Dplyr 101

Fabrice Rossi

```
here::i_am("git-101-2024.Rproj")
library(here)
library(vroom)
library(ggplot2)
theme_set(theme_bw())
```

Data import

```
white_wine <- vroom(here("data", "winequality-white.csv"))

Number of observations 4898
Number of variables 12
```

```
ggplot(white_wine, aes(x = quality)) +
  geom_bar()
```


Data transformation

```
library(dplyr)
```

Column extraction

```
class(white_wine)

[1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"

## class + column extraction
class(white_wine$quality)
```

[1] "numeric"

```
## column extraction and then class
white_wine$quality |> class()
```

[1] "numeric"

```
white_wine[["quality"]] |> class()
```

[1] "numeric"

```
white_wine$`fixed acidity` |> class()
```

[1] "numeric"

```
white_wine[["fixed acidity"]] |> class()
```

[1] "numeric"

```
## dplyr style
white_wine |>
  pull(quality) |>
  class()
```

[1] "numeric"

```
class(pull(white_wine, quality))
```

[1] "numeric"

With dplyr, pull() is the column extraction function, somewhat similar to the dollar \$ operator and to the double bracket [[]].

Column recoding

This ggplot call gives a warning because quality is numeric which is not supported for bar filling in geom_bar().

```
ggplot(white_wine, aes(x = quality, fill = quality)) +
  geom_bar()
```

```
white_wine$quality <- factor(white_wine$quality,
  ordered = TRUE,
  levels = 3:9
) ## 3:9 means 3, 4, 5, ..., 9
white_wine$quality <- white_wine$quality |> factor(
  ordered = TRUE,
  levels = 3:9
) ## 3:9 means 3, 4, 5, ..., 9
```

```
white_wine <- white_wine |>
  mutate(quality = factor(quality, ordered = TRUE, levels = 3:9))
```

```
ggplot(white_wine, aes(x = quality, fill = quality)) +
geom_bar()
```


Computing new columns

This is again a task for mutate().

Sub-setting

Selecting columns

Column sub-setting is done with the select() function.

```
white_wine |>
  select(`fixed acidity`, `volatile acidity`, `citric acid`, pH)
```

```
# A tibble: 4,898 x 4
   `fixed acidity` `volatile acidity` `citric acid`
                                                        Нq
                                               <dbl> <dbl>
             <dbl>
                                <dbl>
               7
                                 0.27
                                                0.36 3
1
2
               6.3
                                 0.3
                                                0.34 3.3
3
               8.1
                                 0.28
                                                0.4
                                                      3.26
               7.2
 4
                                 0.23
                                                0.32 3.19
               7.2
5
                                 0.23
                                                0.32 3.19
6
               8.1
                                 0.28
                                                0.4
                                                      3.26
7
               6.2
                                 0.32
                                                0.16 3.18
8
               7
                                 0.27
                                                0.36 3
9
               6.3
                                 0.3
                                                0.34 3.3
10
               8.1
                                 0.22
                                                0.43 3.22
# i 4,888 more rows
```

Side note: we can display nicely data frames with the knitr::kable() function but the original data frame is too big, so we select the first 10 rows with slice().

```
white_wine |>
  select(`fixed acidity`, `volatile acidity`, `citric acid`, pH) |>
  slice(1:10) |>
  knitr::kable()
```

fixed acidity	volatile acidity	citric acid	рН
7.0	0.27	0.36	3.00
6.3	0.30	0.34	3.30

fixed acidity	volatile acidity	citric acid	рН
8.1	0.28	0.40	3.26
7.2	0.23	0.32	3.19
7.2	0.23	0.32	3.19
8.1	0.28	0.40	3.26
6.2	0.32	0.16	3.18
7.0	0.27	0.36	3.00
6.3	0.30	0.34	3.30
8.1	0.22	0.43	3.22

Positional selection based on the indices of the columns.

```
white_wine |>
select(1:3)
```

Columns can also be selected based on conditions on their names or on their nature.

```
white_wine |>
select(contains("acid") | pH)
```

Selection based on the content.

```
white_wine |>
select(where(is.factor))
```

```
white_wine |>
select(where(\((x) is.numeric(x) & (max(x) < 5)))</pre>
```

Selecting rows

Simple selection is based on indices with slice().

```
white_wine |>
  slice(1:5, 150:155) |>
  select(alcohol, quality) |>
  knitr::kable()
```

alcohol	quality
8.8	6
9.5	6
10.1	6
9.9	6
9.9	6
9.4	6
11.5	7
9.9	6
9.4	6
10.4	5
9.7	6

Condition based selection uses filter().

```
white_wine |>
  filter(alcohol > 14) |>
  select(alcohol, quality, `citric acid`, `residual sugar`) |>
  knitr::kable()
```

alcohol	quality	citric acid	residual sugar
14.20	7	0.28	1.6
14.05	7	0.01	8.4

Simple application

```
ggplot(white_wine, aes(x=alcohol)) +
  geom_density(bw="sj") +
  geom_rug(alpha = 0.1)
```



```
white_wine |>
  filter(alcohol >= 13, `citric acid` < 1) |>
  ggplot(aes(x=`citric acid`, y=`residual sugar`, color = alcohol)) +
  geom_point(alpha=0.75) +
  scale_color_viridis_c()
```



```
white_wine |>
  filter(alcohol <= 9) |>
  ggplot(aes(x=`citric acid`, y=`residual sugar`, color = alcohol)) +
  geom_point(alpha=0.75) +
  scale_color_viridis_c()
```


Aggregation functions

AKA summary functions: turn a possibly long vector into a single value (still a vector!)

- standard statistics: max(), min(), median(), etc.
- logical operations: any() and all()
- counts and ranks: n()

Simple summary use

Based on the summarise() function or inside a mutate() call.

```
white_wine |>
summarise(
   med_alcohol = median(alcohol),
   sd(alcohol))
```

```
white_wine |>
  select(alcohol) |>
 mutate(m_a = median(alcohol))
# A tibble: 4,898 x 2
  alcohol m_a
     <dbl> <dbl>
      8.8 10.4
 1
 2
      9.5 10.4
 3
     10.1 10.4
 4
     9.9 10.4
 5
      9.9 10.4
 6
    10.1 10.4
 7
     9.6 10.4
 8
      8.8 10.4
 9
      9.5 10.4
10
     11
           10.4
# i 4,888 more rows
white_wine |>
  select(alcohol) |>
 mutate(a_m_median = alcohol - median(alcohol),
         .keep = "none")
# A tibble: 4,898 x 1
  a_m_median
        <dbl>
      -1.6
 1
 2
      -0.9
 3
      -0.300
 4
      -0.5
 5
      -0.5
 6
      -0.300
 7
      -0.800
 8
      -1.6
 9
      -0.9
10
        0.600
# i 4,888 more rows
```

```
white_wine |>
  select(alcohol) |>
  mutate(na = (alcohol - mean(alcohol))/sd(alcohol),
         na_r = (alcohol - median(alcohol))/IQR(alcohol),
         .keep = "none")
# A tibble: 4,898 x 2
       na
          na_r
    <dbl> <dbl>
 1 -1.39 -0.842
 2 -0.824 -0.474
 3 -0.337 -0.158
 4 -0.499 -0.263
 5 -0.499 -0.263
 6 -0.337 -0.158
 7 -0.743 -0.421
 8 -1.39 -0.842
9 -0.824 -0.474
10 0.395 0.316
# i 4,888 more rows
white_wine |>
  summarise(
   mean(alcohol),
   sd(alcohol),
    median(alcohol),
    IQR(alcohol))
# A tibble: 1 x 4
  `mean(alcohol)` `sd(alcohol)` `median(alcohol)` `IQR(alcohol)`
                                            <dbl>
            <dbl>
                          <dbl>
                                                           <dbl>
1
             10.5
                           1.23
                                             10.4
                                                              1.9
```

More complex summary functions

Essentially quantile().

```
quantile(white_wine$`residual sugar`)
```

```
0% 25% 50% 75% 100%
 0.6 1.7 5.2 9.9 65.8
quantile(white_wine$`residual sugar`, probs = seq(0, 1, 0.1))
  0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
 0.6 1.2 1.5 2.0 3.4 5.2 7.0 8.6 11.2 14.0 65.8
mean(white_wine$`residual sugar`)
[1] 6.391415
white_wine |>
  summarise(quantile(`residual sugar`))
Warning: Returning more (or less) than 1 row per `summarise()` group was deprecated in
dplyr 1.1.0.
i Please use `reframe()` instead.
i When switching from `summarise()` to `reframe()`, remember that `reframe()`
  always returns an ungrouped data frame and adjust accordingly.
# A tibble: 5 x 1
  `quantile(\`residual sugar\`)`
                           <dbl>
1
                             0.6
2
                             1.7
3
                             5.2
4
                             9.9
                            65.8
5
white_wine |>
 reframe(quantile(`residual sugar`))
# A tibble: 5 x 1
  `quantile(\`residual sugar\`)`
                           <dbl>
1
                             0.6
2
                             1.7
3
                             5.2
4
                             9.9
5
                            65.8
```

```
white_wine |>
  reframe((quantile(`residual sugar`)), mean(`residual sugar`))
# A tibble: 5 x 2
  `(quantile(\`residual sugar\`))` `mean(\`residual sugar\`)`
                              <dbl>
                                                          <dbl>
                                                           6.39
1
                                0.6
2
                                                           6.39
                                1.7
3
                                5.2
                                                           6.39
4
                                9.9
                                                           6.39
5
                               65.8
                                                           6.39
```

To not use reframe:

Group by

```
white_wine |>
  summarise(median(`residual sugar`),
            .by = quality)
# A tibble: 7 x 2
  quality `median(\`residual sugar\`)`
  <ord>
                                  <dbl>
                                   5.3
1 6
2 5
                                   7
3 7
                                   3.65
4 8
                                   4.3
5 4
                                   2.5
6 3
                                   4.6
7 9
                                   2.2
white_wine |>
  summarise(median(`residual sugar`),
```

.by = quality) |>

arrange(quality)

```
# A tibble: 7 x 2
 quality `median(\`residual sugar\`)`
  <ord>
                                 <dbl>
1 3
                                  4.6
2 4
                                  2.5
3 5
                                  7
4 6
                                  5.3
5 7
                                  3.65
6 8
                                  4.3
7 9
                                  2.2
white_wine |>
  summarise(median(`residual sugar`),
           n(),
            .by = quality) |>
  arrange(quality)
# A tibble: 7 x 3
 quality `median(\`residual sugar\`)` `n()`
  <ord>
                                 <dbl> <int>
1 3
                                  4.6
                                          20
2 4
                                  2.5
                                         163
3 5
                                  7
                                        1457
4 6
                                  5.3 2198
5 7
                                  3.65 880
6 8
                                  4.3
                                         175
7 9
                                  2.2
                                         5
white_wine |>
 mutate(ha = alcohol >= 13 ) |> ## ha stands for high alcohol
  summarise(median(`residual sugar`),
           n(),
            .by = ha)
# A tibble: 2 x 3
        `median(\`residual sugar\`)` `n()`
 ha
  <1g1>
                               <dbl> <int>
1 FALSE
                                5.3
                                     4760
2 TRUE
                                2.95 138
```

```
white_wine |>
  mutate(alcohol_class = cut(alcohol, breaks=c(7, 9, 10, 12, 13, 15)) ) |> ## breaks are cut
  summarise(median(`residual sugar`),
            n(),
            .by = alcohol_class)
# A tibble: 5 x 3
  alcohol_class `median(\`residual sugar\`)` `n()`
                                       <dbl> <int>
1 (7,9]
                                        13.0
                                              502
2 (9,10]
                                         7.8 1583
3 (10,12]
                                         2.8 2102
4 (12,13]
                                         3
                                               609
5 (13,15]
                                         2.8 102
white_wine |>
  mutate(alcohol_class = cut(alcohol, breaks=c(7, 9, 10, 12, 13, 15),
                             ordered_results = TRUE)) |>
  summarise(median(`residual sugar`),
            n(),
            .by = alcohol_class)
# A tibble: 5 x 3
 alcohol_class `median(\`residual sugar\`)` `n()`
  <fct>
                                       <dbl> <int>
1 (7,9]
                                        13.0
                                              502
2 (9,10]
                                         7.8 1583
3 (10,12]
                                         2.8 2102
4 (12,13]
                                         3
                                               609
5 (13,15]
                                         2.8
                                              102
white_wine |>
  mutate(alcohol_class = cut(alcohol, breaks=c(7, 9, 10, 12, 13, 15),
                             ordered_results = TRUE)) |>
  ggplot(aes(x=alcohol_class)) +
  geom_bar()
```


ggplot(white_wine,aes(x=alcohol,y=quality))+
 geom_boxplot()

