Toronto - The Battle of the Neighborhoods

by melih canal 24.02.2021

INTRODUCTION:

In this project we tried to find the most intense locations where restaurants are intensively located. Specifically, this report will be targeted to investor who is already run wholesale food company and interested in opening an warehouse in Toronto, Canada.

Since there are lots of restaurants in Toronto, we will divide the amount of restaurants according to postcode and we will give to our investor the most crowded with restaurants.

DATA:

Based on definition of our problem, the main data that we will use is all existing restaurants in the neighborhood. We obtained the necessary data by using Forsquare.*

We also need the full list of postcodes and their neighborhood in city of Toronto, Canada. Those datas has been imported from Wikipedia.**

- * https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M
- ** https://api.foursquare.com

METHODOLOGY:

We used the methodology of K-Means Clustering Algorithm. K-means clustering is a type of unsupervised learning, which is used when you have unlabeled data. The goal of this algorithm is to find groups in the data, with the number of groups represented by the variable K. The algorithm works iteratively to assign each data point to one of K groups based on the features that are provided. Data points are clustered based on feature similarity.

Steps we took for the analysis:

- Collected required data that contains of every restaurant within our lat and lng.
- Explored the 'restaurant density' across different areas of Toronto we will use K-mean to identify a few promising areas close to center with low number of restaurants and their type.
- We will take into consideration locations with restaurants in radius of 500 meters

ANALYSIS:

1. **Exploring data:** On this stage, we imported our data from *Wikipedia* as *HTML code* and converted it as *Pandas DataFrame* by using *BeautifulSoup* and *Requests* packages.

	PostalCode	Borough	Neighborhood
0	M1A	Not assigned	Not assigned
1	M2A	Not assigned	Not assigned
2	МЗА	North York	Parkwoods
3	M4A	North York	Victoria Village
4	M5A	Downtown Toronto	Regent Park, Harbourfront
175	M5Z	Not assigned	Not assigned
176	M6Z	Not assigned	Not assigned
177	M7Z	Not assigned	Not assigned
178	M8Z	Etobicoke	Mimico NW, The Queensway West, South of Bloor,
179	M9Z	Not assigned	Not assigned

180 rows × 3 columns

2. **Data cleaning:** On this stage, we cleaned our dataset, prepare for analysing. We red rid of "Not Assigned" datas on our dataset.

	PostalCode	Borough	Neighborhood
2	МЗА	North York	Parkwoods
3	M4A	North York	Victoria Village
4	M5A	Downtown Toronto	Regent Park, Harbourfront
5	M6A	North York	Lawrence Manor, Lawrence Heights
6	M7A	Downtown Toronto	Queen's Park, Ontario Provincial Government
160	M8X	Etobicoke	The Kingsway, Montgomery Road, Old Mill North
165	M4Y	Downtown Toronto	Church and Wellesley
168	M7Y	East Toronto	Business reply mail Processing Centre, South C
169	M8Y	Etobicoke	Old Mill South, King's Mill Park, Sunnylea, Hu
178	M8Z	Etobicoke	Mimico NW, The Queensway West, South of Bloor,

103 rows \times 3 columns

Then , we combined different data source and sorting neighborhood based on longitude and latitude for working on geographical locations. The list of longitude and latitude were imported from outsources. Next stage was to tidy our dataset and combine all necessary data on our *DataFrame*.

	PostalCode	Borough	Neighborhood	Latitude	Longitude
0	МЗА	North York	Parkwoods	43.753259	-79.329656
1	M4A	North York	Victoria Village	43.725882	-79.315572
2	M5A	Downtown Toronto	Regent Park, Harbourfront	43.654260	-79.360636
3	M6A	North York	Lawrence Manor, Lawrence Heights	43.718518	-79.464763
4	M7A	Downtown Toronto	Queen's Park, Ontario Provincial Government	43.662301	-79.389494
98	M8X	Etobicoke	The Kingsway, Montgomery Road, Old Mill North	43.653654	-79.506944
99	M4Y	Downtown Toronto	Church and Wellesley	43.665860	-79.383160
100	M7Y	East Toronto	Business reply mail Processing Centre, South C	43.662744	-79.321558
101	M8Y	Etobicoke	Old Mill South, King's Mill Park, Sunnylea, Hu	43.636258	-79.498509
102	M8Z	Etobicoke	Mimico NW, The Queensway West, South of Bloor,	43.628841	-79.520999

In order to to integrate the list of restaurants with out dataset, we create Forsquare link.

```
LIMIT = 100
radius = 500
results_parkwoods = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}CLIENT_ID,
CLIENT_SECRET,
VERSION,
neighborhood_latitude,
neighborhood_longitude,
radius,
LIMIT)
results_parkwoods

'https://api.foursquare.com/v2/venues/explore?&client_id=EULG4N4YWJMED5K3U325R3XE5PIVIIUEJZGX3SVVXKJ1ZD2J&client_secret=1020ZKC4ZRKHE2ZB2350ZL5AATRCLN4Q0YHG5QGG3UDTBHD&v=20180605&11=43.7532586,-79.3296565&radius=500&limit=100'
```

On this point, we noticed the problem that Forsquare did not classify stores with main restaurant title, therefore, we selected the *venue values* that are our target clients and we have obtains the data set below.

Venue Categor	Venue Longitude	Venue Latitude	Venue	Neighborhood Longitude	Neighborhood Latitude	Neighborhood	
Par	-79.332140	43.751976	Brookbanks Park	-79.329656	43.753259	Parkwoods	0
Food & Drink Sho	-79.333114	43.751974	Variety Store	-79.329656	43.753259	Parkwoods	1
Hockey Aren	-79.315635	43.723481	Victoria Village Arena	-79.315572	43.725882	Victoria Village	2
Portuguese Restaurar	-79.312785	43.725819	Portugril	-79.315572	43.725882	Victoria Village	3
Coffee Sho	-79.313103	43.725517	Tim Hortons	-79.315572	43.725882	Victoria Village	4
Intersection	-79.313620	43.726086	Eglinton Ave E & Sloane Ave/Bermondsey Rd	-79.315572	43.725882	Victoria Village	5
Pizza Plac	-79.312860	43.725824	Pizza Nova	-79.315572	43.725882	Victoria Village	6
Financial or Lega Service	-79.312665	43.725486	Cash Money	-79.315572	43.725882	Victoria Village	7
Bake	-79.362017	43.653447	Roselle Desserts	-79.360636	43.654260	Regent Park, Harbourfront	8

Now, we roughly have an idea where is the area that restaurants are mostly located. However, we should not analyse part by part but all Toronto, that is why, we are going to use Clustering method.

3. Explore the Toronto's neighborhoods (Identify the top 10 venues for each neighborhood.): On this stage, we have given the most 10 popular venues category. Information are may be beneficial for our clients which neighbourhood are the most suitable place for their product chain.

4. Clustering(With an assumption of 5 clusters): The final step of our project is "clustering". With an assumption of 5 clusters, use K-Cluster algorithm to come up with 5 different clusters in Toronto with similar set of Venues. Explore each cluster and determine the discriminating venue categories that distinguish each cluster.

RESULTS:

Based on our initial assumption of the cluster with maximum number of restaurants will have the best possibility to have a new restaurant due to the need in the area. Based on the resultant clusters it looks like Cluster 5 have higher number of resturants then rest of the clusters.

Amounts of Rest.

Borough	
Central Toronto	65
Downtown Toronto	819
East Toronto	76
East York	31
Etobicoke	36
Mississauga	10
North York	137
Scarborough	40
West Toronto	106
York	3

CONCLUSION:

The areas will be given to investor according to "Cluster 5" as the most intense areas which company's target clients are mostly located.. Now, our investor will make his final decision according to availability of warehouse facilities, rent fees and other factorts.