[Quiz 1] 데이터베이스 용어

- 1. (2009-53) 어느 웹사이트에서 회원 가입시 반드시 입력 받는 로그인 아이디(mem-id)는 중복 허용되지 않는다고 한다. mem-id 컬럼을 정의할 때 데이터 무결성 측면에서 필요한 제약조건으로 가장 올바른 것은?
 - 1) UNIQUE

2) NOT NULL

3) UNIQUE 와 NOT NULL

- 4) UNIQUE 와 IS NULL
- 2. (2012-61) 외래키에 대한 설명으로 적절하지 않은 것을 모두 고르시오
- 1) 테이블 생성시 설정할 수 있다
- 2) 외래키 값은 널 값을 가질 수 없다
- 3) 한 테이블에 하나만 존재해야 한다
- 4) 외래키 값은 참조무결성 제약을 받을 수 있다
- **3.** (2010-53) 애트리뷰트 집합, A={A1, A2, A3, A4} 로 구성된 릴레이션 R(A1, A2, A3, A4) 에서 후보키(candidate)가 3 개라면. 대체키(alternate key) 의 개수는?

1) 3 개

2) 2 개

3) 1 개

4) 0 개

- 4. 64. 관계 데이터 모델(Relational data model)은 외적으로는 단순한 테이블(Table) 형태의 구조로 모든데이터를 표현하지만 이론적으로는 수학적인 릴레이션(Relation)을 기초로 하고 있다. 이러한 관계 데이터 모델에 대한 설명 중 가장 적절하지 <u>않은 것은</u>?
 - 1) 릴레이션 R은 릴레이션 스키마(Schema)와 릴레이션 인스턴스(Instance)로 구성된다.
 - 2) 기본 키(Primary Key)에 속해 있는 애트리뷰트(Attribute)는 언제 어느 때나 널(Null) 값을 가질 수 없다는 것을 개체 무결성(Entity integrity) 제약이라 한다.
 - 3) 릴레이션은 참조할 수 없는 외래 키(Foreign Key) 값을 가져서는 안 된다는 것을 참조 무결성(Referential integriy) 제약이라 한다.
 - 4) 릴레이션 R의 정의에서 보면 릴레이션에 포함되어 있는 투플(Tuple)의 수를 그 릴레이션의 차수(Degree)라 한다.

[Quiz 2] 정보처리기사실기 2009년 1회

데이터베이스에서 (②)이라 함은 데이터베이스에 저장되는 데이터의 정확성을 보장해주기 위해 키를 이용하여 입력되는 데이터에 제한을 주는 것을 의미한다. 사용자가 데이터를 조회만하고 갱신을 거의 하지 않는 시스템이라면 (②)의 설정이 중요하지 않을 수도 있지만, 본 사업처럼 개인정보의 조회는 물론 개인정보 관리를 위해서 데이터의 삽입, 삭제, 갱신 등의 작업이 많이 동반되는 시스템의 경우에는 (②)의 설정이 대단히 중요하다....

[표 1] 참조 무결성 (②)의 예

근무지 테이블
근무지번호(PK)
근무지명

사원 테이블
사원번호(PK)
사원명
근무지번호

CREATE TABLE 근무지 (근무지번호 NUMBER(2) PRIMARY KEY, 근무지명 VARCHAR(20)

CREATE TABLE 사원

(사원번호 NUMBER(10) PRIMARY KEY,

사원명 VARCHAR(10),

근무지번호 NUMBER(2) FOREIGN KEY (③) 근무지);

[표 2] 참조 무결성 (②)을 유지하기 위한 3가지 방법

종류	정합성 보증 내역	방법
제1방법	테이블 갱신 시에 참조되는 데이터를 동시에 갱신한다.	(④)
제2방법	테이블 갱신 시에 참조하는 테이블이 있다면 값을 유지한다.	(⑤)
제3방법	테이블 갱신 시에 참조하는 테이블의 데이터를 NULL값으로 설정한다.	SET NULL

<답항보기>

1	4FRONT	2	가늠쇠	3	SWOT	4	관리기법/1	5	PUTNAM모형
6	마르미	7	GROUPWARE	8	COCOMO모형	9	CASE	10	PERT
11	프로토타입모형	12	CPM	13	형상관리	14	LIMITS	15	CATARACT
16	ODBC	17	제약조건	18	CONTROL	19	CONTROLS	20	CUTOFF
21	e-INNOVATOR	22	LIMIT	23	LIMITATION	24	LIMITED	25	CASCADE
26	MONITOR	27	NICE	28	OVERALL	29	PICK	30	REFER
31	RUP	32	REFERENTIAL	33	REFERS	34	RESTRAINT	35	SQL
36	WHOLE	37	ALTER	38	REFERENCES	39	WAY4U	40	RESTRICT

[실습 1] 도메인 제약조건(CHECK) (KCISA 2012-62번 문제)

62. 아래 CREATE TABLE 문으로 릴레이션 R을 생성하였다

CREATE TABLE R
(NAME VARCHAR(20) PRIMARY KEY,
SALARY INTEGER CHECK(SALARY <= 4000));
릴레이션 R의 현재 내용은 다음과 같다.

<KIM, 1000>
<LEE, 2000>
<PARK,3000>
이 릴레이션 R에 대하여 아래의 순서로 SQL문을 수행하였다.
이들 중에서 일부는 릴레이션에 정의된 제약조건 때문에 거절될 수 있다.
INSERT INTO R VALUES('CHOI',1200);

UPDATE R SET SALARY=5000 WHERE NAME='PARK';
INSERT INTO R VALUES('KIM',1300);

DELETE FROM R WHERE NAME='LEE';
릴레이션 R 에 들어 있는 모든 투플(Tuple) 들의 SALARY 의 합은 얼마인가?

```
1) 5200 2) 6000 3) 7200 4) 9200
```

-Oracle 실습 C:₩>sqlplus scott/tiger

```
drop table r;
--테이블 R 생성
CREATE TABLE R (
   NAME VARCHAR(20) PRIMARY KEY .
   SALARY INTEGER CHECK(SALARY <= 4000)
);
--데이터 입력
insert into r values('KIM',1000);
insert into r values('LEE',2000);
insert into r values('PARK',3000);
--데이터 조회
select * from r;
--실행가능? 그 이유는?
INSERT INTO R VALUES ('CHOI', 1200);
--실행가능? 그 이유는?
UPDATE R SET SALARY=5000 WHERE NAME='PARK';
--실행가능? 그 이유는?
INSERT INTO R VALUES('KIM',1300);
--실행가능? 그 이유는?
DELETE FROM R WHERE NAME='LEE';
--데이터 조회 (최종 데이터 조회)
select * from r;
--릴레이션 R에 들어있는 모든 투플들의 salary 의 합은 얼마인가?
select SUM(salary)
from r;
```

[실습 2] 참조무결성 제약조건 (RESTRICT / CASCADE / SET NULL / SET DEFAULT)

```
67. 아래의 릴레이션 T, S, R이 각각 다음과 같이 선언되었다.
    CREATE TABLE T
    (C INTEGER PRIMARY KEY,
    D INTEGER);
    CREATE TABLE S
    (B INTEGER PRIMARY KEY,
     C INTEGER REFERENCES T(C) ON DELETE CASCADE);
    CREATE TABLE R
    (A INTEGER PRIMARY KEY.
     B INTEGER REFERENCES S(B) ON DELETE SET NULL);
    현재의 릴레이션 T, S, R의 상태는 다음과 같다.
                   S :
     T :
                                R:
                                 A B
     C D
                   B C
  DELETE FROM T:
  를 수행한 후에 릴레이션 R에는 어떤 투플들만 들어 있겠는가?
 ① (1, NULL)과 (2, 2)
 ② (1, NULL)과 (2, NULL)
 ③ (2.2)
 ④ 아무 투플도 안 들어 있음
```

-MS SQL 실습

-Oracle 실습 C:₩>sqlplus scott/tiger

```
drop table r:
drop table s;
drop table t;
--3개의 테이블 T, S, R 각각 작성하는 CREATE TABLE 문법을 이 위치에 입력하세요
insert into T values(1,1);
insert into T values(2,1);

insert into S values(1,1);
insert into S values(2,1);

insert into R values(2,1);

insert into R values(2,2);
--다음 문법을 수행한 이후에 릴레이션 R 에는 어떤 투플들이 있는가?

DELETE FROM T;
select * from R;
```