Structure et Utilisation des Cash Flows - Loan Portfolio Management

STRUCTURE DES CASH FLOWS

Feuilles Excel concernées

- 1. Coupon Paiements d'intérêts périodiques
- 2. Single Loan Cash flows détaillés par prêt individuel
- 3. Prepayment (590+ lignes) Modélisation des remboursements anticipés
- 4. **Drawings** (55K+ lignes) Historique des tirages et remboursements
- 5. Cash flows Projections de liquidité globales
- 6. Funding Sources de financement et échéanciers

Types de Cash Flows

1. Cash Flows Contractuels

- **Description**: Flux programmés selon les termes du contrat
- · Composants:
 - Remboursements en capital (amortissement)
 - Paiements d'intérêts (coupon)
 - Commissions et frais
 - Remboursements à l'échéance (bullet)

2. Cash Flows Prévisionnels

- **Description** : Projections basées sur des modèles comportementaux
- · Composants:
 - Remboursements anticipés (prepayment)
 - Tirages futurs sur lignes non utilisées
 - Défauts estimés avec recovery
 - Extensions d'échéance

3. Cash Flows de Stress

- Description : Scénarios dégradés pour tests de résistance
- · Composants:
 - Accélération des défauts
 - · Réduction des recoveries

- Stress sur les tirages
- Dégradation de la liquidité

UTILISATIONS PRINCIPALES

1. Calcul du WAL (Weighted Average Life)

```
javascript

// Pseudo-code du calcul WAL

function calculateWAL(cashFlows) {
  let totalCashFlow = 0;
  let weightedSum = 0;

  cashFlows.forEach((cf, period) => {
    totalCashFlow += cf.amount;
    weightedSum += cf.amount * period;
  });

  return weightedSum / totalCashFlow;
}
```

Script VBA associé : (ComputeWAL)

• Feuilles: WAL, Facilities

• Usage: Gestion ALM, duration du portefeuille

2. Modélisation ALM (Asset Liability Management)

Objectif: Optimisation de l'adossement actif-passif

Métriques calculées :

- Duration effective du portefeuille
- Sensibilité aux taux d'intérêt
- Gap de liquidité par échéance
- Optimisation des sources de financement

Script VBA associé : LiquidityRiskModel

3. Tests de Stress de Liquidité

Scénarios modélisés :

- Crise de financement (accès limité aux marchés)
- Stress sur les tirages (utilisation maximale des lignes)

- Accélération des remboursements anticipés
- Dégradation du collatéral

Métriques:

- LCR (Liquidity Coverage Ratio) 30 jours
- NSFR (Net Stable Funding Ratio) 1 an
- Survival horizon sans accès aux marchés

4. Valorisation Mark-to-Market

Modèles utilisés :

- · Actualisation des cash flows futurs
- Courbes de taux par devise et crédit
- Ajustements de crédit (CVA/DVA)
- Valorisation des options intégrées

Script VBA associé : OptionPricing

5. Calculs IFRS 9 (Expected Credit Loss)

Méthodologie:

- Probabilité de défaut sur la vie du prêt
- Loss Given Default avec garanties
- Exposition au moment du défaut (EAD)
- Actualisation des pertes attendues

Formule : ECL = PD \times LGD \times EAD \times DF

6. Ratios Réglementaires Bâle III

LCR (Liquidity Coverage Ratio)

LCR = Actifs liquides de haute qualité / Sorties nettes de cash sur 30 jours

NSFR (Net Stable Funding Ratio)

NSFR = Financement stable disponible / Financement stable requis

Script VBA associé: (RegulatoryReport)

7. Modélisation des Remboursements Anticipés

Facteurs explicatifs:

- Différentiel de taux (opportunité de refinancement)
- Migration de crédit du borrower
- Variables macroéconomiques
- Saisonnalité et ancienneté du prêt

Modèles utilisés :

- CPR (Constant Prepayment Rate)
- PSA Standard
- Modèles économétriques personnalisés

Script VBA associé : (PrepaymentModel)

ARCHITECTURE TECHNIQUE

Scripts VBA Principaux

1. MasterRefresh (Script Central)

vba

' Séquence de mise à jour des cash flows

Call UpdateOutstanding() 'Mise à jour encours

Call SyncDrawings() 'Synchronisation tirages

Call ComputeWAL() 'Recalcul WAL

Call CalculatePortfolio() 'Agrégation finale

2. MonteCarloSimulation

• Complexité : $\stackrel{\wedge}{\Rightarrow} \stackrel{\wedge}{\Rightarrow} \stackrel{\wedge}{\Rightarrow} \stackrel{\wedge}{\Rightarrow}$

- Variables simulées :
 - Défauts (processus de Poisson)
 - Taux d'intérêt (modèle Hull-White)
 - Spreads de crédit (mean-reverting)
 - Variables macro (PIB, inflation)

3. PrepaymentModel

590+ lignes de données

Modèles : CPR, PSA, régression économétrique

Performance et Optimisation

Volumes traités :

- 55,000+ lignes de tirages (Drawings)
- 590+ profils de remboursement anticipé
- Simulations Monte Carlo 10K-100K scénarios

Optimisations:

- Calcul incrémental (seules les positions modifiées)
- Mise en cache des courbes de taux
- Parallélisation des simulations

II REPORTING ET MONITORING

Tableaux de Bord

- 1. Dashboard Liquidité Gaps par échéance
- 2. Rapport ALM Duration et sensibilités
- 3. Stress Test Results Métriques sous stress
- 4. Prepayment Analytics Tendances et prévisions

Métriques Clés Suivies

- WAL Portfolio : 3.2 ans (exemple)
- Duration Effective: 2.8 ans
- LCR: >100% (seuil réglementaire)
- **NSFR**: >100% (seuil réglementaire)
- Taux de Prepayment : 12% annualisé

MIGRATION VERS JAVASCRIPT

Priorités de Migration

- 1. Phase 1 (Critique) : Calculs WAL et liquidité de base
- 2. Phase 2 (Important): Modèles de prepayment et stress tests
- 3. Phase 3 (Avancée): Simulations Monte Carlo complètes

Bibliothèques Recommandées

- Math.js: Calculs financiers avancés
- D3.js: Visualisations des cash flows

• Lodash : Manipulation de données

• **Plotly**: Graphiques interactifs

Effort Estimé

• Calculs de base : 15 jours-homme

• Modèles avancés : 35 jours-homme

• Interface utilisateur: 20 jours-homme

• **Total**: ~70 jours-homme pour les cash flows