LINEAR ALGEBRA

Det $V = \mathbb{R}^3$ and $\alpha_1 = (1,1,2)$, $\alpha_2 = (0,1,3)$, $\alpha_3 = (2,4,5)$ and $\alpha_4 = (-1,0,-1)$. be the elementy of V. Find the basis for the intersection of subspace spanned by $\{\alpha_1,\alpha_2\}$ and $\{\alpha_3,\alpha_4\}$.

Let $W_1 = Span(\alpha, \alpha_2) = q(1,1,2) + b(0,1,3) = (a, a+b, 2a+3b)$ Let $W_2 = Span(\alpha_3, \alpha_4) = c(2,14,5) + d(-1,0,1) = (2c-d, 4c, 5c-d)$ Let (x, y, z) be the finteraction of W_1 of W_2 i.e. $(x, y, z) \in W_1 \cap W_2$. Then, (x, y, z) = (a, a+b, 2a+3b) = (2c-d, 4c, 5c-d)

= (a,a+b,2a+3b) - (2(-d,4c,5c-d) = (0,0,0) = (a-2c+d,a+b-4c,2a+3b-5c+d) = (0,0,0) = (a-2c+d,a+b-4c,2a+3b-5c+d) = (0,0,0)

Let $A = \begin{bmatrix} 1 & 0 & -2 & 1 \\ 1 & 1 & -4 & 6 \\ 2 & 3 & -5 & 1 \end{bmatrix} N \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & -2 & -1 \\ 0 & 3 & -1 & -1 \end{bmatrix} N \begin{bmatrix} 1 & 0 & -2 & 1 \\ 6 & 1 & -2 & -1 \\ 0 & 6 & 5 & 2 \end{bmatrix}$ $R_1 \rightarrow 5R_1 + 2R_3, R_2 \rightarrow 5R_2 + 2R_3 \qquad R_1 \rightarrow R_{1/5}, R_2 \rightarrow R_{2/5}, R_3 \rightarrow R_{2/5}$

 $(a,y,z) = (a,a+b,2a+3b) = (-\frac{9}{5}d,-\frac{9}{5}d+\frac{1}{5}d,2\cdot(-\frac{9}{5}d)+\frac{3}{5}(-\frac{1}{5}d)$ $=d(-\frac{9}{5},-\frac{9}{5},-\frac{3}{5})$

= K(-9, -8, -15) $= K_1(9, 8, 15)$

: Basis of W, NWz is {(9,8,15)}.

```
2) Let f: \mathbb{R}^3 \to \mathbb{R}^3 be a linear transformation defined by f(a,b,c) = (a,a+b,0). Find the matrices A and B respectively of the linear transformation f with the standard basis (e.e.,e.,e.) and the basis (e.e.,e.,e.) where e! = (1:1:0), e! = (0:1:1) and e'_3 = (1:1:1). Also show that there exist an invertible matrix P such that B = P^T A P.
```

 $S_{1} = \{e_{1}, e_{2}, e_{3}\} \text{ where } e_{1} = (1,0,0), e_{2} = (0,1,0) \text{ is the } \text{ ϵtandard basis of } \mathbb{R}^{3}.$ $T(e_{1}) = (1,1,0) = e_{1} + e_{2} + 0e_{3}$ $T(e_{2}) = (0,1,0) = 0e_{1} + 0e_{2} + 0e_{3}$ $T(e_{3}) = (0,0,0) = 0e_{1} + 0e_{2} + 0e_{3}$ $\vdots \text{ Matrix of } T \text{ wit standard basis is } A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\frac{Now}{S_{2}} = \{e_{1}^{1}, e_{2}^{1}, e_{3}^{1}\} \text{ where } e_{1}^{1} = (1,1,0), e_{2}^{1}(0,1,1) \text{ if } e_{3}^{1} = (1,1,0) \}$ = (a+c,a+b+c,b+c) = (a+c,a+b+c,b+c) On companing, a+c=x,b+c=y a+b+c=y a+b+c=x c=z-b a+b+c=x c=z-y+x c=x-y+z c=x-y+z

: (\$\frac{14.2}{2} = (4-2)(1,1,0) + (-x+y)(0,1,1) + (x-4+2)(1,1,1)
= (4-2)e1 + (-x+y) e2 + (x-4+2)e3

 $T(e_{1}) = T(1,1,0) = (1,2,0) = 2 e_{1}^{1} + 1 \cdot e_{2}^{1} + (-1) e_{3}^{1}$ $T(e_{1}) = T(0,1,1) = (0,1,0) = 1 \cdot e_{1}^{1} + 1 \cdot e_{2}^{1} + (-1) e_{3}^{1}$ $T(e_{3}^{1}) = T(1,1,1) = (0,2,0) = 2 \cdot e_{1}^{1} + 1 \cdot e_{2}^{1} + (-1) e_{3}^{1}$ $T(e_{3}^{1}) = T(1,1,1) = (0,2,0) = 2 \cdot e_{1}^{1} + 1 \cdot e_{2}^{1} + (-1) e_{3}^{1}$ $T(e_{3}^{1}) = T(1,1,1) = (0,2,0) = 2 \cdot e_{1}^{1} + 1 \cdot e_{2}^{1} + (-1) e_{3}^{1}$ $T(e_{3}^{1}) = T(1,1,1) = (0,2,0) = 2 \cdot e_{1}^{1} + 1 \cdot e_{2}^{1} + (-1) e_{3}^{1}$ $T(e_{3}^{1}) = T(1,1,1) = (0,2,0) = 2 \cdot e_{1}^{1} + 1 \cdot e_{2}^{1} + (-1) e_{3}^{1}$ $T(e_{3}^{1}) = T(1,1,1) = (0,2,0) = 2 \cdot e_{1}^{1} + 1 \cdot e_{2}^{1} + (-1) e_{3}^{1}$ $T(e_{3}^{1}) = T(1,1,1) = (0,2,0) = 2 \cdot e_{1}^{1} + 1 \cdot e_{2}^{1} + (-1) e_{3}^{1}$ $T(e_{3}^{1}) = T(1,1,1) = (0,2,0) = 2 \cdot e_{1}^{1} + 1 \cdot e_{2}^{1} + (-1) e_{3}^{1}$ $T(e_{3}^{1}) = T(1,1,1) = (0,2,0) = 2 \cdot e_{1}^{1} + 1 \cdot e_{2}^{1} + (-1) e_{3}^{1}$ $T(e_{3}^{1}) = T(1,1,1) = (0,2,0) = 2 \cdot e_{1}^{1} + 1 \cdot e_{2}^{1} + (-1) e_{3}^{1}$ $T(e_{3}^{1}) = T(1,1,1) = (0,2,0) = 2 \cdot e_{1}^{1} + 1 \cdot e_{2}^{1} + (-1) e_{3}^{1}$ $T(e_{3}^{1}) = T(1,1,1) = (0,2,0) = 2 \cdot e_{1}^{1} + 1 \cdot e_{2}^{1} + (-1) e_{3}^{1}$ $T(e_{3}^{1}) = T(1,1,1) = (0,2,0) = 2 \cdot e_{1}^{1} + 1 \cdot e_{2}^{1} + (-1) e_{3}^{1}$ $T(e_{3}^{1}) = T(1,1,1) = (0,2,0) = 2 \cdot e_{1}^{1} + 1 \cdot e_{2}^{1} + (-1) e_{3}^{1}$ $T(e_{3}^{1}) = T(1,1,1) = (0,2,0) = 2 \cdot e_{1}^{1} + 1 \cdot e_{2}^{1} + (-1) e_{3}^{1}$ $T(e_{3}^{1}) = T(1,1,1) = (0,2,0) = 2 \cdot e_{1}^{1} + 1 \cdot e_{2}^{1} + (-1) e_{3}^{1}$ $T(e_{3}^{1}) = T(1,1,1) = (0,2,0) = 2 \cdot e_{1}^{1} + 1 \cdot e_{2}^{1} + (-1) e_{3}^{1}$ $T(e_{3}^{1}) = T(e_{3}^{1}) = (0,2,0) = 2 \cdot e_{1}^{1} + 1 \cdot e_{2}^{1} + (-1) e_{3}^{1}$ $T(e_{3}^{1}) = T(e_{3}^{1}) = (0,2,2,0) = 2 \cdot e_{1}^{1} + 1 \cdot e_{2}^{1} + 1 \cdot$

To prove that B= p-AP for some non-singular matrix P, we need to show that A & B are similarie. the char, egn and the roots of Ad Base the same

$$G = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 - \lambda & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & -1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & 1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 2 \\ 1 & 1$$

- :. A d B are similar. Hence, Fo non-singular matrix P such that $B = P^{-1}AP$.
- 3 Verify layley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$ 4 find its inverse. Also, express $A^S = 4A^4 7A^3 + 11A^2 A 10I$ as Linear polynomial in A.
- -> <u>Cayley-Hamilton Theorem</u>: Every square matrix satisfies its characteristic equation.

The characteristic equation of A is given by IA-AII=0.

=)
$$\begin{vmatrix} 1-\lambda & 4 \\ 2 & 3-\lambda \end{vmatrix} = 0 =$$
 $(1-\lambda)(3-\lambda) - 8 = 0$
=) $\lambda^2 - 4\lambda - 5 = 0$ (1)

Putting A in the LHS of 1)

$$A^{2} - 4A - SI = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} - 4 \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} - 5 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

: A satisfier its characteristic equation.

Hence, Cayley Hamilton Theorem is verified

Now! A= 4A+5I -- 0

Premultiplying with A on both sides:

 $A^3 = 4A^2 + SA$

A4=4A3+5A2

A5 = 4A4+5A3 => A5-4A4= SA3.=0.

Now: given equationis 15-414-7A3+11A2-A-10I =) (A5-4A4-5A3)-2A3+11A2-A-10I

 $\Rightarrow 0 - 2 \cdot [AA^2 + 5A] + 1/A^2 - A - 10I$

=) -19 (4A+5I) -11A-10I

=) -87A-105I.

=) 3A2-11A-10I

=) 3 (4A+5I) - 11A-10I

=> A + SI

Premultiplying () with A-1 => A = 4I+JA-1

=) $5A^{-1} = A - 4I = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} - 4\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -3 & 4 \\ -2 & -1 \end{bmatrix}$

 $\rightarrow A^{-1} = \frac{1}{5} \begin{bmatrix} -3 & 4 \end{bmatrix}$

Show that there are 3 real values of A for which the equations (a-1) n+ by+ (=0, bx+(c-1) y+a==0 and cutay+ (b-2) = o are simultaneously true and that the product of these values of is $D = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$.

 $(a-\lambda) \times + by + CZ = 0$ These 3 are simultaneously $b \times + (c-\lambda)y + aZ = 0$ true iff $\begin{vmatrix} a-\lambda & b & c \\ b & c-\lambda & a \\ c & a & b-\lambda \end{vmatrix} = 0$

(a-1)[(c-1)(b-1)-a2] +-b[b(b-1)-ac]+([ab-c[c-1)]=0

=) (a-1) [22- (b+1) 1+61-a2] -b[b2-b2-ac]+ c[ab-c2+E]=0

$$2) \quad \alpha \lambda^{2} - \lambda^{3} - \alpha (b+c) \lambda + (b+c) \lambda^{2} + \alpha b c - b c \lambda - a^{3} + a^{2} \lambda - b^{3} + b^{2} \lambda$$

$$+ \alpha b c + \alpha b c - c^{3} + c^{2} \lambda = b$$

$$+ a^{2} + a^{2} + a^{2} + a^{2} + b^{2} + b^{2} + b^{2} + a^{2} + a^{2} + b^{2} +$$

tabe + abe -
$$(a^2 + b^2 + (a^2 - ab - bc - ac) + 3abe = bc - ac) + abe = abe$$

Now: If
$$\alpha,\beta,\gamma$$
 are roots of this α,β,γ are α,β,γ are roots of this α,β,γ and α,β,γ are roots of this α,β,γ are α,β,γ are roots of this α,γ are roots of α,γ and α,γ are roots of α,γ are roots of α,γ and α,γ are roots of α,γ are roots of α,γ and α

$$\begin{vmatrix} a & b & c \\ b & c & \alpha \\ C & a & b \end{vmatrix} = a(bc-a^2) + b(ac-b^2) + c(ab-c^2)$$

$$= -(a^3+b^3+c^3-3abc) - 2$$

(1) = (2). Hence, verification of linear transformation (5). Find the matrix representation of linear transformation (5). Find the matrix representation of linear transformation (7) to the basis
$$B = \{(1,1,1), (1,1,0), (1,0,0)\}$$

to the basis
$$b = \frac{1}{2}(1,1,0) + c(1,0,0)$$

 \rightarrow let $(x,y,z) = a(1,1,1) + b(1,1,0) + c(1,0,0)$
 $= (a+b+c,a+b,a)$

$$= (a+b+c, a+b, a)$$

$$= (a+b+c, y=a+b, z=a.$$
On compasison, $x=a+b+c, y=a+b, z=a.$

on comparison,
$$\chi = \alpha \cdot (1,1,0) + (\chi - y)(1,1,0) + (\chi -$$

$$\Rightarrow \alpha = \frac{1}{2}, \quad b = y - \frac{1}{2}, \quad c = \chi - \frac{1}{2} - \frac{1}{2} + \frac{1}{2} = \frac{1}{2} =$$

$$(4,4,7) = \pm (1,1,1) + (4-1)$$

$$T(1,1,1) = (3,-3,3) = 3(1,1,1) + (-6)(1,1,0) + 6(1,0,0)$$

$$T(1,1,1) = (3,-3,3) = 3(1,1,1) + (-6)(1,1,0) + 5(1,0,0)$$

$$T(1,1,1) = (3,-3,3) = 3(1,1,1) + (-6)(1,1,0) + 5(1,0,0)$$

$$T(1,1,0) = (2,-3,3) = 3(1,1,1) + (-2)(1,1,0) + (-1)(1,0,0)$$

$$T(1,1,0) = (2,-3,3) = 3(1,1,1) + (-2)(1,1,0) + (-1)(1,0,0)$$

$$T(1,1,0) = (2,-3,3) = 3(1,1,1) + (-2)(1,1,0) + (-1)(1,0,0)$$

$$T(1,0,0) = (0,1,3) = 3(1,1,1) + (-2)(1,1,0) + (-1)(1,0,0)$$

$$T(1,0,0) = (0,1,3) = 3(1,1,1) + (-2)(1,1,0) + (-1)(1,0,0)$$