Laboratorium Podstaw Elektroniki				
Kierunek	Specjalność	Rok studiów	Symbol grupy lab.	
Informatyka	_	I		13
Temat Laboratorium	<u> </u>			Numer lab.
Ćwiczenia wprowadzające			1	
Skład grupy ćwiczeniowej oraz numery inde	ksów			•
Piotr Więtczak(1		ıny(136693), Kamil	Basiukajc(136681)	
Uwagi			Ocena	

1 Ćwiczenia wprowadające

1.1 Rezystory

Cel

W tym ćwiczeniu należy odczytać wartość rezystancji na podstawie kodu paskowego rezystorów lub oznaczeń oraz dokonać pomiaru wartości rezystancji przy pomocy multimetru RIGOL DM3051, pamiętając przy tym o poprawnym zapisaniu jednostek podczas wypełniania tabeli 1.

Wartości odczytów i wyniki pomiarów rezystancji

R	Barwa/oznaczenia	Odczyt	Pomiar
R_1	żółty - fioletowy - czewony - złoty	$4.7k\Omega$	$4.634k\Omega$
R_2	czerwony - czarny - zielony - złoty	$2M\Omega$	$2.009M\Omega$
R_3	czerwony - czerwony - czerwony - złoty	$2.2k\Omega$	$2.132k\Omega$
R_4	czerwony - czerwony - brązowy - złoty	220Ω	219.320Ω
R_5	brązowy - czarny - czerwony - złoty	$1k\Omega$	0.976Ω
R_6	10R	10Ω	10.71Ω

Tablica 1: Wartości odczytów i pomiarów rezystancji

1.2 Kondensatory

Cel

W tym ćwiczeniu należy odczytać wartość pojemności kondensatorów na podstawie ich oznaczeń oraz dokonać pomiaru wartości pojemności przy pomocy mostka pomiarowego, pamiętając przy tym o poprawnym zapisaniu jednostek podczas wypełniania tabeli 2.

Wartości odczytów i wyniki pomiarów pojemności

C	Oznaczenia	Odczyt	Pomiar
C_1	$47\mu F$ $35V$	47μF	44.31μF
C_2	$100\mu F$ 63V	100μF	99.14μF
C_3	$2.2\mu F$ 50V	2.2μF	2.131μF
C_4	22μF 25V	22μF	22.081μF
C_5	103 10nF	10 <i>nF</i>	9.22 <i>nF</i>
C ₆	102 1 <i>nF</i>	1nF	0.912 <i>nF</i>

Tablica 2: Wartości odczytów i pomiarów pojemności

1.3 Cewki

Cel

W tym ćwiczeniu należy dokonać pomiaru indukcyjności wybranej cewki przy pomocy mostka pomiarowego, pamiętając przy tym o poprawnym zapisaniu jednostek podczas wypełniania tabeli 3.

Wynik pomiaru indukcyjności

$oxed{L}$	Pom	iar
L_1	30.8	μН

Tablica 3: Wartości odczytów i pomiarów indukcyjności

2 Obwody

2.1 Obliczanie rezystancji zastępczej

Cel

W tym ćwiczeniu należy obliczyć rezystancję zastępczą od strony zacisków AB dla schematu przedstawionego na rysunku 1 oraz zapisać pełne wyprowadzenie wzoru rezystancji zastępczej

Rysunek 1: Obwód rezystancyjny

Wyprowadzenie wzoru i obliczenie rezystancji zastępczej dla obwodu z rysunku 1

$$R_{56} = \frac{1}{\frac{1}{R_5} + \frac{1}{R_6}}$$

$$R_{1234} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}}$$

$$R_{89} = \frac{1}{\frac{1}{R_8} + \frac{1}{R_9}}$$

$$R_z = R_7 + \frac{1}{\frac{1}{R_5} + \frac{1}{R_6}} + \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}} + \frac{1}{\frac{1}{R_8} + \frac{1}{R_9}}$$

$$R_z = 1000\Omega + \frac{1}{\frac{1}{100\Omega} + \frac{1}{200\Omega}} + \frac{1}{\frac{1}{2000\Omega} + \frac{1}{3000\Omega} + \frac{1}{1000\Omega}} + \frac{1}{1000\Omega} + \frac{1}{1100\Omega} \approx 1243.258772\Omega$$

2.2 Budowanie obwodów rezystancyjnych

Cel

Celem tego ćwiczenia jest:

- Przy pomocy stykowej płytki prototypowej zbudować wszystkie obwody pokazane na rysunkach 2, 4, 6, 8,
 10. 12.
- Przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji dokonać pomiaru rezystancji zastępczej od strony zacisków AB.
- Wyprowadzić wzory na poszczególne rezystancje zastępcze od strony zacisków AB.
- Napisać z czego wynikają różnice między pomiarem, a obliczeniami.

2.2.1 Obwód (a)

Rysunek 2: Obwód (a)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzing na rysunku 3.

Rysunek 3: obwód (a)

Dla obwodu z rysunku 2 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik 808.125Ω.

Wyprowadzenie wzoru i obliczenie rezystancji zastępczej dla obwodu z rysunku 2

$$R_{23} = R_2 + R_3$$

$$R_z = \frac{1}{\frac{1}{R_{23}} + \frac{1}{R_1}} = \frac{(R_2 + R_3)R_1}{R_1 + R_2 + R_3}$$

$$R_z = \frac{(2200\Omega + 2200\Omega)1000\Omega}{1000\Omega + 2200\Omega + 2200\Omega} = \frac{4400000\Omega}{5400\Omega} \approx 814.8148\Omega$$

2.2.2 Obwód (b)

Rysunek 4: Obwód (b)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzing na rysunku 5.

fritzing

Rysunek 5: obwód (b)

Dla obwodu z rysunku 4 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik $95.523k\Omega$.

Wyprowadzenie wzoru i obliczenie rezystancji zastępczej dla obwodu z rysunku 4

$$R_{12} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$$

$$R_{1235} = R_{12} + R_3 + R_5$$

$$R_z = \frac{1}{\frac{1}{R_4} + \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} + R_3 + R_5}$$

$$R_z = \frac{1}{\frac{1}{1000\Omega} + \frac{1}{1000\Omega} + 1000\Omega} = \frac{14300}{151} \approx 94.7\Omega$$

2.2.3 Obwód (c)

Rysunek 6: Obwód (c)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzing na rysunku 7.

Rysunek 7: obwód (c)

Dla obwodu z rysunku 6 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik $2.161k\Omega$.

Wyprowadzenie wzoru i obliczenie rezystancji zastępczej dla obwodu z rysunku 6

$$R_z = R_1$$
$$R_z = 2200\Omega$$

2.2.4 Obwód (d)

Rysunek 8: Obwód (d)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzing na rysunku 9.

Rysunek 9: obwód (d)

Dla obwodu z rysunku 8 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik 739.364Ω.

Wyprowadzenie wzoru i obliczenie rezystancji zastępczej dla obwodu z rysunku 8

$$R_{51} = R_5 + R_1$$

$$R_{152} = \frac{1}{\frac{1}{R_2} + \frac{1}{R_{51}}}$$

$$R_{3152} = R_3 + R_{152}$$

$$R_z = \frac{1}{\frac{1}{R_4} + \frac{1}{R_{3152}}}$$

$$R_z = \frac{1}{\frac{1}{R_4} + \frac{1}{R_3 + \frac{1}{R_5 + R_1}}}$$

$$R_z = \frac{1}{\frac{1}{1000\Omega} + \frac{1}{2200\Omega} + \frac{1}{\frac{1}{100\Omega} + \frac{1}{1000\Omega}}} \approx 745.76\Omega$$

2.2.5 Obwód (e)

Rysunek 10: Obwód (e)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzing na rysunku 11.

Rysunek 11: obwód (e)

Pomiar rezystancji

Dla obwodu z rysunku 10 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik $1.237k\Omega$.

Wyprowadzenie wzoru i obliczenie rezystancji zastępczej dla obwodu z rysunku 10

$$R_{34} = \frac{1}{\frac{1}{R_3} + \frac{1}{R_4}}$$

$$R_{234} = R_2 + R_{34}$$

$$R_z = \frac{1}{\frac{1}{R_1} + \frac{1}{R_{234}}}$$

$$R_z = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2 + \frac{1}{1}}}$$

$$R_z = \frac{1}{\frac{1}{R_2 + \frac{1}{R_3} + \frac{1}{R_4}}} \approx 1248.6486\Omega$$

$$R_z = \frac{1}{\frac{1}{2200\Omega} + \frac{1}{12200\Omega} + \frac{1}{1000\Omega}}$$

2.2.6 Obwód (f)

Rysunek 12: Obwód (f)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzing na rysunku 13.

Rysunek 13: obwód (e)

Dla obwodu z rysunku 12 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik $1.722k\Omega$.

Wyprowadzenie wzoru i obliczenie rezystancji zastępczej dla obwodu z rysunku 12

$$R_{12} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$$

$$R_{125} = R_{12} + R_5$$

$$R_{1245} = \frac{1}{\frac{1}{R_4} + \frac{1}{R_{125}}}$$

$$R_z = R_3 + R_{1245}$$

$$R_z = R_3 + \frac{1}{\frac{1}{R_4} + \frac{1}{\frac{1}{R_2}} + R_5}$$

$$R_z = 1000\Omega + \frac{1}{\frac{1}{2200\Omega} + \frac{1}{\frac{1}{100\Omega} + \frac{1}{12200\Omega}}} \approx 1731.39841$$

Wnioski na temat przyczyn różnic miedzy wynikami pomiarów, a obliczeń

Różnica między wynikami pomiarów, a obliczeń, może wynikać między innymi z:

- klasy dokładności przyrządów pomiarowych
- dokładności wykonania użytych elementów układu

3 Pomiary napięcia

3.1 Pomiar wartości napięć wyjściowych z zasilacza

Cel

W ćwiczeniu należy dokonać pomiaru napięcia z sekcji DC POWER SUPPLY zestawu laboratoryjnego DF 6911, oraz odpowiedzieć na pytanie, z czego mogą wynikać ewentualne różnice między wartościami odczytanymi, a zmierzonymi.

Tabela z wartościami odczytów i pomiarów

U[V]	Odczyt[V]	Pomiar[V]
1	1	1.107
3	3	3.172
4.5	4.5	4.635
11	11	11.226
13	13	13.183
25	25	25.344
28	28	28.306

Tablica 4: Wartości odczytów i pomiarów

Wnioski na temat przyczyn różnic miedzy pomiarami, a odczytami

Różnica między wynikami pomiarów, a odczytami, może wynikać między innymi z:

• klasy dokładności przyrządów pomiarowych

3.2 Dzielnik napięcia

Cel

W ćwiczeniu należy, przy pomocy praw Kirchhoffa, wyprowadzić wzory oraz zależności opisujące dzielnik napięcia pokazany na rysunku 3. Następnie należy zaprojektować dzielnik napięcia, dobierając odpowiednio rezystory i zbudować go na płycie prototypowej w taki sposób, aby na wyjściu V_{out} (spadek napięcia na rezystorze R_2) otrzymać kolejno napięcia: 2.5V, 3.22V, 1.66V, 4V, 4.54V. Przy realizacji każdego z dzielników należy dokonać

pomiarów napięcia V_{out} i porównać z wartościami otrzymanymi z wyprowadzonego wzoru i dobranych rezystorów.

Rysunek 14: Rezystencjalny dzielnik napięcia

Wyprowadzenie wzoru na V_{out}

$$V_{in} - IR_1 - IR_2 = 0$$

$$IR_2 = V_{out}$$

$$I = \frac{V_{in}}{R_1 + R_2}$$

$$V_{out} = \frac{R_2 V_{in}}{R_1 + R_2}$$

3.2.1 Napięcie na wyjściu $V_{out} = 2.5V$

Rysunek 15: Rezystencjalny dzielnik napięcia

Wyznaczenie stosunku między R₁ i R₂ przy użyciu wyprowadzonego wzoru

$$2.5V = \frac{5VR_2}{R_1 + R_2}$$

$$\frac{2.5V}{5V} = \frac{R_2}{R_1 + R_2}$$

$$\frac{1}{2} = \frac{R_2}{R_1 + R_2}$$

$$\frac{1}{2}R_1 + \frac{1}{2}R_2 = R_2$$

$$R_1 = R_2$$

Obliczenie warości V_{out} dla rezystorów $R_1=2.2k\Omega, R_2=2.2k\Omega$ przy użyciu wyprowadzonego wzoru

$$V_{out} = \frac{2200\Omega \cdot 5V}{2200\Omega + 2200\Omega} = 2.5V$$

Pomiar napięcia V_{out}

Dla dzielnika napięcia dokonano pomiaru napięcia wyjściowego V_{out} przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru napięcia. Multimert wskazał wynik 2.563V.

3.2.2 Napięcie na wyjściu $V_{out} = 3.22V$

Rysunek 16: Rezystencjalny dzielnik napięcia

Wyznaczenie stosunku między R_1 i R_2 przy użyciu wyprowadzonego wzoru

$$\frac{3.22V}{5V} = \frac{R_2}{R_1 + R_2}$$
$$\frac{161}{250}R_1 + \frac{161}{250}R_2 = R_2$$
$$R_1 = \frac{89}{161}R_2$$

Obliczenie warości V_{out} dla rezystorów $R_1=1.22k\Omega, R_2=2.2k\Omega$ przy użyciu wyprowadzonego wzoru

$$V_{out} = \frac{2200\Omega \cdot 5V}{2200\Omega + 1220\Omega} \approx 3.216V$$

Pomiar napięcia V_{out}

Dla dzielnika napięcia dokonano pomiaru napięcia wyjściowego V_{out} przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru napięcia. Multimert wskazał wynik 3.351V.

3.2.3 Napięcie na wyjściu $V_{out} = 1.66V$

Rysunek 17: Rezystencjalny dzielnik napięcia

Wyznaczenie stosunku między R_1 i R_2 przy użyciu wyprowadzonego wzoru

$$\frac{1.66V}{5V} = \frac{R_2}{R_1 + R_2}$$
$$\frac{83}{250}R_1 + \frac{83}{250}R_2 = R_2$$
$$R_1 = \frac{167}{83}R_2$$

Obliczenie warości V_{out} dla rezystorów $R_1=4.4k\Omega, R_2=2.2k\Omega$ przy użyciu wyprowadzonego wzoru

$$V_{out} = \frac{2200\Omega \cdot 5V}{4400\Omega + 2200\Omega} \approx 1, (6)V$$

Pomiar napięcia V_{out}

Dla dzielnika napięcia dokonano pomiaru napięcia wyjściowego V_{out} przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru napięcia. Multimert wskazał wynik 1.695V.

3.2.4 Napięcie na wyjściu $V_{out} = 4V$

Rysunek 18: Rezystencjalny dzielnik napięcia

Wyznaczenie stosunku między R₁ i R₂ przy użyciu wyprowadzonego wzoru

$$\frac{4V}{5V} = \frac{R_2}{R_1 + R_2}$$
$$\frac{4}{5}R_1 + \frac{4}{5}R_2 = R_2$$
$$R_1 = \frac{1}{4}R_2$$

Obliczenie warości V_{out} dla rezystorów $R_1=2.2k\Omega, R_2=8.8k\Omega$ przy użyciu wyprowadzonego wzoru

$$V_{out} = \frac{8800\Omega \cdot 5V}{8800\Omega + 2200\Omega} = 4V$$

Pomiar napięcia V_{out}

Dla dzielnika napięcia dokonano pomiaru napięcia wyjściowego V_{out} przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru napięcia. Multimert wskazał wynik 4.095V.

3.2.5 Napięcie na wyjściu $V_{out} = 4.54V$

Rysunek 19: Rezystencjalny dzielnik napięcia

Wyznaczenie stosunku między R₁ i R₂ przy użyciu wyprowadzonego wzoru

$$\frac{4.54V}{5V} = \frac{R_2}{R_1 + R_2}$$
$$\frac{227}{250}R_1 + \frac{227}{250}R_2 = R_2$$
$$R_1 = \frac{23}{229}R_2$$

Obliczenie warości V_{out} dla rezystorów $R_1=220\Omega, R_2=2.2k\Omega$ przy użyciu wyprowadzonego wzoru

$$V_{out} = \frac{2200\Omega \cdot 5V}{2200\Omega + 220\Omega} \approx 4.(54)V$$

Pomiar napięcia V_{out}

Dla dzielnika napięcia dokonano pomiaru napięcia wyjściowego V_{out} przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru napięcia. Multimert wskazał wynik 4.613V.

4 Pomiary prądu stałego

4.1 Pomiary prądu w obwodzie

Cel

Przy użyciu stykowej płytki prototypowej należy zbudować obwód pokazany na rysunku 20 oraz dokonać pomiarów spadku napięcia na rezystorze R i natężenia prądu w obwodzie, pamiętając przy tym o zapisaniu jednostek.

Rysunek 20: Obwód do badania napięć i prądów

Wyniki pomiarów

Natężenie prądu	Spadek napięcia
2.144A	5.037V

Tablica 5: Tabela pomiarów spadku napięcia na rezystorze R i natężenia prądów w obwodzie

4.2 Pomiary prądów i napięć

Cel

Dla obwodu z rysunków 21, 22 należy sprawdzić prawa Kirchhoffa, dokonując stosownych pomiarów (spadki napięć na rezystorach oraz prądy w gałęziach) oraz obliczeń analitycznych, a następnie porównać otrzymane wartości ze sobą.

4.2.1 Obwód (a)

Rysunek 21: Obwód (a) do badania prądów i napięć w obwodzie

Wyniki pomiarów

Rezystor	Prądy w obwodzie	Napięcia w obwodzie
R_1	2.321 <i>mA</i>	5.037V
R_2	1.763 <i>mA</i>	4.202V
R_3	0.554mA	1.228V
R_4	1.212 <i>mA</i>	1.573V

Tablica 6: Tabela pomiarów spadków napięć na rezystorach oraz prądów na gałęziach

Obliczenia analityczne dla obwodu (a)

$$R_{34} = \frac{1}{\frac{1}{R_3} + \frac{1}{R_4}}$$

$$R_{34} = \frac{R_3 R_4}{R_3 + R_4}$$

$$R_{234} = R_2 + R_{34}$$

$$R_z = \frac{1}{\frac{1}{R_1} + \frac{1}{R_{234}}}$$

$$R_z = \frac{R_1 R_{234}}{R_1 + R_{234}} = 1248.65\Omega$$

$$R = \frac{U}{I}$$

$$I = \frac{U}{R}$$

$$I = \frac{5V}{1248.65\Omega}$$

$$I = 0.004A$$

$$U_1 = 5V$$

$$I_1 = \frac{5V}{2200\Omega} = 0.0023A$$

$$5V - I_{34}R_{34} - I_{2}R_{2} = 0$$

$$I_{34} = I_2 = I - I_1$$

$$I_2 = I_{34} = 0.004A - 0.0023A = 0.0017A$$

$$U_2 = I_{2}R_2 = 0.0017A \cdot 2.2k\Omega = 3.47V$$

$$U_3 = U_4 = U - U_2 = 1.26V$$

Wnioski wynikające z porównania pomiarów i obliczeń analitycznych dla obwodu (a)

Dokonując porównania pomiarów i obliczeń analitycznych dla obwodu (a), uwzględniając błąd pomiarowy, można stwierdzić, że obliczeń i pomiarów dokonano prawidłowo.

4.2.2 Obwód (b)

Rysunek 22: Obwód (b) do badania prądów i napięć w obwodzie

Wyniki pomiarów

Rezystor	Prądy w obwodzie	Napięcia w obwodzie
R_1	0.929mA	2.061V
R_2	0.464 <i>mA</i>	1.407V
R_3	0.412 <i>mA</i>	1.110V
R_4	0.928 <i>mA</i>	2.290V

Tablica 7: Tabela pomiarów spadków napięć na rezystorach oraz prądów na gałęziach

Obliczenia analityczne dla obwodu (b)

$$R_{23} = \frac{1}{\frac{1}{R_2} + \frac{1}{R_3}}$$

$$R_{23} = \frac{R_2 R_3}{R_2 + R_3}$$

$$R_z = R_4 + R_1 + R_{23}$$

$$R_z = R_4 + R_1 + \frac{R_2 R_3}{R_2 + R_3}$$

$$R_z = \frac{440000\Omega}{44000\Omega} = 5500\Omega$$

$$R_z = \frac{U}{I}$$

$$I = \frac{U}{R_z}$$

$$I = \frac{5V}{5500\Omega} = 0,0009A$$

$$R = \frac{U}{I}$$

$$U = IR$$

$$U_1 = I_1 R_1$$

$$I_1 = I_4$$

$$R_1 = R_4$$

$$U_1 = U_4 U_1 = 0.009A \cdot 2200\Omega$$

$$U_1 = 1.98V$$

$$U_4 = 1.98V$$

$$R_2 = R_3$$

$$I_2 = I_3$$

$$I_2 = \frac{1}{2}I_1$$

$$I_2 = 0.00045A$$

$$U_2 = 0.00045A \cdot 2200\Omega = 0.99V$$

$$U_3 = 0.99V$$

Wnioski wynikające z porównania pomiarów i obliczeń analitycznych dla obwodu (b)

Dokonując porównania pomiarów i obliczeń analitycznych dla obwodu (b), uwzględniając błąd pomiarowy, można stwierdzić, że obliczeń i pomiarów dokonano prawidłowo.

Spis treści

1	Ćwi	zenia wprowadające	1		
	1.1	Rezystory	1		
	1.2	Kondensatory	1		
	1.3	Cewki	2		
2	Obv	o dy	3		
	2.1	Obliczanie rezystancji zastępczej	3		
	2.2	Budowanie obwodów rezystancyjnych	4		
		2.2.1 Obwód (a)	4		
		2.2.2 Obwód (b)	5		
		2.2.3 Obwód (c)	6		
		2.2.4 Obwód (d)	7		
		2.2.5 Obwód (e)	9		
		2.2.6 Obwód (f)	10		
3	Pom	ary napięcia	12		
	3.1 Pomiar wartości napięć wyjściowych z zasilacza				
	3.2	Dzielnik napięcia	12		
		3.2.1 Napięcie na wyjściu $V_{out} = 2.5V$	13		
		3.2.2 Napięcie na wyjściu $V_{out} = 3.22V$	14		
		3.2.3 Napięcie na wyjściu $V_{out} = 1.66V$	15		
		3.2.4 Napięcie na wyjściu $V_{out} = 4V$	16		
		3.2.5 Napięcie na wyjściu $V_{out} = 4.54V$	17		
4	Pom	niary prądu stałego			
	4.1	Pomiary prądu w obwodzie	18		
	4.2	Pomiary prądów i napięć	19		
		4.2.1 Obwód (a)	19		
		4.2.2 Obwód (b)	2.1		