

SEQUENCE LISTING

<110> MARGOLIN, JUDITH F.
GINGRAS, MARIE-CLAUDE

<120> TREM-1 SPLICE VARIANT FOR USE IN MODIFYING IMMUNE RESPONSES

<130> P02046US1/10023489/OTA#01-07

<140> TO BE ASSIGNED
<141> 2001-12-06

<150> 60/254,404
<151> 2000-12-07

<160> 28

<170> PatentIn version 3.1

<210> 1
<211> 755
<212> DNA
<213> HUMAN

<400> 1
attgtggtgc cttgttagctg tcccgaggagc cctcagcagc agttggagct ggtgcacagg 60
aaggatgagg aagaccaggc tctgggggct gctgtggatg ctctttgtct cagaactccg 120
agctgcaact aaattaactg aggaaaagta tgaactgaaa gaggggcaga ccctggatgt 180
gaaatgtgac tacacgctag agaagtgc cagcagccag aaagcttggc agataataag 240
ggacggagag atgccaaga ccctggcatg cacagagagg cttcaaaga attcccatcc 300
agtccaagtg gggaggatca tactagaaga ctaccatgat catggttac tgcgctccg 360
aatggtcaac cttcaagtgg aagattctgg actgtatcag tgtgtatct accagcctcc 420
caaggagcct cacatgctgt tcgatcgcat ccgcttggtg gtgaccaagg gttccggtg 480
ttcaacattt tcatttcct ggctggtgga ttccctgagta agagcctggc cttctctgtc 540
ctgtttgctg tcacgctgag gtcatttgc ccctaggccc acgaacccac gagaatgtcc 600
tctgacttcc agccacatcc atctggcagt tgtgccaagg gaggagggag gaggtaaaag 660
gcagggagtt aataacatga attaaatctg taatcaccag ctatttctaa agtcagcgtc 720
tcacacctaaa aaaaaaaaaa aaaaaaaaaa aaaaa 755

<210> 2
<211> 150
<212> PRT
<213> HUMAN

<400> 2

Met Arg Lys Thr Arg Leu Trp Gly Leu Leu Trp Met Leu Phe Val Ser
1 5 10 15

Glu Leu Arg Ala Ala Thr Lys Leu Thr Glu Glu Lys Tyr Glu Leu Lys
20 25 30

Glu Gly Gln Thr Leu Asp Val Lys Cys Asp Tyr Thr Leu Glu Lys Phe
35 40 45

Ala Ser Ser Gln Lys Ala Trp Gln Ile Ile Arg Asp Gly Glu Met Pro
50 55 60

Lys Thr Leu Ala Cys Thr Glu Arg Pro Ser Lys Asn Ser His Pro Val
65 70 75 80

Gln Val Gly Arg Ile Ile Leu Glu Asp Tyr His Asp His Gly Leu Leu
85 90 95

Arg Val Arg Met Val Asn Leu Gln Val Glu Asp Ser Gly Leu Tyr Gln
100 105 110

Cys Val Ile Tyr Gln Pro Pro Lys Glu Pro His Met Leu Phe Asp Arg
115 120 125

Ile Arg Leu Val Val Thr Lys Gly Phe Arg Cys Ser Thr Leu Ser Phe
130 135 140

Ser Trp Leu Val Asp Ser
145 150

<210> 3

<211> 1023

<212> DNA

<213> MUS MUSCULUS

<400> 3
ttcaaggaa aagcaagatc ttgcacaagg tccccctccgg ctggctgctg gcaaaggaaa 60
ggtgccatgg gacctctcca ccagtttctc ctgctgctga tcacagccct gtcccaagcc 120
ctcaacacca cggtgctgca gggcatggcc ggccagtcct tgagggtgtc atgtacttat 180
gacgccttga agcactgggg gagacgcaag gcctgggtgc ggcagctggg tgaggagggc 240
ccatgccagc gtgtggtgag cacacacggt gtgtgggctg ctggccttcc tgaagaagcg 300
gatgggagca cagtcatcgc agatgacacc cttgctggaa ccgtcaccat cactctgaag 360
aacctccaag ccggtgacgc gggcctctac cagtgtcaga gtctccgagg ccgagagcgt 420
gaggtcctgc agaaagtact ggtggagggtg ctggaggacc ctctagatga ccaagatgct 480
ggagatctct gggccccga ggagtcatcg agtttcgagg gtgcccaagt ggaacacacgc 540

acctccagga atcaagagac ctccttcca cccacacctca ttcttctcct cctggcctgc 600
gttctcctga gcaagtttct tgcagccagc atcctctggg ctgtggccag gggcaggcag 660
aagccggaa cacctgtggt cagagggctg gactgtggcc aagatgtgg gaccaactt 720
cagatcctca ctggaccctgg aggtacgtga gagaattctg agtgggagga gaactacagc 780
ttaagtccag ccaggagtca atccagcctg catgtctcc cctcctccac caagacttct 840
gtttctgcta ctttgcttc agaggccgcc tctgccttca gccacctatac ctgggaacag 900
gaatactgtg tgtacatctg tggtagttg ggaagaacac tggatgggtg tccgtaaaat 960
tctggaattt gggattaac atcctcccac accagaaaat agaaaaaaaaa gaaccatggg 1020
gcc 1023

<210> 4
<211> 995
<212> DNA
<213> MUS MUSCULUS

<400> 4
acttgccttggggccattgg cagtttagcac accaggaagg agtttcatac agaggaggca 60
gggacctggggatgtcacc gctgctgcta tggctggggc tgatgctctg tgtctcgaaa 120
ctccaagctg gagatgagga agaacacaag tggatgtggc agggcgagaa cctgaccctg 180
acttgcctt acaacatcat gctatactca ctgagcctga aggctggca gcgggtcaga 240
agccacgggtt ctccagagac tctggtgctc acaaacacca gaaaggcaga cttcaacgtg 300
gccagggtctt ggaagtactt gctggaggat tatcccaccc aatctgtcgt caaggtcact 360
gtgactgggc tgcagaggca agatgtgggg ctgtaccagt gtgtggtcta cctctctcct 420
gacaatgtta tcattctgcg tcaacggata cggctggcat ggtgtcaagg gaagccagtg 480
atggtgatcg ttctgacgtg tggcttcata ctaaacaagg gcctggtctt ctcagtcctg 540
tttgtctttc tctgcaaagc tgggcctaag gtgttacagc cttccaagac atccaaagta 600
cagggagtctt ctgagaaaca gtgccttcc tgctacaagc tgtgagcaca cttccctta 660
tctattaaca acataccaga tggatgttat tggggacaat ctggcccttc ctacattctc 720
cttgtgaact ctgttagca catgatactc ccagaggaca gctctgagga gagctgtgta 780
gaaggaggctt catgagacat cagtgaagaa tataaaattt agagagattt ggacctttgg 840
tggagcagtt aagcaggacc cacagagaat tcacactaaa atcttatcac catttctctc 900
ctgctaacca ggtctgccat gctgtggact ggtaaaacctt atatgtgtt acctatctct 960
cttctgataa taataaaaaa aattgtattt ttttc 995

<210> 5
<211> 990
<212> DNA
<213> MUS MUSCULUS

<400> 5
gagcttgaag gatgaggaag gctggctct gggactgct gtgcgtttc tttgtcttag 60
aagtcaaagc tgccattgtt ctagaggaag aaaggtatga cctagtggag ggccagactt 120
tgacagtgaa gtgtcccttc aacatcatga agtatgccaa cagccagaag gcttggcaga 180
gactaccaga cgggaaggaa cccttgaccc tgggtgtcac acagaggccc tttacaagac 240
ccagtgaagt ccacatgggg aagttcaccc tgaaacatga ccctagttag gccatgctac 300
aagttcaa at gactgaccc caagtgacag actctggatt gtatcggtgt gtgatttacc 360
atcctccgaa tgaccctgtt gtgctcttcc atcctgtccg cctgggtgtg accaagggtt 420
cttcagatgt gttcactcct gtcatttc ctattacaag gctgacagag cgtcccatcc 480
ttattaccac aaaatactca cccagtgaca caactacaac ccgatcccta cccaagcccc 540
ctgcgggtgt ttcctctcct ggtcttggag tcactatcat aaatggaca gatgctgaca 600
gtgtctccac atccagtgtt actatttcag tcattctgtgg acttctcagc aagagcctgg 660
ttttcatcat cttatttcatt gtcacaaaaga ggacatttg ggacagaac ttgaagctat 720
acaatagtga cttcagcgg tgtctatttc acaggaggag ctgaggtggt gggctgagg 780
aggagctatg acatgaattt aacctgtaat caccggtgac gtctaaggct caggatatcc 840
tcagctgacc ctgtccactc tcctcatttt atccatcatc ttggggatgt gctctgcacc 900
cttagaaaag gggaaaccat tcccagaaca ctctggccat tccccctaaa tagttgggtt 960
ggcctgaaat aaagagaaac tccagagctt 990

<210> 6
<211> 1041
<212> DNA
<213> MUS MUSCULUS

<400> 6
tgacatgcct gatcctctct tttctgcagt tcaaggaaa gacgagatct tgcacaaggc 60
actctgcttc tgcccttggc tggggaaagg tggcatggag cctctccggc tgctcatctt 120
actctttgtc acagagctgt ccggagccca caacaccaca gtgttccagg gcgtggcggg 180
ccagtccctg caggtgtctt gcccctatga ctccatgaag cactggggga ggcgcaaggc 240
ctggtgccgc cagctggag agaaggccc atgccagcgt gtggtcagca cgccacaactt 300
gtggctgctg tccttcctga ggaggtggaa tgggagcaca gccatcacag acgataccct 360
gggtggcact ctcaccatta cgctgcggaa tctacaaccc catgatgcgg gtctctacca 420

gtgccagagc ctccatggca gtgaggctga caccctcagg aaggtcctgg tggaggtgct 480
ggcagacccc ctggatcacc gggatgctgg agatctctgg ttccccgggg agtctgagag 540
cttcgaggat gcccatgtgg agcacagcat ctccaggagc ctcttggaaag gagaaatccc 600
cttcccaccc acttccatcc ttctcctcct gcgcgcatac tttctcatca agattcttagc 660
agccagcgcc ctctgggctg cagcctggca tggacagaag ccagggacac atccacccag 720
tgaactggac tgtggccatg acccaggta tcagctccaa actctgccag ggctgagaga 780
cacgtgaagg aagatgatgg gaggaaaagc ccaggagaag tcccaccagg gaccagccca 840
gcctgcatac ttgccacttg gccaccagga ctcctgttc tgctctggca agagactact 900
ctgcctgaac actgcttctc ctggaccctg gaagcaggga ctgggtgagg gagtggggag 960
gtggtaagaa cacctgacaa cttctgaata ttggacattt taaacactta caaataaaatc 1020
caagactgtc atatttaaaa a 1041

<210> 7
<211> 884
<212> DNA
<213> HUMAN

<400> 7
ctactactac taaattcgcg gccggtcgac gctggtgcac aggaaggatg aggaagacca 60
ggctctgggg gctgctgtgg atgctcttg tctcagaact ccgagctgca actaaattaa 120
ctgagaaaaaa gatatgaactg aaagaggggc agaccctgga tgtgaaatgt gactacacgc 180
tagagaagtt tgccagcagc cagaaagott ggcagataat aagggacgga gagatgcccc 240
agaccctggc atgcacagag aggccttcaa agaattccca tccagtccaa gtggggagga 300
tcatactaga agactaccat gatcatggtt tactgcgcgt ccgaatggtc aaccttcaag 360
tggaaagattc tggactgtat cagtgtgtga tctaccagcc tcccaaggag cctcacatgc 420
tgttcgatcg catccgcttg gtggtgacca agggttttc agggaccctt ggctccaatg 480
agaattctac ccagaatgtg tataagattc ctccattaccac cactaaggcc ttgtgcccc 540
tctataccag cccccagaact gtgacccaag ctccacccaa gtcaactgcc gatgtctcca 600
ctcctgactc tgaaatcaac cttacaaatg tgacagatcatc catcagggtt ccgggttca 660
acattgtcat tctcctggct ggtggattcc tgagtaagag cctggtcttc tctgtcctgt 720
ttgctgtcac gctgaggtca tttgtaccct aggccccacga acccacgaga atgtcctctg 780
acttccagcc acatccatct ggcagttgtg ccaaggaggagg aggaggagg taaaaggcag 840
ggagttata acatgaatta aatctgtaat caccagctat ttct 884

<210> 8

<211> 948
<212> DNA
<213> HUMAN

<400> 8
attgtggtgc cttgttagctg tcccgggagc cctcagcagc agttggagct ggtgcacagg 60
aaggatgagg aagaccaggc tctggggct gctgtggatg ctctttgtct cagaactccg 120
agctgcaact aaattaactg aggaaaagta tgaactgaaa gagggggcaga ccctggatgt 180
gaaatgtgac tacacgctag agaagttgc cagcagccag aaagcttggc agataataag 240
ggacggagag atgccaaga ccctggcatg cacagagagg cttcaaaga attcccattcc 300
agtccaagtg gggaggatca tactagaaga ctaccatgat catggttac tgcgctccg 360
aatggtcaac cttcaagtgg aagattctgg actgtatcag tgtgtgatct accagcctcc 420
caaggagcct cacatgctgt tcgatcgcat ccgcttggtg gtgaccaagg gtttttcagg 480
gaccctggc tccaatgaga attctaccctt gaatgtgtat aagattcctc ctaccaccac 540
taaggccttg tgcccactct ataccagccc cagaactgtg acccaagctc cacccaaagtc 600
aactgccat gtctccactc ctgactctga aatcaacctt acaaattgtga cagatattcat 660
cagggttccg gtgttcaaca ttgtcattct cctggctggt ggattcctga gtaagagcct 720
ggtcttctct gtcctgtttg ctgtcacgct gaggtcattt gtaccctagg cccacgaacc 780
cacgagaatg tcctctgact tccagccaca tccatctggc agttgtgcca agggaggagg 840
gaggaggtaa aaggcaggga gttataaca tgaattaaat ctgtaatcac cagctatttc 900
taaagtccacgtc gtctcacctt aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 948

<210> 9
<211> 884
<212> DNA
<213> HUMAN

<400> 9
tcactactac taaattcgcg gccgggtcgac gctgggtgcac aggaaggatg aggaagacca 60
ggctctgggg gctgctgtgg atgcttttgc tctcagaact ccgagctgca actaaattaa 120
ctgagggaaaa gatatgaaactg aaagaggggc agaccctggta tgtgaaatgt gactacacgc 180
tagagaagtt tgccagcagc cagaaagttt ggcagataat aagggacgga gagatgccca 240
agaccctggc atgcacagag aggccttcaa agaattccca tccagtcacaa gtggggaggg 300
tcataactaga agactaccat gatcatggtt tactgctcgatccgatccaa aacccatgc 360
tggaaagattc tggactgtat cagtgtgtga tctaccagcc tcccaaggag cctcacatgc 420
tgttcgatcg catccgcttg gtgggtgacca agggtttttc agggacccct ggctccaaatg 480
agaattctac ccagaatgtg tataagattc ctcctaccac cactaaggcc ttgtgcccac 540

tctataccag ccccagaact gtgacccaag ctccacccaa gtcaactgcc gatgtctcca 600
ctcctgactc tgaaatcaac cttacaaaatg tgacagatat catcagggtt ccgggtttca 660
acattgtcat tctcctggct ggtggattcc tgagtaagag cctggcttc tctgtcctgt 720
ttgctgtcac gctgaggtca tttgtaccct aggcccacga acccacgaga atgtcctctg 780
acttccagcc acatccatct ggcagttgtg ccaagggagg agggaggagg taaaaggcag 840
ggagttata acatgaatta aatctgtaat caccagctat ttct 884

<210> 10
<211> 1023
<212> DNA
<213> HUMAN

<400> 10
ttcaagggaa aagcaagatc ttgcacaagg tcccctccgg ctggctgctg gcaaaggaaa 60
gggccatgg gacctctcca ccagtttctc ctgctgctga tcacagccct gtcccaagcc 120
ctcaacacca cggtgctgca gggcatggcc ggccagtcct tgagggtgtc atgtacttat 180
gacgccttga agcactgggg gagacgcaag gcctgggtgc ggcagctggg tgaggaggc 240
ccatgccagc gtgtggtgag cacacacggt gtgtgggctg ctggccttcc tgaagaagcg 300
gatgggagca cagtcatcgc agatgacacc cttgctggaa ccgtcaccat cactctgaag 360
aacctccaag ccggtgacgc gggcctctac cagtgtcaga gtctccgagg ccgagagcgt 420
gaggtcctgc agaaagtact ggtggaggtg ctggaggacc ctctagatga ccaagatgct 480
ggagatctct gggccccga ggagtcatcg agtttcgagg gtgcccaagt ggaacacagc 540
acctccagga atcaagagac ctccttcca cccacctcca ttcttctcct cctggcctgc 600
gttctcctga gcaagtttct tgcagccagc atcctctggg ctgtggccag gggcaggcag 660
aagccggaa cacctgtggc cagagggctg gactgtggcc aagatgctgg gcaccaactt 720
cagatcctca ctggacccgg aggtacgtga gagaattctg agtgggagga gaactacagc 780
ttaagtccag ccaggagtca atccagcctg catgctctcc ctcctccac caagacttct 840
gtttctgcta ctttgcttc agaggccgcc tctgccttca gccacctatc ctgggaacag 900
gaatactgtg tgtacatctg tggtagttg ggaagaacac tggatgggtg tccgtaaaaat 960
tctggaattt gggaaatAAC atcctcccac accagaaaat agaaaaaaaaa gaaccatggg 1020
gcc 1023

<210> 11
<211> 1041
<212> DNA
<213> HUMAN

<400> 11
tgacatgcct gatcctctct tttctgcagt tcaaggaaa gacgagatct tgacacaaggc 60
actctgcttc tgcccttggc tggggaaaggg tggcatggag cctctccggc tgctcatctt 120
actcttgtc acagagctgt ccggagccca caacaccaca gtgttccagg gcgtggcggg 180
ccagtcctcg caggtgtctt gcccstatga ctccatgaag cactggggga ggcgcaaggc 240
ctggtgccgc cagctggag agaaggccc atgccagcgt gtggtcagca cgacacaactt 300
gtggctgctg tccttcctga ggaggtggaa tggagcaca gccatcacag acgataccct 360
gggtggcact ctcaccatta cgctgcggaa tctacaaccc catgatgcgg gtctctacca 420
gtgccagagc ctccatggca gtgaggctga caccctcagg aaggtcctgg tggaggtgct 480
ggcagacccc ctggatcacc gggatgctgg agatctctgg ttccccgggg agtctgagag 540
cttcgaggat gcccattgtgg agcacagcat ctccaggagc ctcttggaaag gagaaatccc 600
cttcccaccc acttccatcc ttctcctcct ggcctgcatac tttctcatca agattcttagc 660
agccagcgcc ctctggctg cagcctggca tggacagaag ccagggacac atccacccag 720
tgaactggac tgtggccatg acccaggta tcagctccaa actctgccag ggctgagaga 780
cacgtgaagg aagatgtatgg gaggaaaagc ccaggagaag tcccaccagg gaccagccca 840
gcctgcatac ttgccacttg gccaccagga ctcctgttc tgctctggca agagactact 900
ctgcctgaac actgcttctc ctggaccctg gaagcaggga ctggttgagg gagtggggag 960
gtggtaagaa cacctgacaa cttctgaata ttggacattt taaacactta caaataaaatc 1020
caagactgtc atatttaaaa a 1041

<210> 12
<211> 995
<212> DNA
<213> MUS MUSCULUS

<400> 12
acttgcctt gggccattgg cagtttagcac accaggaagg agtttcatac agaggaggca 60
gggacctggg gatatgtcacc gctgctgcta tggctgggc tggatgctctg tgtctcggga 120
ctccaagctg gagatgagga agaacacaag tggatgtggc tggatgctctg tggatgctctg 180
acttgcctt acaacatcat gctatactca ctgagcctga aggccctggca gcccgtcaga 240
agccacgggtt ctccagagac tctggtgctc acaaacaacca gaaaggcaga ctcaacgtg 300
gccaggcgtt ggaagtactt gctggaggat tatcccaccg aatctgtcgtt caaggtcaccg 360
gtgactgggc tgcagaggca agatgtgggg ctgttaccgtt gtgtggtcta cctctctcct 420
gacaatgtta tcattctgcg tcaacggata cggctggcat ggtgtcaagg gaagccagtg 480

atggtgatcg ttctgacgtg tggcttcata ctaaacaagg gcctggtctt ctcagtcctg 540
tttgtcttc tctgcaaagc tgggcctaag gtgttacagc cttccaagac atccaaagta 600
cagggagtct ctgagaaaca gtagccttcc tgctacaagc tgtgagcaca cttccctta 660
tctattaaca acataccaga tggctgtat tggggacaat ctgggccttc ctacattctc 720
cttgtgaact ctagttagca catgatactc ccagaggaca gctctgagga gagctgtgta 780
gaaggaggct catgagacat cagtgaagaa tataaaattg agagagattt ggacctttgg 840
tggagcagtt aagcaggacc cacagagaat tcacctaaa atcttatcac catttctctc 900
ctgctaacca ggtctgccat gctgtggact ggtaaaacct atatgtatgtaa acctatctct 960
cttctgataa taataaaaaa aattgtatTTTttt 995

<210> 13
<211> 990
<212> DNA
<213> MUS MUSCULUS

<400> 13
gagcttgaag gatgaggaag gctggctct gggactgct gtgcgtgttc tttgtctcag 60
aagtcaaagc tgccattgtt ctagaggaag aaaggtatga cctagtggag ggccagactt 120
tgacagtgaa gtgtcccttc aacatcatga agtatgcca cagccagaag gcttggcaga 180
gactaccaga cggaaaggaa cccttgaccc tgggtggcac acagaggccc tttacaagac 240
ccagtgaagt ccacatgggg aagttcaccc tgaaacatga ccctagttag gccatgctac 300
aagttcaaAT gactgacctt caagtgacag actctggatt gtatgttgt gtgatttacc 360
atcctccgaa tgaccctgtt gtgctttcc atcctgtccg cctgggtgt accaagggtt 420
cttcagatgt gttcactcct gtcatttcattt ctttacaag gctgacagag cgtccatcc 480
tttattaccac aaaatactca cccagtgaca caactacaac ccgatcccta cccaaGCCCA 540
ctgcgggtgt ttccttcctt ggtttggag tcactatcat aaatggaca gatgctgaca 600
gtgtctccac atccagtgtt actatttcag tcattgtgg acttctcagc aagagcctgg 660
ttttcatcat ctttatttcattt gtcacaaaaga ggacatttg aatgacagaac ttgaagctat 720
acaatagtga ctttccggcgg tttttttttt acaggaggag ctgaggtggt gggctgagg 780
aggagctatg acatgaattt aacctgtaat caccggtgac gtctaaaggct caggatatcc 840
tcagctgacc ctgtccactc ttctcattttt atccatcatc ttggggatgt gctctgcacc 900
cttagaaaag gggaaaccat tcccaaca ctttggccat tccccctaaa tagttgggtt 960
ggcctgaaat aaagagaaac tccagagctt 990

<210> 14

<211> 22
<212> DNA
<213> HUMAN

<400> 14
ggacggagag atgcccaaga cc 22

<210> 15
<211> 22
<212> DNA
<213> HUMAN

<400> 15
accagccagg agaatgacaa tg 22

<210> 16
<211> 20
<212> DNA
<213> HUMAN

<400> 16
cagagaggcc ttcaaagaat 20

<210> 17
<211> 17
<212> DNA
<213> HUMAN

<400> 17
cctcccttgg cacaact 17

<210> 18
<211> 22
<212> DNA
<213> HUMAN

<400> 18
ttgtggagga tttgaagttg ag 22

<210> 19
<211> 22
<212> DNA
<213> HUMAN

<400> 19
cgtgagtcta agggttggat gg 22

<210> 20
<211> 20
<212> DNA
<213> HUMAN

<400> 20
atcccacccgg cccttacact 20

<210> 21
<211> 19
<212> DNA
<213> HUMAN

<400> 21
ggggagcggt ctggtctct 19

<210> 22
<211> 20
<212> DNA
<213> HUMAN

<400> 22
ggagccctca gcagcagttg 20

<210> 23
<211> 20
<212> DNA
<213> HUMAN

<400> 23
ttgggtggag cttgggtcac 20

<210> 24
<211> 20
<212> DNA
<213> HUMAN

<400> 24
tttaaggta gacgctgact 20

<210> 25
<211> 19
<212> DNA
<213> HUMAN

<400> 25
cgaatggta accttcaag 19

<210> 26
<211> 20
<212> DNA
<213> HUMAN

<400> 26
ctggtataga gtgggcacaa 20

<210> 27
<211> 22
<212> DNA
<213> HUMAN

<400> 27

aagctccacc caagtcaact gc

22

<210> 28
<211> 234
<212> PRT
<213> HUMAN

<400> 28

Met Arg Lys Thr Arg Leu Trp Gly Leu Ieu Trp Met Leu Phe Val Ser
1 5 10 15

Glu Leu Arg Ala Ala Thr Lys Leu Thr Glu Glu Lys Tyr Glu Leu Lys
20 25 30

Glu Gly Gln Thr Leu Asp Val Lys Cys Asp Tyr Thr Leu Glu Lys Phe
35 40 45

Ala Ser Ser Gln Lys Ala Trp Gln Ile Ile Arg Asp Gly Glu Met Pro
50 55 60

Lys Thr Leu Ala Cys Thr Glu Arg Pro Ser Lys Asn Ser His Pro Val
65 70 75 80

Gln Val Gly Arg Ile Ile Leu Glu Asp Tyr His Asp His Gly Leu Leu
85 90 95

Arg Val Arg Met Val Asn Leu Gln Val Glu Asp Ser Gly Leu Tyr Gln
100 105 110

Cys Val Ile Tyr Gln Pro Pro Lys Glu Pro His Met Leu Phe Asp Arg
115 120 125

Ile Arg Leu Val Val Thr Lys Gly Phe Ser Gly Thr Pro Gly Ser Asn
130 135 140

Glu Asn Ser Thr Gln Asn Val Tyr Lys Ile Pro Pro Thr Thr Thr Lys
145 150 155 160

Ala Leu Cys Pro Leu Tyr Thr Ser Pro Arg Thr Val Thr Gln Ala Pro
165 170 175

Pro Lys Ser Thr Ala Asp Val Ser Thr Pro Asp Ser Glu Ile Asn Leu
180 185 190

Thr Asn Val Thr Asp Ile Ile Arg Val Pro Val Phe Asn Ile Val Ile
195 200 205

Leu Leu Ala Gly Gly Phe Leu Ser Lys Ser Leu Val Phe Ser Val Leu
210 215 220

Phe Ala Val Thr Leu Arg Ser Phe Val Pro
225 230