1/4/23, 10:29 AM apuntes

Lecture 12 - Integrals on \mathbb{R}^2

4.2 Integrating continuous maps on compact sets of \mathbb{R}^2

4.2.1 On rectangles

• **Prop 4.2.1:** I and J two compact intervals of \mathbb{R} . $f:I\times J\longrightarrow \mathbb{C}$ confinuous. The maps $y\mapsto \int_I f(x,y)dx$ and $x\mapsto \int_I f(x,y)dy$ are continuous on J and I. Furthermore,

$$\int_I (\int_I f(x,y) dy) dx = \int_I (\int_I f(x,y) dx) dy$$

• **Def 4.2.1:** I and J two compact intervals of \mathbb{R} . f continuous on $I \times J$. We define

$$\int_{I imes I}f(x,y)dxdy=\int_{I}dx\int_{I}dyf(x,y)$$

4.2.2 On a domain defined by 2 continuous maps

ullet Prop 4.2.2: I compact interval of $\mathbb R$. f and g two continuous maps on I s.t $f\leq g$ and let

$$\Omega = \{(x,y)|x\in I \text{ and } f(x)\leq y\leq g(x)\}$$

Let φ a continuous function on Ω . The map

$$x\mapsto \int_{f(x)}^{g(x)} arphi(x,y) dy$$

is continuous on I.

4.2.3 On parallelograms

ullet Let Ω be a parallelogram. It is defined by a point M=(a,b) and $u,v\in\mathbb{R}^2.$ We then have that

1/4/23, 10:29 AM

$$M_1=M+u \ M_2=M+u+v \ M_3=M+v$$

apuntes

• **Def 4.2.3:** Let Ω be a parallelogram and L an affine map s.t. $\Omega=L([0,1]^2)$. Lef f a continuous map on Ω . We define

$$\int_{\Omega}f(x,y)dxdy=\int_{[0,1]^2}|\det L|f(L(t,s))dtdst$$

where $\det L$ is the determinant of the linear map underlying L.

An affine map is a function of the form f(x)=Ax+b, where A is a matrix and b is a vector. L maps the unit square $[0,1]^2$ onto the parallelogram Ω .

4.2.4 On domains that are ${\cal C}^1$ diffeomorphic to a rectangle

- **Def 4.2.4 diffeomophism:** Let Ω open set of \mathbb{R}^2 . Let $\varphi:\Omega\mapsto\mathbb{R}^2$. We say φ is a C^1 diffeomorphism if:
 - 1. φ is C^1
 - 2. φ is bijective
 - 3. φ has a C^1 inverse
- Remark 4.2.3: The differential of φ is always invertible
- **Def 4.2.5 Jacobian of** φ : The absolute value of the determinant of the Jacobian matrix of φ . We call it $jac(\varphi)$

1/4/23, 10:29 AM apuntes

• **Def 4.2.6** - **diffeomorphic to a rectangle:** We say $\Omega\subseteq\mathbb{R}^2$ is C^1 diffeomorphic to a rectangle if \exists a C^1 diffeomorphism φ and a rectangle $I\times J$ s.t $\Omega=\varphi(I\times J)$

• **Def 4.2.7**: We set

$$\int_{\Omega}f(x,y)dxdy=\int_{I imes J}f\circ arphi(t,s)jac(arphi)(t,s)dtds$$

• **Def 4.2.8:** Let $(\Omega_k)_k$ a finite family of domains C^1 diffeomorphic to a rectangle. Assume that $\forall j \neq k$,

$$|\Omega_k \cap \Omega_j| = 0$$

Let f a continuous map on $\Omega = \cup \Omega_k$. We define

$$\int_{\Omega}f(x,y)dxdy=\sum_{k}\int_{\Omega_{k}}f(x,y)dxdy$$