Applied Machine Learning

- Discrete Markov Random Fields
- Discrete Markov Random Fields for Denoising Grey-Level Images
- Discrete Markov Random Fields for Segmentation of Grey-Level Images

Discrete Markov Random Fields

- Markov Random Fields
 - particular case: Boltzmann Machines
- U_i : discrete random variable
 - k possible values
 - One-hot representation: \mathbf{u}_i
 - for values $\in \{0,1,2\}$
 - [1 0 0], [0 1 0], [0 0 1]
- Coupling function: $\theta(U_i, U_j) = \mathbf{u}_i^{\mathsf{T}} \Theta^{(i,j)} \mathbf{u}_j$
 - Coupling matrix: $\Theta^{(i,j)}_{[k \times l]}$
 - $\Theta^{(i,j)}{}_{m,n}$ is coupling between $U_i=m$ and $U_j=n$

log of joint probability:

$$\log P(U | \theta) = \left(\sum_{i} \sum_{j \in N(i)} \mathbf{u}_{i}^{\mathsf{T}} \Theta^{(i,j)} \mathbf{u}_{j} \right) - \log Z(\theta)$$

$$Z(\theta) = \sum_{values \text{ of } \mathbf{u}} e^{\sum_{i} \sum_{j \in N(i)} \mathbf{u}_{i}^{\mathsf{T}} \Theta^{i,j} \mathbf{u}_{j}}$$

Discrete Markov Random Field for Denoising Grey-Level Images

- U_i : discrete: 256 possible values, one-hot vectors with 256 components
 - H: hidden and true pixel values \mathbf{h}_i
 - X: observed pixel values affected by noise \mathbf{x}_i
- Coupling function: $\theta(U_i, U_j) = \mathbf{u}_i^{\mathsf{T}} \Theta^{(i,j)} \mathbf{u}_j$
- Coupling matrix: $\Theta^{(i,j)}_{[k \times l]}$
 - Coupling between hidden nodes

•
$$\theta(H_i, H_j) = \mathbf{h}_i^{\mathsf{T}} \Theta_h^{(i,j)} \mathbf{h}_i$$

$$\Theta_h^{(i,j)} = cI$$

Coupling between hidden and observed nodes

•
$$\theta(H_i, X_i) = \mathbf{h}_i^{\mathsf{T}} \Theta_{x}^{(i,i)} \mathbf{x}_i = \mathbf{h}_i^{\mathsf{T}} \beta_i$$
 $\beta_i = (H_i - X_j)^2$

Discrete Markov Random Field for Denoising Grey-Level Images

- U_i : discrete: 256 possible values, one-hot vectors with 256 components
 - H: hidden and true pixel values \mathbf{h}_i
 - X: observed pixel values affected by noise \mathbf{x}_i
- Coupling function: $\theta(U_i, U_j) = \mathbf{u}_i^{\mathsf{T}} \Theta^{(i,j)} \mathbf{u}_j$
- Coupling matrix: $\Theta^{(i,j)}_{[k \times l]}$
 - Coupling between hidden nodes: $\theta(H_i, H_j) = \mathbf{h}_i^{\mathsf{T}} \Theta_h^{(i,j)} \mathbf{h}_j$
 - Coupling between hidden and observed nodes: $\theta(H_i, X_i) = \mathbf{h}_i^{\mathsf{T}} \Theta_x^{(i,i)} \mathbf{x}_i = \mathbf{h}_i^{\mathsf{T}} \beta_i$
- Log of joint probability

$$log P(H | \theta) = \left(\sum_{i,j} \mathbf{h}_i^{\mathsf{T}} \Theta_h^{(i,j)} \mathbf{h}_j \right) + \sum_i \mathbf{h}_i^{\mathsf{T}} \beta_i - \log Z(\theta)$$

Discrete Markov Random Field for Image Segmentation

- U_i : discrete: one-hot vectors with 256 components
 - H: hidden pixel labels \mathbf{h}_i : as many values as labels
 - ["red", "blue", "magenta",...]
 - X: observed pixel values \mathbf{x}_i : 256 possible values,
- Coupling function: $\theta(U_i, U_j) = \mathbf{u}_i^{\mathsf{T}} \Theta^{(i,j)} \mathbf{u}_j$
- Coupling matrix: $\Theta^{(i,j)}_{[k \times l]}$
 - Coupling between hidden nodes: $\theta(H_i, H_j) = \mathbf{h}_i^{\mathsf{T}} \Theta_h^{(i,j)} \mathbf{h}_j$
 - Coupling between hidden and observed nodes: $\theta(H_i, X_i) = \mathbf{h}_i^{\mathsf{T}} \Theta_x^{(i,i)} \mathbf{x}_i$
- Log of joint probability

$$log P(H | \theta) = \left(\sum_{i,j} \mathbf{h}_i^{\mathsf{T}} \Theta_h^{(i,j)} \mathbf{h}_j \right) + \sum_i \mathbf{h}_i^{\mathsf{T}} \Theta_x^{(i,i)} \mathbf{x}_i - \log Z(\theta)$$

- Discrete Markov Random Fields
- Discrete Markov Random Fields for Denoising Grey-Level Images
- Discrete Markov Random Fields for Segmentation of Grey-Level Images

Applied Machine Learning