Question 1:

Model 7 with beta estimates:

```
\hat{y} = 12.192 - .598x_1 - .00598x_2 - .01078x_1x_2 + .086x_1^2 + .00014x_2^2 + .677x4 - .275x_1x_4 - .026x_2x_4 + .013x_1x_2x_4 - .782x_3 + .0399x_1x_3 - .021x_2x_3 - .0033x_1x_2x_3 difference between the predicted regulated price and predicted deregulated price for any fixed value of mileage. regulated: x_3 = 0   \hat{y} = 12.134 - 0.760x_1 + 0.086x_1^2
```

```
regulated: x_3 = 0   \hat{y} = 12.134 - 0.760x_1 + 0.086x_1^2 deregulated: x_3 = 1   \hat{y} = 11.037 - 0.7696x_1 + 0.086x_1^2 assuming mileage is x_1: Difference between regulated and deregulated: 12.134 - 0.760x_1 + 0.086x_1^2 - (11.037 - 0.7696x_1 + 0.086x_1^2) = 1.097 + 0.0096x_1
```

Explanation: To find the difference between the predicted regulated price and the predicted deregulated price, we first created separate for each of these two events. To do so, we plugged in 1 for x_3 for deregulated, and 0 for x_3 for regulated. In doing so, two distinct functions were created to model in each situation. To find the difference between these two, we simply subtracted the deregulated price from the regulated price. The resulting function serves to predict the difference in regulated vs deregulated price based on a particular mileage.

Ouestion 2:

```
x_{2} = 10
x_{4} = 1
x_{3} = 1 \text{ if deregulated; } x_{3} = 0 \text{ if regulated}
\hat{y} = 12.192 - .598x_{1} - .00598x_{2} - .01078x_{1}x_{2} + .086x_{1}^{2} + .00014x_{2}^{2} + .677x_{4} - .275x_{1}x_{4} - .026x_{2}x_{4}
+ .013x_{1}x_{2}x_{4} - .782x_{3} + .0399x_{1}x_{3} - .021x_{2}x_{3} - .0033x_{1}x_{2}x_{3}
Regulated (x_{3} = 0):
\hat{y} = 12.192 - .598x_{1} - .00598(10) - .01078x_{1}(10) + .086x_{1}^{2} + .00014(10)^{2} + .677(1) - .275x_{1}(1)
- .026(10)(1) + .013x_{1}(10)(1)
= 12.5632 - 0.8508x_{1} + 0.086x_{1}^{2}
Deregulated (x_{3} = 1):
\hat{y} = 12.192 - .598x_{1} - .00598(10) - .01078x_{1}(10) + .086x_{1}^{2} + .00014(10)^{2} + .677(1) - .275x_{1}(1)
- .026(10)(1) + .013x_{1}(10)(1) - .782(1) + .0399x_{1}(1) - .021(10)(1) - .0033x_{1}(10)(1)
= 11.5712 - 0.5029x_{1} + 0.086x_{1}^{2}
```


Explanation: To demonstrate the impact of deregulation on price charged when the origin is Miami and the weight is fixed at 10,000 lbs, we first had to plug those constants into model 7. We replaced x_2 with 10 (10,000 lbs), and we replaced x_4 (origin) with the value 1 to indicate that the origin is Miami ($x_4 = 1$ if originate in Miami, 0 if originate in Jacksonville). To find the impact of deregulation, we then had to input both 0 and 1 for x_3 in the equation ($x_3 = 1$ if deregulation in effect, 0 if not). We then compared the model for deregulation ($x_3 = 1$) with the model for regulation ($x_3 = 0$) by creating a scatter plot comparing both models. We were able to plot distance shipped in miles (x_1) vs the predicted value of LNPRICE (y) in order to demonstrate the difference between the regulated and deregulated models because the x variables origin and weight of product were both held fixed.

Question 3:

Analysis:

Variable Assignment:

 $x_1 = Distance Shipped$

 x_2 = Weight of Product

$$x_3 = \begin{cases} 1 \text{ if deregulation in effect} \\ 0 \text{ if not} \end{cases}$$

$$x_4 = \begin{cases} 1 \text{ if originates from Miami} \\ 0 \text{ if originates from Jacksonville} \end{cases}$$

 $x_5 = Carrier A$

 $x_6 = Carrier C$

 $x_7 = Carrier D$

Carrier B is held as the base level for carriers.

Model 7: Reduced (original) Model

$$E(y) = B_0 - B_1 x_1 - B_2 x_2 - B_3 x_3 + B_4 x_4 - B_5 x_1^2 + B_6 x_2^2 - B_7 x_1 x_2 + B_8 x_1 x_3 - B_9 x_1 x_4 - B_{10} x_2 x_3 - B_{11} x_2 x_4 - B_{12} x_1 x_2 x_3 + B_{13} x_1 x_2 x_4$$

$$\hat{y} = 12.2199 - 0.5670x_1 - 0.0167x_2 - 0.3733x_3 + 0.5999x_4 - 0.0748x_1^2 + 0.0003x_2^2 - 0.0075x_1x_2 + 0.0077x_1x_3 - 0.2239x_1x_4 - 0.0093x_2x_3 - 0.0263x_2x_4 - 0.0011x_1x_2x_3 + 0.0086x_1x_2x_4$$

Model 7 Complete (New) Model:

$$E(y) = B_0 + B_1 x_1 + B_2 x_2 + B_3 x_1^2 + B_4 x_2^2 + B_5 x_3 + B_6 x_4 + B_7 x_5 + B_8 x_6 + B_9 x_7 + B_{10} x_1 x_2 + B_{11} x_1 x_3 + B_{12} x_1 x_4 + B_{13} x_1 x_5 + B_{14} x_1 x_6 + B_{15} x_1 x_7 + B_{16} x_2 x_3 + B_{17} x_2 x_4 + B_{18} x_2 x_5 + B_{19} x_2 x_6 + B_{20} x_2 x_7 + B_{21} x_1 x_2 x_3 + B_{22} x_1 x_2 x_4 + B_{23} x_1 x_2 x_5 + B_{24} x_1 x_2 x_6 + B_{25} x_1 x_2 x_7$$

This model includes the added main effects terms for carrier (A, B, C, and D) and the additional interaction terms for carrier with distance shipped, weight of the product, if deregulation is in effect, and if it originated in Miami or Jacksonville.

Prediction Equation Model 7 With Added Main Effects Terms for Carrier and Interaction Terms for Carrier

```
\hat{y}=12.0709-0.6300x_{1}-0.0251x_{2}+0.08516x_{1}^{2}+0.0003x_{2}^{2}-0.433x_{3}+0.6114x_{4}+0.4456x_{5}+0.2474x_{6}\\+0.2161x_{7}-.0065x_{1}x_{2}+0.0436x_{1}x_{3}0.2306x_{1}x_{4}-.0512x_{1}x_{5}+0.0094x_{1}x_{6}+0.0314x_{1}x_{7}\\+0.00304x_{2}x_{3}-.0267x_{2}x_{4}-.0050x_{2}x_{5}+0.0083x_{2}x_{6}+0.0305x_{2}x_{7}-.0032x_{1}x_{2}x_{3}+0.0090x_{1}x_{2}x_{4}\\+0.0057x_{1}x_{2}x_{5}-0.0018x_{1}x_{2}x_{6}-0.0053x_{1}x_{2}x_{7}
```

We did not remove any of the added dummy variables for carriers (x5, x6, x7, and interaction terms including those variables) because we did not find significant multicollinearity between any of the three. (see appendix for pairwise correlation)

Hypothesis:

 H_0 : $B_5 = B_6 = B_7 = B_{13} = B_{14} = B_{15} = B_{18} = B_{19} = B_{20} = B_{23} = B_{24} = B_{25} = 0$ The added terms for carriers (A, B, C, or D) do not cause the curves to differ for each carrier.

 H_a : One of B_5 , B_6 , B_7 , B_{13} , B_{14} , B_{15} , B_{18} , B_{19} , B_{20} , B_{23} , B_{24} , B_{25} do not equal 0 The added terms for carrier (A, B, C, or D) do cause the curves to differ for each carrier.

Nested F Test:

The F-stat (10.6206) is greater than the F-critical value (1.77451) so we can determine that the model is statistically significant. There is sufficient evidence (at $\alpha = .05$) that the added terms for carriers cause the models to differ for each carrier.

We reject the null hypothesis that the added terms for carriers (A, B, C, or D) do not cause the curves to differ for each carrier at alpha=.05 (our p-value of 1.5241E-18<.05).

Conclusion:

This report sought to compare if there is a significant difference for trucking prices based on the type of carrier used. In conducting our analysis, we compared the best model for predicting trucking price (Model 7), with that same model including the addition of carrier type and any interaction carrier type might have with other variables.

In conducting our analysis, we looked at multiple models that vary in complexity. Our first model, Model 7, strictly used distance shipped, weight of the product, whether or not deregulation was in effect, and if it was originated in Jacksonville or Miami under the condition that products were all shipped by carrier B. We expanded to see if there would be different results if carriers A, C, and D were used instead. Using statistical tests, we found that there was a significant difference in trucking price for each of the different carriers. Therefore, it would be beneficial to include the information of carrier type when predicting trucking prices.

Appendix

Codes Used and Outcome: data cs2: infile '/folders/myfolders/TRUCKING4.txt' dlm='09'x firstobs=2; **PCTLOAD** input PRICPTM DISTANCE WEIGHT ORIGIN \$ MARKET \$ DEREG \$ CARRIER \$ PRODUCT LNPRICE; run; data sad; set cs2; mia = 0;if ORIGIN = 'MIA' then mia = 1; yes=0;if dereg = 'YES' then yes = 1; A=0;C=0;D=0: if carrier = 'A' then A = 1; if carrier = 'C' then C = 1; if carrier = 'D' then D = 1; x1 = DISTANCE; x2 = WEIGHT;x3 = yes;x4 = MIA; x5 = A; x6 = C; x7 = D;x1sq = x1**2;x2sq = x2**2;x1x2 = x1*x2; x1x3 = x1*x3; x1x4 = x1*x4; x1x5 = x1*x5; x1x6 = x1*x6; x1x7 = x1*x7; x2x3 = x2*x3; x2x4 = x2*x4; x2x5 = x2*x5: x2x6 = x2*x6; x2x7 = x2*x7;x1x2x3 = x1*x2*x3; x1x2x4 = x1*x2*x4; x1x2x5 = x1*x2*x5; x1x2x6 = x1*x2*x6;

x1x2x7 = x1*x2*x7;

run;

*checks for multicollinearlity; proc corr data=sad nosimple; var x1 x2 x3 x4 x5 x6 x7; run;

			The CO	RR Procedu	ıre		
		7 V	'ariables:	x1 x2 x3 x4	x5 x6 x7		
		Pearso		on Coefficion		18	
	x1	x2	х3	x4	x5	х6	х7
x1	1.00000	0.03484 0.4620	-0.06832 0.1488	0.10616 0.0246	-0.05417 0.2526	0.01907 0.6872	0.05098 0.2816
х2	0.03484 0.4620	1.00000	-0.03532 0.4558	0.01328 0.7792	0.02231 0.6376	-0.08523 0.0715	0.03421 0.4702
х3	-0.06832 0.1488	-0.03532 0.4558	1.00000	-0.02498 0.5979	0.13870 0.0033	-0.19205 <.0001	-0.12324 0.0090
х4	0.10616 0.0246	0.01328 0.7792	-0.02498 0.5979	1.00000	-0.07777 0.1002	0.04355 0.3578	-0.02474 0.6015
х5	-0.05417 0.2526	0.02231 0.6376	0.13870 0.0033	-0.07777 0.1002	1.00000	-0.33976 <.0001	-0.31275 <.0001
х6	0.01907 0.6872	-0.08523 0.0715	-0.19205 <.0001	0.04355 0.3578	-0.33976 <.0001	1.00000	-0.25438 <.0001
х7	0.05098 0.2816	0.03421 0.4702	-0.12324 0.0090	-0.02474 0.6015	-0.31275 <.0001	-0.25438 <.0001	1.00000

proc reg data=sad plots = none; model lnprice = x1 x2 x3 x4 x5 x6 x7 /vif; run;

			M	REG Pro odel: MO nt Variab	DEL	1					
		Number	Number of Observations Read 448								
		Number	of C	bservatio	ons l	Jsed	44	8			
			Δna	lysis of V	ariar	nce					
				Sum of		Mean					
Source		DF		Squares	s	quare	F	Value	Pr > F		
Model		7	14	1.13647	20.	16235		117.10	<.0001		
Error		440	7	75.75806		17218					
Correct	ted To	tal 447	21	6.89453							
	Root			0.41494		R-Squar	-	0.6507	_		
	Depe	ndent Mea	an	10.85452	2 A	dj R-So	1	0.6452			
	Coeff	Var		3.82276	6						
	_			meter Es	tima	tes	_				
Variable	DF	Parame Estima		Standar Erre		t Value		Pr > t	Variance Inflation		
Intercept	1	11.838	371	0.0650	03	182.06		<.0001	0		
x1	1	-0.297	744	0.0142	25	-20.87	,	<.0001	1.01968		
x2	1	-0.033	325	0.0022	27	-14.66		<.0001	1.01143		
x3	1	-0.386	640	0.0416	67	-9.27		<.0001	1.07986		
x4	1	0.197	735	0.0396	32	4.98		<.0001	1.02032		
x5	1	0.365	548	0.0510	06	7.16		<.0001	1.41011		
x6	1	0.270)46	0.0567	74	4.77		<.0001	1.42119		
x7	1	0.388	354	0.0584	13	6.65		<.0001	1.36587		

*Beta parameters;

*For Model 7:

proc reg data=sad plots = none; model lnprice = x1 x2 x1sq x2sq x3 x4 x1x2 x1x3 x1x4 x2x3 x2x4 x1x2x3 x1x2x4; run;

					N	REG lodel: ent Va	MOD	E		Έ				
			Nu	mber	of (Observations Read				44	8			
			Nu	mber	of (Obser	vatio	ns	Used	44	8			
				-	Ana	alysis	of Va	ria	ance					
S	ource			DF		Sum			Mean Square		Value		Pr > I	
	odel			13	1-	44.658		1	1.12756	_	66.86	-	<.000	
	rror			434		72.236			0.16644	-				
С	orrec	ted To	tal	447	2	16.894	153							
	Root M		MSE			0.40797		R-Squar		are 0.667		70		
		Depe	nde	nt Mea	n	10.8	35452 Adj R-		Adj R-	Sq 0.657		70		
		Coeff	f Var		3.7		5857	5857						
				Parameter Estimates										
	Varia	ible	DF			neter mate	S	ta	ndard Error	t V	alue	Pı	r > t	
	Inter	cept	1	1	2.2	1986		0.	18789	6	5.04	<.	0001	
	x1		1	-	0.5	6696		0.	07840	-	7.23	<.	0001	
	x2		1	-	0.0	1673		0.	01688	_	0.99	0.	3222	
	x1sq		1	-		.07484		0.00860		8.70			0001	
	x2sq	l	1					00035207		0.99		0.3225		
	x3		1	-		7331	_		0.13660		-2.73		0.0065	
	x4		1	-		9991	-		18372	3.27			0012	
x1x2		1	-		0754	0.00498						1307		
	x1x3 x1x4		1	-		0766 2387			04416		0.17 3.61		8623 0003	
	x2x3		1	-		0930			01138		0.82		4142	
	x2x4		1	-		2632			01529		1.72		0859	
	x1x2					0111		_	00345		0.32		7483	
	x1x2		1			0864			00514		1.68		0935	

*Model 7 + added terms

proc reg data=sad plots=none; model Inprice = x1 x2 x1sq x2sq x3 x4 x5 x6 x7 x1x2 x1x3 x1x4 x1x5 x1x6 x1x7 x2x3 x2x4 x2x5 x2x6 x2x7 x1x2x3 x1x2x4 x1x2x5 x1x2x6 x1x2x7; run:

			Depen	E					
		N	ımber o	f Observatio	ns Read	448			
		N	ımber o	f Observatio	ns Used	448			
-				nahusia of Va	rianaa				
		Analysis of Variance							
	Sourc	e	DF	Sum of Squares	Mean Square	F Value	Pr > F		
	Mode	I	25	161.05565	6.44223	48.69	<.0001		
	Error		422	55.83887	0.13232				
	Corre	cted Total	447	216.89453					
		Root MS	E	0.36376	R-Squa	re 0.742	6		
		Dependent Mear		10.85452	Adj R-S	q 0.727	3		
		Coeff Va	г	3.35121					

Parameter Estimates								
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t			
Intercept	1	12.07092	0.19788	61.00	<.0001			
x1	1	-0.63004	0.07961	-7.91	<.0001			
x2	1	-0.02511	0.01727	-1.45	0.1467			
x1sq	1	0.08516	0.00783	10.88	<.0001			
x2sq	1	0.00026832	0.00032024	0.84	0.4026			
х3	1	-0.43328	0.12726	-3.40	0.0007			
х4	1	0.61138	0.16541	3.70	0.0002			
х5	1	0.44755	0.14523	3.08	0.0022			
х6	1	0.24741	0.15586	1.59	0.1132			
х7	1	0.21606	0.19297	1.12	0.2635			
x1x2	1	-0.00650	0.00508	-1.28	0.2016			
x1x3	1	0.04372	0.04160	1.05	0.2939			
x1x4	1	-0.23062	0.05570	-4.14	<.0001			
x1x5	1	-0.05121	0.04593	-1.11	0.2655			
x1x6	1	0.00943	0.04755	0.20	0.8429			
x1x7	1	0.03138	0.05729	0.55	0.5842			
x2x3	1	0.00304	0.01090	0.28	0.7808			
x2x4	1	-0.02665	0.01376	-1.94	0.0534			
x2x5	1	-0.00501	0.01211	-0.41	0.6793			
x2x6	1	0.00834	0.01520	0.55	0.5837			
x2x7	1	0.03049	0.01483	2.06	0.0403			
x1x2x3	1	-0.00315	0.00341	-0.92	0.3555			
x1x2x4	1	0.00900	0.00462	1.95	0.0520			
x1x2x5	1	0.00571	0.00370	1.54	0.1240			
x1x2x6	1	-0.00175	0.00447	-0.39	0.6951			
x1x2x7	1	-0.00529	0.00435	-1.22	0.2250			

*nested F-test;

data nestedFtest; Fstat = ((72.23628-55.83887)/(12))/(55.83887/(448 -13 -1)); pvalue = SDF('F',Fstat,12,448 -13 -1); Fcritical = quantile('F',.95,12,448 -13 -1); proc print data=nestedFtest; run;

Obs	Fstat	pvalue	Fcritical
1	10.6206	1.5241E-18	1.77451