

Exame - Parte 2 (com consulta, 10 valores, 90 minutos)

Nome:

1. Duas estações separadas por uma distância de 2000 km comunicam usando um protocolo de ligação de dados do tipo ARQ. O atraso de propagação da informação é de 5 μs/km e a capacidade do canal é 1024 kbit/s (em cada sentido). Admita que as tramas de Informação usam 3 bits para numeração, têm um tamanho típico de 2048 bits e são imediatamente confirmadas por tramas de Supervisão em sentido oposto. Despreze o tamanho das tramas de Supervisão.

a) (1,5 valor) Para as variantes Go-Back-N e Selective Repeat, calcule a janela de transmissão, a eficiência máxima do protocolo e os débitos máximos.

	Go-Back-N	Selective Repeat
Janela de transmissão, W	7	4
Eficiência máxima, S (%)	63,6	36,1
Débito Máximo (kbit/s)	651	370

b) (1 valor) Pretende-se analisar o efeito dos erros de transmissão e do tamanho das tramas de Informação. Considere tramas com tamanhos 1024 e 2048 bits e uma situação de ruído caracterizada por **BER=10**-3. Calcule a eficiência máxima dos dois mecanismos para estes 2 casos e discuta o comportamento destes mecanismos em relação ao tamanho das tramas

S _{max} (%)	Go-Back-N	Selective Repeat
L=2048	1,3	4,7
L=1024	2,5	6,9

c) (1,5 valor) Admita que, para esta situação de erro, tinha a liberdade de escolher o número de bits de numeração (k), um dos dois tamanhos de trama indicados (L=1024 ou L=2048 bits) e um dos dois mecanismos ARQ (Go-back-N ou Selective Repeat). Que solução escolheria? Qual o valor da eficiência máxima nessa situação. Justifique.

k bits	L	Mecanismo ARQ	Smax (%)
6	1024	Selective Repeat	36

2. Considere duas redes, cada uma constituída por um *switch* ao qual se ligam vários computadores. Os 2 *switches* comunicam entre si através de uma ligação com capacidade de 100 Mbit/s em cada sentido. Admita que o tráfego nesta ligação pode ser modelizado como um processo de chegada de Poisson, tendo as tramas um comprimento médio de 1250 bytes.

a) (1 valor) Calcule o tempo médio de atraso das tramas e o número médio de tramas na fila de espera de acesso à ligação para intensidades de tráfego de 80% e 95% (admita um número de buffers ilimitado).

	Int. tráf. = 80%	Int. tráf. = 95%
Tempo médio de atraso das tramas, Τ, (μs)	500	2000
Número médio de tramas na fila de espera	3,2	18

- b) (1 valor) Dimensione o número de buffers associados à fila de espera, para cada um dos seguintes objetivos:
 - i) Probabilidade de rejeição de tramas de 0,1% e intensidade de tráfego de 0,8;
 - ii) Probabilidade de rejeição de tramas de 1% e intensidade de tráfego 1.

Compare estes dois casos com os equivalentes discutidos na alínea anterior.

	N° buffers
Probabilidade de rejeição de tramas de 0,1% e intensidade de tráfego de 0,8	24
Probabilidade de rejeição de tramas de 1% e intensidade de tráfego 1.	99

c) (1 valor) Pretende-se comparar o caso em análise na alínea a) com outro em que o comprimento médio das tramas se reduz a metade, considerando a intensidade de tráfego de 80% nos dois casos. Calcule para estes dois casos o tempo médio de atraso das tramas. Compare também os dois casos sob o ponto de vista de requisitos de memória, capacidade de processamento dos switches e "overheads" de transmissão (peso relativo dos cabeçalhos da trama).

	Comprimento da trama = 10 000 bits	Comprimento da trama = 5 000 bits	
Tempo médio de atraso das tramas, T, (μs)	500	250	
Requisitos de memória	$\mathrm{Mem}_{10k} > \mathrm{Mem}_{5k}$		
Capacidade de processamento dos <i>switches</i>	$Proc_{10k} < Proc_{5k}$		
Overheads de transmissão	$Overhead_{10k} < Overhead_{5k}$		

3. Considere que a uma empresa foi atribuído o bloco de endereços IP **44.44.44.0/26**. A empresa tem um rede de comunicações com a arquitetura descrita na figura, composta por 4 *routers* (R1, R2, R3, R4) e 2 *switches* Ethernet. Um dos *switches* serve 27 computadores e outro serve 10 computadores. Os *routers* estão interligados por uma ligações ponto-a-ponto e a algumas destas ligações estão já atribuídos os endereços indicados na figura.

a) (1 valor) Calcule os endereços associados às redes indicadas.

	Endereço da subrede (endereço/máscara)	Endereço de <i>broadcast</i> da subrede	Nº de endereços de interfaces
Rede dos 27 computadores	44.44.44.0/27	44.44.44.31	30
Rede dos 10 computadores	44.44.44.48/28	44.44.43	14
Rede da ligação R3-R4	44.44.44/30	44.44.44	2

b) (1 valor) Atribua endereços IP às interfaces indicadas na tabela. Use os endereços mais baixos de cada sub-rede. Numa sub-rede atribua os endereços mais baixos aos routers de índice Ri mais baixo. Por exemplo, o endereço de R1.eth0 deverá ser inferior ao endereço R2.eth0.

Router.interface	Endereço(s) IP
R1.eth1	44.44.41
R4.eth1	44.44.42
R4.eth2	44.44.41
R4.eth0	44.44.46
R3.eth0	44.44.45

c) (1 valor). Escreva a tabela de encaminhamento do **router R4.** Este router deverá ser capaz de pingar todas as interfaces de rede indicadas na figura e os pacotes deverão ser encaminhados pelos caminhos mais curtos. Use o menor número possível de entradas na tabela.

Destino (endereço/máscara)	Gateway	Interface
44.44.44.0/27		eth2
44.44.44/30		eth0
44.44.44.40/30		eth1
44.44.44.36/30	44.44.44.45	eth0
44.44.44.48/28	44.44.45	eth0
0/0	44.44.44.41	eth1