🚻 What is Data Analysis?

Data Analysis is the process of: [ICTM]

- Inspecting,
- ✓ Cleaning,
- Transforming, and
- Modeling data
- Business: Customer segmentation, demand forecasting, fraud detection.
- Healthcare: Predicting disease outbreaks, patient diagnostics, personalized treatments.
- Finance: Credit risk assessment, stock price prediction, fraud detection.
- Science & Research: Climate change analysis, genomics, space exploration.
- Social Media & Marketing: Sentiment analysis, targeted advertising, user behavior insights.

📊 Types of Data Analysis [DaDdy PaPi]

Descriptive Analysis

Purpose: Understand what has happened in the past.

Examples: Averages, totals, counts, histograms, summary statistics.

"What happened?"

Diagnostic Analysis

Purpose: Discover why something happened.

Methods: Drill-down, correlations, trend patterns.

"Why did it happen?"

Predictive Analysis

Purpose: Forecast what is likely to happen in the future.

Techniques: Regression, classification, machine learning models.

"What could happen?"

Prescriptive Analysis

Purpose: Suggest what actions to take for optimal outcomes.

Tools: Optimization algorithms, decision trees, scenario analysis.

"What should we do?"

<u> Understanding Data</u>

Types of Data

Structured Data

- Definition: Well-organized and stored in tabular formats.
- Examples:

Relational databases (MySQL, PostgreSQL)

Excel spreadsheets

Unstructured Data

- Definition: Data without a predefined model or organization.
- Examples:

Images, videos

Social media posts

Emails

Semi-structured Data

- Definition: Contains some structure, but not in a strict tabular format.
- Examples:

JSON

XML

Quantitative vs. Qualitative Data

🔢 Quantitative Data

Definition: Numerical data that can be measured and analyzed statistically.

Examples: Revenue, temperature, age

📝 Qualitative Data

Definition: Descriptive data representing categories or labels.

Examples: Gender, nationality, product category

Nominal Data

Categories without order

Examples: Colors, countries, departments

Ordinal Data

Categories with a meaningful order

Examples: Customer satisfaction (low, medium, high), education level

3. Data Preprocessing

Data preprocessing is a crucial step to ensure data quality and reliability before analysis.

Steps in Data Preprocessing

1. Data Cleaning

Removing inaccuracies, fixing typos, and handling inconsistencies.

2. Handling Missing Values

Identifying and addressing missing data points.

3. Removing Duplicates

Ensuring data integrity by removing redundant records.

4. Outlier Detection and Handling

Identifying extreme values that could skew analysis.

5. Feature Scaling and Transformation

Normalizing or standardizing data for model compatibility.

Data Cleaning

Fix typos ("N/A" vs "NA" vs "null" vs empty strings "" convert them to NAN).

- Correct formatting (e.g., date formats like DD/MM/YYYY → YYYY-MM-DD).
- Case Inconsistencies

Values like "Yes", "yes", "YES" should be unified.

• **Fix:** Convert all text to lowercase or uppercase.

• Spelling Errors and Typos

Common in categorical data (e.g., "Male", "male", "mael").

- Fix: Use mapping or fuzzy matching to correct.
- Whitespace and Formatting Issues

Extra spaces before/after text can cause mismatches.

Fix: Strip whitespace from strings.

• o Incorrect Data Types

Numeric columns stored as strings or dates not in datetime format.

• **Fix:** Convert columns to appropriate types.

Handling Missing Values

- Causes: Data entry errors, system failures, data corruption.
- Methods to Handle Missing Data:
 - Deletion: Remove rows or columns with missing values
 Example: df.dropna()
 - Imputation: Fill missing values using mean, median, mode, or interpolation
 - o Forward Fill / Backward Fill: Use previous or next values in time series data
 - Predictive Imputation: Use machine learning models to estimate missing values

Removing Duplicates

- Duplicate records can arise from multiple data entry points or merging datasets.
- Use the following to eliminate redundant data:

df.drop_duplicates(inplace=True)

Outlier Detection and Handling

• Why Outliers Matter:

Extreme values can bias statistical analysis and machine learning models.

- Detection Methods:
 - **Z-score method:** Identifies values that deviate significantly from the mean
 - o Interquartile Range (IQR): Identifies values beyond 1.5 times the IQR
- Handling Outliers:
 - Remove extreme values
 - o Cap values within a threshold
 - Apply transformations (e.g., log transformation)

Feature Scaling and Transformation

- Ensures uniformity in numerical features and improves model convergence.
- Types of Scaling:
 - Standardization:

[(X - \text{mean}) / \text{std_dev}]
Ensures zero mean and unit variance

Normalization:

[(X - \text{min}) / (\text{max} - \text{min})]
Scales values between 0 and 1

• Log Transformation:

Used for skewed data to reduce variance

Data Preprocessing Steps

Data Preprocessing Steps:

- 1. Identifying the missing values and filling those values using different approaches:
 - a. For numerical attributes, it can be filled in using Mean or Median
 - b. For categorical attributes, it can be filled in using Mode
 - c. It can also be filled in through Linear Regression models if it is appropriate to the dataset
- 2. Removing Duplicates
- 3. Outlier Detection:
 - a. IQR (Inter Quartile Range) = Q3 Q1 Q3 (Upper Quartile or 75th percentile) Q1 (Lower Quartile or 25th percentile) Median (50th percentile)

Outliers
$$<$$
 Lower Extreme $=$ Q1 $-$ 1.5*IQR
Outliers $>$ Upper Extreme $=$ Q3 $+$ 1.5*IQR

X percentile
$$\rightarrow$$
 n * X * 0.01
75 percentile \rightarrow 20 * 0.75 = 15th value

Worked Example

The ages, in years, of a number of children attending a birthday party are given below:

An outlier is defined as an observation that falls more than $1.5 \times$ the interquartile range above the upper quartile or below the lower quartile

- (i) Identify any outliers within the data set.
- (ii) Decide which values (if any) should be removed, justify your answer.
 - (i) Start by putting the data in order of size 2, 2, 4, 4, 5, 5, 5, 5, 6, 7, 8, 13, 29LQ Median UQ

 Find the interquartile range: $Q_1 = 4$, $Q_3 = 7.5$ IQR = $Q_3 Q_4 = 7.5 4 = 3.5$ Find the upper and lower bound for the outliers: Lower bound = $Q_1 1.5$ (IQR) 4 1.5 (3.5) = -1.25 So there are no outliers on the lower tail.

 Upper bound = $Q_3 + 1.5$ (IQR) 7.5 + 1.5 (3.5) = 12.75 So there are two outliers on the upper tail.

Outliers are 13 and 29

Another Example:

The number of books taken out of the library per month by first year students from a sample of 15 is as

follows:0, 0, 0, 0, 1, 1, 2, 2, 2, 3, 5, 5, 7, 12, 26.

Box-plot - five number summary

Min = 0

Max = 26

Median = 2

Q1 = 0

Q3 = 5

IQR = 5 - 0 = 5

Lower extreme = Q1 - 1.5*IQR = 0 - 7.5 = -7.5

Upper extreme = Q3 + 1.5*IQR = 5 + 7.5 = 12.5

=PERCENTILE.INC(A2:A16,0.75)

=PERCENTILE.EXC(A2:A16,0.75)

$$Me = L + \frac{N}{2} - F_{m-1}$$

$$O \quad Q_3 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_4 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_5 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_7 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_8 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_8 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_8 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - F_{m-1}$$

$$O \quad Q_9 = L + \frac{2N}{4} - \frac$$

Outlier Detection

If the data follows a normal distribution:

- 68% of the data falls within ± 1 standard deviation (σ) from the mean (μ)
 - \rightarrow That is, between μ σ and μ + σ
- 95% of the data falls within ±2 standard deviations
 - \rightarrow Between μ 2σ and μ + 2σ
- 99.7% of the data falls within ±3 standard deviations
 - \rightarrow Between μ 3 σ and μ + 3 σ

b. Using Z-score:

Data points are normally distributed z-score = $(x-\mu)/\sigma$

Any data point having z-score less than -3 or greater than +3, can be considered as an outlier.

The formula for Z-score is as follows:

Zscore = (x - mean)/std. deviation

how to find normally distributed

1. Visual Methods

🚻 a) Histogram

- Plot a histogram of your data.
- If it resembles a bell-shaped curve, it may be normally distributed.

b) Q-Q Plot (Quantile-Quantile Plot)

- Compares your data's quantiles with the quantiles of a normal distribution.
- If the points lie roughly along a straight line, the data is likely normal.

c) Box Plot

- · Shows symmetry of data.
- · In a normal distribution:
 - The median is centered in the box.
 - · Whiskers are of roughly equal length.
 - · No/few extreme outliers.

```
z = (X - \mu) \; / \; \sigma \bullet Here's what each component means: Z \; \text{is the Z-score we're calculating.} X \; \text{is the specific data point we want to evaluate.} \mu \; (\text{mu}) \; \text{is the mean (average) of the dataset.} \sigma \; (\text{sigma}) \; \text{is the standard deviation, which measures how spread out the datais.}
```

Documents

• https://www.savemyexams.com/international-a-level/maths/edexcel/20/statistics-1/revision-n
https://www.savemyexams.com/international-a-level/maths/edexcel/20/statistics-1/revision-n
https://www.savemyexams.com/international-a-level/maths/edexcel/20/statistics-1/revision-n
https://www.savemyexams.com/international-a-level/maths/edexcel/20/statistics-1/revision-n
https://www.savemyexams.com/international-a-level/maths/edexcel/20/statistics-1/revision-n
https://www.savemyexams.com/
https://www.savem

•