Exercise 10

Linxi Wang 587032 Thomas Herolel 535025 Karen Nazaretyan

Lusine Nasaretyan 513624 Ya Quan 518902

Exercise 1. Kernology

- (a) (i) when wefficients a, c, ..., ant R, Then

 The Gight (X, X') = The Giga some a c2+ The Giga so is satisfied

 to k(X, X')=a. a cx+ is a Mener ternel.
 - (ii) Let g(x)=x then g(x)=x' be the feature map for x and x' then k(x,x')=(x,x')=(g(x),g(x')) for all $x,x'\in\mathbb{R}^d$ to k(x,x')=(x,x') is a Merrer Kernel.
 - (iii) k(x, x') = f(x). f(x') since there is just one feature for defined by f(x).

 AP that $f(x) \cdot f(x') = \langle f(x), f(x') \rangle$ where $f: \mathbb{R}^d \to \mathbb{R}$ is an arbibrary combination.

 Thus: $k(x, x') = \langle f(x), f(x') \rangle$ for all $x, x' \in \mathbb{R}^d$.

 Thus: $k(x, x') = f(x) \cdot f(x')$ is a Moner termels.
- (b) (i) $k_1(x, x') = k_1$, $k_2(x, x') = k_2$, k(x, x') = ksince $k = k_1 + k_2$ and k_1, k_2 are two Mener kernels

 so $k_1 = k_1 + k_2$ and $k_2 = k_1 + k_2$ are two Mener kernels

 so $k_1 = k_1 + k_2$ and $k_2 = k_1 + k_2$ are two Mener kernels.

 so $k_1 = k_1 + k_2$ and $k_2 = k_1 + k_2$ (x, x') + $k_2 = k_1 + k_2$ (x, x') $k_3 = k_4 + k_4$ (x, x') $k_4 = k_4$ (x, x') $k_$
 - tii) become $\{ij\}$ alger(x, x') >0, $\{ij\}$ alger(x, x') >0 to $[\{ij\}\}$ alger(x, x')] $[\{ij\}\}$ alger(x, x')] = $\{ij\}\}$ alger(x, x') $\{ij\}\}$ $\{ij\}$ $\{ij\}$