Extensões e Aplicações do Modelo de Regressão Conway-Maxwell-Poisson para Modelagem de Dados de Contagem

Eduardo Elias Ribeiro Junior Orientação: Prof. Dr. Walmes Marques Zeviani

> Trabalho de Conclusão de Curso - Laboratório B Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR)

> > 27 de junho de 2016

Sumário

- 1. Introdução
- 2. Objetivos
- 3. Materiais e Métodos
- 4. Resultados
- 5. Considerações finais

1

Introdução

Dados de contagem

1 11 111 1111 1111

São variáveis aleatórias aleatórias que representam o número de ocorrências de um evento em um dominío discreto ou contínuo.

Se Y é uma v.a. de contagem, y = 0, 1, 2, ...

Exemplos:

- Número de filhos por casal;
- Número de indivíduos infectados por uma doença;
- Número de acidentes de trânsito em um mês;
- Número de posts em uma rede social durante um dia;
- Número de frutos produzidos;
- **...**

Análise de dados de contagem

- Modelos de regressão Gaussianos com dados transformados
 - Dificultam a interpretação dos resultados;
 - Não contemplam a natureza discreta da variável;
 - Não contemplam a relação média e variância;
 - Transformação logarítmica é problemática para valores 0.
- Modelos de regressão Poisson (NELDER; WEDDERBURN, 1972)
 - Fiel a natureza dos dados;
 - Contempla a relação média e variância;
 - Suposição de equidispersão.

Figura 1: Ilustração de processos pontuais que levam a contagens com diferentes níveis de dispersão.

Distribuições de probabilidades para dados de contagem

Tabela 1: Distribuições de probabilidades para dados de contagem

Distribuição	Contempla a característica de				
Distribuição	Equidispersão	Superdispersão	Subdispersão		
Poisson	✓				
Binomial Negativa	\checkmark	\checkmark			
Inverse Gaussian Poisson	\checkmark	\checkmark			
Compound Poisson	\checkmark	\checkmark			
Poisson Generalizada	\checkmark	\checkmark	\checkmark		
Gamma-Count	\checkmark	\checkmark	\checkmark		
COM-Poisson	\checkmark	\checkmark	\checkmark		
Katz	\checkmark	\checkmark	\checkmark		
Poisson Polynomial	\checkmark	\checkmark	\checkmark		
Double-Poisson	\checkmark	\checkmark	\checkmark		
Lagrangian Poisson	\checkmark	\checkmark	\checkmark		

Distribuições de probabilidades para dados de contagem

Tabela 1: Distribuições de probabilidades para dados de contagem

Distribuição	Contempla a característica de				
Distribuição	Equidispersão	Superdispersão	Subdispersão		
Poisson	✓				
Binomial Negativa	\checkmark	\checkmark			
Inverse Gaussian Poisson	\checkmark	✓			
Compound Poisson	\checkmark	\checkmark			
Poisson Generalizada	\checkmark	\checkmark	\checkmark		
Gamma-Count	\checkmark	\checkmark	\checkmark		
COM-Poisson	\checkmark	✓	\checkmark		
Katz	✓	✓	✓		
Poisson Polynomial	\checkmark	\checkmark	\checkmark		
Double-Poisson	\checkmark	\checkmark	\checkmark		
Lagrangian Poisson	\checkmark	\checkmark	\checkmark		

2

Objetivos

Objetivos gerais

Colaborar com a literatura estatística brasileira, no que diz respeito a dados de contagem:

- Apresentando e explorando o modelo de regressão COM-Poisson;
- Estendendo o modelo para modelagem de excesso de zeros e inclusão de efeitos aleatórios;
- Discutindo o desempenho do modelo via análise de dados reais;
- ▶ Disponibilizando os recursos computacionais para ajuste dos modelos, em formato de pacote R.

3

Materiais e Métodos

3.1 Materiais e Métodos **Materiais**

Conjuntos de dados

Seis conjuntos de dados analisados:

- Capulhos de algodão sob desfolha artificial
- Produtividade de algodão sob infestação de Mosca-branca
- Produtividade de soja sob umidade e adubação potássica
- Ocorrência de ninfas de Mosca-branca em lavoura de soja
- Peixes capturados por visitantes de um parque Estadual
- Número de nematoides em raizes de feijoeiro

Conjuntos de dados

Seis conjuntos de dados analisados:

- Capulhos de algodão sob desfolha artificial
- Produtividade de algodão sob infestação de Mosca-branca
- Produtividade de soja sob umidade e adubação potássica
- Ocorrência de ninfas de Mosca-branca em lavoura de soja
- Peixes capturados por visitantes de um parque Estadual
- Número de nematoides em raizes de feijoeiro

Recursos Computacionais

Software R versão 3.3.0. Principais pacotes:

- MASS (modelo binomial negativo)
- pscl (modelagem de excesso de zeros)
- 1me4 (modelo Poisson com efeito aleatório Normal)
- bbmle (ajuste de modelos via máxima verossimilhança)

3.2

Materiais e Métodos **Métodos**

Estimação via máxima verossimilhança

- $\bullet \ \, \text{Escreva a função de verossimilhança } \mathcal{L}(\Theta \mid y)$
- ② Tome seu logaritmo $\ell(\Theta \mid \underline{y})$
- As estimativas dos parâmetros são

$$\hat{\Theta} = \arg\max_{\Theta} \ell(\Theta \mid \underline{y})$$

- ▶ Algoritmo IWLS (*Interactive Weigthed Leasts Squares*) para os modelos Poisson, Binomial Negativo e Quasi-Poisson.
- ▶ Método *BFGS* para os modelos COM-Poisson.

Verossimilhança do modelo COM-Poisson

- Reparametrizando $\phi = \log(\nu)$
 - $\phi < 0 \Rightarrow$ Superdispersão
 - $\phi = 0 \Rightarrow$ Equidispersão
 - $\phi > 0 \Rightarrow$ Subdispersão

log-verossimilhança

$$\ell(\phi, \beta \mid \underline{y}) = \sum_{i=1}^{n} y_i \log(\lambda_i) - e^{\phi} \sum_{i=1}^{n} \log(y!) - \sum_{i=1}^{n} \log(Z(\lambda_i, \phi))$$
 (1)

em que $\lambda_i = e^{X_i \beta}$, com X_i o vetor $(x_{i1}, x_{i2}, \dots x_{ip})$ de covariáveis da i-ésima observação, e $(\beta, \phi) \in \mathbb{R}^{p+1}$.

Verossimilhança do modelo Hurdle COM-Poisson

Métodos

- $\underline{\pi} = \frac{\exp(G\gamma)}{1+\exp(G\gamma)}$ a probabilidade de contagem nula.
- $\lambda = \exp(X\beta)$ o parâmetro de locação da distribuição COM-Poisson truncada.

verossimilhança

$$\mathcal{L}(\phi, \beta, \gamma \mid \underline{y}) = \mathbb{1}[\underline{\pi}] \cdot (1 - \mathbb{1}) \left[(1 - \underline{\pi}) \left(\frac{\underline{\lambda}^{y}}{(y!)^{e^{\phi}} Z(\underline{\lambda}, \phi)} \right) \left(1 - \frac{1}{Z(\underline{\lambda}, \phi)} \right) \right]$$
(2)

em que 1 é uma função indicadora para y=0

Verossimilhança do modelo misto COM-Poisson

$$Y_{ij} \mid b_i, X_{ij} \sim \text{COM-Poisson}(\mu_{ij}, \phi)$$

 $g(\mu_{ij}) = X_{ij}\beta + Z_ib_i$
 $b \sim \text{Normal}(0, \Sigma)$

Métodos

Verossimilhança

$$\mathcal{L}(\phi, \Sigma, \beta \mid \underline{y}) = \prod_{i=1}^{m} \int_{\mathbb{R}^{q}} \left(\prod_{j=1}^{n_{i}} \frac{\underline{\lambda}^{y}}{(y!)^{e^{\phi}} Z(\underline{\lambda}, \phi)} \right) \cdot (2\pi)^{q/2} |\Sigma| \exp\left(-\frac{1}{2} b^{t} \Sigma^{-1} b\right) db_{i}$$
(3)

sendo *m* o número de grupos que compartilham do mesmo efeito aleatório, *q* o número de efeitos aleatórios (intercepto aleatório, inclinação e intercepto aleatórios, etc.) e n_i o número de observações no i-ésimo grupo.

4

Resultados

Pacote R

4.1 Resultados **Pacote R**

cmpreg: Ajuste de Modelos de Regressões COM-Poisson

Implementação em R de um $\it framework$ para ajuste dos modelos de regressão COM-Poisson, pacote cmpreg

```
## Pode ser instalado do GitHub
devtools::install_git("https://github.com/JrEduardo/cmpreg.git")
library(cmpreg)
## Regressão (efeitos fixos)
cmp(v ~ preditor, data = data)
## Regressão com componente de barreira
hurdlecmp(y ~ count_pred | zero_pred, data = data)
## Regressão (efeitos aleatórios)
mixedcmp(y ~ count_pred + (1 | ind.ranef), data = data)
```

4.2

Resultados **Produtividade de algodão**

Experimento

Conduzido na UFGD em casa de vegetação (MARTELLI et al., 2008).

- Delineamento: inteiramente casualizado com cinco repetições
- Objetivo: avaliar o impacto da praga Mosca-branca na produção de algodão.
- Unidade amostral: vaso com duas plantas.
- Covariável experimental:
 - Tempo de exposição das plantas à praga, em dias. (dexp)
- Variáveis resposta:
 - Número de capulhos produzidos
 - Número de estruturas reprodutivas
 - Número de nós

Modelagem

Preditores considerados:

- Preditor 1: $g(\mu_i) = \beta_0$
- ► Preditor 2: $g(\mu_i) = \beta_0 + \beta_1 \text{dexp}_i$
- ► Preditor 3: $g(\mu_i) = \beta_0 + \beta_1 \text{dexp}_i + \beta_2 \text{dexp}_i^2$

Modelos concorrentes:

- ▶ Poisson(μ_i)
- ▶ COM-Poisson(λ_i , ϕ)
- Quasi-Poisson(μ_i , σ^2)

Medidas de ajuste

Tabela 2: Medidas de ajuste para avaliação e comparação

	Poisson			COM-Poisson			Quasi-Poisson	
np	ℓ	AIC	$P(>\chi^2)$	ℓ	AIC	$P(>\chi^2)$	deviance	P(> F)
Númer	Número de capulhos produzidos							
1	-105,27	212,55	_	-92,05	188,09	_	20,80	_
2	-105,03	214,05	4,83E-01	-91,31	188,62	2,25E-01	20,31	2,23E-01
3	-104,44	214,88	2,78E-01	-89,47	186,95	5,52E-02	19,13	6,16E-02
Número de estruturas reprodutivas								
1	-104,74	211,49	_	-86,41	176,82	_	16,23	_
2	-104,27	212,54	3,32E-01	-84,59	175,18	5,66E-02	15,29	6,19E-02
3	-104,06	214,12	5,16E-01	-83,73	175,47	1,90E-01	14,87	2,07E-01
Número de nós da planta								
1	-143,79	289,59	_	-120,58	245,16	_	12,69	_
2	-143,48	290,95	4,25E-01	-119,03	244,06	7,87E-02	12,05	7,39E-02
3	-142,95	291,89	3,04E-01	-116,27	240,54	1,88E-02	11,00	2,23E-02

Valores preditos

Figura 2: Curva dos valores preditos com intervalo de confiança de (95%) como função dos dias de exposição a alta infestação de Mosca-branca.

4.3

Resultados Ocorrência de ninfas de Mosca-branca

Experimento

Conduzido na UFGD em casa de vegetação (SUEKANE, 2011).

- ▶ Delineamento: blocos casualizados com quatro blocos.
- Objetivo: avaliar a propensão de cultivares de soja à praga Mosca-branca.
- Unidade experimental: dois vasos com duas plantas.
- Covariáveis experimentais:
 - ► Indicadora de bloco, I, II, III e IV, (bloco),
 - ▶ Dias decorridos após a primeira avaliação, 0, 8, 13, 22, 31 e 38 dias. (dias),
 - Indicadora de cultivar de soja, BRS 239, BRS 243 RR, BRS 245 RR, BRS246 RR, (cult).
- Variável resposta:
 - Número de ninfas de Mosca-branca nos folíolos dos terços superior, médio e inferior.

Modelagem

Preditores considerados:

 τ_i é o efeito do i-ésimo bloco, i=1,2,3,4

 γ_j o efeito da j-ésima cultivar, j=1,2,3,4

 δ_k o efeito do k-ésimo nível de dias, $k=1,2,\ldots,6$ e

 α_{jk} o efeito da interação entre a j-ésima cultivar e o k-ésimo nível de dias

Modelos concorrentes:

- ▶ Poisson(μ_{iik})
- ▶ COM-Poisson(λ_{ijk} , ϕ)
- ▶ Binomial Negativo(μ_{ijk} , θ)
- Quasi-Poisson(μ_{ijk} , σ^2)

Medidas de ajuste

Tabela 3: Medidas de ajuste para avaliação e comparação

Poisson	np	ℓ	AIC	2(diff ℓ)	diff np	$P(>\chi^2)$	
Preditor 1	12	-922,98	1869,96				
Preditor 2	27	-879,23	1812,46	87,50	15	2,90E-12	
COM-Poisson	np	ℓ	AIC	$2(diff \ \ell)$	diff np	$P(>\chi^2)$	$\hat{\phi}$
Preditor 1	13	-410,44	846,89				-3,08
Preditor 2	28	-407,15	870,30	6,59	15	9,68E-01	-2,95
Binomial Neg.	np	ℓ	AIC	$2(diff \ell)$	diff np	$P(>\chi^2)$	$\hat{ heta}$
Preditor 1	13	-406,16	838,31				3,44
Preditor 2	28	-400,55	857,10	11,21	15	7,38E-01	3,99
Quase-Poisson	np	deviance	AIC	F	diff np	P(>F)	$\hat{\sigma}^2$
Preditor 1	12	1371,32					17,03
Preditor 2	27	1283,82		0,31	15	9,93E-01	19,03

Valores preditos

Número de dias após o inicío do experimento

Figura 3: Valores preditos com intervalos de confiança (95%).

Resultados **Peixes capturados**

Estudo

Observacional conduzido por biólogos em um Parque Estadual (UCLA, 2015).

- Delineamento: amostragem aleatória.
- Objetivo: modelar o número de peixes capturados pela atividade de pesca esportiva.
- Unidade experimental: grupos de pescadores visitantes do parque.
- Covariáveis mensuradas:
 - Número de pessoas, (np),
 - Número de crianças. (nc),
 - Indicador de campista no grupo, (ca).
- Variável resposta:
 - Número de peixes capturados pelo grupo.

Modelagem

Preditores considerados:

Preditor 1:
$$g(\mu_i) = \beta_0 + \beta_1 \operatorname{ca}_i + \beta_2 \operatorname{np}_i \\ \operatorname{logit}(\pi_i) = \gamma_0 + \gamma_1 \operatorname{ca}_i + \gamma_2 \operatorname{np}_i + \gamma_3 \operatorname{nc}_i$$

Preditor 2:
$$g(\mu_i) = \beta_0 + \beta_1 \operatorname{ca}_i + \beta_2 \operatorname{np}_i + \beta_3 \operatorname{nc}_i + \beta_4 (\operatorname{np}_i \cdot \operatorname{nc}_i) \\ \operatorname{logit}(\pi_i) = \gamma_0 + \gamma_1 \operatorname{ca}_i + \gamma_2 \operatorname{np}_i + \gamma_3 \operatorname{nc}_i + \gamma_4 (\operatorname{np}_i \cdot \operatorname{nc}_i)$$

Modelos concorrentes:

- ▶ Hurdle Poisson(π_i , μ_i)
- ▶ Hurdle COM-Poisson(π_i , λ_i , ϕ)
- ▶ Hurdle Binomial Negativo(π_i , μ_i , θ)

Medidas de ajuste

Tabela 4: Medidas de ajuste para avaliação e comparação

Poisson	np	ℓ	AIC	2(diff ℓ)	diff np	$P(>\chi^2)$	
Preditor 1	7	-857,48	1728,96				
Preditor 2	10	-744,58	1509,17	225,79	3	1,12E-48	
Binomial Neg.	np	ℓ	AIC	$2(diff \ell)$	diff np	$P(>\chi^2)$	$\hat{ heta}$
Preditor 1	8	-399,79	815,58				0,20
Preditor 2	11	-393,72	809,44	12,14	3	6,91E-03	0,37
COM-Poisson	np	ℓ	AIC	2(diff ℓ)	diff np	$P(>\chi^2)$	$\hat{\phi}$
Preditor 1	8	-409,85	835,71				-8,77
Preditor 2	11	-402,30	826,59	15,12	3	1,72E-03	-3,77

Valores preditos

Figura 4: Valores preditos do número de peixes capturados.

4.5

Resultados **Número de nematoides**

Experimento

Conduzido no IAPAR em casa de vegetação.

- Delineamento: inteiramente casualizado com cinco repetições.
- Objetivo: avaliar a resistência à nematoides de linhagens de feijoeiro.
- ▶ Unidade amostral: alíquota de 1ml da solução de raizes lavadas, trituradas, peneiradas e diluídas em água provida por um vaso com duas plantas.
- Covariáveis:
 - ▶ Indicador de linhagem de feijoeiro, A, B, C, ..., S (cult)
 - Concentração de raiz na solução. (sol)
- Variáveis resposta:
 - Número de nematoides.

Modelagem

Preditores considerados:

- ▶ Preditor 1: $g(\mu_{ij}) = \beta_0 + b_j$
- ► Preditor 2: $g(\mu_{ij}) = \beta_0 + \beta_1 \log(\text{sol})_i + b_j$

$$b_j \sim \text{Normal}(0, \sigma^2)$$

Modelos concorrentes:

- ▶ Poisson(μ_{ij})
- ▶ COM-Poisson(λ_{ij} , ϕ)

Medidas de ajuste

Tabela 5: Medidas de ajuste para avaliação e comparação

Poisson	np	ℓ	AIC	2(diff ℓ)	diff np	$P(>\chi^2)$		
Preditor 1 Preditor 2	2 3	-237,20 -234,66	478,40 475,32	5,07	1	2,43E-02		
COM-Poisson	np	ℓ	AIC	2(diff ℓ)	diff np	$P(>\chi^2)$	$\hat{\phi}$	$P(>\chi^2)$
Preditor 1 Preditor 2	3 4	-236,85 -233,86	479,71 475,72	5,99	1	1,44E-02	0,15 0,23	4,06E-01 2,05E-01

Valores preditos

Figura 5: Valores preditos nos modelos de efeitos mistos.

4.6

Resultados **Discussões**

▶ Similaridade entre inferências via modelo Quasi-Poisson e COM-Poisson;

Discussões

- Desempenho do modelo Binomial Negativo;
- Interpretação dos parâmetros nos modelos baseados na COM-Poisson
- Problemas numéricos para determinação da matriz hessiana no modelo Hurdle COM-Poisson;
- Procedimentos computacionalmente intensivos na avaliação da verossimilhança no caso COM-Poisson de efeitos aleatórios;
- Não ortogonalidade observada (empírica) entre os parâmetros de locação e de precisão no modelo COM-Poisson;
- \blacktriangleright Comportamento simétrico dos perfis de log-verossimilhança para o parâmetro ϕ da COM-Poisson.

5

Considerações finais

Conclusões

Aplicação do modelo COM-Poisson:

- Resultados similares aos providos pela abordagem semi-paramétrica via quasi-verossimilhança;
- ► A não ortogonalidade entre os parâmetros de locação e precisão no modelo COM-Poisson se mostra como característica da distrição;
- A simetria nos perfis de verossimilhança do parâmetro de precisão também.
- ► A avaliação da constante de normalização é problemática no modelo.

Conclusões

Análise de dados de contagem:

- Modelo Poisson inadequado na maioria das aplicações, mostrando que a suposição de equidispersão é de fato restritiva;
- Modelos alternativos ao Poisson devem ser empregados na análise de dados de contagem;
- Sugere-se o modelo COM-Poisson como alternativa totalmente paramétrica e bastante flexível.

Trabalhos futuros

- Estudar reparametrizações do modelo COM-Poisson;
- Avaliar aproximações da constante de normalização;
- Realizar estudos de simulação para avaliar a robustez do modelo;
- Implementar o modelo COM-Poisson inflacionado de zeros;
- Implementar o modelo COM-Poisson com efeitos aleatórios dependentes.

Publicização

https://github.com/JrEduardo/cmpreg https://github.com/JrEduardo/tccDocument

Referências

MARTELLI, T. et al. **Influência do ataque de mosca-branca Bemisia tabaci Biotipo B, nos índices de produtividade do algodoeiro**Uberlândia- MGXXII Congresso Brasileiro de Entomologia, 2008.

NELDER, J. A.; WEDDERBURN, R. W. M. Generalized Linear Models. **Journal of the Royal Statistical Society. Series A (General)**, v. 135, p. 370–384, 1972.

SUEKANE, R. DISTRIBUIÇÃO ESPACIAL E DANO DE MOSCA-BRANCA Bemisia tabaci (GENNADIUS, 1889) BIÓTIPO B NA SOJA. PhD thesis—[s.l.] Universidade Federal da Grande Dourados, 2011.

UCLA, S. C. G. Data Analysis Examples, 2015. Disponível em:

<http://www.ats.ucla.edu/stat/dae/>