Interfacing With the Digital Analog World

Interfacing With the Analog World

- Most physical variables are analog, and can take on any value within a continuous range of values.
 - Normally a nonelectrical quantity.
- A transducer converts the physical variable to an electrical variable.
 - Thermistors, photo-cells, photodiodes, flow meters, pressure transducers, tachometers, etc.

- The transducer's electrical analog output is the analog input to the analog-to-digital converter.
- The ADC converts analog input to a digital output
 - Output consists of a number of bits that represent the value of the analog input.
 - The binary output from the ADC is proportional to the analog input voltage.

Digital output from the computer is connected to a **digital-to-analog converter (DAC**). Converted to a proportional analog voltage/current.

- The analog signal is often connected to some device or circuit that serves as an actuator to control the physical variable.
 - An electrically controlled valve or thermostat, etc.

Digital to Analog Conversion

Many A/D conversion methods utilize the D/A conversion process.

Converting a value represented in digital code to a voltage or current proportional

to the digital value.

•For each input number, the D/A converter output voltage is a unique value—in general:

analog output =
$$K \times$$
 digital input

...where K is the proportionality factor and is a constant value for a given DAC connected to a fixed reference voltage.

 The quantity of possible output values can be increased, and the difference between successive values decreased—by increasing the input bits. Allowing output more & more like an analog quantity that varies continuously over a range of values.

A "pseudo-analog" quantity, which approximates pure analog, referred to as analog for convenience.

Each digital input contributes a different amount to the analog output—weighted according to their position in the binary number.

D	С	В	A		V _{OUT} (V)
0	0	0	1	\rightarrow	1
0	0	1	0	\rightarrow	2
0	1	0	0	\rightarrow	4
1	0	0	0	\rightarrow	8

Weights are successively doubled
for each bit, beginning with the LSB.

 V_{OUT} can be considered to be the weighted sum of the digital inputs.

D	С	В	Α	V _{OUT}	
0 0 0 0	0 0 0 0	0 0 1 1	0 1 0 1	0 1 2 3 4 5	Volts
0	1	0	1	5	
0	1	1	0	6	
0	1	1	1	7	
1	0	0	0	8	
1	0	1	0	10	
1	0	1	1	11	
1	1	0	0	12	
1	1	0	1	13	
1	1	1	0	14	\
_1	1	1	1	15	Volts

• The **Resolution** of a D/A converter is defined as the smallest change that can occur in analog output as a result of a change in digital input.

Resolution (step size) is the same as the DAC input/output proportionality factor:

analog output = $K \times$ digital input

...where *K* is the proportionality factor and is a constant value for a given DAC connected to a fixed reference voltage.

Digital to Analog Conversion

 Many DACs can also produce negative voltages by making slight changes to the analog circuitry on the output of the DAC.

	Signed 2's Complement	DAC Inputs	DAC V _{out}
Most positive	01111111	11111111	$\sim+V_{ref}$
Zero	0000000	10000000	0 V
Most negative	1000000	00000000	$-V_{ref}$

Other DACs may have the extra circuitry built in and accept 2's complement signed numbers as inputs.

DAC Applications

- Used when a digital circuit output must provide an analog voltage or current.
 - Control—use a digital computer output to adjust motor speed or furnace temperature.
 - Automatic testing—computer generated signals to test analog circuitry.
 - Signal reconstruction—restoring an analog signal after it has been converted to digital.
 - Digital amplitude control—used to reduce the amplitude of an analog signal.
 - Serial DACs—with a built-in serial in/parallel out shift register—many have more than one DAC on the same chip.

Analog to digital Conversion

- An analog-to-digital converter takes an analog input voltage and, after a certain amount of time, produces a digital output code that represents the analog input.
 - Several important types of ADCs utilize a DAC as part of their circuitry.
- The Op amp comparator ADC

 Variations differ in how the control section continually modifies numbers in the register

General diagram of one class of ADCs.

Basic operation of ADC types:

- The START command pulse initiates the operation.
- At a rate determined by the clock, the control unit continually modifies the binary number in the register.
- The binary number in the register is converted to an analog voltage $(V_{\Delta x})$, by the DAC.
- The comparator compares V_{AX} with analog input V_A .
 - While $V_{AX} < V_A$, comparator output stays HIGH.
 - When V_{AX} exceeds V_A by at least an amount equal to V_T (threshold voltage), comparator out-put goes LOW and stops modifying the register number.
- The control logic activates the end-of-conversion signal, *EOC*, when the conversion is complete.

- One of the simplest versions of the general ADC uses a binary counter as the register and allows the clock to increment the counter one step at a time until V_{AX} > V_A.
- Called a **digital-ramp ADC** because the waveform at V_{AX} is a step-by-step ramp.

A/D resolution and accuracy.

- •Measurement error is unavoidable.
- •Reducing the step size can reduce but not eliminate potential error—called **quantization error**.
- Data Acquisition: The process by which the computer acquires digitized analog data is called *data acquisition*.
- •Acquiring a single data point's value is referred to as **sampling** the analog signal. That data point is often called a *sample*

Typical ADC Architecture for Applications

Most ADC applications fall into one of four areas:

- Precision industrial measurement.
- Voice/audio.
- Data acquisition.
- High speed.
- Analog voltage connected directly to an ADC input conversion can be adversely affected if analog voltage is changing during the conversion time.
- Stability of conversion can be improved by using a sample-and-hold (S/H) circuit.
 - To hold the analog voltage constant while the A/D conversion is taking place.
- In a computer-controlled data acquisition system the sample-and-hold switch would be controlled by a digital signal from the computer.
 - The amount of time the switch would have to remain closed is called the acquisition time

Simplified diagram of a sample-and-hold circuit.

*Control = 1 → switch closed → sample mode Control = 0 → switch open → hold mode

Applications of Analog Interfacing

Block diagram of a data acquisition system.

- A familiar application that interfaces analog devices to a digital system is a digital camera.
 - Transducer typically a charge-coupled device (CCD).
- Analog signals are read out of the CCD by shifting the electric charges through successive capacitors under the control of drivers and timing circuits.
 - Amplified (signal conditioning) and then digitized by the ADC.

- The DSP block applies image signal-processing algorithms to the digital data before storing the information in a memory device.
 - Data are usually compressed.
- Data compression is the process of encoding information with fewer bits representing the data.
 - Only works when both the sender and receiver of the information understand the specific encoding scheme.

