ROZWIAZANIE WYGENEROWANE PRZEZ CHAT GPT

9. Rozwiń w szereg Fouriera funkcję $f(x)=x^2$ w $[-\pi,\pi]$, narysuj wykres sumy otrzymanego szeregu dla wszystkich $x\in\mathbb{R}$ i korzystając z otrzymanego rozwinięcia oblicz sumę szeregu $1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\dots$ oraz sumę szeregu $1-\frac{1}{2^2}+\frac{1}{3^2}-\frac{1}{4^2}+\dots$

"latex article amsmath

Dane wejściowe:

Dana funkcja:

$$f(x) = x^2$$
 dla $x \in [-\pi, \pi]$

Ogólny wzór szeregu Fourier'a:

Funkcje można przedstawić jako szereg Fourier'a postaci:

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$

Gdzie współczynniki a_n i b_n sa dane jako:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

Wyliczenie współczynników:

1. **Obliczenie a_0 :**

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx$$
$$= \frac{1}{\pi} \left[\frac{x^3}{3} \right]_{-\pi}^{\pi} = \frac{1}{\pi} \left(\frac{\pi^3}{3} - \frac{(-\pi)^3}{3} \right) = \frac{2\pi^2}{3}$$

2. **Obliczenie a_n :**

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos(nx) \, dx$$

Po całkowaniu przez cześci, korzystajac z symetrii, otrzymujemy:

$$a_n = \frac{4(-1)^n}{n^2}$$

3. **Obliczenie b_n :**

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \sin(nx) \, dx = 0$$

(ponieważ funkcja $x^2 \sin(nx)$ jest nieparzysta).

Szereg Fourier'a funkcji f(x):

Funkcja rozwinieta w szereg Fourier'a ma postać:

$$f(x) \sim \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2} \cos(nx)$$

Obliczenie sum szeregu:

1. **Dla szeregu: 1 + $\frac{1}{2^2}$ + $\frac{1}{3^2}$ + $\frac{1}{4^2}$ + \ldots ** Równa sie $\frac{\pi^2}{6}$.

2. **Dla szeregu: $1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$:** Wynosi $\frac{\pi^2}{12}$.

Wynik końcowy:

$$f(x) \approx \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos(nx)$$

1