Accélérations matérielles

Olivier Romain Professeur des Universités

<u>olivier.romain@cyu.fr</u>

Objectif du cours

 Présenter les différentes architectures d'accélération matérielle

- FPGA et co-design : Olivier ROMAIN
- GPU : Alexandre Bordat
- Multi-cœur : Stéphane Zuckerman
- TPU : Petr Dobias

A la base du SoC : le transistor

Quelques nm

Evolution technologique : IC to SoC

^{*} ITRS – International Technologies Roadmap of Semiconductor

Introduction: Evolution des systèmes

[SIA roadmap]

Evolution des performances

Source: Horowith2016

Introduction: Prévision d'évolution technologique

International Technology Roadmap for Semiconductors

Table ES2 Overall Roadmap Technology Characteristics

YEAR OF PRODUCTION	2017	2019	2021	2024	2027	2030	2033
Logic device technology naming	P54M36		P42M24	P36M21	P32M14	P32M14 T2	P32M14 T4
Logic industry "Node Range" Labeling (nm)	"10"	"7"	"5"	"3"	"2.1"	"1.5"	"1.0"
Logic device structure options	finFET FDSOI	finFET LGAA	LGAA finFET	LGAA VGAA	LGAA VGAA	VGAA, LGAA, 3DVLSI	VGAA, LGAA, 3DVLSI
LOGIC CELL AND FUNCTIONAL FABRIC TARGETS							
Average cell width scaling factor	1.00	0.90	0.90	0.90	0.90	0.90	0.90
LOGIC DEVICE GROUND RULES							
MPU/SoC Metalx 1/2 Pitch (nm) [1,2]	18	14	12	10.5	7.0	7.0	7.0
Physical gate length for HP Logic (nm) [3]	20	18	16	14	12	12	12
Lateral GAA (nanosheet) Minimum Width (nm)			7.0	7.0	6.0		
Minimum Device Width (fin, nanosheet) or Diameter (nm)	8	7.0	7.0	7.0	6.0	6.0	6.0
LOGIC DEVICE Electrical							
Vdd (V)	0.75	0.70	0.65	0.65	0.65	0.60	0.55
DRAM TECHNOLOGY						ì	
DRAM ½ Pitch (nm) [1]	18	17.5	17	14	11	8.4	7.7
DRAM cell size factor: aF^2 [11]	6	6	4	4	4	4	4
DRAM bits/1chip target	8G	8G	16G	16G	32G	32G	32G
NAND Flash		í					
Flash 1/2 Pitch (nm) (un-contacted Poly)(F) (2D) [1]	15.0	15.0	15.0	15.0	15.0	15.0	15.0
Flash Product Highest Density (independent of 2D or 3D)	512G	1T	1T	1.5T	3T	4T	4T+
Flash 3D Maximum Number of Memory Layers [6]	64	96	128	192	384	512	>512

Introduction: Prévision d'évolution technologique

International Technology Roadmap for Semiconductors

https://irds.ieee.org/images/files/pdf/2022/2022IRDS_ES.pdf

Introduction: System On Chip

Un défi technologique

- Circuits sont de + en + complexe
 - Année 80 : Un circuit ⇔ 10k transistors => 100 homme/mois
 - Année 00 : Un circuit ⇔ 500k transistors => 30 000 h/mois

Un défi économique

- Réduction du « Time to Market »
 - Concurrence accrue
- Réduction du Prix
 - De 1M\$ à 300M\$

Repenser le mode de conception

Taxonomie des solutions matérielles

Taxonomie des solutions matérielles

Compromis performance/flexibilité

Processor

Embedded Processor SA110 0.4 MIPS/mW Alpha 0.007 MIPS/mW

Efficiency: MIPS / Watt

Embedded

FPGA

100-1000 MOPS/mW

ASIC

Taxonomie des solutions matérielles : parallélisme multi-échelle

Taxonomie des solutions matérielles

https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/

Changer les méthodologies de conception

- Parallélisme multiéchelle
- Circuits hétérogènes

Comment exploiter le parallélisme des circuits FPGA?

Olivier Romain Professeur des Universités olivier.romain@u-cergy.fr

http://olivieromain.free.fr

Flot de conception

Méthodologie à base IP

- Idées de la méthode
 - Assembler des Blocs de fonctions décrits HW ou SW
 - Bibliothèques constructeurs : Altera, Xilinx, Atmel
 - Bibliothèques libres : opencore, freecore, SocLib, etc...
 - Créer s'est propre bloc en vue de leur réutilisation
 - Bibliothèque personnelle

Notion d'IP – Intellectual Property

- Réutiliser les blocs déjà conçus dans la société ;
- Utiliser les générateurs de macro-cellules (Ram, multiplieurs,...)
- Acheter des blocs conçus hors de l'entreprise.

Introduction: Intellectual Property, IP

Définition

□ Une IP est un composant virtuel décrivant un circuit réel.
 L'architecture développée est propre à chacun ⇔ IP.

Caractéristiques

- 2 types:
 - IP Soft :
 - Composant décrit en VHDL ou Verilog
 - Nécessite une optimisation pour une cible donnée
 - Paramétrable et synthétisable
 - IP Hard :
 - Description au niveau porte optimisée pour une cible donnée
- Interface standardisée et spécifiée
 - Bus VCI, AMBA, Avalon, etc ...

Introduction: Intellectual Property

- Avantages
 - Mélange hétérogène d'IP
 - IP HW, SW
 - Conception conjointe, HW et SW
 - Optimiser un algorithme / cible
 - Design Reuse :
 - IP réutilisée un grand nombre de fois.
 - En respectant de certaines règles d'interconnections
 - Prototypage rapide
 - Diminution du temps de conception
 - Plate forme Based Design

Introduction: SOPC une alternative

- SOPC (techno FPGA)
 - System On Chip sur un composant programmable
 - Orienté prototypage rapide
 - Architecture flexible
 - Composant reconfigurable
 - Consommation + grande

- SoC (techno ASIC)
 - Répond aux critères de performances et d'intégration
 - Pas de flexibilité
 - Architecture figée
 - Evolution système réduite
 - Réservé aux grands volumes de production
 - Fabrication et test sont des étapes coûteuses

Introduction: SOPC exemples

ALTERA

- Plusieurs kit de développement
- Cœur de processeur embarqué dans un FPGA
 - ARM : IP Hardware fin année 90
 - □ Processeur ARM922T, RISC 32 bits
 - Implanté en Hard dans un FPGA APEX 200k + passerelle zone programmable
 - 200 Mips
 - Nios II : IP logicielle Softcore
 - □ Processeur décrit en VHDL : paramétrable
 - □ Dédié aux familles, APEX, Cyclone et Stratix

Introduction: SOPC exemples

- SoC-Kit Altera
 - Cortex A9

Introduction: SOPC exemples

- SoC-Kit Altera
 - Cortex A9

Altera roadmap SoC

Altera SoC Feature Comparison

Feature	Arria V SoC	Arria 10 SoC	Stratix 10 SoC
Process Technology	28 nm TSMC	20 nm TSMC	14 nm Intel Tri-Gate
Processor	Dual-core ARM Cortex-A9 MPCore	Dual-core ARM Cortex-A9 MPCore	Quad-core ARM Cortex-A53 MP Core
Maximum Processor Performance	1.05 GHz	1.5 GHz	1.5 GHz
Logic Core Performance	300 MHz	~500 MHz	1 GHz
Power Dissipation	1X	0.6X	0.3X
Logic Density Range	ty Range 350 – 462K logic element 160 – 660K LE (LE)		500K LE - 5.5M LE
Embedded Memory	23 Mb	39 Mb	229 Mb
18 x 19 Multipliers	2,136	3,356	11,520
Maximum Transceivers	30	48	144
Maximum Transceiver Data Rate (Chip to Chip)	10 Gbps	17.4 Gbps	30 Gbps

Derniers FPGA d'ALTERA - 2023

Intel Agilex 7 FPGA and SoC M-Series **Features**

View device ordering codes on page 55.

roduct Line		AGM 032	AGM 039		
Resources	Logic elements (LEs)	3,245,000	3,851,520		
	Adaptive logic modules (ALMs)	1,100,000	1,305,600		
	ALM registers	4,400,000	5,222,400		
	M20K memory blocks	15,932	18,960		
	M20K memory size (Mb)	311	370		
	MLAB memory count	55,000	65,280		
	MLAB memory size (Mb)	33	40		
	High-bandwidth DRAM memory size (HBM2E) (Gigabytes)	16/32	16/32		
	Fabric PLL	8	8		
	I/O PLL	16	16		
	Variable-precision digital signal processing (DSP) blocks	9,375	12,300 24,600		
	18 x 19 multipliers	18,750			
	Single-precision or half-precision tera floating point operations per second (TFLOPS)	14/28	18.4 / 37		
	Maximum EMIF x72	4	4		
	Memory devices supported	LPDDR5, DDR5, DDR4, QDR IV			
	Maximum AIB interfaces	4			
Maximum Available Device Resources	Secure Device Manager (SDM)	Provides SHA-384 bitstream integrity, ECDSA 256/384 bitstream authentication, AES-256 bitstream encryption, physically unclonable function (PUF) protected key storage, side-channel attack resistance, SPDM attestation, cryptographic services, physical anti-tamper support			
	Hard processor system	Quad-core 64 bit Arm Cortex-A53 up to 1.41 GHz with 32KB I/D cache, NEON coprocessor, 1 MB L2 cache, direct memory access (DMA), system memory management unit, cache coherency unit, hard memory controllers, USB 2.0 x2, 1G EMAC x3, UART x2, SPI x4, I2C x5, general purpose timers x7, watchdog timer x4			

CO-Design

En quoi çà consiste ?

Co-Design: qu'est ce que c'est?

Objectif:

 Accélérer les traitements des algorithmes coûteux en temps de calcul

Contexte d'application embarquées temps réels

Comment ?

partitionner une application

Matérielle et Logicielle

 Remplacement des blocs logiciels coûteux en temps de calcul par des blocs matériels réalisant la même fonction.

Co-Design: qu'est ce que c'est?

- Le Co-Design désigne une méthodologie de conception concurrente matérielle et logicielle d'un système électronique complexe
- Méthodologie de conception en 4 étapes
 - Partitionnement : Décider quelles tâches sont effectuées en SW et quelles autres sont effectuées en HW et comment se fait l'interface entre HW et SW
 - Modélisation : Coder la spécification de façon à représenter du mieux possible la fonctionnalité du système et ses contraintes.
 - Co-Validation : valider simultanément les parties matérielles et logicielles. Valider la fonction, la cohérence temporelle des tâches, analyser le respect des contraintes et préparer la synthèse
 - Co-synthèse : Effectuer la compilation (SW) et la synthèse logique (HW).

Le flot de conception CoDesign

Le flot de conception CoDesign: les questions qui se posent

Le flot de conception CoDesign: Les types de partionnement

Manuel

Automatique

Il n'y a plus qu'une équipe HW/SW

Une approche simple

Profilage et Partitionnement

Bénéfices

- Accélération de 10 à 200 fois
- Accélération possible de 800 fois
- Beaucoup plus de potentiel que les optimisations dynamiques logicielles (internes au processeur, déroulage de boucle, pipeline logiciel,...)
- Réduction de la consommation d'énergie de 25 à 95%

Profilage

- Le Profilage permet d'apprendre les endroits, en terme de code, où le programme passe son temps. Quelle fonction appelle quelle autre durant son exécution.
- Le profilage s'effectue via des données collectée lors de l'exécution de l'application. Cette méthode peut donc être utilisée pour analyser des programmes trop complexe pour une analyse via la lecture des sources.
- Ces informations de profil, montre les bouts de code où le programme est plus lent qu'attendu.
- Ces bouts de code sont de bons candidats à :
 - une réécriture optimisées
 - une transformation matérielle

Comment réaliser un profilage ?

• Echantillonage : interruption périodique de l'OS ou lecture des compteurs matériels du processeur

 Instrumentation: insertion de code espion pour mesurer

Echantillonage / Instrumentation

	Echantillonage	Instrumentation
Overhead	Typically about 1%	High, may be 500%!
System-wide profiling	Yes, profiles all app, drivers, OS functions	Just application and instrumented DLLs
Detect unexpected events	Yes , can detect other programs using OS resources	No
Setup	None	Automatic ins. of data collection stubs required
Data collected	Counters, processor an OS state	Call graph, call times, critical path
Data granularity	Assembly level instr., with src line	Functions, sometimes statements
Detects algorithmic issues	No, Limited to processes , threads	Yes – can see algorithm, call path is expensive

Exemple d'outil de profilage

Visual C++ Performance Profiler (Microsoft)

Evaluation et Comparaison

	Mem & Perf Validator	V-Tune	VS Perf. Analyzer	ValGrind	Google Profiler
Platforms					
Linux Win32 X64					
Line level code	Yes	Yes	Yes	Yes	Yes
Graphical o/p	Yes	Yes	Yes	No	No
Diagnostic	Yes	Yes	No	No	No
Strongness	 Interesting graphical environment No need to instrument code 	 quickly identify critical functions Helps identify system level perf. Issues No need to instrument code Important diagnostic feature 	Easy to useVisual studio	 Strong in memory profiling all reads and writes of memory are checked Easy to use Freeware 	 Freeware Increase cache efficiency
Weakness	Weak performance Profiling	 Not Stable for X64 PF Monitors all active software on system 	Is Not a stand alone profilerVery expensiveNo memory profiling	Weak performance profilingNo windows PF	OldBuggyInaccurate
Notes & Users Evaluation	Weak perf. profiling		Is Not a stand alone profiler	Massif in Heap Profiling	Old, buggy, Inaccurate
Price (€)	407	695	9470	Freeware	Freeware

Exemple de profilage via gprof

- Avec gcc, il faut tout d'abord compiler et lier le programme avec les options de profilage autorisées :
 - gcc -o myprog.exe myprog.c utils.c -g -pg
- Il faut ensuite exécuter le programme pour collecter les donnée du profil d'exécution
 - Le programme écrit les données collectées dans un fichier `gmon.out' juste avant de finir.
- Il est possible après d'utiliser gprof pour analyser les données collectées :
 - gprof options myprog.exe gmon.out > outfile
 - gprof créé un fichier de profil et un graphe d'exécution

Exemple de profilage via gprof

Each sample counts as 0.01 seconds. 응 cumulative self self total ms/call time seconds calls ms/call seconds name 33.34 0.02 0.02 7208 0.00 0.00 open 16.67 0.03 0.01 244 0.04 0.12 offtime 16.67 0.04 0.01 1.25 1.25 memccpy write 16.67 0.05 0.01 1.43 1.43 16.67 0.06 0.01 mcount 0.00 0.06 0.00 0.00 0.00 tzset 236

- % time : pourcentage du temps total d'exécution que le program a passer dans cette fonction.
- cumulative seconds: Temps cumulatif en seconde que le processeur a passé a exécuter cette fonction ainsi que toutes les fonctions appelées dans cette fonction.
- self seconds: Temps en secondes utilisé pour cette seule fonction.
- calls: Nombre de fois total où cette fonction a été appelée.
- self ms/call: Temps moyen en milliseconde pris par chaque appel de la fonction.
- total ms/call: Temps moyen en milliseconde pris par chaque appel de la fonction et de ses descendants.
- name: Nom de la fonction.

Faiblesse de cette première approche

- Certaines fonctions ne sont pas triviales à réaliser en matériel.
- Les décisions prises trop tôt dans le flot risque de ne pas être optimales
- Aucune considération pour la communication et l'interfaçage.
- Si l'application change alors il faut ré-exécuter un profilage et ensuite un partitionnement.

Le flot de conception CoDesign: outils de haut niveau: HLS

- HLS Vivado : Xilinx
- Intel HLS compiler : Altera
- Catapult C
- **...**
- Outils académiques
 - Gaut 3.0 : http://www.gaut.fr
 - https://www.youtube.com/watc h?v=AWkxQHgUTSM

Outils de haut niveau: HLS

Outils de haut niveau: HLS

Status	Compiler	Owner	License	Input	Output	Year	Domain	TestBench	FP	FixP
	eXCite	Y Explorations	Commercial	C	VHDL/Verilog	2001	All	Yes	No	Yes
	CoDeve- loper	Impulse Accelerated	Commercial	Impulse-C	VHDL Verilog	2003	Image Streaming	Yes	Yes	No
	Catapult-C	Calypto Design Systems	Commercial	C/C++ SystemC	VHDL/Verilog SystemC	2004	All	Yes	No	Yes
	Cynthesizer	FORTE	Commercial	SystemC	Verilog	2004	All	Yes	Yes	Yes
	Bluespec	BlueSpec Inc.	Commercial	BSV	SystemVerilog	2007	All	No	No	No
	CHC	Altium	Commercial	C subset	VHDL/Verilog	2008	All	No	Yes	Yes
Use	CtoS	Cadence	Commercial	SystemC TLM/C++	Verilog SystemC	2008	All	Only cycle accurate	No	Yes
Щ	DK Design Suite	Mentor Graphics	Commercial	Handel-C	VHDL Verilog	2009	Streaming	No	No	Yes
	GAUT	U. Bretagne	Academic	C/C++	VHDL	2010	DSP	Yes	No	Yes
	MaxCompiler	Maxeler	Commercial	MaxJ	RTL	2010	DataFlow	No	Yes	No
	ROCCC	Jacquard Comp.	Commercial	C subset	VHDL	2010	Streaming	No	Yes	No
	Synphony C	Synopsys	Commercial	C/C++	VHDL/Verilog SystemC	2010	All	Yes	No	Yes
	Cyber- WorkBench	NEC	Commercial	BDL	VHDL Verilog	2011	All	Cycle/ Formal	Yes	Yes
	LegUp	U. Toronto	Academic	С	Verilog	2011	All	Yes	Yes	No
	Bambu	PoliMi	Academic	С	Verilog	2012	All	Yes	Yes	No
	DWARV	TU. Delft	Academic	C subset	VHDL	2012	All	Yes	Yes	Yes
	VivadoHLS	Xilinx	Commercial	C/C++ SystemC	VHDL/Verilog SystemC	2013	All	Yes	Yes	Yes
	Trident	Los Alamos NL	Academic	C subset	VHDL	2007	Scientific	No	Yes	No
N/A	CHiMPS	U. Washington	Academic	С	VHDL	2008	All	No	No	No
Z	Kiwi	U. Cambridge	Academic	C#	Verilog	2008	.NET	No	No	No
	gcc2verilog [45]	U. Korea	Academic	C	Verilog	2011	All	No	No	No
	HercuLeS	Ajax Compiler	Commercial	C/NAC	VHDL	2012	All	Yes	Yes	Yes
	Napa-C	Sarnoff Corp.	Academic	C subset	VHDL/Verilog	1998	Loop	No	No	No
	DEFACTO	U. South Cailf.	Academic	C	RTL	1999	DSE	No	No	No
222	Garp	U. Berkeley	Academic	C subset	bitstream	2000	Loop	No	No	No
Abandoned	MATCH	U. Northwest	Academic	MATLAB	VHDL	2000	Image	No	No	No
юр	PipeRench	U.Carnegie M.	Academic	DIL	bitstream	2000	Stream	No	No	No
an	SeaCucumber	U. Brigham Y.	Academic	Java	EDIF	2002	All	No	Yes	Yes
Ab	SA-C	U. Colorado	Academic	SA-C	VHDL	2003	Image	No	No	No
	SPARK	U. Cal. Irvine	Academic	С	VHDL	2003	Control	No	No	No
	AccelDSP	Xilinx	Commercial	MATLAB	VHDL/Verilog	2006	DSP	Yes	Yes	Yes
	C2H	Altera	Commercial	C	VHDL/Verilog	2006	All	No	No	No
	CtoVerilog	U. Haifa	Academic	C	Verilog	2008	All	No	No	No

Outils de haut niveau: HLS

		Commercia	l		BAMBU			DWARV		I	LEGUP	
Benchmark	LUTp	BRAMB18	DSP48s	LUTp	BRAMB18	DSP48s	LUTp	BRAMB18	DSP48s	ALMs	M20K	DSPs
adpcm_encode	4319	0	68	19931	52	64	5626	18	6	2490	0	43
aes_encrypt	5802	6	1	8485	4	0	15699	16	3	4263	8	0
aes_decrypt	6098	4	1	8747	4	1	12733	16	3	4297	14	0
gsm	5271	8	49	11864	10	75	6442	0	8	4311	1	51
sha	2161	16	0	4213	12	0	10012	0	0	6398	26	0
blowfish	2226	0	0	6837	0	0	7739	0	0	1679	0	0
dfadd	7409	0	0	7250	0	0	7334	0	0	2812	1	0
dfdiv	15107	0	24	11757	0	24	13934	1	40	4679	4	42
dfmul	3070	0	16	3430	0	16	14157	1	40	1464	1	28
dfsin	22719	0	43	21892	0	59	30616	43	43	9099	3	72
jpeg	16192	25	1	46757	154	26	ERR	ERR	ERR	16276	41	85
mips	1963	3	8	2501	0	8	3904	3	20	1319	0	15
motion	ERR	ERR	ERR	2776	2	0	45826	6	0	6788	0	0
satd	790	0	0	4425	0	0	1411	0	0	2004	0	0
sobel	792	0	6	3106	0	28	1160	0	12	1241	0	36
bellmanford	485	0	0	1046	0	0	633	0	0	493	0	0
matrix	175	0	3	551	0	3	471	0	3	225	0	2
GEOMEAN (ALL)	2711.75	1.84	4.57	5253.60 5754.49		5.30 5.28	5148.72	2.43	4.88	2197.66 2641.94	2.01 2.30	5.67 6.00

Gaut3.0

Conception Orientée Plate forme

Plateform based design

Solution ALTERA

Architecture des kits

Centrée autour du FPGA

Figure 1-4 Block diagram of the Apollo Agilex board

Que peut on mettre dans le FPGA?

- Système numérique classique décrit en HDL
- Système numérique plus complexe
 - Processeur Nios II ou 5
 - +périphériques matérielles existants
 - +propres périphériques
 - algos...

Carte Cyclone : exemple de système

Flot de conception

- Système numérique classique :
 - Logique combinatoire + séquentielle
- Système numérique complexe :
 - Microprocesseur Nios
 - Logique combinatoire + séquentielle
 - **-** ...

Flot de conception similaire

Processeur Nios II

- Caractéristiques techniques
- Flot de conception
- Conception Matérielle
- Conception Logicielle

Qu'est ce qu'un Nios II

Nios : IP logiciel d'un µP

- Développé par Altera
 - Première version en 1999
- Architecture de type RISC
- Entièrement configurable
 - 16 ou 32 bits, nombre de registres (128, 256 ou 512) ...
- Ecrit en langage HDL
- Exploitable pour tous les FPGA de la gamme Altera
- Entièrement synthétisable

Nios II Processor Architecture

Classic Pipelined RISC Machine

- □ 32 General Purpose Registers
- □ 32-Bit Instructions
- □ 32-Bit Data Path
- □ 32 Prioritized Interrupts
- On-Chip Hardware (Multiply, Shift, Rotate)
 - Single Instruction 32x32 multiply and divide
- Custom Instructions
- □ Performance up to 200 DMIPS (Dhrystone MIPS)
- JTAG-Based Hardware Debug Unit

Nios II Processor Block Diagram

	Nios II /f Fast	Nios II /s Standard	Nios II /e Economy		
Pipeline	6 Stage	5 Stage	None		
H/W Multiplier & Barrel Shifter	1 Cycle	3 Cycle	Emulated In Software		
Instruction Cache	Configurable	Configurable	None		
Data Cache	Configurable	None	None		
Logic Usage (Logic Elements)	1400 - 1800	1200 – 1400	600 – 700		
Custom Instructions	Up to 256				

Hardware Multiplier Acceleration

- Nios II Economy version No Multiply Hardware
 - Uses GNUPro Math Library to Implement Multiplier
- Nios II Standard Full Hardware Multiplier
 - 32 x 32 → 32 in 3 Clock Cycles if DSP block present, else uses software only multiplier
- Nios II Fast Full Hardware Multiplier
 - □ 32 x 32 → 32 in 1 Clock Cycles if DSP block present, else uses software only multiplier

Acceleration Hardware	Clock Cycles (32 x 32 → 32)
None	250
Standard MUL in Stratix	3
Fast MUL in Stratix	1

Variation with FPGA Device

Device Family	Device OPN	Nios II/f	Nios II/e	Results are generated using
Intel Agilex	AGFA014R24A2E2VR0	400	410	Intel Quartus Prime Pro Edition software version 20.1
Intel Stratix 10	1SG250LN3F43I2LG	300	320	Intel Quartus Prime Pro Edition software version 20.1
Stratix V	5SGXEA7N2F45C1	350	410	Intel Quartus Prime Standard Edition software version 19.1
Stratix IV	EP4S100G5H40I1	240	280	Intel Quartus Prime Standard Edition software version 19.1
Intel Arria 10	10AX115U3F45I2LG	290	340	Intel Quartus Prime Pro Edition software version 20.1
Arria V GZ	5AGZME7K2F40C3	280	360	Intel Quartus Prime Standard Edition software version 19.1
Arria V	5AGXFB5K4F40I3	200	260	Intel Quartus Prime Standard Edition software version 19.1
Intel Cyclone 10 GX	10CX220YF780E5G	280	330	Intel Quartus Prime Pro Edition software version 20.1
Intel Cyclone 10 LP	10CL120YF780I7G	140	160	Intel Quartus Prime Standard Edition software version 19.1
Cyclone V	5CGXFC7D6F31C6	170	210	Intel Quartus Prime Standard Edition software version 19.1
Cyclone IV	EP4CGX30CF19C6	160	170	Intel Quartus Prime Standard Edition software version 19.1
Intel MAX® 10	10M50DAF484C6GES	160	160	Intel Quartus Prime Standard Edition software version 19.1

		-1						
Device Family	Nios II/f	Nios II/e	Nios II JTAG debug module	Avalon UART	JTAG UART	SDRAM Controlle	Timer	Results are generated using
Intel Agilex	1002	596	149	57	71	5999	77	Intel Quartus Prime Pro Edition software version 20.1
Intel Stratix 10 (ALM)	1006	414	148	58	70	4429	76	Intel Quartus Prime Pro Edition software version 20.1
Stratix V (ALM)	697	296	129	62	56	2635	68	Intel Quartus Prime Standard Edition software version 19.1
Stratix IV (ALUT)	1073	527	169	95	112	3809	92	Intel Quartus Prime Standard Edition software version 19.1
Intel Arria 10 (ALM)	803	322	114	55	60	3973	60	Intel Quartus Prime Pro Edition software version 20.1
Arria V GZ (ALM)	706	290	125	55	56	2632	54	Intel Quartus Prime Standard Edition software version 19.1
Arria V (ALM)	835	310	126	56	56	2470	55	Intel Quartus Prime Standard Edition software version 19.1
Intel Cyclone 10 GX (ALM)	847	346	116	56	60	2291	55	Intel Quartus Prime Pro Edition software version 20.1
Intel Cyclone 10 LP (LE)	2326	838	464	141	163	435	148	Intel Quartus Prime Standard Edition software version 19.1
Cyclone V (ALM)	848	305	127	56	57	2473	56	Intel Quartus Prime Standard Edition software version 19.1
Cyclone IV GX (ALUT)	2221	772	352	143	160	424	138	Intel Quartus Prime Standard Edition software version 19.1
Intel MAX 10 (LE)	2211	790	364	136	157	4671	139	Intel Quartus Prime Standard Edition software version 19.1

Nios II: Hard Numbers

	Nios II/f	Nios II/s	Nios II/e
Stratix II	200 DMIPS @ 175MHz 1180 LEs 1 of 8 DSP	90 DMIPS @ 175MHz 800 LEs	28 DMIPS @ 190MHz 400 LEs
	4K Icache, 2K Dcache	4K Icache, No Dcache	No Icache, No Dcache
	Stratix 2S10-C5	Stratix 2S10-C5	Stratix 2S10-C5
Stratix	150 DMIPS @ 135MHz 1800 LEs 1 of 8 DSP	67 DMIPS @ 135MHz 1200 LEs	22 DMIPS @ 150MHz 550 LEs
	4K Icache, 2K Dcache	4K Icache, No Dcache	No Icache, No Dcache
	Stratix 1S10-C5	Stratix 1S10-C5	Stratix 1S10-C5
Cyclone	100 DMIPS @ 125MHz	62 DMIPS @ 125MHz	20 DMIPS @ 140MHz
	1800 LEs	1200 LEs	550 LEs
	4K Icache, 1K Dcache	2K Icache, No Dcache	No Icache, No Dcache
	Cyclone 1C4-C6	Cyclone 1C4-C6	Cyclone 1C4-C6

Performance Metric	Nios II/f	Nios II/e
DMIPS/MHz Ratio	0.753	0.107
CoreMark	229.148	19.234

^{*} FMax Numbers Based Reference Design Running From On-Chip Memory (Nios II/f \cong 1.15 DMIPS / MHz)

Custom Instruction

Idées

- Augmenter les performances du Nios sans augmenter f_{MAX}
 - Accélaration matérielle
- Etendre le jeu d'instruction
 - Jusqu'à 5 Instructions
- Définir son propre coprocesseur optimisé

Fonctions logiques et arithmétiques

Custom Instruction

Custom Instruction: Exemple

- Multiplieur : 16bits x 16bits
 - Logiciel (Librairie Math de GNU) :
 - 80 cycles d'horloge
 - 0 EL
 - Matériel :
 - 1 cycle d'horloge
 - 85 EL + 2 éléments précablés dans le FPGA
- Registre à décalage : décalage de 9 bits
 - Exécution en 9 cycle d'horloge
 - Accélération matérielle : 1 cycle d'horloge

Bus Avalon

- Bus permettant aux Nios d'accéder aux périphériques systèmes
- Bus Altera spécifique au Nios
 - □ Carte ARM ⇔ bus amba
- Principales caractéristiques
 - Entièrement paramétrable
 - Taille adresse, donnée, ...
 - Simplicité de mise en oeuvre
 - Opérations synchrones / horloge sys
- Types de transferts
 - Slave Transfers
 - Master Transfers
 - Streaming Transfers

Architecture du bus Avalon

Dynamic bus sizing

Peripheral Registers				
Base	aa			
Base + 0x1	bb			
Base + 0x2	СС			
Base + 0x3	dd			
Base + 0x4	ee			

Native Address Alignment

□ LD from Base + 0x0: uu uu uu aa

□ LD from Base + 0x4: uu uu uu bb

□ LD from Base + 0x8: uu uu uu cc

Flot de conception d'un système à base de Nios II

Platform Designer ex Qsys

Conception modulaire d'un système à µP à base d'IP

- Sélection et configuration du μP (16Bits ou 32 Bits) + accélération matérielle
- Sélection et configuration des périphériques (IP) / bibliothèques
- Interconnections des IPs / Bus
 - Assignation des adresses en mémoires des périphériques
 - Assignation des N° d'Interruption

HW : fichiers HDL + Test Bench (ModelSim ou Quartus II)

SW: fichiers Header (ex: nios.h) des périphériques pour leur programmation

Platform Designer

Nios CPU

Nios CPU Hardware

Interrupt Support

Nombre de

Bibliothèque de périphériques disponibles

- Memory Interface
 - Active Serial Interface
 - On-Chip
 - RAM, ROM
 - Off-Chip
 - SDRAM Controller
 - SRAM
 - Flash
 - ROM
- DMA Controller
 - Memory-Peripheral
 - Memory-Memory
 - Peripheral-Peripheral
- Bridges
 - AHB to Avalon Bus Bridge

- Parallel I/O (PIO) Registers
 - General-Purpose I/O Registers (PIO)
 - Input
 - Output
 - Bidirectional
 - User-Defined Interface
- Serial I/O
 - UART
 - SPI
- Timer
 - Simple Timer
 - Pulse Generator
 - Watchdog Timer

Périphériques custom?

- Comment faire si j'ai besoin d'utiliser dans mon système un composant qui n'existe pas dans la bibliothèque ?
 - Par exemple, une IP de type PWM ?
- Description HDL du composant + interfacage
 - 2 manières d'interfacer
 - Port PIO
 - □ Pas assez rapide
 - Connexion au bus Avalon

Component editor – new component

- Encapsulation de l' IP dans un bloc "interface to user logic New component "
 - Wrapper Avalon / interface IP
 - Définie dans le mapping mémoire du système
- Peut être "Inside" or "Outside" du système Nios

Interface to user logic: exemple

Génération du Système

Conception Logicielle

- Environnement de développement
- Commande de compilation et d'exécution

Nios II IDE

- Leading Edge Software Development Tool
- Target Connections
 - Hardware (JTAG)
 - Instruction Set Simulator
 - ModelSim®-Altera Software
- Advanced Hardware Debug Features
 - Software and Hardware Break Points, Data Triggers, Trace
- Flash Memory Programming Support

^{*} Based on Eclipse Project

Eclipse

HAL References

 Each HAL project references library routines and drivers for the components included in your Nios II system

