Plan du cours

I.	Section d'un pavé droit ou d'un cube	1
II.	Section d'un cylindre de révolution	1
III.	Section d'une pyramide ou d'un cône	2
IV.	Section d'une sphère	
	1. Le plan passe par le centre de la sphère	4
	2. Le plan est tangent à la sphère	4
	3. Le plan ne passe pas par le centre et n'est pas tangent à la sphère	4

I. Section d'un pavé droit ou d'un cube

Propriété

La section d'un pavé droit (ou d'un cube) par un plan parallèle à une de ses faces est un rectangle (ou un carré) identique à cette face.

Propriété

La section d'un pavé droit (ou d'un cube) par un plan parallèle à une de ses arêtes est un rectangle.

II. Section d'un cylindre de révolution

Propriété

La section d'un cylindre de révolution par un plan parallèle à son axe est un rectangle.

Propriété

La section d'un cylindre de révolution par un plan perpendiculaire à son axe est un cercle identique à celui de la base.

III. Section d'une pyramide ou d'un cône

Définition

Un **agrandissement** d'une figure ou d'un solide, c'est multiplier les dimensions de cette figure (ou de ce solide) par un nombre k supérieur à 1.

Une **réduction** d'une figure ou d'un solide, c'est multiplier les dimensions de cette figure (ou de ce solide) par un nombre k compris entre 0 et 1.

Propriété

Dans un agrandissement (ou une réduction) de rapport k:

- les **longueurs** sont multipliées par *k*.
- les **aires** sont multipliées par k^2 .
- les **volumes** sont multipliés par k^3 .

Exemple : Soit SABCD un pyramide à base carré, on sait qu	we son aire vaut $250 dm^2$.
Combien vaut l'aire d'une pyramide 2 fois plus petite? Comb	oien vaut l'aire d'une pyramide 10 fois plus grande?
Propriété	
La section d'une pyramide ou d'un cône de révolution	on par un plan parallèle à la base est une réduction de la base.
_E	
D	^^
A' B'	
10	
C	
A B	• 0
Exercice d'application 1	
On considère un cône de révolution s	
de hauteur SO = 6 cm et dont le disque de base a pour rayon 5 cm.	
1. Calculer le volume de ce cône.	
2. On sectionne ce cône par	
un plan parallèle à sa base qui coupe [SO] en O' de telle	
sorte que SO' = 4 cm. Calculer	
le volume du cône de hauteur SO' ainsi défini.	

IV. Section d'une sphère

Propriété

La section d'une sphère par un plan est un cercle.

On distingue trois cas possibles, détaillés ci-dessous.

1. Le plan passe par le centre de la sphère

La section d'une sphère de rayon ${\bf R}$ par un plan passant par son centre est un cercle de rayon ${\bf R}$.

On dit que la sphère est partagée en deux hémisphères.

2. Le plan est tangent à la sphère

La section d'une sphère par un plan tangent à celle-ci est un point de la sphère.

C'est le cas d'une boule posée sur une table.

3. Le plan ne passe pas par le centre et n'est pas tangent à la sphère

La section d'une sphère de rayon R par un plan ne passant pas par son centre et n'étant pas tangent à la sphère est un cercle de rayon r < R.

