STANFORD UNIVERSITY EE 102B Spring-2013

Lecture 14
Discrete-Time Filtering of
Continuous-Time Signals
May 1, 2013

ASSIGNMENTS

Reading for this Lecture:

SPF: Section 12-3

S&S: Chapter 5

- HW#04 is due by 5pm today, May 1, in Packard 263.
- Lab #04 is due by 5pm, Friday, May 3, in Packard 263. Contact Keith Gaul for access to EE computer cluster if you need the signal processing toolbox. gaul@ee.stanford.edu

1/13 © 2013, JH McClellan & RW Schafer 2

Office Hours for Course Staff – Come see us.

- Ron Schafer: Mon. 2:00-4:00 pm. Not available for office hours today.
- Dookun Park: Tues. 1:30 ~ 3:30 pm in Packard 107
- Ruo Yu Gu (Roy): Mon. 4:00 ~ 6:00 pm in Packard 106
- https://class2go.stanford.edu/EE102B/ Spring2013/pages/staff

Lecture Objective

- Review sampling and reconstruction
 - C-to-D conversion
 - Relation of CTFT to DTFT
- A-to-D and D-to-A conversion
- Discrete-time filtering of continuous-time signals

5/1/13 © 2013, JH McClellan & RW Schafer

5/1/13

© 2013, JH McClellan & RW Schafer

REVIEW OF SAMPLING AND RECONSTRUCTION

© 2013. JH McClellan & RW Schafer

Representing Sampling by **Impulse Train Modulation**

 $x_s(t) = \sum_{s=0}^{\infty} x(nT_s)\delta(t - nT_s)$

© 2013, JH McClellan & RW Schafer

Illustration of Sampling

Frequency-Domain Analysis

$$x_{s}(t) = x(t) \sum_{n=-\infty}^{\infty} \delta(t - nT_{s}) = \sum_{n=-\infty}^{\infty} x(nT_{s})\delta(t - nT_{s})$$

$$x_{s}(t) = x(t) \sum_{k=-\infty}^{\infty} \frac{1}{T_{s}} e^{jk\omega_{s}t} = \frac{1}{T_{s}} \sum_{k=-\infty}^{\infty} \frac{x(t)e^{jk\omega_{s}t}}{x(t)e^{jk\omega_{s}t}}$$

$$X_{s}(j\omega) = \frac{1}{T_{s}} \sum_{k=-\infty}^{\infty} \frac{X(j(\omega - k\omega_{s}))}{x(t)e^{jk\omega_{s}t}}$$

$$\omega_{s} = \frac{2\pi}{T_{s}}$$

5/1/13

Frequency-Domain Representation of Sampling

Relation to the DTFT

Look at the CTFT of x_s(t) in a different way

$$x_{s}(t) = \sum_{n=-\infty}^{\infty} \frac{x(nT_{s})\delta(t - nT_{s})}{x(nT_{s})e^{-j\omega nT_{s}}}$$

$$X_{s}(j\omega) = \sum_{n=-\infty}^{\infty} \frac{x(nT_{s})e^{-j\omega nT_{s}}}{x(nT_{s})e^{-j\omega nT_{s}}} = X(e^{j\omega T_{s}})$$

$$X(e^{j\omega T_s}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega nT_s} = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_s))$$

Recall that:
$$\hat{\omega} = \omega T_s$$
 $x[n] = x(nT_s)$ $\omega_s = \frac{2\pi}{T_s}$

1/13 © 2013, JH McClellan & RW Schafe

Frequency-Domain Representation of Sampling

Reconstruction of x(t)

Ideal Reconstruction Filter

$$H_{r}(j\omega) = \begin{cases} T_{s} & |\omega| < \frac{\pi}{T_{s}} \\ 0 & |\omega| > \frac{\pi}{T_{s}} \end{cases}$$

$$h_{r}(t) = \frac{\sin \frac{\pi}{T_{s}} t}{\frac{\pi}{T_{s}} t}$$

$$h_{r}(nT_{s}) = 0, n = \pm 1, \pm 2, \dots$$

Signal Reconstruction

$$x_r(t) = h_r(t) * x_s(t) = h_r(t) * \sum_{n = -\infty}^{\infty} x(nT_s)\delta(t - nT_s)$$

$$x_r(t) = \sum_{n = -\infty}^{\infty} x(nT_s)h_r(t - nT_s)$$

$$x_r(t) = \sum_{n = -\infty}^{\infty} x(nT_s) \frac{\sin\frac{\pi}{T_s}(t - nT_s)}{\frac{\pi}{T_s}(t - nT_s)}$$

Ideal bandlimited interpolation formula

5/1/13 © 2013, JH McClellan & RW Sch

Ideal C-to-D and D-to-C Back-to-Back

$$X(e^{j\omega T_S}) = \frac{1}{T_S} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_S))$$

© 2013, JH McClellan & RW Schafer

17

Example of Sampling a Sinusoidal Signal (Ex. 12-6)

Consider a signal of the form:

$$x(t) = \frac{1}{3\pi} + \frac{1}{3\pi} \cos(\pi t + \pi/2)$$

Its CTFT is

$$X(j\omega) = \frac{2}{3}\delta(\omega) + \frac{j}{3}\delta(\omega - \pi) - \frac{j}{3}\delta(\omega + \pi)$$

• The DTFT of x[n] with ω_s = 6π (T_s = 1/3)

$$X(e^{j\omega T_s}) = 3\left[\frac{2}{3}\delta(\omega) + \frac{j}{3}\delta(\omega - \pi) - \frac{j}{3}\delta(\omega + \pi)\right] \quad |\omega| \le \frac{\pi}{T_s}$$

1/13 © 2013, JH McClellan & RW Schafer

A-to-D CONVERSION

5/1/13 © 2013, JH McClellan & RW Schafer

Listening Experiment on the Effects of Quantization

	Signal	Error
"Unquantized"	6	
speech signal	V.	
3-bit quantized	6	(
Speech signal	VS	V 8
8-bit quantized speech signal		₩ X32

Bit rate =
$$B \bullet f_S$$

Quantization is perceived as "noise" in audio signals. We study quantization noise in EE264.

DISCRETE-TIME FILTERING OF CONTINUOUS-TIME SIGNALS

23

5/1/13 © 2013, JH McClellan & RW Schafe

DT Filtering of CT Signals

$$X(t)$$
 C -to- D $X[n]$ $Y(t)$ $Y(t)$ $Y(t)$ $Y(t)$ $Y(t)$ $Y(t)$

If no aliasing occurs in sampling x(t), then

$$Y(j\omega) = H_{\text{eff}}(j\omega)X(j\omega)$$

$$H_{\text{eff}}(j\omega) = \begin{cases} H(e^{j\omega T_s}) & |\omega| < \frac{1}{2}\omega_s \\ 0 & |\omega| > \frac{1}{2}\omega_s \end{cases}$$

5/1/13 © 2013, JH McClellan & RW Schafer

C-to-D Converter

$$\begin{array}{c|c}
X(t) & C-to-D & X[n] \\
X(j\omega) & X(e^{j\hat{\omega}}) & Y(e^{j\hat{\omega}})
\end{array}$$

$$\begin{array}{c|c}
Y(n) & Y(e^{j\hat{\omega}}) & Y(e^{j\hat$$

$$x[n] = x(nT_s)$$

$$X_{s}(j\omega) = \frac{1}{T_{s}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{s}))$$

$$X_{S}(j\omega) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{S}))$$

$$X(e^{j\omega T_{S}}) = X(e^{j\hat{\omega}}) \Big|_{\hat{\omega} = \omega T_{S}} = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega T_{S}n} = X_{S}(j\omega)$$

© 2013. JH McClellan & RW Schafe

LTI DT System

$$\begin{array}{c|c} x(t) & C-to-D & X[n] & H(e^{j\hat{\omega}}) & Y(e^{j\hat{\omega}}) & Y(e^$$

$$Y(e^{j\hat{\omega}}) = H(e^{j\hat{\omega}})X(e^{j\hat{\omega}})$$
$$\hat{\omega} = \omega T_s = \frac{\omega}{f_s}$$

$$Y(e^{j\omega T_s}) = H(e^{j\omega T_s})X(e^{j\omega T_s})$$

5/1/13

35

D-to-C Converter

$$X(t)$$
 $X(j\omega)$
 $X(e^{j\hat{\omega}})$
 $X(e^{j\hat{\omega}})$
 $X(e^{j\hat{\omega}})$
 $Y(e^{j\hat{\omega}})$
 $Y(e^{j\hat{\omega}})$
 $Y(e^{j\hat{\omega}})$

$$y(t) = \sum_{n = -\infty}^{\infty} y[n] h_r(t - nT_s)$$

$$Y(j\omega) = \sum_{n=-\infty}^{\infty} y[n]H_r(j\omega)e^{-j\omega T_s n} = H_r(j\omega)\sum_{n=-\infty}^{\infty} y[n]e^{-j\omega T_s n}$$

$$Y(j\omega) = H_r(j\omega)Y(e^{j\omega T_s})$$

5/1/13

Putting it All Together

$$Y(j\omega) = H_r(j\omega)Y(e^{j\omega T_s}) = H_r(j\omega)H(e^{j\omega T_s})\underline{X(e^{j\omega T_s})}$$

$$Y(j\omega) = H_r(j\omega)H(e^{j\omega T_s})\frac{1}{T_s}\sum_{k=-\infty}^{\infty}X(j(\omega - k\omega_s))$$

If no aliasing occurs in sampling x(t), then it follows that

$$Y(j\omega) = H(e^{j\omega T_s})X(j\omega) = H_{\text{eff}}(j\omega)X(j\omega)$$

DT Filtering of CT Signals

If no aliasing occurs in sampling x(t), then it follows that

$$Y(j\omega) = H_{\text{eff}}(j\omega)X(j\omega)$$

$$H_{\text{eff}}(j\omega) = \begin{cases} H(e^{j\omega T_s}) & |\omega| < \frac{1}{2}\omega_s \\ 0 & |\omega| > \frac{1}{2}\omega_s \end{cases}$$

5/1/13 © 2013, JH McClellan & RW Schafer

38

Sampling (a) $X_{S}(j\omega) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{S})) = X(e^{j\omega T_{S}})$ (b) $X_{S}(j\omega) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{S})) = X(e^{j\omega T_{S}})$ (c) $X_{S}(j\omega) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{S})) = X(e^{j\omega T_{S}})$ (d) $X_{S}(j\omega) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{S})) = X(e^{j\omega T_{S}})$ (e) $X_{S}(j\omega) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{S})) = X(e^{j\omega T_{S}})$ (f) $X_{S}(j\omega) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{S})) = X(e^{j\omega T_{S}})$ (g) $X_{S}(j\omega) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{S})) = X(e^{j\omega T_{S}})$ (g) $X_{S}(j\omega) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{S})) = X(e^{j\omega T_{S}})$ (g) $X_{S}(j\omega) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{S})) = X(e^{j\omega T_{S}})$ (g) $X_{S}(j\omega) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{S})) = X(e^{j\omega T_{S}})$ (g) $X_{S}(j\omega) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{S})) = X(e^{j\omega T_{S}})$ (g) $X_{S}(j\omega) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{S})) = X(e^{j\omega T_{S}})$ (g) $X_{S}(j\omega) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{S})) = X(e^{j\omega T_{S}})$ (g) $X_{S}(j\omega) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{S})) = X(e^{j\omega T_{S}})$ (g) $X_{S}(j\omega) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{S})) = X(e^{j\omega T_{S}})$ (g) $X_{S}(j\omega) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{S})) = X(e^{j\omega T_{S}})$ (g) $X_{S}(j\omega) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{S})) = X(e^{j\omega T_{S}})$ (g) $X_{S}(j\omega) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{S})) = X(e^{j\omega T_{S}})$ (g) $X_{S}(j\omega) = \frac{1}{T_{S}} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_{S})) = X(e^{j\omega T_{S}})$ (g)

11-pt AVERAGER Example

$$y[n] = \frac{1}{11} \sum_{k=0}^{10} x[n-k]$$

$$H(e^{j\hat{\omega}}) = \frac{1}{11} \sum_{k=0}^{10} x[n-k]$$

$$H(e^{j\hat{\omega}}) = \frac{1}{11} \sum_{k=0}^{10} e^{-j\hat{\omega}k} = \frac{\sin(\hat{\omega}11/2)}{11\sin(\hat{\omega}/2)} e^{-j\hat{\omega}5}$$

$$H_{\text{eff}}(j\omega) = \frac{\sin(\omega T_s 11/2)}{11\sin(\omega T_s/2)} e^{-j\omega T_s 5} \quad |\omega| < \frac{\pi}{T_s}$$

