PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Câu 1: Cho hàm số y = f(x) liên tục và có bảng biến thiên trên đoạn [-1;3] như hình vẽ bên. Khẳng định nào sau đây *đúng*?

A.
$$\max_{[-1,3]} f(x) = f(0)$$
. **B.** $\max_{[-1,3]} f(x) = f(3)$. **C.** $\max_{[-1,3]} f(x) = f(2)$. **D.** $\max_{[-1,3]} f(x) = f(-1)$.

Lời giải

Chọn A.

Từ bảng biến thiên ta có: $\max_{[-1;3]} f(x) = f(0) = 5$

Câu 2: Cho hàm số y = f(x) có đồ thị như hình bên.

Tìm giá trị lớn nhất của hàm số y = f(x) trên đoạn [-1;2].

A. 1.

B. 2.

C. 5.

D. 0.

Lời giải

Chon C.

Từ đồ thị ta có: $\max_{[-1;2]} f(x) = f(2) = 5$

Câu 3: Cho hàm số y = f(x) xác định, liên tục trên \mathbb{R} và có đồ thị như hình vẽ.

Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số g(x) = f(x) + 2024cho trên đoạn [-2;2]. Giá trị M-m bằng:

A.
$$M - m = 0$$

B.
$$M - m = -2024$$

C.
$$M - m = 4048$$
 D. $M - m = 3$

D.
$$M - m = 3$$

Lời giải

Chon D.

Từ đồ thị ta có:

$$\begin{cases} \min_{[-2;2]} f(x) = f(-1) = -1,5 \\ \max_{[-2;2]} f(x) = f(1) = 1,5 \end{cases} \Rightarrow \begin{cases} m = \min_{[-2;2]} g(x) = f(-1) = -1,5 + 2024 \\ M = \max_{[-2;2]} g(x) = f(1) = 1,5 + 2024 \end{cases} \Rightarrow M - m = 3$$

Cho hàm số f(x) liên tục trên đoạn [-2;3] có đồ thị như hình vẽ dưới đây. Câu 4:

Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số trên đoạn [-2;3]. Giá trị của 2m-3M bằng:

A. −13.

B. −18.

C. −16.

D. −15.

Lời giải

Chon

Từ đồ thị ta có:
$$\begin{cases} m = \min_{[-2;3]} f(x) = f(-2) = -3 \\ M = \max_{[-2;3]} f(x) = f(-1) = 4 \end{cases} \Rightarrow 2m - 3M = -18$$

Cho hàm số y = f(x) liên tục trên đoạn [-1;3] và có đồ thị như hình vẽ bên. Câu 5:

Gọi M,m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn [-1;3]. Giá trị của M+m là

A. 2.

B. −6.

C. −5.

D. −2.

Lời giải

Chon D.

Từ đồ thị ta có:
$$\begin{cases} m = \min_{[-1;3]} f(x) = f(-2) = -4 \\ M = \max_{[-1;3]} f(x) = f(-1) = 2 \end{cases} \Rightarrow M + m = -2$$

Câu 6: Cho hàm số f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ sau:

Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số f(x) trên $\left[-1;\frac{3}{2}\right]$. Giá trị của M+m bằng

A. $\frac{1}{2}$.

B. 5.

C. 4.

D. 3.

Lời giải

Chọn D.

Từ đồ thị ta có:
$$\begin{cases} m = \min_{\left[-1; \frac{3}{2}\right]} f(x) = -1 \\ M = \max_{\left[-1; \frac{3}{2}\right]} f(x) = f\left(\frac{3}{2}\right) = 4 \end{cases} \Rightarrow M + m = 3$$

Câu 7: Cho hàm số f(x) liên tục trên đoạn [0;3] và có đồ thị như hình vẽ bên. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên [0;3]. Giá trị của M+m bằng?

A. 5.

B. 3.

C. 2.

D. 1.

Lời giải

Chọn D.

Từ đồ thị ta có:
$$\begin{cases} m = \min_{[0;3]} f(x) = f(2) = -2 \\ M = \max_{[0;3]} f(x) = f(3) = 3 \end{cases} \Rightarrow M + m = 1$$

PHẦN II. Câu trắc nghiệm đúng sai. Trong mỗi ý A), B), C), D) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Câu 8: Hàm số y = f(x) xác định và liên tục trên đoạn [-4;2] và có bảng biến thiên như hình vẽ.

m=1	$-4 y = \frac{x + m^2}{x - 1} [-1;0]$	2
$-m^2$	$+ \frac{1-m^2}{2} \qquad m^2 \qquad y = \frac{2mx+1}{m-x} +$	
[2;3]		6

- A. Hàm số có giá trị lớn nhất 27.
- B. Hàm số có giá trị nhỏ nhất bằng −5.

- C. Hàm số đồng biến trên các khoảng (-4;2).
- D. Hàm số có điểm cực tiểu (1;-5).

Lời giải

- A. Hàm số có giá tri lớn nhất 27. ĐÚNG
- B. Hàm số có giá trị nhỏ nhất bằng -5. ĐÚNG
- C. Hàm số đồng biến trên các khoảng (-4;2). SAI
- D. Hàm số có điểm cực tiểu (1;-5). ĐÚNG

Câu 9: Cho hàm số y = f(x) xác định, liên tục trên \mathbb{R} và có bảng biến thiên:

- A. Hàm số có giá trị cực tiểu bằng 1.
- **B.** Hàm số có giá trị lớn nhất bằng 0 và giá trị nhỏ nhất bằng −1.
- C. Hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = 1.
- D. Hàm số có đúng hai cực trị.

Lời giải

- A. Hàm số có giá trị cực tiểu bằng 1. SAI
- B. Hàm số có giá trị lớn nhất bằng 0 và giá trị nhỏ nhất bằng -1. SAI
- **C.** Hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x = 1. **ĐÚNG**
- D. Hàm số có đúng hai cực trị. ĐÚNG

Câu 10: Cho hàm số y = f(x) có bảng xét dấu đạo hàm như sau:

- **A.** $\max_{(-1;1]} f(x) = f(0)$. **B.** $\max_{(0;+\infty)} f(x) = f(1)$. **C.** $\min_{(-\infty;-1)} f(x) = f(-1)$. **D.** $\min_{(-1;+\infty)} f(x) = f(0)$.

Lời giải

A.
$$\max_{(-1;1]} f(x) = f(0)$$
. **SAI**

B.
$$\max_{(0;+\infty)} f(x) = f(1)$$
. **SAI**

C.
$$\min_{(-\infty;-1)} f(x) = f(-1)$$
. SAI

D.
$$\min_{(-1;+\infty)} f(x) = f(0)$$
. **ĐÚNG**

Câu 11: Hàm số $y = \frac{1}{x^2 + 1}$ có bảng biến thiên như hình vẽ.

Xét trên tập xác định của hàm số.

- A. Hàm số có giá trị lớn nhất bằng 1 và giá trị nhỏ nhất bằng 0.
- B. Hàm số có giá trị lớn nhất bằng 0.
- C. Không tồn tại giá trị lớn nhất và giá trị nhỏ nhất của hàm số.
- D. Hàm số có một điểm cực trị.

Lời giải

- A. Hàm số có giá trị lớn nhất bằng 1 và giá trị nhỏ nhất bằng 0. ĐÚNG
- B. Hàm số có giá trị lớn nhất bằng 0. SAI
- C. Không tồn tại giá trị lớn nhất và giá trị nhỏ nhất của hàm số. SAI
- D. Hàm số có một điểm cực trị. ĐÚNG

DẠNG 2 TÌM GTLN VÀ GTNN CỦA HÀM SỐ TRÊN ĐOẠN $\left[a;b\right]$

Phương pháp:

- $Bu\acute{o}c$ 1: Tìm các điểm $x_1, x_1, ..., x_n$ thuộc khoảng (a;b) mà tại đó hàm số có đạo hàm bằng hoặc không tồn tại.
- **Buốc 2:** Tính $f(x_1), f(x_2), ..., f(x_n), f(a), f(b)$.
- Bước 3: So sánh các giá trị vừa tính được ở bước 2 và kết luận
- + Số lớn nhất trong các giá trị đó là giá trị lớn nhất của hàm số f(x) trên đoạn [a;b].
- + Số nhỏ nhất trong các giá trị đó là giá trị nhỏ nhất của hàm số f(x) trên đoạn [a;b].

$$\begin{cases}
\max f(x) = \max \{f(a), f(b), f(x_1), f(x_2), ..., f(x_n)\} \\
[a,b]
\end{cases}$$

$$\min f(x) = \min \{f(a), f(b), f(x_1), f(x_2), ..., f(x_n)\} \\
[a,b]$$

Nhận xét:

• Nếu hàm số y = f(x) đồng biến trên [a;b] thì: $\begin{cases} \max f(x) = f(b) \\ [a,b] \end{cases}$ $\min f(x) = f(a)$

• Nếu hàm số y = f(x) nghịch biến trên [a;b] thì: $\begin{cases} \max f(x) = f(a) \\ [a,b] \\ \min f(x) = f(b) \end{cases}$

Chú ý: Có thể dùng bảng biến thiên để tìm max – min của hàm số trên **một đoạn** [a;b].

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Câu 12: Giá trị lớn nhất của hàm số $f(x) = x^3 - 3x^2 - 9x + 10$ trên đoạn [-2;2] bằng

A. -12.

B. 10.

C. 15.

 D_{*} -2

Lời giải

Chon C.

Xét hàm số $f(x) = x^3 - 3x^2 - 9x + 10$ trên đoạn [-2;2], ta có:

$$f'(x) = 3x^2 - 6x - 9$$
.

$$f'(x) = 0 \Leftrightarrow 3x^2 - 6x - 9 = 0 \Leftrightarrow \begin{bmatrix} x = -1 \in [-2; 2] \\ x = 3 \notin [-2; 2] \end{bmatrix}$$

$$f(-2)=8$$
; $f(-1)=15$; $f(2)=-12$.

Suy ra $\max_{[-2;2]} f(x) = f(-1) = 15$.

Câu 13: Trên đoạn [1;5], hàm số $y = x + \frac{4}{x}$ đạt giá trị nhỏ nhất tại điểm

A. x = 5.

B. x = 2.

C. x = 1.

D. x = 4.

Lời giải

Chon B.

Cách 1: Ta có $x \in [1;5]$, áp dụng bất đẳng thức Cô-si, ta có

 $x + \frac{4}{x} \ge 2\sqrt{x \cdot \frac{4}{x}} = 4$ suy ra hàm số $y = x + \frac{4}{x}$ đạt giá trị nhỏ nhất là 4 khi $x = \frac{4}{x} \Rightarrow x = 2$.

Cách 2: Ta có $y' = 1 - \frac{4}{x^2} \Rightarrow y' = 0 \Leftrightarrow x^2 = 4 \Rightarrow x = 2 \text{ (vì } x \in [1;5]).$

Khi đó y(1)=5, y(2)=4 và $y(5)=\frac{29}{5}$.

Do đó $\min_{[1:5]} y = 4 \text{ tại } x = 2.$

Cách 3: Dùng Casio

Câu 14: Trên đoạn [0;3], hàm số CC'//BB'. đạt giá trị nhỏ nhất tại điểm

A. x = 1.

B. x = 0.

C. x = 3.

D. x = 2.

Lời giải

Chọn A.

Ta có $y' = 3x^2 - 3$

$$y' = 0 \Leftrightarrow \begin{bmatrix} x = 1 \in [0;3] \\ x = -1 \notin [0;3] \end{bmatrix}$$

Lai có y(0) = 4; y(1) = 2; y(3) = 22.

Vậy $\min_{0.31} y = y(1) = 2$.

Câu 15: Giá trị nhỏ nhất của hàm số $y = x^3 - 3x + 5$ trên đoạn [0,2] là:

A.
$$\min_{[2; 4]} y = 0$$
.

B.
$$\min_{[2:4]} y = 3$$

B.
$$\min_{[2; 4]} y = 3$$
. **C.** $\min_{[2; 4]} y = 5$. **D.** $\min_{[2; 4]} y = 7$.

D.
$$\min_{[2:4]} y = 7$$

Lời giải

В. Chon

Hàm số f(x) liên tục trên [0;2]

Ta có
$$y' = 3x^2 - 3 = 3(x^2 - 1); y' = 0 \Leftrightarrow \begin{bmatrix} x = 1 & \in (0; 2) \\ x = -1 \notin (0; 2) \end{bmatrix}$$

 $y(1) = 3; y(0) = 5; y(2) = 7$. Do đó $\min_{[0,2]} y = y(1) = 3$

Câu 16: Giá trị lớn nhất của hàm số $f(x) = x^3 - 8x^2 + 16x - 9$ trên đoạn [1;3] là:

A.
$$\max_{[1:3]} f(x) = 0.$$

A.
$$\max_{[1; 3]} f(x) = 0$$
. **B.** $\max_{[1; 3]} f(x) = \frac{13}{27}$. **C.** $\max_{[1; 3]} f(x) = -6$. **D.** $\max_{[1; 3]} f(x) = 5$.

C.
$$\max_{[1;3]} f(x) = -6$$
.

D.
$$\max_{[1;3]} f(x) = 5$$
.

Lời giải

Chon В.

Hàm số f(x) liên tục trên [1;3]

Ta có
$$f'(x) = 3x^2 - 16x + 16$$
; $f'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 4 & \notin (1;3) \\ x = \frac{4}{3} & \in (1;3) \end{bmatrix}$

$$f(1) = 0; f\left(\frac{4}{3}\right) = \frac{13}{27}; f(3) = -6.$$

Do đó
$$\max_{x \in [1;3]} f(x) = f\left(\frac{4}{3}\right) = \frac{13}{27}$$

Câu 17: Hàm số $y = \frac{1}{r} + \frac{1}{r+1} + \frac{1}{r+2}$ đạt giá trị lớn nhất trên đoạn [-5; -3] bằng:

A.
$$-\frac{13}{12}$$
.

B.
$$\frac{11}{6}$$
.

C.
$$-\frac{47}{60}$$
. D. $-\frac{11}{6}$.

D.
$$-\frac{11}{6}$$
.

Lời giải

Chon

TXĐ:
$$D = \mathbb{R} \setminus \{-2; -1; 0\}$$

Ta có:
$$y' = -\frac{1}{x^2} - \frac{1}{(x+1)^2} - \frac{1}{(x+2)^2} < 0; \forall x \in D$$

BBT:

Từ BBT ta thấy, hàm số có giá trị lớn nhất bằng $-\frac{47}{60}$.

Câu 18: Giá trị nhỏ nhất của hàm số $y = \frac{x-1}{x+1}$ trên đoạn [0;3] là:

A.
$$\min_{[0:3]} y = -3$$
.

B.
$$\min_{[0:3]} y = \frac{1}{2}$$

A.
$$\min_{[0; 3]} y = -3$$
. **B.** $\min_{[0; 3]} y = \frac{1}{2}$. **C.** $\min_{[0; 3]} y = -1$. **D.** $\min_{[0; 3]} y = 1$.

D.
$$\min_{[0;3]} y = 1$$
.

Lời giải

Chon C.

Hàm số đã cho liên tục trên [0;3]

Ta có
$$y' = \frac{2}{(x+1)^2} > 0$$
 với $\forall x \in [0;3]$. $y(0) = -1$; $y(3) = \frac{1}{2}$. Do đó $\min_{x \in [0;3]} y = y(0) = -1$

Câu 19: Giá trị lớn nhất, nhỏ nhất của hàm số $y = \frac{2x^2 + 3x + 3}{x + 1}$ trên đoạn [0;2] lần lượt là:

A.
$$\frac{17}{3}$$
; 3

B.
$$\frac{17}{3}$$
; -5.

Lời giải

Hàm số xác định, liên tục trên đoạn [0;2]

Ta có
$$y' = \frac{2x^2 + 4x}{(x+1)^2}$$
; $y' = 0 \Leftrightarrow 2x^2 + 4x = 0 \Leftrightarrow \begin{bmatrix} x = 0 & \neq (0;2) \\ x = -2 \neq (0;2) \end{bmatrix}$

$$\Rightarrow y(0) = 3; \ y(2) = \frac{17}{3}.$$

Vậy
$$\max_{x \in [0,2]} y = y(2) = \frac{17}{3}; \min_{x \in [0,2]} y = y(0) = 3$$

Gọi M là giá trị lớn nhất và m là giá trị nhỏ nhất của hàm số $y = x\sqrt{1-x^2}$. Khi đó M+mbằng

A. 2.

B. 1.

C. 0.

D. −1.

Lời giải

TXĐ: $D = \begin{bmatrix} -1;1 \end{bmatrix}$. Nhận xét: Hàm số f(x) liên tục trên đoạn $\begin{bmatrix} -1;1 \end{bmatrix}$

$$y' = \frac{1 - 2x^2}{\sqrt{1 - x^2}}$$
; với $-1 < x < 1$. $y' = 0 \Leftrightarrow 1 - 2x^2 = 0 \Leftrightarrow x = \pm \frac{\sqrt{2}}{2}$

$$y(\pm 1) = 0; y\left(\frac{-\sqrt{2}}{2}\right) = -\frac{1}{2}; y\left(\frac{\sqrt{2}}{2}\right) = \frac{1}{2}$$
Do đó $M = \max_{[-1:1]} y = y\left(\frac{\sqrt{2}}{2}\right) = \frac{1}{2}; m = \min_{[-1:1]} y = y\left(\frac{-\sqrt{2}}{2}\right) = -\frac{1}{2} \Rightarrow M + m = 0$

Câu 21: Hàm số $y = \sqrt{1+x} + \sqrt{1-x}$ có giá trị lớn nhất, giá trị nhỏ nhất lần lượt là:

A. $\sqrt{2}$: 1.

B. 1; 0.

C. 2: $\sqrt{2}$.

D. 2; 1.

Lời giải

Chon C.

TXĐ: D = [-1;1].

Ta có: $y' = \frac{1}{2\sqrt{1+r}} - \frac{1}{2\sqrt{1-r}}$

 $y' = 0 \Leftrightarrow \frac{1}{2\sqrt{1+x}} - \frac{1}{2\sqrt{1-x}} = 0 \Leftrightarrow \sqrt{1-x} = \sqrt{1+x} \Leftrightarrow x = 0$

Khi đó: $y(-1) = \sqrt{2}$; y(0) = 2; $y(1) = \sqrt{2}$

 \Rightarrow Hàm số có giá trị lớn nhất bằng 2, giá trị nhỏ nhất bằng $\sqrt{2}$

Hàm số $y = \cos 2x - 3$ đạt giá trị nhỏ nhất trên đoạn $[0; \pi]$ bằng:

A. -4.

B. −3.

D. 0.

Lời giải

Chon

TXĐ: $D = \mathbb{R}$. Ta có: $y' = -2\sin 2x$; $y' = 0 \Leftrightarrow \sin 2x = 0 \Leftrightarrow x = \frac{k\pi}{2}$; $(k \in \mathbb{Z})$

Vì $x \in [0; \pi] \Rightarrow x \in \{0; \frac{\pi}{2}; \pi\}$. Do đó: y(0) = -2; $y(\frac{\pi}{2}) = -4 \Rightarrow \min y = -4$

Câu 23: Giá trị nhỏ nhất của hàm số $y = 5\cos x - \cos 5x$ với $x \in \left| -\frac{\pi}{4}; \frac{\pi}{4} \right|$ là:

A. $\min_{\left[\frac{-\pi}{4};\frac{\pi}{4}\right]}y=4$. **B.** $\min_{\left[\frac{-\pi}{4};\frac{\pi}{4}\right]}y=3\sqrt{2}$. **C.** $\min_{\left[\frac{-\pi}{4};\frac{\pi}{4}\right]}y=3\sqrt{3}$. **D.** $\min_{\left[\frac{-\pi}{4};\frac{\pi}{4}\right]}y=-1$.

Lời giải

Chon A.

Ta có $y = 5\cos x - \cos 5x$ nên $y' = -5\sin x + 5\sin 5x$

$$y' = 0 \Leftrightarrow \sin 5x = \sin x \Leftrightarrow \begin{bmatrix} 5x = x + k2\pi \\ 5x = \pi - x + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{k\pi}{2} \\ x = \frac{\pi}{6} + \frac{k\pi}{3} \end{bmatrix}$$

Trên
$$\left[\frac{-\pi}{4}; \frac{\pi}{4}\right]$$
, $y' = 0 \Leftrightarrow x \in \left\{0; -\frac{\pi}{6}; \frac{\pi}{6}\right\}$

$$y(0) = 4$$
; $y\left(-\frac{\pi}{6}\right) = y\left(\frac{\pi}{6}\right) = 3\sqrt{3}$; $y\left(-\frac{\pi}{4}\right) = y\left(\frac{\pi}{4}\right) = 3\sqrt{2}$.

Vậy
$$\min_{x \in \left[-\frac{\pi}{4}; \frac{\pi}{4}\right]} y = 4 = y(0)$$

Câu 24: Hàm số $y = \cos^2 x - 2\cos x - 1$ có giá trị nhỏ nhất và giá trị lớn nhất trên đoạn $[0; \pi]$ lần lượt bằng $y_1; y_2$. Khi đó tích $y_1.y_2$ có giá trị bằng:

A.
$$\frac{3}{4}$$
.

C.
$$\frac{3}{8}$$
.

Lời giải

Chon B.

TXĐ: $D = \mathbb{R}$. Ta có: $y' = -2\sin x \cos x + 2\sin x = -2\sin x (\cos x - 1)$

$$y' = 0 \Leftrightarrow -2\sin x (\cos x - 1) = 0 \Leftrightarrow \begin{bmatrix} \sin x = 0 \\ \cos x = 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = k\pi \\ x = k2\pi \end{bmatrix} (k \in \mathbb{Z})$$

Vì $x \in [0; \pi] \Rightarrow x = 0$ hoặc $x = \pi$.

Khi đó:
$$y(0) = -2$$
; $y(\pi) = 2 \Rightarrow \begin{cases} y_1 = -2 \\ y_2 = 2 \end{cases} \Rightarrow y_1 \cdot y_2 = -4$.

Câu 25: Hàm số $y = \cos 2x - 4\sin x + 4$ có giá trị lớn nhất, giá trị nhỏ nhất trên đoạn $\left| 0; \frac{\pi}{2} \right|$ là:

A.
$$\frac{\pi}{2}$$
; 0.

Lời giải

Chọn C.

TXĐ: $D = \mathbb{R}$. Ta có: $y' = -2\sin 2x - 4\cos x = -4\cos x(\sin x + 1)$

$$y' = 0 \Leftrightarrow \begin{bmatrix} \cos x = 0 \\ \sin x = -1 \end{bmatrix} \Rightarrow \begin{bmatrix} x = \frac{\pi}{2} + k\pi \\ x = -\frac{\pi}{2} + k2\pi \end{bmatrix}$$

Vì
$$x \in \left[0; \frac{\pi}{2}\right] \Rightarrow x = \frac{\pi}{2}$$
. Khi đó $y(0) = 5; y(\frac{\pi}{2}) = -1$.

Câu 26: Hàm số $f(x) = \frac{1}{\sin x}$ trên đoạn $\left[\frac{\pi}{3}; \frac{5\pi}{6}\right]$ có giá trị lớn nhất là M, giá trị nhỏ nhất là m. Khi đó M-m bằng

A.
$$2-\frac{2}{\sqrt{3}}$$
.

B. 1.

C.
$$\frac{2}{\sqrt{3}}$$
 -1.

D. – 1.

Lời giải

Chọn B.

$$f'(x) = -\frac{\cos x}{\sin^2 x},$$

$$f'(x) = 0 \Leftrightarrow x = \frac{\pi}{2} \left(x \in \left[\frac{\pi}{3}; \frac{5\pi}{6} \right] \right)$$

$$f\left(\frac{\pi}{2}\right) = 1, \ f\left(\frac{\pi}{3}\right) = \frac{2}{\sqrt{3}}, \ f\left(\frac{5\pi}{6}\right) = 2.$$

$$\text{Vậy } \max_{\left[\frac{\pi}{3}, \frac{5\pi}{6}\right]} f(x) = 2, \min_{\left[\frac{\pi}{3}, \frac{5\pi}{6}\right]} f(x) = 1.$$

Câu 27: Hàm số $y = \sqrt{1 + 2\sin x \cdot \cos x}$ đạt giá trị nhỏ nhất trên đoạn $\left| 0; \frac{\pi}{2} \right|$ tại điểm có hoành độ là:

A.
$$x = \frac{\pi}{4}$$
.

B.
$$x = \frac{\pi}{6}$$
.

B.
$$x = \frac{\pi}{6}$$
. **C.** $x = 0$ và $x = \frac{\pi}{2}$. **D.** $x = \frac{\pi}{3}$.

D.
$$x = \frac{\pi}{3}$$
.

Lời giải

Chon

TXĐ: $D = \mathbb{R}$.

Ta có:
$$y = \sqrt{1 + 2\sin x \cdot \cos x} = \sqrt{1 + \sin 2x}$$
; $y' = \frac{\cos 2x}{\sqrt{1 + \sin 2x}}$

$$y' = 0 \Leftrightarrow \frac{\cos 2x}{\sqrt{1 + \sin 2x}} = 0 \Leftrightarrow \cos 2x = 0 \Leftrightarrow x = \frac{\pi}{4} + \frac{k\pi}{2}, \text{ vù } x \in \left[0; \frac{\pi}{2}\right] \Rightarrow x = \frac{\pi}{4}$$

Khi đó:
$$y(0)=1$$
; $y\left(\frac{\pi}{4}\right)=\sqrt{2}$; $y\left(\frac{\pi}{2}\right)=1$.

Hàm số $y = \sin x + \cos x$ có giá trị nhỏ nhất, giá trị lớn nhất lần lượt là:

A. -2; 2.

B. $-\sqrt{2}$: $\sqrt{2}$.

C. 0; 1.

D. −1; 1.

Lời giải

TXĐ:
$$D = \mathbb{R}$$
. Ta có: $y = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right)$

Vì
$$-1 \le \sin\left(x + \frac{\pi}{4}\right) \le 1 \Leftrightarrow -\sqrt{2} \le \sin\left(x + \frac{\pi}{4}\right) \le \sqrt{2} \implies \min y = -\sqrt{2}; \max y = \sqrt{2}$$

Câu 29: Hàm số $y = \sin^4 x + \cos^4 x$ có giá trị nhỏ nhất, giá trị lớn nhất lần lượt là:

A. −2; 1.

B. 0; 2.

C. $\frac{1}{2}$; 1.

D. 0; 1.

Lời giải

Chọn C.

TXĐ: $D = \mathbb{R}$.

Ta có: $y = \sin^4 x + \cos^4 x = 1 - 2\sin^2 x \cos^2 x = 1 - \frac{1}{2}\sin^2 2x$.

Mà $0 \le \sin^2 2x \le 1 \Leftrightarrow \frac{1}{2} \le 1 - \frac{1}{2} \sin^2 2x \le 1 \Rightarrow \min y = \frac{1}{2}, \max y = 1.$

Câu 30: Giá trị nhỏ nhất của hàm số $y = \frac{\ln x}{x}$ trên đoạn [2;3] bằng

A.
$$\frac{\ln 2}{2}$$
.

B.
$$\frac{\ln 3}{3}$$
.

C.
$$\frac{3}{e^2}$$
.

D.
$$\frac{1}{e}$$
.

Lời giải

Chon A

Xét $y = f(x) = \frac{\ln x}{x}$. Hàm số y = f(x) liên tục trên đoạn [2;3]

$$y' = \frac{1 - \ln x}{x^2}$$
; $y' = 0 \Leftrightarrow \frac{1 - \ln x}{x^2} = 0 \Leftrightarrow x = e \in [2;3]$

Có
$$f(2) = \frac{\ln 2}{2} \approx 0.3466$$
; $f(e) = \frac{1}{e} \approx 0.3679$; $f(3) = \frac{\ln 3}{3} \approx 0.366$,

Suy ra
$$\min_{x \in [2;3]} f(x) = \frac{\ln 2}{2}$$
.

Vậy giá trị nhỏ nhất của hàm số $y = \frac{\ln x}{x}$ trên đoạn [2;3] bằng $\frac{\ln 2}{2}$.

Câu 31: Giá trị nhỏ nhất của hàm số $f(x) = (x^2 - 2)e^{2x}$ trên đoạn [-1;2] bằng:

A.
$$2e^4$$

$$\mathbf{B}$$
, $-e^2$

C.
$$2e^2$$

D.
$$-2e^2$$

Lời giải

Chọn B

Ta có: $f'(x) = 2(x^2 - 2)e^{2x} + 2xe^{2x} = 2(x^2 + x - 2)e^{2x}$

$$f'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 1 \in [-1; 2] \\ x = -2 \notin [-1; 2] \end{bmatrix}$$

Và
$$f(-1) = -e^{-2}$$
; $f(2) = 2e^{4}$; $f(1) = -e^{2}$

Giá trị nhỏ nhất của hàm số $f(x) = (x^2 - 2)e^{2x}$ trên đoạn [-1;2] bằng $-e^2$ tại x = 1.

PHẦN II. Câu trắc nghiệm đúng sai. Trong mỗi ý A), B), C), D) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Câu 32: Cho hàm số $y = \sqrt{5-4x}$ trên đoạn [-1;1].

- **A.** Giá trị lớn nhất và giá trị nhỏ nhất của hàm số là $\max_{[-1;1]} y = \sqrt{5}$ và $\min_{[-1;1]} y = 0$.
- **B.** Giá trị lớn nhất và giá trị nhỏ nhất của hàm số là $\max_{[-1;1]} y = 1$ và $\min_{[-1;1]} y = -3$.
- C. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số là $\max_{[-1;1]} y = 3$ và $\min_{[-1;1]} y = 1$.
- **D.** Giá trị lớn nhất và giá trị nhỏ nhất của hàm số là $\max_{[-1;1]} y = 0$ và $\min_{[-1;1]} y = -\sqrt{5}$.

Lời giải

- **A.** Giá trị lớn nhất và giá trị nhỏ nhất của hàm số là $\max_{[-1;1]} y = \sqrt{5}$ và $\min_{[-1;1]} y = 0$. **SAI**
- **B.** Giá trị lớn nhất và giá trị nhỏ nhất của hàm số là $\max_{[-1:1]} y = 1$ và $\min_{[-1:1]} y = -3$. **SAI**
- **C.** Giá trị lớn nhất và giá trị nhỏ nhất của hàm số là $\max_{[-1;1]} y = 3$ và $\min_{[-1;1]} y = 1$. **ĐÚNG**
- **D.** Giá trị lớn nhất và giá trị nhỏ nhất của hàm số là $\max_{[-1,1]} y = 0$ và $\min_{[-1,1]} y = -\sqrt{5}$. **SAI**

Điều kiện xác định: $5-4x \ge 0 \Leftrightarrow x \le \frac{5}{4}$.

Suy ra hàm số xác định với $\forall x \in [-1;1]$

Hàm số f(x) liên tục trên đoạn [-1;1]

Ta có
$$y' = \frac{-2}{\sqrt{5-4x}} < 0, \forall x \in [-1;1].$$

Do đó
$$\max_{[-1;1]} y = y(-1) = 3; \min_{[-1;1]} y = y(1) = 1$$

Câu 33: Cho hàm số $y = x + \frac{9}{x}$ trên đoạn [2;4].

- **A.** Giá trị nhỏ nhất của hàm số là $\min_{[2,4]} y = 6$.
- **B.** Giá trị lớn nhất của hàm số là $\max_{[2;4]} y = \frac{13}{2}$
- C. Giá trị nhỏ nhất của hàm số là $\min_{[2:4]} y = -6$.
- **D.** Giá trị nhỏ nhất của hàm số là $\min_{[2;4]} y = \frac{25}{4}$.

Lời giải

- **A.** Giá trị nhỏ nhất của hàm số là $\min_{[2;4]} y = 6$. **ĐÚNG**
- **B.** Giá trị lớn nhất của hàm số là $\max_{[2;4]} y = \frac{13}{2}$ ĐÚNG
- **C.** Giá trị nhỏ nhất của hàm số là $\min_{[2;4]} y = -6$. **SAI**
- **D.** Giá trị nhỏ nhất của hàm số là $\min_{[2;4]} y = \frac{25}{4}$. **SAI**

Hàm số đã cho liên tục trên [2;4]

Ta có
$$y' = 1 - \frac{9}{x^2} = \frac{x^2 - 9}{x^2}; \ y' = 0 \Leftrightarrow \begin{bmatrix} x = -3 & \notin (2; 4) \\ x = 3 & \in (2; 4) \end{bmatrix}$$

Ta có
$$y(2) = \frac{13}{2}$$
; $y(3) = 6$; $y(4) = \frac{25}{4}$. Do đó $\min_{x \in [2;4]} y = y(3) = 6$

DANG 3

TÌM GTLN VÀ GTNN CỦA HÀM SỐ TRÊN KHOẢNG (a;b)NỬA KHOẢNG (a;b]; [a;b).

Phương pháp: Dùng bảng biến thiên để tìm max – min. Phương pháp này thường dùng cho bài toán tìm GTLN và GTNN trên **một khoảng** (a;b) **hoặc nửa khoảng** [a;b), (a;b]

- **Bước 1:** Tính f'(x) f'(x).
- **Bước 2:** Xét dấu f'(x) và lập bảng biến thiên.
- Bước 3: Dựa vào bảng biến thiên để kết luận.

Câu 34: Hàm số $y = (x-1)^2 + (x+3)^2$ có giá trị nhỏ nhất bằng:

A. 3.

B. -1.

C. 10.

D. 8.

Lời giải

D. Chon

TXĐ: $D = \mathbb{R}$. Ta có: $y = (x-1)^2 + (x+3)^2 = 2x^2 + 4x + 10$.

Ta có: y' = 4x + 4; $y' = 0 \Leftrightarrow x = -1$

Bảng biến thiên:

Từ BBT ta thấy hàm số có giá trị nhỏ nhất bằng 8.

Câu 35: Giá trị nhỏ nhất của hàm số $f(x) = \frac{x^2 - x + 1}{x - 1}$ trên khoảng $(1; +\infty)$ là:

A.
$$\min_{(1;+\infty)} y = -1$$

B.
$$\min_{(1:+\infty)} y = 3$$
.

C.
$$\min_{(1;+\infty)} y = 5$$
.

A.
$$\min_{(1;+\infty)} y = -1$$
. **B.** $\min_{(1;+\infty)} y = 3$. **C.** $\min_{(1;+\infty)} y = 5$. **D.** $\min_{(2;+\infty)} y = \frac{-7}{3}$.

Lời giải

Chon В.

Cách 1: Làm tự luận

Hàm số xác định với $\forall x \in (1; +\infty)$

Nhận xét: Hàm số f(x) liên tục trên $(1;+\infty)$

Ta có
$$f(x) = x + \frac{1}{x-1}$$

$$f'(x) = 1 - \frac{1}{(x-1)^2} = \frac{x^2 - 2x}{(x-1)^2}$$

$$f'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 2 \end{bmatrix}$$

$$\lim_{x \to +\infty} f(x) = +\infty; \lim_{x \to 1^+} f(x) = +\infty$$

Bảng biến thiên

Từ bảng biến thiên ta có: $\min_{x \in \{1,+\infty\}} f(x) = f(2) = 3$

Cách 2: Dùng Casio: Dùng chức năng | *SOLVE* |.

Bước 1: Nhập $\frac{x^2-x+1}{x-1}$ vào màn hình.

Bước 2: Sau đó nhấn dấu $\boxed{SHIFT} \boxed{ALPHA} \boxed{CALC}$ rồi nhập $-\frac{7}{3}$ của **đáp án D**

Lúc này màn hình: $\frac{x^2 - x + 1}{x - 1} = -\frac{7}{3}$

Bước 3: Nhấn dấu SHIFT CALC. Máy hỏi X?

Bước 4: Ta nhập X = 2 với $2 \in (1; +\infty)$.

Bước 5: Nhấn dấu \equiv . kết quả $X = \frac{1}{2}$ và $\frac{1}{2} \notin (1; +\infty)$

⇒ loại D.

Ta tiếp tục làm tương tự với đáp án A:

Bước 1: nhấn dấu REPLAY ⊳ rồi nhập -1 của đáp án A

Lúc này màn hình: $\frac{x^2 - x + 1}{x + 1} = -1$

Bước 2: Nhấn dấu | SHIFT | CALC | . Máy hỏi X?

Bước 3: Ta nhập X = 2 với $2 \in (1; +\infty)$.

Bước 4: Nhấn dấu = . kết quả X = 0 và $0 \notin (1; +\infty)$

⇒ loại A.

Ta tiếp tục làm tương tự với đáp án B:

Bước 1: nhấn dấu | REPLAY ⊳ | rồi nhập 3 của đáp án B

Lúc này màn hình: $\frac{x^2-x+1}{x-1}=3$

Bước 2: Nhấn dấu |SHIFT| CALC . Máy hỏi X?

Bước 3: Ta nhập X = 2 với $2 \in (1; +\infty)$.

Bước 4: Nhấn dấu = . kết quả X = 2 và $2 \in (1; +\infty)$

 \Rightarrow Chọn đáp án B.

Câu 36: Giá trị nhỏ nhất của hàm số $y = 3 + \sqrt{x^2 - 2x + 5}$ bằng

$$\mathbf{A.} \ \min_{\mathbb{R}} \ y = 3.$$

B.
$$\min_{x \to 0} y = 5$$

B.
$$\min_{\mathbb{R}} y = 5$$
. **C.** $\min_{\mathbb{R}} y = 3 + \sqrt{5}$. **D.** $\min_{\mathbb{R}} y = 0$.

$$\mathbf{D.} \ \min_{\mathbf{m}} \ y = 0.$$

Chon **B**.

TXĐ: $D = \mathbb{R}$. Nhận xét: Hàm số f(x) liên tục trên \mathbb{R}

Ta có
$$y' = \frac{x-1}{\sqrt{x^2-2x+5}}$$
; $y' = 0 \Leftrightarrow x-1=0 \Leftrightarrow x=1$; $\lim_{x\to +\infty} y = +\infty$, $\lim_{x\to -\infty} y = +\infty$

Bảng biến thiên

Do đó $\min_{\mathbb{D}} y = y(1) = 5$

Câu 37: Giá trị nhỏ nhất của hàm số $y = \sqrt{x+1}$ là:

- A. không có giá trị nhỏ nhất.
- B. có giá trị nhỏ nhất bằng 1.
- C. có giá trị nhỏ nhất bằng –1.
- D. có giá trị nhỏ nhất bằng 0.

Lời giải

Chon D.

TXĐ:
$$D = [-1; +\infty)$$
.

Ta có:
$$y' = \frac{1}{2\sqrt{x+1}} > 0, \ \forall x \in (-1; +\infty)$$

Bảng biến thiên:

Từ BBT ta thấy: Hàm số có giá trị nhỏ nhất bằng 0 tại x = -1

Câu 38: Cho hàm số $y = x - \sqrt{x-1}$. Khẳng định nào sau đây đúng:

- **A.** Hàm số có giá trị nhỏ nhất bằng $\frac{3}{4}$ và không có giá trị lớn nhất.
- **B.** Hàm số có giá trị nhỏ nhất bằng $\frac{3}{4}$ và giá trị lớn nhất bằng 1.
- C. Hàm số không có giá trị lớn nhất và giá trị nhỏ nhất.
- **D.** Hàm số đạt giá trị lớn nhất tại điểm có hoành độ x=1 và giá trị lớn nhất bằng 1.

Lời giải

Chon B.

TXĐ:
$$D = [1; +\infty)$$
.

Ta có:
$$y' = 1 - \frac{1}{2\sqrt{x-1}} = \frac{2\sqrt{x-1}-1}{2\sqrt{x-1}}$$

$$y' = 0 \Leftrightarrow \frac{2\sqrt{x-1}-1}{2\sqrt{x-1}} = 0 \Leftrightarrow 2\sqrt{x-1} = 1 \Leftrightarrow x = \frac{5}{4}$$

BBT:

Từ BBT ta thấy: Hàm số có giá trị nhỏ nhất bằng $\frac{3}{4}$ và giá trị lớn nhất bằng 1

Câu 39: Giá trị lớn nhất của hàm số $y = \frac{x + \sqrt{1 + 9x^2}}{8x^2 + 1}$ trên khoảng $(0; +\infty)$ là:

A.
$$\frac{\sqrt{3}}{2}$$
.

B.
$$\frac{3\sqrt{2}}{2}$$

C.
$$\frac{3\sqrt{2}}{4}$$
.

B.
$$\frac{3\sqrt{2}}{2}$$
. **C.** $\frac{3\sqrt{2}}{4}$. **D.** $-\frac{3\sqrt{2}}{2}$.

Lời giải

Chon

Ta có:
$$y = \frac{x + \sqrt{1 + 9x^2}}{8x^2 + 1} = \frac{1}{\sqrt{9x^2 + 1} - x}$$
.

Hàm số y đạt giá trị lớn nhất trên khoảng $(0;+\infty)$ khi hàm số $f(x) = \sqrt{9x^2 + 1} - x$ đạt giá trị nhỏ nhất trên khoảng $(0; +\infty)$

Ta có:
$$f'(x) = \frac{9x}{\sqrt{9x^2 + 1}} - 1 \Rightarrow \begin{cases} f'(x) = 0 \\ x \in (0; +\infty) \end{cases} \Leftrightarrow x = \frac{1}{6\sqrt{2}}$$

$$\min_{(0;+\infty)} f(x) = f\left(\frac{1}{6\sqrt{2}}\right) = \frac{2\sqrt{2}}{3} \Rightarrow \max_{(0;+\infty)} y = \frac{3\sqrt{2}}{4}$$

Câu 40: Giá trị lớn nhất của hàm số $y = \frac{1}{\cos x}$ trên khoảng $\left(\frac{\pi}{2}; \frac{3\pi}{2}\right)$ là:

A. Không tồn tại.

B. 1.

 $\mathbf{C}. \ \pi.$

D. − 1.

Lời giải

Chon D.

$$y' = \frac{\sin x}{\cos^2 x}, \ y' = 0 \Leftrightarrow x = \pi \left(x \in \left(\frac{\pi}{2}, \frac{3\pi}{2} \right) \right)$$

Bảng biến thiên:

Vậy $\max_{\left(\frac{\pi}{2}; \frac{3\pi}{2}\right)} y = -1$ và $\min_{\left(\frac{\pi}{2}; \frac{3\pi}{2}\right)} y$ không tồn tại.

Câu 41: Hàm số $y = \sin^4 x - \cos^4 x$ có giá trị lớn nhất bằng:

A. 0.

B. 1.

C. -1.

D. Không tồn tại.

Lời giải

Chọn B.

TXĐ: $D = \mathbb{R}$

Ta có: $y = \sin^4 x - \cos^4 x = (\sin^2 x - \cos^2 x)(\sin^2 x + \cos^2 x) = -\cos 2x$

Mà $-1 \le \cos 2x \le 1 \Leftrightarrow -1 \le -\cos 2x \le 1 \Rightarrow \max y = 1$.

Câu 42: Hàm số $y = \sin^6 x + \cos^6 x$ có giá trị lớn nhất, giá trị nhỏ nhất lần lượt là:

A. 1; −1.

B. 2; 0.

C. $\frac{1}{4}$; -1.

D. 1; $\frac{1}{4}$.

Lời giải

Chọn D.

TXĐ: $D = \mathbb{R}$

Ta có: $y = \sin^6 x + \cos^6 x = (\sin^2 x + \cos^2 x)^3 - 3\sin^2 x \cos^2 x (\sin^2 x + \cos^2 x)$

 $=1-3\sin^2 x \cos^2 x = 1-\frac{3}{4}\sin^2 2x$

Mà: $0 \le \sin^2 2x \le 1 \Leftrightarrow \frac{1}{4} \le 1 - \frac{3}{4} \sin^2 2x \le 1 \Rightarrow \min y = \frac{1}{4}; \max y = 1.$

DẠNG 4 TÌM GTLN VÀ GTNN CỦA HÀM SỐ BẰNG CÁCH ĐẶT ẨN PHỤ

Câu 43: Hàm số $y = x + \frac{1}{x} + x^2 + \frac{1}{x^2}$ có giá trị nhỏ nhất, giá trị lớn nhất trên đoạn [1;3] là:

A. 3; $\frac{112}{9}$.

B. 1;4.

C. $1; \frac{112}{9}$.

D. 4; $\frac{112}{9}$.

Lời giải

Chọn D.

TXĐ: $D = \mathbb{R} \setminus \{0\}$

 $\text{Dặt } t = x + \frac{1}{x} \left(2 \le t \le \frac{10}{3} \right) \implies x^2 + \frac{1}{x^2} = t^2 - 2$

Khi đó hàm số trở thành: $y = t^2 + t - 2 \Rightarrow y' = 2t + 1 > 0; \forall t \in \left[2; \frac{10}{3}\right]$

 \Rightarrow Hàm số đồng biến $\forall t \in \left[2; \frac{10}{3}\right]$.

 \Rightarrow Hàm số đạt giá trị lớn nhất = 4, hàm số đạt giá trị nhỏ nhất = $\frac{112}{9}$

Câu 44: Hàm số $y = \sqrt{x+1} + \sqrt[3]{x+1}$ có giá trị nhỏ nhất, giá trị lớn nhất trên đoạn [0;63] là:

A. 2;12.

B. 1;2.

C. 0; 2.

D. 0;12.

Lời giải

Chon A.

TXĐ: $D = [-1; +\infty)$.

Đặt $t = \sqrt[6]{x+1} \ (1 \le t \le 2)$

Khi đó hàm số trở thành: $y = t^3 + t^2 \Rightarrow y' = 3t^2 + 2t > 0; \forall t \in [1, 2]$

 \Rightarrow min y = y(1) = 2; max y = y(2) = 12.

Câu 45: Hàm số $y = \sqrt{x} + \frac{\sqrt{x}}{\sqrt{x+1}}$ có giá trị lớn nhất và giá trị nhỏ nhất trên đoạn [0;4] lần lượt

là:

A. $\frac{8}{2}$;0.

B. $\frac{8}{3}$; $-\frac{8}{3}$. **C.** 0; $-\frac{8}{3}$.

D. $\frac{24}{5}$;0.

Lời giải

Chon

TXĐ: $D = [0; +\infty)$.

 $\text{D} \check{\mathsf{q}} \mathsf{t} \ t = \sqrt{x}; \big(x \in [0; 4] \Longrightarrow 0 \le t \le 2 \big).$

Khi đó hàm số trở thành: $y = t + \frac{t}{t+1} \Rightarrow y' = 1 + \frac{1}{(t+1)^2} > 0$

 \Rightarrow hàm số đồng biến $\forall t \in [0,2]$

 \Rightarrow min y = y(0) = 0; max $y = y(2) = \frac{8}{3}$.

Câu 46: Giá trị lớn nhất của hàm số $y = \sqrt{x+4} + \sqrt{4-x} - 4\sqrt{(x+4)(4-x)} + 5$ bằng

B. $\max_{[-4;4]} y = 5 - 2\sqrt{2}$. **C.** $\max_{[-4;4]} y = -7$. **D.** $\max_{[-4;4]} y = 5 + 2\sqrt{2}$.

Lời giải

Chon D.

Điều kiện $-4 \le x \le 4$. Nhận xét: Hàm số f(x) liên tục trên đoạn [-4;4]

Đặt $t = \sqrt{x+4} + \sqrt{4-x} \implies t^2 = x+4+4-x+2\sqrt{(x+4)(4-x)} \implies \sqrt{(x+4)(4-x)} = \frac{t^2-8}{2}$

Ta có $y = t - 4\left(\frac{t^2 - 8}{2}\right) + 5 = -2t^2 + t + 21 = f(t)$

Tìm điều kiện của t: Xét hàm số $g(x) = \sqrt{x+4} + \sqrt{4-x}$ với $x \in [-4:4]$

 $g'(x) = \frac{1}{2\sqrt{x+4}} - \frac{1}{2\sqrt{4-x}}$; $g'(x) = 0 \Leftrightarrow x = 0$; $g(-4) = 2\sqrt{2}$; g(0) = 4; $g(4) = 2\sqrt{2}$

 $\Rightarrow \min_{x \in [-4;4]} g(x) = 2\sqrt{2}; \max_{x \in [-4,4]} g(x) = 4 \Rightarrow t \in [2\sqrt{2};4]$

 $f'(t) = -4t + 1 < 0 \forall t \in [2\sqrt{2}; 4] \implies f(t)$ là hàm nghịch biến trên $[2\sqrt{2}; 4]$

$$\max_{[-4;4]} y = f(2\sqrt{2}) = 5 + 2\sqrt{2}$$

Câu 47: Giá trị lớn nhất M, giá trị nhỏ nhất m của hàm số: $y = 2\sin^2 x + 2\sin x - 1$ là:

A.
$$M = -1; m = \frac{-3}{2}$$

B.
$$M = 3; m = -1$$

C.
$$M = 3; m = \frac{-3}{2}$$
.

A.
$$M = -1; m = \frac{-3}{2}$$
. **B.** $M = 3; m = -1$. **C.** $M = 3; m = \frac{-3}{2}$. **D.** $M = \frac{3}{2}; m = -3$.

Lời giải

C. Chon

Tập xác định: $D = \mathbb{R}$. Đặt $t = \sin x$, $-1 \le t \le 1$. Khi đó $y = f(t) = 2t^2 + 2t - 1$

$$f'(t) = 4t + 2; f'(t) = 0 \Leftrightarrow t = \frac{-1}{2} \in [-1;1] \Rightarrow f\left(\frac{-1}{2}\right) = \frac{-3}{2}; f(-1) = -1; f(1) = 3$$

Vậy min
$$y = \frac{-3}{2}$$
, max $y = 3$.

Câu 48: Giá trị lớn nhất M, giá trị nhỏ nhất m của hàm số $y = \sin^4 x - 4\sin^2 x + 5$ là:

A.
$$M = 2$$
; $m = -5$.

B.
$$M = 5$$
; $m = 2$

C.
$$M = 5; m = -2$$
.

A.
$$M = 2; m = -5$$
. **B.** $M = 5; m = 2$. **C.** $M = 5; m = -2$. **D.** $M = -2; m = -5$.

Lời giải

Đặt
$$t = \sin^2 x$$
, $0 \le t \le 1 \implies y = f(t) = t^2 - 4t + 5$. $f'(t) = 2t - 4$; $f'(t) = 0 \iff t = 2 \notin [0;1]$
 $f(0) = 5$; $f(1) = 2$. Vậy $\min_{\mathbb{R}} y = 2$, $\max_{\mathbb{R}} y = 5$

Câu 49: Hàm số $y = -2\sin^3 x + 3\cos 2x - 6\sin x + 4$ có giá trị lớn nhất bằng:

$$B. -7.$$

D. 9.

Lời giải

D. Chon

$$y = -2\sin^3 x + 3\cos 2x - 6\sin x + 4 = -2\sin^3 x - 6\sin^2 x - 6\sin x + 7$$

Đặt
$$t = \sin x (-1 \le t \le 1)$$
.

Xét hàm $y = -2t^3 - 6t^2 - 6t + 7$ trên đoạn [-1;1]

$$y' = -6t^2 - 12t - 6 \Rightarrow y' = 0$$
 vô nghiệm.

Ta có:
$$y(-1) = 9$$
, $y(1) = -7$

Vậy hàm số $y = -2\sin^3 x + 3\cos 2x - 6\sin x + 4$ có giá trị lớn nhất bằng 9.

Câu 50: Cho hàm số $y = \frac{\sin x + 1}{\sin^2 x + \sin x + 1}$. Gọi M là giá trị lớn nhất và m là giá trị nhỏ nhất của hàm số đã cho. Chọn mệnh đề đúng.

A.
$$M = m + \frac{2}{3}$$
. **B.** $M = m + 1$. **C.** $M = \frac{3}{2}m$. **D.** $M = m + \frac{3}{2}$.

B.
$$M = m + 1$$

C.
$$M = \frac{3}{2}m$$

D.
$$M = m + \frac{3}{2}$$

Lời giải

Chon **B**.

Đặt
$$t = \sin x, -1 \le t \le 1 \implies y = f(t) = \frac{t+1}{t^2+t+1}, \ f'(t) = \frac{-t^2-2t}{\left(t^2+t+1\right)^2}$$

$$f'(t) = 0 \Leftrightarrow \begin{bmatrix} t = 0 \in [-1;1] \\ t = -2 \notin [-1;1] \end{bmatrix} \Rightarrow f(0) = 1, f(-1) = 0, f(1) = \frac{2}{3}. \text{ Vậy } M = 1, m = 0$$

Câu 51: Giá trị nhỏ nhất của hàm số y = x(x+2)(x+4)(x+6) + 5 trên nữa khoảng $[-4; +\infty)$ là:

A.
$$\min_{[-4;+\infty)} y = -8$$
.

B.
$$\min_{x \in A_{11}(x)} y = -11$$

A.
$$\min_{[-4;+\infty)} y = -8$$
. **B.** $\min_{[-4;+\infty)} y = -11$. **C.** $\min_{[-4;+\infty)} y = -17$. **D.** $\min_{[-4;+\infty)} y = -9$.

D.
$$\min_{[-4;+\infty)} y = -9.$$

Lời giải

Chon

Nhận xét: Hàm số f(x) liên tục trên $[-4; +\infty)$

Ta có:
$$y = (x^2 + 6x)(x^2 + 6x + 8) + 5$$
.

Đặt
$$t = x^2 + 6x$$
. Khi đó $y = t^2 + 8t + 5$

Xét hàm số $g(x) = x^2 + 6x$ với $x \ge -4$.

Ta có
$$g'(x) = 2x + 6$$
; $g'(x) = 0 \Leftrightarrow x = -3$

$$\lim_{x \to +\infty} g(x) = +\infty$$

X	$-\infty$	-4	-3	$+\infty$
g'(x)		_	0	+
		-8		$+\infty$
g(x)			_9 /	/

Suy ra $t \in [-9; +\infty)$

Yêu cầu bài toán trở thành tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số $y = h(t) = t^2 + 8t + 5 \text{ v\'oi } t \in [-9; +\infty).$

Ta có
$$h'(t) = 2t + 8$$
; $h'(t) = 0 \iff t = -4$;

$$\lim_{t\to+\infty}h(t)=+\infty$$

Bảng biến thiên

$$V \hat{a} y \min_{[-4;+\infty)} y = -11$$