Lecture 4: Mathematical Induction

Appendix A

- A **set** is a collection of objects.
- We denote sets by capital letters such as *S*:

$$S = \{1, 2, 3, 4\}$$

- In this example, S is the set containing the first four positive integers.
- Is the following set valid?

$$S = \{1, 2, 3, 3, 4\}$$

- A set is a collection of objects.
- We denote sets by capital letters such as *S*:

$$S = \{1, 2, 3, 4\}$$

- In this example, S is the set containing the first four positive integers.
- Is the following set valid?

$$S = \{1, 2, 3, 3, 4\}$$

- An element is either in a set or not. It is *redundant* to list an element twice.
 - \circ $S = \{1, 2, 3, 3, 4\}$ is actually $S = \{1, 2, 3, 4\}$

• What does the following set contain?

$$S = \{3, 6, 9, ..., 3i, ...\}$$

• What does the following set contain?

$$S = \{3, 6, 9, ..., 3i, ...\}$$

- When we write out a few items and then a general item, we are describing an infinite set.
- In this case, the set contains every positive multiple of 3.

We can also represent the same set with a formal description of the objects it contains:

 $S = \{ n \text{ such that } n = 3i \text{ for some positive integer } i \}$

- The objects in a set are called **elements** or **members** of the set.
- If x is a member of set S, we write $x \in S$.
- If x is not a member of S, we write $x \notin S$.

For example:

$$S = \{ 1, 2, 3, 4 \}$$
 $2 \in S$ and $5 \notin S$

- Two sets are equal if they have the same elements: S = T
- If two sets are not equal, we say $S \neq T$

Suppose we have the two following sets. What can be said of their relationship?

$$S = \{ 1, 2, 3 \}$$
 $T = \{ 1, 2, 3, 5, 6 \}$

Suppose we have the two following sets. What can be said of their relationship?

$$S = \{ 1, 2, 3 \}$$
 $T = \{ 1, 2, 3, 5, 6 \}$

• S is a **subset** of T because every element in S is also in T.

$$S \subseteq T$$

Is *S* a subset of *S*?

Suppose we have the two following sets. What can be said of their relationship?

$$S = \{ 1, 2, 3 \}$$
 $T = \{ 1, 2, 3, 5, 6 \}$

• S is a **subset** of T because every element in S is also in T.

$$S \subseteq T$$

Is S a subset of S?

- Yes! Every set is a subset of itself.
- However, if a set S is a subset of another set T, but is *not* equal to T, we say S is a **proper subset** of T:
- \bullet $S \subseteq T$

$$S = \{ 1, 4, 5, 6 \}$$
 $T = \{ 1, 3, 5 \}$

• What is $S \cap T$?

$$S = \{ 1, 4, 5, 6 \}$$
 $T = \{ 1, 3, 5 \}$

- What is $S \cap T$?
- The **intersection** of S and T is the set of all elements that are in <u>both</u> S and T.

$$\therefore S \cap T = \{1, 5\}$$

$$S = \{ 1, 4, 5, 6 \}$$
 $T = \{ 1, 3, 5 \}$

• What is $S \cup T$?

$$S = \{ 1, 4, 5, 6 \}$$
 $T = \{ 1, 3, 5 \}$

- What is $S \cup T$?
- The **union** of *S* and *T* is the set of all elements that are in <u>either</u> *S* or *T*.

$$\therefore S \cup T = \{1, 3, 4, 5, 6\}$$

$$S = \{ 1, 4, 5, 6 \}$$
 $T = \{ 1, 3, 5 \}$

• What is *S* - *T* ? What is *T* - *S* ?

$$S = \{ 1, 4, 5, 6 \}$$
 $T = \{ 1, 3, 5 \}$

- What is S T? What is T S?
- The **difference** between *S* and *T* is the set of all elements that are in *S* but are <u>not</u> in *T*.

$$S - T = \{ 4, 6 \}$$

$$T - S = \{ 3 \}$$

Mathematical Induction

Suppose we want to prove an equality with an **infinite domain** to be true.

Example: Prove that
$$1 + 2 + 2^2 + 2^3 + ... + 2^n = 2^{n+1} - 1$$
 for any $n \ge 1$

Proving a few steps is simple:

•
$$n = 1: 1 + 2^1 = 2^{1+1} - 1$$
 or $1 + 2 = 4 - 1$ or $3 = 3$

•
$$n = 2$$
: $1 + 2^1 + 2^2 = 2^{2+1} - 1$ or $1 + 2 + 4 = 8 - 1$ or $7 = 7$

• etc.

However, to prove this true for *all* values of *n* would take infinite steps!

• Instead, **mathematical induction** helps us prove these types of equalities in a fairly simple way.

Mathematical induction

Suppose we are climbing a ladder, and we know two things to be true:

- 1. We can climb the first rung.
- 2. When we are on any rung of the ladder, we can climb to the next rung.

What can we conclude from these two statements?

Mathematical induction

Suppose we are climbing a ladder, and we know two things to be true:

- 1. We can climb the first rung.
- 2. When we are on any rung of the ladder, we can climb to the next rung.

What can we conclude from these two statements?

We can climb a ladder of infinite size!

- We can get to the first rung by statement 1.
- We can get to the second rung from the first rung by statement 2
- We can get to the third rung from the second rung by statement 2
- ...
- We can get to rung n from rung n 1 by statement 2

Mathematical Induction

Mathematical induction works the same way.

If we have a statement P(n) which we want to prove is true for any positive integer n, we perform the following steps:

- 1. Prove that P(1) is true. (Induction Base)
- 2. Write out P(k) and assume it's true. (Induction Hypothesis)
- 3. Write out P(k + 1) and show that if P(k) is true, P(k + 1) must also be true (**Induction Step**)

Induction Example

Example: Prove that $1 + 2 + 2^2 + 2^3 + ... + 2^n = 2^{n+1} - 1$ for any $n \ge 1$

- **Step 1**: Prove base case, P(1)
 - $0 + 2^1 = 2^{1+1} 1$ or $3 = 2^2 1$, which is true.
- Step 2: Assume the inductive hypothesis to be true, P(k)

$$0 1 + 2 + 2^2 + \dots + 2^k = 2^{k+1} - 1$$

• Step 3: Prove that if P(k) is true, P(k+1) must be true. First, write out P(k+1):

$$0 1 + 2 + 2^2 + \dots + 2^{k+1} \stackrel{?}{=} 2^{k+1+1} - 1$$

Induction Example (cont)

P(
$$k$$
): $1 + 2^1 + 2^2 + ... + 2^k = 2^{k+1} - 1$

P(
$$k+1$$
): $1 + 2^1 + 2^2 + ... + 2^k + 2^{k+1} \stackrel{?}{=} 2^{k+1+1} - 1$

We can rewrite the left side of P(k+1) to include the next-to-last term, 2^k

Induction Example (cont)

P(
$$k$$
): $1 + 2^1 + 2^2 + ... + 2^k = 2^{k+1} - 1$

P(
$$k+1$$
): $1 + 2^1 + 2^2 + ... + 2^k + 2^{k+1} \stackrel{?}{=} 2^{k+1+1} - 1$

We can then find the left side of P(k) within P(k+1). Replace it with the right side of P(k), since we have assumed they're equal:

P(
$$k$$
+1): 2^{k+1} - 1 + 2^{k+1}
= $2(2^{k+1})$ - 1 (adding like terms)
= 2^{k+1+1} - 1

We end with 2^{k+1+1} - 1 which is the right side of P(k+1). We have shown that if P(k) is true then P(k+1) must also be true, thus completing the proof.

Induction Example (cont)

Given this equality:

$$1 + 2 + 2^2 + 2^3 + \dots + 2^n = 2^{n+1} - 1$$
 for any $n \ge 1$

We have proven:

- 1. It is true when n = 1
- 2. If it is true when n = k, it is also true when n = k + 1

Therefore

The equality is true when n = 1 by statement 1

The equality is true when n = 2 by statement 2

The equality is true when n = 3 by statement 2

etc.

In-Class Exercise

Use mathematical induction to prove:

•
$$1 + 2 + ... + n = [n(n+1)] / 2$$