CONCENTRATION OF MODULUS MINIMA ON THE CRITICAL LINE FOR DEFORMED ZETA FAMILIES

PU JUSTIN SCARFY YANG

ABSTRACT. Building on the variational framework for the modulus field $\mathcal{F}_t(s) := \log |L_t(s)|^2$ of the deformed Euler zeta family

$$L_t(s) := \prod_p \left(1 - \frac{1}{p^s}\right)^{-t},$$

we investigate the global behavior of its local minima as $t \to 1^-$. We provide a framework for describing the unique asymptotic attractor set of these minima, and conjecture that the critical line $\Re(s) = 1/2$ emerges as the universal attractor for all such modulus valleys.

Contents

1.	Setup	1
2.	Attractor Hypothesis	1
3.	Gradient Flow Dynamics	2
4.	Stability and Universality	2
5.	Relation to Riemann Hypothesis	2

1. Setup

Let $s = \sigma + i\tau$ and define the pressure field:

$$\mathcal{F}_t(s) := \log |L_t(s)|^2.$$

We denote by $\mathscr{Z}_t := \{ s \in \mathbb{C} : \nabla \mathcal{F}_t(s) = 0, \text{ and } s \text{ is a local minimizer} \}$ the set of modulus valley centers (zero precursors).

2. Attractor Hypothesis

(Universal Critical Line Attractor Conjecture)

As $t \to 1^-$, all modulus minima $s \in \mathscr{Z}_t$ converge to the

Date: May 9, 2025.

critical line:

$$\lim_{t\to 1^-}\sup_{s\in \mathscr{Z}_t}\left|\Re(s)-\frac{1}{2}\right|=0.$$

This expresses that the critical line is the unique attractor for the entire set of deformed pre-zeros under the modulus gradient dynamics.

3. Gradient Flow Dynamics

Define a flow field:

$$\frac{ds}{dt} = -\nabla_s \mathcal{F}_t(s),$$

describing the steepest descent of modulus energy. This flow leads each point in \mathscr{Z}_t to drift toward the asymptotic set $\Re(s) = 1/2$.

4. Stability and Universality

We conjecture:

- (1) The attractor set is globally asymptotically stable for all initial valleys s_0 as $t \to 1^-$.
- (2) No local minima of \mathcal{F}_t remain bounded away from $\Re(s) = 1/2$ in this limit.

5. Relation to Riemann Hypothesis

If all modulus minima concentrate on $\Re(s) = 1/2$ and survive the limit $t \to 1$, then the nontrivial zeros of $\zeta(s)$ must lie on the critical line.

This provides a novel formulation of RH in terms of:

The limiting distribution of analytic modulus valleys under universal Euler structure concentration.