SUPPLEMENT MATERIALS

This document provides the details of cross checking for top-50 predicted associations of GTGenie, necessity of extracted BBS and DDS, hyperparameters tuning, the impact of different ratios between positive and negative samples, the performance comparison of different fusion modules and strategies, and sampling negative in the begin of the study. **Table S1** The global top-50 predicted miRNA-disease associations trained on HMDD v2.0. **Table S2** The global top-50 predicted microbe-disease associations trained on HMDAD. **Table S3** The global top-50 predicted lncRNA-disease associations trained on LncRNADisease v2017. **Table S4** The average probabilities of the diseases regarding of all the known related associations. **Table S5** Default hyperparameters settings. **Table S6** Performance comparison of different fusion modules and strategies. **Fig. S1** AUC of GTGenie using different similarities. **Fig. S2** AUC of different learning rates from 1e-1 to 1e-4. **Fig. S3** AUC of different dropout rates. **Fig. S4** AUC of different learning rates from 5e-4 to 5e-3. **Fig. S5** Curves of training loss, test loss, and test AUC. **Fig. S6** Performance comparison of different ratio between positive and negative samples. **Fig. S7** Concat-based/Early fusion variant of GTGenie. **Fig. S8** Add-based variant of GTGenie. **Fig. S9** Late fusion variant of GTGenie.

1. Details of cross checking for top-50 predicted associations of GTGenie

The global top-50 predicted biomarker-disease associations trained on HMDD v2.0, HMDAD, and lncRNADisease v2017 are provided in Tables S1, S2, & S3, respectively.

Table S1. The global top-50 predicted miRNA-disease associations trained on HMDD v2.0

Top 1-25			Top 26-50		
Disease	miRNA	Evidence	Disease	miRNA	Evidence
Adenocarcinoma	hsa-mir-1	PMID:33305905	Carcinoma, hepatocellular	hsa-mir-9	dbDEMC
Adenocarcinoma	hsa-mir-146a	PMID:32382320	Carcinoma, hepatocellular	hsa-mir-149	dbDEMC
Adenocarcinoma	hsa-mir-18a	PMID:33942935	Carcinoma, hepatocellular	hsa-mir-135b	dbDEMC
Adenocarcinoma	hsa-mir-34a	PMID:30700696	Carcinoma, non-small-cell lung	hsa-mir-29a	PMID:29495918
Adenoviridae infections	hsa-mir-29a	PMID:30405317	Carcinoma, non-small-cell lung	hsa-mir-200a	dbDEMC
Adrenocortical carcinoma	hsa-mir-21	dbDEMC	Carcinoma, non-small-cell lung	hsa-mir-203	PMID:28921827
Breast neoplasms	hsa-mir-150	dbDEMC	Carcinoma, non-small-cell lung	hsa-mir-20a	dbDEMC
Breast neoplasms	hsa-mir-106a	dbDEMC	Carcinoma, non-small-cell lung	hsa-mir-31	dbDEMC
Breast neoplasms	hsa-mir-192	dbDEMC	Carcinoma, non-small-cell lung	hsa-mir-92a	dbDEMC
Breast neoplasms	hsa-mir-99a	dbDEMC	Carcinoma, non-small-cell lung	hsa-mir-18a	dbDEMC
Breast neoplasms	hsa-mir-130a	dbDEMC	Carcinoma, non-small-cell lung	hsa-mir-19b	PMID:31564891
Breast neoplasms	hsa-mir-15b	dbDEMC	Carcinoma, non-small-cell lung	hsa-mir-19a	PMID:23609137
Breast neoplasms	hsa-mir-144	dbDEMC	Carcinoma, non-small-cell lung	hsa-mir-22	PMID:34729252
Breast neoplasms	hsa-mir-138	dbDEMC	Carcinoma, renal cell	hsa-mir-29a	PMID:29156819
Breast neoplasms	hsa-mir-142	dbDEMC	Carcinoma, renal cell	hsa-mir-29b	PMID:30153702
Breast neoplasms	hsa-mir-212	dbDEMC	Carcinoma, renal cell	hsa-mir-1	PMID: 21745735
Breast neoplasms	hsa-mir-130b	dbDEMC	Carcinoma, renal cell	hsa-mir-133a	dbDEMC
Breast neoplasms	hsa-mir-32	dbDEMC	Carcinoma, renal cell	hsa-mir-17	dbDEMC
Carcinoma	hsa-mir-9	PMID:30795814	Carcinoma, renal cell	hsa-mir-181b	PMID:33560588
Carcinoma, hepatocellular	hsa-mir-143	dbDEMC	Carcinoma, renal cell	hsa-mir-182	PMID:29424922
Carcinoma, hepatocellular	hsa-mir-133a	dbDEMC	Carcinoma, renal cell	hsa-mir-183	PMID:30689558
Carcinoma, hepatocellular	hsa-mir-215	dbDEMC	Carcinoma, renal cell	hsa-mir-20a	dbDEMC
Carcinoma, hepatocellular	hsa-mir-26b	dbDEMC	Carcinoma, renal cell	hsa-mir-221	PMID:24379138
Carcinoma, hepatocellular	hsa-mir-34b	dbDEMC	Carcinoma, renal cell	hsa-mir-25	PMID:31202813
Carcinoma, hepatocellular	hsa-mir-23b	dbDEMC	Carcinoma, renal cell	hsa-mir-31	dbDEMC

Table S2. The global top-50 predicted microbe-disease associations trained on HMDAD

Disease Bacterial Vaginosis Type 2 diabetes Type 2 diabetes	microbe Proteobacteria ^P Prevotella ^G Actinobacteria ^P	Evidence PMID:32296412 PMID:34040023 PMID:28177125	Disease Ileal Crohn's disease Necrotizing Enterocolitis	microbe Proteobacteria	Evidence PMID:31530835
Type 2 diabetes	Prevotella ^G Actinobacteria ^P	PMID:34040023			PMID:31530835
	Actinobacteria ^P		Necrotizing Enterocolitis		
Type 2 diabetes		PMID:28177125	-	Clostridia ^C	PMID:30980889
	P		Bacterial Vaginosis	Staphylococcus aureus ^S	PMID:25926958
Colorectal carcinoma	Proteobacteria ^P	PMID:34650531	Colorectal carcinoma	${\it Haemophilus}^{\it G}$	PMID:28988196
Crohn's disease	Actinobacteria ^P	PMID:31911822	Necrotizing Enterocolitis	$\it Lactobacillus^{\it G}$	PMID:10575148
Crohn's disease	Proteobacteria ^P	PMID:31530835	Bacterial Vaginosis	Faecalibacterium prausnitzii ^S	unconfirmed
Crohn's disease	$Prevotella^G$	PMID: 28542929	Irritable bowel syndrome	Faecalibacterium prausnitzii ^S	PMID:24713205
Crohn's disease	Bacteroidetes ^P	PMID:33669168	Clostridium difficile infection	Actinobacteria ^P	PMID:31876614
Liver cirrhosis	Actinobacteria ^P	PMID:31726747	Irritable bowel syndrome	Firmicutes ^P	PMID:30829919
Asthma	Firmicutes ^P	PMID:32072252	Colorectal carcinoma	Clostridium coccoides ^S	PMID: 26541655
Asthma	$Actinobacteria^{P}$	PMID:29318023	Clostridium difficile infection	Fusobacterium ^G	PMID:33227279
Colorectal carcinoma	$Actinobacteria^{P}$	PMID:35049922	Irritable bowel syndrome	Clostridium ^G	PMID:18026576
Bacterial Vaginosis	Bacteroidetes ^P	PMID:20819230	Liver cirrhosis	Firmicutes ^P	PMID:33708204
Clostridium difficile infection	$Prevotella^{\it G}$	PMID:33854066	Irritable bowel syndrome	Lactobacillus ^G	PMID:21860817
Clostridium difficile infection	Bacteroides ovatus ^S	PMID:29076071	Ileal Crohn's disease	Firmicutes ^P	PMID:25844959
Crohn's disease	$Lactobacillus^{\it G}$	PMID:15113451	Bacterial Vaginosis	Clostridium leptum ^S	unconfirmed
Psoriasis	$Prevotella^G$	PMID:32545459	Type 2 diabetes	Streptococcus ^G	PMID:32246318
Clostridium difficile infection	$\mathit{Bacteroides}^{\mathit{G}}$	PMID:32660525	Crohn's disease	Clostridium coccoides ^S	unconfirmed
Clostridium difficile infection	Bacteroides vulgatus ^S	PMID:32660525	Cystic fibrosis	Clostridium difficile ^S	PMID:28078087
Psoriasis	Bacteroidetes ^P	PMID:33384669	COPD	Actinobacteria ^P	PMID:23071781
Colorectal carcinoma	$Lactobacillus^G$	PMID:32419125	Type 2 diabetes	${\it Haemophilus}^{\it G}$	PMID:32246318
Irritable bowel syndrome	Actinobacteria ^P	PMID:31244784	Colorectal carcinoma	$\it Lachnospiraceae^{\it F}$	PMID:28988196
Clostridium difficile infection	Clostridia ^C	PMID:22555464	Type 2 diabetes	$\mathit{Fusobacterium}^{\mathit{G}}$	PMID:31901868
Clostridium difficile infection	$Lactobacillus^{\it G}$	PMID:24856984	Ileal Crohn's disease	Klebsiella ^G	unconfirmed
Clostridium difficile infection	${\it Haemophilus}^{\it G}$	unconfirmed	Crohn's disease	Clostridia ^C	PMID:31911822

The superscripts D, P, C, O, F, G, and S represent the domain, phylum, class, order, family, genus, and species, respectively.

Table S3. The global top-50 predicted lncRNA-disease associations trained on LncRNADisease v2017

Top 1-25			Top 26-50			
Disease	lncRNA	Evidence	Disease	IncRNA	Evidence	
Alzheimer's disease	H19	PMID:30107531	Osteosarcoma	PVT1	Lnc2Cancer;MNDR	
Alzheimer's disease	MALAT1	MNDR	Breast cancer	AFAP1-AS1	Lnc2Cancer;MNDR	
Cancer	HOTTIP	MNDR	Breast cancer	BANCR	Lnc2Cancer;MNDR	
Cancer	NEATI	MNDR	Breast cancer	HOTTIP	Lnc2Cancer;MNDR	
Cancer	TUG1	MNDR	Breast cancer	HULC	Lnc2Cancer;MNDR	
Gastric cancer	AFAP1-AS1	Lnc2Cancer;MNDR	Breast cancer	PCATI	Lnc2Cancer;MNDR	
Gastric cancer	BCYRNI	Lnc2Cancer;MNDR	Cervical cancer	UCA1	Lnc2Cancer;MNDR	
Gastric cancer	PCATI	Lnc2Cancer;MNDR	Lung cancer	NEATI	Lnc2Cancer;MNDR	
Gastric cancer	SOX2-OT	MNDR	Lung cancer	PVT1	Lnc2Cancer;MNDR	
Lung adenocarcinoma	CDKN2B-AS1	MNDR	Lung cancer	TUG1	PMID:28069000	
Lung adenocarcinoma	H19	Lnc2Cancer;MNDR	Esophageal cancer	HOTAIR	Lnc2Cancer;MNDR	
Lung adenocarcinoma	UCA1	Lnc2Cancer;MNDR	Ovarian cancer	MEG3	Lnc2Cancer;MNDR	
Glioma	PVT1	Lnc2Cancer;MNDR	Schizophrenia	H19	PMID:33093650	
Glioma	UCA1	Lnc2Cancer;MNDR	Endometrial cancer	CDKN2B-AS1	PMID:34712660	
Nasopharyngeal carcinoma	GAS5	Lnc2Cancer;MNDR	Endometrial cancer	H19	Lnc2Cancer;MNDR	
Nasopharyngeal carcinoma	PVT1	Lnc2Cancer;MNDR	Esophageal squamous cell carcinoma	GAS5	Lnc2Cancer;MNDR	
Nasopharyngeal carcinoma	UCA1	Lnc2Cancer;MNDR	Esophageal squamous cell carcinoma	HOTTIP	Lnc2Cancer;MNDR	
Hepatocellular carcinoma	BCYRN1	PMID:31339046	Esophageal squamous cell carcinoma	PVT1	Lnc2Cancer	
Hepatocellular carcinoma	CRNDE	PMID:30230527	Esophageal squamous cell carcinoma	LINC-ROR	Lnc2Cancer;MNDR	
Papillary thyroid carcinoma	H19	PMID:31403942	Colorectal cancer	CCAT2	Lnc2Cancer;MNDR	
Papillary thyroid carcinoma	MALATI	PMID:29987950	Colorectal cancer	XIST	Lnc2Cancer;MNDR	
Prostate cancer	BANCR	unconfirmed	Colorectal cancer	ATB	MNDR	
Melanoma	MEG3	Lnc2Cancer;MNDR	Lymphoma	CDKN2B-AS1	unconfirmed	
Melanoma	NEATI	Lnc2Cancer;MNDR	Lymphoma	H19	PMID:30610809	
Osteosarcoma	GAS5	Lnc2Cancer;MNDR	Kidney cancer	CDKN2B-AS1	PMID:32814766	

Table S4. The average probabilities of the diseases regarding of all the known related associations

Dataset	Position	Disease	Average Probabilities	Rank
HMDD	1-4	Adenocarcinoma	0.4512	32
	5	Adenoviridae infections	0.4858	24
	6	Adrenocortical carcinoma	0.5019	19
	7-18	Breast neoplasms	0.7892	2
	19	Carcinoma	0.4459	34
	20	Carcinoma, hepatocellular	0.8608	1
	1,13	Bacterial Vaginosis	0.4155	4
	2,3	Type 2 diabetes	0.2557	9
	4,12	Colorectal carcinoma	0.1928	16
HMDAD	5,6,7,8,16	Crohn's disease	0.2935	5
	9	Liver cirrhosis	0.5848	2
	10-11	Asthma	0.2314	11
	14-15,18-19	Clostridium difficile infection	0.2647	7
	17,20	Psoriasis	0.2042	15
LncRNADisease	1-2	Alzheimer's disease	0.1788	34
	3-5	Cancer	0.2990	13
	6-9	Gastric cancer	0.4969	3
	10-12	Lung adenocarcinoma	0.3139	9
	13,14	Glioma	0.3068	12
	15-17	Nasopharyngeal carcinoma	0.2818	15
	18,19	Hepatocellular carcinoma	0.5250	1
	20	Papillary thyroid carcinoma	0.2432	22

2. AUC of GTGenie with or without BBS and DDS

Fig. S1. AUC of GTGenie using different similarities

3. Hyperparameters tuning

We conducted the experiments of tuning the hyperparameters including learning rate, dropout rate, and training epoch. We first set up the learning rate and dropout rate in the common setting ranges of [1e-1, 1e-2, 1e-3, 1e-4] and [0.0, 0.1, 0.2, 0.3], respectively. The results are provided as Fig. S2 and Fig. S3:

Fig. S2. AUC of different learning rates from 1e-1 to 1e-4

Fig. S3. AUC of different dropout rates

Fig. S4. AUC of different learning rates from 5e-4 to 5e-3

As we can see, the optimal learning rates and dropout rates appear on the combinations of 1e-3/0.1, 1e-3/0.0, and 1e-3/0.0 for the HMDD, HMDAD, and LncRNADisease datasets, respectively. We also note that significant differences can be observed by tuning the learning rate around 1e-3. Therefore, we further performed a fine-grained parameter tuning of the learning rates ranging from 5e-4 to 5e-3 as shown in Fig. S6. Accordingly, the optimal learning rates for HMDD, HMDAD, and LncRNADisease were ultimately set to 1e-3, 3e-3, and 3e-3, respectively.

As for the training epoch, we set the maximum epoch to 700 and the curves of training loss, test loss, and test AUC are plotted as follows:

Fig. S5. Curves of training loss, test loss, and test AUC

The results demonstrate the convergence of GTGenie on both training and testing sets. The loss decreases rapidly in the first 100 epoch and then reaches a relative stable stage. We therefore set up the training epochs according to the different convergence situations on different datasets. Finally, the default hyperparamters settings of different datasets are provided as follows:

Dataset	Learning Rate	Dropout Rate	Training Epoch
HMDD	1e-3	0.1	500
HMDAD	3e-3	0.0	300
LncRNADisease	3e-3	0.1	300

Table S5. Default hyperparamters settings

4. Different ratios between positive and negative samples

Since the number of potential negative samples is much larger than the known positive sample, a simulation experiment has been conducted for the evaluation of using different ratios between positive and negative samples on HMDD, ranging from 1:1 to 1:9. As we can see in Fig. S6, as the proportion of negative samples increases, the corresponding AUC and AUPR values present the decline of different degrees. Clearly, the resultant class imbalance issue overwhelms the model training and thereby degenerating the classification performance. Therefore, it is not necessary to use larger amount of negative samples in model training compared with that of positive ones.

Fig. S6. Performance comparison of different ratio between positive and negative samples

5. Different fusion modules and strategies

Different fusion model variants including concatenation and addition operation were implemented for the comparison of the proposed BFN. In addition, based on which stage fusion occurs, the existing multimodal fusion strategies can be roughly divided into three categories, i.e., early fusion (at feature level), late fusion (at decision level), intermediate fusion (mixing early and late fusion) [1]. BFN as the key fusion block in GTGenie should belong to intermediate fusion strategy. We conducted an additional experiment to evaluate the performance of early fusion and late fusion strategies in our model separately. As for early fusion, however, we cannot directly fuse the graph features and text features at the earliest stage because of dimension mismatch issue. Therefore, the graph features and text features were first extracted via GAT and BioBERT, respectively, and then projected into the same dimensional embedding space for early fusion by concatenation. In this way, the model of early fusion is the same as the concatenation operation. The architectures diagrams of concat-based/early fusion, add-based, and late fusion are designed as Fig S7, S8, & S9, respectively.

Fig. S7. Concat-based/Early fusion variant of GTGenie

Fig. S8. Add-based variant of GTGenie

Fig. S9. Late fusion variant of GTGenie

where $\overline{D^{M_1}} \in R^{n \times (r+t)}$, $\overline{B^{M_1}} \in R^{m \times (r+t)}$, $\overline{D^{M_2}} \in R^{n \times (r+t)}$, and $\overline{B^{M_2}} \in R^{m \times (r+t)}$, and t represents the output dimension of TRR. The results on HMDD, HMDAD, and LncRNADisease are tabulated as Table S76.

Table S6. Performance comparison of different fusion modules and strategies

Dataset	Modules/Strategies	AUC	AUPR	
	Concat-based/Early fusion	0.9702±0.0025	0.9667±0.0031	
HMDD	Add-based	0.9693±0.0025	0.9658 ± 0.0027	
нмий	Late fusion	0.9657±0.0041	0.9605±0.0049	
	BFN	0.9755±0.0022	0.9739 ± 0.0028	
	Concat-based/Early fusion	0.9571±0.0184	0.9517±0.0240	
HMDAD	Add-based	0.9543±0.0158	0.9532±0.0170	
HWIDAD	Late fusion	0.9535±0.0331	0.9518 ± 0.0448	
	BFN	0.9654±0.0160	0.9635±0.0174	
	Concat-based/Early fusion	0.9743±0.0045	0.9685±0.0066	
LncRNADisease	Add-based	0.9713±0.0057	0.9656±0.0072	
Dien (AD)sease	Late fusion	0.9680±0.0064	0.9573 ± 0.0100	
	BFN	0.9810±0.0043	0.9788±0.0066	

The results demonstrate that the fusion effectiveness of BFN is superior to all these variants on the three datasets. The main difference between them is that BFN-based module separately reconstructs the associations matrices (i.e., R_G and R_T) within the same single modality by inductive matrix completion whereas both concat-based/early fusion and add-

based modules directly integrate features of different modalities into the same entity representation (i.e., $\overline{D^{M_1}}$, $\overline{B^{M_1}}$, $\overline{D^{M_2}}$ and $\overline{B^{M_2}}$). The late fusion strategy obtains the final reconstructed matrix based on the results of different classifiers. The main reasons of the BFN-based module achieves the best results are as follows: i) inductive matrix completion as the key component in BFN is effective in fusing the same modality representation of different entities, rather than the same entity representation of different modalities learned by concat-based or add-based modules; ii) Compare with early fusion and late fusion, the intermediate fusion adopted by BFN enables a better joint multimodal representation by effectively modeling intra- and inter-modality interactions. We also note that the result of add-based module is slightly inferior to that of concat-based module. Perhaps this is because add-based module could suffer from the risk of information loss by messing up the learning for important, related features with redundant, irrelevant ones. In addition, the early fusion variant performs better than late fusion generally. This could be attributed to the fact that such a decision fusion-based method cannot mitigate the contradiction between the individual decisions made from different modal inference.