MA 1201 Spring Sem, 2025

- 1. Verify whether the following pairs (A, B) of sets are having same cradinality. If yes, establish an explicit bijection. If not, prove.
 - (a) $A := \mathbb{N}$; $B := \{ n \in \mathbb{N} : n \text{ is a power of } 2 \}$.
 - (b) $*A := \mathbb{N}; B := \mathbb{Z}.$
 - (c) $A := \mathbb{Z}$; $B := \mathbb{N}$.
 - (d) $A := \{1, 2\}; B := \{x \in \mathbb{R} : x^2 + bx + c = 0\}, \text{ where } b, c \in \mathbb{R} \text{ are given and } b^2 4ac = 0.$
 - (e) $A := \{1, 2\}; B := \{x \in \mathbb{R} : x^2 + bx + c = 0\}, \text{ where } b, c \in \mathbb{R} \text{ are given and } b^2 4ac > 0.$
 - (f) $A := \{1, 2\}; B := \{x \in \mathbb{R} : x^2 + bx + c = 0\}$, where $b, c \in \mathbb{R}$ are given and $b^2 4ac < 0$.
 - (g) $A = \{1, 2, 3, 4\}; B := \{(m, n) \in \mathbb{Z} \times \mathbb{Z} : m^2 + n^2 = 169\}.$
 - (h) $A := (0, \infty); B := (-\infty, 0).$
 - (i) $*A := (0, \infty); B := (1, \infty).$
 - (j) $A := (1, \infty); B := (-\infty, -3).$
 - (k) $A := (0,1); B := (1,\infty).$
 - (l) $A := (0,1); B := (a,b), \text{ where } a < b, a, b \in \mathbb{R}.$
 - (m) $A := (0,1); B := (0,\infty).$
 - (n) $*A := (0,1); B := \mathbb{R}.$
 - (o) *A := (0,1); B := [0,1].

Solution:

- (a) Yes. Choose the bijection function $f: A \to B$ as $f(n) = 2^n$.
- (b) Yes. Choose the bijection function $f: \mathbb{N} \to \mathbb{Z}$ as $f(n) = \begin{cases} k, & \text{if } n = 2k, \\ 1 k, & \text{if } n = 2k 1. \end{cases}$

Injectivity: To show injectivity, we prove that if $f(n_1) = f(n_2)$, then $n_1 = n_2$.

Case 1: Both n_1 and n_2 are even. If $n_1 = 2k_1$ and $n_2 = 2k_2$, then:

$$f(n_1) = k_1, \quad f(n_2) = k_2.$$

If $f(n_1) = f(n_2)$, then $k_1 = k_2$, so $n_1 = 2k_1 = 2k_2 = n_2$.

Case 2: Both n_1 and n_2 are odd. If $n_1 = 2k_1 - 1$ and $n_2 = 2k_2 - 1$, then:

$$f(n_1) = 1 - k_1, \quad f(n_2) = 1 - k_2.$$

If $f(n_1) = f(n_2)$, then $1-k_1 = 1-k_2$, so $k_1 = k_2$, and $n_1 = 2k_1-1 = 2k_2-1 = n_2$.

Case 3: One of n_1 or n_2 is even, and the other is odd. Suppose $n_1 = 2k_1$ (even) and $n_2 = 2k_2 - 1$ (odd). Then:

$$f(n_1) = k_1, \quad f(n_2) = 1 - k_2.$$

If $f(n_1) = f(n_2)$, then $k_1 = 1 - k_2$, which implies $k_1 + k_2 = 1$. However, this contradicts n_1 and n_2 being distinct natural numbers, as even and odd integers cannot overlap.

Thus, $f(n_1) = f(n_2)$ implies $n_1 = n_2$, and f is injective.

Surjectivity: To show surjectivity, we prove that for every $z \in \mathbb{Z}$, there exists an $n \in \mathbb{N}$ such that f(n) = z.

Case 1: z > 0. Let z = k, where $k \in \mathbb{N}$. Choose n = 2k (even). Then:

$$f(n) = f(2k) = k = z.$$

Case 2: $z \leq 0$. Let z = 1 - k, where $k \in \mathbb{N}$. Choose n = 2k - 1 (odd). Then:

$$f(n) = f(2k - 1) = 1 - k = z.$$

Thus, for every $z \in \mathbb{Z}$, there exists an $n \in \mathbb{N}$ such that f(n) = z, and f is surjective.

- (c) Yes. Choose the bijection function $f: \mathbb{Z} \to \mathbb{N}$ as $f(z) = \begin{cases} 2z, & \text{if } z > 0, \\ 1 2z, & \text{if } z \leq 0. \end{cases}$
- (d) No. Since |A| = 2 and |B| = 1.
- (e) Yes. Choose the bijection function $f: A \to B$ as $f(n) = \begin{cases} \frac{-b + \sqrt{b^2 4ac}}{2}, & \text{if } n = 1, \\ \frac{-b \sqrt{b^2 4ac}}{2}, & \text{if } n = 2. \end{cases}$

- (f) No. Since |A| = 2 and |B| = 0.
- (g) No. Since |A| = 4 and |B| = 8 as $B = \{(12, 5), (5, 12), (5, -12), (-12, 5), (12, -5), (-5, 12), (-5, -12), (-12, -5)\}$
- (h) Yes. Choose the bijection function $f:(0,\infty)\to(-\infty,0)$ as f(x)=-x.
- (i) Yes. Choose the bijection function $f:(0,\infty)\to(1,\infty)$ as f(x)=x+1.
- (j) Yes. Choose the bijection function $f:(1,\infty)\to(-\infty,-3)$ as f(x)=-x-2.
- (k) Yes. Choose the bijection function $f:(0,1)\to(1,\infty)$ as $f(x)=\frac{1}{x}$.

Injectivity: Assume $f(x_1) = f(x_2)$. Then $\frac{1}{x_1} = \frac{1}{x_2}$, so $x_1 = x_2$. Thus, f is injective.

Surjectivity: For any $y \in (1, \infty)$, let $x = \frac{1}{y}$. Since y > 1, we have 0 < x < 1, and $f(x) = \frac{1}{x} = y$. Thus, f is surjective.

- (1) Yes. Choose the bijection function $f:(0,1)\to(a,b)$ as f(x)=a+(b-a)x.
- (m) Yes. Choose the bijection function $f:(0,1)\to(0,\infty)$ as $f(x)=\frac{1}{x}-1$.
- (n) Yes. Choose the bijection function $f:(0,1)\to\mathbb{R}$ as $f(x)=\ln\left(\frac{x}{1-x}\right)$.

Injectivity: Assume $f(x_1) = f(x_2)$. Then $\ln\left(\frac{x_1}{1-x_1}\right) = \ln\left(\frac{x_2}{1-x_2}\right)$, so taking exponential, $\frac{x_1}{1-x_1} = \frac{x_2}{1-x_2}$. Simplifying gives $x_1 = x_2$. Thus, f is injective.

Surjectivity: For any $y \in \mathbb{R}$, let $x = \frac{e^y}{1+e^y}$. Since $e^y > 0$, 0 < x < 1, and $f(x) = \ln\left(\frac{x}{1-x}\right) = y$. Thus, f is surjective.

(o) Yes. Choose the bijection function $f:(0,1)\to [0,1]$ as

$$f(x) = \begin{cases} 0, & \text{if } x = \frac{1}{2}, \\ 1, & \text{if } x = \frac{1}{3}, \\ \frac{1}{n-2}, & \text{if } x \in \left\{\frac{1}{n} : n \in \mathbb{N}, n \ge 4\right\}, \\ x, & \text{if } x \in (0,1) \setminus \left\{\frac{1}{n} : n \in \mathbb{N}, n \ge 2\right\}. \end{cases}$$

Injectivity:

• If
$$f(x_1) = f(x_2)$$
, then:
 $- f(x_1) = f(x_2) = 0 \implies x_1 = x_2 = \frac{1}{2}$,

$$- f(x_1) = f(x_2) = 1 \implies x_1 = x_2 = \frac{1}{3},$$

$$- \text{ For } x_1 = \frac{1}{n_1} \text{ and } x_2 = \frac{1}{n_2} \text{ (with } n_1, n_2 \ge 4), f(x_1) = f(x_2) \implies n_1 = n_2, \text{ so } x_1 = x_2,$$

$$- \text{ For } x_1, x_2 \in (0, 1) \setminus \left\{ \frac{1}{n} : n \ge 2 \right\}, f(x_1) = f(x_2) \implies x_1 = x_2.$$

Thus, f is injective.

Surjectivity:

- For y = 0, $f(\frac{1}{2}) = 0$,
- For y = 1, $f(\frac{1}{3}) = 1$,
- For $y = \frac{1}{n}, n \ge 2, f\left(\frac{1}{n+2}\right) = \frac{1}{n}$,
- For $y \in (0,1) \setminus \{\frac{1}{n}, n \ge 2\}, f(y) = y.$

Thus, f is surjective.

2. Let X be a set and $A, B \subseteq X$. Let $A \sim B$ if and only if A and B have same cardinality. Show that \sim is an equivalence relation on $\mathcal{P}(X)$.

Solution: Since $A \sim A$, it follows that \sim is reflexive. If $A \sim B$, then there exists a bijective map $f: A \to B$. By the properties of bijections, the inverse map $g = f^{-1}$ is also bijective, with $g: B \to A$. This implies $B \sim A$. Therefore, \sim is symmetric.

Next, suppose $A \sim B$ and $B \sim C$. Then there exist bijective maps $f_1 : A \to B$ and $f_2 : B \to C$. Define $g = f_2 \circ f_1$, which is a composition of bijections and hence itself bijective, with $g : A \to C$. This implies $A \sim C$. Therefore, \sim is transitive.

Since \sim satisfies reflexivity, symmetry, and transitivity, it is an equivalence relation on $\mathcal{P}(X)$.

3. *If A is a finite set and $B \subseteq A$, then show that B is finite and $|B| \leq |A|$.

Solution: If $A = \phi$, then $B \subseteq A$ gives $B = \phi$. Hence B is finite and |B| = 0 = |A|.

Suppose $A \neq \phi$. Then there exists $n \in \mathbb{N}$ and a bijective function $f: A \to I_n$. Consider the inclusion map $i: B \to A$ defined by i(b) = b for all $b \in B$. Then i is injective with range of $i = B \subseteq A$.

Thus the composition map $g = f \circ i : B \to I_n$ is 1 - 1. This implies that B is finite and $|B| \le n$ (by the proposition in page 13 in week 01 notes).

4. *If A is a finite set and B is a proper subset of A, then show that |B| < |A|.

Solution:

Let |A| = n. Since B is a proper subset of A therefore there exists $a \in A$ such that $a \notin B$. Thus $B \subseteq A \setminus \{a\}$. From the solution of the previous question it follows that $|B| \leq |A \setminus \{a\}| = n - 1 < |A|$.

5. If A is a finite set and $a \notin A$, then prove $|A \cup \{a\}| = |A| + 1$.

Solution: We prove that if A is a finite set and $a \notin A$ then $|A \cup \{a\}| = |A| + 1$. Let $B = A \cup \{a\}$. Since $a \notin A$, so $A = B \setminus \{a\}$. From the lemma (in Page 9 of week 1 notes) it follows that |A| = |B| - 1. This implies $|A \cup \{a\}| = |A| + 1$.

6. *If A, B are finite sets, then prove that $A \cup B$ is a finite set and

$$|A \cup B| = |A| + |B| - |A \cap B|.$$

Solution: Suppose, A contains m elements and $A = \{x_1, x_2, \dots, x_m\}$. B contains n elements and $B = \{y_1, y_2, \dots, y_n\}$.

Case-1: If $A \cap B = \emptyset$, then

$$A \cup B = \{x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n\}$$

Therefore, $|A \cup B| = m + n - 0 = |A| + |B| - |A \cap B|$.

Remark: If for i = 1, 2, ..., n, A_i are finite sets and $A_i \cap A_j = \emptyset$ for all $i \neq j$. Therefore by Mathematical induction we have, $|\bigcup_{i=1}^n A_i| = \sum_{i=1}^n |A_i|$.

Case-2: If $A \cap B \neq \emptyset$. Suppose $A \cap B$ contains k elements, Therefore, $|A - (A \cap B)| = m - k$. Now, we can write,

$$A \cup B = (A - (A \cap B)) \cup B$$

Since $(A - (A \cap B)) \cap B = \emptyset$, then by **case-1**:

$$|A \cup B| = |(A - (A \cap B))| + |B| = m - k + n = |A| + |B| - |A \cap B|$$

7. If A, B are finite sets, then prove that $A \times B$ is finite and

$$|A \times B| = |A||B|.$$

Solution: Suppose, A contains m elements and $A = \{x_1, x_2, \dots, x_m\}$. Now we can write,

$$A \times B = \bigcup_{i=1}^{m} A_i$$
, where $A_i = \{x_i\} \times B$

Since $A_i \cap A_j = \emptyset$ for all $i \neq j$ and $|A_i| = |B|$ ($\forall i$), therefore by **Remark** in solution of problem (6), we have

$$|A \times B| = \sum_{i=1}^{m} |A_i| = m|B| = |A||B|$$

- 8. Let X be a finite set and $f: X \to X$ be a map. Show that the following are equivalent:
 - (a) f is a bijection.
 - (b) f is 1-1.
 - (c) f is onto.

Solution: (a) \Rightarrow (b): Obvious, as bijective \Leftrightarrow injective + onto.

(b) \Rightarrow (c): To prove onto, we prove that $\mathbf{Im}(f) = f(X) = X$. Suppose not, that is $f(X) \subset X$. Then by Problem 6, |f(X)| < |X|. On the other hand, ince $f: X \to X$ is one one, then $f: X \to f(X)$ is a bijection showing |f(X)| = |X|, a contradiction. Hence f(X) = X, that is, f is onto.

(c) \Rightarrow (a): Here, To prove bijective, we need to prove f is one one. Since f is onto, then for each $y \in X = \mathbf{Codomain}(f)$, there exist an element $x \in X = \mathbf{Dom}(f)$ such that f(x) = y. Since X is finite, there exists a bijection from I_n to X and we can write $X = \{y_1, \ldots, y_n\}$. Since f is onto, $|f^{-1}\{y_i\}| \ge 1$ for all $i, 1 \le i \le n$. If f is not 1-1, then there exist a i such that $|f^{-1}\{y_i\}| > 1$. Then $X = \bigcup_{i=1}^n f^{-1}\{y_i\}$ being the disjoint union, we have $|X| = \sum_{i=1}^n |f^{-1}\{y_i\}| > n$ - a contradiction. So, f is one one and hence, f is bijective.

- 9. Let A and B be finite sets and $f: A \to B$ be a map. Prove the following:
 - (a) If f is 1 1, then $|A| \le |B|$.
 - (b) If f is onto, then $|A| \ge |B|$.
 - (c) If $f: A \to B$ and $g: B \to A$ are 1-1, then |A| = |B|, and f and g are bijections.

Solution:

(a) If B is empty, then A has to empty else the function f cannot be defined. Thus, A is finite and |A| = 0 = |B|.

Suppose B is non-empty. Then there exists some $n \in \mathbb{N}$ and a bijective map $f_B: B \to I_n$. As $f(A) \subset B$, consider the composition map

$$h_A := f_B \, of : A \to I_n.$$

Note that the map h_A being composition fo two 1-1 map is 1-1, and hence the set A is finite and $|A| \leq n = |B|$. This proves the result.

(b) If A is empty, then B has to empty and hence |B|=0=|A|. Suppose A is non-empty. Then there exits $m\in\mathbb{N}$ and a bijective map $f_A:I_m\to A$. Now, consider the composition map

$$h_B := fof_A : I_m \to B.$$

Note that the map h_B being composition of two onto function is onto and so the set B is finite and $|B| \leq m = |A|$. This proves the result.

(c) If $f: A \to B$ is 1-1, then by (a)

$$|A| \le |B|. \tag{1}$$

Similarly, if $g: B \to A$ is 1-1, then by (a)

$$|B| \le |A|. \tag{2}$$

Due to (1) and (2), we have

$$|A| = |B|. (3)$$

For bijectiveness of f and g:

f is given to be 1-1, so we need to show that f is onto. If possible, suppose f is not onto, i.e, $f(A) \subseteq B$. By (3), |f(A)| < |B|. Now since f is one-one and |f(A)| = |A|. This shows |A| < |B|, which contradicts (3). Thus, f is onto.

One can similarly argue to show that q is bijective.

10. Show that every infinite set contains a countable subset.

Solution: Theorem stated in class: A set A is infinite iff \exists a 1-1 map $f: \mathbb{N} \to A$. Consider the map $g: \mathbb{N} \to f(\mathbb{N})$ given by g(n) = f(n). Clearly, the map g is bijective and hence the subset $f(\mathbb{N}) \subseteq A$ is countable.

11. *Prove that any subset of a countable set is atmost countable.

Solution: Suppose $A \subseteq B$, where B is countable.

If B is finite, then A is finite.

If B is infinite, \exists a bijection $f: B \to \mathbb{N}$. Note that the map $g: A \to f(A)$, defined by $g(a) = f(a) \ \forall a \in A$, is a bijection. So A and f(A) have the same cardinality. Since

 $f(A) \subset \mathbb{N}$, by Theorem stated in class, f(A) is almost countable. Hence, A is almost countable.

12. *Prove that finite union of countable set is countable.

Solution: It is enough to prove that union of two countable sets is countable. Let $A = \{a_1, a_2, \ldots, a_n, \ldots\}, (a_i)$'s are all distinct $B = \{b_1, b_2, \ldots, b_n, \ldots\}$ (b_i 's are all distinct) be two countable sets. We will consider two cases.

Case I : $A \cap B = \phi$

We define a map $g: \mathbb{N} \to A \cup B$ given by

$$g(n) = \begin{cases} a_k & \text{if } n = 2k \\ b_k & \text{if } n = 2k - 1 \end{cases}$$

Let $n \neq m$. If n, m are both even, then $g(n) = a_{\frac{n}{2}} \neq a_{\frac{m}{2}} = g(m)$. If n is even and m is odd, then $g(n) \in A$ and $g(m) \in B$. But $A \cap B = \phi$. So $g(n) \neq g(m)$. Similarly one can show that $g(n) \neq g(m)$, when n, m are both odd. So g is injective. Now let $x \in A \cup B$. Then $x \in A$ or $x \in B$, (not in both as A, B are disjoint). If $x \in A$, then $x = a_k$ for some $k \in \mathbb{N}$. Then $g(2k) = a_k = x$. So x has a preimage under g. Similarly, one can show that if $x \in B$, then x has a preimage under g. So g is surjective. Thus $A \cup B$ is countable.

Case II : $A \cap B \neq \phi$

Write $A \cup B = A \cup (B \setminus A)$. Note that $A \cap (B \setminus A) = \phi$ and $(B \setminus A) \subset B$ is at most countable by problem no. 13. So by Case I, $A \cup B = A \cup (B \setminus A)$ is countable.

13. Let A be an infinite set and $B \subseteq A$ a finite set. Show that $A \setminus B$ is infinite.

Solution: We know that $A = B \cup \{A \setminus B\}$. We also know that union of two finite set is finite. If $A \setminus B$ is finite then $A = B \cup \{A \setminus B\}$ is also finite contradicting the fact that A is infinite.

14. Let A be uncountable and $B \subseteq A$ a countable set. Show that $A \setminus B$ is uncountable.

Solution: Similar as above.

15. *Show that for any infinite set A and a countable set B, the sets A and $A \cup B$ are of same cardinality.

Solution: Since A is infinite there exists a countable set $A' \subseteq A$. We are given B is countable. We now use the fact that union of two countable set is countable to produce a bijection $f: A' \to A' \cup B$. Now this allows us to define $g: A \to A \cup B$ as

$$g(a) = \begin{cases} f(a) & \text{if } a \in A' \\ a & \text{if } a \in A \setminus A' \end{cases}$$

Hence A and $A \cup B$ have same cardinality.

- 16. For a nonempty subset A, prove that the following are equivalent:
 - (a) A is atmost countable.
 - (b) There exists a 1-1 map of A to \mathbb{N} .
 - (c) There exists an onto map of \mathbb{N} to A.

Solution: (a) \Rightarrow (c) If A is finite, then there exists a bijection f from I_m to A. Now construct $g: \mathbb{N} \to I_m$ by

$$g(j) = \begin{cases} j \text{ if } j \leq m, \\ m \text{ if } j > m \end{cases}$$

Here g is onto gives $f \circ g : \mathbb{N} \to A$ is onto.

If A is infinite then there exists a bijection from \mathbb{N} to A. So we are done.

(c) \Rightarrow (b) we define $h:A\to\mathbb{N},$ $h(a)=\min_{x\in f^{-1}\{a\}}x,$ then h is well defined as each $f^{-1}\{a\}$

has a least element from well ordering principle and injective as $f^{-1}\{a\} \cap f^{-1}\{b\} = \phi$ for $a \neq b$.

(b) \Rightarrow (a) If A is finite then we are done.

Since, there exists an 1-1 map from A into \mathbb{N} so that f is a bijection from A onto $f(A) \subseteq \mathbb{N}$. But we have any subset of \mathbb{N} is countable. So A countable.

- 17. *Suppose that $A \subseteq B$ then prove that
 - (a) B is finite $\implies A$ is finite.
 - (b) A is infinite $\implies B$ is infinite.
 - (c) B is countable $\implies A$ is countable.
 - (d) A is uncountable \implies B is uncountable.

Solution:

- (a) As B is finite, we have a bijection f from B to I_m . Define $g: A \to B$ by g(a) = a. So, $f \circ g$ is 1 1 from A into I_m , which gives A finite.
- (b) Suppose B is not infinite, that is, finite, then from part (a) it follows that A is finite contradicting the hypothesis that A is infinite. Hence B is finite.
- (c) If A is finite then it is at most countable. Now, B is countable gives a bijection p from B to N. So that $f = p \circ g$ is 1 1 map from A into N and a bijection from A onto $f(A) \subseteq \mathbb{N}$. Again we have f(A) countable [As any infinite subset of N is countable] gives A countable.
- (d) Given A is uncountable. We will show this by contradiction. Assume B is finite or countable. Then by part (a) and (c), A has to be atmost countable. So it contradicts the fact that A is uncountable. So B has to be uncountable.
- 18. *Suppose $f: A \to B$ is injective then prove that
 - (a) B is finite $\implies A$ is finite.
 - (b) A is infinite $\implies B$ is infinite.
 - (c) B is countable $\implies A$ is at at at a total countable.
 - (d) A is uncountable $\implies B$ is uncountable.

Solution:

(a) Since the set B is finite, there exists a bijection, $g: B \to I_m$ for some $m \in \mathbb{N}$, where $I_m = \{1, 2, \dots, m\}$.

Consider the composition of the map,

$$h := q \circ f : A \to I_m$$
.

Both the maps f and g are one-one, implies that the composition map, $h := g \circ f$, is also one-one (composition of two one-one is one-one). We conclude that A is finite, using the proposition discussed in the class, which states that if $f: A \to I_m$ is 1-1, then A is finite and $|A| \leq m$ (don't confuse this 'f' in the proposition by the 'f' given in the problem).

- (b) We will prove this statment by contradiction. Let, if possible, B is not infinite, i.e, B is finite. Recall that a set is either finite or infinite. From part (a), we know that if B is finite, then A must be finite. However, this contradict the given assumption that A is infinite. Thus, our assumption that B is finite must be false. Therefore, B must be infinite.
- (c) By the definition, the set B being countable means that there exists a bijective map $g: B \to \mathbb{N}$. Now, consider the composition map $g \circ f: A \to \mathbb{N}$, where $f: A \to B$ is the one-one map given in the problem. Since f is one-one and g is bijective, their composition $g \circ f$ is an injective map from A to \mathbb{N} . By Problem 18(b), a set that admits an injective map into \mathbb{N} is atmost countable. Therefore, A is atmost countable.
- (d) We will prove this statement by contradiction. Let, if possible, B is not uncountable, i.e, B is either finite or countable. We will give the contradiction separably for both cases,
 - i. B is finite: From part (a), we know that if B is finite, then A must be finite. However, this contradict the given assumption that A is uncountable.
 - ii. B is countable: From part (c), we know that if B is countable, then A is atmost countable. However, this again contradict the given assumption that A is uncountable.

Thus, our assumption that B is at most countable must be false. Therefore, B must be uncountable.

- 19. *Suppose $f: A \to B$ is surjective then prove that
 - (a) A is finite $\implies B$ is finite.
 - (b) B is infinite $\implies A$ is infinite.
 - (c) A is countable $\implies B$ is at most countable.
 - (d) B is uncountable $\implies A$ is uncountable.

Solution:

(a) Since the set A is finite, there exists a bijection, $g: I_m \to A$ for some $m \in \mathbb{N}$, where $I_m = \{1, 2, \dots, m\}$.

Consider the composition of the map,

$$h := f \circ g : I_m \to B.$$

Both the maps f and g are surjective, implies that the composition map, $h := f \circ g$, is also surjective (composition of two surjective map is surjective). We conclude that B is finite, using the proposition discussed in the class, which states that if $f: I_m \to A$ is surjective, then A is finite and $|A| \leq m$ (do not confuse this 'f' in the proposition by the 'f' given in the problem).

- (b) We will prove this statment by contradiction. Let, if possible, A is not infinite, i.e, A is finite. Recall that a set is either finite or infinite. From part (a), we know that if A is finite, then B must be finite. However, this contradict the given assumption that B is infinite. Thus, our assumption that A is finite must be false. Therefore, A must be infinite.
- (c) By the definition, the set A being countable means that there exists a bijective map $g: \mathbb{N} \to A$. Now, consider the composition map $f \circ g: \mathbb{N} \to B$, where $f: A \to B$ is the surjective map given in the problem. Since f is surjective and g is bijective, their composition $f \circ g$ is a surjective map from \mathbb{N} to B. By Problem 18(c), if there exists surjective map from a set \mathbb{N} into B, then the set B is atmost countable. Therefore, B is atmost countable as $f \circ g: \mathbb{N} \to B$ is the required surjective map.

- (d) We will prove this statement by contradiction. Let, if possible, A is not uncountable, i.e, A is either finite or countable. We will give the contradiction separably for both cases,
 - i. A is finite: From part (a), we know that if A is finite, then B must be finite. However, this contradict the given assumption that B is uncountable.
 - ii. A is countable: From part (c), we know that if A is countable, then B is atmost countable. However, this again contradict the given assumption that B is uncountable.

Thus, our assumption that A is at most countable must be false. Therefore, A must be uncountable.