

RS485 模块 Modbus 通讯协议 V0.2

深圳曼顿科技有限公司

协议修改记录

版本	记录	日期
V0.2	1.更新 03 命令码的描述	2019年6月
	2.更新 04 命令码的描述	
	3.更新 05 命令码举例的描述	
	4.更新 06 命令码举例的描述	
	5.更新 16 命令码举例的描述	
V0.1	初版	

通信模块采用 485 通信接口,采用国际标准的 Modbus 通讯协议进行的主从通讯。用户可通过网络模块/PC 实现集中控制(监控模块数据、设置模块参数、开启/关闭 1P 和 2P 等),灵活适应特定的应用要求。(注:以下"主机"是指网络模块或个人计算机 PC、PLC 等,"从机"是指 485 通信模块),由于内存的限制本从机仅支持向下通信 11 路开关地址。

1 协议内容

该 Modbus 串行通信协议定义了串行通信中异步传输的帧内容及使用格式。其中包括: 主机轮询及广播帧、从机应答帧的格式; 主机组织的帧内容包括: 从机地址(或广播地址)、执行命令、数据和错误校验等。从机的响应也是采用相同的结构,内容包括: 动作确认,返回数据和错误校验等。如果从机在接收帧时发生错误,或不能完成主机要求的动作,它将组织一个故障帧作为响应反馈给主机。

2 总线结构

(1)接口方式

485 通信接口

(2)传输方式

异步串行,半双工传输方式。在同一时刻主机和从机只能有一个发送数据而另一个接收数据。数据在串行异步通信过程中,是以报文的形式,一帧一帧发送。网络中只有一个主机能够建立协议,称为"查询/命令"。从机只能通过提供数据响应主机的"查询/命令",或根据主机的"查询/命令"做出相应的动作。主机既能对某个从机单独进行通信,也能对所有从机发布广播信息。对于单独访问的主机"查询/命令",从机都要返回一个信息,称为响应,对于主机发出的广播信息,从机不能反馈响应信息给主机。

(3)拓扑结构

单主机多从机系统,使用一条总线连接。从机地址的设定范围为 1 ~ 247, 0 和 255 为广播通信地址。网络中的每个从机的地址都具有唯一性。这是保证 Modbus 通讯的基础。

3 通讯帧结构

从机支持标准的 Modbus 协议通信数据格式 RTU/ASCII(1-0),传输速率支持 2400/4800/9600/14400/19200/28800/38400/56000(1-8), 奇偶校验(0-ODD,1-EVEN,2-2 停止位,3-1 停止位)1 起始 bit、8 数据 bit。

基本字节数据格式的描述如下表: 起始位、8个数据位、1个停止位。

11-bit 字符帧:

起始位 bit0 bit1 bit2 bit3 bit4 bit5 bit6	bit7	奇偶校 验	停止位	
--	------	-------	-----	--

在 RTU 模式中(ASCII 方式不做介绍),新帧总是以至少 3.5 个字节的传输时间静默作为开始。在以波特率计算传输速率的网络上,3.5 个字节的传输时间可以轻松把握。紧接着传输的数据域依次为:从机地址、操作命令码、数据和 CRC 校验字。从机始终监视着通讯总线的活动。当接收到第一个域(地址信息),每个从机设备都对该字节进行确认。随着最后一个字节的传输完成,又有一段类似的 3.5 个字节的传输时间间隔,用来表识本帧的结束,在此以后,将开始一个新帧的传送。

一个帧的信息必须以一个连续的数据流进行传输,如果整个帧传输结束前有超过 1.5 个字节以上的间隔时间,从设备将清除这些不完整的信息,并错误 认为随后一个字节是新一帧的地址域部分,同样的,如果一个新帧的开始与前一个帧的间隔时间小于 3.5 个字节时间,接收设备将认为它是前一帧的继续,由于帧的错乱,最终 CRC 校验值不正确,从设备将会抛弃该帧,导致通信中断。RTU 帧的标准结构:

帧头START	3.5个字节的传输时间,此时间作为总线空闲时间,无需传输数据
从机地址域 ADDR	通讯地址:0~247(十进制)(0、256为广播地址)
功能域CMD	0x03:读从机实时数据;0x04:读从机参数;0x06:单个写从机参数;0x16:批量写从机参数
数据域 DATA	2*N个字节的数据,该部分为通讯的主要内容,也是通讯中,数据交换的核心。
CRC低位 CRC高位	CRC校验值 (16bit)
帧尾END	3.5个字节的传输时间,此时间作为总线空闲时间,无需传输数据

4 命令码及通讯数据域描述(控制和修改指令请不要以很小的间隔发送,由于内存有限,超过缓存池的指令将不会执行)

从机支持共9种命令码,分别是:

01: 读取开关合/分闸状态;

- 02: 读取是否能被远程控制
- 01: (特殊) 读取哪些开关地址存在
- 02: (特殊) 读取哪些开关是 3 相开关
- 03: 读从机实时数据;
- 04: 读从机参数;
- 05: 控制开关合/分闸;
- 06: 写单个从机参数;
- 15: 批量写控制开关合/分闸;
- 16: 批量写从机参数;
- 4.1 CMD 命令码: 01 (0000 0001) 读取开关合/分闸状态,读取 N 位 (bit),根据底层开关地址顺序排列:

主机发送: 起始地址 (从 1 开始,小于参数地址上限,实际发送数据减 1),返回数据个数 (字 bit 数,大于 0,小于上限)

从机返回:返回**字节**数 (8bit 为一字节,bit 位不足一个字节按照一个字节计算),从机参数数据,返回 bit1 表示合闸

Bit	7	6	5	4	3	2	1	0
数据字节1 对应开关地址	8	7	6	5	4	3	2	1
数据字节2 对应开关地址	16	15	14	13	12	11	10	9
(以此类推)	24	23	22	21	20	19	18	17

例:从机地址为 0x01,从开关地址 1 开始连续读取 9 个开关,则该帧的结构描述如下:

RTU主	机命令信息	RTU从机回应信息				
ADDR	0x01	ADDR	0x01			
CMD	0x01	CMD	0x01			
启始地址高位	0x00	字节个数	0x02			
启始地址低位	0x00 (底层开关地址1)	数据字节1	0x13 (对应开关地址1-8)			
数据个数高位	0x00	数据字节2	0x00 (对应开关地址9-16)			
数据个数低位	0x09 (bit)	CRC低位	0xB4			
CRC低位	0xFC	CRC高位	0xCC			
CRC高位	0x0C					

4.2 CMD 命令码: 02 (0000 0010) 读取开关是否能被远程控制状态,读取 N 位 (bit),根据底层开关地址顺序排列:

主机发送: 起始地址 (从 1 开始, 小于参数地址上限, 实际发送数据减 1), 返回数据个数 (字 bit 数, 大于 0, 小于上限)

从机返回:返回**字节**数(8bit 为一字节,bit 位不足一个字节按照一个字节计算),从机参数数据返回 bit1 表示不能远控

(同上)

4.3 CMD 命令码: 01 (0000 0001) 读取开关是否存在,读取全部可能存在的位 (bit),根据底层开关地址顺序排列:

主机发送: 起始地址固定为 0,"数据个数"固定为 0x00FF。(这里属于特殊的参数)

从机返回:字节个数:为最大支持开关数量/8 取整数部分 (有小数存在则+1),数据字节: bit1 表示存在此开关

(同上)

CMD 命令码: 02 (0000 0010) 读取开关是否为三相开关,读取全部可能存在的位 (bit),根据底层开关地址顺序排列:

主机发送: 起始地址固定为 0,"数据个数"固定为 0x00FF。(这里属于特殊的参数)

从机返回:字节个数:为最大支持开关数量/8 取整数部分(有小数存在则+1)字节数,数据字节:bit1 表此示开关为三相开关(同上)

4.4 CMD 命令码: 03 (0000 0011) **读从机实时数据**,读取 N 个字 (Word) 对应**数据域**格式 (具体地址含义见附表 1):

主机发送: 起始地址(从0开始,小于数据地址上限),返回数据个数(字Word数,大于0,小于上限)

从机返回:返回字节数,从机实时数据(远程模式增加返回:参数地址,底层开关起始地址)

例:从机地址为0x01,功能地址0x03,从开关地址2开始连续读取两个开关(连续读取为按顺序排列的底层开关地址),则该帧结构如下:

R ⁻	「U主机命令信息	RTU从机回应信息		RTU从机回应信息(远程模式)			
ADDR	0x01	ADDR	0x01	ADDR	0x01		
CMD	0x03	CMD	0x03	CMD	0x03		
启始地址高位	0x04 (具体功能地址0-255)	字节个数	0x04	启始地址高位	0x04		
启始地址低位	0x01 (底层开关地址2)	底层开关2,数据地址0004H高位	0x13	启始地址低位	0x01		
数据个数高位	0x00	底层开关2,数据地址0004H低位	0x88	字节个数	0x04		
数据个数低位	0x02	底层开关3,数据地址0004H高位	0x13	底层开关2,数据地址0004H高位	0x13		
CRC低位	0x94	底层开关3,数据地址0004H低位	0x88	底层开关2,数据地址0004H低位	0x88		
CRC高位	0xFB	CRC低位	0x73	底层开关3,数据地址0004H高位	0x13		
		CRC高位	0xCB	底层开关3,数据地址0004H低位	0x88		
_				CRC低位	0x7B		
				CRC高位	0x5C		

4.5 CMD 命令码: 04 (0000 0100) 读从机参数,读取 N 个字 (Word)对应数据域格式 (具体地址含义见附表 2):

主机发送: 起始地址(从0开始,小于参数地址上限,底层开关地址从0开始表示地址1),返回数据个数(字Word数,大于0,小于上限)从机返回:返回**字节**数,从机参数数据(远程模式增加返回:参数地址,底层开关起始地址)

此命令与上条类似,请参考上一条命令举例。

4.6 CMD 命令码: 05 (0000 0101) 写开关合/分闸状态,写取 1 位 (bit):

主机发送: 底层开关地址 (从 0 开始,小于参数地址上限,发送 0xFF 表示广播),合发送 0xFF00,分发送 0x0000

从机返回:镜像信息表示响应成功。, **当命令缓存池满以后会返回 0x06 从设备忙异常代码**,可延迟一段时间再试(可能仅部分指令执行)

例:从机地址为 0x01,底层开关地址 5,控制合闸,则该帧的结构描述如下:

	机命令信息	RTU从机回应信息					
ADDR	0x01	ADDR	0x01				
CMD	0x05	CMD	0x05				
启始地址高位	0x00	启始地址高位	0x00				
启始地址低位	0x04 (底层开关地址5)	启始地址低位	0x04 (底层开关地址5)				
数据高字节	0xFF (合闸)	数据高字节	0xFF (合闸)				
数据低字节	0x00	数据低字节	0x00				
CRC低位	0x9C	CRC低位	0x48				
CRC高位	0x3B	CRC高位	0xFD				

4.7 CMD 命令码: 06 (0000 0110) **写从机参数**,写 1 个字 (Word)对应数据域格式 (具体地址含义见附表 3):

主机发送:目标地址(从0开始,小于参数地址上限,**底层开关地址从0开始表示地址1,底层开关地址0xF0表示从机自身参数设定)**,数据内容(字Word)

从机返回:修改地址,从机修改后数据(字 Word),**当命令缓存池满以后会返回 0x06 从设备忙异常代码**,可延迟一段时间再试

例如: 将5000 (1388H) 写到从机地址 0x02, 0x00 功能地址, 底层开关地址 5。则该帧的结构描述如下:

RT	U主机命令信息	RTU 从机回应信息				
ADDR	0x02	ADDR	0x02			
CMD	0x06	CMD	0x06			
写数据地址高位	0x00 (具体功能地址0-255)	写数据地址高位	0x00 (具体功能地址0-255)			
写数据地址低位	0x04 (底层开关地址5)	写数据地址低位	0x04 (底层开关地址5)			
数据内容高位	0x13	数据内容高位	0x13			
数据内容低位	0x88	数据内容低位	0x88			
CRC低位	0x94	CRC低位	0x94			
CRC高位	0xAE	CRC高位	0xAE			

4.8 CMD 命令码: 16 (0001 0000) 批量写从机参数,写指定个数的字 (Word) 对应数据域格式 (具体地址含义见附表 3):

主机发送:目标地址(从0开始,小于参数地址上限),数据内容(字Word)

从机返回:修改地址,从机修改后数据(字 Word), 当命令缓存池满以后会返回 0x06 从设备忙异常代码,可延迟一段时间再试(可能仅部分

指令执行)

例如:从机地址 0x01,0x00 功能地址,从底层开关地址 1 开始连续写入 3 个参数。则该帧的结构描述如下:

RT	U主机命令信息	RTI	J从机回应信息
ADDR	0x01	ADDR	0x01
CMD	0x10	CMD	0x10
写数据地址高位	0x00 (具体功能地址0-255)	写数据地址高位	0x00 (具体功能地址0-255)
写数据地址低位	0x00 (底层开关地址1)	写数据地址低位	0x00 (底层开关地址1)
数据个数高位	0x00	数据个数高位	0x00
数据个数低位	0x03	数据个数低位	0x03
控制字节数	0x06	CRC低位	0x80
数据1高位	0x00	CRC高位	0x08
数据1低位	0xFA		
数据2高位	0x00		
数据2低位	0xFF		
数据3高位	0x01		
数据3低位	0x04		
CRC低位	0xCA		
CRC高位	0xF6		

4.9 CMD 命令码: 15 (0000 1111) 批量控制开关合/分闸状态,写 N 位 (bit,缓存限制不能一次控制超过 8 个),根据底层开关地址顺序排列: 主机发送:底层开关起始地址(从 1 开始,小于参数地址上限,实际发送数据减 1),控制开关数量,以及控制字节数量(不足 8bit,按 1 算),具体对应开关的控制数据 1 代表合闸,0 代表分闸(按照 bit0-bit7 顺序排列)。

从机返回:底层开关起始地址(从1开始,小于参数地址上限,实际发送数据减1),控制开关数量。**当命令缓存池满以后会返回 0x06 从设备忙异常代码**,可延迟一段时间再试(可能仅部分指令执行)

例: 从机地址为 0x01,从开关地址 3 开始连续改变 5 个开关状态 (3 号分,4 号合,5 号分,6 号合,7 号分,0000 1010),则该帧的结构描述如下:

RTU主						
ADDR	0x01	ADDR	0x01			
CMD	0x0F	CMD	0x01			
启始地址高位	0x00	启始地址高位	0x00			
启始地址低位	0x02 (底层开关地址3)	启始地址低位	0x02 (对应开关地址3)			
数据个数高位	0x00	数据个数高位	0x00			
数据个数低位	0x05 (bit)	数据个数低位	0x05			
控制字节数	0x01	CRC低位	0x34			
控制数据1	0x0A(0000 1010)	CRC高位	0x08			
CRC低位	0x96					
CRC高位	0x91					

4.10 通讯帧错误校验方式

在标准模式中,帧的错误校验方式主要包括两个部分的校验,即字节的位校验(奇/偶校验)和帧的整个数据校验(CRC 校验或 LRC 校验)。在这里经简化,只采用整个数据的 CRC 校验。

CRC 校验方式:

使用 RTU 帧格式,帧包括了基于 CRC 方法计算的帧错误检测域。CRC 域检测了整个帧的内容。CRC 域是两个字节,包含 16 位的二进制值。它由传输设备计算后加入到帧中。接收设备重新计算收到帧的 CRC,并与接收到的 CRC 域中的值比较,如果两个 CRC 值不相等,则说明传输有错误。

CRC 是先存入 0xFFFF,然后调用一个过程将帧中连续的 6 个以上字节与当前寄存器中的值进行处理。仅每个字符中的 8Bit 数据对 CRC 有效,起始位和停止位以及奇偶校验位均无效。

CRC 产生过程中,每个8位字符都单独和寄存器内容相异或(XOR),结果向最低有效位方向移动,最高有效位以0填充。LSB被提取出来检测,如果LSB为1,寄存器单独和预置的值相异或,如果LSB为0,则不进行。整个过程要重复8次。在最后一位(第8位)完成后,下一个8位字节又单独和寄存器的当前值相异或。最终寄存器中的值,是帧中所有的字节都执行之后的CRC值。

CRC 的这种计算方法,采用的是国际标准的 CRC 校验法则,用户在编辑 CRC 算法时,可以参考相关标准的 CRC 算法,编写出真正符合要求的 CRC 计算程序。

现在提供 CRC 计算的简单函数给用户参考 (用 C 语言编程) 分别为直接计算法和查表法:

直接计算法

```
unsigned int CRC_cal_value(unsigned char *data_value,unsigned char data_length)
{
    int i;
    unsigned int crc_value=0xffff;
    while(data_length--)
    {
        crc_value ^= *data_value++;
        for(i=0;i<8;i++)
        {
            if(crc_value&0x0001)
            crc_value=(crc_value>>1)^0xa001;
            else
            crc_value=crc_value>>1;
        }
    }
    return(crc_value);
}
```

查表法

```
// 低字节 CRC 值表
const UCHAR auchCRCLo[] =
{
```

0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4,0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD,0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7,0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE,0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2,0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB,0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0x5C,0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x5B, 0x99, 0x59, 0x59, 0x98, 0x88,0x48, 0x49, 0x89, 0x4B, 0x8B, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4C, 0x8C,0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80,0x40

```
;;
// 高字节 CRC 值表
const UCHAR auchCRCHi[] =
{
```

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x80, 0x41, 0x00, 0

0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0x

```
};
UINT CRC_cal_value(UCHAR * tmp, UINT len)
{
     WORD uchCRC; UINT uIndex;
     uchCRC._word=0xFFFF;
     while (len--)
     {
          uIndex = uchCRC.byte0 ^ *tmp;
          uchCRC.byte0 = uchCRC.byte1 ^ auchCRCHi[uIndex];
          uchCRC.byte1 = auchCRCLo[uIndex];
          tmp++;
     }
     return uchCRC._word;
}
```

在阶梯逻辑中,CKSM 根据帧内容计算 CRC 值,采用查表法计算,这种方法程序简单,运算速度快,但程序所占用 ROM 空间较大,对程序空间有要求的场合,请谨慎使用。

4.11 通信数据地址的定义表

附表 1 CMD 命令码: 0x03 (0000 0011) 从机实时数据表。只有标明开关类型的数据才有意义:

功能说明	开关类型	地址		数据意义说明									R/W 特性						
线路电压	2P/3P/4P	0x00		16 位电压,单位 1V								R							
漏电电流	2P/3P/4P	0x01							16 位漏	电电源	充,单位	0.1m	١.						R
线路功率	2P/1P/3P/4P	0x02							16	位功率	区,单位	1W							R
模块温度	2P/1P/3P/4P	0x03							16 位	立温度	,单位 C).1 度							R
线路电流	2P/1P/3P/4P	0x04							16 位	立电流,	, 单位 C).01A							R
			15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
告警位	2P/1P/3P/4P	0x05	电流预警	漏电预警	欠压预警	过压预警	欠压报警	打火 报警	輸入 缺相 报警 3P/4 P	漏保白未成	漏电 保护 功能	过压报警	过流报警		温度报警	过载 报警	浪涌报警	短路报警	R
电量低	2P/1P/3P/4P	0x06							32位	电量,	单位 0.0	001度							R
电量高	2P/1P/3P/4P	0x07							32位	电量,	单位 0.0	001度							R
A 相电压	3P/4P	0x08							16	位电压	玉,单位	1V							R
B 相电压	3P/4P	0x09							16	位电压	玉,单位	1V							R
C相电压	3P/4P	0x0A							16	位电压	玉,单位	1V							R
A 相电流	3P/4P	0x0B							16 位	立电流,	, 单位 C).01A							R
B 相电流	3P/4P	0x0C							16 位	立电流,	, 单位 C).01A							R
C相电流	3P/4P	0x0D							16 位	立电流,	, 单位 C).01A							R
N 相电流	3P/4P	0x0E							16 位	立电流,	, 单位 C).01A							R
A 相功率	3P/4P	0x0F							16	位功率	区,单位	1W							R
B 相功率	3P/4P	0x10							16	位功率	図,单位	1W							R
C 相功率	3P/4P	0x11							16	位功率	区,单位	1W							R
A 相告警位	3P/4P	0x12	15 电流 预警	14 保留	13 欠压 预警	1	11 欠压 报警	10 打火 报警	9 输入 缺相	8 保留	7 保留	6 过压 报警	5 过流 报警	4 保留	3 保留	2 过载 报警	1 保留	0 短路 报警	R
B 相告警位	3P/4P	0x13								ı F	 引上					1			R
C相告警位	3P/4P	0x14								ī	司上								R
			7			(仅		5		4		(仅		(仅		(仅		0	
其他告警位	3P/4P	0x15	3P/4 相 1: 0:	序	1: 不	 负载	保	留	内部	报警	相序 1: i	保护	3P/4 不平復 1: 3 0:	新保护	1: }	4P) 保护 禁止 允许	1:	控制 禁止 允许	R
										(ª	保留								R

附表 2 CMD 命令码: 0x04 (0000 0100) 从机参数地址表。只有标明开关类型的数据才有意义:

功能说明	开关类型	地址	数据意义说明	R/W 特性			
线路电压门限	2P/1P/3P/4P	0x00	16 位电压上限,单位 1V	R			
线路电压门限	2P/1P/3P/4P	0x01	16 位电压下限,单位 1V	R			
漏电电流门限	2P/4P (具有漏电 保护的型号)	0x02	16 位漏电电流上限,单位 0.1mA	R			
线路功率门限	2P/1P/3P/4P	0x03	16 位功率上限,单位 1W	R			
模块温度门限	2P/1P/3P/4P	0x04	16 位温度上限,单位 0.1 度	R			
模块电流门限	2P/1P/3P/4P	0x05	16 位电流,单位 0.01A	R			
规格			10 16 20 25 32 40 45 60	R			
型号	2P/1P/3P/4P	0x06	6-3P/4P, 7-2P, 8-1P				
版本	2P/1P/3P/4P	0x07	版本号	R			

附表 3 CMD 命令码: 0x06 (0000 0110) 从机参数地址表。只有标明开关类型的数据才有意义:

功能说明	开关类型	地址	数据域格式,以及命令意义说明	R/W 特性
配置电压门限	2P/3P/4P	0x0000	数据发送电压上门限,单位为 1V	W
配置电压门限	2P/3P/4P	0x0001	数据发送电压下门限,单位为 1V	W
漏电电流门限	2P/3P/4P	0x0002	16 位漏电电流上限,单位 0.1mA	W
配置功率门限	2P/1P/3P/4P	0x0003	数据发送功率门限,单位为 1W	W
配置温度门限	2P/1P/3P/4P	0x0004	数据发送温度上限,单位为 0.1 度	W
配置电流门限	2P/1P/3P/4P	0x0005	数据发送电流门限,单位为 0.01A	W
漏电测试指令	2P/4P (具有漏电 保护的型号)	0x0008	数据发送 0x5A 表示测试	w
预警电压阈值上限	2P/3P/4P	0x0014	数据发送预警电压上门限,单位为 1V	w
预警电压阈值下限	2P/3P/4P	0x0015	数据发送预警电压下门限,单位为 1V	W
电量高	2P/1P/3P/4P	0x0016	修改开关电量数据,先发送电量高 16bit(工程指令)	W
电量低	2P/1P/3P/4P	0x0017	修改开关电量数据,再发送电量低 16bit(工程指令),才能修改成功	w

4.12 本从机数据地址的定义表 (通信参数修改可能需要重启从机模块)

… ニー・ハイルのスが出って・五日ンケーンへいた		(是旧》 然 []	
功能说明	地址	数据域格式,以及命令意义说明	R/W 特性
自动地址触发*	0x01	底层开关自动设定地址触发开关(发送 0xFF00 表示开始,发送 0 表示结束)	w
从机地址修改**	0x02	地址修改需发送 0xBA00+需要修改的地址(1)	w
通信波特率	0x03	发送 0xBA00+需要修改的代号(1-8)2400/4800/9600/14400/19200/28800/38400/56000	w
通信格式	0x04	发送 0xBA00+ 代号 (1-RTU, 0-ASCII)	W
校验方式	0x05	发送 0xBA00+代号(0-ODD,1-EVEN,2-2 停止位, <mark>3-1 停止位</mark>)	W
恢复出厂***	0x06	发送 0xFF5A 恢复默认设置	W
远程通讯模式****	0x07	发送 0xBA00+代号 (0-正常模式,1-远程模式)	

注: 上表红色表示默认值

- *自动地址流程:全部开关打到分闸,然后发送开始(此时所有开关黄灯会闪烁),然后按下电源后的第一个 On/Off 键 5 秒,然后开关会自动完成编址(所有黄灯熄灭),然后再发送停止命令。此模式可以手动触发,长按 set 键 8 秒即可进入/退出此模式。
- **手动修改从机地址: 长按 set 键 10 秒(松开后 SYS 常亮),然后按下几次按键,就是设定成地址几,再长按 set 键 10 秒保存(松开后 SYS 熄灭)
- ***手动恢复出厂设定:长按 set 键 20 秒,松开后恢复出厂设定。
- ****针对大延时或远程通讯系统,在 3/4 指令返回时增加返回数据内容地址以及开关起始地址,但此模式不兼容标准格式。

5 硬件接口描述:

内置信号隔离,电源内置隔离方式的模块无需外部提供电源(默认)。 (如果无内置隔离的模块,需要外接 DC5V 电源,请勿接反。)

端子接线方式: (从左到右,从上到下)

序号	功能
1	485A
2	485B
3	屏蔽线