

UNESP - Universidade Estadual Paulista Faculdade de Engenharia de Bauru Mestrado em Engenharia Elétrica

PEE 0023 - Redes Neurais Artificiais

EPC - 02

Um sistema de transmissão de sinais codificados de 3 bits envia informações utilizando 03 linhas paralelas conforme ilustrado a seguir.

Os sinais enviados a partir da fonte, ao chegar ao receptor, são classificados preliminarmente em duas classes (classe A ou classe B) e, deverão tomar destinos diferentes (Linha A, Linha B). Entretanto, durante a transmissão, o sinal $[x_1, x_2, x_3]$ é distorcido por ruídos do tipo branco gaussiano (interferência eletromagnética).

Neste contexto, programe uma rede ADALINE que receba os sinais distorcidos (referente a um padrão x) e forneça como resposta para o receptor a indicação de qual caminho o sinal deve seguir.

Executar o treinamento da rede utilizando o algoritmo supervisionado Widrow e Hoff (regra Delta) para a classificação das classes definidas por:

- Classe $A \rightarrow d = -1$
- Classe $B \rightarrow d = 1$

Sinal que sai da fonte (sem ruído)					
x_1	x_2	x_3	d		
0	1	1	-1		
1	1	1	-1		
0	1	0	1		
1	1	0	1		
1	0	1	-1		
1	0	0	1		
0	0	1	-1		
0	0	0	1		

Sinal que chega no receptor					
x_1	x_2	x_3	d		
0+γ/5	1+γ/5	1+γ/5	-1		
1+γ/5	1+γ/5	1+γ/5	-1		
0+γ/5	1+γ/5	0+γ/5	1		
1+γ/5	1+γ/5	0+γ/5	1		
1+γ/5	0+γ/5	1+γ/5	-1		
1+γ/5	0+γ/5	0+γ/5	1		
0+γ/5	0+γ/5	1+γ/5	-1		
0+γ/5	0+γ/5	0+γ/5	1		

onde γ é definido por um ruído branco gaussiano (distribuição normal com $\mu = 0$ e $\sigma^2 = 1$) gerado aleatoriamente.

Prof. José A. C. Ulson Página 1

UNESP - Universidade Estadual Paulista Faculdade de Engenharia de Bauru Mestrado em Engenharia Elétrica

Após o treinamento da rede:

- 1) Executar o teste de classificação com 16 sinais que sejam diferentes (corrompidos com outros valores de γ) daqueles utilizados no treinamento.
- 2) Imprimir os resultados da seguinte forma:

Sinal	Sinal com ruído	Saída	Categoria
Sinal $1 ==> [1 \ 0 \ 1]$	[1.01 0.72 1.48]	-1	Classe A
Sinal $1 ==> [1 \ 0 \ 1]$	[-0.22 0.25 0.48]	1	Classe B
•••			
Sinal 16 ==> [1 1 1]			

3) Exibir o gráfico da diferença do erro quadrático médio (EQM_atual – EQM_anterior) em relação a cada época de treinamento.

Considerar:

- $\eta = 0.1$
- Erro de treinamento $\varepsilon_d = 10^{-5}$
- Rede ADALINE constituída por um neurônio com 3 entradas e uma saída conforme a seguir.

Prof. José A. C. Ulson Página 2