DIALOG(R) File 351: DERWE WPI (c) 2000 Derwent Info Ltd. All rts. reserv.

011699970 **Image available**
WPI Acc No: 98-116880/199811
XRPX Acc No: N98-093792

Electron emitting element for electron source used in image forming apparatus, HDTV - has electron emission part comprising carbon or carbon compounds formed in vicinity of gap part

Patent Assignee: CANON KK (CANO)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Main IPC Week
JP 10003847 A 19980106 JP 96172878 A 19960613 H01J-001/30 199811 B

Priority Applications (No Type Date): JP 96172878 A 19960613

Patent Details:

Patent Kind Lan Pg Filing Notes Application Patent JP 10003847 A 18

Abstract (Basic): JP 10003847 A

The element has a gap part (5) formed on an electrically conductive film (4) which is constituted by a pair of electrically conductive layers (4a,4b) whose composition differs mutually.

An electron emission part (6) comprising carbon/carbon compounds is formed in the vicinity of the gap part.

USE - Other types are FE, MIM, surface conduction type electron emitting element and cold cathode electron emitting element. ADVANTAGE - Controls position and shape of emission part, accurately. Attains equalisation of element characteristics. Improves electron emission efficiency. Avoids reduction of image quality.

Dwg.1/18

Title Terms: ELECTRON; EMIT; ELEMENT; ELECTRON; SOURCE; IMAGE; FORMING; APPARATUS; HDTV; ELECTRON; EMIT; PART; COMPRISE; CARBON; CARBON; COMPOUND; FORMING; VICINITY; GAP; PART

Derwent Class: V05

International Patent Class (Main): H01J-001/30

International Patent Class (Additional): H01J-009/02; H01J-031/12

File Segment: EPI

DIALOG(R) File 347: JAPIO

(c) 2000 JPO & JAPIO. All rts. reserv.

05720747 **Image available**

ELECTRON EMISSION ELEMENT, ELECTRON SOURCE, IMAGE FORMING DEVICE, AND MANUFACTURE THEREOF

PUB. NO.:

10-003847 A]

PUBLISHED:

January 06, 1998 (19980106)

INVENTOR(s):

MITOME MASANORI

APPLICANT(s): CANON INC [000100] (A Japanese Company or Corporation), JP

(Japan)

APPL. NO.:

08-172878 [JP 96172878]

FILED:

June 13, 1996 (19960613)

INTL CLASS:

[6] H01J-001/30; H01J-009/02; H01J-031/12

JAPIO CLASS:

42.3 (ELECTRONICS -- Electron Tubes); 29.4 (PRECISION

INSTE

INSTRUMENTS -- Business Machines); 42.2 (ELECTRONICS -- Solid

State Components); 44.6 (COMMUNICATION -- Television); 44.9 (COMMUNICATION -- Other); 45.3 (INFORMATION PROCESSING --

Input Output Units)

JAPIO KEYWORD: R003 (ELECTRON BEAM); R020 (VACUUM TECHNIQUES); R044

(CHEMISTRY -- Photosensitive Resins)

ABSTRACT

PROBLEM TO BE SOLVED: To provide an electron emission element as an electron beam source capable of realizing a high-quality image forming device.

SOLUTION: A gap 5 is formed in a conductive film 4 formed by laminating layers 4a and 4b made of different materials, carbon and/or a carbon compound is deposited in at least one part of the gap 5 and its neighborhood, and an electron emission part 6 is formed. Thus, the position and shape of the electron emission part 6 can be controlled precisely, uniformity of element characteristics is realized, and an element with high electron emission efficiency and durability is obtained.

DIALOG(R) File 345: Inpad Fam.& Legal Stat (c) 2000 EPO. All rts. reserv.

14146883

Basic Patent (No, Kind, Date): JP 10003847 A2 980106 <No. of Patents: 001>

Patent Family:

Patent No Kind Date Applic No Kind Date

JP 10003847 A2 980106 JP 96172878 Α 960613 (BASIC)

Priority Data (No, Kind, Date):

JP 96172878 A 960613

PATENT FAMILY:

JAPAN (JP)

Patent (No, Kind, Date): JP 10003847 A2 980106

ELECTRON EMISSION ELEMENT, ELECTRON SOURCE, IMAGE FORMING DEVICE, AND

MANUFACTURE THEREOF (English)

Patent Assignee: CANON KK

Author (Inventor): MITOME MASANORI

Priority (No, Kind, Date): JP 96172878 A 960613 Applic (No, Kind, Date): JP 96172878 A 960613 IPC: * H01J-001/30; H01J-009/02; H01J-031/12

Derwent WPI Acc No: * G 98-116880; G 98-116880

Language of Document: Japanese

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平10-3847

(43)公開日 平成10年(1998)1月6日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FI	技術表示箇所
HO1J 1/30			H01J 1/30	В
9/02			9/02	В
31/12			31/12	С

審査請求 未請求 請求項の数15 FD (全 18 頁)

特願平8-172878	(71)出顧人	000001007
		キヤノン株式会社
平成8年(1996)6月13日		東京都大田区下丸子3丁目30番2号
	(72)発明者	三留 正則
	·	東京都大田区下丸子3丁目30番2号 キヤノン株式会社内
	(74)代理人	• 1
		平成8年(1996)6月13日 (72)発明者

(54) 【発明の名称】 電子放出素子、電子源、画像形成装置及びこれらの製造方法

(57)【要約】

【課題】 高品位画像形成装置を実現し得る電子ビーム源としての電子放出素子を提供する。

【解決手段】 互いに異なる材料からなる層4aと4bが積層した導電性膜4に、間隙部5が形成されており、 間隙部5及びその近傍の少なくとも一部に、炭素又は/ 及び炭素化合物が堆積して電子放出部6が形成されていることを特徴とする電子放出素子。

【効果】 電子放出部6の位置と形状を精度良く制御でき、素子特性の均一化が実現されると共に、電子放出効率及び耐久性の高い素子となる。

【特許請求の範囲】

【請求項1】 2種以上の異なる材料が積層した構造を持つ導電性膜に、間隙部が形成されており、該間隙部及びその近傍の少なくとも一部の領域に、炭素又は/及び炭素化合物を有する電子放出部が形成されていることを特徴とする電子放出素子。

【請求項2】 前記導電性膜の積層構造が、膜の全面に わたって形成されていることを特徴とする請求項1 に記 載の電子放出素子。

【請求項3】 前記導電性膜の積層構造が、第一の層上 10 にこれとは異なる材料が部分的に存在する断続的な積層 構造であることを特徴とする請求項1に記載の電子放出 素子。

【請求項4】 前記間隙部の間隔が、100nm以下であることを特徴とする請求項1に記載の電子放出素子。

【請求項5】 請求項1~4のいずれかに記載の電子放出素子の製造方法であって、前記導電性膜を形成する工程と、該導電性膜に間隙部を形成する工程と、該間隙部及びその近傍の少なくとも一部に炭素又は/及び炭素化合物を有する電子放出部を形成する工程を有することを特徴とする電子放出素子の製造方法。

【請求項6】 前記導電性膜に間隙部を形成する工程が、微細加工技術を用いる工程であることを特徴とする請求項5に記載の電子放出素子の製造方法。

【請求項7】 前記微細加工技術が、集束イオンビーム 技術であることを特徴とする請求項6に記載の電子放出 素子の製造方法。

【請求項8】 前記微細加工技術が、リソグラフィー技術であることを特徴とする請求項6に記載の電子放出素子の製造方法。

【請求項9】 前記間隙部及びその近傍の少なくとも一部に炭素又は/及び炭素化合物を有する電子放出部を形成する工程が、有機物質のガスを含む雰囲気下において、前記間隙部を介して対向する一対の前記導電性膜間に電圧を印加する工程であることを特徴とする請求項5に記載の電子放出素子の製造方法。

【請求項10】 入力信号に応じて電子を放出する電子 源であって、請求項1~4のいずれかに記載の電子放出 素子を、基板上に複数個配置したことを特徴とする電子 源。

【請求項11】 前記電子放出素子の複数が梯子状に配置されており、個々の電子放出素子の両電極が並列に二本の行配線に接続されており、更に変調手段を有することを特徴とする請求項10に記載の電子源。

【請求項12】 前記複数の電子放出素子がマトリクス 状に配置されており、個々の電子放出素子の一方の電極 を行配線に接続し、個々の電子放出素子の他方の電極を 前記行配線と直交する列配線に接続したことを特徴とす る請求項10に記載の電子源。

【請求項13】 請求項10~12のいずれかに記載の 50 nd C.G.Fonstad: "IEEE Tran

電子源の製造方法において、前記複数の電子放出素子を 請求項5~9のいずれかに記載の方法で製造することを 特徴とする電子源の製造方法。

【請求項14】 入力信号に基づいて画像を形成する装置であって、少なくとも、請求項10~12のいずれかに記載の電子源と、画像形成部材とによって構成されたことを特徴とする画像形成装置。

【請求項15】 請求項14に記載の画像形成装置の製造方法において、前記電子源を請求項13に記載の方法で製造することを特徴とする画像形成装置の製造方法。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電子放出素子、該電子放出素子を多数個配置してなる電子源、該電子源を 用いて構成した表示装置や露光装置等の画像形成装置、 及びそれらの製造方法に関する。

[0002]

【従来の技術】従来、電子放出素子には大別して熱電子放出素子と冷陰極電子放出素子の2種類が知られている。冷陰極電子放出素子には電界放出型(以下、「FE型」と称す。)、金属/絶縁層/金属型(以下、「MIM型」と称す。)や表面伝導型電子放出素子等が有る。【0003】FE型の例としては、W. P. Dyke and W. W. Dolan, "Field Emission", Advance in Electron Physics, 8,89(1956)あるいはC. A. Spindt, "Physical Properties of thin-filmfield emission cathodes withmolybdenum cones", J. Appl. Phys., 47,5248(1976)等に開示されたものが知られている。

【0004】MIM型の例としては、C. A. Mead, "Operation of Tunnel-Emission Devices", J. Appl. Phys., 32,646 (1961) 等に開示されたものが知られている。

【0005】表面伝導型電子放出素子の例としては、 M. I. Elinson, RadioEng. Elec 40 tron Phys., 10, 1290 (1965)等 に開示されたものがある。

【0006】表面伝導型電子放出素子は、絶縁性基板上に形成された小面積の薄膜に、膜面に平行に電流を流すことにより、電子放出が生ずる現象を利用するものである。この表面伝導型電子放出素子としては、前記エリンソン等によるSnO2薄膜を用いたもの、Au薄膜によるもの[G. Dittmer: "ThinSolid Films", 9,317(1972)]、In2O3/SnO2薄膜によるもの[M. Hartwell and C. G. Fonstad: "IFFF Trans

s. ED Conf.", 519 (1975)]、カーボン薄膜によるもの[荒木久 他: 真空、第26卷、第1号、22頁 (1983)] 等が報告されている。

【0007】これらの表面伝導型電子放出素子の典型的な例として、前述のM.ハートウェルの素子構成を図18に模式的に示す。同図において1は基板である。4は導電性膜で、H型形状のパターンに形成された金属酸化物薄膜等からなり、後述の通電フォーミングと呼ばれる通電処理により電子放出部6が形成される。尚、図中の素子電極間隔しは、0.5~1 mm、W'は、0.1 m 10 mで設定されている。

【0008】これらの表面伝導型電子放出素子においては、電子放出を行う前に導電性膜4を予め通電フォーミングと呼ばれる通電処理によって電子放出部6を形成するのが一般的である。即ち、通電フォーミングとは、前記導電性膜4の両端に電圧を印加通電し、導電性膜4を局所的に破壊、変形もしくは変質させて構造を変化させ、電気的に高抵抗な状態の電子放出部6を形成する処理である。尚、電子放出部6では導電性膜4の一部に亀裂が発生しており、その亀裂付近から電子放出が行われ20る。

【0009】上述の表面伝導型電子放出素子は、構造が 単純であることから、大面積に亙って多数素子を配列形 成できる利点がある。そこで、この特徴を活かすための 種々の応用が研究されている。例えば、荷電ビーム源、 表示装置等の画像形成装置への利用が挙げられる。

【0010】従来、多数の表面伝導型電子放出素子を配列形成した例としては、並列に表面伝導型電子放出素子を配列し、個々の表面伝導型電子放出素子の両端(両素子電極)を配線(共通配線とも呼ぶ)にて夫々結線した 30行を多数行配列(梯子型配置とも呼ぶ)した電子源が挙げられる(例えば、特開昭64-31332号公報、特開平1-283749号公報、同2-257552号公報)。

【0011】また、特に表示装置においては、液晶を用いた表示装置と同様の平板型表示装置とすることが可能で、しかもバックライトが不要な自発光型の表示装置として、表面伝導型電子放出素子を多数配置した電子源と、この電子源からの電子線の照射により可視光を発光する蛍光体とを組み合わせた表示装置が提案されている(アメリカ特許第5066883号明細書)。

[0012]

【発明が解決しようとする課題】しかしながら、上記従来の表面伝導型電子放出素子においては、次のような問題があった。

【0013】即ち、前述の通電フォーミングにより導電 性膜4の一部に形成される電子放出部6の形態は、導電 性膜4の膜質、基板の種類、基板の表面状態、フォーミ ング時の雰囲気などに強く依存するため、その位置や形 状を精度良く制御し難く、例えばその幅は10nm~1 4

000nm程度のバラツキを持つ場合がある。このことは、素子の特性を均一にする上で困難をもたらし、複数の電子放出素子を配置した電子源や、それを用いた画像形成装置などを作成した場合、電子放出量のバラツキ、画面の明るさのバラツキが生じる場合がある。

【0014】また、前記電子源、画像形成装置等に用いられる電子放出素子については、明るい表示画像を安定して提供できるよう更に安定な電子放出特性及び電子放出の効率向上が要望されている。

0 【0015】上記電子放出の効率とは、導電性膜4の両端に電圧を印加した際に、これに流れる電流(以下、

「素子電流」と呼ぶ。)と真空中に放出される電流(以下、「放出電流」と呼ぶ。)との比で評価されるものであり、素子電流が小さく、放出電流が大きい電子放出素子が望まれている。

【0016】安定的に制御し得る電子放出特性と効率のより一層の向上がなされれば、例えば蛍光体を画像形成 部材とする画像形成装置においては、低電流で明るい高品位な画像形成装置、例えばフラットテレビが実現される。また、低電流化に伴い、画像形成装置を構成する駆動回路等のローコスト化も図れる。

【0017】しかしながら、上述のM. ハートウェルの電子放出素子にあっては、安定な電子放出特性及び電子放出効率について、必ずしも満足のゆくものが得られておらず、これを用いて高輝度で動作安定性に優れた画像形成装置を提供することは極めて難しいというのが実状である

【0018】上記のような応用に用いられる電子放出素子は、実用的な印加電圧に対して良好な電子放出特性を有し、且つ長時間にわたってその特性を保持し続けられることが必要である。

【0019】本発明の目的は、上述した解決すべき技術的課題を解決し、電子放出部の位置と形状を精度良く制御し、素子特性のバラツキを解消すると共に、耐久性を高め安定な電子放出特性を有し、電子放出の効率向上を図った電子放出素子を提供することにある。本発明の別の目的は、高輝度で動作安定性に優れた画像形成装置を提供することにある。

[0020]

【課題を解決するための手段】上記の目的を達成すべく 成された本発明の構成は、以下の通りである。

【0021】即ち、本発明の第一は、2種以上の異なる材料が積層した構造を持つ導電性膜に、間隙部が形成されており、該間隙部及びその近傍の少なくとも一部の領域に、炭素又は/及び炭素化合物を有する電子放出部が形成されていることを特徴とする電子放出素子にある。 【0022】上記本発明第一の電子放出素子は、さらに

【0022】上記本発明第一の電子放出案子は、さらに その特徴として、「前記導電性膜の積層構造が、膜の全 面にわたって形成されている」こと、「前記導電性膜の 積層構造が、第一の層上にこれとは異なる材料が部分的

に存在する断続的な積層構造である」こと、「前記間隙 部の間隔が、100 nm以下である」こと、をも含む。 【0023】また、本発明の第二は、上記本発明第一の 電子放出素子の製造方法であって、前記導電性膜を形成 する工程と、該導電性膜に間隙部を形成する工程と、該 間隙部及びその近傍の少なくとも一部に炭素又は/及び 炭素化合物を有する電子放出部を形成する工程を有する ことを特徴とする電子放出素子の製造方法にある。

【0024】上記本発明第二の製造方法は、さらにその 特徴として、「前記導電性膜に間隙部を形成する工程 が、微細加工技術を用いる工程である」こと、「前記微 細加工技術が、集束イオンビーム技術である」こと、

「前記微細加工技術が、リソグラフィー技術である」こ と、「前記間隙部及びその近傍の少なくとも一部に炭素 又は/及び炭素化合物を有する電子放出部を形成する工 程が、有機物質のガスを含む雰囲気下において、前記間 隙部を介して対向する一対の前記導電性膜間に電圧を印 加する工程である」こと、をも含む。

【0025】また、本発明の第三は、入力信号に応じて 電子を放出する電子源であって、上記本発明第一の電子 放出素子を、基板上に複数個配置したことを特徴とする 電子源にある。

【0026】上記本発明第三の電子源は、さらにその特 徴として、「前記電子放出素子の複数が梯子状に配置さ れており、個々の電子放出素子の両電極が並列に二本の 行配線に接続されており、更に変調手段を有する」こ と、「前記複数の電子放出素子がマトリクス状に配置さ れており、個々の電子放出素子の一方の電極を行配線に 接続し、個々の電子放出素子の他方の電極を前記行配線 と直交する列配線に接続した」こと、をも含む。

【0027】また、本発明の第四は、上記本発明第三の 電子源の製造方法において、前記複数の電子放出素子を 上記本発明第二の方法で製造することを特徴とする電子 源の製造方法にある。

【0028】また、本発明の第五は、入力信号に基づい て画像を形成する装置であって、少なくとも、上記本発 明第三の電子源と、画像形成部材とによって構成された ことを特徴とする画像形成装置にある。

【0029】さらに、本発明の第六は、上記本発明第五 の画像形成装置の製造方法において、前記電子源を上記 本発明第四の方法で製造することを特徴とする画像形成 装置の製造方法にある。

【0030】本発明者は、前述したような従来素子に係 る諸問題、即ち、特性の均一性,耐久性等に関する問題 点について鋭意検討した結果、導電性膜として異種材料 を組み合わせ、更には電子放出部の形成工程 (フォーミ ング工程)を変更することによって、これらの問題点を 解消し得ることを見いだし、本発明に至ったものであ る。以下、この点について説明する。

部は、駆動時に電子による衝撃や高温にさらされること から、高融点金属(例えば、タングステン、タンタルな ど)を導電性膜として用いることが考えられる。しか し、これらの金属は高融点であるため、通電フォーミン グ処理に難点があるほか、酸化され易く、素子の作製工 程もしくは画像形成装置の作製工程において抵抗が大き くなってしまう恐れがあり、導電性膜材料としては必ず しも最良な材料ではない。

【0032】また、後に述べるように、表面伝導型電子 放出素子では炭素あるいは炭素化合物を堆積させる工程 (活性化工程)が重要な工程となるが、かかる活性化工 程を効率良く行うために触媒作用の強い金属(例えば、 ニッケルやパラジウムなど、もしくはこれらの酸化物)。 を用いることもある。この場合、これらの金属の融点 は、比較的低いため、耐久性の点で見劣りがする場合が ある。

【0033】これら各材料の利点と欠点とを相補うため に、2種以上の材料を同時に使用することが考えられ る。しかしながら、たとえ2種以上の材料を用いて適切 な構造を形成してあったとしても、通電フォーミング工 程の後には、電子放出部近傍ではその構造が失われ、所 望の効果を得られない場合があった。

【0034】そこで本発明においては、導電性膜を2種 類以上の材料を積層した構造とし、各材料の利点を用い ると共に各材料の欠点を相補い、更には従来の通電フォ ーミングは用いず、例えば集束イオンビームやリソグラ フィーなどの微細加工技術を用いて、かかる積層構造を 破壊することなく間隙部を導電性膜に形成することによ り、電子放出効率及び耐久性を高めると共に、電子放出 部の位置及び形状を制御して均一性の高い素子を実現す るものである。

[0035]

30

【発明の実施の形態】以下、本発明の好ましい実施態様 を示す。

【0036】本発明の電子放出素子の基本的構成には大 別して、平面型及び垂直型の2つがある。

【0037】まず、平面型の電子放出素子について説明

【0038】図1は、本発明の平面型の電子放出素子の 一構成例を示す模式図であり、図1 (a)は平面図、図 1 (b) は縦断面図である。図1において、1は基板、 2と3は電極 (素子電極)、4は導電性膜、5は導電性 膜4に形成された間隙部、6は間隙部5に形成された電 子放出部であり、炭素又は/及び炭素化合物を有する。 導電性膜4と素子電極2,3を同じ材料で作製した場 合、導電性膜に素子電極の役割を担わせることが可能で あり、この場合は導電性膜と素子電極の区別はなくなり 一体のものとして扱われる。また、導電性膜4は積層構 造を持ち、図1においては4aと4bで表されている。

【0031】先述の表面伝導型電子放出素子の電子放出 50 しかし、これは一例に過ぎず、積層構造の形態はこの限

りではない。

【0039】基板1としては、石英ガラス、Na等の不 純物含有量を減少させたガラス、青板ガラス、青板ガラ スにスパッタ法等によりSiО2 を積層した積層体、ア ルミナ等のセラミックス及びSi基板等を用いることが できる。

【0040】対向する素子電極2,3の材料としては、 一般的な導体材料を用いることができる。これは例えば Ni, Cr, Au, Mo, W, Pt, Ti, Al, C u、Pd等の金属或は合金及びPd、Ag、Au、Ru 10 O2 、Pd-Ag等の金属或は金属酸化物とガラス等か ら構成される印刷導体、In2 O3 - SnO2 等の透明 導電体及びポリシリコン等の半導体導体材料等から適宜 選択することができる。

【0041】素子電極間隔L1、素子電極長さW、導電 性膜4の形状等は、応用される形態等を考慮して、設計 される。

【0042】素子電極間隔L1は、数百nm~数百μm の範囲とするのが好ましく、より好ましくは、素子電極 間に印加する電圧等を考慮して数μm~数十μmの範囲 20 とすることができる。

【0043】素子電極長さWは、電極の抵抗値や電子放 出特性を考慮して、数μm~数百μmの範囲とすること ができる。また、素子電極の膜厚はは、数十mmから数 μmの範囲とすることができる。

【0044】尚、図1に示した構成だけでなく、基板1 上に、導電性膜4、対向する素子電極2,3の順に積層 した構成とすることもできる。

【0045】導電性膜4は2種類以上の材料からなり、 その材料は、良好な電子放出特性、十分な耐久性、素子 作製の簡便さなどを考慮して決定される。また、導電性 膜の膜厚は、素子電極2,3へのステップカバレージ、 素子電極2, 3間の抵抗値等を考慮して適宜設定される が、通常は、数Å~数百 n mの範囲とするのが好まし 11

【0046】導電性膜4を構成する2種以上のそれぞれ の材料としては、例えばPd, Pt, Ru, Ag, A u, Ti, In, Cu, Cr, Fe, Zn, Sn, T a, W, Pb等の金属、PdO, SnO2, In2 O 3, PbO, Sb2 O3 等の酸化物、HfB2, ZrB 40 2, LaB6, CeB6, YB4, GdB4 等の硼化 物、TiC, ZrC, HfC, TaC, SiC, WCな どの炭化物、TiN, ZrN, HfN等の窒化物、S i,Ge等の半導体、カーボン等が挙げられ、適宜組合 わせて用いることができる。

【0047】導電性膜4に形成されている間隙部5は、 集束イオンビーム技術などの微細加工技術によって形成 される。かかる間隙部5の間隔し2は、100nm以下 である。間隙部5の間隔し2が100nmを超えると、

び炭素化合物を当該間隙部5に堆積させることが困難と なり、高効率で均一な電子放出特性が得難くなる。

【0048】電子放出部6は、後述する活性化処理によ り、前記間隙部及びその近傍の少なくとも一部に炭素又 は/及び炭素化合物を堆積して形成されている。また、 電子放出部6の内部には、数人から数十 n m の範囲の粒 径の導電性微粒子が存在する場合もある。この導電性微 粒子は、導電性膜4を構成する材料の元素の一部、ある いは全ての元素を含有するものとなる。

【0049】次に、垂直型の電子放出素子について説明 する。

【0050】図2は、本発明の垂直型の電子放出素子の 一構成例を示す模式図であり、図1に示した部位と同じ 部位には図1に付した符号と同一の符号を付している。 21は、段差形成部である。基板1、導電性膜4、電子 放出部6は、前述した平面型の電子放出素子の場合と同 様の材料で構成することができる。この図では、導電性 膜と素子電極を同一の材料で構成している。

【0051】段差形成部21は、真空蒸着法、印刷法、 スパッタ法等で形成されたSiO2等の絶縁性材料で構 成することができる。その膜厚は、先に述べた平面型の 電子放出素子の素子電極間隔し1に対応し、数百nm~ 数十μmの範囲とすることができるが、製法及び素子電 極間に印加する電圧を考慮して、数十nm~数μmの範 囲とするのが好ましい。

【0052】尚、他の各部の寸法及び形状等は、前述し た平面型の電子放出素子の場合と同様に設計することが できる。

【0053】上述の電子放出素子の製造方法としては様 々な方法があるが、その一例を図3の製造工程図に基づ いて以下に説明する。尚、図3においても図1に示した 部位と同じ部位には図1に付した符号と同一の符号を付

【0054】1)基板1を洗剤、純水及び有機溶剤等を 用いて十分に洗浄した後、真空蒸着法、スパッタ法等に より素子電極材料を堆積後、例えばフォトリソグラフィ ー技術を用いて基板1上に素子電極2,3を形成する (図3(a))。

【0055】2) 素子電極2, 3を設けた基板1上に、 真空蒸着により2種類の金属を順次堆積させ、リフトオ フ、エッチング等を用いてパターニングすることによ り、2層構造を有する導電性膜4を形成する(図3 (b))。ここでは、真空蒸着法を挙げて説明したが、 導電性膜4の形成法はこれに限られるものではなく、有 機金属の塗布法、スパッタ法、化学的気相堆積法、分散 塗布法、ディッピング法、スピンナー法等を用いること もできる。また、積層構造の形態によって、各形成法を 複合して用いる場合もある。

【0056】3) つづいて、集束イオンビームを用いて 後述する活性化処理により均一且つ良質な炭素又は/及 50 導電性膜4の一部を削り取り、間隙部5を形成する(図

3(c))。かかる間隙部5の形成には、先述した間隔 L2の加工が可能であれば他の方法を用いても構わず、 例えばリソグラフィー技術等を用いることもできる。

【0057】4)次に、活性化工程と呼ばれる処理を施 す。活性化工程とは、導電性膜4に形成した間隙部5及 びその近傍の少なくとも一部に、炭素あるいは炭素化合 物を堆積させ、電子放出部6を形成する(図3(d)) 工程である。

【0058】活性化工程は、例えば、有機物質のガスを 含有する雰囲気下で、素子電極2,3間に図4に示すよ 10 うなパルスの印加を繰り返すことで行うことができる。 この雰囲気は、例えば油拡散ポンプやロータリーポンプ などを用いて真空容器内を排気した場合に雰囲気内に残 留する有機ガスを利用して形成することができる他、イ オンポンプなどにより一旦十分に排気した真空中に適当 な有機物質のガスを導入することによっても得られる。 このときの好ましい有機物質のガス圧は、前述の素子の 形態、真空容器の形状や、有機物質の種類などにより異 なるため、場合に応じ適宜設定される。適当な有機物質 としては、アルカン、アルケン、アルキンの脂肪族炭化 20 水素類、芳香族炭化水素類、アルコール類、アルデヒド 類、ケトン類、アミン類、フェノール、カルボン、スル ホン酸等の有機酸類等を挙げることが出来、具体的に は、メタン、エタン、プロパンなどCn H2n+2で表され る飽和炭化水素、エチレン、プロピレンなどCn H2n等 の組成式で表される不飽和炭化水素、ベンゼン、トルエ ン、メタノール、エタノール、ホルムアルデヒド、アセ トアルデヒド、アセトン、メチルエチルケトン、メチル アミン、エチルアミン、フェノール、蟻酸、酢酸、プロ ピオン酸等が使用できる。この処理により、雰囲気中に 30 存在する有機物質から、炭素あるいは炭素化合物が間隙 部5及びその近傍の少なくとも一部に堆積し、素子電流 If, 放出電流 Ieが、著しく変化して増加するように なり、電子放出部6が形成される。

【0059】炭素あるいは炭素化合物とは、例えばグラ ファイト (いわゆるHOPG, PG, GCを包含するも ので、HOPGはほぼ完全なグラファイト結晶構造、P Gは結晶粒が20nm程度で結晶構造がやや乱れたも の、GCは結晶粒が2nm程度になり結晶構造の乱れが さらに大きくなったものを指す。)、非晶質カーボン (アモルファスカーボン及び、アモルファスカーボンと 前記グラファイトの微結晶の混合物を指す。) であり、 その膜厚は、50 nm以下の範囲とするのが好ましく、 30 n m以下の範囲とすることがより好ましい。

【0060】活性化工程の終了判定は、素子電流Ifと 放出電流Ieを測定しながら、適宜行うことができる。 なお、パルス幅、パルス間隔、パルス波高値などは適宜 設定される。

【0061】5) このような工程を経て得られた電子放 出素子は、安定化工程を行うことが好ましい。この工程 50

は、真空容器内の有機物質を排気する工程である。真空 容器を排気する真空排気装置は、装置から発生するオイ ルが素子の特性に影響を与えないように、オイルを使用 しないものを用いるのが好ましい。具体的には、ソープ ションポンプ、イオンボンプ等の真空排気装置を挙げる ことが出来る。

【0062】前記活性化の工程で、排気装置として油拡 散ポンプやロータリーポンプを用い、これから発生する オイル成分に由来する有機ガスを用いた場合には、この 成分の分圧を極力低く抑える必要がある。真空容器内の 有機成分の分圧は、上記炭素あるいは炭素化合物がほぼ 新たに堆積しない分圧で1×10-8Torr以下が好ま しく、さらには1×10⁻¹⁰ Torr以下が特に好まし い。さらに真空容器内を排気するときには、真空容器全 体を加熱して、真空容器内壁や、電子放出素子に吸着し た有機物質分子を排気しやすくするのが好ましい。この ときの加熱条件は、80~250℃好ましくは150℃ 以上で、できるだけ長時間処理するのが望ましいが、特 にこの条件に限るものではなく、真空容器の大きさや形 状、電子放出素子の構成などの諸条件により適宜選ばれ る条件により行う。真空容器内の圧力は極力低くするこ とが必要で、 1×10^{-7} Torr以下が好ましく、さら には1×10-8Torr以下が特に好ましい。

【0063】安定化工程を行った後の、駆動時の雰囲気 は、上記安定化処理終了時の雰囲気を維持するのが好ま しいが、これに限るものではなく、有機物質が十分除去 されていれば、圧力自体は多少上昇しても十分安定な特 性を維持することが出来る。このような真空雰囲気を採 用することにより、新たな炭素あるいは炭素化合物の堆 積を抑制でき、結果として素子電流If,放出電流Ie が、安定する。

【0064】上述した工程を経て得られた本発明を適用 可能な電子放出素子の基本特性について、図5,図6を 参照しながら説明する。

【0065】図5は、真空処理装置の一例を示す模式図 であり、この真空処理装置は測定評価装置としての機能 をも兼ね備えている。 図5においても、 図1に示した部 位と同じ部位には図1に付した符号と同一の符号を付し ている。

40 【0066】図5において、55は真空容器であり、5 6は排気ポンプである。真空容器55内には電子放出素 子が配されている。また、51は電子放出素子に素子電 圧Vfを印加するための電源、50は素子電極2,3間 を流れる素子電流 I f を測定するための電流計、54は 素子の電子放出部5より放出される放出電流 I e を捕捉 するためのアノード電極、53はアノード電極54に電 圧を印加するための高圧電源、52は電子放出部5より 放出される放出電流Ieを測定するための電流計であ る。一例として、アノード電極54の電圧を1kV~1

Ok Vの範囲とし、アノード電極54と電子放出素子と

の距離Hを2mm~8mmの範囲として測定を行うことができる。

【0067】真空容器55内には、不図示の真空計等の 真空雰囲気下での測定に必要な機器が設けられていて、 所望の真空雰囲気下での測定評価を行えるようになって いる。

【0068】排気ボンア56は、ターボボンア、ロータリーボンア等からなる通常の高真空装置系と、イオンポンプ等からなる超高真空装置系とにより構成されている。ここに示した電子放出素子基板を配した真空処理装 10 置の全体は、不図示のヒーターにより加熱できる。従って、この真空処理装置を用いると、前述の活性化工程以降の工程も行うことができる。

【0069】図6は、図5に示した真空処理装置を用いて測定された放出電流Ie及び素子電流Ifと、素子電圧Vfとの関係を模式的に示した図である。図6においては、放出電流Ieが素子電流Ifに比べて著しく小さいので、任意単位で示している。尚、縦・横軸ともリニアスケールである。

【0070】図6からも明らかなように、本発明の電子放出素子は、放出電流 I e に関して次の3つの特徴的性質を有する。

【0071】即ち、第1に、本素子はある電圧(関値電圧と呼ぶ;図6中のVth)以上の素子電圧を印加すると急激に放出電流 I eが増加し、一方関値電圧Vth以下では放出電流 I eが殆ど検出されない。つまり、放出電流 I eに対する明確な関値電圧Vthを持った非線形素子である。

【0072】第2に、放出電流 I e が素子電圧 V f に単調増加依存するため、放出電流 I e は素子電圧 V f で制 30 御できる。

【0073】第3に、アノード電極54(図5参照)に 捕捉される放出電荷は、素子電圧Vfを印加する時間に 依存する。つまり、アノード電極54に捕捉される電荷 量は、素子電圧Vfを印加する時間により制御できる。

【0074】以上の説明より理解されるように、本発明の電子放出素子は、入力信号に応じて、電子放出特性を容易に制御できることになる。この性質を利用すると複数の電子放出素子を配して構成した電子源、画像形成装置等、多方面への応用が可能となる。

【0075】図6においては、素子電流Ifが素子電圧 Vfに対して単調増加する(以下、「MI特性」とい う。)例を示したが、素子電流Ifが素子電圧Vfに対 して電圧制御型負性抵抗特性(以下、「VCNR特性」 という。)を示す場合もある(不図示)。これらの特性 は、前述の工程を制御することで制御できる。

【0076】本発明を適用可能な電子放出素子の応用例 について以下に述べる。本発明の電子放出素子を複数個 基板上に配列し、例えば電子源あるいは、画像形成装置 が構成できる。 【0077】電子放出素子の配列については、種々のものが採用できる。一例として、並列に配置した多数の電子放出素子の個々を両端で接続し、電子放出素子の行を多数個配し(行方向と呼ぶ)、この配線と直交する方向(列方向と呼ぶ)で、該電子放出素子の上方に配した制御電極(グリッドとも呼ぶ)により、電子放出素子からの電子を制御駆動する梯子状配置のものがある。これとは別に、電子放出素子をX方向及びY方向に行列状に複数個配し、同じ行に配された複数の電子放出素子の電極の一方を、X方向の配線に共通に接続し、同じ列に配された複数の電子放出素子の電極の他方を、Y方向の配線に共通に接続するものが挙げられる。このようなものは所謂単純マトリクス配置である。まず単純マトリクス配置について以下に詳述する。

【0078】本発明の電子放出素子については、前述した通り3つの特性がある。即ち、電子放出素子からの放出電子は、関値電圧以上では、対向する素子電極間に印加するパルス状電圧の波高値と幅で制御できる。一方、関値電圧以下では、殆ど放出されない。この特性によれば、多数の電子放出素子を配置した場合においても、個々の素子にパルス状電圧を適宜印加すれば、入力信号に応じて、電子放出素子を選択して電子放出量を制御できる。

【0079】以下この原理に基づき、本発明の電子放出 素子を複数配して得られる電子源基板について、図7を 用いて説明する。図7において、71は電子源基板、7 2はX方向配線、73はY方向配線である。74は電子 放出素子、75は結線である。

【0080】m本のX方向配線72は、Dx1,Dx2,……,Dxmからなり、真空蒸着法、印刷法、スパッタ法等を用いて形成された導電性金属等で構成することができる。配線の材料、膜厚、幅は適宜設計される。Y方向配線73は、Dy1,Dy2,……,Dynのn本の配線よりなり、X方向配線72と同様に形成される。これらm本のX方向配線72とn本のY方向配線73との間には、不図示の層間絶縁層が設けられており、両者を電気的に分離している(m,nは、共に正の整数)。

【0081】不図示の層間絶縁層は、真空蒸着法、印刷 40 法、スパッタ法等を用いて形成されたSiO2等で構成 される。例えば、X方向配線72を形成した基板71の 全面或は一部に所望の形状で形成され、特に、X方向配 線72とY方向配線73の交差部の電位差に耐え得るよ うに、膜厚、材料、製法が適宜設定される。X方向配線 72とY方向配線73は、それぞれ外部端子として引き 出されている。

【0082】電子放出素子74を構成する一対の素子電極(不図示)は、それぞれm本のX方向配線72とn本のY方向配線73に、導電性金属等からなる結線75に50よって電気的に接続されている。

【0083】配線72と配線73を構成する材料、結線75を構成する材料及び一対の素子電極を構成する材料は、その構成元素の一部あるいは全部が同一であっても、また夫々異なってもよい。これらの材料は、例えば前述の素子電極の材料より適宜選択される。素子電極を構成する材料と配線材料が同一である場合には、素子電極に接続した配線は素子電極ということもできる。

【0084】X方向配線72には、X方向に配列した電子放出素子74の行を選択するための走査信号を印加する不図示の走査信号印加手段が接続される。一方、Y方 10向配線73には、Y方向に配列した電子放出素子74の各列を入力信号に応じて変調するための、不図示の変調信号発生手段が接続される。各電子放出素子に印加される駆動電圧は、当該素子に印加される走査信号と変調信号の差電圧として供給される。

【0085】上記構成においては、単純なマトリクス配線を用いて、個別の素子を選択し、独立に駆動可能とすることができる。

【0086】このような単純マトリクス配置の電子源を 用いて構成した画像形成装置について、図8と図9及び 20 図10を用いて説明する。図8は、画像形成装置の表示 パネルの一例を示す模式図であり、図9は、図8の画像 形成装置に使用される蛍光膜の模式図である。図10 は、NTSC方式のテレビ信号に応じて表示を行うため の駆動回路の一例を示すブロック図である。

【0087】図8において、71は電子放出素子を複数配した電子源基板、81は電子源基板71を固定したリアプレート、86はガラス基板83の内面に蛍光膜84とメタルバック85等が形成されたフェースプレートである。82は支持枠であり、該支持枠82には、リアプ 30レート81、フェースプレート86がフリットガラス等を用いて接続されている。88は外囲器であり、例えば大気中あるいは窒素中で、400~500℃の温度範囲で10分間以上焼成することで、封着して構成される。【0088】74は、図1に示したような電子放出素子である。72,73は、表面伝導型電子放出素子の一対の素子電極と接続されたX方向配線及びY方向配線ある。

【0089】外囲器88は、上述の如く、フェースプレート86、支持枠82、リアプレート81で構成される。リアプレート81は主に基板71の強度を補強する目的で設けられるため、基板71自体で十分な強度を持つ場合は別体のリアプレート81は不要とすることができる。即ち、基板71に直接支持枠82を封着し、フェースプレート86、支持枠82及び基板71で外囲器88を構成してもよい。一方、フェースプレート86とリアプレート81の間に、スペーサーと呼ばれる不図示の支持体を設置することにより、大気圧に対して十分な強度をもつ外囲器88を構成することもできる。

【0090】図9は、蛍光膜を示す模式図である。蛍光 50

膜84は、モノクロームの場合は蛍光体のみで構成することができる。カラーの蛍光膜の場合は、蛍光体の配列により、ブラックストライプ(図9(a))あるいはブラックマトリクス(図9(b))等と呼ばれる黒色導電材91と蛍光体92とから構成することができる。ブラックストライプ、ブラックマトリクスを設ける目的は、カラー表示の場合、必要となる三原色蛍光体の各蛍光体92間の塗り分け部を黒くすることで混色等を目立たなくすることと、蛍光膜84における外光反射によるコントラストの低下を抑制することにある。黒色導電材91の材料としては、通常用いられている黒鉛を主成分とする材料の他、導電性があり、光の透過及び反射が少ない材料を用いることができる。

【0091】ガラス基板83に蛍光体を塗布する方法は、モノクローム、カラーによらず、沈澱法や印刷法等が採用できる。蛍光膜84の内面側には、通常メタルバック85が設けられる。メタルバックを設ける目的は、蛍光体の発光のうち内面側への光をフェースプレート86側へ鏡面反射することにより輝度を向上させること、電子ビーム加速電圧を印加するための電極として作用させること、外囲器内で発生した負イオンの衝突によるダメージから蛍光体を保護すること等である。メタルバックは、蛍光膜作製後、蛍光膜の内面側表面の平滑化処理(通常、「フィルミング」と呼ばれる。)を行い、その後A1を真空蒸着等を用いて堆積させることで作製できる。

【0092】フェースプレート86には、更に蛍光膜8 4の導電性を高めるため、蛍光膜84の外面側に透明電 極(不図示)を設けてもよい。

【0093】前述の封着を行う際、カラーの場合は各色 蛍光体と電子放出素子とを対応させる必要があり、十分 な位置合わせが不可欠となる。

【0094】図8に示した画像形成装置は、例えば以下のようにして製造される。

【0095】外囲器88内は、前述の安定化工程と同様に、適宜加熱しながら、イオンポンプ、ソープションポンプ等のオイルを使用しない排気装置により不図示の排気管を通じて排気し、10-7Torr程度の真空度の有機物質の十分に少ない雰囲気にした後、封止が成され

る。外囲器88の封止後の真空度を維持するために、ゲッター処理を行うこともできる。これは、外囲器88の封止を行う直前あるいは封止後に、抵抗加熱あるいは高周波加熱等を用いた加熱により、外囲器88内の所定の位置に配置されたゲッター(不図示)を加熱し、蒸着膜を形成する処理である。ゲッターは通常Ba等が主成分であり、該蒸着膜の吸着作用により、例えば1×10-7Torr以上の真空度を維持するものである。ここで、電子放出素子の活性化処理以降の工程は適宜設定できる。

【0096】次に、単純マトリクス配置の電子源を用い

て構成した表示パネルに、NTSC方式のテレビ信号に 基づいたテレビジョン表示を行う為の駆動回路の構成例 について、図10を用いて説明する。図10において、 101は画像表示パネル、102は走査回路、103は 制御回路、104はシフトレジスタ、105はラインメ モリ、106は同期信号分離回路、107は変調信号発 生器、Vx及びVaは直流電圧源である。

【0097】表示パネル101は、端子Dx1乃至Dx m、端子Dy1乃至Dyn及び高圧端子87を介して外 部の電気回路と接続している。端子Dx1乃至Dxmに 10 は、表示パネル101内に設けられている電子源、即 ち、m行n列の行列状にマトリクス配線された電子放出 素子群を1行(n素子)づつ順次駆動する為の走査信号 が印加される。端子Dy1乃至Dynには、前記走査信 号により選択された1行の電子放出素子の各素子の出力で 電子ビームを制御する為の変調信号が印加される。高圧 端子87には、直流電圧源Vaより、例えば10K

[V]の直流電圧が供給されるが、これは電子放出素子 から放出される電子ビームに、蛍光体を励起するのに十 分なエネルギーを付与する為の加速電圧である。

【0098】走査回路102について説明する。同回路 は、内部にm個のスイッチング素子(図中、S1乃至S mで模式的に示している)を備えたものである。各スイ ッチング素子は、直流電圧電源Vxの出力電圧もしくは 0[V](グランドレベル)のいずれか一方を選択し、 表示パネル101の端子Dx1乃至Dxmと電気的に接 続される。各スイッチング素子S1乃至Smは、制御回 路103が出力する制御信号Tscanに基づいて動作 するものであり、例えばFETのようなスイッチング素 子を組み合わせることにより構成することができる。

【0099】直流電圧源Vxは、本例の場合には電子放 出素子の特性(電子放出閾値電圧)に基づき、走査され ていない素子に印加される駆動電圧が電子放出閾値電圧 以下となるような一定電圧を出力するよう設定されてい る。

【0100】制御回路103は、外部より入力される画 像信号に基づいて適切な表示が行われるように、各部の 動作を整合させる機能を有する。制御回路103は、同 期信号分離回路106より送られる同期信号Tsync に基づいて、各部に対してTscan、Tsft及びT mryの各制御信号を発生する。

【0101】同期信号分離回路106は、外部から入力 されるNTSC方式のテレビ信号から、同期信号成分と 輝度信号成分とを分離するための回路で、一般的な周波 数分離(フィルター)回路等を用いて構成できる。同期 信号分離回路106により分離された同期信号は、垂直 同期信号と水平同期信号より成るが、ここでは説明の便 宜上Tsync信号として図示した。 前記テレビ信号か ら分離された画像の輝度信号成分は、便宜上DATA信 号と表した。このDATA信号は、シフトレジスタ10 50 でも採用できる。画像信号のシリアル/パラレル変換や

4に入力される。

【0102】シフトレジスタ104は、時系列的にシリ アルに入力される前記DATA信号を、画像の1ライン 毎にシリアル/パラレル変換するためのもので、前記制 御回路103より送られる制御信号Tsftに基づいて 動作する (即ち、制御信号Tsftは、シフトレジスタ 104のシフトクロックであると言い換えてもよ い。)。シリアル/パラレル変換された画像1ライン分

のデータ(電子放出素子n素子分の駆動データに相当) は、Id1乃至Idnのn個の並列信号として前記シフ トレジスタ104より出力される。

【0103】ラインメモリ105は、画像1ライン分の データを必要時間の間だけ記憶する為の記憶装置であ り、制御回路103より送られる制御信号Tmryに従 って適宜 I d 1 乃至 I d n の内容を記憶する。記憶され た内容は、Id'1乃至Id'nとして出力され、変調 信号発生器107に入力される。

【0104】変調信号発生器107は、画像データ1 d'1乃至Id'nの各々に応じて、電子放出素子の各 々を適切に駆動変調する為の信号源であり、その出力信 号は、端子Dy1乃至Dynを通じて表示パネル101 内の電子放出素子に印加される。

【0105】前述したように、本発明を適用可能な電子 放出素子は放出電流Ieに関して以下の基本特性を有し ている。即ち、電子放出には明確な閾値電圧Vthがあ り、Vth以上の電圧が印加された時のみ電子放出が生 じる。電子放出閾値以上の電圧に対しては、素子への印 加電圧の変化に応じて放出電流も変化する。このことか ら、本素子にパルス状の電圧を印加する場合、例えば電 子放出閾値電圧以下の電圧を印加しても電子放出は生じ ないが、電子放出閾値電圧以上の電圧を印加する場合に は電子ビームが出力される。その際、パルスの波高値V mを変化させることにより、出力電子ビームの強度を制 御することが可能である。また、パルスの幅Pwを変化 させることにより、出力される電子ビームの電荷の総量 を制御することが可能である。

【0106】従って、入力信号に応じて電子放出素子を 変調する方式としては、電圧変調方式とパルス幅変調方 式等が採用できる。電圧変調方式を実施するに際して は、変調信号発生器107としては、一定長さの電圧パ ルスを発生し、入力されるデータに応じて適宜電圧バル スの波高値を変調できるような電圧変調方式の回路を用 いることができる。パルス幅変調方式を実施するに際し ては、変調信号発生器107として、一定の波高値の電 圧パルスを発生し、入力されるデータに応じて適宜電圧 パルスの幅を変調するようなパルス幅変調方式の回路を 用いることができる。

【0107】シフトレジスタ104やラインメモリ10 5は、デジタル信号式のものでもアナログ信号式のもの 記憶が所定の速度で行なわれれば良いからである。

【0108】 デジタル信号式を用いる場合には、同期信 号分離回路106の出力信号DATAをデジタル信号化 する必要があるが、これには同期信号分離回路106の 出力部にA/D変換器を設ければ良い。これに関連して ラインメモリ105の出力信号がデジタル信号かアナロ グ信号かにより、変調信号発生器107に用いられる回 路が若干異なったものとなる。即ち、デジタル信号を用 いた電圧変調方式の場合、変調信号発生器107には、 例えばD/A変換回路を用い、必要に応じて増幅回路等 10 を付加する。パルス幅変調方式の場合、変調信号発生器 107には、例えば高速の発振器及び発振器の出力する 波数を計数する計数器(カウンタ)及び計数器の出力値 と前記メモリの出力値を比較する比較器 (コンパレー タ)を組み合わせた回路を用いる。必要に応じて、比較 器の出力するパルス幅変調された変調信号を電子放出素 子の駆動電圧にまで電圧増幅するための増幅器を付加す ることもできる。

【0109】アナログ信号を用いた電圧変調方式の場合、変調信号発生器107には、例えばオペアンプ等を 20 用いた増幅回路を採用でき、必要に応じてレベルシフト回路等を付加することもできる。パルス幅変調方式の場合には、例えば電圧制御型発振回路(VCO)を採用でき、必要に応じて電子放出素子の駆動電圧にまで電圧増幅するための増幅器を付加することもできる。

【0110】このような構成をとり得る本発明を適用可能な画像形成装置においては、各電子放出素子に、容器外端子D×1乃至D×m、Dy1乃至Dynを介して電圧を印加することにより、電子放出が生じる。高圧端子87を介してメタルバック85あるいは透明電極(不図 30示)に高圧を印加し、電子ビームを加速する。加速された電子は、蛍光膜84に衝突し、発光が生じて画像が形成される。

【0111】ここで述べた画像形成装置の構成は、本発明を適用可能な画像形成装置の一例であり、本発明の技術思想に基づいて種々の変形が可能である。入力信号についてはNTSC方式を挙げたが、入力信号はこれに限られるものではなく、PAL、SECAM方式等の他、これらよりも多数の走査線からなるTV信号(例えば、MUSE方式をはじめとする高品位TV)方式をも採用 40できる。

【0112】次に、前述の梯子型配置の電子源及び画像 形成装置について、図11及び図12を用いて説明す る。

【0113】図11は、梯子型配置の電子源の一例を示す模式図である。図11において、110は電子源基板、111は電子放出素子である。112は、電子放出素子111を接続するための共通配線D1~D10であり、これらは外部端子として引き出されている。電子放出素子111は、基板110上に、X方向に並列に複数50

18

個配置されている(これを素子行と呼ぶ)。この素子行が複数個配置されて、電子源を構成している。各素子行の共通配線間に駆動電圧を印加することで、各素子行を独立に駆動させることができる。即ち、電子ビームを放出させたい素子行には、電子放出関値以上の電圧を印加し、電子ビームを放出させたくない素子行には、電子放出関値以下の電圧を印加する。各素子行間に位置する共通配線D2~D9は、例えばD2とD3を一体の同一配線とすることもできる。

【0114】図12は、梯子型配置の電子源を備えた画像形成装置におけるパネル構造の一例を示す模式図である。120はグリッド電極、121は電子が通過するための開口、D1乃至Dmは容器外端子、G1乃至Gnはグリッド電極120と接続された容器外端子である。110は各素子行間の共通配線を同一配線とした電子源基板である。図12においては、図8、図11に示した部位と同じ部位には、これらの図に付したのと同一の符号を付している。ここに示した画像形成装置と、図8に示した単純マトリクス配置の画像形成装置との大きな違いは、電子源基板110とフェースプレート86の間にグリッド電極120を備えているか否かである。

【0115】図12においては、基板110とフェースプレート86の間には、グリッド電極120が設けられている。グリッド電極120は、電子放出素子111から放出された電子ビームを変調するためのものであり、梯子型配置の素子行と直交して設けられたストライプ状の電極に電子ビームを通過させるため、各素子に対応して1個ずつ円形の開口121が設けられている。グリッド電極の形状や配置位置は、図12に示したものに限定されるものではない。例えば、開口としてメッシュ状に多数の通過口を設けることもでき、グリッド電極を電子放出素子の周囲や近傍に設けることもできる。

【0116】容器外端子D1乃至Dm及びグリッド容器 外端子G1乃至Gnは、不図示の制御回路と電気的に接 続されている。

【0117】本例の画像形成装置では、素子行を1列ずつ順次駆動(走査)して行くのと同期してグリッド電極列に画像1ライン分の変調信号を同時に印加する。これにより、各電子ビームの蛍光体への照射を制御し、画像を1ラインずつ表示することができる。

【0118】以上説明した本発明の画像形成装置は、テレビジョン放送の表示装置、テレビ会議システムやコンピューター等の表示装置の他、感光性ドラム等を用いて構成された光プリンターとしての画像形成装置等としても用いることができる。

[0119]

【実施例】以下に、具体的な実施例を挙げて本発明を説明するが、本発明はこれら実施例に限定されるものではなく、本発明の目的が達成される範囲内での各要素の置換や設計変更がなされたものをも包含する。

【0120】[実施例1]本実施例に係る電子放出素子の構成は、図1と同様である。図1において、1は基板、2と3は素子電極、4は導電性膜、5は間隙部、6は電子放出部である。

【0121】本実施例に係わる電子放出素子の製造法は、基本的には図3と同様であり、以下、図1及び図3を用いて、本実施例に係る素子の構成及び製造法を順を追って説明する。

【0122】基板1として石英ガラス基板を用い、これを有機溶剤によって十分に洗浄後、該基板1上に、厚さ5nmのTi、及び厚さ30nmのPtを真空蒸着し、W=300 μ m、L1=10 μ mの素子電極2, 3を形成した(図3(a))。

【0123】上記素子電極2,3間に、15nmのPt膜4aを蒸着し、さらに15nmのW膜4bをスパッターにより堆積させ、2層構造を持った導電性膜4を形成した(図3(b))。

【0124】次に、ガリウムイオンを用いたFIBにより導電性膜4を局所的に除去し、長さ100μm、間隔 L2=30nmの間隙部5を形成した(図3(c))。【0125】次に、上記素子を図5の真空処理装置の真空容器55内に設置し、ロータリーボンプ56にて排気し、真空容器55内を約2×10⁻³Torrの真空度とした。この後、電源51より、素子電極2,3間に電圧を印加して活性化処理を行い、電子放出部6を形成した(図3(d))。活性化処理に用いた電圧波形は図4(a)に示したものである。

【0126】本実施例の活性化処理では、電圧波形のパルス幅T1を1ms、パルス間隔T2を10msとし、三角波の波高値(活性化時のピーク電圧)は16Vとし、1時間行った。

【0127】その後、排気ポンプをイオンポンプを用いた超真空排気装置に切り換え、真空容器 55 内の真空度を 3×10^{-6} Torrとした後、電子放出特性を評価した。

【0128】本実施例では、アノード電極54と電子放出素子間の距離Hを5mm、アノード電極の電位を1kVとし、素子電極2,3間に素子電圧を印加し、その時に流れる素子電流If及び放出電流Ieを測定したところ、図6に示したような電圧-電流特性が得られた。本40素子では、素子電圧7V程度から急激に放出電流Ieが増大し、素子電圧16Vでは素子電流Ifが1.8mA、放出電流Ieが2.2μAとなり、電子放出効率カーIe/If(%)は0.12%であった。

【0129】また、本実施例の素子を、バルス幅1ms、パルス間隔2msの矩形波で連続して一定時間駆動したところ、素子電流Ifが1.2mA、放出電流Ieが1.2μAとなり、電子放出効率η=Ie/If(%)は0.10%であった。通常、表面伝導型電子放出素子を画像形成装置として利用する場合、パルス幅

0.1ms、パルス間隔10ms程度であるから、上記連続駆動は、通常の駆動条件の50倍程度の加速試験に相当する。この寿命は、Ptのみを導電性膜として利用したときよりも良好であり、これは、高融点金属であるWの効果であると考えられる。

【0130】[実施例2]本実施例では、実施例1と同様に素子電極を作製した。

【0131】つづいて、図13に示すように、厚さ15nmのPt膜4aを素子電極2,3間に蒸着した上に、厚さ15nmのNi膜4bをストライプ状に真空蒸着により堆積させて、導電性膜4を形成した。

【0132】つづいて、上記ストライプ状のNi膜4bと交差する方向に、集束イオンビームにより幅40nmの間隙部を形成した。

【0133】本実施例での活性化処理は、超高真空に排気された真空装置内に、アセトンを5×10⁻³Torr 導入した雰囲気において行った。活性化処理に用いたパルス波形は矩形波であり、波高値は図4(d)のように10Vから18Vまで40分かけて漸次的に増加させ20 た。

【0134】この活性化処理の後、アセトンを排気し超高真空下において素子特性を測定したところ、素子電流 I f が 3 . 8 m A 、放出電流 I e が 6 . 9 μ A となり、電子放出効率 $\eta = I$ e / I f (%) は 0 . 1 8%であった

【0135】この素子を、実施例1と同様に、パルス幅 1ms、パルス間隔2msの矩形波で連続して一定時間 駆動したところ、素子電流Ifが3.0mA、放出電流 Ieが3.7µAとなり、電子放出効率n=Ie/If (%)は0.16%であった。

【0136】本素子を上記測定の後、走査型電子顕微鏡で観察したところ、Niを堆積させた部分には、堆積させていない部分に比べて、活性化工程において堆積したカーボンの量が多かった。また、分析の結果、このNiを堆積した部分に存在するカーボンの方が、他の部分のカーボンよりも結晶性が高いことがわかった。この素子の寿命が良好であった理由は、電子放出部に堆積したカーボンの結晶性が高いために、駆動中の電子衝撃や高温に対して十分な耐性を持っていたものと推測される。

【0137】 [実施例3] 本実施例は、多数の電子放出 素子を単純マトリクス配置した電子源を用いて、画像形 成装置を作製した例である。

【0138】複数の導電性膜がマトリクス配線された基板の一部の平面図を図14に示す。また、図中のA-A'断面図を図15に示す。但し、図14、図15で同じ符号で示したものは、同じ部材を示す。ここで1は基板、72は図7のD×mに対応するX方向配線(下配線とも呼ぶ)、73は図7のDynに対応するY方向配線(上配線とも呼ぶ)、2と3は素子電極、4は導電性

50 膜、161は層間絶縁層、162は素子電極2と下配線

72との電気的接続のためのコンタクトホールである。 【0139】先ず、本実施例の電子源の製造方法を、図 16及び図17を用いて工程順に従って具体的に説明する。尚、以下に説明する工程ーa~hは、それぞれ図1 6の(a)~(d)及び図17の(e)~(h)に対応する。

【0140】工程-a

清浄化した青板ガラス上に厚さ0.5μmのシリコン酸化膜をスパッタ法で形成した基板1上に、真空蒸着により厚さ5nmのCr、厚さ600nmのAuを順次積層 10した後、フォトレジスト(AZ1370/ヘキスト社製)をスピンナーにより回転塗布、ベークした後、ホトマスク像を露光、現像して、下配線72のレジストパターンを形成し、Au/Cr堆積膜をウエットエッチングして、所望の形状の下配線72を形成した。

【0141】工程-b

次に、厚さ1. 0μmのシリコン酸化膜からなる層間絶縁層161をRFスパッタ法により堆積した。

【0142】工程-c

上記工程で堆積したシリコン酸化膜にコンタクトホール 20 162を形成するためのホトレジストパターンを作り、 これをマスクとして層間絶縁層161をエッチングして コンタクトホール162を形成した。エッチングはCF とH2 ガスを用いたRIE (Reactive Io n Etching)法によった。

【0143】工程-d

素子電極問ギャップL1となるべきパターンのフォトレジスト(RD-2000N-41/日立化成社製)を形成し、真空蒸着法により、厚さ5nmのTi、厚さ100nmのNiを順次堆積した。上記フォトレジストパタ 30ーンを有機溶剤で溶解し、Ni/Ti堆積膜をリフトオフして素子電極2,3を形成した。素子電極間隔し1は3μm、素子電極長さWは300μmとした。

【0144】工程-e

素子電極2,3の上に上配線73のホトレジストパターンを形成した後、厚さ5nmのTi、厚さ500nmのAuを順次真空蒸着により堆積し、リフトオフにより不要の部分を除去して、所望の形状の上配線73を形成した。

【0145】工程-f

本工程に関わる導電性膜形成用のマスクは、素子電極間 ギャップ及びこの近傍に開口を有するマスクであり、こ のマスクにより膜厚100nmのCr膜163を真空蒸 着により堆積・パターニングし、その上に厚さ15nm のPt、厚さ15nmのWを順次堆積させ、導電性膜4 を形成した。

【0146】工程-g

Cr膜163及び導電性膜4を、酸エッチャントにより エッチングして、所望のパターンを有する導電性膜4を 得た。 【0147】工程-h

コンタクトホール162部分以外にレジストを塗布するようなパターンを形成し、真空蒸着により厚さ5nmのTi、厚さ500nmのAuを順次堆積した。リフトオフにより不要の部分を除去することにより、コンタクトホール162を埋め込んだ。

【0148】さらに、集束イオンビーム法を用いて導電性膜4の一部を除去し、間隙部(不図示)を作製した。 【0149】以上の工程により、間隙部を有する複数の 導電性膜4がマトリクス配線された電子源基板1(図1 4)を作製し、次にこの電子源基板1を用いて画像形成 装置を作製した。作製手順を図8と図9を用いて説明する

【0150】先ず、上記複数の導電性膜がマトリクス配線された基板1(図14)をリアプレート81上に固定した後、基板1の5mm上方に、フェースプレート86(ガラス基板83の内面に蛍光膜84とメタルバック85が形成されて構成される)を支持枠82を介して配置し、フェースプレート86、支持枠82、リアプレート81の接合部にフリットガラスを塗布し、大気中で430℃で10分以上焼成することで封着した(図8)。なお、リアプレート81への基板1の固定もフリットガラスで行った。

【0151】蛍光膜84は、カラーを実現するために、ストライプ形状(図9(a)参照)の蛍光体とし、先にブラックストライプを形成し、その間隙部にスラリー法により各色蛍光体92を塗布して蛍光膜84を作製した。ブラックストライプの材料としては、黒鉛を主成分とする材料を用いた。

30 【0152】また、蛍光膜84の内面側にはメタルバック85を設けた。メタルバック85は、蛍光膜84の作製後、蛍光膜84の内面側表面の平滑化処理(通常、フィルミングと呼ばれる)を行い、その後、A1を真空蒸着することで作製した。

【0153】フェースプレート86には、更に蛍光膜84の導電性を高めるため、蛍光膜84の外面側に透明電極を設ける場合もあるが、本実施例ではメタルバック85のみで十分な導電性が得られたので省略した。

【0154】以上のようにして完成した外囲器88内の 40 雰囲気を排気管(不図示)を通じ排気装置にて排気し、 実施例1と同様の活性化処理を行い、さらに排気を行って十分な真空度に達した後、容器外端子D×1乃至D× mとDy1乃至Dynを通じ素子電極2,3間に実施例 1と同様のパルス電圧を印加し、素子電流If,放出電流Ieを測定しながら活性化処理を行った。

【0155】その後、不図示の排気管を通じ、外囲器8 8内を約1×10⁻⁵Torr程度の真空度まで排気し、 該排気管をガスバーナーで熱することで融着し、外囲器 88の封止を行った。最後に、封止後の真空度を維持す 50 るために、高周波加熱法でゲッター処理を行った。

【0156】以上のようにして作製した表示パネルの容 器外端子D×1乃至D×mとDy1乃至Dyn、及び高 圧端子87を夫々必要な駆動系に接続し、画像形成装置 を完成した。各電子放出素子に、容器外端子Dx1乃至 DxmとDy1乃至Dynを通じて、走査信号及び変調 信号を不図示の信号発生手段より夫々印加することによ り電子放出させ、高圧端子87を通じてメタルバック8 5に数k V以上の高圧を印加して、電子ビームを加速 し、蛍光膜84に衝突させ、励起・発光させることで画 像を表示した。

【0157】本実施例における画像形成装置は、高輝度 で均一な画像を安定して表示することができた。

[0158]

【発明の効果】以上説明した様に、本発明によれば、電 子放出素子の電子放出部の位置及び形状を、各素子間で 一定にすることができるので、均一な素子特性を持った 素子が得られる。また、導電性膜として異種材料を用い た多層構造とし、且つ間隙部を微細加工技術によって形 成したことにより、電子放出効率が高く、耐久性に優れ た電子放出素子を実現できる。

【0159】また、多数の電子放出素子を配列形成し、 入力信号に応じて電子を放出する電子源においては、各 電子放出素子の電子放出特性の均一化が実現され、かか る電子源を用いた画像形成装置においては、輝度むら・ 輝度低下等の画像品位の低下や消費電力の増大の問題も 解消され、高品位な画像形成装置、例えばカラーフラッ トテレビが実現される。

【図面の簡単な説明】

【図1】本発明の電子放出素子の一例である平面型の電 子放出素子を模式的に示した図である。

【図2】本発明の電子放出素子の一例である垂直型の電 子放出素子を模式的に示した図である。

【図3】図1の電子放出素子の製造方法の一例を説明す るための図である。

【図4】本発明の電子放出素子の製造に際して採用でき る活性化処理における電圧波形の一例を示す模式図であ る。

【図5】本発明の電子放出素子の製造に用いることので きる真空処理装置(測定評価装置)の一例を示す概略構 成図である.

【図6】本発明の電子放出素子の放出電流 I e および素 子電流Ifと素子電圧Vfの関係の典型的な例を示す図 である。

【図7】本発明の単純マトリクス配置の電子源の一例を 示す模式図である。

【図8】 本発明の画像形成装置の表示パネルの一例を示 す模式図である。

【図9】表示パネルにおける蛍光膜の一例を示す模式図

【図10】画像形成装置にNTSC方式のテレビ信号に 50 101 表示パネル

応じて表示を行うための駆動回路の一例を示すブロック 図である。

【図11】本発明の梯子型配置の電子源の一例を示す模 式図である。

【図12】本発明の画像形成装置の表示パネルの一例を 示す模式図である。

【図13】実施例2で用いた導電性膜の形状を説明する ための模式図である。

【図14】実施例3の画像形成装置に用いた電子源を示 10 す図である。

【図15】実施例3に係る電子源の部分断面図である。

【図16】実施例3に係る電子源の製造工程図である。

【図17】実施例3に係る電子源の製造工程図である。

【図18】 従来例の表面伝導型電子放出素子の平面図で ある。

【符号の説明】

- 1 基板
- 2,3 素子電極
- 4 導電性膜
- 20 4a, 4b 積層構造をなす導電性膜の各層
 - 5 間隙部
 - 6 電子放出部
 - 21 段差形成部
 - 50 素子電流 I f を測定するための電流計
 - 51 電子放出素子に素子電圧Vfを印加するための電 源
 - 52 電子放出部5より放出される放出電流 I eを測定 するための電流計
 - 53 アノード電極54に電圧を印加するための高圧電

30 源

- 54 電子放出部5より放出される電子を捕捉するため のアノード電極
- 55 真空容器
- 56 排気ポンプ
- 71 電子源基板
- 72 X方向配線
- 73 Y方向配線
- 74 電子放出素子
- 75 結線
- 81 リアプレート 40
 - 82 支持枠
 - 83 ガラス基板
 - 84 蛍光膜
 - 85 メタルバック
 - 86 フェースプレート
 - 87 高圧端子
 - 88 外囲器
 - 91 黒色導電材
 - 92 蛍光体

	1	02	走查回路
--	---	----	------

103 制御回路

104 シフトレジスタ

105 ラインメモリ

106 同期信号分離回路

107 変調信号発生器

Vx, Va 直流電圧源

110 電子源基板

(a)

111 電子放出素子

112 電子放出素子を配線するための共通配線

26

120 グリッド電極

121 電子が通過するための開口

161 層間絶縁層

162 コンタクトホール

163 Cr膜

【図1】

【図2】

【図3】

【図5】

【図10】 【図11】 NTSC D6 信号 D7 D8 D9 D10 【図13】 161 【図12】

v