Sensor Signal Processing Classification Techniques

Sensor Signal Processing

Prof. Dr.-Ing. Andreas König

Lehrstuhl Integrierte Sensorsysteme

FB Elektrotechnik und Informationstechnik Technische Universität Kaiserslautern

Fall Semester 2005

© Andreas König Slide7-1

Course Contents

- 1. Introduction
- 2. Signal Processing and Analysis
- 3. Feature Computation
- 4. Cluster Analysis
- 5. Dimensionality Reduction Techniques
- 6. Data Visualization & Analysis
- 7. Classification Techniques
- 8. Sensor Fusion
- 9. Systematic Design of Sensor Systems
- 10. Outlook

Chapter Contents

Sensor Signal Processing Classification Techniques

7. Classification Techniques

- 7.1 Introduction
- 7.2 Statistical parametric methods
- 7.3 Statistical nonparametric methods
- 7.4 Neural networks
- 7.5 Rule-based approaches
- 7.6 Evaluation Techniques
- 7.7 Summary

© Andreas König Slide7-3

Motivation

Sensor Signal Processing Classification Techniques

© Andreas König Slide7-4

- After signal processing, feature computation, and condensing or compression of the data the data is subject to classification
- ➤ In classification unknown data is affiliated to classes according to previous construction of a classifier

Motivation

Sensor Signal Processing Classification Techniques

- Classification can be understood as a special case of general function approximation
- Function values are limited to discrete numbers (class numbers)

> Commonly, integer values of class labels are represented as 1-of-L-coding to avoid spurious neighborhood relations in processing

© Andreas König Slide7-5

Motivation

Sensor Signal Processing Classification Techniques

Class labels formally are denoted as

$$\Omega = \{\omega_1, \omega_2, \dots \omega_L,\}$$

$$\updownarrow \qquad \updownarrow \qquad \updownarrow$$

$$l \in \{1, 2, \dots, L \}$$

$$(7.2)$$

➤ Alternatively, the target vectors y, based on 1-of-L-coding, are employed

$$\Omega = \{\omega_1, \omega_2, \dots \omega_L, \}$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$l \in \begin{cases}
1 & 0 & 0 \\
0 & 1 & 0 \\
\vdots & \vdots & \cdots & \vdots \\
0 & 0 & 1
\end{cases}$$
(7.3)

This representation is favorable for unbiased cost function computation

Motivation

Sensor Signal Processing Classification Techniques

The construction of a classifier will be regarded in particular for the case of the common machine learning paradigm learning from examples

Representation No. of examples N No. of examples N No. of examples N

Motivation

Sensor Signal Processing Classification Techniques

© Andreas König Slide7-7

System to be trained by presentation of examples, i.e. pairs of measurement data and affiliated meaning

The system is adapted until it gives the correct answer (in tolerable limits)

Motivation

Sensor Signal Processing Classification Techniques

> Statistical motivation according to Bayes-theory:

$$P(x,\omega) = P(x \mid \omega) \cdot P(\omega) = P(\omega \mid x) \cdot P(x) \tag{7.4}$$
Marginal Class specific A priori A posteriori probability probability probability probability

- Class specific, a priori, and pattern probabilities are assumed to be known
- ➤ Class affiliation of new data requires the computation (estimation) of the a posteriori probability for each class and determine the maximum:

$$P(\omega_c \mid x) = \max_{j=0}^{N} \left(P(\omega_j \mid x) = \frac{P(x \mid \omega_j) \cdot P(\omega_j)}{P(x)} \right)$$
(7.5)

Index c implies the class index of the class with the highest a posteriori value, i.e. the most probable affiliation of the pattern

© Andreas König Slide7-9

Motivation

Sensor Signal Processing Classification Techniques

A classification system or a classifier can be defined by the following structure:

Parametric Methods

Sensor Signal Processing Classification Techniques

- ➤ The Bayes-Normal distribution Classifier (BAC) assumes Gaussian distributions for the classes
- > The decision function are determined as

Parametric Methods

Sensor Signal Processing Classification Techniques

The intersections of two class region probability distribution functions (pdf) define the class borders as lines of equiprobability

- > Parabolic class boundaries result in the two-dimensional example
- ➤ In the case of more than two classes, class regions are defined by intersections of resulting parabolic functions

Parametric Methods

Sensor Signal Processing Classification Techniques

Assuming equal a priori values for all classes return the Maximum-Likelihood-Classifier (MLC):

$$\hat{d}_i(\vec{x}) = -\frac{1}{2} \ln(\det K_i) - \frac{1}{2} (\vec{x} - \vec{\mu}_i)^T K_i^{-1} (\vec{x} - \vec{\mu}_i)$$
 (7.7)

Assuming further equal covariance for all classes return the Mahalanobis-Classifier (MAC):

$$\hat{d}_i(\vec{x}) = -\frac{1}{2} (\vec{x} - \vec{\mu}_i)^T K^{-1} (\vec{x} - \vec{\mu}_i)$$
 (7.8)

© Andreas König Slide7-15

Parametric Methods

Sensor Signal Processing Classification Techniques

Assuming further the covariance matrix to be the identity matrix return the Centroid or Euclidean Distance Classifier (EAC):

$$\hat{d}_{i}(\vec{x}) = \|\vec{x} - \vec{\mu}_{i}\|^{2} = \sum_{j=0}^{N-1} (x_{j} - \mu_{j})^{2}$$
(7.9)

➤ Simplifying the metric returns the City-Block-Classifier (CBC):

$$\hat{d}_i(\vec{x}) = \sum_{j=0}^{N-1} |x_j - \mu_j| \tag{7.10}$$

Sensor Signal Processing Classification Techniques

- > Parametric methods condense all the sample set information into few model parameters and perform a global pdf estimation
- In contract, nonparametric methods perform a local pdf estimation:

$$p(\vec{x}) = \frac{k(\vec{x})}{N \cdot \nu} \tag{7.11}$$

- Assumption of either fixed volume ν or fixed number of patterns k
- The Parzen-window classifier bases on the first alternative

$$p_{Parzen}(\vec{x}) = \frac{1}{N \cdot h_N^M} \sum_{i=1}^N \kappa \left(\frac{\vec{x} - \vec{x}_i}{h_N} \right)$$
(7.12)

 \triangleright In the simplest case the kernels used in (7.12) could be Gaussian functions:

Nonparametric Methods

- The kernel width must be adapted to data density
- ➤ k-nearest-neighbor classifiers (kNN) under control of the parameter k estimate the densitive and determine the class affiliation of a new pattern by evaluating the k-nearest-neigbors

- kNN training means storage of all patterns!
- Two basic variations: voting and volumetric kNN

Sensor Signal Processing Classification Techniques

➤ Sketch of class boundary for k=1 1NN-classification

> Class-specific Voronoi tesselation defines the class borders in this case

© Andreas König Slide7-19

Nonparametric Methods

Sensor Signal Processing Classification Techniques

- Edited-Nearest-Neighbor-classification (ENN, Devijver and Kittler, 1980)
- ➤ For k=1 resubstitution is guaranteed, however generalization can be affected by this over-specialization in following situations:

➤ Automatic determination of the outliers in the data set:

$$G_{ENN} = \frac{kNN_{\omega_j = \omega_j}}{kNN_{\omega_j \neq \omega_j}}$$
(7.14)

- k neighbors determined and investigated for class affiliation
- Elimination if same to different class affiliations are below threshold:

$$G_{ENN} < \Theta \tag{7.15}$$

Edited sample set is reduced, resubstitution no longer assured, generalization generally improved by outlier elimination (rf. q_o)

Sensor Signal Processing Classification Techniques

- Condensed-Nearest-Neighbor-classification (CoNN, Hart, 1968)
- The complete storage in kNN requires large memory & long computation
- ➤ Reduction by limiting storage to vectors defining class boundary

Pseudo-Code of CoNN algorithm:

- 1. Initially empty classifier
- 2. Get first (next) pattern x_i
- 1-NN-classify sample set pattern
 If correct_classification goto 4
 Else Insert pattern x_i; goto 2
- 4. If all_patterns_corr_class break; Else goto 2
- ➤ Algorithm reduces effort but depends on sample set presentation order and leaves redundancy in the CoNN; recall by 1-NN mandatory!

© Andreas König Slide7-21

Nonparametric Methods

Sensor Signal Processing Classification Techniques

- Condensed-Nearest-Neighbor-classification (CoNN, Hart, 1968)
- > Step-wise demonstration:

Pseudo-Code of CoNN algorithm:

- 1. Initially empty classifier
- 2. Get first (next) pattern x_i
- 1-NN-classify sample set pattern
 If correct_classification goto 4
 Else Insert pattern x_i; goto 2
- 4. If all_patterns_corr_class break; Else goto 2
- ➤ All class 3 patterns in the following will be classified correctly

Sensor Signal Processing Classification Techniques

- Condensed-Nearest-Neighbor-classification (CoNN, Hart, 1968)
- > Sketch of potential final solution:

Pseudo-Code of CoNN algorithm:

- 1. Initially empty classifier
- 2. Get first (next) pattern x_i
- 1-NN-classify sample set pattern
 If correct_classification goto 4
 Else Insert pattern x_i; goto 2
- 4. If all_patterns_corr_class break; Else goto 2
- Removal of existing redundancy by following step

© Andreas König Slide7-23

Nonparametric Methods

Sensor Signal Processing Classification Techniques

- Reduced-Nearest-Neighbor-classification (RNN, Gates, 1972)
- Addition of a removal step to clean reference vector set from redundant instances, i.e., vectors not required for perfect resubstitution

Pseudo-Code of RNN algorithm:

- . Run CoNN algorithm
- 2. Tentatively remove first (next) reference vector r_i
- 1-NN-classify all sample set patterns
 If correct_classification permanently remove r; goto 4
 Else restore r; goto 4
- 4. If last_ref_vec break; Else goto 2
- ➤ CoNN redundancy eliminated, trong dependance on presentation order
- Alternatively, CoNN and RNN steps can be interleaved in a modified, potentially faster algorithm, however, limit cycles can occur (rf. q_s)

Sensor Signal Processing Classification Techniques

QuickCog example for Iris data:

➤ With the given settings, 10 reference vectors are chosen (q_s=0.906666)

© Andreas König Slide7-25

Nonparametric Methods

Sensor Signal Processing Classification Techniques

➤ A traditional method in OCR used for nonparametric classification, based on function approximation approach, is the polynomial classifier

$$\hat{d}_{i}(\vec{x}) = a_{0,i} + a_{1,i} \cdot x_{1} + a_{2,i} \cdot x_{2} + \dots + a_{N,i} \cdot x_{N} +$$

$$a_{N+1,i} \cdot x_{1}^{2} + a_{N+2,i} \cdot x_{1} \cdot x_{2} + \dots$$
(7.16)

 \triangleright Expressing (7.14) by new coordinates results in

$$\vec{v} = (v_1, v_2, \dots, v_p) = (1, x_1, x_2, \dots, x_N, x_1^2, x_1 \cdot x_2, \dots)$$
(7.17)

$$\vec{\hat{d}} = A^T \cdot \vec{v}(\vec{x}) \tag{7.18}$$

- > LMS-optimization to determine polynomial coefficients of A
- > Similarity to dot product neuron with nonlinear synapses!
- Excessive growth of variables in (7.15) for increasing order G of polynomial: (N+G) (N+G)

 $p = \binom{N+G}{G} = \frac{(N+G)!}{N! \cdot G!} \tag{7.19}$

➤ Data compression/term selection, G 1-3 (Schürmann, Kressel)

Sensor Signal Processing Classification Techniques

➤ Simple dot product neurons can serve as linear classifiers

Stimuli Weights Cell body Output (Activation)

- ➤ A single neuron can separate a linear separable problem with a separating line (plane, hyperplane)
- ➤ Logical combinations of a layer allow tackling non-linear problems!

© Andreas König Slide7-27

Neural Networks

Sensor Signal Processing Classification Techniques

A multilayer perceptron with backpropagation algorithm serves as a classifier for non-linear separable problems:

Class affiliation

Output Layer

Hidden Layer

Input Layer

- Training bases on the approach introduced in section 5
- > Choice of hidden layer size and learning parameters can be difficult
- Resubstitution not guaranteed, generalization can be surprizing

Sensor Signal Processing Classification Techniques

➤ A learning vector quantization network (LVQ) employs winner-take-all mechanism that leaves but the strongest response active:

- Adjusting of a fixed number, commonly randomly or by SOM training initialized vectors
- ➤ Recall via 1-NN classification

© Andreas König Slide7-29

Neural Networks

- ➤ Basic LVQ-1 learning method [Kohonen 1989]
- ➤ Iterative presentation of training data and WTA-computation finding w_c(t)

- ➤ Dead reference vectors w_i can occur, sufficient no. per class not assured
- ➤ Different initialization, e.g., RNN, could be suitable
- ➤ Basic methods extended by improved versions LVQ2/2.1 & LVQ3

Sensor Signal Processing Classification Techniques

➤ A special class of ANN consists of a kernel layer and an output layer

Resolving of class affiliation, e.g., Max-of-L

Output (Classification) Layer

Kernel-Layer

Input Layer

- The Restricted-Coulomb-Energy network (RCE) employs step functions in the kernel layer and or-gate or summation of activated kernel neurons
 The network is generated from scratch by (patented) dynamic training
 - © Andreas König Slide7-31

Neural Networks

Sensor Signal Processing Classification Techniques

- > RCE-training is part of the Nestor-Learning-System (NLS)
- > Dynamic placement and scaling of hyperspheres:

R_{min}

Pseudo-Code of RCE algorithm:

- 1. Initially empty classifier
- 2. Get first (next) pattern \mathbf{x}_i
- 3. RCE-classify pattern
 If correct_classification goto 4
 Else If unknown Insert \mathbf{x}_i ; goto 2
 Else If ambiguous reduce
 radii of \mathbf{r}_i with $\omega_i \neq \omega_j$; goto 2
 Else (misclassification)
 reduce radii of \mathbf{r}_i with $\omega_i \neq \omega_j$; Insert \mathbf{x}_i ; goto 2
- 4. If all_patterns_corr_class break; Else goto 2
- ➤ Result strongly depends on presentation order (Pro-RCE extension)
- > Insertion only does not remove redundant neurons
- ➤ Classification resolving by voting or kernel based pdf estimation (PRCE)
- Additional attributes unknown and uncertain/ambiguous

Sensor Signal Processing Classification Techniques

➤ The Radial-Basis-Function network (RBF) employs (commonly Gaussian) kernel functions in the kernel layer and dot product output layer neurons

Resolving of class affiliation, e.g., Max-of-L

Class I $\vec{w}_j - \vec{x}_k$ $\vec{\sigma}_j = \frac{d_{\text{ker, max}}}{\sqrt{2M}}$

Output (Classification) Layer

Kernel-Layer

Input Layer

- ➤ RBF-networks are also universal function approximators!
- Number of kernels fixed by choice and random initialization or SOM

© Andreas König Slide7-33

Neural Networks

Sensor Signal Processing Classification Techniques

- RBF-training on a fixed hidden layer might not be efficient
- > Dynamic training algorithms for function approximation and classification
- ➤ The first one is Platt's Resource-Allocation-Network RAN

Pseudo-Code of principle RAN algorithm:

- 1. Initially empty kernel layer
- 2. Get first (next) pattern \mathbf{x}_i
- 3. Compute output value If $Error > \varepsilon & d > \delta$ Insert \mathbf{x}_i as new kernel; $\sigma_j = \min(\kappa \bullet \delta, \kappa \bullet d)$ Adapt output layer weights ...;
- 4. If $sum_err < \varepsilon 2$ break; Else $\delta = \delta e^{-l/\tau}$; goto 2
- Fast (evolving) training, insertion only does not remove redundant neurons
- Classification by determination of maximum pdf; background applicable!
- > Training for all RBF-parameters can be achieved by gradient descent!
- Smooth and well-generalizing behavior of RBF-networks

© Andreas König Slide7-34

Sensor Signal Processing Classification Techniques

➤ Probabilistic-Neural-Networks of Specht resemble Parzen-Window:

Resolving of class affiliation, e.g., Max-of-L Class 1 Class L

Output (Classification) Layer

Kernel-Layer

Input Layer

- \triangleright Each training data vector is stored as Gaussian kernel with fixed global σ
- According to class labels, kernel are wired to pdf summation nodes
- Explicit cost or a priori weighting can be employed before pdf max-of-L

© Andreas König Slide7-35

Rule-based Approaches

- ➤ Inherently, rules can be extracted/employed in classification problems
- Decision trees are one common example for crisp techniques:

- ➤ Decision trees construction by dedicated machine learning algorithm (Idx.y)
- Knowledge application/extraction; hybrid combinations feasible
- Fuzzy and neuro-fuzzy approaches extend the classification approach

Evaluation Techniques

Sensor Signal Processing Classification Techniques

- > The performance of a classification system as well as of a classifier is assessed by the classification rate
- ➤ Based on the available *ground truth* of a test data set, the number of correctly classified patterns vs. the total pattern number is computed and given in %
- More detail about confusion between classes is given by the confusion matrix (Mechatronic example):

```
Confusion matrix

Class1 (50): 0 (R) 100 0 0 0

Class2 (100): 0 (R) 0 100 0 0

Class3 (150): 0 (R) 0 4.660 95.330 0

Class4 (25): 0 (R) 0 0 8 92

Classification rate: 97.231 %
```


> The confusion matrix indicates the additional option of rejection

© Andreas König Slide7-37

Evaluation Techniques

Sensor Signal Processing Classification Techniques

Several situations can occur, where the decision of the classifier could be doubtable (pattern close to the decision boundary or far from training data)

- > Guessing can be avoided by rejection (Decision can always be enforced)
- ➤ Contradictions can be resolved on higher level (fusion aspects!)

Evaluation Techniques

Sensor Signal Processing Classification Techniques

- The location and identification of misclassifications in feature space and in the example database, e.g., corresponding raw image, is salient
- Feature space visualization techniques allow just this:

Misclassified patterns can rapidly be investigated for cause elimination

© Andreas König Slide7-39

Summary

Sensor Signal Processing Classification Techniques

- > The chapter gave a survey of the concepts and common conventional as well as neural classification methods
- ➤ Recently, powerful techniques, such as the support vector machines have extended the available method pool
- ➤ In practical application, the choice of approach should be governed by the need and complexity of the underlying problem and data
- ➤ For a system well optimized in the first stages the simplest choice will provide robustness and good performance
- ➤ For small data sets, appropriate partitioning in training and test data is not feasible
- ➤ For statistical meaningful evalution leave-one-out techniques (LOO) are commonly applied
- ➤ In addition to rejection threshold, also the notion of cost can be introduced into the design of the discussed classifier models

© Andreas König Slide7-40