

Closing the Gap Between Runtime Complexity and Polytime Computability

Martin Avanzini and Georg Moser

Computational Logic Faculty of Computer Science, University of Innsbruck

RTA '10

Runtime Complexity Analysis

Simple "Functional Program"

①
$$d(c) = 0$$

$$3 d(x+y) = d(x) + d(y)$$

$$\bigcirc$$
 d(x \times y) = d(x) \times y + x \times d(y) \bigcirc d(x - y) = d(x) - d(y)

Runtime Complexity Analysis

Simple "Functional Program"

①
$$d(c) = 0$$

$$3 d(x+y) = d(x) + d(y)$$

$$\bigcirc$$
 d(x \times y) = d(x) \times y + x \times d(y) \bigcirc d(x - y) = d(x) - d(y)

$$d(c \times c)$$

Runtime Complexity Analysis

Simple "Functional Program"

2
$$\operatorname{d}(x \times y) = \operatorname{d}(x) \times y + x \times \operatorname{d}(y)$$
 4 $\operatorname{d}(x - y) = \operatorname{d}(x) - \operatorname{d}(y)$

$$d(c \times c) = d(c) \times c + c \times d(c)$$

Runtime Complexity Analysis

Simple "Functional Program"

$$d(c) = 0$$

$$\bigcirc$$
 d(x \times y) = d(x) \times y + x \times d(y) \bigcirc d(x - y) = d(x) - d(y)

$$d(c \times c) = 0 \times c + c \times d(c)$$

Runtime Complexity Analysis

Simple "Functional Program"

$$d(c) = 0$$

$$3 d(x+y) = d(x) + d(y)$$

$$\bigcirc$$
 d(x \times y) = d(x) \times y + x \times d(y) \bigcirc d(x - y) = d(x) - d(y)

$$d(c \times c) = 0 \times c + c \times 0$$

Runtime Complexity Analysis

Simple "Functional Program" ≈ Term Rewrite System (TRS)

① $d(c) \rightarrow 0$

- $3 d(x+y) \rightarrow d(x) + d(y)$

Computation ≈ Rewriting

$$d(c \times c) \rightarrow_{\mathcal{R}}^{!} 0 \times c + c \times 0$$

Runtime Complexity Analysis

Simple "Functional Program" \approx Term Rewrite System (TRS)

① $d(c) \rightarrow 0$

- $3 d(x + y) \rightarrow d(x) + d(y)$
- \bigcirc d(x \times y) \rightarrow d(x) \times y + x \times d(y) \bigcirc d(x y) \rightarrow d(x) d(y)

Computation \approx Rewriting

$$d(c \times c) \rightarrow^!_{\mathcal{R}} 0 \times c + c \times 0$$

Runtime Complexity

"number of reduction steps as function in the size of the initial terms"

Runtime Complexity Analysis

Simple "Functional Program" \approx Term Rewrite System (TRS)

① $d(c) \rightarrow 0$

- $3 d(x + y) \rightarrow d(x) + d(y)$

Computation \approx Rewriting

$$d(c \times c) \rightarrow^!_{\mathcal{R}} 0 \times c + c \times 0$$

Runtime Complexity

"number of reduction steps as function in the size of the initial terms"

initial terms are argument normalised

Computation and Complexity

let \mathcal{C} collect all constructor symbols and let \mathcal{V} al abbreviate $\mathcal{T}(\mathcal{C}, \mathcal{V})$ Definition (Computation)

Let \mathcal{R} denote a confluent and terminating TRS.

 \mathcal{R} computes a function $f: \mathcal{V}al^k \to \mathcal{V}al$ if \exists function symbol f

$$f(v_1,\ldots,v_k) = w \iff f(v_1,\ldots,v_k) \rightarrow_{\mathcal{R}}^! w$$

Computation and Complexity

let \mathcal{C} collect all constructor symbols and let \mathcal{V} al abbreviate $\mathcal{T}(\mathcal{C},\mathcal{V})$

Definition (Computation)

Let \mathcal{R} denote a confluent and terminating TRS.

 \mathcal{R} computes a relation $R \subseteq \mathcal{V}al^k \times \mathcal{V}al$ if \exists function symbol f

$$(v_1,\ldots,v_k,w)\in R \qquad \Longleftrightarrow \qquad \mathsf{f}(v_1,\ldots,v_k)\to_{\mathcal{R}}^! w \text{ and } w \text{ accepting}$$

Computation and Complexity

let $\mathcal C$ collect all constructor symbols and let $\mathcal V$ al abbreviate $\mathcal T(\mathcal C,\mathcal V)$

Definition (Computation)

Let \mathcal{R} denote a confluent and terminating TRS.

 \mathcal{R} computes a relation $R \subseteq \mathcal{V}al^k \times \mathcal{V}al$ if \exists function symbol f

$$(v_1,\ldots,v_k,w)\in R \qquad \Longleftrightarrow \qquad \mathsf{f}(v_1,\ldots,v_k) \to_{\mathcal{R}}^! w \text{ and } w \text{ accepting}$$

Definition (Runtime Complexity)

$$\operatorname{rc}_{\mathcal{R}}(n) = \max\{\operatorname{dl}(t, \to_{\mathcal{R}}) \mid |t| \leqslant n$$

where
$$\mathrm{dl}(t, \to_{\mathcal{R}}) = \max\{\underline{\ell} \mid \exists (t_1, \dots, t_\ell). \ t \to_{\mathcal{R}} t_1 \to_{\mathcal{R}} \dots \to_{\mathcal{R}} t_{\underline{\ell}}\}$$

Computation and Complexity

let \mathcal{C} collect all constructor symbols and let \mathcal{V} al abbreviate $\mathcal{T}(\mathcal{C},\mathcal{V})$

Definition (Computation)

Let \mathcal{R} denote a confluent and terminating TRS.

 \mathcal{R} computes a relation $R \subseteq \mathcal{V}al^k \times \mathcal{V}al$ if \exists function symbol f

$$(v_1,\ldots,v_k,w)\in R \qquad \Longleftrightarrow \qquad \mathsf{f}(v_1,\ldots,v_k) \to_{\mathcal{R}}^! w \text{ and } w \text{ accepting}$$

Definition (Runtime Complexity)

$$\mathsf{rc}_\mathcal{R}(n) = \mathsf{max}\{\,\mathsf{dl}(t, o_\mathcal{R})\mid |t|\leqslant n \text{ and arguments from } \mathcal{V}\mathsf{al}\,\}$$

where
$$\mathrm{dl}(t, \to_{\mathcal{R}}) = \max\{\underline{\ell} \mid \exists (t_1, \dots, t_\ell). \ t \to_{\mathcal{R}} t_1 \to_{\mathcal{R}} \dots \to_{\mathcal{R}} t_{\underline{\ell}}\}$$

Automated Complexity Analysis

①
$$d(c) \rightarrow 0$$

$$\bigcirc$$
 d(x \times y) \rightarrow d(x) \times y + x \times d(y) \bigcirc d(x - y) \rightarrow d(x) - d(y)

Automated Complexity Analysis

Example

①
$$d(c) \rightarrow 0$$

$$3 d(x + y) \rightarrow d(x) + d(y)$$

$$\bigcirc$$
 d(x × y) \rightarrow d(x) × y + x × d(y) \bigcirc d(x - y) \rightarrow d(x) - d(y)

$$\oplus d(x-y) \rightarrow d(x) - d(y)$$

derivational complexity of above TRS is at least exponential

Automated Complexity Analysis

①
$$d(c) \rightarrow 0$$
 ③ $d(x + y) \rightarrow d(x) + d(y)$

$$\bigcirc$$
 $d(x \times y) \rightarrow d(x) \times y + x \times d(y) \oplus d(x - y) \rightarrow d(x) - d(y)$

- derivational complexity of above TRS is at least exponential
- runtime complexity of above TRS is linear

Automated Complexity Analysis

Example

- ① $d(c) \rightarrow 0$ ③ $d(x + y) \rightarrow d(x) + d(y)$
- $② \ \mathsf{d}(x \times y) \to \mathsf{d}(x) \times y + x \times \mathsf{d}(y) \ \ \textcircled{4} \ \mathsf{d}(x y) \to \mathsf{d}(x) \mathsf{d}(y)$
- derivational complexity of above TRS is at least exponential
- runtime complexity of above TRS is linear

```
$ tct -a rc -p dif.trs
YES(?,0(n^1))

'Weak Dependency Pairs'
Answer: YES(?,0(n^1))
Input Problem: runtime-complexity with re
Rules:
{ d(c) -> 0()
, d(*(x, y)) -> +(*(y, d(x)), *(x, d(y)))
, d(*(x, y)) -> +(d(x), d(y))
, d(*(x, y)) -> -(d(x), d(y))
}
Our Question
what can we infer about
the computational complexity
from this proof?
```

Proof Details:

Automated Complexity Analysis

Example

① $d(c) \rightarrow 0$

- $3 d(x + y) \rightarrow d(x) + d(y)$
- \bigcirc d(x × y) \rightarrow d(x) × y + x × d(y) \bigcirc d(x y) \rightarrow d(x) d(y)
- derivational complexity of above TRS is at least exponential
- runtime complexity of above TRS is linear

```
$ tct -a rc -p dif.trs
 YES(?, O(n^1))
 'Weak Dependency Pairs'
  Answer: YES(?.0(n^1))
  Input Problem: runtime-complexity with re
    Rules:
       f d(c) -> 0()
       d(*(x, y)) \rightarrow +(*(y, d(x)), *(x, d(y)))
```

 $, d(+(x, y)) \rightarrow +(d(x), d(y))$ $d(-(x, y)) \rightarrow -(d(x), d(y))$

Our Question

In particular, does it certify polytime computability of the functions defined?

Proof Details:

Yes

runtime complexity is a reasonable cost model for rewriting

runtime complexity is a reasonable cost model for rewriting

1 runtime complexity naturally expresses the cost of computation

runtime complexity is a reasonable cost model for rewriting

- 1 runtime complexity naturally expresses the cost of computation
- 2 polynomially related to actual cost of an implementation on a Turing machine

Theorem

For any term s with $dl_{\mathcal{R}}(s) \leq \ell$

$$\ell = \Omega(|s|)$$

lacktriangledown some normal-form is computable in deterministic time $O(\log(\ell)^3\ell^7)$

Theorem

For any term s with $dl_{\mathcal{R}}(s) \leqslant \ell$

$$\ell = \Omega(|s|)$$

lacktriangledown some normal-form is computable in deterministic time $O(\log(\ell)^3\ell^7)$

Theorem

For any term s with $dl_{\mathcal{R}}(s) \leq \ell$

$$\ell = \Omega(|s|)$$

lacktriangledown some normal-form is computable in deterministic time $O(\log(\ell)^3\ell^7)$

Theorem

For any term s with $dl_{\mathcal{R}}(s) \leq \ell$

$$\ell = \Omega(|s|)$$

- lacktriangle some normal-form is computable in deterministic time $O(\log(\ell)^3\ell^7)$
- 2 any normal-form is computable in nondeterministic time $O(\log(\ell)^2\ell^5)$

choice of redex nondeterministically

Difficulty

- a single rewrite step may copy arbitrarily large terms
 - ▶ terms may grow exponential in the length of derivations

Difficulty

- a single rewrite step may copy arbitrarily large terms
 - terms may grow exponential in the length of derivations

①
$$d(c) \rightarrow 0$$

$$3 d(x+y) \rightarrow d(x) + d(y)$$

Difficulty

- a single rewrite step may copy arbitrarily large terms
 - ► terms may grow exponential in the length of derivations

①
$$d(c) \rightarrow 0$$
 ③ $d(x + y) \rightarrow d(x) + d(y)$
② $d(x \times y) \rightarrow d(x) \times y + x \times d(y)$ ④ $d(x - y) \rightarrow d(x) - d(y)$
$$d(c) \rightarrow_{\mathcal{R}}^{!} 0$$

Difficulty

- a single rewrite step may copy arbitrarily large terms
 - ► terms may grow exponential in the length of derivations

①
$$d(c) \rightarrow 0$$
 ③ $d(x + y) \rightarrow d(x) + d(y)$
② $d(x \times y) \rightarrow d(x) \times y + x \times d(y)$ ④ $d(x - y) \rightarrow d(x) - d(y)$
$$d(c) \rightarrow_{\mathcal{R}}^{!} 0$$

$$d(c \times c) \rightarrow_{\mathcal{R}}^{!} 0 \times c + c \times 0$$

Difficulty

- a single rewrite step may copy arbitrarily large terms
 - ► terms may grow exponential in the length of derivations

①
$$d(c) \rightarrow 0$$
 ③ $d(x + y) \rightarrow d(x) + d(y)$
② $d(x \times y) \rightarrow d(x) \times y + x \times d(y)$ ④ $d(x - y) \rightarrow d(x) - d(y)$
$$d(c) \rightarrow_{\mathcal{R}}^{!} 0$$

$$d(c \times c) \rightarrow_{\mathcal{R}}^{!} 0 \times c + c \times 0$$

$$d((c \times c) \times c) \rightarrow_{\mathcal{R}}^{!} (0 \times c + c \times 0) \times c + (c \times c) \times 0$$

Difficulty

- a single rewrite step may copy arbitrarily large terms
 - ► terms may grow exponential in the length of derivations

①
$$d(c) \rightarrow 0$$
 ③ $d(x + y) \rightarrow d(x) + d(y)$
② $d(x \times y) \rightarrow d(x) \times y + x \times d(y)$ ④ $d(x - y) \rightarrow d(x) - d(y)$
$$d(c) \rightarrow_{\mathcal{R}}^{!} 0$$

$$d(c \times c) \rightarrow_{\mathcal{R}}^{!} 0 \times c + c \times 0$$

$$d((c \times c) \times c) \rightarrow_{\mathcal{R}}^{!} (0 \times c + c \times 0) \times c + (c \times c) \times 0$$

$$d((c \times c) \times (c \times c)) \rightarrow_{\mathcal{R}}^{!} ((0 \times c + c \times 0) \times c + (c \times c) \times 0) \times (c \times c)$$

$$+ (c \times c) \times ((0 \times c + c \times 0) \times c + (c \times c) \times 0)$$

Proof Outline

Proof Outline

Proof Outline

Graph Rewriting in a Nutshell

1 term rewriting on graphs

Example

term
$$t = d(x + x) \times d(x + x)$$
 represented by

► same variable represented by unique node

1 term rewriting on graphs

Example

term
$$t = d(x + x) \times d(x + x)$$
 represented by

same variable represented by unique node

1 term rewriting on graphs

Example

term
$$t = d(x + x) \times d(x + x)$$
 represented by

same variable represented by unique node

- 1 term rewriting on graphs
- 2 copying → sharing

Example Term Rewriting

 $d(x) \rightarrow x + x$

- 1 term rewriting on graphs

Example Graph Rewriting

- 1 term rewriting on graphs
- 2 copying

 → sharing
- **3** structural equality → "pointer equality"

- 1 term rewriting on graphs
- 2 copying

 → sharing
- **3** structural equality → "pointer equality"

- 1 term rewriting on graphs
- 2 copying

 → sharing
- **3** structural equality → "pointer equality"

- 1 term rewriting on graphs
- 2 copying

 → sharing
- **3** structural equality → "pointer equality"

- 1 term rewriting on graphs
- **3** structural equality → "pointer equality"

- 1 term rewriting on graphs
- **3** structural equality → "pointer equality"

- 1 term rewriting on graphs
- 2 copying

 → sharing
- **3** structural equality → "pointer equality"

- 1 term rewriting on graphs
- **3** structural equality → "pointer equality"

- 1 term rewriting on graphs
- **3** structural equality → "pointer equality"

Problems

$$x + x \rightarrow d(x)$$

$$((0+0)+(0+0))\times ((0+0)+(0+0))$$

$$\to_{\mathcal{R}} ((0+0)+(0+0))\times ((0+0)+d(0))$$

Problems

$$x + x \rightarrow d(x)$$

$$((0+0)+(0+0))\times ((0+0)+(0+0))$$

$$\to_{\mathcal{R}} ((0+0)+(0+0))\times ((0+0)+d(0))$$

Problems

$$x + x \rightarrow d(x)$$

$$((0+0)+(0+0)) \times ((0+0)+(0+0))$$

$$\to_{\mathcal{R}} ((0+0)+(0+0)) \times ((0+0)+d(0))$$

Problems

$$x + x \rightarrow d(x)$$

$$((0+0)+(0+0)) \times ((0+0)+(0+0))$$

$$\to_{\mathcal{R}} ((0+0)+(0+0)) \times ((0+0)+d(0))$$

Problem ① below redex maximal sharing required

Problems

$$x + x \rightarrow d(x)$$

$$((0+0)+(0+0)) \times ((0+0)+(0+0))$$

$$\to_{\mathcal{R}} ((0+0)+(0+0)) \times ((0+0)+d(0))$$

Problem ①
below redex
maximal sharing
required

Problems

$$x + x \rightarrow d(x)$$

$$((0+0)+(0+0)) \times ((0+0)+(0+0))$$

$$\to_{\mathcal{R}} ((0+0)+(0+0)) \times ((0+0)+d(0))$$

$$\to_{\mathcal{R}}^{3} (d(0)+d(0)) \times (d(0)+d(0))$$

Problem ①
below redex
maximal sharing
required

Problem @ both arguments of $+\xspace \times \times$ rewritten

Theorem

suppose S is a term graph such that

- 1 node corresponding to p is unshared
- 2 subgraph $S \upharpoonright p$ is maximally shared

Then

$$S \longrightarrow_{\mathcal{G},p} T \iff \operatorname{term}(S) \to_{\mathcal{R},p} \operatorname{term}(T)$$

Theorem

suppose S is a term graph such that

- 1 node corresponding to p is unshared
- 2 subgraph $S \upharpoonright p$ is maximally shared

Then

$$S \longrightarrow_{\mathcal{G},p} T \iff \operatorname{term}(S) \rightarrow_{\mathcal{R},p} \operatorname{term}(T)$$

Idea

• extend rewrite relation $\longrightarrow_{\mathcal{G}}$ with folding and unfolding steps that recover condition \bullet and \bullet

$$S\leqslant \cdot\geqslant \cdot\longrightarrow_{\mathcal{G}} T \qquad\Longleftrightarrow\qquad \mathsf{term}(S)\to_{\mathcal{R}} \mathsf{term}(T)$$

Theorem

suppose S is a term graph such that

- 1 node corresponding to p is unshared
- 2 subgraph $S \upharpoonright p$ is maximally shared

Then

$$S \longrightarrow_{\mathcal{G},p} T \iff \operatorname{term}(S) \to_{\mathcal{R},p} \operatorname{term}(T)$$

Idea

• extend rewrite relation $\longrightarrow_{\mathcal{G}}$ with folding and unfolding steps that recover condition $\mathbf{0}$ and $\mathbf{2}$

$$S\leqslant\cdot\geqslant\cdot\longrightarrow_{\mathcal{G}}T\qquad\Longleftrightarrow\qquad \mathrm{term}(S)\rightarrow_{\mathcal{R}}\mathrm{term}(T)$$

Observation

unfolding may lead to exponential blowup

define for term graphs S, T

▶ $S \supseteq_{v}^{u} T : \iff$ "T obtained from S by identifying nodes u and v"

define for term graphs S, T

▶ $S \supseteq_{v}^{u} T : \iff$ "T obtained from S by identifying nodes u and v"

define for term graphs S, T

▶ $S \supseteq_v^u T :\iff$ "T obtained from S by identifying nodes u and v" and position p

▶ S ▶ $_p$ T : \iff $S \supset_v^u T$ for nodes $u, v \in S$ strictly below position p

define for term graphs S, T

▶ $S \supseteq_v^u T :\iff$ "T obtained from S by identifying nodes u and v" and position p

▶ S ▶ $_p$ T : \iff $S \supset_v^u T$ for nodes $u, v \in S$ strictly below position p

define for term graphs S, T

▶ $S \sqsupset_v^u T :\iff "T \text{ obtained from } S \text{ by identifying nodes } u \text{ and } v"$

and position p

- ▶ S ▶ $_p$ T : \iff $S \sqsupset_v^u T$ for nodes $u, v \in S$ strictly below position p
- ► $S \triangleleft_p T :\iff S \sqsubseteq_v^u T$ and $u \in T$ node above position p

define for term graphs S, T

▶ $S \supseteq_v^u T :\iff$ "T obtained from S by identifying nodes u and v" and position p

- ▶ S ▶ $_p$ T : \iff $S \sqsupset_v^u T$ for nodes $u, v \in S$ strictly below position p
- ▶ $S \triangleleft_p T :\iff S \sqsubseteq_v^u T$ and $u \in T$ unshared node above position p

define for term graphs S, T

▶ $S \supset_v^u T :\iff "T \text{ obtained from } S \text{ by identifying nodes } u \text{ and } v"$ and position p

- ▶ S ▶ $_p$ T : \iff $S \sqsupset_v^u T$ for nodes $u, v \in S$ strictly below position p
- ▶ $S \triangleleft_p T :\iff S \sqsubset_v^u T$ and $u \in T$ unshared node above position p

define for term graphs S, T

▶ $S \supseteq_v^u T :\iff$ "T obtained from S by identifying nodes u and v" and position p

- ▶ S ▶ $_p$ T : \iff $S \sqsupset_v^u T$ for nodes $u, v \in S$ strictly below position p
- ▶ $S \triangleleft_p T :\iff S \sqsubset_v^u T$ and $u \in T$ unshared node above position p

"Complexity Version"

Lemma

- 1 if S is \triangleright_p -minimal then $S \upharpoonright p$ is maximally sharing
- 2 if S is \triangleleft_p -minimal then the node at position p is unshared

"Complexity Version"

Lemma

- 1 if S is \triangleright_p -minimal then $S \upharpoonright p$ is maximally sharing
- 2 if S is \triangleleft_p -minimal then the node at position p is unshared

Theorem

$$S \lhd_p^! \cdot \blacktriangleright_p^! \cdot \longrightarrow_{\mathcal{G},p} T \iff \operatorname{term}(S) \to_{\mathcal{R},p} \operatorname{term}(T)$$

"Complexity Version"

Lemma

- 1 if S is \triangleright_p -minimal then $S \upharpoonright p$ is maximally sharing
- 2 if S is \triangleleft_p -minimal then the node at position p is unshared

Theorem

$$S \lhd_p^! \cdot \blacktriangleright_p^! \cdot \longrightarrow_{\mathcal{G},p} T \qquad \Longleftrightarrow \qquad \mathsf{term}(S) \to_{\mathcal{R},p} \mathsf{term}(T)$$

$$ightharpoonup$$
 set $ightharpoonup$: $= \lhd_p^! \cdot
ightharpoonup^! \cdot
ightharpoonup_{\mathcal{G},p}$

"Complexity Version"

Lemma

- 1 if S is \triangleright_p -minimal then $S \upharpoonright p$ is maximally sharing
- 2 if S is \triangleleft_p -minimal then the node at position p is unshared

Theorem

$$S \longrightarrow_{\mathcal{G},p} T \iff \operatorname{term}(S) \rightarrow_{\mathcal{R},p} \operatorname{term}(T)$$

$$ightharpoonup$$
 set $ightharpoonup \mathcal{G}_{,p}:=\lhd_p^!\cdot
ightharpoonup^!\cdot
ightharpoonup_p\cdot
ightharpo$

"Complexity Version"

Lemma

- 1 if S is \triangleright_p -minimal then $S \upharpoonright p$ is maximally sharing
- 2 if S is \triangleleft_p -minimal then the node at position p is unshared

Theorem

$$S \longrightarrow_{\mathcal{G},p} T \iff \operatorname{term}(S) \rightarrow_{\mathcal{R},p} \operatorname{term}(T)$$

$$\blacktriangleright \ \mathsf{set} \ \Longrightarrow_{\mathcal{G},p} \ := \lhd_p^! \cdot \blacktriangleright_p^! \cdot \longrightarrow_{\mathcal{G},p}$$

Lemma

If
$$S \longrightarrow_G^{\ell} T$$
 then $|T| \leq (\ell+1) \cdot |S| + \ell^2 \cdot \Delta$ for fixed $\Delta \in \mathbb{N}$

ightharpoonup polynomial size growth in |S| and length ℓ

Main Result Revisited

Theorem

For any term s with $dl_{\mathcal{R}}(s) \leqslant \ell$

$$\ell = \Omega(|s|)$$

- **1** some normal-form is computable in deterministic time $O(\log(\ell)^3\ell^7)$
- 2 any normal-form is computable in nondeterministic time $O(\log(\ell)^2\ell^5)$

Theorem

For any term s with $dl_{\mathcal{R}}(s) \leqslant \ell$

$$\ell = \Omega(|s|)$$

- **1** some normal-form is computable in deterministic time $O(\log(\ell)^3\ell^7)$
- 2 any normal-form is computable in nondeterministic time $O(\log(\ell)^2\ell^5)$

Proof Idea.

$$s=s_0 \quad \rightarrow_{\mathcal{R}} \quad s_1 \quad \rightarrow_{\mathcal{R}} \quad \dots \quad \rightarrow_{\mathcal{R}} \quad s$$

Theorem

For any term s with $dl_{\mathcal{R}}(s) \leq \ell$

$$\ell = \Omega(|s|)$$

- lacktriangledown some normal-form is computable in deterministic time $O(\log(\ell)^3\ell^7)$
- 2 any normal-form is computable in nondeterministic time $O(\log(\ell)^2\ell^5)$

Proof Idea.

$$S = S_0 \longrightarrow_{\mathcal{G}} S_1 \longrightarrow_{\mathcal{G}} \cdots \longrightarrow_{\mathcal{G}} S_1$$

1 rewrite graphs instead of terms

adequacy theorem

Theorem

For any term s with $dl_{\mathcal{R}}(s) \leqslant \ell$

$$\ell = \Omega(|s|)$$

- **1** some normal-form is computable in deterministic time $O(\log(\ell)^3\ell^7)$
- 2 any normal-form is computable in nondeterministic time $O(\log(\ell)^2\ell^5)$

Proof Idea.

$$S = S_0 \longrightarrow_{\mathcal{G}} S_1 \longrightarrow_{\mathcal{G}} \cdots \longrightarrow_{\mathcal{G}} S_1$$

1 rewrite graphs instead of terms

adequacy theorem

- 2 size growth bound polynomially in ℓ and |S|
- restrictive unfolding

Theorem

For any term s with $dl_{\mathcal{R}}(s) \leqslant \ell$

$$\ell = \Omega(|s|) = \Omega(|S|)$$

- **1** some normal-form is computable in deterministic time $O(\log(\ell)^3\ell^7)$
- 2 any normal-form is computable in nondeterministic time $O(\log(\ell)^2\ell^5)$

Proof Idea.

$$S = S_0 \longrightarrow_G S_1 \longrightarrow_G \dots \longrightarrow_G S_I$$

1 rewrite graphs instead of terms

adequacy theorem

- 2 size growth bound polynomially in ℓ and |S|
- restrictive unfolding

Theorem

For any term s with $dl_{\mathcal{R}}(s) \leqslant \ell$

$$\ell = \Omega(|s|) = \Omega(|S|)$$

- lacktriangledown some normal-form is computable in deterministic time $O(\log(\ell)^3\ell^7)$
- 2 any normal-form is computable in nondeterministic time $O(\log(\ell)^2\ell^5)$

Proof Idea.

$$S = S_0 \longrightarrow_{\mathcal{G}} S_1 \longrightarrow_{\mathcal{G}} \cdots \longrightarrow_{\mathcal{G}} S_1$$

1 rewrite graphs instead of terms

adequacy theorem

② size growth bound polynomially in ℓ

restrictive unfolding

Theorem

For any term s with $dl_{\mathcal{R}}(s) \leqslant \ell$

$$\ell = \Omega(|s|) = \Omega(|S|)$$

- lacktriangledown some normal-form is computable in deterministic time $O(\log(\ell)^3\ell^7)$
- 2 any normal-form is computable in nondeterministic time $O(\log(\ell)^2\ell^5)$

Proof Idea.

$$S = S_0 \longrightarrow_{\mathcal{G}} S_1 \longrightarrow_{\mathcal{G}} \dots \longrightarrow_{\mathcal{G}} S_1$$

1 rewrite graphs instead of terms

adequacy theorem

2 size growth bound polynomially in ℓ

- restrictive unfolding
- **3** each step $S_i \longrightarrow_{\mathcal{G}} S_{i+1}$ polytime computable in $|S_i|$

tedious

Theorem

For any term s with $dl_{\mathcal{R}}(s) \leqslant \ell$

$$\ell = \Omega(|s|) = \Omega(|S|)$$

- lacktriangledown some normal-form is computable in deterministic time $O(\log(\ell)^3\ell^7)$
- 2 any normal-form is computable in nondeterministic time $O(\log(\ell)^2\ell^5)$

Proof Idea.

$$S = S_0 \longrightarrow_{\mathcal{G}} S_1 \longrightarrow_{\mathcal{G}} \dots \longrightarrow_{\mathcal{G}} S_l$$

1 rewrite graphs instead of terms

adequacy theorem

 $oldsymbol{2}$ size growth bound polynomially in ℓ

- restrictive unfolding
- **3** each step $S_i \longrightarrow_{\mathcal{G}} S_{i+1}$ polytime computable in $|S_i|$ hence ℓ tedious

Theorem

For any term s with $dl_{\mathcal{R}}(s) \leqslant \ell$

$$\ell = \Omega(|s|) = \Omega(|S|)$$

- lacktriangledown some normal-form is computable in deterministic time $O(\log(\ell)^3\ell^7)$
- 2 any normal-form is computable in nondeterministic time $O(\log(\ell)^2\ell^5)$

Proof Idea.

$$S = S_0 \longrightarrow_{\mathcal{G}} S_1 \longrightarrow_{\mathcal{G}} \dots \longrightarrow_{\mathcal{G}} S_1$$

1 rewrite graphs instead of terms

adequacy theorem

 ${f 2}$ size growth bound polynomially in ℓ

- restrictive unfolding
- **3** each step $S_i \longrightarrow_{\mathcal{G}} S_{i+1}$ polytime computable in $|S_i|$ hence ℓ tedious
- $oldsymbol{4}$ at most ℓ steps have to be performed

assumption

Theorem

For any term s with $dl_{\mathcal{R}}(s) \leqslant \ell$

$$\ell = \Omega(|s|) = \Omega(|S|)$$

- **1** some normal-form is computable in deterministic time $O(\log(\ell)^3\ell^7)$
- 2 any normal-form is computable in nondeterministic time $O(\log(\ell)^2\ell^5)$

Theorem

For any term s with $dl_{\mathcal{R}}(s) \leqslant \ell$

$$\ell = \Omega(|s|) = \Omega(|S|)$$

- lacktriangledown some normal-form is computable in deterministic time $O(\log(\ell)^3\ell^7)$
- 2 any normal-form is computable in nondeterministic time $O(\log(\ell)^2\ell^5)$

Corollary

Let \mathcal{R} be a terminating TRS with $rc_{\mathcal{R}}(n) \in O(n^k)$

 $k \geqslant 1$

1 if \mathbb{R} computes the function f then $f \in \mathsf{FP}$

Theorem

For any term s with $dl_{\mathcal{R}}(s) \leqslant \ell$

$$\ell = \Omega(|s|) = \Omega(|S|)$$

- lacktriangledown some normal-form is computable in deterministic time $O(\log(\ell)^3\ell^7)$
- 2 any normal-form is computable in nondeterministic time $O(\log(\ell)^2\ell^5)$

Corollary

Let \mathcal{R} be a terminating TRS with $rc_{\mathcal{R}}(n) \in O(n^k)$

 $k \geqslant 1$

- **1** if \mathcal{R} computes the function f then $f \in \mathsf{FP}$
- ② if \mathcal{R} computes the relation R then the function problem associated with R is in FNP. given $\vec{v} \in \mathcal{V}al^k$, find $w \in \mathcal{V}al$ with $(\vec{v}, w) \in R$

Theorem

For any term s with $dl_{\mathcal{R}}(s) \leqslant \ell$

$$\ell = \Omega(|s|) = \Omega(|S|)$$

- lacktriangledown some normal-form is computable in deterministic time $O(\log(\ell)^3\ell^7)$
- 2 any normal-form is computable in nondeterministic time $O(\log(\ell)^2\ell^5)$

Corollary

Let \mathcal{R} be a terminating TRS with $rc_{\mathcal{R}}(n) \in O(n^k)$

 $k \geqslant 1$

- **1** if \mathcal{R} computes the function f then $f \in \mathsf{FP}$
- **2** if \mathcal{R} computes the relation R then the function problem associated with R is in FNP. given $\vec{v} \in \mathcal{V}al^k$, find $w \in \mathcal{V}al$ with $(\vec{v}, w) \in R$

FNP "is class of function problems associated with $\mathcal{L} \in \text{NP}$ " $F_{\text{SAT}} = \text{given formula } \phi \text{, find satisfying assignment } \alpha$

notion of runtime-complexity is a reasonable cost model for rewriting

- 1 cost of computation naturally expressed
- 2 polynomially related to actual cost on Turing machines

notion of runtime-complexity is a reasonable cost model for rewriting

- 1 cost of computation naturally expressed
- 2 polynomially related to actual cost on Turing machines

U. Dal Lago and S. Martini
On Constructor Rewrite Systems and the Lambda-Calculus.
In ICALP, pages 163–174, 2009.

Results
polynomially bounded innermost runtime co
polytime computability on orthogonal constructor TRSs

runtime complexity induces

notion of runtime-complexity is a reasonable cost model for rewriting

- 1 cost of computation naturally expressed
- 2 polynomially related to actual cost on Turing machines
- U. Dal Lago and S. Martini
 On Constructor Rewrite Systems and the Lambda-Calculus.
 In ICALP, pages 163–174, 2009.
- U. Dal Lago and S. Martini

 Derivational Complexity is an Invariant Cost Model.

 In FOPARA, 2009.

Results polynomially bounded innermost (outermost) runtime complexity induces polytime computability on orthogonal TRSs

notion of runtime-complexity is a reasonable cost model for rewriting

- 1 cost of computation naturally expressed
- 2 polynomially related to actual cost on Turing machines

following tools verify polynomial (i)RC fully automatically

► T_CT http://cl-informatik.uibk.ac.at/research/software/tct

notion of runtime-complexity is a reasonable cost model for rewriting

- 1 cost of computation naturally expressed
- 2 polynomially related to actual cost on Turing machines

following tools verify polynomial (i)RC + CC fully automatically

► T_CT http://cl-informatik.uibk.ac.at/research/software/tct

notion of runtime-complexity is a reasonable cost model for rewriting

- 1 cost of computation naturally expressed
- 2 polynomially related to actual cost on Turing machines

following tools verify polynomial (i)RC + CC fully automatically

- ► AProVE innermost runtime complexity http://aprove.informatik.rwth-aachen.de/
- ► GT
 http://cl-informatik.uibk.ac.at/research/software/ttt2
- ► T_CT http://cl-informatik.uibk.ac.at/research/software/tct
- ► Matchbox/Poly derivational complexity http://dfa.imn.htwk-leipzig.de/matchbox/poly