ECON 717A: Problem Set 1

Alex von Hafften

February 12, 2022

1 Write-Up

Problem 1 - Dropping Miss Values

I drop observations with missing values for HH_Income as well as observations with indicators miss_Client_Age, miss_Client_Married, and miss_Client_Education equaling one. This filtering drops 65 observations.

Problem 2 - LPM

I estimate a linear probability model with homoskedastic standard errors of taken_new on Client_Age, Client_Married, Client_Education, HH_Size, HH_Income, muslim, Hindu_SC_Kat, and Treated.

	(1)
VARIABLES	taken_new
$Client_Age$	-2.83e-05
	(0.00216)
Client_Married	0.0117
	(0.0529)
Client_Education	-0.00369
	(0.00412)
HH_Size	-0.0113
	(0.00931)
HH_Income	3.14e-06
	(3.68e-06)
muslim	-0.00756
	(0.0367)
$Hindu_SC_Kat$	-0.0275
	(0.0526)
Treated	0.0426
	(0.0347)
Constant	0.199*
	(0.114)
Observations	532
R-squared	0.008
Standard errors in	parentheses

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

The difference between all coefficients and zero is statistically insignificant even at the 10 percent level; the constant is statistically significant at the 10 percent level. Consistent with the insignificant coefficients, the constant estimate is about 0.2, which roughly corresponds to the unconditional probability of taking up a new loan of about 17 percent.

Problem 3 - LPM with Robust SE

I estimated a linear probability model with comma robust standard errors of taken_new on the same set of covariates. In the first column, I report homoskedastic standard errors (exactly the same as the table in problem 1) and, in the second column, I report comma robust standard errors.

(1)	(2)
` /	(2)
taken_new	taken_new
	-2.83e-05
` /	(0.00227)
0.0117	0.0117
(0.0529)	(0.0519)
-0.00369	-0.00369
(0.00412)	(0.00410)
-0.0113	-0.0113
(0.00931)	(0.00928)
3.14e-06	3.14e-06
(3.68e-06)	(3.71e-06)
-0.00756	-0.00756
(0.0367)	(0.0365)
-0.0275	-0.0275
(0.0526)	(0.0510)
0.0426	0.0426
(0.0347)	(0.0335)
0.199*	0.199*
(0.114)	(0.117)
, ,	` /
532	532
0.008	0.008
No	Yes
	$ \begin{array}{c} (0.0529) \\ -0.00369 \\ (0.00412) \\ -0.0113 \\ (0.00931) \\ 3.14e-06 \\ (3.68e-06) \\ -0.00756 \\ (0.0367) \\ -0.0275 \\ (0.0526) \\ 0.0426 \\ (0.0347) \\ 0.199* \\ (0.114) \\ \\ 532 \\ 0.008 \\ \end{array} $

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Compared to the homoskedastic standard errors, the comma robust standard errors are larger only for Client_Age, HH_Income, and the constant. For all other covariates, the comma robust standard errors are smaller. Despite the smaller standard errors for these variables, the constant coefficient is still the only statistically significant coefficient (albeit at the 10 percent level).

Problem 4 - Predicted Probability

I predict the probabilities from the LPM and plot a histogram:

As seen in the histogram, all predicted probabilities are between zero and one.

Problem 5 - Weighted Least Squares

I tried running the baseline specification with using variance weighted least squares, but I get the following error: no groups with sufficient observations. I suspect this error occurs because we do not have enough observation to compute the by-group variances to weight observations. I am able to estimate a more parsimonious model using variance weighted least squares model by dropping religious/caste indicators, muslim and Hindu_SC_Kat, as well as Client_Married due to multicollinearity. Column (1) is the more parsimonious specification estimated using unweighted least squares and column (2) is that estimated using variance weighted least squares.

(1)	(2)
$taken_new$	$taken_new$
-4.51e-05	-0.000535
(0.00224)	(0.0198)
-0.00325	0.00214
(0.00400)	(0.0184)
-0.0102	0.00353
(0.00936)	(0.0576)
0.0412	-0.125
(0.0332)	(0.373)
0.216**	0.490
(0.107)	(0.877)
	65
0.006	
None	Variance
	-4.51e-05 (0.00224) -0.00325 (0.00400) -0.0102 (0.00936) 0.0412 (0.0332) 0.216** (0.107) 532 0.006

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Coefficients in both regressions above are insignificant, which is consistent with the less parsimonious unweighted baseline linear probability estimates above. Without weighting, the coefficients on Client_Education and HH_Size are larger compared to their variance weighted counterparts while the other coefficients are smaller.

Problem 6 - Probit and Logit

In the table below, there are estimates for the LPM with comma robust SEs (column 1), probit (column 2), and logit (column 3).

	(1)	(0)	(0)
**** D*** D* T**	(1)	(2)	(3)
VARIABLES	$taken_new$	$taken_new$	$taken_new$
$Client_Age$	-2.83e-05	0.000154	-0.000382
	(0.00227)	(0.00856)	(0.0157)
Client_Married	0.0117	0.0495	0.0931
	(0.0519)	(0.214)	(0.388)
Client_Education	-0.00369	-0.0146	-0.0276
	(0.00410)	(0.0166)	(0.0300)
$HH_{-}Size$	-0.0113	-0.0476	-0.0854
	(0.00928)	(0.0379)	(0.0694)
HH_Income	3.14e-06	1.33e-05	2.23e-05
	(3.71e-06)	(1.44e-05)	(2.53e-05)
muslim	-0.00756	-0.0326	-0.0533
	(0.0365)	(0.147)	(0.263)
Hindu_SC_Kat	-0.0275	-0.110	-0.208
	(0.0510)	(0.215)	(0.395)
Treated	0.0426	0.175	0.319
	(0.0335)	(0.142)	(0.259)
Constant	0.199*	-0.853*	-1.374
	(0.117)	(0.459)	(0.835)
	,		•
Observations	532	532	532
R-squared	0.008		
Model	$_{ m LPM}$	Probit	Logit

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

The probit and the logit coefficients are not the same but they are similar, especially when comparing them to the LPM coefficients. These results make sense. The probit uses the standard normal cdf as its link function, the logit uses its logistic function as the link function, and the LPM uses f(x) = x as its link function. The standard normal cdf and the logistic function are much closer to each than they are to f(x) = x.

Problem 7 - Mean Partial Derivatives

I compute the mean partial derivative for Client_Age using six methods:

- 1. LPM coefficient.
- 2. dprobit
- 3. Analytically using a probit model. The mean partial derivative estimated as $\phi(x\beta')\beta_1$ where ϕ is the pdf of the standard normal.
- 4. Numerically using a probit model. Estimate the probit model and predict the probability: \hat{p}_i . Perturb Client_Age by $\varepsilon = 0.01$ and reestimate the probit model to predict the probability: \hat{p}_i^{ε} . Compute the partial derivative for each observations: $\frac{\hat{p}_i \hat{p}_i^{\varepsilon}}{\varepsilon}$. Compute the average across observations.
- 5. Margins for probit.
- 6. Margins for logit.

Model	Approach	Mean Partial Derivative Estimate
LPM	-	-0.0000283
Probit	dprobit	0.0000382
Probit	Analytical	0.0000382
Probit	Numerical	0.0000386
Probit	margins	0.0000382
Logit	margins	-0.0000525

All the estimates are very close to zero, but some are positive and some are negative. The differences between the mean partial derivative estimates partially boil down to how noisy the estimate of the coefficients on Client_Age is. In every regression (LPM, probit, and logit), the coefficient is statistically indistinguishable from zero. Thus, the differences in the mean partial derivative estimates boil out to noise. For the probit-based estimates, all but the numerical estimates are the same. This must be due to dprobit and margins under the analytical derivative "under the hood."

Problem 8 - LPM with Quartic Age

I add quadratic transformations of Client_Age to the regression. Column (1) is the baseline model and column (2) includes the additional terms.

	(1)	(2)
VARIABLES	taken_new	taken_new
$Client_Age$		-0.493***
		(0.168)
$Client_Age_2$		0.0199***
		(0.00621)
$Client_Age_3$		-0.000336***
		(9.68e-05)
$Client_Age_4$		2.01e-06***
		(5.35e-07)
Client_Married	0.0117	0.0152
	(0.0518)	(0.0552)
Client_Education	-0.00368	-0.00315
	(0.00394)	(0.00411)
HH_Size	-0.0113	-0.00889
	(0.00927)	(0.00924)
HH_Income	3.14e-06	3.65 e-06
	(3.71e-06)	(3.70e-06)
muslim	-0.00755	-0.0128
	(0.0363)	(0.0361)
Hindu_SC_Kat	-0.0275	-0.0333
	(0.0510)	(0.0507)
Treated	0.0426	0.0465
	(0.0335)	(0.0334)
Constant	0.198**	4.518***
	(0.0779)	(1.605)
01 4:	500	F 90
Observations	532	532
R-squared	0.008	0.031

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

By their statistical significance, it appears that it is important to include these higher-order polynomial transformations of Client_Age. I numerically computing the mean partial derivative with respect to Client_Age and get 2.32e-07. So yes, adding the quadratic terms "does better" in so much as the estimate is close to the probit model estimates. However, there are now six observations with predicted probabilities outside the unit interval (five less than zero and one greater than one).

Problem 9 - LRI

The log-likelihood of the baseline probit model is $\ln \hat{L} = -238.0747$ and the log-likelihood of a probit model with only a constant is $\ln L_0 = -240.2343$. Thus, the LRI is $LRI = 1 - \frac{\ln \hat{L}}{\ln L_0} = 0.0090$. This matches the Stata output for pseudo- R^2 . Since the LRI is low, this would suggest that the additional covariates do not explain more variation in outcome beyond what is captured by the constant.

Problem 10 - Correction Prediction Rates

First, I consider correct prediction rates based on a 50 percent cutoff. The idea behind the 50 percent cutoff is whether you're more likely to take out a loan than not. I get the following table:

	$\hat{p} < 0.5$	$\hat{p} > 0.5$
$\mathtt{taken_new} = 1$	0.8327	0.0
${\tt taken_new} = 0$	0.1673	0.0

This table is due to having none of the predicted probabilities are over 50 percent. The correct prediction rate here is 0.41635 (i.e., 0.8327 times 50 percent). Second, I consider correct prediction rates based on a cutoff equal to unconditional probability of the outcome, 0.1673. The idea behind this cutoff is whether you're more likely than a randomly selected person from the sample to take out a loan. I get the following table:

	$\hat{p} < 0.1673$	$\hat{p} > 0.1673$
${\tt taken_new} = 1$	0.4267	0.4060
$\mathtt{taken_new} = 0$	0.0602	0.1071

The correct prediction rate is now 0.2669 (i.e., 0.4267 times 50 percent plus 0.1071 times 50 percent).

Problem 11 - In-Sample vs. Out-of-Sample Correct Prediction Rates

My expectation is that in-sample correct prediction rates will be higher than out-of-sample correct prediction rates. First, based on a 50 percent cutoff, I get the following table for the estimation subsample:

Thus, the correct prediction rate is 0.4191. I get the following table for the non-estimation subsample:

$$\begin{array}{c|cccc} & & \hat{p} < 0.5 & \hat{p} > 0.5 \\ \hline \text{taken_new} = 1 & 0.8271 & 0.0 \\ \text{taken_new} = 0 & 0.1729 & 0.0 \\ \end{array}$$

Thus, the correct prediction rate is 0.4135. The higher correct prediction rate for the estimation sample has nothing to do with the accuracy of in-sample vs. out-of-sample prediction because all predicted values are less than 50 percent. The difference is only due to sample variation. Second, for a cutoff equal to unconditional probability of the outcome (0.1673), I get the following table for the estimation subsample:

$$\begin{array}{c|cccc} & \hat{p} < 0.1673 & \hat{p} > 0.1673 \\ \hline \text{taken_new} = 1 & 0.4812 & 0.3571 \\ \text{taken_new} = 0 & 0.0827 & 0.0789 \\ \end{array}$$

Thus, the correct prediction rate is 0.2801. I get the following table for the non-estimation subsample:

$$\begin{array}{c|cccc} & \hat{p} < 0.1673 & \hat{p} > 0.1673 \\ \hline {\tt taken_new} = 1 & 0.4436 & 0.3835 \\ {\tt taken_new} = 0 & 0.1128 & 0.0602 \\ \end{array}$$

Thus, the correct prediction rate is 0.2519. This difference may be a confirmation that the prediction rate in-sample is better than out-of-sample.

Problem 12 - Interaction Term

Below is the baseline probit model and the probit model with an interaction term for married and Muslim.

	(1)	(2)
VARIABLES	taken_new	taken_new
$Client_Age$	0.000154	0.000931
	(0.00856)	(0.00868)
$Client_Married$	0.0495	0.156
	(0.214)	(0.281)
Client_Education	-0.0146	-0.0154
	(0.0166)	(0.0167)
HH_Size	-0.0476	-0.0502
	(0.0379)	(0.0381)
HH_Income	1.33e-05	1.26e-05
	(1.44e-05)	(1.45e-05)
muslim	-0.0326	0.206
	(0.147)	(0.421)
$Hindu_SC_Kat$	-0.110	-0.114
	(0.215)	(0.215)
Treated	0.175	0.182
	(0.142)	(0.142)
$married_muslim$		-0.271
		(0.448)
Constant	-0.853*	-0.959*
	(0.459)	(0.494)
Observations	532	532

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Problem 13 - Interaction Term Finite Differences

I compute the interaction effect both with and without the terms highlighted by Ai and Norton (2003). For the interaction effect without these terms, I use margin which automatically computes finite differences given a binary independent variable. The estimate of this interaction effect is -0.06719. To compute the interaction effect with the terms highlighted by Ai and Norton (2003), I compute the predicted index from the probit. Then I subtract the coefficient for each three dummies (married, Muslim, and married × Muslim). This index, I_0 , corresponds to the predicted value conditional on being unmarried and not Muslim for all observations. Then I create a three variables based on this index: I_1 adds in the coefficient on married, I_2 adds in the coefficient on Muslim, and I_{12} adds in all three coefficients. Then the interaction affect for each observation is $\Phi(I_{12}) - \Phi(I_1) - \Phi(I_2) + \Phi(I_0)$. The average of these finite differences is -0.0657. So the Ai and Norton (2003) terms slightly attenuate the estimated interaction effect.

Problem 14 - Interaction Term Finite Differences Variance

I compute the variance of the finite differences for the interaction effect to be 0.00008. The small variance stems from all coefficient estimating being quite small.

Problem 15 - Heteroskedasticity Test

I compute the residuals from the baseline LPM, square them, and regress them on the usual covariates:

	(1)
VARIABLES	$residuals_p_2$
Client_Age	0.000168
	(0.00142)
Client_Married	0.00774
	(0.0348)
Client_Education	-0.00213
	(0.00271)
HH_Size	-0.00786
	(0.00612)
HH_Income	2.51e-06
	(2.42e-06)
muslim	-0.00633
	(0.0241)
$Hindu_SC_Kat$	-0.0168
	(0.0346)
Treated	0.0282
	(0.0228)
Constant	0.150**
	(0.0752)
Observations	532
R-squared	0.008
Standard errors i	
*** p<0.01, ** p<	<0.05, * p<0.1

All coefficients are insignificant except for the constant. These results indicate that heteroskedasticity is not a concern.

Problem 16 - Probit with Heteroskedasticity

The probit model with heteroskedasticity of the error term as a function of $Client_Age$ and $Client_Education$ is below.

	(1)	(2)
VARIABLES	$taken_new$	lnsigma
$Client_Age$	-0.112	0.0285
	(0.137)	(0.0196)
$Client_Married$	0.129	
	(0.846)	
Client_Education	-0.311	0.0694
	(0.256)	(0.0474)
HH_Size	-0.226	
	(0.197)	
HH_Income	6.93 e-05	
	(7.23e-05)	
muslim	-0.179	
	(0.584)	
$Hindu_SC_Kat$	-0.344	
	(0.962)	
Treated	0.915	
	(0.787)	
Constant	1.715	
	(3.573)	
Observations	532	532
Standard erro	ors in parenth	neses

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

The critical value for the likelihood ratio test of lnsigma=0 is 2.97 and it is distributed chi-squared with 2 degrees of freedom. The resulting p-value is 0.2267, so we fail to reject the null of homoskedasticity. This result confirms the finding in problem 15 of a lack of heteroskedasticity.

Stata Log File N

<unnamed> name:

/Users/alexandervonhafften/Documents/UW Madison/problem_sets/econ_717a/ps1/analysis.smcl log:

smcl log type:

12 Feb 2022, 13:29:44 opened on:

. * Alex von Hafften

. * Problem set 1

. * ECON 717A: Applied Economics

. * clear workspace

clear

* install user defined functions (if needed)

. ssc install outreg2

checking outreg2 consistency and verifying not already installed... all files already exist and are up to date.

. * change working directory

. cd "/Users/alexandervonhafften/Documents/UW Madison/problem_sets/econ_717a/ps1/"

/Users/alexandervonhafften/Documents/UW Madison/problem_sets/econ_717a/ps1

. * open dataset

. use "Field et al (2010) Analysis Sample"

(ATTENTION: Type notes in the command line for information on this dataset)

```
. local covariates " Client_Married Client_Education HH_Size HH_Income muslim Hindu_SC_Kat Treated"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           * problem #2 - estimate linear probability model with homoskedastic standard errors
                                                                                                  532
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.52
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Number of obs
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        F(8, 523)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         . * define list of variable in usual_covariate
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                MS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             . regress taken_new Client_Age 'covariates'
                                               . * problem #1 - drop missing values
                                                                                                                                                                                                                                                                                                                                                                                                                      ⊣
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ďf
                                                                                                                                                                                                                                                                                                                                                                                                                    . drop if miss_Client_Education ==
                                                                                                                                                                                                                                                                                                                                        . drop if miss_Client_Married ==
                                                                                                                                                                                                                                                          . drop if miss_Client_Age == 1
                                                                                                                                                                               . drop if missing(HH_Income)
                                                                                                                                                                                                        (36 observations deleted)
                                                                                                                                                                                                                                                                                                                                                                                                                                          (16 observations deleted)
                                                                                                                                                                                                                                                                                     (6 observations deleted)
                                                                                                                                                                                                                                                                                                                                                              (7 observations deleted)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                SS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         . * estimate LPM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Source
```

0.8405	.37494	[95% conf. interval]	.0042095	3 .1156975	1 .0044062	. 0069544	3 .0000104	3 .0645061	0759015	.1107532	3 .4239158
F = ed	quared =	[95% con		0922693	0117924	0296072	-4.08e-06	0796318	1308542	0255471	0251353
Prob > F R-squared	Aaj k-squarea Root MSE	P> t	0.990	0.825	0.371	0.224	0.393	0.837	0.602	0.220	0.082
.073337695 .140581646	.139568554	4	-0.01	0.22	-0.90	-1.22	0.85	-0.21	-0.52	1.23	1.74
8 .07 523 .14	531 . 13		.0021572	.0529309	.0041228	.0093055	3.68e-06	.0366854	.0526227	.0346907	.1142909
.586701556 73.5242007	4.1109023		0000283	0117141	0036931	0113264	3.14e-06	0075629	0274764	0426031	1993902
Model .8	Total 74.1109023	taken_new	Client_Age	Client_Married	Client_Education	HH_Size	HH_Income	muslim	Hindu_SC_Kat	Treated	cons

. outreg2 using p2_table, tex(frag) replace

p2_table.tex

dir : seeout

. * problem #3 - estimate linear probability model with heteroskedastic standard errors

. regress taken_new Client_Age 'covariates'

532	0.52	0.8405	0.0079	-0.0073	.37494
II	II	II	II	II	II
Number of obs	F(8, 523)	Prob > F	R-squared	Adj R-squared	Root MSE
MS		.073337695	.140581646		531 .139568554
df		∞	523		531
SS		.586701556	73.5242007		74.1109023
Source	+	Model	Residual	+	Total

taken_new	Coefficient	Std. err.	4	P> t	[95% conf.	interval]
Client_Age		.0021572	-0.01	0.990	004266	.0042095
Client_Married	0117141	.0529309	0.22	0.825	0922693	.1156975
Client_Education	0036931	.0041228	-0.90	0.371	0117924	.0044062
HH_Size	0113264	.0093055	-1.22	0.224	0296072	.0069544
HH_Income	3.14e-06	3.68e-06	0.85	0.393	-4.08e-06	.0000104
muslim	0075629	.0366854	-0.21	0.837	0796318	.0645061
Hindu_SC_Kat	0274764	.0526227	-0.52	0.602	1308542	.0759015
Treated	0426031	.0346907	1.23	0.220	0255471	.1107532
cons	1993902	.1142909	1.74	0.082	0251353	.4239158

. outreg2 using p3_table, tex(frag) replace addtext(Comma Robust SEs, No) p3_table.tex dir : seeout

. regress taken_new Client_Age 'covariates', robust

532	0.56	0.8074	0.0079	.37494	
II	II	II	II	II	
Number of obs	F(8, 523)	Prob > F	R-squared	Root MSE	
Linear regression					

taken_new	Coefficient	Robust std. err.	сţ	P> t	[95% conf. interval]	interval]
Client_Age		.0022749	-0.01	0.990		.0044409
Client_Married	.0117141	.0518841	0.23	0.821	0902127	.1136409
Client_Education	0036931	.0041013	-0.90	0.368	0117502	.0043641
HH_Size	0113264	.0092822	-1.22	0.223	0295613	.0069085
HH_Income	3.14e-06	3.71e-06	0.85	0.398	-4.15e-06	.0000104
muslim	0075629	.0365483	-0.21	0.836	0793625	.0642367
Hindu_SC_Kat	0274764	.0509678	-0.54	0.590	1276031	.0726504
Lreated	.0426031	.0334686	1.27	0.204	0231463	.1083524

.4289989

-.0302184

0.089

1.71

.1168783

.1993902

cons |

note: Client_Married omitted because of collinearity note: Hindu_SC_Kat omitted because of collinearity

Variance-weighted least-squares regression	least-squares	regression	Nur	Number of obs	II	12
Goodness-of-fit chi2(0)	hi2(0) =	•	Mod	Model chi2(5)	II	0.00
Prob > chi2	II		Pro	Prob > chi2	II	1.0000
taken_new	taken_new Coefficient	Std. err.	N I	P> z	 [95% conf.	[95% conf. interval]
Client_Married	0	(omitted)				
Client_Education	0	.1234568	00.00	1.000	2419709	.2419709
HH_Size	0	.8894888	0.00	1.000	-1.743366	1.743366
HH_Income	0	.0010218	00.00	1.000	0020027	.0020027
muslim	0	1.007025	00.00	1.000	-1.973732	1.973732
Hindu_SC_Kat	0	(omitted)				
Treated	0	1.302893	00.00	1.000	-2.553624	2.553624
cons	-5.	9.101962	0.05	0.956	-17.33952	18.33952

. * Doesn't work due to small sample, but works for more parsimonious model

0.73 0.5703 0.0058 .37391 532 . regress taken_new Client_Age Client_Education HH_Size Treated, robust II II II II II Number of obs F(4, 527) R-squared Prob > F

Linear regression

taken_new	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
		.0022433		0.984		.0043619
Client_Education	00325	.0039959	-0.81	0.416	0110998	.0045997
HH_Size	0101567	.0093619	-1.08	0.278	028548	.0082346
Lreated	.0412283	.0332486	1.24	0.216	0240878	.1065443
cons	.215995	.106784	2.02	0.044	.0062205	.4257696

. outreg2 using p5_table, tex(frag) addtext(Weighted By, None) replace

p5_table.tex dir : seeout . vwls taken_new Client_Age Client_Education HH_Size Treated

65	0.14	0.9978	[95% conf. interval]	.038266	.0381063	.1164798	.6054462	2.208877
II	II	II	[95% conf.	0393361	0338314	1094213	8556843	-1.229798
Number of obs	Model chi2(4)	Prob > chi2	P> z	0.978	0.907	0.951	0.737	0.577
Num	Mod	Pro	N	-0.03	0.12	90.0	-0.34	0.56
regression	4.20	0.9998	Std. err.	.0197968	.0183518	.0576289	.3727442	.8772291
east-squares	II	0	taken_new Coefficient	0005351	.0021375	.0035293	1251191	.4895395
Variance-weighted least-squares regression	Goodness-of-fit chi2(19)	Prob > chi2	taken_new	Client_Age	Client_Education	HH_Size	Leated	cons

. outreg2 using p5_table, tex(frag) addtext(Weighted By, Variance) append

p5_table.tex

dir : seeout

. * problem #6 - probit and logit

. regress taken_new Client_Age 'covariates', robust

0.8074 532 0.56 Number of obs F(8, 523) Prob > F R-squared Linear regression

Root MSE = .37494

taken_new	 taken_new Coefficient	Robust std. err.	ц	P> t	[95% conf. interval]	interval]
		.0022749		0.990		.0044409
Client_Married	0117141	.0518841	0.23	0.821	0902127	.1136409
Client_Education	0036931	.0041013	-0.90	0.368	0117502	.0043641
HH_Size	0113264	.0092822	-1.22	0.223	0295613	.0069085
HH_Income	3.14e-06	3.71e-06	0.85	0.398	-4.15e-06	.0000104
muslim	0075629	.0365483	-0.21	0.836	0793625	.0642367
Hindu_SC_Kat	0274764	.0509678	-0.54	0.590	1276031	.0726504
Treated	0426031	.0334686	1.27	0.204	0231463	.1083524
cons_	1993902	.1168783	1.71	0.089	0302184	.4289989

. outreg2 using p6_table, tex(frag) replace addtext(Model, LPM)

p6_table.tex

dir : seeout

. probit taken_new Client_Age 'covariates'

Iteration 0: log likelihood = -240.23429
Iteration 1: log likelihood = -238.07858
Iteration 2: log likelihood = -238.07469
Iteration 3: log likelihood = -238.07469

532 4.32 = 0.8272= 0.0090Number of obs = Prob > chi2 LR chi2(8) Pseudo R2 Log likelihood = -238.07469Probit regression

.0169387 .469031 .0179157 [95% conf. interval] -.0166311 -.0471945 -.3700297 0.986 0.378 0.817 P> |z| 0.02 Ν .21405 Std. err. .0085639 .01661 taken_new | Coefficient .0001538 .0495006 -.0146394 Client_Education | Client_Married | Client_Age

.0266807	.0000415	.2550683	.3118307	.4531741	.0472717
1218727	0000149	3202648	531826	1029719	-1.752665
0.209	0.356	0.824	0.609	0.217	0.063
-1.26	0.92	-0.22	-0.51	1.23	-1.86
.037897	.0000144	.1467714	.2152225	.1418766	.4591759
047596	.0000133	0325982	1099977	.1751011	8526965
HH_Size	HH_Income	mislim	Hindu_SC_Kat	Treated	_cons

. outreg2 using p6_table, tex(frag) append addtext(Model, Probit)

p6_table.tex dir : seeout . logit taken_new Client_Age 'covariates'

Iteration 0: log likelihood = -240.23429
Iteration 1: log likelihood = -238.07838
Iteration 3: log likelihood = -238.07838

532 = 0.82804.31 = 0.0090Number of obs Prob > chi2 LR chi2(8) Pseudo R2 Log likelihood = -238.07838Logistic regression

0000718 4628263 5656203 0303066 8528617 0311666 0506061 8254911 2634387 [95% conf. interval] -.6667008 -.2214126 -.0000272 -.5694252 -3.01153-.0310707 -.1881167 -.0862951-.9813010.810 0.358 0.218 0.218 P> |z | 0.840 0.598 0.100 0.377 0.981 0.88 0.24 -0.92 -1.23 -0.20 -0.53 1.23 Ν Std. err 0693938 2633343 0156578 3876506 0299653 0000253 .39463 2585782 8354666 taken_new | Coefficient -.000382 .0930805 -.0854032 .0000223 -.0532995 .3186872 -1.374046-.0275642 -.2078404 Client_Education HH_Size muslim Client_Age Client_Married HH_Income Hindu_SC_Kat Treated cons_

. outreg2 using p6_table, tex(frag) append addtext(Model, Logit)

p6_table.tex
dir : seeout

. * problem #7 - mean partial derivatives of Client_Age

. * LPM

. regress taken_new Client_Age 'covariates'

532	0.8405	0.0079	-0.0073	.37494
11 1	I II	II	II	II
Number of obs	F(0, 323) Prob > F	R-squared	Adj R-squared	Root MSE
MS	.073337695	523 .140581646		531 .139568554
đf		523		531
SS	Model .586701556 8 .073337695	73.5242007		Fotal 74.1109023
	Model	Residual	+	Total

taken_new	Coefficient	Std. err.	4	P> t	[95% conf.	interval]
Client_Age		.0021572	-0.01	0.990		.0042095
Client_Married	0117141	.0529309	0.22	0.825	0922693	.1156975
Client_Education	0036931	.0041228	-0.90	0.371	0117924	.0044062
HH_Size	0113264	.0093055	-1.22	0.224	0296072	.0069544
HH_Income	3.14e-06	3.68e-06	0.85	0.393	-4.08e-06	.0000104
muslim	0075629	.0366854	-0.21	0.837	0796318	.0645061
Hindu_SC_Kat	0274764	.0526227	-0.52	0.602	1308542	.0759015
Treated	0426031	.0346907	1.23	0.220	0255471	.1107532
cons	1993902	.1142909	1.74	0.082	0251353	.4239158

. * mean partial derivative is just the LPM coefficient = -.0000283 $\,$

. * probit

. * part a - using dprobit

. dprobit taken_new Client_Age 'covariates'

Iteration 0: log likelihood = -240.23429
Iteration 1: log likelihood = -238.07858
Iteration 2: log likelihood = -238.07469
Iteration 3: log likelihood = -238.07469

532 4.32 = 0.8272= 0.0090Number of obs Prob > chi2 LR chi2(8) Pseudo R2 Probit regression, reporting marginal effects Log likelihood = -238.07469

.004205 .004442 062466 107279 112256 .00001 .069917 006587 95% C.I. -.004129 -.030219 -3.7e-06 -.07855 -.122289 -.02279 -.088143 -.011711 6.35338 x-bar 34.8947 892857 5.30827 6096.04 300752 116541 665414 0.378 0.209 0.356 0.824 0.609 0.986 0.817 0.217 P> |z| -0.88 -1.26 0.92 -0.22 Std. err. (at x-bar) 0041208 3.57e-06 0511232 0093894 .035974 .049033 0331814 0021261 .1650313 dF/dx0000382 .0118163 0120563 -.0036344 3.30e-06 -.0080417 .0422445 -.0261864 .1672932 obs. P | pred. P | Hi~C_Kat*| Treated* taken_~w Cl~rried* muslim* Clien~ge Client~n HH_Size HH_Inc~e

z and $P \!>\! |z|$ correspond to the test of the underlying coefficient being 0(*) dF/dx is for discrete change of dummy variable from 0 to 1

. * mean partial is the value that dprobit outputs = .0000382

. * part b - analytical derivative

. probit taken_new Client_Age 'covariates'

-240.23429	-238.07858	-238.07469	-238.07469
II	II	II	II
likelihood	likelihood	likelihood	likelihood
\log	log	log	log
::	1:	2:	3:
[teration	[teration	teration	teration

532	.32	272	060
s = 532	= 4.32	= 0.8272	0600.0 =
Number of obs	LR chi2(8)	Prob > chi2	Pseudo R2
			99
Probit regression			Log likelihood = -238.07469

Log likelihood = -238.07469	-238.07469			Pse	Pseudo R2 =	0600.0 =
taken_new	taken_new Coefficient	Std. err.	N	P> z	[95% conf.	 interval]
Client_Age	.0001538	.0085639	0.02	0.986	0166311	.0169387
Client_Married	.0495006	.21405	0.23	0.817	3700297	.469031
Client_Education	0146394	.01661	-0.88	0.378	0471945	.0179157
HH_Size	047596	.037897	-1.26	0.209	1218727	.0266807
HH_Income	.0000133	.0000144	0.92	0.356	0000149	.0000415
milsum	0325982	.1467714	-0.22	0.824	3202648	.2550683
Hindu_SC_Kat	1099977	.2152225	-0.51	0.609	531826	.3118307
Treated	.1751011	.1418766	1.23	0.217	1029719	.4531741
cons	8526965	.4591759	-1.86	0.063	-1.752665	.0472717

[.] * get the linear prediction based on probit

[.] summarize Client_Age_Partial_a

Max	
Min	
dev.	
Std.	
Mean	
obs 0	
Variable	+

[.] predict taken_new_hat_xb, xb

^{. *} using formula phi(xb)*b_j

[.] gen Client_Age_Partial_a = normalden(taken_new_hat_xb) * e(b)[1,1]

.0000546 .0000224 5.01e-06 .0000382 532 Client_Age~a |

. * mean partial derivative is the mean = .0000382

. * part c - numerically calculating marginal effects

. * predict probability based on probit

. predict taken_new_hat_probit, pr

. gen taken_new_hat_probit_epsilon = normal(taken_new_hat_xb + 0.001*e(b)[1,1])

. * compute numerical derivative

. gen Client_Age_Partial_n = (taken_new_hat_probit_epsilon - taken_new_hat_probit) / 0.001

. summarize Client_Age_Partial_n

Max	 9650000.
Min	0000149
dev.	 .50e-06
Std. dev.	9.50
Mean	.0000386
sq0	532
Variable	Client_Age~n

. * mean partial derivative is the mean = 0

. * part d - using margins

. probit taken_new Client_Age 'covariates'

 $log\ likelihood = -240.23429$ log likelihood = -238.07858log likelihood = -238.07469Iteration 2: Iteration 3: Iteration 0: Iteration 1:

 $log\ likelihood = -238.07469$

Probit regression

532 4.32 = 0.8272II Number of obs Prob > chi2 LR chi2(8)

0600.0 =	
Pseudo R2	
= -238.07469	
Log likelihood)

taken_new	Coefficient	Std. err.	N	P> z	[95% conf.	interval]
Client_Age	.0001538	.0085639	0.02	0.986	0166311	.0169387
Client_Married	.0495006	.21405	0.23	0.817	3700297	.469031
Client_Education	0146394	.01661	-0.88	0.378	0471945	.0179157
HH_Size	047596	.037897	-1.26	0.209	1218727	.0266807
HH_Income	.0000133	.0000144	0.92	0.356	0000149	.0000415
muslim	0325982	.1467714	-0.22	0.824	3202648	.2550683
Hindu_SC_Kat	1099977	.2152225	-0.51	0.609	531826	.3118307
Treated	.1751011	.1418766	1.23	0.217	1029719	.4531741
cons_	8526965	.4591759	-1.86	0.063	-1.752665	.0472717

. margins , dydx(Client_Age) atmeans

Conditional marginal effects Model VCE: 0IM

Number of obs = 532

Expression: Pr(taken_new), predict()

= 34.89474 (mean) Client_Age At: Client_Age dy/dx wrt:

Client_Married = .8928571 (mean)
Client_Education = 6.353383 (mean)
HH_Size = 5.308271 (mean)
HH_Income = 6096.039 (mean)

= .3007519 (mean) muslim

(mean) = .6654135 (mean) = .1165414 Hindu_SC_Kat Treated

	interval]	.0042052
	[95% conf. interval]	0041289
	P> z	0.02 0.986
	N	0.02
Delta-method	dy/dx std. err.	0000382 .0021261
П	dy/dx	.0000382
_	_	Client_Age .0000382 .0021261 0.02 0.9860041289 .004205

. * mean partial derivative is the mean = 0.0000382

. * logit

. logit taken_new Client_Age 'covariates'

Iteration 0: log likelihood = -240.23429
Iteration 1: log likelihood = -238.09541
Iteration 2: log likelihood = -238.07838
Iteration 3: log likelihood = -238.07838

532 = 0.82804.31 = 0.0090Number of obs Prob > chi2 LR chi2(8) Pseudo R2 Log likelihood = -238.07838Logistic regression

0311666 0000718 0303066 8528617 0506061 4628263 5656203 8254911 2634387 [95% conf. interval] -.2214126 -.0000272 -.5694252 -3.01153-.0310707 -.6667008 -.0862951 -.981301-. 1881167 0.810 0.358 0.218 0.840 0.377 0.598 0.218 0.981 P> z -0.92 -1.23 0.88 -0.20 -0.53 1.23 Std. err. 0156578 0299653 0693938 0000253 2585782 3876506 2633343 .39463 8354666 taken_new | Coefficient -.000382 -.0275642 -.0854032 .0000223 -.0532995 -1.374046.0930805 -.2078404 .3186872 cons_ HH_Income muslim Hindu_SC_Kat Client_Education HH_Size Client_Age Client_Married Treated

. margins , dydx(Client_Age) atmeans

Conditional marginal effects Model VCE: DIM

Number of obs = 532

Expression: Pr(taken_new), predict()
dy/dx wrt: Client_Age

dy/dx wrt: Client_Age At: Client_Age = 34.89474 (mean)

```
(mean)
= .8928571 (mean)
             (mean)
                        = 5.308271 (mean)
                                      (mean)
                                                                (mean)
                                                                            = .6654135 (mean)
                                                   = .3007519
                                     = 6096.039
            Client_Education = 6.353383
                                                               = .1165414
Client_Married
                                                                Hindu_SC_Kat
                                     HH_Income
                         HH_Size
                                                                            Treated
                                                   muslim
```

	interval]	.0041656
	[95% conf. interval]	
	P> z	0.981
	N	-0.02 0.981
Delta-method	dy/dx std. err.	.0021521
_	dy/dx	0000525
_		Client_Age 0000525 .0021521 -0.02 0.9810042706 .004165

-.0000525 . * mean partial derivative is the mean = * problem #8 - LPM with quadratic age

. * baseline

. regress taken_new 'covariates', robust

532	0.64	0.7206	0.0079	.37458	
II	II	II	II	II	
Number of obs	F(7, 524)	Prob > F	R-squared	Root MSE	
Linear regression					

	[95% conf. interval]
	P> t
	4
Robust	taken_new Coefficient std. err.
	Ö

.1135453	.004053	.0068847	.0000104	.0638396	.0726131	.1084825	.351397	
0901127	0114154	0295496	-4.15e-06	0789317	1276765	02321	.0453018	
0.821	0.350	0.222	0.398	0.836	0.589	0.204	0.011	
0.23	-0.94	-1.22	0.85	-0.21	-0.54	1.27	2.55	
.0518345	.003937	.0092732	3.71e-06	.0363378	.0509772	.0335181	.0779066	
.0117163	0036812	0113324	3.14e-06	0075461	0275317	.0426362	.1983494	
Client_Married	Client_Education	HH_Size	HH_Income	muslim	Hindu_SC_Kat	Treated	_cons	

. outreg2 using p8_table, tex(frag) replace

p8_table.tex

dir : seeout

. * create quadratic transformations of age

. gen Client_Age_2 = Client_Age^2

. gen Client_Age_3 = Client_Age^3

. gen Client_Age_4 = Client_Age^4

. * estimate lpm with quadratic transformations of age

. regress taken_new Client_Age Client_Age_2 Client_Age_3 Client_Age_4 'covariates', robust 0.000.0 0.0311 .3716 532 26.51 II II II II Number of obs F(11, 520) R-squared Prob > F Root MSE

Linear regression

	interval]		00001
	[95% conf. interval]		111111111111111111111111111111111111111
	P> t		0
	4		3
Robust	std. err.		
	taken_new Coefficient std. err.		
_	taken_new		
		- 1	

.0320637	0001461	3.06e-06	.1236546	.0049176	.0092647	.0000109	.0581584	.0662227	.1120931	7.670425
.0076817	0005265	9.60e-07	0933182	0112258	0270461	-3.62e-06	0838076	1329092	0191835	1.365071
0.001	0.001	0.000	0.784	0.443	0.336	0.325	0.723	0.511	0.165	0.005
3.20	-3.47	3.76	0.27	-0.77	96.0-	0.99	-0.35	99.0-	1.39	2.82
.0062055	8960000.	5.35e-07	.0552224	.0041087	.0092416	3.70e-06	.0361322	.0506817	.0334116	1.604795
.0198727	0003363	2.01e-06	.0151682	0031541	0088907	3.65e-06	0128246	0333433	.0464548	4.517748
Client_Age_2	Client_Age_3	Client_Age_4	Client_Married	Client_Education	HH_Size	HH_Income	muslim	Hindu_SC_Kat	Lreated	cons

. outreg2 using p8_table, tex(frag) append

p8_table.tex dir : seeout predict taken_new_hat_lpm_q

(option xb assumed; fitted values)

* check for observations outside 0, 1

. count if taken_new_hat_lpm_q > 1

count if taken_new_hat_lpm_q < 0

Ľ

. histogram taken_new_hat_lpm_q (bin=23, start=-.16169128, width=.05206823)

. graph export p8_figure.png, replace

file /Users/alexandervonhafften/Documents/UW Madison/problem_sets/econ_717a/ps1/p8_figure.png saved as PNG format

. \star create quadratic transformations with epsilon . gen Client_Age_epsilon_2 = Client_Age_epsilon^2

Client_Age_epsilon not found
r(111);

. gen Client_Age_epsilon_3 = Client_Age_epsilon^3
Client_Age_epsilon not found
r(111);

. gen Client_Age_epsilon_4 = Client_Age_epsilon^4
Client_Age_epsilon not found
r(111);

. regress taken_new Client_Age_epsilon Client_Age_epsilon_2 Client_Age_epsilon_3 Client_Age_epsilon_4 'covariates' variable Client_Age_epsilon not found r(111);

. predict taken_new_hat_lpm_q_epsilon (option xb assumed; fitted values)

. * numerically compute derivative

. gen Client_Age_Partial_q_n = (taken_new_hat_lpm_q - taken_new_hat_lpm_q_epsilon) / 0.001

. summarize Client_Age_Partial_q_n

	l I
d	
. dev.	532 0 0
Std	
Mean	0
	l I
Variable	

* * mean is 2.32e-07

. * problem #9 - LRI

.

. * baseline probit

. probit taken_new Client_Age 'covariates'

Iteration 0: log likelihood = -240.23429
Iteration 1: log likelihood = -238.07858
Iteration 2: log likelihood = -238.07469
Iteration 3: log likelihood = -238.07469

Iteration 3: log likelihood = -238.07469

 Probit regression
 Number of obs =

 LR chi2(8) =
 Prob > chi2 =

 Log likelihood = -238.07469
 Pseudo R2 =

532 4.32

= 0.8272= 0.0090

[95% conf. interval] 0179157 0266807 0000415 2550683 3118307 4531741 0472717 .0169387 .469031 -.0166311 .0471945 -.0000149 -.3202648 -.531826 -.1029719 -1.752665 -.3700297 -.12187270.378 0.209 0.986 0.356 0.824 0.609 0.063 0.817 0.217 P> |z| 0.02 0.23 -0.88 -1.26 0.92 -0.22 -0.51 Std. err. 037897 .0085639 .01661 .21405 1467714 2152225 1418766 4591759 0000144 taken_new | Coefficient .0001538 -.047596 .0000133 -.0325982 .0495006 .0146394 -.8526965 -.1099977 .1751011 cons_ muslim Hindu_SC_Kat Treated Client_Age Client_Education HH_Size HH_Income Client_Married

. * 11_hat is -238.07469

. * probit only with constant

. probit taken_new

Iteration 0: log likelihood = -240.23429
Iteration 1: log likelihood = -240.23429

Probit regression

Number of obs = 532

0.00 = 0.0000Prob > chi2 LR chi2(0) Pseudo R2 Log likelihood = -240.23429

-.8382842 [95% conf. interval] -1.0915490.000 P> |z | -14.93Ν Std. err. .0646097 taken_new | Coefficient -.9649168 cons |

 $. * 11_0 is -240.23429$

 $. * lri = 1 - ll_hat/ll_0 = 0.00898955765$

. * problem #10 - Prediction rate

. * using cutoff of 50 percent

. gen predicted_over_50 = taken_new_hat_probit > .5

. tab taken_new predicted_over_50, nofreq cell

Total | 100.00 | 100.00

. * using unconditional probability as cutoff

. tab taken_new

. * unconditional probability = .1673

. gen predicted_over_up = taken_new_hat_probit > .1673

. tab taken_new predicted_over_up, nofreq cell

83.27 Total 100.00 51.32 40.60 | 10.71 | predicted_over_up 42.67 48.68 Total | 1 0 Has taken (midline) months a new loan in the last 4

. * problem #11 - In sample vs. out-of-sample prediction

. gen estimation_sample = imidlineid < 1400

. * estimate probit on subsample

. probit taken_new Client_Age 'covariates' if estimation_sample

log likelihood = -115.82624 log likelihood = -117.67911 Iteration 0: Iteration 1:

log likelihood = -115.80635 log likelihood = -115.80635 Iteration 2: Iteration 3: = 266 = 3.75 = 0.8793 = 0.0159 Number of obs = Prob > chi2 LR chi2(8) Pseudo R2 Log likelihood = -115.80635Probit regression

taken_new	Coefficient	Std. err.	N	P> z	[95% conf.	interval]
Client_Age	.0095479	.0132631	0.72	0.472		.0355431
Client_Married	.1217882	.317054	0.38	0.701	4996262	.7432027
Client_Education	.0020014	.0246685	0.08	0.935	0463478	.0503507
HH_Size	.0450808	.0526267	0.86	0.392	0580656	.1482272
HH_Income	4.91e-06	.00002	0.25	908.0	0000342	.0000441
muslim	.0064283	.2123982	0.03	0.976	4098646	.4227212
Hindu_SC_Kat	5059869	.387024	-1.31	0.191	-1.26454	.2525661
Treated	.0434882	.2025915	0.21	0.830	353584	.4405603
cons_	-1.708002	.7275063	-2.35	0.019	-3.133888	282116

. predict taken_new_hat_probit_11, pr

. * using cutoff of 50 percent

. gen predicted_over_50_11 = taken_new_hat_probit_11 > .5

. tab taken_new predicted_over_50_11 if estimation_sample, cell nofreq

83.83 16.17 Total 100.00 100.00 83.83 16.17 over_50_11 predicted_ Total | last 4 | 0 1 (midline) Has taken months a new loan in the

. tab taken_new predicted_over_50_11 if !estimation_sample, cell nofreq

82.71 100.00 Total 100.00 17.29 82.71 over_50_11 predicted_ months 0 1 Total | last 4 | (midline) Has taken in the a new loan

. * using unconditional probability as cutoff

. gen predicted_over_up_11 = taken_new_hat_probit_11 > .1673

. tab taken_new predicted_over_up_11 if estimation_sample, cell nofreq

Total	83.83	100.00
r_up_11	35.71 7.89	43.61
$\begin{array}{c} \text{predicted_over_up_11} \\ 0 \end{array}$	48.12	56.39
Has taken a new loan in the last 4 months (midline)	0 11	Total

. tab taken_new predicted_over_up_11 if !estimation_sample, cell nofreq

Total 82.71 17.29 100.00 44.36 38.35 months | predicted_over_up_11 44.36 55.64 0 1 Total Has taken | (midline) last 4 | a new loan in the

. * problem #12 - Interaction terms

. probit taken_new Client_Age 'covariates'

 $log\ likelihood = -240.23429$ $log\ likelihood = -238.07858$ Iteration 0: Iteration 1: Iteration 2:

 $log\ likelihood = -238.07469$

 $log\ likelihood = -238.07469$ Iteration 3:

Probit regression					Numbe	Number of obs	II	532
					LR ch	LR chi2(8)	1	4.32
					Prob	Prob > chi2	= 0.8272	3272
Log likelihood = -238.07469	-238.07469				Pseud	Pseudo R2	= 0.0090	0600
	taken_new Coefficient Std.err.	Std.	err.	N	P> z	oo %36]	nf. ir	[95% conf. interval]

interval]	.0169387	.469031	.0179157	.0266807	.0000415	. 2550683	.3118307	.4531741	.0472717
[95% conf.	0166311	3700297	0471945	1218727	0000149	3202648	531826	1029719	-1.752665
P> z	0.986	0.817	0.378	0.209	0.356	0.824	0.609	0.217	0.063
N	0.02	0.23	-0.88	-1.26	0.92	-0.22	-0.51	1.23	-1.86
Std. err.	.0085639	.21405	.01661	.037897	.0000144	.1467714	.2152225	.1418766	.4591759
Coefficient	.0001538	.0495006	0146394	047596	.0000133	0325982	1099977	.1751011	8526965
taken_new	Client_Age	Client_Married	Client_Education	HH_Size	HH_Income	muslim	Hindu_SC_Kat	Treated	cons Cons

. outreg2 using p12_table, tex(frag) replace

p12_table.tex

dir : seeout

. gen married_muslim = Client_Married * muslim

. probit taken_new Client_Age 'covariates' married_muslim

 $log\ likelihood = -240.23429$ Iteration 0: Iteration 1:

log likelihood = -237.89689 log likelihood = -237.89262 log likelihood = -237.89262 Iteration 2: Iteration 3:

Probit regression

Log likelihood = -237.89262

532 4.68 = 0.8610= 0.0097Number of obs = Prob > chi2 LR chi2(9) Pseudo R2

38

taken_new	Coefficient	Std. err.	N	P> z		interval]
Client_Age	.0009312	.0086796	0.11	0.915	0160805	.0179429
Client_Married	.1556674	.2806756	0.55	0.579	3944468	.7057815
Client_Education	0153534	.0166616	-0.92	0.357	0480094	.0173027
HH_Size	0502379	.0381311	-1.32	0.188	1249735	.0244977
HH_Income	.0000126	.0000145	0.87	0.383	0000157	.000041
muslim	.2059269	.420573	0.49	0.624	6183811	1.030235
Hindu_SC_Kat	1142815	.2152731	-0.53	0.596	536209	.307646
Treated	.1819567	.1423657	1.28	0.201	0970751	.4609884
married_muslim	2709185	.4481227	-0.60	0.545	-1.149223	.6073858
cons	9589165	.4938953	-1.94	0.052	-1.926934	.0091005

. outreg2 using p12_table, tex(frag) append

p12_table.tex

dir : seeout

. * problem #13 - Interaction effects

. * compute interaction effect without accounting for terms in Ai and Norton (2003)

. margins , dydx(married_muslim)

Average marginal effects Model VCE: 0IM

Number of obs = 532

Expression: Pr(taken_new), predict()

dy/dx wrt: married_muslim

39

_	_	Delta-method	od			
	dy/dx	dy/dx std. err.	Ν .	P> z	[95% conf.	[95% conf. interval]
married_muslim 0671875 .1110788 -0.60 0.545284898 .150522		.1110788	-0.60	0.545	284898 .1505229	.1505229

. * interaction effect estimate is -.0671875

. * compute interaction effect by hand accounting for terms in Ai and Norton (2003)

. * follows logic from lecture notes

. predict index_hat, xb

. * predicted index with both dummies zero

. gen index_hat_0 = index_hat - Client_Married * e(b)[1,2] - muslim * e(b)[1,6] - married_muslim *e(b)[1,9]

. * predicted index with both married one and muslim zero

. gen index_hat_01 = index_hat_0 + e(b)[1,2]

. * predicted index with both muslim one and married zero

. gen index_hat_02 = index_hat_0 + e(b)[1,6]

. * predicted index with both dummies zero

. gen index_hat_012 = index_hat_0 + e(b)[1,2] + e(b)[1,6] + e(b)[1,9]

. gen finite_difference = (normal(index_hat_012) - normal(index_hat_02)) - (normal(index_hat_01) - normal(index_hat_0))

. summarize finite_difference

. * interaction effect estimate is -.0656881

. * problem #14 - Interaction effects variance

. * see summarize table from problem #13.

. * problem #15 - Heteroskedasticity test

. * compute residuals

. regress taken_new Client_Age 'covariates'

532	0.52	0.8405	0.0079	-0.0073	.37494
II	II	II	II	II	II
Number of obs	F(8, 523)	Prob > F	R-squared	Adj R-squared	Root MSE
MS		.073337695	.140581646		531 .139568554
df		∞	523		531
SS		.586701556	73.5242007		74.1109023
Source	+	Model	Residual	+	Total

taken_new	taken_new Coefficient Std.	Std. err.	t)	P> t	[95% conf.	[95% conf. interval]
Client_Age	0000283	.0021572	-0.01	-0.01 0.990	004266	.0042095
Client_Married	.0117141	.0529309	0.22	0.825	0922693	.1156975
Client_Education	0036931	.0041228	-0.90	0.371	0117924	.0044062
HH_Size	0113264	.0093055	-1.22	0.224	0296072	.0069544
HH_Income	3.14e-06	3.68e-06	0.85	0.393	-4.08e-06	.0000104

.0645061	.0759015	.1107532	.4239158	
0796318	1308542	0255471	0251353	
0.837	0.602	0.220	0.082	
-0.21	-0.52	1.23	1.74	
.0366854	.0526227	.0346907	.1142909	
0075629	0274764	.0426031	.1993902	
muslim	Hindu_SC_Kat	Treated	cons	

. predict residuals_p, residuals

. * regress squared residuals on usual covariates.

. gen residuals_ p_2 = residuals_ p^2

. regress residuals_p_2 Client_Age 'covariates'

532	0.8130	0.0085	-0.0067	.2466
II	II II	II	II	II
Number of obs	F(6, 523) Prob > F	R-squared	Adj R-squared	Root MSE
MS	8 .033883517	523 .060811737		531 .060406039
df	. ω	523		531
SS	.271068132	31.8045385		Total 32.0756066
		Residual 3	+	Total

residuals_p_2 Coefficient	Coefficient	Std. err.	μ	P> t	[95% conf.	interval]
	.0001681	.0014188	0.12	0.906	002619	.0029553
Client_Married	.0077442	.0348128	0.22	0.824	0606459	.0761344
Client_Education	002132	.0027116	-0.79	0.432	0074589	.0031949
HH_Size	007861	.0061203	-1.28	0.200	0198843	.0041623
HH_Income	2.51e-06	2.42e - 06	1.04	0.299	-2.24e-06	7.27e-06
muslim	0063261	.0241281	-0.26	0.793	053726	.0410738
Hindu_SC_Kat	0167612	.0346101	-0.48	0.628	0847531	.0512306
Treated	0281959	.0228161	1.24	0.217	0166267	.0730184
cons	1504638	.0751694	2.00	0.046	.0027929	.2981348

. outreg2 using p15_table, tex(frag) replace p15_table.tex dir : seeout

```
532
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              443
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2.19
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 89
                                                                                                                                       . hetprob taken_new Client_Age 'covariates', het(Client_Age Client_Education)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              II
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Ш
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Ш
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Nonzero outcomes
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Number of obs
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Zero outcomes
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Wald chi2(8)
                                                                                                                                                                                                                                                                                                                                                               (not concave)
                                                                                                                                                                                                                                                                                                                                                            log likelihood = -238.07469
                                                                                                                                                                                                                                                                                                                                                                                                                                                            log likelihood = -236.9148
                                                                                                                                                                                                                  log\ likelihood = -240.23429
                                                                                                                                                                                                                                        log\ likelihood = -238.07858
                                                                                                                                                                                                                                                           log\ likelihood = -238.07469
                                                                                                                                                                                                                                                                                                                                                                                                    log\ likelihood = -237.64163
                                                                                                                                                                                                                                                                                                                                                                                                                      log likelihood = -237.57256
                                                                                                                                                                                                                                                                                                                                                                                                                                           log likelihood = -237.11403
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 log\ likelihood = -236.69574
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     log likelihood = -236.60898
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            log likelihood = -236.59073
                                                                                                                                                                                                                                                                               log\ likelihood = -238.07469
                                                                                                                                                                                                                                                                                                                                                                                log likelihood = -237.99107
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          log likelihood = -236.59195
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                log likelihood =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   log likelihood =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Heteroskedastic probit model
                                    . * problem #16 - hetprob
                                                                                                                                                                              Fitting probit model:
                                                                                                                                                                                                                                                                                                                        Fitting full model:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Iteration 11:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Iteration 10:
                                                                                                                                                                                                                    Iteration 0:
                                                                                                                                                                                                                                         Iteration 1:
                                                                                                                                                                                                                                                                                                                                                               Iteration 0:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Iteration 7:
                                                                                                                                                                                                                                                           Iteration 2:
                                                                                                                                                                                                                                                                                                                                                                                                                         Iteration 3:
                                                                                                                                                                                                                                                                                                                                                                                                                                             Iteration 4:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                Iteration 5:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Iteration 6:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Iteration 8:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Iteration 9:
                                                                                                                                                                                                                                                                              Iteration 3:
                                                                                                                                                                                                                                                                                                                                                                                                     Iteration 2:
```

0.9745 II Prob > chi2 Log likelihood = -236.5907

taken_new	Coefficient	Std. err.	N	P> z	[95% conf. interval]	interval]
taken_new	 	 	 	 	 	
Client_Age	1123273	.1374995	-0.82	0.414	3818214	.1571668
Client_Married	1288146	.8458704	0.15	0.879	-1.529061	1.78669
Client_Education	3106294	.2555354	-1.22	0.224	8114697	.1902108
HH_Size	2261131	.1970247	-1.15	0.251	6122744	.1600482
HH_Income	E690000.	.0000723	0.96	0.338	0000723	.0002109
muslim	1792461	.5843143	-0.31	0.759	-1.324481	.9659888
Hindu_SC_Kat	3442778	.9618559	-0.36	0.720	-2.229481	1.540925
Treated	9149664	.7866622	1.16	0.245	6268631	2.456796
cons	1.71513	3.57286	0.48	0.631	-5.287547	8.717807
 lnsigma	 	 		 	 - 	
Client_Age	0285154	.0196403	1.45	0.147	0099788	9600290.
Client_Education	.0694184	.047379	1.47	0.143	0234426	.1622795
LR test of lnsigma=0: chi2(2) = 2.97		2.97		р 		0.2267

[.] outreg2 using p16_table, tex(frag) replace p16_table.tex

dir : seeout

. log close

<un> name:

/Users/alexandervonhafften/Documents/UW Madison/problem_sets/econ_717a/ps1/analysis.smcl log:

smcl log type:

12 Feb 2022, 13:29:57 closed on: