Unsupervised Learning Methods Problem Set II – PCA and KPCA

Due: 24.05.2021

Guidelines

- Answer all questions (PDF + Jupyter notebook).
- You must type your solution manual (handwriting is not allowed).
- Submission in pairs (use the forum if needed).
- You may submit the entire solution in a single ipynb file (or in PDF + ipynb files).
- You may (and should) use the forum if you have any questions.
- Good luck!

1 PCA

1.1 Eigendecomposition

Trace

• Let $A \in \mathbb{R}^{d \times d}$ be a diagonalizable matrix, that is, $A = V \Lambda V^{-1}$ where Λ is a diagonal matrix.

1.1.1

Prove that:

$$\operatorname{Tr}\left\{oldsymbol{A}
ight\} = \sum_{i=1}^{d} \lambda_{i}\left(oldsymbol{A}
ight)$$

where $\lambda_{i}\left(\boldsymbol{A}\right)=\boldsymbol{\Lambda}\left[i,i\right]$ is the *i*th eigenvalue of \boldsymbol{A} .

Similarity

• Two (square) matrices $\boldsymbol{A} \in \mathbb{R}^{d \times d}$ and $\boldsymbol{B} \in \mathbb{R}^{d \times d}$ are called similar, namely, $\boldsymbol{A} \sim \boldsymbol{B}$, if exists an (invertible) matrix $\boldsymbol{P} \in \mathbb{R}^{d \times d}$ such that:

$$\boldsymbol{B} = \boldsymbol{P} \boldsymbol{A} \boldsymbol{P}^{-1}$$

1.1.2

Prove that if A is diagonalizable and $A \sim B$, then, A and B share the same set of eigenvalues, namely:

$$oldsymbol{A} \sim oldsymbol{B} \implies \{\lambda_i\left(oldsymbol{A}
ight)\}_{i=1}^d = \{\lambda_i\left(oldsymbol{B}
ight)\}_{i=1}^d$$

SPD matrices

A symmetric matrix $\mathbf{A} = \mathbf{A}^T$ is an Symmetric Positive Definite (SPD), namely $\mathbf{A} \succ 0$ if either:

- 1. $\lambda_i(\mathbf{A}) > 0$ for all i.
- 2. $\mathbf{v}^T \mathbf{A} \mathbf{v} > 0$ for all $\mathbf{v} \neq \mathbf{0}$.

1.1.3

Prove that the two conditions are equivalent, that is:

$$\lambda_i(\mathbf{A}) > 0 \iff \mathbf{v}^T \mathbf{A} \mathbf{v} > 0 \quad \forall \mathbf{v} \neq \mathbf{0}$$

1.2 PCA

Full PCA

- Consider the data $\mathcal{X} = \left\{ \boldsymbol{x}_i \in \mathbb{R}^D \right\}_{i=1}^N$ with mean $\boldsymbol{\mu}_x \in \mathbb{R}^D$ and covariance $\boldsymbol{\Sigma}_x \in \mathbb{R}^{D \times D}$.
- Let $\Sigma_x = U \Lambda U^T$ be the eigendecomposition of Σ_x .
- Let $\boldsymbol{z}_i = \boldsymbol{U}^T \left(\boldsymbol{x}_i \boldsymbol{\mu}_r \right)$

1.2.1

Prove that:

- 1. The mean of $\mathcal{Z} = \{z_i\}_{i=1}^N$ is zero, that is, $\mu_z = \frac{1}{N} \sum_{i=1}^N z_i = 0$.
- 2. The covariance of \mathcal{Z} is diagonal, that is Σ_z is diagonal.
- 3. $\|\boldsymbol{x}_i \boldsymbol{x}_j\|_2 = \|\boldsymbol{z}_i \boldsymbol{z}_j\|_2$ for all i and j.

Geometric PCA

• Let $\boldsymbol{U}_d \in \mathbb{R}^{D \times d}$ be a full rank matrix (with $d \leq D$).

1.2.2

Show that exists an invertible matrix $M \in \mathbb{R}^{d \times d}$ such that $O = U_d M \in \mathbb{R}^{D \times d}$ is semi-orthogonal, that is:

$$\boldsymbol{O}^T \boldsymbol{O} = \boldsymbol{I}_d$$

- Consider the data $X \in \mathbb{R}^{D \times N}$ with zero mean $X \mathbf{1}_N = \mathbf{0} \in \mathbb{R}^D$ and covariance $\Sigma_x = \frac{1}{N} X X^T \in \mathbb{R}^{D \times D}$.
- Consider the following optimization problems:
- 1. Reconstruction error minimization:

$$\begin{cases} \arg\min_{\boldsymbol{U}_d \in \mathbb{R}^{D \times d}} \left\| \boldsymbol{X} - \boldsymbol{U}_d \boldsymbol{U}_d^T \boldsymbol{X} \right\|_F^2 \\ \text{s.t. } \boldsymbol{U}_d^T \boldsymbol{U}_d = \boldsymbol{I}_d \end{cases}$$

2. Variance maximization:

$$\begin{cases} \arg \max_{\boldsymbol{U}_d \in \mathbb{R}^{D \times d}} \operatorname{Tr} \left\{ \boldsymbol{U}_d^T \boldsymbol{\Sigma}_x \boldsymbol{U}_d \right\} \\ \text{s.t. } \boldsymbol{U}_d^T \boldsymbol{U}_d = \boldsymbol{I}_d \end{cases}$$

1.2.3

Prove that both problems have the same optimal solution \boldsymbol{U}_d^{\star} .

PCA analysis

- Consider the data $\{\boldsymbol{x}_i \in \mathbb{R}^D\}_{i=1}^N$ with mean $\boldsymbol{\mu}_x \in \mathbb{R}^D$ and covariance $\boldsymbol{\Sigma}_x \in \mathbb{R}^{D \times D}$.
- Let $m{U}_d \in \mathbb{R}^{D \times d}$ be a semi-orthogonal matrix, that is, $m{U}_d^T m{U}_d = m{I}_d$
- Let $\boldsymbol{z}_i = \boldsymbol{U}_d^T \left(\boldsymbol{x}_i \boldsymbol{\mu}_x \right) \in \mathbb{R}^d$.
- Let $\hat{\boldsymbol{x}}_i = \boldsymbol{U}_d \boldsymbol{z}_i + \boldsymbol{\mu}_x \in \mathbb{R}^D$
- Let $\boldsymbol{\epsilon}_i = \boldsymbol{x}_i \hat{\boldsymbol{x}}_i \in \mathbb{R}^D$

1.2.4

Prove that:

$$\operatorname{Tr}\left\{\mathbf{\Sigma}_{x}\right\} = \operatorname{Tr}\left\{\mathbf{\Sigma}_{z}\right\} + \operatorname{Tr}\left\{\mathbf{\Sigma}_{\epsilon}\right\}$$

where:

- $\Sigma_z \in \mathbb{R}^{d \times d}$ is the covariance of $\{z_i\}_{i=1}^N$.
- $\Sigma_{\epsilon} \in \mathbb{R}^{D \times D}$ is the covariance of $\{\epsilon_i\}_{i=1}^N$.

1.2.5

- Let $U_d \in \mathbb{R}^{D \times d}$ be the top d eigenvectors corresponding to the d largest eigenvalues of Σ_x .
- Show that:

$$\operatorname{Tr}\left\{\mathbf{\Sigma}_{\epsilon}\right\} = \sum_{i=d+1}^{D} \lambda_{i}\left(\mathbf{\Sigma}_{x}\right)$$

where we assume $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_D$

High-dimensional data PCA

• Consider the data $X \in \mathbb{R}^{D \times N}$ where D > N.

1.2.6

- Provide a (tight) upper bound on the number of non-zero eigenvalues.
- Consequently, can you apply PCA to $X \in \mathbb{R}^{D \times N}$ to obtain $Z \in \mathbb{R}^{d \times N}$ with d < D such that there is no loss of information? Explain your answer.

Rank minimization

- Let $\mathbf{A} \in \mathbb{R}^{D \times N}$.
- Consider the following rank minimization problem:

$$\begin{cases} \min_{\boldsymbol{M} \in \mathbb{R}^{D \times N}} \|\boldsymbol{A} - \boldsymbol{M}\|_F^2 \\ \text{s.t. rank} (\boldsymbol{M}) \leq d \end{cases}$$

1.2.7

- Solve the optimization problem.
- Write your final solution using the (truncated) matrices obtained by the SVD decomposition of A, namely, $A = U\Sigma V^T$

Hints:

- 1. Any matrix $M \in \mathbb{R}^{D \times N}$ with rank (M) = d can be written as M = BC where:
 - (a) $\boldsymbol{B} \in \mathbb{R}^{D \times d}$
 - (b) $\boldsymbol{C} \in \mathbb{R}^{d \times N}$

use this result to formulate (and solve) an equivalent unconstrained problem.

2. There is a strong connection to PCA.

1.3 Implementation and applications

Solve this section in the attached notebook.

2 KPCA

2.1

Centering matrix

• Let $J = I - \frac{1}{N} \mathbf{1} \mathbf{1}^T \in \mathbb{R}^{N \times N}$ be the centering matrix.

2.1.1

Prove that J is idempotent, that is, $J^2 = J$.

In words, after applying centering once, the second centering has no effect.

Kernel matrix

• Let $\boldsymbol{X} \in \mathbb{R}^{D \times N}$ and let:

$$oldsymbol{\Sigma}_x := oldsymbol{X} oldsymbol{X}^T$$

$$\boldsymbol{K}_x := \boldsymbol{X}^T \boldsymbol{X}$$

Let $(\boldsymbol{u}_i, \lambda_i)$ be an eigen pair of Σ_x such that $\Sigma_x \boldsymbol{u}_i = \lambda_i \boldsymbol{u}_i$ with $\lambda_i > 0$.

2.1.2

- 1. Show that λ_i is an eigenvalue of \boldsymbol{K}_x as well.
- 2. Find its corresponding eigenvector such that $\mathbf{K}_x \mathbf{w}_i = \lambda_i \mathbf{w}_i$.

Kernel functions

• Let $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ and consider $\left\{ \boldsymbol{x}_i \in \mathbb{R}^d \right\}_{i=1}^N$.

2.1.3

Show that if k can be written as an inner product, that is

$$k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) = \left\langle \phi\left(\boldsymbol{x}_{i}\right), \phi\left(\boldsymbol{x}_{j}\right) \right\rangle$$

for some ϕ , then, the matrix defined by:

$$\boldsymbol{K}_{x}\left[i,j\right]=k\left(\boldsymbol{x}_{i},\boldsymbol{x}_{j}\right)$$

is an SPSD matrix, namely, $\mathbf{K}_x \succeq 0$.

 \bullet Let \boldsymbol{A} be an SPD matrix, and let:

$$k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) = \boldsymbol{x}_{i}^{T} \boldsymbol{A} \boldsymbol{x}_{j}$$

2.1.4

Prove or disprove:

k is a kernel function.

ullet Let $oldsymbol{x}_i, oldsymbol{x}_j \in \mathbb{R}^d$ and consider:

$$k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) = \left(1 + \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}\right)^{2}$$

Prove or disprove:

k is a kernel function.

• Consider $\left\{ \boldsymbol{x}_i \in \mathbb{R}^d \right\}_{i=1}^N$, and consider the kernel:

$$k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) := \left\langle \phi\left(\boldsymbol{x}_{i}\right), \phi\left(\boldsymbol{x}_{j}\right) \right\rangle$$

for some ϕ .

• Let:

$$\tilde{k}\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i}\right) := \left\langle \phi\left(\boldsymbol{x}_{i}\right) - \boldsymbol{\mu}_{\phi}, \phi\left(\boldsymbol{x}_{i}\right) - \boldsymbol{\mu}_{\phi} \right\rangle$$

be the centered version, where:

$$oldsymbol{\mu}_{\phi} = rac{1}{N} \sum_{i=1}^{N} \phi\left(oldsymbol{x}_{i}
ight)$$

2.1.5

Show that \tilde{k} can be written using only k, and without using ϕ and μ_{ϕ} explicitly.

• Let $\mathbf{K}_x \in \mathbb{R}^{N \times N}$ be a kernel matrix, that is:

$$\boldsymbol{K}_{x}\left[i,j\right]=k\left(\boldsymbol{x}_{i},\boldsymbol{x}_{j}\right)$$

for some kernel function k.

• Let $\widetilde{\boldsymbol{K}}_x$ be the centered version, that is:

$$\widetilde{m{K}}_x = m{J}m{K}_xm{J}$$

where $\boldsymbol{J} = \boldsymbol{I} - \frac{1}{N} \mathbf{1} \mathbf{1}^T$.

2.1.6

Prove or disprove:

 $\widetilde{\boldsymbol{K}}_x$ is an SPD matrix.

Out of sample extension

- Let K_x be the kernel matrix obtained from the training set $\mathcal{X} = \left\{ \boldsymbol{x}_i \in \mathbb{R}^D \right\}_{i=1}^N$.
- Let $Z \in \mathbb{R}^{d \times N}$ be the low-dimensional representation obtained by applying KPCA, that is:

$$oldsymbol{Z} = oldsymbol{\Sigma}_d oldsymbol{V}_d^T$$

where $\boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{V}^T = \boldsymbol{J}\boldsymbol{K}_x\boldsymbol{J}$ is an eigendecomposition (see lecture notes).

• Let $\boldsymbol{X}^{\star} \in \mathbb{R}^{D \times N^{\star}}$ be a set of new unseen data-points.

2.1.7

Write an expression (in a matrix form) for $\mathbf{Z}^{\star} \in \mathbb{R}^{d \times N^{\star}}$, the KPCA out of sample extension applied to \mathbf{X}^{\star} .

- Let $\mathcal{X}^{\star} = \{\boldsymbol{x}_{i}^{\star}\}_{i=1}^{N^{\star}} \subseteq \mathcal{X}$ be a subset of the training set \mathcal{X} .
- Let $\mathbf{X}^* \in \mathbb{R}^{D \times N^*}$ be the matrix from of \mathcal{X}^* .
- Let $\mathbf{Z}^* \in \mathbb{R}^{d \times N}$ be the low-dimensional representation obtained by the training encoding.

2.1.8

Prove that the out of sample encoding applied to X^* coincide with the training encoding Z^* .

2.2 Implementation and applications

Solve this section in the attached notebook.

