Lo	Your answers must be to the point. Total = 50; marks for each question is shown in []. LastName: FirstName question is shown in [].
1.	Complete the digraph below on the left for the equivalence relation R on $X = \{a, b, c, d\}$ with the equivalence classes $\{a, b\}$ and $\{c, d\}$. Also, answer the questions on the right below. $[4+2+4]$
	(a) For the equivalence relation R on X above, $[a] = \dots$
	(b) Show the partition of X for each of the other equivalence relations on X with 2 equivalence classes of size 2 each:
	Give the three properties of an equivalence relation. [3]
	Define the equivalence class $[x]$ for a general equivalence relation R . $[2]$
	For each equivalence class $[x]$, we know $x \in [x]$. State another important property of $[x]$. [2]
2.	Give the unlabeled digraph (or the undirected graph, to save time and simplify the diagrams) for the other possible structures of equivalence relations on 4 items than the one in Problem 1. [8]
3.	State the property of partial orders that makes them different from equivalence relations. [2]
	Given below is the Hasse-diagram of a partial order. Show the digraph for the related partial order, the sets $N^-(x)$ next to each node of the partial order, and the matrix form for the partial order. [2+4+4]
	$\bigcirc \bigcirc $
	(i) An Hasse-diagram (ii) The corresponding partial order (iii) Matrix form of partial order. Give the maximal and minimal items in the partial oder above. [3]
	Show the digraph of the "immediately-precedes" IP -relation for the flowchart below to its right. Answer the questions (a) - (b) below on the rightside. $[3+3+2+2]$
	A (a) When does the IP -relation of the flowchart of a code have cycles?
	(b) State the properties (reflexive, anti-reflexive, etc) of this particular <i>IP</i> -relation.
	(c) Is the <i>IP</i> -relation of a flowchart without cycles always a partial order?

(i) A flowchart.

(ii) Its IP-relation.

(d) Is the transitive closure IP^+ of a flowchart without cycle always a partial order?