Package 'MSigSeg'

November 13, 2023

Type Package

Title Multiple SIGnal SEGmentation

Version 0.2.0

Description Traditional methods typically detect breakpoints from individual signals, which means that when applied separately to multiple signals, the break-

points are not aligned.

However, this package implements a common breakpoint detection approach for multiple piecewise constant signals, resulting in increased detection sensitivity and specificity.

By employing various techniques, optimal performance is ensured, and computation is accelerated. We hope that this package will be beneficial for researchers in signal processing, bioinformatics, economy, and other related fields.

The segmentation(), lambda_estimator() functions are the main functions of this package.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Collate 'MSigSeg_Class.R' 'allGenerics.R' 'brkps_method.R' 'change.R'

'data.R' 'data.input_method.R' 'data.output_method.R'

'funtion_colsum_colmean.R' 'lambda_estimator.R'

'lambda_method.R' 'multi_plot.R' 'noisegen.R' 'print_method.R'

'seg.len_method.R' 'segmentation.R' 'summary_method.R'

Depends R (>= 4.0.0), methods

Imports MASS, ggpubr, ggplot2

NeedsCompilation no

Author Xuanyu Liu [aut, cre],

Junbo Duan [aut]

Maintainer Xuanyu Liu < lxy382198251@stu.xjtu.edu.cn>

Repository CRAN

Date/Publication 2023-11-13 15:03:21 UTC

2 brkps

R topics documented:

brkps	 2
change	 3
data.input	 3
data.output	 4
data_test	 5
lambda	 5
lambda_estimator	 6
MSigSeg-class	 6
multi_plot	 7
NCHSData	 8
noisegen	 8
print	 9
seg.len	 9
segmentation	 10
stock	 11
summary	 11
T16M	 12
T16P	 12
	13

brkps

Index

Generic Function-brkps.

Description

This function returns the brkps slot of MSigSeg object.

Usage

```
## S4 method for signature 'MSigSeg'
brkps(object)
```

Arguments

object

A 'MSigSeg' object.

Details

This function is a S4 method for MSigSeg object. It retrieves brkps slot, which contains the locations of break points.

Value

The brkps slot of MSigSeg object.

change 3

Examples

```
x=new("MSigSeg") # Creating a new MSigSeg object. brkps(x)
```

change

Breakpoints matrix generation.

Description

Generate matrix based on specified breakpoints.

Usage

```
change(M, p = 0.01)
```

Arguments

M A matrix users aimed to add breakpoints.

p Probability of occurrence of breakpoints.

Details

Generate matrix with common breakpoints, based on specific probability of occurrence.

Value

A list containing the matrix with specified change point and the location of breakpoints.

data.input

Generic Function-data.input.

Description

This function returns the data.input slot of MSigSeg object.

Usage

```
## S4 method for signature 'MSigSeg'
data.input(object)
```

Arguments

object

A MSigSeg object.

4 data.output

Details

This function is a S4 method for MSigSeg object. It retrieves data.input slot, which contains the data users input.

Value

The data.input slot of MSigSeg object.

Examples

```
x=new("MSigSeg") # Creating a new MSigSeg object.
data.input(x)
```

data.output

Generic Function-data.output.

Description

This function returns the data.output slot of MSigSeg object.

Usage

```
## S4 method for signature 'MSigSeg'
data.output(object)
```

Arguments

object

A MSigSeg object.

Details

This function is a S4 method for MSigSeg object. It retrieves data.output slot, which contains the input data which has been smoothed..

Value

The data.output slot of MSigSeg object.

```
x=new("MSigSeg") # Creating a new MSigSeg object.
data.output(x)
```

data_test 5

data_test

A simulated data set used for testing.

Description

A simulated data set used for testing.

Usage

```
data_test
```

Format

A matrix with 1000 rows and 20 columns.

Examples

```
data("data_test",package = "MSigSeg")
```

lambda

Generic Function-lambda.

Description

This function returns the lambda slot of MSigSeg object.

Usage

```
## S4 method for signature 'MSigSeg'
lambda(object)
```

Arguments

object

A MSigSeg object.

Details

This function is a S4 method for MSigSeg object. It retrieves lambda slot, which contains penalty coefficient to prevent over fitting.

Value

The lambda slot of MSigSeg object.

MSigSeg-class

lambda_estimator

Detecting common breakpoints with designated number.

Description

Automatic estimation of penalty parameter lambda for user defined breakpoints number.

Usage

```
lambda_estimator(Y, K)
```

Arguments

Y An data.frame/matrix containing the data to be segmented. Each column stores

a signal.

K Number of change points users want to detect.

Details

This function is based on the segmentation() function. Number of breakpoints are defined by users and lambda is calculated by algorithm automatically.

Value

An object of S4 class "MSigSeg".

Examples

```
data(data_test)
lambda_estimator(data_test,5)
```

MSigSeg-class

An S4 class to encapsulation the result of breakpoints analysis.

Description

An S4 class to encapsulation the result of breakpoints analysis.

multi_plot 7

Slots

data.input An data.frame/matrix containing the data to be segmented. Each column stores a signal.

data.output A matrix containing the input data which has been smoothed.

lambda A penalty term, small value leads to large number of breakpoints, and vice versa.

brkps A vector containing the locations of common breakpoints.

fmin A numeric containing the optimal numerical value calculated.

date Character string containing date information.

multi_plot

Plot function of MSigSeg package.

Description

Graph signals and breakpoints based on ggplot2 and ggarange packages.

Usage

```
multi_plot(m, ncol, nrow)
```

Arguments

m An object of S4 class "MSigSeg".

ncol Column numbers of signals arrangement in the graph.

nrow Row numbers of signals arrangement in the graph

Value

A list, first item in the list is a graphic objects with all signals drawn and second is a list with individual signals.

```
data(data_test)
m <- segmentation(data_test,100)
p <- multi_plot(m,4,5)</pre>
```

8 noisegen

NCHSData

influenza data set from CDC used as an example.

Description

influenza data set from CDC used as an example.

Usage

NCHSData

Format

A matrix with 52 rows and 10 columns.

Examples

```
data("NCHSData",package = "MSigSeg")
```

noisegen

Noisegen.

Description

Generate matrix based on signal-to-noise ratio.

Usage

```
noisegen(X, SNR)
```

Arguments

X A matrix users aimed to add signal-to-noise ratio.

SNR Signal-to-noise ratio.

Value

A matrix with specified signal-to-noise ratio.

print 9

print

Generic Function-print.

Description

This function print the basic information of MSigSeg object.

Usage

```
## S4 method for signature 'MSigSeg'
print(object)
```

Arguments

object

A MSigSeg object.

Details

This function is a S4 method for MSigSeg object. It prints class, slots, created date and summary of MSigSeg object.

Value

The the basic information of MSigSeg object.

Examples

```
x=new("MSigSeg") # Creating a new MSigSeg object. print(x)
```

seg.len

Generic Function-seg.len.

Description

This function returns the length of segmentation.

Usage

```
## S4 method for signature 'MSigSeg'
seg.len(object)
```

Arguments

object

A MSigSeg object.

10 segmentation

Details

This function is a S4 method for MSigSeg object. It calculates the distance between each change points.

Value

A vector contains length of segmentation.

Examples

```
x=new("MSigSeg") # Creating a new MSigSeg object. seg.len(x)
```

segmentation

Detecting common change points for multiple signals.

Description

Calculates the optimal positioning and number of common breakpoints for multiple signals.

Usage

```
segmentation(Y, lambda, flag = TRUE, return_smooth_signals = TRUE)
```

Arguments

Y An data.frame/matrix containing the data to be segmented. Each column stores

a signal.

lambda A penalty term, small value leads to large number of breakpoints, and vice versa.

flag Logical. If True then use th PELT method. If False then use the OP method.

return_smooth_signals

Logical. If True then smoothed signals are returned.

Details

This function uses modified PELT method to find optimal common change points for multiple signals.

Value

An object of S4 class "MSigSeg"

```
data(data_test)
segmentation(data_test,100)
```

stock 11

stock

A stock data set used as an example.

Description

A stock data set used as an example.

Usage

stock

Format

A data.frame with 757 rows and 488 columns.

Examples

```
data("stock",package = "MSigSeg")
```

summary

Generic Function-summary.

Description

This function summarize the information of MSigSeg object.

Usage

```
## S4 method for signature 'MSigSeg'
summary(object)
```

Arguments

object

A MSigSeg object.

Details

This function is a S4 method for MSigSeg object. It summarizes the number of signals, length of signals, number of change points and fmin.

Value

A summary of MSigSeg object.

```
x=new("MSigSeg") # Creating a new MSigSeg object. summary(x)
```

12 T16P

T16M

A chromosome sequencing data set used as an example.

Description

A chromosome sequencing data set used as an example.

Usage

T16M

Format

A data frame with 2928 rows and 22 columns.

References

Navin N, Kendall J, Troge J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472(7341):90-94. doi:10.1038/nature09807

Examples

```
data("T16M",package = "MSigSeg")
```

T16P

A chromosome sequencing data set used as an example.

Description

A chromosome sequencing data set used as an example.

Usage

T16P

Format

A data frame with 2928 rows and 16 columns.

References

Navin N, Kendall J, Troge J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472(7341):90-94. doi:10.1038/nature09807

```
data("T16P",package = "MSigSeg")
```

Index

```
* datasets
    data_test, 5
    NCHSData, 8
    stock, 11
    T16M, 12
    T16P, 12
brkps, 2
brkps,MSigSeg-method(brkps), 2
change, 3
data.input, 3
data.input,MSigSeg-method(data.input),
data.output, 4
{\tt data.output,MSigSeg-method}
        (data.output), 4
data_test, 5
lambda, 5
lambda, MSigSeg-method (lambda), 5
lambda_estimator, 6
MSigSeg-class, 6
multi_plot, 7
NCHSData, 8
noisegen, 8
print, 9
print,MSigSeg-method(print),9
seg.len, 9
seg.len,MSigSeg-method(seg.len),9
segmentation, 10
stock, 11
{\tt summary}, {\tt 11}
summary, MSigSeg-method(summary), 11
T16M, 12
T16P, 12
```