Week 5-6 Data Preprocessing HW

公衛四 b11801033 張藝馨

Github: https://github.com/tt921/Week-5-6-Data-Preprocessing-HW

1. Introduction & Setup

• Briefly describe the purpose of this analysis (NHANES data, 2021–2023).

在此份報告中,利用 NHANES data, 2021-2023。

NHANES 2021-2023 是一項全美代表性調查,結合了問卷訪談與身體檢查,收集美國人口的健康狀況、營養攝取、疾病盛行率、生理與生化測量資料。這些資料常用於公共衛生研究,例如慢性病(如糖尿病、肥胖、高血壓)之流行趨勢分析與營養政策制定。

基於此資料集進行分析並回答下列問題。

- Q1. Among adults aged ≥20 years in the 2021–2023 NHANES, observe the association between BMI and mean systolic blood pressure (SBP) and does the association vary between sex?
- Q2. Among all the subjects in 2021-2023 NHANES dataset, observe the distribution of BMI in different races and education levels
 - What is the distribution of educational attainment (EDU) and ethnicity (Race) in your data? (Please calculate the number and proportion of each EDU and Race, and output the table)
 - (a) For Education levels, please refer to the variable "dmdeduc2"
 - (b) For Race categories, please refer to the variable "ridreth3"
 - II. Please use boxplots to visualize the BMI distribution in different races and education levels (2 outputs: BMI as X variable and filled by education and vice versa)
 - III. Please state your brief conclusion about the plots (Do not need the statistical testsyou're your inference)
- Q2. Among all the subjects in 2021-2023 NHANES dataset, BPX is the data including three times of examination of blood pressure (SBP & DBP). The values were recorded in different columns (bpxosy1-3; bpxodi1-3) (Reminder: please use the "cleaned" BP data).

- I. Currently the dataset is stored in a wide format, meaning that each measurement is placed in a separate column. Please reshape the dataset into a long format, so that each row represents a single measurement, and include the following variables:
- (a) seqn: Participant ID
- (b) measure (new defined): Measurement type (SBP or DBP)
- (c) trial (new defined): Trial number (1, 2, or 3)
- (d) value (from each BP value): The recorded blood pressure value
- II. After reshaping the dataset, create a boxplot to compare the distribution of SBP and DBP across the three trials and facet by the measurement type.
- III. Now, suppose we are only interested in the two trials that show the largest difference for each subject. Please complete the tasks aboved.
- IV. Please infer whether these blood pressure values were measured at long intervals or on the same day to avoid errors.

以上問題,Q1 將於#2. Week 5 Components (BMI & SBP Cleaning)#中回答,Q2 與Q3 則在#3. Week 6 Components (EDU, Race, and BP Trials)#與#4. Homework Extensions (if applicable)#回答。

· Load all required packages and datasets.

```
# ========= Class Lab: BMI Cleaning & Visualization ========
# 1)    Packages and folders -------
pkgs <- c("tidyverse", "haven", "janitor", "stringr", "scales", "skimr", "nan</pre>
iar") # tidyverse: metapackage (including dplyr, tidyr, ggplot2), haven:
read SAS/XPT files
to_install <- setdiff(pkgs, rownames(installed.packages()))</pre>
# if (length(to install)) install.packages(to install)
invisible(lapply(pkgs, library, character.only = TRUE))
## — Attaching core tidyverse packages —
rse 2.0.0 --
## √ dplyr
                         √ readr
             1.1.4
                                     2.1.5
## √ forcats 1.0.1

√ stringr

                                     1.5.1
## √ ggplot2 3.5.2
                         √ tibble
                                     3.3.0
## ✓ lubridate 1.9.4
                         √ tidyr
                                    1.3.1
## √ purrr
## — Conflicts —
                                                        tidyverse_co
nflicts() —
## X dplyr::filter() masks stats::filter()
## X dplyr::lag()
                     masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to for
ce all conflicts to become errors
```

```
##
## Attaching package: 'janitor'
##
##
## The following objects are masked from 'package:stats':
##
##
       chisq.test, fisher.test
##
##
##
## Attaching package: 'scales'
##
##
## The following object is masked from 'package:purrr':
##
       discard
##
##
## The following object is masked from 'package:readr':
##
##
       col_factor
##
##
##
## Attaching package: 'naniar'
##
##
## The following object is masked from 'package:skimr':
##
##
       n_complete
dir.create("outputs", showWarnings = FALSE) # where plots will be saved
data dir <- "data raw"
                                             # folder containing .XPT fi
Les
getwd() # check working directory
## [1] "D:/下載"
setwd("D:/下載")
```

2. Week 5 Components (BMI & SBP Cleaning)

· Data loading, handling missing values.

```
# 2) Load raw data -----
demo <- read_xpt(file.path(data_dir,"DEMO_L.XPT")) %>% clean_names() #
%>% is one of the most important operators in the tidyverse, it pronou
```

```
nce as"and then"
bpx <- read_xpt(file.path(data_dir,"BPXO_L.XPT")) %>% clean_names() #
  clean_names() from janitor package: make column names consistent (lowe
  rcase, no spaces or special characters)
bmx <- read_xpt(file.path(data_dir,"BMX_L.XPT")) %>% clean_names()

# quick overviews (on-screen)
skimr::skim(demo); skimr::skim(bpx); skimr::skim(bmx)
```

Data summary

Name demo Number of rows 11933 Number of columns 27

Column type frequency:

numeric 27

-____

Group variables None

Variable type: numeric

Data summary

skim_va riable seqn	n_mi ssing 0	complet e_rate 1.00	mea n 1363 44.0 0	sd 344 4.90	p0 1303 78.0 0	p25 1333 61.0 0	p50 1363 44.0 0	p75 1393 27.0 0	p10 0 142 310. 0	hi st
sddsrvyr	0	1.00	12.0 0	0.00	12.0 0	12.0 0	12.0 0	12.0 0	12.0	- -
ridstatr	0	1.00	1.74	0.44	1.00	1.00	2.00	2.00	2.0	_ _ _ _
riagendr	0	1.00	1.53	0.50	1.00	1.00	2.00	2.00	2.0	- -

skim_va riable	n_mi ssing	complet e_rate	mea n	sd	р0	p25	p50	p75	p10 0	hi st
										- - -
ridageyr	0	1.00	38.3 2	25.6 0	0.00	13.0 0	37.0 0	62.0 0	80.0	-
ridagem	1155	0.03	11.6	6.81	0.00	6.00	11.0	17.0	24.0	=
n	6		3				0	0		
ridreth1	0	1.00	3.10	1.08	1.00	3.00	3.00	4.00	5.0	=
										=
ridreth3	0	1.00	3.32	1.52	1.00	3.00	3.00	4.00	7.0	=
ridexmo	3073	0.74	1.52	0.50	1.00	1.00	2.00	2.00	2.0	<u>-</u> -
n	3073	0.74	1.52	0.50	1.00	1.00	2.00	2.00	2.0	- -
ridexag	9146	0.23	121. 91	67.1	0.00	66.0	122. 00	179. 50	239.	
m			91	6		0	UU	50	0	
dmqmili z	3632	0.70	1.92	0.28	1.00	2.00	2.00	2.00	7.0	-
										_

-	skim_va riable	n_mi ssing	complet e_rate	mea n	sd	p0	p25	p50	p75	p10 0	hi st
	dmdbor n4	19	1.00	1.16	0.36	1.00	1.00	1.00	1.00	2.0	- - -
	dmdyru sr	1005 8	0.16	7.33	15.8 3	1.00	3.00	6.00	6.00	99.0	- - -
	dmdedu c2	4139	0.65	3.80	1.15	1.00	3.00	4.00	5.00	9.0	- -
	dmdmar tz	4141	0.65	1.78	3.10	1.00	1.00	1.00	2.00	99.0	- - - -
	ridexprg	1043 0	0.13	2.24	0.49	1.00	2.00	2.00	3.00	3.0	- - -
	dmdhhs iz	0	1.00	3.24	1.70	1.00	2.00	3.00	4.00	7.0	= = =
	dmdhrg nd	7818	0.34	1.56	0.50	1.00	1.00	2.00	2.00	2.0	- - -

skim_va riable dmdhra gz	n_mi ssing 7809	complet e_rate 0.35	mea n 2.54	sd 0.64	p0 1.00	p25 2.00	p50 2.00	p75 3.00	p10 0 4.0	hi st —
dmdhre dz	8187	0.31	2.17	0.66	1.00	2.00	2.00	3.00	3.0	- - -
dmdhr maz	7913	0.34	1.38	0.68	1.00	1.00	1.00	2.00	3.0	- - -
dmdhse dz	9806	0.18	2.28	0.69	1.00	2.00	2.00	3.00	3.0	_ _ _ _
wtint2yr	0	1.00	2740 4.14	194 49.1 6	4584 .46	1433 1.75	2167 0.19	3383 1.33	170 968. 3	- -
wtmec2 yr	0	1.00	2740 4.14	279 62.9 6	0.00	0.00	2171 7.85	3834 1.15	227 108. 3	- - - -
sdmvstr a	0	1.00	179. 92	4.31	173. 00	176. 00	180. 00	184. 00	187. 0	_
sdmvps u	0	1.00	1.49	0.50	1.00	1.00	1.00	2.00	2.0	

skim_va	n_mi	complet	mea						p10	hi
riable	ssing	e_rate	n	sd	p0	p25	p50	p75	0	st
										_
										_
										_
indfmpir	2041	0.83	2.71	1.67	0.00	1.18	2.50	4.50	5.0	

Name bpx
Number of rows 7801
Number of columns 12

Column type frequency:

character 1 numeric 11

Group variables None

Variable type: character

	n_missin	complete_rat	mi	m	emp	n_uniqu	whitespac
skim_variable	g	е	n	ax	ty	е	е
bpaoarm	0	1	0	1	147	3	0

Variable type: numeric

Data summary

skim_vari able	n_mis sing	complete _rate	mean	sd	p0	p25	p50	p75	p10 0	
seqn	0	1.00	13634 9.49		130 378	133 335	136 382	139 325	142 310	
bpaocsz	190	0.98	3.52	0.67	2	3	4	4	5	

skim_vari able	n_mis sing	complete _rate	mean	sd	р0	p25	p50	p75	p10 0	his t
bpxosy1	284	0.96	119.2 9	18.5 6	61	106	117	130	232	- - -
bpxodi1	284	0.96	72.75	11.9 0	33	64	72	80	142	
bpxosy2	296	0.96	119.0 8	18.5 7	59	106	116	129	233	
bpxodi2	296	0.96	72.09	11.8 5	32	64	71	79	139	_ _ _
bpxosy3	321	0.96	118.9 2	18.5 0	50	106	116	129	232	
bpxodi3	321	0.96	71.81	11.7 7	24	64	71	79	136	_ _ _
bpxopls1	284	0.96	72.34	12.7 2	35	63	71	80	158	- -

skim_vari	n_mis ·	complete			_				p10	his
able	sing	_rate	mean	sd	p0	p25	p50	p75	0	t
										_
										_
bpxopls2	296	0.96	73.09	12.7	32	64	72	81	141	_
				8						
										_
										_
bpxopls3	321	0.96	73.69	12.8	31	65	73	82	154	_
				9						
										_
										_
										_

bmx Name 8860 Number of rows Number of columns 22

Column type frequency: numeric

22

Group variables None

Variable type: numeric

skim_var iable	n_mi ssing	complet e_rate	mean	sd	p0	p25	p50	p75	p100	hi st
seqn	0	1.00	1363 45.83	345 3.7 8	1303 78.0	1333 19.75	1363 77.5	1393 36.2	1423 10.0	
bmdstat s	0	1.00	1.13	0.5	1.0	1.00	1.0	1.0	4.0	- - -

skim_var iable	n_mi ssing	complet e_rate	mean	sd	р0	p25	p50	p75	p100	hi st
bmxwt	106	0.99	70.55	30. 39	2.7	54.20	71.7	89.1	248.	- -
bmiwt	8515	0.04	2.88	0.6	1.0	3.00	3.0	3.0	4.0	- - - -
bmxrecu m	8406	0.05	84.33	14. 06	48.5	73.48	84.7	96.1	118. 8	_
bmirecu m	8842	0.00	1.00	0.0	1.0	1.00	1.0	1.0	1.0	_ _ _ _
bmxhea d	8790	0.01	41.93	2.8	34.4	40.20	42.4	44.0	46.5	_ _ _
bmihead bmxht	8860 361	0.00 0.96	NaN 159.6 6	NA 19. 86	NA 79.1	NA 154.4 0	NA 163. 6	NA 172. 1	NA 200. 7	- - -
bmiht	8726	0.02	2.31	0.9 5	1.0	1.00	3.0	3.0	3.0	- - - -
bmxbmi	389	0.96	27.25	8.1	11.1	21.60	26.4	31.7	74.8	

skim_var iable	n_mi ssing	complet e_rate	mean	sd 4	p0	p25	p50	p75	p100	hi st
bmdbmi c	6368	0.28	2.56	0.8	1.0	2.00	2.0	3.0	4.0	- - -
bmxleg	1525	0.83	38.13	3.8 6	24.9	35.50	38.1	40.8	51.6	- -
bmileg	8464	0.04	1.00	0.0	1.0	1.00	1.0	1.0	1.0	- - -
bmxarml	292	0.97	35.11	6.1 8	10.0	33.60	36.5	39.0	49.2	- - -
bmiarml	8660	0.02	1.00	0.0	1.0	1.00	1.0	1.0	1.0	- -
bmxarm c	298	0.97	30.56	7.3 7	12.0	26.40	31.2	35.4	63.3	
bmiarm c	8655	0.02	1.00	0.0	1.0	1.00	1.0	1.0	1.0	

iable	ssing	e_rate	mean	sd	p0	p25	p50	p75	p100	st
bmxwais t	670	0.92	92.12	22. 05	39.8	77.50	92.7	107. 0	187. 0	- -
bmiwais t	8513	0.04	1.00	0.0	1.0	1.00	1.0	1.0	1.0	- - - -
bmxhip	2084	0.76	106.2 6	14. 66	69.9	96.40	103. 7	113. 5	187. 1	- = -
bmihip	8499	0.04	1.00	0.0	1.0	1.00	1.0	1.0	1.0	_ _ _
theme_n	ninimal(show_pct base_size	= 14)	+	Value	s ner V	ariablo	a")	# (not	_ _ sa

Proportion of Missing Values per Variat


```
# 3) Detect Systolic blood pressure/Diastolic blood pressure reading co
Lumns ---
#
    Support both naming patterns (bpxosy1 or bpxsy1); the 'o' is optio
nal.
sbp cols <- names(bpx)[stringr::str detect(names(bpx), "^bpxo?sy[1-3]$</pre>
")] # names() returns the column names of a data frame.(character vect
or)
dbp cols <- names(bpx)[stringr::str detect(names(bpx), "^bpxo?di[1-3]$</pre>
")] # str_detect(x, pattern) returns TRUE or FALSE for each element of
x, depending on whether it matches the regex pattern.
# This code finds the column names in the dataset bpx that correspond t
o the 3 repeated measurements of systolic (sy) or diastolic (di) blood
pressure.
# 4) Build BEFORE (raw) variables and dataset ------
    bmi raw = original BMI from BMX.
bmi raw <- bmx %>%
  transmute(seqn, bmi_raw = bmxbmi) # transmute() keeps only the varia
bles you create, unlike mutate() which keeps all existing variables.
# SBP/DBP
sbpdbp raw <- bpx %>%
 transmute(seqn,
            sbp_raw = rowMeans(select(., all_of(sbp_cols)), na.rm = TRU
```

```
E),
            dbp raw = rowMeans(select(., all of(dbp cols)), na.rm = TRU
E))
table(demo$riagendr) # $ means "grab" the column from the data frame
##
##
     1
           2
## 5575 6358
demo <- demo %>%
  mutate(riagendr = as.numeric(riagendr)) %>% # convert to numeri
c (some values are character)
  filter(is.na(riagendr) | riagendr %in% c(1, 2)) # drop rows with ri
agendr==3 (keep NA and 1/2)
demo sex <- demo %>%
  transmute(seqn, age = ridageyr,
            sex = factor(riagendr, levels=c(1,2), labels=c("Male", "Fema
le")))
dat raw <- demo sex %>%
  left_join(bmi_raw, by="seqn") %>% # join demo (left) with bmi_raw (r
ight) by segn
 filter(age >= 20) %>%
  mutate(
    # normalize NaN from rowMeans when all readings missing
    bmi raw = ifelse(is.nan(bmi raw), NA real , bmi raw) # normalize Na
N to NA
 )
dat raw <- dat raw %>%
  left_join(sbpdbp_raw, by = "seqn") # join demo (left) with bmi_raw
(right) by segn

    Boxplots(Before), Outlier cleaning (BMI, SBP), Boxplots(After).

# 5) Draw BEFORE plots -----
# ---- BMI boxplot (BEFORE) ----
bmi before df <- dat raw %>% transmute(stage = "Before (raw BMI)", valu
e = bmi raw)
x <- bmi before df$value
qs <- quantile(x, c(.25,.75), na.rm = TRUE) # na.rm=TRUE to ignore mis
sing values
iqr \leftarrow qs[2]-qs[1]
upper whisker \leftarrow min(max(x, na.rm = TRUE), qs[2] + 1.5*iqr) # upper wh
isker position, Q3 + 1.5 \times IQR, capped by max value.
bmi_before_label_y <- upper_whisker + 0.05*iqr</pre>
bmi_before_N <- sum(!is.na(x)) # count of non-missing values, !is.na()</pre>
```

```
means "not NA"
p_bmi_before <- ggplot(bmi_before_df, aes(stage, value, fill = stage))</pre>
  geom_boxplot(width = 0.6, outlier.alpha = 0.15, fatten = 1.2) +
 geom text(data = tibble(stage="Before (raw BMI)", y=bmi before label
y, N=bmi_before_N),
            aes(stage, y, label=paste0("n = ", N)), hjust = -1, size =
3.5, inherit.aes = FALSE) +
            #size:字型大小
  scale fill manual(values = c("Before (raw BMI)" = "#D6E9F8")) +
  labs(title = "BMI (BEFORE): Raw Distribution", x = NULL, y = "BMI") +
  scale_y_continuous(expand = expansion(mult = c(0.02, 0.12))) +
  theme_minimal(base_size = 12) + theme(legend.position = "none", panel.
grid.minor = element_blank())
ggsave("outputs/q1_box_bmi_before.png", p_bmi_before, bg = "white")
## Saving 5 x 4 in image
## Warning: Removed 1839 rows containing non-finite outside the scale r
## (`stat_boxplot()`).
p bmi before
## Warning: Removed 1839 rows containing non-finite outside the scale r
ange
## (`stat boxplot()`).
```

BMI (BEFORE): Raw Distribution


```
# 5b) Draw BEFORE SBP boxplot -----
sbp_before_df <- dat_raw %>% transmute(stage = "Before (raw SBP)", valu
e = sbp_raw)
x <- sbp_before_df$value</pre>
qs <- quantile(x, c(.25, .75), na.rm = TRUE)
iqr < -qs[2] - qs[1]
upper whisker \leftarrow min(max(x, na.rm = TRUE), qs[2] + 1.5 * iqr)
sbp_before_label_y <- upper_whisker + 0.05 * iqr</pre>
sbp_before_N <- sum(!is.na(x))</pre>
p_sbp_before <- ggplot(sbp_before_df, aes(stage, value, fill = stage))</pre>
  geom_boxplot(width = 0.6, outlier.alpha = 0.15, fatten = 1.2) +
  geom_text(data = tibble(stage = "Before (raw SBP)", y = sbp_before_la
bel y, N = sbp before N),
            aes(stage, y, label = paste0("n = ", N)), hjust = -1, size
= 3.5, inherit.aes = FALSE) +
  scale_fill_manual(values = c("Before (raw SBP)" = "#F9D5E5")) +
  labs(title = "SBP (BEFORE): Raw Distribution", x = NULL, y = "Mean SB
P") +
  scale y continuous(expand = expansion(mult = c(0.02, 0.12))) +
  theme minimal(base size = 12) + theme(legend.position = "none", panel.
grid.minor = element_blank())
ggsave("outputs/q1 box sbp before.png", p sbp before, bg = "white")
## Saving 5 x 4 in image
```

```
## Warning: Removed 1946 rows containing non-finite outside the scale r
ange
## (`stat_boxplot()`).

p_sbp_before

## Warning: Removed 1946 rows containing non-finite outside the scale r
ange
## (`stat_boxplot()`).
```

SBP (BEFORE): Raw Distribution

6) OUTLIER CLEANING (then compute cleaned means) ------Rule = physiologic bounds + IQR fences + MAD z-score; after remova l we create "clean" vars. BMI LO <- 10; BMI HI <- 80 bmi clean <- bmx %>% transmute(seqn, bmxbmi) %>% mutate(q1 = quantile(bmxbmi, 0.25, na.rm=TRUE), q3 = quantile(bmxbmi, 0.75, na.rm=TRUE), iqr = q3 - q1, lo iqr = q1 - 1.5*iqr, $hi_iqr = q3 + 1.5*iqr$, med = median(bmxbmi, na.rm=TRUE), madv = mad(bmxbmi, na.rm=TRUE), z = ifelse(madv > 0, (bmxbmi - med)/(madv*1.4826), 0), # 1.4826 to make it comparable to SD if normal

```
flag = (bmxbmi < BMI LO | bmxbmi > BMI HI) | (bmxbmi < lo igr | bmx
bmi > hi_iqr) | (abs(z) > 3.5), # flag outliers
   bmxbmi_clean = ifelse(flag, NA_real_, bmxbmi)
  ) %>% select(seqn, bmxbmi clean)
# 6b) OUTLIER CLEANING for SBP/DBP -----
SBP_LO <- 70; SBP_HI <- 260
DBP LO <- 40; DBP HI <- 150
sbpdbp clean <- bpx %>%
 transmute(seqn,
            sbp = rowMeans(select(., all_of(sbp_cols)), na.rm = TRUE),
            dbp = rowMeans(select(., all of(dbp cols)), na.rm = TRUE))
%>%
 mutate(
   # SBP
    sbp_q1 = quantile(sbp, 0.25, na.rm = TRUE),
    sbp q3 = quantile(sbp, 0.75, na.rm = TRUE),
    sbp iqr = sbp q3 - sbp q1,
    sbp lo iqr = sbp q1 - 1.5 * sbp iqr,
    sbp hi iqr = sbp q3 + 1.5 * sbp iqr,
    sbp_med = median(sbp, na.rm = TRUE),
    sbp_madv = mad(sbp, na.rm = TRUE),
   sbp z = ifelse(sbp madv > 0, (sbp - sbp med) / (sbp madv * 1.4826),
0),
    sbp_flag = (sbp < SBP_LO | sbp > SBP_HI) | (sbp < sbp_lo_iqr | sbp</pre>
\rightarrow sbp hi iqr) | (abs(sbp z) \rightarrow 3.5),
    sbp clean = ifelse(sbp flag, NA real , sbp),
    dbp q1 = quantile(dbp, 0.25, na.rm = TRUE),
    dbp q3 = quantile(dbp, 0.75, na.rm = TRUE),
   dbp_iqr = dbp_q3 - dbp_q1,
    dbp_lo_iqr = dbp_q1 - 1.5 * dbp_iqr,
    dbp_hi_iqr = dbp_q3 + 1.5 * dbp_iqr,
    dbp med = median(dbp, na.rm = TRUE),
    dbp madv = mad(dbp, na.rm = TRUE),
   dbp_z = ifelse(dbp_madv > 0, (dbp - dbp_med) / (dbp_madv * 1.4826),
0),
   dbp flag = (dbp < DBP LO | dbp > DBP HI) | (dbp < dbp lo iqr | dbp
> dbp_hi_iqr) | (abs(dbp_z) > 3.5),
   dbp_clean = ifelse(dbp_flag, NA_real_, dbp)
  select(seqn, sbp_clean, dbp_clean)
# 7) Build AFTER (clean) dataset ------
dat clean <- demo sex %>%
left join(bmi clean, by="seqn") %>%
```

```
filter(age >= 20) %>%
  mutate(
    bmxbmi_clean = ifelse(is.nan(bmxbmi_clean), NA_real_, bmxbmi_clean)
  # normalize NaN to NA
  # 7b) Merge cleaned SBP into dat clean ------
dat clean <- dat clean %>%
  left_join(sbpdbp_clean, by = "seqn") %>%
  mutate(
    sbp_clean = ifelse(is.nan(sbp_clean), NA_real_, sbp_clean)
  )
# 8) AFTER plots -----
# ---- BMI boxplot (AFTER) ----
bmi after df <- dat clean %>% transmute(stage = "After (clean BMI)", va
lue = bmxbmi clean)
x <- bmi_after_df$value</pre>
qs <- quantile(x, c(.25,.75), na.rm = TRUE);
iqr \leftarrow qs[2]-qs[1]
upper_whisker <- min(max(x, na.rm = TRUE), qs[2] + 1.5*iqr)
bmi_after_label_y <- upper_whisker + 0.05*iqr</pre>
bmi after N <- sum(!is.na(x))</pre>
p bmi after <- ggplot(bmi after df, aes(stage, value, fill = stage)) +</pre>
  geom_boxplot(width = 0.6, outlier.alpha = 0.15, fatten = 1.2) +
  geom text(data = tibble(stage="After (clean BMI)", y=bmi after label
y, N=bmi_after N),
            aes(stage, y, label=paste0("n = ", N)), hjust = -1, size =
3.5, inherit.aes = FALSE) +
  scale fill manual(values = c("After (clean BMI)" = "#FCE5CD")) +
  labs(title = "BMI (AFTER): Cleaned Distribution", x = NULL, y = "BMI")
  scale y continuous(expand = expansion(mult = c(0.02, 0.12))) +
  theme_minimal(base_size = 12) + theme(legend.position = "none", panel.
grid.minor = element blank())
ggsave("outputs/q1 box bmi_after.png", p_bmi_after, bg = "white")
## Saving 5 x 4 in image
## Warning: Removed 2016 rows containing non-finite outside the scale r
ange
## (`stat boxplot()`).
p_bmi_after
## Warning: Removed 2016 rows containing non-finite outside the scale r
## (`stat boxplot()`).
```

BMI (AFTER): Cleaned Distribution


```
# 8b) AFTER SBP boxplot -------
sbp_after_df <- dat_clean %>% transmute(stage = "After (clean SBP)", va
lue = sbp_clean)
x <- sbp_after_df$value</pre>
qs <- quantile(x, c(.25, .75), na.rm = TRUE)
iqr \leftarrow qs[2] - qs[1]
upper whisker \leftarrow min(max(x, na.rm = TRUE), qs[2] + 1.5 * iqr)
sbp_after_label_y <- upper_whisker + 0.05 * iqr</pre>
sbp_after_N <- sum(!is.na(x))</pre>
p sbp after <- ggplot(sbp after df, aes(stage, value, fill = stage)) +</pre>
  geom boxplot(width = 0.6, outlier.alpha = 0.15, fatten = 1.2) +
  geom_text(data = tibble(stage = "After (clean SBP)", y = sbp_after_la
bel y, N = sbp after N),
            aes(stage, y, label = paste0("n = ", N)), hjust = -1, size
= 3.5, inherit.aes = FALSE) +
  scale_fill_manual(values = c("After (clean SBP)" = "#F6E3B4")) +
 labs(title = "SBP (AFTER): Cleaned Distribution", x = NULL, y = "Mean
 SBP") +
  scale_y_continuous(expand = expansion(mult = c(0.02, 0.12))) +
  theme minimal(base size = 12) + theme(legend.position = "none", panel.
grid.minor = element blank())
ggsave("outputs/q1_box_sbp_after.png", p_sbp_after, bg = "white")
## Saving 5 x 4 in image
```

```
## Warning: Removed 2123 rows containing non-finite outside the scale r
ange
## (`stat_boxplot()`).

p_sbp_after

## Warning: Removed 2123 rows containing non-finite outside the scale r
ange
## (`stat_boxplot()`).
```

SBP (AFTER): Cleaned Distribution

Missingness barplot (Before vs After).

```
# 9) Missing value comparison -----
miss_before <- tibble(
    stage = "Before",
    variable = "BMI",
    n_missing = sum(is.na(dat_raw$bmi_raw)),
    n_total = nrow(dat_raw)
) %>% mutate(p_missing = n_missing / n_total)

miss_after <- tibble(
    stage = "After",
    variable = "BMI",
    n_missing = sum(is.na(dat_clean$bmxbmi_clean)),
    n_total = nrow(dat_clean)
) %>% mutate(p_missing = n_missing / n_total)
```

```
miss_long <- bind_rows(miss_before, miss_after) %>%
  mutate(stage = factor(stage, levels = c("Before", "After")), # ensure
 order in plot legend
         variable = factor(variable, levels = "BMI"))
                                                           # ensure
 order in x-axis
p na bar 1 <- ggplot(miss long, aes(variable, p missing, fill = stage))</pre>
  geom_col(width=0.6, position="dodge") +
                    # dodge to separate bars
  geom_text(aes(label = paste0(scales::percent(p_missing, 0.1),
                               "\n(", n_missing, "/", n_total, ")")),
                    # label on top of bars
            vjust=-0.2, size=3.5) +
  scale_y_continuous(labels=scales::percent) +
  labs(title = "SBP Missingness Before vs After Cleaning", x=NULL, y="M
issing rate") +
  theme_minimal(base_size=12) + theme(legend.position="top")
pos <- position_dodge(width = 0.65) # to align text labels with bars wh</pre>
en using dodge
p_na_bar_2 <- ggplot(miss_long, aes(variable, p_missing, fill = stage))</pre>
 geom_col(width = 0.6, position = pos) +
  geom_text(aes(label = paste0(scales::percent(p_missing, 0.1),
                               "\n(", n_missing, "/", n_total, ")")),
            position = pos, vjust = -0.2, size = 3.5, lineheight = 0.95)
 scale_y_continuous(labels = scales::percent, expand = expansion(mult
= c(0, 0.12)) +
  scale fill manual(values = c("Before" = "#9EC5FE", "After" = "#FFCF99
")) +
  labs(title = "Missingness (NA) Before vs After Outlier Removal (BMI)",
       x = NULL, y = "Missing rate", fill = "Stage") +
  theme_minimal(base_size = 12) +
  theme(panel.grid.minor = element blank(),
        plot.title = element text(face = "bold"),
        legend.position = "top")
ggsave("outputs/q1_na_bmi_before_after.png", p_na_bar_2, bg = "white")
## Saving 5 x 4 in image
p_na_bar_2
```

Missingness (NA) Before vs After Outlier Rem


```
# 9b) Missing value comparison for SBP -----
miss_before_sbp <- tibble(</pre>
 stage = "Before",
 variable = "SBP",
 n_missing = sum(is.na(dat_raw$sbp_raw)),
 n total = nrow(dat raw)
) %>% mutate(p missing = n missing / n total)
miss_after_sbp <- tibble(</pre>
 stage = "After",
 variable = "SBP",
 n missing = sum(is.na(dat clean$sbp clean)),
  n_total = nrow(dat_clean)
) %>% mutate(p_missing = n_missing / n_total)
miss_long_sbp <- bind_rows(miss_before_sbp, miss_after_sbp) %>%
 mutate(stage = factor(stage, levels = c("Before", "After")),
         variable = factor(variable, levels = "SBP"))
p_na_bar_sbp <- ggplot(miss_long_sbp, aes(variable, p_missing, fill = s</pre>
tage)) +
 geom col(width = 0.6, position = pos) +
 geom_text(aes(label = paste0(scales::percent(p_missing, 0.1),
                               "\n(", n_missing, "/", n_total, ")")),
            position = pos, vjust = -0.2, size = 3.5, lineheight = 0.95)
```

Missingness (NA) Before vs After Outlier Rem

· Scatter plot: BMI vs SBP by sex.

```
# 10) Scatter plot: Cleaned BMI vs Cleaned SBP by sex -----
scatter_df <- dat_clean %>%
  filter(!is.na(bmxbmi_clean), !is.na(sbp_clean), !is.na(sex))

p_scatter <- ggplot(scatter_df, aes(x = bmxbmi_clean, y = sbp_clean, co lor = sex)) +
  geom_point(alpha = 0.5, size = 1.5) +</pre>
```

Association between Cleaned BMI and Mean

男女皆呈相似的正相關。

3. Week 6 Components (EDU, Race, and BP Trials)

· Recode and relabel variables (EDU & Race).

```
## 2
               666
## 3
            3
              1749
            4
              2370
## 4
## 5
            5
              2625
## 6
            9
                 11
## 7
           NA 4139
demo %>% count(ridreth3)
## # A tibble: 6 × 2
     ridreth3
##
        <dbl> <int>
## 1
            1 1117
            2 1373
## 2
## 3
            3 6217
## 4
            4 1597
## 5
            6
              681
            7
## 6
                948
# 2) Recode & relabel
dat_edu <- demo %>%
  transmute(
    seqn,
    age = ridageyr,
    EDU = case_when(
                                     # case_when() is like ifelse() bu
t for multiple conditions
      dmdeduc2 %in% 1:5 ~ dmdeduc2, # retain 1-5
      TRUE ~ NA_real_
                                      # 7/9 -> NA
    ),
    RACE = case_when(
      ridreth3 %in% 1:5 ~ ridreth3,
      TRUE ~ NA real
    )
  ) %>%
 mutate(
    EDU = factor(EDU,
                 levels = 1:5,
                 labels = c("<9th grade", "9-11th grade", "High school/</pre>
GED",
                            "Some college/AA", "College or above")),
    RACE = factor(RACE,
                  levels = 1:5,
                  labels = c("Mexican American", "Other Hispanic", "Non
-Hispanic White",
                             "Non-Hispanic Black", "Other Race"))
  ) %>%
  left_join(dat_clean %>% select(seqn, bmxbmi_clean), by = "seqn") %>%
 drop_na(EDU, RACE, bmxbmi_clean)
```

· Distribution tables and plots (EDU, Race) & Export CSV + Quarto/Markdown table.

```
# 3) distribution table
edu_dist <- dat_edu %>%
 count(EDU) %>%
                                # count occurrences of each education
Level
 mutate(prop = n / sum(n),
                               # calculate proportions
        variable = "EDU") %>%  # add a variable column for clarity
 rename(category = EDU)
                             # rename EDU to category for consisten
Сy
race_dist <- dat_edu %>%
 count(RACE) %>%
 mutate(prop = n / sum(n),
        variable = "RACE") %>%
  rename(category = RACE)
# 4) output table & csv
write.csv(edu_dist, file = "outputs/EDU_distribution.csv", row.names =
FALSE) #row.names=FALSE to avoid writing row numbers
write.csv(race_dist, file = "outputs/RACE_distribution.csv", row.names
= FALSE)
library(knitr)
kable(edu_dist, digits = 3, caption = "Distribution of Educational Atta
inment (EDU)")
```

Distribution of Educational Attainment (EDU)

category	n	prop	variable						
<9th grade	247	0.048	EDU						
9–11th grade	393	0.077	EDU						
High school/GED	1112	0.218	EDU						
Some college/AA	1545	0.303	EDU						
College or above	1799	0.353	EDU						
<pre>kable(race_dist;</pre>	digit	ts = 3,	caption	= "Distri	ibution	of	Race	(RACE))")

Distribution of Race (RACE)

category	n	prop	variable
Mexican American	390	0.077	RACE
Other Hispanic	593	0.116	RACE
Non-Hispanic White	3425	0.672	RACE
Non-Hispanic Black	688	0.135	RACE

```
# 5) Boxplot for visualization

# (a) 單純 BMI ~ EDU

p_bmi_edu <- ggplot(dat_edu, aes(x = EDU, y = bmxbmi_clean)) +
    geom_boxplot(outlier.alpha = 0.2, fill = "#F9D5E5") +
    labs(title = "BMI across Education Groups", x = "Education Level", y

= "BMI") +
    theme_minimal(base_size = 13) +
    theme(axis.text.x = element_text(angle = 30, hjust = 1))

ggsave("outputs/BMI_by_EDU.png", p_bmi_edu, width = 10, height = 6, bg

= "white")
p_bmi_edu
```

BMI across Education Groups

Education Level

```
# (b) 單純 BMI ~ RACE

p_bmi_race <- ggplot(dat_edu, aes(x = RACE, y = bmxbmi_clean)) +
    geom_boxplot(outlier.alpha = 0.2, fill = "#B5EAD7") +
    labs(title = "BMI across Race Groups", x = "Race", y = "BMI") +
    theme_minimal(base_size = 13) +
    theme(axis.text.x = element_text(angle = 30, hjust = 1))

ggsave("outputs/BMI_by_RACE.png", p_bmi_race, width = 10, height = 6, b

g = "white")

p_bmi_race
```



```
# (c) BMI ~ EDU, fill by RACE
p_bmi_edu_fill_race <- ggplot(dat_edu, aes(x = EDU, y = bmxbmi_clean, f
ill = RACE)) +
    geom_boxplot(position = position_dodge(0.8), outlier.alpha = 0.2) +
    labs(title = "BMI by Education Level (Filled by Race)", x = "Educatio
n Level", y = "BMI") +
    theme_minimal(base_size = 13) +
    theme(axis.text.x = element_text(angle = 30, hjust = 1))
ggsave("outputs/BMI_by_EDU_filled_by_RACE.png", p_bmi_edu_fill_race, wi
dth = 10, height = 6, bg = "white")

p_bmi_edu_fill_race</pre>
```

BMI by Education Level (Filled by Race)

Education Level

```
# (d) BMI ~ RACE, fill by EDU
p_bmi_race_fill_edu <- ggplot(dat_edu, aes(x = RACE, y = bmxbmi_clean,
fill = EDU)) +
    geom_boxplot(position = position_dodge(0.8), outlier.alpha = 0.2) +
    labs(title = "BMI by Race (Filled by Education Level)", x = "Race", y
    = "BMI") +
    theme_minimal(base_size = 13) +
    theme(axis.text.x = element_text(angle = 30, hjust = 1))
ggsave("outputs/BMI_by_RACE_filled_by_EDU.png", p_bmi_race_fill_edu, wi
dth = 10, height = 6, bg = "white")
p_bmi_race_fill_edu</pre>
```

BMI by Race (Filled by Education Level)

- · EDU / RACE 分布:已輸出的表格顯示各教育程度與族群在樣本中有不同的樣本 數與比例。
- ·教育程度 vs BMI:不同教育程度之間 BMI 的中位數與變異明顯不一;視覺上較低教育程度群組常出現較高的中位數與較寬的 IQR/較多極端值,而高教育程度群組 BMI 較集中且偏低。
- ·族群 vs BMI:不同族群的 BMI 中位數與分布也有差異,某些族群中位數偏高且 散布較廣,極端值數量亦不同。
- ·交互觀察(EDU × RACE):在相同教育層級內,不同族群仍呈現不同的 BMI 分布,表示教育與族群對 BMI 的視覺差異是同時存在的。
- ·總結建議:圖形顯示教育與族群均與 BMI 有可見差異(描述性),若需定量比較或檢定差異大小,建議做回歸或多群組檢定以提供統計支持。
- · Reshape BP trials (wide → long).

```
# From the dataset bpx, you're selecting: seqn: the participant ID. s
bp cols and dbp cols: two vectors containing SBP and DBP measurement va
riable names
  # all_of() ensures all the columns listed in those vectors exist — ot
herwise R will throw an error
  pivot longer(
    cols = -seqn, #take every column except seqn and pivot them.
    names_to = c("measure", "trial"), # Split the original column names
 into two new variables
    names pattern = "^bpxo([sd]i|sy)([1-3])$",
    # This regular expression defines how column names are split:
    # ^bpxo means names start with "bpxo".
    # ([sd]i|sy) captures the part indicating pressure type: "di" → dia
stolic; "sy" → systolic
    \# ([1-3]) captures the measurement number (1, 2, or 3).
    # $ means "end of the string."
    values to = "value" # The actual blood pressure readings will be st
ored in a new column named value.
  ) %>%
  mutate(
    measure = recode(measure,
                     "sy" = "SBP",
                     "di" = "DBP"),
    trial = as.integer(trial)
 )
```

· Boxplots for SBP & DBP across trials.

Distribution of SBP & DBP across 3 Trials (C

4. Homework Extensions (if applicable)

· Race distribution (homework Q2).

As mentioned at "Distribution tables and plots (EDU, Race) & Export CSV + Quarto/Markdown table."

· Select two trials with the largest difference (homework Q3).

```
# 1. 找出每個人每種血壓(SBP/DBP)三次量測的最大差異組合
bpx_long_diff <- bpx_long_clean %>%
group_by(seqn, measure) %>%
filter(sum(!is.na(value)) >= 2) %>% # 至少有兩次量測
mutate(
    # 計算三次量測的所有兩兩差異
    diff12 = abs(value[trial == 1] - value[trial == 2]),
    diff13 = abs(value[trial == 1] - value[trial == 3]),
    diff23 = abs(value[trial == 2] - value[trial == 3]))
) %>%
ungroup()

# 2. 對每個人每種血壓,找出差異最大的那兩次
bpx_long_maxdiff <- bpx_long_diff %>%
group_by(seqn, measure) %>%
# 計算三組差異,找最大
```

```
mutate(
    maxdiff = max(diff12, diff13, diff23, na.rm = TRUE),
    keep_trials = case_when(
      maxdiff == diff12 \sim list(c(1,2)),
      maxdiff == diff13 \sim list(c(1,3)),
      maxdiff == diff23 \sim list(c(2,3)),
      TRUE ~ list(NA)
    )
  ) %>%
  # 保留最大差異的那兩次
  filter(trial %in% unlist(keep_trials[1])) %>%
  ungroup()
# 3. 繪圖
bpx_long_maxdiff_PLOT <- ggplot(bpx_long_maxdiff, aes(x = factor(trial),</pre>
v = value, fill = measure)) +
  geom boxplot(outlier.alpha = 0.2) +
 facet_wrap(~ measure, scales = "free_y") +
  labs(title = "Distribution of SBP & DBP (Largest Difference 2 Trials
per Subject)",
       x = "Trial (Only 2 with Largest Difference)", y = "Blood Pressur
e (mmHg)") +
  theme minimal()
bpx_long_maxdiff_PLOT
```

Distribution of SBP & DBP (Largest Difference 2 Trials

視覺上三次量測(Trial 1-3)在 SBP 與 DBP 的 boxplot 中,中位數與 IQR 大量重疊、分布類似,且沒有明顯的系統性上升或下降趨勢。對每位保留「差異最大兩次」後的比較亦顯示整體分布差異並不大。因此可推論:這些血壓量測很可能是在同一天、短時間內(數分鐘內)完成,而非長時間間隔量測。

5. Conclusion

Summary

在清理後的資料中,BMI 在不同教育程度與族群間分布有可見差異:較低教育層級與某些族群的 BMI 中位數及變異較高;交互觀察顯示同一教育層級內不同族群仍有差異。BMI 與平均 SBP 視覺上呈明顯正相關,男女皆為正向趨勢且大致相似(散點與分性別回歸線顯示僅有輕微位置/斜率差異)。三次血壓量測的箱型圖與「保留最大差異兩次」的結果均未顯示系統性趨勢,整體變異合理,推論量測應為同一次訪談內、短時間內完成(非長間隔測量)。

· What I learned about reproducible workflows

- ·明確分段: 資料載入→變數識別→前處理/重編碼→離群值清理→建立清理後資料集→繪圖與輸出;每一步保留可執行的 script。
- ·可重現性實作:使用 tidyverse 一致語法、固定檔案目錄(outputs/data_raw)、將中間結果寫入檔案(CSV/圖檔),並在程式中註記清理規則與假設。
- ·模組化與紀錄:把重複邏輯封成函式或區塊、加入註解與版本資訊(sessionInfo或 git commit),便於追蹤與重複執行。
- ·可追溯輸出:所有表格與圖都存檔(outputs),使報告與原始分析可對應;避免硬編路徑、保留原始與清理後變數以利檢查。