

Disciplina: Arquitetura de Computadores I		Visto:
Professor: Abrantes Araújo Silva Filho		
Aluno:		
Turma:	Semestre:	Valor: —
Data:	Exercícios: Arduino 2	

Arquitetura de Computadores I — Arduino: 2^a lista de exercícios —

- Esta Lista de Exercícios é uma das atividades integrantes da disciplina de Arquitetura de Computadores I do curso de Ciência da Computação, Universidade Vila Velha (UVV).
- Ela deve ser respondida de forma manuscrita, nos espaços reservados para as respostas.
- Responda com caneta ou lápis escuro (2B, 4B, 6B).
- O professor determinará a data de entrega da lista. Ela não será corrigido pelo professor, mas será vistoriada e **será utilizada para compor a nota do bimestre**. Cabe a você estudar e dar a resposta correta para todas as questões. Obviamente o professor está à disposição para esclarecimento de dúvidas, e os monitores podem auxiliar caso você tenha dificuldade.
- Fazer as listas de exercícios é fundamental para seu aprendizado!
- Bons estudos!

1 Pinos digitais

1.	Quantos pinos digitais o Arduino Uno disponibiliza para o usuário? Como são numerados?
2.	Quais são os 2 estados que um pino digital do Arduino Uno pode estar? Quais são esses estados e o que significam?
3.	Os pinos digitais do Arduino Uno funcionam como <i>input</i> ou como <i>output</i> ? Como eles são configurados?
4.	Por que os pinos digitais "0" e "1", em geral, não são utilizados?
5.	O que é e para que server um resistor de <i>pull-down</i> ?
2	Programação
6.	Quais são as duas funções obrigatórias nos programas para o Arduino?
7.	Para que serve a função setup()? Quando ela é executada e quantas vezes ela é chamada durante um programa?
8.	Para que serve a função loop()? Quando ela é executada e quantas vezes ela é chamada durante um programa?

9.	Para que serve a função pinMode()? Quais os parâmetros da função? Dê um exemplo de como é utilizada.
10.	Para que serve a função digitalRead()? Quais os parâmetros da função? Dê um exemplo de como é utilizada.
11.	Para que serve a função digitalWrite()? Quais os parâmetros da função? Dê um exemplo de como é utilizada.
12.	No código de seu programa, que valores você pode utilizar para substituir as constantes simbólicas HIGH e LOW?
13.	Para que serve a função delay()? Quais os parâmetros da função? Dê um exemplo de como é utilizada.
14.	Por que a função delay() deve ser usada com cuidado, principalmente quando trabalhamos com sensores?
3	Resistores
15.	Utilize uma tabela de cores de resistores e calcule a resistência, em Ohms, de resistores com as seguintes faixas de cor:
	(a) Vermelho - wermelho - marrom - dourado
	(b) Verde - azul - preto - preto - dourado
	(c) Amarelo - violeta - vermelho - dourado

	(d)	Marrom - preto - marrom - dourado
	(e)	Marrom - preto - laranja - dourado
	(f)	Marrom - preto - preto - amarelo - dourado
	(g)	Marrom - preto - verde - dourado
	(h)	Marrom - preto - azul - dourado
	(i)	Marrom - preto - preto - verde - dourado
	(j)	Marrom - preto - preto - vermelho - dourado
4	In	put analógico e monitor serial
16.	Qua	ntos pinos para input analógico o Arduino Uno R3 tem? Como eles são chamados?
17.	Qua	l a faixa de valores que os pinos analógicos do Arduino conseguem retornar?
18.		ixa de valores que os pinos analógicos do Arduino retorna é mapeada para uma faixa e tensão. l é essa faixa de tensão?
19.	cado	tem diversos tipos de sensores de temperatura que podem ser utilizados em projetos embar- os e projetos com o Arduino. Você utilizou o sensor TMP36 (ou outro sensor compatível). cure na Internet algumas informações sobre esse sensor e explique aqui como ele funciona.
20.	Os s	sensores TMP36 têm três pinos de conexão. Para que serve cada pino?

21.	Pesquise sobre "comunicação serial" na Internet ¹ . Escreva um resumo sobre o que é comunicação serial e como esse tipo de comunicação funciona.
2.	A IDE de programação possui uma ferramenta para visualizar mensagens emitidas pelo Arduino via comunicação serial. Como se chama essa ferramenta? Como acessá-la através da IDE?
3.	Para que serve a função Serial.begin()? Que argumento essa função espera? Como interpretar esse argumento?
4.	O que é a "baud rate" de um canal de comunicação serial?
5.	Para que serve a função analogRead()? Que argumento essa função deve receber?
6.	A função analogRead() retorna um número inteiro. Qual a faixa de valores para esse número
27.	O número retornado pela função analogRead() representa o quê?
8.	Para que server a função Serial.print()? Qual o argumento dessa função?
1	Um bom começo é o artigo Serial communication, na Wikipedia (https://en.wikipedia.org/wiki/Serial_communicat

29. Para converter um valor inteiro retornado pela função analogRead() e armazenado, por exemplo, na variável "x", para um valor que represente uma tensão (V), podemos usar a seguinte fórmula:

$$V = \frac{x}{1024.0} \times 5.0 \tag{1}$$

Explique por que essa fórmula converte o retorno de analogRead() para um valor de tensão.

30. Componentes eletrônicos são acompanhados de um *datasheet* (ou você pode procurar na Internet). O que são e para que servem os *datasheets*?

31. O datasheet do TMP36 especifica que a faixa de temperatura que esse sensor consegue detectar é de $-40\,^{\circ}\text{C}$ até $125\,^{\circ}\text{C}$, com margem de erro $\pm 3\,^{\circ}\text{C}$ (alguns modelos são mais precisos, com margem de erro de $\pm 2\,^{\circ}\text{C}$). E aqui temos um "problema": a faixa de tensão do Arduino é de $0\,\text{V}$ a $5\,\text{V}$, então não podemos usar o valor de $0\,\text{V}$ para representar $0\,^{\circ}\text{C}$ pois, caso contrário, teríamos que usar tensões negativas para representar temperaturas negativas.

Esse problema de representação "Tensão \times Temperatura" foi resolvido no TMP36 com a adição de um *offset* (deslocamento) na tensão para a representação da temperatura: para representar 0 °C o sensor utiliza o valor de 0.5 V. Assim, valores de tensão abaixo de 0.5 V representam temperaturas negativas, e valores de tensão acima de 0.5 V representam temperaturas positivas. Além disso o *datasheet* especifica que uma variação de 10 mV na tensão corresponde a uma variação proporcional de 1 °C. Esse comportamento está ilustrado no gráfico abaixo:

Figura 1: Relação entre tensão e temperatura no TMP36

Pode-se perceber que a temperatura mínima detectável pelo TMP36, $-40\,^{\circ}$ C, corresponde a uma tensão de $0.10\,\text{V}$, e a temperatura máxima detectável, $125\,^{\circ}$ C, corresponde a uma tensão de $1.75\,\text{V}$.

O TMP36 mede a temperatura T do ambiente (em °C)e converte essa temperatura em uma tensão de saída $V_{\rm out}$ através da fórmula abaixo:

$$V_{\text{out}} = 0.5 \,\text{V} + (0.01 \,\text{V}/^{\circ}\text{C} \times T^{\circ}\text{C})$$
 (2)

Quando você lê e calcula a tensão no pino de saída do TMP36 através da Equação 1, a $V_{\rm out}$ (que é calculada de acordo com a Equação 2), você está lendo a tensão **com o valor de** offset incluído. Para obter a temperatura correta final precisamos remover o offset:

$$V_{\text{out}} = 0.5 \text{ V} + (0.01 \text{ V}/^{\circ}\text{C} \times T^{\circ}\text{C})$$

$$V_{\text{out}} - 0.5 \text{ V} = 0.01 \text{ V}/^{\circ}\text{C} \times T^{\circ}\text{C}$$

$$\frac{V_{\text{out}} - 0.5 \text{ V}}{0.01 \text{ V}/^{\circ}\text{C}} = T^{\circ}\text{C}$$
(3)

Portanto, a fórmula final utilizada no código do Arduino é:

$$T^{\circ}C = (V_{\text{out}} - 0.5 \text{ V}) \times 100$$
 (4)

•	O que a função Serial.println() faz? Qual o argumento dessa função? Em que essa função difere da função Serial.print()?
	No projeto com o sensor TMP36 você utilizou uma variável que armazenava a temperatura inicial do ambiente, a "baselineTemp". Por que essa variável foi usada? Qual o efeito de alterar essa variável?
	do ambiente, a "baselineTemp". Por que essa variável foi usada? Qual o efeito de alterar essa
	do ambiente, a "baselineTemp". Por que essa variável foi usada? Qual o efeito de alterar essa