

Scheduling

- Strategische Planung der Prozessreihenfolge
 - Problem: Konkurrieren um Ressourcen
 - Häufig nur im Bezug auf CPU-Nutzung
- Planender Teil des Betriebssystems ist der Scheduler
- Ausführender Teil des Betriebssystems ist der Dispatcher
- Quasiparallele Prozessausführung

Scheduling-Anforderungen

- Fairness
- Effizienz
- Antwortzeit
- Verweilzeit, Jobdauer
- Durchsatz: Zahl fertiger Jobs pro Zeiteinheit
- garantierte Reaktionszeit
- Ziele sind widersprüchlich!

Fairness

- Jeder Job erhält einen gerechten Teil der CPU-Zeit
 - was ist gerecht?
 - Prioritäten müssen berücksichtigt werden
 - Oft nicht hinreichend fair
- non-preemptive: Prozess kann nicht unterbrochen werden
- preemptive: Aktiver Prozess ist unterbrechbar

- Prozessor ist kostbares Betriebsmittel
- CPU-/Systemauslastung soll möglichst hoch sein
- Auslastung variiert zwischen 40% und 90%

SS2014

Eingebettete Betriebssysteme

6

Antwortzeit

- Bei Benutzerinteraktion
 - Zeitspanne zwischen Eingabe und Reaktion
 - bei eingebetteten Systemen besonders wichtig!
- Häufig nicht Minimierung der Antwortzeiten, sondern Minimierung der Varianz
 - gleichmäßiges Antwortverhalten

SS2014

Eingebettete Betriebssysteme

7

Verweilzeit

- Zeit von der Eingabe eines Auftrags bis zur Fertigstellung
- Scheduling hat wesentlichen Einfluss auf die Verweilzeit
- CPU-Scheduling kann nur Wartezeiten im "bereit"-Zustand beeinflussen
- Prozess muss möglichst effizient und vorausschauend auf Ressourcen zugreifen

Durchsatz

- Zahl fertiggestellter Jobs pro Zeiteinheit
- möglichst maximaler Durchsatz
- ein Job kann die Ausführung mehrerer Jobs bewirken
 - Kompilieren und Ausführen eines Programms
 - Beispiel: mehrere make-Instanzen parallel

SS2014

Eingebettete Betriebssysteme

9

Garantierte Reaktionszeit

- bei Echtzeitsystemen
- Zeitspanne, innerhalb derer ein Rechnersystem auf Ereignisse reagieren muss
- muss garantiert sein
- abhängig von technischen Gegebenheiten und Problemstellung

SS2014

Problemstellungen

- Verhungern niedrig priorisierter Tasks möglich
 - Process/task starvation
- Läuft ein Task zu lang, kann das System "aus dem Takt kommen"
- Die "Kunst" liegt im Systementwurf!

SS2014

Multitasking mit E/A

- (1) Task 1 läuft
- (2) Task 1 wird suspendiert
- (3) Task 2 läuft
- (4) Task 2 blockiert Ressource
- (5) Task 2 wird suspendiert

- (6) Task 3 läuft
- (7) Task 3 geht schlafen
- (8) Task 1 läuft
- (9) Task 2 gibt Ressource frei
- (10) Task 3 läuft

SS2014

Eingebettete Betrielossenstenne://www.freertos.org/implementation/a00005.html

RTOS-Scheduling

- Echtzeitanforderung
- Prioritätenbasiertes Scheduling
 - Priority levels
 - Höhere Prioritäten laufen vorrangig
- Häufig Round Robin pro Ebene
- Tasks sind im Softwaredesign fest definiert
 - Keine dynamischen Einflüsse

SS2014

RTOS-Scheduling II

- Scheduling bei "normalen" Betriebssystemen ist zeitbasiert
 - Keine Echtzeitfähigkeit gegeben!
- RTOS: Ereignisgesteuert
 - Interrupts, Tasks, vergleichbar mit IRQ
 - Synchronisationsmechanismen steuern
 Ablauf
 - Partitionierung bzw. *Profiling* beim Design erforderlich

RTOS-Multitasking

- Kein Task läuft ohne Auslöser
 - Idle-Task
- Tasks laufen ereignisgesteuert
 - Maximal mögliche Laufzeit vorgegeben

Quelle: http://www.freertos.org/implementation/a00008.html

Alternativen

- Kernelcode kann nicht unterbrochen werden
 - Auch Kernelcode im Prozesskontext
- Kernel preemption
 - Unterbrechung im Kernelcode möglich
 - Abhängig von der Prozesspriorität
 - Erhöht das Antwortverhalten
 - Dennoch nicht immer echtzeitfähig!

SS2014

Eingebettete Betriebssysteme

17

- Was passiert bei gleichpriorisierten Interrupts?
- Unter Linux:

Quelle: Understanding the Linux Kernel, Kapitel 4.3

Interrupt-Latenz

- Hardware-Latenz
 - Bei zeitweise deaktivierten Interrupts
- Handler-Latenz
 - Variable Handler-Laufzeit: Jitter
 - Cache-Einflüsse
 - Interne Bus-Arbitrierung
 - Externer Speicher...

SS2013

Dipl.-Ing.(FH) Marc Jüttner

Flash-Speicher

- 1980 erfunden
- Basiert auf EPROM-Technologie
 - Erasable Programmable Read Only Memory
 - Damals: Löschen durch UV-Licht
 - Später: EEPROM
- Speicherung durch persistente Ladungen in einem Floating Gate

Quelle: http://www.eetimes.com/design/memory-design/4403035/ Memory-Test-Tips--3--Improve-flash-memory-testing-with-pulse-generators

Bit-Kapazität

- SLC: Single Level Cell
 - Ein Bit pro Zelle
- MLC: Multi Level Cell
 - Mehrere Bit pro Zelle
 - 2x, 4x, 8x verfügbar
 - Fehleranfällig!

SS2014

Flash-Besonderheiten

- Blockweises Löschen
 - Nur ganze Blöcke auf einmal löschbar
 - Trotz byteweisem Lesen/Schreiben!
- Softwarebehandlung erforderlich
 - Auslesen des ganzen Blocks
 - Löschen
 - Erneutes Schreiben

SS2014

Flash-Nachteile

- Alterungserscheinungen
 - Nach 100.000 Löschzykeln entstehen Zellendefekte
 - Mechanische Abnutzung im Oxid unter dem Floating Gate
- Maximale Zahl nur garantiert für Block 0
- Seiteneffekte durch Lesezugriffe
 - Bitfehler beim Lesen

Flash-Vorteile

- Preis pro MiB sehr niedrig bei NAND
- Lange Speicherung möglich
- Blockzugriffe bei NAND perfekt für Festplattensimulation
 - Blockzugriffe auf Massenspeicher
- Einfacher elektrischer Anschluss
 - Nur mäßig anspruchsvoll

SS2014

Vergleich RAM/Flash

		RAM	NAND-Flash	NOR-Flash	
	Zugriff	lesen	+++	-	
		schreiben	+++	+ (1)	
	Daten	lesen	Byte	Seite	Byte
		schreiben	Byte	Seite	Byte/Wort
		löschen	Byte	Block	Block
Ī	Persistent		nein	ja	ja
	Linear adressierbar Alterungserscheinungen		ja	nein	ja
			nein	ja	ja

(1): bei großen Datenmengen

SS2014 Eingebettete Betriebssysteme

NAND-Zugriff

- Kombinierter Adress- und Datenbus
- Kommandobasiert
 - read page
 - + ...
- Spezieller NAND-Controller erforderlich
 - Meist in SoC integriert

SS2014

NOR-Zugriff Separater Adress- und Datenbus Zugriff wie auf SDRAM Kein Controller erforderlich SS2014 Eingebettete Betriebssysteme 32

NOR: Mögliche Probleme

- Löschen blockiert u.U. Laden aus anderen Seiten
 - Problematisch, wenn Programmcode geladen werden soll
- Empfohlen ist, Programmcode für den Lese-/Schreibzugriff im RAM zu halten

Quelle: http://www.micron.com/products/nand-flash/choosing-the-right-nand http://www.micron.com/products/managed-nand/e-mmc

NAND-Datenorganisation

- Seitenstruktur
 - Mehrere Bits pro Seite
- Blockstruktur
 - Mehrere Seiten pro Block
 - Gesamtstruktur
 - Mehrere Blöcke pro Chip

SS2014

NAND-Größen, Beispiel

- 2048 Bytes pro Seite
 - Zzgl. 64 Bytes OOB-Daten
- 64 Seiten pro Block
 - 128kiB pro Block
 - 1024 Blöcke pro Chip
 - 128MiB Gesamtkapazitaet
 - 4MiB OOB-Daten

SS2014

Betriebssystemeffekte

- Viele Nachteile können durch
 OS-Maßnahmen umgangen werden
- Softwareaufwand entsteht dennoch
 - Implementierung von Treibern und Protokollen
 - Test und Validierung
 - Zertifizierung...

SS2014

Wear Levelling

- Gleichmäßige Abnutzung von Flashzellen
- Bei jedem Schreibvorgang werden die Daten in einen anderen Block geschrieben
- Erfordert Softwarebehandlung
 - Nicht jedes Dateisystem sinnvoll
 - Ausnahme: USB-Massenspeicher haben WLC integriert

Löschen und Caches

- Blockweise Löschoperationen
 - erfordern vorheriges Lesen des ganzen Blocks
- Vorhalten von Daten im Speicher reduziert Lösch- und Schreibzyklen
- Gefahr bei Spannungsverlust
 - USB-Sticks
 - Hard resets ohne Herunterfahren

Bitfehlerkorrektur

- Bitfehler möglich
 - durch defekte Blöcke
 - Durch Seiteneffekte beim Lesen
- Korrektur erforderlich
 - Möglich bis zu bestimmter Zahl von Fehlern
 - ECC: Error Checking and Correction
- Oft hardware-unterstützt

Bitfehlerkorrektur

- ECC: Fehlererkennung und/oder Korrektur
 - Mindestabstand zwischen fehlerhaften Bytes erforderlich
- Über Zeilen und Spalten der Datenbits werden gerade und ungerade Paritäten berechnet
- Prüfsumme und Daten werden auf Konsistenz geprüft

Bit 7 Bit 3 Bit 2 Byte 1 Bit 6 Bit 5 Bit 4 Bit 1 Bit 0 p8e p16e Byte 2 Bit 5 Bit 7 Bit 6 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 p8o p32e Byte 3 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 p8e p160 p8o Byte 4 Bit 7 Bit 5 Bit 4 Bit 3 Bit 2 Bit 0 Bit 6 Bit 1

p2048e

p2048o

Byte 1 Byte 2

Byte 3

Byte 4

p4o			p4e							
p2o		p2e		p2o		p2e				
p1o	p1e	p1o	p1e	p1o	p1e	p1o	p1e			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	p8o	p16e p16o	p32e
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	p8e		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	p8o		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	p8e		

Quelle: TI DM36x AEMIF Data Manual, Figure 9

SS2014

Eingebettete Betriebssysteme

Dateisysteme

- Organisation von Dateien auf einem Datenträger
- Datenträgerverwaltung
 - Sektoren, Zylinder, Köpfe
- Abstraktion in Blöcke
- Nicht auf Festplatten beschränkt

SS2014

Quelle: alasir.com

SS2014

Eingebettete Betriebssysteme

Spuren, Sektoren...

Hard disk format

(c) www.teacn-ict.com

Quelle: cheadledatarecovery.com

SS2014

Eingebettete Betriebssysteme

Übersicht

	romfs	cramfs	ext2	ext3	yaffs2	jffs2	squashfs
rw/ro	ro	ro	rw	rw	rw	rw	ro
Kompression	nein	ja	nein	nein			ja
Wear leveling	-	-	nein	nein	ja	ja	-
Power-safe	-	-	-	ja	ja	ja	-
Benutzer- rechte	Nur root	Nur root	ja	ja	ja	ja	Nur root
Dateianzahl	-	2 ¹⁶	10 ¹⁸	10 ¹⁸	2 ³²	2 ³²	2 ³²
Größe	-	256 MiB	2 TiB	2 TiB	2 ³² GiB	2 ³² GiB	2 ³² GiB

SS2014

Eingebettete Betriebssysteme

Problemstellung

- Unterbrechung von Schreiboperationen können zu Inkonsistenz führen
 - Verwaiste Blöcke
 - Inkonsistente Zuordnungstabellen
- Verschiedene Folgen
 - Überschreiben gültiger Daten
 - Verlust freier Blöcke (storage leak)

Journale

- Aufzeichnen geplanter und erledigter Vorgänge
- Bei Unterbrechnung kann die Operation fertiggestellt werden
- Abwägung von Vor- und Nachteilen
 - Doppelte Zahl von Operationen pro Block
 - Sicherheit vs. Geschwindigkeit

- Dateisystem-ID einer Partition
- Hartkodiertes Wissen über Dateisystem
- Datenträger und Partitionen beim Systemstart bekannt
 - Wechseldatenträger?

SS2014