Problem 3

Problem

In $\triangle ABC$, AB=5.AC=9.AD is the median on side BC. How many integer values are there of AD?

Solution

4. Extend AD to E such that AD = DE. Connect BE. Since DE = AD, $\angle BDE = \angle CDA$. BD = DC. Thus $\triangle BDE \cong \triangle CDA$, BE = AC = 9. By the triangle inequality theorem, $9-5 < AE < 9+5 \implies 4 < 2AD < 14 \Rightarrow 2 < AD < 14$

 $E \\ 7.$ There are four possible values: 3,4,5, and 6 .