How did local health infrastructure and socio-political factors within different states and counties in the United States affect the disparities in COVID-19 outcomes, and what lessons can be learned for more targeted public health preparedness and response strategies in future pandemics?*

Adrian Ly Sakhil Goel Hannah Yu
February 11, 2024

First sentence. Second sentence. Third sentence. Fourth sentence.

Table of contents

1	Introduction
	Data 2.1 Source 2.2 Methodology 2.3 Data Measurement 2.4 Data cleaning
3	Results
	Discussion 4.1 Influence of political polarization on adherence to health guidelines

^{*}Code and data are available at: https://github.com/hannahyu07/US-Covid-Analysis.git

Refere	nces	6
4.5	Weaknesses and next steps	5
	decisions.	5
4.4	Strategies for improving real-time data collection and sharing for public health	
4.3	Role of social vulnerabilities and healthcare access disparities in pandemic impact.	5
	trust	5
4.2	Impact of government transparency and consistent communication on public	

1 Introduction

This reproduction was performed after a replication on the Social Science Reproduction platform: link here

2 Data

2.1 Source

The datasets utilized throughout this paper was obtained from the original paper (Nuzzo and Ledesma 2023).

2.2 Methodology

R (R Core Team 2022) was the language and environment used for the bulk of this analysis, alongside tidyverse (Wickham et al. 2019), sf (Pebesma 2018), readx1 (Wickham and Bryan 2023), knitr (Xie 2014), janitor (Firke 2023), lubridate (Grolemund and Wickham 2011), dplyr (Wickham et al. 2023), data.table (Barrett et al. 2024), RColorBrewer (Neuwirth 2022), ggpubr (Kassambara 2023), ggplot2 (Wickham 2016), here (Müller 2020), and scales (Wickham, Pedersen, and Seidel 2023).

2.3 Data Measurement

2.4 Data cleaning

3 Results

Our results are summarized in Figure 1.

Figure 1: Global Health Security Index Scores by Country

Figure 2: Estimates of Life Expectancy at Birth, by Race 2006-2021

Figure 3: Change in Life Expectancy at Birth from the Previous Year

4 Discussion

This begs the question as to why we are seeing these results. There isn't exactly a single answer to this question, however we can certainly point out some considerable factors to this result.

4.1 Influence of political polarization on adherence to health guidelines.

Political polarization has significantly impacted the adherence to health guidelines during the COVID-19 pandemic. The divergence in political ideologies has translated into differing attitudes towards health directives, including mask mandates, social distancing, and vaccination uptake. Various studies and our own results have shown that areas with higher support for one political party exhibited distinct behaviors and compliance levels with health recommendations, which directly correlated with COVID-19 case rates and mortality. An news article from ABC News (Diab and Kumar 2023) shows that the top states with the highest COVID-19 deaths are Arizona, and Washington with 581 deaths and 526 deaths respectively per 100,000 people. According to 2020 presidential voting data published by CNN, we have both states having the electoral vote of democrat with Washington wining by 58% (2020 Election Results by State, Washington 2020) and Arizona winning by 49.4% (2020 Election Results by State, Arizona 2020). Another news article by ContagionLive (Parkinson 2023) also makes the claim of both Arizona and Washington having the highest COVID-19 mortality. This polarization has not only influenced individual behavior but also shaped state and local health policies, further entrenching the disparities in health outcomes.

- 4.2 Impact of government transparency and consistent communication on public trust.
- 4.3 Role of social vulnerabilities and healthcare access disparities in pandemic impact.
- 4.4 Strategies for improving real-time data collection and sharing for public health decisions.

4.5 Weaknesses and next steps

Weaknesses and next steps should also be included.

References

- 2020 Election Results by State, Arizona. 2020. CNN. https://www.cnn.com/election/2020/results/state/arizona.
- 2020 Election Results by State, Washington. 2020. CNN. https://www.cnn.com/election/2020/results/state/washington.
- Barrett, Tyson, Matt Dowle, Arun Srinivasan, Jan Gorecki, Michael Chirico, and Toby Hocking. 2024. Data.table: Extension of 'Data.frame'. https://CRAN.R-project.org/package=data.table.
- Diab, Dr. Alaa, and Dr. Keerthana Kumar. 2023. COVID-19 Death Rates Varied Dramatically Across US, Major Analysis Finds. ABC News. https://abcnews.go.com/Health/covid-19-death-rates-varied-dramatically-us-major/story?id=98055024.
- Firke, Sam. 2023. Janitor: Simple Tools for Examining and Cleaning Dirty Data. https://CRAN.R-project.org/package=janitor.
- Grolemund, Garrett, and Hadley Wickham. 2011. "Dates and Times Made Easy with lubridate." *Journal of Statistical Software* 40 (3): 1–25. https://www.jstatsoft.org/v40/i03/.
- Kassambara, Alboukadel. 2023. *Ggpubr: 'Ggplot2' Based Publication Ready Plots*. https://CRAN.R-project.org/package=ggpubr.
- Müller, Kirill. 2020. Here: A Simpler Way to Find Your Files. https://CRAN.R-project.org/package=here.
- Neuwirth, Erich. 2022. RColorBrewer: ColorBrewer Palettes. https://CRAN.R-project.org/package=RColorBrewer.
- Nuzzo, Jennifer B., and Jorge R. Ledesma. 2023. Why Did the Best Prepared Country in the World Fare so Poorly During COVID? https://www.aeaweb.org/articles?id=10.1257/jep. 37.4.3.
- Parkinson, John. 2023. Which States Saw Greatest COVID-19 Mortality? ContagionLive. https://www.contagionlive.com/view/which-states-saw-greatest-covid-19-mortality-.
- Pebesma, Edzer. 2018. "Simple Features for R: Standardized Support for Spatial Vector Data." The R Journal 10 (1): 439–46. https://doi.org/10.32614/RJ-2018-009.
- R Core Team. 2022. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Wickham, Hadley. 2016. *Ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. https://ggplot2.tidyverse.org.
- Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. "Welcome to the tidyverse." *Journal of Open Source Software* 4 (43): 1686. https://doi.org/10.21105/joss.01686.
- Wickham, Hadley, and Jennifer Bryan. 2023. Readxl: Read Excel Files. https://CRAN.R-project.org/package=readxl.
- Wickham, Hadley, Romain François, Lionel Henry, Kirill Müller, and Davis Vaughan. 2023. Dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr.
- Wickham, Hadley, Thomas Lin Pedersen, and Dana Seidel. 2023. Scales: Scale Functions for Visualization. https://CRAN.R-project.org/package=scales.

Xie, Yihui. 2014. "Knitr: A Comprehensive Tool for Reproducible Research in R." In *Implementing Reproducible Computational Research*, edited by Victoria Stodden, Friedrich Leisch, and Roger D. Peng. Chapman; Hall/CRC.