МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 5.1.3

Эффект Рамзауэра

Выполнили: Гисич Арсений Вазюля Василиса Б03-101

1 Аннотация

В данной работе исследуется энергетическая зависимость вероятности рассеяния электронов атомами ксенона, определяются энергии электронов, при которых наблюдается «просветление» ксенона, и оценивается размер его внешней электронной оболочки.

2 Теоретические сведения

Эффективное сечение реакции – это величина, характеризующая вероятность перехода системы двух сталкивающихся частиц в результате их рассеяния (упругого или неупругого) в определенное конечное состояние. Сечение σ равно отношению числа N таких переходов в единицу времени к плотности потока рассеиваемых частиц nv, падающих на мишень, т. е. к числу частиц, проходящих в единицу времени через единичную площадку, перпендикулярную к их скорости v (n – плотность числа падающих частиц).

$$\sigma = \frac{N}{nv}.$$

Таким образом, сечение имеет размерность площади.

Качественно результат экспериментов Рамзауэра при энергии электронов порядка десятков эВ показан на рис. 1.

Рис. 1: Качественная картина результатов измерения упругого рассеяния электронов в аргоне

По мере уменьшения энергии электрона от нескольких десятков электрон-вольт поперечное сечение его упругого рассеяния растет. Однако при энергиях меньше 16 эВ в случае аргона сечение начинает уменьшаться, а при $E\sim 1$ эВ практически равно нулю, т. е. аргон становится прозрачным для электронов. При дальнейшем уменьшении энергии электронов сечение рассеяния опять начинает возрастать. Это поведение поперечного сечения свойственно не только атомам аргона, но и атомам всех инертных газов. Такое поведение электронов нельзя объяснить с позиций классической физики. Объяснение этого эффекта потребовало учета волновой природы электронов. Схема эксперимента Рамзауэра показана, на рис. 2.

Рис. 2: Схема установки для измерения сечения рассеяния электронов в газах

С точки зрения квантовой теории, внутри атома потенциальная энергия налетающего электрона U отлична от нуля, скорость электрона изменяется, становясь равной v' в

соответствии с законом сохранения энергии

$$E = \frac{mv^2}{2} = \frac{mv'^2}{2} + U,$$

а значит, изменяется и длина его волны де Бройля. Таким образом, по отношению к электронной волне атом ведет себя как преломляющая среда с относительным показателем преломления

$$n = \frac{\lambda}{\lambda'} = \sqrt{1 - \frac{U}{E}}.$$

Коэффициент прохождения электронов максимален при условии

$$\sqrt{\frac{2m(E+U_0)}{\hbar^2}}l = \pi n; \ n \in \mathbb{N}_1, \tag{1}$$

где U_0 – глубина потенциальной ямы.

Это условие легко получить, рассматривая интерференцию электронных волн де Бройля в атоме. Движущемуся электрону соответствует волна де Бройля, длина которой определяется соотношением $\lambda = h/mv$. Если кинетическая энергия электрона невелика, то $E = mv^2/2$ и $\lambda = h/\sqrt{2mE}$. При движении электрона через атом длина волны де Бройля становится меньше и равна $\lambda' = h/\sqrt{2m(E+U_0)}$ где U_0 — глубина атомного потенциала. При этом, волна де Бройля отражается от границ атомного потенциала, т. е. от поверхности атома, и происходит интерференция прошедшей через атом волны 1 и волны 2, отраженной от передней и задней границы атома (эти волны когерентны). Прошедшая волна 1 усилится волной 2, если геометрическая разность хода между ними $\Delta = 2l = \lambda'$, что соответствует условию первого интерференционного максимума, т. е. при условии

$$2l = \frac{h}{\sqrt{2m(E_1 + U_0)}}\tag{2}$$

Прошедшая волна ослабится при условии

$$2l = \frac{3}{2} \frac{h}{\sqrt{2m(E_1 + U_0)}} \tag{3}$$

Из (2) и (3), можно получить

$$l = \frac{h\sqrt{5}}{\sqrt{32m(E_2 - E_1)}}. (4)$$

Оттуда же можно найти эффективную глубину потенциальной ямы атома:

$$U_0 = \frac{4}{5}E_2 - \frac{9}{5}E_1.$$

Уравнение вольт-амперной характеристики тиратрона:

$$I_a = I_0 \exp(-C\omega(V)); C = Ln_a \Delta_a,$$

где $I_0 = eN_0$ – ток катода, а $I_a = eN_a$ – ток анода. Отсюда определяется вероятность рассеяния электрона в зависимости от его энергии:

$$\omega(V) = -\frac{1}{C} \ln \frac{I_a(V)}{I_0}.$$
 (5)

Рис. 3: Схема экспериментальной установки

3 Методика измерений

Схема экспериментальной установки отображена на рис. 3.

В данной работе для изучения эффекта Рамзауэра используется тиратрон ТГЗ-01/1.3Б, заполненный инертным газом. Электроны, эмитируемые катодом тиратрона, ускоряются напряжением V, приложенным между катодом и ближайшей к нему сеткой. Затем электроны рассеиваются на атомах инертного газа (ксенона). Все сетки соединены между собой и имеют одинаковый потенциал, примерно равный потенциалу анода. Поэтому между первой сеткой и анодом практически нет поля. Рассеянные электроны отклоняются в сторону и уходят на сетку, а оставшаяся часть электронов достигает анода и создаёт анодный ток I_a . Таким образом, поток электронов N(x) (т. е. число электронов, проходящих через поперечное сечение лампы в точке x в единицу времени) уменьшается с ростом x от начального значения X у катода (в точке x=0) до некоторого значения N_a у анода (в точке x=L).

4 Используемое оборудование

- 1. вольтметры;
- 2. блок питания;
- 3. тиратрон ТГЗ;
- 4. осциллограф;

5 Результаты измерений и обработка данных

5.1 Динамический режим

По результатам измерений в динамическом режиме оценим размер электронной оболочки атома инертного газа по формулам (2) и (3).

Осциллограммы для двух значений $V_{\text{накала}}$ представлены на рис. 4.

Положение первого максимума

$$V_{max}^1 \approx 2 B$$
.

Рис. 4: Осциллограммы: (a) $V_{\text{накала}} = 2.76~B$, (b) $V_{\text{накала}} = 2.94~B$

Положение первого минимума

$$V_{min}^1 \approx 6 B$$
.

Тогда

$$l = \frac{h}{\sqrt{2m_e e^-(4.5~[B])}} \approx 2.9~\text{Å}$$

$$l = \frac{3}{4} \frac{h}{\sqrt{2m_e e^-(8.5~[B])}} \approx 3.1~\text{Å}$$

Далее найдём радиус из формулы (4):

$$l = 3.4 \text{ Å}$$

Эффективная глубина потенциальной ямы равна

$$U_0 = \frac{4}{5} \cdot 6 - \frac{9}{5} \cdot 2 = 1.2 \ 9B.$$

Так как напряжение пробоя примерно равно 12 В, в колбу закачан ксенон.

5.2 Статический режим

Полученные данные в статическом режиме измерений представлены в таб. 1. По этим данным построим графики на рис. 5.

$V_{\text{накала}} = 2.7 B$		$V_{\text{накала}} = 2.9 B$	
$U(I_a)$	$V_{\kappa c}$	$U(I_a)$	$V_{\kappa c}$
0	0	6,3	0,324
4,72	0,311	96,9	0,923
42,47	0,701	120,6	1,033
100,4	1,006	167,87	1,323
147,9	1,268	184,53	1,502
178,4	1,555	191,52	1,693
184,4	1,692	190,75	1,929
178,2	2,083	181,67	2,083
166,16	2,337	170,7	2,306
151,44	2,654	156,75	2,607
134,89	$3,\!159$	139,62	3,157
124,85	3,748	131,4	3,707
118,77	4,469	127,41	4,267
117,5	$5,\!176$	126,77	5,086
124,28	6,077	134,98	5,847
136,22	7,036	148,55	6,592
152,2	7,894	158,5	7,019
175,6	8,764	192,96	8,07
192,41	9,224		

Таблица 1: Полученные значения в статическом режиме измерений

Рис. 5: Вольт-амперная характеристика тиратрона

	V_{min}^1 , B	V_{max}^1, B
$V_{\text{накала}} = 2.7 B$	1.6 ± 0.1	4.7 ± 0.1
$V_{\text{накала}} = 2.9 B$	1.7 ± 0.2	4.5 ± 0.1

Таблица 2: Результат опыта в статическом методе

По результатам, приведённым в табл. 2, для $V_{nanana}=2.7~B$:

$$l = 3.9 \text{ Å}; \quad U_0 = 0.88 \ 9B;$$

для $V_{\text{накала}} = 2.9 \ B$:

$$l = 4.1 \text{ Å}; \quad U_0 = 0.54 \text{ } 9B.$$

Далее по формуле (1) оценим, при каких напряжениях должны появляться максимумы в коэффициенте прохождения электронов:

$$E = \left(\frac{\pi n\hbar}{l}\right)^2 \frac{1}{2m} - U_0,$$

$$E_{n=2} = 11.7 \ \vartheta B,$$

$$E_{n=3} = 27.9 \ \vartheta B.$$

Далее, по формуле (5) найдём зависимость вероятности рассеяния от энергии

$$\omega(V) \propto \ln \frac{V_{ahod}}{V_{ahod}^0},$$

где V^0_{anod} — первый максимум на ВАХ тиратрона. Результат отображён на рис. 6.

Рис. 6: Качественный график зависимости $\omega \propto -\ln \frac{I}{I_0} = F(V)$

6 Обсуждение результатов и выводы

По результатам проведения лабораторной работы установлен приблизительный радиус атома ксенона, эффективная глубина потенциальной ямы для электрона, а также получен график зависимости $\omega = F(E)$ для вероятности рассеяния электрона.