

B.E. (Computer) (Semester – VIII) (RC) Examination, Nov./Dec. 2017 DATA MINING (Elective – III)

Duration: 3 Hours Total Marks: 100

Instructions: i) Attempt any five questions by selecting atleast one question from each Module.

ii) Make suitable assumptions if **required**.

MODULE-I

4	۵\	Describe the following procedures for attribute subset selection:	6		
1.	a)	i) Stepwise Forward Selection.			
		ii) Stepwise Backward Elimination.			
		iii) Combination of Forward Selection and Backward Elimination.			
	b)	For the following vectors X and Y, calculate the indicated similarity or distance			
		measure.	3		
		X = (0, 1, 0, 1, 1, 1, 0, 0)			
		Y = (0, 0, 1, 1, 1, 1, 0, 1)			
		i) Euclidean II) Cosine III) Jaccard			
	c)	List and explain the different challenges that motivated the development of data mining.	5		
	d)	What is data pre-processing? Explain Dimensionality Reduction as the techniques for performing data pre-processing.	6		
2.	a)	Describe the Predictive and Descriptive tasks of data mining with an appropriate example.	4		
	b)	What is an attribute? Explain different types of attributes with an example.	5		
	c) Consider the following group of data points.				
		125, 45, 175, 95, 775, 625, 675, 215, 335, 285, 625, 175	,		
		Normalize the data points by using:			
		 i) Min-Max Normalization Method where Min = -3 and Max = 5. ii) Z-Score Normalization Method. 	-		
	ď	Explain any two types of datasets with an appropriate example.	5		
			P.T.O.		

MODULE - II

3. a) What is OLAP? How is OLAP different from OLTP?

	b)	Explain in detail the causes of Model overfitting.	7
	(c)	Write short notes on :	
		i) Histograms ii) Scatter plots.	E
	d)	Classification is supervised learning. Justify.	3
4.	a) `	Construct the decision tree for the following data for the target attribute 'Play Outdoors'.	12

Day	Climate	Humid	Breezy	Play_outdoors
D1	S	Н	W	notes Nata have
D2	S	us Hsvo	S	oitaele Nisuno-
D3	0	bar Haibn	W	Ilan V h Y
D4	R	H e	W	America Y
D5	R	N	W	Y
D6	R	N	S	Y
D7	0	N	S	entaco Y Costne
D8	S	H.H.	W	Backara N
D9	S	N	W	Y
D10	Rube	N	W	slove C Ynigeagn
D11	S	N	on S	g-siq way gnime
D12	0	Н	S	Y
D13	0	N	W	Υ
D14	R	H	- S	N N

b) Explain post-pruning with an example.

е

4

4

c) How is multi-dimensional data represented? Explain with a suitable example the OLAP operation roll-up.

d) Explain any two types of datasets with an appropriate example.

MODULE - III

5. a) Write the FP Tree Algorithm and Construct FP – Tree for the given data set. 12

Min_Sup = 03

Transaction id (T _{id})	Items Bought	
t ₁	strawberry, litchi, oranges	
t ₂ remain	strawberry, butter_fruit	
t ₃	butter_fruit, vanilla	
t ₄	strawberry, litchi, oranges	
t ₅	banana, oranges	
t ₆	banana	
Mathemat ₇ martifal	banana, butter _ fruit	
t ₈	strawberry, litchi, apple, oranges	
t ₉	apple, vanilla	
t ₁₀	strawberry, litchi	

6.	a) Explain and give example for the following: i) Maximal Frequent Itemset.	5
	ii) Closed Frequent Itemset.	
	b) What do you understand by the following terms? Provide suitable example.i) Rule based rule ordering.ii) Class based rule ordering.	6
	c) Write the algorithm and explain the K-Nearest Neighbour algorithm for classification.	6
	d) How has the association rule mining problem traditionally formulated? Also state the Apriori Principle.	3

b) Explain rule induction using sequential covering algorithm.

MODULE-IV

 a) State the K-means algorithm. Perform K-means clustering for the following data points into 3 clusters. The distance function is Euclidean distance. Initially assign P₂, P₄ and P₅ as center of each cluster respectively.

	x	У
P_1	2	7
P ₂	2	5
P ₃	8	5
P ₄	5	6
P ₅	7	10
P_6	6	3
P ₇	1	2
P ₈	4	9

b) Explain in detail the different types of clusters.

10

10

8. a) Explain Density based outlier detection technique and list its strengths and weaknesses.

b) Consider the following data set:

Construct the dendrogram and draw the nested clusters using complete linkage clustering.

12

data point	a ₁	a ₂
P ₁	0.40	0.53
P ₂	0.22	0.38
P ₃ Inog	0.35	0.32
P ₄	0.26	0.19
P ₅	0.08	0.19
P ₆	0.45	0.30