Bi-conditional Statement Pre-class assignment *INSERT YOUR NAME HERE*

Complete the following proof. Print your compiled document and bring it to class.

1. Let A be an invertible matrix. Prove that $A^2 = A$ if and only if A = I.

Proof. Let A be an invertible matrix.

 (\Rightarrow) Assume that $A^2 = A$. Theorem 2.4 says that AI = A. Moreover by definition of matrix powers, $A^2 = AA$. Rewriting the original equality using this information, we see

$$AA = AI$$
.

Since A is invertible, we can use left cancellation, Theorem 2.10, to conclude A = I. (\Leftarrow) Assume that A = I.

(Yes this direction will be very straightforward.)

Some information about using LaTeX (pronounced "Lah-Tech" or "Lay-Tech" depending on who you ask).

- Any mathematical symbols will go between \$... \$.
- To display an equation on its own line use \$\$... \$\$.
- To get a newline, use either \\ or skip two lines in the editor. The first option will simply skip to the next line, the second option will create a new paragraph.
- To get superscripts, use a carrot: A^{123} , and for subscripts, an underscore: x_{ij} .
- Many standard functions and characters exist as commands, for example $\cos(2\pi)$ is produced using $\cos(2\pi)$.
- To make a matrix, such as $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$, use \$A=\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}\$. Here the & indicates an alignment and \\ gives a new line.
- You will be required to learn how to use this text editor for homework. It will make proof-writing much easier and your future-selves much happier.
- Don't hesitate to ask if you have any questions.