Lista de Exercícios CT-200 – Segundo Bimestre 2010

Carlos Henrique Quartucci Forster Estagiário: Wesley Telles

Gramáticas

1. Quais as linguagens geradas pelas gramáticas G1 e G2:

G1: $S \rightarrow AB$

G2: $S \rightarrow aS|aB$

 $A \rightarrow aAla$

 $B \rightarrow bB | \epsilon$

 $B \rightarrow bB|\epsilon$

Escrever a expressão regular.

2. Verificar se a gramática G é regular e obter o NFA equivalente

G:
$$S \rightarrow aSlbAla$$

$$A \rightarrow aSlbAlb$$

3. Dado o NFA abaixo, encontrar gramática regular equivalente

4. Remover regras-ε e regras em cadeia mantendo a gramática equivalente

- a. $S \rightarrow AB|BCS$
 - $A \rightarrow aAlC$
 - $B \rightarrow bbBlb$
 - $C \to cC | \epsilon$

b. $S \rightarrow aS|bS|B$

 $B \rightarrow bb|C|\epsilon$

 $C \rightarrow cCl\epsilon$

5. Remover símbolos inúteis

- a. $S \rightarrow AA|CD|bB$
 - $A \rightarrow aAla$
 - $B \rightarrow bBlbC$
 - $C \rightarrow cB$

 $D \rightarrow dDld$

b. $S \rightarrow ACH|BB$

- $A \rightarrow aA|aF$
- $B \rightarrow CFHlb$
- $C \rightarrow aCIDH$

 $D \rightarrow aD|BD|Ca$

 $F \rightarrow bBlb$

 $H \rightarrow dH | d$

- 6. Normalizar a seguinte gramática
 - $S \rightarrow LaM$
 - $L \rightarrow LM$
 - $L \rightarrow \epsilon$
 - $M \rightarrow MM$
 - $M \rightarrow b$
 - $M \to \epsilon$
 - a. Para a Forma Normal de Chomsky
 - b. Para a Forma Normal de Greibach

Linguagens livres de contexto

- 7. Mostre que se G é uma gramática na Forma Normal de Chomsky, então para qualquer cadeia *w* ∈ L(G) de comprimento n ≥ 1 são necessários exatamente 2n − 1 passos para qualquer derivação de *w*.
- 8. Sejam as gramáticas livres de contexto G1= (V1, Σ 1, P1, S1) e G2 = (V2, Σ 2, P2, S2) e as linguagens geradas L_1 e L_2 respectivamente
 - a. Construa uma gramática para gerar $L_1 \cup L_2$
 - b. Construa uma gramática para gerar L₁L₂
 - c. Construa uma gramática para gerar L₁*
 - d. Verifique se as gramáticas de a, b e c são livres de contexto.
- 9. Utilize o Lema do Bombeamento para mostrar que a linguagem $L=\{a^ib^ja^ib^j\mid i\geq 0, j\geq 0\}$ não é livre de contexto.
- 10. Mostre que L= $\{a^ib^ja^jb^i \mid i \ge 0, j \ge 0\}$ é livre de contexto.
- 11. Mostre que a intersecção de duas linguagens livres de contexto não é necessariamente livre de contexto.

Parsing

- 12. Para a gramática
 - $E \to T \mid T {+} E$
 - $T \to F \mid F^*T$
 - $F \rightarrow (E) \mid d$

e a expressão "d+d*(d+d)"

- a. Mostre os passos de um parser shift-reduce depth-first para a expressão.
- b. Mostre os passos de um parser LL depth-first.
- 13. Construa um autômato de pilha que reconheça as cadeias que contenha um número par de "a" ou então o mesmo número de "a" e de "b".

Máquinas de Turing

14. Traçar a computação da seguinte máquina de Turing quando a fita de entrada é

15. Considere a execução da máquina de Turing definida pela tabela de transição abaixo, tendo como entrada na fita a cadeia:

В	0	0	0	0	0	1	0	0	0	0	В	В	•••
\uparrow													

O estado inicial da máquina de Turing é **r0**, os demais estados são **q0...q6** e **p0...p7**. Os símbolos L e R indicam esquerda e direita respectivamente. A tabela de transição é dada a seguir:

	0	1	В
r0	(r0,0,L)	(r0,1,L)	(q0,B,R)
q0	(q1,0,R)	(q2,1,R)	
q1	(q3,0,R)	(q4,1,R)	(r0,B,L)
q2	(q5,0,R)	(q6,1,R)	(r0,B,L)
q3	(p0,0,L)	(p1,1,L)	(r0,B,L)
q4	(p2,0,L)	(p3,1,L)	(r0,B,L)
q5	(p4,0,L)	(p5,1,L)	(r0,B,L)
q6	(p6,0,L)	(p7,1,L)	(r0,B,L)
p0	(q1, 0 ,R)	(q2, 0 ,R)	
p1	(q1,1,R)	(q2,1,R)	
p2	(q1,1,R)	(q2,1,R)	
p3	(q1, 0 ,R)	(q2,0,R)	
p4	(q1,1,R)	(q2,1,R)	
p5	(q1,1,R)	(q2,1,R)	
p6	(q1, 0 ,R)	(q2, 0 ,R)	
p7	(q1,0,R)	(q2,0,R)	

Quais os papéis dos estados r0, q0..6 e p0..7?

Qual o conteúdo da fita quando passa a segunda e a terceira vez pelo estado q0?