Máquinas de Vetores-Suporte (SVMs) Parte III

1. Classificação Não-Linear

- Partimos de um problema linear, mas o que foi deduzido pode ser estendido de maneira significativa graças a alguns resultados assaz belos. De fato, é possível realizar classificação não-linear sob a égide dos conceitos expostos.
- Para que compreendamos de que forma isso se dá, consideremos que se disponha de um conjunto de dados $\{\mathbf{x}_i,d_i\}$, $i=1,\ldots,N$. Consideremos ainda que cada padrão de entrada \mathbf{x}_i tenha n atributos e que haja duas classes $(d_i=-1)$ ou

 $d_i = +1$). Basicamente, temos de achar uma superfície que separe os padrões de diferentes classes, e essa superfície pode ter uma forma qualquer.

1.1. Mapeamento e Espaço de Características

- Imaginemos agora que seja aplicado um mapeamento $\mathbf{\Phi} \colon \mathbb{R}^n \to \mathbb{R}^m$ aos padrões \mathbf{x}_i , com m > n. Esse mapeamento *pode ser não-linear, e mapeia os dados num espaço de maior dimensão*. Essas duas características são interessantes: 1) a não-linearidade permite distorcer a posição dos dados, e 2) num espaço de maior dimensão, tende a ser mais simples separá-los.
- Como temos toda uma formulação adequada ao caso linear (partes I e II do material), surge uma ideia: e se usarmos um mapeamento φ para "transformar o problema não-linear em um problema linear"? Afinal, esse mapeamento pode retorcer os dados, e isso num espaço de maior dimensão.

- Se o mapeamento tornar o problema linear, basta aplicar o que já estudamos e resolver o problema para os dados "modificados" $\{\phi(\mathbf{x}_i), d_i\}, i = 1, ..., N$. De maneira mais rigorosa, diz-se que o problema será tratado como um problema linear no **espaço de características** (FS, ou, em inglês, *feature space*) gerado pelo mapeamento $\phi(\cdot)$.
- A Figura 1 ilustra essa ideia: perceba como um problema não-linear em duas dimensões se torna linearmente separável em três dimensões graças ao mapeamento realizado.

Figura 1 – Mapeamento e Solução Linear.

• Tendo isso em vista, a equação de um classificador linear no espaço de características seria a seguinte:

$$y = \mathbf{w}^T \, \mathbf{\phi}(\mathbf{x}_i) + b$$

• A equação que obtivemos para os parâmetros do classificador linear de máxima margem seria, então:

$$\mathbf{w}_o = \sum_{i=1}^N \lambda_i d_i \mathbf{\Phi}(\mathbf{x}_i)$$

• Se usarmos esse vetor de pesos na equação da saída do classificador, teremos:

$$y = \sum_{i=1}^{N} \lambda_i d_i \mathbf{\Phi}^T(\mathbf{x}_i) \mathbf{\Phi}(\mathbf{x}) + b$$

• A equação mostra que não há mudanças essenciais: a saída do classificador ainda é calculada tendo por base produtos escalares, mas são produtos no espaço de características, ou seja, produtos $\boldsymbol{\phi}^T(\mathbf{x}_i)\boldsymbol{\phi}(\mathbf{x})$.

• Tudo isso é maravilhoso, e resolvemos, sem dúvida, inúmeros problemas *in abstracto*. Há, não obstante, uma pergunta que se deve responder para resolver problemas mais concretos: qual deve ser o mapeamento $\phi(\cdot)$?

1.2. Função de Kernel e Truque do Kernel (Kernel Trick)

- Aqui surge algo equivalente a um *deus ex machina*, com a vantagem de que se tem uma impressão de harmonia, e não de uma trama artificialmente resolvida.
 Perceba, inicialmente, que não precisamos diretamente do mapeamento φ(·); na verdade, precisamos apenas calcular produtos escalares no espaço que ele gera.
- De maneira bastante direta, a reviravolta no enredo é a seguinte: produtos escalares no espaço de características podem ser calculados sem que se determine explicitamente o mapeamento $\phi(\cdot)$. É possível definir funções de kernel que generalizam a noção de produto escalar e permitem que efetuemos o cálculo de

produtos escalares no espaço de características sem o uso de $\phi(\cdot)$, ou seja, a partir do espaço original em que jazem os dados. Isso é o que se chama **truque do kernel** (kernel trick).

• Em outras palavras, lançaremos mão de funções de $kernel\ K(\mathbf{u},\mathbf{v})$ tais que (BISHOP, 2006):

$$K(\mathbf{u}, \mathbf{v}) = \mathbf{\phi}^T(\mathbf{u})\mathbf{\phi}(\mathbf{v})$$

• Essas funções, para que possam atuar efetivamente como operadores de produto escalar, devem respeitar a condição de Mercer (CORTES E VAPNIK, 1995):

$$\int \int K(\mathbf{u}, \mathbf{v}) g(\mathbf{u}) g(\mathbf{v}) d\mathbf{u} d\mathbf{v} > 0$$

para toda função $g(\cdot)$ tal que:

$$\int g^2(\mathbf{u})d\mathbf{u} < \infty$$

• O kernel mais utilizado é o gaussiano:

$$k(\mathbf{u}, \mathbf{v}) = exp(-\gamma \|\mathbf{u} - \mathbf{v}\|^2)$$

o qual possui um importante hiperparâmetro (γ). Também mencionaremos um exemplo de *kernel* polinomial:

$$k(\mathbf{u}, \mathbf{v}) = (\mathbf{u}^T \mathbf{v} + 1)^d$$

Figura 2 – Por meio do truque do *kernel*, o mapeamento dos dados para o espaço de características é implicitamente realizado.

1.3. Epílogo: Receituário

 Assim como ocorre, em música, na forma sonata, após o desenvolvimento vem a recapitulação. Como a função de *kernel* faz o papel de produto escalar, temos que a saída do classificador será:

$$y = \sum_{i=1}^{N} \lambda_i d_i \mathbf{\Phi}^T(\mathbf{x}_i) \mathbf{\Phi}(\mathbf{x}) + b = \sum_{i=1}^{N} \lambda_i d_i K(\mathbf{x}_i, \mathbf{x}) + b$$

 Conforme vimos na parte I, o problema dual que se resolve para obter os parâmetros do classificador tem por base a otimização com restrições da seguinte função:

$$L(\lambda) = \lambda^T \mathbf{1}_N - \frac{1}{2} \lambda^T \mathbf{D} \lambda$$

• A informação sobre o conjunto de dados está contida na matriz **D**. Em sua forma original (caso linear), a matriz é composta de elementos do tipo:

$$D_{ij} = d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

No caso não-linear, basta trocar o produto escalar clássico pelo produto gerado a partir da função de *kernel* escolhida:

$$D_{ij} = d_i d_j K(\mathbf{x}_i, \mathbf{x}_j)$$

- Daí em diante, o problema é resolvido virtualmente da mesma forma, bastando, quando necessário, utilizar a nova forma do produto escalar. Cabe frisar que a formulação do problema de margem suave (*soft margin*) também é feita de maneira direta com o uso de funções de *kernel*.
- Os hiperparâmetros associados às funções de kernel (e.g. o valor de γ no caso gaussiano) devem ser escolhidos com cuidado. Tipicamente, realiza-se uma busca sobre uma lista de valores tendo por critério norteador o desempenho junto a um conjunto de validação (e.g. num esquema de validação cruzada).

Figura 3 – Visualização da fronteira de decisão (curva sólida em preto) e da margem (curvas em pontilhado) no espaço original dos dados para uma SVM não-linear, isto é, que utiliza uma função de *kernel*. As amostras destacadas de cada classe (pontos circulados) representam os vetores-suporte obtidos no processo de otimização.

2. Referências bibliográficas

BISHOP, C., Pattern Recognition and Machine Learning, Springer, 2006.

CORTES, C., VAPNIK, V., "Support Vector Networks", Machine Learning, vol. 20, pp. 273 – 297, 1995.