8th Homework

Thomas Saltos

Exercise 1

The negative log-likelihood cost function of the logistic regression problem is defined as

$$L(\theta) = -\sum_{n=1}^{N} (y_n ln(s_n) + (1 - y_n) ln(1 - s_n))$$

Where $s_n = \sigma(\theta^T x_n)$. The gradient $\nabla_{\theta} L(\theta)$ of $L(\theta)$ is estimated as follows:

$$\nabla_{\theta} L(\theta) = -\sum_{n=1}^{N} \frac{y_n \partial s_n}{s_n \partial \theta} + \frac{1 - y_n}{1 - s_n} \left(-\frac{\partial s_n}{\partial \theta} \right)$$

Applying the chain rule, we have $\frac{\partial s_n}{\partial \theta} = \frac{\partial s_n}{\partial t} \frac{\partial t}{\partial \theta}$, where $t = \theta^T x$, and hence

$$\frac{\partial s_n}{\partial \theta} = s_n (1 - s_n) x_n$$

Since $\frac{\partial s_n}{\partial t} = s_n (1 - s_n)$. Therefore, the previous equation is written as

$$\nabla_{\theta} L(\theta) = -\sum_{n=1}^{N} \frac{y_n}{s_n} s_n (1 - s_n) x_n + \frac{y_n - 1}{1 - s_n} (s_n (1 - s_n) x_n) = -\sum_{n=1}^{N} (y_n (1 - s_n) + (y_n - 1) s_n) x_n$$

$$= \sum_{n=1}^{N} (s_n - y_n) x_n = X^T (s - y)$$

where
$$X^T = [x_1, x_2, ..., x_N], s = [s_1, s_2, ..., s_N]^T, y = [y_1, y_2, ..., y_N]^T$$

The gradient descent iteration consists of the following updating rule:

$$\theta_i = \theta_{i-1} - \mu X^T (s^{(i-1)} - y)$$

where $s^i = \left[\sigma(\theta_i^T x_1), \sigma(\theta_i^T x_2), \ldots, \sigma(\theta_i^T x_N)\right]^T$ and μ is the learning rate. After convergence of the iterative algorithm we get the estimate for θ i.e., $\hat{\theta}$. Then, a given x_{test} is classified to ω_1 if $\sigma(\widehat{\theta^T} x_{test}) > 0$ and to class ω_2 otherwise.

Exercise 2

It can be observed that as a increases, f(z) approaches the unit step function.

b) A gradient scheme for estimating the involved parameters based on the minimization of $J(\theta)$ will have the following form:

$$\theta_i = \theta_{i-1} - \mu [\nabla_{\theta} J(\theta)]_{\theta = \theta_{i-1}}$$

Where $J(\theta) = \sum_{n=1}^{N} (y_n - f(\theta^T x_n))^2$. The gradient is:

$$\nabla_{\theta} J(\theta) = -2 \sum_{n=1}^{N} (y_n - f(\theta^T x_n)) (\alpha f(\theta^T x_n) (1 - f(\theta^T x_n)) x_n$$

We have that:

$$\theta_i = \theta_{i-1} + 2\mu \sum_{n=1}^{N} (y_n - f(\theta^T x_n)) (\alpha f(\theta^T x_n) (1 - f(\theta^T x_n)) x_n$$

- c) As it can be also shown from the figures above, the model will tend to 1 as $e^{-\alpha z} \Rightarrow 0$, which implies that $\alpha \theta^T x \to +\infty$. On the other hand, 0 is approached as $\alpha \theta^T x \to -\infty$. Therefore, clear 0 or 1 is impossible for finite values of α and x in practice.
- d) For a given x_n , the model classifies it based in the value of $f(\theta^T x_n)$. This value actually can be interpreted as the probability of x_n , to belong to the class corresponding to $y_n = 1$. Therefore, if $f(\theta^T x_n) > 0.5$, x_n is classified to 1 while if $f(\theta^T x_n) < 0.5$ to class 0.
- e) A way to force the model responses to 1 for class 1 and 0 for class 0 is via the increase of the parameter α so that the model to approach the unit step function. This can be also verified from the figures given in part (a) above.