Example 7.4. Find the Laplace transform *X* of the function

$$x(t) = -e^{-at}u(-t),$$

where a is a real constant.

Solution. Let $s = \sigma + i\omega$, where σ and ω are real. From the definition of the Laplace transform, we can write

$$X(s) = \mathcal{L}\{-e^{-at}u(-t)\}(s)$$

$$= \int_{-\infty}^{\infty} -e^{-at}u(-t)e^{-st}dt$$

$$= \int_{-\infty}^{0} -e^{-at}e^{-st}dt$$

$$= \int_{-\infty}^{0} -e^{-(s+a)t}dt$$

$$= \left[\left(\frac{1}{s+a}\right)e^{-(s+a)t}\right]_{-\infty}^{0}$$
integrate

In order to more easily determine when the above expression converges to a finite value, we substitute $s = \sigma + j\omega$. This yields

Lest exboueufist

Complex sinusaid
finite but limit not

$$\begin{split} X(s) &= \left[\left(\frac{1}{\sigma + a + j \omega} \right) e^{-(\sigma + a + j \omega)t} \right]_{-\infty}^{0} \\ &= \left(\frac{1}{\sigma + a + j \omega} \right) \left[e^{-(\sigma + a)t} e^{-j \omega t} \right]_{-\infty}^{0} \\ &= \left(\frac{1}{\sigma + a + j \omega} \right) \left[1 - \underbrace{e^{(\sigma + a)\infty} e^{j \omega \infty}}_{t} \right]. \end{split}$$

Thus, we can see that the above expression only converges for $\sigma + a < 0$ (i.e., Re(s) < -a). In this case, we have

$$X(s) = \left(\frac{1}{\sigma + a + j\omega}\right)[1 - 0]$$
 if $Re(s) < -2$

$$= \frac{1}{s + a}.$$
 rewrite in terms of s ($s = \sigma + j\omega$)

Thus, we have that

Note: We must specify this region of convergence since
$$\frac{1}{s+a}$$
 is not correct for all SEC

The region of convergence for X is illustrated in Figures 7.3(a) and (b) for the cases of a > 0 and a < 0, respectively.

Figure 7.3: Region of convergence for the case that (a) a > 0 and (b) a < 0.

Example 7.7. The Laplace transform *X* of the function *x* has the algebraic expression

$$X(s) = \frac{s + \frac{1}{2}}{(s^2 + 2s + 2)(s^2 + s - 2)}$$
.

Identify all of the possible ROCs of X. For each ROC, indicate whether the corresponding function x is left sided, right sided, two sided, or finite duration.

Solution. The possible ROCs associated with X are determined by the poles of this function. So, we must find the poles of X. Factoring the denominator of X, we obtain

tor of X, we obtain
$$X(s) = \frac{s+\frac{1}{2}}{(s+1-j)(s+1+j)(s+2)(s-1)}.$$
 these factors obtained by using quadratic formula

Thus, X has poles at -2, -1 - j, -1 + j, and 1. Since these poles only have three distinct real parts (namely, -2, -1, and 1), there are four possible ROCs:

- i) Re(s) < -2,
- ii) -2 < Re(s) < -1,
- iii) $-1 < \operatorname{Re}(s) < 1$, and
- iv) Re(s) > 1.

These ROCs are plotted in Figures 7.8(a), (b), (c), and (d), respectively. The first ROC is a left-half plane, so the corresponding *x* must be left sided. The second ROC is a vertical strip (i.e., neither a left- nor right-half plane), so the corresponding *x* must be two sided. The third ROC is a vertical strip (i.e., neither a left- nor right-half plane), so the corresponding *x* must be two sided. The fourth ROC is a right-half plane, so the corresponding *x* must be right sided.

Figure 7.8: ROCs for example. The (a) first, (b) second, (c) third, and (d) fourth possible ROCs for X.

Example 7.8 (Linearity property of the Laplace transform). Find the Laplace transform of the function

$$x = x_1 + x_2$$
,

where

$$x_1(t) = e^{-t}u(t)$$
 and $x_2(t) = e^{-t}u(t) - e^{-2t}u(t)$.

Solution. Using Laplace transform pairs from Table 7.2, we have

1
$$X_1(s) = \mathcal{L}\{e^{-t}u(t)\}(s)$$
 from LT table
$$= \frac{1}{s+1} \quad \text{for Re}(s) > -1 \quad \text{and}$$
2 $X_2(s) = \mathcal{L}\{e^{-t}u(t) - e^{-2t}u(t)\}(s)$ linearity
$$= \mathcal{L}\{e^{-t}u(t)\}(s) - \mathcal{L}\{e^{-2t}u(t)\}(s)$$
 from LT table and \mathbb{R}

$$= \frac{1}{s+1} - \frac{1}{s+2} \quad \text{for Re}(s) > -1$$

$$= \frac{1}{(s+1)(s+2)} \quad \text{for Re}(s) > -1.$$

So, from the definition of X, we can write

$$X(s) = \mathcal{L}\{x_1 + x_2\}(s)$$

$$= X_1(s) + X_2(s)$$

$$= \frac{1}{s+1} + \frac{1}{(s+1)(s+2)}$$
Substitute expressions for X_1 and X_2 in 0 and 0

$$= \frac{s+2+1}{(s+1)(s+2)}$$
Common denominator
$$= \frac{s+3}{(s+1)(s+2)}.$$
Simplify but is it larger than

Now, we must determine the ROC of X. We know that the ROC of X must contain the intersection of the ROCs of X_1 and X_2 . So, the ROC must contain Re(s) > -1. Furthermore, the ROC cannot be larger than this intersection, since X has a pole at -1. Therefore, the ROC of X is Re(s) > -1. The various ROCs are illustrated in Figure 7.9. So, in conclusion, we have

$$X(s) = \frac{s+3}{(s+1)(s+2)}$$
 for Re(s) > -1.

Figure 7.9: ROCs for the linearity example. The (a) ROC of X_1 , (b) ROC of X_2 , (c) ROC associated with the intersection of the ROCs of X_1 and X_2 , and (d) ROC of X.