

Escola Superior de Tecnologia e de Gestão de Bragança Departamento de Matemática

Análise Matemática I 2005/2006

Cursos: CA, GE

1° Teste - 7/12/2005

Duração: 1h 30 min Com Consulta de Formulário

Proposta de resolução

Grupo I

Cotação do grupo por questão/alínea: 1; 1.5; 2; 1.5; 1; 1, 1, 1 valores

1. Resolva e indique o conjunto solução da equação $2x^2 - 2x = 4$.

$$2x^{2} - 2x = 4$$

$$\iff 2x^{2} - 2x - 4 = 0$$

$$\iff x = \frac{-(-2) \pm \sqrt{(-2)^{2} - 4 \cdot 2 \cdot (-4)}}{2 \cdot (2)}$$

$$\iff x = -1 \lor x = 2$$

$$\iff x \in \{-1, 2\}$$

2. Seja $g(x) = \ln\left(\frac{x+1}{2-x} - 1\right)$. Determine o domínio de g.

$$D_g = \left\{ x \in \mathbb{R} : \frac{x+1}{2-x} - 1 > 0 \right\}$$

$$\frac{x+1}{2-x} - 1 > 0$$

$$\iff \frac{x+1-1(2-x)}{2-x} > 0$$

$$\iff \frac{2x-1}{2-x} > 0;$$

Vamos determinar os zeros do númerador e do denominador para fazer uma tabela:

$$2x - 1 = 0 \Longleftrightarrow x = \frac{1}{2}$$

$$2 - x = 0 \iff x = 2$$

		$\frac{1}{2}$		2	
2x-1	-	0	+	+	+
2-x	+	+	+	0	-
$\frac{2x-1}{2-x}$	-	0	+	n.d.	-

Então
$$D_g = \left[\frac{1}{2}, 2\right[$$
.

3. Seja $f(x) = \sqrt{x}$ e $g(x) = 2x^2 - 2x - 4$. Caracterize a função $(f \circ g)$ (indicando a expressão analítica, o domínio e a imagem de $f \circ g$).

- Expressão analítica: $f \circ g(x) = f(g(x)) = f(2x^2 2x 4) = \sqrt{2x^2 2x 4}$
- Domínio: $D_{f \circ g} = \{x \in \mathbb{R} : x \in D_g \land g(x) \in D_f\}$

 $D_q = \mathbb{R}$ porque é um polinómio;

$$D_f = [0, +\infty[;$$

logo, $g(x) \in D_f \iff 2x^2 - 2x - 4 \ge 0$, como foi calculado na 1^a questão os zeros desta parábola são em x = -1 e x = 2, e, como o coeficiente de x^2 é positivo, a parábola tem a concavidade voltada para cima, e portanto a solução desta condição é $x \in [-1, 2]$.

Assim,
$$D_{f \circ g} = \{x \in \mathbb{R} : x \in \mathbb{R} \land x \in]-\infty, -1] \cup [2, +\infty[\} =]-\infty, -1] \cup [2, +\infty[]$$

• Imagem de $f \circ g$:

 $x \in D_{f \circ g} \iff -\infty < x \le -1 \land 2 \le x < +\infty$ e como $2x^2 - 2x - 4$ é uma parábola com concavidade voltada para cima, temos:

$$\iff 0 \le 2x^2 - 2x - 4 < +\infty$$
 e como \sqrt{x} é uma função crescente, obtemos

$$\iff \sqrt{0} \le \sqrt{2x^2 - 2x - 4} < \sqrt[n]{+\infty}$$

$$\iff 0 \le \sqrt{2x^2 - 2x - 4} < +\infty$$
, e então $\operatorname{Im}(f \circ g) = [0, +\infty[$.

4. Calcule $\lim_{x \to -\infty} \frac{x^3 - 2x^2 - x + 2}{1 - 2x^2}$.

 $\lim_{x\to -\infty}\frac{x^3-2x^2-x+2}{1-2x^2}=\frac{\infty}{\infty}; \text{ como se trata de um limite quando } x\to -\infty, \text{ e os numerador e denominador são polinómios, então o limite que queremos calcular é igual ao limite do quociente dos termos de maior grau de cada polinómio:}$

$$\lim_{x \to -\infty} \frac{x^3 - 2x^2 - x + 2}{1 - 2x^2} = \lim_{x \to -\infty} \frac{x^3}{-2x^2} = \lim_{x \to -\infty} \frac{x}{-2} = -\infty = +\infty.$$

5. Seja f uma função cujo gráfico está representado, parcialmente, na figura em baixo. Das figuras (A), (B), (C) e (D), indique qual a que pode representar, parcialmente, o gráfico de f^{-1} . Justifique, suscintamente, a sua opção.

O gráfico da função inversa de f obtém-se do gráfico de f trocando os eixos dos xx's com o dos yy's e vice-versa. Sendo assim, observando o gráfico de f vemos se trata de uma recta que intersecta ambos os eixos nas respectivas partes positivas; no gráfico de f^{-1} , ao trocar os eixos estes serão intersectados nas partes positivas. Analisando as opções a única que é intersectado nas partes positivas é o da opção (A).

6. Seja f uma função cujo gráfico está representado, parcialmente, na figura seguinte.

(a) Com base na figura, determine a expressão analítica que define a função.

Segundo a figura verificamos que se trata de uma parábola com zeros em x = -1 e em x = 3, e tem vértice em (1, -4).

Sendo assim, $f(x) = C(x - (-1))(x - 3) = C(x^2 - 2x - 3)$, onde C é uma constante positiva (porque a parábola tem concavidade voltada para cima). Vamos determinar C sabendo que

$$f(1) = -4 \iff C(-4) = -4 \iff C = 1$$
, portanto $f(x) = x^2 - 2x - 3$.

- (b) Indique a imagem (ou o contradomínio) de f. $\operatorname{Im}(f) = [-4, +\infty[.$
- (c) Analise f quanto à injectividade.

f não é injectiva, porque: x = -1 e y = 3 são diferentes e pertencem ao domínio de f e no entanto têm imagens iguais: f(-1) = 0 = f(3).

Grupo II

Cotação do grupo por questão/alínea: 1, 2.5, 2.5, 2; 2 valores

7. Seja f definida por

$$f(x) = \begin{cases} 3x^2 - 1 & \text{se } x > 1\\ 1 + \ln(2 - x) & \text{se } x \le 1 \end{cases}$$

(a) Calcule f(1) e f(2).

$$f(1) = 1 + \ln(2 - 1) = 1 + \ln(1) = 1$$

$$f(2) = 3.2^2 - 1 = 3.4 - 1 = 12 - 1 = 11$$

- (b) Analise f quanto à continuidade (em todo o seu domínio).
 - Para x > 1, $f(x) = 3x^2 1$, e portanto, como se trata de uma função polinomial (função quadrática), é contínua em todo o seu domínio (que é \mathbb{R}), e portanto f é contínua para x > 1.
 - Para x < 1, $f(x) = 1 + \ln(2 x)$. O domínio de $1 + \ln(2 x)$ é $\{x \in \mathbb{R} : 2 x > 0\} =] -\infty$, 2[, e portanto está bem definida para x < 1. Quanto à continuidade,

 $\ln(2-x)$ é contínua porque é a composta das funções contínuas $\ln x$ com 2-x; a função constante 1 é contínua;

e portanto, $1 + \ln{(2-x)}$ é contínua porque é a soma de funções contínuas.

Para x=1 temos que analisar a contínuidade por definição pois à direita f está definida por $3x^2 - 1$ e à esquerda por $1 + \ln(2 - x)$.

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (3x^{2} - 1) = 2$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (1 + \ln(2 - x)) = 1 + \ln 1 = 1$$

 $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (3x^2 - 1) = 2$ $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (1 + \ln(2 - x)) = 1 + \ln 1 = 1$ Como $\lim_{x \to 1^+} f(x) \neq \lim_{x \to 1^-} f(x)$, então não existe $\lim_{x \to 1} f(x)$ e portanto f não é contínua em x = 1.

(c) Determine $\frac{df}{dx}(x)$, justificando convenientemente a existência, ou não, de f'(1).

• Para
$$x > 1$$
, $\frac{df}{dx}(x) = (3x^2 - 1)' = 6x$

• Para
$$x < 1$$
, $\frac{df}{dx}(x) = (1 + \ln(2 - x))' = \frac{(2 - x)'}{2 - x} = \frac{-1}{2 - x} = \frac{1}{x - 2}$

• Para $x \neq 1$, como a função não é contínua então não existe f'(1). Assim, $f(x) = \begin{cases} 6x & \text{se } x > 1\\ \frac{1}{x-2} & \text{se } x < 1 \end{cases}$.

Assim,
$$f(x) = \begin{cases} 6x & \text{se } x > 1\\ \frac{1}{x-2} & \text{se } x < 1 \end{cases}$$

(d) Determine a equação da recta tangente ao gráfico da função f no ponto de abcissa x=2.

A fórmula da equação da recta tangente é: $y - f(x_0) = f'(x_0)(x - x_0)$, onde

$$x_0 = 2$$

$$f(x_0) = f(2) = 3(2)^2 - 1 = 11$$

$$f'(x_0) = f'(2) = 6.2 = 12$$

Assim, a equação da recta tangente é $y - 11 = 12(x - 2) \iff y = 12x - 13$.

8. Segundo o Teorema dos Valores Intermédios: "Se $f:[a,b]\to\mathbb{R}$ é uma função contínua, e se d é uma constante que está entre f(a) e f(b), então existe uma abcissa $c \in]a,b[$ tal que f(c) = d."

Seja $h(x) = e^{3x-2} + x$, usando o Teorema dos Valores Intermédios, mostre que a equação h(x) = 2 tem pelo menos uma solução.

Vamos aplicar o teorema para o intervalo [0, 2]:

- $h(x) = e^{3x-2} + x$ é contínua porque é a soma das funções contínuas x com e^{3x-2} (esta é contínua porque é a composta das funções contínuas e^x com 3x-2);
- $h(0) = e^{-2} = \frac{1}{e^2} < 1$
- $h(2) = e^4 + 2 > 18$

Então como h é contínua em [0,2] e 2 está entre h(0) e h(2) então existe $c \in]0,2[$ tal que h(x) = 2.