<u>Lab 6</u>

To Demonstrate the Working of Binary Subtractor

Note: You may draw all the logic diagrams with hand and paste the pictures here or on logicly software with your name, roll number & section mentioned in your workspace. Make sure that all of your connections are clearly visible and distinguishable.

Tasks

1. Construct a logic circuit for half and full subtractor with the help of truth table/Boolean expression. Also write the Boolean expression for output(s).

Half Subtractor

a) Truth Table

<u>X</u>	<u>Y</u>	Difference	Borrow-out
<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>
<u>0</u>	<u>1</u>	<u>1</u>	<u>1</u>
<u>1</u>	<u>0</u>	<u>1</u>	<u>0</u>
<u>1</u>	<u>1</u>	<u>0</u>	<u>0</u>

b) Boolean Expression (Simplified)

Difference: $X \oplus Y = X XOR Y$

Borrow Out: X'. Y = Not-X AND Y

c) Logic Diagram

d) Software Simulation (Show here your results for each combination that gives a high output)

1st High Output Simulation:

2nd High Output Simulation:

Full Subtractor

a) Truth Table

Bin	Y	X	Diff	Bout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	1
1	1	1	1	1

b) Boolean Expression (Simplified)

Difference: (X XOR Y) XOR Bin = (X \bigoplus Y) \bigoplus Bin

Borrow Out: X' AND Y OR (X XOR Y)' $Bin = (X \oplus Y)' Bin$

c) Logic Diagram

d) Software Simulation (Show here your results for each combination that gives a high output)

1st High Output:

2nd High Output:

3rd High Output:

4th High Output:

a) Logic Diagram of Full Subtractor using 2-Half Subtractor

b) Software Simulation (Show here your results for each combination that gives a high output)

1st High Output:

2nd High Output:

3rd high Output:

4th High Output:

