Отчёт по лабораторной работе №5 Петрова О.А. группы ИВТ-12М

1. Разберите последовательную программу по вычислению определенного интеграла task_lecture_7.cpp . Введите в нее параллелизм с помощью OpenMP. Установите количество рабочих процессов равным 3, для этого используйте оператор num_threads(num_of_threads). Не забудьте настроить в свойствах проекта поддержку стандарта OpenMP: Свойства проекта -> вкладка С\С++ -> Язык -> Поддержка OpenMP.

Par: pi = 3.14159265359023 time: 3.211000 sec.

Рисунок 1. Результат выполнения последовательной программы

По условию задачи требовалось ввести только параллелизм, но т.к. происходила гонка данных было решено добавить редьюсеры.

Par: pi = 3.14159265358957 time: 0.265078 sec.

Рисунок 2. Результат выполнения изменённой программы

Из результатов видно, что в данной задаче распараллеливание выигрывает во времени по сравнению с последовательным выполнением в 12 раз.

2. После введения параллелизма запустите программу. На консоли Вы увидите подсчитанное значение и время выполнения программы. Сделайте скрин консоли, сохраните его, назвав соответствующим образом. Запустите *Concurrency Analysis* инструмента *Amplifier XE* из панели инструментов *Visual Studio*. Во вкладке *Summary* отчета Вы должны увидеть цикл функции *par()*, использующий наибольшее время СРU. Нажав на него, Вы перейдете во вкладку *Bottom-up*. Оцените загруженность вычислителей, представленную на графике ниже. Сделайте скрин вкладки *Bottom-up*, сохраните его, назвав соответствующим образом. Текущую версию программы и скрины добавьте в коммит и загрузите в *GitHub*.

CPU Time [®] :	0.657s
Effective Time **:	0.582s
Spin Time [®] :	0.075s
Overhead Time	: 0s
Total Thread Count:	3
Paused Time 19:	0s

▼ Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions performance.

Function	Module	CPU Time ®	
par\$omp\$1	IPS_lab5.exe	0.582s	
NtYieldExecution	ntdll.dll	0.075s R	

^{*}N/A is applied to non-summable metrics.

This histogram displays a percentage of the wall time the specific number of CPUs were running:

Рисунок 3. Результат работы VTune Amplifier XE

Рисунок 4. Результат работы VTune Amplifier XE во вкладке Bottom-up

3. В функции par() в цикле по i от 0 до num после выражения S = S + 4.0 / (1.0 + x*x); добавьте следующие 2 строки кода $\#pragma\ omp\ atomic$, inc++;. Пересоберите решение. Запустите программу, сделайте скрин консоли, сохраните его. Далее запустите $Concurrency\ Analysis$. Перейдя во вкладку Summary отчета, Вы увидите, что теперь наибольшее время затрачивается на выполнение новых двух добавленных строк кода. Чем Вы объясните такие изменения?

Далее, нажав по соответствующей строке отчета *Summary*, перейдите во вкладку *Bottom-up*. Проанализируйте загруженность вычислителей в данном случае. Сохраните скрин вкладки *Bottom-up*. Текущую версию программы и скрины добавьте в коммит и загрузите в *GitHub*.

Par: pi = 3.14159265358957 time: 1.440865 sec.

Рисунок 5. Результат выполнения изменённой программы

OPU Time :	5.524s
Effective Time **:	0.368s
Spin Time [®] :	0.188s
⊙ Overhead Time ^② :	4.969s F
Creation ®:	0s
Scheduling ®:	0s
Reduction [®] :	0s
Atomics (2):	4.969s N
Other ^① :	0s
Total Thread Count:	3
Paused Time ®:	0s

▼ Top Hotspots

This section lists the most active functions in your application. Optimizing these performance.

Function	Module	CPU Time ®
vcomp_atomic_add_i8	VCOMP140.DLL	4.893s
par\$omp\$1	IPS_lab5.exe	0.368s
NtYieldExecution	ntdll.dll	0.105s
[Import thunk vcomp_atomic_add_i8]	IPS_lab5.exe	0.076s
func@0x18000873b	VCOMP140.DLL	0.066s
[Others]		0.016s

^{*}N/A is applied to non-summable metrics.

Рисунок 6. Результат работы VTune Amplifier XE

Рисунок 7. Результат работы VTune Amplifier XE во вкладке Bottom-up

Из результатов видно, что большую часть времени было потрачено на ожидание выполнения атомарных операций, поэтому данная программа выполнялась в 5.4 раза дольше предыдущей.

4. Замените строку #pragma omp atomic строкой #pragma omp critical. Пересоберите решение проекта, запустите программу. Сделайте скрин консоли, где отображено вычисленное значение и время выполнения программы.

Запустите *Concurrency Analysis*. Перейдя во вкладку *Summary* отчета Вы увидите изменения по сравнению с предыдущей версией программы. Чем Вы объясните такие изменения?

Далее, нажав по соответствующей строке отчета *Summary*, перейдите во вкладку *Bottom-up*. Проанализируйте загруженность вычислителей. сохраните скрин вкладки *Bottom-up*. Текущую версию программы и скрины добавьте в коммит и загрузите в *GitHub*.

Par: pi = 3.14159265358957 time: 8.401484 sec.

Рисунок 8. Результат выполнения изменённой программы

✓ Elapsed Time ^②: 9.605s ✓ CPU Time ^③: 26.778s ✓ Effective Time ^③: 0.884s ✓ Spin Time ^③: 25.894s [►] ✓ Overhead Time ^③: 0s Total Thread Count: 3 Paused Time ^③: 0s

▼ Top Hotspots

This section lists the most active functions in your application. performance.

Function	Module	CPU Time 3
RtlEnterCriticalSection	ntdll.dll	18.689s N
RtlLeaveCriticalSection	ntdll.dll	6.762s N
par\$omp\$1	IPS_lab5.exe	0.816s
vcomp_enter_critsect	VCOMP140.DLL	0.249s
NtYieldExecution	ntdll.dll	0.098s
[Others]		0.163s

^{*}N/A is applied to non-summable metrics.

Рисунок 9. Результат работы VTune Amplifier XE

Function / Call Stack	CPU Time ▼ ≫	Module	Function (Full)	Viewing ■ 1 of 2 ➤ selected stack(s)
RtlEnterCriticalSection	18.689s	ntdll.dll	RtlEnterCriticalSection	65.9% (12.308s of 18.6
► RtILeaveCriticalSection	6.762s	ntdll.dll	RtlLeaveCriticalSection	ntdll.dll!RtlEnterCriticalSection - [unknown source
par\$omp\$1	0.816s	IPS_lab5.exe	par\$omp\$1	IPS_lab5.exe!par\$omp\$1+0xd8 - main.cpp:20
vcomp_enter_critsect	0.249s	VCOMP140.DLL	vcomp_enter_critsect	VCOMP140.DLL!func@0x180001798+0x8 - [unk
► NtYieldExecution	0.098s	ntdll.dll	NtYieldExecution	VCOMP140.DLL!func@0x1800016fc+0x68 - [unk
[Import thunk vcomp_leave_critsect]	0.068s	IPS_lab5.exe	[Import thunk vcomp_leave_critsect]	VCOMP140.DLL!func@0x1800080eb+0x5a - [un KERNEL32.DLL!BaseThreadInitThunk+0x13 - [ur
vcomp_leave_critsect	0.056s	VCOMP140.DLL	vcomp_leave_critsect	ntdll.dll!RtlUserThreadStart+0x20 - [unknown sou
func@0x18000873b	0.029s	VCOMP140.DLL	func@0x18000873b	ilidii.dii:Riidsei i ilieadsiait+0x20 - [diikilowii soo
func@0x180002570	0.010s	VCOMP140.DLL	func@0x180002570	
► NtWaitForSingleObject	0.000s	ntdll.dll	NtWaitForSingleObject	
	3s	45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	55 65 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	75 S5 G5
		45		7s 8s 0s
func@0x1800080eb (TID: 5		42		75 85 99
func@0x1800080eb (TID: 5 mainCRTStartup (TID: 5980)		42		7s 8s 0s

Рисунок 10. Результат работы VTune Amplifier XE во вкладке Bottom-up

Директива critical даёт возможность работать с переменной inc только одному потоку в определённый момент времени, поэтому время выполнения программы увеличилось.

5. Замените строку #pragma omp critical. Введите в программу изменения: перед инкрементом переменной inc необходимо поставить вызов omp_set_lock (&writelock), после него вызов omp_unset_lock (&writelock). Пример правильного использования этих двух функций показан на изображении init_lock_openmp.png. После введенных изменений пересоберите решение, запустите программу. Сделайте скрин консоли. Запустите Concurrency Analysis. Во вкладке Summary отчета Вы должны увидеть, что в данном случае наибольшее время затрачивается на вызов функций omp_set_lock (&writelock) и omp_unset_lock (&writelock). Нажав по соответствующей строке отчета Summary, Вы перейдете во вкладку Bottom-up. Проанализируйте загруженность вычислителей. Сделайте скрин вкладки Bottom-up, сохраните его.

Par: pi = 3.14159265358957 time: 11.711321 sec.

Рисунок 11. Результат выполнения изменённой программы

⊗	Elapsed Time ^③ :	10.931s 🖆
	○ CPU Time ^② :	29.412s
	Effective Time **:	0.639s
	Spin Time [®] :	28.773s
	Overhead Time [®] :	0s
	Total Thread Count:	3
	Paused Time .	0s

▼ Top Hotspots

This section lists the most active functions in your application. performance.

Function	Module	CPU Time®
func@0x1800049d3	VCOMP140.DLL	23.880s N
RtILeaveCriticalSection	ntdll.dll	4.704s N
par\$omp\$1	IPS_lab5.exe	0.623s
NtYieldExecution	ntdll.dll	0.164s
exit	ucrtbase.dll	0.016s
[Others]		0.025s

^{*}N/A is applied to non-summable metrics.

Рисунок 12. Результат работы VTune Amplifier XE

Рисунок 13. Результат работы VTune Amplifier XE во вкладке Bottom-up

Использование замков(lock) подобно использованию директивы critical, но выполнение с ними происходит дольше из-за того, что для начала замок нужно установить, а после выполнения заданных операций снять замок.