

FOOD SALES PREDICTION PROJECT

MARICEL ANDAL

AGENDA

- Background
- Problem Statement
- Objectives
- Dataset
- Predictive Modeling Results
- Recommendation

BACKGROUND

As analyst, we are tasked to help the retailer understand the properties of products and outlets that play a crucial roles in increasing sales.

PROBLEM STATEMENT

What is the current state of the business and what are the sales drivers?

As retailers, where will we get additional business growth (sales) and by how much?

OBJECTIVES

DATASET

8,523
Total Number of Rows

Source: sales_predictions_2023.csv*

DATA USED	DESCRIPTION			
Item_Weight	Weight of the items being sold			
Item_Fat_Content	Whether low fat or regular			
Item_Visibility	Visibility of the items being sold			
Item_Type	Food by categories sold			
Item_MRP	Maximum Retail Price (MRP) of the items being sold			
Outlet_Size	Whether small, medium or high			
Outlet_Location_Type	Whether tier1, tier2 or tier3			
Outlet_Type	Whether grocery, supermarket1, supermarket2, supermarket3			
Item_Outlet_Sales	Sales			

*Notes:

- The purpose of our model is to figure out its relationship to the randomness so we exclude 'Item_Identifier', 'Outlet_Identifier' because they are irrelevant columns.
- Outlet_Establishment_Year has datatype: datetime

PREDICTIVE MODELING RESULTS

Metrics	BEST FIT MODEL Decision Tree		Baseline		Linear Regression	
	Training	Testing	Training	Testing	Training	Testing
RMSE	1081	1062	1719	1675	1207	11 <i>7</i> 3
R2	0.60	0.60	0.00	-0.00	0.51	0.51

DECISION TREE MODEL: GOOD FIT

RECOMMENDATION

- Based on the results, **DECISION TREE REGRESSION** beat the baseline and the Linear Regression models.
- We recommend to use it in our food sales prediction, resuls show it has **HIGHER R2** of 61% for both training and testing datasets.
- Moreover, the model has LOWER RMSE or root mean square error (training and testing data have RMSE of 1081 and 1062, respectively)..
- Higher r2 and lower RMSE values show that the Decision Tree model makes more accurate predictions and fits the data well. Overall, it is a GOOD FIT for our FOOD SALES PREDICTION.