Miles Dai

500 Memorial Drive, Cambridge, MA 02139

(317) 480-9553 · milesdai@mit.edu · www.mit.edu/~milesdai

Education

Massachusetts Institute of Technology

Cambridge, MA

Candidate for Bachelor of Science in Computer Science and Electrical Engineering

June, 2020

- GPA: 4.9/5.0
- Coursework: Computer Systems Security, Software Construction, Design and Analysis of Algorithms, Web Programming Competition (6.148), Introduction to Machine Learning, Computation Structures

Professional Experience

Dimensional Insight

Cambridge, MA

Software Engineering Intern

June 2018 - August 2018

- Created JavaScript business intelligence data visualizations with D3.js for use in a dashboard web interface
- Worked closely with project lead to define parameters and specifications for projects from customer requests

Affective Computing Group, MIT Media Lab

Cambridge, MA

 $Under graduate\ Researcher$

May 2017 May 2018

- Applied computer vision techniques and deep neural networks for predicting the engagement levels of autism-spectrum patients on a per-patient basis to improve the effectiveness of autism therapy
- Worked on full pipeline, including data preprocessing, feature extraction, model development, training, and testing
- Publication: O. Rudovic, J. Lee, M. Dai, B. Schuller, R. W. Picard, Personalized machine learning for robot perception of affect and engagement in autism therapy, *Science Robotics*, 27 Jun 2018: Vol. 3, Issue 19, eaao6760

Distributed Robotics Lab, MIT Computer Science and Artificial Intelligence Laboratory Cambridge, MA Undergraduate Researcher January 2017 May 2017

- Prototyped a spherical, auxetic, volumetrically-expanding robot module to help streamline the robot design and fabrication process through the use of modular components
- Created a communication protocol for wirelessly controlling a distributed network of Texas Instruments MSP430 microcontrollers

Personal Projects

Automated Jigsaw Puzzle Solver

September 2017

HackMIT Hackathon Project

- Created a program in under 24 hours to solve jigsaw puzzles given only images of the pieces
- Designed and implemented heuristics such as edge convexity and color-matching of puzzle pieces using Python and OpenCV to search for the most probable fit

Compact, Low-Cost Colorimeter

May 2016

- Designed and built a colorimeter (device to measure light absorbance of solutions) for under \$60 with off-the-shelf parts
- Measured absorbance at 720, 512, and 465 nm with high precision and low cost

Leadership and Volunteering

Next House Makerspace Chair

2018-present

• Supervised the planning and construction of a makerspace within a student dorm.

Next Make, President

2016-present

- Programmed games in C for an ATtiny microcontroller as part of a circuit board soldering activity for 50 MIT freshmen
- Designed, prototyped, and manufactured an electronic piano PCB for an MIT freshmen outreach event

MIT Science Olympiad, Planning Committee

2016-present

Organize an annual Science Olympiad tournament at MIT for over 1,000 high school students

Skills

Programming Languages: Python, Java, MATLAB, HTML, CSS, JavaScript with D3.js, C

Machine Learning Frameworks and Tools: Tensorflow, Keras, OpenCV-Python

CAD/Digital Fabrication: Solidworks, Autodesk Inventor, EAGLE, Laser cutting, 3D printing, waterjet, mill

Achievements

Battlecode Hackathon Third Place Team

November 2017

• Created a heuristics-driven, autonomous, virtual bot in under 24 hours to compete in a real-time strategy game