Аддитивная регуляризация и ее метапараметры при выборе структуры сетей глубокого обучения

Кирилл Олегович Вайсер

Московский физико-технический институт

Курс: Численные методы обучения по прецедентам (практика, В.В. Стрижов)/Группа 774, весна 2020 Консультант: аспирант М. С. Потанин Научный руководитель: д.ф.-м.н. В. В. Стрижов

Задача построения модели глубокого обучения

Цель работы

Предложить метод построения критерия качества модели, учитывающего ее точность, сложность и устойчивость. Построить модель, удовлетворяющую этому критерию.

Проблема

Нейронные сети, обладающие большой точностью, обычно демонстрируют высокую сложность и низкую устойчивость.

Метод решения

Построить функцию ошибки, включающую аддитивную регуляризацию.

Постановка задачи

Задана выборка, конечное множество пар

$$(\mathbf{x}, y) \in D, \quad \mathbf{x} \in \mathbb{R}^n, \quad y \in \mathbb{R}.$$

Структура модели имеет следующий вид

$$f = \sigma_k \circ \mathbf{w}_{k-1}^\mathsf{T} \boldsymbol{\sigma}_{k-1} \circ \mathbf{W}_{k-1} \boldsymbol{\sigma}_{k-2} \circ \cdots \circ \mathbf{W}_2 \boldsymbol{\sigma}_1 \circ \mathbf{W}_1 \mathbf{x}_{n_1 \times n_1 \times 1}.$$

Функция ошибки имеет вид

$$L = \lambda_x E_{\mathbf{x}} + \lambda_y E_{\mathbf{y}} + \lambda_1 \mathcal{R}_1 + \dots + \lambda_k \mathcal{R}_k = \lambda_x E_x + \lambda_y E_y + \sum_{i=1}^k \lambda_i \mathcal{R}_i(\mathbf{W}),$$

где $\mathcal{R}_i = \mathcal{R}(\mathbf{W}) = \left[\mathfrak{r}_1(\mathbf{W}), \cdots, \mathfrak{r}_r(\mathbf{W})\right]^\mathsf{T}$ —вектор, состоящий из значений регуляризаторов i-ого слоя.

Требуется решить задачу

$$\mathbf{w} = \arg\min L(f|\lambda),$$

 $\lambda = L(f|\mathbf{w}),$

при условии минимизации дисперсии параметров и сложности модели.

$$\sum_{i=1}^k \frac{1}{|W_k|} W_k^\mathsf{T} W_k \to \min, \qquad \sum_{i=1}^k |W_k| \to \min.$$

Использование аддитивной регуляризации

Задание критерия качества

Вводится понятие сложности, устойчивости и точности модели.

Построение критерия качества

Предлагается построить функцию ошибки, включающей аддитивную регуляризацию. Задаются гиперпараметры модели и метапараметры аддитивной регуляризации.

Расписание оптимизации

Метапараметры оптимизации изменяются с течением итераций обучения сети. Порядок и правило их изменения задается экспертно.

Критерии качества модели

Свойства модели

 Сложность — мера множества допустимых значений параметров модели

$$\sum_{i=1}^{k} |W_k|.$$

• Устойчивость — дисперсия ошибки и параметров

$$\sum_{i=1}^{k} \frac{1}{|W_k|} W_k^\mathsf{T} W_k.$$

 Точность —качество аппроксимации, выражаемое через значение функции оппибки

$$\sum_{i=1}^{l} (f(x_i) - y_i)^2.$$

Каталог регуляризаторов аддитивной функции ошибки

Роль в аддитивной регуляризации	Тип регуляризатора	
Ошибка выхода нейронной сети	$ \mathbf{y} - f(\mathbf{W}) _2^2$	
Ошибка восстановления на каждом слое	$ \mathbf{x} - \mathbf{r}(\mathbf{x}) _2^2$	
L_1 и L_2 регуляризация	$ \mathbf{w} - \mathbf{w}_0 _1, \mathbf{w} - \mathbf{w}_0 _2^2$	
Штраф за отличие матрицы одного слоя	$ \mathbf{W} - \mathbf{I} $	
от тождественного преобразования		
Штраф за отличие матрицы одного слоя	$ \mathbf{W}\mathbf{W}^T - \mathbf{I} $	
от метода главных компонент		
Тихоновская регуляризация	$\ \mathbf{T}\mathbf{W}\ $	

Пример расписания регуляризации

Экспертное задание расписания оптимизации, первое расписание.

Пример расписания регуляризации

Экспертное задание расписания оптимизации, второе расписание.

Вычислительный эксперимент

Цель эксперимента

- Проверить работоспособность предложенного метода и его соответствие целям исследования.
- Продемонстрировать эффект от использования аддитивной регуляризации

Описание выборок для экспериментов.

Выборка 🎗	Размер train	Размер val	Размер test	Объекты	Признаки
Credit Card	18000	6000	6000	30000	35
Protein	27438	9146	9146	45730	9
Airbnb	6298	2100	2100	10498	16
Wine quality	2938	980	980	4898	11
Synthetic	1200	400	400	2000	30

Дисперсия параметров во время обучения

Конфигурация : 4 слоя сети, 1 слой автоенкодера, 7 нейронов на каждый слой.

За счет регуляризации модель становится более устойчивой, поэтому дисперсия параметров у регуляризованных решений меньше.

Дисперсия параметров во время обучения

Конфигурация : 6 слоев сети, 1 слой автоенкодера, 9 нейронов на каждый слой.

Первое расписание оптимизации демонстрирует большую эффективность, чем второе.

Дисперсия параметров во время обучения

Конфигурация : 6 слоев сети, 4 слоя автоенкодера, 8 нейронов на каждый слой.

Второе расписание оптимизации демонстрирует большую эффективность, чем первое.

Зависимость между сложностью и точностью для разных расписаний оптимизации.

Зависимость между устойчивостью и сложностью

Зависимость между сложностью и устойчивостью для разных расписаний оптимизации.

Заключение

- Показано, что регуляризованная модель имеет большую точность при равной сложности.
- Показано, что регуляризованная модель имеет лучшую устойчивость при равной сложности.
- Это предварительные результаты, по окончательным будет построена таблица с сравнением точности, сложности и устойчивости по разным выборкам и конфигурациям модели.