DCC011: Introdução a Banco de Dados

Rodrygo Santos

rodrygo@dcc.ufmg.br

Departamento de Ciência da Computação Universidade Federal de Minas Gerais

Mapeamento ER - Relacional

- 1. Transformações entre Modelos
- 2. Algoritmo de mapeamento ER \rightarrow Relacional

1. Transformações entre Modelos

- Uma vez definido o modelo conceitual, o próximo passo é definir o modelo lógico
- Uma alternativa: mapear as construções do modelo conceitual para o lógico

Transformações entre Modelos

Transformações ER para Relacional

- Regras gerais
 - Aplicáveis à maioria dos casos
 - Há situações excepcionais
 - Por exigências da aplicação, outros mapeamentos são usados
 - Implementadas em ferramentas CASE
- Objetivos básicos
 - Bom desempenho
 - Simplificar o desenvolvimento

Regras gerais de tradução

- A. Evitar junções
- B. Diminuir o número de chaves
- C. Evitar campos opcionais

A. Evitar junções

- Junções
 - Operação para buscar dados de diversas linhas associadas pela igualdade de campos
 - Dados de empregados e seus respectivos departamentos
- SGBD relacional normalmente armazena os dados de uma linha contiguamente em disco
 - Junção envolve diversos acessos a disco
 - Preferível ter os dados necessários a uma consulta em uma única linha

B. Chave e Índice

- Implementação eficiente do controle de chaves: SGBD usa um índice
 - Índices tendem a ocupar espaço considerável em disco
- Inserção e remoção de entradas em um índice
 - Podem exigir diversos acesso a disco

C. Campos opcionais

- Campo opcional = campo que pode assumir o valor vazio (NULL em SQL)
- SGBD relacional não desperdiça espaço pelo fato de campos de uma linha estarem vazios
 - Campo opcional não tem influência no desempenho
- EVITAR porque controle de campo opcional pode complicar programação
 - Verifica quais campos podem estar vazios

2. Algoritmo de Mapeamento Elmasri & Navathe

- a. Entidades regulares
- b. Atributos multivalorados
- c. Entidades fracas
- d. Relacionamentos
 - d.1 Relacionamentos binários 1:1
 - d.2 Relacionamentos binários 1:N
 - d.3 Relacionamentos binários N:M
 - d.4 Relacionamentos N-ários
- e. Hierarquias (especialização/generalização)

Exemplo de um Diagrama ER

a. Entidades regulares(sem atributos multivalorados)

- Entidade regular E → Relação R
- Atributo em $E \rightarrow$ Coluna em R
- Atributo identificador em E → Chave primária em R

a. Entidades regulares(sem atributos multivalorados)

Empregado (NEmp, NomeEmp, Salário)

b. Atributos Multivalorados

Departamento (NDept, NomeDept)

Ramal-Departamento (NDept, Ramal)

NDept referencia Departamento, por propagação

c. Entidade Fraca

Empregado (NEmp,...)

Dependente (NEmp, NomeDep, DataNasc)

NEmp referencia Empregado, por propagação

d. Relacionamentos

- Tabela própria
- Adição de colunas a uma das tabelas
- Fusão de tabelas
- Alternativa depende da cardinalidade (máxima e mínima) do relacionamento
 - d.1 Relacionamentos binários 1:1
 - d.2 Relacionamentos binários 1:N
 - d.3 Relacionamentos binários N:M
 - d.4 Relacionamentos N-ários

d.1. Relacionamento binário (1:1)

Tipo de relacionamento		Regra de implementação			
		Tabela própria	Adição coluna	Fusão tabelas	
	(0,1)		±	>	×
	(0,1)		×	±	√
	(1,1)		×	×	√

✓ Alternativa preferida

± Pode ser usada

× Não usar

(1,1) - (1,1) - ambas obrigatórias

Fusão de Tabelas

Conferência (CodConf, Nome, DataInstComOrg, EnderComOrg)

(1,1) - (1,1) - ambas obrigatórias

- Nenhuma das demais alternativas atende plenamente
- Em ambas
 - Entidades que participam do relacionamento seriam representadas através de duas tabelas distintas
 - Estas tabelas teriam a mesma chave primária e relação um-para-um entre suas linhas
 - Maior número de junções
 - Maior número de chaves primárias

d.1. Relacionamento binário (1:1)

Tipo de relacionamento		Regra de implementação		
		Tabela própria	Adição coluna	Fusão tabelas
-	(0,1)	±	>	×
	(0,1)	×	±	√
	(1,1)	×	×	✓

✓ Alternativa preferida

± Pode ser usada

X Não usar

(0,1) - (1,1) – opcional e obrigatória

Fusão de Tabelas

Correntista (CodCorrent, Nome, CodCartao, DataExp)

(0,1) - (1,1) – opcional e obrigatória

Adição de Colunas

Correntista (CodCorrent, Nome)
Cartao (CodCartao, DataExp, CodCorrent)
CodCorrent referencia Correntista

(0,1) - (1,1) – opcional e obrigatória

Tabela Própria

Correntista (CodCorrent, Nome)

Cartao (CodCartao, DataExp)

CartaoCorrentista (CodCartao, CodCorrent)

CodCorrent referencia Correntista

CodCartao referencia Cartao

(0,1) - (1,1) – opcional e obrigatória

- Solução por tabela própria é pior que a solução por adição de colunas
 - Maior número de junções
 - Maior número de índices
 - Nenhum tem problema de campos opcionais
- Adição de colunas versus fusão de tabelas
 - Fusão é melhor em termos de número de junções e número de chaves
 - Adição é melhor em termos de campos opcionais
 - Fusão é considerada a melhor e adição é aceitável

d.1. Relacionamento binário (1:1)

	Regra de implementação		
Tipo de relacionamento	Tabela própria	Adição coluna	Fusão tabelas
(0,1)	±	✓	×
(0,1)	×	±	✓
(1,1) (1,1)	×	×	✓

✓ Alternativa preferida

± Pode ser usada

X Não usar

(0,1) - (0,1) - ambas opcionais

Adição de Colunas

Mulher (<u>IdentM</u>, Nome, IdentH, Data, Regime)
IdentH referencia Homem
Homem (<u>IdentH</u>, Nome)

(0,1) - (0,1) - ambas opcionais

Tabela Própria

Mulher (IdentM, Nome)

Homem (IdentH, Nome)

Casamento (IdentM, IdentH, Data, Regime)

IdentM referencia Mulher

IdentH referencia Homem

(0,1) - (0,1) - ambas opcionais

Fusão de Tabelas

Casamento (IdentM, IdentH, Data, Regime, NomeH, NomeM)

(0,1) - (0,1) - ambas opcionais

- Solução por adição de colunas melhor
 - Menor número de junções
 - Menor número de chaves
- Solução por tabela própria aceitável
 - Maior número de junções
 - Chave primária não modela cardinalidade 1:1
- Solução por fusão de tabelas é inviável
 - Chave primária não garante cardinalidade 1:1
 - Modelagem de participação parcial comprometida

d.2. Relacionamentos binários (1:N)

Regra de implementação Tipo de relacionamento Tabela Adição Fusão tabelas própria coluna (0,1)(O,n)× (1,n)X (0,1)(1,1)X X (O,n)X (1,1)X (1,n)± Pode ser usada ✓ Alternativa preferida

X Não usar

"1"

opc.

"1"

obr.

[©] Carlos A. Heuser Projeto de Banco de Dados Ed. Sgra & Luzzatto

(1,1) - (0,N) - obrigatória e opcional

Adição de Colunas Departamento (CodDept, Nome) Empregado (CodEmp, Nome, CodDept, DataLota) CodDept referencia Departamento

(1,1) - (0,N) - obrigatória e opcional

Tabela Própria

Departamento (<u>CodDept</u>, Nome)
Empregado (<u>CodEmp</u>, Nome)
Lotacao (<u>CodEmp</u>, CodDept, DataLota)
CodDept referencia Departamento
CodEmp referencia Empregado

(1,1) - (0,N) – obrigatória e opcional

- Adição de colunas é melhor que tabela própria
 - Menor número de chaves
 - Menor número de junções
 - Não há problema de campos opcionais
- Fusão de Tabelas
 - Não se aplica
 - Implicaria em
 - Redundância de dados de departamento ou
 - Tabela aninhada

d.2. Relacionamentos binários (1:N)

X Não usar

© Carlos A. Heuser Projeto de Banco de Dados Ed. Sgra & Luzzatto

(0,1) - (0,N) - ambas opcionais

Adição de Colunas Financeira (CodFin, Nome) Venda (IdVenda, Data, CodFin, NoParc, TxJuros) CodFin referencia Financeira

(0,1) - (0,N) – ambas opcionais

Tabela Própria

Financeira (CodFin, Nome)

Venda (IdVenda, Data)

Financiam (IdVenda, CodFin, NoParc, TxJuros)

IdVenda referencia Venda

CodFin referencia Financeira

Relacionamentos binários

(0,1) - (0,N) – ambas opcionais

- Implementação por tabela própria também é aceitável
 - É melhor em relação a campos opcionais
 - Perde em relação a junções e número de chaves

d.3 Relacionamento binário (N:M)

		Regra de implementação			
Tipo de relacionamento		Tabela própria	Adição coluna	Fusão tabelas	
(O,n) (O,n)		▲	×	×	
(O,n) (1,n)		✓	×	×	
(1,n) (1,n)		✓	×	×	

✓ Alternativa preferida

× Não usar

d.3 Relacionamento binário (N:M)

Tabela Própria

Engenheiro (CodEng, Nome)

Projeto (CodProj, Titulo)

Atuacao (CodEng, CodProj, Funcao)

CodEng referencia Engenheiro CodProj referencia Projeto

d.4. Relacionamento N-ario

- Não são definidas regras específicas
 - O relacionamento é transformado em uma entidade
 - São aplicadas regras de implementação de relacionamentos binários
- Nova entidade Rel
 - Colunas = chaves primárias das tabelas relacionadas

Relacionamento N-ario

FNOME

NOMEPROJ

NUMLOTE

QUANTIDADE

e. Hierarquias

- Geralmente quatro opções
 - e.1. Relações : superclasse e subclasses
 - e.2. Relações : subclasses
 - e.3. Relação única
 - e.4. Relação única: atributos tipo

Hierarquias

e.1. Relações superclasse+subclasses

e.2. Relações subclasses

CARRO

IdVeiculo	NrLicencaPlaca	Preco	VelocidadeMax	NrDePassageiros

CAMINHAO

<u>IdVeiculo</u>	NrLicencaPlaca	Preco	NrDeEixos	Capacidade

e.3. Relação única

Empregado (NEmp, ..., SalAd, Formação)

$$\begin{split} \pi_{\mathsf{NEmp}}(\sigma_{\mathsf{SalAd} \neq \, \mathsf{nulo}} \, (\mathsf{Empregado})) \, \cap \\ \pi_{\mathsf{NEmp}}(\sigma_{\mathsf{Formação} \neq \, \mathsf{nulo}} \, (\mathsf{Empregado})) &= \emptyset \\ \\ \pi_{\mathsf{NEmp}}(\sigma_{\mathsf{SalAd} \neq \, \mathsf{nulo}} \, (\mathsf{Empregado})) \, \cup \\ \pi_{\mathsf{NEmp}}(\sigma_{\mathsf{Formação} \neq \, \mathsf{nulo}} \, (\mathsf{Empregado})) &= \\ \pi_{\mathsf{NEmp}}(\sigma_{\mathsf{Formação} \neq \, \mathsf{nulo}} \, (\mathsf{Empregado})) &= \\ \pi_{\mathsf{NEmp}}(\mathsf{Empregado}) \end{split}$$

EMPREGADO

e.4. Relação única: atributos tipo

Recomendações

- e.1. Relações : superclasse e subclasses
 - Funciona para total/partial + disjoint/overlapping
- e.2. Relações : subclasses
 - Funciona somente para total + disjoint
 - Precisa de OUTER UNION (ou FULL OUTER JOIN)
 para obter todas as instâncias da superclasse
- e.3. Relação única (disjoint)
 - e.4. Relação única + tipos (overlapping)
 - Trade-off esparsidade vs. eficiência