Contents

1	Première défs et props	2
	1.1 Faisceautisation	٠

Schémas

25 novembre 2023

1 Première défs et props

Ducoup, X un e.t. et $\mathfrak{Top}(X)$ la catégorie des ouverts de X où les morphismes sont les inclusions.

Definition 1.0.1. Un prefaisceau \mathcal{F} sur X est un foncteur contravariant de \mathfrak{Top} dans Ab/Ring/etc..

Definition 1.0.2. Un faisceau est un préfaisceau qui satisfait des conditions de recollements. Etant donné $s, s' \in \mathcal{F}U = \bigcup U_i$

$$s|_{U_i} = s|_{U_j} \implies s = s'$$

Et si on a des sections locales qui se recollent bien alors il existe une unique section globale qui les relèvent.

Théorème 1.0.3. Les faisceaux sont entièrements déterminés par les stalks, un morphisme de faisceaux

$$\mathcal{F} o \mathcal{G}$$

 $est\ un\ isomorphisme\ ssi\ \forall P$

$$\mathcal{F}_P o\mathcal{G}_P$$

est un isomorphisme.

C'est aussi vrai pour les injection/surjection

1.1 Faisceautisation

On considère:

Definition 1.1.1.

$$\mathcal{F}^+U := \{(s_P) \in \prod_{P \in V} \mathcal{F}_p | \forall P \ \exists V, s_P = (\sigma, U) \in \mathcal{F}_P \}$$

I.e. Les sections sont exactement celles qui sont relevables!

Théorème 1.1.2. \mathcal{F}^+ est un faisceau et il existe $\mathcal{F} \to \mathcal{F}^+$ $t.q \ \forall$ faisceau \mathcal{G} on ait

$$\mathcal{F} o \mathcal{F}^+ o \mathcal{G}$$

avec des propriétés d'unicité.