Spis treści

- 1. Wykorzystane biblioteki
- 2. Kod zapewniający powtarzalność
- 3. Wczytanie danych z pliku
- 4. Wstępne czyszczenie danych
- 5. Kod przetwarzający brakujące dane
- 6. Podsumowanie wartości w kolumnach
- 7. Zliczenie 50 najpopularniejszych
- 8. Korelacje między zmiennym
- 9. Liczba przypadków dla każdej z klas
- 10. Wykresy rozkładu liczby atomów i elektronów
- 11. Klasy z największą niezgodnością liczby atomów i elektronów
- 12. Rozkład wartości kolumn part_01
- 13. Interaktywny wykres
- 14. Przewidywanie liczby elektronów i atomów na podstawie innych kolumn
- 15. Klasyfikator

Posumowanie analizy zbioru danych

W danych znajdowało się bardzo dużo wartości NA. W obliczeniach w zależności co było liczone zostały one zamienione lub pominięte szczególnie podczas obliczania korelacji (sposob obsługi wartości NA podczas obliczania korelacji został opisany w punkcie 5).

Zauważono także, że kolumny fo_col fc_col zawierają tylko 1 wartość. Powinny one zostać usunięte ze zbioru przy próbie utworzenia klasyfikatora.

Podczas rysowania wykresów dla kolumn zaczynających się od part_01 zauważono, że dużo wartości jest skupionych w okolicy zera.

Została podjęta próba wykonania klasyfikatora, ale niestety nie zakończyła się powodzeniem. W ostatnim punkcie zostały opisane podjęte kroki, które zostały podjęte oraz napotkane blędy.

Wykorzystane biblioteki

```
library (knitr)
library (ggplot2)
library (dplyr)
library (ggRxtra)
library (caret)
library (corrplot)
library (rontoly)
library (randomForest)
```

Kod zapewniający powtarzalność

Wczytanie danych z pliku

Wczytanie danych z pliku.

```
rawData <- data.table::fread("all_summary.csv", header="auto", sep="auto")

## Warning in data.table::fread("all_summary.csv", header = "auto", sep
## = "auto"): Bumped column 6 to type character on data row 13920, field
## contains '260G'. Coercing previously read values in this column from
## logical, integer or numeric back to character which may not be lossless;
## e.g., if '00' and '000' occurred before they will now be just '0', and
## there may be inconsistencies with treatment of ',,' and ',NA,' too (if they
## occurred in this column before the bump). If this matters please rerun and
## set 'colClasses' to 'character' for this column. Please note that column
## type detection uses a sample of 1,000 rows (100 rows at 10 points) so
## hopefully this message should be very rare. If reporting to datatable-help,
## please rerun and include the output from verbose=TRUE.
```

Załadowano 591042 wierszy, które mają 412 zmiennych.

Zliczenie 50 najpopularniejszych

```
popular <- rawData[ , .N, by = res_name]
popular <- popular[order(-N)]
popular <- popular[1:50]
pop_names <- popular$res_name
rawData <- select(filter(rawData, res_name %in% pop_names),matches("*"))</pre>
```

Pozostało 382720 wierszy z 50 najpopularniejszych grup.

Usuwanie z danych wiersze posiadające wartość zmiennej res_name równą: "UNK", "UNK", "UNL", "DUM", "N", "BLOB", "ALA", "ARG", "ASN", "ASP", "CYS", "GLN", "GLU", "GLY", "HIS", "ILE", "LEU", "LYS", "MET", "MSE", "PHE", "PRO", "SEC", "SER", "THR", "TRP", "TYR", "VAL", "DA", "DG", "DU", "A", "G", "T", "C", "U", "HOH", "H20", "WAT" lub "NAN # # Wstępne czyszczenie danych

```
selectedData <- selectedData <- rawData $>$ filter(! (res_name $in$ c ("UNK", "UNX", "UNL", "DUM", "N", "BLOB", "ALA", "ARG", "ASN", "ASP", "CYS", "GLN", "GLV", "GLY", "HIS", "ILE", "LEU", "LYS", "MET", "MET", "PHE", "PRO", "SEC", "SEC", "SER", "THE", "TYP", "VAL", "DA", "DG", "DT", "DC", "DU", "A", "G", "T", "C", "U", "HOH", "H2O", "WAT", "NAN", "", "NA", NA)))
```

Podsumowanie wartości w kolumnach

blob_coverage	res_coverage	title	pdb_code	res_name	res_id	chain_id	blob_volume_coverage	blob_volume_coverage_second	res_vo
Length:382720	Min. :0.02004	Min. :0.00000	Min. :0.						
Class :character	1st Qu.:0.44038	1st Qu.:0.00000	1st Qu.						
Mode :character	Median :0.69809	Median :0.00000	Median						
NA	Mean :0.64142	Mean :0.02088	Mean :						
NA	3rd Qu.:0.85816	3rd Qu.:0.00000	3rd Qu						
NA	Max. :1.00000	Max. :0.99625	Max. :1						
NA	NA	NA							

Korelacje między zmiennymi

Do obliczenia korelacji użytko funkcji >cor< z parametrem >use = "pairwise.complete.obs<, który ignoruje w obliczeniach korelacji dla danej pary wartości NA.

Podczas obliczania korelacji zauważono, że dla wszystkich kolumn part_XX jest ona bardzo podobna. W przedstawionej graficznej reprezentacji korelacji zabrano zmienne z part_01, by ograniczyć liczbę danych. Poza kolumnami part_01 w macierzy widzimy kolumy local_res_atom_non_h_electron_sum, local_res_atom_non_h_count, solvent_mask_count, void_mask_count, modeled_mask_count, solvent_ratio. Wybrano takie kolumny, ponieważ te kolumny będą brały w wyznaczaniu klasyfikatora.

Zmienne zostały posortowane wg algorytmu "FPC" (First Principal Component).

```
correlation_data <- cor(data, use = "pairwise.complete.obs")
corrplot(correlation_data, method = "color", tl.cex = 0.4, order = "FPC", tl.col="black")</pre>
```


Liczba przypadków dla każdej z klas

count	class
1587	SAH
1589	GDP
1594	PLP
1596	NO3
1602	FE
1609	ACY
1637	NI
1647	SF4
1656	TRS
1905	PGE
1917	HEC
1933	EPE
2084	FMN
2106	NDP
2127	BR
2136	1PE
2183	COA
2296	ATP
2353	CU
2697	MES
2768	PG4
2841	MAN
2918	FMT
3221	MPD
3242	CD
3505	NAP
3509	MLY
3819	ADP
4215	MN
4501	NAD
4555	FAD
4706	К
4784	CLA
4987	PEG
6317	IOD
6633	DMS
8096	ACT
11090	P04
11192	HEM

count class
14779 MG
19826 ZN
21038 CA
23223 CL
26360 NAG
30825 EDO
40606 GOL
56572 SO4

Wykresy rozkładu liczby atomów i elektronów

Rozkład atomów

Rozkład elektronów

Klasy z największą niezgodnością liczby atomów i elektronów

Klasy z największą niezgodnością liczby atomów

res_name	local_res_atom_non_h_count	dict_atom_non_h_count	odds
NAG	369564	395400	25836
CLA	285867	310960	25093
1PE	28487	34176	5689
MLY	37453	42108	4655
NAP	163742	168240	4498
COA	100779	104784	4005
NAD	194945	198044	3099
PG4	33094	35984	2890
MAN	31551	34092	2541
NDP	99007	101088	2081

Klasy z największą niezgodnością liczby elektronów

res_name	local_res_atom_non_h_electron_sum	dict_atom_non_h_electron_sum	odds
NAG	2508452	2715080	206628
CLA	1809084	1961440	152356

res_name	local_res_atom_non_h_electron_sum	dict_atom_non_h_electron_sum	odds
1PE	191894	230688	38794
MLY	238696	273702	35006
NAP	1217531	1247780	30249
COA	764523	794612	30089
NAD	1406030	1426817	20787
MAN	218316	238644	20328
PG4	224042	243584	19542
NDP	735538	749736	14198

Rozkład wartości kolumn part_01

Sekcja przedstawia rozkład wartości wszystkich kolumn zaczynających się od part_01

Usunięto wartości NA dla każdej kolumny z osobna. Nie zostały zamienione na wartość 0 by nie zaburzać rozkładu zmiennych.

Na wykresach zaznaczono średnią wartość zmiennej (w formie graficznej oraz liczbowej).

Wykres interaktywny

```
ggplotly(qplot(local_res_atom_non_h_electron_sum, data=pdb_code_res_name))

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

Przewidywanie liczby elektronów i atomów na podstawie innych kolumn

```
lm_data <- rawData
lm_data[is.na(lm_data)] <- 0
lm_data <- dplyr::select_if(lm_data, is.numeric)

lm_atom_model <- lm(local_res_atom_non_h_count ~ ., lm_data)
lm_atom_summary <- summary(lm_atom_model)

lm_electron_model <- lm(local_res_atom_non_h_electron_sum ~ ., lm_data)
lm_electron_summary <- summary(lm_electron_model)

pdb_code_res_name <- pdb_code_res_name[ , -which(names(pdb_code_res_name) %in% c("blob_coverage","res_coverage","
pdb_code","res_id","chain_id","skeleton_data","fc_col", "fo_col", "weight_col", "title"))]

pdb_code_res_name%res_name <- as.character(pdb_code_res_name%res_name)
pdb_code_res_name%is.na(pdb_code_res_name)] <- -1000000</pre>
```

Miary dla liczby atomów: R^2: 0.9999915 RMSEL 0.0390963

Miary dla liczby elektronów: R^2: 0.9999877 RMSEL 0.3168246

Klasyfikator