

Análise de Dependência Espacial em R

Ângela Terumi Fushita Vitor Vieira Vasconcelos

Introdução ao uso de dados espaciais para estudos ambientais Programa de Pós-Graduação em Ciência e Tecnologia Ambiental Universidade Federal do ABC

Maio, 2020

Santo André - SP

Próximas 2 aulas

- Análise de Dependência Espacial
- Geoestatística

Objetivo

Adquirir os conhecimentos e habilidades básicas relacionados a análise de dependência espacial no ambiente R

Conteúdo

- Análise de vizinhança
- Autocorrelação espacial
- Suavização espacial
- Regressão espacial
- Agrupamento

Materiais de aula disponíveis em:

https://app.box.com/s/kqwpbxgvagtl9ygsodaat380nqjn1mp2

Baixar os dados em: D:/R_CTA/aula8/

Leitura Prévia

Capítulos

- 1 Análise Espacial e Geoprocessamento
- 5 Análise Espacial de Áreas

DRUCK, S.; CARVALHO, M. S.; CÂMARA, G.; MONTEIRO, A.V.M (eds). **Análise Espacial de Dados Geográficos**. Brasília: EMBRAPA, 2004. Disponível em: http://www.dpi.inpe.br/gilberto/livro/analise/

Bivand, Roger. S., Pebesma, E. J., Gomez-Rubio, V., & Pebesma, E. J. (2013). **Applied spatial data analysis with R**. New York: Springer..

https://app.box.com/s/uti6bqyiscqpoqu2dsmd06yk5xw5m9qw

Site de apoio: https://asdar-book.org/

- Conteúdo de referência
 - Dados vetoriais e raster (formato sp)
 - Interpolação e Geoestatística
 - Autocorrelação espacial

Brunsdon, C. and Comber, L., 2015. An introduction to R for spatial analysis and mapping. Sage.

https://app.box.com/s/wv3j8cuvvznyl47t8t9nkbod87vcvujx

- Conteúdo de referência
 - Análise de pontos
 - Autocorrelação espacial
 - Regressão ponderada geográfica

Arbia, Giuseppe. A primer for spatial econometrics: with applications in R. Springer, 2014.

PDF: https://app.box.com/s/xznmpvb21inuf50867c7lxnjn2cbtsct

Conteúdos:

- Matrizes de vizinhança
- Modelos espaciais autorregressivos

Grose, D., Brunsdon, C., Harris, R. 2011.

Introduction to Geographically Weighted
Regression (GWR) and to Grid Enabled GWR.

Lancaster University.

https://s3-eu-west-1.amazonaws.com/esrc-files/outputs/29-K1tVQBEGILqcChUnuNw/ZIUv3WBmuE-fs1sTU4vzSw.pd

Econometria Espacial

- Dados socioeconômicos agrupados em regiões administrativas
- Incorporação para análise epidemiológica (saúde pública)
- Luc Anselin
 - Geoda
 - Pysal
- Roger Bivand
 - spdep (R)
 - Supervisionado pelo Luc Anselin

O Problema da Unidade de Área Modificável

Independent variable Dependent variable

87	95	72	37	44	24
40	55	55	38	88	34
41	30	26	35	38	24
14	56	37	34	8	18
49	44	51	67	17	37
55	25	33	32	59	54

$\overline{}$					
72	75	85	29	58	30
50	60	49	46	84	23
21	46	22	42	45	14
19	36	48	23	8	29
38	47	52	52	22	48
58	40	46	38	35	55

$\begin{cases} y = 0.7543x + 10.375 \\ 80 & R^2 = 0.6902 \end{cases}$

Aggregation scheme 1

54.5	34
46.5	61
30.5	31
35.5	13
59	27
32.5	56.5
	46.5 30.5 35.5 59

73.5	57	44
55	47.5	53.5
33.5	32	29.5
27.5	35.5	18.5
42.5	52	35
49	42	45

Aggregation scheme 2

63.5	75	63.5	37.5	99	29
27.5	43	31.5	34.5	23	21
52	34.5	42	49.5	38	45.5

61	9.79	29	37.5	1.1	26.5
20	41	35	32.5	26.5	21.5
48	43.5	49	45	28.5	51.5

Conteúdo

- Análise de vizinhança
- Autocorrelação espacial
- Suavização espacial
- Regressão espacial
- Agrupamento

Atividade

Novo projeto

 Criar um novo script de programação

Abrir o script aula8.R

Configurar o diretório de trabalho

Exemplo de código:

setwd("D:/R_CTA/aula8")

 Confirmando o diretório de trabalho getwd() • É sempre recomendável verificar atualizações nos pacotes instalados antes de começar a trabalhar

Pacotes básicos:

install.packages("sf")

install.packages("sp")

install.packages("rgdal")

install.packages("tmap")

library(sf)

library(rgdal)

library(sp)

library(raster)

library(tmap)

Comando: update.packages(ask=FALSE)

##outros pacotes que vamos utilizar na aula

install.packages("cleangeo")

install.packages("spdep")

install.packages("pgirmess")

install.packages("spatialreg")

install.packages("spgwr")

library(cleangeo) Correção topológica

library(spdep) Dependência espacial

library(pgirmess) Correlograma de distância

library(spatialreg) Regressão espacial global

library(spgwr) Regressão ponderada geográfica

Importar dados

st_layers("aula8.gpkg")

1- Municípios da Região Metropolitana de São Paulo

2- Setores censitários do ABC Paulista

```
Driver: GPKG
Available layers:
   layer_name geometry_type features fields
1 mun_rmsp Polygon 39 9
2 setores abc Polygon 4157 20
```

Importar dados

setores_sf<-st_read("aula8.gpkg", layer="setores_abc")

View(setores_sf)

Ordenar por ordem crescente de renda

Censo 2010

Defesa Civil 2014-2016

Domicilios 💠	Pessoas ÷	Renda 🔅	rede_esg ‡	col_lixo	deslizam 🔅	inundaco	geometry
91	345	682.13	97.802198	100.00000	0	0	list(c(3345)
267	901	578.21	100.000000	100.00000	0	0	list(c(3347
191	649	933.95	99.476440	100.00000	0	0	list(c(3347

Setores zerados

Domicilios ÷	Pessoas ÷	Renda 📤	rede_esg 🔅	col_lixo 💠
0	0	0.00	0.0000000	0.00000
0	0	0.00	0.0000000	0.00000
0	0	0.00	0.0000000	0.00000
0	0	0.00	0.0000000	0.00000
0	0	0.00	0.0000000	0.00000
1	4	0.00	0.0000000	0.00000
1	9	0.00	0.0000000	0.00000
0	0	0.00	0.0000000	0.00000

Setores nulos

Domicilios ‡	Pessoas ÷	Renda 📤	rede_esg ‡	col_lixo 💠
NA	NA	NA	NA	NA
NA	NA	NA	NA	NA
NA	NA	NA	NA	NA
NA	NA	NA	NA	NA
NA	NA	NA	NA	NA
NA	NA	NA	NA	NA
NA	NA	NA	NA	NA
NA	NA	NA	NA	NA
NA	NA	NA	NA	NA

plot(setores_sf["rede_esg"], border=NA)

plot(setores_sf["Renda"], border=NA)

O que fazer com os valores nulos e zerados?

- Por que eles estão nulos ou zerados?
 - Áreas desertas
 - Falhas de preenchimento (interpolar?)
- Faz sentido analisar esses elementos?
 - Focar o estudo em áreas não desertas
 - Trabalhar com amostras e não com universo dos dados
- Os modelos aceitam dados faltantes ou zerados?
 - Zerar ao agregar em unidades maiores
 - Descartar para análise de vizinhança
 - Dados zerados podem atrapalhar regressões

setores_nao_nulo <- subset(setores_sf, is.na(setores_sf\$Renda)==FALSE)
setores_valido <- subset(setores_nao_nulo, setores_nao_nulo\$Renda != 0)
View(setores_valido)

Análise Topológica

install.packages("cleangeo")

library(cleangeo)

setores_sp <- as(setores_valido,"Spatial")

clgeo_IsValid(setores_sp)

analise_topologica <- clgeo_CollectionReport(setores_sp)

clgeo_SummaryReport(analise_topologica)

type valid issue type

rgeos_validity: 40 Mode:logical GEOM_VALIDITY: 40

NA's :3990 FALSE:40 NA's :3990

TRUE: 3990

clgeo_SuspiciousFeatures(analise_topologica)

[1] 2 40 52 84 936 2140 2141 2559 3797 3798 3802 3803 3805 3806 3817 3818 3819 3855 3856 [20] 3857 3858 3865 3866 3876 3892 3893 3913 3914 3940 3941 3944 3945 3956 3958 3959 3992 3993 3998 [39] 3999 4020

Correção topológica

```
setores_clean <- clgeo_Clean(setores_sp)
clgeo_IsValid(setores_clean)</pre>
```

[1] TRUE

CRITÉRIOS DE VIZINHANÇA

"CONTIGUIDADE:

- Rook (torre)
- Queen (rainha)(para polígonos ou raster)

Queen's (Kings) Case

Rooks Case

Rook

Queen

MATRIZ DE VIZINHANÇA

Critério de contiguidade

	1	2	3	4	5	6	7	8
1	0	1	1	1	0	0	0	0
2	1	0	1	0	0	1	1	0
3	1	1	0	1	1	1	0	0
4	1	0	1	0	1	0	0	0
5	0	0	1	1	0	1	0	1
6	0	1	1	0	1	0	1	1
7	0	1	0	0	0	1	0	1
8	0	0	0	0	1	1	1	0

MATRIZ DE PESOS

A matriz pode ser binária (1 ou 0, como no exemplo) ou geral (pesos contínuos, dependendo da distância – mais próximo com peso maior, é "mais vizinho").

A matriz também pode ser normalizada.

MATRIZ DE VIZINHANÇA

MATRIZ NORMALIZADA

Relações de vizinhança

install.packages("spdep")

library(spdep)

vizinhanca <- poly2nb(setores_clean)</pre>

View(vizinhanca)

aula8.R* ×	Q vizinhanca ×	setores_valido ×	set	ores_sf ×					
← Show Attributes									
Name	Тур	e	1	Value					
vizinhanca	lis	t [4002] (S3: nb)		List of length 4002					
[[1]]	int	teger [1]		108					
[[2]]	int	teger [9]		3 132 133 134 136 143					
[[3]]	int	teger [2]		2 133					
[[4]]	int	teger [1]		227					

View(card(vizinhanca))

setores_clean\$vizinhos <- card(vizinhanca)</pre>

View(setores_clean@data)

Ordenar por ordem crescente de vizinhos

CRO ÷	NM_MESO	Tipo_setor ‡	Domicilios [‡]	Pessoas ÷	Renda 💠	rede_esg ‡	col_lixo ‡	vizinhos 🐴
JLO	METROPOLITANA DE S?O PAULO	0	135	470	617.10	5.925926	84.44444	0
JLO	METROPOLITANA DE S?O PAULO	0	420	1197	3919.24	95.952381	100.00000	0
JLO	METROPOLITANA DE S?O PAULO	0	117	387	816.20	100.000000	100.00000	0
JLO	METROPOLITANA DE S?O PAULO	0	152	539	913.04	99.342105	100.00000	0
JLO	METROPOLITANA DE S?O PAULO	0	60	221	294.62	98.333333	100.00000	0
JLO	METROPOLITANA DE S?O PAULO	0	216	840	492.69	100.000000	100.00000	0
JLO	METROPOLITANA DE S?O PAULO	0	175	450	2918.63	100.000000	99.42857	0
JLO	METROPOLITANA DE S?O PAULO	1	91	345	682.13	97.802198	100.00000	1
JLO	METROPOLITANA DE S?O PAULO	1	416	1402	792.14	99.759615	99.75962	1
JLO	METROPOLITANA DE S?O PAULO	1	91	333	350.78	97.802198	100.00000	1
JLO	METROPOLITANA DE S?O PAULO	0	177	508	2311.30	100.000000	100.00000	1

setores_juntos <- subset(setores_clean, setores_clean\$vizinhos != 0)

View(setores_juntos@data)

vizinhos	*
	1
	1
	1
	1

```
vizinhanca2 <- poly2nb(setores_juntos)
setores_xy <- coordinates(setores_juntos)
plot(setores_sp, border="red")
plot(x= vizinhanca2, coord = setores_xy, cex=0.6, add=TRUE)</pre>
```


Exportando grafo de vizinhança para sp

vizinhanca_sp <- nb2lines(vizinhanca2, coords = setores_xy,
proj4string = crs(setores_valido))</pre>

plot(vizinhanca_sp)

Vizinhança normalizada (pesos)

vizinhanca_pesos <- nb2listw(vizinhanca2)

View(vizinhanca_pesos)

Vizinhança normalizada (pesos)

plot(setores_sp, border="red")

plot(vizinhanca_pesos, setores_xy, cex=0.6, add=TRUE)

vizinhanca_pesos_sp <- listw2lines(vizinhanca_pesos, coords = setores xy, proj4string = crs(setores sp))

plot(vizinhanca_pesos_sp)

Exercício 1

Fazer verificação de correção topológica, vizinhança e vizinhança normalizada para os municípios da RMSP.

Visualizar grafo de vizinhança como mapa.

Vizinhança por distância

- Pode utilizar bases pontuais ou centróides de polígonos
- •Métodos:
 - "n" vizinhos mais próximos
 - distância máxima
 - funções de distância (w_{ij} com valores contínuos)

Análise de Distâncias de Vizinhança

distancias <- nbdists(vizinhanca2, setores_xy)

View(distancias)

View(unlist(distancias))

aula8.R × unlist(distancias)

Filter

1 458.95316

2 114.96386

3 214.42847

summary(unlist(distancias))

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0 194.2 283.9 398.7 423.9 7526.6

Vizinhos por raio de distância

vizinhanca_400m <- dnearneigh(setores_xy, d1=0, d2=400)

View(vizinhanca_400m)

Distância

Minima

Máxima

Vizinhos por raio de distância

plot(vizinhanca_400m, setores_xy, cex=0.3)

K vizinhos mais próximos

vizinhos_4 <- knearneigh(setores_xy, k = 4)

View(vizinhos_4\$nn)

vizinhanca_4 <- knn2nb(vizinhos_4)</pre>

View(vizinhanca_4)

aula8.R* × Q vizinhanca	4 × vizinhos_4\$nn ×					
← → Show Attributes						
Name	Туре	Value				
vizinhanca_4	list [3995] (S3: nb)	List of length 3995				
[[1]]	integer [4]	105 107 109 133				
[[2]]	integer [4]	3 128 129 139				
[[3]]	integer [4]	2 128 129 564				

K vizinhos mais próximos

plot(setores_sp, border="red")
plot(vizinhanca_4, setores_xy, cex=0.6, add=TRUE)

Exercício 2

Fazer análise de distâncias, vizinhança com o raio de distância media e com 3 vizinhos mais próximos dos municípios da RMSP, visualizando os mapas.

Conteúdo

- Análise de vizinhança
- Autocorrelação espacial
- Suavização espacial
- Regressão espacial
- Agrupamento

Dependência espacial

"As coisas mais próximas se parecem mais entre si do que as mais distantes" – Waldo Tobler (1970)

Mapa de inclusão/exclusão social em São Paulo

 Auto-correlação espacial (grau de dependência espacial)

Tobler, W. R. 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography 46: 234–40.

Dependência espacial

• Qual dos mapas ao lado tem maior autocorrelação espacial?

Autocorrelação Espacial

- Autocorrelação Positiva (Lei de Tobler):
 Feições similares em localização também são similares em atributos
- Autocorrelação Negativa (oposição à Lei de Tobler):
 - Feições similares em localização tendem a ter atributos menos similares do que feições mais distantes
- Ausência de Autocorrelação:
 Quando atributos são independentes da localização

EXTREMA AUTOCORRELAÇÃO NEGATIVA

INDEPENDÊNCIA ESPACIAL

AGRUPAMENTO ESPACIAL

ARRANJO DISPERSO

EXTREMA
AUTOCORRELAÇÃO
ESPACIAL POSITIVA

Índices de autocorrelação espacial

1. Índices Globais de Associação Espacial

- Apresenta uma medida única para toda a área analisada.
- Índice global de Moran (I)

2. Índices Locais de Associação Espacial (LISA)

- Decomposições dos índices globais, podem ser visualizados na forma de mapas.
- Permite a identificação de diferentes regimes de associação espacial
- Índice local de Moran (I_i)

Índice Global de Moran

- Índice global de autocorrelação espacial, que varia entre -1 e 1
- Correlação de um atributo de um elemento no espaço, em relação ao mesmo atributo nos vizinhos
 - I = 1 → Extrema Autocorrelação Positiva (Lei de Tobler): Feições similares em localização também são similares em atributos
 - I = -1 → Extrema Autocorrelação Negativa (oposição à Lei de Tobler):

Feições similares em localização tendem a ter atributos menos similares do que feições mais distantes

• I = 0 → Ausência de Autocorrelação:

Quando atributos são independentes da localização

Índice Global de Moran

Moran, P. A. P. (1950). "Notes on Continuous Stochastic Phenomena". Biometrika. 37 (1): 17–23.

Índice global de Moran

moran.test(x = setores_juntos\$Renda, listw = vizinhanca_pesos)

Moran I statistic standard deviate = 63.972, p-value < 2.2e-16 alternative hypothesis: greater sample estimates:

p<0.05, então é significativo

Moran I statistic 0.6209651089 Expectation Variance

-0.0002503756 0.0000942998

Moran I > 0, autocorrelação espacial positiva

Correlograma de Índice de Moran

correlograma_contiguidade <- sp.correlogram(neighbours = vizinhanca2, var = setores_juntos\$Renda, order = 5, method = "I") I = **indice de Moran**

Até qual ordem de contiguidade

Correlograma de Índice de Moran

plot(correlograma_contiguidade)

correlograma_contiguidade

lags

```
standard deviate Pr(I) two sided
        estimate expectation variance
1 (3995) 6.2097e-01 -2.5038e-04 9.4300e-05
                                                            < 2.2e-16 ***
                                                 63.972
2 (3995) 5.0449e-01 -2.5038e-04 3.2272e-05
                                                            < 2.2e-16 ***
                                                 88.850
3 (3995) 3.9445e-01 -2.5038e-04 1.6690e-05
                                                 96.615
                                                            < 2.2e-16 ***
4 (3995) 3.1846e-01 -2.5038e-04 1.0376e-05
                                                 98.943
                                                            < 2.2e-16 ***
5 (3995) 2.5703e-01 -2.5038e-04 7.0927e-06
                                                 96.607
                                                            < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Correlograma de Distância NÃO RODAR, DEMORA MUITO!

install.packages("pgirmess")

library(pgirmess)

correlograma_distancia <- correlog(setores_xy, setores_juntos\$Renda)

plot(correlograma_distancia)

correlograma_distancia

distance classes

Moran I statistic

dist.class coef p.value n [1,] 806.6981 0.372223766 0.000000e+00 464334

[2,] 2420.0942 0.190925123 0.000000e+00 1118650

[3,] 4033.4904 0.117576367 0.000000e+00 1580616

[4,] 5646.8865 0.044909747 8.516147e-242 1845730

[5,] 7260.2827 -0.035684296 1.000000e+00 1996306

Vizinhança acumulada de ordens superiores

vizinhanca_1e2 <- nblag(vizinhanca2, maxlag = 2)</pre>

View(vizinhanca_1e2)

vizinhanca_ordem_2 <- nblag_cumul(vizinhanca_1e2)</pre>

View(vizinhanca_ordem_2)

Vizinhança acumulada de ordens superiores

```
vizinhanca_peso_ordem_2 <- nb2listw(vizinhanca_ordem_2)
moran.test(x = setores_juntos$Renda, listw = vizinhanca_peso_ordem_2)</pre>
```

```
Moran I statistic standard deviate = 110.62, p-value < 2.2e-16 alternative hypothesis: greater sample estimates:
```

Moran I statistic 5.354296e-01 Expectation -2.503756e-04

Variance 2.344854e-05

é significativo

p<0.05, então

Autocorrelação positiva, mas menor do que o de 1ª ordem

Exercício 3

Calcule o Índice Global de Moran para a espectativa de vida nos municípios da RMSP e faca dois correlogramas, um de contiguidade (até 3ª ordem) e um de distância

Indicadores Locais de Associação Espacial (LISA)

- Valor específico para cada objeto.
- Identificação de:
 - "Clusters": objetos com valores de atributos semelhantes
 - "Outliers": objetos anômalos em relação aos vizinhos
 - Regimes espaciais distintos

 Como o atributo de um objeto está correlacionado ou não com os seus vizinhos

localmoran <- localmoran(x = setores_juntos\$Renda, listw = vizinhanca_pesos)
View(localmoran)</pre>

aula8.R* × I localmoran_df × Q vizinhanca_ordem_2 × Q vizinhanca_1e2 ×						
*	li ÷	E.li ÷	Var.li ‡	Z.li ÷	Pr(z > 0) [‡]	
1	0.293399690	-0.0002503756	0.99619987	0.294209616	3.842989e-01	
2	0.445880809	-0.0002503756	0.11046795	1.342284038	8.975196e-02	
3	0.395813099	-0.0002503756	0.49797567	0.561255658	2.873116e-01	

class(localmoran)

[1] "localmoran" "matrix"

localmoran_df <- as.data.frame(localmoran)

setores_juntos\$moran <- localmoran_df\$li

setores_juntos\$moran_p <- localmoran_df\$`Pr(z > 0)`

View(setores_juntos@data)

moran ‡	moran_p ‡
0.293399690	3.842989e-01
0.445880809	8.975196e-02
0.395813099	2.873116e-01
0.309787440	3.780415e-01

summary(setores_juntos\$moran)

Cores de cada intervalo

```
Min. 1st Qu. Median Mean 3rd Qu. Max. -2.98404 0.04022 0.22081 0.62096 0.44659 28.77329
```

```
tm_shape(setores_juntos) +

Intervalos informados manualmente

tm_fill("moran", style="fixed", breaks=c(-3, 0, 0.2, 0.5, 30),
palette=c("red","lightblue", "blue", "blue4"))
```



```
tm_shape(setores_juntos) +
```

tm_fill(col="moran_p", style="fixed", breaks=c(0, 0.01, 0.05, 1), palette=c("darkblue", "blue", "gray"))

Diagrama de Espalhamento de Moran

Diagrama de Espalhamento de Moran para o índice de exclusão/inclusão social de São Paulo, censo de 1991.

Anselin, Luc. 1996. "The Moran Scatterplot as an ESDA Tool to Assess Local Instability in Spatial Association." In Spatial Analytical Perspectives on Gis in Environmental and Socio-Economic Sciences, edited by Manfred Fischer, Henk Scholten, and David Unwin, 111–25. London: Taylor; Francis.

Diagrama de Espalhamento de Moran

É dividido em 4 quadrantes:

Q1 (valores positivos, médias positivas) e

Q2 (valores negativos, médias negativas):

indicam pontos de associação espacial positiva, no sentido que uma localização possui vizinhos com valores semelhantes.

Q3 (valores positivos, médias negativas) e

Q4 (valores negativos, médias positivas):

indicam pontos de associação espacial negativa, no sentido que uma localização possui vizinhos com valores distintos.

Diagrama de Espalhamento de Moran

Diagrama de Espalhamento de Moran para o índice de exclusão/inclusão social de São Paulo, censo de 1991.

Mapear apenas
objetos
com p<0.05 no
Índice Local
de Moran

<u>Significância</u>

LISA Map

Consumo per capita de água

Spatial Lag – Média dos valores dos vizinhos

setores_juntos\$lag_renda <- lag.listw(vizinhanca_pesos, var=setores_juntos\$Renda)

View(setores_juntos@data)

tm_shape(setores_juntos) + tm_fill("lag_renda", style="quantile")

Diagrama de espalhamento de Moran

moran.plot(x = setores_juntos\$Renda, listw = vizinhanca_pesos, cex=0.6, labels=FALSE)

LISA Maps

```
L1 <- factor(setores_juntos$Renda < mean(setores_juntos$Renda),
labels=c("H", "L"))

L2 <- factor(setores_juntos$lag_renda < mean(setores_juntos$lag_renda
```

L2 <- factor(setores_juntos\$lag_renda < mean(setores_juntos\$lag_renda), labels=c("H", "L"))

setores_juntos\$lisa <- paste(L1, L2)

View(setores_juntos@data)

LISA Maps

```
tm_shape(setores_juntos) +
tm_fill("lisa", palette=c("blue","green","yellow","red"))
```


LISA Maps

Exercício 4

- A- Faça um mapa do Índice Local de Moran para expectativa de vida nos municípios da RMSP, comparando com o mapa de significância estatística.
- B Elabore um mapa de média dos vizinhos, um diagrama de espalhamento de Moran, e um LISA map dos municípios da RMSP

Conteúdo

- Análise de vizinhança
- Autocorrelação espacial
- Suavização espacial
- Regressão espacial
- Agrupamento

Suavização por estimadores bayesianos empíricos

- Casos de risco em locais com baixa população
 - Geram altas taxas de risco.
 - Podem ser gerados por acaso
- Pode-se "redistribuir" o risco dos locais com baixa população para as demais áreas
 - Altera de risco observado para "previsão do risco"
- Método global
 - Redistribui risco para todas as demais regiões
- Método local
 - Redistribui riscos para os vizinhos
 - Usa estrutura de autocorrelação espacial

Anselin, Luc, Nancy Lozano-Gracia, and Julia Koschinky. 2006. "Rate Transformations and Smoothing." Technical Report. Urbana, IL: Spatial Analysis Laboratory, Department of Geography, University of Illinois.

Clayton, David, and John Kaldor. 1987. "Empirical Bayes Estimates of Age-Standardized Relative Risks for Use in Disease Mapping."

Biometrics 43:671–81.

Suavização por estimadores bayesianos empíricos locais

Suavização por estimadores bayesianos empíricos

Casos de risco

População em risco

bayes_global <- EBest(n=setores_juntos\$deslizam, x=setores_juntos\$Pessoas)

View(bayes_global)

setores_juntos\$desl_pes <- bayes_global\$raw

tm_shape(setores_juntos) + tm_fill("desl_pes", style="fisher")

Classificação por quebras naturais

Suavização por estimadores bayesianos empíricos

setores_juntos\$bayes_gl <- bayes_global\$estmm

tm_shape(setores_juntos) + tm_fill("bayes_gl", style="fisher")

Suavização por estimadores bayesianos empíricos

bayes_local <- EBlocal(ri=setores_juntos\$deslizam, ni=setores_juntos\$Pessoas, nb=vizinhanca2)

View(bayes_local)

setores_juntos\$bayes_lc <- bayes_local\$est

÷	ra w ‡	est 🔻
1340	1.500000000	0.500492458
1678	0.0281923715	0.026422418
1930	0.0526315789	0.026073260

tm_shape(setores_juntos) + tm_fill("bayes_lc", style="fisher")

Exercício 5

Fazer os mapas de risco observado, suavização bayesiana geral e local para as ocorrências de inundação no ABC

Conteúdo

- Análise de vizinhança
- Autocorrelação espacial
- Suavização espacial
- Regressão espacial
- Agrupamento

Regressão Linear Simples

Regressão Linear Simples

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \xi_{i}$$

onde:

Y_i é o valor da variável resposta na *i*-ésima observação

 β_0 e β_1 são parâmetros;

 X_i é o valor da variável preditora na i-ésima observação

 ξ_i é o termo de erro aleatório

Lembrando:

$$Saida_i = (Modelo_i) + erro_i$$

Y
10
12
19
18
24
25
30
40
40
45

Regressão Linear Múltipla

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_p X_{ip} + \varepsilon_i$$

Y_i é o valor da variável resposta na *i*-ésima observação

 $\beta_{0,...,}\beta_{p}$ são parâmetros

 $X_{i1},...,X_{ip}$ são os valores das variáveis preditoras na *i*-ésima

observação

 ξ_i é o termo de erro aleatório

X_1	X_2	Υ
9	3	54
7	1	35
5	4	42
11	8	74
8	9	65
2	1	15

Fonte: Slide de Paulo José Ogliari, Informática, UFSC. Em http://www.inf.ufsc.br/~ogliari/cursoderegressao.html

Coeficiente de Determinação (R²)

Quantidade de variação em Y explicada pelo modelo

Temos dois casos extremos:

 $\mathbf{R}^2 = \mathbf{1}$ todas as observações caem na linha de regressão ajustada. A variável preditora X explica toda a variação nas observações.

 $\mathbf{R}^2 = \mathbf{0}$ Não existe relação linear em Y e X. A variável X não ajuda a explicar a variação dos Y_i .

Coeficiente de Determinação (R2)

Critério de Informação de Akaike

- Potencial de explicação do modelo
 - Desconto por "complexidade" (incerteza)
- Quanto menor melhor
- Pode comparar modelos que não possuem R²

Regressão Linear

plot(data=setores_juntos, Renda ~ rede_esg)

Regressão Linear

regressao_convencional <- lm(data=setores_juntos, Renda ~ rede_esg) summary(regressao_convencional)

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 673.2948 73.5371 9.156 <2e-16 ***
rede_esg 10.7171 0.7891 13.582 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1233 on 3993 degrees of freedom Multiple R-squared: 0.04416, Adjusted R-squared: 0.04392 F-statistic: 184.5 on 1 and 3993 DF, p-value: < 2.2e-16
```

Regressão Linear

plot(data=setores_juntos, Renda ~ rede_esg)
abline(regressao_convencional, col="red", lwd=2)

 Medir a autocorrelação espacial dos resíduos da regressão (Índice de Moran dos resíduos)

- Se houver autocorrelação espacial:
 - Pode haver alguma variável ou padrão espacial que não foi investigado pelo modelo.
 - Possibilidade de aplicar modelos de regressão espacial

Exemplo

São José dos Campos

Crescimento Populacional 1991-2000 X Densidade Populacional 1991

- Mapear os resíduos da regressão – índícios de correlação
- Índice de Moran sobre mapa de resíduos I=0,45, com p < 0.05

View(regressao_convencional\$residuals)

setores_juntos\$residuos <- regressao_convencional\$residuals

tm_shape(setores_juntos) +

tm_fill("residuos", style = "quantile", palette = heat.colors(5))

Im.morantest(regressao_convencional, listw = vizinhanca_pesos)

Moran I statistic standard deviate = 61.541, p-value < 2.2e-16 alternative hypothesis: greater sample estimates:

p<0.05, então é significativo

Observed Moran I

Expectation

Variance

5.979397e-01 -3.991722e-04

9.452949e-05

Moran I > 0, autocorrelação espacial positiva

Regressão Espacial

Globais:

 inclui no modelo de regressão um parâmetro para capturar a estrutura de autocorrelação espacial na área de estudo como um todo

Locais:

parâmetros variam continuamente no espaço

Global vs. Local

Global	Local
Estatísticas dizem respeito à região como um todo (1 valor)	Disagregações locais das estatísticas globais (Muitos valores)
Estatísticas globais e não mapeáveis	Estatísticas locais e mapeáveis
Ênfase nas similaridades da região	Ênfase nas diferenças ao longo do espaço
Procura regularidades ou "leis"	Procura por exceções ou "hot-spots" locais
Ex.: Regressão Clássica, Spatial Lag, Spatial Error	Ex.: GWR, Regimes Espaciais

Adaptado de: Fotheringham, A.S., Brunsdon, C., and Charlton, M.E., 2002, Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, Chichester: Wiley.

Modelos com Efeitos Espaciais Globais

PREMISSA

É possível capturar a estrutura de correlação espacial num único parâmetro (adicionado ao modelo de regressão)

Alternativas

Spatial Lag Models: atribuem a <u>autocorrelação</u> espacial à variável resposta Y

Spatial Error Models: atribuem a <u>autocorrelação</u> ao erro

install.packages("spatialreg") library(spatialreg)

Modelo Spatial Lag

PREMISSA: A variável Y_i é afetada pelos valores da variável resposta nas áreas vizinhas a *i*.

$$Y = \rho WY + X\beta + \varepsilon$$

 ρ = coeficiente espacial autoregressivo - medida de correlação espacial (ρ = 0, se autocorrelação é nula - hipótese nula)

W = matriz de proximidade espacial WY <u>expressa a dependência espacial</u> em Y

Modelo Spatial Lag Não RODAR, DEMORA MUITO

```
regressao_espacial lag <- lagsarlm(data=setores juntos, Renda ~
  rede esg, listw=vizinhanca pesos)
```

summary(regressao espacial lag, Nagelkerke = TRUE)

Pseudo-R² de Nalgelkerke

10,7 na regressão convencional Coeficiente de vizinhança

```
Type: lag
Coefficients: (numerical Hessian approximate standard errors)
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 14 22490 40.60841 0.3503 0.7261
rede_esg 3.75346 0.45946 8.1693 2.22e-16 p<0.05, então é significativo
```

Rho 0.79148 LR test value: 2797.3, p-value: < 2.22e-16 Approximate (numerical Hessian) standard error: 0.01049

z-value: 75.453, p-value: < 2.22e-16 Wald statistic: 5693.1, p-value: < 2.22e-16

Log likelihood: -32703.52 for lag model

ML residual variance (sigma squared): 651670, (sigma: 807.26)

Nagelkerke pseudo-R-squared: 0.52544 0,04 na regressão convencional

Number of observations: 3995

Compara com a regressão convencional

Number of parameters estimated: 4 AIC: 65415, (AIC for lm: 68210)

Critério de Informação de **Akaike**

Modelo Spatial Error

PREMISSA:

As observações são interdependentes graças a variáveis não mensuradas, e que são espacialmente correlacionadas

Ou seja: efeitos espaciais são um ruído

Assume que, se pudéssemos adicionar as variáveis certas para remover o erro do modelo, o espaço não importaria mais.

Modelo Spatial Error

MODELO:

$$Y = X\beta + \varepsilon$$
$$\varepsilon = \rho W\varepsilon + \xi$$

 $W\epsilon$ = erro com efeitos espaciais

 ρ = medida de correlação espacial

 ξ = componente do erro com variância constante e não correlacionada.

Modelo Spatial Error NÃO RODAR, DEMORA MUITO

```
regressao_espacial_CAR <- spautolm(data=setores_juntos,
Renda ~ rede_esg, listw=vizinhanca_pesos, family="CAR")
Tipo de modelo
Spatial Error
```

summary(regressao_espacial_CAR, Nagelkerke = TRUE)

```
3,75 no modelo
Spatial Lag
```

Coeficiente de vizinhança dos resíduos

Critério de Informação de Akaike

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3801.01120 185.29551 20.5132 < 2.2e-16
rede_esg 2.52377 0.77833 3.2426 0.001185
```

Lambda: 0.99459 LR test value: 3016.4 p-value: < 2.22e-16 Numerical Hessian standard error of lambda: NaN

Log likelihood: -32593.97

ML residual variance (sigma squared): 605840, (sigma: 778.36)

Number of observations: 3995

Number of parameters estimated: 4

AIC: 65196 65415 no modelo Spatial Lag

Nagelkerke pseudo-R-squared 0.55076 0,52 no Spatial Lag

Exercício 6

Modele a expectativa de vida em função de porcentagem de analfabetos na RMSP

Compare os resultados de regressão convencional (e autocorrelação espacial dos resíduos), regressão spatial lag e error.

Ajusta um modelo de regressão a cada ponto observado, ponderando todas as demais observações como função da distância a este ponto

$$y(i) = b_0(i) + b_1(i) x_1 + e(i)$$

 $b_o(i)$, $b_1(i) \rightarrow$ para cada ponto i do espaço há um b_o e b_1 diferentes

Função de *kernel* sobre cada ponto do espaço para ponderar os pontos vizinhos em razão da distância. Pontos mais próximos do ponto central tem maior peso.

Assim como no kernel – a escolha da largura da banda é importante (pode ser fixa ou adaptável à densidade dos dados)

Consumo de Água per Capita (resposta) X Renda per capita(preditora)

GWR: CONCUMO - Concumo A Co

 $CONSUMO_i = \beta_0(u_i, v_i) + \beta_1(u_i, v_i) \cdot RENDA_i + \varepsilon_i$

CARMO, R. L.; DAGNINO, R. S.; FEITOSA, F. F.; JOHANSEN, I. C.; CRAICE, C. População, Renda e Consumo Urbano de Água no Brasil: Interfaces e Desafios. XX Simpósio Brasileiro de Recursos Hídricos. 17 a 22 de novembro de 2013. Bento Gonçalves, RS.

Com raio fixo NÃO RODAR! DEMORA MUITO!

• Com raio adaptativo

NÃO RODAR! DEMORA MUITO!

raio_adaptativo <- gwr.sel(data=setores_juntos, Renda ~ rede_esg, adapt = TRUE)

raio_adaptativo

raio_adaptativo <- 0.007275952 Atribuir o resultado ótimo para ganharmos tempo

setores_gwr_adaptativo <- gwr(data=setores_juntos, Renda ~ rede_esg,
adapt=raio adaptativo)

Opção de raio adaptativo

Visualizando os resultados

Vioudoctoros aurtCDE@data

view(s	setores_gv	vr\$SDF@data)	Coeficiente de predição	Erro de predição	Valor predito	R ² local
*	sum.w 🗦	X.Intercept. ‡	rede_esg 🔅	gwr.e ‡	pred [‡]	localR2 ‡
1	53.30495	2198.51142	-10.3182768	-507.231274	1189.3613	0.37003434
2	69.44592	863.16486	1.4142608	-426.380941	1004.5909	0.23669567
3	68.47954	945.92153	0.7030401	-81.907450	1015.8574	0.24878558

- Comparando o raio fixo e o adaptivo
 - Raiz do erro médio quadrático (Root Mean Square Error RMSE) = $\frac{\sum \varepsilon^2}{n}$

tm_shape(setores_gwr_adaptativo\$SDF) +
 tm_fill("rede_esg", style="fisher")

Classificação por quebras naturais

Pacote GWmodel

- Abordagem de análise geográfica ponderada (kernel) para:
 - Estatísticas descritivas
 - Média, desvio-padrão, normalidade
 - Modelos avançados de regressão geográfica
 - Generalizada, heteroscedástica, robusta, e semi-paramétrica (distribuições não-normais)
 - Ridge regression (variáveis com multicolinearidade)
 - Multiescalar (sintetiza vários raios de kernel)
 - Kernel 3D (espaço-temporal)
 - Análise de componentes principais
 - Análise discriminante (classificação)

Conteúdo

- Análise de vizinhança
- Autocorrelação espacial
- Suavização espacial
- Regressão espacial
- Agrupamento

Agrupamento

 Padronizar as variáveis de entrada para que todas tenham a mesma influência

```
setores_normalizados <-
as.data.frame(scale(setores_juntos@data[,c("Renda","rede_esg","col_lixo")]))
Formato Padronização Variáveis a serem padronizadas
Data Frame
```

View(setores normalizados)

•	Renda [‡]	rede_esg 🔅	col_lixo ‡
1	-0.75641459	0.32135040	0.12045893
2	-0.83879912	0.41021004	0.12045893
3	-0.55677955	0.38904191	0.12045893

Agrupamento

Kmeans

agrupamento <- kmeans(setores_padronizados, centers = 4, iter.max = 10000, nstart=10000)

Número de grupos

Número de iterações

Número de repetições

agrupamento\$centers

Renda rede_esg col_lixo 1 -0.2481984 -3.2965019 -10.07706542 2 -0.5970576 -2.7606881 -0.08160829 3 -0.1923904 0.2991240 0.11099831 4 2.5557501 0.3903877 0.11784712

View(agrupamento\$cluster)


```
setores juntos$kmeans <- agrupamento$cluster
tm_shape(setores_juntos) +
 tm fill("kmeans", style = "cat", palette = c("blue", "green", "yellow", "red"))
                Mapa categórico Variáveis a serem agregadas
aggregate(setores juntos@data[,c("Renda","rede esg","col lixo")],
by=list(setores juntos$kmeans), FUN = mean)
  Atributo com os grupos Cálculo da
                             agregação (média)
                         kmeans
                                                   rede_esg
                                 Group.1 Renda
                                                             col lixo
                                                   8.320363 3.086127
                                     1 1323.1949
                                     2 883.1432 21.572868 98.079621
                                     3 1393.5911 97.252462 99.910089
                                        4860.1006 99.509727 99.975178
```

Método Skater

Técnica:

Minimizar a variabilidade entre os agrupamentos, mas mantendo a contiguidade de todos os elementos em cada agrupamento

Resultado:

Regiões relativamente homogêneas espacialmente contínuas

Grafo de vizinhança

- Inicialmente associa-se "custos" às arestas
- Os "custos" são calculados em função da similaridade entre os geo-objetos
- Depois são eliminadas as arestas de menor "custo"

Árvore Geradora Mínima

- Procedimento de poda procura obter:
- regiões mais homogêneas
- mais equilibradas em termos de números de geo-objetos por região.

Árvore Geradora Mínima

Árvore Geradora Mínima

Passos para Regionalização

- 1. Correção Topológica
- 2. Matriz de Vizinhança
- 3. Escolha dos Atributos
- 4. Execução do Algorítmo de Regionalização

Atribuir custos (grau de dissimilaridade) às relações de vizinhança

distancia_vizinhanca <- nbcosts(nb = vizinhanca2, data = setores_padronizados)
View(distancia_vizinhanca)

aula8.R* × Q distancia_vizinhanca ×					
Name	Туре	Value			
distancia_vizinhanca	list [3995] (S3: nbdist)	List of length 3995			
[[1]]	double [1]	0.4693201			
[[2]]	double [9]	0.283 0.181 0.256 0.431 0.377 0.470			
[[3]]	double [2]	0.2828 0.0334			

Atribuir custos (grau de dissimilaridade) às relações de vizinhança
 Peso de cada relação

de vizinhança

pesos_distancia <- nb2listw(vizinhanca2, glist=distancia_vizinhanca, style="B")

View(pesos_distancia)

Matriz binária, não normalizada

aula8.R × Q pesos_dista	ncia × Q distancia_vizinhanca	×			
Name	Туре	Value			
pesos_distancia	list [3] (S3: listw, nb)	List of length 3			
style	character [1]	'B'			
neighbours	list [3995] (S3: nb)	List of length 3995			
weights	list [3995]	List of length 3995			
[[1]]	double [1]	0.4693201			
[[2]]	double [9]	0.283 0.181 0.256 0.431 0.377 0.470			
[[3]]	double [2]	0.2828 0.0334			

Criar a árvore mínima geradora

mst_setores <- mstree(pesos_distancia)</pre>

View(mst_setore	s)	Setor de origem	Setor de destino	Custo (dissimilaridade)
		<u> </u>	<u> </u>	±
	1	2888	2881	0.45630533
	2	2881	2887	0.08568426
	3	2881	2885	0.36348909

```
plot(st_geometry(setores_sf), border="red")
```

plot(mst_setores, setores_xy, lab=NA, add=TRUE)

Não mostrar nomes dos setores

NÃO RODAR! DEMORA MUITO!

regionalização <- skater(mst_setores[,1:2], setores_padronizados, ncuts=3)

Setores de Dados

origem e destino

Cortes na árvore

View(regionalizacao\$groups)

normalizados

table(regionalizacao\$groups)

1 2 3 4 3141 276 520 58

setores_juntos\$skater <- regionalizacao\$groups

tm_shape(setores_juntos) +
 tm_fill("skater", style = "cat", palette = c("blue","green", "yellow", "red"))

aggregate(setores_juntos@data[,c("Renda","rede_esg","col_lixo")],

by=list(setores_juntos\$skater), FUN = mean)

Exercício 7

- A Realize um agrupamento (kmeans) e uma regionalização (skater) de 3 grupos para os municípios da RMSP, considerando os dados socioeconômicos disponíveis (menos população).
- B Agregue os atributos com a média de cada grupo ou região

Obrigado!

Ângela Terumi Fushita Vitor Vieira Vasconcelos