1.6 Inference

Inference

The two main tools in statistics to make conclusions are

- confidence intervals: the width of a confidence interval provides a measure of the precision of the point estimates
- hypothesis testing: it compares how well two related models fit the data. The logic can be summarised as follows:
 - $\circ~$ specify a model M_0 corresponding to H_0 and a more general model M_1 corresponding to H_1
 - $\circ~$ fit model M_0 and compute measure of goodness of fit, G_0 ; repeat for M_1 to obtain G_1
 - calculate the improvement in fit
 - \circ test the null hypothesis $G_0=G_1$
 - $\circ \;\;$ if $G_0=G_1$ is not rejected, then H_0 is not rejected and M_0 is the preferred model

For confidence intervals and hypothesis testing, sampling distributions are required.

- for **normally distributed r.v.**, the sampling distribution can be determined exactly
- for other distributions we need to rely on large-sample asymptotic results based on the CLT

The basic idea is that, under appropriate conditions (such as i.i.d), the statistic of interest S is approximately

$$\frac{S - \mathbb{E}(S)}{\sqrt{\mathbb{V}\mathrm{ar}(S)}} \stackrel{\cdot}{\sim} \mathcal{N}(0, 1) \tag{1.6.1}$$

or equivalently

$$\frac{[S - \mathbb{E}(S)]^2}{\mathbb{V}\mathrm{ar}(S)} \stackrel{.}{\sim} \chi_1^2 \tag{1.6.2}$$

and, in case, of p-multivariate statistics

$$[\mathbf{S} - \mathbb{E}(\mathbf{S})]^{\top} \mathbf{V}^{-1} [\mathbf{S} - \mathbb{E}(\mathbf{S})] \stackrel{.}{\sim} \chi_p^2$$
 (1.6.3)

Sampling distribution for score statistics

Suppose Y_1, \ldots, Y_N are independent random variables from a distribution which belongs to the exponential family, with parameter $\theta = (\theta_1, \ldots, \theta_p)$.

The **score statistics** are such that

$$E[{
m U}_j] = 0, \quad {
m for \ all} \ j = 1, \dots, p.$$
 (1.6.4)

The **variance-covariance matrix of the score statistics** is the information matrix \mathcal{I} , with elements

$$\mathcal{I}_{jk} = \mathbb{E}[\mathbf{U}_j \mathbf{U}_k] \tag{1.6.5}$$

If p=1, the score statistic has the asymptotic sampling distribution

$$rac{\mathrm{U}}{\sqrt{\mathcal{I}}} \stackrel{.}{\sim} \mathcal{N}(0,1),$$

where the $\dot{\sim}$ symbol means "approximately distributed as". Equivalently we can write

$$rac{ ext{U}^2}{\mathcal{I}} \stackrel{.}{\sim} \chi_1^2$$

If p > 1,

$$\mathbf{u} \stackrel{.}{\sim} MVN(\mathbf{0}, \mathcal{I})$$

or, equivalently,

$$\mathbf{u}^ op \mathcal{I}^{-1} \mathbf{u} \stackrel{.}{\sim} \chi_p^2$$

Example: Binomial distribution

If $Y \sim Bin(n,p)$, the log-likelihood function is

$$\ell(p;y) = y\log p + (n-y)\log(1-p) + \log \binom{n}{y}$$

and the score statistic is

$$U = \frac{d\ell}{dp} = \frac{Y}{p} - \frac{n - Y}{1 - p} = \frac{Y - np}{p(1 - p)}$$

Since $\mathbb{E}(\mathrm{Y}) = np$, $\mathbb{E}(\mathrm{U}) = 0$ as expected.

Since $\mathbb{V}\mathrm{ar}(\mathrm{Y}) = np(1-p)$, the information is

$$\mathcal{I} = \mathbb{V}\mathrm{ar}(\mathrm{U}) = rac{1}{p^2(1-p)^2}\mathbb{V}\mathrm{ar}(\mathrm{Y}) = rac{n}{p(1-p)}$$

and, hence,

$$rac{\mathrm{U}}{\sqrt{\mathcal{I}}} = rac{\mathrm{Y} - np}{\sqrt{np(1-p)}} \stackrel{.}{\sim} \mathcal{N}(0,1)$$

This is known as the *normal approximation to the binomial distribution*.

Taylor approximation

To obtain the asymptotic sampling distributions for various statistics, it is useful to use **Taylor approximations** for generic functions f in a neighbourhood of t

$$f(x)=f(t)+(x-t)\left[rac{df}{dx}
ight]_{x=t}+rac{1}{2}(x-t)^2\left[rac{d^2f}{dx^2}
ight]_{x=t}+\ldots$$

For a log-likelihood, the first three terms are

$$\ell(\theta) = \ell(\tilde{\theta}) + (\theta - \tilde{\theta})U(\tilde{\theta}) - \frac{1}{2}(\theta - \tilde{\theta})^{2}\mathcal{I}(\tilde{\theta})$$
(1.6.6)

where $\tilde{\theta}$ is an estimate of θ and $\mathrm{U}(\tilde{\theta})$ is the score function evaluated at $\theta=\tilde{\theta}$. Note that $U'=\frac{d^2\ell}{d\theta^2}$ is approximated by its expected value $E(U')=-\mathcal{I}$.

For a p-dimensional vector $oldsymbol{ heta}$

$$\ell(\boldsymbol{\theta}) = \ell(\tilde{\boldsymbol{\theta}}) + (\boldsymbol{\theta} - \tilde{\boldsymbol{\theta}})^{\top} \mathbf{u}(\tilde{\boldsymbol{\theta}}) - \frac{1}{2} (\boldsymbol{\theta} - \tilde{\boldsymbol{\theta}})^{\top} \mathcal{I}(\tilde{\boldsymbol{\theta}}) (\boldsymbol{\theta} - \tilde{\boldsymbol{\theta}})$$
(1.6.7)

Similarly, for the **score function** of a one-dimensional parameter θ , the first *two* terms of the Taylor approximation are

$$U(\theta) \approx U(\tilde{\theta}) + (\theta - \tilde{\theta})U'(\tilde{\theta}) = U(\tilde{\theta}) - (\theta - \tilde{\theta})\mathcal{I}(\tilde{\theta})$$
(1.6.8)

and the score function of a p-dimensional parameter $\boldsymbol{\theta}$ becomes

$$\mathbf{u}(\boldsymbol{\theta}) \approx \mathbf{u}(\tilde{\boldsymbol{\theta}}) - \mathcal{I}(\tilde{\boldsymbol{\theta}})(\boldsymbol{\theta} - \tilde{\boldsymbol{\theta}})$$
 (1.6.9)

Sampling distribution of the MLE

Let's define the MLE as $\hat{\boldsymbol{\theta}}$.

By definition, the MLE is the estimator which maximises $\ell(\hat{m{ heta}})$, i.e. $\mathbf{u}(\hat{m{ heta}}) = \mathbf{0}$

$$\mathbf{u}(oldsymbol{ heta}) pprox -\mathcal{I}(\hat{oldsymbol{ heta}})(oldsymbol{ heta} - \hat{oldsymbol{ heta}}) \ -\mathcal{I}(\hat{oldsymbol{ heta}})^{-1} \mathbf{u}(oldsymbol{ heta}) pprox (oldsymbol{ heta} - \hat{oldsymbol{ heta}})$$

Properties:

• consistency: since $\mathbb{E}(\mathbf{u}) = 0$

$$\mathbb{E}(\hat{oldsymbol{ heta}} - oldsymbol{ heta}) = 0 \longrightarrow \mathbb{E}(\hat{oldsymbol{ heta}}) = oldsymbol{ heta}$$
 $\mathbb{E}(\mathbf{u}) = \mathbb{E}(\mathcal{I}(\hat{oldsymbol{ heta}})(\hat{oldsymbol{ heta}} - oldsymbol{ heta}))$
 $\mathbf{0} = \mathcal{I}(\hat{oldsymbol{ heta}})\mathbb{E}(\hat{oldsymbol{ heta}} - oldsymbol{ heta})$
 $\mathcal{I}(\hat{oldsymbol{ heta}})^{-1}\mathbf{0} = \mathbb{E}(\hat{oldsymbol{ heta}} - oldsymbol{ heta})$

• variance-covariance matrix

$$egin{aligned} \mathbb{E}\left[(\hat{oldsymbol{ heta}}-oldsymbol{ heta})(\hat{oldsymbol{ heta}}-oldsymbol{ heta})^{ op}
ight] &= \mathbb{E}[\mathcal{I}^{-1}\mathbf{u}\mathbf{u}^{ op}\mathcal{I}^{-1}] \ &= \mathcal{I}^{-1}\mathbb{E}[\mathbf{u}\mathbf{u}^{ op}]\mathcal{I}^{-1} = \mathcal{I}^{-1} \end{aligned}$$

asymptotic sampling distribution

$$(\hat{oldsymbol{ heta}} - oldsymbol{ heta})^ op \mathcal{I}(\hat{oldsymbol{ heta}})(\hat{oldsymbol{ heta}} - oldsymbol{ heta}) \stackrel{.}{\sim} \chi^2(p)$$

Remarks

- $(\hat{m{ heta}} m{ heta})^ op \mathcal{I}(\hat{m{ heta}})(\hat{m{ heta}} m{ heta})$ is also known as **Wald statistics**
- ullet for one-dimensional parameter, you can write $\hat{ heta} \mathrel{\dot{\sim}} \mathcal{N}(heta, \mathcal{I}^{-1})$
- if the response variable is normally distributed, the results are exact; for other GLM, the results are asymptotic