Abyan Ardiatama

24060120140161

Praktikum 5 ML

Principal Component Analysis

- ▼ Import Dataset
 - --> Blood Transfusion

import pandas as pd
from matplotlib import pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

```
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/blood-transfus
names = ['Recency', 'Frequency', 'Monetary', 'Time', 'Class']
dataset = pd.read_csv(url,names=names)
dataset
```

	Recency	Frequency	Monetary	Time	Class
0	Recency (months)	Frequency (times)	Monetary (c.c. blood)	Time (months)	whether he/she donated blood in March 2007
1	2	50	12500	98	1
2	0	13	3250	28	1
3	1	16	4000	35	1
4	2	20	5000	45	1
•••					
744	23	2	500	38	0
745	21	2	500	52	0
746	23	3	750	62	0
747	39	1	250	39	0
748	72	1	250	72	0

749 rows × 5 columns

```
#cleaning data
dataset = dataset[dataset.Recency != 0]
dataset = dataset[dataset.Frequency != 0]
dataset = dataset[dataset.Monetary != 0]
dataset = dataset[dataset.Time != 0]
```

Konversi categorical value menjadi numerical value dalam dataset

```
#convert all categorical features into numerical values
dataset['Recency'] = pd.to_numeric(dataset['Recency'], errors='coerce')
dataset['Frequency'] = pd.to_numeric(dataset['Frequency'], errors='coerce')
dataset['Monetary'] = pd.to numeric(dataset['Monetary'], errors='coerce')
dataset['Time'] = pd.to numeric(dataset['Time'], errors='coerce')
dataset['Class'] = pd.to_numeric(dataset['Class'], errors='coerce')
print(dataset.dtypes)
                 float64
    Recency
    Frequency
                 float64
    Monetary
                 float64
    Time
                 float64
    Class
                 float64
    dtype: object
```

Standarisasi fitur dalam dataset

```
features = ['Recency', 'Frequency', 'Monetary', 'Time']
# Separating out the features
x = dataset.loc[:, features].values
# Separating out the target
y = dataset.loc[:,['Class']].values
# Standardizing the features
x = StandardScaler().fit transform(x)
x = x[\sim np.isnan(x).any(axis=1)]
    array([[-0.93703771, 7.67939033, 7.67939033,
                                                    2.61934918],
                                       1.81438569, 0.02948995],
            [-1.06080998, 1.81438569,
           [-0.93703771, 2.50438623, 2.50438623,
                                                    0.44057872],
            [ 1.66217996, -0.42811609, -0.42811609, 1.13942962],
            [3.64253629, -0.77311636, -0.77311636, 0.19392545],
            [7.7270212, -0.77311636, -0.77311636, 1.55051839]])
```

Menghapus semua missing value, mengecek adanya infinity value dalam dataset

```
#remove all rows with missing values
dataset = dataset.dropna()
dataset.shape
dataset.isnull().sum()
    Recency
    Frequency
    Monetary
    Time
    Class
    dtype: int64
import pandas as pd
import numpy as np
# checking for infinite values and displaying the count
count = np.isinf(dataset).values.sum()
print("Infinity values... ",count)
    Infinity values... 0
```

▼ Memproyeksikan PCA ke dalam 2 Dimensi

```
pca = PCA(n_components=2)
principalComponents = pca.fit_transform(x)
principalDf = pd.DataFrame(data = principalComponents, columns = ['principal com
finalDf = pd.concat([principalDf, dataset[['Class']]], axis = 1)
```

▼ Visualisasi

pca.explained_variance_ratio_
array([0.6348139 , 0.27530624])

Colab paid products - Cancel contracts here

✓ 0s completed at 16:29