# Genetic Algorithms

Chapter 10



## **Objectives**

- Define terms associated with genetics.
- Describe the general approach to genetic algorithms.
- Describe how to select individuals based on fitness.
- Define steps to genetic algorithm development.
- Define a genetic algorithm to solve the traveling salesperson problem.
- Distinguish between genetic algorithms and genetic programming.
- Define the steps to develop a genetic program.

#### Genetics Review - Definitions

- Organism
- Chromosomes
- Genome
- Haploid cell
- Diploid cell
- Homologous pair
- Somatic Cell
- Haploid organism

- Gamete
- Zygote
- Binary Fission
- Fusion
- Transient Diploid Meiocyte
- DNA
- Nucleotides
- Purines

#### **Definitions Continued**

- Canonical Base pair
- Gene
- Genotype
- Phenotype
- Allele
- Meiosis
- Chromatids
- Mutations

- Substitute mutation
- Insertion mutation
- Deletion mutation
- Evolution
- Natural Selection

## Genetic Algorithms

- Use fusion in haploid organisms as a model
- Candidate solutions to a problem are represented by haploid individuals in a population
- Each individual has one chromosome
- Alphabet for the chromosome consists of characters representing solutions

## Genetic Algorithms

- Generation: a certain number of fit individuals are allowed to reproduce
- Individuals representing better solutions are more fit
- Chromosomes from 2 fit individuals then line up and exchange genetic material
- Mutations possibly occur
- Results in next generation
- Process repeated until terminal condition

```
void generate_populations()
t = 0;
initialize population P0;
repeat
evaluate fitness of each individual in Pi;
       Select individuals for reproduction
based on fitness;
       Perform crossover and mutation on
the selected
              Individual;
       t++;
until terminal condition is met;
```

# Selecting Individuals Based on Fitness

- Exploit knowledge already obtained by concentrating on regions that look good
- Exploration: look for new regions without regard for how good they currently appear
- Explore choose random individual with probability ε
- Exploit by choosing a fit individual with probability
   1- ε

## Steps to Develop Algorithm

- Decide on an alphabet to represent solutions to the problem.
- Decide on how many individuals make up a population.
- Decide how to initialize the population.
- Decide how to evaluate fitness.
- Decide on which individuals to select for reproduction.
- Determine how to perform crossovers and mutations.
- 7. Decide when to terminate.

# Traveling Salesperson Problem (TSP)

- NP-hard problem
- n cities. Sales person wants to start at a given city, visit every city once such that the length of the tour is minimum.
- TSP represented by a weighted directed graph: vertices represent cities and weights on the edges represent road length

## Genetic Algorithms to Solve TSP

- Order Crossover
- Nearest Neighbor Crossover
- Nearest Neighbor Crossover (NNX)
- Greedy Edge Crossover

#### **Evaluation**

- Genetic algorithms do not have provably correct properties.
- Evaluation is done by investigating their performance on a number instances of the problem.

| Algorithm | Mutation | Init. Pop. | Dev   | #Gen  | Time   |
|-----------|----------|------------|-------|-------|--------|
|           | No M     | R          | 3.10  | 45.39 | 0.38   |
|           |          | H          | 4.82  | 33.52 | 2.95   |
| NNX       | M1       | R          | 1.67  | 40.21 | 0.62   |
|           |          | H          | 1.57  | 36.09 | 3.55   |
|           | M2       | R          | 0.55  | 53.37 | 5.52   |
|           |          | H          | 0.55  | 43.53 | 8.11   |
|           | No M     | R          | 12.54 | 17.35 | 48.23  |
|           |          | H          | 7.19  | 16.37 | 54.27  |
| GEX       | M1       | R          | 4.36  | 60.44 | 208.70 |
|           |          | H          | 3.67  | 48.44 | 178.65 |
|           | M2       | R          | 3.30  | 26.30 | 82.79  |
|           |          | H          | 3.01  | 25.83 | 90.58  |
|           | No M     | R          | 8.15  | 42.50 | 73.25  |
|           |          | H          | 5.53  | 38.47 | 75.67  |
| 50% NNX   | M1       | R          | 1.92  | 66.04 | 113.81 |
| 50 % GEX  |          | H          | 1.68  | 61.21 | 112.77 |
|           | M2       | R          | 1.76  | 19.25 | 26.40  |
|           |          | H          | 1.61  | 20.68 | 34.19  |
|           | No M     | R          | 7.23  | 41.16 | 13.39  |
|           |          | H          | 5.19  | 34.93 | 14.95  |
| 90% NNX   | M1       | R          | 1.84  | 55.60 | 19.14  |
| 10% GEX   |          | H          | 1.67  | 46.93 | 20.16  |
|           | M2       | R          | 0.51  | 37.13 | 19.26  |
|           |          | H          | 0.48  | 37.24 | 21.95  |
|           | no M     | R          | 6,69  | 41.23 | 6.74   |
|           |          | H          | 5.06  | 33.04 | 8.93   |
| 95% NNX   | M1       | R          | 1.77  | 52.62 | 10.03  |
| 5% GEX    |          | H          | 1.41  | 44.33 | 11.30  |
|           | M2       | R          | 0.49  | 37.15 | 11.58  |
|           |          | H          | 0.44  | 36.19 | 14.88  |

| Algorithm | Mutation | Dev  | Time |
|-----------|----------|------|------|
|           | No M     | 5.40 | 18.4 |
| NNX       | M1       | 1.44 | 26.4 |
|           | M2       | 0.35 | 26.2 |

| Algorithm | Mutation | Dev  | Time   |
|-----------|----------|------|--------|
|           | No M     | 7.61 | 25.3   |
| NNX       | M1       | 4.94 | 65.0   |
|           | M2       | 4.70 | 1063.0 |

## Genetic Programming

- Genetic algorithms: "chromosome" or "individual" represents a solution to a problem
- Genetic Programming: the individual represents a program that solves a problem
- Fitness function for the individual measures how well the program solves the problem.

### Individuals in a Genetic Program

- Represented by trees
- Each node
  - Terminal symbol
  - Function symbol
- Function symbol: arguments are its children

## Figure 10.7



## Illustrative Example

Points generated from y=x²/2

| $\boldsymbol{x}$ | $\boldsymbol{y}$ |
|------------------|------------------|
| 0                | 0                |
| .1               | .005             |
| .2               | .020             |
| .3               | .045             |
| .4               | .080             |
| .5               | .125             |
| .6               | .180             |
| .7               | .245             |
| .8               | .320             |
| .9               | .405             |

# Steps for developing a genetic program for the discovery problem

- Decide on the terminal set T.
- Decide on the function set F.
- Decide on how many individuals make up a population.
- Decide how to initialize the population.
- Decide on a fitness function.
- Decide on which individuals to select for reproduction.
- Decide on how to perform crossovers and mutations.
- Decide when to terminate.

#### **Artificial Ant**

- Sante Fe Trail black squares represent one pellet of food (89 such pellets)
- Ant starts at square labeled start facing right
- Goal: arrive at square labeled 89 after visiting all
   89 black squares eating all of the food on the trail
   in as few steps as possible
- The problem with a time limit represents a challenging planning problem

## Figure 10.9



## Application to Financial Trading

- On a given day, decide to buy, sell, or hold
- Develop genetic program for the trading system