Name: - Chandravoanska Mangosh Shavoji
Roll No: - 1801CS16. Sign: -
Date :- 16/04/2020, Chardraw.
CS226- Switching Theory Lab-9.
Q.1) 4-bit Synchronous counter.
(a) Using S-R flipflop.
un a mind to hold states.
dock signal controls when flip-flop memory can change:
1 Mala Mar In Dull.
\sim 00 00 00 \sim 01
00000000000X0X 0 X0-0
0010,00110X 0 X D 10
001100000000000000000000000000000000000
010001010000000000000000000000000000000
0110 0111 0X X0 X010
0 1 1 1 1 0 0 0 1 0 1 0 1 0 1
10'0-0 1001 X0 0X 0X 10
1001 1010 X0 0X 1001
1011100 X01001
1,0,0,1,10 1 X 0 X 0 0 X 1 0
1101110 X 0 X 0 10 0 1
111011X0
1111000001
-15 gt Excitation 9 g(next) SR.
Tatle 0 1 10
Scanned with CamScanner

fig. 4. bit RS counter (synchronous).

$$S_1 = C_1' R_1 = C_1 S_2 = C_1 C_2' R_2 = C_1 C_2 S_3 = C_1 C_2 C_3' R_3 = C_1 C_2 C_3$$

 $S_4 = C_1 C_2 C_3 C_4' R_4 = C_1 C_2 C_3 C_4$

(b) Using J-K flipflop

4-flipflops req. to hold states. Clock signal changes when flip-flop memory can change

9. 9next
$$JK$$
0. 0 X
1. X

Excitation Table.

Scanned with CamScanner

Scanned with CamScanner

(1.2) Design a register file (16×16) with two read ports and one write port. Perform read and write operation and understand the operation of register file.

Fig. 16 × 16. Register file with two read ports and one write port.

Write Operation :-

- 1) Put the value to be written in Write Value
- 3 Mention Write Address corresponding to the register where you want to store the value.
- 3 Set Regwhite (enables) for Decoder to 1
- (4) Grenerate a clock pulse. At the sising edge, value gets stored (written).

Read Operation: -

- 1. Mention Read Address corresponding to the register, where you want to read value.
- 3 Generate a clock pulse, at the sising edge of which value is sead and displayed.

16-bit Reg. file > some as question 2. 16-bit ALV.

16-bit ALU. (4 operations) Fig.

Waite 10	A 1	
and compute	10 data to 20	gistezs (1 to 10)
3 Steps Wai	sum . te Selector. = 0 :	RegWaite = 1. for every
(I) Waite	2 Address Wai	te Value read and
	100	little ortoon
		ool ation we
	03.1.1	oil have to
		give a dock
	3 1 1 0	Tulco
	× 1	
	k	111
		1001
	1	1001.
(II)	Noite Selector	
Read Ad D	Read Ad 1	Result (in decimal).
0000.	000 .	. Nesur (in deamal). 1 → write it
1011	0010.	3 to 1011
1011	0011	6 -1/-
1011	0100	10 -11 -
1011	0101	15 —11—
1011	0110	21 —//—
1011	0111	28 —//—
1011	1000	36 -11 -
1011	1001	45 -11

1010

1011

final answer