

Università Politecnica delle Marche

MULTIRATE DIGITAL SIGNAL PROCESSING AND ADAPTIVE FILTER BANKS

Confronto fra algoritmo LMS e Fast Deconvolution per la cancellazione del crosstalk

Matteo Orlandini e Jacopo Pagliuca

Prof.ssa Stefania CECCHI Dott.ssa Valeria Bruschi

12 agosto 2021

Indice

1	Introduzione	1
2	Dataset	2
3	Descrizione teorica degli algoritmi	3
	3.1 LMS	3
	3.2 Fast Deconvolution	5
4		10
	4.1 LMS	10
	4.2 Fast Deconvolution	13
5		17
	5.1 LMS	17
	5.2 Fast Deconvolution	23

1 Introduzione

2 Dataset

Il dataset usato è composto ad un ampio set di misurazioni della funzione di trasferimento relativa alla testa (HRTF) di un microfono dummy-head KE-MAR. Le misurazioni consistono nelle risposte impulsive dell'orecchio sinistro e destro di un altoparlante Realistic Optimus Pro 7 montato a 1,4 metri dal KEMAR. Sono state utilizzate sequenze binarie pseudo-casuali per ottenere le risposte impulsive a una frequenza di campionamento di 44.1 kHz. [1]

Le misurazioni sono state effettuate nella camera anecoica del MIT. Il KEMAR è stato montato in posizione verticale su un giradischi motorizzato che può essere ruotato con precisione sotto il controllo del computer. L'altoparlante è stato montato su un supporto a braccio che ha consentito il posizionamento accurato dell'altoparlante a qualsiasi elevazione rispetto al KEMAR. Pertanto, le misurazioni sono state effettuate un'elevazione alla volta, impostando l'altoparlante all'altezza corretta e quindi ruotando il KEMAR su ciascun azimut.

I dati HRTF vengono archiviati nelle directory per elevazione. Ogni nome di directory ha il formato "elevEE", dove EE è l'angolo di elevazione. All'interno di ogni directory, il nome di ogni file ha il formato "XEEeAAAa.wav" dove X può essere "L" o "R" rispettivamente per la risposta dell'orecchio sinistro e destro, "EE" è l'angolo di elevazione della sorgente in gradi, da -40° a 90°, e AAA è l'azimut della sorgente in gradi, da 0° a 355°. Gli angoli di elevazione e azimut indicano la posizione della sorgente rispetto al KEMAR, in modo che, ad esempio, in corrispondenza dell'elevazione 0 e azimut 0 sia di fronte al KEMAR , l'elevazione 90 è direttamente sopra il KEMAR, elevazione 0 e azimut 90 è a destra del KEMAR. Ad esempio, il file "R-20e270a.wav" è la risposta dell'orecchio destro, con la sorgente 20 gradi sotto il piano orizzontale e 90 gradi a sinistra della testa.

3 Descrizione teorica degli algoritmi

3.1 LMS

Per la cancellazione del crosstalk l'algoritmo più comune è quello dell'LMS. Nonostante sia semplice e accurato ha una veloce convergenza. Una tipica situazione di ascolto con due altoparlanti con cancellazione del closstalk è rappresentata in figura... La rappresentazione in frequenza dei segnali desiderati binaurali è indicata con X_1 e X_2 per suoni che raggiungono rispettivamente orecchio destro e sinistro. Con Y_1 e Y_2 invece, si indicano i suoni che effettivamente raggiungono l'ascoltatore, attraversando il sistema. Il sistema può essere rappresentato come:

$$Y = CHX \tag{1}$$

ovvero

$$\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$
 (2)

Per avere il segnale in uscita uguale a quello desiderato H dovrebbe essere l'inversa di C. La diretta inversa di C però non garantisce la cancellazione del crosstalk in quanto gli elementi non soddisfano la condizione di fase minima. La'approccio utilizzato è quindi quello dell'algoritmo LMS. La precedente equazione viene riscritta come:

$$\begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} \begin{bmatrix} C_{11}X_1 & C_{12}X_1 & C_{11}X_2 & C_{12}X_2 \\ C_{21}X_1 & C_{22}X_1 & C_{21}X_2 & C_{22}X_2 \end{bmatrix} \begin{bmatrix} H_{11} \\ H_{21} \\ H_{12} \\ H_{22} \end{bmatrix}$$
(3)

In generale, si può scrivere il filtraggio nell'*n*-esimo istante di un segnale $\mathbf{a}[\mathbf{n}] = [a[n], a[n-1], \dots, a[n-M+1]]^T$ con un filtro $\mathbf{b}[\mathbf{n}] = [b_0[n], b_1[n], \dots, b_{M-1}[n]]^T$ di lunghezza M come

$$y[n] = \sum_{j=0}^{M-1} b_j[n]a[n-j] = \mathbf{b}^T[\mathbf{n}] \cdot \mathbf{a}^T[\mathbf{n}].$$
 (4)

Il filtraggio dei segnali di riferimento $x_i[n]$ con le hrir c_{lm} è dato dalla seguente equazione

$$r_{ilm}[n] = \sum_{j=0}^{M-1} c_{lm}[j]x_i[n-j].$$
 (5)

Si può applicare la formula (4) all'equazione (5) per calcolare le $r_{ilm}[n]$ nel seguente modo:

$$r_{ilm}[n] = \sum_{j=0}^{M-1} c_{lm,j}[n]x_i[n-j] = \mathbf{c_{lm}}^T[\mathbf{n}] \cdot \mathbf{x_i}^T[\mathbf{n}].$$
 (6)

Il segnale ricevuto ad ogni orecchio è dato da:

$$y_i[n] = r_{1i1}[n] \otimes h_{11}[n] + r_{1i2}[n] \otimes h_{21}[n] + r_{2i1}[n] \otimes h_{12}[n] + r_{2i2}[n] \otimes h_{22}[n]$$
 (7)

dove i, l, m assumono i valori 1 o 2. Il criterio dell'algoritmo LMS è la minimizzazione della funzione costo

$$J = E[e[n]^{2}] = E[(d[n] - y[n])^{2}]$$
(8)

dove e[n], d[n] e y[n] sono definiti come

$$e[n] = \begin{bmatrix} e_1[n] \\ e_2[n] \end{bmatrix}, d[n] = \begin{bmatrix} d_1[n] \\ d_2[n] \end{bmatrix}, y[n] = \begin{bmatrix} y_1[n] \\ y_2[n] \end{bmatrix}$$
(9)

La minimizzazione di J avviene con il metodo steepest descend. Nel dominio del tempo discreto il sistema si può scrivere come

$$\begin{bmatrix} y_{1}[n] \\ y_{2}[n] \end{bmatrix} = \begin{bmatrix} c_{11}[n] \circledast x_{1}[n] & c_{12}[n] \circledast x_{1}[n] & c_{11}[n] \circledast x_{2}[n] & c_{12}[n] \circledast x_{2}[n] \\ c_{21}[n] \circledast x_{1}[n] & c_{22}[n] \circledast x_{1}[n] & c_{21}[n] \circledast x_{2}[n] & c_{22}[n] \circledast x_{2}[n] \end{bmatrix} \circledast \begin{bmatrix} h_{11}[n] \\ h_{21}[n] \\ h_{12}[n] \\ h_{22}[n] \end{bmatrix}$$

$$(10)$$

Usando (5), l'equazione (10) diventa

$$\begin{bmatrix} y_1[n] \\ y_2[n] \end{bmatrix} = \begin{bmatrix} r_{111}[n] & r_{112}[n] & r_{211}[n] & r_{212}[n] \\ r_{121}[n] & r_{122}[n] & r_{221}[n] & r_{222}[n] \end{bmatrix} \circledast \begin{bmatrix} h_{11}[n] \\ h_{21}[n] \\ h_{12}[n] \\ h_{22}[n] \end{bmatrix}$$
(11)

Per ottenere l'errore si calcola la differenza fra il segnale desiderato è l'uscita effettiva.

$$e_1^{(1)} = d_1 - (r_{111} \otimes h_{11} + r_{112} \otimes h_{21} + r_{211} \otimes h_{12} + r_{212} \otimes h_{22})$$

l'aggiornamento avviene come di seguito:

$$h^{(k+1)} = h^{(k)} - \mu e_i^{(k)} \cdot \mathbf{r}_i^T \tag{12}$$

dove \mathbf{r}_i è l'i-esima riga della matrice che contiene le r_{ilm} nell'equazione (11) e $e_i^{(k)}$ è l'errore k-esimo step e all'i-esima riga. Esplicitando l'equazione (12),

si ottiene

$$h_{11}^{(k+1)}[n] \leftarrow h_{11}^{(k)}[n] - \mu e_1^{(1)} \cdot r_{111}[n]$$

$$h_{21}^{(k+1)}[n] \leftarrow h_{21}^{(k)}[n] - \mu e_1^{(1)} \cdot r_{112}[n]$$

$$h_{12}^{(k+1)}[n] \leftarrow h_{12}^{(k)}[n] - \mu e_1^{(1)} \cdot r_{211}[n]$$

$$h_{22}^{(k+1)}[n] \leftarrow h_{22}^{(k)}[n] - \mu e_1^{(1)} \cdot r_{212}[n]$$

Allo stesso modo, per il secondo canale l'errore è definito come:

$$e_2^{(2)} = d_2 - (r_{121} \circledast h_{11} + r_{122} \circledast h_{21} + r_{221} \circledast h_{12} + r_{222} \circledast h_{22})$$

$$\begin{split} h_{11}^{(k+1)}[n] &\leftarrow h_{11}^{(k)}[n] - \mu e_2^{(2)} \cdot r_{121}[n] \\ h_{21}^{(k+1)}[n] &\leftarrow h_{21}^{(k)}[n] - \mu e_2^{(2)} \cdot r_{122}[n] \\ h_{12}^{(k+1)}[n] &\leftarrow h_{12}^{(k)}[n] - \mu e_2^{(2)} \cdot r_{221}[n] \\ h_{22}^{(k+1)}[n] &\leftarrow h_{22}^{(k)}[n] - \mu e_2^{(2)} \cdot r_{222}[n] \end{split}$$

3.2 Fast Deconvolution

La deconvoluzione [3] [4] [5], nella sua forma più elementare, può essere descritta come il compito di calcolare l'input di un sistema a tempo discreto conoscendo il suo output. Di solito si presume che il sistema sia lineare e che la relazione input output sia nota con precisione. In acustica e audio, la deconvoluzione a singolo canale è particolarmente utile poiché può compensare la risposta di trasduttori imperfetti come cuffie, altoparlanti e amplificatori. La deconvoluzione multicanale è necessaria nella progettazione di sistemi di cancellazione della diafonia e sistemi di imaging di sorgenti virtuali.

Nel progetto siamo interessati alle tecniche di deconvoluzione allo scopo di progettare filtri digitali per la riproduzione del suono su due canali. Più specificamente, dato un set di altoparlanti S, l'obiettivo è riprodurre un campo sonoro desiderato nei punti R dello spazio nel modo più accurato possibile. Questo principio è applicato dai cosiddetti sistemi di cancellazione della diafonia che vengono utilizzati per riprodurre registrazioni binaurali su due altoparlanti. In questo caso, viene utilizzata una matrice 2×2 di filtri digitali per compensare sia la risposta ambientale che la risposta degli altoparlanti, e anche per annullare la diafonia dall'altoparlante sinistro all'orecchio destro e viceversa. Un problema correlato è quello di ottenere una perfetta "dereverberazione" della risposta di una stanza in una posizione del microfono utilizzando due filtri digitali per calcolare l'ingresso a due altoparlanti. La

fast deconvolution un metodo molto veloce per calcolare una matrice di filtri digitali che può essere utilizzata per controllare le uscite di un impianto multicanale. Questo metodo è tipicamente più veloce di diversi ordini di grandezza rispetto ai metodi nel dominio del tempo. Combina i principi dell'inversione dei minimi quadrati nel dominio della frequenza e il metodo di regolarizzazione di ordine zero che viene tradizionalmente utilizzato quando ci si trova di fronte a un problema di inversione mal condizionata.

La regolarizzazione dipendente dalla frequenza viene utilizzata per prevenire picchi elevati nella risposta in ampiezza dei filtri ottimali. Un ritardo di modellazione viene utilizzato per garantire che la rete di cancellazione del cross-talk funzioni bene non solo in termini di ampiezza, ma anche in termini di fase. L'algoritmo presuppone che sia possibile utilizzare filtri ottimali lunghi, e funziona bene solo quando due parametri di regolarizzazione, un fattore di forma e un fattore di guadagno, sono impostati in modo appropriato. In pratica, i valori dei due parametri di regolarizzazione sono determinati più facilmente da esperimenti per tentativi.

Consideriamo una funzione di costo del tipo

$$J = E + \beta V(f) \tag{13}$$

dove E è una misura dell'errore della pressione sonora

$$E = |Y_1 - X_1|^2 + |Y_2 - X_2|^2 (14)$$

e V è una funzione della frequenza che indica il costo computazionale. Il numero $\beta \geq 0$ è un parametro di regolarizzazione che determina quanto peso assegnare alla funzione V. Poiché non sappiamo a priori se la matrice C è non singolare per determinate frequenze, la matrice H di cancellazione del crosstalk può contenere valori molto alti. All'aumentare di β da zero a infinito, J cambia gradualmente dalla minimizzazione della sola funzione di errore E alla minimizzazione dello sforzo computazionale V.

Siano S i segnali trasferiti agli altoparlanti facendo passare il segnale X attraverso la matrice di cancellazione del crosstalk H. Otteniamo

$$V(f) = S_b^+ S_b \tag{15}$$

con

$$S_b = BS = BHX \tag{16}$$

dove B è una matrice 2×2 e il simbolo + indica l'inversa generalizzata della matrice S_b . La soluzione approssimata della funzione J è definita da

$$H(z) = \left[C^{T}(z^{-1})C(z) + \beta B^{T}B \right]^{-1} C^{T}(z^{-1})$$
(17)

dove l'apice T denota la trasposta della matrice. Se la matrice B è uguale alla matrice identità I, si ottiene $S_b = S$, dunque l'equazione (17) diventa

$$H(z) = \left[C^{T}(z^{-1})C(z) + \beta I \right]^{-1} C^{T}(z^{-1})z^{-m}$$
(18)

dove la componente z^{-m} implementa un ritardo di m campioni.

Le equazioni (17) e (18) rappresentano una espressione di H(z) nel dominio continuo della frequenza. Se viene usata una FFT a N punti per campionare la risposta in frequenza H(z), allora il valore di H[k] è dato da

$$H[k] = \left[C^{H}[k]C[k] + \beta I \right]^{-1} C^{H}[k]$$
 (19)

dove k indica la k-esima frequenza corrispondente a $\exp(j2\pi k/N)$ e l'apice H denota l'operatore Hermitiano che fa la trasposta coniugata del suo argomento. Dall'equazione (??) si può osservare che ponendo $\beta=0$ si ottiene $H=C^{-1}$. In questo caso, poiché $Y=CHX=CC^{-1}X=IX=X$, si ottiene in uscita il segnale d'ingresso.

Per calcolare la risposta impulsiva del filtro occorre seguire i seguenti passi:

- 1. si calcola la matrice 2×2 C[k] tramite una FFT delle risposte impulsive $c_{ij}[n]$ con i = 1, 2 e j = 1, 2. Ad esempio, $C_{11}[k]$ contiene l'ampiezza della k-esima armonica della FFT di c_{11} ,
- 2. si calcola H[k] usando la formula (??),
- 3. si calcola h[n] facendo una FFT inversa a N punti,
- 4. si implementa uno shift ciclico di m campioni per ogni elemento di $h_{ij}[n]$ con i=1,2 e j=1,2.

Dato che l'uscita Y è data da

$$Y = CHX = \begin{bmatrix} C_{11}X_1 & C_{12}X_1 & C_{11}X_2 & C_{12}X_2 \\ C_{21}X_1 & C_{22}X_1 & C_{21}X_2 & C_{22}X_2 \end{bmatrix} \begin{bmatrix} H_{11} \\ H_{21} \\ H_{12} \\ H_{22} \end{bmatrix}$$
(20)

nell'implementazione pratica non si può calcolare tutta l'uscita con la sola operazione matriciale (20), occorre usare la tecnica dell'overlap and save per filtrare l'ingresso X con i filtri C e H. L'overlap and save è utile per eseguire un filtraggio in real time con un filtro a risposta impulsiva finita.

Questa tecnica viene usata per fare la convoluzione a blocchi tra un segnale di ingresso x[n] molto lungo e un filtro FIR h[n]:

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{+\infty} h[m] \cdot x[n-m] = \sum_{m=1}^{M} h[m] \cdot x[n-m]$$
 (21)

poiché h[m] = 0 per $m \in [1, M]$.

L'overlap and save permette di calcolare dei blocchi di y[n] di lunghezza L e concatenarli insieme per formare il segnale di uscita completo. Si definisce il k-esimo blocco d'ingresso come

$$x_k[n] = \begin{cases} x[n+kL], & 1 \le n \le L+M-1\\ 0 & \text{altrove} \end{cases}$$
 (22)

quindi il k-esimo blocco di uscita è dato da

$$y_k[n] = x_k[n] * h[n] = \sum_{m=1}^{M} h[m] \cdot x_k[n-m].$$
 (23)

Si può definire l'uscita per $kL + M \le n \le KL + L + M - 1$, o in modo equivalente per $M \le n - kL \le L + M - 1$, nel seguente modo:

$$y[n] = \sum_{m=1}^{M} h[m] \cdot x_k[n - kL - m] = y_k[n - kL].$$
 (24)

L'implementazione dell'overlap and save con un filtro composto da (L+M-1) tappi consiste nei seguenti passi:

- 1. si divide il segnale di ingresso in blocchi di lunghezza L
- 2. nel caso del primo blocco si aggiungono M-1 zeri all'inizio, altrimenti si aggiungono all'inizio del blocco gli ultimi M-1 campioni del blocco precedente, come mostrato in figura 1,
- 3. si fa la FFT a L + M 1 punti del k-esimo blocco di ingresso,
- 4. si fa la FFT a L + M 1 punti del filtro FIR h[n]
- 5. si moltiplicano le FFT calcolate per trovare la risposta in frequenza del k-esimo blocco di uscita,
- 6. si fa la FFT inversa a L + M 1 punti del k-esimo blocco di uscita,

7. si scartano i primi M-1 punti, ottenendo il k-esimo blocco in uscita di lunghezza L, come mostrato nei blocchi di uscita y_k di figura 1.

Un'implementazione più efficiente è invece quella descritta di seguito, in cui i primi due punti precedentemente elencati rimangono uguali:

- 3. si fa la FFT a $2 \cdot (L + M 1)$ punti del k-esimo e del (k 1)-esimo blocco di ingresso lunghi rispettivamente (L + M 1) campioni,
- 4. si fa la FFT a $2 \cdot (L + M 1)$ punti del filtro FIR h[n] con un padding di (L + M 1) zeri
- 5. si moltiplicano le FFT calcolate per trovare la FFT del blocco di uscita,
- 6. si fa la FFT inversa del blocco di uscita,
- 7. si scartano i primi L+M-1 punti nel tempo dell'uscita.

Figura 1: Metodo Overlap and Save

4 Codice Matlab

4.1 LMS

Nel codice dell'algoritmo LMS in Matlab si carica il file audio in formato wav "Daft Punk - Get Lucky_cut.wav". Poiché questo formato contiene i campioni del canale sinistro e di quello destro, si dividono i due canali salvando il primo nella variabile x1 e il secondo in x2.

```
[x, Fsample] = audioread('Daft Punk - Get Lucky_cut.wav');
x1 = x(:, 1);
x2 = x(:, 2);
```

Codice 1: Caricamento del file audio

Allo stesso modo vendono caricate le quattro HRIR c11, c12, c21 e c22.

```
% c11: HRIR left loudspeaker - left ear
[c11,Fs] = audioread('HRTF_measurements/elev0/L0e330a.wav');
% c12: HRIR right loudspeaker - left ear
[c12,~] = audioread('HRTF_measurements/elev0/L0e030a.wav');
% c21: HRIR left loudspeaker - right ear
[c21,~] = audioread('HRTF_measurements/elev0/R0e330a.wav');
% c22: HRIR right loudspeaker - righ ear
[c22,~] = audioread('HRTF_measurements/elev0/R0e030a.wav');
```

Codice 2: Caricamento delle HRIR

Viene salvata la lunghezza dei filtri c_{11} , c_{12} , c_{21} e c_{22} nella variabile M. Si ha che M=512 e si imposta il ritardo temporale tau pari a M. Conoscendo il valore del ritardo temporale, è possibile costruire i due segnali desiderati d1 e d2 mettendo tau zeri all'inizio del vettore d'ingresso.

Codice 3: Costruzione del segnale desiderato

Vengono inizializzati i vettori y1 e y2 di uscita, i vettori e1 e e2 che contengono l'errore per i due canali, i vettori r_{i1m} che contengono il filtraggio

di x1 e x2 con c11, c12, c21 e c22. Questi vettori sono tutti di lunghezza pari a quella del segnale x, cioè L.

```
L = length(x1);
y1 = zeros(L, 1);
                 % output 1 (left)
y2 = zeros(L,1); % output 2 (right)
e1 = zeros(L,1); % errore 1 (left)
e2 = zeros(L,1); % errore 2 (right)
r111 = zeros(L,1); % uscita di x1 filtrato da c11 per ...
  output y1
r112 = zeros(L,1); % uscita di x1 filtrato da c12 per ...
  output y1
r211 = zeros(L,1); % uscita di x2 filtrato da c11 per ...
   output y1
r212 = zeros(L,1); % uscita di x2 filtrato da c12 per ...
  output y1
r222 = zeros(L,1); % uscita di x2 filtrato da c22 per ...
  output y2
r221 = zeros(L,1);
                    % uscita di x2 filtrato da c21 per ...
  output y2
                     % uscita di x1 filtrato da c22 per ...
r122 = zeros(L,1);
  output y2
r121 = zeros(L,1);
                     % uscita di x1 filtrato da c21 per ...
  output y2
```

Codice 4: Inizializzazione dei vettori di lunghezza L

Successivamente, vengono inizializzati i vettori di lunghezza M, le variabili h11, h12, h21 e h22 contengono i filtri di ricostruzione, i buffer x1buff e x2buff necessari per il filtraggio con i c e i buffer delle uscite r_{ilm} dove i, l, m = 0, 1.

```
x1buff = zeros(M, 1);
x2buff = zeros(M, 1);
r111buff = zeros(M, 1);
r112buff = zeros(M, 1);
r211buff = zeros(M, 1);
r212buff = zeros(M, 1);
r222buff = zeros(M, 1);
r222buff = zeros(M, 1);
r122buff = zeros(M, 1);
r122buff = zeros(M, 1);
```

Codice 5: Inizializzazione dei vettori di lunghezza M

Nel codice 6 viene usato un $\mu = 10^{-3}$ e viene implementata l'equazione (6) che effettua il filtraggio tra le hrir e il segnale di ingresso. Per fare questo, si utilizza un buffer che aggiunge in testa il campione entrante invertendo il segnale di ingresso. Facendo il prodotto scalare dei buffer di ingresso con le rispettive c_{lm} , si ottiene il filtraggio desiderato.

```
mu = 1e-3;
for n = 1:L
    x1buff = [x1(n); x1buff(1:end-1)];
    x2buff = [x2(n); x2buff(1:end-1)];

r111(n) = c11'*x1buff;
r112(n) = c12'*x1buff;
r211(n) = c11'*x2buff;
r212(n) = c12'*x2buff;
r222(n) = c22'*x2buff;
r221(n) = c21'*x2buff;
r122(n) = c21'*x2buff;
r122(n) = c21'*x1buff;
```

Codice 6: Filtraggio del segnale di ingresso con le hrir

L'equazione (6) viene nuovamente applicata nel codice 7 per calcolare le uscite. I segnali intermedi r_{ilm} vanno a costituire un buffer e attraversano i filtri h. Le quattro uscite dei filtri h vengono infine sommate per ottenere y1 e y2, come mostrato nell'equazione (7).

```
r111buff = [r111(n); r111buff(1:end-1)];
r112buff = [r112(n); r112buff(1:end-1)];
r211buff = [r211(n); r211buff(1:end-1)];
r212buff = [r212(n); r212buff(1:end-1)];
r222buff = [r222(n); r222buff(1:end-1)];
r221buff = [r221(n); r221buff(1:end-1)];
r122buff = [r122(n); r122buff(1:end-1)];
r122buff = [r121(n); r121buff(1:end-1)];
r121buff = [r121(n); r121buff(1:end-1)];

y1(n) = ...
h11'*r111buff+h21'*r112buff+h12'*r211buff+h22'*r212buff;
y2(n) = ...
h11'*r121buff+h21'*r122buff+h12'*r221buff+h22'*r222buff;
```

Codice 7: Calcolo delle uscite

Viene quindi calcolato l'errore come la differenza fra il segnale desiderato e le uscite.

```
e1(n) = d1(n)-y1(n);

e2(n) = d2(n)-y2(n);
```

Codice 8: Calcolo dell'errore

I valori dell'errore vengono poi utilizzati per aggiornare i tappi dei filtri h11, h12, h21 e h22 tramite un altro ciclo for, utilizzando la formula (12).

```
for k = 1:M
    h11(k) = ...
    h11(k)+mu*(e1(n)*r111buff(k)+e2(n)*r121buff(k));
h12(k) = ...
    h12(k)+mu*(e1(n)*r211buff(k)+e2(n)*r221buff(k));
h21(k) = ...
    h21(k)+mu*(e1(n)*r112buff(k)+e2(n)*r122buff(k));
h22(k) = ...
    h22(k)+mu*(e1(n)*r212buff(k)+e2(n)*r222buff(k));
end
end
```

Codice 9: Aggiornamento del filtro

4.2 Fast Deconvolution

Nella Fast Deconvolution, come per il codice della LMS, si carica il file audio e le risposte impulsive c11, c12, c21 e c22 come mostrato nei codici 1 e 2. A differenza dell'algoritmo LMS, nella Fast Deconvolution si usa un overlap and save quindi occorre scegliere come dividere in blocchi il segnale di ingresso. Si implementa l'overlap and save come descritto nel capitolo 3.2, con dei blocchi di lunghezza L=4096, pari alla lunghezza di default del frame di Nu-Tech, e un overlap al 50%, quindi M=L/2=2048. La lunghezza totale del frame con overlap sarà quindi fs = L+M-1=4096+2048-1=6143, per una FFT efficiente si sceglie la potenza di 2 più vicina a 6143, quindi fftLen = $2^{13}=8192$.

```
L = 4096;
M = L/2;
fs = L + M - 1; % frame size
fftLen = 2.^nextpow2(fs);
```

Codice 10: Parametri overlap and save

Per eseguire l'overlap and save è necessaria la FFT di lunghezza pari a fftLen dei filtri C e H. Poiché i filtri H non sono ancora stati calcolati, vengono inizializzati a zero.

```
% HRTF left loudspeaker - left ear
% HRTF right loudspeaker - left ear
% HRTF left loudspeaker - right ear
C11 = fft(c11, fftLen);
C12 = fft(c12, fftLen);
C21 = fft(c21, fftLen);
C22 = fft(c22, fftLen);
                               % HRTF right loudspeaker - right ear
H11 = zeros(fftLen, 1);
                             % filtro di cancellazione del ...
   crosstalk input 1 output 1
H12 = zeros(fftLen, 1);
                               % filtro di cancellazione del ...
   crosstalk input 2 output 1
H21 = zeros(fftLen, 1);
                               % filtro di cancellazione del ...
   crosstalk input 1 output 2
                               % filtro di cancellazione del ...
H22 = zeros(fftLen, 1);
   crosstalk input 2 output 2
```

Codice 11: FFT delle risposte impulsive del canale e inizializzazione dei filtri di cancellazione del crosstalk

L'implementazione dell'equazione (19) è mostrata nel codice 12 con $\beta = 0.1$ e B = I, dove I è la matrice identità. Per ogni frequenza k dei filtri C_{11} , C_{12} , C_{21} e C_{22} , composti da fftLen punti in frequenza, viene costruita una matrice C[k] nel seguente modo:

$$C[k] = \begin{bmatrix} C_{11}[k] & C_{12}[k] \\ C_{21}[k] & C_{22}[k] \end{bmatrix}.$$

Per trovare i filtri H_{11} , H_{12} , H_{21} e H_{22} si calcola la matrice H come mostrato nell'equazione (19) dove H è una matrice 2×2 costruita nel seguente modo:

$$H[k] = \begin{bmatrix} H_{11}[k] & H_{12}[k] \\ H_{21}[k] & H_{22}[k] \end{bmatrix}.$$

I filtri H_{11} , H_{12} , H_{21} e H_{22} sono presi dagli elementi della matrice H.

```
beta = 0.1;
B = [1 0; 0 1];
for k = 1:length(C11)
    C = [C11(k) C12(k); C21(k) C22(k)];
    H = (C'*C+beta*(B'*B))^(-1)*C';
    H11(k) = H(1, 1);
    H12(k) = H(1, 2);
    H21(k) = H(2, 1);
    H22(k) = H(2, 2);
```

Codice 12: Calcolo dei filtri di cancellazione del crosstalk

Dopo aver calcolato i filtri H, si procede con l'implementazione dell'overlap and save inizializzando due buffer x1Buff e x2Buff con fs zeri.

```
x1Buff = zeros(fs, 1);
x2Buff = zeros(fs, 1);
```

Codice 13: Inizializzazione dei buffer per l'overlap and save

Successivamente si divide il segnale di ingresso, lungo $\mathtt{nPoints}$, in blocchi di lunghezza L, risultando in un numero di blocchi pari a $\mathtt{nPoints/L}$. Poiché non sappiamo a priori se questo valore è intero, lo si approssima per difetto usando la funzione \mathtt{floor} di Matlab. Per l'i-esimo blocco si copiano L campioni del segnale di ingresso nel buffer dall'indice M in poi, come mostrato in figura 1.

```
nPoints = length(x1);
for i = 1 : floor(nPoints/L)
    copy L values of x vector into the buffer from M onwards
    x1Buff(fs - L + 1 : fs) = x1((i - 1) * L + 1 : i * L);
    x2Buff(fs - L + 1 : fs) = x2((i - 1) * L + 1 : i * L);
```

Codice 14: Copia di L campioni del segnale di ingresso nel buffer

Dopo aver riempito il buffer, si fa la FFT a fftLen punti del buffer di ingresso.

```
X1BUFF = fft(x1Buff, fftLen);
X2BUFF = fft(x2Buff, fftLen);
```

Codice 15: FFT del buffer di ingresso

Si calcola il buffer di uscita in frequenza implementando l'equazione (20) come mostrato nel codice 16.

```
Y1BUFF = ...

(C11.*H11+C12.*H21).*X1BUFF+(C11.*H12+C12.*H22).*X2BUFF;

Y2BUFF = ...

(C21.*H11+C22.*H21).*X1BUFF+(C21.*H12+C22.*H22).*X2BUFF;
```

Codice 16: Calcolo del buffer di uscita in frequenza

Usando il buffer di uscita in frequenza, si calcola la IFFT e si prendono solamente i valori reali.

```
y1Buff = real(ifft(Y1BUFF));
y2Buff = real(ifft(Y2BUFF));
```

Codice 17: IFFT del buffer di uscita

L'aggiornamento dell'uscita avviene scartando i primi M-1 campioni e dunque prendendo gli ultimi L campioni del buffer precedentemente calcolato.

```
% discard first M - 1 values
y1((i-1) * L + 1 : i * L) = y1Buff(fs - L + 1 : fs);
y2((i-1) * L + 1 : i * L) = y2Buff(fs - L + 1 : fs);
```

Codice 18: Aggiornamento dell'uscita

Infine, si aggiornano i buffer di ingresso prendendo gli ultimi M-1 punti del buffer di ingresso precedente e mettendoli all'inizio del buffer di ingresso successivo.

```
% first M - 1 values of the new vector must be the last ...
    ones of the previous array
x1Buff(1 : M - 1) = x1Buff(fs - M + 2 : fs);
x2Buff(1 : M - 1) = x2Buff(fs - M + 2 : fs);
end
```

Codice 19: Aggiornamento del buffer di ingresso

5 Codice C

5.1 LMS

Nella libreria Plugin.h viene inizialmente definito il nome del Nuts come "LMS Filter".

```
#define NUTS_NAME "LMS Filter"
```

Nella classe class PlugIn : public LEEffect vengono definite le variabili che saranno utilizzate nell'algoritmo.

Le variabili sono le stesse usate nel codice Matlab in 4 e 5.

```
private:
    int FrameSize, SampleRate;
    int M, L, tau;
    double mu;
    double* x1, * x2, * d1, * d2, * y1, * y2, * e1, * e2, ...
        * x1buff, * x2buff;
    double* c11, * c12, * c21, * c22;
    double* h11, * h12, * h21, * h22;
    double* r111, * r112, * r211, * r212, * r222, * r221, ...
        * r122, * r121;
    double* r111buff, * r112buff, * r211buff, * r212buff, ...
        * r222buff, * r221buff, * r122buff, * r121buff;
```

Nel file PlugIn.cpp sono presenti le funzioni:

- Costruttore della classe Plugin : viene chiamata quando il NUTS viene caricato sulla board del NUTECH
- Funzione di inizializzazione: viene chiamata quando si lancia la riproduzione con il tasto START
- Funzione di elaborazione: all'interno di questa funzione va messa la parte di elaborazione real time del segnale
- Funzione di deinizializzazione: viene chiamata quando si seleziona il tasto STOP
- Distruttore della classe Plugin : viene chiamata quando il NUTS viene eliminato dalla board del NUTECH

Nel costruttore vengono inizializzate a zero le variabili precedentemente definite. Framesize e Samplerate vengono ricavati dagli ingressi del blocco che vengono impostati pari a due allo stesso modo delle uscite.

```
PlugIn::PlugIn(InterfaceType _CBFunction, void * ...
   _PlugRef, HWND ParentDlg): ...
   LEEffect(_CBFunction,_PlugRef,ParentDlg)
{
    FrameSize = ...
       CBFunction(this, NUTS_GET_FS_SR, 0, (LPVOID) AUDIOPROC);
    SampleRate = ...
       CBFunction(this, NUTS_GET_FS_SR,1,(LPVOID)AUDIOPROC);
    LESetNumInput(2);
    LESetNumOutput(2);
    M = 512;
               // filter length
    tau = M;
    mu = 1e-4;
    y1 = 0;
    y2 = 0;
    x1 = 0;
    x2 = 0;
    x1buff = 0;
    x2buff = 0;
    e1 = 0;
    e2 = 0;
    d1 = 0;
    d2 = 0;
    c11 = 0;
    c12 = 0;
    c21 = 0;
    c22 = 0;
    h11 = 0;
    h12 = 0;
    h21 = 0;
    h22 = 0;
    r111 = 0;
    r112 = 0;
    r211 = 0;
```

```
r212 = 0;

r222 = 0;

r122 = 0;

r122 = 0;

r121 = 0;

r111buff = 0;

r112buff = 0;

r122buff = 0;

r211buff = 0;

r211buff = 0;

r212buff = 0;

r212buff = 0;

r222buff = 0;

bufferNumber = 0;
```

Nella funzione di inizializzazione vengono allocate le variabili.

```
void __stdcall PlugIn::LEPlugin_Init()
{
    if (y1 == 0)
    {
        y1 = ippsMalloc_64f(FrameSize);
        ippsZero_64f(y1, FrameSize);
    }
}
```

Inoltre vegono caricati i tappi dei filtri HRIR tramite la funzione read_dat presente in myLib.cpp.

```
// load filter taps
read_dat("c11.dat", c11, M);

read_dat("c12.dat", c12, M);

read_dat("c21.dat", c21, M);

read_dat("c22.dat", c22, M);
```

Nella funzione Process avviene l'algoritmo vero e proprio. Questa funzione viene chiamata per ogni frame dell'ingresso e produce il corrispondente frame in uscita. Gli ingressi e le uscite vengono quindi caricati in variabili temporanee in modo da poter essere elaborate. Gli ingressi InputData1 e InputData2 vengono copiati nelle variabili x1 e x2 tramite la funzione ippsCopy_64f. Usando la stessa funzione si crea il vettore del segnale de-

siderato ritardando l'ingresso di tau campioni copiando tau valori dal puntatore x1 + FrameSize - tau in d1 e allo stesso modo dal puntatore x2 + FrameSize - tau in d2. I vettori di uscita y1 e y2 vengono invece posti pari a zero.

```
int __stdcall PlugIn::LEPlugin_Process(PinType ...
   **Input, PinType **Output, LPVOID ExtraInfo)
{
    double* InputData1 = ((double*)Input[0]->DataBuffer);
    double* OutputData1 = ((double*)Output[0]->DataBuffer);
    double* InputData2 = ((double*)Input[1]->DataBuffer);
    double* OutputData2 = ((double*)Output[1]->DataBuffer);
    bufferNumber++;
    // d1[0:tau] = x1[end - tau:end];
    ippsCopy_64f(x1 + FrameSize - tau, d1, tau);
    // copy InputData1 to x1
    ippsCopy_64f(InputData1, x1, FrameSize);
    // divide each element of the vector x1 by 32768 and ...
       store the result in x1
    ippsDivC_64f_I(32768.0, x1, FrameSize);
    //d1[tau + 1:end] = x1[0:FrameSize - tau];
    ippsCopy_64f(x1, d1 + tau, FrameSize - tau);
    // d2[0:tau] = x2[end - tau:end];
    ippsCopy_64f(x2 + FrameSize - tau, d2, tau);
    // copy InputData2 to x2
    ippsCopy_64f(InputData2, x2, FrameSize);
    // divide each element of the vector x2 by 32768 and ...
       store the result in x2
    ippsDivC_64f_I(32768.0, x2, FrameSize);
    //d2[tau + 1:end] = x2[0:FrameSize - tau];
    ippsCopy_64f(x2, d2 + tau, FrameSize - tau);
    // initialize y1 and y2 with zeros
    ippsZero_64f(y1, FrameSize);
    ippsZero_64f(y2, FrameSize);
```

Il ciclo for corrisponde a quello usato in Matlab: vengono creati dei vettori di buffer temporanei e il segnale di ingresso viene elaborato un campione alla volta. Moltiplicando il buffer di ingresso per i filtri c_{ij} si ottengono i segnali r_{ijl} intermedi.

```
for (int i = 0; i < FrameSize; i++)
{
    ippsMove_64f(x1buff, x1buff + 1, M - 1);</pre>
```

```
x1buff[0] = x1[i];

ippsMove_64f(x2buff, x2buff + 1, M - 1);
x2buff[0] = x2[i];

ippsDotProd_64f(c11, x1buff, M, &(r111[i]));
ippsDotProd_64f(c12, x1buff, M, &(r112[i]));
ippsDotProd_64f(c11, x2buff, M, &(r211[i]));
ippsDotProd_64f(c12, x2buff, M, &(r212[i]));
ippsDotProd_64f(c22, x2buff, M, &(r222[i]));
ippsDotProd_64f(c21, x2buff, M, &(r221[i]));
ippsDotProd_64f(c21, x2buff, M, &(r122[i]));
ippsDotProd_64f(c21, x1buff, M, &(r121[i]));
```

A questo punto sono i segnali r_{ijl} ad essere inseriti nel buffer. Moltiplicando ognuno di essi per h_{ij} e sommando le 4 componenti si ottengono i segnali di uscita y1 e y2.

La variabile ytmp viene utilizzata come variabile di appoggio per le componenti parziali dell'uscita.

```
ippsMove_64f(r111buff, r111buff + 1, M - 1);
r111buff[0] = r111[i];
ippsMove_64f(r112buff, r112buff + 1, M - 1);
r112buff[0] = r112[i];
ippsMove_64f(r121buff, r121buff + 1, M - 1);
r121buff[0] = r121[i];
ippsMove_64f(r122buff, r122buff + 1, M - 1);
r122buff[0] = r122[i];
ippsMove_64f(r211buff, r211buff + 1, M - 1);
r211buff[0] = r211[i];
ippsMove_64f(r212buff, r212buff + 1, M - 1);
r212buff[0] = r212[i];
ippsMove_64f(r221buff, r221buff + 1, M - 1);
r221buff[0] = r221[i];
ippsMove_64f(r222buff, r222buff + 1, M - 1);
r222buff[0] = r222[i];
double ytmp = 0.0;
ippsDotProd_64f(h11, r111buff, M, y1 + i);
// y1[i] = y1[i] + ytmp;
```

```
ippsDotProd_64f(h21, r112buff, M, &ytmp);
y1[i] = y1[i] + ytmp;
//ippsAddC_64f_I(ytmp, y1 + i, 1);
ippsDotProd_64f(h12, r211buff, M, &ytmp);
y1[i] = y1[i] + ytmp;
//ippsAddC_64f_I(ytmp, y1 + i, 1);
ippsDotProd_64f(h22, r212buff, M, &ytmp);
y1[i] = y1[i] + ytmp;
//ippsAddC_64f_I(ytmp, y1 + i, 1);
ippsDotProd_64f(h11, r121buff, M, y2 + i);
//y2[i] = y2[i] + ytmp;
ippsDotProd_64f(h21, r122buff, M, &ytmp);
y2[i] = y2[i] + ytmp;
//ippsAddC_64f_I(ytmp, y2 + i, 1);
ippsDotProd_64f(h12, r221buff, M, &ytmp);
y2[i] = y2[i] + ytmp;
//ippsAddC_64f_I(ytmp, y2 + i, 1);
ippsDotProd_64f(h22, r222buff, M, &ytmp);
y2[i] = y2[i] + ytmp;
//ippsAddC_64f_I(ytmp, y2 + i, 1);
```

L'errore viene calcolato per ogni campione tramite la differenza fra il segnale desiderato e quello ottenuto.

```
e1[i] = d1[i] - y1[i];
e2[i] = d2[i] - y2[i];
```

I filtri h vengono poi aggiornati analogamente a 9 tramite il metodo steepest descend.

```
for (int j = 0; j < M; j++)
{
    h11[j] = h11[j] + mu * (e1[i] * r111buff[j] + ...
        e2[i] * r121buff[j]);
    h12[j] = h12[j] + mu * (e1[i] * r211buff[j] + ...
        e2[i] * r221buff[j]);
    h21[j] = h21[j] + mu * (e1[i] * r112buff[j] + ...
        e2[i] * r122buff[j]);
    h22[j] = h22[j] + mu * (e1[i] * r212buff[j] + ...
        e2[i] * r222buff[j]);</pre>
```

```
}
```

I vettori in uscita vengono quindi di nuovo riportati in OutputData1 e OutputData2 dopo essere stati moltiplicati per 32768.

```
// multiply each element of the vector y1 by 32768
// and store the result in y1
ippsMulC_64f_I(32768.0, y1, FrameSize);
// copy y1 to OutputData1
ippsCopy_64f(y1, OutputData1, FrameSize);
// multiply each element of the vector y2 by 32768
// and store the result in y2
ippsMulC_64f_I(32768.0, y2, FrameSize);
// copy y2 to OutputData2
ippsCopy_64f(y2, OutputData2, FrameSize);
return COMPLETED;
}
```

Nella funzione Delete vengono liberate dalla memoria tutte le variabili che erano state allocate nella Init.

```
void __stdcall PlugIn::LEPlugin_Delete()
{
    if (y1 != 0)
    {
        ippsFree(y1);
        y1 = 0;
    }
}
```

5.2 Fast Deconvolution

Nella libreria Plugin. h viene inizialmente definito il nome del Nuts come "Fast Deconvolution" e l'indice ID_BETA dell'RT Watch che permette di cambiare il parametro β .

Codice 20: Dichiarazione delle costanti in Plugin.h

Successivamente vengono dichiarate le variabili intere FrameSize e SampleRate che contengono rispettivamente la lunghezza del frame e la frequenza di campionamento, L, M, fs e fftLen sono le stesse variabili viste nel codice 10,

mentre fftOrd contiene l'ordine della FFT, cioè l'esponente di 2 usato per trovare i punti su cui viene calcolata la FFT. Il parametro beta rappresenta il parametro β dell'equazione (18), hrir contiene le risposte impulsive di c_{11} , c_{12} , c_{21} e c_{22} . Vengono poi dichiarati come Ipp64fc tutti i puntatori necessari per i buffer di ingresso e di uscita dell'overlap and save, i puntatori delle risposte in frequenza C_{11} , C_{12} , C_{21} , C_{22} , H_{11} , H_{12} , H_{21} e H_{22} e altre variabili temporanee di appoggio usate durante i calcoli. Lo struct Ipp64fc è formato da un campo reale e uno immaginario come mostrato di seguito.

```
typedef struct {
    Ipp64f re;
    Ipp64f im;
} Ipp64fc;
```

Codice 21: Struct Ipp64fc

Le variabili pSpec, pMemSpec, pMemInit, pMemBuffer, sizeSpec, sizeInit e sizeBuffer sono usate per inizializzare e calcolare la FFT. La variabile booleana isRunning servirà successivamente per conoscere se il programma è in esecuzione e in particolare, in questa

Codice 22: Dichiarazione delle variabili in Plugin.h

Nella libreria myLib.h vengono dichiarate le funzioni usate per scrivere e leggere i file ".dat".

Codice 23: Libreria myLib.h

Nel codice sorgente myLib.cpp vengono definite le funzioni read_dat e write_dat. La prima apre in input e legge un file, mentre la seconda apre in output un file e ne scrive il dato data.

```
#include "StdAfx.h"
#include "myLib.h"
void write_dat(char *name, double *data, int dim,
    char *save_name)
{
    char name_a[MAX_FILE_NAME_LENGTH];
   memset(name_a,0,MAX_FILE_NAME_LENGTH*sizeof(char));
    strcpy(name_a, save_name);
    strcat(name_a, name);
    char *c;
    c=(char *)(void *)data;
    fstream File;
   File.open(name_a,ios::out | ios::binary);
   File.write(c,dim*sizeof(double));
   File.close();
}
void read_dat(char *name, double *data, int dim)
    char *c;
    c=(char *)(void *)data;
    ifstream File;
   File.open(name, ios::in | ios::binary);
   File.read(c, dim * sizeof(double));
   File.close();
}
```

Codice 24: File myLib.cpp

Nel costruttore vengono inizializzate le variabili dichiarate nella libreria Plugin.h come mostrato nel codice 25. Si ottengono il FrameSize e il SampleRate usando la funzione CBFunction che permette di interagire con il Nu-Tech. Vengono impostati due pin di input e due pin di output, rispetti-

vamente con la funzione LESetNumInput(2) e con LESetNumOutput(2). La variabile L è pari alla lunghezza del frame, cioè di default 4096, l'overlap M è pari alla metà di L, quindi la lunghezza di tutto il buffer è fs = L + M - 1. La variabile booleana isRunning è inizializzata falsa.

```
PlugIn::PlugIn(InterfaceType _CBFunction, void * _PlugRef,
    HWND ParentDlg): LEEffect(_CBFunction,_PlugRef,ParentDlg)
    FrameSize = CBFunction(this, NUTS_GET_FS_SR,0,
        (LPVOID) AUDIOPROC);
    SampleRate = CBFunction(this, NUTS_GET_FS_SR,1,
        (LPVOID) AUDIOPROC);
    LESetNumInput(2);
    LESetNumOutput(2);
    isRunning = false;
    L = FrameSize;
    M = int(L / 2);
    fs = L + M - 1;
    beta = 0.1;
    x1buff = 0;
    x2buff = 0;
    X1BUFF = 0;
    X2BUFF = 0;
    y1buff = 0;
    y2buff = 0;
    Y1BUFF = 0;
    Y2BUFF = 0;
    temp = 0;
    temp2 = 0;
    temp3 = 0;
    hrir = 0;
    c11 = 0;
    c12 = 0;
    c21 = 0;
    c22 = 0;
    C11 = 0;
```

```
C12 = 0;

C21 = 0;

C22 = 0;

H11 = 0;

H12 = 0;

H21 = 0;

H22 = 0;

fftLen = 8192;

fftOrd = (int)(log10((double)fftLen) / log10(2.0));
```

Codice 25: Costruttore

Nella funzione LEPlugin_Init la variabile booleana isRunning diventa true, questo non permette di modificare il parametro β nell'RT Watch.

```
void __stdcall PlugIn::LEPlugin_Init()
{
   isRunning = true;
```

Codice 26: Variabile isRunning nella funzione LEPlugin_Init

Successivamente, vengono allocate tutte le variabili dichiarate come puntatori, un esempio di allocazione è mostrata nel codice 27. A differenza del codice 13 in Matlab, in questo caso le variabili x1buff e x2buff che contengono il buffer nel tempo sono della stessa dimensione di X1BUFF e X2BUFF che contengono le rispettive trasformate di Fourier, cioè fftLen. In particolare i valori diversi da zero sono sempre fs, come in Matlab, ma i restanti fftLen-fs campioni sono uguali a zeri. Questo è necessario perché per sfruttare la funzione che calcola la FFT dobbiamo avere un segnale nel tempo della stessa lunghezza di quello in frequenza. Allo stesso modo anche i buffer di uscita nel tempo y1buff e y2buff e in frequenza Y1BUFF e Y2BUFF sono lunghi fftLen. Le variabili di appoggio per i calcoli temp, temp2, temp3, le variabili che contengono le HRIR, le HRTF e i filtri di ricostruzioni sono tutte di dimensione fftLen.

```
if (x1buff == 0)
{
      x1buff = ippsMalloc_64fc(fftLen);
      ippsZero_64fc(x1buff, fftLen);
}
```

Codice 27: Allocazione della variabile x1buff nella funzione LEPlugin_Init

La HRIR vengono lette dai file ".dat" e salvate nell'array hrir di dimensione M. Successivamente, questo array viene copiato nel campo reale delle variabili c11, c12, c21 e c22 di tipo Ipp64fc.

```
if (hrir == 0)
    hrir = ippsMalloc_64f(M);
    ippsZero_64f(hrir, M);
// load filter taps
read_dat("c11.dat", hrir, M);
for (int i = 0; i < M; i++)</pre>
    c11[i].re = hrir[i];
read_dat("c12.dat", hrir, M);
for (int i = 0; i < M; i++)</pre>
    c12[i].re = hrir[i];
read_dat("c21.dat", hrir, M);
for (int i = 0; i < M; i++)</pre>
    c21[i].re = hrir[i];
read_dat("c22.dat", hrir, M);
for (int i = 0; i < M; i++)</pre>
    c22[i].re = hrir[i];
```

Codice 28: Lettura delle HRIR

Nel codice 29 si può vedere come è inizializzata la FFT. La funzione ippsFFTGetSize_C_64fc calcola le dimensioni della struttura delle specifiche della FFT e i buffer di lavoro richiesti. I parametri della funzione sono:

- l'ordine fft0rd della FFT: sia N la lunghezza del segnale di ingresso, allora $N=2^{\tt fft0rd}$,
- il metodo di normalizzazione IPP_FFT_DIV_INV_BY_N che specifica di calcolare la IFFT con una normalizzazione 1/N,
- il parametro deprecato ippAlgHintNone,
- il puntatore sizeSpec al valore della dimensione della struttura che contiene le specifiche della FFT,
- il puntatore sizeInit al valore della dimensione del buffer per la funzione di inizializzazione della FFT,

• il puntatore sizeBuffer al valore della dimensione del buffer di lavoro della FFT.

La funzione ippsFFTGetSize_C_64fc calcola:

- la dimensione della struttura delle specifiche della FFT e la salva in sizeSpec,
- la dimensione del buffer di lavoro sizeInit necessario per la funzione ippsFFTInit_C che inizializza la struttura dalla FFT,
- la dimensione del buffer di lavoro sizeBuffer della FFT per le funzioni di ippsFFTFwd e ippsFFTInv che calcolano rispettivamente la FFT diretta e inversa.

Successivamente, la funzione ippsFFTInit_C_64fc inizializza la struttura delle specifiche della FFT. I parametri di questa funzione sono:

- l'ordine fft0rd della FFT: sia N la lunghezza del segnale di ingresso, allora $N=2^{\tt fft0rd}$,
- il metodo di normalizzazione IPP_FFT_DIV_INV_BY_N che specifica di calcolare la IFFT con una normalizzazione 1/N,
- il parametro deprecato ippAlgHintNone,
- il puntatore al puntatore alla struttura delle specifiche della FFT pSpec che deve essere creata
- il puntatore pMemSpec all'area per la struttura delle specifiche della FFT,
- il puntatore al buffer di lavoro pMemInit.

La funzione ippsFFTInit_C_64fc inizializza la struttura delle specifiche della FFT pSpec con i seguenti parametri:

- l'ordine fftOrd della FFT,
- il flag IPP_FFT_DIV_INV_BY_N,
- il parametro ippAlgHintNone.

```
// get sizes for required buffers
ippsFFTGetSize_C_64fc(fftOrd, IPP_FFT_DIV_INV_BY_N,
    ippAlgHintNone, &sizeSpec, &sizeInit, &sizeBuffer);
/// allocate memory for required buffers
pMemSpec = (Ipp8u*)ippMalloc(sizeSpec);
pMemInit = (Ipp8u*)ippMalloc(sizeInit);
pMemBuffer = (Ipp8u*)ippMalloc(sizeBuffer);
ippsFFTInit_C_64fc(&pSpec, fftOrd, IPP_FFT_DIV_INV_BY_N,
    ippAlgHintNone, pMemSpec, pMemInit);
```

Codice 29: Inizializzazione FFT

Dopo aver inizializzato la struttura delle specifiche della FFT, si procede ad eseguire la trasformata di Fourier delle HRIR, usando le variabili pSpec e pMemBuffer precedentemente definite, come di seguito

```
ippsFFTFwd_CToC_64fc(c11, C11, pSpec, pMemBuffer);
ippsFFTFwd_CToC_64fc(c12, C12, pSpec, pMemBuffer);
ippsFFTFwd_CToC_64fc(c21, C21, pSpec, pMemBuffer);
ippsFFTFwd_CToC_64fc(c22, C22, pSpec, pMemBuffer);
```

Codice 30: FFT delle HRIR

Conoscendo le risposte in frequenza C11, C12, C21 e C22, è possibile implementare la formula (19) per trovare i filtri H11, H12, H21 e H22. Poiché non è possibile eseguire il calcolo dell'equazione in una sola riga di codice come nel programma 12 di Matlab, è necessario usare le variabili di appoggio per calcolare le somme e i prodotti in più passaggi. Dobbiamo dunque calcolare le matrici C e C^H , successivamente calcoliamo

$$C_{\text{temp}}[k] = C^{H}[k]C[k] + \beta \cdot I \tag{25}$$

e ne facciamo l'inversa. Infine, moltiplichiamo l'inversa per $C^H[k]$.

Per iniziare si costruisce la matrice C e la sua complessa coniugata chiamata Cconj, come nel codice 31. Sia

$$C[k] = \begin{bmatrix} C_{11}[k] & C_{12}[k] \\ C_{21}[k] & C_{22}[k] \end{bmatrix}$$

allora

$$C_{\text{conj}}[k] = \begin{bmatrix} C_{11}^*[k] & C_{12}^*[k] \\ C_{21}^*[k] & C_{22}^*[k] \end{bmatrix}$$
 (26)

```
for (int n = 0; n < fftLen; n++)</pre>
```

```
{
    C[0][0] = C11[n];
    C[0][1] = C12[n];
    C[1][0] = C21[n];
    C[1][1] = C22[n];

    ippsConj_64fc(&(C[0][0]), &(Cconj[0][0]), 1);
    ippsConj_64fc(&(C[0][1]), &(Cconj[0][1]), 1);
    ippsConj_64fc(&(C[1][0]), &(Cconj[1][0]), 1);
    ippsConj_64fc(&(C[1][1]), &(Cconj[1][1]), 1);
```

Codice 31: Implementazione della matrice C e Cconj

Esplicitando l'equazione (25) si può scrivere

$$C_{\text{temp}}[k] = C^{H}[k]C[k] + \beta \cdot I =$$

$$\begin{bmatrix} C_{11}[k] & C_{12}[k] \\ C_{21}[k] & C_{22}[k] \end{bmatrix}^{H} \cdot \begin{bmatrix} C_{11}[k] & C_{12}[k] \\ C_{21}[k] & C_{22}[k] \end{bmatrix} + \beta \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
(27)

Facendo la trasposta e coniugata di C si ha

$$C_{\text{temp}}[k] = \begin{bmatrix} C_{11}^*[k] & C_{21}^*[k] \\ C_{12}^*[k] & C_{22}^*[k] \end{bmatrix} \cdot \begin{bmatrix} C_{11}[k] & C_{12}[k] \\ C_{21}[k] & C_{22}[k] \end{bmatrix} + \begin{bmatrix} \beta & 0 \\ 0 & \beta \end{bmatrix}$$
(28)

Usando la definizione di C_{conj} (26) e applicandola alla (28) si ottiene

$$C_{\text{temp}}[k] = \begin{bmatrix} C_{conj11}[k] & C_{conj21}[k] \\ C_{conj12}[k] & C_{conj22}[k] \end{bmatrix} \cdot \begin{bmatrix} C_{11}[k] & C_{12}[k] \\ C_{21}[k] & C_{22}[k] \end{bmatrix} + \begin{bmatrix} \beta & 0 \\ 0 & \beta \end{bmatrix}$$
(29)

Scrivendo l'equazione (29) come sistema si possono ottenere gli elementi della matrice $C_{\text{temp}}[k]$ come di seguito

$$\begin{cases}
C_{\text{temp11}}[k] = C_{conj11}[k] \cdot C_{11}[k] + C_{conj21}[k] \cdot C_{21}[k] + \beta \\
C_{\text{temp12}}[k] = C_{conj11}[k] \cdot C_{12}[k] + C_{conj21}[k] \cdot C_{22}[k] \\
C_{\text{temp21}}[k] = C_{conj12}[k] \cdot C_{11}[k] + C_{conj22}[k] \cdot C_{21}[k] \\
C_{\text{temp22}}[k] = C_{conj12}[k] \cdot C_{12}[k] + C_{conj22}[k] \cdot C_{22}[k] + \beta
\end{cases}$$
(30)

L'elemento $C_{\text{temp11}}[k]$ viene calcolato come mostrato nel seguente codice, moltiplicando i due prodotti $C_{conj11}[k] \cdot C_{11}[k]$ e $C_{conj21}[k] \cdot C_{21}[k]$ con la funzione ippsMul_64fc, successivamente vengono sommati tra loro con la funzione ippsAdd_64fc_I e infine sommata la costante β con ippsAddC_64fc_I.

```
//Ctemp[0][0] = Cconj[0][0] * C[0][0] + Cconj[1][0] * C[1][0]
// + beta;
```

```
ippsMul_64fc(&(Cconj[0][0]), &(C[0][0]), &(Ctemp[0][0]), 1);
ippsMul_64fc(&(Cconj[1][0]), &(C[1][0]), &(Ctemp2[0][0]), 1);
ippsAdd_64fc_I(&(Ctemp2[0][0]), &(Ctemp[0][0]), 1);
ippsAddC_64fc_I({ beta, 0 }, &(Ctemp[0][0]), 1);
```

Codice 32: Implementazione della prima riga del sistema (30)

In modo analogo vengono calcolati gli elementi $C_{\text{temp12}}[k]$, $C_{\text{temp21}}[k]$ e $C_{\text{temp22}}[k]$.

```
//Ctemp[0][1] = Cconj[0][0] * C[0][1] + Cconj[1][0] * C[1][1];
ippsMul_64fc(&(Cconj[0][0]), &(C[0][1]), &(Ctemp[0][1]), 1);
ippsMul_64fc(&(Cconj[1][0]), &(C[1][1]), &(Ctemp2[0][1]), 1);
ippsAdd_64fc_I(&(Ctemp2[0][1]), &(Ctemp[0][1]), 1);

//Ctemp[1][0] = Cconj[0][1] * C[0][0] + Cconj[1][1] * C[1][0];
ippsMul_64fc(&(Cconj[0][1]), &(C[0][0]), &(Ctemp[1][0]), 1);
ippsMul_64fc(&(Cconj[1][1]), &(C[1][0]), &(Ctemp2[1][0]), 1);
ippsAdd_64fc_I(&(Ctemp2[1][0]), &(Ctemp[1][0]), 1);

//Ctemp[1][1] = Cconj[0][1] * C[0][1] + Cconj[1][1] * C[1][1]

// + beta;
ippsMul_64fc(&(Cconj[0][1]), &(C[0][1]), &(Ctemp[1][1]), 1);
ippsMul_64fc(&(Cconj[1][1]), &(C[1][1]), &(Ctemp2[1][1]), 1);
ippsAdd_64fc_I(&(Ctemp2[1][1]), &(Ctemp[1][1]), 1);
ippsAddC_64fc_I(&(Ctemp2[1][1]), &(Ctemp[1][1]), 1);
```

Codice 33: Implementazione della matrice Ctemp

Dopo aver calcolato la matrice Ctemp con la formula (25), occorre trovare la sua inversa. Per fare ciò, si inizia calcolando il determinante di

$$C_{\text{temp}}[k] = \begin{bmatrix} C_{\text{temp11}}[k] & C_{\text{temp12}}[k] \\ C_{\text{temp21}}[k] & C_{\text{temp22}}[k] \end{bmatrix}.$$

La formula per trovare il determinante di C_{temp} è la seguente

$$\det = (C_{\text{temp11}}[k] \cdot C_{\text{temp22}}[k]) - (C_{\text{temp12}}[k] \cdot C_{\text{temp21}}[k])$$
(31)

L'equazione (31) è stata implementata nel codice 34 calcolando i prodotti $C_{\text{temp11}}[k] \cdot C_{\text{temp22}}[k]$ e $C_{\text{temp12}}[k] \cdot C_{\text{temp21}}[k]$ con la funzione ippsMul_64fc, infine sottraendo i due prodotti con ippsSub_64fc_I e salvando il determinante nella variabile det.

```
ippsMul_64fc(&(Ctemp[0][0]), &(Ctemp[1][1]), &det, 1);
ippsMul_64fc(&(Ctemp[0][1]), &(Ctemp[1][0]), &invtemp, 1);
```

```
ippsSub_64fc_I(&invtemp, &det, 1);
```

Codice 34: Calcolo del determinante della matrice Ctemp

Una volta noto il determinante possiamo implementare la formula dell'inversa di $C_{\text{temp}}[k]$ come nella seguente equazione

$$C_{\text{temp}}^{-1}[k] = \begin{bmatrix} C_{\text{temp11}}[k] & C_{\text{temp12}}[k] \\ C_{\text{temp21}}[k] & C_{\text{temp22}}[k] \end{bmatrix}^{-1} = \frac{1}{\det(C_{\text{temp}})} \begin{bmatrix} C_{\text{temp22}}[k] & -C_{\text{temp12}}[k] \\ -C_{\text{temp21}}[k] & C_{\text{temp11}}[k] \end{bmatrix}.$$
(32)

In C la formula (32) viene applicata dividendo ogni elemento di Ctemp per il determinante det con la funzione ippsDivC_64fc, invertendo gli elementi Ctemp[0] [0] e Ctemp[1] [1], e cambiando segno agli elementi Ctemp[0] [1] e Ctemp[1] [0] moltiplicandoli per -1 con la funzione ippsMulC_64fc_I. L'inversa è calcolata usando il seguente codice

```
invtemp = Ctemp[0][0];
//Ctemp[0][0] = Ctemp[1][1] / det;
ippsDivC_64fc(&(Ctemp[1][1]), det, &(Ctemp[0][0]), 1);
//Ctemp[1][1] = invtemp / det;
ippsDivC_64fc(&invtemp, det, &(Ctemp[1][1]), 1);
//Ctemp[0][1] = -Ctemp[0][1] / det;
ippsMulC_64fc_I({ -1.0, 0.0 }, &det, 1);
ippsDivC_64fc_I(det, &(Ctemp[0][1]), 1);
//Ctemp[1][0] = -Ctemp[1][0] / det;
ippsDivC_64fc_I(det, &(Ctemp[1][0]), 1);
```

Codice 35: Calcolo dell'inversa della matrice Ctemp

L'ultimo passo consiste nel moltiplicare l'inversa di $C_{\text{temp}}[k]$ per $C^H[k]$ al fine implementare l'ultima parte della formula (19), cioè

$$H[k] = \left[C^{H}[k]C[k] + \beta I \right]^{-1} C^{H}[k] = C_{\text{temp}}^{-1}[k] \cdot C^{H}[k].$$
 (33)

Sia $C_{\text{inv}}[k] = C_{\text{temp}}^{-1}[k]$, usando (26) ed esplicitando l'equazione (34) si ha

$$H[k] = C_{\text{temp}}^{-1}[k] \cdot C^{H}[k] = C_{\text{inv}}[k] \cdot C^{H}[k] = \begin{bmatrix} C_{\text{inv}11}[k] & C_{\text{inv}12}[k] \\ C_{\text{inv}21}[k] & C_{\text{inv}22}[k] \end{bmatrix} \cdot \begin{bmatrix} C_{\text{conj}11}[k] & C_{\text{conj}21}[k] \\ C_{\text{conj}12}[k] & C_{\text{conj}22}[k] \end{bmatrix} = \begin{bmatrix} H_{11}[k] & H_{12}[k] \\ H_{21}[k] & H_{22}[k] \end{bmatrix}.$$
(34)

Se si scrive l'equazione (34) come sistema si ottiene

$$\begin{cases}
H_{11}[k] = (C_{\text{inv11}}[k] \cdot C_{\text{conj11}}[k]) + (C_{\text{inv12}}[k] \cdot C_{\text{conj12}}[k]) \\
H_{12}[k] = (C_{\text{inv11}}[k] \cdot C_{\text{conj21}}[k]) + (C_{\text{inv12}}[k] \cdot C_{\text{conj22}}[k]) \\
H_{21}[k] = (C_{\text{inv21}}[k] \cdot C_{\text{conj11}}[k]) + (C_{\text{inv22}}[k] \cdot C_{\text{conj12}}[k]) \\
H_{22}[k] = (C_{\text{inv21}}[k] \cdot C_{\text{conj21}}[k]) + (C_{\text{inv22}}[k] \cdot C_{\text{conj22}}[k])
\end{cases}$$
(35)

L'implementazione della prima riga del sistema (35), e quindi del filtro H_{11} , è mostrata nel codice 36 in cui si calcolano i prodotti $(C_{\text{inv}11}[k] \cdot C_{\text{conj}11}[k])$ e $(C_{\text{inv}12}[k] \cdot C_{\text{conj}12}[k])$, si sommano tra loro i prodotti e si salva il risultato nel campo reale e immaginario della variabile H11. Si noti che nel codice la variabile Ctemp contiene la matrice C_{temp}^{-1} .

```
//invtemp = Ctemp[0][0] * Cconj[0][0] + Ctemp[0][1] *
// Cconj[0][1];
ippsMul_64fc(&(Ctemp[0][0]), &(Cconj[0][0]), &invtemp2, 1);
ippsMul_64fc(&(Ctemp[0][1]), &(Cconj[0][1]), &invtemp, 1);
ippsAdd_64fc_I(&invtemp2, &invtemp, 1);
H11[n].re = invtemp.re;
H11[n].im = invtemp.im;
```

Codice 36: Calcolo dell'n-esima armonica di H11

In modo analogo si calcolano le variabili H12, H21 e H22 come di seguito.

```
//invtemp = Ctemp[0][0] * Cconj[1][0] + Ctemp[0][1] *
    //Cconi[1][1];
ippsMul_64fc(&(Ctemp[0][0]), &(Cconj[1][0]), &invtemp2, 1);
ippsMul_64fc(&(Ctemp[0][1]), &(Cconj[1][1]), &invtemp, 1);
ippsAdd_64fc_I(&invtemp2, &invtemp, 1);
H12[n].re = invtemp.re;
H12[n].im = invtemp.im;
//invtemp = Ctemp[1][0] * Cconj[0][0] + Ctemp[1][1] *
    //Cconj[0][1];
ippsMul_64fc(&(Ctemp[1][0]), &(Cconj[0][0]), &invtemp2, 1);
ippsMul_64fc(&(Ctemp[1][1]), &(Cconj[0][1]), &invtemp, 1);
ippsAdd_64fc_I(&invtemp2, &invtemp, 1);
H21[n].re = invtemp.re;
H21[n].im = invtemp.im;
//invtemp = Ctemp[1][0] * Cconj[1][0] + Ctemp[1][1] *
    //Cconj[1][1];
ippsMul_64fc(&(Ctemp[1][0]), &(Cconj[1][0]), &invtemp2, 1);
ippsMul_64fc(&(Ctemp[1][1]), &(Cconj[1][1]), &invtemp, 1);
ippsAdd_64fc_I(&invtemp2, &invtemp, 1);
H22[n].re = invtemp.re;
```

```
H22[n].im = invtemp.im;
}
```

Codice 37: Calcolo dell'n-esima armonica di H12, H21, H22

Una volta eseguito il ciclo for iniziato nel codice 31 e terminato nel 37, la funzione LEPlugin_Init finisce e sono ora noti i filtri H_{11} , H_{12} , H_{11} , H_{21} e H_{22} per effettuare la correzione del crosstalk.

A questo punto la funzione LEPlugin_Process effettua il filtraggio con i filtri di ricostruzione usando l'overlap and save in modo analogo a quanto visto con i codici 14, 15, 16, 17, 18 e 19 in Matlab. Inizialmente, per semplicità si copiano i puntatori degli ingressi in InputData1 e InputData2 e delle uscite in OutputData1 e OutputData2.

```
int __stdcall PlugIn::LEPlugin_Process(PinType** Input,
    PinType** Output, LPVOID ExtraInfo)
{
    double* InputData1 = ((double*)Input[0]->DataBuffer);
    double* OutputData1 = ((double*)Output[0]->DataBuffer);
    double* InputData2 = ((double*)Input[1]->DataBuffer);
    double* OutputData2 = ((double*)Output[1]->DataBuffer);
```

Codice 38: Copia dei puntatori degli ingressi e delle uscite

Successivamente, vengono riempiti i campi reali dei buffer di ingresso x1buff e x2buff dall'indice M-1 fino a L+M-1 copiando L valori degli ingressi. I buffer vengono poi normalizzati dividendo per $2^{15}=32768$ per non andare in overflow e per poter confrontare gli stessi segnali in Matlab.

```
for (int i = 0; i < L; i++)
{
    x1buff[M - 1 + i].re = InputData1[i];
    x2buff[M - 1 + i].re = InputData2[i];
}
// divide L elements of the vector x1buff by 32768 and store
// the result in x1buff
ippsDivC_64fc_I({ 32768.0, 0.0 }, x1buff + M - 1, L);
// divide L elements of the vector x2buff by 32768 and store
// the result in x2buff
ippsDivC_64fc_I({ 32768.0, 0.0 }, x2buff + M - 1, L);</pre>
```

Codice 39: Creazione dei buffer di ingresso e normalizzazione

Una volta riempiti i buffer di ingresso x1buff e x2buff, ne viene fatta la FFT e salvato il risultato rispettivamente in X1BUFF e X2BUFF.

```
ippsFFTFwd_CToC_64fc(x1buff, X1BUFF, pSpec, pMemBuffer);
ippsFFTFwd_CToC_64fc(x2buff, X2BUFF, pSpec, pMemBuffer);
```

Codice 40: FFT dei buffer di ingresso

Poiché non è possibile implementare in una sola riga l'equazione (20) come mostrato nel codice 16 di Matlab, occorre dividere la formula in più passaggi. Scrivendo (20) come sistema lineare si ha

$$\begin{cases}
Y_1 = (C_{11} \cdot H_{11} + C_{12} \cdot H_{21}) \cdot X_1 + (C_{11} \cdot H_{12} + C_{12} \cdot H_{22}) \cdot X_2 \\
Y_2 = (C_{21} \cdot H_{11} + C_{22} \cdot H_{21}) \cdot X_1 + (C_{21} \cdot H_{12} + C_{22} \cdot H_{22}) \cdot X_2
\end{cases}$$
(36)

Sia temp = $C_{11} \cdot H_{11}$, temp₂ = $C_{12} \cdot H_{21}$, allora il primo addendo della prima riga del sistema (36) è data da

$$temp_3 = (temp + temp_2) \cdot X_1 = (C_{11} \cdot H_{11} + C_{12} \cdot H_{21}) \cdot X_1.$$

Allo stesso modo si può calcolare il secondo addendo e sommarli per trovare Y_1 . Il calcolo di Y_2 è analogo. L'implementazione del sistema (36) è mostrato nel codice 41, in cui vengono calcolati i buffer di uscita in frequenza Y1BUFF e Y2BUFF.

```
// \text{ temp} = C11.*H11
ippsMul_64fc(C11, H11, temp, fftLen);
// temp2 = C12.*H21
ippsMul_64fc(C12, H21, temp2, fftLen);
// \text{ temp2} = C11.*H11+C12.*H21
ippsAdd_64fc_I(temp, temp2, fftLen);
// \text{ temp3} = (C11.*H11 + C12.*H21).*X1BUFF
ippsMul_64fc(temp2, X1BUFF, temp3, fftLen);
// \text{ temp} = C11.*H12
ippsMul_64fc(C11, H12, temp, fftLen);
// \text{ temp2} = C12.*H22
ippsMul_64fc(C12, H22, temp2, fftLen);
// \text{ temp2} = C11.*H12+C12.*H22
ippsAdd_64fc_I(temp, temp2, fftLen);
// \text{ temp} = (C11.*H12+C12.*H22).*X2BUFF
ippsMul_64fc(temp2, X2BUFF, temp, fftLen);
// Y1BUFF = (C11.*H11 + C12.*H21).*X1BUFF +
// (C11.*H12+C12.*H22).*X2BUFF
ippsAdd_64fc(temp3, temp, Y1BUFF, fftLen);
// temp = C21.*H11
ippsMul_64fc(C21, H11, temp, fftLen);
// \text{ temp2} = C22.*H21
```

```
ippsMul_64fc(C22, H21, temp2, fftLen);
// \text{ temp2} = C21.*H11+C22.*H21
ippsAdd_64fc_I(temp, temp2, fftLen);
// \text{ temp3} = (C21.*H11+C22.*H21).*X1BUFF
ippsMul_64fc(temp2, X1BUFF, temp3, fftLen);
// \text{ temp} = C21.*H12
ippsMul_64fc(C21, H12, temp, fftLen);
// temp2 = C22.*H22
ippsMul_64fc(C22, H22, temp2, fftLen);
// \text{ temp2} = C21.*H12+C22.*H22
ippsAdd_64fc_I(temp, temp2, fftLen);
// \text{ temp} = (C21.*H12+C22.*H22).*X2BUFF
ippsMul_64fc(temp2, X2BUFF, temp, fftLen);
// Y2BUFF = (C21.*H11+C22.*H21).*X1BUFF +
// (C21.*H12+C22.*H22).*X2BUFF
ippsAdd_64fc(temp3, temp, Y2BUFF, fftLen);
```

Codice 41: Calcolo dei buffer di uscita in frequenza

Procedendo con l'algoritmo dell'overlap and save occorre ora fare le IFFT dei buffer di uscita e salvarle nelle variabili y1buff e y2buff.

```
ippsFFTInv_CToC_64fc(Y1BUFF, y1buff, pSpec, pMemBuffer);
ippsFFTInv_CToC_64fc(Y2BUFF, y2buff, pSpec, pMemBuffer);
```

Codice 42: Calcolo dei buffer di uscita nel tempo con la IFFT

L'aggiornamento dell'uscita avviene moltiplicando i buffer di uscita per $2^{15} = 32768$ e copiando L elementi dall'indice M - 1 all'indice L + M - 1 dei valori reali di y1buff e y2buff.

```
// output update
// multiply each element of the vector y1buff by 32768 and
// store the result in y1buff
ippsMulC_64fc_I({ 32768.0, 0.0 }, y1buff, fs);
// multiply each element of the vector y2buff by 32768 and
// store the result in y2buff
ippsMulC_64fc_I({ 32768.0, 0.0 }, y2buff, fs);
for (int i = 0; i < L; i++)
{
    OutputData1[i] = y1buff[M - 1 + i].re;
    OutputData2[i] = y2buff[M - 1 + i].re;
}</pre>
```

Codice 43: Aggiornamento delle uscite

L'ultimo passo consiste nell'aggiornare il buffer di ingresso spostando gli ultimi M - 1 valori all'inizio del buffer successivo con la funzione ippsMove_64fc.

```
ippsMove_64fc(x1buff + L, x1buff, M - 1);
ippsMove_64fc(x2buff + L, x2buff, M - 1);
```

Codice 44: Aggiornamento dei buffer di ingresso

L'RT Watch per variare il parametro β è creato nella funzione LERTWatchInit come di seguito. Come si può vedere, la variabile che accetta in ingresso può essere solo di tipo double e di dimensione sizeof(double) byte.

```
void __stdcall PlugIn::LERTWatchInit()
{
    WatchType NewWatch;

    memset(&NewWatch, 0, sizeof(WatchType));
    NewWatch.EnableWrite = true;
    NewWatch.LenByte = sizeof(double);
    NewWatch.TypeVar = WTC_DOUBLE;
    NewWatch.IDVar = ID_BETA;
    sprintf(NewWatch.VarName, "Beta\0");
    CBFunction(this, NUTS_ADDRTWATCH, 0, &NewWatch);
}
```

Codice 45: Creazione RT Watch

Riferimenti bibliografici

- [1] B. Gardner. «HRTF Measurements of a KEMAR Dummy-Head Microphone». In: 1994.
- [2] Jun Seong Kim, Sang Gyun Kim e Chang D. Yoo. «A Novel Adaptive Crosstalk Cancellation using Psychoacoustic Model for 3D Audio». In: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP '07. Vol. 1. 2007, pp. I-185-I-188. DOI: 10.1109/ICASSP.2007.366647.
- [3] O. Kirkeby, P.A. Nelson, H. Hamada e F. Orduna-Bustamante. «Fast deconvolution of multichannel systems using regularization». In: *IEEE Transactions on Speech and Audio Processing* 6.2 (1998), pp. 189–194. DOI: 10.1109/89.661479.
- [4] O. Kirkeby, P. Rubak e Angelo Farina. «Analysis of ill-conditioning of multi-channel deconvolution problems». In: feb. 1999, pp. 155–158. ISBN: 0-7803-5612-8.
- [5] Ole Kirkeby, Per Rubak, Philip Nelson e Angelo Farina. «Design of Cross-Talk Cancellation Networks by Using Fast Deconvolution». In: (nov. 2000).
- [6] Dan Li, Zhong-Hua Fu, Lei Xie e Yanning Zhang. «Comprehensive comparison of the least mean square algorithm and the fast deconvolution algorithm for crosstalk cancellation». In: 2012 International Conference on Audio, Language and Image Processing. 2012, pp. 224–229. DOI: 10.1109/ICALIP.2012.6376616.
- [7] P.A. Nelson, H. Hamada e S.J. Elliott. «Adaptive inverse filters for stereophonic sound reproduction». In: *IEEE Transactions on Signal Processing* 40.7 (1992), pp. 1621–1632. DOI: 10.1109/78.143434.