ECE374 SP23 HW1

Ziyuan Chen – ziyuanc3

Zhirong Chen – zhirong4

Problem 2

2. (a). Base. $00 \in L$.

Induction: For $\forall a \in \Sigma$, $x \in L$, $w = ax \in L$. 0 vii L

Explanation: Four in binary is 100. Its multiples also end with 00. Regex. $(0+1)^*$ 00 + 0

Note that 0 is also a multiple of 4.

(b). Flatten the board into I dimension.

Lo denotes strings in which () wins. $lx \times lx$ wins, and $lx \times lx$ draws. $lx \times lx \times lx$ $lx \times lx$ $lx \times lx \times lx$ $lx \times lx$

Problem 2(a), reworked

2: (a). A language that attaches a checking result to EVERY string, instead of only including the multiplies of 4, should be formulated as follows:

Base. 00|T, 10|F, $1|F \in L$. Induction. For $\forall a \in \Sigma$, $x \in L$, $w = ax \in L$, $0|T \in L$. Regex. $(0+1)^*00|T + (0+1)^*1(\epsilon+0+1)|F + 0|T$.

Notes. ①. The one-digit "0" is a special case.

However, "0|TEL" does NOT appear in the base case, since multiples of 2—

aka. (0+1)*10—would be included.
②. The "1" character separates input & output.