

The implementation of MODBUS in the KE2Temp is compatible with MODBUS Application Protocol Specification V1.1b. There are public and user-defined function codes implemented.

The MODBUS operates over RS485 serial transport at 9600 8N2 settings in RTU mode.

When using MODBUS hardware/software it is necessary to translate KE2 coil/register addresses to PLC/MODBUS addresses as follows: KE2 setpoint 0 (ts) would be register 1. MODBUS places register address 1 on wire as 0. Example, for Allen-Bradly software interface, to read SP ts operator would use register address 1 and PLC would output register address 0 on the wire.

Read Relay Status (MODBUS Read Coils)

This command is used to retrieve current state of the relay.

Command:

KE2Temp MODBUS Address

Function 0x01

Starting Address High

Starting Address Low

Coil Count High

Coil Count Low

CRC High

CRC Low

KE2Temp MODBUS Address is from 1 to 247.

Starting Address is always 0.

Coil Count is always 1.

Response

KE2Temp MODBUS Address

Function 0x01

Byte Count = 1

Coil Status = 1/0 (Engaged/Disengaged)

CRC High

CRC Low

Error

KE2Temp MODBUS Address

Function with Error 0x81

Exception Code 0x01 or 0x02 or 0x03

Read Set Points (MODBUS Read Holding Registers)

This command is used to read current values of the set points. There are 23 set points available in the KE2Temp device.

All setpoints are read 10x to values. It is done to utilize full resolution for temperature values. Example, when temp setpoint reads (0x03, 0x84) it means 0x0384 = 900, divided by 10 results in 90 degrees.

Setpoint Name	Address			
Temperature Setpoint	0			
Temperature Differential	1			
Maximum Compressor Starts per hour	2			
Number of Defrosts per Day	3			
Time Of Day	4 (See Note 1 below)			
Start Time of Defrost 1	5 (See Note 2 below)			
Start Time of Defrost 2	6 (See Note 2 below)			
Start Time of Defrost 3	7 (See Note 2 below)			
Start Time of Defrost 4	8 (See Note 2 below)			
Start Time of Defrost 5	9 (See Note 2 below)			
Start Time of Defrost 6	10 (See Note 2 below)			
Start Time of Defrost 7	11 (See Note 2 below)			
Start Time of Defrost 8	12 (See Note 2 below)			
Start Time of Defrost 9	13 (See Note 2 below)			
Start Time of Defrost 10	14 (See Note 2 below)			
Start Time of Defrost 11	15 (See Note 2 below)			
Start Time of Defrost 12	16 (See Note 2 below)			
Defrost Time	17			
High Alarm Offset	18			
Low Alarm Offset	19			
High and Low Alarm Delay	20			
MODBUS Address	21			
Temperature Units	22			

Command:

KE2Temp MODBUS Address

Function 0x03

Starting Address High

Starting Address Low

Set Point Count High

Set Point Count Low

CRC High

CRC Low

KE2Temp MODBUS Address is from 1 to 247.

Starting Address is from 0 to 9.

Set Point Count from 1 to 10.

Response

KE2Temp MODBUS Address

Function 0x03

Byte Count

Set Point Value High

Set Point Value Low

Set Point Value High

Set Point Value Low

CRC High

CRC Low

Error

KE2Temp MODBUS Address

Function with Error 0x83

Exception Code 0x01 or 0x02 or 0x03

NOTE 1. How To Interpret Time Setpoint 4

The two byte time return value represents upper and lower byte of 10x number of minutes lapsed. For example, 0x28 0x6E is 0x286E = 10350 decimal (it is 1035 total minutes multiplied by 10).

- 1. First, divide by 10 to get 1035 total minutes.
- 2. Second, divide by 60 to find hour count (1035/60 = 17). Hence, it is 17 hours.
- Third, find minutes. Those are the remainder of step 2 and can be found as following: minutes = total minutes – (hours * 60). For the example, it is 1035 – (17*60) = 15 minutes.

The 0x286e (10350) means 17hours 15 minutes. Mind that on the 3-digit unit's led display it will show as 17.1. Once it reaches 20 to 29 minutes, it will display 17.2 and so on.

NOTE 2. How To Interpret Time Setpoints 5 – 16

These setpoints are on hour boundaries and read 10 times the hours. For example, 0x00D2 is 210 decimal. Divided by 10 it is 21 hours.

Read Temps, System Status, Alarms (MODBUS Read Input Registers)

This command is used to read current room temperature, system state and alarms.

Command:

KE2Temp MODBUS Address

Function 0x04

Starting Address High

Starting Address Low

Register Count High

Register Count Low

CRC High

CRC Low

KE2Temp MODBUS Address is from 1 to 247.

Starting Address is always 0.

Register Count is always 3.

Response

KE2Temp MODBUS Address

Function 0x04

Byte Count 6

Room Temp High

Room Temp Low

System Status High

System Status Low

Alarms High

Alarms Low

CRC High

CRC Low

Value	System Status		
0x01	COOL		
0x02	OFF		
0x04	DEFROST		
Value	Alarm		
0x01	SENSOR OPEN		
0x02	SENSOR SHORT		

0x04	HIGH TEMP
0x08	LOW TEMP

Error

KE2Temp MODBUS Address Function with Error 0x84 Exception Code 0x01 or 0x02 or 0x03

Force Relay State (MODBUS Write Single Coil)

This command is used to directly control relay. Once this command is issued the relay operates under control of MODBUS commands regardless of system state. In order to return the relay under the system control MODBUS command Return Relay must be issued.

Command

KE2Temp MODBUS Address

Function 0x05

Starting Address High

Starting Address Low

Value High

Value Low

CRC High

CRC Low

KE2Temp MODBUS Address is from 1 to 247.

Starting Address is always 0.

Value is 0xFF00 to engage relay or 0x0000 to release relay.

Response

KE2Temp MODBUS Address

Function 0x05

Starting Address High

Starting Address Low

Value High

Value Low

CRC High

CRC Low

Error

KE2Temp MODBUS Address

Function with Error 0x85

Exception Code 0x01 or 0x02 or 0x03

Write Set Point (MODBUS Write Holding Register)

This command is used to change current values of the set points. There are 23 set points available in the KE2Temp device.

All setpoints are written 10x to values. It is done to utilize full resolution for temperature values during read operation. For write operation value has to be divisible by 10. Example, when temp setpoint is set to 90 degrees, multiply by 10 to get 900(0x384) and split into bytes (0x03, 0x84).

Setpoint Name	Controller	Address	Min	Max	Units
	Text		Value	Value	
Temperature Setpoint	ts	0	-50	100	Degree F
Temperature Differential	diF	1	1	10	Degree F
Max Comp starts per hour	CSH	2	OFF=0, 5	10	times
Number of Defrosts per Day	dPd	3	CUS = 13, 0	12	times
Time Of Day	tOd	4	0	0x3836	See Note 1
Start Time Defr. 1	d1	5	DIS=24, 0	23	See Note 2
Start Time Defr. 2	d2	6	DIS=24, 0	23	See Note 2
Start Time Defr. 3	d3	7	DIS=24, 0	23	See Note 2
Start Time Defr. 4	d4	8	DIS=24, 0	23	See Note 2
Start Time Defr. 5	d5	9	DIS=24, 0	23	See Note 2
Start Time Defr. 6	d6	10	DIS=24, 0	23	See Note 2
Start Time Defr. 7	d7	11	DIS=24, 0	23	See Note 2
Start Time Defr. 8	d8	12	DIS=24, 0	23	See Note 2
Start Time Defr. 9	d9	13	DIS=24, 0	23	See Note 2
Start Time Defr. 10	d10	14	DIS=24, 0	23	See Note 2
Start Time Defr. 11	d11	15	DIS=24, 0	23	See Note 2
Start Time Defr. 12	d12	16	DIS=24, 0	23	See Note 2
Defrost Time	dft	17	0	720	minutes
High Alarm Offset	HAO	18	1	10	Degree F
Low Alarm Offset	LAO	19	1	10	Degree F
High and Low Alarm Delay	tAd	20	1	180	min
MODBUS Address	Adr	21	1	247	
Temp Units	Unt	22	FAH=0	CEL=1	

Command

KE2Temp MODBUS Address

Function 0x06

Starting Address High

Starting Address Low

Set Point Value High

Set Point Value Low

CRC High

CRC Low

KE2Temp MODBUS Address is from 1 to 247.

Starting Address is from 0 to 9.

Value depends on Set Point (see table above).

Response

KE2Temp MODBUS Address

Function 0x06

Starting Address High

Starting Address Low

Set Point Value High

Set Point Value Low

CRC High

CRC Low

Error

KE2Temp MODBUS Address

Function with Error 0x86

Exception Code 0x01 or 0x02 or 0x03

NOTE 1. How To Set Time Setpoint 4

The two byte time value represents upper and lower byte of 10x number of minutes lapsed. For example, 0x28 0x6E is 0x286E = 10350 decimal. To set 15 hours 14 minutes follow the steps.

- 1. First, multiply hours by 60 (15 * 60 = 900).
- 2. Second, add minutes to the result (900 + 14 = 914 total minutes).
- 3. Third, multiply by 10 and convert to hex (914 * 10 = 9140 decimal = 0x23B4).

- 4. Now, the Set Point Value Low is lowest two digits B4 (if only one digit present then Set Point Value Low is that digit). The Set Point Value High is the upper digits 23 (if only one digit present then Set Point Value High is that digit). For reference, $0x145 \Rightarrow 0x01,0x45$; $0x1206 \Rightarrow 0x12,0x06$; $0x89 \Rightarrow 0x00,0x89$; $0x8 \Rightarrow 0x00,0x08$.
- 5. Send the command [Addr,0x06,0x00,0x04,0x23,0xB4,0xD1,0x4C].

NOTE 2. How To Set Time Setpoints 5 – 16

These setpoints are on hour boundaries and set 10 times the hours. For example, 21 hours multiplied by 10 is 210 decimal (0x00D2 in hex). The command would be [Addr, 0x06, 0x00,0x5,0x00,0xD2,0x19,0x96] where SP address is 0x0005 and setpoint value is 0x00D2.

Return Relay

Custom function code

This command is used to return the relay under the system control (see Force Relay command).

Command (custom)

KE2Temp MODBUS Address

Function 0x46

Relay Address High

Relay Address Low

CRC High

CRC Low

KE2Temp MODBUS Address is from 1 to 247.

Relay Address is always 0.

Response

KE2Temp MODBUS Address

Function 0x46

Relay Address High

Relay Address Low

CRC High

CRC Low

Error

KE2Temp MODBUS Address

Function with Error 0xC6

Exception Code 0x01 or 0x02 or 0x03

Standard function code

Command (standard, Write Holding Register 0x06)

KE2Temp MODBUS Address

Function 0x6

Starting Address High

Starting Address Low

Set Point Value High Set Point Value Low CRC High CRC Low

KE2Temp MODBUS Address is from 1 to 247. Starting Address is 0x007B. Set Point Value is any.

Response

KE2Temp MODBUS Address

Function 0x6
Starting Address High
Starting Address Low
Set Point Value High
Set Point Value Low
CRC High

CRC Low

Error

KE2Temp MODBUS Address Function with Error 0x86 Exception Code 0x01 or 0x02 or 0x03

FW Version

This command returns major and minor firmware version.

Custom function code

Command:

KE2Temp MODBUS Address

Function 0x48

CRC High

CRC Low

KE2Temp MODBUS Address is from 1 to 247.

Response

KE2Temp MODBUS Address

Function 0x48

Byte Count = 4

Major Version High

Major Version Low

Minor Version High

Minor Version Low

CRC High

CRC Low

Error

KE2Temp MODBUS Address

Function with Error 0xC8

Exception Code 0x01 or 0x02 or 0x03

Standard function code

Command (standard, Read Holding Register 0x03)

KE2Temp MODBUS Address

Function 0x3

Starting Address High

Starting Address Low

Set Point Count High

Set Point Count Low

CRC High

CRC Low

KE2Temp MODBUS Address is from 1 to 247. Starting Address is 0x0078. Set Point Count is 0x0002.

Response

KE2Temp MODBUS Address

Function 0x03

Byte Count = 4

Major Version High

Major Version Low

Minor Version High

Minor Version Low

CRC High

CRC Low

Error

KE2Temp MODBUS Address Function with Error 0x83

Exception Code 0x01 or 0x02 or 0x03

Force Next Sequence

This command forces defrost state to change. When issued in COOL/OFF mode this command forces the system into defrost. Further defrost functionality is according to the defrost schedule. When issued in DEFROST mode this command terminates defrost. Further defrost functionality is according to the defrost schedule.

Custom function code

Command:

KE2Temp MODBUS Address Function 0x47 CRC High CRC Low

KE2Temp MODBUS Address is from 1 to 247.

Response

KE2Temp MODBUS Address Function 0x47 CRC High CRC Low

Error

KE2Temp MODBUS Address Function with Error 0xC7 Exception Code 0x01 or 0x02 or 0x03

Standard function code

Command (standard, Write Holding Register 0x06)

KE2Temp MODBUS Address

Function 0x6

Starting Address High

Starting Address Low

Set Point Value High

Set Point Value Low

CRC High

CRC Low

KE2Temp MODBUS Address is from 1 to 247. Starting Address is 0x007C. Set Point Value is any.

Response

KE2Temp MODBUS Address Function 0x6 Starting Address High Starting Address Low Set Point Value High Set Point Value Low CRC High

Error

CRC Low

KE2Temp MODBUS Address Function with Error 0x86 Exception Code 0x01 or 0x02 or 0x03

FW Part Number

This command returns firmware part number.

Custom function code

Command:

KE2Temp MODBUS Address Function 0x49 CRC High CRC Low

KE2Temp MODBUS Address is from 1 to 247.

Response

KE2Temp MODBUS Address
Function 0x49
Byte Count = 4
FW Part Number High
FW Part Number Low
0
CRC High
CRC Low

Error

KE2Temp MODBUS Address Function with Error 0xC9 Exception Code 0x01 or 0x02 or 0x03