

COMPONENT-BASED DESIGN: REINFORCEMENT LEARNING ALGORITHMS TAILORED FOR THE LUNAR LANDER GYM ENVIRONMENT

CS 6376 Class Project

-Agrima Khanna

THE LUNAR LANDER ENVIRONMENT

Action Space:

- Discrete or Continuous

Observation Space:

-The state is an 8-dimensional vector

Rewards

- An episode's reward is a measure of the success of the lander.

Starting State

- The lander starts at the top centre of the viewport with a random initial force applied to its centre of mass.

Episode Termination

- The lander is supposed to land between two flags at (0,0)

SAFETY AND LIVENESS REQUIREMENTS

Safety Requirements

Liveness Requirements

DEEP Q-Network

- Trained on the Lunar Lander environment with discrete action space
- Components the DQN Agent interacts with:
 - 1. Q-Network
 - 2. Target Network
 - 3. Experience Replay Buffer
- The Agent component interacts with the three components and the trainer component.

DEEP DETERMINISTIC POLICY GRADIENT

- Trained on the Lunar Lander with a continuous action space.
- Components the DDPG Agent interacts with:
 - Actor Network (and the Target Actor Network)
 - 2. Critic Network (and the Target Critic Network)
 - 3. Ornstein-Uhlenbeck Noise
 - 4. Replay Buffer

PROXIMAL POLICY OPTIMIZATION

- Trained for the both types of action spaces.
- The PPO Agent interacts with:
 - 1. Actor
 - 2. Critic
 - 3. Advantage Estimator
 - 4. Rollout Buffer

RESULTS

Training results

DDPG

Testing results

