

Daffodil International University Department of Computer Science and Engineering Faculty of Science & Information Technology Midterm Examination, Fall 2022

Course Code: CSE313, Course Title: Computer Networks

Level:3 Term: 1 Batch: 57

Time: 01:30 Hrs

Marks: 25

Answer <u>ALL</u> Questions
[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

1.	An ISP provides a class A network of 110.0.0.0 to an enterprise that requires six networks to support 14, 80, 20, 30, 60, and 120 users. Identify the network mask that would be configured in each workstation and each subnet's network address, broadcast address, host number & 5th host address?	10	CO3
2.	There are a few subnets from 171.91.20.0/24 through 171.91.25.0/24. Identify the summarized subnet and mask address from the given subnet.	5	CO3
3.	Consider the following diagram with the indicated link cost. Use link state algorithm to discover the shortest path from node C.	5	CO2
	B 4 D 2 A 3 2 F		
	5 C 6 E 5		
4.	What is DNS? Describe its working procedure with a scenario.	5	CO

Daffodil International University

Department of Computer Science and Engineering Faculty of Science & Information Technology. Midterm Examination, Spring 2023

Course Code: CSE 313, Course Title: Computer Networks Level: 3 Term: 1 Batch: 58 and 59

Time: 1.5 Hrs

Marks: 25

Answer ALL Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes.

All portions of each question must be answered sequentially.]

1.	Suppose, you are a network administrator of an emerging Network company. You have been given an IP address of a network 125.0.0.0. You need to divide this network for five departments of your organization to support 980, 490, 120, 25 and 5 hosts. Identify each subnetwork's subnet mask, network address, broadcast address, first valid host and last valid host address.	10	CO3
2.	Consider the following diagram with the indicated link cost. Use Link State routing algorithm to discover the shortest path from router 1 to all destinations.	05	CO3

3.	From the following diagram, determine the Aggregated IP address, CIDR and	05	CO2
	mask from router A to router B.		

Page 1 of 2

For more questions: https://diuqbank.com | uploader: Mohammad Al Faied

Daffodil International University Faculty of Science & Information Technology Mid Examination, Spring 2023

Course Code: CSE311: Course Title: Database management System
Sections & Teachers: All

Level: 3

Term: 1

Batch: 58, 59

Marks: 25

COI

Time: 1.5 Hrs

Answer ALL Questions [Optional]

[The figures in the right margin indicate the full marks and corresponding course outcomes, All portions of each question must be answered sequentially.]

Bidyanondo Publishers has decided to store information about all their products and peers in a database. They usually publish around 20 books every year. Each book has a title, an ISBN number, author name and price. Also each book has a theme of their own, like "Novel" or "Poetry". There can be more than one authors of a single book. Information of book authors are also stored into the database. Each author has NID number, name, age, and commission amount for each book. One author can publish multiple books by the publisher. The books are sold in many libraries in all over the country. Listed libraries have their unique id, name, owner name, district and phone number. All libraries sell some books from Bidyanondo publisher, but all the books are not sold in every library. Bidyanondo publishers have their own distributers who distribute books to libraries. They are uniquely identified by their trade license number, and also their name, business area and phone numbers are listed in the database. One library takes books from only one distributor and one distributor covers all the libraries inside their business area.

 Now, design an ERD based on the above scenario. Be certain to indicate primary keys and cardinality constraints.

Convert the ERD into a relational database schema. Be certain to indicate primary keys and foreign keys.

5

2. What are relational model constraints? Explain with example.

COI

CO2

Carefully look at the following database instance and write down the SQL queries for the following questions: the following questions,

id		category	price	quantity
1001	Realme Buds Air 3	Audio	4500	15
1002	Insta360 One X2 Action Carnera	Camera~	43000	4
1003	OnePlus 7 Pro	Mobile√	45000	3
1004	Logitech z623 2.1 Home Theatre	Audio	16500	0
1005	Asus ROG G15 2022	Laptop	215000	2
1006	Apple IPhone 14 Max	Mobile	150000	6
1007	Sony ZV-e10 Mirrorless Camera	Camera	85000	0
1008	Google Pixel 6A	Mobile	85000	2
1009	Xiaomi Haylou LS02 Smart Watch	Watch	5000	14

- Write an SQL query to view the information for the most expensive mobile phone.
- b) Write an SQL query for viewing products that are not available.
- Write an SQL Query for showing the average price of products in each category. c)
- Write an SQL query to view products that costs more than 1,00,000 BDT.
- Carefully look at the following database instance and write the output of the queries followed by them.

id	order	customer	price	date
1001	Chillox Burgers	Rahat 🗸	450	2023-02-23
1002	Chillox Masala Chicken	Ashik •	150	2023-02-15
1003	Chillox Burgers	Fahim	500	2023-01-25
1004	Chillox Burgers	Ashik -	1000	2023-01-19
1005	Chillox Pizza	Ashik -	1300	2023-01-16
006	Chillox Spicy Noodles	Rahat ,	150	2023-01-14

- SELECT name, MAX(price) from order;
- SELECT * FROM order WHERE date BETWEEN '2023-01-15' AND '2023-02-
- SELECT * FROM order WHERE price > (SELECT AVG(price) FROM order); SELECT DISTINCT(customer) FROM order;

2

2

1

CQ2

Daffodil International University Faculty of Science & Information Technology Mid-Term Examination, Spring 2023

Course Code: CSE411: Course Title: Computer Architecture and Organization Level: 4 Term: 1 Batch: 56

Time: 1.5 Hrs

Marks: 25

Answer ALL Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

T.		Suppose, Two instructions are in your system. One is [A+(2*B)]-[(C+D)*5], another is [A+(2*D)]+E. The system is designed in the variable-length instruction format. The memory addresses of the two instructions are 122DEF H and 879FF H. Construct the equivalent assembly code of the first instruction in a two-	[3]	со	3
1	5)	operand instruction format. In the second instruction, the last operand E is stored at first in the given memory address and subsequently, the others are stored. Identify the reason	[4]		1
		behind this.	[3]		
	(c)	The struction of Hannage's Difference of the structure of	[4]	1	1
2.	as a	Two students were asked to design to test their system. The numbers as their input string to test their system. The numbers as their input string to test their system. The numbers asked to design to the number system. The numbers are their system. The numbers asked to design to the number system. The numbers are their system. The numbers asked to design to the number system. The numbers are their systems are their systems are their systems. The numbers are their systems are their systems are their systems are their systems.			CO1
		machine-readable nemer used for company		21	
	1	inventing electronic	e	[2]	
	9	Which computer was used to transic intermediate which computer was used to transic intermediate in a tiny picture main memory? Integrated circuits can allow more transistors to make a system in a tiny picture in the intermediate in the intermedi	ce	[3]	CC
13	3.	main memory? Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more transistors to make a system in a tag. Integrated circuits can allow more	NO	[4]	1
	+	by To improve the performance in the case of Fregues. To improve the performance in the case of Fregues. advanced features of the commercial microprocessor.			

Daffodil International University
Faculty of Science & Information Technology Department of Computer Science and Engineering
Mid Semester Examination, Spring-2024

Course Code: CSE315 Course Title: Introduction to Data Science Level: 3 Term: 1

7.968103

Exam Duration: 1.5 Hours

Marks: 25

Answer ALL Questions [Optional]

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

. 4	a)	A technology company claims that the average time it takes its software engineers to resolve a specific type of coding issue is 120 minutes. The company's manager decided to test this claim by collecting samples from 25 software engineers who recently worked on the same type of coding issue. The average time to resolve the issue in the sample was found to be 115 minutes, with a standard deviation of 10 minutes. It is assumed that the time to resolve coding issues follows a normal distribution. Test the company's claim at a 98% confidence level ($\alpha = 0.02$). Formulate the null and alternative hypotheses, perform the hypothesis test, and interpret the results. Determine whether there is sufficient evidence to reject the company's claim about the average resolution time for this coding issue.	1	CO1
ь)	i	As a market researcher employed by a retail company aiming to evaluate custome satisfaction in its diverse store locations, which span urban to suburban areas, your task is to develop an effective sampling strategy. The management places specific emphasion comprehending customer satisfaction levels across these varied store locations. Outline your proposed sampling strategy, taking into account factors such a geographical location, store size, and customer demographics. Justify your selection of a sampling method by providing reasons for its appropriateness in this context.	s s.	il co

12.5	6
92.0	1.46.
4	

2. a	The scores 78, 85, 92, 98, 81, 85, I. En	are as follows: 96, 82, 88, 75, 98, 82, 8 87, 91, 84, 79, 88, 97, 80 mploy suitable statistical e dataset of exam score	5, 104, 89, 95, 90, 86, 83 6, 82, 99, 83, 86, 110, 84 Il techniques to pinpoint s. Clearly articulate the	3, 80, 94, 87, 79, 82, 93, 87, 89. any potential outliers within criteria or method employed	[2.5] +2.5]
b)	Suppose ye advertising	nd standard deviation of	on the monthly sales () s of dollars) for a sampl	t measures such as the mean in thousands of dollars) and the of 20 retail stores over the	[4]
	1	Store	Monthly Sales	Advertising Expenses	
1	1				1
		1	150	10	
		1 2	150 120	8	
		2	120	8	
		3	120	8 12-	
		2 3 4	120 100 220	12	
		2 3 4 5	120 100 220 240	12 13 12	
		2 3 4 5 6 7	120 100 220 240 200 150	8 12 13 12 12	nses.

Let's consider the following dataset to predict whether we can pet an animal or not. All the features have equal importance.

[8]

CO2

	Animalb	Size of Animal	Body Color	Can we Pet
0	Dog	Medium	Black-	Yes-
1	Dog	Big	Whita_	No-
2	Rat.	Small	White	Yes ·
3	Cow	Big	White=	Yes
4	Cow	Small	Brown,	No.
5	Cow	Big	Black	Yes
6	Rát.	Big .	Browrt.	No
7	Dog	Small	Brown	Yes-
8	Dog .	Medium	Brown	Yes,
9 -	Cowi-	Medium	White	No'
10	Dog	Small	Black	Yesı
11	Rat*	Medium	Black_	No s
12:	Rat	Small	Brown	No'
13	Cow	Big	White	Yes

Calculate the prediction for the following test dataset, test = (Cow, Medium, Black) to predict the animal will be pet or not.

Danogn international University

Department of Computer Science and Engineering Faculty of Science & Information Technology Midterm Examination, Spring-2023

Course Code: CSE233, Course Title: Object Oriented Programming II Level: 3, 2 Term: 1, 3 Batch: 59, 60

Time: 1.5 hrs

Marks: 25

Answer ALL Questions

[The figures in the right margin indicate the full marks and corresponding course outcomes. All portions of each question must be answered sequentially.]

1.	Consider the following random items code of groceries.						
	d = 181,178,187,182,192,189,202,201 The concept of datase is crucial for modern intelligence systems. Initially, we need to process any data using basic programming concepts such as statistical analysis. Here providing data is also part of that concept which is provided in your class lecture.						
	a)	Create a list constructor for the provided dataset.	2				
	b)	Develop a function for the data where the function will regenerate the values in reverse and sorted way following all the necessary requirements.	5				
2.	c)	Compare between list and array. nsider the following scenario for the Chatgpt	3				
	Chatgpt: Hi! What can I do now? You: Do you know me? Chatgpt: You are from Daffodil International University. You are currently studying 5th semester. You: Thanks for your information. Chatgpt: Thanks for your gratitude. You know that chatgpt is a complex artificial system. And it requires a more powerful system such as a supercomputer. You have no development knowledge of a chatgpt but you have the basic knowledge of object oriented programming II. Now you need to implement some concepts to develop the demo chatgpt.						
	a)	*Construct a function to build the demo Chatgpt and all necessary input will take form the user as their wishes.	5				
	b)	Justify the line from your demo chatgpt "Chatgpt is better than human".	3	1			
	c)	Explain the process to change the word "5th" to "7th" in the given string.	2				
3.	Let's consider two different list K = [1001,1002,1003,1004,1005] V = ["USA", "Canada", "China", "Japan", "UK"] Propose a function to convert two lists into a dictionary using python script.						