

Machine Learning

Neural Networks: Representation

Multi-class classification

reconhecer digitos tbm é um exemplo

tentar reconhecer 4

Multiple output units: One-vs-all. categorias objectos

Pedestrian

Car

Motorcycle

Truck

fazemos output de 4 resultados

Want $h_{\Theta}(x) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, etc. when pedestrian

$$h_{\Theta}(x) pprox \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$h_{\Theta}(x) pprox \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
, etc

when car when motorcycle

Multiple output units: One-vs-all.

$$h_{\Theta}(x) \in \mathbb{R}^4$$

Want $h_{\Theta}(x) \approx \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $h_{\Theta}(x) \approx \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, etc.

when pedestrian when car when motorcycle

Training set:
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

Training set:
$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

$$y^{(i)} \text{ one of } \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$$

$$pedestrian car motorcycle truck$$

representa imagem