Attorney Docket No.: 2004P00446WOUS

IN THE CLAIMS

Please amend the claims as follows:

1. (Currently Amended) A method for generating training data $[[(D_T)]]$ for an automatic speech <u>recognizer recogniser (2) for operating at a particular first sampling frequency</u> $[[(f_H)]]$, comprising the following steps:

deriving spectral characteristics [[(S_L)]] from audio data [[(D_L)]] sampled at a second frequency [[(f_L)]] lower than the first sampling frequency [[(f_H)]];

extending [[the]] \underline{a} bandwidth of the spectral characteristics [[(S_L)]] by retrieving bandwidth extending information [[(I_{BE})]] from a codebook [[(6)]] so that the audio data sampled at the second frequency is compatible with the automatic speech recognizer operating at the first sampling frequency; and

processing the bandwidth extended spectral characteristics [[(S_{LE})]] to give the required training data [[(D_T)]].

- 2. (Currently Amended) A method according to claim 1, where the conversion of audio data (D_H, D_L) into sets of spectral characteristics (S_H, S_L) comprises calculating the FFT of the audio data (D_H, D_L) to give a set of Fourier coefficients [[(31)]] and filtering the output of the FFT with a filterbank [[(22)]] to give a set of filterbank power values [[(32)]].
- 3. (Currently Amended) A method according to claim 2, where the conversion of audio data (D_H, D_L) into sets of spectral characteristics (S_H, S_L) comprises processing the FFT coefficients [[(31)]] or the filterbank power values [[(32)]] to give a set of log-spectral coefficients [[(33)]].
- 4. (Currently Amended) A method according to claim 1, where the processing of bandwidth extended spectral characteristics $[[(S_{LE})]]$ comprises a step of altering the spectrum to adjust signal properties of the audio data $[[(D_L)]]$.

Attorney Docket No.: 2004P00446WOUS

- 5. (Currently Amended) A method according to claim 4, where the step of altering the spectrum to adjust the signal properties of the audio data $[[(D_L)]]$ is performed in the linear domain.
- 6. (Currently Amended) A method according to claim 1, where the derivation of the spectral characteristics $[[(S_L)]]$ from audio data $[[(D_L)]]$ is followed by a step subtracting the mean spectrum from the spectral characteristics $[[(S_L)]]$.
- 7. (Currently Amended) A method for training an automatic speech recognition system [[(2)]] wherein the data $[[(D_T)]]$ used for training are at least partially generated using a method according to to claim 1.

8 - 13. (Cancelled)

14. (Currently Amended) A system [[(1)]] for generating training data [[(D_T)]] for an automatic speech <u>processor</u> recogniser (2) operating at a particular first sampling frequency [[(f_H)]], comprising:

a converter [[(3)]] for deriving spectral characteristics [[(S_L)]] from audio data [[(D_C)]] sampled at a second frequency [[(f_L)]] lower than the first sampling frequency [[(f_H)]];

a retrieval unit [[(4)]] for retrieving bandwidth extending information for the spectral characteristics [[(S_L)]] from a codebook [[(6)]] so that the audio data sampled at the second frequency is compatible with the automatic speech recognizer operating at the first sampling frequency;

a processing module [[(7)]] for processing the bandwidth-extended spectral characteristics [[(S_{LE})]] to give the required training data [[(D_T)]].

15. (Cancelled)