Sumário

Introdução

э мокр

de

Dominância

O Algoriti

O SCE

Experimento

Conclusões Trabalhos Futuros

- 1 Introdução
- 2 O problema da mochila multiobjetivo (MOKP)
- 3 Indexação multidimensional para verificação de dominância
- 4 O Algoritmo de Bazgan
- **6** O SCE para o MOKP
- 6 Experimentos computacionais
- 7 Conclusões e trabalhos futuros

A Verificaçã

Dominância

de Bazg

O SCE

Experimento

Conclusoes Trabalhos Futuros

Tese

 $\acute{\rm E}$ possível otimizar a resolução do problema da mochila multiobjetivo através da indexação multidimensional das soluções.

Introdução

Introdução

O MOKE

A Verificaçã

Dominância

O Algorith

O SCE

Experimento

Conclusões Trabalhos Futuros

- Introdução
- O problema da mochila multiobjetivo (MOKP)
- Algoritmos para o MOKP
- Indexação multidimensional para verificação de dominância
- Experimentos computacionais
- Conclusões e trabalhos futuros

Problemas de Otimização Multiobjetivo

• Otimização simultânea de múltiplos objetivos:

$$\max f(x) = (f_1(x), f_2(x), \dots, f_m(x))$$
sujeito a $x \in X$

• Tipicamente mais de uma solução.

de Bazg

O SCE

Experimento

Conclusões Trabalhos Futuros

Problemas de Otimização Multiobjetivo

Definição (Dominância)

Diz-se que uma solução $x \in X$ domina uma solução $y \in X$, denotado por $x\Delta y$ se, e somente se, x é ao menos tão boa quanto y em todos os objetivos e melhor que y em ao menos um dos objetivos.

Problemas de Otimização Multiobjetivo

Definição (Dominância)

Diz-se que uma solução $x \in X$ domina uma solução $y \in X$, denotado por $x\Delta y$ se, e somente se, x é ao menos tão boa quanto y em todos os objetivos e melhor que y em ao menos um dos objetivos. Formalmente:

$$x\Delta y \iff \begin{cases} \forall i \in \{1, 2, \dots, m\} : f_i(x) \geqslant f_i(y) \ e \\ \exists j \in \{1, 2, \dots, m\} : f_j(x) > f_j(y) \end{cases}$$

Problemas de Otimização Multiobjetivo

Definição (Dominância)

Diz-se que uma solução $x \in X$ domina uma solução $y \in X$, denotado por $x\Delta y$ se, e somente se, x é ao menos tão boa quanto y em todos os objetivos e melhor que y em ao menos um dos objetivos. Formalmente:

$$x\Delta y \iff \begin{cases} \forall i \in \{1, 2, \dots, m\} : f_i(x) \geqslant f_i(y) \ e \\ \exists j \in \{1, 2, \dots, m\} : f_j(x) > f_j(y) \end{cases}$$

Experimento

Conclusões Trabalhos Futuros

Problemas de Otimização Multiobjetivo

Definição (Eficiência)

Uma solução $x \in X$ é dita **eficiente**, denotado por eff(x), se, e somente se, x não é dominada por nenhuma outra solução pertencente a X.

Experimento

Conclusões Trabalhos Futuros

Problemas de Otimização Multiobjetivo

Definição (Eficiência)

Uma solução $x \in X$ é dita **eficiente**, denotado por eff(x), se, e somente se, x não é dominada por nenhuma outra solução pertencente a X.

Formalmente:

$$eff(x) \iff \nexists (y \in X \land y\Delta x)$$

Problemas de Otimização Multiobjetivo

Definição (Eficiência)

Uma solução $x \in X$ é dita **eficiente**, denotado por eff(x), se, e somente se, x não é dominada por nenhuma outra solução pertencente a X.

Formal mente:

$$eff(x) \iff \nexists (y \in X \land y\Delta x)$$

Definição (conjunto Pareto)

O conjunto de todas as soluções eficientes de um problema multiobjetivo, denotado por Par(X), é chamado de **conjunto Pareto** ou **conjunto Pareto**-ótimo.

Problemas de Otimização Multiobjetivo

Definição (Eficiência)

Uma solução $x \in X$ é dita **eficiente**, denotado por eff(x), se, e somente se, x não é dominada por nenhuma outra solução pertencente a X.

Formalmente:

$$eff(x) \iff \nexists (y \in X \land y\Delta x)$$

Definição (conjunto Pareto)

O conjunto de todas as soluções eficientes de um problema multiobjetivo, denotado por Par(X), é chamado de **conjunto Pareto** ou **conjunto Pareto-ótimo**.

Formalmente:

$$Par(X) = \{x \in X \mid eff(x)\}$$

Introducão

O MOKP

A Verificaçã

Dominância

de Bazga

O SCE

Experimento

Trabalhos Futuros

Problemas de Otimização Multiobjetivo

Resolver um problema multiobjetivo consiste em determinar seu conjunto Pareto.

O Algoritm de Bazgan

Experimento

Conclusões Trabalhos Futuros

Problemas de Otimização Multiobjetivo

Resolver um problema multiobjetivo consiste em determinar seu conjunto Pareto.

O Problema da Mochila Multiobjetivo

Problema da mochila multiobjetivo (MOKP):

- Generalização do problema da mochila 0-1 (\mathcal{NP} -Hard);
- Bastante estudado pela literatura;
- Modela diversos problemas reais:
 - Seleção de projetos;
 - Orçamento de capital;
 - Planejamento de estoque, etc.
- De difícil resolução;
 - Especialmente para mais de 2 objetivos.

O Problema da Mochila Multiobjetivo

Definição formal:

$$\max f(x) = (f_1(x), f_2(x), \dots, f_m(x))$$
 sujeito a $w(x) \leq W$
$$x \in \{0, 1\}^n$$

onde

$$f_j(x) = \sum_{i=1}^n p_i^j x_i \quad j = 1, \dots, m$$
$$w(x) = \sum_{i=1}^n w_i x_i$$

Experimento

Conclusões Trabalhos Futuros

O Problema da Mochila Multiobjetivo

Exemplo de instância:

	Itens											
	1 2 3 4 5 6 7 8 9 10											
p^1	4	9	3	1	8	7	2	5	6	7		
p^2	8	4	2	2	3	0	6	8	9	6		
w	7	8	5	8	3	5	6	2	4	9		

O Algoritm de Bazgan O SCE

Experimento

Conclusões e Trabalhos Futuros

O Problema da Mochila Multiobjetivo

Exemplo de instância:

	Itens										
	1 2 3 4 5 6 7 8 9 10										
p^1	4	9	3	1	8	7	2	5	6	7	
p^2	8	4	2	2	3	0	6	8	9	6	
w	7	8	5	8	3	5	6	2	4	9	

W	28

Conjunto Pareto:

	1	2	3	4	5	6	7	8	9	10	f_1	f_2	\boldsymbol{w}
x_1	X						Х	Х	X	X	24	37	28
x_2	X		X		X		X	X	X		28	36	27
x_3	X				X	X	X	X	X		32	34	27
x_4		X	X		X		X	X	X		33	32	28
x_5		X			X	X	X	X	X		37	30	28
x_6		X	X		X	X		X	X		38	26	27

de Bazgan

Experiment

Conclusões Trabalhos

O Problema da Mochila Multiobjetivo

Tamanho do conjunto Pareto para instâncias do MOKP com 3 objetivos.

Introdução

O MOKP

A Verificação

Dominância

Dominancia

de Bazgan

O SCE

Experimento

Conclusões Trabalhos Futuros

A operação de verificação de dominância

A operação de verificação de dominância

A operação de verificação de dominância

de Bazg

. .. .

Experimento

Trabalhos
Futuros

A operação de verificação de dominância

A operação de verificação de dominância

Conclusões Trabalhos Futuros

A operação de verificação de dominância

- 1. Exite alguma solução em Y que **é dominada** por x?
- 2. Exite alguma solução em Y que **domina** x?

Conclusoes Trabalhos Futuros

A operação de verificação de dominância

- 1. Exite alguma solução em Y que **é dominada** por x?
- 2. Exite alguma solução em Y que **domina** x?

Introducão

O MOKP

A Verificação de Dominância

O Algoritm

O SCE

Experimento

Trabalhos Futuros

A operação de verificação de dominância

A partir de x pode-se definir duas regiões de interesse:

A operação de verificação de dominância

A partir de x pode-se definir duas regiões de interesse:

Região **dominada** por x.

$$R_d(x) = \left\{ y \in \mathbb{R}^m \mid y_i \leqslant f_i(x), i \in \{1, \dots, m\} \right\}$$

A operação de verificação de dominância

A partir de x pode-se definir duas regiões de interesse:

Região **dominada** por x.

Região que **domina** x.

$$R_d(x) = \{ y \in \mathbb{R}^m \mid y_i \leqslant f_i(x), i \in \{1, \dots, m\} \}$$

$$R_{d-}(x) = \{ y \in \mathbb{R}^m \mid y_i \geqslant f_i(x), i \in \{1, \dots, m\} \}$$

Busca de faixa

Introdução

о мокр

A Verificação de

Dominância

O Algoritm de Bazgan

O SCE

Experimento

Conclusões Trabalhos Futuros Estruturas de dados para conter soluções:

- Lista encadeada (sem indexação);
- Árvore AVL (unidimensional);
- Árvore KD (multidimensional).

Introdução

о мокр

A Verificação

Dominância

O Algoritm de Bazgan

O SCE

Experimento

Trabalhos Futuros

Lista Encadeada:

O MOKE

A Verificação

Dominância

O Algoritm de Bazgan

O SCE

Experimento

Conclusões e Trabalhos Enturos

O MOKP

A Verificação de

Dominância

O Algoritmo de Bazgan O SCE

Experimento

Conclusões Trabalhos

O MOKP

A Verificação de

Dominância

O Algoritmo de Bazgan O SCE

Experimento

Conclusões Trabalhos

Árvore AVL

A Verificação

Dominância

Árvore AVL

Introdução

O MOKE

A Verificação

Dominância

O Algoritm

O SCE

Experimento

Conclusões e Trabalhos Futuros

о мокр

A Verificação

Dominância

O Algoritm de Bazgan

USCE

Experiment

Conclusões Trabalhos Futuros

Árvore AVL

Árvore AVL

Introduça

A Verificação

de Dominância

O Algoritm de Bazgan

Experimento

Conclusões Trabalhos

(a) Pontos dispostos num plano bi-dimensional.

(b) Pontos indexados por uma 2-d tree.

Introdução

O MOKE

A Verificação

Dominância

O Algoritm de Bazgan

O SCE

Experimento

Conclusões e Trabalhos Futuros

Introdução

O MOKP

A Verificaçã

Dominância

O Algoritm de Bazgan

O SCE

Experiment

Conclusões e Trabalhos Futuros

Introduçã

A Verificação

Dominância

O Algoritmo de Bazgan O SCE

Experiment

Conclusões Trabalhos Futuros

Introduça

A Verificação

de Dominância

O Algoritme de Bazgan

O SCE

Experiment

Conclusões Trabalhos Futuros

Abordagem Exata

- Algoritmo de Bazgan;
- Estado da arte.

Abordagem Heurística

• Algoritmo de Bazgan – estado da arte;

O SCE

Experimentos

Conclusões e Trabalhos Futuros

2

3

4

```
Algoritmo 1: O algoritmo de Nemhauser e Ullmann para o MOKP.
```

```
 \begin{aligned} & \text{input: } p, w, W \\ & \text{begin} \\ & & S_0 = \{(0, \dots, 0)\}; \\ & & \text{for } k \leftarrow 1, n \text{ do} \\ & & & S_k \leftarrow S_{k-1} \cup \left\{(s^1 + p_k^1, \dots, s^m + p_k^m, s^{m+1} + w_k) \right. \\ & & & \left. \mid s^{m+1} + w_k \leqslant W, \, s \in S_{k-1}\right\}; \\ & & \text{end} \\ & & P = \{s \in S_n \mid \nexists (a \in S_n \mid a \Delta s)\}; \\ & & \text{return } P; \end{aligned}
```

Introdução

O MOKP

verificação

Dominânci

O Algoritmo de Bazgan

O SCE

Experimento

Trabalhos
Futuros

As relações de dominância utilizadas para remoção de soluções:

Introdução

о мокр

de

O Algoritmo

de Bazgan

0 502

Experimento

Conclusões Trabalhos Futuros As relações de dominância utilizadas para remoção de soluções:

 $\mathbf{0}$ D^r : Soluções deficientes;

Introdução

O MOKP

A Verificação de

O Algoritmo de Bazgan

O SCE

Experimento

Conclusões Trabalhos Futuros As relações de dominância utilizadas para remoção de soluções:

As relações de dominância utilizadas para remoção de soluções:

- $\mathbf{0}$ D^r : Soluções deficientes;
- \mathfrak{g} D^b : Soluções não promissoras.

Introdução

о мокр

de Dominância

O Algoritmo de Bazgan

O SCE

Experimento

Conclusões Trabalhos Futuros

1. A relação D^r :

Caso a capacidade residual de uma solução associada a um estado s_k da iteração k seja maior ou igual à soma dos pesos dos itens restantes, o único complemento de s_k que pode resultar em uma solução eficiente é o complemento máximo $I = \{k+1, \ldots, n\}$.

O SCE

Experimento

Conclusões o Trabalhos Futuros

1. A relação D^r :

Caso a capacidade residual de uma solução associada a um estado s_k da iteração k seja maior ou igual à soma dos pesos dos itens restantes, o único complemento de s_k que pode resultar em uma solução eficiente é o complemento máximo $I = \{k+1, \ldots, n\}$.

$$s_k D_k^r s_{k'} \Leftrightarrow \begin{cases} s_{k'} \in S_{k-1}, \\ s_k = (s_{k'}^1 + p_k^1, \dots, s_{k'}^m + p_k^m, s_{k'}^{m+1} + w_k), \\ s_{k'}^{m+1} \leqslant W - \sum_{i=k}^n w_i \end{cases}$$

Introdução

O MORI

ae Dominânci

O Algoritmo de Bazgan

O SCE

Experimento

Conclusões e Trabalhos Futuros

2. A relação D^{Δ} :

Generalização para o caso multiobjetivo da relação de dominância utilizada no Algoritmo de Nemhauser Ullmann.

O SCE

Experimento

Conclusões e Trabalhos Futuros

2. A relação D^{Δ} :

Generalização para o caso multiobjetivo da relação de dominância utilizada no Algoritmo de Nemhauser Ullmann.

$$s_k D_k^{\Delta} s_{k'} \Leftrightarrow \begin{cases} s_k \Delta s_{k'} & \text{e} \\ s_k^{m+1} \leqslant s_{k'}^{m+1} & \text{se } k < n \end{cases}$$

Introdução

O MOKP

A Verificação

Dominância

O Algoritmo

de Bazgan

Experimento

Conclusões e

3. A relação D^b :

Introdução

о мокр

A Verificação

Dominânci

O Algoritmo de Bazgan

5 502

Experimento

Conclusões Trabalhos Futuros

Limite inferior

Vetor objetivo $lb(s) = (lb^1, \dots, lb^m)$ onde

$$lb^j = s^j + \sum_{i \in J} p_i^j$$

para um complemento J qualquer.

Introdução

о мокр

A Verificação de

O Algoritmo

de Bazgan

Experimento

Conclusões o Trabalhos Futuros

Limite inferior

Vetor objetivo $lb(s) = (lb^1, \dots, lb^m)$ onde

$$lb^j = s^j + \sum_{i \in J} p_i^j$$

para um complemento J qualquer.

Limite superior

Vetor objetivo $u=(u^1,\ldots,u^m)$ tal que $\forall s_n\in Ext(s_k)$ tem-se que $u^j\geqslant s_n^j,\quad j=1,\ldots,m.$

Dominânci

O Algoritmo de Bazgan

O SCE

Experimento

Conclusões Trabalhos Futuros

3. A relação D^b :

$$s_k D_k^b s_{k'} \Leftrightarrow lb(u) \Delta ub(s)$$

Dominância
O Algoritmo

de Bazgan

OBOL

Experimento

Conclusões Trabalhos Futuros

3. A relação D^b :

$$s_k D_k^b s_{k'} \Leftrightarrow lb(u) \Delta ub(s)$$

O limite superior utilizado:

$$ub^{j}(s) = s^{j} + \sum_{i=k+1}^{c_{j}-1} p_{i}^{j} + max \left\{ \left[\overline{W}(s) \frac{p_{c_{j}+1}^{j}}{w_{c_{j}+1}} \right], \left[p_{c_{j}}^{j} - \left(w_{c_{j}} - \overline{W}(s) \right) \cdot \frac{p_{c_{j-1}}^{j}}{w_{c_{j}-1}} \right] \right\}$$

3. A relação D^b :

$$s_k D_k^b s_{k'} \Leftrightarrow lb(u) \Delta ub(s)$$

O limite superior utilizado:

$$ub^{j}(s) = s^{j} + \sum_{i=k+1}^{c_{j}-1} p_{i}^{j} + max \left\{ \left[\overline{W}(s) \frac{p_{c_{j}+1}^{j}}{w_{c_{j}+1}} \right], \left[p_{c_{j}}^{j} - \left(w_{c_{j}} - \overline{W}(s) \right) \cdot \frac{p_{c_{j-1}}^{j}}{w_{c_{j}-1}} \right] \right\}$$

O limite inferior utilizado (complemento J):

$$lb^{j}(s) = s^{j} + \sum_{i \in J} p_{i}^{j}, \quad \sum_{i \in J} w_{i} \leqslant \overline{W}(s)$$

de Bazgan O SCE

2 3

Experimentos

Conclusões Trabalhos Futuros Algoritmo 2: Algoritmo Bazgan.

```
\begin{aligned} & \textbf{input: } & \boldsymbol{p}, \boldsymbol{w}, \boldsymbol{W} \\ & \textbf{begin} \\ & & S_0 \leftarrow \big\{ (0, \dots, 0) \big\}; \\ & o_1, \dots, o_n = \mathcal{O}^{max}; \end{aligned}
```

Experimentos

2

3

5

Conclusões e Trabalhos Futuros Algoritmo 3: Algoritmo Bazgan.

```
 \begin{aligned} & \textbf{input: } p, w, W \\ & \textbf{begin} \\ & & \left\{ S_0 \leftarrow \left\{ (0, \dots, 0) \right\}; \\ & o_1, \dots, o_n = \mathcal{O}^{max}; \\ & \textbf{for } k \leftarrow 1, n \textbf{ do} \\ & & \left\{ S_k^* \leftarrow \left\{ (s^1 + p_{o_k}^1, \dots, s^m + p_{o_k}^m, s^{m+1} + w_{o_k}) \mid s \in S_{k-1}, s^{m+1} + w_{o_k} \leqslant W \right\} \end{aligned}
```

Experimentos

2

3

5

6

Conclusões e Trabalhos Futuros

Algoritmo 4: Algoritmo Bazgan.

```
 \begin{aligned} & \text{input: } p, w, W \\ & \text{begin} \\ & & S_0 \leftarrow \big\{(0, \dots, 0)\big\}; \\ & & o_1, \dots, o_n = \mathcal{O}^{max}; \\ & \text{for } k \leftarrow 1, n \text{ do} \\ & & S_k^* \leftarrow \big\{(s^1 + p_{o_k}^1, \dots, s^m + p_{o_k}^m, s^{m+1} + w_{o_k}) \; \big| \; s \in \\ & & S_{k-1}, s^{m+1} + w_{o_k} \leqslant W \big\} \\ & & & \cup \big\{s \in S_{k-1} \; \big| \; s^{m+1} + w_{o_k} + \dots + w_{o_n} > W \big\}; \end{aligned}
```

Experimentos

2

3

5

Conclusões e Trabalhos Futuros

```
Algoritmo 5: Algoritmo Bazgan.
```

```
\begin{split} & \text{input: } p, w, W \\ & \text{begin} \\ & & S_0 \leftarrow \big\{(0, \dots, 0)\big\}; \\ & o_1, \dots, o_n = \mathcal{O}^{max}; \\ & \text{for } k \leftarrow 1, n \text{ do} \\ & & S_k^* \leftarrow \big\{(s^1 + p_{o_k}^1, \dots, s^m + p_{o_k}^m, s^{m+1} + w_{o_k}) \bigm| s \in \\ & S_{k-1}, s^{m+1} + w_{o_k} \leqslant W \big\} \\ & & \cup \big\{s \in S_{k-1} \bigm| s^{m+1} + w_{o_k} + \dots + w_{o_n} > W \big\}; \\ & S_k^{**} \leftarrow \big\{s \in S_k^* \bigm| \big( \nexists u \in S_k^* \big) \big[ u \Delta s \big] \big\}; \end{split}
```

Experimentos

2

5

7

Conclusões e Trabalhos Futuros Algoritmo 6: Algoritmo Bazgan.

```
\begin{split} & \text{input: } p, w, W \\ & \text{begin} \\ & & S_0 \leftarrow \big\{(0, \dots, 0)\big\}; \\ & o_1, \dots, o_n = \mathcal{O}^{max}; \\ & \text{for } k \leftarrow 1, n \text{ do} \\ & & S_k^* \leftarrow \big\{(s^1 + p_{o_k}^1, \dots, s^m + p_{o_k}^m, s^{m+1} + w_{o_k}) \mid s \in \\ & S_{k-1}, s^{m+1} + w_{o_k} \leqslant W \big\} \\ & & \cup \big\{s \in S_{k-1} \mid s^{m+1} + w_{o_k} + \dots + w_{o_n} > W \big\}; \\ & S_k^{**} \leftarrow \big\{s \in S_k^* \mid \big( \nexists u \in S_k^* \big) \big[ u\Delta s \big] \big\}; \\ & S_k \leftarrow \big\{s \in S_k^{**} \mid \big( \nexists u \in S_k^{**} \big) \big[ lb(u)\Delta ub(s) \big] \big\}; \end{split}
```

2

5

6

7

```
Algoritmo 7: Algoritmo Bazgan.
```

```
input: \boldsymbol{p}, \boldsymbol{w}, W
begin
          S_0 \leftarrow \{(0,\ldots,0)\};
         o_1,\ldots,o_n=\mathcal{O}^{max};
          for k \leftarrow 1, n do
                    S_k^* \leftarrow \{(s^1 + p_{o_k}^1, \dots, s^m + p_{o_k}^m, s^{m+1} + w_{o_k}) \mid s \in \}
                      S_{k-1}, s^{m+1} + w_{o_k} \leq W
                              \cup \{s \in S_{k-1} \mid s^{m+1} + w_{o_k} + \ldots + w_{o_n} > W\};
                   S_k^{**} \leftarrow \{s \in S_k^* \mid (\nexists u \in S_k^*) [u\Delta s] \};
                   S_k \leftarrow \{s \in S_k^{**} \mid (\nexists u \in S_k^{**}) [lb(u)\Delta ub(s)]\};
```

return S_n ;

Experimentos

2

5

6

7

Conclusões e Trabalhos Futuros

```
Algoritmo 8: Algoritmo Bazgan.
```

```
 \begin{aligned} & \text{input: } p, w, W \\ & \text{begin} \\ & & S_0 \leftarrow \big\{(0, \dots, 0)\big\}; \\ & o_1, \dots, o_n = \mathcal{O}^{max}; \\ & \text{for } k \leftarrow 1, n \text{ do} \\ & & S_k^* \leftarrow \big\{(s^1 + p_{o_k}^1, \dots, s^m + p_{o_k}^m, s^{m+1} + w_{o_k}) \mid s \in \\ & S_{k-1}, s^{m+1} + w_{o_k} \leqslant W \big\} \\ & & \cup \big\{s \in S_{k-1} \mid s^{m+1} + w_{o_k} + \dots + w_{o_n} > W \big\}; \\ & S_k^* \leftarrow \big\{s \in S_k^* \mid \big( \nexists u \in S_k^* \big) \big[ u \Delta s \big] \big\}; \\ & S_k \leftarrow \big\{s \in S_k^{**} \mid \big( \nexists u \in S_k^{**} \big) \big[ lb(u) \Delta ub(s) \big] \big\}; \\ & \text{return } S_n; \end{aligned}
```

• verificação da condição $u\Delta s$ (linha 7);

Experimentos

2

5

6

7

8

9

Conclusões e Trabalhos Futuros

```
Algoritmo 9: Algoritmo Bazgan.
```

```
 \begin{aligned} & \text{input: } p, w, W \\ & \text{begin} \\ & & S_0 \leftarrow \big\{(0, \dots, 0)\big\}; \\ & o_1, \dots, o_n = \mathcal{O}^{max}; \\ & \text{for } k \leftarrow 1, n \text{ do} \\ & & S_k^* \leftarrow \big\{(s^1 + p_{o_k}^1, \dots, s^m + p_{o_k}^m, s^{m+1} + w_{o_k}) \mid s \in \\ & S_{k-1}, s^{m+1} + w_{o_k} \leqslant W \big\} \\ & & \cup \big\{s \in S_{k-1} \mid s^{m+1} + w_{o_k} + \dots + w_{o_n} > W \big\}; \\ & S_k^* \leftarrow \big\{s \in S_k^* \mid \big( \nexists u \in S_k^* \big) \big[ u \Delta s \big] \big\}; \\ & S_k \leftarrow \big\{s \in S_k^{**} \mid \big( \nexists u \in S_k^{**} \big) \big[ lb(u) \Delta ub(s) \big] \big\}; \\ & \text{return } S_n; \end{aligned}
```

- verificação da condição $u\Delta s$ (linha 7);
- verificação da condição $lb(u)\Delta ub(s)$ (linha 8).

Introdução

O MOKP

A Verificação

Dominância

ommancia

de Bazgan

) SCE

Experimento

Conclusões e Trabalhos Futuros

O SCE para o MOKP

O SCE

Introdução

O MOKP

A Verificaçã

de . . .

0.41

de Bazgan

O SCE

Experimento

Conclusões e Trabalhos

Introdução

о мокр

de Dominância

O Algorita de Bazgan

O SCE

Experimento

Conclusões Trabalhos Futuros

Adaptação para contexto multiobjetivo:

- Aptidão da solução:
 - Ordenação em frontes não dominados
- Construção de conjunto Pareto aproximado:
 - Arquivo externo

Introdução

A Verificação de

de Dominância

O SCE

Experimento

Conclusões Trabalhos Futuros

Adaptação para contexto multiobjetivo:

- Aptidão da solução:
 - Ordenação em frontes não dominados
- Construção de conjunto Pareto aproximado:
 - Arquivo externo

Aplicação para o MOKP:

- Construção de solução aleatória;
- Procedimento de cruzamento.

O MOKP A Verificaçã

de Dominância

de Bazga

Experimento

Conclusões Trabalhos Futuros Medida de aptidão de solução: ordenação em frontes não dominados.

Figure: População sem ordenação.

Figure: População ordenada em frontes não dominados.

Construção de conjunto Pareto aproximado: utilização de arquivo externo.

Algoritmo 10: Procedimento de atualização de arquivo, dada uma nova solução.

```
input: A: arquivo, x: indivíduo

begin

if \nexists(y \in A, y\Delta x) then

A \leftarrow A \cup \{x\}; \qquad \triangleright \text{ Inclusão de } x \text{ no arquivo}
A \leftarrow A \setminus \{z \in A \mid x\Delta z\}; \qquad \triangleright \text{ Remoção das soluções dominadas}
por x
```

о мокр

de Dominância

O Algoritm de Bazgan

O SCE

Experimentos

Trabalhos Tuturos

Algoritmo 11: Algoritmo SCE adaptado para o MOKP.

begin

3

10

11

12

13

14

15

Inicializar população de N * M indivíduos gerados aleatoriamente;

Classificar população em frontes não dominados;

Selecionar o 10 fronte para compor arquivo externo;

for $k \leftarrow 1 : K \text{ do}$

Ordenar população por aptidão (desempate por hipervolume);

Distribuir população em M complexos;

```
for i \leftarrow 1 : N do
for k' \leftarrow 1 : K' do
```

Selecionar subcomplexo com P indivíduos retirados do i-ésimo complexo;

Evoluir pior indivíduo do subcomplexo gerando um novo indivíduo;

Classificar toda a população (nova e antiga) em frontes não dominados; Propor atualização do arquivo utilizando as soluções do $1^{\rm O}$ fronte F_1 ; Selecionar população:

return Arquivo externo;

O SCE

Introdução

A Verificação le

Dominäncia O Algoritmo

de Bazgan

O SCE

Experimentos

rabalhos uturos

> 12 13 14

> > 15

return Arquivo externo;

10

11

Algoritmo 12: Algoritmo SCE adaptado para o MOKP.

```
begin
       Inicializar população de N * M indivíduos gerados aleatoriamente;
       Classificar população em frontes não dominados;
       Selecionar o 1º fronte para compor arquivo externo;
       for k \leftarrow 1 : K do
              Ordenar população por aptidão (desempate por hipervolume);
              Distribuir população em M complexos;
              for i \leftarrow 1 : N do
                      for k' \leftarrow 1 : K' do
                             Selecionar subcomplexo com P indivíduos retirados do i-ésimo
                                complexo;
                             Evoluir pior indivíduo do subcomplexo gerando um novo
                                indivíduo:
              Classificar toda a população (nova e antiga) em frontes não dominados;
              Propor atualização do arquivo utilizando as soluções do 1º fronte F<sub>1</sub>;
              Selecionar população;
```

- Classificar a população em frontes não dominados (linhas 3 e 12);
- Verificar se o indivíduo teve aptidão melhorada (linha 11);
- Atualização do arquivo, dada uma nova solução (linha 13).

O MOKE

Verificação

. Dominância

de Bazgan

) SCE

Experimento

Conclusões Trabalhos Futuros

Experimentos Computacionais

Instâncias bi-objetivo divididas em 4 tipos:

- A) Aleatórias: $p_i^j \in [1, 1000], w_i \in [1, 1000].$
- B) Não-conflitantes: $p_i^1 \in [111, 1000], p_i^2 \in [p_i^1 100, p_i^1 + 100], w_i \in [1, 1000].$
- C) Conflitantes: $p_i^1 \in [1, 1000], p_i^2 \in [max\{900 p_i^1; 1\}, min\{1100 p_i^1, 1000\}], w_i \in [1, 1000].$
- D) Conflitantes com pesos correlacionados: $p_i^1 \in [1, 1000], p_i^2 \in [max\{900 p_i^1; 1\}, min\{1100 p_i^1, 1000\}], w_i \in [p_i^1 + p_i^2 200, p_i^1 + p_i^2 + 200].$

Instâncias 3-objetivo divididas em 4 tipos:

- A) Aleatórias: $p_i^j \in [1, 1000] w_i \in [1, 1000]$
- B) Não-conflitantes: $p_i^1 \in [111, 1000], p_i^2 \in [p_i^1 100, p_i^1 + 100], p_i^3 \in [p_i^1 100, p_i^1 + 100], w_i \in [1, 1000].$
- C) Conflitantes: $p_i^1 \in [1, 1000], \ p_i^2 \in [1, 1001 p_i^1] \\ p_i^3 \in [max\{900 p_i^1 p_i^2; 1\}, min\{1100 p_i^1 p_i^2, 1001 p_i^1\}] \\ w_i \in [1, 1000].$
- D) Conflitantes com pesos correlacionados: $p_i^1 \in [1,1000] p_i^2 \in [1,1001-p_i^1] p_i^3 \in \\ [max\{900-p_i^1-p_i^2;1\}, min\{1100-p_i^1-p_i^2,1001-p_i^1\}] w_i \in \\ [p_i^1+p_i^2+p_i^3-200, p_i^1+p_i^2+p_i^3+200].$

Tempo computacional médio do algoritmo Bazgan para instâncias bi-objetivo:

Instância			AVL tree	árvore 2-d		
Tipo	n	Par	tempo (s)	tempo (s)	speedup	
A	40	38.1	0.06	0.06	1.0	
Α	60	73.1	1.12	0.88	1.3	
	80	125.6	19.81	11.89	1.7	
	100	180.4	165.24	76.50	2.2	
	120	233.9	708.53	361.87	2.0	
В	100	3.1	0.02	0.08	0.3	
Б	200	10.0	0.80	5.09	0.2	
	300	24.9	9.45	88.30	0.1	
	400	36.2	95.39	730.04	0.1	
	500	53.7	255.57	2824.65	0.1	
С	20	36.6	0.00	0.00	1.0	
C	40	102.8	0.65	0.42	1.5	
	60	231.9	28.98	14.09	2.1	
	80	358.0	564.10	241.54	2.3	
	100	513.8	3756.57	1605.19	2.3	
D	20	174.9	0.15	0.12	1.3	
D	30	269.3	16.82	7.60	2.2	
	40	478.0	395.76	186.67	2.1	
	50	553.4	2459.48	1417.94	1.7	

A Verificação de Dominância

O Algoritmo de Bazgan O SCE

Experimentos

Conclusões Trabalhos Futuros

Experimentos Computacionais

Número de avaliações médio do algoritmo Bazgan para instâncias bi-objetivo:

Tempo computacional médio do algoritmo Bazgan para instâncias 3-objetivo:

Instância			AVL tree	árvore 2-d		árvore 3-d	
Tipo $n Par $		tempo (s)	tempo (s)	speedup	tempo (s)	speedup	
A	50	557.5	41.2	21.3	1.9	18.5	2.2
А	60	1240.0	485.9	247.8	1.9	79.9	6.0
	70	1879.3	3179.5	1038.0	3.0	614.5	5.1
	80	2540.5	6667.9	3796.0	1.7	2943.9	2.2
	90	3528.5	24476.5	12916.7	1.8	3683.7	6.6
В	100	18.0	0.1	0.3	0.3	0.3	0.3
ь	200	65.4	11.4	34.4	0.3	29.1	0.4
	300	214.2	307.7	631.5	0.5	583.2	0.5
	400	317.0	4492.9	8464.9	0.5	5402.2	0.8
	20	254.4	0.06	0.05	1.2	0.03	2.17
C	30	1066.6	9.69	4.18	2.3	1.30	7.46
	40	2965.5	471.68	153.21	3.1	30.50	15.5
	20	4087.7	23.6	10.9	2.2	1.9	12.5
D	30	8834.5	8914.2	3625.3	2.5	1019.5	8.7

A Verificação de Dominância

O Algoritmo de Bazgan O SCE

Experimentos

Conclusões o Trabalhos Futuros

Experimentos Computacionais

Número de avaliações médio do algoritmo Bazgan para instâncias 3-objetivo:

Valores de parâmetros utilizados no algoritmo SCE:

Par	âmetro	Valor	Descrição
	N	30	Número de complexos
	M	30	Número de indivíduos em cada complexo
	Р	5	Número de indivíduos em cada subcomplexo
	K	400	Número de iterações
	K'	30	Número de iterações aplicados a cada evolução
			de complexo
	c	n/20	Número de genes carregados no procedimento
			de cruzamento

de Dominância

O Algoritm de Bazgan

Experimentos

Conclusões e Trabalhos Futuros Conclusões Trabalhos Futuros

Experimentos Computacionais

Métrica para avaliação de qualidade de Pareto: hiper-volume.

Exemplo de conjunto Pareto bi-objetivo possuindo 18 unidades hiper-volume (área):

O MOKP

de Dominância

de Bazga

Experimentos

Conclusões Trabalhos Futuros

Hiper-volume médio alcançado por cada heurística:

	m	n	SPEA2	NSGA-II	MOEA/D	MOFPA	SCE
	2	250	90.4	86.3	96.9	97.8	93.6
	_	500	87.6	81.7	96.9	97.8	92.7
		750	85.9	79.2	98.4	99.2	92.3
	3	250	83.3	77.4	99.0	99.7	89.4
•	J	500	72.8	65.9	92.9	93.6	79.4
		750	77.5	73.3	94.7	95.2	79.8

Tempo computacional médio do algoritmo SCE para instâncias Zouache:

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Instância			Lista	árvore 2-d		árvore 3-d	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m	n n Par		tempo (s)	tempo (s)	speedup	tempo (s)	speedup
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	250	88.4	9.3	13.1	0.71	_	_
$3 \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	500	106.0	14.3	18.3	0.78	_	_
3 500 672.8 15.6 16.0 0.98 15.2 1.03		750	120.4	18.7	22.3	0.84	_	_
500 672.8 15.6 16.0 0.98 15.2 1.03	2	250	705.5	9.8	10.1	0.97	9.1	1.08
750 646.0 22.0 24.2 0.91 21.8 1.01	J	500	672.8	15.6	16.0	0.98	15.2	1.03
		750	646.0	22.0	24.2	0.91	21.8	1.01

A Verificação de

O Algoritmo de Bazgan

Experimentos

Conclusões e Trabalhos Futuros

Número de avaliações médio do algoritmo SCE para instâncias Zouache:

750

500

■Lista■2-d tree

250

Experimentos

(b) Instâncias 3-objetivo.

O MOKE

A Verificação

n · · ·

Dominância

de Bazgan

O SCE

 $_{
m Experimento}$

Conclusões e Trabalhos Futuros

Conclusões e Trabalhos Futuros

Conclusões

Introdução

O MOKP

Verificação

Ominância

de Bazgan

) SCE

 $\operatorname{Experimento}$

Conclusões e Trabalhos Futuros

Tabalhos Futuros

- Verificar a performance da árvore KD em outros problemas multiobjetivos;
- Considerar outras estruturas de dados para auxílio à operação de verificação de dominância;
- Aprimorar a implementação do SCE para o MOKP;
- Investigar a causa da ineficiência da atual implementação do algoritmo Bazgan.