Presented By:

Rao Muhammad Umer

- •Section-I:
 - Motivation
- •Section-II:
 - Theoretical Bases
- •Section-III:
 - Implementation

PART-I:

Motivation

Outline

• What?

• Why?

• Who?

How?

Outline

• What?

· Why?

· Who?

· How?

Regression

- What about Machine Learning?
- What about Deep Learning?
- What about Data Science?
- What about Big Data Analysis?
- What about Predictive Analytics ?

Regression

Predicting a real numeric value for an entity

with a given set of features

Deterministic Vs Probabilistic Modeling

- $\cdot Y_i = a + b X_i$
 - Substituting a value of X in the equation, we can completely determine a unique value of Y.(Exact relationship)
 - Examples: F = 32 + (9/5) C, $A = \pi r^2$

- $\cdot Y_i = a + b X_i + e_i$
 - Inexact relationship b/w variables
 - ei is known as random error

Types of Regression

- Simple Linear Regression
- Multiple Regression
- Polynomial Regression
- Logistic Regression

Outline

What?

• Why?

· Who?

· How?

Predicting House Price

Predicting House Price

Predicting which Television Show will have more viewers for next week

What Causes Retweets?

- How can we help marketers use Twitter data to influence the number of times a tweet is retweeted?
- With over 555 MM registered users who tweet 58 MM times per day, Tweeting is potentially big business.
- We selected the top 30 entertainment industry related accounts to find out, ranging from rock stars, actors, to famous sports figures.
- In particular, we are attempting to understand the factors that contribute to a "retweet", i.e. an instance where a Twitter account holder's tweet is shared by another Twitter user.
- This has important implications for marketers.
- By understanding the factors that contribute to a retweet a marketer can maximize the potential audience and can better engage with target audiences.

SPAM CLASSIFICATION

>67%

Of all inbound email is spam

"If you are tired of spam email, imagine if there were no spam filters"

SPAM CLASSIFICATION

Tagging a Photo!!!

Self Customizing Programs

- Self customizing programs
 - Netflix
 - Amazon

Stock Exchange Price Prediction

Predicting a continuous response like stock price

Detecting Fraudulent Transaction

- Online Transactions:
 - •Fraudulent((Yes(/(No)?

- Credit card fraud
- Online payment fraud
- Spam instant messages etc.

Clustering

Clustering

Outline

What?

· Why?

• Who?

· How?

My Background

- Rao Muhammad Umer
- MS Computer Science (Continue...)
- Email address: engr.raoumer943@gmail.com
- Web: https://raoumer.github.io
- Github:

http://raoumer.github.io/GPU-Workshop-PIEAS-2016

About You

Outline

What?

· Why?

· Who?

How?

Sciences(PIEAS),Islamabad

Abstractions...

...and Tools

IPython Interactive Computing

IPython Notebooks

http://nbviewer.ipython.org/

Is this possible for me???

Prerequisites

- Programming experience
 C, C++, Java, Python, Cuda C etc.
- Basic statistical knowledge
 Mean, Standard Deviation, Probability etc.
- Willingness to learn new software & tools
 - This can be time consuming
 - You will need to read online documentation

PART-II: Theoretical Basics

Supervised Learning

Unsupervised Learning

Linear Regression

Housing price prediction.

Housing Price Prediction

- Supervised Learning
 - "right answers" given

 Regression: Predict continuous valued output (price)

Training set of Housing Prices

Size in feet ² (x)	Price (\$) in 1000's (y)		
2104	460		
1416	232 } m= 47		
1534	315		
852	178		
•••			

Simple Linear Regression

Housing Prices

- Supervised Learning
 - Given the "right answer" for each example in the data
- Regression Problem
 - Predict real-valued output

How do we represent h?

- Linear regression with one variable
- Univariate linear regression

Cost function

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal: minimize
$$J(\theta_0, \theta_1)$$

Gradient Descent

Repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$

}

Gradient Descent

Gradient Descent for Linear Regression

Gradient descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(for
$$j = 1$$
 and $j = 0$)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Multiple Linear Regression

Linear Regression with Multiple variables

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_1	x_2	x_3	x_4	y
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Polynomial Regression

Housing Price Prediction

$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$$

Polynomial Regression

Normal Equation

Gradient Descent

- Normal equation
 - Method to solve for $\, heta\,$ analytically

Normal Equation

$$\theta = (X^T X)^{-1} X^T y$$

pinv(X' * X) *X' * y

Logistic Regression

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1" If $h_{\theta}(x) < 0.5$, predict "y = 0"

Logistic Regression Model

- Sigmoid Function
- Logistic Function

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "
$$y = 1$$
" if $h_{\theta}(x) \ge 0.5$

predict "
$$y = 0$$
" if $h_{\theta}(x) < 0.5$

Classification

Binary classification:

Multi-class classification:

REGRESSION

PART-III: Implementation

Predicting House Price

LINEAR REGRESSION EXAMPLE

X	Υ		XY	X ²
11	25	7160	8055000	1265625
9	20	8804	8099680	846400
8	35	8108	6770180	697225
10	000	6370	6370000	1000000
11	.50	6441	7407150	1322500
9	90	5154	5102460	980100
8	340	5896	4952640	705600
6	50	5336	3468400	422500
6	40	5041	3226240	409600
	83	5012	2921996	339889
ΣΧ	ΣΥ		ΣΧΥ	ΣX^2
87	733	63322	56373746	7989439

X-mean	Y-mean	
873.3	6332.2	
b0	b1	
3746.198	2.961183	

$$\beta_0 = \frac{(\sum X^2)(\sum Y) - (\sum X)(\sum XY)}{n\sum X^2 - (\sum X)^2}$$

$$\beta_1 = \frac{n\sum XY - (\sum X)(\sum Y)}{n\sum X^2 - (\sum X)^2}$$

LINEAR REGRESSION EXAMPLE

Machine Learning

Machine Learning

Figure shows how one feature can be used on a linear regression problem to predict new house prices

Machine Learning

On Figure how the complexity can grow easily from 2 dimensions linear to hundreds of dimensions polynomial

Gradient Descent

Figure shows how a training data is plot and the error is calculated

Large Scale Machine Learning

In Figure we can see how the data is split into four parts and fed into four different processors

Large Scale Machine Learning

Figure shows this configuration along with the parallelized part on the GPU cores

GPGPU

- Utilizing GPUs to enable dramatic increases in computing performance of general purpose scientific and engineering computing is named <u>GPGPU</u>.
- NVIDIA is providing a parallel computing platform and programming model named <u>CUDA</u> to develop GPGPU software on C, C++ or Fortran which can run on any NVIDIA GPU.

CPU vs GPU Time

Conclusion

- GPGPU, Machine Learning and Big Data are three rising fields in the IT industry.
- As much as we get deeper into these fields ,we figure out how well they fit together.
- I hope this sample application gave you some basic idea and maybe just one perspective how you can use NVIDIA CUDA easily on machine learning problems.

References

- http://gpgpu.org/
- https://en.wikipedia.org/wiki/Linear_regression
- https://docs.nvidia.com/cuda/
- https://en.wikipedia.org/wiki/Polynomial_regression
- https://en.wikipedia.org/wiki/Gradient_descent
- https://en.wikipedia.org/wiki/Overfitting
- https://en.wikipedia.org/wiki/Regularization_(mathematics)
- http://www.nvidia.com/object/machine-learning.html
- https://developer.nvidia.com/nvidia-nsight-visual-studioedition
- https://docs.nvidia.com/cuda/thrust/index.html
- https://adnanboz.wordpress.com/2012/02/25/large-scalemachine-learning-using-nvidia-cuda/

References

- http://statsmodels.sourceforge.net/
- http://www.nature.com/ejhg/journal/v17/n8/full/ejhg20 095a.html
- http://www.alsharif.info/#!iom530/c21o7
- Some slides taken from Dr. Andrew Ng. Course of Machine Learning

