

Memory Limit: 1024 MB Time Limit: 5 s

Mystery Message (150 points)

Introduction

Matt manages the daily pantry treat selection. Every Monday he writes down that week's treat names on a public ledger for accounting purposes, but he doesn't want everyone to be able to tell what the treats are, otherwise there will be overcrowding.

As such, every week he picks a random number \mathbf{X} , where $\mathbf{1} \leq \mathbf{X} \leq \mathbf{25}$, and uses that in a Caesar cipher(https://en.wikipedia.org/wiki/Caesar_cipher (https://en.wikipedia.org/wiki/Caesar_cipher)) to encode the treat names. For example if $\mathbf{X} = \mathbf{9}$, "Scones" becomes "Blxwnb". He then uses that \mathbf{X} to encode that week's five treat names.

You want to know what the treat will be ahead of time, so you decide to write a program that will figure out what that week's \mathbf{X} is. You wait until you find out what Monday's treat is and use that to help yourself figure out the other treats.

Input Specifications

Your program must read from STDIN:-

N lines, each containing a string that lists that week's treat names for each weekday, each name separated by a space. At the end of the line is Monday's treat, decrypted.

Output Specifications

Based on the input, print out the value of **X** for each week.

Sample Input/Output

Input

Zhssvaf Pbbxvrf Oerng Pubpbyngr Byvirf Muffins

Output

13

Explanation

We figure out that X is 13.

Input

Blxwnb Qdvvdb Yrn Hdv hdvb Scones

Output

Explanation

We	figure	out	that	X is	9.