GRADO EN MATEMÁTICAS - CURSO 2023-2024 ASIGNATURA: ESTADÍSTICA MULTIVARIANTE

RELACIÓN 2 (TEMA 2)

- 1. Sea A una matriz aleatoria con distribución $W_p(n,I_p)$. Probar que $\mathrm{tr}(A)$ tiene distribución \mathcal{X}_{np}^2 .
- 2. Sea A una matriz aleatoria con distribución $W_p(n,\Sigma)$ ($\Sigma > 0$). Probar que, para cualesquiera vectores $\mathbf{a}, \ \mathbf{b} \in \mathbb{R}^p$, las variables aleatorias $\mathbf{a}'A\mathbf{a}$ y $\mathbf{b}'A\mathbf{b}$ son independientes si y solo si $\mathbf{a}'\Sigma\mathbf{b} = 0$.
- 3. Probar que si $\mathbf{X}_1, \dots, \mathbf{X}_N$ constituyen una muestra aleatoria simple de una distribución $N_p(\boldsymbol{\mu}, \Sigma)$ ($\Sigma > 0$), y el parámetro vector de medias $\boldsymbol{\mu}$ es <u>conocido</u>, entonces el estimador máximo-verosímil de Σ es

$$\hat{\Sigma} := \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{X}_{\alpha} - \boldsymbol{\mu}) (\mathbf{X}_{\alpha} - \boldsymbol{\mu})'$$

(bajo la condición de ser esta matriz definida positiva). Comprobar si este estimador es o no insesgado.

4. Sea A una matriz aleatoria con distribución $W_p(n,\Sigma)$ ($\Sigma>0$). Probar, usando la función de densidad de Wishart, que

$$E[|A|^r] = |\Sigma|^r 2^{pr} \frac{\Gamma_p\left(\frac{1}{2}n + r\right)}{\Gamma_p\left(\frac{1}{2}n\right)}, \quad \forall r > 0.$$

[OBSERVACIÓN: La definición de la 'densidad de Wishart', y de la correspondiente 'función característica de Wishart', sigue siendo válida, por extensión, tomando como parámetro 'grados de libertad' cualquier número real n tal que n>p-1 (aunque la definición implícita en términos de vectores $\mathbf{Z}_{\alpha} \sim N_p(\mathbf{0}, \Sigma)$ ($\Sigma>0$) independientes sólo se aplicaría para el caso en que n es entero, con $n\geq p$)]

- 5. Sea $\mathbf{X}_1,\dots,\mathbf{X}_N$ una muestra aleatoria simple de una distribución $N_p(\boldsymbol{\mu},\Sigma)$ ($\Sigma>0$). Sea $A=\sum_{\alpha=1}^N (\mathbf{X}_\alpha-\bar{\mathbf{X}})(\mathbf{X}_\alpha-\bar{\mathbf{X}})'$ la matriz de dispersiones muestral, con $\bar{\mathbf{X}}=\frac{1}{N}\sum_{\alpha=1}^N \mathbf{X}_\alpha$ el vector de medias muestral.
 - (a) Probar que la matriz $\text{Cov}(\bar{\mathbf{X}}, \mathbf{X}_{\alpha} \bar{\mathbf{X}})$ es nula, para $\alpha = 1, \dots, N$. Deducir, entonces, que $\bar{\mathbf{X}}$ y A son independientes.
 - (b) Encontrar una matriz B tal que A = X'BX, con $X = (X_1 \cdots X_N)'$ (matriz $(N \times p)$ -dimensional).
 - (c) Suponiendo que N>p, encontrar alguna matriz $(p\times p)$ -dimensional G tal que $GAG'\sim W_p(N-1,I_p)$.