Shortest Path*

Xiaofeng Gao

Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China

Algorithm Course: Shanghai Jiao Tong University

Algorithm Course@SJTU Xiaofeng Gao Shortest Path 1/5'

^{*}Special thanks is given to *Prof. Kevin Wayne@Princeton*, *Prof. Charles E. Leiserson@MIT* for sharing their teaching materials, and also given to Mr. Mingding Liao from CS2013@SJTU for producing this lecture.

Outline

- Introduction to Shortest Path
 - Definition
 - Property
 - Application
- 2 Single Source Shortest Paths
 - Problem Statement
 - Dijstra's Algorithm
 - Bellman-Ford Algorithm
- All-Pair Shortest Paths
 - Matrix Multiplication
 - Floyd-Warshall Algorithm
 - Johnson's Algorithm

Outline

- Introduction to Shortest Path
 - Definition
 - Property
 - Application
- 2 Single Source Shortest Paths
 - Problem Statement
 - Dijstra's Algorithm
 - Bellman-Ford Algorithm
- All-Pair Shortest Paths
 - Matrix Multiplication
 - Floyd-Warshall Algorithm
 - Johnson's Algorithm

Paths in Graphs

Definition

Consider a digraph G = (V, E) with edge-weight function $w : E \to R$, where |V| = n and |E| = m. The weight of path $P = v_1 \to \ldots \to v_k$ is defined to be

$$w(P) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$$

4/57

Paths in Graphs

Definition

Consider a digraph G = (V, E) with edge-weight function $w : E \to R$, where |V| = n and |E| = m. The weight of path $P = v_1 \to \ldots \to v_k$ is defined to be

$$w(P) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$$

Example: w(P) = -2

Shortest Path

Definition

A *shortest path* from u to v is a path of minimum weight from u to v. The *shortest path weight* from u to v is defined as

$$d(u, v) = \min\{w(P) \mid P \text{ is a path from } u \text{ to } v\}$$

Note: $d(u, v) = +\infty$ if no path from u to v exists.

Outline

- Introduction to Shortest Path
 - Definition
 - Property
 - Application
- 2 Single Source Shortest Paths
 - Problem Statement
 - Dijstra's Algorithm
 - Bellman-Ford Algorithm
- All-Pair Shortest Paths
 - Matrix Multiplication
 - Floyd-Warshall Algorithm
 - Johnson's Algorithm

Optimal Substructure. A subpath of a shortest path is a shortest path.

Optimal Substructure. A subpath of a shortest path is a shortest path.

Proof. Proof by contradiction.

Optimal Substructure. A subpath of a shortest path is a shortest path.

Proof. Proof by contradiction.

Triangle Inequality. $\forall v_1, v_2, v_3 \in V, d(v_1, v_2) \leq d(v_1, v_3) + d(v_3, v_2).$

Optimal Substructure. A subpath of a shortest path is a shortest path.

Proof. Proof by contradiction.

Triangle Inequality. $\forall v_1, v_2, v_3 \in V, d(v_1, v_2) \leq d(v_1, v_3) + d(v_3, v_2).$

Proof. Proof by contradiction.

Well-Definedness of Shortest Paths

If a graph G contains a negative-weight cycle, then some shortest paths may not exist.

Well-Definedness of Shortest Paths

If a graph G contains a negative-weight cycle, then some shortest paths may not exist.

Example:

Outline

- Introduction to Shortest Path
 - Definition
 - Property
 - Application
- 2 Single Source Shortest Paths
 - Problem Statement
 - Dijstra's Algorithm
 - Bellman-Ford Algorithm
- All-Pair Shortest Paths
 - Matrix Multiplication
 - Floyd-Warshall Algorithm
 - Johnson's Algorithm

Shortest Path Applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Robot navigation.
- Texture mapping.
- Typesetting in LaTeX.
- Urban traffic planning.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Optimal truck routing through given traffic congestion pattern.

Ref.: Network Flows: Theory, Algorithms, and Applications, R.K. Ahuja, T.L. Magnanti, and J.B. Orlin , Prentice Hall, 1993

Outline

- Introduction to Shortest Path
 - Definition
 - Property
 - Application
- 2 Single Source Shortest Paths
 - Problem Statement
 - Dijstra's Algorithm
 - Bellman-Ford Algorithm
- All-Pair Shortest Paths
 - Matrix Multiplication
 - Floyd-Warshall Algorithm
 - Johnson's Algorithm

Single-Source Shortest Paths

Definition (Single-Source Shortest Paths Problem)

From a given source vertex $s \in V$, find the shortest-path weights d(s, v) for all $v \in V$.

- If all edge weights w(u, v) are nonnegative, all shortest-path weights must exist.
- If all edge weights w(u, v) can be negative, the shortest-path weights may not exist because of negative circle.

Single-Source Shortest Paths

Definition (Single-Source Shortest Paths Problem)

From a given source vertex $s \in V$, find the shortest-path weights d(s, v) for all $v \in V$.

- If all edge weights w(u, v) are nonnegative, all shortest-path weights must exist.
- If all edge weights w(u, v) can be negative, the shortest-path weights may not exist because of negative circle.
- Nonnegative weight ⇒ Dijkstra's Algorithm
- Negative weight ⇒ Bellman-Ford Algorithm

Outline

- Introduction to Shortest Path
 - Definition
 - Property
 - Application
- 2 Single Source Shortest Paths
 - Problem Statement
 - Dijstra's Algorithm
 - Bellman-Ford Algorithm
- All-Pair Shortest Paths
 - Matrix Multiplication
 - Floyd-Warshall Algorithm
 - Johnson's Algorithm

Dijkstra's Algorithm

IDEA: Greedy

- Maintain a set S of vertices whose shortest-path distances from s are known.
- At each step add to S the vertex $v \in V S$ whose distance estimate from s is minimal.
- Update the distance estimates of vertices adjacent to v.

Dijkstra's Algorithm

Algorithm 1: Dijkstra's Algorithm

```
1 foreach u \in V do

2 \lfloor INSERT(Q, u);

3 while Q \neq \emptyset do

4 \mid u \leftarrow \text{EXTRACT-MIN}(Q);

5 \mid S \leftarrow S \cup \{u\};

6 foreach v \in Adj[u] do

7 \mid if d[v] > d[u] + w(u, v) then

8 \mid d[v] \leftarrow d[u] + w(u, v); /* Relaxation Step */

9 \mid DECREASE-KEY(Q, v);
```

Example of Dijkstra's Algorithm

Graph with nonnegative edge weights:

Algorithm Course@SJTU

Shortest Path

Algorithm Course@SJTU Xiaofeng Gao Shortest Path

Algorithm Course@SJTU Xiaofeng Gao Shortest Path

Algorithm Course@SJTU Xiaofeng Gao Shortest Path 24/57

Correctness of Dijkstra's Algorithm

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow +\infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge d(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

Correctness of Dijkstra's Algorithm

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow +\infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge d(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

Proof. Suppose not. Let v be the first vertex for which d[v] < d(s, v), and let u be the vertex that caused d[v] to change:

$$d[v] = d[u] + w(u, v).$$

Then,

$$d[v] < d(s, v)$$
 supposition
 $\leq d(s, u) + d(u, v)$ triangle inequality
 $\leq d(s, u) + w(u, v)$ sh. path \leq specific path
 $\leq d[u] + w(u, v)$ v is first violation

Correctness of Dijkstra's Algorithm (Cont.)

Theorem. Dijkstra's algorithm terminates with d[v] = d(s, v) for all $v \in V$.

Correctness of Dijkstra's Algorithm (Cont.)

Theorem. Dijkstra's algorithm terminates with d[v] = d(s, v) for all $v \in V$.

Proof. It suffices to show that d[v] = d(s, v) for every $v \in V$ when v is added to S. Suppose u is the first vertex added to S for which $d[u] \neq d(s, u)$. Let y be the first vertex in V - S along a shortest path from s to u, and let x be its predecessor.

Correctness of Dijkstra's Algorithm (Cont.)

Proof. (cont.) Since u is the first vertex violating the claimed invariant, we have d[x] = d(s, x). Since subpaths of shortest paths are shortest paths, it follows that d[y] was set to d(s, x) + w(x, y) = d(s, y) when (x, y) was relaxed just after x was added to S.

Consequently, we have $d[y] = d(s, y) \le d(s, u) \le d[u]$. However, $d[u] \le d[y]$ by our choice of u in Dijkstra's Algorithm, so d[y] = d(s, y) = d(s, u) = d[u].

Contradiction.

Analysis of Dijkstra's Algorithm

Algorithm 1: Dijkstra's Algorithm

Analysis of Dijkstra's Algorithm (Cont.)

Handshaking Lemma $\Rightarrow O(E)$ implicit DECREASE-KEY.

Analysis of Dijkstra's Algorithm (Cont.)

Handshaking Lemma $\Rightarrow O(E)$ implicit DECREASE-KEY.

Performance:

- Array implementation optimal for dense graphs ($\Theta(n^2)$ edges).
- Binary heap much faster for sparse graphs $(\Theta(n) \text{ edges})$.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but probably not worth implementing.

Implementation	EXTRACT-MIN	INSERT/ DECREASE-KEY	$ V \times \text{EXTRACT-MIN+}$ $(V + E) \times \text{INS/DEC}$
Array	O(V)	O(1)	$O(V ^2)$
Binary heap	$O(\log V)$	$O(\log V)$	$O((V + E)\log V)$
<i>d</i> -ary heap Fibonacci heap	$O(rac{d \log V }{\log d}) \ O(\log V)^*$	$O(\frac{\log V }{\log d})$ $O(1)^*$	$ \begin{array}{ c c } O\left(\frac{(d V + E)\log V }{\log d}\right) \\ O(V \log V + E) \end{array} $

* Amortized Analysis

Unweighted Graph

Suppose w(u, v) = 1 for all $(u, v) \in E$. Can the code for Dijkstra be improved?

Unweighted Graph

Suppose w(u, v) = 1 for all $(u, v) \in E$. Can the code for Dijkstra be improved?

Use FIFO queue instead of priority queue ⇒ breadth-first search

Time =
$$O(n + m)$$
.

Unweighted Graph

Suppose w(u, v) = 1 for all $(u, v) \in E$. Can the code for Dijkstra be improved?

Use FIFO queue instead of priority queue ⇒ breadth-first search

Time =
$$O(n + m)$$
.

Correctness:

- The FIFO queue in breadth-first search mimics the priority queue in Dijkstra;
- Invariant: v comes after u in queue implies that d[v] = d[u] or d[v] = d[u] + 1.

Outline

- Introduction to Shortest Path
 - Definition
 - Property
 - Application
- 2 Single Source Shortest Paths
 - Problem Statement
 - Dijstra's Algorithm
 - Bellman-Ford Algorithm
- All-Pair Shortest Paths
 - Matrix Multiplication
 - Floyd-Warshall Algorithm
 - Johnson's Algorithm

Shortest Paths

Definition

A *shortest path* from u to v is a path of minimum weight from u to v.

The *shortest path weight* from *u* to *v* is defined as

$$d(u, v) = \min\{w(P) \mid P \text{ is the path from } u \text{ to } v\}$$

Note: negative weight is allowed.

Shortest Paths

Definition

A *shortest path* from *u* to *v* is a path of minimum weight from *u* to *v*. The *shortest path weight* from *u* to *v* is defined as

$$d(u, v) = \min\{w(P) \mid P \text{ is the path from } u \text{ to } v\}$$

Note: negative weight is allowed.

Example: Nodes represent agents in a financial setting and w(u, v) is cost of transaction in which we buy from agent u and sell to v.

Shortest Path: Failed Attempt

Dijkstra:

Maybe fail if edge costs are negative.

Shortest Path: Failed Attempt

Dijkstra:

Maybe fail if edge costs are negative.

错的 Re-weighting:

Adding a constant to every edge weight can fail.

Definition

OPT(i, u) is the length of shortest u-t path P using at most i edges.

Case 1: P uses at most i - 1 edges.

$$\triangleright OPT(i, u) = OPT(i - 1, u)$$

Definition

OPT(i, u) is the length of shortest u-t path P using at most i edges.

Case 1: P uses at most i - 1 edges.

$$\triangleright$$
 $OPT(i, u) = OPT(i - 1, u)$

Case 2: P uses exactly i edges

 \triangleright if (u, v) is first edge, then OPT uses (u, v), and then selects best v-t path using at most i-1 edges

Definition

OPT(i, u) is the length of shortest u-t path P using at most i edges.

Case 1: P uses at most i - 1 edges.

$$\triangleright OPT(i, u) = OPT(i - 1, u)$$

Case 2: P uses exactly i edges

▷ if (u, v) is first edge, then OPT uses (u, v), and then selects best v-t path using at most i - 1 edges

$$\begin{aligned} & \mathit{OPT}(i,u) = \\ & \begin{cases} 0 & \text{if } i = 0 \\ & \min\{\mathit{OPT}(i-1,u), \min_{(u,v) \in E}\{\mathit{OPT}(i-1,v) + w(u,v)\}\} \end{cases} & \text{otherwise} \end{aligned}$$

Shortest Paths: Implementation

Algorithm 2: Dynamic Programming

```
1 foreach node u \in V do
```

2 |
$$M[0,u] \leftarrow \infty$$
;

3
$$M$$
[0, t] ← 0;

4 for
$$i = 1$$
 to n **do**

5 | foreach
$$edge(u, v) \in E$$
 do

Algorithm Analysis: O(mn) time, $O(n^2)$ space

Shortest Paths: Practical Improvements

Practical improvements.

- Maintain only one array M[v] as shortest v-t path found so far;
- No need to check edges of the form (v, w) unless M[w] changed.

Shortest Paths: Practical Improvements

Practical improvements.

- Maintain only one array M[v] as shortest v-t path found so far;
- No need to check edges of the form (v, w) unless M[w] changed.

Theorem. Throughout the algorithm, M[v] is length of some v-t path, and after i rounds of updates, the value M[v] is no larger than the length of shortest v-t path using $\leq i$ edges.

Shortest Paths: Practical Improvements

Practical improvements.

- Maintain only one array M[v] as shortest v-t path found so far;
- No need to check edges of the form (v, w) unless M[w] changed.

Theorem. Throughout the algorithm, M[v] is length of some v-t path, and after i rounds of updates, the value M[v] is no larger than the length of shortest v-t path using $\leq i$ edges.

Overall impact.

- Memory: O(m+n);
- Running time: O(mn) worst case, but substantially faster in practice.

Bellman-Ford: Efficient Implementation

Algorithm 3: Bellman-Ford Algorithm

```
foreach node u \in V do
     M[0,u] \leftarrow \infty;
    |successor[u] \leftarrow \emptyset;
4 M[0,t] \leftarrow 0;
5 for i = 1 to n do
       foreach node v \in V do
6
7
            if M[v] has been updated in previous iteration then
                 foreach edge(u, v) \in E do
8
                     M[i,u] \leftarrow \min\{M[i-1,u], M[i-1,v] + w(u,v)\};
                | M[i,u] \leftarrow \min\{M[successor[u] \leftarrow v;
9
10
```

Detecting Negative Cycles

Lemma. If OPT(n, u) = OPT(n - 1, u) for all u, then no negative cycles.

Proof. Bellman-Ford Algorithm.

Detecting Negative Cycles

Lemma. If OPT(n, u) = OPT(n - 1, u) for all u, then no negative cycles.

Proof. Bellman-Ford Algorithm.

Lemma. If OPT(n, u) < OPT(n - 1, u) for some node u, then (any) shortest path from u to t contains a cycle W. Moreover W has negative cost.

Proof.

- $OPT(n, u) < OPT(n 1, u) \Rightarrow P$ has exactly n edges;
- By pigeonhole principle, *P* must contain a directed cycle *W*;
- Deleting W yields a u-t path with $< n \text{ edges} \Rightarrow W$ has negative cost.

Detecting Negative Cycles

Theorem. Can detect negative cost cycle in O(mn) time.

- Add new node t and connect all nodes to t with 0-cost edge.
- Check if OPT(n, u) = OPT(n 1, u) for all nodes u. if no, then extract cycle from shortest path from u to t.

Detecting Negative Cycles: Application

Currency conversion. Given *n* currencies and exchange rates between pairs of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!

Outline

- Introduction to Shortest Path
 - Definition
 - Property
 - Application
- 2 Single Source Shortest Paths
 - Problem Statement
 - Dijstra's Algorithm
 - Bellman-Ford Algorithm
- All-Pair Shortest Paths
 - Matrix Multiplication
 - Floyd-Warshall Algorithm
 - Johnson's Algorithm

Definition

Definition (All-Pair Shortest Paths Problem)

Given Digraph G = (V, E), where |V| = n, with edge-weight function $w : E \to R$, find $n \times n$ matrix of shortest path lengths d(i,j) for all $i,j \in V$.

Definition

Definition (All-Pair Shortest Paths Problem)

Given Digraph G = (V, E), where |V| = n, with edge-weight function $w : E \to R$, find $n \times n$ matrix of shortest path lengths d(i,j) for all $i,j \in V$.

IDEA #1:

- Run Bellman-Ford once from each vertex.
- Time = $O(n^2m)$.
- Dense graph $\Rightarrow O(n^4)$ time.

Good first try!

Consider the $n \times n$ adjacency matrix $A = (a_{ij})$ of the digraph, and define $d_{ij}^{(m)}$ as the weight of a shortest path from i to j that uses at most m edges.

Consider the $n \times n$ adjacency matrix $A = (a_{ij})$ of the digraph, and define $d_{ij}^{(m)}$ as the weight of a shortest path from i to j that uses at most m edges.

Claim: We have

$$d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$$

and for m = 1, 2, ..., n - 1

$$d_{ij}^{(m)} = \min_{k} \{ d_{ik}^{(m-1)} + a_{kj} \}$$

Proof of Claim

Note: No negative-weight cycles implies

$$d(i,j) = d_{ij}^{(n-1)} = d_{ij}^{(n)} = d_{ij}^{(n+1)} = \dots$$

Matrix Multiplication

Compute $C = A \times B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \times b_{kj}$$

Time = $\Theta(n^3)$ using the standard algorithm.

Matrix Multiplication

Compute $C = A \times B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \times b_{kj}$$

Time = $\Theta(n^3)$ using the standard algorithm.

What if we map "
$$+$$
" \rightarrow "min" and " \times " \rightarrow " $+$ "?

$$c_{ij} = \min_{k} \{a_{ik} + b_{kj}\}$$

Matrix Multiplication

Compute $C = A \times B$, where C, A, and B are $n \times n$ matrices:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \times b_{kj}$$

Time = $\Theta(n^3)$ using the standard algorithm.

What if we map "+"
$$\rightarrow$$
 "min" and "×" \rightarrow "+"? $c_{ij} = \min_{k} \{a_{ik} + b_{kj}\}$

Thus,
$$D^{(m)} = D^{(m-1)}$$
 " \times " A . adjacency matrix
$$\text{Identity matrix} = I = D^{(0)} = (d_{ij}^{(0)}) = \begin{pmatrix} 0 & \infty & \infty & \infty \\ \infty & 0 & \infty & \infty \\ \infty & \infty & 0 & \infty \\ \infty & \infty & \infty & 0 \end{pmatrix}$$

Matrix Multiplication (cont.)

The (min, +) multiplication is associative, and with the real numbers, it forms an algebraic structure called a closed semiring.

Matrix Multiplication (cont.)

The (min, +) multiplication is associative, and with the real numbers, it forms an algebraic structure called a closed semiring.

Consequently, we can compute

$$D^{(1)} = D^{(0)} \times A$$
 = A^1
 $D^{(2)} = D^{(1)} \times A$ = A^2
 \vdots \vdots \vdots
 $D^{(n-1)} = D^{(n-2)} \times A$ = A^{n-1}
yielding $D^{(n-1)} = (d(i,j))$.

Algorithm Course@SJTU

Matrix Multiplication (cont.)

The (min, +) multiplication is associative, and with the real numbers, it forms an algebraic structure called a closed semiring.

Consequently, we can compute

$$D^{(1)} = D^{(0)} \times A = A^{1}$$

$$D^{(2)} = D^{(1)} \times A = A^{2}$$

$$\vdots \qquad \vdots$$

$$D^{(n-1)} = D^{(n-2)} \times A = A^{n-1}$$

yielding $D^{(n-1)} = (d(i,j))$.

Time = $\Theta(n^4)$. No better than $n \times$ Bellman-Ford.

Improved Matrix Multiplication Algorithm

```
Repeated squaring: A^{2k} = A^k \times A^k.
```

Compute
$$A^2, A^4, A^8, \dots, A^{2\lceil \log_2(n-1) \rceil}$$
 ($O(\log n)$ squarings).

Note:
$$A^{n-1} = A^n = A^{n+1} = \dots$$

Improved Matrix Multiplication Algorithm

```
Repeated squaring: A^{2k} = A^k \times A^k.
```

Compute
$$A^2, A^4, A^8, \dots, A^{2\lceil \log_2(n-1) \rceil}$$
 ($O(\log n)$ squarings).

Note:
$$A^{n-1} = A^n = A^{n+1} = \dots$$

Time =
$$\Theta(n^3 \log n)$$
.

Improved Matrix Multiplication Algorithm

Repeated squaring: $A^{2k} = A^k \times A^k$.

Compute $A^2, A^4, A^8, \dots, A^{2\lceil \log_2(n-1) \rceil}$ ($O(\log n)$ squarings).

Note:
$$A^{n-1} = A^n = A^{n+1} = \dots$$

Time =
$$\Theta(n^3 \log n)$$
.

To detect negative-weight cycles, check the diagonal for negative values in O(n) additional time.

Outline

- Introduction to Shortest Path
 - Definition
 - Property
 - Application
- Single Source Shortest Paths
 - Problem Statement
 - Dijstra's Algorithm
 - Bellman-Ford Algorithm
- All-Pair Shortest Paths
 - Matrix Multiplication
 - Floyd-Warshall Algorithm
 - Johnson's Algorithm

Floyd-Warshall algorithm

Also dynamic programming, but faster!

Define $c_{ij}^{(k)}$ as the weight of a shortest path from i to j with intermediate vertices belonging to the set $\{1, 2, \dots, k\}$.

Thus,
$$d(i,j) = c_{ij}^{(n)}$$
. Also, $c_{ij}^{(0)} = a_{ij}$.

adjacency matrix A里的成员

Floyd-Warshall Recurrence

$$c_{ij}^{(k)} = \min_{k} \{c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)}\}$$

Intermediate nodes in $\{1, 2, \dots, k-1\}$

Pseudocode for Floyd-Warshall

Algorithm 4: Floyd-Warshall Algorithm

```
1 for k \leftarrow 1 to n do

2 for i \leftarrow 1 to n do

3 for j \leftarrow 1 to n do

4 if c_{ij} > c_{ik} + c_{kj} then

5 c_{ij} \leftarrow c_{ik} + c_{kj};
```

Analysis:

- Okay to omit superscripts, since extra relaxations can't hurt.
- Runs in $\Theta(n^3)$ time.
- Simple to code and efficient in practice.

Transitive Closure of a Directed Graph

Compute
$$t_{ij} = \begin{cases} 1 & \text{if there exists a path from } i \text{ to } j \\ 0 & \text{otherwise} \end{cases}$$

Transitive Closure of a Directed Graph

Compute
$$t_{ij} = \begin{cases} 1 & \text{if there exists a path from } i \text{ to } j \\ 0 & \text{otherwise} \end{cases}$$

IDEA: Use Floyd-Warshall, but with (\vee, \wedge) instead of $(\min, +)$:

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)})$$

Transitive Closure of a Directed Graph

Compute
$$t_{ij} = \begin{cases} 1 & \text{if there exists a path from } i \text{ to } j \\ 0 & \text{otherwise} \end{cases}$$

IDEA: Use Floyd-Warshall, but with (\vee, \wedge) instead of $(\min, +)$:

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)})$$

Time = $\Theta(n^3)$.

Outline

- Introduction to Shortest Path
 - Definition
 - Property
 - Application
- 2 Single Source Shortest Paths
 - Problem Statement
 - Dijstra's Algorithm
 - Bellman-Ford Algorithm
- All-Pair Shortest Paths
 - Matrix Multiplication
 - Floyd-Warshall Algorithm
 - Johnson's Algorithm

Graph Reweighting

Theorem. Given a label h(v) for each $v \in V$, reweight each edge $(u, v) \in E$ by $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$. Then, all paths between the same two vertices are reweighted by the same amount.

Graph Reweighting

Theorem. Given a label h(v) for each $v \in V$, reweight each edge $(u, v) \in E$ by $\hat{w}(u, v) = w(u, v) + h(u) - h(v)$. Then, all paths between the same two vertices are reweighted by the same amount.

Proof. Let $P = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ be a path in the graph. We have:

$$\hat{w}(P) = \sum_{i=1}^{k-1} \hat{w}(v_i, v_{i+1})$$

$$= \sum_{i=1}^{k-1} (w(v_i, v_{i+1}) + h(v_i) - h(v_{i+1}))$$

$$= \sum_{i=1}^{k-1} w(v_i, v_{i+1}) + h(v_1) - h(v_k)$$

$$= w(P) + h(v_1) - h(v_k)$$

Johnson's Algorithm

① Find a vertex labeling h such that $\hat{w}(u, v) \ge 0$ for all $(u, v) \in E$ by using Bellman-Ford to solve the difference constraints

$$h(v) - h(u) \le w(u, v)$$

or determine that a negative-weight cycle exists.

$$ightharpoonup$$
 Time = $O(mn)$

Johnson's Algorithm

① Find a vertex labeling h such that $\hat{w}(u, v) \ge 0$ for all $(u, v) \in E$ by using Bellman-Ford to solve the difference constraints

$$h(v) - h(u) \le w(u, v)$$

or determine that a negative-weight cycle exists.

- ightharpoonup Time = O(mn)
- ② Run Dijkstra's algorithm from each vertex using \hat{w} .

$$Time = O(mn + n^2 \log n)$$

Johnson's Algorithm

① Find a vertex labeling h such that $\hat{w}(u, v) \ge 0$ for all $(u, v) \in E$ by using Bellman-Ford to solve the difference constraints

$$h(v) - h(u) \le w(u, v)$$

or determine that a negative-weight cycle exists.

- ightharpoonup Time = O(mn)
- 2 Run Dijkstra's algorithm from each vertex using \hat{w} .
 - ightharpoonup Time = $O(mn + n^2 \log n)$
- 3 Reweight each shortest-path length $\hat{w}(P)$ to produce the shortest-path lengths w(P) of the original graph.
 - ightharpoonup Time = $O(n^2)$

Total time = $O(mn + n^2 \log n)$.

