TP3 - Structures de données avancées

Objectifs : manipuler des structures de données complexes.

Temps: 1 séance (2h00)

1 Avant de commencer

Il est demandé d'utiliser la version 3 de Python

Dans les exercices suivants, vous devrez remplir les morceaux de code manquant (marqués par le mention @TODO). La correction étant automatisée, faites attention à ne pas modifier le reste.

2 Alerte à la bombe (20 points)

C'est la panique dans le ville A! On a découvert une bombe dans le QG de l'Association des Héros! Heureusement, la police est intervenue à temps et est parvenue à la désamorcer. Elle est maintenant à la recherche de l'auteur du méfait, et a pour cela demandé l'aide du héro Croc d'Argent pour l'identifier.

Pour ce faire, il a à sa disposition, en plus des **coordonnées de la bombe** (X_b, Y_b) , les données du traceur GPS des différents suspects préalablement identifiés par la police, qui portaient alors des mouchards émettant leurs coordonnées au début de chaque minute. Il sait également que chaque suspect marchait à **une vitesse maximale de 6 km/h ou 100 m/minutes**, et qu'il a pu se déplacer en ligne droite partout dans la ville, c'est-à-dire dans n'importe quelle direction sans obstacles. Toutes les coordonnées sont exprimées en mètres. À l'aide de ces informations, aidez Croc d'Argent à déterminer qui sont les suspects qui ont pu poser la bombe retrouvée.

En entrée, vous avez :

- les coordonnées de la bombe $(0 \le X_b \le 10^6 \text{ et } 0 \le Y_b \le 10^6)$;
- deux entiers N et T représentant le nombre de suspects et le nombre de positions successives enregistrées à chaque minute par le tracker pour chacun des suspects $(1 \le N \le 500 \text{ et } 2 \le T \le 1000)$;

Ensuite, pour chacun des N suspects un tuple < string, list > composé de :

• une chaîne de caractères S correspondant au nom du suspect, et contenant uniquement des lettres [a-z : A-Z];

• une liste de T éléments où chaque élément est un tuple < nombre, nombre > composé de nombres à virgules X_t et Y_t séparés par des espaces représentant les coordonnées du suspect à l'instant t $(0 \le X_t \le 10^6)$.

Note: Les positions successives de chaque suspect sont données dans l'ordre chronologique, la première à t=0 puis les autres espacées d'une minute de la précédente.

La sortie doit être un set contenant les noms des suspects ayant pu poser la bombe. Note : Il y a toujours au moins un suspect ayant pu poser la bombe. On ne s'intéresse pas à ce qu'a pu faire le suspect avant la première ou après la dernière position relevée.

2.1 Exemple

Entrée	Sortie attendue
150 100	
2 8	
Nyan	
300 300	
325 250	
275 225	
225 250	
200 175	
125 150	
75 175	Garou
50 225	Garou
Garou	
25 25	
50 75	
100 100	
175 75	
250 50	
275 100	
325 100	
350 175	

Figure 1: Nyan est en bleu, Garou en rouge, 1 case = 25m

2.2 Rappels

La distance entre deux points d'un repère orthonormé en deux dimensions se calcule de la manière suivante :

$$dist(P1, P2) = \sqrt{(x_{p1} - x_{p2})^2 + (y_{p1} - y_{p2})^2}$$
 (1)

Et c'est en réalité l'application du théorème de Pythagore avec le calcul de la longueur de l'hypoténuse d'un triangle rectangle :

$$A^2 = B^2 + C^2 (2)$$

$$A = \sqrt{B^2 + C^2} \tag{3}$$

3 Consignes de rendu

Lorsque votre TP est terminé, récupérez les fichiers de votre programme .py, déposez les dans un dossier qui a pour nom "prénom1_nom1_prénom2_nom2_TPX" en replaçant prénom et nom par ceux des binômes et en remplaçant le TP X par le numéro de TP. Compressez le sous format .zip, .rar ou tar.gz puis envoyez le à l'adresse mickael.bettinelli@lcis.grenoble-inp.fr.

Ce TP est à rendre au plus tard pour le début de la séance suivante.

4 Référence

Cet exercice est tiré de la Battle dev du Shaker 2019. Il a par la suite été légèrement modifié.