KEY

Unit 10 Group Work PCHA 2022-23 / Dr. Kessner

No calculator! Have fun!

1. Graph the given function on the specified interval. Find all critical points. Identify any points where there is a local min/max, and verify with a derivative test. Identify the absolute max and min. If either fails to exist, state the condition of the Extreme Value Theorem that is *not* satisfied.

a.
$$g(x) = x^2 - 9$$
 on $[-3, 3]$

g'(x)=2x critical pts: x=0 g''(x)=2 g''(0)=2 > 0 local g''(0)=2 > 0 local g''(x)=2 g''(x)=2

b. $h(x) = \ln x$ on (0, 2]

 $\frac{d^{2}(x)=\frac{1}{x}}{dt} = \frac{d^{2}(x)=\frac{1}{x}}{dt} = \frac{d^{2}(x)=\frac{1}$

2. For each of the given functions find all antiderivatives.

a.
$$p'(x) = x^4$$

b.
$$q'(x) = \cos 2x$$

c.
$$r'(x) = \frac{1}{x}$$

d.
$$s'(x) = \frac{1}{x^2}$$

$$S(x) = -\frac{L}{x} + C$$

e.
$$t'(x) = e^{\frac{x}{3}}$$

a.
$$f(x) = (x+3)^4$$
.

$$f'(x) = 4(x+3)^{3}$$

$$critical pt at x = -3$$

$$f''(x) = 12(x+3)^{2}$$

$$f''(-3) = 0 \longrightarrow 2^{nd} deriv. test$$

$$inconclusive$$

b.
$$g(x) = x^3 - 9x$$
.
 $= \chi(\chi^2 - 9)$
 $= \chi(\chi + 3)(\chi - 3)$
 $g'(\chi) = 3x^2 - 9$
 $= 3(\chi^2 - 3)$
critical pt3 $\chi = \pm \sqrt{3}$

$$\frac{2^{nl} don' \text{ test}}{g''(x)=6x}$$

$$g''(\sqrt{3}) > 0 \text{ local}$$

$$-g''(-\sqrt{3}) \times 0 \text{ local}$$

$$\text{max}$$

c. $h(x) = 3 + 3\sin 2x$. You may restrict your attention to the first period of the function. But as an extra challenge, identify *all* local extrema (not just the first period), including derivative tests to show which are minima and which are maxima.

period
$$\frac{2\pi}{2} = \pi$$

$$f'(x) = 6\cos 2x$$

$$f'(x) = 0 \implies \cos 2x = 0$$

$$2x = \frac{\pi}{2} + k\pi$$

$$x = \frac{\pi}{4} + k\pi$$

$$f''(x) = -12 \sin 2x$$

 $f''(\frac{\pi}{4} + \pi k) = -12 \sin \frac{\pi}{2} < 0 \quad | \text{ local }$ $\chi = \frac{\pi}{4} + \pi k$

4. Consider the following rectangle inscribed in a circle of radius 5. Note that the perimeter of the rectangle changes as the angle θ changes.

a. Write an equation for the perimeter $P(\theta)$ of the rectangle as a function of θ . Challenge: draw a sketch of the graph of $P(\theta)$ on $[0, \frac{\pi}{2}]$ by hand, and then check with graphing software.

$$P(g) = 4.55 \text{ in } 0 + 4.5 \text{ cos } 0$$

= 205 in $0 + 20 \text{ cos } 0$

b. Find the absolute min and max of the perimeter, for θ in $[0, \frac{\pi}{2}]$. Why must there be an absolute minimum and maximum?