Étale Fundamental Groups

Charlie Wu

May 28, 2024

Abstract

We discuss $\pi_1^{\text{et}}(X)$, following roughly Milne's Etalé Cohomology book, Chapter 1.5.

1 The classical fundamental group

There are two ways to define the topological fundamental group $\pi_1(X)$.

Definition 1. The fundamental group $\pi_1(X,x)$ is defined to be homotopy classes of loops based at x.

Definition 2. Let \widetilde{X} be the universal cover of X. A map of covering spaces $\alpha:\widetilde{X}\to\widetilde{X}$ is a continuous map making the diagram

commute.

Let $\operatorname{Aut}_X(\widetilde{X})$ be the group of covering maps $\widetilde{X} \to \widetilde{X}$. This is a group because of the universal property of the universal cover \widetilde{X} . The Galois correspondence for covering space theory tells us that $\operatorname{Aut}_X(\widetilde{X}) \cong \pi_1(X,x)$.

The second definition of fundamental group naturally comes equipped with the following constructions:

Let $\mathrm{Cov}(X)$ be the category of covering spaces of X with finitely many connected components, with arrows being covering space maps. Let $F:\mathrm{Cov}(X)\to\mathsf{Sets}$ be the functor which sends $\pi:Y\to X$ to $\pi^{-1}(x)$. The functor F is representable by \widetilde{X} . The group $\mathrm{Aut}_X(\widetilde{X})$ acts on $F(Y)\cong\mathrm{Hom}_X(\widetilde{X},Y)$ by $\alpha\cdot f=f\circ\alpha$ where $\alpha\in\mathrm{Aut}_X(\widetilde{X})$ and $f:\widetilde{X}\to Y$. So, F is a functor $\mathrm{Cov}(X)$ to the category of $\mathrm{Aut}_X(\widetilde{X})$ -sets, and is an equivalence of categories.

2 The Étale fundamental group

Let X be a connected scheme, and \bar{x} a geometric point of X such that the point comes from a separable field extension of k(x).

The first definition of fundamental group is clearly intractable, because loops may not exist in the category of schemes or varieties over k for general fields k. So we take the second approach, this has its own issues (namely that an algebraic universal cover does not necessarily exist).

Let FEt/X be the category of finite étale maps $\pi:Y\to X$ with arrows given by X-morphisms. We set $F:\mathsf{FEt}/X\to\mathsf{Sets}$ to be the functor sending $\pi:Y\to X$ to be $F(Y)=\mathrm{Hom}_X(\bar x,Y)$. If X is a variety over an algebraically closed field and $\bar x$ is a closed point, we have that $F(Y)=\pi^{-1}(\bar x)$ by staring at the diagram

As in analogy with the topological fundamental group, we want to define \bar{X} to be the object representing F. But this does not exist in general.

Example 3. Let $X = \mathbb{A}^1_k \setminus \{0\}$. Let $\pi : Y \to X$ be a finite étale covering. Then, dim $Y = \dim X = 1$. For all $x \in X$, there is an étale neighborhood U of x such that $Y \times_X U$ is a disjoint union of open subvarieties U_i of Y, where U_i is isomorphic to U. Therefore, Y and X are birational curves and hence they have the same genus. Therefore, $Y \cong X$.

The maps $Y \to X$ is therefore given by k-algebra morphisms $k[z, z^{-1}] \to k[z, z^{-1}]$ and hence the finite étale maps are given by $z \mapsto z^n$ for $n \neq 0$ and n coprime to $\operatorname{char}(k)$. However, there is clearly no universal cover since we cannot get a largest cover from $z \mapsto z^n$.

So, from Example 3 we have seen that the functor F is not representable in general.

Theorem 4. The functor F is pro-representable. That is, there is a collection $\widetilde{X} = (X_i)_{i \in I}$ of finite étale coverings of X where I is a directed set, such that

$$F(Y) = \varinjlim_{i \in I} \operatorname{Hom}(X_i, Y).$$

We call \widetilde{X} the universal covering space of X, and we can pick \widetilde{X} so that each X_i is Galois over X (the cover is of degree $|\operatorname{Aut}_X(X_i)|$).

Let $\phi_{ij}: X_j \to X_i$ is a finite étale map, and $f_i \in F(X_i)$. Then, we get a map $\psi_{ij}: \operatorname{Aut}_X(X_i) \to \operatorname{Aut}_X(X_j)$ defined by $\psi_{ij}(\sigma)f_i = \phi_{ij} \circ \sigma \circ f_j$.

Definition 5. The maps $X_j \to X_i$ give us a map $\operatorname{Aut}_X(X_i) \to \operatorname{Aut}_X(X_j)$ and we define the étale fundamental group to be

$$\pi_1^{\text{\'et}}(X) = \varprojlim_{i \in I} \operatorname{Aut}_X(X_i).$$

For any $Y \in \mathsf{FEt}/X$, we have an action $\mathrm{Aut}_X(Y) \times F(Y) \to F(Y)$ given by $(\sigma, g) \mapsto \sigma \circ g$. The functor F is an equivalence of categories from FEt/X to the category of $\pi_1^{\mathrm{\acute{e}t}}(X, \bar{x})$ -sets with continuous action.

Proposition 6. (a) Given any two geometric points \bar{x} and \bar{y} , there is an isomorphism $\pi_1^{\text{\'et}}(X,\bar{x}) \to \pi_1^{\text{\'et}}(X,\bar{y})$, and this isomorphism is canonical up to an inner automorphism of $\pi_1^{\text{\'et}}(X,\bar{x})$.

- (b) $\pi_1^{\text{\'et}}$ is a covariant functor of (geometric) pointed schemes (X, \bar{x}) .
- (c) Let L/k be fields of characteristic zero, and each algebraically closed. Then if X is a variety over k, we have an isomorphism $\pi_1^{\text{\'et}}(X,\bar{x}) \cong \pi_1(X_L,\bar{x})$ for any \bar{x} a geometric point of X_L . This is false for characteristic p, as we have the Artin-Schreier finite étale covers of \mathbb{A}^1 given by $Y^p Y + \alpha$ where α is a constant, and as we replace k with a larger field we have more of these covers.

3 Examples

Example 7. Let $k=\bar{k}$. We compute $\pi_1^{\text{\'et}}(\mathbb{P}^1,\bar{X})$. Let $f:Y\to\mathbb{P}^1$ be a connected finite étale cover and $\omega\in H^0(\mathbb{P}^1,\omega_{\mathbb{P}^1})$. Then, $f^*\omega$ is a 1-form with associated divisor of degree $-2\deg(f)$. But then, $2g(Y)-2=-2\deg(f)<0$ so g(Y)=0 and so $\deg(f)=1$. So, f is an isomorphism and therefore $\pi_1^{\text{\'et}}(\mathbb{P}^1,\bar{X})=1$.

We discuss the case for $k = \mathbb{C}$. To do so, we relate the classical fundamental group to the étale fundamental group through the following theorem.

Theorem 8 (Riemann Existence Theorem). The functor sending finite étale covers $\pi: Y \to X$ to finite covering maps $\pi: Y(\mathbb{C}) \to X(\mathbb{C})$ is an equivalence of categories.

Example 9. Let X be a smooth variety over \mathbb{C} . Writing $\widetilde{X} = (X_i)_{i \in I}$ as before, every finite covering space of $X(\mathbb{C})$ is a quotient of some $X_i(\mathbb{C})$. We let $x \in X(\mathbb{C})$. Then,

$$\pi_1^{\text{\'et}}(X,x) = \varprojlim_{i \in I} \operatorname{Aut}_X(X_i) = \varprojlim_{i \in I} \operatorname{Aut}_{X(\mathbb{C})}(X_i(\mathbb{C})) = \pi_1(X(\mathbb{C}),x)$$

where for a group G, $\hat{G} := \varprojlim_{N \text{ finite index. normal}} G/N$ denotes its profinite completion.

Example 10. Let $X = \operatorname{Spec} k$, and $\bar{x} = \operatorname{Spec} L$ a geometric point. We let $X = (X_i)$ where $X_i = \operatorname{Spec} F_i$ with F_i an intermediate finite Galois extension of k contained in L. Then,

$$\pi_1^{\text{\'et}}(X, \bar{x}) = \underline{\lim} \operatorname{Aut}_X(X_i) = \underline{\lim} \operatorname{Gal}(F_i/k) = \operatorname{Gal}(k^{\text{sep}}/k)$$

where k^{sep} is the separable closure of k in L.

Proposition 11. From Example 9, we see a general phenomenon: if we have an equivalence of categories $\mathsf{FEt}/X \leftrightarrow \mathsf{FEt}/Y$, then their étale fundamental groups are isomorphic.

Example 12. Let $X = \operatorname{Spec} A$, where A is Henselian, and \bar{x} a geometric point of X. Then, the equivalence of categories $\operatorname{FEt}/X \leftrightarrow \operatorname{FEt}/\operatorname{Spec} k(x)$ gives us an isomorphism $\pi_1^{\operatorname{\acute{e}t}}(X, \bar{x}) \cong \pi_1^{\operatorname{\acute{e}t}}(\operatorname{Spec} k(x), \bar{x})$.

Example 13. Let X be a proper scheme over a Henselian local ring A such that the closed fiber X_0 is geometrically connected with point \bar{x} . Then, we have an equivalence of categories FEt/X and FEt/X_0 which in turn gives us isomorphisms $\pi_1^{\mathrm{\acute{e}t}}(X,x)\cong\pi_1^{\mathrm{\acute{e}t}}(X_0,\bar{x})$.

Example 14. Let X be a smooth proper scheme over Spec A, where A is a complete DVR with residue field $k=\bar{k}$ of characteristic p. Let $K=K(\bar{A})$ where K(A) is the field of fractions of A. If X_K and the special fiber of X are connected and \bar{x} is any geometric point of X_K , then $\pi_1^{\text{\'et}}(X_K,\bar{x}) \to \pi_1^{\text{\'et}}(X,\bar{x})$ is surjective with small kernel. That is, the kernel contained in the kernel of any homomorphism of $\pi_1^{\text{\'et}}(X_K,\bar{x}) \to H$ where H is a finite group of order coprime to p.

Example 15. Let X_0 be a smooth proper curve of genus g over $k = \bar{k}$ of characteristic p. There exists a complete DVR A with residue field k and a smooth proper curve X over A such that the special fiber is X_0 with field of fractions of characteristic zero. Let K be the algebraic closure of K(A). Then, $\pi_1^{\text{\'et}}(X_0, \bar{x}) \cong \pi_1^{\text{\'et}}(X, \bar{x})$ by Example 13. And by Example 14 we know that $\pi_1^{\text{\'et}}(X_K, \bar{x}) \to \pi_1^{\text{\'et}}(X, \bar{x})$ has small kernel. Furthermore, we know that $\pi_1^{\text{\'et}}(X_K, \bar{x}) = \pi_1(X(\hat{\mathbb{C}}), x)$ where $X(\mathbb{C})$ is a genus g Riemann surface. In a diagram, it is given by

kernel
$$\longrightarrow \pi_1^{\text{\'et}}(X_K, \bar{x}) \longrightarrow \pi_1^{\text{\'et}}(X, \bar{x})$$

$$\downarrow \qquad \qquad \downarrow \sim$$

$$\pi_1(X(\hat{\mathbb{C}}), x) \qquad \qquad \pi_1^{\text{\'et}}(X_0, \bar{x})$$

This lets us compute the prime-to-p part of the étale fundamental group, where the prime-to-p part is given by

$$\varprojlim_{i\in I} \operatorname{Aut}_X(X_i)$$

with (X_i) a collection of finite étale covers of degree coprime to p.

It is given by

$$\pi_1^{\text{\'et}}(X_0, \bar{x})^{(p)} \cong \varprojlim_{[\pi_1(\Sigma_g)]:N] \text{ coprime to } p} \pi_1(\Sigma_g)/N$$

where $\pi_1(\Sigma_g) \cong \langle a_1, b_1, \dots, a_g, b_g | [a_1, b_1] \cdots [a_g, b_g] = 1 \rangle$.

Example 16. The following example and argument are from Jacob Tismerman's notes on étale cohomology.

Let X be a connected and geometrically connected variety over k. Then, we have a short exact sequence

$$1 \longrightarrow \pi_1^{\text{\'et}}(X_{\bar{k}}, \bar{x}) \stackrel{i}{\longrightarrow} \pi_1^{\text{\'et}}(X, \bar{x}) \stackrel{j}{\longrightarrow} \operatorname{Gal}(\bar{k}, k) \longrightarrow 1$$

where the map $i:\pi_1^{\text{\'et}}(X_{\bar{k}},\bar{x})\to\pi_1^{\text{\'et}}(X,\bar{x})$ is obtained by functoriality and the map $(X_{\bar{k}},\bar{x})\to(X,\bar{x})$.

1. We know that $j \circ i$ is trivial as the map $X_{\bar{k}} \to \operatorname{Spec} k$ factors through $\operatorname{Spec} \bar{k}$ which has trivial fundamental group.

2. We show injectivity of i.Let $g \in \ker(i)$ be a non-identity element. Then, there is some cover $Y_{\bar{k}}$ of $X_{\bar{k}}$ upon which g acts nontrivially. If we can find some cover Z_k of X whose base change $Z_{\bar{k}}$ contains $Y_{\bar{k}}$, then we have a contradiction since g must act trivially on Z_k because i(g) = 1.

To construct Z_k , we note that Y is finite over $X_{\bar{k}}$ and is finite type over \bar{k} , so we can find a finite étale cover Y_L over X_L where L/k is a finite Galois extension of k, and whose base change via $\operatorname{Spec} \bar{k} \to \operatorname{Spec} L$ is $Y_{\bar{k}}$.

Then for $\sigma \in \operatorname{Gal}(L/k)$, let Y_L^{σ} be the base change of Y_L along the map $\sigma : \operatorname{Spec} L \to \operatorname{Spec} L$. We define

$$Z_L = \bigcup_{\sigma \in \operatorname{Gal}(L/k)} Y_L^{\sigma}$$

and take $Z = Z_L / \operatorname{Gal}(L/k)$.

3. Surjectivity of j comes from the fact that X_L is a Galois cover of X_k and $\operatorname{Aut}_{X_k}(X_L) = \operatorname{Gal}(L/k)$. Hence, j surjects onto all finite quotients of $\operatorname{Gal}(\bar{k}/k)$ and therefore surjects onto $\operatorname{Gal}(\bar{k}/k)$ since $\operatorname{Gal}(\bar{k}/k)$ is a profinite group.

Example 17. Let $X = \mathbb{P}^1_{\mathbb{Q}} \setminus \{0, 1, \infty\}$. Then, $\pi_1^{\text{\'et}}(X_{\overline{\mathbb{Q}}}) = \pi_1^{\text{\'et}}(X_{\mathbb{C}}) = \hat{F}_2$ where F_2 is the free group on two elements. Then, by Example 16 we have the short exact sequence

$$1 \to \hat{F}_2 \to \pi_1^{\text{\'et}}(X) \to \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to 1.$$

If we can understand $\pi_1^{\text{\'et}}(X_{\mathbb{Q}})$ then we may be able to understand the absolute Galois group.