TEÓRICA 2

FIBRA ÓTICA – PARTE 2

Sumário

- Define os aspetos referentes à transmissão ótica em si através de uma fibra ótica
- Podem identificar-se como:
 - Atenuação
 - Perdas
 - Absorção
 - Espalhamento linear e n\u00e3o linear
 - Curvatura da fibra
 - Transmissão no comprimento de onda infravermelha
 - Meio e fim do espetro

- Define os aspetos referentes à transmissão ótica em si através de uma fibra ótica
- Podem identificar-se como:
 - Dispersão
 - Cromática
 - Intermodal
 - Na fibra em geral
 - Modificada nas fibras monomodo
 - Polarização
 - Efeitos de não linearidade

- Regiões no espetro de luz infravermelha
 - Definição das bandas ITU

ITU band	Wavelength range (μm)
O-band	1.260 to 1.360
E-band	1.360 to 1.460
S-band	1.460 to 1.530
C-band	1.530 to 1.565
L-band	1.565 to 1.625
U-band	1.625 to 1.675
	O-band E-band S-band C-band L-band

Atenuação

- Também conhecido como perda na transmissão
- É um dos fatores mais importantes nas comunicações por fibra ótica
 - Sendo menor que os concorrentes (ex.: cobre) é o fator que mais atrai os operadores
 - Possui valores típicos de 5 dB/km
- É calculada segundo a expressão:

Number of decibels (dB) = 10
$$\log_{10} \frac{P_i}{P_o}$$

- Atenuação
 - Na comunicação com fibras óticas este valor é tipicamente expressado como decibéis por comprimento (α_{dB})
 - Também conhecido como parâmetro de perda da fibra

L é o comprimento da fibra ótica

$$\alpha_{\rm dB}L = 10 \log_{10} \frac{P_{\rm i}}{P_{\rm o}}$$

- Atenuação
 - Existe um conjunto de fatores responsáveis por estes valores
 - Composição do material
 - Técnica de preparação e de purificação da fibra
 - Estrutura do guia de onda

- Atenuação
 - Valores típicos e janelas de utilização

- Perdas por absorção
 - É um mecanismo de perdas relacionado com a composição material e o processo de fabrico da fibra
 - Resulta numa dissipação como calor de parte da potência de luz transmitida no guia de onda

- Perdas por absorção
 - Intrínseca
 - Causada pela interação com um ou mais dos componentes principais do vidro
 - Extrínseca
 - Causada por impurezas no vidro
 - Um vidro de silicato puro possui baixa perda por absorção
 - Junto à região perto do infravermelho causado pela estrutura básica do material

- Perdas por absorção intrínseca
 - Espetro de atenuação no vidro GeO₂-SiO₂
 - Diminuição da perda no intervalo de $0.8\mu m$ a $1.7\mu m$

- Perdas por absorção extrínseca
 - Impurezas iónicas metálicas comuns no vidro produzido tipicamente por fusão

Peak wavelength (nm)	One part in 10 ⁹ (dB km ⁻¹)
625	1.6
685	0.1
850	1.1
1100	0.68
400	0.15
650	0.1
460	0.2
725	2.7
	625 685 850 1100 400 650 460

- Perdas por absorção extrínseca
 - Influência dos hidróxidos (OH) (água) dissolvidos no vidro
 - Encontram-se aglutinados na estrutura cristalina do vidro
 - Possuem vibrações fundamentais por alongamento no comprimento de onda dos 2.7 aos 4.2 μm
 - Criam harmónicos nos comprimentos de onda dos 1.38, 0.95 e $0.72\mu m$

- Perdas por absorção extrínseca
 - Influência dos hidróxidos (OH) (água) dissolvidos no vidro

- Perdas por espalhamento linear
 - Também conhecido como Linear Scattering Loss
 - Mecanismo que causa a transferência de parte ou toda a potência ótica na propagação de um modo para outro
 - É uma transferência linear
 - Proporcional à potência do modo
 - Resulta numa atenuação da luz transmitida num determinado modo
 - Pode ser transferido para um modo com fuga ou radiado que pode não continuar a ser propagado dentro da fibra

- Perdas por espalhamento linear
 - Existem duas principais categorias
 - Rayleigh
 - Mie
 - Ambos resultam de propriedades físicas não lineares na fabricação de fibras
 - Propriedades essas difíceis ou impossíveis de irradicar
 - Ocorre devido a variações microscópicas
 - Densidade de material
 - Flutuações na composição intrínseca
 - Falha na homogeneidade estrutural
 - Defeitos de fabrico

- Perdas por espalhamento linear
 - Rayleigh scattering
 - É um mecanismo dominante de perda intrínseco de espalhamento elástico da luz
 - Encontra-se na janela de baixa absorção junto à cauda entre a zona ultravioleta e infravermelha
 - Causado por partículas mais pequenas na fibra que o comprimento de onda da luz
 - Ocorre quando a luz viaja por sólido e líquidos mas é mais proeminente em gases

- Perdas por espalhamento linear
 - Rayleigh scattering

- Perdas por espalhamento linear
 - Mie scattering
 - Ocorre pela falta de homogeneidade na fibra quando comparadas com o comprimento de onda da luz que nela é percorrida
 - É causada essencialmente por imperfeições
 - Estrutura cilíndrica da fibra
 - Irregularidades no interface do núcleo com a bainha
 - Diferenças do índice de refração do núcleo-bainha ao longo da fibra
 - Flutuações no diâmetro
 - Existência de esforço e bolhas na fibra

- Perdas por espalhamento linear
 - Mie scattering

- Perdas por espalhamento linear
 - Mie scattering
 - Quando a falta de homogeneidade é superior a $^{\lambda}/_{10}$ o espalhamento torna-se muito grande
 - Porque possui uma forte dependência angular
 - Este tipo de espalhamento é principalmente sentido na direção da propagação
 - Pode criar valores de perda elevados
 - Depende do material, desenho e produção da fibra

- Perdas por espalhamento linear
 - Mie scattering
 - Para reduzir este valor
 - Eliminar as imperfeições causadas no processo de produção do vidro
 - Controlo exaustivo do processo de extrusão ou estiramento da fibra, bem como do processo de cobertura (coating)
 - Aumento do guia de onda da fibra pelo aumento da diferença relativa do índice de refração

- Perdas por espalhamento n\u00e3o linear
 - Tipicamente causadas quando a fibra é utilizada em níveis de potência muito altos
 - Não existe uma relação linear causa/efeito destas perdas
 - Podem causar transferências de potência ótica num determinado modo
 - Para a frente ou para trás do sinal transmitido
 - Para outros modos mudando a frequência

- Perdas por espalhamento n\u00e3o linear
 - Tipos mais predominantes
 - Espalhamento Brillouin estimulado
 - Espalhamento Raman estimulado
 - Ambos são observados em altas densidades de potência ótica e em longas distâncias de fibras óticas
 - Produzem um ganho ótico mas um desvio na frequência
 - Contribuem para a diminuição da atenuação

- Perdas por espalhamento n\u00e3o linear
 - Espalhamento Brillouin estimulado
 - Stimulated Brillouin scattering (SBS)
 - Pode ser visto como uma modulação da luz
 - É causada pela vibração molecular térmica na fibra
 - Aparecem como bandas laterais separadas da luz incidente pela modulação da frequência
 - O fotão incidente produz um fonão numa frequência acústica e um fonão de espalhamento

- Perdas por espalhamento n\u00e3o linear
 - Espalhamento Brillouin estimulado
 - Fonão
 - "Em física, um fonão é uma excitação coletiva num arranjo periódico e elástico de átomos ou moléculas na matéria condensada, como sólidos e alguns líquidos. Muitas vezes designada uma quasi-partícula, que representa um estado animado na quantização da mecânica quântica dos modos de vibração de estruturas elásticas de partículas que interagem."

- Perdas por espalhamento n\u00e3o linear
 - Espalhamento Brillouin estimulado
 - A mudança de frequência atinge o seu máximo na direção inversa
 - É anulada na direção de propagação
 - Faz desta perda um processo puramente inverso
 - É significativo apenas acima de uma determinada densidade de potência ótica

- Perdas por espalhamento n\u00e3o linear
 - Espalhamento Raman estimulado
 - Stimulated Raman scattering (SRS)
 - É similar ao SBS
 - A diferença é a criação de um fonão ótico de alta frequência e não de uma frequência acústica
 - Pode ocorrer em ambas as direções
 - Direta e inversa
 - Os níveis de potência para ocorrer o fenómeno é de até 3 níveis superiores ao SBS

Perdas por espalhamento

- Perdas na curvatura da fibra
 - Quando a fibra é curvada, sofre perda por radiação
 - É devido à energia do campo evanescente na curva
 - A luz excede a velocidade na bainha inibindo o mecanismo de guia de onda
 - A energia da luz é então radiada da fibra

- Perdas na curvatura da fibra
 - A parte do modo que viaja na bainha necessita de uma velocidade superior
 - Para se manter perpendicular ao eixo de propagação
 - Como não é possível, a energia associada a esta parte do modo é perdida como radiação

- Dispersão
 - Distorção criada no sinal transmitido durante a propagação
 - Ex: envio do sinal digital 1011
 - No início, os impulsos possuem uma determinada largura

- Dispersão
 - O sinal sofre um alargamento progressivo em função da distância percorrida
 - Ex: envio do sinal digital 1011
 - Saída após uma determinada distância D1

- Dispersão
 - A certa altura os impulsos deixam de se distinguir
 - Ex: envio do sinal digital 1011
 - Saída após uma distância D2 > D1

- Dispersão
 - Conhecido como Interferência Inter-simbólica
 - Intersymbol Interference (ISI)

Dispersão

- Limita o bit rate de transmissão
 - τ duração do pulso
 - Bit rate <> frequência de transmissão
 - Vai depender do código de linha utilizado

$$B_{\rm T} \le \frac{1}{2\tau}$$

Frequência em NRZ < RZ

- A dispersão é tipicamente uma medida de alargamento do impulso por unidade de fibra percorrida
 - Nanosegundo (ou picosegundo) por quilómetro
 - ns/km ou ps/km
- Na fibra ótica leva à unidade que define a largura de banda máxima na distância percorrida
 - Hertz quilómetro (Hz km)

- A velocidade de propagação varia com o comprimento de onda do sinal enviado
- Um impulso pode ser composto por vários comprimentos de onda (λ)

- Velocidade de grupo (de uma onda)
 - Velocidade com que a forma global das amplitudes das ondas conhecidos como a modulação ou envelope se propaga através do espaço.
 - Ponto vermelho é a velocidade de fase
 - Pontos verdes são a velocidade de grupo

- Dispersão
 - Velocidade de grupo
 - Exemplo de propagação num meio dispersivo

- Dispersão
 - Velocidade de grupo (V_g)
 - Pode ser calculada como:

$$V_g = c \left(\frac{d\beta}{dk}\right)^{-1}$$

- V_g é a velocidade de grupo
- c é a velocidade da luz
- k é dado como $k = 2\pi/\lambda$
 - λ é o comprimento de onda transmitido
- β é a constante de propagação ao longo da fibra

- Atraso de grupo (τ_g)
 - É o inverso da velocidade de grupo por unidade de distância percorrida
 - É uma medida do declive da resposta de fase numa qualquer frequência
 - É dado como $\tau_{\underline{q}}$ por unidade percorrida L

$$\frac{\tau_g}{L} = \frac{1}{V_g} = \frac{1}{c} \frac{d\beta}{dk} = -\frac{\lambda^2}{2\pi c} \frac{d\beta}{d\lambda}$$

- Dispersão
 - A dispersão (D) define o alargamento do impulso em função do comprimento de onda
 - Pode então ser calculada como:

- É medida em pico-segundos (ou nano-segundos) por nanómetro quilómetro
 - ps/nm.km ou ns/nm.km

$$D = \frac{1}{L} \frac{d\tau_g}{d\lambda}$$

- Dispersão cromática ou intramodal
 - Alargamento do impulso num único modo
 - Resultado da velocidade de grupo ser função do comprimento de onda
 - É proporcional à largura do espectro da fonte de luz
 - Banda de comprimentos de onda que a fonte emite

- Dispersão cromática ou intramodal
 - É composta por:
 - Dispersão material
 - Resulta da variação do índice de refração com o comprimento de onda
 - Dispersão de guia de onda (waveguide)
 - Resulta da dependência das propriedades da fibra com o comprimento de onda

- Dispersão cromática ou intramodal
 - Dispersão material
 - Também conhecida como dispersão de cores ou espectral
 - Enquadra-se no mesmo fenómeno de decomposição prismática da luz branca nas suas componentes
 - O alargamento do impulso ocorre em diferentes comprimentos de onda no mesmo percurso

- Dispersão cromática ou intramodal
 - Dispersão material
 - O espetro da emissão depende do tipo de emissor
 - O LED ocupa uma largura espetral superior ao laser

- Dispersão cromática ou intramodal
 - Dispersão material
 - A largura espetral do emissor por ser medida como valores RMS (Root Mean Square) ou F.W.H.M. (Full Width at Half Maximum)

- Dispersão cromática ou intramodal
 - Dispersão material
 - Considerando o valor RMS da largura espetral da fonte de luz $(\sigma_{\lambda} sigma\ lambda)$ o alargamento do impulso em geral (σ_g) pode ser dado como:

$$\sigma_g = \frac{d\tau_g}{d\lambda} \sigma_{\lambda}$$

 au_g - atraso de grupo

- Dispersão cromática ou intramodal
 - Dispersão material
 - O atraso de grupo para este tipo de dispersão será:

- Sendo n o índice de refração do núcleo e L o comprimento da fibra
- A constante de propagação (β) neste caso é dada por:

$$\beta = \frac{2\pi n(\lambda)}{\lambda}$$
 sendo $n(\lambda)$ o índice de refração do núcleo

$$\tau_{mat} = \frac{L}{c} \left(n - \lambda \frac{dn}{d\lambda} \right)$$

- Dispersão cromática ou intramodal
 - Dispersão material
 - O alargamento do impulso para este tipo de dispersão será:

$$\sigma_{mat} = \frac{d\tau_{mat}}{d\lambda} \sigma_{\lambda} = D_{mat}(\lambda) L \sigma_{\lambda}$$

• onde D_{mat} é a Dispersão Material e σ_{λ} é a largura espetral da fonte de luz

- Dispersão cromática ou intramodal
 - Exemplo de valores para dispersão material

Dispersão material: unidade -> ps/nm.km

Picossegundos por nanometro de variação do comprimento de onda e quilómetro de distância de propagação

- Dispersão cromática ou intramodal
 - Dispersão de guia de onda (waveguide)
 - Está relacionado com a estrutura de guia de onda da fibra
 - Ocorre principalmente em fibras monomodo
 - A energia ótica que circula no núcleo é de ~80%
 - Velocidade superior
 - Os outros 20% propagam-se na bainha
 - Velocidade inferior
 - Para fibras multimodo este valor é desprezável quando comparado com a dispersão material

- Dispersão cromática ou intramodal
 - Dispersão de guia de onda (waveguide)
 - A constante de propagação (β) neste caso é dada por:

$$eta\cong n_2k(b\Delta+1)$$
 sendo $b\cong rac{rac{eta}{k}-n_2}{n_1-n_2}$ para valores pequenos de $\Delta=(n_1-n_2)/n_1$

- b é a constante normalizada de propagação
- O atraso de grupo para este tipo de dispersão será:

$$\tau_{wg} = \frac{L}{c} \frac{d\beta}{dk} = \frac{L}{c} \left[n_2 + n_2 \Delta \frac{d(kb)}{dk} \right]$$

- Dispersão cromática ou intramodal
 - Dispersão de guia de onda (waveguide)
 - O alargamento do impulso para este tipo de dispersão será:

$$\sigma_{wg} = \frac{d\tau_{wg}}{d\lambda} \sigma_{\lambda} = D_{wg}(\lambda) L \sigma_{\lambda}$$

• onde D_{wg} é a dispersão de guia de onda

- Dispersão cromática ou intramodal
 - Em resumo:

- Dispersão cromática ou intramodal
 - Em resumo:

- Dispersão intermodal
 - Também conhecida como dispersão modal ou de modos
 - Cada modo de propagação possui um valor diferente de velocidade de grupo
 - Para a mesma frequência
 - Diferentes modos no mesmo impulso viajam a velocidades de grupo diferentes
 - A largura do impulso depende dos tempos de transmissão do modo mais rápido e mais lento
 - Mecanismo responsável pela diferença básica de dispersão dos 3 tipos de fibra

- Dispersão intermodal
 - Utilizando a aproximação da ótica geométrica

• O raio axial (axial ray) percorre a distância L no tempo mínimo de T_{min} representado por:

$$T_{min} = \frac{dist ancia}{velocidade} = \frac{L}{c/n_1} = \frac{Ln_1}{c}$$

- Dispersão intermodal
 - O raio meridional extremo (extreme meridional ray) injetado na fibra segundo θ_a possui um tempo máximo de T_{max} representado por :

$$T_{max} = \frac{Ln_1^2}{cn_2}$$

A diferença de atraso é:

$$\delta T_S = T_{max} - T_{min} \approx \frac{Ln_1^2 \Delta}{cn_2} com \Delta \ll 1$$

Sendo Δ a diferença relativa do índice de refração

$$\Delta \approx \frac{n_1 - n_2}{n_2}$$

- Dispersão intermodal
 - Em fibras óticas com índice de degrau, o valor do alargamento em RMS será de:

$$\sigma_{\rm S} pprox \frac{L n_1 \Delta}{2\sqrt{3}c} pprox \frac{L(AN)^2}{4\sqrt{3}n_1c}$$

- Sendo AN a Abertura Numérica
- Em fibras óticas com índice gradual, o valor do alargamento em RMS será de:

$$\sigma_g \approx \frac{L n_1 \Delta^2}{20\sqrt{3}c}$$

- Dispersão intermodal
 - Curva caraterística de alargamento de impulso para fibras óticas de índice gradual
 - $\Delta = 1\%$

- Dispersão em geral
 - Para fibras óticas multimodo, pode-se caraterizar o alargamento RMS do impulso como sendo:

$$\sigma = (\sigma_{intermodal}^2 + \sigma_{intramodal}^2)^{1/2}$$

- Onde
 - $\sigma_{intermodal}$ é a largura do impulso devido à dispersão intermodal
 - $\sigma_{intramodal}$ é a largura do impulso devido à dispersão material e de guia de onda
- Como se trata de uma fibra multimodo, a dispersão de guia de onda é desprezável ficando então

$$\sigma_{intramodal} = \sigma_{mat}$$

- Dispersão em geral
 - Dispersão intramodal de 1ª ordem em função do comprimento de onda em fibras monomodo de 4, 5 e 6 μm

- Dispersão em geral
 - Dispersão total em 11 km de fibra monomodo

- Dispersão modificada em fibra monomodo
 - A dispersão de uma fibra monomodo apresenta tipicamente um mínimo nos 1300 nm
 - Com mínimo de atenuação aos 1500 nm
 - Considerando a dispersão total a soma da dispersão material e a dispersão de guia de onda, então:

- Dispersão modificada em fibra monomodo
 - Sendo assim, a única possibilidade de casar os dois comprimentos de onda reside na alteração dos valores da fibra monomodo
 - Obtém-se assim um máxima distância de transmissão à máxima capacidade de transferência de informação
 - Para tal procede-se a um deslocamento da dispersão
 - Pode ser conseguido pela redução do diâmetro do núcleo
 - Acompanhado do aumento da diferença relativa do índice de refração

- Dispersão modificada em fibra monomodo
 - Deslocamento da dispersão para aproximar o seu valor para o mínimo da atenuação (1550 nm)
 - Utilizando a fibra otimizada de 1300 nm

- Dispersão modificada em fibra monomodo
 - Alteração da constituição da fibra

- Dispersão modificada em fibra monomodo
 - Alteração do perfil do índice de refração da fibra
 - No caso da fibra de índice de degrau

- Tracejado (original)
- Sólido (modificado)

- Dispersão modificada em fibra monomodo
 - · Índice de degrau
 - Caso típico bainha combinada
 - Matched cladding (esquerda)
 - Caso modificado bainha com depressão
 - Depressed cladding (direita)

- Dispersão modificada em fibra monomodo
 - Deslocamento da dispersão através da introdução de um índice gradual em fibras monomodo
 - Perfil triangular (esquerda)
 - Perfil triangular com depressão na bainha (meio)
 - Perfil gaussiano (direita)

- Dispersão modificada em fibra monomodo
 - Evolução do perfil para melhorar outras perdas encontradas
 - Perfil triangular com múltiplos índices (esquerda)
 - Perfil triangular com núcleo segmentado (meio)
 - Perfil dupla-forma no núcleo

Dispersão modificada em fibra monomodo

Triangular with annular ring

- Dispersão planada em fibra monomodo
 - Também conhecido como dispersion-flattened
 - Utilizam múltiplas bainhas com depressão
 - Dupla bainha (esquerda)
 - Tripla bainha (meio)
 - Quadrupla bainha (direita)

- Dispersão modificada não-zero em fibra monomodo
 - Também conhecida como:
 - Nonzero-dispersion-shifted fiber (NZ-DSF)
 - Nonzero-dispersion fiber (NZDF)
 - Outra variante é a negative-dispersion fiber (NDF)
 - Tem principal aplicação na multiplexagem por comprimento de onda
 - Dispersão cromática
 - Introduzida nos meados da década de 1990
 - Recomendação ITU-T G.655

- Dispersão modificada não-zero em fibra monomodo
 - Tem como principal atributo a anulação da dispersão cromática em toda a banda C
 - Extendida à banda S em 2000
 - SSMF Standard Single-Mode Fiber

- Dispersão modificada não-zero em fibra monomodo
 - DCF Dispersion-compensating fiber

- Dispersão modificada não-zero em fibra monomodo
 - Perfil NZ-SDF (esquerda)
 - Perfil NDF (direita)

- Dispersão modificada não-zero em fibra monomodo
 - Parâmetros de performance típicos para fibras NZ-DSF

Parameter	Reduced slope	Large effective	Extended
	NZ-DSF	core NZ-DSF	band NZ-DSF
Zero-dispersion wavelength (μm)	1.46	1.50	1.42
Dispersion (ps nm ⁻¹ km ⁻¹)	4	4	8
Dispersion slope (ps nm ⁻² km ⁻¹)	0.045	0.085	0.058
Effective core area (μm ²)	50	70	63

- Resumo das categorias das fibras óticas e respetivas normas
 - MMF (multimode fiber)
 - OM1 or MMF(62.5/125)
 - OM2/OM3 (G.651 or MMF(50/125))
 - SMF (single-mode fiber)
 - G.652 (dispersion non-shifted SMF)
 - G.653 (dispersion shifted SMF)
 - G.654 (cut-off shifted SMF)
 - G.655 (NZDSF)
 - G.656 (low dispersion slope NZDSF)
 - G.657 (bending insensitive SMF)

- As fibras óticas em geral não mantém o estado da polarização da luz
 - Acima de alguns metros de distância de fibra
- Efeito da Birrefringência
 - "Propriedade que apresentam as substâncias anisotrópicas de decompor uma onda luminosa em duas ondas polarizadas de direções de vibração mutuamente perpendiculares; birrefração"
 - Anisotropia "é a característica que uma substância possui em que uma certa propriedade física varia com a direção"

- Os efeitos da birrefringência nos estados da polarização
 - Fonte de espalhamento dos impulsos em fibras monomodo
 - É crítico em longos percursos quando se utiliza o comprimento de onda próximo da dispersão nula

- A fibra ótica é por excelência um meio birrefringente
 - Devido à diferença efetiva do índice de refração
 - Produz dessa forma diferentes velocidades de fase para estes dois modos ortogonais de polarização
 - Estes modos têm constantes de propagação diferentes (β_x e β_y) devido à anisotropia da secção transversal da fibra

Polarização

- Constantes de propagação
 - β_x modo lento
 - β_y modo rápido
 - Considerando que a secção da fibra é independente do comprimento (L) na direção z, a birrefringência modal (B_F) é dada por:

$$B_F = \frac{(\beta_x - \beta_y)}{(2\pi/\lambda)}$$

 A luz polarizada ao longo dum dos eixos principais mantém a sua polarização em todo o L

Polarização

• O atraso linear de fase $\Phi(z)$ depende do comprimento da fibra L na direção z e é dado por:

$$\Phi(z) = (\beta_x - \beta_y)L$$

 Assumindo que a coerência de fase dos dois componentes do modo é mantida

Polarização

- Mantendo a coerência de fase leva a um estado de polarização tipicamente elítico
 - No entanto varia de estado ao longo da fibra
- Esta variação é conhecida como a "duração da batida" ou "beat length" ($L_{\rm B}$)

$$L_{\rm B} = \frac{\lambda}{{\rm B}_F} = \frac{2\pi}{(\beta_x - \beta_y)}$$

е

$$\Phi(L_{\rm B}) = (\beta_x - \beta_y)L_{\rm B} = 2\pi$$

- Polarização
 - Estados de polarização por Φ(z) (esquerda)
 - Distribuição da intensidade de luz na fibra pela duração da batida
 - Troca contínua de estado de polarização
 - Linear em circular
 - Circular em linear

- Polarização
 - Duração da batida

- Polarização
 - Dispersão dos modos de polarização
 - Polarization mode dispersion (PMD)
 - Alongamento do sinal provocado pela birrefringência
 - Torna-se um fator limitativo para altas taxas de transmissão
 - É um efeito aleatório devido a fatores intrínsecos e extrínsecos da fibra
 - Resultam na variação da velocidade de grupo com um estado de polarização

- Polarização
 - Dispersão dos modos de polarização
 - Fatores intrínsecos
 - Erros na geometria circular da fibra
 - Estresse residual no material do núcleo junto ao seu centro
 - Fatores extrínsecos
 - Esforços mecânicos, curvas e torções durante a instalação da fibra

- Polarização
 - Dispersão dos modos de polarização
 - O atraso de grupo diferencial ($\Delta \tau$) é calculado pela diferença entre os modos lento e rápido das componentes ortogonais

Para uma c

- Dispersão dos modos de polarização
 - O valor de PMD varia aleatoriamente ao longo da fibra
 - As perturbações que causam os efeitos de birrefringência variam com a temperatura
 - Para longas distâncias, tipicamente utiliza-se o valor médio de PMD e nesse caso o atraso de grupo diferencial é calculado como:
 - $PMD = \frac{\langle \Delta \tau \rangle}{\sqrt{L}}$ medido em ps $/\sqrt{km}$

- Polarização
 - Dispersão dos modos de polarização
 - Valores típicos de *PMD* podem variar de 0,1 a 1,0 ps/ \sqrt{km}
 - Exemplo para uma experiência feita com 3 cabos diferentes durante um período de funcionamento de 12h a 15h
 - 36 km de rolo de fibra em ambiente controlado
 - D_{PMD} =0.028 ps/ \sqrt{km}
 - 48,8 km em cabo enterrado
 - $D_{PMD} = 0.29 \text{ ps} / \sqrt{km}$
 - 48 km em cabo aéreo
 - $D_{PMD} = 1.28 \text{ ps} / \sqrt{km}$
 - Neste caso o alto valor deve-se a mudanças bruscas de temperatura e oscilações da fibra com o vento

- Polarização
 - Dispersão dos modos de polarização
 - Atraso de grupo diferencial $(\Delta \tau)$ e variação da orientação da polarização (θ) ao longo da fibra

- Polarização
 - Fibras de polarização mantida
 - Polarization-maintaining (PM)
 - O efeito de variação de polarização não apresenta grande preocupação em detetores convencionais
 - É no entanto de considerável importância para sistemas de luz coerente (laser)
 - Foram por isso desenvolvidas fibras óticas que diminuem os efeitos da PMD

- Polarização
 - Fibras de polarização mantida
 - Foram criados dois grandes grupos
 - HB High-birefringence
 - Alta birrefringência
 - $B_F > 10^{-4} \text{ a } 10^{-5}$
 - LB Low-birefringence
 - Baixa birrefringência
 - $B_F \cong 4.5 * 10^{-9}$

- Polarização
 - Fibras de polarização mantida
 - São divididas em:
 - PM polarização mantida
 - SP Polarização simples
 - TP Polarização dupla
 - GE Efeito geométrico
 - SE Efeito de estresse

- Fibras de polarização mantida
 - (a) elliptical core
 - (b) side-pit fiber
 - (c) elliptical stress cladding
 - (d) bow-tie stress regions
 - (e) circular stress regions (PANDA fiber)
 - (f) flat fiber
 - (g) twisted fiber

Efeitos não lineares

- Alterações do sinal ótico sem relação linear com os fatores que a causam
- São fenómenos que tipicamente dependem de fatores exponenciais da intensidade ótica
- São desprezáveis para pequenas potências óticas

- Efeitos não lineares
 - Em síntese
 - Efeitos de espalhamento linear (abordados anteriormente)
 - Raman e Brillouin
 - Efeitos de Kerr
 - Automodulação de fase
 - Modulação cruzada de fase
 - Mistura de quatro ondas

Kerr effects

Selfphase modulation Crossphase modulation Fourwave mixing

Scattering effects

Stimulated Raman scattering Stimulated Brillouin scattering

Efeitos não lineares

- Efeitos de Kerr
 - São efeitos óticos produzidos pela ação de um campo elétrico
 - Modificação do índice de refração relacionada a termos não-lineares da polarização elétrica
 - Demonstra a capacidade de algumas substâncias em refratar de maneiras diferentes sob o efeito de um campo elétrico
 - Identificam-se índices de refração de acordo com a polarização e a intensidade do campo elétrico do feixe aplicado

- Efeitos não lineares
 - Efeitos de Kerr
 - A expressão geral é:

$$\Delta n = n_{pr} - n_{pp} = \lambda_0 K E^2$$

 Δn é a variação do índice de refração

 n_{pr} é o índice de refração na direção de polarização do campo elétrico da onda

 n_{pp} é o índice de refração na direção perpendicular à anterior λ_0 é o comprimento de onda do feixe ótico

K é a constante de Kerr e é caraterístico em cada material E é o campo elétrico

- Efeitos não lineares
 - Efeitos de Kerr
 - Automodulação de fase
 - Self-phase modulation (SPM)
 - Carateriza-se por alterações induzidas na fase do próprio feixe ótico guiado
 - A análise do campo no domínio da frequência identifica diversos harmónicos em relação ao sinal original

- Efeitos não lineares
 - Efeitos de Kerr
 - Modulação cruzada de fase
 - Ocorre em sistemas multiplexados em comprimento de onda
 - Wavelength Division Multiplexing (WDM)
 - Um feixe ótico é influenciado pelos feixes vizinhos
 - Produz uma modulação induzida de fase na portadora ótica

- Efeitos não lineares
 - Efeitos de Kerr
 - Potência máxima por canal em função da quantidade de canais num sistema WDM

- Efeitos não lineares
 - Efeitos de Kerr
 - Mistura de quatro ondas
 - Four-wave mixing (FWM)
 - Efeitos que aparecem em sistemas WDM
 - Não são somente alterações de fase
 - Dão também origem a sinais com frequências diferentes dos originais
 - Sob elevados campos elétricos, este efeito ficou evidente
 - Destaca-se o aparecimento de termos de terceira ordem

- Efeitos não lineares
 - Efeitos de Kerr
 - Mistura de quatro ondas
 - É causado pela dependência do índice de refração na intensidade da potência ótica
 - É mais notório em sistemas WDM com frequências muito próximas
 - Fenómenos não-lineares nos termos de terceira ordem
 - Duas ondas (f1 e f2) propagam-se no mesmo meio
 - Misturam-se e criam as frequências laterais

- Efeitos não lineares
 - Efeitos de Kerr
 - Mistura de quatro ondas
 - As interações de três comprimentos de onda produzem um quarto comprimento de onda
 - Formada a partir do espalhamento dos fotões incidentes produzindo um quarto fotão

- Efeitos não lineares
 - Efeitos de Kerr
 - Mistura de quatro ondas
 - Este fenómeno é mais pronunciado quando a distância entre canais é muito próxima
 - Em níveis de potência ótica elevado
 - Uma dispersão cromática alta diminui este efeito
 - É também conhecido como diafonia entre canais nos sistemas WDM
 - Pode ser reduzido pela utilização de espaçamento irregular entre canais

- Em resumo
 - As perdas e distorções existem no meio ótico e deverão ser minimizadas
 - Se possível anuladas

