Lógica Proposicional

Motivação

IA estuda como simular comportamento inteligente

comportamento inteligente é resultado de **raciocínio** correto sobre **conhecimento** disponível

conhecimento e raciocínio correto podem ser representados em lógica

o formalismo lógico mais simples é a **lógica proposicional**

Lógica proposicional

É um formalismo composto por:

- Linguagem formal: usada para representar conhecimento.
- Métodos de inferência: usados para representar raciocínio.

Tem como principal finalidade:

- Representar argumentos, isto é, seqüências de sentenças em que uma delas é uma conclusão e as demais são premissas.
- Validar argumentos, isto é, verificar se sua conclusão é uma consequência lógica de suas premissas.

Exercício 1. Intuitivamente, qual dos dois argumentos a seguir é válido?

- Se neva, então faz frio. Está nevando. Logo, está fazendo frio.
- Se chove, então a rua fica molhada. A rua está molhada. Logo, choveu.

Elementos básicos

Proposição

é uma sentença declarativa que pode ser verdadeira ou falsa, mas não as duas coisas ao mesmo tempo.

Exercício 2

- Quais das sentenças a seguir são proposições?
 - Abra a porta.
 - Excelente apresentação!
 - Esta semana tem oito dias.
 - Em que continente fica o Brasil?
 - A Lua é um satélite da Terra.
- Por que a sentença "esta frase é falsa" não é uma proposição?

Elementos básicos

Conectivo

são partículas (**não**, **e**, **ou**, **então**) que permitem construir sentenças complexas a partir de outras mais simples.

Exemplo:

- A partir das sentenças (proposições atômicas):
 - Está chovendo
 - A rua está molhada.
- Podemos construir as sentenças (proposições compostas):
 - Não está chovendo
 - Se está chovendo, então a rua está molhada

Linguagem Formal

Sintaxe: define a estrutura das sentenças

Símbolos

- Proposições: a, b, c, ...
- Conectivos: ¬, ∧, ∨, → (da maior para a menor precedência)

Fórmulas

- Todas as proposições são fórmulas.
- Se α e β são fórmulas, então também são fórmulas:
 - ¬α (negação)
 - α∧β (conjunção)
 - α∨β (disjunção)
 - α→β (implicação)

Linguagem Formal

Semântica: define o significado das sentenças

- Interpretação: associação entre proposições e valores-verdade (V ou F)
 - Uma fórmula contendo n proposições admite 2ⁿ interpretações distintas.
- Tabela-verdade: avalia uma fórmula em cada interpretação possível.

р	q	¬р	p ^ q	p v q	$p \rightarrow q$
F	F	V	F	F	V
F	V	V	F	V	V
V	F	F	F	V	F
V	V	F	V	V	V

Tipos de fórmulas:

- Válida (tautológica): é verdadeira em toda interpretação.
- Satisfatível (contingente): é verdadeira em alguma interpretação.
- Insatisfatível (contraditória): é verdadeira em nenhuma interpretação.

Representação do conhecimento

Conhecimento pode ser representado de duas formas:

- explícita: por meio da formalização de sentenças
- implícita: por meio de consequência lógica (fatos derivados das sentenças)

Passos para formalização de sentenças

- Identificamos as palavras da sentença que correspondem a conectivos.
- Identificamos as partes da sentença que correspondem a proposições atômicas e associamos a cada uma delas um símbolo proposicional.
- Escrevemos a fórmula correspondente à sentença, substituindo suas proposições atômicas pelos respectivos símbolos proposicionais e seus conectivos lógicos pelos respectivos símbolos conectivos

Representação do conhecimento

Exemplo

- Está chovendo.
- Se está chovendo, então a rua está molhada.
- Se a rua está molhada, então a rua está escorregadia.

Vocabulário

• c : "está chovendo"

m : "a rua está molhada"

e : "a rua está escorregadia"

Formalização

• $\Delta = \{c, c \rightarrow m, m \rightarrow e\}$

base de conhecimento

Formalização de argumentos

Um argumento é uma seqüência de premissas seguida de uma conclusão

Exemplo

- Se neva, então faz frio.
- Está nevando.
- Logo, está fazendo frio.

Vocabulário

• **n**: "neve"

• **f**: "frio"

Formalização

• $\{n \rightarrow f, n\} \models f$

consequência lógica

Formalização de argumentos

Um argumento é uma seqüência de premissas seguida de uma conclusão

Exemplo

- Se neva, então faz frio.
- Está nevando.
- Logo, está fazendo frio.

Vocabulário

• **n**: "neve"

• **f**: "frio"

Formalização

• $\{n \rightarrow f, n\} \models f$

consequência lógica

Validação de Argumentos

Nem todo argumento é válido!

Exemplo: Intuitivamente, qual dos argumentos a seguir é válido?

Argumento 1

- Se eu fosse artista, então eu seria famoso.
- Não sou famoso.
- Logo, não sou artista.

Argumento 2

- Se eu fosse artista, então eu seria famoso.
- Sou famoso.
- Logo, sou artista.

Validação de argumentos

Um argumento é válido se a sua conclusão é uma consequência lógica de suas premissas, ou seja, a veracidade da conclusão está implícita na veracidade das premissas.

- Vamos mostrar três métodos de validação de argumentos:
 - Tabela-verdade (semântico)
 - Prova por dedução (sintático)
 - Prova por refutação (sintático)
- Métodos semânticos são baseados em interpretações
- Métodos sintáticos são baseados em regras de inferência (raciocínio)

Validação de argumentos usando tabela verdade

Um argumento da forma $\{\alpha_1, \ldots, \alpha_n\} \models \beta$ é válido se e somente se a fórmula correspondente $\alpha_1 \land \ldots \land \alpha_n \rightarrow \beta$ é válida (tautológica).

Exemplo

- Argumento 1
 - Se eu fosse artista, seria famoso.
 - Não sou famoso.
 - Logo, n\u00e3o sou artista.
- Vocabulário
 - a: "artista"
 - f: "famoso"
- Formalização
 - $\{a \rightarrow f, \neg f\} \models \neg a$

a	f	(a	→	f)	^	7	f	→	٦	a
F	F	F	٧	F	٧	٧	F	٧	٧	F
F	٧	F	٧	٧	F	F	٧	٧	٧	F
>	F	>	F	F	F	٧	F	٧	F	٧
٧	٧	٧	٧	٧	F	F	٧	٧	F	<

O argumento é válido!

Validação de argumentos usando tabela verdade

Exemplo

- Argumento 2
 - Se eu fosse artista, seria famoso.
 - Sou famoso.
 - Logo, sou artista.
- Vocabulário
 - a: "artista"
 - **f**: "famoso"
- Formalização
 - $\{a \rightarrow f, f\} \neq a$

a	f	(a	\rightarrow	f)	^	f	\rightarrow	a
F	F	F	>	F	H	F	>	F
F	٧	F	٧	٧	٧	٧	F	F
٧	F	٧	F	F	F	F	٧	٧
٧	٧	٧	٧	٧	٧	٧	٧	٧

O argumento NÃO é válido!

Validação de argumentos usando tabela verdade

- Consequência lógica é o elo entre o que um agente "acredita" e aquilo que é explicitamente representado em sua base de conhecimento.
- A tabela-verdade é um método semântico que permite verificar consequências lógicas.
- Este método tem a vantagem de ser conceitualmente simples; mas, como o número de linhas na tabela-verdade cresce exponencialmente em função do número de proposições na fórmula, seu uso nem sempre é viável.
- Assim, apresentaremos o raciocínio automatizado como uma alternativa mais eficiente para verificação de conseqüência lógica (isto é, validação de argumentos).

Validação de argumentos usando Dedução

Uma prova por dedução de uma fórmula φ , a partir de uma base de conhecimento Δ , é uma seqüência finita de fórmulas $\gamma_1, \ldots, \gamma_k$ tal que:

- \bullet $\gamma_k = \varphi$;
- para $1 \le i \le k$, ou $\gamma_i \in \Delta$ ou, então, γ_i é **derivada** de fórmulas em $\Delta \cup \{\gamma_1, \ldots, \gamma_{i-1}\}$, pela aplicação de uma **regra de inferência**.

Regra de inferência:

é um padrão de manipulação sintática que define como uma fórmula (conclusão) pode ser derivada de outras fórmulas (premissas)

Validação de argumentos usando Dedução

Regras de inferência clássicas:

- Modus ponens (MP): $\{\alpha \rightarrow \beta, \alpha\} \vdash \beta$
- Modus tollens (MT): $\{\alpha \rightarrow \beta, \neg \beta\} \vdash \neg \alpha$
- Silogismo hipotético (SH): $\{\alpha \rightarrow \beta, \beta \rightarrow \gamma\} \vdash \alpha \rightarrow \gamma$

As regras de inferência clássicas:

- representam "esquemas de raciocínio" válidos
- podemos validar estes esquemas usando tabela-verdade
- podem ser usadas para derivar conclusões que são consequências lógicas de suas premissas

Validação de argumentos usando Dedução

Exemplo: validar o argumento $\{j\rightarrow g, \neg j\rightarrow t, g\rightarrow c, \neg c\} \models t$

(1)
$$j \rightarrow g \quad \Delta$$

(2)
$$\neg j \rightarrow t \Delta$$

(3)
$$g \rightarrow c$$
 Δ

(4)
$$\neg c$$
 Δ

(5)
$$j\rightarrow c$$
 SH(1,3)

(6)
$$\neg j$$
 MT(5,4)

MP: $\{\alpha \rightarrow \beta, \alpha\} \vdash \beta$

MT: $\{\alpha \rightarrow \beta, \neg \beta\} \vdash \neg \alpha$

SH: $\{\alpha \rightarrow \beta, \beta \rightarrow \gamma\} \vdash \alpha \rightarrow \gamma$

Conclusão: o argumento é válido, pois a fórmula t pode ser derivada de Δ .

Validação de argumentos usando Refutação

Embora a prova por dedução seja um método mais prático que a tabelaverdade, ainda é muito difícil obter algoritmos eficientes para validação de argumentos com base neste método.

Refutação

- Refutação é um processo em que se demonstra que uma determinada hipótese contradiz uma base de conhecimento.
- Uma base de conhecimento Δ = {α₁, ..., α_n} é consistente se a fórmula correspondente α₁ ∧ ... ∧ α_n é satisfatível.
- Se Δ = {α₁, ..., α_n} é consistente, provar Δ ⊧ γ equivale a mostrar que o conjunto de fórmulas {α₁, ..., α_n, ¬γ} é inconsistente.

Validação de argumentos usando Refutação

Argumento

- Se o time joga bem, então ganha o campeonato.
- (2) Se o time não joga bem, então o técnico é culpado.
- (3) Se o time ganha o campeonato, então os torcedores ficam contentes.
- (4) Os torcedores não estão contentes.
- (5) Logo, o técnico é culpado.

Refutação

(a) O técnico não é culpado	hipótese
(b) O time joga bem	MT(a,2)
(c) O time ganha o campeonato	MP(b,1)
(d) Os torcedores ficam contentes	MP(c,3)
(e) Contradição!	Confrontando (d) e (4)

Conclusão: a hipótese contradiz as premissas, logo o argumento é válido!

Validação de argumentos usando Refutação

Exemplo: validar o argumento $\{j\rightarrow g, \neg j\rightarrow t, g\rightarrow c, \neg c\} \neq t$

```
(1) j \rightarrow g \quad \Delta
```

(2)
$$\neg j \rightarrow t \Delta$$

(3)
$$g \rightarrow c \Delta$$

(6) j
$$MT(5,2)$$

(7) g
$$MP(6,1)$$

(8) c
$$MP(7,3)$$

Conclusão: como $\Delta \cup \{\neg t\}$ é inconsistente, segue que $\Delta \models t$.

Forma Normal Conjuntiva

Para simplificar a automatização do processo de refutação, vamos usar **fórmulas normais** (Forma Normal Conjuntiva - FNC).

Passos para conversão para FNC

Elimine a implicação:

$$\alpha \rightarrow \beta \equiv \neg \alpha \lor \beta$$

Reduza o escopo da negação:

$$\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$$
$$\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$$

Reduza o escopo da disjunção:

$$\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$$

Forma Normal Conjuntiva

Exemplo de conversão para FNC

$$p \lor q \to r \land s$$

$$\equiv \neg (p \lor q) \lor (r \land s)$$

$$\equiv (\neg p \land \neg q) \lor (r \land s)$$

$$\equiv ((\neg p \land \neg q) \lor r) \land ((\neg p \land \neg q) \lor s)$$

$$\equiv (\neg p \lor r) \land (\neg q \lor r) \land (\neg p \lor s) \land (\neg q \lor s)$$

Fórmulas normais: $\{\neg p \lor r, \neg q \lor r, \neg p \lor s, \neg q \lor s\}$

Inferência por resolução

- FNC permite usar inferência por resolução
- A idéia da resolução é:
 - RES($\alpha \vee \beta$, $\neg \beta \vee \gamma$) = $\alpha \vee \gamma$
 - RES(α , $\neg \alpha$) = \square

Equivalência entre resolução e regras de inferência clássicas

$MP(\alpha \rightarrow \beta, \alpha) = \beta$	$RES(\neg \alpha \vee \beta, \alpha) = \beta$		
$MT(\alpha \rightarrow \beta, \neg \beta) = \neg \alpha$	$RES(\neg \alpha \vee \beta, \neg \beta) = \neg \alpha$		
$SH(\alpha \!\to\! \beta,\beta \!\to\! \gamma) = \alpha \!\to\! \gamma$	$RES(\neg \alpha \lor \beta, \neg \beta \lor \gamma) = \neg \alpha \lor \gamma$		

Inferência por resolução

Exemplo: validar o argumento $\{j\rightarrow g, \neg j\rightarrow t, g\rightarrow c, \neg c\} \neq t$

(1)
$$\neg j \lor g \quad \Delta$$

(2)
$$jvt \Delta$$

(6) j
$$RES(5,2)$$

(7) g
$$RES(6,1)$$

(8) c RES
$$(7,3)$$

(9)
$$\Box$$
 RES(8,4)

Este é o mecanismo de raciocínio implementado pelo Prolog!

Conclusão: como $\Delta \cup \{\neg t\}$ é inconsistente, segue que $\Delta \models t$.

