Lecture 21: Gaussian process regression

Professor Ilias Bilionis

Frocess

$$f(\cdot) \sim \langle P(M(\cdot), C(\cdot, \cdot)) \rangle$$

Take a finite # of input $\times_{1:n} = (\chi_1, ..., \chi_n)$

Consider the function values $f_{1:n} = (f(\chi_1), ..., f(\chi_n))$

random vector

By definition : $f_{1:n} \sim N(\frac{M_{1:n}}{N_1}, \frac{C_n}{N_1})$

of the 4P : $f_{1:n} \sim N(\frac{M_{1:n}}{N_1}, \frac{C_n}{N_1})$

Steps:

$$- F_{1:n} = \sum_{n=1}^{N_{1:n}} \sum_{n=1$$

