Example script for VAST for spatio-temporal analysis of single-species catch-rate data

James Thorson October 10, 2016

Contents

1	Ove	Overview					
2	Get	tting started	2				
	2.1	Further information	2				
	2.2	Related tools	2				
	2.3	How to cite VAST	3				
3	Set	tings	4				
	3.1	Spatial settings	4				
	3.2	Model settings	4				
	3.3	Potential outputs	5				
	3.4	Stratification for results	5				
	3.5	Derived objects	6				
	3.6	Save settings	6				
4	Pre	epare the data	6				
	4.1	Data-frame for catch-rate data	6				
	4.2	Extrapolation grid	9				
	4.3	Derived objects for spatio-temporal estimation	9				
5	Bui	ild and run model	10				
	5.1	Build model	10				
	5.2	Estimate fixed effects and predict random effects	10				
6	Dia	gnostic plots	11				
	6.1	Plot data	11				
	6.2	Convergence	11				
	6.3	Diagnostics for encounter-probability component	15				
	6.4	Diagnostics for positive-catch-rate component	15				
	6.5	Diagnostics for plotting residuals on a map	16				
	e e	M- 1-114:	10				

7	Mod	del output	19
	7.1	Direction of "geometric anisotropy"	19
	7.2	Density surface for each year	20
	7.3	Index of abundance	20
	7.4	Center of gravity and range expansion/contraction	21
## ##	pack	rage 'pander' successfully unpacked and MD5 sums checked	
		downloaded binary packages are in \Users\James.Thorson\AppData\Local\Temp\RtmpeUz7JG\downloaded_packages	

1 Overview

This tutorial will walk through a simple example of how to use VAST for estimating single-species abundance indices, distribution shifts, and range expansion.

2 Getting started

To install TMB on a windows machine, we need to first install Rtools. During the installation, please select the option to have Rtools included in your system path. On other operating systems, it is not necessary to install Rtools. We then install VAST

```
devtools::install_github("james-thorson/VAST")
devtools::install_github("james-thorson/utilities")
```

Next load libraries.

```
library(TMB) # Can instead load library(TMBdebug)
library(VAST)
```

2.1 Further information

If you have further questions after reading this tutorial, please explore the GitHub repo mainpage, wiki, and glossary. Also please explore the R help files, e.g., <code>?Data_Fn</code> for explanation of data inputs, or <code>?Param_Fn</code> for explanation of parameters.

2.2 Related tools

Related tools for spatio-temporal fisheries analysis are currently housed at www.FishStats.org. These include SpatialDeltaGLMM, a single-species antecedent of VAST, and www.FishViz.org, a tool for visualizing single-species results using worldwide. VAST and SpatialDeltaGLMM both use continuous integration to confirm that they give identical estimates when applied to single-species data.

2.3 How to cite VAST

VAST has involved many publications for developing individual features. If using VAST, please read and cite:

```
citation("VAST")
```

```
##
## Please cite 2016 (ICES J. Mar. Sci. J.
## Cons.) if using the package; 2016 (Glob.
## Ecol. Biogeogr) if exploring factor
## decomposition of spatio-temporal variation;
## 2015 (ICES J. Mar. Sci. J. Cons.) if
## calculating an index of abundance; 2016
## (Methods Ecol. Evol.) if using the
## center-of-gravity metric; 2016 (Fish. Res.)
## if using the bias-correction feature; 2016
## (Proc R Soc B) if using the
## effective-area-occupied metric.
##
     Thorson, J.T., and Barnett, L.A.K. In
##
     press. Comparing estimates of abundance
##
##
     trends and distribution shifts using
##
     single- and multispecies models of fishes
     and biogenic habitat. ICES J. Mar. Sci. J.
##
##
##
##
     Thorson, J.T., Ianelli, J.N., Larsen, E.,
##
     Ries, L., Scheuerell, M.D., Szuwalski, C.,
##
     and Zipkin, E. 2016. Joint dynamic species
##
     distribution models: a tool for community
##
     ordination and spatiotemporal monitoring.
##
     Glob. Ecol. Biogeogr. 25(9): 1144-1158.
##
     doi:10.1111/geb.12464. url:
##
     http://onlinelibrary.wiley.com/doi/10.1111/geb.12464/abstract
##
##
     Thorson, J.T., Shelton, A.O., Ward, E.J.,
##
     Skaug, H.J., 2015. Geostatistical
##
     delta-generalized linear mixed models
##
     improve precision for estimated abundance
##
     indices for West Coast groundfishes. ICES
##
     J. Mar. Sci. J. Cons. 72(5), 1297-1310.
##
     doi:10.1093/icesjms/fsu243. URL:
     http://icesjms.oxfordjournals.org/content/72/5/1297
##
##
##
     Thorson, J.T., and Kristensen, K. 2016.
##
     Implementing a generic method for bias
##
     correction in statistical models using
##
     random effects, with spatial and
##
     population dynamics examples. Fish. Res.
##
     175: 66-74.
##
     doi:10.1016/j.fishres.2015.11.016. url:
##
     http://www.sciencedirect.com/science/article/pii/S0165783615301399
##
     Thorson, J.T., Pinsky, M.L., Ward, E.J.,
##
```

```
##
     2016. Model-based inference for estimating
##
     shifts in species distribution, area
##
     occupied, and center of gravity. Methods
     Ecol. Evol. 7(8), 990-1008.
##
##
     doi:10.1111/2041-210X.12567. URL:
##
     http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12567/full
##
     Thorson, J.T., Rindorf, A., Gao, J.,
##
##
     Hanselman, D.H., and Winker, H. 2016.
     Density-dependent changes in effective
##
##
     area occupied for sea-bottom-associated
     marine fishes. Proc R Soc B 283(1840):
##
     20161853. doi:10.1098/rspb.2016.1853. URL:
##
     http://rspb.royalsocietypublishing.org/content/283/1840/20161853.
##
```

and also browse the GitHub list of papers

3 Settings

First chose an example data set for this script, as archived with package

Next use latest version for CPP code

```
Version = "VAST_v2_5_0"
```

3.1 Spatial settings

The following settings define the spatial resolution for the model, and whether to use a grid or mesh approximation

```
Method = c("Grid", "Mesh", "Spherical_mesh")[2]
grid_size_km = 25
n_x = c(100, 250, 500, 1000, 2000)[1] # Number of stations
Kmeans Config = list( "randomseed"=1, "nstart"=100, "iter.max"=1e3 )
```

3.2 Model settings

The following settings define whether to include spatial and spatio-temporal variation, whether its autocorrelated, and whether there's overdispersion

3.3 Potential outputs

The following settings define what types of output we want to calculate

```
Options = c(SD_site_density = 0, SD_site_logdensity = 0,
    Calculate_Range = 1, Calculate_evenness = 0, Calculate_effective_area = 1,
    Calculate_Cov_SE = 0, Calculate_Synchrony = 0,
    Calculate_Coherence = 0)
```

3.4 Stratification for results

We also define any potential stratification of results, and settings specific to any case-study data set

```
# Default
if (Data_Set %in% c("GSL_american_plaice", "BC_pacific_cod",
    "EBS_pollock", "SAWC_jacopever", "Chatham_rise_hake",
    "Aleutian_islands_POP")) {
    strata.limits <- data.frame(STRATA = "All areas")</pre>
}
# Specific (useful as examples)
if (Data_Set %in% c("WCGBTS_canary", "Sim")) {
    # In this case, it will calculate a coastwide
    # index, and also a separate index for each state
    # (although the state lines are approximate)
    strata.limits <- data.frame(STRATA = c("Coastwide",
        "CA", "OR", "WA"), north_border = c(49, 42,
        46, 49), south_border = c(32, 32, 42, 46),
        shallow_border = c(55, 55, 55, 55), deep_border = c(1280,
            1280, 1280, 1280))
    # Override default settings for vessels
   OverdispersionConfig = c(Delta1 = 1, Delta2 = 1)
if (Data_Set %in% c("GOA_Pcod", "GOA_pollock")) {
    # In this case, will calculating an unrestricted
    # index and a separate index restricted to west of
    # -140W
    strata.limits <- data.frame(STRATA = c("All areas",
        "west_of_140W"), west_border = c(-Inf, -Inf),
        east\_border = c(Inf, -140))
}
if (Data_Set %in% c("GB_spring_haddock", "GB_fall_haddock")) {
    # For NEFSC indices, strata must be specified as a
    # named list of area codes
    strata.limits = list(Georges_Bank = c(1130, 1140,
        1150, 1160, 1170, 1180, 1190, 1200, 1210, 1220,
        1230, 1240, 1250, 1290, 1300))
}
if (Data_Set %in% c("Iceland_cod")) {
   strata.limits = data.frame(STRATA = "All_areas")
    # Turn off all spatial, temporal, and
    # spatio-temporal variation in probability of
    # occurrence, because they occur almost everywhere
   FieldConfig = c(Omega1 = 0, Epsilon1 = 0, Omega2 = 1,
```

```
Epsilon2 = 1)
}
```

3.5 Derived objects

Depending on the case study, we define a Region used when extrapolating or plotting density estimates. If its a different data set, it will define Region="Other", and this is a recognized level for all uses of Region (which attempts to define reasonable settings based on the location of sampling). For example Data_Set="Iceland_cod" has no associated meta-data for the region, so it uses Region="Other" by default.

3.6 Save settings

We then set the location for saving files.

```
DateFile = paste0(getwd(),'/VAST_output/')
  dir.create(DateFile)
```

I also like to save all settings for later reference, although this is not necessary.

4 Prepare the data

4.1 Data-frame for catch-rate data

Depending upon the Data_Set chosen, we load archived data sets that are distributed with the package. Each archived data set is then reformatted to create a data-frame Data_Geostat with a standardized set of columns. For a new data set, the user is responsible for formatting Data_Geostat appropriately to match this format. We show the first six rows of Data_Geostat given that Data_Set = Data_Set.

```
if (Data_Set == "WCGBTS_canary") {
    data(WCGBTS_Canary_example, package = "SpatialDeltaGLMM")
    Year = as.numeric(sapply(WCGBTS_Canary_example[,
        "PROJECT_CYCLE"], FUN = function(Char) {
        strsplit(as.character(Char), " ")[[1]][2]
   }))
   Data_Geostat = data.frame(Catch_KG = WCGBTS_Canary_example[,
        "HAUL WT KG"], Year = Year, Vessel = paste(WCGBTS Canary example[,
        "VESSEL"], Year, sep = "_"), AreaSwept_km2 = WCGBTS_Canary_example[,
        "AREA_SWEPT_HA"]/100, Lat = WCGBTS_Canary_example[,
        "BEST_LAT_DD"], Lon = WCGBTS_Canary_example[,
        "BEST_LON_DD"], Pass = WCGBTS_Canary_example[,
        "PASS"] - 1.5)
if (Data_Set %in% c("BC_pacific_cod")) {
   data(BC_pacific_cod_example, package = "SpatialDeltaGLMM")
    Data_Geostat = data.frame(Catch_KG = BC_pacific_cod_example[,
        "PCOD_WEIGHT"], Year = BC_pacific_cod_example[,
        "Year"], Vessel = "missing", AreaSwept_km2 = BC_pacific_cod_example[,
        "TOW.LENGTH..KM."]/100, Lat = BC_pacific_cod_example[,
        "LAT"], Lon = BC_pacific_cod_example[, "LON"],
        Pass = 0)
}
if (Data_Set %in% c("GSL_american_plaice")) {
    data(GSL american plaice, package = "SpatialDeltaGLMM")
    SpatialDeltaGLMM::Print_Message("GSL_american_plaice")
    Data_Geostat = data.frame(Year = GSL_american_plaice[,
        "year"], Lat = GSL_american_plaice[, "latitude"],
        Lon = GSL_american_plaice[, "longitude"], Vessel = "missing",
        AreaSwept_km2 = GSL_american_plaice[, "swept"],
        Catch_KG = GSL_american_plaice[, "biomass"] *
            GSL_american_plaice[, "vstd"])
}
if (Data_Set == "EBS_pollock") {
    data(EBS_pollock_data, package = "SpatialDeltaGLMM")
    Data_Geostat = data.frame(Catch_KG = EBS_pollock_data[,
        "catch"], Year = EBS_pollock_data[, "year"],
        Vessel = "missing", AreaSwept_km2 = 0.01, Lat = EBS_pollock_data[,
            "lat"], Lon = EBS_pollock_data[, "long"],
        Pass = 0)
}
if (Data_Set == "GOA_Pcod") {
   data(GOA_pacific_cod, package = "SpatialDeltaGLMM")
    Data Geostat = data.frame(Catch KG = GOA pacific cod[,
        "catch"], Year = GOA_pacific_cod[, "year"],
        Vessel = "missing", AreaSwept_km2 = 0.01, Lat = GOA_pacific_cod[,
            "lat"], Lon = GOA_pacific_cod[, "lon"],
        Pass = 0)
}
if (Data_Set == "GOA_pollock") {
    data(GOA_walleye_pollock, package = "SpatialDeltaGLMM")
   Data_Geostat = data.frame(Catch_KG = GOA_walleye_pollock[,
        "catch"], Year = GOA_walleye_pollock[, "year"],
```

```
Vessel = "missing", AreaSwept_km2 = 0.01, Lat = GOA_walleye_pollock[,
            "lat"], Lon = GOA_walleye_pollock[, "lon"],
        Pass = 0
}
if (Data_Set == "Aleutian_islands_POP") {
    data(AI_pacific_ocean_perch, package = "SpatialDeltaGLMM")
   Data_Geostat = data.frame(Catch_KG = AI_pacific_ocean_perch[,
        "cpue..kg.km.2."], Year = AI pacific ocean perch[,
        "year"], Vessel = "missing", AreaSwept km2 = 1,
        Lat = AI_pacific_ocean_perch[, "start.latitude"],
        Lon = AI_pacific_ocean_perch[, "start.longitude"],
        Pass = 0)
if (Data_Set == "GB_spring_haddock") {
    data(georges_bank_haddock_spring, package = "SpatialDeltaGLMM")
    SpatialDeltaGLMM::Print_Message("GB_haddock")
    Data_Geostat = data.frame(Catch_KG = georges_bank_haddock_spring[,
        "CATCH_WT_CAL"], Year = georges_bank_haddock_spring[,
        "YEAR"], Vessel = "missing", AreaSwept_km2 = 0.0112 *
        1.852<sup>2</sup>, Lat = georges_bank_haddock_spring[,
        "LATITUDE"], Lon = georges_bank_haddock_spring[,
        "LONGITUDE"])
}
if (Data_Set == "GB_fall_haddock") {
    data(georges bank haddock fall, package = "SpatialDeltaGLMM")
    SpatialDeltaGLMM::Print Message("GB haddock")
    Data Geostat = data.frame(Catch KG = georges bank haddock fall[,
        "CATCH_WT_CAL"], Year = georges_bank_haddock_fall[,
        "YEAR"], Vessel = "missing", AreaSwept_km2 = 0.0112 *
        1.852^2, Lat = georges_bank_haddock_fall[,
        "LATITUDE"], Lon = georges_bank_haddock_fall[,
        "LONGITUDE"])
if (Data_Set == "SAWC_jacopever") {
    data(south_africa_westcoast_jacopever, package = "SpatialDeltaGLMM")
    Data_Geostat = data.frame(Catch_KG = south_africa_westcoast_jacopever[,
        "HELDAC"], Year = south_africa_westcoast_jacopever[,
        "Year"], Vessel = "missing", AreaSwept_km2 = south_africa_westcoast_jacopever[,
        "area_swept_nm2"] * 1.852^2, Lat = south_africa_westcoast_jacopever[,
        "cen_lat"], Lon = south_africa_westcoast_jacopever[,
        "cen_long"])
if (Data Set %in% c("Iceland cod")) {
    # WARNING: This data set has not undergone much
    # evaluation for spatio-temporal analysis
   data(iceland_cod, package = "SpatialDeltaGLMM")
   Data_Geostat = data.frame(Catch_KG = iceland_cod[,
        "Catch_b"], Year = iceland_cod[, "year"], Vessel = 1,
        AreaSwept_km2 = iceland_cod[, "towlength"],
        Lat = iceland_cod[, "lat1"], Lon = iceland_cod[,
            "lon1"])
if (Data_Set %in% c("Chatham_rise_hake")) {
```

$Catch_KG$	Year	Vessel	$AreaSwept_km2$	Lat	Lon	Pass
22.2	1982	missing	0.01	55.3	-165	0
26.3	1982	missing	0.01	55.3	-167	0
132	1982	missing	0.01	55.3	-164	0
11.2	1982	missing	0.01	55.3	-166	0
52.3	1982	missing	0.01	55.3	-165	0
9.24	1982	missing	0.01	55.4	-163	0

4.2 Extrapolation grid

We also generate the extrapolation grid appropriate for a given region. For new regions, we use Region="Other".

```
if (Region %in% c("California_current", "Eastern_Bering_Sea",
    "Gulf of Alaska", "Aleutian Islands", "Northwest Atlantic",
    "Gulf_of_St_Lawrence", "New_Zealand")) {
   Extrapolation_List = SpatialDeltaGLMM::Prepare_Extrapolation_Data_Fn(Region = Region,
        strata.limits = strata.limits)
}
if (Region == "British Columbia") {
    Extrapolation_List = SpatialDeltaGLMM::Prepare_Extrapolation_Data_Fn(Region = Region,
        strata.limits = strata.limits, strata_to_use = c("HS",
            "QCS"))
}
if (Region == "South_Africa") {
   Extrapolation_List = SpatialDeltaGLMM::Prepare_Extrapolation_Data_Fn(Region = Region,
        strata.limits = strata.limits, region = "west_coast")
}
if (Region == "Other") {
   Extrapolation_List = SpatialDeltaGLMM::Prepare_Extrapolation_Data_Fn(Region = Region,
        strata.limits = strata.limits, observations_LL = Data_Geostat[,
            c("Lat", "Lon")], maximum distance from sample = 15)
}
```

4.3 Derived objects for spatio-temporal estimation

And we finally generate the information used for conducting spatio-temporal parameter estimation, bundled in list Spatial_List

```
randomseed = Kmeans_Config[["randomseed"]], nstart = Kmeans_Config[["nstart"]],
   iter.max = Kmeans_Config[["iter.max"]], DirPath = DateFile,
   Save_Results = FALSE)
# Add knots to Data_Geostat
Data_Geostat = cbind(Data_Geostat, knot_i = Spatial_List$knot_i)
```

5 Build and run model

5.1 Build model

To estimate parameters, we first build a list of data-inputs used for parameter estimation. Data_Fn has some simple checks for buggy inputs, but also please read the help file ?Data_Fn.

```
## Omega1 Epsilon1 Omega2 Epsilon2
## 1 1 1 1 1 1
## Delta1 Delta2
## -1 -1
```

We then build the TMB object.

```
TmbList = Build_TMB_Fn(TmbData = TmbData, RunDir = DateFile,
    Version = Version, RhoConfig = RhoConfig, loc_x = Spatial_List$loc_x,
    Method = Method)
Obj = TmbList[["Obj"]]
```

5.2 Estimate fixed effects and predict random effects

Next, we use a gradient-based nonlinear minimizer to identify maximum likelihood estimates for fixed-effects

```
Opt = TMBhelper::Optimize(obj = Obj, lower = TmbList[["Lower"]],
    upper = TmbList[["Upper"]], getsd = TRUE, savedir = DateFile,
    bias.correct = FALSE, newtonsteps = 1)
```

Finally, we bundle and save output

```
Report = Obj$report()
Save = list("Opt"=Opt, "Report"=Report, "ParHat"=Obj$env$parList(Opt$par), "TmbData"=TmbData)
save(Save, file=paste0(DateFile, "Save.RData"))
```

6 Diagnostic plots

We first apply a set of standard model diagnostics to confirm that the model is reasonable and deserves further attention. If any of these do not look reasonable, the model output should not be interpreted or used.

6.1 Plot data

It is always good practice to conduct exploratory analysis of data. Here, I visualize the spatial distribution of data. Spatio-temporal models involve the assumption that the probability of sampling a given location is statistically independent of the probability distribution for the response at that location. So if sampling "follows" changes in density, then the model is probably not appropriate!

6.2 Convergence

Here I print the diagnostics generated during parameter estimation, and I confirm that (1) no parameter is hitting an upper or lower bound and (2) the final gradient for each fixed-effect is close to zero. For explanation of parameters, please see ?Data_Fn.

pander::pandoc.table(Opt\$diagnostics[,c('Param','Lower','MLE','Upper','final_gradient')])

Param	Lower	MLE	Upper	final_gradient
ln_H_input	-50	0.2315	50	-2.309e-07
ln_H_input	-50	-0.9657	50	-2.244e-07
beta1_ct	-50	4.12	50	2.73e-08
beta1_ct	-50	4.229	50	-6.46e-09
$beta1_ct$	-50	4.323	50	2.654 e-08
$beta1_ct$	-50	5.093	50	-4.174e-09
$beta1_ct$	-50	5.428	50	-1.221e-08
$beta1_ct$	-50	4.105	50	2.317e-08
$beta1_ct$	-50	5.056	50	2.104e-08
$beta1_ct$	-50	4.168	50	1.044e-09
$beta1_ct$	-50	4.334	50	5.94e-09
$beta1_ct$	-50	5.989	50	-7.843e-09
$beta1_ct$	-50	4.524	50	1.364 e - 08
$beta1_ct$	-50	5.265	50	1.383e-08
$beta1_ct$	-50	5.647	50	-2.523e-07
$beta1_ct$	-50	4.886	50	1.307e-08
$beta1_ct$	-50	5.074	50	-1.206e-07
$beta1_ct$	-50	4.753	50	-7.415e-09
$beta1_ct$	-50	4.997	50	-7.182e-09
$beta1_ct$	-50	6.219	50	-8.804e-09
$beta1_ct$	-50	5.125	50	-5.001e-08
$beta1_ct$	-50	5.707	50	1.049e-08
$beta1_ct$	-50	4.809	50	2.432e-08
$beta1_ct$	-50	4.535	50	2.48e-08
$beta1_ct$	-50	5.454	50	1.688e-08

Param	Lower	MLE	Upper	final_gradient
beta1_ct	-50	4.747	50	1.95e-08
beta1_ct	-50	4.572	50	2.736e-08
beta1_ct	-50	4.198	50	3.216e-08
beta1_ct	-50	2.877	50	5.233e-08
beta1_ct	-50	3.426	50	4.396e-08
beta1_ct	-50	2.986	50	4.731e-08
beta1_ct	-50	4.66	50	-4.076e-08
beta1_ct	-50	4.657	50	1.847e-08
beta1_ct	-50	5.19	50	9.621e-09
$beta1_ct$	-50	6.231	50	1.004e-08
L_omega1_z	-50	1.946	50	-3.656e-08
$L_{epsilon1}_z$	-50	-0.9753	50	2.423e-06
logkappa1	-6.01	-4.12	-2.574	1.526e-06
$beta2_ct$	-50	7.517	50	1.492 e - 08
${ m beta2_ct}$	-50	8.74	50	-3.884e-09
${ m beta2_ct}$	-50	7.844	50	-1.114e-09
${ m beta2_ct}$	-50	8.535	50	1.195e-08
${ m beta2_ct}$	-50	8.097	50	2.843e-09
$beta2_ct$	-50	8.459	50	3.324e-09
$beta2_ct$	-50	8.287	50	-6.377e-09
${ m beta2_ct}$	-50	8.243	50	-2.57e-09
${ m beta2_ct}$	-50	8.046	50	2.853e-10
${ m beta2_ct}$	-50	8.17	50	1.311e-08
${ m beta2_ct}$	-50	8.063	50	2.686e-09
${ m beta2_ct}$	-50	8.212	50	-1.114e-08
${ m beta2_ct}$	-50	8.008	50	-6.64e-09
${ m beta2_ct}$	-50	7.516	50	-1.243e-09
${ m beta2_ct}$	-50	7.73	50	1.31e-09
${ m beta2_ct}$	-50	7.887	50	9.971e-09
${ m beta2_ct}$	-50	7.663	50	5.055e-09
$beta2_ct$	-50	7.405	50	2.664e-09
${ m beta2_ct}$	-50	8.198	50	-3.172e-09
$beta2_ct$	-50	8.166	50	-1.337e-09
$beta2_ct$	-50	7.847	50	-1.15e-08
$beta2_ct$	-50	8.542	50	-5.085e-09
$beta2_ct$	-50	7.983	50	-1.845e-09
$beta2_ct$	-50	7.833	50	-5.304e-09
beta2 ct	-50	7.13	50	1.969e-11
beta2 ct	-50	6.996	50	2.906e-09
beta2_ct	-50	6.544	50	-1.199e-08
beta2 ct	-50	6.056	50	2.079e-08
$beta2_ct$	-50	7.291	50	1.214e-08
beta2 ct	-50	7.546	50	1.078e-08
beta2 ct	-50	7.248	50	-3.083e-09
beta2 ct	-50	7.513	50	2.006e-09
beta2 ct	-50	8.565	50	-1.465e-08
L_{mega2_z}	-50	-1.106	50	2.895e-07
L_epsilon2_z	-50	-1.123	50	4.209e-07
logkappa2	-6.01	-4.535	-2.574	3.355e-07
logSigmaM	-50	0.1682	10	-1.601e-07
	50	0.1002	10	1.0010-01

Figure 1: Spatial extent and location of knots

Figure 2: Spatial distribution of catch-rate data

6.3 Diagnostics for encounter-probability component

Next, we check whether observed encounter frequencies for either low or high probability samples are within the 95% predictive interval for predicted encounter probability

Figure 3: Expectated probability and observed frequency of encounter for "encounter probability" component

6.4 Diagnostics for positive-catch-rate component

We can visualize fit to residuals of catch-rates given encounters using a Q-Q plot. A good Q-Q plot will have residuals along the one-to-one line.

```
Q = SpatialDeltaGLMM::QQ_Fn(TmbData = TmbData, Report = Report,
    FileName_PP = pasteO(DateFile, "Posterior_Predictive.jpg"),
    FileName_Phist = pasteO(DateFile, "Posterior_Predictive-Histogram.jpg"),
    FileName_QQ = pasteO(DateFile, "Q-Q_plot.jpg"),
    FileName_Qhist = pasteO(DateFile, "Q-Q_hist.jpg"))
```


Figure 4: Quantile-quantile plot indicating residuals for "positive catch rate" component

6.5 Diagnostics for plotting residuals on a map

Finally, we visualize residuals on a map. To do so, we first define years to plot and generate plotting inputs. useful plots by first determining which years to plot (Years2Include), and labels for each plotted year (Year Set)

```
# Get region-specific settings for plots
MapDetails_List = SpatialDeltaGLMM::MapDetails_Fn( "Region"=Region, "NN_Extrap"=Spatial_List$PolygonLis
# Decide which years to plot
Year_Set = seq(min(Data_Geostat[,'Year']),max(Data_Geostat[,'Year']))
Years2Include = which( Year_Set %in% sort(unique(Data_Geostat[,'Year'])))
```

We then plot Pearson residuals. If there are visible patterns (areas with consistently positive or negative residuals accross or within years) then this is an indication of the model "overshrinking" results towards the intercept, and model results should then be treated with caution.

```
SpatialDeltaGLMM:::plot_residuals(Lat_i = Data_Geostat[,
    "Lat"], Lon_i = Data_Geostat[, "Lon"], TmbData = TmbData,
    Report = Report, Q = Q, savedir = DateFile, MappingDetails = MapDetails_List[["MappingDetails"]],
    PlotDF = MapDetails_List[["PlotDF"]], MapSizeRatio = MapDetails_List[["MapSizeRatio"]],
    Xlim = MapDetails_List[["Xlim"]], Ylim = MapDetails_List[["Ylim"]],
    FileName = DateFile, Year_Set = Year_Set, Years2Include = Years2Include,
    Rotate = MapDetails_List[["Rotate"]], Cex = MapDetails_List[["Cex"]],
    Legend = MapDetails_List[["Legend"]], zone = MapDetails_List[["Zone"]],
    mar = c(0, 0, 2, 0), oma = c(3.5, 3.5, 0, 0), cex = 1.8)
```


Figure 5: Pearson residuals for encounter-probability by knot

Figure 6: Pearson residuals for positive catch rates by knot

6.6 Model selection

To select among models, we recommend using the Akaike Information Criterion, AIC, via Opt\$AIC=1.149\times 10^{5}.

7 Model output

Last but not least, we generate pre-defined plots for visualizing results

7.1 Direction of "geometric anisotropy"

We can visualize which direction has faster or slower decorrelation (termed "geometric anisotropy")

```
SpatialDeltaGLMM::PlotAniso_Fn(FileName = paste0(DateFile,
    "Aniso.png"), Report = Report, TmbData = TmbData)
```

Distance at 10% correlation

Figure 7: Decorrelation distance for different directions

7.2 Density surface for each year

We can visualize many types of output from the model. Here I only show predicted density, but other options are obtained via other integers passed to plot_set as described in ?PlotResultsOnMap_Fn

```
Dens_xt = SpatialDeltaGLMM::PlotResultsOnMap_Fn(plot_set = c(3),
    MappingDetails = MapDetails_List[["MappingDetails"]],
    Report = Report, Sdreport = Opt$SD, PlotDF = MapDetails_List[["PlotDF"]],
    MapSizeRatio = MapDetails_List[["MapSizeRatio"]],
    Xlim = MapDetails_List[["Xlim"]], Ylim = MapDetails_List[["Ylim"]],
    FileName = DateFile, Year_Set = Year_Set, Years2Include = Years2Include,
    Rotate = MapDetails_List[["Rotate"]], Cex = MapDetails_List[["Cex"]],
    Legend = MapDetails_List[["Legend"]], zone = MapDetails_List[["Zone"]],
    mar = c(0, 0, 2, 0), oma = c(3.5, 3.5, 0, 0), cex = 1.8,
    plot_legend_fig = FALSE)
```

We can also extract density predictions at different locations, for use or plotting in other software. This is output in UTM using zone 2

Density	Year	E_km	N_km
7.68	1982	151	6669
8.02	1982	652	6517
9.35	1982	419	6523
9	1982	361	6493
7.31	1982	861	6378
9.52	1982	389	6307

7.3 Index of abundance

The index of abundance is generally most useful for stock assessment models.

Year	Fleet	Estimate_metric_tons	SD_log	SD_mt
1982	1	2391520	0.08975	214646
1983	1	5743675	0.08742	502140
1984	1	4037772	0.09583	386952
1985	1	4903442	0.1109	543677
1986	1	4323622	0.09065	391957
1987	1	4848392	0.09324	452085

Year	Fleet	Estimate_metric_tons	SD_log	SD_mt
1988	1	6494201	0.09803	636641
1989	1	5765370	0.08935	515127
1990	1	6362285	0.1095	696835
1991	1	4530969	0.09176	415743
1992	1	4203667	0.09303	391081
1993	1	5014038	0.08535	427968
1994	1	4662237	0.09004	419794
1995	1	4099801	0.102	418012
1996	1	2672990	0.07938	212187
1997	1	3040907	0.08515	258929
1998	1	2335757	0.08682	202789
1999	1	3274280	0.09699	317587
2000	1	4512361	0.08594	387783
2001	1	3857094	0.08484	327254
2002	1	4240924	0.07631	323610
2003	1	6840986	0.08879	607392
2004	1	3595987	0.07969	286557
2005	1	4270665	0.08614	367858
2006	1	2702638	0.08798	237790
2007	1	3810936	0.1063	405098
2008	1	2605630	0.1023	266616
2009	1	1863566	0.1169	217879
2010	1	3263266	0.1035	337901
2011	1	2919660	0.09075	264960
2012	1	3125149	0.08222	256949
2013	1	4185027	0.09032	377980
2014	1	7295638	0.07829	571191

7.4 Center of gravity and range expansion/contraction

We can detect shifts in distribution or range expansion/contraction.

```
SpatialDeltaGLMM::Plot_range_shifts(Report = Report,
    TmbData = TmbData, Sdreport = Opt[["SD"]], Znames = colnames(TmbData$Z_xm),
    PlotDir = DateFile, Year_Set = Year_Set)
```


Figure 8: Density maps for each year

Figure 9: Index of abundance plus/minus 1 standard error

Figure 10: Center of gravity (COG) indicating shifts in distribution plus/minus 1 standard error

Figure~11:~Effective~area~occupied~indicating~range~expansion/contraction~plus/minus~1~standard~error