

Matemática Discreta - 05

Prof. Jorge Cavalcanti
jorge.cavalcanti@univasf.edu.br
www.univasf.edu.br/~jorge.cavalcanti
www.twitter.com/jorgecav

- Imagine que você está subindo uma escada infinitamente alta. Como você será capaz de saber se será capaz de chegar a um degrau arbitrariamente alto?
 - Você pode inicialmente fazer as seguintes hipóteses sobre a sua capacidade de subir:
 - 1. Você consegue alcançar o primeiro degrau.
 - 2. Uma vez chegado a um degrau, você sempre será capaz de chegar ao próximo.
 - Se a proposição 1 e o condicional 2 são verdadeiros, então, pela proposição 1, você consegue chegar no primeiro degrau e, portanto, pela 2, consegue chegar no segundo. Novamente pela 2, consegue chegar no terceiro.
 - Mais uma vez, pela 2, chega no quarto degrau e assim por diante.
 - Você poderá subir tão alto quanto quiser.

- Nesse caso, ambas as hipóteses são necessárias. Se apenas a primeira fosse V, não teríamos a garantia de passar do primeiro degrau.
 - Se apenas a 2ª fosse V, poderíamos não ser capazes de começar nunca.
- Numerando os degraus...

- Seja uma propriedade de que cada número que identifica o degrau possa ter.
 - Ao invés de chegar a um degrau arbitrário, podemos buscar um número inteiro positivo que tenha essa propriedade.

- Usando a notação P(n) para dizer que o inteiro positivo n tem a propriedade P.
- Por analogia, vamos usar a mesma "técnica" usada para subir a escada, para provar que, qualquer que seja o inteiro positivo n, temos P(n).
 - Precisamos provar as proposições:
 - 1. P(1) (1 tem a propriedade P)
 - Para qualquer inteiro positivo k, $P(k) \rightarrow P(k+1)$ Se qualquer número tem a propriedade P, o próximo também tem.
- Se pudermos provar ambas as proposições 1 e 2, então
 P(n) é válida para qualquer inteiro positivo n.
- O fundamento para argumentos desse tipo é o primeiro princípio de indução matemática.

Primeiro Princípio de Indução

- 1. P(1)
- 2. $(\forall k)$ [P(k) verdade \rightarrow P(k+1) verdade]

P(n) é verdade para todo inteiro positivo n

- O primeiro princípio de indução matemática é um condicional, com uma conclusão na forma "P(n) é verdade para todo inteiro positivo n".
 - A técnica da indução se mostra mais apropriada para provarmos que alguma coisa é verdade para todo inteiro positivo n (conjunto dos números naturais).

- 1. P(1)
- 2. $(\forall k)$ [P(k) verdade \rightarrow P(k+1) verdade]
- Para mostrar que a conclusão dessa condicional é verdadeira, precisamos provar que as hipóteses 1 e 2 são.
 - Para provar a proposição 1, basta mostrar que o número 1 tem a propriedade P, o que pode ser trivial (Base da Indução).
 - A proposição 2 é um condicional que tem que ser válido para todo k (Passo da Indução).
 - Para provar essa condicional, suponha que P(k) (Hipótese da Indução) é verdade para um inteiro positivo k e mostre que, baseado nesta hipótese, que p(k+1) é verdade.

Primeiro Princípio de Indução - Resumo

- Passo 1 Prove a base da indução P(1) (ou o menor inteiro positivo em questão).
- 2. Passo 2 Suponha P(k)
- 3. Passo 3 Prove P(k+1)

Demonstração por Indução Matemática

Ex. 01:Suponha a árvore genealógica de uma família cuja característica fundamental é que cada casal tem sempre dois filhos e que cada um desses filhos também tem dois filhos. A árvore é ilustrada abaixo:

Geração	Descendentes
1	21=2
2	22=4
3	23=8

Demonstração por Indução Matemática

- Há de se perceber que a geração n contém 2ⁿ descendentes. Precisamos demonstrar essa propriedade.
- Formalmente, se denotarmos por P(n) o número de descendentes em cada geração, nossa conjectura é que:

$$P(n) = 2^n$$

- Vamos usar a indução para provar que a conjectura está correta.
- 1. O passo básico é estabelecer P(1), que é a equação:
- Isso é verdadeiro pois o primeiro elemento da genealogia teve 02 filhos. $P(1) = 2^1 = 2$
- 3. Supondo agora que a conjectura está correta para uma geração arbitrária k, k≥1:

$$P(k) = 2^k - Hipótese da indução$$

Vamos mostrar que $P(k+1) = 2^{k+1}$

Demonstração por Indução Matemática

- $P(k) = 2^k Hipótese da indução$
- Vamos mostrar que $P(k+1) = 2^{k+1}$
- Nessa família, cada descendente tem 2 filhos, de modo que o número de descendentes na geração k+1 será o dobro da geração k.
 - Ou seja P(k+1) = 2P(k)
- Pela hipótese de indução:

$$P(k) = 2^k$$

$$P(k+1) = 2P(k) = 2(2^k) = 2^{k+1}$$

De fato,
$$P(k+1) = 2^{k+1}$$

Demonstração por Indução Matemática

Ex. 02: Sejam as seguintes definições:

$$2^{0} = 1 = 2^{1} - 1$$

$$2^{0} + 2^{1} = 1 + 2 = 3 = 2^{2} - 1$$

$$2^{0} + 2^{1} + 2^{2} = 1 + 2 + 4 = 7 = 2^{3} - 1$$

$$2^{0} + 2^{1} + 2^{2} + 2^{3} = 1 + 2 + 4 + 8 = 15 = 2^{4} - 1$$

No exemplo acima o padrão mais geral parece com:

$$2^{0} + 2^{1} + 2^{2} + ... + 2^{n} = 2^{n+1} - 1$$

- Mas, não podemos afirmar que este padrão será sempre verdadeiro para todos os valores de n a menos que provemos.
- Prove que para todo número inteiro positivo n,

$$2^{0} + 2^{1} + 2^{2} + ... + 2^{n} = 2^{n+1} - 1$$
.

Demonstração por Indução Matemática

- **Ex.** $02: 2^0 + 2^1 + 2^2 + ... + 2^n = 2^{n+1} 1$.
- Pelo princípio da indução:

P(1) é a equação $1 + 2 = 2^{1+1}-1$ ou $3=2^2-1$ (base da indução)

Supondo P(k) como hipótese de indução:

$$1 + 2 + 2^2 + ... + 2^k = 2^{k+1} - 1$$

Provar que P(k+1) é verdadeira:

$$1 + 2 + 2^2 + ... + 2^k + 2^{k+1} = 2^{k+1+1} - 1$$

Considerando a soma à esquerda $1 + 2 + 2^2 + ... + 2^k + 2^{k+1}$

Usando a hipótese de indução: $1 + 2 + 2^2 + ... + 2^k = 2^{k+1} - 1$ em p(k+1):

$$= 2^{k+1} - 1 + 2^{k+1}$$

$$=2(2^{k+1})-1$$

$$= 2^{k+1+1} - 1$$

Portanto P (k+1): $1 + 2 + 2^2 + ... + 2^k + 2^{k+1} = 2^{k+1+1} - 1$

Demonstração por Indução Matemática

- Ex. 03: Demonstre que, para qualquer n, $2^n > n$.
- 1. Base da indução: $P(1) = 2^1 = 2$, então 2 > 1 (verdadeira)
- Hipótese da indução: supondo que para algum k inteiro positivo, P(k): 2^k > k é verdadeira.
- 3. Passo da indução: Provar que **P(k+1): 2^{k+1}> k+1** é verdadeira.
- 4. Como P(k): $2^k > k$ e P(k+1): $2^{k+1} > k+1$, então, à esquerda da desigualdade temos que:

$$2^{k+1}=2^k.2^1$$

Pela hipótese de indução $2^k > k$ (x2) = $2^k.2^1 > k.2$ $2^{k+1} > k.2$, como k.2=k+k e k+k \geq k+1, então,

 $2^{k+1} > k+k \ge k+1$ ou seja, $2^{k+1} > k+1$

Demonstração por Indução Matemática

- ■Ex. 04: Prove por indução que a soma dos n primeiros números naturais é dada por P(n) = n(n+1)/2
- Temos: P(n) = 1 + 2 + 3 + 4 + ... + n = n(n + 1) / 2
- 1. Base da indução: P(1) = 1(1 + 1)/2 = 1
- 2. Hipótese da indução: P(k): 1 + 2 + 3 + ... + k = k(k + 1)/2
- 3. Devemos mostrar quer

$$P(k+1) = 1+2+3+ ... + k + (k + 1)=[(k+1)(k+1+1)]/2$$

Usando a hipótese de indução, vamos substituir na expressão acima, o valor de P(k), teremos:

$$P(k + 1) = k(k + 1)/2 + (k + 1) = [(k+1)(k+1+1)]/2$$

Desenvolvendo o lado esquerdo, fica:

$$P(k + 1) = [k(k+1)/2]+(k+1) = [k(k+1) + 2(k+1)]/2$$

$$= [(k + 1) (k + 2)] / 2 = [(k+1)(k+1+1)] / 2$$

que é a mesma fórmula para (k+1).

Logo, P(n) = n(n+1) / 2 é verdadeira para todo n natural.

Demonstração por Indução Matemática

Ex. 05: Prove por indução, que para todo número inteiro positivo n, 2+4+6+...+2n = n(n+1)