Fonaments d'Enginyeria Química MO70399

Pràctica 2:

Balanç d'energia calorífica

Grup B

Torn 2

Baldi Garcia, Isaac: 1667260 Barbens Calzadilla, Carla: 1666167 Belmonte Leiva, Marc: 1619451 Bujones Umbert, Jun Shan: 1549086 Franco Avilés, Eric: 1666739 Gómez Rubio, Miquel: 1668850 González Barea, Eric: 1672980

Jacas García, Eira: 1666616 I NOMBRE DE PÀGINES AAAAAA

Gener 2025

${\rm \acute{I}ndex}$

1	Cali	Calibratge de la bomba i mesura del volum del tanc				
	1.1	Calibratge de la bomba	1			
	1.2	Mesura del volum del tanc	1			
	1.3	Mesures de temperatura	2			
2	Resi	ultats experimentals i discussió	2			
	2.1	Temperatures de sortida teòriques vs. experimentals	2			
	2.2	Evolució de temperatures teòriques vs. experimentals	2			
	2.3	Representació semilogarítmica de les temperatures experimentals	2			
3	Con	clusions	4			
A	Cali	bratge de la bomba d'entrada	5			
В	Mes	ura del volum del tanc	5			
C	Pres	sa de dades experimentals.	5			

Resum

En aquesta pràctica ens proposem estudiar els balaços d'energia calorífica aplicats tanc adiabàtic, en el qual no es produeix cap tipus d'intercanvi d'energia i/o matèria, i en concret de calor, amb l'entorn. Per tal de demostrar experimentalment això, mesurarem la temperatura de l'aigua que flueix per dins del reactor en diferents temps, comparant-los amb la temperatura del tanc pulmó.

1 Calibratge de la bomba i mesura del volum del tanc

130

1.1 Calibratge de la bomba

Abans de començar amb la part experimental cal que, prèviament, calibrem la bomba, per tal de conèixer quins cabals es corresponen amb cada valor de rpm's de la bomba, i mesurem el volum del tanc. S'han obtingut els següents valors.

 Revolucions per minut (rpm)
 Volum (mL)
 Cabal (mL/min)

 90
 625
 208,33

 110
 760
 253,33

910

303,33

Taula 1: Resultats obtinguts en el calibratge de la bomba.

Figura 1: Corba de calibratge per la bomba

1.2 Mesura del volum del tanc

Els volums trobats trobats usant els dos mètodes proposats és¹:

- Mètode 1: El volum obtingut ha estat \Rightarrow V = 1595,00 mL
- Mètode 2: El volum obtingut ha estat \Rightarrow V = 1637,98 mL

 $^{^1\}mathrm{A}$ l'annex s'explica en què consisteix cadascun dels dos mètodes.

• Volum promig: El volum promig obtingut ha estat \Rightarrow V = 1616, 49 mL

1.3 Mesures de temperatura

A continuació adjuntem les mesures de temperatura pels 3 cabals proposats. A l'annex C comentem la metodologia seguida per tal de fer la presa de dades.

Les temperatures inicials del tanc i del pulmó per a cada cas han estat:

Taula 2: Temperatures inicials del tanc i del pulmó per cada valor Q_L .

	$Q_L = 203.33 \text{ mL/min}$	$Q_L = 253, 33 \text{ mL/min}$	$Q_L = 303, 33 \text{ mL/min}$
T_0 al Tanc (K)	362,0	364,1	364,6
T del Pulmó (K)	290,6	290,3	290,1

Tot seguit adjuntem 3 taules (una per cada cabal) amb totes les temperatures mesurades:

Taula 3: Resultats experimentals amb $Q_L = 203, 33 \frac{\text{mL}}{\text{min}}$.

Taula 4: Resultats experimentals amb $Q_L = 253, 33 \frac{\text{mL}}{\text{min}}$.

Taula 5: Resultats experimentals amb $Q_L = 303, 33 \frac{\text{mL}}{\text{min}}$.

Temps (s)	T (<u>o</u> C)	T (K)	Temps (s)	T (<u>o</u> C)	T (K)	Temps (s)	T (<u>°</u> C)	T (K)
0	88,8	362,0	0	90,9	364,1	0	91,4	364,6
30	88,4	361,6	30	90,3	363,5	30	86,2	359,4
60	87,2	360,4	60	88,2	361,4	60	82,8	356,0
90	85,7	358,9	90	83,4	$356,\!6$	90	77,5	350,7
120	82,7	355,9	120	77,5	350,7	120	71,0	344,2
150	78,3	351,5	150	72,2	$345,\!4$	150	64,5	337,7
180	73,2	346,4	180	66,7	339,9	180	61,1	334,3
210	69,0	342,1	210	61,5	334,7	210	56,4	329,6
240	65,3	$338,\!5$	240	56,8	330,0	240	53,7	326,9
270	61,2	334,4	270	53,7	326,9	270	50,4	323,6
300	57,9	331,1	300	51,0	324,2	300	47,4	320,6
330	54,5	327,7	330	48,0	321,2	330	45,0	318,2
360	51,2	324,4	360	44,9	318,1	360	42,5	315,7
390	48,3	321,5	390	42,4	315,6	390	40,5	313,7
420	46,1	319,3	420	39,8	313,0	420	38,6	311,8
450	43,7	316,9	450	39,4	312,6	450	36,7	309,9
480	41,5	314,7	480	37,1	310,3	480	35,0	308,2
510	39,4	312,6	510	35,6	$308,\!8$	510	33,4	306,6
540	36,7	309,9	540	34,4	307,6	-	-	-
570	35,6	308,8	570	33,2	306,4	-	-	-
600	34,0	307,2		-	-	-	-	-

2 Resultats experimentals i discussió

- 2.1 Temperatures de sortida teòriques vs. experimentals
- 2.2 Evolució de temperatures teòriques vs. experimentals
- 2.3 Representació semilogarítmica de les temperatures experimentals

Partint de l'queació linealitzada:

$$\log(T') = \log(T_0') - \frac{Q_L}{2,303V}t\tag{1}$$

representem gràficament el logaritme de les temperatures experimentals menys la temperatura del tanc pulmó respecte el temps per cadascun dels cabals utilitzats durant l'experiment

Figura 2: Gràfic semilogarítmic pel cabal 203,33 mL/min.

Figura 3: Gràfic semilogarítmic pel cabal 253,33 mL/min.

Figura 4: Gràfic semilogarítmic pel cabal 303,33 mL/min.

Observem que obtenim unes rectes prou bones, fet que ens indica que les dades experimentals es comporten de forma similar a la predicció teòrica. Si, a més a més, comparem els valors de les pendents amb el valor esperat $-Q_L/2,303V$:

- Cabal 203,33 mL/min: Obtenim un pendent teòric de $-0,0546 \,\mathrm{min}^{-1}$
- Cabal 253,33 mL/min: Obtenim un pendent teòric de $-0,0680 \,\mathrm{min}^{-1}$
- Cabal 303,33 mL/min: Obtenim un pendent teòric de $-0,0815 \,\mathrm{min}^{-1}$

Així doncs, observem que els valors del pendent es desvien lleugerament dels esperats. Tanmateix, aquesta desviació la podem atribuir a errors experimentals i, donat que els valors resegueixen un comportament similar a l'esperat, podem assumir que les nostres dades segueixen la predicció teòrica.

3 Conclusions

Annexos

A Calibratge de la bomba d'entrada

L'objectiu del calibratge és trobar per quins valors de rpm aconseguim treballar a uns cabals de 200 $\frac{\text{mL}}{\text{min}}$, 250 $\frac{\text{mL}}{\text{min}}$ i 300 $\frac{\text{mL}}{\text{min}}$.

Per calibrar la bomba hem fet un seguit de mesures dels volums omplits per aquesta corresponents a una serie de valors de revolucions per minut (rpm) en un temps t = 3 min. Els valors obtinguts es poden veure a 1.

L'equació obtinguda amb els nostres punts experimentals és y = 7.0893x - 16.071, amb una $R^2 = 0.9995$, valor que ens indica que les nostres mesures tenen una bona correlació lineal.

A partir d'aquí calculem els cabals corresponents a cada valor de revolucions per minut usant que

$$Q_L = \frac{V}{t} \tag{2}$$

on, de nou, t=3 min. Amb això fàcilment es pot determinar que els valors de rpm de la bomba necessaris per treballar a uns cabals de 200 $\frac{\text{mL}}{\text{min}}$, 250 $\frac{\text{mL}}{\text{min}}$ i 300 $\frac{\text{mL}}{\text{min}}$ són els donats a la taula 1.

B Mesura del volum del tanc

Per tal de mesurar el volum del tanc amb el que hem treballat hem usat dos mètodes distints, tenint cura que les condicions de mesura eren exactament les condicions d'operació del tanc (agitador connectat al 10% de la seva potència màxima, sense xocar amb les parets del recipient i a una alçada fixada). Les dues metologies han estat:

- 1. Omplir el tanc amb aigua i connectar la bomba de sortida. Quan la quantitat d'aigua que surt pel cabal de sortida és zero, mesurar tot el volum contingut al recipient (usant material volumètric del laboratori).
- 2. Amb el tanc buit, connectar les bombes d'entrada i sortida. Mesurar el temps que triga a omplir-se el reactor. Amb aquest temps i el cabal (que és conegut, donat el valor de rpm de la bomba), es pot determinar V usant

$$V = Q_L \cdot t \tag{3}$$

El resultats obtinguts amb cada mètode es poden veure a la corresponent secció d'aquest informe.

C Presa de dades experimentals

Per tal de trobar les temperatures de sortida usant els diferents cabals proposats pel guió, hem efectuat mesures de la temperatura a dins del tanc, que prèviament havia estat omplert amb aigua a 90 °C, cada 30 segons durant els primers 5 minuts i després cada minut, fins que la temperatura del tanc ha estat uns 10-15 °C superior a la del tanc pulmó.