Cálculo Multivariable - Clases y apuntes de clase

David Gabriel Corzo Mcmath

2020-01-06

Índice general

1.	\mathbf{Sist}	ema tridimensional de coordenadas	4
	1.1.	12.1 Sistema tridimensional de coordenadas	4
		1.1.1. Ejercicios	Ę
	1.2.	Planos coordenados	6
		1.2.1. Ejercicios	10
2	Dia	tonging v gunorficing hégiong	16
4.		tancias y superficies básicas Distancias y superficies básicas	12
		· · ·	
	2.2.	Ejercicios	16
3.	Rec	tas y planos	15
	3.1.	12.5 Rectas y planos	15
		3.1.1. Ejercicio 3: Encuentre las ecs. simétricas de la recta que pasa por los puntos dados.	
		Encuentre en qué punto la recta interseca al plano xz. pg.41	16
	3.2.	Rectas paralelas	16
		3.2.1. Ejercicio 4: Determine si los siguientes pares de rectas son paralelas, oblicuas o se	
			17
	3.3.	La ecuación de un plano	17
		1	18
			18
			19
	3.5.		19
	3.6.	v ·	20
		3.6.1. Ejercicios	20
4.	Fun	ciones vectoriales y curvas en el espacio, límites y continuidad	2 4
			24
		v i	24
	4.2.	v	25
			25
	4.3.	v	27
		•	27
5 .			28
	5.1.		28
			28
			28
			28
		Ÿ	29
	5.4.	Ejercicios	30
6.	Fun	ciones de varias variables	3 1
•			31
	6.2.		31
	-	· ·	32
	-		32
	6.4.	·	34
		Figration	2

7.	'. Derivadas parciales			
	1. Resolución de corto	36		
	2. 14.1 Funciones de varias variables	36		
	3. Ejercicios			
	7.3.1. Gráfica de $z = f(x, y)$			
	4. Curva de nivel o traza horizontal	38		
8.	erivadas parciales, rectas tangentes y planos tangentes	39		
	1. 14.3 Derivadas parciales	39		
	8.1.1. Ejercicios	39		
	2. Derivadas parciales par funciones de 2 o más variables	40		
	8.2.1. Ejercicio	41		
	3. Derivadas parciales de orden superior (pág. 100)	41		
	8.3.1. Ejercicios	42		
9.	Iultiplicadores de Lagrange	43		
	1. Derivadas parciales, rectas tangentes y planos tangentes	43		
	9.1.1. Interpretación de la derivada parcial	43		
	9.1.2. Ejercicios			
	2. Aproximaciones lineales	44		
	9.2.1. Ejercicios			
	3. 12.4 Derivadas implicitas y 12.5 Regla de la cadena			
	9.3.1. Derivación parcial implícita abreviada			
	9.3.2. Ejercicios	46		
10	láximos y mínimos	47		
	1.1. Parcial 2	47		
	0.2. 14.7 Máximos y mínimos	47		
	10.2.1. En funciones de una variable	47		
	10.2.2. En funciones de dos variables	48		
	10.2.3. Ejercicios máximos y mínimos	49		
11	Iultiplicadores de Lagrange	52		
	.1. 14.8 Multiplicadores de Lagrange	52		
	11.1.1. Ejercicios	52		
	11.1.2. Aplicaciónes a la economía y negocios	54		
12	ategrales dobles	56		
	2.1. 15.1 Integrales dobles	56		
	2.2. 15.2 Integrales iteradas	56		
	2.3. Teorema de Fubini: Integrales dobles como integrales iteradas	56		
	12.3.1. Ejercicios	57		
13	ntegrales dobles e integrales iteradas	59		
	3.1. 15.2 y 15.3 Integrales dobles	59		
	13.1.1. Ejercicios	59		
	3.2. 5.3 Integrales dobles en regiones generales	60		
14	ategrales dobles en coordenadas polares	61		
	1.1. Resolución del corto	61		
	.2	61		
	14.2.1 Ejercicios	62		

Sistema tridimensional de coordenadas

1.1. 12.1 Sistema tridimensional de coordenadas

Para localizar un punto en un plano, se necesitan dos números.

- $\blacksquare \ a$ la coordenada x
- lacktriangledown b la coordenada y

En el plano \mathbb{R}^2

• Los ejes de coordenadas son perpendiculares entre sí.

Sistema de coordenadas en dos dimensiones:

lacktriangle En el sistema tridimensional de coordenadas rectangulares, cada punto en el espacio es una terna ordenada (x,y,z).

Espacio:
$$\mathbb{R}^3=\{(x,y,z) \ \text{talque} \ x,y,z \in \mathbb{R}\}$$
 $\mathbb{R}^3=\mathbb{R}^2\times\mathbb{R}$

 \bullet x transversal

- \bullet y horizontal
- \bullet z vertical
- z = f(x, y)

- Las líneas punteadas se utilizan para simbolizar las partes de abajo, izquierda y detrás.
- Las líneas punteadas se usan para simbolizar las partes debajo, izquierda y detrás.

Ejercicios 1.1.1.

Identifique las siguientes puntos:

1. (0,0,0)

2. (0,1,0)

3. (-1,1,0)

4. (1,3,-1) x

1.2. Planos coordenados

 \blacksquare Planos-xy:

\blacksquare Los planos:

- Plano-yz: x = 0
- Plano-xz: y = 0
- Plano-yx: z = 0
- El primer octante:

■ Planos en el espacio:

 \bullet En dos dimensiones cuando se proponía x=a ó y=b se sabía que se hablaba de una recta horizontal o vertical.

 \bullet En tres dimensiones x=a,y=b,z=c son gráficas de planos.

• Ecuación lineal en 3-D va a graficar un plano:

$$ax + by + cz = d$$

 \bullet Generalmente se grafican sólo en el primer octante se cada a,b,c y d es positiva.

1.2.1. Ejercicios

1. Bosqueje el plano 2x + 4y + 3z = 12 sólo en el primer octante:

Intersección-x: $2x = 12 \implies (6,0,0)$ Intersección-x: $4y = 12 \implies (0,3,0)$ Intersección-x: $3z = 12 \implies (0,0,4)$

Distancias y superficies básicas

2.1. Distancias y superficies básicas

En 2-D, La distancia entre $P_1(x_1, y_i)$ & $P_2(x_2, y_2)$, se encontraba la distancia entre dos puntos estaba dada por el teorema de pitágoras. Para encontrar la distancia entre P_1 y P_2 , se utiliza la fórmula:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

En 3-D, para encontrar la diferencia entre $P_1(x_1,y_1,z_1)$ & $P_2(x_2,y_2,z_2)$, calcule la diferencia entre z_2 y z_1 .

$$d = +\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Tomar en cuenta que no puede ser negativa. Para denotar la distancia entre P_1, P_2 se denota como: $d = |P_2P_1|$

Figura 2.1: La esfera centrada en (x_1, y_2, z_2)

2.2. Ejercicios

• Encuentre el centro y radio de la esfera cuya ecuación es:

$$x^2 + y^2 + z^2 + 8x - 6y + 4z + 4 = 0$$

- Tener en cuenta que es como que si estuviesen desarrollando la ecuación $x^2 + y^2 + z^2 = r^2$ y agregando constantes.
- Hay que completar al cuadrado.

$$x^{2} + y^{2} + z^{2} + 8x - 6y + 4z + 4 = 0$$

$$x^{2} + 8x + \Box + y^{2} - 6y + \Box + z^{2} + 4z + \Box = -4$$

$$\text{Para x: } \left(\frac{8}{2}\right)^{2} = 16$$

$$\text{Para y: } \left(\frac{6}{2}\right)^{2} = 9$$

$$\text{Para z: } \left(\frac{4}{2}\right)^{2} = 4$$

$$x^{2} + 8x + 16 + y^{2} - 6y + 9 + z^{2} + 4z + 4 = -4 + 16 + 9 + 4$$

$$(x + 4)^{2} + (y - 3)^{2} + (z + 2)^{2} = \underbrace{25}_{r^{2}}$$

$$\therefore \text{ La esfera se enfoca en centro: } : (-4, 3, -2)$$

- ... 200 0510100 50 0111000 011 00110101 1 (1,0, 2,
 - \therefore Radio: $\sqrt{25} = 5$
- Tener en cuenta que $z=x^2+y^2$ no es una esfera, es una paraboloide.
- Encontrar la distancia entre un punto y un plano coordenado, encuentre la distancia entre el punto (1,3,5) y el plano xz.
 - Vamos a estrellar ese punto contra el eje xz, la proyección del punto P sobre el plano.

Distancia entre P_1, P_2 $d = \sqrt{(1-0)^2 + (3-0)^2 + (5-5)^2}$ La proyección del punto (a,b,c) sobre el plano xz es el punto (a,0,c). \therefore La distancia mínima entre p y el plano es: $d = |0+b^2+0| = |b|$

- ¿Cuál es la distancia entre el punto (1,3,5) y el plano xy?
 - Asumo z=0

$$d_{min} = \sqrt{0 + 0 + 5^2}$$

 $d_{min} = 5$

- Ejercicio 6: Considere los puntos A(3,0,-4), B(9,0,0) Y $C(0,1,\sqrt{15})$:
 - ¿Cuáles de los siguientes puntos está más cercano al origen?
 - Hay que calcular la distancia de cada punto respecto del origen (0,0,0).
 - El origen se denota como O(0,0,0)

$$d_{AO} = |AO|\sqrt{9+0+16} = \sqrt{25} = 5$$

$$d_{BO} = |BO| = \sqrt{81+0+0} = \sqrt{81} = 9$$

$$d_{CO} |CO| = \sqrt{0+1+15} = \sqrt{16} = 4$$

- $\bullet\,$ El punto C es el más cercano al origen.
- ¿Cuáles de los puntos están sobre el plano yz?
- Se asume x: 0
- A y B no están sobre el plano yz $x \neq 0$.
- El punto C $(0, 1, \sqrt{15})$ si están sobre el plano yz.
- ¿Cuáles de los puntos está más cercano al plano yz? x=0:
 - o Dado a que el punto C está en el plano yz su distancia es 0 entonces ese es el más cercano.

Rectas y planos

3.1. 12.5 Rectas y planos

- Ecuación de una recta
- Vector posición $\vec{r}_0 = \langle x_0, y, z_0 \rangle$
- Vector dirección $\vec{v}_0 = \langle a, b, c \rangle$
- \blacksquare Ecuación vectorial: $\vec{r}=\vec{r}_0+t\vec{v}$ donde t
 es el parámetro.
- Ecuaciónes paramétricas:

$$x = x_0 + at$$
$$y = y_0 + at$$
$$z = z_0 + at$$

 \blacksquare Resuelva para t en las tres ecuaciones:

$$t = \frac{x - x_0}{a}t = \frac{y - y_0}{b}t = \frac{z - z_0}{c}$$

Estas son las ecuaciónes simétricas de la recta donde $a,b,c\neq 0$.

• Vector dirección $\vec{v} = \langle a, 0, c \rangle$ las ecuaciones en la recta cambian:

$$\vec{r} = \vec{r_0} + t\vec{v}$$
Vectorial
$$x = x_0 + at$$

$$y = y_0$$

$$z = z_0 + ct$$
Entonces queda así:
$$\frac{x - x_0}{a} = \frac{z - z_0}{c}$$

$$y = y_0$$
Simétrica

- 3.1.1. Ejercicio 3: Encuentre las ecs. simétricas de la recta que pasa por los puntos dados. Encuentre en qué punto la recta interseca al plano xz. pg.41
 - P(2,8,-2) & Q(2,6,4)

$$\begin{array}{ccc} \text{Vector posición} &= \overrightarrow{OP} = R_0 = \langle 2,6,7 \rangle \\ \text{Vector dirección} & \overrightarrow{PQ} = \overrightarrow{V} = \langle 0,-2,6 \rangle \\ \text{Ec. vectorial} &= \overrightarrow{r} = \langle 2,8,-2 \rangle + t \langle 0,-2,6 \rangle \\ \text{Ecs. simétricas} &= x = a, \frac{y-8}{-2} = \frac{z+2}{6} \\ \end{array}$$

■ Nos preguntamos: ¿Cual es la intersección con el plano xz?

Use, y=0x = 2,
$$\frac{-8}{-2} = \frac{z+2}{6}$$

= $6 \cdot 4 = z+2 \implies z = 22$

• La intersección con el plano xz es el punto (1,0,22):

$$\begin{split} \vec{r_0} &= \langle 4,6,10 \rangle \\ \vec{v} &= \overrightarrow{PQ} = \langle 2,0,0 \rangle \\ \text{Vectorial: } \vec{r} &= \langle 4,6,10 \rangle + t \langle 2,0,0 \rangle \\ \text{Paramétricas: } x &= 4 + 2t, y = 6, z = 10 \\ \text{Simétricas: } t &= \frac{x-4}{2}, y = 6, z = 10 \end{split}$$

■ Nos preguntamos: ¿Cual es el punto de instersección con el plano xz?

Use:
$$y=0$$

Explicación: por la recta y=6 siempre será 6, nunca podrá ser 0, no puede intersecar con el plano xz, No hay.

3.2. Rectas paralelas

Dos rectas $\vec{r}_1 = \vec{r}_{01} + t\vec{v} \& \vec{r}_2 = \vec{r}_{02} + t\vec{v}_2$ son paralelas si y solo si sus vectores de dirección \vec{v}_1 y \vec{v}_2 son paralelas.

Entones en el espacio tenemos 3 tipos de rectas:

- 1. Rectas paralelas
- 2. Rectas intersecan en un punto
- 3. Rectas Ublicuas (no paralelas & no intersecan)

3.2.1. Ejercicio 4: Determine si los siguientes pares de rectas son paralelas, oblicuas o se intersecan.

$$\frac{x-2}{8} = \frac{y-3}{24} = \frac{z-2}{16}, \frac{x-10}{-2} = \frac{y+15}{-6} = \frac{z+24}{-4}$$

$$\vec{v}_1 = \langle 8, 24, 16 \rangle, \vec{v}_2 = \langle -2, -6, -4 \rangle$$
Entoces..., $\left\langle \frac{8}{-2}, \frac{24}{-6}, \frac{16}{-4} \right\rangle$

$$\langle -4, -4, -4 \rangle, \therefore \text{ Son paralelas}$$

El vector dirección está en el denominador.

 $L_1: x=3-4t, y=6-2t, z=2+0t, t\in IR$ $L_2: x=3+8s, y=-2s, z=8+2s, s\in IR$ Utilize una variable parámetro para cada recta $v_1=\left<-4,-2,0\right>, v_2=\left<8,-2,2\right> \text{ No son paralelas}$ Analice si las rectas se intersecan $x=x\to 5-4t=3+8s$ $y=y\to 6-2t=-2s$ $z=z\to 2=8+2s\to s=-3$ $5-4=-22\to 4t=-27\to -4t=-27\to =\frac{27}{4}$ $6-2t=6\to 2t=0\to t=0$

... Como no hay una t única (no es posible $0 \neq \frac{27}{4}$), las dos retas no se intersecan.

 $L_1 \& L_2$ Son oblicuas Eliminación Gausiana

3.3. La ecuación de un plano

Previamente en 12.1 ax + by + cz = 0. Para encontrar la ec. de un plano se necesita:

Figura 3.2:

- 1. Un punuto sobre el plano $P: \vec{r_0} = \overrightarrow{OP}$
- 2. Un vector normal u ortognoal al plano: $\hat{n}_0 \langle a, b, c \rangle$

3.3.1. Derivación de la e. plano

$$P(x_0,y_0,z_0),Q(x_1,y_1,z_1)$$
 Son dos puntos sobre el plano
$$\vec{r_0}==\overrightarrow{0P}=\langle x_0,y_0,z_0\rangle$$

$$\vec{r}=\overrightarrow{0Q}=\langle x,y,z\rangle$$

El vector $\vec{RP} = \vec{r} + \vec{r} = 0$ está sobre el plano, por lo que tiene que ser ortogonal a \hat{n} .

$$\hat{n} \perp \vec{r} - \vec{r_0} \rightarrow \underbrace{\hat{n} \cdot (\vec{r} - \vec{r_0})}_{\text{Ec. vectorial de un plano}}$$
 Se puede reescribir como:
$$\underbrace{\langle a,b,c \rangle \cdot \langle x+x_0,y-y_0,z-z_0 \rangle + c(z-z_0) = 0}_{\text{Ecuación escalar de un plano}}$$

$$ax + by + cz = \underbrace{ax_0 + by_0 + cz_0}_{0}$$

Para encontrar la ec. de un plano se necesita 3 puntos P,Q,R: hay infinitas respuestas equivalentes $\hat{n} = \vec{\times}$.

$$\overrightarrow{r_0} = \overrightarrow{OP}, \overrightarrow{0Q}, \overrightarrow{0R}$$

$$\widehat{n} = \overrightarrow{PQ} \times \overrightarrow{PR}$$
 Tienen que empezar en el mismo punto Hat infinitas respuestas:

$$\hat{n} = \overrightarrow{PR} \times \overrightarrow{PQ}$$

3.3.2. Ejercicio 1: pg45 Encuentre la ec. del plano que pasa por los 3 puntos dados.

1.
$$P(3,-1,3), Q(8,2,4), R(1,2,5)$$

Ecuación del plano : ,
$$\hat{n} \cdot (\vec{r} - \vec{r_0}) = 0$$

Ecuaciónn de la recta : , $\vec{r} = \vec{r_0} + t\vec{v}$

$$\vec{r_0} = \langle 8, 2, 4 \rangle$$

Encuentre dos vectores que están sobre el plano y que comiencen en el mismo punto.

$$\vec{u} = \overrightarrow{PQ} = \langle 5, 3, 1 \rangle, \vec{v} = \overrightarrow{PR} = \langle -2, 3, 2 \rangle$$

j
j \hat{n} es ortogonal a ambos vectores !!

$$\hat{n} = \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 5 & 3 & 1 \\ -2 & 3 & 2 \end{vmatrix} = 3\hat{i} - 12\hat{j} - +21\hat{k}$$

Ec. Plano,
$$\hat{n} \cdot (\vec{r} - \vec{r_0}) = 0$$

Ec. Vectorial ,
$$\langle 3, -12, 21 \rangle \cdot \langle x-8, y-2, z-4 \rangle = 0$$

Escalar, 3(x-8)

2. P(0,0,0), Q(1,0,2), y R(0,2,3)

$$\begin{aligned} \text{Vector posición: } \vec{r_0} &= \langle 0, 0, 0 \rangle \\ \text{dos vectoes sobre el plano: } \vec{PQ} &= \langle 1, 0, 2 \rangle \\ \vec{PR} &= \langle 0, 2, 3 \rangle \\ \text{Vector normal: } \hat{n} &= \overrightarrow{PQ} \times \overrightarrow{PR} \\ &= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \text{terminar} \end{vmatrix} \end{aligned}$$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \text{terminar} & \end{vmatrix}$$

3. Ecuación del plano:

$$-4x - 3y + 2z = 0$$

Rectas paralelas v_1 y v_2 son paralelos 3.4.

Dos planos $\hat{n_1} \cdot (\vec{r} - \vec{r_1}) = 0$ y $\hat{n_2} \cdot (\vec{r} - \vec{r_2}) = 0$ son paralelas sí y sólo si $\hat{n_1}$ y $\hat{n_2}$ son paralelas. En caso que no sean paralelas, se puede encontrar el ángulos de intersección entre dos planos.

Resolución de corto 3.5.

■ Determine el área del triángulo entre los puntos P(), Q(), R():

$$\vec{a} = \overrightarrow{PQ} = \langle 4, 3, -2 \rangle$$

$$\vec{b} = \overrightarrow{PR} = \langle 5, 5, 1 \rangle$$

$$\text{Área} = \frac{1}{2} \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix}$$

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 3 & -2 \\ 3 & 5 & 1 \end{vmatrix} = 13\hat{i} - 14\hat{j} + 5\hat{k}$$

$$\text{Área} = \frac{1}{2} \checkmark$$

3.6. Rectas y planos

• Ecs. Rectas: $\vec{r} = \vec{r_0} + t\vec{v}$

si
$$a \neq b \neq c \neq 0$$
 $\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$

■ Paramétricas:

$$x = x_0 + at$$
$$y = y_0 + bt$$
$$z = z_0 + ct$$

■ Ecuación de plano:

$$\hat{n} = \vec{r} - \vec{r_0}$$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

$$\hat{n} = \vec{a} \times \vec{b}$$

3.6.1. Ejercicios

- 1. Considere los planos x + y = 0 & x + 2y + z = 1.
 - a) Determine si los planos son paralelos so no lo son encuentre el ángulo entr ellos:

$$\hat{n_1} = \langle 1, 1, 0 \rangle
\hat{n_2} = \langle 1, 2, 1 \rangle$$

: Los dos planos no son paralelos

■ El $\hat{n_1}$ & $\hat{n_2}$ no son necesariamente ortogonales.

$$\cos \theta = \frac{\hat{n_1} \cdot \hat{n_2}}{|\hat{n_1}| |\hat{n_2}|} = \frac{3}{\sqrt{2}}$$
$$\cos \theta = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2} \qquad \theta = \frac{\pi}{2}$$

2. Encuentre la ec. de la recta que interseca a ambos planos x+y=0 & x+2y+z=1:

$$r = \vec{r_0} + t\vec{v}$$

Dos puntos sobre la recta

Como la recta esta en ambos planos, se debe resolver el sig. sistema de ecuaciones

$$x + y = 0 \implies x = -y$$

 $x + 2y + z = 1 \implies y = z - 1$

z tiene cualquier valor, ahora encontrar escogiendo cualquier punto sobre la recta, en este caso 0

Primer punto
$$z = 0$$

 $y = 1$
 $x = -1$
 $\therefore \langle -1, 1, 0 \rangle$
Segundo punto $z = 1$
 $y = 0$
 $x = 0$
 $\therefore \langle 0, 0, 1 \rangle$

3. Encuentre la ecuación de la recta que pasa por P(-1,1,0) y Q $\underbrace{(0,0,1)}_{r_0}$:

$$\vec{r_0} = \langle 0, 0, 1 \rangle \langle -1, 1, 0 \rangle$$
$$\vec{v} = \overrightarrow{QP} 0 \langle -1, 1, -1 \rangle$$

Ecuaciones paramétricas de la recta:

$$x = 0 - t \quad y = 0 + t \quad z = 1 - t$$

4. Solución alterna:

$$x=-y$$
 $y=1-z$ Más incognitas que ecuaciones.
 x,y ó z pueden tener cualquier valor $z=t$
$$x=-1+t$$

$$y=1-t \ \, \because v_2=\langle 1,-1,1\rangle \quad \vec{r_0}=\langle -1,1-0\rangle$$

$$t=t$$

- 5. Solución geométrica:
 - Encuentre un punto en ambos planos (0,0,1).
 - L arecta está en el plano I, entonces la recta es perpendicular al vector normal del plano I.
 - Está en el plano z, entonces también es perpendicular al segundo vector normal.
 - ∴ la recta es perpendicular a ambos $\hat{n_1}$ & $\hat{n_2}$

$$\vec{v} = \hat{n_1} \times \hat{n_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{vmatrix} = \hat{i} - \hat{j} + \hat{k}$$

Ecuación de la recta: $r = \langle 0, 0, 1 \rangle + t \langle 1, -1, 0 \rangle$

6. Ejercicio 3: Encuentre el punto en el que la línea recta $x=1+2t,\,y=4t,\,z=5t$ interseca al plano. x-y+2z=17.

$$x = 1 + 2t$$

$$y = 4t$$

$$z = 5t$$
Plano
$$x - y + 2z = 17 \quad 1 + 2t - 4t + 10t = 17$$

$$8t = 16 \implies \therefore t = 2$$

El punto de intersección es (5,8,10).

- 7. Ejercicio 4: Encuentre una ec. del plano que contiene la recta x=1+t, y=2-t, z=4-3t y es paralela a plano 5x+2y+z=1.
 - Cualquier punto sobre la recta que también esté sobre el plano, t= 0.

Evaluemos en t=0
$$x=1, y=2, z=4$$

$$\vec{r_0}=\langle 1,2,4\rangle$$

- Nos preguntamos: ¿Cómo se encuentra \hat{n} ?
- El vectos de dirección de la recta $v = \langle 1, -1, -2 \rangle$ es paralelo al plano.
- Como es paralelo al seguno plano, entonces tiene que ser perpendicular $\hat{n}_2 = \langle 5, 2, 1 \rangle$
- Lo que ocurre entonces es:

$$\vec{r_0}=\langle 1,2,4\rangle \quad \hat{n}=\langle 5,2,1\rangle$$
 Ec. Plano: $\implies 5(x-1)+2(y-2)+1(z-4)=0$

- 8. Ejercicio 5: Encuentre los números directores para la recta de intersección entre los planos x+y+z=1 & x+2y+3z=1.
 - Definición de "numeros directores": a,b,c del vector de dirección $\langle a,b,c \rangle$
 - La recta es ortogonal a ambos vectores normales:

$$\hat{n_1} = \langle 1, 1, 1 \rangle$$
 $text \& \hat{n_2} = \langle 1, 2, 3 \rangle$ de ambos planos

$$\vec{v} = \hat{n_1} \times \hat{n_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & 2 & 1 \end{vmatrix} = \hat{i} - 2\hat{j} + \hat{k}$$

Los números directores: a = 1, b = 2, c = 1

9. Ejercicio 6: Encuentre las ecs. aparamétricas de la recta que pasa por el punto (0,1,2), que es paralelo al plano x+y+z=2 y es perpendicular a la recta $r=\langle -2t,0,3t\rangle$.

$$L_1 r = \vec{r_0} + t\vec{v}$$
 $r_0 = \langle 0, 1, 2 \rangle$

- \blacksquare Aclaraciones: L_1 es la incógnita que tenemos que encontrar.
- Nos preguntamos: ¿Cómo se encuentra r?
- Plano I: $\hat{n} = \langle 1, 1, 1 \rangle$ es perpendicular al plano, es paralelo a L_1 .
- Recta II: $\hat{v_2} = \langle -2, 0, 3 \rangle$ es perpendicular a L_1
- \blacksquare La recta es perpendiculae a \hat{n} y a $\vec{v_2}$

$$v = \hat{n} \times \vec{v_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ -2 & 0 & 3 \end{vmatrix} = 3\hat{i} - 5\hat{j} + 2\hat{k}$$

$$r_0 = \langle 0, 1, 2 \rangle$$

 $v = \hat{v_2} \times \hat{n}$ Ecuaciones paramétricas:

$$x = 0 - 3t$$

$$y = 1 - 5t$$

$$z = 2 + 2t$$

Funciones vectoriales y curvas en el espacio, límites y continuidad

4.1. 13.1 Funciones vectoriales y curvas en el espacio

• Una función vectorial $\vec{r}: R \implies V_3:$

$$\vec{r}(t) = \langle f(t), g(t), z(t) \rangle$$

La variable t es un parámetro.

■ Dominio: Números reales, Rango: vector 3D:

$$\vec{r}\mathbb{IR} \implies V_3 \quad \vec{r}(t) = \langle f(t), g(t), h(t) \rangle$$
t es un parámetro
$$\vec{r} = f(t)\hat{i} + g(t)\hat{j} + h(t)\hat{k}$$

■ Ejemplo de una función vectorial:

$$\vec{r} = \langle a, b, c \rangle + t \langle d, e, f \rangle$$
$$\vec{r} = \langle a + td, b + et, c + tf \rangle$$
$$x = f(t), \quad y = g(t), \quad z = h(t)$$

- Ecs. Paramétricas de una función vectorial:
- Dominio de ina función vectorial: encuentre el dominio de cada función componente. El dominio de \vec{r} es la intersección de los dominios de cada función componente.

4.1.1. Ejercicios

1. Encuentre el dominio:

$$r(t) = \left\langle \sqrt{r^2 - 9}, e^{5ln(t)}, ln(t+5) \right\rangle$$
 Evadir raíces negativas, y ln(0)
$$\sqrt{t^2 - 9} \implies \text{Definida} \quad t^2 \ge 9$$

$$e^{\sin(t)} \quad \text{siempore definida}$$

$$ln(t+5) \quad \text{Definida cuando} \quad t+5 > 0 \quad (-5, \infty)$$

$$\therefore \text{ El dominio es de} \quad (-5, \infty) \cup (-5, -3) \cup (-3, 3) \cup [3, \infty)$$

• Recordar: [a,b] el numero si es parte del dominio a,b son partes del dominio. (a,b) los puntos a,b no son parte del dominio.

2

$$\vec{s}(t) = \left\langle \sin^3(t^2), \cosh(\frac{t}{t^2 + 1}), \frac{1}{e^t + 4} \right\rangle$$

$$sin^3(t^2), ID_{f(t)} = IR$$

$$\cosh(\frac{t}{t^2 + 1}), ID_{g(t)} = IR$$

$$\frac{1}{e^t + 4}, ID_{h(t)} = IR$$

$$\therefore \text{ Dominio de } \vec{s}(t) = (-\infty, \infty)$$

$$e^+ 4 \neq 0 \implies e^t = -4 \implies t = \underbrace{ln(-4)}_{\text{indefinido}}$$

4.2. Limites y continuidad

.

$$\lim_{t \to a} \vec{r}(t) = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \right\rangle$$

- Evalúe el límite de cada función componente.
- Si no existe por lo menos un límite de una función componente, entonces lím $_{t\to a}\,\vec{r}(t)$ no existe.
- f(t) está definida en t=a

$$\lim_{t \to a} f(t) = f(a)$$

 \blacksquare Si se indefine y tiene forma de $\frac{0}{0},\,\frac{\infty}{\infty}$ usar L'Hôpital.

$$\lim_{t \to a} \frac{f(t)}{g(t)} \underbrace{=}_{0 \atop 0} \lim_{t \to a} \frac{f'(t)}{g'(t)} \quad \text{L'Hopital}$$

- \bullet Contínua en t=a si $\lim_{t\to a} \vec{r}(t) = \vec{r}(a)$
- Evite asíntotas verticales, saltos y agujeros. Ejemplo:

$$\lim_{t \to a} \frac{\sin(x)}{x} = \lim_{t \to a} \frac{\cos(x)}{1} = 1$$

4.2.1. Ejercicios

- Sea $\vec{r}(t) = \left\langle \frac{\tan(\pi t)}{t}, e^{t-2}, \frac{\ln(t-1)}{t^2-1} \right\rangle$.
- Analice si la función $\vec{r}(t)$ es contínua en t=2.

$$\vec{r}(t) = \left\langle \frac{\tan 2\pi}{2}, e^0, \frac{\ln(1)}{3} \right\rangle$$

$$\lim_{t \to 2} \underbrace{\frac{\tan \pi t}{t}}_{0} = 0$$

$$\lim_{t \to 2} e^{t-2} = 1$$

$$\lim_{t \to 2} \frac{\ln(t-1)}{t^2-1} = 0$$

$$\therefore \vec{r} \text{ si es contínua en } t = 2 \lim_{t \to 1} \vec{r}(t) = \vec{r}(2)$$

 \blacksquare Encuentre $\lim_{t\to 1}\vec{r}(t)$ analice el límite de cada función componente por separado.

$$f: \lim_{t \to 1} \frac{\tan 2\pi}{2} = \frac{0}{1}$$
$$g: \lim_{t \to 1} e^{t-2} = e^{-1}$$

 $h: \lim_{t\to 1} \frac{\ln(t-1)}{t^2-1} = \text{No existe, por } \ln(0) \text{ estar indefinido.}$

■ Analice si $\vec{r}(t)$ es contínua e t=1.

$$\underbrace{\lim_{t\to 1} \vec{r}(t) = \vec{r}(1)}_{\text{No es contínua en t=1, r(1) está indefinida.} }$$

■ Agujero $\vec{s}(t) = \left\langle \frac{\tan \pi t}{t-1}, e^{t-2}, \frac{\ln(2t-1)}{t^2-1} \right\rangle$ No es contínua en t=1, pero su límite existe.

$$\lim_{t \to 1} \frac{\tan \pi t}{t-1} \underbrace{\longrightarrow_{t \to 1}} \frac{\max e^2 \pi t}{1} = \frac{\pi}{(\cos \pi)^2} = \pi$$

$$\lim_{t \to 1} e^{t-2} = e^{-1} = \frac{1}{e}$$

$$\lim_{t \to 1} \frac{\ln(2t-1)}{t^2-1} \underbrace{\longrightarrow_{0}}_{0} = \lim_{t \to 1} \frac{\frac{2}{2t-1}}{2t} = \lim_{t \to 1} \frac{2}{2t(2t-1)} = \frac{1}{1(2-1)} = 1$$

$$\therefore \lim_{t \to 1} \left\langle \pi, \frac{1}{e}, 1 \right\rangle \quad \text{es un agujero } \vec{s}(1) \text{ está indefinido}$$

4.3. Curvas en el espacio

$$x = f(t)$$
$$y = g(t)$$
$$z = h(t)$$

Figura 4.1: Curvas paramétricas en el espacio

4.3.1. Espirales

• Grafique la curva $\vec{r}(t)$:

$$\vec{r}(t) = \underbrace{2\hat{i}\sin(t)}_{x} + \underbrace{2\hat{j}\cos(t)}_{y} + \underbrace{\hat{k}\frac{t}{\pi}}_{z}$$

$$t \quad x \quad y \quad z$$

$$0 \quad 0 \quad 2 \quad 0,5$$

$$\frac{\pi}{2} \quad 2 \quad 0 \quad 0,5$$

$$\pi \quad 0 \quad -2 \quad 1$$

$$\frac{3\pi}{2} \quad 2 \quad 0 \quad 1,5$$

$$2\pi \quad 0 \quad 2 \quad 2$$

Figura 4.2: Curva paramétrica

 \blacksquare Grafique:

$$\vec{r}(t) = \langle \sin \pi t, t, \cos \pi t \rangle$$
 Graficar la circumferencia $x^2 + z^2 = 1, y = 0$
$$\vec{r}(0) = \langle 0, 0, 1 \rangle \quad \text{El vector que nos servirá para delimitar la gráfica del espiral}$$
 Por ejemplo: $\vec{s}(t) = \langle \sin t, t^2, \cos t \rangle$

Cálculo con funciones vectoriales

5.1. 13.2 Cálculo con funciones vectoriales, pg.55

■ Derivadas:

$$\vec{r}'(t)$$
 Respecto a t

■ Integrales:

$$\int \vec{r}'(t)dt$$
 Respecto a t

5.1.1. Derivadas

$$\vec{r}'(t) = \lim_{h \to 0} \frac{r(t+h) - r(t)}{h}$$

lacktriangle Como la función $\vec{r}(t)$ está definida por tres funciones componentes se puede hacer:

$$\vec{r}'(t) = \lim_{h \to 0} \left\langle \underbrace{\lim_{h \to 0} \frac{f(t+h) - f(t)}{h}}_{f'(t)}, \underbrace{\lim_{h \to 0} \frac{g(t+h) - g(t)}{h}}_{g'(t)}, \underbrace{\lim_{h \to 0} \frac{h(t+h) - h(t)}{h}}_{h(t)} \right\rangle$$

■ Derivada entonces es :

$$\vec{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle$$

5.1.2. Integrales

■ Integral:

$$\int \vec{r}(t)dt = \int (f\hat{i} + g\hat{j} + h\hat{k})dt$$

$$\hat{i} \int f dt + \hat{j} \int g dt + \hat{k} \int h dt$$

Integrar la función componente.

5.2. Ejercicios

1. Encuentre la 1era y segunda derivada de las siguientes funciones:

$$\vec{r}(t) = \left\langle \sin(4t), t^2, \ln(\sin(t)) \right\rangle$$
$$\vec{r}'(t) = \left\langle 4\cos(4t), 2t, \frac{\cos(t)}{\sin(t)} \right\rangle$$
$$\vec{r}'(t) = \left\langle 4\cos(4t), 2t, \cot(t) \right\rangle$$

$$\vec{r}''(t) = \langle f''(t), g''(t), h''(t) \rangle$$

$$\vec{r}''(t) = \langle -16\sin(4t), 2, -\csc^2(t) \rangle$$

2. Derive: $\vec{s}(t) = \hat{i} \tan(4t) + hat j \ln(4t+1) + \hat{k}(5-2t)^{\frac{1}{2}}$

$$\vec{s}''(t) = 4\hat{i}(\sec(4t))^2 + \hat{j}4(4t+1)^{-1} - \hat{k}(5-2t)^{-\frac{1}{2}}$$

$$\vec{s}'''(t) = 8\hat{i} \times \sec(4t) \times \sec(4t) \times \tan(4t) \times 4 - 16\hat{j}(4t-1)^{-2} - \frac{\hat{k}}{2}(5-2t)^{-\frac{3}{2}} \times (-2)$$

$$\vec{s}''(t) = 32\hat{i} \times \sec^2(4t) \times \tan(4t) - 16\hat{j}(4t-1)^{-2} - \frac{\hat{k}}{2}(5-2t)^{-\frac{3}{2}} \times (-2)$$

5.3. Recordatorios & rectas tangentes de funciones vectoriales

- Recordar lo siguiente: f'(a) es igual a la pendiente de la drecta tangeente a f(x) en x = a.
- Recordar lo siguiente: La recta tangente.

$$L_1: y = f(a) + f'(a)(x-a)$$
 Ec. Recta Tangente

• Con una función vectorial:

$$\vec{r} = \langle f, g, h \rangle$$
, $x = f(t)$, $y = g(t)$, $z = h(t)$

Hay ecuaciones paramétricas para cada variable:

$$\vec{r}'(a) = \langle f'(a), g'(a), h'(a) \rangle$$

Vector de pendientes de rectas tangentes a la curva $\vec{r}(t)$.

- La derivada de una función vectorial se le da elnombre de "vector tangente" $\vec{r}(t) : \vec{r}'(a)$.
- Recta tangente: es ahora una función vectorial.

$$\vec{r}(t) = \vec{r}(a) + \vec{r}'(a)t$$

■ Ecs. Paramétricas:

$$x = f(a) + f'(a)t$$

$$y = g(a) + g'(a)t$$

$$z = h(a) + h'(t)t$$

- Vector tangente: r'(a) en t = a
- Vector tangente unitario: $\frac{r'(a)}{|r'(a)|} = \vec{T}(a)$

5.4. Ejercicios

■ Encuentre las ecs. paramétricas de la recta tangente a la curva : $s(t) = \langle 2\cos(t), 2\sin(t), 4\cos(2t) \rangle$ en el punto $(\sqrt{3}, 1, 2)$:

Recta tangente:
$$\vec{r}_T(t) = \vec{r}(a) + t\vec{r}'(a)$$

$$\vec{r}_T(a) = \left\langle \sqrt{3}, 1, 2 \right\rangle$$
Derivada: $\vec{r}'(t) = \langle -2\sin(t), 2\cos(t), -8\sin(2t) \rangle$

Nos preguntamos: ¿Cómo encuentro "a" ? igualamos $r(t) = \left\langle \sqrt{3}, 1, 2 \right\rangle$

$$2\cos(t) = \sqrt{3} \implies \cos(t) = \frac{\sqrt{3}}{2} \implies t = \frac{\pi}{6}$$

$$2\sin(t) = 1 \implies 2\sin(\frac{\pi}{6}) = 2 \times \frac{1}{2} = 1$$

$$4\cos(2t) = 2 \implies 4\cos(\frac{\pi}{3}) = 4 \times \frac{1}{2} = 2$$
Vector tangente: $\vec{r}'(\frac{\pi}{6}) = \left\langle -2\sin(\frac{\pi}{6}), 2\cos(\frac{\pi}{6}), -8\sin(\frac{\pi}{3}) \right\rangle$

$$\vec{r}_T(t) = \left\langle \sqrt{3}, 1, 2 \right\rangle + t \left\langle -1, \sqrt{3}, -4\sqrt{3} \right\rangle$$

$$\therefore$$

$$x = \sqrt{3} - 1t$$

$$y = 1 + \sqrt{3}t$$

$$z = 2 - 4\sqrt{3}t$$

Funciones de varias variables

6.1. 13.2 Cálculo de funciones vectoriales

Derivadas:

$$\vec{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle$$

■ Vector Tangente:

$$\vec{r}'(t)$$

■ Tangente unitario:

$$\vec{T}(t) = \frac{r'(t)}{|r'(t)|}$$

■ Integrales indefinidas:

$$\int \langle f, g, h \rangle dt = \langle F + C_1, G + C_2, H + C_3 \rangle$$

$$\int \vec{r}(t)dt = \vec{R}(t) + \vec{C}$$

 $ec{R}$ vector de Antiderivadas $ec{C}$ Vector de constantes

■ Integrales definidas:

$$\int\limits_{a}^{b}\vec{r}(t)dt=\hat{i}\int\limits_{a}^{b}f(t)dt+\hat{j}\int\limits_{a}^{b}g(t)dt+\hat{k}\int\limits_{a}^{b}h(t)dt$$

6.2. Ejercicios de integración

1.
$$\int_0^1 \left[\frac{4}{1+t^2} \hat{i} + sec^2(\frac{\pi t}{4}) \right] dt$$
:

$$4\hat{i} \times \tan^{-1}(t) \Big|_{0}^{1} + \hat{k} \times \tan(\frac{\pi t}{4}) \Big|_{0}^{1}$$

$$I_{i} = 4\hat{i}\frac{\pi}{4} + \hat{k}\frac{4}{\pi} = pi\hat{i} + \hat{k}\frac{4}{\pi} = \left\langle \pi, 0, \frac{4}{\pi} \right\rangle$$

2.
$$\int \left\langle te^{t^2}, te^t, \frac{q}{\sqrt{1-t^2}} \right\rangle dt$$
:

$$x: \int e^{t^{2}}t \, dt = \frac{1}{2} \int e^{u} du = \frac{1}{2}e^{t^{2}} + C_{1}$$

$$u = t^{2}$$

$$du = 2t dt$$

$$y: \int te^{t} dt = te^{t} - \int te^{t} - e^{t} + C_{2}$$

$$u = t \quad dv = e^{t} dt \quad dt = te^{t} + C_{2}$$

$$u = t \quad dv = e^{t} dt \quad dt = te^{t} + C_{2}$$

$$du = dt \quad v = e^{t} t: \int \frac{1}{1 - t^{2}} dt = \frac{\cos(\theta)}{\sin(\theta)} d\theta = \int d\theta = \underbrace{\theta + C_{3}}_{\sin^{-1}(t) + C_{3}} = \sin^{-1}(t) + C_{3}$$

$$\therefore \int \left\langle te^{t^{2}}, te^{t}, \frac{1}{\sqrt{1 - t^{2}}} \right\rangle dt = \frac{1}{2}e^{t^{2}} + C_{1}, te^{t} - e^{t} + C_{2}, \sin^{1}(t) + C_{3}$$

6.3. Movimiento en el espacio

Dado el vector posición $\vec{r}(t)$ de un objeto:

■ Vector velocidad:

$$\vec{c}(t) = \vec{r}^{\,\prime}(t)$$

■ Vector aceleración:

$$\vec{a}(t) = \vec{v}(t) = \vec{r}''(t)$$

■ Rapidez:

$$|\vec{v}(t)|$$

■ Distancia:

$$|\vec{r}(t)|$$

Dado el vector de aceleración $\vec{a}(t)$:

■ Velocidad:

$$\vec{v}(t) = \int \vec{a}(t)dt + \vec{C}_1$$

Desplazamiento o posición:

$$\vec{r}(t) = \int \vec{v}(t)dt + C_2$$

6.3.1. Ejercicios

1. Encuentre la velocidad, aceleración y rapidez dada la posición del objeto:

$$\vec{r}(t) = \hat{i}t + 2\hat{j}\cosh(4t) + 3\hat{k}\sinh(3t)$$
 Encontramos velocidad:
$$\vec{r}'(t) = \vec{v}(t) = \hat{i} + 8\hat{j}\sinh(4t) + 9\hat{k}\cosh(3t)$$
 Encontramos la aceleración:
$$\vec{r}''(a) = \vec{a}(t) + 32\hat{j}\cosh(4t) + 27\hat{k}\sinh(3t)$$
 Encontramos la rapidez:
$$|\vec{v}(t)| = \sqrt{1 + 64\sinh(4t) + 81\sinh^2(3t)}$$
 Encontramos la distancia:
$$|\vec{r}(t)| = \sqrt{t^2 + 4\cosh^2(4t) + 9\sinh^2(3t)}$$

- # Tarea # 6: Integrales func. vectoriales 14.1 Funciones en varias variables.
- # Tarea opcional consolidado: 12,13,14.1
- 2. Encuentre la velocidad y posición del objeto dada $\vec{a}(t)$ y las condiciones iniciales:

$$\vec{a}(t) = 6t\hat{i} + \hat{j}\cos(t) - \hat{k}\sin(2t), \quad \vec{v}(0) = \frac{\hat{i} + \hat{k}}{\vec{r}'(0)} = 2\hat{j} - \hat{k}$$

$$\text{Velocidad:} \quad \int \vec{a}(t)dt$$

$$\vec{v}(t) = \left\langle 3t^2 + C_1, \sin(t) + C_2, \frac{1}{2}\cos(2t) + C_3 \right\rangle$$

$$\text{Encuentro} \quad \vec{v}(0) = \left\langle C_1, C_2, \frac{1}{2} + C_3 \right\rangle = \langle 1, 0, 1 \rangle$$

$$C_1 = 1, \quad C_2 = 0, \quad \vdots + C_3 = 1 \implies C_3 = \frac{1}{2}$$

$$\text{Posición:} \quad \int \vec{v}(t)dt$$

$$\vec{r}(t) \left\langle t^3 + t + d_1, -\cos(t) + d_2, \frac{1}{4}\sin(2t) + \frac{t}{2} + d_3 \right\rangle$$

$$\vec{r}(0) = \left\langle \underbrace{d_1, -1 + d_2, d_3}_{d_1 = 0} \right\rangle$$

$$-1 + d_2 = 2 \implies d_2 = 3$$

$$d_3 = -1$$

$$\text{Posición:} \quad \vec{r}(t) = \left\langle t^3 + t, 3 - \cos(t), \frac{1}{4}\sin(2t) + \frac{t}{2} - 1 \right\rangle$$

3.
$$\vec{a}(t) = 8t\hat{i} + \sinh(t)\hat{j} - \hat{k}e^{\frac{t}{2}}$$
:

$$\underbrace{\vec{v}(0) = \vec{0}}_{\text{Está en reposo}} \quad \vec{s}(0) = 2\hat{i} + \hat{j} - 3\hat{k}$$
Velocidad:
$$\vec{v}(t) = \left\langle 4t^2 + C_1, \cosh(t) + C_2, -2e^{\frac{t}{2}} + C_3 \right\rangle$$

$$\vec{v}(0) = \left\langle \underbrace{C_1, 1 + C_2, -2 + C_3}_{C_1 = 0} \right\rangle = \left\langle 0, 0, 0 \right\rangle$$

$$\underbrace{C_2 = -1}_{C_3 = 2}$$

$$\vec{v}(t) = \left\langle 4t^2, \cosh(t) - 1, -2e^{\frac{t}{2} + 2} \right\rangle$$
Posición:
$$\vec{r}(t) = \left\langle \frac{4}{3}t^3 + C_1, \sinh(t) - t + C_2, -4e^{\frac{t}{2}} + 2t + C_3 \right\rangle$$

$$\vec{r}(0) = \left\langle C_1, C_2, -4 + C_3 \right\rangle = \underbrace{\left\langle 2, 1, -3 \right\rangle}_{C_2 = 1}$$

$$C_3 = -3 + 4 = 1$$

$$\vec{r}(t) = \left\langle \frac{4}{3}t^3 + 2, \sinh(t) - t + 1, -4e^{\frac{t}{2}} + 2t + 1 \right\rangle$$

Se evalúa el vector en 0 por que se quiere saber el valor de las constantes cuando están en reposo.

Por defecto siempre evaluar en 0 para encontrar $C_1, C_2 \& C_3$.

6.4. 13.3 Longitud de arco

10.4 Ecs. Paramétricas de una curva en el plano de dos dimensiones era:

$$x = f(t)$$
$$y = q(t)$$

■ La longitud de arco:

$$L = \int_{a}^{b} \sqrt{(x')^{2} + (y')^{2} + (z')^{2}} dt$$

Función vectorial:

$$\vec{r} = \langle f, g, h \rangle = \langle x, y, z \rangle$$

■ Derivada de función vectorial:

$$\vec{r}' = \langle x', y', z' \rangle$$

■ Magnitud:

$$|\vec{r}'| = \sqrt{(x')^2 + (y')^2 + (z')^2}$$

■ En general:

$$L = \int_{a}^{b} = |\vec{r}'(t)| dt$$

6.5. Ejercicios

Encuentre la longitud de las siguientes curvas:

1.
$$\vec{r}(t) = \langle \cos(t), \sin(t), \ln(\cos) \rangle$$
 en $0 \le t \le \frac{\pi}{4}$

$$L = \int_{0}^{\frac{\pi}{4}} |\vec{r}'(t)| dt$$

$$|\vec{r}'(t)| = \sqrt{\sin^{2}(t) + \cos^{2}(t) + \tan^{2}(t)} = \sqrt{1 + \tan^{2}(t)} = \sec^{2}(t) = \sec^{2}(t)$$

$$L = \int_{0}^{\frac{\pi}{4}} \sec(t) dt = \ln|\sec(t) + \tan(t)| \Big|_{0}^{\frac{\pi}{4}} = \ln|\sec(\frac{\pi}{4}) + \tan(\frac{\pi}{4})| - \ln|\sec(0) + \tan(0)|$$

$$L = \ln\left|\frac{2}{\sqrt{2}} + 1\right| - \ln|1| = \ln\left|\sqrt{2} + 1\right|$$

2.
$$\vec{r}(t) = \left\langle 12t, 8t^{\frac{3}{2}}, 3t^2 \right\rangle$$
 en $0 \le t \le 1$:

$$\vec{r}'(t) = \left\langle 12, 12t^{\frac{1}{2}}, 6t \right\rangle = 6 \left\langle 2, 2t^{\frac{1}{2}}, t \right\rangle$$
$$|\vec{r}'(t)| = 6\sqrt{4 + 4t + t^2} = 6\sqrt{(t+2)^2} = 6(t+2)$$
$$L = \int_0^1 (6t + 12)dt = 3t^2 + 12t \Big|_0^1 = 3 + 12 = 15$$

Derivadas parciales

7.1. Resolución de corto

1. Analice la función $r = \langle 3e^{-t}, ln(2t^2 - 1), tan(2\pi) \rangle$ en t = 1:

$$\lim_{t \to 1} \vec{r}(t) = \left\langle \lim_{t \to 1} 3e^{-t}, \lim_{t \to 1} \ln(2t^2 - 1), \lim_{t \to 1} \tan(2\pi) \right\rangle$$
$$\vec{r} = \left\langle 3e^{-1}, \ln(1), \tan(2\pi) \right\rangle = \left\langle 3e^{-1}, 0, 0 \right\rangle$$
$$\therefore \quad \text{r es contínua en } t = 1$$

Si la pregunta hubiese sido en cuándo se indefine, se saca el dominio de cada función.

2. Encuentre la ec. de la recta tatente a $r(t) = \langle te^{t-1}, \frac{8}{\pi} \arctan(t), 2 \ln(t) \rangle$ en t = 1.

$$\vec{r}(0) = \left\langle 1 \times e^0, \frac{8}{\pi} \arctan(1), 2ln(0) \right\rangle = \left\langle 1, 2, 0 \right\rangle$$

Terminar de copiar

7.2. 14.1 Funciones de varias variables

- Cuando teníamos sólo una función de una variable no había tanta complicación, las gráficas eran curvas en el plano. Cuando empezaba y terminaba la curva en x nos daba el dominio. Había una variable independiente x y la variable dependiente y, los dominios eran intervalos, y cada x sólo podía tener un sólo valor de y.
- En funciones de 2 variables se va a describir como:

$$z = f(x, y)$$
 Dos variables independientes x,y Variable dependiente z

• Entonces f es una regla que asigna a cada punto (x, y) a lo sumo un valor de z.

$$f: \underbrace{\mathbb{R}^2}_{\text{Dominio}} \to \underbrace{\mathbb{R}}_{\text{Rango}}$$

• Estamos pasando de una región por medio de una función z llego a tener f(x,y) en la dimensión correspondiente.

- Los dominios en estas funciones se vuelven superficies.
- El dominio de una función de dos variables: un conjunto que consiste de todos los puntos o pares ordenados (x, y) para los cuales f(x, y) para los cuales f(x, y) está definida.
 - \mathbb{D} : En una dimensión: Todos los números x para los cuales f(x) está definida
 - Evite la división por cero.
 - Raíces pares de números negativos.
 - Logaritmos de números negativos o cero.
- \blacksquare El dominio de f en una función de dos variables es una región:
 - Las regiones que estén sombreadas son partes del dominio.
 - # Para graficar funciones de dos variables son más fáciles de graficar que de una sola variable.

7.3. Ejercicios

Encuentre y bosque je el dominio de las sigs. funciones.

Sombree la región d
que es parte del $\mathbb D$ y utilice líneas discontínuas para de
notar a curvas que no son parte del $\mathbb D$

1. c(x,y) = 10x + 20y:

Nunca se indefine.

$$\mathbb{D}: \underbrace{(-\infty, \infty)}_{x} \underset{\text{Producto cartesiano}}{\underbrace{\times}} \underbrace{(-\infty, \infty)}_{y} = \mathbb{R}^{2}$$

- # Producto cartesiano denota todas las combinaciones posibles en un conjunto de n elementos.
- # Explicaciones de productos cartesianos:

$$\mathbb{R} \cup \mathbb{R} = \mathbb{R} \quad \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$$

Definición de producto cartesiano:

$$x \times y = \{(x, y) \text{ tal que } x \in X, y \in Y\}$$

Producto cartesiano vs. unión:

$$x \times y = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}\$$

 $x \cup y = \{(1), (2), (3)\}\$

2.
$$z = \frac{8}{x^2 - y^2}$$
:

Definida si
$$x^2 \neq y^2$$

$$\mathbb{R}^2 - \{x^2 \neq y^2\}$$

$$y \neq \sqrt{x^2}$$

$$y \neq \pm x$$

3.
$$R(x,y) = \sqrt{9 - x^2 - y^2}$$
:

$$\begin{array}{ll} 9-x^2-y^2\geq 0\\ \text{Definida} & 9\geq x^2+y^2\\ \mathbb{D}: x^2+y^2\neq 9 \end{array}$$

Círculo de radio 3 centrado en el orígen

$$\mathbb{D} = \{(x, y) \text{ tal que } x^2 + y^2 \le 9\}$$

4.
$$Q(x,y) = \frac{1}{\sqrt{x^2 + y^2 - 9}}$$
:

$$\mathbb{D}: \begin{array}{l} x^2 + y^2 > 0 \\ x^2 + y^2 > 9 \end{array}$$

 \therefore Afuera del círculo o disco de radio 3

5.
$$z = \frac{(x+4)}{(y-2)(x-4)(y+2)}$$
:

Definida si :
$$y \neq \pm 2, x \neq 4$$

 \mathbb{D} : $\mathbb{R}^2 - \{y \neq \pm 2, x \neq 4\}$

6.
$$h(x,y) = \ln(2 - yx)$$
:

7.3.1. Gráfica de z = f(x, y)

• Gráfica de z = f(x, y): Son superficies y consisten de todas las triplas ordenadas (x, y, z) donde z.

7.4. Curva de nivel o traza horizontal

■ En f(x,y) = k k es una constante, rebane la superficie con los planos horizontales z = k y grafique cada curva en el plano.

Derivadas parciales, rectas tangentes y planos tangentes

8.1. 14.3 Derivadas parciales

■ Derivada en una dimensión:

$$\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}=f'(x)$$

• En una función con dos variables independientes:

$$f(x,y) = \frac{f_x(x,y)}{f_y(x,y)}$$
 Derivadas parciales

• Al derivarse parcialmente respecto a una variable, la otra se mantiene constante:

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h} \qquad \text{# y se mantiene constante}$$

$$f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h} \qquad \text{# x se mantiene constante}$$

• Se pueden utilizar todas las reglas de derivación para funciones de 1 variable:

- Suma
- Producto
- Cociente
- Cadena

lacksquarederivadas parciales de f(x,y): encuentre todas las derivadas parciales posibles de f_x & f_y

• Notación:

$$f_x = \frac{\delta f}{\delta x} = \frac{\delta z}{\delta x}$$
$$f_x = \frac{\delta f}{\delta y} = \frac{\delta z}{\delta y}$$

• Evite f'(x,y) para evitar ambigüedad.

8.1.1. Ejercicios

Encuentre las derivadas parciales de las siguientes funciones.

1. $f(x,y) = 2x^2 + 3xy$: Recordar lo siguiente: $f_x(x,y)$ & $f_y(x,y)$

$$f_x = 4x + 3y \qquad f_y = 0 + 3x$$

2.
$$g(x,y) = y(x^2+1)^3 + x^2(y^4-4)^4 + 5x^2y^3$$
:

$$g_x = 3y(x^2 + 1)^2 2x + 2x(y^4 - 4)^4 + 10xy^3$$

$$g_y = 1 \cdot (x^2 + 1)^3 + 16y^3 x^2 (y^4 - 4)^3 + 15x^2 y^2$$

3. $h(s,t) = (s^2 + 10t)^2 \cdot (t^4 + s^3)^3$: # Regla del producto y de la cadena.

$$h_s = 4s(s^2 + 10t)^1 \cdot (t^4 + s^3)^3 + 3 \cdot 3s^2(s^2 + 10t)^2 \cdot (t^4 + s^3)^2$$

$$h_t = 20(s^2 + 10t)^1 \cdot (t^4 + s^3)^3 + 12t^3(s^2 + 10t)^2, (t^4 + s^3)^2$$

Evalúe la derivada en punto (a, b):

$$f_x(a,b) = \frac{\delta f}{\delta x}\Big|_{(a,b)}$$

1. $w(r,\theta) = r^2 \sin(2\theta) + e^{\pi r - \theta}$, encuentre $\frac{\delta w}{\delta \theta}\Big|_{(2,\pi)}$

$$\frac{\delta w}{\delta \theta} = 2r^2 \cos(2\theta) - e^{\pi r - \theta}$$

$$\frac{\delta w}{\delta \theta}\Big|_{(2,\pi)} = w_{\theta}(2,\pi) = 2 \cdot 4 \cos(2\pi) - e^{2\pi - \pi}$$

$$= 8 - e^{\pi}$$

8.2. Derivadas parciales par funciones de 2 o más variables

• Se deriva respecto a una variable y el resto se mantienen constantes.

$$w = f(x, y, z)$$

3 1 eras derivadas parciales: f_x, f_y, f_z .

$$u = f(x_1, x_2, \dots, x_n)$$

n derivadas parciales:

$$\frac{\delta u}{\delta x}, \dots \frac{\delta u}{\delta x_n}$$

8.2.1. Ejercicio

Encuentre todas las primeras derivadas pariales de las sigentes funciones:

 $f(x,y,z) = \sqrt[4]{x^4 + 8xz + 2y^2}$

$$f_x = \frac{1}{4}(x^4 + 8xz + 2y^2)^{-\frac{3}{4}} \cdot (4x^3 + 8z + 0)$$

$$f_y = \frac{1}{4}(x^4 + 8xz + 2y^2)^{-\frac{3}{4}} \cdot (4y)$$

$$f_z = \frac{1}{4}(x^4 + 8xz + 2y^2)^{-\frac{3}{4}} \cdot (8x)$$

 $p(r, \theta, \phi) = r \cdot \tan(\phi^2 - 4\theta)$:

$$p_r = \tan(\phi^2 - 4^{\theta})$$
$$p_{\theta} = -4r \sec^2(\phi^2 - 4\theta)$$
$$p_{\phi} = 2\phi r \sec^2(\phi^2 - 4\theta)$$

Funciones vectoriales 1 variable: $\vec{r}'(t), \dots$

8.3. Derivadas parciales de orden superior (pág. 100)

- Orden superior: Segundas, terceras, cuartas, etc. derivadas.
- ullet Como $f_x(x,y)$ & $f_y(x,y)$ son también funciones en dos variables, pueden tener derivadas parciales.

Las segundas derivadas parciales, éstas también tienen sus derivadas parciales, terceras derivadas parciales.

$$\begin{array}{cccc} f_{xxx} & f_{xxy} & f_{yyy} & f_{yxy} \\ f_{xxy} & f_{xyx} & f_{yyx} & f_{yxx} \end{array}$$

 \blacksquare Las derivadas parciales cruzadas f_{xy} & f_{yx} son iguales si la función es diferenciable.

$$f_{xy} = f_{yx} \qquad f_{xyy} = f_{yyx} = f_{yxy}$$

■ Notación delta:

$$f_{xx} = \frac{\delta}{\delta x} \left(\frac{\delta f}{\delta x} \right) = \frac{\delta^2 f}{\delta x^2} \qquad f_{yy} = \frac{\delta^2 f}{\delta y^2}$$
$$f_{xy} = \frac{\delta}{\delta y} \left(\frac{\delta f}{\delta x} \right) = \frac{\delta^2 f}{\delta y \delta x} \qquad f_{yx} = \frac{\delta^2 f}{\delta y \delta y}$$

8.3.1. Ejercicios

Encuentre todas las 2das derivadas parciales:

1. $f(x,y) = \sin(mx + ny)$ $m, n \in \mathbb{R}$:

Primeras derivadas parciales :

$$f_x = m\cos(mx + ny)$$
$$f_y = n\cos(mx + ny)$$

Segundas derivadas parciales:

$$f_{xx} = -m^2 \sin(mx + ny)$$
$$f_{yy} = -n^2 \sin(mx + ny)$$

$$f_{xy} = -mn\sin(mx + ny)$$

 $f_{yx} = -mn\sin(mx + ny)$ Iguales

 $2. \ z = \cos(2xy) :$

$$1^{\text{ eras}}: \quad \frac{\delta z}{\delta x} = -2\sin(2xy), \quad \frac{\delta z}{\delta y} = -2x\sin(2xy)$$
$$2^{\text{ das}}: \quad \frac{\delta^2 z}{\delta x^2} = -4y^2\cos(2xy), \quad \frac{\delta^2 z}{\delta y^2} = -4x^2\cos(2xy)$$

Multiplicadores de Lagrange

9.1. Derivadas parciales, rectas tangentes y planos tangentes

9.1.1. Interpretación de la derivada parcial

- \mathbb{C} curva de intersección entre z = f(x, y) y y = b.
- Recta tantente a eta curva en el punto (a, b, f(a, b)):

Derivada: $f_x(x,b)$ Pendiente: $f_x(a,b)$

■ Derivadas parciales: $f_x(a, b)$ resulta ser la pendiente de la recta tangente a la curva f(x, b) en la dirección de x.

$$L = \langle a, b, f(a, b) \rangle + t \langle 1, 0, f(a, b) \rangle$$
 donde: $x = t, y = b, z = f(t, b)$

• Para encontrar $L_2 x = a$:

$$x=a,y=t, x=f(z,y) \implies z_y=f_y(a,y) \implies z_y=f_y(a,b)$$
 $z_y=f(a,b)$ es la pendiente de la tangente a la curva $f(a,y)$ en la dirección de y $L_2=\langle a,b,f(a,y)\rangle+t\,\langle 0,1,f_y(a,b)\rangle$

- Estas dos rectas se utilizan para construir un plano tangente a la superficie.
- \blacksquare La ecuación del plano es un plano que es paralelo a L_1 & L_2 .

$$L_{1} = \langle a, b, f(a, b) \rangle + t \underbrace{\langle 1, 0, f(a, b) \rangle}_{v_{2}}$$

$$L_{2} = \langle a, b, f(a, b) \rangle + t \underbrace{\langle 0, 1, f(a, b) \rangle}_{v_{2}}$$

La ec. vectorial:

$$\hat{n} \cdot (-r_0) = 0 \quad \vec{r}_0 = \langle a, b, f(a, b) \rangle$$

terminar excursión.

9.1.2. Ejercicios

• Encuentre el plano tangenge a la superficie $z = \ln(x - 2y)$ en el punto (3, 1, 0):

$$f(a,b) \quad f_x(a,b) \quad f_y(a,b) \quad a = 3, \ b = 1$$

$$f(3,1) = \ln(3-2) = \ln(1) = 0$$

$$\frac{\partial f}{\partial x} = \frac{1}{x-2y} \quad \frac{\partial f}{\partial x} \Big|^{(3,1)} = \frac{1}{3-2} = 1$$

$$\frac{\partial f}{\partial y} = \frac{-2}{x-2y} \quad \frac{\partial f}{\partial y} \Big|^{(3,1)} = \frac{-2}{3-2} = -2$$

$$z = f(3,1) + f_x(x-3) + f_y(y-1)$$
ate:
$$z = 0 + x - 3 - 2y + 2$$

$$\therefore z = x - 2y - 1$$

La ecuación del plano tangente:

9.2. Aproximaciones lineales

- La aproximación lienal de z = f(x, y), linearización.
- La aproximación lineal de z en (a,b) es el plano tangente a la superficie.

$$L(x,y) = f(a,b) + \frac{\partial}{\partial x}$$

9.2.1. Ejercicios

Considere la función $f(x,y) = \sqrt{2x + 2e^y}$:

■ Encuentre la aproximación lineal de f en el punto (7,0): Encuentre f(7,0) $f_y(7,0)$

$$f(7,0) = \sqrt{14+2} = 4$$

$$f_x(x,y) = (2x+2e^y)^{-\frac{1}{2}} \qquad f_x(0,7) = \frac{1}{\sqrt{14+2}}?\frac{1}{4}$$

$$f_y(x,y) = \frac{e^y}{\sqrt{2x+2e^y}} \qquad f_y(7,0) = \frac{1}{\sqrt{14+2}}?\frac{1}{4}$$

$$\therefore \text{ La aproximación lineal o plano tangente: } L = 4 + \frac{1}{4}(x-7) + \frac{1}{4}y$$
 Cerca de $(7,0)$: $\sqrt{2x+2e^y} \approx \frac{9}{4} + \frac{1}{4}x + \frac{1}{4}y$

 \blacksquare Utilice la aproximación lineal para aproximar el valor de $\sqrt{8+2e}$:

$$f(4,1) = \sqrt{8+2e} \approx 3.5 \approx L(4,1)$$

$$L(4,1) = \frac{9}{4} + \frac{4}{4} + \frac{1}{4} = \frac{7}{2} = 3.5$$
 En realidad : $\sqrt{8+2e} \approx 3.665592$

• Ejercicio 3: Encuentre la aproximación lineal de $g(x,y) = 1 + \ln(xy - 5)$ en el punto (2,3):

$$g(2,3) = 1 + 2\ln(6 - 5) = 1 + 0 = 1$$

$$g_x(x,y) = 0 + 1 \cdot \ln(xy - 5) + \frac{xy}{xy - 5}$$

$$g_x(2,3) = \ln(1) + \frac{6}{6 - 5} = 0 + \frac{6}{1} = 6$$

$$g_y(x,y) = 0 + \frac{x \cdot x}{xy - 5}$$

$$g_y(2,3) = \frac{4}{6 - 5} = 4$$

La aproximación lineal entonces es:

$$L(x,y) = 1 + 6(x-2) + 4(y-3)$$

$$L(x,y) = -23 + 6x + 4y$$

9.3. 12.4 Derivadas implicitas y 12.5 Regla de la cadena

- \bullet Funciones 2 variables z=f(x,y)
- \blacksquare Explícita: z no está sólo en función de $x \ \& \ y.$
- Ejemplos: $x^2 + y^2 + z^2 = 16, \sqrt{z^2 x^2} = y + z$
- \blacksquare ¿Cómo se encuetn
ran $\frac{\partial z}{\partial x}$ & $\frac{\partial z}{\partial y}$?:
 - Implicita $x^2 + y^2 + z^2 = 16$ es una esfera de 4 (rango [-4,4]) en dos hemisferios:

$$z = +\sqrt{16 - x^2 - y^2}$$

$$\begin{split} \frac{\partial z}{\partial x} &= \frac{1}{2}(16-x^2-y^2)^{-\frac{1}{2}}(-2x) = \frac{-x}{\sqrt{16-x^2-y^2}} = -\frac{x}{z}\\ \frac{\partial z}{\partial y} &= -\frac{y}{z} \end{split}$$

 \blacksquare Derivación implicita, se pueden encontrar z_x & z_y sin necesidad de resolver para z.

$$x^{2} + y^{2} + z^{2} = 16 z \& y son independientes$$

$$\frac{\partial}{\partial x}(x^{2} + y^{2} + z^{2}(x, y)) = \frac{\partial}{\partial x}(16)$$

$$2x + 0 + 2z\frac{\partial z}{\partial x} = 0$$

$$2z\frac{\partial z}{\partial x} = -2x \Longrightarrow \frac{\partial z}{\partial x}?\frac{-x}{z}$$

$$\frac{\partial}{\partial y}(x^{2} + y^{2} + z^{2}) = \frac{\partial}{\partial y}(0)$$

$$0 + 2y + 2z\frac{\partial z}{\partial y} = 0 \Longrightarrow \frac{\partial z}{\partial y} = \frac{-y}{z}$$

9.3.1. Derivación parcial implícita abreviada

- $x^2 + y^2 + z^2 = 16$ como $x \ln(y) + x^2 \sqrt{1 + x + z} = k$
- \blacksquare Forma implícita: F(x,y,z(x,y))= constante. $\frac{\partial z}{\partial x}$ use la regla de la cadena.

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial x} = 0 \quad \Longrightarrow \quad z_x = -\frac{f_x}{f_z}$$

$$\frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial y} = 0 \quad \Longrightarrow \quad z_y = -\frac{f_y}{f_z}$$

9.3.2. Ejercicios

Encuentre las primeras derivadas parciales de z.

1.
$$\ln(zy) + 9z - xyz = 1$$
:

$$F_x = -yz F_y = y^{-1} + 0 - xy F_z = z^{-1} + 9 - xy \frac{\partial z}{\partial x} = -\frac{F_x}{F_y} = \frac{yz}{z^{-1} + 9 - xy} \frac{\partial z}{\partial y} = \frac{xz - y^{-1}}{z^{-1} + 9 - xy}$$

Sin derivación parcial implícita

z(x,y) agregue z_x cada vez que aparece z.

$$\frac{yz_x}{z_y} + 9z_x - y_x$$

Máximos y mínimos

10.1. Parcial 2

- Planos tangentes y aproximaciones lineales
- Regla de la cadena
- Derivación implícita
- \blacksquare Derivada direccional o razón de cambio en f en la dirección de \vec{u}

10.2. 14.7 Máximos y mínimos

- Máximo relativo:
 - f(a,b) > f(x,y)
 - (x, v) cerca de (a, b)
- Mínimo relativo:
 - f(a,b) < f(x,y)
 - (x,y) cerca de (a,b)

10.2.1. En funciones de una variable

- Números críticos: f'(c) = 0 ó f'(c) =indef.
- 2da derivada:

$$f'(c) < 0$$
 Máximo relativo
$$f'(c) > 0$$
 Mínimo relativo
$$f'(c) = 0$$
 Inconcluso

10.2.2. En funciones de dos variables

■ Puntos críticos:

$$f_x(a,b) = 0$$
 & $f_y(a,b) = 0$

■ No es suficiente:

$$\begin{split} f_{xx} < 0 & \& \ f_{yy} < 0 & \text{M\'ax relativo} \\ f_{xx} > 0 & \& \ f_{yy} > 0 & \text{M\'an relativo} \end{split}$$

• Prueba de la segunda derivada: (a,b) es un punto crítico y f(x,y) tiene segundas derivadas continuas.

$$D(a,b) = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = f_{xx}f_{yy} - (f_{xy})^2$$

- Entonces:
 - Máximo relativo: $D(a,b) > 0 \& f_{xx} < 0$
 - Mínimo relativo: $D(a,b) > 0 \& f_{xx} > 0$
 - Punto de silla: D(a,b) < 0 no hay ni mínimo ni máximo.
 - Inconcluso: D(a, b) = 0
- Ejemplo: Considere la función $z = x^2 + y^2$.
 - Puntos críticos:

$$\begin{split} z_x &= 2x = 0 \\ z_y &= -2y = 0 \end{split}$$
 Prueba de la segunda derivada

48

2 000

10.2.3. Ejercicios máximos y mínimos

- 1. Encuentre los máximos y mínimos relativos de las siguientes funciones.
 - $f(x,y) = x^2 + 4y^2 6x + 16y$

$$\begin{cases}
f_x = 2x - 6 = 0 \implies x = 3 \\
f_y = 8y + 16 = 0 \implies y = -2
\end{cases}$$
Único punto crítico en: (3, -2)
$$D(x,y) = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{zz} \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 0 & 8 \end{vmatrix} = 16 \quad 16 > 0$$

$$f_{xx} = 2 \quad 2 > 0$$
Valor mínimo : $f(3, -2) = -25$

$$a(x, y) = 2x^2 + xy + y^2 + 100$$

$$g_x = 4x + 4 = 0 \implies y = -4x \quad impliesy = 0$$

$$g_y = x + 2y = 0 \quad implies \quad x - 8x = -9x = 0 \quad implies \quad x = 0$$
 #Resolver ecuaciones
$$\text{Unico punto crítico}$$

$$D(x,y) = \begin{vmatrix} g_{xx} & g_{xy} \\ g_{yx} & g_{yy} \end{vmatrix} = \begin{vmatrix} 4 & 1 \\ 1 & 2 \end{vmatrix} = 8 - 1 = 7 \implies 7 > 0$$

$$g_{xx} = 4 > 0$$

Valor mínimo relativo: g(0,0) = 100

Máximo relativo en (2,-3) 38

$$h(x,y) = 30 - x^2 - 2y^2 + 4x - 12y$$

Encontrar pts. críticos :
$$h_x = 2x - 4 = 0$$
 Encontrar pts. críticos :
$$h_y = -4y - 12 = 0$$

$$y = \frac{12}{-4} = -3$$
 Único número crítico es (2,-3)
$$D(x,y) = \begin{vmatrix} -2 & 0 \\ 0 & -4 \end{vmatrix} = 8 > 0 \qquad h_{xx} = -2 < 0$$

2. Una caja de cartón sin tapa, debe de tener un volúmen de $32,000cm^3$, calcule las dimensiones x,y,z que minimicen el cartón utilizado.

Volúmen:
$$V = xyz = 32,000$$

Área: $A = 2zy + 2zx + xy$
Tengo que minimizar el área
 $A = 2zy + 2zx + xy \implies z = \frac{32,000}{xy}$
 $x, y, z > 0$

$$A(x,y) = 64,000 \cdot \frac{y}{xy} + 64,000 \frac{x}{xy} + xy$$

$$A(x,y) = \frac{64,000}{x^2} + \frac{64,000}{y} + xy$$

$$A_x = 0: \frac{-64,000}{x^2} + y = 0 \implies y = 64,000x^{-2}$$

$$A_y = 0: \frac{-64,000}{y^2} + x = 0 \implies [64,000]^2x^{-4}$$
Sustituya en Ay $\frac{-64,000}{(64,000)^2x^{-4}} + x = 0$

$$-\frac{x^4}{64,000} = -x$$

$$x = \sqrt[3]{64} \cdot \sqrt[3]{1,000} = 4 \cdot 10 = 40$$

$$y = \frac{64,000}{x^2} = \frac{64 \cdot 1,000}{16 \cdot 100} = 4 \cdot 10 = 40$$

$$z = \frac{32,000}{40 \cdot 40} = \frac{32,000}{16,000} = 20$$

 \therefore Las dimensiones que minimizan el área es: x = y = 40, z = 20

3. Discriminación de precios:

■ Demanda:

$$p_1 = 104 - q_1$$
 Producción: q_1, q_2
$$p_2 = 84 - q_2$$

■ Costos:

$$C = 600 + 4q_1 + 4q_2$$

■ Encuentre los precios y las cantidades q_1 & q_2 a la que deben venderse los productos para maximizar la utilidad.

$$\text{Utilidad} = \text{Ingresos} - \text{Costos} \\ \text{Utilidad} : \quad u(q_1,q_2) = p_1q_1 + p_2q_2 - 600 - 4_q1 - 4q_2 \\ u(q_1,q_2) = 104q_1 - q_1^2 + 84q_2 - q_2^2 - 600 - 4q_1 - 4q_2 \\ u(q_1,q_2) = -q_1^2 - q_2^2 + 100q_1 + 80q_2 - 600 \\ \frac{\partial u}{\partial q_1} = -2q_1 + 100 = 0 \qquad \Longrightarrow \qquad q_1 = 50 \\ \frac{\partial u}{\partial q_2} = -2q_2 + 80 = 0 \qquad \Longrightarrow \qquad q_2 = 40 \\ \text{Único punto crítico:} \quad (q_1 = 50, q_2 = 40) \\ q_1 = 50 \implies p_1 = 40 \\ q_2 = 40 \implies p_2 = 44 \\ \text{Utilidad máxima:} \quad u(50, 40) = 54 \cdot 50 + 44 \cdot 40 - 600 - 360 \\ 2, 700 + 1, 760 - 960 = 35, 00 \qquad \text{utilidad máxima} \\ \text{Prueba de la segunda derivada} : \\ D(x,y) = \begin{vmatrix} -2 & 0 \\ 0 & -2 \end{vmatrix} = 4 > 0 \\ \end{aligned}$$

 $v_{q_1q_1} = -2 < 0$

Multiplicadores de Lagrange

11.1. 14.8 Multiplicadores de Lagrange

Una función de dos variables puede estar sujeta a una restricción:

Máximo
$$z = f(x, y)$$
 Sujeto A $g(x, y) = c$

Si no es posible resolver para y ó x en la restricción, el problema no se puede reducir a una sola variable. Se introduce una nueva variable, el **multiplicador de Lagrange** λ para incorporar la restricción en la función objetivo.

$$c - g(x, y) = 0$$

$$\underbrace{F(x,y,\lambda)}_{\text{Función objetivo y restricción}} \ = \ \underbrace{f(x,y)}_{\text{Objetivo}} \ + \lambda \underbrace{(c-g(x,y))}_{\text{Restricción}})$$

Extremos relativos: $F_x = F_y = F_{\lambda} = 0$

$$F_x = f_x + \lambda g_x = 0$$
$$F_y = f_y \lambda g_y = 0$$
$$F_\lambda = c - g(x, y) = 0$$

$$\begin{array}{l} \nabla f = \lambda \nabla g \\ g(x,y) = c \end{array} \} \ \ \text{Condiciones necesarias para un extremo relativo}$$

Problema w = f(x, y, z) sujeta a g(x, y, z) = c

$$F(x,y,z,x) = f(x,y,z) - \underbrace{\lambda}_{\text{Variable artificial}} (c - g(x,y,z))$$

$$F_x = F_y = F_z = F_x = 0$$
 Condiciones: $\nabla f = \lambda \nabla g$

11.1.1. Ejercicios

1. Encuentre los extremos relativos de $w=x^2+y^2+z^2$ sujeta a 2x+y-z=18} restricción.

Método 1: Resolver para z

$$z = 2x + y - 18$$

Sustituya en w para obtener una función de 2 variables.

¿Cómo se encuentra z?

$$z = 2(6) + 3 - 18 = -3$$

Punto crítico: (6, 3, -3)

Prueba de la segunda derivada $D(x,y) = \begin{vmatrix} W_{xx} & w_{xy} \\ W & \end{vmatrix}$

Método 2: multiplicadores de Lagrange

• La grangiano $F = w + \lambda(c - g)$

$$F(x, y, z, \lambda) = x^2 + y^2 + z^2 + \lambda(18 - 2x - y + z)$$

$$F_x = 2x + 2\lambda = 0 \implies x = \lambda = 6$$

$$F_y = 2y - \lambda = 0 \implies y = \lambda/2 = 3$$

$$F_z = 2z + \lambda = 0 \implies z = -\lambda/2 = -3$$

$$F_{\lambda} = 18 - 2x - y + z = 0 \implies 2x + y - z = 18$$

Sustituya x, y & z en la restricción.

$$2\lambda + \frac{\lambda}{2} + \frac{\lambda}{2} = 3\lambda = 18 \implies \lambda = 6$$

2. Una caja sin tapa tiene un volúmen de $32,000 \text{ } cm^3$. Encuentre las dimensiones de la caja que minimizan

el costo.

Dividimos entonces
$$\frac{(1)}{(2)}$$
:

$$\frac{(1)}{(2)}: \qquad \frac{y}{x} = \frac{y+2z}{x+2z}$$

$$yx + 2zy = xy + 2zx \implies y = \frac{2zx}{2z} = \frac{x}{2}$$

$$\therefore \quad x = y$$

Dividimos también
$$\frac{(1)}{(3)}$$
:
$$\frac{(x)}{(3)}: \qquad \frac{z}{x} = \frac{y+2z}{2x+2y}$$
$$2xz+2yz = xy+2zx$$
$$z = \frac{xy}{2y} = \frac{x}{2} \therefore \quad y = x, \quad z = x/2$$

Se sustituye en la restricción:

$$x \cdot x \cdot \frac{x}{2} = 32,000$$
$$x^3 = 64 \cdot 1000$$
$$x = \sqrt[3]{64} \cdot \sqrt[3]{1,000} = 4 \cdot 10 = 19$$

Punto crítico:
$$x=40$$
 , $y=40$, $z=20$ Área mínima:
$$A=2yz+2xz+xy$$

$$A=2(800)+2(800)+1,600$$

$$A=3(1,600)=4,800cm^2$$

11.1.2. Aplicaciónes a la economía y negocios

1. Para sustituir una orden de 100 unidades de un producto, la empresa desea distribuir la producción entre sus dos plantas. La función de costo total es:

$$C(x,y) = 0.1x^2 + 7x + 15y + 1,000$$

Donde x es la planta 1 y y es la planta 2. ¿Cómo debe distribuirse la producción para minimizar los costos? C(0,0)=1,000.

Objetivo mínimizar C(x,y) Sujeta a
$$x+y=100$$
 Lagrange: $F=C+\lambda(100-x-y)$
$$F=0.1x^2+7x+15y+1,000+100\lambda-\lambda x-\lambda y$$

$$F_x=0.2x+7-\lambda=0 \implies 0.2x=\lambda-7=8 \implies x=40$$

$$F_y=15-\lambda=0 \implies \lambda=15$$

$$F_\lambda=100-x-y=0 \implies y=100-x=60$$

Punto crítico en (40,60)
$$x=15$$
 Costo mínimo
$$C(x,y)=0.1(1600)+280+900+1,000$$

$$C(x,y)=2,340$$

2. Una empresa tiene la función de producción

$$Q(C, K) = 12L + 20K - L^2 - 2K^2$$

La empresa tiene un presupuesto de \$88 mil para contratar trabajadores y maquinaria. Cada trabajadory cada máquina tienen un costo de 5 y 8 mil, resp. Encuentre la producción máxima.

La restricción presupuestaria es la tangente a la curva de nivel en ese punto.

$$\operatorname{Restricción:} \quad 4L + 8K = 88$$

$$\operatorname{Maximizar} \ Q \quad F(L,K,\lambda)$$

$$F(L,K,\lambda) = 12L + 20K - L^2 - 2K^2 + \lambda(22 - L - 2K)$$

$$F_L = 12 - 2L - \lambda = 0 \quad \Longrightarrow \quad 2L = 12 - \lambda \quad \Longrightarrow \quad L = 6 - \lambda/2$$

$$F_K = 20 - 4K - 2\lambda = 0 \quad \Longrightarrow \quad 4K = 20 - 2\lambda \quad \Longrightarrow \quad K = 5 - \lambda/2$$

$$F_\lambda = 22 - L - 2\lambda = 0$$

$$L + 2K = 22 \qquad 6 - \frac{\lambda}{2} + 10 - \lambda = 22$$

$$-\frac{3\lambda}{2} = 22 - 16 = 6$$

$$\lambda = -4 \quad L$$

Integrales dobles

12.1. 15.1 Integrales dobles

- Dominio de una función z = f(x, y) es una región R.
- Rectángulo:

$$R = [a, b] \times [c, d]$$

= $\{(x, y)\} \in \mathbb{R}^2 \quad a \le x \le b, \quad c \le y \le d$

- Una gráfica de una función de dos variables es una superficie.
- Integral doble:

$$\iint\limits_{R} f(x,y) dA = \lim_{m,n\to\infty} \sum_{j=1}^{n} \sum_{i=1}^{m} f(x_i, x_j) \Delta x \Delta y$$

■ Las integrales son las antiderivadas de f(x,y) respecto a x y respecto a y.

12.2. 15.2 Integrales iteradas

Integre:

$$A(x) = \int_{c}^{d} f(x, y) dy$$

- \blacksquare Se fija x y se integra sólo respecto a y.
- Ahora integre A(x) en $a \le x \le b$:

$$\int_{a}^{b} A(x) dx = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx = \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$

12.3. Teorema de Fubini: Integrales dobles como integrales iteradas.

■ Si f(x,y) es contínua en un rectángulo $R = [a,b] \times [c,d]$:

$$\iint\limits_{R} f((x,y))dA = \int\limits_{a}^{b} \int\limits_{c}^{d} f(x,y) \, dy dx = \int\limits_{c}^{d} \int\limits_{a}^{b} f(x,y) \, dx dy$$

 \blacksquare Pueden integrar intercambiando los órdenes y se obtiene la misma respuesta si R es un rectángulo.

12.3.1. Ejercicios

1. Evalúe las sigs. integrales dobles:

$$\int_{0}^{4} \int_{0}^{6} xy dx dy$$

$$= \int_{0}^{4} \frac{x^{2}}{2} y \Big|_{x=0}^{x=6} dy$$

y es constante

$$I_0 = \int_0^4 (18y - 0) \, dy = 9y^2 \Big|_{y=0}^{y=4} = 9 \cdot 16 = 144$$

Si se intercambia el orden de integración:

$$\int_{0}^{6} \left(\int_{0}^{4} xy dy \right) dx = \int_{0}^{6} \left(\frac{xy^{2}}{2} \Big|_{y=0}^{y=4} \right) dx$$
$$= \int_{0}^{6} 8x dx$$

$$i_0 = 4x^2 \Big|_{x=0}^{x=6} = 4 \cdot 36144$$
 Misma respuesta

2.
$$I_a = \int_0^1 \int_1^2 (4x^3 - 9x^2y^2) dy dx$$

$$I_a = \int_0^1 \left(4x^3 - 3x^2 y^3 \Big|_{y=1}^{y=2} \right) dx$$

$$I_a = \int_0^1 \left(8x^3 - 24x^2 - 4x^3 + 3x^2 \right) dx$$

$$I_a = \int_0^1 \left(4x^3 - 21x^2 \right) dx$$

$$\therefore = x^4 - 7x^3 \Big|_{x=0}^{x=1} = 1 - 7 = 6$$

■ Tomar en cuenta que no hay integrales dobles indefinidas.

$$\not\equiv \int \int f(x,y) \, dx dy$$

3.
$$I_b = \int_{R} \int \sin(x - y) dA$$
 $R = \{(x, y) | 0 \le x \le \frac{\pi}{2}, 0 \le y \le \frac{\pi}{2} \}$

$$I_{b} = \int_{0}^{\frac{\pi}{2}} \left(\int_{0}^{\frac{\pi}{2}} \sin(x - y) \, dy \right) dx$$
$$I_{b} = \int_{0}^{\frac{\pi}{2}0} \cos(x - y) \Big|_{y=0}^{y=\frac{\pi}{2}} dx$$

#

Integrales dobles e integrales iteradas

13.1. 15.2 y 15.3 Integrales dobles

• El volúmen del sólido entre las dos superficies z = f(x, y) y la región R en el plano xy es:

$$V = \iint\limits_{D} f(x, y) \, dA$$

• Región rectangular $R = [a, b] \times [c, d]$

$$\iint\limits_{D} dA = \int\limits_{a}^{b} \left(\int\limits_{c}^{d} f(x, y) \, dy \right) dx = \int\limits_{c}^{d} \int\limits_{a}^{b} f(x, y) \, dx dy$$

 En algunos problemas un orden de integración simplifica considerablemente la evaluación de la integral doble.

13.1.1. Ejercicios

1. Evalúe
$$I = \int_{0}^{2} \left(\int_{0}^{3} y e^{-xy} dy \right) dx$$

$$I_1 = \int_0^3 y e^{-xy} dy = \frac{-y}{x} e^{-xy} \Big|_{y=0}^{y=3} + \int_0^3 e^{-xy} dy$$

Cambiar los ordenes de integración

$$u = -xy du = -ydx I = \int_{0}^{3} \left(\int_{0}^{2} e^{-xy} y dx \right) dy$$

$$I = \int_{0}^{3} -e^{-xy} \Big|_{x=0}^{x=2} dy = \int_{0}^{3} \left(-e^{-2y} + 1 \right) dy$$

$$I = \frac{1}{2} e^{-2y} + y \Big|_{y=0}^{y=3} = \frac{1}{2} e^{-6} + 3 - \frac{1}{2}$$

13.2. 5.3 Integrales dobles en regiones generales

 \blacksquare Considere la región D $G(X) \leq y \leq f(x)$ ó $a \leq x \leq b.$

$$\iint\limits_D H(x,y)dA = \int\limits_a^b \left(\int\limits_{g(x)}^{f(x)} H(x,y)dy\right)dx$$

Integrales dobles en coordenadas polares

14.1. Resolución del corto

$$\int_{0}^{1} \int_{0}^{2} 5x (y + x^{2})^{4} dy dx = \int_{0}^{1} x(y + x^{2})^{5} \Big|_{y=0}^{y=2} dx$$

$$= \int_{0}^{1} x(2 + x^{2})^{5} - x(x^{2})^{5} dx$$

$$= \int_{0}^{1} (2 + x^{2})^{5} x dx + \int_{0}^{1} x^{1} 1 dx$$

$$= \frac{(2 + x^{2})^{6}}{12} \Big|_{x=0}^{x=1} - \frac{1}{12} x^{12} \Big|_{x=0}^{x=1}$$

$$= \frac{3^{6} - 2^{6}}{12} - \frac{1}{12}$$

$$= \frac{664}{12}$$

14.2.

$$D_{1} = \left\{ (x, y) | 0 \le x^{2} + y^{2} \le R^{2} \right\}$$

$$\iint_{D_{1}} f(x, y) dA = \int_{-R}^{R} \int_{-\sqrt{R^{2} - x^{2}}}^{\sqrt{R^{2} - x^{2}}}$$

¿Hay alguna forma más fácil de evaluar $\iint f(x,y) dA$?

 $\,\blacksquare\,$ Sí, use coordenadas polares.

$$\iint\limits_{D_{1}} f(x,y)dA = \int\limits_{0}^{2\pi} \int\limits_{0}^{R} f\left(r\cos\left(\theta\right), r\sin\left(\theta\right)\right) r dr d\theta$$
$$dA = dx dy = r d\theta dr$$

El rectángulo polar es la región $\alpha \leq \theta \leq \beta$, $r_1 \leq r \leq r_2$

Teorema: Integrales dobles usando coordenadas polares

Si
$$f(x,y)$$
 ...

14.2.1. Ejercicios

Ejercicio 1, evalúe la siguiente integral

■ Evalue
$$\iint_R xy^2 dA$$
, R

- \blacksquare R es el semidisco superior de radio 3.
- Polares:

Polares:
$$0 \le r \le 3 \\ 0 \le \theta \le \pi$$
 Cartesianas: $0 \le y \le \sqrt{9 - x^2} \\ -3 \le x \le 3$

$$\iint_{R} xy^{2}dA = \int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}} xy^{2}dydx \quad \text{Cartesianas}$$

$$I_{i} = \iint_{R} xy^{2}dA = \int_{0}^{3} \int_{0}^{\pi} r \cos\left(r^{2}\right) \sin^{2}\left(\theta\right) r d\theta dr \quad \text{Limites constantes}$$

$$I_{i} = \left(\int_{0}^{3} r^{4}dr\right) \left(\int_{0}^{\pi} \sin^{2}\left(\theta\right) \cos\left(\theta\right) d\theta\right)$$

$$I_{i} = \left(\frac{1}{5}r^{5}\Big|_{r=0}^{r=3}\right) \left(\frac{\sin^{3}\left(\theta\right)}{3}\right) \dots$$

$$I_{I} = \frac{1}{5}3^{5} \cdot \frac{1}{3} \left(\sin^{3}\left(\pi\right)\right) \dots$$

Anuncios

- \bullet Parcial estadística jueves 7:00 ó 10:00 jueves microeconomía 8:30 martes.
- Parcial 3, viernes 3 de abril
- \blacksquare Parcial 2 Aplazado \to Viernes 11:30 am Examen Virtual
- Temas:
 - Regla de la cadena
 - Derivación implícita
 - Derivadas direccionales y gradiente
 - Optimización
 - Lagrange
- Martes 31 "Corto largo".