Чемокос Олег Алексеевич

Санкт-Петербургский государственный университет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. Зильберборд И. М.

Рецензент: к.ф.-м.н., доц. Антипов М. А.

Санкт-Петербург 2021г.

Постановка задачи

Уравнение Пелля:

$$x^2 - my^2 = 1,$$

где m — натуральное число, не являющееся квадратом.

- Классическая задача: описать множество всех решений уравнения в кольце целых чисел \mathbb{Z} .
- Задачи настоящей работы:
 - Описать множество всех решений уравнения в кольце $\mathbb{Z}[\sqrt{n}]=\{a+b\sqrt{n}\mid a,b\in\mathbb{Z}\}$, где $n\in\mathbb{Z}$.
 - Придумать конструктивный алгоритм построения этих решений.

Области применения

- Классическое уравнение Пелля известно со времен Древней Греции и имеет важное значение в теории диофантовых уравнений.
- Обобщенное уравнение Пелля $(x^2 my^2 = N)$ возникает в квантовой теории информации.
- Уравнение Пелля-Абеля (оно же уравнение Пелля в кольце многочленов) имеет связь с задачами проективной геометрии и дифференциальным уравнением колебания струны.

Классическая задача

Классическая задача широко известна и описана во многих работах, например, в работе A.O. Гельфонда «Решение уравнений в целых числах».

Известные результаты

- Алгебраическая структура: решения образуют группу, изоморфную $C_2 \times \mathbb{Z}_+$, причем минимальное положительное (x,y>0) решение уравнения является свободным образующим.
- Конструктивное построение: решения уравнения находятся как числитель и знаменатель подходящих для \sqrt{m} цепных дробей.

Вырожденные случаи решений уравнения $x^2-my^2=1$ в кольце $\mathbb{Z}[\sqrt{n}]$

- Если n<0, или $m=ng^2$, или $n=mg^2$, то группа решений уравнения в кольце $\mathbb{Z}[\sqrt{n}]$ совпадает с группой целочисленных решений.
- Если $n=g^2$ при некотором целом g, то все решения уравнения в кольце $\mathbb{Z}[\sqrt{n}]$ принимают вид (a-yg,y,b-vg,v), где числа a и b целые и удовлетворяют классическому уравнению Пелля, а y и v произвольные целые числа.
- Если $m=g^2$ при некотором целом g, то все решения описываются уравнениями $x^2-nmv^2=1$ и $ny^2-mu^2=1$.

Основной полученный результат

В случае, когда не выполняется ни одно из условий вырожденности, были получены следующие результаты:

• Алгебраическая структура:

Теорема

Группа решений уравнения Пелля в кольце $\mathbb{Z}[\sqrt{n}]$ изоморфна $C_2 \times \mathbb{Z}^+ \times \mathbb{Z}^+$.

• Конструктивное построение: разработан конструктивный алгоритм для поиска пары свободных образующих.

План доказательства: алгебраическая структура

- Сводим уравнение к уравнению Nt=1 в кольце $\mathbb{Z}[\sqrt{m}][\sqrt{n}]$ как расширении $\mathbb{Z}[\sqrt{n}]$, откуда сразу же получаем групповые свойства.
- Применяя теорему Дирихле о единицах конечного расширения \mathbb{Q} , находим оценку сверху для ранга группы решений.
- Доказав существование двух свободных подгрупп с тривиальным пересечением, находим оценку снизу для ранга группы решений.
- Уточняем оценку сверху и получаем точное значение ранга.

План доказательства: конструктивное построение

- Сводим уравнение к системам параметрических уравнений вида $kx^2-ty^2=1$, где k и t целые параметры, а x и y целые переменные.
- Используя теорию представления чисел бинарными квадратичными формами, описанную в работе «Теория чисел» Боревича З.И. и Шафаревича И.Р., получаем необходимые и достаточные условия существования решений уравнения из предыдущего пункта.
- Построив эпиморфизм между группами решений параметрических систем и решениями исходного уравнения, получаем соответствие между их образующими.

Алгоритм поиска образующих

- Находим образующие уравнений $x_v^2-my_u^2=1$ и $x_u^2-mny_v^2=1.$ Запишим их как $(x_v^{(0)},y_u^{(0)})$ и $(x_u^{(0)},y_v^{(0)}).$
- Для каждого делителя x_m числа m проверяем, являются ли целыми $x_v = \sqrt{(x_v^{(0)} \pm 1)/2x_m}, \; x_u = \sqrt{(x_u^{(0)} \pm 1)/2x_m}, \; y_u = y_u^{(0)}/2x_v, \; y_v = y_v^{(0)}/2x_u$ при одинаковом знаке перед единицей. Если проверки прошли, то останавливаемся.
- В качестве одного из свободных образующих берем $(x_v^{(0)},0,y_u^{(0)}0)$. В качестве второго свободного образующего берем $(x_mx_ux_v,y_my_uy_v,x_uy_u,x_vy_v)$ или $(x_u^{(0)},0,0,y_v^{(0)})$ в зависимости от успешности проверки предыдущего пункта.

Примеры

Задача 1

Описать все решения уравнения $x^2 - 2y^2 = 1$ в кольце $\mathbb{Z}[\sqrt{3}]$.

Решение

- $(x_v^{(0)}, y_u^{(0)}) = (3, 2), (x_u^{(0)}, y_v^{(0)}) = (5, 2).$
- Числа $x_v = \sqrt{(x_v^{(0)} \pm 1)/2x_m}, \; x_u = \sqrt{(x_u^{(0)} \pm 1)/2x_m}$ ни при каких x_m не являются целыми при одном и том же знаке перед единицей.
- В качестве свободных образующих берем (3,0,2,0) и (5,0,0,2).

Примеры

Задача 2

Описать все решения уравнения $x^2 - 29y^2 = 1$ в кольце $\mathbb{Z}[\sqrt{2}].$

Решение

- $(x_v^{(0)}, y_u^{(0)}) = (9801, 1820), (x_u^{(0)}, y_v^{(0)}) = (19603, 2574).$
- При $x_m=1$ получаем $(x_v,y_u)=(\sqrt{(9801-1)/2},\ 1820/(2\cdot 70))=(70,13),\ (x_u,y_v)=(\sqrt{(19603-1)/2},\ 2574/(2\cdot 99))=(99,13).$
- В качестве образующих берем $(x_v^{(0)},0,y_u^{(0)}0)=(9801,0,1820,0)$ и $(x_mx_ux_v,y_my_uy_v,x_uy_u,x_vy_v)=(6930,4901,1287,910).$

Итоги

В ходе проведенной работы группа решений уравнения Пелля в кольце $\mathbb{Z}[\sqrt{n}]$ была описана с точностью до изоморфизма:

- Если n<0, или $m=ng^2$, или $n=mg^2$, то она совпадает с группой целочисленных решений.
- Если $n=g^2$ при некотором целом g, то все решения принимают вид (a-yg,y,b-vg,v), где числа a и b целые и удовлетворяют классическому уравнению Пелля, а y и v произвольные целые числа.
- ullet Если $m=g^2$ при некотором целом g, то все решения описываются уравнениями $x^2-nmv^2=1$ и $ny^2-mu^2=1$.
- ullet В остальных случаях она изоморфна $C_2 imes \mathbb{Z}^+ imes \mathbb{Z}^+.$

Кроме того, для невырожденного случая был построен конструктивный алгоритм поиска образующих.