Ali Siahkoohi

Simons Postdoctoral Fellow Dept. of Comp. Applied Math. & Operations Research Rice University alisk@rice.edu https://alisiahkoohi.github.io Last updated: September 3, 2024

Research Interests and Highlights

My research in *scientific machine learning*, under the mentorship of Maarten V. de Hoop and Richard G. Baraniuk, lies at the intersection of computational science and artificial intelligence, focusing on developing scalable, data-driven methods that leverage the strengths of both fields to address challenging, large-scale problems in computational science and engineering. Keywords defining my current research interests include: Bayesian deep learning, computational science, generative models, and uncertainty quantification.

Over the past years, I have published 39 peer-reviewed articles, including 17 first-author papers in high-impact journals and conference proceedings, such as NeurIPS, ICML, ICLR, Interspeech, MIDL, SPIE, TMLR, and Geophysics.

Education

Georgia Institute of Technology

Ph.D. in Computational Science and Engineering (minor in Applied Math.) Advised by Felix J. Herrmann

University of Tehran M.Sc. in Geophysics Sharif University of Technology B.Sc. in Electrical Engineering March 2016 Tehran, Iran

Atlanta, GA, USA

August 2022

August 2013 Tehran, Iran

Academic Appointments

Rice University

Simons Postdoctoral Fellow

August 2022 – Present Houston, TX, USA

Department of Computational Applied Mathematics & Operations Research Jointly hosted by Maarten V. de Hoop and Richard G. Baraniuk

Publications

Google Scholar profile: https://scholar.google.com/citations?user=sxRMqYIAAAAJ&h

In Preparation & Under Review

- P4. <u>A. Siahkoohi</u>, R. Morel, R. Balestriero, E. Allys, G. Sainton, T. Kawamura, and M. V. de Hoop. Martian time-series unraveled: A multi-scale nested approach with factorial variational autoencoders. Preprint arXiv:2305.16189; under review by *IEEE Transactions on Neural Networks and Learning Systems*, 2024 [pdf] [code] [slides] [bib]
- P3. P. M. Mayer, L. Luzi, <u>A. Siahkoohi</u>, D. H. Johnson, and R. G. Baraniuk. Removing bias from maximum likelihood estimation with model autophagy. Preprint arXiv:2405.13977; under review by *NeurIPS*, 2024 [pdf] [bib]

P2. L. Baldassari, <u>A. Siahkoohi</u>, J. Garnier, K. Sølna, and M. V. de Hoop. Taming score-based diffusion priors for infinite-dimensional nonlinear inverse problems. Preprint arXiv:2405.15676; under review by *NeurIPS*, 2024

[pdf] [bib]

P1. R. Orozco, <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. ASPIRE: Iterative amortized posterior inference for Bayesian inverse problems. Preprint arXiv:2405.05398; under review by *Inverse Problems*, 2024a

[pdf] [code] [bib]

Journal Publications

J7. R. Orozco, P. Witte, M. Louboutin, <u>A. Siahkoohi</u>, G. Rizzuti, B. Peters, and F. J. Herrmann. InvertibleNetworks.jl: A Julia package for scalable normalizing flows. *Journal of Open Source Software*, 9(99):6554, 2024b

[pdf] [code] [link] [bib]

- J6. L. Luzi, P. M. Mayer, J. Casco-Rodriguez, <u>A. Siahkoohi</u>, and R. G. Baraniuk. Boomerang: Local sampling on image manifolds using diffusion models. *Transactions on Machine Learning Research*, 2024a [pdf] [code] [link] [bib]
- J5. M. Louboutin, Z. Yin, R. Orozco, T. J. Grady II, <u>A. Siahkoohi</u>, G. Rizzuti, P. A. Witte, O. Møyner, G. J. Gorman, and F. J. Herrmann. Learned multiphysics inversion with differentiable programming and machine learning. *The Leading Edge*, 42(7):474–486, 2023 [pdf] [link] [bib] [featured in Seismic Soundoff]
- J4. Y. Zhang, Z. Yin, O. López, <u>A. Siahkoohi</u>, M. Louboutin, R. Kumar, and F. J. Herrmann. Optimized time-lapse acquisition design via spectral gap ratio minimization. *Geophysics*, 88(4):A19–A23, 2023a [pdf] [link] [bib]
- J3. A. Siahkoohi, G. Rizzuti, R. Orozco, and F. J. Herrmann. Reliable amortized variational inference with physics-based latent distribution correction. *Geophysics*, 88(3):R297–R322, 2023a [pdf] [slides] [code] [link] [bib] [featured in Geophysics Bright Spots]
- J2. <u>A. Siahkoohi</u>, G. Rizzuti, and F. J. Herrmann. Deep Bayesian inference for seismic imaging with tasks. *Geophysics*, 87(5):S281–S302, 2022a [pdf] [code] [link] [bib]
- J1. <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. The importance of transfer learning in seismic modeling and imaging. *Geophysics*, 84(6):A47–A52, 2019a [pdf] [code] [link] [bib]

Peer-Reviewed Conference Proceedings

C32. S. Alemohammad, J. Casco-Rodriguez, L. Luzi, A. I. Humayun, H. Babaei, D. LeJeune, <u>A. Siahkoohi</u>, and R. G. Baraniuk. Self-consuming generative models go MAD. In *The Twelfth International Conference on Learning Representations*, 2024

[pdf] [extended pdf] [poster] [link] [bib] [featured in the news 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

- C31. L. Luzi, D. LeJeune, <u>A. Siahkoohi</u>, S. Alemohammad, V. Saragadam, H. Babaei, N. Liu, Z. Wang, and R. G. Baraniuk. Titan: Bringing the deep image prior to implicit representations. In *IEEE International Conference on Acoustics, Speech and Signal Processing*, pages 6165–6169, 2024b [pdf] [code] [link] [bib]
- C30. L. Baldassari, <u>A. Siahkoohi</u>, J. Garnier, K. Sølna, and M. V. de Hoop. Conditional score-based diffusion models for Bayesian inference in infinite dimensions. In *Advances in Neural Information Processing Systems*, volume 36, pages 24262–24290, 2023
 [pdf] [slides] [poster] [code] [link] [bib] [featured as a Spotlight presentation]
- C29. <u>A. Siahkoohi</u>, R. Morel, M. V. de Hoop, E. Allys, G. Sainton, and T. Kawamura. Unearthing InSights into Mars: Unsupervised source separation with limited data. In *Proceedings of the 40th International*

- Conference on Machine Learning, volume 202, pages 31754–31772, 2023b [pdf] [slides] [poster] [code] [link] [bib]
- C28. R. Orozco, M. Louboutin, <u>A. Siahkoohi</u>, G. Rizzuti, T. van Leeuwen, and F. J. Herrmann. Amortized normalizing flows for transcranial ultrasound with uncertainty quantification. In *Medical Imaging with Deep Learning*, volume 227, pages 332–349, 2023a [pdf] [link] [bib]
- C27. R. Orozco, <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. Refining amortized posterior approximations using gradient-based summary statistics. In *5th Symposium on Advances in Approximate Bayesian Inference*, 2023b

 [pdf] [link] [bib]
- C26. R. Orozco, <u>A. Siahkoohi</u>, G. Rizzuti, T. van Leeuwen, and F. J. Herrmann. Adjoint operators enable fast and amortized machine learning based Bayesian uncertainty quantification. In *Medical Imaging* 2023: *Image Processing*, volume 12464, page 124641L, 2023c [pdf] [link] [bib]
- C25. Y. Zhang, Z. Yin, O. Lopez, <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. 3D seismic survey design by maximizing the spectral gap. In *Third International Meeting for Applied Geoscience & Energy*, 2023b [pdf] [poster] [bib]
- C24. <u>A. Siahkoohi</u>, M. Chinen, T. Denton, W. B. Kleijn, and J. Skoglund. Ultra-low-bitrate speech coding with pretrained Transformers. In *Proceedings of Interspeech*, pages 4421–4425, 2022b [pdf] [link] [bib]
- C23. <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. Velocity continuation with Fourier neural operators for accelerated uncertainty quantification. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1765–1769, 2022c [pdf] [slides] [code] [link] [bib]
- C22. M. Louboutin, P. Witte, <u>A. Siahkoohi</u>, G. Rizzuti, Z. Yin, R. Orozco, and F. J. Herrmann. Accelerating innovation with software abstractions for scalable computational geophysics. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1482–1486, 2022 [pdf] [slides] [link] [bib]
- C21. Z. Yin, <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. Learned coupled inversion for carbon sequestration monitoring and forecasting with Fourier neural operators. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 467–472, 2022 [pdf] [slides] [code] [link] [bib] [student oral paper honorable mention]
- C20. Y. Zhang, M. Louboutin, <u>A. Siahkoohi</u>, Z. Yin, R. Kumar, and F. J. Herrmann. A simulation-free seismic survey design by maximizing the spectral gap. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 15–20, 2022 [pdf] [slides] [code] [link] [bib]
- C19. <u>A. Siahkoohi</u>, R. Orozco, G. Rizzuti, and F. J. Herrmann. Wave-equation based inversion with amortized variational Bayesian inference. In *EAGE Deep learning for seismic processing: Investigating the foundations workshop*, 2022d [pdf] [slides] [code] [link] [bib]
- C18. R. Orozco, <u>A. Siahkoohi</u>, G. Rizzuti, T. van Leeuwen, and F. J. Herrmann. Photoacoustic imaging with conditional priors from normalizing flows. In *NeurIPS Workshop on Deep Learning and Inverse Problems*, 2021
 [pdf] [poster] [link] [bib]
- C17. <u>A. Siahkoohi</u>, G. Rizzuti, M. Louboutin, P. Witte, and F. J. Herrmann. Preconditioned training of normalizing flows for variational inference in inverse problems. In *3rd Symposium on Advances in Approximate Bayesian Inference*, 2021 [pdf] [slides] [code] [link] [bib]

- C16. <u>A. Siahkoohi</u> and F. J. Herrmann. Learning by example: Fast reliability-aware seismic imaging with normalizing flows. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1580–1585, 2021 [pdf] [slides] [code] [link] [bib]
- C15. R. Kumar, M. Kotsi, <u>A. Siahkoohi</u>, and A. Malcolm. Enabling uncertainty quantification for seismic data preprocessing using normalizing flows (NF)—An interpolation example. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1515–1519, 2021 [pdf] [code] [link] [bib]
- C14. G. Rizzuti, <u>A. Siahkoohi</u>, P. A. Witte, and F. J. Herrmann. Parameterizing uncertainty by deep invertible networks, an application to reservoir characterization. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1541–1545, 2020 [pdf] [slides] [code] [link] [bib]
- C13. M. Zhang, <u>A. Siahkoohi</u>, and F. J. Herrmann. Transfer learning in large-scale ocean bottom seismic wavefield reconstruction. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1666–1670, 2020 [pdf] [slides] [code] [link] [bib]
- C12. <u>A. Siahkoohi</u>, G. Rizzuti, and F. J. Herrmann. Weak deep priors for seismic imaging. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 2998–3002, 2020a [pdf] [slides] [code] [link] [bib]
- C11. <u>A. Siahkoohi</u>, G. Rizzuti, and F. J. Herrmann. Uncertainty quantification in imaging and automatic horizon tracking—A Bayesian deep-prior based approach. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 1636–1640, 2020b [pdf] [slides] [code] [link] [bib]
- C10. <u>A. Siahkoohi</u>, G. Rizzuti, and F. J. Herrmann. A deep-learning based Bayesian approach to seismic imaging and uncertainty quantification. In *European Association of Geoscientists & Engineers Conference and Exhibition Extended Abstracts*, 2020c [pdf] [slides] [code] [link] [bib]
- C9. F. J. Herrmann, <u>A. Siahkoohi</u>, and G. Rizzuti. Learned imaging with constraints and uncertainty quantification. In *NeurIPS Deep Inverse Workshop*, 2019 [pdf] [slides] [poster] [link] [bib]
- C8. <u>A. Siahkoohi</u>, R. Kumar, and F. J. Herrmann. Deep-learning based ocean bottom seismic wavefield recovery. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 2232–2237, 2019b

 [pdf] [code] [slides] [link] [bib]
- C7. <u>A. Siahkoohi</u>, D. J. Verschuur, and F. J. Herrmann. Surface-related multiple elimination with deep learning. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 4629–4634, 2019c [pdf] [slides] [link] [bib]
- C6. G. Rizzuti, <u>A. Siahkoohi</u>, and F. J. Herrmann. Learned iterative solvers for the Helmholtz equation. In *European Association of Geoscientists & Engineers Conference and Exhibition Extended Abstracts*, 2019
 [pdf] [slides] [link] [bib]
- C5. <u>A. Siahkoohi</u>, M. Louboutin, R. Kumar, and F. J. Herrmann. Deep convolutional neural networks in prestack seismic—two exploratory examples. In *Society of Exploration Geophysicists Technical Program Expanded Abstracts*, pages 2196–2200, 2018a [pdf] [poster] [link] [bib]
- C4. <u>A. Siahkoohi</u>, R. Kumar, and F. J. Herrmann. Seismic data reconstruction with generative adversarial networks. In *European Association of Geoscientists & Engineers Conference and Exhibition Extended Abstracts*, 2018b

[pdf] [slides] [link] [bib]

- C3. <u>A. Siahkoohi</u> and A. Gholami. Sparsity promoting least squares migration for laterally inhomogeneous media. In *7th EAGE Saint Petersburg International Conference and Exhibition*, 2016 [pdf] [link] [bib]
- C2. M. S. Ebrahimi, M. H. Daraei, J. Rezaei, and <u>A. Siahkoohi</u>. A novel utilization of wireless sensor networks as data acquisition system in smart grids. In *Materials Science and Information Technology*, volume 433-440, pages 6725–6730, 2012 [pdf] [link] [bib]
- C1. A. Najafi, <u>A. Siahkoohi</u>, and M. B. Shamsollahi. A content-based digital image watermarking algorithm robust against JPEG compression. In *IEEE International Symposium on Signal Processing and Information Technology*, pages 432–437, 2011 [pdf] [link] [bib]

Theses

T1. <u>A. Siahkoohi</u>. *Deep generative models for solving geophysical inverse problems*. PhD thesis, **Georgia Institute of Technology**, 2022

[pdf] [slides] [link] [bib]

Technical Reports

- R3. M. Louboutin, <u>A. Siahkoohi</u>, R. Wang, and F. J. Herrmann. Low-memory stochastic backpropagation with multi-channel randomized trace estimation. Technical Report arXiv:2106.06998, Georgia Institute of Technology, 2021 [pdf] [code] [link] [bib]
- R2. <u>A. Siahkoohi</u>, G. Rizzuti, P. A. Witte, and F. J. Herrmann. Faster uncertainty quantification for inverse problems with conditional normalizing flows. Technical Report arXiv:2007.07985, Georgia Institute of Technology, 2020d [pdf] [link] [bib]
- R1. <u>A. Siahkoohi</u>, M. Louboutin, and F. J. Herrmann. Neural network augmented wave-equation simulation. Technical Report arXiv:1910.00925, Georgia Institute of Technology, 2019d [pdf] [code] [link] [bib]

Awards

Future Faculty Fellows Award

June 2024

Rice University, George R. Brown School of Engineering

Houston, TX, USA

Selected Research Proposal Experience

Topological deep learning, causal inference, and data-driven forecasting for subsurface multiscale multiphysics systems Awarded in 2022

► Funding Source: Department of Energy

In Progress

- ▶ Principal Investigator: Maarten V. de Hoop
- ► Contributions: Led the effort to write the annual progress report

June 2024

Learning and forecasting complex fault dynamics – Predictability of earthquakes

Rejected in 2024

- ► Funding Source: National Science Foundation
- Principal Investigator: Maarten V. de Hoop
- ► Contributions: Developed ideas and contributed to writing for one of the four research thrusts March 2024
 - Structure in data, clustering, lattice theory, and diffusion models

Scientific ML-supported subsurface characterization in physical function spaces Awarded in 2024 ► Funding Source: Occidental Petroleum Corporation In Progress ▶ Principal Investigator: Maarten V. de Hoop ► Contributions: Developed ideas and contributed to writing for two of the four research thrusts November Score diffusion, nonlinear operators, and uncertainty quantification in function spaces - Unsupervised, factorial data decomposition and hidden signals: Reservoir characterization below salt, denoising, and monitoring Exploring the local geometry of deep networks Awarded in 2023 ► Funding Source: Office of Naval Research (DURIP) In Progress ▶ Principal Investigator: Richard G. Baraniuk ► Contributions: Developed ideas and wrote research objectives for one of the three research thrusts May 2023 - The geometry of deep probabilistic models A deep-learning framework for stable, interpretable, and uncertainty-quantified hybrid modeling of multi-scale complex systems Rejected in 2023 ► Funding Source: Department of Energy ▶ Principal Investigator: Pedram Hassanzadeh ► Contributions: Coordinated efforts within Richard G. Baraniuk's group (a co-PI) to develop and write research objectives for one of the four research thrusts April 2023 - Spline operator-based analysis of Deep neural networks **Professional Service Editorial Service** ► Acta Geophysica 2024 - Present Associate Editor Applied Geophysics section ▶ Journal of Mathematics 2023 - Present **Guest Editor** Special issue on Applied Mathematics in Inverse Problems and Uncertainty Quantification **Conference Organization** ► Annual AAAI Conference on Artificial Intelligence 2025 Program Chair ▶ International Meeting for Applied Geoscience & Energy 2022 Session Chair **Technical Program Committee Member and Reviewer** ► Artificial Intelligence and Statistics Conference (AISTATS) 2024 - 2025► International Conference on Learning Representations (ICLR) 2024 - 2025► Neural Information Processing Systems (NeurIPS) 2023 - 2024► Advances in Approximate Bayesian Inference (AABI) 2023 - 2024► Structured Probabilistic Inference & Generative Modeling (ICML workshop) 2023 - 2024► International Conference on Machine Learning (ICML) 2024 ► International Speech Communication Association (Interspeech) 2023

2023

2023

▶ Deep Generative Models for Health (NeurIPS workshop)

► International Meeting for Applied Geoscience & Energy

Journal Reviewer

- ▶ IEEE Transactions on Neural Networks and Learning Systems
- ▶ IEEE Geoscience and Remote Sensing Letters
- ▶ IEEE Transactions on Geoscience and Remote Sensing
- ▶ Notices of the American Mathematical Society (AMS)
- ► Remote Sensing
- ▶ Journal of Geophysical Research Solid Earth
- ► Geophysical Prospecting
- ► Geophysics
- ▶ Geosciences
- ► Entropy

Teaching Experience

Rice University Substitute Instructor Department of Computational Applied Mathematics & Operations Research Numerical Analysis	Fall 2024 Houston, TX, USA
Rice University Substitute Instructor (18 lectures) Department of Computational Applied Mathematics & Operations Research Numerical Analysis I	Fall 2022 Houston, TX, USA
Georgia Institute of Technology Teaching Assistant School of Computational Science and Engineering Computational Foundations of Machine Learning	Spring 2022 Atlanta, GA, USA
Georgia Institute of Technology Teaching Assistant School of Computational Science and Engineering Imaging with Data-Driven Models	Fall 2019 Atlanta, GA, USA
Georgia Institute of Technology Teaching Assistant School of Computational Science and Engineering Numerical Analysis I	Fall 2018 Atlanta, GA, USA
Sharif University of Technology Teaching Assistant Department of Electrical Engineering Digital Signal Processing	Spring 2011 Tehran, Iran
Sharif University of Technology Teaching Assistant Department of Electrical Engineering Signals and Systems	Spring 2011 Tehran, Iran
Sharif University of Technology	Spring 2010

Mentoring Experience

Department of Electrical Engineering

Teaching Assistant

Linear Algebra

Tehran, Iran

Paul M. Mayer [link]

2022 – Present

PhD Student, Rice University

Houston, TX, USA

- ► Contributions: Advised on the development of methods and software for two research projects on generative models
- ▶ Outcomes: Co-authored two papers in the two projects (Luzi et al., 2024a; Mayer et al., 2024)

Rafael Orozco [link]

2021 - 2022

PhD Student, Georgia Institute of Technology

Atlanta, GA, USA

- ► Contributions: Advised on the development of methods and software for scalable uncertainty quantification in medical imaging with generative models
- ▶ Outcomes: Co-authored four papers in this project (Orozco et al., 2021, 2023b,c, 2024a)

Mi Zhang [link]

2019 - 2020

Visiting PhD Student, China University of Petroleum-Beijing

Atlanta, GA, USA

- ► Contributions: Advised the student in developing a method for speeding up a prior work of mine (A. Siahkoohi et al., 2019b) and assisted in writing the manuscript
- ▶ Outcomes: Co-authored a paper in this project (Zhang et al., 2020)

Talks

Invited Talks

T22. CNRS, Université Montpellier

January 2023

Low-cost uncertainty quantification for large-scale inverse problems RhEoVOLUTION Group (Dr. Andréa Tommasi)

Virtual oral presentation

T21. Workshop on Subsurface Uncertainty Description and Estimation

August 2022

Reliable amortized variational inference with conditional normalizing flows via physics-based latent distribution correction

Oral presentation

International Meeting for Applied Geoscience & Energy

T20. Intelligent illumination of the Earth Workshop

June 2021

Fast and reliability-aware seismic imaging with conditional normalizing flows Virtual oral presentation King Abdullah University of Science and Technology

T19. Advances in Seismic Imaging and Inversion Mini-symposium

October 2020

Unsupervised data-guided uncertainty analysis in imaging and horizon tracking

Virtual oral presentation

The 3rd Annual Meeting of the SIAM Texas-Louisiana Section

Contributed Talks

T18. International Conference on Machine Learning

July 2023

Unearthing InSights into Mars: Unsupervised source separation with limited data

Poster presentation

T17. Symposium on Advances in Approximate Bayesian Inference

July 2023

Refining amortized posterior approximations using gradient-based summary statistics

Poster presentation

T16. Geo-Mathematical Imaging Group Partners Meeting, Rice University

T15. Geo-Mathematical Imaging Group Partners Meeting, Rice University

May 2023 Oral presentation

Martian time-series unraveled: A multi-scale nested approach with factorial variational autoencoders

May 2023 Oral presentation

T14. International Meeting for Applied Geoscience & Energy

August 2022

Velocity continuation with Fourier neural operators for accelerated uncertainty quantification

Unearthing InSights into Mars: Unsupervised source separation with limited data

Oral presentation

T13. Chrome Media Team, Google December 2021 Low-bitrate speech coding with Transformers Virtual oral presentation T12. ML4SEISMIC Partners Meeting, Georgia Institute of Technology November 2021 Multifidelity conditional normalizing flows for physics-guided Bayesian Virtual oral presentation inference T11. ML4SEISMIC Partners Meeting, Georgia Institute of Technology November 2021 Uncertainty quantification in imaging and automatic horizon tracking—A Virtual oral presentation Bayesian deep-prior based approach T10. Society of Exploration Geophysicists International Exposition and Annual Meeting September 2021 Learning by example: Fast reliability-aware seismic imaging with Virtual oral presentation normalizing flows [video] T9. Symposium on Advances in Approximate Bayesian Inference January 2021 Preconditioned training of normalizing flows for variational Prerecorded short oral presentation inference in inverse problems [video] T8. European Association of Geoscientists & Engineers Annual Conference & Exhibition December 2020 A deep-learning based Bayesian approach to seismic imaging and Virtual oral presentation uncertainty quantification T7. Society of Exploration Geophysicists International Exposition and Annual Meeting October 2020 Virtual oral presentation Uncertainty quantification in imaging and automatic horizon tracking—A Bayesian deep-prior based approach T6. Society of Exploration Geophysicists International Exposition and Annual Meeting October 2020 Weak deep priors for seismic imaging Virtual oral presentation T5. Society of Exploration Geophysicists Student Chapter, Georgia Tech February 2020 A deep-learning based Bayesian approach to seismic imaging and uncertainty Oral presentation quantification T4. HotCSE Seminar, CSE Department, Georgia Institute of Technology November 2019 Learned imaging with constraints and uncertainty quantification Oral presentation T3. Society of Exploration Geophysicists International Exposition & Annual Meeting September 2019 Deep-learning based ocean bottom seismic wavefield recovery Oral presentation T2. Society of Exploration Geophysicists International Exposition & Annual Meeting September 2019 Surface-related multiple elimination with deep learning Oral presentation T1. Society of Exploration Geophysicists International Exposition & Annual Meeting October 2018 Deep convolutional neural networks in prestack seismic—two exploratory Poster presentation

Industry Research Experience

Google
Research Intern (cf. A. Siahkoohi et al. (2022b))

August 2021 – December 2021 San Francisco, CA, USA

Chrome Media Team

examples

Selected Media Coverage

AI Appears to Be Slowly Killing Itself Futurism [link]	August 2024
When A.I.'s Output Is a Threat to A.I. Itself The New York Times [link]	August 2024
Breaking MAD: Generative AI could break the internet Rice News, Rice University [link]	July 2024
'Cesspool of AI crap' or smash hit? LinkedIn's AI-powered collaborative articles offer a sobering peek at the future of content Fortune [link]	April 2024
AI's 'mad cow disease' problem tramples into earnings season Yahoo!finance [link]	April 2024
'Mad' AI risks destroying the Information Age The Telegraph [link]	February 2024
When AI Is Trained on AI-Generated Data, Strange Things Start to Happen Futurism [link]	August 2023
Episode 194: Improving integration in machine learning workflows Seismic Soundoff Podcast, Society of Exploration Geophysicists [link]	July 2023
Training AI With Outputs of Generative AI Is Mad CDOtrends [link]	July 2023
AIs trained on AI-generated images produce glitches and blurs NewScientist [link]	July 2023
Scientists make AI go crazy by feeding it AI-generated content TweakTown [link]	July 2023
AI Loses Its Mind After Being Trained on AI-Generated Data Futurism [link]	July 2023
Generative AI Goes 'MAD' When Trained on AI-Created Data Over Five Times Tom's Hardware [link]	July 2023
Group Brings Seismic Imaging to Climate-Change Conversations and Beyond College of Computing News, Georgia Institute of Technology [link]	August 2022