Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 6 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження рекурсивних алгоритмів»

Варіант 10

Виконав студент <u>ІП-11, Друзенко Олександра Юріївна</u> (шифр, прізвище, ім'я, по батькові)

Перевірив <u>Мартинова Оксана Петрівна</u> (прізвище, ім'я, по батькові)

Лабораторна робота 6

Дослідження рекурсивних алгоритмів

Мета — дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Варіант 10

Сформувати послідовність з 10 чисел Фібоначчі: перші два значення дорівнюють 0 та 1, а кожне наступне значення — це сума двох попередніх.

1.Постановка задачі

За допомогою арифметичного циклу вивести 10 чисел Фібоначчі. Потрібно створити функцію, яка буде повертати число Фібоначчі. Якщо значення 0 то видає 0, якщо 1 то 1, далі це сума двох попередніх значень функції.

2.Математична модель

Змінна	Тип	Ім'я	Призначення
Кількість виведених	int	n	початкове дане
чисел			
Лічильник	int	i	проміжне дане
Повернене значення	int	res	результат
функції			
N-е число Фібоначчі	function	fib(n)	функція для
			обчислення

Функція input() – введення даних

Функція print() – виведення на екран

Функція fib(n) – виведення n-ї кількості чисел Фібоначчі

Крок 1. Визначимо основні дії

Крок 2. Деталізуємо підпрограму знаходження числа Фібоначчі

3.Псевдокод

Крок 1. Основна програма

Початок

input(n)

Повторити для і від 0 до п

print(fib(i));

все повторити

Кінець

Крок 2. Підпрограма знаходження факторіалу

Початок

Функція fib(i):

Якщо *i*==0

res = 0

Інакше якщо і==1

res = 1

Інакше

res = fib(i-1) + fib(i-2)

Все якщо

Повернути res

Кінець

4.Блок-схема

Крок 1

початок

res = 1

fib(i)

res = 1

fib(i)

res = 1

fib(i-1)

res = 1

fib(i-2)

кінець

Крок 2. Функція

res = 0

5. Код програми (Python)

```
def fib(i):
    if (i == 0):
        res = 0
    elif (i == 1):
        res = 1
    else:
        res = (fib(i-1) + fib(i-2))
    return res

n = int(input("введіть кількість чисел: "))
i = 0
for i in range(0, n, 1):
    print(fib(i), end=' ')
```

6. Тестування програми

крок	дія	
1	n=5	
2	i=0, res = 0	
3	i=1, res = 1	
4	i=2, res = fib(1)+fib(0) = 1	
5	i=3, res = fib(2)+fib(1)=(fib(1)+fib(0))	
	+1=2	
6	i=4, res = fib(3)+fib(2)=(fib(2)+fib(1))	
	+ fib(1) + fib(0) = ((fib(1) + fib(0)) + 1) + 1	
	= 3	
7	i=5, res = fib(4)+fib(3) =	
	(fib(3)+fib(2))+fib(2)+fib(1) =	
	((fib(2)+fib(1))+(fib(1)+fib(0)))+1	
	+(fib(1)+fib(0) +1 = fib(1)+fib(0)	
	+1+1+1+1= 5	

7. Висновок

Отже, сьогодні я дослідила особливості роботи рекурсивного алгоритму, який викликає сам себе. В результаті лабораторної роботи я розробила алгоритм який виводить перших 10 чисел Фібоначчі. В алгоритмі присутня підпрограма яка викликається в тілі арифметичного циклу основного виду. В підпрограмі є

розгалуження охоронного виду. Я навчилася деталізувати кроки рекурсивного алгоритму в псевдокоді та блок-схемою. Випробувавши алгоритм, я отримала шукані результати. Алгоритм працює.