$$\frac{E_X + F}{y' - 2y = 0} \qquad \qquad f(0) = 2$$

1)
$$\alpha = 1$$
 $b = -2$
Les soltions sont $y_0(x) = Ke^{2x}$, $K \in \mathbb{R}$

2) Déterminer la fonction
$$f(x)$$

solution de l'équation
tels que $f(0) = 2$

mais
$$f(\alpha) = 2 \implies K = 2$$

Donc
$$f(x) = 2e^{2x}$$

$$E \times 8$$

 $y' + y = 0$ $f(-1) = 3$
les solutions sont $y_0(x) = Ke^{-x}$, KeR
 $f(x)$ est me solution danc
 $f(x) = Ke^{-x}$
 $f(-1) = 3 => Ke^{-(-1)} = 3$

$$f(-1) = 3 \implies Ke^{-(-1)} = 3$$
 $Ke^{1} = 3$
 $Ke = 3$
 $K = \frac{3}{e}$

Danc
$$f(x) = \frac{3}{e} e^{-x} = 3e^{-1} e^{-x} = 3e^{-1} = 3e^{-1}$$

$$\frac{E \times 3}{5 y' - y = x}$$

1. Vérifier que f(x) = -x - 5 est une solution.

Si f(x) est solution sloves 5f'-f=xf'=-1 f=-x-5

 $5 \times (-1) - (-x - 5) = -5 + x + 5 = 4$

Danc flx) = -x-5 est bien une solution.

2. Déterminer la fonction y solution telle que g(a) = 1

T) 5y'-y=0

=> Yo(x) = Kerx, KER

II) f(x) = -x - 5 est une solution

III) les solutions sent:

$$y(x) = Ke^{\frac{1}{2}x} - x - 5$$

IV) g est solution denc
 $g(x) = Ke^{\frac{1}{2}x} - x - 5$
et $g(a) = 1$ slors
 $Ke^{0} - 0 - 5 = 1$
 $K - 5 = 1 = 7K = 6$

Danc $g(x) = 6e^{\frac{\pi}{3}x} - x - 5$