

Report No.: FR441905

FCC RF Test Report

APPLICANT : CT Asia

EQUIPMENT: Mobile Phone

BRAND NAME : BLU

MODEL NAME : Zoey 2.4

FCC ID : YHLBLUZOEY24

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DSS) Spread Spectrum Transmitter

The product was received on Apr. 19, 2014 and testing was completed on May 15, 2014. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and the testing has shown the tested sample to be in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC.

No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 1 of 66
Report Issued Date : May 23, 2014

2353

TABLE OF CONTENTS

RE\	/ISIO	N HISTORY	3
SUN	ИΜΑ	RY OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	
	1.5	Modification of EUT	6
	1.6	Testing Location	6
	1.7	Applicable Standards	6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Descriptions of Test Mode	7
	2.2	Test Mode	
	2.3	Connection Diagram of Test System	
	2.4	Support Unit used in test configuration and system	
	2.5	EUT Operation Test Setup	
	2.6	Measurement Results Explanation Example	10
3	TES1	「 RESULT	11
	3.1	Number of Channel Measurement	
	3.2	Hopping Channel Separation Measurement	
	3.3	Dwell Time Measurement	
	3.4	20dB Bandwidth Measurement	
	3.5	Peak Output Power Measurement	
	3.6	Conducted Band Edges Measurement	
	3.7	Conducted Spurious Emission Measurement	
	3.8	Radiated Band Edges and Spurious Emission Measurement	
	3.9	AC Conducted Emission Measurement	
	3.10	Antenna Requirements	64
4	LIST	OF MEASURING EQUIPMENT	65
5	UNC	ERTAINTY OF EVALUATION	66
ΑP	PENI	DIX A. SETUP PHOTOGRAPHS	

TEL: 86-755-3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 2 of 66
Report Issued Date : May 23, 2014

Report No. : FR441905

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR441905	Rev. 01	Initial issue of report	May 23, 2014

FCC ID : YHLBLUZOEY24

Page Number : 3 of 66
Report Issued Date : May 23, 2014

Report No. : FR441905

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	NA	Pass	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 3.25 dB at 2483.840 MHz
3.9	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 4.74 dB at 0.430 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

TEL: 86-755-3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 4 of 66
Report Issued Date : May 23, 2014

Report No. : FR441905

1 General Description

1.1 Applicant

CT Asia

Unit 01, 15/F, Seaview Centre, 139-141 Hoi bun road, Kwun Tong, Kowloon, Hongkong

1.2 Manufacturer

Zechin Communications Co., Ltd.

Unit 804, 8th Floor Desay Tech Building Gaoxin Road South, Nanshan District Shenzhen, China

Report No.: FR441905

1.3 Feature of Equipment Under Test

Product Feature				
Equipment	Mobile Phone			
Brand Name	BLU			
Model Name	Zoey 2.4			
FCC ID	YHLBLUZOEY24			
EUT supports Radios application	GSM			
EO I Supports Radios application	Bluetooth v3.0+EDR			
HW Version	S335-MB-V1.1			
SW Version	BLU_T178_V18_GENERIC			
EUT Stage	Production Unit			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Product Specification subjective to this standard				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 9.13 dBm (0.0082 W) Bluetooth EDR (2Mbps) : 8.72 dBm (0.0074 W) Bluetooth EDR (3Mbps) : 8.92 dBm (0.0078 W)			
Antenna Type	PIFA Antenna with gain 1.50 dBi			
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) : π /4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK			

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 5 of 66TEL: 86-755- 3320-2398Report Issued Date: May 23, 2014FCC ID: YHLBLUZOEY24Report Version: Rev. 01

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Test Site		SPORTON INT	ERNATIONAL (S	HENZHEN) INC.			
Test Location	Site	Nanshan Distric	uilding, the third floor of south, Shahe River west, Fengzeyuan warehouse n District, Shenzhen, Guangdong, P.R.C.				
T4 0'4- N			Sporton Site No	0.	FCC Registration No.		
Test Site N	Ю.	TH01-SZ	03CH01-SZ	CO01-SZ	831040		

Report No.: FR441905

Note: The test site complies with ANSI C63.4 2003 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC Public Notice DA 00-705
- ANSI C63.4-2003

Remark:

- **1.** All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 86-755- 3320-2398 Report Issued Date : May 23, 2014 FCC ID: YHLBLUZOEY24 Report Version : Rev. 01

Page Number

: 6 of 66

2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

Preliminary tests were performed in different data rates and recorded the RF output power in the following table:

		Bluetooth RF Output Power				
Channel	Eroguenov	Data Rate / Modulation				
Chamilei	Frequency	GFSK	π/4-DQPSK	8-DPSK		
		1Mbps	2Mbps	3Mbps		
Ch00	2402MHz	<mark>9.13</mark> dBm	8.72 dBm	8.92 dBm		
Ch39	2441MHz	8.84 dBm	8.42 dBm	8.67 dBm		
Ch78	2480MHz	9.09 dBm	8.68 dBm	8.87 dBm		

Remark:

- 1. All the test data for each data rate were verified, but only the worst case was reported.
- 2. The data rate was set in 1Mbps for all the test items due to the highest RF output power.
- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests, X, Y, Z in three orthogonal panels, and different data rates were conducted to determine the final configuration (X plane as worst plane) from all possible combinations, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

TEL: 86-755-3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 7 of 66
Report Issued Date : May 23, 2014

Report No.: FR441905

2.2 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Summary table of Test Cases						
		Data Rate / Modulation				
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps			
	GFSK	π/4-DQPSK	8-DPSK			
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz			
Conducted	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz			
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz			
		Bluetooth BR 1Mbps GFS	SK .			
Radiated	Mode 1: CH00_2402 MHz					
Test Cases		Mode 2: CH39_2441 MHz	2			
	Mode 3: CH78_2480 MHz					
AC						
Conducted	Mode 1 :GSM850 Idle + BI	uetooth Link + USB Cable (C	Charging from Adapter)			
Emission						

Remark:

- For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate
 has the highest RF output power at preliminary tests, and no other significantly frequencies found in
 conducted spurious emission.
- 2. For Radiated Test Cases, The tests were performance with Adapter and USB Cable.

TEL: 86-755-3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 8 of 66
Report Issued Date : May 23, 2014

Report No.: FR441905

Report No.: FR441905

Connection Diagram of Test System 2.3

<Bluetooth Tx Mode>

<AC Conducted Emission Mode>

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 9 of 66 Report Issued Date: May 23, 2014 Report Version : Rev. 01

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMW 500	N/A	N/A	Unshielded, 1.8 m
2.	BT Base Station	R&S	CBT	N/A	N/A	Unshielded, 1.8 m
3.	Bluetooth Earphone	Nokia	BH-108	PYAHS-107W	N/A	N/A

Report No.: FR441905

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Page Number

Report Version

: 10 of 66

: Rev. 01

Report Issued Date: May 23, 2014

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 7.5 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 7.5 + 10 = 17.5 (dB)

3 **Test Result**

3.1 **Number of Channel Measurement**

Limits of Number of Hopping Frequency 3.1.1

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = the frequency band of operation; RBW ≥ 1% of the span; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

3.1.5 Test Result of Number of Hopping Frequency

Test Mode :	1Mbps	Temperature :	24~26℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Number of Hopping	Adaptive Frequency	Limits	Pass/Fail
(Channel)	Hopping (Channel)	(Channel)	
79	20	> 15	Pass

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 11 of 66 Report Issued Date: May 23, 2014 : Rev. 01

Report Version

Report No.: FR441905

Number of Hopping Channel Plot on Channel 00 - 78

Date: 15.MAY.2014 09:56:22

Date: 15.MAY.2014 10:00:05

TEL : 86-755- 3320-2398 FCC ID : YHLBLUZOEY24 Page Number : 12 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- 1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels; RBW ≥ 1% of the span;
 VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398

FCC ID: YHLBLUZOEY24

Report Version

Page Number : 13 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

3.2.5 Test Result of Hopping Channel Separation

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Channel	Frequency (MHz)	Frequency Separation (MHz)	(2/3 of 20dB BW) Limits (MHz)	Pass/Fail
00	2402	0.996	0.6507	Pass
39	2441	1.002	0.6507	Pass
78	2480	0.996	0.6400	Pass

Channel Separation Plot on Channel 00 - 01

Date: 15.MAY.2014 09:22:17

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 14 of 66
Report Issued Date : May 23, 2014

Report No.: FR441905

Report No. : FR441905

Date: 15.MAY.2014 09:23:06

Channel Separation Plot on Channel 77 - 78

Date: 15.MAY.2014 09:23:51

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 15 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

FCC RF Test Report

Test Mode :	2Mbps	Temperature :	24~26℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Channel	Frequency (MHz)	Frequency Separation (MHz)	(2/3 of 20dB BW) Limits (MHz)	Pass/Fail
00	2402	1.002	0.8600	Pass
39	2441	1.002	0.8600	Pass
78	2480	1.008	0.8520	Pass

Channel Separation Plot on Channel 00 - 01

Date: 15.MAY.2014 10:50:09

TEL: 86-755-3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 16 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

Date: 15.MAY.2014 09:25:16

Channel Separation Plot on Channel 77 - 78

Date: 15.MAY.2014 10:57:58

TEL: 86-755-3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 17 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

FCC RF Test Report

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Channel	Frequency (MHz)	Frequency Separation (MHz)	(2/3 of 20dB BW) Limits (MHz)	Pass/Fail
00	2402	1.008	0.8680	Pass
39	2441	1.002	0.8680	Pass
78	2480	1.008	0.8520	Pass

Channel Separation Plot on Channel 00 - 01

Date: 15.MAY.2014 10:47:40

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 18 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

Report No. : FR441905

Channel Separation Plot on Channel 39 - 40

Date: 15.MAY.2014 09:27:45

Channel Separation Plot on Channel 77 - 78

Date: 15.MAY.2014 09:28:34

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 19 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
 The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

FCC ID: YHLBLUZOEY24

SPORTON INTERNATIONAL (SHENZHEN) INC.
TEL: 86-755- 3320-2398

Page Number : 20 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

FCC RF Test Report

3.3.5 Test Result of Dwell Time

Test Mode :	DH5	Temperature :	24~26℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Mode	Channel	Hops Over Occupancy Time(hops)		Dwell Time (sec)	Limits (sec)	Pass/Fail
Normal	79	106.67	2.872	0.31	0.4	Pass
AFH	20	53.33	2.872	0.15	0.4	Pass

Remark:

- In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels.
 With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s),
 Hops Over Occupancy Time comes to (1600 / 6 / 79) x (0.4 x 79) = 106.67 hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
 With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
 Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

TEL: 86-755-3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 21 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

Date: 6.MAY.2014 10:20:21

TEL: 86-755-3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 22 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

3.4 20dB Bandwidth Measurement

3.4.1 Limit of 20dB Bandwidth

Reporting only

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 5. Measure and record the results in the test report.

3.4.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398

FCC ID: YHLBLUZOEY24

Report Version

3.4.5 Test Result of 20dB Bandwidth

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
00	2402	0.976
39	2441	0.976
78	2480	0.960

20 dB Bandwidth Plot on Channel 00

Date: 15.MAY.2014 09:31:36

TEL : 86-755- 3320-2398 FCC ID : YHLBLUZOEY24 Page Number : 24 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

Report No. : FR441905

20 dB Bandwidth Plot on Channel 39

Date: 15.MAY.2014 09:32:07

20 dB Bandwidth Plot on Channel 78

Date: 15.MAY.2014 09:32:47

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 25 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

FCC RF Test Report

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
00	2402	1.290
39	2441	1.290
78	2480	1.278

20 dB Bandwidth Plot on Channel 00

Date: 15.MAY.2014 09:34:39

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 26 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

Report No. : FR441905

20 dB Bandwidth Plot on Channel 39

Date: 15.MAY.2014 09:36:22

20 dB Bandwidth Plot on Channel 78

Date: 15.MAY.2014 09:36:59

TEL: 86-755-3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 27 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
00	2402	1.302
39	2441	1.302
78	2480	1.278

20 dB Bandwidth Plot on Channel 00

Date: 15.MAY.2014 09:37:15

TEL : 86-755- 3320-2398 FCC ID : YHLBLUZOEY24 Page Number : 28 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

Report No. : FR441905

20 dB Bandwidth Plot on Channel 39

Date: 15.MAY.2014 09:37:45

20 dB Bandwidth Plot on Channel 78

Date: 15.MAY.2014 09:38:53

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 29 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

3.5 Peak Output Power Measurement

3.5.1 Limit of Peak Output Power

Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

Report No.: FR441905

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

 TEL: 86-755- 3320-2398
 Report Issued Date : May 23, 2014

 FCC ID: YHLBLUZOEY24
 Report Version : Rev. 01

Page Number

: 30 of 66

3.5.5 Test Result of Peak Output Power

Test Mode :	1Mbps	Temperature :	24~26℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

		RF Power (dBm)		
Channel	Frequency (MHz)	GFSK Max. I		Doog/Foil
	(WITZ)	1 Mbps	(dBm)	Pass/Fail
00	2402	9.13	20.97	Pass
39	2441	8.84	20.97	Pass
78	2480	9.09	20.97	Pass

Test Mode:	2Mbps	Temperature :	24~26 ℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

	Evaguanay	RF Power (dBm)		
Channel (MHz)		π/4-DQPSK	Max. Limits	Pass/Fail
	(WITZ)	2 Mbps	(dBm)	Pass/Faii
00	2402	8.72	20.97	Pass
39	2441	8.42	20.97	Pass
78	2480	8.68	20.97	Pass

Test Mode :	3Mbps	Temperature :	24~26℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

	Eroguenov	RF Power (dBm)		
Channel	Channel Frequency 8 (MHz)		Max. Limits	Pass/Fail
	(WITZ)	3 Mbps	(dBm)	Pass/Faii
00	2402	8.92	20.97	Pass
39	2441	8.67	20.97	Pass
78	2480	8.87	20.97	Pass

TEL : 86-755- 3320-2398 FCC ID : YHLBLUZOEY24 Page Number : 31 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

Report No.: FR441905

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- The testing follows the guidelines in Band-edge Compliance of RF Conducted Emissions of FCC Public Notice DA 00-705 Measurement Guidelines.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz (≥ 1% span=10MHz), VBW = 300kHz (≥ RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

Page Number

: 32 of 66

3.6.5 Test Result of Conducted Band Edges

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Channel :	00 and 78	Relative Humidity :	50~53%
		Test Engineer :	Blithe Li

Low Band Edge Plot on Channel 00

Date: 15.MAY.2014 11:06:02

High Band Edge Plot on Channel 78

Date: 15.MAY.2014 11:59:29

TEL: 86-755-3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 33 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Channel :	00 and 78	Relative Humidity :	50~53%
		Test Engineer :	Blithe Li

Report No.: FR441905

Low Band Edge Plot on Channel 00

Date: 15.MAY.2014 11:27:49

High Band Edge Plot on Channel 78

Page Number

Report Version

: 34 of 66

: Rev. 01

Report Issued Date: May 23, 2014

Date: 15.MAY.2014 11:21:27

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Channel :	00 and 78	Relative Humidity :	50~53%
		Test Engineer :	Blithe Li

Low Band Edge Plot on Channel 00

Date: 15.MAY.2014 11:34:19

High Band Edge Plot on Channel 78

Date: 15.MAY.2014 11:46:21

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 35 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

3.6.6 Test Result of Conducted Hopping Mode Band Edges

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

1Mbps Hopping Mode Low Band Edge Plot

Date: 15.MAY.2014 11:12:48

1Mbps Hopping Mode High Band Edge Plot

Date: 15.MAY.2014 11:20:56

TEL: 86-755-3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 36 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

 Test Mode :
 2Mbps
 Temperature :
 24~26°C

 Test Engineer :
 Blithe Li
 Relative Humidity :
 50~53%

Report No.: FR441905

2Mbps Hopping Mode Low Band Edge Plot

Date: 15.MAY.2014 11:33:46

2Mbps Hopping Mode High Band Edge Plot

Page Number

Report Version

: 37 of 66

: Rev. 01

Report Issued Date: May 23, 2014

Date: 15.MAY.2014 11:57:40

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Engineer :	Blithe Li	Relative Humidity :	50~53%

3Mbps Hopping Mode Low Band Edge Plot

Date: 15.MAY.2014 11:39:17

3Mbps Hopping Mode High Band Edge Plot

Date: 15.MAY.2014 11:50:10

TEL: 86-755-3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 38 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

Report No.: FR441905

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Procedure

- The testing follows the guidelines in Spurious RF Conducted Emissions of FCC Public Notice DA 00-705 Measurement Guidelines
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 39 of 66TEL: 86-755- 3320-2398Report Issued Date: May 23, 2014FCC ID: YHLBLUZOEY24Report Version: Rev. 01

3.7.5 Test Result of Conducted Spurious Emission

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Channel :	00	Relative Humidity :	50~53%
		Test Engineer :	Blithe Li

Report No.: FR441905

: 40 of 66

: Rev. 01

Report Issued Date: May 23, 2014

Page Number

Report Version

1Mbps CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 15.MAY.2014 09:45:15

1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 15.MAY.2014 09:46:07

FCC ID : YHLBLUZOEY24

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Channel :	39	Relative Humidity :	50~53%
		Test Engineer :	Blithe Li

1Mbps CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 15.MAY.2014 09:46:59

1Mbps CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Page Number

Report Version

: 41 of 66

: Rev. 01

Report Issued Date: May 23, 2014

Date: 15.MAY.2014 09:47:51

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Channel :	78	Relative Humidity :	50~53%
		Test Engineer :	Blithe Li

1Mbps CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 15.MAY.2014 09:48:43

1Mbps CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 15.MAY.2014 09:49:35

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 42 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

Test Mode :	2Mbps	Temperature :	24~26℃
Test Channel :	00	Relative Humidity :	50~53%
		Test Engineer :	Blithe Li

2Mbps CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 15.MAY.2014 10:09:17

2Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 15.MAY.2014 10:10:08

TEL : 86-755- 3320-2398 FCC ID : YHLBLUZOEY24

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Channel :	39	Relative Humidity :	50~53%
		Test Engineer :	Blithe Li

2Mbps CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 15.MAY.2014 10:11:00

2Mbps CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Page Number

Report Version

: 44 of 66

: Rev. 01

Report Issued Date: May 23, 2014

Date: 15.MAY.2014 10:11:52

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Channel :	78	Relative Humidity :	50~53%
		Test Engineer :	Blithe Li

2Mbps CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 15.MAY.2014 10:12:44

2Mbps CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 15.MAY.2014 10:13:36

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Channel :	00	Relative Humidity :	50~53%
		Test Engineer :	Blithe Li

3Mbps CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 15.MAY.2014 10:19:29

3Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 15.MAY.2014 10:20:21

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 46 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

Test Mode :	3Mbps	Temperature :	24~26℃
Test Channel :	39	Relative Humidity :	50~53%
		Test Engineer :	Blithe Li

3Mbps CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 15.MAY.2014 10:21:13

3Mbps CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Page Number

Report Version

: 47 of 66

: Rev. 01

Report Issued Date: May 23, 2014

Date: 15.MAY.2014 10:22:05

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Channel :	78	Relative Humidity :	50~53%
		Test Engineer :	Blithe Li

3Mbps CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 15.MAY.2014 10:22:57

3Mbps CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Page Number

Report Version

: 48 of 66

: Rev. 01

Report Issued Date: May 23, 2014

Date: 15.MAY.2014 10:23:49

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 49 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

3.8.3 Test Procedures

 The testing follows the guidelines in Spurious Radiated Emissions of FCC Public Notice DA 00-705 Measurement Guidelines.

Report No.: FR441905

- 2. The EUT was placed on a turntable with 0.8 meter above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds

 On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$ Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.
 - Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 7. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.85dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

Page Number

Report Version

: 50 of 66

: Rev. 01

Report Issued Date: May 23, 2014

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24

Test Setup 3.8.4

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 51 of 66 Report Issued Date: May 23, 2014 Report Version : Rev. 01

For radiated emissions above 1GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 52 of 66
Report Issued Date : May 23, 2014

Report No.: FR441905

Report Version : Rev. 01

Duty cycle correction factor for average measurement

DH5 on time (One Pulse) Plot on Channel 39

DH5 on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.86 / 100 = 5.72 %
- Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.85 dB
- DH5 has the highest duty cycle worst case and is reported.

TEL: 86-755-3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 53 of 66 Report Issued Date: May 23, 2014

Report Version : Rev. 01

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

 $2.86 \text{ ms } \times 20 \text{ channels} = 57.2 \text{ ms}$

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100ms / 57.6ms] = 2 hops

Thus, the maximum possible ON time:

2.86 ms x 2 = 5.72 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times log(5.72 \text{ ms}/100\text{ms}) = -24.85 \text{ dB}$

3.8.7 Test Result of Radiated Spurious at Band Edges

Test Mode :	1Mbps	Temperature :	23~25°C
Test Channel :	00	Relative Humidity :	48~52%
		Test Engineer :	Kaer Huang

Report No. : FR441905

	ANTENNA POLARITY : HORIZONTAL									
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2387.31	51.82	-22.18	74	41.99	31.98	5.59	27.74	186	318	Peak
2387.31	26.97	-27.03	54	-	-	-	-	186	318	Average

	ANTENNA POLARITY: VERTICAL									
Frequency	quency Level Over Limit Read Antenna Cable Preamp Ant Table Remark								Remark	
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2366.79	50.85	-23.15	74	41.19	31.81	5.59	27.74	119	104	Peak
2366.79	26.00	-28.00	54	-	-	1	-	119	104	Average

Test Mode :	1Mbps	Temperature :	23~25°C
Test Channel :	78	Relative Humidity :	48~52%
		Test Engineer :	Kaer Huang

	ANTENNA POLARITY : HORIZONTAL										
l	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
ı			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
l	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
	2483.84	70.75	-3.25	74	60.3	32.41	5.71	27.67	124	320	Peak
	2483.84	45.90	-8.10	54	-	-	-	-	124	320	Average

	ANTENNA POLARITY: VERTICAL										
Freque	ency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MH	lz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2483	.54	64.38	-9.62	74	53.93	32.41	5.71	27.67	136	279	Peak
2483	.54	39.53	-14.47	54	-	-	-	-	136	279	Average

Note: Average Emission Level = Peak Emission Level + duty cycle correction factor(-24.85dB)

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 55 of 66TEL: 86-755- 3320-2398Report Issued Date: May 23, 2014FCC ID: YHLBLUZOEY24Report Version: Rev. 01

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Note: Pre-scanned all test modes and only choose the worst case mode recorded in the test report for radiated spurious emission below 1GHz.

Test Mode :	1Mbps	Temperature :	23~25°C						
Test Channel :	00	Relative Humidity :	48~52%						
Test Engineer :	Kaer Huang	Polarization :	Horizontal						
Remark :	2402 MHz is fundamental si	2402 MHz is fundamental signal which can be ignored.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2402	98.96	-	-	89.08	31.98	5.62	27.72	186	318	Peak
2402	74.11	-	-	-	-	-	-	186	318	Average
4804	66.20	-7.80	74	81.38	33.78	8.33	57.29	158	262	Peak
4804	41.35	-12.65	54	-	-	-	-	158	262	Average

Note: 1. Other harmonics are lower than background noise.

2. Average Emission Level = Peak Emission Level + duty cycle correction factor(-24.85)

Test Mode :	1Mbps	Temperature :	23~25°C					
Test Channel :	00	Relative Humidity :	48~52%					
Test Engineer :	Kaer Huang	Polarization :	Vertical					
Remark :	2402 MHz is fundamental si	402 MHz is fundamental signal which can be ignored.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2402	94.18	-	-	84.3	31.98	5.62	27.72	119	104	Peak
2402	69.33	-	-	-	-	-	-	119	104	Average
4804	65.75	-8.25	74	80.93	33.78	8.33	57.29	158	262	Peak
4804	40.90	-13.10	54	-	-	-	-	158	262	Average

Note: 1. Other harmonics are lower than background noise.

2. Average Emission Level = Peak Emission Level + duty cycle correction factor(-24.85)

SPORTON INTERNATIONAL (SHENZHEN) INC.
TEL: 86-755-3320-2398

FCC ID: YHLBLUZOEY24

Page Number : 56 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

Test Mode :	1Mbps	Temperature :	23~25°C				
Test Channel :	39	Relative Humidity :	48~52%				
Test Engineer :	Kaer Huang	Polarization :	Horizontal				
Remark :	2441 MHz is fundamental signal which can be ignored.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
2441	100.51	-	-	90.28	32.24	5.68	27.69	100	309	Peak
2441	75.66	-	-	-	-	-	-	100	309	Average
4803	51.36	-22.64	74	66.54	33.78	8.33	57.29	200	0	Peak
4803	26.51	-27.49	54	-	-	-	-	200	0	Average
7323	52.88	-21.12	74	66.12	33.9	10	57.14	152	309	Peak
7323	28.03	-25.97	54	-	-	-	-	152	309	Average

Note: 1. Other harmonics are lower than background noise.

2. Average Emission Level = Peak Emission Level + duty cycle correction factor(-24.85)

Test Mode :	1Mbps	Temperature :	23~25°C					
Test Channel :	39	Relative Humidity :	48~52%					
Test Engineer :	Kaer Huang	Polarization :	Vertical					
Remark :	2441 MHz is fundamental si	441 MHz is fundamental signal which can be ignored.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2441	92.61	-	-	82.38	32.24	5.68	27.69	148	106	Peak
2441	67.76	-	-	-	-	-	-	148	106	Average
4882	68.03	-5.97	74	82.86	33.93	8.41	57.17	118	236	Peak
4882	43.18	-10.82	54	-	-	-	-	118	236	Average
7323	53.14	-20.86	74	66.38	33.9	10	57.14	152	309	Peak
7323	28.29	-25.71	54	-	-	-	-	152	309	Average

Note: 1. Other harmonics are lower than background noise.

2. Average Emission Level = Peak Emission Level + duty cycle correction factor(-24.85)

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 57 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

FCC RF Test Report

Test Mode :	1Mbps	Temperature :	23~25°C					
Test Channel :	Relative Humidity: 48~52%							
Test Engineer :	Kaer Huang	Kaer Huang Polarization : Horizontal						
Remark :	2480 MHz is fundamental signal which can be ignored.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	$(dB\mu V/m)$	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
34.85	27.82	-12.18	40	40.84	16.10	0.81	29.93	120	60	Peak
118.27	28.44	-15.06	43.5	45.12	11.92	1.34	29.94	-	-	Peak
205.57	19.16	-24.34	43.5	38.12	9.26	1.71	29.93	-	-	Peak
414.12	19.90	-26.10	46	31.29	16.20	2.33	29.92	-	-	Peak
634.31	22.37	-23.63	46	30.88	18.60	2.82	29.93	-	-	Peak
751.68	25.44	-20.56	46	31.86	20.45	3.06	29.93	-	-	Peak
2480	99.82	-	-	89.37	32.41	5.71	27.67	124	320	Peak
2480	74.97	-	-	-	-	-	-	124	320	Average
4960	62.93	-11.07	74	77.34	34.12	8.49	57.02	107	214	Peak
4960	38.08	-15.92	54	-	-	-	-	107	214	Average
7440	53.40	-20.60	74	66.38	33.97	10.04	56.99	162	252	Peak
7440	28.55	-25.45	54	-	-	-	-	162	252	Average

Note: 1. Other harmonics are lower than background noise.

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 58 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

^{2.} Average Emission Level = Peak Emission Level + duty cycle correction factor(-24.85)

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	$(dB\mu V/m)$	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
44.55	30.93	-9.07	40	49.97	10.00	0.89	29.93	-	-	Peak
69.77	34.53	-5.47	40	59.09	4.30	1.07	29.93	100	50	Peak
135.73	28.85	-14.65	43.5	45.94	11.44	1.41	29.94	-	-	Peak
227.88	26.63	-19.37	46	44.63	10.14	1.79	29.93	-	-	Peak
468.44	22.09	-23.91	46	32.61	16.95	2.45	29.92	-	-	Peak
749.74	24.95	-21.05	46	31.22	20.60	3.06	29.93	-	-	Peak
2480	92.03	-	-	81.58	32.41	5.71	27.67	136	279	Peak
2480	67.18	-	-	-	-	-	-	136	279	Average
4960	67.20	-6.80	74	81.61	34.12	8.49	57.02	107	214	Peak
4960	42.35	-11.65	54	-	-	-	-	107	214	Average
7440	50.96	-23.04	74	63.94	33.97	10.04	56.99	162	252	Peak
7440	26.11	-27.89	54	-	-	-	-	162	252	Average

Note: 1. Other harmonics are lower than background noise.

2. Average Emission Level = Peak Emission Level + duty cycle correction factor(-24.85)

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 59 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR441905

Frequency of emission (MUz)	Conducted limit (dBμV)					
Frequency of emission (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

^{*}Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

Page Number

: 60 of 66

3.9.4 Test Setup

TEL: 86-755-3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 61 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

3.9.5 **Test Result of AC Conducted Emission**

Site : CO01-SZ

Condition: FCC 15C_QP LISN_L_20140304 LINE

Project : (FR) 441905 : Mode 1 Mode

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBu∇	dB	dBu∇	dBu∇	dB	dB	
1	0.17	40.26	-14.95	55.21	29.70	0.22	10.34	Average
2 *	0.17	53.96	-11.25	65.21	43.40	0.22	10.34	QP
3	0.20	26.62	-27.05	53.67	16.10	0.22	10.30	Average
4	0.20	49.82	-13.85	63.67	39.30	0.22	10.30	QP
5	0.23	32.79	-19.60	52.39	22.30	0.23	10.26	Average
6	0.23	46.39	-16.00	62.39	35.90	0.23	10.26	QP
7	0.26	25.88	-25.54	51.42	15.41	0.24	10.23	Average
8	0.26	41.18	-20.24	61.42	30.71	0.24	10.23	QP
9	0.46	31.75	-14.88	46.63	21.30	0.29	10.16	Average
10	0.46	40.75	-15.88	56.63	30.30	0.29	10.16	QP
11	0.49	27.86	-18.28	46.14	17.40	0.30	10.16	Average
12	0.49	38.56	-17.58	56.14	28.10	0.30	10.16	QP

TEL: 86-755-3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 62 of 66 Report Issued Date: May 23, 2014 Report Version : Rev. 01

Test Mode :Mode 1Temperature :21~22°CTest Engineer :Jack TianRelative Humidity :41~42%Test Voltage :120Vac / 60HzPhase :Neutral

Function Type: GSM850 Idle + Bluetooth Link + USB Cable (Charging from Adapter)

Site : CO01-SZ

Condition: FCC 15C_QP LISN_N_20140304 NEUTRAL

Project : (FR)441905 Mode : Mode 1

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBu∀	dB	dBu∀	dBu∀	dB	dB	
1	0.17	39.86	-15.35	55.21	29.19	0.33	10.34	Average
2	0.17	51.46	-13.75	65.21	40.79	0.33	10.34	QP
3	0.20	37.42	-16.25	53.67	26.80	0.32	10.30	Average
4	0.20	47.92	-15.75	63.67	37.30	0.32	10.30	QP
5	0.23	33.09	-19.26	52.35	22.49	0.34	10.26	Average
6	0.23	44.59	-17.76	62.35	33.99	0.34	10.26	QP
7 *	0.43	42.46	-4.74	47.20	31.90	0.40	10.16	Average
8	0.43	48.66	-8.54	57.20	38.10	0.40	10.16	QP
9	0.46	33.66	-13.10	46.76	23.10	0.40	10.16	Average
10	0.46	41.96	-14.80	56.76	31.40	0.40	10.16	QP
11	0.66	27.73	-18.27	46.00	17.30	0.28	10.15	Average
12	0.66	34.73	-21.27	56.00	24.30	0.28	10.15	QP

TEL: 86-755- 3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 63 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 86-755-3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 64 of 66
Report Issued Date : May 23, 2014

Report No.: FR441905

Report Version : Rev. 01

List of Measuring Equipment 4

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Jun. 17, 2013	May 06, 2014~ May 15, 2014	Jun. 16, 2014	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	13dBm~-20dBm	Mar. 03, 2014	May 06, 2014~ May 15, 2014	Mar. 02, 2015	Conducted (TH01-SZ)
Power Sensor	Anritsu	MA2411B	1207253	0.3GHz~40GHz	Mar. 03, 2014	May 06, 2014~ May 15, 2014	Mar. 02, 2015	Conducted (TH01-SZ)
ESCIO TEST Receiver	R&S	ESCI	100724	9kHz~3GHz	Feb. 21, 2014	May 14, 2014	Feb. 20, 2015	Radiation (03CH01-SZ)
Signal Analyzer	R&S	FSV40	101078	10Hz~40GHz	Jun. 17, 2013	May 14, 2014	Jun. 16, 2014	Radiation (03CH01-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	May 29, 2013	May 14, 2014	May 28, 2014	Radiation (03CH01-SZ)
Bilog Antenna	TESEQ	CBL 6112D	23188	30MHz~2GHz	Oct. 26, 2013	May 14, 2014	Oct. 25, 2014	Radiation (03CH01-SZ)
Double Ridge Horn Antenna	ETS Lindgren	3117	00119436	1GHz~18GHz	Oct. 26, 2013	May 14, 2014	Oct. 25, 2014	Radiation (03CH01-SZ)
Double Ridged Horn Antenna	COM-POWER	AH-840	101073	18GHz~40GHz	Jan. 27, 2014	May 14, 2014	Jan. 26, 2015	Radiation (03CH01-SZ)
Amplifier	ADVANTEST	BB525C	E9007003	9kHz~3000MHz	Feb. 21, 2014	May 14, 2014	Feb. 20, 2015	Radiation (03CH01-SZ)
Amplifier	Agilent	83017A	MY395013 02	3Hz~26.5GHz	Mar. 03, 2014	May 14, 2014	Mar. 02, 2015	Radiation (03CH01-SZ)
AC Source(AVR)	Chroma	61601	616010001 985	100Vac~250Vac	Mar. 25, 2014	May 14, 2014	Mar. 24, 2015	Radiation (03CH01-SZ)
Turn Table	EM Electronics	EM 1000	N/A	0~360 degree	NCR	May 14, 2014	NCR	Radiation (03CH01-SZ)
Antenna Mast	EM Electronics	EM 1000	N/A	1 m~4 m	NCR	May 14, 2014	NCR	Radiation (03CH01-SZ)
ESCIO TEST Receiver	R&S	ESCI	100724	9kHz~3GHz	Feb. 21, 2014	Apr. 22, 2014	Feb. 20, 2015	Conduction (CO01-SZ)
AC LISN	EMCO	3816/2SH	00103912	9kHz~30MHz	Mar. 04, 2014	Apr. 22, 2014	Mar. 03, 2015	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Mar. 04, 2014	Apr. 22, 2014	Mar. 03, 2015	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Dec. 17, 2013	Apr. 22, 2014	Dec. 16, 2014	Conduction (CO01-SZ)

TEL: 86-755-3320-2398 FCC ID: YHLBLUZOEY24 Page Number : 65 of 66 Report Issued Date: May 23, 2014

Report No. : FR441905

Report Version : Rev. 01

FCC RF Test Report

5 Uncertainty of Evaluation

<u>Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)</u>

Measuring Uncertainty for a Level of	2.24
Confidence of 95% (U = 2Uc(y))	2.31

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	
Confidence of 95% (U = 2Uc(y))	3.90

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-3320-2398

FCC ID: YHLBLUZOEY24

Page Number : 66 of 66
Report Issued Date : May 23, 2014
Report Version : Rev. 01