

### ITC 1370 Information Technology for Business

Year I - Semester I

Chapter 9
Information Systems Development

# Learning Objectives

Upon successful completion of this chapter, you will be able to:

- Explain the overall process of developing a new software application
- Explain the differences between software development methodologies
- Identify different types of implementation methodologies

## What is an Information System?

"An information system (IS) can be defined technically as a set of interrelated components that collect, process, store, and distribute information to support decision making and control in an organization"

(Laudon and Laudon, 2016)

### Components of an Information System

Hardware

Software

Data

People

Processes





### Acquisition of new software

Bespoke Development

Off-the-shelf software

**End-user Development** 

### Software Development Methodologies

- Systems Development Life Cycle (SDLC) Waterfall Methodology
- Rapid Application Development (RAD)
- Agile Methodologies
- Lean Methodology, etc ...

# Systems Development Life Cycle (SDLC)

- Developed in 1960s to manage large software development projects
- Still in wide use today and called "waterfall methodology"
- Very structured
  - each phase has an end deliverable requiring approval to next phase
  - each phase must be completed before the next phase can start

## Systems Development Life Cycle (SDLC)



#### **01. Preliminary Analysis**



- Reviewing the replacement request for a or new system
  - The review includes questions such as:
    - What is the problem-to-be-solved?
    - Is creating a solution possible?
    - What alternatives exist?
    - What is currently being done about it?
    - Is this project a good fit for our organization?
- Launching a feasibility study
  - Technical Feasibility
  - Economic Feasibility
  - Legal Feasibility
- The result is a feasibility analysis document
- The task is done by Requirements Analyst or Business Analyst

#### **02. Systems Analysis**



- Determine the specific requirements for the new system by system analysts
- No programming is done in this step.
  - Instead,
    - Document the procedures
    - Interview the key players/users
    - Develop data requirements
- The result is a System Requirements Specification (SRS)
- The task is done by Systems Analyst

#### 03. Systems Design



- The designer translates the business requirements into specific technical requirements
  - The design for the user interface
  - Database
  - Data inputs and outputs
  - Reports
- The result is a system design document
- This document will have everything a programmer needs to create the system in reality
- The task is done by Systems Analyst, Developer, or Systems Architect

#### 04. Programming



- The codes are written using the system design document as a guide
- The result is an initial working program that meets the requirements specified in the system analysis phase and the design developed in the system design phase
- The tasks are done by Developer, Software Engineer, Programmer, or Coder.

#### 05. Testing



- The software program developed in the programming phase is put through a series of structured tests
  - Unit test evaluates individual parts of the code for errors or bugs.
  - System test different components of the system are tested to ensure that they work together properly
  - User acceptance test allows the users of the software to test the system to ensure that it meets their standards
- Any bugs, errors, or problems found during testing are resolved and then the software is tested again.
- The tasks are done by Tester, Testing Analyst, or Quality Assurance Engineer

#### **06.** Implementation



- Once the new system is developed and tested, it has to be implemented in the organization (converting from old system to new system)
- In order to implement the new system within the organization following activities need to be undertaken
  - Provide user training
  - Provide documentation
  - Convert data from the previous system to the new system
- Implementation can take many forms depending on the
  - type of system
  - the number and type of users
  - how urgent it is that the system become operational

#### **07. Maintenance**



- Fix the reported bugs and implement the requests for new features after evaluating them
- Create system updates and backups of the software for each new version of the program
- This is a continuous process throughout the project life cycle

### Rapid Application Development (RAD)

• Focuses on quickly building a working model and getting feedback from users to update the working model for smaller projects and giving users the ability to provide feedback during the process



### **Agile Methodologies**

- Group of methodologies for incremental changes focused on quality and attention to detail
- Each increment is released with very specific objectives
- The agile methodologies are based on the "Agile Manifesto"
- Characteristics:
  - Small cross-functional teams are used
  - Daily status meetings are held
  - Short timeframe increments for each change
  - A working project is completed at end of each iteration and demonstrated to stakeholders
- The goal is to provide the flexibility of an iterative approach while ensuring a quality product
- Video Link: https://www.youtube.com/watch?v=1iccpf2eN1Q&t=9s

### **Agile Methodologies**



### Lean Methodology

- Takes an initial idea and develops a Minimum Viable Product (MVP)
- The MVP is a working software application with just enough functionality to demonstrate the idea behind the project
- Works best in entrepreneurial environment

While moving through the phases, feedback is key and is generated in 2 forms:

- 1. Direct observation and discussion with users
- 2. Usage statistics gathered from the software itself



Usually requires several iterations as the team uses the feedback to determine whether to continue in same direction or pivot in a new direction or MVP

## **Quality Triangle**

- Decisions are made during development that affect
   3 factors time, cost, and quality
- Only 2 can be addressed requiring compromise/ tradeoffs



 Meets or doesn't meet requirements?

 Minimal or no bugs at implementation?

May 2023

21

### **End User Computing**

- Non-IT individuals develop their own solutions that are not trained in programming or software development
- Advantages:
  - Development is closer to those that will use them
  - Quick development of software
- Disadvantages:
  - Several applications may perform the same functions which may or may not have same results
  - May not be fully tested and bug-free
  - Data is not always backed up

### **Implementation Methodologies**

Several implementation methodologies exist:

- Direct cutover new system is turned on and old system turned off
  - Riskiest but least expensive no need to support 2 systems
- Pilot implementation a small group uses the new system
  - Small impact on organization is something goes wrong still have old system running
- Parallel operation all transactions are entered in new and old system
  - Very expensive to maintain 2 systems
  - Least risky that you can identify bugs and go back to old system if needed
- Phased implementation new functions are implemented as parts of old system are turned off
  - Slowly move from old system to new one

# **Implementation Methodologies Support**

Every implementation requires support in 2 key areas:

- 1. Change management
  - All proposed changes should be communicated to all affected personnel, including IT
- 2. Maintenance
  - Often newly implemented systems still need changes for fixing bugs
  - Management needs to ensure that the system continues to run and is aligned with business priorities



- Explained the overall process of developing a new software application
- Explained the differences between software development methodologies
- Identified different implementation methodologies