

Session 5 Partial Least Squares Regression

Course on Multivariate Modeling. *KBLMM part*

Tomàs Aluja-Banet

tomas.aluja@upc.edu

PLS Regression - PLS2

- **PLS2** refers to the situation when the response block Y has more than one variable (multivariate modeling)
- The goals are the same as in PLS1. We want m orthogonal components t_h and m components u_h , well correlated between them and explaining their own groups.
- The number of components m is determined by cross validation
- Finally, we regress Y on the $m t_h$ components
- We express the regression equation in terms of *X*
- It allows missing data
- Iterative algorithm

The elements of PLS2

$$X_h = X_{h-1} - t_h p_h'$$

$$Y_h = Y_{h-1} - t_h c_h'$$

Deflation of X_{h-1} respect to t_h

Deflation of Y_{h-1} respect to t_h

PLS2 algorithm

$$X_{0} = X; Y_{0} = Y$$

$$h = 1 \cdots rang(X)$$

$$u_{h} = meanRows(Y_{h-1})$$
iterate till convergence of w_{h}

$$w_{h} = X'_{h-1}u_{h} / u'_{h}u_{h}$$

$$\|w_{h}\| = 1$$

$$t_{h} = X_{h-1}w_{h} / w'_{h}w_{h}$$

$$c_{h} = Y'_{h-1}t_{h} / t'_{h}t_{h}$$

$$u_{h} = Y_{h-1}c_{h} / c'_{h}c_{h}$$

$$p_{h} = X'_{h-1}t_{h} / t'_{h}t_{h}$$

$$X_{h} = X_{h-1} - t_{h}p'_{h}$$

$$c_{h} = Y'_{h-1}t_{h} / t'_{h}t_{h}$$

$$Y_{h} = Y_{h-1} - t_{h}c'_{h}$$

X, *Y* centered and eventually standardized

$$\left. \left. \right\} w_h = X'_{h-1} u_h / \left| X'_{h-1} u_h \right| \right.$$

Deflation of X_{h-1}

Deflation of Y_{h-1}

Geometry of iterations in PLS2

In the convergence

Convergence results:

$$(X'_{h-1}Y_{h-1})(Y'_{h-1}X_{h-1})w_h \propto w_h$$

$$(Y'_{h-1}X_{h-1})(X'_{h-1}Y_{h-1})c_h \propto c_h$$

$$\equiv IBA(X_{h-1}, Y_{h-1})$$

In every iteration we obtain equivalent results to the IBA of the residual matrices of X and Y

$$\Rightarrow \max \operatorname{cov}(t_h, u_h)$$

but now, components t_h are orthogonal and are limited by the rang(X)

$$t_h' t_{l < h} = 0$$

We use the t_h components to explain its own block and to predict the Y block

Properties of the PLSR components

PLS1 regression leads in each step to a compromise between multiple regression of y on X_{h-1} and the principal component analysis of X_{h-1}

$$Cov^{2}(t_{h}, y) \simeq Cor^{2}(t_{h}, y) \times Var(t_{h})$$

PLS2 regression leads in each step to a compromise between multiple regression of u_h on X_{h-1} and the principal component analysis of X_{h-1} and Y_{h-1}

$$Cov^{2}(t_{h}, u_{h}) = Cor^{2}(t_{h}, u_{h}) \times Var(t_{h}) \times Var(u_{h})$$

Properties

Components t_h are orthogonal to the columns of X_l and to Y_l l>=h

Components t_h are orthogonal

Weights w_h are normalized

Loadings p_h project on weights w_h

Weights w_h are orthogonal to the rows of X_h

Weights w_h are orthogonal

Loadings p_h and weights w_l (l>h) are orthogonal

$$t_h' X_h = 0 \quad t_h' Y_h = 0$$

$$t_h't_{h+1} = 0$$

$$w_h' w_h = 1$$

$$W_h \in R^p$$
, $p_h \in R^p$ $W_h' p_h = W_h' X_{h-1}' t_h / t_h' t_h = t_h' t_h / t_h' t_h = 1$

$$w'_h X'_h = w'_h (X'_{h-1} - p_h t'_h) = t'_h - w'_h p_h t'_h = 0$$

$$w_h' w_{h+1} = w_h' X_h' u_{h+1} = 0$$

$$w'_h p_{h+1} = w'_h X'_h t_{h+1} / t'_{h+1} t_{h+1} = 0$$

Modeling the Y block from the t_h components

$$Y = t_{1}c'_{1} + Y_{1}$$

$$Y_{1} = t_{2}c'_{2} + Y_{2}$$

$$\vdots$$

$$Y_{h-1} = t_{h}c'_{h} + Y_{h}$$

$$Y = t_{1}c'_{1} + \dots + t_{h}c'_{h} + Y_{h}$$

$$T_{h} = [t_{1}, t_{2}, \dots, t_{h}]$$

$$C_{h} = [c_{1}, c_{2}, \dots, c_{h}]$$

$$\hat{Y}_{h} = T_{h}C'_{h}$$

The predictions and confidence intervals are obtained from the regression of y_j on the t_h components with the usual formulae

Expressing the model as function of the X block

Matrix of components
$$T_h = [t_1, t_2, \dots, t_h]$$

$$t_1 = X_0 w_1$$

$$t_1 = X_0 w_1$$
 $p_1 = X_0' t_1 / t_1' t_1$ $p_1 = X_1' t_1 / t_1' t_1$

$$p_1 = X't_1 / t_1't_1$$

$$W_h = \begin{bmatrix} w_1, w_2, \dots, w_h \end{bmatrix}$$

$$P_{h} = [p_{1}, p_{2}, ..., p_{h}] t_{h} = X_{h-1} w_{h} p_{h} = X'_{h-1} t_{h} / t'_{h} t_{h} p_{h} = X' t_{h} / t'_{h} t_{h}$$

$$t_h = X_{h-1} W_l$$

$$p_h = X'_{h-1}t_h / t'_h t_h$$

$$p_h = X't_h / t_h't_h$$

$$X'_{h-1}t_h = X'_{h-1}X_{h-1}w_h = X'(I - \Pi_{h-1})(I - \Pi_{h-1})Xw_h = X'X_{h-1}w_h = X't_h$$

$$N_h^2 = \begin{pmatrix} t_1't_1 & & \\ & \ddots & \\ & & t_h't_h \end{pmatrix} \longrightarrow P_h = XT_hN_h^{-2} = XT_h^sN_h^{-1}$$

$$P_h = X T_h N_h^{-2} = X T_h^s N_h^{-2}$$

$$T_h^s = T_h N_h^{-1}$$

$$T_h^{s'}T_h^s = I \quad W_h'W_h = I$$

$$X = T_h^s A$$
 $X' = W_h B$
 $X = B'W_h'$

A and B "convenient" transformation matrices (h,p) and (h,n) respectively

$$B'W_h' = T_h^s A$$
 $B' = T_h^s A W_h$

$$A = T_h^{s'} X \qquad B' = X W_h = T_h^{s} T_h^{s'} X W_h$$

Finding the coefficients b_i

$$XW_{h} = T_{h}N_{h}^{-2}T_{h}'XW_{h} = T_{h}P_{h}'W_{h}$$

$$T_h = XW_h (P_h'W_h)^{-1}$$
Projection matrix

$$\hat{Y}_h = T_h C_h' = X W_h (P_h' W_h)^{-1} C_h' = X B_h$$

$$B_h = W_h (P_h' W_h)^{-1} C_h'$$

$$B_h = egin{matrix} b_1 & \cdots & b_h \ dots & \cdots & dots \end{pmatrix}$$

 y_i is explained from the coefficients with the original variables x_i

Number of components

The number of components are taken by crossvalidation (usually LOO)

$$\hat{Y}_{h} = T_{h}C'_{h}$$

$$RSS_{h} = \|Y - \hat{Y}_{h}\|^{2}$$

$$\hat{Y}_{h(-i)} = T_{h(-i)}C'_{h(-i)} = X_{(-i)}B_{h(-i)}$$

$$PRESS_{h} = \|Y - Y_{(-i)h}\|^{2}$$

$$RMSEP_{cv} = \frac{PRESS_h}{n}$$

$$R_{cv}^2 = 1 - \frac{PRESS_h}{\sum_i (y_i - \overline{y})^2}$$

A component is taken if the *RMSEP* decreases (or the R_{cv}^2 increases)

Detecting outliers

m selected number of components

Respect to Y

$$E = Y - T_m C'_m$$

$$s_{Y} = \sqrt{\frac{\sum_{i}^{n} \sum_{j}^{q} e_{ji}^{2}}{(n-m-1)(q-m)}}$$

$$DModY_{i} = \sqrt{\frac{\sum_{j}^{q} e_{ji}^{2}}{q - m}}$$

$$DModY_i^{nor} = \frac{DModY_i}{S_Y}$$

Respect to X

$$F = X - T_m P_m'$$

$$S_X = \sqrt{\frac{\sum_{i}^{n} \sum_{j}^{p} f_{ji}^2}{(n-m-1)(p-m)}}$$

$$s_{X} = \sqrt{\frac{\sum_{i}^{n} \sum_{j}^{p} f_{ji}^{2}}{(n-m-1)(p-m)}} \qquad DModX_{i} = \sqrt{\frac{\sum_{j}^{p} f_{ji}^{2}}{p-m}} \times \sqrt{\frac{n}{n-m-1}} \qquad DModX_{i}^{nor} = \frac{DModX_{i}}{s_{X}}$$

$$DModX_{i}^{nor} = \frac{DModX_{i}}{s_{X}}$$

LDA – Partial Least squares

An important application of microarray technology is tumor diagnosis, i.e. class prediction. The output of n microarray experiments can be summarized as a n << p data matrix, where p is the number of analyzed genes. p is always much larger than the number of experiments n. The response vector is a categorical vector telling the kind of tumor or classes.

The objective is to find a reduced set of new components t_h of X able to predict the response variable y

The default way of dealing with categorical variables is just binarizing

Algorithm: LDA on PLS components

- 1. PLS regression of the binary variables describing the categories of Y on the X variables
- 2. LDA of the *Y* variable on the PLS components
- 3. Select the number of components by CV (or test sample), minimizing the misclassification error

(simple algorithm, but according Tenenhaus it works as well as other sophisticated ones, Boulasteix 2004, follows the same approach).

Instead of a LDA it can be performed a Logistic Regression or SVM upon the PLS components.

Oliveoil problem

We want to predict the origin of a olive oil (Greek, Italian or Spanish)
We have two block of information: Chemical constituents and Sensory data obtained from a panel of experts

Chemical vars.

Sensory vars.

	У	Acid	Perox	K232	K270	DK	yellow	green	brown	glossy	transp	syrup
G1	greek	0.73	12.7	1.9	0.139	0.003	21.4	73.4	10.1	79.7	75.2	50.3
G2	greek	0.19	12.3	1.678	0.116	-0.004	23.4	66.3	9.8	77.8	68.7	51.7
G3	greek	0.26	10.3	1.629	0.116	-0.005	32.7	53.5	8.7	82.3	83.2	45.4
G4	greek	0.67	13.7	1.701	0.168	-0.002	30.2	58.3	12.2	81.1	77.1	47.8
G5	greek	0.52	11.2	1.539	0.119	-0.001	51.8	32.5	8	72.4	65.3	46.5
I1	italian	0.26	18.7	2.117	0.142	0.001	40.7	42.9	20.1	67.7	63.5	52.2
I2	italian	0.24	15.3	1.891	0.116	0	53.8	30.4	11.5	77.8	77.3	45.2
I3	italian	0.3	18.5	1.908	0.125	0.001	26.4	66.5	14.2	78.7	74.6	51.8
I4	italian	0.35	15.6	1.824	0.104	0	65.7	12.1	10.3	81.6	79.6	48.3
I5	italian	0.19	19.4	2.222	0.158	-0.003	45	31.9	28.4	75.7	72.9	52.8
S1	spanish	0.15	10.5	1.522	0.116	-0.004	70.9	12.2	10.8	87.7	88.1	44.5
S2	spanish	0.16	8.14	1.527	0.1063	3-0.002	73.5	9.7	8.3	89.9	89.7	42.3
S3	spanish	0.27	12.5	1.555	0.093	-0.002	68.1	12	10.8	78.4	75.1	46.4
S4	spanish	0.16	11	1.573	0.094	-0.003	67.6	13.9	11.9	84.6	83.8	48.5
S5	spanish	0.24	10.8	1.331	0.085	-0.003	71.4	10.6	10.8	88.1	88.5	46.7
S6	spanish	0.3	11.4	1.415	0.093	-0.004	71.4	10	11.4	89.5	88.5	47.2

Origin prediction from their chemical constituents

DATA

> 2	Κ					> Y			
	Acidity	Peroxide	K232	K270	DK		greek	italian	spanish
G1	0.73	12.70	1.900	0.1390	0.003	[1,]	1	0	0
G2	0.19	12.30	1.678	0.1160	-0.004	[2,]	1	0	0
G3	0.26	10.30	1.629	0.1160	-0.005	[3,]	1	0	0
G4	0.67	13.70	1.701	0.1680	-0.002	[4,]	1	0	0
G5	0.52	11.20	1.539	0.1190	-0.001	[5,]	1	0	0
I1	0.26	18.70	2.117	0.1420	0.001	[6,]	0	1	0
I2	0.24	15.30	1.891	0.1160	0.000	[7,]	0	1	0
I3	0.30	18.50	1.908	0.1250	0.001	[8,]	0	1	0
I4	0.35	15.60	1.824	0.1040	0.000	[9,]	0	1	0
I5	0.19	19.40	2.222	0.1580	-0.003	[10,]	0	1	0
S1	0.15	10.50	1.522	0.1160	-0.004	[11,]	0	0	1
S2	0.16	8.14	1.527	0.1063	-0.002	[12,]	0	0	1
S3	0.27	12.50	1.555	0.0930	-0.002	[13,]	0	0	1
S4	0.16	11.00	1.573	0.0940	-0.003	[14,]	0	0	1
S5	0.24	10.80	1.331	0.0850	-0.003	[15,]	0	0	1
S6	0.30	11.40	1.415	0.0930	-0.004	[16,]	0	0	1

Basic olive oil chemical analysis

Acidity – this will help you determine olive oil categorization

Oxidation level – determining the state of oxidation and age of olive oil

- Peroxide number which indicates the state of oxidation of olive oil
- Spectrophotometric determination of K232, K270, and DK in ultraviolet
 - K232 indicates the age of oil and how long olives have been left in sacks after harvesting, the milling process, and the storage and conditions of the olive oil and the level of oxidation incurred during production and, or storage.
 - K270 parameter test detects the level of adulteration, blends with refined olive oil Wax content which determines the level of adulteration with pomace oil.
 - DK index distinguish poor quality Olive Oil from another distorted by refined Oil, max 0,009

PLS2 of oliveoil to predict the origin

```
> p2 <- plsr(Ys ~ Xs, validation = "LOO")</pre>
> summary(p2)
VALIDATION: RMSEP
Cross-validated using 16 leave-one-out segments.
Response: greek
       (Intercept)
                    1 comps
                             2 comps
                                     3 comps
                                                4 comps
                                                         5 comps
             1.033
                      1.120
                              0.7426
                                       0.8163
                                                 0.9598
                                                          0.8699
CV
                                                 0.9407
adjCV
             1.033
                      1.117
                              0.7380
                                       0.8088
                                                          0.8582
Response: italian
       (Intercept)
                             2 comps 3 comps
                                                4 comps
                                                         5 comps
                    1 comps
             1.033
                     0.7386
                              0.4653
                                       0.5422
                                                 0.5622
                                                          0.5898
CV
adjCV
             1.033
                     0.7334
                              0.4602
                                       0.5352
                                                 0.5566
                                                          0.5807
Response: spanish
       (Intercept)
                                     3 comps
                    1 comps
                             2 comps
                                                4 comps
                                                         5 comps
             1.033
                     0.7210
                              0.6967
                                       0.8960
                                                  1.020
                                                          0.9636
CV
adjCV
             1.033
                     0.7182
                              0.6939
                                       0.8865
                                                  1.002
                                                          0.9493
TRAINING: % variance explained
          1 comps
                   2 comps
                                               5 comps
                           3 comps
                                     4 comps
         57.87743
                     80.28
                              95.47
                                       96.67
                                                100.00
X
                     58.32
                                       69.94
greek
        0.08365
                              63.92
                                                 70.11
                                                88.33
italian 56.86676
                   86.36 87.45
                                       87.46
spanish 56.20303
                     60.64
                              62.25
                                       67.24
                                                 67.48
```


Number of significant components od chemical data

Scores plot of chemical data

Loadings plot

Coefficients plot

print(p2\$coefficients[,,2],digits=4)

greek italian spanish
Acidity 0.58027 -0.35934 -0.2115
Peroxide -0.30838 0.48741 -0.1714
K232 -0.12619 0.36221 -0.2260
K270 0.32146 -0.04473 -0.2649
DK -0.04503 0.20029 -0.1486

Correlation plot of chemical variables

Correlations with components

LDA on PLS components

```
da <- lda(p2$scores[,1:2],y,CV=TRUE)
table(y,da$class)</pre>
```

```
y greek italian spanish greek 3 0 2 italian 0 5 0 spanish 0 0 6
```

```
y da.class
                       greek
                               italian
                                         spanish
    greek
             greek 9.987e-01 3.534e-04 9.348e-04
1
    greek spanish 1.290e-03 1.043e-03 9.977e-01
    greek spanish 9.470e-02 1.247e-06 9.053e-01
    greek greek 9.995e-01 2.735e-09 4.648e-04
4
    greek greek 8.454e-01 3.930e-08 1.546e-01
  italian italian 5.080e-09 1.000e+00 2.106e-09
  italian italian 4.139e-04 9.986e-01 9.931e-04
 italian italian 3.241e-06 1.000e+00 4.593e-06
  italian italian 1.215e-02 9.675e-01 2.035e-02
10 italian italian 3.391e-09 1.000e+00 2.026e-09
11 spanish spanish 1.029e-01 1.126e-05 8.971e-01
12 spanish spanish 1.073e-01 1.439e-06 8.927e-01
13 spanish spanish 1.171e-01 3.437e-04 8.826e-01
14 spanish spanish 4.200e-02 1.533e-04 9.578e-01
15 spanish spanish 4.973e-02 1.620e-07 9.503e-01
16 spanish spanish 1.256e-01 2.013e-07 8.744e-01
```


Prediction of origin using Sensory data

<pre>> print(X)</pre>										
	yellow	green	brown	glossy	transp	syrup	> pri			
G1	21.4	73.4	10.1	79.7	75.2	50.3		_	italian	spanish
G2	23.4	66.3	9.8	77.8	68.7	51.7	[1,]	1	0	0
G3	32.7	53.5	8.7	82.3	83.2	45.4	[2,]	1	0	0
G4	30.2	58.3	12.2	81.1	77.1	47.8	[3,]	1	0	0
G5	51.8	32.5	8.0	72.4	65.3	46.5	[4,]	1	0	0
I1	40.7	42.9	20.1	67.7	63.5	52.2	[5,]	1	0	0
12	53.8	30.4	11.5	77.8	77.3	45.2	[6,]	0	1	0
I3	26.4	66.5	14.2	78.7	74.6	51.8	[7,]	0	1	0
I 4	65.7	12.1	10.3	81.6	79.6	48.3	[8,]	0	1	0
I5	45.0	31.9	28.4	75.7	72.9	52.8	[9,]	0	1	0
s1	70.9	12.2	10.8	87.7	88.1	44.5	[10,]	0	1	0
S2	73.5	9.7	8.3	89.9	89.7	42.3	[11,]	0	0	1
S3	68.1	12.0	10.8	78.4	75.1	46.4	[12,]	0	0	1
S4	67.6	13.9	11.9	84.6	83.8	48.5	[13,]	0	0	1
S5	71.4	10.6	10.8	88.1	88.5	46.7	[14,]	0	0	1
S6	71.4	10.0	11.4	89.5	88.5	47.2	[15,]	0	0	1
50	/ 1 • 1	10.0	TT.1	07.5	00.5	11.2	[16,]	0	0	1

22.58

15.63

69.47

68.63 69.23

71.51

43.68 44.78

74.54

PLS2 results

```
> p2 <- plsr(Ys ~ Xs, validation = "LOO")</pre>
VALIDATION: RMSEP
Cross-validated using 16 leave-one-out segments.
Response: greek
      (Intercept) 1 comps
                           2 comps 3 comps
                                            4 comps
                                                     5 comps
                                                              6 comps
CV
                            0.7232 0.8609
                                                               0.7622
            1.033
                  0.9841
                                             0.9794
                                                     0.9913
            1.033
                  0.9809
                           0.7176
                                   0.8503
                                             0.9652
                                                    0.9744
                                                              0.7499
adjCV
Response: italian
      (Intercept)
                   1 comps
                           2 comps 3 comps 4 comps
                                                     5 comps
                                                              6 comps
CV
                     1.013
                            0.8554 0.9918
                                              1.053
                                                                1.267
            1.033
                                                     0.9888
                     1.010
                            0.8515
                                   0.9836
                                              1.042
                                                    0.9779
                                                                1.246
adjCV
            1.033
Response: spanish
      (Intercept)
                   1 comps
                           2 comps 3 comps
                                            4 comps
                                                     5 comps
                                                              6 comps
                            0.6133 0.7337
                                             0.6648
CV
            1.033
                  0.5975
                                                     0.7933
                                                              0.8317
                   0.5948 0.6103
                                   0.7240
                                             0.6585
                                                    0.7828
                                                              0.8168
adjCV
            1.033
TRAINING: % variance explained
        1 comps 2 comps 3 comps
                                  4 comps 5 comps
                                                   6 comps
          63.39
                   84.13
                                    99.53
                                                    100.00
Χ
                           92.15
                                            99.93
```

greek

italian

spanish

69.25

46.40

75.72

74.54

56.83

76.51

83.55

56.91

83.25

Number of components of sensory data

Scores plot of sensory data

X Scores

Loadings plot

Coefficicients

Correlation plot of sensory variables

Correlations with components

Prediction of origin from sensory data by LDA

```
> da <- lda(p2$scores[,1:2],y,CV=TRUE)</pre>
    > table(da$class,y)
              У
               greek italian spanish
      greek
                                      0
      italian
                    0
                                      0
      spanish
        y da.class
                       greek italian
                                        spanish
    greek
             greek 9.937e-01 0.006323 6.121e-06
    greek greek 9.850e-01 0.015015 4.447e-06
    greek greek 9.589e-01 0.036270 4.803e-03
3
    greek greek 9.195e-01 0.079073 1.464e-03
4
    greek
             greek 6.346e-01 0.357021 8.389e-03
  italian italian 4.916e-02 0.950587 2.476e-04
  italian
           spanish 2.425e-01 0.350141 4.074e-01
  italian
             greek 9.981e-01 0.001890 1.644e-06
 italian spanish 1.380e-03 0.039685 9.589e-01
10 italian italian 2.908e-08 0.759681 2.403e-01
11 spanish spanish 1.547e-04 0.011562 9.883e-01
12 spanish spanish 1.338e-04 0.002539 9.973e-01
13 spanish
           spanish 5.573e-03 0.337999 6.564e-01
14 spanish
           spanish 6.299e-04 0.094555 9.048e-01
15 spanish
           spanish 9.237e-05 0.014403 9.855e-01
16 spanish
           spanish 5.064e-05 0.012574 9.874e-01
```


The conceptual model

Prediction from PL2 chemical & sensory components by LDA

```
y da.class
              greek
                      italian
                                spanish
             greek 1.000e+00 1.615e-19 1.409e-09
1
    greek
             greek 1.000e+00 1.096e-20 8.111e-07
    greek
           greek 1.000e+00 5.618e-21 1.668e-05
    greek
           greek 1.000e+00 1.408e-30 1.706e-12
    greek
5
    greek
             greek 1.000e+00 5.357e-42 1.153e-11
  italian
           italian 3.091e-23 1.000e+00 2.013e-10
  italian
           italian 1.866e-24 1.000e+00 3.901e-08
           italian 1.367e-19 1.000e+00 1.382e-06
  italian
  italian italian 2.634e-23 1.000e+00 4.576e-06
10 italian italian 4.296e-72 1.000e+00 2.654e-21
11 spanish spanish 1.385e-11 7.683e-08 1.000e+00
12 spanish
           spanish 4.945e-13 4.155e-07 1.000e+00
           spanish 6.951e-08 2.538e-08 1.000e+00
13 spanish
14 spanish
           spanish 2.662e-10 3.966e-08 1.000e+00
15 spanish
           spanish 9.251e-08 1.487e-14 1.000e+00
16 spanish
           spanish 1.005e-07 3.826e-14 1.000e+00
```


Linnerud data: Selecting the number of components

4	
1	component
_	COMPOSICION

DMDDECC

RMPRESS	Tractions	Pusn.ups	Jumps
	0.9395220	0.8659075	1.0457392
R2cv	Tractions	Push.ups	Jumps
	0.07084046	0.21074123	-0.15112677
2 compon	ents		
RMPRESS	Tractions	Push.ups	Jumps
	0.9831243	0.9259299	1.0790209
R2cv	Tractions	Push.ups	Jumps
	-0.01740362	0.09753039	-0.22556429
3 compon	ents		
RMPRESS	Tractions	Push.ups	Jumps
	0.9800705	0.9862713	1.1665417
R2cv	Tractions	Push.ups	Jumps
	-0.01109291	-0.02392737	-0.43244169

Prediction

Scores plot

X Scores

Loadings plot

Correlations plot

Correlations with components

Results of PLS2 on Linnerud data

$$Com = 0.69$$

$$Red = 0.21$$