ECE 65: Components & Circuits Lab

Lecture 12

BJT Transfer function

Reference notes: sections 3.2

Sedra & Smith (7th Ed): sections 6.1,6.4

Saharnaz Baghdadchi

Course map

3. Bipolar Junction Transistor (BJT)

Discussion question: BJT Transfer Function

how would the output $v_o = v_{CE}$ change in terms of v_i ?

BE KVL:
$$v_i = R_B i_B + v_{BE}$$

CE KVL:
$$V_{CC} = R_C i_C + v_{CE}$$

$$l_{\mathcal{B}}^{\circ} = 0$$
, $V_{\mathcal{B}} \in \langle V_{D0} \rangle$, $l_{\mathcal{C}} = 0$, $l_{\mathcal{E}} = 0$

$$V_{CC} = R_{C} \times 0 + V_{O} \longrightarrow V_{O} = V_{CC}$$

$$i_{B} = \frac{v_{i} - v_{BE}}{\kappa_{B}} = \frac{v_{i} - v_{Do}}{\kappa_{B}},$$

$$i_{c} = \frac{1}{\kappa_{o}} \left(v_{i} - v_{o} \right), \quad v_{cE} = v_{cc} - \frac{1}{\kappa_{o}} \left(v_{i} - v_{o} \right)$$

$$V_{CE} > V_{D_0} \longrightarrow V_i \leq V_{D_0} + \frac{V_{CC} - V_{D_0}}{\sqrt{R_C R_C}}$$

$$V_{o} = \left(V_{cc} + \frac{\beta R_{c}}{R_{B}} V_{o}\right) - \frac{\beta R_{c}}{R_{B}} V_{c}$$

Core 3: BJT is in saturation.

$$V_{BE} = V_{D_0}$$
, $C_{C_0} = V_{Sat}$

$$C_{B} = V_{C_0} - V_{BE}$$

$$C_{B} = V_{C_0} - V_{BE}$$

$$V_{CE} = V_{CC} - R_{cic}$$
, $i_{C} = \frac{V_{CC} - V_{sat}}{R_{C}}$

$$V_{BE} = V_{D_{0}}, \quad V_{CE} = V_{Sat}$$

$$V_{CC} = V_{CC} - R_{CiC}, \quad V_{CC} = V_{CC} - V_{Sat}$$

$$V_{CE} = V_{CC} - R_{CiC}, \quad V_{CC} = V_{CC} - V_{Sat}$$

$$V_{CE} = V_{CC} - R_{CiC}, \quad V_{CC} = V_{CC} - V_{Sat}$$

$$V_{CC} = V_{CC} - V_{CiC}, \quad V_{CC} = V_{CC} - V_{Sat}$$

$$V_{CC} = V_{CC} - V_{CiC}, \quad V_{CC} = V_{CC} - V_{Sat}$$

$$V_{CC} = V_{CC} - V_{CiC}, \quad V_{CC} = V_{CC} - V_{CiC}$$

$$V_{CE} = V_{CC} - V_{CiC}, \quad V_{CC} = V_{CC} - V_{CiC}$$

$$V_{CE} = V_{CC} - V_{CiC}, \quad V_{CC} = V_{CiC} - V_{CiC}$$

For
$$V_i > V_{00} + \frac{V_{cc} - V_{sat}}{SRc/Rs}$$
, BJT is in Saturation
$$V_0 = V_{sat}$$

BJT transfer function on the load line

QV

Saturation : $V_{IH} < v_i$

 i_B increases but i_C unchanged

Load Line (CE - KVL)

Active: $V_{D0} \le v_i \le V_{IH}$

 $i_B \& i_C$ increase together

Cut – off: $v_i < V_{D0}$

BJT β varies substantially

Transistor β depends on many factors:

- Strongly depends on temperature (9% increase per °C)
- \circ Depends on i_C (not constant as assumed in the model)
- \circ β of similarly manufactured BJT can vary (manufacturer spec sheet typically gives a range as well as an average value for β)
- \bigcirc β_{min} is an important parameter. For example, to ensure operation in deep saturation for all similar model BJTs, we need to set i_C $/i_B$ < β_{min}

Lecture 12 reading quiz

A few measurements on the below circuit produces the labeled voltages.

Find the value of β (Assume $V_{D0}=0.7V$).

$$V_{EB} = V_{E} - V_{B} = 5V - 4.3V = 0.7V \longrightarrow BJT \text{ is on}$$

$$V_{EC} = V_{E} - V_{C} = 5V - 3V = 2V > 0.7$$

$$BJT \text{ is in active mode}$$

$$\downarrow_{C} = V_{C} = 5V - 3V = 2V > 0.7$$

$$\downarrow_{C} = V_{C} = 5V - 3V = 2V > 0.7$$

$$\downarrow_{C} = V_{C} = 5V - 3V = 2V > 0.7$$

$$\downarrow_{C} = V_{C} = 5V - 3V = 2V > 0.7$$

$$\downarrow_{C} = V_{C} = 5V - 3V = 2V > 0.7$$

$$\downarrow_{C} = V_{C} = 5V - 3V = 2V > 0.7$$

$$\downarrow_{C} = V_{C} = 5V - 3V = 2V > 0.7$$

$$\downarrow_{C} = V_{C} = V_{C} = 5V - 3V = 2V > 0.7$$

$$\downarrow_{C} = V_{C} = V_{C} = 5V - 3V = 2V > 0.7$$

$$\downarrow_{C} = V_{C} = V_{C} = 5V - 3V = 2V > 0.7$$

$$\downarrow_{C} = V_{C} = V_{C} = 5V - 3V = 2V > 0.7$$

$$\downarrow_{C} = V_{C} = V_{C} = 5V - 3V = 2V > 0.7$$

$$\downarrow_{C} = V_{C} = V_{C} = 5V - 3V = 2V > 0.7$$

$$\downarrow_{C} = V_{C} = V_{C} = 5V - 3V = 2V > 0.7$$

$$\downarrow_{C} = V_{C} = V_{C} = 5V - 3V = 2V > 0.7$$

$$\downarrow_{C} = V_{C} = V_{C} = 5V - 3V = 2V > 0.7$$

$$\downarrow_{C} = V_{C} = V_{C} = 5V - 3V = 2V > 0.7$$

$$\downarrow_{C} = V_{C} = V_{C} = 5V - 3V = 2V > 0.7$$

$$\downarrow_{C} = V_{C} = V_{C} = 5V - 3V = 2V > 0.7$$

$$\downarrow_{C} = V_{C} = V_{C} = V_{C} = 5V - 3V = 2V > 0.7$$

$$\downarrow_{C} = V_{C} = V_{C} = V_{C} = 5V - 3V = 2V > 0.7$$

$$\downarrow_{C} = V_{C} = V_{C}$$

Discussion question 2.

Using $\beta=\infty$, design the following circuit so that the transistors operate in the active region and the collector currents in Q_1 , Q_2 , and Q_3 are 2 mA, 2 mA, and 4 mA, respectively, and $V_3=0$, $V_5=-4V$, and $V_7=2V$.

$$\frac{5V - 0V}{R_2} = 2 MA \longrightarrow R_2 = 2.5 K \Lambda$$

$$R_1 = \frac{V_2 - (-5)}{2 m A} = \frac{-0.7 + 5}{2 m A} \longrightarrow R_1 = 2.15 k R$$

$$R_4 = \frac{V_5 - (-5V)}{2mA} = \frac{-4V + 5V}{2mA} \rightarrow R_4 = 0.5kn$$

$$Q_2$$
 is on $\longrightarrow V_{\in \mathcal{B}_2} = V_{\in 2} - V_{\mathcal{B}_2} = 0.7V \longrightarrow V_4 = 0.7V + 0 \longrightarrow V_4 = 0.7V$

$$\Lambda = \omega \longrightarrow i_{C_2} = i_{E_2} = 2 \text{ m } A$$

$$R_3 = \frac{5V - V_4}{2mA} = \frac{5V - 0.7}{2mA} = \frac{4.3V}{2mA} \longrightarrow R_3 = 2.15 kn$$

$$R_5 = \frac{5V - V_7}{4_m A} = \frac{5V - 2V}{4_m A} \longrightarrow R_5 = 0.75 \text{ kg}$$

$$Q_3$$
 is $6N \longrightarrow V_{BE_3} = V_5 - V_6 = 0.7 V$

$$\rightarrow V_6 = -4.7V$$

$$\beta = \infty \rightarrow i_{C_3} = i_{E_3} = 4 \text{ m A}$$

$$R_6 = -4.7 - (-5)$$
 $+ A$
 $R_6 = 75 x$

Discussion question 2.

Find the transistor parameters in this BJT circuit. ($\beta = 100, V_{D0} = 0.7V$,

$$V_{sat}=0.2 V).$$

Assume OFT is in (at
$$dt$$
, $i_B=0$, $i_c=0$, $i_{\varepsilon}=0$)
$$VoE(0.7V)$$

$$if \ i_{\theta} = i_{\theta} = 0 \longrightarrow V_{\theta} = 4 V \rightarrow 0.7 \longrightarrow DJT is o N$$

Assume OTT is in active mode:
$$i_{c} = /5i_{8}$$
, $V_{c} = /7V_{00}$, $V_{0} = 0.7V$

$$i_{E} = i_{C} + i_{0} \longrightarrow i_{E} = (l + /3)i_{8}$$

$$4v = 40k \times i_{R} + 0.7 + 1k (101) i_{R}$$

CE KVL:

BJT is in active mode.

