目录

一、初	等概率论	1
1.1	随机变量	1
1.2	数字特征	1
	(i) 一些定理	1
	(ii) 两个不等式	2
	(iii) 特征函数	2
1.3	极限定理	3
	(i) 依概率收敛	3
	(ii) 依分布收敛	3
	(iii) 几乎处处收敛	4
	(iv) 均方收敛	5
1.4	条件概率和条件期望	5
ID-E-	- bra betrieb Libre A	
	机过程基本概念	7
2.1	随机过程的概念	7
2.2	随机过程的分布刻画	7
2.3	随机过程的数字特征	9
	(i) 数字特征	9
	(ii) 两个随机过程之间的关系	10
2.4	几类常见的随机过程	10
Ξ. Po	oisson 过程	12
3.1	Poisson 流	12
3.2	齐次 Poisson 过程	13
	(i) Poisson 过程的数字特征	
	(ii) Poisson 过程的分布规律	14
	(iii) Poisson 过程的样本曲线	15
	(iv) 到达时刻的分布	15
	(v) 等候时间的分布 · · · · · · · · · · · · · · · · · · ·	15
	(vi) Poisson 过程的另一种解释	16
	(vii) 到达时刻的条件分布	16
3.3	Poisson 过程的合并与分解	17
3.4	复合 Poisson 过程	18
3.5	非齐次 Poisson 过程	19
3.0	(i) 基本性质	20
	(ii) 时间变换	21
	(w) 641.427W	1

四、	Ma	rkov 链	21
4.	.1 N	Markov 链及例子	21
4.	.2 1	Markov 链的有限维分布	23
4.	.3 7	常返性和瞬时性	25
4.	.4 ×	状态空间分解	28
4.	.5 柞	吸限分布与平稳分布	29
	(i) 极限分布	29
	((ii) 平稳分布	30
4.	.6 B	吸收概率与平均吸收时间	32
4.	.7 ī	可逆 Markov 链	33
五、	Gal	lton-Watson 分枝过程	35
5.	.1 柞	模型简介	35
5.	.2	生成函数	36
5.	.3	分枝过程的生成函数	37
5.	.4 /	生存与灭绝概率	38
六、	平穏	急随机过程遍历性	38
6.	.1	时间平均	38
6.	.2 ±	均值遍历性	40
七、	Bro	own 运动	42
7.		Brown 运动及基本性质	42
7.		与 Brown 运动相关的过程	
			45
	(45
	(46
	(· · · · · · · · · · · · · · · · · · ·	46
7.	.3	最大值与首中时分布	46
7.			48
			48
	`		49
	`		49
	`		50
	`	. , , , , , , , , , , , , , , , , , , ,	50
7	`	· / · · · · · · · · · · · · · · · · · ·	51

一、 初等概率论

1.1 随机变量

定义 1.1.1 设 Ω 是一个非空集合, F 是 Ω 中的子集类, 如果满足:

随机过程重点复习

- (1) $\varnothing, \Omega \in \mathcal{F}$:
- (2) (关于取补封闭): 若 $A \in \mathcal{F}$, 则 $\overline{A} \in \mathcal{F}$;
- (3) (关于可列并封闭): 若 $A_1, A_2, \dots \in \mathcal{F}$, 则 $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$,

则称 \mathcal{F} 是 Ω 上 σ -代数, \mathfrak{h} (Ω, \mathcal{F}) 为可测空间.

定义 **1.1.2** 设 $P: \mathcal{F} \to [0,1]$, 如果满足:

- (1) $P(\Omega) = 1$;
- (2) (可列可加性): 若 $A_1, A_2, \dots \in \mathcal{F}$ 且两两互斥,则 $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$,

则称 $P \in (\Omega, \mathcal{F})$ 上的概率测度, 此时称 (Ω, \mathcal{F}, P) 为概率空间.

例 1.1.1 [古典概率模型]

$$\Omega = \{\omega_1, \omega_2, \dots, \omega_N\}, \quad N < \infty; \qquad \mathcal{F} = 2^{\Omega}.$$

定义概率测度

$$\mathsf{P}(A) = \frac{|A|}{N},$$

那么, (Ω, \mathcal{F}, P) 是一个古典概率空间.

例 1.1.2 [几何概率模型] 设 Ω 是 \mathbb{R}^d , $d \ge 1$ 的一个可测区域, $|\Omega| < \infty$, $\mathcal{F} = \mathcal{B}$. 定义概率测度

$$P(A) = \frac{|A|}{|\Omega|}, \quad A \in \mathcal{F}.$$

那么, (Ω, \mathcal{F}, P) 是一个几何概率空间.

定义 **1.1.3** 设 (Ω, \mathcal{F}) 和 (Ω', \mathcal{F}') 是给定的两个可测空间, $\xi \in \Omega$ 到 Ω' 上的映射. 如果对任何 $A \in \mathcal{F}'$, 有 $\xi^{-1}(A) \in \mathcal{F}$, 则称 ξ 为**可测映射**. 特别地, 当 $(\Omega', \mathcal{F}') = (\mathbb{R}, \mathcal{B})$ 时, 称 ξ 为随机变量 (σ) 可测函数 (Ω) , 这里 (Ω) 是 (Ω) 是

1.2 数字特征

(i) 一些定理

定理 1.2.1 (单调收敛定理) 设 $\{X_n\}$ 是随机变量序列, 若 X_n 非负且递增收敛于 X_n 则

$$\lim_{n\to\infty} E(X_n) = E(X).$$

定理 1.2.2 (Fatou 引理) 设 $\{X_n\}$ 是随机变量序列, 若 X_n 非负, 那么

$$E(\liminf_{n\to\infty} X_n) = \liminf_{n\to\infty} E(X_n).$$

定理 1.2.3 (Lebesgue 控制收敛定理) 设 $\{X_n\}$ 是随机变量序列, 若 $\lim_{n\to\infty} X_n = X$, 且存在非负随机变量 η , 使得 $E(\eta) < \infty$, 且对所有 n, $|X_n| \le \eta$, 则有

$$\lim_{n\to\infty} E(X_n) = E(X).$$

定理 1.2.4 (Fubini 定理) 设对 $a \le t \le b$, X(t) 是随机变量, 若 $\int_a^b E|X(t)|\mathrm{d}t < \infty$ 或对所有 $a \le t \le b$, X(t) 都非负,则

$$E\left[\int_{a}^{b} X(t)dt\right] = \int_{a}^{b} E[X(t)]dt.$$

(ii) 两个不等式

定理 1.2.5 (Chebyschev 不等式) 对任意 $\varepsilon > 0$, 有

$$P(|X - E(X)| \ge \varepsilon) \le \frac{Var(X)}{\varepsilon^2}.$$

定理 1.2.6 (Markov 不等式) 假设 f 是一个单调非负函数, 那么对 $\forall x>0$, 有

$$P(X \ge x) \le \frac{E[f(X)]}{f(x)}.$$

(iii) 特征函数

定义 1.2.1 假设 X 是一个随机变量, 具有分布函数 F(x). 定义

$$\phi(t) = E(e^{itX}) = \int_{-\infty}^{\infty} e^{itx} dF(x), \quad t \in \mathbb{R}.$$

 $\phi(t)$ 为 X 的特征函数.

任何随机变量的特征函数总是存在的.

命题 1.2.1 特征函数具有下列性质:

- (1) $\phi(0) = 1$;
- (2) $|\phi(t)| \le 1$;
- (3) $\phi(t)$ 在 \mathbb{R} 上一致连续;
- (4) $\phi(t)$ 是非负定的,即对任意实数 t_1, \ldots, t_m 和复数 z_1, \ldots, z_m , $\sum_{i,j=1}^n z_i \overline{z_j} \phi(t_i t_j) \ge 0$;
- (5) 如果 $E|X|^k < \infty$, 那么 $\phi(t)$ k 次可微, 且在 0 处可进行 Taylor 展开:

$$\phi(t) = 1 + \sum_{m=1}^{k} \frac{i^m}{m!} \alpha_m t^m + \theta \frac{\beta_k}{(k+1)!} t^{k+1},$$

其中 α_m 为 m-th 半不变累积量, β_k 为 k-th 阶绝对矩, $|\theta| \leq 1$;

(6) 如果 X, Y 相互独立, 那么 $\phi_{X+Y}(t) = \phi_X(t)\phi_Y(t)$.

定理 1.2.7 (唯一性定理) 随机变量的分布函数和特征函数相互唯一确定. 即随机变量

$$X \stackrel{d}{=} Y \iff \phi_X = \phi_Y.$$

特别地, 如果随机变量 X 的特征函数 $\phi(t)$ 绝对可积, 那么 X 具有密度函数

$$p(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \phi(t) dt.$$

如果随机变量 X 的特征函数 $\phi(t)$ 形如 $\phi(t) = \sum_{n=1}^{\infty} a_n e^{int}$,并且 $a_n \ge 0$, $\sum_{n=1}^{\infty} a_n = 1$,那么 X 是离散型随机变量,具有分布 $P(X = n) = a_n$.

1.3 极限定理

(i) 依概率收敛

定义 **1.3.1** 假设 (Ω, \mathcal{F}, P) 是概率空间, $X, X_n, n \geq 1$ 是一列随机变量. 如果对任意 $\varepsilon > 0$,

$$P(\omega: |X_n(\omega) - X(\omega)| > \varepsilon) \to 0,$$

则称 X_n 依概率收敛到 X, 记作 $X_n \stackrel{P}{\longrightarrow} X$.

命题 1.3.1 依概率收敛具有以下性质:

- (2) $\not\equiv X_n \xrightarrow{P} X$, $X_n Y_n \xrightarrow{P} 0$, $\not\equiv X$.
- (3) 若 $X_n \xrightarrow{P} X$, $Y_n \xrightarrow{P} Y$, 那么 $X_n \pm Y_n \xrightarrow{P} X \pm Y$, $X_n Y_n \xrightarrow{P} XY$, $X_n/Y_n \xrightarrow{P} X/Y$.
- (4) 若 $X_n \xrightarrow{P} X$, f 是连续函数, 那么 $f(X_n) \xrightarrow{P} f(X)$.

下面是依概率收敛的三个重要的大数律.

定理 1.3.1 (Bernoulli) 设 $S_n \sim B(n,p), n \geq 1, 0$

定理 1.3.2 (Chebyschev) 设 $\xi_n, n \ge 1$ 是一列随机变量, $E(\xi_n^2) < \infty$,令 $S_n = \sum_{k=1}^n \xi_k$,若 $\frac{Var(S_n)}{n^2} \to 0$,则 $\frac{S_n - E(S_n)}{n} \overset{P}{\longrightarrow} 0$.

定理 1.3.3 (Khinchine) 设 $\xi_n, n \geq 1$ 是一列独立同分布随机变量, $E(\xi_1) = \mu$, 令 $S_n = \sum_{k=1}^n \xi_k$, 则 $\frac{S_n}{n} \xrightarrow{P} \mu$.

(ii) 依分布收敛

定义 1.3.2 假设 F(x), $F_n(x)$, $n \ge 1$ 是一列分布函数, 如果对每一个 F 的连续点 x, 都有 $F_n(x) \to F(x)$, 那么称 F_n 弱收敛到 F, 记作 $F_n \xrightarrow{w} F$.

定义 **1.3.3** 假设随机变量 X, X_n 分别定义在概率空间 $(\Omega, \mathcal{F}, P), (\Omega_n, \mathcal{F}_n, P_n)$ 上, $n \geq 1$. 如果相应的分布函数弱收敛, 那么称 X_n 依分布收敛到 X, 记作 $X_n \stackrel{d}{\longrightarrow} X$.

依分布收敛最经典的判别法如下定理.

定理 **1.3.4** (Lévy 连续性定理) 假设 X, X_n , $n \ge 1$ 是一列随机变量,特征函数分别为 $\phi_X(t)$, $\phi_n(t)$,

(1) $X_n \stackrel{d}{\longrightarrow} X$ 当且仅当相应的特征函数收敛,即

$$\lim_{n\to\infty}\phi_n(t)=\phi_X(t),\ t\in\mathbb{R}.$$

(2) 如果存在一个函数 $\phi(t)$, 使得

$$\lim_{n\to\infty}\phi_n(t)=\phi(t),\ t\in\mathbb{R}.$$

并且 $\phi(t)$ 在 0 点处连续, 那么存在一个随机变量 X 使得 $\phi_X = \phi$, 并且 $X_n \xrightarrow{d} X$.

命题 1.3.2 依分布收敛具有以下性质:

- (1) $\not \equiv X_n \xrightarrow{P} X$, $\not \equiv X_n \xrightarrow{d} X$.
- (2) 如果 $X_n \xrightarrow{d} c$, 那么 $X_n \xrightarrow{P} c$.
- (3) 如果 $X_n Y_n \xrightarrow{P} 0$, 并且 $X_n \xrightarrow{d} X$, 那么 $Y_n \xrightarrow{d} X$.
- (4) 如果 $X_n \xrightarrow{d} X$, f 是连续函数, 那么 $f(X_n) \xrightarrow{d} f(X)$.
- (5) 如果 $X_n \xrightarrow{d} X$, $Y_n \xrightarrow{P} c$, 那么 $X_n Y_n \xrightarrow{d} cX$.

下面是依分布收敛的两个重要的极限定理.

定理 1.3.5 (De Moivre-Laplace) 假设 $S_n \sim B(n,p), n \geq 1, 0 那么$

$$\frac{S_n - np}{\sqrt{np(1-p)}} \stackrel{d}{\longrightarrow} N(0,1).$$

定理 1.3.6 (Lévy-Feller) 设 $\xi_n, n \ge 1$ 是一列独立同分布随机变量, $E(\xi_1) = \mu$, $Var(\xi_1) = \sigma^2 < \infty$, 那么

$$\frac{S_n - n\mu}{\sqrt{n}\sigma} \xrightarrow{d} N(0,1).$$

(iii) 几乎处处收敛

定义 **1.3.4** 假设 $X, X_n, n \ge 1$ 是定义在概率空间 (Ω, \mathcal{F}, P) 上的一列随机变量,如果存在 $\Omega_0 \in \mathcal{F}$,使得 $P(\Omega_0) = 0$,并且对任意 $\omega \in \Omega \setminus \Omega_0$,

$$X_n(\omega) \longrightarrow X(\omega),$$

那么称 X_n 几乎处处收敛到 X, 记作 $X_n \longrightarrow X$ a.s..

命题 1.3.3 几乎处处收敛具有以下性质:

- (1) 如果 $X_n \longrightarrow X$ a.s., 那么 $X_n \stackrel{P}{\longrightarrow} X$.
- (2) 如果对任意 $\varepsilon > 0$, $\sum_{n=1}^{\infty} P(\omega: |X_n(\omega) X(\omega)| > \varepsilon) < \infty$, 那么 $X_n \longrightarrow X$ a.s..

下面是几乎处处收敛的两个重要的大数律.

定理 1.3.7 (Borel) 设 ξ_n , $n \ge 1$ 是一列独立同分布于 B(1,p) 的随机变量,定义 $S_n = \sum_{k=1}^n \xi_k$, 那么 $\frac{S_n}{n} \longrightarrow p$ a.s..

定理 1.3.8 (Kolmogorov) 令 $\xi_n, n \ge 1$ 是一列独立同分布随机变量, $E(\xi_1) = \mu$. 定义 $S_n = \sum_{k=1}^n \xi_k$, 那么 $\frac{S_n}{n} \longrightarrow \mu$ a.s..

(iv) 均方收敛

定义 **1.3.5** 假设 $X, X_n, n \ge 1$ 是一列定义在概率空间 (Ω, \mathcal{F}, P) 上的随机变量, 具有有限 r 阶矩 (r > 0). 如果

$$E|X_n - X|^r \to 0,$$

则称 X_n r 阶均方收敛到 X, 记作 $X_n \xrightarrow{L^r} X$.

命题 **1.3.4** 如果 $X_n \xrightarrow{L^r} X$, 那么 $X_n \xrightarrow{P} X$.

1.4 条件概率和条件期望

定义 1.4.1 设 (Ω, \mathcal{F}, P) 是一个概率空间, $A \in \mathcal{F}$, 且 P(A) > 0. 当 A 发生时事件 B 发生的条件概率定义为

$$P(B \mid A) = \frac{P(AB)}{P(A)}.$$

此时 $(\Omega, \mathcal{F}, P(\cdot \mid A))$ 也是一个概率空间.

条件概率具有乘法公式、链式法则、全概率公式和贝叶斯公式. 这些都是初等概率论的重要内容.

定义 1.4.2 若 X 是 (Ω, \mathcal{F}, P) 上可积的随机变量, 定义 X 在 A 发生时的条件期望为 X 关于条件概率 $P(\cdot \mid A)$ 的期望, 记为 $E(X \mid A)$.

注意到 $E(X) = \int_{\Omega} X(\omega) dP(\omega)$ 是 X 在 Ω 上的加权平均, 因此

$$\mathsf{E}(X\mid A) = \int_{\Omega} X(\omega) \mathrm{d}\mathsf{P}(\omega\mid A) = \frac{1}{\mathsf{P}(A)} \int_{A} X(\omega) \mathrm{d}\mathsf{P}(\omega)$$

是 X 在 A 上的加权平均.

命题 1.4.1 条件期望具有以下性质:

- (1) $E(X\mathbf{1}_A) = E(X \mid A)P(A)$;
- (2) 若 A_1, A_2, \ldots 是 Ω 的划分, 且 $P(A_i) > 0$, 则以下全期望公式成立:

$$E(X) = \sum_{i} E(X \mid A_i) P(A_i).$$

例 1.4.1 独立重复地抛一枚硬币直至有 k 次相继出现正面, 计算所抛次数的均值. (设每次出现正面的概率为 p).

 $|\mathbf{r}|$ 令 N_k 表示所抛次数, T 表示首次出现反面时所抛的次数, 则

$$\mathsf{E}(N_k \mid T = i) = \left\{ \begin{array}{ll} i + \mathsf{E}(N_k), & i \le k, \\ k, & i > k. \end{array} \right.$$

于是由全期望公式

$$\mathsf{E}(N_k) = \sum_{i>1} \mathsf{E}(N_k \mid T=i) \mathsf{P}(T=i) = \sum_{k=1}^k [i + \mathsf{E}(N_k)] p^{i-1} (1-p) + k p^k.$$

解得 $\mathsf{E}(N_k) = \frac{1}{p} + \frac{1}{p^2} + \dots + \frac{1}{p^k}$.

定义 **1.4.3** 设 Y 是一取值为 y_1, y_2, \ldots 的离散型随机变量, 定义给定 Y 的条件下 X 的条件期望 $E(X \mid Y)$ 为 Y 的一个函数, 它在 Y = y 时的取值是 $E(X \mid Y = y)$, 即

$$h(Y) = E(X \mid Y) = \sum_{i} E(X \mid Y = y_i) \mathbf{1}_{\{Y = y_i\}}.$$

它是关于 $\sigma(Y)$ 可测的随机变量.

命题 1.4.2 全期望公式: $E(X) = E[E(X \mid Y)]$.

例 1.4.2 设 $Y_1, Y_2, ...$ 独立同分布, 均值为 μ , 方差为 σ^2 . 设 N 是取非负整数值的随机变量, 与 $Y_1, Y_2, ...$ 独立, 且 $E(N^2) < \infty$. 令 $X = Y_1 + \cdots + Y_N$, 计算 E(X) 和 Var(X).

 $|\mathbf{m}|$ 对非负整数 n, 由于 N 与 Y_1, Y_2, \ldots, Y_n 独立, 所以

$$\mathsf{E}(X|N=n) = \mathsf{E}(Y_1 + \dots + Y_N|N=n)$$

= $\mathsf{E}(Y_1 + \dots + Y_n|N=n) = \mathsf{E}(Y_1 + \dots + Y_n) = n\mu$.

因此 $\mathsf{E}(X|N) = N\mu$, 故 $\mathsf{E}(X) = \mathsf{E}[\mathsf{E}(X|N)] = \mathsf{E}(N\mu) = \mu\mathsf{E}(N)$. 进一步,

$$\begin{aligned} \mathsf{E}(X^2|N=n) &= \mathsf{E}[(Y_1 + \dots + Y_N)^2|N=n] \\ &= \mathsf{E}[(Y_1 + \dots + Y_n)^2|N=n] \\ &= \mathsf{E}[(Y_1 + \dots + Y_n)^2] \\ &= \mathsf{Var}(Y_1 + \dots + Y_n) + [\mathsf{E}(Y_1 + \dots + Y_n)]^2 = n\sigma^2 + n^2\mu^2. \end{aligned}$$

因此 $\mathsf{E}(X^2|N) = N\sigma^2 + N^2\mu^2$, 故 $\mathsf{E}(X^2) = \mathsf{E}[\mathsf{E}(X^2|N)] = \sigma^2\mathsf{E}(N) + \mu^2\mathsf{E}(N^2)$. 所以

$$Var(X) = E(X^2) - [E(X)]^2 = \sigma^2 E(N) + \mu^2 Var(N).$$

例 1.4.3 设 $\xi \sim U(0,1)$, 在 $\xi = x$ 的条件下 X 服从 B(n,x), 求 X 的分布律.

解 (解法一) 对整数 $0 \le k \le n$, 由全概率公式

$$P(X = k) = \int_{-\infty}^{\infty} P(X = k | \xi = x) f(x) dx = \int_{0}^{1} \binom{n}{k} x^{k} (1 - x)^{n - k} dx = \binom{n}{k} \frac{k! (n - k)!}{(n + 1)!} = \frac{1}{n + 1}.$$

(解法二) 令 $\phi(t) = \mathsf{E}(e^{itX})$, 注意到 $\mathsf{E}(e^{itX} \mid \xi = x) = (1 + x(e^{it} - 1))^n$. 于是

$$\phi(t) = \mathsf{E}[1 + \xi(\mathrm{e}^{\mathrm{i}t} - 1)]^n = \int_0^1 (1 + x(\mathrm{e}^{\mathrm{i}t} - 1))^n \mathrm{d}x = \frac{1}{n+1}(1 + \mathrm{e}^{\mathrm{i}t} + \mathrm{e}^{2\mathrm{i}t} + \dots + \mathrm{e}^{n\mathrm{i}t}).$$

所以 $P(X = k) = \frac{1}{n+1}, 0 \le k \le n.$

二、 随机过程基本概念

2.1 随机过程的概念

随机过程是一族随机变量,用于描述与时间相关的随机现象.

定义 2.1.1 假设 (Ω, \mathcal{F}, P) 是概率空间, (E, \mathcal{E}) 是可测空间, T 是指标集. 如果对任何 $t \in T$, X_t 是 (Ω, \mathcal{F}) 到 (E, \mathcal{E}) 上的可测映射, 则称 $X = (X_t, t \in T)$ 是 (Ω, \mathcal{F}, P) 上的以 (E, \mathcal{E}) 为状态空间的**随机过程**.

随机过程 $X = (X_t, t \in T)$ 的随机性通过 ω 体现出来,随机过程用映射来表示就是 $X_t(\omega)$: $T \times \Omega \to E$. 固定 t, $X_t(\cdot)$ 是随机变量; 固定 ω , 称 $X_t(\omega)$ 是 t 的函数,称为随机过程的**样本曲** 线或**样本轨迹**.

对过程的一次具体观察结果就是一条样本轨迹.

2.2 随机过程的分布刻画

定义 **2.2.1** (1-维分布) 给定 $t \in T$, X_t 是定义在概率空间 (Ω, \mathcal{F}, P) 的随机变量. 对每个 E 的子集 A, 定义

$$\nu_t(A) = P(\omega \in \Omega : X_t(\omega) \in A),$$

称 u 为随机过程 X 在 t 时刻的 1-维分布.

特别地, 对 $E = \mathbb{R}, T = (-\infty, +\infty)$ 的情况, 我们可以给出 X_t 的分布函数

$$F_t(x) = P(X_t \le x).$$

定义 **2.2.2** (k-维分布) 给定 $t_1, \ldots, t_k \in T$, (X_{t_1}, \ldots, X_{t_k}) 是定义在概率空间 (Ω, \mathcal{F}, P) 的 k-维随机向量. 对 E 的子集 A_1, \ldots, A_k , 定义

$$\nu_{t_1,\ldots,t_k}(A_1,\ldots,A_k) = P(\omega \in \Omega : X_{t_1}(\omega) \in A_1,\ldots,X_{t_k}(\omega) \in A_k),$$

称 $\nu_{t_1,...,t_k}$ 为随机过程 X 在 $t_1,...,t_k$ 时刻的 k-维分布.

特别地, 对 $E = \mathbb{R}, T = (-\infty, +\infty)$ 的情况, 我们可以给出 $(X_{t_1}, \ldots, X_{t_k})$ 的联合分布函数

$$F_{t_1,\ldots,t_k}(x_1,\ldots,x_k) = P(X_{t_1} \le x_1,\ldots,X_{t_k} \le x_k).$$

命题 2.2.1 随机过程 X 的有限维分布函数族 $\{F_{t_1,...,t_k}(x_1,...,x_k), k=1,2,...,t_i\in T\}$ 满足:

- (1) 横向相容: 对 $(1,2,\ldots,k)$ 的任何置换 τ , $F_{t_{\tau(1)},\ldots,t_{\tau(k)}}(x_{\tau(1)},\ldots,x_{\tau(k)}) = F_{t_1,\ldots,t_k}(x_1,\ldots,x_k)$.
- (2) 纵向相容: $\lim_{x_{k+1}\to\infty} F_{t_1,\dots,t_k,t_{k+1}}(x_1,\dots,x_k,x_{k+1}) = F_{t_1,\dots,t_k}(x_1,\dots,x_k)$.

例 2.2.1 有 10 把步枪, 其中 2 把已校正, 命中率为 p_1 , 其余 8 把未校正, 命中率为 p_2 , 这里 $p_1 > p_2$. 某人任取一把开始打靶, 令 X_n 为第 n 次命中的次数, 即

随机过程重点复习

$$X_n = \begin{cases} 1, & \text{第 } n \text{ 次命中,} \\ 0, & \text{第 } n \text{ 次未命中.} \end{cases}$$

- (1) 对 $n \neq m$, 求 (X_n, X_m) 的联合分布律和边缘分布律.
- (2) 以 S_n 表示前 n 次命中的次数, 求 S_n 的分布律.
- (3) 若 $p_1 = 1$, $p_2 = 0$, 写出所有样本函数和 S_n 的分布律, 并说明此时对 $n \neq m$, X_n 和 X_m 独立吗?
- 解 (1) 令事件 A 表示取到已校正的枪, 由全概率公式得

$$\begin{split} p_{11} &= \mathsf{P}(X_n = 1, X_m = 1) \\ &= \mathsf{P}(X_n = 1, X_m = 1 \mid A) \mathsf{P}(A) + \mathsf{P}(X_n = 1, X_m = 1 \mid \overline{A}) \mathsf{P}(\overline{A}) \\ &= 0.2 p_1^2 + 0.8 p_2^2. \end{split}$$

同理可求

$$p_{01} = p_{10} = 0.2p_1(1 - p_1) + 0.8p_2(1 - p_2), \quad p_{00} = 0.2(1 - p_1)^2 + 0.8(1 - p_2)^2.$$

进而,边缘分布

$$P(X_n = 0) = 0.2(1 - p_1) + 0.8(1 - p_2), P(X_n = 1) = 0.2p_1 + 0.8p_2.$$

(2) 同样利用全概率公式

$$P(S_n = k) = P(S_n = k \mid A)P(A) + P(S_n = k \mid \overline{A})P(\overline{A})$$

= 0.2C_n^k p₁^k (1 - p₁)^{n-k} + 0.8C_n^k p₂^k (1 - p₂)^{n-k}, k = 0, 1, ..., n.

(3) 若 A 发生,则百发百中;若 A 不发生,则永不命中. 因此 $\{X_n\}$ 只有两条样本函数 $(1,1,1,\ldots)$ 和 $(0,0,0,\ldots)$; $\{S_n\}$ 只有两条样本函数 $(1,2,3,\ldots)$ 和 $(0,0,0,\ldots)$. 于是 S_n 的分布律为

$$P(S_n = 0) = P(\overline{A}) = 0.8, \quad P(S_n = n) = 0.2.$$

而 X_n 与 X_m 不独立, 因为 $P(X_n = 1 \mid X_m = 1) = 1 \neq 0.2 = P(X_n = 1)$.

例 2.2.2 [简单随机游走] 甲乙两人游戏, 第 i 次甲赢的钱数为 X_i 元. 设 X_1,\ldots,X_n,\ldots 独立同分布, 满足

$$P(X_i = 1) = p, \quad P(X_i = -1) = q = 1 - p.$$

记前 n 次甲赢的总钱数为 S_n , 计算

- (1) S_n 的分布律;
- (2) $P(S_1 = 1, S_3 = 1, S_8 = 4)$.
- (3) 若 p = 0.36, 游戏一直到甲恰好赢 50 次为止, 问游戏需进行 100 次以上的概率约为多少?
- |解| (1)以 V_n 记前 n 次甲贏的总次数,则 $V_n \sim B(n,p)$,且 $S_n = V_n (n-V_n) = 2V_n n$.所以

(2) 由题意得

$$P(S_1 = 1, S_3 = 1, S_8 = 4) = P(S_1 = 1, S_3 - S_1 = 0, S_8 - S_3 = 3)$$

$$= P(S_1 = 1)P(S_3 - S_1 = 0)P(S_8 - S_3 = 3)$$

$$= p(2pq)(C_5^4p^4q) = 10p^6q^2.$$

(3) 以 W_{50} 记甲恰好赢 50 次时游戏进行的次数,则 $\{W_{50} > 100\} = \{V_{100} < 50\}$. 由中心极限定理, V_{100} 近似服从 N(100p, 100pq). 因此

$$\mathsf{P}(W_{50} > 100) = \mathsf{P}(V_{100} < 50) = \mathsf{P}(V_{100} \le 49) \approx \Phi\left(\frac{49 - 100p}{10\sqrt{pq}}\right) = \Phi(2.71) = 0.9966.$$

由此可见概率非常大.

- 一般情况下, 很难写出所有有限维分布. 下面介绍两种特殊情况:
- (1) 利用条件概率的链式法则计算 k-维分布 给定 $t_1, \ldots, t_k \in T$, 我们有

$$\nu_{t_1,\dots,t_k}(A_1,\dots,A_k) = \mathsf{P}(\omega \in \Omega : X_{t_1}(\omega) \in A_1,\dots,X_{t_k}(\omega) \in A_k)$$

$$= \mathsf{P}(X_{t_1} \in A_1)\mathsf{P}(X_{t_2} \in A_2 | X_{t_1} \in A_1) \cdots$$

$$\times \mathsf{P}(X_{t_k} \in A_k | X_{t_1} \in A_1,\dots,X_{t_{k-1}} \in A_{k-1})$$

由此, 如果知道随机过程 X 在各个不同时刻的条件概率, 就可以写出整个过程的分布.

(2) 考虑增量的分布

假设 $T \subseteq (-\infty, +\infty)$, $E = \mathbb{R}$. 给定 $t_1, \ldots, t_k \in T$, 不妨设 $t_1 < t_2 < \cdots < t_k$, 并考虑增量

$$X_{t_1}, X_{t_2} - X_{t_1}, X_{t_3} - X_{t_2}, \dots, X_{t_k} - X_{t_{k-1}},$$

如果知道上述增量的分布, 那么 X_{t_1}, \ldots, X_{t_k} 的分布便可以通过线性变换得到. 特别地, 当所有增量互相独立时, 只要知道任意两个时刻的增量的分布, 就可以完全确定整个过程的分布.

综上所述, 为了揭示随机过程的分布规律, 需要知道随机现象如何随时间推移而变化的内在机制.

2.3 随机过程的数字特征

(i) 数字特征

假设 $X = (X_t, t \in T)$ 是随机过程, $E = \mathbb{R}$.

如果对 $\forall t \in T$, $E|X_t| < \infty$, 记 $\mu_t = E(X_t)$, 称 μ_t , $t \in T$ 为**均值函数**.

如果对 $\forall t \in T$, $\mathsf{E}(X_t^2) < \infty$, 记 $\sigma_t^2 = \mathsf{Var}(X_t)$, 称 σ_t^2 , $t \in T$ 为**方差函数**, $r(s,t) = \mathsf{Cov}(X_s, X_t)$ 为**协方差函数**, $\rho(s,t) = \mathsf{E}(X_s X_t)$ 为 (自) 相关函数.

显然我们有 $r(s,t) = \rho(s,t) - \mu_s \mu_t$.

例 2.3.1 [余弦波过程] 求随机相位余弦波 $X(t) = a\cos(\omega t + \Theta), -\infty < t < +\infty, \Theta \sim U(0,2\pi)$ 的均值函数、方差函数和自相关函数.

解 由定义,

$$\mu_t = \mathsf{E}(X_t) = \int_0^{2\pi} a \cos(\omega t + \theta) \frac{1}{2\pi} d\theta = 0.$$

$$\rho(s,t) = \mathsf{E}(X_s X_t) = a^2 \int_0^{2\pi} \cos(\omega s + \theta) \cos(\omega t + \theta) \frac{1}{2\pi} \mathrm{d}\theta = \frac{a^2}{2} \cos(\omega t - s).$$

因此

$$\sigma_t^2 = \mathsf{Var}(X_t) = \mathsf{E}(X_t^2) - \left[\mathsf{E}(X_t)\right]^2 = \rho(t,t) - \mu_t^2 = \frac{a^2}{2}.$$

(ii) 两个随机过程之间的关系

设 $X = (X_t, t \in T_1)$ 和 $Y = (Y_s, s \in T_2)$ 都是概率空间 $(\Omega, \mathcal{F}, \mathsf{P})$ 上的随机过程. 如果对 $\forall m, n \geq 1, t_1, \ldots, t_m \in T_1$ 和 $s_1, \ldots, s_n \in T_2$ 有 $(X_{t_1}, \ldots, X_{t_m})$ 和 $(Y_{s_1}, \ldots, Y_{s_n})$ 相互独立,则称 $X = (X_t, t \in T_1)$ 和 $Y = (Y_s, s \in T_2)$ 相互独立.

对两个随机过程 $X = (X_t, t \in T_1)$ 和 $Y = (Y_s, s \in T_2)$,称 $\rho_{XY}(t, s) = \mathsf{E}(X_t Y_s)$, $t \in T_1$, $s \in T_2$ 为 X 和 Y 的互相关函数, $r_{XY}(t, s) = \mathsf{Cov}(X_t, Y_s) = \rho_{XY}(t, s) - \mu_X(t)\mu_Y(s)$, $t \in T_1$, $s \in T_2$ 为 X 和 Y 的互协方差函数.

如果对 $\forall t \in T_1, s \in T_2$, 恒有 $r_{XY}(t,s) = 0$, 则称随机过程 X 和 Y 是不相关的.

2.4 几类常见的随机过程

定义 2.4.1 (弱平稳过程) 假设 $X=(X_t,t\in T)$ 是实值随机过程, T 为实数集, 并且对 $\forall t\in T$, 二阶矩 $E(X_t^2)<\infty$. 如果

- (1) 均值函数为常数, 即 $\mu_t = \mu$,
- (2) 相关函数 $\rho(s,t)$ 仅依赖于时间间隔长度 t-s, 而与时刻 s 和 t 无关,则称 $\mathbf{X}=(X_t,t\in T)$ 是弱平稳过程.

定义 2.4.2 (强平稳过程) 假设 $X = (X_t, t \in T)$ 是状态空间为 E 的随机过程. 如果对 $\forall t, t_1, \ldots, t_k \in T$,随机向量 $(X_{t_1}, X_{t_2}, \ldots, X_{t_k})$ 和 $(X_{t_1+t}, X_{t_2+t}, \ldots, X_{t_k+t})$ 具有相同分布,即

$$\nu_{t_1,\dots,t_k} = \nu_{t_1+t,\dots,t_k+t},$$

则称 $X = (X_t, t \in T)$ 为强平稳过程.

- 一般情况下,强平稳过程并不一定是弱平稳过程,需要二阶矩存在的条件.
- **例 2.4.1** 设 $X(t) = A\cos t + B\sin t$, $t \in \mathbb{R}$, A 与 B 独立, 满足 $\mathsf{E}(A) = \mathsf{E}(B) = 0$, $\mathsf{Var}(A) = \mathsf{Var}(B) = 1$.
 - (1) 计算均值函数和自相关函数, 问 $\{X(t)\}$ 是弱平稳过程吗?
 - (2) 若 $P(A = \pm 1) = P(B = \pm 1) = 0.5$, 求 X(0) 和 $X(\frac{\pi}{4})$ 的分布律,问 $\{X(t)\}$ 是强平稳过程吗?
 - (3) 若 A, B 均服从 N(0,1), 求 X(0), $X\left(\frac{\pi}{4}\right)$ 和 $X(0)+X\left(\frac{\pi}{4}\right)$ 的分布,问 $\{X(t)\}$ 是强平稳过程吗?

解 (1) 由定义

$$\mu_X(t) = \mathsf{E}[A\cos t + B\sin t] = \mathsf{E}(A)\cos t + \mathsf{E}(B)\sin t = 0$$

为常数,而

$$\rho_X(t_1, t_2) = \mathsf{E}[(A\cos t_1 + B\sin t_1)(A\cos t_2 + B\sin t_2)] = \cos(t_2 - t_1)$$

只与 t_2-t_1 有关,因此 $\{X(t)\}$ 是弱平稳过程.

(2) 注意到
$$X(0) = A$$
, $X\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}(A+B)$. 因此 $X(0)$ 的分布律为
$$\mathsf{P}(X(0) = \pm 1) = \mathsf{P}(A = \pm 1) = 0.5.$$

 $X\left(\frac{\pi}{4}\right)$ 的分布律为

$$\begin{split} \mathsf{P}\left(X\Big(\frac{\pi}{4}\Big) = \sqrt{2}\right) &= \mathsf{P}(A = 1, B = 1) = \frac{1}{4}, \quad \mathsf{P}\left(X\Big(\frac{\pi}{4}\Big) = -\sqrt{2}\right) = \mathsf{P}(A = -1, B = -1) = \frac{1}{4}, \\ \mathsf{P}\left(X\Big(\frac{\pi}{4}\Big) = 0\right) &= \mathsf{P}(A = 1, B = -1) + \mathsf{P}(A = -1, B = 1) = \frac{1}{2}. \end{split}$$

同样由 (1) 知 $\{X(t)\}$ 是弱平稳过程但不是强平稳过程.

(3) 由正态分布的线性变换不变性可知, $(X_{t_1}, X_{t_2}, \ldots, X_{t_n})$ 服从 n 维正态分布, 所以 $\{X(t)\}$ 是正态过程, 因此 $\{X(t)\}$ 是弱平稳过程也是强平稳过程. 下面进行计算

$$X(0) = A \sim N(0,1), \quad X\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}(A+B) \sim N(0,1), \quad X(0) + X\left(\frac{\pi}{4}\right) = \frac{2+\sqrt{2}}{2}A + \frac{\sqrt{2}}{2}B \sim N(0,2+\sqrt{2}).$$

定义 2.4.3 (增量平稳过程) 假设 $X = (X_t, t \in T)$ 是实值随机过程, T 是实数集. 如果对 $\forall s < t, X_t - X_s$ 的分布仅与时间间隔长度 t - s 有关, 而与 s 和 t 无关, 那么称 $X = (X_t, t \in T)$ 是增量平稳过程.

定义 2.4.4 (增量独立过程) 假设 $X = (X_t, t \in T)$ 是实值随机过程, T 为实数集. 如果对 $\forall t_1 < t_2 < \cdots < t_k$, 随机变量

$$X_{t_1}, X_{t_2} - X_{t_1}, \dots, X_{t_k} - X_{t_{k-1}}.$$

相互独立, 那么称 $X = (X_t, t \in T)$ 是增量独立过程.

命题 **2.4.1** 设 $X = (X_t, t \in T)$ 是增量独立过程, $X_0 = 0$, 则

- (1) 有限维分布由所有增量 $X_t X_s$ 分布确定;
- (2) $Cov(X_t, X_s) = Var(X_{\min\{s,t\}}).$

例 2.4.2 设 X_1, \ldots, X_n, \ldots 独立同分布, $S_0 = 0$. 对 $n \ge 1$, 定义 $S_n = \sum_{i=1}^n X_i$.

- (1) 证明: $\{S_n: n=0,1,\ldots\}$ 是平稳独立增量过程.
- (2) 若 $\mathsf{E}(X_1) = \mu$, $\mathsf{Var}(X_1) = \sigma^2$. 计算 $\{S_n\}$ 的均值函数和自相关函数.

解 (1) 证明: 对任意 n > m > 0, $S_n - S_m = \sum_{i=m+1}^n X_i$, 因为 X_1, X_2, \ldots, X_n 独立同分布, 因此

$$(X_{m+1}, X_{m+2}, \dots, X_n) \stackrel{d}{=} (X_1, X_2, \dots, X_{n-m}).$$

所以 $S_n - S_m$ 与 S_{n-m} 同分布, 即 $\{S_n\}$ 是增量平稳过程.

另一方面, 对任意 $n \ge 3$, $0 \le m_1 < m_2 < \dots < m_n$, 由于 X_1, X_2, \dots, X_{m_n} 独立, 所以

$$\sum_{i=m_1+1}^{m_2} X_i, \sum_{i=m_2+1}^{m_3}, \dots, \sum_{i=m_{n-1}+1}^{m_n} X_i$$

独立, 这说明 $S_{m_2}-S_{m_1},\ldots,S_{m_n}-S_{m_{n-1}}$ 独立, 因此 $\{S_n\}$ 是增量独立过程. 综上所述, $\{S_n\}$ 是平稳独立增量过程.

(2) 由定义

$$\mu_S(n) = \mathsf{E}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \mathsf{E}(X_i) = n\mu.$$

对 $0 \le m \le n$,

$$\mathsf{Cov}(S_m, S_n) = \mathsf{Cov}(S_m, S_m) + \mathsf{Cov}(S_m, S_n - S_m) = \mathsf{Var}(S_m) = m\sigma^2$$

于是

$$\mathsf{E}(S_m S_n) = \mathsf{Cov}(S_m S_n) + \mathsf{E}(S_m) \mathsf{E}(S_n) = m\sigma^2 + mn\mu^2$$

因此对 $m \ge 0$, $n \ge 0$, 有 $\rho_S(m, n) = mn\mu^2 + \min(m, n)\sigma^2$.

定义 2.4.5 (正态过程) 假设 $X=(X_t,t\in T)$ 是实值随机过程, T 为实数集. 如果任意 k-维分布都是联合正态分布, 则称 $X=(X_t,t\in T)$ 为正态过程.

命题 2.4.2 如果 $X = (X_t, t \in T)$ 是弱平稳正态过程, 那么它一定是强平稳正态过程.

由定义知, $X = (X_t, t \in T)$ 是正态过程当且仅当它对任意有限线性组合是正态随机变量.

定义 **2.4.6** (白噪声) 假设 $X = (X_t, t \in T)$ 是状态空间为 E 的随机过程, 如果 X_s 和 X_t 互不相关, 则称 $X = (X_t, t \in T)$ 为白噪声.

例 2.4.3 设 $X = (X_t, t \ge 0)$ 是正态过程, $\mu_X(t) = t$, $r_X(s,t) = st + 1$, 求 X_1 , X_2 , $X_1 + X_2$ 的分布.

解 计算方差

$$\sigma_X^2(t) = r_X(t,t) = t^2 + 1.$$

因此 $X_t \sim N(t, t^2 + 1)$. 即 $X_1 \sim N(1, 2), X_2 \sim N(2, 5)$.

又因为 $X_1 + X_2$ 服从正态分布, 而

$$\mathsf{E}(X_1 + X_2) = 1 + 2 = 3$$
, $\mathsf{Var}(X_1 + X_2) = \mathsf{Var}(X_1) + \mathsf{Var}(X_2) + 2r_X(1, 2) = 13$.

所以 $X_1 + X_2 \sim N(3, 13)$.

三、 Poisson 过程

3.1 Poisson 流

Poisson 流用于描述随机服务系统, 令 N(0) = 0, 当 t > 0 时, N(t) 表示 (0,t] 时间内某服务系统接受顾客服务的次数. 因此 $N = (N(t), t \ge 0)$ 是连续时间、取非负整数值的随机过程, 亦称作计数过程, 其具有下列属性:

(1) 平稳性——前往某服务设施寻求服务的顾客流是平稳的

$$N(t) - N(s) \stackrel{d}{=} N(t - s), \quad s < t.$$

(2) 独立性——各个顾客在某时刻是否前往某服务设施寻求服务相互独立

$$N(t) - N(s)$$
 与 $N(s)$ 独立.

(3) 稀有性——短时间内, 最多只有一名顾客寻求服务

$$P(N(t + \Delta t) - N(t) = 1) = \lambda \Delta t + o(\Delta t),$$

$$P(N(t + \Delta t) - N(t) > 2) = o(\Delta t).$$

其中,参数 λ 称为 Poisson 流的强度,它的大小表示该服务系统的繁忙程度,

令 N(0)=0, 当 t>0 时, N(t) 表示强度为 λ 的 Poisson 流在 (0,t] 时间内的顾客数. 那么 N(t) 服从参数为 λt 的 Poisson 分布:

$$P(N(t) = k) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}, \quad k = 0, 1, 2, \dots$$

3.2 齐次 Poisson 过程

定义 3.2.1 假设 $N = (N(t), t \ge 0)$ 是非负整数值随机过程, 并且具有下列性质:

- (1) 初始值为 0: P(N(0) = 0) = 1.
- (2) 平稳性: 假设 s < t, N(t) N(s) 与 N(t s) 具有相同分布:

$$N(t) - N(s) \stackrel{d}{=} N(t - s), \quad s < t.$$

- (3) 独立性: 假设 s < t, N(t) N(s) 与 N(t s) 相互独立.
- (4) Poisson 分布:

$$P(N(t) = k) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}, \quad k = 0, 1, 2, \dots.$$

则称 $N = (N(t), t \ge 0)$ 是强度为 λ 的 Poisson 过程.

- (i) Poisson 过程的数字特征
- (1) 均值函数

$$\mu_t = \mathsf{E}[N(t)] = \lambda t.$$

于是 $\lambda = E[N(1)] = \frac{E[N(t)]}{t}$ 表示单位时间内顾客寻求服务的个数,同时是平均强度.

(2) 方差函数

$$\operatorname{Var}(N(t)) = \lambda t.$$

(3) 相关函数

假设 s < t, 则

$$\begin{split} \mathsf{E}[N(s)N(t)] &= \mathsf{E}\big[N(s)\big(N(t) - N(s) + N(s)\big)\big] \\ &= \mathsf{E}[N(s)(N(t) - N(s))] + \mathsf{E}[N^2(s)] \\ &= \mathsf{E}[N(s)]\mathsf{E}[N(t) - N(s)] + \mathsf{E}[N^2(s)] \\ &= \mathsf{E}[N(s)]\mathsf{E}[N(t - s)] + \mathsf{E}[N^2(s)] \\ &= \lambda^2 st + \lambda s. \end{split}$$

因此 $E[N(s)N(t)] = \lambda^2 st + \lambda \min(s, t)$.

(4) 协方差函数

假设 s < t, 利用 (1) 和 (3) 的结论可得

$$\mathsf{Cov}(N(s),N(t)) = \mathsf{E}[N(s)N(t)] - \mathsf{E}[N(s)]\mathsf{E}[N(t)] = \lambda s.$$

因此 $Cov(N(s), N(t)) = \lambda \min(s, t)$.

- (ii) Poisson 过程的分布规律
- (1) 1-维分布

$$N(0) = 0, \quad N(t) \sim \mathcal{P}(\lambda t), \quad t > 0.$$

(2) k-维分布

假设 $t_1 < t_2 < \cdots < t_k$, 则

$$\begin{split} &\mathsf{P}(N(t_1) = m_1, N(t_2) = m_2, \dots, N(t_k) = m_k) \\ &= \mathsf{P}(N(t_1) = m_1, N(t_2) - N(t_1) = m_2 - m_1, \dots, N(t_k) - N(t_{k-1}) = m_k - m_{k-1}) \\ &= \mathsf{P}(N(t_1) = m_1) \mathsf{P}(N(t_2) - N(t_1) = m_2 - m_1) \cdots \mathsf{P}(N(t_k) - N(t_{k-1}) = m_k - m_{k-1}) \\ &= \frac{(\lambda t_1)^{m_1} \mathrm{e}^{-\lambda t_1}}{m_1!} \cdots \frac{(\lambda (t_k - t_{k-1}))^{m_k - m_{k-1}} \mathrm{e}^{-\lambda (t_k - t_{k-1})}}{(m_k - m_{k-1})!}. \end{split}$$

(3) 条件分布

对 $s < t, m \le n, 有$

$$P(N(t) = n \mid N(s) = m) = e^{-\lambda(t-s)} \frac{[\lambda(t-s)]^{n-m}}{(n-m)!},$$

$$P(N(s) = m \mid N(t) = n) = \binom{n}{m} \left(\frac{s}{t}\right)^m \left(1 - \frac{s}{t}\right)^{n-m}.$$

也就是说, 在 N(t) = n 的条件下, $N(s)|_{N(t)=n} \sim B\left(n, \frac{s}{t}\right)$.

- **例 3.2.1** 顾客依 Poisson 过程到达某商店, 速率为 4 人/小时. 已知商店上午 9:00 开门.
- (1) 求到 9:30 时仅到 1 位顾客, 而到 11:30 时已到 5 位顾客的概率.
- (2) 求第 2 位顾客在 10 点前到达的概率.
- (3) 求第 1 位顾客在 9:30 前到达且第 2 位顾客在 10:00 前到达的概率.

解 以上午 9:00 作为 0 时刻,以 1 小时作为单位时间. 设 N(t) 表示 (0,t] 内来到的顾客数,则 $N=\{N(t),t>0\}$ 是 $\lambda=4$ 的 Poisson 过程.

(1) 由题意

$$P(N(0.5) = 1, N(2.5) = 5) = P(N(0.5) = 1, N(2.5) - N(0.5) = 4)$$

$$= P(N(0.5) = 1)P(N(2.5) - N(0.5) = 4)$$

$$= P(N(0.5) = 1)P(N(2) = 4)$$

$$= \frac{2^1}{1!}e^{-2} \cdot \frac{8^4}{4!}e^{-8} = 0.0155.$$

(2) 令 S_n 表示第 n 个顾客到达的时刻,则

$$P(S_2 \le 1) = P(N(1) \ge 2) = 1 - e^{-4} - 4e^{-4} = 1 - 5e^{-4}$$

(3) 类似地,

$$\begin{split} \mathsf{P}(S_1 \leq 0.5, S_2 \leq 1) &= \mathsf{P}(N(0.5) \geq 1, N(1) \geq 2) \\ &= \mathsf{P}(N(0.5) = 1, N(1) - N(0.5) \geq 1) + \mathsf{P}(N(0.5) \geq 2) \\ &= \mathsf{P}(N(0.5) = 1) \mathsf{P}(N(0.5) \geq 1) + \mathsf{P}(N(0.5) \geq 2) \\ &= 2\mathrm{e}^{-2}(1 - \mathrm{e}^{-2}) + 1 - \mathrm{e}^{-2} - 2\mathrm{e}^{-2} = 1 - \mathrm{e}^{-2} - 2\mathrm{e}^{-4}. \end{split}$$

(iii) Poisson 过程的样本曲线

根据定义, $N = (N(t), t \ge 0)$ 是连续时间、取非负整数值的随机过程, 因此样本曲线一定是阶梯型曲线.

由于 N(0) = 0, 所以在第一个顾客到达之前, N(t) = 0. 令 S_1 表示第一个顾客到达时刻, 则有 N(t) = 0, $t < S_1$; $N(S_1) = 1$. 一般地, 令 S_n 表示第 n 个顾客到达时刻, 那么有

$$N(t) = n - 1, \ S_{n-1} \le t < S_n; \ N(S_n) = n.$$

这样, $S_1, S_2, \ldots, S_n, \ldots$ 是 Poisson 过程的跳跃点, 跳跃高度为 1.

记 $S_0 = 0$, 于是实直线上点列 $S_0, S_1, S_2, \dots, S_n, \dots$, 可以看作是 Poisson 流, 从而

$$N(t) = \sharp \{n \ge 1; S_n \le t\} = \max_n \{n \ge 1; S_n \le t\}.$$

(iv) 到达时刻的分布

由于 $S_n > t \Leftrightarrow N(t) \leq n-1, \ t \geq 0$, 所以

$$\mathsf{P}(S_n > t) = \mathsf{P}(N(t) \le n - 1) = \sum_{k=0}^{n-1} \mathsf{P}(N(t) = k) = \sum_{k=0}^{n-1} \frac{(\lambda t)^k \mathrm{e}^{-\lambda t}}{k!}, \quad t \ge 0,$$

求导得, $S_n \sim \frac{\lambda^n t^{n-1}}{(n-1)!} e^{-\lambda t}$, 即 $S_n \sim \Gamma(n, \lambda)$.

(v) 等候时间的分布

令 $X_0 = 0, X_1 = S_1 - S_0, \dots, X_n = S_n - S_{n-1}$, 于是 $X_1 \sim \text{Exp}(\lambda)$. 假设 $X_{n-1} \sim \text{Exp}(\lambda)$, 则

$$P(X_n > t) = P(S_n - S_{n-1} > t)$$

$$= \int_0^\infty P(S_n - S_{n-1} > t | S_{n-1} = s) P(S_{n-1} = s) ds$$

$$= \int_0^\infty P(N(t+s) - N(s) = 0) P(S_{n-1} = s) ds$$

$$= \int_0^\infty e^{-\lambda t} \lambda e^{-\lambda s} ds = e^{-\lambda t}.$$

所以, $X_n \sim \text{Exp}(\lambda)$, 亦有结论 $X_1, X_2, \ldots, X_n, \ldots$ 相互独立.

(vi) Poisson 过程的另一种解释

假设 $X_1, X_2, \cdots, X_n, \cdots$ 是一列独立同分布的指数随机变量,令 $S_0 = 0, S_n = \sum_{k=1}^n X_k$. 定义

$$N(0) = 0, N(t) = \max_{n} \{ n \ge 1, S_n \le t < S_{n+1} \}, \quad t > 0.$$

于是 $N = (N(t), t \ge 0)$ 是强度为 λ 的 Poisson 过程.

定理 3.2.1 $N=(N(t),t\geq 0)$ 是强度为 λ 的 Poisson 过程当且仅当其时间间隔 $X_1,X_2,\ldots,X_n,\ldots$ 独立同分布于参数为 λ 的指数分布.

(vii) 到达时刻的条件分布

定理 **3.2.2** 假设 $N = (N(t), t \ge 0)$ 是参数为 λ 的 Poisson 过程, 令 S_1, S_2, \ldots 为顾客依次到达时刻. 给定 t > 0, 那么

$$(S_1, S_2, \dots, S_n | N(t) = n) \stackrel{d}{=} (U_{(1)}, U_{(2)}, \dots, U_{(n)}),$$

其中 $U_{(1)}, U_{(2)}, \ldots, U_{(n)}$ 为 (0,t) 上 n 个独立同分布均匀随机变量 U_1, U_2, \ldots, U_n 的次序统计量.

推论 **3.2.1** 假设 $N=(N(t),t\geq 0)$ 是参数为 λ 的 Poisson 过程. 对 $t>s\geq 0$, 令 W_1,W_2,\ldots 分别为 (s,t] 内发生的第 1 个事件,第 2 个事件,… 的到达时刻. 任意给定正整数 n,则

$$(W_1, W_2, \dots, W_n | N(t) - N(s) = n) \stackrel{d}{=} (U_{(1)}, U_{(2)}, \dots, U_{(n)}),$$

其中 $U_{(1)}, U_{(2)}, \ldots, U_{(n)}$ 为 (s,t) 上 n 个独立同分布均匀随机变量 U_1, U_2, \ldots, U_n 的次序统计量.

例 3.2.2 保险理赔按速率 λ 的 Poisson 过程 $\{N(t)\}$ 到达. 设各人理赔金额独立同分布 (且独立于此 Poisson 过程), 具有均值为 μ 的分布 G. 以 S_i 和 C_i 分别表示第 i 次理赔的时间和金额. 采用贴现算法, 即 t 时刻的 1 元相当于 0 时刻的 $e^{-\alpha t}$ 元, 则到 t 时刻为止总理赔的贴现价值为

$$D(t) = \sum_{i=1}^{N(t)} e^{-\alpha S_i} C_i,$$

计算 E(D(t)).

解 由到达时刻的条件分布知,

$$(S_1, S_2, \dots, S_n | N(t) = n) \stackrel{d}{=} (U_{(1)}, U_{(2)}, \dots, U_{(n)}),$$

其中 $U_{(1)}, U_{(2)}, \ldots, U_{(n)}$ 为 (0,t) 上 n 个独立同分布均匀随机变量 U_1, U_2, \ldots, U_n 的次序统计量. 因此

$$\mathsf{E}[D(t) \mid N(t) = n] = \mathsf{E}\left[\sum_{i=1}^{n} C_{i} \mathrm{e}^{-\alpha U_{(i)}}\right] = \sum_{i=1}^{n} \mathsf{E}(C_{i}) \mathsf{E}(\mathrm{e}^{-\alpha U_{(i)}}) = \mu \mathsf{E}\left[\sum_{i=1}^{n} \mathrm{e}^{-\alpha U_{i}}\right] = n\mu \frac{1 - \mathrm{e}^{-\alpha t}}{\alpha t}.$$

所以

$$\mathsf{E}[D(t)] = \mathsf{E}[\mathsf{E}(D(t) \mid N(t))] = \frac{\lambda \mu}{\alpha} (1 - \mathrm{e}^{-\alpha t}).$$

3.3 Poisson 过程的合并与分解

定理 **3.3.1** (Poisson 过程的合并) 假设 $N_1 = (N_1(t), t \ge 0)$ 和 $N_2 = (N_2(t), t \ge 0)$ 是两个独立 Poisson 过程, 参数分别为 λ_1 和 λ_2 . 令 $N(t) = N_1(t) + N_2(t)$, 那么 $N = (N(t), t \ge 0)$ 是 Poisson 过程, 参数为 $\lambda_1 + \lambda_2$.

上述结论对任意有限个 Poisson 过程也成立.

例 3.3.1 某银行有两个窗口可以接受服务. 上午九点钟小王到达这个银行, 此时两个窗口分别有一个顾客在接受服务, 另外有 2 个顾客排在小王的前面等待接受服务, 一会儿又来了很多顾客. 假设服务的规则是先来先服务, 也就是说一旦有一个窗口顾客接受完服务, 那么排在队伍中的第一个顾客就马上在此窗口接受服务. 假设各个顾客接受服务的时间独立同分布, 而且服从均值为 20 分钟的指数分布. 问: 小王在十点钟之前能够接受服务的概率?

解 以上午九点钟为 0 时刻,以 1 小时作为单位时间.对 i = 1, 2,令 $N_i(t)$ 表示 (0,t]内第 i个窗口完成服务的顾客数,则 $\{N_i(t); t \ge 0\}$ 是强度为 3 的 Poisson 过程,且 $\{N_1(t)\}$ 和 $\{N_2(t)\}$ 相互独立.

令 N(t) 表示 (0,t] 内这两个窗口完成服务的顾客总数,则由 Poisson 过程的合并可知 $N(t) = N_1(t) + N_2(t)$,且 $\{N(t)\}$ 是强度为 6 的 Poisson 过程.以 S_i 表示第 i 个顾客服务完成的时刻,则所求概率为

$$P(S_3 \le 1) = P(N(1) \ge 3) = 1 - e^{-6} - 6e^{-6} - 18e^{-6} = 0.938.$$

定理 3.3.2 (Poisson 过程的分解) 假设寻求某种服务的顾客分为两类,来自类型 I 的可能性为 p,来自类型 II 的可能性为 1-p. 令 t>0,用 N(t)表示 (0,t]内寻求服务的顾客总数, $N_1(t)$ 表示 (0,t]内寻求服务的 I型顾客个数, $N_2(t)$ 表示 (0,t]内寻求服务的 I型顾客个数。假设 $\mathbf{N}=(N(t),t\geq0)$ 是参数为 λ 的 Poisson 过程,那么 $\mathbf{N}_1=(N_1(t),t\geq0)$ 和 $\mathbf{N}_2=(N_2(t),t\geq0)$ 分别是参数为 λp 和 $\lambda(1-p)$ 的 Poisson 过程,且二者相互独立。

上述结论对多个类型服务也成立.

- **例 3.3.2** 设 N(t) 表示手机在 (0,t] 天内收到的短信数. 假设 $\{N(t); t \geq 0\}$ 是强度为 10 条的 Poisson 过程, 其中每条短信独立地以概率 0.2 是垃圾短信. 求:
 - (1) 一天内没有收到垃圾短信的概率;
 - (2) 第一天内收到 3 条有用短信, 1 条垃圾短信, 第二天没有收到垃圾短信的概率.

解 以 X(t), Y(t) 分别表示手机在 (0,t] 天内收到的垃圾短信数和有用短信数,则 $\{X(t); t \geq 0\}$ 和 $\{Y(t); t \geq 0\}$ 分别是强度为 2 和 8 的 Poisson 过程, 且相互独立.

(1) $P(X(1) = 0) = e^{-2} = 0.135$.

(2)

$$\begin{split} \mathsf{P}(Y(1) = 3, X(1) = 1, X(2) - X(1) = 0) \\ &= \mathsf{P}(Y(1) = 3) \mathsf{P}(X(1) = 1, X(2) - X(1) = 0) \\ &= \mathsf{P}(Y(1) = 3) \mathsf{P}(X(1) = 1) \mathsf{P}(X(2) - X(1) = 0) \\ &= \frac{8^3}{3!} \mathrm{e}^{-8} \cdot 2 \mathrm{e}^{-2} \cdot \mathrm{e}^{-2} = \frac{512}{3} \mathrm{e}^{-12}. \end{split}$$

3.4 复合 Poisson 过程

定义 **3.4.1** 假设 $N=(N(t),t\geq 0)$ 是强度为 λ 的 Poisson 过程, $\xi_1,\xi_2,\ldots,\xi_n,\ldots$ 是一列随机变量. 令

$$Z(t) = \sum_{i=1}^{N(t)} \xi_i,$$

于是, $\mathbf{Z} = (Z(t), t \ge 0)$ 是连续时间参数、取实值的随机过程. 一般情况下, $\mathbf{Z} = (Z(t), t \ge 0)$ 不再是 Poisson 过程, 称 $\mathbf{Z} = (Z(t), t \ge 0)$ 为复合 Poisson 过程.

定理 **3.4.1** 在如上定义的基础上,进一步假设 $\xi_1, \xi_2, ..., \xi_n, ...$ 是一列独立同分布随机变量,均值为 μ , 方差为 σ^2 , 并且与 $N = (N(t), t \ge 0)$ 独立,则

- (1) $EZ(t) = \mu \lambda t$, $Var(Z(t)) = (\mu^2 + \sigma^2)\lambda t$;
- (2) $Z = (Z(t), t \ge 0)$ 增量独立且增量平稳.

例 3.4.1 某零件在运行中会受到撞击. 记在 (0,t] 内受到的撞击次数为 N(t), 设 $\{N(t)\}$ 是 参数为 λ 的 Poisson 过程. 各次撞击带来的磨损量分别为 ξ_1,ξ_2,\ldots , 假设它们独立同服从参数为 β 的指数分布, 且与 $\{N(t)\}$ 独立. 如果磨损量大于 $\alpha>0$, 那么更换零件. 计算零件的平均寿命.

解 (解法一) 令
$$\eta$$
 为此零件的寿命, $Z(t) = \sum_{k=1}^{N(t)} \xi_k$, 则

$$\eta = \inf\{t > 0 : Z(t) > \alpha\}.$$

于是
$$E(\eta) = \int_0^\infty P(\eta > t) dt = \int_0^\infty P(Z(t) \le \alpha) dt$$
. 而由全概率公式

$$P(Z(t) \le \alpha) = \sum_{n=0}^{\infty} P(Z(t) \le \alpha \mid N(t) = n) P(N(t) = n) = \sum_{n=0}^{\infty} P\left(\sum_{k=1}^{n} \xi_k \le \alpha\right) P(N(t) = n).$$

令 $M(t) = \sup \left\{ n \geq 0 : \sum_{k=1}^n \xi_k \leq t \right\}$, 则 $\{M(t)\}$ 是参数为 β 的 Poisson 过程. 因此

$$P\left(\sum_{k=1}^{n} \xi_k \le \alpha\right) = P(M(\alpha) \ge n).$$

综合上述, 我们有

$$\mathsf{E}(\eta) = \int_0^\infty \sum_{n=0}^\infty \frac{(\lambda t)^n}{n!} \mathrm{e}^{-\lambda t} \mathsf{P}(M(\alpha) \ge n) \mathrm{d}t = \sum_{n=0}^\infty \int_0^\infty \frac{(\lambda t)^n}{n!} \mathrm{e}^{-\lambda t} \mathsf{P}(M(\alpha) \ge n) \mathrm{d}t.$$

注意到

$$\int_0^\infty \frac{(\lambda t)^n}{n!} \mathrm{e}^{-\lambda t} \mathrm{d}t = \frac{1}{\lambda}, \quad \mathsf{E}(M(\alpha)) = \sum_{n=0}^\infty \mathsf{P}(M(\alpha) > n),$$

所以
$$\mathsf{E}(\eta) = \frac{1}{\lambda} \sum_{n=0}^\infty \mathsf{P}(M(\alpha) \geq n) = \frac{1 + \mathsf{E}(M(\alpha))}{\lambda} = \frac{1 + \alpha\beta}{\lambda}.$$

(解法二) 令 $S_0=0$, S_n 为第 n 次撞击发生的时刻, $T_n=S_n-S_{n-1}$, $n\geq 1$. 令 X 为磨损量首次大于 α 时 受到的撞击数目, η 为此零件的寿命, 于是

$$\eta = S_X, \quad X = \min\{n \ge 1 : \xi_1 + \xi_2 + \dots + \xi_n > \alpha\}.$$

由于 $\{\xi_1, \xi_2, \dots\}$ 与 $\{N(t), t \ge 0\}$ 独立, 所以

$$\mathsf{E}(S_X|X=n) = \mathsf{E}\left(\sum_{i=1}^n T_i \middle| X=n\right) = \mathsf{E}\left(\sum_{i=1}^n T_i\right) = \frac{n}{\lambda}.$$

于是 $\mathsf{E}(S_X) = \mathsf{E}[\mathsf{E}(S_X|X)] = \frac{1}{\lambda}\mathsf{E}(X)$. 同样地,令 $M(t) = \sup\left\{n \geq 0 : \sum_{k=1}^n \xi_k \leq t\right\}$,则 $\{M(t)\}$ 是参数为 β 的 Poisson 过程. 而 X 是此过程中时刻 α 后首次发生的事件,因此 $X = M(\alpha) + 1$. 所以

$$\mathsf{E}(\eta) = \frac{\mathsf{E}(X)}{\lambda} = \frac{1 + \mathsf{E}(M(\alpha))}{\lambda} = \frac{1 + \alpha\beta}{\lambda}.$$

(解法三) 令 η 为此零件的寿命, 记 $f(\alpha)=\mathsf{E}(\eta)$. 令 $S_0=0,\,S_n$ 为第 n 次撞击时刻, $T_n=S_n-S_{n-1},\,n\geq 1.$

- (1) 如果 $\alpha = 0$, 则 $\eta = S_1 = T_1$, 所以 $f(0) = \mathsf{E}(\eta) = \frac{1}{\lambda}$.
- (2) 设 $\alpha > 0$, 则零件至少可经过 1 次撞击,之后的撞击时间间隔 T_2, T_3, \ldots i.i.d. $\sim \text{Exp}(\lambda)$ 且与 T_1 独立. 因此之后形成的计数过程 $\{N_1(t); t \geq 0\}$ 仍是参数为 λ 的 Poisson 过程且与 T_1 独立. 其中 $N_1(t) = N(T_1 + t) N(T_1)$.

第 1 次撞击的磨损量 $\xi_1 \sim \text{Exp}(\beta)$, 且 $\{\xi_1, T_1\}$ 与 $\{\xi_n, N_1(t); n \geq 1, t \geq 0\}$ 独立.

如果
$$\xi_1 = x > \alpha$$
, 则 $\eta = T_1$, 所以 $\mathsf{E}(\eta | \xi_1 = x) = \mathsf{E}(T_1) = \frac{1}{\lambda}$.

如果 $\xi_1 = x \le \alpha$, 则还需磨损量大于 $\alpha - x$, 所以

$$\mathsf{E}(\eta | \xi_1 = x) = \mathsf{E}(T_1) + f(\alpha - x) = \frac{1}{\lambda} + f(\alpha - x).$$

由全期望公式:

$$f(\alpha) = \mathsf{E}(\eta) = \int_0^\infty \mathsf{E}(\eta|\xi_1 = x) f_{\xi_1}(x) \mathrm{d}x = \frac{1}{\lambda} + \beta \mathrm{e}^{-\alpha\beta} \int_0^\alpha \mathrm{e}^{\beta u} f(u) \mathrm{d}u.$$

从而可求得 $f(\alpha) = \frac{1 + \alpha \beta}{\lambda}$.

3.5 非齐次 Poisson 过程

- (1) 初始条件: $N(0) = 0, N(t) \ge 0$;
- (2) 独立性: 假设 s < t, 则 N(t) N(s) 与 N(s) 独立;
- (3) 稀有性: 存在一个非负函数 $\lambda(t)$ 使得

$$P(N(t + \Delta t) - N(t) = 1) = \lambda(t)\Delta t + o(\Delta t),$$

$$P(N(t + \Delta t) - N(t) \ge 2) = o(\Delta t).$$

其中参数 $\lambda(t)$ 被称为 Poisson 流的强度函数, 它的大小表示该服务系统的繁忙程度.

定义 **3.5.1** 在上述假设下,N(t) 服从参数为 $m(t) = \int_0^t \lambda(u) du$ 的 Poisson 分布. 特别地,对 $\forall s < t$,有

$$P(N(t) - N(s) = k) = \frac{[m(t) - m(s)]^k}{k!} e^{-[m(t) - m(s)]}, \ \forall k \ge 0,$$

称 $N = (N(t), t \ge 0)$ 是强度为 $\lambda(\cdot)$ 的非齐次 Poisson 过程.

- (i) 基本性质
- (1) EN(t) = m(t), VarN(t) = m(t).
- (2) 假设 s < t, 由增量独立与增量平稳的性质, 得

$$\begin{split} \mathsf{E} N(s) N(t) &= \mathsf{E} [N(s) (N(t) - N(s) + N(s))] \\ &= \mathsf{E} N(s) \mathsf{E} (N(t) - N(s)) + \mathsf{E} N(s)^2 \\ &= m(s) m(t-s) + m(s) + [m(s)]^2 \end{split}$$

(3) 顾客到达时刻与等待时间的分布

给定 t > 0, 由于 $S_1 > t \Leftrightarrow N(t) = 0$, 所以

$$P(S_1 > t) = P(N(t) = 0) = e^{-m(t)}$$

即 $S_1 \sim \lambda(t)e^{-m(t)}$, 所以 S_1 不再服从指数分布.

类似地,可以证明 $X_1, X_2, \cdots, X_n, \cdots$ 不再独立同分布,更不服从指数分布.

例 3.5.1 设 $\{N(t), t \ge 0\}$ 是强度为 $\lambda(t) = t^2$ 的非齐次 Poisson 过程. 计算

- (1) E(N(2)).
- (2) P(N(1) = 1, N(2) = 2).
- (3) $P(N(2) = 2 \mid N(1) = 1)$.
- (4) $P(N(1) = 1 \mid N(2) = 2)$.

(1)
$$E(N(2)) = \int_0^2 \lambda(t) dt = \int_0^2 t^2 dt = \frac{8}{3}$$
.

(2) 计算得
$$m(1) = \int_0^1 t^2 dt = \frac{1}{3}, m(2) = \int_0^2 t^2 dt = \frac{8}{3},$$
 因此

$$\mathsf{P}(N(1)=1,N(2)=2) = \mathsf{P}(N(1)=1) \mathsf{P}(N(2)-N(1)=1) = \frac{1}{3} \mathrm{e}^{-\frac{1}{3}} \cdot \frac{7}{3} \mathrm{e}^{-\frac{7}{3}} = \frac{7}{9} \mathrm{e}^{-\frac{8}{3}}.$$

(3)
$$P(N(2) = 2 \mid N(1) = 1) = P(N(2) - N(1) = 1) = \frac{7}{3}e^{-\frac{7}{3}}$$
.

(4)
$$P(N(1) = 1 \mid N(2) = 2) = \frac{P(N(1) = 1, N(2) = 2)}{P(N(2) = 2)} = \frac{\frac{7}{9}e^{-\frac{8}{3}}}{(\frac{8}{3})^2e^{-\frac{8}{3}}/2} = \frac{7}{32}$$

下面定理给出了非齐次 Poisson 过程到达时刻的条件分布.

定理 **3.5.1** 令 $t>0, n\geq 1$. 假设 V_1,V_2,\ldots,V_n 独立同分布, 密度函数为 $\frac{\lambda(u)}{m(t)}, 0\leq u\leq t$. 那么

$$(S_1, S_2, \dots, S_n | N(t) = n) \stackrel{d}{=} (V_{(1)}, V_{(2)}, \dots, V_{(n)}),$$

其中 $V_{(1)}, V_{(2)}, \ldots, V_{(n)}$ 是 V_1, V_2, \ldots, V_n 的次序统计量

下面定理给出了非齐次 Poisson 过程的合并与分解.

定理 3.5.2 (非齐次 Poisson 过程的合成) 设 $\{N_1(t)\}$ 和 $\{N_2(t)\}$ 分别是强度为 $\lambda_1(t)$ 和 $\lambda_2(t)$ 的 Poisson 过程, 且相互独立, 则 $\{N_1(t)+N_2(t)\}$ 是强度为 $\lambda_1(t)+\lambda_2(t)$ 的 Poisson 过程.

定理 3.5.3 (非齐次 Poisson 过程的分解) 设 $\{N(t)\}$ 是强度为 $\lambda(t)$ 的 Poisson 过程,在 t 时刻发生的事件独立地 (也独立于过程 $\{N(t)\}$) 以概率 p(t) 为类型 1,以 1-p(t) 为类型 2.令 $N_1(t)$ 和 $N_2(t)$ 分别表示到 t 为止类型 1 和类型 1 发生的个数,则 $\{N_1(t)\}$ 和 $\{N_2(t)\}$ 分别是强度为 $\lambda(t)p(t)$ 和 $\lambda(t)(1-p(t))$ 的 Poisson 过程,且相互独立.

例 3.5.2 [无穷条服务线的排队问题 $M/G/\infty$] 顾客按速率 λ 的 Poisson 过程到达服务站,到达后马上接受服务,服务时间独立同服从分布 G. 令 X(t) 表示到 t 为止完成服务的顾客数,Y(t) 表示 t 时在接受服务的顾客数. 问: X(t) 和 Y(t) 分别服从何分布?

解 固定 t>0, 令 N(t) 表示 (0,t] 内到达的顾客数,则 $N(t)\sim \mathcal{P}(\lambda t)$. 对于在 $s\leq t$ 时到达的顾客,独立地以概率 p(s)=G(t-s) 到 t 为止完成服务 (称为类型 1),以概率 1-p(s) 到 t 时还在接受服务 (称为类型 2). 在 N(t)=n 的条件下,在 (0,t] 到达的这 n 个顾客 (不考虑到达先后顺序) 到达时刻独立同服从 U(0,t),所以每个事件独立地以概率

$$q = \int_0^t p(s) \frac{1}{t} ds = \frac{1}{t} \int_0^t G(s) ds$$

为类型 1, 以概率 1-q 为类型 2. 因此

$$X(t) \sim \mathcal{P}\left(\lambda \int_0^t G(s) ds\right), \quad Y(t) \sim \mathcal{P}\left(\lambda \int_0^t (1 - G(s)) ds\right)$$

且二者相互独立.

(ii) 时间变换

定理 **3.5.4** 设 $N=(N(t),t\geq 0)$ 是强度为 1 的 Poisson 过程, 令 $\lambda(u)$ 是 $[0,\infty)$ 上非负的 在任何有界区间上可积的函数, 令

$$m(t) = \int_0^t \lambda(u) du, \quad M(t) = N(m(t)),$$

则 $M = (M(t), t \ge 0)$ 是强度为 $\lambda(t)$ 的非齐次 Poisson 过程.

定理 3.5.5 假设 $\widetilde{N} = (\widetilde{N}(t), t \geq 0)$ 是强度函数为 $\lambda(t)$ 的非齐次 Poisson 过程, 并且 $\lambda(t)$ 是严格正的函数, m(t) 是严格单调增的正函数, 其逆函数存在, 记为 $m^{-1}(t)$. 定义一个新过程

$$N(0) = 0, \quad N(t) = \widetilde{N}(m^{-1}(t)), \ t > 0,$$

则 $N = (N(t), t \ge 0)$ 是强度为 1 的齐次 Poisson 过程.

四、 Markov 链

4.1 Markov 链及例子

定义 **4.1.1** (Markov 链) 如果 $\{X_n, n = 0, 1, ...\}$ 是离散状态的随机过程,并且具有 Markov 性, 即对任何 $k \geq 1$, 任何状态 $i_0, ..., i_{k-1}, i, j$, 有

$$P(X_{k+1} = j \mid X_0 = i_0, \dots, X_{k-1} = i_{k-1}, X_k = i) = P(X_{k+1} = j \mid X_k = i),$$

则称 $\{X_n, n=0,1,\ldots\}$ 是 *Markov* 链.

令 $A = \{X_0 = i_0, \dots, X_{k-1} = i_{k-1}\}$ 表示过去, $B = \{X_k = i\}$ 表示现在, $C = \{X_{k+1} = j\}$ 表示未来,则 Markov 性意味着

$$P(C \mid AB) = P(C \mid B).$$

也就是说, 在已知现在状态的条件下, 过去与将来相互独立.

对 $n \ge m \ge 0$ 和状态 i, j, 记

$$p_{ij}(m,n) = \mathsf{P}(X_n = j \mid X_m = i),$$

表示在 m 时处于状态 i 的条件下, 到 n 时转移到状态 j 的概率. 显然, 转移概率具有如下性质:

$$p_{ij}(m,n) \ge 0, \quad \sum_{j \in I} p_{ij}(m,n) = 1,$$

其中 I 是 Markov 链的状态空间.

定义 **4.1.2** 如果对任何状态 $i, j, P(X_{n+1} = j \mid X_n = i)$ 不依赖于 n, 则称 $\{X_n, n = 0, 1, ...\}$ 是**时齐的** *Markov* 链. 在时齐 *Markov* 链中, 称 $p_{ij} = P(X_{n+1} = j \mid X_n = i)$ 为从 i 到 j 的一步转移概率, $P = (p_{ij})_{I \times I}$ 为一步转移矩阵.

例 4.1.1 [0-1 传输系统] 在只传输 0 和 1 的串联系统中, 设每一级的传真率为 p, 误码率为 1-p. 以 X_0 表示第 1 级的输入, X_n 表示第 n 级的输出 $(n \ge 1)$. 于是 $\{X_n\}$ 是一时齐的 Markov 链, 状态空间 $I = \{0,1\}$,

$$p_{ij} = \mathsf{P}(X_{n+1} = j \mid X_n = i) = \left\{ egin{array}{ll} p, & j = i, \ 1 - p, & j
eq i, \end{array}
ight. \quad i, j = 0, 1.$$

故一步转移矩阵为 $\mathbf{P} = \begin{pmatrix} p & 1-p \\ 1-p & p \end{pmatrix}$.

例 4.1.2 [排队模型] 有一修理店, 每天只能修好一个机器, 并且不修当天送来的机器. 假定第 n 天有 ξ_n 个机器损坏, 则第 n+1 天把这 ξ_n 个机器送往此店维修. 令 X_n 表示第 n 天结束时此店中机器的个数. 于是

$$X_{n+1} = \max(X_n - 1, 0) + \xi_n.$$

如果 ξ_1, ξ_2, \dots 独立同分布, 且与 X_0 独立, 则 $\{X_n; n \geq 0\}$ 是时齐的 Markov 链, 状态空间 $I = \{0, 1, 2, \dots\}$. 令 $\mathsf{P}(\xi_1 = k) = a_k, k \geq 0$, 则一步转移概率

$$p_{ij} = \begin{cases} a_j, & i = 0, \\ a_{j-i+1}, & i > 0 \text{ 且 } j \ge i - 1, \\ 0, & \text{其他.} \end{cases}$$

例 4.1.3 [爬梯子模型] 考虑某人患某种病的情况. 对 $n \ge 0$, 令 $\xi_n = \begin{cases} 0, & \text{第 } n \in \mathbb{Z} \\ 1, & \text{第 } n \in \mathbb{Z} \end{cases}$

假设 $\{\xi_n; n \geq 0\}$ 是时齐 Markov 链, 状态空间 $I = \{0,1\}$, 一步转移矩阵 $\mathbf{Q} = \begin{pmatrix} 1-p & p \\ q & 1-q \end{pmatrix}$. 令 $X_n = \begin{cases} \max\{1 \leq k \leq n+1: \xi_n \xi_{n-1} \cdots \xi_{n-k+1} = 1\}, & \xi_n = 1, \\ 0, & \xi_n = 0 \end{cases}$ 表示第 n 天时连续患病的天数, 则

$$X_{n+1} = \begin{cases} X_n + 1, & \xi_{n+1} = 1, \\ 0, & \xi_{n+1} = 0. \end{cases}$$

于是 $\{X_n; n \geq 0\}$ 是时齐 Markov 链, 状态空间 $I = \{0, 1, 2, ...\}$, 转移概率为

$$p_{0,0} = 1 - p$$
, $p_{0,1} = p$, $p_{i,i+1} = 1 - q$, $p_{i,0} = q$, $\forall i \ge 1$.

例 4.1.4 [Polya 罐子模型] 设一罐子装有 r 个红球, b 个黑球. 现随机从罐中取出一球, 记录其颜色后将其放回, 并加入 a 个相同颜色的球. 持续进行这一过程, 令 X_n 表示第 n 次试验结束时罐中的红球数, 则 $\{X_n; n \geq 0\}$ 是一 Markov 链, 状态空间 $I = \{r, r+a, r+2a, \ldots\}$, 它的一步转移概率为

$$p_{ij}(n, n+1) = \begin{cases} \frac{i}{r+b+na}, & j=i+a, \\ 1 - \frac{i}{r+b+na}, & j=i, \\ 0, &$$
其他.

所以该 Markov 链不是时齐的.

例 4.1.5 独立重复地掷骰子, 以 X_n 记第 n 次掷出的点数, 令 $Y_n = X_{n+1} + X_{n+2}, n \ge 0$. 计算 $P(Y_2 = 12 \mid Y_0 = 2, Y_1 = 7), P(Y_2 = 12 \mid Y_1 = 7)$ 并判断 $\{Y_n\}$ 是否是 Markov 链.

解 由定义

$$P(Y_2 = 12 \mid Y_0 = 2, Y_1 = 7) = P(X_3 = 6, X_4 = 6 \mid X_1 = 1, X_2 = 1, X_3 = 6) = \frac{1}{6}$$

$$P(Y_2 = 12 \mid Y_1 = 7) = \frac{P(X_2 = 1, X_3 = X_4 = 6)}{P(X_2 + X_3 = 7)} = \frac{\left(\frac{1}{6}\right)^3}{\frac{6}{26}} = \frac{1}{36}.$$

二者不想等, 因此 $\{Y_n\}$ 不是 Markov 链.

4.2 Markov 链的有限维分布

定义 **4.2.1** (初始分布) 令 $p_0(i) = P(X_0 = i)$, 并记 $p_0 = (p_0(1), p_0(2), \dots, p_0(N))$, 称 p_0 为 Markov 链的初始分布.

引理 **4.2.1** (Chapman-Kolmogorov(C-K) 方程) 对 $\forall n \geq 0, m, l \geq 1, i, j \in I$,

$$p_{ij}(n, n+m+l) = \sum_{k} p_{ik}(n, n+m) p_{kj}(n+m, n+m+l).$$

事实上, 该方程也可以写成矩阵形式:

$$P(n, n + m + l) = P(n, n + m)P(n + m, n + m + l).$$

因此对时齐 Markov 链 $\{X_n\}$, 由 C-K 方程可知 $\mathbf{P}^{(m)} \triangleq \mathbf{P}(n, n+m) = \mathbf{P}^m$.

 p_0 描述着随机系统的初始状态分布规律, 它和转移概率矩阵 P 共同决定 Markov 的分布. 由 C-K 方程, Markov 链在第 n 时刻处于各个状态的概率分布

$$\boldsymbol{p}_n = (p_n(1), p_n(2), \dots, p_n(N)) = \boldsymbol{p}_0 \boldsymbol{P}^n, \quad \forall n \ge 1.$$

进一步, 利用条件概率的链式法则可知, 对 $\forall n_1 < n_2 < \cdots < n_k$,

$$P(X_{n_1} = i_1, \dots, X_{n_k} = i_k) = P(X_{n_1} = i_1) p_{i_1 i_2}^{(n_2 - n_1)} \cdots p_{i_{k-1} i_k}^{(n_k - n_{k-1})}$$

其中 $p_{ij}^{(m)} = p_{ij}(n, n+m)$.

例 4.2.1 设 $\{X_n, n \ge 0\}$ 是具有三个状态 0,1,2 的时齐 Markov 链, 一步转移概率矩阵为

$$\boldsymbol{P} = \left(\begin{array}{ccc} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & \frac{3}{4} & \frac{1}{4} \end{array} \right).$$

且 $P(X_0 = 0) = P(X_0 = 1) = \frac{1}{2}$. 试求:

- (1) $P(X_0 = 0, X_1 = 1, X_3 = 1);$
- (2) $P(X_3 = 1, X_1 = 1 \mid X_0 = 0);$
- (3) $P(X_3 = 1)$;
- (4) $P(X_0 = 0 \mid X_3 = 1)$.

解 经计算得

$$\mathbf{P}^{2} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & \frac{7}{8} & \frac{1}{8} \\ \frac{3}{8} & \frac{3}{16} & \frac{7}{16} \end{pmatrix}, \quad \mathbf{P}^{3} = \begin{pmatrix} 0 & \frac{7}{8} & \frac{1}{8} \\ \frac{7}{16} & \frac{3}{32} & \frac{15}{32} \\ \frac{3}{32} & \frac{45}{64} & \frac{13}{64} \end{pmatrix}.$$

所以 (1) $P(X_0 = 0, X_1 = 1, X_3 = 1) = P(X_0 = 0)p_{01}p_{11}^{(2)} = \frac{1}{2} \times 1 \times \frac{7}{8} = \frac{7}{16}$

(2)
$$P(X_3 = 1, X_1 = 1 \mid X_0 = 0) = p_{01}p_{11}^{(2)} = \frac{7}{8}$$
.

$$(3) \ \mathsf{P}(X_3=1) = \mathsf{P}(X_0=0)p_{01}^{(3)} + \mathsf{P}(X_0=1)p_{11}^{(3)} = \frac{1}{2} \times \frac{7}{8} + \frac{1}{2} \times \frac{3}{32} = \frac{31}{64}.$$

(4)
$$P(X_0 = 0 \mid X_3 = 1) = \frac{P(X_3 = 1 \mid X_0 = 0)P(X_0 = 0)}{P(X_3 = 1)} = \frac{\frac{1}{2} \times \frac{7}{8}}{\frac{31}{64}} = \frac{28}{31}.$$

例 4.2.2 淘宝网上有 5 家店卖同一种产品. 设每位购买此种产品的顾客独立地任选一家网店购买. 问经过 5 名顾客购买后, 恰有 3 个网店被购买过的概率?

解 以 X_n 表示第 n+1 个顾客购买后被购买过的网店数目,则 $\{X_n\}$ 是以 1,2,3,4,5 为状态的 Markov 链,转移概率

$$p_{i,i} = \frac{i}{5} = 1 - p_{i,i+1}.$$

所求概率即为 $p_{13}^{(4)}$.

由一步转移概率矩阵可得两步转移概率矩阵,即

$$\boldsymbol{P}^2 = \begin{pmatrix} 1/5 & 4/5 & 0 & 0 & 0 \\ 0 & 2/5 & 3/5 & 0 & 0 \\ 0 & 0 & 3/5 & 2/5 & 0 \\ 0 & 0 & 0 & 4/5 & 1/5 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}^2 = \begin{pmatrix} 0.04 & 0.48 & 0.48 & 0 & 0 \\ 0 & 0.16 & 0.60 & 0.24 & 0 \\ 0 & 0 & 0.36 & 0.56 & 0.08 \\ 0 & 0 & 0 & 0.64 & 0.36 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

因此

$$p_{13}^{(4)} = \sum_{i=1}^{5} p_{1i}^{(2)} p_{i3}^{(2)} = 0.04 \times 0.48 + 0.48 \times 0.60 + 0.48 \times 0.36 = 0.48.$$

4.3 常返性和瞬时性

定义 4.3.1 (首中时) 称

$$\tau_i = \min\{n \ge 1 : X_n = i\}$$

为状态 i 的**首中时**, 并约定 $\min \emptyset = \infty$.

定义 **4.3.2** (常返态与瞬时态) 若状态 i 满足 $P(\tau_i < \infty \mid X_0 = i) = 1$, 则称状态 i 为常返态, 否则 $P(\tau_i < \infty \mid X_0 = i) < 1$, 称状态 i 为瞬时态.

从定义中可以看出,常返的意义是从状态i出发以概率1在有限时间内能返回状态i,而瞬时的意义是从状态i出发以正概率不再返回状态i.

定义 4.3.3 (平均回转时) 若状态 i 是常返态, 定义

$$\mu_i = E(\tau_i \mid X_0 = i)$$

为状态 i 的**平均回转时**.

定义 **4.3.4** (正常返与零常返) 若常返态 i 满足 $\mu_i < \infty$, 则称状态 i 正常返, 否则 $\mu_i = \infty$, 称状态 i 零常返.

从定义中可以看出, 正常返的意义是从状态 i 出发不但以概率 1 在有限时间内返回状态 i, 而且平均回转时有限, 而零常返的意义是从状态 i 出发虽然以概率 1 在有限时间内返回状态 i, 但平均回转时无限. 因此, 正常返态返回速度比零常返态快.

为判定 Markov 链中状态的常返性与瞬时性, 今

$$f_{ij}^{(n)} = P(X_n = j, X_{n-1} \neq j, \dots, X_1 \neq j \mid X_0 = i)$$

表示从状态 i 出发首次到达状态 j 的概率, 而 $f_{ij} = \mathsf{P}(\tau_j < \infty \mid X_0 = i)$ 表示从状态 i 出发能到 达状态 j 的概率, 因此

$$f_{ij} = \lim_{N \to \infty} \sum_{n=1}^{N} f_{ij}^{(n)} = \sum_{n=1}^{\infty} f_{ij}^{(n)}.$$

定理 4.3.1 状态 i 是常返态当且仅当 $f_{ii}=1$,且有平均回转时 $\mu_i=\sum_{n=1}^{\infty}nf_{ii}^{(n)}$;状态 i 是瞬时态当且仅当 $f_{ii}<1$.

下面给出当 $n \ge 1$ 时, $p_{ij}^{(n)}$ 与 $f_{ij}^{(n)}$ 之间的关系: 由全概率公式

$$\begin{split} p_{ij}^{(n)} &= \mathsf{P}(X_n = j \mid X_0 = i) = \sum_{k=1}^n \mathsf{P}(\tau_j = k, X_n = j | X_0 = i) \\ &= \sum_{k=1}^n \mathsf{P}(\tau_j = k \mid X_0 = i) \mathsf{P}(X_n = j \mid \tau_j = k, X_0 = i) \\ &= \sum_{k=1}^n f_{ij}^{(k)} \mathsf{P}(X_n = j \mid X_k = j, X_{k-1} \neq j, \dots, X_1 \neq j, X_0 = i) \\ &= \sum_{k=1}^n f_{ij}^{(k)} p_{jj}^{(n-k)}. \end{split}$$

下面定理给出了常返性和瞬时性的等价概率含义.

定理 **4.3.2** 以 $N_i = \sharp \{n \geq 0; X_n = i\}$ 表示 X_0, X_1, X_2, \ldots 中访问状态 i 的次数,于是状态 i 是常返态 $\Leftrightarrow P(N_i = \infty \mid X_0 = i) = 1$; 状态 i 是瞬时态 $\Leftrightarrow P(N_i < \infty \mid X_0 = i) = 1$.

这一定理由 Markov 性即得. 更重要的是, 这一定理蕴含着"常返"和"瞬时"的直观含义. 更进一步, 有

$$P(N_i = 0 \mid X_0 = i) = 1 - f_{ii}, \quad P(N_i = n \mid X_0 = i) = (1 - f_{ii})f_{ii}^n, \ n \ge 1.$$

即 N_i 是几何随机变量. 由此得到一个重要结论, 即

$$\sum_{n=0}^{\infty} p_{ii}^{(n)} = \mathsf{E}(N_i \mid X_0 = i) = \begin{cases} \infty, & \text{状态 } i \text{ 是常返态}, \\ \frac{1}{1 - f_{ii}} < \infty, & \text{状态 } i \text{ 是瞬时态}. \end{cases}$$

事实上, 由于 $N_i = \sum_{n=0}^{\infty} \mathbf{1}_{\{X_n = i\}}$, 所以

$$\mathsf{E}(N_i \mid X_0 = i) = \sum_{n=0}^\infty \mathsf{E}(\mathbf{1}_{\{X_n = i\}} \mid X_0 = i) = \sum_{n=0}^\infty \mathsf{P}(X_n = i \mid X_0 = i) = \sum_{n=0}^\infty p_{ii}^{(n)}.$$

归纳成如下定理.

定理 4.3.3 状态 i 是常返态 $\Leftrightarrow \sum_{n=0}^{\infty} p_{ii}^{(n)} = \infty$; 状态 i 是瞬时态 $\Leftrightarrow \sum_{n=0}^{\infty} p_{ii}^{(n)} < \infty$, 进一步可推出 $\lim_{n \to \infty} p_{ii}^{(n)} = 0$.

定义 4.3.5 (吸收态) 如果 $p_{ii} = 1$, 则称状态 i 为吸收态.

Markov 链一旦到达吸收态 i, 就永远待在状态 i, 从而 $f_{ii} = 1$, $\mu_i = 1$, 状态 i 是正常返态.

例 4.3.1 对状态空间 $I=\{0,1\}$ 上, 状态转移矩阵 $\mathbf{P}=\begin{pmatrix} 0.2 & 0.8 \\ 0 & 1 \end{pmatrix}$ 的时齐 Markov 链, 判断状态 0 的常返性.

解 注意到 $f_{00}^{(1)}=p_{00}=0.2$, 而对 $n\geq 2$ 都有 $f_{00}^{(n)}=0$. 因此 $f_{00}=0.2<1$, 故状态 0 是瞬时态.

例 4.3.2 对状态空间
$$I=\{0,1,2,3\}$$
 上, 状态转移矩阵 ${m P}=\left(egin{array}{cccc}0&0.5&0&0.5\\0&0&1&0\\0&0&0&1\\0.5&0&0&0.5\end{array}\right)$ 的时齐

Markov 链, 判断状态 0 和状态 3 的常返性.

解 首先讨论状态 0 的常返性. 计算得

$$f_{00}^{(1)} = 0$$
, $f_{00}^{(2)} = p_{03}p_{30} = \frac{1}{4}$, $f_{00}^{(3)} = p_{03}p_{33}p_{30} = \frac{1}{8}$,

而当 $n \ge 4$ 时,

$$f_{00}^{(n)} = p_{03}p_{33}^{n-2}p_{30} + p_{01}p_{12}p_{23}p_{33}^{n-4}p_{30} = \frac{5}{2^n}.$$

因此

$$f_{00} = \sum_{n=1}^{\infty} f_{00}^{(n)} = \frac{1}{4} + \frac{1}{8} + \sum_{n=4}^{\infty} \frac{5}{2^n} = 1, \quad \mu_0 = \frac{1}{2} + \frac{3}{8} + \sum_{n=4}^{\infty} \frac{5n}{2^n} = 4 < \infty,$$

所以状态 0 是正常返态.

下面讨论状态 3 的常返性. 同样地, 计算得

$$f_{33}^{(1)} = \frac{1}{2}, \quad f_{33}^{(2)} = p_{30}p_{03} = \frac{1}{4}, \quad f_{33}^{(3)} = 0, \quad f_{33}^{(4)} = p_{30}p_{01}p_{12}p_{23} = \frac{1}{4},$$

而当 $n \geq 5$ 时, $f_{33}^{(n)} = 0$, 因此

$$f_{33} = \sum_{n=1}^{\infty} f_{33}^{(n)} = 1, \quad \mu_3 = \frac{1}{2} + \frac{1}{2} + 1 = 2 < \infty,$$

所以状态 3 是正常返态.

例 4.3.3 [爬梯子模型] 设 $\{X_n\}$ 是时齐 Markov 链, $I = \{0, 1, 2, ...\}$, 转移概率

$$p_{i,i+1} = p_i, \quad p_{i,0} = 1 - p_i, \qquad 0 < p_i < 1, i \ge 0.$$

讨论状态 0 的常返性.

解 因为
$$f_{00}^{(1)} = p_{00} = 1 - p_0$$
, 而对 $n \ge 2$,

$$f_{00}^{(n)} = p_{01}p_{12}\cdots p_{n-2,n-1}p_{n-1,0} = p_0p_1\cdots p_{n-2}(1-p_{n-1}).$$

 $varphi u_0 = 1, u_n = p_0 p_1 \cdots p_{n-1}, \forall n \ge 1, \text{ }$

$$f_{00} = (1 - u_1) + (u_1 - u_2) + (u_2 - u_3) + \dots + (u_{n-1} - u_n) + \dots = 1 - \lim_{n \to \infty} u_n.$$

所以状态 0 是常返态 $\Leftrightarrow \lim_{n\to\infty} u_n = 0$.

进一步, 当状态 0 是常返态时,

$$\mu_0 = (1 - u_1) + 2(u_1 - u_2) + 3(u_2 - u_3) + \dots + n(u_{n-1} - u_n) + \dots = \sum_{n=0}^{\infty} u_n.$$

所以状态 0 是正常返态 $\Leftrightarrow \sum_{n=0}^{\infty} u_n < \infty$.

下面考虑正常返与零常返的等价刻画.

定理 4.3.4 状态 i 是正常返态 $\Leftrightarrow \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} p_{ii}^{(k)} = \frac{1}{\mu_i} > 0 \Leftrightarrow \limsup_{n \to \infty} p_{ii}^{(n)} > 0$; 状态 i 是零常返态 $\Leftrightarrow \sum_{n=0}^{\infty} p_{ii}^{(n)} = \infty$ 但 $\lim_{n \to \infty} p_{ii}^{(n)} = 0$.

例 4.3.4 [对称随机游动] 设 d 是正整数, $\mathbf{X} = (X_n, n \ge 0)$ 是 \mathbb{Z}^d 上的对称随机游动, 讨论状态 0 (原点) 的常返性.

解 若 d=1,则对任意整数 i 有 $p_{i,i-1}=p_{i,i+1}=\frac{1}{2}$.于是有

$$p_{00}^{(2n-1)} = 0$$
, $p_{00}^{(2n)} = {2n \choose n} \left(\frac{1}{2}\right)^{2n}$, $n = 1, 2, \dots$

由 Strling 公式 $n! \sim \sqrt{2\pi n} \mathrm{e}^{-n} n^n$ 得 $p_{00}^{(2n)} \sim \frac{1}{\sqrt{\pi n}}$. 因此 $\sum_{n=0}^{\infty} p_{00}^{(n)} = \infty$ 但 $\lim_{n \to \infty} p_{00}^{(n)} = 0$. 所以状态 0 零常返. 若 d=2, 则对每一对整数 (i,j), 有

$$p_{(i,j),(i+1,j)} = p_{(i,j),(i-1,j)} = p_{(i,j),(i,j+1)} = p_{(i,j),(i,j-1)} = \frac{1}{4}.$$

于是有

$$p_{00}^{(2n)} = \frac{1}{4^{2n}} \sum_{k=0}^{n} \binom{2n}{n} \binom{n}{k}^2 = \frac{1}{4^{2n}} \binom{2n}{n}^2 \sim \frac{1}{\pi n}.$$

因此 $\sum_{n=0}^{\infty} p_{00}^{(n)} = \infty$ 但 $\lim_{n \to \infty} p_{00}^{(n)} = 0$. 所以状态 0 零常返.

事实上, 对于 $d \ge 3$, 有 $p_{00}^{(2n-1)} = 0$, $p_{00}^{(2n)} = O(n^{-d/2})$, 此时状态 0 是瞬时态.

4.4 状态空间分解

定义 4.4.1 (可达与互达) 设 $i, j \in I$,

- (1) 若存在 $n \ge 0$, 使得 $p_{ij}^{(n)} > 0$, 则称 i 可达 j, 记为 $i \to j$;
- (2) 若 $i \rightarrow j$, 且 $j \rightarrow i$, 则称 i, j 互达, 记为 $i \leftrightarrow j$.

互达是等价关系 (满足对称性、传递性和自反性), 按等价关系可以将状态空间分成若干个 (有限或无穷) 等价类, 即将状态空间分成不交的互达等价类的并.

定义 4.4.2 (不可约) 如果 Markov 链的任意两个状态都是互达的,则称之不可约.

定义 4.4.3 (周期) 假设 $i \in I$, 令

$$d_i = \gcd\{n \ge 1; p_{ii}^{(n)} > 0\},\$$

其中 gcd 表示最大公约数, 称 d_i 为状态 i 的周期, 并规定 gcd $\emptyset = 0$.

如果 $d_i = 1$, 则称状态 i 是非周期的; 如果状态 i 是非周期正常返的, 则称其遍历.

如果 $\{X_n\}$ 的所有状态常返 (瞬时、正常返、零常返、非周期), 则称 $\{X_n\}$ 常返 (瞬时、正常返、零常返、非周期); 如果 $\{X_n\}$ 是不可约非周期正常返的, 则称其**遍历**.

下面定理表明互达等价类中各状态具有相同的周期和常返性.

定理 4.4.1 (互达等价类的同一性质) 如果 $i \leftrightarrow j$,则

- (1) $d_i = d_j$;
- (2) i 是常返态 ⇔ j 是常返态;
- (3) i 是正常返态 ⇔ j 是正常返态.

证明 设 $i \leftrightarrow j, i \neq j$, 则存在正整数 m, n, 使得 $p_{ij}^{(m)} > 0, p_{ji}^{(n)} > 0$.

(1) 如果 $p_{ii}^{(k)} > 0$, 则 $p_{ij}^{(k+m+n)} \ge p_{ii}^{(n)} p_{ii}^{(k)} p_{ij}^{(m)} > 0$. 所以

$$d_j \mid k+m+n$$
.

特别地, 有 $d_j \mid m+n$. 从而 $d_j \mid k$, 故 $d_j \mid d_i$. 同理有 $d_i \mid d_j$, 从而 $d_i = d_j$.

(2) 如果状态 i 常返, 则 $\sum_{k=0}^{\infty} p_{ii}^{(k)} = \infty$. 所以

$$\sum_{k=0}^{\infty} p_{jj}^{(k+m+n)} \ge p_{ji}^{(n)} p_{ij}^{(m)} \sum_{k=0}^{\infty} p_{ii}^{(k)} = \infty,$$

即状态j也常返.

(3) 如果 $\lim_{n\to\infty} p_{jj}^{(n)} = 0$, 则

$$p_{ii}^{(k)} \le p_{jj}^{(k+m+n)} \div (p_{ji}^{(n)} p_{ij}^{(m)}) \to 0.$$

从而结论成立.

有了上述定理, 我们可以更快地判断一个 Markov 链中各状态的周期和常返性. 在例 4.3.2 中, 我们已经判断了状态 0 和状态 3 是正常返态, 又注意到 $p_{33} > 0$, 因此 $d_3 = 1$. 结合所有状态互达可知, 这是一个遍历的 Markov 链. 在例 4.3.3 中, 我们已经判断了状态 0 的常返性, 又 $p_{00} > 0$, 因此 $d_0 = 1$. 所以所有状态非周期, 并且与状态 0 具有相同的常返性.

4.5 极限分布与平稳分布

(i) 极限分布

定义 **4.5.1** (极限分布) 假设 $\{X_n\}$ 是 Markov 链, 转移概率矩阵为 P, 初始分布为 p_0 . 如果存在 I 上的一个概率分布 $\mu = (\mu_1, \mu_2, \dots, \mu_N)$ 使得对任意 $j \in I$,

$$\lim_{n\to\infty} p_n(j) = \mu_j,$$

则称 μ 是该 Markov 链的极限分布.

注意到

$$p_n(j) = \sum_{i=1}^{N} p_0(i) p_{ij}^{(n)},$$

所以如果对每个 $i \in I$, 存在 I 上一个概率分布 $\nu_i = (\nu_{i1}, \nu_{i2}, \dots, \nu_{iN})$ 使得 $\lim_{n \to \infty} p_{ij}^{(n)} = \nu_{ij}, j \in \mathcal{E}$. 令 $\mu_j = \sum_{i=1}^N p_0(i)\nu_{ij}, j \in I$, 则 $\boldsymbol{\mu} = (\mu_1, \mu_2, \dots, \mu_N)$ 是该 Markov 链的极限分布.

根据上述分析,要求极限分布,实际上只要计算 $\lim_{n\to\infty} \mathbf{P}^{(n)}$,也就是计算 $\lim_{n\to\infty} \mathbf{P}^n$. 注意,不是所有 Markov 链都一定有极限分布.

(ii) 平稳分布

假设 $\{X_n\}$ 是 Markov 链, 初始分布为 p_0 , 转移概率矩阵为 P. 则 X 是强平稳过程当且仅 当对任意 $n \geq 0, m \geq 1$,

$$(X_m, X_{m+1}, \dots, X_{m+n}) \stackrel{d}{=} (X_0, X_1, \dots, X_n).$$

由于转移概率不依赖于时间,所以上式成立 $\Leftrightarrow p_0 = p_1 = p_2 = \cdots \Leftrightarrow p_0 = p_0 P$. 一般情况下,初始分布 p_0 和转移概率矩阵 P 不一定满足该式.

定义 4.5.2 (平稳分布) 如果存在 I 上的一个概率分布 $\pi = (\pi_1, \pi_2, \dots, \pi_N)$ 使得,

$$\pi = \pi P$$
.

称 π 是该 Markov 链的**平稳分布**.

如果确实存在平稳分布 π , 取 π 为初始分布, 就可以得到平稳 Markov 链. 为求平稳分布, 只需要解方程组

$$\begin{cases} \sum_{i=1}^{N} \pi_i p_{ij} = \pi_j, \ j = 1, 2, \dots, N, \\ \sum_{j=1}^{N} \pi_j = 1, \\ \pi_j \ge 0, \ j = 1, 2, \dots, N. \end{cases}$$

注意,有时候 Markov 链的平稳分布不一定唯一.

例 4.5.1 求例 4.3.2 中 Markov 链的平稳分布.

解 设平稳分布 $\pi = (\pi_0, \pi_1, \pi_2, \pi_3)$,则由平稳方程得

$$\begin{cases} \pi_0 + \pi_1 + \pi_2 + \pi_3 = 1, \\ \pi_0 = \frac{1}{2}\pi_3, \\ \pi_1 = \frac{1}{2}\pi_0, \\ \pi_2 = \pi_1. \end{cases} \implies \pi = \left(\frac{1}{4}, \frac{1}{8}, \frac{1}{8}, \frac{1}{2}\right).$$

例 4.5.2 求例 4.3.3 中 Markov 链的平稳分布.

解 设平稳分布为 π, 则

$$\pi_1 = p_0 \pi_1, \quad \pi_2 = p_1 \pi_1, \quad \dots, \quad \pi_n = p_{n-1} \pi_{n-1}, \quad \dots$$

因此 $\pi_n = u_n \pi_0$. 又 $\sum_{n=0}^{\infty} \pi_n = 1$,所以平稳分布存在当且仅当 $\sum_{n=0}^{\infty} u_n < \infty$,即当且仅当 $\{X_n\}$ 正常返.

命题 4.5.1 设状态 j 瞬时或零常返,则

- $(a) \ \mathrm{对所有状态} \ i, \ \lim_{n \to \infty} p_{ij}^{(n)} = 0;$
- (b) 不管初始分布如何, 恒有 $\lim_{n\to\infty} P(X_n=j)=0$;
- (c) 设 π 是 $\{X_n\}$ 的平稳分布,则有 $\pi_j=0$.

定理 4.5.1 假设 $\{X_n\}$ 是非周期不可约 Markov 链,则 $\{X_n\}$ 存在平稳分布当且仅当 $\{X_n\}$ 正常返的,并且此时平稳分布唯一,同时

$$\pi_j = \frac{1}{\mu_j}, \quad j \in I,$$

其中 μ_j 为状态 j 的平均回转时. 进一步, 对任何状态 i,j, 有 $\lim_{n\to}\frac{1}{n}\sum_{k=1}^n p_{ij}^{(k)}=\pi_j$.

特别地, 若 $\{X_n\}$ 遍历, 则对任何状态 i, j, 有 $\lim_{n\to\infty} p_{ij}^{(n)} = \pi_j$.

推论 4.5.1 (极限分布与平稳分布的关系) 假设 $\{X_n\}$ 是非周期不可约 Markov 链, 状态空间为 I, 转移概率矩阵为 P. 那么该 Markov 链存在极限分布当且仅当该 Markov 链存在平稳分布, 并且二者相等.

注意, 对周期 Markov 链, 推论不一定成立; 不可约零常返或瞬时 Markov 链没有平稳分布.

命题 4.5.2 若 $\{X_n\}$ 是有限 Markov 链,则至少存在一个正常返态.

命题 4.5.3 若 $\{X_n\}$ 是不可约的有限 Markov 链, 则 $\{X_n\}$ 正常返.

定义 4.5.3 (闭集) 设 C 为状态空间 I 的子集, 若对于任意状态 $i \in C$ 和任意状态 $j \notin C$, 都有 $p_{ij} = 0$, 则称之为闭集.

闭集的定义告诉我们, 闭集是封闭的, 从 C 中的状态出发将永远不会跑出 C 以外.

定理 4.5.2 (1) 如果状态 i 常返且 $i \rightarrow j$, 则 $i \leftrightarrow j$ 且 $f_{ij} = f_{ji} = 1$.

- (2) 如果状态 i 常返,则状态 i 的互达等价类是闭的.
- (3) 如果状态 i 的互达等价类是有限闭集,则状态 i 正常返.

例 4.5.3 以 X_n 表示 n 时刻系统里的顾客数. 设 $\{X_n\}$ 是 Markov 链, $I = \{0,1,2,3\}$, 一步转移概率矩阵

$$m{P} = \left(egin{array}{cccc} 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 \ 0.3 & 0.7 & 0 & 0 \ 0.6 & 0.2 & 0.2 & 0 \end{array}
ight).$$

- (1) 讨论各状态的周期和常返性;
- (2) 计算正常返态的平均回转时;
- (3) 计算相邻两次变空的平均时间间隔.

解 (1) 注意到 $\{0,1,2\}$ 是有限闭的互达等价类, $\{3\}$ 是不闭的. 因此状态 0,1,2 正常返,而状态 3 瞬时. 另一方面,注意到 $p_{00}^{(2)}>0$, $p_{00}^{(3)}>0$,因此 $d_0=d_1=d_2=1$;而从状态 3 出发永远不返回状态 3,所以 $d_3=0$.

(2) 将 Markov 链限制在 $\{0,1,2\}$ 上, 则该 Markov 链为非周期不可约的 Markov 链. 记其平稳分布为 $\pi = (\pi_0, \pi_1, \pi_2)$, 由平稳方程可知

$$\begin{cases} \pi_0 + \pi_1 + \pi_2 = 1, \\ \pi_1 = 0.7\pi_2, \\ \pi_2 = \pi_0, \end{cases} \implies \pi = \left(\frac{10}{27}, \frac{7}{27}, \frac{10}{27}\right), \implies (\mu_0, \mu_1, \mu_2) = \left(\frac{27}{10}, \frac{27}{7}, \frac{27}{10}\right).$$

(3) 相邻两次变空的平均时间间隔为 $\mu_0 = 2.7$.

4.6 吸收概率与平均吸收时间

由定理 4.5.2, 我们可以对有限 Markov 链进行状态分解:

$$I = T \cup C_1 \cup C_2 \cup \cdots \cup C_k,$$

其中 C_1, C_2, \ldots, C_k 是所有闭的互达等价类, T 是余下的状态. 完成分解后, C_1, C_2, \ldots, C_k 中各状态正常返, T 中各状态瞬时. 也就是说, 如果 $X_0 \in T$, 则 Markov 链最终会进入某个 C_i 并将不再离开.

对状态 i, 令

$$T_i = \min\{n \ge 0 : X_n = i\}$$

表示首次访问状态 i 的时刻; 对 I 的子集 A, 令

$$T_A = \min\{n \ge 0 : X_n \in A\}$$

表示首次访问子集 A 的时刻; 规定 $\min \emptyset = \infty$.

- **例 4.6.1** [赌徒输光问题] 甲、乙两人独立重复玩游戏, 每一局甲贏 1 元和输 1 元的概率都是 1/2. 游戏一直到某人输光结束. 一开始甲带有 i 元钱, 乙带有 m-i 元钱. 这里 i 与 m-i 都是非负整数. 计算:
 - (1) 游戏在有限时间内结束的概率;
 - (2) 甲输光的概率;
 - (3) 游戏平均持续时间.
- $m{m}$ (1) 以 S_n 表示 n 局游戏后甲所拥有的钱数,则 $\{S_n; n \geq 0\}$ 是时齐 Markov 链,状态空间 $I = \{0,1,\ldots,m\}$,一步转移概率为

$$p_{00} = p_{mm} = 1$$
, $p_{i,i+1} = p_{i,i-1} = \frac{1}{2}$, $\forall 0 < i < m$.

于是 $C_1 = \{0\}$, $C_2 = \{m\}$, $T = \{1, 2, ..., m-1\}$ 为状态空间的划分, 则 T 中状态均为瞬时态, 所以最终会进入 $C_1 \cup C_2$, 此时游戏结束. 因此游戏在有限时间内结束的概率为 1.

(2) 令 $h_i = P($ 甲输光 $| S_0 = i) = P(T_0 < \infty | S_0 = i), 则 <math>h_0 = 1, h_m = 1,$ 且

$$h_i = \sum_j \mathsf{P}(\mathbb{P} 輸 光 \mid S_1 = j, S_0 = i) \mathsf{P}(S_1 = j \mid S_0 = i)$$

= $\sum_j \mathsf{P}(\mathbb{P} 輸 光 \mid S_0 = j) p_{ij} = \frac{1}{2} (h_{i+1} + h_{i-1}), \quad 0 < i < m.$

即 $h_{i+1} - h_i = h_i - h_{i-1}, 0 < i < m$. 所以 $h_i = \frac{m - i}{m}$.

(3) 令 $C = \{0, m\}$, 则 T_C 为游戏结束时间. 令 $a_i = \mathsf{E}(T_C \mid S_0 = i)$, 则 $a_0 = 0, a_m = 0$, 且

$$\begin{aligned} a_i &= \sum_j \mathsf{E}(T_C \mid S_1 = j, S_0 = i) \mathsf{P}(S_1 = j \mid S_0 = i) \\ &= \sum_j [1 + \mathsf{E}(T_C \mid S_0 = j)] p_{ij} = 1 + \frac{1}{2} (a_{i+1} + a_{i-1}), \quad 0 < i < m. \end{aligned}$$

所以 $a_i = i(m-i)$.

上例告诉我们,当 Markov 链有多个闭集时,可以利用 Markov 性和全概率公式,利用一步分析法建立方程,计算被某个特定闭集吸收的概率或平均吸收时间.

例 4.6.2 以 X_n (单位: 元) 表示 n 时刻某股票的价格. 设 $\{X_n\}$ 是 Markov 链, 状态空间 $I = \{1, 2, 3, 4\}$, 一步转移矩阵

$$\mathbf{P} = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 \\ 0 & 1/4 & 1/4 & 1/2 \\ 0 & 0 & 1/2 & 1/2 \end{pmatrix}.$$

已知 $P(X_0 = 2) = P(X_0 = 3) = 1/2$, 计算:

- (1) 股票价格在涨到 4 元前不曾跌到 1 元的概率;
- (2) 股票价格到达 4 元的平均时间.

解 (1) 所求概率为 $P(T_4 < T_1)$, 这个值与到达状态 1 或状态 4 之后的过程没有关系, 所以可以将状态 1 和状态 4 看成吸收态. 令 $h_i = P(T_4 < T_1 \mid X_0 = i)$, 则 $h_1 = 0$, $h_4 = 1$, 且

$$h_2 = \frac{1}{3}h_1 + \frac{1}{3}h_2 + \frac{1}{3}h_3, \quad h_3 = \frac{1}{4}h_2 + \frac{1}{4}h_3 + \frac{1}{2}h_4.$$

可求得 $h_2 = \frac{2}{5}$, $h_3 = \frac{4}{5}$, 因此 $P(T_4 < T_1) = \sum_{i=1}^4 P(X_0 = i)h_i = \frac{3}{5}$.

(2) 所求概率为 $E(T_4)$, 这个值与到达状态 4 之后的过程没有关系, 所以可以将状态 4 看成吸收态. 令 $a_i = E(T_4 \mid X_0 = i)$, 则 $a_4 = 0$, 且

$$a_1 = 1 + \frac{1}{2}a_1 + \frac{1}{2}a_2$$
, $a_2 = 1 + \frac{1}{3}a_1 + \frac{1}{3}a_2 + \frac{1}{3}a_3$, $a_3 = 1 + \frac{1}{4}a_2 + \frac{1}{4}a_3 + \frac{1}{2}a_4$.

可求得
$$a_1 = \frac{23}{2}$$
, $a_2 = \frac{19}{2}$, $a_3 = \frac{9}{2}$, 因此 $\mathsf{E}(T_4) = \sum_{i=1}^4 \mathsf{P}(X_0 = i)a_i = 7$.

4.7 可逆 Markov 链

定义 4.7.1 (可逆 Markov 链) 假设 $X = (X_n, n \ge 0)$ 是 Markov 链, 状态空间为 \mathcal{E} , 转移 概率矩阵为 P, 初始分布为 p_0 . 假设 X 是不可约 Markov 链, 对任意 $N \ge 0$, 令

$$Y_n = X_{N-n}, \quad 0 \le n \le N,$$

如果对任意 $N \ge 1$, 过程 $Y = (Y_n, 0 \le n \le N)$ 是 Markov 链, 其中转移概率矩阵为 P, 初始分 布为 p_0 , 那么称 X 是可逆 Markov 链.

显然, 如果 X 是可逆 Markov 链, 那么 $\forall N \geq 1$, $(Y_n, 0 \leq n \leq N) \stackrel{d}{=} (X_n, 0 \leq n \leq N)$.

另外, 如果 X 是可逆 Markov 链, 那么 $X_N \stackrel{d}{=} X_0$, $\forall N \geq 1$, 所以该 Markov 链一定是平稳的, 初始分布 p_0 为平稳分布.

定理 4.7.1 假设平稳分布 π 存在, 选择 π 作为初始分布 p_0 , 则

$$X$$
 可逆 \iff $(X_1, X_0) \stackrel{d}{=} (X_0, X_1),$

 $\mathbb{P} \pi_i p_{ij} = \pi_j p_{ji}, \ \forall i, j \in \mathcal{E}.$

定义 **4.7.2** (可逆分布) 一个概率分布 π 称为**可逆分布**如果对所有 i, j 有 $\pi_i p_{ij} = \pi_j p_{ji}$. 定理 **4.7.2** 可逆分布一定是平稳分布.

另外, 如果对所有状态 i, j, 满足 $\pi_i p_{ij} = \pi_j p_{ji}$, 则 X 就是可逆的 Markov 链.

例 4.7.1 有 A, B 两只容器, 中间有一细管相连. 有 m 只跳蚤, 每次有一只随机地从一个容器跳到另一个容器. 以 X_n 表示 n 次后 A 中跳蚤数, 则 $\{X_n\}$ 是时齐 Markov 链, 转移概率为

$$p_{i,i+1} = \frac{m-i}{m}, \quad p_{i,i-1} = \frac{i}{m}, \quad i = 0, 1, \dots, m.$$

试问其平稳分布.

解 先尝试求其可逆分布 π, 则

$$\pi_i p_{i,i-1} = \pi_{i-1} p_{i-1,i}, \quad i = 1, 2, \dots, m.$$

于是

$$\pi_i = \frac{m-i+1}{i}\pi_{i-1} = \dots = \frac{(m-i+1)(m-i+2)\cdots m}{i!}\pi_0 = \binom{m}{i}\pi_0, \quad i = 0, 1, \dots, m.$$

因此 $\pi_i = \frac{\binom{m}{i}}{2^m}$, $i = 0, 1, \ldots, m$. 由于 $\{X_n\}$ 不可约, 因此这个可逆分布 π 也是唯一的平稳分布.

例 4.7.2 设 $\{X_n\}$ 是平稳的时齐 Markov 链, 状态空间 $I = \{1, 2\}$, 一步转移概率矩阵

$$\boldsymbol{P} = \left(\begin{array}{cc} 0 & 1 \\ 0.5 & 0.5 \end{array} \right),$$

问 $\{X_n\}$ 可逆吗?

 \mathbf{m} 设 $\mathbf{\pi} = (\pi_1, \pi_2)$ 是可逆分布,则

$$\pi_1 p_{12} = \pi_2 p_{21}, \quad \mathbb{P} \ \pi_1 = 0.5 \pi_2.$$

又 $\pi_1 + \pi_2 = 1$, 所以 $\pi = \left(\frac{1}{3}, \frac{2}{3}\right)$, 因此 $\{X_n\}$ 可逆.

例 4.7.3 设 $\{X_n\}$ 是平稳的时齐 Markov 链, 状态空间 $I = \{1, 2, 3\}$, 一步转移概率矩阵

$$\boldsymbol{P} = \left(\begin{array}{ccc} 0 & 0.6 & 0.4 \\ 0.1 & 0.7 & 0.2 \\ 0.3 & 0 & 0.7 \end{array} \right),$$

问 $\{X_n\}$ 可逆吗?

解 设 $\pi = (\pi_1, \pi_2, \pi_3)$ 是可逆分布,则

$$\pi_2 p_{23} = \pi_3 p_{32}, \quad \text{IV } \pi_2 = 0,$$

$$\pi_1 p_{12} = \pi_2 p_{21}, \quad \text{$\noteal} \pi_1 = 0,$$

$$\pi_1 p_{13} = \pi_3 p_{31}, \quad \text{$\noteal} \pi_3 = 0.$$

所以不存在可逆分布,因此 $\{X_n\}$ 不可逆.

定理 4.7.3 (Kolmogorov 准则) 假设 $X = (X_n, n \ge 0)$ 是不可约平稳 Markov 链, 转移概率矩阵为 P. 该 Markov 链是可逆的, 当且仅当对任意闭路径 $i_0, i_1, \dots, i_{N-1}, i_N = i_0$, 有

$$p_{i_0i_1}p_{i_1i_2}\cdots p_{i_{N-1}i_0}=p_{i_0i_{N-1}}\cdots p_{i_2i_1}p_{i_1i_0}.$$

根据上述定理也可以判断前面的例子中的 Markov 链是不可逆的.

五、 Galton-Watson 分枝过程

5.1 模型简介

令 ξ 是一个取非负整数值随机变量, 其分布如下:

$$P(\xi = k) = p_k, \quad k \ge 0,$$

其中 $p_0 < 1$. 如不加说明, 本章内容中出现的 ξ 均假设服从这一分布.

考虑某物种自然繁殖过程,设祖先为 Z_0 , Z_1 为第一代个体个数,其分布与 ξ 相同.第一代 Z_1 个个体独立进行繁殖各自的后代,并且与祖先繁殖后代的能力一样,即每个个体繁殖后代的个数为随机变量,与 ξ 同分布.

令 $(\xi_{1j}, j \ge 1)$ 为一列独立同分布随机变量,与 ξ 同分布且与 Z_1 独立,则第二代个体总数为

$$Z_2 = \sum_{j=1}^{Z_1} \xi_{1j}.$$

类似地, 令 Z_n 为第 n 代个体总数, 并假设 $(\xi_{nj}, j \ge 1)$ 为一列独立同分布随机变量, 与 ξ 同分布 且与 $\{\xi_{ij}; 1 \le i < n\}$ 相互独立, 则第 n+1 代个体总数为

$$Z_{n+1} = \sum_{j=1}^{Z_n} \xi_{nj}.$$

定理 5.1.1 $Z = (Z_n, n \ge 0)$ 是 Markov 链, 状态空间为 \mathbb{Z}_+ , 转移概率

$$p_{ij} = P\left(\sum_{l=1}^{i} \xi_l = j\right), \quad i, j \ge 0,$$

其中 ξ_1, ξ_2, \dots 是一列独立同分布随机变量,与 ξ 同分布.

例 5.1.1 设
$$P(\xi = 1) = p$$
, $P(\xi = 0) = 1 - p$, $0 , 则$

$$P(Z_n = 1) = p^n$$
, $P(Z_n = 0) = 1 - p^n$.

例 5.1.2 设 $\xi \sim B(n,p)$, 则在 $Z_n = i$ 的条件下, $Z_{n+1} = \sum_{l=1}^i \xi_{nl} \sim B(ni,p)$, 所以

$$p_{ij} = \binom{ni}{j} p^j (1-p)^{ni-j}, \quad j = 0, 1, \dots, ni.$$

例 5.1.3 设 $\xi \sim P(\lambda)$,则在 $Z_n = i$ 的条件下, $Z_{n+1} = \sum_{l=1}^i \xi_{nl} \sim P(i\lambda)$,所以

$$p_{ij} = \frac{(i\lambda)^j}{j!} e^{-i\lambda}, \quad j = 0, 1, \dots$$

例 5.1.4 设 $\xi \sim G(p)$, 即 $P(\xi = k) = (1-p)^k p, k = 0, 1, ...$,则

$$p_{ij} = P\left(\sum_{l=1}^{i} \xi_{nl} = j\right) = \binom{i+j-1}{i-1} (1-p)^{j} p^{i}.$$

一般来说, 求转移概率并不是一件容易的事情, Z_n 的分布律也很难算.

命题 5.1.1 (数字特征) 假设随机变量 ξ 满足 $E(\xi) = \mu$, $Var(\xi) = \sigma^2$, 那么对每个 $n \ge 1$, 有

$$E(Z_n) = \mu^n$$
, $Var(Z_n) = \sigma^2 \mu^{n-1} (1 + \mu + \dots + \mu^{n-1})$.

这一结果告诉我们, 总体上 Z_n 以几何级数的方式增长 $(\mu > 1)$ 或衰减 $(\mu < 1)$.

5.2 生成函数

定义 5.2.1 (生成函数) 假设 ξ 是非负整数值随机变量, 定义

$$\phi(s) = E(s^{\xi}) = \sum_{k=0}^{\infty} p_k s^k, \quad 0 \le s \le 1.$$

可以知道 $\phi(s)$ 在 [0,1] 上收敛, 称 $\phi(s)$ 为随机变量 ξ 的生成函数.

正如特征函数一样, 非负整数值随机变量 ξ 的分布和其生成函数相互唯一确定.

命题 5.2.1 生成函数有许多良好的性质, 如

- (1) $\phi_0 = p_0, \ \phi(1) = 1, \ 0 \le \phi(s) \le 1;$
- (2) $\phi(s)$ 在 [0,1] 上单调递增且一致连续;
- (3) 如果 $E(\xi^k) < \infty$, 则

$$E[\xi(\xi-1)\cdots(\xi-k+1)] = \phi^{(k)}(1),$$

特别地, 当 $E(\xi^2) < \infty$ 时, $\phi'(1) = E(\xi)$, $\phi''(1) = E(\xi^2) - E(\xi)$;

(4) $\phi(s)$ 在 s=0 处无穷次可微, 并且

$$p_k = \frac{\phi^{(k)}(0)}{k!}, \quad \forall k \ge 0,$$

其中约定 $\phi^{(0)}(0) = \phi(0)$;

(5) 假设 ξ, η 为两个独立非负整数值随机变量, 那么 $\xi + \eta$ 的生成函数等于各自生成函数的 乘积, 即

$$\phi_{\mathcal{E}+n}(s) = \phi_{\mathcal{E}}(s)\phi_n(s).$$

该性质可以推广到任意有限个独立随机变量和.

5.3 分枝过程的生成函数

记 ξ 的生成函数为 $\phi(s)$, Z_n 的生成函数为 $\phi_n(s)$, 显然有 $\phi_1(s) = \phi(s)$, 而对 $n \ge 1$, 有

$$\begin{split} \phi_{n+1}(s) &= \mathsf{E}(s^{Z_{n+1}}) = \mathsf{E}\bigg(s^{\sum\limits_{j=1}^{Z_n}\xi_{nj}}\bigg) = \sum_{N=0}^{\infty} \mathsf{E}\bigg(s^{\sum\limits_{j=1}^{N}\xi_{nj}}\bigg| Z_n = N\bigg) \mathsf{P}(Z_n = N) \\ &= \sum_{N=0}^{\infty} \mathsf{E}\bigg(s^{\sum\limits_{j=1}^{N}\xi_{nj}}\bigg) \mathsf{P}(Z_n = N) \\ &= \sum_{N=0}^{\infty} (\phi_n(s))^N \mathsf{P}(Z_n = N) = \phi(\phi_n(s)). \end{split}$$

所以分枝过程的生成函数满足

$$\phi_{n+1}(s) = \phi_n(\phi(s)) = \phi(\phi_n(s)), \quad n \ge 1.$$

根据前面的讨论, 可以由 $\phi_n(s)$ 来计算 Z_n 的分布. 当然, 通常情况下 Z_n 的分布并不能详细给出, 因为即使容易算出 $\phi(s)$, 也很难得到 n 次复合函数 $\phi_n(s)$ 的解析表达式.

例 5.3.1 设 $P(\xi = k) = \frac{1}{2^{k+1}}, k = 0, 1, \ldots$ 对 $n \ge 1$, 计算 $\phi_n(s)$ 及 Z_n 的分布律.

解 ξ的生成函数

$$\phi(s) = \sum_{k=0}^{\infty} \frac{s^k}{2^{k+1}} = \frac{1}{2-s}, \quad 0 \le s \le 1.$$

所以

$$\phi_1(s) = \phi(s) = \frac{1}{2-s}, \quad \phi_2(s) = \phi(\phi_1(s)) = \frac{1}{2-\frac{1}{2-s}} = \frac{2-s}{3-2s}.$$

若已算得 $\phi_n(s) = \frac{n - (n-1)s}{n+1-ns}$, 则

$$\phi_{n+1}(s) = \phi(\phi_n(s)) = \frac{1}{2 - \frac{n - (n-1)s}{n+1 - ns}} = \frac{(n+1) - ns}{(n+2) - (n+1)s}.$$

由归纳法知, 对 $n \ge 1$, $\phi_n(s) = \frac{n - (n-1)s}{n+1-ns}$.

注意到

$$\phi_n(s) = \frac{n - (n-1)s}{n+1} \cdot \frac{1}{1 - \frac{n}{n+1}s}$$

$$= \frac{n - (n-1)s}{n+1} \sum_{k=0}^{\infty} \left(\frac{n}{n+1}s\right)^k$$

$$= \frac{n}{n+1} + \sum_{k=0}^{\infty} \left(\frac{n}{n+1} \frac{n^{k+1}s^{k+1}}{(n+1)^{k+1}} - \frac{n-1}{n+1} \frac{n^ks^{k+1}}{(n+1)^k}\right)$$

$$= \frac{n}{n+1} + \sum_{k=1}^{\infty} \frac{n^{k-1}}{(n+1)^{k+1}} s^k.$$

所以
$$P(Z_n = 0) = \frac{n}{n+1}$$
, $P(Z_n = k) = \frac{n^{k-1}}{(n+1)^{k+1}}$, $k \ge 1$.

5.4 生存与灭绝概率

Galton-Watson 分枝过程理论研究中,一个基本问题是: 该物种是否一直生存下去? 最终灭绝的概率是多少? 显然,如果存在 $n \ge 1$,使得 $Z_n = 0$,那么对所有 m > n 都有 $Z_m = 0$,即该物种完全灭绝.

根据前面有关生成函数的讨论, 物种在第 n 代灭绝的概率为 $P(Z_n = 0) = \phi_n(0)$. 注意到 $\phi_n(0)$ 是一个有界单调不减数列, 所以极限存在, 记

$$\tau = \lim_{n \to \infty} \phi_n(0).$$

称 τ 为**灭绝概率**. 特别地, 如果 $\tau = 1$, 则该物种最终一定会灭绝.

利用生成函数的性质,有

$$\phi_n(0) = \phi(\phi_{n-1}(0)),$$

两边取极限得到最终灭绝概率 τ 满足方程

$$\tau = \phi(\tau)$$
.

定理 5.4.1 假设 $E(\xi) = \mu$, $Z = (Z_n, n \ge 0)$ 是 Galton-Watson 分枝过程.

- (1) 如果 $\mu \leq 1$, 那么 $\tau = 1$, 即该物种最终一定会灭绝;
- (2) 如果 $\mu > 1, 0 < p_0 < 1$, 那么灭绝概率 τ 为方程 $\tau = \phi(\tau)$ 的最小正解, 且 $0 < \tau < 1$;
- (3) 如果 $p_0 = 0$, 那么最终灭绝的概率为 0.

例 5.4.1 设 $P(\xi = k) = \frac{1}{2^{k+1}}, k = 0, 1, \dots, 则 \phi(s) = \frac{1}{2-s}, \mu = \phi'(1) = 1, 因此 \tau = 1.$ 进一步,令 $T_0 = \min\{n \geq 1: Z_n = 0\}$ 为首次灭绝的时刻,计算 T_0 的分布律.

解 已算得
$$\alpha_n = P(Z_n = 0) = \frac{n}{n+1}$$
, 因此对 $n \ge 1$,

$$P(T_0 = n) = P(Z_n = 0, Z_{n-1} \neq 0) = P(Z_n = 0) - P(Z_{n-1} = 0) = \frac{1}{n(n+1)}.$$

此即首次灭绝时刻的分布律.

例 5.4.2 设 $P(\xi = k) = (1-p)^k p, \ k = 0, 1, \dots, \ \mathbb{N} \ \phi(s) = \frac{p}{1 - (1-p)s}, \ \mu = \phi'(1) = \frac{1-p}{p}.$ 讨论灭绝概率.

解 由方程

$$s = \phi(s) \iff (1-p)s^2 - s + p = 0 \iff (s-1)((1-p)s - p) = 0.$$

所以当 $p \geq \frac{1}{2}$ 时, $\tau = 1$; 当 $p < \frac{1}{2}$ 时, $\tau = \frac{p}{1-n}$.

六、 平稳随机过程遍历性

6.1 时间平均

随机变量的数学期望实际上是一种加权平均: 按照其概率大小进行加权平均.

假设 $X, X_1, X_2, \ldots, X_n, \ldots$ 是一列独立同分布随机变量, $\mathsf{E}|X| < \infty$ 并且 $\mathsf{E}(X) = \mu$, 由 Khinchine 大数律得

 $\frac{X_1+X_2+\cdots+X_n}{n} \xrightarrow{\ \ \, P \ \ } \mu, \quad n\to\infty.$

进而由 Kolmogorov 大数律,上式可加强为几乎处处收敛. 基于这一事实,有时称数学期望 μ 为**样本平均**或统计平均.

下面考虑随机过程的时间平均.

假设 $X = (X_n, n \ge 0)$ 是平稳随机过程, 前 n 个时刻观测值的平均值为

$$\overline{X}_n = \frac{X_0 + X_1 + \dots + X_{n-1}}{n}.$$

如果存在一个随机变量 τ , 使得 $(\overline{X}_n, n \ge 1)$ 在均方意义下收敛于 τ , 即

$$\lim_{n \to \infty} \mathsf{E}(\overline{X}_n - \tau)^2 = 0,$$

则称 au 为该随机过程的**时间平均**, 简记为 $\lim_{n \to \infty} \overline{X}_n = au$.

假设 $X = (X(t), t \ge 0)$ 是平稳随机过程, 定义 [0, T] 内的过程平均值为

$$\overline{X}_T = \frac{1}{T} \int_0^T X(t) dt.$$

假设对任何 T>0, 上式积分存在且有限, 则定义其为 [0,T] 上的时间平均. 如果存在一个随机变量 τ , 使得 $(\overline{X}_T,T>0)$ 在均方意义下收敛于 τ , 即

$$\lim_{T \to \infty} \mathsf{E}(\overline{X}_T - \tau)^2 = 0,$$

则称 au 为该随机过程的**时间平均**, 简记为 $\lim_{T \to \infty} \overline{X}_T = au$.

事实上, 任意给定样本点 ω , $X(\omega,t)$ 是一条样本曲线, 但作为 t 的函数, 它不一定在 [0,T] 内 Riemann 可积. 这里我们采用均方可积的概念: 将 [0,T] 进行划分, 分点为 $0=t_0 < t_1 < \cdots < t_n = T$, 在每个小区间 $[t_{k-1},t_k]$ 内任取一点 t_k^* , 作和 $S_n = \sum_{k=1}^n X(t_k^*)(t_k - t_{k-1})$.

如果存在一个随机变量 ξ_T (不依赖于上述划分和取点), 使得

$$\lim_{\substack{\max_{k}(t_{k}-t_{k-1})\to 0}} \mathsf{E}(S_{n}-\xi_{T})^{2} = 0,$$

则称 X(t) 在 [0,T] 内均方可积, 积分为 ξ_T , 记为 $\int_0^T X(t) dt = \xi_T$. 下面定理给出均方可积的充分条件.

定理 **6.1.1** 假设 $X = (X(t), t \ge 0)$ 是二阶矩过程, $E(X(t))^2 < \infty$. 给定 T > 0, 如果

$$\int_0^T \int_0^T \textit{E}(X(s)X(t)) \mathrm{d}s \mathrm{d}t < \infty,$$

那么 X(t) 在 [0,T] 内均方可积.

推论 **6.1.1** 如果 $X = (X(t), t \ge 0)$ 是弱平稳过程, 那么对任何 $[a, b] \subseteq T$, X(t) 在 [a, b] 上均方可积.

随机过程重点复习

6.2 均值遍历性

定义 **6.2.1** 令 $X = (X(t), t \in T)$ 是平稳随机过程, $E[X(t)] = \mu$, 如果时间平均等于样本平均, 即

$$\tau = \mu$$
, a.s.,

则称 $X = (X(t), t \in T)$ 满足**均值遍历性**.

定理 6.2.1 假设 $X=(X_n, n\geq 0)$ 是离散时间平稳随机过程, $E(X_n)=\mu$, 那么 $X=(X_n, n\geq 0)$ 满足均值遍历性当且仅当

$$\frac{1}{n^2}\sum_{k=1}^n(n-k)(\textit{E}(X_0X_k)-\mu^2)\to 0,\quad n\to\infty.$$

推论 6.2.1 在上述定理的假设下, $X = (X_n, n \ge 0)$ 满足均值遍历性当且仅当

$$\frac{1}{n}\sum_{k=1}^{n}(\mathcal{E}(X_0X_k)-\mu^2)\to 0,\quad n\to\infty.$$

推论 6.2.2 在上述定理的假设下, 如果

$$E(X_0X_k) \to \mu^2, \quad k \to \infty,$$

那么 $X = (X_n, n \ge 0)$ 满足均值遍历性.

该推论意味着随机过程渐近不相关. 特别地, 如果 $X = (X_n, n \ge 0)$ 是平稳白噪声序列, 即 $\mathsf{E}(X_n) = 0$ 且对 $\forall k \ge 1$, $\mathsf{E}(X_0X_k) = 0$, 那么 $X = (X_n, n \ge 0)$ 满足均值遍历性.

下面考虑连续时间随机过程.

定理 6.2.2 假设 $X=(X(t),t\geq 0)$ 是连续时间平稳随机过程, $EX(t)=\mu$,那么 $X=(X(t),t\geq 0)$ 满足均值遍历性当且仅当

$$\frac{1}{T^2} \int_0^T (T-t) (\mathcal{E}(X(0)X(t)) - \mu^2) \mathrm{d}t \to 0, \quad T \to \infty.$$

推论 6.2.3 在上述定理的假设下, $X = (X(t), t \ge 0)$ 满足均值遍历性当且仅当

$$\frac{1}{T} \int_0^T (\mathcal{E}(X(0)X(t)) - \mu^2) dt \to 0, \quad T \to \infty.$$

推论 6.2.4 在上述定理的假设下, 如果

$$E(X(0)X(t)) \to \mu^2, \quad t \to \infty,$$

那么 $X = (X(t), t \ge 0)$ 满足均值遍历性.

例 6.2.1 判断随机相位余弦波过程 $X(t) = a\cos(\omega t + \Theta)$, $\Theta \sim U(0, 2\pi)$ 是否具有均值遍历性.

解 时间平均

$$\tau_X = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T a \cos(\omega t + \Theta) dt = \lim_{T \to \infty} \frac{a[\sin(\omega T + \Theta) - \sin(-\omega T + \Theta)]}{2T\omega} = 0.$$

样本平均

$$\mu_X = \int_0^{2\pi} a \cos(\omega t + \theta) \frac{1}{2\pi} d\theta = \frac{a[\sin(\omega t + 2\pi) - \sin(\omega t)]}{2\pi} = 0.$$

因此 $\tau_X = \mu_X$, 具有均值遍历性.

例 6.2.2 考虑随机电报信号 $P(X(t)=\pm I)=rac{1}{2}$, 而正负号在区间 (t,t+ au) 内变化的次数服从参数为 λau 的 Poisson 分布. 证明: X(t) 是弱平稳过程, 并判断是否有均值遍历性.

解 首先 $\mu_X = E[X(t)] = 0$ 为常数; 其次, 设 $\tau > 0$, 则

$$\begin{split} \rho(t,t+\tau) &= \mathsf{E}[X(t)X(t+\tau)] \\ &= I^2 \mathsf{P}(X(t)X(t+\tau) = I^2) - I^2 \mathsf{P}(X(t)X(t+\tau) = -I^2) \\ &= I^2 \left\{ \sum_{k=0}^{\infty} \frac{(\lambda\tau)^{2k}}{(2k)!} \mathrm{e}^{-\lambda\tau} - \sum_{k=0}^{\infty} \frac{(\lambda\tau)^{2k+1}}{(2k+1)!} \mathrm{e}^{-\lambda\tau} \right\} \\ &= I^2 \mathrm{e}^{-\lambda\tau} \sum_{k=0}^{\infty} \frac{(-\lambda\tau)^k}{k!} = I^2 \mathrm{e}^{-2\lambda\tau} \,. \end{split}$$

若 $\tau < 0$, 则 $\rho(t,t+\tau) = \rho(t+\tau,t) = I^2 \mathrm{e}^{2\lambda \tau}$; 另外 $\rho(t,t) = \mathsf{E}[X^2(t)] = I^2$. 综合上述, $\rho(t,t+\tau) = I^2 \mathrm{e}^{-2\lambda|\tau|}$ 仅与 τ 有关, 因此 X(t) 是弱平稳过程. 又因为

$$\lim_{\tau \to \infty} \rho(t, t + \tau) = 0 = \mu_X^2.$$

所以具有均值遍历性.

例 6.2.3 设 $X(t) = e^{-\frac{\alpha t}{2}} B(e^{\alpha t})$, 其中 $\alpha > 0$, $\mathbf{B} = (B(t), t \ge 0)$ 是标准 Brown 运动.

- (1) 证明: $X = (X(t), t \ge 0)$ 是强平稳过程;
- (2) X 具有均值遍历性吗? 为什么?

解 (1) 首先 $\mu_X = \mathsf{E}[X(t)] = \mathrm{e}^{-\frac{\alpha t}{2}} \mathsf{E}[B(\mathrm{e}^{\alpha t})] = 0$ 为常数; 其次, 设 $t, \tau \ge 0$, 则

$$\rho(t, t + \tau) = \mathsf{E}[X(t)X(t + \tau)]$$

$$= \mathrm{e}^{-\frac{\alpha t}{2}} \mathrm{e}^{-\frac{\alpha(t+\tau)}{2}} \mathsf{E}[B(\mathrm{e}^{\alpha t})B(\mathrm{e}^{\alpha(t+\tau)})]$$

$$= \mathrm{e}^{-\frac{\alpha t}{2}} \mathrm{e}^{-\frac{\alpha(t+\tau)}{2}} \mathrm{e}^{\alpha t} = \mathrm{e}^{-\frac{\alpha\tau}{2}}.$$

所以对所有 au, $ho(t,t+ au)=\mathrm{e}^{-\frac{lpha| au|}{2}}$ 仅与 au 有关, 因此 au 是弱平稳过程. 又由于它是正态过程, 所以它也是强平稳过程.

(2) 因为

$$\lim_{\tau \to \infty} \rho(t, t + \tau) = 0 = \mu_X^2.$$

所以具有均值遍历性.

例 6.2.4 设 X_0 具有密度函数

$$f(x) = \begin{cases} 2x, & 0 \le x \le 1, \\ 0, & \text{ i.e.} \end{cases}$$

对 $n \ge 0$, 在已知 X_0, \ldots, X_n 的条件下, X_{n+1} 服从 $(1 - X_n, 1]$ 上的均匀分布.

- (1) 证明: $\{X_n; n=0,1,\dots\}$ 是弱平稳过程;
- (2) 判断当 $N \to \infty$ 时, $\frac{1}{N} \sum_{i=1}^{N} X_i$ 是否依概率收敛? 如果收敛, 收敛到何值?

解 (1) 首先有
$$\mathsf{E}(X_0) = \int_0^1 x(2x) \mathrm{d}x = \frac{2}{3}, \ \mathsf{E}(X_0^2) = \int_0^1 (x^2)(2x) \mathrm{d}x = \frac{1}{2}. \ \forall \ n \ge 0,$$

$$\mathsf{E}(X_{n+1} \mid X_0, X_1, \dots, X_n) = \frac{1}{2}(1 - X_n + 1) = 1 - \frac{X_n}{2},$$

$$\mathsf{E}(X_{n+1}^2 \mid X_0, X_1, \dots, X_n) = \frac{1}{12}X_n^2 + \left(1 - \frac{X_n}{2}\right)^2 = \frac{X_n^2}{3} - X_n + 1.$$

于是

$$\begin{aligned} \mathsf{E}(X_{n+1}) &= \mathsf{E}[\mathsf{E}(X_{n+1} \mid X_0, X_1, \dots, X_n)] = 1 - \frac{\mathsf{E}(X_n)}{2}, \\ \mathsf{E}(X_{n+1}^2) &= \mathsf{E}[\mathsf{E}(X_{n+1}^2 \mid X_0, X_1, \dots, X_n)] = \frac{\mathsf{E}(X_n^2)}{3} - \mathsf{E}(X_n) + \frac{1}{3}. \end{aligned}$$

由归纳法可知, $E(X_n) = \frac{2}{3}$, $E(X_n^2) = \frac{1}{2}$ 对所有 n 成立.

对 $n, m \geq 0$, 因为

$$\mathsf{E}(X_n X_{n+m+1} \mid X_0, X_1, \dots, X_{n+m}) = X_n \Big(1 - \frac{X_{n+m}}{2} \Big),$$

所以

$$\mathsf{E}(X_n X_{n+m+1}) = \frac{2}{3} - \frac{1}{2} \mathsf{E}(X_n X_{n+m}).$$

由归纳法可知,

$$\rho(n, n+m) = \mathsf{E}(X_n X_{n+m}) = \frac{4}{9} + \frac{(-1)^m}{18 \times 2^m}, \quad \forall m \ge 0.$$

所以 $\{X_n; n = 0, 1, ...\}$ 是弱平稳过程;

(2) 当 $m \to \infty$ 时,

$$\lim_{m \to \infty} \rho(n, n+m) = \frac{4}{9} = \mu_X^2,$$

因此具有均值遍历性. 从而当 $N \to \infty$ 时, $\frac{1}{N} \sum_{i=1}^{N} X_i \xrightarrow{P} \mu_X = \frac{2}{3}$.

七、 Brown 运动

7.1 Brown 运动及基本性质

定义 7.1.1 (Brown 运动) 令 $B = (B(t), t \ge 0)$ 是实数值随机过程, 如果满足

- 1° 初始值: B(0) = 0;
- \mathcal{D} 增量独立: 假设 $0 < t_1 < t_2 < \dots < t_k$, 那么 $B(t_1), B(t_2) B(t_1), \dots, B(t_k) B(t_{k-1})$ 相互独立;
- \mathcal{S}° 增量平稳: 假设 s < t, 那么 B(t) B(s) 与 B(t-s) 同分布, 即分布仅依赖于 t-s;
- 4° 正态分布: 对任何 t > 0, 有 $B(t) \sim N(0, \sigma^2 t)$,
- 则称 $B = (B(t), t \ge 0)$ 是参数为 σ^2 的 **Brown** 运动. 当 $\sigma^2 = 1$ 时, 称为标准 **Brown** 运动.

以下总假定 $\mathbf{B} = (B(t), t \ge 0)$ 为标准 Brown 运动.

命题 7.1.1 (数字特征) 设 $B = (B(t), t \ge 0)$ 是标准 Brown 运动,则

- (1) 均值函数 $\mu(t) = E[B(t)] = 0, t \ge 0;$
- (2) 方差函数 $\sigma^{2}(t) = Var[B(t)] = t, t \geq 0;$

(3)
$$m(\geq 1)$$
 阶矩 $E[B(t)^m] = \begin{cases} t^k(2k-1)!!, & m=2k, \\ 0, & m=2k+1; \end{cases}$

(4) 协方差函数 $r(s,t) = Cov(B(s), B(t)) = min\{s,t\} \triangleq s \wedge t$.

例 7.1.1 设 $B = (B(t), t \ge 0)$ 是标准 Brown 运动, 求:

- (1) B(1) + 3B(2) 的分布;
- (2) Cov(B(1) + B(3), B(3) B(2));
- (3) $P(B(7) \le 3 \mid B(1) = 1, B(3) = 2).$

解 (1) 注意到
$$B(1) + 3B(2) = 4B(1) + 3[B(2) - B(1)]$$
, 而 **B** 增量独立, 因此

$$B(1) + 3B(2) \sim N(0, 25).$$

或直接计算其方差为

$$\mathsf{Var}(B(1) + 3B(2)) = \mathsf{Var}(B(1)) + 9\mathsf{Var}(B(2)) + 6\mathsf{Cov}(B(1), B(2)) = 25.$$

(2)
$$\operatorname{Cov}(B(1) + B(3), B(3) - B(2)) = \operatorname{Cov}(B(1) + B(2) + [B(3) - B(2)], B(3) - B(2))$$
$$= \operatorname{Var}[B(3) - B(2)] = 1.$$

或直接计算得

$$\mathsf{Cov}(B(1) + B(3), B(3) - B(2)) = \mathsf{Cov}(B(1), B(3)) - \mathsf{Cov}(B(1), B(2)) + \mathsf{Var}(B(3)) - \mathsf{Cov}(B(3), B(2)) = 1.$$

(3)
$$P(B(7) \le 3 \mid B(1) = 1, B(3) = 2) = P(B(7) - B(3) \le 1 \mid B(1) = 1, B(3) = 2)$$
$$= P(B(7) - B(3) \le 1) = \Phi\left(\frac{1}{2}\right).$$

这里用到了 Brown 运动的 Markov 性.

Brown 运动的样本轨道极其特殊, 具有以下性质.

命题 7.1.2 设 $B = (B(t), t \ge 0)$ 是标准 Brown 运动, 则

(1) 样本轨道几乎处处连续

$$P(\omega \in \Omega : B(\omega, t) \text{ 在 } [0, +\infty) \text{ 上连续}) = 1.$$

(2) 样本轨道几乎无处可导

$$|B(t) - B(s)| \approx |t - s|^{\frac{1}{2}},$$

其中 × 表示近似. 所以 Brown 运动样本轨道极其不正则.

(3) 样本轨道的刻画: 通常采用简单随机游动的折线去近似 Brown 运动的样本轨道. 考虑 T = [0,1], $\mathbf{B} = (B(t), 0 \le t \le 1)$ 是连续时间取实值的 Brown 运动. 令 $n \ge 1$, S_0, S_1, \dots, S_n 为简单随机游动,构造 [0,1] 上连续函数 $X_n(t)$ 如下:

则 $X_n = (X_n(t), 0 \le t \le 1)$ 是 [0,1] 区间上的折线, 称为部分和过程. 可以证明, 当 $n \to \infty$ 时, 有

$$(X_n(t), 0 \le t \le 1) \Rightarrow (B(t), 0 \le t \le 1),$$

其中"⇒"表示过程依分布收敛.

下面命题给出了 Brown 运动的分布规律.

命题 7.1.3 设 $B = (B(t), t \ge 0)$ 是标准 Brown 运动,则

- (1) **1-维分布**: $B(t) \sim N(0,t)$, 密度函数为 $p(t,x) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}$, $x \in \mathbb{R}$.
- (2) **2-维分布**: 假设 s < t, 有 $(B(s), B(t)) \sim N(0, s; 0, t; (\frac{s}{t})^{\frac{1}{2}})$, 矩阵形式为

$$(B(s), B(t)) \sim N\left((0, 0), \begin{pmatrix} s & s \wedge t \\ s \wedge t & t \end{pmatrix}\right).$$

在给定 B(s) = x 的条件下, B(t) 的条件密度函数为

$$p_{t|s}(y|x) = P(B(t) = y \mid B(s) = x) = \frac{1}{\sqrt{2\pi(t-s)}} e^{-\frac{(y-x)^2}{2(t-s)}}, \quad y \in \mathbb{R}.$$

在给定 B(t) = y 的条件下, B(s) 的条件密度函数为

$$p_{s|t}(x|y) = P(B(s) = x \mid B(t) = y) = \frac{\sqrt{t}}{\sqrt{2\pi s(t-s)}} e^{-\frac{(tx-sy)^2}{2st(t-s)}}, \quad x \in \mathbb{R}.$$

(3) n-维分布

$$(B(t_1), B(t_2), \cdots, B(t_n)) \sim N \left((0, 0, \cdots, 0), \begin{pmatrix} t_1 & t_1 \wedge t_2 & \cdots & t_1 \wedge t_n \\ t_1 \wedge t_2 & t_2 & \cdots & t_2 \wedge t_n \\ \vdots & \vdots & \ddots & \vdots \\ t_n \wedge t_1 & t_2 \wedge t_n & \cdots & t_n \end{pmatrix} \right).$$

这表明 Brown 运动是正态过程,均值为 0,任意两个时刻的协方差为 $s \wedge t$.

定理 7.1.1 样本轨道连续的随机过程 $\mathbf{B} = (B(t), t \ge 0)$ 是 Brown 运动当且仅当它是正态过程, 且满足 $\mathbf{E}(B(t)) = 0$, $\mathbf{E}(B(t)B(s)) = s \wedge t$.

推论 **7.1.1** 假设 $\boldsymbol{B}=(B(t),t\geq 0)$ 是标准 Brown 运动,则下列三个过程也是标准 Brown 运动:

- (1) 给定 $t_0 \geq 0$, $\widetilde{B}(t) = B(t + t_0) B(t_0)$, $t \geq 0$;
- (2) 给定常数 $a \neq 0$, $\widetilde{B}(t) = \frac{1}{a}B(a^2t)$, $t \geq 0$;

(3)
$$\widetilde{B}(t) = \begin{cases} tB(t^{-1}), & t > 0, \\ 0, & t = 0. \end{cases}$$

例 7.1.2 设 $B = (B(t), t \ge 0)$ 是标准 Brown 运动, 求 $P(B(0.5) \le 1 \mid B(1) = 1, B(2) = 2)$.

解 由 Brown 运动的性质, $\widetilde{B} = (\widetilde{B}(t), t \ge 0)$ 是标准 Brown 运动, 其中 $B(t) = t\widetilde{B}(t^{-1})$. 所以

$$\begin{split} \mathsf{P}(B(0.5) \leq 1 \mid B(1) = 1, B(2) = 2) &= \mathsf{P}(0.5\widetilde{B}(2) \leq 1 \mid \widetilde{B}(1) = 1, 2\widetilde{B}(0.5) = 2) \\ &= \mathsf{P}(\widetilde{B}(2) \leq 2 \mid \widetilde{B}(1) = 1, \widetilde{B}(0.5) = 1) \\ &= \mathsf{P}(\widetilde{B}(2) - \widetilde{B}(1) \leq 1 \mid \widetilde{B}(1) = 1, \widetilde{B}(0.5) = 1) \\ &= \mathsf{P}(\widetilde{B}(2) - \widetilde{B}(1) \leq 1) = \Phi(1) = 0.8413. \end{split}$$

这里用到了0与 ∞ 的对称性.

7.2 与 Brown 运动相关的过程

(i) Brown 桥

定义 7.2.1 设 $B^0(t) = B(t) - tB(1)$, 称 $B^0 = (B^0(t), 0 \le t \le 1)$ 为 **Brown** 桥过程.

边界 $B^0(0) = B^0(1) = 0$. 可以证明 B^0 是均值为 0 的正态过程, 自相关函数为

$$\mathsf{E}(B^0(s)B^0(t)) = s \land t(1-s \lor t), \quad 0 < s, t < 1.$$

于是 1-维分布 $B^0(t) \sim N(0, t(1-t))$.

条件分布: 在 B(1) = 0 的条件下, B(t) 的分布密度函数为

$$p_{t|1}(x|0) = \frac{1}{\sqrt{2\pi t(1-t)}} e^{-\frac{x^2}{2t(1-t)}}.$$

这表明 $B^0(t) \stackrel{d}{=} (B(t) \mid B(1) = 0)$.

(ii) 反射 Brown 运动

定义 7.2.2 设 X(t) = |B(t)|, 称 $X = (X(t), t \ge 0)$ 为反射 Brown 运动.

反射 Brown 运动不再是一个正态过程, 其数字特征

$$\mathsf{E}[X(t)] = \sqrt{\frac{2t}{\pi}}, \quad \mathsf{E}[X^2(t)] = t, \quad t \ge 0.$$

给定 t > 0, 其分布

$$P(X(t) \le x) = 2\Phi\left(\frac{x}{\sqrt{t}}\right) - 1, \quad p(t, x) = \sqrt{\frac{2}{\pi t}}e^{-\frac{x^2}{2t}}, \quad x \ge 0.$$

(iii) 几何 Brown 运动

定义 7.2.3 设 $\alpha, \beta \in \mathbb{R}$, 记 $X(t) = e^{\alpha t + \beta B(t)}$, 称 $\boldsymbol{X} = (X(t), t \geq 0)$ 是几何 Brown 运动.

几何 Brown 运动不再是一个正态过程, 其数字特征

$$\mathsf{E}[X(t)] = \mathrm{e}^{\alpha t + \beta^2 t/2}, \quad \mathsf{E}[X^2(t)] = \mathrm{e}^{2\alpha t + 2\beta^2 t}, \quad t \ge 0.$$

给定 t > 0, X(t) 的密度函数

$$p(t,x) = \frac{1}{\beta x \sqrt{2\pi t}} e^{-\frac{(\ln x - \alpha t)^2}{2\beta^2 t}}, \quad x > 0.$$

(iv) 积分过程

对 Brown 运动而言, 几乎处处每一条样本曲线都连续, 即存在一个零概率事件 Ω_0 , 对每一个 $\omega \in \Omega \setminus \Omega_0$, $B(\omega,t)$ 作为 t 的函数在 $[0,+\infty)$ 连续. 定义

$$X(\omega, t) = \begin{cases} \int_0^t B(\omega, s) ds, & \omega \in \Omega \backslash \Omega_0, \\ 0, & \omega \in \Omega_0. \end{cases}$$

这个积分是一个 Riemann 积分, 它存在并有限.

定义 **7.2.4** 设
$$X(t) = \int_0^t B(s) ds$$
, 称 $X = (X(t), t \ge 0)$ 为积分过程.

积分过程是一个正态过程, 这是因为

$$\int_{0}^{t} B(s)ds = \lim_{n \to \infty} \sum_{k=1}^{n} (s_{i} - s_{i-1})B(s_{i}),$$

而 B 是一个正太过程. 积分过程 X 的数字特征

$$\mathsf{E}[X(t)] = 0, \ t \geq 0; \quad \mathsf{Cov}(X(s), X(t)) = \frac{s^2 t}{2} - \frac{s^3}{6}, \ s \leq t.$$

7.3 最大值与首中时分布

定义 7.3.1 (首中时) 设 $B = (B(t), t \ge 0)$ 是标准 Brown 运动, $a \ne 0$, 令

$$T_a = \inf\{t > 0 : B(t) = a\},\$$

表示首次击中a的时刻,称为a的首中时.

定理 7.3.1 (反射原理) 固定实数 a, 令

$$\widetilde{B}(t) = \begin{cases} B(t), & t < T_a, \\ 2a - B(t), & t \ge T_a, \end{cases}$$

则 $\widetilde{\boldsymbol{B}} = (\widetilde{B}(t), t \ge 0)$ 也是 Brown 运动.

证明 $\forall t \geq 0, \diamond$

$$Y(t) = B(t)\mathbf{1}_{\{t < T_a\}}, \quad Z(t) = B(t + T_a) - a.$$

则 $Z = (Z(t), t \ge 0)$ 是独立于 $Y = (Y(t), t \ge 0)$ 的 Brown 运动. 因而 -Z 也是独立于 Y 的 Brown 运动, 所以 (Y, Z) 与 (Y, -Z) 具有相同的有限维分布.

$$\varphi: (Y, Z) \to \{Y(t)\mathbf{1}_{t \le T_a} + (a + Z(t - T_a))\mathbf{1}_{t > T_a}, t \ge 0\}$$

生成一个连续过程, $\varphi(Y, -Z)$ 也是一个连续过程, 且两者具有相同的有限维分布. 又 $\varphi(Y, Z) = B$, $\varphi(Y, -Z) = \widetilde{B}$, 所以 \widetilde{B} 也是 Brown 运动.

命题 7.3.1 (最大值分布) 设 $B = (B(t), t \ge 0)$ 是标准 Brown 运动, 定义

$$M(t) = \sup_{0 \le s \le t} B(t), \quad t \ge 0,$$

那么 $M(t) \stackrel{d}{=} |B(t)|$.

证明 当 x < 0 时, $P(M(t) \le x) = 0$. 首先由反射定理知, 对 $\forall a, y, t \ge 0$,

$$\mathsf{P}(M(t) \ge a, B(t) \le a - y) = \mathsf{P}(B(t) \ge a + y).$$

当 $x \ge 0$ 时, 考虑

$$\begin{split} \mathsf{P}(M(t) > x) \, &= \, \mathsf{P}(M(t) > x, B(t) > x) + \mathsf{P}(M(t) > x, B(t) < x) + \mathsf{P}(M(t) > x, B(t) = x) \\ &= \, \mathsf{P}(B(t) > x) + \mathsf{P}(B(t) > x) + 0 = 2\mathsf{P}(B(t) > x) = \mathsf{P}(|B(t)| > x). \end{split}$$

因此 $M(t) \stackrel{d}{=} |B(t)|$.

注意到 $T_a \le t \Leftrightarrow M(t) \ge a$, 因此首中时 T_a 的密度函数为

$$p_{T_a}(t) = \frac{|a|}{\sqrt{2\pi t^3}} e^{-\frac{a^2}{2t}}, \quad t > 0.$$

更进一步,给定 $a \in \mathbb{R}$,有 $P(T_a < \infty) = 1$, $E(T_a) = \infty$. 这一结论告诉我们,|a| 无论多大,从 0 点出发的 Brown 运动总会在有限时间内到达 a;另一方面,|a| 无论多么靠近 0,Brown 运动到达 a 所需要的平均时间为 ∞ .

定理 7.3.2 令 a < 0 < b, 那么

$$P(T_a < T_b) = \frac{b}{b-a}, \quad P(T_a > T_b) = \frac{-a}{b-a}.$$

例 7.3.1 设 $\boldsymbol{B} = (B(t), t \ge 0)$ 是标准 Brown 运动. 设 $X(t) = \big| \min_{0 \le s \le t} B(s) \big|$, 求 X(t) 的分布函数.

解 注意到

$$X(t) = \big| \min_{0 \le s \le t} B(s) \big| = - \min_{0 \le s \le t} B(s) = \max_{0 \le s \le t} B_1(s),$$

其中 $B_1(s) = -B(s)$. 因此, 当 y > 0 时,

$$P(X(t) \le y) = 1 - P(\max_{0 \le s \le t} B_1(s) > y) = 1 - 2P(B_1(t) > y) = 2\Phi(\frac{y}{\sqrt{t}}) - 1.$$

所以
$$F_{X(t)}(y) = \left\{ egin{array}{ll} 2\Phi\left(rac{y}{\sqrt{t}}
ight) - 1, & y > 0, \\ 0, & y \leq 0. \end{array}
ight.$$

例 7.3.2 以 X(t) 表示 t 时刻的股票价格 (单位: 元). 设 $X(t) = 2^{B(t)}$, 其中 $\{B(t); t \geq 0\}$ 是标准 Brown 运动. 求 [0,4] 内股票价格不曾达到 8 元的概率.

解 由题意

$$\mathsf{P}(\max_{0 \le t \le 4} X(t) < 8) = \mathsf{P}(\max_{0 \le t \le 4} B(t) < 3) = 1 - 2\mathsf{P}(B(4) \ge 3) = 2\Phi(1.5) - 1 = 0.8664.$$

注意这里利用了几何 Brown 运动与 Brown 运动的单调性.

7.4 随机积分 (Itô 积分)

(i) 有界变差与无界变差

定义 7.4.1 (有界变差) 假设 G 是 [a,b] 上的实值函数. 对 [a,b] 进行分割 $\Delta: a=x_0 < x_1 < \cdots < x_n = b$, 如果

$$\sup_{\Delta} \sum_{i=1}^{n} |G(x_i) - G(x_{i-1})| < \infty,$$

则称 G 在 [a,b] 上具有**有界变差**.

假设 $G \in [0,+\infty)$ 上的实值函数. 如果

$$\sup_{t>0} \sup_{\Delta} \sum_{i=1}^{n} |G(x_i) - G(x_{i-1})| < \infty,$$

其中 Δ 是 [0,t] 上的分割,则称 G 在 $[0,+\infty)$ 上具有**有界变差**.

可以证明,任何有界变差函数都可以写成两个单调增函数的差,都几乎处处可微;另外,[a,b]上具有有界导函数的函数是有界变差函数,[a,b]上的单调函数是有界变差函数.

命题 7.4.1 假设 f 是 [a,b] 上的连续函数, G 是 [a,b] 上的有界变差函数, 那么 Riemann-Stieltjes 积分 $\int_a^b f(x) dG(x)$ 存在.

如果对所有连续函数 f, 积分 $\int_a^b f(x) \mathrm{d}G(x)$ 都存在, 则 G 一定是 [a,b] 上的有界变差函数. 下面定理表明标准 Brown 运动 $\mathbf{B} = (B(t), t \geq 0)$ 是无界变差函数.

定理 7.4.1 仅考虑 $t \in [0,1]$. 将该区间进行 2^n 等分,则和式

$$S_n = \sum_{i=1}^{2^n} \left| B\left(\frac{i}{2^n}\right) - B\left(\frac{i-1}{2^n}\right) \right| \to \infty, \quad \text{a.s.}, \quad n \to \infty.$$

证明 注意到

$$\begin{split} & \mathsf{E}(S_n) \, = \, \sum_{i=1}^{2^n} \mathsf{E} \Big| B\Big(\frac{i}{2^n}\Big) - B\Big(\frac{i-1}{2^n}\Big) \Big| = 2^n \mathsf{E} \Big| N\Big(0, \frac{1}{2^n}\Big) \Big| = 2^n \Big(\frac{2}{\pi 2^n}\Big)^{1/2}. \\ & \mathsf{Var}(S_n) \, = \, \sum_{i=1}^{2^n} \mathsf{Var} \Big| B\Big(\frac{i}{2^n}\Big) - B\Big(\frac{i-1}{2^n}\Big) \Big| = 2^n \mathsf{Var} \Big| N\Big(0, \frac{1}{2^n}\Big) \Big| = 2^n \frac{t}{2^n} \Big(1 - \frac{2}{\pi}\Big) = \Big(1 - \frac{2}{\pi}\Big)t. \end{split}$$

所以

$$\mathsf{P}\left(S_n < \frac{\mathsf{E}(S_n)}{2}\right) \leq \mathsf{P}\left(|S_n - \mathsf{E}(S_n)| \geq \frac{\mathsf{E}(S_n)}{2}\right) \leq \frac{4\mathsf{Var}(S_n)}{[\mathsf{E}(S_n)]^2} \to 0.$$

所以 $S_n \xrightarrow{P} \infty$, 又 S_n 单调递增, 所以 $S_n \to \infty$, a.s..

(ii) 随机积分

假设 $\mathbf{f} = (f(t), t \ge 0)$ 是非随机、有界变差函数, 定义

$$\int_0^t f(s) dB(s) = f(t)B(t) - \int_0^t B(s) df(s),$$

其中 $\int_0^t B(s) df(s)$ 是 Brown 运动关于 f 的 Riemann-Stieltjes 积分.

假设
$$\mathbf{f} = (f(t), t \ge 0)$$
 是随机过程, 如何定义 $\int_0^t f(s) dB(s)$?

由于 Brown 运动具有无界变差, 按 Riemann-Stieltjes 积分方式定义可能会引起麻烦. 以 f(s) = B(s) 为例, 可以证明, 将 [0,t] 进行划分, 分点记为 $0 = t_0 < t_1 < \cdots < t_n = t$, 在均方收敛的意义下, 取左端点计算积分值为 $(B(t)^2 - t)/2$, 取右端点计算积分值为 $(B(t)^2 + t)/2$.

(iii) Itô 积分

假设 $\mathbf{B} = (B(t), t \ge 0)$ 是标准 Brown 运动, $\mathbf{f} = (f(t), t \ge 0)$ 是一个关于 \mathbf{B} 适应的随机过程, 即 f(t) 仅依赖于 $\{B(s), 0 \le s \le t\}$. 进一步假设

$$\int_0^\infty \mathsf{E}[f(s)^2] \mathrm{d}s < \infty.$$

对任意 t > 0, 将 [0, t] 进行划分,分点记为 $0 = s_0 < s_1 < \cdots < s_n = t$, 使得 $\Delta = \max_{1 \le i \le n} |s_i - s_{i-1}| \to 0$, 选择 $\xi = s_{i-1}$ (区间的左端点),作 Riemann-Stieltjes 和

$$S_n(t) = \sum_{i=1}^n f(s_{i-1}) (B(s_i) - B(s_{i-1})).$$

一定存在一个随机变量 X(t), 使得 $\mathbb{E}(S_n(t) - X(t))^2 \to 0$, $n \to \infty$.

定义
$$\int_0^t f(s) dB(s) = X(t)$$
, 称 $X(t)$ 是 f 关于 \boldsymbol{B} 的 Itô 积分.

下面命题给出了 Itô 积分运算性质.

命题 7.4.2 设 $X(t) = \int_0^t f(s) dB(s)$ 是 f 关于 \boldsymbol{B} 的 $It\hat{o}$ 积分,则

(1) 数学期望: E[X(t)] = 0;

(2) 方差:
$$Var[X(t)] = E[X^2(t)] = \int_0^t E[f^2(s)] ds;$$

(3) 线性性:
$$\int_0^t (af(s) + bg(s)) dB(s) = a \int_0^t f(s) dB(s) + b \int_0^t g(s) dB(s);$$

(4) 可加性:
$$\int_0^T f(s) dB(s) = \int_0^t f(s) dB(s) + \int_t^T f(s) dB(s)$$
.

(iv) Itô 公式

前面给出了 Itô 积分的定义计算, 但通常需要一个基本公式帮助计算.

引理 7.4.1 假设 $f: \mathbb{R} \to \mathbb{R}$ 是一个二次可微分函数, 那么

$$f(B(t)) = f(B(0)) + \int_0^t f'(B(s)) dB(s) + \frac{1}{2} \int_0^t f''(B(s)) ds.$$

需要指出的是,该公式与 Newton-Lebinitz 公式相比多了最后一个二阶导数项. 这是由于 Brown 运动无界变差引起的,称作变差项.

由上面的引理, 可以得到 Itô 积分的一个计算公式:

$$\int_0^t f'\big(B(s)\big) \mathrm{d}B(s) = f\big(B(t)\big) - f\big(B(0)\big) - \frac{1}{2} \int_0^t f''\big(B(s)\big) \mathrm{d}s.$$

例 7.4.1 计算 $\int_0^t B(s) dB(s)$.

解 由上述计算公式,
$$\int_0^t B(s) dB(s) = \frac{1}{2}B^2(t) - \frac{1}{2}\int_0^t 1 ds = \frac{B^2(t) - t}{2}$$
.

例 7.4.2 计算 $\int_0^t \cos B(s) dB(s)$.

解 由上述计算公式,
$$\int_0^t \cos B(s) dB(s) = \sin B(t) + \frac{1}{2} \int_0^t \sin B(s) ds$$
.

例 7.4.3 计算
$$\int_0^t e^{B(s)} dB(s)$$
.

解 由上述计算公式,
$$\int_0^t e^{B(s)} dB(s) = e^{B(t)} - 1 - \frac{1}{2} \int_0^t e^{B(s)} ds$$
.

引理 7.4.2 假设 f(t,x) 是二元函数, 关于 t 和 x 的二阶偏导数存在并且连续, 那么

$$f\big(t,B(t)\big) = f(0,0) + \int_0^t \frac{\partial}{\partial s} f\big(s,B(s)\big) \mathrm{d}s + \int_0^t \frac{\partial}{\partial x} f\big(s,B(s)\big) \mathrm{d}B(s) + \frac{1}{2} \int_0^t \frac{\partial^2}{\partial x^2} f\big(s,B(s)\big) \mathrm{d}s.$$

例如,对几何 Brown 运动有

$$f(t,B(t)) = e^{(\mu - \frac{\sigma^2}{2})t + \sigma B(t)} = 1 + \mu \int_0^t f(s,B(s)) ds + \sigma \int_0^t f(s,B(s)) dB(s).$$

(v) Itô 过程

定义 7.4.2 假设 $\mathbf{B}=(B(t),t\geq 0)$ 是标准 Brown 运动, a(t,x) 和 b(t,x) 是两个二元函数, 称满足下列方程

$$X(t) = X(0) + \int_0^t a(s, X(s)) ds + \int_0^t b(s, X(s)) dB(s)$$

的随机过程 $X = (X(t), t \ge 0)$ 为 $It\hat{o}$ 扩散过程, 称 a(t, x) 为漂移系数, b(t, x) 为扩散系数.

Itô 扩散过程 X 通常简记为如下的随机微分方程

$$dX(t) = a(t, X(t))dt + b(t, X(t))dB(t).$$

引理 **7.4.3** 假设 $X = (X(t), t \ge 0)$ 是 $It\hat{o}$ 扩散过程, 具有漂移系数 a(t,x) 和扩散系数 b(t,x); f(t,x) 是二元函数, 关于 t 和 x 的二阶偏导数存在并且连续, 那么

$$f(t, X(t)) = f(0, X(0)) + \int_0^t \frac{\partial}{\partial s} f(s, X(s)) ds + \int_0^t \frac{\partial}{\partial x} f(s, X(s)) dX(s) + \frac{1}{2} \int_0^t \frac{\partial^2}{\partial x^2} f(s, X(s)) b^2(s, X(s)) ds$$

命题 7.4.3 (分部积分公式) 假设 $X = (X(t), t \ge 0), Y = (Y(t), t \ge 0)$ 是两个 $It\hat{o}$ 扩散过程:

$$dX(t) = a_1(t, X(t))dt + b_1(t, X(t))dB(t)$$

$$dY(t) = a_2(t, Y(t))dt + b_2(t, Y(t))dB(t)$$

那么 $\mathbf{Z} = (Z(t) = X(t)Y(t), t \ge 0)$ 也是 $It\hat{\mathbf{o}}$ 扩散过程, 并且

$$d(X(t)Y(t)) = X(t)dY(t) + Y(t)dX(t) + b_1(t, X(t))b_2(t, Y(t))dt.$$

7.5 Black-Scholes 公式

现有欧式买入期权, 规定持有人在 T 时刻以指定价格 K 购买股票, 但不具有义务. 假定在 (0,T) 内任意时刻可以买卖该期权, Black-Scholes 公式给出了 t 时刻欧式买入期权的合理价格为

$$V(t) = S(t)\Phi(d_1(t, S(t))) - Ke^{-r(T-t)}\Phi(d_2(t, S(t))),$$

其中 $\Phi(x)$ 为标准正态分布函数, $S(t) = e^{(\mu - \sigma^2/2)t + \sigma B(t)}$ 为 t 时刻 1 单位股票的价格, 并且

$$d_1(t,x) = \frac{\ln x - \ln K + (r + \sigma^2/2)(T - t)}{\sigma(T - t)^{1/2}}, \quad d_2(t,x) = \frac{\ln x - \ln K + (r - \sigma^2/2)(T - t)}{\sigma(T - t)^{1/2}}.$$