

LogiCORE IP XPS Timebase Watchdog Timer (v1.02a)

DS582 July 23, 2010 Product Specification

Introduction

The XPS Timebase Watchdog Timer Interface is a 32-bit peripheral that provides a 32-bit free-running timebase and watchdog timer.

Features

- Connects as a 32-bit slave on PLB V4.6 buses of 32, 64 or 128 bits
- Watchdog timer (WDT) with selectable timeout period and interrupt
- Configurable WDT enable: enable-once or enable-disable
- One 32-bit free-running timebase counter with rollover interrupt

LogiCORE IP Facts Table						
	Core Specifics					
Supported Device Family ⁽¹⁾	Virtex®-4, Virtex-4Q, Virtex-4QV, Virtex-5, Virtex-6, Spartan®-3E, Automotive Spartan-3E, Spartan-3, Automotive Spartan-3A, Automotive Spartan-3A, Spartan-3A DSP, Automotive Spartan-3A DSP					
Supported User Interfaces	32-bit PLBv46 Slave					
	Resources					
See Table 8	8, Table 9, Table 10, Table 11, and Table 12.					
Provided with Core						
Documentation	Product Specification					
Design Files	VHDL					
Example Design	Not Provided					
Test Bench	Not Provided					
Constraints File	Not Provided					
Simulation Model	Design Files					
	Tested Design Tools					
Design Entry Tools	Provide version of Xilinx tools tested, e.g., PlanAhead™ tool, CORE Generator™ tool, System Generator, Platform Studio, XPS					
Simulation	Mentor Graphic ModelSim v6.5c and above					
Synthesis Tools	XST					
	Support					
	Provided by Xilinx, Inc.					

Notes:

 For a complete listing of supported devices, see the release notes for this core.

[©] Copyright 2008-2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Functional Description

The top-level block diagram for the XPS Timebase Watchdog Timer is shown in Figure 1.

Figure 1: Block Diagram of XPS Timebase Watchdog Timer

The XPS Timebase Watchdog Timer modules are described in the sections below

PLB Interface Module: The PLB Interface Module provides the interface to the PLB. Read and write transactions at the PLB are translated into equivalent IP Interconnect (IPIC) transactions. The register interfaces of the XPS Timebase Watchdog Timer connect to the IPIC. The PLB Interface Module also provides an address decoding service.

Timebase Watchdog Timer Register Module: The Timebase Watchdog Timer Register Module includes all memory mapped registers (as shown in Figure 1). It interfaces to the PLB. It consists of an 32-bit control/status register-0, an 32-bit control/status register-1 and an 32-bit timebase register (TBR).

32-bit Timebase: The 32-bit timebase consists of free-running 32-bit timebase counter.

WDT: The Watchdog Timer (WDT) provides the functionality of timeout.

XPS Timebase Watchdog Timer Characteristics

The XPS Timebase Watchdog Timer has the following characteristics:

- Consists of a free-running 32-bit timebase counter that is used for both the general purpose timing and the WDT facility
- The timebase counter always counts up from system reset and is read-only
- The WDT timeout interval is set by generic C_WDT_INTERVAL, which determines the bit in the timebase to be used as input to the WDT state machine
- The WDT uses a dual-expiration architecture. After one expiration of the timeout interval an interrupt is generated and the WDT state bit is set to one in the status register. If the state bit is not cleared (by writing a '1' to the state bit) before the next expiration of the timeout interval, a WDT reset is generated. A WDT reset, sets the WDT reset status bit in the status register so that the application code can determine if the last system reset was a WDT reset.
- The WDT can only be disabled by writing to two distinct addresses, reducing the possibility of inadvertently disabling the WDT in the application code.

XPS Timebase Watchdog Timer Operation

Timebase Operation

The timebase is a 32-bit up counter that is incremented by one on the rising edge of the clock provided to the Timebase Watchdog Timer. The counter is reset to zero when the reset input is high or when the WDT is enabled. The TBR contains the full timebase count value of 32 bits.

The TWCSR0 contains the most-significant 28 bits of the timebase count, as well as the WDT enable and status bits. The timing resolution from the upper 28 bits of the timebase count is $T_{clk} \times 16$ ($T_{clk} \times 16$) is the period of the input clock). As a result, a single access can be used to read the state of the watchdog timer, as well as a reduced resolution version of the timebase.

WDT Operation

The WDT timeout interval is configured by a parameter to be 2^{C_WDT_INTERVAL} clock cycles, where C_WDT_INTERVAL is any integer from 8 to 31. The WDT interval is set at FPGA configuration time and cannot be modified dynamically through a control register. Figure 2 shows the WDT state diagram.

Figure 2: State Diagram

I/O Signals

The XPS Timebase Watchdog Timer I/O signals are listed and described in Table 1.

Table 1: I/O Signal Descriptions

Port	Signal Name	Interface	I/O	Initial State	Description				
	System Signals								
P1	SPLB_Clk	System	I	-	PLB clock				
P2	SPLB_Rst	System	I	-	PLB reset, active high				
	PLB Interface Signals								
P3	PLB_ABus[0 : 31]		I	-	PLB address bus				
P4	P4 PLB_PAValid		I	-	PLB primary address valid				
P5	P5 PLB_masterID[0 : C_SPLB_MID_WIDTH - 1]		I	-	PLB current master identifier				

Table 1: I/O Signal Descriptions (Cont'd)

Port	Signal Name	Interface	I/O	Initial State	Description				
P6	PLB_RNW	PLB	I	-	PLB read not write				
P7	PLB_BE[0 : (C_SPLB_DWIDTH/8) - 1]	PLB	I	-	PLB byte enables				
P8	PLB_size[0:3]	PLB	I	-	PLB size of requested transfer				
P9	PLB_type[0 : 2]	PLB	I	-	PLB transfer type				
P10	PLB_wrDBus[0 : C_SPLB_DWIDTH - 1]	PLB	I	-	PLB write data bus				
	Unused	PLB Interfa	ce Signal	s					
P11 PLB_UABus[0:31] PLB I - PLB upper address bits									
P12	PLB_SAValid	PLB	I	-	PLB secondary address valid				
P13	PLB_rdPrim	PLB	I	-	PLB secondary to primary read request indicator				
P14	PLB_wrPrim	PLB	I	-	PLB secondary to primary write request indicator				
P15	PLB_abort	PLB	I	-	PLB abort bus request				
P16	PLB_busLock	PLB	I	-	PLB bus lock				
P17	PLB_MSize[0 : 1]	PLB	I	-	PLB data bus width indicator				
P18	PLB_lockErr	PLB	I	-	PLB lock error				
P19	PLB_wrBurst	PLB	I	-	PLB burst write transfer				
P20	PLB_rdBurst	PLB	I	-	PLB burst read transfer				
P21	PLB_wrPendReq	PLB	I	-	PLB pending bus write request				
P22	PLB_rdPendReq	PLB	I	-	PLB pending bus read request				
P23	PLB_wrPendPri[0 : 1]	PLB	I	-	PLB pending write request priority				
P24	PLB_rdPendPri[0 : 1]	PLB	I	-	PLB pending read request priority				
P25	PLB_reqPri[0 : 1]	PLB	I	-	PLB current request priority				
P26	PLB_TAttribute[0 : 15]	PLB	I	-	PLB transfer attribute				
	PLB S	lave Interfac	e Signals	3					
P27	SI_addrAck	PLB	0	0	Slave address acknowledge				
P28	SI_SSize[0:1]	PLB	0	0	Slave data bus size				
P29	SI_wait	PLB	0	0	Slave wait				
P30	SI_rearbitrate	PLB	0	0	Slave bus rearbitrate				
P31	SI_wrDAck	PLB	0	0	Slave write data acknowledge				
P32	SI_wrComp	PLB	0	0	Slave write transfer complete				
P33	SI_rdDBus[0 : C_SPLB_DWIDTH - 1]	PLB	0	0	Slave read data bus				
P34	SI_rdDAck	PLB	0	0	Slave read data acknowledge				
P35	SI_rdComp	PLB	0	0	Slave read transfer complete				
P36	SI_MBusy[0 :C_SPLB_NUM_MASTERS - 1]	PLB	0	0	Slave busy				
P37	SI_MWrErr[0 : C_SPLB_NUM_MASTERS - 1]	PLB	0	0	Slave write error				
P38	SI_MRdErr[0 : C_SPLB_NUM_MASTERS - 1]	PLB	0	0	Slave read error				
	Unused PL	.B Slave Inte	rface Sig	nals					

Table 1: I/O Signal Descriptions (Cont'd)

Port	Signal Name	Interface	I/O	Initial State	Description			
P39	SI_wrBTerm	PLB	0	0	Slave terminate write burst transfer			
P40	SI_rdWdAddr[0 : 3]	PLB	0	0	Slave read word address			
P41	SI_rdBTerm	PLB	0	0	Slave terminate read burst transfer			
P42	SI_MIRQ[0 : C_SPLB_NUM_MASTERS - 1]	PLB	0	0	Master interrupt request			
	Timebase Watchdog Timer Interface Signals							
P43	WDT_Reset	Timebase Watchdog Timer	0	0	Asserted upon second expiration of the WDT timeout interval. (Active High = '1').			
P44	Timebase_Interrupt	Timebase Watchdog Timer	0	0	Asserted as a one clock period wide pulse upon rollover of the timebase from 0xFFFFFFFF to 0x00000000.			
P45	WDT_Interrupt	Timebase Watchdog Timer	0	0	Asserted high and stays high until the WDS bit is cleared in the TWCSR0 register.			

Design Parameters

To allow the user to obtain a XPS Timebase Watchdog Timer that is uniquely tailored for the system, certain features can be parameterized in the XPS Timebase Watchdog Timer design. This allows the user to configure a design that utilizes the resources required by the system only and that operates with the best possible performance. The features that can be parameterized are as shown in Table 2.

Table 2: Design Parameters

Generic	Feature/Description	Parameter Name	Allowable Values	Default Value	VHDL Type					
	System Parameters									
G1	Target FPGA family	C_FAMILY			string					
		PLB Parameters		I	ı					
G2	PLB base address	C_BASEADDR	Valid Address (1)	None ^[2]	std_logic _vector					
G3	PLB high address	C_HIGHADDR	Valid Address ^[1]	None ^[2]	std_logic _vector					
G4	PLB least significant address bus width	C_SPLB_AWIDTH	32	32	integer					
G5	PLB data width	C_SPLB_DWIDTH	32, 64, 128	32	integer					
G6	Shared bus topology	C_SPLB_P2P	0 = Shared bus topology ^[3]	0	integer					
G7	PLB master ID bus Width	C_SPLB_MID_ WIDTH	log ₂ (C_SPLB_NUM_ MASTERS) with a minimum value of 1	1	integer					
G8	Number of PLB masters	C_SPLB_NUM_ MASTERS	1 - 16	1	integer					
G9	Width of the slave data bus	C_SPLB_NATIVE_ DWIDTH	32	32	integer					
G10	Burst support	C_SPLB_SUPPORT_B URSTS	0 = No burst support ^[4]	0	integer					

Table 2: Design Parameters (Cont'd)

Generic	Feature/Description	Feature/Description Parameter Name		Default Value	VHDL Type			
	Timebase Watchdog Timer Parameters							
G11	Indicates the exponent for setting the length of the WDT interval. WDT interval = $2^{C_WDT_INTERVAL} \times T_{clk}$	C_WDT_INTERVAL	8 - 31	30	Integer			
G12	Indicates WDT enable behavior	C_WDT_ENABLE_ ONCE	0 = WDT can be repeatedly enabled and disabled via software 1 = WDT can only be enabled once (no disable possible after initial enable)	1	Integer			

Notes:

- 1. The range C_BASEADDR to C_HIGHADDR is the address range for the XPS SPI. This range is subject to restrictions to accommodate the simple address decoding scheme that is employed: The size, C_HIGHADDR C_BASEADDR + 1, must be a power of two and must be at least 0x10 to accommodate all XPS SPI registers. However, a larger power of two may be chosen to reduce decoding logic. C_BASEADDR must be aligned to a multiple of the range size.
- 2. No default value will be specified to insure that an actual value appropriate to the system is set.
- 3. Point to point bus topology is not allowed.
- 4. Burst is not supported.

Parameter - Port Dependencies

The dependencies between the XPS Timebase Watchdog Timer core design parameters and I/O signals are described in Table 3.

Table 3: XPS Timebase Watchdog Timer Parameter-Port Dependencies

Generic or Port	Name	Affects	Depends	Relationship Description					
	Design Parameters								
G5	C_SPLB_DWIDTH	P7, P10, P33	-	Affects the number of bits in data bus					
G7	C_SPLB_MID_WIDTH	P5	G8	This value is calculated as: log ₂ (C_SPLB_NUM_MASTERS) with a minimum value of 1					
G8	C_SPLB_NUM_MASTERS	P36, P37, P38, P42	-	Affects the number of PLB masters					
		I/O S	ignals						
P5	PLB_masterID[0 : C_SPLB_MID_WIDTH - 1]	-	G7	Width of the PLB_mastedID varies according to C_SPLB_MID_WIDTH					
P7	PLB_BE[0 : (C_SPLB_DWIDTH/8) -1]	-	G5	Width of the PLB_BE varies according to C_SPLB_DWIDTH					
P10	PLB_wrDBus[0 : C_SPLB_DWIDTH - 1]	-	G5	Width of the PLB_wrDBus varies according to C_SPLB_DWIDTH					
P33	SI_rdDBus[0 : C_SPLB_DWIDTH - 1]	-	G5	Width of the SI_rdDBus varies according to C_SPLB_DWIDTH					
P36	SI_MBusy[0 : C_SPLB_NUM_MASTERS - 1]	-	G8	Width of the SI_MBusy varies according to C_SPLB_NUM_MASTERS					

C_SPLB_NUM_MASTERS

Generic or Port	Name	Affects	Depends	Relationship Description
P37	SI_MWrErr[0 : C_SPLB_NUM_MASTERS - 1]	-	G8	Width of the SI_MWrErr varies according to C_SPLB_NUM_MASTERS
P38	SI_MRdErr[0 : C_SPLB_NUM_MASTERS - 1]	-	G8	Width of the SI_MRdErr varies according to C_SPLB_NUM_MASTERS
P42	SI_MIRQ[0: C_SPLB_NUM_MASTERS	-	G8	Width of the SI_MIRQ varies according to

Table 3: XPS Timebase Watchdog Timer Parameter-Port Dependencies (Cont'd)

Register Descriptions

Table 4 shows the XPS Timebase Watchdog Timer registers and their addresses.

Table 4: XPS Timebase Watchdog Timer Registers

Base Address + Offset (hex)	Register Name	Access Type	Default Value (hex)	Description
C_BASEADDR + 0x0	TWCSR0	Read/Write	0x0	Control/Status register-0
C_BASEADDR + 0x4	TWCSR1	Write (1)	0x0	Control/Status register-1, state is mirrored in TWCSR0 for read
C_BASEADDR + 0x8	TBR	Read (2)	0x0	Timebase register

Notes

- 1. Reading of this register returns undefined value.
- 2. Writing into this register has no effect.

Control/Status Register-0 (TWCSR0)

Control/Status Register-0 contains the watchdog timer reset status, watchdog timer state, and watchdog timer enables. The TWCSR0 bit definitions are shown in Figure 3 and explained in Table 5.

Figure 3: Control/Status Register-0 (TWCSR0)

Table 5: Control/Status Register-0 (TWCSR0)

Bit(s)	Name	Core Access	Reset Value	Description
0 - 27	TBR	Read	0	Timebase Register (Most significant 28 bits): This read-only field contains the most significant 28 bits of the timebase register. The timebase register is mirrored here so that a single read can be used to obtain the count value and the watchdog timer state if the upper 28 bits of the timebase provide sufficient timing resolution.
28	WRS	Read/Write	'0'	Watchdog Reset Status: Indicates the WDT reset signal was asserted. This bit is not cleared by a system reset so that it can be read after a system reset to determine if the reset was caused by a watchdog timeout. Writing a '1' to this bit clears the watchdog reset status bit. Writing a '0' to this bit has no effect. '0' = WDT reset has not occurred '1' = WDT reset has occurred
29	WDS	Read/Write	'0'	Watchdog Timer State: Indicates the WDT period has expired. The WDT_Reset signal will be asserted if the WDT period expires again before this bit is cleared by software. Writing a '1' to this bit clears the watchdog timer state. Writing a '0' to this bit has no effect. '0' = WDT period has not expired '1' = WDT period has expired, reset will occur on next expiration
30	EWDT1	Read/Write	'0'	Enable Watchdog Timer (Enable 1): This bit must be used in conjunction with the EWDT2 bit in the TWCSR1 register. Both bits must be 0 to disable the WDT. '0' = Disable WDT function if EWDT2 also equals '0' '1' = Enable WDT function
31	EWDT2	Read	'0'	Enable Watchdog Timer (Enable 2): This bit is read only and is the only place to read back a value written to bit 31 of TWCSR1.

Control/Status Register-1 (TWCSR1)

Control/Status Register-1 contains the second Watchdog Timer (WDT) enable bit. The WDT enable must be cleared in both TWCSR0 and TWCSR1 to disable the WDT. If the WDT is configured as enable-once, then the WDT cannot be disabled after it has been enabled. The TWCSR1 bit definitions are shown in Figure 4 and explained in Table 6.

Figure 4: Control/Status Register 1 (TWCSR1)

Bit(s)	Name	Core Access	Reset Value	Description
0 - 30	Reserved	N/A	N/A	Reserved
31	EWDT2	Write ^[1]	'0'	Enable Watchdog Timer (Enable 2): This bit must be used in conjunction with the EWDT1 bit in the TWCSR0 register to disable the WDT. Both bits must be 0 to disable the WDT. This bit is write-only in this register. The value of EWDT2 can be read back only in TWCSR1. '0' = Disable WDT function if EWDT1 also equals '0' '1' = Enable WDT function

Table 6: Control/Status Register-1 (TWCSR1)

Notes:

1. Reading of this register returns undefined value.

Timebase Register (TBR)

The TBR bit definitions are shown in Figure 5 and explained in Table 7.

The Timebase Register is the output of a free-running incrementing counter that clocks at the input clock rate (no prescaling of the clock is done for this counter). This register is read-only and is reset by the following:

- A system reset
- Enabling the WDT after power on reset
- Enabling the WDT after the WDT has been disabled. (EWDT1 and EWDT2 must both be '0' to disable the WDT.) The WDT is enabled when either EWDT1 or EWDT2 are set to '1'. Note that when the WDT mode is enable-once, the TBR can only be reset when the WDT is first enabled.

DS582_0

Figure 5: Timebase Register (TBR)

Table 7: Timebase Register (TBR)

Bit(s)	Name	Core Access	Reset Value	Description
0 - 31	TBR	Read ^[Ref 1]	0	Timebase register: This register indicates the free-running incrementing counter value.

Notes:

1. Writing into this register has no effect.

Timing Diagrams

Figure 6 shows the WDT Expired Once operation waveform and Figure 7 shows the WDT Expired Twice operation waveform. The state of the WDT is given by the WDS bit in the TWCSR0 register. If the WDT interval expires while the WDS bit is '1', the WDT reset signal is asserted. An interrupt is provided when the WDS bit is set so that the software can clear the bit before the second expiration of the WDT. The WDS bit is cleared by writing a '1' to it. Writing a '0' to the WDS bit has no effect. Figure 6 shows the operation performed where WDS bit is cleared by the software before the second expiration occurs. Figure 7 shows the operation performed where WDS bit is not cleared and WDT expired twice state is reached.

Figure 6: WDT Expired Once Operation Waveform

Figure 7: WDT Expired Twice Operation Waveform

Design Implementation

Target Technology

The intended target technology is an FPGA listed in the Supported Device Family field of the LogiCORE IP Facts Table.

Device Utilization and Performance Benchmarks

Core Performance

Since the XPS Timebase Watchdog Timer core will be used with other design modules in the FPGA, the utilization and timing numbers reported in this section are estimates only. When the XPS Timebase Watchdog Timer core is combined with other designs in the system, the utilization of FPGA resources and timing of the XPS Timebase Watchdog Timer design will vary from the results reported here.

The XPS Timebase Watchdog Timer resource utilization for various parameter combinations measured with Virtex®-4 as the target device are detailed in Table 8.

Table 8: Performance and Resource Utilization Benchmarks on the Virtex-4 FPGA (xc4vlx25-ff668-10)

Parameter Values (Other parameters at default values)		Device Resources			Performance
C_WDT_INTERVAL	C_WDT_ENABLE_ONCE	Slices	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
8	0	66	56	104	146
30	1	65	56	106	133
31	1	65	56	106	139

The XPS Timebase Watchdog Timer resource utilization for various parameter combinations measured with Virtex-5 as the target device are detailed in Table 9.

Table 9: Performance and Resource Utilization Benchmarks on the Virtex-5 FPGA (xc5vlx50-ff676-1)

Parameter Values (Other parameters at default values)		Device Re	esources	Performance
C_WDT_INTERVAL	C_WDT_ENABLE_ONCE	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
8	0	56	76	198
30	1	56	78	184
31	1	56	78	209

The XPS Timebase Watchdog Timer resource utilization for various parameter combinations measured with Spartan[®]-3E as the target device are detailed in Table 10.

Table 10: Performance and Resource Utilization Benchmarks on the Spartan-3E FPGA (xc3s1600e-fg320-4)

Parameter Values (Other parameters at default values)		Device Resources			Performance
C_WDT_INTERVAL	C_WDT_ENABLE_ONCE	Slices	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
8	0	54	56	73	102
30	1	52	56	75	101
31	1	52	56	75	101

The XPS Timebase Watchdog Timer resource utilization for various parameter combinations measured with Spartan[®]-3E as the target device are detailed in Table 11.

Table 11: Performance and Resource Utilization Benchmarks on the Spartan-6 FPGA (xc6slx45-2-fgg4844)

Parameter Values (Other parameters at default values)		Device Resources			Performance
C_WDT_INTERVAL	C_WDT_ENABLE_ONCE	Slices	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
8	0	60	77	125	126
30	1	63	77	128	126
31	1	62	77	126	128

The XPS Timebase Watchdog Timer resource utilization for various parameter combinations measured with Spartan[®]-3E as the target device are detailed in Table 12.

Table 12: Performance and Resource Utilization Benchmarks on the Virtex-6 FPGA (xc6vlx195t-1-ff1156)

Parameter Values (Other parameters at default values)		Device Resources			Performance
C_WDT_INTERVAL	C_WDT_ENABLE_ONCE	Slices	Slice Flip-Flops	LUTs	F _{MAX} (MHz)
8	0	67	77	139	197
30	1	73	77	139	212
31	1	71	77	139	206

System Performance

To measure the system performance (F_{MAX}) of this core, this core was added to a Virtex-4 system, a Virtex-5 system, a Spartan-3A system, a Virtex-6 system, and a Spartan-6 system as the Device Under Test (DUT) as shown in Figure 8, Figure 9, Figure 10, Figure 11 and Figure 12.

Because the XPS Timebase Watchdog Timer core will be used with other design modules in the FPGA, the utilization and timing numbers reported in this section are estimates only. When this core is combined with other

designs in the system, the utilization of FPGA resources and timing of the core design will vary from the results reported here.

Figure 8: System with the Virtex-4 FX FPGA as the DUT

Figure 9: System with the Virtex-5 FX FPGA as the DUT

Figure 10: System with the Spartan-3A FPGA as the DUT

Figure 11: System with the Virtex-6 FPGA as the DUT

Figure 12: System with the Spartan-6 FPGA as the DUT

The target FPGA was then filled with logic to drive the LUT and BRAM utilization to approximately 70% and the I/O utilization to approximately 80%. Using the default tool options and the slowest speed grade for the target FPGA, the resulting target F_{MAX} numbers are shown in Table 13.

Table 13: XPS Timebase Watchdog Timer System Performance

Target FPGA	Target F _{MAX} (MHz)
S3A700 -4	90
V4FX60 -10	100
V5FXT70 -1	120
V6LX130t - 1	150
S6LX45t - 2	100

The target F_{MAX} is influenced by the exact system and is provided for guidance. It is not a guaranteed value across all systems.

Reference Documents

1. IBM CoreConnect 128-Bit Processor Local Bus, Architectural Specification (v4.6).

Support

Xilinx provides technical support for this LogiCORE product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled *DO NOT MODIFY*.

Ordering Information

This Xilinx LogiCORE IP module is provided at no additional cost with the Xilinx ISE Design Suite Embedded Edition software under the terms of the Xilinx End User License. The core is generated using the Xilinx ISE Embedded Edition software (EDK).

Information about this and other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual Property page. For information on pricing and availability of other Xilinx LogiCORE modules and software, please contact your local Xilinx sales representative.

Revision History

Date	Version	Description of Revisions
04/24/08	1.0	Initial Xilinx release.
4/24/09	1.1	Replaced references to supported device families, tool name(s), and parameter values with hyperlink to PDF file; converted to current DS template.
04/19/10	1.2	S6/V6 resource utilization tables added
07/23/10	1.3	Updated to v1.02.a for the 12.2 release; converted to current DS template.

Notice of Disclaimer

Xilinx is providing this product documentation, hereinafter "Information," to you "AS IS" with no warranty of any kind, express or implied. Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to change without notice. XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx.