

	UZUPEŁNIA ZDAJĄCY	
KOD	PESEL	miaisaa
		miejsce na naklejkę

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

Część I

MIN-R1_1P-193

DATA: 7 czerwca 2019 r. GODZINA ROZPOCZĘCIA: 14:00 CZAS PRACY: 60 minut

LICZBA PUNKTÓW DO UZYSKANIA: 15

UZUPEŁNIA ZDAJĄCY	WYBRANE:	
	(system operacyjny)	
	(program użytkowy)	
	(środowisko programistyczne)	

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin system operacyjny, program użytkowy oraz środowisko programistyczne.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w notacji wybranej przez siebie: listy kroków, pseudokodu lub języka programowania, który wybierasz na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

NOWA FORMUŁA

Zadanie 1. Rekurencja

Dana jest dodatnia liczba całkowita n oraz uporządkowana rosnąco tablica różnych liczb całkowitych T[1..n]. Przeanalizuj następującą funkcję rekurencyjnq, której parametrami są liczby całkowite x, p, k, przy czym $1 \le p \le k \le n$.

```
Rek(x, p, k)
jeżeli p < k
s \leftarrow (p + k) \text{ div 2}
jeżeli T[s] \ge x
wynikiem jest Rek(x, p, s)
w przeciwnym razie
wynikiem jest Rek(x, s + 1, k)
w przeciwnym razie
jeżeli T[p] = x
wynikiem jest p
w przeciwnym razie
wynikiem jest p
w przeciwnym razie
wynikiem jest p
```

Uwaga: div jest operatorem oznaczającym część całkowita z dzielenia.

Zadanie 1.1. (0-2)

Podaj największą i najmniejszą możliwą liczbę wywołań funkcji Rek w wyniku wywołania Rek(2019, 6, 14) dla n = 17 i pewnej, uporządkowanej rosnąco tablicy T[1..17] różnych liczb całkowitych.

Uwaga: Pierwsze wywołanie funkcji *Rek*(2019, 6, 14) włączamy do ogólnej liczby wywołań.

Miejsce na obliczenia

Odpowiedź:

7 1 .	1 2	(0	2
Zadanie	1.2.	(U-	-2)

Podaj, jakie będą wartości parametrów przekazywanych do funkcji Rek w kolejnych jej wywołaniach dla n = 11, tablicy T = [1, 5, 8, 10, 12, 14, 19, 20, 23, 30, 38] oraz pierwszego wywołania Rek(37, 1, 11).

Miejsce na obliczenia

_	-	tanıa:												
	 		 	 • • • • •	 	• • • •	 • • • •		• • • •	 • • • •	 	 	 	• • • •
	 		 	 • • • •	 		 	• • • • •		 • • • •	 • • • •	 	 	• • •

Zadanie 1.3. (0–1)

Złożoność czasowa algorytmu opisanego funkcją **Rek** dla parametrów x = 1, p = 1, k = n jest

- A. sześcienna.
- **B.** kwadratowa.
- C. liniowa.
- D. logarytmiczna.

Wybierz właściwą odpowiedź.

Zadanie 2. Szyfr kolumnowy

Szyfrowanie kolumnowe jest jedną z metod szyfrowania przestawieniowego, polegającego na zmianie kolejności znaków w szyfrowanym tekście. W tej metodzie jest wykorzystywana tabela o dodatniej liczbie wierszy równej *k*. Liczba *k* jest nazywana *kluczem*. Wiersze i kolumny tabeli są numerowane liczbami naturalnymi, począwszy od 1. Znaki tekstu, który ma być zaszyfrowany, wpisujemy do kolejnych kolumn tabeli, zaczynając od jej lewego górnego rogu. W kolumnach nieparzystych znaki wpisujemy od góry do dołu, a w parzystych od dołu do góry. Puste miejsca w ostatniej rozpoczętej kolumnie wypełniamy znakiem "_" oznaczającym spację. Następnie odczytujemy kolejne wiersze od góry do dołu (każdy z nich od lewej do prawej), w wyniku czego uzyskujemy szyfrogram.

Przykład: dla klucza *k*=3 i tekstu *MATURA Z INFORMATYKI* budujemy tabelę:

M	A	- 1	F	0	Y	K
A	R	Z	N	R	T	I
T	U	_	I	M	A	_

i otrzymujemy szyfrogram MA_FOYKARZNRTITU_IMA_.

Zadanie 2.1. (0–2)

Do zaszyfrowania pewnego 40-znakowego cytatu z wypowiedzi Juliusza Cezara użyto metody szyfru kolumnowego o kluczu 10. Otrzymano szyfrogram:

NKI ATE USGACYOKZZ YYSJTCWEKI SAEMTRLE P

Rozszyfruj ten cytat.

Zadanie 2.2. (0-4)

W wybranym przez siebie języku programowania, w pseudokodzie lub w postaci listy kroków, napisz algorytm deszyfrujący tekst, który został zakodowany szyfrem kolumnowym.

Specyfikacja: *Dane:*

k – klucz, liczba całkowita większa od 0

n – liczba znaków w tekście zaszyfrowanym, n jest wielokrotnością k

S[1..n] – ciąg znaków (tekst do odszyfrowania)

Wynik:

T[1..n] – ciąg znaków (tekst odszyfrowany)

Algorytm:

Zadanie 3. Test

Oceń, czy poniższe zdania są prawdziwe. Zaznacz literę \mathbf{P} , jeśli zdanie jest prawdziwe, albo literę \mathbf{F} – jeśli zdanie jest fałszywe.

W każdym zadaniu uzyskasz punkt tylko za wszystkie poprawne odpowiedzi.

Zadanie 3.1. (0-1)

Dane są tabele Uczniowie i Oceny. Przeanalizuj i oceń poniższe zapytanie w języku SQL.

SELECT Uczniowie.imie, Uczniowie.nazwisko, AVG(Oceny.ocena)
FROM Uczniowie INNER JOIN Oceny ON Uczniowie.id_ucznia = Oceny.id_ucznia
GROUP BY Uczniowie.id_ucznia, Uczniowie.imie, Uczniowie. nazwisko
HAVING AVG(Oceny.ocena) >= 4

ORDER BY AVG(Oceny.ocena), Uczniowie.nazwisko;

1.	W wyniku zapytania, przy odpowiednich danych, mogą pojawić się następujące po sobie wiersze: Jan Abacki 4.08 Jan Kowalski 4.85	P	F
2.	W wyniku zapytania to samo imię i nazwisko może pojawić się tylko raz, nawet jeśli dwóch uczniów ma takie samo imię i nazwisko.	P	F
3.	W wyniku zapytania otrzymamy trzy kolumny z danymi.	P	F
4.	Jedynym kryterium określającym kolejność wierszy w odpowiedzi jest średnia ocena.	P	F

Zadanie 3.2. (0–1)

- 1	٨	D	-	Б	_	-	-				1/
4	Α	В	С	D	Е	F	G	Н	- 1	J	K
1		0	1	2	3	4	5	6	7	8	9
2	10	100	121	144	169	196	225	256	289	324	361
3	20	400	441	484	529	576	625	676	729	784	841
4	30	900	961	1024	1089	1156	1225	1296	1369	1444	1521
5	40	1600	1681	1764	1849	1936	2025	2116	2209	2304	2401
6	50	2500	2601	2704	2809	2916	3025	3136	3249	3364	3481
7	60	3600	3721	3844	3969	4096	4225	4356	4489	4624	4761
8	70	4900	5041	5184	5329	5476	5625	5776	5929	6084	6241
9	80	6400	6561	6724	6889	7056	7225	7396	7569	7744	7921
10	90	8100	8281	8464	8649	8836	9025	9216	9409	9604	9801
8	70 80	4900 6400	5041 6561	5184 6724	5329 6889	5476 7056	5625 7225	5776 7396	5929 7569	6084 7744	

Powyższą tablicę kwadratów w arkuszu kalkulacyjnym można otrzymać, jeżeli skopiuje się tylko jedną formułę z komórki B2 do pozostałych komórek z zakresu B2:K10. W tym celu do komórki B2 należy wpisać

1.	=(\$A2+B\$1)*(\$A2+B\$1)	P	F
2.	=(A2+B1)*(A2+B1)	P	F
3.	=(\$A2+B\$1)^2	P	F
4.	=(\$A\$2+\$B\$1)^2	P	F

Zadanie 3.3. (0-1)

Protokół HTTPS

1.	jest protokołem pobierania poczty elektronicznej ze zdalnego serwera przez połączenie TCP/IP.	P	F
2.	obsługuje system nazywania domen.	P	F
3.	przydziela adresy IP poszczególnym komputerom.	P	F
4.	jest szyfrowaną wersją protokołu http.	P	F

Zadanie 3.4. (0–1)

Różnica 11001001₂ –1111111₂ jest równa

1.	2A ₁₆	P	F
2.	1128	P	F
3.	21104	P	F
4.	10010102	P	F

BRUDNOPIS (nie podlega ocenie)