Ex. 20.4 (Cor.)
$$\sum \frac{x^n}{n!}$$
 est-elle convergente? Si oui, que vaut $\sum_{n=0}^{+\infty} \frac{x^n}{n!}$?

II.4. Propriétés

Propriété 20.7 (Linéarité de la somme)

Si les séries de termes généraux u_n et v_n convergent toutes les deux, alors $\forall (\lambda; \mu) \in \mathbb{K}^2$ la série $\sum \lambda u_n + \mu v_n \text{ converge et}$

$$\sum_{n=0}^{+\infty} \lambda u_n + \mu v_n = \lambda \sum_{n=0}^{+\infty} u_n + \mu \sum_{n=0}^{+\infty} v_n$$

Démonstration

C'est un corollaire immédiat de la linéarité de la limite des suites réelles ou complexes (voir théorème 8.43).

Propriété 20.8

Si la série $\sum u_n$ converge, alors la suite u converge vers 0.

Démonstration

Pour tout entier $n \in \mathbb{N}$, $S_{n+1} - S_n = \sum_{k=0}^{n+1} u_k - \sum_{k=0}^n u_k = u_{n+1}$. Or la suite S converge, donc par

théorème opératoire sur les limites de suites, la suite u converge vers $\sum_{n=0}^{+\infty} u_n - \sum_{n=0}^{+\infty} u_n = 0$.

Méthode : Divergence grossière d'une série

La propriété précédente est utilisée pour montrer qu'une série diverge en passant par sa contraposée : si la suite u ne tend pas vers 0, alors la série $\sum u_n$ diverge.

On dit dans ce cas que la série diverge grossièrement.

Important!

La réciproque de cette propriété est fausse!

Ex. 20.5 (Cor.) Nature de la série $\sum_{n \ge 0} \sin\left(n\frac{2\pi}{7}\right)$.

Ex. 20.6 (Cor.) Nature de la série $\sum_{i=1}^{\infty} \frac{1}{n}$.