ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский ядерный университет «МИФИ» (НИЯУ МИФИ)

На правах рукописи

Кулагин Владимир Владимирович

Моделирование процессов захвата и десорбции дейтерия в вольфраме при импульсном плазменном и лазерном воздействии

Специальность 1.3.9— «Физика плазмы»

ДИССЕРТАЦИЯ

на соискание учёной степени

кандидата физико-математических наук

Научный руководитель: доктор физико-математических наук, доцент Гаспарян Юрий Микаэлович

Оглавление

			∠тр.
Введени	ie		5
Глава 1.	Обзо	р современного состояния исследований накопления	
	и30Т	опов водорода в материалах ОПЭ	13
1.1	Взаим	одействие плазмы с поверхностью ОПЭ	13
1.2	Mexar	измы накопления изотопов водорода в ТЯУ	13
1.3	Влиян	ше импульсных нагрузок на удержание изотопов водорода в	
	вольф	раме	13
1.4	Подхо	ды к моделированию накопления изотопов водорода	13
1.5	Вывод	цы к Главе <mark>1</mark>	13
Глава 2.	Мет	одика анализа динамики транспорта дейтерия в	
	воль	фраме	14
2.1	Модел	в транспорта изотопов водорода в материалах	14
	2.1.1	Объемные процессы	14
	2.1.2	Поверхностные процессы	15
2.2	Прогр	аммный пакет FESTIM	15
2.3	Реализ	зация нульмерной модели, учитывающей поверхностные	
	проце	ссы, в программном пакете FESTIM	15
	2.3.1	Верификация модели	15
	2.3.2	Валидация модели	15
2.4	Вывод	цы к <mark>Главе 2 </mark>	15
Глава 3.	Захв	ат дейтерия в вольфраме под действием	
	импу	ульсно-периодических плазменных нагрузок	17
3.1	Валид	ация	17
	3.1.1	Детали эксперимента	17
	3.1.2	Расчетная модель	17
	3.1.3	Сравнение результатов моделирования и эксперимента	17
3.2	Модел	пирование накопления дейтерия в вольфраме под действием	
	импул	ъсно-периодических плазменных нагрузок	17

			Cip.
	3.2.1	Постановка задачи	17
	3.2.2	Эволюция температуры	17
	3.2.3	Коэффициент рециклинга	
	3.2.4	Влияние параметров плазменных нагрузок	17
	3.2.5	Влияние параметров центров захвата и скорости	
		рекомбинации на поверхности	17
3.3	Анали	тический анализ	17
	3.3.1	Квазистационарное приближение	17
	3.3.2	Распределение концентрации дейтерия при насыщении	17
	3.3.3	Сравнение аналитического решения с результатами	
		численного расчета	17
3.4	Вывод	цы к Главе <mark>3</mark>	17
Глава 4	. Десо	рбция дейтерия из вольфрама при импульсном	
	лазеј	рном нагреве	19
4.1	Валид	ация	19
	4.1.1	Детали эксперимента	19
	4.1.2	Расчетная модель	19
	4.1.3	Сравнение результатов моделирования и эксперимента	19
4.2	Анали	із состава потока десорбированных частиц	19
	4.2.1	Постановка задачи	19
	4.2.2	Аналитический анализ	19
	4.2.3	Результаты численного моделирования	19
4.3	Анали	із влияния параметров материала на выход дейтерия	19
	4.3.1	Постановка задачи	19
	4.3.2	Влияние теплопроводности материала	19
	4.3.3	Влияние параметров дефектов в вольфраме	19
	4.3.4	Влияние градиента температур	19
	4.3.5	Режимы десорбции во время лазерно-индуцированной	
		десорбции	19
4.4	Вывод	цы к Главе 4	19
Заключ	ение		20

	Cı	гр.
Список сокращений и условных обозначений	•	21
Публикации автора по теме диссертации	•	22
Список литературы		23
Список рисунков		26
Список таблиц		27

Введение

В условиях растущего мирового населения и активной глобальной индустриализации, сопровождаемых повышением объемов потребления электроэнергии, все более актуальной становится необходимость в источниках энергии, способных обеспечить устойчивое и надежное энергоснабжение. Этот вызов требует поиска инновационных решений, которые могли бы существенно изменить существующую парадигму энергетического производства и потребления. Одним из наиболее перспективных направлений формирования новых источников энергии является управляемый термоядерный синтез (УТС), рассматриваемый в качестве «чистой» и безопасной альтернативы подходам, основанным на использовании ископаемых ресурсов. Таким образом, прогресс в области УТС может стать ключевым фактором в развитии энергетических технологий следующего поколения.

За последние десятилетия наибольшие успехи на пути к практической реализации контролируемой реакции УТС были достигнуты в установках с магнитным удержанием горячей плазмы типа токамак. Возможность генерации энергии за счет дейтерий-тритиевой реакции термоядерного синтеза была продемонстрирована на токамаках ТБТК [1] и ЈЕТ [2] еще в конце XX века. Последующая модернизация токамака ЈЕТ и оптимизация методики эксперимента позволила повысить мощность генерируемой энергии и длительность плазменного импульса [3; 4]. На токамаках WEST и EAST были получены рекордные результаты по длительности удержания горячей плазмы (без генерации термоядерной энергии) продолжительностью в 364 с [5] и 1056 с [6], соответственно. Наблюдаемые достижения свидетельствует о перспективности и потенциальной реализуемости УТС за счет удержания термоядерной плазмы в магнитной конфигурации токамака.

В настоящее время идет активная фаза строительства международного экспериментального термоядерного реактора (ИТЭР), спроектированного для практической демонстрации возможности квазистационарного удержания термоядерной DT-плазмы и решения сопутствующих инженерных задач. Введены в эксплуатацию наибольший в России токамак Т15-МД [7] и наибольший в мире токамак JT60-SA [8], расположенный в Японии. Во множестве стран разрабатываются проекты установок следующего поколения для отработки реакторных технологий, в том числе в России ведется активное проектирование токамака с реакторными технологиями (ТРТ) [9]. Помимо этого, растет число частных компаний,

развивающих уникальные подходы и технологии УТС для коммерческих целей. По данным Ассоциации термоядерной промышленности (FIA) [10], более 50% компаний занимаются разработками в области УТС на основе магнитного удержания плазмы, что дополнительно усиливает актуальность направления.

Ввод в эксплуатацию термоядерных реакторов потребует решения целого ряда физических и технологических задач. Одними из наиболее существенных остаются проблемы удержания энергии и частиц, выбора материалов обращенных к плазме элементов (ОПЭ), эффективной организации топливного цикла, а также обеспечения радиационной безопасности. Последний пункт обусловлен планируемым использованием смеси дейтерия и радиоактивного трития в качестве топлива для термоядерных реакторов, что определяет необходимость в понимании процессов накопления и систематическом контроле содержания изотопов водорода в конструкционных элементах.

В первых экспериментах с DT-плазмой на токамаках TFTR и JET наблюдалось чрезмерно большое накопление трития [11], связанное с особенностями взаимодействия изотопов водорода с используемыми на тот момент графитовыми ОПЭ. Последующие результаты, полученные на токамаках с металлической облицовкой (JET [3; 4], ASDEX-Upgrade [12]: бериллиевая первая стенка и вольфрамовый дивертор, EAST [6]: молибденовая первая стенка и вольфрамовый дивертор, WEST [5]: вольфрамовые первая стенка и дивертор), продемонстрировали перспективу в достижении хороших параметров удержания плазмы при одновременном снижении (по сравнению с графитовыми ОПЭ) скорости накопления изотопов водорода. Важно заметить, что вольфрам используется в качестве основного материала наиболее нагруженной области большинства действующих токамаков — дивертора. Как материал ОПЭ, вольфрам характеризуется низким коэффициентом распыления легкими ионами и высокой температуростойкости, что может играть ключевую роль в обеспечении продолжительного срока службы под воздействием интенсивных нейтронных и плазменных потоков [13]. К тому же, Международной организацией ИТЭР было принято решение о переходе к полностью вольфрамовой облицовке [14], а во множестве проектов демонстрационных реакторов вольфрам рассматривается как приоритетный материал ОПЭ [15].

Оценки уровня накопленного трития в ИТЭР [16; 17] с полностью вольфрамовой стенкой показывают, что допустимый уровень содержания не должен быть превышен за период эксплуатации, причем захват в ОПЭ не будет определяющим процессом глобального удержания. Однако при получении данных консер-

вативных оценок не учитывался ряд процессов, протекание которых ожидается во время работы реактора. Одним из таких факторов являются быстрые переходные процессы, как локализованные на периферии неустойчивости (Edge localised modes - ELMs), наблюдаемые в плазменных разрядах с наилучшими параметрами удержанием плазмы в токамаках (Н-мода). Развитие ELM-неустойчивости сопровождается мощными кратковременными плазменными потоками, приходящими на ОПЭ. Длительная импульсно-периодическое воздействие плазменных потоков может влиять как на динамику накопления рабочего газа в ОПЭ, так и на процессы взаимодействия плазмы с их поверхностью.

По всей видимости, единственные эксперименты по имитации воздействия мощных плазменных потоков, соответствующих ELM-событиям, на захват изотопов водорода в вольфраме проводились на линейной установке КСПУ-Т [18]. Полученные результаты свидетельствуют о потенциально большей скорости накопления во время переходных процессов по сравнению со случаем стационарного облучения, характерного для нормальных плазменных разрядов. Тем не менее, параметры облучения в установках такого типа не могут в полной мере воспроизвести условия, соответствующие крупным токамакам типа ИТЭР, что говорит об актуальности дальнейших исследований влияния импульсных плазменных нагрузок на удержание изотопов водорода в ОПЭ.

Схожей задачей является анализ влияния импульсных тепловых нагрузок на выход изотопов водорода из ОПЭ. Данный процесс лежит в основе метода дистанционного контроля содержания изотопов водорода в поверхностном слое материалов за счет лазерно-индуцированной десорбции (ЛИД). Диагностический метод ЛИД заключается в нагреве участка исследуемой поверхности лазерным импульсом с последующим анализом состава вышедшего газа. Применимость ЛИД была продемонстрирована на множестве токамаков (ТЕХТОR [19], ЈЕТ [20], Глобус-М2 [21] и т.д.), а соответствующие диагностические комплексы разрабатываются для токамака ИТЭР и были предложены для российского проекта ТРТ [22]. Ввиду этого, анализ процессов выхода водорода при лазерном нагреве также является актуальным вопросом для определения наиболее эффективных режимов диагностического метода как в действующих плазменных установках, так и в будущих демонстрационных реакторах.

Целью диссертационной работы является выявление закономерностей процессов удержания и выхода дейтерия в вольфраме под действием импульсного плазменного и лазерного воздействия.

Для достижения поставленной цели необходимо было решить следующие **задачи**:

- 1. Разработать и валидировать математическую модель, описывающую транспорт дейтерия в вольфраме под действием импульсных тепловых и плазменных нагрузок.
- 2. Оценить параметры плазменных нагрузок, приходящих на ОПЭ во время ELM-событий в крупных токамаках.
- 3. Исследовать влияние быстрых переходных процессов, соответствующих ELM-событиям в токамаках, на интегральное накопление дейтерия в вольфраме.
- 4. Проанализировать динамику изменения коэффициента рециклинга дейтерия во время быстрых переходных процессов, соответствующих ELM-событиям в токамаках (Заменить чем-то?).
- 5. Оценить влияние поверхностных процессов на выход дейтерия из вольфрама при лазерном нагреве.
- 6. Провести анализ состава потока десорбированного дейтерия с поверхности вольфрама при лазерном нагреве.
- 7. Определить зависимость доли вышедших атомов дейтерия из поверхностных слоев вольфрама от параметров лазерного нагрева и теплофизических свойств материала.

Методология и методы исследования. Достижение поставленной цели и решение сопутствующих задач осуществлялись путем проведения численного моделирования, которое позволяет исследовать влияние импульсных нагрузок в широком диапазоне параметров, обычно недоступном в рамках действующих экспериментальных и лабораторных установок. Результаты численных расчетов были получены методом конечных элементов в свободно распространяемом программном пакете FESTIM, разработанном в международном коллективе при участии автора. Для решения части ресурсоёмких задач были использованы ресурсы высокопроизводительного вычислительного центра Национальный исследовательский ядерный университет «МИФИ». Для демонстрации надежности и корректности использованных моделей проводилась их верификация и валидация путем сравнения с экспериментальными результатами представленными в литературе или полученными в рамках данной диссертационной работы. Построение аналитической модели, описывающей распределение изотопов водорода в вольфраме при наличии градиента температур (эффект Соре) и ловушек водорода,

проводилось путем решения системы дифференциальных уравнений в частных производных методом функции Грина.

Научная новизна:

- 1. Впервые исследовано влияние длительных (1000 c) импульснопериодических плазменных нагрузок, соответствующих ELM-событиям в токамаках, на накопление дейтерия в вольфрамовых ОПЭ.
- 2. Предложена оригинальная аналитическая модель, описывающее распределение содержания водорода в материалах при наличии градиента температур и центров захвата водорода.
- 3. Впервые оценено влияние поверхностных процессов, теплофизических свойств и параметров лазерного импульса на выход дейтерия из поверхностных слоев вольфрама при лазерном нагреве.
- 4. Впервые проведен анализ состава потока дейтерия, десорбированного с поверхности вольфрама при лазерном нагреве.

Научная и практическая значимость заключаются в следующем:

- 1. Результаты численного и теоретического анализа, разработанная аналитическая модель, описывающая содержание водорода в материалах при наличии градиента температур, могут быть использованы при прогнозировании содержания изотопов водорода, накопленных в ОПЭ ТЯУ.
- 2. Результаты численного и теоретического анализа влияния параметров лазерного нагрева и материала на выход изотопов водорода из поверхностных слоев могут быть использованы при разработке и выборе оптимальных параметров диагностического метода контроля содержания изотопов водорода в ОПЭ, основанного на ЛИД. Результаты экспериментов по ЛИД дейтерия из слоев вольфрама, со-осажденных с дейтерием, могут быть использованы для валидации численных моделей.
- 3. Имплементированная в коде FESTIM модель, учитывающая поверхностные процессы, доступна всем пользователям кода и существенно расширяет его область применения. Результаты валидации модели включены в книгу по верификации и валидации кода FESTIM и могут быть использованы для проведения сравнения результатов, полученных с помощью иных кодов.

Основные положения, выносимые на защиту:

1. Одномерная аналитическая модель, описывающая стационарное распределение водорода при учете влияния градиента температур (эффекта Со-

- ре) и центров захвата в приближении мгновенной рекомбинации атомов на обращенной к плазме поверхности и мгновенной рекомбинации или нулевого потока атомов на обратной поверхности и позволяющая прогнозировать предельное накопление изотопов водорода в обращенных к плазме материалах.
- 2. Возникновение импульсно-периодических плазменных нагрузок, соответствующих ЕLM-событиям в токамаках (частота: 10-100 Гц, длительность: ~ 1 мс, плотность энергии: 0.45-0.14 МДж · м $^{-2}$), наряду со стационарными плазменными потоками (плотность мощности: 1-10 МВт · м $^{-2}$) ведет к снижению скорости накопления дейтерия в вольфраме при длительности облучения более 10 с за счет значительного повышения температуры материала относительно случая облучения стационарными потоками плазмы.
- 3. Дополнительный нагрев во время импульсно-периодических плазменных нагрузок, соответствующих ELM-событиям в токамаках, приводит к более быстрому проникновению дейтерия вглубь материала за счет большей подвижности, что может усложнить процесс обезгаживания ОПЭ в ТЯУ.

4. Коэффициент рециклинга

- 5. Атомарная фракции в потоке водорода, десорбированного с поверхности вольфрама, растет с увеличением температуры поверхности и уменьшением потока частиц, выходящих на поверхность. Величина атомарной фракции в потоке десорбированного водорода может достигать $\sim \! \! 1 \, \%$ и $\sim \! \! 10 \, \%$ при импульсном лазерном нагреве с наносекундной и миллисекундной длительностью до температуры плавления вольфрама.
- 6. Поверхностные процессы снижают долю десорбированного водорода с чистой поверхности вольфрама при импульсном лазерном нагреве с длительностью менее 10 мкс.

Достоверность полученных результатов обеспечивается применением общепризнанного численного метода решения систем дифференциальных уравнений в частных производных, имплементированного в верифицированном и валидированном программном пакете FESTIM. Разработанные модели основаны на теориях Макнабба и Фостера, надежность которой была продемонстрирована путем воспроизведения результатов множества лабораторных экспериментов. Помимо этого, использованные модели были валидированы путем сравнения ре-

зультатов численных расчетов с экспериментальными данными, приведенными в литературе или полученными в рамках данной диссертационной работы. Полученные результаты демонстрируют качественное и количественное согласие с литературными данными, полученными независимыми авторами на основе моделирования или экспериментального анализа.

Апробация работы. Основные результаты работы докладывались и обсуждались на российских и международных конференциях:

- XXV, XXVI, XXVII, XXVIII конференции «Взаимодействие плазмы с поверхностью» (Москва, 2022 2025 гг.)
- Пятнадцатая международная школа молодых ученых и специалистов им.
 А. А. Курдюмова (Окуловка, 2022 г.)
- 26th International Conference on Plasma Surface Interaction in Controlled Fusion Devices (PSI-26, Marseille, France, 2024 г.)
- 1st Open Source Software for Fusion Energy Conference (OSSFE, 2025 г.) Полученные результаты также представлялись и обсуждались на собраниях разработчиков программного пакета FESTIM.

Личный вклад. Все результаты, выносимые на защиту, были получены автором или при его непосредственном участии. Лично автором были разработаны численные и аналитические модели, использованные для исследования процессов накопления и выхода дейтерия из вольфрама под действием импульсных плазменных и лазерных нагрузок, проведены моделирование и обработка полученных результатов. Постановка задач, выбор входных параметров для моделирования и анализ полученных результатов обсуждались с непосредственным научным руководителем д.ф.-м.н. Ю.М. Гаспаряном. Имплементация модели, учитывающей поверхностные процессы, в коде FESTIM проводилась совместно с главным разработчиком кода Ph.D. Р. Делапорте-Матюран (Массачусетский технологический институт, США) при определяющем участии автора, реализовавшим модель и осуществившим ее верификацию и валидацию. Эксперименты по ЛИД дейтерия из пленок вольфрама, со-осажденных вместе с дейтерием, были проведены коллективом ФТИ им. А.Ф. Иоффе в лице ... при непосредственном участии автора в постановке экспериментов, обработке результатов измерений и проведении сравнения с модельными данными.

Публикации. Основные результаты по теме диссертации изложены в 6 печатных изданиях, 1 из которых издано в журналах, рекомендованных ВАК, 5—в периодических научных журналах, индексируемых Web of Science и Scopus.

Объем и структура работы. Диссертация состоит из введения, 4 глав, заключения и 0 приложен. Полный объём диссертации составляет 27 страниц, включая 0 рисунков и 0 таблиц. Список литературы содержит 22 наименования.

Глава 1. Обзор современного состояния исследований накопления изотопов водорода в материалах ОПЭ

- 1.1 Взаимодействие плазмы с поверхностью ОПЭ
- 1.2 Механизмы накопления изотопов водорода в ТЯУ
- 1.3 Влияние импульсных нагрузок на удержание изотопов водорода в вольфраме
 - 1.4 Подходы к моделированию накопления изотопов водорода
 - 1.5 Выводы к Главе 1

Для теста [А1]

Глава 2. Методика анализа динамики транспорта дейтерия в вольфраме

2.1 Модель транспорта изотопов водорода в материалах

2.1.1 Объемные процессы

Транспорт водорода

$$\frac{\partial c_{\rm m}}{\partial t} = \nabla \cdot (D \nabla c_{\rm m}) - \sum_{i} \frac{\partial c_{{\rm t},i}}{\partial t} + \sum_{j} S_{j}, \tag{2.1a}$$

$$\frac{\partial c_{t,i}}{\partial t} = k_i c_m (n_i - c_{t,i}) - p_i c_{t,i}, \tag{2.16}$$

Уравнения (2.1a) и (2.1б) в системе (2.1)

Перенос тепла

$$C\rho \frac{\partial T}{\partial t} = \nabla \cdot (\kappa \nabla T) + \sum_{i} Q_{i}$$
 (2.2)

2.1.2 Поверхностные процессы

2.2 Программный пакет FESTIM

- 2.3 Реализация нульмерной модели, учитывающей поверхностные процессы, в программном пакете FESTIM
 - 2.3.1 Верификация модели
 - 2.3.2 Валидация модели

Эксперимент по абсорбция протия в титане

Эксперимент по адсорбция дейтерия на поверхности оксидированного вольфрама

Эксперимент по облучению вольфрама низкоэнергетичными атомами дейтерия

Эксперимент по облучению стали EUROFER ионами дейтерия

2.4 Выводы к Главе 2

Глава 3. Захват дейтерия в вольфраме под действием импульсно-периодических плазменных нагрузок

3.1	Валидация

3.	1	.1	Д	[ета.	ΠИ	ЭКС	пер	рим	ента	l
----	---	----	---	-------	----	-----	-----	-----	------	---

3.1.2 Расчетная модель

- 3.1.3 Сравнение результатов моделирования и эксперимента
- 3.2 Моделирование накопления дейтерия в вольфраме под действием импульсно-периодических плазменных нагрузок
 - 3.2.1 Постановка задачи
 - 3.2.2 Эволюция температуры
 - 3.2.3 Коэффициент рециклинга
 - 3.2.4 Влияние параметров плазменных нагрузок
- 3.2.5 Влияние параметров центров захвата и скорости рекомбинации на поверхности

3.3 Аналитический анализ

Глава 4. Десорбция дейтерия из вольфрама при импульсном лазерном нагреве

4.1	Валидация

4.1.1 Детали эксперимента

4.1.2 Расчетная модель

4.1.3 Сравнение результатов моделирования и эксперимента

4.2 Анализ состава потока десорбированных частиц

4.2.1 Постановка задачи

4.2.2 Аналитический анализ

4.2.3 Результаты численного моделирования

4.3 Анализ влияния параметров материала на выход дейтерия

4.3.1 Постановка задачи

4.3.2 Влияние теплопроводности материала

4.3.3 Влияние параметров дефектов в вольфраме

Заключение

Основные результаты работы заключаются в следующем.

- 1. На основе анализа ...
- 2. Численные исследования показали, что ...
- 3. Математическое моделирование показало ...
- 4. Для выполнения поставленных задач был создан ...

И какая-нибудь заключающая фраза.

Последний параграф может включать благодарности. В заключение автор выражает благодарность и большую признательность научному руководителю Иванову И. И. за поддержку, помощь, обсуждение результатов и научное руководство. Также автор благодарит Сидорова А. А. и Петрова Б. Б. за помощь в работе с образцами, Рабиновича В. В. за предоставленные образцы и обсуждение результатов, Занудятину Г. Г. и авторов шаблона *Russian-Phd-LaTeX-Dissertation-Тетрlate* за помощь в оформлении диссертации. Автор также благодарит много разных людей и всех, кто сделал настоящую работу автора возможной.

Список сокращений и условных обозначений

Аббревиатуры

УТС Управляемый термоядерный синтез

ИТЭР Международный экспериментынй термоядерный реактор

ОПЭ Обращенные к плазме элементы

ЛИД Лазерно-инудуцированная десорбция

Публикации автора по теме диссертации

А1. *Кулагин*, *В. В.* Аналитическая оценка соотношения потоков атомарного и молекулярного водорода с поверхности вольфрама / В. В. Кулагин, А. Ю. Хомяков, Ю. М. Гаспарян // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. — 2022. — Окт. — Т. 16, вып. 5. — С. 909—913. — DOI: 10.31857/S1028096022100090.

Список литературы

- Plasma wall interaction and tritium retention in TFTR / C. Skinner [et al.] // Journal of Nuclear Materials. 1997. Feb. Vol. 241—243. P. 214—226. DOI: 10.1016/S0022-3115(97)80041-4.
- 2. *Keilhacker*, *M*. D–T experiments in the JET tokamak / M. Keilhacker, M. L. Watkins // Journal of Nuclear Materials. 1999. Mar. Vol. 266—269. P. 1—13. DOI: 10.1016/S0022-3115(98)00811-3.
- 3. Overview of T and D–T results in JET with ITER-like wall / C. Maggi [et al.] // Nuclear Fusion. 2024. Aug. Vol. 64, issue 11. P. 112012. DOI: 10. 1088/1741-4326/AD3E16.
- 4. Overview of the third JET deuterium-tritium campaign / A. Kappatou [et al.] // Plasma Physics and Controlled Fusion. 2025. Apr. Vol. 67, issue 4. P. 045039. DOI: 10.1088/1361-6587/ADBD75.
- 5. WEST L-mode record long pulses guided by predictions using Integrated Modeling / B. Shi [et al.] // Nuclear Fusion. 2025. Apr. Vol. 65, issue 5. P. 056018. DOI: 10.1088/1741-4326/ADC7C7.
- 6. Overview of recent experimental results on the EAST Tokamak / Y. Song [et al.] // Nuclear Fusion. 2024. Aug. Vol. 64, issue 11. P. 112013. DOI: 10. 1088/1741-4326/AD4270.
- 7. First Experimental Results on the T-15MD Tokamak / E. P. Velikhov [et al.] // Physics of Atomic Nuclei. 2024. Dec. Vol. 87, Suppl 1. S1—S9. DOI: 10.1134/S1063778824130283/FIGURES/12.
- 8. Recent progress of JT-60SA project toward plasma operation / H. Shirai [et al.] // Nuclear Fusion. 2024. Sept. Vol. 64, issue 11. P. 112008. DOI: 10. 1088/1741-4326/AD34E4.
- 9. Токамак с реакторными технологиями (TRT): концепция, миссии, основные особенности и ожидаемые характеристики / А. В. Красильников [et al.] // Физика плазмы. 2021. Vol. 47, issue 11. P. 970—985. DOI: 10.31857/ S0367292121110196.

- 10. The global fusion industry in 2024: tech. rep. / Fusion Industry Association. 2024. URL: https://www.fusionindustryassociation.org/wp-content/uploads/ 2024/07/2024-annual-global-fusion-industry-report.pdf.
- 11. *Гаспарян*, *Ю*. Влияние выбора материала облицовки стенок термоядерных установок на накопление изотопов водорода / Ю. Гаспарян, С. Крат // ВАНТ. Сер. Термоядерный синтез. 2024. Т. 45, вып. 47. С. 5—14. DOI: 10.21517/0202-3822-2024-47-1-5-14.
- 12. *Rohde*, *V.* Gas balance in ASDEX Upgrade with tungsten first wall / V. Rohde, V. Mertens, A. Scarabosio // Journal of Nuclear Materials. 2009. June. Vol. 390/391, issue 1. P. 474—477. DOI: 10.1016/J.JNUCMAT.2009.01. 047.
- 13. Tungsten: an option for divertor and main chamber plasma facing components in future fusion devices / R. Neu [et al.] // Nuclear Fusion. 2005. Feb. Vol. 45, issue 3. P. 209. DOI: 10.1088/0029-5515/45/3/007. URL: https://iopscience.iop.org/article/10.1088/0029-5515/45/3/007/meta.
- 14. ITER progresses into new baseline / P. Barabaschi [et al.] // Fusion Engineering and Design. 2025. June. Vol. 215. P. 114990. DOI: 10.1016/J. FUSENGDES.2025.114990.
- 15. Issues and strategies for DEMO in-vessel component integration / C. Bachmann [et al.] // Fusion Engineering and Design. 2016. Nov. Vol. 112. P. 527—534. DOI: 10.1016/J.FUSENGDES.2016.05.040.
- 16. Recent analysis of key plasma wall interactions issues for ITER / J. Roth [et al.] // J. Nucl. Mater. 2009. Jan. Vol. 390/391. P. 1—9. DOI: 10.1016/j. jnucmat.2009.01.037.
- 17. Plasma-wall interaction impact of the ITER re-baseline / R. A. Pitts [et al.] // Nuclear Materials and Energy. 2025. Mar. Vol. 42. P. 101854. DOI: 10.1016/J.NME.2024.101854.
- 18. Deuterium and helium retention in W with and without He-induced W 'fuzz' exposed to pulsed high-temperature deuterium plasma / O. Ogorodnikova [et al.] // J. Nucl. Mater. 2019. Mar. Vol. 515. P. 150—159. DOI: 10.1016/j. jnucmat.2018.12.023.

- 19. In situ detection of hydrogen retention in TEXTOR by laser induced desorption / B. Schweer [et al.] // Journal of Nuclear Materials. 2009. June. Vol. 390/ 391, issue 1. P. 576—580. DOI: 10.1016/J.JNUCMAT.2009.01.108.
- 20. First results of laser-induced desorption quadrupole mass spectrometry (LID-QMS) at JET / M. Zlobinski [et al.] // Nuclear Fusion. 2024. June. Vol. 64, issue 8. P. 086031. DOI: 10.1088/1741-4326/AD52A5.
- 21. LIA-QMS method for the quantity analysis of the hydrogen isotopes retention in first-wall components of Globus-M2 tokamak / O. S. Medvedev [et al.] // Nuclear Materials and Energy. 2024. Dec. Vol. 41. P. 101829. DOI: 10.1016/J.NME.2024.101829.
- 22. Diagnostics Complex of the First Wall and Divertor of Tokamak with Reactor Technologies: Control of Erosion and Temperature and Monitoring of Fusion Fuel Build-up / A. G. Razdobarin [et al.] // Plasma Phys. Reports. 2022. Dec. Vol. 48, no. 12. P. 1389—1403. DOI: 10.1134/S1063780X22700283.

Список рисунков

Список таблиц