(19)日本国特許庁(JP)

(12) 特 許 公 報(B2)

(11)特許番号

第2638605号

(45)発行日 平成9年(1997)8月6日

(24) 登録日 平成 9年(1997) 4月25日

(51) Int.Cl.6

識別配号

庁内整理番号

FΙ

技術表示箇所

B60G 3/18 15/06

B 6 0 G 3/18 15/06

請求項の数7(全 5 頁)

(21)出願番号

特願昭63-107420

(22)出願日

昭和63年(1988) 4月28日

(65)公開番号

特開昭63-287612

(43)公開日

昭和63年(1988)11月24日

(31)偏先権主張番号 P 37 14 688, 2

(32) 優先日

1987年5月2日

(33)優先権主張国

ドイツ (DE)

(73)特許権者 999999999

アウデイ アクチェンゲゼルシャフト ドイツ連邦共和国 8070 インゴルシュ タット オート・ウニオーン・シュトラ

一セ 1

(72)発明者 キリアン フリードリッヒ

ドイツ連邦共和国 8079 ヒッツホーフ

ェン アム スポルトプラッツ 11

(74)代理人 弁理士 森本 義弘

> 審査官 増岡 豆

(56)参考文献 特開 昭63-232010 (JP, A)

(54) 【発明の名称】 自動車のステアリング車輪の懸架装置

(57) 【特許請求の範囲】

【請求項1】上下の案内要素で案内されている旋回可能 な車輪担持体を備え、下部の案内要素が車輪担持体の位 置で収束するように配置された2本のコントロールアー ムによって形成され、これらコントロールアームが互い に離れた位置で自動車のボディと車輪担持体に旋回可能 に連結され、ボディと車輪担持体との間に配置されてス プリングとショックアブソーバとを有した懸架ばねを備 え、懸架ばね (20) が一方のコントロールアーム (16) においてこのコントロールアーム(16)と直行する水平 方向の力の成分(Fa)が生じるようにこのコントロール アーム (16) に支持され、さらに車輪担持体 (10) にお ける前記一方のコントロールアーム (16) の連結点 (V)と、コントロールアーム (16) (18) の延長線の 交点により形成される仮想のステアリング軸上の点

(P) との間のレバーアームの長さ(c)に、前記連結 点(V)におけるコントロールアーム(16)と直交する 水平方向の力の成分(F_v)に乗じた値が、車輪がカープ の内側を旋回する場合に、カーブの外側を旋回する場合 の値 (ca×Fva) よりも小さい値 (ca×Fva) をとるよう に、これらコントロールアームを構成したことを特徴と する自動車のステアリング車輪の懸架装置。

【請求項2】走行方向に関し前方に位置するコントロー ルアーム (16) に支持された懸架ばね (20) の支持点

- (C) がばね(20) のボディ側の支持点(D) よりも車 輪担持体(10)の近くで作用し、前記ボディ側の支持点
- (D) は、平面視においてコントロールアーム (16)
- (18) のボディ側の連結点(G)(H)どうしの中間 で、かつ前記コントロールアーム (16) 側の支持点
- (C) よりも連結点(G)(H)を結ぶ線の近くに位置

BEST AVAILABLE COPY

することを特徴とする請求項1記載の自動車のステアリング車輪の懸架装置。

【請求項3】懸架ばね(20)の支持点(C)(D)が、 平面視で直進時の車軸(36)にほぼ平行に配置されていることを特徴とする請求項1または2記載の自動車のス テアリング車輪の懸架装置。

【請求項4】コントロールアーム (16) (18) どうしの 対称線 (38) が、平面視において車軸 (36) に対して約 15度で外側へ前向きに傾斜し、またコントロールアーム

(16) (18) の車輪担持体(10) の側の連結点(V)

(W) を結ぶ線が、対称線(38)に対して車両の前側へ 鋭角(α)をなすことを特徴とする請求項1から3まで のいずれかに記載の自動車のステアリング車輪の懸架装 置。

【請求項5】コントロールアーム(16)(18)のボディ側の連結点(G)(H)を結ぶ線が平面視において車両の中心軸に関し走行方向の前側へ内向きに約15度の角度で傾斜していることを特徴とする請求項1から4までのいずれかに記載の自動車のステアリング車輪の懸架装置。

【請求項6】前側のコントロールアーム(16)が、平面 視において、車両の横断面すなわち車軸(36)に対して 約15度で外側へ後向きに傾斜していることを特徴とする 請求項1から5までのいずれかに記載の自動車のステア リング車輪の懸架装置。

【請求項7】 懸架ばね(20)が、テレスコープ形ショックアブソーバ(22)とスプリング(24)とによって構成されていることを特徴とする請求項1に記載の自動車のステアリング車輪の懸架装置。

【発明の詳細な説明】

産業上の利用分野

本発明は自動車のステリング車輪の懸架装置に関する。

従来の技術

この種類の車輪の懸架装置は、たとえば西ドイツ出願公告第19 38 850号明細書あるいは西ドイツ出願公開第3 5 09 145号明細書に示されている。この場合、上部の車輪案内要素として、車輪担持体に旋回自在な連結点により接続されたサスペンションアームや、車輪担持体と構造的に組み合わされたテレスコープ形ショックアブソーバや、あるいは二つの個別のコントロールアームを組み合わせたものなど用いるこおができる。この種の個別のコントロールアームの長所は、特に、構造上の制約を受けずに必要に応じて観念上のステアリング軸を実現できる点にある。

発明が解決しようとする課題

しかしながら、このような従来の構成では、いくつかのパラメータ、たとえばキャンパ、キャスタ角、ばね・ 緩衝・転動特性、ステアリング復帰など、車輪懸架のためできるだけ有利な運動特性を確保し、しかも構造的に 簡単に信頼できる懸架装置を創り出す際に、設計者はたびたび妥協を強いられるという問題がある。ステアリングが行われる駆動輪の場合は、特にステアリングの復帰の点で、駆動装置の影響とプロペラシャフト(駆動軸)の自由運動とのために問題がある。

本発明の課題は、構造上の費用を増すことなく、また 他の軸運動のパラメータに悪影響を及ぼすことなしに、 信頼できるステアリング復帰が可能で、また駆動輪にお いてプロペラシャフトの改善された自由運動を確保可能 な上記の種類の懸架装置を提供することにある。 課題を解決するための手段

上記課題を解決するため本発明の懸架装置は、上下の 案内要素で案内されている旋回可能な車輪担持体を備 え、下部の案内要素が車輪担持体の位置で収束するよう に配置された2本のコントロールアームによって形成さ れ、これらコントロールアームが互いに離れた位置で自 動車のボディと車輪担持体に旋回可能に連結され、ボデ ィと車輪担持体との間に配置されてスプリングとショッ クアブソーバとを有した懸架ばねを備え、懸架ばねが一 方のコントロールアームにおいてこのコントロールアー ムと直交する水平方向の力の成分を生じるようにこのコ ントロールアームに支持され、さらに車輪担持体におけ る前記一方のコントロールアームの連結点と、コントロ ールアームの延長線の交点により形成される仮想のステ アリング軸上の点との間のレバーアームの長さに、前記 連結点におけるコントロールアームと直行する水平方向 の力の成分を乗じた値が、車輪がカーブの内側を旋回す る場合に、カーブの外側を旋回する場合の値よりも小さ い値をとるように、これらコントロールアームを構成し たものである。

作用

本発明によれば、懸架ばねが、下部コントロールアームの一つに支持されて、このコントロールアームと直行する水平方向の力の成分を、車輪の旋回の方向に及ぼすように構成される。この力の成分は、車輪が直進姿勢にあるときに、自動車の左右の懸架装置でのそれぞれの力の成分により、コントロールアームを通じて補整される。コントロールアームの特定の構成にもとづき、車輪のカーブ旋回時にカーブ外側の車輪における力の成分により生じる復帰モーメントは、カーブ内側の車輪における逆方向のモーメントより優勢となるため、車輪ないしステアリング装置に、結果として直進走行方向への復帰モーメントが及ぼされる。懸架ばねは、好ましくはコイル圧縮ばねまたは気体ばねとすることができる。

本発明のその他の有利で適切な構成は、特許請求の範囲の請求項2から7までから知ることができる。

構造上特に有利な方法で、特にテレスコープ形ショックアブソーバおよびスプリングから構成された懸架ばねは、特許請求の範囲の請求項2の通り前部コントロールアームに作用し、懸架ばねのボディ側の支持点は、両コ

ントロールアームどうしの中間にある。特許請求の範囲 の請求項3の通り、平面視において懸架ばねの両端の支 持点または両点を結ぶ線は、車両の中心軸にほぼ直角 に、すなわち直進姿勢の車軸に平行に向けられており、 しかもコントロールアームにおける横方向の力の成分は 有利な値をとっている。

特許請求の範囲の請求項4から6までの特徴により、 ステアリングの復帰が、また駆動される車輪にあっては 懸架ばねとプロペラシャフトとの間の自由運動がさらに 改善される。

コントロールアームの上記の配置によって、車軸の領 域における妨害力レバーアームの長さ寸法 a が有利な影 響を受ける。したがって寸法aは、ステアリング軸と垂 直方向の車輪中央面との間の車軸方向の間隔である。

寸法aが自動車の車輪の直進位置でOまたは殆どOと なるように設定されると、本発明により寸法aは、カー ブ外側で車輪が旋回するときの方がカーブ内側で車輪が 旋回するときよりも小さい値になる。これは駆動輪とこ れに対応する駆動モーメント(加速時)とを考えると、 駆動力の結果としてのステアリングの復帰モーメントと して作用する。

さらにこのようなコントロールアームの配置により、 前部コントロールアームとプロペラシャフトとを、車輪 の旋回時に常に同じ方向(平面視で前向きまたは後向 き)に変位させることができる。スプリングすなわち懸 架ばねはこのコントロールアームに支持されているた め、その下部はこれに対応して共に運動する。このため スプリングすなわち懸架ばねとプロペラシャフトとの間 隔は、ステアリングによる車輪旋回時においても直進時 と殆ど同じままであるため、自由運動に関して問題は生 じない。

実施例

図示した車輪懸架装置は車輪担持体10を備え、この担 持体10は2本の上部コントロールアーム12、14および2 本の下部コントロールアーム16,18によって案内され る。それぞれ互いに独立したコントロールアーム12,14, 16,18は、車輪担持体10または図示されていない自動車 のボディにおいて、弾性継手を通じて、点G, H, V, W(下 方コントロールアーム16,18) または点K,L,M,N(上方コ ントロールアーム12,14)で旋回可能に連結されてい る。走行方向の前側に位置した下部コントロールアーム 16には、車輪担持体10の近くの点Cに懸架ばね20が支持 されている。この懸架ばね20はテレスコープ形ショック アブソーバ22とコイル圧縮ばねなどのスプリング24から なっている。懸架ばね20のボディ側の支持点はDと定め られ、この支持点Dは平面図で見て連結点GとHを結ぶ 線の近くに位置する。

車輪担持体10にて回転可能に支持された自動車の車輪 26は、プロペラシャフト28通じて図示されていない駆動 装置により駆動される。さらに車輪担持体10にはステア

リングアーム30が形成されており、このステアリングア ーム30は公知の方法でステアリング装置の(図示されて いない) タイロッドと連結している。

コントロールアーム12、14の仮想延長線から得られる 車輪26の仮想の交点0,Pを結ぶ線がステアリングの軸心3 2を決定する。妨害力レバーアームの長さaは、車軸36 上における車輪中心面(線34)とステアリング軸心32 (交点RとS) との間隔によって形成される。

第2図は、下部コントロールアーム16,18の位置を、 車輪26の直進時(実線)と、車輪26のカーブ内側で旋回 時(破線)と、そのカーブ外側での旋回時(一点鎖線) とにおける幾何学的位置で示す。直進位置において、前 部コントロールアーム16は車両の横断面に関して約15 度、車両の外側へ後向きに傾斜している。後部コントロ ールアーム18は同様に車両の外側へ前向きに約45の角度 で傾斜している(前後とも自動車の標準的走行方向に関 して)。この結果、コントロールアーム16,18の対称線3 8が生じ、この対称線38は車両の横断面すなわち車軸36 に関し外側へ前向きに15度で傾斜する角度にほぼ相当す る。しかもボディ側の連結点GとHを結ぶ線は、車両の 中心線に関し前側へ内向きに約15度の角度をなし、一方 車輪担持体10の側の連結点VとWを結ぶ線は、対称線38 に対し車両の前側へ約100度の鈍角αをなしている。

このような幾何学的配置により、支持点CとDで作用 する懸架ばね20は(支持点CとDを結ぶ線は平面図で車 軸36にほぼ平行である)、コントロールアーム16と直交 する水平方向の力の成分F。(矢印40)を生じ、このF 。は、その反作用として、コントロールアーム16の車輪 担持体側連結点Vに、レバー長さcにもとづき、仮想の 交点PのまわりのステアリングモーメントF。×cを発生 させる。車輪担持体10はそのステアリングアーム30を通 じて、また車両の右側の部分のステアリングシステムは (図示されていない) 鏡像上の構成として、それぞれ同 じ車輪懸架装置(第3図参照)と連結している。この車 両の左側のステアリングモーメントは、右側の車輪懸架 装置におけるこれと対応したステアリングモーメントに よって補整される。

ここで懸架ばね20にもとづくコントロールアーム16と 直交する水平方向力の力の成分F、が旋回点Vを介して旋 回軸上の点Pに作用するモーメントのレバー長さcは、 カーブ内側の旋回時のレバー長さc,とカーブ外側の旋回 時のレバー長さc。とを比較すると、カープ内側の旋回時 のレバー長さc₄が著しく減少していることが確認され る。これはカーブの走行時に左右それぞれの車輪懸架装 置に、大きい方のレバー長さにもとづく優勢なステリン グモーメントが存在することを意味し、これは作用方向 (矢印42参照)によって操舵復帰の働きをする。

第3図に示すように、さらに異なる寸法aが生じる。 この寸法aは、カーブの内側を旋回する(図において右 側の車輪懸架装置)の場合の方が、カーブの外側を旋回 する(図において左側の車輪懸架装置)の場合より大きい。すなわち、カーブ内側における妨害力レバーアームの長さa_iはカーブ外側におけるそれa_aより大きく、またカーブにて自動車を加速する場合は、ステアリングを復帰させる働きをするように、駆動力により生じるステアリングモーメントがカーブ内側の車輪に作用する。

のみならず、コントロールアーム16と懸架ばね20との幾何学的配置により(連結点G, Vおよび支持点C, D参照)、車輪旋回時にプロペラシャフト28と懸架ばね20との間隔b (二つの矢印44)がほぼ同じままであることが確認される(カーブ外側での車輪旋回時の間隔b を参照)。車輪の直進位置においては、寸法 a はほぼ O となる(図面からは判らない)。

発明の効果

以上述べたように本発明によると、一対のコントロールアームと懸架ばねとにより、車輪がカーブの外側を旋回する場合よりもカーブの内側を旋回する場合の方が車

輪の旋回軸に作用するモーメントの大きさが小さくなる ため、ステアリング復帰のための有利なモーメントを得 ることができる。

【図面の簡単な説明】

第1図は、本発明の一実施例における自動車のステアリング車輪の懸架装置であって、2本の個別のコントロールアームと1本の懸架ばねとを備えたものを、車両の後部より見た概略図、第2図は下部コントロールアームの幾何学的配置を示すための第1図におけるII矢視平面図であって、ばね力による復帰力をも記入した図、第3図は下部コントロールアームの幾何学的配置に示すための第1図におけるIII矢視平面図であって、プロペラシャフトの自由運動と種々な寸法aによる復帰前進力をも記入した図である。

10……車輪担持体、G, H, V, W……点、K, L, M, N……点、G, D……支持点、20……懸架ばね、22……テレスコープ形ショックアブソーバ、24……コイル圧縮ばね、26……車輪、28……プロペラシャフト、0, P……旋回軸上の点。

【第1図】

THIS PAGE BLANK (USPTO)