Course Code: BTCS501-18 Course Title: Database Management Systems 3L:0T:0P 3Credits

Detailed Contents:

Module 1: Database system architecture

Data Abstraction, Data Independence, Data Definition Language (DDL), Data Manipulation Language (DML). Data models: Entity-relationship model, network model, relational and object oriented Data models, integrity constraints, data manipulation operations.

[7hrs] (CO1,2)

Module 2: Relational query languages

Relational algebra, Tuple and domain relational calculus, SQL3, DDL and DML constructs, Open source and Commercial DBMS - MYSQL, ORACLE, DB2, SQL server. Relational database design: Domain and data dependency, Armstrong's axioms, Normal forms, Dependency preservation, Lossless design. Query processing and optimization: Evaluation of relational algebra expressions, Query equivalence, Join strategies, Query optimization algorithms. [10hrs] (CO2,4)

Module 3:

Storage strategies, Indices, B-trees, hashing.

[3hrs] (CO3)

Module 4: Transaction processing

Concurrency control, ACID property, Serializability of scheduling, Locking and timestamp based schedulers, Multi-version and optimistic Concurrency Control schemes,

Database recovery.

[6hrs] (CO3)

Module 5: Database Security

Authentication, Authorization and access control, DAC, MAC and RBAC models, Intrusion

detection, SQL injection.

[8hrs] (CO 4,5)

Module 6: Advanced Topics

Object oriented and object relational databases, Logical databases, Web databases, Distributed

databases. [8hrs] (CO 5)

Course Outcomes:

At the end of study the student shall be able to:

CO1: write relational algebra expressions for a query and optimize the Developed expressions **CO2:** design the databases using ER method and normalization.

CO3: construct the SQL queries for Open source and Commercial DBMS-MYSQL, ORACLE, and DB2.

CO4: determine the transaction atomicity, consistency, isolation, and durability.

CO5: Implement the isolation property, including locking, time stamping based on concurrency control and Serializability of scheduling.

Text Books:

S.

1. "Database System Concepts", 6th Edition by Abraham Silberschatz, Henry F. Korth,

Sudarshan, McGraw-Hill.

Reference Books:

- 1. "Principles of Database and Knowledge–Base Systems", Vol1 by J. D. Ullman, Computer Science Press.
- 2. "Fundamentals of Database Systems", 5th Edition by R. Elmasri and S. Navathe, Pearson Education.
- 3. "Foundations of Databases", Reprint by Serge Abiteboul, Richard Hull, Victor Vianu, Addison-Wesley.