5.1. Montrer que pour tout $x, y \in \mathbf{R}$ et tout entier $n \ge 1$ on a la formule (binôme de Newton):

$$(x+y)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} x^k y^{n-k}$$
 (convention $0! = 1$)

Indications:

- (a) Montrer que la formule est vraie pour n=1.
- (b) Supposer que la formule est vraie pour $n=1,2,\ldots,N$ et montrer qu'elle reste encore vraie pour n=N+1, où $N\geq 1$ (raisonnement par induction ou par récurrence).
- **5.2**. On définit $x_n = \left(1 + \frac{1}{n}\right)^n$, $n \in \mathbb{N}^*$. Démontrer que la suite $(x_n)_{n=1}^{\infty}$ est convergente et que $\lim_{n \to \infty} x_n > 2$.

(Le nombre $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$ est important en analyse; c'est le nombre e).

Indications:

(a) En utilisant la formule du binôme de Newton, démontrer que

$$\left(1+\frac{1}{n}\right)^n \le \sum_{k=0}^n \frac{1}{k!}.$$
 (rappel: $0! = 1$ par convention)

- (b) Sachant que $\lim_{n\to\infty} \sum_{k=0}^n \frac{1}{2^k} = 2$, en déduire que la suite $(x_n)_{n=1}^\infty$ est bornée.
- (c) En utilisant la formule du binôme de Newton, démontrer que la suite $(x_n)_{n=1}^{\infty}$ est croissante.
- **5.3**. Montrer que la suite $(x_n)_{n=0}^{\infty}$ définie par $x_0 = 3$, $x_1 = 2$ et

$$x_{n+1} = \sqrt[3]{x_n + x_{n-1}}$$

converge. Calculer sa limite.

On suppose connue la fonction $x \mapsto \sqrt[3]{x}$.

Indication

Montrer par récurrence que $1 < x_{n+1} < x_n < x_{n-1}$.