CSE6706: Advanced Digital Image Processing

Dr. Md. Monirul Islam

Image Segmentation

Image Segmentation

- Divides an image into semantically meaningful regions
- Doesn't need to go for unnecessary detail

Segmentation

Image Segmentation

- Nontrivial task
- Some control over the environment/background can help

Look for discontinuity and similarities

- Look for discontinuity and similarities
- Discontinuity
 - Abrupt changes in gray level
 - Example: edges

- Look for discontinuity and similarities
- Discontinuity
 - Abrupt changes in gray level
 - Example: edges
- Similarity
 - divides into regions which are similar based on some criteria
 - Example: thresholding,
 region growing
 region splitting and merging

- Look for discontinuity and similarities
- Discontinuity
 - Abrupt changes in gray level
 - Focus on detecting point, line and edges
 - Try to join edges to form regions/segments

Detection of Discontinuity

• Remember the mask

w_1	w_2	w_3
w_4	w_5	w_6
w_7	$w_{ m s}$	w_9

Detection of Discontinuity

• Remember the mask

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

The response is given by

$$R = \sum_{i=1}^{9} w_i z_i$$

 Isolated point: whose gray level is significantly different from its homogeneous/nearly homogeneous background

 Isolated point: whose gray level is significantly different from its homogeneous/nearly homogeneous background

mask to isolated detect point

-1	-1	-1
-1	8	-1
-1	-1	-1

A point is detected if

$$|R| \ge T$$

Isolated point

After applying the mask

After thresholding with T = 90% of max gray level

-1	-1	-1.
2	2	2
-1	-1	-1

Which direction will it detect?

-1	-1	-1
2	2	2
-1	-1	-1

-1	-1	2
-1	2	-1
2	-1	-1

-1	2	-1
-1	. 2	-1
-1	2	-1

2	-1	-1
-1	2	-1
-1	-1	2

Horizontal

 $+45^{\circ}$

Vertical

 -45°

-1	-1	-1
2	2	2
-1	-1	-1

-1	-1	2
-1	2	-1
2	-1	-1

-1	2	-1
-1 .	2	-1
-1	2	-1

2	-1	-1
-1	2	-1
-1	-1	2

Horizontal

+45°

Vertical

-45°

- Detects line of single pixel thick
- 2 ways to detect lines

-1	-1	-1
2	2	2
-1	-1	-1

-1	-1	2
-1	2	-1
2	-1	-1

-1	2	-1
-1 .	2	-1
-1	2	-1

2	2	-1	-1
_	·1	2	-1
_	1	-1	2

Horizontal

 $\pm 45^{\circ}$

Vertical

-45°

- Line detection (1)
 - To detect lines in every directions
 - Find masked (filtered or convolved) image with each mask
 - Let the responses be R_1, R_2, R_3, R_4

-1	-1	-1
2	2	2
-1	-1	-1

-1	-1	2
-1	2	-1
2	-1	-1

-1	2	-1
-1 .	2	-1
-1	2	-1

Horizontal

$$+45^{\circ}$$

• A point is oriented to the direction of mask *i* if

$$|R_i| > |R_j|$$
 for all j

-1	-1	-1
2	2	2
-1	-1	-1

-1	-1	2
-1	2	-1
2	-1	-1

-1	2	-1
-1 .	2	-1
-1	2	-1

2	-1	-1
-1	2	-1
-1	-1	2

Horizontal +45° Vertical -45°

Use a single mask and use thresholding

Circuit board: binarized

Masked with

-45° line detector

Edge Detection

- Review from Chapter 3:
 - Use 1st and 2nd order derivative
- Indicates boundary between regions

Model of an ideal edge

 Ideal edge is a set of connected pixels located at an orthogonal step transition

Model of an ideal edge

 Ideal edge is a set of connected pixels located at an orthogonal step transition

Model of an ideal edge

Model of an ideal edge

Imperfection (noise, acquisition) leads to blurred and smooth transition

through the image

000001111100000

0000010000-100000

000001111100000

0000010000-100000

000001111100000 000001111100000 000001111100000

0000010000-100000 0000010000-100000 0000010000-100000

Edge Modeling

000001111100000 000001111100000 000001111100000

0000010000-100000 0000010000-100000 0000010000-100000

Gray profile 1st derivative 2nd derivative

Gray profile 1st derivative 2nd derivative

Noisy images: corrupted by Gaussian noise with

$$\mu$$
=0 and δ =0.1

Gray profile 1st derivative 2nd derivative

Noisy images: corrupted by Gaussian noise with

$$\mu$$
=0 and δ =0.1

 μ =0, δ =1.0

Noisy images: corrupted by Gaussian noise with

 μ =0, δ =10

Gray profile 1st derivative 2nd derivative

Gray profile 1st derivative 2nd derivative

Gray profile 1st derivative 2nd derivative

Noisy images: corrupted by Gaussian noise with

μ=0 and

6 = 0, 0.1, 1.0, 10

Edge Modeling

- Transition of gray level in edge point should be significantly stronger than that in background
- Thresholding can be used to determine *this transition*
- 1st order derivative should be greater than the threshold

Review of 1st Order Derivative – The Gradient

$$\nabla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \text{mag}(\nabla \mathbf{f}) = \left[G_x^2 + G_y^2\right]^{1/2}$$
$$= \left[\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial x}\right)^2\right]^{1/2}$$

The Gradient

Review of 1st Order Derivative – The Gradient

$$\nabla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

Misnomer for gradient $\nabla f = \text{mag}(\nabla \mathbf{f}) = \left[G_x^2 + G_y^2\right]^{1/2}$ $= \left[\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial x}\right)^2\right]^{1/2}$

The Gradient

Direction of The Gradient Vector

$$\alpha(x,y) = \tan^{-1}(\frac{G_y}{G_x})$$

• The edge is perpendicular to α

Direction of The Gradient Vector

$$\alpha(x,y) = \tan^{-1}(\frac{G_y}{G_x})$$

Digital Approximation of The Gradient

z_1	z_2	z_3
Z ₄	z_5	z_6
z ₇	z_8	Z9

-1	0	0	-1
0	1	1	0

$$Z_9 - Z_5$$
SE-DUEL
$$Z_8 - Z_6$$

$$Z_8 - Z_6$$

Many implementations

$$G_x = Z_9 - Z_5$$

$$G_{v} = Z_8 - Z_6$$

$$\nabla f \approx \left| z_9 - z_5 \right| + \left| z_8 - z_6 \right|$$

Robert's Operator

Digital Approximation of The Gradient

z_1	z_2	z_3
Z ₄	z_5	z_6
z ₇	z_8	Z9

-1	-2	-1
0	0	0
1	2	1

-1	0	1
-2	0	2
-1	0	1

Sobel Operators

$$\nabla f = \left| (Z_7 + 2Z_8 + Z_9) - (Z_1 + 2Z_2 + Z_3) \right|$$

$$+ \left| (Z_3 + 2Z_6 + Z_9) - (Z_1 + 2Z_4 + Z_7) \right|$$

Digital Approximation of The Gradient

z_1	z_2	z_3
z_4	z_5	z_6
Z ₇	z_8	Z 9

-1	-1	-1	-1	0	1
0	0	0	-1	0	1
1	1	1	-1	0	1

Prewitt Operators

$$\nabla f = \left| (Z_7 + Z_8 + Z_9) - (Z_1 + Z_2 + Z_3) \right|$$
$$+ \left| (Z_3 + Z_6 + Z_9) - (Z_1 + Z_4 + Z_7) \right|$$

Prewitt and Sobel Operators for Diagonal Edges

0	1	1	-1	-1
-1	0	1	-1	0
-1	-1	0	0	1

Prewitt Operators

Sobel Operators

0	1	2	-2	-1	0
-1	0	1	-1	0	1
-2	-1	0	0	1	2

Horizontal and Vertical Edge Detection

Original Image

Sobel operator will be used

Hor/Vert Edge Detection after Smoothing

Hor/Vert Edge Detection after Smoothing

- Unnecessary details removed
- No contribution due to bricks

Diagonal Edge Detection

Off diagonal Edges

Diagonal Edges

Review of 2nd Order Derivative-The Laplacian Operator

- Laplacian 2nd order derivative
 - Rotation invariant or isotropic

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

2nd Order Derivative

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$= 4f(x, y)$$

$$-[f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1)]$$

Digital Approximation of The Laplacian

z_1	z_2	z_3
Z ₄	z_5	z_6
z ₇	z_8	Z9

Digital Approximation of The Laplacian

z_1	z_2	z_3
z_4	z_5	z_6
z_7	z_8	Z9

0	-1	0
-1	4	-1
0	-1	0

Digital Approximation of The Laplacian

z_1	z_2	z_3
z_4	z_5	Z ₆
Z ₇	z_8	Z 9

-1	-1	-1
-1	8	-1
-1	-1	-1

CSE-BUET

Properties of 2nd order derivative

- Sensitive to noise
- Double response to edges
- However, has zero crossing property

- Sensitive to noise
 - Smoothing will remove noise sensitivity

- Sensitive to noise
 - Smoothing will remove noise sensitivity

$$h(r) = e^{-\frac{r^2}{2\sigma^2}}$$
, where $r^2 = x^2 + y^2$

Gaussian Smoothing Function

- 2nd order derivative of Gaussian (LoG)
 - Marr-Hildreth Edge Detector

$$h(r) = e^{-\frac{r^2}{2\sigma^2}}$$

Gaussian Smoothing Function

$$\nabla^2 h(r) = \left[\frac{r^2 - 2\sigma^2}{\sigma^4} \right] e^{-\frac{r^2}{2\sigma^2}}$$

Gaussian Smoothing Function

$$\nabla^2 h(r) = \nabla^2 h(x, y) = \left[\frac{r^2 - 2\sigma^2}{\sigma^4} \right] e^{-\frac{r^2}{2\sigma^2}}$$

$$\nabla^2 h(r) = \nabla^2 h(x, y) = -\left[\frac{r^2 - \sigma^2}{\sigma^4}\right] e^{-\frac{r^2}{2\sigma^2}}$$

$$\nabla^2 h(r) = \nabla^2 h(x, y) = -\left[\frac{r^2 - \sigma^2}{\sigma^4}\right] e^{-\frac{r^2}{2\sigma^2}}$$

	0	0	-1	0	0
	0	-1	-2	-1	0
	-1	-2	16	- 2	-1
	0	-1	-2	-1	О
v	0	0	-1	0	0

 $\nabla^2 h$

Original Image

After Sobel-ing

Gaussian function for smoothing

Laplacian for edging

Applying 1) LoG
Or

2) Gauss, then Laplacian

With Sobel

Applying 1) LoG
Or
2)Gauss, then Laplacian

Zero crossing

Original Image

Using Sobel

Zero crossing

Improvement of Laplacian Edge Detection

Simultaneous Thresholding and Detection of Zero crossing

Probable Zero Crossing Pixel

- x is a zero crossing pixel if
 - Abs (N-P) > T
 - Gary vale (x) > T

Original Image

LoG Image

Zero crossing with T = 4% of Max

