base and application

变分自编码器

Auto-Encoder

Method	Parametric	Convex
PCA / classical MDS	N	Y (Dense)
Kernel PCA	N	Y (Dense)
Isomap	N	Y (Dense)
LLE	N	Y (Sparse)
Laplacian Eigenmaps	N	Y (Sparse)
${ m tSNE}$	N	N
Autoencoder	Y	N

Auto-Encoder

2d瑞士卷流形嵌入了3d

Manifold Hypothesis: the observed data lie on a low-dimensional manifold embedded in a higher-dimensional space.

Auto-Encoder

MLP-AE 隐空间 + tSNE plot

How to generate?

Intuition (remember from autoencoders!): **x** is an image, **z** is latent factors used to generate **x**: attributes, orientation, etc.

Data likelihood:
$$p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x|z) dz$$
 Intractible to compute $p(x|z)$ for every $z!$

Posterior density also intractable:
$$p_{ heta}(z|x) = p_{ heta}(x|z)p_{ heta}(z)/p_{ heta}(x)$$

Intractable data likelihood

Solution: In addition to decoder network modeling $p_{\theta}(x|z)$, define additional encoder network $q_{\phi}(z|x)$ that approximates $p_{\theta}(z|x)$

$$p(x) = \int p(z)p(x|z)dz$$

$$\begin{split} \log p_{\theta}(x^{(i)}) &= \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad \text{(Bayes' Rule)} \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z) p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad \text{(Multiply by constant)} \\ &= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad \text{(Logarithms)} \\ &= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z)) + D_{KL}(q_{\phi}(z \mid x^{(i)}) || p_{\theta}(z \mid x^{(i)})) \end{split}$$

$$\underbrace{-KL(p_{ heta}(z|x)\|p(z))}_{KL-loss} + \underbrace{E_{p_{ heta}(z|x)}(q_{\phi}(x|z))}_{reconstruction-loss}$$

p(z)

图 3: VAE插值从左到右的渐变

图 4: VAE外推, -去掉太阳镜, +加上太阳镜, 0对应原始的左图

	s_1	s_2	s_3	5	$s_1 - s_2 + s_3$
RG	I am one.	- I am two.	+ You are	two. $= $	You ready no.
RGF	I am one.	- I am two.	+ You are	two. $=$	You are one.
$\overline{\mathrm{RG}}$	A word in a phrase.	- A tree in a phrase.	+ A tree is	green. $= A$	A word is purevy?
RGF	A word in a phrase.	- A tree in a phrase.	+ A tree is	green. $= I$	A word is green.
RP	A large number of	A small number of		sentence is _ A	A large senselfeir
	people want to work.	. people want to work	. $^{\top}$ enough.	_ i	n or evacce.
RCE	A large number of	A small number of		sentence is _ A	A large sector for
щ	people want to work.	. people want to work	. ⁺ enough.	_ (challenge.

Text extrapolation

t = 0	in new york the company declined comment
t = 0.1	in new york the company declined comment
t = 0.2	in new york the transaction was suspended
t = 0.3	in the securities company said yesterday
t = 0.4	in other board the transaction had disclosed
t = 0.5	other of those has been available
t = 0.6	both of companies have been unchanged
t = 0.7	both men have received a plan to restructure
t = 0.8	and to reduce that it owns
t = 0.9	and to continue to make prices
t = 1	and they plan to buy more today

Text Interpolation

Disentangled Representation Learning for Non-Parallel Text Style Transfer

Vineet John

University of Waterloo
vineet.john@uwaterloo.ca

Hareesh Bahuleyan

University of Waterloo hpallika@uwaterloo.ca

Lili Mou

AdeptMind Research doublepower.mou@gmail.com lili@adeptmind.ai

Olga Vechtomova

University of Waterloo ovechtom@uwaterloo.ca

Copyright © 2019, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Figure 1: Overview of our approach.

Multi-Task Loss for Style.

$$\boldsymbol{y}_s = \operatorname{softmax}(W_{\operatorname{mul}(s)}\boldsymbol{s} + \boldsymbol{b}_{\operatorname{mul}(s)})$$

$$J_{\text{mul(s)}}(\boldsymbol{\theta}_{\text{E}}; \boldsymbol{\theta}_{\text{mul(s)}}) = -\sum_{l \in \text{labels}} t_s(l) \log y_s(l)$$

Adversarial Loss for Style.

$$\boldsymbol{y}_s = \operatorname{softmax}(W_{\operatorname{dis}(s)}\boldsymbol{c} + \boldsymbol{b}_{\operatorname{dis}(s)})$$

$$J_{\text{dis(s)}}(\boldsymbol{\theta}_{\text{dis(s)}}) = -\sum_{l \in \text{labels}} t_c(l) \log y_s(l)$$

$$J_{\mathrm{adv(s)}}(\boldsymbol{\theta}_{\mathrm{E}}) = \mathcal{H}(\boldsymbol{y}_s | \boldsymbol{c}; \boldsymbol{\theta}_{\mathrm{dis(s)}}) \quad \mathcal{H}(\boldsymbol{p}) = -\sum_{i \in \mathrm{labels}} p_i \log p_i$$

Multi-Task Loss for Content.

$$\boldsymbol{y}_c = \operatorname{softmax}(W_{\text{mul(c)}}\boldsymbol{c} + \boldsymbol{b}_{\text{mul(c)}})$$

$$J_{\text{mul(c)}}(\boldsymbol{\theta}_{\text{E}}; \boldsymbol{\theta}_{\text{mul(c)}}) = -\sum_{w \in \text{vocab}} t_c(w) \log y_c(w)$$

Adversarial Loss for Content.

$$\boldsymbol{y}_c = \operatorname{softmax}(W_{\operatorname{dis(c)}}^{\top} \boldsymbol{s} + \boldsymbol{b}_{\operatorname{dis(c)}})$$

$$J_{\text{dis(c)}}(\boldsymbol{\theta}_{\text{dis(c)}}) = -\sum_{w \in \text{vocab}} t_c(w) \log y_c(w)$$

$$J_{\mathrm{adv(c)}}(\boldsymbol{\theta}_{\mathrm{E}}) = \mathcal{H}(\boldsymbol{y}_c|\boldsymbol{s};\boldsymbol{\theta}_{\mathrm{dis(c)}})$$
 $J_{\mathrm{ovr}} = J_{\mathrm{AE}}(\boldsymbol{\theta}_{\mathrm{E}},\boldsymbol{\theta}_{\mathrm{D}})$

$$J_{\text{ovr}} = J_{\text{AE}}(\boldsymbol{\theta}_{\text{E}}, \boldsymbol{\theta}_{\text{D}})$$

$$+ \lambda_{\text{mul(s)}} J_{\text{mul(s)}}(\boldsymbol{\theta}_{\text{E}}, \boldsymbol{\theta}_{\text{mul(s)}}) - \lambda_{\text{adv(s)}} J_{\text{adv(s)}}(\boldsymbol{\theta}_{\text{E}})$$

$$+ \lambda_{\text{mul(c)}} J_{\text{mul(c)}}(\boldsymbol{\theta}_{\text{E}}, \boldsymbol{\theta}_{\text{mul(c)}}) - \lambda_{\text{adv(c)}} J_{\text{adv(c)}}(\boldsymbol{\theta}_{\text{E}})$$

$$\hat{s} = \frac{\sum_{i \in \text{target style}} s_i}{\text{# target style samples}}$$

Experiment I: Disentangling Latent Space

Figure 2: t-SNE plots of the disentangled style and content spaces (with all auxiliary losses on the Yelp dataset).

Experiment II: Non-Parallel Text Style Transfer

	Yelp Dataset				Amazon Dataset			
Model	Transfer Accuracy	Cosine Similarity	Word Overlap	Language Fluency	Transfer Accuracy	Cosine Similarity	Word Overlap	Language Fluency
Style-Embedding (Fu et al. 2018)	0.182	0.959	0.666	-16.17	0.400†	0.930 [†]	0.359	-28.13
Cross-Alignment (Shen et al. 2017)	0.784^{\dagger}	0.892	0.209	-23.39	0.606	0.893	0.024	-26.31
Multi-Decoder (Zhao et al. 2018)	0.818^{\dagger}	0.883	0.272	-20.95	0.552	0.926	0.169	-34.70
Ours (DAE)	0.883	0.915	0.549	-10.17	0.720	0.921	0.354	-24.74
Ours (VAE)	0.934	0.904	0.473	-9.84	0.822	0.900	0.196	-21.70

Objectives	Transfer Accuracy	Cosine Similarity	Word Overlap	Language Fluency
$J_{ m AE}$	0.106	0.939	0.472	-12.58
$J_{\rm AE},J_{ m mul(s)}$	0.767	0.911	0.331	-12.17
$J_{\text{VAE}}, J_{\text{adv(s)}}$	0.782	0.886	0.230	-12.03
$J_{\text{VAE}}, J_{\text{mul(s)}}, J_{\text{adv(s)}}$	0.912	0.866	0.171	-9.59
$J_{\text{VAE}}, J_{\text{mul(s)}}, J_{\text{adv(s)}}, J_{\text{mul(c)}}, J_{\text{adv(c)}}$	0.934	0.904	0.473	-9.84

A Batch Normalized Inference Network Keeps the KL Vanishing Away

```
Qile Zhu<sup>1*</sup>, Jianlin Su*, Wei Bi<sup>2</sup>, Xiaojiang Liu<sup>2</sup>, Xiyao Ma<sup>1</sup>, Xiaolin Li<sup>3</sup> and Dapeng Wu<sup>1</sup>

<sup>1</sup>University of Florida, <sup>2</sup>Tencent AI Lab, <sup>3</sup>AI Institute, Tongdun Technology

{valder, maxiy, dpwu}@ufl.edu

{victoriabi, kieranliu}@tencent.com

xiaolin.li@tongdun.net
```

bojone@spaces.ac.cn

Posterior collapse

$$\underbrace{-KL(p_{ heta}(z|x)\|p(z))}_{KL-loss} + \underbrace{E_{p_{ heta}(z|x)}(q_{\phi}(x|z))}_{reconstruction-loss}$$

KL-Loss vanish!

As Nature Language is a discrete sequence, if we use a **autoregressive decoder**, the decoder may be too strong, and as encoder contain **noise**, finally it ignore the information passed from encoder!

Example:

Original X:I have a meeting today.

Normal Y: I have a meeting today.

KL vanish Y: I have a breakfast in the morning.

Original X: I am not want to sleep.

Normal X: I am not want to sleep.

KL vanish: I want to sleep.

$$\mu = f_{\mu}(\boldsymbol{x})$$

$$\Sigma = diag(f_{\Sigma}(x))$$

$$KL = \frac{1}{2b} \sum_{j=1}^{b} \sum_{i=1}^{n} (\mu_{ij}^2 + \sigma_{ij}^2 - \log \sigma_{ij}^2 - 1)$$

$$= \frac{1}{2} \sum_{i=1}^{n} \left(\frac{\sum_{j=1}^{b} \mu_{ij}^{2}}{b} + \frac{\sum_{j=1}^{b} \sigma_{ij}^{2}}{b} \right)$$

$$-\frac{\sum_{j=1}^b \log \sigma_{ij}^2}{b} - 1).$$

$$\sum_{j=1}^{b} \mu_{ij}^2/b$$
 $E[\mu_i^2] = Var[\mu_i] + E^2[\mu_i].$

$$\sum_{i=1}^{b} \sigma_{ij}^2/b$$
 $E[\sigma_i^2]$

$$\sum_{i=1}^{b} \log \sigma_{ij}^2 / b$$
 $E[\log \sigma_i^2]$

$$E[KL] = \frac{1}{2} \sum_{i=1}^{n} (Var[\mu_i] + E^2[\mu_i])$$

$$+ \operatorname{E}[\sigma_i^2] - \operatorname{E}[\log \sigma_i^2] - 1)$$

$$\geq \frac{1}{2} \sum_{i=1}^{n} (\text{Var}[\mu_i] + \text{E}^2[\mu_i]),$$

$$E[\sigma_i^2 - \log \sigma_i^2] \ge 1 \qquad e^x - x \ge 1$$

$$\hat{\mu_i} = \gamma \frac{\mu_i - \mu_{\mathcal{B}i}}{\sigma_{\mathcal{B}i}} + \beta,$$

$$\mathbf{E}[KL] \ge \frac{1}{2} \sum_{i}^{n} (\mathbf{Var}[\mu_i] + \mathbf{E}^2[\mu_i])$$

$$= \frac{n \cdot (\gamma^2 + \beta^2)}{2}.$$

Algorithm 1 BN-VAE training.

- 1: Initialize ϕ and θ .
- 2: for $i = 1, 2, \cdots$ Until Convergence do
- 3: Sample a mini-batch x.
- 4: μ , $\log \sigma^2 = f_{\phi}(\mathbf{x})$.
- 5: $\mu' = BN_{\gamma,\beta}(\mu).$
- 6: Sample $\mathbf{z} \sim \mathcal{N}(\mu', \sigma^2)$ and reconstruct \mathbf{x} from $f_{\theta}(\mathbf{z})$.
- 7: Compute gradients $\mathbf{g}_{\phi,\theta} \leftarrow \nabla_{\phi,\theta} \mathcal{L}(\mathbf{x};\phi,\theta)$.
- 8: Update ϕ , θ using $\mathbf{g}_{\phi,\theta}$.
- 9: end for

Further Extension

$$q(z) = \int \hat{p}(x)p(z|x)dx$$
$$= \int \hat{p}(x)\mathcal{N}(z; \mu(x), \sigma(x))dx.$$

$$0 = \int \hat{p}(x)\mu(x)dx = \mathbf{E}_{x \sim \hat{p}(x)}[\mu(x)].$$

$$1 = \int \hat{p}(x)[\mu(x)^{2} + \sigma(x)^{2}]dx$$

$$= E_{x \sim \hat{p}(x)}[\mu(x)^{2}] + E_{x \sim \hat{p}(x)}[\sigma(x)^{2}]$$

$$\beta_{\mu}^{2} + \gamma_{\mu}^{2} + \beta_{\sigma}^{2} + \gamma_{\sigma}^{2} = 1$$

$$\beta_{\mu} = \beta_{\sigma} = 0$$

$$\gamma_{\mu} = \sqrt{\tau + (1 - \tau) \cdot sigmoid(\theta)}$$

$$\gamma_{\sigma} = \sqrt{(1 - \tau) \cdot sigmoid(-\theta)},$$

where $\tau \in (0,1)$ and θ is a trainable parameter.

Experiments

		Yaho	00			Yelp)	
Model	NLL	KL	MI	AU	NLL	KL	MI	AU
			Wi	thout a pretra	ained AE encod	er		
CNN-VAE	≤332.1	10.0	-	-	≤359.1	7.6	-	-
LSTM-LM	328	-	-	-	351.1	-	-	-
VAE	328.6	0.0	0.0	0.0	357.9	0.0	0.0	0.0
β -VAE (0.4)	328.7	6.3	2.8	8.0	358.2	4.2	2.0	4.2
cyclic *	330.6	2.1	2.0	2.3	359.5	2.0	1.9	4.1
Skip-VAE *	328.5	2.3	1.3	8.1	357.6	1.9	1.0	7.4
SA-VAE	327.2	5.2	2.7	9.8	355.9	2.8	1.7	8.4
Agg-VAE	326.7	5.7	2.9	15.0	355.9	3.8	2.4	11.3
FB (4)	331.0	4.1	3.8	3.0	359.2	4.0	1.9	32.0
FB (5)	330.6	5.7	2.0	3.0	359.8	4.9	1.3	32.0
δ -VAE (0.1) *	330.7	3.2	0.0	0.0	359.8	3.2	0.0	0.0
vMF-VAE (13) *	327.4	2.0	-	32.0	357.5	2.0	-	32.0
BN-VAE (0.6) *	326.7	6.2	5.6	32.0	356.5	6.5	5.4	32.0
BN-VAE (0.7) *	327.4	8.8	7.4	32.0	355.9	9.1	7.4	32.0
			V	Vith a pretrai	ned AE encoder	•		
cyclic *	333.1	25.8	9.1	32.0	361.5	20.5	9.3	32.0
FB (4) *	326.2	8.1	6.8	32.0	356.0	7.6	6.6	32.0
δ -VAE (0.15) *	331.0	5.6	1.1	11.2	359.4	5.2	0.5	5.9
vMF-VAE (13) *	328.4	2.0	-	32.0	357.0	2.0	-	32.0
BN-VAE (0.6) *	326.7	6.4	5.8	32.0	355.5	6.6	5.9	32.0
BN-VAE (0.7) *	326.5	9.1	7.6	32.0	355.7	9.1	7.5	32.0

#label	100	500	1k	2k	10k
AE	81.1	86.2	90.3	89.4	94.1
VAE	66.1	82.6	88.4	89.6	94.5
δ -VAE	61.8	61.9	62.6	62.9	93.8
Agg-VAE	80.9	85.9	88.8	90.6	93.7
cyclic	62.4	75.5	80.3	88.7	94.2
FB (9)	79.8	84.4	88.8	91.12	94.7
AE+FB (6)	87.6	90.2	92.0	93.4	94.9
BN-VAE (0.7)	88.8	91.6	92.5	94.1	95.4

Table 3: Accuracy on Yelp.

Model	CVAE	CVAE (BOW)	BN-VAE
PPL	36.40	24.49	30.67
KL	0.15	9.30	5.18
BLEU-4	10.23	8.56	8.64
A-bow Prec	95.87	96.89	96.64
A-bow Recall	90.93	93.95	94.43
E-bow Prec	86.26	83.55	84.69
E-bow Recall	77.91	81.13	81.75

Table 4: Comparison on dialogue generation.

	Fluency			Relevance			Informativeness		
Model	Avg	#Accept	#High	Avg	#Accept	#High	Avg	#Accept	#High
CVAE	2.11 (0.58)	87%	23%	1.90 (0.49)	82%	8%	1.39 (0.59)	34%	5%
CVAE (BOW)	2.08 (0.73)	84%	23%	1.86 (0.58)	75%	11%	1.54 (0.65)	46%	8%
BN-CVAE	2.16 (0.71)	88%	27%	1.92 (0.67)	80%	12%	1.54 (0.67)	43%	10%

Table 5: Human evaluation results. Numbers in parentheses is the corresponding variance on 200 test samples.

Topic: E'	THICS IN GOVERNME	NT				
Context:	Context: have trouble drawing lines as to what's illegal and what's not					
Target (s	Target (statement): well i mean the other problem is that they're always up for					
CVAE	CVAE (BOW)	BN-CVAE				
1. yeah	1. yeah	1. it's not a country				
2. yeah	2. oh yeah they're not	2. it is the same thing that's what i think is about the state is a state				
3. yeah	3. no it's not too bad	3. yeah it's				

Table 6: Sampled generated responses. Only the last sentence in the context is shown here.

Disentangling Disentanglement in Variational Autoencoders

Emile Mathieu * 1 Tom Rainforth * 1 N. Siddharth * 2 Yee Whye Teh 1

Proceedings of the 36th International Conference on Machine Learning, Long Beach, California, PMLR 97, 2019. Copyright 2019 by the author(s).

Disentanglement?

How to Do it?

a) The latent encodings of the data having an appropriate level of overlap.

ELBO

$$\mathcal{L}_{\beta}(\boldsymbol{x}) = \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})] - \beta \operatorname{KL}(q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) || p(\boldsymbol{z})).$$

Theorem 1. The β -VAE target $\mathcal{L}_{\beta}(\boldsymbol{x})$ can be interpreted in terms of the standard ELBO, $\mathcal{L}(\boldsymbol{x}; \pi_{\theta,\beta}, q_{\phi})$, for an adjusted target $\pi_{\theta,\beta}(\boldsymbol{x},\boldsymbol{z}) \triangleq p_{\theta}(\boldsymbol{x} \mid \boldsymbol{z}) f_{\beta}(\boldsymbol{z})$ with annealed prior $f_{\beta}(\boldsymbol{z}) \triangleq p(\boldsymbol{z})^{\beta}/F_{\beta}$ as

$$\mathcal{L}_{\beta}(\boldsymbol{x}) = \mathcal{L}\left(\boldsymbol{x}; \pi_{\theta,\beta}, q_{\phi}\right) + (\beta - 1)H_{q_{\phi}} + \log F_{\beta} \quad (3)$$

where $F_{\beta} \triangleq \int_{\mathbf{z}} p(\mathbf{z})^{\beta} d\mathbf{z}$ is constant given β , and $H_{q_{\phi}}$ is the entropy of $q_{\phi}(\mathbf{z} \mid \mathbf{x})$.

b) the aggregate encoding of the data conforming to a desired structure, represented through the prior.

Theorem 2. If $p(z) = \mathcal{N}(z; 0, \sigma I)$ and $q_{\phi}(z \mid x) = \mathcal{N}(z; \mu_{\phi}(x), S_{\phi}(x))$, then for all rotation matrices R,

$$\mathcal{L}_{\beta}(\boldsymbol{x};\theta,\phi) = \mathcal{L}_{\beta}(\boldsymbol{x};\theta^{\dagger}(R),\phi^{\dagger}(R)) \tag{6}$$

where $\theta^{\dagger}(R)$ and $\phi^{\dagger}(R)$ are transformed networks such that

$$p_{\theta^{\dagger}}(\boldsymbol{x} \mid \boldsymbol{z}) = p_{\theta}(\boldsymbol{x} \mid R^{T} \boldsymbol{z}),$$

$$q_{\phi^{\dagger}}(\boldsymbol{z} | \boldsymbol{x}) = \mathcal{N}(\boldsymbol{z}; R\mu_{\phi}(\boldsymbol{x}), RS_{\phi}(\boldsymbol{x})R^{T}).$$

Add a regularization term

$$\mathcal{L}_{\alpha,\beta}(\boldsymbol{x}) = \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\theta}(\boldsymbol{x} \mid \boldsymbol{z})] - \beta \text{ KL}(q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x}) \parallel p(\boldsymbol{z})) - \alpha \mathbb{D}(q_{\phi}(\boldsymbol{z}), p(\boldsymbol{z}))$$

Prior for Axis-Aligned Disentanglement

Clustered Prior

Prior for Sparsity

Figure 4. [Left] Sparsity vs regularisation strength α (c.f. (7), high better). [Center] Average reconstruction log-likelihood $\mathbb{E}_{p_D(\boldsymbol{x})}[\mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\theta}(\boldsymbol{x}|\boldsymbol{z})]]$ vs α (higher better). [Right] Divergence (MMD) vs α (lower better). Note here that the different values of γ represent regularizations to different distributions, with regularization to a Gaussian (i.e. $\gamma = 0$) much easier to achieve than the sparse prior, hence the lower divergence. Shaded areas represent ± 2 standard errors in the mean estimate calculated using 8 separately trained networks. See Appendix B for full experimental details.

$$p(\mathbf{z}) = \prod_d (1 - \gamma) \mathcal{N}(z_d; 0, 1) + \gamma \mathcal{N}(z_d; 0, \sigma_0^2)$$

Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

Francesco Locatello ¹² Stefan Bauer ² Mario Lucic ³ Gunnar Rätsch ¹ Sylvain Gelly ³ Bernhard Schölkopf ² Olivier Bachem ³

- (1) Be explicit about the role of inductive biases and (implicit) supervision
- (2) Investigate concrete benefits of enforcing disentanglement of the learned representations
- (3) Consider a reproducible experimental setup covering several data sets

Fin

Fin

Style Transfer Through Back-Translation

Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan Salakhutdinov, Alan W Black Carnegie Mellon University, Pittsburgh, PA, USA {sprabhum, ytsvetko, rsalakhu, awb}@cs.cmu.edu

Goal for latent variable z:

- (1) represents the meaning of the input sentence grounded in back-translation
- (2) weakens the style attributes of author's traits.

Prior work has shown that the process of translating a sentence from a source language to a target language retains the meaning of the sentence but does not preserve the stylistic features related to the author's traits (Rabinovich et al., 2016).

$$\mathcal{L}_{class}(\boldsymbol{\theta}_C) = \mathbb{E}_{\boldsymbol{X}}[\log q_C(\boldsymbol{s}|\boldsymbol{x})].$$

$$\mathcal{L}_{recon}(\boldsymbol{\theta}_G; \boldsymbol{x}) = \mathbb{E}_{q_E(\boldsymbol{z}|\boldsymbol{x})}[\log p_{gen}(\boldsymbol{x}|\boldsymbol{z})]$$

$$\min_{\theta_{gen}} \mathcal{L}_{gen} = \mathcal{L}_{recon} + \lambda_c \mathcal{L}_{class}$$

Experiment result

Experiment	CAE	BST
Gender	60.40	57.04
Political slant	75.82	88.01
Sentiment	80.43	87.22

Table 4: Accuracy of the style transfer in generated sentences.

Experiment	CAE	No Pref.	BST
Gender	15.23	41.36	43.41
Political slant	14.55	45.90	39.55
Sentiment	35.91	40.91	23.18

Table 5: Human preference for meaning preservation in percentages.

Experiment	CAE	BST
Gender	2.42	2.81
Political slant	2.79	2.87
Sentiment	3.09	3.18
Overall	2.70	2.91
Overall Short	3.05	3.11
Overall Long	2.18	2.62

Fluency of the generated sentences.

