# A simple analysis about the ToothGrowth data set

#### Rick

September 27, 2015

#### Synopsis:

We used the ToothGrowth data to make a simple T-test analysis to compare tooth growth by supp and dose.

#### **Data Processing**

First, we load the data.

```
data(ToothGrowth)
```

Let us see a brief summary of this dataset.

#### summary(ToothGrowth)

```
##
         len
                    supp
                                  dose
           : 4.20
##
   Min.
                    OJ:30
                             Min.
                                    :0.500
   1st Qu.:13.07
                    VC:30
                             1st Qu.:0.500
  Median :19.25
                             Median :1.000
##
   Mean
           :18.81
                             Mean
                                    :1.167
##
   3rd Qu.:25.27
                             3rd Qu.:2.000
  {\tt Max.}
           :33.90
                             Max.
                                    :2.000
```

#### levels(ToothGrowth\$supp)

```
## [1] "OJ" "VC"
```

```
levels(as.factor(ToothGrowth$dose))
```

```
## [1] "0.5" "1" "2"
```

```
tapply(ToothGrowth$supp, ToothGrowth$supp, length)
```

```
## OJ VC
## 30 30
```

#### tapply(ToothGrowth\$dose,ToothGrowth\$dose,length)

```
## 0.5 1 2
## 20 20 20
```

To be more easy understanding, let us plot (boxplot) the Toothgrowth by dose and by supp, respectively. By supp:

## toothgrowth by supp



By dose:

with(ToothGrowth,plot(as.factor(dose),len,type="p",main="toothgrowth by dose"))

### toothgrowth by dose



#### T-test

Then we make t test first by supp to test the hypothesis that: H0: supp has no effect on the mean of tooth growth. And we assume that the variance of each group is the same.

```
t.test(len~supp,paried=TRUE,var.equal=TRUE,data=ToothGrowth)
```

```
##
## Two Sample t-test
##
## data: len by supp
## t = 1.9153, df = 58, p-value = 0.06039
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1670064 7.5670064
## sample estimates:
## mean in group OJ mean in group VC
## 20.66333 16.96333
```

Hence, we fail to reject the hypothesis. We can conclude that using a 95 percent confidence interval, supp has no effect on the true mean of toothgrowth.

Then we make t test first by dose to test the hypothesis that: H0: does has no effect on the mean of tooth growth.

Because there are three different doeses. We compare them two by two.

```
split(ToothGrowth, ToothGrowth$dose)[[1]][["dose"]][1]
## [1] 0.5
dose1<-split(ToothGrowth, ToothGrowth$dose)[[1]][["len"]]</pre>
split(ToothGrowth, ToothGrowth$dose)[[2]][["dose"]][1]
## [1] 1
dose2<-split(ToothGrowth, ToothGrowth$dose)[[2]][["len"]]</pre>
split(ToothGrowth, ToothGrowth$dose)[[3]][["dose"]][1]
## [1] 2
dose3<-split(ToothGrowth, ToothGrowth$dose)[[3]][["len"]]</pre>
And we assume that the variance of each group is the same for all the tests.
 (1) The t test between dose 0.5 and 1
t.test(dose1,dose2,paired=TRUE,var.equal=TRUE,data=ToothGrowth)
##
##
   Paired t-test
##
## data: dose1 and dose2
## t = -6.9669, df = 19, p-value = 1.225e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.872879 -6.387121
## sample estimates:
## mean of the differences
##
                      -9.13
 (2) The t test between dose 1.0 and 2.0
t.test(dose2,dose3,paired=TRUE,var.equal=TRUE,data=ToothGrowth)
##
##
   Paired t-test
##
## data: dose2 and dose3
## t = -4.6046, df = 19, p-value = 0.0001934
\mbox{\tt \#\#} alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -9.258186 -3.471814
## sample estimates:
## mean of the differences
                     -6.365
##
```

(3) The t test between dose 0.5 and 2.0

#### t.test(dose1,dose3,paired=TRUE,var.equal=TRUE,data=ToothGrowth)

```
##
## Paired t-test
##
## data: dose1 and dose3
## t = -11.291, df = 19, p-value = 7.19e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -18.3672 -12.6228
## sample estimates:
## mean of the differences
## -15.495
```

For all the three tests, we reject the hypothesis under the 95 percent confidence interval. Hence, we can say that dose has very obvious effect on the tooth growth.

#### Conclusion

Finally, we can conclude that under the assumption that the variance for all the compared groups are the same, and after applying t tests, using a 95 percent confidence interval, we can say that supp has no effect on toothgrowth and dose has large effect on it.