2023~2024 学年度上期高中 2021 级入学联考

理科数学

考试时间 120 分钟, 满分 150 分

注意事项:

1. 答题前,考	生务必在答题卡上将自己的	的姓名、座位号、沿	准考证号用 0.5 毫	{ 米的黑色
签字笔填写清楚,	考生考试条形码由监考老	师粘贴在答题卡上	的"贴条形码区	"。

2. 选择题使用 2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦

擦干	一净后再填涂其它答案;	非选择题用 0.5 毫米的	黑色签字笔在答题卡的法	对应区域内作答
超出	出答题区域答题的答案无	E效;在草稿纸上、试卷	&上答题无效 。	
	3. 考试结束后由监考老	5师将答题卡收回。		
– ,	选择题:本题共 12 小有一项是符合题目要求		0 分。在每小题给出的[四个选项中,只
1.	若复数 z 满足 $z=3+$			
	A. 2	B. $\sqrt{7}$	C. 3	D. $2\sqrt{3}$
2.	设集合 $U = \mathbf{R}$, 若集台	$A = \{x \mid -1 < x < 1\}$, B	$=\{x\mid x\geqslant 0\}$, $\emptyset C_U(A \cup A)$	J B) =
	A. $\{x \mid x \ge -1\}$		B. $\{x \mid x \le -1\}$	
	$C. \{x \mid x \leq 1\}$		D. $\{x \mid x < 0 \text{ if } x \ge 1\}$	
3.	已知 $a = \ln 0.9$, $b = \sqrt{2}$	$\overline{2}$, $c = 2^{-0.1}$, \square		
	A. $a < c < b$	B. $a < b < c$	C. $c < a < b$	D. $c < b < a$
4.	若直线 $y = 2x$ 的倾斜角	自为 θ ,则 $\sin 2\theta =$		
	A. $\frac{1}{2}$	B. $\frac{3}{5}$	C. $\frac{4}{5}$	D. 1
5.	若函数 $f(x) = (x+a)(2$	* - 2 ^{-x}) 是定义域上的偶	B函数,则实数 a 的值为	1
	A. 0	B1	C. 1	D. 2
6.	(x-1)(x+2)5展开式中	x^3 的系数为		

B. -40 C. 40 D. 80

7. 若正三棱锥的侧面均为直角三角形,底面边长为 $\sqrt{6}$,则该正三棱锥的体积为

A. $\frac{\sqrt{6}}{6}$ B. $\frac{\sqrt{3}}{2}$ C. 1 D. $\sqrt{3}$

8. 过点 $P(0,\sqrt{3})$ 作圆 $x^2-2x+y^2=2$ 的两条切线,切点分别为 A , B ,则 $\angle APB=$

C. $\frac{\pi}{2}$ D. $\frac{2\pi}{3}$ A. $\frac{\pi}{6}$ B. $\frac{\pi}{3}$

9.	若函数 $f(x) = ke^x - \ln x$	在区间(l,e)上是增函数	数,则实数 k 的取值范围	围为
	A. $(0,+\infty)$	B. $\left[\frac{1}{e}, +\infty\right)$	C. (-∞,0]	D. (-∞,-e]
10.	庑殿式屋顶是中国古	代建筑中等级最高的原	屋顶形式,分为单檐 房	 記殿顶与重檐庑
	殿顶. 单檐庑殿顶主	要有一条正脊和四条垂	資子	坡(如图①),
			若四边形 ABCD 是矩	
			=FC=3,则五面体 F	
	面积为		10 0, 70 ================================	
	垂脊正	着		
			E F	
			D C	
			A^{\swarrow} B	
		D	2	
	A. 48	B. $32\sqrt{5}$	C. $16+16\sqrt{5}$	D. $32 + 16\sqrt{5}$
11.	已知 △ABC 的顶点在	抛物线 $y^2 = 2x$ 上,若抛	物线的焦点 F 恰好是 Z	$\triangle ABC$ 的重心,
	则 FA + FB + FC 1	的值为		
	A. 1	B. 2	C. 3	D. 4
12.	在△PAB中,∠APB=	$=\frac{\pi}{3}$,若点 C 为 AB 的中	点,则 $\frac{PC}{AB}$ 的取值范围	为
	A. $(\frac{1}{2}, \frac{\sqrt{3}}{2}]$	B. $(\frac{1}{2},1]$	C. $[\frac{\sqrt{3}}{2}, \sqrt{3})$	D. $(\frac{1}{2}, \sqrt{3}]$
二、	填空题:本题共4小是	亟,每小题 5 分,共 20	分。	
13.	若 $a = (1, -\sqrt{2})$, $b = (3)$	$(\sqrt{2})$, $\mathbb{M} a \cdot (a+b) = $	·	
14.	已知双曲线 $mx^2 - y^2 =$:1的一条渐近线方程为	$y = \sqrt{3}x$, \emptyset $m = $	_•
15.	勒洛三角形是分别以邻	等边△ABC 的每个顶点	为圆心,以边长为半径	的三段内角所对
	圆弧围成的曲边三角形	形,由德国机械工程专	家勒洛首先发现,勒洛	\equiv 4

孔钻机等.如图,曲边三角形即是等边 $\triangle ABC$ 对应的勒洛三角形,现版机地在勒洛三角形内部取一点,则该点取自 $\triangle ABC$ 及其内部的概率为_____.

角形因为其具有等宽性被广泛地应用于机械工程, 如转子发动机, 方

16. 若函数 $f(x) = \sin x - \sqrt{3} \cos x$, $x \in [m, n]$ 的值域为 [-1,2],则 n - m 的取值范围为_____.

- 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
 - (一) 必考题: 共60分。

17. (12分)

已知等比数列 $\{a_n\}$ 的各项满足 $a_{n+1} > a_n$,若 $a_2 = 3$,且 $3a_2$, $2a_3$, a_4 成等差数列.

- (1) 求 $\{a_n\}$ 的通项公式;
- (2) 求数列 $\{a_n + n\}$ 的前 n 项和.

18. (12分)

如图,在四棱锥 P-ABCD 中,AD // BC , $AB \perp AD$, $BD \perp PC$,PD=2 ,BC=3 , $PA=AB=\sqrt{3}AD=\sqrt{3}$.

- (1) 证明: PA 上底面 ABCD;
- (2) 求二面角 A-PB-D 的余弦值.

19. (12分)

近日,某市市民体育锻炼的热情空前高涨.某学校兴趣小组在8月9日随机抽取了该市100人,并对其当天体育锻炼时间进行了调查,下图是根据调查结果绘制的体育锻炼时间的频率分布直方图,锻炼时间不少于40分钟的人称为"运动达人".

- (1) 估算这100人当天体育锻炼时间的平均数(每组中的数据用组中值代替);
- (2) 现从"运动达人"中按分层抽样抽出 5 人,若在这被抽出的 5 人中随机选取 2 人进行采访,求这 2 人均来自 [40,50] 的概率;
- (3)根据已知条件完成下面的2×2列联表,并据此判断是否有95%的把握认为"运动达人"与性别有关.

	非"运动达人"	"运动达人"	合计
男性		15	45
女性	,		
合计			

附:
$$K^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
, $n=a+b+c+d$,

临界值表:	$p(K^2 \geqslant k)$	0.05	0.01
	k	3.841	6.635

20. (12分)

已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 过点 $(1, \frac{\sqrt{2}}{2})$,且上顶点与右顶点的距离为 $\sqrt{3}$.

- (1) 求椭圆C的方程:
- (2) 若过点 P(3,0) 的直线 l 交椭圆 $C \to A$, B 两点 , x 轴上是否存在点 Q 使得 $\angle POA + \angle POB = \pi$, 若存在, 求出点 O 的坐标; 若不存在, 请说明理由.

21. (12分)

已知函数 $f(x) = xe^{x+1}$.

- (1) 求 f(x) 过原点的切线方程;
- (2) 当 $x \ge 0$ 时,不等式 $f(x-1)-ax+1 \ge 2\sin x$ 恒成立,求实数 a 的取值范围.
- (二)选考题:共10分。请考生在22、23题中任选一题作答,如果多做,则按所做的 第一题计分。

22. (10分)

在平面直角坐标系
$$xOy$$
 中,直线 l 的参数方程为
$$\begin{cases} x = \frac{\sqrt{3}}{2}t + m \\ y = \frac{t}{2} \end{cases}$$
 (t 为参数),以坐标

原点 O 为极点, x 轴正半轴为极轴建立极坐标系, 曲线 C 的极坐标方程为 $\rho^2 - \rho^2 \cos 2\theta + 3\rho \cos \theta = 3.$

- (1) 求曲线C的直角坐标方程;

23. (10分)

已知函数 f(x) = |x+1| + |x-m|.

- (1) 当m = 2时,求不等式 $f(x) \le 5$ 的解集;
- (2) 若 f(x) > -m , 求实数 m 的取值范围.