Лабораторная работа №402

Губанов Пётр, С01-019 $13 \ {\rm октябр} \ 2023 \ {\rm г}.$

2. Задания к допуску.

- <u>2.1.</u> Определить максимальную длительность задержки модуля ждущего генератора WGMT в Тсе. T_{ce} меняет своё значение через MT-1 промежутков времени длительностью T_{ce}
- <u>2.2.</u> Начертить в тетради временные диаграммы модуля AGNMT генератора периодической последовательности импульсов с периодом N^* Tce и длительностью MT^* Tce при N=MT и N< MT.

<u>2.3.</u> Начертить в тетради временные диаграммы генератора "пилы" AGSAW при X=Y, X<Y.

<u>2.4</u> Начертить в тетради пример временных диаграмм аккумулятора Sch_Lab402d, определить значение(я) периода аккумулятора при M=500 для своего X согласно таблице.

№	NT_{clk} (Период се $T_{ce} = NT_{clk} * T_{clk}$)	N (Период $T_{per} = N * T_{ce}$)	$\mathrm{MT}($ Длительность $T_{pw} = MT*T_{ce})$	Y	X	ΔF_{M_x} [Hz]	Вариант измерения
4	5000	60	15	4	14	10	PW/T_{ce} (AGNMT)

Puc.~5.~Bременная диаграмма аккамулятора $Sch_Lab402d~c~m$ абличными данными(JC3 - PW,~ceo - $T_{ce})$

Нетрудно заметить, что в таком случае искомая величина для символа AGNMT $PW/T_{ce}=15$. Период аккамулятора определим в соответствии с формулой $M=\frac{F_{clk}}{2\cdot\Delta F_{M_x}\cdot N_{T_{clk}}}$. Отсюда получаем формулу $F_{clk}=2M\cdot\Delta F_{M_x}\cdot N_{T_{clk}}$. Подставим известные значения и получим $F_{clk}=50$ MHz.

- 3. Задание к выполнению работы.
- <u>3.1.</u> Создать модуль ждущего генератора импульса WGMNT. Выполнить синтез, провести моделирование работы генератора. Зарисовать эскизы временных диаграмм.

Puc. 6. Временная диаграмма модуля WGNMT.

<u>3.2.</u> Создать модуль AGNT выбранного варианта синтезатора периода. Выполнить синтез, провести моделирование работы генератора. Зарисовать эскизы временных диаграмм.

Puc. 7. Временная диаграмма модуля AGNT.

<u>3.3.</u> Создать модуль AGNMT генератора периодической последовательности импульсов с длительностью $MT \cdot T_{ce}$ и периодом $N \cdot T_{ce}$. Выполнить синтез, провести моделирование работы генератора. Зарисовать эскизы временных диаграмм.

Рис. 8. Временная диаграмма модуля AGNMT в случае N>MT.

<u>3.4.</u> Создать модуль AGSAW генератора "пилы от Y до X". Выполнить синтез, провести моделирование работы генератора «пилы». Зарисовать эскизы временных диаграмм.

 $Puc. \ 9. \ Временная диаграмма модуля <math>AGSAW$ в случае X > Y.

3.5. Создать модуль ACC2mE аккумулятора с емкостью 2^m . Выполнить синтез, провести моделирование работы генератора. Зарисовать эскизы временных диаграмм.

Рис. 10. Временная диаграмма модуля АСС2тЕ.

- **3.6.** Для заданных параметров создать символы всех отлаженных модулей.
- <u>3.6.1</u> Создать модуль АССМ (1.5.2). Для заданных ΔF_{M_x} и NT_{clk} определить М. Создать символ этого модуля. М = 500.

Рис. 11. Временная диаграмма модуля АССМ.

- <u>3.7.</u> Для заданных параметров создать модуль и символ DAT BL.
- **3.8.** Создать модуль и символ BUTTON BL.
- **3.9.** Создать модуль и символ Display.
- <u>3.10.</u> Из созданных символов составить схему Sch_Lab402d. Без модуля MEG_BL на вход HB[7:0] старшего байта семи сегментного индикатора Display можно подать 8 бит шины N[7:0] или MT[7:0]. Выполнить

синтез схемы Sch Lab402.

- <u>3.11.</u> Проверить работу всех генераторов импульсов. Получить и сохранить осциллограммы выходных сигналов:
 - PW и end PW ждущего генератора WGMT;
 - TC синтезатора периода AGNT или AGNTD;
 - PW генератора AGNMT;
 - Udac макета ЦАП DAC R2R;
 - СО и Мх синтезатора частоты АССМ.

Puc.~12.~Данные симуляции для модуля $Sch_Lab402d(WGMT:PW/end_Pw=JA1/JA3,~AGNT:~TC=JA4,~AGNMT:~PW=JC3,~ACCM:~CO/M_x=JD3/JD4).$

- 4. Задания к сдаче работы.
- **4.1.** Составить схему модуля MEG_BL измерителя параметров импульсов заданного варианта генератора. Модуль MEG_BL должен иметь 5 портов входов: clk, st, Inp, REF, res и один 8-и битный выходной порт Q[7:0]. Вход res должен обеспечивать «сброс» результатов измерений. Измерители частоты сигналов аккумулятора и генератора меандра не должны иметь погрешность дискретности отсчета.

Выход Q[7:0] результатов измерения модуля MEG_BL предназначен для соединения с входом старшего байта HB[7:0] модуля Display.

Запускаться измеритель должен по входу st сигналом с выхода модуля BUTTON BL.

На вход Inp должен подаваться измеряемый сигнал, а на вход REF эталон времени:

- се при измерениях длительности или периода;
- РW при измерении частоты.
- 4.2. Создать модуль MEG_BL провести моделирование его работы. Зарисовать эскиз полученных временных диаграмм.

Puc. 13. Временная диаграмма модуля MEG_BL.

Signals	Waves																																				
Time	200	ns		380	e ns			400	ns			58	e ns			66	e ns			7	99 ns			8	100 ns			9	999 ns				1 us	S			1100 ns
prev[1:0]	10 01 10	69 61	10	01 16	01	10	91	10 01	10	91	10 (1 1	0 01	10	01	10 0	1)1	10 01	10	01	10 01	1 10	01	10	91 1	01	10	01	10	01 1	0 01	10	91	10	01	10 01	10
Inp							\sqcap																					一							\Box		
REF																												\Box							ПП		
st																																					
rst																																					
Q[7:0]	00					61		92	03		94	(6)	5	96		97	(88	99		ЗА	ΘВ		вс	91	,	ΘE		8F	(1	Θ	11		12		13	14

- 4.3. Создать символ MEG_BL, вставить его в лист схемы Sch_Lab402. Создать файл конфигурации (Generate Target PROM/ACE File) загрузить в ПЛИС или ПЗУ макета. Продемонстрировать работу измерителя.
- $\underline{4.2.}$ Создать модуль MEG_BL провести моделирование его работы. Зарисовать эскиз полученных временных диаграмм.

Puc. 14. Результат симуляции итогового модуля Sch Lab402.

Signals-	Waves									
Time	1	ms 2	ms 3 r	ms 4 i		ms 6 i	ms 7 i	ns 8 i	ns 9 m	ns 10 ms
clk =0										
seg_P =1										
seg[6:0] =0	19	06	40		19	96	40		19	06
AN[3:0] =D	E	D	В	7	E	D	В	7	E	D