12.4

Point d'intersection de deux droites sécantes

Maths 2nde 7 - JB Duthoit

Si les deux droites d et d' sont sécantes, elles admettent un unique point d'intersection I Ce point d'intersection étant sur la droite d et sur la droite d', les coordonnées de I vérifient une équation de la droite d et une équation de la droite d'.

Déterminer un point d'intersection de deux droites sécantes revient donc à résoudre un système de deux équations linéaires, à deux inconnues.

Définition

Un système de deux équations linéaires à deux inconnues est un système qui peut s'écrire sous la forme :

$$\begin{cases} ax + by + c = 0 \\ a'x + b'y + c' = 0 \end{cases}$$
, où a,b,c,a',b' et c' sont des réels.

Savoir-Faire 12.61

Comment vérifier qu'un couple est solution du système? On considère les droites d et d' d'équations réduites respectives 2x + y - 1 = 0 et x - 2y + 3 = 0. On a vu précédemment que les droites d et d' n'étaient pas parallèles. Démontrer que le point I(1;2) est bien le point d'intersection des droites d et d'.

Savoir-Faire 12.62

Comment résoudre algébriquement un système? (méthode par substitution)

Résoudre, en utilisant la méthode par substitution, le système suivant : (S) : $\begin{cases} 3x - 2y &= -1 \\ x + 3y &= 7 \end{cases}$

Savoir-Faire 12.63

Comment résoudre algébriquement un système? (méthode par combinaison)

Résoudre, en utilisant la méthode par combinaison, le système suivant : (S) : $\begin{cases} -4x - 9y = 7 \\ 4x + 8y = -8 \end{cases}$

Exercice 12.43

Spécial Seconde 7

On considère le tableau suivant :

1		3										
A	В	С	D	Ε	F	G	Н	I	J	K	L	M
14	15	16	17	18	19	20	21	22	23	24	25	26
N	О	P	Q	R	\mathbf{S}	Τ	U	V	W	X	Y	Z

Voici maintenant un message à décoder :

abcdefedgedheiggecjd

en sachant que :

1. (a,b) est solution de
$$\begin{cases} 2x - y - 29 &= 0 \\ -x - y + 37 &= 0 \end{cases}$$

1. (a,b) est solution de
$$\begin{cases} 2x - y - 29 &= 0 \\ -x - y + 37 &= 0 \end{cases}$$
2. (c,d) est solution de
$$\begin{cases} x - 3y + 36 &= 0 \\ -2x - 8y + 194 &= 0 \end{cases}$$
3. (e,f) est solution de
$$\begin{cases} 2x - 2y + 30 &= 0 \\ 5x - y - 5 &= 0 \end{cases}$$

3. (e,f) est solution de
$$\begin{cases} 2x - 2y + 30 = 0 \\ 5x - y - 5 = 0 \end{cases}$$

4. (g,h) est solution de
$$\begin{cases} y - 13 &= 0 \\ 3x - 10y + 94 &= 0 \end{cases}$$

5. (i,j) est solution de
$$\begin{cases} 3x - 2y + 9 = 0 \\ 2x + 3y - 72 = 0 \end{cases}$$