Assignment No. 1

1 TITLE

Knowledge Canvas and Idea Matrix

2 AIM

To develop the problem under consideration and justify feasibility using concepts of knowledge canvas and IDEA Matrix.

3 PROBLEM STATEMENT

Improving Human Computer Interaction with Machine Emotional Intelligence using NAO robot.

4 PROBLEM DESCRIPTION

Knowing the emotional state of an individual can be crucial in determining what action is to be taken as a response. Recognizing the affective state of a human can be difficult for humans as well as systems. Many features can be considered such as voice samples, facial cues or even text written by the person to identify the emotional state of the individual. The major focus of the project is improving human-machine interaction using the NAO robot. The robot will accept the input from the person periodically in the form of speech samples, comprising of voice and text as well as facial cues and will interpret the current emotional state of the person. Although our main focus is on humanizing the NAO robot and making it an ideal companion for old people, there are myriad of other uses that can be achieved; some of which are:

1. Development of an affect-aware city,

- 2. Add security layer at public venues to detect malicious intent and deal with hostage situation effectively,
- 3. Measure response and ratings in focus groups (consumer response to commercials etc),
- 4. Wearables that help autistics discern emotion etc.

5 Knowledge Canvas and IDEA Matrix

Knowledge Canvas is the one that depicts the knowledge forces and knowledge flow across the organization and extended organizations. It captures the current knowledge state and knowledge forces in the environment. It tries to build bigger knowledge scenario for projects. It helps to identify the knowledge opportunities, prospective knowledge partners and knowledge losses. It is used to establish association among knowledge opportunities. Principle components for knowledge canvas include:

- Knowledge force for cost saving
- Knowledge about precision
- Knowledge about precision
- Knowledge about social reluctance
- Automation economics
- Precision economics
- External knowledge forces
- Globalization knowledge force

6 IDEA Matrix

Γa ble	1	IDE	1 М	atrix
-a		11/1/2/	¬\ ∨	attica

Table 1: IDEA Matrix							
I	D	Ε	A				
Increase	Drive	Enhance	Accelerate				
Accuracy of emo-	Create a system	Images of faces	Speed of emotion				
tion detection and	which can recog-	and audio dataset	detection and				
recognition.	nize an emotion	is used and classi-	${\it recogntion}.$				
	based on facial	fiers like RNN for					
	cues and voice	audio, SVM for					
	samples.	speech and CNN					
		for facial.					
Improve	Deliver	Evaluate	Associate				
The ability of the	An emotion	Images in the	The received live				
system to classify	recognition sys-	form of sequential	voice sample and				
various emotions	tem based on	frames and voice	frame sequence to				
by combining	principles of im-	samples in the	the information				
facial cues with	age processing,	training datasets	stored in the				
voice samples.	audio processing	to classify em-	system.				
	and machine	tions correctly.					
learning.							
Ignore	Decrease	Eliminate	Avoid				
Irrelevant audio	Delay in the	Fault in the	Errors which may				
and background	audio and im-	emotion recog-	arise due to man-				
images in the	age transmission	nition as well	ual or background				
dataset as well as	from NAO to the	as the delay in	interference.				
the live feed.	remote server.	${\it classification.}$					