Coulomb effects on the transport properties of quantum dots in strong magnetic field

V. Moldoveanu, A. Aldea, A. Manolescu, M. Nitã National Institute of Materials Physics, POBox MG7, Bucharest-Magurele, Romania

Abstract

We investigate the transport properties of quantum dots placed in strong magnetic field using a quantum-mechanical approach based on the 2D tight-binding Hamiltonian with direct Coulomb interaction and the Landauer-Büttiker (LB) formalism. The electronic transmittance and the Hall resistance show Coulomb oscillations and also prove multiple addition processes. We identify this feature as the 'bunching' of electrons observed in recent experiments and give an elementary explanation in terms of spectral characteristics of the dot. The spatial distribution of the added electrons may distinguish between edge and bulk states and it has specific features for bunched electrons. The dependence of the charging energy on the number of electrons is discussed both for strong and vanishing magnetic field. The crossover from the tunneling to quantum Hall regime is analyzed in terms of dot-lead coupling.

PACS:73.23 Hk,73.50 -h,73.40 Hm

I. INTRODUCTION

The basic phenomena in quantum dots (QD) are usually described by the 'orthodox theory' [1,2] which explains the Coulomb blockade effects (charge quantization and the oscillations of the electrical resistance) in terms of the capacitive properties of the isolated (or very weakly coupled) dot. Generally speaking, the corresponding capacitance should depend on the dimension and the dot shape, number of electrons accommodated inside and the electron-electron interaction (EEI). Nevertheless, the orthodox theory considers the dot capacitance as being a constant, independent of the number of electrons and the size quantization effects. This idea can be accepted for large metallic QDs when the charging energy due to the Coulomb interaction is larger than the level spacing of the one-electron energy spectrum. However many specific properties of QDs remain beyond this model. Such aspects occur especially for small semiconductor quantum dots, when the level spacing is relatively large, the distribution of the energy levels depends visibly on the dot shape and the number of electrons is smaller then in the metallic case. In small dots the interplay between the quantum aspects and the charging effects is important. This is why a more advanced description pretends to pay attention to the one-particle energy spectrum and to consider a more realistic Hamiltonian.

In spite of the general acceptance that the charging energy should depend on the number of electrons inside dot N, fact which is proved experimentally by the irregular Coulomb blockade oscillations [3], this effect has been simulated numerically only recently [4,5]. The situation becomes even more complicated when the coupling to the leads is taken into account carefully, eventually in the presence of a magnetic field. In fact, this coupling between dot and leads (or using other words: the degree of pinching/constrinction at the contacts) decides the degree of quantization of the charge in QD and affects the electronic transmittance through the dot and the Hall resistance. Generally, in the literature, the lead-dot (LD) coupling is taken into onsideration assuming an electronic transition rate Γ between leads and dot. This phenomenological way of thinking is replaced here by the explicit calculation of the transmittance properties in the quantum-mechanical Landauer-Büttiker formalism. This formalism works as long as the EEI is present in the dot but is neglected in the leads [6]. In this framework we show that the LD coupling plays an even more pregnant role in the presence of a strong magnetic field, in which case an interesting crossover from Coulomb oscillations to the Quantum Hall regime can be noticed for the transverse resistance with increasing coupling. The strong magnetic field perpendicular on the two-dimensional dot gives rise to edge-states even if the dot is small. Then, for large LD coupling, QHE-type effects appear, although, usually, only the first plateau is visible in small dots (and not always very clean). Such aspects were evidentiated for the first time in [7] by the use of a tight-binding (TB) model in the absence of the electron-electron interaction.

The philosophy of our approach for calculating the transport properties of quantum dots is the following: the QD is coupled weakly to four semi-infinite leads supporting many channels. The number of degree of freedom of the terminals is infinite while the QD has only a finite number of degree of freedom, so that the Fermi level E_F of the whole system is imposed by terminals. At a given magnetic field, when a gate potential V_g is applied

and varied, the fixed E_F scans the whole energy spectrum. Without magnetic field, aspects concerning Coulomb effects and the importance of size quantization have been discussed in [5] in the Hartree approximation: the calculated addition spectrum shows the dependence of the charging energy on the number of particles, the electronic transmittance peaks — which correspond to the charge-degeneracy points — are distributed irregularly keeping track of the size quantization. The width of the transmittance peaks depends not only on the LD coupling but also on the strength of the EEI, showing the cotunneling effect at resonances.

The aim of this paper is to discuss the transport properties of the open dots in the regime of a strong magnetic field. We calculate the addition spectrum, the transmittance matrix and the Hall resistance. We show that, when the contacts are pinched, the quantum plateaus disappear and quantum oscillations of R_H are installed even in the absence of EEI. Next we show the characteristics of the R_H oscillations in the presence of the long-range direct electron-electron interaction in Hartree approximation. These oscillations as function of V_g or magnetic flux were observed experimentally already long time ago [8], but they were never simulated numerically on the basis of a theoretical model. Our calculations put into evidence the electronic bunching in the addition process, an effect which was found recently by single electron capacitance spectroscopy(SECS) [9].

The description of the formalism is made in the next section, while in Sec. III we discuss briefly some aspects of resonant transport through a non-interacting QD subject to a strong magnetic field. Our main results are established and commented in Sec. IV, the conclusions being isolated in Sec. V.

II. THE FORMALISM

We use a pure quantum-mechanical approach of the transport properties of open quantum dots, which is based on the Landauer-Büttiker formalism and the Hartree approximation for the electron-electron interaction. While the Hartree term is meaningless in infinite homogeneous system it becomes important for finite systems like QD. The method is complementary to the semi-classical master-equation approach [2], goes beyond the constant-interaction model and is able to account for size, tunneling and interaction effects in quantum dots in the presence of the magnetic field.

Our calculations are based on a lattice model. In spite of the fact that in recent years this model is extensively used for the study of various effects in quantum dots [10,11] we would like to say a few words of caution on this approach to small systems, in the presence of the EEI. When the lattice model is considered as the discretization of a continuous system by with a rectangular grid of intersite distance a, the (direct) EEI reads $U \sum_{j>i} 1/|i-j|c^{\dagger}_i c^{\dagger}_j c_j c_i$, where i,j are the lattice sites and $U=e^2/a$; this means that the strength parameter U depends on the grid which is meaningless. Also the hopping integral $t=\hbar^2/2ma^2$ and the radius $r_s=e^2/(at\sqrt{4\pi\nu})$ (ν being the filling factor) depend on the grid. One may say that the discretization works better at low filling factor (meaning small a or large number of grid sites). Another way to avoid this paradox is to consider the lattice model as a tight-binding approximation, i.e. to assume that the overlap between the atomic orbitals (and usually, one considers only one type of orbitals) located on different sites is small and the effective mass is big. In general, this is not the case for the semiconductors used in the experimental devices. In particular, the strength of the electron-electron Coulomb interaction depends on

the dielectric constant of the semiconductor host material, which we incorporate here in our coupling constant U.

The discrete model allows the tailoring of different shapes and introducing the magnetic field as a phase of the hopping integral. The parameters controlling the problem are: a) strength of the LD coupling, b) size and shape of the dot and the magnetic flux, which all of them, determine the electronic spectrum in the absence of the EEI, c) strength of the EEI (U).

We model the QD as a 2D mesoscopic plaquette weakly coupled to four external semiinfinite leads. In the TB approximation the Hamiltonian is written as:

$$H = H^D + \sum_{\alpha} H_{\alpha}^L + \sum_{\alpha} H_{\alpha}^{LD} \tag{2.1}$$

In the above relation H^D is used to describe the isolated QD, H^L_{α} characterize the lead α ($\alpha = 1,...,4$), while the lead α is coupled to the dot by:

$$H_{\alpha}^{LD} = t^{LD} (c_{0\alpha}^{\dagger} c_{\alpha} + c_{\alpha}^{\dagger} c_{0\alpha}), \tag{2.2}$$

where the operator c_{α}^{\dagger} creates an electron in the dot state $|\alpha\rangle$ and $c_{0\alpha}$ annihilates it in the neighboring lead state $|0\alpha\rangle$. Here t^{LD} is the hopping integral between dot and leads. Since the role of the leads is only to inject and drain the electrons or to probe the potential drop, the EEI will be included only in the Hamiltonian of the dot. In the 'orthodox theory' the Coulomb effects are mostly studied in the constant-interaction model (see, for instance, [12]) which considers the Hamiltonian $H_{ee} = (e^2/2C)(N-N_g)^2$ (C= capacitance, N= operator of the total number of particles, $N_g=$ external parameter related to the gate potential). Here, we use a long range direct Coulomb interaction. Expressed in terms of creation and annihilation operators on localized states indexed by $i \in QD$, the Hamiltonian of the dot reads:

$$H^{D} = \sum_{i,j} (t_{ij}^{D} c_{i}^{\dagger} c_{j} + \frac{1}{2} U_{ij} c_{i}^{\dagger} c_{j}^{\dagger} c_{j} c_{i}) + \sum_{i} V_{g} c_{i}^{\dagger} c_{i} , \quad i, j \in QD.$$
 (2.3)

The external gate V_g is simulated by a site energy in H^D . In Hartree approximation and nearest-neighbors model, it becomes:

$$H^{D} = \sum_{i} \left(V_{g} + U \sum_{j>i} \frac{\langle n_{j} \rangle}{|i-j|} \right) c_{i}^{\dagger} c_{i} + t^{D} \sum_{\langle i,j \rangle} e^{i2\pi\phi_{ij}} c_{i}^{\dagger} c_{j}.$$
 (2.4)

where $\langle n_j \rangle = \langle c_j^{\dagger} c_j \rangle$ is the mean occupation number of the site j and U is the parameter describing the strength of the EEI. We have chosen $t^D = 1$, i.e. the energy unit is the hopping integral in QD, and we have denoted by $\langle ... \rangle$ the nearest-neighbors summation. The Peierls phase ϕ_{ij} is proportional to the magnetic flux through the unit cell $\phi = Ba^2$ measured in quantum flux units ϕ_0 (the explicit expression of ϕ_{ij} depends on the site indexes i,j and on the gauge we choose [14]).

At this point a useful "trick" is to describe the open dot by an effective Hamiltonian which includes the influence of the leads. Eliminating formally the degrees of freedom of the leads, one obtains a non-Hermitean Hamiltonian depending on the energy:

$$H_{eff}^{D}(z) = H^{D} + H^{DL} \frac{1}{z - H^{L}} H^{LD} = H^{D} + H^{DL} G^{L}(z) H^{LD}.$$
 (2.5)

In the above equation, the Green function $G_L(z)$ of the semi-infinite lead can be calculated analytically:

$$G_{ij}^{L}(z) = \frac{1}{t_{L}(\zeta_{2} - \zeta_{1})} \cdot \left[\zeta_{1}^{|i-j|} - \zeta_{1}^{i+j+2}\right], \quad i, j \in lead$$
 (2.6)

where ζ_1 and ζ_2 are the roots of the equation:

$$t_L \zeta^2 - z\zeta + t_L = 0$$
, $|\zeta_1| < 1 < |\zeta_2|$. (2.7)

Let $\zeta_1(z)$ in the upper half plane. By approaching the real axis from above one obtains $\zeta_1(z) = \zeta(E+i0) = e^{-ik}$, where k is defined by $2t_L \cos k = E$, t_L being the hopping energy of leads. After straightforward manipulations the effective Hamiltonian of the dot is obtained explicitly:

$$H_{eff}^{D} = H^{D} + \tau^{2} t_{L} \sum_{\alpha} e^{-ik} c_{\alpha}^{\dagger} c_{\alpha}$$

$$(2.8)$$

The ratio $\tau = t_{LD}/t_L$ defines the degree of constrinction at the contacts and represents an input parameter which can be varied continuously. It is important to observe that the influence of the leads is expressed as a non-Hermitean diagonal term proportional to τ^2 , which produces a shift in the real part of the eigenvalues of H^D and introduces also an imaginary part. If $\tau \ll 1$, i. e. for a weakly-coupled dot, these shifts become negligible and the spectrum of H_{eff} approaches the spectrum of the isolated dot. This behavior has important consequences on the conductivity matrix $g_{\alpha\beta}$, seen as the transmittance $T_{\alpha\beta}$, which can be expressed in terms of the retarded Green function $G^+(E) = (E - H_{\text{eff}} + i0)^{-1}$ by the LB formula:

$$g_{\alpha\beta} = \frac{e^2}{h} T_{\alpha\beta} = 4 \frac{e^2}{h} \tau^4 t_L^2 \sin^2 k |G_{\alpha\beta}^+(E_F)|^2, \quad \alpha \neq \beta.$$
 (2.9)

Once the conductance matrix $g_{\alpha\beta}$ is known, the Hall resistance can be calculated immediately, [16]

$$R_H = (g_{21}g_{43} - g_{12}g_{34})/D , (2.10)$$

where D is a 3×3 subdeterminant of the 4×4 matrix $g_{\alpha\beta}$. The matrix elements of the Green's function, $G_{ij}^+(E)$, are calculated numerically using the self-consistency condition:

$$\langle n_j \rangle = \frac{1}{\pi} \int_{-\infty}^{E_F} \text{Im } G_{jj}^+(E) dE.$$
 (2.11)

In the weak-coupling limit $\tau \ll 1$, the transport problem reduces to a tunneling problem. Indeed, from Eq.(9) it follows that the poles of the Green function will induce a series of peaks in the transmittance, and Eq.(11) shows that the mean number of electrons in the QD changes abruptly by 1 at every peak, indicating a charge addition process. So, the correspondence between the peaks observed in the transmittance and the charge accumulation in the dot is manifestly established.

Taking into account the strong conditioning of the transport properties (electronic transmittance and Hall resistance) by the energy spectrum of the dot, we have to perform a comparative analysis of spectral properties of H^D , with and without EEI.

III. NON-INTERACTING DOT IN STRONG MAGNETIC FIELD

In this section we address the resonant transport through a non-interacting QD, mainly because this simple framework gives a clear picture of the constrinction effects. Moreover some data about the non-interacting spectrum will be needed in the next section.

As it is known, when periodic boundary conditions are imposed to a non-interacting 2D electronic system subjected to a perpendicular magnetic field, the tight-binding approach yields the Harper equation associated with the usual Hofstadter-butterfly spectrum. When the periodic boundary conditions are replaced by the Dirichlet conditions, a 'quasi-Hofstadter' spectrum is obtained [14], since the hard-wall potential lifts the degeneracy and the gaps get filled with eigenvalues which correspond to the so-called edge states (which are extended along the edges of the system and are responsible for the quantization of the Hall conductance). Another type of states are the 'bulk states' which are grouped in energy bands and, geometrically, concentrated in the middle of the dot. The nature - bulk or edge-of a given state $\Psi_n(\phi)$ can be checked also by its chirality [15], i.e. by the sign of the current carried by that state, defined as the slope of the energy level:

$$I_n = \frac{dE_n(\phi)}{d\phi}. (3.1)$$

Since the eigenvalues $E_n(\phi)$ are not monotonic functions of the magnetic flux (as it can be noticed in Fig.1a), it follows that the nature of the corresponding eigenstate may change from bulk to edge or vice-versa when the flux is varied.

For strongly pinched contacts, a continuous variation of the gate potential (or, equivalently, of the Fermi level) gives rise to a resonance peak whenever the Fermi level is aligned to an eigenvalue of the isolated dot (the width of the peak is determined only by the strength of the LD coupling in the noninteracting case). This can be seen in Fig.1b which depicts the transmittance spectrum of the non-interacting quantum dot as function of E_F mapped onto the corresponding piece of the quasi-Hofstadter spectrum.

The modifications in the transmittance induced by pinching is shown in Fig.2 for T_{12} , T_{13} and T_{14} , in the case of strong magnetic field. One remarks that for completely open QDs (at $\tau = 1.0$) the transmittances take the values which describe the Quantum Hall regime: all $T_{\alpha,\beta}$ with $\alpha \neq \beta$ vanish except $T_{\alpha,\alpha+1}$ [16]. On the other hand, for very weakly coupled QDs ($\tau \ll 1$), which corresponds to the resonant tunneling regime, the dwell time of the electron inside the dot increases and all $T_{\alpha,\beta}$ become of the same order of magnitude.

While the transmission spectrum identifies the positions of the levels it cannot specify whether the corresponding states are edge- or bulk-type. This can however be evidentiated by the Hall resistance for simple reasons: if the leads are strongly coupled to the dot, the Hall resistance exhibits quantum Hall plateaus in the range of the spectrum occupied by edge states. At strong constrinction, interference effects occur when the electron travel along the edge states, resulting in oscillations of the resistance in the region of the former plateau. This is shown in Fig.3a where each minimum in the Hall resistance corresponds to a resonance condition (when the Fermi level equals an eigen-energy belonging to an edge state). Remark the sudden drop of the Hall resistance between the QH plateaus indicating a narrow bulk domain.

When electron-electron interaction is considered, some novel features appear that can be traced from Fig.3b, which depicts R_H versus V_g for U = 0.5. The discussion of this figure

is postponed to the next section where the influence of the EEI on the edge and bulk states will be analyzed.

IV. THE INTERACTING CASE.

When the electron-electron interaction is taken into account, important differences appear in the positions and widths of the transmittance peaks and simultaneously in the Hall resistance. This is due to the Coulomb blockade effect, meaning that the addition of an extra electron needs some energy which is not simply the difference between two consecutive one- electron levels, but has also a contribution coming from the electron repulsion. We shall start with some considerations on the addition spectrum which will be usefull for understanding the features of the resonant transport through QDs in the presence of the interaction. Let $E_n(N)$ be the n-th eigenvalue of the system containing N electrons. $E_n(N)$ has a monotonic dependence on the Fermi energy. When E_F (the diagonal line in Fig.4) approaches $E_n(N)$ the addition of the N+1-th electron becomes possible and the whole spectrum raises with the charging energy: $E_{ch}(N, N+1) = E_n(N+1) - E_n(N)$. One notices from Fig.4 that the charging energy is not supplied step-like but linearly (with slope=1.0) along an interval $\delta E_F = E_{ch}$; the addition of the extra electron occurs at the charge degeneracy point situated in the middle of this interval, where $E_F = (E_n(N+1) - E_n(N))/2$. The transmittance shows the addition spectrum properties: the peaks point versus the degeneracy points; their widths -measured at the bottom- equals the charging energy and are due to the so-called 'co-tunneling' near the degeneracy points [17]).

Now we turn to discuss Fig.3b and to make the comparison with the Fig3.a (interacting vs. non-interacting case). The similarities of the two figures suggest that the edge states are present also in the interacting case, giving rise to oscillations of R_H on different quantum Hall plateaus. There are however qualitative differences: for $U \neq 0$, both the edge and bulk regions are much expanded, so that the whole picture is pushed upwards on the energy scale (in the numerical calculation this is equivalent to large negative V_g). This means that the Coulomb interaction increases the level spacing and a striking consequence is the slower drop of R_H in the region of the bulk states. However, in order to fully establish the nature of the states we have to observe the changing of the local electronic distribution n_i , when exactly one more electron is added, i.e to calculate:

$$\Delta n_i(N, N+1) = n_i(N+1) - n_i(N) , i \in QD, N = integer.$$
 (4.1)

In order to make sure that N is an integer, one has to calculate Eq.(13) for those values of V_g which ensures an integer number of electrons in QD; they correspond to two consecutive valleys in the transmittance spectrum Fig.4. The interest in Eq.(12) follows from the fact that the map of Δn_i shows how the (N+1)-th electron is added, namely on the edge or in the bulk. For instance, Fig.5a gives a clear proof that the 8-th electron is trapped by an edge state. On the other hand, the bulk states are much damaged: this can be seen in Fig.5b where the added electron is more or less distributed everywhere. Eq.(13) contains the aprioric assumption that the electrons are added individually. However, recent experimental results suggest that the electrons may enter the dot not only one by one but also in bunches, fact which can be seen in the addition spectrum [9]. This very 'non-orthodox' feature has

to be noticed also in the transmittance properties of the dot. So, let us discuss the double peaks existing in the calculated transmittance in Fig.6a. They become possible when two degeneracy points are very close and the co-tunneling effect does not permit their resolution. The origin of this effect consists in two close poles of the resolvent $(E - H_{\text{eff}})^{-1}$ fact that yields a multiple addition process, which is nothing else but the 'bunching'. While the bunching is not allowed in the range of edge states (which are well-separated), it appears in the bulk region due to the existence of quasi-degenerate states. The way in which the two grouped electrons are distributed in the dot is shown by $\Delta n_i(9, 9 + 2)$ in Fig.5c. We stress that, in this case, the distribution has evident maxima at the corners. This corroborates with the results obtained recently by Canali [11]. The bunching has important consequences on the oscillation amplitude of R_H , in the sense that the amplitude is suppressed whenever a bunching appears (see Fig.6b). The bunching is not conditioned by the presence of the magnetic field but on the existence of the co-tunneling effect, what reveals its Coulombian nature.

When the transmittance is plotted against the number of electrons (Fig.7) interesting features can be noticed: some maxima are reached at half integer number of electrons, in accordance with the constant capacitance model in which the additions becomes costless at the charge degeneracy points satisfying the relationship $CV_g/e = N + 1/2$ [19]. This is clearly violated, however, any time the multiple addition process occurs (see the bunching of 6-th and 7-th electrons in the same figure).

Another interesting effect in the presence of the magnetic field is the dependence of the charging energy on the number of particles shown in Fig.8. Without field the charging energy depends irregularly on N, confirming the results obtained in Ref.4. The behavior changes drastically in strong magnetic field, showing a monotonic increase of the charging energy as long as the electrons are added on the edges (this occurs for $3 \le N \le 8$, which also correspond to the quantum oscillations of the Hall resistance on the first plateau).

V. CONCLUSIONS

We have studied the transport properties of interacting quantum dots pierced by a strong magnetic field. The transmittance and the Hall resistance were calculated in the Landauer-Büttiker formalism, in the tight-binding picture (which contains explicitly the dot-lead coupling), while the electron - electron interaction was considered in the Hartree approximation. This approach is able to describe the competition between the size, interaction and tunneling mechanisms in QD. After proving the essential role of the dot-lead coupling we have obtained the Coulomb oscillations of the transmittance and Hall resistance for various degrees of constrinction. The charge degeneracy points were shown to coincide with the minima of Hall resistance and the peaks of the transmittance. It turns out that the edge states are stable against interaction, only the interlevel spacing being increased. On the contrary the bulk states are much more damaged. The labelling of states into edge- or bulk-like was done by an explicit mapping of the spatial distribution for each added electron. We have also presented an elementary explanation for the bunching of electrons recently revealed by SECS experiments. In what concerns the dependence of the charging energy on the number of electrons, it is shown that in zero flux case, E_{ch} depends irregularly on N but increases monotonically in strong magnetic field as long as the Fermi level lies in the region of edge states.

ACKNOWLEDGMENTS

A. M. and A. A. benefited of the hospitality and support of the International Centre for Theoretical Physics, Trieste, Italy, at the Research Workshop on Mesoscopic Systems, and through the Associateship Scheme (A. M.). A. A. is very grateful to Prof. Johannes Zittartz for his hospitality at the Institute of Theoretical Physics, University of Cologne, where part of this work was performed under SFB-341. Valuable discussions with Dr. P. Gartner are acknowledged.

REFERENCES

- [1] L.P.Kouwenhouven et al., in *Mesoscopic Electron Transport*, NATO ASI Series E, vol. 345, edited by L.L.Sohn, L.P.Kouwenhouven and G.Schön, Kluver, Dordrecht, 1997.
- [2] C.W.J.Beenakker, Phys.Rev.B 44,1646 (1991).
- [3] S.Tarucha, D.G.Austing, T.Honda, R.J.van de Hage and L.P.Kouwenhoven Phys.Rev.Lett. 77, 3613 (1996).
- [4] M.Macucci, K.Hess, G.J.Iafrate Phys.Rev.B 48, 17354 (1993).
- [5] A.Aldea, A. Manolescu, and V Moldoveanu, Annalen der Physik(Leipzig), Spec. Iss. 8, 17-20 (1999).
- [6] Y. Meir and N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992); P. Gartner, unpublished.
- [7] U.Sivan, Y.Imry, C.Harzstein Phys.Rev.B 39, 1242 (1989).
- [8] C.J.B.Ford, S.Washburn, R.Newbury, C.M.Knoedler and J.M.Hong, Phys. Rev.B 43, 7339 (1991).
- [9] N.B.Zhitenev, R.C.Ashori, L.N.Pfeiffer and K.W.West, Phys.Rev.Lett. 79, 2308 (1997).
- [10] R.Berkovits and B.I.Shklovskii, J. Phys. Cond. Matt. 11, 779 (1999).
- [11] C.M.Canali and W.Stephan, Annalen de Physik (1999).
- [12] I.L.Aleiner and L.I.Glazman, Phys.Rev.Lett 77,2057(1996).
- [13] P.Gartner, A.Aldea Z. Phys. B **99**,367 (1996).
- [14] A.Aldea, P.Gartner, A.Manolescu and M.Nitã Phys.Rev.B 55, R13389 (1997).
- [15] E.Akkermans, J.E.Avron and Narevich, European Phys. J.B 1,117 (1998).
- [16] M.Büttiker Phys.Rev.B **38**,9375 (1988).
- [17] J.König, H.Schoeller and G.Schön, Phys.Rev.B 58, 7882 (1998).
- [18] D.V.Averin and Yu.V.Nazarov, Phys.Rev.Lett. 65 (1990) 2446;
- [19] L.I.Glazman and R.I.Shekter, J.Phys.:Cond.Matt.1,5811 (1989).

FIGURES

- FIG. 1. The correspondence between the transmittance spectrum of a non- interacting QD in strong magnetic field ($\phi = 0.15$) and the Hofstadter spectrum. Each transmittance peak arises when E_F equals an eigenvalue of the isolated spectrum.
- FIG. 2. The dependence of transmittances on constrinction (T_{12} -full line, T_{13} -dashed line and T_{14} -dotted line, $\phi = 0.15$). Pinching effect is obvious: at large coupling the conditions for QHE are fulfilled, while by continously decreasing LD coupling, T_{ij} evolves smoothly to the same order of magnitude.
- FIG. 3. (a) Quantum oscillations of the Hall resistance for pinched contacts ($\tau = 0.5$, $\phi = 0.15$, U = 0.0). Remark the sudden drop of R_H between different Hall plateaus. (b) Interaction effects on the Hall resistance (U = 0.5): the drop of R_H is slower and the oscillations in the range of edge states are widened but their amplitude is poorely affected by EEI.
- FIG. 4. (a) The Hartree spectrum of an isolated dot in strong magnetic field ($\phi = 0.15$, U = 0.5). (b) The transmittance of a weakly-coupled QD ($\tau = 0.1$) as a function of the gate potential. The charging energy can be obtained as the width at the bottom of the peaks.
- FIG. 5. The spatial distribution of the added electron inside the interacting dot: (a) $\Delta n_i(7,8)$ the 8-th electron is added strictly on edge. (b) $\Delta n_i(8,9)$ the 9-th electron is distributed almost uniformly. (c) $\Delta n_i(9,9+2)$ a multiple addition process in which the 10-th and 11-th are added together in the dot; a clear addition is made in the bulk, but some maxima are reached also at the corners.
- FIG. 6. (a) The transmittance spectrum in strong magnetic field ($\phi = 0.15$, U = 0.5). Note the appearance of the double peaks associated with multiple addition processes. (b) Oscillations of the Hall resistance induced by strong pinching ($\tau = 0.1$). Note that whenever a multiple addition process is allowed the oscillation amplitude is nearly vanished.
- FIG. 7. The dependence of transmittance on number of electrons. Most of the maximus are reached at half-integer numbers of electrons, but this condition is not obeyed when the bunching appears.
- FIG. 8. The charging energy vs. the number of electrons. Without magnetic field E_{ch} depends irregurarly on N, while in a strong magnetic field a monotonic increase is observed as long as the electrons are added on the edge.

