121 - 19 121 - 19 121 - 19 P.93

NCC1-46

Experimental Investigation of the Effects of Aft Blowing with Various Nozzle Exit Geometries on a 3.0 Caliber Tangent Ogive at High Angles of Attack

Forebody Pressure Distributions

N.M. Gittner and N. Chokani North Carolina State University Raleigh, NC

(NASA-CR-190935) EXPERIMENTAL INVESTIGATION OF THE EFFECTS OF AFT BLOWING WITH VARIOUS NOZZLE EXIT GEOMETRIES ON A 3.0 CALIBER TANGENT OGIVE AT HIGH ANGLES OF ATTACK: FOKEBOUY PRESSURE DISTRIBUTIONS Final Technical Report (North Carolina State Univ.)

461064 96P

N93-11605

Unclas

G3/02 0125219

<u>¥</u>

Abstract

An experimental investigation of the effects of aft blowing on the asymmetric vortex flow of a slender, axisymmetric body at high angles of attack has been conducted. A 3.0 caliber tangent ogive body fitted with a cylindrical afterbody was tested in a wind tunnel under subsonic, laminar flow test conditions. Asymmetric blowing from both a single nossile and a double nossie configuration, positioned near the body apex, was investigated. Aft blowing was observed to alter the vortex asymmetry by moving the blowing-side vortex closer to the body surface while moving the non-blowing-side vortex further away from the body. The effect of increasing the blowing coefficient was to move the blowing-side vortex closer to the body surface at a more upstream location. The data also showed that blowing was more effective in altering the initial vortex asymmetry at the higher angles of attack than at the lower. The effects of changing the nossle exit geometry were investigated and it was observed that blowing from a nozzle with a low, broad exit geometry was more effective in reducing the vortex asymmetry than blowing from a high, narrow exit geometry.

Nomenclature

Aref Cp Cp C u d D m j p p o q o u j z	reference area, $40 \times \text{model}$ base area pressure coefficient, $(p-p_{\infty})/q_{\infty}$ blowing coefficient, $(m_j u_j)/(q_{\infty} A_{ref})$ local diameter of the model base diameter of the model mass flow rate through the blowing nossle local static pressure free stream static pressure free stream dynamic pressure exit velocity from the blowing nossle axial distance from model apex distance from the surface of the model to the mean geometric center of the nossle exit
Ξmas α φ φ b	orifice maximum width of the nossie exit angle of attack asimuthal location from windward meridian asimuthal location of the non-blowing nos- zle from the windward meridian asimuthal location of the blowing nossie from the windward meridian

Introduction

The flight of high-performance aircraft at high angles of attack is compromised by the effects of the forebody vortices which form and shed asymmetrically. These asymmetric forebody vortices can produce side forces and yawing moments which may render control of the aircraft difficult or even impossible. This problem is compounded at the higher angles of attack by the fact that the conventional control surfaces (vertical and horisontal stabilisers) are washed out by the wake of the fuselage and wings. The combat agility requirements of present and future generation high-performance aircraft dictate the need for controlled flight at high angles of attack, and thus there is a strong motivation to control the forebody vortex asymmetry in this flight regime.

A substantial body of evidence has been produced in experimental1-4 and numerical5-8 studies which indicates that the forebody vortex asymmetry configuration is produced by small imperfections in the tip of the forebody. Many techniques have been studied to control this vortex asymmetry; a recent review has been presented by Ericsson?. These techniques include nose bluntness, body reshaping, boundary layer trips, forebody strakes, and forebody suction and blowing. The forebody blowing techniques 8-17 include normal, forward and aft blowing with respect to the model surface. The previous research in the area of aft blowing has brought about much knowledge in the area of forebody vortex control. For example, a control mechanism has been suggested in references 13-14 for vortex control by jet blowing and is sketched in Figure 1. Once blowing is initiated on the leeward side of the body, the jet entrainment moves the blowing-side separation leeward, thus the vortex on the blowing side of the body moves closer to the body. Due to the coupling of the lesside vortices, the non-blowing-side vortex moves further from the body surface and the separation on the non-blowing side moves windward. Based on this control model, the jet blowing functions primarily to control the flow separation by entrainment due to the jet. Previous research has also shown that (1)the optimal axial location of jet blowing is found to be as close as possible to the forebody apex, since jet blowing at this position can most influence the flow separation and the strong interaction between the vortices; (2)the asimuthal location

,

of the jet blowing is found to be optimal in the range 120° to 150°, measured from the windward ray; and (3)the baseline system of vortices determines the effectiveness of vortex control by jet blowing. Namely, the jet blowing is more effective for control of the forebody vortex system if the baseline flowfield has only a small degree of vortex asymmetry. 12,13,18,19

Although previous researches have demonstrated the potential of aft blowing to provide forebody vortex control, questions remain regarding the fluid dynamic nature of the aft blowing technique. Previous experiments have examined the overall effects of aft blowing on an aircraft configuration. Thus, in contrast to previous studies, an experimental study of the flowfield in the near-tip region of an isolated forebody model was conducted. The objective of this study is to obtain further insight into the mechanisms of aft blowing through detailed measurements of surface pressures and flow visualisation in the near-tip region. The effectiveness of asymmetric aft blowing from both a single nossle and a double nossie configuration was investigated. The effects of angle of attack, magnitude of blowing, and axial and asimuthal blowing nossle locations are examined. In addition, the effect of the nossle exit geometry on the blowing effectiveness is also investigated.

Apparatus and Procedure

Wind Tunnel

All experiments were conducted in the North Carolina State University Subsonic Wind Tunnel Facility, Figure 2. This is a closed return wind tunnel with a settling chamber to test section contraction ratio of 3:1. The settling chamber is equipped with 3 screens located upstream of the contraction section for the purpose of decreasing the free stream turbulence in the test section. The wind tunnel is ventilated to room pressure through a breather located at the downstream end of the test section. The test section is 0.81m in height, 1.14m in width and 1.17m in length and equipped with plexiglass sides and top to permit flow visualization. The test section velocities were regulated by a variable pitch fan located downstream of the test section. The maximum attainable test section velocity was 17.2 m/s.

Ogive Model

The model used for testing was a 3.0 caliber tangent ogive body fitted with a removable nose tip and a cylindrical afterbody as shown in Figure 3. The model was hollow and of aluminum construction. Three circumferential rows of pressure taps were located on the ogive portion of the model, at the locations shown in Figure 3. The two rows of pressure taps located nearest the model apex, rows 1 and 2, had an asimuthal tap spacing of 15° while row 3, the row farthest from the model apex, had an asimuthal tap spacing of 10°. The locations of the pressure taps are tabulated in Table 1. The model was rigidly mounted on a circular arc sting balance. A stepper motor, attached to the sting balance and controlled by a computer, was used to provide variation of the angle of attack. A cylindrical plenum chamber, with internal dimensions of 8.1cm in length and a diameter of 2.1cm, was firmly secured to the internal wall of the model. Dried pressurised air, supplied from an external source, was routed along the sting, through the base of the model and to the plenum, while short lengths of tygon tubing supplied air from the plenum to the blowing nossle.

Figure 4 shows a schematic of a removable nose tip with the exit of the blowing nossle located at an axial location of z/D=0.125. The blowing nossles were designed to blow aft, along a model meridian and tangential to the surface of the body. Previous work conducted by Moskovits² showed that as compared to a discrete surface perturbation of a pointed nose tip, a perturbation of a blunt nose tip was less likely to develop vortex asymmetries due to surface roughness or machining imperfections. Thus for the purposes of this study a blunted nose tip was used to minimise the possible effects of the differences in the geometries of the different blowing nossles that were tested, and thereby accentuate the effects of blowing.

Blowing Nossles

Table 2 shows the blowing nossles that were manufactured for this research. Each blowing nossle was constructed of brass and was securely fitted to its own nose tip. The geometric mean height of the nossle exit orifice, \overline{y}/d , was used as a measure of the effective height from the surface of the body to the geometric center of the jet as it exits the blowing

nossle. The effective width of the jet was characterised by z_{max}/d , which represents the maximum width of the exit orifice. Blowing nossles 1 - 5 all had the same exterior dimensions of 0.25cm high, 0.44cm wide and 0.51cm long. Each nossle exit orifice had the same cross-sectional area, but different geometries. Nossie 1 was a semi-ellipse with a horizontal major axis; 2 was a semi-circle with a horisontal axis; 3 was an ellipse with a horisontal major axis; 4 was a semi-ellipse with a horisontal minor axis, and 5 was a full circle. The numerical designation of the blowing nossles, 1 - 5, indicated an ascending geometric mean height. For some test cases, a blank nossle was positioned at a symmetric location to the blowing nossle with respect to the windward ray. The purpose of this blank noszle was to provide an initial vortex pattern that was less asymmetric when compared with a single noszle being placed on the model. These blank nossles were of the same exterior dimensions as the blowing nossles and were glued directly onto the model surface.

Nossle Calibration

A method of calibrating the blowing nossles was developed to determine the level of blowing. A simple calibration apparatus, shown in Figure 5, was assembled for this purpose. It consisted of a pressure regulator used to vary the plenum stagnation pressure; a pressure transducer to measure the plenum pressure; and an in-line flow meter positioned between the plenum and the blowing nossle to measure the volumetric flow rate of the jet. Prior to the nossle calibration, the pressure drop across the flow meter was measured, and was observed to be negligible. Each section of tubing used in the calibration procedure was of the same length as that used during the subsequent wind tunnel testing.

From the calibration apparatus, the stagnation pressure and volumetric flow rate were measured while the stagnation temperature was taken to be the ambient laboratory temperature. The blowing coefficient, C_{μ} , was then calculated where A_{ref} was taken to be $40(\pi D^2/4)$. This reference area was chosen to enable comparison of the blowing coefficient with previous researches.

Test Instrumentation & Parameters

Surface pressures were measured using a pair of

8.9cm of water Validyne differential pressure transducers connected to a pair of 48-port Scanivalve modules and a Hewlett-Packard 9122 computer. The transducers' sampling time was 0.167 seconds, and thus time averaged pressures were obtained.

Wind tunnel testing was conducted at a free stream velocity of 13.7 m/s. This corresponded to a laminar flow Reynolds numbers, based on the model base diameter, of 84000. The angle of attack was varied from 40° to 60° in 10° increments, while sideslip was held constant at 0°. C_{μ} 's investigated ranged from 0.01 to 0.02 for group B. A test case with the blowing nossle sealed, i.e. $C_{\mu}=0$, was also investigated. The asimuthal locations of the blowing nossles were 90°, 120°, and 150° for the single nossle configuration, while the 90° and 120° locations were tested for the double nossle configuration.

Results and Discussion

Tables 3 and 4 show the test cases and corresponding figures for the single and double nossle configurations respectively. Each figure consists of the surface pressure data for all 5 blowing nossles. Although a detailed discussion of the results is not presented here, interesting features regarding the data are noted. (For a more thorough analysis of the present data references 19 – 22 are suggested.)

The following observations were made from the data presented in this report. (i) When comparing the blowing cases with the non-blowing cases it was observed that aft blowing was effective in reducing the initial vortex asymmetry. Aft blowing moved the blowing-side vortex closer to the surface of the model while the non-blowing-side vortex moved farther away from the body. It was also observed that blowing moved the separation location of the viscous layer from the body to a more leeward location. (ii) As the angle of attack was varied aft blowing was observed to be more effective at the higher angles of attack than at the lower. It is believed that this was due to the more effective augmentation of the axial flow component over the model as the angle of attack was increased. (iii) Localized differences in the C_p distributions were observed as C_μ was varied. The effect of increasing the magnitude of the blowing coefficient was to move the blowing-side vortex closer to the model surface over a shorter axial distance. (iv)Finally low, broad nossle cross-sectional

exit geometries were observed to be more effective in reducing forebody vortex asymmetry than high, narrow cross-sections. This is consistent with the optimal conditions for the entrainment of the forebody flow by blowing, since the jet surface area is then maximum. This supports the previously proposed control mechanism of jet entrainment effects being responsible for forebody vortex control using aft blowing.

Conclusions

An experimental study has been conducted to examine the effectiveness of aft blowing as a method of forebody vortex control. A 3.0 caliber tangent ogive model fitted with a cylindrical afterbody was tested in subsonic, laminar flow conditions. Testing was conducted using both a single nossle and a double nossle configuration; for the double nossle configuration, blowing was applied through only one nozzle. Blowing was optimized when a low, broad noszle was used, when the blowing coefficient was maximized, and the model was at the highest angle of attack. The experimental results presented here will be useful for comparison with computational methods.

North Carolina State University Raleigh, NC 27695-7910 May 1, 1992

References

 Moskovitz, C.A., Hall, R.M., and DeJarnette, F.R., "Effects of Surface Perturbations on the Asymmetric Vortex Flow Over a Slender Body." AIAA 88-0483, January 1988.

Moskovits, C.A., "An Experimental Investigation of the Physical Mechanisms Controlling the Asymmetric Flow Past Slender Bodies at Large Angles of Attack," Ph.D. Dissertation, North Carolina State University, Raleigh, 1989.

Moskovitz, C.A., Hall, R.M., and DeJarnette, F.R., "Combined Effects of Nose Bluntness and Surface Perturbations on Asymmetric Flow Past Slender Bodies," Journal of Aircraft, Vol. 27, October 1990, pp. 909-910.

 Zilliac, G.G. and Degani, D., "Asymmetric Vortices on a Slender Body of Revolution," AIAA 90-0389, January 1990.

 Hartwich, P.M., Hall R.M., and Hemsch, M.J., "Navier-Stokes Computations of Vortex Asymmetries Controlled by Small Surface Imperfections," Journal of Spacecraft and Rockets, Vol. 28, March-April 1991, pp. 258-264.

 Degani, D., "Effect of Geometrical Disturbance on Vortex Asymmetry," AIAA Journal, Vol. 29, April 1991, pp. 560-566.

 Ericsson, L.E., "Control of Forebody Flow Asymmetry - A Critical Review," AIAA 90-2833CP, August 1990.

8. Peake, D.J., Owen, F.K., and Johnson, D.A., "Control of Forebody Vortex Orientation to Alleviate Side Forces," AIAA 80-0183, January 1980.

 Skow, A.M., Moore, W.A., and Lorincs, D.J., "Control of Forebody Vortex Orientation to Enhance Departure Recovery of Fighter Aircraft," Journal of Aircraft, Vol. 19, October 1982, pp. 812-819.

10. Malcolm, G.N. and Skow, A.M., "Enhanced Controllability Through Vortex Manipulation of Fighter Aircraft at High Angles of Attack,"

AIAA 86-2277CP, August 1986.

 Malcolm, G.N., Ng., T.T., Lewis, L.C., and Murri, D.G., "Development of Non-Conventional Control Methods for High Angles of Attack Flight Using Vortex Manipulation," AIAA 89-2192CP, August 1989.

 Rosen, B.S. and Davis, W.H., "Numerical Study of Asymmetric Air Injection to Control High Angle-of-Attack Forebody Vortices on the X-29 Aircraft," AIAA 90-3004CP, August 1990.

13. Ng, T.T. and Malcolm, G.N., "Aerodynamic Control Using Forebody Vortex Control," Extended Abstract submitted to the High Angle of Attack Technology Conference, Hampton

VA, October 1990.

 Ng, T.T. and Malcolm, G.N., "Aerodynamic Control Using Forebody Blowing and Suction," AIAA 91-0619, January 1991.

 Cornelius, K.C., Pandit, N., Osborn, R.F., and Guyton, R.W., "An Experimental Study of Pneumatic Vortex Flow Control on High Angle of Attack Forebody Model," AIAA 92– 0018, January 1992.

 Guyton, R.W. and Maerki, G., "X-29 Forebody Jet Blowing," AIAA 92-0017, January

1992.

LeMay, S.P., Sewall, W.G., and Henderson, J.F., "Forebody Vortex Flow Control on the F-16C Using Tangential Slot and Jet Nossle Blowing," AIAA 92-0019, January 1992.

Ng, T.T., Ong, L.Y., Suares, C.J., and Maicolm, G.N., "Wing Rock Suppression Using Forebody Vortex Control," AIAA 91-3227CP,

September 1991.

19. Gittner, N.M. and Chokani, N., "An Experimental Study of the Effects of Aft Blowing on a 3.0 Caliber Tangent Ogive Body at High Angles of Attack," AIAA 91-3252CP, September 1991.

Gittner, N.M. and Chokani, N., "The Effects of Nossle Exit Geometry on Forebody Vortex Control Using Blowing," AIAA 92-2603CP,

June 1992. Gittner, N.M., "An Experimental Study of the Effects of Aft Blowing on a 3.0 Caliber Tangent Ogive Body at High Angles of Attack," MS dissertation, Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC, March 1992.

Port	x(cm)	$\phi(\deg)$	Port	x(cm)	$\phi(\deg)$
1	-8.255	.0	43	-14.605	270.0
2	-8.255	15.0	44	-14.605	285.0
3	-8.255	30.0	45	-14.605	300.0
4	-8.255	45.0	46	-14.605	315.0
5	-8.255	60.0	47	-14.605	330.0
6	-8.255	75.0	48	-14.605	345.0
$\frac{0}{7}$	-8.255	90.0	49	-20.320	.0
8	-8.255	105.0	50	-20.320	10.0
9	-8.255	120.0	51	-20.320	20.0
10	-8.255	135.0	52	-20.320	30.0
11	-8.255	150.0	53	-20.320	40.0
12	-8.255	165.0	54	-20.320	50.0
13	-8.255	180.0	55	-20.320	60.0 70.0
14	-8.255	195.0	56	-20.320	1
15	-8.255	210.0	57	-20.320	90.0
16	-8.255	225.0	58	-20.320	1 1
17	-8.255	240.0	59	-20.320	100.0
18	-8.255	255.0	60	-20.320	110.0
19	-8.255	270.0	61	-20.320	120.0
20	-8.255	285.0	62	-20.320	130.0 140.0
21	-8.255	300.0	63	-20.320	
22	-8.255	315.0	64	-20.320	1
23	-8.255	330.0	65	-20.320	
24	-8.255	345.0	66	-20.320	
25	-14.605	.0	67	-20.320	l '
26	-14.605	15.0	68	-20.320	t t
27	-14.605	30.0	69	-20.320	
28	-14.605	45.0	70	-20.320	
29	-14.605			-20.320	1
30	-14.605	75.0		-20.320	
31	-14.605			-20.320	1
32	-14.605			-20.320	-
33	-14.605			-20.32	
34	-14.605			-20.32	- I
35	-14.605		1	1	
36	-14.605				
37	-14.605		1	1	- I
38	-14.605				~
39	-14.605				
40	-14.60	5 225.	1 .		_
41		1 .			-
42		5 255.	0 84	-20.32	0 300.0

Table 1 - Pressure Port Locations

Blowing	Exit		1	1
Nozzle	Geometries	z/D	\overline{y}/d	z_{max}/d
١		0.125	0.0354	
2		0.125	0.0499	0.235
3		0.125	0.0588	0.235
4		0.125	0.0627	0.167
5	0	0.125	0.0836	0.167

Table 1 - Blowing Nozzle Specifications

	(1)	A. (deg)	C_{μ}
Figure	α (deg)	ϕ_j (deg)	.01
6	40	90	ì
7	40	90	.02
8	40	120	.00
9	40	120	.01
10	40	120	.02
11	40	150	.01
12	40	150	.02
13	50	90	.01
1	50	90	.02
14	50	120	.00
15	50	120	.01
16	50	120	.02
17	1	150	.01
18	50		.02
19	50	150	·
20	60	90	.01
21	60	90	.02
22	60	120	.00
23	60	120	.01
24	60	120	.02
25	60	150	.01
	60	150	.02
26			

Table 3 – Test Matrix Single Nozzle Configuration

Figure	α (deg)	ϕ_j (deg)	φ _b (deg)	C _µ
27	40	90	270	.00
28	40	90	270	.01
29	40	90	270	.02
30	40	120	240	.00
31	40	120	240	.01
32	40	120	240	.02
33	50	90	270	.00
34	50	90	270	.01
35	50	90	270	.02
36	50	120	240	.00
37	50	120	240	.01
38	50	120	240	.02
39	60	90	270	.00
40	60	90	270	.01
41	60	90	270	.02
42	60	120	240	.00
43	60	120	240	.01
44	60	120	240	.02

Table 4 – Test Matrix Double Nozzle Configuration

- (1) Blowing is initiated.
- (2) Separation is moved leeward due to entrainment.
- (3) Blowing-side vortex moves towards body.
- (4) Non-blowing side vortex moves away from body.
- (5) Separation is moved windward.

Figure 1 - Effects of Aft Blowing on the Leeside Vortices (ref. 14)

Figure 2 - North Carolina State University Subsonic Wind Tunnel Facility

Figure 3 – 3.0 Caliber Tangent Ogive Model

Figure 4 – Removable Nose Tip with Blowing Nozzle

Figure 5 - Blowing Nozzle Calibration Test Schematic

Pressure	Blowing Nozzle						
Port	1	2	3	4	5		
1	.678	.674	.670	.648	.637		
2	.552	.563	.570	.594	.552		
3	.307	.322	.341	.409	.358		
4	121	093	083	.009	028		
5	550	507	507	391	413		
6	506	474	494	385	391		
7	795	772	792	715			
8	907	886	765	1	1		
9	-1.244	-1.180	-1.421				
10	941	915	919		i		
11	827	822	909	1	1		
12	604	598	610	613			
13	534	551	530	1	1		
14	979	980	994	1	1		
15	-1.082	-1.033	-1.111	-1.183	-1.093		
16	-1.162	-1.162	-1.140	-1.140	-1.095		
17	-1.217	-1.203	-1.218	-1.293	-1.203		
18	-1.241	-1.246	-1.194	-1.251	-1.181		
19	-1.318	-1.317	-1.316	-1.391	-1.309		
20	-1.093	-1.087	-1.086	-1.172	-1.085		
21	806	798	846	943	865		
22	338	329	374	471	411		
23	.148	.157	.102	.024	.063		
24	.449	.459	.419	.368	.376		
25	.487	.489	.481	.461	.458		
26	.414	.417	.420	.434	.403		
27	.191	.191	.226	.281	.237		
28	168	158	117	050	093		
29	658	645	611	498	543		
30	936	914	885	776 -1.011	813		
31	-1.152	-1.098	-1.117	i	-1.034		
32	-1.033 -1.189	992	994	907	923		
33		-1.151	-1.156	-1.0 63 589	-1.079		
34	657 641	642 650	654 677	582	618 620		
35 36	426	429	430	408	429		
	478	486	472	434	470		
37 38	478	998	798	729	897		
39		-1.082	-1.039	-1.046	-1.027		
40		-1.147	-1.047	-1.066	-1.092		
40	l l	-1.157	-1.141	-1.198	-1.130		
		-1.106	-1.060	-1.134	-1.071		
42	-1.091	-1.100	-1.000	-1.134	-1.011		

Figure 6 - Pressure Coefficients $\alpha = 40^{\circ}, \, \phi_j = 90^{\circ}, \, C_{\mu} = .01$

	. 1				
Pressure			ving Noz	zle	5
Port	1	2	3	4	-1.243
43	-1.255	-1.261	-1.238	-1.317	7
44	-1.082	-1.083	-1.070	-1.160	-1.082
45	900	884	921	-1.008	932
46	503	486	533	614	555
47	049	033	086	173	111
48	.253	.269	.223	.167	.194
49	.415	.409	.407	.395	.380
50	.403	.404	.420	.433	.405
51	.237	.234	.261	.298	.264
52	.012	.008	.051	.119	.065
53	241	249	202	116	166
54	597	579	536	439	483
55	827	812	769	669	698
56	-1.131	-1.108	-1.086	970	-1.004
57	-1.200	-1.181	-1.161	-1.050	-1.080
58	-1.201	-1.165	-1.189	-1.085	-1.102
59	-1.130	-1.087	-1.095	996	-1.021
60	-1.191	-1.151	-1.182	-1.086	-1.102
61	-1.123	-1.085	-1.093	-1.009	-1.018
62	-1.343	-1.180	-1.198	-1.098	-1.125
63	-1.119	-1.084	-1.085	-1.056	-1.181
64	540	489	521	449	468
65	507	500	530	454	510
66	345	357	391	317	329
67	434	429	464	369	395
68	841	834	765	697	741
69	-1.025	-1.039	891	985	-1.014
70	-1.191	-1.173	-1.033	-1.123	-1.142
71	953	962	919	-1.006	957
72	-1.061	-1.068	-1.045	-1.147	-1.068
73	919	934	913	986	911
I	975	986	985	-1.081	981
74 75	922	934	913	996	914
	-1.061	-1.079	-1.054	-1.148	-1.048
76	-1.020	-1.035	-1.011	-1.102	-1.021
77	-1.010	-1.021	-1.029	-1.134	-1.036
78	807	817	822	923	849
79	585	588	627	733	649
80	308	315	341	442	377
81	014	025	068	149	089
82	.184	.173	.145	.081	.116
83	.164	.396	.379	1	.343
84	.390	.030	1		<u></u>

Figure 6 (continued) – Pressure Coefficients $\alpha = 40^{\circ}, \, \phi_j = 90^{\circ}, \, C_{\mu} = .01$

	Pressure		Blowing Nozzle						
	Port	1	7 2	3	4	5	_		
	1	.684					_		
	2	.556		1	1	4			
	3	.317	1	,	- 1	- 1			
	4	076					-		
	5	470	47	4	1	1			
	6	362	38	162	422	8298			
	7	-1.187	884	93	655	8925	-		
	8	-1.678	-1.252	2 -1.44	176	9 -1.278			
	9	-1.437	-1.436	-1.67	1 -1.13	5 -1.587			
	10	-1.062	-1.001	84	984	6 -1.056			
	11	892	1	1	986	1910			
	12	584	554						
	13	540	540		1	1			
	14	964	-1.014	1		l.			
	15	-1.070	-1.035				l		
	16	-1.158	-1.165				l		
	17	-1.220	-1.223	ı	F				
	18	-1.244	-1.241	-1.199			l		
	19	-1.333	-1.343	-1.294	1	1)			
	20	-1.100	-1.090	-1.095	1	1			
	21	824	820	829					
	22 23	.141	.148	.105	1	1 [
	23 24	.441	.146	.431	.333	.076			
İ	25	.490	.492	.468		.443			
I	26	.410	.415	.435	.434	.418			
ĺ	20 27	.197	.201	.222	.309	.235			
ŀ	28	162	148	115	014	094			
	29	618	623	557	409	520			
	30	879	860	842	671	806			
	31	-1.069	-1.038	-1.043	867	972			
	32	928	903	940	747	873			
	33	-1.020	950	968	911	956			
	34	780	832	876	546	863			
	35	618	594	644	541	627			
	36	541	546	608	408	619			
	37	511	505	508	447	525			
	38	998	-1.017	852	863	924			
	39	-1.090	-1.138	976	-1.150	-1.026			
	40	-1.141	-1.136	-1.077	-1.164	-1.095			
	41	-1.166	-1.188	-1.092	-1.303	-1.113			
_	42	-1.094	-1.089	-1.084	-1.212	-1.069			
-									

Figure 7 - Pressure Coefficients $\alpha = 40^{\circ}, \ \phi_j = 90^{\circ}, \ C_{\mu} = .02$

Pressure		Blov	ving Noz	zle	
Port	1	2	3	4	5
43	-1.265	-1.280	-1.219	-1.429	-1.209
44	-1.080	-1.067	-1.090	-1.224	-1.082
45	911	898	909	-1.094	911
46	504	477	537	668	551
47	059	048	078	194	109
48	.242	.256	.240	.150	.206
49	.412	.402	.411	.379	.389
50	.411	.409	.412	.438	.401
51	.237	.238	.268	.313	.264
52	.012	.019	.054	.142	
5 3	244	230	193	078	160
54	580	567	522	392	483 715
55	802	776	770	597	715
56	-1.117	-1.092	-1.058	891	-1.102
57	-1.177	-1.133	-1.166	951	-1.102
58	-1.178	-1.151	-1.147	974	-1.101
59	-1.091	-1.048	-1.091	898	-1.103
60	-1.179	-1.147	-1.143	994	-1.103
61	-1.103	-1.065	-1.094	906	-1.054
62	-1.137	-1.094	-1.112	989	-1.250
63	-1.157	-1.063	-1.086	915	530
64	511	515	569	431	583
65	522	513	550	421	372
66	371	384	417	308	428
67	447	457	498	360	747
68	858	842	806	744	-1.068
69	-1.104	982	974	-1.044	-1.144
70	-1.202	-1.148	-1.076	1	-1.144
71	995	963	974		-1.067
72	-1.087	-1.104	-1.056	-1.228	924
73	940	938	941	-1.059	978
74	-1.001	-1.030	982		925
75	942	950	931		-1.027
76	-1.079	-1.103	-1.051	L .	-1.027
77	-1.035	-1.029	-1.037	1	1
78	-1.033		-1.028		
79	825	823	848	l	i
80	607				1
81	328				
82	022		l		1
83	.178		1		i .
84	.400	.396	.369	.329	.540

Figure 7 (continued) – Pressure Coefficients $\alpha=40^{\circ},\,\phi_{j}=90^{\circ},\,C_{\mu}=.02$

**

Pressure		Blowing Nozzle					
Port	1	2	3	4	5		
1	.547	.656	.585	.598	.648		
2	.346	.438	.338	.343	.582		
3	.244	.537	.252	.275	.394		
4	202	.050	226	212	014		
5	696	468	745	709	447		
6	876	821	936	902	705		
7	-1.057	-1.174	-1.127	-1.095	962		
8	-1.118	-1.072	-1.114	-1.092	700		
9	-1.075	-1.206	-1.145	-1.127	727		
10	-1.128	-1.096	-1.151	-1.165	714		
11	-1.144	-1.250	-1.090	-1.306	973		
12	852	870	823	824	696		
13	675	759	666	737	628		
14	-1.365	993	-1.372	-1.321	930		
15	-1.180	-1.348	-1.213	-1.217	-1.068		
16	-1.506	-1.290	-1.493	-1.469	-1.136		
17	-1.445	-1.540	-1.504	-1.491	-1.243		
18	-1.245	-1.343	-1.209	-1.219	-1.264		
19	-1.516	-1.688	-1.575	-1.563	-1.381		
20	-1.546	-1.460	-1.503	-1.506	-1.140		
21	785	-1.123	820	811	876		
22	995	-1.175	-1.192	-1.244	429		
23	.260	.033	.298	.277	.062		
24	.271	.156	.252	.181	.383		
25	.661	.663	.688	.706	.468		
26	.578	.604	.571	.562	.450		
27	.260	.471	.254	.267	.305		
28	154	.049	157	149	025		
29	593	379	635	624	412		
30	869	726	861	842	658		
31	860	950	931	915	807		
32	950	918	942	935	792		
33	903	-1.004	969	962	890		
34	-1.041	914	997	-1.041	815		
35	-1.083	-1.111	-1.149	-1.099	942		
36	923	-1.007	870	891	826		
37	638	756	660	670	617		
38	-1.459	827	-1.429	-1.388	814		
39	-1.221	-1.438	-1.280	-1.249	-1.171		
40	-1.524	-1.190	-1.490	-1.487	-1.058		
41	-1.420	-1.554	-1.482	-1.463	-1.267		
42	-1.558	-1.369	-1.511	-1.514	-1.178		

Figure 8 – Pressure Coefficients $\alpha = 40^{\circ}, \, \phi_j = 120^{\circ}, \, C_{\mu} = .00$

Pressure		Blov	ving Noz	zle	
Port	1	2	3	4	5
43	-1.554	-1.672	-1.625	-1.605	-1.370
44	-1.396	-1.419	-1.350	-1.361	-1.203
45	-1.000	-1.309	-1.056	-1.031	-1.028
46	527	779	515	515	624
47	.028	246	.020	.014	172
48	.406	.192	.408	.385	.174
49	.513	.505	.530	.547	.423
50	.521	.520	.521	.514	.406
51	.338	.522	.348	.360	.370
52	.118	.274	.114	.122	.196
53	167	.069	175	169	024
54	421	222	429	416	244
55	669	523	693	710	510
56	768	680	774	772	629
57	651	745	677	690	717
58	725	736	737	729	643
59	559	598	579	588	664
60	709	714	722	714	621
61	687	729	723	740	721
62	599	587	615	591	677
63	881	872	952	899	806
64	770	785	818	725	783
65	950	-1.071	-1.018	955	852
66	706	866	714	670	-1.086
67	615	762	643	645	575
68	-1.156	617	-1.093	-1.144	607
69	-1.403	-1.441	-1.436	-1.463	-1.286
70	-1.516	-1.315	-1.473	-1.482	-1.150
71	-1.560	-1.569	-1.610	-1.618	-1.284
72	-1.514	-1.485	-1.485	-1.474	-1.263
73	-1.463	-1.541	-1.532	-1.535	-1.253
74	-1.485	-1.404	-1.439	-1.443	-1.200 -1.275
75	-1.582	-1.549	-1.627	-1.627	
76	-1.645	-1.507	-1.601	-1.599	-1.297
77	-1.570	-1.711	-1.620	-1.612	-1.387
78	-1.385	-1.452	-1.349	-1.358	-1.232
79	-1.072	-1.379	-1.115	-1.092	-1.111
80	738	976	723	705	817
81	263	466	272	262	517
82	.003	255	.008	013	215
83	.239	.096	.245	.265	.094
84	.471	.321	.472	.474	.201

. .

Figure 8 (continued) – Pressure Coefficients $\alpha=40^{\circ},\,\phi_{j}=120^{\circ},\,C_{\mu}=.00$

Pressure		Blowing Nozzle				
Port	1	2	3	4	5	
1	.525	.655	.659	.660	.642	
2	.575	.580	.610	.578	.549	
3	.278	.359	.428	.336	.340	
4	076	058	.018	092	069	
5	561	525	446	551	506	
6	828	797	756	793	752	
7	-1.095	-1.069	-1.066	-1.035	999	
8	686	672	642	781	764	
9	891	826	805	736	807	
10	781	740	935	853	774	
11	825	818	886	828	786	
12	637	611	704	691	621	
13	563	621	597	566	546	
14	881	965	726	-1.079	984	
15	-1.034	-1.069	-1.066	-1.036	-1.009	
16	-1.112	-1.148	-1.057	-1.228	-1.145	
17	-1.190	-1.191	-1.199	-1.237	-1.175	
18	-1.213	-1.216	-1.191	-1.312	-1.214	
19	-1.338	-1.331	-1.346	-1.377	-1.310	
20	-1.105	-1.105	-1.140	-1.149	-1.083	
21	829	830	900	824	800	
22	384	392	468	369	372	
23	.110	.098	.028	.122	.112	
24	.426	.419	.379	.447	.408	
25	.488	.482	.462	.485	.465	
26	.429	.434	.458	.430	.412	
27	.224	.237	.301	.228	.210	
28	160	133	049	148	156	
29	616	585	507	606	583	
30	912	878	831	904	850	
31	-1.172	-1.132	-1.134	-1.079	-1.074	
32	-1.104	-1.068	-1.086	-1.055	-1.018	
3 3	-1.154	-1.123	-1.137	-1.092	-1.061	
34	829	817	-1.000	748	681	
35	696	682	673	702	675	
36	519	514	627	493	466	
37	438	430	439	450	448	
38	879	849	752	924	882	
39	-1.068	-1.114	-1.078	-1.079	-1.048	
40	-1.075	-1.051	-1.026	-1.145	-1.072	
41	-1.153	-1.164	-1.146	-1.192	-1.134	
42	-1.071	-1.063	-1.073	-1.152	-1.070	

Figure 9 - Pressure Coefficients $\alpha = 40^{\circ}, \, \phi_j = 120^{\circ}, \, C_{\mu} = .01$

Pressure		Blowing Nozzle					
	1	2	3	4	5		
Port	-1.232	-1.232	-1.217	-1.293	-1.225		
43	-1.096	-1.097	-1.133	-1.155	-1.077		
44	904	913	961	927	889		
45	521	538	602	542	507		
46	091	094	161	087	092		
47	.226	.229	.183	.234	.216		
48	.450	.435	.430	.443	.426		
49	.389	.388	.412	.393	.364		
50	.285	.289	.336	.279	.265		
51	.070	.081	.146	.072	.056		
52	232	216	138	219	222		
53	495	476	407	477	469		
54	847	816	754	802	800		
55	-1.010	977	947	966	948		
56	-1.236	-1.196	-1.173	-1.148	-1.147		
57	-1.230	-1.142	-1.164	-1.082	-1.081		
58	-1.182	-1.142	-1.168	-1.078	-1.101		
59	-1.103	-1.076	-1.104	-1.032	-1.030		
60	-1.186	-1.140	-1.151	-1.090	-1.087		
61	-1.204	-1.156	-1.143	-1.164	-1.130		
62	-1.151	-1.087	-1.261	873	874		
63	559	557	573	583	555		
64	530	931	-1.092	471	723		
65	437	460	506	408	594		
66	403	526	522	412	485		
67	617	611	529	688	712		
68	-1.077	-1.088	-1.087	-1.036	-1.002		
69	984	972	-1.022	-1.066	983		
70	-1.036	-1.047	-1.143	-1.055	982		
71	-1.002	-1.011	993	-1.088	-1.006		
72	987	995	-1.024	-1.055	980		
73	942	945	947	-1.034	950		
74	967	982	985	-1.052	981		
75	983	995	982	-1.112	-1.015		
76	-1.095	-1.107	-1.100		-1.107		
77	981	995	-1.027	1	995		
78	879	887	944		878		
79	627	632	i	1	625		
80	027	367		1	356		
81		098					
82	092	1	٠				
83	.186		1				
84	.320	.500					

Figure 9 (continued) – Pressure Coefficients $\alpha=40^{\circ},\,\phi_{j}=120^{\circ},\,C_{\mu}=.01$

Pressur	e		Blowing	Nozzle			
Port	1	2	3	4		5	
1	.459	.65	.64	49 .6	61	.63	7
2	.571	.58	.60	.6.	00	.54	5
3	.264	.36	0 .41	.3	61	.33	4
4	070	05	4 .01	1804	42	07	Ō
5	557	ľ	,		92	51	7
6	800		571	469	99	72	8
7	-1.042	-1.01	898	90)5	93	8
8	760	1	1		34	80	L
9	-1.791				90	-1.29	3
10	984	į.	1	1	29	883	3
11	-1.039	1		i i	- 1	943	3
12	643	64				652	
13	601	61		1		552	
14	955	968	1	1		959	- 1
15	-1.070	-1.067				-1.003	_
16	-1.142	-1.161	1			-1.121	- 1
17	-1.212	-1.200				-1.170	- 1
18	-1.221	-1.238				-1.193	
19	-1.347	-1.344			- 1	1.304	- 1
20	-1.112	-1.129	1	1		1.062	
21	833	842				794	4
22	386	402	í	1	ı	363	ı
23	.102	.096	.036	I	- 1	.109	
24	.416	.424	.375			.400	4
25 06	.485	.473	.454	1		.469	
26 27	.432	.429	.445	ı	- 1	.399	l
27 28	.242	.239 133	.298	.245	1	.220	1
28 29	135 586	133 564	044 507	125	1	133	l
30	877	860	816	817	1	567 8 23	
31	-1.134	-1.095	-1.104	980		1.059	
32	-1.072	-1.047	-1.047	952		986	
33	-1.126	-1.086	-1.096	995	1	.038	
34	716	729	754	597	-	.812	
35	780	792	856	667	ı	.737	
36	493	521	555	421	1	.559	
37	502	513	542	444	+	.497	
38	829	872	755	-1.015	1	.870	
39	1	-1.092	-1.055	-1.115	1	.046	
40		-1.993	-1.012	-1.243	<u> </u>	.054	
41	i i	-1.155	-1.134	-1.269	1	.124	
42	1	-1.099	-1.054	-1.254	1	.045	
	1.000	2.000	1.007	-1.207	1	.010	

Figure 10 - Pressure Coefficients $\alpha=40^{\circ},\,\phi_j=120^{\circ},\,C_{\mu}=.02$

Pressure		Blowing Nozzle					
Pressure	1	2	3	4	5		
43	-1.238	-1.237	-1.201	-1.436	-1.211		
43	-1.102	-1.122	-1.119	-1.230	-1.059		
4 4 45	911	914	953	-1.000	886		
46	521	550	596	580	510		
47	092	112	173	.084	082		
48	.231	.210	.164	.402	.217		
49	.451	.426	.425	.438	.424		
50	.396	.393	.406	.410	.363		
50 51	.289	.286	.334	.294	.266		
52	.074	.084	.144	.099	.061		
5 3	217	197	138	187	213		
5 4	473	459	394	437	457		
55	838	791	737	770	793		
56	993	962	919	924	934		
50 57	-1.228	-1.157	-1.168	-1.081	-1.143		
58	-1.172	-1.117	-1.158	-1.020	-1.071		
59	-1.179	-1.122	-1.169	-1.002	-1.094		
60	-1.100	-1.064	-1.091	955	-1.012		
61	-1.167	-1.112	-1.130	-1.031	-1.091		
62	-1.199	-1.159	-1.132	-1.067	-1.045		
6 3	698	633	735	635	562		
64	580	590	588	535	620		
65	444	542	631	398	473		
66	402	439	447	377	667		
67	425	438	439	352	437		
68	617	613	518	692	706		
69	-1.134	-1.237	-1.129	-1.194	-1.113		
70	999	-1.092	-1.044	-1.200	996		
71	-1.081	-1.112	-1.146	-1.172	-1.033		
72	-1.017	-1.046	-1.026	-1.176	997		
73	-1.012	-1.020	-1.025		982		
74	955	979	939	-1.109	931		
75	988	985	976		980		
76	-1.005	-1.019	963	1	993		
77	-1.120	-1.124	-1.096		-1.094		
78	-1.007	-1.023	-1.011		968		
79	891	906	938	1	873		
80	626	665	694		613		
81	353	379	440		349		
82	080	119		i	086		
83	.191						
84	.327	.303	.284	.326	.294		

Figure 10 (continued) – Pressure Coefficients $lpha=40^{\circ},\,\phi_{j}=120^{\circ},\,C_{\mu}=.02$

Pressu	re		Blowing	Nozzle	
Port	1	2	3	1 4	. 5
1	.68				81 .647
2	.55	1	1		65 .559
3	.64		1	ı	90 .309
4	12	405	660	671	24071
5	49	555	75	596	28565
6	99	691	.694	19 9	98919
7	-1.26			22 -1.2	50 -1.196
8	-1.28	0 -1.20	8 -1.23	34 -1.2	58 -1.205
9	-1.29	5 -1.22			66 -1.215
10	-1.190	-1.07	4 -1.08	35 -1.07	70 -1.148
11	761	70	985	882	902
12	284		1		22330
13	627	1	563	159	5644
14	749		1	1	4789
15	-1.091		<u>. I </u>		
16	-1.051				1
17	-1.205				
18	-1.187				
19	-1.314	4	ı		1 1
20	-1.068	1	1	i	
21	813	855			
22	334	375	1		1 1
23	.163	.114	1	1	
24	.464	.436			
25	.499	.486	1	1	1
26 27	.427	.441	.443	I .	1 1
27	.212	.243	.238		
28	163	117	127	ı	1 1
29 30	646 954	577	580	1	1 1
31	-1.220	901 -1.129	932	974	
31 32	-1.220	-1.129	-1.178	-1.189	1
3 3	-1.137	-1.141	-1.137 -1.194	-1.141	-1.098
34	-1.009	-1.007	-1.194	999	-1.172
35	869	808	819	801	946
36	687	616	659	674	869 695
37	477	447	438	434	095
38	778	713	685	727	461
39	-1.079	-1.070	-1.092	-1.112	-1.059
40	981	-1.023	961	-1.004	984
41	-1.148	-1.183	-1.141	-1.175	-1.119
42	-1.024	-1.109	-1.042	-1.083	-1.025
74	1.023	-1.103	-1.074	-1.003	-1.020

Figure 11 – Pressure Coefficients $\alpha=40^{\circ},\,\phi_{j}=150^{\circ},\,C_{\mu}=.01$

Pressure		Blowing Nozzle					
Port	1	2	3	4	5		
43	-1.221	-1.282	-1.206	-1.257	-1.185		
43 44	-1.053	-1.138	-1.100	-1.096	-1.067		
4 5	897	943	911	900	897		
46	509	550	565	509	543		
47	052	101	106	046	093		
48	.251	.217	.208	.265	.214		
49	.406	.400	.405	.415	.384		
50	.428	.435	.429	.423	.408		
51	.264	.297	.302	.274	.272		
52	.081	.117	.119	.076	.091		
5 3	185	137	133	181	162		
54	553	477	485	549	509		
55	771	705	726	774	734		
56	-1.109	-1.002	-1.029	-1.076	-1.035		
57	-1.154	-1.070	-1.130	-1.139	-1.113		
58	-1.229	-1.109	-1.194	-1.173	-1.180		
59	-1.108	-1.027	-1.103	-1.087	-1.078		
60	-1.160	-1.054	-1.120	-1.107	-1.105		
61	-1.095	-1.012	-1.084	-1.087	-1.048		
62	-1.242	-1.147	-1.177	-1.186	-1.183		
63	-1.065	-1.054	-1.093	-1.010	989		
64	757	693	799	774	736		
65	571	566	625	581	593		
66	476	403	474	478	482		
67	411	376	398	415	421		
68	610	521	500	558	478		
69	382	357	382	388	682		
70	-1.118	-1.295	-1.266	-1.158	-1.132		
71	812	910	951	883	953		
72	-1.070	-1.168	-1.080	-1.118	-1.054		
73	941	-1.030	992	-1.000	957		
ı	980	-1.055	964	-1.014	962		
74 75	924	-1.013	946	993	927		
76	-1.055	-1.148	-1.020	-1.110	-1.028		
77	-1.028	-1.119	-1.053	-1.092	-1.032		
78	-1.029	-1.110	-1.030	-1.055	-1.020		
79	819	902	872	860	843		
80	613	674	645	605	628		
81	325	375	374	323	353		
	039	097	093	055	088		
82	.165	.131	.125	.164	.124		
83	.379	.342	.338	.378	.329		
84	.319	.042	1		<u> </u>		

Figure 11 (continued) – Pressure Coefficients $\alpha = 40^{\circ}, \ \phi_j = 150^{\circ}, \ C_{\mu} = .01$

Pressur	е	Blowing Nozzle					
Port	1	2			4		5
1	.67	7 .66	9 .6	62	.68	7	.645
2	.55	9 .58	9 .5	73	.54	8	.555
3	.583	3 .32	2 .3	27	.30	8	.306
4	113	307	60	68	109	9 -	.080
5	521	L57	45	84	598	5 -	.563
6	-1.003			58	916	3 -	.921
7	-1.254		1		-1.188		.191
8	-1.274	-1.21	9 -1.2	63	-1.206	i -1	.200
9	-1.293			83	-1.225	i -1	.210
10	-1.463	i	2 -1.3	49	-1.018	-1.	.412
11	922	j.		52	969	-1.	.076
12	232	_ 1			470		255
13	714		•	- 1	716	- 1	721
14	581	630	i	1	809		719
15	-1.147				-1.180		126
16	-1.018	-1.078	i i	- 1	-1.125	ı	052
17	-1.258	-1.273	1		-1.366	1	197
18	-1.257	-1.299			-1.345		192
19	-1.364	-1.368		- 1	-1.472	ł	297
20	-1.125	-1.162	1	- 1	-1.162	1	088
21	840	857			903		830
22	350	374	37		366	1	368
23	.129	.101	.10	1	.121	1	097
24	.437	.440	.42		.431		110
25	.490	.471	.47	- 1	.499	1	159
26 07	.433	.443	.42		.425	!	12
27	.210	.239	.23		.216		20
28 29	155 638	118	13	- 1	147		34
29 30	036	594 9 26	598 93	- 1	614 8 69	5 9	
	-1.186	-1.136	-1.19				
31 32	-1.110	-1.136	-1.12		1.100 1.009	-1.1	1
32 33	-1.209	-1.151	-1.12		1.128	-1.0 -1.1	4
34	848	867	903		881	8	_
3 4 35	985	961	-1.008	- 1	802	o. 9	
36	763	693	770	- 1	693	7	- 1
37	491	485	501	\rightarrow	474	50	
38	724	714	704	- 1	676	7	- 1
39	-1.116	-1.106	-1.150		1.211	-1.11	- 1
40	-1.012	-1.038	958		999	98	
41	-1.201	-1.197	-1.173		1.307	-1.15	
42	-1.094	-1.138	-1.030	- 1	1.150	-1.04	
74	1.037	1.100	-1.000			-1.04	•

Figure 12 – Pressure Coefficients $\alpha = 40^{\circ}, \ \phi_j = 150^{\circ}, \ C_{\mu} = .02$

₹)	: 				-,
Pressure		Blox	wing Noz		ž
Port	1	2	3	4	5
43	-1.284	-1.279	-1.205	-1.391	-1.213
44	-1.113	-1.151	-1.076	-1.149	-1.080
45	940	957	911	993	904
46	545	582	549	540	539
47	069	111	106	083	091
48	.244	.215	.201	.234	.209
49	.408	.403	.401	.400	- 1
50	.428	.426	.427	.438	.408
51	.283	.306	.294	.282	.267
52	.091	.108	.107	.112	.098
53	166	142	150	143	154
54	526	489	500	511	491
55	747	720	733	691	712
56	-1.064	-1.007	-1.055	-1.008	-1.019
57	-1.117	-1.090	-1.135	-1.009	-1.089
58	-1.183	-1.132	-1.234	-1.078	-1.162
59	-1.071	-1.051	-1.110	965	-1.059
60	-1.111	-1.063	-1.147	-1.026	-1.092
61	-1.060	-1.040	-1.085	962	-1.040
62	-1.204	-1.186	-1.235	-1.152	-1.177
63	827	823	889	870	774
64	734	707	749	708	722
65	536	566	633	565	582
66	426	444	500	465	469
67	384	400	438	394	433
68	528	564	541	486	483
69	395	395	405	376	718
70	-1.339	-1.256	-1.282	-1.220	-1.229
71	917	925	868	885	974
72	-1.167	-1.164	-1.094	-1.249	-1.107
73	-1.008	-1.056	958	-1.054	973
74	-1.035	-1.064	965	-1.146	994
75	989	-1.051	922	-1.061	949
76	-1.131	-1.144	-1.033	-1.268	-1.062
77	-1.092	-1.144	-1.036	-1.149	-1.050
78	-1.088	-1.110	-1.036	-1.178	-1.046
	866	923	853	896	853
79 80	648	665	645	690	646
81	346	383	369	356	371
	077	095	.019	083	095
82	.144	.130	.232	.142	.112
83	.359	.336	.351	.362	.330
84	.359		1 .001		

Figure 12 (continued) – Pressure Coefficients $\ddot{\alpha}=40^{\circ}, \, \phi_{j}=150^{\circ}, \, C_{\mu}=.02$

Pressure	1	Ble	owing No	ozzle	
Port	1	2	3	4	5
1	.796	.786	.782	.751	.738
2	.641	.635	.666	.698	.656
3	.284	.286	.339	.417	.365
4	301	294	237	124	159
5	886	873	814	664	684
6	810	812	766	662	676
7	-1.106	-1.061	-1.131	997	963
8	930	892	952	845	832
9	-1.408	-1.486	-1.214	-1.043	-1.174
10	999	929	-1.030	882	904
11	-1.014	-1.006	923	853	932
12	735	732	771	734	727
13	812	864	801	756	802
14	-1.376	-1.408	-1.331	-1.400	-1.350
15	-1.398	-1.447	-1.402	-1.479	-1.426
16	-1.605	-1.606	-1.592	-1.696	-1.594
17	-1.635	-1.609	-1.618	-1.728	-1.612
18	-1.629	-1.602	-1.598	-1.712	-1.589
19	-1.835	-1.782	-1.814	-1.932	-1.779
20	-1.513	-1.479	-1.517	-1.654	-1.522
21	-1.209	-1.158	-1.236	-1.394	-1.093
22	566	545	604	762	389
23	.075	.107	.048	093	.003
24	.495	.505	.486	.395	.452
25	.656	.652	.644	.618	.600
26	.541	.526	.558	.577	.549
27	.213	.207	.256	.332	.279
28	284	288	223	127	171
29	963	940	909	757	774
30	-1.319	-1.295	-1.279	-1.148	-1.153
31	-1.596	-1.536	-1.566	-1.400	-1.395
32	-1.450	-1.401	-1.424	-1.285	-1.279
33	-1.648	-1.584	-1.622	-1.469	-1.452
34	-1.176	985	-1.434	-1.336	-1.191
35	759	775	750	679	690
36	633	598	769	696	649
37	664	750	752	623	695
38	-1.373	-1.414	-1.440	-1.492	-1.383
39	-1.502	-1.435	-1.516	-1.607	-1.484
40	-1.443	-1.461	-1.477	-1.573	-1.488
41	-1.479	-1.424	-1.466	-1.597	-1.454
42	-1.304	-1.294	-1.317	-1.424	-1.329

Figure 13 – Pressure Coefficients $\alpha = 50^{\circ}, \, \phi_j = 90^{\circ}, \, C_{\mu} = .01$

		Rios	ving Noz	zie	
Pressure		2	3	4	5
Port	1 591	-1.500	-1.503	-1.622	-1.506
43	-1.531	-1.318	-1.359	-1.484	-1.378
44	-1.338	-1.091	-1.150	-1.293	-1.160
45	-1.141	595	657	804	691
46	626	027	066	202	119
47	027	.356	.343	.245	.301
48	.371	.601	.610	.601	.582
49	.617	.572	.606	.624	.585
50	.598	.336	.384	.435	.393
51	.349	.000	.053	.155	.109
52	.014	342	302	184	220
53	347	855	795	647	679
54	845	-1.158	-1.122	976	998
55	-1.156	-1.136	-1.573	-1.382	-1.396
56	-1.619	-1.640	-1.667	-1.493	-1.506
57	-1.686	-1.612	-1.675	-1.492	-1.461
58	-1.679	-1.517	-1.561	-1.424	-1.407
59	-1.572	-1.646	-1.681	-1.521	-1.510
60	-1.705	-1.592	-1.608	-1.479	-1.472
61	-1.626	-1.709	-1.708	-1.563	-1.553
62	-1.946	-1.626	-1.619	-1.482	-1.725
63	-1.633	772	927	934	788
64	909	811	770	732	784
65	804	708	742	700	668
66	728	893	851	797	808
67	841	-1.162	-1.163	-1.099	-1.111
68	-1.066	-1.020	-1.040	-1.036	-1.029
69	958	-1.052	-1.092	-1.156	-1.076
70	-1.030	939	911	-1.022	931
71	935	-1.063	-1.077	-1.201	-1.104
72	-1.055	980	946	-1.085	-1.002
73	982	-1.049	-1.059	-1.187	-1.082
74	-1.066	-1.049	976	-1.097	-1.025
75	994	-1.095	-1.076	-1.215	-1.117
76	-1.104	-1.115	-1.100	-1.238	-1.157
77	-1.121	-1.119	-1.130	-1.280	-1.163
78	-1.138	898	920	-1.071	971
79	918	ľ	674	840	728
80	648	626 290	324	473	392
81	303	1	.024	094	036
82	.076	.072	.293	1	.245
83	.330	.318	.587		.529
84	.614	.600	.361		

Figure 13 (continued) – Pressure Coefficients $\alpha = 50^{\circ}, \, \phi_j = 90^{\circ}, \, C_{\mu} = .01$

Pressure	T	Bl	owing No	ozzle	
Port	1	1 2	3	4	5
1	.791	.795	.785	.753	.753
2	.636	.654	.679	.698	.668
3	.297	.284	.353	.483	.374
4	239	263	181	.009	134
5	776	809	715	466	642
6	641	691	615	411	577
7	963	-1.151	940	754	904
8	-1.416	-1.667	-1.282	640	-1.283
9	-1.641	-1.726	-1.970	-1.048	-1.707
10	-1.328	-1.352	-1.244	775	-1.377
11	-1.087	-1.100	-1.189	859	-1.199
12	814	844	834	686	869
13	833	898	848	795	864
14	-1.471	-1.462	-1.363	-1.494	-1.344
15	-1.498	-1.479	-1.431	-1.565	-1.437
16	-1.617	-1.630	-1.613	-1.800	-1.569
17	-1.652	-1.603	-1.623	-1.881	-1.593
18	-1.592	-1.602	-1.616	-1.831	-1.547
19	-1.814	-1.767	-1.803	-2.112	-1.754
20	-1.491	-1.491	-1.540	-1.743	-1.497
21	-1.205	-1.153	-1.239	-1.507	-1.235
22	566	543	627	795	646
23	.064	.097	.041	152	012
24	.483	.517	.479	.352	.424
25	.650	.645	.645	.620	.617
26	.534	.545	.560	.563	.546
27	.222	.218	.261	.357	.269
28	268	268	221	101	203
29	91 3	919	850	692	801
30	-1.247	-1.288	-1.224	-1.0 32	-1.170
31	-1.479	-1.480	-1.452	-1.258	-1.390
32	-1.298	-1.351	-1.300	-1.091	-1.236
33	-1.564	-1.545	-1.531	-1.348	-1.472
34	764	816	817	789	774
35	799	849	822	668	808
36	499	555	521	467	509
37	759	809	735	661	736
38	-1.405	-1.471	-1.457	-1.465	-1.367
39	-1.429	-1.412	-1.519	-1.657	-1.466
40	-1.500	-1.506	-1.523	-1.604	-1.477
41	-1.453	-1.408	-1.480	-1.687	-1.441
42	-1.338	-1.318	-1.342	-1.476	-1.304

Figure 14 - Pressure Coefficients $\alpha = 50^{\circ}, \, \phi_j = 90^{\circ}, \, C_{\mu} = .02$

D	Blowing Nozzle					
Pressure Port	1	2	3	4	5	
43	-1.542	-1.485	-1.513	-1.754	-1.477	
43 44	-1.355	-1.348	-1.388	-1.547	-1.362	
4 4 45	-1.158	-1.089	-1.169	-1.379	-1.149	
46	647	609	694	843	691	
47	064	018	112	238	133	
48	.329	.379	.306	.214	.277	
49	.604	.621	.619	.581	.589	
50	.597	.579	.599	.633	.594	
50 51	.361	.351	.395	.435	.397	
52	.026	.017	.061	.163	.100	
5 3	325	333	285	164	230	
5 4	816	824	750	614	699	
55	-1.118	-1.148	-1.081	907	-1.014	
56	-1.547	-1.553	-1.508	-1.387	-1.468	
57	-1.617	-1.660	-1.622	-1.454	-1.578	
58	-1.607	-1.611	-1.616	-1.486	-1.559	
59	-1.496	-1.543	-1.525	-1.352	-1.463	
60	-1.630	-1.609	-1.622	-1.513	-1.582	
61	-1.546	-1.576	-1.556	-1.414	-1.505	
62	-1.937	-1.659	-1.649	-1.560	-1.631	
63	-1.551	-1.604	-1.581	-1.421	-1.770	
64	762	717	689	765	687	
65	747	803	767	775	800	
66	669	685	637	734	626	
67	866	890	817	870	802	
68	-1.224	-1.233	-1.144	-1.159	-1.136	
69	-1.068	-1.125	-1.070	-1.074	-1.054	
70	-1.167	-1.139	-1.136	-1.181	-1.161	
71	984	984	975	-1.079	976	
72	-1.100	-1.110	-1.123	-1.248	-1.091	
73	-1.005	-1.031	-1.014	-1.141	-1.001	
74	-1.119	-1.071	-1.106	-1.252	-1.077	
75	-1.030	-1.034	-1.037	-1.153	-1.015	
76	-1.156	-1.097	-1.143	-1.288	-1.111	
77	-1.153	-1.139	-1.173	-1.282	-1.139	
78	-1.171	-1.148	-1.178	-1.345	-1.170	
79	936	953	981	-1.107	976	
80	678	644	706	880	721	
81	321	312	352	497	382	
82	.039	.071	.008	116	028	
83	.297	.334	.292	.189	.247	
84	.600	.601	.578	.525	.549	

Figure 14 (continued) – Pressure Coefficients $\alpha = 50^{\circ}, \, \phi_j = 90^{\circ}, \, C_{\mu} = .02$

Pressure	е	Blowing Nozzle					
Port	1	2	3	4	5		
1	.979	.771	.67	.75	3 .721		
2	.541	.542	.423	3 .408	.704		
3	.366	.610	.300	.352	.453		
4	251	.030	274	251	038		
5	887	620	878	904	611		
6	-1.064	974	-1.046	6 -1.079	859		
7	-1.242	-1.328	-1.214	-1.254	-1.108		
8	-1.181	-1.256	-1.311	-1.218	808		
9	-1.274	-1.393	-1.267	' -1.307	871		
10	-1.293	-1.278	-1.340	-1.345	860		
11	-1.508	-1.528	-1.433	-1.523	-1.237		
12	-1.108	-1.164	-1.146	-1.161	-1.069		
13	979	939	996	979	806		
14	-1.913	-1.715	l .		-1.740		
15	-1.839	-1.987	-1.772	-1.857	-1.658		
16	-2.055	-1.981	-2.232	-2.153	-1.888		
17	-2.238	-2.230	-2.105	1	-1.897		
18	-1.770	-1.999	-1.922	-1.858	-1.924		
19	-2.407	-2.438	-2.251	-2.437	-2.089		
20	-2.068	-2.038	-2.241	-2.164	-1.817		
21	-1.411	-1.740	-1.310	-1.452	-1.435		
22	-1.554	-1.168	-1.766	-1.667	828		
23	.162	260	.134	.152	154		
24	.160	.172	.161	.173	.346		
25	.857	.733	.799	.861	.552		
26	.646	.758	.726	.702	.604		
27	.421	.610	.388	.419	.431		
28	101	.157	095	082	.029		
29	607	366	585	603	425		
30	733	700	804	744	690		
31	862	8 65	832	869	772		
32	823	881	8 94	843	818		
33	901	950	861	914	936		
34	905	861	-1.013	925	868		
35	-1.037	-1.113	-1.035	-1.050	976		
36	960	-1.051	-1.078	991	982		
37	967	880	915	991	761		
38	-2.006	-1.688	-2.243	-2.109	-1.703		
39	-1.950	-2.033	-1.829	-1.991	-1.731		
40	-2.152	-2.016	-2.346	-2.263	-1.931		
41	-2.282	-2.284	-2.140	-2.320	-1.951		
42	-2.138	-2.042	-2.324	-2.253	-1.914		

Figure 15 – Pressure Coefficients $\alpha = 50^{\circ}, \, \phi_j = 120^{\circ}, \, C_{\mu} = .00$

Pressure		Blo	wing No	zzle	
Port	1	2	3	4	5
43	-2.498	-2.452	-2.349	-2.536	-2.124
44	-1.926	-2.092	-2.091	-2.037	-1.928
45	-1.684	-1.975	-1.594	-1.694	-1.624
46	854	-1.239	903	878	-1.058
47	132	488	145	146	386
48	.358	.138	.421	.373	.139
49	.738	.626	.672	.742	.573
50	.645	.690	.734	.684	.597
51	.603	.740	.537	.605	.562
52	.259	.466	.295	.276	.372
5 3	019	.239	032	009	.110
54	312	086	310	293	149
55	588	433	562	591	447
56	568	569	595	576	561
57	485	580	503	520	559
58	517	562	564	536	540
59	454	486	445	462	537
60	529	548	561	536	521
61	533	589	512	544	612
62	453	443	482	458	580
6 3	634	654	632	652	598
64	564	579	608	568	650
65	754	803	759	784	649
66	633	701	692	640	919
67	-1.590	856	-1.491	-1.584	758
68	-2.024	-1.638	-2.231	-2.145	-1.729
69	-2.490	-2.356	-2.323	-2.493	-2.178
70	-2.286	-2.189	-2.502	-2.416	-2.078
71	-2.504	-2.530	-2.361	-2.555	-2.172
72	-2.128	-2.171	-2.319	-2.239	-2.005
73	-2.400	-2.396	-2.243	-2.453	-2.036
74	-2.091	-2.093	-2.260	-2.199	-1.955
75	-2.580	-2.384	-2.444	-2.647	-2.089
76	-2.250	-2.273	-2.473	-2.391	-2.130
77	-2.479	-2.550	-2.336	-2.531	-2.193
78	-1.878	-2.126	-2.044	-1.991	-1.980
79	-1.691	-2.047	-1.568	-1.717	-1.615
80	-1.048	-1.456	-1.094	-1.099	-1.118
81	397	705	390	406	817
82	081	461	075	082	357
83	.329	.081	.310	.342	.065
84	.546	.377	.626	.584	.350

Figure 15 (continued) – Pressure Coefficients $lpha=50^{\circ},\,\phi_{j}=120^{\circ},\,C_{\mu}=.00$

Pressure	Blowing Nozzle									
Port	1	2	3	4	5					
1	.385	.781	.766	.773	.763					
2	.637	.661	.694	.663	.661					
3	.163	.346	.438	.318	.332					
4	251	216	102	236	222					
5	944	880	784	864	820					
6	-1.264	-1.222	-1.173	-1.139	-1.101					
7	-1.584	-1.565	-1.561	-1.414	-1.382					
8	-1.154	-1.155	-1.094	-1.099	-1.085					
9	-1.011	978	-1.124	936	894					
10	987	-1.017	903	845	839					
11	-1.022	990	-1.149	988	893					
12	819	837	804	740	748					
13	805	830	806	677	737					
14	-1.395	-1.447	-1.300	-1.859	-1.481					
15	-1.483	-1.515	-1.477	-1.514	-1.472					
16	-1.552	-1.594	-1.562	-1.764	-1.656					
17	-1.587	-1.614	-1.638	-1.718	-1.635					
18	-1.496	-1.532	-1.544	-1.722	-1.625					
19	-1.797	-1.782	-1.822	-1.922	-1.808					
20	-1.429	-1.476	-1.537	-1.598	-1.518					
21	-1.155	-1.174	-1.297	-1.236	-1.174					
22	570	588	719	624	597					
23	.053	.043	074	.037	.047					
24	.465	.463	.392	.475	.468					
25	.635	.647	.621	.634	.634					
26	.541	.561	.580	.565	.556					
27	.260	.267	.358	.256	.259					
28	253	249	131	242	247					
29	931	892	796	855	835					
30	-1.286	-1.258	-1.18 3	-1.187	-1.201					
31	-1.592	-1.576	-1.578	-1.392	-1.405					
32	-1.496	-1.485	-1.456	-1.359	-1.392					
33	-1.629	-1.606	-1.612	-1.479	-1.459					
34	-1.509	-1.513	-1.604	-1.252	-1.342					
35	856	825	835	822	773					
36	805	857	898	730	754					
37	617	631	563	669	651					
38	-1.253	-1.304	-1.256	-1.340	-1.307					
39	-1.325	-1.401	-1.412	-1.442	-1.402					
40	-1.367	-1.414	-1.372	-1.571	-1.486					
41	-1.390	-1.430	-1.468	-1.554	-1.453					
42	-1.250	-1.272	-1.293	-1.468	-1.368					
<u> </u>		····								

Figure 16 – Pressure Coefficients $\alpha=50^{\circ}, \ \phi_j=120^{\circ}, \ C_{\mu}=.01$

7 1 3	Blowing Nozzle									
Pressure	1	$\frac{1}{2}$	3	4	5					
Port 43	-1.441	-1.469	-1.456	-1.667	-1.546					
	-1.312	-1.348	-1.394	-1.493	-1.415					
44	-1.109	-1.141	-1.209	-1.232	-1.150					
45	628	662	749	711	672					
46	083	091	205	115	099					
47 48	.326	.328	.240	.321	.315					
49	.651	.650	.650	.657	.636					
	.550	.560	.594	.564	.566					
50	.400	.401	.473	.409	.388					
51 52	.098	.090	.181	.113	.102					
52 5 3	331	322	206	308	309					
5 3 54	682	681	571	649	659					
55	-1.204	-1.185	-1.083	-1.120	-1.114					
56	-1.392	-1.390	-1.304	-1.292	-1.328					
57	-1.740	-1.704	-1.654	-1.494	-1.571					
58	-1.575	-1.567	-1.541	-1.343	-1.448					
į.	-1.634	-1.606	-1.623	-1.421	-1.483					
59 60	-1.511	-1.491	-1.494	-1.330	-1.405					
61	-1.689	-1.655	-1.649	-1.493	-1.514					
1	-1.688	-1.660	-1.570	-1.545	-1.623					
62 63	-2.071	-2.060	-2.016	-1.735	-1.813					
	-1.240	-1.186	-1.436	-1.103	-1.044					
64	943	-1.781	-1.808	874	-1.599					
65 66	-1.035	999	-1.261	-1.160	-1.098					
66	800	968	-1.034	834	-1.042					
67	-1.063	-1.119	-1.103	-1.281	-1.196					
68	-1.051	-1.166	-1.175	-1.262	-1.133					
69	-1.007	-1.077	-1.034	-1.289	-1.133					
70	-1.001	-1.064	-1.107	-1.201	-1.064					
71	-1.001	-1.030	-1.028	-1.226	-1.110					
72	-1.036	-1.072	-1.093	-1.237	-1.100					
73	976	-1.005	-1.017	-1.202	-1.081					
74	-1.046	-1.061	-1.091	-1.245	-1.115					
75	-1.040	-1.020	-1.030	-1.271	-1.136					
76	-1.194	-1.217	-1.217	-1.416	-1.277					
77	-1.068	-1.094	-1.136	-1.265	-1.170					
78	989	-1.015	-1.081	-1.116	-1.026					
79	677	703	790	778	717					
80	348	371	459	390	351					
81	009	026	110	035	012					
82	.332	.320	.387	.331	.327					
83	.490	.485	.559	.501	.503					
84	.490	.400	1							

Figure 16 (continued) – Pressure Coefficients $\alpha = 50^{\circ}, \ \phi_j = 120^{\circ}, \ C_{\mu} = .01$

Pressure	1	Bl	owing N	ozzle	
Port	1	2	3	4	5
1	.413	.769	.902	.776	.752
2	.657	.654	.695	.650	.633
3	.181	.326	.436	.365	.315
4	245	240	129	165	228
5	907	871	795	765	842
6	-1.209	-1.178	-1.124	999	-1.088
7	-1.511	-1.486	-1.454	-1.233	-1.335
8	-1.122	-1.123	-1.065	952	-1.051
9	-1.364	-1.332	-1.287	798	-1.352
10	-1.079	-1.153	-1.370	804	-1.180
11	-1.176	-1.180	-1.326	848	-1.185
12	857	875	987	706	851
13	849	871	857	728	840
14	-1.502	-1.454	-1.288	-1.625	-1.378
15	-1.517	-1.469	-1.474	-1.561	-1.434
16	-1.631	-1.584	-1.536	-1.833	-1.560
17	-1.617	-1.556	-1.613	-1.864	-1.564
18	-1.540	-1.492	-1.521	-1.855	-1.530
19	-1.776	-1.704	-1.793	-2.082	-1.736
20	-1.482	-1.429	-1.520	-1.689	-1.442
21	-1.177	-1.160	-1.276	-1.342	-1.127
22	591	591	702	685	565
23	.057	.050	053	007	.053
24	.481	.467	.402	.430	.458
25	.648	.644	.631	.644	.616
26	.559	.555	.584	.546	.532
27	.265	.268	.354	.293	.258
28	252	241	133	207	229
29	919	889	780	805	844
30	-1.279	-1.247	-1.170	-1.105	-1.183
31	-1.575	-1.562	-1.547	-1.301	-1.414
32	-1.490	-1.482	-1.433	-1.259	-1.364
33	-1.595	-1.589	-1.539	-1.360	-1.443
34	-1.079	-1.044	-1.085	947	879
35	919	963	989	758	958
36	647	663	700	585	583
37	700	708	661	749	708
38	-1.349	-1.334	-1.235	-1.413 -1.530	-1.344
39	-1.388	-1.347	-1.413		-1.394
40	-1.424	-1.383	-1.357	-1.593	-1.457
41	-1.435	-1.390	-1.457	-1.639	-1.424 -1.302
42	-1.290	-1.247	-1.277	-1.497	-1.302

Figure 17 - Pressure Coefficients $\alpha=50^\circ,\,\phi_j=120^\circ,\,C_\mu=.02$

Pressure		Blo	wing No	zzle	
Port	1	2	3	4	5
43	-1.482	-1.433	-1.448	-1.777	-1.481
44	-1.362	-1.344	-1.385	-1.525	-1.346
45	-1.147	-1.123	-1.215	-1.309	-1.119
46	665	658	761	738	647
47	112	080	206	156	083
48	.315	.329	.245	.279	.320
49	.660	.639	.640	.654	.623
50	.568	.562	.582	.548	.541
51	.410	.408	.479	.418	.381
52	.104	.118	.204	.110	.094
53	327	304	206	289	311
54	686	6 65	564	615	649
55	-1.206	-1.182	-1.078	-1.097	-1.240
56	-1.415	-1.390	-1.302	-1.247	-1.418
57	-1.721	-1.696	-1.654	-1.490	-1.581
58	-1.588	-1.572	-1.570	-1.307	-1.442
59	-1.652	-1.590	-1.612	-1.427	-1.433
60	-1.536	-1.500	-1.492	-1.297	-1.360
61	-1.684	-1.630	-1.626	-1.459	-1.514
62	-1.742	-1.681	-1.621	-1.541	-1.598
63	-1.796	-1.628	-1.739	-1.509	-1.258
64	904	892	914	881	799
65	877	-1.454	-1.624	817	-1.061
66	632	678	694	720	800
67	849	841	947	951	856
68	-1.079	-1.105	962	-1.155	-1.107
69	-1.222	-1.202	-1.266	-1.228	-1.199
70	-1.139	-1.126	-1.114	-1.170	-1.166
71	-1.087	-1.127	-1.174	-1.252	-1.122
72	-1.035	-1.036	-1.052	-1.212	-1.085
73	-1.077	-1.075	-1.111	-1.304	-1.097
74	-1.024	-1.021	-1.025	-1.205	-1.049
75	-1.079	-1.070	-1.103	-1.285	-1.101
76	-1.047	-1.045	-1.042	-1.264	-1.099
77	-1.237	-1.182	-1.239	-1.466	-1.236
78	-1.114	-1.081	-1.153	-1.261	-1.123
79	-1.019	-1.016	-1.092	-1.152	-1.007
80	707	709	804	763	696
81	364	386	481	424	365
82	023	044	131	056	027
83	.340	.319	.235	.317	.308
84	.507	.490	.431	.477	.475

Figure 17 (continued) – Pressure Coefficients $lpha=50^{\circ},\,\phi_{j}=120^{\circ},\,C_{\mu}=.02$

Pressure		Blo	wing No		
Port	1	2	3	4	5
1	.801	.782	.790	.799	.773
2	.624	.657	.656	.630	.631
3	.566	.284	.287	.219	.274
4	324	243	253	336	253
5	919	932	962	-1.057	946
6	-1.505	-1.394	-1.432	-1.485	-1.385
7	-1.821	-1.690	-1.829	-1.782	-1.717
8	-1.838	-1.719	-1.848	-1.787	-1.732
9	-1.855	-1.748	-1.867	-1.792	-1.746
10	-1.574	-1.472	-1.569	-1.447	-1.410
11	945	891	-1.016	89 3	-1.046
12	363	339	441	442	414
13	793	704	763	702	782
14	-1.266	-1.074	-1.139	-1.378	-1.276
15	-1.380	-1.606	-1.493	-1.464	-1.371
16	-1.504	-1.460	-1.420	-1.570	-1.460
17	-1.547	-1.664	-1.570	-1.621	-1.501
18	-1.488	-1.550	-1.446	-1.569	-1.421
19	-1.719	-1.767	-1.689	-1.773	-1.657
20	-1.402	-1.486	-1.412	-1.448	-1.370
21	-1.125	-1.181	-1.153	-1.136	-1.113
22	502	559	534	483	502
23	.123	.066	.075	.123	.080
24	.515	.486	.499	.531	.484
25	.669	.634	.655	.663	.635
26	.548	.564	.559	.537	.540
27	.192	.253	.241	.205	.237
28	329	240	275	319	255
29	-1.017	860	951	986	883
30	-1.404	-1. 263	-1.380	-1.380	-1.276
31	-1.717	-1.528	-1.708	-1.627	-1.611
32	-1.609	-1.475	-1.611	-1.567	-1.505
33	-1.762	-1.578	-1.760	-1.684	-1.648
34	-1.476	-1.354	-1.543	-1.454	-1.389
35	-1.184	-1.104	-1.233	-1.188	-1.127
36	879	799	940	907	862
37	653	593	665	657	631
38	-1.304	-1.164	-1.180	-1.267	-1.173
39	-1.403	-1.480	-1.367	-1.569	-1.351
40	-1.319	-1.332	-1.247	-1.338	-1.240
41	-1.386	-1.486	-1.379	-1.447	-1.346
42	-1.192	-1. 296	-1.194	-1.277	-1.161

Figure 18 – Pressure Coefficients $\alpha = 50^{\circ}, \, \phi_j = 150^{\circ}, \, C_{\mu} = .01$

1 13				1	
Pressure	· ·	Blov	ving Noz	zle	
Port	1	2	3	4	5
$-\frac{1}{43}$	-1.404	-1.495	-1.365	-1.492	-1.353
44	-1.263	-1.380	-1.282	-1.324	-1.247
45	-1.058	-1.146	-1.075	-1.115	-1.059
46	575	679	631	634	612
47	003	072	046	035	069
48	.378	.330	.345	.341	.313
49	.605	.592	.602	.599	.573
50	.607	.613	.612	.607	.600
51	.372	.409	.402	.372	.381
52	.077	.148	.118	.082	.122
53	298	208	243	280	233
54	863	703	796	819	738
55	-1.162	-1.015	-1.114	-1.103	-1.034
56	-1.635	-1.413	-1.580	-1.555	-1.483
57	-1.670	-1.474	-1.665	-1.574	-1.534
58	-1.750	-1.504	-1.783	-1.618	-1.499
59	-1.600	-1.414	-1.623	-1.500	-1.499
60	-1.680	-1.447	-1.695	-1.567	-1.488
61	-1.605	-1.432	-1.616	-1.522	-1.400
62	-1.769	-1.549	-1.772	-1.695	-1.540
63	-1.641	-1.452	-1.681	-1.564	-1.353
64	-1.481	-1.321	-1.583	-1.486	970
65	-1.045	950	-1.106	-1.007	896
66	957	804	914	936	732
67	766	664	781	787	798
68	950	946	949	-1.087 791	968
69	795	690	843	-1.314	-1.135
70	-1.101	-1.237	-1.217	-1.043	-1.034
71	942	-1.037	-1.009	-1.045	-1.089
72	-1.066	-1.243	-1.068	-1.205	993
73	977	-1.147	983	-1.108	-1.011
74	-1.013	-1.158	989	-1.108	946
75	948	-1.099	934	-1.148	-1.030
76	-1.039	-1.182	989	-1.146	-1.073
77	-1.076	-1.229	-1.042	-1.174	-1.106
78	-1.103	-1.236	-1.096	939	892
79	871	-1.006	890	659	659
80	627	745	661	295	311
81	271	383	317	.064	.009
82	.068	022	.030	.318	.259
83	.322	.255	.297	.584	.544
84	.584	.537	.556	.504	.011

Figure 18 (continued) – Pressure Coefficients $\alpha = 50^{\circ}, \ \phi_{j} = 150^{\circ}, \ C_{\mu} = .01$

	1	sure				В	lowi	ng N	Vozzl	e			
	Po			1		2	\top	3		4	\top	5	_
	1		1	.790	i	.79	5	.79	7	.790	, -	.77	9
	2		f	.636		.63	5	.664	1	.642	: .	.649	9
	3			607		.288		.274	L∫ .	.273		276	6
	4		1	307		252		.277	1	270	1	243	3
	5		1	871		987		.998		934		939)
	6			480	-	398		488		363	-1.	382	:
	7			778	1	770		874	-1.	708	-1.	727	7
	8		-1.8			792	1	897	-1.	701	-1.1	739	
	9		-1.8		——	814	+	921	-1.0	694	-1.7	751	
	10	- [-1.6		-1.5		1	802	-1.3	343	-1.7	'90	7
	11		-1.0		-1.1		-1.4		-1.0	75	-1.3	15	1
	12		2			36		11		27	3	52	
	14	- 1	7	- 1		23		68	7		8	96	1
	15	- 1	-1.1	1	-1.0		-1.1		-1.3	- 1	-1.2	51	
	16	-	-1.5: -1.5:		-1.6	!	-1.4		-1.6		-1.4	61	
	17	1 -		i	-1.4		-1.4		-1.6	- 1	-1.48	- 1	
	18	- 1	-1.66 -1.60	- 1	-1.7	- 1	-1.5	- 1	-1.79	- 1	-1.55	- 1	
	19		-1.81		-1.53 -1.82		-1.49		-1.76		-1.47		
	20	- 1	1.50	- 1	-1.62 -1.46	- 1	-1.70	- 1	-1.95	- 1	-1.69	- 1	
	21		1.18	- 1	-1.22	- 1	-1.45 -1.15	- 1	-1.62	- 1	-1.41		
	22	+	54		55		54		-1.26		-1.14		
	23	-	.079	- 1	.05			- 1	58	- 1	51	- 1	
	24	- [.490		.47		.08 .50	- 1	.05	- 1	.069	- 1	
	25		.649		.65		.65		.48		.486	_	
I	26		.555	,	.546	- 1	.569	- 1	.635	- 1	.634	- 1	
	27		.220		.255	- 1	.241		.566	- 1	.557	1	
r	28	 	.293		241		281		.254 233		.250	. 1	
	29	- 1	.953	- 1	931	- 1	261 946	- 1	233 840	- 1	234		
	30	1	.352		.293	- 1	401		040 1.213		881		
	31	-1.	622		.603	_	.751	-	.394		.614	4	
	32	-1.	547	ı	.470		.667		.387	1	.513		
	33	-1.	683	1	.656		.794		.469	1	.662		
	34	-1.	207		.208	+	.395	_	.304	+	.227	1	
	35	-1.	211	ı	239	ł	.312		.044	1	.229		
	36	9	325	١.	851		.057	ı	.822	ı	009		
	37	6	26		620		665	-	584		643		
	38	-1.1	67		156		225	ľ	433		207		
	39	-1.5	43		578		521		508		492		
	40	-1.2	97	-1.			298		581	-1.			
	41	-1.5	13	-1.5	I		447		610	-1.4			
	42	-1.2	80	-1.2			214	-1.		-1.2			
								~		-1.4	.14		

Figure 19 - Pressure Coefficients $\alpha = 50^{\circ}, \, \phi_j = 150^{\circ}, \, C_{\mu} = .02$

Pressure		Blowing Nozzie								
Port	1 1	2	3	4						
43	-1.501	-1.523	-1.362	-1.724	-1.390					
44	-1.356	-1.344	-1.296	-1.531	-1.288					
45	-1.140	-1.183	-1.073	-1.279	-1.091					
	663	681	632	747	649					
46 47	046	08 9	045	134	068					
48	.350	.312	.351	.297	.324					
49	.605	.577	.606	.596	.587					
50	.609	.625	.614	.618	.609					
	.396	.395	.405	.418	.409					
$\frac{51}{52}$.108	.131	.122	.147	.126					
	252	225	245	195	229					
5 3	780	737	801	686	737					
54	-1.079	-1.015	-1.141	967	-1.042					
55 56	-1.518	-1.472	-1.609	-1.337	-1.482					
5 6 57	-1.560	-1.483	-1.722	-1.333	-1.549					
	-1.606	-1.588	-1.839	-1.344	-1.640					
58	-1.492	-1.423			-1.501					
59 60	-1.554	-1.519	-1.740	-1.326						
61	-1.530	-1.440	-1.682		ايمما					
62	-1.684	1 .	-1.850	4						
63	-1.374		-1.610							
64	-1.101		-1.271							
65	799		992							
66	743									
67	657		770	708						
68	-1.010									
69	655		473							
	-1.280		4 -1.33		1					
70	-1.014	I	999							
71 72	-1.25	- 1								
73	-1.12	1 10	2 -1.01	~ I						
74	-1.15		0 99	l l						
75	-1.08		194							
76	-1.18			1	1					
77	-1.21		8 -1.05							
78	-1.21									
79	98									
80	70				1					
81	33									
82	.01									
83	.29		67 .29	- I _	.264					
1	I		50 .5	56 .54	.544					
84	.50	52 .5	50 .5	.5.						

Figure 19 (continued) – Pressure Coefficients $\alpha = 50^{\circ}, \, \phi_j = 150^{\circ}, \, C_{\mu} = .02$

Pressure	Blowing Nozzle									
Port	1	1 2	3	1 4	5					
1	.828	.854			_i					
2	.689	.661	.720	.753	.733					
3	.272	.190	.313	.406	.366					
4	408	534		268	273					
5	-1.088	-1.258		4	913					
6	971	-1.129	-1.058	928	910					
7	-1.211	-1.476	-1.339	-1.282	-1.174					
8	-1.091	-1.274	-1.174	-1.108	-1.039					
9	-1.102	-1.323	-1.283	-1.365	-1.071					
10	886	-1.175	993	875	891					
11	828	9 62	824	844	755					
12	708	9 35	725	687	709					
13	-1.083	-1.353	-1.065	-1.122	-1.004					
14	-1.844	-1.916	-1.856	-1.916	-1.818					
15	-1.975	-1.990	-2.010	-2.155	-1.990					
16	-2.125	-1.969	-2.093	-2.127	-2.133					
17	-2.175	-1.943	-2.121	-2.228	-2.154					
18	-2.111	-1.786	-2.007	-2.042	-2.060					
19	-2.385	-2.074	-2.307	-2.387	-2.379					
20	-2.034	-1.745	-2.003	-2.078	-2.075					
21	-1.672	-1.440	-1.659	-1.792	-1.763					
22	889	710	904	-1.006	-1.012					
23	094	.030	123	244	212					
24	.460	.528	.440	.377	.387					
25	.750	.778	.758	.737	.725					
26	.648	.61 6	.664	.692	.674					
27	.246	.199	.292	.371	.332					
28	340	413	302	206	235					
29	-1.163	-1.297	-1.146	-1.008	985					
30	-1.586	-1.733	-1.613	-1.475	-1.447					
31	-1.840	-2.079	-1.923	-1.777	-1.724					
32	-1.710	-1.900	-1.787	-1.663	-1.616					
33	-1.917	-2.159	-2.011	-1.911	-1.848					
34	-1.949	-2.289	-2.185	-2.052	-1.974					
35	923	-1.033 -1.349	-1.016	-1.081	950					
36	-1.165 -1.280	-1.349	-1.304	-1.264 -1.246	-1.228					
37	-1.280	-1.242 -1.575	-1.182	-1.329	-1.215					
38 39	-1.402	-1.513	-1.379	-1.329	-1.540					
		-1.513	-1.489	-1.488	-1.598					
40	-1.607 -1.629	-1.436	-1.489	-1.488	-1.598					
41	-1.582	-1.430	-1.531	-1.518	-1.574					
42	-1.552	-1.299	-1.441	-1.010	-1.5/4					

Figure 20 - Pressure Coefficients $\alpha=60^{\circ},\,\phi_{j}=90^{\circ},\,C_{\mu}=.01$

Pressure	Blowing Nozzle									
Port	1	2	3	4	5					
43	-1.803	-1.466	-1.604	-1.652	-1.738					
	-1.663	-1.397	-1.580	-1.633	-1.688					
44	-1.410	-1.167	-1.337	-1.427	-1.441					
45	820	657	822	910	921					
46	099	011	130	204	210					
47 48	.401	.434	.367	.334	.311					
49	.782	.775	.776	.764	.764					
	.757	.742	.778	.809	.784					
50 51	.491	.444	.537	.578	.559					
$\frac{51}{52}$.111	.044	.153	.265	.224					
	303	384	266	144	173					
53	918	-1.011	838	708	760					
54	-1.296	-1.382	-1.232	-1.104	-1.148					
55	-1.780	-1.920	-1.741	-1.641	-1.617					
56 57	-1.864	-2.005	-1.875	-1.775	-1.767					
57	-1.806	-2.043	-1.861	-1.765	-1.708					
58	-1.783	-1.942	-1.821	-1.704	-1.681					
5 9	-1.787	-2.061	-1.892	-1.815	-1.726					
60	-1.666	-1.878	-1.768	-1.661	-1.588					
61	-1.895	-1.978	-1.860	-1.782	-1.738					
62	-1.668	-1.834	-1.718	-1.655	-1.887					
63	-2.015	-2.316	-2.254	-2.313	-2.235					
64	-1.083	-1.214	-1.473	-1.665	-1.427					
65	-1.305	-1.324	-1.240	-1.221	-1.237					
66		-1.191	-1.224	-1.222	-1.242					
67	-1.241	-1.131	-1.191	-1.178	-1.265					
68	-1.331	-1.125	-1.122	-1.078	-1.180					
69		-1.053	-1.071	-1.096	-1.138					
70	-1.200	914	977	978	-1.014					
71	-1.053 -1.072	905	995	990	-1.071					
72	-1.072	852	952	942	-1.012					
73	-1.003	877	951	988	-1.014					
74	1	807	893	915	962					
75	962	848	921	972	977					
76	992	869	929	960	995					
77	-1.021	973	-1.053	-1.123	-1.126					
78	933	806	909	969	976					
79	688	589	691	789	760					
80	316	244	342	430	407					
81		.176	.072	025	.018					
82	.099	.460	.389	.309	.347					
83	.417	.782	.729	.689	.692					
84	.757	.102	1 .125	1						

Figure 20 (continued) – Pressure Coefficients $\alpha = 60^{\circ}, \ \phi_j = 90^{\circ}, \ C_{\mu} = .01$

	Press	ure				Bl	owing	, No	ozzle			
	Por	t	1		1 :	2				4	1	5
	1		.8	19	1.	339	3.	323		803		803
	2		.6	71	.6	351] .7	707	1	762	1	734
	3		2	31	2	223	.3	31	.4	180	-	394
	4		4	18	4	90	3	12	1	30	2	212
	5		-1.0		-1.2		9	955		739		317
	6		9		-1.049		791		6	95	7	28
	7		-1.1		-1.1		-1.0		9	95	9	96
	8		-1.0		-1.0		9	11	8	69	9	33
	9		-1.7		-1.9		-1.6	93	9	37	-1.7	04
	10	- 1	-1.19	- 1	-1.2	- 1	-1.0	- 1	8	31	-1.1	16
	11	- 1	-1.28		-1.4		-1.2		74	40	-1.2	83
	12	_	98		-1.06		87		70		9	26
	13		-1.27	- 1	-1.41	- 1	-1.20	- 1	-1.16	- 1	-1.1	15
	14	ı	-2.01	- 1	-1.93	- 1	-1.99		-1.80	- 1	-1.91	4
	15		-2.03		-1.94		-2.15		-2.05		-1.98	
	16		-2.13	- 1	-1.98	- 1	-2.13	- 1	-2.18		-2.15	
	17	- 1	2.06	- 1	-1.99	- 1	-2.16	- 1	-2.32		-2.13	
	18		1.94	_	-1.84		-1.96		-2.20		-2.04	
	19 20		2.23	- 1	-2.07		-2.30	. i	-2.59		-2.30	,
	20	ı	1.93	- 1	-1.76	- 1	-1.94	- 1	-2.22	- 1	-2.04	- 1
	22	- -	1.581		1.460		1.69		1.95	_	-1.72	_
	22 2 3	ı	851		745	- 1	908		1.12	- 1	-1.000	- 1
	23 24	-	053	- 1	.014	- 1	147		329	- 1	213	- 1
ŀ	25	+	.473	_	.510		.415		.314		.383	
l	25 26		.752		.757	ı	.745	- 1	.717	- 1	.725	- 1
	26 27		.628 .236		.607	- 1	.648		.694	- 1	.670	- [
ŀ	28	+-	.349	+-	.184		.308		.392		.340	
	29	- 1	.132		4 <mark>34</mark> L.278	- 1	258	•	157	- 1	212	1
	30	- 1	.558		1.716	ſ	1.080		947		973	ı
-	31		.857		.930	→—	.809		1.401	_	1.438	4
	32	J	.691	ı	.741	1 -	584		.727	1	1.668	
	33	,	.933	ł	.967		.903	i	.528		1.519	
_	34		195	_	.224		.360	+	.865	-	.789	4
	35		981		.998	ł	.300 .951	1	.856 .014	1	.143	
	36	1	828		.804	1	.845	1	.264	1	.860	
	37	1-	203		191	_	128	_	.412		.738	-
	38	1	530		591		410		.412 .51 3	(.048	
	39	ı	591		560		552		695	ı	.382	
	40		626		528		517		631		.525	
	41		572		508		533		706		593	
	42	-1.4			398		มมม 484 ¦		575		649	
					-55	- 1.	*U-T	-1.	010	-1.	582	

Figure 21 – Pressure Coefficients $\alpha=60^{\circ},\,\phi_j=90^{\circ},\,C_{\mu}=.02$

			. NT.	<u>, , , , , , , , , , , , , , , , , , , </u>	
Pressure			wing No	4 4	5
Port	1	2	3		-1.758
43	-1.673	-1.588	-1.718	-1.770	-1.720
44	-1.593	-1.491	-1.612	-1.712	-1.461
45	-1.350	-1.225	-1.419	-1.513	950
46	805	716	850	967	1
47	101	035	161	266	217 .308
48	.385	.413	.343	.283	
49	.774	.763	.752	.756	.769 .774
50	.739	.733	.779	.821	
51	.476	.458	.511	.592	.553
52	.084	.037	.178	.280	.202
53	337´	387	237	125	206
54	930	990	843	692	755
55	-1.317	-1.369	-1.211	-1.082	-1.158
56	-1.807	-1.904	-1.738	-1.497	-1.651
57	-1.905	-2.010	-1.822	-1.593	-1.819
58	-1.854	-1.982	-1.900	-1.606	-1.821
59	-1.805	-1.902	-1.766	-1.557	-1.742
60	-1.819	-2.020	-1.946	-1.775	-1.766
61	-1.712	-1.846	-1.852	-1.644	-1.730
62	-1.872	-2.048	-1.942	-1.772	-1.861
63	-1.751	-1.887	-1.796	-1.690	-2.074
64	-1.659	-1.674	-1.807	-1.719	-1.574
65	968	-1.039	-1.028	-1.532	-1.063
66	-1.228	-1.179	-1.237	-1.416	-1.150
67	-1.207	-1.149	-1.138	-1.426	-1.151
68	-1.386	-1.374	-1.324	-1.412	-1.275
69	-1.209	-1.216	-1.152	-1.264	-1.157
70	-1.180	-1.124	-1.165	-1.216	-1.200
71	-1.044	976	-1.006	-1.068	-1.068
72	-1.034	948	-1.080	-1.071	-1.122
73	990	905	-1.005	-1.012	-1.076
74	-1.006	-1.011	-1.064	-1.040	-1.104
75	951	944	968	942	-1.054
76	-1.023	982	-1.039	983	-1.088
77	-1.085	-1.039	-1.031	937	-1.123
78	-1.126	-1.037	-1.167	-1.135	-1.218
79	954	861	966	975	-1.059
80	687	620	764	822	817
81	317	267	375	449	449
82	.102	.156	.028	042	015
83	.421	.441	.351	.305	.334
1	.737	.760	.725	.687	.689
84	.101		1		1

Figure 21 (continued) – Pressure Coefficients $\alpha=60^{\circ},\ \phi_{j}=90^{\circ},\ C_{\mu}=.02$

Pressure		Blo	wing No	zzle	
Port	1	2	3	4	5
1	.786	.801	.830	.817	.749
2	.459	.673	.423	.439	.747
3	.301	.615	.342	.331	.477
4	367	.020	347	332	074
5	991	718	-1.030	996	710
6	-1.134	-1.002	-1.186	-1.142	917
7	-1.276	-1.287	-1.342	-1.288	-1.124
8	-1.303	-1.421	-1.287	-1.224	859
9	-1.258	-1.368	-1.355	-1.278	916
10	-1.419	-1.398	-1.420	-1.314	878
11	-1.502	-1.502	-1.611	-1.508	-1.275
12	-1.367	-1.470	-1.334	-1.292	-1.232
13	-1.924	-1.214	-2.089	-2.025	-1.207
14	-2.888	-2.961	-2.668	-2.752	-2.491
15	-2.925	-2.593	-2.976	-3.011	-2.306
16	-3.214	-3.247	-2.993	-3.061	-2.716
17	-3.194	-3.050	-3.277	-3.282	-2.691
18	-2.763	-3.127	-2.634	-2.621	-2.747
19	-3.360	-3.420	-3.443	-3.470	-2.970
20	-3.257	-3.200	-3.072	-3.082	-2.551
21	-2.089	-2.506	-2.039	-2.146	-2.098
22	-2.640	-2.244	-2.462	-2.533	-1.276
23	102	613	.354	106	392
24	082	149	.652	121	.264
25	.911	.757	1.002	.939	.632
26	.816	.930	.796	.751	.693
27	.442	.676	.498	.453	.505
28	095	.218	105	115	.063
29	640	373	596	621	431
30	684	677	633	652	604
31	824	746	814	823	700
32	787	859	747	755	717
33	797	819	794	805	853
34	799	840	779	775	812
35	912	88 3	921	906	815
36	-1.031	944	894	-1.007	840
37	-2.395	-1.420	-2.426	-2.375	-1.440
38	-2.132	-2.555	-2.146	-2.011	-2.314
39	-2.921	-2.280	-2.913	-2.712	-2.173
40	-2.818	-2.938	-2.629	-2.503	-2.559
41	-2.998	-2.843	-3.081	-2.964	-2.553
42	-3.132	-2.892	-2.940	-2.831	-2.562

Figure 22 - Pressure Coefficients $\alpha=60^{\circ},\,\phi_j=120^{\circ},\,C_{\mu}=.00$

Pressure		Blo	wing No	zzle	
Port	1	2	3	4	5
43	-3.168	-3.133	-3.370	-3.345	-2.832
44	-2.718	-2.950	-2.688	-2.657	-2.515
45	-2.155	-2.571	-2.257	-2.160	-2.140
46	-1.196	-1.767	-1.194	-1.119	-1.375
47	234	691	198	217	563
48	.470	.150	.435	.439	.099
49	.862	.737	.918	.877	.735
50	.872	.935	.794	.794	.739
51	.642	.836	.691	.670	.659
52	.295	.602	.258	.274	.404
5 3	162	.227	127	124	.125
54	505	121	475	450	178
55	765	573	758	764	568
56	713	713	691	671	619
57	647	623	619	691	601
58	729	70 3	628	717	588
59	579	563	592	645	574
60	754	731	694	789	577
61	716	744	693	819	614
62	610	636	573	644	624
63	966	840	914	947	763
64	-1.010	828	883	915	859
65	-1.577	-1.229	-1.450	-1.605	863
66	-1.662	-1.495	-1.747	-1.577	-1.158
67	-2.043	-1.972	-2.158	-1.952	-1.606
68	-2.066	-2.320	-1.985	-1.796	-1.573
69	-2.085	-2.028	-2.399	-2.198	-2.042
70	-2.107	-2.147	-2.236	-2.021	-2.007
71	-2.433	-2.199	-2.318	-2.078	-2.026
72	-2.477	-2.291	-2.176	-1.927	-2.071
73	-2.131	-2.235	-2.630	-2.232	-2.163
74	-2.009	-2.210	-2.347	-2.027	-2.023
75	-2.655	-2.220	-2.551	-2.016	-1.969
76	-2.704	-2.300	-2.436	-1.946	-1.982
77	-2.504	-2.659	-2.698	-2.448	-2.431
78	-2.180	-2.495	-2.155	-2.006	-2.157
79	-1.714	-2.128	-1.798	-1.670	-1.902
80	-1.174	-1.693	-1.117	-1.035	-1.411
81	325	711	363	331	873
82	.093	431	.029	.061	347
83	.484	.174	.501	.511	.152
84	.8 33	.6 03	.775	.773	.463

Figure 22 (continued) – Pressure Coefficients $lpha=60^{\circ},\,\phi_{j}=120^{\circ},\,C_{\mu}=.00$

Pressure	T	Blo	wing No	zzle	
Port	1	2	3	4	5
1	.387	.858	.808	.823	.830
2	.677	.691	.739	.706	.708
3	.072	.285	.410	.273	.307
4	451	428	266	400	348
5	-1.305	-1.305	-1.081	-1.206	-1.063
6	-1.665	-1.687	-1.485	-1.474	-1.345
7	-2.026	-2.068	-1.889	-1.742	-1.627
8	-1.525	-1.514	-1.346	-1.371	-1.248
9	-1.405	-1.436	-1.415	-1.257	-1.114
10	958	-1.011	694	723	636
11	-1.274	-1.325	-1.214	-1.021	918
12	936	944	715	695	675
13	-1.116	-1.164	909	-1.067	997
14	-1.844	-1.857	-1.860	-1.941	-1.868
15	-1.850	-1.909	-2.089	-2.040	-1.973
16	-1.939	-1.946	-2.077	-2.185	-2.114
17	-1.882	-1.939	-2.123	-2.159	-2.074
18	-1.754	-1.763	-1.912	-2.094	-1.988
19	-2.013	-2.074	-2.223	-2.365	-2.260
20	-1.769	-1.756	-1.954	-2.025	-1.939
21	-1.424	-1.474	-1.672	-1.603	-1.556
22	788	783	982	885	852
23	049	038	231	065	.220
24	.461	.469	.345	.481	.731
25	.747	.783	.741	.757	.729
26	.652	.664	.692	.663	.659
27	.266	.305	.417	.277	.294
28	373	337	194	357	301
29	-1.209	-1.186	988	-1.118	-1.026
30	-1.658	-1.606	-1.453	-1.520	-1.433
31	-1.966	-2.024	-1.863	-1.679	-1.623
32	-1.919	-1.902	-1.768	-1.714	-1.631
33	-2.108	-2.126	-1.973	-1.813	-1.751
34	-2.212	-2.174	-2.027	-1.897	-1.864
35	-1.321	-1.351	-1.444	-1.157	-1.044
36	-1.264	-1.233	-1.181	-1.148	-1.111
37	978	959	-1.074	-1.213	-1.136
38	-1.366	-1.419	-1.332	-1.372	-1.306
39	-1.303	-1.415	-1.412	-1.530	-1.445
40	-1.340	-1.375	-1.449	-1.596	-1.511
41	-1.376	-1.460	-1.548	-1.647	-1.592
42	-1.273	-1.280	-1.433	-1.601	-1.540

Figure 23 – Pressure Coefficients $\alpha=60^{\circ},\,\phi_j=120^{\circ},\,C_{\mu}=.01$

Pressure		Blo	wing No	zzle	
Port	1	2	3	4	5
43	-1.397	-1.460	-1.570	-1.797	-1.720
44	-1.418	-1.446	-1.591	-1.717	-1.666
45	-1.184	-1.237	-1.416	-1.409	-1.356
46	698	720	915	838	825
47	098	074	270	144	130
48	.383	.401	.265	.376	.366
49	.822	.851	.815	.834	.803
50	.725	.729	.755	.739	.726
51	.526	.550	.640	.520	.521
52	.163	.178	.300	.169	.181
5 3	336	318	179	356	309
54	773	748	612	785	735
55	-1.373	-1.409	-1.216	-1.340	-1.247
56	-1.616	-1.627	-1.476	-1.587	-1.500
57	-1.970	-1.953	-1.885	-1.812	-1.780
58	-1.815	-1.760	-1.742	-1.680	-1.646
59	-1.878	-1.930	-1.8 34	-1.736	-1.697
60	-1.752	-1.767	-1.687	-1.661	-1.652
61	-1.909	-1.949	-1.802	-1.861	-1.830
62	-1.783	-1.751	-1.664	-1.926	-1.871
63	-2.000	-2.350	-2.103	-2.465	-2.351
64	-2.068	-2.322	-2.310	-2.370	-2.249
65	-1.660	-1.813	-2.161	-1.512	-2.210
66	-2.106	-2.421	-2.384	-2.434	-2.427
67	-1.157	-1.161	-1.240	-1.180	-1.387
68	-1.370	-1.431	-1.444	-1.564	-1.554
69	-1.117	-1.137	-1.168	-1.211	-1.159
70	-1.013	-1.007	-1.051	-1.193	-1.118
71	996	-1.00 2	-1.077	-1.123	-1.058
72	881	891	957	-1.095	-1.046
73	921	974	-1.088	-1.115	-1.074
74	839	870	997	-1.062	-1.045
75	865	938	-1.031	-1.097	-1.034
76	818	856	948	-1.051	994
77	910	950	-1.036	-1.204	-1.139
78	955	974	-1.070	-1.177	-1.124
79	881	934	-1.057	-1.052	-1.013
80	643	654	789	759	729
81	289	326	471	333	345
82	.076	.050	075	.057	.046
83	.460	.456	.339	.464	.438
84	.657	.641	.576	.670	.649

Figure 23 (continued) – Pressure Coefficients $\alpha=60^{\circ}, \ \phi_{j}=120^{\circ}, \ C_{\mu}=.01$

7		Blowing Nozzle					
Pressure	1	2	3	4	5		
Port	.368	.834	.795	.819	.826		
1	.660	.688	.748	.720	.675		
2	.067	.266	.395	.320	.280		
3	463	449	266	324	391		
4	-1.294	-1.315	-1.050	-1.030	-1.167		
5	-1.609	-1.681	-1.413	-1.267	-1.439		
$\frac{6}{7}$	-1.925	-2.047	-1.776	-1.504	-1.710		
	-1.504	-1.580	-1.345	-1.159	-1.334		
8	-1.276	-1.376	-1.206	949	-1.189		
9	-1.359	-1.650	-1.451	799	-1.187		
10	-1.369	-1.531	-1.361	911	-1.276		
11	-1.130	-1.249	-1.121	723	984		
12	-1.181	-1.347	-1.001	-1.210	-1.117		
13	-1.923	-1.872	-1.900	-1.804	-1.916		
14	-1.871	-1.908	-2.011	-1.972	-2.111		
15	-1.960	-1.928	-2.075	-2.227	-2.049		
16	-1.886	-1.876	-2.053	-2.280	-2.101		
17	-1.749	-1.716	-1.915	-2.285	-1.889		
18	-2.020	-2.068	-2.171	-2.587	-2.219		
19	-1.766	-1.784	-1.970		-1.849		
20	-1.422	-1.438	-1.641		-1.530		
21	764	768					
22	051	033	1	. 142			
23	.449	.480		.443			
24	.741	.771		.774			
25	.642	1		.668			
26	.265						
27	360			288			
28	-1.154						
29	-1.600	'		5 -1.441			
30		0.00		7 -1.65			
31	-1.961		1				
32	-2.030		- I		-1.859		
33	-1.919	_					
34	-1.12	1 .	* I	1	3 -1.067		
35	-1.09	1			8864		
36	-1.03						
37	-1.54	` I	_	i			
38	-1.45	1 .	-	1			
39	-1.43						
40		_ i	- 1	1			
41	-1.46		_	1			
42	-1.31	4 -1.30					

Figure 24 – Pressure Coefficients $\alpha=60^{\circ}, \, \phi_j=120^{\circ}, \, C_{\mu}=.02$

178; 178; 186	Blowing Nozzle						
Pressure			3	4	- 5		
Port	1 150	2	-1.566	-1.889	-1.699		
43	-1.452	-1.388	-1.638	-1.778	-1.605		
44	-1.459	-1.419	-1.416	-1.472	-1.363		
45	-1.224	-1.183	949	899	793		
46	752	711	284	148	120		
47	101	070 .399	.270	.371	.374		
48	.379	.827	.795	.833	.819		
49	.813	.730	.768	.748	.699		
50	.715	.518	.616	.533	.526		
51	.514	.149	.290	.182	.160		
52	.151	340	154	363	331		
53	361	791	593	797	753		
54	790		-1.216	-1.338	-1.356		
55	-1.370	-1.464 -1.731	-1.518	-1.582	-1.568		
56	-1.622	-2.088	-1.935	-1.906	-1.929		
57	-1.976	-1.915	-1.863	-1.738	-1.730		
58	-1.801	-1.915	-1.820	-1.800	-1.782		
59	-1.929	-1.838	-1.743	-1.738	-1.640		
60	-1.786	-2.033	-1.838	-1.832	-1.913		
61	-1.889	-2.033	-1.864	-1.913	-1.947		
62	-1.746	-2.466	-2.304	-2.433	-2.414		
63	-2.197	-2.230	-2.131	-2.151	-1.557		
64	-2.068	;	-2.131	-2.197	-2.033		
65	-1.289	-1.454	-2.180	-2.223	-1.552		
66	-2.064	-2.269	-1.348	-1.383	-1.172		
67	-1.091	-1.125 -1.431	-1.528	-1.617	-1.334		
68	-1.368	l	-1.228	-1.295	-1.241		
69	-1.156	-1.208	-1.141	-1.220	-1.132		
70	-1.018	-1.060	-1.141	-1.138	-1.133		
71	991	-1.031	-1.103	-1.075	-1.058		
72	899	882		-1.082	-1.138		
73	981	949	-1.087 -1.054	-1.035	-1.051		
74	914	873	-1.090	-1.058	-1.121		
75	957	985	-1.037	-1.002	-1.044		
76	888	911	-1.127	-1.153	-1.231		
77	-1.029	-1.040	-1.127	-1.126	-1.152		
78	-1.027	-1.052	-1.102	-1.031	-1.084		
79	941	930	-1.102	734	751		
80	668	659	494	326	372		
81	332	306	494	.078	.025		
82	.039	.073	.335	.473	.448		
83	.433	.461	.591	.682	.632		
84	.631	.658	.591	.002	.002		

Figure 24 (continued) – Pressure Coefficients $\alpha=60^{\circ},\,\phi_{j}=120^{\circ},\,C_{\mu}=.02$

, jî

Pressure		Blow	ing Noz	zle	
Port	1	2	3	4	5
1	.852	.859	.851	.857	.841
2	.612	.656	.655	.638	.650
3	.610	.123	.143	.078	.142
4	648	554	545	598	517
5	-1.343	-1.485	-1.488	-1.515	-1.434
6	-2.076	-1.981	-2.033	-1.994	-1.934
7	-2.465	-2.344	-2.446	-2.279	-2.267
8	-2.506	-2.381	-2.473	-2.319	-2.313
9	-2.548	-2.418	-2.500	-2.360	-2.359
10	-1.867	-1.884	-1.939	-1.941	-1.784
11	-1.240	-1.109	-1.188	946	-1.162
12	542	443	599	496	545
13	-1.196	962	990	866	948
14	-1.807	-1.826	-1.746	-2.009	-1.888
15	-1.752	-1.930	-1.821	-1.845	-1.751
16	-1.840	-1.933	-1.852	-2.061	-1.887
17	-1.784	-1.951	-1.860	-1.985	-1.851
1	-1.635	-1.756	-1.678	-1.862	-1.708
18	-1.926	-2.061	-1.972	-2.140	-1.993
l .	-1.601	-1.724	-1.678	-1.778	-1.693
20	-1.319	-1.430	-1.395	-1.433	-1.407
21	605	673	669	661	686
22	.102	.044	.037	.076	.026
23	.549	.535	.526	.559	.513
24	.795	.790	.781	.793	.769
25	.592	.622	.629	.618	.620
26	.101	.175	.184	.125	.181
27	575	480	483	541	461
28	-1.518	-1.361	-1.355	-1.402	-1.294
29	-2.008	-1.838	-1.883	-1.855	-1.777
30	-2.486	-2.214	-2.373	-2.098	-2.177
31	-2.480	-2.105	-2.221	-2.073	-2.068
32	-2.538	-2.304	-2.451		-2.271
33		-2.011	-2.162		-1.968
34	-2.214	-1.801	-1.968		-1.750
35	-2.007 -1.451	-1.293	-1.430	1	-1.267
36		-1.081	-1.271		-1.052
37	-1.425	l	-1.492		-1.492
38	-1.488	-1.530	-1.437		-1.385
39	-1.372		-1.299		-1.375
40	-1.219	1	1		-1.375
41	-1.236	1		1	-1.227
42	-1.062	-1.230	-1.102		

Figure 25 - Pressure Coefficients $\alpha = 60^{\circ}, \, \phi_j = 150^{\circ}, \, C_{\mu} = .01$

Pressure		Blo	wing No	zle	
Port	1	2	3	4	5
43	-1.185	-1.386	-1.262	-1.533	-1.351
44	-1.183	-1.364	-1.288	-1.458	-1.353
45	974	-1.132	-1.075	-1.190	-1.118
46	526	656	638	660	660
47	.109	005	.031	.028	.001
48	.497	.423	.452	.467	.424
49	.762	.765	.764	.781	.751
50	.726	.749	.757	.740	.740
51	.412	.439	.459	.433	.457
52	.017	.040	.088	.025	.081
53	455	439	384	449	376
54	-1.205	-1.146	-1.119	-1.150	-1.100
55	-1.591	-1.543	-1.535	-1.538	-1.491
56	-2.296	-2.162	-2.207	-2.074	-2.137
57	-2.374	-2.246	-2.330	-2.108	-2.220
58	-2.653	-2.431	-2.604	-2.161	-2.321
59	-2.341	-2.204	-2.335	-2.032	-2.110
60	-2.519	-2.298	-2.475	-2.142	-2.235
61	-2.311	-2.189	-2.326	-2.105	-2.128
62	-2.610	-2.398	-2.623	-2.273	-2.377
63	-2.601	-2.291	-2.440	-2.212	-2.254
64	-2.770	-2.519	-2.665	-2.537	-2.394
65	-2.300	-2.037	-2.267	-1.915	-1.853
66	-2.051	-1.754	-2.010	-1.493	-1.665
67	-1.532	-1.388	-1.540	-1.272	-1.345
68	-1.336	-1.283	-1.376	-1.325	-1.407
69	-1.277	-1.260	-1.344	-1.097	-1.395
70	935	-1.000	-1.011	-1.232	-1.144
71	829	926	919	-1.037	-1.015
72	695	844	794	-1.024	913
73	656	817	751	947	857
74	648	823	743	981	855
75	602	782	695	908	799
76	628	808	711	984	823
77	636	845	718	-1.035	855
78	747	949	841	-1.078	969
79	591	759	688	848	785
80	412	544	499	564	558
81	096	191	169	174	202
82	.259	.203	.195	.199	.164
83	.497	.467	.456	.475	.434
84	.779	.769	.761	.779	.736
07		<u> </u>			

Figure 25 (continued) – Pressure Coefficients $\alpha=60^{\circ},\ \phi_{j}=150^{\circ},\ C_{\mu}=.01$

Pressure		Blov	wing Noz	zle	
Port	1	2	3	4	5
1	.841	.846	.860	.829	.836
2	.643	.662	.645	.679	.658
3	.598	.105	.124	.157	.128
4	618	592	560	505	544
5	-1.294	-1.511	-1.554	-1.311	-1.438
6	-2.058	-2.103	-2.066	-1.833	-1.974
7	-2.331	-2.357	-2.535	-2.002	-2.308
8	-2.378	-2.394	-2.573	-2.076	-2.331
9	-2.424	-2.432	-2.611	-2.150	-2.353
10	-1.873	-2.046	-2.032	-1.670	-2.102
11	-1.296	-1.401	-1.655	-1.099	-1.483
12	338	396	453	577	442
13	-1.006	-1.069	-1.220	880	-1.084
14	-1.880	-1.884	-1.827	-2.143	-1.903
15	-2.011	-1.941	-1.904	-1.912	-1.790
16	-2.023	-2.043	-1.891	-2.316	-1.947
17	-2.018	-1.953	-1.898	-2.156	-1.878
18	-1.831	-1.829	-1.674	-2.170	-1.753
19	-2.100	-2.059	-2.009	-2.351	-2.034
20	-1.769	-1.784	-1.673	-2.055	-1.742
21	-1.428	-1.424	-1.418	-1.599	-1.428
22	692	704	666	824	702
23	.060	.048	.049	031	.026
24	.551	.552	.532	.518	.527
25	.779	.775	.786	.759	.770
26	.620	.635	.615	.668	.619
27	.142	.142	.160	.227	.169
28	512	532	513	383	487
29	-1.437	-1.411	-1.448	-1.175	-1.316
30	-1.945	-1.972	-1.958	-1.612	-1.832
31	-2.240	-2.258	-2.480	-1.700	-2.182
32	-2.195	-2.227	-2.272	-1.789	-2.116
33	-2.338	-2.346	-2.548	-1.818	-2.295
34	-1.894	-1.991	-2.105	-1.800	-1.877
35	-1.681	-1.742	-1.859	-1.451	-1.669
36	-1.325	-1.422	-1.521	-1.053	-1.415
37	905	-1.051	-1.195	947	953
38	-1.849	-1.756	-1.622	-1.868	-1.694
39	-1.428	-1.598	-1.565	-1.629	-1.579
40	-1.504	-1.550	-1.399	-1.906	-1.540
41	-1.425	-1.480	-1.411	-1.768	-1.486
42	-1.296	-1.296	-1.186	-1.705	-1.299

Figure 26 - Pressure Coefficients $\alpha = 60^{\circ}, \, \phi_j = 150^{\circ}, \, C_{\mu} = .02$

<u> </u>		Blowing Nozzle						
Pressure	1	2	3	4	5			
Port	1 -1.412	-1.384	-1.288	-1.881	-1.389			
43	-1.392	-1.401	-1.283	-1.788	-1.400			
44 45	-1.135	-1.110	-1.085	-1.448	-1.146			
46	654	641	627	900	681			
47	.028	.024	.035	116	022			
48	.467	.466	.446	.398	.417			
49	.779	.784	.752	.795	.758			
50	.718	.722	.750	.753	.732			
51	.420	.430	.428	.508	.450			
52	.001	.007	.028	.125	.048			
53	484	489	464	312	426			
54	-1.198	-1.188	-1.215	933	-1.121			
55	-1.628	-1.646	-1.615	-1.319	-1.545			
56	-2.224	-2.235	-2.351	-1.723	-2.130			
57	-2.346	-2.409	-2.449	-1.737	-2.241			
58	-2.476	-2.491	-2.787	-1.692	-2.355			
59	-2.292	-2.353	-2.439	-1.648	-2.182			
60	-2.374	-2.406	-2.649	-1.681	-2.265			
61	-2.322	-2.382	-2.441	-1.726	-2.198			
62	-2.487	-2.503	-2.753	-1.889	-2.395			
63	-2.317	-2.353	-2.486	-1.935	-2.243			
64	-2.225	-2.235	-2.498	-1.799	-2.049			
65	-1.655	-1.749	-1.831	-1.290	-1.538			
66	-1.633	-1.739	-1.747	-1.162	-1.509			
67	-1.383	-1.505	-1.542	-1.261	-1.286			
68	-1.335	-1.390	-1.542	-1.609	-1.377			
69	-1.436	-1.388	-1.477	-1.250	-1.471			
70	-1.046	-1.120	-1.140	-1.596	-1.196			
71	-1.018	-1.013	960	-1.346	-1.073			
72	904	8 93	832	-1.400	944			
73	881	879	763	-1.346	919			
74	883	853	774	-1.324	906			
75	843	826	712	-1.299	860			
76	864	815	740	-1.340	873			
77	929	890	740	-1.467	934			
78	998	960	883	-1.412	-1.014			
79	800	790	703	-1.187	830			
80	540	537	508	804	587			
81	176	188	172	380	226			
82	.197	.199	.201	.064	.156			
83	.479	.483	.452	.409	.436			
84	.757	.752	.765	.722	.737			

Figure 26 (continued) – Pressure Coefficients $\alpha=60^{\circ},\,\phi_{j}=150^{\circ},\,C_{\mu}=.02$

Pressure	Ţ	Blowing Nozzle				
Port	1	2	3	4	5	
1	.690	.682	.673	.671	.688	
2	.550	.532	.580	.556	.544	
3	.293	.257	.353	.277	.249	
4	168	207	094	174	214	
5	630	670	540	624	676	
6	789	805	758	653	648	
7	928	926	930	897	902	
8	754	776	781	776	773	
9	-1.135	-1.141	-1.101	-1.100	-1.126	
10	-1.071	-1.104	-1.048	-1.108	-1.099	
11	-1.376	-1.291	-1.322	-1.272	-1.186	
12	666	670	724	722	711	
13	755	760	665	663	678	
14	971	985	956	-1.059	-1.093	
15	-1.053	-1.047	-1.066	-1.077	-1.045	
16	-1.098	-1.101	-1.094	-1.154	-1.163	
17	-1.165	-1.149	-1.162	-1.167	-1.172	
18	-1.158	-1.170	-1.151	-1.187	-1.215	
19	-1.267	-1.242	-1.260	-1.241	-1.265	
20	-1.027	-1.012	-1.072	-1.050	-1.040	
21	780	730	823	756	736	
2 2	315	275	389	316	274	
23	.170	.215	.108	.170	.213	
24	.459	.484	.422	.467	.499	
25	.502	.510	.478	.479	.509	
26	.415	.400	.444	.432	.419	
27	.211	.173	.262	.195	.175	
28	143	195	072	155	190	
29	609	656	531	606	646	
30	844	889	816	868	885	
31	-1.041	-1.034	-1.012	-1.006	-1.004	
32	994	-1.013	990	-1.010	987	
33	-1.069	-1.057	-1.028	-1.036	-1.019	
34	962	-1.152	943	-1.062	-1.144	
35	-1.085	-1.282	-1.063	-1.198	-1.341	
36	710	734	778	73 3 678	759 701	
37	616	692	607	956	i	
38	925	980	801 -1.054	I	9 92	
39	-1.107	-1.142		998	-1.105	
40	-1.027	-1.058	969	-1.087	-1.099	
41	-1.142	-1.128	-1.102	-1.080	-1.138	
42	-1.012	-1.016	-1.030	-1.076	-1.062	

Figure 27 - Pressure Coefficients $\alpha=40^{\circ},\,\phi_{j}=90^{\circ},\,\phi_{b}=270^{\circ},\,C_{\mu}=.00$

	Blowing Nozzle				
Pressure				zzie 4	5
Port	1 200	2	3	-1.197	-1.215
43	-1.208	-1.183	-1.183 -1.075	-1.063	-1.046
44	-1.024	-1.006	į.	864	844
45	877	833	909	L	440
46	489	447	547	481	.010
47	040	.013	101	029	.304
48	.251	.289	.218	.279	.429
49	.408	.414	.416	.424	1
50	.432	.406	.438	.415	.419
51	.265	.244	.318	.270	.257
52	.067	.016	.118	.051	.039
53	172	224	110	193	212
54	501	548	410	488	521
55	704	743	637	712	732
56	969	-1.006	892	947	950
57	965	989	960	985	943
58	938	9 49	896	915	891
59	909	941	900	934	908
60	955	969	912	932	913
61	904	945	889	929	925
62	977	967	945	923	915
63	876	915	864	-1.019	951
64	-1.032	-1.007	979	965	-1.027
65	934	874	967	936	883
6 6	721	651	752	641	643
67	582	575	611	574	581
68	735	759	670	789	783
69	908	891	945	-1.034	946
70	-1.032	-1.039	999	-1.146	-1.053
71	924	918	975	-1.003	954
72	-1.098	-1.059	-1.084	-1.094	-1.094
73	943	927	988	978	970
74	-1.040	-1.000	-1.034	-1.016	-1.037
75	957	940	986	987	995
76	-1.120	-1.086	-1.093	-1.099	-1.135
77	-1.051	-1.033	-1.090	-1.085	-1.086
78	-1.072	-1.021	-1.089	-1.046	-1.056
79	845	807	912	858	844
80	637	575	692	617	591
81	343	300	411	352	305
82	048	014	117	043	012
83	.159	.182	.114	.165	.191
84	.396	.408	.357	.389	.411

Figure 27 (continued) – Pressure Coefficients $\alpha = 40^{\circ}$, $\phi_j = 90^{\circ}$, $\phi_b = 270^{\circ}$, $C_{\mu} = .00$

Pressure	Blowing Nozzle				
Port	1	2	3	4	5
1	.679	.681	.669	.676	.689
2	.545	.529	.565	.552	.535
3	.272	.255	.337	.305	.248
4	148	151	075	109	176
5	568	557	486	523	600
6	588	534	520	477	513
7	800	811	826	737	794
8	-1.094	-1.102	795	693	805
9	-1.214	-1.092	-1.330	-1.136	-1.262
10	-1.009	989	909	854	903
11	817	771	900	833	831
12	631	636	644	614	640
13	650	708	640	577	766
14	-1.015	-1.000	969	-1.157	-1.058
15	-1.050	-1.067	-1.084	-1.109	-1.117
16	-1.113	-1.104	-1.096	-1.219	-1.165
17	-1.126	-1.135	-1.156	-1.227	-1.187
18	-1.146	-1.163	-1.130	-1.230	-1.217
19	-1.221	-1.220	-1.253	-1.314	-1.274
20	-1.005	997	-1.040	-1.067	-1.037
21	719	699	797	786	728
22	273	257	350	308	264
23	.199	.224	.125	.168	.221
24	.477	.492	.423	.462	.496
25	.496	.498	.495	.485	.508
26	.404	.388	.415	.413	.391
27	.166	.142	.219	.176	.132
28	195	226	142	175	255
29	685	692	603	637	719
30	960	955	886	877	978
31	-1.161	-1.130	-1.132	-1.060	-1.126
32	-1.045	-1.014	-1.013	954	-1.020
33	-1.203	-1.189	-1.169	-1.099	-1.180
34	668	647	689	583	643
35	676	646	676	602	637
36	453	443	451	415	428
37	499	558	489	502	550
38	983	-1.064	933	949	-1.101
39	-1.070	-1.070	-1.060	-1.002	-1.111
40	-1.070	-1.091	-1.046	-1.132	-1.151
41	-1.085	-1.080	-1.099	-1.138	-1.135
42	-1.000	-1.010	999	-1.114	-1.066

Figure 28 - Pressure Coefficients $\alpha=40^{\circ},\,\phi_{j}=90^{\circ},\,\phi_{b}=270^{\circ},\,C_{\mu}=.01$

Pressure	Blowing Nozzie					
Port	1	2	3	4	5	
43	-1.153	-1.161	-1.165	-1.281	-1.216	
44	994	978	-1.017	-1.077	-1.021	
45	814	790	867	893	816	
46	442	407	492	471	409	
47	.001	.035	050	032	.044	
48	.279	.304	.243	.268	.314	
49	.414	.411	.404	.414	.415	
50	.385	.368	.413	.392	.385	
51	.209	.191	.257	.230	.189	
52	028	059	.041	008	055	
53	28 3	314	207	243	323	
54	638	660	554	589	667	
55	862	882	777	795	894	
56	-1.171	-1.160	-1.092	-1.076	-1.172	
57	-1.236	-1.219	-1.172	-1.116	-1.214	
58	-1.231	-1.196	-1.208	-1.106	-1.180	
59	-1.163	-1.128	-1.112	-1.041	-1.120	
60	-1.218	-1.191	-1.190	-1.107	-1.182	
61	-1.157	-1.138	-1.110	-1.048	-1.141	
62	-1.355	-1.225	-1.286	-1.285	-1.223	
63	-1.119	-1.102	-1.027	-1.069	-1.118	
64	564	519	527	523	533	
65	531	517	494	498	542	
66	400	413	393	365	414	
67	500	543	464	514	557	
68	836	951	774	989	975	
69	913	976	903	988	961	
70	-1.009	-1.109	-1.013	-1.188	-1.139	
71	878	875	882	-1.016	924	
72	964	977	989	-1.089	-1.020	
73	851	843	859	964	890	
74	895	901	920	-1.019	951	
75	855	852	857	961	899	
76	973	979	975	-1.124	-1.044	
77	946	938	951	-1 .043	992	
78	928	916	970	-1.035	960	
79	742	712	779	800	749	
80	518	493	588	577	512	
81	259	- 239	318	287	248	
82	.020	.051	044	018	.055	
83	.205	.227	.158	.184	.228	
84	.415	.417	.383	.400	.436	

Figure 28 (continued) – Pressure Coefficients $\alpha=40^{\circ},\,\phi_{j}=90^{\circ},\,\phi_{b}=270^{\circ},\,C_{\mu}=.01$

Blowing Nozzle				
1	2	3	4	5
.678	.663	.678	.665	.685
.550	.542	.559	.563	.538
.296	.270	.2.13	.354	.260
088	097	041	002	139
472	463	439	1	538
402	394	362		432
-1.239	-1.106	i	1	984
-1.205		I .	i -	-1.269
-1.440	-1.398	1	L	-1.542
971	1	1	i	-1.043
850	I .	B .	1	900
559				630
599	710	1	1	757
-1.041	-1.055	1		-1.074
-1.063	-1.074		<u>: </u>	-1.099
-1.126	-1.138	-1.085	l	-1.147
-1.149	-1.135	-1.158		-1.158
-1.157	-1.185	-1.101		-1.194
-1.239	-1.220	-1.244	1	-1.240
-1.018	-1.016	-1.017	1	-1.027
736	706		L	705
285	269	355	i	257
.192	.213	.126	i	.225
.471	.486	.416	.427	.500
.491	.487		.481	.500
.400	.396	.412		.398
.170	.144	.226		.139
188	207	124		232
633	647	606	538	697
894	902	868	765	951
-1.050	-1.005	-1.074	865	-1.065
914	899	920	772	960
952	876	-1.041	783	924
797	735	871	556	867
615	568	672	492	620
565	524	609	432	591
517	575	551	527	614
990	-1.119	897	-1.218	-1.121
-1.089	-1.078	-1.047	-1.033	-1.098
-1.069	-1.130	-1.008	-1.213	-1.139
-1.100	-1.084	-1.077	-1.201	-1.102
i	-1.027	973	-1.204	-1.031
	.678 .550 .296088472402 -1.239 -1.205 -1.440971850559599 -1.041 -1.063 -1.126 -1.126 -1.149 -1.157 -1.239 -1.018736285 .192 .471 .491 .400 .170188633894 -1.050914952797615565517990 -1.089 -1.069	1 2 .678 .663 .550 .542 .296 .270 088 097 472 463 402 394 -1.239 -1.106 -1.205 -1.219 -1.440 -1.398 971 944 850 809 559 579 599 710 -1.041 -1.055 -1.063 -1.074 -1.126 -1.138 -1.157 -1.185 -1.239 -1.220 -1.018 -1.016 736 706 285 269 .192 .213 .471 .486 .491 .487 .400 .396 .170 .144 188 207 633 647 952 876 797 735 615	1 2 3 .678 .663 .678 .550 .542 .559 .296 .270 13 088 097 041 472 463 439 402 394 362 -1.239 -1.106 992 -1.205 -1.219 -1.330 -1.440 -1.398 -1.590 971 944 -1.074 850 809 960 559 579 596 -1.041 -1.055 998 -1.041 -1.055 998 -1.063 -1.074 -1.105 -1.126 -1.138 -1.085 -1.149 -1.135 -1.158 -1.157 -1.185 -1.101 -1.239 -1.220 -1.244 -1.018 -1.016 -1.017 736 269 355 .192 .213 .126	1 2 3 4 .678 .663 .678 .665 .550 .542 .559 .563 .296 .270

Figure 29 - Pressure Coefficients $\alpha=40^{\circ},\,\phi_{j}=90^{\circ},\,\phi_{b}=270^{\circ},\,C_{\mu}=.02$

Pressure	Blowing Nozzle				
Port	1	2	3	4	5
43	-1.172	-1.160	-1.149	-1.349	-1.173
44	996	999	997	-1.149	-1.001
45	823	791	860	945	802
46	431	412	484	514	415
47	013	.024	042	052	.041
48	.273	.305	.246	.253	.317
49	.408	.414	.396	.403	.420
50	.385	.368	.416	.397	.372
51	.216	.206	.244	.242	.192
52	016	047	.047	.028	060
53	263	292	206	211	319
54	608	620	550	513	668
55	833	850	776	725	896
56	-1.120	-1.110	-1.099	983	-1.164
57	-1.190	-1.184	-1.164	-1.029	-1.225
58	-1.189	-1.131	-1.221	976	-1.190
59	-1.107	-1.086	-1.108	925	-1.134
60	-1.180	-1.133	-1.203	994	-1.181
61	-1.120	-1.116	-1.099	973	-1.161
62	971	-1.059	-1.151	857	-1.104
63	-1.125	-1.129	-1.048	990	-1.152
64	500	516	612	404	600
65	539	535	547	450	588
66	411	432	448	356	461
67	504	576	511	521	591
68	843	960	817	-1.080	968
69	907	985	90 9	-1.051	968
70	-1.017	-1.094	992	-1.229	-1.110
71	881	918	873	-1.103	912
72	995	980	981	-1.145	998
73	879	884	847	-1.043	876
74	930	917	930	-1.089	923
75	879	886	847	-1.048	884
76	-1.010	-1.007	974	-1.200	-1.011
77	962	968	940	-1.117	972
78	963	933	973	-1.106	938
79	756	737	778	864	746
80	542	500	591	626	495
81	269	237	323	336	236
82	.003	.024	046	047	.054
83	.197	.212	.148	.153	.234
	.398	.403	.389	.384	.425
84	.398	.403	.309	.004	

Figure 29 (continued) – Pressure Coefficients $\alpha = 40^{\circ}, \, \phi_j = 90^{\circ}, \, \phi_b = 270^{\circ}, \, C_{\mu} = .02$

Pressure	Blowing Nozzle				
Port	1	2	3	4	5
1	.660	.658	.661	.663	.670
2	.596	.596	.543	.585	.576
3	.403	.423	.299	.383	.323
4	013	.020	135	040	112
5	485	454	606	506	575
6	780	695	893	810	835
7	-1.075	937	-1.180	-1.115	-1.095
8	753	780	960	860	830
9	817	-1.434	823	824	816
10	785	782	784	766	779
11	-1.173	-1.017	-1.290	-1.257	-1.302
12	827	669	644	781	651
13	651	750	777	654	721
14	966	995	965	-1.019	-1.037
15	-1.050	-1.091	-1.038	-1.055	-1.027
16	-1.093	-1.101	-1.088	-1.096	-1.129
17	-1.180	-1.137	-1.139	-1.156	-1.139
18	-1.169	-1.085	-1.146	-1.121	-1.171
19	-1.319	-1.262	-1.263	-1.280	-1.267
20	-1.101	-1.045	-1.023	-1.063	-1.051
21	863	840	740	825	755
22	431	411	310	403	329
23	.064	.067	.170	.087	.158
24	.397	.397	.448	.399	.452
25	.479	.469	.489	.482	.500
26	.462	.445	.416	.440	.434
27	.297	.276	.211	.289	.232
28	047	083	148	073	144
29	485	533	600	521	581
30	764	823	845	804	848
31	963	-1.135	998	-1.012	990
32	924	-1.063	976	966	976
33	-1.039	-1.090	-1.081	-1.080	-1.068
34	911	707	-1.009	928	934
35	-1.178	741	-1.191	-1.169	-1.101
36	847	491	723	811	744
37	627	541	630	630	614
38	776	935	929	795	921
39	-1.211	-1.116	-1.123	-1.052	-1.102
40	972	-1.020	-1.023	923	-1.032
41	-1.189	-1.097	-1.124	-1.107	-1.125
42	-1.046	962	-1.002	985	-1.028

Figure 30 – Pressure Coefficients $\alpha=40^{\circ},\ \phi_{j}=120^{\circ},\ \phi_{b}=240^{\circ},\ C_{\mu}=.00$

Pressure	Blowing Nozzle				
Pressure	1	2	3	4	5
43	-1.215	-1.117	-1.177	-1.165	-1.180
43	-1.109	-1.029	-1.023	-1.062	-1.063
45	958	891	849	915	868
46	597	539	467	560	511
46	148	117	040	124	053
1	.194	.204	.264	.197	.255
48	.430	.437	.436	.440	.450
49	.412	.387	.381	.402	.395
50 51	.355	.319	.274	.337	.302
51	.178	.109	.074	.142	.103
52	080	172	211	112	176
53	314	434	444	353	413
54	639	791	758	683	738
55	794	963	879	829	870
56	949	-1.236	-1.027	-1.025	-1.007
57	867	-1.215	920	929	910
58	885	-1.250	951	968	938
59	830	-1.148	883	894	875
60	924	-1.194	986	994	977
61	865	-1.165	907	937	912
62	941	- 844	-1.009	963	993
63	901	565	920	944	931
64	977	498	984	-1.022	-1.004
65	909	397	975	918	-1.003
66	587	477	580	618	596
67	601	659	742	678	756
68	-1.030	-1.049	-1.035	991	997
69	-1.016	941	971	910	952
70	-1.250	-1.037	-1.015	-1.036	-1.001
71	-1.067	883	-1.016	-1.014	-1.045
72	-1.126	934	-1.013	-1.028	-1.025
73	-1.120	834	954	965	991
74	-1.013	897	-1.003	-1.005	-1.027
75	-1.058	865	-1.010	999	-1.057
76	-1.185	-1.012	-1.119	-1.132	-1.141
77	-1.100	917	987	-1.027	-1.036
78	994	862	882	951	902
79	741	628	609	694	641
80	468	388	337	438	370
81	184	131	064	154	105
82	.108	.150	.193	.128	.184
83	1	.288	.325	.286	.319
84	.274	.200	.020		1

Figure 30 (continued) – Pressure Coefficients $\alpha=40^{\circ},\,\phi_{j}=120^{\circ},\,\phi_{b}=240^{\circ},\,C_{\mu}=.00$

Pressure		Blowing Nozzle				
Port	1	2	3	4	5	
1	.658	.652	.671	.658	.680	
2	.568	.587	.531	.580	.557	
3	.350	.403	.265	.369	.310	
4	075	.003	185	050	122	
5	561	474	654	502	595	
6	855	751	913	778	838	
7	-1.149	-1.028	-1.172	-1.054	-1.081	
8	797	744	820	776	766	
9	998	-1.049	857	751	829	
10	850	711	843	851	762	
11	907	912	871	869	816	
12	679	652	674	653	628	
13	721	751	781	623	774	
14	912	924	951	-1.082	-1.005	
15	-1.040	-1.059	-1.052	-1.110	-1.086	
16	-1.043	-1.054	-1.056	-1.154	-1.098	
17	-1.093	-1.103	-1.107	-1.177	-1.140	
18	-1.068	-1.068	-1.104	-1.138	-1.127	
19	-1.214	-1.227	-1.219	-1.289	-1.262	
20	-1.003	-1.032	966	-1.056	999	
21	765	808	689	814	735	
22	350	407	258	377	286	
23	.117	.067	.208	.095	.187	
24	.418	.384	.472	.413	.470	
25	.490	.465	.496	.475	.509	
26	.422	.435	.394	.434	.408	
27	.238	.273	.166	.246	.201	
28	143	087	224	117	185	
29	615	554	698	569	661	
30	918	870	965	860	919	
31	-1.225	-1.187	-1.226	-1.124	-1.181	
32	-1.149	-1.122	-1.138	-1.062	-1.089	
33	-1.218	-1.149	-1.209	-1.116	-1.154	
34	-1.001	921	860	927	763	
35	752	647	744	691	690	
36	622	561	560	578	488	
37	510	476	543	461	495	
38	916	921	-1.034	845	-1.044	
39	-1.031	-1.068	-1.000	-1.022	-1.112	
40	990	-1.003	-1.050	-1.023	-1.081	
41	-1.045	-1.059	-1.039	-1.097	-1.113	
42	942	959	954	-1.015	995	

Figure 31 – Pressure Coefficients $\alpha=40^{\circ},\ \phi_{j}=120^{\circ},\ \phi_{b}=240^{\circ},\ C_{\mu}=.01$

Pressure		Blov	ving Noz	zie	
Port	1	2	3	4	5
43	-1.093	-1.094	-1.119	-1.185	-1.163
44	994	-1.024	964	-1.060	-1.004
45	833	873	784	899	824
46	497	541	410	523	444
47	062	126	006	113	006
48	.233	.196	.270	.211	.280
49	.444	.429	.441	.435	.454
50	.373	.390	.360	.389	.368
51	.280	.303	.225	.300	.249
52	.054	.102	.001	.095	.021
53	228	184	315	197	284
54	491	439	572	45 3	539
55	864	809	946	801	913
56	-1.032	985	-1.084	964	-1.043
57	-1.298	-1.265	-1.306	-1.192	-1.267
58	-1.258	-1.251	-1.214	-1.136	-1.171
59	-1.274	-1.261	-1.225	-1.145	-1.200
60	-1.175	-1.166	-1.136	-1.072	-1.108
61	-1.257	-1.220	-1.231	-1.149	-1.209
62	-1.212	-1.185	-1.239	-1.140	-1.225
63	-1.348	-1.337	-1.099	-1.182	-1.041
64	608	572	621	603	559
65	605	583	582	576	878
66	439	489	433	478	400
67	458	467	503	466	592
68	634	685	742	681	716
69	-1.052	-1.018	-1.066	966	939
70	946	944	987	925	920
71	-1.053	-1.021	925	961	903
72	874	880	897	959	919
73	900	902	872	961	915
74	809	824	824	911	864
75	848	857	866	951	911
76	840	841	883	947	920
77	957	969	976	-1.084	-1.028
78	875	898	862	963	898
79	798	838	760	882	798 537
80	577	616	512	622	1
81	319	364	246	367	266
82	074	105	.000	090	011
83	.199	.155	.243	.164	.240
84	.316	.298	.351	.308	.343

Figure 31 (continued) – Pressure Coefficients $\alpha=40^{\circ},\,\phi_{j}=120^{\circ},\,\phi_{b}=240^{\circ},\,C_{\mu}=.01$

Pressure	:	Blowing Nozzle						
Port	1	2	3	4	5			
1	.657	.659	.670	.65	.684			
2	.581	.605	.539	.583	.555			
3	.357	.412	.275	.405	.311			
4	062	.002	175	.012	128			
5	546	492	663	427	582			
6	793	820	892	656	794			
7	-1.041	-1.148	-1.121	885	-1.007			
8	809	843	910	645	831			
9	-1.564	847	-1.414	808	-1.365			
10	872	819	918	854	882			
11	-1.083	-1.203	-1.067	840	990			
12	703	896	702	676	661			
13	685	640	804	620	808			
14	992	961	-1.005	-1.153	-1.019			
15	-1.056	994	-1.060	-1.163	-1.098			
16	-1.091	-1.044	-1.100	-1.241	-1.106			
17	-1.116	-1.111	-1.096	-1.277	-1.138			
18	-1.093	-1.086	-1.119	-1.241	-1.124			
19	-1.231	-1.249	-1.212	-1.395	-1.260			
20	-1.025	-1.048	980	-1.139	999			
21	775	823	692	891	736			
22	355	404	264	431	292			
23	.111	.064	.205	.055	.187			
24	.428	.397	.479	.380	.468			
25	.476	.479	.492	.471	.503			
26	.435	.450	.405	.432	.416			
27	.147	.303	.162	.274	.192			
28	310	055	223	079	192			
29	621	509	706	514	652			
30	938	818	984	779	909			
31	-1.195	-1.053	-1.200	-1.005	-1.161			
32	-1.132	-1.006	-1.145	940	-1.073			
33	-1.157	-1.117	-1.196	993	-1.108			
34	789	-1.028	8 64	587	819			
35	841	-1.332	840	656	776			
36	554	883	620	428	550			
37	564	658	612	463	570			
38	931	813	-1.089	915	-1.092			
39	-1.067	-1.094	-1.013	-1.088	-1.083			
40	992	914	-1.079	-1.133	-1.096			
41	-1.064	-1.075	-1.040	-1.198	-1.085			
42	958	952	971	-1.115	986			

Figure 32 - Pressure Coefficients $\alpha=40^{\circ},\,\phi_{j}=120^{\circ},\,\phi_{b}=240^{\circ},\,C_{\mu}=.02$

Pressure	Blowing Nozzle					
Port	1	2	3	4	5	
43	-1.108	-1.085	-1.109	-1.293	-1.147	
44	-1.025	-1.033	982	-1.139	999	
45	845	880	774	978	814	
46	504	560	414	584	434	
47	092	116	.004	142	011	
48	.224	.206	.289	.192	.279	
49	.439	.435	.445	.439	.454	
50	.381	.413	.360	.386	.371	
51	.284	.339	.224	.313	.247	
52	.071	.153	005	.108	.018	
53	220	110	317	160	288	
54	492	360	588	408	539	
55	846	707	928	734	898	
56	-1.024	870	-1.090	881	-1.036	
57	-1.270	-1.084	-1.298	-1.117	-1.267	
58	-1.248	-1.007	-1.231	-1.041	-1.181	
59	-1.260	-1.029	-1.236	-1.056	-1.200	
60	-1.181	965	-1.163	978	-1.110	
61	-1.208	-1.058	-1.223	-1.060	-1.194	
62	-1.253	994	-1.237	-1.071	-1.164	
63	862	-1.104	691	775	651	
64	623	-1.061	697	524	616	
65	527	-1.163	532	440	524	
66	426	-1.162	513	392	433	
67	491	596	535	452	533	
68	726	687	827	728	781	
69	-1.125	937	-1.201	-1.047	-1.083	
70	973	888	-1.033	-1.031	-1.008	
71	-1.000	-1.080	997	-1.046	966	
72	898	891	914	-1.053	931	
73	904	979	884	-1.049	913	
74	846	869	836	990	862	
75	875	907	870	-1.042	903	
76	883	889	898	-1.043	918	
77	991	-1.023	981	-1.173	-1.021	
78	918	958	877	-1.036	905	
79	817	889	755	951	794	
80	592	668	520	677	543	
81	337	407	250	416	276	
82	087	140	005	141	025	
83	.181	.140	.241	.153	.244	
84	.314	.294	.345	.291	.348	

Figure 32 (continued) – Pressure Coefficients $\alpha = 40^{\circ}, \ \phi_j = 120^{\circ}, \ \phi_b = 240^{\circ}, \ C_{\mu} = .02$

Pressure	1	В	lowing N	ozzle	
Port	1	2	3	4.	5
1	.806	.815	.797	.792	.815
2	.665	.629	.693	.659	.629
3	.333	.250	.359	.307	.269
4	265	356	241	276	334
5	864	963	842	860	937
6	844	899	868	839	866
7	-1.100	-1.158	-1.162	-1.110	-1.108
8	965	-1.039	-1.020	998	984
9	-1.433	-1.493	-1.521	-1.419	-1.441
10	-1.425	-1.555	-1.499	-1.536	-1.484
11	-1.799	-1.904	-1.750	-1.888	-1.841
12	-1.064	926	-1.034	-1.030	-1.006
13	875	-1.043	926	907	903
14	-1.625	-1.499	-1.304	-1.598	-1.683
15	-1.565	-1.498	-1.336	-1.577	-1.579
16	-1.656	-1.579	-1.521	-1.642	-1.681
17	-1.682	-1.587	-1.529	-1.655	-1.684
18	-1.582	-1.537	-1.519	-1.548	-1.590
19	-1.802	-1.716	-1.705	-1.752	-1.810
20	-1.498	-1.417	-1.490	-1.474	-1.470
21	-1.203	-1.106	-1.199	-1.169	-1.170
22	568	492	626	561	530
23	.057	.151	.030	.071	.115
24	.484	.544	.471	.495	.515
25	.639	.670	.646	.636	.654
26	.585	.550	.601	.571	.558
27	.319	.244	.319	.300	.280
28	132	233	145	164	183
29	724	845	766	731	768
30	-1.006	-1.123	-1.140	-1.036	-1.015
31	-1.187	-1.300	-1.343	-1.212	-1.200
32	-1.185	-1.289	-1.335	-1.220	-1.186
33	-1.227	-1.338	-1.372	-1.252	-1.236
34	-1.168	-1.311	-1.300	-1.158	-1.270
35	-1.314	-1.419	-1.441	-1.255	-1.359
36	-1.074	998	-1.252	-1.049	-1.039
37	817	819	758	822	856
38	-1.333	-1.381	-1.521	-1.312	-1.373
39	-1.351	-1.407	-1.435	-1.305	-1.368
40	-1.475	-1.403	-1.449	-1.478	-1.498
41	-1.537	-1.437	-1.469	-1.485	-1.551
42	-1.451	-1.313	-1.342	-1.450	-1.459

Figure 33 - Pressure Coefficients $\alpha=50^{\circ},\,\phi_{j}=90^{\circ},\,\phi_{b}=270^{\circ},\,C_{\mu}=.00$

Pressure	Blowing Nozzle					
Port	1	2	3	4	5	
43	-1.689	-1.520	-1.503	-1.640	-1.717	
44	-1.498	-1.358	-1.425	-1.488	-1.468	
45	-1.303	-1.129	-1.217	-1.265	-1.270	
46	756	627	751	756	689	
47	154	042	138	120	104	
48	.298	.354	.310	.309	.324	
49	.609	.618	.617	.603	.606	
50	.654	.623	.665	.638	.649	
51	.474	.400	.499	.464	.432	
52	.230	.120	.262	.213	.188	
53	072	20 2	044	092	126	
54	460	617	447	488	513	
55	709	876	744	751	750	
56	992	-1.179	-1.068	-1.020	-1.007	
57	941	-1.123	-1.098	997	920	
58	938	-1.139	-1.135	974	948	
59	958	-1.143	-1.181	-1.012	965	
60	931	-1.141	-1.149	972	947	
61	912	-1.134	-1.147	940	921	
62	945	-1.154	-1.165	995	955	
63	-1.026	-1.231	-1.245	-1.023	-1.008	
64	-1.017	-1.230	-1.463	-1.103	-1.002	
65	-1.029	-1.188	-1.535	-1.102	978	
66	825	884	-1.059	820	765	
67	724	791	743	703	748	
68	-1.292	-1.127	981	-1.273	-1.619	
69	-1.415	-1.150	-1.219	-1.425	-1.669	
70	-1.715	-1.388	-1.468	-1.697	-1.812	
71	-1.476	-1.246	-1.437	-1.461	-1.469	
72	-1.666	-1.389	-1.484	-1.599	-1.676	
73	-1.441	-1.249	-1.368	-1.403	-1.433	
74	-1.563	-1.326	-1.400	-1.482	-1.555	
75	-1.444	-1.245	-1.339	-1.398	-1.429	
76	-1.651	-1.403	-1.426	-1.566	-1.670	
77	-1.586	-1.375	-1.484	-1.540	-1.568 -1.585	
78	-1.615	-1.374	-1.480	-1.532	-1.247	
79	-1.301	-1.112	-1.268	-1.254 949	939	
80	-1.010	79 3	969	551	504	
81	577	406	585			
82	164	.001	181	127	096	
83	.176	.282	.159	.187	.214	
84	.533	.590	.516	.530	.566	

Figure 33 (continued) – Pressure Coefficients $\alpha = 50^{\circ}, \, \phi_j = 90^{\circ}, \, \phi_b = 270^{\circ}, \, C_{\mu} = .00$

Pressure		Blo	owing No	zzle	
Port	1	2	3	4	5
1	.791	.783	.796	.789	.804
2	.619	.588	.651	.621	.584
3	.221	.195	.309	.272	.196
4	349	398	273	294	381
5	920	991	856	861	959
6	852	941	860	805	830
7	-1.141	-1.119	-1.183	-1.039	-1.085
- 8	987	944	999	912	922
9	-1.568	-1.383	-1.234	-1.040	-1.163
10	-1.105	-1.047	-1.032	871	913
11	-1.096	997	932	833	899
12	805	821	769	696	710
13	-1.016	-1.120	901	991	-1.203
14	-1.747	-1.443	-1.541	-1.533	-1.509
15	-1.475	-1.472	-1.624	'-1.601	-1.572
16	-1.507	-1.498	-1.577	-1.652	-1.589
17	-1.515	-1.470	-1.589	-1.634	-1.600
18	-1.456	-1.450	-1.450	-1.599	-1.540
19	-1.640	-1.599	-1.672	-1.764	-1.740
20	-1.360	-1.328	-1.409	-1.464	-1.386
21	-1.033	987	-1.126	-1.140	-1.075
22	436	415	535	531	439
23	.179	.202	.093	.126	.186
24	.554	.559	.499	.519	.547
25	.657	.648	.640	.646	.668
26	.516	.496	.551	.515	.487
27	.166	.124	.229	.033	.131
28	346	386	267	557	374
29	-1.025	-1.056	925	947	-1.053
30	-1.395	-1.418	-1.312	-1.289	-1.340
31	-1.633	-1.634	-1.617	-1.466	-1.551
32	-1.493	-1.516	-1.480	-1.382	-1.405
33	-1.681	-1.682	-1.670	-1.525	-1.646
34	-1.117	-1.114	-1.653	-1.100	-1.038
35	803	806	816	742	799
36	642	655	923	664	639
37	716	880	804	917	917
38	-1.306	-1.397	-1.168	-1.187	-1.105
39	-1.335	-1.373	-1.272	-1.392	-1.422
40	-1.350	-1.348	-1.304	-1.418	-1.342
41	-1.302	-1.271	-1.293	-1.395	-1.388
42	-1.187	-1.169	-1.212	-1.343	-1.268

Figure 34 - Pressure Coefficients $\alpha=50^{\circ},\,\phi_{j}=90^{\circ},\,\phi_{b}=270^{\circ},\,C_{\mu}=.01$

Pressure	Blowing Nozzle					
Port	1	2	3	4	5	
43	-1.355	-1.362	-1.360	-1.528	-1.500	
44	-1.217	-1.189	-1.259	-1.345	-1.252	
45	994	942	-1.072	-1.103	-1.058	
46	536	473	608	592	537	
47	.040	.073	048	015	.080	
48	.400	.420	.350	.366	.427	
49	.603	.607	.604	.6 06	.590	
50	.560	.528	.594	.556	.544	
51	.316	.290	.370	.309	.259	
52	018	095	.056	012	080	
53	379	452	298	356	436	
54	898	956	796	854	963	
55	-1.223	-1.272	-1.124	-1.155	-1.227	
56	-1.654	-1.659	-1.608	-1.541	-1.660	
57	-1.736	-1.748	-1.712	-1.588	-1.621	
58	-1.705	-1.700	-1.694	-1.492	-1.596	
59	-1.614	-1.641	-1.602	-1.476	-1.513	
60	-1.708	-1.709	-1.714	-1.547	-1.662	
61	-1.653	-1.673	-1.639	-1.532	-1.574	
62	-1.932	-1.784	-1.851	-1.832	-1.749	
63	-1.667	-1.706	-1.674	-1.563	-1.623	
64	893	812	-1.288	890	839	
65	814	838	786	802	838	
66	717	740	853	792	838	
67	837	913	885	-1.013	977	
68	-1.064	-1.109	-1.128	-1.198	-1.131	
69	952	990	-1.004	-1.097	-1.002	
70	985	990	-1.009	-1.118	-1.045	
71	849	8 35	870	988	916	
72	955	929	967	-1.092	-1.050	
73	885	852	886	-1.006	944	
74	938	905	943	-1.085	-1.039	
75	890	864	888	-1.028	953	
76	971	949	959	-1.158	-1.117	
77	-1.014	987	-1.012	-1.159	-1.080	
78	-1.006	959	-1.035	-1.149	-1.087	
79	816	764	860	915	826	
80	551	498	624	613	563	
81	234	180	310	265	218	
82	.123	.157	.047	.104	.150	
83	.356	.387	.298	.350	.362	
84	.611	.615	.591	.604	.635	

Figure 34 (continued) – Pressure Coefficients $\alpha=50^{\circ},\,\phi_{j}=90^{\circ},\,\phi_{b}=270^{\circ},\,C_{\mu}=.01$

Pressure	Blowing Nozzle				
Port	1	2	3	4	5
1	.793	.809	.798	.797	.799
2	.626	.586	.648	.643	.596
3	.243	.216	.315	.333	.190
4	296	320	234	176	370
5	834	855	783	685	930
6	712	685	711	575	803
7	-1.062	994	-1.006	804	-1.018
8	-1.620	-1.341	-1.353	666	-1.280
9	-1.740	-1.563	-1.955	-1.087	-1.805
10	-1.432	-1.319	-1.433	757	-1.364
11	-1.125	-1.087	-1.303	895	-1.200
12	870	8 64	949	702	906
13	-1.005	-1.205	985	-1.009	-1.237
14	-1.511	-1.463	-1.467	-1.439	-1.524
15	-1.502	-1.543	-1.509	-1.538	-1.549
16	-1.5 33	-1.499	-1.491	-1.709	-1.547
17	-1.498	-1.5 33	-1.500	-1.750	-1.528
18	-1.431	-1.438	-1.378	-1.753	-1.478
19	-1.621	-1.665	-1.614	-1.936	-1.650
20	-1.345	-1.317	-1.352	-1.577	-1.345
21	-1.046	-1.040	-1.108	-1.256	-1.017
22	456	419	528	583	411
23	.160	.187	.088	.067	.212
24	.541	.537	.481	.482	.570
25	.656	.657	.652	.649	.664
26	.518	.489	.543	.528	.498
27	.173	.138	.240	.214	.102
28	332	341	251	268	411
29	997	-1.038	928	873	-1.058
30	-1.352	-1.315	-1.300	-1.170	-1.376
31	-1.563	-1.524	-1.591	-1.320	-1.545
32	-1.377	-1.324	-1.406	-1.176	-1.388
33	-1.642	-1.637	-1.661	-1.456	-1.655
34	866	789	932	716	848
35	872	864	939	764	920
36	582	5 63	630	550	575
37	833	970	884	-1.165	971
38	-1.388	-1.358	-1.235	-1.309	-1.246
39	-1.343	-1.425	-1.286	-1.540	-1.395
40	-1.357	-1.351	-1.298	-1.472	-1.326
41	-1.299	-1.339	-1.274	-1.524	-1.347
42	-1.183	-1.181	-1.173	-1.399	-1.213

Figure 35 - Pressure Coefficients $\alpha=50^{\circ},\,\phi_{j}=90^{\circ},\,\phi_{b}=270^{\circ},\,C_{\mu}=.02$

Pressure	Blowing Nozzle					
Port	1	2	3	4	5	
43	-1.346	-1.409	-1.321	-1.678	-1.416	
44	-1.212	-1.192	-1.233	-1.418	-1.221	
45	-1.000	994	-1.048	-1.208	876	
46	545	489	603	643	274	
47	.041	.051	042	044	.092	
48	.401	.388	.345	.356	.451	
49	.603	.586	.596	.596	.604	
50	.565	.514	.599	.574	.526	
51	.321	.191	.365	.325	.262	
52	009	066	.053	.008	102	
53	363	419	301	342	454	
54	-1.012	929	813	844	984	
55	-1.339	-1.194	-1.136	-1.133	-1.278	
56	-1.616	-1.664	-1.607	-1.534	-1.706	
57	-1.710	-1.668	-1.716	-1.568	-1.743	
58	-1.704	-1.695	-1.775	-1.534	-1.709	
59	-1.591	-1.536	-1.622	-1.439	-1.614	
60	-1.700	-1.716	-1.763	-1.579	-1.724	
61	-1.625	-1.604	-1.643	-1.515	-1.669	
62	-1.961	-1.774	-1.903	-1.843	-1.805	
63	-1.601	-1.587	-1.615	-1.518	-1.674	
64	796	773	814	833	806	
65	789	811	800	869	879	
66	706	788	729	890	781	
67	895	942	875	-1.100	964	
68	-1.204	-1.188	-1.205	-1.249	-1.154	
69	-1.107	-1.018	-1.091	-1.125	-1.021	
70	-1.108	-1.088	-1.090	-1.128	-1.070	
71	945	872	938	-1.036	912	
72	954	-1.011	933	-1.166	-1.004	
73	895	886	888	-1.058	929	
74	946	987	938	-1.136	987	
75	893	902	884	-1.049	932	
76	974	-1.040	950	-1.218	-1.047	
77	-1.012	-1.017	995	-1.185	-1.054	
78	-1.018	-1.042	-1.042	-1.200	-1.028	
79	837	803	862	935	806	
80	559	544	631	663	527	
81	235	215	311	296	200	
82	.111	.140	.057	.077	.165	
83	.346	.354	.301	.327	.387	
84	.613	.620	.591	.603	.628	

Figure 35 (continued) – Pressure Coefficients $\alpha=50^{\circ},\,\phi_{j}=90^{\circ},\,\phi_{b}=270^{\circ},\,C_{\mu}=.02$

Pressure	Blowing Nozzle					
Port	1	2	3	4	5	
1	.759	.784	.790	.780	.810	
2	.701	.665	.668	.716	.678	
3	.457	.414	.328	.423	.343	
4	075	141	234	124	229	
5	714	862	886	760	844	
6	-1.039	-1.217	-1.148	-1.080	-1.123	
$\frac{3}{7}$	-1.363	-1.573	-1.409	-1.401	-1.402	
8	995	-1.113	-1.093	-1.033	-1.094	
9	-1.056	-1.158	-1.084	-1.066	-1.063	
10	947	-1.036	-1.207	989	-1.162	
11	-1.777	-1.949	-1.795	-1.787	-1.843	
12	-1.115	-1.033	974	-1.079	968	
13	854	956	908	859	908	
14	-1.459	-1.415	-1.596	-1.456	-1.601	
15	-1.636	-1.537	-1.609	-1.569	-1.619	
16	-1.541	-1.441	-1.614	-1.519	-1.582	
17	-1.697	-1.558	-1.623	-1.626	-1.615	
18	-1.516	-1.363	-1.495	-1.487	-1.463	
19	-1.804	-1.651	-1.730	-1.729	-1.714	
20	-1.534	-1.376	-1.425	-1.499	-1.414	
21	-1.288	-1.166	-1.104	-1.227	-1.118	
22	712	610	521	674	552	
23	085	002	.092	031	.342	
24	.388	.417	.506	.436	.713	
25	.604	.635	.658	.621	.643	
26	.604	.571	.582	.609	.574	
27	.421	.339	.309	.394	.328	
28	022	159	176	074	152	
29	598	818	787	646	773	
30	926	-1.156	-1.084	-1.013	-1.072	
31	-1.131	-1.453	-1.230	-1.226	-1.244	
32	-1.119	-1.362	-1.229	-1.218	-1.228	
33	-1.286	-1.553	-1.359	-1.346	-1.355	
34	-1.125	-1.339	-1.188	-1.207	-1.180	
35	-1.234	-1.500	-1.344	-1.316	-1.330	
36	-1.143	-1.290	-1.104	-1.222	-1.112	
37	810	869	819	798	814	
38	-1.248	-1.209	-1.361	-1.330	-1.313	
39	-1.338	-1.241	-1.291	-1.281	-1.246	
	-1.396	-1.147	-1.443	-1.403	-1.394	
40	-1.563	-1.332	-1.463	-1.474	-1.430	
41	-1.450	-1.145	-1.394	-1.406	-1.357	
42	-1.400	-1.140	-1.004			

Figure 36 - Pressure Coefficients $\alpha=50^{\circ},\,\phi_{j}=120^{\circ},\,\phi_{b}=240^{\circ},\,C_{\mu}=.00$

Pressure	Blowing Nozzle					
Port	1	2	3	4	5	
43	-1.673	-1.328	-1.604	-1.560	-1.563	
44	-1.564	-1.271	-1.457	-1.518	-1.426	
45	-1.402	-1.122	-1.219	-1.299	-1.209	
46	896	674	700	845	702	
47	292	160	113	249	148	
48	.201	.263	.330	.218	.293	
49	.614	.654	.652	.628	.648	
50	.602	.568	.602	.616	.586	
51	.569	.484	.481	.547	.483	
52	.326	.190	.215	.304	.217	
5 3	.029	200	153	038	146	
54	275	545	466	364	459	
55	674	-1.035	867	767	856	
56	842	-1.208	-1.006	959	996	
5 7	-1.001	-1.532	-1.116	-1.131	-1.144	
58	881	-1.343	-1.013	-1.008	-1.018	
59	928	-1.441	-1.057	-1.048	-1.077	
60	853	-1.296	981	975	993	
61	981	-1.464	-1.106	-1.087	-1.120	
62	918	-1.358	-1.054	-1.053	-1.068	
63	-1.032	-1.589	-1.312	-1.255	-1.339	
64	972	-1.562	-1.209	-1.201	-1.236	
65	-1.109	-1.8 46	-1.403	-1.383	-1.383	
66	-1.081	-1.615	-1.279	-1.259	-1.255	
67	643	826	657	648	638	
68	-1.032	944	-1.233	976	-1.174	
69	-1.702	-1.122	-1.527	-1.581	-1.509	
70	-1.583	-1.006	-1.564	-1.465	-1.515	
71	-1.734	-1.181	-1.515	-1.718	-1.504	
72	-1.601	-1.028	-1.461	-1.461	-1.411	
73	-1.619	-1.101	-1.411	-1.490	-1.391	
74	-1.482	976	-1.325	-1.348	-1.292	
75	-1.573	-1.055	-1.384	-1.403	-1.351	
76	-1.519	977	-1.377	-1.366	-1.326	
7 7	-1.752	-1.176	-1.562	-1.564	-1.531	
78	-1.579	-1.087	-1.397	-1.455	-1.367	
79	-1.502	-1.053	-1.257	-1.347	-1.242	
80	-1.107	762	883	-1.007	877	
81	740	444	513	653	515	
82	307	099	119	252	136	
83	.106	.277	.255	.153	.248	
84	.358	.447	.469	.397	.447	

Figure 36 (continued) – Pressure Coefficients $\alpha=50^{\circ},\,\phi_{j}=120^{\circ},\,\phi_{b}=240^{\circ},\,C_{\mu}=.00$

1	5 .796 .634 .268 .313 .963 .260 .558 .252 .991 .788
1	.634 .268 .313 .963 .260 .558 .252 .991
3 .303 .388 .191 .356 4 292 174 413 203	.268 .313 .963 .260 .558 .252 .991
4 292 174 413 203 819 5 989 839 -1.108 819	.313 .963 .260 .558 .252 .991
5 989 839 -1.108 819 6 -1.373 -1.215 -1.435 -1.149 -1 7 -1.756 -1.591 -1.761 -1.480 -1 8 -1.286 -1.144 -1.297 -1.128 -1 9 -1.190 -1.019 -1.221 -1.052 - 10 -1.123 881 -1.004 817 - 11 -1.287 -1.056 -1.295 -1.024 - 12 925 833 832 740 - 13 -1.079 -1.034 -1.165 788 -1 14 -1.327 -1.315 -1.305 -1.611 -1 15 -1.411 -1.449 -1.400 -1.650 -1 16 -1.355 -1.412 -1.369 -1.671 -1 17 -1.406 -1.463 -1.420 -1.644 -1 18 -1.532 -1.580 -1.582 -1.739 -1 20 -1.264	.963 .260 .558 .252 .991
6 -1.373 -1.215 -1.435 -1.149 -1 7 -1.756 -1.591 -1.761 -1.480 -1 8 -1.286 -1.144 -1.297 -1.128 -1 9 -1.190 -1.019 -1.221 -1.052 - 10 -1.123 881 -1.004 817 - 11 -1.287 -1.056 -1.295 -1.024 - 12 925 833 832 740 - 13 -1.079 -1.034 -1.165 788 -1 14 -1.327 -1.315 -1.305 -1.611 -1 15 -1.411 -1.449 -1.400 -1.650 -1 16 -1.355 -1.412 -1.369 -1.671 -1 17 -1.406 -1.463 -1.420 -1.644 -1 18 -1.266 -1.337 -1.311 -1.533 -1 20 -1.264 -1.352 -1.224 -1.495 -1 21 -1.025 <td>.260 .558 .252 .991</td>	.260 .558 .252 .991
6 -1.373 -1.215 -1.435 -1.149 -1 7 -1.756 -1.591 -1.761 -1.480 -1 8 -1.286 -1.144 -1.297 -1.128 -1 9 -1.190 -1.019 -1.221 -1.052 - 10 -1.123 881 -1.004 817 - 11 -1.287 -1.056 -1.295 -1.024 - 12 925 833 832 740 - 13 -1.079 -1.034 -1.165 788 -1 14 -1.327 -1.315 -1.305 -1.611 -1 15 -1.411 -1.449 -1.400 -1.650 -1 16 -1.355 -1.412 -1.369 -1.671 -1 17 -1.406 -1.463 -1.420 -1.644 -1 18 -1.532 -1.580 -1.582 -1.739 -1 20 -1.264 -1.352 -1.224 -1.495 -1 21 -1.025 <td>.558 .252 .991</td>	.558 .252 .991
7 -1.756 -1.591 -1.761 -1.480 -1 8 -1.286 -1.144 -1.297 -1.128 -1 9 -1.190 -1.019 -1.221 -1.052 - 10 -1.123 881 -1.004 817 - 11 -1.287 -1.056 -1.295 -1.024 - 12 925 833 832 740 - 13 -1.079 -1.034 -1.165 788 -1 14 -1.327 -1.315 -1.305 -1.611 -1 15 -1.411 -1.449 -1.400 -1.650 -1 16 -1.355 -1.412 -1.369 -1.671 -1 17 -1.406 -1.463 -1.420 -1.644 -1 18 -1.266 -1.337 -1.311 -1.533 -1 19 -1.532 -1.580 -1.582 -1.739 -1 20 -1.264 -1.352 -1.224 -1.495 -1 21 -1.025 <td>.252 .991 .788</td>	.252 .991 .788
8 -1.286 -1.144 -1.297 -1.128 -1 9 -1.190 -1.019 -1.221 -1.052 - 10 -1.123 881 -1.004 817 - 11 -1.287 -1.056 -1.295 -1.024 - 12 925 833 832 740 - 13 -1.079 -1.034 -1.165 788 -1 14 -1.327 -1.315 -1.305 -1.611 -1 15 -1.411 -1.449 -1.400 -1.650 -1 16 -1.355 -1.412 -1.369 -1.671 -1 17 -1.406 -1.463 -1.420 -1.644 -1 18 -1.266 -1.337 -1.311 -1.533 -1 19 -1.532 -1.580 -1.582 -1.739 -1 20 -1.264 -1.352 -1.224 -1.495 -1 21 -1.025 -1.120 951 -1.175 -1 22 486 <td>.991 .788</td>	.991 .788
9 -1.190 -1.019 -1.221 -1.052	.788
11 -1.287 -1.056 -1.295 -1.024 -1.024 12 925 833 832 740 - 13 -1.079 -1.034 -1.165 788 -1 14 -1.327 -1.315 -1.305 -1.611 -1 15 -1.411 -1.449 -1.400 -1.650 -1 16 -1.355 -1.412 -1.369 -1.671 -1 17 -1.406 -1.463 -1.420 -1.644 -1 18 -1.266 -1.337 -1.311 -1.533 -1 19 -1.532 -1.580 -1.582 -1.739 -1 20 -1.264 -1.352 -1.224 -1.495 -1 21 -1.025 -1.120 951 -1.175 -1 22 486 590 373 622 - 23 .101 .020 .218 .016 24 .470 .431 .550 .465 25 .659 .630 .671	
11 -1.287 -1.056 -1.295 -1.024 740	.913
12 925 833 832 740 13 -1.079 -1.034 -1.165 788 -1 14 -1.327 -1.315 -1.305 -1.611 -1 15 -1.411 -1.449 -1.400 -1.650 -1 16 -1.355 -1.412 -1.369 -1.671 -1 17 -1.406 -1.463 -1.420 -1.644 -1 18 -1.266 -1.337 -1.311 -1.533 -1 19 -1.532 -1.580 -1.582 -1.739 -1 20 -1.264 -1.352 -1.224 -1.495 -1 21 -1.025 -1.120 951 -1.175 -1 22 486 590 373 622 - 23 .101 .020 .218 .016 24 .470 .431 .550 .465 25 .659 .630 .671 .649 26 .532 .554 .496 .592	
13 -1.079 -1.034 -1.165 788 -1 14 -1.327 -1.315 -1.305 -1.611 -1 15 -1.411 -1.449 -1.400 -1.650 -1 16 -1.355 -1.412 -1.369 -1.671 -1 17 -1.406 -1.463 -1.420 -1.644 -1 18 -1.266 -1.337 -1.311 -1.533 -1 19 -1.532 -1.580 -1.582 -1.739 -1 20 -1.264 -1.352 -1.224 -1.495 -1 21 -1.025 -1.120 951 -1.175 -1 22 486 590 373 622 - 23 .101 .020 .218 .016 24 .470 .431 .550 .465 25 .659 .630 .671 .649 26 .532 .554 .496 .592 27 .231 .306 .137 .294 28	.719
14 -1.327 -1.315 -1.305 -1.611 -1 15 -1.411 -1.449 -1.400 -1.650 -1 16 -1.355 -1.412 -1.369 -1.671 -1 17 -1.406 -1.463 -1.420 -1.644 -1 18 -1.266 -1.337 -1.311 -1.533 -1 19 -1.532 -1.580 -1.582 -1.739 -1 20 -1.264 -1.352 -1.224 -1.495 -1 21 -1.025 -1.120 951 -1.175 -1 22 -486 590 373 622 - 23 .101 .020 .218 .016 24 .470 .431 .550 .465 25 .659 .630 .671 .649 26 .532 .554 .496 .592 27 .231 .306 .137 .294 28 302 209 403 213	.039
15 -1.411 -1.449 -1.400 -1.650 -1 16 -1.355 -1.412 -1.369 -1.671 -1 17 -1.406 -1.463 -1.420 -1.644 -1 18 -1.266 -1.337 -1.311 -1.533 -1 19 -1.532 -1.580 -1.582 -1.739 -1 20 -1.264 -1.352 -1.224 -1.495 -1 21 -1.025 -1.120 951 -1.175 -1 22 486 590 373 622 - 23 .101 .020 .218 .016 24 .470 .431 .550 .465 25 .659 .630 .671 .649 26 .532 .554 .496 .592 27 .231 .306 .137 .294 28 302 209 403 213	.532
16 -1.355 -1.412 -1.369 -1.671 -1 17 -1.406 -1.463 -1.420 -1.644 -1 18 -1.266 -1.337 -1.311 -1.533 -1 19 -1.532 -1.580 -1.582 -1.739 -1 20 -1.264 -1.352 -1.224 -1.495 -1 21 -1.025 -1.120 951 -1.175 -1 22 486 590 373 622 - 23 .101 .020 .218 .016 24 .470 .431 .550 .465 25 .659 .630 .671 .649 26 .532 .554 .496 .592 27 .231 .306 .137 .294 28 302 209 403 213	.480
17 -1.406 -1.463 -1.420 -1.644 -1 18 -1.266 -1.337 -1.311 -1.533 -1 19 -1.532 -1.580 -1.582 -1.739 -1 20 -1.264 -1.352 -1.224 -1.495 -1 21 -1.025 -1.120 951 -1.175 -1 22 486 590 373 622 - 23 .101 .020 .218 .016 24 .470 .431 .550 .465 25 .659 .630 .671 .649 26 .532 .554 .496 .592 27 .231 .306 .137 .294 28 302 209 403 213	.584
18 -1.266 -1.337 -1.311 -1.533 -1 19 -1.532 -1.580 -1.582 -1.739 -1 20 -1.264 -1.352 -1.224 -1.495 -1 21 -1.025 -1.120 951 -1.175 -1 22 486 590 373 622 - 23 .101 .020 .218 .016 24 .470 .431 .550 .465 25 .659 .630 .671 .649 26 .532 .554 .496 .592 27 .231 .306 .137 .294 28 302 209 403 213 -	.516
19 -1.532 -1.580 -1.582 -1.739 -1 20 -1.264 -1.352 -1.224 -1.495 -1 21 -1.025 -1.120 951 -1.175 -1 22 486 590 373 622 - 23 .101 .020 .218 .016 24 .470 .431 .550 .465 25 .659 .630 .671 .649 26 .532 .554 .496 .592 27 .231 .306 .137 .294 28 302 209 403 213 -	.484
20 -1.204 -1.302 951 -1.175 -1 21 -1.025 -1.120 951 -1.175 -1 22 486 590 373 622 - 23 .101 .020 .218 .016 24 .470 .431 .550 .465 25 .659 .630 .671 .649 26 .532 .554 .496 .592 27 .231 .306 .137 .294 28 302 209 403 213 -	.677
21 -1.025 -1.120 951 -1.175 -1 22 486 590 373 622 - 23 .101 .020 .218 .016 24 .470 .431 .550 .465 25 .659 .630 .671 .649 26 .532 .554 .496 .592 27 .231 .306 .137 .294 28 302 209 403 213 -	.391
23 .101 .020 .218 .016 24 .470 .431 .550 .465 25 .659 .630 .671 .649 26 .532 .554 .496 .592 27 .231 .306 .137 .294 28 302 209 403 213 961	.050
24 .470 .431 .550 .465 25 .659 .630 .671 .649 26 .532 .554 .496 .592 27 .231 .306 .137 .294 28 302 209 403 213 961	.484
24 .470 .431 .550 .465 25 .659 .630 .671 .649 26 .532 .554 .496 .592 27 .231 .306 .137 .294 28 302 209 403 213 961	.143
25 .659 .630 .671 .649 26 .532 .554 .496 .592 27 .231 .306 .137 .294 28 302 209 403 213	.534
26 .532 .554 .496 .592 27 .231 .306 .137 .294 28 302 209 403 213 213	.664
27 .231 .306 .137 .294 28302209403213 -	.530
28302209403213 -	.191
	.356
29 -1.005 .500	.009
30 -1.375 -1.310 -1.418 -1.264 -1	.371
31 -1.843 -1.720 -1.781 -1.495 -1	.588
32 -1.657 -1.591 -1.630 -1.463 -1	.538
33 -1.828 -1.708 -1.807 -1.533 -1	.623
34 -1.761 -1.710 -1.646 -1.545 -1	.625
35 -1.011 847 -1.011 862 -	.865
36 -1.017943994850 -	.915
37705650769690 -	.738
38 -1.175 -1.254 -1.327 -1.208 -1	.133
39 -1.263 -1.323 -1.247 -1.253 -1	- 1
40 -1.117 -1.215 -1.198 -1.433 -1	.226
	- 1
42 -1.013 -1.088 -1.048 -1.355 -1	.226

Figure 37 - Pressure Coefficients $\alpha=50^{\circ},\,\phi_{j}=120^{\circ},\,\phi_{b}=240^{\circ},\,C_{\mu}=.01$

Pressure	Blowing Nozzle					
Port	1	2	3	4	5	
43	-1.174	-1.241	-1.260	-1.486	-1.415	
44	-1.112	-1.211	-1.104	-1.415	-1.294	
45	954	-1.045	927	-1.170	-1.037	
46	524	628	464	722	574	
47	033	108	.075	.117	003	
48	.337	.297	.411	.534	.378	
49	.659	.644	.667	.644	.654	
50	.533	.561	.495	.583	.549	
51	.379	.425	.310	.429	.347	
52	.055	.125	033	.150	.033	
53	381	294	503	272	409	
54	730	659	847	641	775	
55	-1.315	-1.192	-1.423	-1.110	-1.281	
56	-1.504	-1.425	-1.564	-1.345	-1.485	
57	-1.983	-1.850	-1.948	-1.616	-1.776	
58	-1.830	-1.768	-1.719	-1.502	-1.621	
59	-1.936	-1.813	-1.846	-1.544	-1.656	
60	-1.746	-1.678	-1.657	-1.475	-1.559	
61	-1.913	-1.824	-1.870	-1.567	-1.696	
62	-1.771	-1.714	-1.765	-1.582	-1.742	
63	-2.249	-2.179	-2.252	-1.906	-2.078	
64	-1.798	-1.719	-1.468	-1.448	-1.331	
65	-1.109	989	-1.051	993	-1.903	
66	-1.715	-1.657	-1.300	-1.344	-1.144	
67	875	833	928	848	-1.202	
68	-1.139	-1.171	-1.101	-1.286	-1.169	
69	-1.065	-1.053	-1.150	-1.301	-1.111	
70	884	927	956	-1.250	-1.051	
71	915	935	959	-1.158	994	
72	768	799	822	-1.091	960	
73	839	897	870	-1.103	989	
74	744	818	774	-1.059	941	
75	816	879	848	-1.091	989	
76	757	823	790	-1.088	987	
77	918	976	978	-1.232	-1.136	
78	855	939	854	-1.159	-1.035	
79	812	892	781	-1.035	895	
80	550	637	493	753	609	
81	270	351	182	392	265	
82	.034	035	.102	048	.055	
83	.372	.306	.441	.297	.386	
84	.500	.470	.524	.487	.536	

Figure 37 (continued) – Pressure Coefficients $\alpha = 50^{\circ}$, $\phi_j = 120^{\circ}$, $\phi_b = 240^{\circ}$, $C_{\mu} = .01$

Pressure	Blowing Nozzle					
Port	1	2	3	4	5	
1	.787	.772	.778	.752	.789	
2	.637	.662	.595	.676	.620	
3	.311	.408	.193	.402	.269	
4	285	138	403	115	320	
5	939	797	-1.092	694	955	
6	-1.270	-1.112	-1.383	962	-1.217	
7	-1.602	-1.427	-1.674	-1.231	-1.480	
8	-1.275	-1.041	-1.375	935	-1.295	
9	-1.623	-1.407	-1.549	777	-1.329	
10	-1.293	-1.009	-1.387	766	-1.137	
11	-1.388	-1.257	-1.404	813	-1.204	
12	971	856	-1.056	714	878	
13	-1.074	-1.067	-1.231	764	-1.167	
14	-1.437	-1.429	-1.364	-1.664	-1.508	
15	-1.443	-1.527	-1.369	-1.702	-1.483	
16	-1.430	-1.473	-1.394	-1.762	-1.531	
17	-1.428	-1.517	-1.353	-1.756	-1.471	
18	-1.303	-1.345	-1.320	-1.647	-1.407	
19	-1.550	-1.632	-1.503	-1.888	-1.625	
20	-1.297	-1.363	-1.243	-1.582	-1.330	
21	-1.041	-1.161	914	-1.282	-1.014	
22	512	605	393	687	452	
23	.106	003	.217	036	.153	
24	.485	.420	.563	.416	.529	
25	.648	.640	.659	.611	.642	
26	.540	.551	.502	.560	.496	
27	.247	.307	.129	.319	.193	
28	285	216	430	151	342	
29	961	854	-1.098	779	-1.009	
30	-1.350	-1.231	-1.477	-1.120	-1.355	
31	-1.753	-1.646	-1.756	-1.359	-1.618	
32	-1.619	-1.495	-1.684	-1.298	-1.542	
33	-1.721	-1.606	-1.763	-1.357	-1.610	
34	-1.281	-1.284	-1.212	-1.159	-1.069	
35	-1.069	880	-1.224	759	991	
36	834	782	891	722	680	
37	794	693	894	808	784	
38	-1.256	-1.256	-1.390	-1.275	-1.522	
39	-1.247	-1.325	-1.194	-1.397	-1.305	
40	-1.195	-1.244	-1.247	-1.495	-1.315	
41	-1.229	-1.324	-1.161	-1.482	-1.294	
42	-1.067	-1.123	-1.068	-1.409	-1.169	

Figure 38 - Pressure Coefficients $\alpha=50^{\circ},\ \phi_{j}=120^{\circ},\ \phi_{b}=240^{\circ},\ C_{\mu}=.02$

Pressure	Blowing Nozzle					
Port	1	2	3	4	5	
43	-1.221	-1.291	-1.201	-1.585	-1.372	
44	-1.168	-1.237	-1.126	-1.465	-1.260	
45	987	-1.081	878	-1.238	996	
46	563	646	464	752	540	
47	038	120	.086	155	.243	
48	.346	.279	.429	.272	.580	
49	.650	.647	.641	.631	.653	
50	.546	.555	.516	.562	.534	
51	.396	.440	.283	.431	.330	
52	.080	.139	044	.153	.009	
5 3	356	274	510	258	430	
54	724	625	882	603	791	
55	-1.284	-1.172	-1.418	-1.063	-1.320	
5 6 •	-1.496	-1.371	-1.634	-1.255	-1.508	
57	-1.913	-1.801	-1.953	-1.564	-1.808	
58	-1.804	-1.691	-1.834	-1.426	-1.661	
59	-1.868	-1.775	-1.842	-1.481	-1.714	
60	-1.713	-1.602	-1.741	-1.374	-1.586	
61	-1.847	-1.758	-1.850	-1.504	-1.723	
62	-1.780	-1.659	-1.893	-1.530	-1.767	
63	-2.112	-2.120	-1.882	-1.789	-1.684	
64	-1.170	-1.071	-1.090	981	942	
65	-1.022	-1.876	-1.017	848	-1.532	
66	-1.248	946	888	805	757	
67	829	-1.089	937	965	-1.059	
68	-1.049	998	-1.036	-1.220	-1.044	
69	-1.150	-1.098	-1.177	-1.254	-1.115	
70	974	941	993	-1.195	-1.022	
71	-1.017	-1.002	944	-1.114	-1.000	
72	828	870	812	-1.133	943	
73	896	948	836	-1.142	956	
74	796	862	782	-1.102	912	
75	877	942	823	-1.161	963	
76	813	870	814	-1.141	955	
77	988	-1.061	951	-1.304	-1.097	
78	913	985	870	-1.191	991 880	
79	856	949	753	-1.08 6	880 587	
80	586	672	489	778	252	
81	298	374	174	415		
82	.016	047	.125	069	.063 .394	
83	.350	.294	.425	.282	.529	
84	.499	.456	.552	.461	.529	

Figure 38 (continued) – Pressure Coefficients $\alpha=50^{\circ}, \, \phi_j=120^{\circ}, \, \phi_b=240^{\circ}, \, C_{\mu}=.02$

Pressure	Blowing Nozzle					
Port	1	2	3	4	5	
1	.819	.860	.822	.849	.855	
2	.715	.668	.722	.698	.674	
3	.292	.204	.349	.287	.268	
4	386	530	357	386	425	
5	-1.063	-1.264	-1.064	-1.059	-1.117	
6	938	-1.118	-1.050	-1.136	-1.105	
7	-1.170	-1.314	-1.263	-1.146	-1.115	
8	-1.091	-1.211	-1.129	-1.054	-1.011	
9	-1.591	-1.801	-1.755	-1.559	-1.546	
10	-1.805	-1.987	-1.709	-1.769	-1.680	
11	-2.229	-2.352	-2.009	-2.167	-2.036	
12	-1.378	-1.240	-1.394	-1.379	-1.276	
13	-1.115	-1.242	987	-1.105	-1.266	
14	-2.293	-2.096	-1.928	-2.268	-2.230	
15	-2.129	-2.101	-2.105	-2.148	-2.090	
16	-2.280	-2.066	-1.969	-2.290	-2.318	
17	-2.257	-2.069	-2.143	-2.279	-2.314	
18	-2.100	-1.861	-1.869	-2.098	-2.183	
19	-2.415	-2.166	-2.194	-2.440	-2.521	
20	-2.030	-1.821	-1.893	-2.021	-2.048	
21	-1.709	-1.490	-1.650	-1.721	-1.734	
22	924	741	904	901	894	
23	127	.024	161	108	064	
24	.440	.525	.404	.451	.470	
25	.740	.765	.710	.735	.754	
26	.684	.655	.687	.676	.666	
27	.401	.282	.421	.395	.375	
28	094	275	098	097	119	
29	690	967	768	698	690	
30	883	-1.250	-1.090	861	791	
31	-1.122	-1.450	-1.310	-1.112	-1.069	
32	-1.149	-1.450	-1.321	-1.147	-1.071	
33	-1.029	-1.415	-1.292	-1.024	936	
34	-1.048	-1.365	-1.162	-1.027	994	
35	-1.123	-1.415	-1.269	-1.116	-1.107	
36	-1.002	-1.167	-1.143	974	911	
37	-1.011	970	865	-1.116	-1.432	
38	-1.915	-1.711	-1.767	-1.943	-1.865	
39	-1.952	-1.706	-1.774	-1.995	-2.149	
40	-2.145	-1.815	-1.868	-2.085	-2.122	
41	-2.079	-1.834	-1.980	-2.119	-2.183	
42	-1.930	-1.719	-1.786	-1.952	-1.977	
42	-1.500	-1.110	1			

Figure 39 - Pressure Coefficients $\alpha=60^{\circ},\,\phi_{j}=90^{\circ},\,\phi_{b}=270^{\circ},\,C_{\mu}=.00$

Pressure	Blowing Nozzle					
Port	1	2	3	4	5	
43	-2.241	-1.993	-2.024	-2.285	-2.407	
44	-1.983	-1.781	-1.891	-1.984	-2.002	
45	-1.717	-1.522	-1.669	-1.725	-1.762	
46	-1.051	870	-1.053	-1.024	969	
47	254	142	321	264	208	
48	.311	.380	.253	.299	.346	
49	.758	.773	.729	.745	.750	
50	.815	.806	.834	.815	.812	
51	.601	.559	.645	.589	.556	
52	.344	.234	.401	.324	.288	
53	.022	127	.065	010	047	
54	384	550	355	382	400	
55	592	808	617	573	573	
56	692	-1.083	839	672	630	
57	630	982	745	604	574	
58	714	997	860	705	682	
59	739	-1.031	911	706	683	
60	703	-1.019	817	684	685	
61	666	976	781	636	652	
62	730	-1.037	813	731	699	
63	723	-1.039	871	833	876	
64	791	-1.020	883	859	923	
65	765	949	826	875	992	
66	990	663	683	-1.106	-1.282	
67	-1.292	-1.010	847	-1.247	-1.359	
68	-1.576	-1.818	-1.748	-1.423	-1.533	
69	-1.443	-1.770	-1.655	-1.375	-1.449	
70	-1.615	-2.153	-1.902	-1.600	-1.620	
71	-1.562	-1.749	-1.672	-1.536	-1.520	
72	-1.722	-1.947	-1.720	-1.646	-1.646	
73	-1.655	-1.678	-1.578	-1.561	-1.521	
74	-1.775	-1.634	-1.698	-1.786	-1.817	
75	-1.677	-1.531	-1.569	-1.675	-1.672	
76	-1.957	-1.730	-1.757	-1.989	-1.913	
77	-1.863	-1.736	-1.732	1	-1.787	
78	-1.839	-1.709	-1.834		-1.899	
79	-1.490	-1.382	-1.539		-1.460	
80	-1.130	-1.005	-1.198		-1.069	
81	622	515	700		555	
82	116	049	216	1	048	
83	.269	l	.189		.313	
84	.688		.629	.686	.724	
04						

Figure 39 (continued) – Pressure Coefficients $\alpha=60^{\circ},\,\phi_{j}=90^{\circ},\,\phi_{b}=270^{\circ},\,C_{\mu}=.00$

Pressure	T	Blowing Nozzle					
Port	1	2	3	4	5		
1	.829	.849	.842	.852	.869		
2	.644	.581	.706	.653	.624		
3	.157	.054	.262	.227	.140		
4	538	681	471	479	576		
5	-1.233	-1.416	-1.204	-1.184	-1.292		
6	-1.099	-1.257	-1.174	-1.108	-1.174		
7	-1.335	-1.517	-1.501	-1.318	-1.303		
8	-1.188	-1.328	-1.294	-1.160	-1.153		
9	-1.360	-1.384	-1.608	-1.161	-1.145		
10	-1.100	-1.216	-1.020	887	899		
11	-1.072	-1.075	988	770	793		
12	872	974	733	718	708		
13	-1.185	-1.531	-1.152	-1.578	-1.515		
14	-1.818	-1.830	-2.050	-2.010	-1.915		
15	-1.889	-1.844	-2.124	-2.189	-2.111		
16	-1.984	-1.805	-2.089	-2.140	-2.073		
17	-1.892	-1.747	-2.016	-2.111	-2.075		
18	-1.792	-1.634	-1.831	-1.948	-1.910		
19	-2.020	-1.888	-2.082	-2.272	-2.209		
20	-1.735	-1.586	-1.817	-1.853	-1.791		
21	-1.386	-1.234	-1.516	-1.534	-1.457		
22	692	553	812	751	676		
23	.030	.172	041	.015	.099		
24	.521	.591	.494	.504	.561		
25	.759	.775	.762	.780	.805		
26	.610	.572	.660	.610	.589		
27	.161	.066	.260	.200	.165		
28	463	578	351	406	444		
29	-1.264	-1.441	-1.198	-1.235	-1.273		
30	-1.716	-1.881	-1.688	-1.577	-1.589		
31	-1.992	-2.197	-2.035	-1.802	-1.812		
32	-1.855	-2.043	-1.897	-1.684	-1.713		
33	-2.078	-2.290	-2.125	-1.943	-1.966		
34	-2.136	-2.458	-2.283	-2.026	-2.010		
35	-1.016	-1.121	-1.167	-1.008	-1.048		
36	-1.260	-1.432	-1.345	-1.277	-1.256		
37	-1.113	-1.176	-1.157	-1.247	-1.262		
38	-1.384	-1.463	-1.250	-1.246	-1.188		
39	-1.380	-1.369	-1.325	-1.437	-1.360		
40	-1.417	-1.305	-1.283	-1.393	-1.354		
41	-1.415	-1.275	-1.378	-1.495	-1.478		
42	-1.351	-1.163	-1.297	-1.391	-1.400		

Figure 40 - Pressure Coefficients $\alpha=60^{\circ},\,\phi_{j}=90^{\circ},\,\phi_{b}=270^{\circ},\,C_{\mu}=.01$

Pressure	Blowing Nozzle						
Port	1	2	3	4	5		
43	-1.517	-1.308	-1.433	-1.633	-1.668		
44	-1.448	-1.258	-1.440	-1.487	-1.472		
45	-1.182	-1.011	-1.215	-1.271	-1.245		
46	655	529	728	686	640		
47	004	.132	086	026	.057		
48	.448	.527	.395	.425	.491		
49	.775	.760	.784	.767	.766		
50	.715	.677	.769	.746	.731		
51	.434	.357	.518	.447	.408		
52	.033	077	.124	.062	.001		
53	389	524	300	355	421		
54	-1.023	-1.183	870	951	998		
55	-1.407	-1.564	-1.281	-1.287	-1.304		
56	-1.888	-2.073	-1.821	-1.802	-1.823		
57	-1.990	-2.160	-1.965	-1.773	-1.770		
58	-1.929	-2.142	-2.007	-1.756	-1.730		
59	-1.908	-2.075	-1.943	-1.709	-1.684		
60	-1.926	-2.154	-1.957	-1.796	-1.722		
61	-1.834	-2.015	-1.837	-1.680	-1.555		
62	-1.811	-2.119	-1.846	-1.846	-1.782		
63	-1.656	-1.878	-1.645	-1.510	-1.525		
64	-2.062	-2.402	-2.246	-2.224	-2.012		
65	-1.088	-1.303	-1.623	-1.102	-1.128		
66	-1.243	-1.314	-1.160	-1.206	-1.183		
67	-1.141	-1.108	-1.154	-1.073	-1.064 -1.108		
68	-1.223	-1.117	-1.099	-1.074	986		
69	-1.115	987	-1.005	969			
70	-1.058	953	976	-1.010	-1.055 910		
71	957	826	909	888	-1.016		
72	963	823	912	951			
73	923	789	878	901	921 971		
74	930	787	899	948	883		
75	879	736	849	878			
76	892	764	881	936	957 990		
77	958	808	891	971	-1.069		
78	-1.011	874	-1.013	-1.057	842		
79	850	704	858	860	542		
80	583	473	662	617	213		
81	233	145	311	248	.226		
82	.170	.260	.086	.172	.489		
83	.458	.510	.401	.448			
84	.763	.798	.735	.779	.809		

Figure 40 (continued) – Pressure Coefficients $\alpha = 60^{\circ}$, $\phi_j = 90^{\circ}$, $\phi_b = 270^{\circ}$, $C_{\mu} = .01$

1. A 4 4 1

Pressure	Blowing Nozzle					
Port	1	2	3	4	5	
1	.847	.844	.858	.840	.870	
2	.639	.629	.681	.686	.624	
3	.157	.107	.287	.278	.154	
4	512	569	403	349	523	
5	-1.181	-1.245	-1.093	976	-1.201	
6	961	-1.040	957	837	988	
7	-1.267	-1.263	-1.260	-1.033	-1.203	
8	-1.447	-1.066	-1.039	912	964	
9	-1.938	-1.703	-1.904	951	-1.697	
10	-1.577	-1.288	-1.208	849	-1.182	
11	-1.366	-1.349	-1.422	747	-1.267	
12	-1.116	-1.100	991	761	912	
13	-1.330	-1.669	-1.318	-1.720	-1.554	
14	-1.791	-1.945	-1.952	-2.221	-1.878	
15	-1.857	-1.936	-1.988	-2.277	-2.150	
16	-1.864	-1.890	-1.945	-2.271	-1.899	
17	-1.908	-1.817	-1.949	-2.208	-1.992	
18	-1.777	-1.714	-1.745	-2.087	-1.812	
19	-2.011	-1.971	-2.042	-2.375	-2.130	
20	-1.684	-1.657	-1.752	-1.991	-1.730	
21	-1.414	-1.308	-1.498	-1.624	-1.400	
22	691	602	785	8 36	638	
23	.064	.127	027	022	.111	
24	.532	.586	.477	.5 03	.566	
25	.777	.768	.762	.762	.792	
26	.600	.586	.641	.62 6	.591	
27	.161	.085	.244	.231	.143	
28	458	549	363	360	469	
29	-1.299	-1.400	-1.219	-1.173	-1.327	
30	-1.709	-1.817	-1.662	-1.572	-1.673	
31	-1.985	-1.999	-2.035	-1.763	-1.880	
32	-1.743	-1.835	-1.787	-1.613	-1.696	
33	-2.101	- 2. 15 3	-2.123	-1.900	-2.051	
34	-1.182	-1.524	-1.848	-1.801	-1.262	
35	-1.045	-1.086	-1.043	-1.033	997	
36	770	961	-1.116	-1.250	822	
37	-1.156	-1.277	-1.145	-1.386	-1.247	
38	-1.445	-1.479	-1.409	-1.319	-1.254	
39	-1.460	-1.472	-1.442	-1.442	-1.428	
40	-1.447	-1.405	-1.382	-1.433	-1.380	
41	-1.465	-1.378	-1.435	-1.523	-1.484	
42	-1.351	-1.262	-1.289	-1.447	-1.376	

Figure 41 – Pressure Coefficients $\alpha=60^{\circ},\,\phi_{j}=90^{\circ},\,\phi_{b}=270^{\circ},\,C_{\mu}=.02$

Pressure	Blowing Noszle						
Port	1	2	3	4	5		
43	-1.573	-1.434	-1.461	-1.645	-1.617		
44	-1.456	-1.349	-1.424	-1.537	-1.439		
45	-1.192	-1.092	-1.248	-1.302	-1.223		
46	653	569	732	738	626		
47	.018	.067	092	044	.046		
48	.455	.495	.382	.427	.483		
49	.761	.780	.757	.764	.768		
50	.717	.689	.768	.742	.727		
51	.419	.395	.479	.467	.402		
52	012	068	.111	.070	018		
53	447	508	318	347	450		
54	-1.075	-1.116	949	883	-1.095		
55	-1.442	-1.490	-1.331	-1.210	-1.426		
56	-1.961	-2.058	-1.907	-1.804	-1.927		
57	-2.018	-2.146	-1.999	-1.870	-1.892		
58	-2.035	-2.023	-2.117	-1.742	-1.892		
59	-1.940	-1.993	-1.933	-1.698	-1.831		
60	-2.059	-2.073	-2.103	-1.828	-1.866		
61	-1.894	-1.940	-1.878	-1.696	-1.805		
62	-2.057	-2.132	-2.153	-1.761	-1.913		
63	-1.824	-1.937	-1.823	-1.623	-1.710		
64	-1.433	-1.782	-2.240	-2.001	-1.558		
65	-1.008	-1.092	-1.072	-1.332	967		
66	-1.171	-1.213	-1.295	-1.353	-1.164		
67	-1.129	-1.115	-1.081	-1.242	-1.076		
68	-1.362	-1.209	-1.219	-1.199	-1.183		
69	-1.180	-1.058	-1.047	-1.075	-1.025		
70	-1.141	-1.010	-1.034	-1.075	-1.078		
71	981	885	911	954	932		
72	990	901	963	-1.027	-1.039		
73	925	857	901	967	936		
74	969	873	935	995	997		
75	886	830	867	934	902		
76	906	856	911	961	986		
77	946	922	915	-1.006	-1.016		
78	-1.025	967	-1.048	-1.074	-1.090		
79	849	793	870	895	863		
80	614	509	665	648	596		
81	251	162	308	286	214		
82	.161	.227	.092	.142	.227		
83	.446	.502	.384		.493		
84	.775	.787	.753	.763	.812		
04			4				

Figure 41 (continued) – Pressure Coefficients $\alpha = 60^{\circ}$, $\phi_j = 90^{\circ}$, $\phi_b = 270^{\circ}$, $C_{\mu} = .02$

141 100

Pressure	Blowing Nozzle					
Port	1	2	3	4	5	
1	.799	.842	.841	.820	.829	
2	.755	.709	.694	.758	.725	
3	.372	.341	.300	.408	.329	
4	291	361	371	258	330	
5	999	-1.208	-1.165	981	-1.110	
6	-1.337	-1.609	-1.423	-1.312	-1.359	
7	-1.675	-2.010	-1.681	-1.644	-1.608	
8	-1.293	-1.460	-1.316	-1.266	-1.280	
9	-1.364	-1.555	-1.404	-1.379	-1.334	
10	-1.201	-1.352	-1.226	-1.236	-1.290	
11	-1.793	-2.162	-1.805	-1.816	-1.859	
12	-1.386	-1.400	-1.199	-1.389	-1.290	
13	970	-1.076	-1.067	982	-1.099	
14	-1.774	-1.840	-1.788	-1.793	-1.793	
15	-1.752	-1.928	-1.779	-1.737	-1.732	
16	-1.900	-1.713	-2.006	-1.975	-2.040	
17	-2.008	-1.841	-2.010	-2.012	-2.028	
18	-1.861	-1.556	-1.915	-1.927	-1.994	
19	-2.121	-1.821	-2.221	-2.223	-2.271	
20	-1.926	-1.646	-1.885	-2.000	-1.969	
21	-1.609	-1.382	-1.557	-1.654	-1.592	
22	960	794	843	992	898	
23	196	081	071	208	092	
24	.382	.430	.453	.379	.457	
25	.711	.762	.762	.721	.749	
26	.710	.681	.680	.725	.703	
27	.470	.359	.396	.477	.409	
28	061	275	170	061	137	
29	800	-1.074	853	735	798	
30	-1.188	-1.519	-1.135	-1.092	-1.082	
31	-1.358	-1.872	-1.267	-1.221	-1.186	
32	-1.323	-1.804	-1.270	-1.274	-1.225	
33	-1.498	-1.963	-1.438	-1.398	-1.357	
34	-1.385	-1.823	-1.287	-1.240	-1.261	
35	-1.453	-2.280	-1.302	-1.291	-1.241	
36	-1.414	-2.179	-1.104	-1.217	-1.089	
37	784	-1.119	841	763	827	
38	-1.872	-1.505	-1.965	-1.967	-2.077	
39	-1.713	-1.105	-1.962	-1.876	-2.042	
40	-1.849	-1.125	-2.051	-2.053	-2.187	
41	-1.900	-1.203	-2.020	-2.040	-2.080	
42	-1.756	-1.121	-1.819	-1.871	-1.898	

Figure 42 - Pressure Coefficients $\alpha=60^{\circ}, \, \phi_{j}=120^{\circ}, \, \phi_{b}=240^{\circ}, \, C_{\mu}=.00$

Pressure	Blowing Nozzle					
Port	1	2	3	4	5	
43	-1.841	-1.211	-2.062	-2.033	-2.101	
44	-1.848	-1.277	-1.885	-1.982	-1.970	
45	-1.649	-1.147	-1.597	-1.692	-1.646	
46	-1.102	715	961	-1.127	-1.015	
47	369	134	218	368	257	
48	.215	.337	.334	.226	.316	
49	.766	.839	.821	.786	.812	
50	.777	.739	.754	.781	.775	
51	.685	.561	.639	.709	.647	
52	.405	.149	.324	.440	.348	
5 3	.056	201	050	.074	017	
54	309	634	378	264	353	
55	790	-1.231	755	679	706	
56	938	-1.435	786	803	757	
57	-1.049	-1.889	820	782	758	
58	986	-1.686	781	761	746	
59	-1.042	-1.682	814	759	758	
60	988	-1.545	780	747	747	
61	-1.012	-1.734	923	907	841	
62	946	-1.556	872	881	879	
63	-1.021	-1.588	885	849	861	
64	990	-1.485	834	840	858	
65	-1.013	-1.550	898	921	899	
66	-1.129	-1.535	-1.075	953	908	
67	746	-1.156	877	788	-1.091	
68	-1.418	872	-1.435	-1.443	-1.513	
69	-1.686	985	-1.578	-1.588	-1.519	
70	-1.725	805	-1.592	-1.642	-1.540	
71	-1.989	860	-1.728	-1.653	-1.611	
72	-1.814	747	-1.668	-1.615	-1.551	
73	-1.861	813	-1.739	-1.684	-1.662	
74	-1.690	742	-1.644	-1.659	-1.602	
75	-1.722	784	-1.729	-1.720	-1.720	
76	-1.702	725	-1.687	-1.688	-1.752	
77	-1.942	771	-1.870	-1.888	-1.949	
78	-1.833	836	-1.671	-1.759	-1.771	
79	-1.623	815	-1.534	-1.642	-1.582	
80	-1.230	610	-1.090	-1.235	-1.142	
81	768	314	620	779	636	
82	285	.025	141	285	147	
83	.208	.418	.342	.209	.301	
84	.512	.608	.583	.511	.579	

Figure 42 (continued) – Pressure Coefficients $\alpha=60^{\circ},\,\phi_{j}=120^{\circ},\,\phi_{b}=240^{\circ},\,C_{\mu}=.00$

Pressure		Blo	wing No	zzle	
Port	1	2	3	4	5
1	.856	.834	.854	.821	.858
2	.648	.693	.602	.699	.655
3	.182	.312	.056	.295	.189
4	569	392	715	390	527
5	-1.520	-1.302	-1.616	-1.191	-1.336
6	-2.013	-1.782	-2.026	-1.542	-1.646
7	-2.507	-2.262	-2.436	-1.893	-1.956
8	-1.808	-1.609	-1.784	-1.395	-1.482
9	-1.806	-1.643	-1.825	-1.481	-1.566
10	-1.141	829	-1.035	709	-1.564
11	-1.863	-1.373	-1.748	-1.138	-1.195
12	-1.204	942	-1.059	693	-1.010
13	-1.424	-1.258	-1.381	-1.020	-1.306
14	-1.546	-1.567	-1.875	-1.926	-1.655
15	-1.573	-1.647	-1.623	-2.115	-2.006
16	-1.516	-1.618	-1.642	-2.008	-1.919
17	-1.531	-1.651	-1.614	-2.062	-1.978
18	-1.385	-1.500	-1.504	-1.792	-1.806
19	-1.630	-1.733	-1.756	-2.107	-2.124
20	-1.440	-1.576	-1.469	-1.797	-1.747
21	-1.169	-1.313	-1.148	-1.517	-1.417
22	589	731	516	834	707
23	.096	030	.197	099	.046
24	.541	.471	.607	.437	.526
25	.787	.775	.799	.760	.809
26	.617	.662	.590	.664	.637
27	.190	.302	.071	.309	.235
28	512	347	637	318	412
29	-1.429	-1.289	-1.544	-1.077	-1.239
30	-1.956	-1.821	-2.004	-1.504	-1.562
31	-2.676	-2.437	-2.474	-1.809	-1.775
32	-2.452	-2.250	-2.290	-1.767	-1.734
33	-2.664	-2.438	-2.500	-1.951	-1.971
34	-2.460	-2.322	-2.480	-1.987	-2.002
35	-2.458	-2.211	-1.921	-1.631	-2.464
36	-1.533	-1.393	-1.456	-1.212	-1.271
37	-1.672	-1.456	-1.468	-1.139	-1.535
38	-1.302	-1.315	-1.378	-1.260	-1.239
39	-1.273	-1.338	-1.338	-1.267	-1.318
40	-1.058	-1.148	-1.163	-1.341	-1.311
41	-1.075	1.172	-1.158	-1.414	-1.383
42	934	-1.038	-1.010	-1.335	-1.281

Figure 43 - Pressure Coefficients $\alpha=60^{\circ}, \, \phi_{j}=120^{\circ}, \, \phi_{b}=240^{\circ}, \, C_{\mu}=.01$

Pressure		Blo	wing No	zzle	
Port	1	2	3	4	5
43	-1.005	-1.102	-1.102	-1.504	-1.489
44	-1.056	-1.171	-1.121	-1.509	-1.417
45	908	-1.038	892	-1.286	-1.185
46	493	614	451	774	653
47	.055	071	.141	115	022
48	.462	.389	.537	.376	.438
49	.838	.820	.834	.826	.860
50	.691	.729	.669	.733	.716
51	.500	.549	.391	.571	.520
52	.096	.179	016	.222	.143
5 3	480	372	589	262	358
54	956	842	-1.037	680	765
55	-1.719	-1.477	-1.778	-1.271	-1.406
56	-2.009	-1.785	-2.018	-1.504	-1.563
57	-2.632	-2.430	-2.455	-1.842	-1.747
58	-2.545	-2.368	-2.254	-1.652	-1.578
59	-2.701	-2.415	-2.336	-1.779	-1.675
60	-2.456	-2.243	-2.156	-1.636	-1.533
61	-2.630	-2.359	-2.323	-1.835	-1.650
62	-2.352	-2.170	-2.108	-1.809	-1.541
63	-2.425	-2.187	-2.586	-2.216	-1.831
64	-2.280	-2.231	-2.851	-2.468	-1.810
65	-2.645	-2.287	-2.376	-2.000	-1.863
66	-2.025	-2.204	-2.409	-2.509	-1.740
67	-1.289	-1.263	-1.239	-1.178	981
68	-1.144	-1.289	-1.306	-1.453	-1.136 989
69	884	-1.018	963	-1.114	
70	765	874	849	-1.022	919 981
71	742	839	804	-1.061	981
72	657	725	725	958	931
73	687	725	746	984	931 845
74	624	674	681	910 948	886
75	662	701	700	877	817
76	601	648	653		945
77	659	683	750 770	-1.010 -1.027	927
78	717	760	779	988	863
79	695	753	690	705	576
80	475	558	446 103	365	226
81	187	271		.023	.142
82	.132	.061	.225	.420	.532
83	.516	.444	.583		.688
84	.670	.636	.710	.626	.000

Figure 43 (continued) – Pressure Coefficients $\alpha = 60^{\circ}$, $\phi_j = 120^{\circ}$, $\phi_b = 240^{\circ}$, $C_{\mu} = .01$

ur∯sir.

Pressure	Blowing Nozzle					
Port	1	2	3	4	5	
1	.837	.829	.857	.810	.857	
2	.663	.714	.583	.711	.649	
3	.178	.342	.038	.383	.196	
4	568	326	741	253	514	
5	-1.437	-1.182	-1.670	-1.031	-1.329	
6	-1.844	-1.573	-2.020	-1.303	-1.635	
7	-2.251	-1.965	-2.369	-1.575	-1.942	
8	-1.740	-1.468	-1.822	-1.222	-1.459	
9	-1.511	-1.189	-1.548	-1.101	-1.440	
10	-1.708	-1.165	-1.749	647	694	
11	-1.813	-1.330	-1.861	937	-1.088	
12	-1.395	-1.076	-1.362	689	658	
13	-1.566	-1.360	-1.661	-1.043	-1.282	
14	-1.731	-1.788	-1.810	-2.312	-1.630	
15	-1.685	-1.895	-1.654	-2.113	-2.019	
16	-1.652	-1.763	-1.589	-2.044	-1.935	
17	-1.581	-1.797	-1.582	-2.160	-2.017	
18	-1.468	-1.599	-1.448	-1.958	-1.813	
19	-1.666	-1.843	-1.738	-2.313	-2.175	
20	-1.509	-1.679	-1.440	-1.955	-1.750	
21	-1.210	-1.390	-1.116	-1.654	-1.439	
22	644	806	483	932	706	
23	.057	061	.227	190	.037	
24	.523	.456	.626	.371	.512	
25	.784	.763	.806	.752	.791	
26	.630	.668	.578	.667	.627	
27	.197	.336	.068	.364	.245	
28	504	289	650	221	381	
29	-1.400	-1.157	-1.585	-1.052	-1.251	
30	-1.936	-1.652	-2.0 29	-1.440	-1.562	
31	-2.486	-2.187	-2.523	-1.723	-1.804	
32	-2.323	-2.042	-2.321	-1.652	-1.732	
33	-2.462	-2.183	-2.508	-1.795	-1.981	
34	-2.423	-2.212	-2.331	-1.843	-1.916	
35	-1.542	-1.205	-1.537	-1.115	-1.748	
36	-1.557	-1.276	-1.651	-1.211	-1.203	
37	-1.167	979	-1.343	-1.281	-1.263	
38	-1.292	-1.385	-1.444	-1.288	-1.241	
39	-1.229	-1.350	-1.279	-1.435	-1.319	
40	-1.102	-1.289	-1.131	-1.454	-1.360	
41	-1.120	-1.301	-1.138	-1.555	-1.477	
42	-1.029	-1.178	-1.000	-1.467	-1.360	

Figure 44 - Pressure Coefficients $\alpha=60^{\circ},\,\phi_{j}=120^{\circ},\,\phi_{b}=240^{\circ},\,C_{\mu}=.02$

Pressure	Blowing Nozzle					
Port	1	2	3	4	5	
43	-1.082	-1.258	-1.108	-1.653	-1.599	
44	-1.172	-1.339	-1.127	-1.607	-1.488	
45	968	-1.166	894	-1.392	-1.262	
46	562	732	441	853	701	
47	.023	126	.163	201	046	
48	.445	.356	.534	.313	.413	
49	.822	.818	.840	.828	.859	
50	.698	.732	.640	.730	.702	
51	.471	.571	.363	.587	.507	
52	.088	.202	083	.235	.122	
53	473	290	658	27 2	392	
54	955	744	-1.133	697	806	
55	-1.675	-1.402	-1.881	-1.277	-1.430	
56	-1.992	-1.704	-2.125	-1.504	-1.585	
57	-2.537	-2.218	-2.662	-1.872	-1.835	
58	-2.469	-2.140	-2.455	-1.697	-1.597	
59	-2.542	-2.173	-2.546	-1.784	-1.755	
60	-2.400	-2.039	-2.346	-1.607	-1.555	
61	-2.459	-2.203	-2.495	-1.8 33	-1.725	
62	-2.223	-1.964	-2.243	-1.790	-1.726	
63	-2.754	-2.226	-2.923	-2.288	-2.493	
64	-2.824	-2.399	-2.736	-2.343	-2.662	
65	-2.235	-2.219	-1.904	-1.734	-2.452	
6 6	-2.870	-2.551	-2.742	-2.380	-2.708	
67	-1.230	-1.285	-1.226	-1.240	-1.307	
68	-1.458	-1.428	-1.431	-1.446	-1.510	
69	989	-1.076	-1.041	-1.159	-1.194	
70	881	950	904	-1.051	-1.069	
71	808	916	841	-1.058	-1.084	
72	747	805	741	972	945	
73	738	868	747	-1.034	-1.022	
74	695	798	684	934	909	
75	708	833	711	975	972	
76	680	778	662	899	890	
77	720	823	763	-1.013	-1.075	
78	803	899	774	-1.036	-1.006	
79	737	880	687	984	928	
80	531	661	433	728	605	
81	203	355	092	363	256	
82	.127	004	.224	.014	.120	
83	.493	.410	.605	.419	.518	
84	.663	.612	.709	.615	.671	

Figure 44 (continued) - Pressure Coefficients $\alpha = 60^{\circ}, \, \phi_j = 120^{\circ}, \, \phi_b = 240^{\circ}, \, C_{\mu} = .02$

		* •