Importing the Dependencies

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

loading the dataset to a Pandas DataFrame
credit_card_data = pd.read_csv('_/content/credit_data.csv')

first 5 rows of the dataset
credit_card_data.head()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	0.090794	-0.551600	-0.617801	-0.9
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	-0.166974	1.612727	1.065235	0.4
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	0.207643	0.624501	0.066084	0.7
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	-0.054952	-0.226487	0.178228	0.5
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	0.753074	-0.822843	0.538196	1.3

credit_card_data.tail()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	
284802	172786,0	-11,881118	10,071785	-9.834783	-2,066656	-5.364473	-2.606837	-4.918215	7.305334	1,914428	4.356170	-1,593105	2.7
284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.294869	0.584800	-0.975926	-0.150189	0.91
284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.708417	0.432454	-0.484782	0.411614	0.06
284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.679145	0.392087	-0.399126	-1.933849	-0.96
284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.414650	0.486180	-0.915427	-1.040458	-0.00

dataset informations
credit_card_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 284807 entries, 0 to 284806
Data columns (total 31 columns):

#	Column	Non-Nu	ll Count	Dtype
0	Time	284807	non-null	float64
1	V1	284807	non-null	float64
2	V2	284807	non-null	float64
3	V3	284807	non-null	float64
4	V4	284807	non-null	float64
5	V5	284807	non-null	float64
6	V6	284807	non-null	float64
7	V7	284807	non-null	float64
8	V8	284807	non-null	float64
9	V9	284807	non-null	float64
10	V10	284807	non-null	float64
11	V11	284807	non-null	float64
12	V12	284807	non-null	float64
13	V13	284807	non-null	float64
14	V14	284807	non-null	float64
15	V15	284807	non-null	float64
16	V16	284807	non-null	float64
17	V17	284807	non-null	float64
18	V18	284807	non-null	float64
19	V19	284807	non-null	float64
20	V20	284807	non-null	float64
21	V21	284807	non-null	float64
22	V22	284807	non-null	float64
23	V23	284807	non-null	float64
24	V24	284807	non-null	float64
25	V25	284807	non-null	float64
26	V26	284807	non-null	float64

```
27 V27
                  284807 non-null float64
     28 V28
                  284807 non-null float64
     29 Amount 284807 non-null float64
      30 Class
                  284807 non-null int64
     dtypes: float64(30), int64(1)
     memory usage: 67.4 MB
# checking the number of missing values in each column
credit_card_data.isnull().sum()
     Time
               0
     V1
               0
     V2
               0
     V3
               0
     V4
               0
     ۷5
     ۷6
               0
     V7
               0
     ٧8
     V9
               0
    V10
               a
     V11
     V12
               0
    V13
               0
     V14
               a
     V15
               0
     V16
               0
     V17
               0
     V18
               0
     V19
     V20
               0
     V21
               0
     V22
     V23
               0
    V24
               0
     V25
     V26
               0
     V27
               0
     V28
               0
     Amount
               0
     Class
               0
     dtype: int64
# distribution of legit transactions & fraudulent transactions
credit_card_data['Class'].value_counts()
     0
          284315
             492
    Name: Class, dtype: int64
This Dataset is highly unblanced
0 -- Normal Transaction
1 -> fraudulent transaction
# separating the data for analysis
legit = credit_card_data[credit_card_data.Class == 0]
fraud = credit_card_data[credit_card_data.Class == 1]
print(legit.shape)
print(fraud.shape)
     (284315, 31)
     (492, 31)
# statistical measures of the data
legit.Amount.describe()
              284315.000000
     count
     mean
                  88.291022
                 250.105092
     std
                   0.000000
     min
     25%
                   5.650000
     50%
                  22.000000
     75%
                  77.050000
```

5/6/24, 11:15 AM

max 25691.160000 Name: Amount, dtype: float64

fraud.Amount.describe()

 count
 492.000000

 mean
 122.211321

 std
 256.683288

 min
 0.000000

 25%
 1.000000

 50%
 9.250000

 75%
 105.890000

 max
 2125.870000

Name: Amount, dtype: float64

compare the values for both transactions
credit_card_data.groupby('Class').mean()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	
Class													
0	94838.202258	0.008258	-0.006271	0.012171	-0.007860	0.005453	0.002419	0.009637	-0.000987	0.004467	0.009824	-0.006576	(
1	80746.806911	-4.771948	3.623778	-7.033281	4.542029	-3.151225	-1.397737	-5.568731	0.570636	-2.581123	-5.676883	3.800173	-6

Under-Sampling

Build a sample dataset containing similar distribution of normal transactions and Fraudulent Transactions

Number of Fraudulent Transactions -> 492

legit_sample = legit.sample(n=492)

Concatenating two DataFrames

new_dataset = pd.concat([legit_sample, fraud], axis=0)

new_dataset.head()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	
203131	134666.0	-1.220220	-1.729458	-1.118957	-0.266099	0.823338	-0.098556	-0.407751	0.563010	-1.007790	0.261245	-0.841608	-0.04
95383	65279.0	-1.295124	0.157326	1.544771	-2.468209	-1.683113	-0.623764	-0.371798	0.505656	-2.243475	0.856381	-0.402158	-1.396
99706	67246.0	-1.481168	1.226490	1.857550	2.980777	-0.672645	0.581449	-0.143172	0.302713	-0.624670	1.452271	0.940775	0.778
153895	100541.0	-0.181013	1.395877	1.204669	4.349279	1.330126	1.277520	1.568221	-0.633374	-0.860482	1.483849	-0.040592	-3.117
249976	154664.0	0.475977	-0.573662	0.480520	-2.524647	-0.616284	-0.361317	-0.347861	-0.108238	-1.876507	0.871271	-1.201188	-0.741

new_dataset.tail()

	Time	V1	V2	V3	V4	V5	V6	V7
279863	169142.0	-1.927883	1.125653	-4.518331	1.749293	-1.566487	-2.010494	-0.882850
280143	169347.0	1.378559	1.289381	-5.004247	1.411850	0.442581	-1.326536	-1.413170
280149	169351.0	-0.676143	1.126366	-2.213700	0.468308	-1.120541	-0.003346	-2.234739
281144	169966.0	-3.113832	0.585864	-5.399730	1.817092	-0.840618	-2.943548	-2.208002
281674	170348.0	1.991976	0.158476	-2.583441	0.408670	1.151147	-0.096695	0.223050

new_dataset['Class'].value_counts()

- 1 492
- 0 492

Name: Class, dtype: int64

```
new_dataset.groupby('Class').mean()
```

```
        Class
        V1
        V2
        V3
        V4
        V5
        V6

        0
        96783.638211
        -0.053037
        0.055150
        -0.036786
        -0.046439
        0.077614
        -0.023218
        -0.0000

        1
        80746.806911
        -4.771948
        3.623778
        -7.033281
        4.542029
        -3.151225
        -1.397737
        -5.568
```

Splitting the data into Features & Targets

```
X = new_dataset.drop(columns='Class', axis=1)
Y = new_dataset['Class']
print(X)
                             ٧1
                                      V2
                                                     V27
                                                               V28
                 Time
                                                                    Amount
                                          . . .
                                          ... 0.173995 -0.023852
     203131 134666.0 -1.220220 -1.729458
                                                                    155.00
                                          ... 0.317321 0.105345
     95383
              65279.0 -1.295124 0.157326
                                                                     70.00
     99706
              67246.0 -1.481168 1.226490
                                           ... -0.546577 0.076538
                                          ... -0.229857 -0.329608 137.04
     153895 100541.0 -0.181013 1.395877
     249976 154664.0 0.475977 -0.573662
                                           ... 0.058961 0.012816
                                                                    19.60
                                           . . .
            169142.0 -1.927883 1.125653
                                                0.292680 0.147968
                                                                   390.00
     279863
                                          . . .
     280143 169347.0 1.378559 1.289381
                                               0.389152 0.186637
                                                                     9.76
                                           . . .
     280149 169351.0 -0.676143 1.126366
                                                0.385107 0.194361
                                                                     77.89
                                           . . .
                                          ... 0.884876 -0.253700 245.00
     281144 169966.0 -3.113832 0.585864
     281674 170348.0 1.991976 0.158476
                                          ... 0.002988 -0.015309
                                                                     42.53
     [984 rows x 30 columns]
print(Y)
     203131
               0
     95383
              P
     99706
               0
     153895
               0
     249976
               0
     279863
     280143
              1
     280149
     281144
     281674
              1
     Name: Class, Length: 984, dtype: int64
Split the data into Training data & Testing Data
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, random_state=2)
print(X.shape, X_train.shape, X_test.shape)
     (984, 30) (787, 30) (197, 30)
Model Training
Logistic Regression
model = LogisticRegression()
# training the Logistic Regression Model with Training Data
model.fit(X_train, Y_train)
```

intercept_scaling=1, l1_ratio=None, max_iter=100,
multi_class='auto', n_jobs=None, penalty='l2',

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,

random_state=None, solver='lbfgs', tol=0.0001, verbose=0,
warm_start=False)

Model Evaluation

Accuracy Score