Open Motion Planning Library

Robotic motion planning seeks to find a solution to the problem of "Go from the start to the goal while respecting all of the robot's constraints."

- ⇒ Sampling-based motion planning is a powerful concept that employs sampling of the state space of the robot in order to quickly and effectively answer planning queries
 - especially for systems with differential constraints or those with many degrees of freedom
- ⇒ Sampling arises out of the need to quickly cover a potentially large and complex state-space to connect a start and goal configuration along a feasible and valid path.
- → Most sampling-based methods provide probabilistic completeness.

This means that if a solution exists, the probability of finding a solution converges to one as the number of samples reasoned over increases to infinity.

→ Sampling-based approaches cannot recognize a problem with no solution.

Paroblem Statements and defination

Workspace

 \rightarrow The physical space that the robot operates in.

It is assumed that the boundary of the workspace represents an obstacle for the robot.

State space

The parameter space for the robot.

→This space represents all possible configurations of the robot in the workspace.

Free state space

A subset of the state space in which each state corresponds to an obstacle free configuration of the robot embedded in the workspace.

(Path)

A continuous mapping of states in the state space.

→A path is collision free if each element of the path is an element of the free state space.