EDA CAPSTONE

Bodie Franklin

7/5/2021

EDA of ERCOT data. The data was compiled from ERCOT data Archives. Time period is 2010-2021.

```
#Getting Rid of Warning Messages
defaultW <- getOption("warn")
options(warn = -1)

library(tidyverse)
library(ggcorrplot)
library(naniar)
library(reshape2)

#Reading in the File
df <- read.csv(file="C:/users/bodie/Documents/CAPSTONE_DATA.csv")

#Change Day format
df$DAY <- as.Date(df$DAY,format="%m/%d/%Y")</pre>
```

Checking NA Values

Due to flow of document, I moved this to the end. We have a lot of missing Na values and output was tiresome. Analysis of Na's can be found at the end.

Exploring Daily MWH

Regardless of the location in TX, each load zone is following a cyclical nature. Intuition tells us that this makes sense since the MWH generated is a response due to weather cycles. Perhaps we will gain more insights by individually plotting the load zones.

```
#Breaking the graph out by Zone
LOAD_DF %>% ggplot(aes(x=DAY,y=MWH,color=LOAD_ZONE))+geom_line()+xlab("DATE") +
  ylab("MWH")+ggtitle("Daily MWH Demand By Zone")+theme(plot.title = element_text(hjust = 0.5))+
  facet_wrap(~LOAD_ZONE,ncol=2)
```


The break out of the individual load zones provides insights to population density. It seems that EAST, FAR_WEST, NORTH, SOUTHERN and WEST load zones are generating significantly lower Daily MWH than COAST, NORTH_CENTRAL, SOUTH_Central. Perhaps, these Load zones are less populated and thus have lower Energy demand requirements.

It is interesting that all the Load Zones with the exception of FAR_WEST are following a cyclical nature. Visually, we aren't seeing any impact of population growth over a 10 year period for the Load Zones. One would think that we would see some type of upward trend in the graphs.

Correlation plot

```
corr_df <- df %>% select('COAST_LOAD', 'EAST_LOAD', 'FAR_WEST_LOAD',
                          'NORTH_LOAD', 'NORTH_CENTRAL_LOAD', 'SOUTHERN_LOAD',
                          'SOUTH CENTRAL LOAD', 'WEST LOAD', 'TOTAL LOAD',
                          'GEN Biomass', 'GEN Coal', 'GEN Gas', 'GEN Gas.CC',
                          'GEN_Hydro','GEN_Nuclear','GEN_Other','GEN_Solar','GEN_Wind','GEN_TOTAL')
corr <-round(cor(corr_df),1)</pre>
ggplot(melt(corr), aes(Var1, Var2, fill=value)) +
  geom_tile(height=0.8, width=0.8) +
  scale_fill_gradient2(low="blue", mid="white", high="red") +
  theme_minimal() +
  coord_equal() +
  labs(x="",y="",fill="Corr") +
  theme(axis.text.x=element_text(size=8, angle=45, vjust=1, hjust=1,
                                  margin=margin(-3,0,0,0)),
        axis.text.y=element_text(size=8, margin=margin(0,-3,0,0)),
        panel.grid.major=element blank())
```


I figured certain Load Zones would be more reliant on certain generation methods. Surprisingly,the correlation plot really only shows strong correlation between Gas/Gas.CC and the load zones. This suggest that TX sources most of its' energy from Gas/Gas.CC. Although, FAR_WEST_LOAD is the exception. It seems that there is a strong correlation between GEN_WIND & FAR_WEST_LOAD. From my personal experience, I know there is a large population of Wind farms. Therefore, it makes sense that West TX is sourcing their energy from Wind.

```
GEN_TYPE <- GEN_TYPE %>% gather("TYPE","MWH",2:9)

GEN_TYPE %>% ggplot(aes(x=DAY,y=MWH,color=TYPE))+geom_line()+xlab("DATE") +
   ylab("MWH")+ggtitle("Daily MWH Output")+theme(plot.title = element_text(hjust = 0.5))+
   theme(legend.key.size = unit(1.0, 'cm'))
```


Above, we have Daily MWH output between 2010-2021. My initial thought is that Coal seems be a huge energy source. In the correlation plot, Coal didn't a strong correlation with any of the Load Zones. Therefore, it's surprising to see how large Coal's output is for TX. In contrast, we see that Gas.CC is one of the largest energy sources and that aligned with the output of the correlation plot.

The spike in output at right side of the graph is very interesting. I'm going to zoom in on that portion of the graph to see where this spike occurred. Perhaps the spike occurred during the TX Feb storm? I'll use 4/1/20 as the starting point.

Worth noting, that Solar, Hydro & Other don't reflect the output spike. Futher suggesting that these aren't huge energy sources for TX.

Zooming in on the spike!

```
GEN_2020 <- GEN_TYPE %>% filter(DAY >= as.Date("2020-04-01"))

GEN_2020 %>% ggplot(aes(x=DAY,y=MWH,color=TYPE))+geom_line()+xlab("DATE") +
   ylab("MWH")+ggtitle("Daily MWH output")+theme(plot.title = element_text(hjust = 0.5))+
   theme(legend.key.size = unit(1.0, 'cm'))
```


Wow! After zooming in on the graph, we see that the spike occurred in Nov/Dec 2020. This raises more ?'s for me. For starters, was this a historical cold Nov-Dec for TX? Was there a spike in output because transplants from coast states were not used to the cold? In other words, did people relocating due to COVID contribute to the spike? Could this spike have foreshadowed the problems that occurred in Feb 2021?

AVG Temp

Let's see if we can notice any large temp movements in Nov/Dec 2020 by exploring Avg Temp's between 2010-2021.

```
AVG_TEMP <- df %>% select('DAY', 'WEST_TAVG', 'SOUTH_CENTRAL_TAVG', 'SOUTH_TAVG', 'NORTH_CENTRAL_TAVG', 'COAST_TAVG', 'FAR_WEST_TAVG', 'EAST_TAVG', 'NORTH_CENTRAL_TAVG', 'COAST_TAVG', 'FAR_WEST_TAVG', 'NORTH_CENTRAL_TAVG', 'COAST_TAVG', 'NORTH_CENTRAL_TAVG', 'COAST_TAVG', 'FAR_WEST_TAVG', 'NORTH_CENTRAL_TAVG', 'COAST_TAVG', 'NORTH_CENTRAL_TAVG', 'COAST_TAVG', 'NORTH_CENTRAL_TAVG', 'NORTH_CENTRAL_TAVG', 'COAST_TAVG', 'NORTH_CENTRAL_TAVG', 'NORTH_CENTRAL_TAVG', 'COAST_TAVG', 'NORTH_CENTRAL_TAVG', 'NORTH_CENTRAL_TAVG', 'NORTH_CENTRAL_TAVG', 'NORTH_CENTRAL_TAVG', 'COAST_TAVG', 'NORTH_CENTRAL_TAVG', 'N
```


AVG_TEMP %>% ggplot(aes(x=DAY,y=TEMP,color=ZONE))+geom_line()+ggtitle("Daily Avg Temp")+xlab("Date")+th facet_wrap(~ZONE,ncol=2)

Note: Based on previous EDA not shown in this document, I realize a large amount of AVG temp data was missing from our dataset. I decided to use 2014 as the starting point.

From first glance, we see that AVG temp(regardless of LOAD_ZONE) follows cyclical nature. I don't notice anything odd for Nov/Dec 2020. Perhaps if we zoom in on that time period, we will notice anything unusual.

With breaking out the Daily Avg Temp by Load_zone, the only interesting discovery is that we don't have any daily avg temp EAST_LOAD zone. This potentially may cause issues when modeling demand down the line.

```
AVG_TEMP <- AVG_TEMP %>% filter(DAY >= as.Date("2020-04-01"))

AVG_TEMP %>% ggplot(aes(x=DAY,y=TEMP,color=ZONE))+geom_line()+ggtitle("Daily Avg Temp")+xlab("Date")+th
```


AVG_TEMP <- AVG_TEMP %>% filter(DAY >= as.Date("2020-04-01"))
AVG_TEMP %>% ggplot(aes(x=DAY,y=TEMP,color=ZONE))+geom_line()+ggtitle("Daily Avg Temp")+xlab("Date")+th
facet_wrap(~ZONE,ncol=2)

After zooming in on Daily AVG Temp, there doesn't appear to be anything unique about NOV/DEC 2020. Although,we see the huge dip in Daily AVG temp in Feb 2021 due to the winter storm.

Although there is nothing noticeable different for NOV/DEC 2020, my intuition tells me that this is due the transplants from coast states experiencing difficulty adjusting to the cold. Therefore, we need to research inflow of transplants into TX for 2020. Futhermore, the energy output spike for NOV/DEC 2020 needs to be explored in greater detail.

Relationship of AVG TEMP vs LOAD generation

In this section of the EDA, I wanted to explore the relationship between AVG Temp & Load generation. In order to scale the data and have a clean view of the shape, I took the Log of the AVG temp & Load generation respectively.

```
WEST_DF <- df %>% select('DAY','WEST_TAVG','WEST_LOAD')
WEST_DF <- WEST_DF %>% filter(DAY >= as.Date("2013-04-01"))
WEST_DF$LOG_LOAD <- log(WEST_DF$WEST_LOAD)
WEST_DF$LOG_TEMP <- log(WEST_DF$WEST_TAVG)
WEST_DF <- WEST_DF %>% select('DAY','LOG_LOAD','LOG_TEMP')
WEST_DF <- WEST_DF %>% gather("TYPE","VALUE",2:3)
WEST_DF %>% ggplot(aes(x=DAY,y=VALUE,color=TYPE))+geom_line()+xlab("Performance Date")+ylab("Value")+gg
```

LOG AVG Temp vs Daily load for WEST_LOAD TYPE LOG_LOAD LOG_TEMP

Performance Date

2014

2016

```
SOUTH_CENTRAL_DF <- df %>% select('DAY', 'SOUTH_CENTRAL_TAVG', 'SOUTH_CENTRAL_LOAD')

SOUTH_CENTRAL_DF <- SOUTH_CENTRAL_DF %>% filter(DAY >= as.Date("2013-04-01"))

SOUTH_CENTRAL_DF$LOG_LOAD <- log(SOUTH_CENTRAL_DF$SOUTH_CENTRAL_LOAD)

SOUTH_CENTRAL_DF$LOG_TEMP <- log(SOUTH_CENTRAL_DF$SOUTH_CENTRAL_TAVG)

SOUTH_CENTRAL_DF <- SOUTH_CENTRAL_DF %>% select('DAY', 'LOG_LOAD', 'LOG_TEMP')

SOUTH_CENTRAL_DF <- SOUTH_CENTRAL_DF %>% gather("TYPE", "VALUE", 2:3)

SOUTH_CENTRAL_DF %>% ggplot(aes(x=DAY,y=VALUE,color=TYPE))+geom_line()+xlab("Performance Date")+ylab("Vtheme(plot.title = element_text(hjust = 0.5))+ theme(legend.key.size = unit(1.0, 'cm'))
```

2020


```
NORTH_CENTRAL_DF <- df %>% select('DAY','NORTH_CENTRAL_LOAD','NORTH_CENTRAL_TAVG')

NORTH_CENTRAL_DF <- NORTH_CENTRAL_DF %>% filter(DAY >= as.Date("2013-04-01"))

NORTH_CENTRAL_DF$LOG_LOAD <- log(NORTH_CENTRAL_DF$NORTH_CENTRAL_LOAD)

NORTH_CENTRAL_DF$LOG_TEMP <- log(NORTH_CENTRAL_DF$NORTH_CENTRAL_TAVG)
```

```
NORTH_CENTRAL_DF <- NORTH_CENTRAL_DF %% select('DAY','LOG_LOAD','LOG_TEMP')
NORTH_CENTRAL_DF <- NORTH_CENTRAL_DF %>% gather("TYPE","VALUE",2:3)
NORTH_CENTRAL_DF %>% ggplot(aes(x=DAY,y=VALUE,color=TYPE))+geom_line()+xlab("Performance Date")+ylab("Vtheme(plot.title = element_text(hjust = 0.5))+ theme(legend.key.size = unit(1.0, 'cm'))
```


After spot checking a few of the LOAD ZONE's log transformation output and their Avg temp , we see that the both variables seem to mirror each other. The exception is that when large temp decreases occur, we see spikes in energy output. This makes sense since when people are cold, they are going to want to use their heating more.

Later on the data will be encoded to check all of the Load zones effortlessly. But for now , this check will do.

Total Load vs Gen

```
Total_GEN <- df %>% select('DAY','TOTAL_LOAD','GEN_TOTAL')

Total_GEN <- Total_GEN %>% gather("TYPE","MWH",2:3)

Total_GEN %>% ggplot(aes(x=DAY,y=MWH,color=TYPE))+geom_line()+ggtitle("Total_Load_vs_Gen_Total")+theme("Total_Load_vs_Gen_Total")+theme("Total_Load_vs_Gen_Total")+theme("Total_Load_vs_Gen_Total")+theme("Total_Load_vs_Gen_Total")+theme("Total_Load_vs_Gen_Total")+theme("Total_Load_vs_Gen_Total")+theme("Total_Load_vs_Gen_Total")+theme("Total_Load_vs_Gen_Total")+theme("Total_Load_vs_Gen_Total")+theme("Total_Load_vs_Gen_Total")+theme("Total_Load_vs_Gen_Total")+theme("Total_Load_vs_Gen_Total")+theme("Total_Load_vs_Gen_Total")+theme("Total_Load_vs_Gen_Total")+theme("Total_Load_vs_Gen_Total")+theme("Total_Load_vs_Gen_Total")+theme("Total_Load_vs_Gen_Total_vs_Gen_Total")+theme("Total_Load_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_Total_vs_Gen_To
```



```
Total_GEN <- df %>% select('DAY','TOTAL_LOAD','GEN_TOTAL')

Total_GEN <- Total_GEN %>% filter(DAY >= as.Date("2020-04-01"))

Total_GEN <- Total_GEN %>% gather("TYPE","MWH",2:3)

Total_GEN %>% ggplot(aes(x=DAY,y=MWH,color=TYPE))+geom_line()+ggtitle("Total_Load_vs_Gen_Total")+theme()
```


From our previous plots, we see the same occurrences happen again in NOV/DEC 2020. Again this is very interesting QOI and will require further analysis.

Checking NA Values

```
#Checking for Missing Values
sapply(df, function(x) sum(is.na(x)))
```

##	DAY	COAST_LOAD	EAST_LOAD
##	0	0	0
##	FAR_WEST_LOAD	NORTH_LOAD	NORTH_CENTRAL_LOAD
##	0	0	0
##	SOUTHERN_LOAD	SOUTH_CENTRAL_LOAD	WEST_LOAD
##	0	0	0
##	TOTAL_LOAD	$\mathtt{GEN}_\mathtt{Biomass}$	GEN_Coal
##	0	546	0
##	${\tt GEN_Gas}$	${\tt GEN_Gas.CC}$	GEN_Hydro
##	0	0	0
##	<pre>GEN_Nuclear</pre>	GEN_Other	GEN_Solar
##	0	0	546
##	${\tt GEN_Wind}$	GEN_TOTAL	WEST_AWND
##	0	0	2
##	WEST_PGTM	WEST_PRCP	WEST_TAVG
##	3476	0	1186
##	WEST_TMAX	WEST_TMIN	WEST_WDF5
##	0	0	16
##	WEST_WSF5	WEST_WT01	WEST_WT02
##	16	3329	4101
##	WEST_WT03	WEST_WT04	WEST_WT05
##	3804	4147	4085
##	WEST_WT06	WEST_WT07	WEST_WT08

##	4141	4104	3693
##	WEST_WT09	WEST_WT10	WEST_WT11
##	4166	4169	4160
##	WEST_WT13	WEST_WT14	WEST_WT15
##	4004	4167	4169
##	WEST_WT16	WEST_WT17	WEST_WT18
##	3909	4156	WESI_W118 4148
##			
	WEST_WT19	WEST_WT21	WEST_WT22
##	4156	4169	4169
##	SOUTH_CENTRAL_AWND	SOUTH_CENTRAL_PGTM	SOUTH_CENTRAL_PRCP
##	1	3531	0
##	SOUTH_CENTRAL_TAVG	SOUTH_CENTRAL_TMAX	SOUTH_CENTRAL_TMIN
##	1186	0	0
##	SOUTH_CENTRAL_WDF5	SOUTH_CENTRAL_WSF5	SOUTH_CENTRAL_WT01
##	5	5	2444
##	SOUTH_CENTRAL_WTO2	SOUTH_CENTRAL_WT03	SOUTH_CENTRAL_WT04
##	3962	3736	4149
##	SOUTH_CENTRAL_WT05	SOUTH_CENTRAL_WT06	SOUTH_CENTRAL_WT07
##	4087	4154	4142
##	SOUTH_CENTRAL_WT08	SOUTH_CENTRAL_WTO9	SOUTH_CENTRAL_WT10
##	3894	4155	4169
##	SOUTH_CENTRAL_WT11	SOUTH CENTRAL WT13	SOUTH_CENTRAL_WT14
##	4165	3741	4048
	SOUTH CENTRAL WT15	SOUTH CENTRAL WT16	
##			SOUTH_CENTRAL_WT17
##	4169	3852	4169
##	SOUTH_CENTRAL_WT18	SOUTH_CENTRAL_WT19	SOUTH_CENTRAL_WT21
##	4165	4169	4160
##	SOUTH_CENTRAL_WT22	SOUTH_AWND	SOUTH_PGTM
##	4168	2	3463
##	SOUTH_PRCP	SOUTH_TAVG	SOUTH_TMAX
##	0	1186	0
##	SOUTH_TMIN	SOUTH_WDF5	SOUTH_WSF5
##	0	8	8
##	SOUTH_WT01	SOUTH_WTO2	SOUTH_WTO3
##	2520	3915	3697
##	SOUTH_WTO4	SOUTH_WT05	SOUTH_WT06
##	4166	4072	4163
##	SOUTH_WT07	SOUTH_WT08	SOUTH_WT09
##	4148	3699	4151
##	SOUTH_WT10	SOUTH_WT11	SOUTH_WT13
##	4168	4163	3842
##	SOUTH_WT14		SOUTH_WT16
	_	SOUTH_WT15	3842
##	4097	4167	
##	SOUTH_WT17	SOUTH_WT18	SOUTH_WT19
##	4168	4169	4169
##	SOUTH_WT21	SOUTH_WT22	NORTH_CENTRAL_AWND
##	4118	4169	0
##	NORTH_CENTRAL_PGTM	NORTH_CENTRAL_PRCP	NORTH_CENTRAL_TAVG
##	3533	0	1186
##	NORTH_CENTRAL_TMAX	NORTH_CENTRAL_TMIN	NORTH_CENTRAL_WDF5
##	0	0	6
##	NORTH_CENTRAL_WSF5	NORTH_CENTRAL_WTO1	NORTH_CENTRAL_WT02
##	6	3273	4111
##	NORTH_CENTRAL_WT03	NORTH_CENTRAL_WTO4	NORTH_CENTRAL_WT05
	- -	- -	-

##	3591	4148	4082
##	NORTH_CENTRAL_WT06	NORTH_CENTRAL_WTO7	NORTH_CENTRAL_WT08
##	4149	4129	3622
##	NORTH_CENTRAL_WT09	NORTH_CENTRAL_WT10	NORTH_CENTRAL_WT11
##	4159	4167	4163
##	NORTH_CENTRAL_WT13	NORTH CENTRAL WT14	NORTH CENTRAL WT15
##	3955	4110	4167
##	NORTH_CENTRAL_WT16	NORTH_CENTRAL_WT17	NORTH_CENTRAL_WT18
##	3867	4169	4149
##	NORTH_CENTRAL_WT19	NORTH_CENTRAL_WT21	NORTH_CENTRAL_WT22
##	4169	4169	4166
##	COAST_AWND	COAST_PGTM	COAST_PRCP
##	0	3513	0
##	COAST_TAVG	COAST_TMAX	COAST_TMIN
##	1186	_ 0	- 0
##	COAST_WDF5	COAST_WSF5	COAST_WT01
##	28	28	2569
##	COAST_WT02	COAST_WT03	COAST_WT04
##	3957	3542	4157
##	COAST_WT05	COAST_WT06	COAST_WT07
##	4072	4165	4157
##	COAST_WT08	COAST_WT09	COAST_WT10
##	3799	4167	4169
##	COAST_WT11	COAST_WT13	COAST_WT14
##	4167	3844	4159
##	COAST_WT15	COAST_WT16	COAST_WT17
##	4167	3746	4166
##	COAST_WT18	COAST_WT19	COAST_WT21
##	4168	4169	4144
##	COAST_WT22	FAR WEST AWND	FAR_WEST_PGTM
	-		
##	4169	1	3429
##	FAR_WEST_PRCP	FAR_WEST_TAVG	FAR_WEST_TMAX
##	0	1186	0
##	FAR_WEST_TMIN	FAR_WEST_WDF5	FAR_WEST_WSF5
##	0	8	8
##	FAR_WEST_WT01	FAR_WEST_WT02	FAR_WEST_WT03
##	3422	4037	3791
##	FAR_WEST_WT04	FAR_WEST_WT05	FAR_WEST_WT06
##	4166	4114	4154
##	FAR WEST WT07	FAR_WEST_WT08	FAR_WEST_WT09
##	4046	3342	4156
##	FAR_WEST_WT10	FAR_WEST_WT11	FAR_WEST_WT13
##	4169	4165	4022
##	FAR_WEST_WT14	FAR_WEST_WT15	FAR_WEST_WT16
##		4169	
	4165		3974
##	FAR_WEST_WT17	FAR_WEST_WT18	FAR_WEST_WT19
##	4166	4151	4160
##	FAR_WEST_WT21	FAR_WEST_WT22	EAST_AWND
##	4169	4156	1
##	EAST_PGTM	EAST_PRCP	EAST_TAVG
##	3473	1	4169
##	EAST_TMAX	EAST_TMIN	EAST_WDF5
##	7	5	14
##	EAST_WSF5	EAST_WT01	EAST_WT02
	=======================================		======================================

##	14	2946	4062
##	EAST_WT03	EAST_WTO4	EAST_WT05
##	3630	4161	4155
##	EAST_WT06	EAST_WTO7	EAST_WT08
##	4158	4164	3797
##	EAST_WT09	EAST_WT10	EAST_WT11
##	4168	4169	4167
##	EAST_WT13	EAST_WT14	EAST_WT15
##	3817	4169	4169
##	EAST_WT16	EAST_WT17	EAST_WT18
##	3819	4164	4156
##	EAST_WT19	EAST_WT21	EAST_WT22
##	4163	4169	4167
##	NORTH_AWND	NORTH_PGTM	NORTH_PRCP
##	1	3531	0
##	NORTH_TAVG	NORTH_TMAX	NORTH_TMIN
##	1189	0	0
##	NORTH_WDF5	NORTH_WSF5	NORTH_WTO1
##	11	11	3144
##	NORTH_WTO2	NORTH_WTO3	NORTH_WTO4
##	4029	3647	4160
##	NORTH_WTO5	NORTH_WT06	NORTH_WTO7
##	4073	4131	4139
##	NORTH_WTO8	NORTH_WTO9	NORTH_WT10
##	3763	4151	4168
##	NORTH_WT11	NORTH_WT13	NORTH_WT14
##	4158	3904	4154
##	NORTH_WT15	NORTH_WT16	NORTH_WT17
##	4168	3893	4166
##	NORTH_WT18	NORTH_WT19	NORTH_WT21
##	4144	4161	4169
##	NORTH_WT22	${\tt ALL_ZONES_Total.AWND}$	ALL_ZONES_Total.PGTM
##	4158	0	3424
##	ALL_ZONES_Total.PRCP	ALL_ZONES_Total.TAVG	ALL_ZONES_Total.TMAX
##	0	1186	0
##		ALL_ZONES_Total.WDF5	
##	0	0	0
	ALL_ZONES_Total.WT01		
##	1143	3402	2519
	ALL_ZONES_Total.WT04		
##	4096	3902	4098
	ALL_ZONES_Total.WT07		
##	3928	1986	4113
	ALL_ZONES_Total.WT10		
##	4165	4129	3419
	ALL_ZONES_Total.WT14		
##	3980	4164	3421
	ALL_ZONES_Total.WT17		
##	4145	4122	4143
	ALL_ZONES_Total.WT21		
##	4089	4143	

Wow, we have a lot of missing values. Given the similar counts, perhaps we are just missing a few of years' worth of data. Therefore, we may only have complete records for only the last 5 years or so. Further

investigation is required to determine the cut off point for the date.