Marcus Zibrowius Jan Hennig 19.11.2024

Topologie I Blatt 5

So fern nicht weiter spezifiziert arbeiten wir in der Kategorie der lokal kompakt erzeugten, schwach Hausdorff Räume und bezeichnen diese Kategorie mit **Top**.

1 | Stegreiffragen: Faserbündel

Alle Fragen sollten lediglich eine kurze Antwort benötigen:

- (a) Wahr oder falsch: Jede Faserung ist ein Faserbündel.
- (b) Wahr oder falsch: Sind $p_i : E_i \to B_i$ Faserbündel, so ist auch $p_1 \coprod p_2 : E_1 \coprod E_2 \to B_1 \coprod B_2$ ein Faserbündel.

2 | Hopfbündel

Betrachte den reellen projektiven Raum \mathbb{RP}^n und den komplexen projektiven Raum \mathbb{CP}^n .

- (a) Zeigen Sie, dass $S^n \to \mathbb{RP}^n$ ein Faserbündel mit Faser S^0 ist.
- (b) Zeigen Sie, dass $S^{2n+1} \to \mathbb{CP}^n$ ein Faserbündel mit Faser S^1 ist.
- (c) Zeigen Sie, dass es ein Faserbündel $S^1 \to S^1$ mit Faser S^0 gibt.
- (d) Zeigen Sie, dass es ein Faserbündel $S^3 \to S^2$ mit Faser S^1 gibt. (Geben Sie die Abbildung explizit an.)

3 | Wo sind alle meine Schnitte?

Sei $p: E \to B$ ein Faserbündel. Eine Abbildung $s: B \to E$ mit p(s(x)) = x für alle $x \in B$ heißt Schnitt von p.

(a) Finden Sie ein Faserbündel $p: E \to B$, das keinen Schnitt besitzt.

Definiere nun für eine stetige Abbildung $f: X \to Y$

$$\mathcal{F} \colon \operatorname{Open}(Y)^{op} \longrightarrow \mathbf{Set},$$

$$U \subseteq Y \text{ offen } \longmapsto \{s \colon U \to X \mid f \circ s = \operatorname{id}_{U}\}$$

$$V \subseteq U \longmapsto (\operatorname{res}_{V}^{U} \colon \mathcal{F}(U) \to \mathcal{F}(V), s \mapsto s|_{V})$$

- (b) Zeigen Sie, dass \mathcal{F} ein Funktor ist.
- (c) Sei $U = \bigcup_{i \in I} U_i$ eine offene Überdeckung und $s, t \in \mathcal{F}(U)$ mit $\operatorname{res}_{U_i}^U(s) = \operatorname{res}_{U_i}^U(t)$ für alle $i \in I$. Zeigen Sie, dass dann s = t gilt.
- (d) Sei $U = \bigcup_{i \in I} U_i$ eine offene Überdeckung und $s_i \in \mathcal{F}(U_i)$ mit $\operatorname{res}_{U_i \cap U_j}^{U_i}(s_i) = \operatorname{res}_{U_i \cap U_j}^{U_j}(s_j)$ für alle $i, j \in I$. Zeigen Sie, dass es ein $s \in \mathcal{F}(U)$ gibt mit $\operatorname{res}_{U_i}^U(s) = s_i$ für alle $i \in I$.

Wieder zurück zu Faserbündeln $p \colon E \to B$.

(e) Zeigen Sie, dass $p: E \to B$ lokale Schnitte besitzt, d.h. für jeden Punkt $x \in B$ gibt es eine offene Umgebung $U \subseteq B$ mit $\mathcal{F}(U) \neq \emptyset$.