$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{6ik}{(3+2k^2)^2t_3}$	$\frac{3i\sqrt{2}k}{(3+2k^2)^2t_3}$	0	$\frac{6k^2}{(3+2k^2)^2t_3}$
$\tau_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}$	0	0	0	$-\frac{3\sqrt{2}}{(3+2k^2)^2t_3}$	$\frac{3}{(3+2k^2)^2t_3}$	0	$-\frac{3i\sqrt{2}k}{(3+2k^2)^2t_3}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+2k^2)^2t_3}$	$-\frac{3\sqrt{2}}{(3+2k^2)^2t_3}$	0	$\frac{6ik}{(3+2k^2)^2t_3}$
$\tau_{1}^{\#1}_{+\alpha\beta}$	$\frac{2i\sqrt{2}}{3kr_3+3k^3r_3}$	$\frac{i(9k^2r_3+4t_2)}{3k(1+k^2)^2r_3t_2}$	$\frac{9k^2r_3+4t_2}{3(1+k^2)^2r_3t_2}$	0	0	0	0
$\sigma_{1}^{\#2}_{+}\alpha_{\beta}$	$-\frac{2\sqrt{2}}{3k^2r_3+3k^4r_3}$	$\frac{9k^2r_3+4t_2}{3(k+k^3)^2r_3t_2}$	$-\frac{i(9k^2r_3+4t_2)}{3k(1+k^2)^2r_3t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2}{3k^2r_3}$	$-\frac{2\sqrt{2}}{3k^2r_3+3k^4r_3}$	$\frac{2i\sqrt{2}}{3kr_3+3k^3r_3}$	0	0	0	0
	$\sigma_{1}^{\#1} + ^{\alpha eta}$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_1^{\#1} + ^{\alpha \beta}$	$\sigma_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$ au_1^{\#2} +^{lpha}$

	Lagrangian density $\frac{2}{3}t_3 \; \omega_{\kappa}^{(l)} \; \omega_{\kappa \alpha}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
--	--

	$f_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{2}{3}ikt_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
	$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
	$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	٤ 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
	$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$\frac{2t_3}{3}$	$-\frac{\sqrt{2}\ t_3}{3}$	0	<u>2 i k t 3</u> 3
V.	$f_{1}^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>ikt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
t	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	1 2 3	$-\frac{1}{3}ikt_2$	0	0	0	0
_	$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{6} (9 k^2 r_3 + 4 t_2)$	$\frac{\sqrt{2} \ t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
		$\omega_1^{#1} + \alpha \beta$	$\omega_1^{#2} + \alpha^{\beta}$	$f_{1+}^{#1} + ^{\alpha\beta}$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_1^{\#2} + \alpha$

	$\omega_{0^+}^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\sharp 1}$
$\omega_{0}^{\#1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0}^{#1}$ †	$i \sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_0^{\sharp 1}$ †	0	0	0	$k^2 r_2 + t_2$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2^{+}}^{\sharp 1}\dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

	#	1	1	3	3	8	Э	2	2	24
Source constraints	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} - 2\bar{l}k\sigma_{0+}^{\#1} == 0$	$t_1^{\#2}^{\alpha} - ik \ \sigma_1^{\#1}^{\alpha} = 0$	0 ==	$\sigma_{1}^{\#1}{}^{\alpha} + 2 \ \sigma_{1}^{\#2}{}^{\alpha} = 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\sigma_{2^{-1}}^{\#1}\alpha\beta\chi==0$	$\tau_{2+}^{\#1}\alpha\beta==0$	Total #:

_	$\sigma_0^{\#1}$	$ au_0^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

	Massive particl	e
? $I^P = 0$	Pole residue:	$-\frac{1}{r_2} > 0$
3 = 0	Polarisations:	1
$\overline{k^{\mu}}$	Square mass:	$-\frac{t_2}{r_2} > 0$
?	Spin:	0
·	Parity:	Odd

Unitarity conditions $r_2 < 0 \&\& t_2 > 0$

(No massless particles)