Bundesministerium Bildung, Wissenschaft und Forschung

Zebraschnecken

Um das Wanderverhalten von Zebraschnecken zu untersuchen, wird eine Versuchsfläche, auf der solche Schnecken leben, beobachtet.

a) Die unten stehende Abbildung zeigt die Positionen der Zebraschnecke A an vier aufeinanderfolgenden Tagen in einem Koordinatensystem (Einheiten in Metern).
 Die Punkte A₁, A₂, A₃ und A₄ sind dabei die Positionen der Zebraschnecke A zu Beginn des 1., 2., 3. bzw. 4. Tages.

1) Geben Sie den Vektor vom Punkt A2 zum Punkt A3 an.

[0/1 P.]

2) Berechnen Sie die Entfernung, die die Zebraschnecke zurückgelegt hat, wenn sie auf dem kürzesten Weg von A_2 nach A_3 gekrochen ist. [0/1 P.]

Zu Beginn des 5. Tages befindet sich die Zebraschnecke im Punkt A_5 . Es gilt: $\overrightarrow{A_4A_5} = {-1 \choose 3}$.

3) Zeichnen Sie in der obigen Abbildung den Punkt A_5 ein.

[0/1 P.]

b) Die nachstehende Abbildung zeigt die Position der Zebraschnecke B an vier aufeinanderfolgenden Tagen. Die Punkte B_1 , B_2 , B_3 und B_4 sind dabei die Positionen der Zebraschnecke B zu Beginn des 1., 2., 3. bzw. 4. Tages.

- 1) Überprüfen Sie rechnerisch, ob der Winkel α ein rechter Winkel ist.
- [0/1 P.]

2) Berechnen Sie den Winkel β .

[0/1 P.]

SRDP Standardisierte Reife- und Diplomprüfung

Möglicher Lösungsweg

a1)
$$\overrightarrow{A_2A_3} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$$

a2)
$$|\overrightarrow{A_2A_3}| = \sqrt{2^2 + (-2)^2} = 2,82...$$

Die Entfernung beträgt rund 2,8 m.

a3)

- a1) Ein Punkt für das Angeben des richtigen Vektors.
- a2) Ein Punkt für das richtige Berechnen der Entfernung.
- a3) Ein Punkt für das richtige Einzeichnen des Punktes A_5 .
- **b1)** α ist ein rechter Winkel, weil im Dreieck $B_1B_2B_3$ der Lehrsatz von Pythagoras gilt:

$$\overline{B_1 B_2}^2 + \overline{B_2 B_3}^2 = \overline{B_1 B_3}^2$$
$$(\sqrt{5})^2 + (\sqrt{5})^2 = (\sqrt{10})^2$$

Auch eine Überprüfung mithilfe trigonometrischer Beziehungen ist als richtig zu werten.

b2)
$$\overline{B_1B_3}^2 = \overline{B_1B_4}^2 + \overline{B_3B_4}^2 - 2 \cdot \overline{B_1B_4} \cdot \overline{B_3B_4} \cdot \cos(\beta)$$

 $10 = 10 + 8 - 2 \cdot \sqrt{80} \cdot \cos(\beta)$
 $\beta = \arccos\left(\frac{8}{2 \cdot \sqrt{80}}\right) = 63,4...^{\circ}$

- b1) Ein Punkt für das richtige rechnerische Überprüfen.
- **b2)** Ein Punkt für das richtige Berechnen des Winkels β .