দশম অধ্যায়

বিদ্যুৎ ও চুম্বকের ঘটনা

আমরা জানি ইলেক্ট্রনের আধান বা চার্জ আছে। ইলেক্ট্রনের প্রবাহকে আমরা বলি বিদ্যুৎ। বিদ্যুৎ আমাদের বাড়ি, স্কুল বা অফিসকে আলোকিত করছে। চালাচ্ছে ফ্যান, রেডিয়ো – টেলিভিশন, ইস্ত্রি, হিটার, মোটর, কম্পিউটার ও আরও অনেক কিছু। বিদ্যুতের পাশাপাশি চুম্বকের ব্যবহারও আমাদের দৈনন্দিন জীবনকে সমৃদ্ধ করেছে। বর্তমান অধ্যায়ে আমরা বিদ্যুৎ ও চুম্বক–সম্পর্কিত বিভিন্ন বিষয় নিয়ে আলোকপাত করব।

এ অধ্যায় পাঠ শেষে আমরা

- আধান বা চার্জ এর ধর্ম ব্যাখ্যা করতে পারব।
- পরিবাহী, অপরিবাহী ও অর্ধপরিবাহী ব্যাখ্যা করতে পারব।
- স্থিরবিদ্যুৎ সৃষ্টির মাধ্যমে চার্জের ধর্ম প্রদর্শন করতে পারব।
- স্থিরবিদ্যুৎ হতে চলবিদ্যুৎ সৃষ্টির ধারণা ব্যাখ্যা করতে পারব।
- একটি সরল বর্তনী তৈরি করতে পারব।
- নিত্য ব্যবহার্য যন্ত্রপাতিতে বিদ্যুতের ব্যবহার ব্যাখ্যা করতে পারব।
- চুম্বকের ধর্ম প্রদর্শনের মাধ্যমে চুম্বকে ও অটৌম্বক পদার্থের মধ্যে পার্থক্য করতে পারব।
- চৌস্বক পদার্থকে চুম্বকে পরিণত করার প্রক্রিয়া প্রদর্শন করতে পারব।
- বৈদ্যুতিক চুম্বক বা বিদ্যুৎ চুম্বক ব্যাখ্যা করতে পারব।
- পৃথিবীর চৌম্কক্ষেত্র ব্যাখ্যা করতে পারব।

পাঠ ১ – ২ : আধান বা চার্জের উৎপত্তি

আমরা জানি পদার্থ কতগুলো ক্ষুদ্র ক্ষুদ্র কণার সমন্বয়ে গঠিত, যার নাম পরমাণু। ইলেকট্রন, প্রোটন ও নিউট্রনের সমন্বয়ে পরমাণু গঠিত। পরমাণুর কেন্দ্রে থাকে নিউক্রিয়াস, যা প্রোটন ও নিউট্রনের সমন্বয়ে গঠিত। ইলেকট্রন এই নিউক্রিয়াসের চারপাশে প্রদক্ষিণ করে। প্রোটন ধনাত্মক (+) আধানযুক্ত, ইলেকট্রন ঋণাত্মক (-) আধানযুক্ত এবং নিউট্রন হলো আধান নিরপেক্ষ কণা। প্রোটনের ধনাত্মক চার্জের পরিমাণ ইলেক্ট্রনের ঋণাত্মক চার্জের সমান ও বিপরীতধর্মী।

কিন্তু মজার ব্যাপার হলো পরমাণু নিজে কিন্তু আধান নিরপেক্ষ। পরমাণু ধনাত্মক বা ঋণাত্মক কোনোটাই নয়। পরমাণুতে কোনো মোট চার্জ থাকে না। এর কারণ কী? কারণ হলো একটি পরমাণুতে যে কয়টি প্রোটন থাকে, সেই কয়টিই ইলেকট্রেন থাকে। যার ফলে পরমাণু চার্জ বা আধান নিরপেক্ষ হয়। কিন্তু যখনই দুটো পদার্থকে ঘর্ষণ করা হয়, তখন একটি পদার্থের ইলেকট্রন অন্য একটি পদার্থে চলে যেতে পারে। ফলে একটি পদার্থে ইলেকট্রনের আধিক্য দেখা দিতে পারে। এবার একটি উদাহরণ দেওয়া যাক। একটি কাচের বোতলকে এক টুকরা সিল্ডের কাপড় ছারা ঘর্ষণ করা হলো। এতে দেখা যাবে সিল্ডের কাপড় কাচ থেকে ইলেকট্রনকে আকর্ষণ করে তার দিকে নিয়ে গেছে। এতে বোতলটি ধনাত্মক আধানযুক্ত এবং সিল্ডের কাপড়টি ঋণাত্মক আধানযুক্ত হয়েছে। তাহলে একটা ব্যাপার এখানে ক্পষ্ট যে ঘর্ষণের ফলে নতুন কোনো আধানের সৃষ্টি হয় না বরং পদার্থের মধ্যে

আধান বা চার্জের ধর্ম

আমরা এখন নিশ্চয় বুঝতে পারছি, কীভাবে আধানের উৎপত্তি হয়। এবার আমরা দেখবা এই আধানগুলো (ধনাত্মক ও ঋণাত্মক) কিরুপ ধর্ম প্রদর্শন করে। এর জন্য আমরা নিচের কাজগুলো করব।

বিদ্যমান ইলেকট্রনে অবস্থিত আধান ইলেকট্রনের সাথে এক পদার্থ থেকে অন্য পদার্থে চলে যায়।

কাজ: চার্জের ধর্ম জানা।

প্রয়োজনীয় উপকরণ: দুটি চিরুনি ও পশমি কাপড়।

পদ্ধতি: একটি ছোটো প্লাস্টিকের চিরুনিকে সূতা দিয়ে বেঁধে
একটি শুকনো কাঠির মাথায় ঝুলিয়ে দাও। এটি এমনভাবে
ঝুলাতে হবে যাতে আশেপাশে কোনো কিছু স্পর্শ না করে। এবার
আরেকটি শুকনো কাঠির মাথায় অন্য একটি প্লাস্টিকের চিরুনি
ঝুলাও যাতে এটা মুক্তভাবে ঝুলতে থাকে। এবার উভয় চিরুনিকে
কিছুক্ষণ পশমি কাপড় দিয়ে ঘষো। এখন চিরুনি দুটিকে কাছাকাছি
আনো। কী লক্ষ করম্প্লে চিরুনি দুটি পরস্পরকে বিকর্ষণ করছে।
এবার পশমি কাপড়টি চিরুনির কাছে এনে দেখ এটি চিরুনির কাছে চলে আসবে।

বিজ্ঞান

কাজ: চার্জের ধর্মের প্রদর্শন।

প্রয়োজনীয় উপকরণ: দুটি বেলুন, সূতা, উলের কাপড় অথবা গায়ের সোয়েটার ও কাগজের টুকরা।

চিত্র-১০,৩ : চার্জের ধর্মের প্রদর্শন

পদ্ধতি: দুটি বেলুনকে ফুলিয়ে সুতা দিয়ে ভালোভাবে বেঁধে নাও। এবার একটি বেলুনকে উলের কাপড় বা সোয়েটার দিয়ে ঘষে কাগজের টুকরার কাছে ধরলে দেখা যাবে যে বেলুন কাগজের টুকরোগুলো কাছে টেনে নিছে। পুনরায় দ্বিতীয় বেলুনটিকে উলের কাপড় বা গায়ের সোয়েটারের সাথে চেপে ধরলে দেখা যাবে বেলুনটি কাপড়ের গায়ে লেগে আছে। এর কারণ কী? কারণ ঘর্ষণের ফলে উলের কাপড় ও বেলুনে বিপরীতধর্মী আধানের সৃষ্টি হয়েছে। এবার যখন দ্বিতীয় বেলুনকে প্রথম বেলুনের কাছে নেওয়া হবে তখন কী দেখবে? দেখবে যে চিত্রের ন্যায় দুটি বেলুন পরস্পর থেকে দূরে সরে যাছে। কারণ ঘর্ষণের ফলে দুটি বেলুনেই একই ধরনের আধানের সৃষ্টি হয়েছে।

উপরোক্ত কাজগুলো থেকে তুমি কি কোনো সিদ্ধান্ত নিতে পার? হ্যাঁ, এর থেকে দুটি সিদ্ধান্ত নেওয়া যায়:

- ক) সমধর্মী আধান পরস্পরকে বিকর্ষণ করে (দুটি বেলুন অথবা দুটি চিরুনির ক্ষেত্রে)।
- খ) বিপরীতধর্মী আধান পরস্পরকে আকর্ষণ করে (উলের কাপড় ও বেলুন)।

পাঠ ৩ : চার্জের অস্তিত্ব

এবার আমরা একটি সহজ কাজের মাধ্যমে আধানের অস্তিত তুর প্রমাণ করবো।

কাজ: আধানের অস্তিত্তের প্রমাণ।

প্রয়োজনীয় উপকরণ: একটি প্লাস্টিকের চিরুনি ও খবরের কাগজের টুকরো।

পদ্ধতি: একটি খবরের কাগজের কিছু অংশ কেটে ছোটো ছোটো টুকরো করো। এবার কাগজের টুকরোগুলোকে টেবিলের উপর ছড়িয়ে দাও। এবার বলতে পারবে একটি প্লাস্টিকের চিরুনিকে খবরের কাগজের টুকরাগুলোর কাছে আনলে কী ঘটবে? এবার চিরুনিকে পশম বা উলের কাপড় (এমনকি তোমার শুকনো চুলেও

চিত্র- ১০.৪ : চার্জের অন্তিত্বের প্রমাণ

ঘবে দেখতে পার) দিয়ে ঘবে আবার কাগজের টুকরোর সামনে ধর। বলতে পারবে কি ঘটবে এবং কেন? দেখবে কাগজের টুকরোগুলো লাফিয়ে চিরুনির কাছে চলে আসবে। এখানে প্লাস্টিকের চিরুনি ঘর্ষণের ফলে পশম বা উলের কাপডের পরমাণু থেকে ইলেকট্রন গ্রহণ করে নিজে ঋণাত্মক চার্জিত হয়েছে যার ফলে সহজেই কাগজের টুকরোগুলোকে আকর্ষণ করতে পারছে।

পাঠ 8 : পরিবাহী, অপরিবাহী ও অর্ধপরিবাহী

আমরা পরিবাহী ও অপরিবাহী শব্দ দুটির সাথে পরিচিত। পরিবাহী পদার্থের ইলেকট্রনসমূহ এক পরমাণু থেকে অন্য পরমাণুতে সহজেই চলাচল করতে পারে। যেমন ধাতু; বিশেষ করে রৌপ্য, তামা, অ্যালুমিনিয়াম, ইত্যাদি। কার্বন অধাতু হলেও এর একটি রূপ গ্রাফাইট বিদ্যুৎ সুপরিবাহী।

অপরিবাহী পদার্থের ক্ষেত্রে এর পরমাণুর ইলেকট্রন সহজে চলাচল করতে পারে না। তবে অপরিবাহী পদার্থকে ঘষে আহিত করা যায়। এছাড়া যদি ইলেকট্রন গৃহীত বা বর্জিত হয়, তাহলেও অপরিবাহী পদার্থ আধানযুক্ত হয়। যেমন: প্লাস্টিক, গ্লাস ও রাবার।

নিমু তাপমাত্রায় অর্ধপরিবাহী পদার্থ অপরিবাহীর মতো আচরণ করে। তাপমাত্রা বাড়ালে এটি পরিবাহীর মতো আচরণ করে। সিলিকন, জার্মেনিয়াম, গ্যালিয়াম, ইত্যাদি অর্ধপরিবাহী পদার্থের উদাহরণ।

পাঠ ৫: স্থিরবিদ্যুৎ হতে চলবিদ্যুৎ সৃষ্টি

পূর্বের পরীক্ষার সাহায্যে আমরা দেখেছি, প্লাস্টিকের চিরুনিকে উলের কাপড় দিয়ে ঘষে ছোটো কাগজের টুকরোর সামনে ধরলে এটি কাগজের টুকরোকে আকর্ষণ করে। এরপর হাত দিয়ে চিরুনিটি স্পর্শ করলে দেখা যাবে চিরুনিটি আর ছোটো কাগজের টুকরোকে আকর্ষণ করছে না।এ থেকে কী বোঝা যায়? বোঝা যায় যে, চিরুনিতে উৎপন্ন স্থিরবিদ্যুৎ নেই। এই স্থিরবিদ্যুৎ কোথায় গেল? হাতের মধ্য দিয়ে প্রবাহিত হয়ে ঐ বিদ্যুৎ চিরুনি থেকে মাটিতে চলে গেছে। এভাবে যে বিদ্যুৎ কোনো পদার্থের মধ্য দিয়ে প্রবাহিত হয়ে এক স্থান থেকে অন্য স্থানে বা এক বস্তু থেকে অন্য বস্তুতে চলে যায় তা হলো চলবিদ্যুৎ।

এখানে মনে রাখা প্রয়োজন যে, ঘর্ষণের ফলে কোনো বস্তৃতে একটি নির্দিষ্ট ও সামান্য পরিমাণ বিদ্যুৎ বা আধান উৎপন্ন হয়। হাত বা ধাতব পদার্থ দিয়ে স্পর্শ করলে এই আধান সাথে সাথে মাটিতে চলে যায়। আধান শেষ হওয়ার ফলে বিদ্যুৎপ্রবাহ বন্ধ হয়ে যায়। সূতরাং এভাবে শুধু কিছুক্ষণের জন্য বিদ্যুৎপ্রবাহ সৃষ্টি হয়। বিদ্যুৎপ্রবাহ বজায় রাখার জন্য কোনো উৎস থেকে অবিরাম বিদ্যুৎ সরবরাহ থাকতে হয়। এ বিষয়ে আমরা পরবর্তীতে আরও অধিক ধারণা পাব।

পাঠ – ৬ : সরল বর্তনী ও এর ব্যবহার

মানুষের চলার জন্য যেমন পথের প্রয়োজন, বিদ্যুৎপ্রবাহের জন্যও প্রয়োজন নির্দিষ্ট পথ। বিদ্যুৎপ্রবাহ চলার আবদ্ধ পথকে বর্তনী বলে। বিদ্যুৎ উৎসের ধনাত্মক প্রান্ত থেকে ঋণাত্মক প্রান্ত পর্যন্ত বিদ্যুৎ প্রবাহের সম্পূর্ণ পথই বিদ্যুৎবর্তনী। সাধারণত এই বর্তনীতে বাল্প ও ব্যাটারি তারের সাহায্যে সংযুক্ত থাকে। এগুলো যখন যুক্ত হয়, তখন বর্তনী তৈরি হয়। নিচের চিত্রে একটি সরল বর্তনী দেখানো হলো।

চিত্র-১০.৫: সরল বর্তনী

পাঠ ৭ – ৮ : চলবিদ্যুতের ব্যবহার

বিদ্যুৎপ্রবাহ দ্বারা আলো ও তাপ উৎপাদন করা যায়। এমনকি এর দ্বারা যান্ত্রিক কাজ করে বিভিন্ন কাজ সম্পন্ন করা যায়। এবার আমরা উদাহরণ হিসেবে বৈদ্যুতিক বাল্প, টর্চ লাইট, ইসিত্র, হিটার, বৈদ্যুতিক পাখা ও ফটোকপি মেশিনে কিভাবে বিদ্যুৎ ব্যবহার হয় তার সম্পর্কে জানবো।

বৈদ্যুতিক বাল্ব

আমরা সবাই এই বৈদ্যুতিক বাশ্বের সাথে পরিচিত। দুটি মোটা তার একটি বায়ুশূন্য বা নিষ্কিয় গ্যাসপূর্ণ বাল্বের বায়ুনিরুদ্ধ মুখের মধ্য দিয়ে ভিতরে প্রবেশ করানো থাকে। বাল্বের ভিতরে তারের দুই প্রান্তের সাথে সরু টাংস্টেনের তারের কুণ্ডলী সংযুক্ত থাকে। এটিকে ফিলামেন্ট বলে। এই বাল্বকে বিদ্যুৎ উৎসের সাথে সংযোগ করলে ফিলামেন্ট প্রচুর তাপ উৎপন্ন হয় এবং বাল্বের এই ফিলামেন্ট উত্তপ্ত হয়ে আলো বিকিরণ করতে থাকে।

চিত্ৰ-১০.৬ : বৈদ্যুতিক বাল্ব

টৰ্চ লাইট

আমরা সবাই টর্চলাইটের সাথে পরিচিত। টর্চলাইটে মূলত ব্যাটারির সাথে ছোটো একটি বাল্ব থাকে। সুইচ টিপলে বাল্ব জ্বলে। এই বাল্বের আলো ছড়িয়ে দেবার জন্য সামনে একটি কাচ ব্যবহার করা হয়।

চিত্ৰ-১০.৭ : টৰ্চলাইট

বৈদ্যুতিক পাখা

বৈদ্যুতিক পাখাতে বিদ্যুৎপ্রবাহকে ব্যবহার করা হয় মূলত যান্ত্রিক কাজ করার জন্য। এতে বিদ্যুৎশক্তিকে যান্ত্রিকশক্তিতে রূপান্তর করে পাখাকে ঘুরানো হয়। পাখার গতি নিয়ন্ত্রণ করার জন্য একটি রেগুলেটর ব্যবহার করা হয়।

বৈদ্যুতিক হিটার

আমরা অনেকেই বৈদ্যুতিক হিটারের সাথে পরিচিত। হিটারের মধ্যে অপরিবাহী
পদার্থের একটি গোল চাকতি থাকে। চাকতিতে নাইক্রোম তারের কুণ্ডলী সাজিয়ে রাখা হয়। বিদ্যুৎ প্রবাহ
চালনা করলে তারটি গরম হয় এবং উত্তপ্ত হয়ে তাপ বিকিরণ করে। আমাদের বাসা বাড়িতে বৈদ্যুতিক হিটার
চালিয়ে রান্না করা হয়।

বৈদ্যুতিক ইসিত্র

বৈদ্যুতিক ইস্তির গঠন প্রণালি বৈদ্যুতিক হিটারের মতই। এ ক্ষেত্রে নাইক্রোম তারটি ইস্তির নিচের মসৃণ লৌহ নির্মিত তলটিকে উত্তপ্ত করে। এক্ষেত্রে তাপ উৎপাদন বিদ্যুৎ প্রবাহের উপর নির্ভরশীল। প্রবাহ বেশি হলে ইস্তির বেশি উত্তপ্ত হয়।

চিত্ৰ-১০.৯: বৈদ্যুতিক ইস্ত্ৰি

পাঠ ৯ – ১০ : চুম্বক কী?

প্রচলিত আছে যে, প্রাচীন গ্রিসে ম্যাগনেশিয়া নামক প্রদেশে ম্যাগনাস নামে এক রাখাল বালক বাস করত। সে সারা দিন মাঠে মাঠে মেষ চড়াত ও সম্ধ্যাবেলা বাড়ি ফিরতো। একদিন বাড়ি ফেরার সময় ম্যাগনাস তার লাঠিটি মাটি থেকে তুলতে গিয়ে দেখলো লাঠিটি উঠানো যাচ্ছে না, লাঠির মাথা একটি পাথরের সাথে আটকে আছে। সে লক্ষ্য করে দেখলো লাঠির মাথার লোহাটিকে পাথরটি টেনে ধরে আছে। অর্থাৎ ম্যাগনাস দেখলো লোহা এই অচেনা পাথরটিকে আকর্ষণ করছে। ম্যাগনাসের নামানুসারে এই পাথরের নাম করা হল ম্যাগনেট। ম্যাগনেটের বাংলা প্রতিশব্দ হলো চুম্বক। আমরা এও দেখতে পেলাম, চুম্বক লোহাকে আকর্ষণ করে। আকর্ষণ এক প্রকার বল। বল দিয়ে কাজ করা যায়। অতএব, চুম্বকের কাজ করার সামর্থ্য আছে।

চুম্বকের ধর্ম

কাজ: চুম্বকের ধর্ম।

প্রয়োজনীয় উপকরণ: সাদা কাগজ, লোহার গুড়া, আলপিন ও একটি দণ্ড চুম্বক।

পদ্ধতি: টেবিলের উপর একটি সাদা কাগজে কিছু লোহার গুঁড়া ঘন করে ছিটিয়ে দাও। লোহার গুঁড়া বা আলপিনের উপর এবার দণ্ড চুন্দ্বকটিকে কয়েকবার নাড়াচাড়া করে উঠিয়ে ফেল। কী দেখতে পাচ্ছো? দেখা যাচ্ছে, লোহার গুঁড়া বা পিন, চুন্দ্বকের গায়ে লেগে আছে। ভালোভাবে

এর থেকে আমরা সিদ্ধান্ত নিতে পারি যে, দুটি সমমেরু পরস্পরকে বিকর্ষণ করে।

লক্ষ করলে দেখতে পাবে লোহার গুঁড়া বা পিন বেশির ভাগই চুম্বকটির কেবলমাত্র দুই প্রান্তে আটকে আছে। প্রান্ত থেকে যতই মাঝের দিকে যাওয়া যাবে, ততই লোহার গুঁড়াবা পিনের পরিমাণ কমতে থাকে। হয়ত মাঝখানে কোনো পিন বা লোহার গুঁড়াকে দেখছ না। এর থেকে বুঝা যায় চুম্বকের আকর্ষণ ক্ষমতা দুই প্রান্তে সবচেয়ে বেশি।

এবার দৃটি একই জাতীয় দণ্ড চুম্বককে পরস্পরের কাছাকাছি আনো। তুমি জানো না কোনটা কোন মেরু। তাদেরকে প্রথমে একটি সূতা দিয়ে মাঝখানে বেঁধে মুক্তভাবে ঝুলিয়ে দাও। কী দেখছো? চুম্বকটি মুক্তভাবে ঝুলন্ত অবস্থায় উত্তর—দক্ষিণ দিক করে স্থির হয়ে আছে। অন্য চুম্বকটিকে একই ভাবে ঝুলিয়ে দাও। দেখবে একই ভাবে চুম্বকটিও মুক্তভাবে উত্তর—দক্ষিণ দিক করে স্থির হয়ে আসবে। এর থেকে আমরা সিদ্ধান্ত নিতে পারি যে, মুক্তভাবে ঝুলন্ত চুম্বক সর্বদা উত্তর—দক্ষিণমুখী হয়ে স্থার থাকে।

সবদা ৬ওর–দাক্ষণমুখা ২য়ে।স্থর থাকে। এবার আমরা দণ্ড চুম্বক দুটিকে N এবং S দারা যথাক্রমে উত্তর এবং দক্ষিণ মেরু চিহ্নিত করি। এবার প্রথম চুম্বকটির উত্তর মেরুকে দ্বিতীয় চুম্বকের উত্তর মেরুর কাছে আনো।কী দেখছো? বিকর্ষণ করছে। একইভাবে প্রথম চুম্বকটির দক্ষিণ মেরু দ্বিতীয় চুম্বকের দক্ষিণ মেরুর কাছাকাছি আনো। একই ঘটনা ঘটছে? ই্যা, বিকর্ষণ করছে। বিজ্ঞান ১০৭

এবার প্রথম চুম্বকের উত্তর মেরুকে দ্বিতীয় চুম্বকের দক্ষিণ মেরুর কাছে আনো। কী দেখছো? একই ভাবে দ্বিতীয় চুম্বকের উত্তর মেরুকে প্রথম চুম্বকের দক্ষিণ মেরুর কাছে আনো। এরা পরস্পরকে খুব সহজেই কাছে টেনে নিয়েছে। এটা থেকে আমরা সিদ্ধান্ত নিতে পারি যে, চুম্বকের বিপরীত মেরু পরস্পরকে আকর্ষণ করে। সূতরাং চুম্বকের সমমেরু পরস্পরকে বিকর্ষণ করে এবং চুম্বকের বিপরীত মেরু পরস্পরকে আকর্ষণ করে।

পাঠ ১১ : চৌম্বক ও অচৌম্বক পদার্থ

চুম্বক কী সকল পদার্থকেই আকর্ষণ করবে? না, চুম্বক সকল পদার্থকে আকর্ষণ করে না। চুম্বক প্রধানত লোহা, নিকেল, কোবাল্ট এবং অধিকাংশ ইস্পাতকে আকর্ষণ করে। এই পদার্থগুলোকে চৌম্বক পদার্থ বলে। আবার অনেক পদার্থকে চুম্বক আকর্ষণ করে না। যেমন: তামা, অ্যালুমিনিয়াম, পিতল, কাঠ, রৌপ্য প্রাস্টিক, ইত্যাদি। এগুলো হলো অচৌম্বক পদার্থ।

কাজ: চৌম্বক ও অচৌম্বক পদার্থ চিহ্নিতকরণ।

প্রয়োজনীয় উপকরণ: একটি চুম্বক ও নিজগৃহের বিভিন্ন বস্তু।

পদ্ধতি: চুম্বকটি আলাদা আলাদাভাবে প্রত্যেকটি বস্তুর সামনে ধরো। দেখো কোনটিকে চুম্বক আকর্ষণ করে, কোনোটিকে করে না। এবার নিচের ছকটি পূরণ কর।

গৃহের বিভিন্ন বস্তুর নাম	চুম্বক আকর্ষণ করে কি না?	কোন ধরনের পদার্থ?

পাঠ ১২ – ১৩ চৌম্বক পদার্থকে চুম্বকে রূপান্তর

কৃত্রিম উপায়ে বিভিন্নভাবে চুম্বক প্রস্তুত করা যায়। নিম্নে ঘর্ষণ পদ্ধতি ও বৈদ্যুতিক পদ্ধতি আলোচনা করা হলো।

ঘর্ষণ পদ্ধতি

এই পরীক্ষাটির জন্য দরকার একটি দণ্ড চুম্বক ও একটি লোহার দণ্ড। দণ্ড চুম্বকটি যে কোনো একটি মেরু দারা লোহার দণ্ডের এক প্রান্ত থেকে অন্য প্রান্ত পর্যন্ত ঘষে নাও। এভাবে বারবার করতে থাক। একটি পিনকে লোহার দণ্ডের কাছে স্পর্শ করলে দেখতে পাবে এটা পিনকে আকর্ষণ করছে? এভাবেই ঘর্ষণ প্রক্রিয়ায় লোহার দণ্ডকে চুম্বকে পরিণত করা হয়। যদি চুম্বকটির উত্তর মেরু দারা ঘর্ষণ করা হয় তবে দেখা যাবে, প্রথম যে প্রান্ত থেকে ঘর্ষণ পুরু হবে দণ্ডের সেখানে উত্তর মেরু এবং শেষ প্রান্তে দক্ষিণ মেরুর সৃষ্টি হয়েছে।

চিত্ৰ-১০.১২: ঘৰ্ষণ পদ্ধতি

বৈদ্যুতিক পদ্ধতি

একটি লোহার পেরেক নাও। এবার বাজারে কিনতে পাওয়া যায় এমন সাধারণ বৈদ্যুতিক তার দিয়ে লোহার পেরেককে পেঁচিয়ে ক্ডলী তৈরি কর। এবার তারের দুই প্রান্তকে একটি ব্যাটারির দুই প্রান্তে যুক্ত কর। এবার একটি আলপিন পেরেকের যে কোনো প্রান্তে আনলে দেখা যাবে পেরেকটি আলপিনকে আকর্ষণ করছে। তড়িৎ প্রবাহ বন্ধ করলে পেরেকটি আলপিনকে আকর্ষণ করে না। এটা থেকে সিদ্ধান্ত নেওয়া যায়, পেরেকটি অস্থায়ী চুম্বকে পরিণত হয়েছে।

চিত্ৰ-১০.১৩: বৈদ্যুতিক পদ্ধতি

পৃথিবীর চৌম্বকক্ষেত্র

একটি দণ্ড চুম্বককে সূতার সাহায্যে ঝুলিয়ে দিলে স্থির অবস্থায় তা সব সময়ই উত্তর দক্ষিণে মুখ করে থাকে।
পৃথিবীর চুম্বকত্বের জন্যই এ রকম হয়। পৃথিবীর সব জায়গাতেই ভূচুম্বকের প্রভাব বর্তমান।
ঝুলন্ত অবস্থায় দণ্ড চুম্বকের দুই মেরু পৃথিবীর দুই চৌম্বক মেরুকে নির্দেশ করে। এখানে দণ্ড চুম্বকের
উত্তর মেরু উত্তর দিককে নির্দেশ করে। কিন্তু একটি উত্তর মেরু সর্বদা দক্ষিণ মেরুকে আকর্ষণ করে। ফলে
ভূচুম্বকের দক্ষিণ মেরু আসলে উত্তর মেরু হিসেবে কাজ করে।

নতুন শব্দ

আধান বা চার্জ, স্থিরবিদ্যুৎ, চলবিদ্যুৎ, পরিবাহী, অপরিবাহী, অর্ধপরিবাহী, সরল বর্তনী, চৌম্বক পদার্থ, অচৌম্বক পদার্থ ও ভুচুম্বক। বিজ্ঞান

এ অধ্যায়ে আমরা যা শিখলাম

 ঘর্ষণের ফলে নতুন কোনো আধানের সৃষ্টি হয় না বরং পদার্থের মধ্যে বিদ্যমান আধান এক বস্তু থেকে অন্য বস্তুতে স্থানান্তরিত হয়।

- সমধর্মী আধান পরস্পরকে বিকর্ষণ করে এবং বিপরীতধর্মী আধান পরস্পরকে আকর্ষণ করে।
- বিদ্যুৎপ্রবাহ বজায় রাখার জন্য কোনো উৎস থেকে অবিরাম বিদ্যুৎ সরবরাহ থাকতে হয়।
- একটি সরল বর্তনীতে বিদ্যুৎ সকল অংশে সমভাবে প্রবাহিত হয়।
- একটি দভ চুম্বকের দুই প্রান্তের আকর্ষণ ক্ষমতা দভ চুম্বকের মধ্যাঞ্চলের থেকে বেশি।
- চুম্বকের সমমের পরস্পরকে বিকর্ষণ করে এবং বিপরীত মের পরস্পরকে আকর্ষণ করে।
- একটি দণ্ড চৃম্বককে সুতার সাহায্যে ঝুলিয়ে দিলে স্থির অবস্থায় তা সব সময়ই উত্তর-দক্ষিণ
 মুখী হয়ে থাকে। পৃথিবীর চৃম্বকত্বের জন্যই এ রকম হয়।

অনুশীলনী

-	-	-	-	-	
শন	(उप)	ı	পূরণ	কর	
4 .	•		5.01	4 44	,

- লউক্লিয়াসের চারপাশে প্রদক্ষিণ করে।
- ২. অর্ধপরিবাহী পদার্থ নিমু তাপমাত্রায় সাধারণত মতো আচরণ করে।
- পৃথিবীর সব জায়গাতেই প্রভাব বর্তমান।

সংক্ষিপ্ত উত্তর প্রশ্ন

- ১. একটি বস্তুতে আধানের উৎপত্তি হয় কীভাবে?
- ২. বৈদ্যুতিক বাল্প কীভাবে আলো ছড়ায়?
- ৩. চৌম্বক পদার্থকে কীভাবে চুম্বকে রূপান্তর করা যায়?

বহুনির্বাচনি প্রশ্ন

- ১. বৈদ্যুতিক পাখায় রেগুলেটর ব্যবহারের উদ্দেশ্য হলো-
 - ক. পাখার আয়ুষ্কাল বৃদ্ধি
- খ. শব্দ কমানো

গ. গতি নিয়ন্ত্রণ

ঘ. বিদ্যুৎ খরচ কমানো

- ২. চৌম্বক ধর্মের উপর ভিত্তি করে নিচের কোন মৌলসমূহ একই দলভুক্ত?
 - ক. নিকেল, সিলভার, কপার
- খ. স্বর্ণ, কোবাল্ট, সিলভার
- গ. কোবাল্ট, লোহা, নিকেল
- ঘ. লোহা, পারদ, অ্যালুমিনিয়াম

নিচের চিত্র দুটো ভালোভাবে লক্ষ্য কর এবং ৩ ও ৪ নং প্রশ্নের উত্তর দাও।

- A চিত্রের বৈশিষ্ট্য হলো
 এটি
 - i. চার্জ নিরপেক্ষ
- ii. ধনাতাক চার্জযুক্ত iii. ঋনাতাক চার্জযুক্ত

উপরের তথ্যের আলোকে নিচের কোনটি সঠিক?

- क. i
- খ. ii
- গ. iii
- ঘ. ii ও iii
- A ও B চিত্রের ক্ষেত্রে কোনটি বা কোনগুলো সঠিক:
 - ক. A ঋনাত্মক চার্জযুক্ত
- খ. B ধনাত্মক চার্জযুক্ত
- গ. A ও B এর মধ্যে আকর্ষণ হয় ঘ. A ও B এর মধ্যে বিকর্ষণ হয়

সৃজনশীল প্রশ্ন

- সামিহার নিকট একটি দণ্ড চুম্বক আছে। সে ঘর্ষণ প্রক্রিয়ায় একটি চুম্বক ও বৈদ্যুতিক পদ্ধতিতে আরেকটি চুম্বক তৈরি করণ।
 - ক. চৌম্বক পদার্থ কাকে বলে?
 - খ. পৃথিবী একটি বিরাট চুস্বক, ব্যাখ্যা কর।
 - গ. ১ম চুস্বক তৈরির কৌশল বর্ণনা কর।
 - ঘ. ২য় প্রকারের চুস্বকটি শক্তিশালী হলেও ক্ষণস্থায়ী– উক্তিটি বিশ্লেষণ কর।

১১১

2.

চিত্ৰ: ১

চিত্ৰ : ২

- ক. স্থিরবিদ্যুৎ কাকে বলে?
- খ. ধাতু বিদ্যুৎ পরিবাহী হয় কেন? ব্যাখ্যা কর।
- গ. ১ নম্বর চিত্রের যন্তের কার্যাবলি বর্ণনা কর।
- ঘ. ২ নম্বর চিত্রে দুই ধরনের বিদ্যুতের উপস্থিতি লক্ষনীয়। ক্ষেত্র উল্লেখপূর্বক বিশ্লেষণ কর।