

算网一体技术研究及发展探讨

孙滔

中国移动研究院 2023年7月

- 1 算网一体提出的背景
 - 2 算网一体新技术探索
- 3 总结与展望

中国移动提出"算力网络"新理念

一年多来持续开拓创新,全力推进算力网络发展,形成一系列创新成果,在业界取得了广泛共识

——中国移动《算力网络 白皮书》

"算网一体"是中国移动算力网络发展的深化

算力网络的发展经过三个阶段的发展,逐渐深化

起步阶段:泛在协同

发展阶段:融合统一

跨越阶段:一体内生

运营服务

一站服务:一站开通算网服务

协同运营:云网运营双入口拉通

融合服务:产品融合、确定性服务

统一运营:统一入口、统一平台

一体服务:多层次智简无感服务

模式创新:多方算力可信交易

编排管理

协同编排

智能编排

智慧内生

基础设施

网随算动

算网融合

算网一体

2021-2023

十四五阶段

2024-2025

025~

十五五阶段及更长期

算网一体架构及总体设计

算网一体通过"联合感知""混合控制""极致互联"构建面向智能化时代的数字基础设施

- 1 算网一体提出的背景
- 2 算网一体新技术探索
- 3 总结与展望

1、算力路由: 概念和技术

2018年开始研究算网融合技术,面向云边协同和边边协同的"性能反转"等问题,提出在路由域引入计算信息进行联合调度

发现问题

云边以及边边调度之间出现"性能反转"

- 计算负载高及网络队列 深的条件下,**边缘响应 平均时延及尾时延远大 于中心云**

- **算的负载状态**以及**网的** 拥塞情况均是问题来源

问题本质

计算和网络是<u>独立系统</u>,算的负载和网的拥塞信息没有产生关联

算:降低负载、计算资源预留...

→ **问题:** 造成大量计算资源的闲置

网:增加带宽、配置专线...

问题: 增加网络建设、运维成本

解决思路

在路由中引入计算信息,进行联合调度,

(1)感知:路由系统感知计算资源

(2)路由:综合网络和计算信息寻址选路

形成算力感知网络CAN的核心方向-算力路由

通过仿真发现在路由中引入算力信息在低、中、重载情况下均有一定的优化效果

1、算力路由:得到国际同行高度认可

历经4年,中国移动在IETF发起成立算力路由工作组(CATS, Computing-Aware Traffic Steering) 并担任主席,是IETF 7大领域133个工作组中近10年由中国高校/公司牵头成立的两个工作组之一

里程碑 IETF CATS WG成立 人在新艺 牵头在IETF召开首次算力 召开第二次、第三次算力 IETF113次会议,牵 IETF116次会议,牵 路由研讨会side meeting 路由研讨会side meeting 头召开 第一次BOF 头召开 第二次BOF 中国移动担任主席 2020.11~2021.03 2019.11 2022, 03 2022.11 2023.03 场景和需求达成共识 讨论技术路线,工作组章程 获取关注,凝聚初步共识

CATS面向AR/VR、车联网等新型多节点部署服务的场景,制定算力路由的场景、需求、架构标准

当前,许多服务会创建多个服务实例,这些实例通常在地理上分布在多个站点。 CATS工作组主要考虑**网络边缘节点如何引导服务的客户端和提供服务的站点之间** 的流量的问题。——CATS WG Charter

范围

- 基础工作:问题声明、场景、需求、技术分析等
- 总体架构:定义、组网、功能模块等
- 其他基础工作:计算指标的分析、控制面和数据面的 定义、基于现有协议的实现、潜在新协议需求的分析

里程碑/计划

- 2023年7月,采纳问题声明、场景、需求、技术分析等基础文稿
- 2024年7月, 采纳架构文稿
- · 2025年11月,提交架构文稿至RFC发布序列

1、算力路由: IETF CATS工作进展

CATS目前已经有20篇文稿,即将在IETF117召开第二次会议,聚焦在架构、需求、计算指标定义等

CATS 架构核心组件

Ingress CATS-Router:

- CATS Traffic Classifier(C-TC): 区分是否是CATS流量,决定服务节点
- CATS Path Selector (C-PS): 选择网络转发路径

Egress CATS-Router:

- CATS Network Metric Agent(C-NMA): 收集和分发网络指标
- CATS Service Metric Agent(C-SMA): 收集和分发服务和计算指标

CATS-control center:

- CATS Computing information Base(C-CIB):维护细粒度的计算信息
- CATS Network Metric information Base(C-NIB): 维护细粒度的网络信息
- CATS Path Calculation Unit(C-PCE): 计算最合适的网络路径和选择服务节点
- CATS-SBI interface: CATS-control center与CATS-Router的接口

https://datatracker.ietf.org/doc/draft-ldbc-cats-framework/ https://datatracker.ietf.org/doc/draft-yao-cats-awareness-architecture/

CATS WG目前的个人文稿

场景: draft-yao-cats-ps-usecases-00,即将立项 draft-an-cats-usecase-ai-00, CATS+AI大模型场景

需求: draft-yao-cats-ps-usecases-00, draft-yuan-cats-end-to-end-problem-requirement-00 draft-huang-cats-ps-and-requirements-of-l2-cats-01

架构: draft-ldbc-cats-framework-01 draft-yao-cats-awareness-architecture-00

计算Metric: draft-du-cats-computing-modeling-description-00 draft-dunbar-cats-edge-service-metrics-00

其他:

- · draft-ddcb-cats-sfc-bgp-applicability-00 (sfc-bgp方案)
- draft-jaehwoon-cats-mobility-00 (cats支持移动性方案)
- draft-wang-cats-green-challenges-00 (cats绿色低碳考虑)
- draft-shi-cats-ipv6-based-con-00 (cats与IPv6的应用)

1、算力路由: 实践进展

算力路由系统的实现根据网络部署情况,支持集中式、分布式、混合式等多种组网方案。从集中式方案开始,分阶段逐步推进算力路由实验验证

总体测试方案

阶段I集中式方案

• 完成**算网控制器**和**算力路由网关**原型样机开发,

构建业内首个集中式算力路由验证系统

• 推进广东珠海现网试点验证,验证业务承载量提升

30%以上,算网综合资源利用率提升32%以上

算网控制器

算力路由网关

阶段II 端到端算力路由系统验证

- 开展规模性部署的CATS技术方案验证
- · 开展CA-BGP等新型协议的验证测试
- 分布式算力路由样机已进入平台测试阶段

分布式算力路中样机

《算网一体技术体系关键技术创新案例》荣获CCSA TC6102022 年度"最佳实践案例"

《算力感知和算力路由构建算 网一体化调度》荣获工信部 2022年ICT优秀案例"卓越科 技创新奖"

《算力感知和路由方案》通信 世界全媒体"2023年度算力 应用案例十大标杆"

2、广域吞吐敏感网络:数据异地迁移的需求越来越多

海量数据跨广域网传输的场景越来越多,数据异地上云、云迁移等场景的数据规模越来越大

东数西算需求

- 东数西存
- 东数西训
- 东数西渲

2025年中国数据量将达到48.6ZB,其中适合**东数西算的温、冷数据占比95%**

数据上云需求

- 自动驾驶
- 影视制作
- ・ 科学计算
- **─**`⊤*エ*⁄ᡔ

云迁移需求

- 多云灾备
- 多云协同计算

• 云迁移

为保证数据的安全存储以及有效管理,**云灾备市场规模不断扩大**,2019年达到了32亿元,2023年达到了51亿元,年复合增长率约为12.4%

• ...

自动驾驶训练数据 单车**日产数据几TB至十几TB**,完成L3训练预计产生8EB数据,L4训 上云 练预计产生20EB数据

综艺原始素材上云 综艺原始素材总量一年达500PB, 10TB~100TB量级/日/节目

基因测序数据上云 国内某基因企业基因测序数据年数据100PB, TB~100TB量级/次

FAST观测数据上云 FAST每年200+以上观测项目,产生数据15PB左右,TB~PB量级/次

2、广域吞吐敏感网络:以"两高两低"为目标

实现高吞吐、高可靠、低时延、低算力损耗"两高两低"特性的算网高性能互联网络

广域网TCP传输吞吐受限

时延由1ms增加到10ms时, **吞吐下降10倍**

原生RDMA丢包敏感,难以 直接用于广域网

丢包率达到 0.5%,**有效** 吞吐接近为0

广域吞吐敏感网络

4个关键技术,实现长距高吞吐传输

- ① 新型拥塞控制算法,提升吞吐,降低去包
- **② 丢包快速恢复算法**,减少重传,降低时延
- ③ **丢包精确重传机制**,实现RDMA有损部署
- 数据安全加密协议,实现数据高安全传输

- ① 人工硬盘快递:操作复杂、流程繁琐、占用人工多,且快递过程中存在硬盘损坏、丢失等风险
- ② 在线网络传输:"低带宽等不起,高带宽用不起",公网传输速率太慢,专网按月付费模式性价比低

2、广域吞吐敏感网络技术:组网架构

实现海量数据长距传输即送即达,满足数据高效低成本搬运和安全迁移的需求

3、数字孪生网络:典型应用场景

数字孪生网络(DTN)通过网络本体与虚拟孪生体间的<mark>实时交互映射</mark>,助力实现网络的<mark>全生命周期管理</mark>以 及创新优化策略的<mark>低风险、高效率</mark>部署,是面向算网一体的关键技术之一

分布式流量工程

- 数字孪生网络感知真实网络流量状态
- 为模型训练提供充分空间,可提升路由决策的有效性
- 策略下发前的孪生预验证,可降低对物理网络的影响

数据中心网络运维

- 网络的高保真呈现、状态的实时监控
- 网络流量均衡调度,异常流量识别和处理等场景
- 网络配置预验证,网络策略的双闭环验证

3、数字孪生网络:国际标准

牵头构建数字孪生网络国际化标准体系,在国际标准化组织ITU-T、IETF中同步推进多个标准项目

ITU-T:需求、架构、能力评估等

- 中国移动**2019**在ITU-T SG13完成**DTN首个标准立项**
- **2022年3月,发布全球首个DTN标准Y.3090:DTN需求和架构,**被评为**四个优秀标准之一**
- DTN方向成为SG13重点研究方向之一
- · 基于Y.3090,正在同步推进3个标准项目:DTN能力分级及评估方法, DTN数据域技术要求,DTN管理和编排

IETF:架构及关键技术

- 2020年,在IRTF**牵头开启**DTN标准化研究
- 2022年3月在NMRG组**完成《DTN概念及架构》立项**,得到多家单位支持,DTN概念、架构、应用场景和价值**已形成共识,** 预期2023年底推进发布Informational **RFC**
- · DTN已成为NMRG当前**三大研究方向之**一
- 目前5个项目在研,多厂家(华为、法电、Telefonica, NICT) 共同推进:数据采集,DTN接口,性能评估,基于DTN的流量 模拟,基于DTN的时延测量

3、数字孪生网络:国内标准

面向信息通信网络的业务和管理需求,CCSA TC3 成立"数字孪生网络"工作子组,已凝聚国内DTN研究 核心力量,推进DTN标准体系构建

工作子组研究进展

- ▶ 2021年10月,中国移动牵头成立"数字孪生网络
- **"子工作组**;中国移动,中国电信,中国联通,华为,中兴,信通院、中信科等多家单位参与
- ▶ 已召开5次子组会议:60+专家参会
- > **11个项目同步推进:中国移动牵头4项**(总体技

术要求,数据服务,网络建模和数字地图),参与5

项。其中总体技术要求、评估方法**2个项目待报批**,

数据服务、网络建模、数字地图、DTN路由控制等9

个项目在研

3、数字孪生网络:数据生成和优化关键技术(1/3)

AI模型可助力构建实时性高、轻量级、高精度的DTN,但面临数据挑战

DTN AI建模的数据挑战

- **真实数据缺失**:生产网络数据具有较高价值,但较难获取, 且数量、类型和精度有限
- **多源数据**:网络数据来源多样,质量不一,难以直接用于 DTN AI模型

问题抽象

- 问题设置:基于某DTN AI模型(如RouteNet-Fermi模型),基于小规模网络生成高质量训练数据,能够扩展到大规模网络
- 评价指标:路径平均时延的预测平均绝对百分误差

3、数字孪生网络:数据生成和优化关键技术(2/3)

面向DTN AI模型构建 , 提出AutoOPT方案 , 通过数据生成和优化 , 得到高质量数据

数据生成(阶段1)

- 基于历史流量数据及多样化配置,生成模拟数据
 - **生成网络配置:**尽可能覆盖更多场景,包含拓扑 (PLOD算法)、路由策略(最短路径及其变种)和流 量矩阵(多样化流量密度)
 - 生成候选数据:利用模拟器(OMNeT++,NS-3等) 或AIGC技术(GPT,LLaMA等)生成模拟数据

数据优化(阶段2)

- 从多源数据中自动筛选出高精度、多样化、且贴合真实数据实际情形的高质量数据
 - 种子样本选择:训练特征提取器&特征提取(链路状态/队列状态/流状态)->聚类->选择类中心&最近邻->领域知识验证
 - 增量优化:筛选器对剩余候选数据进行筛选(简单样本选择->困难样本挖掘->分布外(OOD)检测->领域知识验证),得到高质量数据

3、数字孪生网络:数据生成和优化关键技术(3/3)

实验结果表明通过AutoOPT可得到高质量数据,能够提升DTN AI模型精度和泛化能力

效果测试

- 可扩展性(表1)
- 数据优化的有效性(表2)

TABLE I: Generalization to large networks.

Topology Size	Validation MAPE	Test MAPE
ALL	6.63%	8.55%
50 nodes	5.38%	5.80%
75 nodes	5.44%	5.24%
100 nodes	5.27%	5.32%
130 nodes	6.62%	7.34%
170 nodes	6.83%	8.21%
200 nodes	6.31%	8.35%
240 nodes	7.64%	8.15%
260 nodes	7.56%	8.76%
280 nodes	7.66%	9.33%
300 nodes	7.75%	9.03%

TABLE II: Performance of data optimization.

Iteration	Training Samples	Validation MAPE	Test MAPE
1	20 (seed samples)	10.96%	12.38%
2	38	9.46%	11.34%
3	57	8.43%	10.76%
4	79	7.13%	9.43%
5	100	6.63%	8.55%

与已有方法相比结果接近,但开销更低

- 已有方法
 - 细粒度验证集分析(例如, Snowyowl)
 - 大规模候选数据(例如, GhostDucks生成270,000 个候选样本)
- AutoOPT
 - 粗粒度验证集分析
 - 较小规模候选数据(阶段1生成约500个候选样本)

Fig. 6: MAPE of AutoOPT and baseline methods.

Mei Li, Cheng Zhou, Lu Lu, Yan Zhang, Tao Sun. AutoOPT: Data Generation and Optimization for Digital Twin Network (DTN). IEEE CLOUD 2023.

4、数字孪生网络:学术期刊/专刊征稿

中国移动 China Mobile

《IEEE NETWORK》 数字孪生网络专刊

所属分类: 首页 > SCI期刊 > 工程技术

期刊名: IEEE NETWORK

期刊名缩写: IEEE NETWORK

期刊ISSN: 0890-8044

E-ISSN: 1558-156X

2022年影响因子/JCR分区: 10.294/Q1

学科与分区: COMPUTER SCIENCE, HARDWARE & ARCHITECTURE - SCIE(Q1); COMPUTER SCIENCE, INFORMATION SYSTEMS - SCIE(Q1); ENGINEERING, ELECTRICAL & ELECTRONIC - SCIE(Q1); TELECOMMUNICATIONS - SCIE(Q1)

Home / Publications / Magazines / IEEE Network / Call for Papers / Network Digital Twin

Network Digital Twin Guest Editors

Important Dates

Manuscript Submission Deadline: 15 July 2023

Initial Decision Notification: 15 September 2023

Revised Manuscript Due: 15 October 2023

Final Decision Notification: 1 November 2023

Final Manuscript Due: 20 November 2023

Publication Date: January/February 2024

Yong Cui

Tsinghua University, China

Jiangchuan Liu

Simon Fraser University, Canada

Minlan Yu

Harvard University, USA

Junchen Jiang

The University of Chicago, USA

Liang Zhang

Huawei Al4Net Lab, China

Lu Lu

China Mobile Research Institute, China

https://www.comsoc.org/publications/magazines/ieee-network/cfp/network-digital-twin

截稿日期:2023年7月15日,欢迎踊跃投稿!

IEEE DTPI Session: Digital Twin Network

Session Chairs

Dr. Tao Sun Dr. Diego R. Lopez

China Mobile

Telefonica

截稿日期:2023年7月15日

Submission Link:

https://2023.dtpi.org/submissio

n/online-submission

《Digital Twin》国际期刊 DT网络通信领域,长期欢迎投稿!

- 1 算网一体提出的背景
- 2 算网一体新技术探索
- 3 总结与展望

总结与展望

- "算网一体、智能内生"将是未来网络领域后续几年最大的发展趋势
- 算网一体是我国主导提出的原创技术体系,目前在算力路由、网络数字孪生、在网计算等关键技术方向取得了积极成果
- "联合感知"、"混合控制"、"极致互联"是算网一体的特征
- 相关技术将继续在未来几年吸引大家的关注,存在很大的创新空间
- 算网一体将对6G网络架构的设计起到重要影响