WINTERSIDAD NACIONAL DEL ALTIPLANO

Ingeniería Estadística e Informática

CAPÍTULO: INVENTARIOS

Modelos de Gestión Óptima

♀ EOQ • Descuentos • Probabilísticos • Optimización

Modelos Determinísticos y Probabilísticos para la Gestión Empresarial

Etzel Yuliza Peralta López

Material de Estudio Especializado

≡ CONTENIDO DEL CAPÍTULO

Índice general

1. **4** Inventarios

3

Capítulo 1

Inventarios

1 INTRODUCCIÓN

Los modelos de inventarios constituyen una herramienta fundamental en la gestión empresarial moderna, permitiendo a las organizaciones optimizar sus recursos financieros y operativos. El inventario representa uno de los activos más significativos en muchas empresas, y su gestión eficiente puede determinar el éxito o fracaso de una organización.

1.1. Importancia de la Gestión de Inventarios

- ✓ Minimizar costos totales: Incluyendo costos de pedido, almacenamiento y escasez
- ** Mantener niveles de servicio: Satisfacer la demanda del cliente
- **\$** Optimizar el capital de trabajo: Evitar inversiones excesivas en inventario

Reducir riesgos: Minimizar obsolescencia y deterioro

1.1.1. Tipos de Modelos de Inventarios

CLASIFICACIÓN POR PATRÓN DE DEMANDA

- → Determinísticos: La demanda es conocida y constante
- → Probabilísticos: La demanda es variable y sigue una distribución de probabilidad

U CLASIFICACIÓN POR TIEMPO DE ENTREGA

- → Tiempo de entrega cero: El pedido se recibe inmediatamente
- → Tiempo de entrega constante: El tiempo entre pedido y entrega es fijo
- → Tiempo de entrega variable: El tiempo de entrega varía aleatoriamente

1.2. Modelo EOQ Básico

💡 FUNDAMENTOS TEÓRICOS

El modelo de Cantidad Económica de Pedido (EOQ) es el modelo más fundamental en la teoría de inventarios. Fue desarrollado por Ford W. Harris en 1913 y busca determinar la cantidad óptima de pedido que minimiza los costos totales de inventario.

1.2.1. Supuestos del Modelo EOQ

- 1 La demanda es determinística y constante
- 2 El tiempo de entrega es constante
- 3 No se permiten faltantes
- 4 El costo unitario es constante
- 5 Los costos de pedido y almacenamiento son constantes
- 6 La tasa de consumo es mayor que la de producción

1.2.2. Componentes de Costo

PEDIDO

Costo fijo incurrido cada vez que se realiza un pedido, independiente de la cantidad ordenada.

ALMACENA-MIENTO

Costo de mantener una unidad en inventario durante un período específico.

S ADQUISICIÓN

Costo variable proporcional a la cantidad adquirida.

1.2.3. Fórmula del EOQ

■ CANTIDAD ECONÓMICA DE PEDIDO

$$Q^* = \sqrt{\frac{2DS}{H}} \tag{1.1}$$

- \rightarrow $Q^* = \text{Cantidad \'optima de pedido}$
- \rightarrow D = Demanda anual
- \rightarrow S = Costo de pedido por orden
- \rightarrow H = Costo de almacenamiento por unidad por año

1.2.4. Ejercicio Resuelto: EOQ con Pedidos Retrasados

* PROBLEMA

Clínica de Optometría: Una clínica vende 10,000 monturas anuales. El proveedor cobra \$15 por unidad, con costo de pedido de \$50. El costo de déficit es \$15 por montura/año por pérdida de negocios futuros. El costo de retención anual es $30\,\%$ del costo de compra.

■ SOLUCIÓN PASO A PASO

Paso 1: Identificación de parámetros

$$D = 10,000 \text{ monturas/año} \tag{1.2}$$

$$S = $50 \text{ por pedido} \tag{1.3}$$

$$H = 0.30 \times \$15 = \$4.5 \text{ por unidad/año}$$
 (1.4)

$$B = \$15 \text{ por unidad/año (costo de déficit)}$$
 (1.5)

$$C = \$15 \text{ por unidad}$$
 (1.6)

Paso 2: Cálculo de la cantidad óptima

$$Q^* = \sqrt{\frac{2DS}{H}} \times \sqrt{\frac{H+B}{B}}$$
 (1.7)

$$Q^* = \sqrt{\frac{2 \times 10,000 \times 50}{4,5}} \times \sqrt{\frac{4,5+15}{15}}$$
 (1.8)

$$= \sqrt{222, 222, 22} \times \sqrt{1,3} \tag{1.9}$$

$$= 471.4 \times 1.14 \tag{1.10}$$

$$= 537.48 \approx 538 \text{ monturas} \tag{1.11}$$

Paso 3: Cálculo del inventario máximo

$$I_{max} = 537,48 \times \frac{15}{4.5 + 15} = 413.48 \approx 414 \text{ monturas}$$
 (1.12)

Paso 4: Déficit máximo

Déficit máximo =
$$537,48 - 413,48 = 124$$
 monturas (1.13)

TABLA DE RESULTADOS

Parámetro	Valor	Parámetro	Valor
Demand rate(D)	10000	Optimal order quantity (Q*)	537.48
Setup cost(S)	50	Maximum Inventory Level	413.45
Holding cost(H)	4.5	Maximum Shortage	124.03
Backorder cost(B)	15	Orders per year	18.61
Unit cost	15	Total Cost	151860.5

1.3. Modelo de Lote de Producción

C FUNDAMENTOS DEL MODELO

El modelo de lote de producción se aplica cuando la empresa produce el artículo internamente en lugar de comprarlo a un proveedor externo. La principal diferencia con el EOQ básico es que el inventario se acumula gradualmente durante la producción.

1.3.1. Ejercicio Resuelto: Flemming Accessories

* PROBLEMA

Flemming Accessories: Fabrica cortadoras de papel. Demanda anual: 6,750 unidades constantes. Kristen puede fabricar 125/día en promedio. Demanda durante producción: 30/día. Costo de preparación: \$150. Costo de almacenamiento: \$1/minicortadora/año.

■ SOLUCIÓN

Parámetros:

 $D = 6,750 \text{ unidades/año} \tag{1.14}$

 $p = 125 \times 225 = 28,125 \text{ unidades/año}$ (1.15)

 $Q^* = 1,632 \text{ unidades}$ (1.16)

1.4. Modelos con Descuentos por Cantidad

TO FUNDAMENTOS DEL MODELO

Los descuentos por cantidad son estrategias de precios donde el costo unitario disminuye según la cantidad comprada.

1.4.1. Ejercicio Resuelto: MBI Computadoras

ESTRUCTURA DE DESCUENTOS

Categoría	Cantidad	Precio
1	1 a 99	\$100
2	100 a 499	\$95
3	500 o más	\$90

■ ANÁLISIS DE COSTOS

Resultados del análisis:

- \bigcirc Q = 99: Costo total = \$523,616.3
- \checkmark Q = **500**: Costo total = \$473,020.0 **←** ÓPTIMO

Decisión: La cantidad óptima es 500 unidades con un ahorro significativo.

1.5. Modelos de Demanda Probabilística

Cuando la demanda sigue una distribución de probabilidad discreta, utilizamos el modelo de cantidad crítica.

1.5.1. Ejercicio Resuelto: Producto con Demanda Incierta

■ CÁLCULO DE PROPORCIÓN CRÍTICA

Parámetros:

- \rightarrow Costo de compra: c = \$10
- \rightarrow Costo de almacenamiento: h = \$1
- \rightarrow Costo de escasez: p = \$15

Proporción crítica:

$$\left| \frac{p-c}{p+h} = \frac{15-10}{15+1} = 0.3125 \right| \tag{1.17}$$

Cantidad óptima: $y^* = 3$ unidades

1.6. Conclusiones

SÍNTESIS DE APRENDIZAJES

Flexibilidad de los Modelos: Los modelos de inventarios ofrecen herramientas adaptables desde EOQ básico hasta modelos probabilísticos complejos.

Importancia del Análisis de Costos: El factor crítico es el correcto análisis de costos: ordenamiento, almacenamiento, escasez y adquisición.

Impacto de la Incertidumbre: Los modelos probabilísticos permiten gestión realista incorporando distribuciones de probabilidad.

1.7. Recomendaciones

☐ TECNOLOGÍA

- ✓ Sistemas ERP integrados
- Análisis de datos avanzado
- ✓ Internet de las cosas (IoT)
- ✓ Inteligencia artificial

B DESARROLLO

- ✓ Capacitación del personal
- ✓ Cultura de mejora continua
- ✓ Colaboración interdisciplinaria
- ✓ Benchmarking industrial

TENDENCIAS FUTURAS

Evolución hacia:

- → Mayor sofisticación matemática con optimización avanzada
- Integración multiobjetivo considerando múltiples criterios
- → Adaptabilidad dinámica con ajustes automáticos
- → Sostenibilidad incorporando criterios ambientales

Y La gestión óptima de inventarios seguirá siendo un factor crítico de éxito empresarial