.1 Homomorphisms of free modules, II

Exercise .1.1. Use Gaussian elimination to find all integer solutions of the system of equations

$$\begin{cases} 7x - 36y + 12z = 1, \\ -8x + 42y - 14z = 2. \end{cases}$$

Solution. Transforming the system of equations into a matrix and applying Gaussian elimination yields the factorization

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 7 & 6 \\ -8 & -7 \end{pmatrix} \cdot \begin{pmatrix} 7 & -36 & 12 \\ -8 & 42 & -14 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 4 & -3 \end{pmatrix},$$

or $D = M \cdot A \cdot N$. As we are trying to solve Ax = b, we now can now solve Dy = Mb. Finally, we solve x = Ny for a solution of

$$\boldsymbol{x} = \begin{pmatrix} 19 \\ -11 - z \\ -44 - 3z \end{pmatrix}$$

so there are infinitely many solutions based on the free variable z.

Exercise .1.2. Provide details for the proof of Lemma 3.2.

Lemma 3.2. Let A be a square matrix with entries in an integral domain R.

- Let A' be obtained from A by switching two rows or two columns. Then det(A') = -det(A).
- Let A' be obtained from A by adding to a row (column) a multiple of another row (column). Then det(A') = det(A).
- Let A' be obtained from A by multiplying a row (column) by an element $c \in R$. Then det(A') = c det(A).

In other words, the effect of an elementary operation on $\det A$ is the same as multiplying $\det A$ by the determinant of the corresponding matrix.

Solution. Switching two rows is equivalent to multiplying each $\sigma \in S_n$ by a fixed transposition. Then the sign of each permutation is switched so we have

$$\det(A') = \sum_{\sigma \in S_n} (-1)^{\sigma+1} \prod_{i=1}^n a_{i\sigma(i)} = -\det(A)$$

yielding the desired result.

For the third point, each product has exactly one c in it so we find

$$\det(A') = \sum_{\sigma \in S_n} (-1)^{\sigma} c \prod_{i=1}^n a_{i\sigma(i)} = c \det(A)$$

yielding the desired result.

For the second point, note that $A' = (a_1, a_2, \dots, a_i + ka_j, \dots, a_n)$ so A and A' differ at only one row. Then we have

$$\det(A') = \det(A) + \det(a_1, a_2, \dots, ka_j, \dots, a_n)$$
$$= \det(A) + k \det(a_1, a_2, \dots, a_j, \dots, a_n).$$

But then rows i and j are identical in the second matrix so it follows that the determinant of that matrix is 0. Thus, we are left with $\det(A') = \det(A)$.

Exercise .1.3. Redo Exercise II.8.8.

Exercise II.8.8. Prove that $SL_n(\mathbb{R})$ is a *normal subgroup* of $GL_n(\mathbb{R})$, and 'compute' $GL_n(\mathbb{R})/SL_n(\mathbb{R})$ as a well-known group.

Solution. Recall that $\mathrm{SL}_n(\mathbb{R})$ is the set of $n \times n$ matrices with determinant 1. Certainly this is a normal subgroup of $\mathrm{GL}_n(\mathbb{R})$ since it is the kernel of the homomorphism induced by det from $\mathrm{GL}_n(\mathbb{R})$ to \mathbb{R}^{\times} . Then by the first isomorphism theorem, we find that $\mathbb{R}^{\times} \cong \mathrm{GL}_n(\mathbb{R})/\mathrm{SL}_n(\mathbb{R})$.

Exercise .1.4. Formalize the discussion of 'universal identities': by what cocktail of universal properties is it true that if an identity holds in $\mathbb{Z}[x_1,\ldots,x_r]$, then it holds over every commutative ring R, for every choice of $x_i \in R$? (Is the commutativity of R necessary?)

Solution. This holds because $Z[x_1,\ldots,x_r]$ is a free object in the category of commutative rings, or commutative \mathbb{Z} -algebras. In particular, for every commutative ring R and set function $f:A\to R$, there exists a unique \mathbb{Z} -algebra homomorphism from $\mathbb{Z}[x_1,\ldots,x_r]$ to R. If the identity is preserved by homomorphisms, then it will hold in every commutative ring. Furthermore, the commutativity of R is not necessary but it is necessary that given a set-function f, we have f(a) commutes with every element of R for all $a\in A$.

Exercise .1.5. Let A be an $n \times n$ square invertible matrix with entries in a field, and consider the $n \times (2n)$ matrix $B = (A \mid I_n)$ obtained by placing the identity matrix to the side of A. Perform elementary row operations on B so as to reduce A to I_n (cf. Exercise 2.15). Prove that this transforms B into $(I_n \mid A^{-1})$.

(This is a much more efficient way to compute the inverse of a matrix than by using determinants as in $\S 3.2.$)

Solution. Each elementary row operation on B can be encoded as an elementary matrix whose product reduces A to I_n . That is, we have $PA = I_n$. But then $P = A^{-1}$ and since $PI_n = P$, it must be the case that $B = (I_n \mid P) = (I_n \mid A^{-1})$.

Exercise .1.6. Let R be a commutative ring and $M = \langle m_1, \dots, m_r \rangle$ a finitely

generated R-module. Let $A \in \mathcal{M}_r(R)$ be a matrix such that $A \cdot \begin{pmatrix} m_1 \\ \vdots \\ m_r \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$.

Prove that det(A)m = 0 for all $m \in M$. (Hint: Multiply by the adjoint.)

Solution. Denote the adjoint matrix of A by A'. Recall that $A'A = \det(A)I_n$. Multiplying both sides of the equation by the adjoint yields

$$A'A \begin{pmatrix} m_1 \\ \vdots \\ m_r \end{pmatrix} = A' \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$
$$\det(A)I_n \begin{pmatrix} m_1 \\ \vdots \\ m_r \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

so $\det(A)m_i = 0$ for all $m_i \in \langle m_1, \dots, m_r \rangle$. Since this is a generating set for M, all $m \in M$ are linear combinations of m_i . Thus, we have $\det(A)m = 0$ for all $m \in M$.

Exercise .1.7. Let R be a commutative ring, M a finitely generated R-module, and let J be an ideal of R. Assume JM = M. Prove that there exists an element $b \in J$ such that (1+b)M = 0. (Let m_1, \ldots, m_r be generators for M. Find an

 $r \times r$ matrix B with entries in J such that $\begin{pmatrix} m_1 \\ \vdots \\ m_r \end{pmatrix} = B \cdot \begin{pmatrix} m_1 \\ \vdots \\ m_r \end{pmatrix}$. Then use

Exercise 3.6.)

Solution. Let $\langle m_1, \ldots, m_r \rangle$ be a set of generators for M. Since JM = M, for all m_j in the generating set, there exists a finite sum

$$m_j = \sum_{i=0}^r b_i m_i.$$

Thus, we can construct a matrix B with entries in J such that

$$\begin{pmatrix} m_1 \\ \vdots \\ m_r \end{pmatrix} = B \cdot \begin{pmatrix} m_1 \\ \vdots \\ m_r \end{pmatrix}$$

which can be rearranged to $(I_r - B)(m_i)^T = 0$. Let $d = \det(I_r - B)$. Then $d \in 1 + J$ since $B \equiv 0 \mod J$. By Exercise 3.7, dm = 0 for all $m \in M$. That is, there exists $b \in J$ such that (1 + b)M = 0.

Exercise .1.8. Let R be a commutative ring, M be a finitely generated R-module, and let J be an ideal of R contained in the Jacobson radical of R (Exercise V.3.14). Prove that $M=0 \iff JM=M$. (Use Exercise 3.7. This is Nakayama's lemma, a result with important applications in commutative algebra and algebraic geometry. A particular case was given as Exercise III.5.16.)

Solution. If M=0, then clearly for all $b\in J$, we have bM=0=M so JM=M. Now suppose JM=M. Recall that the Jacobson radical of a ring is the intersection of its maximal ideals. By Exercise 3.7, there exists some $b\in J$ such that (1+b)M=0. Then 1+b is a unit in R so multiplying both sides by its inverse yields M=0.

Exercise .1.9. Let R be a commutative local ring, that is, a ring with a single maximal ideal \mathfrak{m} , and let M, N be finitely generated R-modules. Prove that if $M = \mathfrak{m}M + N$, then M = N. (Apply Nakayama's lemma, that is, Exercise 3.8, to M/N. Note that the Jacobson radical of R is \mathfrak{m} .)

Solution. If $M = \mathfrak{m}M + N$, then $M/N = \mathfrak{m}M/N$. By Nakayama's lemma, M/N = 0 so M = N.

Exercise .1.10. Let R be a commutative local ring, and let M be a finitely generated R-module. Note that $M/\mathfrak{m}M$ is a finite-dimensional vector space over the field R/\mathfrak{m} ; let $m_1, \ldots, m_r \in M$ be elements whose cosets mod $\mathfrak{m}M$ form a basis of $M/\mathfrak{m}M$. Prove that m_1, \ldots, m_r generate M.

(Show that $\langle m_1, \ldots, m_r \rangle + \mathfrak{m}M = M$; then apply Nakayama's lemma in the form of Exercise 3.9.)

Solution. We have $\langle \bar{m}_1, \dots, \bar{m}_r \rangle = M/\mathfrak{m}M$, where $\bar{m}_i = m_i \mod \mathfrak{m}M$. That is, $\langle m_1, \dots, m_r \rangle + \mathfrak{m}M = M$. Then, by Exercise 3.9, $\langle m_1, \dots, m_r \rangle = M$.

Exercise .1.11. Explain how to use Gaussian elimination to find bases for the row space and the column space of a matrix over a field.

Solution. Recall that Gaussian elimination does not change the row space of the matrix. Then reducing a matrix to reduced echelon form yields a matrix whose rows have the same span as the row space of the original matrix and are linearly independent. Thus, they form a basis for the row space. Similarly, applying Gaussian elimination to the transpose of the matrix yields a basis for the column space.

Exercise .1.12. Let R be an integral domain, and let $M \in \mathcal{M}_{m,n}(R)$, with m < n. Prove that the columns of M are linearly dependent over R.

Solution. Recall that M represents a homomorphism $f: \mathbb{R}^n \to \mathbb{R}^m$ and the column space of M is equal to the span of im f. If the columns of M are linearly independent, then the standard basis vectors of \mathbb{R}^n map to a linearly independent set in \mathbb{R}^m . That is, the rank of \mathbb{R}^m must be greater than or equal to that of \mathbb{R}^n , or $m \geq n$. Thus, if n < m, it must be the case that the columns of M are linearly dependent.

Exercise .1.13. Let k be a field. Prove that a matrix $M \in \mathcal{M}_{m,n}(k)$ has rank $\leq r$ if and only if there exist matrices $P \in \mathcal{M}_{m,r}(k), Q \in \mathcal{M}_{r,n}(k)$ such that M = PQ. (Thus the rank of M is the smallest such integer.)

Solution. Suppose there exist $P \in \mathcal{M}_{m,r}(k)$, $Q \in \mathcal{M}_{r,n}(k)$ such that M = PQ. Let $s = \operatorname{rank} P$, $t = \operatorname{rank} Q$. Then

$$P = \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} I_t & 0 \\ 0 & 0 \end{pmatrix}.$$

Including zero rows (columns) to the smaller identity matrix to make block multiplication possible yields

$$M = \begin{pmatrix} I_{\min(s,t)} & 0 \\ 0 & 0 \end{pmatrix}$$

and since $\min(s,t) \leq r$, the rank of $M \leq r$.

Now suppose M has rank $r' \leq r$. Consider the matrices

$$P = \begin{pmatrix} I_{r'} & 0 \\ 0 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} I_{r'} & 0 \\ 0 & 0 \end{pmatrix}.$$

Note that P and Q can be defined for all $r \geq r'$. Then their product is equivalent to M (up to multiplication by invertible matrices on the left and right, both of which preserve the rank of M).

Exercise .1.14. Generalize Proposition 3.11 to the case of finitely generated free modules over any integral domain. (Embed the integral domain in its field of fractions.)

Proposition 3.11. Let

$$0 \longrightarrow U \longrightarrow V \longrightarrow W \longrightarrow 0$$

be a short exact sequence of finite-dimensional vector spaces. Then

$$\dim(V) = \dim(U) + \dim(W).$$

Solution. Let

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

be a short exact sequence of finitely generated free modules over an integral domain R. Embed R in its field of fractions K. By Exercise 1.7, each module is naturally mapped to a vector space over K. In particular, if A' denotes the vector space corresponding to the module A, we have $\operatorname{rank}(A) = \dim(A')$. Then, by Proposition 3.11, we have $\dim(B') = \dim(A') + \dim(C')$ which translates into $\operatorname{rank}(B) = \operatorname{rank}(A) + \operatorname{rank}(C)$.

Exercise .1.15. Prove Proposition 3.13 for the case N=1.

Proposition 3.13. With notation as above,

$$\chi(V_{\bullet}) = \sum_{i=0}^{N} (-1)^{i} \dim(H_{i}(V_{\bullet})).$$

In particular, if V_{\bullet} is exact, then $\chi(V_{\bullet}) = 0$.

Solution. Let

$$V_{\bullet}: 0 \longrightarrow V_1 \xrightarrow{\alpha_1} V_0 \longrightarrow 0$$

be a complex of finite-dimensional vector spaces and linear maps. By definition, we have $\chi(V_{\bullet}) = \dim(V_0) - \dim(V_1)$. Furthermore, we find

$$H_0(V_{\bullet}) = \frac{V_0}{\mathrm{im}(\alpha_1)}, \quad H_1(V_{\bullet}) = \ker(\alpha_1).$$

By Proposition 3.11,

$$\dim(H_0(V_{\bullet})) = \dim(V_0) - \dim(\operatorname{im}(\alpha_1)),$$

$$\dim(H_1(V_{\bullet})) = \dim(\ker(\alpha_1)),$$

$$\dim(V_1) = \dim(\ker(\alpha_1)) + \dim(\operatorname{im}(\alpha_1))$$

so we find

$$\sum_{i=0}^{1} (-1)^{i} \dim(H_{i}(V_{\bullet})) = \dim(H_{0}(V_{\bullet})) - \dim(H_{1}(V_{\bullet}))$$

$$= \dim(V_{0}) - \dim(\dim(\alpha_{1}) - \dim(\ker(\alpha_{1}))$$

$$= \dim(V_{0}) - \dim(V_{1})$$

$$= \chi(V_{\bullet})$$

proving the desired result.

Exercise .1.16. Prove Claim 3.14.

Claim 3.14. With notation as above, we have the following:

 χ_K 'is an Euler characteristic', in the sense that it satisfies the formula qiven in Proposition 3.13:

$$\chi_K(V_{\bullet}) = \sum_i (-1)^i [H_i(V_{\bullet})].$$

• χ_K is a 'universal Euler characteristic', in the following sense. Let G be an abelian group, and let δ be a function associating an element of G to each finite-dimensional vector space, such that $\delta(V) = \delta(V')$ if $V \cong V'$ and $\delta(V/U) = \delta(V) - \delta(U)$. For V_{\bullet} a complex, define

$$\chi_G(V_{\bullet}) = \sum_i (-1)^i \delta(V_i).$$

Then δ induces a (unique) group homomorphism

$$K(k\text{-Vect}^f) \to G$$

mapping $\chi_K(V_{\bullet})$ to $\chi_G(V_{\bullet})$.

• In particular, $\delta = \dim induces \ a \ group \ homomorphism$

$$K(k\operatorname{-Vect}^f) \to \mathbb{Z}$$

such that $\chi_K(V_{\bullet}) \mapsto \chi(V_{\bullet})$.

• This is in fact an isomorphism.

Solution. Recall that we define $F(k\text{-Vect}^f)$ to be the set of isomorphism classes of finite-dimensional vector spaces [V] over a field k. We let E be the subgroup generated by the elements [V] - [U] - [W] for all short exact sequences

$$0 \longrightarrow U \longrightarrow V \longrightarrow W \longrightarrow 0$$

and define

$$K(k\operatorname{\!-Vect}^f) := \frac{F(k\operatorname{\!-Vect})}{E}$$

to be the Grothendieck group of the category $k\text{-}\mathsf{Vect}^f.$ We also define

$$\chi_K(V_{\bullet}) := \sum_i (-1)^i [V_i] \in K$$

where summation is the direct sum.

First we prove that χ_k is an Euler characteristic. We adapt the proof by induction used to prove Proposition 3.11, starting with the case N=1. Again, let

$$V_{\bullet}: 0 \longrightarrow V_1 \xrightarrow{\alpha_1} V_0 \longrightarrow 0$$

be a complex of finite-dimensional vector spaces and linear maps. By definition, we have $\chi_K(V_{\bullet}) = [V_0] - [V_1]$. Recall that, by the definition of homology,

$$H_0(V_{\bullet}) = \frac{V_0}{\operatorname{im}(\alpha_1)}, \quad H_1(V_{\bullet}) = \ker(\alpha_1)$$

so we have two exact sequences in k-Vect^f:

$$0 \longrightarrow H_1(V_{\bullet}) \longrightarrow V_1 \longrightarrow \operatorname{im}(\alpha_1) \longrightarrow 0$$

and

$$0 \longrightarrow \operatorname{im}(\alpha_1) \longrightarrow V_0 \longrightarrow H_0(V_{\bullet}) \longrightarrow 0$$

so we have the relations $[H_1(V_{\bullet})] = [V_1] - [\operatorname{im}(\alpha_1)]$ and $[H_0(V_{\bullet})] = [V_0] - [\operatorname{im}(\alpha_1)]$. Thus, we find

$$\sum_{i=0}^{1} [H_i(V_{\bullet})] = [H_0(V_{\bullet})] - [H_1(V_{\bullet})]$$

$$= ([V_0] - [\operatorname{im}(\alpha_1)]) - [V_1] - [\operatorname{im}(\alpha_1)]$$

$$= [V_0] - [V_1]$$

$$= \chi_K(V_{\bullet})$$

so the statement holds in the base case. Now we prove the inductive step. Given a complex

$$V_{\bullet}: \ 0 \longrightarrow V_{N} \xrightarrow{\alpha_{N}} V_{N-1} \xrightarrow{\alpha_{N-1}} \cdots \xrightarrow{\alpha_{2}} V_{1} \xrightarrow{\alpha_{1}} V_{0} \longrightarrow 0$$

we can consider the truncated complex

$$V'_{\bullet}: 0 \longrightarrow V_{N-1} \xrightarrow{\alpha_{N-1}} \cdots \xrightarrow{\alpha_2} V_1 \xrightarrow{\alpha_1} V_0 \longrightarrow 0$$

where the result is known to hold for V'_{\bullet} . Then

$$\chi_K(V_{\bullet}) = \chi_K(V_{\bullet}') + (-1)^N [V_N]$$

and

$$H_i(V_{\bullet}) = H_i(V'_{\bullet}) \text{ for } 0 \le i \le N-2$$

while

$$H_{N-1}(V_{\bullet}') = \ker(\alpha_{N-1}), \quad H_{N-1}(V_{\bullet}) = \frac{\ker(\alpha_{N-1})}{\operatorname{im}(\alpha_N)}, \quad H_N(V_{\bullet}) = \ker(\alpha_N).$$

Then we have exact sequences

$$0 \longrightarrow \ker(\alpha_N) \longrightarrow V_N \longrightarrow \operatorname{im}(\alpha_N) \longrightarrow 0$$

and

$$0 \longrightarrow \operatorname{im}(\alpha_N) \longrightarrow \ker(\alpha_{N-1}) \longrightarrow H_{N-1}(V_{\bullet}) \longrightarrow 0$$

which yield the relations $[V_N] = [\ker(\alpha_N)] + [\operatorname{im}(\alpha_N)]$ and $[H_{N-1}(V_{\bullet})] = [\ker(\alpha_{N-1})] - [\operatorname{im}(\alpha_N)]$. Then we have

$$[H_{N-1}(V'_{\bullet})] - [V_N] = [H_{N-1}(V_{\bullet})] - [H_N(V_{\bullet})]$$

so we find

$$\chi_{K}(V_{\bullet}) = \chi_{K}(V'_{\bullet}) + (-1)^{N}[V_{N}]$$

$$= \sum_{i=0}^{N-1} (-1)^{i}[H_{i}(V'_{\bullet})] + (-1)^{N}[V_{N}]$$

$$= \sum_{i=0}^{N-2} (-1)^{i}[H_{i}(V'_{\bullet})] + (-1)^{N-1}([H_{N-1}(V'_{\bullet})] - [V_{N}])$$

$$= \sum_{i=0}^{N-2} (-1)^{i}[H_{i}(V_{\bullet})] + (-1)^{N-1}([H_{N-1}(V_{\bullet})] - [H_{N}(V_{\bullet})])$$

$$= \sum_{i=0}^{N} (-1)^{i}[H_{i}(V_{\bullet})]$$

which proves the desired result.

For the second part, let $\varphi: K(k\text{-Vect}^f) \to G$ be the unique group homomorphism induced by δ . We claim that $\varphi([V]) = \delta(V)$ satisfies this universal property. First we check that it is well defined; suppose [V] = [V']. Then, since $V \cong V'$, we have $\delta(V) = \delta(V')$. Now we show that this is a group homomorphism. Let $[U], [V] \in K(k\text{-Vect}^f)$. Then

$$\varphi([V] - [U]) = \varphi([V/U]) = \delta(V/U) = \delta(V) - \delta(U) = \varphi([V]) - \varphi([U])$$

which verifies that this is a group homomorphism. Finally, let V_{\bullet} be a complex of finite-dimensional vector spaces. Then

$$\varphi(\chi_K(V_{\bullet})) = \varphi\left(\sum_i (-1)^i [V_i]\right)$$

$$= \sum_i (-1)^i \varphi([V_i])$$

$$= \sum_i (-1)^i \delta(V_i)$$

$$= \chi_G(V_{\bullet})$$

where the second equality follows from φ being a group homomorphism.

The third point follows naturally from the second. Indeed, letting $\delta = \dim$ induces a group homomorphism from $K(k\operatorname{-Vect}^f)$ to $\mathbb Z$ such that $\chi_K(V_\bullet) = \chi(V_\bullet)$, where χ is the natural definition of the Euler characteristic.

To show that this is an isomorphism, we prove it is both injective and surjective. First note that for any non-negative integer n, we may consider the vector space $V = k^n$. Then $\varphi([V]) = n$. If n is negative, consider $V = k^{-n}$ such that $\varphi(-[V]) = -\varphi([V]) = n$. Thus, φ is surjective. Now suppose $\varphi([U]) = \varphi([V])$. That is, $\dim(U) = \dim(V)$. Then $U \cong V$ so [U] = [V] and φ is injective. Thus, φ is an isomorphism and

 $K(k\text{-Vect}^f) \cong \mathbb{Z}.$

Exercise .1.17. Extend the definition of Grothendieck group of vector spaces given in §3.4 to the category of vector spaces of *countable* (possibly infinite) dimension, and prove that it is the trivial group.

Solution. Consider the sequence

$$0 \longrightarrow k^{\oplus \mathbb{N}} \longrightarrow k^{\oplus \mathbb{N}} \longrightarrow k^n \longrightarrow 0$$

where $n \in \mathbb{N}$. Certainly, this sequence is exact because $k^{\oplus \mathbb{N}} \cong k^{\oplus \mathbb{N}} \oplus k^n$. But this implies that $[k^{\oplus \mathbb{N}}] = [k^{\oplus \mathbb{N}}] + [k^n]$ or $[k^n] = 0$. Since this also holds for $[k^{\oplus \mathbb{N}}]$, the group K(k-Vect) is the trivial group.

Exercise .1.18. Let Ab^{fg} be the category of finitely generated abelian groups. Define a Grothendieck group of this category in the style of the construction of $K(k\text{-Vect}^f)$, and prove that $K(\mathsf{Ab}^{fg}) \cong \mathbb{Z}$.

Solution. Note that every object G of Ab^{fg} determines an isomorphism class [G]. Let $F(\mathsf{Ab}^{fg})$ be the free abelian group on the set of these isomorphism classes. Furthermore, let E be the subgroup generated by the elements [B] - [A] - [C] for all short exact sequences

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

in Ab^{fg} . Let

$$K(\mathsf{Ab}^{fg}) := rac{F(\mathsf{Ab}^{fg})}{F}$$

be the Grothendieck group of this category.

Recall that every finitely generated abelian group is isomorphic to a direct sum of cyclic groups (Exercise 2.19). That is, for all finitely generated abelian groups G, we have

$$G \cong \mathbb{Z}^m \oplus \frac{\mathbb{Z}}{d_1 \mathbb{Z}} \oplus \cdots \oplus \frac{\mathbb{Z}}{d_r \mathbb{Z}}$$

where $d_i \mid d_{i+1}$. Next, note that we may construct the exact sequence

$$0 \longrightarrow \mathbb{Z} \stackrel{\times n}{\longrightarrow} \mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z} \longrightarrow 0$$

so that $[\mathbb{Z}/n\mathbb{Z}] = [\mathbb{Z}] - [\mathbb{Z}] = [0]$ for all $n \in \mathbb{Z}$. Thus, we may construct a homomorphism $\varphi : K(\mathsf{Ab}^{fg}) \to \mathbb{Z}$ which sends [A] to m where \mathbb{Z}^m is in the decomposition of A. Let $\mathrm{rank}(A)$ denote the power of \mathbb{Z} in the decomposition of A. First we verify that this homomorphism is well-defined: if [A] = [B] then $A \cong B$ so

textrank(A) = rank(B) and $\varphi([A]) = \varphi([B])$. Now we show it is a homomorphism. Let $[A], [B] \in K(\mathsf{Ab}^{fg})$ where rank(A) = m and rank(B) = n. Then

$$\varphi([A] + [B]) = \varphi(A \oplus B) = m + n = \varphi([A]) + \varphi([B])$$

so φ is in fact a homomorphism. Finally, we verify that it is in fact an isomorphism. Certainly it is surjective since $\varphi([\mathbb{Z}^n]) = n$ for all $n \in \mathbb{Z}^{\geq 0}$ and one can use the additive inverse for negative integers. Lastly, the kernel of the homomorphism is the set of equivalence classes with rank 0. But if A has rank 0 then A is isomorphic to a direct sum of finite cyclic groups which are all isomorphic to [0]. That is, $\ker(\varphi) = [0]$ and the mapping is injective. Thus, it is a bijective homomorphism, proving that $K(\mathsf{Ab}^{fg}) \cong \mathbb{Z}$.

Exercise .1.19. Let Ab^f be the category of finite abelian groups. Prove that assigning to every finite abelian group its order extends to a homomorphism from the Grothendieck group $K(\mathsf{Ab}^f)$ to the multiplicative group (\mathbb{Q}^*,\cdot) .

Solution. First note that the sequence

$$0 \longrightarrow A \xrightarrow{i} A \oplus B \xrightarrow{\pi} B \longrightarrow 0$$

is exact. Let $\varphi: K(\mathsf{Ab}^f) \to \mathbb{Q}$ send a finite abelian group A to its order. To see that this is a homomorphism, let $[A], [B] \in K(\mathsf{Ab}^f)$ with |A| = m, |B| = n. Then

$$\varphi([A] + [B]) = \varphi([A \oplus B]) = mn = \varphi([A]) \cdot \varphi([B])$$

so it is in fact a homomorphism. Indeed, $\varphi([0]) = 1$ where 0 is the trivial group, and we can define φ for additive inverses accordingly.

Exercise .1.20. Let $R ext{-Mod}^f$ be the category of modules of finite length (cf. Exercise 1.16) over a ring R. Let G be an abelian group, and let δ be a function assigning an element of G to every $simple\ R ext{-module}$. Prove that δ extends to a homomorphism from the Grothendieck group of $R ext{-Mod}^f$ to G.

Explain why Exercise 3.19 is a particular case of this observation.

(For another example, letting $\delta(M) = 1 \in \mathbb{Z}$ for every simple module M shows that length itself extends to a homomorphism from the Grothendieck group of $R\text{-Mod}^f$ to \mathbb{Z} .)

Solution. Recall that a module M has length m if it admits a composition series

$$M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_m = \langle 0 \rangle$$

where each quotient M_i/M_{i+1} is simple. Let $\varphi: K(R\operatorname{\mathsf{-Mod}}^f) \to G$ be defined as

$$\varphi([M]) = \sum_{i=0}^{m-1} \delta\left(\frac{M_i}{M_{i+1}}\right)$$

where the sum denotes the operation in G. Certainly this mapping is well-defined as isomorphic modules admit the same composition series (up to a reordering of the composition factors). To prove that it is a homomorphism, let $[M], [N] \in K(R\operatorname{\mathsf{-Mod}}^f)$ where M has length m and N has length n. Then

$$\varphi([M] + [N]) = \varphi([M \oplus N]) = m + n = \varphi([M]) + \varphi([N])$$

by properties of the length of a module.

In particular, let $R = \mathbb{Z}$ and $G = (\mathbb{Q}^*, \cdot)$. Since simple finite abelian groups are cyclic groups of prime order $\mathbb{Z}/p\mathbb{Z}$, let $\delta(\mathbb{Z}/p\mathbb{Z}) = p$. Then φ is the extension of δ from $K(\mathbb{Z}\text{-Mod}^f) \to \mathbb{Q}$. Indeed, given a finite abelian group

$$G = rac{\mathbb{Z}}{p_1^{n_1}\mathbb{Z}} \oplus \cdots \oplus rac{\mathbb{Z}}{p_r^{n_r}\mathbb{Z}}$$

we find

$$\varphi([G]) = \prod_{i} \delta\left(\frac{\mathbb{Z}}{p_{i}\mathbb{Z}}\right)^{n_{i}}$$

$$= \prod_{i} p_{i}^{n_{i}}$$

$$= |G|$$

which aligns with the definition given in Exercise 3.19.