.9371
1.87	.9693	.0307	.4693	.9385
1.88	.9699	.0301	.4699	.9399
1.89	.9706	.0294	.4706	.9412
1.90	.9713	.0287	.4713	.9426
1.91	.9719	.0281	.4719	.9439
1.92	.9726	.0274	.4726	.9451
1.93	.9732	.0268	.4732	.9464
1.94	.9738	.0262	.4738	.9476
1.95	.9744	.0256	.4744	.9488
1.96	.9750	.0250	.4750	.9500
1.97	.9756	.0244	.4756	.9512
1.98	.9761	.0239	.4761	.9523
1.99	.9767	.0233	.4767	.9534
2.00	.9772	.0228	.4772	.9545
2.01	.9778	.0222	.4778	.9556
2.02	.9783	.0217	.4783	.9566
2.03	.9788	.0212	.4788	.9576
2.04	.9793 .9798	.0207	.4793 .4798	.9586 .9596
2.06	.9803	.0202	.4803	.9606
2.06	.9808	.0197	.4808	.9615
2.07 2.08	.9812	.0188	.4812	.9625
2.09	.9817	.0183	4817	.9634
2.10	.9821	.0179	4821	.9643
2.11	.9826	.0174	4826	.9651
2.12	.9830	.0170	.4830	.9660
2.13	.9834	.0166	.4834	.9668
2.14	.9838	.0162	.4838	.9676
2.15	.9842	.0158	.4842	.9684
2.16	.9846	.0154	.4846	.9692
2.17	.9850	.0150	.4850	.9700
2.18	.9854	.0146	.4854	.9707
2.19	.9857	.0143	.4857	.9715
2.20	.9861	.0139	.4861	.9722
2.21	.9864	.0136	.4864	.9729
2.22	.9868	.0132	.4868	.9736
2.23	.9871	.0129	.4871	.9743
2.24	.9875	.0125	.4875	.9749
2.25	.9878	.0122	.4878	.9756
2.26	.9881	.0119	.4881	.9762
2.27	.9884	.0116	.4884	.9768
2.28	.9887 .9890	.0113	.4887 .4890	.9774
2.29	.9893	.0110	.4890	.9780 .9786
2.31	.9896	.0107	.4898	.9791
2.32	.9898	.0104	.4898	.9797
2.33	.9901	.0099	.4901	.9802
2.34	.9904	.0096	4904	.9807
2.35	.9906	.0094	4906	.9812
2.36	.9909	.0091	4909	.9817
2.37	.9911	.0089	.4911	.9822
2.38	.9913	.0087	.4913	.9827

Hypothesis testing: one and two sample inference

- Type 1 error
- Type 2 error

Two-sided tes

$$Z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

$$t = \frac{x - \mu_0}{s / \sqrt{n}}$$

One-sided test

- P-value
- Z-test (Normal distribution table) *when population variance is known
- T-test (t distribution table) *when population variance is unknown
- · Power and sample size

FIGURE 7.18 Flowchart for appropriate methods of statistical inference

Hypothesis testing: Categorical data

- Contingency Table Approach
 - Expected number of units in the (i,j) cell (E_{ij}) :

<u>ith row margin X jth column margin</u> grand total

- none of the four expected values < 5
- Fisher's exact test
 - 1 of the cells with expected values <=5</p>
- McNemar's Test
- i) Normal Theory test $(n_D \ge 20)$
- ii) Exact Method $(n_D < 20)$
- RxC Contingency Table
 - Test statistic:

$$X^2 = (O_{11} - E_{11})^2 / E_{11} + (O_{12} - E_{12})^2 / E_{12} + \dots + (O_{RC} - E_{RC})^2 / E_{RC}$$

 $-H_0 \sim \chi^2$ distribution with $(R-1) \times (C-1) df$

Regression and Correlation

- Interpretation of regression line
- **Correlation (Pearson's vs. Spearman ranks)**
- Hypothesis testing for multiple regression
 - F test:

$$H_0$$
: $\beta_1 = \beta_2 = ... = \beta_k = 0$

vs. H_1 : at least one of the $\beta_i \neq 0$ in multiple linear regression

Res SS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 Total SS = $\sum_{i=1}^{n} (y_i - \overline{y})^2$
Reg SS = Total SS - Res SS

Total SS =
$$\sum_{i=1}^{n} (y_i - \overline{y})^2$$
$$\hat{y}_i = a + \sum_{i=1}^{k} b_j x_{ij}$$

Test statistic:

F = Reg MS/Res MS, df = n-k-1 where n=sample size, k =no of independent

T test:

 H_0 : $\beta_l = 0$, All other $\beta_i \neq 0$ vs. H_1 : $\beta_l \neq 0$, all other $\beta_i \neq 0$ in multiple linear regression

Statistical output for multiple regression model

Nonparametric Methods

- Parametric Methods: data of known distribution
- Non-parametric methods: data of unknown distribution, skewed / not normally distributed, ordinal

H	Analysis Type	Example	Parametric Procedure	Nonparametric Procedure	Note
	Compare means between two distinct/independent groups	Is the mean systolic blood pressure (at baseline) for patients assigned to placebo different from the mean for patients assigned to the treatment group?	Two-sample t-test	Wilcoxon rank-sum test	 Both n1 and n2≥10: normal approximation method n1 or n2 <10: small-sample Wilcoxon rank-sum test table (two- tailed critical values)
000	Compare two quantitative measurements taken from the same individual	Was there a significant change in systolic blood pressure between baseline and the sixmonth follow-up measurement in the treatment group?	Paired t-test	Wilcoxon signed-rank test	No. of non-zero di's (differences of magnitudes) ≥ 16 → normal approximation method
	Estimate the degree of association between two quantitative variables	Is systolic blood pressure associated with the patient's age?	Pearson coefficient of correlation	Spearman's rank correlation	Pearson: actual values Spearman: rank scores

Multisample Inference

ANOVA test: compare means of >2 groups

Assumption: each group follows a normal distribution with the same variance

Between SS = $\sum_{i=1}^{k} n_i \bar{y}_i^2 - \frac{\sum_{i=1}^{k} n_i \bar{y}_i}{n} = \sum_{i=1}^{k} n_i \bar{y}_i^2 - \frac{y_{-i}^2}{n}$

- F test:

$$H_0$$
: $\alpha_i = 0$ for all i
 H_1 : at least one $\alpha_i \neq 0$

Within SS =
$$\sum_{i=1}^{k} (n_i - 1)s_i^2$$

Between MS = Between SS/(k-1)

Within MS = Within SS/(n-k)

Test statistic: F = Between MS/Within MS, df=k-1,n-k

(n=sample size, k=no. of group)

T test:

$$H_0$$
: $\alpha_1 = \alpha_2$ vs. H_1 : $\alpha_1 \neq \alpha_2$

Pooled estimate of variance =
$$s^2 = \sum_{i=1}^k (n_i - 1)s_i^2 / \sum_{i=1}^k (n_i - 1) = \left[\sum_{i=1}^k (n_i - 1)s_i^2\right] / (n - k) = \text{Within MS}$$

Test statistic: $t = \frac{\overline{y}_1 - \overline{y}_2}{\sqrt{s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$, df=n-k

 Methods to adjust for multiple comparisons: Bonferroni correction and falsediscovery rate

Odds ratio and logistic regression

Main epidemiological study designs and relevant effect estimates:

Study Design	Prospective cohort study	Case and Control	
Effect	Relative Risk/	Odds ratio	
Estimate	Risk Ratio		

• Multiple logistic regression: $p = \alpha + \beta_1 x_1 + ... + \beta_k x_k$

$$logit(p) = ln\left(\frac{p}{1-p}\right) = \alpha + \beta_1 x_1 + \dots + \beta_k x_k$$

• OR: links exposure variable to the dependent variable: $\hat{OR} = e^{\hat{\beta}j}$ 95% CI for OR: $\left[e^{\hat{\beta}j-z_1-\alpha/2\mathscr{L}(\hat{\beta}j)},e^{\hat{\beta}j+z_1-\alpha/2\mathscr{L}(\hat{\beta}j)}\right]$