Math 310

Homework 2

Due: 9/20/2024

Name: Gianluca Crescenzo

Exercise 1. Let F be a field. Show that the following hold:

(i)
$$-1(a) = -a$$
.

(ii)
$$-(-a) = a$$
.

(iii)
$$-(a+b) = (-a) + (-b)$$
.

(iv)
$$(-a)^{-1} = -(a^{-1})$$
.

(v)
$$(ab)^{-1} = a^{-1}b^{-1}$$
.

Proof. (i) Note that (-1+1)a=0. Distributing a gives (-1)a+a=0. Hence (-1)a=-a.

- (ii) -(-a) = -1(-a) by part (i). Adding 1(-a) to both sides gives -(-a) + (-a) = 0. So -(-a) is the additive inverse of -a; we denote this a. Hence -(-a) = a.
 - (iii) -(a + b) = (-1)(a + b) = (-1)a + (-1)b = (-a) + (-b).
- (iv) Note that $(-a) \cdot 1 = a$ implies $(-a)(a \cdot a^{-1}) = 1$. Further simplification yields $(-a)(-(a^{-1})) = 1$. So $-(a^{-1})$ is the multiplicative inverse of -a, which is denoted $(-a)^{-1}$. Hence $(-a)^{-1} = -(a^{-1})$.

(v) From ab = ab, we have that $1 = ab(ab)^{-1}$. Then $a^{-1} = b(ab)^{-1}$, hence $a^{-1}b^{-1} = (ab)^{-1}$.

Exercise 2. Consider the set $K := \{a + b\sqrt{2} \mid a, b \in \mathbf{Q}\}$. Show that:

- (i) If $x, y \in K$, then $x + y \in K$ and $xy \in K$.
- (ii) If $x \neq 0$, then $x^{-1} \in K$.

Proof. Let $x, y \in K$. Then $x = a + b\sqrt{2}$ and $y = c + d\sqrt{2}$. So $x + y = a + b\sqrt{2} + c + d\sqrt{2} = (a + c) + (b + d)\sqrt{2} \in K$ (since \mathbf{Q} is closed under addition). Similarly, $xy = (a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2} \in K$.

Let $x=(a+b\sqrt{2})$. Suppose there exists a $y\neq 0$ such that $y=c+d\sqrt{2}$. Let $(a+b\sqrt{2})(c+d\sqrt{2})=1$. Then $ac+2bd+(bc+ad)\sqrt{2}=1$. We have the following system of equations:

$$bc + ad = 0$$

$$ac + 2bd = 1$$
.

Solving for c and d yields:

$$c = \frac{-a}{-(a^2) + 2b^2} \in \mathbf{Q}$$

$$d = \frac{b}{-(a^2) + 2b^2} \in \mathbf{Q}.$$

Hence $\left(\frac{-a}{-(a^2)+2b^2}\right) + \left(\frac{b}{-(a^2)+2b^2}\right)\sqrt{2} = x^{-1} \in K.$

Exercise 3. Suppose F is a field admitting a subset $P \subseteq F$ with properties:

- (1) If $x, y \in P$, then $x + y \in P$ and $xy \in P$.
- (2) For all $x \in F$, $x \in P$ or $-x \in P$.
- (3) If $x, -x \in P$, then x = 0.

Show that there is an ordering on F making it into an ordered field.

Proof. Define $a \leqslant_P b$ if and only if $b-a \in P$. This ordering is reflexive because $a \leqslant_P a$ if and only if $a-a=0 \in P$. The ordering is also transitive as follows: if $x \leqslant_p y \leqslant_p z$, then $y-x \in P$ and $z-y \in P$. Since P is closed under addition, $y-x+(z-y)=z-x \in P$ implies $x \leqslant_p z$. The ordering is antisymmetric as follows: Let $x \leqslant_p y$ and $y \leqslant_p x$. Then $x-y \in P$ and $y-x=-(x-y) \in P$. Hence x-y=0, implying x=y. Note that this ordering is total as well: if $x,y \in F$ then $x-y \in F$ by closure of fields under addition. Then either $x-y \in P$ or $-(x-y)=y-x \in P$. Hence $x \leqslant_P y$ or $y \leqslant_P x$. Thus $\leqslant_P y$ is a total ordering on F.

Suppose $x \leqslant_P y$ and $s \leqslant_P t$. Then $y-x \in P$ and $t-s \in P$. Since P is closed under addition, $(y-x)+(t-s)=(y+t)-(x+s)\in P$. Then by our definition $x+s\leqslant_P y+t$. Now consider $z\in P$, $z\neq 0$. Since P is closed under multiplication, $(y-x)z\in P$. Simplifying yields $yz-xz\in P$, or equivalently $xz\leqslant_P yz$. This establishes F as an ordered field.

Exercise 4. Let $a, b \in \mathbb{R}$.

- (i) If $0 \le a \le \epsilon$ for all $\epsilon > 0$, then a = 0.
- (ii) If $a \le b + \epsilon$ for all $\epsilon > 0$, then $a \le b$.

Proof. (i) If a=0 we are done. If a>0, then $0\leqslant \frac{1}{2}a\leqslant a$. Pick $\epsilon=\frac{1}{2}a$, then $a\leqslant \frac{1}{2}a$, a contradiction. Thus a=0. (ii) If $a\leqslant b$ then we are done. If a>b, then $a-b\in \mathbf{R}^+$, hence $\frac{1}{2}(a-b)\in \mathbf{R}^+$. Take $\epsilon=\frac{1}{2}(a-b)$. Then $a\leqslant b+\frac{1}{2}(a-b)$ is equivalent to $a\leqslant \frac{1}{2}(a+b)\leqslant b$, which is a contradiction. Thus $a\leqslant b$.

Exercise 5. If $a, b \in \mathbb{R}$, show that:

$$\left(\frac{1}{2}(a+b)\right)^2 \leqslant \frac{1}{2}(a^2+b^2)$$

with equality if and only if a = b.

Proof. Observe that:

$$0 \le \frac{1}{4}(a-b)^2$$

$$= \frac{1}{4}(a^2 - 2ab + b^2)$$

$$= \frac{1}{4}a^2 - \frac{1}{2}ab + \frac{1}{4}b^2.$$

Adding $\frac{1}{4}a^2 + \frac{1}{2}ab + \frac{1}{4}b^2$ to both sides and yields:

$$\frac{1}{4}(a^2+2ab+b^2)\leqslant \frac{1}{2}(a^2+b^2).$$

And upon further simplification we get the desired result:

$$\left(\frac{1}{2}(a+b)\right)^2 \leqslant \frac{1}{2}(a^2+b^2).$$

Note that we have equality if and only if a = b by the first equation.

Exercise 6. For $x \in \mathbf{R}$, show that $\sqrt{x^2} = |x|$.

Proof. Observe the following maps:

$$\cdot^2$$
: **R** → **R** + defined by $x \mapsto x^2$
 $\sqrt{\cdot}$: **R**⁺ → **R**⁺ defined by $x^2 \mapsto x$.

Let
$$x \in \mathbb{R}^+$$
. Then $\sqrt{x^2} = x$. Now let $-x \in \mathbb{R}^+$. Then $\sqrt{(-x)^2} = -x$. Hence $\sqrt{x^2} = |x|$.

Exercise 7. Let $x, y, a, b \in \mathbb{R}$ and $\epsilon > 0$.

- (i) Show that $|x a| < \epsilon$ if and only if $a \epsilon < x < a + \epsilon$.
- (ii) If a < x < b, then $|x| < \max\{|a|, |b|\}$.
- (iii) If a < x < b and a < y < b, show that |x y| < b a.

Proof. (i) By definition this is equal to $-\epsilon < x - a < \epsilon$, which is equivalent to $a - \epsilon < x < a + \epsilon$.

- (ii) Let a < x < b. Suppose x < 0. Then a < 0. So $|x| = -x < -a = |a| \le \max\{|a|, |b|\}$. Thus |x| < |a|. Now suppose x > 0. Then a < 0. So $|x| = x < b = |b| \le \max\{|a|, |b|\}$. Hence $|x| < \max\{|a|, |b|\}$.
- (iii) Note that a < x < b is equivalent to -b < -x < -a. Hence a b < y x < b a. Similarly, a < y < b is equivalent to -b < -y < -a. Hence a b < x y < b a. Thus |x y| < b a.

Exercise 8. Find all $x \in \mathbb{R}$ that satisfy

$$4 < |x + 2| + |x - 1| < 5.$$

Proof. We proceed with cases. Case 1: $x + 2 \in \mathbb{R}^+$ and $x - 1 \in \mathbb{R}^+$. Then:

$$4 < x + 2 + x - 1 < 5$$
,
 $4 < 2x - 1 < 5$,
 $\frac{5}{2} < x < 3$.

Case 2: $-(x + 2) \in \mathbb{R}^+$ and $x - 1 \in \mathbb{R}^+$. Then:

$$4 < -x - 2 + x + 1 < 5$$
,
 $4 < -3 < 5$,

which is a contradiction. Case 3: $x + 2 \in \mathbb{R}^+$ and $-(x - 1) \in \mathbb{R}^+$. Then:

$$4 < x + 2 - x + 1 < 5,$$

$$4 < 3 < 5$$
.

which is a contradiction. Case 4: $-(x+2) \in \mathbb{R}^+$ and $-(x-1) \in \mathbb{R}^+$. Then:

$$4 < -x - 2 - x + 1 < 5,$$

$$5 < -2x < 6,$$

$$-5 > 2x > -6,$$

$$-\frac{5}{2} > x > -3.$$

. Thus
$$x \in (-3, -\frac{5}{2}) \cup (\frac{5}{2}, 3)$$
.

Exercise 9. Let $a, b \in \mathbb{R}$. Show that:

$$\max\{a,b\} = \frac{1}{2}(a+b+|a-b|)$$
 and $\min\{a,b\} = \frac{1}{2}(a+b-|a-b|)$.

Proof. Without loss of generality, suppose $a \leq b$. Then $b - a \in \mathbb{R}^+$. Observe that:

$$\max \{a, b\} = b = \frac{1}{2}a + \frac{1}{2}b - \frac{1}{2}a + \frac{1}{2}b$$
$$= \frac{1}{2}(a + b - a + b)$$
$$= \frac{1}{2}(a + b + |a - b|).$$

$$\min \{a, b\} = a = \frac{1}{2}a + \frac{1}{2}b + \frac{1}{2}a - \frac{1}{2}b$$

$$= \frac{1}{2}(a + b + a - b)$$

$$= \frac{1}{2}(a + b - (b - a))$$

$$= \frac{1}{2}(a + b - |a - b|).$$

Exercise 10. If $x \neq y \in \mathbb{R}$, show that there is a $\delta > 0$ such that $V_{\delta}(x) \cap V_{\delta}(y) = \emptyset$.

Proof. Without loss of generality suppose x < y. Pick $\delta = \frac{|x-y|}{3}$. Suppose towards contradiction $t \in V_{\delta}(x) \cap V_{\delta}(y)$. Then $t \in V_{\delta}(x)$ and $t \in V_{\delta}(y)$. Hence $t \in (x - \frac{|x-y|}{3}, x + \frac{|x-y|}{3})$ and $t \in (y - \frac{|x-y|}{3}, y + \frac{|x-y|}{3})$. But this gives:

$$t < x + \frac{|x - y|}{3} < y - \frac{|x - y|}{3} < t,$$

which is a contradiction. Hence $V_{\delta}(x) \cap V_{\delta}(y) = \emptyset$.