

Unidad 1 – Tarea 2 Métodos para probar la validez de argumentos

Juan Sebastian Castillo Amaya – Código 1116553232 Pensamiento Lógico y Matemático 200611 Grupo 200611 662

Director-Tutor

John Edward Rodriguez Velandia

Universidad Nacional Abierta y a Distancia - UNAD Escuela de Ciencias Básicas, Tecnología e Ingeniería 2024

Introducción

En el presente documento encontraremos diferentes ejercicios de lógica, desde las proposiciones, tablas de verdad hasta aplicaciones y uso de reglas de inferencia lógica para resolverlos, en total son cuatro ejercicios y el link a un video explicativo del primer ejercicio.

Objetivos

General

Estudiar diferentes métodos para probar la validez de un argumento.

Específicos

- Estudio de proposiciones y Tablas de Verdad
- Estudiar las aplicaciones de la lógica fundamental
- Estudio de las reglas de inferencia lógica

Ejercicio 1: Proposiciones y tablas de verdad

- A. p: El alza en los precios de petróleo es imparable.
 - q: Disminuirá el consumo mundial de petróleo.
 - r: Habrá alzas exageradas en los precios de los alimentos básicos para consumo humano.

$$p \rightarrow (q \lor r)$$

Lenguaje Natural:

Si el alza en los precios de petróleo es imparable entonces disminuirá el consumo mundial de petróleo o habrá alzas exageradas en los precios de los alimentos básicos para consumo humano.

Tabla Manual:

Para el lenguaje simbólico $p \rightarrow (q \lor r)$ es una contingencia ya que tiene valores tanto verdaderos como falsos.

Filas	р	q	r	(q∨r)	p→(qVr)
1	V	V	V	V	V
2	V	V	F	V	V
3	V	F	V	V	V
4	V	F	F	F	F
5	F	V	V	٧	V
6	F	V	F	V	V
7	F	F	V	V	V
8	F	F	F	F	V

Tabla de simulador:

TU APORTACIÓN

Encuentre la tabla de verdad para p o (qee r).

RESPUESTA

p	q	r	p o (q ee r)
Verdadero	Verdadero	Verdadero	Verdadero
Verdadero	Verdadero	FALSO	Verdadero
Verdadero	FALSO	Verdadero	Verdadero
Verdadero	FALSO	FALSO	FALSO
FALSO	Verdadero	Verdadero	Verdadero
FALSO	Verdadero	FALSO	Verdadero
FALSO	FALSO	Verdadero	Verdadero
FALSO	FALSO	FALSO	Verdadero

Link vídeo explicativo ejercicio 1:

https://www.youtube.com/watch?v=uH365sQHno8

Ejercicio 2: Aplicación de la lógica fundamental

Descripción del ejercicio:

A continuación, encontrará los argumentos para el desarrollo del ejercicio 2:

"Si los estudiantes de la UNAD asisten a los CIPAS entonces aprueban el examen y no es cierto que el examen es bastante sencillo".

Definir cuáles son las premisas que intervienen en el argumento.

Construya el lenguaje simbólico correspondiente al argumento.:

p(premisa 1): Los estudiantes de la UNAD asisten a los CIPAS

q(premisa 2): Los estudiantes aprueban el examen\

r(premisa 3): El examen es bastante sencillo

• Identificar los conectores que intervienen en el argumento.

Los conectores del argumento son: condicional (\rightarrow) , conjunción (\land) y negación (\neg) .

- Construya el lenguaje simbólico correspondiente al argumento.
 [p→(q ∧¬r)]
- Determine si el argumento es una tautología, contradicción o contingencia a través del simulador de tablas de verdad

El argumento es una contingencia por lo que se puede observar en la tabla de verdad donde variar entre verdadero y falso.

TU APORTACIÓN

Encuentre la tabla de verdad para $(p o q) \wedge
eg r$.

RESPUESTA

p	q	r	$(p o q) \wedge eg r$
Verdadero	Verdadero	Verdadero	FALSO
Verdadero	Verdadero	FALSO	Verdadero
Verdadero	FALSO	Verdadero	FALSO
Verdadero	FALSO	FALSO	FALSO
FALSO	Verdadero	Verdadero	FALSO
FALSO	Verdadero	FALSO	Verdadero
FALSO	FALSO	Verdadero	FALSO
FALSO	FALSO	FALSO	Verdadero

Ejercicio 3: Demostración de un argumento usando las reglas de la inferencia lógica

Descripción del ejercicio:

A continuación, encontrará un argumento para el desarrollo del ejercicio 3, usted deberá identificar e indicar las leyes de inferencia y las premisas utilizadas en cada uno de los pasos para la demostración del argumento.

Expresión simbólica

$$[((p \land q) \lor r) \land (\sim r)] \rightarrow (p \land q)$$

P1: ((p Λq) V r)

P2: (~r)

Conclusión: (p A q)

Ley utilizada:

- Ley de la conjunción: Para descomponer la conjunción [((p Λq) $V r) \wedge (\sim r)$ en sus dos partes.
- Ley de la negación: Para deducir que r es falso de (~r).
- Ley de la disyunción (eliminación del disyuntivo): Dado que r es falso, se concluye que $(p \land q)$ debe ser verdadero.
- Modus Tollendo Ponens: De la conclusión ($p \land q$) = verdadero, se concluye que la implicación es válida.
- A continuación, una tabla de verdad que demuestra la tautología de la inferencia.

TU APORTACIÓN

Encuentre la tabla de verdad para $(((p \wedge q) \vee r) \wedge \neg r) o (p \wedge q)$.

RESPUESTA

p	q	r	$(((p \wedge q) \vee r) \wedge \neg r) ightarrow \ (p \wedge q)$
Verdadero	Verdadero	Verdadero	Verdadero
Verdadero	Verdadero	FALSO	Verdadero
Verdadero	FALSO	Verdadero	Verdadero
Verdadero	FALSO	FALSO	Verdadero
FALSO	Verdadero	Verdadero	Verdadero
FALSO	Verdadero	FALSO	Verdadero
FALSO	FALSO	Verdadero	Verdadero
FALSO	FALSO	FALSO	Verdadero

Ejercicio 4: Problemas de aplicación.

Expresión simbólica: $[(p \rightarrow s) \land (\sim s) \land (\sim p \rightarrow t)] \rightarrow (t \land \sim s)$

- Definición de Proposiciones simples:
 - p: El vaquero va al potrero.
 - s: El vaquero amarra las vacas.
 - t: Las vacas corren libres.
- Lenguaje natural:

"Si el hecho de que 'si el vaquero va al potrero entonces amarra las vacas' es cierto, y además 'el vaquero no amarra las vacas', y 'si el vaquero no va al potrero, entonces las vacas corren libres', entonces se puede concluir que 'las vacas corren libres' y 'el vaquero no amarra las vacas'."

Completar tabla de demostración de validez de argumento mediante leyes de inferencia lógica:

$$[(p \rightarrow s) \land (\sim s) \land (\sim p \rightarrow t)] \rightarrow (t \land \sim s)$$

Premisas dadas:

- P1: $p \rightarrow s$
- P2: ~s
- P3: $\sim p \rightarrow t$

<u>Premisas</u>	Ley Aplicada	<u>Premisas</u>	¿Correcto o	<u>Justificación</u>
D.4	MTT	<u>Usadas</u>	Incorrecto?	T 1 1
P4: ~p	MTT	P1, P2	Correcto	La ley de
				Modus
				Tollendo
				Tollens
				establece que si
				tenemos una
				implicación
				p→s y
				sabemos que el
				consecuente es
				falso ¬s,
				entonces
				podemos
				concluir que el
				antecedente es
				falso ¬p.
P5: t	MPP	P3, P4	Correcto	La ley de
				Modus
				Ponendo
				Ponens
				establece que si
				tenemos una
				implicación
				A→B y
				sabemos que A
				es cierto,
				entonces
				podemos
				concluir que B
				es cierto.
P6: t ∧ ~s	Simplificación	P2, P5	Correcto	La ley de
	(LS)			simplificación
				(LS) nos
				permite extraer
				uno de los
				componentes
				de una
				conjunción. Si
				tenemos una
				conjunción
				AΛB, podemos
				afirmar que A
				o B es cierto de

		manera
		individual.

Tabla de verdad en simulador

TU APORTACIÓN

Encuentre la tabla de verdad para $(((p o s)\wedge \lnot s)\wedge (\lnot p o t)) o$ $(t \wedge \neg s)$.

RESPUESTA

p	s	t	$egin{aligned} (((p ightarrow s) \wedge eg s) \wedge (eg p ightarrow t)) ightarrow \ (t \wedge eg s) \end{aligned}$
Verdadero	Verdadero	Verdadero	Verdadero
Verdadero	Verdadero	FALSO	Verdadero
Verdadero	FALSO	Verdadero	Verdadero
Verdadero	FALSO	FALSO	Verdadero
FALSO	Verdadero	Verdadero	Verdadero
FALSO	Verdadero	FALSO	Verdadero
FALSO	FALSO	Verdadero	Verdadero
FALSO	FALSO	FALSO	Verdadero

Conclusiones

Se ha observar el paso a paso, para la argumentación lógica utilizando diferentes herramientas y leyes fundamentales. Se aprendió a escribir cualquier proposición del lenguaje natural al simbólico y viceversa, con ello se tiene una herramienta para confirmar o desmentir afirmaciones.

Referencias Bibliográficas

Curo, A. (2015). Matemática básica para administradores. Universidad Peruana de Ciencias Aplicadas (UPC). (pp. 13-27). https://elibro-

net.bibliotecavirtual.unad.edu.co/es/ereader/unad/41333?page=10

Pérez, A. R. (2013). Una introducción a las matemáticas discretas y teoría de grafos. El Cid Editor. (pp. 40-49). https://elibro-

net.bibliotecavirtual.unad.edu.co/es/ereader/unad/36562?page=59