Advanced techniques

Lecture 6

Changho Suh

January 23, 2024

Hyperparameter search and cross validation

Outline

1. Hyperparameter search

L of layers, # $n^{[\ell]}$ of hidden neurons, activation learning rate, betas, batch size, # T of epochs, regularization factor, dropout rate, ...

2. Cross validation

of layers

Just begin with a **single hidden** layer: L=1

Gradually (linearly) ramp up # of hidden layers.

of layers

Just begin with a **single hidden** layer: L=1

Gradually (linearly) ramp up # of hidden layers.

Stop when overfitting starts.

of layers

When increasing *L*:

How to set the number of hidden neurons for all hidden layers?

For the time being:

Set that number around one half of the number of input neurons:

$$n^{[\ell]} = \frac{n}{2}$$

of hidden neurons

Two approaches:

1. Fewer neurons for deeper layers

2. Same size for all hidden layers:

Linearly increase the size until not overfitting.

Activation functions

A default setup:

Hidden layers: ReLU

Output layer: Softmax for classification

No activation for regression

Optimizer

A default use: Adam

Default parameters: $(\beta_1, \beta_2) = (0.9, 0.999)$

Two approaches for a choice of the learning rate:

- 1. Learning rate decaying
- 2. Fixed (e.g., $\alpha = 0.001$)

How to choose a fixed value of α

Do not use a linear-scale grid search.

Try random values and then do a fine search around the good choices.

Grid scale for the fine search: Log scale

Batch size

A common choice: Power of two.

4, 8, 16, 32, 64, 128, 256

of epochs

Choose according to early stopping:

Regularization factor

Log-scale search:

Dropout rate

A typical choice: p = 0.5

A good range: $0.2 \le p \le 0.8$

Cross validation

Purpose: Obtain reliable validation loss via averaging.

→ Helps avoid overfitting

Example: 4-fold cross validation

→ Compute a validation loss, say val₁

Take the 2nd partition for val:

train val	train	train	test
-----------	-------	-------	------

→ Compute a corresponding loss: val₂

Cross validation

val	train	train	train	test	$lue{}$ val $_1$
train	val	train	train	test	$lue{}$ val $_2$
train	train	val	train	test	val $_3$
train	train	train	val	test	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

Take the average over the 4 losses:

$$val loss = \frac{val_1 + val_2 + val_3 + val_4}{4}$$

Choose a hyperparameter that minimizes the average loss.

A final model w.r.t. the best hyperparameter?

val	train	train	train	test	$oxed{model_1}$
train	val	train	train	test	$oxedge$ model $_2$
train	train	val	train	test	$model_3$
train	train	train	val	test	$model_4$

Which one to take among the four models?

A final model is the one trained based on:

train train train	train	test
-------------------	-------	------

What is next?

One important question:

Can DNNs be specialized?

CNNs: Image data

RNNs: Text/audio data (language) and any sequential data

Outline of Day 3 lectures

Focus on CNNs.

Specifically we will:

- 1. Investigate how CNNs were developed;
- 2. Study the two key building blocks:

Conv layer Pooling layer

3. Discuss popular CNN architectures.