

ReCell Project

Post-Grad Program in Data Science and Business Analytics

Date: 9/25/2022 By: Manik Chhabra

Contents / Agenda

- Executive Summary
- Business Problem Overview and Solution Approach
- EDA Results
- Data Preprocessing
- Model Performance Summary
- Appendix

Executive Summary

- The model can explain 84% of the variation in data and within 4.5% of the used devices price on the test data, which is exceptionally good
 - Hence, we can conclude that the model is good for prediction and interpretation
- If the main_camera_mp raises by one unit, then the normalized used device price increases by 0.0210, all other variables held constant
- If the selfie_camera_mp raises by one unit, then the normalized used device price increases by 0.0138, all other variables held constant
 - O The company ReCell can buy higher megapixel cameras (selfie and main) to resell the used product at a higher price
- If the ram raises by one unit, then the normalized used device price increases by 0.0207, all other variables held constant
 - O The company ReCell can buy more used products with higher ram to resell it at a higher price
- If the weight raises by one unit, then the normalized used device price increases by 0.0017, all other variables held constant
 - O Buying phones with higher weight can increase the resell value of the phone
- If the normalized_new_price raises by one unit, then the normalized used device price increases by 0.4415, all other variables held constant
- According to the results from bivariate analysis, devices that use 4G or 5G network have higher normalized used prices; therefore the company ReCell can buy devices that are only 4G or 5G to earn higher profits

Business Problem Overview and Solution Approach

- Business Problem
 - ReCell wants to hire a data scientist that can build a linear regression model to predict the price of a used phone/tablet and identify factors that significantly influence it
- The solution approach / methodology
 - The solution to the business problem is to first discover a relationship between the normalized used device price and the other variables in the dataset through exploratory data analysis
 - Second, preprocess the data before building the linear regression model
 - Test all 5 assumptions for linear regression modelling
 - Lastly build a model that has an exceptionally good fit and is not overfitting nor underfitting based on the comparison between the training and testing data

- Univariate Analysis
 - Variable Normalized Used Price
 - According to Figure 1, the distribution for normalized used price is skewed to the left
 - The mean and median for the **normalized used price** is respectively 4.36 Euros and 4.41 Euros
 - Outliers exist on both sides of the Boxplot
 - Variable Normalized New Price
 - According to Figure 2, the distribution for normalized new price appears evenly distributed
 - The mean and median for the normalized new price is respectively 5.23 Euros and 5.25 Euros
 - Outliers exist on both sides of the Boxplot

Figure 2

- Univariate Analysis
 - Variable Screen Size
 - According to **Figure 3**, the distribution for **screen size** is skewed to the right
 - The mean and median for the **screen size** is respectively 13.71cm and 12.83 cm
 - Outliers exist on both sides of the Boxplot
 - Variable Main Camera MP
 - According to Figure 4, the distribution for main camera mp is heavily skewed to the right
 - The mean and median for **main camera mp** is respectively 9.46 mp and 8.00 mp
 - Outliers exist beyond the max value of the boxplot

Figure 3

Figure 4

- Univariate Analysis
 - Variable Selfie Camera MP
 - According to Figure 5, the distribution for Selfie
 Camera MP is heavily skewed to the right
 - The mean and median for the Selfie Camera MP is respectively 6.55 mp and 5 mp
 - Outliers exist beyond the max value of the boxplot
 - Variable Internal Memory
 - According to Figure 6, the distribution for Internal Memory is heavily skewed to the right
 - The mean and median for **Internal memory** is respectively 54.57 GB and 32 GB
 - Outliers exist beyond the max value of the boxplot

Figure 5

Figure 6

- Univariate Analysis
 - Variable Ram
 - According to Figure 7, the distribution for Ram is unevenly distributed; A boxplot was not formed
 - The mean and median for the Ram is respectively
 4.04 GB and 4 GB
 - Variable Weight
 - According to Figure 8, the distribution for Weight is heavily skewed to the right
 - The mean and median for Weight is respectively 182.75 g and 160 g
 - Outliers exist beyond the max value of the boxplot

Figure 8

- Univariate Analysis
 - Variable **Battery**
 - According to Figure 9, the distribution for Battery is heavily skewed to the right
 - The mean and median for the **Battery** is respectively 3133.40 mAh and 3000 mAh
 - Outliers exist beyond the max value of the boxplot
 - Variable Days Used
 - According to Figure 10, the distribution for Days
 Used is skewed to the left
 - The mean and median for **Days Used** is respectively 674.87 and 690.50
 - Outliers do not exist for this variable

Figure 9

Figure 10

- Univariate Analysis
 - Variable Brand Name
 - According to **Figure 11**, the top 3 brands in the data set (in terms of count) are **Others** (14.5%), **Samsung** (9.9%), and **Huawei** (7.3%).
 - Variable OS
 - According to Figure 12, most of the phones/tablets in the dataset run on the Android OS (3214)
 - iOS phones/tablets have the lowest count (36) in the data set
 - Variable **4G**
 - According to Figure 13, there are more than twice as much 4G phones/tablets (2335) than non-4G phones/tablets (1119)
 - Variable **5G**
 - According to **Figure 14**, 3302 phones/tablets are not run on **5G**
 - 152 phones/tablets are run on 5G

Figure 11

Figure 12

Link to Appendix slide on data background check

- Univariate Analysis
 - Variable Release Year
 - According to **Figure 15**, the top 3 amount of phones/tablets in the data set were released in 2014 (642), 2013 (570), and 2015 (515)
 - The least amount of phones in the dataset were released in 2020 (277).

Figure 15

- Bivariate Analysis
 - Heat Map
 - According to Figure 16, 'Selfie camera mp',
 'Screen_size', and 'Battery' are moderately positively
 correlated with 'normalized_used_price' 0.61
 correlation
 - 'Main_camera_mp' is moderately positively correlated with 'normalized_used_price' – 0.59
 - 'Normalized_used_price' and 'normalized_new_price' are highly positively correlated with each other – 0.83
 - Release year vs Normalized Used Price Figure 17
 - A strong positive correlation exists between release year and normalized used price from 2013-2018
 - Used phone prices increase with the newer years
 - After 2018, there was a weaker positive correlation(2019- 2020 – no correlation existed) between release year and normalized used price

Figure 17

- Bivariate Analysis
 - 4G vs Normalized Used Price Figure 18
 - According to the Boxplot, normalized used tablets/phones prices are higher for tablets/phones that use 4G network (~4.5 euros) vs non-4G network (~4 euros)

- 5G vs Normalized Used Price Figure 19
 - According to the Boxplot, normalized used tablets/phones prices are higher for tablets/phones that use 5G network (~5.2 euros) vs non-5G network (~4.5 euros)

Figure 19

- Duplicate value check
- Missing value treatment
- Outlier check (treatment if needed)
- Feature engineering
- Data preparation for modeling

- Duplicate value check
 - No duplicate values exist in the dataset
- Missing Value Treatment
 - Used the code below to check for missing values in the dataset across all columns; Missing value is showing below per column:

- Missing Value Treatment
 - After 3 rounds of imputing the missing values with the column medians grouped by 'brand_name' and
 'release_year', by 'brand_name', and no grouping, no missing values appeared for each column after round 3

Round 1

Round 2

Round 3

Outlier Check

- Outliers exist for most of the variables except 'release_year' and 'days_used'
- However, they will not be treated as they are proper values

Figure 20

- Feature Engineering
 - 'years_since_release' column was created from the 'release_year' column
 - 'Release_year' was then subsequently removed
 - In Figure 21, is a statistical summary of the new column, 'years_since_release':
 - Number of years since release varies from 1-8.
 - Mean is 5 years

```
3454.000000
count
            5.034742
mean
std
            2.298455
min
            1.000000
25%
            3.000000
50%
            5.500000
75%
            7.000000
max
            8.000000
Name: years since release, dtype: float64
```


- Data Preparation for Modeling
 - Purpose is to predict the normalized price of used devices
 - Defined the dependent and independent variables in Figure 22
 - y (dependent variable) = 'normalized used price' values
 - X (independent variable) = all the predictor variables that are not 'normalized used price'
 - Added the intercept to the data in Figure 23
 - Encoded categorical features of the dataset in Figure 24
 - Dummy values were created for the categorical variables, 'brand_name', 'os,' '4g', and '5g' before building the model

Figure 22

```
## Complete the code to define the dependent and independent variables
X = dfl.drop('normalized_used_price',axis=1)
y = dfl['normalized_used_price']

print(X.head())
print(y.head())
```

Figure 23

```
# let's add the intercept to data
X = sm.add_constant(X)
```


- Data Preparation for Modeling
 - Splitting the data between test and train data to evaluate the model built on the train data in Figure 25
 - Data was split in 70:30 ratio for train to test data

```
# splitting the data in 70:30 ratio for train to test data

x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=1)
) ## Complete the code to split the data into train and test in specified ratio

print("Number of rows in train data =", x_train.shape[0])

print("Number of rows in test data = ", x_test.shape[0])

Number of rows in test data = 2117

Number of rows in test data = 1217
```


- Overview of ML model and its parameters
- Summary of most important factors used by the ML model for prediction
- Summary of key performance metrics for training and test data in tabular format for comparison

Overview of ML model (final) and its parameters,Figure 26

- The Adjusted R² is 0.838, which is an exceptionally good model
 - The Adjusted R² values generally range from 0 to 1, where a higher value suggests a better fit, considering certain conditions are met
- The constant coefficient, also known as the Y-intercept, is
 1.50
 - To further explain, if the coefficients for the predictor variables are 0, then the output would be the constant coefficient
- The coefficients of the predictor variables (14 total) is highlighted in Figure 26
 - For example, if the coefficient for 'main_camera_mp' increases by 1 unit and all other coefficients are constant, then the y (output) would change by 0.02
- All features have a p-value of less than 0.5, which is why they were kept in the model

Figure 26

			on Results			
Dep. Variable:	normalized_use	d_price	R-squared:		0.8	39
Model:		OLS	Adj. R-square	d:	0.838 895.7 0.00 80.645 -131.3 -44.44	
Method:			F-statistic:			
Date:			Prob (F-stati			
Time:	0		Log-Likelihoo	d:		
No. Observations: Df Residuals:			AIC: BIC:			
Df Model:		14				
Covariance Type:						
	coef	std err	t	P> t	[0.025	0.975]
const			30.955			
main camera mp	0.0210	0.001	14.714	0.000	0.018	0.024
selfie camera mp	0.0138	0.001	12.858	0.000	0.012	0.016
ram	0.0207		4.151			
weight	0.0017		27.672			
normalized_new_price	0.4415		39.337			
years_since_release	-0.0292	0.003	-8.589			
brand_name_Karbonn	0.1156	0.055	2.111	0.035	0.008	0.223
brand_name_Samsung	-0.0374	0.016	-2.270	0.023	-0.070	-0.005
brand_name_Sony	-0.0670	0.030	-2.197	0.028	-0.127	-0.007
brand_name_Xiaomi		0.026	3.114		0.030	0.130
os_Others	-0.1276	0.027	-4.667	0.000	-0.181	
os_iOS	-0.0900		-1.994		-0.179	-0.002
4g_yes			3.326			
5g_yes		0.031			-0.127	-0.007
Omnibus:			rbin-Watson:		1.902	
Prob(Omnibus):	0	.000 Ja	rque-Bera (JB)	:	483.879	
Skew:		.658 Pro			8.45e-106	
Kurtosis:			nd. No.		2.39e+03	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.39e+03. This might indicate that there are strong multicollinearity or other numerical problems.

- Summary of most important factors used by the ML model for prediction, Figure 26
 - The equation for the ML model would be:
 - 'normalized_used_price' = 1.5 +
 0.0210('main_camera_mp') +
 0.0138('selfie_camera_mp')+0.0207('ram')+0.0017
 ('weight')+0.4415('normalized_new_price') 0.0292('years_since_release')+0.1156('brand_name_Karbonn)-0.0374('brand_name_Samsung') 0.0670('brand_name_Sony')+0.0801('brand_name_Xiaomi')-0.1276('os_Others') 0.0900('os_iOS')+0.0502('4g_yes') 0.0673('5g_yes')
 - The above features are the most important factors used by the ML model for prediction

Figure 26

Dep. Variable:	normalized_use	d_price	R-squared:		0.839 0.838 895.7 0.00 80.645 -131.3					
Model:			Adj. R-square	d:						
Method:			F-statistic:							
Date:			Prob (F-stati							
Pime:	0		Log-Likelihoo	d:						
No. Observations:		2417	AIC:							
Df Residuals:		2402	BIC:		-44.	-44.44				
Of Model:		14								
Covariance Type:		nrobust								
	coef	std err	t	P> t	[0.025	0.975]				
const			30.955							
main camera mp	0.0210	0.001	14.714	0.000	0.018	0.024				
selfie_camera_mp	0.0138	0.001	12.858	0.000	0.012	0.016				
am			4.151							
eight:	0.0017	6e-05	27.672	0.000	0.002	0.002				
ormalized_new_price		0.011	39.337	0.000	0.419					
vears_since_release			-8.589							
rand_name_Karbonn	0.1156	0.055	2.111	0.035	0.008	0.223				
orand_name_Samsung		0.016	-2.270	0.023	-0.070	-0.005				
orand_name_Sony		0.030		0.028	-0.127	-0.007				
rand_name_Xiaomi			3.114							
s_Others			-4.667							
s_ios			-1.994							
lg_yes			3.326							
g_yes			-2.194			-0.007				
mnibus:			rbin-Watson:		1.902					
Prob(Omnibus):			rque-Bera (JB)	:						
Skew: Curtosis:		.658 Pro	ob(JB):		8.45e-106 2.39e+03					

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.39e+03. This might indicate that there are strong multicollinearity or other numerical problems.

- Summary of key performance metrics for training and test data in tabular format in Figure 27
 - As a result, the adjusted R² (for the training data) is 0.84 (able to explain 84% of the variation in data), therefore the model is not underfitting
 - The train and test RMSE and MAE are low and comparable, so the model is not overfitting either
 - MAE suggests that the model can predict used phone prices within a mean error of 0.18 on the test data
 - MAPE (Mean Absolute Percentage Error) of 4.5 on the test data means that we can predict within 4.5% of the used phone prices
 - As mentioned previously, the model is neither underfitting nor overfitting since the adjusted Rsquared values for Training and Test performance are within 5% of each other

Figure 27

APPENDIX

Data Background and Contents

- The data set consists of information about the attributes of used/refurbished phones and tablets
 - There are 3454 rows of cell phones/tablets and 15 columns
 - The columns consist of :

'days used'

'normalized_used_price' 'normalized new price'

First 5 rows of the dataset

b	and_name	os	screen_size	4g	5g	main_camera_mp	selfie_camera_mp	int_memory	ram	battery	weight	release_year	days_used	normalized_used_price	normalized_new_price	0
0	Honor	Android	14.50	yes	no	13.0	5.0	64.0	3.0	3020.0	146.0	2020	127	4.307572	4.715100	
1	Honor	Android	17.30	yes	yes	13.0	16.0	128.0	8.0	4300.0	213.0	2020	325	5.162097	5.519018	
2	Honor	Android	16.69	yes	yes	13.0	8.0	128.0	8.0	4200.0	213.0	2020	162	5.111084	5.884631	
3	Honor	Android	25.50	yes	yes	13.0	8.0	64.0	6.0	7250.0	480.0	2020	345	5.135387	5.630961	
4	Honor	Android	15.32	yes	no	13.0	8.0	64.0	3.0	5000.0	185.0	2020	293	4.389995	4.947837	

Data Background and Contents

- No duplicate values exist in the data
- Missing values do exist.
 - Under the **5g** column, there are 179 missing values
 - Under the main camera mp, there are 2 missing values
 - Under the **selfie_camera_mp**, there are 4 missing values
 - Under the int_memory column, there are 4 missing values
 - Under the **ram** column, there are 6 missing values
 - Under the **battery** column, there are 7 missing values
- In regards to the types of variables in the data set, there are 9 float types, 2 integer types, and 4 object types
- Statistical summary of the numerical values:
 - The range for the normalized used price (the target variable) is from 1.54 6.62 Euros
 - The mean and median for the normalized used price is respectively 4.36 and 4.41 Euros
 - The range for the normalized new price is 2.90 7.85 Euros
 - The mean and median for the normalized new price is respectively 5.23 and 5.25 Euros
 - The release year for the phones/tablets varies from 2013-2020
 - The phones/tablets weight varies from 69-855 grams
 - The battery varies from 900 9720 mAh

Data Background and Contents

- Statistical summary of the numerical values
 - The ram of the phones/tablets varies from 0.20 12 GB
 - The internal memory of the phones/tablets varies from 0.01 1024 GB
 - Resolution of the front camera of the phones/tablets varies from 0 32 MP
 - Resolution of the rear camera of the phones/tablets varies from 0.08 48 MP
 - The screen size of the phones/tablets varies from 5.08 30.71 CM

- Tests conducted for checking model assumptions and the results obtained
 - Test for Multicollinearity
 - 48 features were utilized to test for multicollinearity
 - The dummy variables were excluded
 - 'Screen_size' and 'weight' were the two columns that had VIFs >5 according to Figure 28
 - If VIF is greater than 5 for a predictor variable, then that variable should be dropped
 - To remove multicollinearity
 - each column that has VIF>5 is dropped one by one,
 - look at the adjusted R² and RMSE (in Figure 29) to discover the variable making the least change in adjusted R² after being dropped

Figure 28

- Please mention the tests conducted for checking model assumptions and the results obtained
 - Test for Multicollinearity
 - To remove multicollinearity
 - 'Screen size' was dropped since its adjusted R² changed the least
 - After removing 'Screen size' and checking the VIF for the new training set, all predictor variables had VIF<5:

- Please mention the tests conducted for checking model assumptions and the results obtained
 - Dropping p-values (not a part of the 5 assumptions for linear regression)
 - Predictor variables that had a p-value >0.05 were dropped as they did not significantly have an impact on the target variable
 - After dropping the p-values, the OLS model was run again and the results are to the right
 - As you can see, the p-values were all below
 0.05 in the Regression results

Figure 30

	0LS	Kegressi	on Results			==		
Dep. Variable: r	ormalized_use	d_price	R-squared:		0.839			
Model:		OLS	Adj. R-squared	i:	0.838			
Method:	Least	Squares	F-statistic:		895	.7		
Date:	Sun, 25 S	ep 2022	Prob (F-statis	stic):	0.	00		
Time:	0	6:30:04	Log-Likelihood	1:	80.645			
No. Observations:		2417	AIC:		-131.3			
Df Residuals:		2402	BIC:		-44.	-44.44		
Df Model:		14						
Covariance Type:	no	nrobust						
		std err	t		[0.025	0.975		
const			30.955		1.405	1.5		
main camera mp	0.0210	0.001	14.714	0.000	0.018	0.0		
selfie_camera_mp	0.0138	0.001	12.858	0.000	0.012	0.0		
ram	0.0207	0.005	4.151	0.000	0.011	0.0		
weight	0.0017	6e-05	27.672	0.000	0.002	0.0		
normalized new price	0.4415	0.011	39.337	0.000	0.419	0.4		
years since release	-0.0292			0.000	-0.036	-0.0		
brand name Karbonn	0.1156	0.055	2.111	0.035	0.008	0.2		
brand_name_Samsung	-0.0374			0.023	-0.070	-0.0		
brand name Sony	-0.0670	0.030	-2.197	0.028	-0.127	-0.0		
brand name Xiaomi	0.0801	0.026	3.114	0.002	0.030	0.1		
os_Others	-0.1276	0.027	-4.667	0.000	-0.181	-0.0		
os iOS	-0.0900	0.045	-1.994	0.046	-0.179	-0.0		
4g yes	0.0502	0.015	3.326	0.001	0.021	0.0		
5g_yes	-0.0673	0.031	-2.194	0.028	-0.127	-0.0		
Omnibus:	246	.183 Du	rbin-Watson:		1.902			
Prob(Omnibus):	0	.000 Ja	rque-Bera (JB):	:	483.879			
Skew:	-0	.658 Pr	ob(JB):		8.45e-106			
Kurtosis:	4	.753 Co	nd. No.		2.39e+03			

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.39e+03. This might indicate that there are strong multicollinearity or other numerical problems.

- Please mention the tests conducted for checking model assumptions and the results obtained
 - Test for Linearity and Independence
 - Since no pattern exists in Figure 31
 (Fitted Values vs Residuals graph), the
 model is linear and the residuals are
 independent
 - Otherwise, if a pattern was discovered, the model would be non-linear and residuals dependent

Fitted vs Residual plot

1.0

0.5

Serior -0.5

-1.0

-1.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Fitted Values

 Please mention the tests conducted for checking model assumptions and the results obtained

Test for Normality

- Based on the results from the distribution of residuals (Figure 32), the data resembles a normally distributed curve
- The Q-Q plot of residuals in Figure 33 suggests that the residuals mostly follow a straight line except for the tails
- Based on the results from the Shapiro Wilk's test (Figure 34), the residuals are not normal since the p value is less than 0.05. In strict terms, the residual values are not normal but they are close to a normal distribution.
 Therefore, the assumption is satisfied.

Figure 34

stats.shapiro(df_pred['Residuals']) #

ShapiroResult(statistic=0.9676972031593323, pvalue=6.995328206686811e-23)

- Please mention the tests conducted for checking model assumptions and the results obtained
 - Test for homoscedasticity
 - Goldfeldquandt test was used to test for homoscedasticity in Figure 35
 - Since the p-value is greater than 0.05, the residuals are homoscedastic

```
import statsmodels.stats.api as sms
from statsmodels.compat import lzip

name = ["F statistic", "p-value"]
test = sms.het_goldfeldquandt(df_pred["Residuals"], x_train3)
lzip(name, test)

[('F statistic', 1.008750419910676), ('p-value', 0.4401970650667301)]
```


Happy Learning!

