Ch 10.2: Multi-Layer Neural Nets

Lecture 29 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Wed, Nov 30, 2022

Announcements

Last time:

Single Layer Neural Nets

This lecture:

- Multi-layer Neural Nets
- Multi-layer Neural Nets
- Application to MNIST

Announcements:

• HW #10

Section 1

Neural Nets

Feed Forward Neural Network: The cartoon

Dr. Munch (MSU-CMSE)

Choices for activation function

Sigmoid:

$$g(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$

ReLU: Rectified linear unit

$$g(z) = (z)_+ = \begin{cases} 0 & \text{if } z < 0 \\ z & \text{else.} \end{cases}$$

Dr. Munch (MSU-CMSE

Wed, Nov 30, 2022

Matrix version

$$A_k = h_k(X) = g(w_{k0} + \sum_{j=1}^p w_{kj}X_j),$$

$$A = g(\mathbf{W} \cdot \mathbf{X})$$
 $\mathbf{X}^T = (1 \ X_1 \ X_2 \ \cdots \ X_p)$

$$f(X) = \beta_0 + \sum_{k=1}^K \beta_k A_k$$

$$Y = \beta \cdot \mathbf{A}$$
 $\mathbf{A}^T = (1 A_1 A_2 \cdots A_K)$

Dr. Munch (MSU-CMSE)

Training the model

Choose parameters by minimizing RSS, $\sum_{i=1}^{n} (y_i - f(x_i))^2$ (or other loss function) Chosen in advance: Tuned by the model:

Section 2

Multilayer Neural Networks

. Munch (MSU-CMSE) Wed, Nov 30, 2022

Multiple layers

Hidden layers

r. Munch (MSU-CMSE) Wed, Nov 30, 2022

More on that architecture

$$\begin{array}{rcl}
A_k^{(1)} & = & h_k^{(1)}(X) \\
 & = & g(w_{k0}^{(1)} + \sum_{j=1}^p w_{kj}^{(1)} X_j)
\end{array}$$

$$A_{\ell}^{(2)} = h_{\ell}^{(2)}(X)$$

= $g(w_{\ell 0}^{(2)} + \sum_{k=1}^{K_1} w_{\ell k}^{(2)} A_k^{(1)})$

Matrix version: First layer

$$A_k^{(1)} = h_k^{(1)}(X)$$

= $g(w_{k0}^{(1)} + \sum_{j=1}^p w_{kj}^{(1)} X_j)$

$$A^{(1)} = g(\mathbf{W}^{(1)} \cdot \mathbf{X}) \qquad \mathbf{X}^T = (1 \ X_1 \ X_2 \ \cdots \ X_p)$$

Matrix version: Second layer

$$A_{\ell}^{(2)} = h_{\ell}^{(2)}(X)$$

$$= g(w_{\ell 0}^{(2)} + \sum_{k=1}^{K_1} w_{\ell k}^{(2)} A_k^{(1)})$$

$$A^{(2)} = g(\mathbf{W}^{(2)} \cdot \mathbf{A}) \qquad (\mathbf{A}^{(1)})^T = (1 A_1^{(1)} A_2^{(1)} \cdots A_{K_1}^{(1)})$$

Matrix version: Last layer, first step

$$egin{array}{lcl} Z_m & = & eta_{m0} + \sum_{\ell=1}^{K_2} eta_{m\ell} h_\ell^{(2)}(X) \ & = & eta_{m0} + \sum_{\ell=1}^{K_2} eta_{m\ell} A_\ell^{(2)}, \ & & \mathbf{Z} = eta \cdot \mathbf{A} \ & eta & ext{is } M imes (K_2 + 1) ext{ matrix} & (\mathbf{A}^{(2)})^T = (1 \ A_1^{(2)} \ A_2^{(2)} \ \cdots \ A_{K_0}^{(2)}) \end{array}$$

The last column for classification: Softmax

$$f_m(X) = \Pr(Y = m|X) = \frac{e^{Z_m}}{\sum_{\ell=0}^{9} e^{Z_\ell}},$$

15 / 20

Munch (MSU-CMSE) Wed, Nov 30, 2022

An example

$$Z = \begin{pmatrix} 1 & 3 & -1 & 2 & 5 \end{pmatrix}$$

MNIST

0123456789 0123456789 0123456789

링

Coding

Dr. Munch (MSU-CMSE)

TL;DR

Feed Forward Neural Net

$$A_k = h_k(X) = g(w_{k0} + \sum_{j=1}^p w_{kj}X_j),$$

- Combines input data using learned weights
- Linear combo of those to get output
- Sometimes softmax to get probability of classification

Or. Munch (MSU-CMSE) Wed, Nov 30, 2022

Next time

20	F	Nov 4	Polynomial & Step Functions.	7.1,7.2	
21	М	Nov 7	Step Functions	7.2	
22	W	Nov 9	Basis functions, Regression Splines	7.3,7.4	
23	F	Nov 11	Decision Trees	8.1	HW #7 Due
24	М	Nov 14	Random Forests	8.2.1, 8.2.2	
25	W	Nov 16	Maximal Margin Classifier	9.1	
26	F	Nov 18	SVC	9.2	HW #8 Due
27	М	Nov 21	SVM	9.3, 9.4, 9.5	
28	W	Nov 23	Extended virtual office hours		
	F	Nov 25	No class - Thanksgiving		
29	М	Nov 28	Single layer NN	10.1	HW #9 Due
30	W	Nov 30	Multi Layer NN	10.2	
31	F	Dec 2	CNN	10.3	
32	М	Dec 5	Unsupervised Learning & Clustering	12.1, 12.4	HW #10 Due
	W	Dec 7	Review		
	F	Dec 9	Midterm #3	Bring your cheat sheet and a non-internet-connected calculator	

Or. Munch (MSU-CMSE) Wed, Nov 30, 2022