ROUGH CUT OF PROVEN WORK ON \mathcal{H} .

MILES JOHNSON & NATALIE STEWART

1. Introduction

Let S_{2n+r} be the symmetric group on 2n+r indices with $2n+r\geq 2$, let $\mathscr{H}=\mathscr{H}_{k,q}(S_{2n+r})$ be the corresponding Hecke algebra over field k with parameter $q \in k^{\times}$ having square root $q^{1/2}$, and let $\{T_i\}$ be the reflections generating \mathscr{H} . Let $[m]_q = 1 + q + \cdots + q^{m-1}$ be the q-number of m. Let e be the smallest positive integer such that $[e]_q = 0$, and set $e = \infty$ if no such integer exists. Either q = 1 and e is the characteristic of k, or $q \neq 1$ and q is a primitive eth root of unity.

Let $S^{(n+r,n)'}$ be the Specht module corresponding to the young diagram with two columns with height difference r, and let $D^{(n+r,n)'}$ be the corresponding irreducible quotient. The purpose of this writing is to characterize these representation via an isomorphism with two graphical representations of \mathcal{H} .

1.1. Crossingless Matchings.

Definition 1.1. A crossingless matching on 2n + r indices with r anchors is a partition of $\{1, \ldots, 2n + r\}$ into n parts of size 2 and r of size 1 such that no two parts of size two "cross", i.e. there are no parts (a, a')and (b,b') such that a < b < a' < b', and no parts of size one are "inside" of a part of size two, i.e. there are no c, (a, a') such that a < c < a'. We will call these arcs and anchors, respectively. Then, define W_{2n+r}^r to be the k-vector space with basis the set of generalized crossingless matchings on 2n+r indices with r anchors.

In order for this to be a *H*-module, endow this with the action given by Figure 1; if a "loop" is created, scale by q+1, if a loop is not created and the action involves fewer than 2 anchors, deform into a new crossingless maching and scale by $q^{1/2}$, and if it involves two anchors, scale by 0. We verify that this is well-defined in appendix A.1.

Let the length of an arc (i, j) be l(i, j) := j - i + 1. Note that the crossingless matchings on 2n indices with no anchros can all be identified with a list of n integers describing the lengths of the arcs from left to right; using this, we may order the crossingless matchings with no anchors in increasing lexicographical order in order to obtain an order on the subbasis containing a particular set of anchors; let the basis be ordered first by the position of the anchors in increasing lexicographical order, then increasing for the matchings between each anchor. Let this basis be $\{w_i\}$. This basis is illustrated for W_5^1 in Figure 2. We will prove that $W := W_{2n+r}^r$ and $S := S^{(n+r,n)'}$ are isomorphic as representations in the case that

e > n + r + 1. Note that, when r = 0, these have the same dimension given by the nth catalan number C_n .

Figure 1. Illustration of the actions $(1+T_i)w_{|W_c^2|}$. In general, we act by deleting loops, deforming into a new crossingless matching, and scaling by either $q^{1/2}$, (q+1), or 0.

Figure 2. The basis for W_5^1 .

1.2. **Fibonacci Representation.** Now suppose that $k = \mathbb{C}$ and $q = \exp(2\pi i \ell/5)$ is a primitive 5th root of unity. Let V^m be a k-vector space with basis given by the strings $\{*,p\}^{n+1}$ such that the character * never appears twice in a row. We will surpress the superscript whenever it is clear from context.

We wish to endow this with a \mathcal{H} -action which acts on a basis vector only dependent on characters i, i+1, i+2, sending each basis vector to a combination of the other basis vectors having the same characters $1, \ldots, i, i+2, \ldots, n+1$ as follows:

$$T_{1}(*pp) := \alpha(*pp)$$

$$T_{1}(pp*) := \alpha(pp*)$$

$$T_{1}(*p*) := \beta(*p*)$$

$$T_{1}(p*p) := \gamma(p*p) + \delta(ppp)$$

$$T_{1}(ppp) := \delta(p*p) + \varepsilon(ppp)$$

for constants

$$\alpha = -1$$

$$\beta = q$$

$$\gamma = \tau(q\tau - 1)$$

$$\delta = \tau^{3/2}(q+1)$$

$$\varepsilon = \tau(q-\tau)$$

$$\tau = \begin{cases} \frac{1}{2} \left(\sqrt{5} - 1\right) & \ell \equiv 1, 4 \pmod{5} \\ \frac{1}{2} \left(\sqrt{5} + 1\right) & \ell \equiv 2, 3 \pmod{5} \end{cases}$$

with T_i acting similarly on the substring i, i+1, i+2. We will verify that this is a representation of \mathscr{H} in Appendix A.2

This contains 4 subrepresentations based on the first and last character of the string, which are not modified by \mathscr{H} . Label the subrepresentation of strings $(*\cdots*)$ by V_{**} , and similar for the other 3. It is easy to see that $V_{*p} \simeq V_{p*}$, so that

$$V \simeq 2V_{*p} \oplus V_{**} \oplus V_{pp}$$
.

We will show that $V_{pp} \simeq V_{*p} \oplus V_{**}$, and give the following isomorphisms with irreducible quotients of specht modules depending on the parity of the number of indices in \mathcal{H} :

(3)
$$F_{**}^{2n} \simeq D^{(n,n)'}$$

$$F_{**}^{2n-1} \simeq D^{(n+1,n-2)'}$$

$$F_{*p}^{2n} \simeq D^{(n+1,n-1)'}$$

$$F_{*p}^{2n-1} \simeq D^{(n,n-1)'}.$$

- 2. Crossingless Matchings and Specht Modules
- 3. The Fibonacci Representation and Specht Modules
 - 4. Explicit Relationships

APPENDIX A. COMPATIBILITY OF REPRESENTATIONS WITH THE RELATIONS

In general, we define representations above for the free algebra on generators $\{T_i\}$. Recall that we may give a presentation of \mathscr{H} having generators T_i and relations

$$(4) (T_i - q)(T_i + 1) = 0$$

$$(5) T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$$

(6)
$$T_i T_j = T_j T_i \qquad |i - j| > 1.$$

We call (4) the quadratic relation and (5), (6) the braid relations. It is easily seen that a representation of \mathcal{H} is equivalent to a representation of the free algebra $k\langle T_i \rangle$ which acts as 0 on the relations (henceforth referred to as compatibility with the relations). We will prove in the following sections that V and W are compatible with the Hecke algebra relations.

A.1. The Crossingless Matchings Representation. Take some basis vector w_i . We will first check (4) by case work:

- Suppose there is an arc (i, i+1). Then, $(T_i q)(T_i + 1)w = (1+q)[(1+T_i)w (1+q)w] = 0$, giving (4).
- Suppose there is no arc (i, i + 1) and i, i + 1 do not both have anchors; then $(T_i + 1)w = q^{1/2}w''$ for some basis vector w' having arc (i, i + 1), and the computation follows as above for (4).
- Suppose i, i + 1 are anchors; then $(T_i + 1)w = 0$, giving (4).

Now we verify (5). Let $h := (1 + T_i)(1 + T_{i+1})(1 + T_i)$, and let $g := (1 + T_{i+1})(1 + T_i)(1 + T_{i+1})$. Note the following expansion:

$$hw = 1 + 2T_i + T_i^2 + T_{i+1} + T_i T_{i+1} + T_{i+1} T_i + T_i T_{i+1} T_i$$

= 1 + (1 + q)T_i + T_{i+1} + T_iT_{i+1} + T_{i+1}T_i + T_iT_{i+1}T_i.

An analogous formula gives an analogous equality in g. Hence we have

$$(h-g)w = q(T_i - T_{i+1}) + T_i T_{i+1} T_i - T_{i+1} T_i T_{i+1}.$$

Hence we may equivalently check that $(h-q)w=q(T_i-T_{i+1})$. This is illustrated in Figure 3.

Figure 3. Here we verify in small cases that $hw = qT_i$ and $gw = qT_{i+1}$. These 6 cases cover the situations that there is an arc among the indices i, i+1, i+2, that there isn't and there are not two arcs, and that there are two arcs.

Lastly, we have the equation

$$(1+T_i)(1+T_i) - (1+T_i)(1+T_i) = T_iT_i - T_iT_i$$

and hence we simply need to verify that $(1+T_i)$ and $(1+T_i)$ commute, which the reader may easily check.

A.2. **The Fibonacci Representation.** Similar to before, the reader may verify that (6) follows easily, and the others may be verified on strings of length 3 and 4. By considering the coefficients in order of (1), the quadratic relation (4) gives the following quadratics:

(7)
$$(\alpha - q)(\alpha + 1) = 0$$
$$(\beta - q)(\beta + 1) = 0$$
$$\gamma \delta + \delta \varepsilon = (q - 1)\delta$$
$$\gamma^2 + \delta^2 = (q - 1)\gamma + q$$
$$\varepsilon^2 + \delta^2 = (q - 1)\varepsilon + q$$

The first two of these are easily verified for any q. Since $\delta \neq 0$, the third is equivalently given by

$$(q-1) = \gamma + \varepsilon = t(q\tau - 1 + q - \tau) = (\tau^2 + \tau)(q-1)$$

or that $(\tau^2 + \tau - 1)(q - 1) = 0$. The reader may verify that $\tau^2 + \tau - 1 = 0$, so this is true for every q. The fourth is given by the quadratic

$$\tau^{2} \left[(q\tau - 1)^{2} - \tau(q+1) \right] = \tau(q-1)(q\tau - 1) + q$$

or equivalently,

$$(\tau^2 + \tau - 1) [q (qt^2 + 1) + t] = 0$$

which is true for every q.

The fifth is similarly given by

$$(\tau^2 + \tau - 1) \left[q \left(qt + 1 \right) + t^2 \right] = 0$$

which is true for every q.

We now verify (5). We may order the basis for V^4 as follows:

$$\{(pppp), (*pp*), (ppp*), (*ppp), (*p*p), (p*p*), (pp*p), (p*pp)\}.$$

Then, in verifying the braid relation (5) in this order, we encounter the following quadratics (with tautologies and repetitions omitted):

$$\alpha \varepsilon^{2} + \beta \delta^{2} = \alpha^{2} \varepsilon$$

$$\alpha \delta \varepsilon + \beta \gamma \delta = \alpha \beta \delta$$

$$\beta \gamma^{2} + \alpha \delta^{2} = \beta^{2} \gamma$$

$$\alpha \gamma^{2} + \delta^{2} \varepsilon = \alpha^{2} \gamma$$

$$\delta \varepsilon^{2} + \alpha \gamma \delta = \alpha \delta \varepsilon$$

The reader may verify that each of these are satisfied for q a primitive 5th root of unity and τ as defined.

This highlights the difficulty with deforming our module to q=1 at any field; the quadratic relations require that $(\tau^2+\tau-1)(\tau^2+\tau+1)=0$, but neither of these appear in the first braid relation, which reads $\tau(\tau^3-6\tau^2+1)=0$. If we have $\tau^2+\tau\pm 1=0$, then $\tau\neq 0$ and $-7\tau^2\pm \tau+1=0$. Hence $(7\pm 1)\tau+(1\pm 1)=0$, implying that $\tau=\frac{1}{4},0$, neither of which satisfy $\tau^2+\tau\pm 1=0$, a contradiction.

To attempt to deform this to q=1 would require that we rewrite $\gamma, \delta, \varepsilon$ entirely, rather than simply modifying τ .