Body Measurement using a 2D Camera for Home Fitness

21900610 Soonho Lim Prof. Youngkeun Kim

Introduction

Problem Statement:

3D body measurement systems are costly and impractical for home use.

Objective:

Develop affordable and accessible alternative to traditional 3D systems. Goal:

Design and prototype a 2D-based human body measurement system.

Fig 1. Aimed System Feature

Proposed System

Proposed System Process:

Single **Image** Capture

Body Segmentation Model

Body Size Estimation Model

Visualize Result

1. Single Image Capture:

Fig 2. Captureing Image

LCD panel visualizes the user's current pose and instructions.

Background set with green chroma key for better image capture.

2. Body Segmentation Model:

Fig 3. U2-Net

"U2-Net" highly accurate background segmentation model used for image processing.

Pretrained model: u2net_human_seg.pth

3. Body Size Estimation Model:

Model

Fig 4. Conv_BoDiEs Architecture

Model	Conv_BoDiEs	
Input	Front T pose image	
Output	Size of 16 body parts	

The model relies on a single 2D image for estimation, simplifies implementation

Dataset & Test Evaluation

Body part	Test Data
chest circ	9.3
waist circ	8.8
pelvis circ	9.2
neck circ	5.8
•	•
MAE(total)	5.537[mm]

Fig 5. Sample Dataset

Table 1. Test Data Result

Dataset:

50,000 *SMPL captured images are used for train and test.

Evaluation:

The model achieved a 5.537[mm] MAE.

4. Visualization Result:

The result is shown through the LCD placed back of the mirror.

For visualization, human feature and result table are shown.

Hardware

Hardware designed like a mirror for "Home Fitness"

Fig 7. Smart Mirror & LCD Display

Hardware Specification:

Height: 175cm Width: 54cm

LCD panel: 7inch (600x1024)

Camera: 1090P web cam

Fig 8. Inner Part & Overall Layout

Red Box:

LCD pannel with 3D printed holder

Orange Box:

Barttery with 3D printed holder

GUI

GUI framework - Tkinter

Fig 9. GUI Sequence

- 1. Type name for user result storage
- 2. Select gender for appropriate "trained model"
- 3. Results visualized in segmented image with table

Test

Test participants: 10 male

<u>Distance between camera and subject:</u> 190[cm]

Overall space layout:

width -3.1[m]

length - 2.2[m]

height - 2.5[m]

Fig 10. 4 Sample of Test Participant

Result

Result:

Overall MAE: 2.3[cm]

Directions for Future Research: Enhancement of Accuracy Visualizing in 3D model

Reference

[1] Škorvánková, Dana, Adam Riečický, and Martin Madaras. "Automatic estimation of anthropometric human body

measurements." arXiv preprint arXiv:2112.11992 (2021). [2] Loper, Matthew, et al. "SMPL: A skinned multi-person linear model." Seminal Graphics Papers: Pushing the Boundaries, Volume 2. 2023. 851-866.

[3] Qin, Xuebin, et al. "U2-Net: Going deeper with nested U-structure for salient object detection." Pattern recognition 106 (2020): 107404.