

Exercise 4C

Question 3:

Given: \triangle ABC ~ \triangle PQR,

area of \triangle ABC = 4 area of \triangle PQR.

Let area of Δ PQR = x. Then area of Δ ABC = 4x.

We know that the ratio of the areas of two similar triangle is equal to the ratio of the square of their corresponding sides.

$$\therefore \frac{\text{area of } \Delta ABC}{\text{area of } \Delta PQR} = \frac{BC^2}{QR^2}$$

$$\frac{4x}{x} = \frac{(12)^2}{QR^2} \Rightarrow 4 = \frac{(12)^2}{y^2}$$

$$\Rightarrow 4y^2 = 144$$

Hence. QR = 6 cm

Question 4:

Given: Δ ACB ~ Δ DEF such that ar(Δ ABC) = 169cm² and ar(Δ DEF) = 121cm²

We know that the ratio of the area of similar triangles is equal to the ratio of the square of their corresponding sides.

$$\frac{\text{Area of } \triangle ABC}{\text{Area of } \triangle DEF} = \frac{BC^2}{EF^2} \Rightarrow \frac{169}{121} = \frac{(26)^2}{EF^2}$$

$$EF^2 = (26)^2 \times \frac{121}{169}$$

$$EF = \sqrt{(26)^2 \times \frac{121}{169}} = 26 \times \frac{11}{13} = 22 \text{ cm}$$

Hence, the longest side of smallest triangle side is 22 cm.

Question 5:

Given: ΔACB ~ ΔDEF

 $ar(\Delta ABC) = 100cm^2$ and $ar(\Delta DEF) = 49cm^2$

Let AL and DM be the corresponding altitude of ABC and DEF respectively such that AL = 5 cm and let DM = x cm

We know that the ratio of the area of two similar triangles is equal to the ratio of the square of corresponding altitudes.

$$\therefore \frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta DEF)} = \frac{AL^2}{DM^2}$$

$$\Rightarrow \frac{100}{49} = \frac{\left(5\right)^2}{x^2}$$
$$\Rightarrow x^2 = \left(5\right)^2 \times \frac{49}{100}$$

$$\Rightarrow x = \sqrt{(5)^2 \times \frac{49}{100}}$$

$$\Rightarrow$$
 x = 5 $\times \frac{7}{10}$ = 3.5 cm

Hence, DM = 3.5 cm

Therefore, the required altitude is 3.5 cm

********* END *******