Flexible, 3D Fan-Out Wafer Level Packaging for Wearable Devices

Guangqi Ouyang and Subramanian S. Iyer | UCLA CHIPS

guangqiouyang@g.ucla.edu

Introduction and motivation

Packaging of wearables moves from single layer to multilayer integration

- 2nd layer: wireless charger & battery 1st layer sensors & data processing
- Low level of integration & large form factor
- Limited sensing resolution and modality
- Insufficient capability in personalized configuration
- Reduced form factor of wearables
- Enhanced performances in spatial resolution and multifunctional integration
- Addressed safety concern of batteries

Newly designed flexible 3D FOWLP for wearables

- Flexible FOWLP (FlexTrateTM)
- Backside wiring for multilayer interconnections
- Through-glass via die (TGV) as through PDMS via

Fabrication process of 3D FOWLP

2. Molding and curing of

PDMS with the 2nd carrier

3. Release of the 1st carrier

4. Corrugation and

metallization of wiring

Opening backside contacts and wiring

1. Placement of TGVs on

thermal release tape

5. Lamination of 3rd carrier

6. Release of the 2nd carrier

7. Al hard mask deposition and dry etching contact

8. Fabrication of back-RDL

Integration with second FlexTrateTM layer

9. Inkjet printing on the opening contact

10. Alignment with another sample and bonding through the silver ink

11 Release of all carriers

Results and Discussion - Backside opening of FOWLP

- 100 nm pure Al evaporated on PDMS (Base:cure agent = 10:1)/ as a hard mask
- Feature size: diameters are from 10 μm to 500 μm
- RIE dry etch samples for 20 mins
- Plasma gas flow SF6 : O2 = 80 sccm : 20 sccm

Optical image of PDMS film with patterned mask

PDMS roughness Before etch, Rs = 5.112 nm **Under mask** Rs = 5.971 nmAfter etch Rs = 16.521 nm

Results and discussion – wiring on backside of FOWLP

4-point probe measurement after the bending test at 1 mm, 1000 times is conducted for demonstrating the flexibility

Comparison of different multilayer integration methods

Methods	Fabrication process	Integration	Via materials	Conductivity (10 ⁶ S/m)	Thermal conductivity (W/m·K)	Via pitch (um)	Flexibility (mm)	Cost	Remark
Multilayer printing [1]	Inkjet printing	Monolithic, homogeneous	Conductive ink (Silver)	1-10	5-200	~ 100	Foldable	Low	Stress accumulation during fabrication
Liquid Metal Via [2]	laser drilling	Heterogeneous	E-Galn	3.4	20	> 100	< 1 mm	High	Low aspect ratio, safety, reliability
Metal pillar [3]	Pick&place	Heterogeneous	Cu	59	401	> 500	< 1 mm	Low	Alignment accuracy
TGV dielets (This work)	Pick&place	Heterogeneous	Cu	59	401	< 100	< 1 mm	Mediu m	Excellent RF performance

Conclusion and acknowledgement

- A multilayer integration structure using 3D FOWLP for flexible wearable devices is proposed
- Developed a multilayer fabrication process with
 - o TGV dies with 100 μm pitch, 7.5 aspect ratio are employed for the connection of two layers
- o Dry etching of PDMS with **maximum 0.49 μm/min** etching rate
- o Front and back side RDLs and inkjet printing of silver conductive gel process
- We would like to thank the UCLA CHIPS consortium for supporting this work! [1] Liu, Xin, et al. Journal of Microelectromechanical Systems (2021). [2] Jiang, Qin, et al. Advanced Materials Technologies (2021).
- [3] Y. Susumago et al, ECTC (2021)

