An example

- · Hand writing recognition: machine learning is a kind of method of
- Curve Fitting:

o
$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

o Root-mean-square error (RMS-Error)

•
$$E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$$

- To prevent over fitting
 - o More data
 - By regularization (正则化)

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Introduction Example: Polynomial Curve Fitting 1.2.2 Expectations and covariances Bayesian probabilities The Gaussian distribution Curve fitting re-visited 1.2.6 Bayesian curve fitting 1.3 Model Selection The Curse of Dimensionality Minimizing the misclassification rate 1.5.2 Minimizing the expected loss 1.5.3 The reject option Inference and decision Loss functions for regression 1.6.1 Relative entropy and mutual information

p(X,Y) = p(X|Y)p(Y) = p(Y|X)p(X) = p(Y,X)

p(Y|X) = p(X|Y)p(Y)/p(X)

- Suggest: taking the available data and partitioning it into a training set, used to determine the
 coefficients w, and a separate validation set, also called a hold-out set, used to optimize the
 model complexity (either M or λ). However it is a kind of wasting training data
- 这一部分作为导入很贴切,基本说明了是在用什么思路解决什么问题、解决问题中可能遇到的瓶颈以及常用的解决策略

Probability Theory

0.基本概念

• Sum rule of probability (加法法则 边缘概率)

$$o \quad p(X = x_i) = \sum_{j=1}^{L} p(X = x_i, Y = y_j) \quad _{1} = \frac{c_i}{N}.$$

• conditional probability (条件概率)

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}.$$

• Joint probability (联合概率)

$$\begin{array}{ll} \circ & p(X=x_i,Y=y_j=\frac{n_{ij}}{N}=\frac{n_{ij}}{c_i}\cdot\frac{c_i}{N} \\ &=& p(Y=y_j|X=x_i)p(X=x_i) \end{array}$$

• Productive rule (乘法法则)

• Bayes' theorem

- Prior probability (先验概率):在随机变量的值确定前获得的概率。如从蓝色盒子中抽取的概率是40%
- Posterior probability (后验概率): 在随机变量的值确定后推算出的概率。如已知抽取到的是苹果,推算出之前是从蓝盒子中抽取的概率。

1.概率密度(当随机变量的取值是连续型时)

• The probability that x will lie in an interval (a, b) is then given by

$$o$$
 $p(x \in (a, b)) = \int_{a}^{b} p(x) dx.$

and hence

• 原本要求p(y)需要用p_y,在知道随机变量x和y之间的关系后,能将原问题转化成用p_x来求

Under a nonlinear change of variable, a probability density transforms differently from a simple function, due to the Jacobian factor. For instance, if we consider a change of variables $\underline{x}=g(y)$, then a function f(x) becomes $\widetilde{f}(y)=f(g(y))$. Now consider a probability density $p_x(x)$ that corresponds to a density $p_y(y)$ with respect to the new variable y, where the suffices denote the fact that $p_x(x)$ and $p_y(y)$ are different densities. Observations falling in the range $(x,x+\delta x)$ will, for small values of δx , be transformed into the range $(y,y+\delta y)$ where $p_x(x)\delta x\simeq p_y(y)\delta y$,

? 这里的约等于关系是怎么来的

| dx |

? 这里的约等于关系是怎么来的

$$p_y(y) = p_x(x) \left| \frac{\mathrm{d}x}{\mathrm{d}y} \right|$$

$$= p_x(g(y)) |g'(y)|. \tag{1.27}$$

- 如果随机变量的取值是离散的,那么将p(X)称为概率质量函数probability mass function
- 对于连续型变量,其概率的加法公式和乘法公式为

$$p(x) = \int p(x,y) dy$$

$$p(x,y) = p(y|x)p(x).$$

2.Expectations and covariance 期望和协方差

• 在知道一个函数自变量取值的概率分布情况下,可以求该函数的期望

$${\circ} \quad \mathbb{E}[f] = \sum_{x} p(x) f(x)$$

$$\circ \quad \mathbb{E}[f] = \int p(x)f(x) \, \mathrm{d}x.$$

- 方差
 - $\circ \operatorname{var}[f] = \mathbb{E}\left[\left(f(x) \mathbb{E}[f(x)] \right)^2 \right]$
 - $\circ \ E[(f(x) E[f(x)])^2] = E[f(x)^2 2f(x)E(f(x)) + E[f(x)]^2]$ $= E[f(x)^{2}] - 2E[f(x)]^{2} + E[f(x)]^{2} = E[f(x)^{2}] - E[f(x)]^{2}$

3. Bayesian probabilities

先验概率 (<u>incorporating</u> with observed data) 后验概率

•
$$p(\mathbf{w}|\mathcal{D}) = \underbrace{p(\mathcal{D}|\mathbf{w})p(\mathbf{w})}_{p(\mathcal{D})}$$
 (1.43)

Likelihood function(似然函数):描 述了数据集中对于不同的w观测的情

denominator Note:这里的似然函数并非观测在w (1.45) 上的概率分布,所以似然函数累加求

In both the Bayesian and frequentist paradigms, the likelihood function $p(\mathcal{D}|\mathbf{w})$ 和也并不一定等于1。

Maximum likelihood(极大似然法): in which w is set to the value that maximizes the likelihood function p(D|w)

4.Gaussian distribution (高斯分布 正态分布)

$$\mathcal{N}\left(\underline{x}|\underline{\mu},\underline{\sigma}^2\right) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$
 (1.46)

- $\vec{\beta} = 1/\sigma^2$, is called the *precision*

•
$$\mathbb{E}[x] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) x dx = \mu.$$
 (1.49)

- $\mathbb{E}[x^2] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu,\sigma^2) \, x^2 \, \mathrm{d}x = \mu^2 + \sigma^2.$ (1.50) $E[(f(x) E[f(x)])^2]$ 如果随机变量X是D维的: $= E[f(x)^2 2f(x)E(f(x)) + E[f(x)]^2]$ $= E[f(x)^2] 2E[f(x)]^2 + E[f(x)]^2$ $= \mathcal{N}(x|\mu,\Sigma) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$ (1.52) $= E[f(x)^2] E[f(x)]^2$

• 最大化似然函数,已知x服从正态分布

 $\ln p\left(\mathbf{x}|\mu,\sigma^2\right) = -\frac{1}{2\sigma^2}\sum_{n=1}^{N}(x_n - \mu)^2 - \frac{N}{2}\ln\sigma^2 - \frac{N}{2}\ln(2\pi).$ (1.54)

直接求偏导,令偏导数为零即可得

$$\mu_{\underline{\text{ML}}} = \frac{1}{N} \sum_{n=1}^{N} x_n \tag{1.55}$$

ML: mox likelihod

$$\sigma_{\underline{\text{ML}}}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\text{ML}})^2$$

方差在拟合过程中缩小了

 $\mathbb{E}[\mu_{\mathrm{ML}}] = \mu$ (1.57)

5.Curve fitting re-visited (重新审视曲线拟合) P47