This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19) 日本四种許庁 (J P)

(12) 公開特許公報 (A)

(11) 特許出議公務委号 特例2000 — 240673

(P2000-240673A)

(43)公陽日 平成12年9月5日(2000.0.6)

(51) Int.CL'		神 知史与	FI		7	-73-\"(94)
FIED	3/20		F16D	3/20	K	3D042
BOOK	17/22		BOOK	17/22	Z	81038
P16C	3/02		P16C	3/02		
F16D	3/224		F16D	3/224	A	

密査療成 未請求 前兆興の能8 ○L (全 7 頁)

(31) 出資費等	神蔵平11-45160	(71) 供職人 000102692
		エヌティエヌ集式会社
(22) 出國日	平成1(年2月23日(1998, 2.23)	大阪帝大阪市西区京町領1丁目 8 会37号
	,	(72)発明者 禁止 後春
		特関系参田市東兵線1578書地 エスティエ
		为他们会 技术
	-	(772)発明者 長谷 陽失
		#韓県勝田市東貝塚1578春油 エスティエ
		又執动会社内
		(70)代理人 100084584
		弁理士 江原 全管 (外8名)
		F9-A(19-4) 30042 AA06 AA08 AB01 AB17 DA00
		DALE DALE DROS
		3,088 A401 B402 BA08
		MACO VIOLE DAME DISCO.

(54)【発明の名本】 プロペラシャフト用等連直在選手、及びプロペラシャフト

(57)【要約】

【課題】 プロペラシャフト用の等適自在減手の開発 【解決手段】 内側性手部村2の外径面2 aの円周方向幅(し)はしき3.5mmであり、軸方向幅(型)は、トルク伝達ボール3の銀込み角(θ。)を50°として、映合解2 cの歯型のピッチ円温(PCDases)との比Rw(=W/PCDases)が0.57<Rw≤0.85の範囲内の値になるように設定されている。これにより、組込み角6。=50°でのトルク伝達ボールの組込みを可能にしつつ、内側轄手部村2の冷間輸造を可能にして加工コストの低減を図り、主た、動方向幅(型)を可及的に小さくして、金量、寸法、村村コストの低減を図ることができる。

44曜2000-240673

【特許請求の簡照】

16:50

02-24-2003

【醴水項 】】 歌画状の内径面に軸方向に延びる8本の 農内港を形成した外側維手削材と、準面状の外径面に軸 方向に延びる8本の重内様を形成し、内径面にプロペラ シャフトの軸部と衝型嵌合する鉄台部を形成した内側軸 手部材と、外側継手部材の案内滑とこれに対応する内側 雄手動材の裏内潰とが位置して形成される8本のボール トラックにそれぞれ配された8個のトルク伝達ボール と、トルク伝達ポールを深持する保持器とを備え、

前記内側機手部柱の軸方両帽(W)と、前記版合部の備 型のビッチ円径(PCD, sun)との比Rw(=W/PC D. see) が0. 57<Rw≦0. 95であるプロペラシ ャプト用等速官在継手。

【論求項2】 前記内無機手部材の 案内禅間の外径面 の円周方向幅(し)がし≧3.5mmである静求項1記 戯のブロペラシャフト用導速目在艦手。

【請求項3】 前記内側継手部材が冷間輸造によって成 形されたものである請求項1記載のプロペラシャフト用 30 等连合在批手。

【論求項4】 前起外側幾乎部材と内側幾乎部村とを相 対的に角度 6。だけ角度変位させて、豚配トルク伝達ボ ールを保持器のボケットに組込み込む際の組込み角(f) 。)が5()である請求項1記載のプロペラシャフト用 等速自在艇子。

【助水項5】 | 町紀トルク伝達水ールのピッチ円径(P CDanil)と直径(Dani)との比ri(=PCDanil **/D***」)が3.3≤~1≤5.0で、阿記外側様手部** (PCDatas) との比ァ2が2.5≦±2<3.2であ る動水項 1 記載のプロペランャフト用等速音在継手。

【論水項8】 前記外側離手部材が自動車のトランスミ ッション又はデファレンシャルに連結される請求模1記 鉞のプロペラシャフト用等返目在離手。

【論求項7】 論求項1~6の何れかに記載の等途自在 批手を軸部に使着したプロペラシャブト。

【肺水瘍8】 軸部と、酸軸部に装備された複数の自在 継手とを備えたプロペラシャフトにおいて、

少なくとも1つの背配自在継手が、球面状の内径間に軸 40 方向に延びる8本の陳内溝を形成した外側継手部村と、 **球面状の外径面に軸方面に延びる8本の集内線を形成し** た内側挺手部材と、外側幾手部材の集内機とこれに対応 する内閣地手部村の窓内溝とが協働して形成される8本 のボールトラックにそれぞれ配された8個のトルク伝達 ボールと、トルク伝達ボールを保持する保持器とを備 え、前記ボールトラックが動方面の一方に向かって楔状 に開いた等連目在継手であることを特徴とするプロペラ シャフト。

the property of the entry of the contract of the property of the contract of t

【発明の詳細な説明】

100011

【発明の肩する技術分野】本発明は、4翰和助車(4▼ D車)や前部機関接輪駆動車(FR車)等において、ト ランスミッションからデファレンシャルに回転動力を伝 達するプロペラシャフトに関する。プロペラシャフトは 2 推手型が一般的であるが、車両構造や要求特性によっ て3世手型や4世手型等が用いられている。 [0002]

【従来の技術】現在、一部の高級車を除いて、4個級動 前記ポールトラックが魅方向の一方に向かって模状に第 10 真(4型D真)や荷藤観異後縁部動車(FR真)のプロ ペラシャフトにはカルダンジョイント(十字軸を用いた 維手)を使用するのが主意になっている。しかし、カル ダンジョイントの不等途性により、車両のNVH特性が 思くなるため、このNVH特性を改善する手段として、 プロペラシャフトに等途自在機手を採用する傾向があ

> 【① 003】図6は、従来のプロペラシャフトに使用さ れているツェバー型等連合在維手(固定型等連目在維 手)を示している。この等途自在推手は、球菌状の内径 面11aに6本の曲線状の角内溝11bを軸方向に形成 した外側維手部村11と、建団状の外径面12ak6本 の機能状の異内能121を動方向に形成し、内径面に歯 型(セレーション又はスプライン)を有する嵌合部12 cを形成した内側槌手部村12と、外側槌手部村11の 黒内溝11mとこれに対応する内側艦手部材12の裏内 **満12hとが協助して形成される6本のボールトラック** にそれぞれ配された6個のトルク伝達ボール13と、ト ルク伝達ボール13を保持する保持器14とで構成され

材の外径(Device)と前記数合部の曲盤のピッチ円径 30 【0004】外側離手**修**材11の集内溝111の中心〇 1、は内径面 1 1 a の球面中心に対して、内側離手部材 12の案内第121の中心○2 は外径回124の球面 中心に対して、それぞれ、軸方向に等距離だけ反対側に (中心〇1 は周囲で左側、中心〇2 は周囲で右側 に)オフセットされている。そのため、康内得11りと これに対応する宛内後125とが整備して形成されるボ ールトラックは、軸方向の一方(同国で左側)に向かっ て模状に関いた形状になる。外側機手部材11の内径面 11 aの球菌中心、内側幾手部材12の外径面12aの 球腫中心は、いずれも、トルク伝達ボール13の中心口 3 を含む維手中心面() 内にある。

> 【0005】外便抛手部村11と内網総手部材12とが 角度9だけ角度度位すると、保持器14に案内されたト ルク伝達ボール13は常にどの作動角9においても、角 度6の2等分面(6/2)内に維持され、継手の等途性 が確保される。

[0006]

【発明が解決しようとする課題】自動車の動力伝達機構 において、等途自在推手はドライブシャフト用に多くの 50 実痕があり、これまでプロペラシャフトに使用されてき

emajorganos de la com

(3)

た穿遮目存職手は、ドライブシャフト用としての設計を そのまま採用したものである。しかし、助力伝達の特性 **む比較した場合。プロペラシャフトに負荷される**トルク はドライブシャフトの約半分種度であり、また作動角の 実用城もドライブシャフトより小さい。従って、ドライ プシャフト用としての設計をそのまま採用した従来の仕 様では要求特性に対してオーバースペックの感があり、 より一鷹の軽量化、コンパクト化、低コスト化を図る観 点から改善の余地が認められる。また、プロペラシャフ トはドライブシャフトよりも高速で回転するので、高速 10 外径層の方程式: 回転性の点からも碓手部分はよりコンパクトであること が好ましい。

【0007】そとで、本発明は、プロペラシャフト用と して、より一様発量、コンパクト、かつ低コストな等法 自在幾手を提供しようとするものである。

とする。

【深題を解決するための手段】上記課題を解決するた め、本発明は、球面状の内径面に触方向に延びる8本の 集内港を形成した外側維手部材と、球面状の外径面に軸 方向に延びる8本の案内溝を形成し、内径面にプロペラ 20 @:規機率 シャフトの軸部と衝型嵌合する嵌合部を形成した内側離 手部計と、外側離手部材の案内器とこれに対応する内側 租手部材の集内溝とが協動して形成される8 本のボール トラックにそれぞれ配された8個のトルク伝達ボール と、トルク伝達ボールを保持する保持器とを備え、ボー ルトラックが軸方面の一方に向かって模状に聞き、内側 職手部材の軸方向幅(型)と、鉄合部の歯型のビッチ円 径(PCDsern)との比Rw(=W/PCDsern)が 0. 57<Rw≤0. 95である構成を提供する。 【0009】ととで、「内側維手部村の軸方向橋 (W)」は、内側担手部件の集内操の軸方向寸法を基準

[0010]0.57<Rw≤0.95としたのは以下 の理由による。

【〇〇11】先ず、ボールトラックの本数ねよびトルク 伝達ボールの配置数を8とした場合、内側維手部村の外 径面の円周方向幅(L:案内滞間の外径面の円周方向寸 法)は、図8に示す従来継手(6個ボールの固定型等法 自在幾手)に比べて相対的に小さくなる。この傾向は、 継手のコンパクト化を関るために、内側継手部柱の外径 40 寸法を小さくすればするほど顕著になる。一方、重塵性 を高めるために、内側槌手割材を冷間吸避によって成形 する場合、外径画の円廊方向幅(L)が小さすぎると、 成形型内で素材が充分に決動し得ないために、案内得お よび外径面が確定良く仕上がらない。また、金型の寿命 も短くなる。実験の結果、良好な成形領度および企型労 命が得られる外径面の円周方向幅(し)の最小値は3、 5mmであることが確認されており、内側維手部村の冷 関級途を可能にするためには、円周方向艦(し)を3. 5 m m以上確保する必要がある(L≥3.5 mm)。

【0012】また、外経面の円滑方向機(L)は軸方向 に一様ではなく、軸方面中央部から両機能にかけて衝領 し、両細部で最小値をとる。国4に示す幾何学的な関係 から、内側維手部材2の外径面2gと案内線2bとの機 界部 (層部) の座権は、下配の2つの式を解くことによ り求めることができる(厚部ねよび補屋のチャンファは 考慮していない。〉。集内港面の方程式:

 $(X+e_x)^{+}+\{(Y^{*}+Z^{*})^{*/*}-(PCR+e_x)^{*/*}\}$ $(\alpha R)^4 = (\alpha R)^4$

 $X_1 + A_1 + (S - L)_1 = K$

ことで.

X. Y、2:座標

PCR:集内溝2bの中心O2とトルク伝達ボール3の 中心03とを始ね短分の長さ

e』:果内得2bの円弧中心のPCD中心かちのオフセ ット量

e。:果内滞2 bの円弧中心のPCD中心からのオフセ ットロ

f:案内機2pの中心O2のオフセット量

R:トルク伝達ボール3の半径

上記の2つの式から外径面の円刷方向幅(し)を求め、 両側部でしゅ3.5mmの条件を推たす内側機争部材の 軸方両幅 (V.) を求める。上述したように、内側推手 部村の冷間鉄道を可能にするためにはL23.5mmで あることが必要であり、そのためには触方向幅(型)は ♥≤♥、の条件を描たす必要がある。

【0013】次に、内側艦手部材の軸方両幅(収)を決 30 定するにあたり、角度変位時におけるトルク伝達ボール の案内港に対する軸方向移動範囲を考慮する必要があ る。すなわち、上記により、内側維手部材の種方向標 (W) はW≦W、を満たす動画で可及的に小さくするの が望ましいが、軸方向幅(双)を必要以上に小さくしす さると、外別差手部材と内側維手部材とが相対的に角度 **査位した時、トルク伝達ポールが内側艦手部材の案内得** から外れてしまう事態が超り得る。従って、内側能手部 材の軸方向幅(型)は、外側継手部材と内側梃手部材と が最も大きな角度で角度度位した時のトルク伝達ボール の位置を基準にして、トルク伝達ポールが案内律から外 れないような寸法に設定する必要がある。

【0014】ととで、この種の等速目在推手において、 外側継手部材と内側継手部材との変位角が最も大きくな るのは、トルク伝達ボールの組込み時である。すなわ ち、図5に示すように、この種の等途自在機手では、内 側離手部材2と「影響器4とのアッセンブリを外側離手部 材1の内径面に組み込んだ後、内側戦手部材2を外側機 手部村1に対して所定角度 B。だけ相対的に角度変位さ せ(どの時の変位角度heta。も「組込み角heta。」とい 50 う。)、保持圏4のボケットを総手外部に引き出した状

http://www6.ipdl.jpo.go.jp/tjcontentdb.ipdl?N0000=20&N0400=image/glf&N0401=/NSAF 03/02/24

態にして、トルク伝達ボール3を保持器4のポケットに 組入れている。この時、トルク伝達ボールが案内溝から 外れてしまうと、組込みが不可になる。そこで、組込み 略に、トルク伝達ボールが来内海から外れないような、 内側端手部材の箱方向幅(型)の限界値(型。)を求 め、W≧w。の条件を拗たすように勢方向幅(W)を設 定する。尚、祖込み角(9。)は、維手が操縦上取り得 る最大の変位角である「最大作動角」よりも大きく、実 用作動角板は通常この最大作動角よりも小さい範囲に設

【0015】以上により、内側推手部村の軸方向機 (W) の最適範囲はW。≤W≤W、になる。ただ。(W 。)、(型、)の値は担手サイズごとに異なるので、よ り一般的な基準とするためには、私手サイズと関語する 基本寸法との関係において求める必要がある。また、 (W,) はトルク伝達ボールの組込み角(G。) によっ ても変わってくる。そこで、組込み角(heta。)を 50° に設定し、種々の機手サイズごとに(W。)、(W。) を求め、嵌合部の衝型のピッチ円径(PC Daste)との 比Rw (=W/PCDsata) を求めた。その情果。(). 57<Rw≤0.95の条件が得られ、これが内側梃手 部村の補方両幅(♥)の最適能圏を示す基準となること が見出された。RW≦()、57であると、組込み角∂。 =50°でのトルク伝達ポールの組込みができなくな る。一方、Rw>()。 95であると、内側組手部村の冷 南級追が困難となって、加工方法の技本的な見直しが必 要になる他、他の加工方法を採用したとしても加工コス トの上昇が退けられない。また、軸方両幅(▼)が大き くなることは、重量、寸法、材料コストの面で不利であ る。差字の軽量化、コンパクト化、低コスト化を図り、 かつ、雌手の組立に支険をきたさないという点から、 0.57<RWSO.95が内側梃手部材の軸方向幅 (▼)の最適範囲である。

【0016】上記器準に替づいて試作した内閣艦手部材 の静煩り強度を開定したところ、軸部の連結部分(連 常、スタブシャフトが用いられる。) の警察り強度を満 足しており、プロペラシャコト用としての独皮の点でも 問題がないことが確認された。

【0017】上記において、トルク伝達ボールの組込み 角(8。)を50°に設定しているのは次の理由によ る。すなわち、この後の等途自在継手において、外側維 手部村と内側推手部材とを相対的に角度の。だけ角皮変 位させて、トルク伝達ボールを保持器の新定のポケット に組込む段、他のボケットに既に組込まれたトルク伝達 ボールは回転方向の位相変化に伴い、保持器のポテット に対して円路方向および半径方向に移動する(トルク伝 途ボールの移動量は角度を、に比例して大きくな る。)。保持器のボケットの円層方向寸法は、との時の トルク伝達ボールの円周方向移動量を考慮して、トルク 伝達ボールとの干渉が生じない寸法に設定する必要があ 50 2 ≥ 3. 2 であると(主に外径Dourse、が大きい場

る。そのため、組込み角(β。)が過大であると、ポケ ット間の柱部の円周方向寸法が進小となり(ボケットの 円周方向寸法を大きくする必要があるため)、保持器の 強度不足が懸念される。特に、トルタ伝達ポールの配置 数を8とした場合、従来継手に比べてポケット数が多く なるので、保持器の強度陥倒は重要である。一方、組込 み角(8。)が過小であると、トルク伝達ボールの組込 み自体ができなくなる。従って、組込み角(も、)は、 保持器の強度を発揮しつつ、トルク伝達ボールの組込み を可能にする範囲で可及的に小さくするのが好ましく、 この西点から解析、実験を進めた結果、組込み角 (B。)を50°に設定した場合に、好ましい結果が得 られることが見出された。

【りり18】トルク伝達ポールのピッチ円径(PCD AALE) と直径(DAAEL)との比ァ1(=PCDAALE/D ****) は3、3≦ r 1 ≦5、0の絶国内の値とすること かできる。3、3≦ r l ≦5.0とした理由は、外側維 手部村等の強度、稚子の負荷容量をよび耐久性を従来機 手(6個水ールの固定型等速管在機手)と同等以上に確 20 保するためである。すなわち、等速自在推手において は、限られたスペースの機器で、トルク伝達ボールのビ ッチ円径(PCDana)を大幅に変更することは困難で ある。そのため、FLの様は主にトルク伝達ボールの値 経(Dance)に依存することになる。 r 1 < 3、3であ ると(主に直径Danceが大きい場合)、他の都品(外側 祖子部材、内側選手部材等)の内屋が薄くなりすぎて、 独庵の点で思念が生じる。途に「1>5.0でめると (主に直径Dankaが小さい場合)、負荷容量が小さくな り、耐久性の点で懸念が生じる。また、トルク伝達ポー ルと案内側との接触部分の置圧が上昇し(直径Dissiが 小さくなると、独独部分の競技権円が小さくなるだ め)、黒内側の浦原エッジ部分の欠け等の要因になるこ とが騒念される。

[0019] 3. 3≦ r 1≦5. 0とすることにより、 外側能手部材等の程度、能手の自腐容量および耐久性を **従来選手と同等以上に確保することができる。より好ま** しくは、3、5≤11≤6、0の観測内の値に設定する のが良い。

【0020】外側継手部行の外径(Dauris)と内側推 手部材の嵌合部の歯型のビッチ円径(PCDstat)との 比12は2.5512<3.2の範囲内の値とすること ができる。2. 5至 r 2 く 3. 2 とした理由は大にあ る。すなわち、内側継手部村の嵌合部の機型のビッチ円 往(PCDsets)は、軸部の強度等との関係で大幅に変 更することはできない。そのため、「2の値は、主に外 側継手部材の外径(Doutes)に依存することになる。 rなく2.5であると(主に外径Deerenか小さい場 合)、各部品(外側進手部村、内側進手部材等)の内庫 が輝くなりすぎて、強度の点で懸念が生じる。一方、ド

合) コンパクト化という目的も連成できない。2.5 ≤ 2 2 < 3 . 2 とすることにより、外側科手部行等の数 度ねよび継手の耐久性を従来継手と同等以上に確保しつ つ。外径寸柱をコンパタトにすることができる。ちなみ に、従来機手(6個水ールの固定型等速自在機手)は、 一般に、 r 2 ≥ 3.2 である。

[0021]

[発明の実験の形態]以下、本発明の実験形態を図面に 従って説明する。

【0022】図1及び図2は、プロペラシャフトの軸部 10 10亿族者される間定型等途自在戦争を示している。プ ロペラシャフトの軸部10は、スタブシャフト108 と、スタブシャフト10aに結合される中面軸10Dと で様成され、通常、スタブシャフト108は網製の中央 軸、中間軸10gは抑または繊維酸化プラスチック(F RP) 等からなる中空軸である。

【0023】との実施形態の守道自在総手は、球菌状の 内径面1aに8本の曲線状の裏内溝しりを軸方向に形成 した外頭梃手部村1と、球面状の外径面2 a に8 本の曲 レーション又はスプライン)を有する嵌合部2cを形成 した内側継手部村2と、外側継手部村1の乗内準1Dと これに対応する内閣総手部計2の案内溝21とが協働し て形成される8本のボールトラックにそれぞれ配きれた 8個のトルク伝達ボール3と、トルク伝達ボール3を開 持する保持器4とで機成される。

【0024】内側拠手部村2の安合部2cには、スタブ シャフト 1 () a の触場部が曲型設合(セレーション設合 又はスプライン嵌合) される。また、外側継手部付1の 一端側にはブーツアダプタ11を介してブーン12が終 30 着され、他幾何にはシールプレート13が修着される。 ブーツ12は、ブーツバンド14によってスタブシャフ ト10gの外周に固定される。 ブーツ12とシールプレ ート13とによって、推手内部がシールされる。外側は 手部村1は、自動車のトランスミッション又はデファレ ンシャルの健康軸に連結される。あるいは、3様手型や 4 维手型などのプロペラシャフトでは、外側推手即材 1 を他の中間勢に追捕する場合もある。

【0025】との実施形態において、外側継手部村1の 泉内溝10の中心〇1は内径面10の球面中心に対し て、内側継手部計2の奥内滞2 bの中心の2は外径面2 aの球面中心に対して、それぞれ、軸方向に等距離だけ 反対側に(中心〇)は同國で左側、中心〇2は同國で右 側に) オフセットされている。そのため、東内溝しりと これに対応する案内港20とが協働して形成されるボー ルトラックは、輸方面の一方(同因で左側)に向かって 役状に関いた形状になる。

【0026】保持四4の外径面4mの球面中心、およ び、保持器4の外径面4aの案内面となる外側離手部材 1の内径面 1 a の政面中心は、いずれも、トルク伝達ボー50 めるトルク伝達ボール 1 個当りの負首割合が少ないの

ール3の中心○3を含む世手中心面○内にある。また、 県博器4の内温画4 b の球画中心、および、保持器4の 内径面4 5の案内面となる内側機手部村2の外径面2 a の強而中心は、いずれも、幾手中心面〇内にある。それ 故、病内湯15の中心〇1のオフセット量は、中心〇1 と戦争中心面のとの間の軸方向距離、 森内港2 b の中心 ○2のオフセット量は、中心○2と継手中心面○との間 の軸方向距離になり、両者は等しい。

【0027】外側継手部村1と内側継手部材2とが角度 6だけ角皮変位すると、保持器4に案内されたトルク伝 達ポール3は常にどの作動角をにおいても、角度もの2 等分面(6/2)内に維持され、維手の等態性が確保さ na.

【() () 28】トルク伝達ポール3のピッチ円径(PCD sali) と直径(Dsall)との比「I(=PCDsals/D BALL) は、前述した理由から、3.3≦ド1系5.0の 題協内の値に設定されている。とこで、トルク伝達ボー ルのピッチ円径(PCDaxxi)は、PCRの2倍の寸法 である(PCD....=2×PCR)。外側継手部村1の 複様の裏内機2 b を輪方向に形成し、内径面に歯型(セ 20 泉内岸1 b の中心O 1 をトルク伝達ボール3の中心O 3 を組み継分の長さ、内側推手部材2の末内排25の中心 Q2とトルク伝達ボール3の中心Q3を結ぶ組分の基本 が、それぞれPCRであり、両者は等しい。

> 【1)028】また、外側艦手部材1の外径(Doursa) と内側維手部村2の嵌合部2cの機関(セレーション又 はスプライン)のピッチ円径 (PCDicat) との比下2 (= Dodtes / PCDsand) は、前述した理由から、

> 2.5幺12<3.2の韓国内の値に設定されている。 【0030】閉3は、内側截手部材2を示している。内 側継手部材2は、銅材料から熱闘競殺又は亜熱健雌進に よってほぼ所定形状に予機成形され、外径面2a、桌内 後2 bを冷間吸道によって最終形状に仕上げられた後、 精度職保のための後加工(研削加工等)を施される。

【()()31】内側維手部材2の外径面28の円周方向幅 (L) はし≥3.5mmであり、軸方向幅(W)は、ト ルク伝達ボール3の組込み角(4。) も50°として、 表合都2cの曲型のピッチ円径(PCDstat)との比R w (=W/PCD_{stat}) が0. 57<Rw≤0. 95の 範囲内の値になるように設定されている。これにより、 組込み角分。=50°でのトルク伝達ボール3の組込み を可能にしつつ、内側椎手即材2の冷間段道を可能にし て加工コストの低減を関り、また、軸方向幅(平)を可 及的に小さくして、重量、寸法、材料コストの低減を図 ることができる。尚、集内溝2 h と外径面2 a との検界 部(肩部)にチャンファ(面取り)を施す場合、円周方 向幅(し)はチャンファを含む寸法とする。

【0032】との実施形路の等速日在機手は、トルク伝 達ポール3の匈魏が8個であり、従来選手(8個ポール の固定型等進音在維手)に比べ、維手の全負荷容量に占

The second of the first

respective description of the control of the contro

(6)

で、同じ呼び形式の従来概手に対して、トルク伝達ボー ル3の直径 (Dant) を小さくし、外側継手部付1の内 厚および内側機手部材2の内厚を従来機手と開稿度に確 保することが可能である。また、同じ呼び形式の従来権 手に対して、比:2(= Deerin /PCDsina)を小さ くして(従来機手における 12の一般的な値は12≥ 3. 2 である。)、従来権手と同等以上の領度。負責容 量給よび耐久性を確保しつつ、外径寸法(Dogres)の 一層のコンパクト化を図ることができる。例えば、嵌合 都2cのピッチ四径(PCDstas)を従来継手と等しく 10 【図面の簡単な影明】 した場合、外径(Doutes)を呼び番号で3サイズダウ ンすることが可能である。また、従来権争に比べて低量 熱であることが実験の結果確認されている。

【0033】 さらに、内側進手部材2の軸方向帽(V) を0.57<Rw≤0.95の範閣内の値に設定してい るので、従来選手に比べて軸方向寸法がコンパクトであ り、かつ、より略量、低コストである。

[0034]

【発明の効果】本発明は以下に示す効果を有する。

【0035】(1)内側維予部材の触方向幅(W)を Q. 57<Rw≤Q. 95の範囲内の錯に設定すること により、内側離手部材の冷間微速を可能にして、加工コ ストの低減を図ることができる。また、従来継手に比べ て、内側似手部村の軸方向幅が小さくなることにより、 軽量化、コンパクト化、材料コストの低減になる。

【0036】(2)内側機手部材の外径面の円周方向幅 (し)をL≧3.5mmとすることにより、内側離チ部 材の冷断段造を可能にし、良好な成形構度を得ることが できる。

【0037】(3)トルク伝達ボールの報込み角 (分,)を50′に設定することにより、保持器の強度 を罷保しつつ、トルク伝達ボールの組込みを可能にする* *ことができる。

[0038] (4) 比rl (=PCD..../D....) を 3. 3≦ r 1≦5. 0とし、かつ、比 r 2を2. 5≦ r 2く3. 2とすることにより、従来継手と同等以上の領 度、負債容量および耐久性を確保しつつ、外径寸法(D outet)の一層のコンパクト化を図ることができる。

10

【()()39】(5) 本興明のブロペラン+フトは、機手 部分が延慢かつコンパクトであるので、南遠回転性に低 れている。

【図1】本発明の実施影響に係わる等途自在継手の縦折 面図(図2におけるO-A断面図)である。

【図2】本発明の実施形態に係わる等途自在梃手の偿訴 雷団(図Ⅰにおける○−○断画頭)である。

【図3】内側艦手部材の正面図(図3(a))、機断面 図(図3(b))である。

【図4】内側離手部材の幾何学モデル図である。

【四5】 トルク伝達ポールの組込み時の状態を示す概念 図である。

20 【図 6】 従来のプロペラシャフト用等適自在機手を示す 縦折面回である。

【符号の説明】

外侧柱手部材

la 内径面

15 案内港

2 内侧袖手部材

2a 外径面

2 b 宋内海

3 トルク伝達ポール

保持器 30 4

10

[图5] [22]

http://www6.ipdl.jpo.go.jp/tjcontentdb.ipdl?N0000=20&N0400=image/gif&N0401=/NSAF 03/02/24