Problem Statement

In the telecommunication industry, customers tend to change operators if not provided with attractive schemes and offers. It is very important for any telecom operator to prevent the present customers from churning to other operators. As a data scientist, your task in this case study would be to build an ML model which can predict if the customer will churn or not in a particular month based on the past data.

```
In [1]: #Data Structures
        import pandas as pd
        import numpy as np
        import re
        import os
        import missingno as msno
        #Sklearn
        from sklearn.impute import SimpleImputer
        from sklearn.preprocessing import StandardScaler
        from sklearn.model_selection import train_test_split
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.decomposition import PCA
        from sklearn.manifold import TSNE
        from sklearn.linear model import LogisticRegression
        from sklearn.pipeline import Pipeline
        from sklearn.model selection import GridSearchCV
        from sklearn.metrics import confusion_matrix, precision_score, recall_score
        #Plotting
        import matplotlib.pyplot as plt
        from mpl_toolkits.mplot3d import Axes3D
        import seaborn as sns
        pd.set_option('display.max_columns', 200)
        #Others
        import warnings
        warnings.filterwarnings('ignore')
        %matplotlib inline
```

Import the data

```
In [2]: data = pd.read_csv("train.csv")
    unseen = pd.read_csv("test.csv")
    sample = pd.read_csv("sample.csv")
    data_dict = pd.read_csv("data_dictionary.csv")
```

Analyse the data

In [3]: data.head()

Out[3]:

	id	circle_id	loc_og_t2o_mou	std_og_t2o_mou	loc_ic_t2o_mou	last_date_of_month_6	last_date_of
0	0	109	0.0	0.0	0.0	6/30/2014	_
1	1	109	0.0	0.0	0.0	6/30/2014	
2	2	109	0.0	0.0	0.0	6/30/2014	
3	3	109	0.0	0.0	0.0	6/30/2014	
4	4	109	0.0	0.0	0.0	6/30/2014	
4							•

In [4]: data.shape

Out[4]: (69999, 172)

In [5]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 69999 entries, 0 to 69998

Columns: 172 entries, id to churn_probability dtypes: float64(135), int64(28), object(9)

memory usage: 91.9+ MB

In [6]: data.describe()

Out[6]:

	id	circle_id	loc_og_t2o_mou	std_og_t2o_mou	loc_ic_t2o_mou	arpu_6	arpu_
t	69999.000000	69999.0	69297.0	69297.0	69297.0	69999.000000	69999.00000
1	34999.000000	109.0	0.0	0.0	0.0	283.134365	278.18591
i	20207.115084	0.0	0.0	0.0	0.0	334.213918	344.36692
1	0.000000	109.0	0.0	0.0	0.0	-2258.709000	-1289.71500
Ď	17499.500000	109.0	0.0	0.0	0.0	93.581000	86.71400
Ď	34999.000000	109.0	0.0	0.0	0.0	197.484000	191.58800
Ď	52498.500000	109.0	0.0	0.0	0.0	370.791000	365.3695(
(69998.000000	109.0	0.0	0.0	0.0	27731.088000	35145.83400
	4						•

In [7]: data_dict

Out[7]:

	Acronyms	Description
0	CIRCLE_ID	Telecom circle area to which the customer belo
1	LOC	Local calls within same telecom circle
2	STD	STD calls outside the calling circle
3	IC	Incoming calls
4	OG	Outgoing calls
5	T2T	Operator T to T ie within same operator mobile
6	T2M	Operator T to other operator mobile
7	T2O	Operator T to other operator fixed line
8	T2F	Operator T to fixed lines of T
9	T2C	Operator T to its own call center
10	ARPU	Average revenue per user
11	MOU	Minutes of usage voice calls
12	AON	Age on network number of days the customer is
13	ONNET	All kind of calls within the same operator net
14	OFFNET	All kind of calls outside the operator T network
15	ROAM	Indicates that customer is in roaming zone dur
16	SPL	Special calls
17	ISD	ISD calls
18	RECH	Recharge
19	NUM	Number
20	AMT	Amount in local currency
21	MAX	Maximum
22	DATA	Mobile internet
23	3G	G network
24	AV	Average
25	VOL	Mobile internet usage volume in MB
26	2G	G network
27	PCK	Prepaid service schemes called PACKS
28	NIGHT	Scheme to use during specific night hours only
29	MONTHLY	Service schemes with validity equivalent to a
30	SACHET	Service schemes with validity smaller than a m
31	*.6	KPI for the month of June
32	*.7	KPI for the month of July
33	*.8	KPI for the month of August
34	FB_USER	Service scheme to avail services of Facebook a
35	VBC	Volume based cost when no specific scheme is

In [8]: data

Out[8]:

	id	circle_id	loc_og_t2o_mou	std_og_t2o_mou	loc_ic_t2o_mou	last_date_of_month_6	last
0	0	109	0.0	0.0	0.0	6/30/2014	
1	1	109	0.0	0.0	0.0	6/30/2014	
2	2	109	0.0	0.0	0.0	6/30/2014	
3	3	109	0.0	0.0	0.0	6/30/2014	
4	4	109	0.0	0.0	0.0	6/30/2014	
69994	69994	109	0.0	0.0	0.0	6/30/2014	
69995	69995	109	0.0	0.0	0.0	6/30/2014	
69996	69996	109	0.0	0.0	0.0	6/30/2014	
69997	69997	109	0.0	0.0	0.0	6/30/2014	
69998	69998	109	0.0	0.0	0.0	6/30/2014	

69999 rows × 172 columns

In [9]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 69999 entries, 0 to 69998

Columns: 172 entries, id to churn_probability dtypes: float64(135), int64(28), object(9)

memory usage: 91.9+ MB

In [10]: # Checking the percentage of missing values

missing_data = data.apply(lambda x: round(x.isnull().mean()* 100, 2)).sort_values(
missing_data_above_thresold = missing_data[missing_data>50]
missing_columns_above_thresold = missing_data_above_thresold.index.to_list()
missing_data

```
Out[10]: arpu_3g_6
                                      74.9
         count_rech_2g_6
                                      74.9
                                      74.9
         night_pck_user_6
                                      74.9
         arpu_2g_6
         date_of_last_rech_data_6
                                      74.9
                                      . . .
         last_day_rch_amt_8
                                       0.0
                                       0.0
         vol_2g_mb_6
         vol_2g_mb_7
                                       0.0
         vol_2g_mb_8
                                       0.0
```

churn_probability

Length: 172, dtype: float64

0.0

```
missing_columns_above_thresold
In [11]:
Out[11]: ['arpu_3g_6',
           'count_rech_2g_6',
            'night_pck_user_6',
            'arpu_2g_6',
           'date_of_last_rech_data_6',
           'total_rech_data_6',
           'av_rech_amt_data_6',
           'max_rech_data_6',
            'count_rech_3g_6',
           'fb_user_6',
           'night_pck_user_7',
           'date_of_last_rech_data_7',
           'total_rech_data_7',
           'max_rech_data_7',
           'fb_user_7',
            'count_rech_2g_7',
           'count_rech_3g_7',
           'arpu_3g_7',
           'av_rech_amt_data_7',
           'arpu_2g_7',
           'count_rech_2g_8',
            'av rech_amt_data_8',
           'night_pck_user_8',
           'max_rech_data_8',
           'total_rech_data_8',
            'arpu_2g_8',
            'arpu_3g_8',
            'date_of_last_rech_data_8',
           'fb_user_8',
           'count_rech_3g_8']
In [12]: # Drop the columns from the dataframe
          data.drop(missing_columns_above_thresold, axis=1, inplace=True)
          data.head()
Out[12]:
             id circle_id loc_og_t2o_mou std_og_t2o_mou loc_ic_t2o_mou last_date_of_month_6 last_date_of
           0
              0
                     109
                                     0.0
                                                    0.0
                                                                                 6/30/2014
                                                                   0.0
           1
              1
                     109
                                     0.0
                                                    0.0
                                                                   0.0
                                                                                 6/30/2014
           2
              2
                     109
                                     0.0
                                                                   0.0
                                                                                 6/30/2014
                                                    0.0
              3
                     109
                                     0.0
                                                    0.0
                                                                   0.0
                                                                                 6/30/2014
                     109
                                     0.0
                                                                                 6/30/2014
                                                    0.0
                                                                   0.0
In [13]:
         data.shape
Out[13]: (69999, 142)
```

In [14]: data.describe()

Out[14]:

	id	circle_id	loc_og_t2o_mou	std_og_t2o_mou	loc_ic_t2o_mou	arpu_6	
count	69999.000000	69999.0	69297.0	69297.0	69297.0	69999.000000	6999
mean	34999.000000	109.0	0.0	0.0	0.0	283.134365	27
std	20207.115084	0.0	0.0	0.0	0.0	334.213918	34
min	0.000000	109.0	0.0	0.0	0.0	-2258.709000	-128
25%	17499.500000	109.0	0.0	0.0	0.0	93.581000	8
50%	34999.000000	109.0	0.0	0.0	0.0	197.484000	19
75%	52498.500000	109.0	0.0	0.0	0.0	370.791000	36
max	69998.000000	109.0	0.0	0.0	0.0	27731.088000	3514
4							•

In [15]: data

Out[15]:

	id	circle_id	loc_og_t2o_mou	std_og_t2o_mou	loc_ic_t2o_mou	last_date_of_month_6	last
0	0	109	0.0	0.0	0.0	6/30/2014	
1	1	109	0.0	0.0	0.0	6/30/2014	
2	2	109	0.0	0.0	0.0	6/30/2014	
3	3	109	0.0	0.0	0.0	6/30/2014	
4	4	109	0.0	0.0	0.0	6/30/2014	
69994	69994	109	0.0	0.0	0.0	6/30/2014	
69995	69995	109	0.0	0.0	0.0	6/30/2014	
69996	69996	109	0.0	0.0	0.0	6/30/2014	
69997	69997	109	0.0	0.0	0.0	6/30/2014	
69998	69998	109	0.0	0.0	0.0	6/30/2014	

69999 rows × 142 columns

In [16]: data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 69999 entries, 0 to 69998

Columns: 142 entries, id to churn_probability dtypes: float64(108), int64(28), object(6)

memory usage: 75.8+ MB

```
In [17]: # Checking the percentage of missing values
missing_data = data.apply(lambda x: round(x.isnull().mean()* 100, 2)).sort_values(
missing_data_above_thresold = missing_data[missing_data>0]
missing_columns_above_thresold = missing_data_above_thresold.index.to_list()
missing_columns_above_thresold
```

```
Out[17]: ['roam_og_mou_8',
           og others 8',
           'spl_og_mou_8',
           'loc ic t2t mou 8',
           'loc_og_t2m_mou_8',
           'loc_og_t2c_mou_8',
           'loc_ic_t2m_mou_8',
           'loc_og_t2t_mou_8',
           'loc_ic_t2f_mou_8',
           'std_og_t2f_mou_8',
           'loc_ic_mou_8',
           'isd_og_mou_8'
           'roam_ic_mou_8'
           'std_ic_t2t_mou_8',
           'loc_og_mou_8',
           'offnet mou 8',
           'std_ic_t2m_mou_8',
           'onnet_mou_8',
           'std_ic_t2f_mou_8',
           'std_og_mou_8',
           'std_ic_t2o_mou_8',
           'std_og_t2t_mou_8',
           'std_ic_mou_8',
           'spl_ic_mou_8',
           'std_og_t2c_mou_8',
           'isd_ic_mou_8',
           'std_og_t2m_mou_8',
           'ic others 8',
           'loc_og_t2f_mou_8',
           'isd_og_mou_6',
           'spl_og_mou_6'
           'std_og_mou_6',
           'loc_ic_t2f_mou_6',
           'loc_ic_t2t_mou_6',
           'loc_ic_t2m_mou_6',
           'loc_ic_mou_6',
           'std_ic_t2t_mou_6',
           'std_ic_t2m_mou_6',
           'std_ic_t2f_mou_6',
           'std_ic_t2o_mou_6',
           'std_ic_mou_6',
           'spl_ic_mou_6',
           'isd ic mou 6',
           'ic_others_6',
           'std_og_t2c_mou_6',
           'og others 6',
           'offnet_mou_6',
           'onnet_mou_6',
           'loc_og_t2m_mou_6',
           'loc_og_t2f_mou_6',
           'roam_og_mou_6',
           'roam_ic_mou_6',
           'loc_og_t2c_mou_6',
           'std_og_t2f_mou_6',
           'loc_og_mou_6',
           'loc_og_t2t_mou_6',
           'std_og_t2t_mou_6',
           'std_og_t2m_mou_6',
           'std_ic_t2o_mou_7',
           'onnet_mou_7',
           'std_ic_t2f_mou_7',
           'loc_og_t2t_mou_7',
           'std_ic_mou_7',
           'std ic t2m mou 7',
```

```
'spl_ic_mou_7',
           'roam_ic_mou_7',
           'std_ic_t2t_mou_7',
           'isd_ic_mou_7',
           'roam_og_mou_7',
           'loc_ic_mou_7',
           'ic_others_7',
           'std_og_t2f_mou_7',
           'offnet_mou_7',
           'loc_ic_t2f_mou_7',
           'og_others_7',
           'std_og_t2m_mou_7',
           'isd_og_mou_7',
           'loc_og_mou_7',
           'spl og mou 7',
           'loc_og_t2c_mou_7',
           'std_og_t2c_mou_7'
           'std_og_mou_7',
           'std_og_t2t_mou_7',
           'loc_og_t2f_mou_7',
           'loc_ic_t2t_mou_7',
           'loc_og_t2m_mou_7'
           'loc_ic_t2m_mou_7',
           'date_of_last_rech_8',
           'date_of_last_rech_7',
           'date_of_last_rech_6',
           'last_date_of_month_8',
           'loc_ic_t2o_mou',
           'std_og_t2o_mou',
           'loc_og_t2o_mou',
           'last_date_of_month_7']
In [18]: |data.isna().sum().unique() # so no null value is present in the data
Out[18]: array([
                    0, 702,
                              399, 733, 2768, 2687, 3703, 1101, 1234, 2461],
                dtype=int64)
```

Treat the data

```
In [20]: data = data.drop(date_columns, axis=1)
    data
```

Out[20]:

	id	circle_id	loc_og_t2o_mou	std_og_t2o_mou	loc_ic_t2o_mou	arpu_6	arpu_7	arpu_8
0	0	109	0.0	0.0	0.0	31.277	87.009	7.527
1	1	109	0.0	0.0	0.0	0.000	122.787	42.953
2	2	109	0.0	0.0	0.0	60.806	103.176	0.000
3	3	109	0.0	0.0	0.0	156.362	205.260	111.095
4	4	109	0.0	0.0	0.0	240.708	128.191	101.565
69994	69994	109	0.0	0.0	0.0	15.760	410.924	329.136
69995	69995	109	0.0	0.0	0.0	160.083	289.129	265.772
69996	69996	109	0.0	0.0	0.0	372.088	258.374	279.782
69997	69997	109	0.0	0.0	0.0	238.575	245.414	145.062
69998	69998	109	0.0	0.0	0.0	168.269	42.815	167.961

69999 rows × 136 columns

In [21]: # remove circle id as it is no longer needed
data = data.drop(['circle_id'], axis=1)

Out[21]:

	id	loc_og_t2o_mou	std_og_t2o_mou	loc_ic_t2o_mou	arpu_6	arpu_7	arpu_8	onnet_m		
0	0	0.0	0.0	0.0	31.277	87.009	7.527	4		
1	1	0.0	0.0	0.0	0.000	122.787	42.953			
2	2	0.0	0.0	0.0	60.806	103.176	0.000			
3	3	0.0	0.0	0.0	156.362	205.260	111.095			
4	4	0.0	0.0	0.0	240.708	128.191	101.565	2		
69994	69994	0.0	0.0	0.0	15.760	410.924	329.136			
69995	69995	0.0	0.0	0.0	160.083	289.129	265.772	1 1		
69996	69996	0.0	0.0	0.0	372.088	258.374	279.782	7		
69997	69997	0.0	0.0	0.0	238.575	245.414	145.062	1		
69998	69998	0.0	0.0	0.0	168.269	42.815	167.961			
60000	69999 rows × 135 columns									
09999	iows ×	133 COIUITIIS								
4								•		

Get the high value customer

Creating column avg_rech_amt_6_7 by summing up total recharge amount of month 6 and 7. Then taking the average of the sum.

Out[22]:

	id	loc_og_t2o_mou	std_og_t2o_mou	loc_ic_t2o_mou	arpu_6	arpu_7	arpu_8	onnet_m
0	0	0.0	0.0	0.0	31.277	87.009	7.527	4
1	1	0.0	0.0	0.0	0.000	122.787	42.953	
2	2	0.0	0.0	0.0	60.806	103.176	0.000	
3	3	0.0	0.0	0.0	156.362	205.260	111.095	
4	4	0.0	0.0	0.0	240.708	128.191	101.565	2
69994	69994	0.0	0.0	0.0	15.760	410.924	329.136	
69995	69995	0.0	0.0	0.0	160.083	289.129	265.772	11
69996	69996	0.0	0.0	0.0	372.088	258.374	279.782	7
69997	69997	0.0	0.0	0.0	238.575	245.414	145.062	1
69998	69998	0.0	0.0	0.0	168.269	42.815	167.961	

69999 rows × 137 columns

```
In [23]: #X = data['avg_rech_amt'].quantile(0.7)
#X
```

Treat missing values in rows

```
In [24]: # Checking the missing values in columns again
    missing_row_value= (data.apply(lambda x: round(x.isnull().mean()* 100, 2)).to_fram
    missing_row_value
```

Out[24]:

	null
std_ic_mou_8	5.29
std_ic_t2m_mou_8	5.29
std_ic_t2o_mou_8	5.29
std_og_mou_8	5.29
loc_og_t2f_mou_8	5.29
max_rech_amt_7	0.00
max_rech_amt_8	0.00
last_day_rch_amt_6	0.00
last_day_rch_amt_7	0.00
total_rech_amt	0.00

137 rows × 1 columns

```
In [25]:
          data = data.dropna(axis = 0)
          data
Out[25]:
                     id loc_og_t2o_mou std_og_t2o_mou loc_ic_t2o_mou
                                                                        arpu_6
                                                                                arpu_7
                                                                                         arpu_8 onnet_m
               0
                      0
                                    0.0
                                                    0.0
                                                                         31.277
                                                                                 87.009
                                                                                          7.527
                                                                          0.000 122.787
                                                                                         42.953
               1
                      1
                                    0.0
                                                    0.0
                                                                   0.0
                      2
               2
                                    0.0
                                                    0.0
                                                                   0.0
                                                                         60.806
                                                                                103.176
                                                                                          0.000
               3
                      3
                                    0.0
                                                    0.0
                                                                    0.0
                                                                       156.362 205.260
                                                                                        111.095
                                                                        240.708 128.191
                      4
                                    0.0
                                                    0.0
                                                                   0.0
                                                                                        101.565
                                                                                                        2
                                     ...
           69994
                  69994
                                    0.0
                                                    0.0
                                                                   0.0
                                                                         15.760 410.924
                                                                                        329.136
           69995 69995
                                                                   0.0 160.083 289.129
                                    0.0
                                                    0.0
                                                                                        265.772
                                                                                                       11
           69996
                  69996
                                    0.0
                                                    0.0
                                                                       372.088
                                                                               258.374 279.782
           69997 69997
                                                                   0.0 238.575 245.414 145.062
                                    0.0
                                                    0.0
           69998 69998
                                    0.0
                                                    0.0
                                                                   0.0 168.269
                                                                                 42.815 167.961
          63842 rows × 137 columns
In [26]:
          data.shape
Out[26]: (63842, 137)
In [27]:
          data.isna().sum()
Out[27]: id
                                  0
                                  0
          loc_og_t2o_mou
                                  0
          std_og_t2o_mou
          loc ic t2o mou
                                  0
                                  0
          arpu_6
          jul_vbc_3g
                                  0
          jun_vbc_3g
                                  0
          churn_probability
                                  0
                                  0
          avg_rech_amt
          total_rech_amt
                                  0
          Length: 137, dtype: int64
In [28]:
          data = data.set_index("id")
In [29]: data['churn_probability'].unique()
Out[29]: array([0, 1], dtype=int64)
In [30]: | X = data.drop(['churn_probability'], axis=1)
```

y = data['churn_probability']

In [31]: X

Out[31]:

	loc_og_t2o_mou	std_og_t2o_mou	loc_ic_t2o_mou	arpu_6	arpu_7	arpu_8	onnet_mou_6	0
id								
0	0.0	0.0	0.0	31.277	87.009	7.527	48.58	
1	0.0	0.0	0.0	0.000	122.787	42.953	0.00	
2	0.0	0.0	0.0	60.806	103.176	0.000	0.53	
3	0.0	0.0	0.0	156.362	205.260	111.095	7.26	
4	0.0	0.0	0.0	240.708	128.191	101.565	21.28	
69994	0.0	0.0	0.0	15.760	410.924	329.136	0.00	
69995	0.0	0.0	0.0	160.083	289.129	265.772	116.54	
69996	0.0	0.0	0.0	372.088	258.374	279.782	77.13	
69997	0.0	0.0	0.0	238.575	245.414	145.062	14.01	
69998	0.0	0.0	0.0	168.269	42.815	167.961	0.00	

63842 rows × 135 columns

In [32]: X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, test_siz

In [33]: X_train

Out[33]:

	loc_og_t2o_mou	std_og_t2o_mou	loc_ic_t2o_mou	arpu_6	arpu_7	arpu_8	onnet_mou_6
id							
19904	0.0	0.0	0.0	164.410	83.874	127.699	3.13
15687	0.0	0.0	0.0	700.242	795.870	638.072	34.34
22241	0.0	0.0	0.0	172.334	251.812	198.079	142.39
36639	0.0	0.0	0.0	1238.934	691.492	490.938	51.24
58710	0.0	0.0	0.0	864.527	618.235	335.378	722.04
13325	0.0	0.0	0.0	98.340	149.570	129.124	1.83
62695	0.0	0.0	0.0	224.289	226.306	267.614	3.56
15561	0.0	0.0	0.0	690.116	833.704	660.159	109.81
61499	0.0	0.0	0.0	116.597	177.829	70.943	24.73
42108	0.0	0.0	0.0	93.612	81.601	59.609	9.86

51073 rows × 135 columns

```
pca = PCA(random_state=40)
In [34]:
         pca.fit(X_train)
Out[34]:
                   PCA
          PCA(random_state=40)
In [35]: # Principal components
         pca.components_
Out[35]: array([[-1.59336414e-19, 1.11022302e-16, -0.000000000e+00, ...,
                   2.64738839e-02, 2.13288060e-01, 6.39864181e-01],
                 [ 1.81814425e-19, -1.66533454e-16, -1.94289029e-16, ...,
                   6.66789193e-02, 4.22317215e-02, 1.26695165e-01],
                 [-2.75315783e-19, 5.55111512e-17, 2.22044605e-16, ...,
                   1.37991405e-01, 4.19391784e-02, 1.25817535e-01],
                 [-0.00000000e+00, -3.14203968e-02, 6.88677286e-02, ...,
                  -2.11419424e-17, 5.82976775e-06, -7.52610159e-06],
                 [ 9.99999916e-01, 2.66387916e-04, -2.58487589e-05, ..., 4.00646584e-19, 1.70263053e-04, 8.50399352e-05],
                 [ 0.00000000e+00, -2.24765643e-01, 8.64221030e-01, ...,
                  -5.55111512e-17, -1.20694206e-01, 2.38254730e-01]])
In [36]:
         # Cumuliative varinace of the PCs
         variance cumu = np.cumsum(pca.explained variance ratio )
         print(variance_cumu)
         [0.38793958 0.5189239 0.6300407 0.69755679 0.75360874 0.79239937
          0.82727822 0.85398003 0.87013555 0.88472758 0.897722
                                                                   0.9084958
          0.91797097 0.92636422 0.93356462 0.94010514 0.94624644 0.95086144
          0.95535904 0.95936204 0.9626725 0.96591325 0.96907886 0.97206352
          0.97467583 0.97688534 0.97874304 0.98057436 0.98228089 0.98387903
          0.98530451 0.98659723 0.98780447 0.98892259 0.98998621 0.99093338
          0.99168701 0.99238483 0.99302672 0.9936474 0.99422719 0.99477213
          0.99528123 0.99574287 0.99618939 0.99663043 0.99705851 0.99744064
                     0.99803366 0.99828855 0.99852705 0.99872953 0.9988894
          0.99902682 0.99916104 0.99928219 0.99938113 0.99946752 0.99954737
          0.99962433 0.99967389 0.99972297 0.99976573 0.99980691 0.99984207
          0.99986408 0.99988542 0.99989958 0.99991178 0.99992325 0.9999328
          0.99994093 0.99994831 0.99995514 0.9999615 0.99996722 0.99997263
          0.99997754 0.999982
                                 0.99998574 0.99998885 0.99999138 0.99999346
          0.99999512 0.99999656 0.99999744 0.99999827 0.99999888 0.99999933
          0.9999958 0.99999969 0.99999978 0.99999985 0.9999999 0.99999992
          0.9999994 0.99999996 0.99999997 0.99999998 0.99999998 0.99999999
          0.99999999 0.99999999 1.
                                            1.
                                                       1.
          1.
                     1.
                                 1.
                                            1.
                                                       1.
                                                                   1.
          1.
                     1.
                                1.
                                            1.
                                                       1.
                                                                   1.
                     1.
                                1.
                                            1.
          1.
                                                       1.
                                                                   1.
          1.
                     1.
                                1.
                                            1.
                                                       1.
          1.
                     1.
                                 1.
                                           1
```

```
In [37]: # Plotting scree plot
fig = plt.figure(figsize = (10,6))
plt.plot(variance_cumu)
plt.xlabel('Number of Components')
plt.ylabel('Cumulative Variance')
```

Out[37]: Text(0, 0.5, 'Cumulative Variance')


```
In [38]: # Importing incremental PCA
    from sklearn.decomposition import IncrementalPCA
    pca_final = IncrementalPCA(n_components=70)
    X_train_pca = pca_final.fit_transform(X_train)
```

```
In [122]: X_test_pca = pca_final.transform(X_test)
```

Fitting 10 folds for each of 8 candidates, totalling 80 fits

Out[40]:

```
► GridSearchCV
► estimator: LogisticRegression
► LogisticRegression
```

Out[41]:

	mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_C	params	split0_test_score
0	0.917654	0.041110	0.002856	0.000694	0.01	{'C': 0.01}	0.513889
1	0.907222	0.030095	0.003118	0.000581	0.1	{'C': 0.1}	0.489583
2	0.894384	0.017044	0.003003	0.000641	1	{'C': 1}	0.406250
3	0.908478	0.026851	0.002969	0.000423	10	{'C': 10}	0.493056
4	0.904125	0.023168	0.002979	0.000552	100	{'C': 100}	0.531250
5	0.907335	0.031398	0.002768	0.000271	0.05	{'C': 0.05}	0.520833
6	0.905126	0.027950	0.003294	0.000898	0.5	{'C': 0.5}	0.500000
7	0.894872	0.021792	0.002902	0.000741	5	{'C': 5}	0.527778
4							>

```
In [42]: # plot of C versus train and validation scores

plt.figure(figsize=(8, 6))
  plt.plot(cv_results['param_C'], cv_results['mean_test_score'])
  plt.plot(cv_results['param_C'], cv_results['mean_train_score'])
  plt.xlabel('C')
  plt.ylabel('sensitivity')
  plt.legend(['test result', 'train result'], loc='upper left')
  plt.xscale('log')
```



```
In [43]: # Best score with best C
best_score = model_cv.best_score_
best_C = model_cv.best_params_['C']
print(" The highest test sensitivity is {0} at C = {1}".format(best_score, best_C)
```

The highest test sensitivity is 0.5210403311985068 at C = 0.01

```
In [44]: # Instantiate the model with best C
logistic_pca = LogisticRegression(C=best_C)
```

```
# Fit the model on the train set
In [118]:
          log_pca_model = logistic_pca.fit(X_train_pca, y_train)
Out[118]: array([[-8.55711759e+02, 8.95251078e+01, -6.87048666e+01, ...,
                  -3.36729841e-01, -1.60871219e-01, 4.93780246e-01],
                 [-1.42011774e+03, -4.34229538e+02, -1.99169014e+02, ...,
                   7.37864386e-01, -4.00113216e-01, -1.22816508e-01],
                 [-1.11354791e+03, 7.84916539e+02, 6.25202376e+02, ...,
                  -1.32456505e+00, 2.80178453e-02, 3.17310310e-01],
                 [-2.02354105e+02, 6.68341701e+02, 4.37594263e+02, ...,
                   5.97052068e-01, -5.86736323e-01, 5.48848380e+00],
                 [-1.19040721e+03, -6.29503085e+02, -3.73722473e+02, ...,
                  -9.11507725e-01, -3.61361372e-01, -8.59702766e-01],
                 [-1.43090387e+03, 2.09546547e+02, 2.66446473e+02, ...,
                   1.53052327e+00, 3.73235050e+00, -3.52131310e+00]])
 In [46]: # Predictions on the train set
          y train pred = log pca model.predict(X train pca)
In [47]: # Confusion matrix
          # Impoting metrics
          from sklearn import metrics
          from sklearn.metrics import confusion_matrix
          confusion = metrics.confusion_matrix(y_train, y_train_pred)
          confusion
Out[47]: array([[38634, 9403],
                 [ 1676, 1360]], dtype=int64)
In [48]: |TP = confusion[1,1] # true positive
          TN = confusion[0,0] # true negatives
          FP = confusion[0,1] # false positives
          FN = confusion[1,0] # false negatives
In [49]: # Accuracy
          print("Accuracy:-",metrics.accuracy_score(y_train, y_train_pred))
          # Sensitivity
          print("Sensitivity:-",TP / float(TP+FN))
          # Specificity
          print("Specificity:-", TN / float(TN+FP))
          Accuracy: - 0.7830752060775752
          Sensitivity:- 0.4479578392621871
          Specificity:- 0.8042550533963403
 In [50]: # Prediction on the test set
          y_test_pred = log_pca_model.predict(X_test_pca)
In [51]: # Confusion matrix
          confusion = metrics.confusion_matrix(y_test, y_test_pred)
          print(confusion)
          [[9695 2315]
           [ 446 313]]
```

```
In [52]:
           TP = confusion[1,1] # true positive
           TN = confusion[0,0] # true negatives
           FP = confusion[0,1] # false positives
           FN = confusion[1,0] # false negatives
 In [53]: # Accuracy
           print("Accuracy:-",metrics.accuracy_score(y_test, y_test_pred))
           # Sensitivity
           print("Sensitivity:-",TP / float(TP+FN))
           # Specificity
           print("Specificity:-", TN / float(TN+FP))
           Accuracy: - 0.783773200720495
           Sensitivity: - 0.41238471673254284
           Specificity:- 0.8072439633638634
In [100]: # Test file
           unseen = pd.read_csv("test.csv")
           unseen = unseen.set_index("id")
           unseen.head()
Out[100]:
                  circle_id loc_og_t2o_mou std_og_t2o_mou loc_ic_t2o_mou last_date_of_month_6 last_date_c
               id
            69999
                      109
                                     0.0
                                                     0.0
                                                                   0.0
                                                                                 6/30/2014
            70000
                      109
                                     0.0
                                                     0.0
                                                                   0.0
                                                                                 6/30/2014
            70001
                      109
                                     0.0
                                                     0.0
                                                                   0.0
                                                                                 6/30/2014
            70002
                      109
                                     0.0
                                                     0.0
                                                                   0.0
                                                                                 6/30/2014
            70003
                      109
                                     0.0
                                                     0.0
                                                                   0.0
                                                                                 6/30/2014
In [101]:
           unseen['avg_rech_amt'] = (unseen['total_rech_amt_6'] + unseen['total_rech_amt_7']
           unseen['total_rech_amt'] = (unseen['total_rech_amt_6'] + unseen['total_rech_amt_7
```

```
In [111]:
          unseen = unseen[X_test.columns]
          unseen
```

Out[111]:

	loc_og_t2o_mou	std_og_t2o_mou	loc_ic_t2o_mou	arpu_6	arpu_7	arpu_8	onnet_mou_6
id							
69999	0.0	0.0	0.0	91.882	65.330	64.445	31.78
70000	0.0	0.0	0.0	414.168	515.568	360.868	75.51
70001	0.0	0.0	0.0	329.844	434.884	746.239	7.54
70002	0.0	0.0	0.0	43.550	171.390	24.400	5.31
70003	0.0	0.0	0.0	306.854	406.289	413.329	450.93
99994	0.0	0.0	0.0	718.870	396.259	406.150	324.46
99995	0.0	0.0	0.0	218.327	324.070	374.981	263.79
99996	0.0	0.0	0.0	139.473	38.230	180.194	11.08
99997	0.0	0.0	0.0	1122.912	781.121	257.439	122.74
99998	0.0	0.0	0.0	318.980	307.890	605.320	28.09

27343 rows × 135 columns

```
In [112]: # Checking the percentage of missing values
```

missing_data = unseen.apply(lambda x: round(x.isnull().mean()* 100, 2)).sort_value missing_data_above_thresold = missing_data[missing_data>50] missing_columns_above_thresold = missing_data_above_thresold.index.to_list() missing data

```
Out[112]: loc_og_t2o_mou
```

```
0.0
std_ic_mou_7
                    0.0
total_rech_num_6
                    0.0
ic_others_8
                    0.0
ic_others_7
                    0.0
                    . . .
std_og_t2f_mou_6
                    0.0
std_og_t2m_mou_8
                    0.0
std_og_t2m_mou_7
                    0.0
std_og_t2m_mou_6
                    0.0
total_rech_amt
                    0.0
Length: 135, dtype: float64
```

```
In [113]:
          unseen.shape
```

Out[113]: (27343, 135)

In [114]: unseen = unseen.dropna(axis = 0)
unseen

Out[114]:

	loc_og_t2o_mou	std_og_t2o_mou	loc_ic_t2o_mou	arpu_6	arpu_7	arpu_8	onnet_mou_6	onnet
id								
99	0.0	0.0	0.0	91.882	65.330	64.445	31.78	
00	0.0	0.0	0.0	414.168	515.568	360.868	75.51	
01	0.0	0.0	0.0	329.844	434.884	746.239	7.54	
02	0.0	0.0	0.0	43.550	171.390	24.400	5.31	
03	0.0	0.0	0.0	306.854	406.289	413.329	450.93	
94	0.0	0.0	0.0	718.870	396.259	406.150	324.46	
95	0.0	0.0	0.0	218.327	324.070	374.981	263.79	
96	0.0	0.0	0.0	139.473	38.230	180.194	11.08	
97	0.0	0.0	0.0	1122.912	781.121	257.439	122.74	
98	0.0	0.0	0.0	318.980	307.890	605.320	28.09	
13 rows × 135 columns								
4								

In []: