203hotline-bootstrap

B-MAT-400

Previously: random variables and distributions

- Random variable: values that depends of the outcome of an experiment, defined as a function $X: \Omega \to E$
 - Example: sum of 2 dice rolls, $E = \{2,3,4,5,6,7,8,9,10,11,12\}$
- Probability distribution: function that maps every value of a random variable to its probability

$$p(x) = P(X = x), x \in E$$

Bernoulli trials

- Random experiment with exactly two possible outcomes:
 - "success" (event A)
 - "failure" (event A^C)
- If p is the probability of success:
 - P(A) = p
 - $P(A^C) = 1 p$
- Example: rolling a 6 (event *A*)

 - $P(A) = \frac{1}{6}$ $P(A^C) = \frac{5}{6}$

Binomial distribution

- ullet The random variable X is the number of successes in n independent Bernoulli trials of probability p
- X follows a binomial distribution: $X \sim B(n, p)$

$$P(X = k) = C_n^k p^k (1 - p)^{n-k}$$

• C_n^k is the binomial coefficient: $C_n^k = \frac{n!}{k!(n-k)!}$

Binomial distribution – Example

- An urn with 2 white balls and 3 black ones
- Experiment: drawing a ball and putting it back
- ullet Random variable: number of white balls picked after n draws
- Distribution: $P(X = k) = C_n^k \left(\frac{2}{5}\right)^k \left(\frac{3}{5}\right)^{n-k}$
- Picking 4 white balls in 5 draws:

$$P(X = 4) = C_5^4 \left(\frac{2}{5}\right)^4 \left(\frac{3}{5}\right) \approx 0.0768 = 7.68\%$$

Poisson distribution

- Probability of a given number of events occurring in a fixed interval of time (or space) when knowing the average amount of events per interval
- Used to count rare events
- Examples:
 - Number of accidents on a highway each day
 - Number of phone calls in a call center
 - Number of defects on a cable length
 - Number of bacteria on a microscope slide
 - ...

Poisson distribution

- Hypotheses:
 - Events are independent
 - Only one event can occur at the same time
 - Events occurs at a constant rate
- X is the number of events observed in an interval
- λ is the average number of events in an interval
- X follows a Poisson distribution $P(\lambda)$ if

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

Poisson distribution – Example

- In average, 1.9 customers enter a store per minute
- Random variable: number of customer entering the store in a minute
- Distribution: $P(X = k) = \frac{e^{-1.9}1.9^k}{k!}$
- Probability that 5 customers enter the store in a minute:

$$P(X=5) = \frac{e^{-1.9}1.9^5}{5!} \approx 0.0309 = 3.09\%$$

Approximating a binomial distribution

- ullet Computing a binomial distribution when n is high is expensive
- A binomial distribution B(n,p) can be approximated by a Poisson distribution $P(\lambda)$ if:
 - *p* is low (< 0.1)
 - n is large (> 50)
 - $np \le 10$
- The parameter of the Poisson distribution is $\lambda = np$

203hotline

- Call center with 25 phones, 3500 calls per day (8 hours)
- Probability of an overload?
- Goals:
 - Compute efficiently binomial coefficients
 - Compute the binomial distribution for the number of simultaneous phone calls, given the average duration of a call
 - Compute the approximation by the Poisson distribution

203hotline

- Inputs: [n k | d]
 - n, k: values for the computation of C_n^k
 - d: average duration of a phone call (in seconds)
- Output (if n and k passed as parameters):
 - Value of C_n^k
- Output (if d passed as parameter):
 - For both Binomial and Poisson distributions:
 - Probability of getting n simultaneous phone calls for n from 0 to 50
 - · Probability of getting an overload
 - Computation time

Exercise: Computing binomial coefficients

$$C_n^k = \frac{n!}{k! (n-k)!}$$

- What is the relationship between C_n^k and C_{n-1}^{k-1} ?
- What is the relationship between C_n^k and C_n^{n-k} ?
- Create a function that computes \mathcal{C}_n^k without using factorial
- Beware, when n increases, \mathcal{C}_n^k becomes quite large...

Exercise: p in the binomial distribution

- 3500 calls per day (8 hours) in average
- Average duration of a call = d seconds
- The random variable of the distribution is the number of simultaneous calls
- What is the event we want to observe?
- What is its probability p ?
- ullet Create a function that computes p given the average call duration d