Last name		
First name		Grad
Group		Gra

Grade	
Grade	

 $egin{aligned} & ext{Algorithmics} \ & ext{Undergraduate} \ & 1^{st} \ ext{year} \ ext{S2} \ & ext{Final Exam} \ \#2 \ (P2) \ & ext{\it May}, \ 22th \ 2019 \ & ext{\it Answer Sheets} \end{aligned}$

1	
2	
3	
4	
5	

Answers 1 (Add the size - 4 points)

Specifications:

The function copyWithSize(B) with B a "classic" binary tree (BinTree) returns a copy of B with the size specified in each node (BinTreeSize).

Answers 2 (Insertion with size update - 4 points)

Specifications:

The function addwithsize (B, x) adds x in leaf in the binary search tree B (BinTreeSize) unless it is already present. It returns a pair: (the tree after a potential insertion, a boolean that indicates if the insertion occurred).

Answers 3 (Median - 7 points)

1. B BST with n elements such that the k^{th} element $(1 \le k \le n)$ is in the root:

$$\operatorname{size}(\operatorname{l}(\operatorname{B})) =$$

$$\operatorname{size}(\operatorname{r}(\operatorname{B})) =$$

2. Abstract definitions of the operations nth and medi	$Abstract\ definiti$	ions of the	operations.	nth	and	medic
--	----------------------	-------------	-------------	-----	-----	-------

OPERATIONS

 $\begin{aligned} kieme: & \text{BinaryTree} \times \text{Integer} \rightarrow \text{Node} \\ & \textit{median}: & \text{BinaryTree} \rightarrow \text{Node} \end{aligned}$

PRECONDITIONS

nth (A, k) is defined if-and-only-if $1 \le k \le size(A)$ median (A) is defined if-and-only-if $A \ne emptytree$

Α	X	ю	MS
			T.T.

-		

 $A \neq \text{emptytree} \Rightarrow median (A) = nth (A, (size (A)+1) \text{ div 2})$

3. Specifications:

The function nthBST(B, k) with B a non empty BST and $1 \le k \le size(B)$ returns the tree with the k^{th} element of B as root.

Specifications:

The function median(B) returns the median value of the binary search tree B if it is non empty. Otherwise, it returns None.

Answers 4 (AVL - 3 points)

Free after insertions of 32, 25, 22:	

Answers 5 (AVL - Re-balancing - 3 points)

${\bf Specifications:}$

The function rebalancing(A) takes the non empty AVL A whose root has its balance factor in [-2, 2]. If necessary, it performs a rotation to re-balance A. It returns a pair: the possibly modified tree and a boolean indicating if the tree height has changed.

