

Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks CVPR 2018

Xuepeng Shi, Shiguang Shan, Meina Kan, Shuzhe Wu, Xilin Chen

Rotation-Invariant Face Detection

Full rotation-in-plane (RIP) angles

Large appearance variations

Existing Methods [1/3]

- Data Augmentation
 - To ensure the accuracy, a large neural network is usually required

Existing Methods [2/3]

- Divide-and-Conquer [Huang, TPAMI 2007]
 - The overall time-cost largely increases
 - More false alarms are easily introduced

Existing Methods [3/3]

- Rotation Router [Rowley, CVPR 1998]
 - Precisely estimating the RIP angles of faces is quite challenging

Motivation and Goal

 Most existing methods compromise with speed or accuracy to handle the large RIP variations

 Our PCN aims at accurate rotation-invariant face detection with low time-cost

Progressive Calibration Networks [1/2]

- A sequence of multi-task CNNs
 - Face / non-face classification + bounding box regression + calibration

$$\min_{F} L = L_{classification} + \lambda_{bbox_reg} \cdot L_{bbox_reg} + \lambda_{calibration} \cdot L_{calibration}$$

Progressive Calibration Networks [2/2]

- Calibrates the RIP orientation to upright progressively
- Only coarse calibrations are conducted in early stages

Two Cascade Structures in PCN [1/2]

- Cascade classification [Li, CVPR 2015]
 - Significantly improve the speed of detection

Two Cascade Structures in PCN [2/2]

- Cascade calibration
 - Binary classification + ternary classification + regression

$$heta_{RIP} = heta_1 + heta_2 + heta_3, heta_1 = 0^{\circ}/180^{\circ}, heta_2 = -90^{\circ}/0^{\circ}/90^{\circ}$$

Cascade Calibration [1/2]

- Why cascade?
 - Easier
- Why coarse classification?
 - More accurate

 More efficient (Interpolation VS Flipping)

Cascade Calibration [2/2]

- Flip original image three times in advance (1ms 2ms)
- Reduce the time-cost of calibration dozens of times

Methods for Comparison

- Data Augmentation
 - Faster RCNN (VGGM, VGG16)
 - SSD500 (VGG16)
 - RFCN (ResNet-50)
 - Cascade CNN
- Divide-and-Conquer
- Rotation Router

Results [1/3]

Rotate the FDDB images by -90°, 90°, and 180° respectively

Results [2/3]

A subset of the WIDER FACE test set containing rotated faces

Results [3/3]

- 640×480 VGA images with 40×40 minimum face size
- A desktop computer with 3.4GHz CPU, GTX Titan X
- PCN can run in real-time on both CPU and GPU

Method	Recall rate at 100 FP on FDDB					Speed		Model Size
	Up	Down	Left	Right	Ave	CPU	GPU	Wiodel Size
Divide-and-Conquer	85.5	85.2	85.5	85.6	85.5	15FPS	20FPS	2.2M
Rotation Router [18]	85.4	84.7	84.6	84.5	84.8	12FPS	15FPS	2.5M
Cascade CNN [13]	85.0	84.2	84.7	85.8	84.9	31FPS	67FPS	4.2M
Cascade CNN [13] + STN [9]	85.8	85.0	84.9	86.2	85.5	16FPS	30FPS	4.7M
SSD500 [14] (VGG16)	86.3	86.5	85.5	86.1	86.1	1FPS	20FPS	95M
Faster R-CNN [17] (VGGM)	84.2	82.5	81.9	82.1	82.7	1FPS	20FPS	350M
Faster R-CNN [17] (VGG16)	87.0	86.5	85.2	86.1	86.2	0.5FPS	10FPS	547M
R-FCN [2] (ResNet-50)	87.1	86.6	85.9	86.0	86.4	0.8FPS	15FPS	123M
PCN (ours)	87.8	87.5	87.1	87.3	87.4	29FPS	63FPS	4.2M

Progressive Calibration Networks

• Fast, accurate, robust

Thanks!