SWEN20003 Object Oriented Software Development

Subject Introduction

Bach Le

bach.le@unimelb.edu.au

University of Melbourne © University of Melbourne 2023

Teaching Staff

- Dr Bach Le (bach.le@unimelb.edu.au)
- Dr Andrew Valentine (andrew.valentine@unimelb.edu.au)

Teaching Staff

- Dr Bach Le (bach.le@unimelb.edu.au)
- Dr Andrew Valentine (andrew.valentine@unimelb.edu.au)

Head Tutor:

• Tharun Dharmawickrema (t.dharmawickrema@unimelb.edu.au)

Tutors:

- Stella Li
- Catherine Muir
- Charlie Ding
- Yifan Guang
- Chenghao (Lee) Li
- Risa Pais
- Hao Xu

A bit about myself

- Bach Le
 - Lecturer in the School of Computing and Information Systems
 - ► Australian Research Council Fellow (ARC DECRA Fellow)
- Education
 - Post doctoral researcher at Carnegie Mellon University, California, USA.
 Topic: Automated Software Testing
 - PhD in Software Engineering Singapore Management University, Singapore.
 Topic: Automated Software Bug Fixing.
 - B.Sc. in Information Technology Hanoi University of Science and Technology, Vietnam. Topic: Automated Software Verification.

A bit about myself

- Academic Experience
 - Academic at the University of Melbourne since 2019
 - Teaching
 - ★ Software Engineering and Computer Science (SWEN20003, COMP30026, etc)
 - Research
 - ★ Data analytics (mining software repositories)
 - * Automated Software Debugging: testing, bug fixing, verification

Learning Outcomes - Handbook

On completion of this subject you are expected to:

- Apply software design principles to object-oriented design
- Develop object-oriented models for a medium-sized software system
- Evaluate design trade-off of different designs
- Implement an object-oriented design in a suitable language
- Use commonly available object-oriented design frameworks for application development
- Apply knowledge of basic science and engineering fundamentals

Learning Outcomes - In Simple Language

On completion of this subject you will be able to:

- Write Object Oriented programs in Java
- Use an Integrated Development Environment (IDE) to develop software
- Abstract a problem specification the Object Oriented way
- Design a software solution, not just write it
- Apply programming techniques, frameworks, and conventions, to other Object Oriented languages

OOSD in Context

Lecture Schedule

Block	Week	Date	Lecture Topic	Assessment	Workshops	
Java Foundations	1	February 27, 2023	Subject Introduction			Bach
	1 -	March 2, 2023	Java - A Quick Tour			
OOP						1
Fundamentals	2	March 6, 2023	Classes and Objects 1		Grok IDE	
		March 9, 2023	Classes and Objects 2			
	3	March 13, 2023	Classes and Objects 3		Classes and Objects	
		March 16, 2023	Software Tools/Bagel			
	4	March 20, 2023	Arays and Strings		Classes and Objects with Git	
		March 23, 2023	Input and Output			
	5	March 27, 2023	Inheritance I		Bagel Introduction	
		March 30, 2023	Inheritance 2			
		March 31, 2023		Project 1 Released (16.30 pm)		
	6	April 3, 2023	Interfaces		Inheritance	
		April 6, 2023	Revision			
		April 7, 2023		Project 1 Initial Due (16.30 pm)		
		Non Teaching Week				
dvanced OOP	L	April 17, 2023	Mid Semester Test		Inheritance and Interfaces	Andrew
nd Software	7	April 20, 2023	Class Diagrams			
Design	ĺ	April 21, 2023		Project 1 Due (16.30 pm)		
		April 21, 2023		Project 2 Released (16.30 pm)		
	8	April 24, 2023	Generics		Class Diagrams	
		April 27, 2023	Collections and Maps			
	9	May 1, 2023	Design Patterns 1	Project 2A Due (16.30 pm)	Generics/Collections/Maps	
		May 4, 2023	Design Patterns 2			
	Ī	May 5, 2023		Project 1 Marks Released		
		May 8, 2023	Exceptions			
	10	May 11, 2023	Sofware Testing and Design		Design Patterns	
		May 12, 2023		Project 2A Marks Released		
	11	May 15, 2023	Asynchronous Programming		Exceptions/Testing	
		May 18, 2023	Advanced Java Concepts			
		May 19, 2023		Project 2B Due (16.30 pm)		
	12	May 22, 2023	Revision		Event Driven/Advanced	
			Wrapup - Exam			

Assessment Breakdown

```
Project 1 - Initial 0% (-3% for no submission)
Project 1 8%
Project 2A 8%
Project 2B 14%
Mid-semester Test 10%
Workshops 5%
Weekly Quizzes 5%
Final Exam 50%
```

Hurdle:

To pass the subject, students must obtain at least 50% overall, 15/30 in project work, and 30/60 in the mid-semester test and end-of-semester written examination combined

Assessment Dates and Deadlines

```
Project 1 - Initial - Due - 16:30pm, Friday April 7th (Week 6)
```

Mid-semester Test - Monday April 17th (Week 7), TBA.

Project 1 - Due - 16:30pm, Friday April 21st (Week 7)

Project 2A - Due - 16:30pm, Monday May 1st (Week 9)

Project 2B - Due - 16:30pm, Friday May 19th (Week 11)

Workshops - Assessed at the end of each workshop

Weekly Quizzes - Due on Sunday . e.g. week 1 quiz is due on the 5th of March

Workshops

Each week there will be a 2 hour workshop:

- Workshops start in week 2
- Workshops contain practical exercises that give you hands-on experience on concepts covered in the lectures
- Doing these exercises will be important for you to understand the concepts, do your projects and final examination
- Workshops will be assessed: one mark will be assigned for each workshop, which will count 5% towards the final mark.

Assessment - Workshops

- Workshops will be assessed:
 - students who complete workshop exercises and keep up with the subject topics generally perform well in the subject
 - previous semesters student feedback highlighted the lack of interactions with other students due to shifting to on line mode
- Each workshop is assigned 1 mark
- To obtain the 1 mark assigned for a workshop you must:
 - attempt the pre-workshop question before attending the workshop, and show your work to the demonstrator during the workshop (the solution does not have to be complete but a reasonable attempt is acceptable);
 - join a small group the demonstrator will assign you to during the workshop in your group (or sometimes individually), work on a question selected by the workshop demonstrator and show a satisfactory solution (or a reasonable attempt).
- The final workshop mark will be the sum of the **best eight workshop marks** earned during the semester weighted to 5%

Assessment - Weekly Quizzes

- Each week there will be a Canvas quiz on the weekly lecture content.
- The quiz will test your understanding of the concepts introduced in the lectures.
- Each quiz will have a maximum of 10 questions, and is expected to take less than 20 minutes.
- Each weekly quiz is due on Sunday 11.59 pm of that particular week (e.g. quiz for week 1 will be due on Sunday 6th March 11.59 pm) students will get a single attempt to complete the weekly quiz.
- The final quiz mark will be the sum of the **best eight marks earned from quizzes** during the semester weighted to 5% (each quizz will have an equal contribution towards the final quiz mark).
- The first week quiz will be a practice, and will not be assessed; although you will see a mark for it, the final mark will be based on the best eight out of the 11 quizzes, starting week 2.

Textbook

The subject content will be based off Absolute Java by Walter Savitch. You
can buy the textbook (4th edition or higher) if you wish, but this is not
required.

Development Tools

- Any new language has a learning curve
- To reduce the impact, we'll be using Grok initially to give you programming practice
- Starting from week 2, we will introduce IntelliJ, an Integrated Development Environment (IDE)
- You will need to use an IDE for the Projects

Academic Misconduct

- Work with friends if you like on workshop questions
- All assessed work (projects) is to be done by you alone
- You can discuss overall approach to solving problems with peers or others
- Do not show your code to peers, in person or electronically, or ask peers for code
- When in doubt, ask lecturer or tutor
- Sophisticated software is used to identify cheating
- Cheating is grounds for disciplinary action; repeat offence is grounds for expulsion
- See https://academichonesty.unimelb.edu.au/

Student Representatives

The first two expressions of interest via email to me (bach.le@unimelb.edu.au) will be selected as student representatives.

Extra Resources

Practice (and exam-like) problems:

- Hackerrank
- Codecademy
- Codesignal

Grok

- Relevant practice materials are now available on Grok
- The materials teach content to complement and reinforce the lectures
- Go at your own pace
- Not assessed, does not contribute to your marks
- Don't just answer the questions; it is assumed you will have read the slides as well
- Most of the code should be intuitive, or at least make some sense
- On Canvas go to Modules, scroll down to Week 1, and then click Grok Learning, then click on "Grok Start Here" to register with Grok - if you do not do this you will not be able to start using Grok.

Lectures

- Lecture Delivery Plan
 - Weeks 1-6: Bach Le
 - Weeks 7-12: Andrew Valentine
- During the first week we will give you a quick tour of the Java foundations
 - We will only spend the first week on the content in this topic you are expected to read this material and familiarize
 - We assume you have experience in at least one programming language (Python and/or C)
- We will teach you Object Oriented Programming concepts throughout the semester, enabling you to write good Object Oriented Programs in Java

Lecture Delivery Modes

- In the lecture theatre
 - Lectures will be recorded.

- Attend lectures and participate in quizzes, activities and discussions
 - Anecdotal evidence shows that students who attend lectures do better in subjects

- Attend lectures and participate in quizzes, activities and discussions
 - Anecdotal evidence shows that students who attend lectures do better in subjects
- Attend the workshop you are enrolled in and participate
 - Your demonstrators are the best resource for specific questions, particularly regarding the projects

- Attend lectures and participate in quizzes, activities and discussions
 - Anecdotal evidence shows that students who attend lectures do better in subjects
- Attend the workshop you are enrolled in and participate
 - Your demonstrators are the best resource for specific questions, particularly regarding the projects
- Be active on subject forums

- Attend lectures and participate in quizzes, activities and discussions
 - Anecdotal evidence shows that students who attend lectures do better in subjects
- Attend the workshop you are enrolled in and participate
 - Your demonstrators are the best resource for specific questions, particularly regarding the projects
- Be active on subject forums
- Practice programming -practice makes you at least close to perfect!

- Attend lectures and participate in quizzes, activities and discussions
 - Anecdotal evidence shows that students who attend lectures do better in subjects
- Attend the workshop you are enrolled in and participate
 - Your demonstrators are the best resource for specific questions, particularly regarding the projects
- Be active on subject forums
- Practice programming -practice makes you at least close to perfect!
- Ask questions, lots of questions

22 / 22