东南大学电工电子实验中心 实验报告

课程名称: 模排	以电子电路实验
----------	---------

第 1 次实验

实验名称:	运算放大	器的基本	应用		
院 (系):	电子科学	与工程学	院		
专业:	电子科学	与技术			
姓 名:	孙寒石	学	号:	062191	09
实验室:	104	实验	组别:		
同组人员:		实验	讨间:	2021 年	4月7日
评定成绩:		审阅]教师:		

一、实验目的

- 1. 熟练掌握反相比例、同相比例、加法、减法等电路的设计方法;
- 2. 熟练掌握运算放大电路的故障检查和排除方法;
- 3. 了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念。
 - 4. 熟练掌握运算放大电路的增益、幅频特性、传输特性曲线的测量方法。

二、实验原理(主要写用到的的理论知识点,不要长篇大论)

1. 反相比例放大电路

 $u_0 = -rac{R_f}{R_1}u_i$,该电路的输入阻抗为 R_1 。 当 $R_1 = R_f$ 时,该电路为倒向器。

- 优点: 抗共模干扰能力强, 共模信号几乎为0
- 低输入电阻

2. 同相比例放大电路

 $u_0=(1+rac{R_f}{R_1})u_i$,该电路的输入阻抗为 ∞ 。 $\exists R_1=\infty \ {
m yd} R_f=0 {
m bh} \ , \ {
m is}$ 电路为电压跟随器。

- 优点: 输入电阻无穷大
- 存在较大共模信号,应该选用 K_{CMR} 高的运放

3. 减法电路

利用叠加定理
$$\begin{split} u_{o1} &= -\frac{R_F}{R_1}u_1, \\ u_{o2} &= (1+\frac{R_F}{R_1})u_+ = (1+\frac{R_F}{R_1})\frac{R_3}{R_2+R_3}u_2, \\ \\ \ddot{\Xi 滿足} & \frac{R_3}{R_2} &= \frac{R_F}{R_1}, \; \text{则} \; u_o = \frac{R_F}{R_1}(u_2-u_1) \end{split}$$

• 共模信号较大

4. 微分电路

$$\begin{split} i_C &= C \frac{du_c}{dt} \,, \\ u_o &= -i_R R = -i_C R = -RC \frac{du_i}{dt} \end{split}$$

 $i_C=Crac{du_c}{dt}$, $u_o=-i_RR=-i_CR=-RCrac{du_i}{dt}$ 若輸入为正弦波,則輸出变为: $u_o=-RCrac{du_i}{dt}=-\omega RCU_{im}\cos\omega t$

- 该电路对高频噪声特别敏感,设计时要注意
- 输入为正弦波时,输出相位会变化,输出的相位会滞后90°

5. 积分电路

$$egin{aligned} u_c &= rac{1}{C} \int i_C dt, \ i_C &= i = rac{u_i}{R}, \ u_o &= -u_C = -rac{1}{C} \int i_C dt = -rac{1}{C} \int rac{u_i}{R} dt, \ u_o &= -rac{1}{RC} \int u_i dt \end{aligned}$$

三、 预习思考:

查阅 μ A741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义。

	参数名称	参数值	参数意义及设计时应该如何考虑
	輸入 失调电压U₁₀	典型值 1~10 <i>mV</i>	实际运放中,当输入电压为零时,输出端有一个偏离零的直流电 U_{os} ,为了使其为零,需要在输入端加一个直流电压,即为输入失调电压。
	输入 偏置电流I _{IB}	80~500 <i>nA</i>	运放输入级差分对管的基极电流 I_{B1} , I_{B2} , $I_{B1}=UA/R1$, $I_{B2}=UB/R3$
直	输入 失调电流I₁₀	20~200nA	当运放输出电压为零时, 俩个输入端静态电流的差值 $I_{IO} = I_{B1} - I_{B2}$
且 流 参	失调电压温漂αU _{I0}	20uV/ ℃	在工作温度范围内,失调电压随温度变化的比例
数	数 共模抑制比Kour 70~90dB	70~90 <i>dB</i>	差模电压增益 A_{od} 与共模电压增益 A_{oc} 之比 $K_{CMR}(dB)=20\ lg(A_{od}/A_{oc})$
	开环差模 电压增益A _{VD}	10 ⁶	无反馈时,运放输出电压除以同向端和反相 端之间的电压差
	输出 电压摆幅Uom	12~14V	当电压为输出信号时,外部量变化引起的的输出电压变化
	差模输入电阻R _{ID}	0.3~2 <i>M</i> Ω	输入差模信号时,运放的输出电阻
	输出电阻R。	75Ω	运放输出电压和输出电流之比,即从输出端 看运放的等效电阻
交	增益带宽积G.BW	0.7~1.6 <i>MHz</i>	增益和带宽之比
流参数	转换速率SR	0.5 <i>V / us</i>	当运放在闭环状态下, 其输出端加上大信号 (通常为阶跃信号) 时, 每1us内输出电压变 化的最大值。1

极	最大差模 输入电压U _{IOR}	±15V	同向反向端能承受的最大差模输入电压
限参	最大共模 输入电压U _{ICR}	±12~ ± 13V	运放能承受的最大共模输入电压范围
数	最大输出电流Ios	25~40 <i>mA</i>	运放能输出的电流最大值
	最大电源电压Usr	±18V	运放能承受的所加电源电压最大值

四、 实验内容

1. 实验内容一(见在线实验1):

反相输入比例运算电路各项参数测量实验(预习时,查阅 μA741 运放的数据手册, 自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义)。

图 1.1 反相输入比例运算电路

(1) 直流特性测量:

直流特性测量记录表				
II /II	II /II	A	u	
U_i/V	U_o/V	测量值	理论值	
-2	14.82	-7.41	-10	
-0.5	4.86	-9.72	-10	
0. 5	-4.58	-9.16	-10	
2	-12.67	-6.335	-10	

实验结果分析:

当输入信号为 ±0.5V 的电压时,电路能够输出输入信号 10 倍放大功能,当输入信号 增大到其输出信号理论值超过电源电压时,电路不能实现正常的放大功能,运放的输出电压只能达到电源电压(此处为 15V),实际上这种情况发生时,为了保护元件,输出电压往往比

电源电压低上 1-2V。 在本实验中,输入电压为±2V 时,理论输出电压为-20V 或+20V,超过了电源电压,实际输出为-12.67V 和 14.82V。我们可以进一步观察数据发现,在输入电压的绝对值一定时,运放输出的正电压大于负电压,在输出电压接近电源电压时表现得更加明显,由于放大器及电路本身结构具有不对称性特征,所以我们这样的结果是意料之中过的。

(2) 交流特性测量:

交流特性测量记录表						
U_i		U_o	增	益		
峰峰值(mVpp)	峰峰值 (mVpp)	波形	A_u	误差		
200 (206)	2040	图 1	-9. 90	1%		
400	4040	图 2	-10. 1	1%		
4000 (3960)	26400	图 3	-6.6	33. 3%		
2620	26400	图 5 (最大不失真)	-10. 08	0.8%		

实验结果分析:

对于不失真的情况,从波谷波峰来看,输出信号波峰对应于输入信号波谷,同样的,从输出信号波谷对应输入信号波峰我们可以发现,实现了反相的功能。同时由信号的峰峰值的大小情况来看,实现 $|A_n|=10$ 的放大功能。失真时,波形发生畸变,如图 3。

图 1

图 2

图 3

图 4

图 5

(3) 增益改变的测量:

	增益改变的测量记录表							
R ₁ KΩ R _F KΩ U _i mVpp U _o mVpp A _u 实验值 A _u 理论值 误差						误差		
10	100	100	1040	-10. 4	-10	4%		
10 200 100 1960 -19.6 -20 2%						2%		
20	100	100	496	-4. 96	-5	0.8%		

(4) 运放特性测量——最大输出电压: 21.6V (峰峰值)

自拟表格测量此时的运放交流特性和最大输出电压:

交流特性测量记录表						
U_i		U_o	增	益		
峰峰值(mVpp)	峰峰值 (mVpp)	波形	A_u	误差		
200 (204)	2060	图 6	-10. 1	2%		
400 (404)	4040	图 7	-10	0%		
4000 (3960)	21600	图 8	−5. 4	46%		
1880	19000	图 10 (最大不失真)	-10. 106	1.06%		

实验结果分析:

当电源电压变为±12V 时, 最大不失真输出电压峰峰值为 19V。失真时,最大输出电压峰峰值为 21.6V。 而当电源电压变为±15V 时,最大不失真电压峰峰值为 26.4V。 失真时,最大输出电压峰峰值为 26.4V。可以发现,当电源电压减小时,最大不失真电压和最大输出电压的峰峰值都会变小。

图 6

图 8

图 9

图 10

(5) 运放特性测量——最大输出电流: 22.4mA 最大不失真输出电压: 峰峰值为9.84V

实验结果分析: 与 $R_L = 100k\Omega$ 时相比,最大不失真输出电压要小很多,这是最大输出电流限制导致的。

(6) **设计**一个同相输入比例运算电路,要求其放大倍数为11。完成同相比例放大电路的设计及仿真。测量同相比例放大电路的交、直流特性。测量运放的最大输出电压和最大输出电流。拟定实验方案、设计记录表格、分析数据波形。 答:

$$u_0 = \left(1 + \frac{R_f}{R_1}\right) u_i$$

要求放大倍数为11,则

$$\frac{R_f}{R_1} = 10$$

所以, 取 $R_1 = 10k\Omega$, $R_f = 100k\Omega$, 得到如下电路:

同相输入比例运算电路仿真图:

仿真示例:

仿真直流特性测量数据: $V_{cc} = 15V$

直流特性测量记录表					
A_u					
U_i/V	V U _o /V 测量值	测量值	理论值		
-1	-10.982	10.982	11		
1	11.341	11.341	11		
0.5	5.530	11.060	11		
2	14.118	7.059	11		

仿真交流特性测量数据: $V_{cc} = 15V$

交流特性测量记录表					
U_i	U	l _o	增益		
峰峰值 (mVpp)	峰峰值 (mVpp)	波形	Au	误差	
200(199.868)	2222	图 11	11.1173	1.07%	
400(396.912)	4390	图 12	11.0604	0.55%	
600(599.338)	6618	图 13	11.0422	0.38%	
800(799.972)	8824	图 14	11.0300	0.27%	
8000(7996)	28236	图 15	3.5312	67.90%	

图 11

图 12

图 13

图 14

图 15

实物电路:

直流特性测量:

	直流特性测量记录表					
II /II	11 /17	A	\mathbf{l}_{u}			
U_i/V	U_o/V	测量值	理论值			
-2	-12.66	6.33	11			
-0.5	-5.3	10.6	11			
0. 5	5.67	11.34	11			
2	14.10	7.05	11			

实验结果分析:

在电压较小时,很好地实现了11倍放大;较大时,由于高于最大输出电压,所以无法实现11倍放大。

交流特性测量:

交流特性测量记录表						
U_i		U_o	增益			
峰峰值(mVpp)	峰峰值 (mVpp)	波形	A_u	误差		
200 (210)	2300	图 16	10. 95	0. 45%		
400	4520	图 17	11. 3	27. 2%		
4000	27600	图 18	6. 9	37. 27%		
2400	27000	图 20 (最大不失真)	11. 25	2. 27%		

实验结果分析:

对于不失真的情况,从波谷波峰来看,输出信号波峰对应于输入信号波峰,同样的,从输出信号波谷对应输入信号波谷,我们可以发现,实现了同相的功能。同时由信号的峰峰值的大小情况来看,实现 $|A_u|=11$ 的放大功能。失真时,波形发生畸变,如图 18。

图 16

图 17

图 18

图 19

图 20

运放特性测量——最大输出电压: 20.6V (峰峰值)

自拟表格测量此时的运放交流特性和最大输出电压:

交流特性测量记录表				
U_i	U_o		增益	
峰峰值(mVpp)	峰峰值 (mVpp)	波形	A_u	误差
200 (206)	2280	图 21	11. 068	0. 62%
400	4520	图 22	11. 3	2. 7%
4000	21800	图 23	5. 45	50. 45%
1880	20600	图 25 (最大不失真)	10. 96	0. 36%

实验结果分析:

当电源电压变为±12V 时,最大不失真输出电压峰峰值为 20.6V。失真时,最大输出电压峰峰值为 21.6V。 而当电源电压变为±15V 时,最大不失真电压峰峰值为 26.4V。 失真时,最大输出电压峰峰值为 26.4V。可以发现,当电源电压减小时,最大不失真电压和最大输出电压的峰峰值都会变小。

图 21

图 22

图 23

图 24

图 25

运放的最大输出电流: 22.56mA 最大不失真输出电压: 峰峰值为9.84V

实验数据分析:

与 $R_L = 100k\Omega$ 时相比,最大不失真输出电压要小很多,这是最大输出电流限制导致的。

2. 实验内容(见在线实验 2):

(1) 设计一个减法电路,满足 $u_0 = 3u_1 - 2u_2$,**预习时设计好电路图,并用 Multisim 软件**

仿真,完成减法电路的设计及仿真测量;按仿真设计的电路参数完成电路的连接;用不同的直流电压输入测量输出与输入的关系;用一个方波信号和一个正弦波信号观察波形叠加;改变输入波形幅度观察输出波形变化规律;其他自主测量与发现(例如输入幅度、频率变化,输入电阻对测量的影响……);拟定实验方案、设计记录表格、分析数据波形、撰写实验报告(见在线实验第2单元的作业)。 答:

$$u_0 = 3u_1 - 2u_2$$

我们利用正相和反相输入,可以得到:

取 $R_1 = R_2 = 10k\Omega$, $R_f = 20k\Omega$, 得到如下电路:

减法电路运算电路仿真图:

图 27

仿真示例:

图 28

功能仿真演示:

直流演示:

图 29

交流演示:

图 30

a) 直流减法功能测量:

直流减法功能测量记录表

	第一组	第二组	第三组	第四组	第五组
U ₁ /V	0. 968	0. 986	3	4. 98	4
U ₂ /V	2. 92	1. 04	-1. 93	-1.96	-4. 94
U __ /V(理论值)	-2. 936	0. 878	12. 86	18. 89	21. 88
U_/V(测量值)	-2. 90	0. 907	12. 90	14. 10	14. 08

如有易派,请截图示波器上的两个输入和一个输出的波形:

见图31、32

图32

实验结果分析:

有明显不满足减法关系的测量结果,是什么原因?如果用负电压输入,减法电路可以实现加法功能?

当 u_0 的理论值大于电源电压($\pm 15V$)时,输出电压会因此不满足理想的减法关系,如第4组和第5组实验。实验中,若 u_2 用负电压输入,就可以实现加法功能,所以这也可以当加法器使用。

b) 交流减法功能测量:

交流减法功能测量记录表

输入	第一组实验波形	误差	第二组实验波形	误差
U	1kHz 方波, 幅度为 1V 见图 33,34	4%	2. 5kHz 三角波, 幅度为 1V 见图 35,36	2%
U	5kHz 正弦波, 幅度为 200mV 见图 33,34	10%	5kHz 正弦波, 幅度为 200mV 见图 35,36	20%
U	见图 33, 34	10%	见图 35,36	12%

实验结果分析:

除了输入信号的有所误差之外,电路很好地实现了交流减法功能,波形表现也十分良好。 在这个实验中,注意要调节频率和幅度,否则输出的波形将不会那么好看。

图 33

图 34

图 35

图 36

c) 其他自主测量与发现(例如输入幅度、频率变化,输入电阻对测量的影响······);输入幅度变化:

输入	第一组实验波形	第二组实验波形	第二组实验波形
U ₁	1kHz 方波,	频率=1kHz	频率=1kHz
	幅度 Vpp = 1V	幅度 Vpp = 1V	幅度 Vpp = 2V
	见图 37	见图 38	见图 39
U ₂	5kHz 正弦波,	5kHz 正弦波,	5kHz 正弦波,
	幅度为 220mV	幅度为 412mV	幅度为 200mV
	见图 37	见图 38	见图 39
U _o	见图 37	见图 38	见图 39

图 38

图 39

可知当输入波形幅度发生变化时,根据减法运算,输出方波形状有一定变化,频率不变。

频率变化:

输入	第一组实验波形	第二组实验波形	第二组实验波形
U	1kHz 方波,	频率=5kHz	频率=1kHz
	幅度 Vpp = 1V	幅度 Vpp = 1V	幅度 Vpp = 2V
	见图 40	见图 41	见图 42
U	5kHz 正弦波,	5kHz 正弦波,	2kHz 正弦波,
	幅度为 220mV	幅度为 412mV	幅度为 200mV
	见图 40	见图 41	见图 42
U _o	见图 40	见图 41	见图 42

图 40

可知当输入波形频率发生变化时,根据减法运算,输出方波形状有一定变化,频率也可能会变化。

3. 实验内容(见在线实验3):

(1) **微分电路**: 用 μ A741 运放,按图示电路结构和参数: R1=10k Ω , R2=10k Ω , C1=0. 1 μ F , C2=10nF。连接好电路,确保正确无误,运放使用正负 12V 电源供电,检查正确后可以加电开始实验。

微分电路运算电路仿真图:

图 43

仿真示例:

图 44

功能仿真演示:

正弦波:

图 45

三角波:

图 46

微分电路性能测量与研究记录表

输入波形	方波							
输入波形 参数	频率=100Hz 幅度=1Vpp R=10kΩ C=10nF	频率=100Hz 幅度=1Vpp R=20kΩ C=10nF	频率=100Hz 幅度=1Vpp R=10kΩ C=1 μ F	频率=100Hz 幅度=2Vpp R _i =10k Ω C ₂ =10nF	频率=200Hz 幅度=2Vpp R=10k Ω C ₂ =10nF			
U _i	见图 47	见图 50	见图 53	见图 56	见图 59			
U ₀	见图 47	见图 50	见图 53	见图 56	见图 59			
输入波形	三角波							
输入波形 参数	频率=100Hz 幅度=1Vpp R ₁ =10kΩ C ₂ =10nF	频率=100Hz 幅度=1Vpp R ₁ =20kΩ C ₂ =10nF	频率=100Hz 幅度=1Vpp R ₁ =10kΩ C ₂ =1μF	频率=100Hz 幅度=2Vpp R ₁ =10kΩ C ₂ =10nF	频率=200Hz 幅度=2Vpp R ₁ =10k Ω C ₂ =10nF			
$U_{_{\mathbf{i}}}$	见图 48	见图 51	见图 54	见图 57	见图 60			
U ₀	见图 48	见图 51	见图 54	见图 57	见图 60			
输入波形	正弦波							
输入波形 参数	频率=100Hz 幅度=1Vpp R ₁ =10kΩ C ₂ =10nF	频率=100Hz 幅度=1Vpp R ₁ =20kΩ C ₂ =10nF	频率=100Hz 幅度=1Vpp R ₁ =10kΩ C ₂ =1 μ F	频率=100Hz 幅度=2Vpp R ₁ =10kΩ C ₂ =10nF	频率=200Hz 幅度=2Vpp R ₁ =10kΩ C ₂ =10nF			
U _i	见图 49	见图 52	见图 55	见图 58	见图 61			
U _o	见图 49	见图 52	见图 55	见图 58	见图 61			

实验结果分析:(提示: 微分电路性能测量: 在微分电路的输入端加上不同的信号波形,利用双踪示波器观察输入和输出的波形,记录波形及参数,分析波形之间的关系。

微分电路性能研究: 改变反馈电阻 R_1 ,由原来的 $10k\Omega$,改为 $20k\Omega$,可以调整微分电路的时间参数,观察波形的变化,记录波形相关参数,分析实验结果;如果电容 G选择不合理,会导致输出波形发生何种变化?如果 G由=10nF 改为 1μ F,观察波形的变化,记录波形相关参数,分析实验结果。**)**

图 47

图 48

图 49

图 50

图 51

图 52

图 53

图 54

图 55

图 56

图 57

图 58

图 59

图 60

实验结果分析:(提示: 微分电路性能测量: 在微分电路的输入端加上不同的信号波形,利用双踪示波器观察输入和输出的波形,记录波形及参数,分析波形之间的关系。

当输入为方波时,输出为冲激信号。当输入为三角波时,输出为近似方波。当输入为正弦波时,输出为余弦波(相位滞后 90 度)。可见输出与输入成微分关系。

微分电路性能研究: 改变反馈电阻 R_1 ,由原来的 $10k\Omega$,改为 $20k\Omega$,可以调整微分电路的时间参数,观察波形的变化,记录波形相关参数,分析实验结果; 如果电容 G 选择不合理,会导致输出波形发生何种变化? 如果 G 由=10nF 改为 $1\mu F$,观察波形的变化,记录波形相关参数,分析实验结果。**)**

- 当反馈电阻 R1,由原来的 $10k\Omega$,变为 $20k\Omega$ 时,输入为方波信号时,输出冲激信号峰峰值变大。输入为三角波和正弦波时,输出峰峰值变为原来两倍。与实验原理相一致。
- 当电容 C2 选择不合理时,电路由微分电路变为反向比例放大电路。由图可知,当 C2 由 10nF 改为 $1\mu F$ 时,电路实现反向比例放大功能。这是因为 $f \ll f_c$ 。 $f_c = 1/2\pi RC$

(2) 积分电路:设计一个波形变换电路,由输入 方波转换成输出三角波,波形参数如图所 示。完成转换电路的设计及仿真测量;按仿 真设计的电路参数完成电路的连接;如果需 要得到输出三角波不同的斜率或输出幅度, 如何调整参数;如果输入波形的占空比不为 0.5,输出波形会发生什么变化?其他自主 测量与发现(输出波形顶部或底部被削平的 原因,工作频率和积分关系······);拟定实

验方案、设计记录表格、分析数据波形(见在线实验第3单元的作业)。

答:

积分电路运算电路仿真图:

图 62

仿真示例:

图 63

功能仿真演示:

图 64

图 65

请自拟积分电路性能测量与研究记录表

输入波形	改变占空比							
输入波形 参数	频率=100Hz 幅度=1Vpp 50%	频率=100Hz 幅度=1Vpp 70%	频率=100Hz 幅度=1Vpp 40%	频率=100Hz 幅度=2Vpp 80%	频率 =200Hz 幅度=2Vpp 20%			
U _i	见图 66	见图 67	见图 68	见图 69	见图 70			
$U_{_{0}}$	见图 66	见图 67	见图 68	见图 69	见图 70			
输入波形	改变输出幅度							
输入波形 参数	频率=100Hz 幅度=1Vpp 50%	频率=100Hz 幅度=2Vpp 50%	频率=100Hz 幅度=4Vpp 50%	频率=100Hz 幅度=0.5Vpp 50%	频率 =200Hz 幅度 =0.25Vpp 50%			
$U_{_{\mathbf{i}}}$	见图 66	见图 71	见图 72	见图 73	见图 74			
U ₀	见图 66	见图 71	见图 72	见图 73	见图 74			
输入波形	改变输入频率							
输入波形 参数	频率=100Hz 幅度=1Vpp 50%	频率=200Hz 幅度=1Vpp 50%	频率=400Hz 幅度=1Vpp 50%	频率=50Hz 幅度=2Vpp 50%	频率=25Hz 幅度=2Vpp 50%			
$U_{_{\mathbf{i}}}$	见图 66	见图 75	见图 76	见图 77	见图 78			
U _o	见图 66	见图 75	见图 76	见图 77	见图 78			

图 66

图 67

图 68

图 69

图 71

图 72

图 73

图 74

图 75

图 76

图 77

实验结果分析:

- 当占空比改变,不再是百分之五十的时候,输出三角波的不对称。
- 当输入波形的峰峰值改变时输出三角波的斜率发生变化, 当输入波形的频率发生改变时, 输出三角波幅度发生改变。
- 当输出三角波的峰峰值电压理论值大于电源电压时,输出波形上下部会失真。
- ・当输入频率过小时,波形发生失真,电路近似实现反向比例放大功能。这是因为 $f \ll f_c$ 。 $f_c = 1/2\pi RC$

注意: 电子报告必须上传提交到 MOOC 实验第 1、2、3 单元的作业中。

五、 实验总结

在本次实验中,我们进行了比例放大电路,减法电路,微分电路和积分电路的实验。 了解了运算放大器的应用,同时使得模电课内知识更加巩固。比如:比例电路有同相比例 和反向比例,同相比例输入电阻无穷大,但反向比例电路共模信号小。微分电路对高频噪 声特别敏感,设计时要注意;输入为正弦波时,输出相位会变化,输出的相位会滞后 90 度;利用运放同相端和反相端实现减法等一些知识。同时,为了实现要求的具体功能,我 们要在设计微分和积分电路时要注意选择电阻和电容值。在本次实验中,示波器的使用是 更加重要的,经过本次实验,对示波器的使用经验得到了进一步的丰富。

六、 实验建议(欢迎大家提出宝贵意见)

希望实验室要求我们做更多较为有趣的实验,增加做实验的趣味性。

七、 参考文献

- [1] 运算放大器 UA741datasheet
- [2] 模拟电子电路基础