PSM

POKROČILÉ STATISTICKÉ METODY 2024 / 2025

Obsah

1. Testování Hypotéz	3
1.1 Úvod	
Základy testování hypotéz	3
Testované hypotézy	
Výsledek testu	
Chyby testu	
Rozhodnutí	4
P-hodnota	4
Vybrané testy – přehled	
1.2 Dvouvýběrové testy	6
Test shody dvou rozptylů	6
1.2.1 Dvouvýběrový t-test (pro shodné rozptyly)	6
1.2.2 Welchův test	
1.2.3 Wilcoxonův dvouvýběrový test	7
1.2.4 Příklady	7
1.3 Chí-kvadrát testy – příklady testů	
1.3.1 χ²-test nezávislosti (chí-kvadrát)	9
1.3.2 Fisherův exaktní test	9
1.3.3 Příklady	10
1.4 Poměr šancí	11
2. Wšená významnost	10
2. Věcná významnost	L2
Statistický test	
Odhad počtu pozorování	
2.2 Tabulka analýzy rozptylu	
2.3 Věcná významnost	
2.3.1 Porovnání dvou výběrů	
2.3.2 Porovnání více výběrů	
2.3.3 Vztah dvou kategorických proměnných	
2.3.4 Vztah dvou číselných proměnných	
2.5.4 v Ztan uvou cisemych promennych	
3. Mnohorozměrná statistika	15
3.1 Úvod	15
3.1.1 Základy mnohorozměrné statistiky	15
3.1.2 Měření vzdálenosti	
3.1.3 Zobecnění jednorozměrných metod	15
3.2 Porovnání výběrů	
3.2.1 Hotellingův test	16
3.2.2 MANOVA	
2.2 Motoda blazmích komponent (DCA)	
3.3 Metoda hlavních komponent (PCA)	17

Transformace proměnných	17
Vlastnosti hlavních komponent	
Intuitivní představa PCA	
Optimální počet hlavních komponent	
3.4 Faktorová analýza	
Předpoklady faktorové analýzy	
3.5 Diskriminační analýza	
Lineární diskriminační analýza	
Diskriminační pravidlo pro dvě populace	
Kvadratická diskriminační analýza	
3.6 Shluková analýza	21
Hierarchické shlukování	21
K-means	22
Srovnání metod	22
3.7 Kanonické korelace	22
4. Regresní modely	24
4.1 Metoda maximální věrohodnosti	24
4.2 Dodatky k regresním modelům	
Testy předpokladů	
Závislost na kategorické proměnné	
Interakce	25
Kroková regrese	26
Intervaly spolehlivosti	26
Interpretace regresních koeficientů	26
4.3 Zobecněné lineární modely	27
Ordinální regrese	
Poissonova regrese	27
5. Simulace ve statistice	
5.1 Statistické testy	
5.1.1 Typy testů	
5.1.2 Permutační testy	
Příklad pro dvouvýběrový test:	
Vlastnosti permutačních testů	
5.1.3 Bootstrap	
5.1.4 Odhady metodou Jackknife	
5 1 5 Bayesovská statistika	29

1. Testování Hypotéz

1.1 Úvod

Základy testování hypotéz

- testuje se platnost tvrzení
 - Nový lék je lepší než stávající.
 - Náhodná veličina má normální rozdělení.
 - Průměrná výška lidí se za posledních 50 let zvýšila.
 - Výnosy z jednotlivých druhů jabloní se liší.
 - Krevní tlak závisí na hmotnosti.
- vždy se testují populační charakteristiky; jejich výběrové ekvivalenty se používají jen pro sestrojení testových kritérií

Testované hypotézy

při statistickém rozhodování testujeme proti sobě 2 hypotézy

Nulovou hypotézu

- značíme **H**₀
- obsahuje vždy jen jednu možnost
- v případě testu nezávislosti sem patří nezávislost
- v případě porovnání výběrů sem patří konkrétní velikost
- rozdílu (většinou nulová)
- výběry jsou stejné

• Alternativní hypotézu

- značíme **H**₁
- obsahuje více možností (např.: interval)
- patří sem to, co chci prokázat
- v případě testu nezávislosti sem patří závislost
- v případě porovnání výběrů sem patří obecný popis rozdílu
- výběry se liší

Výsledek testu

– na základě statistického testu uděláme jedno ze dvou rozhodnutí

• Zamítneme nulovou hypotézu

- tím jsme prokázali platnost alternativy

Nezamítneme nulovou hypotézu

- tím jsme neprokázali nic
- interpretace závisí na formulaci testovaných hypotéz
 - neprokázala se platnost alternativy
 - nulová hypotéza může platit

Chyby testu

– při rozhodování můžeme udělat chybu

Chyba prvního druhu

- zamítneme H_0 , přestože platí
- značí se α, a jmenuje se hladina významnosti
- závažnější z obou chyb

Chyba druhého druhu

- nezamítneme H_0 , přestože platí H_1
- značí se β a hodnota 1 β se nazývá síla testu
- za dané hladiny významnosti chceme test co nejsilnější

	Nezamítáme H ₀	Zamítáme H ₀
Skutečně platí H ₀	OK Chyba I. dru	
		α
Skutečně platí H ₁	Chyba II. druhu	OK
	β	síla testu

Rozhodnutí

- výsledek testu získáme
 - porovnáním *testové statistiky* (*T*) a kritické hodnoty (c, jsou tabelovány)
 - porovnáním *p-hodnoty* a hladiny významnosti (α)
- platí, že
 - absolutní hodnota testové statistiky $|T| \ge c$ nebo *p***-hodnota** $\le \alpha$ potom ZAMÍTÁME H_0
 - absolutní hodnota testové statistiky |T| < c nebo **p-hodnota** $> \alpha$ potom NEZAMÍTÁME H_0

P-hodnota

- aktuální dosažená hladina testu
- pravděpodobnost, že za platnosti H_0 nastane výsledek, jaký nastal, nebo jakýkoliv jiný, který ještě více odpovídá alternativě
- definice p-hodnoty se týká testové statistiky
- (ne)zamítnout H_0 nestačí, tento výsledek je třeba interpretovat vzhledem k položené otázce

Vybrané testy – přehled

- Testy rozdělení
 - nejčastěji testujeme normalitu
 - př. Shapiro-Wilkův test, x2-test dobré shody atd.

Parametrické testy

- testová statistika se počítá přímo z naměřených hodnot
- testuje se hodnota parametru, nejčastěji střední hodnoty
- předpokladem bývá konkrétní rozdělení, většinou normální
- př. dvouvýběrový t-test, ANOVA, Waldův test, Bartlettův test atd.

Neparametrické testy

- testová statistika je založena většinou na pořadích, ne přímo na naměřených hodnotách
- jedná se o robustní metody nevyžadující konkrétní rozdělení dat
- př. Wilcoxonův test, Spearmanův korelační koeficient atd.

Simulační testy

- nutnost využití počítačů
- na základě daného výběru se simulují další a počítá se p-hodnota
- př. permutační test, atd.

Test o střední hodnotě jednoho výběru

- normální data jednovýběrový t-test
- nenormální data znaménkový test, jednovýběrový Wilcoxonův test

Test o střední hodnotě rozdílu dvou závislých výběrů

- normální data párový t-test
- nenormální data párový Wilcoxonův test

Test o střední hodnotě rozdílu dvou nezávislých výběrů

- normální rozdělení, shodné rozptyly dvouvýběrový t-test pro shodné rozptyly
- normální rozdělení, různé rozptyly dvouvýběrový Welchův test (t-test pro různé rozptyly)
- nenormální rozdělení dvouvýběrový Wilcoxonův test

Porovnání středních hodnot více závislých výběrů

- normální data ANOVA pro opakovaná měření
- nenormální data Friedmanův test

Porovnání středních hodnot více nezávislých výběrů

- normální rozdělení, shodné rozptyly klasická ANOVA pro shodné rozptyly
- normální rozdělení, různé rozptyly klasická ANOVA pro různé rozptyly
- nenormální rozdělení Kruskall-Wallisův test

Test o nezávislosti dvou-číselných proměnných

- normální rozdělení Pearsonův korelační koeficient
- nenormální rozdělení Spearmanův korelační koeficient

Test o vztahu dvou kategorických proměnných

- závislé proměnné, test symetrie Mc Nemmarův test
- test nezávislosti pro velká data Chí-kvadrát test
- test nezávislosti pro malá data Fisherův test
- test nezávislosti pro ordinální proměnné Kendallův korelační koeficient

1.2 Dvouvýběrové testy

- porovnává střední hodnotu dvou nezávislých výběrů
- testované hypotézy
 - H_0 : střední hodnota X střední hodnota Y = 0
 - H_1 : střední hodnota X střední hodnota $Y \neq 0$, < 0, > 0
- kontrolují se zde 2 předpoklady
 - normalita dat
 - shoda rozptylů
- vybíráme jeden ze tří testů
 - Dvouvýběrový t-test pro normální data a shodné rozptyly
 - Welchův dvouvýběrový test pro normální data a různé rozptyly
 - Wilcoxonův dvouvýběrový test pro data, která nemají normální rozdělení

Test shody dvou rozptylů

- vyhodnocuje se i u nenormálních dat
- testované hypotézy:
 - H₀ : rozptyly se ve výběrech neliší
 - H₁ : rozptyly se ve výběrech liší

– testová statistika testu:
$$F = \frac{\text{Var}(X)}{\text{Var}(Y)} \sim F_{n_1-1,n_2-1}$$

• za platnosti H_0 má F-rozdělení o $n_1 - 1$ a $n_2 - 1$ stupních volnosti

1.2.1 Dvouvýběrový t-test (pro shodné rozptyly)

– testová statistika má tvar:
$$T = \frac{\overline{X} - \overline{Y} - \mu_0}{S} \sqrt{\frac{n_1 n_2}{n_1 + n_2}}$$

kde
$$S = \frac{1}{n_1 + n_2 - 2} \left(\sum_{i=1}^{n_1} (X_i - \overline{X})^2 + \sum_{i=1}^{n_2} (Y_i - \overline{Y})^2 \right)$$

 n_1 , n_2 je rozsah výběru X, respektive Y

• za platnosti nulové hypotézy má tato statistika t-rozdělení o $n_1 + n_2 - 2$ stupních volnosti

1.2.2 Welchův test

– testová statistika má tvar:
$$T = \frac{\overline{X} - \overline{Y} - \mu_0}{\sqrt{\frac{\text{Var}(X)}{n_1} + \frac{\text{Var}(Y)}{n_2}}}$$

• za platnosti nulové hypotézy má *t*-rozdělení o *v* stupních volnosti, kde:

$$\nu = \frac{(\text{Var}(\textbf{X})/\text{n}_1 + \text{Var}(\textbf{Y})/\text{n}_2)^2}{\frac{(\text{Var}(\textbf{X})/\text{n}_1)^2}{n_1 - 1} + \frac{(\text{Var}(\textbf{Y})/\text{n}_2)^2}{n_2 - 1}}.$$

kritické hodnoty je možno odvodit, přestože v není celé číslo

1.2.3 Wilcoxonův dvouvýběrový test

- používá se pro porovnání dvou nezávislých výběrů, které nesplňují předpoklad normality
- test založen na pořadích hodnot sdruženého výběru

– postup:

- oba výběry se spojí do jednoho sdruženého
- sdružený výběr se uspořádá podle velikosti a každé pozorování dostane své pořadí
- pro oba výběry se vypočte součet pořadí a následně i průměrné pořadí
- pokud jsou si průměrná pořadí podobná, výběry se mezi sebou významně neliší

– výpočet:

označme T₁, T₂ součet pořadí v prvním (respektive druhém) výběru

$$U_1 = n_1 n_2 + \frac{n_1(n_1+1)}{2} - T_1, U_2 = n_1 n_2 + \frac{n_2(n_2+1)}{2} - T_2,$$

kde n₁, n₂ jsou rozsahy jednotlivých výběrů. Přesný test porovnává hodnotu *min(U1, U2)* s kritickou hodnotou

• asymptoticky platí:
$$U_0 = \frac{U_1 - \frac{1}{2}n_1n_2}{\sqrt{\frac{n_1n_2}{12}(n_1 + n_2 + 1)}}$$

má za platnosti H₀ N(0, 1) rozdělení.

1.2.4 Příklady

– Příklad 1 – dvouvýběrový t-test:

Ve výběru mám 222 jedenáctiletých dětí, z toho 159 hochů a 63 dívek. Průměrná hmotnost hochů vyšla 38.1 kg a u dívek 39.1. Směrodatná odchylka pro hochy vyšla 6.7 kg a pro dívky 7.1. Je hmotnost jedenáctiletých dětí v průměru stejná pro hochy jako pro dívky? Předpokládejme přibližně normální rozdělení dat.

- test shody rozptylů:
 - \circ testová statistika F = 45.1/50.6 = 0.89
 - \circ p-hodnota = 0.56 > α = 0.005
 - o nulovou hypotézu **ne**zamítáme
 - rozptyly ve skupinách jsou přibližně stejné a můžeme použít dvouvýběrový t-test pro shodné rozptyly
- testujeme
 - H₀: hmotnost hochů a hmotnost dívek se neliší hmotnost hochů hmotnost dívek = 0
 - H₁: hmotnost hochů a dívek se liší hmotnost hochů hmotnost dívek ≠ 0
- grafické porovnání:

• testová statistika:
$$T = \frac{\overline{X} - \overline{Y} - \mu_0}{S} \sqrt{\frac{n_1 n_2}{n_1 + n_2}} = \frac{38.1 - 39.1}{6.83} \sqrt{\frac{159 \times 63}{159 + 63}} = -1.001$$

- porovnáváme s kvantilem *t*-rozdělení $t_{220}(1-0.025) = 1.97$ (kvantil pro oboustrannou alternativu)
- testová statistika je v absolutní hodnotě menší než tento kvantil, tak *nulovou hypotézu nezamítám*
- p-hodnota = $0.3151 > \alpha = 0.05$
- **Závěr**: Na hladině významnosti 5% jsem neprokázala, že by se hmotnost jedenáctiletých hochů a dívek lišila

- Příklad 2 - Wilcoxonův dvouvýběrový test:

Chceme porovnat výsledky test [°]u student °u v Ústí nad Labem a v Liberci. Studenti v Ústí dostali bodová ohodnocení 45, 79, 81, 56, 53, 77. Studenti v Liberci získali ohodnocení 76, 62, 84, 80, 41, 79, 66.

- testujeme:
 - H₀: Studenti v Ústí a v Liberci jsou stejní
 - ∘ H₁: Studenti v Ústí a v Liberci se liší
- v prvním kroku srovnáme všechny hodnoty do řady:
 - 41, 45, 53, 56, 62, 66, 76, 77, 79, 79, 80, 81, 84
- následně jim přiřadíme pořadí:
 - o 1, 2, 3, 4, 5, 6, 7, 8, 9.5, 9.5, 11, 12, 13
- pak vypočteme

$$\circ$$
 T₁ = 38.5, T₂ = 52.5, U₁ = 24.5, U₂ = 17.5, U₀ = 0.5, p = 0.6678

Závěr: p-hodnota > α a tedy nezamítám nulovou hypotézu, neprokázal se rozdíl mezi studenty v Ústí a v Liberci.

1.3 Chí-kvadrát testy – příklady testů

1.3.1 χ²-test nezávislosti (chí-kvadrát)

- vztah dvou kategorických proměnných popisujeme tabulkou absolutních četností
- označme
 - *X*₁,..., *X*_k hodnoty jedné kategorické proměnné *Y*₁,..., *Y*_l hodnoty druhé kategorické proměnné
 - n_{i,j} četnost současného výskytu znaků X_i , Y_j
 n_i marginální četnost znaku X_i
 n_j marginální četnost znaku Y_i
 - n_j marginální četnost znaku I
 n celkový počet pozorování
- kontingenční tabulka absolutních četností má tvar:

	Y ₁		Y_I	
X_1	<i>n</i> _{1,1}		n _{1,1}	<i>n</i> _{1.}
:		4.		:
X_k	n _{k,1}		$n_{k,l}$	n _{k.}
	n.		n,	n

- testované hypotézy:
 - H₀ : proměnné na sobě nezávisí
 - H₁: proměnné na sobě závisí
- test založen na porovnání
 - pozorovaných četností *n*_{ii}
 - očekávaných četností $n_i n_j / n$ vychází z definice nezávislosti $P(A \cap B) = P(A)P(B)$
- testová statistika: $X^2 = \sum_{i=1}^k \sum_{j=1}^l \frac{(pozorovane_{i,j} ocekavane_{i,j})^2}{ocekavane_{i,j}} = \sum_{i=1}^k \sum_{j=1}^l \frac{(n_{i,j} n_{i,n_{i,j}}/n)^2}{n_{i,n_{i,j}}/n}$
 - za platnosti H_0 má $\chi 2$ -rozdělení o (k-1)(l-1) stupních volnosti

1.3.2 Fisherův exaktní test

- test nezávislosti pro malá data
 - když není splněn předpoklad χ2-testu, tj. některá očekávaná četnost je menší než 5
 - počítá přímo p-hodnotu ke konkrétní tabulce
 - známý též jako Fisherův faktoriálový test
- pro čtyřpolní tabulku:

$$\begin{array}{c|ccccc} & Y_1 & Y_2 & \\ \hline X_1 & n_{11} & n_{12} & n_{1.} \\ X_2 & n_{21} & n_{22} & n_{2.} \\ \hline & n_{.1} & n_{.2} & n \end{array}$$

- se p-hodnota vypočítá: $p = \frac{n_1! n_2! n_1! n_2!}{n! n_{11}! n_{12}! n_{21}! n_{22}!}$
- pro větší tabulky je test složitější

1.3.3 Příklady

– Příklad 1 – χ2-test nezávislosti:

U 204 mužů s jedním rizikovým faktorem ischemické choroby srdeční bylo zjišťováno vzdělání a kategorie kouření. Výsledky jsou shrnuty v následující tabulce absolutních četností. Souvisí spolu tyto dvě veličiny?

	ZŠ	SŠ	VŠ
bývalý kuřák	6	10	11
nekuřák	13	22	23
slabý kuřák	52	39	18
silný kuřák	6	1	3

vztah dvou kategorických proměnných se zobrazuje pomocí sloupcového grafu (můžeme zobrazovat pomocí řádkových nebo sloupcových procent):

- H₀: kouření se vzděláním nesouvisí
- H₁: kouření se vzděláním souvisí

výsledky testu

- testová statistika x2 testu 21.286 > 12.59, kvantil x2-rozdělení s 6 stupni volnosti
- p-hodnota $0.00163 < \alpha = 0.05$
- p-hodnotu Fisherova exaktního testu $0.00084 < \alpha = 0.05$
- některé očekávané četnosti jsou menší než 5 (není splněn předpoklad χ2 testu)
- na základě Fisherova testu **zamítáme** nulovou hypotézu
- Závěr: Prokázali jsme, že kouření se vzděláním souvisí.

1.4 Poměr šancí

- uvažujme dvouhodnotovou veličinu ve dvou populacích
 - např. sledujeme výskyt chřipky ve městě a na venkově

	Chřipku má	Chřipku nemá	
Město	n ₁₁	n ₁₂	<i>n</i> _{1.}
Venkov	n ₂₁	n ₂₂	n _{2.}
	n _{.1}	n _{.2}	n

- rozdíl mezi populacemi je možné popsat poměrem šancí
 - šance "mít chřipku proti nemít chřipku"
 - poměr šancí je podíl šancí v obou populacích

$$Odds = \frac{P(\text{má chřipku})}{P(\text{nemá chřipku})}$$

- definice: $OR = \frac{n_{11}n_{22}}{n_{12}n_{21}}$
 - interpretace: kolikrát je větší šance na chřipku ve městě než na venkově
- testované hypotézy
 - H_0 : OR = 1, šance jsou stejné
 - H_1 : OR $\neq 1$, šance se v populacích liší

- testová statistika:
$$Z = \frac{\ln(OR)}{\sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}}}$$

- za platnosti nulové hypotézy má N(0, 1) rozdělení
- **Příklad**: Uvažujme následující čtyřpolní tabulku

	Chřipku má	Chřipku nemá	
Město	58	17	75
Venkov	32	30	62
	90	47	137

- šance mít chřipku ve městě vychází 58/17 = 3.41
- šance mít chřipku na venkově vychází 32/30 = 1.07
- poměr šancí ve městě vs. na venkově vychází 3.41/1.07 = 3.2 ve městě je více než třikrát větší šance mít chřipku než na venkově
- testová statistika 3.27 > 1.96 kritická hodnota
- p-hodnota $0.001 < \alpha = 0.05$
- zamítáme nulovou hypotézu
- **Závěr**: Ve městě je významně větší šance dostat chřipku než na venkově

2. Věcná významnost

2.1 Počet pozorování

Statistický test

- doposud uvedené testy měří statistickou významnost je ale tato významnost i skutečně zajímavá?
- p-hodnota statistického testu závisí na počtu pozorování
 - málo pozorování dává "velkou" p-hodnotu
 - hodně pozorování dává "malou" p-hodnotu
 - statistické testy dobře fungují pro počet pozorování kolem 100 hodnot

Odhad počtu pozorování

- vztah mezi počtem pozorování, hladinou významnosti a sílou testu
- zvolme:
 - hladinu významnosti $\alpha = 0.05$
 - sílu testu $1 \beta = 0.9$
 - typ testu: dvouvýběrový t-test
 - minimální zajímavý rozdíl mezi skupinami $|\mu 1 \mu 2| = 2$
 - očekávanou variabilitu $\sigma = 5$
- optimální počet pozorování v každé skupině: $n_1 = 2\left(\frac{z(1-\alpha)+z(1-\beta)}{\frac{|\mu_1-\mu_2|}{\sigma}}\right)^2 = 2\left(\frac{1.96+1.28}{2/5}\right)^2 = 131.4$
 - optimální je stejný počet pozorování v obou skupinách
 - pokud očekáváte, že budete používat Wilcoxonův dvouvýběrový test, přidejte navíc 15% pozorování
 - počet pozorování je možné odhadnout i pro požadovanou délku intervalu spolehlivosti

2.2 Tabulka analýzy rozptylu

- používá se pro porovnání variability vysvětlené a variability nevysvětlené
- nejčastěji v ANOVě (porovnání střední hodnoty v několika nezávislých výběrech)

- označme:
$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_{..})^2$$
$$SSA = \sum_{i=1}^{k} n_i (\overline{X}_{i.} - \overline{X}_{..})^2$$
$$SSe = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \overline{X}_{i.})^2$$

	Součty čtverců	Stupně volnosti	Průměrné čtverce	Testová statistika	p-hodnota
Faktor A	SSA	dfA = k - 1	$MSA = \frac{SSA}{dfA}$	F = MSA/MSe	p
Chyba e	SSe	dfe = n - k	$MSe = \frac{SSe}{dle}$		
Celkem	SST	dft = n - 1			

- za platnosti nulové hypotézy má testová statistika F-rozdělení o k-1 a n-k stupních volnosti

2.3 Věcná významnost

- pro posouzení věcné významnosti vytvořeny ukazatele, které pomohou určit, zda zjištěná statistická významnost je skutečně zajímavá
- tyto ukazatele se převážně používají u velkých vzorků dat
- velké vzorky můžeme získat např. v rámci metaanalýzy (kombinace několika výzkumů na stejné téma)

2.3.1 Porovnání dvou výběrů

– Cohenovo d

$$d = \frac{\overline{X} - \overline{Y}}{\sqrt{S^2}},$$
 $S^2 = \frac{n_1 S_1^2 + n_2 S_2^2}{n_1 + n_2}$

- do 0.5 malý efekt, 0.5 0.8 střední efekt, nad 0.8 velký efekt
- Hedgesovo g

$$g = \frac{\overline{X} - \overline{Y}}{\sqrt{MSe}},$$

- MSe jsou residuální "průměrné čtverce" z tabulky analýzy rozptylu do 0.5 malý efekt, 0.5 – 0.8 střední efekt, nad 0.8 velký efekt
- Glassovo δ

$$\delta = rac{\overline{X} - \overline{Y}}{\sqrt{S_k^2}}$$

• S_k^2 je rozptyl kontrolní skupiny do 0.5 malý efekt, 0.5 - 0.8 střední efekt, nad 0.8 velký efekt

2.3.2 Porovnání více výběrů

- Fisherovo n²

$$\eta^2 = \frac{SSA}{SST}$$

- kde *SSA* a *SST* jsou součty čtverců z tabulky analýzy rozptylu
- procento vysvětlené variability
- Haysova ω2

$$\omega^2 = \frac{SSA - (k-1)MSe}{SST + MSe}$$

- kde *SSA*, *SST* a *MSe* jsou součty čtverců / průměrné čtverce z tabulky analýzy rozptylu
- procento vysvětlené variability

2.3.3 Vztah dvou kategorických proměnných

– Cramerovo φ

$$\phi = \sqrt{\frac{\chi^2}{n}} = \sqrt{\sum_{i=1}^k \frac{(p_i - p_{0i})^2}{p_{0i}}}$$

- kde χ2 je testová statistika χ2-testu
- do 0.29 malý efekt, 0.3 0.49 střední efekt, nad 0.5 velký efekt
- Cramerovo V

$$V=\sqrt{\frac{\chi^2}{n(k-1)}}$$

hodnota od 0 do 1 chovající se přibližně jako korelační koeficient

2.3.4 Vztah dvou číselných proměnných

– korelační koeficient r

$$\text{Cor}(X,Y) = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^n (X_i - \overline{X})^2 \sum_{i=1}^n (Y_i - \overline{Y})^2}}$$

- do 0.3 malý efekt, 0.3 0.7 střední efekt, nad 0.7 velký efekt
- koeficient determinace R²

$$\textit{R}^2 = \text{Cor}^2(X,Y) = 1 - \frac{\sum_{i=1}^n (Y_i - \widehat{Y}_i)^2}{\sum_{i=1}^n (Y_i - \overline{Y}_i)^2}$$

- do 0.01 malý efekt, 0.01 0.25 střední efekt, nad 0.25 velký efekt
- procento variability vysvětlené modelem

3. Mnohorozměrná statistika

3.1 Úvod

3.1.1 Základy mnohorozměrné statistiky

- nepracuje se s jednou proměnnou X, ale s vektorem proměnných $X = (X_1, X_2, \dots, X_k)^T$
- příklady:
 - Měříme několik fyzických parametrů jedince: výška, váha, krevní tlak, vitální kapacitu plic, atd.
 - Každý žák na vysvědčení dostane známku z několika předmětů
 - Zkoumáme chemické složení roztoku a máme zastoupení jednotlivých prvků
 - Klient banky vyplní dotazník, tj. odpoví na skupinu otázek
- základní charakteristiky
 - střední hodnota

$$\mu = (\mu_1, \ldots, \mu_k)^T$$

variační matice

$$\Sigma = (\sigma_{ij}) = \left(egin{array}{cccc} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1k} \ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2k} \ dots & \ddots & dots \ \sigma_{k1} & \sigma_{k2} & \dots & \sigma_k^2 \end{array}
ight)$$

- odhad střední hodnoty je vektor průměrů $\overline{\mathbf{X}} = (\overline{X}_1, \dots, \overline{X}_k)^T$
- odhad varianční matice je matice výběrových kovariancí a rozptylů $\mathbf{S} = (\mathbf{s_{ij}})$ kde $\mathbf{s}_{ij} = \text{cov}(X_i, X_j)$

$$\mathbf{S} = (\mathbf{s_{ij}})$$
 kde $s_{ij} = \text{cov}(X_i, X_j)$

pro
$$i \neq j$$

 $s_{ii} = Var(X_i)$

3.1.2 Měření vzdálenosti

– Euklidovská vzdálenost

$$d(\mathbf{X}, \mathbf{Y}) = ||\mathbf{X}_i - \mathbf{Y}_i|| = \sqrt{(\mathbf{X} - \mathbf{Y})^T (\mathbf{X} - \mathbf{Y})} = \sqrt{\sum_{i=1}^k (X_i - Y_i)^2}$$

- nevýhoda: všechny složky přispívají do vzdálenosti stejnou měrou a není zohledněn jejich vzájemný vztah
- Mahalanobisova vzdálenost

$$d(\mathbf{X}, \mathbf{Y}) = \sqrt{(\mathbf{X} - \mathbf{Y})^T \mathbf{S}^{-1} (\mathbf{X} - \mathbf{Y})}$$

pro nezávislé vektory dostáváme

$$d(\mathbf{X}, \mathbf{Y}) = \sqrt{\sum_{i=1}^k \frac{(X_i - Y_i)^2}{s_{ii}^2}}$$

kde S = cov(X, Y) je kovarianční matice vektorů X a Y

3.1.3 Zobecnění jednorozměrných metod

- dvouvýběrový test Hotellingův test
- analýza rozptylu (ANOVA) **MANOVA**
- korelační koeficient Kanonické korelace \Rightarrow
- lineární regrese \Rightarrow Mnohorozměrná lineární regrese (kde závisle proměnná má více složek)

3.2 Porovnání výběrů

3.2.1 Hotellingův test

- zobecnění dvouvýběrového testu
- porovnávám střední hodnotu ve dvou nezávislých výběrech
- testované hypotézy:
 - H₀: vektory středních hodnot se rovnají
 - H₁: vektory středních hodnot se liší
- testová statistika:

$$T^{2} = \frac{n_{1}n_{2}}{n_{1} + n_{2}} (\overline{\mathbf{X}} - \overline{\mathbf{Y}})^{T} \mathbf{S}^{-1} (\overline{\mathbf{X}} - \overline{\mathbf{Y}})$$

$$\mathbf{S} = \frac{(n_{1} - 1)\mathbf{S}_{1} + (n_{2} - 1)\mathbf{S}_{2}}{n_{1} + n_{2} - 2}$$

- za platnosti H_0 má Hotellingovo T^2 -rozdělení s k a $n_1 + n_2 2$ stupni volnosti
- odpovídá F-rozdělení $T^2 \sim \frac{(n_1+n_2-2)k}{n_1+n_2-k-1} F_{k,n_1+n_2-k-1}$

3.2.2 MANOVA

- zobecnění analýzy rozptylu
- porovnávám střední hodnotu ve více nezávislých výběrech
- testované hypotézy
 - H₀: vektory středních hodnot se rovnají
 - H₁: vektory středních hodnot se liší
- porovnává se variabilita vysvětlená a nevysvětlená

$$\mathbf{W} = \sum_{i=1}^{p} \sum_{j=1}^{n_i} (\mathbf{Y}_{ij} - \overline{\mathbf{Y}}_i)^T (\mathbf{Y}_{ij} - \overline{\mathbf{Y}}_i)$$

$$\mathbf{B} = \sum_{i=1}^{p} n_i (\overline{\mathbf{Y}}_i - \overline{\mathbf{Y}})^T (\overline{\mathbf{Y}}_i - \overline{\mathbf{Y}})$$

- kde p značí počet výběrů a Y_i průměr i-tého výběru
- testové statistiky pro MANOVu:
 - Wilkovo lambda

$$\Lambda_{\pmb{W}} = \mathsf{det}\left(\frac{\pmb{W}}{\pmb{W} + \pmb{B}}\right)$$

Pillayova stopa

$$\Lambda_P = \text{tr}\left(\frac{\mathbf{B}}{\mathbf{W} + \mathbf{B}}\right)$$

• Hotellingovo lambda

$$\Lambda_H = \operatorname{tr}\left(\frac{\mathbf{B}}{\mathbf{W}}\right)$$

→ při porovnání dvou výběrů se všechny zjednoduší na Hotellingův dvouvýběrový test

3.3 Metoda hlavních komponent (PCA)

- PCA = Principal Component Analysis
- zjednodušení dat
- využívá se při práci s velkým množstvím proměnných
- proměnné se transformují tak, aby se většina informace soustředila do malého počtu nových veličin
- zjednodušení je podmíněné tím, že vstupní proměnné nejsou nezávislé
- hlavní využití při grafickém zobrazení výstupů

Transformace proměnných

– nově vzniklé proměnné jsou lineární kombinací původních

$$Y = X^T P$$

- kde
 - *X* je centrovavá matice vstupních hodnot (centrování = odečet průměru)
 - *Y* je matice cílových/ výstupních proměnných
 - **P** je matice transformačních vektorů
- matici P získáme pomocí rozkladu korelační matice vstupních dat *C*

$$C = P \wedge P^T$$

- kde
 - \circ Λ je matice vlastních čísel matice C
 - **P** je matice vlastních vektorů matice **C**
- vlastní čísla a vlastní vektory matice buď *A* čtvercová matice řádu *n*
 - vlastní, neboli charakteristické číslo matice *A* je takové, pro které platí

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \mathbf{0}$$

- matice řádu *n* má *n* vlastních čísel, některé mohou být vícenásobné
- vlastní vektor v matice A příslušný k vlastnímu číslo λ splňuje

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$$

Vlastnosti hlavních komponent

- výsledná matice hlavních komponent Y má vlastnosti
 - její vektory jsou vzájemně nezávislé (kolmé)
 - součet koeficientů lineární transformace u každé komponenty je 1
 - řadí se podle velikosti variability: od vektoru s největší variabilitou k vektoru s nejnižší variabilitou
 - obsahuje veškerou informaci, kterou obsahovala původní data

Intuitivní představa PCA

- celý postup si můžeme představit následovně:
 - mějme mnohozměrná data v prostoru
 - daty proložíme vektor ve směru s největší variabilitou
 - tak získáme první hlavní komponentu
 - hledáme vektor, který by byl k prvnímu kolmý a opět byl ve směru s největší variabilitou
 - získáme druhou hlavní komponentu
 - hledáme vektor, který by byl kolmý k prvním dvěma a byl ve směru s největší variabilitou
 - získáme třetí hlavní komponentu
 - poslední dva kroky opakujeme, dokud máme body ve volném prostoru

Optimální počet hlavních komponent

- počet hlavních komponent dostačující k reprezentaci informace obsažené ve vstupních datech odpovídá počtu vlastních čísel korelační matice větších než 1
- grafické znázornění tohoto počtu: Scree plot

3.4 Faktorová analýza

- nevýhodou hlavních komponent je, že nemají přirozenou interpretaci → pokud chceme získat menší počet proměnných, které jsou interpretovatelné, používá se faktorová analýza
- hlavní myšlenka faktorové analýzy pochází z psychologie:
 - na každého působí *k* neměřitelných faktorů
 - podle toho, jak na nás působí, my reagujeme
 - podle reakcí na **p** podnětů se snažíme identifikovat původní faktory

- příklad:

- Děti nosí ze školy vysvědčení. Podle známek, pak lze identifikovat dvě skupiny studentů, jedna z nich má dobré známky v předmětech <u>matematika</u>, <u>fyzika</u>, <u>přírodopis</u>, <u>zeměpis</u>, <u>chemie</u>, druhá má dobré známky v předmětech čeština, angličtina, dějepis, občanská výchova. Faktory, které na ně působí jsou pak <u>přírodní vědy</u> a humanitní obory.
- vycházíme z rovnice obdobné jako u analýzy hlavních komponent

$$X = LF + \varepsilon$$

- kde
 - *X* je centrovaná matice naměřených dat
 - **L** isou tzv. loadings
 - *F* jsou hledané faktory
 - \circ ε jsou náhodné chyby

Předpoklady faktorové analýzy

- aby bylo možné faktory odhadnout, musí platit
 - F a ε jsou nezávislé
 - E(F) = 0 a Cov(F) = I kde I je jednotková matice
 - o tj. faktory mají nulovou střední hodnotu, jednotkový rozptyl a jsou nezávislé
 - $\mathsf{E}(\varepsilon) = 0 \text{ a Cov}(\varepsilon) = \sigma^2 \mathsf{I}$
 - \circ tj. náhodné chyby jsou nezávislé, stejně rozdělené s nulovou středních hodnotou a konstantním rozptylem σ^2

$$\begin{split} \bullet \quad \text{Cov}(\textbf{X}) &= \textbf{L}\textbf{L}' + \sigma^2\textbf{I}, \, \text{tedy} \\ \text{Var}(\textbf{X}_{\text{i}}) &= \ell_{\text{i1}}^2 + \ell_{\text{i2}}^2 + \ldots + \ell_{\text{im}}^2 + \sigma^2 \\ \text{Cov}(\textbf{X}_{\text{i}},\textbf{X}_{\text{j}}) &= \ell_{\text{i1}}\ell_{\text{j1}} + \ell_{\text{i2}}\ell_{\text{j2}} + \ldots + \ell_{\text{im}}\ell_{\text{jm}} \end{split}$$

- Cov(X, F) = L, tedy $Cov(X_i, F_j) = \ell_{ij}$ kde ℓij jsou prvky matice L
- pokud platí výše uvedené vztahy, pak lze matici loadingů ${\bf L}$ určit jednoznačně až na přenásobení ortogonální maticí ${\bf T}$
- přenásobení se dá dále využít jako rotace k hledání nejlépe interpretovatelných faktorů
- nejčastěji používaná *rotace* je rotace *varimax* ortogonální rotační matice **T**
- výsledné loadingy jsou buď hodně velké nebo hodně malé, podle toho, jak sytí daný faktor

– faktorová analýza:

- hodnoty loadingů hledáme obdobně jako hlavní
- komponenty, tedy rozkladem korelační matice naměřených proměnných X
- faktorové skóry jsou odhadnuté hodnoty faktorů přiřazené jednotlivým pozorováním

$$\hat{\mathbf{f}}_j = (\hat{\mathbf{L}}(\hat{\sigma}^2 \mathbf{I})^{-1} \hat{\mathbf{L}})^{-1} \hat{\mathbf{L}}' (\hat{\sigma}^2 \mathbf{I})^{-1} (x_j - \overline{x})$$

• faktorové skóry dále používáme jako nové "zjednodušující" proměnné

3.5 Diskriminační analýza

- Příklad: Uvažujme pacienty s různými nemocemi a mějme ke každému skupinu lékařských testů. Chceme pak najít způsob, jak určit, kterou nemocí pacient trpí jen na základě výsledků testů mějme mnohorozměrná data z několika různých populací chceme najít nejlepší možný způsob, jak na základě dat rozlišit populace mezi sebou výsledkem mají být pravděpodobnosti příslušnosti k jednotlivým skupinám.
- nabízející se postup:
 - pro každou populaci spočítáme průměrný vektor
 - nového jedince zařadíme do populace, která bude mít svůj průměrný vektor nejblíže k jeho hodnotám
- výše uvedený "nabízející se"postup vede na lineární diskriminační analýzu
 - jak dobré je určené rozhodovací pravidlo zjistíme na základě klasifikace
 - počet správně přiřazených jednotek a počet špatně přiřazených jednotek

Lineární diskriminační analýza

 uvažujme dvě populace ve dvourozměrném případě – lineární diskriminační analýza je odděluje přímkou

Diskriminační pravidlo pro dvě populace

- označme průměrné vektory v populacích $\overline{\mathbf{X}}_{1,n}, \overline{\mathbf{X}}_{2,n}$
- pro měření vzdáleností využijeme Mahalanobisovu vzdálenost $d^2(\mathbf{X}, \mathbf{Y})$
- rozhodovací pravidlo pak zní:
 - pokud

$$d^2(\mathbf{X},\overline{\mathbf{X}}_{1,n}) < d^2(\mathbf{X},\overline{\mathbf{X}}_{2,n})$$

- přiřadíme pozorování k první populaci, v opačném případě ke druhé
- aritmetickými operacemi lze získat vektor

$$\mathbf{b} = \mathbf{S}^{-1}(\overline{\mathbf{X}}_{1,n} - \overline{\mathbf{X}}_{2,n})$$

• kde *S* je kombinovaná výběrová varianční matice obou populací

$$S = \frac{n_1 - 1}{(n_1 - 1) + (n_2 - 1)} S_1 + \frac{n_2 - 1}{(n_1 - 1) + (n_2 - 1)} S_2$$

 n_1 , n_2 jsou velikosti výběrů z obou populací a S_1 , S_2 jsou výběrové varianční matice obou populací

- rozhodovací pravidlo potom zní
 - pokud

$$\boldsymbol{b}^T\boldsymbol{X} - \boldsymbol{b}^T \overline{\overline{\boldsymbol{X}}_{1,n}} + \overline{\overline{\boldsymbol{X}}_{2,n}} > 0$$

- pak pozorování patří do první populace, v opačném případě do druhé
- toto pravidlo je možné také přepsat v nevektorové podobě jako

$$\sum_{i=1}^k c_i X_i - c_0 > 0$$

kde koeficienty c_0 , c_i lze jednoznačně odvodit z vektoru b

- z tohoto zápisu je také zřejmé, že rozhodovací pravidlo je v tomto případě přímka
- poznámka: uvedené rozhodovací pravidlo je možné odvodit také metodou maximální věrohodnosti z hustoty mnohorozměrného normálního rozdělení
- vzniklou přímku je možné dále "posouvat" přidáním dalších podmínek:
 - podmínky na apriorní pravděpodobnosti obou populací, označme je π_1 a π_2 využíváme, když je výskyt jedné populace výrazně častější než je tomu u populace druhé
 - penalizace pro špatné zařazení jednotky, označme
 c(2|1) penalizaci za špatné přiřazení jednotky z první populace
 c(1|2) penalizaci za špatné přiřazení jednotky z druhé populace
- rozhodovací pravidlo se změní na:

$$\mathbf{b}^T \mathbf{X} - \mathbf{b}^T \overline{\overline{\mathbf{X}}_{1,n} + \overline{\mathbf{X}}_{2,n}} + \ln \left(\frac{c(2|1)}{c(1|2)} \frac{\pi_1}{\pi_2} \right) > 0$$

Kvadratická diskriminační analýza

někdy přímka pro oddělení populací nestačí a je potřeba použít křivku

Kvadraticka distribucni funkce

diskriminační pravidlo pro dvě populace pak vypadá následovně:

pokud

$$\frac{1}{2} \mathbf{X}' (\mathbf{S}_1^{-1} - \mathbf{S}_2^{-1}) \mathbf{X} - (\overline{\mathbf{X}}_{1,n} \mathbf{S}_1^{-1} - \overline{\mathbf{X}}_{2,n} \mathbf{S}_2^{-1}) \mathbf{X} + k + \ln \left(\frac{c(1|2)}{c(2|1)} \frac{\pi_2}{\pi_1} \right) \leq 0$$

kde

$$k = \frac{1}{2} \ln \left(\frac{|\mathbf{S}_1|}{|\mathbf{S}_2|} \right) + \frac{1}{2} (\overline{\mathbf{X}}_{1,n}' \mathbf{S}_1^{-1} \overline{\mathbf{X}}_{1,n} - \overline{\mathbf{X}}_{2,n}' \mathbf{S}_2^{-1} \overline{\mathbf{X}}_{2,n})$$

• pak nového jedince přiřadíme k první populaci, v opačném případě ke druhé

3.6 Shluková analýza

- hledání skupin v mnohorozměrných datech
 - · chceme optimální počet skupin, tak aby
 - o rozdíly mezi skupinami byly co možná největší
 - rozdíly v rámci skupin byly co možná nejmenší (homogenní skupiny)
 - výsledné skupiny se snažíme popsat, aby se mezi nimi dalo rozlišovat
 - základem analýz je měření vzdáleností mezi body

Hierarchické shlukování

- začínáme s množinou bodů, kde každý tvoří jednu skupinu
- postupně slučujeme body do skupin, až tvoří jednu velkou skupinu
- podle způsobu měření vzdálenosti mezi skupinami rozlišujeme
 - average linkage vzdálenost skupin je vzdálenost jejich středů (průměrů)
 - *single linkage* vzdálenost skupin je vzdálenost nejbližších bodů
 - *complete linkage* vzdálenost skupin je vzdálenost nejvzdálenějších bodů
 - Wardova metoda skupiny jsou určené tak, aby se minimalizovala variabilita v rámci skupin
 dává většinou "nejlepší výsledky"
- grafické znázornění hierarchického shlukování se nazývá dendrogram

– opticky hledáme, kde ukončit shlukování, tj. kolik skupin je optimálních

K-means

- postup shlukování metodou K-means:
 - nejprve se zvolí počet skupin **p**
 - náhodně vybereme **p** bodů v mnohorozměrném prostoru jako středy těchto skupin
 - zařadíme prvek, který je nejbližší nějakému středu k této skupině
 - středy se přepočítají
 - poslední dva body se opakují, dokud nejsou rozřazeny všechny prvky

Srovnání metod

- nevýhody jednotlivých metod
 - *hierarchické shlukování* odlehlé hodnoty zde často tvoří samostatné skupiny
 - *K-means* pokud v datech nejsou jednoznačné skupiny, pak rozřazování dopadne jinak při jiné volbě náhodných středů

3.7 Kanonické korelace

- máme dvě skupiny proměnných X a Y měřených na stejných jedincích a chceme zjistit, zda mezi těmito skupinami je nějaký vztah, případně jaký
- příklad: Uvažujme dvě různé skupiny lékařských vyšetření a hodnotíme, zda obě tyto skupiny měří to samé, nebo ne.
- pro každou skupinu proměnných pak hledáme jejich vhodnou lineární kombinaci:

$$U = \mathbf{a}^T \mathbf{X}, \qquad V = \mathbf{b}^T \mathbf{Y}$$

• takovou, že má mezi sebou maximální korelaci

$$\mathsf{E}(\mathbf{X}) = \mu_1, \qquad \mathsf{Cov}(\mathbf{X}) = \Sigma_{11}$$
 $\mathsf{E}(\mathbf{Y}) = \mu_2, \qquad \mathsf{Cov}(\mathbf{Y}) = \Sigma_{22}$ $\mathsf{Cov}(\mathbf{X}, \mathbf{Y}) = \qquad \Sigma_{12} = \Sigma_{21}'$

– pak víme, že:

$$\begin{array}{rcl} \text{Var}(\mathsf{U}) &=& \mathbf{a}' \Sigma_{11} \mathbf{a} \\ \text{Var}(\mathsf{V}) &=& \mathbf{b}' \Sigma_{22} \mathbf{b} \\ \text{Cov}(\mathsf{U},\mathsf{V}) &=& \mathbf{a}' \Sigma_{12} \mathbf{b} \\ \text{Cor}(\mathsf{U},\mathsf{V}) &=& \frac{\mathbf{a}' \Sigma_{12} \mathbf{b}}{\sqrt{\mathbf{a}' \Sigma_{11} \mathbf{a}} \sqrt{\mathbf{b}' \Sigma_{22} \mathbf{b}}} \end{array}$$

- hledejme k dvojic proměnných ${\it Ui}$, ${\it Vi}$, kde k je počet proměnných v menší skupině
- pro tyto proměnné nechť platí:
 - proměnné U_1 , V_1 mají obě rozptyl roven jedné a maximalizují vzájemnou korelaci
 - proměnné U_2 , V_2 mají obě rozptyl roven jedné, jsou nekorelované s proměnnými U_1 , V_1 a maximalizují vzájemnou korelaci
 - proměnné U_k , V_k mají obě rozptyl roven jedné, jsou nekorelované s proměnnými $U_1, \ldots, U_{k-1}, V_1, \ldots, V_{k-1}$ a maximalizují vzájemnou korelaci

- takovéto páry proměnných U_i , V_i se nazývají kanonické proměnné a jejich vzájemné korelace potom *kanonické korelace*
- platí:

$$Cor(U_1, V_1) \ge Cor(U_2, V_2) \ge \cdots \ge Cor(U_k, V_k)$$

- matematická konstrukce kanonických proměnných
 - lineární koeficienty a a b lze určit jako

$$\circ \quad \textbf{a} = \textbf{e} \textbf{S}_{11}^{-1/2} \quad \text{kde } \textbf{\textit{e}} \text{ jsou vlastn\'i vektory matice} \quad \textbf{S}_{11}^{-1/2} \textbf{S}_{12} \textbf{S}_{22}^{-1} \textbf{S}_{21} \textbf{S}_{11}^{-1/2}$$

•
$$\mathbf{b} = \mathbf{f} \mathbf{S}_{22}^{-1/2}$$
 kde \mathbf{f} jsou vlastní vektory matice $\mathbf{S}_{22}^{-1/2} \mathbf{S}_{21} \mathbf{S}_{11}^{-1} \mathbf{S}_{12} \mathbf{S}_{22}^{-1/2}$

- matice **S** jsou odhady matic Σ
- pokud jsou skupiny proměnných X a Y nezávislé, pak jejich teoretické kovarianční matice Σ_{12} a Σ_{21} jsou nulové (jak však pomocí kanonických korelací tuto nezávislost otestovat?)
- můžeme testovat několik různých hypotéz
 - H_0 : všechny kanonické korelace jsou nulové, tedy $\Sigma_{12} = 0$
 - H_0 : druhá a další kanonické korelace jsou nulové a první je nenulová, tedy $\rho_2 = \cdots = \rho_k = 0$
 - H_0 : třetí a další kanonické korelace jsou nulové a první dvě jsou nenulové, tedy $\rho_3 = \cdots = \rho_k = 0$
 - atd
 - → kde ρ_i je *i*-tá kanonická korelace
- testová statistika první nulové hypotézy má tvar:

$$n \ln \left(\frac{|\mathbf{S}_{11}||\mathbf{S}_{22}|}{|\mathbf{S}|} \right) = -n \ln \prod_{i=1}^{k} (1 - \hat{\rho}_i^2)$$

- kde S je matice složená z S_{11} , S_{12} , S_{21} , S_{22}
- za platnosti H_0 má asymptoticky χ^2 rozdělení o k_p stupních volnosti, kde p je počet proměnných ve větší skupině
- testová statistika dalších testů mí tvar:

$$-(n-1-\frac{1}{2}(k+p+1)) \ln \prod_{i=m+1}^{k} (1-\hat{\rho}_i^2)$$

- za platnosti H_0 má asymptoticky χ^2 rozdělení o (k-m)(p-m) stupních volnosti
- *m* je zde počet kanonických korelací, které nechceme testovat

4. Regresní modely

4.1 Metoda maximální věrohodnosti

- způsob odhadu parametru určitého rozdělení
 - označme odhadovaný parametr $oldsymbol{ heta}$
 - mějme naměřené hodnoty $X_1, X_2 \ldots, X_n$ z rozdělení s hustotou $f(x, \theta)$
 - chceme takové $\hat{\theta}$, aby pravděpodobnost, že hodnoty X_i pochází z rozdělení $f(x, \hat{\theta})$, byla maximální
 - potřebujeme konkrétní specifikaci pravděpodobnostního rozdělení $f(x, \theta)$
- naměřené hodnoty X_1, \ldots, X_n jsou nezávislé jejich sdružená hustota je tedy rovna:

$$f(x_1,\ldots,x_n|\theta)=\prod_{i=1}^n f(x_i|\theta)$$

- větší hodnota této funkce vyjadřuje větší shodu pozorovaných hodnot s předpokládaným rozdělením
- odhad parametru θ získáme maximalizací této funkce přes θ

$$\hat{\theta} = \arg\max_{\theta \in \Theta} f(x_1, \dots, x_n | \theta)$$

- kde Θ je prostor všech možných hodnot parametru
- uvažujeme-li tuto funkci jako funkci parametru θ , nazýváme ji **věrohodnostní funkce** a $\hat{\theta}$ **maximálně věrohodným odhadem**
- častěji se pracuje s *logaritmickou věrohodnostní* funkcí:

$$\ell(\theta|x_1,\ldots,x_n) = \ln L(\theta|x_1,\ldots,x_n) = \ln \prod_{i=1}^n f(x_i|\theta) = \sum_{i=1}^n \ln f(x_i|\theta)$$

- tuto funkci pak derivujeme podle θ a položíme rovnu nule
- metoda používaná pro odhad parametrů v zobecněné lineární a nelineární regresi

– příklad:

• hledejme maximálně věrohodný odhad parametru λ z poissonova rozdělení, které má hustotu

$$f(x|\lambda) = \frac{e^{-\lambda}\lambda^{x_i}}{x_i!}$$

- logaritmus věrohodnostní funkce pak má tvar: $\ell(\theta|x_1,\ldots,x_n) = \ln\prod_{i=1}^n \frac{e^{-\lambda}\lambda^{x_i}}{x_i!} = \ln\frac{e^{-\lambda}\lambda^{\sum_{i=1}^n x_i}}{\prod_{i=1}^n x_i!}$
- derivací podle λ dostaneme: $= \sum_{i=1}^{n} x_i \ln \lambda n\lambda \ln(\prod_{i=1}^{n} x_i!)$ $\frac{d\ell}{d\lambda} = \frac{\sum_{i=1}^{n} x_i}{\lambda} n$
- a tedy $\hat{\lambda} = \frac{\sum_{i=1}^{n} x_i}{n}$

4.2 Dodatky k regresním modelům

- uvažujme model lineární regrese
 - kde
 - \circ Y_i jsou hodnoty závisle proměnné
 - $\circ X_{1i}, \ldots, X_{ki}$ jsou hodnoty nezávisle proměnných X_1, \ldots, X_k
 - \circ β_0, \ldots, β_k jsou regresní koeficienty
 - e_i jsou náhodné chyby
- předpoklady modelu lineární regrese:
 - $ei \sim iid \ N(0, \sigma^2)$ jsou nezávislé, stejně rozdělené náhodné veličiny s normálním rozdělením, nulovou střední hodnotou a konstantním rozptylem
 - X_1, \ldots, X_k jsou vzájemně nezávislé proměnné
 - mezi závisle proměnnou Y a nezávisle proměnnými X je lineární vztah
 - v datech nejsou vlivná pozorování

Testy předpokladů

- v R-ku máme k dispozici diagnostické grafy
- dále:
 - test normality,
 - test homoskedasticity,
 - test nekorelovanosti residuí,
 - · test multikolinearity,
 - Cookovu vzdálenost

Závislost na kategorické proměnné

- do modelu lze vkládat i kategorické regresory
- závislost na nich se modeluje pomocí *dummy variables*
 - $Z_1 = 1 \dots$ když nastane 1. kategorie a $Z_1 = 0 \dots$ jinak
 - $Z_2 = 1 \dots \text{ kdy} \check{z}$ nastane 2. kategorie a $Z_1 = 0 \dots \text{ jinak}$
 - $Z_{k-1} = 1 \dots$ když nastane (k–1). kategorie a $Z_1 = 0 \dots$ jinak kde k je počet kategorií
- v modelu se testuje, jak se která kategorie liší od referenční

Interakce

- jak se nezávisle proměnné ovlivňují při současném vlivu na proměnnou závislou
 - závislost procenta tuku na hmotnosti je stejná u atletiky a plavání – není interakce
 - závislost procenta tuku na hmotnosti se u hokejistů liší od ostatních sportů – interakce

Kroková regrese

- hledáme optimální regresní model:

backward

- udělá se co nejsložitější model a postupně se z něj ubírají nevýznamné proměnné
- vždy se ubere proměnná s nejmenším vlivem (nejvyšší p-hodnotou, která optimalizuje *AIC*)
- končíme, když máme v modelu jen významné proměnné

forward

- do modelu bez nezávislých proměnných se postupně po jedné přidávají
- vždy se přidá proměnná s největším vlivem (nejnižší p-hodnotou, která optimalizuje AIC)
- končíme, když nemůžeme přidat žádnou významnou proměnnou

both sided

- kombinuje obě výše zmíněné
- v každém kroku zkusím jednu proměnnou přidat, ale také ubrat (optimalizace AIC)

Intervaly spolehlivosti

• pro regresní koeficienty
$$b_i \pm \text{s.e.}(b_i)t_{n-k-1}(1-\alpha/2)$$

• pro odhad
$$b_0 + b_1 x_0 \pm sd(x_0)t_{n-k-1}(1 - \alpha/2)$$

• pro předpověď
$$b_0+b_1x_0\pm s\sqrt{1+d^2(x_0)}t_{n-k-1}(1-lpha/2)$$

– kde **s** je střední chyba residuí a
$$d^2(x_0) = \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Interpretace regresních koeficientů

– mnohonásobná lineární regrese

- mějme odhadnutý regresní model:
 - o průtok vody v řece = 53 + 2.6 × srážky + 3.8 × pole + 5.9 × město
 - na jeden díl srážek stoupne průtok vody v průměru o 2.6 na stejném typu půdy
 - v polích stoupne průtok vody o 3.8 více než v lese při stejném množství srážek

- logistická regrese

- mějme odhadnutý regresní model
 - $\log \log t(\text{přežití}) = -0.07 1.34 \times 2.třída 2.19 \times 3.třída 1 \times posádka + 3.2 \times 2.19 \times 3.třída 1 \times 2.19 \times 3.$
 - cestující ve 3. třídě mají 1/ exp /{-2.19} = 8.9, tj. téměř 9 krát menší šanci na přežití, než cestující v první třídě, při stejném pohlaví
 - ženy mají exp{3.2} = 24.2 krát větší šanci na přežití než muži cestující ve stejné třídě

4.3 Zobecněné lineární modely

0 – 1 závislá proměnná
 ordinální závislá proměnná
 závislá proměnná počet (count data)
 Logistická regrese
 Ordinální regrese
 Poissonova regrese

Ordinální regrese

- kombinace několika logistických regresí
- závislá proměnná v těchto jednotlivých modelech je: $Y = 0...X \le j$ = 1...X > j
- modeluje se šance přechodu do vyšší kategorie
- předpokladem je, že všechny dílčí logistické regrese mají stejný "směr", tedy lineární člen
- absolutní člen je pro každou logistickou regresi individuální

Poissonova regrese

- závisle proměnná je počet
- pomocí této regrese je možné modelovat i vztahy v kontingenční tabulce
- model má tvar: $log(Y_i) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \cdots + \beta_k X_{ki} + e_i$
- předpokladem je, že rozptyl závisle proměnné je stejný jako její střední hodnota (vlastnost Poissonova rozdělení)
 - není-li splněno
 - ∘ použijte se *dispersion parameter* ⇒ **Quasi-Poisson**
 - použije se namísto poissonova rozdělení negativně binomické rozdělení

5. Simulace ve statistice

5.1 Statistické testy

5.1.1 Typy testů

- statistické testy dělíme na
 - Parametrické
 - předpokládají určité rozdělení dat, nejčastěji normální
 - Neparametrické
 - jsou použitelné nezávisle na rozdělení dat
 - založené na pořadích namísto původních hodnot pracují s jejich pořadími, nenáročné na výpočet
 - založené na přeuspořádání (resampling) pracují přímo s naměřenými hodnotami, které různě přeskupují
 - Permutační
 - Bootstrap

5.1.2 Permutační testy

- počítá se testová statistika
- princip jak si stojí aktuálně naměřená hodnota testové statistiky mezi statistikami, které je možné získat permutací původních hodnot
- p-hodnota podíl testových statistik v absolutní hodnotě větších než aktuální naměřená hodnota

Příklad pro dvouvýběrový test:

- porovnáváme dva nezávislé výběry s počty pozorování n_1 a n_2
- testuieme
 - H₀: střední hodnoty jsou stejné
 - H₁: střední hodnoty se liší
- vypočteme testovou statistiku klasického dvouvýběrového t-testu

$$T = \frac{\overline{X} - \overline{Y}}{S} \sqrt{\frac{n_1 n_2}{n_1 + n_2}}$$

kde

$$S = \frac{1}{n_1 + n_2 - 2} \left(\sum_{i=1}^{n_1} (X_i - \overline{X})^2 + \sum_{i=1}^{n_2} (Y_i - \overline{Y})^2 \right)$$

- spočítáme velké množství (alespoň N=10000) permutací původních hodnot při neměnných rozsazích výběrů n_1 , n_2
- pro každou permutaci spočítáme hodnotu testové statistiky T_i
- vypočteme p-hodnotu:

$$p = \frac{\#T_i : |T_i| \ge T}{N}$$

Vlastnosti permutačních testů

- permutační test lze využít pro libovolnou testovou statistiku
- lze ho využít bez předpokladu na rozdělení dat
- předpokladem je přibližně stejný rozptyl ve výběrech
- je-li příliš malý počet pozorování, je malý i počet různých permutací a tedy i počet možných různých p-hodnot
- pro menší vzorky je možné spočítat "přesnou" p-hodnotu udržují hladinu významnosti, mnohdy lépe než klasické testy
- výpočetně náročné

5.1.3 Bootstrap

- princip je obdobný jako u permutačních testů
- počítá se testová statistika a její aktuální hodnota se porovnává s hodnotami získanými z náhodných výběrů z dat
- náhodné výběry se ale nezískávají permutováním, ale náhodným výběrem s vracením
- bootstrapové náhodné výběry mohou některé původní hodnoty obsahovat víckrát a jiné vůbec
- častěji se používá pro výpočet intervalů spolehlivosti, ale je možné je využít i k testování
- optimální, pokud chceme odhadnout *rozdělení* měřeného parametru

5.1.4 Odhady metodou Jackknife

- jednoduché přeuspořádání původních hodnot používané k odhadům libovolných parametrů
 - mějme jeden výběr a potřebujeme odhadnout parametr θ (průměr, rozptyl, medián, šikmost, ...)
 - tvoříme náhodné výběry, pro něž vypočteme odhadovaný parametr a výsledky pak zprůměrujeme
 - náhodné výběry metodou Jackknife vznikají vynecháním jedné hodnoty z původních dat
 - pro n pozorování vytvoříme n přeuspořádaných výběrů o n-1 hodnotách

vlastnosti metody

- výpočetní jednoduchost
- deterministická, tj. nenáhodná metody (vždy dostanu stejný výsledek)
- optimálně pracuje při známém rozdělení dat snižuje vychýlení (bias) odhadu
- nedoporučuje se používat při velké variabilitě v datech nebo při příliš komplexních modelech

5.1.5 Bayesovská statistika

- předpokládejme náhodnou veličinu X s hustotou rozdělení $f(x|\theta)$ závislou na parametru θ
- mějme náhodný výběr $x = (x_1, x_2, \dots, x_n)$ z rozdělení X
- v klasické (frekvenční) statistice předpokládáme, že θ je konstanta, kterou chceme odhadnout na základě výběru x
- Bayesovská statistika předpokládá, že θ je náhodná veličina s rozdělením/hustotou g(.)
- cílem je odhadnout parametry rozdělení *g*
- k dispozici máme apriorní rozdělení $\pi(\theta)$ náš předpoklad, jak by se měla náhodná veličina chovat
- dále máme náhodný výběr x
- cílem je získat aposteriorní rozdělení $\pi(\theta|x)$
- pomocí Bayesovy věty lze odvodit, že: $\pi(\theta|x) \approx f(x|\theta)\pi(\theta)$
- nemáme-li žádnou představu o apriorním rozdělení, používá se neurčité apriorní rozdělení, tj. rozdělení konstantní
- odhad aposteriorního rozdělení se realizuje pomocí *Markov Chain Monte Carlo* (MCMC) metod