Step-by-Step Delta Debugging

22. Oktober 2018

1 Minimizing Delta Debugging - Version 3

1.1 Rules

$$ddmin(c_f) = ddmin2(c_f, 2)$$

$$ddmin2(c_f, n) = \begin{cases} ddmin2(\Delta_i, 2) & \text{if } test(\Delta_i) = FAIL (\text{reduce to subset}) \\ ddmin2(\nabla_i, max(n-1, 2)) & \text{else if } test(\nabla_i) = FAIL (\text{reduce to complement}) \\ ddmin2(c_f, min(|c_f|, 2n)) & \text{else if } n < |c_f| (\text{increase granularity}) \\ c_f & \text{otherwise}(\text{done}) \end{cases}$$

1.2 Steps

1. Begin with the initialization of the Delta Debugging Algorithm:

$$ddmin(c_f) = ddmin2(c_f, 2)$$

- 2. Split the input c_f into n subsets Δ_i
 - If one of the subsets Δ_i result in Fail then calculate $ddmin2(\Delta_i, 2)$ with the corresponding Δ_i and go to step 2. (Case 1)
 - Else go to step 3.
- 3. Calculate the complement sets $\nabla_i = c_f \setminus \Delta_i$
 - If one of the complement sets ∇_i result in Fail then calculate $ddmin2(\nabla_i, max(n-1, 2))$ with the failing complement set and go to step 2. (Case 2)
 - Else go to step 4.
- 4. Check $|c_f|$ (= length of c_f)
 - If $|c_f| > n$ then calculate $ddmin2(c_f, min(|c_f|, 2*n))$ with the same c_f as before, but now you have to increase n and go to step 2. (Case 3)
 - Else go to step 5.
- 5. Return c_f (Case 4)

1.3 Example

01234567 is the failure-inducing input string. Input 0 and 4 cannot be applied without each other. Input 2 reveals the bug.

1. Begin with Step 1 and initialize the algorithm:

$$ddmin(01234567) = ddmin2(01234567)$$

Step	n	Subset/Complement	Result	Rule	Action
0	-	$\Delta=$ 01234567	FAIL		ddmin2(01234567, 2)

2. Split the input into n=2 subsets Δ_i

Step	n	Subset/Complement	Result	Rule	Action
			•••		
1	2	$\Delta_1=$ 0123	UNRES		
2	2	$\Delta_2 = 4567$	UNRES		

- There exist no $test(\Delta_i) = FAIL \rightarrow go$ to Step 3.
- 3. Split the input into n=2 complement sets ∇_i

\mathbf{Step}	n	Subset/Complement	Result	Rule	Action
•••			•••		
3	2	$ abla_1 = 4567$	UNRES		
4	2	$ abla_2=$ 0123	UNRES		

- There exist no $test(\nabla_i) = FAIL \to go$ to Step 4.
- 4. Check the length of c_f :

$$|c_f| > n$$

 $|01234567| > 2$
 $8 > 2 \sqrt{}$

• Increase the granularity: $ddmin2(c_f, min(|c_f|, 2*n)) \rightarrow ddmin2(01234567, 4)$ Case 3 and go to Step 2

Step	n	Subset/Complement	Result	Rule	Action
3	2	$ abla_1 = 4567$	UNRES		
4	2	$ abla_2=$ 0123	UNRES	(3)	ddmin2(01234567, 4)

5. Split the input into n=4 subsets Δ_i

Step	n	Subset/Complement	Result	Rule	Action
•••			•••		
5	4	$\Delta_1=$ 01	UNRES		
6	4	$egin{array}{lll} \Delta_1 = exttt{01} \ \Delta_2 = & 23 \ \Delta_3 = & 45 \end{array}$	FAIL	(1)	$\mathrm{ddmin2}(23,2)$
7	4	$\Delta_3 = 45$	UNRES		
8	4	$\Delta_4 = 67$	PASS		

- There exist a $test(\Delta_2) = FAIL \rightarrow \mathbf{Case} \ \mathbf{1} \rightarrow call \ ddmin2(\Delta_2, 2) = ddmin2(23, 2)$ and go to Step 2.
- 6. Split the input into n=2 subsets Δ_i

	Step	n	Subset/Complement	Result	Rule	Action
Ī				•••		
Ī	9	4	$\Delta_1 = 2$	FAIL	(1)	ddmin2(2, 2)
	10	4	$\Delta_2 = 3$	PASS		

- There exist a $test(\Delta_1) = FAIL \rightarrow \mathbf{Case} \ \mathbf{1} \rightarrow call \ ddmin2(\Delta_2, 2) = ddmin2(2, 2)$ and go to Step 2.
- 7. ddmin2(2,2): $|c_f| = |2| = 1 \rightarrow \text{Step 4 \& Case 4}$

Step	n	Subset/Complement	Result	Rule	Action
9	4	$\Delta_1 = 2$	FAIL	(1), (4)	$ddmin2(2, 2) \rightarrow \mathbf{return} \ 2$
10	4	$\Delta_2=$ 3	PASS		

2 Isolation Difference Delta Debugging

2.1 Rules

$$dd(c_s,c_f) = dd2(c_s,c_f,2)$$

$$dd2(c_s',c_f',c_s' \cup \Delta_i,2) \quad \text{if } \exists \{i|test(c_s' \cup \Delta_i) = FAIL\} \\ dd2(c_f' \setminus \Delta_i,c_f',2) \quad \text{else if } \exists \{i|test(c_f' \setminus \Delta_i) = PASS\} \\ dd2(c_s' \cup \Delta_i,c_f',max(n-1,2)) \quad \text{else if } \exists \{i|test(c_s' \cup \Delta_i) = PASS\} \\ dd2(c_s',c_f' \setminus \Delta_i,max(n-1,2)) \quad \text{else if } \exists \{i|test(c_f' \setminus \Delta_i) = FAIL\} \\ dd2(c_s',c_f',min(2n,|\Delta|)) \quad \text{else if } n < |\Delta| \\ (c_s',c_f') \quad \text{otherwise}$$

2.2 Steps

1. Begin with the initialization of the Delta Debugging Algorithm:

$$dd(c_s, c_f) = dd2(c_s, c_f, 2)$$

- The first successful input c_s is empty
- The first failure input c_f is the whole input
- 2. Split the difference between c_s and c_f into n subsets Δ_i and calculate the unions of c_s and each Δ_i
 - If one input c_s together with Δ_i results in FAIL then calculate $dd2(c_s, c_s \cup \Delta_i, 2)$ with the corresponding Δ_i and go to Step 2. (Case 1)
 - Else go to Step 3.
- 3. Calculte c_f without Δ_i for each subset Δ_i
 - If one input c_f without Δ_i results in PASS then calculate $dd2(c_f \setminus \Delta_i, c_f, 2)$ with the corresponding Δ_i and go to Step 2. (Case 2)
 - Else go to Step 4.
- 4. Calculate the unions of c_s and each Δ_i
 - If one input c_s together with Δ_i results in PASS then calculate $dd2(c_s \cup \Delta_i, c_f, max(n-1, 2))$ with the corresponding Δ_i and go to Step 2. (Case 3)
 - Else go to Step 5.
- 5. Calculte c_f without Δ_i for each subset Δ_i
 - If one input c_f without Δ_i results in FAIL then calculate $dd2(c_s, c_f \setminus \Delta_i, max(n-1, 2))$ with the corresponding Δ_i and go to Step 2. (Case 4)
 - Else go to Step 6.
- 6. Check $|\Delta|$ (= length of the difference between c_s and c_f)
 - If $|\Delta| > n$ then calculate $dd2(c_s, c_f, min(|\Delta|, 2*n))$ with the same c_s and c_f as before, but now you have to increase n and go to step 2. (Case 5)
 - Else go to step 7.
- 7. Return (c_s, c_f) (Case 6)
 - The Difference between the successful input c_s and the failing input c_f is the bug.

2.3 Example

01234567 is the failure-inducing input string. Input 0 and 4 must be part of the input in order to get a result different to UNRES. Input 2 reveals the bug. The test passes if the program gets an empty string as input.

1. Begin with Step 1 and initialize the algorithm

Step	n	c_s	c_f	Δ	\mathbf{TC}	Test Input	Result	Rule	Action
1	-	-	01234567	01234567	c_s	-	PASS		
2	-				c_f	01234567	FAIL		dd2(-, 01234567, 2)

2. Split Δ (= difference between c_s and c_f) into n=2 subsets Δ_i and calculate c_s combined with Δ_i

Step	n	c_s	c_f	Δ	TC	Test Input	Result	Rule	Action
3	2	-	01234567	01234567	$c'_s \cup \Delta_1$	0123	UNRES		
4	2				$c_s' \cup \Delta_2$	4567	UNRES		

- There is no testcase $c_s \cup \Delta_i$ that result in FAIL \rightarrow go to Step 3.
- 3. Calculate c_f without Δ_i for each subset

Step	n	c_s	c_f	Δ	TC	Test Input	Result	Rule	Action
3	2	-	01234567	01234567	$c'_s \cup \Delta_1$	0123	UNRES		
4	2				$c'_s \cup \Delta_2$	4567	UNRES		
5	2				$c_f' \backslash \Delta_1$	4567	UNRES		
6	2				$c_f' \backslash \Delta_2$	0123	UNRES		

- There is no testcase $c_f \setminus \Delta_i$ that result in PASS \to go to Step 4.
- 4. Check if there exists at least one $c_s \cup \Delta_i$ that results in PASS

Step	n	c_s	c_f	Δ	TC	Test Input	Result	Rule	Action
3	2	-	01234567	01234567	$c'_s \cup \Delta_1$	0123	UNRES		
4	2				$c_s' \cup \Delta_2$	4567	UNRES		
5	2				$c_f' \backslash \Delta_1$	4567	UNRES		
6	2				$c_f' \backslash \Delta_2$	0123	UNRES		

• There is no testcase $c_s \cup \Delta_i$ that result in PASS \rightarrow go to Step 5.

5. Check if there exists at least one $c_f \backslash \Delta_i$ that results in FAIL

Step	n	c_s	c_f	Δ	TC	Test Input	Result	Rule	Action
•••			•••	•••			•••		
3	2	-	01234567	01234567	$c'_s \cup \Delta_1$	0123	UNRES		
4	2				$c'_s \cup \Delta_2$	4567	UNRES		
5	2				$c_f' \backslash \Delta_1$	4567	UNRES		
6	2				$c_f' \backslash \Delta_2$	0123	UNRES		

- There is no testcase $c_f \setminus \Delta_i$ that result in FAIL \to go to Step 6.
- 6. Check the length of Δ :

$$|\Delta| > n$$

$$|01234567| > 2$$

$$8 > 2 \checkmark$$

• Increase the granularity: $dd2(c_s, c_f, min(|\Delta|, 2*n)) \rightarrow dd2(-, 01234567, 4)$ Case 5 and go to Step 2

Step	n	c_s	c_f	Δ	\mathbf{TC}	Test Input	Result	Rule	Action
3	2	-	01234567	01234567	$c'_s \cup \Delta_1$	0123	UNRES		
4	2				$c'_s \cup \Delta_2$	4567	UNRES		
5	2				$c_f' \backslash \Delta_1$	4567	UNRES		
6	2				$c_f' \backslash \Delta_2$	0123	UNRES	(5)	dd2(-, 01234567, 4)

7. Split Δ into n=4 subsets Δ_i and calculate c_s combined with Δ_i

Step	n	c_s	c_f	Δ	TC	Test Input	Result	Rule	Action
7	4	-	01234567	01234567	$c_s' \cup \Delta_1$	01	UNRES		
8	4				$c_s' \cup \Delta_2$	23	UNRES		
9	4				$c'_s \cup \Delta_3$	45	UNRES		
10	4				$c_s' \cup \Delta_4$	67	UNRES		

• There is no testcase $c_s \cup \Delta_i$ that result in FAIL \rightarrow go to Step 3.

8. Calculate c_f without Δ_i for each subset

Step	n	c_s	c_f	Δ	TC	Test Input	Result	Rule	Action
7	4	-	01234567	01234567	$c'_s \cup \Delta_1$	01	UNRES		
8	4				$c_s' \cup \Delta_2$	23	UNRES		
9	4				$c'_s \cup \Delta_3$	45	UNRES		
10	4				$c'_s \cup \Delta_4$	67	UNRES		
11	4				$c_f' \backslash \Delta_1$	234567	UNRES		
12	4				$c_f' \backslash \Delta_2$	01 4567	PASS	(2)	dd2(014567,
					,				01234567,2)
13	4				$c_f' \backslash \Delta_3$	0123 67	UNRES		
14	4				$c_f' \setminus \Delta_4$	012345	FAIL	(4)	

- There is a testcase $c_f \setminus \Delta_2$ that result in PASS \rightarrow Case 2 \rightarrow call $dd2(c_f \setminus \Delta_2, c_f, 2) = (014567, 01234567, 2)$.
- Check if there exit any testcases that fullfil Case 3 or 4 and identify them in the table too!
- Go to Step 2.

9. Split Δ into n=2 subsets Δ_i and calculate c_s combined with Δ_i

Step	n	c_s	c_f	Δ	\mathbf{TC}	Test Input	Result	Rule	Action
		•••	•••		•••		•••	•••	
15	2	01 4567	01234567	23	$c_s' \cup \Delta_1$	012 4567	FAIL	(1)	$\begin{array}{c} dd2(014567, \\ 0124567, 2) \end{array}$
16	2				$c_s' \cup \Delta_2$	01 34567	PASS		

- There is a testcase $c_s \cup \Delta_1$ that result in FAIL \rightarrow Case $1 \rightarrow \text{call } dd2(c_s, c_s \cup \Delta_1, 2) = dd2(014567, 0124567, 2).$
- Calculate $c_f \setminus \Delta_i$ and check if there exist any testcases that fullfil Case 2, 3 or 4 and identify them in the table too!
- Go to Step 2.

Step	n	c_s	c_f	Δ	\mathbf{TC}	Test Input	Result	Rule	Action
		•••			•••		•••		
15	2	01 4567	01234567	23	$c'_s \cup \Delta_1$	012 4567	FAIL	(1)	dd2(014567,
									0124567,2)
16	2				$c_s' \cup \Delta_2$	01 34567	PASS	(3)	
17	2				$c_f' \backslash \Delta_1$	01 34567	PASS	(2)	
18	2				$c_f' \backslash \Delta_2$	012 4567	FAIL	(4)	

10. dd2(014567,0124567,2): $|\Delta| = |2| = 1 \rightarrow \text{Step 7 \& Case 6}$

Step	n	c_s	c_f	Δ	TC	Test Input	Result	Rule	Action
		•••							
19	2	01 4567	012 4567	2	-	-	-	(6)	(014567, 0124567)