セルオートマトン交通 流モデル

モデリングとシミュレーション特論

2019年度

只木進一

実測:日本坂トンネル 1996年8月9日

観測

©只木進一(佐賀大学

- コイルに発生するパルス から通過車両数を計測
- 二つのコイルに発生する パルスの時間差から速度 を計測
- 5分毎に集計

コイル

実測:日本坂トンネル

基本図:密度-流量相関

交通渋滞実験 Tadaki他(2013)

- ▶ 渋滞の形成
- ▶ 渋滞クラスタの後退
- http://iopscience.iop.or g/1367-2630/15/10/103034/arti cle
- 動画

©只木進一(佐賀大学)

モデル化:離散版

- ■重要な様相
 - ■車は有限な長さがあり、同じ場所を二つの車両が占めることができない(排除体積効果)
 - ●前の車両に遅れて追従

最も簡単なセルオートマトン交 通流モデル

- ▶一つのセルに一つの車
- ■車は、前が空いているときだけ前に一 つ進む
- ▶すべての車両は同時に動く

入力	111	110	101	100	011	010	001	000
出力	1	0	1	1	1	0	0	0

$$(10111000)_2 = 184$$

11

同期的更新の方法

シミュレーション結果

©只木進一(佐賀大学)

$\rho = 1/2$ での相転移:平均速度

$$v = \begin{cases} 1 & \text{if } \rho \le 1/2 \\ \frac{1}{\rho} - 1 & \text{otherwise} \end{cases}$$

©只木進一(佐賀大学)

$\rho = 1/2$ での相転移:流量

$$q = v\rho = \begin{cases} \rho & \text{if } \rho \le 1/2\\ 1-\rho & \text{otherwise} \end{cases}$$

モデルの拡張 Fukui-Ishibashiモデル

■最大速度: $v_{\text{max}} \ge 1$

$$g_n = x_{n-1} - x_n - 1$$

■現在の速度によらず、車頭距離で許される最大速度 $v_n^t = \min(g_n, v_{\text{max}})$

手動シミュレーション $v_{max} = 2, L = 15, N = 5$

手動シミュレーション $v_{\text{max}} = 2, L = 15, N = 6$

速度総和は $9 = 2 \times 6 - 3 = 2N - 3$

手動シミュレーション $v_{\text{max}} = 2, L = 15, N = 7$

速度総和は $8 = 2 \times 7 - 6 = 2N - 6$

理論的解析

- -N < L/3
 - ■全ての車両がv = 2で走行
- $N = \frac{L}{3} + 1$
 - ■速度の総和は2N-3

$$\rho = \frac{L/3+1}{L} = \frac{1}{3} + \frac{1}{L}$$

$$v = \frac{2N-3}{N} = \frac{2N/L-3/L}{N/L} = \frac{2\rho - 3\rho + 1}{\rho} = \frac{1-\rho}{\rho}$$

$$N = \frac{L}{3} + 2$$

■速度の総和は2N-6

$$\rho = \frac{L/3 + 2}{L} = \frac{1}{3} + \frac{2}{L}$$

$$v = \frac{2N - 6}{N} = \frac{2N/L - 6/L}{N/L} = \frac{2\rho - 3\rho + 1}{\rho} = \frac{1 - \rho}{\rho}$$

Fundamental Diagram ($v_{\text{max}}=3$)

Nagel-Schreckenbergモデル

- ■以下の3ステップで速度を更新
 - ■vとvは計算途中の値
- $\bar{v} = \min(v_n^t + 1, v_{\max})$
- $\mathbf{\tilde{v}} = \min(\bar{v}, g_n)$
- 一確率pで減速 $v_n^{t+1} = \max(\tilde{v} 1,0)$

手動シミュレーション

$$v_{\text{max}} = 2, L = 15, N = 5, p = 0$$

手動シミュレーション $v_{max} = 2, L = 15, N = 6, p = 0$

速度総和は $9 = 2 \times 6 - 3 = 2N - 3$

Fukui-Ishibashiモデルと同じ

