Contents

- 1. Introduction
- 2. System Structures
- 3. Process Concept
- 4. Multithreaded Programming
- 5. Process Scheduling
- 6. Synchronization
- 7. Deadlocks
- 8. Memory-Management Strategies
- 9. Virtual-Memory Management
- 10. File System
- 11. Mass-Storage Structures
- 12. I/O Systems

pp. 575-595.

13. Protection, Security, Distributed Systems

I/O Systems

- One Major Role of OS is to Manage and Control I/O Operations and I/O Devices.
- Two Conflicting Trends of I/O Device Technology
 - Standardization of Software and Hardware Interfaces
 - An Increasingly Broad Variety of I/O Devices
 - Device Driver: A uniform device access interface to the I/O Subsystem.

I/O Hardware

- Port: A connection point
- Bus: A set of wires and a protocol
 - A Daisy Chain, PCI Bus, Expansion Bus

I/O Hardware

- Controller: A set of electronics that can operate a bus, a port, or a device.
- Host Adaptor: A controller plugged into the computer.
- Memory-Mapped I/O: Device-control registers are mapped to a processor address space
 - Data-in registers
 - Data-out registers
 - Status register
 - Control register

I/O Hardware

- Polling Programmed I/O
- Interrupt-Driven Handling
 - When the CPU detects that a controller has asserted a signal on the interrupt request line, the CPU performs a state save and jumps to the corresponding interrupt service routine at a fixed memory location.
- Direct Memory Access
 - Release CPU from handling excessive interrupts!

Application I/O Interface

Objective:

- Enable I/O devices to be treated in a standard, uniform way.
- Interface
 - Each general kind of devices is accessed through a standardized set of functions.
- Device Driver
 - Hide the differences among device controllers from the I/O subsystem of the I/O Kernel

Application I/O Interface

- Characteristics of I/O Devices
 - Character-Stream or Block
 - Sequential or Random Access
 - Synchronous or Asynchronous
 - Sharable or Dedicated
 - Speed of Operation
 - Read-Write, Read Only, or Write Only

. Examples: Terminal, Disk; Modem, CD-ROM; Tape, Keyboard;-; CD-ROM, Graphics Controller, Disk

Application I/O Interface

- Access Conventions
 - Block I/O
 - Character-Stream I/O
 - Memory-Mapped File Access
 - Network Sockets
 - Special System Calls
 - Time-of-Day Clock & Timer
 - Escape or Backdoor
 - ioctl()

Block and Character Devices

- Block-Device Interface
 - Commands: read(), write(); seek() for random-access device,
 - Raw I/O: Access a block device as a simple linear array of blocks.
 - Memory-Mapped File Access: A file is mapped to the virtual memory, and actual data transfers are done when needed to satisfy access to the memory image.
- Character-Stream Interface
 - Commands: get(), put(); library calls
 - Devies with I/O of a linear stream of bytes.

Network Devices, Clocks and Timers

- Network Socket Interface
 - Commands: Socket creation, connection of a local socket to a remote address, listen to a local socket, packet sending and receiving, select(). etc.
- Clocks and Timers
 - Basic Functions: The current time, the elapsed time, setting of a timer to trigger operation X at time T, etc.
 - Programmable Interval Timer
 - Timer granularity, clock drifting, hardware counters

Blocking and Nonblocking I/O

- Blocking System Calls
 - The suspension of an application execution due to a varying or unpredictable amount of time in performing physical actions to some I/O devices or better understanding in application programming.
- Nonblocking System Calls
 - A nonblocking read() returns immediately with whatever data are available, where an asynchronous read() requests for a transfer that would be done completely possible at some future time.

Kernel I/O Subsystem

- Services and Procedures
 - Management of the Name Space for Files and Devices
 - Access Control to Files and Devices
 - Operation Control
 - File-System Space Allocation
 - Device Allocation
 - Buffering, Caching, and Spooling
 - I/O Scheduling
 - Device-Status Monitoring, Error Handling, and Failure Recovery
 - Device-Driver Configuration and Initialization

Kernel I/O Subsystem

- Why I/O scheduling
 - Performance Improvement
 - Fairness in Access
- Why Buffering?
 - Speed Mismatching
 - Different Transfer Sizes
 - Copy Semantics for Application I/O
- Why Caching?
 - Efficiency in Accessing a Cached Copy.