第 31 回 Tokyo.R

はじめよう多変量解析 ~ 主成分分析編 ~

@sanoche16

About me

About me

- ・佐野宏喜、@sanoche16
- ・現在の地位はフリーター(システムエンジニア) 注)ニートではありません!!
- PHP, Python, Linux, Java, Ruby, assembler
- ・商学部出身
- ・最近、機械学習の勉強を始めました!
- ・修行が終わったら起業します!

agenda

agenda

- 1、多変量解析とは
- 2、主成分分析の簡単なお話
- 3、2次元から多次元に
- 4、量的データから質的データに

多変量解析とは?

「多数の変量を持つデータを 用いた分析」

例えば・・・

变量

		広告費	社員数	会員数	売上
	A 社	12 億円	2000人	100 万人	200 億円
•	B社	2 億円	1200人	150 万人	750 億円
	C 社	10 億円	800人	60 万人	600 億円
	D社	8 億円	1000人	200 万人	?

例えば・・・

变量

	広告費	社員数	会員数	売上
A 社	12 億円	2000人	100 万人	200 億円
B社	2 億円	1200人	150 万人	750 億円
C社	10 億円	800人	60 万人	600 億円
D社	8 億円	1000人	200 万人	?

D社の売上はいくらと予想出来るか!?

例えば・・・

变量

		広告費	社員数	会員数	売上
	A 社	12 億円	2000人	100 万人	200 億円
,	B社	2 億円	1200人	150 万人	750 億円
	C 社	10 億円	800人	60 万人	500 億円
	D社	8 億円	1000人	200 万人	550 億円

例えば・・・

变量

		広告費	社員数	会員数	売上
	A 社	12 億円	2000 人	100 万人	200 億円
,	B社	2 億円	1200人	150 万人	750 億円
	C 社	10 億円	800人	60 万人	500 億円
	D社	8 億円	1000人	200 万人	550 億円

データ

予測出来た!

例えば・・・

丌下	
' '	
	#

	国語	数学	社会	理科
A 君	82 点	68 点	92 点	76 点
B 君	76 点	98 点	58 点	62 点
C 君	80 点	92 点	72 点	86 点
D 君	86 点	74 点	82 点	90 点

例えば・・・

变量

	国語	数学	社会	理科
A君	82 点	68 点	92 点	76 点
B君	76 点	98 点	58 点	62 点
C君	80 点	92 点	72 点	86 点
D君	86 点	74 点	82 点	90 点

2 つのタイプに分けたい!

例えば・・・

Cluster Dendrogram

文系

例えば・・・

Cluster Dendrogram

文系

2つに分けられた!

多変量解析を行うには?

1変量・2変量の分析が出来なければいけない! 必要な知識

平均・分散・共分散・相関係数・行列演算

たったこれだけ!!

多変量解析を行うには?

1変量・2変量の分析が出来なければいけない! 必要な知識

平均・分散・共分散・相関係数・行列演算たったこれだけ!!

とは言え必要な知識

微分積分・分布(正規分布など)

多変量解析を行うには?

1変量・2変量の分析が出来なければいけない! 必要な知識

平均・分散・共分散・相関係数・行列演算

たったこれだけ!!

とは言え必要な知識

微分積分・分布(正規分布)

注)数式を使って統計学を学びましょう。

多変量解析の例

回帰分析・主成分分析・因子分析・判別分析・・・

多変量解析の例

回帰分析・主成分分析・因子分析・判別分析・・・

本日はこれ

2、主成分分析の簡単分が話

以下の8社を企業の規模順に並べたいとする

注)単位は十億円

		7五 / 一座15 1 1815
	時価総額	純資産
ガンホー	1,267	32
マツモトキヨシ	137	137
旭化成	952	824
キリン	1662	1278
アオキ	139	111
資生堂	601	304
第一生命	1412	1649
シャープ	629	135

以下の8社を企業の規模順に並べたいとする

注)単位は十億円

	時価総額	純資産
ガンホー	1,267	32
マツモトキヨシ	137	137
旭化成	952	824
キリン	1662	1278
アオキ	139	111
資生堂	601	304
第一生命	1412	1649
シャープ	629	135

どれが大企業か??

2次元だと分かりにくい!!

2次元だと分かりにくい!!

出来れば得点をつけて1列に並べたい!!

2次元だと分かりにくい!!

出来れば得点をつけて1列に並べたい!!

=> 得点をつける方法 を考える

TRY IT!!

- ~まとめ~
- ・主成分分析(2次元の場合)とは?
 - 2次元データ(時価総額と純資産)を変換して1次元
 - (企業規模を表す得点)データに置き換えること

- ~ まとめ~
- ・主成分分析(2次元の場合)とは? 2次元データ(時価総額と純資産)を変換して1次元 (企業規模を表す得点)データに置き換えること

分かりやすい! 超便利!!

みんな大好きな数学のお話 ___

そもそも問題は。。。

「企業の規模を時価総額と純資産の両方を考慮して評価 したい」 => 重み付けして考える

企業規模をzとおく。

時価総額を x1、純資産を x2 とおいて

$$z = a_1 x_1 + a_2 x_2$$

という式を作り上げればよい

例えば $z = x_1 + x_2$

	時価総額 (x1)	純資産 (x2)	x1	x2	Z
ガンホー	1,267	32	1,267	32	1299
マツモトキヨシ	137	137	137	137	274
旭化成	952	824	952	824	1776
キリン	1662	1278	1662	1278	2940
アオキ	139	111	139	111	250
資生堂	601	304	601	304	905
第一生命	1412	1649	1412	1649	3061
シャープ	629	135	629	135	764

例えば $z = x_1 + 2x_2$

	時価総額 (x1)	純資産 (x2)	x1	2 × x2	Z
ガンホー	1,267	32	1,267	64	1331
マツモトキヨシ	137	137	137	274	411
旭化成	952	824	952	1648	2600
キリン	1662	1278	1662	2556	4218
アオキ	139	111	139	222	361
資生堂	601	304	601	608	1209
第一生命	1412	1649	1412	3298	4710
シャープ	629	135	629	270	899

例えば $z = 3x_1 + x_2$

	時価総額 (x1)	純資産 (x2)	3 × x1	x2	Z
ガンホー	1,267	32	3809	32	3833
マツモトキヨシ	137	137	411	137	548
旭化成	952	824	2856	824	3680
キリン	1662	1278	4986	1278	6264
アオキ	139	111	417	111	528
資生堂	601	304	1803	304	2107
第一生命	1412	1649	4236	1649	5885
シャープ	629	135	1887	135	2022

一般化

	時価総額 (x1)	純資産 (x2)	a1 × x1	a2 × x2	Z
ガンホー	1,267	32	1267a1	32a2	1267a1 + 32 a2
マツモトキヨシ	137	137	137a1	137a2	137a1 + 137a2
旭化成	952	824	952a1	824a2	952a1 + 824a2
キリン	1662	1278	1662a1	1278a2	1662a1 + 1278a2
アオキ	139	111	139a1	111a2	139a1 + 111a2
資生堂	601	304	601a1	304a2	601a1 + 304a2
第一生命	1412	1649	1412a1	1649a2	1412a1 + 1649a2
シャープ	629	135	629a1	135a2	629a1 + 135a2

一般化

	時価総額 (x1)	純資産 (x2)	a1 × x1	a2 × x2	Z
ガンホー	1,267	32	1267a1	32a2	1267a1 + 32 a2
マツモトキヨシ	137	137	137a1	137a2	137a1 + 137a2
旭化成	952	824	952a1	824a2	952a1 + 824a2
キリン	1662	1278	1662a1	1278a2	1662a1 + 1278a2
アオキ	139	111	139a1	111a2	139a1 + 111a2
資生堂	601	304	601a1	304a2	601a1 + 304a2
第一生命	1412	1649	1412a1	1649a2	1412a1 + 1649a2
シャープ	629	135	629a1	135a2	629a1 + 135a2

$$z = a_1 x_1 + a_2 x_2$$
 $\geq 5 <$

どうやって a1, a2 を決めればよいか??

一般化

	時価総額 (x1)	純資産 (x2)	a1 × x1	a2 × x2	Z
ガンホー	1,267	32	1267a1	32a2	1267a1 + 32 a2
マツモトキヨシ	137	137	137a1	137a2	137a1 + 137a2
旭化成	952	824	952a1	824a2	952a1 + 824a2
キリン	1662	1278	1662a1	1278a2	1662a1 + 1278a2
アオキ	139	111	139a1	111a2	139a1 + 111a2
資生堂	601	304	601a1	304a2	601a1 + 304a2
第一生命	1412	1649	1412a1	1649a2	1412a1 + 1649a2
シャープ	629	135	629a1	135a2	629a1 + 135a2

z で会社の規模を判断したい =>z が最もバラつくように a1, a2 決める

=>z の分散を最大化するように a1, a2 を決める!

一般化

zの平均:
$$849.875a_1 + 558.75a_2$$

zの分散:

zの分散を最大化させるような a1, a2 を決める

一般化

z の分散: $326316a_1^2 + 382372a_2^2 - 2 \times 254327a_1a_2$

これだけでは a1, a2 は決まらない(当たり前)

=> a1 と a2 の関係を決める必要がある

$$\Rightarrow a_1^2 + a_2^2 = 1$$
 を制約条件式とする

※ これ以外の制約式を使った事がある方がいれ ばぜひ教えてください!

一般化

要するに

$$a_1^2 + a_2^2 = 1$$

の元で

$$326316a_1^2 + 382372a_2^2 - 2 \times 254327a_1a_2$$

を最大化

=> 条件付き極値問題に帰着出来た!

注)理系数学を学んでいない方はこの辺りから少々難しくなってくる かも知れませんが、実際やってみるととても簡単なお話です。

一般化

ラグランジュの乗数法を使って解く!

$$a_1^2 + a_2^2 = 1$$

$$326316a_1^2 + 382372a_2^2 - 2 \times 254327a_1a_2$$

から

$$g(a_1, a_2) = 326316a_1^2 + 382372a_2^2 - 2 \times 254327a_1a_2$$

$$f(a_1, a_2) = a_1^2 + a_2^2 - 1 = 0$$

とおくと

$$g_{a_1} = 2 \times 326316a_1 - 2 \times 254327a_2$$

$$g_{a_2} = 2 \times 382372a_2 - 2 \times 254327a_1$$

$$f_{a_1} = 2a_1, f_{a_2} = 2a_2$$

一般化

よって

$$326316a_1 - 254327a_2 - \lambda a_1 = 0$$
$$-254327a_1 + 382372a_2 - \lambda a_2 = 0$$

を解けばよい!

行列を用いて表現すると

$$\begin{bmatrix} 326316 & -254327 \\ -254327 & 382372 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \lambda \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

分散共分散行列

一般化

よって

$$326316a_1 - 254327a_2 - \lambda a_1 = 0$$

$$-254327a_1 + 382372a_2 - \lambda a_2 = 0$$

を解けばよい!

行列を用いて表現すると

$$\begin{bmatrix} 326316 & -254327 \\ -254327 & 382372 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \lambda \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

分散共分散行列

固有値問題になった!

一般化

ところで

$$326316a_1 - 254327a_2 - \lambda a_1 = 0$$

$$-254327a_1 + 382372a_2 - \lambda a_2 = 0$$

を上式×a1、下式×a2をして足してみると

$$326316a_1^2 + 382372a_2^2 - 2 \times 254327a_1a_2 = \lambda$$

zの分散になった!

λはΖの分散だった!

一般化

Rを使って解いてみる

```
> x1 <-c(1267,137,952,1662,139,601,1412,629)
> x2 <-c(32, 137, 824, 1278, 111, 304, 1649, 135)
> data <- data.frame(x1, x2)</pre>
 eigen(var(data))
$values
[1] 610211.2 98476.9
$vectors
          [,1] [,2]
[1,] 0.6672553 -0.7448291
   0.7448291 0.6672553
```


解けた!

一般化

 $\lambda = 610211.2, 98476.9 \succeq$

2 つ出てくるが、分散 (λ) の大きい方を選べばよいよって、 $\lambda = 610211.2$ のとき、

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0.67 \\ 0.74 \end{bmatrix}$$

となる!

一般化

 $\lambda = 610211.2, 98476.9$ と 2 つ出てくるが、分散 (λ) の大きい方を選べばよいよって、 $\lambda = 610211.2$ のとき、

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0.67 \\ 0.74 \end{bmatrix}$$

となる!

実際に使ってみる

	時価総額 (x1)	純資産 (x2)	0.67 × x1	0.74 × x2	Z
ガンホー	1,267	32	848.89	23.68	872.57
マツモトキヨシ	137	137	91.79	101.38	193.17
旭化成	952	824	637.84	609.76	1247.60
キリン	1662	1278	1113.54	945.72	2059.26
アオキ	139	111	93.13	82.14	175.27
資生堂	601	304	402.67	224.96	627.63
第一生命	1412	1649	946.04	1220.26	2166.30
シャープ	629	135	421.43	99.90	521.33

実際に使ってみる

	時価総額 (x1)	純資産 (x2)	0.67 × x1	0.74 × x2	Z
ガンホー	1,267	32	848.89	23.68	872.57
マツモトキヨシ	137	137	91.79	101.38	193.17
旭化成	952	824	637.84	609.76	1247.60
キリン	1662	1278	1113.54	945.72	2059.26
アオキ	139	111	93.13	82.14	175.27
資生堂	601	304	402.67	224.96	627.63
第一生命	1412	1649	946.04	1220.26	2166.30
シャープ	629	135	421.43	99.90	521.33

主成分得点が出せた!

さらに上へ

もうひとつの

$$\lambda = 98476.9$$

لح

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} -0.74 \\ 0.67 \end{bmatrix}$$

とはなんだろうか??

比べてみる

・固有値

$$\lambda = 610211.2$$

 $\lambda = 98476.9$

・固有ベクトル

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} -0.74 \\ 0.67 \end{bmatrix} \qquad \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0.67 \\ 0.74 \end{bmatrix}$$

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0.67 \\ 0.74 \end{bmatrix}$$

直行している!!

1本だけだと

1本だけだと

もう1本引くことで

ふと疑問

第1主成分だけでどれくらい 表現出来ているのか?

寄与率

- ・λは1つの主成分得点の分散を表している
- ・すべての主成分の分散により、すべてのデータの分散が 表現できる

ので

第1主成分の寄与率(どれくらい説明出来ているか)は

$$\frac{\lambda_1}{\lambda_1 + \lambda_2}$$

今回は

· 2 つの λ は 610211.2 と 98476.9 なので

第1主成分の寄与率 =
$$\frac{610211.2}{610211.2 + 98476.9} = 86.1\%$$

第 2 主成分の寄与率 =
$$\frac{98476.9}{610211.2 + 98476.9} = 13.9\%$$

主成分の解釈

- ・ところで主成分とは??
- ・数学的な解釈はここまでなのであとは勘と経験で解釈する

$$z_1 = 0.67x_1 + 0.74x_2$$

$$z_2 = -0.74x_1 + 0.67x_2$$

- z1 は時価総額・純資産共に高ければ高いほど良い
 - =>企業の規模を表す(はず)
- z2 は時価総額が低いほどよく、純資産が高いほどよい
 - => 企業への期待の少なさを表す (はず)

R を用いて

- ~ Rでやってみる~
- ・ prcomp 関数にデータフレームを入れれば良い

第1主成分 第2主成分

注)データを標準化して分析したい場合は prcomp 関数の引数 scale に T を指定する

Rを用いて

個々の主成分得点はxにアクセス

	PC1	PC2
gunho	114.0099	-662.16355
matsukiyo	789.8013	249.55516
asahikasei	-265.7094	100.92378
kirin	-1077.6130	-124.97101
aoki	807.8323	230.71686
shiseido	355.8084	15.38607
daiichi	-1187.1308	308.78797
sharp	463.0013	-118.23528

R を用いて

寄与率は要約でみる(λ(分散)の平方根、寄与率、累積 寄与率を表示)

```
> summary(pca)
Importance of components:
PC1 PC2
Standard deviation 781.160 313.810
Proportion of Variance 0.861 0.139
Cumulative Proportion 0.861 1.000
```


R を用いて

寄与率は要約でみる(λ(分散)の平方根、寄与率、累積 寄与率を表示)

出来た!

Rを用いて

可視化は biplot を利用するとよい

> biplot(pca)

主成分の2軸にそってデータを plot してくれる!

多次元の主成分分析

- ・基本的に2次元の主成分分析と変わらない
- ・次元(軸)の数だけ主成分が出てくる
- ・主成分得点の形:

$$z_1 = a_{11}x_1 + a_{12}x_2 \cdots a_{1n}x_n$$

$$z_2 = a_{21}x_1 + a_{22}x_2 \cdots a_{2n}x_n$$

 \sim $-\alpha$ m $+\alpha$ m $-\alpha$

$$z_n = a_{n1}x_1 + a_{n2}x_2 \cdots a_{nn}x_n$$

実際にやってみる

6/1 に yahoo より作成

	安打	本塁打	打点	三振	四球
松本	27	3	9	19	4
山崎	10	1	6	8	1
田村	23	4	15	19	11
ブランコ	64	21	58	45	29
中村	54	7	25	23	19
後藤	7	2	4	7	2
荒波	35	0	5	26	8
鶴岡	19	0	11	13	7

データの作成

```
> anda<-c(27,10,23,64,54,7,35,19)
> honruida<-c(3,1,4,21,7,2,0,0)</p>
> daten<-c(9,6,15,58,25,4,5,11)
> sanshin<-c(19, 8, 19, 45, 23, 7, 26, 13)
> shikyu<-c(4, 1, 11, 29, 19, 2, 8, 7)
> data <- data.frame(anda, honruida, daten, sanshin, shikyu, row.names=c("松本"
 "山崎", "田村", "ブランコ", "中村", "後藤", "荒波","鶴岡"))
> data
         anda honruida daten sanshin shikyu
           27
                                  19
          10
                          6
                         15
          23
                                 19
                                        11
          64
                         58
                                 45
                   21
           54
                         25
                                 23
                                         19
          35
                     0
                                 26
                                         8
           19
                          11
                                  13
```


結果

```
pca <- prcomp(data, scale.=TRUE)</pre>
> pca
Standard deviations:
[1] 2.13758020 0.53075484 0.32502347 0.18494237 0.09594912
Rotation:
               PC1
                          PC2
                                      PC3
                                                 PC4
                                                               PC5
anda
        0.4387867 0.58619452 0.33480489 -0.5792111
                                                      0.1275241356
honruida 0.4425334 -0.57258817 -0.18286015 -0.4565481 -0.4841827800
daten 0.4537569 -0.43070140 0.09751365 0.1321312 0.7626489207
sanshin 0.4427319 0.37385746 -0.76934362 0.2689409 -0.0005057743
shikyu
                               0.50305997 0.6052193 -0.4094764930
        0.4579559
                   0.05697088
> summary(pca)
Importance of components:
                                 PC2
                                         PC3
                                                 PC4
                         PC1
                                                         PC5
Standard deviation
                      2.1376 0.53075 0.32502 0.18494 0.09595
Proportion of Variance 0.9139 0.05634 0.02113 0.00684 0.00184
Cumulative Proportion 0.9139 0.97019 0.99132 0.99816 1.00000
```


結果

```
pca <- prcomp(data, scale.=TRUE)</pre>
> pca
Standard deviations:
[1] 2.13758020 0.53075484 0.32502347 0.18494237 0.09594912
Rotation:
               PC1
                          PC2
                                      PC3
                                                 PC4
                                                               PC5
anda
        0.4387867
                   0.58619452 0.33480489 -0.5792111
                                                      0.1275241356
honruida 0.4425334 -0.57258817 -0.18286015 -0.4565481 -0.4841827800
daten 0.4537569 -0.43070140 0.09751365 0.1321312 0.7626489207
sanshin 0.4427319 0.37385746 -0.76934362 0.2689409 -0.0005057743
shikyu
                               0.50305997 0.6052193 -0.4094764930
        0.4579559
                   0.05697088
> summary(pca)
Importance of components:
                                 PC2
                                         PC3
                                                 PC4
                         PC1
                                                         PC5
Standard deviation
                      2.1376 0.53075 0.32502 0.18494 0.09595
Proportion of Variance 0.9139 0.05634 0.02113 0.00684 0.00184
Cumulative Proportion 0.9139 0.97019 0.99132 0.99816 1.00000
```


結果

・第1主成分

z = 0.44× 安打 + 0.44× 本塁打 + 0.45× 打点 + 0.44× 三振 + 0.46× 四球 => どれだけ試合に出場しているか

・第2主成分

z = 0.59×安打 - 0.57×本塁打 - 0.43×打点 + 0.37×三振 + 0.06×四球 => 短打力(逆は長打力)

・第3主成分

z = 0.33×安打 - 0.18×本塁打 + 0.10×打点 - 0.77×三振 + 0.50×四球 => 逃げる力(三振をとにかく回避)

可視化

> biplot(pca, c=2:3)

可視化

実は中村とブランコはタイプが全然違う!!

これまでのもの

- ・データはすべて量的データであった (例:売上、時価総額、点数、打数・・・)
- ・質的データ(Rのfactor)の分析は出来ないか??(例:美味しさ、清潔さ、香り、コク・・・)

=> 質的データも量的データに変換して考える

例えば

- ・アンケートをとる(問)運転をしますか?(1)する (2)しない
 - (問)甘いものは好きですか?
 - (1)大好き (2)好き (3)好きではない

例えば

```
・アンケートをとる

(問)運転をしますか?

(1)する (2)しない

=>1点、0点

(問)甘いものは好きですか?

(1)大好き (2)好き (3)好きではない

=>1点、0点、-1点
```

それぞれを得点化する!

とても良い記事

Markezineの Excel ビジネス統計

ということで拝借

	コク	香り	酸味
Sマルタ	-0.116248	1.2456822	1.5275252
モーニングS	-1.278724	-1.245682	0.0727393
BOSS	1.0462287	-0.415227	0.8001323
FIRE	1.0462287	0.4152274	-0.654654
サンタマルタ	1.0462287	1.2456822	1.5275252
BLACK 無糖	0.4649906	-0.415227	-0.654654
UCCB	-1.278724	1.2456822	-1.382047
ジョージア B	-1.278724	-1.245682	-1.382047
ROOT	-0.697486	-1.245682	0.0727393
WANDA	1.0462287	0.4152274	0.0727393

データの作成

```
> KOKU<-c(-0.116248, -1.278724, 1.0462287, 1.0462287, 1.0462287, 0.4649906, -1.2
78724, -1.278724,-0.697486,1.0462287)
> KAORI <- c(1.2456822, -1.245682, -0.415227, 0.4152274, 1.2456822, -0.415227, 1
.2456822, -1.245682, -1.245682, 0.4152274)
> SANMI <- c(1.5275252, 0.0727393, 0.8001323, -0.654654, 1.5275252, -0.654654,
1.382047, -1.382047, 0.0727393, 0.0727393)
> data <- data.frame(KOKU, KAORI, SANMI, row.names=c("Sマルタ", "モーニングS", '
BOSS","FIRE","サンタマルタ","BLACK無糖","UCCB","ジョ ―ジアB","ROOT","WAND
A"))
> data
                 KOKU
                          KAORI
                                    SANMI
Sマルタ
           -0.1162480 1.2456822 1.5275252
モーニングS -1.2787240 -1.2456820 0.0727393
BOSS
      1.0462287 -0.4152270 0.8001323
FIRE
       1.0462287 0.4152274 -0.6546540
サンタマルタ 1.0462287 1.2456822 1.5275252
BLACK無糖 0.4649906 -0.4152270 -0.6546540
UCCB
       -1.2787240 1.2456822 -1.3820470
ジョ — ジアB -1.2787240 -1.2456820 -1.3820470
ROOT
       -0.6974860 -1.2456820 0.0727393
WANDA
            1.0462287 0.4152274 0.0727393
```


結果

```
pca <- prcomp(data, scale.=TRUE)</pre>
> pca
Standard deviations:
[1] 1.3407225 0.8263832 0.7208008
Rotation:
          PC1
                    PC2
                              PC3
     0.6074840 -0.2324076 -0.7595722
KOKU
KAORI 0.5376966 0.8241644 0.1778634
SANMI 0.5846756 -0.5164686 0.6256315
> summary(prcomp(data.frame(anda, honruida, daten, sanshin, shikyu), scale.=TRUE
Importance of components:
                             PC2 PC3
                       PC1
                                            PC4
                                                   PC5
Proportion of Variance 0.9139 0.05634 0.02113 0.00684 0.00184
Cumulative Proportion 0.9139 0.97019 0.99132 0.99816 1.00000
```


結果

> biplot(pca)

Thank you

ご清聴ありがとうございました!

