Lema de Barbalat

Un resultado muy útil que usaremos varias veces en este curso:

Lema de Barbalat [versión débil]

Sean $a \geq -\infty$ y $f:(a,+\infty) \to \mathbb{R}$ una función derivable tal que

$$\exists \lim_{t\to +\infty} f(t) = L \in \mathbb{R}.$$

Entonces existe una sucesión $t_n \to +\infty$ tal que $f'(t_n) \to 0$.

Lema de Barbalat [versión fuerte]

Sean $a \geq -\infty$ y $f:(a,+\infty) \to \mathbb{R}$ una función derivable tal que

$$\exists \lim_{t\to+\infty} f(t) = L \in \mathbb{R}.$$

Si f es uniformemente continua, entonces $\lim_{t\to +\infty} f'(t) = 0$.

Sea $f:(a,b)\to\mathbb{R}$ una función continua donde $-\infty\leq a< b\leq +\infty$. Dados $(t_0,x_0)\in\mathbb{R}\times(a,b)$ consideramos el PVI

$$(P) \begin{cases} x' = f(x) \\ x(t_0) = x_0. \end{cases}$$

Lema 1

Sea $\varphi:(\alpha,\omega) \to \mathbb{R}$ una solución de (P) tal que $\omega=+\infty$ y

$$\exists \lim_{t \to \omega} \varphi(t) = L \in (a, b).$$

Entonces $L \in Z_f$.

Lema 2

Sea $\varphi: (\alpha, \omega) \to \mathbb{R}$ una solución de (P) tal que

$$\exists \lim_{t\to\omega} \varphi(t) = L \in (a,b).$$

Si $\omega < +\infty$, entonces la solución es prolongable.

Lema del primer instante

Otro resultado muy útil que usaremos varias veces en este curso:

Lema del primer instante

Sean $t_0 \in \mathbb{R}$ y $f:[t_0,+\infty) \to \mathbb{R}$ una función continua tal que

$$f(t_0)>0.$$

Si existe $T>t_0$ tal que $f(T)\leq 0$ entonces existe $au>t_0$ tal que

$$f(\tau) = 0$$
 y $f(t) > 0$ $\forall t \in [t_0, \tau)$.

Si además f es derivable en τ entonces $f'(\tau) \leq 0$.

Ejemplo de aplicación

Ejercicio

Sea $\varphi:(\alpha,\omega)\to\mathbb{R}$ una solución de

$$(*) \begin{cases} x' = f(t, x) \\ x(0) = 1 \end{cases}$$

donde $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ es una función continua tal que

$$f(t,0) > 0 \quad \forall t > 0$$

Prueba que

$$\varphi(t) > 0 \quad \forall t \geq 0.$$