Sensors of velocity, acceleration and vibration

AE3B38SME - Sensors and Measurement

Measurement of velocity

Indirect

I measure position s and I derivate in time

V=ds/dt

Direct

I measure a physical quantity proportional to velocity

Electrodynamic sensor of velocity

The magnetic field in the yoke

A conductor moving in a magnetic field

A voltage is induced in the coil. This voltage is proportional to the velocity.

Tachometer based on DC generator

Tachometer based on DC generator

the effective area of the coil depends on the relative angle to the magnetic field

Tachometer based on DC generator

 $V=(2rhN)\omega$

N=number of turns

The induced voltage depends on the rotational speed

ideally: no load - to avoid effect of inductance at high $\boldsymbol{\omega}$

Sensors of velocity with pulse output

induction

wiegand sensor

reed sensor

eddy current

optoelectronics

Measurement by means of correlation

what is correlation?

step 2 corr= [1; 3 flipped B |x| + 2x| = 3

step 2 corr= [1; 3; 7 flipped B | x | + 2x | + 4x | = 7

step 2 corr= [1; 3; 7; 11 flipped B $4 \times | + 2 \times | + 4 \times | + | \times | = | |$

step 2 corr= [1; 3; 7; 11; 16 flipped B $2 \times 1 + 2 \times 4 + 4 \times 1 + 1 \times 1 + 1 \times 1 = 16$

step 2 corr= [1; 3; 7; 11; 16; 22 flipped B $2 \times 2 + 4 \times 4 + 1 \times 1 + 1 \times 1 = 22$

step 2 corr= [1; 3; 7; 11; 16; 22; 13 flipped B $4 \times 2 + 4 \times 1 + 1 \times 1 = 13$

step 2 corr= [1; 3; 7; 11; 16; 22; 13; 6

A

flipped B

step 2 corr= [1;3;7;11;16;22;13;6;2]

flipped B

$$2 \times 1 = 2$$

Let us divide by the number of products we summed

The peak in the correlation tells us where the signals are mostly similar

if the first signal moves "to the left"...

How to use this principle to measure velocity

$$v = \Delta x / \Delta t$$

why not using a threshold?

$$\Delta t = t_1 - t_2$$

The noise makes this system highly unreliable

Signals do not necessarily need to have a peak. Correlation tells us when they are mostly similar whatever are the signals.

Absolute sensors of vibrations

Equation of motion of mass-spring system

$$m\frac{d^{2}z}{dt^{2}} + b\frac{dx}{dt} + kx = 0$$

$$z(t) = x(t) + y(t)$$

$$m\frac{d^{2}x}{dt^{2}} + b\frac{dx}{dt} + kx = -m\frac{d^{2}y}{dt^{2}}$$
inertial force spring force

presumption:

damping

$$y(t) = Y(j\omega)e^{j\omega t}$$

Solution:

$$x(t) = X(j\omega)e^{j(\omega t - \varphi)}$$

m - mass

k - stiffness (spring constant)

b – viscous friction coefficient

Amplitude frequency response:

$$\left|\frac{X(j\omega)}{Y(j\omega)}\right| = \frac{\Psi^2}{\sqrt{(1-\Psi^2)^2 + (2B\Psi)^2}}$$

$$\varphi = arctg \; \frac{-2B\Psi}{1-\Psi^2}$$

where:
$$\Psi = \frac{\omega}{\omega_0}$$
 - normalised frequency (referenced to resonance

(referenced to resonance freq.)

$$B = \frac{b}{b_{kr}}$$
 - damping ratio

 $b_{kr} = 2m\omega_0$ - critical damping ratio

$$\omega_0 = \sqrt{\frac{k}{m}}$$
 - resonant frequency

Electrodynamic sensor of vibration

- 1 pick-up coil
- 2 damping winding
- 3 cylindrical part of mg. circuit
- 4 permanent magnet
- 5 membrane
- seismic mass = mass of coil $\underline{1}$ + mass of winding $\underline{2}$
- viscous damping due to currents induced in winding 2
- induced voltage

$$u = \frac{d\Phi}{dt}$$

 $u = \frac{d\Phi}{dt}$ proportional to the *velocity* of coil

• universality

GEOPHONE

- application: vibrations of machines, buildings, occupancy detection

② - cheap
$$f_r = 1 ... 100 Hz$$
, $m = 20g ... 5 kg$

Implementation

Classical (compression, centre mounted)

M = seismic mass

P = piezoelectric element

B = base

S = spring

Shear deformation

Bruel -Kjaer

I = base

2 = mass

3 = central stick

4 = piezoelectric element

less sensitive to deformation of bottom of sensor case, thermal dilatation, acoustic effects

Signal conditioning of piezoelectric sensors

- capacitance of cable affect the voltage if sensor is used in voltage mode amplifier

CHARGE AMPLIFIER

The virtual short circuit grounds the capacities, so that any change in cable's capacity does not affect the output voltage, which depends only on Q and Cf

To avoid saturation of the amplifier R_f is required

To limit bandwidth (and avoid resonation) Ri is required

Capacitive accelerometers

Principle: we measure the force produced by acceleration by means of the deformation produced on a capacitor

Basic idea

Actual implementation

thin membrane with helical slits and openings

fr= 20 to 15 kHz

Accelerometer with vibrating beam and strain gages

the deformation of the beam is detected by means of strain gages (see more on the lecture about force sensors)

suitable for MEMS

Alternative configuration

e.g. in airbags

MEMS accelerometers

Basic principle

- based on dependence of capacity on distance of electrodes
- differential configuration to improve linearity

- I platform made from polycrystalline Si
- 2 bow strings
- 3 anchors on the platform
- 4 seismic mass (movable central electrodes)
- 5 fixed electrodes

Inertial navigation system

3 sensors of acceleration: integrating 2 times we obtain position

3 sensor of angular position:

to understand in which direction the plane is moving and then integrate the accelerometers

Actual gyroscopes

A mass is free spinning in a gimbal

The angular momentum of the spinning mass makes the stay in the same direction

It is used to have a reference of position.

Ring Laser Gyroscopes

Ring Laser Gyroscopes

Total length of the path

$$L_1 = a_1 + a_2 + a_3 + a_4$$

Ring Laser Gyroscopes

Total length of the path

$$L_2 = a_1 + a_2 + a_3 + a_4$$

Ring Laser Gyroscopes (RLG)

Ring Laser Gyroscopes (RLG)

Optical fibre gyroscopes

counterclockwise

$$t_1 = \frac{2\pi R + \Delta L}{c}$$

$$\Delta L=R\omega t_1$$

$$t_1 = \frac{2\pi R}{c - R\omega}$$

clockwise

$$t_2 = \frac{2\pi R}{c + R\omega}$$

$$\Delta t = t_1 - t_2 = \frac{4\pi R^2 \omega}{c^2 - R^2 \omega^2} \cong \frac{4\pi R^2 \omega}{c^2}$$

How to use the Coriolis force to detect rotation?

A mass oscillates vertically. So, the velocity is periodically

and

According to the direction of v the Coriolis force changes direction

by capacitive sensor technique