Республиканская олимпиада по математике, 2013 год, 9 класс

- **1.** На доске записаны числа 1, 2, ..., 25. За ход нужно стереть 3 некоторых числа a, b, c написанных на доске и записать вместо него число $a^3 + b^3 + c^3$. Докажите, что последнее оставшееся число не может быть равно 2013^3 . (Сатылханов K.)
- **2.** Докажите, что для любого натурального числа n существуют натуральные числа $a,\,b,\,c$ такие, что

$$n = (a^2 - bc)(b, c) + (b^2 - ca)(c, a) + (c^2 - ab)(a, b).$$

Здесь (a,b) — наибольший общий делитель чисел a,b. (Сатылханов K.)

- **3.** Дан треугольник ABC, около которого описана окружность с центром O. Пусть I центр вписанной окружности треугольника ABC, а точки A_1 ($A \neq A_1$) и B_1 ($B \neq B_1$) на описанной окружности такие, что угол $\angle IA_1B = \angle IA_1C$ и $\angle IB_1A = \angle IB_1C$. Докажите, что прямые AA_1 и BB_1 пересекаются на прямой OI. (M. Кунгожин)
- 4. а) Верно ли, что любое рациональное число можно представить в виде суммы нескольких рациональных чисел, произведение которых равно 1?
 б) Верно ли, что любое рациональное число можно представить в виде произведения нескольких рациональных чисел, сумма которых равна 1? (А. Васильев)
- **5.** Пусть AD, BE и CF биссектрисы треугольника ABC. Обозначим через M и N середины отрезков DE и DF соответственно. Докажите, что если $\angle BAC \geq 60^\circ$, то BN + CM < BC. (Сатылханов K.)
- **6.** Дано множество $A = \{1, 2, ..., n\}$ и натуральное число m. Сколько существует способов разделить A на m частей так, что если числа a < b лежат в одной части, а c < d в другой, то (a d)(b c) > 0? Например, если n = 4, m = 2, то существует 5 способов разделения:

$$\{1,2\}\{3,4\}; \quad \{1,2,3\}\{4\}; \quad \{1,2,4\}\{3\}; \quad \{1,3,4\}\{2\}; \quad \{2,3,4\}\{1\}.$$

(Д. Елиусизов)