Breast Cancer Classification Using Machine Learning

I . Data Modeling with Different Classifier

1. Logistic Regression:

2. SVM:

3. Decision Tree:

4. KNN:

${\rm I\hspace{-.1em}I}. \ Compare \ the \ Accuracy$

Classifier	Logistic Regression	SVM	Decision Tree	KNN
Accuracy	0.956	0.956	0.938	0.947

比較各種分類器的準確度,發現 Logistic Regression 和 SVM 的預測效果較好。

III. Combining Different Models for Ensemble Learning

以未限制深度的決策樹來當作 Base estimator

• Confusion matrix :

Compare the Accuracy

Classifier	Accuracy	Classifier	Accuracy
Logistic	0.956	Unpruned	0.921
Regression		Decision tree	
SVM	0.956	Baggings	0.939
Decision Tree 0.938		AdaBoost	0.921
KNN	0.947		

• Conclution:

- 1. SVM 和 Logistic Regression 是目前這些分類器當中最有效果的。
- 2. Ensembling learning 的方法會增加計算的複雜度和花費更多的成本, 但獲得的效能不一定會很顯著,而且如果準確度已經很高,有可能整 體方法會不增反降。