COMPUTER PROJECT #1

Shaun Harris

Department of Mechanical and Aerospace Engineering
Utah State University
Email: shaun.r.harris@gmail.com

ABSTRACT

A one by one unit plate is provided. The $\nabla^2 \phi = 0$ equation along with specified boundary conditions is provided. The diffusion equation is solved using a finite-volume method. The discretized equations are shown, the methodology is outlined, and the results are provided in this paper.

NOMENCLATURE

- Γ Diffusion coefficient
- ϕ Property of fluid in 2-d steady state diffusion

 ϕ_{old}, ϕ_{new} Previous and next iteration guess of ϕ solution

- S Source term value
- \bar{S} Average value of source S
- S_u, S_p Coefficients of linear approximation for source term
- Δn Width of cell in n direction
- δn_{ij} Width between i and j cell centers in n direction
- *a_i* Coefficient of finite-volume method of cell *i*
- A_i Cross-sectional area of i cell face
- Ω Successive over-relaxation factor for numerical method
- $\Delta \phi$ Successive over-relaxation iteration change for numerical method
- ΔV Volume of finite-volume
- i, j Coordinates used in stencil and locations for numerical method

INTRODUCTION

The finite-volume method was used to solve the $\nabla^2 \phi = 0$ on a one by one unit plate. The boundary conditions were specified $\phi(0,y) = 0$; $\phi(1,y) = y$; $\phi(x,0) = 0$; $\phi(x,1) = x$. The analytical solution was known to be $\phi = x$ y and an initial guess of $\phi = 0$ was provided for the interior cells. We used a mesh consisting of 20 by 20 cells. The *thin* boundary cells of one around the perimeter also provided a slightly larger mesh of 22 by 22 cells.

Though it needs to be remembered that the boundary conditions for ϕ did not change with each iteration. Thus, only the 20 by 20 cells were iterated over using the point SOR scheme discussed in class.

In order to get problem to be solved using the finite-volume method we needed to find the discretized equations for the system. The interior cells are given by equation 2 referenced from the stencil drawn in Figure 1. Each cell center has an associated ϕ ,x, and y values. These values are referenced with the i,j coordinates.

It can be seen easily that this equation will work for all the interior cells. But once the boundary is reached, the *ghost* cells must be used. These cells have a Δx or Δy value that is very *thin*. With this in mind, equation 2 is still valid. The only values that change are on these boundaries, where δx and/or δy produces a value that is half the normal distance between cells. Thus, instead of a one, a two is used in the coefficient value. We used the equation shown in equation 2 to calculate on each cell iteration. In order to use the method of successive over-relaxation we can rearrange equation 2 to equation 3 as shown.

Using this iterative SOR technique, if we iterate until the Root Sum Squared values are small, than we can find a converged solution for the equation $\nabla^2\phi=0$.

The results are show in figure 5 and the associated error is show in figure 6.

NUMERICAL METHOD

Chapter 4 of our textbook [1] indicates the steps to solving this problem using the finite-volume approach. The following steps are outlined and followed in this problem.

- 1. Grid generation
- 2. Discretization of equations
- 3. Solution of equations

Each step will be outlined below for a general case two-dimensional case and then it will be applied to our simplified $\nabla^2\phi=0$ equation.

Figure 1 shows a stencil for the grid. This shows how the grid is generated for a two dimensional plate. We only show an example representation of the grid in figure 1, it is noted that we broke the grid into 20 by 20 cells. Additionally, the boundary conditions were treated as additional cells with a small cell area Δx or $\Delta y \rightarrow 0$. This allowed for our boundary conditions to be accounted for. We will refer to these cells as the boundary cells. The origin of the grid is in the lower left hand corner.

To complete the discretization of the equations over a control volume, we will first look at a nodal point P. The governing equation is given by equation 1 for a two dimensional steady state diffusion. This is a general equation that is used for finite volume methods.

$$\frac{\partial}{\partial x} \left(\Gamma \frac{\partial \phi}{\partial x} \right) + \frac{\partial}{\partial y} \left(\Gamma \frac{\partial \phi}{\partial y} \right) + S_{\phi} = 0$$

$$\int_{\Delta V} \frac{\partial}{\partial x} \left(\Gamma \frac{\partial \phi}{\partial x} \right) dx \, dy + \int_{\Delta V} \frac{\partial}{\partial y} \left(\Gamma \frac{\partial \phi}{\partial y} \right) dx \, dy + \int_{\Delta V} S_{\phi} dV = 0$$

$$\left[\left(\Gamma A \left(\frac{\partial \phi}{\partial x} \right) \right)_{e} - \left(\Gamma A \left(\frac{\partial \phi}{\partial x} \right) \right)_{w} \right] \dots$$

$$+ \left[\left(\Gamma A \left(\frac{\partial \phi}{\partial y} \right) \right)_{n} - \left(\Gamma A \left(\frac{\partial \phi}{\partial y} \right) \right)_{s} \right] \dots$$

$$+ \bar{S} \Delta V = 0$$
(1)

We can then substitute linear interpolations for Γ_w , Γ_e , Γ_n , and Γ_s to get these terms in terms of cell values and constants. Then we can substitute $\bar{S}\Delta V = S_u + S_p\phi_P$ to find the average value of source S in terms of a linear approximation. Note that equation 1 uses substitution of the flux through the cell faces and results in the discretized equation 2. This equation is used in the numerical method. Also, we can substitute the values of Γ and S provided by the $\nabla^2 \phi = 0$ equation, which gives us equation 2

$$a_P \phi_P = a_W \phi_W + a_E \phi_E + a_S \phi_S + a_N \phi_N + S_u$$

where:

$$a_{W} = \frac{\Gamma_{w}A_{w}}{\delta x_{WP}}, a_{E} = \frac{\Gamma_{e}A_{e}}{\delta x_{EP}}, a_{S} = \frac{\Gamma_{s}A_{s}}{\delta y_{SP}}, a_{N} = \frac{\Gamma_{n}A_{n}}{\delta y_{NP}}$$

$$a_{P} = a_{W} + a_{E} + a_{S} + a_{N} - S_{p}$$

$$S_{u} = S_{p} = 0$$

$$\Gamma_{w} = \Gamma_{e} = \Gamma_{s} = \Gamma_{n} = 1$$

$$A_{w} = A_{e} = \Delta x$$

$$A_{s} = A_{n} = \Delta y$$

$$\delta x_{WP} = |x_{i,j} - x_{i,j-1}|$$

$$\delta x_{EP} = |x_{i,j} - x_{i,j+1}|$$

$$\delta y_{SP} = |y_{i,j} - y_{i-1,j}|$$

$$\delta y_{NP} = |y_{i,j} - y_{i+1,j}|$$

Taking equation 2 we can apply this to our 20 by 20 finite volume. Each cell will apply this equation. In order to apply this equation and solve numerically for the resulting ϕ solution we will use a successive over-relaxation method. Taking equation 2 and solving for ϕ_P and then taking the right hand side and adding and subtracting ϕ_P yields equation 3.

$$\phi_{new} = \phi_{old} + \frac{\Omega}{a_P} \Delta \phi$$

where:

 $\Omega \equiv$ Successive over-relaxation factor ≈ 1.8

$$\Delta \phi = a_E \phi_{Enew} + a_W \phi_{Wnew} + a_S \phi_{Snew} + a_N \phi_{Nnew} - a_P \phi_{Pold}$$
(3)

Using this we can iterate through each cell and produce a new approximated solution for ϕ . If we iterate the approximated solutions enough times until equation 4 is satisfied, then we will find the numerical diffusive value of ϕ .

$$\sum_{i=1}^{400} \sqrt{\Delta \phi_i} \le 10^{-14} \tag{4}$$

We can then compare this to the true analytical solution $\phi = x y$ and see the error produced. We should expect very close agreement with the analytical and the numerical solution values. They should only disagree by machine precision values and our convergence criteria.

Boundary conditions must be taken into consideration. On the cells nearest the boundaries, the cells will use the boundary condition values from the boundary cells. They also use the x and y values of the boundary cells. The values of the δx and δy is taken into account by equation 2. This provides the necessary equations for the boundaries using the boundary cells.

RESULTS

Figure 2 shows a plot comparing various values of Ω relaxation factor and the optimal value to converge this finite-volume solution. This backs up the reason for selecting $\Omega=1.8$ in the numerical method described above.

We can see how quickly these values converged by looking at figure 3. This figure shows on a log-log scale how quickly our solution of $\Omega=1.8$ converged to machine zero. We can see that after a 150 iterations or so, the solution does not converge much more after this point.

To reduce the amount of iterations, we can use the stopping criteria specified in equation 4. Figure 4 shows the convergence plot. The solution does not converge more after the 152 iterations required to reach this stopping criteria. The other solutions in figures 5 and 6 are results from 152 iterations using $\Omega=1.8$.

Figure 5 shows the values of phi using the SOR method described. We can see that the values are very close to the analytical solution of x y.

The error between these two solutions is shown in figure 6. We can see that every cell has an error that is less than or equal to 10^{-15} .

CONCLUSION

We have shown the use of a finite-volume approach to solving the flat plate of one square unit with 400 cells using a successive over-relaxation approach to solve the diffusive $\nabla^2\phi=0$ equation. We used the discretized equation shown in equation 2. Iterating over this equation with the successive over-relaxation provides us with a numerical approximation for the solution of ϕ at each location on the plate. This numerical approximation method taught me the steps to using the finite-volume method and how to implement it into a simple diffusive equation. These same steps can be used in other applications to solve other equations. This analysis can be used in many various situations to solve many harder applications.

REFERENCES

[1] Versteeg, H. K., and Malalasekera, W., 2007. *An Introduction to COMPUTATIONAL FLUID DYNAMICS The Finite Volume Method.* PEARSON Prentice Hall.

FIGURE 1. REPRESENTATION OF THE STENCIL FOR THE FINITE VOLUME APPROACH

FIGURE 2. PLOT SHOWING ITERATIONS TO NECESSARY CONVERGENCE FOR EACH VALUE OF Ω RELAXATION FACTOR

FIGURE 3. CONVERGENCE LOG-LOG PLOT OF THE ITERATION SOLUTION FOR MANY ITERATIONS

FIGURE 5. CONVERGED SOLUTION ϕ CONTOUR PLOT

FIGURE 4. CONVERGENCE LOG-LOG PLOT OF THE ITERATION SOLUTION FOR 152 ITERATIONS

FIGURE 6. CONTOUR PLOT SHOWING THE ERROR BETWEEN THE NUMERICAL AND ANALYTICAL SOLUTION

1		Appendix A: Code	61	phi(:,0)%phi_new = 0.
The content of the	1	! user defined variables to define finite volume	62 63	! top boundary $phi(0,0)\%x = 0$
4 define max.y 20				
modes		1		
	8			
10	9	/		
1				
MPLICIT NONE		1 31		
TYPE:: dat REAL:::x,y,phi.phi.new 75				
Mathematical Company				
FND TYPE dat CONTAINS CONTA				
SCHANNS SERROUTHE set.xy (stret.dx,dy,mx,ny) Set. SERROUTHE SET.xy (stret.dx,dy,mx,ny) SERL,NIET(IN) is dx,dy SERROUTHE SET.xy				
NERGEN NICEST No. 1,			79	
		SUBROUTINE set_xy (strct, dx, dy, nx, ny)	80	
Time				
TYPE (dat). DMENSION(0) (2) x - 1.0 cm x - 1.0 km ter cells of stret! data contained from 0.mx - 1 where cells of a data contained from 0.mx - 1 where cells of strets of data contained from 0.mx - 1 where cells of strets of data contained from 0.mx - 1 where cells of strets of a data contained from 0.mx - 1 where cells of strets of approaches 0 on boundary nodes (cell volume so provided from 0.mx - 1 for do loops and n is counter so provided from 0.mx - 1 for do loops and n is counter so provided from 0.mx - 1 for do loops and n is counter so provided from 0.mx - 1 for do loops and n is counter so provided from 0.mx - 1 for do loops and n is counter so provided from 0.mx - 1 for do loops and n is counter so provided from 0.mx - 1 for do loops and n is counter so provided from 0.mx - 1 for do loops and n is counter so provided from 0.mx - 1 for do loops and n is counter so provided from 0.mx - 1 for do loops and n is counter so provided from 0.mx - 1 for do loops and n is counter so provided from 0.mx - 1 for do loops and n is counter so provided from 0.mx - 1 for do loops and n is counter so so provided from 0.mx - 1 for do loops and n is counter so so provided from 0.mx - 1 for do loops and n is counter so so provided from 0.mx - 1 for do loops and n is counter so so provided from 0.mx - 1 for do loops and n is counter so so provided from 0.mx - 1 for do loops and n is counter so so provided from 0.mx - 1 for do loops and n is counter so so provided from 0.mx - 1 for do loops and n is counter so so provided from 0.mx - 1 for do loops and n is counter so so provided from 0.mx - 1 for do loops and n is counter so so provided from 0.mx - 1 for do loops and n is counter so so provided from 0.mx - 1 for do loops and n is counter so so for in the form of th	21			
Street data contained from 0:mx-1 where cells 0 8	22			
NTECER : i, j, n for do loops and n is counter 88 for cett lumber for cett lumber for cett lumber so				
Real	23			
REAL	23			
Do				* '
	20		91	
New literation values			02	
Section Sect			92	1 , 3, 1
Street			93	
Stret(i,j)%s = xi				
Street S			94	
Stret(i,j)%pi = 91			95	
Street (i, j)%phi = 0.	32			
initialized guess strct(i,j)%phi.new = 0. ! phi value initialized guess for next iteration n=h+1 ! count cell numbers 98 END DO END DO END DO END DO END BOO END SUBROUTINE set.xy 100 END MORLE types 101 102 102 103 104 104 104 104 104 104 104 104 104 105	33		0.6	i i
Strett(1,1)%phil.new = 0. ! phi value ilitialized guess for next iteration property linear to numbers linear to numbers property linear to numbers linear			96	
Name	34			
PROCRAM project PROCRAM project PROCRAM project PROCRAM group Project PROCRAM group Project PROCRAM group Project PROCRAM group Project	35			
END DO END SUBROUTINE set_xy 100 1	55			
Send Subroutine Set_xy 100		END DO	99	
END MODULE types			100	
## PROGRAM project 102			101	
NRTICE N		The Mobell types	102	
USE types luse module defined by types 104 105 105 106 105 105 106 105				
			104	
INTEGER :: i,j,iter!, max_x=20, max_y=20			105	
TYPE(dat), DIMENSION(0: max_xp, 0: max_yp):: phi		INTEGER :: i , j , iter ! , max_x = 20, max_y = 20	106	1 7
109	47		108	!output
dividing by delta x between node centers 110	48			
dx = 1./REAL(max_x) dy = 1./REAL(max_y)			110	
51 gamma = 1. 52 ! initialize phi data and x,y for middle values 53 CALL set_xy (phi, dx, dy, max_x2p, max_x2p) 54 !! initialize BC's 55 ! left Boundary 56 phi(:,0)%x = 0. 57 phi(0,0)%y = 0. 58 phi(1:max_x,0)%y = RESHAPE((/ (i*dy - dy/2. ,i=1,max_x)) 59 phi(max_xp,0)%y = 1. 110 NORMAT (max_x2p F10.6) 120 FORMAT (max_x2p F10.6) 131 WRITE(9,100) (phi(i,:)%x,i=0,21) 132 WRITE(10,100) (phi(i,:)%y,i=0,21) 133 WRITE(11,100) (phi(i,:)%phi,i=0,21) 144 WRITE(11,100) (phi(i,:)%phi,i=0,21) 155 WRITE(12,200) (abs(phi(i,:)%phi - (phi(i,:)%x*phi(i,:)%phi				
200 PROMAI (max.x2p ES16.6) 200				100 FORMAT (max_x2p F10.6)
53 CALL set_xy (phi, dx, dy, max_x2p, max_x2p)		1 9		1 /
	53	CALL set_xy(phi,dx,dy,max_x2p,max_x2p)		
116 WRITE(12,200) (abs(phi(i;))%phi - (phi(i;))%x*phi(i;)%				
57 phi(0,0)%y = 0. 58 phi(1:max_x,0)%y = RESHAPE((/ (i*dy - dy/2. ,i=1,max_x)) 117 close(9); close(10); close(11); close(12); close(5); 118 END PROGRAM project1 117 END PROGRAM project1				WRITE(12,200) (abs(phi(i,:)%phi - (phi(i,:)%x*phi(i,:)%y
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			117	
$ \begin{array}{c cccc} & & & & & & & & \\ & & & & & & & \\ & & & &$		$phi(1: max_x, 0)\%y = RESHAPE((/ (i*dy - dy/2., i=1, max_x)))$		
	50		110	The resolution projects