End-Term Examination (Regular and Re-appear) (B.Tech CSE AI/ECE AI/ AI&ML) (Semester I) (December, 2023) OFF LINE mode

	Subject: Applied Mathematics	
Subject Code: BAS 109	2 Hours	
Time: 3 Hours	sory. Attempt one question each from Units I, II, III ar	nd IV.
(b) Use of a calcul	lator is not allowed.	
1		(2.5*8=20)
11 //	- functors is linearly indepen	ndent or dependent.
(a) Check wheth	her the following set of vectors is linearly independent	
30	$\left\{ \left(\frac{1}{2}, 1, 1\right), \left(-1, -\frac{1}{2}, 1\right), (2, -2, 1) \right\}$	17
(b) Find the eige	envalue of a Hermitian matrix $A = \begin{bmatrix} 3 & 1-i \\ 1+i & 2 \end{bmatrix}$	$T \cdot \mathbb{R}^2 \to \mathbb{R}^2$. If
1 / Determine u	whather the following functions are linear training	Ultilacions 1
they are, prove	it; if not, provide a counterexample to one of the	ic properties.
	$T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x^2 \\ y^2 \end{bmatrix}$	
//	-7 - 67 3	tion given by
d Find the Fou	urier coefficient a_n of the rectangular pulse func	ctori given - /
4	$0 - \pi < x < -\pi/2$	solit
~	$f(x) = \begin{cases} 0, & -\pi < x < -\pi/2 \\ 1, & -\pi/2 \le x \le \pi/2. \\ 0, & \pi/2 < x < \pi \end{cases}$	Sper
	$f(x) = \begin{cases} 1, & x/2 = x = x/2 \\ 0, & \pi/2 < x < \pi \end{cases}$	
	(0, 11/2 - 11	
	$f(x,y) = \frac{x^{11}y}{x^{23} + y^2}.$	
(f) Find the qua	f(x,y) exist? If so, what is it? adratic Taylor's series expansion of $f(x,y) = x$	
point (-1,2).	f(x,y) exist? If so, what is it? adratic Taylor's series expansion of $f(x,y) = x$ normal vector to the surface $xy^2 + 2yx = 8$ at	t the point (3,-2,1).
point (-1,2).	f(x,y) exist? If so, what is it? adratic Taylor's series expansion of $f(x,y) = x$ normal vector to the surface $xy^2 + 2yx = 8$ at	t the point (3,-2,1).
point (-1,2).	f(x,y) exist? If so, what is it? adratic Taylor's series expansion of $f(x,y) = x$ normal vector to the surface $xy^2 + 2yx = 8$ at $(3y)\vec{i} + (y - 2z)\vec{j} + (x + \lambda z)\vec{k}$ is solenoidal, to	t the point (3,-2,1).
point $(-1,2)$. (g) Find a unit r (h) If $\vec{F} = (x + 1)$	f(x,y) exist? If so, what is it? adratic Taylor's series expansion of $f(x,y) = x$ normal vector to the surface $xy^2 + 2yx = 8$ at $(x,y) = xy$ (x,y) = xy (x,y) = xy	the point (3,-2,1). then find the value of λ .
point $(-1,2)$. (g) Find a unit r (h) If $\vec{F} = (x + 1)$	f(x,y) exist? If so, what is it? adratic Taylor's series expansion of $f(x,y) = x$ normal vector to the surface $xy^2 + 2yx = 8$ at $(x,y) = xy$ (x,y) = xy (x,y) = xy	the point (3,-2,1). then find the value of λ .
point $(-1,2)$. (g) Find a unit r (h) If $\vec{F} = (x + 1)$	f(x,y) exist? If so, what is it? adratic Taylor's series expansion of $f(x,y) = x$ normal vector to the surface $xy^2 + 2yx = 8$ at $(x,y) = (x+\lambda z)\vec{k}$ is solenoidal, to the surface $(x,y)\vec{k}$ is solenoidal, the surface $(x,y)\vec{k}$ is solenoidal, the surface $(x,y)\vec{k}$ is solenoidal.	the point (3,-2,1). then find the value of λ .
point $(-1,2)$. (g) Find a unit r (h) If $\vec{F} = (x + 1)$	f(x,y) exist? If so, what is it? adratic Taylor's series expansion of $f(x,y) = x$ normal vector to the surface $xy^2 + 2yx = 8$ at $(x,y) = (x+\lambda z)\vec{k}$ is solenoidal, to the surface $(x,y)\vec{k}$ is solenoidal, the surface $(x,y)\vec{k}$ is solenoidal, the surface $(x,y)\vec{k}$ is solenoidal.	the point (3,-2,1). then find the value of λ .
point $(-1,2)$. (g) Find a unit r (h) If $\vec{F} = (x + 1)$	f(x,y) exist? If so, what is it? adratic Taylor's series expansion of $f(x,y) = x$ normal vector to the surface $xy^2 + 2yx = 8$ at $(x,y) = xy$ (x,y) = xy (x,y) = xy	the point (3,-2,1). then find the value of λ .
point $(-1,2)$. (g) Find a unit r (h) If $\vec{F} = (x + 1)$ (a) Find the eight	(0,0)f(x,y) exist? If so, what is it? adratic Taylor's series expansion of $f(x,y)=x$ normal vector to the surface $xy^2+2yx=8$ at $(-3y)\vec{i}+(y-2z)\vec{j}+(x+\lambda z)\vec{k}$ is solenoidal, to the surface $(x,y)\vec{i}+(y-2z)\vec{j}+(x+\lambda z)\vec{k}$ is solenoidal, the surface $(x,y)\vec{i}+(y-2z)\vec{i}+(x+\lambda z)\vec{k}$ is solenoidal, the surface $(x,y)\vec{i}+(y-2z)\vec{i}+($	the point (3,-2,1). then find the value of λ .
point $(-1,2)$. (g) Find a unit r (h) If $\vec{F} = (x + 1)$ (2) (a) Find the eight	adratic Taylor's series expansion of $f(x,y) = x$ normal vector to the surface $xy^2 + 2yx = 8$ at $(x,y) = x = 3y)\vec{\imath} + (y - 2z)\vec{\jmath} + (x + \lambda z)\vec{k}$ is solenoidal, to the surface and any eigenvector of a matrix A given and $(x,y) = x$	the point (3,-2,1). then find the value of λ .
point $(-1,2)$. (g) Find a unit r (h) If $\vec{F} = (x + 1)$ (a) Find the eight	adratic Taylor's series expansion of $f(x,y) = x$ and an any eigenvector of a matrix A given and $f(x,y) = x$ and $f(x,y) = $	the point (3,-2,1). then find the value of λ .
point $(-1,2)$. (g) Find a unit r (h) If $\vec{F} = (x + 1)$ (a) Find the eight	adratic Taylor's series expansion of $f(x,y) = x$ and an any eigenvector of a matrix A given for the following systems of linear equations: $4x_1 - 2x_2 - 7x_3 = 5$ $-6x_1 + 5x_2 + 10x_3 = x$ adratic Taylor's series expansion of $f(x,y) = x$ and $f(x,y) = x$ a	the point (3,-2,1). then find the value of λ .
point $(-1,2)$. (g) Find a unit r (h) If $\vec{F} = (x + 1)$ (a) Find the eight	adratic Taylor's series expansion of $f(x,y) = x$ and an any eigenvector of a matrix A given for the following systems of linear equations: $4x_1 - 2x_2 - 7x_3 = 5$ $-6x_1 + 5x_2 + 10x_3 = x$ adratic Taylor's series expansion of $f(x,y) = x$ and $f(x,y) = x$ a	the point (3,-2,1). then find the value of λ .
point $(-1,2)$. (g) Find a unit r (h) If $\vec{F} = (x + 1)$ (a) Find the eight	adratic Taylor's series expansion of $f(x,y)=x$ and an adratic Taylor's series expansion of $f(x,y)=x$ and an advantage $f(x,y)=x$ and $f(x,y)=x$ are normal vector to the surface $f(x,y)=x$ and $f(x,y)=x$ are $f(x,y)=x$ and $f(x,y)=x$ are $f(x,y)=x$ and $f(x,y)=x$ are $f(x,y)=x$ and $f(x,y)=x$ are $f(x,y)=x$ and $f(x,y)=x$ are $f(x,y)=x$ and $f(x,y)=x$ are $f(x,y)=x$ and $f(x,y)=x$ are $f(x,y)=x$ and $f(x,y)=x$ and $f(x,y)=x$ are $f(x,y)=x$ and $f(x,y)=x$ are $f(x,y)=x$ and $f(x,y)=x$ are $f(x,y)=x$ and $f(x,y)=x$ are $f(x,y$	the point (3,-2,1). then find the value of λ .
point $(-1,2)$. (g) Find a unit r (h) If $\vec{F} = (x + 1)$ (a) Find the eight	adratic Taylor's series expansion of $f(x,y)=x$ and an anomal vector to the surface $xy^2+2yx=8$ and $xy^2+(y-2z)\vec{j}+(x+\lambda z)\vec{k}$ is solenoidal, to the surface and any eigenvector of a matrix A gives $A=\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ of the following systems of linear equations: $4x_1-2x_2-7x_3=5$ $-6x_1+5x_2+10x_3=-11$ $-2x_1+3x_2+4x_3=-3$ $-3x_1+2x_2+5x_3=-5$	the point (3,-2,1). then find the value of λ .
point $(-1,2)$. (g) Find a unit r (h) If $\vec{F} = (x + 1)$ (a) Find the eight	adratic Taylor's series expansion of $f(x,y)=x$ and an any eigenvector of a matrix A given of the following systems of linear equations: $4x_1-2x_2-7x_3=5$ $-6x_1+5x_2+10x_3=-11$ The entries of matrix A using Cayley Hamilton method of the following cayley Hamilton method	the point (3,-2,1). then find the value of λ . ven by (10)
(a) Find the eight (b) Solve each	adratic Taylor's series expansion of $f(x,y)=x$ and an any eigenvector of a matrix A given of the following systems of linear equations: $4x_1-2x_2-7x_3=5$ $-6x_1+5x_2+10x_3=-11$ The entries of matrix A using Cayley Hamilton method of the following cayley Hamilton method	the point (3,-2,1). then find the value of λ . ven by (10)
point $(-1,2)$. (g) Find a unit r (h) If $\vec{F} = (x + 1)$ (a) Find the eight	adratic Taylor's series expansion of $f(x,y)=x$ and an anomal vector to the surface $xy^2+2yx=8$ and $xy^2+(y-2z)\vec{j}+(x+\lambda z)\vec{k}$ is solenoidal, to the surface and any eigenvector of a matrix A gives $A=\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ of the following systems of linear equations: $4x_1-2x_2-7x_3=5$ $-6x_1+5x_2+10x_3=-11$ $-2x_1+3x_2+4x_3=-3$ $-3x_1+2x_2+5x_3=-5$	the point (3,-2,1). then find the value of λ . ven by (10)
point $(-1,2)$. (g) Find a unit r (h) $\vec{F} = (x + 1)$ 2 (a) Find the eig	adratic Taylor's series expansion of $f(x,y)=x$ and an any eigenvector of a matrix A given of the following systems of linear equations: $4x_1-2x_2-7x_3=5$ $-6x_1+5x_2+10x_3=-11$ The entries of matrix A using Cayley Hamilton method of the following cayley Hamilton method	the point (3,-2,1). then find the value of λ . ven by (10)

(b) Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where, $\vec{r}(x,y,z)$ and C is given by $\vec{r}(t) = t^3\hat{\imath} + (1-3t)\hat{\jmath} + e^t\hat{k}$ for $0 \le t \le 2$. (a) Evaluate $\iint \vec{F} \cdot \hat{N} dS$ over S, where $\vec{F} = yz\hat{\imath} + zx\hat{\jmath} + xy\hat{k}$ and S is the portion of the surface of the sphere $x^2 + y^2 + z^2 = 1$ in the first octant	(10)
and C is given by $\vec{r}(t) = t^3\hat{\imath} + (1-3t)\hat{\jmath} + e^t\hat{k}$ for $0 \le t \le 2$.	(10)
(b) Evaluate $\int_C F \cdot dT$ where, $F(x,y,z)$	
(b) Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where, $\vec{F}(x,y,z) = e^{2x}\hat{\imath} + z(y+1)\hat{\jmath} + z^3\hat{k}$.	
(a) Evaluate $I=\int_0^{\pi/2}\int_x^{\pi/2}\frac{\sin y}{y}dydx$ by changing the order of integration.	
UNIT-IV	(10)
$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} + x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = n^{2} z.$	
If $z = x^n f\left(\frac{y}{x}\right) + y^{-n} g\left(\frac{x}{y}\right)$, then prove that	(10)
(a) Find the nth derivative of y .	(10)
ONIT-III	(10)
y''(t) + 3y(t) + 2y(t) with $y(0) = 2$ and $y'(0) = -1$.	
who following initial value problem using Laplace Transform	
$f(x) = \begin{cases} x, & -1 < x \le 0 \\ x + 2, & 0 < x < 1, \end{cases} $ where, $f(x) = f(x + 2)$.	
function $f(s) = \frac{1}{(s^2+1)(s^2+4)}$	(10)
(b) Apply Convolution theorem to find the inverse Laplace transforms of the	(10)
(ii) Find the rank of the linear transformation 7.	
(i) Find a basis for the null space of T .	
(L×41/	
(a) Let T: $\mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation $\mathbb{R}^4 \to \mathbb{R}^4$ be a linear transformation $\mathbb{R}^4 \to \mathbb{R}^4 \to \mathbb{R}^4$ be a linear transformation $\mathbb{R}^4 \to \mathbb{R}^4 \to \mathbb{R}^4$ be a linear transformation $\mathbb{R}^4 \to \mathbb{R}^4 \to \mathbb{R}^4$ be a linear transformation $\mathbb{R}^4 \to \mathbb{R}^4 \to \mathbb{R}^4$ be a linear transformation $\mathbb{R}^4 \to \mathbb{R}^4 \to$	
	(10)
	(ii) Find the rank of the linear transformation I . (b) Apply Convolution theorem to find the inverse Laplace transforms of the function $f(s) = \frac{s}{(s^2+1)(s^2+4)}$. (a) Find the Fourier series for the function $f(x) = \begin{cases} x, & -1 < x \leq 0 \\ x+2, & 0 < x < 1, \end{cases}$ where, $f(x) = f(x+2)$. (b) Solve the following initial value problem using Laplace Transform $y''(t) + 3y'(t) + 2y(t) = \sin(2t)$ with $y(0) = 2$ and $y'(0) = -1$. (b) Find the nth derivative of $y = e^x(2x+3)^3$. (b) Find the minimum of $f(x,y) = y^2 + x^2y + x^4$. If $z = x^n f\left(\frac{y}{x}\right) + y^{-n} g\left(\frac{x}{y}\right)$, then prove that $x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} + x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = n^2 z$. UNIT-IV (a) Evaluate $I = \int_0^{\pi/2} \int_x^{\pi/2} \frac{\sin y}{y} dy dx$ by changing the order of integration