9.3.1. d)
$$\int \frac{x+7}{x^2-x-2} dx = \int \frac{x+7}{(x-2)(x+1)} dx$$

$$\frac{x+7}{(x-2)(x+1)} = \frac{A}{x-2} + \frac{B}{x+1}$$

$$\frac{x+7}{(x-2)(x+1)} = \frac{A(x+1) + B(x-2)}{(x-2)(x+1)}$$

$$x+7 = Ax + A + Bx - 2B$$
• $1 = A + B$ koeffisicuture Al x'
• $7 = A - 2B - (x-2) = 3$
• $4 = 1 - 13 = 1 - (-2) = 3$
• $7 = (1-8) - 2B$
6 = $-3B$
8 = -2

1 3 + 2

$$\frac{3}{x-2} dx + \left(\frac{(-2)}{x+1}\right) dx$$

$$u = x-2$$

$$du = dx$$
= $3 \ln |x-2| - 2\ln |x+1| + C$

9.3.3.
$$\Rightarrow \int \frac{2}{x^2 + 6x + 10} dx = 2 \int \frac{1}{(x+3)^2 + 1} dx$$

$$= \frac{x^2 + 6x + 10}{(x+3)^2 + 1}$$

$$= \frac{x^2 + 2x \cdot 3 + 9 + 1}{(x+3)^2 + 1}$$

$$= 2 \int \frac{1}{(x+3)^2 + 1} dx$$

$$= 2 \int \frac{1}{u^2 + 1} du$$

$$= 2 \arctan u + C$$

$$= 2 \arctan (x+3) + C$$

9.3.3 b)
$$\int \frac{2 \times -2}{x^2 + 4x + 8} dx$$

$$= \int \frac{2 \times +4}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{2 \times +4}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{1}{x^2 + 4x + 8} dx$$

$$= \int \frac{1}{x^2 + 4x + 8} dx - 6 \int \frac{$$

9.3.13.
$$\int \frac{2x^{3} + 2x + 1}{(x^{2} + 1)^{2}} dx$$

$$\frac{2x^{3} + 2x + 1}{(x^{2} + 1)^{2}} = \frac{Ax + B}{(x^{2} + 1)} + \frac{Cx + D}{(x^{2} + 1)^{2}}$$

$$= \frac{(Ax + B)(x^{2} + 1) + Cx + D}{(x^{2} + 1)^{2}}$$

$$\frac{2x^{3} + 0x^{2} + 2x + 1}{(x^{2} + 1)^{2}} = \frac{Ax^{3} + Ax + Bx^{2} + B + Cx + D}{(x^{2} + 1)^{2}}$$

$$\frac{2x^{3} + 0x^{2} + 2x + 1}{(x^{2} + 1)^{2}} = \frac{Ax^{3} + Ax + Bx^{2} + B + Cx + D}{(x^{2} + 1)^{2}}$$

$$\frac{2x^{3} + 0x^{2} + 2x + 1}{(x^{2} + 1)^{2}} = \frac{Ax^{3} + Ax + Bx^{2} + B + Cx + D}{(x^{2} + 1)^{2}}$$

$$\frac{2x^{3} + 2x + 1}{(x^{2} + 1)^{2}} = \frac{Ax + B}{(x^{2} + 1)^{2}} + \frac{Ax + Bx^{2} + B + Cx + D}{(x^{2} + 1)^{2}}$$

$$\frac{2x^{3} + 2x + 1}{(x^{2} + 1)^{2}} = \frac{Ax + B}{(x^{2} + 1)^{2}} + \frac{Ax + Bx^{2} + B + Cx + D}{(x^{2} + 1)^{2}}$$

$$\frac{2x^{3} + 2x + 1}{(x^{2} + 1)^{2}} = \frac{Ax + B}{(x^{2} + 1)^{2}} + \frac{Ax + Bx^{2} + B + Cx + D}{(x^{2} + 1)^{2}}$$

$$\frac{2x^{3} + 2x + 1}{(x^{2} + 1)^{2}} = \frac{Ax + B}{(x^{2} + 1)^{2}} + \frac{Ax + Bx^{2} + B + Cx + D}{(x^{2} + 1)^{2}}$$

$$\frac{2x^{3} + 2x + 1}{(x^{2} + 1)^{2}} = \frac{Ax + B}{(x^{2} + 1)^{2}} + \frac{Ax + Bx^{2} + B + Cx + D}{(x^{2} + 1)^{2}}$$

$$\frac{2x^{3} + 0x^{2} + 2x + 1}{(x^{2} + 1)^{2}} = \frac{Ax + Bx^{2} + B + Cx + D}{(x^{2} + 1)^{2}}$$

$$\frac{2x^{3} + 0x^{2} + 2x + 1}{(x^{2} + 1)^{2}} = \frac{Ax^{3} + Ax + Bx^{2} + B + Cx + D}{(x^{2} + 1)^{2}}$$

$$\frac{2x^{3} + 0x^{2} + 2x + 1}{(x^{2} + 1)^{2}} = \frac{Ax^{3} + Ax + Bx^{2} + B + Cx + D}{(x^{2} + 1)^{2}}$$

$$\frac{2x^{3} + 0x^{2} + 2x + 1}{(x^{2} + 1)^{2}} = \frac{Ax^{3} + Ax + Bx^{2} + B + Cx + D}{(x^{2} + 1)^{2}}$$

$$\frac{2x^{3} + 0x^{2} + 2x + D}{(x^{2} + 1)^{2}} = \frac{Ax^{3} + Ax + Bx^{2} + B + Cx + D}{(x^{2} + 1)^{2}}$$

$$\frac{2x^{3} + 0x^{2} + 2x + D}{(x^{2} + 1)^{2}} = \frac{Ax^{3} + Ax + Bx^{2} + B + Cx + D}{(x^{2} + 1)^{2}} = \frac{Ax^{3} + Ax + Bx^{2} + B + Cx + D}{(x^{2} + 1)^{2}} = \frac{Ax^{3} + Ax + Bx^{2} + B + Cx + D}{(x^{2} + 1)^{2}} = \frac{Ax^{3} + Ax + Bx^{2} + B + Cx + D}{(x^{2} + 1)^{2}} = \frac{Ax^{3} + Ax + Bx^{2} + B + Cx + D}{(x^{2} + 1)^{2}} = \frac{Ax^{3} + Ax + Bx^{2} + B + Cx + D}{(x^{2} + 1)^{2}} = \frac{Ax^{3} + Ax + Bx^{2} + B + Cx + D}{(x^{2} + 1)^{2}} = \frac{Ax^{3} + Ax + Bx^{2} +$$

9.4.8.
$$\int \sin^{3} x \cos^{2} x \, dx$$

$$= \int \sin x (1 - \cos^{2} x) \cos^{3} x \, dx$$

$$= \int \sin x \cos^{3} x \, dx - \int \sin x \cdot \cos^{3} x \, dx$$

$$= -\int u^{2} du + \int u^{4} du$$

$$= -\frac{1}{3} u^{3} + \frac{1}{5} u^{5} + C$$

$$= -\frac{1}{3} \cos^{3} x + \frac{1}{5} \cos^{5} x + C$$

9.5. UEGENTLIGE IMEGRALER

· Kan man begregne integraler hvis den ene grensen (Del opp hvis begge es $\pm \infty$)

$$\int_{0}^{\infty} e^{-x} dx = \lim_{b \to \infty} \int_{0}^{b} e^{-x} dx$$

$$= \lim_{b \to \infty} \left[-e^{-x} \right]$$

$$= \lim_{b \to \infty} \left(-e^{-b} + 1 \right)$$

$$= 0 + 1$$

$$= 1$$

SAMMENLIKNINGSKRITERIET

da $f,g:[a,\infty) \to \mathbb{R}$ kontinuelige & positive funligioner Anta $f(x) \ge g(x) \ \forall \ x \in [a,\infty)$.

• His $\int_{a}^{\infty} d(x) dx$ honvegers, si vil $\int_{a}^{\infty} g(x) dx$ honvegere.

• His $\int_{a}^{\infty} g(x) dx diverger, Si il \int_{a}^{\infty} f(x) dx diverger.$

) GRENSESK. Antabelser som over. (f(x) > g(x))

• His $\int_{\alpha}^{\infty} f(x) dx$ konveger og $\lim_{x \to \infty} \frac{g(x)}{g(x)} < \infty$,

da honveger $\int_{\alpha}^{\infty} g(x) dx$.

• His $\int_{\alpha}^{\infty} f(x) dx$ diverger of $\int_{\alpha}^{\infty} \frac{g(x)}{f(x)} > 0$ du il $\int_{\alpha}^{\infty} g(x) dx$ diverger