参考资料

两角和差正余弦公式的证明

北京四中数学组 皇甫力超

论文摘要:

本文对两角和差的正余弦公式的推导进行了探讨。 在单位圆的框架下 ,我们得到了和角余弦公式 (方法 1)与差角余弦公式 (方法 2)。在三角形的框架下 ,我们得到了和角正弦公式 (方法 3 $^{\sim}$ 11)与差角正弦公式 (方法 12,13)。

关键词:

两角和差的正余弦公式

正文:

两角和差的正余弦公式是三角学中很重要的一组公式。 下面我们就它们的推导证明方法进行探讨。

由角 $\boldsymbol{\alpha}$, $\boldsymbol{\beta}$ 的三角函数值表示 $\boldsymbol{\alpha} \pm \boldsymbol{\beta}$ 的正弦或余弦值 ,这正是两角和差的正余弦公式的功能。 换言 之 ,要推导两角和差的正余弦公式 ,就是希望能得到一个等式或方程 ,将 $\cos(\boldsymbol{\alpha} \pm \boldsymbol{\beta})$ 或 $\sin(\boldsymbol{\alpha} \pm \boldsymbol{\beta})$ 与 $\boldsymbol{\alpha}$, $\boldsymbol{\beta}$ 的三角函数联系起来。

根据诱导公式 ,由角 θ 的三角函数可以得到 $-\theta$ 的三角函数。 因此 ,由和角公式容易得到对应的差角公式 ,也可以由差角公式得到对应的和角公式。 又因为 $\sin(\frac{\pi}{2}-\alpha)=\cos\alpha$,即原角的余弦等于其余角的正弦 ,据此 ,可以实现正弦公式和余弦公式的相互推导。 因此 ,只要解决这组公式中的一个 ,其余的公式将很容易得到。

(一) 在单位圆的框架下推导和差角余弦公式

注意到单位圆比较容易表示 \boldsymbol{a} , $\boldsymbol{\beta}$ 和 $\boldsymbol{a} \boldsymbol{\pm} \boldsymbol{\beta}$,而且角的终边与单位圆的交点坐标可以用三角函数值表示,因此,我们可以用单位圆来构造联系 $\cos(\boldsymbol{a} \boldsymbol{\pm} \boldsymbol{\beta})$ 与 \boldsymbol{a} , $\boldsymbol{\beta}$ 的三角函数值的等式。

1. 和角余弦公式

(方法 1) 如图所示,在直角坐标系 \mathbf{xOy} 中作单位圆 \mathbf{O} ,并作角 $\mathbf{\alpha}$, $\mathbf{\beta}$ 和 $-\mathbf{\beta}$,使角 $\mathbf{\alpha}$ 的始边为 \mathbf{Ox} ,交 \mathbf{D} \mathbf{O} 于点 \mathbf{A} ,终边交 \mathbf{D} \mathbf{O} 于点 \mathbf{B} ;角 $\mathbf{\beta}$ 始边为 \mathbf{OB} ,终边交 \mathbf{D} \mathbf{O} 于点 \mathbf{C} ;角 $-\mathbf{\beta}$ 始边为 \mathbf{Ox} ,终边交 \mathbf{D} \mathbf{O} 于点。从而点 \mathbf{A} , \mathbf{B} ,C和 \mathbf{D} 的坐标分别为 $\mathbf{A}(\mathbf{I},\mathbf{0})$, $\mathbf{B}(\cos \mathbf{\alpha}, \sin \mathbf{\alpha})$, $\mathbf{C}(\cos(\mathbf{\alpha} + \mathbf{\beta}), \sin(\mathbf{\alpha} + \mathbf{\beta}))$, $\mathbf{D}(\cos \mathbf{\beta}, -\sin \mathbf{\beta})$ 。

由两点间距离公式得

$$AC^2 = (\cos(\alpha + \beta) - 1)^2 + \sin^2(\alpha + \beta) = 2 - 2\cos(\alpha + \beta)$$

$$BD^2 = (\cos \beta - \cos \alpha)^2 + (-\sin \beta - \sin \alpha)^2 = 2 - 2(\cos \alpha \cos \beta - \sin \alpha \sin \beta).$$

注意到 AC = BD, 因此 $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$.

注记: 这是教材上给出的经典证法。它借助单位圆的框架 ,利用平面内两点间距离公式表达两条相等 线段,从而得到我们所要的等式。注意,公式中的 α 和 β 为任意角。

2. 差角余弦公式

仍然在单位圆的框架下 , 用平面内两点间距离公式和余弦定理表达同一线段, 也可以得到我们希望的 三角等式。这就是

(方法2) 如图所示,在坐标系 \mathbf{xOy} 中作单位圆 \mathbf{O} ,并作角 $\mathbf{\alpha}$ 和 $\mathbf{\beta}$,使角 $\mathbf{\alpha}$ 和 $\mathbf{\beta}$ 的始边均为 \mathbf{Ox} ,交 \mathbf{D} \mathbf{O} 于点 \mathbf{C} ,角 $\mathbf{\alpha}$ 终边交 \mathbf{D} \mathbf{O} 于点 \mathbf{A} ,角 $\mathbf{\beta}$ 终边交 \mathbf{D} \mathbf{O} 于点。从而点 \mathbf{A} ,B的坐标为 \mathbf{A} ($\mathbf{cos}\,\mathbf{\alpha}$, $\mathbf{sin}\,\mathbf{\alpha}$), \mathbf{B} ($\mathbf{cos}\,\mathbf{\beta}$, $\mathbf{sin}\,\mathbf{\beta}$)。

由两点间距离公式得

$$AB^{2} = (\cos \alpha - \cos \beta)^{2} + (\sin \alpha - \sin \beta)^{2} = 2 - 2(\cos \alpha \cos \beta + \sin \alpha \sin \beta)$$

由余弦定理得

$$AB^{2} = OA^{2} + OB^{2} - 2OADB\cos \angle AOB = OA^{2} + OB^{2} - 2OADB\cos(\alpha - \beta) = 2 - 2\cos(\alpha - \beta).$$

从而有 $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ 。

注记: 方法 2 中用到了余弦定理 ,它依赖于 $\angle AOB$ 是三角形的内角。 因此,还需要补充讨论角 α 和 β 的终边共线,以及 $\angle AOB$ 大于 π 的情形。容易验证 ,公式在以上情形中依然成立。

在上边的证明中,用余弦定理计算 482的过程也可以用勾股定理来进行。

(二) 在三角形的框架下推导和差角正弦公式

除了在单位圆的框架下推导和差角的余弦公式 , 还可以在三角形中构造和角或差角来证明和差角的正弦公式。

1. 和角正弦公式(一)

(方法3) 如图所示,BD为 $\triangle ABC$ 的 AC边上的高 ,CE为 AB边上的高。设 AC=b, $\angle CAB=\alpha$, $\angle CBA=\beta$,则。从而有

 $AE = b\cos\alpha$, $CE = b\sin\alpha$,

 $BE = CE \cot \beta = b \sin \alpha \cot \beta$,

 $BC = CE \csc \beta = b \sin \alpha \csc \beta$.

因此 $AB = AE + BE = b(\cos \alpha + \sin \alpha \cot \beta)$,

 $BD = AB \sin \alpha = b(\cos \alpha + \sin \alpha \cot \beta) \sin \alpha$.

注意到 $BD = BC\sin(\alpha + \beta) = b\sin\alpha\csc\beta\sin(\alpha + \beta)$,

从而有

 $(\cos \alpha + \sin \alpha \cot \beta) \sin \alpha = \sin \alpha \csc \beta \sin(\alpha + \beta)$

整理可得

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
.

注记:在方法 3 中 ,用 AC 和与底角 α , β 相关的三角函数,从两个角度来表示 AC 边上高 BD ,从而得到所希望的等式关系。 这一证明所用的图形是基于钝角三角形的 , 对基于直角或锐角三角形的情形 ,证明过程类似。

利用方法 3 中的图形 , 我们用类似于恒等变形的方式 , 可以得到下面的

(方法 4) 如图所示,BD为 $\triangle ABC$ 的 $\triangle C$ 边上的高, $\triangle C$ 为 $\triangle AB$ 边上的高。 设 $\triangle CAB = \alpha$, $\triangle CBA = \beta$,则 $\triangle DCB = \alpha + \beta$ 。

注意到 $\triangle ACE \square \triangle ABD$,则有 $\frac{AE}{CE} = \frac{AD}{RD}$,即。

从而有
$$\sin(\alpha + \beta) = \frac{BD}{BC} = \frac{AE + BE}{AB} \square \frac{BD}{BC} = \frac{AE \square BD}{AB \square BC} + \frac{BE \square BD}{AB \square BC} = \frac{AD}{AB} \square \frac{CE}{BC} + \frac{BD}{AB} \square \frac{BE}{BC} = \cos \alpha \sin \beta + \sin \alpha \cos \beta$$
。

利用正弦定理和射影定理 , 将得到下面这个非常简洁的证法。 注意证明利用的图形框架与方法 3,4 所用的图形框架是相同的。

(方法 5) 如图所示 ,CD为 $\triangle ABC$ 的 AB边上的高。 设 $\angle CAB = \alpha$, $\angle CBA = \beta$,则有 $\angle ACB$ = $\pi - (\alpha + \beta)$,。 由正弦定理可得

$$\frac{AC}{\sin \beta} = \frac{BC}{\sin \alpha} = \frac{AB}{\sin(\alpha + \beta)} = d,$$

其中 d为 AABC的外接圆直径。

由 $AB = AC\cos\alpha + BC\cos\beta$ 得

$$d\sin(\alpha+\beta) = d\sin\beta\cos\alpha + d\sin\alpha\cos\beta$$
,

从而有

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
.

2. 和角正弦公式 (二)

方法 3,4 和 5 利用的图形框架是将角 α , β 放在三角形的两个底角上。 如果将这两个角的和作为

三角形的一个内角 , 将会有下面的几种证法 (方法 6~11)。

(方法 6) 如图所示 ,作 $AE \perp BC$ 于D,交 ΔABC 外接圆于 E,连 BE 和 CE 。 设 $\angle BAE = \alpha$, $\angle CAE = \beta$,则 $\angle BCE = \alpha$, $\angle CBE = \beta$, $\angle BAC = \alpha + \beta$ 。

设 $\triangle ABC$ 的外接圆直径为 d,则有, $BE = d \sin \alpha BD = BE \cos \beta = d \sin \alpha \cos \beta$, $CE = d \sin \beta$, $CD = CE \cos \alpha = d \sin \beta \cos \alpha$ 。

所以有 $BC = BD + CD = d(\sin \alpha \cos \beta + \cos \alpha \sin \beta)$ 。

注意到 $BC = d\sin(\alpha + \beta)$,从而 $\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$ 。

(方法 7) 如图所示 ,BD为 $\triangle ABC$ 的 AC边上的高 ,CE为 AB边上的高。设 $\angle ACE = \alpha$, $\angle BCE = \beta$,则 $\angle ACB = \alpha + \beta$ 。 设 CE = h,则

 $AE = h \tan \alpha$, $BE = h \tan \beta$, $BC = h \sec \beta$, $AB = AE + BE = h (\tan \alpha + \tan \beta)$, $BD = AB \sin A = AB \cos \alpha = h (\tan \alpha + \tan \beta) \cos \alpha$.

 $\nabla BD = BC\sin(\alpha + \beta) = h\sec\beta\sin(\alpha + \beta)$

从而($\tan \alpha + \tan \beta$) $\cos \alpha = \sec \beta \sin(\alpha + \beta)$ 。

整理可得 $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ 。

(方法 8) 如图所示,作 $BD \perp OC \neq D$, 过 D作 $DF \perp OA \neq F$, $DG \perp BE \neq G$ 。 设 $\angle AOC = \alpha$, $\angle BOC = \beta$, 则 $\angle AOB = \alpha + \beta$, 设 OA = r, 从而 $BD = r\sin \beta$, $OD = r\cos \beta$, $BG = BD\cos \alpha = r\sin \beta\cos \alpha$, $GE = DF = OD\sin \alpha = r\cos \beta\sin \alpha$.

 $_{\text{fif}} BE = BG + GE = r(\sin \beta \cos \alpha + \cos \beta \sin \alpha)$

注意到 $BE = r \sin(\alpha + \beta)$, 则有

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
.

注记:我们用两种不同的方法计算 **BE**,得到了和角的正弦公式。 如果我们用两种方法来计算 **OE**,则可以得到和角的余弦公式。 由上图可得

$$OF = OD \cos \alpha = r \cos \beta \cos \alpha$$
,

$$EF = GD = BD \sin \alpha = r \sin \beta \sin \alpha$$
,

从而有 $OE = OF - EF = r(\cos \alpha \cos \beta - \sin \alpha \sin \beta)$ 。注意到 $OE = r\cos(\alpha + \beta)$,从而可得 $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ 。

方法 6,7 和 8 都是用角 $\boldsymbol{\alpha}$, $\boldsymbol{\beta}$ 的三角函数从两个角度表示图形中的同一线段 ,从而构造出我们所希望的等式关系。

(方法 9) 如图所示 ,设 CD为 $\triangle ABC$ 的 AB边上的高。 设 $\angle CAB = \alpha$, $\angle CBA = \beta$,AC = b , $BC = \alpha$,从而有

$$AD = b \cos \alpha$$
, $BD = a \cos \beta$
 $CD = b \sin \alpha = a \sin \beta$

因此
$$S_{\text{EABC}} = S_{\text{EADC}} + S_{\text{EDBC}}$$

$$= \frac{1}{2} AD \square CD + \frac{1}{2} BD \square CD$$

$$= \frac{1}{2} b \cos \alpha \square a \sin \beta + \frac{1}{2} a \cos \beta \square b \sin \alpha$$

$$= \frac{1}{2} ab (\sin \alpha \cos \beta + \cos \alpha \sin \beta)$$

又因为 从而可得

$$S_{\triangle ABC} = \frac{1}{2} AC \Box BC \sin \angle ACB = \frac{1}{2} ab \sin(\alpha + \beta)$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

方法 9 利用面积关系构造三角恒等式。下面这两个证法的思路则有所不同。

$$AB = d \cos \beta$$
, $BC = d \sin \beta$
 $CD = d \sin \alpha$, $DA = d \cos \alpha$
 $BD = d \sin(\alpha + \beta)$

由托勒密定理知

$$AC\square BD = AB\square CD + AD\square BC$$

 $\exists \Box d \sin(\alpha + \beta) = d \cos \beta \Box d \sin \alpha + d \cos \alpha \Box d \sin \beta$

整理即得

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

(方法 10)如图所示 ,设 AC 为 ΔABC 的外接圆直径d,长度为d。 设 $\angle CAD = \alpha$, $\angle BAC = \beta$,则 $\angle DAB = \alpha + \beta$,从而

$$AB = d\cos\beta, BC = d\sin\beta$$

$$CD = d \sin \alpha$$
 $DA = d \cos \alpha$

$$BD = d\sin(\alpha + \beta)$$

由托勒密定理知

$$AC\square BD = AB\square CD + AD\square BC$$

整理即得

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

注记:这一证明用到了托勒密定理:若 AC和 BD是圆内接四边形的对角线 ,则有 $dUd\sin(\alpha+\beta)=d\cos\betaUd\sin\alpha+d\cos\alpha Ud\sin\beta$ 。

(方法 11) 如图所示 , CD为 $\triangle ABC$ 的 AB边上的高。 设 $\angle ACD = \alpha$, $\angle BCD = \beta$,则 $\angle ACB = \alpha + \beta$ 。 设 CD = h ,则

$$AB = AD + BD = h(\tan \alpha + \tan \beta)$$

$$AC = h \sec \alpha$$
, $BC = h \sec \beta$

由正弦定理可得₽

$$\frac{AB}{\sin(\alpha + \beta)} = \frac{AC}{\sin B} = \frac{BC}{\sin A}$$

即
$$\frac{AB}{\sin(\alpha+\beta)} = \frac{AC}{\cos\beta} = \frac{BC}{\cos\alpha}$$
从而
$$\frac{AB}{\sin(\alpha+\beta)} = \frac{AC+BC}{\cos\beta+\cos\alpha}$$

$$\frac{h(\tan\alpha+\tan\beta)}{\sin(\alpha+\beta)} = \frac{h(\sec\alpha+\sec\beta)}{\cos\beta+\cos\alpha}$$
整理即得

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

方法 10 和 11 将某一线段作为基本量 ,利用与角 α , β 相关的三角函数表示其它线段 , 再通过联系这些线段的几何定理 (托勒密定理或正弦定理), 构造出我们希望的等式关系。

3. 差角正弦公式

仍然还是在三角形中 , 我们可以在三角形的内角里构造出差角来。 方法 12 和 13 便是用这种想法来证明的。

(方法 12) 如图所示, $\angle ACB = \frac{\pi}{2}$ 。 设 $\angle ABC = \alpha$, $\angle DBC = \beta$,记 BD = b,作 $DE \perp AB \rightarrow E$,则 $\angle ABD = \alpha - \beta$, $\angle ADE = \alpha$,从而有

$$CD = b \sin \beta$$
 $DE = b \sin(\alpha - \beta)$

$$DA = DE \sec \alpha = b \sin(\alpha - \beta) \sec \alpha$$

因此有

$$AC = CD + DA = b(\sin \beta + \sin(\alpha - \beta) \sec \alpha)$$

注意到

$$BC = b \cos \beta$$
 $AC = BC \tan \alpha = b \cos \beta \tan \alpha$

从而 $\sin \beta + \sin(\alpha - \beta) \sec \alpha = \cos \beta \tan \alpha$

整理可得 $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$

(方法 13) 如图所示 , AB 为 $\triangle ABC$ 的外接圆直径 ,长度为 d。设 $\angle BAD = \alpha$, $\angle CAD = \beta$,则 $\angle CBD = \beta$, $\angle CAB = \alpha - \beta$ 。 从而

$$AD = d\cos\alpha, BD = d\sin\alpha$$

$$BC = d \sin(\alpha - \beta)$$
 $AC = d \cos(\alpha - \beta)$

 $DE = AD \tan \beta = d \cos \alpha \tan \beta$

$$BE = BC \sec \beta = d \sin(\alpha - \beta) \sec \beta$$

所以

$$BD = BE + DE = d(\sin(\alpha - \beta) \sec \beta + \cos \alpha \tan \beta)$$

注意到 $BD = d \sin \alpha$,从而

$$\sin \alpha = \sin(\alpha - \beta) \sec \beta + \cos \alpha \tan \beta$$

整理可得

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

方法 12 和 13 的基本思路仍然是用两种不同方法计算同一线段 , 借此来构造等式关系。

很显然 ,在这十二种证法中 ,方法 1 和 2 更具普遍性。 换言之 ,这两种方法中出现的角 α , β 是任意角。 而其余方法中 ,角 α 和 β 则有一定的限制 ,它们都是三角形的内角 (甚至都是锐角)。 因此 ,对于方法 3~13,我们需要将我们的结果推广到角 α 和 β 是任意角的情形。 具体而言 ,我们要证明: 如果公式对任意 α , $\beta \in [0, \frac{\pi}{2}]$ 成立 ,则对任意角也成立。

容易验证 ,角 α 和 β 中至少有一个是轴上角 (即终边在坐标轴上的角),我们的公式是成立的。下面证明 ,角 α 和 β 都是象限角 (即终边在坐标系的某一象限中的角)时 ,我们的公式也成立。 不妨设 α 为第二象限角 , β 为第三象限角 ,从而有

$$\alpha = 2m\pi + \frac{\pi}{2} + \alpha_1, 0 < \alpha_1 < \frac{\pi}{2}, m \in Z;$$

$$\beta = (2n+1)\pi + \beta_1, 0 < \beta_1 < \frac{\pi}{2}, n \in \mathbb{Z}$$

因此有

$$\sin \alpha = \cos \alpha_1, \cos \alpha = -\sin \alpha_1,$$

$$\sin \beta = -\sin \beta_1, \cos \beta = -\cos \beta_1$$

从而

$$\sin(\alpha + \beta) = \sin[(2m\pi + \frac{\pi}{2} + \alpha_1) + ((2n+1)\pi + \beta_1)]$$

$$= \sin[(2m+2n+\frac{3}{2})\pi + (\alpha_1 + \beta_1)]$$

$$= -\cos(\alpha_1 + \beta_1)$$

$$= -\cos\alpha_1 \cos\beta_1 + \sin\alpha_1 \sin\beta_1$$

$$= \cos\alpha_1(-\cos\beta_1) + (-\sin\alpha_1)(-\sin\beta_1)$$

$$= \sin\alpha \cos\beta + \cos\alpha \sin\beta$$

同理可证,公式对于象限角 α 和 β 的其它组合方式都成立。因此 ,我们可以将方法 $3^{\sim}13$ 推导的公式推广到角 α , β 是任意角的情形。

两角和差的正余弦公式是三角学中很基本的一组公式。 其推导证明对指导学生进行探究性学习很有帮助。 从上文中可以看到,这一探究过程可分为四个步骤:

- (1) 明确推导证明的目标:构造联系 α 和 β 三角函数与 $\cos(\alpha \pm \beta)$ 或 $\sin(\alpha \pm \beta)$ 的等式或方程;
- (2) 简化课题: 四个公式只要解决一个, 其余的都可由它推出;
- (3) 解决问题:利用单位圆或三角形作为联系 α 和 β 三角函数与 $\cos(\alpha \pm \beta)$ 或 $\sin(\alpha \pm \beta)$ 的工具,寻找我们希望的等式关系:
- (4) 完善解决问题的方法: 考察方法是否有普遍性。 如果普遍性有欠缺 , 可考虑将其化归为已解决的情形 , 必要时还要进行分类讨论。

参考文献:

- 1. 谷丹:全面数学教育观与知识形成过程的教学——三个教学个案及分析,《开放的视野,务实的努力》,中央民族大学出版社,2006 年 3 月第 27 ~32 页。
- 2. 人民教育出版社中学数学室:全日制普通高级中学教科书 〈〈 数学 (第一册下)〉〉(必修),人民教育出版社,2003 年 12 月第 34 $^{\sim}$ 35 页。

【返回参考资料列表】