清华大学本科生期中考试试题纸 《电子电路与系统基础 I》2011 年春季学期期中考试试题

1、

	班级	学号	姓名
植穴斯.	(30分)。		
	、30 万万。 大器用什么二端口网络氡	· · · · · · · · · · · · · · · · · · ·	
i.)	最话官.
	电流放大器用(
	跨导放大器用(
	跨阻放大器用(
			中,就是隔离负载对信源的影响。那
			最适宜于它的二端口网络矩阵为
(/ ///\tag{\tag{\tag{\tag{\tag{\tag{\tag{	KYGE 1 CH1—FIN D 1 12H VEI 1 / 1
`			
)			
c) 放	大器采用什么形式的反馈	贵类型可形成近乎理	想的受控源?
i.	采用()负反馈可形成近	乎理想的压控压源;
ii.	• • •		乎理想的压控流源;
iii.			乎理想的流控压源;
iv.	采用()负反馈可形成近	乎理想的流控流源。
	大器采用负反馈,有哪些	些好处,列举其二:	
i.	好处1();
ii.	好处 2 ();
iii.	负反馈放大器具有这些	些好处的原因是	
	()。
·	π		
e) $e^{\int e^{\int e^{-r}}}$	$\frac{x}{3} = ($) (用复数表示)。	
f) 如	图 1 所示,同学在测试	端口接电压表,测得	端口电压为 6V,在测试端口接电流
表	,测得端口电流为 1.2m	A,则电源电压为()V, 电阻 R 为 () Ω。
			
	$10k\Omega$	测	
	$V_s \longrightarrow R$	试 V_{S1}	$R_3 \bigsqcup R_4 \bigsqcup \bullet I_{S5}$
	<u>T</u>	o	T
			블
	_		
	图 1 某实验	:电路	图 2 某电路

- g) 如图 2 所示,该电路中有 5 个基本电路元件:
 - i. 首先在图上标记每个元件的电压电流参考方向,第 i 个元件的电压记为 V_i ,第 i 个元件的电流记为 I_i ;
 - ii. 用 2b 法,本电路可列出 () 个元件约束条件方程,可列出 () 个 KVL 方程,可列出 () 个 KCL 方程;

iii. 请用 2b 法,列写出 10 个电路方程,首先是 5 个元件约束方程,其后是 KVL 方程,最后是 KCL 方程:

		• •—	
1.	()
2.	()
3.	()
4.	()
5.	()
6.	()
7.	()
8.	()
9.	()
10.	()

iv. 如果用结点电压法求解该电路,请列写出该线性电路的结点电压方程:

h) 基带低频信号为 $v_b(t)$,正弦载波为 $v_c(t)=V_{cm}\cos(\omega_c t)$,下面形式的波形为什么类型的调制信号?

i.
$$v_M(t) = (V_{cm} + k \cdot v_b(t))\cos(\omega_c t)$$

ii.
$$v_M(t) = V_{cm} \cos \left(\omega_c t + k \int_0^t v_b(t) dt\right)$$

iii.
$$v_M(t) = V_{cm} \cos(\omega_c t + k v_b(t))$$
 (

- 2、简答题,请给出简单计算过程。(30分)
 - a) 将电压信号 $V_0(t)$ =(1+0.5 cos $ω_0 t$ +0.25 cos $3ω_0 t$)(V)加载到 1kΩ电阻上,求电阻上消耗的功率为多少 mW。
 - b) 天线接收到的信号功率为-100dBm,信号带宽为 243kHz,则接收机输入端信号的信噪比为多少 dB? (已知玻尔兹曼常数 $k=1.38\times10^{-23}~J/K$,室温为 25°C)
 - c) 某二极管电路如图 3a 所示,已知电阻 $R_L = 1k\Omega$,信源电压为 $V_S = (3+0.1\sin \omega t)(V)$ 请给出负载电阻上的电压大小。

图 3a 二极管电路 I

图 3b 二极管电路 II

d) 请画出图 3b 所示二极管电路的输入输出电压转移特性曲线;回答哪个区域可以用于信号传输?传输增益为多少?

- e) 图 4 是一个大电路中的一部分电路,用电压表测量获得端口 1 和端口 2 的电压分别 为 V_1 、 V_2 ,则中间位置 A 点的电压 V_A 为多少?给出详尽的推导过程,说明该过程 中你采用了什么电路定理/定律。
- f) 图 5 是一个大电路中的一部分电路,求从端口看入的戴维南等效电压和戴维南等效 电阻,并画出等效电路。
- g) 图 6 所示为一简单逆变器电路,开关受控于方波信号: 当方波为 5V 时,开关闭合, 12V 电压加载到 100Ω电阻上; 当方波电压为 0V 时,开关断开。
 - i. 求电阻上消耗的功率为多少?
 - ii. 开关上消耗的功率为多少?

图 4 大电路系统中的部分电路 1

图 5 大电路系统中的部分电路 II

3、己知某电阻型二端口网络的 z 矩阵为

$$\mathbf{z} = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix}$$

其中,四个阻抗参量均为实数。(11分)

- a) 分析该二端口网络的有源性条件是什么?
- b) 有源性条件对应的物理涵义是什么?

图 6 简单逆变器电路

- 4、已知单端口元件的伏安特性曲线如图 7a 和 7b 所示,其中元件端口电压和端口电流的参考方向如图 7c 所示(12 分)
 - a) 给出图 7a 元件伏安特性的数学方程描述和等效电路图。(6分)
 - b) 给出图 7b 元件伏安特性的数学方程描述和等效电路图。(6分)

7a 伏安特性曲线 I

7b 伏安特性曲线 II 7c 端口压流参考方向定义 图 7 单端口元件的伏安特性曲线

- 5、图 8 是一个运放电路,其中 R_w 是电位器。(7分)
 - a) 判断这是负反馈还是正反馈?给出判断过程。
 - b) 给出输出电压与两个输入电压之间的关系式。
 - c) 根据输入输出关系说明该电路完成什么功能。

- 6、已知晶体管模型为跨导器模型,如图 9 所示,现加入负反馈电阻 R_E 。已知跨导增益 g_m 足够大,使得 $g_m r_{be} \gg 1$, $g_m r_{ce} \gg 1$, $g_m R_E \gg 1$,而反馈电阻相对跨导器内阻又比较小,即 $R_E \ll r_{be}$,请分析:(5 分)
 - a) 该负反馈放大器属哪种反馈类型?
 - b) 根据反馈类型用二端口网络形式画出正确的二端口网络连接关系。
 - c) 给出反馈放大器增益、输入电阻、输出电阻表达式。
- 7、分析图 10 所示的运放二极管电路,说明这个电路完成什么功能?(5分)

图 10 运放二极管电路