Međuispit iz Kvantnih računala (1. prosinca 2016.)

Ime i prezime:

Uputa: Odgovore *označite (zaokružite) na ovom papiru*. Osim toga, u praznom prostoru pored ponuđenih odgovora ili na dodatnim praznim papirima, za svaki zadatak *napišite kratko obrazloženje ili računski postupak*. Točno riješeni zadaci donose tri boda (nema "negativnih bodova").

Notacija: Uzimamo da vektori $|0\rangle=\left(\begin{smallmatrix}1\\0\end{smallmatrix}\right)$ i $|1\rangle=\left(\begin{smallmatrix}0\\1\end{smallmatrix}\right)$ čine ortonormiranu bazu u $\mathcal{H}^{(2)}$. Kad se radi o stanjima polarizacije fotona, koristimo $|0\rangle\to|x\rangle$, $|1\rangle\to|y\rangle$, bazu $\{|x\rangle\,,|y\rangle\}$ obilježavamo simbolom \bigoplus , a bazu $\{\frac{1}{\sqrt{2}}(|x\rangle\pm|y\rangle)\}$ obilježavamo simbolom \bigotimes .

Zadaci:

- 1 Neka vektori $|\Phi\rangle$ i $|\Psi\rangle$ prikazuju stanja nekog kvantnog sustava. Koja od navedenih tvrdnji je istinita?
 - (a) Veličina $\langle \Psi | \Phi \rangle$ je uvijek realan broj u intervalu [0,1].
 - (b) $\langle \Psi | \Phi \rangle$ je općenito kompleksan broj čiji modul može biti proizvoljno velik.
 - (c) $\langle \Psi | \Phi \rangle$ je općenito kompleksan broj čiji je modul u intervalu [0,1]. **točno**
 - (d) Ako $\langle \Psi | \Phi \rangle = 0$, onda $\langle \Phi | \Psi \rangle = 1$.
 - (e) $\langle \Psi | \Phi \rangle = i \langle \Psi | \Phi \rangle^*$.
- 2 Kvantni sustav može iz stanja opisanog vektorom $|\alpha\rangle$ stići u stanje $|\gamma\rangle$ jedino ako pritom prođe kroz stanje $|\beta\rangle$. Ako je sustav početno u stanju $|\alpha\rangle$, vjerojatnost da sustav bude izmjeren u stanju $|\gamma\rangle$ je:
 - (a) $|\langle \gamma | \beta \rangle|^2$
 - (b) $|\langle \gamma | \alpha \rangle|^2$
 - (c) $|\langle \gamma | \beta \rangle|^2 + |\langle \beta | \alpha \rangle|^2$
 - (d) $|\langle \gamma | \beta \rangle + \langle \beta | \alpha \rangle|^2$
 - (e) $|\langle \gamma | \beta \rangle \langle \beta | \alpha \rangle|^2$ točno
- 3 Koji od navedenih vektora nije "normiran na jedinicu"?
 - (a) $\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$
 - (b) $\frac{4}{5} |0\rangle \frac{3}{5} i |1\rangle$
 - (c) $\frac{1}{\sqrt{5}} (2i |0\rangle + |1\rangle)$
 - (d) $\frac{\sqrt{3}}{2} \left(|0\rangle + \frac{1}{2}i |1\rangle \right)$ točno
 - (e) $\frac{1}{3} |0\rangle \frac{2\sqrt{2}}{3} |1\rangle$

4 Koja dva od pet navedenih vektora čine ortonormiranu bazu u $\mathcal{H}^{(2)}$?

- (a) $\frac{4}{5} |0\rangle \frac{3}{5} i |1\rangle$ točno
- (b) $\frac{4}{5} |0\rangle + \frac{3}{5} i |1\rangle$
- (c) $\frac{3}{5}|0\rangle \frac{4}{5}|1\rangle$
- (d) $\frac{3}{5}|0\rangle + \frac{4}{5}i|1\rangle$ točno
- (e) $\frac{4}{5} |0\rangle \frac{3}{5} |1\rangle$

5 Qubit se nalazi u stanju

$$\frac{1}{2}\left|0\right\rangle - \frac{\sqrt{3}}{2}\left|1\right\rangle.$$

Amplituda vjerojatnosti nalaženja tog qubita u stanju

$$\frac{1}{3}\left|0\right\rangle - \frac{2\sqrt{2}}{3}i\left|1\right\rangle$$

je:

- (a) $\frac{1}{6} \left(\sqrt{3} + 2i\sqrt{2} \right)$
- (b) $\frac{1}{6} \left(\sqrt{3} 2i\sqrt{2} \right)$
- (c) $\frac{1}{6} \left(\sqrt{3} + 2\sqrt{2} \right)$
- (d) $\frac{1}{6} (1 + 2i\sqrt{6})$
- (e) $\frac{1}{6} (1 2i\sqrt{6})$ **točno**

6 Qubit se nalazi u stanju

$$\cos\frac{\vartheta}{2}|0\rangle + \sin\frac{\vartheta}{2}|1\rangle.$$

Vjerojatnost da taj qubit bude izmjeren u stanju

$$\cos\frac{\vartheta+\pi}{2}|0\rangle+\sin\frac{\vartheta+\pi}{2}|1\rangle$$

iznosi:

- (a) 0 točno
- (b) $1/(2\sqrt{2})$
- (c) $1/\sqrt{2}$
- (d) 1/2
- (e) 1

7 Vektor

$$\cos\frac{\vartheta}{2}e^{-i\varphi/2}|0\rangle + \sin\frac{\vartheta}{2}e^{i\varphi/2}|1\rangle$$

opisuje stanje qubita. Stanje ostaje nepromijenjeno pri zamjeni

- (a) $\varphi \rightarrow \varphi + \pi/2$
- (b) $\varphi \rightarrow \varphi + \pi$
- (c) $\vartheta \to \vartheta + \pi/2$
- (d) $\vartheta \to \vartheta + \pi$
- (e) $\vartheta \to \vartheta + 2\pi$ **točno**

8 Koji je od navedenih operatora jednak jediničnom operatoru I (operatoru identiteta)?

- (a) $|0\rangle\langle 1|$
- (b) $|1\rangle\langle 0|$
- (c) $|1\rangle\langle 1|$
- (d) $|0\rangle\langle 1| + |1\rangle\langle 0|$
- (e) $|0\rangle\langle 0| + |1\rangle\langle 1|$ točno

9 Svojstveni vektori i odgovarajuće svojstvene vrijednosti operatora

$$|0\rangle\langle 1| + |1\rangle\langle 0|$$

su (dva točna odgovora):

- (a) vektor $|0\rangle+\mathrm{i}\,|1\rangle$, vrijednost 1
- (b) vektor $|0\rangle |1\rangle$, vrijednost -1 točno
- (c) vektor $|0\rangle |1\rangle$, vrijednost +1
- (d) vektor $|0\rangle + |1\rangle$, vrijednost +1 točno
- (e) vektor $|0\rangle + |1\rangle$, vrijednost -1

10 Operator projekcije na stanje

$$\frac{1}{\sqrt{2}} (|0\rangle + i |1\rangle)$$

je:

(a)
$$\frac{1}{2} (|0\rangle \langle 0| + |1\rangle \langle 0| - |0\rangle \langle 1| + |1\rangle \langle 1|)$$

(b)
$$\frac{1}{2} (|0\rangle \langle 0| - |1\rangle \langle 0| + |0\rangle \langle 1| + |1\rangle \langle 1|)$$

(c)
$$\frac{1}{2}(|0\rangle\langle 0|+i|1\rangle\langle 0|+i|0\rangle\langle 1|+|1\rangle\langle 1|)$$

(d)
$$\frac{1}{2} (|0\rangle \langle 0| + i |1\rangle \langle 0| - i |0\rangle \langle 1| + |1\rangle \langle 1|)$$
 točno

(e)
$$\frac{1}{2} (|0\rangle \langle 0| - i|1\rangle \langle 0| + i|0\rangle \langle 1| + |1\rangle \langle 1|)$$

11 Projekcija stanja qubita

$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

na stanje

$$\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$$

je:

(a)
$$\frac{1}{2}(|0\rangle + i|1\rangle)$$

(b)
$$\frac{1}{2\sqrt{2}} (|0\rangle + i|1\rangle)$$

(c)
$$\frac{1}{2\sqrt{2}} ((1+i)|0\rangle + (1-i)|1\rangle)$$

(d)
$$\frac{1}{2\sqrt{2}} ((1+i)|0\rangle - (1-i)|1\rangle)$$

(e)
$$\frac{1}{2\sqrt{2}} ((1-i)|0\rangle + (1+i)|1\rangle)$$
 točno

12 Matrični prikaz

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

odgovara operatoru:

- (a) $|0\rangle\langle 0|$
- (b) $|1\rangle\langle 0|$
- (c) $|0\rangle\langle 1|$ točno
- (d) $|0\rangle\langle 0| |1\rangle\langle 1|$
- (e) $|0\rangle\langle 0| + |1\rangle\langle 1|$

13 Očekivana vrijednost operatora $\ket{0}ra{0}-\ket{1}ra{1}$ u sustavu koji se nalazi u stanju

$$\cos[\vartheta/2] e^{-i\varphi/2} |0\rangle + \sin[\vartheta/2] e^{i\varphi/2} |1\rangle$$

je:

- (a) $\cos \vartheta$ točno
- (b) $\cos^2 \vartheta$
- (c) $\cos[\vartheta/2]$
- (d) $\cos^2[\theta/2]$
- (e) $\sin[\vartheta/2]$

(Može se koristiti trigonometrijski identitet $2\cos^2\frac{x}{2}=1+\cos x$.)

14 Tablica prikazuje uspostavljanje tajnog ključa protokolom BB84. Nadopunite četiri prazna mjesta u tablici.

Alice:	0	1	0	1	1	1	0	0	1	
	\otimes	\otimes	\oplus	\oplus	\oplus	\otimes	\otimes	\oplus	\oplus	
	0	\oslash	Φ	\ominus	Θ	\oslash				
Eve:	\oplus	\otimes	\oplus	\oplus	\otimes	\otimes	\oplus	\oplus	\otimes	
	0	1	0	1	0	1	1	0	1	
	Φ	\oslash	Φ	\ominus	\Diamond	\oslash	\ominus	Φ	\oslash	
Bob:	\oplus	\oplus	\oplus	\oplus	\otimes	\otimes	\oplus	\oplus	\oplus	
	0	0	0	1	0	1	1	0	1	