重庆理工大学考试试卷

2014~ 2015 学年第二学期

	题号 一	=	Ξ	四	总分	总分人		
	分数							
评卷人								
	(本大题共 5 小题	,每小题 2	分,共 1	0 分) (请a	生正确说法/	后面括号内画 √	,错误说法后面	面括号内画×)
方程 $ydx = (x + y^2)dy$ 是一	一阶线性微分方	程。					()
若 $\vec{a} = (1,1,1)$,则($\sqrt{3}$, $\sqrt{3}$)	/3,√3) 为平行∃	于向量 $\stackrel{\rightarrow}{a}$ 的-	单位向量	型 E 。			()
$\lim_{(x,y)\to(0,0)}\frac{x^2}{3x^2+y^2}=1/3 .$							()
$\oint_L (x^2 + y^2) ds = \pi r^2 , \sharp$	中 <i>L</i> 为圆周 x ² +	$-y^2=r^2$					()
设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 $x=$	2处收敛,则词	亥级数在 <i>x</i> =	=1处绝网	讨收敛。			()
设向量 $\vec{a} = \vec{i} - \vec{j} + \vec{k}$, $\vec{b} =$	$\overrightarrow{i}-2\overset{ ightarrow}{j}+\lambda\overset{ ightarrow}{k}$,贝				$\overset{ ightarrow}{b}$ 垂直。			
xoz 坐标面上的直线 $x=z$	-							
直线 L: $x=1-t, y=-2+$	2t,z=t 与平面。	$\pi: -2x+4$	4y + 2z =	:3的关系	:是			
设 $f(x-y,x+y) = y^2 - x^2$, 则 $f(x,y) = $ _			.0				
	$\cos y + arc\sin\frac{1}{3},$	则二阶混合	合偏导数	$\left. \frac{\partial^2 z}{\partial x \partial y} \right _{0}$	(x,y)=(1,0)	=	о	
) 设 $z = 2x^3y^5 - 3x^2y^3 - x$ co				· 日 北 1				
	〔(1,√3)处沿礻:	=(3,4)方向	句的方向]导致刀_			°	
)设 $z = 2x^3y^5 - 3x^2y^3 - x$ co) 函数 $z = x^3 + \arctan y$ 在点) 微分方程 $y'' - 6y' + 9y = 6$, , ,						°	
函数 $z = x^3 + \arctan y$ 在点	e ^{3x} 的一特解可i	没为 <u></u>			o		_•	

重庆理工大学考试试卷

2014~ 2015 学年第二学期

班级	学号	姓名	考试科目_	<u>高等数学[(a2)机电]</u>	<u>A 卷</u> 闭卷	共 <u>3</u> 页
•••••	• • • • • • • • • • • • • • • • • • • •	· · 密 · · · · · · · · · · · · · · · · ·	••• 對 •••••	·····线···	• • • • • • • • • • • • • • • • • • • •	•••••
		学生答点	题不得超过此线			

得分 评卷人

三、求解下列各题(本大题共8小题,每小题6分,共48分)。

- (16) 求解微分方程 y'' 3y' 4y = 0, $y|_{x=0} = 0$, $y'|_{x=0} = -5$.
- (17) 求空间曲线 $x = \sqrt{t}$, $y = \frac{1+2t}{t}$, $z = 2t^2$ 在点(1, 3, 2)处的切线方程与法平面方程。
- (18) 设 $u = f(x^2 y^2, \sin(xy))$, 求全微分du。
- (19) 计算 $I = \iint_D (x+y) dx dy$, 其中 D 是由 $z = x^2 + y^2$ 和 z = 1 围成的空间区域在 xoy 坐标面上投影区域 $y \ge 0$ 的部分。
- (20) 计算 $\iint_L (x^2 \sin 2y + \ln^2 y) dy (x \cos 2y + 3y) dx$, 其中 $L: x^2 2x + y^2 = 0$,取顺时针方向。
- (21) 计算 $\iint_{\Sigma} z \sin y dx dy + (2-x) \sin y dy dz + 3y dz dx$,其中 Σ 是界于z = 1和z = 3之间的圆拄体 $x^2 + y^2 \le 1$ 的整个表面的外侧。
- (22) 级数 $\sum_{n=1}^{\infty} \frac{(-1)^n 5^n n!}{n^n}$ 是否收敛? 如果收敛,是绝对收敛还是条件收敛?
- (23) 将函数 $y = \frac{1}{3+x}$ 展开为 x-1 的幂级数。

重庆理工大学考试试卷

2014~ 2015 学年第 二 学期

级	学号	姓名	考试科目_	高等数学[(a2)机电]	<u>A卷</u> 闭卷 共 <u>3</u> 页		
• • • • • • • •	·····································						
得分) 评卷人 四、』	应用题和 证明题 (共 22 分)					
(24) 现	型用面积为 24 平方米的银	失 皮做长方形铁箱,问如何选	取长、宽、高	才能使其容积最大。(8)	分)		
(25)	设空间闭区域由曲面 x²	$+ y^2 - z^2 = 0$ 和球面 $x^2 + y^2 +$	$z^2 = 2$ 的下半音	邓分所围成,求该闭区均	或的体积。(7分)		
(26)	证明: $\int_0^2 dx \int_{\frac{x}{2}}^1 \frac{\sin y}{y} dy$	$=2(1-\cos 1)$ 。 (7 分)					