PRIMITIVES ET ÉQUATIONS DIFFÉRENTIELLES

Résumé

La théorie de la dérivation, découverte l'an dernier, est vaste. Deux thèmes majeurs en font partie : les primitives d'une fonction et les équations différentielles, des équations de fonctions dérivables qu'on souhaite naturellement résoudre.

1 Primitives

Définition 1 | Primitive d'une fonction

Soit f une fonction définie sur un intervalle I.

On appelle **primitive** de f toute fonction F définie et dérivable sur I telle que :

$$\forall x \in I, F'(x) = f(x).$$

Remarque 2 Si une telle primitive existe alors il en existe une **infinité** car G définie sur I par G(x) = F(x) + c où $c \in \mathbf{R}$ est encore une primitive de f.

Exemple 3 Soit f définie sur **R** par $f(x) = 3x^2 - 4x$

La fonction F définie sur \mathbf{R} par $F(x) = x^3 - 2x^2 + 5$ est une primitive de f car F est dérivable et pour tout $x \in \mathbf{R}$, $F'(x) = 3x^2 - 4x = f(x)$.

Théorème 4 | Existence d'une primitive

Toute fonction continue sur un intervalle admet une primitive.

Démonstration. Admise pour le moment.

Propriétés 5 | Récapitulatif des primitives usuelles

Dans le tableau suivant, F est une primitive de f et C une constante réelle.

f(x)	F(x)
x^n	$\frac{x^{n+1}}{n+1} + C (n \geqslant 0)$
$\frac{1}{x}$	$\ln x + C (x \neq 0)$
$\frac{1}{x^n}$	$-\frac{1}{(n-1)x^{n-1}} + C (n \geqslant 2, x \neq 0)$
e^x	$e^x + C$
$\frac{1}{\sqrt{x}}$	$2\sqrt{x} + C (x > 0)$

Démonstration. Dériver F dans chaque cas.

Exercice 6

Déterminer les primitives de f dans chacun des cas suivants, f étant définie sur I.

1.
$$f(x) = -2x^3 + 3$$
 et $I = \mathbf{R}$

3.
$$f(x) = e^{8x-1}$$
 et $I = \mathbf{R}$

2.
$$f(x) = \frac{1}{7}x^6 - \frac{2}{x}$$
 et $I = \mathbb{R}^*$

4.
$$f(x) = \frac{1}{x} + \frac{2}{x^2} + \frac{3}{x^3}$$
 et $I = \mathbf{R}^*$

2 Équations différentielles

2.1 Première approche

Définition 7

On appelle **équation différentielle d'ordre 1** une équation d'inconnue y, une **fonction**, dans laquelle intervient y', sa dérivée.

Une **solution** f de cette équation différentielle est une fonction vérifiant l'égalité.

Remarques 8 \blacktriangleright L'équation différentielle y' = y associée à la condition y(0) = 1 a une solution unique qui est la fonction exponentielle.

▶ Une primitive d'une fonction f est solution de l'équation différentielle y' = f.

$$f'(x) + f(x) = -12 \exp(-x) + 12 \exp(-x) = 0 \text{ donc } f' + f = 0$$

mais

$$g'(x) + g(x) = 2x + x^2 + 10 = x^2 + 2x + 10 \neq 0$$
 donc $g' + g \neq 0$.

f est une solution de y' + y = 0 mais g n'en est pas une.

▶ $(y')^2 = 4y$ est aussi une équation différentielle d'ordre 1. La fonction f définie sur \mathbf{R} par $f(x) = x^2$ est une solution.

En effet,
$$(f'(x))^2 = (2x)^2 = 4x^2$$
 et $4f(x) = 4x^2$ pour tout $x \in \mathbf{R}$ donc $(f')^2 = 4f$.

- **Remarques 10** \blacktriangleright On peut définir des équations différentielles d'ordres supérieurs. C'est-à-dire, des équations différentielles mettant en œuvre des dérivées de y d'ordres supérieurs comme la dérivée seconde y'' = (y')', la dérivée tierce y''' = (y'')' et les dérivées successives suivantes qu'on note $y^{(n)}$.
- ▶ Une équation différentielle peut s'écrire de différentes manières suivant le contexte ou le problème.

Ainsi, on peut écrire 4y' - 2y = 2 des manières suivantes.

- $> 4 \frac{\mathrm{d}y}{\mathrm{d}t}(t) 2y(t) = 2$ qui est utilisée quand y est une fonction de plusieurs variables : temps, espace, angle, ...
- \Rightarrow 4y'(t) 2y(t) = 2 utilisée généralement pour des problèmes en physique ou en chimie.
- $\Rightarrow 4y'(x) 2y(x) = 2$ pour des exercices plutôt mathématiques.

Exemple 11 Soit $\omega \in \mathbb{R}^*$.

 $y'' + \omega^2 y = 0$ est une équation différentielle d'ordre 2.

Théorème 12

Soient $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$ des coefficients constants.

L'équation différentielle y' = ay + b admet comme uniques solutions définies sur **R**, les fonctions f sous la forme suivante où C est une constante réelle

$$f(x) = Ce^{ax} - \frac{b}{a}.$$

Démonstration. Démontrons que ces fonctions là sont bien des solutions sur **R** de y' = ay + b. Soit $C \in \mathbf{R}$ et f définie sur **R** par $f(x) = Ce^{ax} - \frac{b}{a}$.

On calcule f' d'une part et af + b de l'autre. Soit x réel.

$$f'(x) = aCe^{ax}$$

$$af(x) + b = a\left(Ce^{ax} - \frac{b}{a}\right) + b$$
$$= aCe^{ax} - b + b$$
$$= aCe^{ax}$$

f est bien solution de y' = ay + b.

Exemples 13 Les solutions f de y' = 5y + 10 sont définies sur **R** sous la forme $f(x) = Ce^{5x} - 2$. En effet, a = 5 et b = 10.

▶ On considère l'équation différentielle 6y' - 4y = 8y' + 8. Elle peut se réécrire :

$$6y' - 4y = 8y' + 8$$

$$\Leftrightarrow -2y' = 4y + 8$$

$$\Leftrightarrow y' = -2y - 4$$

Ainsi, les solutions f de 6y' - 4y = 8y' + 8 sont définies sur **R** sous la forme $f(x) = Ce^{5x} - 2$. En effet, a = 5 et b = 10.

Exercice 14

Résoudre les équations différentielles suivantes.

1.
$$y' = 3y$$

3.
$$4y' + 6y = 0$$

2.
$$y' = -2y + 1$$

4.
$$\frac{1}{3}y' - 12y - 2 = 0$$

Théorème 15 | Problème de Cauchy

On définit parfois des équations différentielles avec une condition initiale $y(0) = y_0 \in \mathbf{R}$. C'est ce qu'on appelle un **problème de Cauchy**. Soient $a \in \mathbf{R}^*$, $b \in \mathbf{R}$ et $y_0 \in \mathbf{R}$.

L'équation différentielle $\begin{cases} y' = ay + b \\ y(0) = y_0 \end{cases}$ admet une **unique** fonction f solution définie sur **R** par :

$$f(x) = \left(y_0 + \frac{b}{a}\right)e^{ax} - \frac{b}{a}.$$

Exemple 16 Soit le problème de Cauchy suivant.

$$\begin{cases} y' = -3y + 9 \\ y(0) = 6 \end{cases}$$

L'unique solution f est définie sur \mathbf{R} par $f(x) = \left(6 + \frac{9}{-3}\right)e^{-3x} - \frac{9}{-3} = 3e^{-3x} + 3$.

Exercice 17

Résoudre les problèmes différentiels suivants.

1.
$$\begin{cases} y' = y - 3 \\ y(0) = 1 \end{cases}$$

2.
$$\begin{cases} y' = 5y + 15 \\ y(-1) = 1 \end{cases}$$

2.3 Équations différentielles de la forme y' = ay + f

Dans toute la section, on considère a un réel et f une fonction définie sur un intervalle I.

Propriété 18

Soit φ une solution de l'équation différentielle y' = ay + f. g est solution de y' = ay + f si, et seulement si, $g - \varphi$ est solution de y' = ay.

Démonstration. On sait que $\varphi' = a\varphi + f$.

$$g' = ag + f$$

$$\Leftrightarrow g' - \varphi' = ag + f - (a\varphi + f)$$

$$\Leftrightarrow (g - \varphi)' = a(g - \varphi)$$

Théorème 19

Si l'équation y' = ay + f admet une solution **particulière** φ alors elle admet comme uniques solutions les fonctions définies sur I telles que :

$$y(x) = Ce^{ax} + \varphi(x), \qquad C \in \mathbf{R}.$$

Démonstration. C'est une conséquence directe du résultat précédent et de la forme générale des solutions de l'équation y' = ay.

Exemple 20 Soit l'équation $y' = y - x^2 + x$. Ici, a = 1 et f est d'expression $f(x) = -x^2 + x$.

On a envie de chercher une solution particulière polynomiale de degré 2. Posons $\varphi(x) = \alpha x^2 + \beta x + \gamma$

Si φ vérifie l'équation différentielle, alors :

$$\varphi'(x) = \varphi(x) - x^2 + x$$

$$\Leftrightarrow 2\alpha x + \beta = \alpha x^2 + \beta x + \gamma - x^2 + x$$

$$\Leftrightarrow 0 = (\alpha - 1)x^2 + (\beta + 1 - 2a)x + (\gamma - \beta)$$

Ainsi, $\alpha = 1$ et $\gamma = \beta$ par identification de polynômes puis $\beta = 1$.

 $\varphi(x) = x^2 + x + 1$ est une solution particulière.

Finalement, les solutions générales de l'équation différentielle sont sous la forme :

$$y(x) = Ce^x + \varphi(x) = Ce^x + x^2 + x + 1$$
 où C est une constante réelle.