```
In [1]: import datetime
        import matplotlib.pyplot as plt
        import os
        import pandas as pd
        import plotly.express as px
        import re
        import requests
        import zipfile
        from datetime import datetime, timedelta
In [2]: pip install pandas-ta
      Requirement already satisfied: pandas-ta in /usr/local/lib/python3.11/site
      -packages (0.3.14b0)
      Requirement already satisfied: pandas in /usr/local/lib/python3.11/site-pa
      ckages (from pandas-ta) (2.0.0)
      Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/py
      thon3.11/site-packages (from pandas->pandas-ta) (2.8.2)
      Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/s
      ite-packages (from pandas->pandas-ta) (2023.3.post1)
      Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.1
      1/site-packages (from pandas->pandas-ta) (2023.3)
      Requirement already satisfied: numpy>=1.21.0 in /usr/local/lib/python3.11/
      site-packages (from pandas->pandas-ta) (1.26.2)
      Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/site-
      packages (from python-dateutil>=2.8.2->pandas->pandas-ta) (1.16.0)
      WARNING: Running pip as the 'root' user can result in broken permissions a
      nd conflicting behaviour with the system package manager. It is recommende
      d to use a virtual environment instead: https://pip.pypa.io/warnings/venv
      [notice] A new release of pip available: 22.3.1 -> 25.0
      [notice] To update, run: pip install --upgrade pip
      Note: you may need to restart the kernel to use updated packages.
In [3]: import pandas as pd
        import vfinance as vf
        from sklearn.model_selection import KFold
        import matplotlib.pyplot as plt
        # Step 1: Download data for ECH
        fund_ticker = "ECH"
        data = yf.download(fund_ticker, start="2015-01-01", end="2025-01-01")
        # Check if data was retrieved
        if data.empty:
            raise ValueError("No data was retrieved for the given ticker and date
        # Step 2: Ensure data includes relevant columns and reset index
        data.reset_index(inplace=True)
        data
```

[********** 100%********** 1 of 1 completed

Out[3]:	Price	Date	Close	High	Low	Open	Volume
	Ticker		ECH	ECH	ECH	ECH	ECH
	0	2015-01-02	29.007076	29.360372	28.911391	29.308850	257000
	1	2015-01-05	28.484491	28.948193	28.469770	28.815707	355800
	2	2015-01-06	28.403532	28.712665	28.359369	28.521297	262300
	3	2015-01-07	28.543371	28.727380	28.521291	28.609614	373700
	4	2015-01-08	28.734743	28.852508	28.646417	28.778903	139900
	•••						•••
	2511	2024-12-24	25.129999	25.209999	25.020000	25.020000	58400
	2512	2024-12-26	25.090000	25.240000	25.030001	25.049999	84000
	2513	2024-12-27	25.139999	25.250000	25.030001	25.070000	153600
	2514	2024-12-30	25.040001	25.150000	24.850000	25.150000	293000
	2515	2024-12-31	25.040001	25.139999	24.959999	24.959999	67000

2516 rows × 6 columns

```
In [4]: # Flatten MultiIndex if necessary
        if isinstance(data.columns, pd.MultiIndex):
            data.columns = [col[0] for col in data.columns] # Extract first leve
        # Select relevant columns
        data = data[["Date", "Open", "High", "Low", "Close", "Volume"]]
        # Ensure 'Open' and 'Close' are valid Series
        if not isinstance(data["Open"], pd.Series) or not isinstance(data["Close"]
            raise TypeError("Columns 'Open' and 'Close' are not valid Pandas Seri
        # Convert to numeric (handling any potential string or NaN values)
        data["Open"] = pd.to_numeric(data["Open"], errors="coerce")
        data["Close"] = pd.to_numeric(data["Close"], errors="coerce")
        # Step 3: Drop rows with missing values (if any)
        data.dropna(inplace=True)
        # Step 4: Calculate overall correlation (Open vs Close)
        overall_correlation = data["Open"].corr(data["Close"])
        print(f"Overall Correlation (Open vs Close): {overall_correlation:.2f}")
        # Step 5: Implement k-fold cross-validation
        kf = KFold(n_splits=5, shuffle=True, random_state=42) # 5-fold cross-val
        correlation_results = []
        # Perform cross-validation
        for train_index, test_index in kf.split(data):
            test_data = data.iloc[test_index]
            # Ensure the test data has enough rows
            if len(test_data) > 1:
                corr = test_data["Open"].corr(test_data["Close"])
                correlation_results.append(corr)
```

```
else:
        correlation_results.append(None)
# Step 6: Create a results table
results_table = pd.DataFrame({
    "Fold": range(1, len(correlation results) + 1),
    "Correlation (Open vs Close)": correlation_results
})
# Print the table
print("\nK-Fold Correlation Results:")
print(results_table)
# Step 7: Visualize the results
plt.figure(figsize=(8, 5))
plt.plot(results_table["Fold"], results_table["Correlation (Open vs Close
plt.axhline(y=overall_correlation, color='r', linestyle='--', label='0ver
plt.title('Correlation Between Open and Close Prices Across K-Folds')
plt.xlabel('Fold')
plt.ylabel('Correlation')
plt.legend()
plt.grid(True)
plt.show()
```

Overall Correlation (Open vs Close): 1.00

K-Fold Correlation Results:

	Fold	Correlation	(Open	vs Close)
0	1			0.998456
1	2			0.998097
2	3			0.998182
3	4			0.998435
4	5			0.998075

Correlation Between Open and Close Prices Across K-Folds

In [5]: pip install yfinance

```
Requirement already satisfied: yfinance in /usr/local/lib/python3.11/site-
      packages (0.2.52)
      Requirement already satisfied: pandas>=1.3.0 in /usr/local/lib/python3.11/
      site-packages (from yfinance) (2.0.0)
      Requirement already satisfied: numpy>=1.16.5 in /usr/local/lib/python3.11/
      site-packages (from yfinance) (1.26.2)
      Requirement already satisfied: requests>=2.31 in /usr/local/lib/python3.1
      1/site-packages (from yfinance) (2.32.3)
      Requirement already satisfied: multitasking>=0.0.7 in /usr/local/lib/pytho
      n3.11/site-packages (from yfinance) (0.0.11)
      Requirement already satisfied: lxml>=4.9.1 in /usr/local/lib/python3.11/si
      te-packages (from yfinance) (4.9.3)
      Requirement already satisfied: platformdirs>=2.0.0 in /usr/local/lib/pytho
      n3.11/site-packages (from yfinance) (3.4.0)
      Requirement already satisfied: pytz>=2022.5 in /usr/local/lib/python3.11/s
      ite-packages (from yfinance) (2023.3.post1)
      Requirement already satisfied: frozendict>=2.3.4 in /usr/local/lib/python
      3.11/site-packages (from yfinance) (2.4.6)
      Requirement already satisfied: peewee>=3.16.2 in /usr/local/lib/python3.1
      1/site-packages (from yfinance) (3.17.8)
      Requirement already satisfied: beautifulsoup4>=4.11.1 in /usr/local/lib/py
      thon3.11/site-packages (from yfinance) (4.12.2)
      Requirement already satisfied: html5lib>=1.1 in /usr/local/lib/python3.11/
      site-packages (from yfinance) (1.1)
      Requirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.11/
      site-packages (from beautifulsoup4>=4.11.1->yfinance) (2.4.1)
      Requirement already satisfied: six>=1.9 in /usr/local/lib/python3.11/site-
      packages (from html5lib>=1.1->yfinance) (1.16.0)
      Requirement already satisfied: webencodings in /usr/local/lib/python3.11/s
      ite-packages (from html5lib>=1.1->yfinance) (0.5.1)
      Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/py
      thon3.11/site-packages (from pandas>=1.3.0->yfinance) (2.8.2)
      Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.1
      1/site-packages (from pandas>=1.3.0->yfinance) (2023.3)
      Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/
      python3.11/site-packages (from requests>=2.31->yfinance) (3.1.0)
      Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/s
      ite-packages (from requests>=2.31->yfinance) (3.4)
      Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python
      3.11/site-packages (from requests>=2.31->yfinance) (1.26.15)
      Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python
      3.11/site-packages (from requests>=2.31->yfinance) (2022.12.7)
      WARNING: Running pip as the 'root' user can result in broken permissions a
      nd conflicting behaviour with the system package manager. It is recommende
      d to use a virtual environment instead: https://pip.pypa.io/warnings/venv
      [notice] A new release of pip available: 22.3.1 -> 25.0
      [notice] To update, run: pip install --upgrade pip
      Note: you may need to restart the kernel to use updated packages.
In [6]:
        import pandas as pd
        import yfinance as yf
        import numpy as np
        # Step 1: Download ETF Data
        def download_etf_data(ticker, start_date, end_date):
            Download historical ETF data using yfinance.
            data = yf.download(ticker, start=start_date, end=end_date)
```

```
data.reset_index(inplace=True)
    return data

# Download ECH data
ticker = "ECH"
data = download_etf_data(ticker, start_date="2015-01-01", end_date="2025-
# Preview data
print(data.head())
data.to_csv("ech_data.csv", index=False)
```

```
[********** 100%********** 1 of 1 completed
                                                   Open Volume
Price
           Date
                    Close
                               High
                                          Low
Ticker
                      ECH
                                ECH
                                          ECH
                                                    ECH
                                                           ECH
      2015-01-02 29.007076 29.360372 28.911391 29.308850 257000
0
      2015-01-05 28.484491 28.948193 28.469770 28.815707
                                                        355800
1
      2015-01-06 28.403532 28.712665 28.359369 28.521297
2
                                                        262300
      2015-01-07 28.543371 28.727380 28.521291 28.609614 373700
3
      2015-01-08 28.734743 28.852508 28.646417 28.778903 139900
```

```
In [7]: with zipfile.ZipFile('tweets.zip', 'r') as zip_ref:
            zip ref.extractall('extracted tweets')
        tweets folder = 'extracted tweets/tweets'
        csv_files = [f for f in os.listdir(tweets_folder) if f.endswith('.csv')]
        # Loop through CSV files and read them into DataFrames
        dfs = []
        for csv_file in csv_files:
            file_path = os.path.join(tweets_folder, csv_file)
            df = pd.read_csv(file_path, sep=';')
            if 'full_text' in df.columns:
                df = df.rename(columns={'full_text': 'tweet_text'})
            elif 'text' in df.columns:
                df = df.rename(columns={'text': 'tweet_text'})
            dfs.append(df)
        # Concatenate all DataFrames into a single DataFrame and display it
        twitter_df = pd.concat(dfs, ignore_index=True)
        twitter_df
```

Out[7]:

<u> </u>	id	created_at	tweet_text	sentiment
0	77522	2020-04-15 01:03:46+00:00	RT @RobertBeadles: Yo ¾ \nEnter to WIN 1,000 Mon	positive
1	661634	2020-06-25 06:20:06+00:00	#SriLanka surcharge on fuel removed!\n █ ፟ \ \nThe	negative
2	413231	2020-06-04 15:41:45+00:00	Net issuance increases to fund fiscal programs	positive
3	760262	2020-07-03 19:39:35+00:00	RT @bentboolean: How much of Amazon's traffic	positive
4	830153	2020-07-09 14:39:14+00:00	\$AMD Ryzen 4000 desktop CPUs looking 'great' a	positive
•••	•••			
928668	938668	2020-07-16 00:00:25+00:00	RT @MadMraket: We tend to spend lot of time in	NaN
928669	938669	2020-07-16 00:00:23+00:00	You \n\n\$SPX \$SPY #ES_F	NaN
928670	938670	2020-07-16 00:00:23+00:00	\$KO Coca-Cola #Options #maxpain Chart, Open In	NaN
928671	938671	2020-07-16 00:00:06+00:00	Here's a dividends watchlist \nfor the 01/04/0	NaN
928672	938672	2020-07-16 00:00:00+00:00	\$AAL \$TWTR \$SPCE \$AZN \$ERI \$RCL \$JNJ \$AA \$SNBR	NaN

928673 rows × 4 columns

```
In [8]: twitter_df['created_at'] = pd.to_datetime(twitter_df['created_at']).dt.tz
# Create a DataFrame containing only retweets
retweets_df = twitter_df[twitter_df['tweet_text'].str.startswith('RT')]

# Create a DataFrame containing tweets that are not retweets
remainder_df = twitter_df[~twitter_df['tweet_text'].str.startswith('RT')]

# Display the DataFrames
print("## Retweets DataFrame:")
print("This DataFrame contains only retweets from the Twitter data.")
display(retweets_df)

print("\n## Remainder DataFrame:")
print("This DataFrame contains tweets that are not retweets.")
display(remainder_df)
```

Retweets DataFrame:

This DataFrame contains only retweets from the Twitter data.

	id	created_at	tweet_text	sentiment
0	77522	2020-04-14 21:03:46-04:00	RT @RobertBeadles: Yo് \nEnter to WIN 1,000 Mon	positive
3	760262	2020-07-03 15:39:35-04:00	RT @bentboolean: How much of Amazon's traffic	positive
5	27027	2020-04-12 17:52:56-04:00	RT @QuantTrend: Reduce your portfolio RISK! GO	positive
7	392845	2020-06-01 21:12:29-04:00	RT @ArjunKharpal: #Apple has cut the prices of	negative
8	313771	2020-05-07 00:58:41-04:00	RT @SMA_alpha: The #CDC U.S. New Case data has	negative
•••				
928659	938659	2020-07-15 20:01:05-04:00	RT @tradewithdough: #India is adding millions	NaN
928662	938662	2020-07-15 20:00:57-04:00	RT @WarlusTrades: \$SPX SPY #ES_F #AMD\n\n▲ Co	NaN
928664	938664	2020-07-15 20:00:42-04:00	RT @BerkshireCapGrp: MEDH GAP FILLED. TIME TO	NaN
928667	938667	2020-07-15 20:00:26-04:00	RT @CoronaStocks: Boeing is Facing Major Headw	NaN
928668	938668	2020-07-15 20:00:25-04:00	RT @MadMraket: We tend to spend lot of time in	NaN

350752 rows × 4 columns

Remainder DataFrame:

This DataFrame contains tweets that are not retweets.

	id	created_at	tweet_text	sentiment
1	661634	2020-06-25 02:20:06-04:00	#SriLanka surcharge on fuel removed!\n █ ፟ \ \nThe	negative
2	413231	2020-06-04 11:41:45-04:00	Net issuance increases to fund fiscal programs	positive
4	830153	2020-07-09 10:39:14-04:00	\$AMD Ryzen 4000 desktop CPUs looking 'great' a	positive
6	472959	2020-06-09 01:23:06-04:00	\$863.69 Million in Sales Expected for Spirit A	positive
9	267894	2020-05-04 11:16:29-04:00	Where to Look for Dependable Dividends\nRead M	neutral
•••				•••
928666	938666	2020-07-15 20:00:32-04:00	Real-Time Data Recovery Stalled Amid COVID-19	NaN
928669	938669	2020-07-15 20:00:23-04:00	You \n\n\$SPX \$SPY #ES_F	NaN
928670	938670	2020-07-15 20:00:23-04:00	\$KO Coca-Cola #Options #maxpain Chart, Open In	NaN
928671	938671	2020-07-15 20:00:06-04:00	Here's a dividends watchlist \nfor the 01/04/0	NaN
928672	938672	2020-07-15 20:00:00-04:00	\$AAL \$TWTR \$SPCE \$AZN \$ERI \$RCL \$JNJ \$AA \$SNBR	NaN

577921 rows × 4 columns

```
In [9]: # Get weekly tweet counts
weekly_counts = twitter_df.set_index('created_at').resample('W-MON', labe
weekly_counts = weekly_counts.rename_axis(index="Week Starting")
display(weekly_counts)
```

id tweet_text sentiment

Week Starting

2020-04-06 00:00:00-04:00	33291	33291	39
2020-04-13 00:00:00-04:00	90678	90678	143
2020-04-20 00:00:00-04:00	84788	84788	106
2020-04-27 00:00:00-04:00	52106	52106	71
2020-05-04 00:00:00-04:00	70438	70438	90
2020-05-11 00:00:00-04:00	0	0	0
2020-05-18 00:00:00-04:00	0	0	0
2020-05-25 00:00:00-04:00	35982	35982	53
2020-06-01 00:00:00-04:00	75666	75666	100
2020-06-08 00:00:00-04:00	73845	73845	98
2020-06-15 00:00:00-04:00	81982	81982	124
2020-06-22 00:00:00-04:00	90650	90650	122
2020-06-29 00:00:00-04:00	79637	79637	121
2020-07-06 00:00:00-04:00	93789	93789	129
2020-07-13 00:00:00-04:00	65821	65821	104


```
In [11]: # Discover stock symbols and hashtags
    twitter_df['cashtags_hashtags'] = twitter_df['tweet_text'].str.findall(r'
    twitter_df.explode('cashtags_hashtags')['cashtags_hashtags'].str.lower().
```

```
Out[11]: cashtags_hashtags
         stocks
                         262381
                         190857
         spx
         aapl
                         123629
         spy
                         115031
                         108484
         amzn
                          85685
         fb
                           66068
         65
         stockmarket
                           65091
         msft
                          62018
         trading
                           60261
         Name: count, dtype: int64
```

```
In [14]: # Define a function to check for S&P 500 mentions with variations
         def contains_spy(text):
             # Handle variations in spacing, "&", and case
             text = text.lower() # Convert to lowercase for case-insensitive mate
             text = re.sub(r"[^a-zA-Z0-9]", "", text) # Remove special character
             # Check for different patterns
             patterns = [
                 r"\bspy\b", # Using word boundaries (\b) to avoid capturing part
                 r"\$spy", # Cashtag
                 r"#spy", # Hashtag
                 r"\b\$spy\b", # Cashtag with word boundaries
                 r"\b#spy\b", # Hashtag with word boundaries
                 r"\bspdr\b", # Full name part using word boundaries
                 r"\bs\&p 500 etf\b", # Full name part with variations using word
                 r"\bs\&p500 etf\b", # Full name part with variations using word
                 r"\bsp500 etf\b" # Full name part with variations using word bou
                 r"\bspy etf\b" # Full name part with variations using word bound
                 # ...add more variations as needed...
             ]
             return any(re.search(pattern, text) for pattern in patterns)
         # Apply the function to filter the DataFrame and display it
```

filtered_twitter_df = twitter_df[twitter_df['tweet_text'].apply(contains_ filtered_twitter_df

Out[14]:		id	created_at	tweet_text	sentiment	cashtags_hashtags
	32	36981	2020-04- 13 13:31:40- 04:00	TOS frozen for anyone else? \n\n#es_f \$spx \$spy	neutral	[es, spx, spy, options, futures, cl, forex]
	43	145407	2020-04- 21 09:20:35- 04:00	\$ES_F Needs to trade \$90s+ or \$2640-\$2650 on d	neutral	[ES, SPY, SPX]
	63	472181	2020-06- 09 03:44:58- 04:00	Remember the turn? Now start preparing for the	negative	[TSLA, SPY, GILD, ABBV, PFE, TEVA, TDOC, VIX,
	65	22115	2020-04-11 15:22:03- 04:00	#ES_F #CL_F #NQ_F \$GOLD #OOTT #OATT \$SPY \$SPX	neutral	[ES, CL, NQ, GOLD, OOTT, OATT, SPY, SPX, Tradi
	78	530059	2020-06- 15 08:45:55- 04:00	Only in America do people believe that buying	positive	[SPX, SPY]
	•••		•••		•••	
	928632	938631	2020-07-15 20:04:42- 04:00	RT @WarlusTrades: \$SPX SPY #ES_F #AMD\n\n. Co	NaN	[SPX, ES, AMD]
	928639	938639	2020-07-15 20:03:56- 04:00	@idekthepoint sorry Dinky its too much for you	NaN	[SPX, SPY]
	928652	938652	2020-07-15 20:02:21- 04:00	lows. This is shaping up for another nice sell	NaN	[economy, SPX, NDX, LVGO, DDOG, CRWD, TSLA, SP
	928662	938662	2020-07-15 20:00:57- 04:00	RT @WarlusTrades: \$SPX SPY #ES_F #AMD\n\n. Co	NaN	[SPX, ES, AMD]
	928669	938669	2020-07-15 20:00:23- 04:00	You \n\n\$SPX \$SPY #ES_F	NaN	[SPX, SPY, ES]

99246 rows × 5 columns

In []: