Notes on Statistical and Machine Learning

Projection Pursuit Regression

Chapter: 19 Prepared by: Chenxi Zhou

This note is prepared based on *Chapter 11, Neural Networks* in Hastie, Tibshirani, and Friedman (2009).

I. Projection Pursuit Regression

- **1. Setup:** We assume that the input vector \mathbf{x} has p components and the target variable is $y \in \mathbb{R}$. Let $\boldsymbol{\omega}_1, \boldsymbol{\omega}_2, \cdots, \boldsymbol{\omega}_M$ be p-dimensional unit vectors of unknown parameters.
- 2. Model Specification: The projection pursuit regression (PPR) model has the form

$$f(\mathbf{x}) = \sum_{m=1}^{M} g_m(\boldsymbol{\omega}_m^{\top} \mathbf{x}). \tag{1}$$

- (a) This is an additive model in the derived features $v_m = \boldsymbol{\omega}_m^{\top} \mathbf{x}$. Here, the functions g_m are unspecified and are estimated along with the unknown directions $\boldsymbol{\omega}_m$;
- (b) The function $\mathbf{x} \mapsto g_m(\boldsymbol{\omega}^\top \mathbf{x})$ is called a *ridge function* in \mathbb{R}^p and only varies in the direction defined by the vector ω_m .
- (c) The scalars $v_m = \boldsymbol{\omega}_m^{\top} \mathbf{x}$ is the projection of \mathbf{x} onto the unit vector $\boldsymbol{\omega}_m$.

3. Comments on PPR Model:

- (a) If M is taken arbitrarily large, for appropriate choices of g_m , the PPR model (1) can approximate any continuous function in \mathbb{R}^p arbitrarily well. Such a class of models is called a *universal approximator*.
- (b) *Interpretation* of such a universal approximator is usually difficult. The PPR model is most useful for *prediction*, and *not* very useful for producing an understandable model for the data.

An exception is when M = 1, which is called *single index model* in econometrics.

4. Fitting the PPR Model: To fit PPR model, given the training data $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$, we minimize the following criterion

$$\sum_{i=1}^{n} \left[y_i - \sum_{m=1}^{M} g_m(\boldsymbol{\omega}_m^{\top} \mathbf{x}_i) \right]^2$$
 (2)

over functions g_m and direction vectors $\boldsymbol{\omega}_m$ for all $m=1,\cdots,M$.

We consider the case when M=1.

- Given the direction vector $\boldsymbol{\omega}$, we have the derived variables $v_i = \boldsymbol{\omega}^{\top} \mathbf{x}_i$. Then, the resulting problem is a one-dimensional smoothing problem and we can apply any smoother (e.g., smoothing spline) to obtain an estimate of g;
- Given the function g, we wish to minimize with respect to the direction vector $\boldsymbol{\omega}$. We can use the *Gauss-Newton algorithm*, which is a quasi-Newton method where the Hessian matrix part involving the second-order derivative of g is discarded. Letting $\boldsymbol{\omega}^{(\text{old})}$ be the current estimate of $\boldsymbol{\omega}$, by Taylor's expansion, we have

$$g(\boldsymbol{\omega}^{\top}\mathbf{x}_i) \approx g(\boldsymbol{\omega}^{(\text{old})^{\top}}\mathbf{x}_i) + g'(\boldsymbol{\omega}^{(\text{old})^{\top}}\mathbf{x}_i) \cdot (\boldsymbol{\omega} - \boldsymbol{\omega}^{(\text{old})^{\top}}\mathbf{x}_i).$$

Plugging into the objective function (2), we have

$$\sum_{i=1}^{n} (y_i - g(\boldsymbol{\omega}^{\top} \mathbf{x}_i))^2
\approx \sum_{i=1}^{n} (y_i - g(\boldsymbol{\omega}^{(\text{old})^{\top}} \mathbf{x}_i) - g'(\boldsymbol{\omega}^{(\text{old})^{\top}} \mathbf{x}_i) \cdot (\boldsymbol{\omega} - \boldsymbol{\omega}^{(\text{old})})^{\top} \mathbf{x}_i)^2
= \sum_{i=1}^{n} (g'(\boldsymbol{\omega}^{(\text{old})^{\top}} \mathbf{x}_i))^2 \left[\frac{y_i - g(\boldsymbol{\omega}^{(\text{old})^{\top}} \mathbf{x}_i)}{g'(\boldsymbol{\omega}^{(\text{old})^{\top}} \mathbf{x}_i)} - (\boldsymbol{\omega} - \boldsymbol{\omega}^{(\text{old})})^{\top} \mathbf{x}_i \right]^2
= \sum_{i=1}^{n} (g'(\boldsymbol{\omega}^{(\text{old})^{\top}} \mathbf{x}_i))^2 \left[(\boldsymbol{\omega}^{(\text{old})^{\top}} \mathbf{x}_i + \frac{y_i - g(\boldsymbol{\omega}^{(\text{old})^{\top}} \mathbf{x}_i)}{g'(\boldsymbol{\omega}^{(\text{old})^{\top}} \mathbf{x}_i)}) - \boldsymbol{\omega}^{\top} \mathbf{x}_i \right]^2.$$

To minimize the right-hand side, one can use the weighted least squares regression with the target

$$\boldsymbol{\omega}^{(\mathrm{old})^{\top}} \mathbf{x}_i + \frac{y_i - g(\boldsymbol{\omega}^{(\mathrm{old})^{\top}} \mathbf{x}_i)}{g'(\boldsymbol{\omega}^{(\mathrm{old})^{\top}} \mathbf{x}_i)}$$

on the input \mathbf{x}_i , weights $(g'(\boldsymbol{\omega}^{(\text{old})^{\top}}\mathbf{x}_i))^2$ and no intercept. Then, we can obtain the updated coefficient vector $\boldsymbol{\omega}^{(\text{new})}$.

• In this view, the estimation of the unknown function g and parameter ω has two steps. These two steps are iterated until convergence.

Remark. If M > 1, the model can be built in a forward stage-wise manner, adding a pair $(\boldsymbol{\omega}_m, g_m)$ at each stage.

5. Implementation Details:

- (a) It is more convenient to use local regression and smoothing splines to estimate q;
- (b) The number of terms M is usually estimated as part of the forward stage-wise strategy. The model building stops when the next term does *not* appreciably improve the fit of the model. Cross-validation can also be used to determine M.

References

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). *The Elements of Statistical Learning*. Vol. 1. Springer Series in Statistics. New York, NY, USA: Springer New York Inc.