MACHINE LEARNING

Artificial Neural Networks (ANN)

Dr G.Kalyani

Department of Information Technology
Velagapudi Ramakrishna Siddhartha Engineering College

Topics

Motivation to ANN

Perceptron

Gradient Descent

ANN with Backpropagation

Introduction

 Neural network learning methods provide a robust approach to predict real-valued, discrete-valued, and vector-valued target functions.

 For certain types of problems, such as learning to interpret complex real-world sensor data, artificial neural networks are among the most effective learning methods currently known.

Motivation to ANN

- The study of artificial neural networks (ANNs) has been inspired in part by the observation that biological learning systems.
- To develop a feel for this analogy, let us consider a few facts from neurobiology.
 - The human brain, for example, is estimated to contain a densely interconnected network of approximately 10¹¹ neurons, each connected, on average, to 10⁴ others.
 - Neuron activity is typically excited or inhibited through connections to other neurons.
 - The fastest neuron switching times are known to be on the order of 10⁻³ seconds-quite slow compared to computer switching speeds of 10⁻¹⁰ seconds.
 - Yet humans are able to make surprisingly complex decisions, surprisingly quickly.
 - For example, it requires approximately 10⁻¹ seconds to visually recognize your mother.

When to Consider Neural Networks

- Instances are represented by many attribute-value pairs.
- The target function output may be discrete-valued, realvalued, or a vector of several real- or discrete-valued attributes
- The training examples may contain errors.
- Long training times are acceptable.
- Fast evaluation of the learned target function may be required.
- The ability of humans to understand the learned target function is not important.

ALVINN: An example ANN

ALVINN drives 70 mph on highways

Topics

Motivation to ANN

Perceptron

Gradient Descent

ANN with Backpropagation

Perceptron

$$o(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \cdots + w_n x_n > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Sometimes we'll use simpler vector notation:

$$o(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Perceptron Ex: Logical OR

$$\sim$$
 "w₁=1.0"

$$\sim$$
 " $w_2 = 1.0$ "

Logical OR Function

Perceptron Ex: Logical AND

$$\sim$$
 "w₁=1.0"

Logical AND Function

Limitations of Perceptron

- Perceptron able to form only linear discriminate functions
 - i.e. classes which can be divided by a line or hyperplane

- Most functions are more complex
 - i.e. they are non-linear or not linearly separable
 - Ex: Ex-OR

Logical Ex-OR Operation

 Their combined results can produce good classification

How to classify linearly?

Artificial Neural Network/Multi-Layer Perceptron

- A neural network: A set of connected input/output units where each connection has a **weight** associated with it
- During the learning phase, the **network learns by adjusting the weights** so as to be able to predict the correct class label of the input tuples
- Also referred to as **connectionist learning** due to the connections between units

A Multi-Layer Feed-Forward Neural Network

How A Multi-Layer Neural Network Works

- The **inputs** to the network correspond to the attributes measured for each training tuple
- Inputs are fed simultaneously into the units making up the input layer
- They are then weighted and fed simultaneously to a hidden layer
- The number of hidden layers is arbitrary, although usually only one
- The weighted outputs of the last hidden layer are input to units making up the **output layer**, which emits the network's prediction
- The network is **feed-forward**: None of the weights cycles back to an input unit or to the previous layer

Defining a Network Topology

- Decide the network topology or Structure:
 - # of units in the *input layer*,
 - # of hidden layers (if > 1),
 - # of units in each hidden layer, and
 - # of units in the output layer
- Normalize the input values for each attribute measured in the training tuples to [0.0—1.0]
- One **input** unit per domain value, each initialized to 0
- Output, if for classification and more than two classes, one output unit per class is used
- Once a network has been trained and its accuracy is unacceptable, repeat the training process with a different network topology or a different set of initial weights

Backpropagation

- Iteratively process a set of training tuples & compare the network's prediction with the actual known target value
- For each training tuple, the weights are modified to minimize the mean squared error between the network's prediction and the actual target value
- Modifications are made in the "backwards" direction: from the output layer, through each hidden layer down to the first hidden layer, hence "backpropagation"

Steps

- Initialize weights to small random numbers, associated with biases
- Propagate the inputs forward (by applying activation function)
- Backpropagate the error (by updating weights and biases)
- Terminating condition (when error is very small, etc.)

Step1: Initialize the Weights

Initialize the weights:

- The weights in the network are initialized to small random numbers
- -e.g., ranging from -1.0 to 1.0, or -0.5 to 0.5.
- Each unit has a bias associated with it.
- The biases are similarly initialized to small random numbers.

- An n-dimensional input vector x is mapped into variable y by means of the scalar product and a nonlinear function mapping
- The inputs to unit are outputs from the previous layer. They are multiplied by their corresponding weights to form a weighted sum, which is added to the bias associated with unit. Then a nonlinear activation function is applied to it.

Different Activation Functions:

Sigmoid Function :

$$- A = 1/(1 + e^{-x})$$

– Value Range: 0 to 1

Tanh Function :-

- The activation that works almost always better than sigmoid function
- $\tanh(x) = 2/(1 + e^{-2x}) 1 OR$
- tanh(x) = 2 * sigmoid(2x) 1
- Value Range :- -1 to +1

- RELU: Stands for Rectified linear unit.
 - It is the most widely used activation function.
 - A(x) = max(0,x).
 - It gives an output x if x is positive and 0 otherwise.
 - Value Range :- [0, inf)
 - In simple words, RELU learns much faster than sigmoid and Tanh function.

• Given a unit, j in a hidden or output layer, the net input, Ij, to unit j is

$$I_j = \sum_i w_{ij} O_i + \theta_j,$$

- where wij is the weight of the connection from unit i in the previous layer to unit j; Oi is the output of unit i from the previous layer; and j is the **bias** of the unit.
- Applies an activation function to it. The function symbolizes the
 activation of the neuron represented by the unit. The ReLu or
 Tanh, or sigmoid, function is used.
- Given the net input Ij to unit j, then Oj, the output of unit j, is computed as

$$O_j = \frac{1}{1 + e^{-I_j}}.$$

• This function is also referred to as a **squashing function**, because it maps a large input domain onto the smaller range of 0 to 1.

• We **compute the output values,** *Oj*, for each hidden layer, up to and including the output layer, which gives the **network's prediction**.

Step 3: BackPropagating the Error

- The error is propagated backward by updating the weights and biases to reflect the error of the network's prediction.
- For a unit j in the output layer, the error E is computed by

$$E = \frac{1}{2} \sum_{i} (t_i - y_i)^2$$

- where *yi* is the obtained output of unit *i*, and *Ti* is the known target value of the given training tuple.
- Backpropagate the error using Gradient Decent technique.

Step 4: Terminating Condition

Terminating condition:

- Training stops when
 - All delta wij in the previous epoch are so small as to be below some specified threshold, or
 - Error at output layer is below the specified threshold,
 or
 - A pre specified number of epochs has expired.
- In practice, several hundreds of thousands of epochs may be required before the weights will converge.

Topics

Motivation to ANN

Perceptron

Gradient Descent

ANN with Backpropagation

Training Rules

 understanding how to train the network (adjusting the weights) for a single perceptron/MLP

- Several algorithms are known to solve this learning problem. Here we consider two:
 - Perceptron rule
 - Delta rule

Gradient Descent and the Delta Rule

 Although the perceptron rule finds a successful weight vector when the training examples are linearly separable, it can fail to converge if the examples are not linearly separable.

 A second training rule, called the delta rule, is designed to overcome this difficulty.

Gradient Descent

To understand, consider simpler linear unit, where

$$o = w_0 + w_1 x_1 + \dots + w_n x_n$$

Let's learn w_i 's that minimize the squared error

$$E[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

Where D is set of training examples

Gradient Descent

Gradient

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

$$\vec{w} \leftarrow \vec{w} + \Delta \vec{w}$$

Gradient Descent

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_{d \in D} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)$$

$$= \sum_{d \in D} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x_d})$$

$$\frac{\partial E}{\partial w_i} = \sum_{d \in D} (t_d - o_d) (-x_{id})$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

$$\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) \ x_{id}$$

Process of Gradient Descent

GRADIENT-DESCENT(training_examples, η)

Each training example is a pair of the form $\langle \vec{x}, t \rangle$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05).

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - Initialize each Δw_i to zero.
 - For each (\vec{x}, t) in training_examples, Do
 - Input the instance \vec{x} to the unit and compute the output o
 - For each linear unit weight w_i , Do

$$\Delta w_i \leftarrow \Delta w_i + \eta(t-o)x_i$$

• For each linear unit weight w_i , Do

$$w_i \leftarrow w_i + \Delta w_i$$

Standard Vs Stochastic Gradient Descent

- One common variation on gradient descent is called incremental gradient descent, or stochastic gradient descent.
- The key differences between standard gradient descent and stochastic gradient descent are:
 - In standard gradient descent, the error is summed over all examples before updating weights, whereas in stochastic gradient descent weights are updated upon examining each training example.
 - In cases where there are multiple local minima, stochastic gradient descent can sometimes avoid falling into these local minima

Difficulties in Gradient Descent

- The key practical difficulties in applying gradient descent are:
 - converging to a local minimum can sometimes be quite slow (i.e., it can require many thousands of gradient descent steps)
 - if there are multiple local minima in the error surface, then there is no guarantee that the procedure will find the global minimum.

Topics

Motivation to ANN

Perceptron

Gradient Descent

ANN with Backpropagation

Notations Used

- x_{ii} = the *i*th input to unit *j*
- w_{ji} = the weight associated with the *i*th input to unit *j*
- $net_j = \sum_i w_{ji} x_{ji}$ (the weighted sum of inputs for unit j)
- o_j = the output computed by unit j
- t_j = the target output for unit j
- σ = the sigmoid function
- outputs = the set of units in the final layer of the network

• For each training example d every weight w_{ji} is updated by adding to it Δw_{ji}

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}} \qquad \qquad E_d(\vec{w}) \equiv \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2$$

- We now derive an expression for $\frac{\partial E_d}{\partial w_{ji}}$ in order to implement the stochastic gradient descent.
- To begin, notice that weight w_{ji} can influence the rest of the network only through $net_{i\cdot}$
- Therefore, we can use the chain rule to write

$$\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}$$
$$= \frac{\partial E_d}{\partial net_j} x_{ji}$$

Case 1: Training Rule for Output Unit Weights. Just as w_{ji} can influence the rest of the network only through net_j , net_j can influence the network only through o_j . Therefore, we can invoke the chain rule again to write

$$\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial net_j} \tag{4.23}$$

To begin, consider just the first term in Equation (4.23)

$$\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2$$

$$\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} (t_j - o_j)^2$$

$$= \frac{1}{2} 2 (t_j - o_j) \frac{\partial (t_j - o_j)}{\partial o_j}$$

$$= -(t_j - o_j)$$

$$\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial net_j}$$

$$\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} (t_j - o_j)^2$$

$$= \frac{1}{2} 2 (t_j - o_j) \frac{\partial (t_j - o_j)}{\partial o_j}$$

$$= -(t_j - o_j)$$

$$\frac{\partial o_j}{\partial net_j} = \frac{\partial \sigma(net_j)}{\partial net_j}$$

Partial
Derivative for
Sigmoid
Activation
Function:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma'(x) = \frac{d}{dx}\sigma(x) = \frac{d}{dx}\frac{1}{1 + e^{-x}}$$

$$= \frac{d}{dx}(1 + e^{-x})^{-1}$$

$$= -(1 + e^{-x})^{-2} \cdot \frac{d}{dx}(1 + e^{-x})$$

$$= -(1 + e^{-x})^{-2} \cdot (\frac{d}{dx}[1] + \frac{d}{dx}[e^{-x}])$$

$$= -(1 + e^{-x})^{-2} \cdot (0 + \frac{d}{dx}[e^{-x}])$$

$$= -(1 + e^{-x})^{-2} \cdot (e^{-x} \cdot \frac{d}{dx}[-x])$$

$$= -(1+e^{-x})^{-2} \cdot (e^{-x} \cdot \frac{d}{dx}[-x])$$

$$= -(1+e^{-x})^{-2} \cdot (e^{-x} \cdot -1)$$

$$= (1+e^{-x})^{-2} \cdot e^{-x}$$

$$= \frac{e^{-x}}{(1+e^{-x})^{2}}$$

$$= \frac{1 \cdot e^{-x}}{(1+e^{-x}) \cdot (1+e^{-x})}$$

$$= \frac{1}{(1+e^{-x})} \cdot \frac{e^{-x}}{(1+e^{-x})}$$

$$= \frac{1}{(1+e^{-x})} \cdot \frac{e^{-x} + 1 - 1}{(1+e^{-x})}$$

$$= \frac{1}{(1+e^{-x})} \cdot (\frac{1+e^{-x}}{1+e^{-x}} - \frac{1}{1+e^{-x}})$$

$$= \frac{1}{(1+e^{-x})} \cdot (1 - \frac{1}{1+e^{-x}})$$

$$= \sigma(x) \cdot (1 - \sigma(x))$$

$$= \sigma_j(1 - \sigma_j)$$

$$\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial net_j}$$

$$\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} (t_j - o_j)^2$$

$$= \frac{1}{2} 2 (t_j - o_j) \frac{\partial (t_j - o_j)}{\partial o_j}$$

$$= -(t_j - o_j)$$

$$\frac{\partial o_j}{\partial net_j} = \frac{\partial \sigma(net_j)}{\partial net_j}$$
$$= o_j(1 - o_j)$$

$$\frac{\partial E_d}{\partial net_i} = -(t_j - o_j) \ o_j (1 - o_j)$$

$$\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}$$
$$= \frac{\partial E_d}{\partial net_j} x_{ji}$$

$$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}} = \eta (t_j - o_j) o_j (1 - o_j) x_{ji}$$

$$w_{ij} = w_{ij} + \Delta w_{ij}.$$

Case 2: Training Rule for Hidden Unit Weights. In the case where j is an internal, or hidden unit in the network, the derivation of the training rule for w_{ji} must take into account the indirect ways in which w_{ji} can influence the network outputs and hence E_d . For this reason, we will find it useful to refer to the set of all units immediately downstream of unit j in the network (i.e., all units whose direct inputs include the output of unit j). We denote this set of units by Downstream(j). Notice that net_j can influence the network outputs (and therefore E_d) only through the units in Downstream(j). Therefore, we can write

$$\begin{split} \frac{\partial E_d}{\partial net_j} &= \sum_{k \in Downstream(j)} \frac{\partial E_d}{\partial net_k} \frac{\partial net_k}{\partial net_j} \\ &= \sum_{k \in Downstream(j)} -\delta_k \frac{\partial net_k}{\partial net_j} \\ &= \sum_{k \in Downstream(j)} -\delta_k \frac{\partial net_k}{\partial o_j} \frac{\partial o_j}{\partial net_j} \\ &= \sum_{k \in Downstream(j)} -\delta_k w_{kj} \frac{\partial o_j}{\partial net_j} \\ &= \sum_{k \in Downstream(j)} -\delta_k w_{kj} \frac{\partial o_j}{\partial net_j} \end{split}$$

(4.28)

Rearranging terms and using δ_j to denote $-\frac{\partial E_d}{\partial net_j}$, we have

$$\delta_j = o_j(1 - o_j) \sum_{k \in Downstream(j)} \delta_k \ w_{kj}$$

and

$$\Delta w_{ji} = \eta \delta_j x_{ji}$$

$$\begin{bmatrix} w_1^+ \\ w_2^+ \\ \vdots \\ w_n^+ \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial C}{\partial w_1} \\ \frac{\partial C}{\partial w_2} \\ \vdots \\ \frac{\partial C}{\partial w_n} \end{bmatrix}$$

Classification by Backpropagation

Algorithm: Backpropagation. Neural network learning for classification or numeric prediction, using the backpropagation algorithm.

Input:

- D, a data set consisting of the training tuples and their associated target values;
- *l*, the learning rate;
- network, a multilayer feed-forward network.

Output: A trained neural network. Method:

```
(1)
      Initialize all weights and biases in network;
(2)
      while terminating condition is not satisfied {
           for each training tuple X in D {
(3)
                   // Propagate the inputs forward:
(4)
(5)
                   for each input layer unit j {
(6)
                           O_i = I_i; // output of an input unit is its actual input value
                   for each hidden or output layer unit j {
(7)
                           I_i = \sum_i w_{ij} O_i + \theta_i; //compute the net input of unit j with respect to
(8)
                                the previous layer, i
                           O_j = \frac{1}{1+e^{-I_j}}; \(\) // compute the output of each unit \(j\)
(9)
(10)
                   // Backpropagate the errors:
                   for each unit j in the output layer
(11)
                           Err_i = O_i(1 - O_i)(T_i - O_i); // compute the error
(12)
(13)
                   for each unit j in the hidden layers, from the last to the first hidden layer
                           Err_i = O_i(1 - O_i) \sum_k Err_k w_{ik}; // compute the error with respect to
(14)
                                    the next higher layer, k
                   for each weight w_{ij} in network {
(15)
(16)
                           \Delta w_{ij} = (l) Err_i O_i; // weight increment
                           w_{ij} = w_{ij} + \Delta w_{ij}; } // weight update
(17)
(18)
                   for each bias \theta_i in network {
                           \Delta \theta_i = (l) Err_i; // bias increment
(19)
                           \theta_i = \theta_i + \Delta \theta_i; \(\right) // bias update
(20)
                   } }
(21)
```