

## 시계열 분석 기법과 응용

Week 1. 시계열 평활기법 1-1. 이동평균법

> 전치혁 교수 (포항공과대학교 산업경영공학과)

## 시계열 분석 개요

### 시계열 분석 (Time Series Analysis)

- 하나의 변수에 대한 시간에 따른 관측치를 시계열 또는 시계열 데이터라 함
- 시계열 분석 목적
  - 시계열의 특성 (추세, 계절성 등)을 요약하고 시간에 따른 패턴 (자기 상관성 등) 분석
  - 시간에 따른 패턴을 바탕으로 모형화하고 미래값을 예측
- 회귀모형과는 달리 다른 변수를 도입하지 않고 자신의 변수의 과거 패턴이 미래에도 계속된다는 가정하에 변수의 과거값을 바탕으로 미래값 예측
- 시계열 패턴은 수평, 추세, 계절성이 복합된 것으로 간주

### 본 과정에서 다룰 시계열 모형

- 평활화 모형: 이동평균, 지수평활, 윈터스 모형, 분해법
- 정상적 ARMA 모형: AR 모형, MA 모형, ARMA 모형
- 비정상적 모형: ARIMA 모형, 계절성 ARIMA 모형
- 오차 이분산 모형: ARCH 모형, GARCH 모형
- 다변량시계열: 벡터회귀모형 (VAR)
- 상태공간모형

## 이동평균법

### 이동평균 (Moving Average)

• 매 시점에서 직전 N개 데이터의 평균을 산출하여 평활치로 사용

### 단순이동평균 (Simple Moving Average)

•  $\sqrt{100} = \sqrt{100} =$ 

### 이중 이동평균 (Double Moving Average)

시계열 대이터 {X<sub>1</sub>,X<sub>2</sub>,...}가 추세 패턴을 따르는 경우 사용

## 단순 이동평균법

- $\sqrt{R} = \sqrt{R} = \sqrt{R}$
- 시점 t에서의 단순 이동평균:  $M_t = \frac{1}{N} (X_{t-N+1} + \dots + X_t)$

- 시점 t+1에서의 이동평균: 
$$M_{t+1} = \frac{1}{N}(X_{t-N+2} + \dots + X_{t+1})$$

$$= M_t + \frac{X_{t+1} - X_{t-N+1}}{N}$$

- 시점 T에서 시점 T+1의 값 예측(한 단계이후 예측)

$$f_{T,1} = M_T$$

- N이 <del>클수록</del> 평활효과가 큼

| 시간    | 시계열                    | 이동평균  |           |  |
|-------|------------------------|-------|-----------|--|
| t-N+1 | $X_{t-N+1}$            | ٦     |           |  |
| t-N+2 | $X_{t-N+2}$            |       |           |  |
|       |                        |       |           |  |
| t-1   | $X_{t-1}$              |       |           |  |
| t     | $X_t$                  | $M_t$ |           |  |
| t+1   | $\boldsymbol{X}_{t+1}$ | _     | $M_{t+1}$ |  |

# 단순 이동평균법

- 예 (청년 실업률) 다음은 우리나라 분기별 (2000-2017) 청년(15-29세) 실업률(%)을 나타낸 것이다.
- N=4 와 N=8일 때 단순이동평균을 구하여 보자







## 이중 이동평균법

• 시계열이 다음과 같이 선형추세를 갖는다 하자.

$$X_t = c + bt + a_t$$
 - 단순이동평균  $M_t$ 은 추세를 늦게 따라감

$$E[M_t] = c + bt - \frac{N-1}{2}b \implies E[M_t] + \frac{N-1}{2}b = c + bt$$

- 이를 보정하기위해 이중 이동평균을 활용
- 이중 이동평균 (double moving average)

$$M_{t} = \frac{1}{N} (X_{t-N+1} + \dots + X_{t})$$

$$M_{t}^{(2)} = \frac{1}{N} (M_{t-N+1} + \dots + M_{t})$$

$$E \left[ M_{t}^{(2)} \right] = c + bt - (N-1)b$$

$$E \left[ M_{t} \right] - E \left[ M_{t}^{(2)} \right] = \frac{N-1}{2}b$$

$$\hat{b} = \frac{2}{N-1} (M_T - M_t^{(2)})$$

$$\frac{N-1}{2} b$$

$$\frac{N-1}{2} b$$

$$\frac{N-1}{2} b$$

## 이중 이동평균법

### 예측

• 시점 T에서 다음 시점의 예측치 (한단계 이후 예측)

$$f_{T,1} = E[X_{T+1}|X_T, X_{T-1}, \dots] = c + b(T+1)$$

$$\hat{f}_{T,1} = \hat{c} + \hat{b}(T+1) = 2M_T - M_T^{(2)} + \hat{b}$$

$$\hat{b} = \frac{2}{N-1} (M_T - M_T^{(2)})$$

• k-단계 이후 예측치

$$f_{T,k} = E[X_{T+k}|X_T, X_{T-1}, \dots] = c + b(T+k), \ k = 1, 2, \dots$$
$$\hat{f}_{T,k} = \hat{c} + \hat{b}(T+k) = 2M_T - M_T^{(2)} + k\hat{b}$$

## 이중 이동평균법

- 예 (특허건수) 아래는 우리나라 연도별 (1993-2016) 특허건수 (천건)를 나타낸 것이다.
- 이동평균 및 이중이동평균법을 적용하여 시간에 따라 한단계 이후를 예측해 보자. (N=4 사용)





#2

# 예측성능 척도

### 예측 오차

• 주로 특정시점에서 다음 시점을 예측하고 다음 시점의 실제값과 비교하여 예측 오차를 산출, 즉 시점 t에서 한단계 예측오차는 다음으로 산출

- 
$$e_{t,1} = X_{t+1} - f_{t,1}$$

- 총 n개 시점에서 예측 오차를 산출하는 경우 다음과 같은 척도가 사용됨
  - 평균제곱오차:  $MSE = \frac{1}{n} \sum_{t=1}^{n} e_{t,1}^2$
  - 제곱근 평균제곱오차:  $RMSE = \sqrt{\frac{1}{n}\sum_{t=1}^{n}e_{t,1}^{2}}$
  - 평균절대오차:  $MAD = \frac{1}{n} \sum_{t=1}^{n} |e_{t,1}|$
  - 평균절대 퍼센트오차:  $MAPE = \frac{100}{n} \sum_{t=1}^{n} \left| \frac{e_{t,1}}{X_{t+1}} \right|$

# 예측성능 척도

• 예 (특허건수) : 본 데이터에 대하여 단순이동평균 과 이중이동평균을 사용하여 1999년부터 한단계 이후 예측에 대한 예측오차를 구한 후 여러 예측성능척도를 산출하여 비교하여 보자.

|      | 단순이동평균<br>사용 | 이중이동평균<br>사 <del>용</del> |
|------|--------------|--------------------------|
| MSE  | 327.08       | 132.47                   |
| RMSE | 18.08        | 11.51                    |
| MAD  | 15.66        | 10.11                    |
| MAPE | 13.49        | 8.54                     |

| 년도   | 건수    | 예측치    | 오차     | 절대오차  | 상대오차  |
|------|-------|--------|--------|-------|-------|
| 2000 | 72.8  | 68.93  | 3.87   | 3.87  | 5.32  |
| 2001 | 73.7  | 64.68  | 9.02   | 9.02  | 12.24 |
| 2002 | 76.6  | 65.86  | 10.74  | 10.74 | 14.02 |
|      |       |        |        |       |       |
|      |       |        |        |       |       |
| 2015 | 167.3 | 171.64 | -4.34  | 4.34  | 9.65  |
| 2016 | 163.4 | 179.17 | -15.77 | 15.77 | 8.55  |

이중이동평균 사용

## Reference

```
#1. KOSIS 국가통계포털 <u>http://kosis.kr/</u> 2019.12
```

#2. KOSIS 국가통계포털 <u>http://kosis.kr/</u> 2019.12