2. Множества

"Множество множества"

Март 2025

1 Основни задачи

Дефиниция 1.1 (операции върху множества).

- $A \cup B := \{a \mid a \in A \lor a \in B\}$ /обединение/,
- $A \cap B := \{a \mid a \in A \land a \in B\}$ /сечение/,
- $A \backslash B := \{ a \mid a \in A \land a \notin B \} / \text{разлика} /,$
- $A\triangle B \coloneqq \{a \mid a \in A \oplus a \in B\}$ /симетрична разлика/,
- $A \times B := \{(a, b) \mid a \in A \land b \in B\}$ /декартово произведение/,
- $\overline{A^U}=A^{\complement}\coloneqq \{a\mid a\notin A\land a\in U\}$ /допълнение/, където U ($A\subseteq U$) е някакъв универсум.

Забележка. Най-голям универсум няма! (помислете защо)

Свойство 1.1 (Свойства на операциите върху множества).

- асоциативност на обединението, сечението, сим. разлика: $A \cup B \cup C = A \cup (B \cup C), \ A \cap B \cap C = A \cap (B \cap C), \ A \triangle B \triangle C = A \triangle (B \triangle C)$
- \bullet комутативност на обединението, сечението, сим. разлика: $A\cup B=B\cup A,\ A\cap B=B\cap A,\ A\triangle B=B\triangle A$
- *De Morgan: $\overline{A \cup B} = \overline{A} \cap \overline{B}, \ \overline{A \cap B} = \overline{A} \cup \overline{B}$
- дистрибутивен закон: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C), \ A \times (B \cup C) = (A \times B) \cup (A \times C)$
- свойства на празното множество и универсума: $A \cup \emptyset = A, \ A \cap \emptyset = \emptyset, \ A \cup U = U, \ A \cap U = A$
- \bullet двойно допълнение: $\overline{\overline{A}} = A$
- поглъщане (absorption): $A \cup (A \cap B) = A, \ A \cap (A \cup B) = A$
- *други полезни: $A \backslash B = A \cap \overline{B}$

Полезно. Забележете, че операциите върху множества (без декартовото) доста напомнят логическите (което не е изненадващо, ако се загледаме в дефинициите им по-горе). Обединението е аналог на дизюнкцията, сечението на конюнкцията, допълнението на негацията, симетричната разлика на изключващото или.

Въпрос: Кое тогава "отговаря" на импликацията?

Всъщност релацията "подмножество" носи подбна информация. По-ясно това става от връзката: $B \subseteq A$ тстк $\forall a[(a \in B) \to (a \in A)].$

Свойство 1.2. Подобно на таблиците на истинност при логиката, тук отново можем да правим таблици на включване, вместо T и F обаче стойностите са 1 (елементът е част от множеството) и 0 (не е част от него).

Малко за парадока са Ръсел: Използваме "множество" като базово понятие, което не дефинираме. Идва обаче въпросът всичко ли може да бъде множество (или по-конкретно всяко нещо, което може да се дефинира като колекция, ли е множество). Известно време се е считало, че може. Оказва се обаче, че такова безраборно ползване на понятието довежда до неконситентност, парадокси. Ето пример с такъв:

Парадокс на Ръсел: Нека $R = \{x \mid x \notin x\}$, тогава за произволно множество $y : y \in R$ тстк $y \notin y$, замествайки y=R: $R\in R\Leftrightarrow R\notin R$, което е виден парадокс. Проблемът тук не е във възможността множество да бъде елемент на себе си, а конкретно в считането на R за множество. За да се избегнат такива противоречия, са установени различни аксиоматични системи, които регулират кое е валидно множество (съответно в тях R не е такова).

Задача 1. Кои от следните са верни?

a)
$$a \in \{\{a\}, b\}$$
 6) $a \subseteq \{a, b\}$

6)
$$a \subseteq \{a, b\}$$

$$B) \ a \subseteq \{a, \{a\}\}\$$

в)
$$a\subseteq\{a,\{a\}\}$$
 г) $\{a\}\in\{b,c,a\}$

д)
$$\{a\} \in \{b, \{a, b\}, a\}$$

e)
$$\{a, b\} \subseteq \{a, c, \{a, b\}\}$$

$$\texttt{д}) \ \{a\} \in \{b, \{a, b\}, a\} \qquad \text{ e) } \{a, b\} \subseteq \{a, c, \{a, b\}\} \qquad \texttt{ж}) \ \{a, b\} \subseteq \{a, \{a, b\}, b\} \qquad \texttt{3}) \ \{a, b\} \in \{a, \{a, b\}, b\} \qquad \texttt{3}) \ \{a, b\} \in \{a, \{a, b\}, b\} \qquad \texttt{3}) \ \{a, b\} \in \{a, \{a, b\}, b\} \qquad \texttt{4}$$

$$\{a,b\} \in \{a,\{a,b\},b\}$$

и)
$$\{\{a,b\}\}\in\{a,\{a,b\},b\}$$
 й) $\{\{a,b\}\}\subseteq\{a,b,\{a,b\}\}$ к) $\{a,b\}\in\{a,b\}$ л) $\varnothing\in\{a,b\}$

$$\kappa$$
) $\{a,b\} \in \{a,b\}$

л)
$$\emptyset \in \{a, b\}$$

$$M$$
) $\emptyset \in \{a, \emptyset\}$

$$_{\mathrm{H}})\varnothing\in\varnothing$$

o)
$$\varnothing \subseteq \{a, b\}$$

$$\mathbf{M}) \ \varnothing \in \{a,\varnothing\} \qquad \qquad \mathbf{H}) \ \varnothing \in \varnothing \qquad \qquad \mathbf{O}) \ \varnothing \subseteq \{a,b\} \qquad \qquad \mathbf{\Pi}) \ \{\varnothing\} \subseteq \{a,\varnothing\}$$

$$p) \{\emptyset\} \subseteq \{a\}$$

c)
$$\varnothing \in \{a, b\}$$

T)
$$\{\varnothing\} \in \{a,\varnothing\}$$

p)
$$\{\varnothing\} \subseteq \{a\}$$
 c) $\varnothing \in \{a,b\}$ r) $\{\varnothing\} \in \{a,\varnothing\}$ y) $a \in \mathscr{P}(\{a,b\})$

Решение. Не, не, не, не, не, не, да, да, не, да, не, не, да, не, да, да, не, не, не, не; ■

Задача 2. Нека A е множество. Вярно ли е, че ако $|\mathscr{P}(A)| = 0$, то $A = \varnothing$

Решение. Ако сте се сетили, поздравления, Вие сте майстор на математическата логика. Отговорът е ДА; всъщност степенното множество никога не е празно (все пак ∅ е подмножество на всяко друго), но цялото твърдение е вярно, защото това е (леко скрита) импликация с антецедент $F: \setminus \blacksquare$

Задача 3. Съществува ли множество A, за което $A \cap \mathscr{P}(A^2) \neq \varnothing$? Ако не, обосновете защо, ако да, дайте поне два примера.

Решение. Съществува, ето две възможни:

- $A = \{\varnothing, ...\}$, понеже \varnothing е подмножество на всяко друго, то $\varnothing \in A \cap \mathscr{P}(A^2)$
- $A = \{a, b, \{(a, b)\}\} = \{a, b, \{\{\{a\}, \{a, b\}\}\}\}\$, тогава $(a, b) \in A^2$, окъдето $\{(a, b)\} \in \mathscr{P}(A)$

Задача 4. За множества A, B да се докаже, че $A \setminus B = A \cap \overline{B}$.

Решение.
$$x \in A \setminus B \equiv (x \in A) \land (x \notin B) \equiv (x \in A) \land (x \in \overline{B}) \equiv x \in (A \cap \overline{B})$$

Задача 5. Ако A, B, C са множества, да се докаже, че $(A \setminus C) \cup (B \setminus C) = (A \cup B) \setminus C$

Peшение.
$$(A \setminus C) \cup (B \setminus C) = (A \cap \overline{C}) \cup (B \cap \overline{C}) = (A \cup B) \cap \overline{C} = (A \cup B) \setminus C$$

Задача 6. Да се докаже, че $A \cap B \subseteq A \cup B$.

Решение. Ето 3 възможни решения:

От нея се вижда, че винаги когато елемент принадлежи на $A \cap B$, то той принадлежи и на $A \cup B$, т.е. $\forall x : (x \in A \cap B) \to (x \in A \cup B)$, откъдето $A \cap B \in A \cup B$.

2 н.) Достатъчно е да докажем, че $\forall x: (x \in A \cap B) \to (x \in A \cup B)$, т.е. $(x \in A \cap B) \to (x \in A \cup B)$ е тавтология. За начало нека за конкретен x, p е съждението $x \in A$, а q е съждението $x \in B$:

$$\begin{array}{l} (x \in A \cap B) \rightarrow (x \in A \cup B) \equiv \\ (x \in A \wedge x \in B) \rightarrow (x \in A \vee x \in B) \equiv \\ (p \wedge q) \rightarrow (p \vee q) \equiv \end{array}$$

$$\neg(p \land q) \lor (p \lor q) \equiv$$

 $\neg p \vee \neg q \vee p \vee q \equiv T \quad \blacksquare$

3 и.) Може да докажем и че е валиден изводът: $\frac{x \in A \cap B}{\therefore x \in A \cup B}$, или $\frac{p \wedge q}{\therefore p \vee q}$:

правило за опростяване правило за добавяне
$$p \wedge q$$
 \vdash $p \vee q$ \blacksquare

Задача 7. Да се докаже, че
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
.

Решение. Ако пробваме да решим с таблица, възниква проблем с декартовото произведение - то борави с наредени двойки, което не се вписва в таблицата.

Решаваме с еквивалентни преобразувания: За произволна наредена двойка z:

$$z = (z_1, z_2) \in A \times (B \cup C) \equiv (z_1 \in A) \land (z_2 \in B \cup C) \equiv (z_1 \in A) \land ((z_2 \in B) \lor (z_2 \in C)) \stackrel{\text{дистрибутвиност}}{\equiv} [(z_1 \in A) \land (z_2 \in B)] \lor [(z_1 \in A) \land (z_2 \in C)] \equiv [z \in A \times B] \lor [z \in A \times C] \equiv z \in (A \times B) \cup (A \times C)$$

Тоест произволен елемент приндлежи на лявата страна от условието точно когато приндлежи и на дясната, т.е. двете съвпадат. ■

Задача 8. Да се докаже, че $B \subseteq C$, то $B \setminus C = \emptyset$.

Решение. Ще демонстрираме 3 възможни решения:

Полезно. Когато имаме допълнителни условия (например от вида $B\subseteq C$), задраскваме редове, неотговарящи на условието.

Ето защо в случая се абстрахираме от третия ред на таблицата, който не отговаря на условието (понеже в B има елемент, който не е в C), и разглеждаме само останалите.

В оставащите редове се вижда, че за всеки елемент $x, x \notin B \backslash C$ (навсякъде в последната колона има 0), тоест $B \backslash C = \varnothing$.

2 н.) Допсукаме противното - нека $B \setminus C \neq \emptyset$, т.е. $\exists x \in B : x \notin C$. Тогава обаче $B \nsubseteq C \Rightarrow$ противоречие с условието.

3 н.) Спокойно може да се гледа на условието като на импликация, за която трябва да се докаже, че винаги е вярна (т.е. тавтология).

$$\begin{array}{l} (B\subseteq C)\to (B\backslash C=\varnothing)\equiv \\ \forall x(x\in B\to x\in C)\to \neg\exists y(y\in B\land y\notin C)\equiv \end{array}$$

$$\neg \forall x (x \notin B \lor x \in C) \lor \neg \exists y (y \in B \land y \notin C) \equiv \exists x (x \in B \land x \notin C) \lor \neg \exists y (y \in B \land y \notin C) \equiv \exists x (x \in B \land x \notin C) \lor \neg \exists x (x \in B \land x \notin C) \equiv T \quad \blacksquare$$

Задача 9. Намерете редица от множества $\{A_i\}_{i\in\mathbb{N}}$ такава, че $\forall i\in\mathbb{N}:A_i\subseteq A_{i+1},$ но $\bigcap_{i\in\mathbb{N}}A_i=\varnothing$

Решение. това е сравнително тривиален пример от гледна точка на анализа: сечението на отворените интервали $(0,1), (0,\frac{1}{2}), ... (0,\frac{1}{n}), ...$ е именно празното множество (защо интервалите са множества?)

Задача 10. Вярно ли е, че:

- ако $C \subseteq A \cup B$, то $C \subseteq A \vee C \subseteq B$
- ако $C \subseteq A \cap B$, то $C \subseteq A \wedge C \subseteq B$
- ако $A \subseteq B$, то $\mathscr{P}(A) \subseteq \mathscr{P}(B)$
- $\mathscr{P}(A \cap B) = \mathscr{P}(A) \cap \mathscr{P}(B)$
- $\mathscr{P}(A \cup B) = \mathscr{P}(A) \cup \mathscr{P}(B)$

Решение.

- Невинаги е вярно, ето контрапример: $A = \{1,2\}, B = \{3,4\}, C = \{1,3\}$ (обратната посока обаче винаги е вярна).
- За разлика от предното, това е винаги вярно. За прозиволен елемент $x \in C: x \in C \subseteq (A \cap B) \subseteq A \Rightarrow x \in A$, значи $\forall x \in C: x \in A \Rightarrow C \subseteq A$ аналогично и $x \in C \subseteq (A \cap B) \subseteq B \Rightarrow x \in B \Rightarrow \forall x \in C: x \in B \Rightarrow C \subseteq B$. Получихме $(C \subseteq A) \land (C \subseteq B)$.
- Да. Нека $S \in \mathscr{P}(A)$ е произволно подмножество на A, тогава $S \subseteq A \subseteq B \Rightarrow S \in \mathscr{P}(B)$. Понеже S е произволно, то $\mathscr{P}(A) \subseteq \mathscr{P}(B)$.
- Ще докажем исканото на две части (като покажем, че ляата част се съдържа в дясната и обратно). Нека $S \in \mathscr{P}(A \cap B) \Rightarrow S \subseteq A \cap B \Rightarrow (S \subseteq A) \wedge (S \subseteq B) \Rightarrow (S \in \mathscr{P}(A)) \wedge (S \in \mathscr{P}(B)) \Rightarrow S \in (\mathscr{P}(A) \cap \mathscr{P}(B))$. Това показва, че всеки елемент от лявото множество е и в дясното, откъдето $\mathscr{P}(A \cap B) \subseteq \mathscr{P}(A) \cap \mathscr{P}(B)$. \square Сега наобратно: нека $S \in (\mathscr{P}(A) \cap \mathscr{P}(B)) \Rightarrow (S \in \mathscr{P}(A)) \wedge (S \in \mathscr{P}(B)) \Rightarrow (S \subseteq A) \wedge (S \subseteq B) \Rightarrow S \subseteq A \cap B \Rightarrow S \in \mathscr{P}(A \cap B)$. \blacksquare
- Не е винаги вярно, ето контрапример: $A = \{1\}, B = \{2\}$, тогава $\mathscr{P}(A \cup B) = \mathscr{P}(\{1,2\}) = \{\varnothing, \{1\}, \{2\}, \{1,2\}\}$, докато $\mathscr{P}(A) \cup \mathscr{P}(B) = \{\varnothing, \{1\}, \{2\}\}$.

Задача 11. Ако A е множество от множества, докажете, че $A \subseteq \mathscr{P}(\bigcup A)$ (с $\bigcup A$ онзачаваме $\bigcup_{a \in A} a$).

Решение. Трябва да покажем, че ако $x \in LHS$, то $x \in RHS$. Нека $x \in A$, значи $\bigcup_{a \in A} a = a_1... \cup x \cup ... \cup a_n$, откъдето $x \subseteq \bigcup A$ (понеже за произволни множества $V \subseteq V \cup W$). От $x \subseteq \bigcup A$ директно следва, че $x \in \mathcal{P}(\bigcup A)$. ■

По-формално това може да се изкаже и така: нека $a \in A$, значи $\forall x \in a : x \in \bigcup A \Rightarrow x \subseteq \bigcup A \Rightarrow x \in \mathscr{P}(\bigcup A)$, т.е. всеки елемент на A е и елемент на $\mathscr{P}(\bigcup A) \Rightarrow A \subseteq \mathscr{P}(\bigcup A)$.

Задача 12. Ако A,B,C,X са множества и $B\subseteq A,$ и $A\cap C=\varnothing,$ да се намери X (изразено чрез A,B,C), което е решение на системата: $\begin{vmatrix} A\backslash X=B\\ X\backslash A=C \end{vmatrix}$

Решение. С диаграми на Вен лесно можем да се ориентираме, че търсеното решение е единствено и е именно $(A \cup C) \setminus B = (A \setminus B) \cup C$. Сега да докажем:

1 н.) От $A \setminus X = B$ можем да извлечем следната информация:

- $A \backslash X = B \Rightarrow A \backslash (A \backslash X) = A \backslash B$, т.е. $A \cap X = A \backslash B$, откъдето $A \backslash B \subseteq X$ (1.1)
- От дефиницията на разлика на множества следва и, че $X \cap B = \emptyset$ (1.2)

От $X \setminus A = C$ пък можем да извлечем следната информация:

- Отново директно от дефиницията на разлика $C \subseteq X$ (2.1) (казано по-просто, щом след премахване на нещо от X е останало C, то C е част от X)
- Понеже $X \cup A = (X \setminus A) \cup A = C \cup A$, то $X \subseteq A \cup C$ (2.2) (понеже ако $V \cup W = Q$, то $V \subseteq Q$)

От (1.1),~(2.1) следва, че $A\backslash B\subseteq X$ и $C\subseteq X,$ откъдето $(A\backslash B)\cup C\subseteq X.$ От (1.2),~(2.2) следва, че $X\cap B=\varnothing$ и $X\subseteq A\cup C,$ откъдето $X\subseteq (A\cup C)\backslash B=(A\backslash B)\cup C.$ От горните две получаваме и двете посоки на включването, т.е. $(A\backslash B)\cup C\subseteq X\subseteq (A\backslash B)\cup C,$ значи $X=(A\backslash B)\cup C.$

2 н.) С цел улеснение, ще искаме да ползваме операцията допълнение на множество, но за целта ни трябва подходящ универсум, дефинираме $U = A \cup B \cup C \cup X$. Макар още да не знаем X, от втория ред в системата се вижда, че $X \subseteq A \cup C$, значи $U = A \cup B \cup C \cup X = A \cup B \cup C$. Ползвайки $V \setminus W = V \cap \overline{W}$, системата можем да запишем и в следния вид:

$$\begin{vmatrix} A \cap \overline{X} = B \Rightarrow \overline{A} \cup X = \overline{B} \\ X \cap \overline{A} = C \end{vmatrix}$$

Искаме да изразим X само с неща, които знаем. Ще ползваме, че за произволни множества V,W е вярно, че: $V=(V\cup W)\backslash (W\backslash (V\cap W))$ (вижте на диаграма). След заместване $V=X,W=\overline{A}$ се получава: $X=(X\cup\overline{A})\backslash (\overline{A}\backslash (X\cap\overline{A}))=\overline{B}\backslash (\overline{A}\backslash C)=\overline{B}\cap (\overline{A}\cap\overline{C})=\overline{B}\cap (A\cup C)=(A\cup C)\backslash B$.

Забележка. Всъщност никъде не използвахме експлицитно условията $B \subseteq A$ и $A \cap C = \emptyset$. Те са дадени само за да гарантират непротиворечивост на условието (може да лесно да видите, че ако бъдат нарушени, системата няма как да бъде в сила).

Задача 13. Нека F е фамилия от n различни подмножества на множество $A, n \ge 2$. Докажете, че съществуват поне n различни множества от вида $A\triangle B, \ A, B \in F$ ($A\triangle B$ е симетричната разлика на множествата).

Решение. Достатъчно е да направим наблюдението, че $A\triangle B \neq A\triangle C$ тстк $B \neq C$ (достатъчна ни е само обратната посока).

Лема: Ако $B \neq C$, то $A \triangle B \neq A \triangle C$

Д-во на лемата: допускаме противното, че $B \neq C$, но $A \triangle B = A \triangle C = S$. От $B \neq C$, б.о.о $\exists x_0 : x_0 \in B \land x_0 \notin C$ (съответно може и наобратно). Сега имаме:

- От една страна $x_0 \in S = A \triangle B$ тстк $x_0 \notin A$ (защото вече занем, че $x_0 \in B$)
- От друга страна $x_0 \in S = A \triangle C$ тстк $x_0 \in A$ (защото вече занем, че $x_0 \notin C$)

Но тогава $x_0 \notin A \Leftrightarrow x_0 \in A$, абсурдно, противоречие с допускането. □

Ако $A_1,...,A_n$ са множествата от фамилията, то $A_1\triangle A_1,A_1\triangle A_2,...,A_1\triangle A_n$ според лемата са именно n различни множества от искания вид.

Задача 14 (*). Нека $F = \{A_1, A_2 \dots A_k\}$ е фамилия от различни подмножества на A, като |A| = n. Ако всеки две множества от F се пресичат, докажете, че $k \le 2^{n-1}$.

Решение. Да групираме всички възможни подмножества на A (общо 2^{n-1}) по двойки, като всяко да бъде в двойка с допълнението си до A, т.е. произволно подмножество S е в двойка с $A \setminus S$. Това са 2^{n-1} двойки.

Ако $k > 2^{n-1}$, то от принципа на Дирихле (който официално ще вземем след 3 занятия) измежду множествата от фамилията ще има поне две, които са част от една двойка (напр. A_i и $A_j, i \neq j$). Но тогава те не се пресичат, противоречие с допускането, значи $k < 2^{n-1}$.

Дефиниция 1.2 (фамилия). Множество от множества наричаме фамилия.

Забележка. Формално в аксиоматичната система ZF протоелементи (прости единици, които изграждат множества) няма, там всички обекти са множества, така че случай, различен от горния, там е невъзможен. Ние обаче считаме, че такива най-прости съставни елементи съществуват.

Дефиниция 1.3 (покритие, разбиване). Фамилия от множества $F = X_1, ..., X_k$ наричаме *покриване* на непразното множество A, ако са изпълнени:

- 1. $\forall i: X_i \subseteq A$ /опционално, следва от 3/,
- $2. \ \forall i: X_i \neq \varnothing,$
- 3. $\bigcup_{i=1}^{k} X_i = A;$

Ако освен това е изпълнено: $\forall i \forall j, i \neq j : X_i \cap X_j = \emptyset$, то поркиването се нарича разбиване.

Задача 15 (ДР1 И 23). Нека A е множество, а P, R са произволни негови разбивания. Да се докаже, че множеството $F = \{X \cap Y | X \in P \land Y \in R\} \setminus \{\varnothing\}$ също е разбиване на A.

*Въпрос: защо "Ø" е във фигурни скоби?

Решение. Последователно проверяваме по дефиницията. Понеже X,Y са множества, то сечението им е множество, така че F наистина е фамилия от множества (за определеност нека $F=\{F_1,...,F_k\}$). При това:

- X,Y са елементи от разбиванията P,R на A, така че сеченията им F_i са подмножества на A. \checkmark
- Понеже елементот празно множество е премахнат от фамилията ("\{Ø}"), то всеки елемент $F_i \neq \emptyset$. \checkmark
- Сега да покажем, че $\bigcup_{i=1}^k F_i = A$. Разглеждаме конкретен елемент $a \in A$. Понеже P,R са разбивания на A, то съществуват множества $X_0 \in P$ и $Y_0 \in R : a \in X_0 \land a \in Y_0 \Rightarrow a \in X_0 \cap Y_0 = F_0 \Rightarrow a \in \bigcup_{i=1}^k F_i$. С това заключаваме, че всеки елемент от A е "покрит". \checkmark
- Остава да проверим дали $\forall i \forall j, i \neq j: F_i \cap F_j = \varnothing$. По дефиниция $F_t = X \cap Y, (X \in P) \wedge (Y \in R)$, съответно нека $F_i = X_1 \cap Y_1, \ F_j = X_2 \cap Y_2$, където $(X_1, X_2 \in P) \wedge (Y_1, Y_2 \in R)$. Понеже $F_i \neq F_j$, то $(X_1 \neq X_2) \vee (Y_1 \neq Y_2)$. Б.о.о. е изпълнено първото, $X_1 \neq X_2$, нещо повече, тъй като те са част от разбиване, то те не се пресичат, $X_1 \cap X_2 = \varnothing$, но тогава и сечението $F_i \cap F_j = (X_1 \cap Y_1) \cap (X_2 \cap Y_2) = X_1 \cap X_2 \cap Y_1 \cap Y_2 = \varnothing \cap Y_1 \cap Y_2 = \varnothing$. \checkmark

Всички изисквания от дефиницията са изпълнени, значи даденото множество наистина е разбиване.

Задача 16 (*). Нека $F = \{A_1, A_2, ..., A_n\}$ е фамилия от r-елементни множества. Ако сечението на всеки r+1 множества от F е непразно, да се докаже, че и сечението на всички n множества от F е непразно.

Peшение. Последователно (по индукция) ще докажем, че сечението на всеки k от множествата е непразно, където k>r.

База: за k = r + 1 сечението на всеки r + 1 множества е непразно по условие. \checkmark

И.П: Нека сечението на всеки k, r < k < n множества е непразно.

И.С: Нека $B_1, B_2, ... B_{k+1}$ са произволни множества от фамилията, искаме да докажем, че тяхното сечение също е непразно. Допускаме противното, нека $\bigcap_{i=1}^{k+1} B_i = \emptyset$. От И.П.:

$$B_2 \cap B_3 \cap \dots \cap B_k \cap B_{k+1} = C_1 \neq \emptyset$$

$$B_1 \cap B_3 \cap \dots \cap B_k \cap B_{k+1} = C_2 \neq \emptyset$$

 $B_1 \cap B_2 \cap \ldots \cap B_{k-1} \cap B_{k+1} = C_k \neq \emptyset$

Тоест във всяко C_t има елемент от B_{k+1} . Но последното множество е r-елементно и k > r. Тогава от принципа на Дирихле съществуват индекси $i,j;\ 0 < i \neq j \leq k$ такива, че множествата C_i,C_j имат общ елемент с $B_{k+1} \Rightarrow C_i \cap C_j \neq \emptyset$ откъдето $B_1 \cap \cap B_{k+1} = [B_1...B_{i-1} \cap B_{i+1}...B_{k+1}] \cap$

 $[B_1...B_{j-1}\cap B_{j+1}...B_{k+1}]=C_i\cap C_j\neq\varnothing$, с което индукционната стъпка е завършена. \checkmark

От индукцията директно следва, че сечението на всички n множества е непразно. \blacksquare .

Задача 17 (**). Дадена е A с n елемента. Да се докаже, че ако подмножествата $A_1,A_2,...,A_k$ на A са такива, че $\forall i\neq j: |A_i\cap A_j|=1$, то $k\leq n$.

Решение (Ланджев, ОТ 2008). Ще ползваме алгебричен подход за решаването на задачата. На всяко от множествата съпоставяме характеристичен вектор $v_i := (e_1^i,...,e_n^i)$, където $e_j^i = 1$, ако елементът a_j на A принадлежи на подмножеството A_i и $e_j^i = 0$ в противен случай. Ще покажем, че векторите $v_1, v_2, ..., v_k$ са линейно независими.

Нека $c_1v_1+\cdots+c_kv_k=\mathcal{O}$ е тяхна нулева линейна комбинация. Можем да забележим, че от дефиницията ни скаларното $\langle v_i,v_j\rangle=|A_i\cap A_j|=1$. Тогава $\mathcal{O}=\langle v_i,\mathcal{O}\rangle=\langle v_i,\sum_{i=1}^kc_iv_i\rangle=c_1+\cdots+c_{i-1}+c_i|A_i|+c_{i+1}+\cdots+c_k=c_1+\cdots+c_k+c_i(|A_i|-1)$. Тогава $S:=c_1+\cdots+c_k=-c_i(|A_i|-1)=c_i(1-|A_i|)$ $\forall i\leq k$.

Но понеже $1 - |A_i| \le 0$, то $\forall i$: коефициентите c_i имат еднакъв знак (противоположен на този на сумата им). Това е единствено възможно при S = 0 и $c_i(1 - |A_i|) = 0$ (*), $\forall i \le k$.

Ако за някое $i_0: |A_{i_0}| = 1$, то директно от условието $\forall i \leq k: A_{i_0} \subseteq A_i$, а оттук $\forall i, j: A_i \cap A_j = A_{i_0}$, значи всеки друг елемент на A попада в не повече от едно от множествата, така $k \leq 1 + (n-1) = n$.

В противен случай $\forall i \leq k : |A_i| \neq 1 \stackrel{(*)}{\Rightarrow} \forall i \leq k : c_i = 0$. Единствената линейна комбинация, която дава нулевия вектор е тривиалната, тогава векторите са линейно независими. В n-мерно пространство има най-много n линейно независими вектора, значи и тук $k \leq n$.

Задача 18 (**Sperner's theorem). Дадена е фамилия $F = \{A_1, A_2, ..., A_k\}$ от подмножества на A, като |A| = n и никои две множества от фамилията не са сравними по отношение на включването, т.е. $\forall i, j \leq k, i \neq j : A_i \nsubseteq A_j$. Да се докаже, че $k \leq \binom{n}{\frac{n}{n}}$.

Pешение. Нека F е така избрана фамилия, че за нея се достига най-голяма стойност за k (т.е. разглеждаме едно оптимално решение). Нека също $d:=max\{|A_i|\mid A_i\subseteq A\}$ и $S:=\{A_i\subseteq A|\ |A_i|=d\}$. Да допуснем, че $d>\lceil \frac{n}{2}\rceil$ Дефинираме $S':=\{B\mid (\exists A_i\in S)[B\subseteq A_i]\land (|B|=d-1)\}$.

Правим наблюдението, че $(\forall A_i \in F \backslash S)(\forall B \in S')[A_i \nsubseteq B \land B \nsubseteq A_i]$. Нека B_i е произволно.

- От дефиницията на $S', \exists A_j \in S : B \subset A_j$. Тогава $A_i \subseteq B$ влече $A_i \subset A_j$, което е невъзможно, т.е. $\forall i \leq k : A_i \not\subseteq B$.
- Обратно, ако за някое $A_{i_0} \in F \backslash S : B \subset A_{i_0}$, то $|A_{i_0}| \geq d$, но от избора ни d да е най-голямата възможна мощност, $|A_{i_0}| = d$, но тогава $A_{i_0} \in S \Rightarrow A_{i_0} \notin F \backslash S$, което е противоречие

Понеже множествата в S' са с еднаква мощност, то никое от тях не се включва в друго. Имайки предвид и горното наблюдение, заключаваме, че фамилията $(F \setminus S) \cup S'$ изпълнява изискването от условието.

Имаме също, че $|(F \backslash S) \cup S'| = |F| - |S| + |S'|$, което следва от $S \subseteq F$ и това, че множествата $F \backslash SS'$ са чужди (непресичащи се). Но $|S'| \geq \frac{|S| \cdot d}{n - d + 1}$ - причината е, че всяко множество от S задава d на брой (d-1)-елементни подмножества, същевременно всяко от последните участва в не повече от n - d + 1 на брой множества от S (тоест е преброено не повече от толкова пъти). Но по допускане, $d > \lceil \frac{n}{2} \rceil \Rightarrow n - d + 1 < n - \lceil \frac{n}{2} \rceil + 1 \leq \lceil \frac{n}{2} \rceil + 1 \leq d$, но тогава $\frac{d}{n - d + 1} > 1$, откъдето $|S'| \geq \frac{|S| \cdot d}{n - d + 1} > S|(F \backslash S) \cup S'| = |F| - |S| + |S'| > |F|$, което е по-добро решение от първоначалното, което е противоречие с максималния избор. Значи максимално k се достига при $\max\{|A_i| \mid A_i \subseteq A\} =: d \leq \lceil \frac{n}{2} \rceil$. По аналогичен начин можем да докажем, че съществува решение, за което $\min\{|A_i| \mid A_i \subseteq A\} \geq \lceil \frac{n}{2} \rceil$. Този факт, комбиниран с горното ни дава съществуване на оптимално решение, в което всички множества от F са с мощност точно $\lceil \frac{n}{2} \rceil$. Но тогава $|F| \leq \binom{n}{\lceil \frac{n}{2} \rceil}$.

Задача 19 (*Предложи Богдан Стаменов). Дадено е множество A с |A|=2n. Подмножества X и Y на наричаме съседни, ако $|X\cap Y|=1$ и $X\cup Y=A$. Да се докаже, че могат да бъдат избрани най-много $\frac{2^{2n}+\binom{2n}{n}-2}{2}$ подмножества на A така, че никои две от тях ne са съседни.

Задача 20 (**Erdős-Ko-Rado theorem). Нека $F = \{A_1, A_2, ..., A_k\}$ е фамилия от r-елементни подмножества на n-елементно множество A, като $r < \frac{n}{2}$. Ако сечението на всеки две множества от F е непразно, да се докаже, че $k \leq \binom{n-1}{r-1}$.

Задачи за вкъщи/в общежитието

Задача 1. Да се докаже, че $A=B \Leftrightarrow \mathscr{P}(A)=\mathscr{P}(B).$

Задача 2. Да се докаже, че $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$.

Задача 3. (*предложи М. Георгиев) Да се докаже, че за множество $A: \bigcup A \subseteq A$ тстк $A \subseteq \mathscr{P}(A)$. Множество, изпълняващо горните свойства, се нарича *транзитивно*.