Tema di Statistica Matematica

Sessione invernale - Secondo appello

22 febbraio 2022

1) In uno studio sull'affidabilitá di un certo tipo di componenti elettronici, vengono rilevate le durate di n=50 componenti. Da precedenti studi, inoltre, si ha motivo di ritenere che la legge di distribuzione del logaritmo della durata sia adeguatamente descritta da un modello Normale di parametri μ e σ^2 , cioé $X=\ln(Y)\sim N(\mu,\sigma^2)$.

Sotto tale assunzione, la durata media del generico componente, $\tau = \mathbb{E}(Y)$, è esprimibile in funzione di μ e σ^2 e risulta $\tau = \exp\{\mu + \frac{\sigma^2}{2}\}$. Indichiamo con x_1, x_2, \ldots, x_{50} i valori dei logaritmi delle durate osservate y_1, y_2, \ldots, y_{50} .

- a) Trovare lo stimatore di massima verosimiglianza per τ e la sua distribuzione approssimata.
- b) Sapendo che $\sum_{i=1}^{50} x_i = 301.2$ e $\sum_{i=1}^{50} x_i^2 = 1818.4$ e sulla base dei risultati ottenuti al punto a), calcolare un intervallo di confidenza per τ di livello approssimato pari a 0.95.
- 2) La variabile aleatoria X rappresenta la frazione di memoria principale allocabile di un server che viene richiesta da un job qualsiasi. Si assuma che X segua una distribuzione avente densitá

 $f(x;\theta) = \frac{1}{\theta} x^{\frac{1}{\theta} - 1} \mathbb{I}_{(0,1)}(x), \quad \theta > 0.$ (1)

Un valore basso di θ implica la preponderanza di "grossi" job; invece, se $\theta=1$ la distribuzione delle richieste di memoria é uniforme.

Sia $(X_1, X_2, ..., X_n)$ un campione casuale estratto dalla distribuzione avente densitá $f(x; \theta)$ data in (1) e si considerino le seguenti ipotesi: $H_0: \theta = 2$ vs. $H_1: \theta = 0.2$.

- a) La famiglia di distribuzioni in questione é regolare?
- b) Trovare una statistica che sia sufficiente per il parametro θ .
- c) Determinare la densitá di $-\sum_{i=1}^{n} \ln(X_i)$ sotto H_0 e sotto H_1 . [NB: $\ln(X_i)$ indica il logaritmo naturale di X_i].
- d) Costruire il test più potente (MP) di livello α per il dato sistema di ipotesi. Il test più potente trovato é anche uniformemente più potente (per alternative unilaterali)?
- e) Sia $\alpha=0.05,\ n=10$ e $\prod_{i=1}^{10}x_i=0.00012$. Alla luce di questi dati, accettate o meno l'ipotesi H_0 ? E se α fosse uguale a 0.01? E se fosse $\alpha=0.10$?

- 3) Sia $(X_1, X_2, ..., X_n)$ un campione casuale da una distribuzione avente funzione di densità $f(x; \theta)$. Dimostrare che massimizzare rispetto a θ la funzione di verosimiglianza $L(\theta|x)$ è equivalente a massimizzare rispetto a θ la funzione di log-verosimiglianza $\ell(\theta|x)$.
- 4) Alcuni ricercatori sono interessati ad acquisire informazioni sulla durata minima del periodo di incubazione di una certa malattia. Un campione di n cavie viene quindi esposto all'agente infettivo e per ogni cavia viene rilevato il tempo X trascorso fino alla comparsa dei primi sintomi della malattia. Si ritiene ragionevole ipotizzare che la variabile casuale X segua un modello parametrico di Pareto la cui densitá é data da

$$f(x; \lambda, \theta) = \theta \lambda^{\theta} x^{-(\theta+1)} \mathbb{I}_{[\lambda, +\infty)}(x),$$

in cui $\lambda>0$ rappresenta la quantitá di interesse mentre il parametro $\theta>0$ é supposto noto, $\theta=2$.

- a) La famiglia di distribuzioni associata alla precedente densitá appartiene a famiglia esponenziale?
- b) Trovare una statistica sufficiente e minimale (che indichiamo con S_n) per λ .
- c) Trovare lo stimatore di massima verosimiglianza per λ , stabilendo se esso é non distorto.
- d) Calcolare la funzione di ripartizione della statistica sufficiente individuata al punto b) e stabilire se esiste uno stimatore non distorto per il parametro λ nella classe degli stimatori del tipo $c S_n$ con c costante opportuna da calcolare.
- 5) Sapendo che n=36, $\bar{x}_n=15$, $\bar{Y}_n=8$, $s_x^2=9$, $s_Y^2=4$ e $Corr(x,Y)=\frac{1}{3}$, trovare la stima a minimi quadrati della retta di regressione di Y su x e valutarne il grado di bontá di adattamento ai dati osservati riassunti nelle misure di sintesi poc'anzi proposte. Commentare il risultato.