ME 3320 Midterm

Fall 2021

Total: 110 Points (10 points extra credit)

Problem-1: Find the D.O.F. for the following mechanisms (20 Points)

a)

b)

Problem-2: Design a four-bar linkage to move the object through three positions shown in the figure. Using points "a" and "b" on the object for moving pivot. (40 Points)

- a) Graphical synthesis in the plane (20 Points)
- **b)** Algebraic synthesis in the plane (**Only** find pivot "0" based on moving pivot "a") (20 **Points**)

Problem-3: (50 Points)

Follower displacement function: Design a displacement function.

The follower must:

- Dwell at y = 2 cm for 90°
- Rise 3 cm for 45° with continuous velocity
- Dwell at y = 5 cm from 135° to 225°
- Return (fall) to y = 2 cm from 225° to 270° with continuous displacement
- Dwell for the remaining 90° of cam rotation.
- a. Write the boundary conditions and choose the degree of the polynomial to satisfy them.

Solve for the coefficients of the polynomial for the **rise**. (10 Points)

b. Write the boundary conditions and choose the degree of the polynomial to satisfy them.

Solve for the coefficients of the polynomial for the **return**. (10 Points)

- c. Write the equations of $y = y(\theta)$ for each section of the displacement function. (10 Points)
- d. Write the equations of the velocity, acceleration and jerk as a function of θ and the constant angular velocity of the cam, ω . (10 Points)
- e. Plot the displacement, velocity, acceleration, and jerk functions (with hand). (10 Points)