Beyond Expected Goals: A Probabilistic Framework for Shot Occurrences in Soccer

Tianshu Feng, Jonathan Pipping, and Paul Sabin

University of Pennsylvania

August 3, 2025

What Are Expected Goals (xG)?

- Expected Goals (xG) is a metric that estimates the probability that a shot is scored
- Depends on factors like distance from goal, angle to goal, shot type, and player positions
- Estimated by XGBoost models trained on historical shot data
- Often used to measure the quality of a chance
- Aggregated over a match or season to measure team performance

Limitations of xG

- Models are only trained on **observed** shots, inducing significant selection bias
- Skilled attackers who take more shots are over-represented
- Threatening attacks with no recorded shots are omitted
- Aggregating xG across a match double-counts rebound chances

Example 1: No Shot Recorded

Example 2: Multiple Shots Taken

Our Target Metric: xG+

- A more complete picture of goal expectancy
 - Accounts for high-threat attacks with no shots
 - Avoids double-counting rebounded chances
- At each frame, we calculate the probability of a goal:

$$\begin{split} \mathbb{P}(\mathsf{goal}\;\mathsf{scored}) &= \mathbb{P}(\mathsf{goal}\;\mathsf{scored}\;|\;\mathsf{shot}\;\mathsf{taken}) \cdot \mathbb{P}(\mathsf{shot}\;\mathsf{taken}) \\ &= \mathsf{xG} \cdot \mathsf{xShot} \end{split}$$

 And then define xG+ for each possession as the probability a goal occurs:

$$\mathsf{xG} + = 1 - (1 - \mathbb{P}(\mathsf{goal} \mathsf{ scored})^{\mathsf{n_frames}})$$

Estimating xShot

- xShot: the probability that a shot occurs in the next second
- Build a model to estimate xShot based on features from tracking data
- Also build our own version of xG model using the same features on observed shots

Data Processing

- Remove games where no shots are recorded
- Only keep frames where the ball is in play and a team has clear possession
- Linearly interpolate ball positions to fill in missing frames
- attack: Index of the attack the current frame is on (0 if it is not on an attack)
 - Start with the attacking team gaining possession in their attacking third
 - End with the defending team regaining possession or the ball is out of their attacking third
 - Only keep frames with attack ¿ 0

Data Processing

- Rotate the coordinates 180° around the center point for frames where the team attacks from right to left to unify the attacking directions and make all x-coordinates positive
- Use a polar coordinate system centered on the goal for the ball
 - ullet r_{ball} and $heta_{ball}$ represent the distance and angle of the ball from the goal
 - Keep the z-coordinate and compute the speed of the ball
- Use a polar coordinate system centered on the ball for each player
 - Choose the 5 closest offense teammates and non-GK defenders to the ball as features
 - Keep goalkeeper positions as a separate feature

Data Processing

- openGoal: Percentage of the goal that is open from the ball's position
 - Simplify every defender as a circle with a radius of 0.75 m
 - Compute the two tangent lines from the ball to every defender in front of the ball their intersection points with the goal line
 - Calculate the length of the open goal as the length of goal not covered by segments formed by the intersection points

Model Specifications

- Trained on all tracking data of 2022-2025 Premier League seasons
- Use a 5-fold cross-validation to evaluate both xG and xShot XGBoost models
- Choose log loss as the evaluation metric

Results

Cross-Validation Study

- Objective: Evaluate xG+ performance using cross-validated Poisson models
- Dataset: 3 seasons of match data (114 folds total)
- Method: Train on all matchdays except one, predict goals on held-out data
- Goal: Determine how well adjusted xG+ explains actual goals scored

Cross-Validation Setup

- ullet Each matchday treated as a fold: 38 matchdays imes 3 = 114 folds
- For each fold:
 - Train on all matchdays except one to acquire adjusted metrics
 - Poisson regression on team goals using training data
 - Predict goals scored on held-out matchday test data

Metrics and Aggregation Methods

Metrics:

- xS: Probability a player takes a shot in the next second
- xG: Probability of a goal (given a shot)
- $xG+: xS \times xG$, probability of scoring in the next second

Aggregation Methods:

- Max-per-possession: Take maximum 1-second prediction in each possession
- **Q** At-least-one-per-possession: $1 \prod (1-p)$ across possession
- Sum-of-shots: Traditional xG summed over actual shots

Mixed Effects Modeling

Fitted on training data for each fold:

$$\texttt{metric} \sim (1|\texttt{season}) + (1|\texttt{season} : \texttt{team}) + (1|\texttt{season} : \texttt{opp}) + \texttt{home}$$

Extracted effects:

- Team attack (per season)
- Opponent defense (per season)
- Season effect
- Home field advantage

Secondary Poisson Model

Train Poisson regression on adjusted metrics:

$${\tt goals} \sim {\tt home} + {\tt season} + {\tt team_off} + {\tt opp_def}$$

Purpose: Assess predictive utility of each adjusted metric on actual goals

Cross-Validation Results

Table: Mean Squared Error (MSE) by Metric and Aggregation Method

Aggregation Method	xG+	xS	хG
At-least-one-per-possession Max-per-possession Sum-of-shots		2.90 2.87	2.94 2.91 2.90

Cross-Validation Results

Table: Mean Absolute Error (MAE) by Metric and Aggregation Method

Aggregation Method	xG+	xS	хG
At-least-one-per-possession Max-per-possession Sum-of-shots		1.87 1.86	1.89 1.89 1.87

Conclusions

- xG+ performs best: Lowest MSE and MAE across all aggregation methods
- At-least-one-per-possession aggregation method shows strongest performance
- Future work: Compare to actual shot-based xG, consider time-weighted xS
- Questions and discussion

Acknowledgements

- Special thanks to our data providers at PFF FC and the English Premier League.
- All work supported by the Wharton Sports Analytics & Business Initiative (WSABI) Summer Research Lab.