L. Vandenberghe EE236C (Spring 2016)

12. Dual proximal gradient method

- proximal gradient method applied to the dual
- examples
- alternating minimization method

Dual methods

Subgradient method: converges slowly, step size selection is difficult

Gradient method: requires differentiable dual cost function

- often the dual cost function is not differentiable, or has a nontrivial domain
- dual function can be smoothed by adding small strongly convex term to primal

Augmented Lagrangian method

- equivalent to gradient ascent on a smoothed dual problem
- quadratic penalty in augmented Lagrangian destroys separable primal structure

Proximal gradient method (this lecture): dual cost split in two terms

- one term is differentiable with Lipschitz continuous gradient
- other term has an inexpensive prox-operator

Composite primal and dual problem

primal: minimize f(x) + g(Ax)

dual: maximize $-g^*(z) - f^*(-A^Tz)$

the dual problem has the right structure for the proximal gradient method if

ullet f is strongly convex: this implies $f^*(-A^Tz)$ has Lipschitz continuous gradient

$$||A\nabla f^*(-A^T u) - A\nabla f^*(-A^T v)||_2 \le \frac{||A||_2^2}{\mu} ||u - v||_2$$

 μ is the strong convexity constant of f (see page 7-16)

ullet prox-operator of g (or g^*) is inexpensive (closed form or simple algorithm)

Dual proximal gradient update

minimize
$$g^*(z) + f^*(-A^Tz)$$

proximal gradient update:

$$z^{+} = \operatorname{prox}_{tg^{*}}(z + tA\nabla f^{*}(-A^{T}z))$$

• ∇f^* can be computed by minimizing partial Lagrangian (from p. 7-15, 7-16):

$$\hat{x} = \underset{x}{\operatorname{argmin}} (f(x) + z^{T} A x)$$

$$z^{+} = \operatorname{prox}_{tg^{*}} (z + t A \hat{x})$$

- ullet partial Lagrangian is a separable function of x if f is separable
- step size t is constant ($t \le \mu/\|A\|_2^2$) or adjusted by backtracking
- faster variant uses accelerated proximal gradient method of lecture 11

Dual proximal gradient update

$$\hat{x} = \underset{x}{\operatorname{argmin}} (f(x) + z^{T} A x)$$

$$z^{+} = \operatorname{prox}_{tq^{*}} (z + t A \hat{x})$$

Moreau decomposition gives alternate expression for z-update:

$$z^{+} = z + tA\hat{x} - t \operatorname{prox}_{t^{-1}g} (t^{-1}z + A\hat{x})$$

 $\bullet \;$ right-hand side can be written $z + t(A\hat{x} - \hat{y})$ where

$$\hat{y} = \operatorname{prox}_{t^{-1}g} (t^{-1}z + A\hat{x})$$

$$= \operatorname{argmin}_{y} (g(y) + \frac{t}{2} ||A\hat{x} - t^{-1}z - y||_{2}^{2})$$

$$= \operatorname{argmin}_{y} (g(y) + z^{T}(A\hat{x} - y) + \frac{t}{2} ||A\hat{x} - y||_{2}^{2})$$

Alternating minimization interpretation

$$\hat{x} = \underset{x}{\operatorname{argmin}} (f(x) + z^{T} A x)$$

$$\hat{y} = \underset{y}{\operatorname{argmin}} (g(y) - z^{T} y + \frac{t}{2} ||A\hat{x} - y||_{2}^{2})$$

$$z^{+} = z + t(A\hat{x} - \hat{y})$$

- first minimize Lagrangian over x, then augmented Lagrangian over y
- compare with augmented Lagrangian method:

$$(\hat{x}, \hat{y}) = \underset{x,y}{\operatorname{argmin}} (f(x) + g(y) + z^{T}(Ax - y) + \frac{t}{2} ||Ax - y||_{2}^{2})$$

 \bullet requires strongly convex f (in contrast to augmented Lagrangian method)

Outline

proximal gradient method applied to the dual

• examples

• alternating minimization method

Regularized norm approximation

primal: minimize
$$f(x) + ||Ax - b||$$

dual: maximize
$$-b^T z - f^*(-A^T z)$$

subject to
$$||z||_* \le 1$$

(see page 7-20)

- ullet we assume f is strongly convex with constant μ , not necessarily differentiable
- ullet we assume projections on unit $\|\cdot\|_*$ -ball are simple
- this is a special case of the problem on page 12-3 with $g(y) = \|y b\|$:

$$g^*(z) = \begin{cases} b^T z & ||z||_* \le 1 \\ +\infty & \text{otherwise,} \end{cases} \quad \text{prox}_{tg*}(z) = P_C(z - tb)$$

Dual gradient projection

primal: minimize
$$f(x) + ||Ax - b||$$

dual: maximize
$$-b^Tz - f^*(-A^Tz)$$

subject to
$$||z||_* \le 1$$

• dual gradient projection update:

$$z^{+} = P_C \left(z + t(A\nabla f^*(-A^T z) - b) \right)$$

ullet gradient of f^* can be computed by minimizing the partial Lagrangian:

$$\hat{x} = \underset{x}{\operatorname{argmin}} (f(x) + z^T A x)$$

$$z^+ = P_C(z + t(A\hat{x} - b))$$

Example

primal: minimize
$$f(x) + \sum_{i=1}^p \|B_i x\|_2$$
 dual: maximize $-f^*(-B_1^T z_1 - \dots - B_n^T z_p)$

subject to $||z_i||_2 \leq 1, \quad i = 1, \dots, p$

Dual gradient projection update (for strongly convex f):

$$\hat{x} = \underset{x}{\operatorname{argmin}} (f(x) + (\sum_{i=1}^{p} B_i^T z_i)^T x)$$

$$z_i^+ = P_{C_i} (z_i + t B_i \hat{x}), \quad i = 1, \dots, p$$

- C_i is unit Euclidean norm ball in \mathbf{R}^{m_i} , if $B_i \in \mathbf{R}^{m_i \times n}$
- \hat{x} -calculation decomposes if f is separable

Example

- we take $f(x) = (1/2)||Cx d||_2^2$
- $\bullet\,$ each iteration requires solution of linear equation with coefficient C^TC
- randomly generated $C \in \mathbf{R}^{2000 \times 1000}$, $B_i \in \mathbf{R}^{10 \times 1000}$, p = 500

Minimization over intersection of convex sets

minimize
$$f(x)$$
 subject to $x \in C_1 \cap \cdots \cap C_p$

- ullet f is strongly convex with constant μ
- ullet we assume each set C_i is closed, convex, and easy to project onto
- this is a special case of the problem on page 12-3 with

$$g(y_1, \dots, y_p) = \delta_{C_1}(y_1) + \dots + \delta_{C_p}(y_p)$$

$$A = \begin{bmatrix} I & I & \dots & I \end{bmatrix}^T$$

with this choice of g and A,

$$f(x) + g(Ax) = f(x) + \delta_{C_1}(x) + \dots + \delta_{C_p}(x)$$

Dual problem

primal: minimize $f(x) + \delta_{C_1}(x) + \cdots + \delta_{C_p}(x)$

dual: maximize $-\delta_{C_1}^*(z_1)-\cdots-\delta_{C_p}^*(z_p)-f^*(-z_1-\cdots-z_p)$

ullet proximal mapping of $\delta_{C_i}^*$: from Moreau decomposition (page 8-18),

$$\operatorname{prox}_{t\delta_{C_i}^*}(u) = u - tP_{C_i}(u/t)$$

• gradient of $h(z_1,\ldots,z_p)=f^*(-z_1-\cdots-z_p)$:

$$\nabla h(z) = -A\nabla f(-A^T z) = -\begin{bmatrix} I \\ \vdots \\ I \end{bmatrix} \nabla f^*(-z_1 - \dots - z_p)$$

 $\bullet \ \, \nabla h(z)$ is Lipschitz continuous with constant $\|A\|_2^2/\mu=p/\mu$

Dual proximal gradient method

primal: minimize
$$f(x)+\delta_{C_1}(x)+\cdots+\delta_{C_p}(x)$$
 dual: maximize $-\delta_{C_1}^*(z_1)-\cdots-\delta_{C_p}^*(z_p)-f^*(-z_1-\cdots-z_p)$

dual proximal gradient update

$$s = -z_1 - \dots - z_p$$

 $z_i^+ = z_i + t \nabla f^*(s) - t P_{C_i} \left(t^{-1} z_i + \nabla f^*(s) \right), \quad i = 1, \dots, p$

ullet gradient of f^* can be computed by minimizing the Lagrangian

$$\hat{x} = \underset{x}{\operatorname{argmin}} (f(x) + (z_1 + \dots + z_p)^T x)$$

$$z_i^+ = z_i + t\hat{x} - tP_{C_i}(z_i/t + \hat{x}), \quad i = 1, \dots, p$$

ullet stepsize is fixed ($t \le \mu/p$) or adjusted by backtracking

Euclidean projection on intersection of convex sets

minimize
$$\frac{1}{2} \|x - a\|_2^2$$
 subject to $x \in C_1 \cap \cdots \cap C_p$

special case of previous problem with

$$f(x) = \frac{1}{2} ||x - a||_2^2, \qquad f^*(u) = \frac{1}{2} ||u||_2^2 + a^T u$$

- ullet strong convexity constant $\mu=1$; hence stepsize t=1/p works
- dual proximal gradient update (with change of variable $w_i = pz_i$):

$$\hat{x} = a - \frac{1}{p}(w_1 + \dots + w_p)$$

$$w_i^+ = w_i + \hat{x} - P_{C_i}(w_i + \hat{x}), \quad i = 1, \dots, p$$

the p projections in the second step can be computed in parallel

Nearest positive semidefinite unit-diagonal Z-matrix

projection in Frobenius norm of $A \in \mathbf{S}^{100}$ on the intersection of two sets:

$$C_1 = \mathbf{S}_+^{100}, \qquad C_2 = \{X \in \mathbf{S}^{100} \mid \mathbf{diag}(X) = \mathbf{1}, \ X_{ij} \le 0 \text{ for } i \ne j\}$$

Euclidean projection on polyhedron

• intersection of p halfspaces $C_i = \{x \mid a_i^T x \leq b_i\}$

$$P_{C_i}(x) = x - \frac{\max\{a_i^T x - b_i, 0\}}{\|a_i\|_2^2} a_i$$

ullet example with p=2000 inequalities and n=1000 variables

Decomposition of primal-dual separable problems

minimize
$$\sum_{j=1}^{n} f_j(x_j) + \sum_{i=1}^{m} g_i(A_{i1}x_1 + \dots + A_{in}x_n)$$

- ullet special case of f(x)+g(Ax) with (block-)separable f and g
- for example,

minimize
$$\sum_{j=1}^n f_j(x_j)$$
 subject to
$$\sum_{j=1}^n A_{1j}x_j \in C_1$$

$$\cdots$$

$$\sum_{j=1}^n A_{mj}x_j \in C_m$$

• we assume each f_i is strongly convex; each g_i has inexpensive prox-operator

Decomposition of primal-dual separable problems

primal: minimize
$$\sum_{j=1}^n f_j(x_j) + \sum_{i=1}^m g_i(A_{i1}x_1 + \cdots + A_{in}x_n)$$

dual: maximize
$$-\sum_{i=1}^m g_i^*(z_i) - \sum_{j=1}^n f_j^*(-A_{1j}^T z_1 - \dots - A_{mj}^T z_j)$$

Dual proximal gradient update

$$\hat{x}_j = \underset{x_j}{\operatorname{argmin}} (f_j(x_j) + \sum_{i=1}^m z_i^T A_{ij} x_j), \quad j = 1, \dots, n$$

$$z_i^+ = \operatorname{prox}_{tg_i^*}(z_i + t\sum_{j=1}^n A_{ij}\hat{x}_j), \quad i = 1, \dots, m$$

Outline

- proximal gradient method applied to the dual
- examples
- alternating minimization method

Separable structure with one strongly convex term

minimize
$$f_1(x_1) + f_2(x_2) + g(A_1x_1 + A_2x_2)$$

- \bullet composite problem with separable f (two terms, for simplicity)
- \bullet if f_1 and f_2 are strongly convex, dual method of page 12-4 applies

$$\hat{x}_1 = \underset{x_1}{\operatorname{argmin}} (f_1(x_1) + z^T A_1 x_1)$$

$$\hat{x}_2 = \underset{x_2}{\operatorname{argmin}} (f_2(x_2) + z^T A_2 x_2)$$

$$z^+ = \underset{t_2}{\operatorname{prox}}_{t_g^*} (z + t(A_1 \hat{x}_1 + A_2 \hat{x}_2))$$

• we now assume that one function (f_2) is not strongly convex

Separable structure with one strongly convex term

primal: minimize
$$f_1(x_1) + f_2(x_2) + g(A_1x_1 + A_2x_2)$$

dual: maximize
$$-g^*(z) - f_1^*(-A_1^T z) - f_2^*(-A_2^T z)$$

- $\bullet \;$ we split dual objective in components $-f_1^*(-A_1^Tz)$ and $-g^*(z)-f_2^*(-A_2^Tz)$
- ullet component $f_1^*(-A_1^Tz)$ is differentiable with Lipschitz continuous gradient
- proximal mapping of $h(z) = g^*(z) + f_2^*(-A_2^T z)$ was discussed on page 10-7:

$$\operatorname{prox}_{th}(w) = w + t(A_2\hat{x}_2 - \hat{y})$$

where \hat{x}_2 , \hat{y} minimize a partial augmented Lagrangian

$$(\hat{x}_2, \hat{y}) = \underset{x_2, y}{\operatorname{argmin}} (f_2(x_2) + g(y) + \frac{t}{2} ||A_2x_2 - y + w/t||_2^2)$$

Dual proximal gradient method

$$z^{+} = \operatorname{prox}_{th}(z + tA_1 \nabla f_1^*(-A_1^T z))$$

• evaluate ∇f_1^* by minimizing partial Lagrangian:

$$\hat{x}_1 = \underset{x_1}{\operatorname{argmin}} (f_1(x_1) + z^T A_1 x_1)$$

$$z^+ = \underset{th}{\operatorname{prox}}_{th} (z + t A_1 \hat{x}_1)$$

• evaluate $prox_{th}(z + tA_1\hat{x}_1)$ by minimizing augmented Lagrangian:

$$(\hat{x}_2, \hat{y}) = \underset{x_2, y}{\operatorname{argmin}} (f_2(x_2) + g(y) + \frac{t}{2} \|A_2 x_2 - y + z/t + A_1 \hat{x}\|_2^2)$$

$$z^+ = z + t(A_1 \hat{x}_1 + A_2 \hat{x}_2 - \hat{y})$$

Alternating minimization method

starting at some initial z, repeat the following iteration

1. minimize the Lagrangian over x_1 :

$$\hat{x}_1 = \underset{x_1}{\operatorname{argmin}} (f_1(x_1) + z^T A_1 x_1)$$

2. minimize the augmented Lagrangian over \hat{x}_2 , \hat{y} :

$$(\hat{x}_2, \hat{y}) = \underset{x_2, y}{\operatorname{argmin}} \left(f_2(x_2) + g(y) + \frac{t}{2} ||A_1 \hat{x}_1 + A_2 x_2 - y + z/t||_2^2 \right)$$

3. update dual variable:

$$z^{+} = z + t(A_1\hat{x}_1 + A_2\hat{x}_2 - \hat{y})$$

Comparison with augmented Lagrangian method

Augmented Lagrangian method (for problem on page 12-19)

1. compute minimizer \hat{x}_1 , \hat{x}_2 , \hat{y} of the augmented Lagrangian

$$f_1(x_1) + f_2(x_2) + g(y) + \frac{t}{2} ||A_1x_1 + A_2x_2 - y + z/t||_2^2$$

2. update dual variable:

$$z^{+} = z + t(A_1\hat{x}_1 + A_2\hat{x}_2 - \hat{y})$$

Differences with alternating minimization (dual proximal gradient method)

- ullet augmented Lagrangian method does not require strong convexity of f_1
- there is no upper limit on the step size t in augmented Lagrangian method
- ullet quadratic term in step 1 of AL method destroys separability of $f_1(x_1)+f_2(x_2)$

Example

minimize
$$\frac{1}{2}x_1^TPx_1+q_1^Tx_1+q_2^Tx_2$$
 subject to
$$B_1x_1 \preceq d_1, \quad B_2x_2 \preceq d_2$$

$$A_1x_1+A_2x_2=b$$

- without equality constraint, problem would separate in independent QP and LP
- we assume $P \succ 0$

Formulation for dual decomposition

minimize
$$f_1(x_1) + f_2(x_2)$$

subject to $A_1x_1 + A_2x_2 = b$

first function is strongly convex

$$f_1(x) = \frac{1}{2}x_1^T P x_1 + q_1^T x_1, \quad \text{dom } f_1 = \{x_1 \mid B_1 x_1 \le d_1\}$$

• second function is not: $f_2(x) = q_2^T x_2$ with domain $\{x_2 \mid B_2 x_2 \leq d_2\}$

Example

Alternating minimization algorithm

1. compute the solution \hat{x}_1 of the QP

minimize
$$(1/2)x_1^TP_1x_1 + (q_1 + A_1^Tz)^Tx_1$$

subject to $B_1x_1 \leq d_1$

2. compute the solution \hat{x}_2 of the QP

minimize
$$(q_2 + A_2^T z)^T x_2 + (t/2) \|A_1 \hat{x}_1 + A_2 x_2 - b\|_2^2$$
 subject to $B_2 x_2 \preceq d_2$

3. dual update:

$$z^{+} = z + t(A_1\hat{x}_1 + A_2\hat{x}_2 - b)$$

References

- P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and variational inequalities, SIAM J. Control and Optimization (1991).
- P. Tseng, Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming, Mathematical Programming (1990).