Assignment

What is Composite Material:-

 A composite material is a combination of two materials with different physical and chemical properties. When they are combined they create a material which is specialized to do a certain job, for instance to become stronger, lighter or resistant to electricity. They can also improve strength and stiffness.

Composites:-

A. Fibers

1. Glass :-

 High strength, low stiffness, high density; lowest cost;
 E (calcium aluminoborosilicate) and S (magnesiaaluminosilicate) types commonly used.

2. Graphite:-

 Available as high-modulus or high-strength; low cost; less dense than glass.

Boron :-

 High strength and stiffness; highest density; highest cost; has tungsten filament at its center.

4. Other :-

 Nylon, silicon carbide, silicon nitride, aluminum oxide, boron carbide, boron nitride, tantalum carbide, steel, tungsten, molybdenum.

B. Matrix materials:-

1. Thermosets:-

 Epoxy and polyester, with the former most commonly used; others are phenolics, fluorocarbons, polyethersulfone, silicon, and polyimides.

2. Thermoplastics:-

• Polyetheretherketone; tougher than thermosets but lower resistance to temperature.

3. Metals:-

 Aluminum, aluminum-lithium, magnesium, and titanium; fibers are graphite, aluminum oxide, silicon carbide, and boron.

4. Ceramics:-

 Silicon carbide, silicon nitride, aluminum oxide; fibers are various ceramics.

General Properties of composites materials:

- High Strength to weight Ratio
- Light weight
- Fire Resistance
- Electrical Properties
- Chemical and weathering resistance
- Color
- Translucency
- Design
- Low thermal conductivity
- Manufacturing Economy

Applications of composite materials :-

Fiber Matrix A	Applications
Boron Magnesium Alumina Lead Silicon carbide Copper Molybdenum, Aluminum tungsten Magnesium Titanium Aluminum Lead Magnesium Aluminum, titanium Superalloy (cobalt-base) Superalloy Cobalt-base) Superalloy	Satellite, missile, and helicopter structures Space and satellite structures Storage-battery plates Electrical contacts and bearings Compressor blades and structural supports Antenna structures Jet-engine fan blades Superconductor restraints in fission power reactors Storage-battery plates Helicopter transmission structures High-temperature structures High-temperature engine components High-temperature engine components