

O "BOOM" DA IA

"Pode-se dizer que um programa de computador aprende a partir de uma experiência E com respeito a uma classe de tarefas T e com medida de desempenho P, se seu desempenho P na tarefa T melhora com a experiência E"

(Mitchell, 1997)

PRINCIPAIS TIPOS DE MACHINE LEARNING

Aprendizado Supervisionado

Aprendizado Não-Supervisionado

Aprendizado por Reforço

APRENDIZADO SUPERVISIONADO

Os dados possuem rótulo e o principal objetivo é prever ou classificar novas observações.

Exemplo: Classificar um e-mail em spam ou não. O algoritmo é treinado com vários exemplos de e-mails junto com as classes (spam ou não) com o objetivo de classificar novos e-mails.

APRENDIZADO NÃO-SUPERVISIONADO

Os dados não são rotulados e o principal objetivo é identificar padrões nos dados.

Exemplo: Agrupar clientes semelhantes. Em nenhum momento você diz ao algoritmo qual grupo o cliente pertence, o algoritmo terá que encontrar essa conexão sozinho.

APRENDIZADO POR REFORÇO

O sistema de aprendizado aprende sozinho interagindo com o ambiente. Aprende por tentativa e erro.

Exemplo: Os "blocos" ao lado estão jogando a partir de uma analise de milhões de jogos e praticando contra si mesmo.

Fonte: Medium

NÃO SUPERVISIONADA X SUPERVISIONADA

No aprendizado não-supervisionado não há variáveis de saída, apenas variáveis de entrada. O objetivo é descrever associações e padrões referentes a este conjunto.

No aprendizado supervisionado, o objetivo é prever o valor de uma ou mais variáveis de saída (variáveis respostas), baseando-se em uma quantidade de variáveis de entrada (covariáveis).

POMBOS COMO ESPECIALISTAS EM ARTE

Experimento:

- Pombos em uma caixa de Skinner
- São apresentadas pinturas de dois diferentes artistas (e.g. Chagall / Van Gogh)
- Pombos recebem uma recompensa quando apresentados a um particular artista (p. e. Van Gogh)

(Watanabe et al. 1995)

Fonte: HypeScience

VAN GOGH

MARC CHAGALL

Fonte: HypeScience

Pombos foram capazes de discriminar entre Van Gogh e Chagall com acurácia de 95% (quando foram apresentados a pinturas com as quais haviam sido treinados)

Para pinturas dos mesmos artistas que ainda não haviam sido vistas pelos pombos a discriminação ficou em 85%

Fonte: HypeScience

Pombos não memorizam simplesmente as pinturas.

Eles podem extrair e reconhecer padrões.

Eles generalizam a partir do que já viram para fazer predições.

APRENDIZADO SUPERVISIONADO

REGRESSÃO X CLASSIFICAÇÃO

O objetivo é estimar uma variável resposta de valor real, $Y \in \mathbb{R}$, dado um padrão $x \in X$.

O objetivo é estimar uma variável resposta de categórica, isto é, $Y \in \{1, 2, 3, ..., k\}$, dado um padrão $x \in X$.

EXEMPLO REGRESSÃO

EM OUTRAS PALAVRAS

APRENDIZADO SUPERVISIONADO

UM MODELO PARA AJUSTAR UMA MÉTRICA PARA OTIMIZAR UM MÉTODO PARA VALIDAR

RANDOM FOREST

ERRO QUADRÁTICO MÉDIO

VALIDAÇÃO HOLDOUT

TREINO

TESTE

VALIDAÇÃO CRUZADA K-FOLD

Score Final – Média dos Scores Individuais

HANDS-ON!