производная и дифференциал

§ 13. Производная. Формулы и правила вычисления производных. Дифференциал функции

СПРАВОЧНЫЕ СВЕДЕНИЯ

1. Определение производной. Предел отношения

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

при $\Delta x \to 0$ называется *производной функции* f(x) в точке x_0 . Этот предел обозначают одним из следующих символов:

$$f'(x_0), \quad \frac{df(x_0)}{dx}, \quad f'\big|_{x=x_0}.$$

Таким образом,

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

Если в каждой точке $x \in (a;b)$ существует

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x},$$

т. е. если производная f'(x) существует для всех $x \in (a;b)$, то функция f называется дифференцируемой на интервале (a;b). Вычисление производной называют дифференцированием.

2. Правила вычисления производных, связанные с арифметическими действиями над функциями. Если функции f_1 , f_2 , ..., f_n имеют производные в некоторой точке, то функция

$$f = c_1 f_1 + c_2 f_2 + ... + c_n f_n$$
 ($c_1, c_2, ..., c_n$ — постоянные)

также имеет в этой точке производную, причем

$$f' = c_1 f_1' + c_2 f_2' + \dots + c_n f_n'.$$

Если функции f_1 и f_2 имеют производные в некоторой точке, то и функция $f=f_1f_2$ имеет производную в этой точке, причем

$$f' = f_1 f_2' + f_1' f_2.$$

Если функции f_1 и f_2 имеют производные в некоторой точке и $f_2 \neq 0$ в ней, то функция $f = f_1/f_2$ также имеет производную в этой точке, причем

$$f'=\frac{f_2f_1'-f_1f_2'}{f_2^2}.$$

- 3. Формулы для производных основных элементарных функций.
 - 1) Степенная функция:

$$c' = 0$$
, $c = \text{const}$,
 $(x^{\alpha})' = \alpha x^{\alpha - 1}$, $x > 0$, $\alpha \in R$.

Область существования производной функции x^{α} может быть и шире. Например, если $\alpha \in \mathcal{N}$, то

$$(x^{\alpha})' = \alpha x^{\alpha - 1}, \quad x \in R.$$

2) Показательная функция. Если a>0 и $a\neq 1$, то

$$(a^x)' = a^x \ln a, \quad x \in R;$$

в частности,

$$(e^x)' = e^x, \quad x \in R.$$

3) Логарифмическая функция. Если a > 0 и $a \ne 1$, то

$$(\log_a x)' = \frac{1}{x \ln a}, \quad x > 0; \quad (\log_a |x|)' = \frac{1}{x \ln a}, \quad x \neq 0;$$

в частности,

$$(\ln x)' = 1/x, \quad x > 0; \quad (\ln |x|)' = 1/x, \quad x \neq 0.$$

4) Тригонометрические функции:

$$(\sin x)' = \cos x, \quad x \in R; \quad (\cos x)' = -\sin x, \quad x \in R;$$
 $(\operatorname{tg} x)' = \frac{1}{\cos^2 x}, \quad x \neq \frac{\pi}{2}(2n+1), \quad n \in Z;$
 $(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}, \quad x \neq \pi n, \quad n \in Z.$

5) Обратные тригонометрические функции:

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, \ |x| < 1; \ (\arccos x)' = -\frac{1}{\sqrt{1-x^2}}, \ |x| < 1;$$
 $(\arctan x)' = \frac{1}{1+x^2}, \ x \in R; \ (\arctan x)' = -\frac{1}{1+x^2}, \ x \in R.$

6) Гиперболические функции:

$$(\operatorname{sh} x)' = \operatorname{ch} x, \quad x \in R; \quad (\operatorname{ch} x)' = \operatorname{sh} x, \quad x \in R;$$

 $(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}, \quad x \in R; \quad (\operatorname{cth} x)' = -\frac{1}{\operatorname{sh}^2 x}, \quad x \neq 0.$

4. Вычисление производной сложной функции. Если функция y=f(x) имеет производную в точке x_0 , а функция z=g(y) — в точке $y_0=f(x_0)$, то сложная функция (композиция f и g) $z=\varphi(x)=g(f(x))$ также имеет производную в точке x_0 , причем

$$\varphi'(x_0) = g'(y_0)f'(x_0). \tag{1}$$

Опуская аргумент и используя другое обозначение для производных, формулу (1) можно переписать в виде

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}. (2)$$

Правило вычисления производной сложной функции распространяется на композицию любого конечного числа функций. Например, для сложной функции вида z(y(x(t))) в случае дифференцируемости функций $x(t),\ y(x),\ z(y)$ соответственно в точках $t_0,\ x_0=x(t_0),\ y_0=y(x_0)$ в точке t_0 имеет место равенство

$$\frac{dz}{dt} = \frac{dz}{dy} \frac{dy}{dx} \frac{dx}{dt}.$$

Понятия бесконечной и односторонней производных.

Ecлu

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = +\infty,$$

то говорят, что функция f в точке x_0 имеет бесконечную положительную производную. Аналогично, функция f в точке x_0 имеет бесконечную отрицательную производную, если

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = -\infty.$$

Односторонние пределы

$$\lim_{\Delta x \to +0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \quad \mathsf{H} \quad \lim_{\Delta x \to -0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

называют соответственно правой и левой производными функции f в точке x_0 и обозначают $f'_+(x_0)$ и $f'_-(x_0)$.

Для существования производной функции f в точке необходимо и достаточно существования в этой точке правой и левой производных и их равенство.

Функция f называется $\partial u \phi \phi$ еренцируемой на отрезке [a;b], если она дифференцируема на интервале (a;b) и существуют конечные односторонние производные $f'_+(a)$ и $f'_-(b)$.

6. Производная обратной функции. Пусть функция y = f(x) непрерывна и строго монотонна в некоторой окрестности точки x_0 , и пусть в этой точке существует производная $\frac{df(x_0)}{dx} \neq 0$; тогда обратная функция $f^{-1}(y)$ в точке $y_0 = f(x_0)$ имеет производную, которая может быть найдена по формуле

$$\frac{df^{-1}(y_0)}{dy} = \frac{1}{\frac{df(x_0)}{dx}}.$$

7. Производная функции, заданной параметрически. Пусть функции x=x(t) и y=y(t) определены в некоторой окрестности точки t_0 и параметрически задают в окрестности точки $x=x(t_0)$ функцию y=f(x). Тогда, если x(t) и y(t) имеют в точке t_0 производные и если $\frac{dx(t_0)}{dt} \neq 0$, то функция y=f(x) в точке x_0 также

имеет производную, которая может быть найдена по формуле

$$rac{df(x_0)}{dx} = rac{rac{dy(t_0)}{dt}}{rac{dx(t_0)}{dt}} \, .$$

Эту формулу обычно записывают короче:

$$y_x'(x_0) = \frac{y_t'(t_0)}{x_t'(t_0)}. (3)$$

8. Производная функции, заданной неявно. Если дифференцируемая на некотором интервале функция y=y(x) задана неявно уравнением F(x;y)=0, то ее производную y'(x) можно найти из уравнения

 $\frac{d}{dx}F(x;y) = 0. (4)$

9. Дифференциал функции. Если приращение

$$\Delta y = f(x_0 + \Delta x) - f(x_0)$$

функции y=f(x) в точке x_0 представимо в виде

$$\Delta y = A(x_0)\Delta x + \alpha(\Delta x)\Delta x,\tag{5}$$

где $A(x_0)$ не зависит от Δx и $\alpha(\Delta x) \to 0$ при $\Delta x \to 0$, то функция y=f(x) называется дифференцируемой в точке x_0 , а произведение $A(x_0)\Delta x$ называется ее дифференциалом в точке x_0 и обозначается $df(x_0)$ или $dy|_{x=x_0}$.

Таким образом, если равенство (5) верно, то

$$dy|_{x=x_0} = A(x_0)\Delta x.$$

Дифференциалом dx независимой переменной x называется ее приращение Δx , т. е. по определению полагают $dx = \Delta x$.

Для дифференцируемости функции в точке (т. е. для существования дифференциала) необходимо и достаточно, чтобы функция имела в этой точке конечную производную.

Дифференциал функции y=f(x) в точке x_0 выражается через производную $f'(x_0)$ следующим образом:

$$df(x_0) = f'(x_0)dx. (6)$$

Эта формула позволяет вычислять дифференциалы функций, если известны их производные.

Если функция y=f(x) дифференцируема в каждой точке интервала (a;b), то $dy=f'(x)dx \tag{7}$

для всех $x \in (a; b)$.

Равенство (5) может быть записано в виде

$$y(x_0 + \Delta x) = y(x_0) + dy(x_0) + \alpha(\Delta x)\Delta x.$$

Если $dy(x_0) \neq 0$, то для приближенного вычисления значения функции в точке $x_0 + \Delta x$ можно пользоваться формулой

$$y(x_0 + \Delta x) \approx y(x_0) + dy(x_0), \tag{8}$$

так как абсолютная и относительная погрешности при таком приближении сколь угодно малы при достаточно малом Δx .

10. Свойства дифференциала.

 1° . Для любых дифференцируемых функций u и v справедливы равенства

 $d(\alpha u + \beta v) = \alpha du + \beta dv,$

где α и β — произвольные постоянные,

$$d(uv) = u dv + v du, \quad d\left(\frac{u}{v}\right) = \frac{v du - u dv}{v^2}, \quad v \neq 0.$$

 2° . Формула для дифференциала dy=f'(x)dx справедлива и в том случае, когда x является не независимой переменной, а функцией. Это свойство называют свойством инвариантности формы дифференциала.

ПРИМЕРЫ С РЕШЕНИЯМИ

Пример 1. Вычислить производную функции

$$f = \sqrt[3]{x} \arccos x + 2\log_2 x + e^x/x^2, \quad x \in (0, 1).$$

Пример 2. Вычислить производную функции $z=\ln \sin x$ в точке $x_0=\pi/3$.

• Функция $z=\varphi(x)=\ln\sin x$ является композицией двух функций: $y=f(x)=\sin x$ и $z=g(y)=\ln y$. Функция $f(x)=\sin x$ в точке $x_0=\pi/3$ имеет производную, причем $f'(\pi/3)=\cos(\pi/3)=1/2$. Функция $g(y)=\ln y$ в точке $y_0=\sin x_0=\sin(\pi/3)=\sqrt{3}/2$ также имеет производную, причем $g'(\sqrt{3}/2)=2/\sqrt{3}$. По формуле (1) получаем

$$\varphi'(\pi/3) = g'(\sqrt{3}/2)f'(\pi/3) = (2/\sqrt{3})(1/2) = 1/\sqrt{3}$$
.

Пример 3. Вычислить производную функции

$$z = \sqrt{1 + x^2}, \quad x \in R.$$

lacktriangle Данная функция является композицией функций $y=1+x^2$ и $z=\sqrt{y},$ причем

 $\frac{dy}{dx} = 2x \quad \text{и} \quad \frac{dz}{dy} = \frac{1}{2\sqrt{y}}.$

По формуле (2) получаем

$$\frac{dz}{dx} = \frac{1}{2\sqrt{y}} 2x = \frac{x}{\sqrt{1+x^2}}. \quad \blacktriangle$$