Методика расчета частотного модулятора на варикапе

Частотная модуляция осуществляется в задающем автогенераторе передатчика путем воздействия модулирующих колебаний на несущую частоту, или в маломощном усилителе путем получения фазовой модуляции и преобразования её в частотную.

Наиболее широко применяется первый способ. Обычно процедура расчета схемы ЧМ заключается в совместном расчете автогенератора и модулятора. Рассчитываемая схема приведена на рисунке

Порядок расчета

Рабочая частота автогенератора равна f_p (например, 15 МГц), выходная мощность мала, поэтому выбираемся маломощный транзистор с $f_T >> f_p$ и выписываются его паспортные данные:

$$U_{K\Im_{ДО\Pi}},\ U_{E\Im_{ДО\Pi}},\ I_{K_{ДО\Pi}},\ P_{K_{ДО\Pi}},\ P_{BbIX_{max}},\ f_T,\ r_6,\ R_9,\ r_{HAC},\ C_{KA},\ C_{K\Pi},\ C_9,\ L_9,\ L_6,\ L_K,\ E^{'},\ \beta_0$$

Сначала производится расчет электрического режима:
$$i_{\kappa m} = 0.8i_{\kappa\ \partial on}, U_{\kappa 0} = 0.3U_{\kappa\ \partial on}, K_{oc} = \frac{C_2}{C_1} = 1, \theta \cong 60^o, \quad \alpha_0(\theta), \quad \alpha_1(\theta),$$

$$\gamma_0 = \alpha_0(\theta)(1-\cos\theta), \quad \cos\theta = 90^o$$

$$I_{\kappa 1} = \alpha_1 \cdot I_{\kappa m}, I_{\kappa 0} = \alpha_0 \cdot i_{\kappa m}, U_{\delta 1} = \frac{i_{\kappa m}}{S(1 - \cos \theta)}, U_{\kappa 1} = \frac{U_{\delta 1}}{K_{oc}}, R_{oe} = \frac{U_{\kappa 1}}{I_{\kappa 1}}, P_1 = 0.5I_{\kappa 1} \cdot U_{\kappa 1},$$

$$P_{0} = I_{\kappa 0} \cdot U_{\kappa 0}, P_{K} = P_{0} - P_{1} < P_{\kappa} |_{\mathcal{A}O\Pi}, \eta = \frac{P_{1}}{P_{0}}, E_{cM} = E_{\delta}' - U_{\delta 1} \cdot \cos\theta, |E_{cM} - U_{\delta 1}| < U_{\delta \delta \delta on},$$

$$\xi = \frac{U_{\kappa 1}}{U_{\kappa 0}}, \xi_{\mathit{PP}} = 1 - \frac{i_{\kappa m}}{S_{\mathit{PP}}} \cdot U_{\kappa 0} = 1 - \frac{i_{\kappa m} \cdot r_{\mathit{Hac}}}{U_{\kappa 0}}, \xi < 0.5 \xi_{\mathit{PP}}$$

Значения коэффициентов Берга

она тення кезфендиенте верга				
Θ°	a_0	a_1	CosΘ	1-Cos⊖
50	0.183	0.339	0,643	0.357
55	0.200	0.370	0,550	0.450
60	0.218	0.390	0,500	0.500
65	0.235	0.410	0,410	0.590
70	0.235	0.436	0.342	0.658
75	0.272	0.459	0.242	0.758
80	0.286	0.473	0.174	0.826
85	0.305	0.490	0.070	0.930
90	0.319	0.500	0.000	1.000
95	0.338	0.514	0.104	0.896
100	0.350	0.520	0.174	0.826

Затем рассчитываются элементы колебательного контура.

В диапазоне частот 10...30 МГц оптимальное значение индуктивности контура L_3 лежит в диапазоне 1...10 мкГн с добротностью порядка $Q_L \cong 100...130$. Параметры элементов контура вычисляются:

$$\rho = \omega_p \cdot L_3, C_{\Sigma} = \frac{1}{\omega_p \cdot \rho}, R_p = \rho \cdot Q_p \cong \rho \cdot Q_L, p = \sqrt{\frac{R_{oe}}{R_p}}$$

$$C_2 = C_{\Sigma}/p$$
, $C_1 = C_2 \cdot K_{oc}$, $C_3 = 1/\left(\frac{1}{C_{\Sigma}} - \frac{1}{C_2} - \frac{1}{C_1}\right)$.

Расчет цепи смещения и питания:

$$U_{E} = E_{CM} + \frac{3I_{\kappa 0}}{S} \left[1 + \frac{\cos\theta}{\gamma_{0}(\theta)} \right], R_{MCT} = \frac{3\beta}{4S} \left[1 + \frac{\cos\theta}{\gamma_{0}(\theta)} \right], R_{5} = \frac{3R_{MCT}}{\beta}, E_{II} = U_{\kappa 0},$$

$$R_3 = R_{UCT} \frac{E_{II}}{U_E}, R_4 = \frac{R_3 \cdot U_E}{E_{II} - U_E}, C_4 = \frac{(10...20)}{\omega_p \cdot R_5}, L_1 = \frac{(10...20) \cdot R_p}{\omega_p}$$

Следующим этапом является расчет цепей непосредственно модулятора на варикапе VD.

Для расчета частотного модулятора следует задать исходные данные: среднюю (несущая) частоту модуляции ω_p , девиацию частоты $\Delta\omega_{\mathcal{I}}$, коэффициент

гармоник K_r <5%, диапазон модулирующих частот, например, F = 300...3400 Γ ц.

Из расчета автогенератора известны параметры: $U_{\delta 1}, E_{\varPi}, U_{\kappa 1}, \rho, C_1, C_2, C_3, C_{\Sigma}$.

Выбирается варикап и выписываются его параметры:

- C_0 при E_0 в рабочей точке, добротность Q_0 на частоте f_0 ,
- предельные параметры $U_{\mathcal{L}O\Pi}$, $P_{\mathcal{L}O\Pi}$ и $v=\frac{1}{2}$ (или 1/3)—степень нелинейности емкости,
 - ϕ_{κ} остаточный потенциал.

Целесообразно выбирать варикап так, чтобы E_0 было близко к напряжению источника питания автогенератора $E_{\it \Pi}$.

Процедура расчета приведенной схемы модулятора, следующая:

- нормированное и реальное значения амплитуды модулирующего колебания:

$$U'_{\Omega} = \frac{4}{\nu + 1} K_{\Gamma}, U_{\Omega} = U'_{\Omega} (E_0 + \varphi_{\kappa})$$

- относительная величина изменения емкости варикапа:

$$\frac{\Delta C_B}{C_0} = \frac{4\nu}{\nu + 1} K_{\Gamma}.$$

Коэффициент вклада варикапа в суммарную емкость контура автогенератора:

$$K_B = \frac{2\Delta\omega_{\perp}/\omega_p}{\Delta C_B/C_0}$$

Коэффициент включения варикапа в контур:

$$P_B = \sqrt{\frac{K_B \cdot C_{\Sigma}}{C_0}}$$

Амплитуда высокочастотных колебаний на варикапе $U_{B1} = p_B \cdot U_{\kappa 1} / \rho$.

Величина емкости связи
$$C_{CB} = \frac{U_{g1}}{U_{g1} - U_{g1}} \cdot C_0$$

Уточнение величины емкости $C_1:C_1=C_1^{'}-\frac{C_0\cdot C_{CB}}{C_0+C_{CB}}$, где C_1 – величина этой емкости, полученная в расчете автогенератора.

Далее следует рассчитать делитель R_1R_2 , исходя из условий:

$$E_{II} \frac{R_2}{R_1 + R_2} = E_0, \frac{R_1 \cdot R_2}{R_1 + R_2} << \frac{1}{\Omega_{\text{max}} \cdot C_0}$$

Блокировочная индуктивность L_2 определяется из условия:

$$\omega_p \cdot L_2 >> \frac{R_1 \cdot R_2}{R_1 + R_2}$$

На этом расчет схемы частотного модулятора заканчивается.

Исходные данные для расчета

Номер варианта	Рабочая частота автогенератора $f_{ m p},\kappa \Gamma u$	Центральная частота модулирующего сигнала, $\kappa \Gamma u$	
1	155	3	
2	200	5	
3	450	7	
4	610	3	
5	255	7	
6	185	4	
7	515	8	
8	405	6	
9	180	2.5	
10	295	2	
11	155	3	
12	200	5	
13	450	7	
14	610	3	
15	255	7	
16	185	4	
17	515	8	
18	405	6	
19	180	2.5	
20	295	2	