עבורה Vol $_n:\mathcal{P}\left(\mathbb{R}^n
ight)
ightarrow \left[0,\infty
ight]$ עבורה אזי לא קיימת $n\in\mathbb{N}$ יהי

- $.Vol_n([0,1]^n) = 1 \bullet$
- . $\operatorname{Vol}_n\left(\biguplus_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{n}\operatorname{Vol}_n\left(A_i\right)$ אזי $\left\{A_i
 ight\}_{i=1}^{\infty}\subseteq\mathcal{P}\left(\mathbb{R}^n
 ight)$ תהיינה
- . $\mathrm{Vol}_n\left(arphi\left(A
 ight)
 ight)=\mathrm{Vol}_n\left(A
 ight)$ אזי $A\subseteq\mathbb{R}^n$ איזומטריה ותהא $arphi:\mathbb{R}^n o\mathbb{R}^n$ תהא

קבוצות חופפות בחלקים: $X,Y\subseteq\mathbb{R}^n$ עבורן קיים $X,Y\subseteq\mathbb{R}^n$ קיימות עבורן איזומטריות איזומטריות איזומטריות $X,Y\subseteq\mathbb{R}^n$ איזומטריות איזומטריות איזומטריות $X,Y\subseteq\mathbb{R}^n$ וכן $X,Y\subseteq\mathbb{R}^n$ איזומטריות איזומטריות $X,Y\subseteq\mathbb{H}^n$ וכן $X,Y\subseteq\mathbb{H}^n$ איזומטריות המקיימות $X,Y\subseteq\mathbb{H}^n$ וכן $X,Y\subseteq\mathbb{H}^n$ איזומטריות א

 $X \equiv Y$ אזי בחלקים חופפות $X,Y \subseteq \mathbb{R}^n$ סימון: תהיינה

 $X \equiv Y$ אזי $(Y) \neq \varnothing$ וכן $(X) \neq \varnothing$ וחסומות עבורן אוינה $X,Y \subseteq \mathbb{R}^n$ ותהיינה ווהיינה $n \in \mathbb{N} \setminus \{0,1,2\}$ יהי היי $(Y) \neq \emptyset$ ותהיינה ווהיינה $(Y) \neq \emptyset$ ותהיינה אזי לא קיימת $(Y) \neq \emptyset$ ווהיינה אזי לא קיימת $(Y) \neq \emptyset$ ווהיינה אזי לא קיימת ווהיינה ו

- $.Vol_n([0,1]^n)=1 \bullet$
- . $\mathrm{Vol}_n\left(A \uplus B\right) = \mathrm{Vol}_n\left(A\right) + \mathrm{Vol}_n\left(B\right)$ אזי $A, B \subseteq \mathbb{R}^n$ תהיינה
- . $\mathrm{Vol}_n\left(\varphi\left(A\right)\right)=\mathrm{Vol}_n\left(A\right)$ אזי $A\subseteq\mathbb{R}^n$ איזומטריה ותהא $\varphi:\mathbb{R}^n o\mathbb{R}^n$ ההא

עבורה $\operatorname{Vol}_n:\mathcal{P}\left(\mathbb{R}^n
ight) o [0,\infty]$ אזי קיימת $n\in\{1,2\}$ יהי יהי

- $.Vol_n([0,1]^n)=1 \bullet$
- $\operatorname{Vol}_n\left(A \uplus B\right) = \operatorname{Vol}_n\left(A\right) + \operatorname{Vol}_n\left(B\right)$ אזי $A, B \subseteq \mathbb{R}^n$ תהיינה
- . $\mathrm{Vol}_n\left(arphi\left(A
 ight)
 ight)=\mathrm{Vol}_n\left(A
 ight)$ אזי $A\subseteq\mathbb{R}^n$ איזומטריה ותהא $arphi:\mathbb{R}^n o\mathbb{R}^n$ אהא

אלגברה: תהא א קבוצה אזי תהא אלגברה: אלגברה אלגברה

- $X \in \mathcal{A} \bullet$
- $\forall E \in \mathcal{A}.E^{\mathcal{C}} \in \mathcal{A} \bullet$
- . | או סופית מתקיים בכל $E\subseteq\mathcal{A}$

 $A\cap B\in\mathcal{A}$ אזי א $A,B\in\mathcal{A}$ טענה: תהא

אידיאל: תהא X קבוצה אזי $\mathcal{I}\subseteq\mathcal{P}\left(X
ight)$ המקיימת

- $X \notin \mathcal{I} \bullet$
- $\forall A \in \mathcal{I}. \forall B \subseteq A.B \in \mathcal{I} \bullet$
- $\bigcup E \in \mathcal{A}$ סופית מתקיים $E \subseteq \mathcal{A}$ לכל •

המקיימת $\mathcal{A}\subseteq\mathcal{P}\left(X
ight)$ אזי קבוצה X המקיימת σ

- $X \in \mathcal{A} \bullet$
- $\forall E \in \mathcal{A}.E^{\mathcal{C}} \in \mathcal{A} \bullet$
- . $\bigcup E \in \mathcal{A}$ בת מנייה מתקיים $E \subseteq \mathcal{A}$ לכל

מסקנה: תהא $\mathcal A$ אלגברה אזי σ אלגברה.

המקיימת $\mathcal{I}\subseteq\mathcal{P}\left(X
ight)$ אזי קבוצה אזי תהא X המקיימת σ

- $X \notin \mathcal{I} \bullet$
- $\forall A \in \mathcal{I}. \forall B \subseteq A.B \in \mathcal{I} \bullet$
- $\bigcup E \in \mathcal{A}$ בת מנייה מתקיים $E \subseteq \mathcal{A}$ לכל

טענה: תהיינה $G \cap_{\alpha \in I} A_{\alpha}$ אזי אזי $\sigma \in A_{\alpha}$ אלגברה $G \cap_{\alpha \in I} G \cap_{\alpha \in I} G$

אזי A אזי מעל X המכילות מעל כל ה σ ־אלגברה נוצרת: תהא א ותהיינה ותהיינה $A\subseteq\mathcal{P}\left(X\right)$ המכילות את א אזי $A\subseteq\mathcal{P}\left(X\right)$ המכילות את $A\subseteq\mathcal{P}\left(X\right)$ המכילות את $A\subseteq\mathcal{P}\left(X\right)$ המכילות את א אזי $A\subseteq\mathcal{P}\left(X\right)$ המכילות את א אזי המכילות את א וערכה א וועריינה וועריינה א וועריינה א וועריינה א וועריינה א וועריינה א וועריינה וועריינה א וועריינה א וועריינה וועריינה א וועריינה ווערינה וועריינה וועריינה ווערינה ווערינה ווערינה ווערינה ו

 $\mathcal{B}\left(X
ight)=\sigma\left(\left\{\mathcal{O}\in\mathcal{P}\left(X
ight)\mid$ פתוחה $\mathcal{O}
ight\}$ פתרי אזי מרחב מטרי אזי יהי מרחב מטרי אזי מרחב מטרי אזי

טענה: יהי X מרחב מטרי אזי הקבוצות הבאות שוות

- .X אלגברה בורל על σ
- $.\sigma\left(\left\{B_r\left(a\right)\mid\left(r>0\right)\wedge\left(a\in X\right)\right\}\right)$ •
- $.\sigma\left(\left\{B_r\left(a\right)\mid\left(r\in\mathbb{Q}_+\right)\wedge\left(a\in X\right)\right\}\right)$ •
- $.\sigma\left(\left\{B_{r}\left(a
 ight)\mid\left(r\in\mathbb{Q}_{+}
 ight)\wedge\left(a\in Y
 ight)
 ight\}
 ight)$ צפופה אזי $Y\subseteq X$ תהא ullet

 $A=igcap_{i=1}^\infty \mathcal{O}_i$ עבורה קיימות פתוחות פתוחות איימות $\{\mathcal{O}_i\}_{i=1}^\infty$ עבורה קיימות עבורה איימות $A\subseteq X:G_\delta$

```
A=igcup_{i=1}^\infty \mathcal{O}_i עבורה קיימות \{\mathcal{O}_i\}_{i=1}^\infty סגורות המקיימות A\subseteq X:F_\delta מסקנה: תהא A קבוצה G_\delta ותהא B קבוצה B אזי G_\delta ותהא B שענה: הקבוצות הבאות שוות \mathbb{R}^n טענה: הקבוצות הבאות שוות \sigma \bullet \mathcal{O}(\{\prod_{i=1}^n [a_i,b_i)\mid a_1,b_1\dots a_n,b_n\in\mathbb{R}\}) \bullet \mathcal{O}(\{\prod_{i=1}^n [a_i,b_i)\mid a_1,b_1\dots a_n,b_n\in\mathbb{R}\}) \bullet \mathcal{O}(\{\prod_{i=1}^n [a_i,b_i)\mid a_1,b_1\dots a_n,b_n\in\mathbb{Q}\}) \bullet \mathcal{O}(f)=\{x\in\mathbb{R}\mid x משפט: תהא f:\mathbb{R}\to\mathbb{R} ותהא f:\mathbb{R}\to\mathbb{R} ותהא f:\mathbb{R}\to\mathbb{R} אזי קיימת f עבורה f:\mathbb{R}\to\mathbb{R}
```

```
\operatorname{cint}\left(\overline{A}
ight)=arnothing המקיימת A\subseteq X המקיימת A\subseteq X המרחב מטרי אזי A=\bigcup_{i=1}^\infty B_i דלילות עבורן \{B_i\}_{i=1}^\infty אינות קבוצה מקטגוריה ראשונה: יהי A=\bigcup_{i=1}^\infty B_i מרחב מטרי אזי A\subseteq X שאינה מקטגוריה ראשונה. A\subseteq X מרחב מטרי אזי A\subseteq X מקטגוריה ראשונה אזי A\subseteq X מקטגוריה ראשונה אזי A\subseteq X מקטגוריה ראשונה אזי A^{\mathcal{C}}
```

למה: יהי X מרחב מטרי אזי

- . דלילה $B \subseteq A$ אזי $A \subseteq X$ דלילה תהא $A \subseteq X$
- . דלילה $\bigcup_{i=1}^n A_i$ אזי דלילות אזי $A_1 \dots A_n \subseteq X$ דלילה
 - . דלילה אזי \overline{A} דלילה אזי $A\subseteq X$ תהא •

מסקנה: קבוצות דלילות מהוות אידיאל.

 $\operatorname{cint}(A)=arnothing$ משפט בייר: יהי X מרחב מטרי שלם ותהא ותהא $A\subseteq X$ משפט בייר: יהי מרחב מטרי משפט בייר

מסקנה: קבוצות דלילות מהוות σ ־אידיאל.

 $\mathbb{Q} \notin G_{\delta}$:מסקנה

משפט בנך: במרחב המטרי $\{f\in C\left([0,1]\right)\mid\exists x\in\left(0,1\right).f\in\mathcal{D}\left(x\right)\}$ היא מקטגוריה מקסימום הקבוצה $C\left([0,1]\right)$ היא מקטגוריה במרחב המטרי ראשונה.

הערה: "רוב" הפונקציות הרציפות לא גזירות באף נקודה.

משפט: תהא $A\subseteq X$ מקטגוריה ראשונה עבורה $F\subseteq X$ משפט: (ל-A יש את תכונת בייר) \Longleftrightarrow (קיימת $A\subseteq X$ מקטגוריה ראשונה עבורה (ל- $A=F\triangle P$

מסקנה: תהא $A^{\mathcal{C}}$ בעלת תכונת בייר אזי $A\subseteq X$ בעלת תכונת בייר.

נסמן lpha+1 נסמן, $\mathcal{F}_0=\mathcal{T}\cup\{\varnothing,\Omega\}$ נסמן $\mathcal{T}\subseteq\mathcal{P}\left(X
ight)$ נסמן $\mathcal{T}\subseteq\mathcal{T}$, לכל סודר עוקב \mathcal{T}

באשר $\sigma\left(\mathcal{T}\right)=\mathcal{F}_{\omega_{1}}$ אזי $\mathcal{F}_{\lambda}=\bigcup_{\alpha<\lambda}\mathcal{F}_{\alpha}$ נסמן λ נסמן $\mathcal{F}_{\alpha+1}=\mathcal{F}_{\alpha}\cup\left\{A^{\mathcal{C}}\mid A\in\mathcal{F}_{\alpha}\right\}\cup\left\{\bigcap_{n=1}^{\infty}A_{n}\mid A_{n}\in\mathcal{F}_{\alpha}\right\}$ באשר ... הסודר הגבולי הקטן ביותר שאינו בן מניה.

 $|\sigma\left(X
ight)|=\aleph$ אזי אין אורה עבורה עבורה א קבוצה עבורה א

 (X,Σ) אזי אזי הרא האלגברה היה מרחב מדיד: תהא קבוצה חתהא קבוצה ותהא מידה: תהא $\mu:\Sigma\to [0,\infty]$ מרחב מדיד אזי (X,Σ) המקיימת פונקציית מידה: יהי (X,Σ) מרחב מדיד אזי

 $.\mu(\varnothing) = 0 \bullet$

 $.\mu\left(\biguplus_{i=1}^\infty B_i\right)=\sum_{i=1}^\infty \mu\left(B_i\right)$ אזי אזי זרות אזי אונות ההיינה פונקציות: תהיינה ההיינה אזי ותהא $\{B_i\}_{i=1}^\infty\subseteq\Sigma$ מרחב מידה: יהי (X,Σ,μ) מרחב מדיד ותהא μ פונקציית מידה אזי ותהא (X,Σ)

 $.\mu\left(X
ight) <\infty$ מידה סופית: פונקציית מידה μ מידה סופית:

. $\forall i\in\mathbb{N}_+.\mu\left(B_i
ight)<\infty$ וכן $X=igcup_{i=1}^\infty B_i$ מידה σ ־סופית: פונקציית מידה μ עבורה קיימים $\{B_i\}_{i=1}^\infty\subseteq\Sigma$ המקיימת μ המקיימת פונקציית מידה μ המקיימת μ המקיימת פונקציית מידה ווכן מידה שהמקיימת פונקציית מידה ווכן מידה שהמקיימת ווכן מידה שהמקיימת פונקציית מידה ווכן מידה שהמקיימת ווכן מידה שהמקיים שהמקיימת ווכן מידה שהמקיים שהמ

טענה: יהי (X,Σ,μ) מרחב מידה אזי

- $.\mu\left(A
 ight) \leq \mu\left(B
 ight)$ אזי $A\subseteq B$ באשר $A,B\in\Sigma$ יהיו מונוטוניות: יהיו
- $\mu\left(\bigcup_{i=1}^{\infty}A_{i}\right)\leq\sum_{i=1}^{\infty}\mu\left(A_{i}\right)$ אזי $\left\{A_{i}\right\}_{i=1}^{\infty}\subseteq\Sigma$ התראדיטיביות: תהיינה σ
- $.\mu\left(igcup_{i=1}^{\infty}A_{i}
 ight)=\lim_{n o\infty}\mu\left(A_{n}
 ight)$ אזי $orall i\in\mathbb{N}_{+}.A_{i}\subseteq A_{i+1}$ באשר באשר $\{A_{i}\}_{i=1}^{\infty}\subseteq\Sigma$ היינה Φ
- $\mu\left(\bigcap_{i=1}^\infty A_i\right)=\lim_{n\to\infty}\mu\left(A_n\right)$ אזי $\mu\left(A_1\right)<\infty$ וכן $\forall i\in\mathbb{N}_+.A_i\supseteq A_{i+1}$ באשר $\{A_i\}_{i=1}^\infty\subseteq\Sigma$ אזי היינה $\{A_i\}_{i=1}^\infty\subseteq\Sigma$ מידת בורל: תהא $\{A_i\}_{i=1}^\infty\subseteq\Sigma$ אזי מידה על $\{A_i\}_{i=1}^\infty\subseteq\Sigma$ מידת בורל: תהא $\{A_i\}_{i=1}^\infty\subseteq\Sigma$

 $\mu\left(E
ight) =0$ המקיימת $E\in\Sigma$:הניחה אפס

 $\mathcal{N}=\left\{ E\in\Sigma\mid\mu\left(E
ight)=0
ight\}$ סימון: יהי $\left(X,\Sigma,\mu
ight)$ מרחב מידה אזי

. אניחה $\bigcup_{i=1}^{\infty} E_i$ אזי אניחות אזי $\{E_i\}_{i=1}^{\infty} \subseteq \Sigma$ טענה: תהיינה

כמעט בכל מקום (כ.ב.מ.): יהי ψ פרידיקט עבורו קיימת $E\in\mathcal{N}$ המקיים כי ψ מתקיים לכל Xackslash E אזי נאמר כי ψ נכונה ψ בכל מקום..

 $F\in\mathcal{N}$ מתקיים $F\subset E$ ולכל ולכל עבורה מידה עבורה מידה מידה פונקציית מידה עבורה לכל

 $.\overline{\Sigma}=\{E\cup F\mid (E\in\Sigma)\wedge (\exists N\in\mathcal{N}.F\subseteq N)\}$ השלמה של σ ־אלגברה: יהי יהי (X,Σ,μ) מרחב מידה אזי

. טענה: יהי $\sigma \ \overline{\Sigma}$ אזי מידה מידה (
 (X,Σ,μ) יהי טענה: יהי

 $.
u_{
estriction}=\mu$ טענה: יהי על $\overline{\Sigma}$ עבורה מידה אזי קיימת ויחידה מידה אל מרחב מידה (X,Σ,μ) טענה:

 $.\overline{\mu}_{
ho_{\Sigma}}=\mu$ מרחב מידה אזי המידה השלמה על מידה: יהי יהי (X,Σ,μ) מרחב מידה אזי השלמה של מידה: יהי

טענה: יהי $(X,\overline{\Sigma},\overline{\mu})$ מרחב מידה אזי מרחב (X,Σ,μ) טענה: יהי

מחלקת דינקין: תהא $\mathcal{D}\subseteq\mathcal{P}\left(X\right)$ אזי $X\neq\varnothing$ תהא דינקין: מחלקת

- $X \in \mathcal{D} \bullet$
- $.B \backslash A \in \mathcal{D}$ אזי $A \subseteq B$ באשר $A, B \in \mathcal{D}$ יהיי •
- $.igcup_{i=1}^\infty A_i\in\mathcal{D}$ אזי $orall i\in\mathbb{N}_+.A_i\subseteq A_{i+1}$ באשר באשר $\{A_i\}_{i=1}^\infty\subseteq\mathcal{D}$ ההיינה ullet

 $\bigcap_{i=1}^n A_i \in \Pi$ מתקיים $A_1 \dots A_n \in \Pi$ עבורה לכל $\Pi \subseteq \mathcal{P}\left(X\right)$ אזי אזי $X
eq \varnothing$ מערכת π

. טענה: תהיינה $\bigcap_{lpha\in I}\mathcal{D}_lpha$ אזי אחלקות דינקין מחלקת $\{\mathcal{D}_lpha\}_{lpha\in I}\subseteq\mathcal{P}\left(X\right)$ טענה: תהיינה

 $d(A)=igcap_{lpha\in I}\mathcal{D}_lpha$ אזי א אזי אמכילות מעל A המכילות דינקין מעל A המרלקת ותהיינה $A\subseteq\mathcal{P}(X)$ ותהיינה $A\subseteq\mathcal{P}(X)$ הינה המחלקת דינקין הקטנה ביותר המכילה את $A\subseteq\mathcal{P}(X)$ אזי $A\subseteq\mathcal{P}(X)$ הינה המחלקת דינקין הקטנה ביותר המכילה את

למה: תהא A אלגברה על X עבורה לכל A עבורה לכל A באשר $A_i \in \mathbb{N}_+$ מתקיים $A_i \in \mathcal{A}$ מתקיים $A_i \in \mathcal{A}$ אזי A האלגברה. למה: תהא A אלגברה על A עבורה לכל $A_i \in \mathcal{A}$ באשר $A_i \in \mathbb{N}_+$ מתקיים $A_i \in \mathcal{A}$ מתקיים $A_i \in \mathcal{A}$ אזי $A_i \in \mathcal{A}$ משפט הלמה של דינקין: תהא $A_i \in \mathcal{A}$ מערכת $A_i \in \mathcal{A}$ אזי $A_i \in \mathcal{A}$ משפט הלמה של דינקין: תהא $A_i \in \mathcal{A}$ מערכת $A_i \in \mathcal{A}$ אזי $A_i \in \mathcal{A}$

עבורן Σ עבורן סופיות סופיות μ, ν מידות היינה $\Sigma = \sigma\left(\Pi\right)$ מערכת מערכת $\Pi \subseteq \mathcal{P}\left(X\right)$ מרחב מדיד תהא (X, Σ) מרחב מדיד תהא $\mu = \mu$ אזי ע $\mu_{\upharpoonright \Pi} = \nu_{\upharpoonright \Pi}$ וכן $\mu(X) = \nu\left(X\right)$

 $orall i\in\mathbb{N}_+.A_i\subseteq A_{i+1}$ באשר $\{A_i\}_{i=1}^\infty\subseteq\Pi$ מסקנה: יהי $\Sigma=\sigma(\Pi)$ מערכת עבורה ער $\Pi\subseteq\mathcal{P}(X)$ מערכת מדיד תהא (X,Σ) מידות על μ,ν מידות על μ,ν מידות על μ,ν בורך עבורך ν וכן ν

חוג למחצה: תהא $\mathcal{E}\subseteq\mathcal{P}\left(X\right)$ אזי קבוצה X המקיימת

- $\mathscr{A} \in \mathcal{E} ullet$
- $A \cap B \in \mathcal{E}$ יהיו $A, B \in \mathcal{E}$ יהיו •
- $A \backslash B = \biguplus_{i=1}^n C_i$ עבורם $C_1 \dots C_n \in \mathcal{E}$ אזי קיימים $A, B \in \mathcal{E}$ יהיי

טענה: יהי $A_1\ldots A_n\in\mathcal{E}$ חוג למחצה ויהיו $\mathcal{E}\subseteq\mathcal{P}\left(X
ight)$ אזי

- $.Packslash\bigcup_{i=1}^nA_i=\biguplus_{i=1}^mB_i$ יהי $P\in\mathcal{E}$ אזי קיימים יהי אז $P\in\mathcal{E}$ יהי •
- $.\bigcup_{i=1}^nA_i=\biguplus_{i=1}^m\biguplus_{j=1}^mB_{i,j}$ עבורם $\{B_{i,j}\mid (i\in[n])\wedge (j\in[m_i])\}\subseteq\mathcal{E}$ קיימים •
- $.\bigcup_{i=1}^nA_i=\biguplus_{i=1}^\infty\biguplus_{j=1}^{m_i}B_{i,j}$ עבורם $\{B_{i,j}\mid (i\in\mathbb{N}_+)\wedge (j\in[m_i])\}\subseteq\mathcal{E}$ קיימים •

מידה אלמנטרית: יהי $\mu:\mathcal{E}
ightarrow [0,\infty]$ חוג למחצה אזי $\mathcal{E}\subseteq\mathcal{P}\left(X
ight)$ המקיימת

- $.\mu(\varnothing) = 0 \bullet$
- . $\mu\left(A\uplus B\right)=\mu\left(A\right)+\mu\left(B\right)$ אזי אזי $A\uplus B\in\mathcal{E}$ עבורם אדיטיביות: תהיינה $A,B\in\mathcal{E}$

- $\mu\left(A\right)\leq\mu\left(B\right)$ אזי $A\subseteq B$ באשר $A,B\in\mathcal{E}$ מונוטוניות: תהיינה
- $.\mu\left(\bigcup_{i=1}^{\infty}A_i\right)\leq\sum_{i=1}^{\infty}\mu\left(A_i\right)$ אזי $\left\{A_i\right\}_{i=1}^{\infty}\subseteq\mathcal{E}$ התיינה ס־תת־אדטיביות: תהיינה σ

 $\{[a,b)\mid a\leq b\}$ עולה ורציפה משמאל אזי $\mu_F\left([a,b)
ight)=F\left(b
ight)-F\left(a
ight)$ אזי $F:\mathbb{R} o\mathbb{R}$ עולה ורציפה משמאל אזי $\mu_F\left([a,b)
ight)=F\left(b
ight)-F\left(a
ight)$ מידה חיצונית: יהי $X
eq\emptyset$ אזי $X
eq\emptyset$ אזי $X
eq\emptyset$ המקיימת

- $.\mu^*\left(\varnothing\right) = 0 \bullet$
- $.\mu^{*}\left(A
 ight)\leq\mu^{*}\left(B
 ight)$ אזי $A\subseteq B$ באשר $A,B\in\mathcal{P}\left(X
 ight)$ מונוטוניות: תהיינה
- $\mu\left(\bigcup_{i=1}^{\infty}A_{i}
 ight)\leq\sum_{i=1}^{\infty}\mu\left(A_{i}
 ight)$ אזי $\left\{A_{i}
 ight\}_{i=1}^{\infty}\subseteq\mathcal{P}\left(X
 ight)$ היינה σ •

 $ho\left(\varnothing
ight)=0$ עבורה $ho:\mathcal{E} o [0,\infty]$ ווהא $arphi,X\in\mathcal{E}$ באשר בשר בשר $arphi:\mathcal{E}\to [0,\infty]$ עבורה $ho:\mathcal{E}\to [0,\infty]$ באשר $ho:\mathcal{E}\to [0,\infty]$ באשר $ho:\mathcal{E}\to [0,\infty]$ באשר בעבורה $ho:\mathcal{E}\to [0,\infty]$ באשר בעבורה $ho:\mathcal{E}\to [0,\infty]$ באשר בעבורה $ho:\mathcal{E}\to [0,\infty]$

. טענה: יהי ho^* אזי ho(arnothing)=0 אזי $ho:\mathcal{E} o[0,\infty]$ ותהא מידה חיצונית. באשר $\mathcal{E}\subseteq\mathcal{P}(X)$ אזי יהי

 $.m_{
ho_M}^*=m$ אזי אלמנטרית מידה מידה ותהא חוג למחצה חוג חוג למחצה ותהא מידה אלמנטרית חוג למחצה א

קבוצה $K\in\mathcal{A}$ אזי λ (\varnothing) =0 אזי λ (\varnothing) אוי λ (\varnothing) אזי λ אלגברה ותהא $A\subseteq\mathcal{P}(X)$ אזי $A\subseteq\mathcal{P}(X)$ אזי λ ($E\cap F$) אלגברה ותהא λ ($E\cap F$) אוי λ ($E\cap F$) אוי ($E\cap F$) אוי

 $\Gamma_0=\{E\in\mathcal{A}\mid\lambda$ קבוצה $E\}$ אזי λ (\varnothing) =0 עבורה $\lambda:\mathcal{A} o[0,\infty]$ אלגברה ותהא $\mathcal{A}\subseteq\mathcal{P}(X)$ אזי עבורה $\lambda:\mathcal{A} o[0,\infty]$ אלגברה ותהא $\lambda:\mathcal{A} o[0,\infty]$ אלגברה ותהא $\lambda:\mathcal{A} o[0,\infty]$ אלגברה ותהא $\lambda:\mathcal{A} o[0,\infty]$

- .אלגברה Γ_0
- $.\Gamma_0$ אדיטיבית על λ
- $\lambda\left(\biguplus_{i=1}^{n}\left(E_{k}\cap F
 ight)
 ight)=\sum_{i=1}^{n}\lambda\left(E_{n}\cap F
 ight)$ אזי $F\in\mathcal{A}$ ויהי ויהי $E_{1}\dots E_{n}\in\Gamma_{0}$

קבוצה מדידה ביחס למידה חיצונית: תהא μ^* מידה חיצונית: עבורה לכל קבוצה מדידה מדידה $E\subseteq X$ מתקיים μ^* (E) μ^* (E) μ^* (E) μ^* (E) μ^* (E) μ^* (E) μ^* (E)

 $.\Sigma_{\mu^*} = \{A \subseteq X \mid \mu^*$ מדידה $A\}$ אזי על א מידה חיצונית μ^* מהא סימון: תהא μ^*

 $\mathcal{M}\subseteq \Sigma_{m^*}$ אזי אלמנטרית מידה m מידה ותהא חוג למחצה ותהא אוי

משפט הלמה של קרתאודורי: תהא μ^* מידה חיצונית על X אזי

- . אלגברה σ Σ_{μ^*}
- . מידה שלמה $\mu^*_{
 estriction_{\Sigma,..*}}$

 Σ_{m^*} מידה מעל $\mu=m^*$ אזי אלמנטרית מידה אלמנטרית חוג למחצה חוג למחצה חוג למחצה ותהא מידה אלמנטרית מידה אלמנטרית היה מעל

משפט: יהי \mathcal{M} חוג למחצה תהא m מידה אלמנטרית ותהא (X,Σ',μ') המשכת מידה אלמנטרית מידה מידה משפט: יהי משפט

- $.\mu'\left(A
 ight)\leq\mu\left(A
 ight)$ מתקיים $A\in\Sigma'\cap\Sigma_{m^{st}}$ לכל •
- $.\mu'\left(A\right)=\mu\left(A\right)$ מתקיים $A\in\Sigma'\cap\Sigma_{m^{*}}$ לכל אזי לכל $\mu\left(X\right)<\infty$ ים כי נניח כי
- $.\mu'\left(A
 ight)=\mu\left(A
 ight)$ מתקיים $A\in\Sigma'\cap\Sigma_{m^*}$ לכל אזי לכל - σ m נניח כי σ

מידה אלמנטרית המשכת קרתיאודורי יחידה. מסקנה: יהי ${\mathcal M}$ חוג למחצה ותהא m מידה אלמנטרית חוג למחצה ותהא m

מתקיים $d\left(A,B\right)>0$ באשר $A,B\subseteq X$ מידה חיצונית עבורה לכל מידה מטרי ותהא מידה מטרי מרחב מטרי ותהא μ^* מידה מידה $A,B\subseteq X$ באשר $A,B\subseteq X$ מתקיים $B(X)\subseteq \Sigma_{u^*}$ אזי $A,B\subseteq X$ אזי $A,B\subseteq X$

 $.\mu\left(A\right)=\sup\left\{ \mu\left(K\right)\mid\left(K\subseteq A\right)\wedge\left($ קומפקטית אבורה $K\right)\right\}$ עבורה $A\in\Sigma$ קבוצה רגולרית: קבוצה קבוצה אבורה

. מידה רגולרית: מידה $A\in \Sigma$ כל עבורה מידה מידה מידה מידה מידה עבורה מידה

. תולרית. אזי μ אזי אוי μ מטרי אולם: יהי אולם: יהי שלם וספירבילי ותהא וחפירבילי ותהא אולם: יהי אולם: יהי אוי שלם וספירבילי ותהא אוי

עבורה $\{\prod_{i=1}^n (a_i,b_i) \mid a_1,b_1\dots a_n,b_n\in\mathbb{R}\}$ עבורה מידה אלמנטרית: מידה מידה מידה מידה אלמנטרית

 $.m(\prod_{i=1}^{n} (a_i, b_i)) = \prod_{i=1}^{n} (b_i - a_i)$

 $\mathcal{L}\left(\mathbb{R}^n
ight)=\sigma\left(\{A\subseteq\mathbb{R}^n\mid ($ מתוחה $A)\lor($ פתוחה הנפח האלמנטרית פי מידת על פי מידת אניחה על פי מידת הנפח האלמנטרית) מסקנה: $\mathcal{B}\left(\mathbb{R}^d\right)\subset\mathcal{L}\left(\mathbb{R}^d\right)$

מסקנה: תהא u ($\prod_{i=1}^n (a_i,b_i)$) = $\prod_{i=1}^n (b_i-a_i)$ מידה אלמנטרית מידה אלמנטרית מידה אלמנטרית עבורה u : $\mathcal{L}(\mathbb{R}^n) \to [0,\infty]$ אזי u הינה מידת הנפח האלמנטרית.

```
טענה: תהא \lambda מידת לבג אזי
```

- $.\lambda\left(E
 ight)=\lim_{n o\infty}\lambda\left(E\cap\left[-n,n
 ight]^{d}
 ight)$ אזי $E\in\mathcal{L}\left(\mathbb{R}^{d}
 ight)$ תהא
- $A(\mathcal{O}\backslash E)<arepsilon$ פתוחה עבורה $E\subseteq\mathcal{O}$ אזי קיימת arepsilon>0 ויהי ויהי ויהי $E\in\mathcal{L}\left(\mathbb{R}^d
 ight)$
- $.\lambda\left(E\backslash F\right)<\varepsilon$ סגורה עבורה אזי
ס $F\subseteq E$ אזי קיימת $\varepsilon>0$ ויהי ויהי
 $E\in\mathcal{L}\left(\mathbb{R}^{d}\right)$ תהא •
- $A\left(Eackslash F
 ight)<arepsilon$ עבורה $E\in\mathcal{L}\left(\mathbb{R}^d
 ight)$ אאי קיימת $E\in\mathcal{L}\left(\mathbb{R}^d
 ight)$ עבורה $E\in\mathcal{L}\left(\mathbb{R}^d
 ight)$
- $A,B\in\mathcal{B}\left(\mathbb{R}^{d}
 ight)$ וכן $A\subset E\subset B$ וכן $A,B\in\mathcal{B}\left(\mathbb{R}^{d}
 ight)$, וכן $A\in\mathcal{E}\subset\mathbb{R}^{d}$ אזי $A,B\in\mathcal{B}\left(\mathbb{R}^{d}
 ight)$

טענה: תהא μ מידת לבג ותהא $A\subseteq\mathbb{R}^d$ התב"ש

- $A \in \mathcal{L}\left(\mathbb{R}^d\right)$ •
- A=Gackslash E עבורן $E\in\mathcal{N}$ וקיימת וקיימת $G\in G_\delta$
- $A=F\cup E$ עבורן $E\in\mathcal{N}$ וקיימת וקיימת $F\in F_{\sigma}$

 $(\mathcal{B}\left(\mathbb{R}^d
ight),m)$ מסקנה: תהא λ מידת לבג אזי ($\mathcal{L}\left(\mathbb{R}^d
ight),\lambda$) מסקנה: תהא

אזי $A\subseteq\mathcal{O}$ אזי ותהא $f:\mathcal{O} o\mathbb{R}^d$ משפט: תהא לבג תהא לבג תהא $\mathcal{O}\subseteq\mathbb{R}^d$ משפט: תהא לבג תהא

- $f\left(A
 ight)\in\mathcal{L}\left(\mathbb{R}^{d}
 ight)$ אזי $A\in\mathcal{L}\left(\mathbb{R}^{d}
 ight)$ נניח כי
 - $\lambda\left(f\left(A\right)\right)=0$ נניח כי $\lambda\left(A\right)=0$ אזי •

 $.\lambda\left(A
ight)=\lambda\left(A+x
ight)$ אזי $x\in\mathbb{R}^{n}$ ויהי $A\in\mathcal{L}\left(\mathbb{R}^{n}
ight)$ משפט אינווריאנטיות להזזות: תהא

מסקנה: תהא $\nu\left(E\right)<\infty$ חבומה מתקיים בע היינו וכן לכל לכל לכל $E\in\mathcal{L}\left(\mathbb{R}^d\right)$ מיים מידה אינווריאנטית מידה אינווריאנטית מידה אינווריאנטית הא $\nu:\mathcal{L}\left(\mathbb{R}^n\right)\to\left[0,\infty\right]$ אזי קיים $\lambda=\kappa \nu$ אוורי אנטית הא $\kappa\in\left[0,\infty\right)$

 $\lambda\left(T\left(E
ight)
ight)=\left|\det\left(T
ight)
ight|\lambda\left(E
ight)$ אזי $E\in\mathcal{L}\left(\mathbb{R}^{d}
ight)$ ותהא $T\in\operatorname{Hom}\left(\mathbb{R}^{d}
ight)$ משפט: תהא

 $A=\prod_{i=1}^n{(a_i,b_i)}$ המקיימים $a_1,b_1\dots a_n,b_n\in\mathbb{R}$ עבורה קיימים עבורה עבורה $A\subseteq\mathbb{R}^d$ המדרה: תהא $E\subseteq\mathbb{R}^d$ חסומה ותהא A

- $.\lambda_{*,J}\left(E
 ight)=\sup\left\{ \lambda\left(A
 ight)\mid\left($ מידת ז'ורדן פנימית: $A
 ight)\wedge\left(A\subseteq E
 ight)
 ight\}$ מידת ז'ורדן פנימית:
- $\lambda_I^*(E) = \inf \left\{ \lambda\left(A\right) \mid (A \supseteq E) \right\}$ מידת ז'ורדן חיצונית: \bullet

 $\lambda_{J}\left(E
ight)=\lambda_{J}^{*}\left(E
ight)$ אזי אזי $\lambda_{*,J}\left(E
ight)=\lambda_{J}^{*}\left(E
ight)$ חסומה עבורה $E\subseteq\mathbb{R}^{d}$ אזי אזי

 $.\lambda_{J}^{*}\left(E
ight)=\lambda\left(\overline{E}
ight)$ וכן $\lambda_{*,J}\left(E
ight)=\lambda\left(\mathrm{int}\left(E
ight)
ight)$ חסומה אזי וכך וכך תהא ב

 $E\subseteq\mathbb{R}^d$ טענה: תהא $E\subseteq\mathbb{R}^d$ חסומה ותהא

- מדידה ז'ורדן. $E \bullet$
- $A(B\backslash A)<arepsilon$ וכן $A\subseteq E\subseteq B$ פשוטות עבורן A,B אזי קיימות arepsilon>0
 - $\lambda_I^*(\partial E) = 0 \bullet$
 - $.\lambda^* (\partial E) = 0 \bullet$

 $(x-y)\in\mathbb{Z}^d\setminus\{0\}$ עבורם $x,y\in E$ אזי קיימים $\lambda\left(E
ight)>1$ עבורה $E\in\mathcal{L}\left(\mathbb{R}^d
ight)$ למה: תהא

 $V\cap (\mathbb{Z}^d\setminus\{0\})
eq \emptyset$ אזי איז אוף קמור סימטרי סביב עבורו עבורו אזי אזי אזי אזי $V\subseteq\mathbb{R}^d$ משפט מינקובסקי: יהי

 $\lambda\left(E\cap Q
ight)> heta\cdot\lambda\left(Q
ight)$ עבורה $Q\subseteq\mathbb{R}^d$ אזי קיימת קוביה $\theta\in(0,1)$ ותהא $\lambda\left(E
ight)\in(0,\infty)$ עבורה $E\in\mathcal{L}\left(\mathbb{R}^d\right)$ אזי קיימת קוביה $E\in\mathcal{L}\left(\mathbb{R}^d\right)$ עבורה $E\in\mathcal{L}\left(\mathbb{R}^d\right)$ אזי קיימת שטיינהאוס: תהא $E\in\mathcal{L}\left(\mathbb{R}^d\right)$ עבורה $E\in\mathcal{L}\left(\mathbb{R}^d\right)$ אזי קיימת קוביה שטיינהאוס: תהא

 $(x-y)\in\mathbb{Q}ackslash\{0\}$ עבורם $x,y\in E$ אזי קיימים אזי עבורה $\lambda\left(E
ight)>0$ עבורה $E\in\mathcal{L}\left(\mathbb{R}
ight)$

 $\mathcal{O}=(\biguplus_{i=1}^\infty B_i)\cup E$ עבורם $E\in\mathcal{N}$ עבורים וקיימת למה: תהא $\mathcal{O}=(\biguplus_{i=1}^\infty B_i)\cup E$ פתוחה אזי קיימים למה:

פונקציית התפלגות: