LIST OF FIGURES

Figure No.	Figure Name	Page No.
Figure 3.1	Three phase power supply	8
Figure 3.2	Three phase power supply sub-system	9
Figure 3.3	Three phase Programmable voltage	9
	source	
Figure 3.4	Three Phase V-I Measurement	10
Figure 3.5	Series RLC Branch	11
Figure 3.6	Vdc	12
Figure 3.7	Current Measurement	13
Figure 3.8	Three Phase Rectifier	15
Figure 3.9	AC-DC converter sub-system	16
Figure 3.10	MOSFET	16
Figure 3.11	Repeating Sequence	19
Figure 3.12	DEMUX	20
Figure 3.13	Relational Operator	21
Figure 3.14	NOT gate	22
Figure 3.15	Current Measurement	23
Figure 3.16	Voltage Measurement	24
Figure 3.17	Close loop control	25
Figure 3.18	Simulation Diagram	26

Figure 3.19	MUX	27
Figure 3.20	DEMUX	28
Figure 3.21	Add block	29
Figure 3.22	Gain Block	31
Figure 3.23	PID controller	32
Figure 3.24	abc to dq0	34
Figure 3.25	dq0 to abc	35
Figure 3.26	Diode	36
Figure 3.27	PWM Generator	39
Figure 3.28	Saturation	40
Figure 3.29	MATLAB Function	41
Figure 3.30	Series RLC Branch	42
Figure 3.31	Battery	44
Figure 4-1	MATLAB Simulink model	46

LIST OF ABBREVIATIONS

DC – Direct Current

AC – Alternating Current

EV - Electric Vehicle

CC – Constant Current

CV – Constant voltage

SOC – State Of Charge

MSRP - Manufacturer's Suggested Retail Price

CHAdemo – Charge de Move

CCS - Combined Charging System

Vdc – Volt's Direct Current

MOSFET - Metal Oxide Semiconductor Field Effect Transistor

MUX - MultiplexerS

DEMUX – Demultiplexer

PID – Proportional Integral Derivative Controller

PWM – Pulse Width Modulation

RLC circuit – Resistor Inductor Capacitor Block

ABSTRACT

Due to environmental problems in the world, the need for electric vehicles is increasing. While the transition to Electric Vehicles continues, the acceleration of this process plays an important role in reducing environmental problems. In order to accelerate this transition, charging units should become widespread and charging time should be reduced. Higher power charging units are needed to reduce charging time. This is where DC (Direct Current) fast charging units come into play.

In this study, the charging process of electric vehicles, the behavior of the DC fast charging unit on the battery and the control systems are modeled in MATLAB/Simulink environment. The designed model represents the electric vehicle battery charging system that will charge electric vehicles by using DC fast Charging System. The simulation is integrated according to the DC level-3 charging conditions. The system model consists of three phase power source, 1 AC (AC Current)/DC converter, 1 buck converter and controlling algorithms to charge electric vehicles and EV batteries. The system model includes the design methods (AC/DC-DC/DC) design and different control strategies) and descriptions of these components.

The simulation result shows that the EV battery is charged with Constant Current (CC) charging when battery SOC is less than 80%. Constant Voltage (CV) charging method is used to charge the battery when SOC of battery is more than 80%. This is done to avoid overcharging of battery which further reduces battery life. Thus, it offers positive outputs about the integration of DC fast charging units, which will increase rapidly in the future, into the power system and how this process should be established. DC fast charging is the future of charging infrastructure and it will also give boost to adoption of EVs.