Problem 1.3 - Uncertainty Analysis

Get["UCAnalysis.m", Path → {NotebookDirectory[]}]

$$-\frac{m_{\text{water C}}\left(T_{3}-T_{1,\text{water}}\right)}{\ell_{\text{f}}+\text{C}\left(T_{3}-T_{2,\text{ice}}\right)} \mapsto \begin{pmatrix} m_{\text{water}} & 0.100 \pm 0.0005 & \text{Uniform}\mathcal{D} \\ c & 4.19 \pm 0.005 & \text{Uniform}\mathcal{D} \\ \ell_{\text{f}} & 333 \pm 0.5 & \text{Uniform}\mathcal{D} \\ T_{1,\text{water}} & \left(20.0 + 273.15\right) \pm 0.05 & \text{Uniform}\mathcal{D} \\ T_{2,\text{ice}} & \left(0 + 273.15\right) \\ T_{3} & \left(5.0 + 273.15\right) \pm 0.05 & \text{Uniform}\mathcal{D} \end{pmatrix}$$

Evaluated Functional Relationship

QAnalysisEnvironment

$$y = -\frac{x_1 x_2 (-x_4 + x_6)}{x_3 + x_2 (-x_5 + x_6)}$$

Variable		Uncertainty Interval	Distribution	∂f/∂x _i
x ₁	m _{water}	$(1.000 \pm 0.005) \times 10^{-1}$	Uniform	1.77567 × 10 ⁻¹
x ₂	С	$(4.190 \pm 0.005) \times 10^{\circ}$	Uniform	3.98705 x 10 ⁻³
x ₃	ℓ _f	$(3.330 \pm 0.005) \times 10^{2}$	Uniform	5.01674×10 ⁻⁵
x ₄	T _{1,water}	$(2.9315 \pm 0.0005) \times 10^{2}$	Uniform	1.18378 × 10 ⁻³
x 5	$\mathbf{T}_{2, ext{ice}}$	2.7315 × (exact) 10 ²		2.10201×10 ⁻⁴
x ₆	Т3	$(2.7815 \pm 0.0005) \times 10^{2}$	Uniform	1.39398 × 10 ⁻³

У	0.0177567453030089	
Ymin	0.0174954104122768	= y - 0.000261335
Ymax	0.0180207995267013	= y + 0.000264054
ε_{max} $y \pm \varepsilon_{\text{max}}$	0.000262691035908771 $(1.78 \pm 0.03) \times 10^{-2}$	= 1.48% = $1.78(3) \times 10^{-2}$
u _c	0.0000758737820109035	= 0.427 %
y ± u _c	$(1.776 \pm 0.008) \times 10^{-2}$	= 1.776(8) $\times 10^{-2}$

Absolute Maximum Uncertainty

$$\varepsilon_{\text{max}} = \sum_{i=1}^{n} |\partial_{\mathbf{x}_i} \mathbf{f}[\mathbf{x}]| \varepsilon_i; \quad \mathbf{f}[\mathbf{x}] \pm \varepsilon_{\text{max}} // \text{QUCE}$$

```
0.0177567453030089 ± 0.000262691

\in [0.0174941; 0.0180194]

\simeq (1.78 \pm 0.03) \times 10^{-2} = 1.78(3) \times 10^{-2}
```

Combined Standard Uncertainty

$$\mathbf{u}_{\text{c}} = \left(\sum_{\text{i=1}}^{\text{n}} \left(\partial_{\mathbf{x}_{\text{i}}} \ \mathbf{f}[\mathbf{x}] \right)^{2} \mathbf{u}_{\text{i}}^{2} \right)^{1/2}; \quad \mathbf{f}[\mathbf{x}] \pm \mathbf{u}_{\text{c}} \ // \ \text{QUCA}$$

```
0.0177567453030089 \pm 0.0000758738
\in [0.01768087; 0.01783262]
\simeq (1.776 \pm 0.008) \times 10^{-2} = 1.776(8) \times 10^{-2}
```

Monte Carlo Simulation

```
Block[\{data, trials = 10^6\},
  data = f@@ Table[RandomReal[fDist[i], {trials}], {i, 1, n}];
  Mean[data] ± StandardDeviation[data] ] // QUCA
  0.0177567575851228 ± 0.00007582
    ∈ [0.01768094; 0.01783258]
   \simeq (1.776 ± 0.008) × 10<sup>-2</sup> = 1.776(8) × 10<sup>-2</sup>
```