Package 'Giotto'

February 17, 2020

```
Title Spatial single-cell transcriptomics pipeline.
Version 0.2.0
Description Pipeline to process, analyze and visualize (spatial) single-cell expression data.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.0.1
Depends data.table (>= 1.12.2),
      ggplot2 (>= 3.1.1),
      base (>= 3.5.1),
      utils (>= 3.5.1),
      R (>= 3.5.1)
Imports Rtsne (>= 0.15),
      uwot (>= 0.0.0.9010),
      FactoMineR (>= 1.34),
      factoextra (>= 1.0.5),
      cowplot (>= 0.9.4),
      grDevices,
      RColorBrewer (>= 1.1-2),
      jackstraw (>= 1.3),
      dbscan (>= 1.1-3),
      ggalluvial (>= 0.9.1),
      scales (>= 1.0.0),
      ComplexHeatmap (>= 1.20.0),
      qvalue (>= 2.14.1),
      lfa (>= 1.12.0),
      igraph (>= 1.2.4.1),
      plotly,
      reticulate,
      magrittr,
      limma,
      ggdendro,
      smfishHmrf,
      matrixStats (>= 0.55.0),
      IRanges,
      devtools,
      reshape2,
      ggraph,
```

2 R topics documented:

```
Rcpp,
     rlang (>= 0.4.3),
     fit distrplus\\
Suggests knitr,
     rmarkdown,
     MAST,
     scran (>= 1.10.1),
     png,
     tiff,
     biomaRt,
     trendsceek,
     multinet (>= 3.0.2)
biocViews
VignetteBuilder knitr
LinkingTo Rcpp,
     RcppArmadillo
Remotes lambdamoses/smfishhmrf-r
```

R topics documented:

addCellIntMetadata
addCellMetadata
addCellStatistics
addGeneMetadata
addGeneStatistics
addHMRF
addNetworkLayout
addStatistics
adjustGiottoMatrix
aes_string2
all_plots_save_function
annotateGiotto
annotateSpatialNetwork
annotate_spatlocs_with_spatgrid_2D
annotate_spatlocs_with_spatgrid_3D
average_gene_gene_expression_in_groups
binGetSpatialGenes
binGetSpatialGenesOld
calculateHVG
calculateMetaTable
calculateMetaTableCells
calculate_spatial_genes_python
cellProximityBarplot
cellProximityEnrichment
cellProximityHeatmap
cellProximityNetwork
cellProximitySpatPlot
cellProximitySpatPlot2D
cellProximitySpatPlot3D
cellProximityVisPlot

cellProximityVisPlot_2D_ggplot
$cell Proximity Vis Plot_2D_plotly \\ \dots \\ $
cellProximityVisPlot_3D_plotly
changeGiottoInstructions
clusterCells
clusterSpatialCorGenes
combCCcom
combineCellProximityGenes
combineCellProximityGenes_per_interaction
combineCPG
combineMetadata
combine_ints_f
convertEnsemblToGeneSymbol
createGiottoInstructions
createGiottoObject
createHeatmap_DT
createMetagenes
createNearestNetwork
createSpatialEnrich
createSpatialGrid
createSpatialGrid_2D
<u>*</u>
1 –
1
create_average_detection_DT
create_average_DT
create_cell_type_random_cell_IDs
create_cluster_matrix
create_dimObject
decide_cluster_order
detectSpatialCorGenes
detectSpatialPatterns
dimCellPlot
dimCellPlot2D
dimGenePlot
dimGenePlot2D
dimGenePlot3D
dimPlot
dimPlot2D
dimPlot2D_single
dimPlot3D
direction test CPG
doHclust
doHMRF
doKmeans
doLeidenCluster
doLeidenSubCluster
doLouvainCluster
doLouvainCluster_community
doLouvainCluster_multinet
doLouvainSubCluster
doLouvainSubCluster_community
_ · · · · · · · · · · · · · · · · · · ·
doLouvainSubCluster_multinet

doRandomWalkCluster
doSNNCluster
do_cell_proximity_test
do_limmatest
do_multi_permuttest_random
do_permuttest_original
do_permuttest_random
do_spatial_grid_averaging
do_spatial_knn_smoothing
do_ttest
DT_removeNA
dt_to_matrix
exportGiottoViewer
exprCellCellcom
extended_gini_fun
extractNearestNetwork
fDataDT
filterCellProximityGenes
filterCombinations
filterCPG
filterCPGscores
filterDistributions
filterGiotto
findCellProximityGenes
findCellProximityGenes_per_interaction
findCPG
findGiniMarkers
findGiniMarkers_one_vs_all
findMarkers
findMarkers_one_vs_all
findMastMarkers
findMastMarkers_one_vs_all
findScranMarkers
findScranMarkers_one_vs_all
find_grid_2D
find_grid_3D
find_grid_x
find_grid_y
find_grid_z
fish_function
fish_function2
FSV_show
GenePattern_show
general save function
get10Xmatrix
getCellProximityGeneScores
getClusterSimilarity
getDendrogramSplits
getDistinctColors
getGeneToGeneScores
get_cell_to_cell_sorted_name_conversion
get_interaction_gene_enrichment
60_moracion_60ne_6me_miniment

get_specific_interaction_gene_enrichment
ggplot_save_function
giotto-class
heatmSpatialCorGenes
hyperGeometricEnrich
kmeans_binarize
loadHMRF
makeSignMatrixPAGE
makeSignMatrixRank
make_simulated_network
mergeClusters
mygini_fun
nnDT_to_kNN
node_clusters
normalizeGiotto
normalizeGiottoOld
OR_function2
PAGEEnrich
pagePermutation
pDataDT
plotCCcomDotplot
plotCCcomHeatmap
plotCellProximityGenes
plotCombineCCcom
plotCombineCellCellCommunication
plotCombineCellProximityGenes
plotCombineCPG
plotCPG
plotCPGscores
plotGTGscores
plotG1Gscores
1 1
plotly_axis_scale_2D
plotly_axis_scale_3D
plotly_grid
plotly_network
plotMetaDataCellsHeatmap
plotMetaDataHeatmap
plotPCA
plotPCA_2D
plotPCA_3D
plotRankSpatvsExpr
plotRecovery
plotRecovery_sub
plotTSNE
plotTSNE_2D
plotTSNE_3D
plotUMAP
plotUMAP_2D
plotUMAP_3D
plot_network_layer_ggplot
plot_point_layer_ggplot
plot_point_layer_ggplot_noFILL

plot_spat_point_layer_ggplot	211
plot_spat_point_layer_ggplot_noFILL	213
print.giotto	
rankEnrich	215
rankPermutation	216
rankSpatialCorGroups	216
rank_binarize	217
readGiottoInstructions	217
removeCellAnnotation	218
removeGeneAnnotation	218
replaceGiottoInstructions	219
runPCA	. 220
runtSNE	221
runUMAP	
selectPatternGenes	
select_expression_values	
show,giotto-method	
showClusterDendrogram	
showClusterHeatmap	
showCPGscores	
showGeneExpressionProximityScore	
showGiottoInstructions	
showGTGscores	
showIntExpressionProximityScore	
showPattern	
showPattern2D	
showPattern3D	
showPatternGenes	
showProcessingSteps	
showSpatialCorGenes	
showTopGeneToGene	
signPCA	
sort_combine_two_DT_columns	
spatCellCellcom	
spatCellPlot	
spatCellPlot2D	
spatDimCellPlot	
spatDimCellPlot2D	
spatDimGenePlot	
spatDimGenePlot2D	
spatDimGenePlot3D	
spatDimPlot	
spatDimPlot2D	
spatDimPlot3D	
spatGenePlot	
spatGenePlot2D	
spatGenePlot3D	
spatialAEH	
spatialDE	
Spatial_AEH	
Spatial_DE	
spatNetwDistributions	
span 1000 2 200 000 000 000 000 000 000 000	, 200

Index

357

spatNetwDistributionsDistance	37
spatNetwDistributionsKneighbors	38
spatPlot	39
spatPlot2D) 2
spatPlot2D_single	9 5
spatPlot3D	98
spat_fish_func	00
spat_OR_func	00
specificCellCellcommunicationScores)1
split_dendrogram_in_two)2
stitchFieldCoordinates	
stitchTileCoordinates)4
subClusterCells)4
subsetGiotto)6
subsetGiottoLocs)7
trendSceek)8
viewHMRFresults)9
viewHMRFresults2D	10
viewHMRFresults3D	11
violinPlot	
visDimGenePlot	
visDimGenePlot_2D_ggplot	
visDimGenePlot_3D_plotly	
visDimPlot	
visDimPlot_2D_ggplot	20
visDimPlot_2D_plotly	
visDimPlot_3D_plotly	24
visForceLayoutPlot	25
visGenePlot	
visGenePlot_2D_ggplot	
visGenePlot_3D_plotly	
visPlot	
visPlot_2D_ggplot	34
visPlot_2D_plotly	37
visPlot_3D_plotly	38
visSpatDimGenePlot	40
visSpatDimGenePlot_2D	
visSpatDimGenePlot_3D	45
visSpatDimPlot	17
visSpatDimPlot_2D	
visSpatDimPlot_3D	
writeHMRFresults	
write_giotto_viewer_annotation	
write_giotto_viewer_dim_reduction	
write_giotto_viewer_numeric_annotation	
= -	

8 addCellIntMetadata

addCellIntMetadata addC

addCellIntMetadata

Description

Creates an additional metadata column with information about interacting and non-interacting cell types of the selected cell-cell interaction.

Usage

```
addCellIntMetadata(
  gobject,
  spatial_network = "spatial_network",
  cluster_column,
  cell_interaction,
  name = "select_int",
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object

spatial_network

name of spatial network to use

cluster_column column of cell types

cell_interaction

cell-cell interaction to use

name name for the new metadata column

return_gobject return an updated giotto object
```

Details

This function will create an additional metadata column which selects interacting cell types for a specific cell-cell interaction. For example, if you want to color interacting astrocytes and oligodendrocytes it will create a new metadata column with the values "select_astrocytes", "select_oligodendrocytes", "other_astrocytes", "other_oligodendrocytes" and "other". Where "other" is all other cell types found within the selected cell type column.

Value

Giotto object

Examples

```
addCellIntMetadata(gobject)
```

addCellMetadata 9

addCellMetadata addCellMetadata

Description

adds cell metadata to the giotto object

Usage

```
addCellMetadata(
  gobject,
  new_metadata,
  by_column = FALSE,
  column_cell_ID = NULL
)
```

Arguments

gobject giotto object

new_metadata new cell metadata to use (data.table, data.frame, ...)

by_column merge metadata based on cell_ID column in pDataDT (default = FALSE)

column_cell_ID column name of new metadata to use if by_column = TRUE

Details

You can add additional cell metadata in two manners: 1. Provide a data.table or data.frame with cell annotations in the same order as the cell_ID column in pDataDT(gobject) 2. Provide a data.table or data.frame with cell annotations and specificy which column contains the cell IDs, these cell IDs need to match with the cell_ID column in pDataDT(gobject)

Value

giotto object

Examples

addCellMetadata(gobject)

addCellStatistics addCellStatistics

Description

adds cells statistics to the giotto object

10 addGeneMetadata

Usage

```
addCellStatistics(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0,
  return_gobject = TRUE
)
```

Arguments

Details

This function will add the following statistics to cell metadata:

- nr_genes: Denotes in how many genes are detected per cell
- perc_genes: Denotes what percentage of genes is detected per cell
- total_expr: Shows the total sum of gene expression per cell

Value

```
giotto object if return_gobject = TRUE
```

Examples

```
addCellStatistics(gobject)
```

addGeneMetadata

addGeneMetadata

Description

adds gene metadata to the giotto object

Usage

```
addGeneMetadata(gobject, new_metadata, by_column = F, column_gene_ID = NULL)
```

Arguments

```
gobject giotto object

new_metadata new metadata to use

by_column merge metadata based on gene_ID column in fDataDT

column_cell_ID column name of new metadata to use if by_column = TRUE
```

addGeneStatistics 11

Details

You can add additional gene metadata in two manners: 1. Provide a data.table or data.frame with gene annotations in the same order as the gene_ID column in fDataDT(gobject) 2. Provide a data.table or data.frame with gene annotations and specificy which column contains the gene IDs, these gene IDs need to match with the gene_ID column in fDataDT(gobject)

Value

giotto object

Examples

addGeneMetadata(gobject)

addGeneStatistics

addGeneStatistics

Description

adds gene statistics to the giotto object

Usage

```
addGeneStatistics(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0,
  return_gobject = TRUE
)
```

Arguments

Details

This function will add the following statistics to gene metadata:

- nr_cells: Denotes in how many cells the gene is detected
- per_cells: Denotes in what percentage of cells the gene is detected
- total_expr: Shows the total sum of gene expression in all cells
- mean_expr: Average gene expression in all cells
- mean_expr_det: Average gene expression in cells with detectable levels of the gene

12 addHMRF

Value

```
giotto object if return_gobject = TRUE
```

Examples

addGeneStatistics(gobject)

addHMRF

addHMRF

Description

Add selected results from doHMRF to the giotto object

Usage

```
addHMRF(gobject, HMRFoutput, k = NULL, betas_to_add = NULL, hmrf_name = NULL)
```

Arguments

gobject giotto object

HMRF output from doHMRF()

k number of domains

name specify a custom name

Details

Description ...

Value

giotto object

Examples

addHMRF(gobject)

addNetworkLayout 13

addNetworkLayout

addNetworkLayout

Description

Add a network layout for a selected nearest neighbor network

Usage

```
addNetworkLayout(
  gobject,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  layout_type = c("drl"),
  options_list = NULL,
  layout_name = "layout",
  return_gobject = TRUE
)
```

Arguments

Details

This function creates layout coordinates based on the provided kNN or sNN. Currently only the force-directed graph layout "drl", see layout_with_drl, is implemented. This provides an alternative to tSNE or UMAP based visualizations.

Value

giotto object with updated layout for selected NN network

Examples

```
addNetworkLayout(gobject)
```

14 adjustGiottoMatrix

addStatistics

addStatistics

Description

adds genes and cells statistics to the giotto object

Usage

```
addStatistics(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0,
  return_gobject = TRUE
)
```

Arguments

Details

See addGeneStatistics and addCellStatistics

Value

```
giotto object if return_gobject = TRUE, else a list with results
```

Examples

```
addStatistics(gobject)
```

adjustGiottoMatrix adjustGiottoMatrix

Description

normalize and/or scale expresion values of Giotto object

aes_string2

Usage

```
adjustGiottoMatrix(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  batch_columns = NULL,
  covariate_columns = NULL,
  return_gobject = TRUE,
  update_slot = c("custom")
)
```

Arguments

```
gobject giotto object

expression_values

expression values to use

batch_columns metadata columns that represent different batch (max = 2)

covariate_columns

metadata columns that represent covariates to regress out

return_gobject boolean: return giotto object (default = TRUE)

update_slot expression slot that will be updated (default = custom)
```

Details

This function implements the limma::removeBatchEffect function to remove known batch effects and to adjust expression values according to provided covariates.

Value

giotto object

Examples

```
adjustGiottoMatrix(gobject)
```

Description

makes sure aes_string can also be used with names that start with numeric values

Usage

```
aes_string2(...)
```

```
all\_plots\_save\_function \\ all\_plots\_save\_function
```

Description

Function to automatically save plots to directory of interest

Usage

```
all_plots_save_function(
  gobject,
  plot_object,
  save_dir = NULL,
  save_folder = NULL,
  save_name = NULL,
  default_save_name = "giotto_plot",
  save_format = NULL,
  show_saved_plot = F,
  ncol = 1,
  nrow = 1,
  scale = 1,
  base_width = NULL,
  base_height = NULL,
  base_aspect_ratio = NULL,
  units = NULL,
  dpi = NULL,
  limitsize = TRUE,
)
```

Arguments

```
gobject
                  giotto object
                  object to plot
plot_object
save_dir
                  directory to save to
save_folder
                  folder in save_dir to save to
save_name
                  name of plot
save_format
                  format (e.g. png, tiff, pdf, ...)
show_saved_plot
                  load & display the saved plot
ncol
                  number of columns
                  number of rows
nrow
scale
                  scale
base_width
                  width
base_height
                  height
{\tt base\_aspect\_ratio}
                  aspect ratio
```

annotateGiotto 17

units units

dpi Plot resolution

limitsize When TRUE (the default), ggsave will not save images larger than 50x50 inches,

to prevent the common error of specifying dimensions in pixels.

... additional parameters to ggplot_save_function or general_save_function

See Also

```
general_save_function
```

Examples

```
all_plots_save_function(gobject)
```

annotateGiotto

annotateGiotto

Description

Converts cluster results into provided annotation.

Usage

```
annotateGiotto(
  gobject,
  annotation_vector = NULL,
  cluster_column = NULL,
  name = "cell_types"
)
```

Arguments

Details

You need to specifify which (cluster) column you want to annotate and you need to provide an annotation vector like this:

- 1. identify the cell type of each cluster
- 2. create a vector of these cell types, e.g. cell_types = c('T-cell', 'B-cell', 'Stromal')
- 3. provide original cluster names to previous vector, e.g. names(cell_types) = c(2, 1, 3)

Value

giotto object

Examples

```
annotateGiotto(gobject)
```

```
annotate {\tt Spatial Network}
```

annotateSpatialNetwork

Description

Annotate spatial network with cell metadata information.

Usage

```
annotateSpatialNetwork(
  gobject,
  spatial_network_name = "spatial_network",
  cluster_column
)
```

Arguments

Value

annotated network in data.table format

Examples

```
annotateSpatialNetwork(gobject)
```

Description

annotate spatial locations with 2D spatial grid information

Usage

```
annotate_spatlocs_with_spatgrid_2D(spatloc, spatgrid)
```

Arguments

```
spatloc spatial_locs slot from giotto object spatgrid selected spatial_grid slot from giotto object
```

Value

annotated spatial location data.table

Examples

```
annotate_spatlocs_with_spatgrid_2D()
```

```
annotate\_spatlocs\_with\_spatgrid\_3D \\ annotate\_spatlocs\_with\_spatgrid\_3D
```

Description

annotate spatial locations with 3D spatial grid information

Usage

```
annotate_spatlocs_with_spatgrid_3D(spatloc, spatgrid)
```

Arguments

```
spatloc spatial_locs slot from giotto object spatgrid selected spatial_grid slot from giotto object
```

Value

annotated spatial location data.table

Examples

```
annotate_spatlocs_with_spatgrid_3D()
```

```
average_gene_gene_expression_in_groups

average_gene_gene_expression_in_groups
```

Description

calculate average expression per cluster

Usage

```
average_gene_gene_expression_in_groups(
  gobject,
  cluster_column = "cell_types",
  gene_set_1,
  gene_set_2
)
```

20 binGetSpatialGenes

Arguments

```
gobject giotto object to use

cluster_column cluster column with cell type information

gene_set_1 first specific gene set from gene pairs

gene_set_2 second specific gene set from gene pairs
```

Details

Details will follow soon.

Value

data.table with average expression scores for each cluster

Examples

```
average_gene_gene_expression_in_groups(gobject)
```

binGetSpatialGenes binGetSpatialGenes

Description

Rapid computation of genes that are spatially clustered

Usage

```
binGetSpatialGenes(
  gobject,
  bin_method = c("kmeans", "rank"),
  expression_values = c("normalized", "scaled", "custom"),
  subset_genes = NULL,
  spatial_network_name = "spatial_network",
  nstart = 3,
  iter_max = 10,
  percentage_rank = 10,
  do_fisher_test = TRUE,
  calc_hub = FALSE,
  hub_min_int = 3,
  get_av_expr = TRUE,
  get_high_expr = TRUE,
  do_parallel = TRUE,
  cores = NA,
  verbose = T
)
```

binGetSpatialGenes 21

Arguments

gobject giotto object

bin_method method to binarize gene expression

expression_values

expression values to use

subset_genes only select a subset of genes to test

spatial_network_name

name of spatial network to use (default = 'spatial_network')

nstart kmeans: nstart parameter iter_max kmeans: iter.max parameter

percentage_rank

percentage of top cells for binarization

do_fisher_test perform fisher test

calc_hub calculate the number of hub cells

hub_min_int minimum number of cell-cell interactions for a hub cell

get_av_expr calculate the average expression per gene of the high expressing cells

get_high_expr calculate the number of high expressing cells per gene

do_parallel run calculations in parallel with mclapply cores number of cores to use if do_parallel = TRUE

verbose be verbose

Details

We provide two ways to identify spatial genes based on gene expression binarization. Both methods are identicial except for how binarization is performed.

- 1. binarize: Each gene is binarized (0 or 1) in each cell with **kmeans** (k = 2) or based on **rank** percentile
- 2. network: Alll cells are connected through a k-nearest neighbor network
- 3. contingency table: A contingency table is calculated based on all pairwise cell-cell interactions (0-0, 0-1, 1-0 or 1-1)
- 4. For each gene an odds-ratio (OR) and fisher.test (optional) is calculated

Additionally 2 other statistics are provided (optional):

- Number of cells with high expression (binary = 1)
- total of high expressing cells

By selecting a subset of likely spatial genes (e.g. highly variable genes) or using multiple cores the function will be much faster.

Value

data.table with results (see details)

Examples

binGetSpatialGenes(gobject)

 $bin {\tt GetSpatialGenesOld} \ \ \textit{bin GetSpatialGenesOld}$

Description

Rapid computation of genes that are spatially clustered

Usage

```
binGetSpatialGenesOld(
  gobject,
  bin_method = c("kmeans", "rank"),
  expression_values = c("normalized", "scaled", "custom"),
  subset_genes = NULL,
  spatial_network_name = "spatial_network",
  nstart = 3,
  iter_max = 10,
  percentage_rank = 10,
  do_fisher_test = F,
  community_expectation = 5,
  verbose = F
)
```

Arguments

```
giotto object
gobject
                  method to binarize gene expression
bin_method
expression_values
                  expression values to use
                  only select a subset of genes to test
subset_genes
spatial_network_name
                  name of spatial network to use (default = 'spatial_network')
nstart
                  kmeans: nstart parameter
iter_max
                  kmeans: iter.max parameter
do_fisher_test perform fisher test
community_expectation
                  cell degree expectation in spatial communities
verbose
                  be verbose
rank_percentage
                  percentage of top cells for binarization
```

Details

We provide two ways to identify spatial genes based on gene expression binarization. Both methods are identicial except for how binarization is performed.

- 1. binarize: Each gene is binarized (0 or 1) in each cell with **kmeans** (k = 2) or based on **rank** percentile
- 2. network: Alll cells are connected through a k-nearest neighbor network

calculateHVG 23

• 3. contingency table: A contingency table is calculated based on all pairwise cell-cell interactions (0-0, 0-1, 1-0 or 1-1)

• 4. For each gene an odds-ratio (OR) and fisher.test (optional) is calculated

Additionally 2 other statistics are provided:

- Number of cells with high expression (binary = 1)
- total and ratio of highly connected cells: Cells with a connectivity higher than community_expectation

By selecting a subset of likely spatial genes (e.g. highly variable genes) the function will be much faster.

Value

```
data.table with results (see details)
```

Examples

binGetSpatialGenesOld(gobject)

calculateHVG

calculateHVG

Description

compute highly variable genes

Usage

```
calculateHVG(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  method = c("cov_groups", "cov_loess"),
  reverse_log_scale = FALSE,
  logbase = 2,
  expression_threshold = 0,
  nr_expression_groups = 20,
  zscore_threshold = 1.5,
  HVGname = "hvg",
  difference_in_cov = 0.1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "HVGplot",
  return_gobject = TRUE
)
```

24 calculateHVG

Arguments

gobject giotto object

expression_values

expression values to use

method method to calculate highly variable genes

reverse_log_scale

reverse log-scale of expression values (default = FALSE)

logbase if reverse_log_scale is TRUE, which log base was used?

expression_threshold

expression threshold to consider a gene detected

nr_expression_groups

number of expression groups for cov_groups

zscore_threshold

zscore to select hvg for cov_groups

HVGname name for highly variable genes in cell metadata

difference_in_cov

minimum difference in coefficient of variance required

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param

return_gobject boolean: return giotto object (default = TRUE)

Details

Currently we provide 2 ways to calculate highly variable genes: 1. high coeff of variance (COV) within groups:

First genes are binned (*nr_expression_groups*) into average expression groups and the COV for each gene is converted into a z-score within each bin. Genes with a z-score higher than the threshold (*zscore_threshold*) are considered highly variable.

2. high COV based on loess regression prediction:

A predicted COV is calculated for each gene using loess regression (COV~log(mean expression)) Genes that show a higher than predicted COV (*difference_in_cov*) are considered highly variable.

Value

giotto object highly variable genes appended to gene metadata (fDataDT)

Examples

calculateHVG(gobject)

calculateMetaTable 25

calculateMetaTable

calculateMetaTable

Description

calculates the average gene expression for one or more (combined) annotation columns.

Usage

```
calculateMetaTable(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metadata_cols = NULL,
  selected_genes = NULL
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
metadata_cols annotation columns found in pDataDT(gobject)
selected_genes subset of genes to use
```

Value

data.table with average expression values for each gene per (combined) annotation

Examples

```
calculateMetaTable(gobject)
```

```
calculateMetaTableCells
```

calculateMetaTableCells

Description

calculates the average metadata values for one or more (combined) annotation columns.

Usage

```
calculateMetaTableCells(
  gobject,
  value_cols = NULL,
  metadata_cols = NULL,
  spat_enr_names = NULL
)
```

Arguments

```
gobject giotto object
value_cols metadata or enrichment value columns to use
metadata_cols annotation columns found in pDataDT(gobject)
spat_enr_names which spatial enrichment results to include
```

Value

data.table with average metadata values per (combined) annotation

Examples

```
calculateMetaTableCells(gobject)
```

Description

Calculate spatial genes using distance matrix.

Usage

```
calculate_spatial_genes_python(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metric = "euclidean",
  subset_genes = NULL,
  rbp_p = 0.95,
  examine_top = 0.3,
  python_path = NULL
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use

metric distance metric to use
subset_genes only run on this subset of genes
rbp_p fractional binarization threshold
examine_top top fraction to evaluate with silhouette
python_path specify specific path to python if required
```

Details

Description of how we compute spatial pattern genes.

cellProximityBarplot 27

Value

data.table with spatial scores

Examples

```
calculate_spatial_genes_python(gobject)
```

```
cellProximityBarplot cellProximityBarplot
```

Description

Create barplot from cell-cell proximity scores

Usage

```
cellProximityBarplot(
  gobject,
  CPscore,
  min_orig_ints = 5,
  min_sim_ints = 5,
  p_val = 0.05,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximityBarplot"
)
```

Arguments

```
gobject
                  giotto object
                  CPscore, output from cellProximityEnrichment()
CPscore
min_orig_ints
                  filter on minimum original cell-cell interactions
min_sim_ints
                  filter on minimum simulated cell-cell interactions
p_val
                  p-value
                  show plot
show_plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

This function creates a barplot that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

ggplot barplot

Examples

```
cellProximityBarplot(CPscore)
```

```
cellProximityEnrichment
```

cell Proximity Enrichment

Description

Compute cell-cell interaction enrichment (observed vs expected)

Usage

```
cellProximityEnrichment(
  gobject,
  spatial_network_name = "spatial_network",
  cluster_column,
  number_of_simulations = 100
)
```

Arguments

Details

Spatial proximity enrichment or depletion between pairs of cell types is calculated by calculating the observed over the expected frequency of cell-cell proximity interactions. The expected frequency is the average frequency calculated from a number of spatial network simulations. Each individual simulation is obtained by reshuffling the cell type labels of each node (cell) in the spatial network.

Value

List of cell Proximity scores (CPscores) in data.table format. The first data.table (raw_sim_table) shows the raw observations of both the original and simulated networks. The second data.table (enrichm_res) shows the enrichment results.

Examples

```
cellProximityEnrichment(gobject)
```

cellProximityHeatmap 29

```
cellProximityHeatmap cellProximityHeatmap
```

Description

Create heatmap from cell-cell proximity scores

Usage

```
cellProximityHeatmap(
  gobject,
  CPscore,
  scale = T,
  order_cell_types = T,
  color_breaks = NULL,
  color_names = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximityHeatmap")
```

Arguments

```
giotto object
gobject
                  CPscore, output from cellProximityEnrichment()
CPscore
scale
                  scale cell-cell proximity interaction scores
order_cell_types
                  order cell types based on enrichment correlation
color_breaks
                  numerical vector of length 3 to represent min, mean and maximum
                  character color vector of length 3
color_names
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

This function creates a heatmap that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

```
ggplot heatmap
```

Examples

```
cellProximityHeatmap(CPscore)
```

```
cell Proximity Network \qquad cell Proximity Network
```

Description

Create network from cell-cell proximity scores

Usage

```
cellProximityNetwork(
  gobject,
  CPscore,
  remove_self_edges = FALSE,
  self_loop_strength = 0.1,
  color_depletion = "lightgreen",
  color_enrichment = "red",
  rescale_edge_weights = TRUE,
  edge_weight_range_depletion = c(0.1, 1),
  edge_weight_range_enrichment = c(1, 5),
  layout = c("Fruchterman", "DrL", "Kamada-Kawai"),
  only_show_enrichment_edges = F,
  edge_width_range = c(0.1, 2),
  node_size = 4,
  node_text_size = 6,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximityNetwork"
```

Arguments

```
giotto object
gobject
CPscore
                  CPscore, output from cellProximityEnrichment()
remove_self_edges
                  remove enrichment/depletion edges with itself
self_loop_strength
                  size of self-loops
color_depletion
                  color for depleted cell-cell interactions
color_enrichment
                  color for enriched cell-cell interactions
rescale_edge_weights
                  rescale edge weights (boolean)
{\tt edge\_weight\_range\_depletion}
                  numerical vector of length 2 to rescale depleted edge weights
```

cellProximitySpatPlot 31

```
edge_weight_range_enrichment
                 numerical vector of length 2 to rescale enriched edge weights
                 layout algorithm to use to draw nodes and edges
only_show_enrichment_edges
                 show only the enriched pairwise scores
edge_width_range
                 range of edge width
node_size
                 size of nodes
node_text_size size of node labels
show_plot
                 show plot
return_plot
                 return ggplot object
                 directly save the plot [boolean]
save_plot
save_param
                 list of saving parameters from all_plots_save_function
default_save_name
                 default save name for saving, don't change, change save_name in save_param
```

Details

This function creates a network that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

igraph plot

Examples

```
cellProximityNetwork(CPscore)
```

```
cellProximitySpatPlot cellProximitySpatPlot
```

Description

Visualize 2D cell-cell interactions according to spatial coordinates in ggplot mode

Usage

```
{\tt cellProximitySpatPlot(gobject,\ \ldots)}
```

Arguments

```
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
show_network
                  show underlying spatial network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
coord_fix_ratio
                  fix ratio between x and y-axis
show_legend
                  show legend
point_size_select
                  size of selected points
point_select_border_col
                  border color of selected points
point_select_border_stroke
                  stroke size of selected points
point_size_other
                  size of other points
point_other_border_col
                  border color of other points
point_other_border_stroke
                  stroke size of other points
show_plot
                  show plots
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

 $cell Proximity SpatPlot 2D \ and \ cell Proximity SpatPlot 3D \ for \ 3D$

Examples

```
cellProximitySpatPlot(gobject)
```

```
cellProximitySpatPlot2D
```

cellProximitySpatPlot2D

Description

Visualize 2D cell-cell interactions according to spatial coordinates in ggplot mode

Usage

```
cellProximitySpatPlot2D(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  coord_fix_ratio = 1,
  show_legend = T,
  point_size_select = 2,
  point_select_border_col = "black",
  point_select_border_stroke = 0.05,
  point_size_other = 1,
  point_alpha_other = 0.3,
  point_other_border_col = "lightgrey",
  point_other_border_stroke = 0.01,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximitySpatPlot2D"
)
```

Arguments

```
cluster_column cluster column with cell clusters
                  x-axis dimension name (default = 'sdimx')
sdimx
sdimy
                  y-axis dimension name (default = 'sdimy')
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
show_network
                  show underlying spatial network
                  color of spatial network
network_color
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
coord_fix_ratio
                  fix ratio between x and y-axis
show_legend
                  show legend
point_size_select
                  size of selected points
point_select_border_col
                  border color of selected points
\verb"point_select_border_stroke"
                  stroke size of selected points
point_size_other
                  size of other points
point_other_border_col
                  border color of other points
point_other_border_stroke
                  stroke size of other points
show_plot
                  show plots
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

Examples

```
cellProximitySpatPlot2D(gobject)
```

```
cell Proximity SpatPlot 3D \\ cell Proximity SpatPlot 2D
```

Description

Visualize 3D cell-cell interactions according to spatial coordinates in plotly mode

Usage

```
cellProximitySpatPlot3D(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = T,
  show_network = T,
  show\_other\_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  show_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  show_legend = T,
  point_size_select = 4,
  point_size_other = 2,
  point_alpha_other = 0.5,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "cellProximitySpatPlot3D",
)
```

Arguments

```
gobject
                  giotto object
interaction_name
                  cell-cell interaction name
cluster_column cluster column with cell clusters
                  x-axis dimension name (default = 'sdimx')
sdimx
sdimy
                  y-axis dimension name (default = 'sdimy')
sdimz
                  z-axis dimension name (default = 'sdimz')
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
show_network
                  show underlying spatial network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
show_legend
                  show legend
point_size_select
                  size of selected points
point_size_other
                  size of other points
                  show plots
show_plot
return_plot
                  return plotly object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

plotly

Examples

cellProximitySpatPlot3D(gobject)

cellProximityVisPlot 37

```
cellProximityVisPlot cellProximityVisPlot
```

Description

Visualize cell-cell interactions according to spatial coordinates

Usage

```
cellProximityVisPlot(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  show_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  coord_fix_ratio = 1,
  show_legend = T,
  point_size_select = 2,
  point_select_border_col = "black",
  point_select_border_stroke = 0.05,
  point_size_other = 1,
  point_alpha_other = 0.3,
  point_other_border_col = "lightgrey",
  point_other_border_stroke = 0.01,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_{ticks} = NULL,
  plot_method = c("ggplot", "plotly"),
)
```

sdimx x-axis dimension name (default = 'sdimx')
sdimy y-axis dimension name (default = 'sdimy')
sdimz z-axis dimension name (default = 'sdimz')

cell_color color for cells (see details)

cell_color_code

named vector with colors

color_as_factor

convert color column to factor

show_network show underlying spatial network

network_color color of spatial network

spatial_network_name

name of spatial network to use

show_grid show spatial grid grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

coord_fix_ratio

fix ratio between x and y-axis

show_legend show legend

point_size_select

size of selected points

point_select_border_col

border color of selected points

point_select_border_stroke

stroke size of selected points

point_size_other

size of other points

point_other_border_col

border color of other points

point_other_border_stroke

stroke size of other points

Details

Description of parameters.

Value

ggplot or plotly

Examples

cellProximityVisPlot(gobject)

Description

Visualize 2D cell-cell interactions according to spatial coordinates in ggplot mode

Usage

```
cellProximityVisPlot_2D_ggplot(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = NULL,
  sdimy = NULL,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  coord_fix_ratio = 1,
  show_legend = T,
  point_size_select = 2,
  point_select_border_col = "black",
  point_select_border_stroke = 0.05,
  point_size_other = 1,
  point_alpha_other = 0.3,
  point_other_border_col = "lightgrey",
  point_other_border_stroke = 0.01,
)
```

```
color_as_factor
```

convert color column to factor

show_other_cells

decide if show cells not in network

show_network show underlying spatial network

network_color color of spatial network

 $spatial_network_name$

name of spatial network to use

show_grid show spatial grid

grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

coord_fix_ratio

fix ratio between x and y-axis

show_legend show legend

point_size_select

size of selected points

point_select_border_col

border color of selected points

point_select_border_stroke

stroke size of selected points

point_size_other

size of other points

point_other_border_col

border color of other points

point_other_border_stroke

stroke size of other points

Details

Description of parameters.

Value

ggplot

Examples

cellProximityVisPlot_2D_ggplot(gobject)

```
cell Proximity VisPlot\_2D\_plotly \\ cell Proximity VisPlot\_2D\_plotly
```

Description

Visualize 2D cell-cell interactions according to spatial coordinates in plotly mode

Usage

```
cellProximityVisPlot_2D_plotly(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = NULL,
  sdimy = NULL,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  show_other_cells = F,
  show_network = F,
  show_other_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  show_legend = T,
  point_size_select = 2,
  point_size_other = 1,
  point_alpha_other = 0.3,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
)
```

```
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
                  show underlying spatial network
show_network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
                  color of spatial grid
grid_color
spatial_grid_name
                  name of spatial grid to use
show_legend
                  show legend
point_size_select
                  size of selected points
coord_fix_ratio
                  fix ratio between x and y-axis
```

Details

Description of parameters.

Value

plotly

Examples

```
cell Proximity VisPlot\_2D\_plotly (gobject)
```

Description

Visualize 3D cell-cell interactions according to spatial coordinates in plotly mode

Usage

```
cellProximityVisPlot_3D_plotly(
  gobject,
  interaction_name = NULL,
  cluster_column = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  cell_color = NULL,
  cell_color_code = NULL,
```

```
color_as_factor = T,
show_other_cells = F,
show_network = F,
show_other_network = F,
network_color = NULL,
spatial_network_name = "spatial_network",
show\_grid = F,
grid_color = NULL,
spatial_grid_name = "spatial_grid",
show_legend = T,
point_size_select = 2,
point_size_other = 1,
point_alpha_other = 0.5,
axis_scale = c("cube", "real", "custom"),
custom_ratio = NULL,
x_ticks = NULL,
y_ticks = NULL,
z_{ticks} = NULL,
```

```
gobject
                  giotto object
interaction_name
                  cell-cell interaction name
cluster_column cluster column with cell clusters
sdimx
                  x-axis dimension name (default = 'sdimx')
                  y-axis dimension name (default = 'sdimy')
sdimy
                  z-axis dimension name (default = 'sdimz')
sdimz
cell color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
                  show underlying spatial network
show_network
                  color of spatial network
network_color
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
show_legend
                  show legend
point_size_select
                  size of selected points
coord_fix_ratio
                  fix ratio between x and y-axis
```

Details

Description of parameters.

Value

plotly

Examples

```
cellProximityVisPlot_3D_plotly(gobject)
```

changeGiottoInstructions

change Giot to Instructions

Description

Function to change one or more instructions from giotto object

Usage

```
changeGiottoInstructions(
  gobject,
  params = NULL,
  new_values = NULL,
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object

params parameter(s) to change

new_values new value(s) for parameter(s)

return_gobject (boolean) return giotto object
```

Value

named vector with giotto instructions

Examples

changeGiottoInstructions()

clusterCells 45

clusterCells

clusterCells

Description

cluster cells using a variety of different methods

Usage

```
clusterCells(
  gobject,
 cluster_method = c("leiden", "louvain_community", "louvain_multinet", "randomwalk",
    "sNNclust", "kmeans", "hierarchical"),
  name = "cluster_name",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  pyth_leid_resolution = 1,
  pyth_leid_weight_col = "weight",
 pyth_leid_part_type = c("RBConfigurationVertexPartition", "ModularityVertexPartition"),
  pyth_leid_init_memb = NULL,
  pyth_leid_iterations = 1000,
  pyth_louv_resolution = 1,
  pyth_louv_weight_col = NULL,
  python_louv_random = F,
  python_path = NULL,
  louvain_gamma = 1,
  louvain\_omega = 1,
  walk\_steps = 4,
  walk_clusters = 10,
  walk_weights = NA,
  sNNclust_k = 20,
  sNNclust_eps = 4,
  sNNclust_minPts = 16,
  borderPoints = TRUE,
  expression_values = c("normalized", "scaled", "custom"),
  genes_to_use = NULL,
  dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
    "manhattan", "canberra", "binary", "minkowski"),
  km_centers = 10,
  km_iter_max = 100,
  km_nstart = 1000,
  km_algorithm = "Hartigan-Wong",
 hc_agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
    "mcquitty", "median", "centroid"),
  hc_k = 10,
  hc_h = NULL
  return_gobject = TRUE,
  set_seed = T,
```

46 clusterCells

```
seed_number = 1234
)
```

Arguments

gobject giotto object
cluster_method community cluster method to use
name name for new clustering result
nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

pyth_leid_resolution

resolution for leiden

pyth_leid_weight_col

column to use for weights

pyth_leid_part_type

partition type to use

pyth_leid_init_memb

initial membership

 $\verb"pyth_leid_iterations"$

number of iterations

pyth_louv_resolution

resolution for louvain

pyth_louv_weight_col

python louvain param: weight column

python_louv_random

python louvain param: random

python_path specify specific path to python if required louvain_gamma louvain param: gamma or resolution

louvain_omega louvain param: omega

walk_steps randomwalk: number of steps
walk_clusters randomwalk: number of clusters
walk_weights randomwalk: weight column

sNNclust_k SNNclust: k neighbors to use

sNNclust_eps SNNclust: epsilon

sNNclust_minPts

SNNclust: min points

borderPoints SNNclust: border points

expression_values

expression values to use

genes_to_use = NULL,
dim_reduction_to_use

dimension reduction to use

dim_reduction_name

name of reduction 'pca',

dimensions_to_use

dimensions to use

clusterSpatialCorGenes

47

```
distance_method
```

distance method

km_centers kmeans centers km_iter_max kmeans iterations

km_nstart kmeans random starting points

km_algorithm kmeans algorithm

hc_agglomeration_method

hierarchical clustering method

hc_k hierachical number of clusters

hc_h hierarchical tree cutoff

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

Details

Wrapper for the different clustering methods.

Value

giotto object with new clusters appended to cell metadata

See Also

 $\label{lem:cluster_doLouvainCluster_multinet} do Louvain Cluster_community, do Louvain Cluster_multinet, do Louvain Cluster, do Random Walk Cluster, do SNN Cluster, do Kmeans, do H clust Cluster, do Louvain Cluster, do Louva$

Examples

```
clusterCells(gobject)
```

```
clusterSpatialCorGenes
```

clusterSpatialCorGenes

Description

Cluster based on spatially correlated genes

Usage

```
clusterSpatialCorGenes(
  spatCorObject,
  name = "spat_clus",
  hclust_method = "ward.D",
  k = 10,
  return_obj = TRUE
)
```

48 combCCcom

Arguments

```
spatCorObject spatial correlation object

name name for spatial clustering results

hclust_method method for hierarchical clustering

k number of clusters to extract

return_obj return spatial correlation object (spatCorObject)
```

Value

spatCorObject or cluster results

Examples

```
clusterSpatialCorGenes(gobject)
```

combCCcom

Description

Combine spatial and expression based cell-cell communication data.tables

combCCcom

Usage

```
combCCcom(
  spatialCC,
  exprCC,
  min_lig_nr = 3,
  min_rec_nr = 3,
  min_padj_value = 1,
  min_log2fc = 0,
  min_av_diff = 0
)
```

Arguments

```
spatialCC spatial cell-cell communication scores
exprCC expression cell-cell communication scores
min_lig_nr minimum number of ligand cells
min_rec_nr minimum number of receptor cells
min_padj_value minimum adjusted p-value
min_log2fc minimum log2 fold-change
min_av_diff minimum average expression difference
```

Value

combined data.table with spatial and expression communication data

```
combCCcom(gobject)
```

```
combineCellProximityGenes
```

combineCellProximityGenes

Description

Combine CPG scores in a pairwise manner.

Usage

```
combineCellProximityGenes(
  cpgObject,
  selected_ints = NULL,
  selected_genes = NULL,
  specific_genes_1 = NULL,
  specific_genes_2 = NULL,
  min_cells = 5,
  min_int_cells = 3,
  min_fdr = 0.05,
  min_spat_diff = 0,
  min_log2_fc = 0.5,
  do_parallel = TRUE,
  cores = NA,
  verbose = T
)
```

Arguments

```
cpgObject
                  cell proximity gene score object
selected_ints
                  subset of selected cell-cell interactions (optional)
selected_genes subset of selected genes (optional)
specific_genes_1
                  specific geneset combo (need to position match specific_genes_2)
specific_genes_2
                  specific geneset combo (need to position match specific_genes_1)
min_cells
                  minimum number of target cell type
min_int_cells
                  minimum number of interacting cell type
min_fdr
                  minimum adjusted p-value
                  minimum absolute spatial expression difference
min_spat_diff
min_log2_fc
                  minimum absolute log2 fold-change
do_parallel
                  run calculations in parallel with mclapply
                  number of cores to use if do_parallel = TRUE
cores
                  verbose
verbose
```

Value

cpgObject that contains the filtered differential gene scores

50 combineCPG

Examples

```
combineCellProximityGenes(gobject)
```

```
combine \verb|CellProximityGenes_per_interaction| \\ combine CellProximity Genes\_per\_interaction|
```

Description

Combine CPG scores per interaction

Usage

```
combineCellProximityGenes_per_interaction(
  cpgObject,
  sel_int,
  selected_genes = NULL,
  specific_genes_1 = NULL,
  specific_genes_2 = NULL,
  min_cells = 5,
  min_int_cells = 3,
  min_fdr = 0.05,
  min_spat_diff = 0,
  min_log2_fc = 0.5
)
```

Examples

combineCellProximityGenes_per_interaction()

combineCPG

combineCPG

Description

Combine CPG scores in a pairwise manner.

Usage

```
combineCPG(
  cpgObject,
  selected_ints = NULL,
  selected_genes = NULL,
  specific_genes_1 = NULL,
  specific_genes_2 = NULL,
  min_cells = 5,
  min_int_cells = 3,
  min_fdr = 0.05,
  min_spat_diff = 0,
```

combineMetadata 51

```
min_log2_fc = 0.5,
  do_parallel = TRUE,
  cores = NA,
  verbose = T
)
```

Arguments

```
cpg0bject
                  cell proximity gene score object
                  subset of selected cell-cell interactions (optional)
selected_ints
selected_genes subset of selected genes (optional)
specific_genes_1
                  specific geneset combo (need to position match specific_genes_2)
specific_genes_2
                  specific geneset combo (need to position match specific_genes_1)
min_cells
                  minimum number of target cell type
min_int_cells minimum number of interacting cell type
min_fdr
                  minimum adjusted p-value
min_spat_diff
                  minimum absolute spatial expression difference
                  minimum absolute log2 fold-change
min_log2_fc
                  run calculations in parallel with mclapply
do_parallel
                  number of cores to use if do_parallel = TRUE
cores
verbose
                  verbose
```

Value

cpgObject that contains the filtered differential gene scores

Examples

```
combineCPG(gobject)
```

combineMetadata combineMetadata

Description

This function combines the cell metadata with spatial locations and enrichment results from createSpatialEnrich

Usage

```
combineMetadata(gobject, spat_enr_names = NULL)
```

```
gobject Giotto object
spat_enr_names names of spatial enrichment results to include
```

52 combine_ints_f

Value

Extended cell metadata in data.table format.

Examples

```
combineMetadata(gobject)
```

```
combine_ints_f
combine_ints_f
```

Description

function to combine gene enrichment interactions

Usage

```
combine_ints_f(
  cell_int,
  all_ints,
  unif_gene_scores,
  specific_genes_1 = NULL,
  specific_genes_2 = NULL,
  min_cells = 5,
  min_fdr = 0.05,
  min_spat_diff = 0.2,
  min_log2_fc = 0.5
)
```

Arguments

```
cell_int
                  selected cell interaction
all_ints
                  all interactions
unif_gene_scores
                  unif_gene_scores results
specific_genes_1
                  specific source genes (see details)
specific_genes_2
                  specific target genes (see details)
min_cells
                  min number of cells threshold
min_spat_diff
                  spatial difference threshold
                  log2 fold-change threshold
min_log2_fc
\min_{pval}
                  p-value threshold
```

Value

Gene to gene scores in data.table format

```
convertEnsemblToGeneSymbol
```

convertEnsemblToGeneSymbol

Description

This function convert ensembl gene IDs from a matrix to official gene symbols

Usage

```
convertEnsemblToGeneSymbol(matrix, species = c("mouse", "human"))
```

Arguments

```
matrix an expression matrix with ensembl gene IDs as rownames species species to use for gene symbol conversion
```

Details

This function requires that the biomaRt library is installed

Value

expression matrix with gene symbols as rownames

Examples

```
convertEnsemblToGeneSymbol(matrix)
```

```
createGiottoInstructions
```

create Giot to Instructions

Description

Function to set global instructions for giotto functions

Usage

```
createGiottoInstructions(
  python_path = NULL,
  show_plot = NULL,
  return_plot = NULL,
  save_plot = NULL,
  save_dir = NULL,
  plot_format = NULL,
  dpi = NULL,
  units = NULL,
  height = NULL,
  width = NULL
```

54 createGiottoObject

Arguments

path to python binary to use python_path print plot to console, default = TRUE show_plot return plot as object, default = TRUE return_plot automatically save plot, dafault = FALSE save_plot path to directory where to save plots save_dir resolution for raster images dpi height of plots height width of plots width

Value

named vector with giotto instructions

Examples

createGiottoInstructions()

Description

Function to create a giotto object

Usage

```
createGiottoObject(
  raw_exprs,
  spatial_locs = NULL,
  norm_expr = NULL,
  norm_scaled_expr = NULL,
  custom_expr = NULL,
  cell_metadata = NULL,
  gene_metadata = NULL,
  spatial_network = NULL,
  spatial_network_name = NULL,
  spatial_grid = NULL,
  spatial_grid_name = NULL,
  spatial_enrichment = NULL,
  spatial_enrichment_name = NULL,
  dimension_reduction = NULL,
  nn_network = NULL,
  offset_file = NULL,
  instructions = NULL
)
```

createGiottoObject 55

Arguments

matrix with raw expression counts [required] raw_exprs data.table or data.frame with coordinates for cell centroids spatial_locs normalized expression values norm_expr norm_scaled_expr scaled expression values custom_expr custom expression values cell_metadata cell annotation metadata gene_metadata gene annotation metadata spatial_network list of spatial network(s) spatial_network_name list of spatial network name(s) list of spatial grid(s) spatial_grid spatial_grid_name list of spatial grid name(s) spatial_enrichment list of spatial enrichment score(s) for each spatial region spatial_enrichment_name list of spatial enrichment name(s) dimension_reduction list of dimension reduction(s) list of nearest neighbor network(s) nn_network file used to stitch fields together (optional) offset_file list of instructions or output result from createGiottoInstructions instructions

Details

[Requirements] To create a giotto object you need to provide at least a matrix with genes as row names and cells as column names. To include spatial information about cells (or regions) you need to provide a data.table or data.frame with coordinates for all spatial dimensions. This can be 2D (x and y) or 3D (x, y, x). The row order for the cell coordinates should be the same as the column order for the provided expression data.

[Instructions] Additionally an instruction file, generated manually or with createGiottoInstructions can be provided to instructions, if not a default instruction file will be created for the Giotto object.

[Multiple fields] In case a dataset consists of multiple fields, like seqFISH+ for example, an offset file can be provided to stitch the different fields together. stitchFieldCoordinates can be used to generate such an offset file.

[**Processed data**] Processed count data, such as normalized data, can be provided using one of the different expression slots (norm_expr, norm_scaled_expr, custom_expr).

[Metadata] Cell and gene metadata can be provided using the cell and gene metadata slots. This data can also be added afterwards using the addGeneMetadata or addCellMetadata functions.

[Other information] Additional information can be provided through the appropriate slots:

- · spatial networks
- · spatial girds
- spatial enrichments
- · dimensions reductions
- · nearest neighbours networks

56 createHeatmap_DT

Value

```
giotto object
```

Examples

```
createGiottoObject(raw_exprs, spatial_locs)
```

createHeatmap_DT

createHeatmap_DT

Description

creates order for clusters

Usage

```
createHeatmap_DT(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cluster_column = NULL,
  cluster_order = c("size", "correlation", "custom"),
  cluster_custom_order = NULL,
  cluster_cor_method = "pearson",
  cluster_hclust_method = "ward.D",
  gene_order = c("custom", "correlation"),
  gene_custom_order = NULL,
  gene_cor_method = "pearson",
  gene_hclust_method = "complete"
)
```

```
gobject
                 giotto object
expression_values
                 expression values to use
genes
                 genes to use
cluster_column name of column to use for clusters
                 method to determine cluster order
cluster_order
cluster_custom_order
                 custom order for clusters
cluster_cor_method
                 method for cluster correlation
cluster_hclust_method
                 method for hierarchical clustering of clusters
gene_order
                 method to determine gene order
gene_custom_order
                 custom order for genes
gene_cor_method
                 method for gene correlation
gene_hclust_method
                 method for hierarchical clustering of genes
```

createMetagenes 57

Details

Creates input data.tables for plotHeatmap function.

Value

list

Examples

```
createHeatmap_DT(gobject)
```

createMetagenes

createMetagenes

Description

This function creates an average metagene for gene clusters.

Usage

```
createMetagenes(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  gene_clusters,
  name = "metagene",
  return_gobject = TRUE
)
```

Arguments

```
gobject Giotto object
expression_values
expression values to use
gene_clusters numerical vector with genes as names
name name of the metagene results
return_gobject return giotto object
```

Details

```
An example for the 'gene_clusters' could be like this: cluster_vector = c(1, 1, 2, 2); names(cluster_vector) = c('geneA', 'geneB', 'geneC', 'geneD')
```

Value

giotto object

```
createMetagenes(gobject)
```

58 createNearestNetwork

createNearestNetwork createNearestNetwork

Description

create a nearest neighbour (NN) network

Usage

```
createNearestNetwork(
  gobject,
  type = c("sNN", "kNN"),
  dim_reduction_to_use = "pca",
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  genes_to_use = NULL,
  expression_values = c("normalized", "scaled", "custom"),
  name = "sNN.pca",
  return_gobject = TRUE,
  k = 30,
  minimum_shared = 5,
  top_shared = 3,
  verbose = T,
  ...
)
```

```
giotto object
gobject
type
                 sNN or kNN
dim_reduction_to_use
                 dimension reduction method to use
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                 number of dimensions to use as input
                 if dim_reduction_to_use = NULL, which genes to use
genes_to_use
expression_values
                 expression values to use
                 arbitrary name for NN network
name
return_gobject boolean: return giotto object (default = TRUE)
                 number of k neighbors to use
minimum_shared minimum shared neighbors
top_shared
                 keep at ...
                 be verbose
verbose
                 additional parameters for kNN and sNN functions from dbscan
. . .
```

createSpatialEnrich 59

Details

This function creates a k-nearest neighbour (kNN) or shared nearest neighbour (sNN) network based on the provided dimension reduction space. To run it directly on the gene expression matrix set $dim_reduction_to_use = NULL$.

See also kNN and sNN for more information about how the networks are created.

Output for kNN:

- from: cell_ID for source cell
- to: cell_ID for target cell
- distance: distance between cells
- weight: weight = 1/(1 + distance)

Output for sNN:

- from: cell_ID for source cell
- to: cell_ID for target cell
- distance: distance between cells
- weight: 1/(1 + distance)
- shared: number of shared neighbours
- rank: ranking of pairwise cell neighbours

For sNN networks two additional parameters can be set:

- minimum_shared: minimum number of shared neighbours needed
- top_shared: keep this number of the top shared neighbours, irrespective of minimum_shared setting

Value

giotto object with updated NN network

Examples

createNearestNetwork(gobject)

createSpatialEnrich createSpatialEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using a hypergeometric test.

60 createSpatialEnrich

Usage

```
createSpatialEnrich(
  gobject,
  enrich_method = c("PAGE", "rank", "hypergeometric"),
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  p_value = TRUE,
  n_genes = 100,
  n_times = 1000,
  top_percentage = 5,
  output_enrichment = c("original", "zscore"),
  name = "PAGE",
  return_gobject = TRUE
)
```

Arguments

```
gobject
                  Giotto object
enrich_method
                  method for gene signature enrichment calculation
                  Matrix of signature genes for each cell type / process
sign_matrix
expression_values
                  expression values to use
reverse_log_scale
                  reverse expression values from log scale
                  log base to use if reverse_log_scale = TRUE
logbase
p_value
                  calculate p-value (default = TRUE)
n_genes
                  (page/rank) number of randomly selected genes for each permuation
                  (page/rank) number of permutation iterations to calculate p-value
n_times
top_percentage (hyper) percentage of cells that will be considered to have gene expression with
                  matrix binarization
output_enrichment
                  how to return enrichment output
name
                  to give to spatial enrichment results, default = PAGE
return_gobject return giotto object
```

Details

For details see the individual functions:

PAGE: PAGEEnrichPAGE: rankEnrichPAGE: hyperGeometricEnrich

Value

Giotto object or enrichment results if return_gobject = FALSE

createSpatialGrid 61

Examples

```
createSpatialEnrich(gobject)
```

createSpatialGrid

createSpatialGrid

Description

Create a spatial grid.

Usage

```
createSpatialGrid(
  gobject,
  sdimx_stepsize = NULL,
  sdimy_stepsize = NULL,
  sdimz_stepsize = NULL,
  minimum_padding = 1,
  name = "spatial_grid",
  return_gobject = TRUE
)
```

Arguments

Details

Creates a spatial grid with defined x, y (and z) dimensions. The dimension units are based on the provided spatial location units.

Value

giotto object with updated spatial grid slot

```
createSpatialGrid(gobject)
```

62 createSpatialGrid_2D

```
createSpatialGrid\_2D createSpatialGrid\_2D
```

Description

create a spatial grid for 2D spatial data.

Usage

```
createSpatialGrid_2D(
  gobject,
  sdimx_stepsize = NULL,
  sdimy_stepsize = NULL,
  minimum_padding = 1,
  name = "spatial_grid",
  return_gobject = TRUE
)
```

Arguments

Details

Creates a spatial grid with defined x, y (and z) dimensions. The dimension units are based on the provided spatial location units.

Value

giotto object with updated spatial grid slot

```
createSpatialGrid_2D(gobject)
```

createSpatialGrid_3D 63

```
createSpatialGrid\_3D \quad \textit{createSpatialGrid\_3D}
```

Description

Create a spatial grid for 3D spatial data.

Usage

```
createSpatialGrid_3D(
  gobject,
  sdimx_stepsize = NULL,
  sdimy_stepsize = NULL,
  sdimz_stepsize = NULL,
  minimum_padding = 1,
  name = "spatial_grid",
  return_gobject = TRUE
)
```

Arguments

```
gobject giotto object

sdimx_stepsize stepsize along the x-axis

sdimy_stepsize stepsize along the y-axis

sdimz_stepsize stepsize along the z-axis

minimum_padding

minimum padding on the edges

name name for spatial grid (default = 'spatial_grid')

return_gobject boolean: return giotto object (default = TRUE)
```

Details

Creates a spatial grid with defined x, y (and z) dimensions. The dimension units are based on the provided spatial location units.

Value

giotto object with updated spatial grid slot

```
createSpatialGrid_3D(gobject)
```

64 createSpatialNetwork

```
createSpatialNetwork createSpatialNetwork
```

Description

Create a spatial network based on cell centroid physical distances.

Usage

```
createSpatialNetwork(
  gobject,
  k = 4,
  dimensions = "all",
  maximum_distance = NULL,
  minimum_k = 0,
  name = "spatial_network",
  verbose = F,
  return_gobject = TRUE
)
```

Arguments

gobject giotto object
k number of nearest neighbors based on physical distance
dimensions which spatial dimensions to use (default = all)
maximum_distance
distance cuttof for nearest neighbors to consider
minimum_k minimum nearest neighbours if maximum_distance != NULL
name name for spatial network (default = 'spatial_network')
verbose verbose

return_gobject boolean: return giotto object (default = TRUE)

Details

Creates a spatial network connecting single-cells based on their physical distance to each other. Number of neighbors can be determined by k, maximum distance from each cell with or without setting a minimum k for each cell.

dimensions: default = 'all' which takes all possible dimensions. Alternatively you can provide a character vector that specififies the spatial dimensions to use, e.g. c("sdimx', "sdimy") or a numerical vector, e.g. 2:3

 $maximum_distance$: to create a network based on maximum distance only, you also need to set k to a very high value, e.g. k = 100

Value

giotto object with updated spatial network slot

```
createSpatialNetwork(gobject)
```

```
create\_average\_detection\_DT \\ create\_average\_detection\_DT
```

Description

calculates average gene detection for a cell metadata factor (e.g. cluster)

Usage

```
create_average_detection_DT(
  gobject,
  meta_data_name,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0
)
```

Arguments

Value

data.table with average gene epression values for each factor

Description

calculates average gene expression for a cell metadata factor (e.g. cluster)

Usage

```
create_average_DT(
  gobject,
  meta_data_name,
  expression_values = c("normalized", "scaled", "custom")
)
```

```
gobject giotto object

meta_data_name name of metadata column to use
expression_values

which expression values to use
```

Value

data.table with average gene epression values for each factor

Description

creates randomized cell ids within a selection of cell types

Usage

```
create_cell_type_random_cell_IDs(
  gobject,
  cluster_column = "cell_types",
  needed_cell_types
)
```

Arguments

```
gobject giotto object to use

cluster_column cluster column with cell type information

needed_cell_types

vector of cell type names for which a random id will be found
```

Details

Details will follow.

Value

list of randomly sampled cell ids with same cell type composition

```
create_cell_type_random_cell_IDs(gobject)
```

create_cluster_matrix 67

```
create_cluster_matrix create_cluster_matrix
```

Description

creates aggregated matrix for a given clustering

Usage

```
create_cluster_matrix(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  gene_subset = NULL
)
```

Examples

```
create_cluster_matrix(gobject)
```

create_dimObject

create_dimObject

Description

Creates an object that stores a dimension reduction output

Usage

```
create_dimObject(
  name = "test",
  reduction_method = NULL,
  coordinates = NULL,
  misc = NULL,
  my_rownames = NULL
)
```

Arguments

```
name arbitrary name for object
reduction_method
method used to reduce dimensions
coordinates accepts the coordinates after dimension reduction
misc any additional information will be added to this slot
```

Value

number of distinct colors

68 decide_cluster_order

```
decide_cluster_order
```

Description

creates order for clusters

Usage

```
decide_cluster_order(
   gobject,
   expression_values = c("normalized", "scaled", "custom"),
   genes,
   cluster_column = NULL,
   cluster_order = c("size", "correlation", "custom"),
   cluster_custom_order = NULL,
   cor_method = "pearson",
   hclust_method = "ward.D"
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
genes genes to use
cluster_column name of column to use for clusters
cluster_order method to determine cluster order
cluster_custom_order
custom order for clusters

cor_method method for correlation
hclust_method method for hierarchical clustering
```

Details

Calculates order for clusters.

Value

custom

```
decide_cluster_order(gobject)
```

 ${\tt detectSpatialCorGenes} \ \ \textit{detectSpatialCorGenes}$

Description

Detect genes that are spatially correlated

Usage

```
detectSpatialCorGenes(
  gobject,
  method = c("grid", "network"),
  expression_values = c("normalized", "scaled", "custom"),
  subset_genes = NULL,
  spatial_network_name = "spatial_network",
  network_smoothing = NULL,
  spatial_grid_name = "spatial_grid",
  min_cells_per_grid = 4,
  cor_method = c("pearson", "kendall", "spearman")
)
```

Arguments

```
gobject
                  giotto object
method
                  method to use for spatial averaging
expression_values
                  gene expression values to use
subset_genes
                  subset of genes to use
spatial_network_name
                  name of spatial network to use
network_smoothing
                  smoothing factor beteen 0 and 1 (default: automatic)
spatial_grid_name
                  name of spatial grid to use
min_cells_per_grid
                  minimum number of cells to consider a grid
b
                  smoothing factor beteen 0 and 1 (default: automatic)
```

Details

For method = network, it expects a fully connected spatial network. You can make sure to create a fully connected network by setting minimal_k > 0 in the createSpatialNetwork function.

- 1. grid-averaging: average gene expression values within a predefined spatial grid
- 2. network-averaging: smoothens the gene expression matrix by averaging the expression within one cell by using the neighbours within the predefined spatial network. b is a smoothening factor that defaults to 1 1/k, where k is the median number of k-neighbors in the selected spatial network. Setting b = 0 means no smoothing and b = 1 means no contribution from its own expression.

The spatCorObject can be further explored with showSpatialCorGenes()

70 detectSpatialPatterns

Value

```
returns a spatial correlation object: "spatCorObject"
```

See Also

```
showSpatialCorGenes
```

Examples

```
detectSpatialCorGenes(gobject)
```

```
detectSpatialPatterns detectSpatialPatterns
```

Description

Identify spatial patterns through PCA on average expression in a spatial grid.

Usage

```
detectSpatialPatterns(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  spatial_grid_name = "spatial_grid",
  min_cells_per_grid = 4,
  scale_unit = F,
  ncp = 100,
  show_plot = T,
  PC_zscore = 1.5
)
```

```
gobject
                  giotto object
expression_values
                  expression values to use
spatial_grid_name
                  name of spatial grid to use (default = 'spatial_grid')
min_cells_per_grid
                  minimum number of cells in a grid to be considered
                  scale features
scale_unit
                  number of principal components to calculate
ncp
show_plot
                  show plots
PC_zscore
                  minimum z-score of variance explained by a PC
```

dimCellPlot 71

Details

Steps to identify spatial patterns:

- 1. average gene expression for cells within a grid, see createSpatialGrid
- 2. perform PCA on the average grid expression profiles
- 3. convert variance of principlal components (PCs) to z-scores and select PCs based on a z-score threshold

Value

spatial pattern object 'spatPatObj'

Examples

detectSpatialPatterns(gobject)

dimCellPlot

dim Cell Plot

Description

Visualize cells according to dimension reduction coordinates

Usage

```
dimCellPlot(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  spat_enr_names = NULL,
  cell_annotation_values = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
```

72 dimCellPlot

```
edge_alpha = NULL,
      point_shape = c("border", "no_border"),
      point_size = 1,
      point_border_col = "black",
      point_border_stroke = 0.1,
      show_legend = T,
      legend_text = 8,
      legend_symbol_size = 1,
      background_color = "white",
      axis_text = 8,
      axis_title = 8,
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "dimCellPlot"
    )
Arguments
                    giotto object
   gobject
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
                     dimension to use on y-axis
   dim2_to_use
    spat_enr_names names of spatial enrichment results to include
    cell_annotation_values
                     numeric cell annotation columns
    show_NN_network
                     show underlying NN network
   nn_network_to_use
                     type of NN network to use (kNN vs sNN)
                     name of NN network to use, if show_NN_network = TRUE
   network_name
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell color parameter
                     select subset of cells based on cell IDs
    select_cells
    show_other_cells
                     display not selected cells
```

dimCellPlot 73

```
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
point_shape
                  point with border or not (border or no_border)
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
                  show legend
show_legend
legend_text
                  size of legend text
legend_symbol_size
                  size of legend symbols
background_color
                  color of plot background
                  size of axis text
axis_text
                  size of axis title
axis_title
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
                  title for plot, defaults to cell_color parameter
title
```

Details

Description of parameters. For 3D plots see dimCellPlot2D

Value

ggplot

74 dimCellPlot2D

Examples

```
dimCellPlot(gobject)
```

dimCellPlot2D

dimCellPlot2D

Description

Visualize cells according to dimension reduction coordinates

```
dimCellPlot2D(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  spat_enr_names = NULL,
  cell_annotation_values = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  edge_alpha = NULL,
  point_shape = c("border", "no_border"),
  point_size = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  show_legend = T,
  legend_text = 8,
  legend_symbol_size = 1,
  background_color = "white",
  axis_text = 8,
  axis_title = 8,
  cow_n_col = 2,
  cow_rel_h = 1,
```

dimCellPlot2D 75

```
cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "dimCellPlot2D"
Arguments
    gobject
                     giotto object
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
                     dimension to use on x-axis
    dim1_to_use
    dim2_to_use
                     dimension to use on y-axis
    spat_enr_names names of spatial enrichment results to include
    cell_annotation_values
                     numeric cell annotation columns
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
                     name of NN network to use, if show_NN_network = TRUE
    network_name
    cell_color_gradient
                      vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                      vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
                     select subset of cells based on cell IDs
    select_cells
    show_other_cells
                     display not selected cells
    other_cell_color
                     color of not selected cells
    other_point_size
                     size of not selected cells
    show_cluster_center
                     plot center of selected clusters
    show_center_label
                     plot label of selected clusters
    center_point_size
                     size of center points
```

size of labels

label_size

76 dimCellPlot2D

```
label_fontface font of labels
                  column to use for alpha of the edges
edge_alpha
point_shape
                  point with border or not (border or no_border)
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
legend_text
                  size of legend text
legend_symbol_size
                  size of legend symbols
background_color
                  color of plot background
                  size of axis text
axis_text
                  size of axis title
axis_title
show_plot
                  show plot
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
title
                  title for plot, defaults to cell_color parameter
```

Details

Description of parameters. For 3D plots see dimPlot3D

Value

ggplot

Examples

```
dimCellPlot2D(gobject)
```

dimGenePlot 77

dimGenePlot

dimGenePlot

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
dimGenePlot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  edge_alpha = NULL,
  scale_alpha_with_expression = FALSE,
  point_shape = c("border", "no_border"),
  point_size = 1,
  genes_high_color = "red",
  genes_mid_color = "white",
  genes_low_color = "blue",
  point_border_col = "black",
  point_border_stroke = 0.1,
  midpoint = 0,
  show_legend = T,
  legend_text = 8,
  background_color = "white",
  axis_text = 8,
  axis_title = 8,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "dimGenePlot"
)
```

Arguments

```
gobject giotto object
```

78 dimGenePlot

```
expression_values
                 gene expression values to use
                 genes to show
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
edge_alpha
                 column to use for alpha of the edges
scale_alpha_with_expression
                 scale expression with ggplot alpha parameter
point_size
                 size of point (cell)
point_border_col
                 color of border around points
point_border_stroke
                 stroke size of border around points
midpoint
                 size of point (cell)
show_legend
                 show legend
cow_n_col
                 cowplot param: how many columns
cow_rel_h
                 cowplot param: relative height
                 cowplot param: relative width
cow_rel_w
                 cowplot param: how to align
cow_align
show_plot
                 show plots
return_plot
                 return ggplot object
                 directly save the plot [boolean]
save_plot
                 list of saving parameters from all_plots_save_function
save_param
default_save_name
                 default save name for saving, don't change, change save_name in save_param
                 parameters for cowplot::save_plot()
```

Details

Description of parameters.

Value

ggplot

See Also

dimGenePlot3D

dimGenePlot2D 79

Examples

```
dimGenePlot(gobject)
```

dimGenePlot2D

dimGenePlot2D

Description

Visualize cells and gene expression according to dimension reduction coordinates

```
dimGenePlot2D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  edge_alpha = NULL,
  scale_alpha_with_expression = FALSE,
  point_shape = c("border", "no_border"),
  point_size = 1,
  genes_high_color = "red",
  genes_mid_color = "white",
  genes_low_color = "blue",
  point_border_col = "black",
  point_border_stroke = 0.1,
  midpoint = 0,
  show_legend = T,
  legend_text = 8,
  background_color = "white",
  axis_text = 8,
  axis_title = 8,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "dimGenePlot2D"
```

80 dimGenePlot2D

Arguments

gobject giotto object expression_values gene expression values to use genes genes to show dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name edge_alpha column to use for alpha of the edges scale_alpha_with_expression scale expression with ggplot alpha parameter point with border or not (border or no border) point_shape size of point (cell) point_size point_border_col color of border around points point_border_stroke stroke size of border around points midpoint size of point (cell) show legend show_legend legend_text size of legend text background_color color of plot background axis_text size of axis text size of axis title axis_title cowplot param: how many columns cow_n_col cow_rel_h cowplot param: relative height cow_rel_w cowplot param: relative width cowplot param: how to align cow_align show_plot show plots return_plot return ggplot object save_plot directly save the plot [boolean] list of saving parameters from all_plots_save_function save_param default_save_name default save name for saving, don't change, change save_name in save_param parameters for cowplot::save_plot() . . .

dimGenePlot3D 81

Details

Description of parameters.

Value

ggplot

See Also

dimGenePlot3D

Examples

```
dimGenePlot2D(gobject)
```

dimGenePlot3D

dimGenePlot3D

Description

Visualize cells and gene expression according to dimension reduction coordinates

```
dimGenePlot3D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  dim3_to_use = 3,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  cluster_column = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 1,
  edge_alpha = NULL,
  point_size = 2,
  genes_high_color = NULL,
  genes_mid_color = "white",
  genes_low_color = "blue",
  show_legend = T,
  show_plot = NA,
  return_plot = NA,
```

82 dimGenePlot3D

```
save_plot = NA,
save_param = list(),
default_save_name = "dimGenePlot3D"
)
```

Arguments

```
gobject
                 giotto object
expression_values
                 gene expression values to use
                 genes to show
genes
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
dim3_to_use
                 dimension to use on z-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 name of NN network to use, if show_NN_network = TRUE
                 column to use for alpha of the edges
edge_alpha
point_size
                 size of point (cell)
show_legend
                 show legend
                 show plots
show_plot
return_plot
                 return ggplot object
save_plot
                 directly save the plot [boolean]
save_param
                 list of saving parameters from all_plots_save_function
default_save_name
                 default save name for saving, don't change, change save_name in save_param
                 parameters for cowplot::save_plot()
```

Details

Description of parameters.

Value

ggplot

Examples

```
dimGenePlot3D(gobject)
```

dimPlot 83

dimPlot dimPlot

Description

Visualize cells according to dimension reduction coordinates

```
dimPlot(
  gobject,
  group_by = NULL,
  group_by_subset = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  spat_enr_names = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  edge_alpha = NULL,
  point_shape = c("border", "no_border"),
  point_size = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  show_legend = T,
  legend_text = 8,
  legend_symbol_size = 1,
  background_color = "white",
  axis_text = 8,
  axis_title = 8,
  title = NULL,
```

84 dimPlot

```
cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "dimPlot"
    )
Arguments
    gobject
                     giotto object
    group_by_subset
                     subset the group_by factor column
    {\tt dim\_reduction\_to\_use}
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    spat_enr_names names of spatial enrichment results to include
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
                     name of NN network to use, if show_NN_network = TRUE
    network_name
    cell_color
                     color for cells (see details)
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
    select_cells
                     select subset of cells based on cell IDs
    show_other_cells
                     display not selected cells
    other_cell_color
                      color of not selected cells
    other_point_size
```

size of not selected cells

dimPlot 85

```
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
point_shape
                  point with border or not (border or no_border)
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
legend_text
                  size of legend text
legend_symbol_size
                  size of legend symbols
background_color
                  color of plot background
axis_text
                  size of axis text
axis_title
                  size of axis title
title
                  title for plot, defaults to cell_color parameter
                  cowplot param: how many columns
cow_n_col
                  cowplot param: relative height
cow_rel_h
                  cowplot param: relative width
cow_rel_w
                  cowplot param: how to align
cow_align
show_plot
                  show plot
                  return ggplot object
return_plot
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
groub_by
                  create multiple plots based on cell annotation column
```

Details

Description of parameters, see dimPlot2D. For 3D plots see dimPlot3D

Value

ggplot

Examples

```
dimPlot(gobject)
```

86 dimPlot2D

dimPlot2D

dimPlot2D

Description

Visualize cells according to dimension reduction coordinates

```
dimPlot2D(
  gobject,
  group_by = NULL,
  group_by_subset = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  spat_enr_names = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  edge_alpha = NULL,
  point_shape = c("border", "no_border"),
  point_size = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  title = NULL,
  show_legend = T,
  legend_text = 8,
  legend_symbol_size = 1,
  background_color = "white",
  axis_text = 8,
  axis_title = 8,
```

dimPlot2D 87

```
cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "dimPlot2D"
    )
Arguments
    gobject
                     giotto object
    group_by_subset
                     subset the group_by factor column
    {\tt dim\_reduction\_to\_use}
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    spat_enr_names names of spatial enrichment results to include
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
                     name of NN network to use, if show_NN_network = TRUE
    network_name
    cell_color
                     color for cells (see details)
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
    select_cells
                     select subset of cells based on cell IDs
    show_other_cells
                     display not selected cells
    other_cell_color
                      color of not selected cells
    other_point_size
```

size of not selected cells

88 dimPlot2D

```
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
                  point with border or not (border or no_border)
point_shape
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
title
                  title for plot, defaults to cell_color parameter
                  show legend
show_legend
legend_text
                  size of legend text
legend_symbol_size
                  size of legend symbols
background_color
                  color of plot background
                  size of axis text
axis_text
axis_title
                  size of axis title
cow_n_col
                  cowplot param: how many columns
                  cowplot param: relative height
cow_rel_h
cow_rel_w
                  cowplot param: relative width
                  cowplot param: how to align
cow_align
show_plot
                  show plot
                  return ggplot object
return_plot
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
groub_by
                  create multiple plots based on cell annotation column
```

Details

Description of parameters. For 3D plots see dimPlot3D

Value

ggplot

Examples

```
dimPlot2D(gobject)
```

dimPlot2D_single 89

dimPlot2D_single

dimPlot2D_single

Description

Visualize cells according to dimension reduction coordinates

```
dimPlot2D_single(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  spat_enr_names = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  edge_alpha = NULL,
  point_shape = c("border", "no_border"),
  point_size = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  title = NULL,
  show_legend = T,
  legend_text = 8,
  legend_symbol_size = 1,
  background_color = "white",
  axis_text = 8,
  axis_title = 8,
  show_plot = NA,
  return_plot = NA,
```

90 dimPlot2D_single

```
save_plot = NA,
      save_param = list(),
      default_save_name = "dimPlot2D_single"
Arguments
                      giotto object
    gobject
    dim_reduction_to_use
                      dimension reduction to use
    dim_reduction_name
                      dimension reduction name
    dim1_to_use
                      dimension to use on x-axis
    dim2_to_use
                      dimension to use on y-axis
    spat_enr_names names of spatial enrichment results to include
    show_NN_network
                      show underlying NN network
    nn_network_to_use
                      type of NN network to use (kNN vs sNN)
                      name of NN network to use, if show_NN_network = TRUE
    network_name
    cell_color
                      color for cells (see details)
    color_as_factor
                      convert color column to factor
    cell_color_code
                      named vector with colors
    cell_color_gradient
                      vector with 3 colors for numeric data
    gradient_midpoint
                      midpoint for color gradient
    gradient_limits
                      vector with lower and upper limits
    select_cell_groups
                      select subset of cells/clusters based on cell_color parameter
    select_cells
                      select subset of cells based on cell IDs
    show_other_cells
                      display not selected cells
    other_cell_color
                      color of not selected cells
    other_point_size
                      size of not selected cells
    show_cluster_center
                      plot center of selected clusters
    show_center_label
                      plot label of selected clusters
    center_point_size
                      size of center points
    label_size
                      size of labels
    label_fontface font of labels
```

dimPlot3D

```
column to use for alpha of the edges
edge_alpha
point_shape
                  point with border or not (border or no_border)
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
title
                  title for plot, defaults to cell_color parameter
                  show legend
show_legend
legend_text
                  size of legend text
legend_symbol_size
                  size of legend symbols
background_color
                  color of plot background
axis_text
                  size of axis text
axis_title
                  size of axis title
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters. For 3D plots see dimPlot3D

Value

ggplot

Examples

dimPlot2D_single(gobject)

dimPlot3D dimPlot3D

Description

Visualize cells according to dimension reduction coordinates

92 dimPlot3D

Usage

```
dimPlot3D(
      gobject,
      dim_reduction_to_use = "umap",
      dim_reduction_name = "umap",
      dim1_to_use = 1,
      dim2_to_use = 2,
      dim3_to_use = 3,
      select_cell_groups = NULL,
      select_cells = NULL,
      show_other_cells = T,
      other_cell_color = "lightgrey",
      other_point_size = 2,
      show_NN_network = F,
      nn_network_to_use = "sNN",
      network_name = "sNN.pca",
      color_as_factor = T,
      cell_color = NULL,
      cell_color_code = NULL,
      show_cluster_center = F,
      show_center_label = T,
      center_point_size = 4,
      label_size = 4,
      edge_alpha = NULL,
      point_size = 3,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "dim3D"
Arguments
    gobject
                    giotto object
    dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
   dim1_to_use
                    dimension to use on x-axis
   dim2_to_use
                    dimension to use on y-axis
   dim3_to_use
                    dimension to use on z-axis
    select_cell_groups
                    select subset of cells/clusters based on cell_color parameter
                    select subset of cells based on cell IDs
    select_cells
    show_other_cells
                    display not selected cells
   other_cell_color
                    color of not selected cells
   other_point_size
```

size of not selected cells

dimPlot3D 93

```
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 name of NN network to use, if show_NN_network = TRUE
color_as_factor
                 convert color column to factor
cell_color
                 color for cells (see details)
cell_color_code
                 named vector with colors
show_cluster_center
                 plot center of selected clusters
show_center_label
                 plot label of selected clusters
center_point_size
                 size of center points
label_size
                 size of labels
edge_alpha
                 column to use for alpha of the edges
                 size of point (cell)
point_size
                 show plot
show_plot
return_plot
                 return ggplot object
save_plot
                 directly save the plot [boolean]
                 list of saving parameters from all_plots_save_function
save_param
default_save_name
                 default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

show legend

show_legend

Value

plotly

Examples

dimPlot3D(gobject)

94 doHclust

Description

shows direction of change

Usage

```
direction_test(x, min_fdr = 0.05)
```

Examples

```
direction_test_CPG()
```

doHclust

doHclust

Description

cluster cells using hierarchical clustering algorithm

Usage

```
doHclust(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes_to_use = NULL,
  dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  distance_method = c("pearson", "spearman", "original", "euclidean", "maximum",
  "manhattan", "canberra", "binary", "minkowski"),
agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
    "mcquitty", "median", "centroid"),
  k = 10,
  h = NULL
  name = "hclust",
  return_gobject = TRUE,
  set\_seed = T,
  seed_number = 1234
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
genes_to_use subset of genes to use
```

doHMRF 95

```
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimensions reduction name
dimensions_to_use
                 dimensions to use
distance_method
                 distance method
agglomeration_method
                 agglomeration method for hclust
k
                 number of final clusters
                 cut hierarchical tree at height = h
h
                 name for hierarchical clustering
name
return_gobject boolean: return giotto object (default = TRUE)
                 set seed
set_seed
seed_number
                 number for seed
```

Details

Description on how to use Kmeans clustering method.

Value

giotto object with new clusters appended to cell metadata

See Also

hclust

Examples

doHclust(gobject)

doHMRF

doHMRF

Description

Run HMRF

```
doHMRF(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  spatial_network_name = "spatial_network",
  spatial_genes = NULL,
  spatial_dimensions = c("sdimx", "sdimy", "sdimz"),
  dim_reduction_to_use = NULL,
  dim_reduction_name = "pca",
```

96 doHMRF

```
dimensions_to_use = 1:10,
name = "test",
k = 10,
betas = c(0, 2, 50),
tolerance = 1e-10,
zscore = c("none", "rowcol", "colrow"),
numinit = 100,
python_path = NULL,
output_folder = NULL,
overwrite_output = TRUE
)
```

Arguments

```
giotto object
gobject
expression_values
                 expression values to use
spatial_network_name
                 name of spatial network to use for HMRF
spatial_genes
                 spatial genes to use for HMRF
spatial_dimensions
                 select spatial dimensions to use, default is all possible dimensions
dim_reduction_to_use
                 use another dimension reduction set as input
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                 number of dimensions to use as input
                 name of HMRF run
name
                 number of HMRF domains
k
betas
                 betas to test for
tolerance
                 tolerance
zscore
                 zscore
numinit
                 number of initializations
                 python path to use
python_path
output_folder
                 output folder to save results
overwrite_output
```

overwrite output folder

Details

Description of HMRF parameters ...

Value

Creates a directory with results that can be viewed with viewHMRFresults

Examples

```
doHMRF(gobject)
```

doKmeans 97

doKmeans doKmeans

Description

cluster cells using kmeans algorithm

Usage

```
doKmeans(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes_to_use = NULL,
  dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
    "manhattan", "canberra", "binary", "minkowski"),
  centers = 10,
  iter_max = 100,
  nstart = 1000,
  algorithm = "Hartigan-Wong",
  name = "kmeans",
  return_gobject = TRUE,
  set_seed = T,
  seed_number = 1234
)
```

Arguments

```
gobject
                 giotto object
expression_values
                 expression values to use
                 subset of genes to use
genes_to_use
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimensions reduction name
dimensions_to_use
                 dimensions to use
distance_method
                 distance method
                 number of final clusters
centers
                 kmeans maximum iterations
iter_max
nstart
                 kmeans nstart
                 kmeans algorithm
algorithm
name
                 name for kmeans clustering
return_gobject boolean: return giotto object (default = TRUE)
set_seed
                 set seed
seed_number
                 number for seed
```

98 doLeidenCluster

Details

Description on how to use Kmeans clustering method.

Value

giotto object with new clusters appended to cell metadata

See Also

kmeans

Examples

```
doKmeans(gobject)
```

doLeidenCluster

doLeidenCluster

Description

cluster cells using a NN-network and the Leiden community detection algorithm

Usage

```
doLeidenCluster(
  gobject,
  name = "leiden_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  python_path = NULL,
  resolution = 1,
  weight_col = "weight",
  partition_type = c("RBConfigurationVertexPartition", "ModularityVertexPartition"),
  init_membership = NULL,
  n_iterations = 1000,
  return_gobject = TRUE,
  set_seed = T,
  seed_number = 1234,
  ...
)
```

Arguments

doLeidenSubCluster 99

weight_col weight column to use for edges

partition_type The type of partition to use for optimisation.

init_membership

initial membership of cells for the partition

n_iterations number of interations to run the Leiden algorithm. If the number of iterations

is negative, the Leiden algorithm is run until an iteration in which there was no

improvement.

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

Details

This function is a wrapper for the Leiden algorithm implemented in python, which can detect communities in graphs of millions of nodes (cells), as long as they can fit in memory. See the https://github.com/vtraag/leidenalgleidenalg github page or the https://leidenalg.readthedocs.io/en/stable/index.htmlreadthedocs page for more information.

Partition types available and information:

- RBConfigurationVertexPartition: Implements Reichardt and Bornholdt's Potts model with a configuration null model. This quality function is well-defined only for positive edge weights. This quality function uses a linear resolution parameter.
- Modularity Vertex Partition: Implements modularity. This quality function is well-defined only for positive edge weights. It does *not* use the resolution parameter

Set $weight_col = NULL$ to give equal weight (=1) to each edge.

Value

giotto object with new clusters appended to cell metadata

Examples

doLeidenCluster(gobject)

doLeidenSubCluster

doLeidenSubCluster

Description

Further subcluster cells using a NN-network and the Leiden algorithm

100 doLeidenSubCluster

Usage

```
doLeidenSubCluster(
      gobject,
      name = "sub_pleiden_clus",
      cluster_column = NULL,
      selected_clusters = NULL,
     hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
        = "normalized"),
      hvg_min_perc_cells = 5,
      hvg_mean_expr_det = 1,
      use_all_genes_as_hvg = FALSE,
      min_nr_of_hvg = 5,
      pca_param = list(expression_values = "normalized", scale_unit = T),
      nn_param = list(dimensions_to_use = 1:20),
      k_neighbors = 10,
      resolution = 0.5,
      n_{iterations} = 500,
      python_path = NULL,
      nn_network_to_use = "sNN",
      network_name = "sNN.pca",
      return_gobject = TRUE,
      verbose = T
Arguments
    gobject
                     giotto object
    name
                     name for new clustering result
    cluster_column cluster column to subcluster
    selected_clusters
                     only do subclustering on these clusters
    hvg_param
                     parameters for calculateHVG
   hvg_min_perc_cells
                     threshold for detection in min percentage of cells
    hvg_mean_expr_det
                     threshold for mean expression level in cells with detection
   use_all_genes_as_hvg
                     forces all genes to be HVG and to be used as input for PCA
                     minimum number of HVG, or all genes will be used as input for PCA
   min_nr_of_hvg
                     parameters for runPCA
    pca_param
   nn_param
                     parameters for parameters for createNearestNetwork
                     number of k for createNearestNetwork
   k_neighbors
                     resolution of Leiden clustering
    resolution
    n_iterations
                     number of interations to run the Leiden algorithm.
   python_path
                     specify specific path to python if required
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
```

name of NN network to use

return_gobject boolean: return giotto object (default = TRUE)

verbose

network_name

verbose

doLouvainCluster 101

Details

This function performs subclustering using the Leiden algorithm on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do Leiden clustering

Value

giotto object with new subclusters appended to cell metadata

See Also

```
doLeidenCluster
```

Examples

```
doLeidenSubCluster(gobject)
```

doLouvainCluster

doLouvainCluster

Description

cluster cells using a NN-network and the Louvain algorithm.

```
doLouvainCluster(
  gobject,
  version = c("community", "multinet"),
  name = "louvain_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  python_path = NULL,
  resolution = 1,
  weight_col = NULL,
  gamma = 1,
  omega = 1,
  louv_random = F,
  return_gobject = TRUE,
  set\_seed = F,
  seed_number = 1234,
)
```

Arguments

gobject giotto object

version implemented version of Louvain clustering to use

name name for cluster

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

python_path [community] specify specific path to python if required

resolution [community] resolution

gamma [multinet] Resolution parameter for modularity in the generalized louvain method.

omega [multinet] Inter-layer weight parameter in the generalized louvain method.

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

Details

Louvain clustering using the community or multinet implementation of the louvain clustering algorithm.

Value

giotto object with new clusters appended to cell metadata

See Also

doLouvainCluster_community and doLouvainCluster_multinet

Examples

doLouvainCluster(gobject)

doLouvainCluster_community

doLouvainCluster_community

Description

cluster cells using a NN-network and the Louvain algorithm from the community module in Python

Usage

```
doLouvainCluster_community(
  gobject,
  name = "louvain_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  python_path = NULL,
  resolution = 1,
  weight_col = NULL,
  louv_random = F,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234,
  ...
)
```

Arguments

giotto object gobject name for cluster name nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use network_name python_path specify specific path to python if required resolution resolution weight_col weight column to use for edges Will randomize the node evaluation order and the community evaluation order louv_random to get different partitions at each call return_gobject boolean: return giotto object (default = TRUE) set_seed set seed

Details

seed_number

This function is a wrapper for the Louvain algorithm implemented in Python, which can detect communities in graphs of nodes (cells). See the https://python-louvain.readthedocs.io/en/latest/index.htmlreadthedocs page for more information.

Set $weight_col = NULL$ to give equal weight (=1) to each edge.

Value

giotto object with new clusters appended to cell metadata

number for seed

Examples

```
doLouvainCluster_community(gobject)
```

```
\label{lower} do Louvain Cluster\_multinet \\ do Louvain Cluster\_multinet
```

Description

cluster cells using a NN-network and the Louvain algorithm from the multinet package in R.

Usage

```
doLouvainCluster_multinet(
  gobject,
  name = "louvain_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  gamma = 1,
  omega = 1,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234,
  ...
)
```

Arguments

```
gobject
                  giotto object
                  name for cluster
name
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use
network_name
                  Resolution parameter for modularity in the generalized louvain method.
gamma
                  Inter-layer weight parameter in the generalized louvain method.
omega
return_gobject boolean: return giotto object (default = TRUE)
set_seed
                  set seed
seed_number
                  number for seed
```

Details

See $glouvain_ml$ from the multinet package in R for more information.

Value

giotto object with new clusters appended to cell metadata

Examples

```
doLouvainCluster_multinet(gobject)
```

doLouvainSubCluster 105

doLouvainSubCluster doLouvainSubCluster

Description

subcluster cells using a NN-network and the Louvain algorithm

Usage

```
doLouvainSubCluster(
  gobject,
  name = "sub_louvain_clus",
  version = c("community", "multinet"),
  cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
    = "normalized"),
  hvg_min_perc_cells = 5,
  hvg_mean_expr_det = 1,
  use_all_genes_as_hvg = FALSE,
  min_nr_of_hvg = 5,
  pca_param = list(expression_values = "normalized", scale_unit = T),
  nn_param = list(dimensions_to_use = 1:20),
  k_neighbors = 10,
  resolution = 0.5,
  gamma = 1,
  omega = 1,
  python_path = NULL,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  return_gobject = TRUE,
  verbose = T
)
```

Arguments

```
gobject
                  giotto object
name
                  name for new clustering result
                  version of Louvain algorithm to use
version
cluster_column cluster column to subcluster
selected_clusters
                  only do subclustering on these clusters
                  parameters for calculateHVG
hvg_param
hvg_min_perc_cells
                  threshold for detection in min percentage of cells
hvg\_mean\_expr\_det
                  threshold for mean expression level in cells with detection
use_all_genes_as_hvg
                  forces all genes to be HVG and to be used as input for PCA
```

106 doLouvainSubCluster

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

 $k_neighbors \qquad number \ of \ k \ for \ createNearestNetwork$

resolution resolution for community algorithm

gamma gamma omega omega

python_path specify specific path to python if required

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

Details

This function performs subclustering using the Louvain algorithm on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do Louvain clustering

Value

giotto object with new subclusters appended to cell metadata

See Also

doLouvainCluster_multinet and doLouvainCluster_community

Examples

doLouvainSubCluster(gobject)

```
\label{lower} do Louvain SubCluster\_community \\ do Louvain SubCluster\_community
```

Description

subcluster cells using a NN-network and the Louvain community detection algorithm

Usage

```
doLouvainSubCluster_community(
  gobject,
 name = "sub_louvain_comm_clus",
  cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
   = "normalized"),
 hvg_min_perc_cells = 5,
 hvg_mean_expr_det = 1,
 use_all_genes_as_hvg = FALSE,
 min_nr_of_hvg = 5,
 pca_param = list(expression_values = "normalized", scale_unit = T),
 nn_param = list(dimensions_to_use = 1:20),
 k_neighbors = 10,
  resolution = 0.5,
 python_path = NULL,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 return_gobject = TRUE,
  verbose = T
)
```

Arguments

```
gobject
                  giotto object
                  name for new clustering result
name
cluster_column cluster column to subcluster
selected_clusters
                  only do subclustering on these clusters
                  parameters for calculateHVG
hvg_param
hvg_min_perc_cells
                  threshold for detection in min percentage of cells
hvg_mean_expr_det
                  threshold for mean expression level in cells with detection
use_all_genes_as_hvg
                  forces all genes to be HVG and to be used as input for PCA
                  minimum number of HVG, or all genes will be used as input for PCA
min_nr_of_hvg
                  parameters for runPCA
pca_param
```

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork

resolution resolution

python_path specify specific path to python if required

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

Details

This function performs subclustering using the Louvain community algorithm on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do Louvain community clustering

Value

giotto object with new subclusters appended to cell metadata

See Also

```
doLouvainCluster_community
```

Examples

doLouvainSubCluster_community(gobject)

doLouvainSubCluster_multinet

doLouvainSubCluster_multinet

Description

subcluster cells using a NN-network and the Louvain multinet detection algorithm

Usage

```
doLouvainSubCluster_multinet(
  gobject,
  name = "sub_louvain_mult_clus",
  cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
    = "normalized"),
  hvg_min_perc_cells = 5,
  hvg_mean_expr_det = 1,
  use_all_genes_as_hvg = FALSE,
  min_nr_of_hvg = 5,
  pca_param = list(expression_values = "normalized", scale_unit = T),
  nn_param = list(dimensions_to_use = 1:20),
  k_neighbors = 10,
  gamma = 1,
  omega = 1,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  return_gobject = TRUE,
  verbose = T
                giotto object
gobject
```

Arguments

```
name
                 name for new clustering result
cluster_column cluster column to subcluster
selected_clusters
                 only do subclustering on these clusters
                 parameters for calculateHVG
hvg_param
hvg_min_perc_cells
                 threshold for detection in min percentage of cells
hvg_mean_expr_det
                 threshold for mean expression level in cells with detection
use_all_genes_as_hvg
                 forces all genes to be HVG and to be used as input for PCA
                 minimum number of HVG, or all genes will be used as input for PCA
min_nr_of_hvg
pca_param
                 parameters for runPCA
nn_param
                 parameters for parameters for createNearestNetwork
                 number of k for createNearestNetwork
k_neighbors
gamma
                 gamma
                 omega
omega
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 name of NN network to use
return_gobject boolean: return giotto object (default = TRUE)
                  verbose
verbose
                 specify specific path to python if required
python_path
```

110 doRandomWalkCluster

Details

This function performs subclustering using the Louvain multinet algorithm on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network
- 5. do Louvain multinet clustering

Value

giotto object with new subclusters appended to cell metadata

See Also

```
doLouvainCluster_multinet
```

Examples

```
doLouvainSubCluster_multinet(gobject)
```

doRandomWalkCluster

doRandomWalkCluster

Description

Cluster cells using a random walk approach.

```
doRandomWalkCluster(
  gobject,
  name = "random_walk_clus",
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  walk_steps = 4,
  walk_clusters = 10,
  walk_weights = NA,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234,
  ...
)
```

doSNNCluster 111

Arguments

```
giotto object
gobject
                 name for cluster
name
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use
network_name
walk_steps
                 number of walking steps
walk_clusters
                 number of final clusters
walk_weights
                 cluster column defining the walk weights
return_gobject boolean: return giotto object (default = TRUE)
set\_seed
                 set seed
seed_number
                 number for seed
```

Details

See cluster_walktrap function from the igraph package in R for more information.

Value

giotto object with new clusters appended to cell metadata

Examples

```
doRandomWalkCluster(gobject)
```

doSNNCluster

doSNNCluster

Description

Cluster cells using a SNN cluster approach.

```
doSNNCluster(
  gobject,
  name = "sNN_clus",
  nn_network_to_use = "kNN",
  network_name = "kNN.pca",
  k = 20,
  eps = 4,
  minPts = 16,
  borderPoints = TRUE,
  return_gobject = TRUE,
  set_seed = F,
  seed_number = 1234,
  ...
)
```

Arguments

gobject giotto object name name for cluster

nn_network_to_use

type of NN network to use (only works on kNN)

network_name name of kNN network to use

k Neighborhood size for nearest neighbor sparsification to create the shared NN

graph.

eps Two objects are only reachable from each other if they share at least eps nearest

neighbors.

minPts minimum number of points that share at least eps nearest neighbors for a point

to be considered a core points.

borderPoints should borderPoints be assigned to clusters like in DBSCAN?

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed

Details

See sNNclust from dbscan package

Value

giotto object with new clusters appended to cell metadata

Examples

```
doSNNCluster(gobject)
```

```
do_cell_proximity_test
```

 $do_cell_proximity_test$

Description

Performs a selected differential test on subsets of a matrix

do_limmatest 113

Examples

```
do_cell_proximity_test()
```

do_limmatest

do_limmatest

Description

Performs limma t.test on subsets of a matrix

Usage

```
do_limmatest(expr_values, select_ind, other_ind)
```

Examples

```
do_limmatest()
```

```
do_multi_permuttest_random
```

do_multi_permuttest_random

Description

calculate multiple random values

Usage

```
do_multi_permuttest_random(
  expr_values,
  select_ind,
  other_ind,
  n = 100,
  cores = 2
)
```

```
do_multi_permuttest_random()
```

```
\begin{tabular}{ll} $do\_permuttest\_original \\ \hline & do\_permuttest\_original \\ \end{tabular}
```

Description

calculate original values

Usage

```
do_permuttest_original(expr_values, select_ind, other_ind, name = "orig")
```

Examples

```
do_permuttest_original()
```

```
do_permuttest_random do_permuttest_random
```

Description

calculate random values

Performs permutation test on subsets of a matrix

Usage

```
do_permuttest_random(expr_values, select_ind, other_ind, name = "perm_1")
do_permuttest(
    expr_values,
    select_ind,
    other_ind,
    n_perm = 100,
    adjust_method = "fdr",
    cores = 2
)
```

```
do_permuttest_random()
do_permuttest_random()
```

```
\begin{tabular}{ll} $do\_spatial\_grid\_averaging \\ $do\_spatial\_grid\_averaging \\ \end{tabular}
```

Description

smooth gene expression over a defined spatial grid

Usage

```
do_spatial_grid_averaging(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  subset_genes = NULL,
  spatial_grid_name = "spatial_grid",
  min_cells_per_grid = 4
)
```

Arguments

Value

matrix with smoothened gene expression values based on spatial grid

Examples

```
do_spatial_grid_averaging(gobject)
```

```
\begin{tabular}{ll} $do\_spatial\_knn\_smoothing \\ $do\_spatial\_knn\_smoothing \\ \end{tabular}
```

Description

smooth gene expression over a kNN spatial network

116 do_ttest

Usage

```
do_spatial_knn_smoothing(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  subset_genes = NULL,
  spatial_network_name = "spatial_network",
  b = NULL
)
```

Arguments

```
gobject giotto object
expression_values
gene expression values to use
subset_genes subset of genes to use
spatial_network_name
name of spatial network to use
b smoothing factor beteen 0 and 1 (default: automatic)
```

Details

This function will smoothen the gene expression values per cell according to its neighbors in the selected spatial network.

b is a smoothening factor that defaults to 1 - 1/k, where k is the median number of k-neighbors in the selected spatial network. Setting b = 0 means no smoothing and b = 1 means no contribution from its own expression.

Value

matrix with smoothened gene expression values based on kNN spatial network

Examples

```
do_spatial_knn_smoothing(gobject)
```

do_ttest

do_ttest

Description

Performs t.test on subsets of a matrix

Performs wilcoxon on subsets of a matrix

```
do_ttest(expr_values, select_ind, other_ind, adjust_method)
do_wilctest(expr_values, select_ind, other_ind, adjust_method)
```

DT_removeNA 117

Examples

```
do_ttest()
do_ttest()
```

DT_removeNA

DT_removeNA

Description

set NA values to 0

Usage

DT_removeNA(DT)

dt_to_matrix

 dt_to_matrix

Description

converts data.table to matrix

Usage

```
dt_to_matrix(x)
```

Examples

dt_to_matrix(x)

exportGiottoViewer

exportGiot to Viewer

Description

compute highly variable genes

118 exportGiottoViewer

Usage

```
exportGiottoViewer(
      gobject,
      output_directory = NULL,
      spat_enr_names = NULL,
      factor_annotations = NULL,
      numeric_annotations = NULL,
      dim_reductions,
      dim_reduction_names,
      expression_values = c("scaled", "normalized", "custom"),
      dim_red_rounding = NULL,
      dim_red_rescale = c(-20, 20),
      expression_rounding = 2,
      overwrite_dir = T,
      verbose = T
    )
Arguments
                     giotto object
    gobject
    output_directory
                     directory where to save the files
    spat_enr_names spatial enrichment results to include for annotations
    factor_annotations
                     giotto cell annotations to view as factor
    numeric_annotations
                     giotto cell annotations to view as numeric
    dim_reductions high level dimension reductions to view
    dim_reduction_names
                     specific dimension reduction names
    expression_values
                     expression values to use in Viewer
    dim_red_rounding
                     numerical indicating how to round the coordinates
    dim_red_rescale
```

numericals to rescale the coordinates

Details

expression_rounding

overwrite_dir

verbose

Giotto Viewer expects the results from Giotto Analyzer in a specific format, which is provided by this function. To include enrichment results from createSpatialEnrich include the provided spatial enrichment name (default PAGE or rank) and add the gene signature names (.e.g cell types) to the numeric annotations parameter.

numerical indicating how to round the expression data overwrite files in the directory if it already existed

Value

writes the necessary output to use in Giotto Viewer

be verbose

exprCellCellcom 119

Examples

```
exportGiottoViewer(gobject)
```

exprCellCellcom

exprCellCellcom

Description

Cell-Cell communication scores based on expression only

Usage

Arguments

```
gobject
                  giotto object to use
cluster_column cluster column with cell type information
random_iter
                  number of iterations
                  first specific gene set from gene pairs
gene_set_1
gene_set_2
                  second specific gene set from gene pairs
log2FC_addendum
                  addendum to add when calculating log2FC
                  which method to adjust p-values
adjust_method
adjust_target
                  adjust multiple hypotheses at the cell or gene level
verbose
                  verbose
```

Details

Statistical framework to identify if pairs of genes (such as ligand-receptor combinations) are expressed at higher levels than expected based on a reshuffled null distribution of gene expression values, without considering the spatial position of cells. More details will follow soon.

Value

Cell-Cell communication scores for gene pairs based on expression only

```
exprCellCellcom(gobject)
```

120 extractNearestNetwork

```
extended_gini_fun extended_gini_fun
```

Description

calculate gini coefficient on a minimum length vector

Usage

```
extended_gini_fun(x, weights = rep(1, length = length(x)), minimum_length = 16)
```

Value

gini coefficient

```
extractNearestNetwork extractNearestNetwork
```

Description

Extracts a NN-network from a Giotto object

Usage

```
extractNearestNetwork(
  gobject,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  output = c("igraph", "data.table")
)
```

Arguments

Value

igraph or data.table object

```
extractNearestNetwork(gobject)
```

fDataDT

fDataDT

fDataDT

Description

show gene metadata

Usage

```
fDataDT(gobject)
```

Arguments

gobject

giotto object

Value

data.table with gene metadata

Examples

```
pDataDT(gobject)
```

```
filter {\tt CellProximityGenes}
```

filter Cell Proximity Genes

Description

Filter cell proximity gene scores.

```
filterCellProximityGenes(
  cpgObject,
  min_cells = 5,
  min_int_cells = 3,
  min_fdr = 0.05,
  min_spat_diff = 0.2,
  min_log2_fc = 0.5,
  direction = c("both", "up", "down")
```

122 filterCombinations

Arguments

```
cpgObject cell proximity gene score object
min_cells minimum number of target cell type
min_int_cells minimum number of interacting cell type
min_fdr minimum adjusted p-value
min_spat_diff minimum absolute spatial expression difference
min_log2_fc minimum absolute log2 fold-change
direction differential expression directions to keep
```

Value

cpgObject that contains the filtered differential gene scores

Examples

```
filterCellProximityGenes(gobject)
```

filterCombinations filterCombinations

Description

Shows how many genes and cells are lost with combinations of thresholds.

Usage

```
filterCombinations(
  gobject,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  expression_thresholds = c(1, 2),
  gene_det_in_min_cells = c(5, 50),
  min_det_genes_per_cell = c(200, 400),
  scale_x_axis = "identity",
  x_axis_offset = 0,
  scale_y_axis = "identity",
  y_axis_offset = 0,
  show_plot = TRUE
)
```

Arguments

```
gobject giotto object

expression_values

expression values to use

expression_thresholds

all thresholds to consider a gene expressed

gene_det_in_min_cells

minimum number of cells that should express a gene to consider that gene further
```

filterCPG 123

```
min_det_genes_per_cell
minimum number of expressed genes per cell to consider that cell further
scale_x_axis ggplot transformation for x-axis (e.g. log2)
x_axis_offset x-axis offset to be used together with the scaling transformation
scale_y_axis ggplot transformation for y-axis (e.g. log2)
y_axis_offset y-axis offset to be used together with the scaling transformation
show_plot show plot
```

Details

Creates a scatterplot that visualizes the number of genes and cells that are lost with a specific combination of a gene and cell threshold given an arbitrary cutoff to call a gene expressed. This function can be used to make an informed decision at the filtering step with filterGiotto.

Value

list of data.table and ggplot object

Examples

```
filterCombinations(gobject)
```

filterCPG filterCPG

Description

Filter cell proximity gene scores.

Usage

```
filterCPG(
  cpgObject,
  min_cells = 5,
  min_int_cells = 3,
  min_fdr = 0.05,
  min_spat_diff = 0.2,
  min_log2_fc = 0.5,
  direction = c("both", "up", "down")
)
```

Arguments

```
cpgObject cell proximity gene score object
min_cells minimum number of target cell type
min_int_cells minimum number of interacting cell type
min_fdr minimum adjusted p-value
min_spat_diff minimum absolute spatial expression difference
min_log2_fc minimum absolute log2 fold-change
direction differential expression directions to keep
```

124 filterCPGscores

Value

cpgObject that contains the filtered differential gene scores

Examples

```
filterCPG(gobject)
```

filterCPGscores

filterCPGscores

Description

visualize Cell Proximity Gene enrichment scores

Usage

```
filterCPGscores(
   CPGscore,
   min_cells = 5,
   min_fdr = 0.05,
   min_spat_diff = 0.2,
   min_log2_fc = 0.5,
   keep_int_duplicates = TRUE,
   direction = c("both", "up", "down")
)
```

Arguments

```
min_cells min number of cells threshold
min_fdr false_discovery threshold
min_spat_diff spatial difference threshold
min_log2_fc min log2 fold-change
keep_int_duplicates
keep both cell_A-cell_B and cell_B-cell_A
direction expression changes to keep
method visualization method
```

Details

This function filters the output from getCellProximityGeneScores based on false-discovery rate, minimum absolute difference, minimum log fold-change and direction of change.

Value

Gene to gene scores in data.table format

```
filterCPGscores(CPGscore)
```

filterDistributions 125

```
filterDistributions filterDistributions
```

Description

show gene or cell distribution after filtering on expression threshold

Usage

```
filterDistributions(
  gobject,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  expression_threshold = 1,
  detection = c("genes", "cells"),
  plot_type = c("histogram", "violin"),
  nr_bins = 30,
  fill_color = "lightblue",
  scale_axis = "identity",
  axis_offset = 0,
  show_plot = TRUE
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
expression_threshold
                  threshold to consider a gene expressed
detection
                  consider genes or cells
plot_type
                  type of plot
nr_bins
                  number of bins for histogram plot
fill_color
                  fill color for plots
scale_axis
                  ggplot transformation for axis (e.g. log2)
                  offset to be used together with the scaling transformation
axis_offset
show_plot
                  show plot
```

Value

ggplot object

```
filterDistributions(gobject)
```

126 filterGiotto

filterGiotto

filterGiotto

Description

filter Giotto object based on expression threshold

Usage

```
filterGiotto(
  gobject,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  expression_threshold = 1,
  gene_det_in_min_cells = 100,
  min_det_genes_per_cell = 100,
  verbose = F
)
```

Arguments

```
gobject giotto object

expression_values

expression values to use

expression_threshold

threshold to consider a gene expressed

gene_det_in_min_cells

minimum # of cells that need to express a gene

min_det_genes_per_cell

minimum # of genes that need to be detected in a cell

verbose

verbose
```

Details

The function filterCombinations can be used to explore the effect of different parameter values.

Value

giotto object

```
filterGiotto(gobject)
```

```
findCellProximityGenes
```

findCellProximityGenes

Description

Identifies genes that are differentially expressed due to proximity to other cell types.

Usage

Arguments

```
gobject
                 giotto object
expression_values
                 expression values to use
cluster_column name of column to use for cell types
spatial_network_name
                 name of spatial network to use
minimum_unique_cells
                 minimum number of target cells required
minimum_unique_int_cells
                 minimum number of interacting cells required
                 which differential expression test
diff_test
adjust_method which method to adjust p-values
nr_permutations
                 number of permutations if diff_test = permutation
exclude_selected_cells_from_test
                 exclude interacting cells other cells
                 run calculations in parallel with mclapply
do_parallel
                 number of cores to use if do_parallel = TRUE
cores
```

Details

Function to calculate if genes are differentially expressed in cell types when they interact (approximated by physical proximity) with other cell types. The results data.table in the cpgObject contains - at least - the following columns:

- genes: All or selected list of tested genes
- sel: average gene expression in the interacting cells from the target cell type
- other: average gene expression in the NOT-interacting cells from the target cell type
- log2fc: log2 fold-change between sel and other
- diff: spatial expression difference between sel and other
- p.value: associated p-value
- p.adj: adjusted p-value
- cell_type: target cell type
- int_cell_type: interacting cell type
- nr_select: number of cells for selected target cell type
- int_nr_select: number of cells for interacting cell type
- nr_other: number of other cells of selected target cell type
- int_nr_other: number of other cells for interacting cell type
- unif int: cell-cell interaction

Value

cpgObject that contains the differential gene scores

Examples

```
findCellProximityGenes(gobject)
```

```
find {\tt CellProximityGenes\_per\_interaction} \\ find {\tt CellProximityGenes\_per\_interaction}
```

Description

Identifies genes that are differentially expressed due to proximity to other cell types.

```
findCellProximityGenes_per_interaction(
  expr_values,
  cell_metadata,
  annot_spatnetwork,
  sel_int,
  minimum_unique_cells = 1,
  minimum_unique_int_cells = 1,
  exclude_selected_cells_from_test = T,
  diff_test = c("permutation", "limma", "t.test", "wilcox"),
  adjust_method = "bonferroni",
  nr_permutations = 100,
  cores = 1
)
```

findCPG 129

Examples

findCellProximityGenes_per_interaction()

findCPG

findCPG

Description

Identifies genes that are differentially expressed due to proximity to other cell types.

Usage

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
cluster_column name of column to use for cell types
spatial_network_name
                  name of spatial network to use
minimum_unique_cells
                  minimum number of target cells required
minimum_unique_int_cells
                  minimum number of interacting cells required
diff_test
                  which differential expression test
                  which method to adjust p-values
adjust_method
nr_permutations
                  number of permutations if diff_test = permutation
{\tt exclude\_selected\_cells\_from\_test}
                  exclude interacting cells other cells
do_parallel
                  run calculations in parallel with mclapply
                  number of cores to use if do_parallel = TRUE
cores
```

130 findGiniMarkers

Details

Function to calculate if genes are differentially expressed in cell types when they interact (approximated by physical proximity) with other cell types. The results data.table in the cpgObject contains - at least - the following columns:

- genes: All or selected list of tested genes
- sel: average gene expression in the interacting cells from the target cell type
- other: average gene expression in the NOT-interacting cells from the target cell type
- log2fc: log2 fold-change between sel and other
- diff: spatial expression difference between sel and other
- p.value: associated p-value
- p.adj: adjusted p-value
- cell_type: target cell type
- int_cell_type: interacting cell type
- nr_select: number of cells for selected target cell type
- int_nr_select: number of cells for interacting cell type
- nr_other: number of other cells of selected target cell type
- int_nr_other: number of other cells for interacting cell type
- unif_int: cell-cell interaction

Value

cpgObject that contains the differential gene scores

Examples

```
findCPG(gobject)
```

findGiniMarkers

findGiniMarkers

Description

Identify marker genes for selected clusters based on gini detection and expression scores.

```
findGiniMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  group_1 = NULL,
  group_2 = NULL,
  min_expr_gini_score = 0.2,
  min_det_gini_score = 0.2,
  detection_threshold = 0,
  rank_score = 1,
  min_genes = 5
)
```

findGiniMarkers 131

Arguments

```
giotto object
gobject
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
                  group 1 cluster IDs from cluster_column for pairwise comparison
group_1
                  group 2 cluster IDs from cluster_column for pairwise comparison
group_2
min_expr_gini_score
                  filter on minimum gini coefficient for expression
min_det_gini_score
                  filter on minimum gini coefficient for detection
detection_threshold
                  detection threshold for gene expression
                  rank scores for both detection and expression to include
rank_score
                  minimum number of top genes to return
min_genes
```

Details

Detection of marker genes using the <a href="https://en.wikipedia.org/wiki/Gini_coefficientginic

- 1. calculate average expression per cluster
- 2. calculate detection fraction per cluster
- 3. calculate gini-coefficient for av. expression values over all clusters
- 4. calculate gini-coefficient for detection fractions over all clusters
- 5. convert gini-scores to rank scores
- 6. for each gene create combined score = detection rank x expression rank x expr ginicoefficient x detection gini-coefficient
- 7. for each gene sort on expression and detection rank and combined score

As a results "top gini" genes are genes that are very selectivily expressed in a specific cluster, however not always expressed in all cells of that cluster. In other words highly specific, but not necessarily sensitive at the single-cell level.

To perform differential expression between cluster groups you need to specificy cluster IDs to the parameters *group_1* and *group_2*.

Value

data.table with marker genes

Examples

findGiniMarkers(gobject)

```
find {\it GiniMarkers\_one\_vs\_all} \\ {\it find GiniMarkers\_one\_vs\_all}
```

Description

Identify marker genes for all clusters in a one vs all manner based on gini detection and expression scores.

Usage

```
findGiniMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  min_expr_gini_score = 0.5,
  min_det_gini_score = 0.5,
  detection_threshold = 0,
  rank_score = 1,
  min_genes = 4,
  verbose = TRUE
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
min_expr_gini_score
                  filter on minimum gini coefficient on expression
min_det_gini_score
                  filter on minimum gini coefficient on detection
detection_threshold
                  detection threshold for gene expression
rank_score
                  rank scores for both detection and expression to include
                  minimum number of top genes to return
min_genes
verbose
                  be verbose
```

Value

data.table with marker genes

See Also

findGiniMarkers

findMarkers 133

Examples

```
findGiniMarkers_one_vs_all(gobject)
```

findMarkers

findMarkers

Description

Identify marker genes for selected clusters.

Usage

```
findMarkers(
 gobject,
  expression_values = c("normalized", "scaled", "custom"),
 cluster_column,
 method = c("scran", "gini", "mast"),
 subset_clusters = NULL,
 group_1 = NULL,
 group_2 = NULL,
 min_expr_gini_score = 0.5,
 min_det_gini_score = 0.5,
 detection_threshold = 0,
 rank_score = 1,
 min\_genes = 4,
 group_1_name = NULL,
 group_2_name = NULL,
 adjust_columns = NULL,
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
method
                  method to use to detect differentially expressed genes
subset_clusters
                  selection of clusters to compare
group_1
                  group 1 cluster IDs from cluster_column for pairwise comparison
                  group 2 cluster IDs from cluster_column for pairwise comparison
group_2
min_expr_gini_score
                  gini: filter on minimum gini coefficient for expression
min\_det\_gini\_score
                  gini: filter minimum gini coefficient for detection
detection\_threshold
                  gini: detection threshold for gene expression
```

```
rank_score gini: rank scores to include
min_genes minimum number of top genes to return (for gini)
group_1_name mast: custom name for group_1 clusters
group_2_name mast: custom name for group_2 clusters
adjust_columns mast: column in pDataDT to adjust for (e.g. detection rate)
... additional parameters for the findMarkers function in scran or zlm function in MAST
```

Details

Wrapper for all individual functions to detect marker genes for clusters.

Value

data.table with marker genes

See Also

findScranMarkers, findGiniMarkers and findMastMarkers

Examples

```
findMarkers(gobject)
```

Description

Identify marker genes for all clusters in a one vs all manner.

```
findMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  method = c("scran", "gini", "mast"),
  pval = 0.01,
  logFC = 0.5,
  min_genes = 10,
  min_expr_gini_score = 0.5,
  min_det_gini_score = 0.5,
  detection_threshold = 0,
  rank_score = 1,
  adjust_columns = NULL,
  verbose = TRUE,
)
```

findMarkers_one_vs_all 135

Arguments

gobject giotto object

expression_values

gene expression values to use

cluster_column clusters to use

subset_clusters

selection of clusters to compare

method method to use to detect differentially expressed genes

pval scran & mast: filter on minimal p-value

logFC scan & mast: filter on logFC

min_genes minimum genes to keep per cluster, overrides pval and logFC

min_expr_gini_score

gini: filter on minimum gini coefficient for expression

min_det_gini_score

gini: filter minimum gini coefficient for detection

detection_threshold

gini: detection threshold for gene expression

rank_score gini: rank scores to include

adjust_columns mast: column in pDataDT to adjust for (e.g. detection rate)

verbose be verbose

... additional parameters for the findMarkers function in scran or zlm function in

MAST

Details

Wrapper for all one vs all functions to detect marker genes for clusters.

Value

data.table with marker genes

See Also

findScranMarkers_one_vs_all, findGiniMarkers_one_vs_all and findMastMarkers_one_vs_all

```
{\tt findMarkers\_one\_vs\_all(gobject)}
```

136 findMastMarkers

findMastMarkers

findMastMarkers

Description

Identify marker genes for selected clusters based on the MAST package.

Usage

```
findMastMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  group_1 = NULL,
  group_1_name = NULL,
  group_2 = NULL,
  group_2_name = NULL,
  adjust_columns = NULL,
  ...
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
                  group 1 cluster IDs from cluster_column for pairwise comparison
group_1
                  custom name for group_1 clusters
group_1_name
                  group 2 cluster IDs from cluster_column for pairwise comparison
group_2
group_2_name
                  custom name for group_2 clusters
adjust_columns column in pDataDT to adjust for (e.g. detection rate)
                  additional parameters for the zlm function in MAST
. . .
```

Details

This is a minimal convenience wrapper around the zlm from the MAST package to detect differentially expressed genes.

Value

data.table with marker genes

```
findMastMarkers(gobject)
```

```
find {\it MastMarkers\_one\_vs\_all} \\ find {\it MastMarkers\_one\_vs\_all}
```

Description

Identify marker genes for all clusters in a one vs all manner based on the MAST package.

Usage

```
findMastMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  adjust_columns = NULL,
  pval = 0.001,
  logFC = 1,
  min_genes = 10,
  verbose = TRUE,
  ...
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
adjust_columns column in pDataDT to adjust for (e.g. detection rate)
                  filter on minimal p-value
pval
logFC
                  filter on logFC
min_genes
                  minimum genes to keep per cluster, overrides pval and logFC
                  be verbose
verbose
                  additional parameters for the zlm function in MAST
```

Value

data.table with marker genes

See Also

findMastMarkers

```
findMastMarkers_one_vs_all(gobject)
```

138 findScranMarkers

findScranMarkers

findScranMarkers

Description

Identify marker genes for all or selected clusters based on scran's implementation of findMarkers.

Usage

```
findScranMarkers(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  group_1 = NULL,
  group_2 = NULL,
  ...
)
```

Arguments

```
gobject giotto object
expression_values
gene expression values to use

cluster_column clusters to use
subset_clusters
selection of clusters to compare
group_1 group 1 cluster IDs from cluster_column for pairwise comparison
group_2 group 2 cluster IDs from cluster_column for pairwise comparison
additional parameters for the findMarkers function in scran
```

Details

This is a minimal convenience wrapper around the findMarkers function from the scran package.

To perform differential expression between cluster groups you need to specificy cluster IDs to the parameters *group_1* and *group_2*.

Value

data.table with marker genes

```
findScranMarkers(gobject)
```

```
\label{lem:cone_vs_all} find Scran Markers\_one\_vs\_all \\ find Scran Markers\_one\_vs\_all
```

Description

Identify marker genes for all clusters in a one vs all manner based on scran's implementation of findMarkers.

Usage

```
findScranMarkers_one_vs_all(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  pval = 0.01,
  logFC = 0.5,
  min_genes = 10,
  verbose = TRUE,
  ...
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  subset of clusters to use
pval
                  filter on minimal p-value
logFC
                  filter on logFC
                  minimum genes to keep per cluster, overrides pval and logFC
min_genes
verbose
                  be verbose
                  additional parameters for the findMarkers function in scran
```

Value

data.table with marker genes

See Also

findScranMarkers

```
findScranMarkers_one_vs_all(gobject)
```

find_grid_y

find_grid_2D

 $find_grid_2D$

Description

find grid location in 2D

Usage

```
find_grid_2D(grid_DT, x_loc, y_loc)
```

 $find_grid_3D$

find_grid_3D

Description

find grid location in 3D

Usage

```
find_grid_3D(grid_DT, x_loc, y_loc, z_loc)
```

find_grid_x

find_grid_x

Description

find grid location on x-axis

Usage

```
find_grid_x(grid_DT, x_loc)
```

find_grid_y

 $find_grid_y$

Description

find grid location on y-axis

```
find_grid_y(grid_DT, y_loc)
```

find_grid_z

find_grid_z

 $find_grid_z$

Description

find grid location on z-axis

Usage

```
find_grid_z(grid_DT, z_loc)
```

fish_function

fish_function

Description

perform fisher exact test

Usage

```
fish_function(x_to, x_from)
```

fish_function2

 $fish_function2$

Description

perform fisher exact test

```
fish_function2(A, B, C, D)
```

FSV_show

FSV_show

FSV_show

Description

Visualize spatial varible genes caculated by spatial_DE

Usage

```
FSV_show(
  results,
  ms_results = NULL,
  size = c(4, 2, 1),
  color = c("blue", "green", "red"),
  sig_alpha = 0.5,
  unsig_alpha = 0.5
)
```

Arguments

results results caculated by spatial_DE

ms_results ms_results caculated by spatial_DE

size indicate different levels of qval

color indicate different SV features

sig_alpha transparency of significant genes

unsig_alpha transparency of unsignificant genes

Details

Description of parameters.

Value

nothing

```
FSV_show(results)
```

GenePattern_show 143

GenePattern_show

GenePattern_show

Description

Visualize genes distribution patterns calculated by spatial_AEH

Usage

```
GenePattern_show(
  gobject = NULL,
  AEH_results = NULL,
  sdimx = NULL,
  sdimy = NULL,
  point_size = 3,
  point_alpha = 1,
  low_color = "blue",
  mid_color = "white",
  high_color = "red",
  midpoint = 0
)
```

Arguments

gobject giotto object results from spatial_AEH AEH_results sdimx x axis of spatial locus sdimy y axis of spatial locus point_size size of points to indicate cells transparency of points to indicate cells point_alpha low_color color to indicate low score level color to indicate middle score level mid_color high_color color to indicate high score level point to set mid_color midpoint

Details

Description of parameters.

Value

nothing

```
GenePattern_show(gobject,AEH_results)
```

```
general_save_function general_save_function
```

Description

Function to automatically save plots to directory of interest

Usage

```
general_save_function(
   gobject,
   plot_object,
   save_dir = NULL,
   save_folder = NULL,
   save_name = NULL,
   default_save_name = "giotto_plot",
   save_format = c("png", "tiff", "pdf", "svg"),
   show_saved_plot = F,
   base_width = NULL,
   base_height = NULL,
   base_aspect_ratio = NULL,
   units = NULL,
   dpi = NULL,
   ...
)
```

Arguments

```
gobject
                  giotto object
                  non-ggplot object to plot
plot_object
save_dir
                  directory to save to
save_folder
                  folder in save_dir to save to
                  name of plot
save_name
save_format
                  format (e.g. png, tiff, pdf, ...)
show_saved_plot
                  load & display the saved plot
base_width
                  width
base_height
                  height
base_aspect_ratio
                  aspect ratio
units
                  units
dpi
                  Plot resolution
```

```
general_save_function(gobject)
```

get10Xmatrix 145

get10Xmatrix

get10Xmatrix

Description

This function creates an expression matrix from a 10X structured folder

Usage

```
get10Xmatrix(path_to_data, gene_column_index = 1)
```

Arguments

```
path_to_data path to the 10X folder gene_column_index which column from the features or genes .tsv file to use for row ids
```

Details

A typical 10X folder is named raw_feature_bc_matrix or raw_feature_bc_matrix and tt has 3 files:

- barcodes.tsv(.gz)
- features.tsv(.gz) or genes.tsv(.gz)
- matrix.mtx(.gz)

By default the first column of the features or genes .tsv file will be used, however if multiple annotations are provided (e.g. ensembl gene ids and gene symbols) the user can select another column.

Value

expression matrix from 10X

Examples

```
get10Xmatrix(10Xmatrix)
```

```
{\it get Cell Proximity Gene Scores} \\ {\it get Cell Proximity Gene Scores}
```

Description

Compute cell-cell interaction enrichment (observed vs expected)

Usage

verbose

verbose

```
getCellProximityGeneScores(
      gobject,
      spatial_network_name = "spatial_network",
      cluster_column = "louvain_clus.1",
      selected_genes = NULL,
      expression_values = c("normalized", "scaled", "custom"),
      do_diff_test = TRUE,
      diff_test = c("t.test", "wilcox"),
      false_discovery_test = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY",
        "fdr", "none"),
      false_discovery_target = c("cell_interactions", "genes"),
      minimum_unique_cells = NA,
      fold_change_addendum = 0.1,
      in_two_directions = TRUE,
      exclude_selected_cells_from_test = F,
      do_parallel = TRUE,
      cores = NA,
      verbose = T
    )
Arguments
   gobject
                     giotto object
    spatial_network_name
                     name of spatial network to use
    cluster_column name of column to use for clusters
    selected_genes selection of genes to perform calculations for
    expression_values
                     expression values to use
                    perform differential test
    do_diff_test
    diff_test
                     which differential expression test
    false_discovery_test
                     test to adjust p-values for multiple hypothesis testing
    false_discovery_target
                     adjust p-values per cell-cell pair or per gene
   minimum_unique_cells
                     minimum number of cells needed to proceed
    fold_change_addendum
                     constant to add when calculating log2 fold-change
    in_two_directions
                     shows enrichment in both directions: cell1-cell2, cell2-cell1
    exclude_selected_cells_from_test
                     exclude certain cells from test
    do_parallel
                     run enrichment calculations in parallel with mclapply
                     number of cores to use if do_parallel = TRUE
    cores
```

Details

Function to calculate if genes are differentially expressed in cell types when they interact (according to physical proximity) with other cell types. The results data.table contains the following columns:

- genes: All or selected list of tested genes
- cell_expr_1: average gene expression in cell type 1 from unified_int cell-cell interaction
- cell_expr_2: average gene expression in cell type 2 from unified_int cell-cell interaction
- comb_expr: combined average gene expression in cell type 1 and 2 from unified_int cell-cell interaction
- all_cell_expr_1: average gene expression for all cells from cell type 1
- all_cell_expr_2: average gene expression for all cells from cell type 2
- all comb expr: combined average gene expression for all cells from cell type 1 and 2
- pval_1: p-value from test between interacting cells and all cells from cell type 1
- pval_2: p-value from test between interacting cells and all cells from cell type 2
- cell_type_1: first cell type of cell-cell interaction
- cell type 2: second cell type of cell-cell interaction
- interaction: the cell-cell interaction, based on physical proximity
- nr_1: number of cell type 1 in the unified cell-cell interaction
- nr_2: number of cell type 2 in the unified cell-cell interaction
- all_nr_1: number of all cell type 1 in the whole dataset
- all_nr_2: number of all cell type 2 in the whole dataset
- diff_spat: difference between comb_expr and all_comb_expr
- diff_spat_1: difference between cell_expr_1 and all_cell_expr_1
- diff_spat_2: difference between cell_expr_1 and all_cell_expr_1
- log2fc spat 1: fold-change of diff spat 1
- log2fc_spat_2: fold-change of diff_spat_2
- log2fc_spat: fold-change of diff_spat
- type_int: type of interaction
- unified_int: interaction with alphabetically sorted cell type 1 and cell type 2
- unif_int_rank: 1 or 2
- fdr_1: fdr from test between interacting cells and all cells from cell type 1
- fdr_2: fdr from test between interacting cells and all cells from cell type 2

Value

Cell Proximity Gene scores (CPGscores) in data.table format

Examples

getCellProximityGeneScores(gobject)

getDendrogramSplits

```
getClusterSimilarity
getClusterSimilarity
```

Description

Creates data.table with pairwise correlation scores between each cluster.

Usage

148

```
getClusterSimilarity(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman")
)
```

Arguments

```
gobject giotto object
expression_values
expression values to use
cluster_column name of column to use for clusters
cor correlation score to calculate distance
```

Details

Creates data.table with pairwise correlation scores between each cluster and the group size (# of cells) for each cluster. This information can be used together with mergeClusters to combine very similar or small clusters into bigger clusters.

Value

data.table

Examples

```
getClusterSimilarity(gobject)
```

```
getDendrogramSplits getDendrogramSplits
```

Description

Split dendrogram at each node and keep the leave (label) information..

getDistinctColors 149

Usage

```
getDendrogramSplits(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman"),
  distance = "ward.D",
  h = NULL,
  h_color = "red",
  show_dend = TRUE,
  verbose = TRUE
)
```

Arguments

Details

verbose

Creates a data.table with three columns and each row represents a node in the dendrogram. For each node the height of the node is given together with the two subdendrograms. This information can be used to determine in a hierarchical manner differentially expressed marker genes at each node.

Value

data.table object

Examples

```
getDendrogramSplits(gobject)
```

be verbose

getDistinctColors

Description

Returns a number of distint colors based on the RGB scale

```
getDistinctColors(n)
```

Arguments

n number of colors wanted

Value

number of distinct colors

getGeneToGeneScores

Description

Compute gene-gene enrichment scores.

Usage

```
getGeneToGeneScores(
   CPGscore,
   selected_genes = NULL,
   specific_genes_1 = NULL,
   specific_genes_2 = NULL,
   min_cells = 5,
   min_fdr = 0.05,
   min_spat_diff = 0.2,
   min_log2_fc = 0.5,
   direction = c("both", "up", "down"),
   fold_change_addendum = 0.1,
   do_parallel = TRUE,
   cores = NA,
   verbose = TRUE
)
```

```
CPGscore, output from getCellProximityGeneScores()
CPGscore
selected_genes select subset of genes
specific_genes_1
                  specific source genes (see details)
specific_genes_2
                  specific target genes (see details)
min_cells
                  min number of cells threshold
min_spat_diff
                  spatial difference threshold
min_log2_fc
                  log2 fold-change threshold
direction
                  up or downregulation or both
fold_change_addendum
                  constant to add when calculating log2 fold-change
do_parallel
                  run enrichment calculations in parallel with mclapply
cores
                  number of cores to use if do_parallel = TRUE
verbose
                  verbose
min_pval
                  p-value threshold
```

Details

This converts the single gene cell proximity scores into pairwise combinations of genes, which allows you to determine if 2 genes are differentially expressed in interacting cell types.

Value

Gene to gene scores in data.table format

Examples

```
getGeneToGeneScores(CPGscore)
```

```
{\it get\_cell\_to\_cell\_sorted\_name\_conversion} \\ {\it get\_cell\_to\_cell\_sorted\_name\_conversion}
```

Description

creates unified cell-cell interaction names

Usage

```
get_cell_to_cell_sorted_name_conversion(all_cell_types)
```

Examples

```
{\tt get\_cell\_to\_cell\_sorted\_name\_conversion()}
```

Description

Computes gene enrichment between all interactions

```
get_interaction_gene_enrichment(
   spatial_network,
   unified_int_col = "unified_int",
   source_col = "source_clus",
   source_IDs = "from",
   neighb_col = "neighb_clus",
   neighb_IDs = "to",
   expression_matrix,
   cell_annotation,
   annotation_ID = "uniq_ID",
   cell_type_col,
   do_diff_test = T,
```

```
diff_test = c("t.test", "wilcox"),
minimum_unique_cells = NA,
exclude_selected_cells_from_test = T,
do_parallel = TRUE,
cores = NA,
verbose = T
```

Examples

get_interaction_gene_enrichment()

Description

Computes gene enrichment between specified interaction

Usage

```
get_specific_interaction_gene_enrichment(
   sub_spatial_network,
   source_col = "source_clus",
   source_IDs = "from",
   neighb_col = "neighb_clus",
   neighb_IDs = "to",
   expression_matrix,
   interaction_name = "to_specify",
   cell_annotation,
   annotation_ID = "uniq_ID",
   cell_type_col,
   do_diff_test = T,
   diff_test = c("t.test", "wilcox"),
   minimum_unique_cells = NA,
   exclude_selected_cells_from_test = T
```

Examples

```
get_specific_interaction_gene_enrichment()
```

ggplot_save_function 153

```
ggplot_save_function ggplot_save_function
```

Description

Function to automatically save plots to directory of interest

Usage

```
ggplot_save_function(
  gobject,
  plot_object,
  save_dir = NULL,
  save_folder = NULL,
  save_name = NULL,
  default_save_name = "giotto_plot",
  save_format = NULL,
  show_saved_plot = F,
  ncol = 1,
  nrow = 1,
  scale = 1,
  base_width = NULL,
  base_height = NULL,
  base_aspect_ratio = NULL,
  units = NULL,
  dpi = NULL,
  limitsize = TRUE,
)
```

```
gobject
                  giotto object
                  ggplot object to plot
plot_object
save_dir
                  directory to save to
                  folder in save_dir to save to
save_folder
                  name of plot
save_name
save_format
                  format (e.g. png, tiff, pdf, ...)
show_saved_plot
                  load & display the saved plot
                  number of columns
ncol
                  number of rows
nrow
scale
                  scale
                  width
base_width
base_height
                  height
{\tt base\_aspect\_ratio}
                  aspect ratio
```

154 giotto-class

units units

dpi Plot resolution

limitsize When TRUE (the default), ggsave will not save images larger than 50x50 inches,

to prevent the common error of specifying dimensions in pixels.

See Also

```
cowplot::save_plot
```

Examples

ggplot_save_function(gobject)

giotto-class

S4 giotto Class

Description

Framework of giotto object to store and work with spatial expression data

Slots

raw_exprs raw expression counts norm_expr normalized expression counts norm_scaled_expr normalized and scaled expression counts custom_expr custom normalized counts spatial_locs spatial location coordinates for cells cell_metadata metadata for cells gene_metadata metadata for genes cell_ID unique cell IDs gene_ID unique gene IDs spatial_network spatial network in data.table/data.frame format spatial_grid spatial grid in data.table/data.frame format dimension_reduction slot to save dimension reduction coordinates nn_network nearest neighbor network in igraph format parameters slot to save parameters that have been used instructions slot for global function instructions offset_file offset file used to stitch together image fields OS_platform Operating System to run Giotto analysis on

 $heatmSpatialCorGenes \quad \textit{heatmSpatialCorGenes}$

Description

Create heatmap of spatially correlated genes

Usage

```
heatmSpatialCorGenes(
  gobject,
  spatCorObject,
  use_clus_name = NULL,
  show_cluster_annot = TRUE,
  show_row_dend = T,
  show_column_dend = F,
  show_row_names = F,
  show_column_names = F,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "heatmSpatialCorGenes",
  ...
)
```

```
gobject
                 giotto object
                 spatial correlation object
spatCorObject
use_clus_name
                 name of clusters to visualize (from clusterSpatialCorGenes())
show_cluster_annot
                 show cluster annotation on top of heatmap
show_row_dend
                 show row dendrogram
show_column_dend
                 show column dendrogram
show_row_names show row names
show_column_names
                 show column names
show_plot
                 show plot
return_plot
                 return ggplot object
                 directly save the plot [boolean]
save_plot
save_param
                 list of saving parameters from all_plots_save_function
default_save_name
                 default save name for saving, don't change, change save_name in save_param
                 additional parameters to the Heatmap function from ComplexHeatmap
. . .
```

Value

Heatmap generated by ComplexHeatmap

Examples

```
heatmSpatialCorGenes(gobject)
```

hyperGeometricEnrich hyperGeometricEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using a hypergeometric test.

Usage

```
hyperGeometricEnrich(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  top_percentage = 5,
  output_enrichment = c("original", "zscore")
)
```

Arguments

```
gobject Giotto object

sign_matrix Matrix of signature genes for each cell type / process

expression_values

expression values to use

reverse_log_scale

reverse expression values from log scale

logbase log base to use if reverse_log_scale = TRUE

top_percentage percentage of cells that will be considered to have gene expression with matrix binarization

output_enrichment

how to return enrichment output
```

Details

The enrichment score is calculated based on the p-value from the hypergeometric test, -log10(p-value).

Value

data.table with enrichment results

kmeans_binarize 157

Examples

```
hyperGeometricEnrich(gobject)
```

kmeans_binarize

kmeans_binarize

Description

create binarized scores using kmeans

Usage

```
kmeans_binarize(x, nstart = 3, iter.max = 10)
```

loadHMRF

loadHMRF

Description

load previous HMRF

Usage

```
loadHMRF(
  name_used = "test",
  output_folder_used,
  k_used = 10,
  betas_used,
  python_path_used
)
```

Arguments

```
\begin{tabular}{lll} name\_used & name of HMRF that was run \\ output\_folder\_used & output folder that was used \\ k\_used & number of HMRF domains that was tested \\ \end{tabular}
```

betas_used betas that were tested

 $\verb"python_path_used"$

python path that was used

Details

Description of HMRF parameters ...

Value

reloads a previous ran HMRF from doHRMF

Examples

```
loadHMRF(gobject)
```

158 makeSignMatrixRank

makeSignMatrixPAGE makeSignMatrixPAGE

Description

Function to convert a list of signature genes (e.g. for cell types or processes) into a binary matrix format that can be used with the PAGE enrichment option. Each cell type or process should have a vector of cell-type or process specific genes. These vectors need to be combined into a list (sign_list). The names of the cell types or processes that are provided in the list need to be given (sign_names).

Usage

```
makeSignMatrixPAGE(sign_names, sign_list)
```

Arguments

sign_names vector with names for each provided gene signature

sign_list list of genes (signature)

Value

matrix

See Also

PAGEEnrich

Examples

makeSignMatrixPAGE()

makeSignMatrixRank makeSignMatrixRank

Description

Function to convert a single-cell count matrix and a corresponding single-cell cluster vector into a rank matrix that can be used with the Rank enrichment option.

Usage

```
makeSignMatrixRank(sc_matrix, sc_cluster_ids, gobject = NULL)
```

Arguments

sc_matrix matrix of single-cell RNAseq expression data

sc_cluster_ids vector of cluster ids

gobject if giotto object is given then only genes present in both datasets will be consid-

ered

Value

matrix

See Also

rankEnrich

Examples

```
makeSignMatrixRank()
```

```
make_simulated_network
```

make_simulated_network

Description

Simulate random network.

Usage

```
make_simulated_network(
  gobject,
  spatial_network_name = "spatial_network",
  cluster_column,
  number_of_simulations = 100
)
```

Examples

```
make_simulated_network(gobject)
```

mergeClusters

mergeClusters

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

```
mergeClusters(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman"),
  new_cluster_name = "merged_cluster",
  min_cor_score = 0.8,
  max_group_size = 20,
  force_min_group_size = 10,
```

160 mygini_fun

```
return_gobject = TRUE,
verbose = TRUE
)
```

Arguments

```
giotto object
gobject
expression_values
                  expression values to use
cluster_column name of column to use for clusters
                  correlation score to calculate distance
cor
new_cluster_name
                  new name for merged clusters
                  min correlation score to merge pairwise clusters
min_cor_score
max_group_size max cluster size that can be merged
force_min_group_size
                  size of clusters that will be merged with their most similar neighbor(s)
return_gobject return giotto object
                  be verbose
verbose
```

Details

Merge selected clusters based on pairwise correlation scores and size of cluster. To avoid large clusters to merge the max_group_size can be lowered. Small clusters can be forcibly merged with their most similar pairwise cluster by adjusting the force_min_group_size parameter. Clusters smaller than this value will be merged independent on the provided min_cor_score value.

A giotto object is returned by default, if FALSE then the merging vector will be returned.

Value

Giotto object

Examples

```
mergeClusters(gobject)
```

mygini_fun

mygini_fun

Description

calculate gini coefficient

Usage

```
mygini_fun(x, weights = rep(1, length(x)))
```

Value

gini coefficient

nnDT_to_kNN 161

nnDT_to_kNN

 $nnDT_to_kNN$

Description

Convert a nearest network data.table to a kNN object

Usage

```
nnDT_to_kNN(nnDT)
```

Arguments

nnDT

nearest neighbor network in data.table format

Value

kNN object

node_clusters

node_clusters

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

Usage

```
node_clusters(hclus_obj, verbose = TRUE)
```

Arguments

hclus_obj hclus object
verbose be verbose

Value

list of splitted dendrogram nodes from high to low node height

Examples

```
node_clusters(hclus_obj)
```

162 normalizeGiotto

normalizeGiotto

normalize Giotto

Description

fast normalize and/or scale expresion values of Giotto object

Usage

```
normalizeGiotto(
  gobject,
  norm_methods = c("standard", "osmFISH"),
  library_size_norm = TRUE,
  scalefactor = 6000,
  log_norm = TRUE,
  log_offset = 1,
  logbase = 2,
  scale_genes = T,
  scale_cells = T,
  scale_order = c("first_genes", "first_cells"),
  verbose = F
)
```

Arguments

```
gobject
                  giotto object
norm_methods
                  normalization method to use
library_size_norm
                  normalize cells by library size
scalefactor
                  scale factor to use after library size normalization
                  transform values to log-scale
log_norm
log_offset
                  offset value to add to expression matrix, default = 1
logbase
                  log base to use to log normalize expression values
                  z-score genes over all cells
scale_genes
scale_cells
                  z-score cells over all genes
scale_order
                  order to scale genes and cells
verbose
                  be verbose
```

Details

Currently there are two 'methods' to normalize your raw counts data.

A. The standard method follows the standard protocol which can be adjusted using the provided parameters and follows the following order:

- 1. Data normalization for total library size and scaling by a custom scale-factor.
- 2. Log transformation of data.
- 3. Z-scoring of data by genes and/or cells.

normalizeGiottoOld 163

- B. The normalization method as provided by the osmFISH paper is also implemented:
 - 1. First normalize genes, for each gene divide the counts by the total gene count and multiply by the total number of genes.
 - 2. Next normalize cells, for each cell divide the normalized gene counts by the total counts per cell and multiply by the total number of cells.

This data will be saved in the Giotto slot for custom expression.

Value

giotto object

Examples

```
normalizeGiotto(gobject)
```

normalizeGiottoOld

normalizeGiotto

Description

normalize and/or scale expresion values of Giotto object

Usage

```
normalizeGiottoOld(
  gobject,
  norm_methods = c("standard", "osmFISH"),
  library_size_norm = TRUE,
  scalefactor = 6000,
  log_norm = TRUE,
  logbase = 2,
  scale_genes = T,
  scale_cells = T,
  scale_order = c("first_genes", "first_cells"),
  verbose = F
)
```

```
giotto object
gobject
                  normalization method to use
norm_methods
library_size_norm
                  normalize cells by library size
scalefactor
                  scale factor to use after library size normalization
log_norm
                  transform values to log-scale
logbase
                  log base to use to log normalize expression values
scale_genes
                  z-score genes over all cells
                  z-score cells over all genes
scale_cells
scale_order
                  order to scale genes and cells
verbose
                  be verbose
```

OR_function2

Details

Currently there are two 'methods' to normalize your raw counts data.

A. The standard method follows the standard protocol which can be adjusted using the provided parameters and follows the following order:

- 1. Data normalization for total library size and scaling by a custom scale-factor.
- 2. Log transformation of data.
- 3. Z-scoring of data by genes and/or cells.
- B. The normalization method as provided by the osmFISH paper is also implemented:
 - 1. First normalize genes, for each gene divide the counts by the total gene count and multiply by the total number of genes.
 - 2. Next normalize cells, for each cell divide the normalized gene counts by the total counts per cell and multiply by the total number of cells.

This data will be saved in the Giotto slot for custom expression.

Value

giotto object

Examples

normalizeGiotto(gobject)

OR_function2

OR_function2

Description

calculate odds-ratio

```
OR_function2(A, B, C, D)
```

PAGEEnrich 165

PAGEEnrich

PAGEEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using PAGE.

Usage

```
PAGEEnrich(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  output_enrichment = c("original", "zscore")
)
```

Arguments

Details

sign_matrix: a binary matrix with genes as row names and cell-types as column names. Alternatively a list of signature genes can be provided to makeSignMatrixPAGE, which will create the matrix for you.

The enrichment Z score is calculated by using method (PAGE) from Kim SY et al., BMC bioinformatics, 2005 as $Z=((Sm\ mu)*m^(1/2))/delta$. For each gene in each spot, mu is the fold change values versus the mean expression and delta is the standard deviation. Sm is the mean fold change value of a specific marker gene set and m is the size of a given marker gene set.

Value

data.table with enrichment results

See Also

makeSignMatrixPAGE

Examples

```
PAGEEnrich(gobject)
```

pDataDT

pagePermutation

pagePermutation

Description

creates permutation for the PAGEEnrich test

Usage

```
pagePermutation(sc_gene, gene_number, n)
```

Examples

pagePermutation()

pDataDT

pDataDT

Description

show cell metadata

Usage

```
pDataDT(gobject)
```

Arguments

gobject

giotto object

Value

data.table with cell metadata

Examples

```
pDataDT(gobject)
```

plotCCcomDotplot 167

 $plot {\tt CCcomDotplot} \\ plot {\tt CCcomDotplot}$

Description

Plots dotplot for ligand-receptor communication scores in cell-cell interactions

Usage

```
plotCCcomDotplot(
  gobject,
  comScores,
  selected_LR = NULL,
  selected_cell_LR = NULL,
  show_LR_names = TRUE,
  show_cell_LR_names = TRUE,
  cluster_on = c("PI", "LR_expr", "log2fc"),
  cor_method = c("pearson", "kendall", "spearman"),
  aggl_method = c("ward.D", "ward.D2", "single", "complete", "average", "mcquitty",
    "median", "centroid"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCCcomDotplot"
)
```

```
giotto object
gobject
comScores
                  communinication scores from exprCellCellcom or spatCellCellcom
                  selected ligand-receptor combinations
selected_LR
selected_cell_LR
                  selected cell-cell combinations for ligand-receptor combinations
show_LR_names
                  show ligand-receptor names
show_cell_LR_names
                  show cell-cell names
                  values to use for clustering of cell-cell and ligand-receptor pairs
cluster_on
                  correlation method used for clustering
cor\_method
aggl_method
                  agglomeration method used by hclust
                  show plots
show_plot
return_plot
                  return plotting object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  values to show on heatmap
show
```

168 plotCCcomHeatmap

Value

ggplot

Examples

```
plotCCcomDotplot(CPGscores)
```

plotCCcomHeatmap

plotCCcomHeatmap

Description

Plots heatmap for ligand-receptor communication scores in cell-cell interactions

Usage

```
plotCCcomHeatmap(
  gobject,
  comScores,
  selected_LR = NULL,
  selected_cell_LR = NULL,
  show_LR_names = TRUE,
  show_cell_LR_names = TRUE,
  show = c("PI", "LR_expr", "log2fc"),
 cor_method = c("pearson", "kendall", "spearman"),
aggl_method = c("ward.D", "ward.D2", "single", "complete", "average", "mcquitty",
     "median", "centroid"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCCcomHeatmap"
)
```

```
gobject
                 giotto object
comScores
                 communinication scores from exprCellCellcom or spatCellCellcom
selected_LR
                 selected ligand-receptor combinations
selected_cell_LR
                 selected cell-cell combinations for ligand-receptor combinations
                 show ligand-receptor names
show_LR_names
show_cell_LR_names
                 show cell-cell names
show
                 values to show on heatmap
cor_method
                 correlation method used for clustering
                 agglomeration method used by hclust
aggl_method
show_plot
                 show plots
```

Value

ggplot

Examples

```
plotCCcomHeatmap(CPGscores)
```

```
plotCellProximityGenes
```

plotCellProximityGenes

Description

Create visualization for cell proximity gene scores

Usage

```
plotCellProximityGenes(
  gobject,
  cpgObject,
  method = c("volcano", "cell_barplot", "cell-cell", "cell_sankey", "heatmap",
    "dotplot"),
  min_cells = 5,
  min_int_cells = 3,
  min_fdr = 0.05,
  min_spat_diff = 0.2,
  min_log2_fc = 0.5,
  direction = c("both", "up", "down"),
  cell_color_code = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showCPGscores"
)
```

```
gobject giotto object
cpgObject cell proximity gene score object
method plotting method to use
min_cells minimum number of target cell type
min_int_cells minimum number of interacting cell type
```

170 plotCombineCCcom

```
min_fdr
                  minimum adjusted p-value
                 minimum absolute spatial expression difference
min_spat_diff
min_log2_fc
                  minimum absolute log2 fold-change#' @param facet_scales ggplot facet scales
                  paramter
direction
                  differential expression directions to keep
cell_color_code
                  vector of colors with cell types as names
show_plot
                  show plots
return_plot
                  return plotting object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

plot

Examples

```
plotCPG(CPGscores)
```

plotCombineCCcom plotCombineCCcom

Description

Create visualization for combined (pairwise) cell proximity gene scores

```
plotCombineCCcom(
  gobject,
  combCCcom,
  selected_LR = NULL,
  selected_cell_LR = NULL,
  detail_plot = T,
  simple_plot = F,
  simple_plot_facet = c("interaction", "genes"),
  facet_scales = "fixed",
  facet_ncol = length(selected_LR),
  facet_nrow = length(selected_cell_LR),
  colors = c("#9932CC", "#FF8C00"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCombineCCcom"
```

Arguments

```
giotto object
gobject
combCCcom
                  combined communcation scores, output from combCCcom()
selected_LR
                  selected ligand-receptor pair
selected_cell_LR
                  selected cell-cell interaction pair for ligand-receptor pair
detail_plot
                  show detailed info in both interacting cell types
                  show a simplified plot
simple_plot
simple_plot_facet
                  facet on interactions or genes with simple plot
facet_scales
                  ggplot facet scales paramter
                  ggplot facet ncol parameter
facet_ncol
facet_nrow
                  ggplot facet nrow parameter
colors
                  vector with two colors to use
show_plot
                  show plots
return_plot
                  return plotting object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

```
plotCombineCCcom(CPGscores)
```

```
plot {\tt Combine Cell Cell Communication} \\ plot {\tt Combine Cell Cell Communication} \\
```

Description

Create visualization for combined (pairwise) cell proximity gene scores

```
plotCombineCellCellCommunication(
  gobject,
  combCCcom,
  selected_LR = NULL,
  selected_cell_LR = NULL,
  detail_plot = T,
  simple_plot = F,
```

```
simple_plot_facet = c("interaction", "genes"),
facet_scales = "fixed",
facet_ncol = length(selected_LR),
facet_nrow = length(selected_cell_LR),
colors = c("#9932CC", "#FF8C00"),
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "plotCombineCellCellCommunication")
```

Arguments

```
gobject
                  giotto object
combCCcom
                  combined communcation scores, output from combCCcom()
                  selected ligand-receptor pair
selected_LR
selected_cell_LR
                  selected cell-cell interaction pair for ligand-receptor pair
detail_plot
                  show detailed info in both interacting cell types
simple_plot
                  show a simplified plot
simple_plot_facet
                  facet on interactions or genes with simple plot
facet_scales
                  ggplot facet scales paramter
facet_ncol
                  ggplot facet ncol parameter
facet_nrow
                  ggplot facet nrow parameter
colors
                  vector with two colors to use
show_plot
                  show plots
return_plot
                  return plotting object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

```
plotCombineCellCellCommunication(CPGscores)
```

```
plot {\tt Combine Cell Proximity Genes} \\ plot {\tt Combine Cell Proximity Genes}
```

Description

Create visualization for combined (pairwise) cell proximity gene scores

Usage

```
plotCombineCellProximityGenes(
  gobject,
  combCpgObject,
  selected_interactions = NULL,
  selected_gene_to_gene = NULL,
  detail_plot = T,
  simple_plot = F,
  simple_plot_facet = c("interaction", "genes"),
  facet_scales = "fixed",
  facet_ncol = length(selected_gene_to_gene),
  facet_nrow = length(selected_interactions),
  colors = c("#9932CC", "#FF8C00"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCombineCPG"
```

```
gobject
                  giotto object
combCpgObject
                  CPGscores, output from combineCellProximityGenes()
selected_interactions
                  interactions to show
selected_gene_to_gene
                  pairwise gene combinations to show
detail_plot
                  show detailed info in both interacting cell types
simple_plot
                  show a simplified plot
simple_plot_facet
                  facet on interactions or genes with simple plot
facet_scales
                  ggplot facet scales paramter
facet_ncol
                  ggplot facet ncol parameter
facet_nrow
                  ggplot facet nrow parameter
colors
                  vector with two colors to use
show_plot
                  show plots
return_plot
                  return plotting object
```

174 plotCombineCPG

Value

ggplot

Examples

plotCombineCellProximityGenes(CPGscores)

plotCombineCPG

plotCombineCPG

Description

Create visualization for combined (pairwise) cell proximity gene scores

Usage

```
plotCombineCPG(
  gobject,
  combCpgObject,
  selected_interactions = NULL,
  selected_gene_to_gene = NULL,
  detail_plot = T,
  simple_plot = F,
  simple_plot_facet = c("interaction", "genes"),
  facet_scales = "fixed",
  facet_ncol = length(selected_gene_to_gene),
  facet_nrow = length(selected_interactions),
  colors = c("#9932CC", "#FF8C00"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotCombineCPG"
)
```

plotCPG 175

```
show a simplified plot
simple_plot
simple_plot_facet
                  facet on interactions or genes with simple plot
                  ggplot facet scales paramter
facet_scales
                  ggplot facet ncol parameter
facet_ncol
facet_nrow
                  ggplot facet nrow parameter
colors
                  vector with two colors to use
show_plot
                  show plots
                  return plotting object
return_plot
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

```
plotCombineCPG(CPGscores)
```

plotCPG plotCPG

Description

Create visualization for cell proximity gene scores

```
plotCPG(
  gobject,
  cpgObject,
  method = c("volcano", "cell_barplot", "cell-cell", "cell_sankey", "heatmap",
    "dotplot"),
  min_cells = 5,
  min_int_cells = 3,
  min_fdr = 0.05,
  min_spat_diff = 0.2,
  min_log2_fc = 0.2,
  direction = c("both", "up", "down"),
  cell_color_code = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showCPGscores"
)
```

176 plotCPGscores

Arguments

gobject giotto object cpgObject cell proximity gene score object method plotting method to use min_cells minimum number of target cell type min_int_cells minimum number of interacting cell type min_fdr minimum adjusted p-value min_spat_diff minimum absolute spatial expression difference min_log2_fc minimum absolute log2 fold-change#' @param facet_scales ggplot facet scales paramter differential expression directions to keep direction cell_color_code vector of colors with cell types as names show_plot show plots return plotting object return_plot directly save the plot [boolean] save_plot list of saving parameters from all_plots_save_function save_param

default save name for saving, don't change, change save_name in save_param

Value

plot

Examples

```
plotCPG(CPGscores)
```

default_save_name

plotCPGscores plotCPGscores

Description

Create heatmap from cell-cell proximity scores

```
plotCPGscores(
   CPGscores,
   selected_interactions = NULL,
   selected_genes = NULL,
   detail_plot = T,
   simple_plot = F,
   simple_plot_facet = c("interaction", "genes"),
   facet_scales = "fixed",
   facet_ncol = length(selected_genes),
   facet_nrow = length(selected_interactions),
   show_plot = F
)
```

plotGTGscores 177

Arguments

```
CPGscores
                  CPGscores, output from getCellProximityGeneScores()
selected_interactions
                  interactions to show
selected_genes genes to show
detail_plot
                  show detailed info in both interacting cell types
                  show a simplified plot
simple_plot
simple_plot_facet
                  facet on interactions or genes with simple plot
                  ggplot facet scales paramter
facet_scales
facet_ncol
                  ggplot facet ncol parameter
facet_nrow
                  ggplot facet nrow parameter
show_plot
                  show plot
```

Details

Give more details ...

Value

ggplot barplot

Examples

```
plotCPGscores(CPGscores)
```

plotGTGscores

plotGTGscores

Description

Create heatmap from cell-cell proximity scores

```
plotGTGscores(
  gobject,
  GTGscore,
  selected_interactions = NULL,
  selected_gene_to_gene = NULL,
  detail_plot = T,
  simple_plot = F,
  simple_plot_facet = c("interaction", "genes"),
  facet_scales = "fixed",
  facet_ncol = length(selected_gene_to_gene),
  facet_nrow = length(selected_interactions),
  colors = c("blue", "red"),
  show_plot = NA,
  return_plot = NA,
```

178 plotGTGscores

```
save_plot = NA,
save_param = list(),
default_save_name = "plotGTGscores"
)
```

Arguments

gobject giotto object

GTGscore GTGscore, output from getGeneToGeneScores()

selected_interactions

interactions to show

detail_plot show detailed info in both interacting cell types

simple_plot show a simplified plot

simple_plot_facet

facet on interactions or genes with simple plot

facet_scales ggplot facet scales paramter
facet_ncol ggplot facet ncol parameter
facet_nrow ggplot facet nrow parameter

colors vector with 2 colors to represent respectively all and selected cells

show_plot show plots

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param

selected_genes genes to show

Details

Give more details ...

Value

ggplot barplot

Examples

```
plotGTGscores(GTGscore)
```

plotHeatmap 179

plotHeatmap

plotHeatmap

Description

Creates heatmap for genes and clusters.

Usage

```
plotHeatmap(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cluster_column = NULL,
  cluster_order = c("size", "correlation", "custom"),
  cluster_custom_order = NULL,
  cluster_color_code = NULL,
  cluster_cor_method = "pearson",
  cluster_hclust_method = "ward.D"
  gene_order = c("custom", "correlation"),
  gene_custom_order = NULL,
  gene_cor_method = "pearson",
  gene_hclust_method = "complete",
  show_values = c("rescaled", "z-scaled", "original"),
  size_vertical_lines = 1.1,
  gradient_colors = c("blue", "yellow", "red"),
  gene_label_selection = NULL,
  axis_text_y_size = NULL,
  legend_nrows = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotHeatmap"
)
```

```
gobject giotto object
expression_values
expression values to use
genes genes to use
cluster_column name of column to use for clusters
cluster_order method to determine cluster order
cluster_custom_order
custom order for clusters
cluster_color_code
color code for clusters
cluster_cor_method
method for cluster correlation
```

180 plotHeatmap

```
cluster_hclust_method
                 method for hierarchical clustering of clusters
gene_order
                 method to determine gene order
gene_custom_order
                 custom order for genes
gene_cor_method
                 method for gene correlation
gene_hclust_method
                 method for hierarchical clustering of genes
show_values
                 which values to show on heatmap
size_vertical_lines
                 sizes for vertical lines
gradient_colors
                 colors for heatmap gradient
gene_label_selection
                 subset of genes to show on y-axis
axis_text_y_size
                 size for y-axis text
legend_nrows
                 number of rows for the cluster legend
show_plot
                 show plot
return_plot
                 return ggplot object
                 directly save the plot [boolean]
save_plot
                 list of saving parameters from all_plots_save_function
save_param
default_save_name
                 default save name
```

Details

If you want to display many genes there are 2 ways to proceed:

- 1. set axis_text_y_size to a really small value and show all genes
- 2. provide a subset of genes to display to gene_label_selection

Value

ggplot

Examples

plotHeatmap(gobject)

plotly_axis_scale_2D 181

```
plotly_axis_scale_2D plotly_axis_scale_2D
```

Description

adjust the axis scale in 3D plotly plot

Usage

```
plotly_axis_scale_2D(
  cell_locations,
  sdimx = NULL,
  sdimy = NULL,
  mode = c("cube", "real", "custom"),
  custom_ratio = NULL
)
```

Arguments

```
cell_locations spatial_loc in giotto object sdimx x axis of cell spatial location sdimy y axis of cell spatial location mode axis adjustment mode custom_ratio set the ratio artificially
```

Value

edges in spatial grid as data.table()

Examples

```
plotly_axis_scale_2D(gobject)
```

```
plotly_axis_scale_3D plotly_axis_scale_3D
```

Description

adjust the axis scale in 3D plotly plot

```
plotly_axis_scale_3D(
  cell_locations,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  mode = c("cube", "real", "custom"),
  custom_ratio = NULL
)
```

182 plotly_grid

Arguments

Value

edges in spatial grid as data.table()

Examples

```
plotly_axis_scale_3D(gobject)
```

plotly_grid

plotly_grid

Description

provide grid segment to draw in plot_ly()

Usage

```
plotly_grid(
   spatial_grid,
   x_start = "x_start",
   y_start = "y_start",
   x_end = "x_end",
   y_end = "y_end"
)
```

Arguments

```
spatial_grid spatial_grid in giotto object
```

Value

edges in spatial grid as data.table()

Examples

```
plotly_grid(gobject)
```

plotly_network 183

plotly_network

plotly_network

Description

provide network segment to draw in 3D plot_ly()

Usage

```
plotly_network(
  network,
  x = "sdimx_begin",
  y = "sdimy_begin",
  z = "sdimz_begin",
  x_end = "sdimx_end",
  y_end = "sdimy_end",
  z_end = "sdimz_end"
)
```

Arguments

gobject network in giotto object

Value

edges in network as data.table()

Examples

```
plotly_network(gobject)
```

```
plotMetaDataCellsHeatmap
```

plotMetaDataCellsHeatmap

Description

Creates heatmap for numeric cell metadata within aggregated clusters.

```
plotMetaDataCellsHeatmap(
  gobject,
  metadata_cols = NULL,
  spat_enr_names = NULL,
  value_cols = NULL,
  first_meta_col = NULL,
  second_meta_col = NULL,
  show_values = c("zscores", "original", "zscores_rescaled"),
  custom_cluster_order = NULL,
```

```
clus_cor_method = "pearson",
     clus_cluster_method = "complete",
     custom_values_order = NULL,
     values_cor_method = "pearson",
     values_cluster_method = "complete",
     midpoint = 0,
     x_{text_size} = 8,
     x_{text_angle} = 45,
     y_text_size = 8,
     strip_text_size = 8,
     show_plot = NA,
     return_plot = NA,
     save_plot = NA,
     save_param = list(),
     default_save_name = "plotMetaDataCellsHeatmap"
   )
Arguments
```

```
gobject
                  giotto object
                  annotation columns found in pDataDT(gobject)
metadata_cols
spat_enr_names spatial enrichment results to include
value_cols
                  value columns to use
first_meta_col if more than 1 metadata column, select the x-axis factor
second_meta_col
                  if more than 1 metadata column, select the facetting factor
show_values
                  which values to show on heatmap
custom_cluster_order
                  custom cluster order (default = NULL)
clus_cor_method
                  correlation method for clusters
clus_cluster_method
                  hierarchical cluster method for the clusters
                  midpoint of show_values
midpoint
                  size of x-axis text
x_text_size
x_text_angle
                  angle of x-axis text
y_text_size
                  size of y-axis text
strip_text_size
                  size of strip text
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
custom_gene_order
                  custom gene order (default = NULL)
```

plotMetaDataHeatmap 185

Details

Creates heatmap for the average values of selected value columns in the different annotation groups.

Value

ggplot or data.table

See Also

plotMetaDataHeatmap for gene expression instead of numeric cell annotation data.

Examples

```
plotMetaDataCellsHeatmap(gobject)
```

```
{\tt plotMetaDataHeatmap} \quad \quad plotMetaDataHeatmap
```

Description

Creates heatmap for genes within aggregated clusters.

```
plotMetaDataHeatmap(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metadata_cols = NULL,
  selected_genes = NULL,
  first_meta_col = NULL,
  second_meta_col = NULL,
  show_values = c("zscores", "original", "zscores_rescaled"),
  custom_cluster_order = NULL,
  clus_cor_method = "pearson",
  clus_cluster_method = "complete",
  custom_gene_order = NULL,
  gene_cor_method = "pearson",
  gene_cluster_method = "complete",
  midpoint = 0,
  x_{text_size} = 10,
  x_{text_angle} = 45,
  y_{text_size} = 10,
  strip_text_size = 8,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
```

```
save_param = list(),
  default_save_name = "plotMetaDataHeatmap"
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
                 annotation columns found in pDataDT(gobject)
metadata_cols
selected_genes subset of genes to use
first_meta_col if more than 1 metadata column, select the x-axis factor
second_meta_col
                  if more than 1 metadata column, select the facetting factor
show_values
                  which values to show on heatmap
custom_cluster_order
                  custom cluster order (default = NULL)
clus_cor_method
                  correlation method for clusters
clus_cluster_method
                  hierarchical cluster method for the clusters
custom_gene_order
                  custom gene order (default = NULL)
gene_cor_method
                  correlation method for genes
gene_cluster_method
                  hierarchical cluster method for the genes
                  midpoint of show_values
midpoint
                  size of x-axis text
x_text_size
x_text_angle
                  angle of x-axis text
                  size of y-axis text
y_text_size
strip_text_size
                  size of strip text
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name
```

Details

Creates heatmap for the average expression of selected genes in the different annotation/cluster groups. Calculation of cluster or gene order is done on the provided expression values, but visualization is by default on the z-scores. Other options are the original values or z-scores rescaled per gene (-1 to 1).

plotPCA 187

Value

ggplot or data.table

See Also

plotMetaDataCellsHeatmap for numeric cell annotation instead of gene expression.

Examples

```
plotMetaDataHeatmap(gobject)
```

plotPCA

plotPCA

Description

Short wrapper for PCA visualization

giotto object

Usage

```
plotPCA(gobject, dim_reduction_name = "pca", default_save_name = "PCA", ...)
```

Arguments

gobject

```
dim_reduction_name
                 dimension reduction name
default_save_name
                 default save name for saving, don't change, change save_name in save_param
                 create multiple plots based on cell annotation column
groub_by
group_by_subset
                 subset the group_by factor column
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
spat_enr_names names of spatial enrichment results to include
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
cell_color
                 color for cells (see details)
color_as_factor
                 convert color column to factor
cell_color_code
                 named vector with colors
cell_color_gradient
                 vector with 3 colors for numeric data
```

188 plotPCA

```
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
                  size of labels
label_size
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
                  point with border or not (border or no_border)
point_shape
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
                  title for plot, defaults to cell_color parameter
title
legend_text
                  size of legend text
legend_symbol_size
                  size of legend symbols
background_color
                  color of plot background
axis_text
                  size of axis text
axis_title
                  size of axis title
cow_n_col
                  cowplot param: how many columns
cow_rel_h
                  cowplot param: relative height
cow_rel_w
                  cowplot param: relative width
cow_align
                  cowplot param: how to align
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
```

plotPCA_2D 189

Details

Description of parameters, see dimPlot2D. For 3D plots see plotPCA_3D

Value

ggplot

Examples

```
plotPCA(gobject)
```

plotPCA_2D

plotPCA_2D

Description

Short wrapper for PCA visualization

Usage

```
plotPCA_2D(
  gobject,
  dim_reduction_name = "pca",
  default_save_name = "PCA_2D",
   ...
)
```

```
gobject
                 giotto object
dim_reduction_name
                 dimension reduction name
default_save_name
                 default save name for saving, don't change, change save_name in save_param
groub_by
                 create multiple plots based on cell annotation column
group_by_subset
                 subset the group_by factor column
dim1_to_use
                 dimension to use on x-axis
dim2\_to\_use
                 dimension to use on y-axis
spat_enr_names names of spatial enrichment results to include
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
cell_color
                 color for cells (see details)
color_as_factor
                 convert color column to factor
```

190 plotPCA_2D

```
cell_color_code
                  named vector with colors
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
point_shape
                  point with border or not (border or no_border)
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
title
                  title for plot, defaults to cell_color parameter
show_legend
                  show legend
legend_text
                  size of legend text
legend_symbol_size
                  size of legend symbols
background_color
                  color of plot background
axis_text
                  size of axis text
                  size of axis title
axis_title
                  cowplot param: how many columns
cow_n_col
                  cowplot param: relative height
cow_rel_h
                  cowplot param: relative width
cow_rel_w
                  cowplot param: how to align
cow_align
show_plot
                  show plot
                  return ggplot object
return_plot
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
```

plotPCA_3D

Details

Description of parameters, see dimPlot2D. For 3D plots see plotPCA_3D

Value

ggplot

Examples

```
plotPCA_2D(gobject)
```

plotPCA_3D

plotPCA_3D

Description

Visualize cells according to 3D PCA dimension reduction

Usage

```
plotPCA_3D(
  gobject,
  dim_reduction_name = "pca",
  default_save_name = "PCA_3D",
   ...
)
```

```
gobject
                 giotto object
dim_reduction_name
                 pca dimension reduction name
default_save_name
                 default save name for saving, ideally change save_name in save_param
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
                 dimension to use on z-axis
dim3_to_use
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
cell_color
                 color for cells (see details)
color_as_factor
                 convert color column to factor
cell_color_code
                 named vector with colors
select_cell_groups
                 select subset of cells/clusters based on cell_color parameter
```

192 plotRankSpatvsExpr

```
select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
edge_alpha
                  column to use for alpha of the edges
point_size
                  size of point (cell)
                  show legend
show_legend
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
```

Details

Description of parameters.

Value

plotly

Examples

plotPCA_3D(gobject)

plotRankSpatvsExpr plotRankSpatvsExpr

Description

Plots dotplot to compare ligand-receptor rankings from spatial and expression information

plotRankSpatvsExpr 193

Usage

```
plotRankSpatvsExpr(
  gobject,
  combCC,
  expr_rnk_column = "LR_expr_rnk",
  spat_rnk_column = "LR_spat_rnk",
  midpoint = 10,
  size\_range = c(0.01, 1.5),
  xlims = NULL,
  ylims = NULL,
  selected_ranks = c(1, 10, 20),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotRankSpatvsExpr"
)
```

Arguments

```
gobject
                  giotto object
combCC
                  combined communinication scores from combCCcom
expr_rnk_column
                  column with expression rank information to use
spat_rnk_column
                  column with spatial rank information to use
midpoint
                  midpoint of colors
                  size ranges of dotplot
size_range
xlims
                  x-limits, numerical vector of 2
vlims
                  y-limits, numerical vector of 2
selected_ranks numerical vector, will be used to print out the percentage of top spatial ranks are
                  recovered
show_plot
                  show plots
return_plot
                  return plotting object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
```

default save name for saving, don't change, change save_name in save_param

Value

ggplot

Examples

```
plotRankSpatvsExpr(CPGscores)
```

194 plotRecovery

plotRecovery plotRecovery

Description

Plots recovery plot to compare ligand-receptor rankings from spatial and expression information

Usage

```
plotRecovery(
  gobject,
  combCC,
  expr_rnk_column = "exprPI_rnk",
  spat_rnk_column = "spatPI_rnk",
  ground_truth = c("spatial", "expression"),
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "plotRecovery"
)
```

Arguments

```
gobject
                  giotto object
combCC
                  combined communinication scores from combCCcom
expr_rnk_column
                  column with expression rank information to use
spat_rnk_column
                  column with spatial rank information to use
ground_truth
                  what to consider as ground truth (default: spatial)
                  show plots
show_plot
return_plot
                  return plotting object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

ggplot

Examples

```
plotRecovery(CPGscores)
```

plotRecovery_sub 195

plotRecovery_sub plotRecovery_sub

Description

Plots recovery plot to compare ligand-receptor rankings from spatial and expression information

Usage

```
plotRecovery_sub(combCC, first_col = "LR_expr_rnk", second_col = "LR_spat_rnk")
```

Arguments

combCC combined communinication scores from combCCcom

first_col first column to use second_col second column to use

Examples

```
plotRecovery_sub(CPGscores)
```

plotTSNE plotTSNE

Description

Short wrapper for tSNE visualization

Usage

```
plotTSNE(gobject, dim_reduction_name = "tsne", default_save_name = "tSNE", ...)
```

Arguments

```
giotto object
gobject
dim_reduction_name
                  dimension reduction name
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  create multiple plots based on cell annotation column
groub_by
group_by_subset
                  subset the group_by factor column
                  dimension to use on x-axis
dim1_to_use
dim2\_to\_use
                  dimension to use on y-axis
spat_enr_names names of spatial enrichment results to include
show_NN_network
```

show underlying NN network

196 plotTSNE

nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors ${\tt cell_color_gradient}$ vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points size of labels label_size label_fontface font of labels edge_alpha column to use for alpha of the edges point_shape point with border or not (border or no_border) point_size size of point (cell) point_border_col color of border around points point_border_stroke stroke size of border around points title for plot, defaults to cell_color parameter title show_legend show legend legend_text size of legend text legend_symbol_size size of legend symbols background_color color of plot background size of axis text axis_text

plotTSNE_2D

```
size of axis title
axis_title
                  cowplot param: how many columns
cow_n_col
                  cowplot param: relative height
cow_rel_h
cow_rel_w
                  cowplot param: relative width
                  cowplot param: how to align
cow_align
                  show plot
show_plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotTSNE_3D

Value

ggplot

Examples

```
plotTSNE(gobject)
```

```
plotTSNE_2D plotTSNE_2D
```

Description

Short wrapper for tSNE visualization

Usage

```
plotTSNE_2D(
  gobject,
  dim_reduction_name = "tsne",
  default_save_name = "tSNE_2D",
  ...
)
```

198 plotTSNE_2D

dim1_to_use dimension to use on x-axis dimension to use on y-axis dim2_to_use spat_enr_names names of spatial enrichment results to include show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points label_size size of labels label_fontface font of labels edge_alpha column to use for alpha of the edges point_shape point with border or not (border or no_border) point_size size of point (cell) point_border_col color of border around points point_border_stroke stroke size of border around points title for plot, defaults to cell_color parameter title show_legend show legend legend_text size of legend text

plotTSNE_3D

```
legend_symbol_size
                 size of legend symbols
background_color
                 color of plot background
axis_text
                 size of axis text
axis_title
                 size of axis title
cow_n_col
                 cowplot param: how many columns
                 cowplot param: relative height
cow_rel_h
                 cowplot param: relative width
cow_rel_w
                 cowplot param: how to align
cow_align
show_plot
                 show plot
return_plot
                 return ggplot object
save_plot
                 directly save the plot [boolean]
                 list of saving parameters from all_plots_save_function
save_param
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotTSNE_3D

Value

ggplot

Examples

```
plotTSNE_2D(gobject)
```

```
plotTSNE_3D plotTSNE_3D
```

Description

Visualize cells according to dimension reduction coordinates

```
plotTSNE_3D(
  gobject,
  dim_reduction_name = "tsne",
  default_save_name = "TSNE_3D",
   ...
)
```

200 plotTSNE_3D

Arguments

gobject giotto object dim_reduction_name tsne dimension reduction name default_save_name default save name for saving, don't change, change save_name in save_param dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis dim3_to_use dimension to use on z-axis show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use, if show_NN_network = TRUE cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors select_cell_groups select subset of cells/clusters based on cell_color parameter select_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points label_size size of labels edge_alpha column to use for alpha of the edges point_size size of point (cell) show_legend show legend show_plot show plot return_plot return ggplot object directly save the plot [boolean] save_plot save_param list of saving parameters from all_plots_save_function

Details

Description of parameters.

plotUMAP 201

Value

plotly

Examples

```
plotTSNE_3D(gobject)
```

plotUMAP

plotUMAP

Description

Short wrapper for UMAP visualization

Usage

```
plotUMAP(gobject, dim_reduction_name = "umap", default_save_name = "UMAP", ...)
```

Arguments

gobject giotto object

dim_reduction_name

dimension reduction name

default_save_name

default save name for saving, don't change, change save_name in save_param

groub_by create multiple plots based on cell annotation column

group_by_subset

subset the group_by factor column

dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis

spat_enr_names names of spatial enrichment results to include

show_NN_network

show underlying NN network

nn_network_to_use

type of NN network to use (kNN vs sNN)

 $network_name$ name of NN network to use, if $show_NN_network = TRUE$

cell_color color for cells (see details)

color_as_factor

convert color column to factor

cell_color_code

named vector with colors

cell_color_gradient

vector with 3 colors for numeric data

gradient_midpoint

midpoint for color gradient

 ${\tt gradient_limits}$

vector with lower and upper limits

202 plotUMAP

```
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
                  point with border or not (border or no_border)
point_shape
                  size of point (cell)
point_size
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
title
                  title for plot, defaults to cell_color parameter
show_legend
                  show legend
legend_text
                  size of legend text
legend_symbol_size
                  size of legend symbols
background_color
                  color of plot background
                  size of axis text
axis_text
axis_title
                  size of axis title
cow_n_col
                  cowplot param: how many columns
cow_rel_h
                  cowplot param: relative height
cow_rel_w
                  cowplot param: relative width
                  cowplot param: how to align
cow_align
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
```

Details

Description of parameters, see dimPlot2D. For 3D plots see plotUMAP_3D

plotUMAP_2D 203

Value

ggplot

Examples

```
plotUMAP(gobject)
```

plotUMAP_2D

plotUMAP_2D

Description

Short wrapper for UMAP visualization

Usage

```
plotUMAP_2D(
  gobject,
  dim_reduction_name = "umap",
  default_save_name = "UMAP_2D",
   ...
)
```

```
giotto object
gobject
dim_reduction_name
                 dimension reduction name
default_save_name
                 default save name for saving, don't change, change save_name in save_param
                 create multiple plots based on cell annotation column
groub_by
group_by_subset
                 subset the group_by factor column
                 dimension to use on x-axis
dim1_to_use
dim2_to_use
                 dimension to use on y-axis
spat_enr_names names of spatial enrichment results to include
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
                 color for cells (see details)
cell_color
color_as_factor
                 convert color column to factor
cell_color_code
                 named vector with colors
cell_color_gradient
                 vector with 3 colors for numeric data
```

204 plotUMAP_2D

```
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
                  size of labels
label_size
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
                  point with border or not (border or no_border)
point_shape
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
                  title for plot, defaults to cell_color parameter
title
show_legend
                  show legend
legend_text
                  size of legend text
legend_symbol_size
                  size of legend symbols
background_color
                  color of plot background
axis_text
                  size of axis text
axis_title
                  size of axis title
cow_n_col
                  cowplot param: how many columns
cow_rel_h
                  cowplot param: relative height
cow_rel_w
                  cowplot param: relative width
cow_align
                  cowplot param: how to align
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
```

plotUMAP_3D 205

Details

Description of parameters, see dimPlot2D. For 3D plots see plotUMAP_3D

Value

ggplot

Examples

```
plotUMAP_2D(gobject)
```

plotUMAP_3D

plotUMAP_3D

Description

Visualize cells according to dimension reduction coordinates

Usage

```
plotUMAP_3D(
  gobject,
  dim_reduction_name = "umap",
  default_save_name = "UMAP_3D",
  ...
)
```

```
gobject
                 giotto object
dim_reduction_name
                 umap dimension reduction name
default_save_name
                 default save name for saving, don't change, change save_name in save_param
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
                 dimension to use on z-axis
dim3_to_use
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
cell_color
                 color for cells (see details)
color_as_factor
                 convert color column to factor
cell_color_code
                 named vector with colors
select_cell_groups
                 select subset of cells/clusters based on cell_color parameter
```

```
select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
                  column to use for alpha of the edges
edge_alpha
                  size of point (cell)
point_size
show_legend
                  show legend
show_plot
                  show plot
                  return ggplot object
return_plot
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
```

Details

Description of parameters.

Value

plotly

Examples

```
plotUMAP_3D(gobject)
```

```
plot\_network\_layer\_ggplot \\ plot\_network\_layer\_ggplot
```

Description

Visualize cells in network layer according to dimension reduction coordinates

```
plot_network_layer_ggplot(
   ggobject,
   annotated_network_DT,
   edge_alpha = NULL,
   show_legend = T
)
```

plot_point_layer_ggplot 207

Arguments

Details

Description of parameters.

Value

ggplot

Examples

```
plot_network_layer_ggplot(gobject)
```

Description

Visualize cells in point layer according to dimension reduction coordinates

```
plot_point_layer_ggplot(
  ggobject,
  annotated_DT_selected,
  annotated_DT_other,
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = 0,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  point_size = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
```

gobject

giotto object

label_fontface = "bold",

```
edge_alpha = NULL,
      show_other_cells = T,
      other_cell_color = "lightgrey",
      other_point_size = 0.5,
      show_legend = T
    )
Arguments
    annotated_DT_selected
                      annotated data.table of selected cells
    annotated_DT_other
                      annotated data.table of not selected cells
                      color for cells (see details)
    cell_color
    color_as_factor
                      convert color column to factor
    cell_color_code
                      named vector with colors
    cell_color_gradient
                      vector with 3 colors for numeric data
    gradient_midpoint
                      midpoint for color gradient
    gradient_limits
                      vector with lower and upper limits
    select_cell_groups
                      select subset of cells/clusters based on cell_color parameter
                      select subset of cells based on cell IDs
    select_cells
    point_size
                      size of point (cell)
    point_border_col
                      color of border around points
    point_border_stroke
                      stroke size of border around points
    show_cluster_center
                      plot center of selected clusters
    show_center_label
                      plot label of selected clusters
    center_point_size
                      size of center points
    label_size
                      size of labels
    label_fontface font of labels
    edge_alpha
                      column to use for alpha of the edges
    show_other_cells
                      display not selected cells
    other_cell_color
                      color of not selected cells
    other_point_size
                      size of not selected cells
    show_legend
                      show legend
```

Details

Description of parameters.

Value

ggplot

Examples

```
plot_point_layer_ggplot(gobject)
```

Description

Visualize cells in point layer according to dimension reduction coordinates without borders

Usage

```
plot_point_layer_ggplot_noFILL(
  ggobject,
  annotated_DT_selected,
  annotated_DT_other,
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = 0,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  point_size = 1,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  label_size = 4,
  label_fontface = "bold",
  edge_alpha = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_legend = T
)
```

```
annotated_DT_selected annotated data.table of selected cells
```

```
annotated_DT_other
                  annotated data.table of not selected cells
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
point_size
                  size of point (cell)
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_legend
                  show legend
                  giotto object
gobject
```

Details

Description of parameters.

Value

ggplot

Examples

```
plot_point_layer_ggplot_noFILL(gobject)
```

Description

creat ggplot point layer for spatial coordinates

Usage

```
plot_spat_point_layer_ggplot(
  ggobject,
  sdimx = NULL,
  sdimy = NULL,
  cell_locations_metadata_selected,
  cell_locations_metadata_other,
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  point_size = 2,
  point_border_col = "lightgrey",
  point_border_stroke = 0.1,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 1,
  show_legend = TRUE
)
```

```
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
                  size of point (cell)
point_size
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
show_other_cells
                  display not selected cells
other_cell_color
                  color for not selected cells
other_point_size
                  point size for not selected cells
show_legend
                  show legend
gobject
                  giotto object
Description of parameters.
```

Details

Value

ggplot

Examples

```
plot_spat_point_layer_ggplot(gobject)
```

Description

creat ggplot point layer for spatial coordinates without borders

Usage

```
plot_spat_point_layer_ggplot_noFILL(
  ggobject,
  sdimx = NULL,
  sdimy = NULL,
  cell_locations_metadata_selected,
  cell_locations_metadata_other,
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  point_size = 2,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  label_size = 4,
  label_fontface = "bold",
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 1,
  show_legend = TRUE
)
```

214 print.giotto

```
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
                  size of point (cell)
point_size
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
show_other_cells
                  display not selected cells
other_cell_color
                  color for not selected cells
other_point_size
                  point size for not selected cells
                  show legend
show_legend
gobject
                  giotto object
```

Details

Description of parameters.

Value

ggplot

Examples

```
plot_spat_point_layer_ggplot_noFILL(gobject)
```

print.giotto

print method for giotto class

Description

print method for giotto class. Prints the chosen number of genes (rows) and cells (columns) from the raw count matrix. Also print the spatial locations for the chosen number of cells.

rankEnrich 215

Usage

```
print.giotto(object, ...)
```

Arguments

nr_genes number of genes (rows) to print nr_cells number of cells (columns) to print

rankEnrich

rankEnrich

Description

Function to calculate gene signature enrichment scores per spatial position using a rank based approach.

Usage

```
rankEnrich(
  gobject,
  sign_matrix,
  expression_values = c("normalized", "scaled", "custom"),
  reverse_log_scale = TRUE,
  logbase = 2,
  output_enrichment = c("original", "zscore")
)
```

Arguments

Details

sign_matrix: a rank-fold matrix with genes as row names and cell-types as column names. Alternatively a scRNA-seq matrix and vector with clusters can be provided to makeSignMatrixRank, which will create the matrix for you.

First a new rank is calculated as $R = (R1*R2)^{\Lambda}(1/2)$, where R1 is the rank of fold-change for each gene in each spot and R2 is the rank of each marker in each cell type. The Rank-Biased Precision is then calculated as: $RBP = (1 - 0.99) * (0.99)^{\Lambda}(R - 1)$ and the final enrichment score is then calculated as the sum of top 100 RBPs.

Value

data.table with enrichment results

See Also

```
make Sign Matrix Rank
```

Examples

```
rankEnrich(gobject)
```

rankPermutation

rankPermutation

Description

creates permutation for the rankEnrich test

Usage

```
rankPermutation(sc_gene, n)
```

Examples

```
rankPermutation()
```

 $rank Spatial Cor Groups \\ \hspace{0.5in} rank Spatial Cor Groups \\$

Description

Rank spatial correlated clusters according to correlation structure

```
rankSpatialCorGroups(
  gobject,
  spatCorObject,
  use_clus_name = NULL,
  show_plot = NA,
  return_plot = FALSE,
  save_plot = NA,
  save_param = list(),
  default_save_name = "rankSpatialCorGroups"
)
```

rank_binarize 217

Arguments

gobject giotto object

spatCorObject spatial correlation object

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param

Value

data.table with positive (within group) and negative (outside group) scores

Examples

rankSpatialCorGroups(gobject)

rank_binarize rank_binarize

Description

create binarized scores using arbitrary rank of top genes

Usage

```
rank\_binarize(x, max\_rank = 200)
```

readGiottoInstructions

readGiottoInstrunctions

Description

Retrieves the instruction associated with the provided parameter

Usage

```
readGiottoInstructions(giotto_instructions, param = NULL)
```

Arguments

giotto_instructions

giotto object or result from createGiottoInstructions()

param parameter to retrieve

218 removeGeneAnnotation

Value

specific parameter

Examples

readGiottoInstrunctions()

remove Cell Annotation remove Cell Annotation

Description

removes cell annotation of giotto object

Usage

```
removeCellAnnotation(gobject, columns = NULL, return_gobject = TRUE)
```

Arguments

gobject giotto object

columns names of columns to remove

return_gobject boolean: return giotto object (default = TRUE)

Details

if return_gobject = FALSE, it will return the cell metadata

Value

giotto object

Examples

removeCellAnnotation(gobject)

 ${\tt removeGeneAnnotation} \quad \textit{removeGeneAnnotation}$

Description

removes gene annotation of giotto object

```
removeGeneAnnotation(gobject, columns = NULL, return_gobject = TRUE)
```

Arguments

gobject giotto object

columns names of columns to remove

return_gobject boolean: return giotto object (default = TRUE)

Details

if return_gobject = FALSE, it will return the gene metadata

Value

giotto object

Examples

removeGeneAnnotation(gobject)

 ${\tt replaceGiottoInstructions}$

replace Giot to Instructions

Description

Function to replace all instructions from giotto object

Usage

```
replaceGiottoInstructions(gobject, instructions = NULL)
```

Arguments

gobject giotto object

instructions new instructions (e.g. result from createGiottoInstructions)

Value

named vector with giotto instructions

Examples

replaceGiottoInstructions()

220 runPCA

runPCA runPCA

Description

runs a Principal Component Analysis

Usage

```
runPCA(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
  name = "pca",
  genes_to_use = NULL,
  return_gobject = TRUE,
  scale_unit = F,
  ncp = 200,
  ...
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
reduction
                  cells or genes
name
                  arbitrary name for PCA run
                  subset of genes to use for PCA
genes_to_use
return_gobject boolean: return giotto object (default = TRUE)
scale_unit
                  scale features before PCA
                  number of principal components to calculate
ncp
                  additional parameters for PCA (see details)
. . .
```

Details

See PCA for more information about other parameters.

Value

giotto object with updated PCA dimension recuction

Examples

```
runPCA(gobject)
```

runtSNE 221

runtSNE runtSNE

Description

run tSNE

Usage

```
runtSNE(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 reduction = c("cells", "genes"),
 dim_reduction_to_use = "pca",
 dim_reduction_name = "pca",
 dimensions_to_use = 1:10,
 name = "tsne",
 genes_to_use = NULL,
 return_gobject = TRUE,
 dims = 2,
 perplexity = 30,
  theta = 0.5,
 do_PCA_first = F,
 set_seed = T,
 seed_number = 1234,
)
```

Arguments

```
gobject
                 giotto object
expression_values
                 expression values to use
reduction
                 cells or genes
dim_reduction_to_use
                 use another dimension reduction set as input
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                 number of dimensions to use as input
                 arbitrary name for tSNE run
name
                 if dim_reduction_to_use = NULL, which genes to use
genes_to_use
return_gobject boolean: return giotto object (default = TRUE)
                 tSNE param: number of dimensions to return
dims
perplexity
                 tSNE param: perplexity
theta
                 tSNE param: theta
                 tSNE param: do PCA before tSNE (default = FALSE)
do_PCA_first
                 use of seed
set_seed
seed_number
                 seed number to use
                 additional tSNE parameters
```

222 runUMAP

Details

See Rtsne for more information about these and other parameters.

- Input for tSNE dimension reduction can be another dimension reduction (default = 'pca')
- To use gene expression as input set dim_reduction_to_use = NULL
- multiple tSNE results can be stored by changing the *name* of the analysis

Value

giotto object with updated tSNE dimension recuction

Examples

```
runtSNE(gobject)
```

runUMAP

runUMAP

Description

run UMAP

```
runUMAP(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
  dim_reduction_to_use = "pca",
  dim_reduction_name = "pca",
  dimensions_to_use = 1:10,
  name = "umap",
  genes_to_use = NULL,
  return_gobject = TRUE,
  n_neighbors = 40,
  n_{components} = 2,
  n_{epochs} = 400,
  min_dist = 0.01,
  n_{threads} = 1,
  spread = 5,
  set_seed = T,
  seed_number = 1234,
)
```

runUMAP 223

Arguments

gobject giotto object

expression_values

expression values to use

reduction cells or genes

dim_reduction_to_use

use another dimension reduction set as input

dim_reduction_name

name of dimension reduction set to use

dimensions_to_use

number of dimensions to use as input

name arbitrary name for UMAP run

genes_to_use if dim_reduction_to_use = NULL, which genes to use

return_gobject boolean: return giotto object (default = TRUE)

n_neighborsn_componentsUMAP param: number of neighborsUMAP param: number of components

n_epochs UMAP param: number of epochs min_dist UMAP param: minimum distance

spread UMAP param: spread

set_seed use of seed

seed_number seed number to use

... additional UMAP parameters

Details

See umap for more information about these and other parameters.

- Input for UMAP dimension reduction can be another dimension reduction (default = 'pca')
- To use gene expression as input set dim_reduction_to_use = NULL
- multiple UMAP results can be stored by changing the *name* of the analysis

Value

giotto object with updated UMAP dimension recuction

Examples

runUMAP(gobject)

224 selectPatternGenes

selectPatternGenes

selectPatternGenes

Description

Select genes correlated with spatial patterns

Usage

```
selectPatternGenes(
   spatPatObj,
   dimensions = 1:5,
   top_pos_genes = 10,
   top_neg_genes = 10,
   min_pos_cor = 0.5,
   min_neg_cor = -0.5,
   return_top_selection = FALSE
)
```

Arguments

spatPatObj	Output from detectSpatialPatterns
dimensions	dimensions to identify correlated genes for.
top_pos_genes	Top positively correlated genes.
top_neg_genes	Top negatively correlated genes.
min_pos_cor	Minimum positive correlation score to include a gene.
min_neg_cor	Minimum negative correlation score to include a gene

Details

Description.

Value

 $Data.table\ with\ genes\ associated\ with\ selected\ dimension\ (PC).$

Examples

```
selectPatternGenes(gobject)
```

```
select_expression_values
```

select_expression_values

Description

helper function to select expression values

Usage

```
select_expression_values(gobject, values)
```

Arguments

gobject giotto object

values expression values to extract

Value

expression matrix

 $\verb|show,giotto-method||$

show method for giotto class

Description

show method for giotto class

Usage

```
## S4 method for signature 'giotto'
show(object)
```

 $show {\tt ClusterDendrogram} \ \ \textit{show ClusterDendrogram}$

Description

Creates dendrogram for selected clusters.

Usage

```
showClusterDendrogram(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  cor = c("pearson", "spearman"),
  distance = "ward.D",
  h = NULL,
  h_color = "red",
  rotate = FALSE,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showClusterDendrogram",
  ...
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
cluster_column name of column to use for clusters
                  correlation score to calculate distance
cor
distance
                  distance method to use for hierarchical clustering
                  height of horizontal lines to plot
h
h_color
                  color of horizontal lines
rotate
                  rotate dendrogram 90 degrees
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  additional parameters for ggdendrogram()
```

Details

Expression correlation dendrogram for selected clusters.

Value

ggplot

Examples

```
showClusterDendrogram(gobject)
```

showClusterHeatmap 227

showClusterHeatmap showClusterHeatmap

Description

Creates heatmap based on identified clusters

Usage

```
showClusterHeatmap(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = "all",
  cluster_column,
  cor = c("pearson", "spearman"),
  distance = "ward.D",
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showClusterHeatmap",
  ...
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
                  vector of genes to use, default to 'all'
genes
cluster_column name of column to use for clusters
cor
                  correlation score to calculate distance
                  distance method to use for hierarchical clustering
distance
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  additional parameters for the Heatmap function from ComplexHeatmap
```

Details

Correlation heatmap of selected clusters.

Value

ggplot

228 showCPGscores

Examples

showClusterHeatmap(gobject)

showCPGscores

showCPGscores

Description

visualize Cell Proximity Gene enrichment scores

Usage

```
showCPGscores(
 gobject,
 CPGscore,
 method = c("volcano", "cell_barplot", "cell-cell", "cell_sankey", "heatmap",
    "dotplot"),
 min_cells = 5,
 min_fdr = 0.05,
 min_spat_diff = 0.2,
 min_log2_fc = 0.5,
 keep_int_duplicates = TRUE,
 direction = c("both", "up", "down"),
 cell_color_code = NULL,
  show_plot = NA,
  return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "showCPGscores"
)
```

Arguments

```
CPGscore
                 CPGscore, output from getCellProximityGeneScores()
method
                 visualization method
min_cells
                 min number of cells threshold
min_fdr
                 fdr threshold
                 spatial difference threshold
min_spat_diff
min_log2_fc
                 min log2 fold-change
keep_int_duplicates
                 keep both cell_A-cell_B and cell_B-cell_A
direction
                 up or downregulation or both
cell_color_code
                 color code for cell types
show_plot
                 show plot
return_plot
                 return ggplot object
save_plot
                 directly save the plot [boolean]
                 list of saving parameters from all_plots_save_function
save_param
default_save_name
```

default save name for saving, don't change, change save_name in save_param

Details

Different ways to visualize how many genes are differentially regulated within a source cell type due to the proximity of another neighboring cell type.

Value

Gene to gene scores in data.table format

Examples

```
showCPGscores(CPGscore)
```

```
show Gene Expression Proximity Score \\ show Gene Expression Proximity Score
```

Description

Create heatmap from cell-cell proximity scores

Usage

```
showGeneExpressionProximityScore(
  scores,
  selected_gene,
  sort_column = "diff_spat"
)
```

Arguments

```
scores CPscore, output from getAverageCellProximityGeneScores()
selected_gene gene to show
sort_column column name to use for sorting
```

Details

Give more details ...

Value

ggplot barplot

Examples

show Gene Expression Proximity Score (scores)

230 showGTGscores

```
showGiottoInstructions
```

showGiottoInstructions

Description

Function to display all instructions from giotto object

Usage

```
showGiottoInstructions(gobject)
```

Arguments

```
gobject giotto object
```

Value

named vector with giotto instructions

Examples

```
showGiottoInstructions()
```

 $\verb|showGTGscores||$

showGTGscores

Description

visualize Cell Proximity Gene enrichment scores

```
showGTGscores(
  GTGscore,
  method = c("cell_barplot", "cell-cell", "cell_sankey"),
  min_cells = 5,
  min_pval = 0.05,
  min_spat_diff = 0.2,
  min_log2_fc = 0.5,
  direction = c("both", "up", "down"),
  cell_color_code = NULL,
  show_plot = T,
  specific_genes_1 = NULL,
  specific_genes_2 = NULL,
  first_cell_name = "ligand cell",
  second_cell_name = "receptor cell",
  return_DT = F
)
```

Arguments

```
visualization method
method
min_cells
                  min number of cells threshold
min_pval
                  p-value threshold
min_spat_diff
                  spatial difference threshold
                  log2 fold-change threshold
min_log2_fc
direction
                  up or downregulation or both
cell_color_code
                  color code for cell types
show_plot
                  print plot
specific_genes_1
                  subset of genes, matched with specific_genes_2
specific_genes_2
                  subset of genes, matched with specific_genes_1
first_cell_name
                  name for first cells
second_cell_name
                  name for second cells
                  CPGscore, output from getCellProximityGeneScores()
CPGscore
```

Details

Give more details ...

Value

ggplot

Examples

```
showGTGscores(CPGscore)
```

```
show Int {\it Expression Proximity Score} \\ show Int {\it Expression Proximity Score}
```

Description

Create heatmap from cell-cell proximity scores

```
showIntExpressionProximityScore(
   scores,
   selected_interaction,
   sort_column = "diff_spat",
   show_enriched_n = 5,
   show_depleted_n = 5
)
```

232 showPattern

Arguments

scores scores, output from getAverageCellProximityGeneScores()

selected_interaction
 interaction to show

sort_column column name to use for sorting
show_enriched_n
 show top enriched interactions

show top depleted interactions

show_depleted_n

Details

Give more details ...

Value

ggplot barplot

Examples

showIntExpressionProximityScore(scores)

showPattern showPattern

Description

show patterns for 2D spatial data

Usage

```
showPattern(gobject, spatPatObj, ...)
```

Arguments

gobject giotto object

spatPatObj Output from detectSpatialPatterns

dimension dimension to plot

trim Trim ends of the PC values.

background_color

background color for plot

grid_border_color

color for grid

show_legend show legend of ggplot

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param

showPattern2D 233

Value

ggplot

See Also

showPattern2D

Examples

```
showPattern(gobject)
```

showPattern2D

showPattern2D

Description

show patterns for 2D spatial data

Usage

```
showPattern2D(
  gobject,
  spatPatObj,
  dimension = 1,
  trim = c(0.02, 0.98),
  background_color = "white",
  grid_border_color = "grey",
  show_legend = T,
  point_size = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showPattern2D"
)
```

Arguments

gobject

show_plot

return_plot

show plot

return ggplot object

giotto object

234 showPattern3D

Value

ggplot

Examples

```
showPattern2D(gobject)
```

showPattern3D

showPattern3D

Description

show patterns for 3D spatial data

Usage

```
showPattern3D(
 gobject,
 spatPatObj,
 dimension = 1,
  trim = c(0.02, 0.98),
 background_color = "white",
 grid_border_color = "grey",
 show_legend = T,
 point_size = 1,
 axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 x_{ticks} = NULL,
 y_ticks = NULL,
 z_ticks = NULL,
 show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "showPattern3D"
)
```

Arguments

```
gobject giotto object
spatPatObj Output from detectSpatialPatterns
dimension dimension to plot
trim Trim ends of the PC values.
background_color
background color for plot
```

showPatternGenes 235

```
grid_border_color
                  color for grid
show_legend
                  show legend of plot
                  adjust the point size
point_size
axis_scale
                  scale the axis
                  cutomize the scale of the axis
custom_ratio
                  the tick number of x_axis
x_ticks
y_ticks
                  the tick number of y_axis
z_ticks
                  the tick number of z_axis
show_plot
                  show plot
return_plot
                  return plot object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Value

plotly

Examples

showPattern3D(gobject)

showPatternGenes

showPatternGenes

Description

show genes correlated with spatial patterns

```
showPatternGenes(
  gobject,
  spatPatObj,
  dimension = 1,
  top_pos_genes = 5,
  top_neg_genes = 5,
  point_size = 1,
  return_DT = FALSE,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "showPatternGenes"
)
```

236 showProcessingSteps

Arguments

gobject giotto object

spatPatObj Output from detectSpatialPatterns

dimension dimension to plot genes for.top_pos_genes Top positively correlated genes.top_neg_genes Top negatively correlated genes.

point_size size of points

return_DT if TRUE, it will return the data.table used to generate the plots

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

Value

ggplot

Examples

showPatternGenes(gobject)

showProcessingSteps

showProcessingSteps

Description

shows the sequential processing steps that were performed in a summarized format

Usage

showProcessingSteps(gobject)

Arguments

gobject giotto object

Value

list of processing steps and names

Examples

showProcessingSteps(gobject)

showSpatialCorGenes 237

showSpatialCorGenes showSpatialCorGenes

Description

Shows and filters spatially correlated genes

Usage

```
showSpatialCorGenes(
   spatCorObject,
   use_clus_name = NULL,
   selected_clusters = NULL,
   genes = NULL,
   min_spat_cor = 0.5,
   min_expr_cor = NULL,
   min_cor_diff = NULL,
   min_rank_diff = NULL,
   show_top_genes = NULL)
```

Arguments

```
spatCorObject
                  spatial correlation object
use_clus_name
                  cluster information to show
selected_clusters
                  subset of clusters to show
                  subset of genes to show
genes
                  filter on minimum spatial correlation
min_spat_cor
                  filter on minimum single-cell expression correlation
min_expr_cor
                  filter on minimum correlation difference (spatial vs expression)
min_cor_diff
                  filter on minimum correlation rank difference (spatial vs expression)
min_rank_diff
show_top_genes show top genes per gene
```

Value

data.table with filtered information

Examples

```
\verb|showSpatialCorGenes(gobject)|
```

238 showTopGeneToGene

showTopGeneToGene

show Top Gene To Gene

Description

Show enriched/depleted gene-gene enrichments

Usage

```
showTopGeneToGene(
  GTGscore,
  top_interactions = 10,
  direction = c("increased", "decreased"),
  complement_data = T,
  subset_cell_ints = NULL,
  subset_genes = NULL
)
```

Arguments

Details

Give more details ...

Value

ggplot barplot

Examples

```
showTopGeneToGene(scores)
```

signPCA 239

signPCA signPCA

Description

identify significant prinicipal components (PCs)

Usage

```
signPCA(
  gobject,
  method = c("screeplot", "jackstraw"),
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"),
  genes_to_use = NULL,
  scale_unit = T,
  ncp = 50,
  scree_labels = T,
  scree_ylim = c(0, 10),
  jack_iter = 10,
  jack_threshold = 0.01,
  jack_verbose = T,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "signPCA",
)
```

Arguments

```
gobject
                  giotto object
method
                  method to use to identify significant PCs
expression_values
                  expression values to use
                  cells or genes
reduction
genes_to_use
                  subset of genes to use for PCA
                  scale features before PCA
scale_unit
                  number of principal components to calculate
ncp
scree_labels
                  show labels on scree plot
                  y-axis limits on scree plot
scree_ylim
jack_iter
                  number of interations for jackstraw
jack_threshold p-value threshold to call a PC significant
                  show progress of jackstraw method
jack_verbose
show_plot
                  show plot
return_plot
                  return ggplot object
```

Details

Two different methods can be used to assess the number of relevant or significant prinicipal components (PC's).

- 1. Screeplot works by plotting the explained variance of each individual PC in a barplot allowing you to identify which PC does not show a significant contribution anymore (= 'elbow method').
- $2. \ The \ Jackstraw \ method \ uses \ the \ {\tt permutationPA} \ function. \ By \ systematically \ permuting \ genes \ it \ identifies \ robust, \ and \ thus \ significant, \ PCs.$

multiple PCA results can be stored by changing the name parameter

Value

ggplot object for scree method and maxtrix of p-values for jackstraw

Examples

```
signPCA(gobject)
```

```
sort_combine_two_DT_columns
sort_combine_two_DT_columns
```

Description

fast sorting and pasting of 2 character columns

Usage

```
sort_combine_two_DT_columns(DT, column1, column2, myname = "unif_gene_gene")
```

Examples

```
sort_combine_two_DT_columns()
```

spatCellCellcom 241

spatCellCellcom spatCellCellcom

Description

Spatial Cell-Cell communication scores based on spatial expression of interacting cells

Usage

```
spatCellCellcom(
  gobject,
 spatial_network_name = "spatial_network",
 cluster_column = "cell_types",
  random_iter = 100,
 gene_set_1,
 gene_set_2,
  log2FC_addendum = 0.1,
 min_observations = 2,
 adjust_method = c("fdr", "bonferroni", "BH", "holm", "hochberg", "hommel", "BY",
    "none"),
  adjust_target = c("genes", "cells"),
  do_parallel = TRUE,
 cores = NA,
  verbose = c("a little", "a lot", "none")
)
```

Arguments

```
gobject
                  giotto object to use
spatial_network_name
                  spatial network to use for identifying interacting cells
cluster_column cluster column with cell type information
                  number of iterations
random_iter
                  first specific gene set from gene pairs
gene_set_1
gene_set_2
                  second specific gene set from gene pairs
log2FC_addendum
                  addendum to add when calculating log2FC
min_observations
                  minimum number of interactions needed to be considered
                  which method to adjust p-values
adjust_method
                  adjust multiple hypotheses at the cell or gene level
adjust_target
                  run calculations in parallel with mclapply
do_parallel
                  number of cores to use if do_parallel = TRUE
cores
                  verbose
verbose
```

Details

Statistical framework to identify if pairs of genes (such as ligand-receptor combinations) are expressed at higher levels than expected based on a reshuffled null distribution of gene expression values in cells that are spatially in proximity to eachother.. More details will follow soon.

242 spatCellPlot

Value

Cell-Cell communication scores for gene pairs based on spatial interaction

Examples

```
spatCellCellcom(gobject)
```

spatCellPlot

spatCellPlot

Description

Visualize cells according to spatial coordinates

```
spatCellPlot(
 gobject,
  sdimx = "sdimx",
 sdimy = "sdimy",
 spat_enr_names = NULL,
 cell_annotation_values = NULL,
 cell_color_gradient = c("blue", "white", "red"),
 gradient_midpoint = NULL,
 gradient_limits = NULL,
 select_cell_groups = NULL,
 select_cells = NULL,
 point_shape = c("border", "no_border"),
 point_size = 3,
 point_border_col = "black",
 point_border_stroke = 0.1,
  show_cluster_center = F,
  show_center_label = F,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
 label_size = 4,
 label_fontface = "bold",
  show_network = F,
  spatial_network_name = "spatial_network",
 network_color = NULL,
 network_alpha = 1,
 show\_grid = F,
  spatial_grid_name = "spatial_grid",
 grid_color = NULL,
 show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 other_cells_alpha = 0.1,
  coord_fix_ratio = NULL,
  show_legend = T,
```

spatCellPlot 243

```
legend_text = 8,
      legend_symbol_size = 1,
      background_color = "white",
      axis_text = 8,
      axis_title = 8,
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatCellPlot"
    )
Arguments
    gobject
                     giotto object
    sdimx
                     x-axis dimension name (default = 'sdimx')
                     y-axis dimension name (default = 'sdimy')
    sdimy
    spat_enr_names names of spatial enrichment results to include
    cell_annotation_values
                     numeric cell annotation columns
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
    select_cells
                     select subset of cells based on cell IDs
    point_shape
                     point with border or not (border or no_border)
    point_size
                     size of point (cell)
    point_border_col
                      color of border around points
    point_border_stroke
                     stroke size of border around points
    show_cluster_center
                     plot center of selected clusters
    show_center_label
                     plot label of selected clusters
    center_point_size
                     size of center points
    label_size
                     size of labels
    label_fontface font of labels
```

show underlying spatial network

show_network

244 spatCellPlot

```
spatial_network_name
```

name of spatial network to use

network_color color of spatial network network_alpha alpha of spatial network

show_grid show spatial grid

spatial_grid_name

name of spatial grid to use

grid_color color of spatial grid

show_other_cells

display not selected cells

other_cell_color

color of not selected cells

other_point_size

point size of not selected cells

other_cells_alpha

alpha of not selected cells

coord_fix_ratio

fix ratio between x and y-axis

show_legend show legend

legend_text size of legend text

legend_symbol_size

size of legend symbols

background_color

color of plot background

axis_text size of axis text
axis_title size of axis title

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Description of parameters.

Value

ggplot

Examples

spatCellPlot(gobject)

spatCellPlot2D 245

spatCellPlot2D

spatCellPlot2D

Description

Visualize cells according to spatial coordinates

```
spatCellPlot2D(
 gobject,
  sdimx = "sdimx",
  sdimy = "sdimy",
  spat_enr_names = NULL,
 cell_annotation_values = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
 gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
 point_shape = c("border", "no_border"),
 point_size = 3,
 point_border_col = "black",
 point_border_stroke = 0.1,
  show_cluster_center = F,
 show_center_label = F,
 center_point_size = 4,
 center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  show_network = F,
  spatial_network_name = "spatial_network",
 network_color = NULL,
 network_alpha = 1,
  show_grid = F,
  spatial_grid_name = "spatial_grid",
 grid_color = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 other_cells_alpha = 0.1,
 coord_fix_ratio = NULL,
  show_legend = T,
 legend_text = 8,
  legend_symbol_size = 1,
 background_color = "white",
 axis_text = 8,
 axis_title = 8,
 cow_n_col = 2,
  cow_rel_h = 1,
```

246 spatCellPlot2D

```
cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatCellPlot2D"
Arguments
    gobject
                      giotto object
    sdimx
                      x-axis dimension name (default = 'sdimx')
    sdimy
                      y-axis dimension name (default = 'sdimy')
    spat_enr_names names of spatial enrichment results to include
    cell_annotation_values
                      numeric cell annotation columns
    cell_color_gradient
                      vector with 3 colors for numeric data
    gradient_midpoint
                      midpoint for color gradient
    gradient_limits
                      vector with lower and upper limits
    select_cell_groups
                      select subset of cells/clusters based on cell_color parameter
    select_cells
                      select subset of cells based on cell IDs
    point_shape
                      point with border or not (border or no_border)
    point_size
                      size of point (cell)
    point_border_col
                      color of border around points
    point_border_stroke
                      stroke size of border around points
    show_cluster_center
                      plot center of selected clusters
    show_center_label
                      plot label of selected clusters
    center_point_size
                      size of center points
    label_size
                      size of labels
    label_fontface font of labels
                      show underlying spatial network
    show_network
    spatial_network_name
                      name of spatial network to use
```

network_color color of spatial network

alpha of spatial network

show spatial grid

network_alpha

show_grid

spatCellPlot2D 247

spatial_grid_name

name of spatial grid to use

grid_color color of spatial grid

show_other_cells

display not selected cells

other_cell_color

color of not selected cells

other_point_size

point size of not selected cells

other_cells_alpha

alpha of not selected cells

coord_fix_ratio

fix ratio between x and y-axis

show_legend show legend

legend_text size of legend text

legend_symbol_size

size of legend symbols

background_color

color of plot background

axis_text size of axis text

axis_title size of axis title

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Description of parameters.

Value

ggplot

Examples

spatCellPlot2D(gobject)

248 spatDimCellPlot

spatDimCellPlot

spatDimCellPlot

Description

Visualize numerical features of cells according to spatial AND dimension reduction coordinates in 2D

```
spatDimCellPlot(
 gobject,
 plot_alignment = c("vertical", "horizontal"),
  spat_enr_names = NULL,
  cell_annotation_values = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2\_to\_use = 2,
  sdimx = "sdimx",
  sdimy = "sdimy",
 cell_color_gradient = c("blue", "white", "red"),
 gradient_midpoint = NULL,
 gradient_limits = NULL;
  select_cell_groups = NULL,
  select_cells = NULL,
 dim_point_shape = c("border", "no_border"),
  dim_point_size = 1,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  spat_point_shape = c("border", "no_border"),
  spat_point_size = 1,
  spat_point_border_col = "black",
  spat_point_border_stroke = 0.1,
 dim_show_cluster_center = F,
 dim_show_center_label = T,
 dim_center_point_size = 4,
 dim_center_point_border_col = "black",
 dim_center_point_border_stroke = 0.1,
  dim_label_size = 4,
 dim_label_fontface = "bold";
  spat_show_cluster_center = F,
  spat_show_center_label = F,
  spat_center_point_size = 4,
  spat_center_point_border_col = "black",
  spat_center_point_border_stroke = 0.1,
  spat_label_size = 4,
  spat_label_fontface = "bold",
  show_NN_network = F,
 nn_network_to_use = "sNN",
 nn_network_name = "sNN.pca",
```

spatDimCellPlot 249

```
dim_edge_alpha = 0.5,
      spat_show_network = F,
      spatial_network_name = "spatial_network",
      spat_network_color = "red",
      spat_network_alpha = 0.5,
      spat_show_grid = F,
      spatial_grid_name = "spatial_grid",
      spat_grid_color = "green",
      show_other_cells = TRUE,
      other_cell_color = "grey",
      dim_other_point_size = 0.5,
      spat_other_point_size = 0.5,
      spat_other_cells_alpha = 0.5,
      coord_fix_ratio = NULL,
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_legend = T,
      legend_text = 8,
      legend_symbol_size = 1,
      dim_background_color = "white",
      spat_background_color = "white",
      axis_text = 8,
      axis_title = 8,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimCellPlot"
    )
Arguments
   gobject
                     giotto object
   plot_alignment direction to align plot
    spat_enr_names names of spatial enrichment results to include
    cell_annotation_values
                     numeric cell annotation columns
    dim_reduction_to_use
                     dimension reduction to use
   dim_reduction_name
                     dimension reduction name
   dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    \operatorname{sdim} \boldsymbol{x}
                     = spatial dimension to use on x-axis
    sdimy
                     = spatial dimension to use on y-axis
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
```

midpoint for color gradient

250 spatDimCellPlot

gradient_limits

vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select_cells select subset of cells based on cell IDs dim_point_shape spatial points with border or not (border or no_border) dim_point_size size of points in dim. reduction space dim_point_border_col border color of points in dim. reduction space dim_point_border_stroke border stroke of points in dim. reduction space spat_point_shape spatial points with border or not (border or no_border) spat_point_size size of spatial points spat_point_border_col border color of spatial points spat_point_border_stroke border stroke of spatial points $\operatorname{dim_show_cluster_center}$ show the center of each cluster dim_show_center_label provide a label for each cluster ${\tt dim_center_point_size}$ size of the center point dim_center_point_border_col border color of center point dim_center_point_border_stroke stroke size of center point dim_label_size size of the center label dim_label_fontface font of the center label spat_show_cluster_center show the center of each cluster spat_show_center_label provide a label for each cluster spat_center_point_size size of the center point spat_label_size size of the center label spat_label_fontface font of the center label show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) nn_network_name name of NN network to use, if show_NN_network = TRUE dim_edge_alpha column to use for alpha of the edges spat_show_network show spatial network spatial_network_name name of spatial network to use spat_network_color color of spatial network spat_show_grid show spatial grid spatial_grid_name name of spatial grid to use spat_grid_color color of spatial grid show_other_cells display not selected cells other_cell_color color of not selected cells dim_other_point_size size of not selected dim cells spat_other_point_size size of not selected spat cells spat_other_cells_alpha alpha of not selected spat cells coord_fix_ratio ratio for coordinates cow_n_col cowplot param: how many columns cowplot param: relative height cow_rel_h cow_rel_w cowplot param: relative width cowplot param: how to align cow_align show legend show_legend legend_text size of legend text legend_symbol_size size of legend symbols dim_background_color background color of points in dim. reduction space spat_background_color background color of spatial points size of axis text axis_text axis_title size of axis title show_plot show plot return_plot return ggplot object save_plot directly save the plot [boolean] list of saving parameters from all_plots_save_function save_param default_save_name default save name for saving, don't change, change save_name in save_param 252 spatDimCellPlot2D

Details

Description of parameters.

Value

ggplot

Examples

```
spatDimCellPlot(gobject)
```

spatDimCellPlot2D

spatDimCellPlot2D

Description

Visualize numerical features of cells according to spatial AND dimension reduction coordinates in 2D

```
spatDimCellPlot2D(
 gobject,
 plot_alignment = c("vertical", "horizontal"),
  spat_enr_names = NULL,
 cell_annotation_values = NULL,
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2\_to\_use = 2,
  sdimx = "sdimx",
  sdimy = "sdimy",
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
 dim_point_shape = c("border", "no_border"),
 dim_point_size = 1,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  spat_point_shape = c("border", "no_border"),
  spat_point_size = 1,
  spat_point_border_col = "black",
  spat_point_border_stroke = 0.1,
 dim_show_cluster_center = F,
 dim_show_center_label = T,
 dim_center_point_size = 4,
 dim_center_point_border_col = "black",
 dim_center_point_border_stroke = 0.1,
  dim_label_size = 4,
```

spatDimCellPlot2D 253

```
dim_label_fontface = "bold",
  spat_show_cluster_center = F,
  spat_show_center_label = F,
  spat_center_point_size = 4,
  spat_center_point_border_col = "black",
  spat_center_point_border_stroke = 0.1,
  spat_label_size = 4,
  spat_label_fontface = "bold",
  show_NN_network = F,
 nn_network_to_use = "sNN",
 nn_network_name = "sNN.pca",
 dim_edge_alpha = 0.5,
  spat_show_network = F,
  spatial_network_name = "spatial_network",
  spat_network_color = "red",
  spat_network_alpha = 0.5,
  spat_show_grid = F,
  spatial_grid_name = "spatial_grid",
  spat_grid_color = "green",
  show_other_cells = TRUE,
 other_cell_color = "grey",
 dim_other_point_size = 0.5,
  spat_other_point_size = 0.5,
  spat_other_cells_alpha = 0.5,
  show_legend = T,
  legend_text = 8,
  legend_symbol_size = 1,
  dim_background_color = "white",
  spat_background_color = "white",
 axis_text = 8,
 axis_title = 8,
  coord_fix_ratio = NULL,
 cow_n_col = 2,
 cow_rel_h = 1,
 cow_rel_w = 1,
  cow_align = "h",
 show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "spatDimCellPlot2D"
)
```

Arguments

```
giotto object
plot_alignment direction to align plot
spat_enr_names names of spatial enrichment results to include
cell_annotation_values
                 numeric cell annotation columns
dim_reduction_to_use
                 dimension reduction to use
```

254 spatDimCellPlot2D

dim_reduction_name dimension reduction name dimension to use on x-axis dim1_to_use dim2_to_use dimension to use on y-axis sdimx = spatial dimension to use on x-axis sdimy = spatial dimension to use on y-axis cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select subset of cells based on cell IDs select_cells dim_point_shape dim reduction points with border or not (border or no_border) dim_point_size size of points in dim. reduction space dim_point_border_col border color of points in dim. reduction space dim_point_border_stroke border stroke of points in dim. reduction space spat_point_shape spatial points with border or not (border or no_border) spat_point_size size of spatial points spat_point_border_col border color of spatial points spat_point_border_stroke border stroke of spatial points dim_show_cluster_center show the center of each cluster dim_show_center_label provide a label for each cluster dim_center_point_size size of the center point dim_center_point_border_col border color of center point dim_center_point_border_stroke stroke size of center point dim_label_size size of the center label dim_label_fontface font of the center label spat_show_cluster_center show the center of each cluster spat_show_center_label provide a label for each cluster

spat_center_point_size size of the center point spat_label_size size of the center label spat_label_fontface font of the center label show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) nn_network_name name of NN network to use, if show_NN_network = TRUE dim_edge_alpha column to use for alpha of the edges spat_show_network show spatial network spatial_network_name name of spatial network to use spat_network_color color of spatial network spat_show_grid show spatial grid spatial_grid_name name of spatial grid to use spat_grid_color color of spatial grid show_other_cells display not selected cells other_cell_color color of not selected cells dim_other_point_size size of not selected dim cells spat_other_point_size size of not selected spat cells spat_other_cells_alpha alpha of not selected spat cells show_legend show legend legend_text size of legend text legend_symbol_size size of legend symbols dim_background_color background color of points in dim. reduction space spat_background_color background color of spatial points axis_text size of axis text axis_title size of axis title coord_fix_ratio ratio for coordinates

cowplot param: how many columns

cow_n_col

256 spatDimGenePlot

```
cow_rel_h
                  cowplot param: relative height
                  cowplot param: relative width
cow_rel_w
cow_align
                  cowplot param: how to align
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

Examples

```
spatDimCellPlot2D(gobject)
```

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

Usage

```
spatDimGenePlot(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 plot_alignment = c("vertical", "horizontal"),
 genes,
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
 dim_point_shape = c("border", "no_border"),
 dim_point_size = 1,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  show_NN_network = F,
  show_spatial_network = F,
  show_spatial_grid = F,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 edge_alpha_dim = NULL,
```

spatDimGenePlot 257

scale_alpha_with_expression = FALSE,

```
spatial_network_name = "spatial_network",
      spatial_grid_name = "spatial_grid",
      spat_point_shape = c("border", "no_border"),
      spat_point_size = 1,
      spat_point_border_col = "black",
      spat_point_border_stroke = 0.1,
      midpoint = 0,
      genes_high_color = "red",
      genes_mid_color = "white",
      genes_low_color = "blue",
      show_legend = T,
      legend_text = 8,
      dim_background_color = "white",
      spat_background_color = "white",
      axis_text = 8,
      axis_title = 8,
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimGenePlot"
    )
Arguments
   gobject
                    giotto object
   expression_values
                    gene expression values to use
   plot_alignment direction to align plot
    genes
                    genes to show
    dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
   dim1_to_use
                    dimension to use on x-axis
   dim2_to_use
                    dimension to use on y-axis
    dim_point_shape
                    dimension points with border or not (border or no_border)
   dim_point_size dim reduction plot: point size
   dim_point_border_col
                    color of border around points
   dim_point_border_stroke
                    stroke size of border around points
    show_NN_network
                    show underlying NN network
```

258 spatDimGenePlot

```
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use, if show_NN_network = TRUE
network_name
edge_alpha_dim dim reduction plot: column to use for alpha of the edges
scale_alpha_with_expression
                  scale expression with ggplot alpha parameter
spatial_network_name
                  name of spatial network to use
spatial_grid_name
                  name of spatial grid to use
spat_point_shape
                  spatial points with border or not (border or no_border)
spat_point_size
                  spatial plot: point size
spat_point_border_col
                  color of border around points
spat_point_border_stroke
                  stroke size of border around points
midpoint
                  size of point (cell)
show_legend
                  show legend
legend_text
                  size of legend text
dim_background_color
                  color of plot background for dimension plot
spat_background_color
                  color of plot background for spatial plot
                  size of axis text
axis_text
axis_title
                  size of axis title
cow_n_col
                  cowplot param: how many columns
cow_rel_h
                  cowplot param: relative height
                  cowplot param: relative width
cow_rel_w
cow_align
                  cowplot param: how to align
show_plot
                  show plots
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

spatDimGenePlot2D 259

See Also

```
spatDimGenePlot3D
```

Examples

```
spatDimGenePlot(gobject)
```

spatDimGenePlot2D

spatDimGenePlot2D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

Usage

```
spatDimGenePlot2D(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 plot_alignment = c("vertical", "horizontal"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
 dim_point_shape = c("border", "no_border"),
 dim_point_size = 1,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  show_NN_network = F,
  show_spatial_network = F,
  show_spatial_grid = F,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 edge_alpha_dim = NULL,
  scale_alpha_with_expression = FALSE,
  spatial_network_name = "spatial_network",
  spatial_grid_name = "spatial_grid",
  spat_point_shape = c("border", "no_border"),
  spat_point_size = 1,
  spat_point_border_col = "black",
  spat_point_border_stroke = 0.1,
 midpoint = 0,
 genes_high_color = "red",
 genes_mid_color = "white",
 genes_low_color = "blue",
 cow_n_col = 2,
  cow_rel_h = 1,
 cow_rel_w = 1,
 cow_align = "h",
  show_legend = T,
```

260 spatDimGenePlot2D

```
legend_text = 8,
      dim_background_color = "white",
      spat_background_color = "white",
      axis_text = 8,
      axis_title = 8,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimGenePlot2D"
    )
Arguments
    gobject
                     giotto object
    expression_values
                     gene expression values to use
    plot_alignment direction to align plot
                     genes to show
    genes
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
   dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    dim_point_shape
                     dim reduction points with border or not (border or no_border)
   dim_point_size dim reduction plot: point size
    dim_point_border_col
                     color of border around points
    dim_point_border_stroke
                     stroke size of border around points
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
                     name of NN network to use, if show_NN_network = TRUE
    network_name
    edge_alpha_dim dim reduction plot: column to use for alpha of the edges
    scale_alpha_with_expression
                     scale expression with ggplot alpha parameter
    spatial_network_name
                     name of spatial network to use
    spatial\_grid\_name
                     name of spatial grid to use
    spat_point_shape
                     spatial points with border or not (border or no_border)
    spat_point_size
```

spatial plot: point size

spatDimGenePlot2D 261

```
spat_point_border_col
                  color of border around points
spat\_point\_border\_stroke
                  stroke size of border around points
                  size of point (cell)
midpoint
                  cowplot param: how many columns
cow_n_col
cow\_rel\_h
                  cowplot param: relative height
                  cowplot param: relative width
cow_rel_w
cow_align
                  cowplot param: how to align
show_legend
                  show legend
legend_text
                  size of legend text
dim_background_color
                  color of plot background for dimension plot
spat_background_color
                  color of plot background for spatial plot
axis_text
                  size of axis text
axis_title
                  size of axis title
show_plot
                  show plots
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

spatDimGenePlot3D

Examples

spatDimGenePlot2D(gobject)

262 spatDimGenePlot3D

spatDimGenePlot3D

spatDimGenePlot3D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

Usage

```
spatDimGenePlot3D(
 gobject,
 expression_values = c("normalized", "scaled", "custom"),
 plot_alignment = c("horizontal", "vertical"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2\_to\_use = 2,
 dim3_to_use = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy",
  sdimz = "sdimz",
 genes,
 cluster_column = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1.5,
  show_NN_network = F,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
  label_size = 16,
  genes_low_color = "blue",
 genes_mid_color = "white",
  genes_high_color = "red",
 dim_point_size = 3,
 nn_network_alpha = 0.5,
  show_spatial_network = F,
  spatial_network_name = "spatial_network",
 network_color = "lightgray",
  spatial_network_alpha = 0.5,
  show_spatial_grid = F,
  spatial_grid_name = "spatial_grid",
  spatial_grid_color = NULL,
  spatial_grid_alpha = 0.5,
  spatial_point_size = 3,
  legend_text_size = 12,
  axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 x_ticks = NULL,
 y_ticks = NULL,
```

spatDimGenePlot3D 263

```
z_ticks = NULL,
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatDimGenePlot3D"
    )
Arguments
    gobject
                     giotto object
    expression_values
                     gene expression values to use
    plot_alignment direction to align plot
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    dim3_to_use
                     dimension to use on z-axis
    genes
                     genes to show
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
                     name of NN network to use, if show_NN_network = TRUE
    network_name
    dim_point_size dim reduction plot: point size
    spatial_network_name
                     name of spatial network to use
    spatial_grid_name
                     name of spatial grid to use
    spatial_point_size
                     spatial plot: point size
    show_plot
                     show plots
    return_plot
                     return plotly object
    save_plot
                     directly save the plot [boolean]
                     list of saving parameters from all_plots_save_function
    save_param
    default_save_name
                     default save name for saving, don't change, change save_name in save_param
    edge_alpha_dim dim reduction plot: column to use for alpha of the edges
    scale_alpha_with_expression
                     scale expression with ggplot alpha parameter
                     size of point (cell)
    point_size
```

show_legend

show legend

264 spatDimPlot

Details

Description of parameters.

Value

plotly

Examples

```
spatDimGenePlot3D(gobject)
```

spatDimPlot

spatDimPlot

Description

Visualize cells according to spatial AND dimension reduction coordinates 2D

Usage

```
spatDimPlot(
 gobject,
 plot_alignment = c("vertical", "horizontal"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2\_to\_use = 2,
  sdimx = "sdimx",
  sdimy = "sdimy",
  spat_enr_names = NULL,
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
 dim_point_shape = c("border", "no_border"),
 dim_point_size = 1,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  spat_point_shape = c("border", "no_border"),
  spat_point_size = 1,
  spat_point_border_col = "black",
  spat_point_border_stroke = 0.1,
  dim_show_cluster_center = F,
 dim_show_center_label = T,
 dim_center_point_size = 4,
 dim_center_point_border_col = "black",
  dim_center_point_border_stroke = 0.1,
```

spatDimPlot 265

```
dim_label_size = 4,
 dim_label_fontface = "bold",
  spat_show_cluster_center = F,
  spat_show_center_label = F,
  spat_center_point_size = 4,
  spat_label_size = 4,
  spat_label_fontface = "bold",
  show_NN_network = F,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 nn_network_alpha = 0.05,
  show_spatial_network = F,
  spat_network_name = "spatial_network",
  spat_network_color = "blue",
  spat_network_alpha = 0.5,
  show_spatial_grid = F,
  spat_grid_name = "spatial_grid",
  spat_grid_color = "blue",
  show_other_cells = T,
  other_cell_color = "lightgrey",
 dim_other_point_size = 1,
  spat_other_point_size = 1,
  spat_other_cells_alpha = 0.5,
  dim_show_legend = F,
  spat_show_legend = F,
  legend_text = 8,
  legend_symbol_size = 1,
  dim_background_color = "white",
  spat_background_color = "white",
 axis_text = 8,
 axis_title = 8,
  show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "spatDimPlot"
)
```

Arguments

```
gobject
                  giotto object
plot_alignment direction to align plot
dim_reduction_to_use
                  dimension reduction to use
dim_reduction_name
                  dimension reduction name
dim1_to_use
                  dimension to use on x-axis
dim2_to_use
                  dimension to use on y-axis
                  = spatial dimension to use on x-axis
sdimx
sdimy
                  = spatial dimension to use on y-axis
spat_enr_names names of spatial enrichment results to include
```

266 spatDimPlot

cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select subset of cells based on cell IDs select_cells dim_point_shape point with border or not (border or no_border) dim_point_size size of points in dim. reduction space dim_point_border_col border color of points in dim. reduction space ${\tt dim_point_border_stroke}$ border stroke of points in dim. reduction space spat_point_shape point with border or not (border or no_border) spat_point_size size of spatial points spat_point_border_col border color of spatial points spat_point_border_stroke border stroke of spatial points dim_show_cluster_center show the center of each cluster dim_show_center_label provide a label for each cluster ${\tt dim_center_point_size}$ size of the center point dim_center_point_border_col border color of center point dim_center_point_border_stroke stroke size of center point dim_label_size size of the center label dim_label_fontface font of the center label spat_show_cluster_center show the center of each cluster spat_show_center_label provide a label for each cluster spat_center_point_size

size of the center point

spat_label_size size of the center label spat_label_fontface font of the center label show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name nn_network_alpha column to use for alpha of the edges show_spatial_network show spatial network spat_network_name name of spatial network to use spat_network_color color of spatial network show_spatial_grid show spatial grid spat_grid_name name of spatial grid to use spat_grid_color color of spatial grid show_other_cells display not selected cells other_cell_color color of not selected cells dim_other_point_size size of not selected dim cells spat_other_point_size size of not selected spat cells spat_other_cells_alpha alpha of not selected spat cells dim_show_legend show legend of dimension reduction plot spat_show_legend show legend of spatial plot legend_text size of legend text legend_symbol_size size of legend symbols dim_background_color background color of points in dim. reduction space spat_background_color background color of spatial points size of axis text axis_text axis_title size of axis title show_plot show plot return_plot return ggplot object save_plot directly save the plot [boolean] list of saving parameters from all_plots_save_function save_param default_save_name default save name for saving, don't change, change save_name in save_param 268 spatDimPlot2D

Details

Description of parameters.

Value

ggplot

See Also

spatDimPlot2D and spatDimPlot3D for 3D visualization.

Examples

```
spatDimPlot(gobject)
```

spatDimPlot2D

spatDimPlot2D

Description

Visualize cells according to spatial AND dimension reduction coordinates 2D

Usage

```
spatDimPlot2D(
 gobject,
 plot_alignment = c("vertical", "horizontal"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2\_to\_use = 2,
  sdimx = "sdimx",
  sdimy = "sdimy",
  spat_enr_names = NULL,
 cell_color = NULL,
  color_as_factor = T,
 cell_color_code = NULL,
 cell_color_gradient = c("blue", "white", "red"),
 gradient_midpoint = NULL,
  gradient_limits = NULL,
  select_cell_groups = NULL,
 select_cells = NULL,
 dim_point_shape = c("border", "no_border"),
 dim_point_size = 1,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  spat_point_shape = c("border", "no_border"),
  spat_point_size = 1,
  spat_point_border_col = "black",
  spat_point_border_stroke = 0.1,
 dim_show_cluster_center = F,
```

spatDimPlot2D 269

```
dim_show_center_label = T,
 dim_center_point_size = 4,
 dim_center_point_border_col = "black",
 dim_center_point_border_stroke = 0.1,
  dim_label_size = 4,
 dim_label_fontface = "bold",
  spat_show_cluster_center = F,
  spat_show_center_label = F,
  spat_center_point_size = 4,
  spat_label_size = 4,
  spat_label_fontface = "bold",
  show_NN_network = F,
  nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 nn_network_alpha = 0.05,
  show_spatial_network = F,
  spat_network_name = "spatial_network",
  spat_network_color = "blue",
  spat_network_alpha = 0.5,
  show_spatial_grid = F,
  spat_grid_name = "spatial_grid",
  spat_grid_color = "blue",
  show_other_cells = T,
 other_cell_color = "lightgrey",
 dim_other_point_size = 1,
  spat_other_point_size = 1,
  spat_other_cells_alpha = 0.5,
  dim\_show\_legend = F,
  spat_show_legend = F,
  legend_text = 8,
  legend_symbol_size = 1,
 dim_background_color = "white",
  spat_background_color = "white",
 axis_text = 8,
 axis_title = 8,
  show_plot = NA,
 return_plot = NA,
  save_plot = NA,
 save_param = list(),
 default_save_name = "spatDimPlot2D"
)
```

Arguments

270 spatDimPlot2D

sdimx = spatial dimension to use on x-axis = spatial dimension to use on y-axis sdimy spat_enr_names names of spatial enrichment results to include cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors cell_color_gradient vector with 3 colors for numeric data gradient_midpoint midpoint for color gradient gradient_limits vector with lower and upper limits select_cell_groups select subset of cells/clusters based on cell_color parameter select subset of cells based on cell IDs select_cells dim_point_shape point with border or not (border or no border) dim_point_size size of points in dim. reduction space dim_point_border_col border color of points in dim. reduction space dim_point_border_stroke border stroke of points in dim. reduction space spat_point_shape point with border or not (border or no_border) spat_point_size size of spatial points spat_point_border_col border color of spatial points spat_point_border_stroke border stroke of spatial points dim_show_cluster_center show the center of each cluster dim_show_center_label provide a label for each cluster dim_center_point_size size of the center point dim_center_point_border_col border color of center point dim_center_point_border_stroke stroke size of center point dim_label_size size of the center label dim_label_fontface font of the center label spat_show_cluster_center

show the center of each cluster

spat_show_center_label provide a label for each cluster spat_center_point_size size of the center point spat_label_size size of the center label spat_label_fontface font of the center label show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name nn_network_alpha column to use for alpha of the edges show_spatial_network show spatial network spat_network_name name of spatial network to use spat_network_color color of spatial network show_spatial_grid show spatial grid spat_grid_name name of spatial grid to use spat_grid_color color of spatial grid show_other_cells display not selected cells other_cell_color color of not selected cells dim_other_point_size size of not selected dim cells spat_other_point_size size of not selected spat cells spat_other_cells_alpha alpha of not selected spat cells dim_show_legend show legend of dimension reduction plot spat_show_legend show legend of spatial plot legend_text size of legend text legend_symbol_size size of legend symbols dim_background_color background color of points in dim. reduction space spat_background_color background color of spatial points

size of axis text

axis_text

272 spatDimPlot3D

```
axis_title size of axis title

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function

default_save_name

default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

See Also

```
spatDimPlot3D
```

Examples

```
spatDimPlot2D(gobject)
```

spatDimPlot3D

spatDimPlot3D

Description

Visualize cells according to spatial AND dimension reduction coordinates in plotly mode

Usage

```
spatDimPlot3D(
 gobject,
 plot_alignment = c("horizontal", "vertical"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
 dim3_to_use = 3,
 sdimx = "sdimx",
  sdimy = "sdimy",
 sdimz = "sdimz",
  show_NN_network = F,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 show_cluster_center = F,
  show\_center\_label = T,
  center_point_size = 4,
```

spatDimPlot3D 273

```
label_size = 16,
     select_cell_groups = NULL,
     select_cells = NULL,
     show_other_cells = T,
     other_cell_color = "lightgrey",
     other_point_size = 1.5,
     cell_color = NULL,
     color_as_factor = T,
     cell_color_code = NULL,
     dim_point_size = 3,
     nn_network_alpha = 0.5,
     show_spatial_network = F,
     spatial_network_name = "spatial_network",
     network_color = "lightgray",
     spatial_network_alpha = 0.5,
     show_spatial_grid = F,
      spatial_grid_name = "spatial_grid",
     spatial_grid_color = NULL,
     spatial_grid_alpha = 0.5,
     spatial_point_size = 3,
     axis_scale = c("cube", "real", "custom"),
     custom_ratio = NULL,
     x_ticks = NULL,
     y_ticks = NULL,
     z_ticks = NULL,
     legend_text_size = 12,
     show_plot = NA,
     return_plot = NA,
     save_plot = NA,
     save_param = list(),
     default_save_name = "spatDimPlot3D"
Arguments
   gobject
                    giotto object
   plot_alignment direction to align plot
   dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
   dim1_to_use
                    dimension to use on x-axis
   dim2_to_use
                    dimension to use on y-axis
   dim3_to_use
                    dimension to use on z-axis
```

 $\begin{tabular}{lll} sdimz &= spatial dimension to use on z-axis \\ show_NN_network \\ & show underlying NN network \\ nn_network_to_use \\ & type of NN network to use (kNN vs sNN) \\ \end{tabular}$

sdimx

sdimy

= spatial dimension to use on x-axis

= spatial dimension to use on y-axis

274 spatDimPlot3D

network_name name of NN network to use, if show NN network = TRUE show_cluster_center show the center of each cluster show_center_label provide a label for each cluster center_point_size size of the center point size of the center label label_size select_cell_groups select subset of cells/clusters based on cell_color parameter select_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors dim_point_size size of points in dim. reduction space nn_network_alpha column to use for alpha of the edges show_spatial_network show spatial network spatial_network_name name of spatial network to use spatial_network_alpha alpha of spatial network show_spatial_grid show spatial grid spatial_grid_name name of spatial grid to use spatial_grid_color color of spatial grid spatial_point_size size of spatial points show plot show_plot return ggplot object return_plot save_plot directly save the plot [boolean] list of saving parameters from all_plots_save_function save_param default_save_name default save name for saving, don't change, change save_name in save_param dim_point_border_col border color of points in dim. reduction space

spatGenePlot 275

Details

Description of parameters.

Value

plotly

Examples

```
spatDimPlot3D(gobject)
```

spatGenePlot

spatGenePlot

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
spatGenePlot(
 gobject,
  expression_values = c("normalized", "scaled", "custom"),
 genes,
 genes_high_color = "darkred",
 genes_mid_color = "white",
 genes_low_color = "darkblue",
  show_network = F,
 network_color = NULL,
 spatial_network_name = "spatial_network",
 edge_alpha = NULL,
 show\_grid = F,
 grid_color = NULL,
 spatial_grid_name = "spatial_grid",
 midpoint = 0,
 scale_alpha_with_expression = FALSE,
 point_shape = c("border", "no_border"),
 point_size = 1,
```

276 spatGenePlot

```
point_border_col = "black",
      point_border_stroke = 0.1,
      show_legend = T,
      legend_text = 8,
      background_color = "white",
      axis_text = 8,
      axis_title = 8,
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatGenePlot"
Arguments
   gobject
                     giotto object
    expression_values
                     gene expression values to use
    genes
                     genes to show
    genes_high_color
                     color represents high gene expression
    genes_mid_color
                     color represents middle gene expression
    genes_low_color
                     color represents low gene expression
                     show underlying spatial network
    show_network
                     color of spatial network
    network_color
    spatial_network_name
                     name of spatial network to use
    show_grid
                     show spatial grid
    grid_color
                     color of spatial grid
    spatial_grid_name
                     name of spatial grid to use
                     expression midpoint
   midpoint
    scale_alpha_with_expression
                     scale expression with ggplot alpha parameter
   point_shape
                     point with border or not (border or no_border)
    point_size
                     size of point (cell)
   point_border_col
                     color of border around points
   point_border_stroke
                     stroke size of border around points
    show_legend
                     show legend
```

spatGenePlot2D 277

```
legend_text
                  size of legend text
background_color
                  color of plot background
                  size of axis text
axis_text
axis_title
                  size of axis title
                  cowplot param: how many columns
cow_n_col
                  cowplot param: relative height
cow_rel_h
                  cowplot param: relative width
cow_rel_w
                  cowplot param: how to align
cow_align
show_plot
                  show plots
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  parameters for cowplot::save_plot()
```

Details

Description of parameters.

Value

ggplot

See Also

spatGenePlot3D and spatGenePlot2D

Examples

spatGenePlot(gobject)

spatGenePlot2D spatGenePlot2D

Description

Visualize cells and gene expression according to spatial coordinates

278 spatGenePlot2D

Usage

network_color

```
spatGenePlot2D(
     gobject,
     expression_values = c("normalized", "scaled", "custom"),
     genes,
     genes_high_color = "darkred",
     genes_mid_color = "white",
     genes_low_color = "darkblue",
     show_network = F,
     network_color = NULL,
     spatial_network_name = "spatial_network",
     edge_alpha = NULL,
     show\_grid = F,
     grid_color = NULL,
     spatial_grid_name = "spatial_grid",
     midpoint = 0,
     scale_alpha_with_expression = FALSE,
     point_shape = c("border", "no_border"),
     point_size = 1,
     point_border_col = "black",
     point_border_stroke = 0.1,
     show_legend = T,
     legend_text = 8,
     background_color = "white",
     axis_text = 8,
     axis_title = 8,
     cow_n_col = 2,
     cow_rel_h = 1,
     cow_rel_w = 1,
     cow_align = "h",
     show_plot = NA,
     return_plot = NA,
     save_plot = NA,
     save_param = list(),
     default_save_name = "spatGenePlot2D"
   )
Arguments
   gobject
                    giotto object
   expression_values
                    gene expression values to use
                    genes to show
   genes
   genes_high_color
                    color represents high gene expression
   genes_mid_color
                    color represents middle gene expression
   genes_low_color
                    color represents low gene expression
   show_network
                    show underlying spatial network
```

color of spatial network

spatGenePlot2D 279

```
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
midpoint
                  expression midpoint
scale_alpha_with_expression
                  scale expression with ggplot alpha parameter
                  point with border or not (border or no_border)
point_shape
                  size of point (cell)
point_size
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
                  show legend
show_legend
legend_text
                  size of legend text
background_color
                  color of plot background
                  size of axis text
axis_text
axis_title
                  size of axis title
cow_n_col
                  cowplot param: how many columns
cow_rel_h
                  cowplot param: relative height
cow_rel_w
                  cowplot param: relative width
cow_align
                  cowplot param: how to align
show_plot
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  parameters for cowplot::save_plot()
. . .
```

Details

Description of parameters.

Value

ggplot

See Also

spatGenePlot3D

Examples

spatGenePlot2D(gobject)

280 spatGenePlot3D

spatGenePlot3D spatGenePlot3D

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
spatGenePlot3D(
 gobject,
  expression_values = c("normalized", "scaled", "custom"),
 genes,
 show_network = F,
 network_color = NULL,
  spatial_network_name = "spatial_network",
 edge_alpha = NULL,
 show\_grid = F,
 cluster_column = NULL,
  select_cell_groups = NULL,
 select_cells = NULL,
 show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 genes_high_color = NULL,
 genes_mid_color = "white",
 genes_low_color = "blue",
  spatial_grid_name = "spatial_grid",
 point_size = 2,
  show_legend = T,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
 x_ticks = NULL,
 y_ticks = NULL,
 z_ticks = NULL,
 show_plot = NA,
 return_plot = NA,
 save_plot = NA,
 save_param = list(),
 default_save_name = "spatGenePlot3D"
)
```

Arguments

```
gobject giotto object
expression_values
gene expression values to use
genes genes to show
show_network show underlying spatial network
network_color color of spatial network
```

spatialAEH 281

```
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
genes_high_color
                  color represents high gene expression
genes_mid_color
                  color represents middle gene expression
genes_low_color
                  color represents low gene expression
spatial_grid_name
                  name of spatial grid to use
                  size of point (cell)
point_size
show_legend
                  show legend
show_plot
                  show plots
                  return ggplot object
return_plot
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
grid_color
                  color of spatial grid
midpoint
                  expression midpoint
scale_alpha_with_expression
                  scale expression with ggplot alpha parameter
                  parameters for cowplot::save_plot()
. . .
```

Details

Description of parameters.

Value

ggplot

Examples

spatGenePlot3D(gobject)

spatialAEH spatialAEH

Description

Compute spatial variable genes with spatialDE method

282 spatialDE

Usage

```
spatialAEH(
  gobject = NULL,
  SpatialDE_results = NULL,
  name_pattern = "AEH_patterns",
  expression_values = c("raw", "normalized", "scaled", "custom"),
  pattern_num = 6,
  l = 1.05,
  python_path = NULL,
  return_gobject = TRUE
)
```

Arguments

Details

This function is a wrapper for the SpatialAEH method implemented in the ...

Value

An updated giotto object

Examples

```
spatialAEH(gobject)
```

spatialDE spatialDE

Description

Compute spatial variable genes with spatialDE method

spatialDE 283

Usage

```
spatialDE(
  gobject = NULL,
  expression_values = c("raw", "normalized", "scaled", "custom"),
  size = c(4, 2, 1),
  color = c("blue", "green", "red"),
  sig_alpha = 0.5,
  unsig_alpha = 0.5,
  python_path = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "SpatialDE"
)
```

Arguments

Giotto object gobject expression_values gene expression values to use size size of plot color low/medium/high color scheme for plot sig_alpha alpha value for significance unsig_alpha alpha value for unsignificance specify specific path to python if required python_path show_plot show plot return_plot return ggplot object directly save the plot [boolean] save_plot save_param list of saving parameters from all_plots_save_function() default_save_name

default save name for saving, don't change, change save_name in save_param

Details

This function is a wrapper for the SpatialDE method implemented in the ...

Value

a list of data.frames with results and plot (optional)

```
spatialDE(gobject)
```

284 Spatial_AEH

Spatial_AEH

Spatial_AEH

Description

calculate automatic expression histology with spatialDE method

Usage

```
Spatial_AEH(
  gobject = NULL,
  results = NULL,
  pattern_num = 5,
  1 = 1.05,
  show\_AEH = T,
  sdimx = NULL,
  sdimy = NULL,
  point_size = 3,
  point_alpha = 1,
  low_color = "blue",
  mid_color = "white",
  high_color = "red",
  midpoint = 0,
  python_path = NULL
)
```

Arguments

gobject Giotto object

results output from spatial_DE

pattern_num the number of gene expression patterns

show_AEH show AEH plot

python_path specify specific path to python if required

Details

Description.

Value

a list or a dataframe of SVs

```
Spatial_AEH(gobject)
```

Spatial_DE 285

Spatial_DE

Spatial_DE

Description

calculate spatial varible genes with spatialDE method

Usage

```
Spatial_DE(
  gobject = NULL,
  show_plot = T,
  size = c(4, 2, 1),
  color = c("blue", "green", "red"),
  sig_alpha = 0.5,
  unsig_alpha = 0.5,
  python_path = NULL
)
```

Arguments

gobject Giotto object show_plot show FSV plot

python_path specify specific path to python if required

Details

Description.

Value

a list or a dataframe of SVs

Examples

```
Spatial_DE(gobject)
```

 ${\tt spatNetwDistributions} \textit{DistributionsDistance}$

Description

This function return histograms displaying the distance distribution for each spatial k-neighbor

286 spatNetwDistributions

Usage

```
spatNetwDistributions(
  gobject,
  spatial_network_name = "spatial_network",
  distribution = c("distance", "k_neighbors"),
  hist_bins = 30,
  test_distance_limit = NULL,
  ncol = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "spatNetwDistributions"
)
```

Arguments

```
Giotto object
gobject
spatial_network_name
                  name of spatial network
distribution
                  show the distribution of cell-to-cell distance or number of k neighbors
                  number of binds to use for the histogram
hist_bins
test_distance_limit
                  effect of different distance threshold on k-neighbors
                  number of columns to visualize the histograms in
ncol
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
```

Details

The **distance** option shows the spatial distance distribution for each nearest neighbor rank (1st, 2nd, 3th, ... neigbor). With this option the user can also test the effect of a distance limit on the spatial network. This distance limit can be used to remove neigbor cells that are considered to far away. The **k_neighbors** option shows the number of k neighbors distribution over all cells.

default save name for saving, alternatively change save_name in save_param

Value

ggplot plot

```
spatNetwDistributionsDistance(gobject)
```

```
spat {\tt NetwDistributionsDistance} \\ spat {\tt NetwDistributionsDistance}
```

Description

This function return histograms displaying the distance distribution for each spatial k-neighbor

Usage

```
spatNetwDistributionsDistance(
  gobject,
  spatial_network_name = "spatial_network",
  hist_bins = 30,
  test_distance_limit = NULL,
  ncol = 1,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "spatNetwDistributionsDistance")
```

Arguments

```
gobject
                  Giotto object
spatial_network_name
                  name of spatial network
hist_bins
                  number of binds to use for the histogram
test_distance_limit
                  effect of different distance threshold on k-neighbors
                  number of columns to visualize the histograms in
ncol
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, alternatively change save_name in save_param
```

Value

ggplot plot

```
spatNetwDistributionsDistance(gobject)
```

```
spat {\tt NetwDistributions} Kneighbors \\ spat {\tt NetwDistributions} Kneighbors
```

Description

This function returns a histogram displaying the number of k-neighbors distribution for each cell

Usage

```
spatNetwDistributionsKneighbors(
  gobject,
  spatial_network_name = "spatial_network",
  hist_bins = 30,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "spatNetwDistributionsKneighbors")
```

Arguments

```
gobject
                  Giotto object
spatial_network_name
                  name of spatial network
hist_bins
                  number of binds to use for the histogram
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function
default_save_name
                  default save name for saving, alternatively change save_name in save_param
```

Value

ggplot plot

```
spatNetwDistributionsKneighbors(gobject)
```

spatPlot 289

spatPlot spatPlot

Description

Visualize cells according to spatial coordinates

```
spatPlot(
 gobject,
 group_by = NULL,
 group_by_subset = NULL,
  sdimx = "sdimx",
  sdimy = "sdimy"
  spat_enr_names = NULL,
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
 cell_color_gradient = c("blue", "white", "red"),
 gradient_midpoint = NULL,
 gradient_limits = NULL,
 select_cell_groups = NULL,
  select_cells = NULL,
 point_shape = c("border", "no_border"),
 point_size = 3,
 point_border_col = "black",
 point_border_stroke = 0.1,
  show_cluster_center = F,
  show\_center\_label = F,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  show_network = F,
  spatial_network_name = "spatial_network",
 network_color = NULL,
 network_alpha = 1,
  show_grid = F,
  spatial_grid_name = "spatial_grid",
 grid_color = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
 other_cells_alpha = 0.1,
  coord_fix_ratio = NULL,
  title = NULL,
  show_legend = T,
  legend_text = 8,
  legend_symbol_size = 1,
```

290 spatPlot

```
background_color = "white",
      axis_text = 8,
      axis_title = 8,
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatPlot"
    )
Arguments
    gobject
                     giotto object
    group_by_subset
                     subset the group_by factor column
                     x-axis dimension name (default = 'sdimx')
    sdimx
                     y-axis dimension name (default = 'sdimy')
    sdimy
    spat_enr_names names of spatial enrichment results to include
    cell_color
                     color for cells (see details)
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
    gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
                     select subset of cells based on cell IDs
    select_cells
   point_shape
                     point with border or not (border or no_border)
    point_size
                     size of point (cell)
    point_border_col
                     color of border around points
   point_border_stroke
                     stroke size of border around points
    show_cluster_center
                     plot center of selected clusters
    show_center_label
                     plot label of selected clusters
   center_point_size
```

size of center points

spatPlot 291

label_size size of labels label_fontface font of labels show_network show underlying spatial network spatial_network_name name of spatial network to use network_color color of spatial network network_alpha alpha of spatial network show_grid show spatial grid spatial_grid_name name of spatial grid to use grid_color color of spatial grid show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size point size of not selected cells other_cells_alpha alpha of not selected cells coord_fix_ratio fix ratio between x and y-axis title title of plot show_legend show legend legend_text size of legend text legend_symbol_size size of legend symbols background_color color of plot background axis_text size of axis text axis_title size of axis title cow_n_col cowplot param: how many columns cow_rel_h cowplot param: relative height cowplot param: relative width cow_rel_w cow_align cowplot param: how to align show_plot show plot return_plot return ggplot object save_plot directly save the plot [boolean] list of saving parameters from all_plots_save_function save_param default_save_name default save name for saving, don't change, change save_name in save_param create multiple plots based on cell annotation column groub_by

Details

Description of parameters.

292 spatPlot2D

Value

ggplot

See Also

```
spatPlot3D
```

Examples

```
spatPlot(gobject)
```

spatPlot2D

spatPlot2D

Description

Visualize cells according to spatial coordinates

```
spatPlot2D(
 gobject,
 group_by = NULL,
 group_by_subset = NULL,
  sdimx = "sdimx",
 sdimy = "sdimy",
  spat_enr_names = NULL,
 cell_color = NULL,
 color_as_factor = T,
 cell_color_code = NULL,
 cell_color_gradient = c("blue", "white", "red"),
  gradient_midpoint = NULL,
 gradient_limits = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
 point_shape = c("border", "no_border"),
 point_size = 3,
 point_border_col = "black",
 point_border_stroke = 0.1,
  show_cluster_center = F,
  show_center_label = F,
 center_point_size = 4,
 center_point_border_col = "black",
  center_point_border_stroke = 0.1,
 label_size = 4,
 label_fontface = "bold",
  show_network = F,
  spatial_network_name = "spatial_network",
 network_color = NULL,
 network_alpha = 1,
  show\_grid = F,
```

spatPlot2D 293

```
spatial_grid_name = "spatial_grid",
      grid_color = NULL,
      show_other_cells = T,
      other_cell_color = "lightgrey",
      other_point_size = 1,
      other_cells_alpha = 0.1,
      coord_fix_ratio = NULL,
      title = NULL,
      show_legend = T,
      legend_text = 8,
      legend_symbol_size = 1,
      background_color = "white",
      axis_text = 8,
      axis_title = 8,
      cow_n_col = 2,
      cow_rel_h = 1,
      cow_rel_w = 1,
      cow_align = "h",
      show_plot = NA,
      return_plot = NA,
      save_plot = NA,
      save_param = list(),
      default_save_name = "spatPlot2D"
Arguments
    gobject
                     giotto object
    group_by_subset
                     subset the group_by factor column
    sdimx
                     x-axis dimension name (default = 'sdimx')
                     y-axis dimension name (default = 'sdimy')
    sdimy
    spat_enr_names names of spatial enrichment results to include
    cell_color
                     color for cells (see details)
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
   cell_color_gradient
                     vector with 3 colors for numeric data
    gradient_midpoint
                     midpoint for color gradient
   gradient_limits
                     vector with lower and upper limits
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
    select_cells
                     select subset of cells based on cell IDs
```

point with border or not (border or no_border)

size of point (cell)

point_shape
point_size

294 spatPlot2D

point_border_col color of border around points point_border_stroke stroke size of border around points show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points label_size size of labels label_fontface font of labels show underlying spatial network show_network spatial_network_name name of spatial network to use network_color color of spatial network network_alpha alpha of spatial network show_grid show spatial grid spatial_grid_name name of spatial grid to use grid_color color of spatial grid show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size point size of not selected cells other_cells_alpha alpha of not selected cells coord_fix_ratio fix ratio between x and y-axis title title of plot show_legend show legend legend_text size of legend text legend_symbol_size size of legend symbols background_color color of plot background axis_text size of axis text axis_title size of axis title cowplot param: how many columns cow_n_col cowplot param: relative height cow_rel_h cowplot param: relative width cow_rel_w

cowplot param: how to align

show plot

cow_align

show_plot

spatPlot2D_single 295

Details

Description of parameters.

Value

ggplot

See Also

```
spatPlot3D
```

Examples

```
spatPlot2D(gobject)
```

Description

Visualize cells according to spatial coordinates

```
spatPlot2D_single(
 gobject,
  sdimx = "sdimx",
  sdimy = "sdimy",
  spat_enr_names = NULL,
 cell_color = NULL,
 color_as_factor = T,
  cell_color_code = NULL,
 cell_color_gradient = c("blue", "white", "red"),
 gradient_midpoint = NULL,
 gradient_limits = NULL,
  select_cell_groups = NULL,
 select_cells = NULL,
 point_shape = c("border", "no_border"),
 point_size = 3,
 point_border_col = "black",
 point_border_stroke = 0.1,
 show_cluster_center = F,
  show_center_label = F,
```

296 spatPlot2D_single

```
center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  show_network = F,
  spatial_network_name = "spatial_network",
  network_color = NULL,
  network_alpha = 1,
  show_grid = F,
  spatial_grid_name = "spatial_grid",
  grid_color = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 1,
  other_cells_alpha = 0.1,
  coord_fix_ratio = NULL,
  title = NULL,
  show_legend = T,
  legend_text = 8,
  legend_symbol_size = 1,
 background_color = "white",
 axis_text = 8,
  axis_title = 8,
  show_plot = NA,
 return_plot = NA,
  save_plot = NA,
 save_param = list(),
 default_save_name = "spatPlot2D_single"
)
```

Arguments

```
gobject
                  giotto object
sdimx
                  x-axis dimension name (default = 'sdimx')
                  y-axis dimension name (default = 'sdimy')
sdimy
spat_enr_names names of spatial enrichment results to include
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
cell_color_gradient
                  vector with 3 colors for numeric data
gradient_midpoint
                  midpoint for color gradient
gradient_limits
                  vector with lower and upper limits
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
```

point_shape point with border or not (border or no border) point_size size of point (cell) point_border_col color of border around points point_border_stroke stroke size of border around points show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points size of labels label_size label_fontface font of labels show_network show underlying spatial network spatial_network_name name of spatial network to use network_color color of spatial network network_alpha alpha of spatial network show_grid show spatial grid spatial_grid_name name of spatial grid to use color of spatial grid grid_color show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size point size of not selected cells other_cells_alpha alpha of not selected cells coord_fix_ratio fix ratio between x and y-axis title title of plot show legend show_legend legend_text size of legend text legend_symbol_size size of legend symbols background_color color of plot background axis_text size of axis text size of axis title axis_title show_plot show plot return_plot return ggplot object save_plot directly save the plot [boolean] list of saving parameters from all_plots_save_function save_param default_save_name

default save name for saving, don't change, change save_name in save_param

298 spatPlot3D

Details

Description of parameters.

Value

ggplot

See Also

spatPlot3D

Examples

```
spatPlot2D_single(gobject)
```

spatPlot3D

spatPlot3D

Description

Visualize cells according to spatial coordinates

```
spatPlot3D(
 gobject,
  sdimx = "sdimx",
 sdimy = "sdimy",
 sdimz = "sdimz",
 point_size = 3,
 cell_color = NULL,
  cell_color_code = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
 other_cell_color = "lightgrey",
 other_point_size = 0.5,
 show_network = F,
 network_color = NULL,
 network_alpha = 1,
 other_cell_alpha = 0.5,
 spatial_network_name = "spatial_network",
 show_grid = F,
 grid_color = NULL,
 spatial_grid_name = "spatial_grid",
  title = "",
  show_legend = T,
 axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL,
 x_{ticks} = NULL,
 y_{ticks} = NULL,
```

spatPlot3D 299

```
z_ticks = NULL,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
 default_save_name = "spat3D"
)
gobject
                giotto object
```

Arguments

```
sdimx
                  x-axis dimension name (default = 'sdimx')
sdimy
                  y-axis dimension name (default = 'sdimy')
                  z-axis dimension name (default = 'sdimy')
sdimz
point_size
                  size of point (cell)
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
                  show underlying spatial network
show_network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
                  title of plot
title
show_legend
                  show legend
axis_scale
                  the way to scale the axis
custom_ratio
                  customize the scale of the plot
x_ticks
                  set the number of ticks on the x-axis
                  set the number of ticks on the y-axis
y_ticks
z_ticks
                  set the number of ticks on the z-axis
                  show plot
show_plot
                  return ggplot object
return_plot
                  directly save the plot [boolean]
save_plot
                  list of saving parameters from all_plots_save_function
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

300 spat_OR_func

Details

Description of parameters.

Value

ggplot

Examples

spatPlot3D(gobject)

spat_fish_func

spat_fish_func

Description

performs fisher exact test

Usage

```
spat_fish_func(gene, bin_matrix, spat_mat, calc_hub = F, hub_min_int = 3)
```

spat_OR_func

 $spat_OR_func$

Description

calculate odds-ratio

```
spat_OR_func(gene, bin_matrix, spat_mat, calc_hub = F, hub_min_int = 3)
```

```
specific Cell Cell communication Scores\\ specific Cell Cell communication Scores
```

Description

Specific Cell-Cell communication scores based on spatial expression of interacting cells

Usage

```
specificCellCellcommunicationScores(
 gobject,
  spatial_network_name = "spatial_network",
  cluster_column = "cell_types",
  random_iter = 100,
  cell_type_1 = "astrocyte",
  cell_type_2 = "endothelial",
 gene_set_1,
 gene_set_2,
 log2FC_addendum = 0.1,
 min_observations = 2,
 adjust_method = c("fdr", "bonferroni", "BH", "holm", "hochberg", "hommel", "BY",
    "none"),
  adjust_target = c("genes", "cells"),
  verbose = T
)
```

Arguments

```
gobject
                  giotto object to use
spatial_network_name
                  spatial network to use for identifying interacting cells
cluster_column cluster column with cell type information
random\_iter
                  number of iterations
cell_type_1
                  first cell type
cell_type_2
                  second cell type
gene_set_1
                  first specific gene set from gene pairs
                  second specific gene set from gene pairs
gene_set_2
log2FC_addendum
                  addendum to add when calculating log2FC
min_observations
                  minimum number of interactions needed to be considered
                  which method to adjust p-values
adjust_method
adjust_target
                  adjust multiple hypotheses at the cell or gene level
verbose
                  verbose
```

302 stitchFieldCoordinates

Details

Statistical framework to identify if pairs of genes (such as ligand-receptor combinations) are expressed at higher levels than expected based on a reshuffled null distribution of gene expression values in cells that are spatially in proximity to eachother.. More details will follow soon.

Value

Cell-Cell communication scores for gene pairs based on spatial interaction

Examples

```
specificCellCellcommunicationScores(gobject)
```

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

Usage

```
split_dendrogram_in_two(dend)
```

Arguments

dend

dendrogram object

Value

list of two dendrograms and height of node

Examples

```
split_dendrogram_in_two(dend)
```

stitchFieldCoordinates

stitchFieldCoordinates

Description

Helper function to stitch field coordinates together to form one complete picture

stitchFieldCoordinates 303

Usage

```
stitchFieldCoordinates(
  location_file,
  offset_file,
  cumulate_offset_x = F,
  cumulate_offset_y = F,
  field_col = "Field of View",
  X_coord_col = "X",
  Y_coord_col = "Y",
  reverse_final_x = F,
  reverse_final_y = T
)
```

Arguments

```
location_file
                 location dataframe with X and Y coordinates
offset_file
                  dataframe that describes the offset for each field (see details)
cumulate_offset_x
                  (boolean) Do the x-axis offset values need to be cumulated?
cumulate_offset_y
                  (boolean) Do the y-axis offset values need to be cumulated?
field_col
                  column that indicates the field within the location_file
X_coord_col
                  column that indicates the x coordinates
Y_coord_col
                  column that indicates the x coordinates
reverse_final_x
                  (boolean) Do the final x coordinates need to be reversed?
reverse_final_y
                  (boolean) Do the final y coordinates need to be reversed?
```

Details

Stitching of fields:

- 1. have cell locations: at least 3 columns: field, X, Y
- 2. create offset file: offset file has 3 columns: field, x_offset, y_offset
- 3. create new cell location file by stitching original cell locations with stitchFieldCoordinates
- 4. provide new cell location file to createGiottoObject

Value

Updated location dataframe with new X ['X_final'] and Y ['Y_final'] coordinates

```
stitchFieldCoordinates(gobject)
```

304 subClusterCells

```
stitchTileCoordinates stitchTileCoordinates
```

Description

Helper function to stitch tile coordinates together to form one complete picture

Usage

```
stitchTileCoordinates(location_file, Xtilespan, Ytilespan)
```

Arguments

```
\begin{array}{ll} \mbox{location\_file} & \mbox{location dataframe with } X \mbox{ and } Y \mbox{ coordinates} \\ \mbox{Xtilespan} & \mbox{numerical value specifying the width of each tile} \\ \mbox{Ytilespan} & \mbox{numerical value specifying the height of each tile} \\ \end{array}
```

Details

•••

Examples

```
stitchTileCoordinates(gobject)
```

subClusterCells

subClusterCells

Description

subcluster cells

```
subClusterCells(
 gobject,
 name = "sub_clus",
 cluster_method = c("leiden", "louvain_community", "louvain_multinet"),
 cluster_column = NULL,
  selected_clusters = NULL,
 hvg_param = list(reverse_log_scale = T, difference_in_variance = 1, expression_values
   = "normalized"),
 hvg_min_perc_cells = 5,
 hvg_mean_expr_det = 1,
 use_all_genes_as_hvg = FALSE,
 min_nr_of_hvg = 5,
 pca_param = list(expression_values = "normalized", scale_unit = T),
 nn_param = list(dimensions_to_use = 1:20),
 k_neighbors = 10,
 resolution = 1,
```

subClusterCells 305

```
gamma = 1,
omega = 1,
python_path = NULL,
nn_network_to_use = "sNN",
network_name = "sNN.pca",
return_gobject = TRUE,
verbose = T
)
```

Arguments

gobject giotto object name name for new clustering result cluster_method clustering method to use cluster_column cluster column to subcluster selected_clusters only do subclustering on these clusters hvg_param parameters for calculateHVG hvg_min_perc_cells threshold for detection in min percentage of cells hvg_mean_expr_det threshold for mean expression level in cells with detection use_all_genes_as_hvg forces all genes to be HVG and to be used as input for PCA minimum number of HVG, or all genes will be used as input for PCA min_nr_of_hvg parameters for runPCA pca_param parameters for parameters for createNearestNetwork nn_param k_neighbors number of k for createNearestNetwork resolution resolution gamma gamma omega omega specify specific path to python if required python_path nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use network_name return_gobject boolean: return giotto object (default = TRUE)

Details

verbose

This function performs subclustering on selected clusters. The systematic steps are:

- 1. subset Giotto object
- 2. identify highly variable genes
- 3. run PCA
- 4. create nearest neighbouring network

verbose

• 5. do clustering

306 subsetGiotto

Value

giotto object with new subclusters appended to cell metadata

See Also

 ${\tt doLouvainCluster_multinet}, {\tt doLouvainCluster_community} \ and \ @see also \ {\tt doLeidenCluster}$

Examples

```
subClusterCells(gobject)
```

subsetGiotto

subsetGiot to

Description

subsets Giotto object including previous analyses.

Usage

```
subsetGiotto(gobject, cell_ids = NULL, gene_ids = NULL, verbose = FALSE)
```

Arguments

```
gobject giotto object
cell_ids cell IDs to keep
gene_ids gene IDs to keep
verbose be verbose
```

Value

giotto object

Examples

subsetGiotto(gobject)

subsetGiottoLocs 307

subsetGiottoLocs

subsetGiottoLocs

Description

subsets Giotto object based on spatial locations

Usage

```
subsetGiottoLocs(
  gobject,
  x_max = NULL,
  x_min = NULL,
  y_max = NULL,
  y_min = NULL,
  z_max = NULL,
  z_min = NULL,
  return_gobject = T,
  verbose = FALSE
)
```

Arguments

```
gobject giotto object

x_max maximum x-coordinate

x_min minimum x-coordinate

y_max maximum y-coordinate

y_min minimum y-coordinate

z_max maximum z-coordinate

z_min minimum z-coordinate

return_gobject return Giotto object
```

Details

if return_gobject = FALSE, then a filtered combined metadata data.table will be returned

Value

giotto object

```
subsetGiottoLocs(gobject)
```

308 trendSceek

+randCasal	trandCasal
trendSceek	trendSceek

Description

Compute spatial variable genes with trendsceek method

Usage

```
trendSceek(
  gobject,
  expression_values = c("normalized", "raw"),
  subset_genes = NULL,
  nrand = 100,
  ncores = 8,
  ...
)
```

Arguments

Details

This function is a wrapper for the trendsceek_test method implemented in the trendsceek package

Value

data.frame with trendsceek spatial genes results

```
trendSceek(gobject)
```

viewHMRFresults 309

viewHMRFresults

viewHMRFresults

Description

View results from doHMRF.

Usage

```
viewHMRFresults(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  third_dim = NULL,
  ...
)
```

Arguments

```
gobject giotto object

HMRF output from doHMRF

k number of HMRF domains

betas_to_view results from different betas that you want to view
```

... paramters to visPlot()

Details

Description ...

Value

spatial plots with HMRF domains

See Also

```
visPlot
```

```
viewHMRFresults(gobject)
```

310 viewHMRFresults2D

viewHMRFresults2D

viewHMRFresults2D

Description

View results from doHMRF.

Usage

```
viewHMRFresults2D(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  third_dim = NULL,
  ...
)
```

Arguments

```
gobject giotto object
```

HMRF output from doHMRF k number of HMRF domains

betas_to_view results from different betas that you want to view

... paramters to visPlot()

Details

Description ...

Value

spatial plots with HMRF domains

See Also

```
spatPlot2D
```

```
viewHMRFresults2D(gobject)
```

viewHMRFresults3D 311

viewHMRFresults3D

viewHMRFresults3D

Description

View results from doHMRF.

Usage

```
viewHMRFresults3D(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  third_dim = NULL,
  ...
)
```

Arguments

```
gobject giotto object
```

HMRF output from doHMRF k number of HMRF domains

betas_to_view results from different betas that you want to view

... paramters to visPlot()

Details

Description ...

Value

spatial plots with HMRF domains

See Also

```
spatPlot3D
```

```
viewHMRFresults3D(gobject)
```

312 violinPlot

violinPlot

violinPlot

Description

Creates violinplot for selected clusters

Usage

```
violinPlot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  cluster_column,
  cluster_custom_order = NULL,
  color_violin = c("genes", "cluster"),
  cluster_color_code = NULL,
  strip_position = c("top", "right", "left", "bottom"),
  strip\_text = 7,
  axis_text_x_size = 10,
  axis_text_y_size = 6,
  show_plot = NA,
  return_plot = NA,
  save_plot = NA,
  save_param = list(),
  default_save_name = "violinPlot"
)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
                  genes to plot
genes
cluster_column name of column to use for clusters
cluster_custom_order
                  custom order of clusters
color_violin
                  color violin according to genes or clusters
cluster_color_code
                  color code for clusters
strip_position position of gene labels
strip_text
                  size of strip text
\verb"axis_text_x_size"
                  size of x-axis text
axis_text_y_size
                  size of y-axis text
show_plot
                  show plot
return_plot
                  return ggplot object
```

visDimGenePlot 313

Value

ggplot

Examples

```
violinPlot(gobject)
```

visDimGenePlot

visDimGenePlot

Description

Visualize cells and gene expression according to dimension reduction coordinates

```
visDimGenePlot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  dim3_to_use = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  edge_alpha = NULL,
  scale_alpha_with_expression = FALSE,
  point_size = 1,
  genes_high_color = NULL,
  genes_mid_color = "white",
  genes_low_color = "blue",
  point_border_col = "black",
  point_border_stroke = 0.1,
  midpoint = 0,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h"
  show_legend = T,
  plot_method = c("ggplot", "plotly"),
  show_plots = F
)
```

314 visDimGenePlot

Arguments

gobject giotto object

expression_values

gene expression values to use

genes genes to show

dim_reduction_to_use

dimension reduction to use

dim_reduction_name

dimension reduction name

dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis dim3_to_use dimension to use on z-axis

show_NN_network

show underlying NN network

nn_network_to_use

type of NN network to use (kNN vs sNN)

 $network_name$ name of NN network to use, if $show_NN_network = TRUE$

edge_alpha column to use for alpha of the edges

scale_alpha_with_expression

scale expression with ggplot alpha parameter

point_size size of point (cell)

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

midpoint size of point (cell)

cow_n_colcowplot param: how many columnscow_rel_hcowplot param: relative heightcow_rel_wcowplot param: relative widthcow_aligncowplot param: how to align

show_legend show legend show_plots show plots

Details

Description of parameters.

Value

ggplot

Examples

visDimGenePlot(gobject)

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
visDimGenePlot_2D_ggplot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  edge_alpha = NULL,
  scale_alpha_with_expression = FALSE,
  point_size = 1,
  genes_high_color = "red",
  genes_mid_color = "white",
  genes_low_color = "blue",
  point_border_col = "black",
  point_border_stroke = 0.1,
  midpoint = 0,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_legend = T,
  show_plots = F
```

Arguments

```
gobject giotto object
expression_values
gene expression values to use
genes genes to show
dim_reduction_to_use
dimension reduction to use
dim_reduction_name
dimension reduction name
dim1_to_use
dimension to use on x-axis
```

```
dim2_to_use
                 dimension to use on y-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
edge_alpha
                 column to use for alpha of the edges
scale_alpha_with_expression
                 scale expression with ggplot alpha parameter
                 size of point (cell)
point_size
point_border_col
                 color of border around points
point_border_stroke
                 stroke size of border around points
                 size of point (cell)
midpoint
cow_n_col
                 cowplot param: how many columns
                 cowplot param: relative height
cow_rel_h
                 cowplot param: relative width
cow_rel_w
cow_align
                 cowplot param: how to align
show_legend
                 show legend
show_plots
                 show plots
```

Details

Description of parameters.

Value

ggplot

Examples

```
visDimGenePlot_2D_ggplot(gobject)
```

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
visDimGenePlot_3D_plotly(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = 3,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  network_color = "lightgray",
  edge_alpha = NULL,
  point_size = 1,
  genes_high_color = NULL,
  genes_mid_color = "white",
  genes_low_color = "blue",
  show_legend = T,
  show_plots = F
)
```

Arguments

```
gobject
                 giotto object
expression_values
                 gene expression values to use
genes
                 genes to show
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
dim3_to_use
                 dimension to use on z-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 name of NN network to use, if show_NN_network = TRUE
edge_alpha
                 column to use for alpha of the edges
point_size
                 size of point (cell)
show_legend
                 show legend
                 show plots
show_plots
```

Details

Description of parameters.

318 visDimPlot

Value

ggplot

Examples

visDimGenePlot_3D_plotly(gobject)

visDimPlot

visDimPlot

Description

Visualize cells according to dimension reduction coordinates

```
visDimPlot(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  dim3_to_use = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
  edge_alpha = NULL,
  point_size = 3,
  point_border_col = "black",
  point_border_stroke = 0.1,
  plot_method = c("ggplot", "plotly"),
  show_legend = T,
  show_plot = F,
  return_plot = TRUE,
  save_plot = F,
  save_dir = NULL,
```

visDimPlot 319

```
save_folder = NULL,
      save_name = NULL.
      save_format = NULL,
      show_saved_plot = F,
    )
Arguments
    gobject
                     giotto object
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
                     dimension to use on z-axis
    dim3_to_use
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
                     name of NN network to use, if show_NN_network = TRUE
    network_name
    cell_color
                     color for cells (see details)
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    show_cluster_center
                     plot center of selected clusters
    show_center_label
                     plot label of selected clusters
    center_point_size
                     size of center points
    label_size
                     size of labels
    label_fontface font of labels
    edge_alpha
                     column to use for alpha of the edges
    point_size
                     size of point (cell)
    point_border_col
                     color of border around points
    point_border_stroke
                     stroke size of border around points
    show_legend
                     show legend
    show_plot
                     show plot
    return_plot
                     return ggplot object
```

directly save the plot [boolean]

directory to save the plot

save_plot
save_dir

Details

Description of parameters.

Value

ggplot or plotly

Examples

```
visDimPlot(gobject)
```

```
visDimPlot_2D_ggplot visDimPlot_2D_ggplot
```

Description

Visualize cells according to dimension reduction coordinates

```
visDimPlot_2D_ggplot(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  center_point_border_col = "black",
  center_point_border_stroke = 0.1,
  label_size = 4,
  label_fontface = "bold",
```

```
edge_alpha = NULL,
      point_size = 1,
      point_border_col = "black",
      point_border_stroke = 0.1,
      show_legend = T,
      show_plot = F,
      return_plot = TRUE,
      save_plot = F,
      save_dir = NULL,
      save_folder = NULL,
      save_name = NULL,
      save_format = NULL,
      show_saved_plot = F,
    )
Arguments
    gobject
                     giotto object
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
    network_name
                     name of NN network to use, if show_NN_network = TRUE
    cell_color
                     color for cells (see details)
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
    select_cells
                     select subset of cells based on cell IDs
    show_other_cells
                     display not selected cells
    other_cell_color
                     color of not selected cells
    other_point_size
                     size of not selected cells
    show_cluster_center
                     plot center of selected clusters
    show_center_label
                     plot label of selected clusters
    center_point_size
```

size of center points

Details

Description of parameters.

Value

ggplot

Examples

```
visDimPlot_2D_ggplot(gobject)
```

```
visDimPlot_2D_plotly visDimPlot_2D_plotly
```

Description

Visualize cells according to dimension reduction coordinates

```
visDimPlot_2D_plotly(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  color_as_factor = T,
  cell_color = NULL,
  cell_color_code = NULL,
  show_cluster_center = F,
  show_center_label = T,
```

```
center_point_size = 4,
label_size = 4,
edge_alpha = NULL,
point_size = 5
)
```

Arguments

```
gobject
                 giotto object
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
                 dimension to use on x-axis
dim1_to_use
dim2_to_use
                 dimension to use on y-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 name of NN network to use, if show_NN_network = TRUE
color_as_factor
                 convert color column to factor
cell_color
                 color for cells (see details)
cell_color_code
                 named vector with colors
show_cluster_center
                 plot center of selected clusters
show_center_label
                 plot label of selected clusters
center_point_size
                 size of center points
label_size
                 size of labels
edge_alpha
                 column to use for alpha of the edges
point_size
                 size of point (cell)
```

Details

Description of parameters.

Value

plotly

```
visDimPlot_2D_plotly(gobject)
```

```
visDimPlot_3D_plotly
```

Description

Visualize cells according to dimension reduction coordinates

Usage

```
visDimPlot_3D_plotly(
  gobject,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = 3,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  color_as_factor = T,
  cell_color = NULL,
  cell_color_code = NULL,
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  label_size = 4,
  edge_alpha = NULL,
  point_size = 1
```

Arguments

```
giotto object
gobject
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
dim3_to_use
                 dimension to use on z-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
```

visForceLayoutPlot 325

```
name of NN network to use, if show_NN_network = TRUE
network_name
color_as_factor
                  convert color column to factor
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
                  column to use for alpha of the edges
edge_alpha
point_size
                  size of point (cell)
```

Details

Description of parameters.

Value

plotly

Examples

```
visDimPlot_3D_plotly(gobject)
```

visForceLayoutPlot visForceLayoutPlot

Description

Visualize cells according to forced layout algorithm coordinates

```
visForceLayoutPlot(
  gobject,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  layout_name = "layout",
  dim1_to_use = 1,
  dim2_to_use = 2,
  show_NN_network = T,
  cell_color = NULL,
  color_as_factor = TRUE,
  cell_color_code = NULL,
  edge_alpha = NULL,
  point_size = 1,
```

326 visForceLayoutPlot

```
point_border_col = "black",
point_border_stroke = 0.1,
show_legend = T,
show_plot = F,
return_plot = TRUE,
save_plot = F,
save_dir = NULL,
save_folder = NULL,
save_format = NULL,
show_saved_plot = F,
...
)
```

Arguments

```
giotto object
gobject
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
network_name
                  NN network to use
                  name of layout to use
layout_name
dim1_to_use
                  dimension to use on x-axis
dim2_to_use
                  dimension to use on y-axis
show_NN_network
                  show underlying NN network
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
                  column to use for alpha of the edges
edge_alpha
                  size of point (cell)
point_size
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
                  show legend
show_legend
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  directory to save the plot
save_dir
save_folder
                  (optional) folder in directory to save the plot
                  name of plot
save_name
save_format
                  format of plot (e.g. tiff, png, pdf, ...)
show_saved_plot
                  load & display the saved plot
```

visGenePlot 327

Details

Description of parameters.

Value

ggplot

Examples

visForceLayoutPlot(gobject)

visGenePlot

visGenePlot

Description

Visualize cells and gene expression according to spatial coordinates

```
visGenePlot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes_high_color = NULL,
  genes_mid_color = "white",
  genes_low_color = "blue",
  show_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  edge_alpha = NULL,
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  midpoint = 0,
  scale_alpha_with_expression = FALSE,
  point_size = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  show_legend = T,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  plot_method = c("ggplot", "plotly"),
  show_plots = F
```

328 visGenePlot

Arguments

gobject giotto object
expression_values

gene expression values to use

genes genes to show

genes_high_color

color represents high gene expression

genes_mid_color

color represents middle gene expression

genes_low_color

color represents low gene expression

show_network show underlying spatial network

network_color color of spatial network

spatial_network_name

name of spatial network to use

show_grid show spatial grid grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

midpoint expression midpoint
scale_alpha_with_expression

scale expression with ggplot alpha parameter

point_size size of point (cell)

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

show_legend show legend

cow_n_col cowplot param: how many columns cow_rel_h cowplot param: relative height cow_rel_w cowplot param: relative width cow_align cowplot param: how to align three mode to adjust axis scale axis_scale x_ticks number of ticks on x axis number of ticks on y axis y_ticks number of ticks on z axis z_ticks plot_method two methods of plot

show plots

Details

Description of parameters.

Value

ggplot or plotly

show_plots

Examples

```
visGenePlot(gobject)
```

```
{\tt visGenePlot\_2D\_ggplot} \quad {\it visGenePlot\_2D\_ggplot}
```

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
visGenePlot_2D_ggplot(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  genes,
  genes_high_color = "darkred",
  genes_mid_color = "white",
  genes_low_color = "darkblue",
  show_network = F,
  network_color = NULL,
  spatial_network_name = "spatial_network",
  edge_alpha = NULL,
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  midpoint = 0,
  scale_alpha_with_expression = FALSE,
  point_size = 1,
  point_border_col = "black",
  point_border_stroke = 0.1,
  show_legend = T,
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  show_plots = F
)
```

Arguments

```
gobject giotto object
expression_values
gene expression values to use
genes genes to show
genes_high_color
color represents high gene expression
genes_mid_color
color represents middle gene expression
```

```
genes_low_color
```

color represents low gene expression

show_network show underlying spatial network

network_color color of spatial network

spatial_network_name

name of spatial network to use

show_grid show spatial grid grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

midpoint expression midpoint
scale_alpha_with_expression

scale expression with ggplot alpha parameter

point_size size of point (cell)

point_border_col

color of border around points

 $point_border_stroke$

stroke size of border around points

show_legend show legend

cow_n_colcowplot param: how many columnscow_rel_hcowplot param: relative heightcow_rel_wcowplot param: relative widthcow_aligncowplot param: how to align

show_plots show plots

Details

Description of parameters.

Value

ggplot

Examples

visGenePlot_2D_ggplot(gobject)

 ${\tt visGenePlot_3D_plotly} \ \ {\it visGenePlot_3D_plotly}$

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
visGenePlot_3D_plotly(
     gobject,
     expression_values = c("normalized", "scaled", "custom"),
     genes,
     show_network = F,
     network_color = NULL,
     spatial_network_name = "spatial_network",
     edge_alpha = NULL,
     show\_grid = F,
     genes_high_color = NULL,
     genes_mid_color = "white",
     genes_low_color = "blue",
     spatial_grid_name = "spatial_grid",
     point_size = 1,
     show_legend = T,
     axis_scale = c("cube", "real", "custom"),
     custom_ratio = NULL,
     x_ticks = NULL,
     y_ticks = NULL,
     z_ticks = NULL,
     show_plots = F
Arguments
   gobject
                   giotto object
   expression_values
                   gene expression values to use
```

genes genes to show

show underlying spatial network show_network

network_color color of spatial network

spatial_network_name

name of spatial network to use

show_grid show spatial grid

genes_high_color

color represents high gene expression

genes_mid_color

color represents middle gene expression

genes_low_color

color represents low gene expression

spatial_grid_name

name of spatial grid to use

size of point (cell) point_size show_legend show legend

axis_scale three mode to adjust axis scale

x_ticks number of ticks on x axis number of ticks on y axis y_ticks

332 visPlot

```
z_ticks number of ticks on z axis
show_plots show plots
grid_color color of spatial grid
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
```

Details

Description of parameters.

Value

plotly

Examples

```
visGenePlot_3D_plotly(gobject)
```

visPlot visPlot

Description

Visualize cells according to spatial coordinates

```
visPlot(
  gobject,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  point_size = 3,
  point_border_col = "black",
  point_border_stroke = 0.1,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  show_network = F,
  network_color = NULL,
  network_alpha = 1,
  other_cell_alpha = 0.1,
  spatial_network_name = "spatial_network",
  show\_grid = F,
```

visPlot 333

```
grid_color = NULL,
     grid_alpha = 1,
      spatial_grid_name = "spatial_grid",
      coord_fix_ratio = 0.6,
      title = "",
      show_legend = T,
     axis_scale = c("cube", "real", "custom"),
      custom_ratio = NULL,
      x_{ticks} = NULL,
     y_ticks = NULL,
      z_ticks = NULL,
     plot_method = c("ggplot", "plotly"),
      show_plot = F,
      return_plot = TRUE,
      save_plot = F,
      save_dir = NULL,
      save_folder = NULL,
     save_name = NULL,
      save_format = NULL,
     show_saved_plot = F,
   )
Arguments
   gobject
                    giotto object
   sdimx
                    x-axis dimension name (default = 'sdimx')
   sdimy
                    y-axis dimension name (default = 'sdimy')
   sdimz
                    z-axis dimension name (default = 'sdimz')
   point_size
                    size of point (cell)
   point_border_col
                    color of border around points
   point_border_stroke
                    stroke size of border around points
   cell_color
                    color for cells (see details)
   cell_color_code
                    named vector with colors
   color_as_factor
```

convert color column to factor

display not selected cells

color of not selected cells

color of spatial network

show underlying spatial network

name of spatial network to use

select subset of cells based on cell IDs

select subset of cells/clusters based on cell_color parameter

select_cell_groups

select_cells s
show_other_cells

show_network

network_color

spatial_network_name

other_cell_color

334 visPlot_2D_ggplot

```
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
coord_fix_ratio
                  fix ratio between x and y-axis
title
                  title of plot
show_legend
                  show legend
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_dir
                  directory to save the plot
                  (optional) folder in directory to save the plot
save_folder
                  name of plot
save_name
save_format
                  format of plot (e.g. tiff, png, pdf, ...)
show_saved_plot
                  load & display the saved plot
```

Details

Description of parameters.

Value

ggplot

Examples

```
visPlot(gobject)
```

```
visPlot_2D_ggplot
visPlot_2D_ggplot
```

Description

Visualize cells according to spatial coordinates

```
visPlot_2D_ggplot(
  gobject,
  sdimx = NULL,
  sdimy = NULL,
  point_size = 3,
  point_border_col = "black",
  point_border_stroke = 0.1,
  cell_color = NULL,
  cell_color_code = NULL,
```

visPlot_2D_ggplot 335

```
color_as_factor = T,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  show_network = F,
  network_color = NULL,
  network_alpha = 1,
  other_cells_alpha = 0.1,
  spatial_network_name = "spatial_network",
  show\_grid = F,
  grid_color = NULL,
  spatial_grid_name = "spatial_grid",
  coord_fix_ratio = 0.6,
  title = "",
  show_legend = T,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_{ticks} = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  show_plot = F,
  return_plot = TRUE,
  save_plot = F,
  save_dir = NULL,
  save_folder = NULL,
  save_name = NULL,
  save_format = NULL,
  show_saved_plot = F,
)
```

Arguments

```
gobject
                  giotto object
sdimx
                  x-axis dimension name (default = 'sdimx')
sdimy
                  y-axis dimension name (default = 'sdimy')
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
```

visPlot_2D_ggplot

show_other_cells

display not selected cells

other_cell_color

color of not selected cells

show_network show underlying spatial network

network_color color of spatial network

spatial_network_name

name of spatial network to use

show_grid show spatial grid

grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

coord_fix_ratio

fix ratio between x and y-axis

title title of plot

show_legend show legend

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_dir directory to save the plot

save_folder (optional) folder in directory to save the plot

save_name name of plot

save_format format of plot (e.g. tiff, png, pdf, ...)

show_saved_plot

load & display the saved plot

Details

Description of parameters.

Value

ggplot

Examples

 ${\tt visPlot_2D_ggplot(gobject)}$

visPlot_2D_plotly 337

```
visPlot_2D_plotly visPlot_2D_plotly
```

Description

Visualize cells according to spatial coordinates

Usage

```
visPlot_2D_plotly(
  gobject,
  sdimx = NULL,
  sdimy = NULL,
  point_size = 3,
  cell_color = NULL,
  cell_color_code = NULL,
  color_as_factor = T,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_network = F,
  network_color = "lightgray",
  network_alpha = 1,
  other_cell_alpha = 0.5,
  spatial_network_name = "spatial_network",
  show\_grid = F,
  grid_color = NULL,
  grid_alpha = 1,
  spatial_grid_name = "spatial_grid",
  show_legend = T,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  show_plot = F
```

Arguments

```
gobject giotto object

sdimx x-axis dimension name (default = 'sdimx')

sdimy y-axis dimension name (default = 'sdimy')

point_size size of point (cell)

cell_color color for cells (see details)

cell_color_code

named vector with colors

color_as_factor

convert color column to factor
```

338 visPlot_3D_plotly

```
select_cell_groups
                  select a subset of the groups from cell_color
                  show underlying spatial network
show_network
                  color of spatial network
network_color
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
grid_color
                  color of spatial grid
                  alpha of spatial grid
grid_alpha
spatial_grid_name
                  name of spatial grid to use
                  show legend
show_legend
show_plot
                  show plot
```

Details

Description of parameters.

Value

plotly

Examples

```
visPlot_2D_plotly(gobject)
```

```
visPlot_3D_plotly
```

Description

Visualize cells according to spatial coordinates

```
visPlot_3D_plotly(
  gobject,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  point_size = 3,
  cell_color = NULL,
  cell_color_code = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  other_point_size = 0.5,
  show_network = F,
```

visPlot_3D_plotly 339

```
network_color = NULL,
network_alpha = 1,
other_cell_alpha = 0.5,
spatial_network_name = "spatial_network",
spatial_grid_name = "spatial_grid",
title = "",
show_legend = T,
axis_scale = c("cube", "real", "custom"),
custom_ratio = NULL,
x_ticks = NULL,
y_ticks = NULL,
stow_plot = F
```

Arguments

```
gobject
                  giotto object
sdimx
                  x-axis dimension name (default = 'sdimx')
sdimy
                  y-axis dimension name (default = 'sdimy')
sdimz
                  z-axis dimension name (default = 'sdimz')
point_size
                  size of point (cell)
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
select_cell_groups
                  select a subset of the groups from cell_color
                  show underlying spatial network
show_network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
spatial_grid_name
                  name of spatial grid to use
                  title of plot
title
show_legend
                  show legend
show_plot
                  show plot
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
color_as_factor
                  convert color column to factor
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
coord_fix_ratio
                  fix ratio between x and y-axis
```

340 visSpatDimGenePlot

Details

Description of parameters.

Value

ggplot

Examples

```
visPlot_3D_plotly(gobject)
```

visSpatDimGenePlot

visSpatDimGenePlot

Description

integration of visSpatDimGenePlot_2D(ggplot) and visSpatDimGenePlot_3D(plotly)

```
visSpatDimGenePlot(
 gobject,
 plot_method = c("ggplot", "plotly"),
 expression_values = c("normalized", "scaled", "custom"),
 plot_alignment = c("horizontal", "vertical"),
 dim_reduction_to_use = "umap",
 dim_reduction_name = "umap",
 dim1_to_use = 1,
 dim2_to_use = 2,
 dim3_to_use = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
 genes,
 dim_point_border_col = "black",
 dim_point_border_stroke = 0.1,
  show_NN_network = F,
 nn_network_to_use = "sNN",
 network_name = "sNN.pca",
 edge_alpha_dim = NULL,
  scale_alpha_with_expression = FALSE,
 label_size = 16,
 genes_low_color = "blue",
 genes_mid_color = "white",
 genes_high_color = "red",
 dim_point_size = 3,
 nn_network_alpha = 0.5,
  show_spatial_network = F,
  spatial_network_name = "spatial_network",
 network_color = "lightgray",
  spatial_network_alpha = 0.5,
```

visSpatDimGenePlot

341

```
show_spatial_grid = F,
      spatial_grid_name = "spatial_grid",
      spatial_grid_color = NULL,
      spatial_grid_alpha = 0.5,
      spatial_point_size = 3,
      spatial_point_border_col = "black",
      spatial_point_border_stroke = 0.1,
      legend_text_size = 12,
      axis_scale = c("cube", "real", "custom"),
      custom_ratio = NULL,
     x_ticks = NULL,
     y_ticks = NULL,
     z_ticks = NULL,
     midpoint = 0,
     point_size = 1,
      cow_n_col = 2,
      cow_rel_h = 1,
     cow_rel_w = 1,
     cow_align = "h",
     show_legend = T,
      show_plots = F
   )
Arguments
   gobject
                    giotto object
   expression_values
                    gene expression values to use
   plot_alignment direction to align plot
   dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
   dim1_to_use
                    dimension to use on x-axis
   dim2_to_use
                    dimension to use on y-axis
   dim3_to_use
                    dimension to use on z-axis
   sdimx
                    x-axis dimension name (default = 'sdimx')
   sdimy
                    y-axis dimension name (default = 'sdimy')
    sdimz
                    z-axis dimension name (default = 'sdimz')
                    genes to show
   genes
   dim_point_border_col
                    color of border around points
   dim_point_border_stroke
                    stroke size of border around points
   show_NN_network
                    show underlying NN network
   nn_network_to_use
                    type of NN network to use (kNN vs sNN)
                    name of NN network to use, if show_NN_network = TRUE
   network_name
```

342 visSpatDimGenePlot

edge_alpha_dim dim reduction plot: column to use for alpha of the edges scale_alpha_with_expression scale expression with ggplot alpha parameter

label_size size for the label

genes_low_color

color to represent low expression of gene

genes_high_color

color to represent high expression of gene

dim_point_size dim reduction plot: point size

spatial_network_name

name of spatial network to use

spatial_grid_name

name of spatial grid to use

spatial_point_size

spatial plot: point size

spatial_point_border_col

color of border around points

spatial_point_border_stroke

stroke size of border around points

legend_text_size

the size of the text in legend

axis_scale three modes to adjust axis scale ratio custom_ratio set the axis scale ratio on custom

 x_{ticks} number of ticks on x axis y_{ticks} number of ticks on y axis z_{ticks} number of ticks on z axis

midpoint size of point (cell)
point_size size of point (cell)

cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align

show_legend show legend show_plot show plot

Details

Description of parameters.

Value

ggplot or plotly

Examples

visSpatDimGenePlot(gobject)

visSpatDimGenePlot_2D visSpatDimGenePlot_2D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

Usage

```
visSpatDimGenePlot_2D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  plot_alignment = c("horizontal", "vertical"),
  genes,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  point_size = 1,
  dim_point_border_col = "black",
  dim_point_border_stroke = 0.1,
  show_NN_network = F,
  show_spatial_network = F,
  show_spatial_grid = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  edge_alpha_dim = NULL,
  scale_alpha_with_expression = FALSE,
  spatial_network_name = "spatial_network",
  spatial_grid_name = "spatial_grid",
  spatial_point_size = 1,
  spatial_point_border_col = "black",
  spatial_point_border_stroke = 0.1,
  midpoint = 0,
  genes_high_color = "red",
  genes_mid_color = "white";
  genes_low_color = "blue",
  cow_n_col = 2,
  cow_rel_h = 1,
  cow_rel_w = 1,
  cow_align = "h",
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  show_legend = T,
  show_plots = F
```

Arguments

gobject giotto object

expression_values

gene expression values to use

plot_alignment direction to align plot

genes genes to show

dim_reduction_to_use

dimension reduction to use

dim_reduction_name

dimension reduction name

dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis

point_size size of point (cell)

dim_point_border_col

color of border around points

dim_point_border_stroke

stroke size of border around points

show_NN_network

show underlying NN network

nn_network_to_use

type of NN network to use (kNN vs sNN)

 $network_name \qquad name \ of \ NN \ network \ to \ use, \ if \ show_NN_network = TRUE$

edge_alpha_dim dim reduction plot: column to use for alpha of the edges

scale_alpha_with_expression

scale expression with ggplot alpha parameter

spatial_network_name

name of spatial network to use

spatial_grid_name

name of spatial grid to use

spatial_point_size

spatial plot: point size

spatial_point_border_col

color of border around points

spatial_point_border_stroke

stroke size of border around points

midpoint size of point (cell)

cow_n_col cowplot param: how many columns cow_rel_h cowplot param: relative height

cow_rel_w cowplot param: relative width cow_align cowplot param: how to align

show_legend show legend

dim_point_size dim reduction plot: point size

show_plot show plot

Details

Description of parameters.

Value

ggplot

Examples

```
visSpatDimGenePlot_2D(gobject)
```

```
visSpatDimGenePlot_3D visSpatDimGenePlot_3D
```

Description

Visualize cells according to spatial AND dimension reduction coordinates in plotly mode

```
visSpatDimGenePlot_3D(
  gobject,
  expression_values = c("normalized", "scaled", "custom"),
  plot_alignment = c("horizontal", "vertical"),
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  genes,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  label_size = 16,
  genes_low_color = "blue",
  genes_mid_color = "white",
  genes_high_color = "red",
  dim_point_size = 3,
  nn_network_alpha = 0.5,
  show_spatial_network = F,
  spatial_network_name = "spatial_network",
  network_color = "lightgray",
  spatial_network_alpha = 0.5,
  show_spatial_grid = F,
  spatial_grid_name = "spatial_grid",
  spatial_grid_color = NULL,
  spatial_grid_alpha = 0.5,
  spatial_point_size = 3,
  legend_text_size = 12,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_{ticks} = NULL,
```

```
y_ticks = NULL,
z_ticks = NULL
)
Arguments
```

```
gobject
                 giotto object
plot_alignment direction to align plot
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
                 dimension to use on x-axis
dim1_to_use
dim2_to_use
                 dimension to use on y-axis
dim3_to_use
                 dimension to use on z-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
genes_low_color
                 color represent high gene expression (see details)
genes_high_color
                 color represent high gene expression (see details)
nn_network_alpha
                 column to use for alpha of the edges
show_spatial_network
                 show spatial network
spatial_network_name
                 name of spatial network to use
network_color color of spatial/nn network
spatial_network_alpha
                 alpha of spatial network
show_spatial_grid
                 show spatial grid
spatial_grid_name
                 name of spatial grid to use
spatial_grid_color
                 color of spatial grid
spatial_grid_alpha
                 alpha of spatial grid
legend_text_size
                 text size of legend
```

Details

Description of parameters.

show legend show plot

show_legend

show_plot

visSpatDimPlot 347

Value

plotly

Examples

```
visSpatDimPlot_3D(gobject)
```

visSpatDimPlot

visSpatDimPlot

Description

integration of visSpatDimPlot_2D and visSpatDimPlot_3D

```
visSpatDimPlot(
  gobject,
  plot_method = c("ggplot", "plotly"),
  plot_alignment = NULL,
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  label_size = NULL,
  label_fontface = "bold",
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  select_cell_groups = NULL,
  select_cells = NULL,
  show_other_cells = T,
  other_cell_color = "lightgrey",
  dim_point_size = 3,
  dim_point_border_col = "black",
  dim_point_border_stroke = 0.1,
  nn_network_alpha = NULL,
  show_spatial_network = F,
  spatial_network_name = "spatial_network",
  network_color = "lightgray",
  spatial_network_alpha = 0.5,
```

348 visSpatDimPlot

```
show_spatial_grid = F,
      spatial_grid_name = "spatial_grid",
      spatial_grid_color = NULL,
      spatial_grid_alpha = 0.5,
      spatial_point_size = 3,
      legend_text_size = 12,
      spatial_point_border_col = "black",
      spatial_point_border_stroke = 0.1,
      show_legend = T,
      axis_scale = c("cube", "real", "custom"),
      custom_ratio = NULL,
      x_ticks = NULL,
      y_ticks = NULL,
      z_ticks = NULL,
      show_plot = F
Arguments
    gobject
                     giotto object
    plot_alignment direction to align plot
    dim_reduction_to_use
                     dimension reduction to use
    dim_reduction_name
                     dimension reduction name
    dim1_to_use
                     dimension to use on x-axis
    dim2_to_use
                     dimension to use on y-axis
    dim3_to_use
                     dimension to use on z-axis
    show_NN_network
                     show underlying NN network
    nn_network_to_use
                     type of NN network to use (kNN vs sNN)
                     name of NN network to use, if show_NN_network = TRUE
    network_name
    cell_color
                     color for cells (see details)
    color_as_factor
                     convert color column to factor
    cell_color_code
                     named vector with colors
    select_cell_groups
                     select subset of cells/clusters based on cell_color parameter
                     select subset of cells based on cell IDs
    select_cells
    show_other_cells
                     display not selected cells
    other_cell_color
                     color of not selected cells
    nn_network_alpha
                     column to use for alpha of the edges
    show\_spatial\_network
                     show spatial network
```

visSpatDimPlot_2D 349

```
spatial_network_name
                 name of spatial network to use
spatial_network_alpha
                 alpha of spatial network
show_spatial_grid
                 show spatial grid
spatial_grid_name
                 name of spatial grid to use
spatial_grid_color
                 color of spatial grid
spatial_grid_alpha
                 alpha of spatial grid
legend_text_size
                 text size of legend
show_legend
                 show legend
show_plot
                 show plot
plot_mode
                 choose the mode to draw plot: ggplot or plotly
spatial_network_color
                 color of spatial network
```

Details

Description of parameters.

Value

ggplot or plotly

Examples

```
visSpatDimPlot(gobject)
```

visSpatDimPlot_2D

visSpatDimPlot_2D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot2 mode

```
visSpatDimPlot_2D(
  gobject,
  plot_alignment = c("vertical", "horizontal"),
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2_to_use = 2,
  sdimx = NULL,
  sdimy = NULL,
```

350 visSpatDimPlot_2D

 $show_NN_network = F,$

cell_color

```
nn_network_to_use = "sNN",
     network_name = "sNN.pca",
      show_cluster_center = F,
      show_center_label = T,
      center_point_size = 4,
      label_size = 4,
      label_fontface = "bold",
      cell_color = NULL,
      color_as_factor = T,
      cell_color_code = NULL,
      select_cell_groups = NULL,
      select_cells = NULL,
      show_other_cells = T,
     other_cell_color = "lightgrey",
      dim_plot_mode = NULL,
     dim_point_size = 1,
     dim_point_border_col = "black",
     dim_point_border_stroke = 0.1,
     nn_network_alpha = 0.05,
      show_spatial_network = F,
      spatial_network_name = "spatial_network",
      spatial_network_color = NULL,
      show_spatial_grid = F,
      spatial_grid_name = "spatial_grid",
      spatial_grid_color = NULL,
      spatial_point_size = 1,
      spatial_point_border_col = "black",
      spatial_point_border_stroke = 0.1,
      show_legend = T,
      show_plot = F,
     plot_method = "ggplot"
Arguments
                    giotto object
   gobject
   plot_alignment direction to align plot
   dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
   dim1_to_use
                    dimension to use on x-axis
                    dimension to use on y-axis
   dim2_to_use
   show_NN_network
                    show underlying NN network
   nn_network_to_use
                    type of NN network to use (kNN vs sNN)
                    name of NN network to use, if show_NN_network = TRUE
   network_name
```

color for cells (see details)

visSpatDimPlot_2D 351

```
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
nn_network_alpha
                  column to use for alpha of the edges
show_spatial_network
                  show spatial network
spatial_network_name
                  name of spatial network to use
spatial_network_color
                  color of spatial network
show_spatial_grid
                  show spatial grid
spatial_grid_name
                  name of spatial grid to use
spatial_grid_color
                  color of spatial grid
show_legend
                  show legend
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_dir
                  directory to save the plot
                  (optional) folder in directory to save the plot
save_folder
                  name of plot
save_name
```

format of plot (e.g. tiff, png, pdf, ...)

load & display the saved plot

Details

Description of parameters.

save_format

show_saved_plot

Value

ggplot

Examples

```
visSpatDimPlot_2D(gobject)
```

352 visSpatDimPlot_3D

visSpatDimPlot_3D

Description

Visualize cells according to spatial AND dimension reduction coordinates in plotly mode

Usage

```
visSpatDimPlot_3D(
  gobject,
  plot_alignment = c("horizontal", "vertical"),
  dim_reduction_to_use = "umap",
  dim_reduction_name = "umap",
  dim1_to_use = 1,
  dim2\_to\_use = 2,
  dim3_to_use = NULL,
  sdimx = NULL,
  sdimy = NULL,
  sdimz = NULL,
  show_NN_network = F,
  nn_network_to_use = "sNN",
  network_name = "sNN.pca",
  show_cluster_center = F,
  show_center_label = T,
  center_point_size = 4,
  label_size = 16,
  cell_color = NULL,
  color_as_factor = T,
  cell_color_code = NULL,
  dim_point_size = 3,
  nn_network_alpha = 0.5,
  show_spatial_network = F,
  spatial_network_name = "spatial_network",
  network_color = "lightgray",
  spatial_network_alpha = 0.5,
  show_spatial_grid = F,
  spatial_grid_name = "spatial_grid",
  spatial_grid_color = NULL,
  spatial_grid_alpha = 0.5,
  spatial_point_size = 3,
  axis_scale = c("cube", "real", "custom"),
  custom_ratio = NULL,
  x_ticks = NULL,
  y_ticks = NULL,
  z_ticks = NULL,
  legend_text_size = 12
```

Arguments

gobject giotto object

plot_alignment direction to align plot dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dimension to use on x-axis dim1_to_use dimension to use on y-axis dim2_to_use dim3_to_use dimension to use on z-axis show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors nn_network_alpha column to use for alpha of the edges show_spatial_network show spatial network spatial_network_name name of spatial network to use spatial_network_alpha alpha of spatial network show_spatial_grid show spatial grid spatial_grid_name name of spatial grid to use spatial_grid_color color of spatial grid spatial_grid_alpha alpha of spatial grid legend_text_size text size of legend spatial_network_color color of spatial network show legend show_legend show plot show_plot

Details

Description of parameters.

Value

plotly

Examples

```
visSpatDimPlot_3D(gobject)
```

writeHMRFresults

writeHMRFresults

Description

write results from doHMRF to a data.table.

Usage

```
writeHMRFresults(
  gobject,
  HMRFoutput,
  k = NULL,
  betas_to_view = NULL,
  print_command = F
)
```

Arguments

gobject giotto object

HMRF output HMRF output from doHMRF

k k to write results for

betas_to_view results from different betas that you want to view

print_command see the python command

Value

data.table with HMRF results for each b and the selected k

Examples

```
writeHMRFresults(gobject)
```

Description

write out factor-like annotation data from a giotto object for the Viewer

```
write_giotto_viewer_annotation(
  annotation,
  annot_name = "test",
  output_directory = getwd()
)
```

Arguments

```
annotation annotation from the data.table from giotto object
annot_name name of the annotation
output_directory
directory where to save the files
```

Value

write a .txt and .annot file for the selection annotation

Description

write out dimensional reduction data from a giotto object for the Viewer

Usage

```
write_giotto_viewer_dim_reduction(
  dim_reduction_cell,
  dim_red = NULL,
  dim_red_name = NULL,
  dim_red_rounding = NULL,
  dim_red_rescale = c(-20, 20),
  output_directory = getwd()
)
```

Arguments

```
dim_reduction_cell

dimension reduction slot from giotto object

dim_red high level name of dimension reduction

dim_red_name specific name of dimension reduction to use

dim_red_rounding

numerical indicating how to round the coordinates

dim_red_rescale

numericals to rescale the coordinates

output_directory

directory where to save the files
```

Value

write a .txt and .annot file for the selection annotation

```
write\_giotto\_viewer\_numeric\_annotation \\ write\_giotto\_viewer\_numeric\_annotation
```

Description

write out numeric annotation data from a giotto object for the Viewer

Usage

```
write_giotto_viewer_numeric_annotation(
  annotation,
  annot_name = "test",
  output_directory = getwd()
)
```

Arguments

```
annotation annotation from the data.table from giotto object
annot_name name of the annotation
output_directory
directory where to save the files
```

Value

write a .txt and .annot file for the selection annotation

Index

*Topic giotto ,	cellProximityBarplot, 27
giotto-class, 154	cellProximityEnrichment, 28
print.giotto, 214	cellProximityHeatmap, 29
show, giotto-method, 225	cellProximityNetwork, 30
*Topic giotto	cellProximitySpatPlot, 31
createGiottoObject, 54	cellProximitySpatrIot, 31 cellProximitySpatrIot2D, 32, 33
*Topic object	cellProximitySpatrlot2b, 32, 35
•	cellProximityVisPlot, 37
giotto-class, 154	cellProximityVisPlot_2D_ggplot, 39
print.giotto, 214 show,giotto-method, 225	cellProximityVisPlot_2D_ggplot, 39 cellProximityVisPlot_2D_plotly, 41
Show, glotto-lilethou, 223	cellProximityVisPlot_3D_plotly, 42
addCellIntMetadata, 8	changeGiottoInstructions, 44
addCellMetadata, 9, 55	cluster_walktrap, 111
addCellStatistics, 9, 14	clusterCells, 45
addGeneMetadata, 10, 55	clusterSpatialCorGenes, 47
addGeneStatistics, 11, 14	
addHMRF, 12	combCCcom, 48, 193–195
addNetworkLayout, 13	combine_ints_f, 52
addStatistics, 14	combineCellProximityGenes, 49
adjustGiottoMatrix, 14	combineCellProximityGenes_per_interaction, 50
aes_string2, 15	
all_plots_save_function, 16, 24, 27, 29,	combineCPG, 50
31, 32, 34, 36, 73, 76, 78, 80, 82, 85,	combineMetadata, 51
88, 91, 93, 155, 167, 169–172,	<pre>convertEnsemblToGeneSymbol, 53 cowplot::save_plot, 154</pre>
174–176, 178, 180, 184, 186, 188,	create_average_detection_DT, 65
190, 192–194, 197, 199, 200, 202,	create_average_DT, 65
204, 206, 217, 226–228, 232, 234,	create_cell_type_random_cell_IDs, 66
235, 244, 247, 251, 256, 258, 261,	create_cluster_matrix, 67
263, 267, 272, 274, 277, 279, 281,	create_dimObject, 67
286–288, 291, 295, 297, 299, 313	createGiottoInstructions, 53, 55
annotate_spatlocs_with_spatgrid_2D, 18	createGiottoObject, 54, 303
annotate_spatlocs_with_spatgrid_3D, 19	createHeatmap_DT, 56
annotateGiotto, 17	createMetagenes, 57
annotateSpatialNetwork, 18	createNearestNetwork, 58
average_gene_gene_expression_in_groups,	createSpatialEnrich, 59, 118
19	createSpatialGrid, 61
	createSpatialGrid_2D, 62
binGetSpatialGenes, 20	createSpatialGrid_3D, 63
binGetSpatialGenesOld, 22	createSpatialNetwork, 64, 69
	, , , , ,
calculate_spatial_genes_python, 26	decide_cluster_order,68
calculateHVG, 23	detectSpatialCorGenes, 69
calculateMetaTable, 25	${\sf detectSpatialPatterns}, 70$
calculateMetaTableCells, 25	dimCellPlot, 71

358 INDEX

dimCellPlot2D, 73, 74	find_grid_3D,140
dimGenePlot, 77	find_grid_x, 140
dimGenePlot2D, 79	find_grid_y, 140
dimGenePlot3D, 78, 81, 81	find_grid_z, 141
dimPlot, 83	findCellProximityGenes, 127
dimPlot2D, 85, 86, 189, 191, 197, 199, 202,	<pre>findCellProximityGenes_per_interaction,</pre>
205	128
dimPlot2D_single, 89	findCPG, 129
dimPlot3D, 76, 85, 88, 91, 91	findGiniMarkers, 130, <i>132</i> , <i>134</i>
<pre>direction_test (direction_test_CPG), 94</pre>	<pre>findGiniMarkers_one_vs_all, 132, 135</pre>
direction_test_CPG, 94	findMarkers, 133, <i>138</i>
<pre>do_cell_proximity_test, 112</pre>	findMarkers_one_vs_all, 134
do_limmatest, 113	findMastMarkers, <i>134</i> , 136, <i>137</i>
<pre>do_multi_permuttest_random, 113</pre>	<pre>findMastMarkers_one_vs_all, 135, 137</pre>
<pre>do_permuttest (do_permuttest_random),</pre>	findScranMarkers, 134, 138, 139
114	findScranMarkers_one_vs_all, 135, 139
do_permuttest_original, 114	fish_function, 141
do_permuttest_random, 114	fish_function2, 141
do_spatial_grid_averaging, 115	FSV_show, 142
do_spatial_knn_smoothing, 115	1 3 V_3110W, 1 12
do_ttest, 116	GenePattern_show, 143
do_wilctest (do_ttest), 116	general_save_function, 17, 144
doHclust, <i>47</i> , 94	get10Xmatrix, 145
doHMRF, 95	<pre>get_cell_to_cell_sorted_name_conversion,</pre>
doKmeans, 47, 97	151
doLeidenCluster, 47, 98, 101, 306	<pre>get_interaction_gene_enrichment, 151</pre>
doLeidenSubCluster, 99	get_specific_interaction_gene_enrichment,
doLouvainCluster, 47, 101	152
doLouvainCluster_community, 47, 102, 102,	getCellProximityGeneScores, 145
106, 108, 306	getClusterSimilarity, 148
doLouvainCluster_multinet, 47, 102, 104,	getDendrogramSplits, 148
106, 110, 306	getDistinctColors, 149
doLouvainSubCluster, 105	getGeneToGeneScores, 150
doLouvainSubCluster_community, 107	ggplot_save_function, 153
doLouvainSubCluster_multinet, 108	giotto (giotto-class), 154
doRandomWalkCluster, 47, 110	giotto-class, 154
doSNNCluster, 47, 111	glouvain_ml, 104
DT_removeNA, 117	g10474111_m1, 107
dt_to_matrix, 117	hclust, 95
	Heatmap, <i>155</i>
exportGiottoViewer, 117	heatmSpatialCorGenes, 155
exprCellCellcom, 119, 167, 168	hyperGeometricEnrich, 60, 156
extended_gini_fun, 120	
extractNearestNetwork, 120	kmeans, 98
,	kmeans_binarize, 157
fDataDT, 121	knn, 59
filterCellProximityGenes, 121	,
filterCombinations, 122, 126	layout_with_drl, 13
filterCPG, 123	loadHMRF, 157
filterCPGscores, 124	
filterDistributions, 125	<pre>make_simulated_network, 159</pre>
filterGiotto, 126	makeSignMatrixPAGE, 158, 165
find_grid_2D, 140	makeSignMatrixRank, 158, 216

INDEX 359

mergeClusters, 159	rankEnrich, <i>60</i> , <i>159</i> , 215
mygini_fun, 160	rankPermutation, 216
	rankSpatialCorGroups, 216
nnDT_to_kNN, 161	readGiottoInstructions, 217
node_clusters, 161	removeCellAnnotation, 218
normalizeGiotto, 162	removeGeneAnnotation, 218
normalizeGiottoOld, 163	replaceGiottoInstructions, 219
	Rtsne, 222
OR_function2, 164	runPCA, 220
	runtSNE, 221
PAGEEnrich, 60, 158, 165	runUMAP, 222
pagePermutation, 166	1 411011111 , 222
PCA, 220	select_expression_values, 225
pDataDT, 166	selectPatternGenes, 224
permutationPA, 240	show, giotto-method, 225
plot_network_layer_ggplot, 206	showClusterDendrogram, 225
plot_point_layer_ggplot, 207	showClusterHeatmap, 227
plot_point_layer_ggplot_noFILL, 209	showCPGscores, 228
plot_spat_point_layer_ggplot, 211	showGeneExpressionProximityScore, 229
plot_spat_point_layer_ggplot_noFILL,	showGiottoInstructions, 230
213	showGTGscores, 230
plotCCcomDotplot, 167	showIntExpressionProximityScore, 231
plotCCcomHeatmap, 168	showPattern, 232
plotCellProximityGenes, 169	showPattern2D, 233, 233
plotCombineCCcom, 170	showPattern3D, 234
plotCombineCellCellCommunication, 171	showPatternGenes, 235
plotCombineCellProximityGenes, 173	showProcessingSteps, 236
plotCombineCPG, 174	showSpatialCorGenes, 70, 237
plotCPG, 175	
	showTopGeneToGene, 238
plotCPGscores, 176	signPCA, 239
plotGTGscores, 177	sNN, 59
plotHeatmap, 179	sNNclust, 112
plotly_axis_scale_2D, 181	sort_combine_two_DT_columns, 240
plotly_axis_scale_3D, 181	spat_fish_func, 300
plotly_grid, 182	spat_OR_func, 300
plotly_network, 183	spatCellCellcom, 167, 168, 241
plotMetaDataCellsHeatmap, 183, 187	spatCellPlot, 242
plotMetaDataHeatmap, 185, 185	spatCellPlot2D, 245
plotPCA, 187	spatDimCellPlot, 248
plotPCA_2D, 189	spatDimCellPlot2D, 252
plotPCA_3D, <i>189</i> , <i>191</i> , 191	spatDimGenePlot, 256
plotRankSpatvsExpr, 192	spatDimGenePlot2D, 259
plotRecovery, 194	spatDimGenePlot3D, 259, 261, 262
plotRecovery_sub, 195	spatDimPlot, 264
plotTSNE, 195	spatDimPlot2D, 268, 268
plotTSNE_2D, 197	spatDimPlot3D, 268, 272, 272
plotTSNE_3D, <i>197</i> , <i>199</i> , 199	spatGenePlot, 275
plotUMAP, 201	spatGenePlot2D, 277, 277
plotUMAP_2D, 203	spatGenePlot3D, 277, 279, 280
plotUMAP_3D, 202, 205, 205	Spatial_AEH, 284
print.giotto, 214	Spatial_DE, 285
-	spatialAEH, 281
rank_binarize, 217	SpatialDE, 282

360 INDEX

```
spatialDE, 282
                                                zlm, 136
spatNetwDistributions, 285
spatNetwDistributionsDistance, 287
spatNetwDistributionsKneighbors, 288
spatPlot, 289
spatPlot2D, 292, 310
spatPlot2D_single, 295
spatPlot3D, 292, 295, 298, 298, 311
specificCellCellcommunicationScores,
split_dendrogram_in_two, 302
stitchFieldCoordinates, 55, 302
stitchTileCoordinates, 304
subClusterCells, 304
subsetGiotto, 306
subsetGiottoLocs, 307
trendSceek, 308
trendsceek_test, 308
umap, 223
viewHMRFresults, 309
viewHMRFresults2D, 310
viewHMRFresults3D, 311
violinPlot, 312
visDimGenePlot, 313
visDimGenePlot_2D_ggplot, 315
visDimGenePlot_3D_plotly, 316
visDimPlot, 318
visDimPlot_2D_ggplot, 320
visDimPlot\_2D\_plotly, 322
visDimPlot_3D_plotly, 324
visForceLayoutPlot, 325
visGenePlot, 327
visGenePlot_2D_ggplot, 329
visGenePlot_3D_plotly, 330
visPlot, 309, 332
visPlot_2D_ggplot, 334
visPlot_2D_plotly, 337
visPlot_3D_plotly, 338
visSpatDimGenePlot, 340
visSpatDimGenePlot_2D, 343
visSpatDimGenePlot_3D, 345
visSpatDimPlot, 347
visSpatDimPlot_2D, 349
visSpatDimPlot_3D, 352
write_giotto_viewer_annotation, 354
write_giotto_viewer_dim_reduction, 355
write\_giotto\_viewer\_numeric\_annotation,
        356
writeHMRFresults, 354
```