Queensland University of Technology

EGB120

Foundations of Electrical Engineering

Professor Geoff Walker

Dinal Atapattu

November 11, 2023

Contents

1	Elec	etrical Circuits	2
	1.1	Fundamental Units	2
	1.2	Basic Circuit Elements	2
		1.2.1 Voltage Source	2
		1.2.2 Current Source	2
		1.2.3 Resistor	2
2	Sim	ple Circuits	3
-	2.1	Physics Ignored	3
	$\frac{2.1}{2.2}$	Series	3
	2.3	Parallel	3
	2.4	Kirchoff's Laws	3
		2.4.1 Kirchoff's Current Law	3
		2.4.2 Kirchoff's Voltage Law	4
	2.5	Component Behaviours in Series and Parallel	4
	2.6	Voltage Divider	4
	2.7	Current Divider	5
3		rce Transformation	6
	3.1	Thevenin Equivalent	6
4	Dio	des	7
-	4.1	Voltage-Current Characteristics	7
		4.1.1 Simplified Diode Characteristics	7
		4.1.2 Full Diode Characteristics	8
5	RL	and RC Circuits	9
	5.1	Natural Response	9
	5.2	Step Response	10
6	\mathbf{AC}		11
Ü	6.1	AC Circuit Analysis	
	6.2	Bode Plots	
	6.3	Transfer Function $H(\omega)$ - The 3dB Point	
7	\mathbf{Filt}	ers and Rectifiers	12
	7.1	Applications of Filters	
	7.2	Ideal Filters	
	7.3	Passive Filters	13
		7.3.1 Low Pass Filter	13
		Plotting the Response	13
		Designing a Low Pass Filter	13
		7.3.2 High Pass Filter	14
		Designing a High Pass Filter	14
		Plotting the Response	14
	7.4	Active Filters	15
		7.4.1 Op-Amps	15
		7.4.2 Using an Op Amp	15
		Active High Pass Filter	15
	7 5	Active Low Pass Filter	15
	7.5	Band Pass and Band Stop Filters	16

Electrical Circuits

1.1 Fundamental Units

Quantity	Definition	Symbol	SI Unit
Charge	Physical property of matter that causes it to experience a force when placed in an electromagnetic field	q	Coulomb (C)
Current	$i(t) = \frac{\mathrm{d}q}{\mathrm{d}t}$	i	Ampere (A)
Voltage	$v(t) = \frac{\mathrm{d}w}{\mathrm{d}q}$	v	Volt (V)
Power	$p(t) = \frac{\mathrm{d}w}{\mathrm{d}t} = \frac{\mathrm{d}q}{\mathrm{d}t} \times \frac{\mathrm{d}w}{\mathrm{d}q} = vi$	p	Watt (W)
Energy	$w(\tau) = \int_{\tau}^{0} p(t)dt$	e	Joule (J)

1.2 Basic Circuit Elements

1.2.1 Voltage Source

Produces or dissipates power at a specific voltage with whatever current is required

1.2.2 Current Source

Produces or dissipates power at a specific current with whatever voltage is required

1.2.3 Resistor

Dissipates power so that the voltage across the terminals is proportional to the current

$$v = Ri$$
 (Ohm's Law)

Following this

$$p = vi = Ri^2 = \frac{v^2}{R}$$

Simple Circuits

2.1 Physics Ignored

- Electrical effects are instantaneous
- Net charge on every component is zero
- No magnetic coupling between components

2.2 Series

Elements are connected end to end and have the same current flowing through them

Figure 2.1: Series Circuit

2.3 Parallel

Both ends of one element are connected directly and have the same voltage across them

Figure 2.2: Parallel Circuit

2.4 Kirchoff's Laws

2.4.1 Kirchoff's Current Law

The sum of currents entering a node is equal to the sum of currents leaving a node

$$\sum_{k=1}^{n} i_k = 0$$

$$i_1 + i_2 + i_3 = 0$$

$$i_3$$

$$i_2$$

Figure 2.3: Kirchoff's Current Law

2.4.2 Kirchoff's Voltage Law

The sum of voltages around a closed loop is zero

$$\sum_{k=1}^{n} v_k = 0$$

$$v_1 - v_2 - v_3 = 0$$
$$v_1 = v_2 + v_3$$

Figure 2.4: Kirchoff's Voltage Law

2.5 Component Behaviours in Series and Parallel

Series	Parallel
$v_s = v_1 + v_2 + v_3$	$v_s = v_1 = v_2 = v_3$
$i_s = i_1 = i_2 = i_3$	$i_s = i_1 + i_2 + i_3$
$R_s = R_1 + R_2 + R_3$	$\frac{1}{R_s} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$
$L_s = L_1 + L_2 + L_3$	$\frac{1}{L_s} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}$
$\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$	$C_s = C_1 + C_2 + C_3$
i	$v_s = v_1 + v_2 + v_3$ $v_s = i_1 = i_2 = i_3$ $v_s = i_1 = i_2 = i_3$ $v_s = R_1 + R_2 + R_3$ $v_s = L_1 + L_2 + L_3$

Figure 2.5: Component Behaviours in Series and Parallel

2.6 Voltage Divider

Figure 2.6: Voltage Divider

Current through resistors is

$$i = \frac{v_s}{R_1 + R_2}$$

Voltage across resistors is

$$v_1 = iR_1 = \frac{R_1}{R_1 + R_2} v_s$$

For more resistors

$$v_k = \frac{R_j}{R_{eq}} v_s$$

Dinal Atapattu Page 4 of 17

2.7 Current Divider

Figure 2.7: Current Divider

Voltage across resistors is

$$v = i(R_1||R_2||R_3)$$

Current through resistors is

$$i_j = \frac{v}{R_j} = \frac{R_1 ||R_2|| R_3}{R_j} i$$

For more resistors

$$i_j = \frac{R_{eq}}{R_j}i$$

Dinal Atapattu Page 5 of 17

Source Transformation

3.1 Thevenin Equivalent

Voltage source with a series resistance

Diodes

Current flows from the anode to the cathode and the voltage across the diode is positive. A diode requires voltage to be applied across it to conduct current. This voltage is called the **forward voltage**.

4.1 Voltage-Current Characteristics

Figure 4.1: Diode VI Characteristics

4.1.1 Simplified Diode Characteristics

Diodes have non-linear characteristics. Therefore, they are simplified to make calculations easier.

Figure 4.2: Simplified Diode Characteristics

4.1.2 Full Diode Characteristics

Diodes can be accurately modelled using Shcokley's equation

$$i_D = I_s \left(e^{\frac{v_D}{V_T} - 1} \right) \qquad V_T = \frac{kT}{q}$$

where I_s is the saturation current, V_T is the thermal voltage, k is Boltzmann's constant, T is the temperature in Kelvin and q is the charge of an electron.

Dinal Atapattu Page 8 of 17

RL and RC Circuits

5.1 Natural Response

Is a decaying response for an RL and RC circuit

$$v(t) = V_0 e^{-\frac{t}{RC}}$$

Figure 5.1: RC Natural Response

Figure 5.2: RL Natural Response

5.2 Step Response

$$v(t) = I_s R + (V_0 - I_s R) e^{-\frac{t}{RC}}$$

(a) Equation for RC Circuit Step Response

Figure 5.3: RC Step Response

$$i(t) = \frac{V_s}{R} + \left(I_o - \frac{V_s}{R}\right)e^{-\frac{Rt}{L}}$$

Figure 5.4: RL Step Response

Dinal Atapattu Page 10 of 17

\mathbf{AC}

6.1 AC Circuit Analysis

Element	Impedance	Diagram	
Resistor	R		
		\mathbf{C}	
Capacitor	$\frac{1}{j\omega C}$ or $\omega L \angle 90^{\circ}$	11	
Inductor	$j\omega L$ or $\frac{1}{\omega L}\angle - 90^{\circ}$		

Figure 6.1: Impedance of Circuit Elements

6.2 Bode Plots

Plot frequency on x axis using the log of frequency

- \bullet 1, 10, 100, 1000, 10000 are equally spaced
- 3, 30, 300, 3000, 30000 are midpoints

Plot the log of gain (decibels) on one y axis and the phase (degrees) on another y axis

$$\omega = 2\pi f \qquad \text{Gain}_{\text{dB}} = 20 \log_{10} \left(\text{Gain} \right) \qquad H(\omega) = \frac{V_o(\omega)}{V_i(\omega)} \qquad \text{Phase} = \angle H(\omega) \\ = \arctan \frac{\text{imag}(H(\omega))}{\text{real}(H(\omega))} \\ \text{(a) Hz to Radians per Second} \qquad \text{(b) Gain to Decibels} \qquad \text{(c) Transfer Function} \qquad \text{(d) Transfer Function to Phase} \\ \text{Gain} = |(H(\omega))| \\ = \sqrt{\left(\text{real}(H(\omega))\right)^2 + \left(\text{imag}(H(\omega))\right)^2} \\ \text{(e) Transfer Function to Gain} \\ \text{Figure 6.2: Bode Plot Equations}$$

6.3 Transfer Function $H(\omega)$ - The 3dB Point

The 3dB point is the frequency at which the gain is $\frac{1}{\sqrt{2}}$ of the maximum gain. Also called the **half power point** or **half power frequency** or **break frequency** or **corner frequency**

Filters and Rectifiers

Filters keep the desired frequency components of a signal and remove the unwanted frequency components. They do this in the frequency domain

7.1 Applications of Filters

- Audio Signals
 - Remove high frequency hiss (magnetic tape)
 - Remove low frequency rumble (vinyl)
- Medical Signals
 - EEG alpha waves are 8-12Hz
 - EEG beta waves are 12-30Hz
 - ECG waves are 1 40Hz
- 50Hz interference
 - Remove all signals near 50Hz
- Signal Processing

7.2 Ideal Filters

7.3 Passive Filters

7.3.1 Low Pass Filter

Figure 7.2: Low Pass Filter

$$v_o(\Omega) = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} v_i(\omega)$$
$$\frac{v_0(\omega)}{v_i(\omega)} = \frac{1}{j\omega RC + 1}$$

For $R = 1 \mathrm{k}\Omega$ and $C = 1 \mu F$

$$H(\omega) = \frac{1000}{j\omega + 1000}$$

$$H(62.8) \approx 1$$

$$H(62800) = 0.016 \angle - 89^{\circ}$$

Plotting the Response

Figure 7.3: Low Pass Filter Bode Plot

Designing a Low Pass Filter

Find the required **cutoff frequency** ω_c in radians per second (remember $\omega_c = 2\pi f$) Choose a value for R and calculate C such that $\omega_c = \frac{1}{RC}$

Dinal Atapattu Page 13 of 17

$$H(\omega) = \frac{\frac{1}{RC}}{j\omega + \frac{1}{RC}}$$
$$\omega_c = \frac{1}{RC}$$

7.3.2 High Pass Filter

Similar to a low pass filter, but the capacitor and resistor are swapped

Desigining a High Pass Filter

$$v_o(\omega) = \frac{R}{R + \frac{1}{j\omega C}} v_i(\omega)$$
$$\frac{v_0(\omega)}{v_i(\omega)} = H(\omega) = \frac{j\omega RC}{j\omega RC + 1}$$
$$\omega_c = \frac{1}{RC}$$

Plotting the Response

Figure 7.4: High Pass Filter Bode Plot

Dinal Atapattu Page 14 of 17

7.4 Active Filters

7.4.1 Op-Amps

Figure 7.5: Active Filters

7.4.2 Using an Op Amp

Active High Pass Filter

$$\begin{split} v_o &= -\frac{Z_2}{Z_1} v_{in} \\ \frac{v_o}{v_{in}} &= -\frac{R_2}{R_1 + \frac{1}{j\omega C_1}} = -\frac{R_2}{R_1} \frac{j\omega}{j\omega + \frac{1}{R_1C_1}} \end{split}$$

High pass filter with $\omega_c = \frac{1}{R_1C} = \frac{1}{10^3 \times 10^{-6}} = 1000 \text{rad/s}$ Gain of $-\frac{R_2}{R_1} = -10$ in passband

Active Low Pass Filter

$$\begin{aligned} v_o &= -\frac{Z_2}{Z_1} v_{in} \\ &= \frac{\frac{1}{\frac{1}{R_2} + j\omega C_2}}{R_1} v_{in} \\ &\frac{v_o}{v_{in}} = H(\omega) = -\frac{R_2}{R_1} \frac{1}{1 + j\omega R_2 C_2} \\ &= -\frac{R_2}{R_1} \frac{\frac{1}{R_2 C_2}}{j\omega + \frac{1}{R_2 C_2}} \end{aligned}$$

Low pass filter with $\omega_c = \frac{1}{R_2C} = \frac{1}{10^4 \times 10^{-6}} = 100 \text{rad/s}$ Gain of $-\frac{R_2}{R_1} = -10$ in passband

Dinal Atapattu Page 15 of 17

7.5 Band Pass and Band Stop Filters

Figure 7.8: Band Pass and Band Stop Filters

Dinal Atapattu Page 16 of 17

List of Figures

2.1	Series Circuit	3
2.2	Parallel Circuit	3
2.3	Kirchoff's Current Law	3
2.4	Kirchoff's Voltage Law	4
2.5	Component Behaviours in Series and Parallel	4
2.6	Voltage Divider	4
2.7	Current Divider	5
4.1	Diode VI Characteristics	7
4.2	Simplified Diode Characteristics	7
5.1	RC Natural Response	9
	a Equation for RC Circuit Natural Response	9
	b Natural Response RC Circuit	9
	c VT Curve for RC Circuit Natural Response	9
5.2	RL Natural Response	9
	a Equation for RL Circuit Natural Response	9
	b Natural Response RL Circuit	9
	c VT Curve for RL Circuit Natural Response	9
5.3	RC Step Response	10
		10
		10
		10
5.4		10
0.1		10
		10
		10
	VI Curve for Ith Circuit Step Hesponse	10
6.1	Impedance of Circuit Elements	11
6.2	Bode Plot Equations	11
	-	11
		11
		11
		11
		11
7.1	Ideal Filters	12
7.2	Low Pass Filter	13
7.3	Low Pass Filter Bode Plot	13
7.4		14
7.5		15
		15
		$15 \\ 15$
		$15 \\ 15$
		15 15
70		16
7.8	Dailu I ass anu Dailu Stop Fitteis	TO