Algebraic Structure

Ву:-

M. Bhuvaneshwar Reddy(22H51A6730)

M. Pavana Manvitha (22H51A6731)

Algebraic Structure

- A non empty set S is called an algebraic structure w.r.t binary operation (*) if it follows the following axioms:
- Closure: (a*b) belongs to S for all a,b ? S.

Example:

S = {1,-1} is algebraic structure under *
As 1*1 = 1, 1*-1 = -1, -1*-1 = 1 all results belong to S.

Semi Group

- A non-empty set S, (S,*) is called a semigroup if it follows the following axiom:
 - Closure: (a*b) belongs to S for all a, b ? S.
 - Associativity: $a^*(b^*c) = (a^*b)^*c$? a, b, c belongs to S.
- **Example:** (Set of integers, +), and (Matrix,*) are examples of semigroup.

Monoid

- A non-empty set S, (S,*) is called a monoid if it follows the following axiom:
 - Closure: (a*b) belongs to S for all a, b ? S.
 - Associativity: $a^*(b^*c) = (a^*b)^*c$? a, b, c belongs to S.
 - Identity Element: There exists e ? S such that a*e = e*a = a ? a ? S

EXAMPLE:

(Set of integers,*) is Monoid as 1 is an integer which is also an identity element.

(Set of natural numbers, +) is not Monoid as there doesn't exist any identity element. But this is Semigroup.

But (Set of whole numbers, +) is Monoid with 0 as identity element.

Group

- A non-empty set G, (G,*) is called a group if it follows the following axiom:
 - Closure: (a*b) belongs to G for all a, b ? G.
 - Associativity: $a^*(b^*c) = (a^*b)^*c$? a, b, c belongs to G.
 - Identity Element: There exists e ? G such that a*e = e*a = a ? a ? G
 - Inverses:? a ? G there exists a^{-1} ? G such that $a^*a^{-1} = a^{-1}a^* = e^{-1}$

Abelian Group or Commutative group

- A non-empty set S, (S,*) is called a Abelian group if it follows the following axiom:
 - Closure: (a*b) belongs to S for all a, b ? S.
 - Associativity: $a^*(b^*c) = (a^*b)^*c$? a ,b ,c belongs to S.
 - Identity Element: There exists e ? S such that a*e = e*a = a ? a ? S
 - Inverses:? a ? S there exists a^{-1} ? S such that $a^*a^{-1} = a^{-1}^*a = e^{-1}$
 - Commutative: a*b = b*a for all a, b ? S

	Must Satisfy Properties
Algebraic Structure	Closure
Semi Group	Closure, Associative
Monoid	Closure, Associative, Identity
Group	Closure, Associative, Identity, Inverse
Abelian Group	Closure, Associative, Identity, Inverse, Commutative

