12. ω-regular languages

Computer-Aided Verification

Dave Parker

University of Birmingham 2017/18

Overview

- Recap (safety properties & NFAs) + examples
- ω-regular languages/properties
- Nondeterministic Büchi automata (NBAs)

• See [BK08] Sections 4.3–4.4, 5.2

Recap

- Model checking regular safety property P_{safe} on LTS M
 - 1. find NFA \mathcal{A} representing the bad prefixes of P_{safe}
 - 2. build LTS-NFA product M \otimes \mathcal{A}
 - 3. check no "accept" state is reachable in M ⊗ A

```
M \vDash P_{safe} \Leftrightarrow M \otimes A \vDash \Box \neg accept
```

• Model check $\Box(a \rightarrow \bigcirc b)$ on LTS M

LTS M $\begin{array}{c|c} & & & \\ \hline & & & \\ \hline & &$

 $M \not\models \Box(a \rightarrow \bigcirc b)$

• Model check $\Box(a \rightarrow \bigcirc b)$ on LTS M

LTS M

 $M \not\models \Box(a \rightarrow \bigcirc b)$

Beyond regular languages

- So far: regular safety properties (e.g. in LTL)
 - ("bad behaviour happens in finite time")
- What about other properties (e.g. in LTL)?
 - liveness, e.g. "for every request, an ack eventually follows"
 - fairness, e.g. "every enabled process is scheduled infinitely often"
- Regular languages:
 - e.g. "penultimate symbol is B"
- This lecture:
 - ω-regular languages/expressions
 - nondeterministic Büchi automata

Regexp: (A+B)*B(A+B)

ω-regular expressions

• A regular expression E over alphabet Σ takes the form:

$$-$$
 E ::= \emptyset | ε | A | E + E | E.E | E* (where A ∈ Σ)

• An ω -regular expression over Σ takes the form:

$$- G = E_1.(F_1)^{\omega} + E_2.(F_2)^{\omega} + ... + E_n.(F_n)^{\omega}$$

- where E_i and F_i are regular expressions with $\varepsilon \notin \mathcal{L}(F_i)$
- Example: $(A+B+C)^*(B+C)^{\omega}$ for $\Sigma = \{ A, B, C \}$
- $\mathcal{L}_{\omega}(G) \subseteq \Sigma^{\omega}$ is the language of an ω -regular expression G

$$- \mathcal{L}_{\omega}(\mathsf{G}) = \mathcal{L}(\mathsf{E}_1).\mathcal{L}(\mathsf{F}_1)^{\omega} \cup \mathcal{L}(\mathsf{E}_2).\mathcal{L}(\mathsf{F}_2)^{\omega} + \ldots + \mathcal{L}(\mathsf{E}_n).\mathcal{L}(\mathsf{F}_n)^{\omega}$$

- where $\mathcal{L}(E)$ is the language of regular expression E
- and $\mathcal{L}(E)^{\omega} = \{ w^{\omega} \mid w \in \mathcal{L}(E) \}$

w-regular languages/properties

- Language $\mathcal{L} \subseteq \Sigma^{\omega}$ is an ω -regular language if
 - $-\mathcal{L}=\mathcal{L}_{\omega}(G)$ for some ω -regular expression G
- $P \subseteq (2^{AP})^{\omega}$ is an ω -regular property
 - if P is an ω -regular language over 2^{AP}
- Example (for AP = {wait,crit})
 - e.g. ((¬crit)*crit)^ω
 crit shorthand for {{crit},{wait,crit}}
 rcrit is true infinitely often

Note:

- any regular safety property is an ω -regular property
- all linear-time properties seen so far are ω-regular
- any LTL formula corresponds to an ω-regular property

Nondeterministic Büchi automata

- A nondeterministic Büchi automaton (NBA) is:
 - a tuple $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$
- where:
 - Q is a finite set of states
 - ∑ is an alphabet
 - $-\delta: Q \times \Sigma \rightarrow 2^Q$ is a transition function
 - $Q_0 \subseteq Q$ is a set of initial states
 - $F \subseteq Q$ is a set of "accept" states

- i.e. NBAs are identical, syntactically, to NFAs
 - the difference is the acceptance condition...
 - "accept" states need to be visited infinitely often

Language of an NBA

- A run of NBA \mathcal{A} on an infinite word $w = A_0A_1A_2...$ is:
 - a sequence of automata states $q_0q_1q_2...$ such that:
 - $-q_0 \in Q_0$ and $q_i A_i \rightarrow q_{i+1}$ for all $i \ge 0$
- An accepting run is a run with $q_i \in F$ for infinitely many i
- The language of \mathcal{A} , denoted $\mathcal{L}_{\omega}(\mathcal{A})$ is:
 - the set of all (infinite) words accepted by $\mathcal A$

• "infinitely often a" - □◇a

• "b always follows a" $-\Box(a \rightarrow \diamondsuit b)$

Nondeterministic Büchi automata

- Represent ω-regular languages
 - same expressivity as ω -regular expressions
- Can be built systematically from ω -regular expressions
- Are an example of ω -automata
 - there are many others: Rabin, Streett, Muller, ...
- Are closed under intersection
- Are closed under complementation
- Are more expressive than deterministic Büchi automata
 - unlike for finite automata

"eventually always a" - ◇□a

