Cs 2209a - Assignment 1

Student Name: MingCong, Zhou

Student Number: 250945414

Student Account: mzhou272

Department of Computer Science

CS 2209A — Applied Logic for Computer Science

Assignment 1

Assigned: 1 October 2018

Due: 15 October 2018 (on OWL before midnight)

1. For the following proposition, give the unique readability tree and the truth table derived from that tree. What type of statement (tautology, contradiction, satisfiable) is it? Why?

$$\left(\left((p \to q) \to p\right) \to p\right)$$

The unique readability tree:

The truth table:

р	q	$p \rightarrow q$	$(p \rightarrow q) \rightarrow p$	$((p \to q) \to p) \to p$
Т	Т	Т	Т	Т
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	Т	F	Т

 \because the statement is always true (the last column from the above table) \because It is tautology.

2. Show the following logical equivalence using the logical identities and tautologies such as the law of the excluded middle.

$$\left(\left((p \land q) \lor (p \land s)\right) \lor \left((r \land q) \lor (r \land s)\right)\right) \equiv \left((p \lor r) \land (q \lor s)\right)
= (p \land (q \lor s)) \lor (r \land (q \lor s))
Set (q \lor s) to b
= (p \land b) \lor (r \land b)
= (b \land (p \lor r))
B is equal to (q \lor s)
= (q \lor s) \land (p \lor r)$$

which is equivalent to the right

$$\therefore ((p \land q) \lor (p \land s)) \lor ((r \land q) \lor (r \land s)) \equiv (q \lor s) \land (p \lor r)$$

3. Convert the following proposition to Conjunctive Normal Form. Show the steps required to get your answer.

4. Show the following using natural deduction.

5. With the clauses given by Γ show $\Gamma \vdash \neg r$ using resolution.

$$\Gamma = \Big\{ (p \vee \neg q \vee \neg r), (\neg p \vee s), (q \vee \neg r \vee t), (\neg r \vee \neg u \vee t), (p \vee s \vee \neg r \vee t), \neg s, q, u, (\neg u \vee \neg t) \Big\}$$

On the next page.

5. With the clauses given by Γ show $\Gamma \vdash \neg r$ using resolution.

$$\Gamma = \Big\{ (p \vee \neg q \vee \neg r), (\neg p \vee s), (q \vee \neg r \vee t), (\neg r \vee \neg u \vee t), (p \vee s \vee \neg r \vee t), \neg s, q, u, (\neg u \vee \neg t) \Big\}$$

number of variable: p: 2 \neg p:1 q: 2 \neg q:1 r: 1 \neg r: 4 s: 2 \neg s: 1 t: 3 \neg t:1 \neg u:2 u:1

6. Show a bottom up derivation of $\Gamma \vdash h$ given the definite clauses (written as head \leftarrow body) in set Γ .

$$\Gamma = \begin{cases} h \leftarrow f \land g \\ g \leftarrow a \land c \\ d \\ e \leftarrow c \\ a \leftarrow d \\ f \leftarrow d \land e \land b \end{cases}$$

$$C = \{ d \}$$

$$C = \{ d, a \}$$

$$C = \{ d, a, c \}$$

$$C = \{ d, a, c, e \}$$

$$C = \{ d, a, c, e, b \}$$

$$C = \{ d, a, c, e, b, f, \}$$

$$C = \{ d, a, c, e, b, f, g \}$$

$$C = \{ d, a, c, e, b, f, g, h \}$$

$$C = \{ d, a, c, e, b, f, g, h \}$$

7. Show a top down derivation of $\Gamma \vdash h$ given the definite clauses (written as head \leftarrow body) in set Γ .

$$\Gamma = \left\{ \begin{array}{l} h \leftarrow f \wedge g \\ g \leftarrow a \wedge c \\ d \\ e \leftarrow c \\ a \leftarrow d \\ f \leftarrow d \wedge e \wedge b \\ b \leftarrow e \\ c \leftarrow a \end{array} \right\}$$

```
yes
       h
yes
yes
yes
yes
yes
yes
                      g
                                                    therefore \Gamma entails h.
yes
                 g
       d
            С
yes
                 g
yes
       d
           a
            d
yes
yes
yes
            а
                 С
       d
            d
yes
                 а
       d
yes
yes
```