instacart Customer Retention

Business Analytics Spring 2020 ——

Today's Presentation

- The Grocery Industry
- The Problem: Driving Retention & Lifetime Value Growth
- Our Models + Recommendations
 - Time Between Orders
 - Reordering Behavior

The Grocery Industry

DISCLAIMER

Shopping behaviors studied here are <u>not</u> applicable during COVID-19

Industry Growth

Industry Growth

Source: OneSpace

Individual Spend

Individual Frequency

How often do you go grocery shopping?

- Once a month
- A couple of times a month
- Every day
- A few times a week
- Once a week

Source: Brandon Gaille

Our Focus: Drive Retention & Lifetime Value

Instacart Customer Behavior

S User Value

Most Purchased Products

Product	Reorder Rate
Bananas	83%
Bag of Organic Bananas	70%
Organic Strawberries	78%
Organic Baby Spinach	78%
Organic Hass Avocado	84%
Organic Avocado	68%
Large Lemon	83%
Strawberries	80%
Limes	70%
Organic Whole Milk	76%

Instacart Customer Behavior

Time Between Orders

User-Level Order Behavior

User Average Time Between Orders

	< 10 Days	11-16 Days	>16 Days	
Avg # of Orders	30.5	14.8	8.2	

Instacart Customer Behavior

Reorder Behavior

Order Day of Week

Order Hour of Day

Add to Cart Order by Reorder Tendency

Mode Add to Cart Order

User Reorder Rate	< 30%	30-49%	50-74%	> 75%
Avg # of Orders	5.6	10.7	23	43.8

Our approach

Key objectives & impact:

Predict order timing

- >> Find drivers of frequent shopping to try increasing order frequency
- >> Well-timed retention marketing ("win back" for lapsing customers)

Predict product reordering

- >> Increase loyalty and develop 'habits' by marketing high reorder products
- >> Maximize profits by increasing frequency of returning customers
- >>Improve consumer experience with "easy-ordering" on the platform

面

Instacart dataset:

Predicting Order Timing

The Model

Feature Engineering

Previous
Order
Aggregate
Metrics

- # of Products
- # of Departments
- # of Aisles
- % from Each Department

2

Shopper Type "Flags"

- Kitchen Supplies
- Beauty
- Health
- Cleaning
- Junk Food

Cumulative Behaviors

- Average Time Between Past Orders
- Total Previous Products Bought
- Total # of Previous Orders

Model Exploration

Linear Regression

Decision Tree

<u>Target Variable:</u> # of days between each order

What We Learned

Drivers of *longer* time between orders

- Longer user-level average time between orders
- Previous order in the evening/night (6pm-5am)
- % of all previous purchases that was cleaning products or kitchen products
- % of previous order that is "long-lasting" canned goods, frozen goods, pasta/dry goods
- % of previous order that is pet food

Drivers of shorter time between orders

- Number of previous orders
- Higher rates of reordered products
- Smaller order sizes (fewer products)
- Products from more departments in previous order
- Previous order made in the morning (6am-12pm)
- Previous order made on any non-Saturday day
- % of all previous purchases that was junk food

Key Takeaways

Focus on driving weekday morning orders

Eliminate minimum order size for first few orders to build habit

Try to introduce users to new-to-them departments

Feature impulse purchase products in marketing materials

Predicting Product Reorders

The Model

Feature Engineering

User level metrics

- Average & mode size of the orders
- No. of times the user continuously ordered new products
- Mode shopping hour of day and day of week
- Mode of no. of days since prior order

2

User-Product level metrics

- Reorder tendency (# of reorders/ # of orders)
- Mode of add to cart order
- Was the product in the user's penultimate cart
- Count of streaks of ordering the product by the user

Product level metrics

- Overall reorder ratio of the product
 - Department associated to the product

Model Exploration

Log-Lasso Regression

Decision Tree Random Forest XG Boosting

<u>Data Map:</u> Utilized User-Product level data with **8.5 mn rows and 27 features**<u>Target Variable:</u> Products from prior orders that is present in the latest order

Model Comparison - Test Set Performance

Models	Accuracy	Precision	Recall	F1 Score	AUROC	AUPRC
Log-Lasso Regression	0.91	0.62	0.16	0.24	0.82	0.38
Decision Tree	0.90	NA	0.00	NA	0.76	0.28
Random Forest	0.91	0.61	0.21	0.32	0.82	0.42
Random Forest (adjusted for imbalanced classes)	0.87	0.36	0.51	0.43	0.82	0.40
XGB Tree	0.87	0.36	0.51	0.43	0.82	0.41

What We Learned

Features that drive reordering

- User tendency to reorder that product
- Overall reorder tendency of the product
- Mean Reorder tendency of the user
- Was the product in the user's penultimate cart?
- Number of times the user continuously ordered the product

Ç

Features that deter reordering

- Days since the product was last ordered
- Total orders of the user
- Mean of the intervals at which the product was reordered

Use Cases for Predictions

Create subscription-based model for products prone to reordering

Assist partner stores with inventory management

Send promotions for most reordered & complimentary products

Suggest high-margin substitutes for frequently reordered items

Questions?

