	B.Tech / M.Tech (Integrated) DE		E EXAMINATION, JANUAR mester	Y 2023			
2			CHEMISTRY n the academic year 2022-2023)				
Note: (i) (ii)	Part - A should be answered in OMR sover to hall invigilator at the end of 40th Part - B and Part - C should be answered.	minute).	et shoul	d be	ḥan	ded
Time: 3	Hours			Max.	Ma	rks:	75
	PART - A (20 × 1	= 20N	Aarks)	Marks	BL	CO	PO
	Answer ALL ()uestic	ons				
1.	The crystal field splitting energy (Δ_0 (A) Geometry	(B)	Number of d-Electrons	1	2	1	ī
	(C) Coordination number	(D)	Oxidation state				
2.	The effective nuclear charge realised		electron of helium atom is 1.20	1	3	1	1
	(A) 1.00	` /	1.65				
	(C) 1.70	(D)	1.05				
3.	The complex [Pt (NH ₃) ₂ Cl ₂] exhibits	(D)	Coordination isomerism	1	3	1	1
	(A) Linkage isomerism	\ /	Optical isomerism	-			
	(C) Geometrical isomerism	(D)	Optical isomerism				
4.	The spin only magnetic moment values	ue (In	bohr magneton units) of Cr(CO)	, 1	3	1	1
	(A) 0	(B)	2.84				
	(C) 4.90	(D)	5.92				
5	For a reaction that has an equilibrium constant of 3.2×10 ⁻² , which of the					2	1
	following statement must be true?	(B)	ΔG° is positive				
	(A) ΔH° is negative(C) ΔG° is negative		ΔS° is positive				
	(C) AG is negative	(1)	ab is positive				
6	For an isolated system, $\Delta U = 0$, wha	t will	be ΔS?	1	2	2	1
Ü	(A) $\Delta S > 0$	(B)	$\Delta S < 0$				
	(C) $\Delta S \leq 0$	(D)	$\Delta S \ge 0$				
	. ,				2	2	1
7	In the pourbaix diagram, the form and at potential of 1.86 V is			2 1	3	2	1
	(A) Fe		Fe^{2+}				
	(C) FeO ₄ ²⁻	(D)	Fe(OH) ₃		200		
				1	1	2	1
8	Helmholtz function F is given by	(D)	iti ma	•	•	-	-
	(A) -U + TS	` /	-U-TS				
	(C) $U + TS$	(D)	U – TS				

Reg. No.

05JF21CYB101J

Page 1 of 3

9.	The	number of structural isomers for	r C ₆ H	14 is	1	2	3		
	(A)	6	(B)	5					
	(C)	4	(D)	3					
10	Rea	ctivity order of alkyl halides in S	-2 ra	action is	1	2	3	2	
10.		CH ₃ ×1°>2°>3°			1	2	٦	2	
	` '	3°>2°>1°>CH ₃ ×	` '	CH ₃ ×>2°>3°>1°					
	(C)	3 /2 /1 /CH ₃ ×	(D)	3°>1°>2°>CH₃×					
11.	Ame	ong the following hex-2-ene reac	ts fas	stest with?	1	3	3	2	
	(A)	HCl	(B)	HF					
	(C)	HI	` '	HBr					
12	Wh:	ch of the following has the 1		- 1:	1	2	2		
12,	sequ	ence rules?	owes	t priority according to the CIP	1	3	3	2	
	_	CH(OH) CH ₃ .	(B)	$CH = CH_2$					
		-CHO		CH ₂ CH ₃					
	(0)	CHO	(1)	Ch ₂ Ch ₃					
13.	Whi	ch of the following is a thermo s	etting	; polymer?	1	1	4	1	
		Bakelite	-	Polystyrene					
	(C)	PVC	. ,	Polyethene					
14.	Whi	ch one of the below is used as an			1	2	4	1	
	٠,	PVC	(B)	PTFE					
	(C)	SBR	(D)	Poly propylene					
15.	Hem	odialysis tubes are made with			1	1	4	1	
		Silicone rubber	(R)	Polyotyrona	•	•		,	
	7	Polyurethane intermediate		Polystyrene Nylon					
	(-)	2 ory arounding intormodulate	(1)	TAYLOH					
16.	Whi	ch of the below polymers show h	igher	crystallinity?	1	2	4	1	
		Isotactic		Atactic					
	(C)	Random		Syndiotactic				- 1	
17.		ore reinforced composites which			1	2	5	1	
		Filler	. ,	Matrix					
	(C)	Both fail at same time	(D)	Need more details on composite					
18.	After	the proportionality limit in the s	strece.	strain curve we observe	1	3	5	1	
		Lower yield point		Upper yield point	- 21			•	
		Ultimate point		Elastic point					
	(~)	Oldinate point	(1)	Elastic point					
19.	Mini	mum inter planar spacing require	ed for	Bragg's diffraction is	1	2	5	1	
	(A)		(B)						
	(C)	λ/2	(D)						
		_							
20.	Deter	rmine young's modulus of a ma	ateria	l whose elastic stress and strain	1	3	5	1	
		N/m ² and 0.15 respectively							
		26.66 N/m ²	- /	2.666 N/m ²					
	(C)	266.6 N/m ²	(D)	2666 N/m ²					

Page 2 of 3

05JF21CYB101J

$PART - B (5 \times 8 = 40 Marks)$ Marks BL CO PO Answer ALL Questions 21. a. Find the number of unpaired electrons in strong and weak octahedral field 4 1 1 for a Mn2+ complex (d5) based on CFT. Calculate CFSE and magnetic moment for both the situation with energy level diagrams. b. Demonstrate with proper examples the isomerism exhibited in transition metal complexes. 22. a. With appropriate examples, elucidate how Nernst equation can be applied 8 2 2 1 in a redox reaction and in an acid-base reaction. (OR) b. Derive Gibbs-Helmholtz equation and given its applications. 1 2 1 23. a. Compare and contrast S_N^1 and S_N^2 reactions with an example for each. 8 2 3 2 (OR) b. Sketch the potential energy diagram and explain in detail the 8 1 3 2 conformational analysis of n-butane. 24. a. Provide a conscise note on the synthesis and applications of Teflon and 8 2 4 1 PVC. (OR) b. Explain in detail n and p-doping in conducting polymers. 25. a. Illustrate with a proper stress-strain plot for the following 3 5 1 Elastic region Plastic region (ii) (OR) b. Explain with an example ceramic matrix composite and metal matrix 8 2 5 1 composite. $PART - C (1 \times 15 = 15 Marks)$ Answer ANY ONE Questions 26. With an neat sketch discuss pourbaix diagram for iron. 3 2 1 27.i. Explain E2 mechanism with suitable example. 2 3 2

* * * * *

ii. Discuss about the principle and instrumentation of X-ray photo electron

spectroscopy.

Page 3 of 3

3 5 1