SpaghettiLens Gravitational Lens Modelling

Rafael Küng¹ Prasenjit Saha¹ Elisabeth Baeten² Jonathan Coles³ Claude Cornen² Christine Macmillan² Phil Marshall⁴ Anupreeta More⁵ Surhud More⁵ Aprajita Verma⁶ Julianne K. Wilcox²

¹Physik–Institut, University of Zurich, Zurich, Switzerland
 ²Zooniverse, c/o Astrophysics Department, University of Oxford, Oxford, UK
 ³Exascale Research Computing Lab, Bruyeres-le-Chatel, France
 ⁴Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, USA
 ⁵Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa-shi, Japan
 ⁶Sub-department of Astrophysics, University of Oxford, Oxford, UK

26. Sept 2013

Motivation

- Gravitational Lenses (GL) hard to find
- Let volunteers help find them: SpaceWarps
- But post processing? SpaghettiLens

Outline

- 1 Theory
- 2 Results

3 Outlook

Fermat's Principle

Fermat's Principle¹

Rays of light traverse the path of stationary optical length with respect to variations of the path.

Fermat's Principle

Time t for path X:

$$t[X] = \frac{1}{c} \int_{t_1}^{t_2} n(\vec{x}(t)) \sqrt{1 + \left(\frac{d\vec{x}(t')}{dt'}\right)^2} dt'$$

Path X where t stationary.

¹Ghatak, Ajoy (2009), Optics

Setup

light travel time

Fermat's Principle

$$t(x,y) = t_{geom} + t_{grav} \tag{1}$$

$$t_{\text{geom}} \propto (x - x_s)^2 + (y - y_s)^2$$
 (2)

$$t_{\text{geom}} \propto (x - x_s)^2 + (y - y_s)^2$$

$$t_{\text{grav}} = \langle t_{\text{grav}}(x_o, y_o) \rangle + (1 + z_L) \frac{2G}{c^3} M(x_{\bullet}, y_{\bullet})$$
(2)

Arrival Time Surface

SpaghettiLens

- Extremal Points (Images)
- Self Intersecting Contour Lines

http://labs.spacewarps.org/spaghetti/

SpaceWarps Setup & Results

- CFHT Legacy Survey
- about 11 million classifications
- 29 promising (59 total) new lens candidates

SpaceWarps: II New Gravitational Lens Candidates...²

SPACE WARPS: II. New Gravitational Lens Candidates from the CFHTLS Discovered through Citizen Science

Anupreeta More, ^{1*} Aprajita Verma, ² Philip J. Marshall, ^{2,3} Surhud More, ¹ Elisabeth Baeten, ⁴ Julianne Wilcox, ⁴ Christine Macmillan, ⁴ Claude Cornen, ⁴ Amit Kapadia, ⁵ Michael Parrish, ⁵ Chris Snyder, ⁵ Christopher P. Davis, ³ Raphael Gavazzi, ⁶ Chris J. Lintott, ² Robert Simpson, ² David Miller, ⁴ Arfon M. Smith, ⁴ Edward Paget, ⁴ Prasenjit Saha, ⁷ Rafael Küng, ⁷ Thomas E. Collett ⁸

9 / 15

¹Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

²arxiv:1504.05587

SpaghettiLens Results: Tests of Perfomance

- use simulated lenses
- let volunteers model them
- recover Einstein Radii
- Volunteers perform well!

Gravitational Lens Modelling in a Citizen Science Context³

Mon. Not. R. Astron. Soc. 447, 2170-2180 (2015) Printed February 3, 2015 (MN IATEX style file v2.2)

Gravitational Lens Modelling in a Citizen Science Context

Rafael Küng,¹ Prasenjit Saha,¹ Anupreeta More,² Elisabeth Baeten,³ Jonathan Coles,⁴ Claude Cornen,³ Christine Macmillan,³ Phil Marshall,⁵

Surhud More, ² Jonas Odermatt, ⁶ Aprajita Verma⁷ and Julianne K. Wilcox³

¹Physik-Institut, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

² Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi 277-8583, Japan

³ Zooniverse, c/o Astrophysics Department, University of Oxford, Oxford OX1 3RH, UK

⁴ Exascale Research Computing Lab, Campus Teratec, 2 Rue de la Piquetterie, 91680 Bruyeres-le-Chatel, France
⁵ Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94035, USA

SpaghettiLens Results: Stellar vs Lensing Mass

- lensing mass against the stellar mass of the candidate lens galaxies
- stellar mass fraction of order 20 percent
- with decreasing trend for the most massive galaxies
- expected for early type galaxies
- outliers? Maybe non-lenses (not yet spectroscopically confirmed)

Outlook

We are currently working on:

- fit parametrized models to the free-form mass distributions (Lucy Oswald)
- determination of photometric red shifts
- estimate stellar populations (using galfit, SExtractor)

Questions?

Questions? rafael.kueng@uzh.ch

Appendix

$$A_t = A_{\mathsf{geom}} + A_{\mathsf{grav}} \tag{4}$$

$$A_{\text{geom}} = \frac{1}{2} \left(x^2 + y^2 \right) \tag{5}$$

$$\nabla^2 A_{\text{grav}}(x, y) = -2\kappa(x, y) \tag{6}$$

$$A = \frac{cD_L}{(1+z_L)^2} \frac{D_{LS}}{D_S} \times t \tag{7}$$

$$\kappa(x,y) = \frac{4\pi G}{c^2} \frac{D_L}{1+z_L} \frac{D_{LS}}{D_S} \times \Sigma(x,y)$$
 (8)