Module G12 : Probabilités de base.

Examen 1^{re} session : durée 2 heures.

Documents autorisés : notes personnelles de cours.

Mardi 4 janvier 2005.

Exercice 1. Soient $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et a>0. On note, pour tout $n\geq 1$,

$$S_n = X_1 + \ldots + X_n$$
, $Y_n = X_n \mathbf{1}_{\{|X_n| \le a\}}$, $T_n = Y_1 + \ldots + Y_n$.

- 1. Soit C_S (respectivement C_T) l'ensemble des $\omega \in \Omega$ tels que $(S_n(\omega))_{n\geq 1}$ (respectivement $(T_n(\omega))_{n\geq 1}$) converge.
 - (a) Vérifier que $C_S = C_S \cap (\liminf\{|X_n| \le a\}) = C_T \cap (\liminf\{|X_n| \le a\}).$
- (b) Établir que si $(T_n)_{n\geq 1}$ converge presque sûrement et $\sum_{n\geq 1} \mathbb{P}(\{|X_n|>a\})<+\infty$ alors $(S_n)_{n\geq 1}$ converge presque sûrement.
- (c) On suppose maintenant que $(S_n)_{n\geq 1}$ converge presque sûrement. Montrer que $(T_n)_{n\geq 1}$ converge presque sûrement, que $\mathbb{P}(\liminf\{|X_n|\leq a\})=1$ puis que $\sum_{n\geq 1}\mathbb{P}(\{|X_n|>a\})<+\infty$.
- 2. (a) Vérifier que, pour tout $n \geq 1, Y_n \in L^2$. Montrer que lorsque les deux séries

$$\sum_{n>1} \mathbb{E}[Y_n], \qquad \sum_{n>1} \mathbb{V}(Y_n)$$

convergent dans \mathbb{R} , $(T_n)_{n\geq 1}$ converge presque sûrement.

(b) En déduire le théorème suivant dit des trois séries : si les séries

$$\sum_{n\geq 1} \mathbb{P}(\{|X_n| > a\}), \qquad \sum_{n\geq 1} \mathbb{E}[Y_n], \qquad \sum_{n\geq 1} \mathbb{V}(Y_n)$$

convergent dans \mathbb{R} , alors $(S_n)_{n\geq 1}$ converge presque sûrement dans \mathbb{R} .

Rappels. X suit la loi de Cauchy de paramètre c>0 si X a pour densité $x\longmapsto \frac{1}{\pi}\frac{c}{x^2+c^2}$; on a alors $\varphi_X(t)=e^{-c|t|}$. Enfin, $\lim_{x\to 0}\frac{\arctan x}{x}=1$ et, pour x>0, $\arctan x+\arctan\frac{1}{x}=\frac{\pi}{2}$.

- 3. On suppose dans cette question que, pour tout $n \geq 1$, X_n suit la loi de Cauchy de paramètre $\alpha_n > 0$, avec $\sum_{n \geq 1} \alpha_n < +\infty$; on prend a = 1.
 - (a) Pour tout $n \geq 1$, calculer $\mathbb{P}(\{|X_n| > 1\})$ et $\mathbb{E}[Y_n]$ puis montrer que $\mathbb{V}(Y_n) \leq \frac{2}{\pi}\alpha_n$.
- (b) En déduire que $(S_n)_{n\geq 1}$ converge presque sûrement vers une variable aléatoire réelle S.
 - (c) Déterminer la loi de S.

Exercice 2. Soit $(Z_n)_{n\geq 1}$ une suite de vecteurs aléatoires de \mathbb{R}^2 indépendants et de même loi ; Z_1 est de carré intégrable. Pour tout $n\geq 1, X_n$ et Y_n désignent les composantes de Z_n et on pose $S_n=X_1+\ldots+X_n, T_n=Y_1+\ldots+Y_n$.

On note $\alpha = \mathbb{E}[X_1]$, $\beta = \mathbb{E}[Y_1]$, et $\sigma^2 = \mathbb{V}(\alpha Y_1 - \beta X_1)$; on suppose que $\alpha \neq 0$, $\sigma > 0$.

- 1. (a) Montrer que $\left(\frac{n}{S_n}\mathbf{1}_{\{S_n\neq 0\}}\right)_{n\geq 1}$ converge presque sûrement vers α^{-1} .
- (b) On pose $R_n = \frac{T_n}{S_n} \mathbf{1}_{\{S_n \neq 0\}}$, $r = \frac{\beta}{\alpha}$. Montrer que la suite $(R_n)_{n \geq 1}$ converge presque sûrement vers r.
- (c) On pose $Q_n = \frac{T_n rS_n}{\sqrt{n}}$; montrer que $(Q_n)_{n \geq 1}$ converge en loi vers une v.a.r. Q dont on précisera la loi.
- 2. (a) Montrer que $\left(\left(Q_n, \frac{n}{S_n} \mathbf{1}_{\{S_n \neq 0\}}\right)\right)_{n \geq 1}$ converge en loi vers (Q, α^{-1}) .
 - (b) En déduire que $(\sqrt{n}(R_n-r))_{n\geq 1}$ converge en loi vers G dont on précisera la loi.
- 3. On suppose à présent que Z_1 a pour densité $(x,y) \longmapsto e^{-y} \mathbf{1}_{\mathbb{R}_+^*}(x) \mathbf{1}_{\mathbb{R}_+^*}(y-x)$.
 - (a) Déterminer la loi de X_1 ainsi que celle de Y_1 ?

Rappel. Pour tout $k \ge 1$, $\int_0^{+\infty} x^k e^{-x} dx = k!$

(b) Soit t > 0. Déterminer un réel τ tel que

$$\lim_{n \to +\infty} \mathbb{P}\left(\left\{r - \frac{\tau}{\sqrt{n}} < R_n \le r + \frac{\tau}{\sqrt{n}}\right\}\right) = \sqrt{\frac{2}{\pi}} \int_0^t e^{-\frac{x^2}{2}} dx.$$