Almost formality of spin milds - Van Le
det A Poincaré algebru of deg n is a fin. dim aly graded alg H = H;
Multi centered higher spin solutions
-3d granty as tog wodel
-3d gravity as tog wodel -topological -tensionless limit of AdSzxS3xMu strings
- Thern - Simons formulation vs metric one
-> SL(2)tt) oz copies (CS fields +) T)
-higher-spine pick SL(N,R) x SL(N,R)
an embodding of SL(2,1R) &SL(2,1R)
an entedding of SL(2,12) ssl(2,12)
-705 U(sln)/< (2-2(1-1))
-in (3,2+,2-) we can describe asymptotic
Ads of A-1=0 A+1=0

Srul

Wn conformal blocks - O. Væsilakis - Seerch for backseacted wilty-centeral solus.
- Seerch for backsected wilty-centered solus.
Superintegrability and time-dependent integrals - 6. Kübü