

Tools for Generic NGS analysis

A framework to quickly build pipelines and to perform large-scale NGS analysis

Christine Tranchant-Dubreuil christine.tranchant@ird.fr

TOGGE

A toolbox to perform large-scale NGS analyses

19 modules, 88 functions 40 open-source tools

TOGGLe

A toolbox to perform large-scale NGS analyses

19 modules, 88 functions 40 open-source tools

Version 2 published in BMC bioinformatics

RESEARCH

TOGGLE: Toolbox for generic NGS analyses

Cecile Monat^{1*†}, Christine Tranchant-Dubreuil^{1†}, Ayité Kougbeadjo², Cédric Farcy², Mawussé Agbessi¹, Maryline Summo² and François Sabot¹

Data preprocessing

Fastqc, Cutadapt
FastxTrimmer
Stack process_radstats

Structural Variations

MindTheGap, BreakDancer, Pindel

RNA-seq Assembly

Trinity TGI-CL

ReadCount

Htseq-count

Mapping

Bwa aln, sampe/ samse Bwa mem Tophat2

SNP calling/ filtering

SAMtools, GATK, VarScan, SNPEff

SAM/BAM management

picardTools, SAMtools, GATK

Data preprocessing

Fastqc, Cutadapt
FastxTrimmer
Stack process_radstats

Structural Variations

MindTheGap, BreakDancer, Pindel

RNA-seq Assembly

TransAbyss, Trinity
TGI-CL

ReadCount

Htseq-count

Bwa aln, sampe/ samse Bwa mem Tophat2

SNP calling/ filtering

SAMtools, GATK, VarScan, SNPEff

SAM/BAM management

picardTools, SAMtools, GATK

https://github.com/SouthGreenPlatform/TOGGLE

TOGGE

Version 2

Version 3

From hard-coded pipelines
To a bioinformatic pipeline framework

TOGGE

Version 2

Version 3

From hard-coded pipelines
To a bioinformatic pipeline framework

Biologists create their own pipeline through an easy and user-friendly approach

How to perform an analysis with TOG-64?

A command-line based pipeline framework

A single command line

toggleGenerator.pl -d DIR-c FILE -o DIR

What does TOGele need to run?

- An input directory (with fastq, sam/bam, vcf files)
- The name of output directory used to store the data generated by the analyses
- A unique and simple configuration file to design the pipeline and define software parameters.
- Optional arguments: reference file, annotation...

TOGGLe

A simple configuration file

\$order

1=fastqc

2=cutadapt

3=bwa mem

4=picardToolsSortSam

5=samToolsView

1000=gatkHaplotypeCaller

1001=gatkVariantFiltration

\$cutadapt

-q 30

-m 35

\$bwa mem

-n 5

\$sge

-q bioinfo.q

-b Y

A simple configuration file

Sorder

1=fastqc

2=cutadapt

3=bwa mem

4=picardToolsSortSam

5=samToolsView

1000=gatkHaplotypeCaller

1001=gatkVariantFiltration

Create your own workflow

- The workflow order
- The list of softwares to run

One line = the step followed by the software's name

A simple configuration file

A simple configuration file

Sorder

1=fastqc

2=cutadapt

3=bwa mem

4=picardToolsSortSam

5=samToolsView

1000=gatkHaplotypeCaller

1001=gatkVariantFiltration

Create your own workflow

Step number < 1000

Parallel analysis by sample

Create your workflow

Create your workflow

\$order 1=fastqc 2=cutadapt 3=bwa mem 4=picardToolsSortSam 5=samToolsView 1000=gatkHaplotypeCaller 1001=gatkVariantFiltration

Step number >= 1000

Global analysis (all samples)

TOGGLe

A simple configuration file

\$order

1=fastqc

2=cutadapt

3=bwa mem

4=picardToolsSortSam

5=samToolsView

1000=gatkHaplotypeCaller

1001=gatkVariantFiltration

\$cutadapt

-q 30

-m 35

\$bwa mem

-n 5

•••

\$sge

-q bioinfo.q

-b Y

Software parameters

One tag per software (\$softwareName) followed by the list of options

Demo

What's next?

New tools

New data analysis: metagenomics, pacbio assembly

New features: automatic PDF reports, non-sequential

pipelines

TOGGe's team

UMR DIADE

Christine TranchantDubreuil
François Sabot
Cécile Monat
Mawussé Agbessi
Souhila Amazougarene
Abdoulaye Diallo
Laura Helou
Ayité Kougbeadjo

CiradUMR BGPI

Sébastien Ravel

UMR AGAP

Cédric Farcy Enrique Ortega-Abboud Gautier Sarah Maryline Summo

Thank you for your attention!

https://github.com/SouthGreenPlatform/TOGGLE