ОБРАБОТКА И РАСПОЗНАВАНИЕ ИЗОБРАЖЕНИЙ

Леонид Моисеевич Местецкий профессор

кафедра математических методов прогнозирования ВМК МГУ

кафедра интеллектуальных систем МФТИ

Генерация признаков на основе вейвлетов

Синусоидальная волна – основа Фурье-преобразования

Wavelet - короткая волна, волнишка, всплеск

Генерация признаков на основе вейвлетов Габора

Де́неш Га́бор (1900 – 1979) — венгерский физик, лауреат Нобелевской премии по физике в 1971 году «за изобретение и развитие голографического метода»

Одномерный вейвлет Габора

Двумерный вейвлет Габора

$$G(x,y) = \exp\left(-\frac{1}{2} \left[\frac{x_{\phi}^2}{\sigma_x^2} + \frac{y_{\phi}^2}{\sigma_y^2} \right] \right) \cos(2\pi\theta x_{\phi})$$

$$x_{\phi} = x \cos(\phi) + y \sin(\phi)$$

$$y_{\phi} = -x \sin(\phi) + y \cos(\phi)$$

где:

 $\sigma_x, \, \sigma_y$ - стандартные отклонения гауссова ядра, по осям x и y, определяющие растянутость фильтра по осям,

heta - частотная модуляция фильтра,

 ф - пространственная направленность фильтра, определяющая его ориентацию относительно главных осей.

Биометрическая идентификация по радужной оболочке глаза

История

- Франк Бурш, американский глазной хирург, 1936 год. Гипотеза о том, что человеческий глаз и его радужную оболочку можно использовать для распознавания личности.
- Леонард Флом и Аран Сафир офтальмологи, не имеющие собственных разработок, запатентовали его идею в 1987 году.
- В 1989 году они обратились за помощью к Джону Даугману, чтобы тот разработал теорию и алгоритмы распознавания.
- В 1990 году Джон Даугман впервые разработал практический метод кодирования структур радужной оболочки. Запатентован метод был в 1993 году.
- Джона Даугмана принято считать родоначальником этого метода биометрической аутентификации.

Джон Даугман

 Джон Даугман в 1990 году впервые разработал практический метод кодирования структур радужной оболочки. Запатентован метод был в 1993 году.

Системы биометрической идентификации по радужке

Выделение радужки

$$\max_{(\rho, x_0, y_0)} \left| \frac{\partial}{\partial \rho} \oint \frac{f(x, y)}{2\pi \rho} ds \right|$$

 (ρ, x_0, y_0) – окружность с центром (x_0, y_0) и радиусом ρ .

Нормализация

Вейвлет-разложение

$$c = \iint\limits_{\rho \, \varphi} f(\rho, \varphi) \cdot \left[e^{-i \cdot 2\pi (\varphi - \varphi_0)} \cdot e^{-(\rho - \rho_0)^2/\alpha^2} \cdot e^{-(\varphi - \varphi_0)^2/\beta^2} \right] \cdot \rho \cdot d\rho \cdot d\varphi$$

$$b_{real} = \begin{cases} 1, & \text{если } Re(c) \geq 0 \\ 0, & \text{иначе} \end{cases}$$

$$b_{img} = \begin{cases} 1, & \text{если } Im(c) \geq 0 \\ 0, & \text{иначе} \end{cases}$$

Построение вектора признаков

- 1. Четыре эпохи вейвлетов 1.2 мм, 0.6 мм, 0.3 мм, 0.15 мм.
- 2. Всего комплексных коэффициентов 1024
- 3. Каждый коэффициент даёт 2 бита информации знаки действительной и мнимой частей
- 4. Общая длина вектора признаков 2048

Измерение сходства и различия

 $B = (b_1, ..., b_{2048})$ – вектор IrisCode $HD(B_1, B_2)$ – расстояние Хэмминга

Классификатор

Decision Environment for Iris Recognition: Ideal Imaging

Decision Environment for Iris Recognition: Non-Ideal Imaging

Идентификация «афганской девушки»

фото 1984 года – фото 2002 года

Шарбат Гула «Цветочный шербет», родилась ок. 1972 — афганская женщина, ставшая известной благодаря фотографии, которая была сделана журналистом во время Афганской войны.

Фотография появилась на обложке журнала "National Geographic в июне 1985 года. В то время Гуле было приблизительно двенадцать лет.

До того, как личность Гулы была установлена в 2002 году, её называли просто «Афганской девочкой» (Afghan Girl).

Биометрическая идентификация по радужной оболочке глаза

Сканер

Контроль в аэропорту Гонконга

Чернышов Виктор Геннадьевич ВМК МГУ, кафедра ММП

Биометрическая идентификация личности по изображению внешней стороны ладони на базе мобильного устройства

Диссертация на соискание ученой степени кандидата технических наук Специальность 05.13.17 — «Теоретические основы информатики»

> Научный руководитель: д. т. н. проф. Местецкий Л.М.

Москва, 2020

Экран мобильного приложения во время сессии идентификации

Экран мобильного приложения при добавлении нового пользователя

Детектирование ладони в кадре

Исходное изображение

Результаты семантической разметки

Результат быстрой сегментации

Зёрна (красные пиксели объекта и синие пиксели фона) для кач. сегмент.

Сегментация и семантическая разметка

Зёрна с этапа детектирования

Результат семантической разметки

Локализация области кожных складок

После проведения семантической разметки происходит выделение (a) и нормализация (b) области пальца. После предобработки и применения фильтра Канни скользящим окном ищется область наибольшей контрастности (c).

23

Вычисление текстурных признаков на основе вейвлетов Габора

$$G_R(x,y;\lambda, heta,\phi,\sigma,\gamma) = \exp\left(-rac{x'^2+\gamma^2y'^2}{2\sigma^2}
ight)\cos\left(2\pirac{x'}{\lambda}+\phi
ight)$$

$$x'=x\cos heta+y\sin heta, \qquad G_R(x,y, heta_j,\ldots) \qquad \gamma=0.25 \ y'=-x\sin heta+y\cos heta. \qquad heta_j=j\pi/6, j\in\{0,\ldots,5\} \qquad \phi=0$$

Семейство 1. Области между морщинами (2-3 мм). Фильтры с номерами ј от 0 до 5

Семейство 2. Сами морщины (1-2 мм). Фильтры с номерами ј от 0 до 5

Кодирование признакового описания

I(x,y) - окрестность изображения с центром в точке (x,y) $oriCode(x,y) = argmin_j\{I(x,y)*G_R(x,y,\theta_j,\ldots)\}$

Для каждого семейства пикселям изображения в узлах равномерной сетки ставится в соотв. номер фильтра этого семейства, дающего минимальный отклик.

$$P(j,i) = (O_x + j*S_x/2, O_y + i*S_y/2), i = 0,1,\dots, rac{2*Height}{S_y}; j = 0,1,\dots, rac{2*Width}{S_x}$$
 - узлы сетки

Сравнение признаковых описаний

Расстояние между признаковыми описаниями пальцев і (без сдвигов) - лин. комб. расстояний по каждому из семейств:

$$GDist_i = GDist^1 + lpha_{gabor} imes GDist^2, \ i = \{1, 2, 3\}$$

Итоговое расстояние между пальцами і определяется как минимальное расстояние между признаковыми описаниями пальцев і, достигаемое при вертикальных сдвигах узлов соотв. матриц признаков друг относительно друга.

* Используем 3 пальца - большой и мизинец не участвуют.

Экспериментальные установки

Статичная съёмка ранней версией установки

Съёмка «с руки» на Московском фестивале Науки

Заключение по системе идентификации

- Обоснована возможность биометрической идентификации
 по внешней стороне ладони в малых группах при
 свободном положении руки в кадре, не выходя при этом за
 рамки возможностей современных мобильных устройств.
- Создан программный комплекс, который удовлетворяет всем требованиям, предъявленным к системе биометрической идентификации.

Иными словами, любой человек со смартфоном или планшетом на базе ОС Android получает возможность за несколько минут внедрить для своего коллектива систему идентификации (контроля посещаемости).