COMP 478/6771 Assignment 1 solutions - Fall 2023

Part I: Theoretical questions

Q1 (6 points)

First, we need to obtain the histogram equalization transformation (i.e., the CDF) of p_r :

$$s = T(r) = \int_0^r p_r(w) dw = \int_0^r (-2w + 2) dw = -r^2 + 2r$$
 (2 points)

Then, we need to find the CDF of p_z :

$$v = G(z) = \int_0^z p_z(w) dw = \int_0^z 2w dw = z^2$$
 (2 points)

Finally,
$$z = G^{-1}(v) = \pm \sqrt{v}$$

However, only positive intensity levels are allowed, so $z = \sqrt{v}$ (1 point). Then, we replace v and with s, which gives us $z = \sqrt{-r^2 + 2r}$ (1 point).

Q2 (20 points)

(b) (10 points): (i) and (ii) are 5 points each.

i) Calculating s_k and histogram equalization

Here L = 16 and n = 256

Grey level r _k	# of pixels n _k	$p_r(r_k) = \frac{n_k}{n}$	$\widetilde{s_k} = \frac{L-1}{n} \sum_{j=0}^k n_j$	Discrete values s _k
0	1	0.004	0.06	0
1	9	0.035	0.59	1
2	15	0.059	1.46	1
3	45	0.176	4.10	4
4	93	0.363	9.55	10
5	50	0.195	12.48	12
6	23	0.090	13.83	14
7	12	0.047	14.53	15
8	7	0.027	14.94	15

COMP 478/6771 Assignment 1 solutions – Fall 2023

9	1	0.004	15.00	15
10	0	0.000	15.00	15
11	0	0.000	15.00	15
12	0	0.000	15.00	15
13	0	0.000	15.00	15
14	0	0.000	15.00	15
15	0	0.000	15.00	15

For histogram equalization, we map the grey level values by S=T(r) transformation, which yields the following table.

Grey level sk	# of pixels n_{s_k}	$p_s(s_k) = \frac{n_{s_k}}{n}$
0	1	0.004
1	24	0.094
2	0	0.000
3	0	0.000
4	45	0.176
5	0	0.000
6	0	0.000
7	0	0.000
8	0	0.000
9	0	0.000
10	93	0.363
11	0	0.000
12	50	0.195
13	0	0.000
14	23	0.090
15	20	0.078

ii) Probability density function for $p_r(r_k)$ and $p_s(s_k)$

COMP 478/6771 Assignment 1 solutions - Fall 2023

(c) (5 points) Histogram of image after histogram equalization

Q3 (4 points)

If we use h_s to represent the histogram of s(x, y) = f(x, y) - g(x, y), then the intensity value of s(x, y) is $u_k - c$. In this case, the height of each bin from h_s is the same as h_f (2 points), but the bin locations are shifted to the left by the amount of c (2 points).

Q4 (6 points)

First, we need to convert the intensity value of each pixel into binary:

Then the 4 bit maps from the highest bit to the lowest are (each bit map = 1 point):

0	0	1	0		0	0	0	1		0	0	0	1		0	1	0	0
0	0	0	0		0	0	0	0		1	1	0	0		0	0	1	1
0	1	1	1	,	0	1	1	1	,	0	1	1	0	,	1	1	0	0
0	0	1	1		0	1	0	0		1	1	0	1		1	0	1	0

Part II: programming questions

- **1-** 1 point
- **2-** 3 points
- **3-** 2 points
- **4-** 3 points
- **5-** 1 point