

<u>Lecture 5: Delta Method and</u>

2. Confidence Intervals Concept

<u>课程</u> > <u>Unit 2 Foundation of Inference</u> > <u>Confidence Intervals</u>

> Checks

2. Confidence Intervals Concept Checks

Confidence Interval Concept Check 1

1/1 point (graded)

Let $X_1,\ldots,X_n\stackrel{iid}{\sim}P_{ heta}$, where heta is an unknown parameter. You construct a **confidence interval** $\mathcal I$ for heta.

Complete the next sentence with one of the options below. The confidence interval ${\mathcal I}$ is ...

Random

Deterministic

Solution:

As defined, a confidence interval \mathcal{I} for an unknown parameter θ is a *random* interval such that the expressions for its endpoints do not depend on θ .

Remark 1: Let's write $a = f(X_1, ..., X_n)$ and $b = g(X_1, ..., X_n)$ for the endpoints of the random interval \mathcal{I} . Note that f and g are functions that do not depend on θ .

In practice, one uses given data (e.g. realizations x_1, \ldots, x_n of iid samples X_1, \ldots, X_n) to construct a realization $\mathcal{I}_{\text{real}}$ of the confidence interval \mathcal{I} :

$$\mathcal{I}_{ ext{real}} := \left(f\left(x_1, \ldots, x_n
ight), g\left(x_1, \ldots, x_n
ight)
ight).$$

Such a realization is deterministic.

Remark 2: For this concept, it is important to distinguish the random variable \mathcal{I} (the confidence interval) from its realization \mathcal{I}_{real} , which is formed only after collecting data.

提交

你已经尝试了1次(总共可以尝试1次)

• Answers are displayed within the problem

Note: The exercises on the next few pages will be presented in lecture, but we encourage you to attempt these by yourself first.

Confidence Interval Concept Check 2

0/1 point (graded)

Recall that a **realization** of a random variable X is the value that it takes when we observe X. For example, if $X \sim \mathrm{Ber}\,(1/2)$ and we observe the event X=1, then 1 is a realization (observed value) of the random variable X.

ullet Any realization of ${\mathcal I}$ is a **subinterval** of any realization of ${\mathcal J}$. imes

• Any realization of $\mathcal J$ is a **subinterval** of any realization of $\mathcal I$.

None of the above

olution: olution in next video.		
提交 你已经尝试了2次 (总共可以尝试2次)		
Answers are displayed within the problem		
· •		
114		
讨论		显示讨
题: Unit 2 Foundation of Inference:Lecture 5: Delta Method ar	nd Confidence Intervals / 2.	显示讨
寸论 题: Unit 2 Foundation of Inference:Lecture 5: Delta Method ar onfidence Intervals Concept Checks	nd Confidence Intervals / 2. 认证证书是什么?	显示讨