Übungen zur Algebraischen Zahlentheorie II

Sommersemester 2022

Universität Heidelberg Mathematisches Institut DR. K. HÜBNER DR. C. DAHLHAUSEN

Blatt 1

Abgabe: Freitag, 29.04.2022, 09:15 Uhr

Aufgabe 1. (4 Punkte)

Sei p eine Primzahl.

- (a) Bestimmen Sie alle Automorphismen von \mathbb{Q}_p in der Kategorie der topologischen Ringe mit stetigen Ringhomomorphismen.
- (b) Zeigen Sie, dass für jedes $a \in \mathbb{Q}_p$ gilt: es ist genau dann $a \in \mathbb{Z}_p^{\times}$, wenn die Menge

$$\{n \in \mathbb{N} \mid \exists x \in \mathbb{Q}_p : x^n = a^{p-1}\}$$

unendlich ist.

(c) Bestimmen Sie alle Automorphismen von \mathbb{Q}_p in der Kategorie der Ringe mit Ringhomomorphismen.

Aufgabe 2. (4 Punkte)

Sei p eine Primzahl und $n \in \mathbb{N}$. Wir betrachten $L = \mathbb{Q}_p(\zeta_n)$ für eine primitive n-te Einheitswurzel ζ_n (in einem algebraischen Abschluss von \mathbb{Q}_p).

- (a) Bestimmen Sie die maximal unverzweigte Teilerweiterung L_0/\mathbb{Q}_p von L/K, den Ganzheitsring \mathcal{O}_{L_0} und eine Uniformisierende π_0 von L_0 .
- (b) Bestimmen Sie die maximal zahm verzweigte Teilerweiterung L_1/\mathbb{Q}_p von L/K, den Ganzheitsring \mathcal{O}_{L_1} und eine Uniformisierende π_1 von L_1 .
- (c) Bestimmen Sie die Erweiterungsgrade $[L_0: K], [L_1: L_0]$ und $[L: L_1]$.

Hinweis: Schreiben Sie $n = m \cdot p^k$ mit $m, k \in \mathbb{N}$ und (p, m) = 1.

Aufgabe 3. (4 Punkte)

Finden Sie zwei rein verzweigte Erweiterungen L_1/K und L_2/K lokaler Körper, deren Kompositum L_1L_2/K nicht rein verzweigt ist.

Aufgabe 4. (4 Punkte)

Sei K ein lokaler Körper mit Restklassenkörper k und sei $p = \operatorname{char}(k)$. Es bezeichne $\mu(K)$ und $\mu(k)$ die entsprechenden Gruppen der Einheitswurzeln.

(a) Bestimmen Sie den Kern der Restriktionsabbildung $\rho: \mu(K) \to \mu(k)$.

Nun betrachten wir die Untergruppe $\mu'(K) := \{\zeta \in \mu(K) \mid p \nmid \operatorname{ord}(\zeta)\}$ der Einheitswurzeln von Ordnung teilerfremd zu p.

(b) Zeigen Sie, dass die Einschränkung ρ' : $\mu'(K) \to \mu(k)$ ein Isomorphismus ist.