TRANSFORMATA LAPLACE

- O funcție $f: \mathbb{R} \to \mathbb{C}$, s.n. **funcție original** dacă are proprietățile:
 - **1.** f(t) = 0 pentru t < 0 (nu avem semnal);
 - **2.** f este continuă pe porțiuni (număr finit de discontinuități de prima speță) pentru $t \ge 0$; în punctele de discontinuitate, valoarea funcției este egală cu semisuma limitelor laterale calculate în punctul respectiv (ca la Transformata Fourier);
 - **3.** există M>0 și $\sigma\in\mathbb{R}$ astfel încât $|f(t)|\leq M\cdot e^{\sigma t}$, pentru $\forall t\geq 0$ (cel mai mic σ cu această proprietate se numește "indicele (restricția) de creștere" pentru funcția f).
- Transformata Laplace (sau funcția imagine) a unei funcții original f este, prin definiție, funcția complexă:

$$F(s) = L[f(t)] = \int_0^\infty f(t) \cdot e^{-st} dt = \lim_{T \to \infty} \int_0^T e^{-st} f(t) dt$$

OBS: 1) s se numește domeniul de frecvență iar $k(s,t) = e^{-st}$ se numește nucleul transformării.

- 2) f(t) se numește transformarea inversă a lui F(s): $f(t) = L^{-1}(F)$
- 3) Se dem. că funcția imagine este olomorfă (analitică) în semiplanul $\operatorname{Re} s > \sigma$ (integrala improprie este convergentă pe semiplanul $\operatorname{Re} s > \sigma$; extinderea în semiplanul $\operatorname{Re} s \leq \sigma$ se poate face după calcularea integralei).

T. de existență și unicitate a T.L

Dacă f(t) continuă pe porțiuni pentru $\forall t \geq 0$ și există M>0 și $\sigma \in \mathbb{R}$ astfel încât $\left|f(t)\right| \leq M \cdot e^{\sigma t}$, pentru $\forall t \geq 0$, atunci transformata Laplace $L\left(f(t)\right)$ există și este unică pentru orice $s>\sigma$.

PROPRIETĂŢI:

1. (*liniaritatea*) Dacă α , $\beta \in \mathbb{C}$ și f,g sunt două funcții original, atunci:

$$L[\alpha f + \beta g] = \alpha L[f] + \beta L[g]$$

2. (asemănarea sau schimbarea de scală) Dacă a > 0 și f(t) are transformata Laplace F(s), atunci:

$$L[f(at)] = \frac{1}{a}F(\frac{s}{a})$$
, $a > 0$

3. (întârziere semnal sau translație în t)

$$L[f(t-a)] = e^{-as}F(s) , a > 0$$

Observații:

Considerăm funcția "unitate" Heaviside:

$$u(t-a) = \begin{cases} 0, & t < a \\ 1, & t > a \end{cases}$$
 ($t = a$ poate fi lăsat caz nedefinit)

și o funcție original f(t). Atunci funcția $f(t-a) \cdot u(t-a)$ cu a>0 este f(t) translatată către dreapta cu "a" unităti.

Dacă f(t) are transformata Laplace F(s), atunci funcția translatată $\tilde{f}(t) = f(t-a) \cdot u(t-a) = \begin{cases} 0 & \text{, } t < a \\ f(t-a) & \text{, } t > a \end{cases} \text{ are transformata Laplace: } e^{-as} F(s) \, .$

Se reţine:

Dacă
$$L[f(t)] = F(s)$$
 , atunci $L[f(t-a) \cdot u(t-a)] = e^{-as}F(s)$

sau forma inversă: $f(t-a) \cdot u(t-a) = L^{-1}(e^{-as}F(s))$

În practică, se poate folosi (pentru ușurința calculelor): $L[f(t) \cdot u(t-a)] = e^{-as} L[f(t+a)]$

4. *(deplasare în s)* Dacă f(t) are transformata Laplace F(s), cu $s>\sigma$, atunci funcția $e^{at}f(t)$ are transformata Laplace F(s-a), cu $s-a>\sigma$:

$$L \lceil e^{at} f(t) \rceil = F(s-a)$$
 , $a \in \mathbb{C}$

sau forma inversă: $e^{at} f(t) = L^{-1} (F(s-a))$.

- 5. (derivarea originalului) Dacă sunt îndeplinite condițiile:
 - (1) f(t) continuă pentru $\forall t \geq 0$, satisface restricția de creștere și f'(t) continuă pe porțiuni pentru $\forall t \geq 0$;
 - (2) Dacă f(t) și f'(t) sunt continue pentru $\forall t \geq 0$, satisfac restricția de creștere și f''(t) continuă pe porțiuni pentru $\forall t \geq 0$

Atunci:

$$L[f'(t)] = s \cdot F(s) - f(0+)$$
 și
 $L[f''(t)] = s^2 \cdot F(s) - s \cdot f(0+) - f'(0+)$

unde am notat: $f(0+) = \lim_{\substack{t \to 0 \\ t > 0}} f(t)$

Forma generală: Dacă sunt îndeplinite condițiile: f(t), f'(t), ..., $f^{(n-1)}$ sunt continue pentru $\forall t \geq 0$, satisfac restricția de creștere și $f^{(n)}(t)$ continuă pe porțiuni pentru $\forall t \geq 0$, atunci:

$$L \left[f^{(n)}(t) \right] = s^n \cdot F(s) - s^{n-1} \cdot f(0+) - s^{n-2} f'(0+) - \dots - f^{(n-1)}(0+)$$

6. (derivarea imaginii) Dacă f(t) are transformata Laplace F(s) și $n \in \mathbb{N}^*$, atunci:

$$L[t \cdot f(t)] = -F'(s)$$

Forma generală: $L \left[t^n f(t) \right] = (-1)^n F^{(n)}(s)$

7. (integrarea originalului) Fie f(t) continuă pe porțiuni pentru $\forall t \geq 0$, care satisface restricția de creștere și are transformata Laplace F(s). Atunci, pentru s>0, $s>\sigma$ și t>0 avem:

$$L\left[\int_0^t f(\tau)d\tau\right] = \frac{1}{s}F(s)$$

sau forma inversă: $\int_0^t f(\tau) d\tau = L^{-1} \left(\frac{1}{s} F(s) \right)$.

8. (integrarea imaginii) dacă $\frac{f(t)}{t}$ este funcția original, cu transformata Laplace F , atunci:

$$L\left\lceil \frac{f(t)}{t}\right\rceil = \int_{s}^{\infty} F(u) du$$

9. (convoluție):

$$L\lceil (f*g)_{(t)} \rceil = F(s) \cdot G(s)$$

unde F(s) și G(s) sunt transformatele Laplace ale celor două funcții original f(t) și respectiv g(t) iar produsul de convoluție (pentru $t \ge 0$) este: $(f * g)_{(t)} = \int_0^t f(x) \cdot g(t-x) dx$

10. (teorema inversării Mellin-Fourier):

Dacă $\,F\,$ este o funcție complexă de variabilă complexă care verifică condițiile:

- 1) este olomorfă în semiplanul $\operatorname{Re} s \ge a > \sigma$
- 2) $\lim_{s\to\infty}F(s)=0$, uniform în raport cu $\arg s$ pentru $\forall s$ cu $\mathrm{Re}\,s\geq a>\sigma$

3) integrala $\int_{a-j\infty}^{a+j\infty} F(s)ds$ este absolut convergentă

Atunci funcția f definită de formula (Mellin-Fourier):

$$f(t) = \frac{1}{2\pi i} \int_{a-j\infty}^{a+j\infty} F(s) \cdot e^{st} ds$$

este o funcție original (cu indicele de creștere σ) și L[f(t)] = F(s) .

Observație:

Integrala din membrul drept al formulei Mellin-Fourier este o integrală curbilinie în planul complex pe drumul $p=a+i\omega$, cu $-\infty<\omega<\infty$.

Mod de aplicare al proprietății 10:

Un caz particular, foarte frecvent întâlnit în aplicații, este $F(s) = \frac{A(s)}{B(s)}$, unde A(s) și B(s) sunt

polinoame cu coeficienți reali iar gradul numărătorului este mai mic decât gradul numitorului. În aces caz, putem scrie:

$$f(t) = \sum_{k=1}^{n} \text{Res}(\frac{A(s)}{B(s)} \cdot e^{st}, s_k) + 2\sum_{k=1}^{n} \text{Re}\left(\text{Res}(\frac{A(s)}{B(s)} \cdot e^{st}, s_k)\right) = S_1 + S_2$$

unde S_1 se calculează pentru toți polii reali ai funcției F(s) iar S_2 pentru toți polii complecși din semiplanul superior (polii care au partea imaginară pozitivă).

Tabel transformate Laplace

f(t)	$F(s) = L\{f(t)\}$	Cond. de existență
1	$\frac{1}{s}$	s > 0
t	$ \frac{\frac{1}{s}}{\frac{1}{s^2}} $ $ \frac{n!}{s^{n+1}} $	s > 0
$t^{n}, n \in \mathbb{N}^{*}$	$\frac{n!}{s^{n+1}}$	s > 0
$t^a, a > -1$	$\frac{\Gamma(a+1)}{s^{a+1}}$	s > a
e^{at}	$\frac{1}{s-a}$	s > a
$t^n \cdot e^{at}, n \in \mathbb{N}^*$	$\frac{s-a}{n!}$ $\frac{(s-a)^{n+1}}{(s-a)^{n+1}}$	s > a
$u(t-a) = \begin{cases} 0, & t < a \\ 1, & t > a \end{cases}$	$\frac{e^{-as}}{s}$	$s \ge a$
$u(t-a) = \begin{cases} 0, & t < a \\ 1, & t > a \end{cases}$ $\delta(t-a) = \begin{cases} 0, & t \neq a \\ \infty, & t = a \end{cases}$	e^{-as}	s > 0, $a > 0$
$\sin(at)$	$\frac{a}{s^2 + a^2}$	s > 0
$\cos(at)$	$\frac{s}{s^2 + a^2}$	s > 0
sh(at)	$\frac{a}{s^2 - a^2}$	s > a
ch(at)	$\frac{s}{s^2 - a^2}$	s > a
$t \cdot \sin(at)$	$\frac{a}{s^2 + a^2}$ $\frac{s}{s^2 + a^2}$ $\frac{a}{s^2 - a^2}$ $\frac{s}{s^2 - a^2}$ $\frac{2as}{\left(s^2 + a^2\right)^2}$ $\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$	s > a
$t \cdot \cos(at)$	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$	s > a