Exercic

Proposer un modèle de connaissance et de comportement

Proposer un modèle de connaissance et de comportement 2

1.1 Modéliser la cinématique d'un ensemble de solides . . . 21.2 Modéliser la cinématique d'un ensemble de solides 7

1 Proposer un modèle de connaissance et de comportement

1.1 Modéliser la cinématique d'un ensemble de solides

Exercice 1 - Mouvement T - *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$

Question 1 Quel est le mouvement de 1 par rapport à 0.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **1** par rapport à **0**.

Corrigé voir 25.

Exercice 2 - Mouvement R *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \,\mathrm{mm}$.

Question 1 Quel est le mouvement de **1** par rapport à **0**.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **1** par rapport à **0**.

Corrigé voir 34.

Exercice 3 - Mouvement TT - *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Question 1 *Quel est le mouvement de* **2** *par rapport* à **0**.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un cercle de centre A et de rayon R.

Question 3 Donner les expressions de $\lambda(t)$ et $\mu(t)$ permettant la réalisation de cette trajectoire à la vitesse $v=0.01\,\mathrm{m\,s^{-1}}$.

Question 4 En utilisant Python, tracer $\lambda(t)$, $\mu(t)$ et la trajectoire générée.

Corrigé voir 27.

Exercice 4 - Mouvement RR *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_1}$ avec $L = 15 \, \text{mm}$.

Question 1 Donner l'ensemble des positions accessibles par le point C.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\varphi(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\varphi(t)$ et la trajectoire générée.

Corrigé voir 28.

Exercice 5 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 *Donner l'ensemble des positions accessibles par le point B.*

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Corrigé voir 29.

Exercice 6 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = R\overrightarrow{i_2}$ avec R = 30 mm.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Corrigé voir 30.

Exercice 7 - Mouvement RR 3D **

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \, \text{mm}$ et $r = 10 \, \text{mm}$.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

Corrigé voir 31.

Exercice 8 - Mouvement RR 3D **

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

Corrigé voir 40.

Exercice 9 - Mouvement T - *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$.

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(1/0) \}$ *au point B*.

Question 2 *Déterminer* $\Gamma(B \in 1/0)$.

Corrigé voir 33.

Exercice 10 - Mouvement R *

B2-13

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$.

Question 1 Déterminer $V(B \in 1/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(1/0) \}$ au point B.

Question 3 *Déterminer* $\Gamma(B \in 1/0)$.

Corrigé voir 34.

Exercice 11 - Mouvement TT - *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 35.

Exercice 12 - Mouvement RR *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_1}$ avec $L = 15 \, \text{mm}$.

Question 1 Déterminer $\overline{V(C \in 2/0)}$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 36.

Exercice 13 - Mouvement RT *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 37.

Exercice 14 - Mouvement RT *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i_2}$ avec R = 30 mm.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 38.

Exercice 15 - Mouvement RR 3D *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \, \text{mm}$ et $r = 10 \, \text{mm}$.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir 31.

Exercice 16 - Mouvement RR 3D *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 Déterminer $\Gamma(C \in 2/0)$.

Corrigé voir 40.

Exercice 17 - Mouvement RT - RSG **

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I.

Question 1 Déterminer $V(B \in 2/0)$.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point B.

Question 3 Déterminer $\Gamma(B \in 2/0)$.

Corrigé voir ??.

Exercice 18 – Pompe à palettes *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre $\mathbf{0}$ et $\mathbf{2}$ en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(2/0) \}$ *au point B*.

Question 2 *Déterminer* $\Gamma(B \in 2/0)$.

Corrigé voir 42.

Exercice 19 - Pompe à pistons radiaux * B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e \overrightarrow{i_1}$ et $\overrightarrow{BI} = R \overrightarrow{j_0}$. De plus, e = 10 mm et R = 20 mm. Le contact entre $\mathbf{1}$ et $\mathbf{2}$ en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre $\mathbf{0}$ et $\mathbf{2}$.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(2/0) \}$ *au point B*.

Question 2 *Déterminer* $\Gamma(B \in 2/0)$.

Corrigé voir 43.

Exercice 20 - Système bielle manivelle * B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CB} = L \overrightarrow{i_2}$. De plus, $R = 10 \,\text{mm}$ et $L = 20 \,\text{mm}$.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 *Donner le torseur cinématique* $\{ \sqrt[4]{(2/0)} \}$ *au point B*.

Question 2 Déterminer $\Gamma(C \in 2/0)$

Corrigé voir 44.

Exercice 21 – Système de transformation de mouvement \star

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CA} = H \overrightarrow{j_0}$. De plus, R = 30 mm et H = 40 mm.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(3/0) \}$ *au point B*.

Question 2 *Déterminer* $\Gamma(B \in 3/0)$.

Corrigé voir 45.

Exercice 22 - Barrière Sympact **

B2-13 Pas de corrigé pour cet exercice. Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$, $R = 40 \, \text{mm}$ $BI = 10 \, \text{mm}$.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 En utilisant la condition de roulement sans glissement au point I, déterminer $\gamma(t)$ et $\dot{\gamma}(t)$.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(3/2) \}$ au point B.

Corrigé voir 46.

Exercice 23 - Système 4 barres ***

B2-13 Pas de corrigé pour cet exercice.

On a :

- $\overrightarrow{OA} = a \overrightarrow{x_1} f \overrightarrow{y_1}$ avec $a = 355 \,\mathrm{mm}$ et $f = 13 \,\mathrm{mm}$;
- $\overrightarrow{AB} = b \overrightarrow{x_2}$ avec $b = 280 \,\mathrm{mm}$;
- $\overrightarrow{BC} = -c \overrightarrow{x_3}$ avec $c = 280 \,\mathrm{mm}$;
- $\overrightarrow{OC} = -d\overrightarrow{x_0} e\overrightarrow{y_0}$ avec $d = 89.5 \,\text{mm}$ et $e = 160 \,\text{mm}$;

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice **??**). On définit le point G tel que $\overrightarrow{OG} = L\overrightarrow{x_1}$.

Question 1 *Donner le torseur cinématique* $\{\mathcal{V}(1/0)\}$ *au point G*.

Question 2 *Déterminer* $\Gamma(G \in 1/0)$.

Corrigé voir 47.

Exercice 24 - Maxpid ***

B2-13 Pas de corrigé pour cet exercice. Soit le schéma suivant.

Par ailleurs $a=107.1\,\mathrm{mm},\ b=80\,\mathrm{mm},\ c=70\,\mathrm{mm},\ d=80\,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

On définit le point G tel que $\overrightarrow{OG} = L\overrightarrow{x_4}$.

Question 1 Donner le torseur cinématique $\{ \mathcal{V}(4/0) \}$ au point G.

Question 2 *Déterminer* $\Gamma(G \in 4/0)$.

Corrigé voir 48.

1.2 Modéliser la cinématique d'un ensemble de solides

Exercice 25 - Mouvement T - *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 Quel est le mouvement de 1 par rapport à 0.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de 1 par rapport à 0.

Exercice 26 - Mouvement R *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 Quel est le mouvement de 1 par rapport à 0.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **1** par rapport à **0**.

Exercice 27 - Mouvement TT - *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 *Quel est le mouvement de 2 par rapport à 0.*

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un cercle de centre A et de rayon R.

Question 3 Donner les expressions de $\lambda(t)$ et $\mu(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\lambda(t)$, $\mu(t)$ et la trajectoire générée.

Exercice 28 - Mouvement RR *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 *Donner l'ensemble des positions accessibles par le point C*.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un segment entre les points [-25, 25] et [25, 25].

Question 3 Donner les expressions de $\theta(t)$ et $\varphi(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \,\mathrm{m\,s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\varphi(t)$ et la trajectoire générée.

Exercice 29 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Exercice 30 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 *Donner l'ensemble des positions accessibles par le point B.*

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \,\mathrm{m\,s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Exercice 31 - Mouvement RR 3D **

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 Donner l'ensemble des positions accessibles par le point B.


```
Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de 2 par
rapport à 0.
Exercice 32 - Mouvement RR 3D **
     C2-05
             Pas de corrigé pour cet exercice.
     B2-13
   Question 1 Donner l'ensemble des positions accessibles par le point B.
   Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de 2 par
rapport à 0.
Exercice 33 - Mouvement T - *
     B2-13 Pas de corrigé pour cet exercice.
   Question 1 Donner le torseur cinématique \{\mathcal{V}(1/0)\} au point B.
   Question 2 Déterminer \Gamma(B \in 1/0).
Exercice 34 - Mouvement R *
     B2-13
   Pas de corrigé pour cet exercice.
   Question 1 Déterminer V(B \in 1/0) par dérivation vectorielle ou par composition.
   Question 2 Donner le torseur cinématique \{ \mathcal{V}(1/0) \} au point B.
   Question 3 Déterminer \Gamma(B \in 1/0).
Exercice 35 - Mouvement TT - *
     B2-13 Pas de corrigé pour cet exercice.
   Question 1 Déterminer V(C \in 2/0) par dérivation vectorielle ou par composition.
   Question 2 Donner le torseur cinématique \{ \mathcal{V}(2/0) \} au point C.
   Question 3 Déterminer \Gamma(C \in 2/0).
Exercice 36 - Mouvement RR *
    B2-13 Pas de corrigé pour cet exercice.
   Question 1 Déterminer V(C \in 2/0) par dérivation vectorielle ou par composition.
   Question 2 Donner le torseur cinématique \{ \mathcal{V}(2/0) \} au point C.
   Question 3 Déterminer \Gamma(C \in 2/0).
Exercice 37 - Mouvement RT *
     B2-13 Pas de corrigé pour cet exercice.
   Question 1 Déterminer V(C \in 2/0) par dérivation vectorielle ou par composition.
   Question 2 Donner le torseur cinématique \{ \mathcal{V}(2/0) \} au point C.
   Question 3 Déterminer \Gamma(C \in 2/0).
Exercice 38 - Mouvement RT *
     B2-13 Pas de corrigé pour cet exercice.
   Question 1 Déterminer V(C \in 2/0) par dérivation vectorielle ou par composition.
   Question 2 Donner le torseur cinématique \{ \mathcal{V}(2/0) \} au point C.
   Question 3 Déterminer \Gamma(C \in 2/0).
Exercice 39 - Mouvement RR 3D *
     B2-13 Pas de corrigé pour cet exercice.
   Question 1 Déterminer V(C \in 2/0) par dérivation vectorielle ou par composition.
   Question 2 Donner le torseur cinématique \{ \mathcal{V}(2/0) \} au point C.
   Question 3 Déterminer \Gamma(C \in 2/0).
Exercice 40 - Mouvement RR 3D *
     B2-13 Pas de corrigé pour cet exercice.
   Question 1 Déterminer V(C \in 2/0) par dérivation vectorielle ou par composition.
   Question 2 Donner le torseur cinématique \{ \mathcal{V}(2/0) \} au point C.
   Question 3 Déterminer \Gamma(C \in 2/0).
Exercice 41 - Mouvement RT - RSG **
     B2-13 Pas de corrigé pour cet exercice.
   Question 1 Déterminer V(B \in 2/0).
   Question 2 Donner le torseur cinématique \{ \mathcal{V}(2/0) \} au point B.
   Question 3 Déterminer \Gamma(B \in 2/0).
Exercice 42 - Pompe à palettes *
     B2-13 Pas de corrigé pour cet exercice.
```

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point B.

Question 2 Déterminer $\Gamma(B \in 2/0)$.

Exercice 43 - Pompe à pistons radiaux *

B2-13 Pas de corrigé pour cet exercice.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 *Donner le torseur cinématique* $\{\mathcal{V}(2/0)\}$ *au point B*.

Question 2 Déterminer $\Gamma(B \in 2/0)$.

Exercice 44 - Système bielle manivelle *

B2-13 Pas de corrigé pour cet exercice.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 *Donner le torseur cinématique* $\{\mathcal{V}(2/0)\}$ *au point B*.

Question 2 Déterminer $\Gamma(C \in 2/0)$.

Exercice 45 - Système de transformation de mouvement *

B2-13 Pas de corrigé pour cet exercice.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(3/0) \}$ *au point B*.

Question 2 *Déterminer* $\Gamma(B \in 3/0)$.

Exercice 46 - Barrière Sympact **

B2-13 Pas de corrigé pour cet exercice.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 En utilisant la condition de roulement sans glissement au point I, déterminer $\gamma(t)$ et $\dot{\gamma}(t)$.

Question 2 Donner le torseur cinématique $\{\mathcal{V}(3/2)\}$ au point B.

Exercice 47 – Système 4 barres ***

B2-13 Pas de corrigé pour cet exercice.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice \ref{GG}). On définit le point G tel que $\overrightarrow{OG} = L\overrightarrow{x_1}$.

Question 1 Donner le torseur cinématique $\{ \mathcal{V}(1/0) \}$ au point G.

Question 2 Déterminer $\Gamma(G \in 1/0)$.

Exercice 48 - Maxpid ***

B2-13 Pas de corrigé pour cet exercice.

Par ailleurs $a = 107,1 \,\mathrm{mm}$, $b = 80 \,\mathrm{mm}$, $c = 70 \,\mathrm{mm}$, $d = 80 \,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

On définit le point G tel que $\overrightarrow{OG} = L\overrightarrow{x_4}$.

Question 1 Donner le torseur cinématique $\{ \mathcal{V}(4/0) \}$ au point G.

Question 2 *Déterminer* $\Gamma(G \in 4/0)$.