NATIONAL UNIVERSITY OF SINGAPORE

SEMESTER 1, 2014/2015

MA1101R Linear Algebra 1

Tutorial 7

1. Give an example of a family of subspaces V_1, \dots, V_n of \mathbf{R}^n such that $\dim(V_i) = i$ for $i = 1, 2, \dots, n$ and

$$V_1 \subset V_2 \subset \cdots \subset V_n$$
.

Justify your answer.

(Textbook, p. 125, Problem 39)

2. Let

 $u_1 = (1, 0, 1, 1), u_2 = (-3, 3, 7, 1), u_3 = (-1, 3, 9, 3), u_4 = (-5, 3, 5, -1)$ and let

$$S = \{u_1, u_2, u_3, u_4\}$$

and $V = \operatorname{span}(S)$.

(a) Find a non trivial solution to the equation

$$au_1 + bu_2 + cu_3 + du_4 = 0.$$

- (b) Express u_3 adn u_4 separately as linear combinations of u_1 and u_2 .
- (c) Find a basis for V and determine the dimension of V.
- (d) Find a subspace W of \mathbf{R}^4 such that $\dim(W) = 3$ and $\dim(W \cap V) = 2$. Justify your answer.

(Textbook, p. 125, Problem 40)

- 3. Let $S = \{u_1, u_2, u_3\}$ be a basis for \mathbf{R}^3 and $T = \{v_1, v_2, v_3\}$ where $v_1 = u_1 + u_2 + u_3, v_2 = u_2 + u_3$ and $v_3 = u_2 u_3$.
 - (a) Show that T is a basis for \mathbb{R}^3 .
 - (b) Find the transition matrix from S to T.

(Textbook, p. 126, Problem 49)

- 4. Let $A = \begin{pmatrix} a_1 & a_2 & a_3 & a_4 & a_5 \end{pmatrix}$ be a 4×5 matrix such that the columns a_1, a_2, a_3 are linearly independent while $a_4 = a_1 2a_2 + a_3$ and $a_5 = a_2 + a_3$.
 - (a) Determine the reduced row echelon form of A.
 - (b) Find a basis for the row space of A and a basis for the column space of A.

(Textbook, p. 143, Problem 10)

- 5. For each of the following cases, write down a matrix with the required property or explain why no such matrix exists.
 - (a) The column space contains vectors $(1,0,0)^T$, $(0,0,1)^T$ and the row space contains vectors (1,1), (1,2).
 - (b) The column space is ${\bf R}^4$ and the row space is ${\bf R}^3.$
 - (c) The column space = row space = span $\{(1,2,3)\}$.

(Textbook, p. 144, Problem 12)