Cálculo para Engenharia

Funções reais de uma variável real

Maria Elfrida Ralha

Departamento de Matemática (Universidade do Minho)

Licenciatura em Engenharia Informática

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

1/32

Índice

- Noções Básicas
 - Definições
 - Algumas Funções particulares
 - Operações algébricas com funções
 - Composição de funções
 - Restrição e Prolongamento de uma função
 - Características geométricas
 - Função inversa
- 2 Funções trigonométricas (diretas e inversas)
 - Funções trigonométricas Diretas

E. Ralha (DMat) Cálculo para Engenharia LEInf 2023'24 2 / 32

- Função real de variável real é um terno D, E e f onde
 - D e E são dois subconjuntos, não vazios, de $\mathbb R$ e
 - f é uma lei de formação (regra de correspondência) que a cada elemento x de D associa um **único** elemento f(x) de E.

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

3/32

Notações e Terminologia

Nota

• Denota-se a função por

$$f:D\subseteq\mathbb{R}\longrightarrow E\subseteq\mathbb{R}$$

- usar-se-ão as notações $x \mapsto f(x)$ ou $x \rightsquigarrow f(x)$ para indicar que o elemento x (dito 'variável independente', ou 'objeto') de D é transformado por f no elemento f(x) (dito 'variável dependente', ou 'imagem') de E
- o conjunto D designa-se domínio (ou conjunto de partida) da função
- o conjunto E designa-se conjunto de chegada da função

F. Ralha (DMat)

Seja $f:D\subseteq\mathbb{R}\longrightarrow\mathbb{R}$, com $D\neq\emptyset$. Nestas condições,

• a imagem ou contradomínio de f é o subconjunto de E definido por

$$CD_f = \{ f(x) \in \mathbb{R} : x \in D \}$$

ullet o gráfico $^{\mathrm{i}}$ de f é o subconjunto de \mathbb{R}^2 definido por

$$G_f = \{(x, f(x)) \in \mathbb{R}^2 : x \in D\}$$

ⁱO termo "gráfico" também se usa, por vezes, como sinónimo de "representação gráfica"!

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

5/32

Observações

- $f: D \longrightarrow \mathbb{R}$ significa que a função f a cada elemento de D faz corresponder um número real.
- D ⊂ ℝ significa que D é um subconjunto (próprio) de ℝ, isto é, D é um intervalo ou é a reunião de intervalos ou
 Alguns exemplos:

$$D = [1, 2], \quad D =]1, 2], \quad D =]-\infty, 2], \quad D =]1, 2] \cup [5, 6], \quad D = \mathbb{N} \quad \dots$$

- Quando não houver dúvidas denotar-se-á a função $f:D\longrightarrow \mathbb{R}$ simplesmente por f.
- Há diferentes formas para descrever uma funçãoⁱⁱ, nomeadamente
 - tabelas

palavras

- representações gráficas
- fórmulas algébricas

3 . . .

E. Ralha (DMat)

ii Podemos, inclusive, usar mais do que uma em um mesmo problema.

• Seja $f: D \subseteq \mathbb{R} \longrightarrow \mathbb{R}$.

Se
$$f(x)=x^2$$
, então $D=\mathbb{R}$ e $CD=\mathbb{R}_0^+$

$$D = \mathbb{F}$$

$$CD = \mathbb{R}_0^+$$

Se
$$f(x)=rac{1}{x}$$
, então $D=\mathbb{R}\setminus\{0\}$ e $CD=\mathbb{R}\setminus\{0\}$
Se $f(x)=\sqrt{x}$, então $D=\mathbb{R}_0^+$ e $CD=[0,+\infty[$

$$D=\mathbb{R}\setminus\{0\}$$

$$CD = \mathbb{R} \setminus \{0\}$$

Se
$$f(x) = \sqrt{x}$$
,

$$D = \mathbb{R}_0^+$$

Se
$$f(x) = \sqrt{4-x}$$
,

$$D=]-\infty,4]$$

Se
$$f(x)=\sqrt{4-x}$$
, então $D=]-\infty,4]$ e $CD=\mathbb{R}_0^+$
Se $f(x)=\sqrt{1-x^2}$, então $D=[-1,1]$ e $CD=[0,1]$

$$D = [-1, 1]$$

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

7/32

Funções: Representações Gráficasiii

Seja $f: [-2,2] \subseteq \mathbb{R} \longrightarrow \mathbb{R}$, definida por $f(x) = x^2$.

Construa-se uma tabela adequada, para $x=-2,\,-1,\,0,\,1,\,\frac{3}{2},\,2$ e representem-se, num referencial adequado, os pontos encontrados.

Como sabemos qual é a representação gráfica da função f?

O Cálculo responderá a esta questão...

• $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por

$$f(x) = a_n x^n + \cdots + a_1 x + a_0$$

onde $n \in \mathbb{N}_0$ e a_0, \ldots, a_n são números reais tais que $a_n \neq 0$, denomina-se função polinomial de grau n.

- Uma função polinomial descrita por um polinómio de grau zero diz-se função constante.
- Uma função polinomial descrita por um polinómio de grau um diz-se função linear.
- Uma função racional g é uma função real de variável real definida por

$$g(x) = \frac{p(x)}{q(x)}$$

onde p e q são funções polinomiais. O domínio de g é o conjunto $D_g = \{x \in \mathbb{R} \mid q(x) \neq 0\}$.

 Outras funções, reais de variáveis reais, podem ser: algébricas, trigonométricas, exponenciais, logarítmicas, transcendentais, ...

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

9 / 32

• A função valor absoluto^{iv} é uma função $|\cdot|:\mathbb{R}\longrightarrow\mathbb{R}$ que pode ser definida por 'ramos', nomeadamente:

$$|x| := \begin{cases} -x, & \text{se } x < 0 \\ x, & \text{se } x \ge 0. \end{cases}$$

lacktriangle A função identidade $id_{\mathbb{R}}$ é uma função polinomial (de $1.^o$ grau) definida, em \mathbb{R} , por

$$id_{\mathbb{R}}(x) = x$$

- As funções chão e tecto:
 - A função, real de variável real, que a cada número real, x, faz corresponder 'o maior número inteiro, menor do que ou igual a x', denomina-se função chão e escreve-se

$$|x| = m\acute{a}x\{m \in \mathbb{Z} : m \le x\}$$

 A função, real de variável real, que a cada número real, x, faz corresponder 'o menor número inteiro, maior do que ou igual a x', denomina-se função tecto e escreve-se

$$\lceil x \rceil = min\{m \in \mathbb{Z} : x \le m\}$$

 $^{^{\}mathsf{iv}}\mathsf{Vd}.\ \mathsf{Apontamentos}\ \mathsf{sobre}\ \mathbb{R},\ \mathsf{Slides1}.$

Operações algébricas com funções

Sejam $A, B \subseteq \mathbb{R}$, com $A \cap B \neq \emptyset$ e f e g duas funções tais que

$$f:A\longrightarrow \mathbb{R}$$
 e $g:B\longrightarrow \mathbb{R}$

lacksquare A soma de (/diferença entre) f e g é a função $f\pm g:A\cap B\longrightarrow \mathbb{R}$ definida por

$$(f \pm g)(x) = f(x) \pm g(x)$$

 $lackbox{0}$ O produto de f e g é a função $f \times g : A \cap B \longrightarrow \mathbb{R}$ definida por

$$(f \times g)(x) = f(x) \times g(x)$$

• O quociente entre f e g é a função $\frac{f}{g}:D\longrightarrow\mathbb{R}$, com $D=A\cap\{x\in B:g(x)\neq 0\}$ e definida por

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

11/32

Composição de funções

ullet Sejam D_f,D_g,B,C subconjuntos não vazios de $\mathbb R$, tais que $B\cap D_g
eq\emptyset$ e

$$f: D_f \longrightarrow B$$
 e $g: D_g \longrightarrow C$

duas funções.

A função composta de g e f, denotada $g \circ f$, é a função definida por

$$g \circ f : D \longrightarrow C$$

 $x \rightsquigarrow (g \circ f)(x) = g(f(x))$

onde

$$D = \{x \in D_f : f(x) \in D_g\}.$$

Sejam

$$f:]0, +\infty[\longrightarrow \mathbb{R},$$
 $f(x) = \sqrt{x}$
 $g: \mathbb{R} \longrightarrow \mathbb{R}$ $g(x) = x^2.$

Caracterize, se possível, as funções f+g, $f\times g$, $\frac{f}{g}$, $g\circ f$ e $f\circ g$.

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

13 / 32

Restrição de uma função

• A restrição de uma função $f:A\longrightarrow \mathbb{R}$ a um subconjunto $X\subset A$ é a função $f|_X:X\longrightarrow \mathbb{R}$ definida por

$$f\Big|_X(x) = f(x), \quad \forall x \in X$$

• Um prolongamento de uma função $g: X \longrightarrow \mathbb{R}$ a um conjunto $A \supset X$ é uma função $f: A \longrightarrow \mathbb{R}$ que coincida com g em X, isto é, tal que

$$f\Big|_X(x)=g(x), \qquad \forall x\in X$$

Nota

Uma restrição (de uma função) é única mas um prolongamento não!

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

15 / 32

Exemplo

• Seja
$$f:[0,5] \longrightarrow \mathbb{R}, \qquad f(x)=x^2$$

• Restrição de f a X=[1,2] é a função $h=f\big|_{[1,2]}$, com

$$h: [1,2] \longrightarrow \mathbb{R}, \qquad h(x) = x^2$$

• Prolongamento de f a A = [-5, 5] é, por exemplo,

•
$$g: [-5,5] \longrightarrow \mathbb{R}, \qquad g(x) = x^2$$

•
$$\ell$$
: $[-5,5] \longrightarrow \mathbb{R}$, $\ell(x) = \begin{cases} x^2, & x \in [0,5]; \\ 0, & x \in [-5,0[$

•

Seja $D \subset \mathbb{R}$ e $f: D \longrightarrow \mathbb{R}$ uma função. Diz-se que:

• f é uma função par quando $\forall x \in D, (-x) \in D$ e f(-x) = f(x)

A representação gráfica de uma função par exibe simetria relativamente ao eixo das ordenadas.

• f é uma função ímpar quando $\forall x \in D$, $(-x) \in D$ e f(-x) = -f(x)

A representação gráfica de uma função ímpar exibe simetria relativamente à origem do referencial.

• f é uma função periódica, de período p, quando $\forall x \in D$, $(x + p) \in D$ e f(x + p) = f(x)

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

17 / 32

Exercícios

- $f:[0,5] \longrightarrow \mathbb{R}, \qquad f(x)=x^2$ não é par
- $h: [-1,2] \longrightarrow \mathbb{R}, \qquad h(x) = x^2$ não é par
- $g:[-5,5] \longrightarrow \mathbb{R}, \qquad g(x)=x^2$ é par
- $ullet \ \ell \,:\, [-5,5] \longrightarrow \mathbb{R}, \qquad \ell(x) = \left\{ egin{array}{ll} x^2, & x \in [0,5]; \ 0, & x \in [-5,0[\end{array}
 ight.$ não é par

Sugestão: Represente graficamente estas funções.

Limitação!

Seja $D \subset \mathbb{R}$. Diz-se que a função $f:D \longrightarrow \mathbb{R}$ é

- majorada quando $\exists M \in \mathbb{R} : f(x) \leq M \qquad \forall x \in D$
- minorada quando $\exists m \in \mathbb{R} : f(x) \ge m \quad \forall x \in D$
- limitada se f é majorada e minorada, isto é,

$$\exists A \in \mathbb{R}^+ : \forall x \in D \quad |f(x)| \leq A.$$

- crescente (em sentido lato) quando $\forall x,y \in D$ $x < y \Rightarrow f(x) \le f(y)$
- decrescente (em sentido estrito) quando $\forall x, y \in D$ $x < y \Rightarrow f(x) > f(y)$
- monótona quando f é crescente ou decrescente.

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

19 / 32

Bijetividade

Sejam $D, E \subset \mathbb{R}$. Uma função $f: D \longrightarrow E$ diz-se

injetiva quando

$$\forall x, y \in D \quad x \neq y \Rightarrow f(x) \neq f(y)$$

sobrejetiva quando

$$\forall y \in E \quad \exists x \in D: \quad f(x) = y$$

• bijetiva quando é simultaneamente injetiva e sobrejetiva.

• Não é injetiva nem sobrejetiva a função

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto f(x) = x^2$$

• Não é injetiva mas é sobrejetiva a função

$$g: \mathbb{R} \longrightarrow [0, +\infty[$$

 $x \longmapsto g(x) = x^2$

• É injetiva e sobrejetiva, logo bijetiva, a função

$$h:]-\infty, 0] \longrightarrow [0, +\infty[$$

 $x \longmapsto h(x) = x^2$

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

21 / 32

Função inversa

Sejam D e E subconjuntos não vazios de $\mathbb R$ e

$$f: D \longrightarrow E$$

 $x \rightsquigarrow f(x) = y$

uma função bijetiva.

A função de E em D que
 a y ∈ E faz corresponder o único x ∈ D tal que f(x) = y diz-se função inversa de f e é denotada por f⁻¹.

Nota

Não confundir a função inversa de f –i.é. f^{-1} – com o inverso da função f –i.é. $\frac{1}{f}$.

Propriedades da função inversa

Seja $f: D \longrightarrow E$ uma função bijetiva.

- lacktriangle Se $g: E \longrightarrow D$ é uma função bijetiva, então g é a função inversa de f se e só se
 - g(f(x)) = x, $\forall x \in D$;
 - f(g(y)) = y, $\forall y \in E$.
- ② Se g é a função inversa de f, então

 - $D_f = \mathrm{CD}_g$; $\mathrm{CD}_f = D_g$; $g^{-1} = f$.

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

23 / 32

Representação gráfica de uma função e da sua inversa

Partindo de uma representação gráfica da função f pode obter-se uma representação gráfica de f^{-1} . Por exemplo:

- A função $f: \mathbb{R} \longrightarrow \mathbb{R}_0^+$, tal que $f(x) = x^2$ tem inversa?
- Indique, caracterizando, uma restrição de f que admita função inversa. Designe-a por g.
- Defina a função inversa de g.

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

25 / 32

Índice

- Noções Básicas
 - Definições
 - Algumas Funções particulares
 - Operações algébricas com funções
 - Composição de funções
 - Restrição e Prolongamento de uma função
 - Características geométricas
 - Função inversa
- Punções trigonométricas (diretas e inversas)
 - Funções trigonométricas Diretas

E. Ralha (DMat) Cálculo para Engenharia LEInf 2023'24 26 / 32

Seno

 $y = \sin x,$ $D_{\text{sen}} = \mathbb{R},$

 $\mathrm{CD}_{\mathrm{sen}} = [-1, 1]$

Período: 2π

Paridade: Ímpar

E. Ralha (DMat)

Cálculo para Engenharia

Cossecante

(O inverso do Seno)

$$\begin{aligned} y &= \operatorname{cosec} x \left(:= \frac{1}{\operatorname{sen} x} \right), \\ \mathbf{D}_{\operatorname{cosec}} &= \left\{ x \in \mathbb{R} : \ x \neq k \, \pi, \ k \in \mathbb{Z} \right\}, \\ \mathbf{CD}_{\operatorname{cosec}} &= \mathbb{R} \setminus \left] - 1, 1 \right[\end{aligned}$$

Período: 2π

Paridade: Ímpar

27 / 32

Funções Trigonométricas Diretas

Cosseno

 $y = \cos x$

 $D_{\mathsf{cos}} = \mathbb{R},$

 $\mathrm{CD}_\mathsf{cos} = [-1, 1]$

Período: 2π

Paridade: Par

Cosseno & Secante

Secante

(O inverso do Cosseno)

LEInf 2023'24

$$y = \sec x \left(:= \frac{1}{\cos x} \right),$$

$$D_{\mathsf{sec}} = \{ x \in \mathbb{R} : x \neq k \, \frac{\pi}{2}, \, k \in \mathbb{Z} \},$$
$$CD_{\mathsf{sec}} = \mathbb{R} \setminus [-1, 1[$$

Período: 2π

Paridade: Par

Tangente

$y = \operatorname{tg} x \left(:= \frac{\operatorname{sen} x}{\operatorname{cos} x} \right),$ $D_{\mathrm{tg}} = \{ x \in \mathbb{R} : x \neq \frac{\pi}{2} + k \pi, \ k \in \mathbb{Z} \},$

 $\mathrm{CD}_{\mathrm{tg}} = \mathbb{R}$

Período: π

Paridade: Ímpar

Cotangente

(O inverso do Tangente)

$$y = \cot x \left(:= \frac{1}{\tan x} \right),\,$$

 $\mathbf{D}_{\mathrm{cotg}} = \{ x \in \mathbb{R} : \, x \neq k \, \pi, \, k \in \mathbb{Z} \},\,$

 $CD_{cotg} = \mathbb{R}$

Período: π

Paridade: Ímpar

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

29 / 32

Algumas identidades trigonométricas^v

Fórmula Fundamental da Trigonometria:

$$\cos^2 \theta + \sin^2 \theta = 1$$
.

- $1 + \operatorname{tg}^2 \theta = \sec^2 \theta$, $1 + \operatorname{cotg}^2 \theta = \operatorname{cosec}^2 \theta$.
- cos(A + B) = cos A cos B sen A sen B, sen (A + B) = sen A cos B + cos A sen B.
- $\bullet \ \sin^2\theta = \frac{1 \cos 2\theta}{2}$ $\cos^2\theta = \frac{1+\cos 2\theta}{2}$
- ullet Lei dos cossenos: Se a, b, e c são os lados de um triângulo ABC e hetafor o ângulo oposto a c, então

$$c^2 = a^2 + b^2 - 2ab\cos\theta.$$

^VFormulário disponível na plataforma e-learning. Admissível, para consulta individual e sem rasuras, nas provas de avaliação.

Recorde e complete

х	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sen x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Porquê?

E. Ralha (DMat)

Cálculo para Engenharia

LEInf 2023'24

31 / 32

$$y = a f(b(x+c)) + d$$

Transformações de gráficos trigonométricos

Sejam f, uma função trigonométrica e a, b, c e d números reais. A função, real de variável real, definida por

$$y = a f(b(x+c)) + d,$$

é tal que

- |a| determina a amplitude: estiramento ou compressão verticais.
- |b| determina o período: estiramento ou compressão horizontais.
- c determina um deslocamento horizontal.
- d determina um deslocamento vertical.

