Московский Физико-Технический Институт (государственный университет)

Работа 5.1.2

Цель работы:

с помощью сцинтиляционного спектрометра исследуется энергетический спектр γ -квантов, рассеянных на графите. Опреляется энергия рассеянных γ -квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит комптоновское рассеяние.

1 Теоретическая часть

Эффект Комптона – увеличение длины волны рассеянного излучения по сравнению с падающим – интерпретируется как результат упругого содуранеия двух частиц: γ -кванта и свободного электрона.

Из закона сохранения 4-имульса для системы «фотон + электрон» следует формула для изменения длины волны рассеянного излучения:

$$\Delta \lambda = \Lambda_K (1 - \cos \theta), \tag{1}$$

где величина $\Lambda_K = h/(mc) = 2,42 \cdot 10^{-10}$ см называется комптоновской длиной волны электрона.

Из формулы (1) следует, что комптоновское смещение не зависит ни от длины волны первичного излучения, ни от рода вещества, в котором наблюдается рассеяние. В общем случае комптоновоское рассеяние происходит на свободных электронах в атоме. Для γ -квантов с энергией в несколько десятков, а тем более сотен килоэлектрон-вольт, связь электронов в атоме мало существенна, так как энергрия их связи в легких атомах не превосходит нескольких килоэлектрон-вольт, а для большинства электронов еще меньше.

При рассеянии на связанных электронах изменение импульса кванта воспринимается атомом в целом. Посколько масса атома очень велика, переда ча импульса не спровождается сколь-нибудь заметной передачей энергии, и наблюдается несмещенная (по энергии) компонента в спектре рассеянного излучения. Таким образом, рассеяние γ -квантов на связанных электронах можно рассматривать как упругое столкновение квантов с атомами.

Основной целью данной работы является проверка соотношения (1). Применительно к условиям нашего опыта формулу (1) следует преобразовать от длин волн к энергиям γ -квантов. Как нетрудно показать, соответсвующиее выражение имеет вид:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta. \tag{2}$$

Здесь $\varepsilon_0=E_0/(mc^2)$ – выраженная в единицах (mc^2) энергия γ -квантов, падающих на рассеиватель, $\varepsilon(\theta)$ – выраженная в тех же единицах энергия квантов, испытавших комптоновское рассеяние на угол θ , m – масса электрона.

Заменим в формуле (2) энергию квантов, испытавших комптоновское рассеяние на угол θ , номером канала $N(\theta)$, соответствующего вершине фотопика при указанном угле θ :

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta),\tag{3}$$

где A – неизвестный коэффциицент пропорциональности между $\varepsilon(\theta)$ и $N(\theta)$.

Работа 5.1.2 3 *ХОД РАБОТЫ*

2 Экспериментальная установка

Блок-схема установки изображена на рис. 2а. Источником излучения 1 служит $^{137}\mathrm{Cs}$, испускающий γ -лучи с энергией 662 кэВ. Он помещен в толстенный свинцовый контейнер с коллиматором. Сформмированный коллиматором узкий пучок γ -квантов попадает на графитовую мишень 2 (цилиндр диамтером 40 мм и высотой 100 мм.)

Рис. 1: Экспериментальная установка.

Кванты, испытавшие комптоновское рассеяние в мишени, региструруются сцинтилляционным счетчиком. Счетчик состоит из фотоэлектронного умножителя 3 (далее ФЭУ) и сцинтиллятора 4. Сцинтиллятором служит кристалл NaI(Tl) цилиндрической формы диаметром 40 мм и высотой 40 мм, его выходное окно находится в оптическом контакте с фотокатодом ФЭУ. Сигналы, возникающие на ФЭУ, подаются на ЭВМ для амплитудного анализа. Кристалл и ФЭУ расположены в светонепроницаемом блоке, укрепленном на горизонтальной штанге. Штанга вместе с этим блоком может вращаться относительно мишени, угол поворота отсчитывается по лимбу 6.

На рис. 2b представлена функциональная блок-схема измерительного комплекса, который состоит из ФЭУ, питаемого от высоковольтного выпрямителя ВСВ, обеспечивающего работу ФЭУ в спектрометрическом режиме, усилителя-анализатора УА, являющегося входным интерфейсом ЭВМ, управляемой с клавиатуры КЛ. В ходе проведения эксперимента информация отражается на экране дисплея Д, окончательные результаты в виде таблиц и графиков могут быть выведены на принтер ПР.

3 Ход работы

- 1. Включим все устройства и компьютер. Откроем программу и войдем в режим измерения спектра.
- 2. Снимем амплитудные спектры и определим положения фотопиков для каждого угла θ . Погрешность измерения угла возьмем равной $\sigma_{\theta}=0,5^{\circ},$ а N_{0} за N от нуля градусов:

Работа 5.1.2 3 *ХОД РАБОТЫ*

Рис. 2: Экспериментальная установка.

θ	$1 - \cos(\theta)$	$\sigma_{1-\cos(\theta)}$	N	$1/N - 1/N_0$	σ_N	$\sigma_{1/N-1/N_0}$
0	0	0,00002	832	-	25	_
10	0,0152	0,00017	902	-0,00009	25	$4 \cdot 10^{-6}$
20	0,0603	0,00067	766	0,00010	40	$8 \cdot 10^{-6}$
30	0,1340	0,00149	717	0,00019	60	$1,6 \cdot 10^{-5}$
40	0,2340	0,00260	687	0,00025	60	$1,8 \cdot 10^{-5}$
50	0,3572	0,00397	608	0,00044	50	$3,6 \cdot 10^{-5}$
60	0,5000	0,00556	512	0,00075	50	$7, 3 \cdot 10^{-5}$
70	0,6580	0,00731	472	0,00091	50	$9,7 \cdot 10^{-5}$
80	0,8263	0,00918	412	0,00123	50	0,00015
90	1,0000	0,01111	392	0,00134	50	0,00017
100	1,1737	0,01304	345	0,00162	50	0,00025
110	1,3420	0,01491	309	0,00307	50	0,00033

3. Построим график зависимости $f(1-\cos(\theta))$, где по оси y отложим $1/N-1/N_0$, а по оси x - $1-\cos(\theta)$.

Получим линейную зависимость вида y = ax + b, с коэффициентами:

	Значение	Погрешность МНК
a	0,00151	0,00004
b	$-3,29\cdot 10^{-5}$	$2,74 \cdot 10^{-5}$

Работа 5.1.2 4 B B B O Д

Рис. 3: График зависимости $1/N - 1/N_0$ от $1 - \cos(\theta)$

Учтем погрешности измерений и получим итоговую погрешность $\sigma_{ares} = 0,00025$.

4. Из формулы (3) понимаем, что угловой коэффициент a равен неизвестному коэффициенту A. Теперь зная коэффициент A находим, что $mc^2 = 1/A$ при $\theta = 90^\circ$. Так как a постоянно при любом значении θ , то и A и mc^2 тоже постоянны и не зависят от угла. Следовательно:

$$mc^2 = 662, 3 \pm 108, 6$$
 кэВ

5. По формуле:

$$mc^2 = E_\gamma \frac{N_{best}(90)}{N_{best}(0) - N_{best}(90)}$$
 (4)

Возьмем за $N_{best}(\theta)$ значения N соответствующие измерениям N по МНК для данного угла θ . Тогда $N_{best}(0) = 832$ и $N_{best}(90) = 369$. Здесь погрешность складывается из погрешности $N_{best}(\theta)$ и погрешности mc^2 .

Получаем:

$$E_{\gamma} = 831 \pm 190 \, \text{кэ} \text{В}$$

4 Вывод

В данной работе исследоваи эффект Комптона и посмотрели на спектр γ -квантов рассеяных на графите. Оценили энергию данных γ -квантов, получили $E_{\gamma}=831\pm190$ кэВ.

Работа 5.1.2 4 ВЫВОД

Табличное значение равно 662 кэВ, поэтому полученное значение сходится с табличным в пределах погрешности. Но при этом погрешность измерения составляет 22,8 %, что является довольно плохим значением. Данная точность обусловлена плохой точностью измерения фотопика (его погрешность вносит основной вклад в это значение). Также мы не учитываем счетную характеристику $\Phi \ni V$ (колебания напряжения на нем), а она также может вносить погрешность в результаты измерения.