HOMEWORK 5: COHEN-MACAULAY AND CHARACTERISTIC p > 0DUE: MONDAY, APRIL 23

- 1) Show that the ring $R = K[x, y, u, v]/\langle x, y \rangle \cap \langle u, v \rangle$ from class 18 is non-CM (localized at $\langle x, y, z, w \rangle$ if desired). In particular, show that $\dim(R) = 2$ (what are its prime ideals?) and that modding out by any NZD leaves a ring with only units and zero-divisors.
- 2) Show that $\operatorname{Tor}_i^R(M \oplus M', N) \cong \operatorname{Tor}_i^R(M, N) \oplus \operatorname{Tor}_i^R(M', N)$.
- 3) Compute $\operatorname{Tor}_{i}^{R}(M, M)$ where $R = \mathbb{Z}/6\mathbb{Z}$ and $M = \mathbb{Z}/3\mathbb{Z}$.
- 4) Prove the following Proposition from class:
 - **Proposition 0.1.** A ring R is equal characteristic 0 if and only if $\mathbb{Q} \subseteq R$. A ring is characteristic p > 0, where p is a prime number, if and only if $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} \subseteq R$. All other rings are mixed characteristic, which holds if and only if $\operatorname{char}(R) \neq \operatorname{char}(R/\mathfrak{m})$ for some maximal ideal \mathfrak{m} .
- 5) Prove (or recall) the following proposition from class:
 - **Proposition 0.2.** If R is a ring of characteristic p > 0, then $F : R \to R$ is injective if and only if R is reduced (e.g. the nilradical $\mathbb{N} = 0$).
- 6) Show that if $R \subseteq S$, M is an S-module, and $Hom_R(S,R) \cong S$ as S-modules, then the map given by composition is surjective:

$$\operatorname{Hom}_S(M,S) \times \operatorname{Hom}_R(S,R) \to \operatorname{Hom}_R(M,R)$$

- 7) Show that localization commutes with F_* . That is to say $F_*W^{-1}R \cong W^{-1}F_*R$.
- 8) Find an example of a field which is not F-finite.
- 9) Find an example of an F-finite field which isn't perfect.
- 10) Let $R = \mathbb{F}_q[x_1, \dots, x_n]$ for some $q = p^e$. Show that F_*R is a free R-module and calculate its rank.