<u>Announ cements</u>

Middern 2: Wed 3/26 7:00-8:30pm, Sidney Lu 1043
See policy email (reference sheet allowed)

Topics: Everything through today (i.e. thru D&F \$14.1) but focus is on post-Midterm 1 material (\$13.2-onwards)

Practice problems: see email or website

Tues., Wed. after break: review

Conflicts: email me ASAP

HW7 (due hed 4/2): will be posted over break but all problems are from post-midterm 2 material

Recall: K/F !field extín.

Aut(K/F) = {automs. of k which fix F} < Aut(k)

H = Aut(K)

Fix H = subfield of K fixed by every elt. of H

Thm: Let f(x) = F[x], K = Sp.f. Then,

| Aut(x/F)| < [x:F],

w/ equality if f is separable.

Pf by example: (see DLF for full argument)

$$f(x) = x^3 - 2 \in \mathbb{Q}[x]$$

Splits as $(x - 3/2)(x - 3/3)(x - 3/3)(x - 3/3)(x - 3/3)$ over $\mathbb{Q}(x, \beta)$

$$K = Q(a, \beta) \qquad (x - a)(x - \beta)(x - \gamma)$$

$$L = Q(a) \qquad (x - a)(x^2 + ax + a^2)$$

$$Q \qquad \qquad \chi^3 - 2$$

Build JE Aut (K/Q) in two steps using DEFThm. 13.27

How many such or can we construct?

= 3.5 = (# roots of f)(# roots of g)

= (deg f)(deg g) = [Q(a):Q][k:Q(a)]

= Tk:Q]

f sep. = [K:Q]

Remark: If $f(x) \in F[x]$ has roots d_1, \dots, d_n and $k = Sp_{\overline{x}}f$, $\sigma \in Aut(k/F)$ then the restriction $\sigma \in Aut(k/F)$ then the restriction $\sigma \in Aut(k/F)$ then the restriction $\sigma \in Aut(k/F)$ then $\sigma \in Aut(k/F)$ then $\sigma \in Aut(k/F)$ then $\sigma \in Aut(k/F)$ and $\sigma \in Aut(k/F)$ then $\sigma \in Au$

The homom. Aut $(K/F) \longrightarrow S_n$ (symmetric gp. on n fetters) $\sigma \longmapsto \overline{\sigma}$

is inj. (every autom. gives a different perm.) but not necessarily surj.

Def: A finite extension K/F is <u>Galois</u> if |Aut(K/F)| = [K:F]. In this case, we set |Aut(K/F)| = |Aut(K/F)| and call it the <u>Galois group</u> of |K/F|.

Cor: If fe F[x] is sep., k = Spf, then k/f is Galois (Turns out all Galois extrés are of this form)

Examples:

$$k = Sp_{\mathcal{Q}} \in \text{ where } \{(x) = (x^2 - 2)(x^2 + 1)\}$$

Note: this is a proper subgp. of S.

$$|Aut(K/Q)| = 6 = [K:Q] \quad |E=Q(\Im z, S_3\Im z)|$$

$$|Aut(K/Q)| = 6 = [K:Q] \quad |E=Q(\Im z, S_3)|$$

$$|E=Q(\Im z, S_3)|$$

Thm: Let
$$H \leq Aut(K)$$
, $F = Fix H$

finite any
sp. field

Then K/F is Galois!

More precisely,

Enjoy the break!

Extra examples:

$$K := 2b^{\varnothing} \mathbf{F}^{1} = 2b^{\varnothing}(x_{\delta^{-1}}) = \mathcal{O}(\lambda^{1})$$

K/Q is Galois since K is a splitting field over Q.

JE Gallk/a) is determined by o(98)

id=07: 50 H Tp

03: 98 H 33

05: 98 17 98

07: 38 H 78

for other basis vectors gk,

So Gal(K/Q) = 72/472 or 72/272 @ 72/272

Do compositions, and note $\sigma_3^2 = \sigma_5^2 = \sigma_7^2 = 1$,

So Gal (K/Q) = 76/272 @ 76/272

We will do this in more detail in a

couple of weeks

b)
$$f(x) = x^4 - 2 \in Q[x]$$
 $= (x^2 + \sqrt{2})(x^2 - \sqrt{2}) \in Q(\sqrt{2})[x]$
 $= (x + \sqrt{2})(x - \sqrt{2})(x + i \sqrt{2})(x - i \sqrt{2}) \in Q(i, \sqrt{2})[x]$
 $= (x + \sqrt{2})(x - \sqrt{2})(x + i \sqrt{2})(x - i \sqrt{2}) \in Q(i, \sqrt{2})[x]$
 $= (x + \sqrt{2})(x - \sqrt{2})(x + i \sqrt{2})(x - i \sqrt{2}) \in Q(i, \sqrt{2})[x]$
 $= (x + \sqrt{2})(x - \sqrt{2})(x + i \sqrt{2})(x - i \sqrt{2})(x - i \sqrt{2})(x - i \sqrt{2})$
 $= (x + \sqrt{2})(x - \sqrt{2})(x + i \sqrt{2})$