

2025 年数理经济学笔记

授课: 杨佳楠老师

作者:徐靖 组织:PKU

时间: Febuary 27, 2025

声明:请勿用于个人学习外其他用途!

目录

第1章	Multi-Variable Unconstrained Optimization	1
1.1	First Order Condition	1
1.2	Convex Optimization	1
	1.2.1 Bisection Method	2
1.3	Numerical Ontimization	2

第1章 Multi-Variable Unconstrained Optimization

Keywords

□ First Order Condition 一阶条件

■ Newton's Method 牛顿法

■ Bisection Method 二分法

1.1 First Order Condition

An Unconstrained Optimization Problem is:

$$\min_{x \in \mathbb{R}^n} f(x)$$

定义 1.1

First Order Condition (FOC): $\nabla f(x^*) = 0$.

- x^* is a stationary point ($\stackrel{\cdot}{\cancel{!}}$ $\stackrel{\cdot}{\cancel{!}}$) of f.
- It is necessary but not sufficient.

global minimum: $f(x^*) \leq f(x)$ for all $x \in \mathbb{R}^n$.

local minimum: $f(x^*) \le f(x)$ for all $x \in B(x^*, \epsilon)$ for some $\epsilon > 0$.

命题 1.1

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function, and $\nabla f(x^*) = 0$. If $\nabla^2 f(x^*)$ is:

- positive definite, then x^* is a local minimum.
- negative definite, then x^* is a local maximum.
- indefinite, then x^* is a **saddle point**. (鞍点)

1.2 Convex Optimization

定义 1.2 (Convex Function)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for all $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

定理 1.1

A twice continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if its Hessian matrix $\nabla^2 f(x)$ is positive semidefinite for all $x \in \mathbb{R}^n$.

命题 1.2

Let f be differentiable. Then f is (strictly) convex if and only if:

$$f(y) - f(x)(>) \ge \nabla f(x) \cdot (y - x)$$

for all $x, y \in \mathbb{R}^n$.

定理 1.2 (Minimum/maximum Characterization)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex (concave) function. Then x^* is a local minimum (maximum) if and only if:

$$\nabla f(x^*) = 0$$

- If f is strictly **convex**, then x^* is a global minimum.
- If f is strictly **concave**, then x^* is a global maximum.

\Diamond

1.2.1 Bisection Method

定义 1.3 (Bisection Method)

A simple, robust method for finding roots of continuous functions on bounded intervals

- Start with an interval [a, b] such that f(a)f(b) < 0.
- Compute the midpoint $c = \frac{a+b}{2}$, and evaluate f(c).
- Replace a or b with c based on the sign of f(c).
- Iterate until desired precision.

定义 1.4 (Convergence Rate and Order 收敛速度和阶)

For iteration x_n approaching the root r, the convergence rate C and order ρ are defined as:

$$\lim_{n \to \infty} \frac{|x_{n+1} - r|}{|x_n - r|^{\rho}} = C$$

- Linear convergence: $\rho = 1, C < 1$.
- Quadratic convergence: $\rho = 2, C < 1$.
- Superlinear convergence: $\rho > 1, C < 1$.

Method	Definition	Rate	Order
Bisection	Iteratively bisects an interval	Linear ($C=0.5$)	1
Disection	and selects a subinterval		1
Secant	Root approximation via secant line	Superlinear ($C \approx 1.618$)	1.618
Secant	through two points		
False Position	Bisection variant with	Linear	1
raise rosition	linear interpolation updates		
Newton-Raphson	Derivative-based iterative	Quadratic ($C \propto f''$)	2
Newton-Kapiison	root-finding		
Gradient method	Function minimization via	Linear $(C \propto \kappa)$	1
Gradient method	negative gradient direction		

表 1.1: Compact Comparison of Numerical Methods

1.3 Numerical Optimization