

DPP - 2

Video Solution on Website:-	https://physicsaholics.com/	home/courseDetails/57/

Video Solution on YouTube:- https://youtu.be/ea80V0nVrqo

(a) $\frac{1}{2}$

Q 8.

Q 1.	Four molecules have speeds 2 km/sec, 3 km/sec, 4 km/sec and 5 km/sec. The root mean square speed of these molecules (in km/sec) is:					
	(a) $\sqrt{\frac{27}{2}}$ (b) $\sqrt{27}$ (c) 3.5 (d) $3\sqrt{3}$					
Q 2.	At what temperature will the particles in a sample of helium gas have an rm 1 km/s ? (a) 160°C (b) $222 K$ (c) $160 K$ (d) $222 K$	-				
	(a) 100 c (b) 222 h (c) 100 h	, u				
Q 3.	The temperature of a gas is increased from 27°C to such an extent that its r be double the speed at 27°C. The final temperature will be (a) 927°C (b) 250°C (c) 600°C (d) 120					
Q 4.	At what temperature is the root mean square speed of an atom in an argon cylinder equal to the rms speed of a helium gas atom at -20° C? (atomic m 39.9 u, and of He = 4.0 u) (a) 2.52×10^{3} °C (b) 2.52×10^{3} K (c) 25.2×10^{3} K (d) 25.2×10^{3}					
Q 5. (N (< 100) molecules of a gas have velocities 1, 2, 3, N km/s respective ratio of rms speed and average speed is: (Given: The sum of squares of the first n natural numbers = $\frac{n(n+1)(2n+1)}{6}$ (a) 1 (b) $\sqrt{\frac{(2N+1)(N+1)}{6N}}$ (c) $\sqrt{\frac{(2N+1)(N+1)}{6}}$ (d) $2\sqrt{\frac{(2N+1)}{6(N+1)}}$	ely. Then				
Q 6.	Find the ratio of the mean speed of hydrogen molecules to the mean speed molecules in a sample containing a mixture of the two gases	_				
	(a) 14 (b) $\sqrt{14}$ (c) $\frac{1}{28}$	$(d)\frac{1}{\sqrt{14}}$				
Q 7.	The mean speed of the molecules of a hydrogen sample equals the mean smolecules of a helium sample. Calculate the ratio of the temperature of the sample to the temperature of the helium sample					

(c) $\frac{1}{4}$

The ratio of rms speed of an ideal gas molecules at pressure p to that at pressure 2p is

(d) 4

(b) 2

P hysicsaholics

(a) $\frac{1}{2}$

- (b) 2
- (c) $\frac{1}{\sqrt{2}}$
- (d) $\sqrt{2}$
- Q 9. In a closed rigid container an ideal gas is filled. If the gas is heated, the graph of pressure (P) v/s root mean square speed (rms) will be:

- (d) None of these
- Q 10. A gas is filled in a rigid container at pressure P_0 . If the mass of each molecule is halved keeping the total number of molecules same and their r.m.s speed is doubled then find the new pressure
 - (a) $\sqrt{2}P_0$
- (b) $3P_0$
- (c) $\sqrt{3}P_0$
- (d) $2P_0$
- Q 11. At what temperature most probable speed of SO_2 molecule have the same value as root mean square speed of O_2 molecules at 300 K?
 - (a) 150K
- (b) 600*K*
- (c) 750K
- (d) 900*K*
- Q 12. Most probable velocity, average velocity and root mean square velocity are related as:
 - (a) 1: 1.128: 1.224

(b) 1: 1.128: 1.424

(c) 1: 2.128: 1.224

(d) 1: 1.428: 1.442

Answer Key

Q.1 a	Q.2 c	Q.3 a	Q.4 b	Q.5 d
Q.6 b	Q.7 a	Q.8 c	Q.9 b	Q.10 d
Q.11 d	Q.12 a			