Mining Association Rules in Large Databases

Association rules

- Given a set of transactions D, find rules that will predict the occurrence of an item (or a set of items) based on the occurrences of other items in the transaction
- Unsupervised Learning

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Cookies, Butter, Eggs
3	Milk, Cookies, Butter, Coke
4	Bread, Milk, Cookies, Butter
5	Bread, Milk, Cookies, Coke

Examples of association rules

```
\{Cookies\} \rightarrow \{Butter\},\
\{Milk, Bread\} \rightarrow \{Cookies, Coke\},\
\{Butter, Bread\} \rightarrow \{Milk\},\
```

An even simpler concept: frequent itemsets

 Given a set of transactions D, find combination of items that occur frequently

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Cookies, Butter, Eggs
3	Milk, Cookies, Butter, Coke
4	Bread, Milk, Cookies, Butter
5	Bread, Milk, Cookies, Coke

Examples of frequent itemsets

{Cookies, Butter}, {Milk, Bread} {Butter, Bread, Milk},

Lecture outline

• Task 1: Methods for finding all frequent itemsets efficiently

• Task 2: Methods for finding association rules efficiently

Definition: Frequent Itemset

Itemset

- A set of one or more items
 - E.g.: {Milk, Bread, Cookies}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset (number of transactions it appears)
- E.g. $\sigma(\{Milk, Bread, Cookies\}) = 2$

Support

- Fraction of the transactions in which an itemset appears
- E.g. s({Milk, Bread, Cookies}) = 2/5

Frequent Itemset

 An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Cookies, Butter, Eggs
3	Milk, Cookies, Butter, Coke
4	Bread, Milk, Cookies, Butter
5	Bread, Milk, Cookies, Coke

Why do we want to find frequent itemsets?

- Find all combinations of items that occur together
- They might be interesting (e.g., in placement of items in a store)
- Frequent itemsets are only positive combinations (we do not report combinations that do not occur frequently together)
- Frequent itemsets aims at providing a summary for the data

Finding frequent sets

- Task: Given a transaction database D and a minsup threshold find all frequent itemsets and the frequency of each set in this collection
- Stated differently: Count the number of times combinations of attributes occur in the data. If the count of a combination is above minsup report it.

How many itemsets are there?

When is the task sensible and feasible?

- If minsup = 0, then all subsets of / will be frequent and thus the size of the collection will be very large
- This summary is very large (maybe larger than the original input) and thus not interesting
- The task of finding all frequent sets is interesting typically only for relatively large values of minsup

A simple algorithm for finding all frequent itemsets ??

Brute-force algorithm for finding all frequent itemsets?

- Generate all possible itemsets (lattice of itemsets)
 - Start with 1-itemsets, 2-itemsets,...,d-itemsets
- Compute the frequency of each itemset from the data
 - Count in how many transactions each itemset occurs
- If the support of an itemset is above minsup report it as a frequent itemset

Brute-force approach for finding all frequent itemsets

Complexity?

Match every candidate against each transaction

– For M candidates and N transactions, the complexity is O(NMw) => Expensive since M = 2^d!!!

Reduce the number of candidates

- Apriori principle (Main observation):
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- The support of an itemset *never exceeds* the support of its subsets
- This is known as the anti-monotone property of support

Example

TID	Items
1	Bread, Milk
2	Bread, Cookies, Butter, Eggs
3	Milk, Cookies, Butter, Coke
4	Bread, Milk, Cookies, Butter
5	Bread, Milk, Cookies, Coke

s(Bread) > s(Bread, Butter)
s(Milk) > s(Bread, Milk)
s(Cookies, Butter) > s(Cookies, Butter, Coke)

Illustrating the Apriori principle

Illustrating the Apriori principle

Item	Count
Bread	4
Coke	2
Milk	4
Butter	3
Cookies	4
Eggs	1

Items (1-itemsets)

Items	set	Coun
{Brea	ad,Milk}	3
{Brea	ad,Butter}	2
{Brea	ad,Cookies}	3
{Milk	,Butter}	2
{Milk	,Cookies}	3

{Butter,Cookies}

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

minsup = 3/5

Triplets (3-itemsets)

Itemset	Count
{Bread,Milk,Cookies}	3

Exploiting the Apriori principle

- Find frequent 1-items and put them to L_k (k=1)
- Use L_k to generate a collection of *candidate* itemsets C_{k+1} with size (k+1)
- Scan the database to find which itemsets in C_{k+1} are frequent and put them into L_{k+1}
- 4. If L_{k+1} is not empty
 - > k=k+1
 - Goto step 2

R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules", *Proc. of the 20th Int'l Conference on Very Large Databases*, 1994.

The Apriori algorithm

```
C<sub>k</sub>: Candidate itemsets of size k
L_k: frequent itemsets of size k
L<sub>1</sub> = {frequent 1-itemsets};
for (k = 2; L_k != \emptyset; k++)
  C_{k+1} = GenerateCandidates(L_k)
  for each transaction t in database do
        increment count of candidates in C_{k+1} that are contained in t
  endfor
  L_{k+1} = candidates in C_{k+1} with support \geq min\_sup
endfor
return \bigcup_k L_k;
```

Discussion of the Apriori algorithm

- Much faster than the Brute-force algorithm
 - It avoids checking all elements in the lattice
- The running time is in the worst case O(2^d)
 - Pruning really prunes in practice
- It makes multiple passes over the dataset
 - One pass for every level k
- Multiple passes over the dataset is inefficient when we have thousands of candidates and millions of transactions

Lecture outline

• Task 1: Methods for finding all frequent itemsets efficiently

• Task 2: Methods for finding association rules efficiently

Definition: Association Rule

Let D be database of transactions

- Let I be the set of items that appear in the database, e.g., I={A,B,C,D,E,F}
- A rule is defined by $X \rightarrow Y$, where $X \subset I$, $Y \subset I$, and $X \cap Y = \emptyset$
 - $e.g.: \{B,C\} \rightarrow \{A\}$ is a rule

Definition: Association Rule

Association Rule

- An implication expression of the form X → Y, where X and Y are non-overlapping itemsets
- Example: {Milk, Cookies} → {Butter}

	lule	Eval	luation	Metrics
--	------	------	---------	----------------

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Cookies, Butter, Eggs
3	Milk, Cookies, Butter, Coke
4	Bread, Milk, Cookies, Butter
5	Bread, Milk, Cookies, Coke

Example:

 $\{Milk, Cookies\} \rightarrow Butter$

$$s = \frac{\sigma(\text{Milk}, \text{Cookies}, \text{Butter})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Cookies, Butter})}{\sigma(\text{Milk, Cookies})} = \frac{2}{3} = 0.67$$

Rule Measures: Support and Confidence

- support, s, probability that a transaction contains {X ∪ Y}
- confidence, c, conditional probability
 that a transaction having X also contains Y

TID	Items
100	A,B,C
200	A,C
300	A,D
400	B,E,F

Let minimum support 50%, and minimum confidence 50%, we have

- $A \rightarrow C$ (50%, 66.6%)
- $C \rightarrow A$ (50%, 100%)

Example

TID	date	items bought
100	10/10/99	{F,A,D,B}
200	15/10/99	$\{D,A,C,E,B\}$
300	19/10/99	$\{C,A,B,E\}$
400	20/10/99	$\{B,A,D\}$

What is the *support* and *confidence* of the rule: $\{B,D\} \rightarrow \{A\}$

- Support:
 - percentage of tuples that contain $\{A,B,D\} = 75\%$
- Confidence:

```
\frac{\text{number of tuples that contain } \{A,B,D\}}{\text{number of tuples that contain } \{B,D\}} = 100\%
```

Association-rule mining task

- Given a set of transactions D, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ *minconf* threshold

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Cookies, Butter, Eggs
3	Milk, Cookies, Butter, Coke
4	Bread, Milk, Cookies, Butter
5	Bread, Milk, Cookies, Coke

Example of Rules:

```
 \begin{aligned} &\{\text{Milk}, \text{Cookies}\} \rightarrow \{\text{Butter}\} \ (\text{s=0.4}, \text{c=0.67}) \\ &\{\text{Milk}, \text{Butter}\} \rightarrow \{\text{Cookies}\} \ (\text{s=0.4}, \text{c=1.0}) \\ &\{\text{Cookies}, \text{Butter}\} \rightarrow \{\text{Milk}\} \ (\text{s=0.4}, \text{c=0.67}) \\ &\{\text{Butter}\} \rightarrow \{\text{Milk}, \text{Cookies}\} \ (\text{s=0.4}, \text{c=0.67}) \\ &\{\text{Cookies}\} \rightarrow \{\text{Milk}, \text{Butter}\} \ (\text{s=0.4}, \text{c=0.5}) \\ &\{\text{Milk}\} \rightarrow \{\text{Cookies}, \text{Butter}\} \ (\text{s=0.4}, \text{c=0.5}) \end{aligned}
```

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Cookies, Butter}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partition of a frequent itemset

Efficient rule generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an anti-monotone property

```
c(ABC \rightarrow D) can be larger or smaller than c(AB \rightarrow D)
```

- But confidence of rules generated from the same itemset has an anti-monotone property
- Example: $X = \{A,B,C,D\}$:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

- Why?

Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation for Apriori Algorithm

Apriori algorithm for rule generation

 Candidate rule is generated by merging two rules that share the same prefix in the rule consequent

CD→AB

BD→AC

D→ABC

join(CD→AB,BD—>AC)
 would produce the candidate
 rule D→ABC

 Prune rule D→ABC if there exists a subset (e.g., AD→BC) that does not have high confidence

FP growth algorithm	Apriori algorithm
FP growth algorithm is faster than Apriori algorithm.	It is slower than FP growth algorithm.
FP growth algorithm is an array based algorithm.	Apriori algorithm is a tree-based algorithm.
FP growth algorithm required only two database scan.	It requires multiple database scan to generate a candidate set.
It uses depth-first search	It uses breadth-first search.