- 教材讨论
 - JH第4章第3节第5小节

问题1: 算法4.3.5.1

- 算法的基本思路
- 算法近似比证明的基本思路
- 相对误差最坏的例子

Algorithm 4.3.5.1.

Input: A complete graph G = (V, E), and a cost function $c : E \to \mathbb{N}^+$ satisfying the triangle inequality

$$c(\{u, v\}) \le c(\{u, w\}) + c(\{w, v\})$$

for all three different $u, v, w \in V$ {i.e., $(G, c) \in L_{\triangle}$ }.

- Step 1: Construct a minimal spanning tree T of G according to c.
- Step 2: Choose an arbitrary vertex $v \in V$. Perform depth-first-search of T from v, and order the vertices in the order that they are visited. Let H be the resulting sequence.

Output: The Hamiltonian tour $\overline{H} = H, v$.

问题2: 算法4.3.5.4

- 算法的基本思路
- 算法近似比证明的基本思路
- 相对误差最坏的例子

Algorithm 4.3.5.4. Christofides algorithm

- Input: A complete graph G=(V,E), and a cost function $c:E\to\mathbb{N}^+$ satisfying the triangle inequality.
- Step 1: Construct a minimal spanning tree T of G according to c.
- Step 2: $S := \{v \in V \mid deg_T(v) \text{ is odd}\}.$
- Step 3: Compute a minimum-weight 21 perfect 22 matching M on S in G.
- Step 4: Create the multigraph $G' = (V, E(T) \cup M)$ and construct an Eulerian tour ω in G'.
- Step 5: Construct a Hamiltonian tour H of G by shortening ω (i.e., by removing all repetitions of the occurrences of every vertex in ω in one run via ω from the left to the right).

Output: H.

Fig. 4.10.

Fig. 4.11.

- Δ-TSP(metric TSP)的不可近似性
 - Papadimitriou and Vempala (2006): 220/219
 - Lampis (2014): 185/184
 - Karpinski, Lampis, and Schmied (2015): 123/122

(gap)

– Christofides (1976): 3/2

问题3: 算法4.3.5.18

- 算法的基本思路
- 算法近似比证明的基本思路
- 算法的意义(尽管近似比并不很好)

Algorithm 4.3.5.18. SEKANINA'S ALGORITHM

Input: A complete graph G = (V, E), and a cost function $c : E \to \mathbb{N}^+$.

Step 1: Construct a minimal spanning tree T of G according to c.

Step 2: Construct T^3 .

Step 3: Find a Hamiltonian tour H in T^3 such that $P_T(H)$ contains every

edge of T exactly twice.

Output: H.

Theorem 4.3.5.19. Sekanina's algorithm is a polynomial-time 2-approximation algorithm for \triangle -TSP.

Proof. Obviously, Step 1 and 2 of Sekanina's algorithm can be performed in time $O(n^2)$. Using Lemma 4.3.5.17 one can implement Step 3 in time O(n). Thus, the time complexity of Sekanina's algorithm is in $O(n^2)$.

Let H_{Opt} be an optimal solution for an input instance (G, c) of \triangle -TSP. Following the inequality (4.32) we have $cost(T) \leq cost(H_{Opt})$. The output H of Sekanina's algorithm can be viewed as shortening the path $P_T(H)$ by removing repetitions of vertices in $P_T(H)$. Since $P_T(H)$ contains every edge of T exactly twice,

$$cost(P_T(H)) = 2 \cdot cost(T) \le 2 \cdot cost(H_{Opt}). \tag{4.51}$$

Since H is obtained from $P_T(H)$ by exchanging simple subpaths by an edge, and c satisfies the triangle inequality,

$$cost(H) \le cost(P_T(H)).$$
 (4.52)

Combining (4.51) and (4.52) we obtain $cost(H) \leq 2 \cdot cost(H_{Opt})$.

问题4: TSP问题实例的划分

- · 如何对TSP问题的所有实例进行划分?
 - dist
 - p-strengthen triangle inequality

$$c(\{u,v\}) \le p \cdot [c(\{u,w\}) + c(\{w,v\})]$$