数据结构部分

一、单项选择题(每小题2分,共20分)

1. 下面关于线性表的叙述中,错误的是哪一个? ()

	A. 线性表采用顺序存储,必须占用一片连续的存储单元。
	B. 线性表采用顺序存储, 便于进行插入和删除操作。
	C. 线性表采用链接存储,不必占用一片连续的存储单元。
	D. 线性表采用链接存储, 便于插入和删除操作。
2.	设一个链表最常用的操作是在末尾插入结点和删除尾结点,则选用()最节省时间。
	A. 单链表 B. 单循环链表
	C. 带尾指针的单循环链表 D. 带头结点的双循环链表
3.	设栈的输入序列是 1, 2, 3, 4, 则() 不可能是其出栈序列。
	A. 1, 2, 4, 3 B. 2, 1, 3, 4
	C. 1, 4, 3, 2 D. 4, 3, 1, 2
4.	循环队列 A[0m-1]存放其元素值,用 front 和 rear 分别表示队头和队尾,则当前
	队列中的元素数是()。
	A. (rear-front+m)%m B. rear-front+1
	C. rear-front-1 D. rear-front
5.	若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是
	()。
	A. 9 B. 11 C. 15 D. 不确定
6.	己知一棵二叉树的前序遍历结果为 ABCDEF, 中序遍历结果为 CBAEDF, 则后序遍历的结
	果为()。
	A. CBEFDA B. FEDCBA C. CBEDFA D. 不定
7.	由权值分别为 3, 8, 6, 2 的叶子生成一棵哈夫曼树,它的带权路径长度为()。
	A. 11 B. 35 C. 19 D. 53
8.	快速排序在最坏情况下的时间复杂度为()。
	A. $O(\log_2 n)$ B. $O(n\log_2 n)$ C. $O(n)$ D. $O(n^2)$
9.	下面关于二分查找的叙述正确的是()。

- A. 表必须有序,表可以顺序方式存储,也可以链表方式存储
- B. 表必须有序且表中数据必须是整型,实型或字符型
- C. 表必须有序,而且只能从小到大排列
- D. 表必须有序, 且表只能以顺序方式存储
- 10. 满二叉树的第 k 层上的结点个数为 ()。
 - A. 1 B. 2^k
- C. 2^k-1 D. 不确定

二、综合应用题(每题10分,共50分)

- 1. 己知一个图的顶点集 V 和边集 E 分别为: $V=\{1, 2, 3, 4, 5, 6, 7\}$; $E=\{(1, 2), 3, (1, 3), 5, 6, 7\}$; $E=\{(1, 2), 3,$ (1,4)8, (2,5)10, (2,3)6, (3,4)15, (3,5)12, (3,6)9, (4,6)4, (4,7)20, (5,6)18,(6,7)25};按照普里姆算法从顶点 1 出发生成最小生成树,试写出在最小生成树中 依次得到的各条边。
- 2. 一组关键字集合为(25, 10, 8, 27, 32, 68),设哈希函数 H(k)=k mod 7,分别用线 性探测和链地址法作解决冲突的方法构造长度为 8 的哈希表。
- 3. 己知字符 A-F 的出现频率依次为 2, 3, 5, 6, 11, 9, 构造哈夫曼树并给出字符 A 和F的Huffman编码。
- 4. 给定序列{40, 55, 49, 73, 12, 27, 98, 81, 64, 36}, (1) 画出由该序列构建大 顶堆的过程: (2) 画出一趟快速排序得到的结果。
- 5. 从空树开始,画出按以下次序向 3 阶 B-树中插入关键码的建树过程: 20,30,50, 52,60,68,70。如果此后删除50,68,画出每一步执行后B-树的状态。

三、算法设计题(每题10分,共20分)

答题要求: ①用自然语言说明所采用算法的思想: ②给出每个算法所需的数据结构定义, 并做必要说明: ③用C语言写出对应的算法程序,并做必要的注释。

- 1. 己知头指针分别为 la 和 lb 的带头结点的单链表中,结点按元素值非递减有序排列, 写出将 la 和 lb 两链表归并成一个结点按元素值非递减有序排列的单链表 (其头指 针为 1c),并计算算法的时间复杂度。
- 2. 二叉树采用二叉链表存储:(1)编写计算整个二叉树高度的算法(二叉树的高度也 叫二叉树的深度);(2)编写计算二叉树最大宽度的算法(二叉树的最大宽度是指二 叉树所有层中结点个数的最大值)。

操作系统部分

四、简单题 (每小题5分,共30分)

- 1:操作系统设计的最重要的两个目标是什么?并简述原因。
- 2: 进程有哪三种基本状态? 发生状态间转移的原因是什么?

- 3:产生死锁的四个必要条件是什么?预防死锁有几种实现方法?
- 4: 请分别给出三种不同的页面置换算法,并简要说明它们各自的优缺点。
- 5: 在 I/O 通信中缓冲区是普遍使用的一种技术。请问在 I/O 通信中使用缓冲区技术有何 益处。
- 6: 索引分配是外存管理中常用的分配方式。请问,索引分配有哪三种常见的方式?这些方式的优点和缺点是什么?

五、算法和计算题(共30分)

- 1: 测得某个请求分页(Demand-paging)策略的计算机系统部分状态数据为: CPU 利用率 10%,用于对换空间的硬盘利用率 97.7%,其他设备的利用率 5%。由此断定系统出现异常。请问系统出现了何种异常现象?该异常是由于什么原因形成的?如何解决该问题?(本题 8 分)
- 2: 在公交车上一般有司机和售票员各一人,他们分别负责如下的工作,

司机进程:
repeat
启动车辆
正常行驶
到站停车
until...

售票员进程:
repeat
关门
售票
开门
until...

在公交车行驶过程中,要求: 先关门后开车; 先停车后开门。请使用信号量机制给出司机进程和售票员进程的同步工作机制。 (本题 12 分)

- 3:假设一个磁盘有5000个柱面,编号为0到4999。当前服务的柱面请求为2150,前一个请求的柱面为 1805。 当前在磁盘请求队列中等待处理的请求柱面为: 2069,1212,2296,2800,544,1618,356,1523,4965,3681;分别使用SSTF和SCAN算法,从当前服务的柱面请求位置,即2150,开始处理上述请求队列。(本题10分)
- 1)请给出 SSTF 和 SCAN 算法处理上述请求队列的过程,并计算需要走过的磁道距离总和。
- 2) 请分析 SSTF 和 SCAN 算法各自的优缺点。