Mathématiques Spéciales

Espaces Euclidiens

Espaces Euclidiens

Dans tous ces exercises, la lettre E désigne un espace euclidien, dont le produit scalaire est noté (|).

- 1 Montrer que
- 1. $\forall a, b, c, d \in E$,

$$\|b-a\|^2 + \|c-b\|^2 + \|d-c\|^2 + \|a-d\|^2 = \|c-a\|^2 + \|d-b\|^2 + \|a-b+c-d\|^2.$$

- 2. $\forall x_1, \dots, x_n \in E$, $\|\sum_{k=1}^n x_k\|^2 \le n \sum_{k=1}^n \|x_k\|^2$.
- 3. $\forall x, y, z \in E$, $||x z||^2 \le 2(||x y||^2 + ||y z||^2)$
- 4. $\forall x, y \in E, 1 + ||x + y||^2 \le 2(1 + ||x||^2)(1 + ||y||^2).$
- 2 Soient n un entier non nul, $a_1, \dots, a_n, b_1, \dots, b_n$ des réels et c_1, \dots, c_n des réels positifs. Montrer que $(\sum_{k=1}^n a_k b_k c_k) \le (\sum_{k=1}^n a_k^2 c_k)(\sum_{k=1}^n b_k^2 c_k)$.
- 3 Soient $P, Q \in \mathbb{R}[X]$, on définit : $(P|Q) = \int_0^1 P(x)Q(x)dx$.
- 1. Montrer que (|) est un produit scalaire sur $\mathbb{R}[X]$.
- 2. Montrer qu'il existe une base orthonormale (P_0, P_1, \dots, P_n) de $\mathbb{R}_n[X]$ avec pour tout $k \in [|0, n|], \deg(P_k) = k$.
- 3. Trouver une base orthonormée de $\mathbb{R}_2[X]$ pour ce produit scalaire.
- 4. Calculer le minimum pour $(a, b) \in \mathbb{R}^2$ de :

$$\int_0^1 (x^2 - ax - b)^2 dx$$

- 5. Montrer que $\forall n \in \mathbb{N}, P_n$ posséde n racines simples dans [0,1[.
- 6. On fixe $n \in \mathbb{N}^*$. Soit $\alpha_1, \alpha_2, \dots, \alpha_n$ les racines de P_n . Montrer qu'il existe des réels $\lambda_1, \dots, \lambda_n$ tels que, pour tout $P \in \mathbb{R}_{2n-1}[X]$, on ait $\int_0^1 P(t)dt = \sum_{i=1}^n \lambda_i P(\alpha_i)$. Donner une expression de ces scalaires et leur signe.

4 Soit $n \geq 1$ un entier. On travaille dans l'espace des matrices $M_n(\mathbb{R})$.

1. Montrer que l'application $(A|B) \mapsto \operatorname{Tr}({}^tAB)$ est un produit scalaire sur $M_n(\mathbb{R})$. Que peut-on dire de la base canonique de $M_n(\mathbb{R})$?

- 2. Montrer que pour toute matrice A dans $M_n(\mathbb{R})$, on a : $|\text{Tr}(A)| \leq \sqrt{n} ||A||$.
- 3. a) Quel est l'orthogonal de l'espace \mathcal{S} des matrices symétriques?
- b) En déduire pour toute matrice $A=(a_{ij})_{1\leq i,j\leq n}$ la borne inférieure :

$$\inf \left\{ \sum_{i,j=1}^{n} (a_{ij} - m_{ij})^2 \mid M = (m_{ij})_{1 \le i,j \le n} \in \mathcal{S} \right\}.$$

- 4. Montrer que si U est une matrice orthogonale, alors pour toute matrice A dans $M_n(\mathbb{R})$, ||UA|| = ||AU|| = ||A||.
- 5. Montrer que pour toutes matrices A et B dans $M_n(\mathbb{R})$, $||AB|| \leq ||A|| \times ||B||$
- 5 Soit $A = (a_{i,j})_n \in O_n(\mathbb{R})$. Montrer

$$\left| \sum_{1 \le i,j \le n} a_{i,j} \right| \le n, \quad \sum_{1 \le i,j \le n} |a_{i,j}| \le n\sqrt{n}.$$

6 Soit (e_1, \dots, e_p) une famille de vecteurs unitaires dans E telle que :

$$\forall x \in E, \quad ||x||^2 = \sum_{k=1}^p (x|e_k)^2.$$

Montrer que la famille (e_1, \dots, e_p) est une base orthonormale de E.

7 Soit $n \in \mathbb{N}^*$. On travaille dans $\mathbb{R}_n[X]$, muni du produit scalaire $(P|Q) = \int_{[0,1]} PQ$. Soit $P \in \mathbb{R}_{n-1}[X]^{\circ}$ non nul. On pose

$$\Phi: \quad x \mapsto \int_0^1 P(t)t^x dt$$

Mathématiques Spéciales Espaces Euclidiens

- 1. Quel est le degré de P? Montrer que Φ est une fonction rationnelle et trouver ses Donner une condition nécessaire et suffisante sur λ et u pour que f soit un automorpôles.
- 2. En déduire Φ et P.
- 3. Trouver une base orthonormée de $\mathbb{R}_n[X]$.
- 4. Calculer

$$\operatorname{Min}\left\{ \int_{0}^{1} (1 + \sum_{k=1}^{n} a_{k} x^{k})^{2} dx | a_{1}, a_{2}, \cdots, a_{n} \in \mathbb{R} \right\}$$

8 On se place dans \mathbb{R}^4 muni du produit scalaire usuel. Soit F le sous-espace vectoriel de \mathbb{R}^4 défini par le système d'équations :

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0, \\ x_1 - x_2 + x_3 - x_4 = 0. \end{cases}$$

Déterminer la matrice dans la base canonique de la projection orthogonale sur F.

- 9 1. On suppose que p est une projection. Montrer que p est une projection orthogonale si et seulement si $\forall x \in E, \|p(x)\| < \|x\|$.
- 2. On suppose que s une symétrie. Montrer que s est une symétrie orthogonale si et seulement si $s \in O(E)$.
- 10 Soient E un ev euclidien, F un sev de E, $u \in O(F)$, $v \in O(F^{\perp})$, f l'application de E définie par :

$$\forall x \in E, \ f(x) = u(p_F(x)) + v(p_{F^{\perp}}(x)).$$

Montrer: $f \in O(E)$.

11 Soient E un espace euclidien, $\lambda \in \mathbb{R}$ et u un vecteur de E. On considère l'application f définie par :

$$\forall x \in E, \ f(x) = x + \lambda(x|u)u.$$

phisme orthogonal. Décrire f dans ce cas.

12 Soient E un espace euclidien et f un endomorphisme de E qui vérifie :

$$\forall x, y \in E, (f(x)|y) = (x|f(y)).$$

Montrer que la matrice dans une base orthonormée de f est une matrice symétrique. Réciproquement, montrer que si la matrice de f dans une base orthomormée est symétrique, alors elle l'est dans n'importe quelle base orthonormée et que:

$$\forall x, y \in E, \ (f(x)|y) = (x|f(y)).$$

- 13 Soit s la symétrie vectorielle orthogonale dans le plan \mathbb{R}^2 par rapport à Vect((1,2)).
- 1. Déterminer une base orthonormale (ϵ_1, ϵ_2) de \mathbb{R}^2 telle que

$$M_{(\epsilon_1,\epsilon_2)}(s) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

- 2. Déterminer la matrice représentant s selon la base canonique de \mathbb{R}^2 .
- 3. Quelle est l'image du vecteur (5,7) par l'application s?
- 14 Déterminer la nature de l'endomorphisme f de E_3 , dont la matrice A relativement à une base orthonormée directe (i, j, k) de E_3 est donnée, et préciser les éléments caractéristiques de f:

a)
$$A = \frac{1}{4} \begin{bmatrix} 3 & 1 & \sqrt{6} \\ 1 & 3 & -\sqrt{6} \\ -\sqrt{6} & \sqrt{6} & 2 \end{bmatrix}$$
, b) $A = \frac{1}{9} \begin{bmatrix} -8 & 4 & 1 \\ 4 & 7 & 4 \\ 1 & 4 & -8 \end{bmatrix}$,

Mathématiques Spéciales

Espaces Euclidiens

c)
$$A = -\frac{1}{3} \begin{bmatrix} -2 & -1 & 2 \\ 2 & -2 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$
.

15 Soit E un espace vectoriel euclidien. Soit f un endomorphisme de E qui conserve l'orthogonalité, c'est-à-dire tel que pour tout $x, y \in E$, on a

$$((x|y) = 0) \Longrightarrow ((f(x)|f(y)) = 0).$$

- 1. Montrer que, si deux vecteurs a et b sont unitaires, alors a+b et a-b sont orthogonaux.
- 2. En déduire que, si x et y sont deux vecteurs non nuls, alors $\frac{\|f(x)\|}{\|x\|} = \frac{\|f(y)\|}{\|y\|}$.
- 3. Montrer qu'il existe $k \in \mathbb{R}$ tel que $kf \in O(E)$.
- 16 Soit f un endormorphisme non nul dans $\mathcal{L}(E)$.
- 1. On suppose que f est une rotation. Montrer que

$$\forall (u, v) \in \mathbb{R}^3 \times \mathbb{R}^3, f(u \wedge v) = f(u) \wedge f(v).$$

2. On suppose que f vérifie

$$\forall (u, v) \in \mathbb{R}^3 \times \mathbb{R}^3, f(u \wedge v) = f(u) \wedge f(v)$$

- a) Montrer que f est une bijection.
- b) Soit x et y deux vecteurs orthogonaux. Montrer l'égalité : $x \wedge (x \wedge y) = -\|x\|^2 \cdot y$.
- c) Soit x un vecteur non nul. En utilisant la question précédente, montrer que ||f(x)|| = ||x||.
- d) Conclure.

17 Soient x_1, \dots, x_n dans E. Montrer que $|\det_{\mathscr{B}}(x_1, \dots, x_n)|$ ne dépend pas de la base orthonormée \mathscr{B} choisie, et que

$$|\det_{\mathscr{B}}(x_1,\cdots,x_n)| \leq \prod_{k=1}^n ||x_k||.$$

Voyez-vous une interprétation géométrique de ce résultat si $\mathbb{K} = \mathbb{R}$ et n = 2 ou 3?

- 18 Soient $n \in \mathbb{N}^*$. Si x_1, \dots, x_n , sont dans E, on appelle matrice de Gram de (x_1, \dots, x_n) la matrice $G(x_1, \dots, x_n) = ((x_i|x_j))_{1 \leq i,j \leq n}$.
- 1. Montrer que (x_1, \dots, x_n) est libre si, et seulement si, $G(x_1, \dots, x_n)$ est inversible.
- 2. Montrer que (x_1, \dots, x_n) et $G(x_1, \dots, x_n)$ ont le même rang.
- 3. On suppose que (x_1, \dots, x_n) est libre et on note $F = \text{Vect}(x_1, \dots, x_n)$. Soit p_F la projection orthogonale sur F. Prouver que

$$\forall x \in E, \quad \|x - p_F x\|^2 = \frac{\det G(x, x_1, \dots, x_n)}{\det G(x_1, \dots, x_n)}.$$

19 Dans l'espace euclidien orienté $E = \mathbb{R}^3$, soit r la rotation d'angle θ autour de l'axe orienté et dirigé par le vecteur unitaire u. Montrer que :

$$\forall x \in \mathbb{R}^3, r(x) = \cos \theta x + \sin \theta (u \wedge x) + 2(u|x)\sin^2(\frac{\theta}{2})u.$$

20 Soit
$$(a,b) \in \mathbb{R}^2$$
 et $A = \begin{bmatrix} a & b & b \\ b & a & b \\ b & b & a \end{bmatrix}$. Pour quels $(a,b) \in \mathbb{R}^2$, a-t-on $A \in O(3)$?

Préciser alors la nature et les éléments caractéristiques de l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base canonique serait A.