# Vv556 Methods of Applied Mathematics I Linear Operators

Date Due: 12:10 PM, Thursday, the 27th of September 2018



This assignment has a total of (18 Marks).

#### Exercise 2.1

i) Let  $(V, \langle \cdot, \cdot \rangle_{\mathbb{R}})$  be a real inner product space and  $||x|| = \sqrt{\langle x, x \rangle}$  the norm induced by the inner product. Prove the real polarisation identity:

$$\langle x, y \rangle_{\mathbb{R}} = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$$

### (2 Marks)

ii) Let  $(V, \langle \cdot, \cdot \rangle_{\mathbb{C}})$  be a complex inner product space and  $||x|| = \sqrt{\langle x, x \rangle}$  the norm induced by the inner product. Prove the *complex polarisation identity*:

$$\langle x, y \rangle_{\mathbb{C}} = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2) + \frac{i}{4} (\|x - iy\|^2 - \|x + iy\|^2)$$

#### (2 Marks)

iii) Let V be a real or complex vector space. Show that every norm on V, if it is induced by some inner product, satsfies the  $parallelogram\ rule$ :

$$||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$$
 for all  $x, y \in V$ 

#### (2 Marks)

- iv) Prove that the norm  $\|\cdot\|_{\infty}$ :  $f \mapsto \sup_{x \in [a,b]} |f(x)|$  on C([a,b]) is not induced by an inner product, i.e., there exists no inner product  $\langle \cdot, \cdot \rangle$  such that  $\|\cdot\|_{\infty} = \sqrt{\langle \cdot, \cdot \rangle}$ .

  (2 Marks)
- v) Show that every norm that satisfies the parallelogram rule is induced by an inner product. For simplicity, consider a real vector space only. *Instructions:* 
  - Use the polarization identity to define an inner product from the norm.
  - Show that the so-defined inner product satisfies  $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$ .
  - Then deduce that  $\langle x, \lambda y \rangle = \lambda \langle x, y \rangle$  for rational  $\lambda \in \mathbb{Q}$ .
  - Use the continuity of the norm to conclude that the equality holds in fact for  $\lambda \in \mathbb{R}$ .
  - Verify the other properties for an inner product.

## (4 Marks)

## Exercise 2.2

We define the following spaces of complex-valued sequences  $(a_n)_{n\in\mathbb{N}}$ :

$$\ell^1 = \left\{ (a_n)_{n \in \mathbb{N}} \colon \sum_{n=0}^{\infty} |a_n| < \infty \right\}, \qquad c_0 = \left\{ (a_n)_{n \in \mathbb{N}} \colon \lim_{n \to \infty} a_n = 0 \right\},$$

and norms

$$\|(a_n)\|_1 = \sum_{n=0}^{\infty} |a_n|,$$
  $\|(a_n)\|_{\infty} = \sup_{n \in \mathbb{N}} |a_n|.$ 

- i) Is  $\ell^1$  dense in  $c_0$  in the  $\|\cdot\|_{\infty}$  norm? Why or why not? Explain! (3 Marks)
- ii) Is  $\ell^1$  dense in  $c_0$  in the  $\|\cdot\|_1$  norm? Why or why not? Explain! (3 Marks)