學號:B04705043 系級: 資管三 姓名:張凱庭

1. (1%) 請說明你實作的 RNN model, 其模型架構、訓練過程和準確率為何? (Collaborators:)

答:

(1)文字處理:

使用gensim的套件,gensim.parsing.porter.PorterStemmer(),對文字進行處理,去掉文尾,刪去一些雜亂的資訊,但是仍保留語意,且保留所有標點符號 (2)模型架構:

如下圖,embedding layer 使用gemsim 的 word2vec pretrained的詞向量(dimension 200維,取出現次數大於10的詞進行訓練),接著兩層bidrectional LSTM,output分別為256和128,中間加入batchnormalization layer,最後兩層Dense layer,output分別為32和2,loss使用categorical_crossentropy

Layer (type)	Output	Shape	Param #
embedding_2 (Embedding)	(None,	39, 200)	13278000
spatial_dropout1d_2 (Spatial	(None,	39, 200)	0
bidirectional_3 (Bidirection	(None,	39, 256)	336896
bidirectional_4 (Bidirection	(None,	128)	164352
batch_normalization_2 (Batch	(None,	128)	512
dense_3 (Dense)	(None,	32)	4128
dense_4 (Dense)	(None,	2)	66

Total params: 13,783,954 Trainable params: 505,698

Non-trainable params: 13,278,256

(3)訓練過程:

validation set取4000筆, batch_size 設定為64,在第11個epoch時候收斂,最後 valid_loss=0.39304,valid_acc = 0.82925,訓練時間約一個半小時 (4)結果:

public score	0.82595
private score	0.82507

2. (1%) 請說明你實作的 BOW model, 其模型架構、訓練過程和準確率為何? (Collaborators:)

答:

(1)文字處理:

使用gensim的套件,gensim.parsing.porter.PorterStemmer(),對文字進行處理,去掉文尾,刪去一些雜亂的資訊,但是仍保留語意,且保留所有標點符號

(2)模型架構:

Layer (type)	Output	Shape	Param #
dense 1 (Dense)	(None,	======================================	4196480
delise_i (belise)	(None,	04)	4130400
dropout_1 (Dropout)	(None,	64)	0
dance 2 (Dance)	/None	22\	2080
dense_2 (Dense)	(None,	32)	2000
dropout_2 (Dropout)	(None,	32)	0
	/Name	2)	
dense_3 (Dense)	(None,		66

Total params: 4,198,626 Trainable params: 4,198,626 Non-trainable params: 0

(3)訓練過程:

validation set取4000筆, batch_size 設定為64,在第2個epoch時候收斂,最後 valid_loss=0.4616,valid_acc = 0.7970,訓練時間約10分鐘 (4)結果:

public score	0.78795
private score	0.78845

3. (1%) 請比較bag of word與RNN兩種不同model對於"today is a good day, but it is hot"與"today is hot, but it is a good day"這兩句的情緒分數,並討論造成差異的原因。

(Collaborators:)

答: (1)"today is a good day, but it is hot":

	負面	正面
RNN	0.8505494	0.14945062
BOW	0.42041725	0.57958275

(2)"today is hot, but it is a good day":

	負面	正面
RNN	0.05856774	0.9414323
BOW	0.40273115	0.5972688

BOW將兩句話都歸類為正面情緒,而RNN將第一句歸類為負面,第二句為正面情緒。原因可能在於BOW,比較不能判斷出轉折的語氣,兩句話組成一樣,導致兩種情緒的分數很接近,而RNN有考慮到前後語意,所以在轉折語意的判斷上就有所不同了

4. (1%) 請比較"有無"包含標點符號兩種不同tokenize的方式,並討論兩者對準確率的影響。

(Collaborators:)

答:

(1)包含標點符號:

H 1 3 3//0:		
public score	0.82595	
private score	0.82507	

(2)不包含標點符號:

public score	0.81422
private score	0.81290

討論:有標點符號準確率大約提高1%,直觀來看,標點符號在句子中也扮演重要的腳色,例如!通常伴隨驚訝的情緒,大多都是正向的,因此包含標點符號的準確率較高

5. (1%) 請描述在你的semi-supervised方法是如何標記label,並比較有無 semi-surpervised training對準確率的影響。

(Collaborators:)

答:我把先前用來預測的model拿來對no label的data標記,將threshold設為0.97,這樣多生成了373389筆資料,把這些資料加進原本label的在重新訓練一次

public score	0.80376
private score	0.80517

從結果來看反而退步了,可能要把valid set的大小做調整,w2v也要重新訓練,但因為 資料數量大幅增加,訓練時間也大大增長,在第二次訓練時的模型可能必須做出調整 ,才能反映在準確率上。