単位円を使わずに三角比の拡張を行う方法について述べる。

前提

区間 $[0,90^\circ]$ での代表角の三角比を覚えていること。つまり

$$\sin 0^{\circ} \quad \sin 30^{\circ} \quad \sin 45^{\circ} \quad \sin 60^{\circ} \quad \sin 90^{\circ}$$

 $\cos 0^{\circ} \quad \cos 30^{\circ} \quad \cos 45^{\circ} \quad \cos 60^{\circ} \quad \cos 90^{\circ}$
 $\tan 0^{\circ} \quad \tan 30^{\circ} \quad \tan 45^{\circ} \quad \tan 60^{\circ} \quad \tan 90^{\circ}$

の値については知っていること。

例1

「 $\sin 330^\circ$ を求めよ。」という問題が出されたとする。 $\sin 330^\circ$ は関数 $y=\sin x$ 上での位置はこんな感じ。

ここで、グラフの概形に着目すれば、270° のところで線対称となるから $\sin 330^\circ = \sin 210^\circ$ が成り立ちそうである。

次にまたグラフを観察すれば、 180° のところで点対称となるから $\sin 210^\circ = -\sin 150^\circ$ が成り立ちそうである。

最後に 90° のところで線対称となるから $\sin 150^\circ = \sin 30^\circ$ が成り立ちそうである。

以上から

$$\sin 330^{\circ} = \sin 210^{\circ} = -\sin 150^{\circ} = -\sin 30^{\circ} = -\frac{1}{2}$$

と、 $[0,90^\circ]$ の三角比の値と三角関数のグラフの性質を使えば、安全に攻めることができる。なお、これ以外にも三角関数のグラフは線対称点対称まみれであるので、必要に応じて探して使うとよい。

付録:三角関数のグラフ

