Wydział Odlewnictwa	Zespół 1.2:	Kierunek:	Data wykonania	
Wydział; Elektrotechniki,	Piotr Borsuk	Technologie	ćwiczenia:	
Automatyki, Informatyki i		Przemysłu 4.0	14,28.11.2023	
Inzynierii Biomedycznej		Rok II		
Identyfikacja polimerów: ocena palności wybranych materiałów polimerowych, ocena				
rozpuszczalności wybranych materiałów polimerów				

1. Wstęp teoretyczny

Życie biologiczne na Ziemi oraz współczesna cywilizacja nie byłyby możliwe bez zastosowania polimerów (makrocząsteczek), biopolimerów i tworzyw sztucznych.

Polimery są podstawą m. in. dla:

- Budownictwa (drewno, beton, materiały izolacyjne)
- Przemysłów m. in.: maszynowego, kosmicznego, lotniczego (materiały konstrukcyjne)
- Materiałów tekstylnych (jedwab, bawełna, celuloza)
- Komunikacji (papier, filmy, optyczne włókna)
- Medycyny (środki opatrunkowe, opakowania lekarstw, sprzęt medycyny

Ze względu na pochodzenie polimery dzieli się na:

- **Polimery naturalne (biopolimery)** kauczuki naturalne, peptydy i białka, polisacharydy, skrobia
- **Polimery syntetyczne** nylon, poliester, poliweglan
- **Polimery modyfikowane** są to polimery naturalne lub syntetyczne, w których struktura powierzchni lub całkowita masa polimeru, została zmieniona chemicznie lub fizycznie

Tworzywa sztuczne to określenie niejednoznaczne, a raczej umowne materiału, w którym oprócz podstawowego składnika masy – polimeru znajdują się w niej rozproszone (zdyspergowane) określone substancję, zwane składnikami dodatkowymi lub środkami pomocniczymi.

Nazwy polimerów w literaturze są często zapisywane w formie skróconej, np. polietylen (PE), polipropylen (PP), poli(chlorek winylu) (PVC), itp.

Monomery są podstawą do otrzymywania polimerów. **Monomer** to związek, którego cząsteczki mogą ulegać polimeryzacji. W wyniku reakcji polimeryzacji monomeru otrzymuje się polimer.

Polimer jest związkiem wielkocząsteczkowym. Można go wyrazić jako powtarzający się łańcuch podstawowych jednostek strukturalnych **merów** (A) (od 10 000 do 1 000 000 i więcej), które tworzą **makrocząsteczkę** (**makromolekułę**).

Polimery można klasyfikować na różne sposoby w zależności od przyjętego kryterium klasyfikacji:

- Budowy chemicznej,
- Budowy fizycznej,
- Właściwości reologicznych.

Podczas rozpuszczania polimeru mamy do czynienia z trzema wartościami entalpii:

- **Entalpią rozpuszczalnia** ciepłem pobieranym w czasie rozpuszczania polimeru w rozpuszczalniku,
- **Entalpią rozcieńczania** ciepłem pobieranym w czasie mieszania roztworu polimeru z czystym rozpuszczalnikiem,
- Entalpia mieszania ciepłem pobieranym w czasie mieszania roztworu. Entalpię rozpuszczania $(J*mol^{-1})$ wyznacza się w specjalnie opracowywanym kalorymetrze.

Rozpuszczanie zachodzi niejednorodnie, najszybciej w obszarach powierzchni o wyższej energii, tzn. w miejscach występowania defektów sieci, dyslokacji i domieszek.

Najważniejszymi **regułami rozpuszczalności** są:

- **Powinowactwo** (budowa chemiczna i strukturalna) rozpuszczalnik i polimer powinny być jak najbardziej do siebie zbliżone i mieć tą samą polarność
- Rozpuszczalność polimerów maleje wraz ze wzrostem jego mas molowych,
- Polimery krystaliczne są zwykle nierozpuszczalne lub bardzo trudno rozpuszczalne,

Proces rozpuszczania przebiega w dwóch etapach:

- 1. Początkowo cząsteczki rozpuszczalnika, których ruchliwość przekracza ruchliwość makrocząsteczek, przenikają (dyfundują) między nie, powodując pęcznienie polimeru.
- 2. Cząsteczki rozpuszczalnika powodują dalsze oddalanie makrocząsteczek od siebie, tworząc **jednorodny roztwór polimeru**.[1][2]

Cały wstęp teoretyczny został opracowany za pomocą notatek z wykładów, obserwacji i na podstawie:

[1] Jan F. Rabek: Współczesna wiedza o polimerach. Wydawnictwo naukowe PWN SA, Warszawa 2008

[2] Jan F. Rabek: Polimery. Otrzymywanie, metody badawcze, zastosowanie. Wydawnictwo PWN SA, Warzawa 2013

2. Cel ćwiczenia

Celem ćwiczenia jest identyfikacja próbek polimerów na podstawie przeprowadzonych obserwacji makroskopowych i mikroskopowych oraz badania zachowania w płomieniu oraz ich rozpuszczalności.

3. Metodyka

3.1 Badanie materiałów i sposób przygotowania próbki

Materiałami testowanymi w doświadczeniu nr 1. to:

- Poli(chlorek winylu)
- Metyloceluloza
- Kompozyt polimerowy z udziałem kauczuk
- Politetrafluoroetylen
- Poliamid
- Skrobia
- Polietylen
- Polistyren

Wszystkie próbki zostały pobrane z pojemników zastępczych przy temperaturze pokojowej.

Materiałami badanymi w doświadczeniu nr 2. były:

- Poli(chlorek winylu)
- Metyloceluloza
- Kompozyt polimerowy z udziałem kauczuk
- Politetrafluoroetylen
- Poliamid
- Skrobia
- Polietylen
- Polistyren

Substancjami w których rozpuszczane były próbki w doświadczeniu nr 2. były:

- Woda
- Aceton
- Benzen
- Chloroform
- Kwas octowy
- Eter dietylowy

Wszystkie próbki zostały pobrane z pojemników zastępczych przy temperaturze pokojowej.

3.2 Przebieg eksperymentu/obserwacji:

Doświadczenie nr 1.

Zostało wykonane przy pomocy takich przyrządów jak:

- metalowa łyżeczka do spalań
- zlewka z wodą do chłodzenia łyżeczek
- palnik Bunsena (temp. Płomienia 1700°C)
- łopatka metalowa
- rurka kwarcowa
- pęseta
- papierek wskaźnikowy
- szkiełko zegarkowe (zwilżanie papierka)
- zapalniczka

Schemat

- 1. Zapoznanie się z budową aparatury i akcesoriami, które służyły do wykonania ćwiczenia.
- 2. Na łyżeczkę do spalania umieszczono ok. 50 mg polimeru.
- 3. Zapalono przy pomocy zapalniczki, palnik Bunsena (płomień nie przekraczał 4 cm).
- 4. Umiejscowiono łopatkę metalową z polimerem nad płomieniem palnika.
- 5. Próbkę polimeru ogrzewano aż do zapalenia. Po zapaleniu próbki w płomieniu należało zgasić płomień (zakręcić zawór w palniku). Dane który otrzymano należało wpisać do tabelki (barwa płomienia, łatwość palenia, zapach, efekt gaśnięcia).
- 6. Określano wydzielanych produktów gazowych procesu spalania polimeru na zmoczonym w wodzie destylowanej papierku wskaźnikowym umieszczonym w rurce kwarcowej z niewielką ilością badanego polimeru.
- 7. Dokonano obserwacji makroskopowych (okiem nieuzbrojonym) i zapisano wyniki
- 8. Spalono resztę materiału na palniku. Cały ten proceder został zrobiony dla każdej próbki.
- 9. W razie wątpliwości dot. wyniku obserwacji powtórzono dany etap doświadczenia

Doświadczenie nr 2.

Zostało wykonane przy pomocy takich przyrządów jak:

- dygestorium
- probówka
- zlewka 250 cm³
- pipeta Pasteura 3,5 ml
- statyw na probówki
- płyta grzewcza
- szpatułka

Schemat

- 1. Wymagało wpierw zapoznania się z budową aparatury i akcesoriami, które służyły do wykonania ćwiczenia.
- 2. Oznaczono probówki badanych materiałów.
- 3. Za pomocą pipety miarowej odmierzono 1 cm³ rozpuszczalnika i umieszczono go do probówek.

- 4. Za pomocą szpatułki do probówki zawierającej rozpuszczalnik dodano około 10 mg próbki polimeru.
- 5. Badania rozpuszczalności na zimno przeprowadzono poprzez wytrząsanie zawartości próbki przez około 1 minutę.
- 6. Zanotowano obserwacje i zapisano w tabelce (zachowanie polimeru w rozpuszczalniku).
- 7. Ten sam proces wykonano na reszcie rozpuszczalników. Dodatkowo proces rozpuszczania przeprowadzono również w wodzie na gorąco.
- 8. W razie wątpliwości dot. wyniku obserwacji powtórzono dany etap doświadczenia

4. Wyniki i analiza

Tabela 1. Wyniki doświadczenia nr 1.

Nr próbki	Obserwacje makroskopowe przed badaniem oraz pozostałości po spalaniu	Płomień (kolor, intensywność, stabilność)	Łatwość palenia (palny/niepalny; zapala się nagle/po czasie)	Zapach	Efekt samogaśnięcia	Odczyn lotnych produktów spalania (kwasowy/obojętny/zasadowy)
1	Przed: pastylka koloru białego, twarde Po: czarna zwęglona kulka	Intensywnie, zielony płomień, biały dym	Palny; zapala się nagle	drażniący	Efekt samogaśnięcia	kwasowy
2	Przed: próbka koloru białego Po: zwęglenie	Dym przy długim ogrzewaniu	Trudnopalny	Brak	Efekt samogaśnięcia	średniokwasowy
3	Przed: biały, kruchy proszek Po: zwęglony proszek	Żółty płomień, kopcenie płomienia	Łatwopalny, Zapala się nagle	Brak	Brak	Obojętny
4	Przed: biała twarda kulka Po: zmiana koloru na szary	Niepalny	Niepalny	Niewyczuwalny	Brak	Brak
5	Przed: przeźroczysta twarda kostka Po: całkowite spalenie	Intensywny, Wysoki żółty płomień kopcący	Łatwopalny	Intensywny	Efekt samogaśniecia	zasadowy
6	Przed: biały proszek Po: został osad	Efekt pienienia	Łatwopalny, zapala się nagle	Ostry, charakterystyczny	Brak	kwasowy
7	Przed: biała miękka kulka Po: stopnienie	Intensywny	Łatwopalny, zapala nagle	"styropianowy"	Brak	zasadowy
8	Przed: biały, sypki proszek Po: czarne zwęglenie	Mały, żółty	Łatwopalny	Kwasu octowego	Brak	kwasowy

Tabela 2. Wyniki doświadczenia nr 2.

	Rozpuszczalnik						
Nr próbki	Woda (W)	Aceton (A)	Benzen (B)	Chloroform (C)	Kwas octowy (K)	Eter dietylowy (E)	
1	Zimna: nierozpuszczalny Gorąca:	Zimny: nierozpuszczalny	Zimny: częściowo	Zimny: rozpuszczalny	Zimny: nierozpuszczalny	Zimny: nierozpuszczalny	
2	nierozpuszczalny Zimna: nierozpuszczalny Gorąca: nierozpuszczalny	Zimny: częściowo	Zimny: nierozpuszczalny	Zimny: Nierozpuszczalny	Zimny: Nierozpuszczalny	Zimny: Nierozpuszczalny	
3	Zimna: rozpuszczalny Gorąca: rozpuszczalny	Zimny: częściowo/ nierozpuszczalny	Zimny: rozpuszczalny	Zimny: nierozpuszczalny	Zimny: nierozpuszczalny	Zimny: nierozpuszczalny	
4	Zimna: nierozpuszczalny Gorąca:	Zimny: pęcznieje	Zimny: częściowo/ pęcznienie	Zimny: nierozpuszczalny	Zimny: pęcznieje	Zimny: żel	
5	Zimna: nierozpuszczalny Gorąca: nierozpuszczalny	Zimny: nierozpuszczalny	Zimny: częściowo	Zimny: nierozpuszczalny	Zimny: nierozpuszczalny	Zimny: nierozpuszczalny	
6	Zimna: pęcznieje Gorąca: częściowo	Zimny: częściowo	Zimny: pęcznieje	Zimny: rozpuszczalny/ częściowo	Zimny: pęcznieje	Zimny: częściowo	
7	Zimna: pęcznieje Gorąca: nierozpuszczalny	Zimny: rozpuszczalny	Zimny: rozpuszczalny	Zimny: rozpuszczalny	Zimny: nierozpuszczalny	Zimny: rozpuszczalny	
8	Zimna: nierozpuszczalny Gorąca: żel	Zimny: nierozpuszczalny	Zimny: nierozpuszczalny	Zimny: częściowo	Zimny: rozpuszczalny	Zimny: pęcznieje	

Tabela 3. Analiza i porównanie według tabeli zestawienia efektów zachowania polimerów w otwartym płomieniu i w wybranych rozpuszczalnikach:

Niconom	· · ·	Dodobioście w	
Numer	Zidentyfikowany	Podobieństwa	Różnice
Próbki	Polimer		
1	Poli(chlorek winylu)	Barwa płomienia, biały dym,	Zapach,
		łatwopalność, efekt	rozpuszczalność w
		samogaśnięcia, rozpuszczalność w	benzenie i eterze
		wodzie, acetonie, chloroformie,	dietylowym
		kwasie octowym	
2	Politetrafluoroetylen	Dym przy ogrzewaniu, palność,	Rozpuszczalność w
		brak zapachu, efekt	acetonie
		samogaśniecia. Rozpuszczalność	
		w wodzie, benzenie,	
		chloroformie, kwasie octowym i	
		eterze etylowym	
3	Poli(alkohol	Żółty płomień, Kopcenie	Zapach.
	winylowy)	płomienia, łatwopalność, brak	Rozpuszczalność w
		efektu samogaśnięcia.	wodzie, acetonie,
		Rozpuszczalność w chloroformie,	benzenie, eterze
		kwasie octowym,	dietylowym
4	Kompozyt	Brak spalania, brak płomienia,	Brak
	Polimerowy	brak zapachu, brak efektu	
		samogaśnięcia	
5	Polietylen	Łatwopalny, zapach, efekt	Płomień.
	-	samogaśniecia. Rozpuszczalność	Rozpuszczalność w
		w wodzie, acetonie, benzenie,	chloroformie
		kwasie octowym, eterze	
		dietylowym	
6	Metyloceluloza	Efekt pienienia, nagłe zapalenie,	Zapach.
	,	łatwopalność, brak efektu	Rozpuszczalność w
		samogaśniecia. Rozpuszczalność	acetonie,
		w wodzie (częściowo), benzen,	chloroformie, eterze
		kwasie octowym	dietylowym
7	Polistyren	Intensywny płomien,	Rozpuszczalność w
		łatwopalność, zapach, brak efektu	acetonie, eterze
		samogaśnięcia. Rozpuszczalność	dietylowym
		w wodzie, benzenie,	
		chloroformie, kwasie octowym	
8	Poli(octan winylu)	Płomień, łatwopalność, zapach,	Rozpuszczalność w
	, ,	efekt samogaśnięcia.	ciepłej wodzie,
		Rozpuszczalność w zimnej wodzie,	eterze dietylowym
		acetonie, benzenie, chloroformie	, ,
		(częściowo), kwasie octowym	

5. Wnioski

Kluczowe było porównanie podobieństw między badanymi próbkami, a danymi zawartymi w tabeli. W rezultacie do każdej próbki przyporządkowaliśmy najbardziej prawdopodobny polimer.

Obserwacje były obarczone błędem ludzkim wynikającym z interpretacji stopnia rozpuszczalności oraz rozpoznania zapachu spalenia małej próbki. Mało palne polimery o małej intensywności zapachu mogły zostać błędnie opisane, natomiast nierozpuszczalne i częściowo rozpuszczalne polimery mogły zostać pomylone z powodu niewielkiej ilości rozpuszczanej substancji jak i załamanie światła w rozpuszczalniku przez co przezroczyste drobinki mogły sprawiać wrażenie rozpuszczonych.

W przypadku wątpliwości co do poprawności wyników doświadczenia, podejmowaliśmy decyzję o ich powtórzeniu. To podejście miało na celu wykluczenie ewentualnych błędów oraz potwierdzenie precyzji naszych wyników. Pomimo pewnych różnic nie było sytuacji, w której nie przypasowalibyśmy żadnego polimeru do badanych próbek. Istotne było również ścisłe przestrzeganie procedur identyfikacji polimerów. Nasze doświadczenie było udane, co w rezultacie przyczyniło się do uzyskania wiarygodnych wyników identyfikacji polimerów.

W celu wyeliminowania niepewności doświadczenia drugiego należałoby zwiększyć ilości rozpuszczanych polimerów, alternatywnie odważyć porcje polimeru, następnie odcedzić ją i wysuszyć w celu stwierdzenia utraty masy lub też braku zmian. Obie propozycje spowodowałyby wydłużenie czasu potrzebnego na wykonanie ćwiczenia na należałoby wziąć pod uwagę.

6. Literatura

- [1] Jan F. Rabek: Współczesna wiedza o polimerach. Wydawnictwo naukowe PWN SA, Warszawa 2008
- [2] Jan F. Rabek: Polimery. Otrzymywanie, metody badawcze, zastosowanie. Wydawnictwo PWN SA, Warzawa 2013
- [3] Beata Grabowska: Polimery: budowa, otrzymywanie, właściwości, aplikacje w odlewnictwie. Wydawnictwo Naukowe Akapit 2019.