Symulacja ewakuacji z tunelu drogowego

Karol Błaszczak Łukasz Chmielewski Jakub Banach

Opis problemu

Temat projektu dotyczy symulacji ewakuacji z tunelu drogowego w warunkach zadymienia. Jest to ważne zagadnienie z zakresu bezpieczeństwa drogowego i zarządzania kryzysowego. Symulacja ma na celu zbadanie zachowania ludzi podczas ewakuacji z tunelu w sytuacji, w której występuje zadymienie lub pożar. Projekt zakłada wykorzystanie zaawansowanego modelu ewakuacji Floor Field, oraz symulacji ognia i zadymienia na automatach komórkowych.

Dane

Posiadamy dane dotyczące ewakuacji tunelu Laliki przy różnych stopniach zadymienia:

- wymiary tunelu
- czasy ewakuacji (ludzi z autobusu)
- Rozkład liczby zespołów wieloosobowych
- prędkość przemieszczania w poszczególnych częściach

Experiment section	Minimum	Maximum	Mean	Std. deviation
experiment 1 the main tunnel	0.895	1.211	1.056	0.083
experiment 1 the evacuation tunnel	1.542	1.808	1.706	0.058
experiment 2 the main tunnel	0.917	2.422	1.321	0.375
experiment 2 the evacuation tunnel	1.489	1.953	1.635	0.081
experiment 3 the main tunnel	0.893	2.044	1.221	0.295
experiment 3 the evacuation tunnel	2.569	5.760	3.835	0.719

https://doi.org/10.1371/journal.pone.0201732.t002

Dane

Posiadamy dane dotyczące ewakuacji tunelu Laliki przy różnych stopniach zadymienia:

- wymiary tunelu
- czasy ewakuacji (ludzi z autobusu)
- Rozkład liczby zespołów wieloosobowych
- prędkość przemieszczania w poszczególnych częściach

Posiadamy dane dotyczące ewakuacji tunelu Laliki przy różnych stopniach zadymienia:

- wymiary tunelu
- czasy ewakuacji (ludzi z autobusu)
- Rozkład liczby zespołów wieloosobowych
- prędkość przemieszczania w poszczególnych częściach

Dane

Modelowanie symulacji

Podczas modelowania symulacji, posłużymy się automatem komórkowym, z następującymi parametrami:

- typ siatki: dwuwymiarowa
- sąsiedztwo: Von Neumanna
- metoda aktualizacji: synchroniczna czyli cała siatka automatu jest aktualizowana równocześnie.

Sąsiedztwo Von Neumanna

Model Floor Field

Chcemy zastosować podstawowy model Floor Field, który zakłada tworzenie warstw siatki modelującej. Składa się z:

- warstwy pozycji
- warstwy dynamicznej
- warstwy statycznej
- warstwy przeszkód

Wartość pola statycznego dla pola xy:

$$S_{xy} = |x_{exit} - x| + |y_{exit} - y|$$

Przejście w modelu

Kalkulacja przejścia będzie obliczana za pomocą następującego wzoru:

$$p_{y} = NM_{y} \exp(\alpha D_{ij}) \exp(\beta S_{ij}) (1 - n_{y}) d_{ij}$$

gdzie:

p_ij - prawdopodobieństwo przejścia do komórki o współrzędnych (i, j)

N - współczynnik normalizacji

M_ij - wartość z macierzy komórki podstawowej

D_ij - wartość warstwy dynamicznej

S_ij - wartość warstwy statycznej

n_ij - wartość określająca czy komórka nie jest zajęta przez przeszkodę

d_ij - wartość określająca czy komórka nie jest zajęta przez inną osobę

Symulacja pożaru

Symulację pożaru, stworzymy w oparciu o automat komórkowy dodając kolejna wartswę dynamiczną, reprezentująca roprzestrzenianie się ognia oraz dymu

Kierunki rozchodzenia się ognia/dymu

Musimy zaadaptować prawdopodobieństwo przejścia w modelu dodając nowe pole:

$$\mathrm{p}_{ij} = N \mathrm{M}_{ij} exp(\alpha \mathrm{D}_{ij}) exp(\beta \mathrm{S}_{ij}) (1 - \mathrm{n}_{ij}) (\mathrm{d}_{ij}) exp(\gamma (1 - \mathrm{F}_{ij})))$$

F_ij - wartość warstwy dynamicznej pożaru/dymu na polu (i, j)

Algorytm Social Distancing

Aby uwzględnić "social distancing" w modelu Floor Field, chcemy dodać warunki lub czynniki, które wpływają na decyzje ewakuujących się osób w sposób, który zachęca do utrzymywania bezpiecznej odległości od innych. Modyfikujemy pola przemieszczeń w taki sposób, że punkty reprezentujące tłoczne obszary będą miały wyższe wartości pola przemieszczeń, co sprawi, że osoby unikną tych obszarów w miarę możliwości. Sprowadza się to na dodanie kolejnej dynamicznej warstwy i aktualizacji wzoru na prawdopodobieństwo przemieszczenia

$$\mathrm{p}_{ij} = N \mathrm{M}_{ij} exp(lpha \mathrm{D}_{ij}) exp(eta \mathrm{S}_{ij}) (1 - \mathrm{n}_{ij}) (\mathrm{d}_{ij}) exp(\gamma (1 - \mathrm{F}_{ij}))) exp(\delta (1 - \mathrm{C}_{ij}))$$

C_ij - wartość warstwy dynamicznej reprezentującej "tłum ludzi" pola (i, j)

Harmonogram prac

LISTOPAD

stworzenie wstępnego modelu symulacji: rozmiary tunelu, pojazdów i ludzi (warstwa przeszkód i pozycji)

STYCZEŃ

finalna wersja symulacji, szczegółowa dokumentacja

PAŹDZIERNIK

zebranie materiałów, dobór odpowiednich technologii, plan implementacji symulacji

GRUDZIEŃ

implementacja algorytmu zmiany stanu i generatora pożaru (warstwa statyczna i dynamiczna)

Bibliografia

Szczegółowe dane do symulacji

- https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201732#pone.0201
 732.ref010
- https://www.polsl.pl/rt4/badania-wentylacji-pozarowej-w-tunelach-drogowych/

Automaty komórkowe w modelowaniu ewakuacji:

https://bibliotekanauki.pl/articles/373258.pdf