Применение алгоритмов коллаборативной фильтрации для рекомендации банковских услуг

Постановка задачи

Рекомендательные системы (RS)

- это комплекс алгоритмов, программ и сервисов, задача которого предсказать, что может заинтересовать того или иного пользователя на основе знаний о пользователе, продукте и его предыдущих покупок или интересов.

Описание проблемы

В условиях переизбытка информации пользователем крайне важно рекомендовать ему то, что будет наиболее интересным в текущий момент времени.

Рекомендательная система для банковской сферы отличается от классических рекомендательных систем, таких как Netflix, Amazon и пр. тем, что:

- 1. Информация о банковских продуктах зачастую очень скудна.
- 2. В традиционных задачах RS продукту присваивается рейтинг, как правило, по 5-10 балльной шкале. У банков же есть только бинарная информация о покупке продукта.
- 3. Самих банковских продуктов немного.
- 4. Но при этом, даже когда человек еще не стал клиентом банка, а только думает об этом, банк уже обычно знает о человеке очень много.

Актуальность проблемы

Наличие рекомендательной системы позволяет компании:

- 1. Увеличить прибыль
- 2. Увеличить продажи
- 3. Увеличить жизненную ценность клиента
- 4. Увеличить лояльность пользователей

По оценкам McKinsey, благодаря рекомендательным системам, Amazon увеличивает продажи на 35%, а Netflix - на 75%.

Этапы решения задачи

- (1) Первичный анализ задачи.
- (2) Поиск аномалий и заполнение пропусков в данных.
- Создание base-line модели item-based коллаборативной фильтрации, подбор гиперпараметров.
- Создание альтернативной модели на основе скрытых факторов (на основе SVD)
- **Б** Решение проблемы холодного старта для нового пользователя.
- **6** Создание более сложной гибридной модели.
- **7** Анализ качества моделей.

Целевая метрика

В основе рекомендательной системы лежит получение прогноза оценки продукта потребителем.

Мы будем сравнивать прогнозное значение оценки с фактическим. В нашем случае оценка бинарная: купил/не купил (0/1).

Метрика для сравнения модели и подбора гиперпараметров:

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Первичный анализ

EDA Исходные данные

Был использован <u>датасет</u>, содержащий покупки банковских продуктов крупнейшей финансово-кредитной группы Испании Santander Ноутбук доступен по <u>ссылке</u>.

- Объем датасета:
 13 647 309 объектов. Каждый объект история покупок пользователем за месяц. Всего в выборке N месяцев на каждого пользователя
- Количество уникальных пользователей:
 956 645. Для пользователей в датасете указаны характеристики пользователя, н-р такие как пол, возраст, уровень дохода и пр. Всего характеристик 21.
- Количество продуктов:24

*Ввиду того, что датасет большой и для расчетов требуются сервера с высокой производительностью для расчетов использовался датасет по 2%

EDA Выбор признаков

Удалим признаки из датасета, которые фактически дублируют информацию:

• например, код провинции и название провинции

Количественные признаки не скоррелированы друг с другом

- можем их использовать все

Поиск аномалий и работа с пропусками

EDA Работа с пропусками

• Для признаков по потребителю:

Для категориальных признаков заменили пропуски значением моды по каждому признаку.

Пропуски по числовым признакам заменили средним значением по каждой провинции*

• Пропуски по продуктам:

Заменили на 0, так если данных о приобретении продукта нет, мы не можем говорить о его приобретении.

fecha_dato	0
ncodpers	0
ind_empleado	764
pais_residencia	764
sexo	764
age	764
fecha_alta	764
ind_nuevo	764
antiguedad	764
indrel	764
indrel_1mes	765
tiprel_1mes	765
indresi	764
indext	764
conyuemp	290501
canal_entrada	3695
indfall	764
tipodom	765
cod_prov	2156
ind_actividad_cliente	764
renta	39575
segmento	4028

EDA Поиск аномалий

• <u>Для количественных переменных данные проверены</u> на наличие аномалий

Долгожителей не убираем из датасета - для них также есть продукты - пенсии

Стаж работы покупателей также в пределах разумного и не превышает 20 лет

Методы и алгоритмы

Item-based Collaborative Filtering

- (+) Преимущества
 - универсальность метода
 - вычислимость (если продуктов меньше, чем пользователей)

- Недостатки
 - проблема "холодного" старта

SVD-разложение (рекомендации на основе скрытых факторов)

- +) Преимущества
 - алгоритм позволяет выявлять скрытые признаки объектов и интересы пользователей

Low-Rank Matrix Factorization:

- Недостатки
 - матрица Ratings нам полностью неизвестна и не можем просто взять ее SVD разложение
 - SVD разложение нужно пересчитывать с каждым новым пользователем и товаром
 - вычислимость

Hybrid RS

- + Преимущества
 - объединяют несколько подходов и имеют наибольшую эффективность

- Недостатки
 - наиболее сложны в реализации
 - вычислимость

*Например, у Netflix в гибридной системе объединено 27(!) алгоритмов

Аналоги

- 1 XGBoost
 - решение данной задачи с применением XGBoost доступно по <u>ссылке</u>
- 2 RandomForestClassifier
 - решение данной задачи с применением RandomForestClassifier доступно по <u>ссылке</u>

Этапы реализации

Этапы реализации системы рекомендации

Будем обучаться на данных до 2015-12-28, остальное идет в тест.

- 2

Создание альтернативной модели на основе SVD

3

Создание гибридной модели, сравнительный анализ метрик

Строим base-line: item-based CF

Решение проблемы "холодного" старта

Разбивка датасета на train/test

- в исходном датасете по пользователю известны данные о нем (пол, возраст и т.д)
- в классических RS используется только 3 признака (user_id, product_id, rating)
- для корректного сравнения метрик классических методов RS и с использованием признаков пользователя делали разбивку по дате покупки

 был написан метод для разбивки данных на train/test с учетом этого фактора

Распределение данных по train/test

Item-based Collaborative Filtering

Ha ochoвe KNNWithMeans подобраны следующие гиперпараметры, минимизирующие RMSE:

- с количеством соседей, равным 10
- и мерой сходства: корреляцией по Пирсону

SVD-разложение (рекомендации на основе скрытых факторов)

На основе SVD использованы следующие гиперпараметры:

- с числом скрытых факторов, равным 20
- и на 20 эпохах

Решение проблемы "холодного" старта Cold-start

На основе характеристик пользователя (пол, возраст и пр.) на основе сходства признаков найти продукты, наиболее интересные "соседям":

- нашли пользователей с максимальным количеством категориальных совпавших фич
- получили рейтинги "соседей" для разных продуктов
- получили финальные рекомендации усреднением рейтингов "соседей"

Создание гибридной модели

Если пользователь ничего не купил:

• Рекомендуем ему то, что выбрали пользователи - "соседи" (с максимальным набором одинаковых признаков)

Если пользователь уже совершал покупки:

• Рекомендации на основе Item-based CF, SVD, Cold-start в равной пропорции

Результаты

Сравнительный анализ метрик и выбор модели

• Для случайных 1000 пользователей из тестовой выборки предсказали рекомендации и сравнили с ground_truth

Model	RMSE ± std
RMSE for Cold_Start	0.1235 ± 0.0510
RMSE for Item-based CF	0.1427 ± 0.0614
RMSE for SVD	0.1387 ± 0.0637
RMSE for Hybrid	0.1161 ± 0.0506

Гипотеза, почему так происходит: (Cold-start лучше Item-based CF) - т.к. в обоих методах используется поиск ближайших соседей, то одна из возможных причин такого поведения - это намного большая информативность категориальных фичей при поиске ближайшего соседа, именно поэтому Cold-start используется в гибридной модели для пользователя с покупками.

Выводы

Выводы:

- 1. В ходе работы проанализирован исходный датасет, данные проверены на наличие аномалий и заполнены пропуски.
- 2. Для построения рекомендательной системы выбраны Item-based CF, рекомендации на основе скрытых факторов, гибридная модель и решение проблемы холодного старта на основе близости признаков пользователей.
- 3. В ходе работы выяснено, что категориальные признаки пользователя можно использовать для решения проблемы холодного старта, и помимо этого, использовать для пользователей, уже совершавших покупки ранее.
- 4. По данным RMSE выбрана лучшая модель Hybrid model
- 5. Написана функция, дающая рекомендации для пользователя из датасета.

Дальнейшие пути развития:

- 1. На сервере подобрать оптимальные параметры для SVD
- 2. Использовать более сложную модель для холодного старта (аля XGBoost)
- 3. Подобрать наилучшие веса для ансамбля моделя в Hybrid
- 4. На высокопроизводительном сервере использовать данные всего датасета

Спасибо за внимание!

