1 Risposta indiciale

Tempo di salita, T_s . Definito come il tempo necessario nella risposta al gradino per passare dal 10% al 90% del valore di regime, ovvero primo istante di tempo in cui la risposta assume il valore di regime.

Tempo di assestamento, T_a . Definito come il primo istante di tempo in cui la risposta differisce di un valore ϵ prefissato rispetto al valore di regime. Valori tipici di ϵ sono 2% oppure al 5% di $|y_r|$

Sovrelongazione, \hat{s} . Definito come la differenza tra il valore massimo della risposta ed il valore di regime, normalizzato rispetto al valore di regime

2 sistemi del primo ordine

$$F(s) = \frac{1}{s+p}, \qquad p > 0$$

2.1 Tempo di salita

Per sistemi del primo ordine abbiamo che la risposta al gradino è

$$y_f(s) = \frac{1}{s(s+p)} = \frac{1}{ps} - \frac{1}{p(s+p)}$$

di conseguenza

$$y_f(t) = \left(-\frac{1}{p}e^{-pt} + \frac{1}{p}\right)\delta_{-1}(t)$$

Il tempo di salita è quindi dato da $T_s = t_2 - t_1$, dove

$$\frac{1}{p}e^{-pt_1} = 0.9\frac{1}{p}, \qquad \frac{1}{p}e^{-pt_2} = 0.1\frac{1}{p} \implies e^{-p(t_1 - t_2)} = 9$$

Di conseguenza $p(t_2 - t_1) = ln(9)$ da cui

$$T_s = \frac{ln(9)}{p} \simeq \frac{2.2}{p}$$

2.2 Tempo di assestamento

Supponendo di fissare $\epsilon = m\%$ si $|y_r|$, si ha per sistemi del primo ordine

$$\frac{1}{p}e^{-pT_a} = \frac{m}{100p} \quad \Rightarrow \quad e^{-pT_a} = \frac{m}{100}$$

da cui $pT_a = ln(100/m)$,

$$T_a = \frac{\ln(100/m)}{p}$$

3 Sistemi del secondo ordine

3.1 Poli reali

$$F(s) = \frac{1}{(s+p_1)(s+p_2)}, \qquad p_2 > p_1 > 0$$

Risposta al gradino

$$y_f(s) = \frac{1}{s(s+p_1)(s+p_2)} = \frac{1}{p_1 p_2 s} - \frac{1}{(s+p_1)(p_2-p_1)p_1} + \frac{1}{(s+p_2)p_2(p_2-p_1)}$$

da cui

$$y_f(t) = \left(\frac{1}{p_1 p_2} - \frac{1}{(p_2 - p_1)p_1} e^{-p_1 t} + \frac{1}{p_2 (p_2 - p_1)} e^{-p_2 t}\right) \delta_{-1}(t)$$

3.1.1 tempo di salita

In questo caso si calcola come $T_s = t_2 - t_1$,

$$-\frac{1}{(p_2 - p_1)p_1}e^{-p_1t_1} + \frac{1}{p_2(p_2 - p_1)}e^{-p_2t_1} = -0.9\frac{1}{p_1p_2},$$

$$-\frac{1}{(p_2 - p_1)p_1}e^{-p_1t_2} + \frac{1}{p_2(p_2 - p_1)}e^{-p_2t_2} = -0.1\frac{1}{p_1p_2}$$

Se $p_2 >> p_1$, si ha che il tempo di salita è determinato da p_1 . Quindi

$$T_s \simeq \frac{2.2}{p_1}$$

3.1.2 tempo di assestamento

Supponendo $\epsilon = m\%$ di $|y_r|$, si ha che

$$\frac{1}{(p_2 - p_1)p_1} e^{-p_1 T_a} - \frac{1}{p_2(p_2 - p_1)} e^{-p_2 T_a} \le \frac{m}{100p_1 p_2}$$

da cui

$$p_2 e^{-p_1 T_a} - p_1 e^{-p_2 T_a} \le \frac{m(p_2 - p_1)}{100}$$

Se $p_2 >> p_1$,

$$T_a \simeq -\frac{ln(\frac{m(p_2-p_1)}{100p_2})}{n_1}$$

3.2 Poli complessi coniugati

$$F(s) = \frac{1}{s^2 + 2\zeta\omega_n s + \omega_n^2}, \qquad 0 < \zeta < 1$$

Le radici sono $\lambda_{1,2} = \alpha \pm j\omega$, con $\alpha = -\zeta \omega_n$, $\omega = \omega_n \sqrt{1 - \zeta^2}$.

Risposta al gradino

$$y_f(s) = \frac{1}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)} = \frac{1}{\omega_n^2 s} + \frac{As + B}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Per il calcolo dei coefficienti A e B

$$B + A = 1 - \frac{1 + 2\zeta\omega_n + \omega_n^2}{\omega_n^2}$$
$$B - A = -1 + \frac{1 - 2\zeta\omega_n + \omega_n^2}{\omega_n^2}$$

da cui $B = -\frac{2\zeta}{\omega_n}$, $A = -\frac{1}{\omega_n^2}$. Di conseguenza

$$y_f(s) = \frac{1}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)} = \frac{1}{\omega_n^2 s} + \frac{-\frac{1}{\omega_n^2} s - \frac{2\zeta}{\omega_n}}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{1}{\omega_n^2 s} + \frac{-\frac{1}{\omega_n^2} (s + \zeta\omega_n) - \frac{\zeta}{\omega_n}}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

da cui

$$y_f(t) = \left(\frac{1}{\omega_n^2} - e^{-\zeta \omega_n t} \left(\frac{1}{\omega_n^2} cos\left(\omega_n \sqrt{1 - \zeta^2}t\right) + \frac{\zeta}{\omega_n^2 \sqrt{1 - \zeta^2}} sen\left(\omega_n \sqrt{1 - \zeta^2}t\right)\right)\right) \delta_{-1}(t)$$

$$= \left(\frac{1}{\omega_n^2} - \frac{1}{\omega_n^2 \sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} sen\left(\omega_n \sqrt{1 - \zeta^2}t + \varphi\right)\right) \delta_{-1}(t), \qquad \varphi = arctg(\frac{\sqrt{1 - \zeta^2}}{\zeta})$$

3.2.1 Tempo di salita

In questo caso, dalla precedente relazione, si ha che il tempo di salita soddisfa la relazione

$$\frac{1}{\omega_n^2 \sqrt{1-\zeta^2}} e^{-\zeta \omega_n T_s} sen\left(\omega_n \sqrt{1-\zeta^2} T_s + \varphi\right) = 0$$

ed è pertanto $T_s = \frac{1}{\omega_n \sqrt{1-\zeta^2}} \left(\pi - arctg(\frac{\sqrt{1-\zeta^2}}{\zeta})\right)$

3.2.2 Tempo di assestamento

Supponendo di fissare $\varepsilon=m\%$ di $|y_r|,\,T_a$ il primo istante per il quale risulta

$$\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n T_a}|sen(\omega_n\sqrt{1-\zeta^2}T_a+\varphi)| \le \frac{m}{100}$$

Poiché

$$\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_nT_a}|sen(\omega_n\sqrt{1-\zeta^2}T_a+\varphi)| \leq \frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_nT_a}$$

inponendo il vincolo conservativo $\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_nT_a}\leq \frac{m}{100}$ risulta

$$T_a \le -\frac{\ln(0.01m\sqrt{1-\zeta^2})}{\zeta\omega_n}$$

3.2.3 Sovraelongazione

Si calcola il tempo T_p , in cui l'uscita ha valore massimo, quindi tale che

$$\frac{1}{\omega_n^2 \sqrt{1-\zeta^2}} \omega_n e^{-\zeta \omega_n T_p} \left(\zeta sen \left(\omega_n \sqrt{1-\zeta^2} T_p + \varphi \right) - cos \left(\omega_n \sqrt{1-\zeta^2} T_p + \varphi \right) \sqrt{1-\zeta^2} \right) = 0$$

dove $\varphi = arctan(\frac{\sqrt{1-\zeta^2}}{\zeta})$, da cui

$$\zeta tan\left(\omega_n\sqrt{1-\zeta^2}T_p+\varphi\right)-\sqrt{1-\zeta^2}=0$$
 $T_p=\frac{\pi}{\omega_n\sqrt{1-\zeta^2}}$

Ne segue che la sovraelongazione è data da

$$\hat{s} = \frac{y_{max} - y_r}{y_r} = -\frac{1}{\omega_n^2 \sqrt{1 - \zeta^2}} e^{-\zeta \omega_n T_p} sen\left(\omega_n \sqrt{1 - \zeta^2} T_p + \varphi\right) \omega_n^2$$

$$= -\frac{1}{\sqrt{1 - \zeta^2}} e^{-\frac{\pi \zeta}{\sqrt{1 - \zeta^2}}} sen\left(\pi + \varphi\right) = e^{-\frac{\pi \zeta}{\sqrt{1 - \zeta^2}}}$$

4 Problemi

Per i seguenti sistemi

$$F_1(s) = \frac{1}{s+20}, \quad F_2(s) = \frac{1}{(s+10)(s+20)}, \quad F_3(s) = \frac{1}{s^2+6s+144}$$

si calcolino le espressioni della risposta indiciale, ed i relativi parametri caratteristici: il tempo di salita, il tempo di assestamento (con $\epsilon=0.02|y_r|$) e la sovraelongazione. Si verifichino i risultati con matlab