The K2 Halo Photometry Campaign

Benjamin J. S. Pope, 1,2 Timothy R. White, 3 Daniel Huber, 4,5,6 Timothy R. Bedding, 7,6 Conny Aerts, 8,9 Tabetha Boyajian, 10 Orlagh L. Creevey, 11 and friends

¹Center for Cosmology and Particle Physics, Department of Physics, New York University, 726
Broadway, New York, NY 10003, USA

²NASA Sagan Fellow

 $^3Research\ School\ of\ Astronomy\ and\ Astrophysics,\ Mount\ Stromlo\ Observatory,\ The\ Australian\ National\ University,\ Canberra,\ ACT\ 2611,\ Australia$

⁴Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA

⁵SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043, USA

⁶Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark

⁷Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, NSW 2006, Australia

⁸ Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
 ⁹ Department of Astrophysics, IMAPP, Radboud University Nijmegen, P.O. Box 9010, NL-6500 GL
 Nijmegen, The Netherlands

¹⁰Department of Physics and Astronomy, Louisiana State University, 202 Nicholsom Hall, Baton Rouge, LA 70803, USA

 $^{11}\,Universit\'e$ Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Bd de l'Observatoire, CS 34229, 06304 Nice cedex 4, France

(Received January 1, 2019; Revised January 7, 2019; Accepted February 21, 2019)

Submitted to ApJ

ABSTRACT

K2 bright stars. \bigcirc

- 1. INTRODUCTION
- 2. HALO PHOTOMETRY
 - 3. DISCUSSION
 - 4. CONCLUSIONS

ACKNOWLEDGEMENTS

We would like to thank Will Farr for his very helpful comments on the halo method. This work was performed in part under contract with the Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the

Corresponding author: Benjamin J. S. Pope ♥ @fringetracker benjamin.pope@nyu

NASA Exoplanet Science Institute. TRW acknowledges the support of the Australian Research Council (grant DP150100250) and the Villum Foundation (research grant 10118).

BJSP acknowledges being on the traditional territory of the Lenape Nations and recognizes that Manhattan continues to be the home to many Algonkian peoples. We give blessings and thanks to the Lenape people and Lenape Nations in recognition that we are carrying out this work on their indigenous homelands.

This research made use of NASA's Astrophysics Data System; the SIMBAD database, operated at CDS, Strasbourg, France; the IPython package (Pérez & Granger 2007); SciPy (Jones et al. 2001); and Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013). Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX13AC07G and by other grants and contracts.

REFERENCES

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33, doi: 10.1051/0004-6361/201322068 Jones, E., Oliphant, T., Peterson, P., & Others. 2001, SciPy: Open source scientific tools for Python. http://www.scipy.org/ Pérez, F., & Granger, B. E. 2007, Computing in Science and Engineering, 9, 21, doi: 10.1109/MCSE.2007.53