

Instytut Telekomunikacji

Praca dyplomowa magisterska

na kierunku Telekomunikacja w specjalności Telekomunikacja

Ataki odmowy usługi oraz sposoby im przeciwdziałania w sieciach operatorskich

Mikołaj Kowalski Numer albumu 230346

promotor dr hab. inż. Wojciech Mazurczyk

0.1 git last changes

```
docs
doc
deps
wdowy i bekarty
glo
```

Streszczenie

D 11.		
Polskie	streszczenie	pracy
1 Olding	BUICDZCZCIIIC	$P^{1}acy$

Dalsza część streszczenia...

I coś jeszcze

Słowa kluczowe: polskie, słowa, kluczowe, pracy

 $Denial\ of\ Service\ in\ telecommunication\ networks-attacks\ and\ mitigation$

English abstract...

Something more...

And something else...

Keywords: english, keywords

Oswiadczenie o autorstwie pracy z USOS

Spis treści

	0.1	git last changes	11
1	Wst	tęp: znaczenie niezawodnej infrastruktury sieciowej	1
	1.1	Zastosowanie testów sieci i urządzeń sieciowych	1
		1.1.1 Dlaczego warto testować infrastrukturę	1
		1.1.2 Dlaczego warto testować urządzenia sieciowe	1
	1.2	Wprowadzenie do wysokiej dostępności (ang. HA) i równoważenia obcią-	
		żenia (ang. LB)	1
		1.2.1 Algorytmy Load-Balancing	2
		1.2.2 Znaczenie session-persistence	2
		1.2.3 Przykłady	2
2	Prz	egląd generatorów ruchu sieciowego	3
	2.1	Generatory sprzętowe	3
	2.2	Generatory programowe w Linuksie	3
		2.2.1 Metody generowania wielkowolumenowego ruchu	3
		2.2.2 Funkcjonalności różnych generatorów/frameworków	3
		2.2.3 Wyspecjalizowane generatory	4
		2.2.4 Fuzzery	$\overline{4}$
	2.3	Generatory – analiza komparatywna	4
	2.4	Metody analizy ruchu sieciowego	4
	2.1	2.4.1 Metody opierające się na (kopii) ruchu	4
		2.4.2 Analiza komparatywna (tabelka)	5
3	Wp	rowadzenie do ataków odmowy usługi i istniejące sposoby prze-	
	_	działania	6
	3.1	Motywy/powody ataków	6
		3.1.1 Straty wizerunkowe, odpływ klientów, okupy, kasa dla botmasterów	6
	3.2	Możliwe skutki ataków	6
		3.2.1 Kilka przykładów historycznych medialnych ataków	6
	3.3	Charakterystyka ataków za rok 2016 w sieci OPL	6
	3.4	Klasyfikacja ataków	7
	3.5	Mitygacja ataków DDoS	7
	0.0	3.5.1 Metody	7
		3.5.2 Rozwiązania na rynku	8
4	Pod	lsumowanie	9
$\mathbf{S}\mathbf{k}$	crót		ii
Sł	owni	k terminów	iii

Spis rysunków	ii
Spis tablic	iii
Spis załączników	0

Rozdział 1

Wstęp: znaczenie niezawodnej infrastruktury sieciowej

Wstęp do pracy.

1.1 Zastosowanie testów sieci i urządzeń sieciowych

1.1.1 Dlaczego warto testować infrastrukturę

Sprawdzenie możliwości architektury Symulacja ataków (pentesty) Poznanie realnej wydajności infrastruktury

1.1.2 Dlaczego warto testować urządzenia sieciowe

Zgodność ze specyfikacją Szukanie podatności w urządzeniach Rola testów przy zakupach (nowych inwestycjach) - spełnienie wymagań projektowych

1.2 Wprowadzenie do wysokiej dostępności (ang. HA) i równoważenia obciążenia (ang. LB)

Co to jest High-Availbility (HA) i dlaczego to robimy, Single Point of Failure

Cel uzyskania niezawodnej i optymalnie wykorzystanej architektury

Test Frame per Second (FPS)

1.2.1 Algorytmy Load-Balancing

1.2.2 Znaczenie session-persistence

1.2.3 Przykłady

Alteon VADC asd

 $\mathbf{HAProxy}$ asd

 ${\bf Keepalived\,+\,pacemaker\,\,asd}$

Rozdział 2

Przegląd generatorów ruchu sieciowego

2.1 Generatory sprzętowe

charakterystyka, przykłady

- Spirent
- Ixia

2.2 Generatory programowe w Linuksie

2.2.1 Metody generowania wielkowolumenowego ruchu

Opis procesu generowania pojedynczego pakietu w Linuksie Po co robić memory zero-copy Szybkie vs wolne backendy: SOCKET_RAW, libpcap, netmap, PF_RING, AF_PAC-KET

2.2.2 Funkcjonalności różnych generatorów/frameworków

Badanie: netsniff-ng, scapy, PKTGEN)

2.2.3 Wyspecjalizowane generatory

JMeter

2.2.4 Fuzzery

Na tą chwilę brak wiedzy/doświadczenia z tego typu programami

2.3 Generatory – analiza komparatywna

(tabelka zalety-wady)

Funkcjonalność vs Wydajność vs Cena

Metoda	Funkcjonalność	Wydajność	Cena
A	15	15	1
В	10	15	2
С	12	13	3
D	110	230	4

2.4 Metody analizy ruchu sieciowego

klasyfikacja

2.4.1 Metody opierające się na (kopii) ruchu

Urządzenie in-line

Kopia ruchu (port-mirroring)

Backendy: netmap, PF_RING, pcap

Metody statystyczne

Flowy: sFlow, NetFlow

SNMP/Netconf

2.4.2 Analiza komparatywna (tabelka)

Algorytm	Czas symulacji [sek]										
riigory um	implementacji X	implementacji Y									
A	15	15									
В	10	15									
С	12	13									
D	110	230									

Rozdział 3

Wprowadzenie do ataków odmowy usługi i istniejące sposoby przeciwdziałania

rodziale ma się
także przegląd
ury naukowej
nej z DDoS i
i na tym tle poe o czym będzie
raca

- 3.1 Motywy/powody ataków
- 3.1.1 Straty wizerunkowe, odpływ klientów, okupy, kasa dla botmasterów
- 3.2 Możliwe skutki ataków
- 3.2.1 Kilka przykładów historycznych medialnych ataków
- 3.3 Charakterystyka ataków za rok 2016 w sieci OPL
- 4.3.1. Średnie natężenie
- 4.3.2. Szczytowy ruch
- 4.3.3. Średnia długość trwania
- 4.3.4. Szczytowa długość trwania
- 4.3.5. Procentowo protokoły
- 4.3.6. Atakujący wg kraju
- 4.3.7. Inne zobaczymy co się da wyciągnąć (więcej niż raport certu)
- 4.3.8. Być może porównanie do 2015 i wyznaczenie trendu \info{tak, porównanie to dobr

3.4 Klasyfikacja ataków

Nie mogę opisać wszystkich ataków które są na świecie, trzeba znaleźć kryterium stopu – Na razie lista jest wstępna, pisana z pamięci. Trzeba pamietac o multivector attacks

dobrać odpowied kryterium, żeby lepiej to odpowia tym atakom, któ będą przeprowad części eksperyme nej pracy dyplom

1. Wg źródła

- (a) Strumieniowe DoS
- (b) Rozproszone (Distributed) DDoS
- (c) Rozproszone (Distributed) DDoS
- (d) Odbite (Reflected) DRDoS
- (e) Wzmocnione (Amplified) DRADoS

2. Wg warstwy protokołu

```
4.4.2.1. L3:
```

- 4.4.2.1.1. GRE
- 4.4.2.2. L4:
- 4.4.2.2.1. TCP flood flagi: SYN, ACK, SYN-ACK, PSH, FIN, FRAG
- 4.4.2.2.2. UDP flood, UDP fragment
- 4.4.2.2.3. ICMP flood
- 4.4.2.2.4. TCP out of state
- 4.4.2.3. L6
- 4.4.2.3.1. THC-SSL-DoS (HTTPS renegotiation flood)
- 4.4.2.4. L7
- 4.4.2.4.1. HTTP
- 4.4.2.4.1.1. Flood (GET/POST)
- 4.4.2.4.1.2. Low and slow
- 4.4.2.4.2. SNMP, DNS+DNSSEC, NTP

3.5 Mitygacja ataków DDoS

tutaj też można wprowadzić jaka syfikację

3.5.1 Metody

Tryb in-line

BGP Flowspec

Mitgacja w cloudzie / scrubbing center

3.5.2 Rozwiązania na rynku

 $\begin{array}{l} {\rm Radware\ DefensePro\ +\ DefenseFlow} \\ {\rm Arbor} \\ {\rm FastNetMon} \end{array}$

...

Rozdział 4

Podsumowanie

Podsumowanie. Drugi paragraf. Odniesienie do Aksın i in., 2006.

W rozdziale ?? przedstawiono cośtam, a w 4 coś innego.

Na rysunku ?? umieszczono pingwina :)

Bibliografia

Aksın, Özge i in. (2006). ?Effect of immobilization on catalytic characteristics of saturated Pd-N-heterocyclic carbenes in Mizoroki-Heck reactions? W: *J. Organomet. Chem.* 691.13, s. 3027–3036.

Skrót

FPS Frame per Second. 2

 ${\bf HA}\,$ High-Availbility. 1

 ${\bf LB}\,$ Load-Balancing. 1

Słownik terminów

Single Point of Failure is a generic term referring to the family of Unix-like computer operating systems that use the Linux kernel. 1

Spis rysunków

Spis tablic

Spis załączników

n	1																																													τ.	ori i
aР	Ι.	•	٠	•	•	•	٠	•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	١	٧ L

Załączniki

ap1

asdasd