IN THE UNITED STATES PATENT & TRADEMARK OFFICE

Applicant: Turner et al.

U.S. Ser. No.: to be assigned

Attorney Docket No.: LEX-0182-USA

Filing Date: May 30, 2001

For:

NOVEL HUMAN MITOCHONDRIAL

PROTEINS AND

POLYNUCLEOTIDES ENCODING

THE SAME

VERIFIED STATEMENT

BOX PATENT APPLICATION Asst. Commission for Patents Washington, D.C. 20231

Sir:

- I, DRENDA D. THOMAS, do declare and state as follows:
- 1. I prepared a Sequence Listing in paper and computer readable form in connection with the above-captioned patent application, both of which are being submitted herewith.
- 2. I hereby state that the contents of the paper and computer readable form of the Sequence Listing being submitted herewith are the same.

Signed,

5/30/01

Date

Drenda D. Thomas

SEQUENCE LISTING

<110> Turner, C. Alexander Jr. Hilbun, Erin Potter, David

<120> Novel Human Mitochondrial Proteins and Polynucleotides Encoding the Same

<130> LEX-0182-USA

<150> US 60/207,933

<151> 2000-05-30

<160>\12

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1095

<212> DNA

<213> homo sapiens

<400> 1

atggagttgg	aggggcgggg	tgctggcggt	gtggcggggg	ggccggcggc	agggcccggg	60
cggagccccg	gggagtcggc	gctgctggac	gggtggctgc	agcggggcgt	gggccggggg	120
gccggcggcg	gggaggccgg	ggcctgcagg	ccccggtac	gacaagatcc	ggactccggc	180
ccggactacg	aggcgctgcc	ggctggagcc	actgtcacca	cgcacatggt	ggcaggcgcc	240
gtggcaggga	tcctggagca	ctgcgtgatg	taccccatcg	actgcgtcaa	gacccggatg	300
cagagtctac	agcctgaccc	agctgcccgc	tatcgcaatg	tgttggaggc	cctctggagg	360
attataagaa	cggagggcct	atggaggccc	atgagggggc	'tgaacgtcac	agcaacaggc	420
gcagggcctg	cccacgccct	ttattttgcc	tgctacgaaa	agttaaaaaa	gacattgagt	480
gatgtaatcc	accctggggg	caatagccat	attgccaatg	gtgcggccgg	gtgtgtggca	540
acattacttc	atgatgcagc	catgaaccct	gcggaagtgg	tcaagcagag	gatgcagatg	600
tacaactcac	cataccaccg	ggtgacagac	tgtgtacggg	cagtgtggca	aaatgaaggg	660
gccggggcct	tttaccgcag	ctacaccacc	cagctgacca	tgaacgttcc	tttccaagcc	720
attcacttca	tgacctatga	attcctgcag	gagcacttta	acccccagag	acggtacaac	780
ccaagctccc	acgtcctctc	tggagcttgc	gcaggagctg	tagctgccgc	agccacaacc	840
ccactggacg	tttgcaaaac	actgctcaac	acccaggagt	ccttggcttt	gaactcacac	900
attacaggac	atatcacagg	catggctagt	gccttcagga	cggtatatca	agtaggtggg	960
		ggtgcaggcc				1020
		gttcttcaaa				1080
agggctggca	agtga					1095

<210> 2

<211> 364

<212> PRT

<213> homo sapiens

<400> 2

 Met Glu Leu Glu Gly Arg Gly Ala Gly Gly Val Ala Gly Gly Pro Ala

 1
 5

 Ala Gly Pro Gly Arg Ser Pro Gly Glu Ser Ala Leu Leu Asp Gly Trp

 20
 25

 Leu Gln Arg Gly Val Gly Arg Gly Ala Gly Gly Gly Glu Ala Gly Ala

		35					40					45			
Cys	Arg 50	Pro	Pro	Val	Arg	Gln 55	Asp	Pro	Asp	Ser	Gly 60	Pro	Asp	Tyr	Glu
Ala 65	Leu	Pro	Ala	Gly	Ala 70	Thr	Val	Thr	Thr	His 75	Met	Val	Ala	Gly	Ala 80
Val	Ala	Gly	Ile	Leu 85	Glu	His	Cys	Val	Met 90	Tyr	Pro	Ile	Asp	Cys 95	Val
Lys	Thr	Arg	Met 100	Gln	Ser	Leu	Gln	Pro 105	Asp	Pro	Ala	Ala	Arg 110	Tyr	Arg
Àsn	Val	Leu 115	Glu	Ala	Leu	Trp	Arg 120	Ile	Ile	Arg	Thr	Glu 125	Gly	Leu	Trp
Arg	Pro 130	Met	Arg	Gly	Leu	Asn 135	Val	Thr	Ala	Thr	Gly 140	Ala	Gly	Pro	Ala
His 145	Ala	Leu	Tyr	Phe	Ala 150	Суѕ	Tyr	Glu	Lys	Leu 155	Lys	Lys	Thr	Leu	Ser 160
Asp	Val	Ile	His	Pro 165	Gly	Gly	Asn	Ser	His 170	Ile	Ala	Asn	Gly	Ala 175	Ala
Gly	Cys	Val	Ala 180	Thr	Leu	Leu	His	Asp 185	Ala	Ala	Met	Asn	Pro 190	Ala	Glu
Val	Val	Lys 195	Gln	Arg	Met	Gln	Met 200	Tyr	Asn	Ser	Pro	Tyr 205	His	Arg	Val
Thr	Asp 210	Суѕ	Val	Arg	Ala	Val 215	Trp	Gln	Asn	Glu	Gly 220	Ala	Gly	Ala	Phe
Tyr 225	Arg	Ser	Tyr	Thr	Thr 230	Gln	Leu	Thr	Met	Asn 235	Val	Pro	Phe	Gln	Ala 240
Ile	His	Phe	Met	Thr 245	Tyr	Glu	Phe	Leu	Gln 250	Glu	His	Phe	Asn	Pro 255	Gln
Arg	Arg	Tyr	Asn 260	Pro	Ser	Ser	His	Val 265	Leu	Ser	Gly	Ala	Cys 270	Ala	Gly
Ala	Val	Ala 275	Ala	Ala	Ala	Thr	Thr 280	Pro	Leu	Asp	Val	Cys 285	Lys	Thr	Leu
Leu	Asn 290	Thr	Gln	Glu	Ser	Leu 295	Ala	Leu	Asn	Ser	His 300	Ile	Thr	Gly	His
Ile 305	Thr	Gly	Met	Ala	Ser 310	Ala	Phe	Arg	Thr	Val 315	Tyr	Gln	Val	Gly	Gly 320
Val	Thr	Ala	Tyr	Phe 325	Arg	Gly	Val	Gln	Ala 330	Arg	Val	Ile	Tyr	Gln 335	Ile
Pro	Ser	Thr	Ala 340	Ile	Ala	Trp	Ser	Val 345	Tyr	Glu	Phe	Phe	Lys 350	Tyr	Leu
Ile	Thr	Lys 355	Arg	Gln	Glu	Glu	Trp 360	Arg	Ala	Gly	Lys				

<210> 3

<211> 582

<212> DNA

<213> homo sapiens

<400> 3

atggagttgg	aggggcgggg	tgctggcggt	gtggcggggg	ggccggcggc	agggcccggg	60
cggagccccg	gggagtcggc	gctgctggac	gggtggctgc	agcggggcgt	gggccggggg	120
gccggcggcg	gggaggccgg	ggcctgcagg	ccccggtac	gacaagatcc	ggactccggc	180
ccggactacg	aggcgctgcc	ggctggagcc	actgtcacca	cgcacatggt	ggcaggcgcc	240
gtggcaggga	tcctggagca	ctgcgtgatg	taccccatcg	actgcgtcaa	gacccggatg	300
cagagtctac	agcctgaccc	agctgcccgc	tatcgcaatg	tgttggaggc	cctctggagg	360
attataagaa	cggagggcct	atggaggccc	atgagggggc	tgaacgtcac	agcaacaggc	420
gcagggcctg	cccacgccct	ttattttgcc	tgctacgaaa	agttaaaaaa	gacattgagt	480

gatgtaatcc accetggggg caatagccat attgccaatg gtgcggccgg g acattacttc atgatgcagc catgaaccct gcggaaggct ga	tgtgtggca 540 582					
<210> 4 <211> 193 <212> PRT <213> homo sapiens						
<400> 4						
Met Glu Leu Glu Gly Arg Gly Ala Gly Gly Val Ala Gly Gly	Pro Ala 15					
Ala Gly Pro Gly Arg Ser Pro Gly Glu Ser Ala Leu Leu Asp 20 25 30						
Leu Gln Arg Gly Val Gly Arg Gly Ala Gly Gly Glu Ala 35 40 45						
Cys Arg Pro Pro Val Arg Gln Asp Pro Asp Ser Gly Pro Asp 50 55 60						
Ala Leu Pro Ala Gly Ala Thr Val Thr Thr His Met Val Ala 65 70 75	80					
	95					
Lys Thr Arg Met Gln Ser Leu Gln Pro Asp Pro Ala Ala Arg 100 105 110						
Asn Val Leu Glu Ala Leu Trp Arg Ile Ile Arg Thr Glu Gly 115 120 125						
Arg Pro Met Arg Gly Leu Asn Val Thr Ala Thr Gly Ala Gly 130 135 140						
His Ala Leu Tyr Phe Ala Cys Tyr Glu Lys Leu Lys Lys Thr 145 150 155	160					
Asp Val Ile His Pro Gly Gly Asn Ser His Ile Ala Asn Gly 165 170	Ala Ala 175					
Gly Cys Val Ala Thr Leu Leu His Asp Ala Ala Met Asn Pro 180 185 190	Ala Glu					
Gly						
<210> 5 <211> 693 <212> DNA <213> homo sapiens						
<400> 5						
atggagttgg aggggcgggg tgctggcggt gtggcggggg ggccggcggc a cggagccccg gggagtcggc gctgctggac gggtggctgc agcggggcgt g						
gccggcggcg gggaggccgg ggcctgcagg cccccggtac gacaagatcc g	gactccggc 180					
ccggactacg aggcgctgcc ggctggagcc actgtcacca cgcacatggt g						
gtggcaggga tcctggagca ctgcgtgatg taccccatcg actgcgtcaa g cagagtctac agcctgaccc agctgcccgc tatcgcaatg tgttggaggc c						
attataagaa cggagggcct atggaggccc atgagggggc tgaacgtcac a	gcaacaggc 420					
gcagggcctg cccacgcct ttattttgcc tgctacgaaa agttaaaaaa g						
gatgtaatcc accetggggg caatagecat attgccaatg gtgcggcegg g acattacttc atgatgcage catgaacect geggaaggta atgatteete a	5 5 5-					
totgtgggca gotgcacotg tatttottta cagtttgcag aagaaagcac a gtgggaaatt otgttacott gttttaccac tag						

```
<211> 230
<212> PRT
<213> homo sapiens
<400> 6
Met Glu Leu Glu Gly Arg Gly Ala Gly Gly Val Ala Gly Gly Pro Ala
Ala Gly Pro Gly Arg Ser Pro Gly Glu Ser Ala Leu Leu Asp Gly Trp
                                25
            20
Leu Gln Arg Gly Val Gly Arg Gly Ala Gly Gly Glu Ala Gly Ala
                            40
Cys Arg Pro Pro Val Arg Gln Asp Pro Asp Ser Gly Pro Asp Tyr Glu
                        55
                                             60
Ala Leu Pro Ala Gly Ala Thr Val Thr His Met Val Ala Gly Ala
                    70
                                        75
Val Ala Gly Ile Leu Glu His Cys Val Met Tyr Pro Ile Asp Cys Val
                                    90
                85
Lys Thr Arg Met Gln Ser Leu Gln Pro Asp Pro Ala Ala Arg Tyr Arg
                                105
Asn Val Leu Glu Ala Leu Trp Arg Ile Ile Arg Thr Glu Gly Leu Trp
                                                 125
                            120
Arg Pro Met Arg Gly Leu Asn Val Thr Ala Thr Gly Ala Gly Pro Ala
    130
                        135
                                             140
His Ala Leu Tyr Phe Ala Cys Tyr Glu Lys Leu Lys Lys Thr Leu Ser
                    150
                                        155
Asp Val Ile His Pro Gly Gly Asn Ser His Ile Ala Asn Gly Ala Ala
                                    170
                165
Gly Cys Val Ala Thr Leu Leu His Asp Ala Ala Met Asn Pro Ala Glu
                                185
Gly Asn Asp Ser Ser Thr Tyr His Ser Val Gly Ser Cys Thr Cys Ile
                            200
                                                 205
Ser Leu Gln Phe Ala Glu Glu Ser Thr Ser Val Leu Val Gly Asn Ser
                        215
Val Thr Leu Phe Tyr His
225
<210> 7
<211> 798
<212> DNA
<213> homo sapiens
<400> 7
atgcagagtc tacagcctga cccagctgcc cgctatcgca atgtgttgga ggccctctgg
                                                                        60
                                                                       120
aggattataa gaacggaggg cctatggagg cccatgaggg ggctgaacgt cacagcaaca
                                                                       180
ggcgcagggc ctgcccacgc cctttatttt gcctgctacg aaaagttaaa aaagacattg
                                                                       240
agtgatgtaa tccaccctgg gggcaatagc catattgcca atggtgcggc cgggtgtgtg
gcaacattac ttcatgatgc agccatgaac cctgcggaag tggtcaagca gaggatgcag
                                                                       300
                                                                       360
atgtacaact caccatacca ccgggtgaca gactgtgtac gggcagtgtg gcaaaatgaa
ggggccgggg ccttttaccg cagetacacc acccagetga ccatgaacgt teetttecaa
                                                                       420
gccattcact tcatgaccta tgaattcctg caggagcact ttaaccccca gagacggtac
                                                                       480
                                                                       540
aacccaagct cccacgtcct ctctggagct tgcgcaggag ctgtagctgc cgcagccaca
                                                                       600
accccactgg acgtttgcaa aacactgctc aacacccagg agtccttggc tttgaactca
                                                                       660
cacattacag gacatatcac aggcatggct agtgccttca ggacggtata tcaagtaggt
ggggtgaccg cctatttccg aggggtgcag gccagagtaa tttaccagat cccctccaca
                                                                       720
gccatcgcat ggtctgtgta tgagttcttc aaatacctaa tcactaaaag gcaagaagag
                                                                       780
                                                                       798
tggagggctg gcaagtga
```


<210> 10

<211> 94

<212> PRT

60

<213> homo sapiens

<400> 10

Met Gln Ser Leu Gln Pro Asp Pro Ala Ala Arg Tyr Arg Asn Val Leu Glu Ala Leu Trp Arg Ile Ile Arg Thr Glu Gly Leu Trp Arg Pro Met Arg Gly Leu Asn Val Thr Ala Thr Gly Ala Gly Pro Ala His Ala Leu 40 Tyr Phe Ala Cys Tyr Glu Lys Leu Lys Lys Thr Leu Ser Asp Val Ile 55 His Pro Gly Gly Asn Ser His Ile Ala Asn Gly Ala Ala Gly Cys Val 70 75

Ala Thr Leu Leu His Asp Ala Ala Met Asn Pro Ala Glu Gly

<210> 11 <211> 396 <212> DNA

<213> homo sapiens

<400> 11

atgcagagtc tacagcctga cccagctgcc cgctatcgca atgtgttgga ggccctctgg 60 aggattataa gaacggaggg cctatggagg cccatgaggg ggctgaacgt cacagcaaca 120 ggcgcagggc ctgcccacgc cctttatttt gcctgctacg aaaagttaaa aaagacattg 180 240 agtgatgtaa tccaccctgg gggcaatagc catattgcca atggtgcggc cgggtgtgtg 300 gcaacattac ttcatgatgc agccatgaac cctgcggaag gtaatgattc ctcaacctat 360 cactetgtgg geagetgeae etgtatttet ttacagtttg cagaagaaag cacateagtt 396 ttggtgggaa attctgttac cttgttttac cactag

<210> 12 <211> 131 <212> PRT

<213> homo sapiens

<400> 12

Met Gln Ser Leu Gln Pro Asp Pro Ala Ala Arg Tyr Arg Asn Val Leu Glu Ala Leu Trp Arg Ile Ile Arg Thr Glu Gly Leu Trp Arg Pro Met 25 Arg Gly Leu Asn Val Thr Ala Thr Gly Ala Gly Pro Ala His Ala Leu 40 Tyr Phe Ala Cys Tyr Glu Lys Leu Lys Lys Thr Leu Ser Asp Val Ile 55 His Pro Gly Gly Asn Ser His Ile Ala Asn Gly Ala Ala Gly Cys Val 75 Ala Thr Leu Leu His Asp Ala Ala Met Asn Pro Ala Glu Gly Asn Asp 90 Ser Ser Thr Tyr His Ser Val Gly Ser Cys Thr Cys Ile Ser Leu Gln 100 105 Phe Ala Glu Glu Ser Thr Ser Val Leu Val Gly Asn Ser Val Thr Leu 115 120 125

Phe Tyr His 130