Pràctica 2 APC Classificació

Àlex Correa Orri 1564967 Júlia Pumares Benaiges 1566252

Apartat B: IRIS dataset

Mètode	0.5	0.7	0.8
SVM	0.85	0.76	0.77
KNeighbors	0.67	0.73	0.7
Decision Tree	0.63	0.8	0.7
Naive Bayes	0.85	0.78	0.73
Lineal	0.73	0.64	0.61
Logistic	0.67	0.78	0.5
Adaboost	0.76	0.38	0.7
Bagging	0.69	0.67	0.67
Perceptron	0.37	0.51	0.5

1. EDA

- Classificar el preu d'un mòbil en 4 grups de rangs de preu.
- 20 atributs
 - 6 binaris
 - 14 numè<u>rics</u>
- 500 mostres
 d'entrenament
 per classe

2. Preprocessing

 Reduir la dimensió agafant els atributs més correlacionats

Estandaritzar

3. Model Selection

Mètode	0.5	0.7	0.8
SVM	0.91	0.93	0.94
KNeighbors	0.9	0.91	0.91
Logistic	0.85	0.84	0.84
Decision Tree	0.74	0.75	0.75
Perceptron	0.57	0.72	0.69
Bagging	0.72	0.71	0.33
Adaboost	0.84	0.7	0.78

4. Cross Validation

SVM:

Scores : [0.93 0.9225 0.9225 0.9225 0.9225]

Scores Mean : 0.924

Scores std : 0.00300000000000000248

KNeighborsClassifier:

Scores : [0.905 0.91 0.9275 0.905 0.9075]

LogisticRegression:

Scores : [0.845 0.8325 0.855 0.845 0.82]

BaggingClassifier:

Scores : [0.6175 0.6525 0.7075 0.7225 0.5025]

Scores Mean : 0.64050000000000001 Scores std : 0.07865112840894277

5. Metrics Analysis SVM

6. Hyperparameter Search

SVM:

- C = 35
- gamma = 0.1
- score = 0.9425

TRAIN

Conclusions

Els mètodes que ens han funcionat millor han sigut el SVM i el KNeighbors