CSE 613: Parallel Programming

Lecture 13 (Distributed Memory Algorithms: Dense Matrices)

Rezaul A. Chowdhury

Department of Computer Science

SUNY Stony Brook

Spring 2019

2D Heat Diffusion

Let $h_t(x, y)$ be the heat at point (x, y) at time t.

Heat Equation

$$\frac{\partial h}{\partial t} = \alpha \left(\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} \right), \ \alpha = \text{thermal diffusivity}$$

Update Equation (on a discrete grid)

$$h_{t+1}(x,y) = h_t(x,y)$$

$$+c_x (h_t(x+1,y) - 2h_t(x,y) + h_t(x-1,y))$$

$$+c_y (h_t(x,y+1) - 2h_t(x,y) + h_t(x,y-1))$$

2D 5-point Stencil

Standard Serial Implementation

Implementation Tricks

- Reuse storage for odd and even time steps
- Keep a halo of ghost cells around the array with boundary values

One Way of Parallelization


```
#define UPDATE( u, v ) ( h[u][v] + cx * ( h[u+1][v] - 2* h[u][v] + h[u-1][v] ) + cy * ( h[u][v+1] - 2* h[u][v] + h[u][v-1] ) )
MPI_FLOAT h[ XX + 2 ][ Y + 2 ], g[ XX + 2 ][ Y + 2 ];
MPI Status stat:
MPI Request sendreg[2], recvreg[2];
for (int t = 0; t < T; ++t)
 if (myrank < p - 1) { MPI Isend(h[XX], Y, MPI FLOAT, myrank + 1, 2 * t, MPI COMM WORLD, & sendreg[0]);
                         MPI_Irecv( h[ XX + 1 ], Y, MPI_FLOAT, myrank + 1, 2 * t + 1, MPI_COMM_WORLD , & recvreq[ 0 ] ); }
 if ( myrank > 0 )
                    { MPI Isend( h[ 1 ], Y, MPI FLOAT, myrank - 1, 2 * t + 1, MPI COMM WORLD , & sendreg[ 1 ] );
                         MPI Irecv( h[ 0 ], Y, MPI FLOAT, myrank - 1, 2 * t , MPI_COMM_WORLD , & recvreq[ 1] ); }
  for ( int x = 2; x < XX; ++x )
   for ( int y = 1; y <= Y; ++y)
      g[x][y] = UPDATE(x, y);
  if (myrank < p - 1) MPI Wait (&recvreg[0], &stat);
  if ( myrank > 0 ) MPI_Wait( &recvreg[ 1 ], &stat );
  for (int y = 1; y <= Y; ++y) { g[1][y] = UPDATE(1, y); g[XX][y] = UPDATE(XX, y); }
  if (myrank < p - 1) MPI Wait (&sendreg[0], &stat);
  if ( myrank > 0 ) MPI_Wait( &sendreg[ 1 ], &stat );
  for ( int x = 1; x <= XX; ++x )
   for ( int y = 1; y <= Y; ++y)
      h[x][y] = g[x][y];
```

```
#define UPDATE( u, v ) ( h[u][v] + cx * ( <math>h[u+1][v] - 2* h[u][v] + h[u-1][v] ) + cy * ( <math>h[u][v+1] - 2* h[u][v] + h[u][v-1] )
                                                                        leave enough space
MPI_FLOAT h[ XX + 2 ][ Y + 2 ], g[ XX + 2 ][ Y + 2 ];
                                                                            for ghost cells
MPI Status stat;
MPI Request sendreg[2], recvreg[2];
for ( int t = 0; t < T; ++t )
 if (myrank < p - 1) { MPI Isend(h[XX], Y, MPI FLOAT, myrank + 1, 2 * t, MPI COMM WORLD, & sendreg[0]);
                         MPI_Irecv( h[ XX + 1 ], Y, MPI_FLOAT, myrank + 1, 2 * t + 1, MPI_COMM_WORLD , & recvreq[ 0 ] ); }
 if ( myrank > 0 )
                     { MPI Isend( h[ 1 ], Y, MPI FLOAT, myrank - 1, 2 * t + 1, MPI COMM WORLD , & sendreg[ 1 ] );
                         MPI Irecv( h[ 0 ], Y, MPI FLOAT, myrank - 1, 2 * t , MPI_COMM_WORLD , & recvreq[ 1] ); }
  for ( int x = 2; x < XX; ++x )
    for ( int y = 1; y <= Y; ++y)
      g[x][y] = UPDATE(x, y);
  if (myrank < p - 1) MPI Wait (&recvreg[0], &stat);
  if ( myrank > 0 ) MPI_Wait( &recvreg[ 1 ], &stat );
  for (int y = 1; y <= Y; ++y) { g[1][y] = UPDATE(1, y); g[XX][y] = UPDATE(XX, y); }
  if (myrank < p - 1) MPI Wait (&sendreg[0], &stat);
  if ( myrank > 0 ) MPI_Wait( &sendreg[ 1 ], &stat );
  for ( int x = 1; x <= XX; ++x )
   for ( int y = 1; y <= Y; ++y )
      h[x][y] = g[x][y];
```

```
#define UPDATE( u, v ) ( h[u][v] + cx * ( <math>h[u+1][v] - 2* h[u][v] + h[u-1][v] ) + cy * ( <math>h[u][v+1] - 2* h[u][v] + h[u][v-1] )
                                                                       downward send and
MPI_FLOAT h[ XX + 2 ][ Y + 2 ], g[ XX + 2 ][ Y + 2 ];
MPI Status stat;
                                                                          upward receive
MPI Request sendreg[2], recvreg[2];
for ( int t = 0; t < T; ++t)
 if (myrank < p - 1) { MPI Isend(h[XX], Y, MPI FLOAT, myrank + 1, 2 * t, MPI COMM WORLD, & sendreg[0]);
                         MPI_Irecv( h[ XX + 1 ], Y, MPI_FLOAT, myrank + 1, 2 * t + 1, MPI_COMM_WORLD , & recvreq[ 0 ] ); }
 if ( myrank > 0 )
                     { MPI_Isend( h[ 1 ], Y, MPI_FLOAT, myrank - 1, 2 * t + 1, MPI_COMM_WORLD , & sendreg[ 1 ] );
                         MPI Irecv( h[ 0 ], Y, MPI FLOAT, myrank - 1, 2 * t , MPI_COMM_WORLD , & recvreq[ 1] ); }
  for ( int x = 2; x < XX; ++x )
   for ( int y = 1; y <= Y; ++y )
      g[x][y] = UPDATE(x, y);
  if (myrank < p - 1) MPI Wait (&recvreg[0], &stat);
  if ( myrank > 0 ) MPI_Wait( &recvreg[ 1 ], &stat );
  for (int y = 1; y <= Y; ++y) { g[1][y] = UPDATE(1, y); g[XX][y] = UPDATE(XX, y); }
  if (myrank < p - 1) MPI Wait (&sendreg[0], &stat);
  if ( myrank > 0 ) MPI_Wait( &sendreg[ 1 ], &stat );
  for ( int x = 1; x <= XX; ++x )
   for ( int y = 1; y <= Y; ++y )
      h[x][y] = g[x][y];
```

```
#define UPDATE( u, v ) ( h[u][v] + cx * ( <math>h[u+1][v] - 2* h[u][v] + h[u-1][v] ) + cy * ( <math>h[u][v+1] - 2* h[u][v] + h[u][v-1] )
MPI_FLOAT h[ XX + 2 ][ Y + 2 ], g[ XX + 2 ][ Y + 2 ];
MPI Status stat;
MPI Request sendreg[2], recvreg[2];
                                                                  upward send and
                                                                  downward receive
for ( int t = 0; t < T; ++t )
 if (myrank < p - 1) { MPI_Isend(h[XX], Y, MPI_FLOAT, myrank + 1, 2/* t, MPI_COMM_WORLD, & sendreq[0]);
                         MPI_Irecv( h[ XX + 1 ], Y, MPI_FLOAT, myrank + 1, 2 * t + 1, MPI_COMM_WORLD , & recvreq[ 0 ] ); }
  if ( myrank > 0 )
                      { | MPI_Isend( h[ 1 ], Y, MPI_FLOAT, myrank - 1, 2 * t + 1, MPI_COMM_WORLD , & sendreg[ 1 ] );
                         MPI Irecv(h[0], Y, MPI FLOAT, myrank - 1, 2 * t , MPI COMM WORLD, & recvreg[1]); }
  for ( int x = 2; x < XX; ++x )
   for (int y = 1; y \le Y; ++y)
      g[x][y] = UPDATE(x, y);
  if (myrank < p - 1) MPI Wait (&recvreg[0], &stat);
  if ( myrank > 0 ) MPI_Wait( &recvreg[ 1 ], &stat );
  for (int y = 1; y <= Y; ++y) { g[1][y] = UPDATE(1, y); g[XX][y] = UPDATE(XX, y); }
  if (myrank < p - 1) MPI Wait (&sendreg[0], &stat);
  if ( myrank > 0 ) MPI_Wait( &sendreg[ 1 ], &stat );
  for ( int x = 1; x <= XX; ++x )
   for ( int y = 1; y <= Y; ++y )
      h[x][y] = g[x][y];
```

```
#define UPDATE( u, v ) ( h[u][v] + cx * ( <math>h[u+1][v] - 2* h[u][v] + h[u-1][v] ) + cy * ( <math>h[u][v+1] - 2* h[u][v] + h[u][v-1] )
MPI_FLOAT h[ XX + 2 ][ Y + 2 ], g[ XX + 2 ][ Y + 2 ];
MPI Status stat;
MPI Request sendreg[2], recvreg[2];
for (int t = 0; t < T; ++t)
 if (myrank < p - 1) { MPI Isend(h[XX], Y, MPI FLOAT, myrank + 1, 2 * t, MPI COMM WORLD, & sendreg[0]);
                        MPI_Irecv( h[ XX + 1 ], Y, MPI_FLOAT, myrank + 1, 2 * t + 1, MPI_COMM_WORLD , & recvreq[ 0 ] ); }
 if ( myrank > 0 )
                    { MPI Isend( h[ 1 ], Y, MPI FLOAT, myrank - 1, 2 * t + 1, MPI COMM WORLD , & sendreg[ 1 ] );
                        MPI Irecv(h[0], Y, MPI FLOAT, myrank - 1, 2 * t , MPI COMM WORLD, & recvreg[1]); }
                                                                         in addition to the ghost rows exclude
 for ( int x = 2; x < XX; ++x )
                                                                            the two outermost interior rows
   for ( int y = 1; y <= Y; ++y)
      g[x][v] = UPDATE(x, v);
  if (myrank < p - 1) MPI Wait (&recvreg[0], &stat);
  if ( myrank > 0 ) MPI_Wait( &recvreg[ 1 ], &stat );
  for (int y = 1; y <= Y; ++y) { g[1][y] = UPDATE(1, y); g[XX][y] = UPDATE(XX, y); }
  if (myrank < p - 1) MPI Wait (&sendreg[0], &stat);
  if ( myrank > 0 ) MPI_Wait( &sendreg[ 1 ], &stat );
  for ( int x = 1; x <= XX; ++x )
   for ( int y = 1; y <= Y; ++y)
      h[x][y] = g[x][y];
```

```
#define UPDATE( u, v ) ( h[u][v] + cx * ( <math>h[u+1][v] - 2* h[u][v] + h[u-1][v] ) + cy * ( <math>h[u][v+1] - 2* h[u][v] + h[u][v-1] )
MPI_FLOAT h[ XX + 2 ][ Y + 2 ], g[ XX + 2 ][ Y + 2 ];
MPI Status stat:
MPI Request sendreg[2], recvreg[2];
for ( int t = 0; t < T; ++t )
 if (myrank < p - 1) { MPI Isend(h[XX], Y, MPI FLOAT, myrank + 1, 2 * t, MPI COMM WORLD, & sendreg[0]);
                         MPI_Irecv( h[ XX + 1 ], Y, MPI_FLOAT, myrank + 1, 2 * t + 1, MPI_COMM_WORLD , & recvreq[ 0 ] ); }
                     { MPI_Isend( h[ 1 ], Y, MPI_FLOAT, myrank - 1, 2 * t + 1, MPI_COMM_WORLD , & sendreq[ 1 ] );
 if ( myrank > 0 )
                         MPI Irecv(h[0], Y, MPI FLOAT, myrank - 1, 2 * t , MPI COMM WORLD, & recvreg[1]); }
  for ( int x = 2; x < XX; ++x )
                                                                            wait until data is received
    for ( int y = 1; y <= Y; ++y)
                                                                                 for the ghost rows
      g[x][y] = UPDATE(x, y);
  if ( myrank < p - 1 ) MPI Wait ( &recvreq[ 0 ], &stat );
  if ( myrank > 0 )
                   MPI_Wait( &recvreg[ 1], &stat );
  for (int y = 1; y <= Y; ++y) { g[1][y] = UPDATE(1, y); g[XX][y] = UPDATE(XX, y); }
  if (myrank < p - 1) MPI Wait (&sendreg[0], &stat);
  if ( myrank > 0 ) MPI_Wait( &sendreg[ 1 ], &stat );
  for ( int x = 1; x <= XX; ++x )
   for ( int y = 1; y <= Y; ++y )
      h[x][y] = g[x][y];
```

```
#define UPDATE( u, v ) ( h[u][v] + cx * ( <math>h[u+1][v] - 2* h[u][v] + h[u-1][v] ) + cy * ( <math>h[u][v+1] - 2* h[u][v] + h[u][v-1] )
MPI_FLOAT h[ XX + 2 ][ Y + 2 ], g[ XX + 2 ][ Y + 2 ];
MPI Status stat:
MPI Request sendreg[2], recvreg[2];
for (int t = 0; t < T; ++t)
 if (myrank < p - 1) { MPI Isend(h[XX], Y, MPI FLOAT, myrank + 1, 2 * t, MPI COMM WORLD, & sendreq[0]);
                        MPI_Irecv( h[ XX + 1 ], Y, MPI_FLOAT, myrank + 1, 2 * t + 1, MPI_COMM_WORLD , & recvreq[ 0 ] ); }
 if ( myrank > 0 )
                    { MPI_Isend( h[ 1 ], Y, MPI_FLOAT, myrank - 1, 2 * t + 1, MPI_COMM_WORLD , & sendreg[ 1 ] );
                        MPI Irecv(h[0], Y, MPI FLOAT, myrank - 1, 2 * t , MPI COMM WORLD, & recvreg[1]); }
 for ( int x = 2; x < XX; ++x )
   for ( int y = 1; y <= Y; ++y )
                                                                            update the two
      g[x][y] = UPDATE(x, y);
                                                                       outermost interior rows
 if (myrank < p - 1) MPI Wait (&recvreg[0], &stat);
 for ( int y = 1; y <= Y; ++y ) \{g[1][y] = UPDATE(1, y); g[XX][y] = UPDATE(XX, y); \}
 if (myrank < p - 1) MPI Wait (&sendreg[0], &stat);
 if ( myrank > 0 ) MPI_Wait( &sendreg[ 1 ], &stat );
 for ( int x = 1; x <= XX; ++x )
   for ( int y = 1; y <= Y; ++y )
      h[x][y] = g[x][y];
```

```
#define UPDATE( u, v ) ( h[u][v] + cx * ( <math>h[u+1][v] - 2* h[u][v] + h[u-1][v] ) + cy * ( <math>h[u][v+1] - 2* h[u][v] + h[u][v-1] )
MPI_FLOAT h[ XX + 2 ][ Y + 2 ], g[ XX + 2 ][ Y + 2 ];
MPI Status stat:
MPI Request sendreg[2], recvreg[2];
for ( int t = 0; t < T; ++t )
 if (myrank < p - 1) { MPI Isend(h[XX], Y, MPI FLOAT, myrank + 1, 2 * t, MPI COMM WORLD, & sendreq[0]);
                         MPI_Irecv( h[ XX + 1 ], Y, MPI_FLOAT, myrank + 1, 2 * t + 1, MPI_COMM_WORLD , & recvreq[ 0 ] ); }
 if ( myrank > 0 )
                     { MPI Isend( h[ 1 ], Y, MPI FLOAT, myrank - 1, 2 * t + 1, MPI COMM WORLD , & sendreg[ 1 ] );
                         MPI Irecv( h[ 0 ], Y, MPI FLOAT, myrank - 1, 2 * t , MPI_COMM_WORLD , & recvreq[ 1] ); }
  for ( int x = 2; x < XX; ++x )
    for (int y = 1; y \le Y; ++y)
      g[x][v] = UPDATE(x, v);
                                                                               wait until sending data is complete
  if (myrank < p - 1) MPI Wait (&recvreg[0], &stat);
  if ( myrank > 0 ) MPI_Wait( &recvreg[ 1 ], &stat );
                                                                                   so that h can be overwritten
  for (int y = 1; y <= Y; ++y) { g[1][y] = UPDATE(1, y); g[XX][y] = UPDATE(XX, y); }
  if (myrank < p - 1) MPI Wait (&sendreg[0], &stat);
  if ( myrank > 0 )
                    MPI_Wait( &sendreg[ 1], &stat );
  for ( int x = 1; x <= XX; ++x )
    for ( int y = 1; y <= Y; ++y)
      h[x][y] = g[x][y];
```

```
#define UPDATE( u, v ) ( h[u][v] + cx * ( <math>h[u+1][v] - 2* h[u][v] + h[u-1][v] ) + cy * ( <math>h[u][v+1] - 2* h[u][v] + h[u][v-1] )
MPI_FLOAT h[ XX + 2 ][ Y + 2 ], g[ XX + 2 ][ Y + 2 ];
MPI Status stat;
MPI Request sendreg[2], recvreg[2];
for ( int t = 0; t < T; ++t )
 if (myrank < p - 1) { MPI Isend(h[XX], Y, MPI FLOAT, myrank + 1, 2 * t, MPI COMM WORLD, & sendreg[0]);
                         MPI_Irecv( h[ XX + 1 ], Y, MPI_FLOAT, myrank + 1, 2 * t + 1, MPI_COMM_WORLD , & recvreq[ 0 ] ); }
 if ( myrank > 0 )
                     { MPI Isend( h[ 1 ], Y, MPI FLOAT, myrank - 1, 2 * t + 1, MPI COMM WORLD , & sendreg[ 1 ] );
                         MPI Irecv( h[ 0 ], Y, MPI FLOAT, myrank - 1, 2 * t , MPI_COMM_WORLD , & recvreq[ 1] ); }
  for ( int x = 2; x < XX; ++x )
    for (int y = 1; y \le Y; ++y)
      g[x][y] = UPDATE(x, y);
  if (myrank < p - 1) MPI Wait (&recvreg[0], &stat);
  if ( myrank > 0 ) MPI_Wait( &recvreg[ 1 ], &stat );
  for (int y = 1; y <= Y; ++y) { g[1][y] = UPDATE(1, y); g[XX][y] = UPDATE(XX, y); }
  if (myrank < p - 1) MPI Wait (&sendreg[0], &stat);
  if ( myrank > 0 ) MPI_Wait( &sendreg[ 1 ], &stat );
                                                                            now overwrite h
 for ( int x = 1; x \le XX; ++x )
    for ( int y = 1; y <= Y; ++y)
      h[x][y] = g[x][y];
```

Analysis of the MPI Implementation of Heat Diffusion

Let the dimension of the 2D grid be $n_X \times n_Y$, and suppose we execute n_T time steps. Let p be the number of processors, and suppose the grid is decomposed along X direction.

The computation cost in each time step is clearly $\frac{n_X n_Y}{p}$. Hence, the total computation cost, $t_{comp} = \frac{n_T n_X n_Y}{p}$.

All processors except processors 0 and p-1 send two rows and receive two rows each in every time step. Processors 0 and p-1 send and receive only one row each. Hence, the total communication $\cos t$, $t_{comm} = 4n_T(t_S + n_Y t_W)$, where t_S is the startup time of a message and t_W is the per-word transfer time.

Thus
$$T_p=t_{comp}+t_{comm}=\frac{n_Tn_Xn_Y}{p}+4n_T(t_S+n_Yt_W),$$
 and $T_1=n_Tn_Xn_Y.$

Naïve Matrix Multiplication

$$\mathbf{z}_{ij} = \sum_{k=1}^{n} \mathbf{x}_{ik} \mathbf{y}_{kj}$$

$$\mathbf{y}_{11}$$
 \mathbf{y}_{12} \cdots \mathbf{y}_{1n}
 \mathbf{y}_{21} \mathbf{y}_{22} \cdots \mathbf{y}_{2n}
 \vdots \vdots \ddots \vdots
 \mathbf{y}_{n1} \mathbf{y}_{n2} \cdots \mathbf{y}_{nn}

$$Iter-MM(X, Y, Z, n)$$

- 1. for $i \leftarrow 1$ to n do
- 2. for $j \leftarrow 1$ to n do
- 3. for $k \leftarrow 1$ to n do
- $\mathbf{z}_{ij} \leftarrow \mathbf{z}_{ij} + \mathbf{x}_{ik} \times \mathbf{y}_{kj}$

Naïve Matrix Multiplication

$$\mathbf{z}_{ij} = \sum_{k=1}^{n} \mathbf{x}_{ik} \mathbf{y}_{kj}$$

Suppose we have $p = n \times n$ processors, and processor P_{ij} is responsible for computing z_{ij} .

One master processor initially holds both X and Y, and sends all x_{ik} and y_{kj} for k = 1, 2, ..., n to each processor P_{ij} . One-to-all Broadcast is a bad idea as each processor requires a different part of the input.

Each P_{ij} computes z_{ij} and sends back to master.

Thus $t_{comp} = 2n$, and $t_{comm} = n^2(t_s + 2nt_w) + n^2(t_s + t_w)$.

Hence, $T_p = t_{comp} + t_{comm} = 2n + n^2(2t_s + t_w + 2nt_w)$.

Total work, $T_1 = 2n^3$.

Naïve Matrix Multiplication

$$\mathbf{z}_{ij} = \sum_{k=1}^{n} \mathbf{x}_{ik} \mathbf{y}_{kj}$$

Observe that row i of X will be required by all $P_{i,j}$, $1 \le j \le n$. So that row can be broadcast to the group $\{P_{i,1}, P_{i,2}, \dots, P_{i,n}\}$ of size n.

Similarly, for other rows of X, and all columns of Y.

The communication complexity of broadcasting m units of data to a group of size n is $(t_s + mt_w) \log n$.

As before, each P_{ij} computes z_{ij} and sends back to master.

Hence, $t_{comm} = 2n(t_s + nt_w) \log n + n^2(t_s + t_w)$.

Block Matrix Multiplication

$$Block-MM(X, Y, Z, n)$$

- 1. for $i \leftarrow 1$ to n / s do
- 2. for $j \leftarrow 1$ to n / s do
- 3. for $k \leftarrow 1$ to n / s do
- 4. Iter-MM (X_{ik} , Y_{kj} , Z_{ij} , s)

Block Matrix Multiplication

Suppose $p = \frac{n}{s} \times \frac{n}{s}$, and processor P_{ij} computes block Z_{ij} .

One master processor initially holds both X and Y, and sends all blocks X_{ik} and Y_{kj} for $k=1,2,\ldots,\frac{n}{s}$ to each processor P_{ij} .

Thus
$$t_{comp} = \frac{n}{s} (2s^3 + s^2) = O(ns^2)$$
,

and
$$t_{comm} = \left(\frac{n}{s}\right)^2 \left(2(t_s + nst_w) + \left(t_s + s^2t_w\right)\right)$$
. (w/o broadcast)

For
$$s = \sqrt{n}$$
, $t_{comp} = O(n^2)$, and $t_{comm} = O(nt_s + n^{2.5}t_w)$

For
$$s = n^{\frac{2}{3}}$$
, $t_{comp} = O(n^{2 + \frac{1}{3}})$, and $t_{comm} = O(n^{\frac{2}{3}}t_s + n^{2 + \frac{1}{3}}t_w)$

Block Matrix Multiplication

Now consider one-to-group broadcasting.

Block row i of X, i.e., blocks X_{ik} for $k=1,2,\ldots,\frac{n}{s}$, will be required by $\frac{n}{s}$ different processors, i.e., processors P_{ij} for $j=1,2,\ldots,\frac{n}{s}$.

Similarly, for other block rows of X, and all block columns of Y.

As before, each P_{ij} computes block Z_{ij} and sends back to master.

Hence,
$$t_{comm} = \frac{n}{s}(t_s + nst_w) \log\left(\frac{n}{s}\right) + \left(\frac{n}{s}\right)^2 (t_s + s^2 t_w).$$

Recursive Matrix Multiplication

Par-Rec-MM(X, Y, Z, n)

- 1. if n = 1 then $Z \leftarrow Z + X \cdot Y$
- 2. else
- 3. in parallel do

Par-Rec-MM (
$$X_{11}$$
, Y_{11} , Z_{11} , $n / 2$)

$$Par-Rec-MM (X_{11}, Y_{12}, Z_{12}, n/2)$$

Par-Rec-MM (
$$X_{21}$$
, Y_{11} , Z_{21} , $n / 2$)

Par-Rec-MM (
$$X_{21}$$
, Y_{12} , Z_{22} , $n / 2$)

end do

4. in parallel do

Par-Rec-MM (
$$X_{12}$$
, Y_{21} , Z_{11} , $n / 2$)

Par-Rec-MM (
$$X_{12}$$
, Y_{22} , Z_{12} , $n / 2$)

Par-Rec-MM (
$$X_{22}$$
, Y_{21} , Z_{21} , $n / 2$)

Par-Rec-MM (
$$X_{22}$$
, Y_{22} , Z_{22} , $n / 2$)

end do

Assuming t_s and t_w are constants,

$$t_{comm}(n) = \begin{cases} \Theta(1), & if \ n = 1, \\ 8t_{comm}\left(\frac{n}{2}\right) + \Theta(n^2), & otherwise. \end{cases}$$
$$= \Theta(n^3) \qquad [MT Case 1]$$

Communication cost is too high!

Recursive Matrix Multiplication

Par-Rec-MM(X, Y, Z, n)

- 1. if n = 1 then $Z \leftarrow Z + X \cdot Y$
- 2. else
- 3. in parallel do

Par-Rec-MM (
$$X_{11}$$
, Y_{11} , Z_{11} , $n / 2$)

Par-Rec-MM (
$$X_{11}$$
, Y_{12} , Z_{12} , $n / 2$)

Par-Rec-MM (
$$X_{21}$$
, Y_{11} , Z_{21} , $n / 2$)

Par-Rec-MM (
$$X_{21}$$
, Y_{12} , Z_{22} , $n / 2$)

end do

in parallel do 4.

Par-Rec-MM (
$$X_{12}$$
, Y_{21} , Z_{11} , $n / 2$)

Par-Rec-MM (
$$X_{12}$$
, Y_{22} , Z_{12} , $n / 2$)

Par-Rec-MM (
$$X_{22}$$
, Y_{21} , Z_{21} , $n / 2$)

Par-Rec-MM (
$$X_{22}$$
, Y_{22} , Z_{22} , $n / 2$)

end do

But with a $s \times s$ base case,

$$t_{comm}(n) = \begin{cases} \Theta(1), & if \ n \leq s, \\ 8t_{comm}\left(\frac{n}{2}\right) + \Theta(n^2), & otherwise. \end{cases}$$

$$=\Theta\left(\frac{n^3}{s}\right)$$

Parallel running time,

$$t_{comp}(n) = \Theta\left(\frac{n^3}{p} + ns^2\right)$$
 (how?)

For
$$s=n^{\frac{2}{3}}$$
,

$$t_{comp} = O\left(\frac{n^3}{p} + n^{2 + \frac{1}{3}}\right),$$
 and
$$t_{comm} = O\left(n^{2 + \frac{1}{3}}\right)$$

and
$$t_{comm} = O(n^{2+\frac{1}{3}})$$

We decompose each matrix into $\sqrt{p} \times \sqrt{p}$ blocks of size $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ each.

We number the processors from $P_{0,0}$ to $P_{\sqrt{p}-1,\sqrt{p}-1}$.

Initially, P_{ij} holds A_{ij} and B_{ij} .

We rotate block row i of A to the left by i positions, and block column j of B upward by j positions.

So, P_{ij} now holds $A_{i,j+i}$ and $B_{i+i,i}$.

$A_{0,0}$	A _{0,1}	A _{0,2}	A _{0,3}
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}
A _{2,0}	A _{2,1}	A _{2,2}	A _{2,3}
A _{3,0}	A _{3,1}	A _{3,2}	> A _{3,3}

(a) Initial alignment of A

(c) A and B after initial alignment

$\mathbf{B}_{0,0}$	B _{0,1}	B _{0,2}	B _{0,3}
B _{1,0}	B _{1,1 A}	В _{1,2}	B _{1,3}
B _{2,0}	В _{2,1 л}	ў В _{2,2}	B _{2,3}
B _{3,0}	ў В _{3,1}	B _{3,2}	ў В _{3,3}

(b) Initial alignment of B

(d) Submatrix locations after first shift

 P_{ij} now holds $A_{i,j+i}$ and $B_{i+j,j}$.

 P_{ij} multiplies these two submatrices, and adds the result to $C_{i,i}$.

Then in each of the next $\sqrt{p} - 1$ steps, each block row of A is rotated to the left by 1 position, and each block column of B is rotated upward by 1 position. Each P_{ii} adds the product of its current submatrices to $C_{i,i}$.

(c) A and B after initial alignment

 $A_{0,2}$ A_{0.1} ~ $A_{0,3}$ $A_{0,0}$ $B_{1,0}$ $B_{2,1}$ $B_{0,3}$ $B_{3,2}$ A_{1.3} A1.2 A_{1.1} < A_{1.0} < $B_{3,1}$ $B_{2,0}$ $B_{0,2}$ $B_{1,3}$ A2.3 $A_{2,0}$ $A_{2,1}$ A2.2 $B_{0.1}$ $B_{1,2}$ $B_{2,3}$ $B_{3.0}$ $A_{3,1}$ A3.0 A3,2 A3.3 $B_{1,1}$ $B_{0,0}$ $B_{3,3}$ $B_{2,2}$

(d) Submatrix locations after first shift

A _{0,3}	$A_{0,0} \\ B_{0,1}$	A _{0,1}	A _{0,2}
B _{3,0}		B _{1,2}	B _{2,3}
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}
B _{0,0}	B _{1,1}	B _{2,2}	B _{3,3}
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,0}
B _{1,0}	B _{2,1}	B _{3,2}	B _{0,3}
A _{3,2}	A _{3,3}	A _{3,0}	A _{3,1} B _{1,3}
B _{2,0}	B _{3,1}	B _{0,2}	

e) Submatrix locations after second shift (f) Submatrix locations after third shift

Initial arrangement makes $\sqrt{p}-1$ block rotations of A and B, and one block matrix multiplication per processor.

In each of the next $\sqrt{p}-1$ steps, each processor performs one block matrix

multiplication, and sends and receives one block each.

$$t_{comp} = 2\sqrt{p} \left(\frac{n}{\sqrt{p}}\right)^3 = O\left(\frac{n^3}{p}\right)^3$$
$$t_{comm} = 4(\sqrt{p} - 1)$$

$$\times \left(t_S + \left(\frac{n}{\sqrt{p}}\right)^2 t_W\right)$$

(c) A and B after initial alignment

 $A_{0,2}$ A_{0,1} ~ $A_{0,3}$ A_{0.0} < $\mathbf{B}_{1,0}$ $\mathbf{B}_{2,1}$ B3.2 $B_{0.3}$ A1.2 A_{1.3} < A_{1.0} < A_{1.1} < $B_{3,1}$ $B_{2,0}$ $B_{0,2}$ $B_{1,3}$ A2.3 $A_{2,0}$ $A_{2,1}$ A2.2 $\mathbf{B}_{0,1}$ $B_{2,3}$ $B_{3.0}$ $B_{1,2}$ A_{3,2} $A_{3,1}$ A3.0 A3,3 $\mathbf{B}_{1,1}$ $B_{0,0}$ $B_{3,3}$ $B_{2,2}$

(d) Submatrix locations after first shift

(e) Submatrix locations after second shift (f) Submatrix locations after third shift

What if initially, one master processor (say, $P_{0,0}$) holds all data (i.e., matrices A and B), and the same processor wants to collect the entire output matrix (i.e., C) at the end?

Processor $P_{0,0}$ initially sends $A_{i,j}$ and $B_{i,j}$ to processor $P_{i,j}$, and at the end processor $P_{i,j}$ sends back $C_{i,j}$ to $P_{0,0}$.

Since there are p processors, and each submatrix has size $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$, the additional communication complexity:

$$3p \times \left(t_S + \left(\frac{n}{\sqrt{p}}\right)^2 t_W\right) = 3(pt_S + n^2 t_W).$$

So, the communication complexity increases by a factor of \sqrt{p} .

Floyd-Warshall's All-Pairs Shortest Paths

Let G = (V, E, w) be a weighted directed graph with vertex set $V = \{v_1, v_2, ..., v_n\}$, edge set E, and weight function w.

The weight of edge $(v_i, v_j) \in E$ is given by $w(v_i, v_j)$.

We construct an $n \times n$ matrix A as follows:

$$A(i,j) = a_{ij} = \begin{cases} 0, & if i = j, \\ \infty, & if(v_i, v_j) \notin E, \\ w(v_i, v_j), & otherwise. \end{cases}$$

Floyd-Warshall's algorithm takes matrix A as input, and returns another $n \times n$ matrix D as output with

 $D(i,j) = d_{ij}$ = shortest distance from v_i to v_j in G.

Floyd-Warshall's All-Pairs Shortest Paths

```
FW-APSP ( A, n )

1. D^{(0)} \leftarrow A

2. for k \leftarrow 1 to n do

3. for i \leftarrow 1 to n do

4. for j \leftarrow 1 to n do

5. d_{i,j}^{(k)} \leftarrow min \left\{ d_{i,j}^{(k-1)}, d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)} \right\}

6. return D^{(n)}
```

- can be solved using only $\Theta(n^2)$ extra space, e.g., using only two $n \times n$ matrices for storing the values of D
- can be solved in-place in A
- serial running time is $\Theta(n^3)$

Let p be the number of processing nodes.

We divide $D^{(k)}$ into $\sqrt{p} \times \sqrt{p}$ blocks of size $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ each.

We assign block (i,j) to processor $P_{i,j}$ for $1 \le i,j \le \sqrt{p}$.

Source: Grama et al., "Introduction to Parallel Computing", 2nd Edition

During the computation of $D^{(k)}$ each processor $P_{i,j}$ requires

- a segment (of length $\frac{n}{\sqrt{p}}$) from row k of $D^{(k-1)}$ which belongs to a processor in block column j
- a segment (of length $\frac{n}{\sqrt{p}}$) from column k of $D^{(k-1)}$ which belongs to a processor in block row i

After the computation of $D^{(k-1)}$ if processor $P_{i,j}$

- contains a segment from row k of $D^{(k-1)}$, it broadcasts that segment to all processors in block column j
- contains a segment from column k of $D^{(k-1)}$, it broadcasts that segment to all processors in block row i

```
FW-APSP-2D-Block (<math>D^{(0)})
```

- 1. for $k \leftarrow 1$ to n do
- 2. parallel: each node $P_{i,j}$ does the following:
- 3. if it contains a segment of row k of $D^{(k-1)}$, broadcasts that segment to nodes $P_{*,j}$
- 4. if it contains a segment of column k of $D^{(k-1)}$, broadcasts that segment to nodes $P_{i,*}$
- 5. waits until all nodes receive the needed segments (global sync)
- 6. computes its part of the $D^{(k)}$ matrix

In each iteration of the for loop (assuming $t_{\scriptscriptstyle S}$ and $t_{\scriptscriptstyle W}$ to be constants)

- **Line 3:** communication complexity = $\Theta\left(\frac{n}{\sqrt{p}}\log\sqrt{p}\right)$ (why?)
- **Line 4:** communication complexity = $\Theta\left(\frac{n}{\sqrt{p}}\log\sqrt{p}\right)$ (why?)
- **Line 5:** communication complexity = $\Theta(\log p)$ (sync)
- **Line 6:** computation complexity = $\Theta(n^2/p)$

FW-APSP-2D- $Block (<math>D^{(0)}$)

- 1. for $k \leftarrow 1$ to n do
- 2. parallel: each node $P_{i,j}$ does the following:
- 3. if it contains a segment of row k of $D^{(k-1)}$, broadcasts that segment to nodes $P_{*,j}$
- 4. if it contains a segment of column k of $D^{(k-1)}$, broadcasts that segment to nodes $P_{i,*}$
- 5. waits until all nodes receive the needed segments (global sync)
- 6. computes its part of the $D^{(k)}$ matrix

Overall:

$$t_{comm} = \Theta\left(n \times \frac{n}{\sqrt{p}}\log p\right) = \Theta\left(\frac{n^2}{\sqrt{p}}\log p\right)$$
 and
$$t_{comp} = \Theta\left(n \times \frac{n^2}{p}\right) = \Theta\left(\frac{n^3}{p}\right)$$
 Hence,
$$T_p = t_{comp} + t_{comm} = \Theta\left(\frac{n^3}{p} + \frac{n^2}{\sqrt{p}}\log p\right)$$

Improved Distributed Memory Implementation

```
    for k ← 1 to n do
    parallel: each node P<sub>i,j</sub> does the following:
    if it contains a segment of row k of D<sup>(k-1)</sup>, broadcasts that segment to nodes P<sub>*,j</sub>
    if it contains a segment of column k of D<sup>(k-1)</sup>, broadcasts that segment to nodes P<sub>i,*</sub>
    waits until all nodes receive the needed segments ( global sync )
    computes its part of the D<sup>(k)</sup> matrix
```

The global synchronization in line 5 can be removed without affecting the correctness of the algorithm.

The trick is to use pipelining.

Pipelined 2D Block Mapping FW-APSP

```
FW-APSP-Pipelined-2D-Block (<math>D^{(0)})
```

- 1. parallel: each node $P_{i,j}$ does the following:
- 2. for $k \leftarrow 1$ to n do
- 3. if it contains a segment of row k of $D^{(k-1)}$, sends that segment to nodes $P_{i-1,j}$ (if i > 1) and $P_{i+1,j}$ (if $i < \sqrt{p}$)
- 4. if it contains a segment of column k of $D^{(k-1)}$, sends that segment to nodes $P_{i,j-1}$ (if j>1) and $P_{i,j+1}$ (if $j<\sqrt{p}$)
- 5. waits only until it receives the two segments it needs
- 6. computes its part of the $D^{(k)}$ matrix, and at any point if it receives data from any direction it stores them locally, and forwards them in the opposite direction

After the computation of row 1 & col 1, all relevant segments of

$$D^{(1)}$$
 reach $P_{\sqrt{p},\sqrt{p}}$ after $\Theta\left(\left(n/\sqrt{p}\right)\times\sqrt{p}\right)=\Theta(n)$ time units. (how?)

Successive rows & cols follow after time $\Theta(n^2/p)$ in pipelined mode.

Hence, $P_{\sqrt{p},\sqrt{p}}$ completes computation in time $\Theta(n^3/p) + \Theta(n)$.

Pipelined 2D Block Mapping FW-APSP

FW-APSP-Pipelined-2D- $Block (<math>D^{(0)}$)

- 1. parallel: each node $P_{i,j}$ does the following:
- 2. for $k \leftarrow 1$ to n do
- 3. if it contains a segment of row k of $D^{(k-1)}$, sends that segment to nodes $P_{i-1,j}$ (if i > 1) and $P_{i+1,j}$ (if $i < \sqrt{p}$)
- 4. if it contains a segment of column k of $D^{(k-1)}$, sends that segment to nodes $P_{i,j-1}$ (if j>1) and $P_{i,j+1}$ (if $j<\sqrt{p}$)
- 5. waits only until it receives the two segments it needs
- 6. computes its part of the $D^{(k)}$ matrix, and at any point if it receives data from any direction it stores them locally, and forwards them in the opposite direction

When $P_{\sqrt{p},\sqrt{p}}$ completes iteration n-1, it sends the relevant values of row n and column n to other nodes.

These values reach $P_{1,1}$ in time $\Theta(n)$.

Hence,
$$T_p = t_{comp} + t_{comm} = \Theta\left(\frac{n^3}{p}\right) + \Theta(n) = \Theta\left(\frac{n^3}{p} + n\right)$$