Guide to Choosing a Generative AI Model Type

Types of generative AI models

Model	Key features	Applications	
Generative adversarial networks (GANs)	Two competing neural networks: generator and discriminator. The generator learns to create realistic data, while the discriminator learns to distinguish real from fake. The adversarial training process continuously improves both networks.	I. Image generation: faces, landscapes, objects Text generation: poems, code, scripts Video generation: realistic videos, animation Drug discovery: generate molecules with intended properties Music generation: composing new songs	
Variational autoencoders (VAEs)	Encode input data into a lower-dimensional latent space Learn a probability distribution over the latent space Decode samples from the latent space to generate new data points Focuses on learning a meaningful representation of the data	Image compression: efficiently stores and transmits images Anomaly detection: identify unusual data points Dimensionality reduction: compress high-dimensional data Text summarization: generate concise summaries of text documents	
Autoregressive models	Generate data point by point, conditioned on previously generated points Use recurrent neural networks (RNNs) or transformers to capture long-term dependencies Can be computationally expensive for long sequences	Text generation: realistic and coherent text sequences Music generation: generating music that follows genre and style Time series forecasting: predicting future values of a time series Image inpainting: filling in missing parts of an image	
Diffusion models	Start with a simple noise and gradually "de-noise" it into realistic data Use a U-Net architecture with skip connections to preserve information Can be more stable and easier to train than GANs, but often slower	Image generation: high-quality and diverse images Text generation: coherent and grammatically correct text Audio generation: realistic and musical audio Inpainting and denoising: improving the quality of images or audio	
Flow-based models	Transform a simple distribution (Gaussian) into a complex one using invertible transformations Learn the parameters of these transformations from the data Can be efficient and accurate for high-dimensional data, but training can be challenging	Image generation: realistic and diverse images Density estimation: modeling the probability distribution of data Dimensionality reduction: compress high-dimensional data Anomaly detection: identify unusual data points	

Comparison of models on different considerations

Feature	GANs	VAEs	Autoregressive models	Diffusion models	Flow-based models
Data type	Images, text, audio	Images, text, continuous data	Images, text, sequences	Images, text	Images, continuous data
Task objective	High-fidelity generation, data augmentation	Encoding/decoding, representation learning	Sequence generation, text-to- image translation	Image generation, editing, inpainting	Image generation, conditional generation
Quality of samples	High-fidelity, diverse	Often blurry, less realistic	Sharp, high-resolution	High-fidelity, diverse	High-fidelity, controllable
Control over generation	Limited	Moderate	High	Moderate	High
Training complexity	High	Moderate	High	Moderate	High
Interpretability	Low	Moderate	High	Moderate	Low

Author(s)

Abhishek Gagneja

