### Indian Institute of Technology- Jodhpur

# GRAPH THEORY AND APPLICATIONS(GTA) COURSE CODE: CSL7410

# Lecture Scribing Assignment: Week 7

# Done by: Sachin Kumar M20MA064

February 27, 2022



## Week 7

# Hall's Theorem\*

#### 7.1 Some Theorems and Lemma

In this Section we will learn about the Properties of bipartite graph and some related lemma

#### 7.1.1 Hall's Theorem

Statement: Let G be a Bipartite graph with bipartition (X,Y). Then G contains a matching that saparates every vertex in X if and only if  $|N(S)| \ge |S|$  for all  $S \subseteq X$ .

**Proof:** Let us assume that G contains a matching M which saturate every vertex in x Let s be a subset of x.

 $\implies$  The vertices of S are matched under M with distinct vertices in N(S)  $|N(S)| \ge |S|$  for all  $S \subseteq X$ 

Converse:-

Let us consider a bipartite graph G let us assume that  $|N(S)| \ge |S| \ \forall S \subseteq X$ 

To prove:- G contains a matching that saturates every vertex in X.

<sup>\*</sup>Lecturer: Anand Mishra. Scribe: Sachin Kumar (M20MA064).



Let us assume the contradiction that g contains no matching saturating all vertices in X. Let us assume that  $M^*$  is a maximum matching in G.

 $\implies M^*$  does not saturates all vertices in X.

Let u be an  $M^*$  unsaturated vertex in X let Z denotes the set of vertices connected to u by  $M^*$  - alternating Path.

By Berge's theorem it follows that u is the only  $M^*$  - unsaturated vertex in Z let the set  $S = Z \cap X$  and  $T = Z \cap Y$ 

clearly, the vertices of S-set(u) are matched under M\* with the vertices.

Since, 
$$|T| = |S| - 1$$
  
 $N(S) \subseteq T$   $N(S) = T$   
 $|N(S)| = |T| = |S| - 1$   
 $\implies |N(S)| < |S|$   
 $|N(S)| \geqslant |S|$ 

#### Some definitions

**Vertex cover :** A vertex cover of graph C is a set  $\theta \subseteq V(G)$  that contains at least one end point of every edge.

example:

$$\theta_{1} = \{C, D\}$$

$$\theta_{2} = \{A, B, E, F\}$$

$$\theta_{3} = \{D, A, B\}$$

$$\theta_{4} = \{C, E, F\}$$



**Edge Cover:** An edge cover of a graph is set of edge such that every vertex of the graph is incident to the at least one edge of the set. example:

$$EG = \{AC, BC, DE, DF\}$$

**Independent set:** set of vertices which. is not adjacent.

example: independent set =  $\{A, B\}$  or

or 
$$\{E, F\}$$
 of  $\{A, B, E, F\}$ 

 $\alpha(G) = \text{maximum size of independent set}$ 

 $\alpha'(G)$  = maximum size of matching

 $\beta(G)$  = minimum size of vertices cover

 $\beta'(G) = \text{minimum size of edge}$ 

n(G) = total number of vertices in graph G

$$\alpha(G) = \{A, B, E, F\}$$

$$\alpha'(G) = \{AC, DE\} \text{ or, } \{BC, DF\}$$

$$\beta(G) = \{C, D\}$$

$$\beta'(G) = \{AB, AC, BC, DE, DF\}$$

#### 7.1.2 Theorem

Statement: if G is a simple graph then diam  $(G) \ge 3$  then diam  $(G^c) \le 3$ 

**proof:** if diam  $(G) \ge 3$  that implies

- (1)  $\exists u \& v \text{ such that } uv \notin E(G)$
- (2) u & v does not have common neighbour.

hence diam  $(G^c) \leq 3$ 

#### 7.1.3 Lemma:

Statement: sum of maximum size of independent set and minimum size of vertex cover is equal to total number of vertices

i.e. 
$$\alpha(G) + \beta(G) = n(G)$$

**Proof:** let s be an independent set of maximum size then every edge is incident to at least one vertex of is

$$S = \{A, B, C\}, \bar{S} = \{D, E\}$$



$$SU\bar{S} = V(G)$$

 $\bar{S}$  covers all the edges

 $\bar{S}$  is minimum size vertex cover  $\Rightarrow \beta(G) = \bar{S}$  S is maximum size of independent set

$$\Rightarrow S = \alpha(G)$$

$$\therefore \quad \alpha(G) + \beta(G) = |S| + |\bar{S}| = n(G)$$

hence on  $\alpha(G) + \beta(G) = n(G)$ 

#### 7.1.4 theorem

Statement: if G is a graph without isolated vertices, then

$$\alpha'(G) + \beta'(G) = n(G)$$

#### 7.1.5 Theorem

Statement: if G is a bipartite graph with no isolated vertices then  $\alpha(G) = \beta'(G)$ 

**Proof:** we have already know

$$\alpha(G) + \beta(G) = n(G) \dots (i)$$

$$a'(G) + \beta'(G) = n(G)$$
..... (ii)

$$\alpha'(G) = \beta(G)$$
 ..... (iii)

from (i) and (ii)

$$\alpha(G) + \beta(G) = \alpha'(G) + \beta'(G)$$

$$\implies \alpha(G) + \beta(G) = \beta(G) + \beta'(G)$$

$$\implies \alpha(G) = \beta'(G)$$

#### 7.1.6 theorem

Statement : G be a bipartite graph then  $\alpha(G) = \frac{n(G)}{2}$  iff G has perfect matching .

**Proof:** Since  $\alpha(G) + \beta(G) = n(G)$ 

$$\implies \alpha(G) = n(G) - \beta(G)$$
  
=  $n(G) - \alpha'(G)$ 

if G has perfect matching then maximum size of matching

$$\alpha'(G) = \frac{n(G)}{2}$$
 So 
$$\alpha(G) = n(G) - \frac{n(G)}{2}$$
 
$$\alpha(G) = \frac{n(G)}{2}$$