

SEQUENCE LISTING

5 <110> University of Virginia Patent Foundation
Herr, John
Allis, C. David
Coonrad, Scott
Wang, Yanming

10 <120> ePAD, an Oocyte Specific Protein

<130> 00856-02

<150> 60/439,170
15 <151> 2003-01-10

<150> 60/480,774
<151> 2003-06-19

20 <160> 10

<170> PatentIn version 3.1

25 <210> 1
<211> 721
<212> PRT
<213> Homo sapiens

30 <400> 1
Met Val Ser Val Glu Gly Arg Ala Met Ser Phe Gln Ser Ile Ile His
1 5 10 15

35 Leu Ser Leu Asp Ser Pro Val His Ala Val Cys Val Leu Gly Thr Glu
20 25 30

40 Ile Cys Leu Asp Leu Ser Gly Cys Ala Pro Gln Lys Cys Gln Cys Phe
35 40 45

45 Thr Ile His Gly Ser Gly Arg Val Leu Ile Asp Val Ala Asn Thr Val
50 55 60

50 Ile Ser Glu Lys Glu Asp Ala Thr Ile Trp Trp Pro Leu Ser Asp Pro
65 70 75 80

55 Thr Tyr Ala Thr Val Lys Met Thr Ser Pro Ser Pro Ser Val Asp Ala
85 90 95

55 Asp Lys Val Ser Val Thr Tyr Tyr Gly Pro Asn Glu Asp Ala Pro Val
100 105 110

60 Gly Thr Ala Val Leu Tyr Leu Thr Gly Ile Glu Pro Phe Gly Ala Gln
115 120 125

Arg Ser Ser Ser Gln Ser Phe Val Pro Leu Leu Pro Val Ser Glu Val
 130 135 140

5

Ser Gln Ala Gln Glu Ala Glu Val Ser Leu Glu Val Asp Ile Tyr Arg
 145 150 155 160

10

Asn Gly Gln Val Glu Met Ser Ser Asp Lys Gln Ala Lys Lys Lys Trp
 165 170 175

15 Ile Trp Gly Pro Ser Gly Trp Gly Ala Ile Leu Leu Val Asn Cys Asn
 180 185 190

20 Pro Ala Asp Val Gly Gln Gln Leu Glu Asp Lys Lys Thr Lys Lys Val
 195 200 205

25 Ile Phe Ser Glu Glu Ile Thr Asn Leu Ser Gln Met Thr Leu Asn Val
 210 215 220

30 Ser Lys Glu Glu Ser Lys Lys Ala Arg Val Tyr Trp Pro Gln Lys Asp
 245 250 255

35 Asn Ser Ser Thr Phe Glu Leu Val Leu Gly Pro Asp Gln His Ala Tyr
 260 265 270

40 Thr Leu Ala Leu Leu Gly Asn His Leu Lys Glu Thr Phe Tyr Val Glu
 275 280 285

45 Ala Ile Ala Phe Pro Ser Ala Glu Phe Ser Gly Leu Ile Ser Tyr Ser
 290 295 300

50 Val Ser Leu Val Glu Glu Ser Gln Asp Pro Ser Ile Pro Glu Thr Val
 305 310 315 320

Leu Tyr Lys Asp Thr Val Val Phe Arg Val Ala Pro Cys Val Phe Ile
 325 330 335

55 Pro Cys Thr Gln Val Pro Leu Glu Val Tyr Leu Cys Arg Glu Leu Gln
 340 345 350

60 Leu Gln Gly Phe Val Asp Thr Val Thr Lys Leu Ser Glu Lys Ser Asn
 355 360 365

Ser Gln Val Ala Ser Val Tyr Glu Asp Pro Asn Arg Leu Gly Arg Trp
 370 375 380
 5
 Leu Gln Asp Glu Met Ala Phe Cys Tyr Thr Gln Ala Pro His Lys Thr
 385 390 395 400
 10 Thr Ser Leu Ile Leu Asp Thr Pro Gln Ala Ala Asp Leu Asp Glu Phe
 405 410 415
 15 Pro Met Lys Tyr Ser Leu Ser Pro Gly Ile Gly Tyr Met Ile Gln Asp
 420 425 430
 20 Thr Glu Asp His Lys Val Ala Ser Met Asp Ser Ile Gly Asn Leu Met
 435 440 445
 25 Val Ser Pro Pro Val Lys Val Gln Gly Lys Glu Tyr Pro Leu Gly Arg
 450 455 460
 30 Val Leu Ile Gly Ser Ser Phe Tyr Pro Ser Ala Glu Gly Arg Ala Met
 465 470 475 480
 35 Ser Lys Thr Leu Arg Asp Phe Leu Tyr Ala Gln Gln Val Gln Ala Pro
 485 490 495
 40 Val Glu Leu Tyr Ser Asp Trp Leu Met Thr Gly His Val Asp Glu Phe
 500 505 510
 Met Cys Phe Ile Pro Thr Asp Asp Lys Asn Glu Gly Lys Lys Gly Phe
 515 520 525
 45 Leu Leu Leu Ala Ser Pro Ser Ala Cys Tyr Lys Leu Phe Arg Glu
 530 535 540
 50 Lys Gln Lys Glu Gly Tyr Gly Asp Ala Leu Leu Phe Asp Glu Leu Arg
 545 550 555 560
 55 Ala Asp Gln Leu Leu Ser Asn Gly Arg Glu Ala Lys Thr Ile Asp Gln
 565 570 575
 60 Leu Leu Ala Asp Glu Ser Leu Lys Lys Gln Asn Glu Tyr Val Glu Cys
 580 585 590
 65 Ile His Leu Asn Arg Asp Ile Leu Lys Thr Glu Leu Gly Leu Val Glu
 595 600 605

Gln Asp Ile Ile Glu Ile Pro Gln Leu Phe Cys Leu Glu Lys Leu Thr
 610 615 620

5

Asn Ile Pro Ser Asp Gln Gln Pro Lys Arg Ser Phe Ala Arg Pro Tyr
 625 630 635 640

10 Phe Pro Asp Leu Leu Arg Met Ile Val Met Gly Lys Asn Leu Gly Ile
 645 650 655

15 Pro Lys Pro Phe Gly Pro Gln Ile Lys Gly Thr Cys Cys Leu Glu Glu
 660 665 670

20 Lys Ile Cys Cys Leu Leu Glu Pro Leu Gly Phe Lys Cys Thr Phe Ile
 675 680 685

Asn Asp Phe Asp Cys Tyr Leu Thr Glu Val Gly Asp Ile Cys Ala Cys
 690 695 700

25

Ala Asn Ile Arg Arg Val Pro Phe Ala Phe Lys Trp Trp Lys Met Val
 705 710 715 720

30 Pro

<210> 2
 <211> 2166
 <212> DNA
 35 <213> Homo sapiens

<400> 2

40 atggtcagcg tggagggccg agccatgtcc ttccagagta tcatccacct gtcctggac . 60
 agccctgtcc atgcgcgttg tgtgttggc acagaaatct gcttggatct cagcgggtgt 120
 gcccccccaga agtgcgcagtg ctgcaccatc catggctctg ggagggtctt gatcgatgtg 180
 45 gccaacacgg tgatttctga gaaggaggac gccaccatct ggtggccct gtctgatccc 240
 acgtacgcca cagtgaagat gacatcgccc agcccttccg tggatgcggta taaggtctcg 300
 gtcacatact atgggccaa cgaggatgcc cccgtggca cagctgtgct gtacctcact 360
 50 ggcattgaac ctttggagc tcagaggagc tcttctcagt ctttgcctt gctgcttcca 420
 gtcagtgaag tgtctcaggc tcaggaggca gaggtctctc tagaggtaga catctaccgc 480
 55 aatgggcagaat ttgagatgtc aagtgcacaaa caggctaaga aaaaatggat ctggggtccc 540
 agcggttggg gtgccttcct gcttgtaat tgcaaccctg ctgatgtggg ccagcaactt 600
 gaggacaaga aaaccaagaa agtgatctt tcagaggaaa taacgaatct gtcccagatg 660
 60 actctgaatg tccaaggccc cagctgtatc ttaaaagaaat atcggcttagt cctccatacc 720

tccaaaggaag agtcgaagaa ggcgagagtc tactggcccc aaaaagacaa ctccagtacc 780
 5 tttgagttgg tgctggggcc cgaccagcac gcctatacct tggccctcct cgggaaccac 840
 ttgaaggaga ctttctacgt tgaagctata gcattccat ctgccgaatt ctcaggcctc 900
 atctcctact ctgtgtccct ggtggaggag tctcaagacc cgtcaattcc agagactgtg 960
 10 ctgtacaaag acacggtggt gttccgggtg gtcctgtg tttcattcc ctgtacccag 1020
 gtgcctctgg aggttacct gtgcagggag ctgcagctgc agggtttgtt ggacacagtg 1080
 15 acgaagctga gtgagaagag caacagccag gtggcatctg tctatgagga ccccaaccgc 1140
 ctggcaggt ggctccagga tgagatggcc ttctgctaca cccaggctcc ccacaagaca 1200
 acgtccttga tcctcgacac acctcaggcc gccgatctcg atgagttccc catgaagtac 1260
 20 tcactgagcc ctggtattgg ctacatgatc caggacactg aggaccataa agtggccagc 1320
 atggattcca ttggAACCT gatgggttcc ccacctgtca aggtccaagg gaaagagtac 1380
 25 ccgctggca gagtcctcat tggcagcagc ttttacccca ggcgcagaggg ccggccatg 1440
 agtaagaccc tccgagactt cctctatgcc cagcaggtcc aagcgccggt ggagctctac 1500
 tcagattggc taatgactgg ccacgtggat gagttcatgt gttcatccc cacagatgac 1560
 30 aagaatgagg gcaaaaaggc cttectgtg ctcctggcca gccccagtgc ctgctataaa 1620
 ctgttccgag agaaacagaa ggaaggctat ggacgcgtc ttctgtttga tgagcttaga 1680
 35 gcagatcagc tcctgtctaa tggaaaggaa gccaaaacca tcgaccaact tctggctgat 1740
 gaaaggcctga agaagcagaa tgaatacgtg gagtgcatcc acctgaaccc tgacatcctg 1800
 aagacggagc tgggcctggc ggaacaggac atcatcgaga ttccccagct gttctgttg 1860
 40 gagaagctga ctaacatccc ctctgaccag cagcccaaga ggttccttgc gaggccatac 1920
 ttccctgacc tggcggat gattgtgatg ggcaagaacc tggggatccc caagcccttt 1980
 45 gggccccaaa tcaagggac ctgctgcctg gaagaaaaga tttgctgctt gctggagccc 2040
 ctgggcttca agtgcaccc ttcatgtac tttgactgtt acctgacaga ggtcgagac 2100
 atctgtgcct gtgccaacat ccgcgggtg cccttgcct tcaaatggtg gaagatggta 2160
 50 ccttag 2166

<210> 3
 <211> 664
 55 <212> PRT
 <213> Mus musculus

<400> 3

60 Met Val Gly Met Glu Ile Thr Leu Asp Ile Ser Lys Cys Ala Pro Asp
 1 5 10 15

Lys Cys Lys Ser Phe Thr Ile Arg Gly Ser Pro Arg Ile Leu Ile His
 20 25 30

5

Ile Ser Ser Ser Val Ile Ala Gly Lys Glu Asp Thr Val Val Trp Arg
 35 40 45

10

Ser Met Asn His Pro Thr Val Ala Leu Val Arg Met Val Ala Pro Ser
 50 55 60

15

Pro Thr Val Asp Glu Asp Lys Val Leu Val Ser Tyr Phe Cys Pro Asp
 65 70 75 80

20

Gln Glu Val Pro Thr Ala Thr Ala Val Leu Phe Leu Thr Gly Ile Glu
 85 90 95

25

Ile Ser Leu Glu Ala Asp Ile Tyr Arg Asp Gly Gln Leu Asp Met Pro
 100 105 110

30

Ser Asp Lys Gln Ala Lys Lys Trp Met Trp Gly Met Asn Gly Trp
 115 120 125

Gly Ala Ile Leu Leu Val Asn Cys Ser Pro Asn Ala Val Gly Gln Pro
 130 135 140

35

Asp Glu Gln Ser Phe Gln Glu Gly Pro Arg Glu Ile Gln Asn Asn Leu
 145 150 155 160

40

Ser Gln Met Asn Val Thr Val Glu Gly Pro Thr Ser Ile Leu Gln Asn
 165 170 175

45

Tyr Gln Leu Ile Leu His Thr Ser Glu Glu Glu Ala Lys Lys Thr Arg
 180 185 190

50

Val Tyr Trp Ser Gln Arg Gly Ser Ser Ala Tyr Glu Leu Val Val Gly
 195 200 205

55

Pro Asn Lys Pro Val Tyr Leu Leu Pro Thr Phe Glu Asn Arg Arg Lys
 210 215 220

Glu Ala Phe Tyr Val Glu Ala Thr Glu Phe Pro Ser Pro Ser Phe Ser
 225 230 235 240

60

Gly Leu Ile Ser Leu Ser Leu Ser Leu Val Glu Lys Ala His Asp Glu
 245 250 255

Cys Ile Pro Glu Ile Pro Leu Tyr Lys Asp Thr Val Met Phe Arg Val
 260 265 270
 5

Ala Pro Tyr Ile Phe Met Pro Ser Thr Gln Met Pro Leu Glu Val Tyr
 275 280 285
 10

Leu Cys Arg Glu Leu Gln Leu Gln Gly Phe Val Asp Ser Val Thr Lys
 290 295 300

15 Leu Ser Glu Lys Ser Lys Val Gln Val Val Lys Val Tyr Glu Asp Pro
 305 310 315 320

20 Asn Arg Gln Ser Lys Trp Leu Gln Asp Glu Met Ala Phe Cys Tyr Thr
 325 330 335

25 Gln Ala Pro His Lys Thr Val Ser Leu Ile Leu Asp Thr Pro Arg Val
 340 345 350

30 Ser Lys Leu Glu Asp Phe Pro Met Lys Tyr Thr Leu Thr Pro Gly Ser
 355 360 365

35 Gly Tyr Leu Ile Arg Gln Ile Glu Asp His Arg Val Ala Ser Leu Asp
 370 375 380

40 Ser Ile Gly Asn Leu Met Val Ser Pro Pro Val Lys Ala Gln Gly Lys
 385 390 395 400

45 Ser Glu Gly Arg Asp Met Asn Lys Gly Leu Arg Glu Phe Val Tyr Ala
 420 425 430

50 Gln Gln Val Gln Ala Pro Val Glu Leu Phe Ser Asp Trp Leu Met Thr
 435 440 445

Gly His Met Asp Gln Phe Met Cys Phe Val Pro Thr Asn Asp Lys Asn
 450 455 460

55 Asn Asp Gln Lys Asp Phe Arg Leu Leu Leu Ala Ser Pro Ser Ala Cys
 465 470 475 480

60 Phe Glu Leu Phe Glu Gln Lys Gln Lys Glu Gly Tyr Gly Asn Val Thr
 485 490 495

Leu Phe Glu Asp Ile Gly Ala Glu Gln Leu Leu Ser Asn Gly Arg Glu
 500 505 510

5

Ser Lys Thr Ile Ser Gln Ile Leu Ala Asp Lys Ser Phe Arg Glu Gln
 515 520 525

10 Asn Thr Tyr Val Glu Lys Cys Ile Ser Leu Asn Arg Thr Leu Leu Lys
 530 535 540

15 Thr Glu Leu Gly Leu Glu Asp Lys Asp Ile Ile Leu Ile Pro Gln Leu
 545 550 555 560

20 Phe Cys Leu Glu Gln Leu Thr Asn Val Pro Ser Asn Gln Gln Ser Thr
 565 570 575

25 Lys Leu Phe Ala Arg Pro Tyr Phe Pro Asp Met Leu Gln Ile Ile Val
 580 585 590

30 Leu Gly Lys Asn Leu Gly Ile Pro Lys Pro Phe Gly Pro Lys Ile Asn
 595 600 605

35 Gly Thr Cys Cys Leu Glu Glu Lys Val Cys Gly Leu Leu Glu Pro Leu
 610 615 620

40 Ile Gly Asp Val Cys Ala Ser Ala Ile Ile Asn Arg Val Pro Phe Ala
 645 650 655

45 Phe Lys Trp Trp Lys Met Thr Pro
 660

50 <210> 4
 <211> 2341
 <212> DNA
 <213> *Mus musculus*

55 <400> 4

gggtaaggac tgctgacagt ggctagttt gtaagccag ccatgtcttt tcagaactca 60
 ctcagcctgt ctctggtcaa tccccccat gccctctgca tggtaggcatt gaaatcacc 120
 ttggacatca gcaagtgtgc accggacaag tgcaagtctt tcaccatccg tggttcccc 180
 60 agatcttga tccacatctc tagtccgtc atcgctggca aagaggacac tgtggtctgg 240

gatgaagaca aggtgctggc ctcctacttc tgtcctgacc aagaagtccc cacggccaca 360
 5 gctgtgctgt ttctcaccgg catcgagatc tccctggagg cagacatcta tcgagatgga 420
 caactggaca tgccaagtga taagcaagct aagaaaaat ggatgtgggg tatgaacggc 480
 10 tggggagcca tcctgcttgc gaattgttagc cctaattgtc tggccagcc tcatgtac 540
 tcctttcagg agggccccag agaaatacag aacaacctgt ctcagatgaa tgtaactgtg 600
 gagggccccca ccagcatcct acagaattac cagttgatcc tacatacctc cgaagaagag 660
 15 gcaagaaga caagagtcta ctggtctca agaggctcct ctgcgtatga actgggttg 720
 ggacccaaca agcctgtcta tctctgcct acctttgaga accgttagaa agaggcttc 780
 20 tacgtagaag ccacggaatt cccatctccc agttctcg ggctgtatc cttgtcactc 840
 tccctagtag aaaaggctca cgacgagtgc atcccagaga ttccgtctca taaggataca 900
 gtgatgttcc ggggtggcacc ttatatcttc atgcccagca cccagatgcc tctagaggtt 960
 25 tacctgtgca gggagctaca gctgcaaggc tttgtggact cagtgaccaa gctgagcgg 1020
 aagagcaaag tgcaggttgt aaaggcttat gaggacccca accgcccagag caagtggctc 1080
 30 caggacgaga tggcttctg ctatactca gtcctcaca agacgggtgc attgtatcctt 1140
 gacaccccaa gggttccaa gctggaagac ttcccattga aatacacact gaccctggc 1200
 tctggctacc tgatccgaca aattgaggac caccgggtgg cttagcctgga ttccatcggtt 1260
 35 aacctgtatgg tatctccgccc tgtcaaggct cagggcaaag actaccctct agggagggtc 1320
 ctcattggtg gcagctttta cccagctct gagggccggg acatgaacaa gggcctgcga 1380
 40 gaattcgtgt atgcccagca ggtgcaggcc cctgtggAAC ttttctcgga ctggctgtatg 1440
 accggtcaca tggatcaatt catgtgcttt gtccctacca atgataaaaa caacgaccag 1500
 aaggacttcc gcctgtgtgt gcccagcccc agtgcctgtt ttgagctgtt cgaacagaag 1560
 45 cagaaggaag gctatggaa cgtgaccctg tttgaagaca ttggagcaga acagctcctt 1620
 tctaattggaa gggagagcaa aactatttcc caaatctgg ctgacaagag ttttcgagag 1680
 50 cagaacacccat atgttgagaa gtgtatcagc ctgaaccgca ccctcctgaa gacagaactg 1740
 ggattggagg acaaggacat catcctgatc ccgcagctct tctgcctgga gcagctgacg 1800
 aatgtcccct ccaaccagca gagcaccaaa ctttcgcga gcccgtactt ccccgacatg 1860
 55 ctgcagataa tcgtgttggg caagaacctt ggaatccccaa agcccttgg gccaaaatc 1920
 aatggcacct gctgcctaga agagaaagtg tgtggattac tggagccctt gggctcaag 1980
 60 tgacaccccttca ttgatgattt tgactgtac ctggccaaca tagggacgt ctgtgccagt 2040
 gccatcataa acagggtgcc atttgcattc aagtgggtggaa agatgacccca ataaacccct 2100

ggccctggca cggccagtcc ggcgcgtac gatggcctt tgccatagat agtagtggt 2160
 5 gcgagcgttg ttgttgcact gggtcgaagg gacgaaagct gggagttagg gtctctcaca 2220
 tctaccagct tgacacttct ggaggggaaa agggaaaaga ggcgcctatgt aaacaaattg 2280
 ccatagagcc aataaagcat ggtattctga atacaaaaaaa aaaaaaaaaa aaaaaaaaaa 2340
 10 a 2341

<210> 5
 <211> 28
 15 <212> PRT
 <213> Homo sapiens

<400> 5

20 Glu Pro Phe Gly Ala Gln Arg Ser Ser Ser Gln Ser Phe Val Pro Leu
 1 5 10 15

25 Leu Pro Val Ser Glu Val Ser Gln Ala Gln Glu Ala
 20 25

<210> 6
 <211> 10
 30 <212> PRT
 <213> Homo sapiens

<220>
 <221> MOD_RES
 35 <222> (3)..(3)
 <223> METHYLATION

<400> 6

40 Ser Gly Arg Gly Lys Gly Gly Lys Gly Cys
 1 5 10

45 <210> 7
 <211> 8
 <212> PRT
 <213> Homo sapiens

50 <220>
 <221> MOD_RES
 <222> (4)..(4)
 <223> METHYLATION

55 <400> 7

60 Ala Arg Thr Lys Gln Thr Ala Arg
 1 5

5 <210> 8
 <211> 9
 <212> PRT
 5 <213> Homo sapiens

10 <220>
 <221> MOD_RES
 <222> (5)..(5)
 10 <223> METHYLATION

 <400> 8

15 Gln Thr Ala Arg Lys Ser Thr Gly Val
 1 5

 <210> 9
20 <211> 10
 <212> PRT
 <213> Homo sapiens

25 <220>
 <221> MOD_RES
 <222> (1)..(1)
 <223> PHOSPHORYLATION

30 <400> 9

 Ser Gly Arg Gly Lys Gly Gly Lys Gly Cys
 1 5 10

35 <210> 10
 <211> 24
 <212> PRT
 40 <213> Mus musculus

40 <400> 10

 Ser Gly Gly Ser Tyr Gly Ser Ser Gly Gly Arg Gly Ser
 1 5 10 15

45 <210> 15
 <211> 20
 <212> PRT
 <213> Mus musculus

 Ser Ser Gly Gly Gly Val Lys
 20