ЛАБОРАТОРНА РОБОТА № 4

МОДЕЛЮВАННЯ НЕПЕРЕРВНИХ ВИПАДКОВИХ ВЕЛИЧИН ІЗ ЗАДАНИМ ЗАКОНОМ РОЗПОДІЛУ

Існує багато методів моделювання неперервних випадкових величин. Серед цих методів відзначимо **метод виключення** (метод Неймана).

Нехай випадкова величина X визначена на скінченому інтервалі (a;b) і густина її розподілу обмежена, так що $f(x) \le M$. Тоді, використовуючи пару

рівномірно розподілених на інтервалі (0;1) випадкових чисел R, здійснюємо такі дії для розіграшу (моделювання) значення X:

1. Розігруємо два значення r_1 і r_2 випадкової величини R і будуємо випадкову точку Q (див. рисунок 1) з координатами $X_0=a+r_1\cdot(b-a)$, $\eta=r_2\cdot M$.

Рисунок 1 - Графічне зображення методу Неймана

2. Якщо $\eta > f(X_0)$, то пару значень (r_1, r_2) відкидаємо і переходимо до пункту 1; інакше приймаємо $X = X_0$.

Таким чином, визначаються координати випадкової точки $Q(X_0,\eta)$ і, якщо точка опиниться під кривою f(x), то абсциса цієї точки приймається як значення випадкової величини $X=X_0=a+r_1\cdot(b-a)$ з густиною розподілу f(x). В іншому випадку точка відкидається, визначаються координати наступної точки, і все повторюється.

Порядок виконання роботи

1. Змоделювати методом Неймана N=100 значень неперервної випадкової величини із заданою густиною розподілу ймовірності (таблиця 1). Номер варіанту дорівнює порядковому номеру студента у списку академічної групи.

(Функції для графіка розраховуються за формулами $\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}$, або y=kx+b (залежно від виду графіка)).

- 2. Оцінити вибіркові математичне сподівання і дисперсію отриманої випадкової величини.
- 3. Побудувати гістограму та оцінити за її допомогою закон розподілу отриманої випадкової величини. Порівняти його із заданим.
 - 4. Повторити п.1 п.3 для N=1000. Порівняти результати.

Таблиця 1 – Густина розподілу ймовірності випадкової величини.

Варіант	Густина розподілу	Варіант	Густина розподілу
1	0.5 f(x) 0.25 2 4	11	0.5 f(x) 0.25 2 4 6
2	0.6 f(x) 0.2 4 x	12	0.5 f(x) 0.25 2 4 6
3	0.25	13	0.5 f(x) 0.25 2 4 6
4	0.6 f(x) 0.2 2 4 x	14	0.5 f(x) 0.25 2 4 6
5	0.5 f(x) 0 2 4 x	15	0.25 0.25 6

Варіант	Густина розподілу	Варіант	Густина розподілу
6	0.5 f(x) 0 2 4 x	16	0.5 f(x) 0.25 2 4 6
7	0.25 f(x) 0.25 4 6 8	17	0.5 f(x) 0.25 2 4 6
8	0.25 f(x) 0.25 4 6 8	18	0.5 f(x) 0.25 2 4 6
9	0.5 f(x) 0.25 4 6 x	19	0.5 f(x) 0.25 2 4 6
10	0.5 f(x) 0.25 0.25 4 6 x	20	0.5 f(x) 0.25 4 6