Quantum Computation using Weighted Model Counting

Dirck van den Ende

Leiden University

Supervisors:

Dr. Alfons Laarman

Dr. Joon Hyung Lee

Dr. Henning Basold

July 24th, 2025

Overview

- Why quantum computation?
- 2 Why weighted model counting?
- **3** What is weighted model counting?
- 4 Quantum computation with WMC
- 5 Application: Potts model
- 6 Application: Transverse-field Ising model

■ Drug development

- Drug development
- Traffic optimization

- Drug development
- Traffic optimization
- Artificial intelligence

- Drug development
- Traffic optimization
- Artificial intelligence
- Quantum simulation
 - Transverse-field Ising model

■ Statistical physics

- Statistical physics
- Critical infrastructure reliability

- Statistical physics
- Critical infrastructure reliability
- Artificial intelligence

- Statistical physics
- Critical infrastructure reliability
- Artificial intelligence
- Variety of probabilistic problems

- Calculating the sum of weights over a set of solutions to a problem
 - Every solution has a weight
- Problems consist of two parts:
 - Boolean formula
 - Weight function

Example

Probability of the first coin being heads or the second being tails?

- Probability of the first coin being heads or the second being tails?
- Calculated as a sum over all possibilities:

$$\mathbb{P}(c_1 = H) \cdot \mathbb{P}(c_2 = H)
+ \mathbb{P}(c_1 = H) \cdot \mathbb{P}(c_2 = T)
+ \mathbb{P}(c_1 = T) \cdot \mathbb{P}(c_2 = T)
= 1/2 \cdot 1/2 + 1/2 \cdot 1/2 + 1/2 \cdot 1/2
= 3/4$$

- Model the two coins with Boolean variables c_1 and c_2
- True if the coin lands heads, false if it lands tails

- Model the two coins with Boolean variables c_1 and c_2
- True if the coin lands heads, false if it lands tails
- Formula: $c_1 \vee \overline{c}_2$

<i>c</i> ₁	<i>c</i> ₂	$c_1 \vee \overline{c}_2$
0	0	1
0	1	0
1	0	1
1	1	1

Example

<i>c</i> ₁	<i>c</i> ₂	$c_1 \vee \overline{c}_2$	$W(c_1)$	$W(c_2)$	W
0	0	1	1/2	1/2	1/4
0	1	0	1/2	1/2	1/4
1	0	1	1/2	1/2	1/4
1	1	1	1/2	1/2	1/4

■ Weights (probabilities): 1/2 for every outcome of every coin

<i>c</i> ₁	<i>c</i> ₂	$c_1 \vee \overline{c}_2$	$W(c_1)$	$W(c_2)$	W
0	0	1	1/2	1/2	1/4
0	1	0	1/2	1/2	1/4
1	0	1	1/2	1/2	1/4
1	1	1	1/2	1/2	1/4

- Weights (probabilities): 1/2 for every outcome of every coin
- Model count (total probability): 3/4

$$c_1 \bigcirc = \bigcirc c_2$$

Example

■ Probability of two tossed coins coming up with the same side?

$$c_1 \bigcirc = \bigcirc c_2$$

Example

■ Probability of two tossed coins coming up with the same side?

<i>c</i> ₁	<i>c</i> ₂	$c_1 \leftrightarrow c_2$	$W(c_1)$	$W(c_2)$	W
0	0	1	1/2	1/2	1/4
0	1	0	1/2	1/2	1/4
1	0	0	1/2	1/2	1/4
1	1	1	1/2	1/2	1/4

■ Model count: 1/2

Example

■ Probability of two coins being different, or a die rolling six?

Example

■ Probability of two coins being different, or a die rolling six?

Example

■ Probability of two coins being different, or a die rolling six?

<i>c</i> ₁	<i>c</i> ₂	d	$(c_1 \oplus c_2) \vee d$	$W(c_1)$	$W(c_2)$	W(d)	W
0	0	0	0	1/2	1/2	5/6	5/24
0	0	1	1	1/2	1/2	1/6	1/24
0	1	0	1	1/2	1/2	5/6	5/24
0	1	1	1	1/2	1/2	1/6	1/24
1	0	0	1	1/2	1/2	5/6	5/24
1	0	1	1	1/2	1/2	1/6	1/24
1	1	0	0	1/2	1/2	5/6	5/24
1	1	1	1	1/2	1/2	1/6	1/24

■ Model count: 7/12

Model count: 7/12

Model count: 5/8

Model count: 5/8,957,952

- In general, weights don't have to be probabilities
- Can be any real number

- In general, weights don't have to be probabilities
- Can be any real number
- lacktriangle Formally: weighted model count of formula ϕ w.r.t. weight function W

$$\mathsf{WMC}(\phi, W) = \sum_{ au \; \mathsf{satisfies} \; \phi} \; \; \prod_{v \in V} W(v, au(v))$$

- In general, weights don't have to be probabilities
- Can be any real number
- lacktriangle Formally: weighted model count of formula ϕ w.r.t. weight function W

$$\mathsf{WMC}(\phi, W) = \sum_{ au \; \mathsf{satisfies} \; \phi} \; \; \prod_{v \in V} W(v, au(v))$$

- Problem is #P-hard in general
- Model counters can achieve a significant speedup

- Quantum problems are just matrix operations
 - (on very large matrices)
- Encode matrices with WMC using "pointer" variables

- Quantum problems are just matrix operations
 - (on very large matrices)
- Encode matrices with WMC using "pointer" variables

- Quantum problems are just matrix operations
 - (on very large matrices)
- Encode matrices with WMC using "pointer" variables

$$\begin{bmatrix} 2 \\ 0 \end{bmatrix} \bigvee_{\mathsf{WMC}(\phi \land \overline{x}, W)}^{\mathsf{WMC}(\phi \land \overline{x}, W)}$$

- **Formula:** $\phi \equiv \overline{x}$
- Weights: $W(\overline{x}) = W(x) = 2$

Example

■ For larger vectors, use multiple variables:

$$\begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{\overline{x}_1, \overline{x}_2} \overline{x}_1, x_2$$

$$\xrightarrow{x_1, \overline{x}_2} \overline{x}_1, x_2$$

Example

■ For larger vectors, use multiple variables:

$$\begin{bmatrix} 2 \\ 0 \\ 0 \\ 1 \end{bmatrix} \longrightarrow \mathsf{WMC}(\phi \wedge \overline{x}_1 \wedge \overline{x}_2, W) \\ \longrightarrow \mathsf{WMC}(\phi \wedge \overline{x}_1 \wedge x_2, W) \\ \longrightarrow \mathsf{WMC}(\phi \wedge x_1 \wedge \overline{x}_2, W) \\ \longrightarrow \mathsf{WMC}(\phi \wedge x_1 \wedge x_2, W) \\ \end{bmatrix}$$

- Formula: $\phi \equiv x_1 \leftrightarrow x_2$
- Weights: $W(\overline{x}_1) = 2$, $W(x_1) = 1$, $W(\overline{x}_2) = W(x_2) = 1$

Example

■ Use "input and output" variables for matrices:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \xrightarrow{\overline{y}} \overline{y}$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$\overline{x} \quad x$$

Example

■ Use "input and output" variables for matrices:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \xrightarrow{\overline{y}} \overline{y}$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$\overline{x} \quad x$$

- Formula: $\phi \equiv x \oplus y$
- Weights: $W(\overline{x}) = W(x) = W(\overline{y}) = W(y) = 1$

Common matrix operations can be performed on these "WMC representations"

■ If we need an entry from the matrix, we use a model counter

Application: Potts Model

- Model of interactions between particles
- Used in image segmentation and statistical mechanics

■ Graph with interactions between "sites"

- Sites can be assigned a "spin"
- lacktriangle Number between 1 and q

■ Neighboring sites with different spins create "energy"

■ Neighboring sites with different spins create "energy"

- Goal: Calculate the partition function
- Sum over energies of all spin combinations
 - \blacksquare q^n different combinations
- Normalizing factor of Gibbs distribution

■ Partition function can be written as the trace of a $q^n \times q^n$ diagonal matrix:

$$Z = \operatorname{tr}\left(\prod_{(i,j)\in E} e^{\beta J M_{ij}}\right)$$

Use our framework by building up from smaller matrices

- Performance is good:
 - For small q, can calculate partition function quickly up to $n \approx 40$ sites
 - With brute force, this would take \sim 400 million years

■ In line with earlier results on the simpler Ising model

Application: Transverse-Field Ising Model

- "Quantum version" of the Potts model
- Interactions are much more complex

- "Quantum version" of the Potts model
- Interactions are much more complex
- Partition function is the trace of a non-diagonal matrix
 - No longer an easy sum to feed into a model counter

- "Quantum version" of the Potts model
- Interactions are much more complex
- Partition function is the trace of a non-diagonal matrix
 - No longer an easy sum to feed into a model counter
- Partition function can be approximated with

$$Z \approx \operatorname{tr} \left(\left[\prod_{i,j \in \Lambda} e^{J_{ij} Z_i \otimes Z_j/k} \prod_{i \in \Lambda} e^{\mu_z Z_i/k} \prod_{i \in \Lambda} e^{\mu_x X_i/k} \right]^k \right)$$

Looks complicated, but it's just a matrix: Use the framework and we're fine

■ Good performance up to $n \approx 8$ qubits

■ Good performance up to $n \approx 8$ qubits

Existing tools are still faster, but model counters are constantly improving!

Conclusion & Future Work

Conclusion

- We built a framework for applying WMC to problems that involve matrices
- Particularly useful in quantum applications
- Promising results on Potts and transverse-field Ising models
 - As model counters improve, our framework will become more useful

Future Work

- Use of different techniques, such as Max-WMC, could allow for finding ground states of quantum systems
- Model counters are constantly improving: This could allow for more applications
 - Effective simulation of large quantum systems
 - Modeling systems with complex interactions