Contents

1	The	cory	4
	1.1	Begriffe und Klassifikation	4
		1.1.1 Ordnung	4
		1.1.2 Laplace-Operator	4
		1.1.3 Umwandlung in System niedriger Ordnung	4
		1.1.4 Notationen einer PDGL, Gebiet Ω	4
		1.1.5 Klassifikation einer PDGL	5
	1.2	Methode Charakteristiken	5
	1.3	Methode Separation	6
	1.4	Hamilton-Jacobi Theorie	7
	1.5	Transformationen	8
		1.5.1 Fourierreihe	8
		1.5.2 Beispiel: Schwingende Saite	8
		1.5.3 Inhomogene Wellengleichung	9
		1.5.4 Laplace-Transformation	9
		1.5.5 Beispiel: Wärmeleitung	9
	1.6	PDGL 2.Ordnung	10
	1.0	1.6.1 Klassifikation	10
	1.7	Elliptische PDGL	10
		1.7.1 Maximumprinzip	10
		1.7.2 Beispiel (Übungslösungen)	10
		1.7.3 Greensche Funktion	11
		1.7.4 Mittelwerteigenschaft harmonischer Funktionen	11
	1.8	Hyperbolische PDGL	11
	1.0	1.8.1 Streifen/Charakteristiken	11
2	Nur	nerik	12
	2.1	Diskretisierung	12
		2.1.1 1.Ableitung	12
		2.1.2 2.Ableitung	12
	2.2	FDM	12
		2.2.1 Grundgleichung: $-u''(x) = f(x)$	12
		2.2.2 Grundgleichung: $T''(x) - hT(x) = T_A$	12
		2.2.3 Beispiel Hausübung 7	12
	2.3	Konvergenz	12
	2.4	Konsistenz	13
		2.4.1 Residuum	13
		2.4.2 Taylor	13
		$2.4.3 \text{Vorw\"{a}rt/R\"{u}ckw\"{a}rtsdifferenz} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	13
		2.4.4 Zentraldifferenz	13
		2.4.5 2.Ableitung	13
	2.5	Stabilität	13
	2.6	FDM für elliptisch PDGL (Poisson: $-\Delta u = f$)	14
		2.6.1 Irreguläre Gitter (für den Rand)	14
		2.6.2 Neumann Rand	14
	2.7	FDM für parabolische PDGL	14
		2.7.1 Explizites Verfahren (Richardson-Verfahren)	15
		2.7.2 Implizites Verfahren	15
		2.7.3 Crank Nicolson - Verfahren (gemischtes Verfahren)	16
	2.8	FDM für Hyperbolische PDGL	16
		2.8.1 Leap-Frog-Schema	16
		2.8.2 Transportgleichung	16
	2.9	FVM (Finite Volumen Methode, Verfahren von Voronoi)	17

	татал	. Л		10
3	FEI			19
	3.1		rfahren von Ritz	
	3.2		rfahren von Galerkin	
	3.3		tete Residuen	
	3.4		ollokation	
	3.5		skollokation	
	3.6		rfahren von Gauss (MSE)	
	3.7		Elemente	
			$\operatorname{Knotenvariablen}$	
			Formfunktionen	
			Elementmatrizen	
			Die Finite Elemente Handrechnung	
		3.7.5	h-Strategie	
			p-Strategie	
	3.8	Konforr	nität und Vollständigkeit	. 23
	3.9	Hermet	ische Polynome dritter Ordnung	. 23
4	Fou	rierreih		25
	4.1	Symmet	${ m trie}$. 25
	4.2	Spekter	${f n}$. 25
	_			
5			ansformation	26
	5.1	Eigensc	haften	. 26
c	T	1 T		0.7
6	_		ansformation	27 . 27
	6.1		haften	
	6.2		place zu Fourier	
	6.3		ansformation (Komplexe Integration)	
	6.4		en Rücktransformation	
	6.5	Rucktra	ansformation über Tabelle	. 28
7	Mat	the Gru	ndlagen	28
7			andlagen	28 28
7	Ma t	Partiall	oruchzerlegung	. 28
7	7.1	Partialk 7.1.1	oruchzerlegung	. 28 . 28
7		Partially 7.1.1 Trigono	oruchzerlegung Hornerschema metrie	. 28 . 28 . 29
7	7.1	Partially 7.1.1 Trigono 7.2.1	oruchzerlegung Hornerschema metrie Funktionswerte für Winkelargumente	. 28 . 28 . 29 . 29
7	7.1	Partially 7.1.1 Trigono 7.2.1 7.2.2	oruchzerlegung Hornerschema metrie Funktionswerte für Winkelargumente Quadrantenbeziehungen	. 28 . 28 . 29 . 29 . 29
7	7.1	Partially 7.1.1 Trigono 7.2.1 7.2.2 7.2.3	Oruchzerlegung Hornerschema Mornerschema Ometrie Funktionswerte für Winkelargumente Quadrantenbeziehungen Doppel- und Halbwinkel	282829292929
7	7.1	Partially 7.1.1 Trigono 7.2.1 7.2.2 7.2.3 7.2.4	oruchzerlegung Hornerschema bometrie Funktionswerte für Winkelargumente Quadrantenbeziehungen Doppel- und Halbwinkel	28 28 29 29 29 29
7	7.1	Partially 7.1.1 Trigono 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5	oruchzerlegung Hornerschema bmetrie Funktionswerte für Winkelargumente Quadrantenbeziehungen Doppel- und Halbwinkel Produkte Hyperbolic	. 28 . 28 . 29 . 29 . 29 . 29 . 29
7	7.1	Partially 7.1.1 Trigono 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6	oruchzerlegung Hornerschema bmetrie Funktionswerte für Winkelargumente Quadrantenbeziehungen Doppel- und Halbwinkel Produkte Hyperbolic Summe und Differenz	. 28 . 28 . 29 . 29 . 29 . 29 . 29 . 29
7	7.1	Partially 7.1.1 Trigono 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7	oruchzerlegung Hornerschema brometrie Funktionswerte für Winkelargumente Quadrantenbeziehungen Doppel- und Halbwinkel Produkte Hyperbolic Summe und Differenz Euler	 28 28 29
7	7.1 7.2	Partially 7.1.1 Trigono 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8	oruchzerlegung Hornerschema bmetrie Funktionswerte für Winkelargumente Quadrantenbeziehungen Doppel- und Halbwinkel Produkte Hyperbolic Summe und Differenz Euler Komplex	. 28 . 28 . 29 . 29 . 29 . 29 . 29 . 29 . 29
7	7.1 7.2 7.3	Partially 7.1.1 Trigono 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 Taylor I	oruchzerlegung Hornerschema ometrie Funktionswerte für Winkelargumente Quadrantenbeziehungen Doppel- und Halbwinkel Produkte Hyperbolic Summe und Differenz Euler Komplex	 28 28 29
7	7.1 7.2 7.3 7.4	Partially 7.1.1 Trigono 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 Taylor I Integral	oruchzerlegung Hornerschema ometrie Funktionswerte für Winkelargumente Quadrantenbeziehungen Doppel- und Halbwinkel Produkte Hyperbolic Summe und Differenz Euler Komplex Polynom	 28 28 29
7	7.1 7.2 7.3	Partially 7.1.1 Trigono 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 Taylor Integral Different	oruchzerlegung Hornerschema bmetrie Funktionswerte für Winkelargumente Quadrantenbeziehungen Doppel- und Halbwinkel Produkte Hyperbolic Summe und Differenz Euler Komplex Polynom	. 28 . 28 . 29 . 29 . 29 . 29 . 29 . 29 . 29 . 29
7	7.1 7.2 7.3 7.4	Partially 7.1.1 Trigono 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 Taylor Integral Differen 7.5.1	oruchzerlegung Hornerschema metrie Funktionswerte für Winkelargumente Quadrantenbeziehungen Doppel- und Halbwinkel Produkte Hyperbolic Summe und Differenz Euler Komplex Polynom Irechnung Lineare Differentialgleichungen 1. Ordnung	 28 29 31 31
7	7.1 7.2 7.3 7.4	Partially 7.1.1 Trigono 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 Taylor Integral Differen 7.5.1 7.5.2	oruchzerlegung Hornerschema metrie Funktionswerte für Winkelargumente Quadrantenbeziehungen Doppel- und Halbwinkel Produkte Hyperbolic Summe und Differenz Euler Komplex Polynom Irechnung Iritalgleichungen Lineare Differentialgleichunge 1. Ordnung Lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten	 28 28 29 29 29 29 29 29 29 29 29 31 31
7	7.1 7.2 7.3 7.4	Partialli 7.1.1 Trigono 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 Taylor I Integral Differen 7.5.1 7.5.2 7.5.3	$\begin{array}{c} \text{Funktionswerte Für Winkelargumente} \\ \text{Quadrantenbeziehungen} \\ \text{Doppel- und Halbwinkel} \\ \text{Produkte} \\ \text{Hyperbolic} \\ \text{Summe und Differenz} \\ \text{Euler} \\ \text{Komplex} \\ \text{Polynom} \\ \text{Irechnung} \\ \text{tialgleichungen} \\ \text{Lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten} \\ \text{Allgemeine Lösung einer homogenen DGL:} \\ \begin{array}{c} Y_H \\ $. 28 . 28 . 29 . 29 . 29 . 29 . 29 . 29 . 29 . 29
7	7.1 7.2 7.3 7.4	Partially 7.1.1 Trigono 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 Taylor Integral Differen 7.5.1 7.5.2 7.5.3 7.5.4	$\begin{array}{c} \text{Funktionswerte f"ur Winkelargumente} \\ \text{Quadrantenbeziehungen} \\ \text{Doppel- und Halbwinkel} \\ \text{Produkte} \\ \text{Hyperbolic} \\ \text{Summe und Differenz} \\ \text{Euler} \\ \text{Komplex} \\ \text{Polynom} \\ \text{Irechnung} \\ \text{Irechnung} \\ \text{Itialgleichungen} \\ \text{Lineare Differentialgleichungen 1. Ordnung} \\ \text{Lineare Differentialgleichung einer homogenen DGL:} \\ Y_H \\ \text{Allgemeine L"osung einer inhomogenen DGL:} \\ y = Y_H + y_P \\ \end{array}$	 28 28 29 29 29 29 29 29 29 29 31 31 31
7	7.1 7.2 7.3 7.4	Partially 7.1.1 Trigono 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 Taylor 1 Integral Differen 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5	$\begin{array}{c} \text{Furktions werte f"ur Winkelargumente} \\ \text{Quadrantenbeziehungen} \\ \text{Doppel- und Halbwinkel} \\ \text{Produkte} \\ \text{Hyperbolic} \\ \text{Summe und Differenz} \\ \text{Euler} \\ \text{Komplex} \\ \text{Polynom} \\ \text{Irechnung} \\ \text{ntialgleichungen} \\ \text{Lineare Differentialgleichunge 1. Ordnung} \\ \text{Lineare L"osung einer homogenen DGL: } \\ Y_H \\ \text{Allgemeine L"osung einer inhomogenen DGL: } \\ y = Y_H + y_P \\ \text{Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten} \\ L$	 28 28 29 29 29 29 29 29 29 29 31 31 31 31 31
7	7.1 7.2 7.3 7.4	Partially 7.1.1 Trigono 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 Taylor 1 Integral Differen 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6	$\begin{array}{c} \text{Furktzerlegung} \\ \text{Hornerschema} \\ \text{Sometrie} \\ \text{Funktionswerte f"of Winkelargumente} \\ \text{Quadrantenbeziehungen} \\ \text{Doppel- und Halbwinkel} \\ \text{Produkte} \\ \text{Hyperbolic} \\ \text{Summe und Differenz} \\ \text{Euler} \\ \text{Komplex} \\ \text{Polynom} \\ \text{Irechnung} \\ \text{ntialgleichungen} \\ \text{Lineare Differentialgleichungen 1. Ordnung} \\ \text{Lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten} \\ \text{Allgemeine L"osung einer inhomogenen DGL:} y_H \\ \text{Allgemeine L"osung einer inhomogenen DGL:} y = Y_H + y_P \\ \text{Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten} \\ \text{Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten} \\ \text{Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten} \\ \text{Lineare Differentialgleichungssysteme erster Ordnung mit konstanten Koeffizienten} \\ \text{Lineare Differentialgleichungssysteme} \\ L$	 28 28 29 29 29 29 29 29 29 29 31 31 31 31 32 32
7	7.1 7.2 7.3 7.4	Partially 7.1.1 Trigono 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 Taylor Integral Differen 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 7.5.7	$\begin{array}{c} \text{Poruchzer legung} \\ \text{Horners chema} \\ \text{Sometrie} \\ \text{Funktions werte f\"{u}r Winkelargumente} \\ \text{Quadranten beziehungen} \\ \text{Doppel- und Halbwinkel} \\ \text{Produkte} \\ \text{Hyperbolic} \\ \text{Summe und Differenz} \\ \text{Euler} \\ \text{Komplex} \\ \text{Polynom} \\ \text{Irechnung} \\ \text{trialgleichungen} \\ \text{Lineare Differentialgleichungen 1. Ordnung} \\ \text{Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten} \\ \text{Allgemeine L"osung einer inhomogenen DGL: } y = Y_H + y_P \\ \text{Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten} \\ \text{Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten} \\ \text{Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten} \\ \text{Lineare Differentialgleichung ssysteme erster Ordnung mit konstanten Koeffizienten} \\ \text{DGL mit Laplacetransformation L"osen} \\ \end{array}$	 28 28 29 29 29 29 29 29 29 29 31 31 31 31 32 32 32
7	7.1 7.2 7.3 7.4 7.5	Partially 7.1.1 Trigono 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 Taylor Integral Differen 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 7.5.7 7.5.8	$\begin{array}{c} \text{Poruchzerlegung} \\ \text{Hornerschema} \\ \text{Sometrie} \\ \text{Funktionswerte für Winkelargumente} \\ \text{Quadrantenbeziehungen} \\ \text{Doppel- und Halbwinkel} \\ \text{Produkte} \\ \text{Hyperbolic} \\ \text{Summe und Differenz} \\ \text{Euler} \\ \text{Komplex} \\ \text{Polynom} \\ \text{Irechnung} \\ \text{Italialgleichungen} \\ \text{Lineare Differentialgleichungen 1. Ordnung} \\ \text{Lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten} \\ \text{Allgemeine L"osung einer inhomogenen DGL:} \\ \text{Y}_H \\ \text{Allgemeine L"osung einer inhomogenen DGL:} \\ \text{Uineare Differentialgleichung 3. Ordnung mit konstanten Koeffizienten} \\ \text{Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten} \\ \text{Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten} \\ \text{Lineare Differentialgleichungssysteme erster Ordnung mit konstanten Koeffizienten} \\ \text{DGL mit Laplacetransformation L"osen} \\ \text{G"angige DGLs} \\ \end{array}$	 28 28 29 29 29 29 29 29 29 29 29 31 31 31 32 32 32 32 32
7	7.1 7.2 7.3 7.4 7.5	Partially 7.1.1 Trigono 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 Taylor Integral Differen 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 7.5.7 7.5.8 Differen	oruchzerlegung Hornerschema ometrie Funktionswerte für Winkelargumente Quadrantenbeziehungen Doppel- und Halbwinkel Produkte Hyperbolic Summe und Differenz Euler Komplex Polynom Irechnung titalgleichungen Lineare Differentialgleichungen 1. Ordnung Lineare Differentialgleichungen DGL: Y_H Allgemeine Lösung einer inhomogenen DGL: $y = Y_H + y_P$ Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten Lineare Differentialgleichungen Todnung mit konstanten Koeffizienten Allgemeine Lösung einer inhomogenen DGL: $y = Y_H + y_P$ Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten	 28 28 29 29 29 29 29 29 29 29 31 31 31 31 32 32 32 32 33
7	7.1 7.2 7.3 7.4 7.5	Partially 7.1.1 Trigono 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 Taylor 1 Integral Differen 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 7.5.7 7.5.8 Differen Diverse	$\begin{array}{c} \text{Purchzerlegung} \\ \text{Hornerschema} \\ \text{ometrie} \\ \text{Funktionswerte für Winkelargumente} \\ \text{Quadrantenbeziehungen} \\ \text{Doppel- und Halbwinkel} \\ \text{Produkte} \\ \text{Hyperbolic} \\ \text{Summe und Differenz} \\ \text{Euler} \\ \text{Komplex} \\ \text{Polynom} \\ \text{Irechnung} \\ \text{Itialgleichungen} \\ \text{Lineare Differentialgleichungen 1. Ordnung} \\ \text{Lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten} \\ \text{Allgemeine L"osung einer homogenen DGL: } \\ y = y_H + y_P \\ \text{Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten} \\ \text{Allgemeine L"osung einer inhomogenen DGL: } \\ y = Y_H + y_P \\ \text{Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten} \\ \text{DGL mit Laplacetransformation L"osen} \\ \text{G"angige DGLs} \\ \text{Itial-Rechnung} \\ \text{s.} \\ \end{array}$	 28 28 29 29 29 29 29 29 29 29 31 31 31 31 32 32 32 33 33
7	7.1 7.2 7.3 7.4 7.5	Partially 7.1.1 Trigono 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 Taylor Integral Differen 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 7.5.7 7.5.8 Differen Diverse 7.7.1	$\begin{array}{c} \text{Purchzerlegung} \\ \text{Hornerschema} \\ \text{ometrie} \\ \text{Funktionswerte für Winkelargumente} \\ \text{Quadrantenbeziehungen} \\ \text{Doppel- und Halbwinkel} \\ \text{Produkte} \\ \text{Hyperbolic} \\ \text{Summe und Differenz} \\ \text{Euler} \\ \text{Komplex} \\ \text{Polynom} \\ \text{Irechnung} \\ \text{trialgleichungen} \\ \text{Lineare Differentialgleichungen 1. Ordnung} \\ \text{Lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten} \\ \text{Allgemeine L"osung einer homogenen DGL:} \\ Y_H \\ \text{Allgemeine L"osung einer inhomogenen DGL:} \\ y = Y_H + y_P \\ \text{Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten} \\ \text{Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten} \\ \text{Lineare Differentialgleichung systeme erster Ordnung mit konstanten Koeffizienten} \\ \text{Lineare Differentialgleichungssysteme erster Ordnung mit konstanten Koeffizienten} \\ \text{DGL mit Laplacetransformation L"osen} \\ \text{G"angige DGLs.} \\ \text{tial-Rechnung} \\ \text{s} \\ \text{Quadratische L"osungsformel} \\ \end{array}$	 28 28 29 29 29 29 29 29 29 29 31 32 32 32 32 32 32 32 33 33 33 33 33 33 33 34 36 36 37 36 37 37 38 39 30 <
7	7.1 7.2 7.3 7.4 7.5	Partially 7.1.1 Trigono 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 Taylor Integral Differen 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 7.5.7 7.5.8 Differen Diverse 7.7.1 7.7.2	$\begin{array}{c} \text{Furkhzerlegung} \\ \text{Hornerschema} \\ \text{ometrie} \\ \text{Furktionswerte für Winkelargumente} \\ \text{Quadrantenbeziehungen} \\ \text{Doppel- und Halbwinkel} \\ \text{Produkte} \\ \text{Hyperbolic} \\ \text{Summe und Differenz} \\ \text{Euler} \\ \text{Komplex} \\ \text{Polynom} \\ \text{Irechnung} \\ \text{trialgleichungen} \\ \text{Lineare Differentialgleichungen 1. Ordnung} \\ \text{Lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten} \\ \text{Allgemeine L"osung einer homogenen DGL:} \\ Y_H \\ \text{Allgemeine L"osung einer inhomogenen DGL:} \\ y = Y_H + y_P \\ \text{Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten} \\ \text{Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten} \\ \text{Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten} \\ \text{Lineare Differentialgleichung ssysteme erster Ordnung mit konstanten Koeffizienten} \\ \text{DGL mit Laplacetransformation L"osen} \\ \text{G"angige DGLs} \\ \text{trial-Rechnung} \\ \text{s} \\ \text{Quadratische L"osungsformel} \\ \text{Determinanten} \\ \end{array}$	 28 28 29 29 29 29 29 29 29 29 31 31 31 31 32 32 32 33 33 33 33
7	7.1 7.2 7.3 7.4 7.5	Partially 7.1.1 Trigono 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 Taylor Integral Differen 7.5.1 7.5.2 7.5.3 7.5.4 7.5.5 7.5.6 7.5.7 7.5.8 Differen Diverse 7.7.1 7.7.2 7.7.3	$\begin{array}{c} \text{Purchzerlegung} \\ \text{Hornerschema} \\ \text{ometrie} \\ \text{Funktionswerte für Winkelargumente} \\ \text{Quadrantenbeziehungen} \\ \text{Doppel- und Halbwinkel} \\ \text{Produkte} \\ \text{Hyperbolic} \\ \text{Summe und Differenz} \\ \text{Euler} \\ \text{Komplex} \\ \text{Polynom} \\ \text{Irechnung} \\ \text{trialgleichungen} \\ \text{Lineare Differentialgleichungen 1. Ordnung} \\ \text{Lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten} \\ \text{Allgemeine L"osung einer homogenen DGL:} \\ Y_H \\ \text{Allgemeine L"osung einer inhomogenen DGL:} \\ y = Y_H + y_P \\ \text{Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten} \\ \text{Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten} \\ \text{Lineare Differentialgleichung systeme erster Ordnung mit konstanten Koeffizienten} \\ \text{Lineare Differentialgleichungssysteme erster Ordnung mit konstanten Koeffizienten} \\ \text{DGL mit Laplacetransformation L"osen} \\ \text{G"angige DGLs.} \\ \text{tial-Rechnung} \\ \text{s} \\ \text{Quadratische L"osungsformel} \\ \end{array}$	 28 28 29 29 29 29 29 29 29 29 31 31 31 31 32 32 32 33 33 33 33 33

1 ${f Theory}$

1.1 Begriffe und Klassifikation

1.1.1 Ordnung

Wie bei gewöhnlichen Differentialgleichungen ist die Ordnung die höchste Ableitung der unbekannten Funktion, die in der Differentialgleichung vorkommt.

PDGL 1. Ordnung:
$$F\left(x_1,\ldots,x_n,u,\frac{\partial u}{\partial x_1},\ldots,\frac{\partial u}{\partial x_n}\right)$$

Sie kann durch Substitution $\underbrace{\frac{\partial u}{\partial x_i}} \to p_i$ durch $F(x_1, \dots, x_n, u, p_1, \dots, p_n)$, ausgedrückt werden.

PDGL 2. Ordnung:
$$F\left(x_1,\ldots,x_n,u,\frac{\partial u}{\partial x_1},\ldots,\frac{\partial u}{\partial x_n},\frac{\partial^2 u}{\partial x_1^2},\ldots,\frac{\partial^2 u}{\partial x_n^2}\right)$$

Sie kann durch Substitution $\frac{\partial u}{\partial x_i} \to p_i$, $\frac{\partial^2 u}{\partial x_i \partial x_j} \to t_{ij}$ durch $F(x_1, \dots, x_n, u, p_1, \dots, p_n, t_{11}, t_{12}, \dots, t_{n,n-1}, t_{nn})$ ausgedrückt

Beispiel Übung

$$\begin{array}{lll} \frac{\partial^2 u}{\partial x_1 \partial x_2} = 0 & \Rightarrow & F(t_{12}) = t_{12} = 0 \\ \frac{\partial u}{\partial x_1} = \frac{\partial u}{\partial x_2} & \Rightarrow & F(p_1, p_2) = p_1 - p_2 = 0 \\ x_1 \frac{\partial u}{\partial x_1} + x_2 \frac{\partial u}{\partial x_2} = \frac{\partial u}{\partial x_3} & \Rightarrow & F(x_1, x_2, p_1, p_2, p_3) = x_1 p_1 + x_2 p_2 - p_3 & \Leftrightarrow & F\left(x_1, x_2, \frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \frac{\partial u}{\partial x_3}\right) = x_1 \frac{\partial u}{\partial x_1} + x_2 \frac{\partial u}{\partial x_2} - \frac{\partial u}{\partial x_3} = 0 \end{array}$$

1.1.2 Laplace-Operator

1.1.3 Umwandlung in System niedriger Ordnung

$$\begin{split} F\bigg(x,y,u,\frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial^2 u}{\partial x^2},\frac{\partial^2 u}{\partial x \partial y},\frac{\partial^2 u}{\partial y^2}\bigg) &= 0.\\ p &= \frac{\partial u}{\partial x}, \qquad q &= \frac{\partial u}{\partial u} \end{split}$$
Gegeben:

Substitution:

 $\frac{\partial^2 u}{\partial x^2} = \frac{\partial p}{\partial x}, \quad \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial p}{\partial y} = \frac{\partial q}{\partial x}, \quad \frac{\partial^2 u}{\partial y^2} = \frac{\partial q}{\partial y}$ Für zweite Ableitungen:

Gleichungssystem 1. Ordnung $p = \frac{\partial u}{\partial x}$, $q = \frac{\partial u}{\partial n}$, $\frac{\partial p}{\partial n} = \frac{\partial q}{\partial x}$

Notationen einer PDGL, Gebiet Ω 1.1.4

Innere Punkte

 $\partial\Omega$ Rand

Gebiet Ω und Rand $\partial\Omega$

Das Gebiet einer PDGL muss offen sein, nur dann ist die partielle Ableitung überall definiert. Das Gebiet ist offen, wenn um jeden Punkt im Gebiet Ω ein kleiner Ball gezeichnet werden kann, welches sich auch im Gebiet Ω befindet.

Kein Gebiet: Gebiet:

Lösung einer PDGL:

Gebiet Ω , PDGL,Randwerte $\partial\Omega$ Gegeben:

Funktion $u: \overline{\Omega} \to \mathbb{R}$, PDGL in Ω und Randwerte auf $\partial \Omega$ 'gut gestellt' wen die Angaben die Lösung eindeutig bestimmen

Klassifikation einer PDGL 1.1.5

Ordnung: Höchste vorkommende partielle Ableitung

Linear in $u, x_1, ..., x_n, \frac{\partial u}{\partial x_1}, ..., \frac{\partial u}{\partial x_n}$ Linear in $\frac{\partial u}{\partial x_1}, ..., \frac{\partial u}{\partial x_n}$ Alles andere Typ:

Quasilinear:

1.2Methode Charakteristiken

Wichtig: Als Anfangsbedingungen dürfen keine Charakteristiken verwendet werden, sonst ist die Charakteristik die Lösung (anstatt Fläche ergibt sich eine Kurve).

Wichtig: Die Charakteristik darf den Rand nur einmal durchlaufen.

Nützlich für Quasilineare PDGL 1. Ordnung. Wenn Separation möglich ist, sollte diese (einfachere) Methode verwendet werden.

Ausgangslage:

$$a(x, y, u) \cdot \frac{\partial u}{\partial x} + b(x, y, u) \cdot \frac{\partial u}{\partial y} - c(x, y, u) = 0$$

Charakteristik:

$$\frac{d}{dt} \begin{bmatrix} x(t) \\ y(t) \\ u(t) \end{bmatrix} = \begin{bmatrix} a(x, y, u) \\ b(x, y, u) \\ c(x, y, u) \end{bmatrix}$$

Gebiet: $\Omega\{\dots | x > 0, \text{alle } y\}$ Randbedingung: $u(0, y_0) = g(y_0)$

 $\begin{bmatrix} a(x,y,u) \\ b(x,y,u) \\ c(x,y,u) \end{bmatrix} \xrightarrow{\left[\frac{\partial u}{\partial x} \quad \frac{\partial u}{\partial y} \quad -1\right]} = 0$ Vektorielle Schreibweise:

 $\overrightarrow{t}_x = \begin{bmatrix} 1 \\ 0 \\ \frac{\partial u}{2} \end{bmatrix} \qquad \overrightarrow{t}_y = \begin{bmatrix} 0 \\ 1 \\ \frac{\partial u}{2} \end{bmatrix} \qquad \overrightarrow{n} \bullet \overrightarrow{t}_x = 0 \qquad \overrightarrow{n} \bullet \overrightarrow{t}_y = 0 \qquad \overrightarrow{t}_x \bullet \overrightarrow{t}_y = \overrightarrow{n}$ Tangenten:

Für jeden Anfangspunkt $\begin{bmatrix} 0 \\ y_0 \\ g(y_0) \end{bmatrix}$ finde eine Charakteristik, diese nach x, y auflösen. Lösungsweg:

Randbedingungen Eine Lösungsfunktion u(x,y) muss von Charakteristiken überdeckt werden. Die Lösung wird nun durch die Randwerte bestimmt.

Für das dargestellte Gebiet Ω sind verschiedene Fälle möglich:

- 1. Randwerte am linken und rechten Rand sind vorgegeben. Ein Gebiet in der Mitte ist nicht bestimmt.
- 2. Randwerte am oberen und unteren Rand sind vorgegeben. Ein Teil des Gebiets ist überbestimmt.
- 3. Randwerte am linken und unteren Rand sind vorgegeben. Funktion ist eindeutig bestimmt (aber nicht unbedingt überall differenzierbar).

Die Lösung ist also nicht für alle Randwerte bestimmbar. Wenn sich zwei Charakteristiken treffen \rightarrow Singularität

Beispiel:

1. PDGL mit Randbedingungen und Definitionsbereich: $\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 3$, $u(0,y) = g(y) = \sin(y) \Rightarrow u(0,y_0) = g(y_0) = \sin(y_0)$

Terme in Matrixschreibweise:
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

- 2. Charakteristiken ausrechnen PDGL \rightarrow DGL: $\frac{d}{dt} \begin{bmatrix} x(t) \\ y(t) \\ u(t) \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$
- 3. DGL's lösen (für Standard-DGL's, siehe 7.5.8 auf Seite 32.): $\begin{bmatrix} x \\ y \\ u \end{bmatrix} = \begin{bmatrix} 1t + x_0 \\ 2t + y_0 \\ 3t + u_0 \end{bmatrix}$
- 4. Anfangsbedingungen einsetzen: $\begin{bmatrix} x \\ y \\ u \end{bmatrix} = \begin{bmatrix} 1t + x_0 \\ 2t + y_0 \\ 3t + u_0 \end{bmatrix} \Big|_{t=0} = \begin{bmatrix} x_0 \\ y_0 \\ u_0 \end{bmatrix} = \begin{bmatrix} 0 \\ y_0 \\ \sin(y_0) \end{bmatrix}$ Lösung der DGL ist: $\begin{bmatrix} x \\ y \\ u \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot t + \begin{bmatrix} 0 \\ y_0 \\ \sin(y_0) \end{bmatrix}$
- 5. Eliminieren aller Variablen ausser u, x, y: $u = 3x + \sin(y 2x)$
- 6. Kontrolle: Resultat $(u = 3x + \sin(y 2x))$ ableiten und in Aufgabenstellung einsetzen $\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 3$ und schauen ob es erfüllt.

1.3 Methode Separation

Wahl eines geeigneten Koordinatensystems ist wichtig.

- 1. **Ansatz** (Höchste Ableitung ausschlaggebend):
 - Für PDGL 1.Ordnung: U(x,y) = X(x) + Y(y)
 - Für PDGL 2. Ordnung: $U(x,y) = X(x) \cdot Y(y)$
- 2. Einsetzen: Ansatz in PDGL einsetzen.
- 3. **Separation:** Auf jeder Seite der PDGL darf nur noch eine Variable vorkommen. Die beiden jetzt gewöhnlichen DGL sind über eine Konstante gekoppelt (fixieren der Variable). Wahl der Konstante: Wenn Schwingung erwartet wird: $-k^2$, sonst k, ausser man weiss es besser ;-).
- 4. Lösen der DGL's: Man erhält eine Familie von Lösungen
- 5. Gesamtlösung "'Zusammenbasteln": (Linearkombination der Lösungen), Randbedingungen einhalten!

Beispiel 1: PDGL: $\frac{1}{x} \frac{\partial u}{\partial x} + \frac{1}{y} \frac{\partial u}{\partial y} = \frac{1}{y^2}$

1. Ansatz:

$$u(x,y) = X(x) + Y(y)$$
 (1. Ordnung)

2. Einsetzen:

$$\frac{\partial u}{\partial x} = X'(x)$$
 $\frac{\partial u}{\partial y} = Y'(y)$ \Rightarrow $\frac{X'(x)}{x} + \frac{Y'(y)}{y} = \frac{1}{y^2}$

3. Separation:

$$\frac{X'(x)}{x} = k = \frac{1}{y^2} - \frac{Y'(y)}{y}$$

4. DGL'2 lösen:

$$X'(x) = k \cdot x \Rightarrow X(x) = \frac{1}{2}kx^2 + C_x$$

$$Y'(y) = \frac{1}{y} - ky \Rightarrow Y(y) = \ln(y) - \frac{1}{2}ky^2 + C_y$$

5. Linearkombination:

$$u(x,y) = \frac{1}{2}kx^2 - \frac{1}{2}ky^2 + \ln(y) + C$$

Beispiel 2: PDGL: $x^2 \frac{\partial^2 u}{\partial x^2} + x \frac{\partial u}{\partial x} + y^2 \frac{\partial^2 u}{\partial y^2} + y \frac{\partial u}{\partial y} = 0$ Randbedingungen: $\Omega = [1, 2] \times [1, 2]$ u = 0 auf $\partial\Omega$

1. Ansatz:

$$u(x,y) = X(x) \cdot Y(y)$$
 (2.Ordnung)

2. Einsetzen:

3. Separation: Division durch X(x)Y(y)

$$\begin{array}{l} \frac{x^2X''(x)}{X(x)} + \frac{xX'(x)}{X(x)} + \frac{y^2Y''(y)}{Y(y)} + \frac{yY'(y)}{Y(y)} = 0 \quad \Rightarrow \quad \frac{x^2X''(x)}{X(x)} + \\ \frac{xX'(x)}{X(x)} = k = -\frac{y^2Y''(y)}{Y(y)} - \frac{yY'(y)}{Y(y)} \end{array}$$

4. DGL'2 lösen:

$$\begin{array}{lll} \frac{x^2X''(x)}{X(x)} + \frac{xX'(x)}{X(x)} = k & \Rightarrow & x^2X''(x) + xX'(x) - \\ kX(x) = 0 & \text{mit } X(1) = X(2) = 0 \\ \frac{y^2Y''(y)}{Y(y)} - \frac{yY'(y)}{Y(y)} = -k & \Rightarrow & y^2Y''(y) + yY'(y) + \\ kY(y) = 0 & \text{mit } Y(1) = Y(2) = 0 \end{array}$$

Lösung der DGL hier nicht gemacht.

Beispiel 3: PDGL:
$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$$
 $u(t=0,x)=0$ Randbedingungen: $x=[0,\pi]$ $\frac{\partial u}{\partial t}(t=0,x)=\sin^3(x)=\frac{3}{4}\sin(x)-\frac{1}{4}\sin(3x)$

1. Ansatz:

$$u(t,x) = T(t) \cdot X(x)$$
 (2.Ordnung)

2. Einsetzen:

$$T''(t) \cdot X(x) = X''(x) \cdot T(t)$$

3. Separation:

$$\frac{X''(x)}{X(x)} = -\mu^2 = \frac{T''(t)}{T(t)}$$

4. DGL'2 lösen:

$$X(x) = \sin(\mu x)$$
 $T(t) = \sin(\mu t)$
 $X(x) = \cos(\mu x)$ $T(t) = \cos(\mu t)$

5. Linearkombination:

Die Randbedingungen x = 0 und $x = \pi$ können nur mit $\sin(\mu x)$ und positivem, ganzzahligen μ erfüllt werden. $\cos(nx)$ -Therme fallen weg.

$$u(t,x) = \sum_{n=1}^{\infty} a_n \sin(nx) \sin(nt) + \sum_{n=1}^{\infty} b_n \sin(nx) \cos(nt)$$

Die Koeffizienten a_n und b_n müssen mit Hilfe der Anfangsbedingungen zur Zeit t=0 bestimmt werden:

$$u(0,x) = \sum_{n=1}^{\infty} b_n \sin(nx) = 0 \quad \Rightarrow \quad b_n = 0$$

$$\frac{\partial u}{\partial t}(\pi,x) = \sum_{n=1}^{\infty} a_n n \sin(nx) = \sin^3(x) = \frac{3}{4} \sin(x) - \frac{1}{4} \sin(3x) \quad \Rightarrow \quad a_1 = \frac{3}{4} \quad a_3 = -\frac{1}{12} \quad a_k = 0 \text{ für } k \neq 1,3$$

$$u(t,x) = \frac{3}{4}\sin(x)\sin(t) - \frac{1}{12}\sin(3x)\sin(3t)$$

1.4 Hamilton-Jacobi Theorie

Die Hamilton-Jacobi Theorie geht von einer Gesamtenergie $H(x_i, p_i)$ in Abhängigkeit von Ort und Impuls aus. Dazu muss eine Funktion $S(x_i, t)$ gefunden werden, für welche

$$\frac{\partial S}{\partial t} = H\left(x_{i}, p_{i}\right) = H\left(x_{i}, \frac{\partial S}{\partial x_{i}}\right) \qquad \text{mit} \quad p_{i} = \frac{\partial S}{\partial x_{i}}$$

Diese kann meist durch Integration gelöst werden. Dabei werden die Integrationskonstanten P_i eingeführt. Die Bahnparameter Q_i sind

$$Q_i = \frac{\partial S}{\partial P_i}$$

und die Bahnkurve hat die Form

$$x_i(t, Q_i, P_i)$$

1.5 Transformationen

- Der Übergang von Funktionen zu Fourierreihen verwandelt eine partielle Differentialgleichung in eine Familie gewöhnlicher Differentialgleichungen für die einzelnen Fourier-Koeffizienten.
- Integraltransformationen können ein partielle Differentialgleichung in eine Familie partieller Differentialgleichungen mit weniger Variablen oder sogar gewöhnlicher Differentialgleichungen verwandeln.
- Integraltransformationen und die Rücktransformationen können Formeln für die Lösungen gewisser partieller Differentialgleichungen liefern, und damit die Frage beantworten, für welche Randwertvorgaben die Gleichungen gut gestellt sind.

${ m Definitionsgebiet}$	Transformation
$[0,\infty)$	Laplacetransformation
\mathbb{R}	Four iert rans formation
$[-\pi,\pi]$	Fourierreihe

1.5.1 Fourierreihe

$$u(t,x) = \frac{a_0(t)}{2} + \sum_{k=1}^{\infty} a_k(t)\cos(kx) + b_k(t)\sin(kx)$$

1.5.2 Beispiel: Schwingende Saite

$$\partial_t^2 u = \partial_x^2 u$$

1. Ansatz der Fourieranalyse in PDGL einsetzen:

$$\partial_t^2(t,x) = \frac{a_0''(t)}{2} + \sum_{k=1}^{\infty} a_k''(t)\cos(kx) + b_k''(t)\sin(kx) \qquad \partial_x^2(t,x) = -\sum_{k=1}^{\infty} a_k(t)k^2\cos(kx) + b_k(t)k^2\sin(kx)$$

$$\partial_t^2(t,x) = \partial_x^2(t,x) \iff \frac{a_0''(t)}{2} + \sum_{k=1}^{\infty} a_k''(t)\cos(kx) + b_k''(t)\sin(kx) = -\sum_{k=1}^{\infty} a_k(t)k^2\cos(kx) + b_k(t)k^2\sin(kx)$$

$$\Rightarrow \frac{a_0''(t)}{2} + \sum_{k=1}^{\infty} \left(a_k''(t) + a_k(t)k^2\right)\cos(kx) + \left(b_k''(t) + b_k(t)k^2\right)\sin(kx) = 0$$

2. Diese Gleichung ist nur lösbar wenn alle Koeffizienten verschwinden (Fourier-Theorie):

$$a_0''(t) = 0$$
 $a_k''(t) = -k^2 a_k(t)$ $b_k''(t) = -k^2 b_k(t)$

3. Durch die Fouriertransformation wurde die PDGL in ein DGL-System überführt, die Lösungen sind wohlbekannt:

$$a_0(t) = m_0(t) + c_0$$
 $a_k(t) = A_k^a \cos(kt) + B_k^a \sin(kt)$ $b_k(t) = A_k^b \cos(kt) + B_k^b \sin(kt)$

Anfangsbedingungen: Die Differentialgleichungen für die Koeffizienten $a_k(t)$ und $b_k(t)$ können erst dann vollständig gelöst werden, wenn Anfangs oder Randbedingungen gegeben sind.

- Anfangsbedingungen für Wellengleichung: $u(0,x)=f(x) \qquad \frac{\partial u}{\partial t}=g(x)$
- Die Funktionen f und g können auch als Fourrierreihe dargestellt werden:

$$f(x) = \frac{a_0^f}{2} + \sum_{k=1}^{\infty} a_k^f \cos(kx) + b_k^f \sin(kx)$$

$$g(x) = \frac{a_0^g}{2} + \sum_{k=1}^{\infty} a_k^g \cos(kx) + b_k^g \sin(kx)$$

• Zusammen mit dem Ansatz für u(t,x) ergeben sich die Gleichungen (für t=0):

$$\frac{a_0(0)}{2} + \sum_{k=1}^{\infty} a_k(0)\cos(kx) + b_k(0)\sin(kx) = \frac{a_0^f}{2} + \sum_{k=1}^{\infty} a_k^f\cos(kx) + b_k^f\sin(kx)$$

$$\frac{a_0'(0)}{2} + \sum\limits_{k=1}^{\infty} a_k'(0) \cos(kx) + b_k'(0) \sin(kx) = \frac{a_0^g}{2} + \sum\limits_{k=1}^{\infty} a_k^g \cos(kx) + b_k^g \sin(kx)$$

• Koeffizientenvergleich ergibt:
$$a_k(0) = a_k^f \qquad a_k'(0) = a_k^g \qquad b_k(0) = b_k^f \qquad b_k'(0) = b_k^g$$

• Die vollständige Lösung ist damit:

$$u(t,x) = \frac{a_0^g(t) + a_0^f}{2} + \sum_{k=1}^{\infty} \left(a_k^f \cos(kt) + \frac{1}{k} a_k^g \sin(kt) \right) \cos(kx) + \left(b_k^f \cos(kt) + \frac{1}{k} b_k^g \sin(kt) \right) \sin(kx)$$

1.5.3 Inhomogene Wellengleichung

Das Verfahren lässt sich auch auf die inhomogene Wellengleichung verallgemeinern. Das Störglied wird dabei ebenfalls als Fourierreihe entwickelt.

$$\partial_t^2 u - \partial_x^2 u = f \qquad \Rightarrow \qquad f(t,x) = \frac{a_0^f(t)}{2} + \sum_{k=1}^\infty a_k^f(t) \cos(kx) + b_k^f \sin(kx)$$

1.5.4 Laplace-Transformation

$$F(t) = \int_{0}^{\infty} f(t)e^{-st}dt$$
 Siehe auch weiter hinten in der Zusammenfassung! (in Kapitel 6.1 und Seite 27)

Lösung einer ODGL:

$$\dot{x}(t) + px(t) = f(t) \qquad f(t) = q$$

$$\dot{x}(t) + px(t) = f(t) \circ - \bullet sX(s) - x(0) + pX(s) = F(s) \qquad f(t) \circ - \bullet F(s) = \frac{q}{s}$$

$$\Rightarrow X(s) = \frac{F(s) + x(0)}{s + p} = \frac{q + x(0)}{s(s + p)} \Big|_{x(0) = 0} \bullet - \circ x(t) = \frac{q}{p} (1 - e^{-pt})$$

Lösung einer PDGL:

$$\frac{\partial u}{\partial t} + x \frac{\partial u}{\partial x} = x$$
 $t \ge 0$, $x \ge 0$ $u(x,0) = 0$, $u(0,t) = 0$ $x, t > 0$

$$\frac{\partial u}{\partial t} + x \frac{\partial u}{\partial x} = x \qquad t \ge 0, \quad x \ge 0 \qquad u(x,0) = 0, \quad u(0,t) = 0 \qquad x, t > 0$$

$$\text{Transformation: } \frac{\partial u}{\partial t} + x \frac{\partial u}{\partial x} = x \circ - \bullet \ sU(s,x) - u(x,0) + x \frac{\partial U(s,x)}{\partial x} = \frac{x}{s} \qquad \Rightarrow \qquad U(s,x) = \frac{x}{s(s+1)}$$

$$U(s,x) \bullet \multimap x(1-e^{-t})$$

Beispiel: Wärmeleitung

Stab zur Zeit t=0: Temperaturen -1 bei $x=-\frac{\pi}{2}$ und 1 bei $x=\frac{\pi}{2}$ -> station"arer Zustand. Zur Zeit t=0 werden die Reservoirs entfernt und der Stab wird sich selbst "uberlassen. Insbesondere kann durch die Enden keine W"arme mehr abgeleitet werden.

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \qquad \text{oder allgemein:} \qquad \frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$$

"Dreiecksfunktion"

$$d(x) = \begin{cases} -2 - \frac{2x}{\pi} & -\frac{\pi}{2} \le x \\ \frac{2x}{\pi} & -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ 2 - \frac{2x}{\pi} & x \le \frac{\pi}{2} \end{cases} = \sum_{n=0}^{\infty} \frac{8(-1)^n}{\pi^2 (2n+1)^2} \sin((2n+1)x)$$

 $\hat{u}(t,k)$ Fourier-Sinus-Koeffizienten / $\mathcal{L}u$ Laplace-Transformation.

Anfangsbedingungen ungerade -> L"osung der Differntialgleichung f"ur alle Zeiten ungerade.

Randbedingungen: $\partial_x u(t, -\frac{\pi}{2}) = \partial_x u(t, \frac{\pi}{2}) = 0$ -> Spiegelung an $-\frac{\pi}{2}$ bzw. $\frac{\pi}{2}$ -> 2π -periodische Funktion auf $\mathbb R$ fortsetzen

$$\partial_t \hat{u}(t,k) = -k^2 \hat{u}(t,k)$$

Diese Gleichung kann man jetzt nach Laplace transformieren:

$$s\mathcal{L}\hat{u}(s,k) - \hat{u}(0,k) = -k^2\mathcal{L}\hat{u}(s,k)$$
$$(s+k^2)\mathcal{L}\hat{u}(s,k) = \hat{u}(0,k)$$
$$\mathcal{L}\hat{u}(s,k) = \frac{\hat{u}(0,k)}{s+k^2}$$

R"ucktransformation ergibt:

$$\hat{u}(t,k) = \hat{u}(0,k)e^{-k^2t}$$

Jetzt sind nur noch die Fourierkoeffizienten zu bestimmen, die kann man der Dreiecksfunktion entnehmen:

$$\hat{u}(0,2n+1) = \frac{8(-1)^n}{\pi^2(2n+1)^2}$$

und damit die endg"ultige L"osung durch Summieren der Fourierreihen bekommen:

$$u(t,x) = \sum_{n=0}^{\infty} \frac{8(-1)^n}{\pi^2 (2n+1)^2} e^{-(2n+1)^2 t} \sin((2n+1)x)$$

1.6 PDGL 2.Ordnung

Lineare partielle Differentialgleichungen zweiter Ordnung haben die Form:
$$\sum_{i,j=1}^n a_{ij} \partial_i \partial_j u + \sum_{i=1}^n b_i \partial_i u + cu = f$$

1.6.1Klassifikation

Klassifikation nur für PDEs zweiter Ordnung!

- 1. Symmetrische Matrix aufstellen und λ in der Diago- ichen der Eigenwerte herausgefunden werden: nalen abziehen. Z.B.: $A = \begin{pmatrix} \partial_x^2 & \partial_x \partial_y \\ \partial_y \partial_x & \partial_y^2 \end{pmatrix}$ 1. Siehe links (Eigenwertberechnung): M Bei diagonalen Matrizen entsprechen die Eigenwerte stellen den Diagonaleinträgen.
- 2. Determinante gleich 0 setzen: $det(\mathbf{A} \lambda \mathbf{I}) = 0 \implies$
- 3. Gleichung lösen

Eigenwertberechnung: (z.B. von $\partial_x^2 u + 2\partial_x \widetilde{\partial_y} u + \partial_y^2 u = 0$) Alternativ (wenn z.B. sehr wüste PDE klassifiziert werden muss), können auch via Spur und Determinante die Vorze-

- 1. Siehe links (Eigenwertberechnung): Matrix A auf-
- 2. Determinante berechnen und versuchen aus Tabelle zu lesen: $\det A = a_{11}a_{22} - a_{12}a_{21} = \lambda_1\lambda_2$
- 3. Spur berechnen und versuchen aus Tabelle zu lesen: $tr(A) = a_{11} + a_{22} = \lambda_1 + \lambda_2$

Klasse	D		Eigenwerte	det(A)	Beispiel
	Positiv	Negativ	Verschwindend(=0)	für n=2	1
hyperbolisch	n-1	1	0	$\det < 0$	Wellengleichung: $\frac{\partial^2 u}{\partial t^2} = \Delta u$
parabolisch	n-1	0	1	det = 0	Wärmeleitung: $\frac{\partial u}{\partial t} = \Delta u$
elliptisch	n	0	0	$\det > 0$	Potential: $\Delta u = f$
ultrahyperbolisch	>1	>1	0	-	-

Elliptische PDGL 1.7

$$\Delta u = f \qquad \omega = \{(x, y) | y \ge 0\}, \quad u(x, y) = ay$$

Satz: Wenn Ω beschränkt und zusammenhängend, dann ist die Lösung u immer eindeutig.

Beweis: Annahme: $u = u_1 - u_2$

Einsetzen: $\Delta u_1 - \Delta u_2 = f - f = 0$

 $(u_1 - u_2)|_{\partial \omega} = g - g = 0$

 $u|_{\partial\Omega} = 0$ $\Delta u = 0$

Falls u=0 eine Lösung, dann gibt es nur eine Lösung.

Maximumprinzip

Wenn gilt $\Delta u = 0$, so ist u harmonisch, und dann befinden sich die Extrema (Maxima und Minima der Funktion) auf dem Rand $\partial\Omega$.

Beispiel (Übungslösungen) 1.7.2

Eine elliptische PDGL wie $\Delta u = c$ hat mit der vorgegebenen Dirichlet-Randwerten nur eine Lösung. Zur Erinnerung: Der Grund war das Maximum-Prinzip. Gäbe es nämlich eine zweite Lösung $\bar{v}(r,\phi)$ mit gleichen Randwerten, wäre $v-\bar{v}$ eine Lösung der Gleichung $\Delta(v-\bar{v})=0$ also harmonische Funktion. Die Randwerte von $v-\bar{v}$ sind 0. Da eine harmonische Funktion das Maximum auf dem Rand annimmt ist $v - \bar{v} = 0$ die Lösung ist also eindeutig.

1.7.3**Greensche Funktion**

Eine elliptische PDGL wird mittels Inversion von Δ gelöst. Dieser Umkehr geschieht mittels Greenscher Funktion, welche die Umkehrfunktion Δ ist Δ : Laplace-Operator.

$$u(x) = \int_{\Omega} \sigma(x,\xi) f(\xi) d\xi + \int_{\Omega} h(x,\xi) f(\xi) d\xi \qquad \sigma(x,\xi) = \begin{cases} \frac{1}{2} |x-\xi| & n=1\\ \frac{1}{2\pi} \log |x-\xi| & n=2\\ -\frac{1}{4\pi} \frac{1}{|x-\xi|} & n=3\\ \frac{1}{(2-n)\mu(S^{n-1})} |x-\xi|^{2-n} & n\geq 3 \end{cases}$$

Greensche Funktion: $G(x,\xi) = \sigma(x,\xi) + h(x,\xi)$

Satz: Ist Ω ein Gebiet, auf dem das Dirichlet Problem eindeutig lösbar ist, dann gibt es eine Funktion $G(x,\xi)$, welche als Funktion von x die Gleichung

$$\Delta G(x,\xi) = \delta(x-\xi)$$

löst mit homogenen Randbedingungen. Lösung: $u(x) = \int\limits_{\Omega} G(x,\xi) f(\xi) d\xi + \int\limits_{\partial\Omega} g(\xi) \cdot \operatorname{grad}_{\xi} G(x,\xi) d\eta$ η : Normale von $\partial G(x,\xi) d\eta$

Mittelwerteigenschaft harmonischer Funktionen

$$\Delta h = 0 \qquad \text{Mittelwert eigenschaft:} \qquad h(x) = \begin{cases} \frac{h(x+\delta) + h(x-\delta)}{2} & n = 1\\ \frac{1}{2\pi r} \int\limits_{S_r^1} h(x+\xi) d\xi & n = 2\\ \frac{1}{4\pi r^2} \int\limits_{S_r^2} h(x+\xi) d\xi & n = 3 \end{cases}$$

Hyperbolische PDGL

PDGL:
$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = 0$$
 $\Omega = \{(x,t)|t>0\}$ $u_0 = u(x_0,0)$

Trick:
$$(\partial_t + a\partial_x)(\partial_t - a\partial_x)u = (\partial_t^2 - a^2\partial_x^2)u = 0$$
 (für konstante Geschwindigkeit a)

Zwei mögliche Lösungen:
$$\underbrace{(\partial_t + a\partial_x)u = 0}_{\text{Nach rechts laufende Welle}} \underbrace{(\partial_t - a\partial_x)u = 0}_{\text{Nach links laufende Welle}}$$
 Lösung mittels Charakteristiken:
$$\underbrace{\frac{\partial}{\partial s} \left\{ \begin{matrix} x(s) \\ t(s) \\ u(s) \end{matrix} \right\}}_{u(s)} = \left\{ \begin{matrix} \pm a \\ 1 \\ 0 \end{matrix} \right\} \Rightarrow \begin{array}{l} x = \pm as + x_0 \\ \Rightarrow \quad t = s + t_0 = s \\ \Rightarrow \quad u = u_0 \end{array} \right. \quad (t_0 = 0)$$

$$x = \pm at + x_0 \implies x_0 = x \mp at \implies u(x,t) = u_0(x \mp at)$$

Allgemeine Lösung aus Linearkombination: $u(x,t) = u_{+}(x+at) + u_{-}(x-at)$

 \Rightarrow Es werden **zwei** Anfangsbedingungen benötigt um u_+ **und** u_- zu bestimmen.

z.B.:
$$u(x,0) = u_0(x)$$
 $\frac{\partial u}{\partial t}(x,0) = g_0(x)$

1.8.1 Streifen/Charakteristiken

PDGL:
$$a\partial_x^2 u + 2b\partial_x\partial_y u + c\partial_y^2 u + d\partial_x u + e\partial_y u + fu = g$$
 Symbol matrix: $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$

$$u(x(t), u(t)) = u(t)$$

Entlang der Kurve $t \mapsto (x(t), y(t))$ sind die Anfangswerte / partiellen Ableitungen $\partial_x u(x(t), y(t)) = p(t)$

$$\partial_y u(x(t), y(t)) = q(t)$$

Charakteristiken erfüllen DGL:

$$a\dot{y}(t)^2 - 2b\dot{x}(t)\dot{y}(t) + c\dot{x}(t)^2 = 0$$

Charakteristischer Streifen erfüllt zusätzlich: $a\dot{p}(t)\dot{y}(t) - h\dot{x}(t)\dot{y}(t) + c\dot{x}(t)\dot{q}(t) = 0$

$\mathbf{2}$ Numerik

2.1 Diskretisierung

2.1.11.Ableitung

$$g'(x) \approx \frac{g(x + \Delta x) - g(x)}{\Delta x}$$
 oder $g'(x) \approx \frac{g(x + \Delta x) - g(x - \Delta x)}{2\Delta x}$ (Zentrale Differenz: Bessere Qualität)

2.1.2 2.Ableitung

$$\boxed{g''(x) \approx \frac{g(x-\Delta x)-2g(x)+g(x+\Delta x)}{\Delta x^2}} \text{ ist für zweite (bessere Qualität) Version die Gleiche}$$

2.2FDM

TIPP: Bei Anfangsbedingungen ungleich Null das Gleichungssystem selber von Hand herleiten, reduziert die Chance auf Fehler.

2.2.1 Grundgleichung: -u''(x) = f(x)

$$A^{(n)}\tilde{u}^{(n)} = f^{(n)}$$

$$A^{(n)} = \frac{1}{\Delta x^2} \operatorname{tridiag}_{n-1}(-1, 2, -1) = \frac{1}{\Delta x^2} \begin{bmatrix} 2 & -1 & 0 & \dots \\ -1 & 2 & -1 & \dots \\ 0 & -1 & 2 & \dots \\ 0 & 0 & -1 & \dots \end{bmatrix}$$
 (eine $(n-1) \times (n-1)$ -Matrize)
Randwert: $u(0) = a$ $u(n) = b$
$$A^{(n)} \tilde{u}^{(n)} = \begin{bmatrix} f(x_1^{(n)}) + \frac{a}{\Delta x^2} \\ f(x_2^{(n)}) \\ \vdots \\ f(x_{(n-1)}^{(n)}) + \frac{b}{\Delta x^2} \end{bmatrix}$$

Randwert:
$$u(0) = a$$
 $u(n) = b$ $A^{(n)}\tilde{u}^{(n)} = \begin{bmatrix} f(x_1^{(n)}) + \frac{u}{\Delta x^2} \\ f(x_2^{(n)}) \\ \vdots \\ f(x_{(n-1)}^{(n)}) + \frac{b}{\Delta x^2} \end{bmatrix}$

2.2.2 Grundgleichung: $T''(x) - hT(x) = T_A$

$$-T'' + hT(x) = hT_A$$

$$A^{(n)} = \frac{1}{\Delta x^2} \operatorname{tridiag}_{n-1}(-1, 2 + h\Delta x^2, -1) = \frac{1}{\Delta x^2} \begin{bmatrix} 2 + h\Delta x^2 & -1 & 0 & \dots \\ -1 & 2 + h\Delta x^2 & -1 & \dots \\ 0 & -1 & 2 + h\Delta x^2 & \dots \\ 0 & 0 & -1 & \dots \\ \dots & & & & & \end{bmatrix}$$

Beispiel Hausübung 7

Gegeben: u''(x) = 4(u(x) - x) mit den Randwerten u(0) = 0 und u(1) = 2 mit $\Delta x = 1/3$.

Gesucht: $\tilde{u}(\frac{1}{3})$ und $\tilde{u}(\frac{2}{3})$

Lösen: Die Ableitung von u'' einsetzen, siehe oben, ergibt die allgemeine Gleichung von $\frac{u(x-\Delta x)-2u(x)+u(x+\Delta x)}{\Delta x^2}=4(u(x)-x),$

für die Punkte P1 und P2 ergibt das. P1:
$$\frac{0-2\tilde{u}(\frac{1}{3})+\tilde{u}(\frac{2}{3})}{(\frac{1}{3})^2}=4(\tilde{u}(\frac{1}{3})-\frac{1}{3}) \qquad \qquad \text{P2: } \frac{\tilde{u}(\frac{1}{3})-2\tilde{u}(\frac{2}{3})+2}{(\frac{1}{3})^2}=4(\tilde{u}(\frac{2}{3})-\frac{2}{3})$$
 Nun das Gleichungssysteme lösen ergibt $\tilde{u}(\frac{1}{3})$ und $\tilde{u}(\frac{2}{3})$

2.3Konvergenz

Ein Modell ist konvergent wenn bei $n \to \infty$ die Schätzung \tilde{u} und u übereinstimmt.

2.4 Konsistenz

Ein Modell ist konsistent wenn das Modell durch Vereinfachung mit der Realität übereinstimmt.

2.4.1 Residuum

Exakt:
$$A^{(n)} \cdot \tilde{u}^{(n)} - f^{(n)} = 0$$

Residuum: $A^{(n)} \cdot (u^{(n)} - \tilde{u}^{(n)}) = r^{(n)}$

Eine Approximationsverfahren ist Konsistent, wenn
$$\lim_{n\to\infty} ||r^{(n)}||_{1/n} = 0$$
 gilt.

Konsistenz ist eine notwendige, aber nicht hinreichende Bedingung für die Konvergenz eines Verfahrens.

2.4.2 Taylor

$$g(x) = \sum_{k=0}^{n} \frac{1}{k!} g^{(k)}(x_0) (x - x_0)^k + \frac{1}{(n+1)!} g^{(n+1)}(\xi) (x - x_0)^{n+1} = \text{Taylor Approximations polynom} + \text{Lagrangsches Restglied}$$

 $\xi \longmapsto [x_0 < \xi < x]$

Alternative
$$f(x_0 + h) = f(x_0) + f'(x_0) \frac{h}{1!} + \dots + f^{(n)}(x_0) \frac{h^n}{n!} + R_n(h)$$
 wobei $h = x - x_0$

2.4.3 Vorwärt/Rückwärtsdifferenz

$$g'(x)-\frac{g(x+\Delta x)+g(x)}{\Delta x}=O(\Delta x)=\frac{g''(\xi)}{2}\Delta x\Rightarrow 1.$$
 Ordnung

2.4.4 Zentraldifferenz

$$g'(x)-\tfrac{g(x+\Delta x)+g(x-\Delta x)}{2\Delta x}=O(\Delta x^2)=\tfrac{g'''(\xi_1)+g'''(\xi_2)}{12}\Delta x^2\Rightarrow 2. \text{ Ordnung}$$

2.4.5 2. Ableitung

$$g''(x) - \frac{g(x+\Delta x)-2g(x)+g(x-\Delta x)}{2\Delta x} = O(\Delta x^2) = \frac{g''''(\xi_1)+g''''(\xi_2)}{24}\Delta x^2 \Rightarrow 2$$
. Ordnung

Globaler Konsistenzfehler für 2. Ableitung: $||r^{(n)}||_{1/n} \leq \frac{1}{12} \max_{\xi \in [0,1]} |f''(\xi)| \cdot \Delta x^2$

2.5 Stabilität

Die Stabilität einer Matrize kann über deren Norm $||A||_*$ bestimmt werden.

Es gilt:
$$||A||_* = \max_{||x||_* = 1} ||A \cdot x||_* \qquad ||A \cdot x||_* \le ||A|| \ ||x||_*$$

Ein Approximationsverfahren ist stabil wenn, wenn unabhängig von der konstante C gilt: $||A^{(n)}||_{1/n} \leq C$

Die Bestimmung von ||A|| ist im Allgemeinen nicht einfach, darum wird ||A|| oft über den Umweg der Diagonalisierung von A bestimmt.

$$y = A \cdot x$$
 \Rightarrow $\tilde{y} = D \cdot \tilde{x}$ mit $D = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$

Es gilt $TAT^T = D$, wobei T die Transformationsmatrix vom x-Koordinatensystem zum \tilde{x} -Koordinatensystem darstellt. T ist orthogonal. Die Diagonalelemente $\lambda_1, \ldots, \lambda_n$ werden auch Eigenwerte genannt.

Daraus folgt:
$$[||A|| = \max_{k} |\lambda_k|]$$
 sowie $[||A^{-1}|| = {\min_{k} |\lambda_k|}]^{-1}$

Eigenwerte bestimmen:
$$\boxed{\det(A - \lambda I) = |A - \lambda I| = 0} \Rightarrow \lambda_1, \dots, \lambda_n$$

Eigenvektoren bestimmen (für jedes λ_i): $(A - \lambda_i I) \cdot v_i = 0 \Rightarrow v_1, \dots, v_n$

FDM für elliptisch PDGL (Poisson: $-\Delta u = f$)

Gleichung:
$$-\Delta u(x,y) = f(x,y) \qquad -\Delta u(x,y) = -\left(\frac{g(x+\Delta x,y)-2g(x,y)+g(x-\Delta x,y)}{2\Delta x} + \frac{g(x,y+\Delta y)-2g(x,y)+g(x,y-\Delta y)}{2\Delta y}\right)$$

$$h = \Delta x = \Delta y \Rightarrow \boxed{-\frac{1}{h^2}(\tilde{u}_{j,k+1}+\tilde{u}_{j+1,k}+\tilde{u}_{j,k-1}+\tilde{u}_{j-1,k}-4\tilde{u}_{j,k}) = f_{j,k}}$$

$$h = \Delta x = \Delta y \Rightarrow \left[-\frac{1}{h^2} (\tilde{u}_{j,k+1} + \tilde{u}_{j+1,k} + \tilde{u}_{j,k-1} + \tilde{u}_{j-1,k} - 4\tilde{u}_{j,k}) = f_{j,k} \right]$$

$$B\tilde{u} = f \Rightarrow B = \begin{bmatrix} T & D & 0 & \dots \\ D & T & D & \dots \\ 0 & D & T & \dots \\ 0 & 0 & D & \dots \end{bmatrix} \text{ wobei } T = \frac{1}{h^2} \begin{bmatrix} 4 & -1 & 0 & \dots \\ -1 & 4 & -1 & \dots \\ 0 & -1 & 4 & \dots \\ 0 & 0 & -1 & \dots \end{bmatrix} \text{ und } D = \frac{1}{h^2} \begin{bmatrix} -1 & 0 & 0 & \dots \\ 0 & -1 & \dots \\ 0 & 0 & -1 & \dots \\ 0 & 0 & -1 & \dots \end{bmatrix}$$

$$\tilde{u} = \begin{bmatrix} \tilde{u}_{1,1} \\ \tilde{u}_{2,1} \\ \vdots \\ \tilde{u}_{1,2} \\ \tilde{u}_{2,2} \\ \vdots \end{bmatrix} f = \begin{bmatrix} f_{1,1} \\ f_{2,2} \\ \vdots \\ f_{1,2} \\ f_{2,2} \\ \vdots \end{bmatrix} + \frac{1}{h^2} \begin{bmatrix} u(0,0) + u(1,0) + u(0,1) \\ u(2,0) \\ \vdots \\ u(0,2) \\ \vdots \\ \vdots \\ u$$

$$\tilde{u} = \begin{bmatrix} \tilde{u}_{1,1} \\ \tilde{u}_{2,1} \\ \vdots \\ \tilde{u}_{1,2} \\ \tilde{u}_{2,2} \\ \vdots \end{bmatrix} f = \begin{bmatrix} f_{1,1} \\ f_{2,1} \\ \vdots \\ f_{1,2} \\ f_{2,2} \\ \vdots \end{bmatrix} + \frac{1}{h^2} \begin{bmatrix} u(0,0) + u(1,0) + u(0,1) \\ u(2,0) \\ \vdots \\ u(0,2) \\ 0 \\ \vdots \end{bmatrix}$$

Randbedingungen müssen in f eingearbeitet werden falls $u(x,y) \neq 0$ auf $\partial \Omega$

2.6.1 Irreguläre Gitter (für den Rand)

2.6.2Neumann Rand

Bei Neumann Rand-Bedingungen müssen die Randpunkte ebenfalls berechnet werden. In der Abbildung sind P, P_N und P_S auf dem Rand, P_E ist liegt innerhalb, und P_W ausserhalb

von
$$\Omega$$
. Gegeben sei die Neumannsche Randbedingung in P : $\boxed{\frac{\partial u}{\partial n}(P) = g(P)}$

Aus der Ableitung $u_x(P) = \frac{\partial u}{\partial n}(P) = \frac{u(P_E) - u(P_W)}{2h}$ kann der ausserhalb liegende Punkt $u(P_W)$ berechnet werden: $u(P_W) = u(P_E) - 2h \cdot u_x(P)$. Somit gilt: $\frac{2u(P_E) + u(P_N) + u(P_S) - 4u(P) - 2h \cdot u_x(P)}{h^2}$

$$\frac{2u(P_E) + u(P_N) + u(P_S) - 4u(P) - 2h \cdot u_x(P)}{h^2}$$

Sind P_W und P_E vertauscht, so ist das Vorzeichen umgekehrt: $u(P_W) = u(P_E) + 2h \cdot u_x(P)$.

Spiegelmethode:

Wenn $u_x(x,y) = 0$, dann spricht man auch von der Spiegelmethode. Die Punkte P_W und P_E weisen dann die gleiche Wertigkeit auf $(P_W = P_E)$.

2.7FDM für parabolische PDGL

Wärmeleitungsgleichung: $u_t(x,t) = u_{xx}(x,t)$ f(0) = f(1) = 0 $\bar{\Omega} = [0,1] \times [0,\infty]$

Randbedingungen: u(x,0) = f(x) u(0,t) = u(1,t) = 0 $x \in (0,1)$ $t \in [0,\infty)$

2.7.1 Explizites Verfahren (Richardson-Verfahren)

$$\frac{\tilde{u}(x,t+\Delta t) - \tilde{u}(x,t)}{\Delta t} = \frac{\tilde{u}(x+\Delta x,t) - 2\tilde{u}(x,y) + \tilde{u}(x-\Delta x,t)}{\Delta x^2} \qquad \Delta x = \frac{1}{n} \qquad \Delta t = \frac{r}{n^2} \qquad \boxed{r = \frac{\Delta t}{\Delta x^2}}$$

Idee: Aus den Positionen k wird k+1 berechnet: $\tilde{u}_{j,k+1} = r\tilde{u}_{j-1,k} + (1-2r)\tilde{u}_{j,k} + r\tilde{u}_{j+1,k}$

Diskretisierung von t: $k, k+1, \ldots$

Diskretisierung von x: $j, j+1, \ldots$

- Initialisierung, Randbedingung: $\tilde{u}_{j,0} = f(j/n)$ $\tilde{u}_{0,k} = \tilde{u}_{n,k} = 0$
- $\bullet \text{ Approximations matrize: } C^{(n)} = \operatorname{tridiag}_{n-1}(r,1-2r,r) = \begin{bmatrix} 1-2r & r & 0 & 0 & \cdots \\ r & 1-2r & r & 0 & \cdots \\ 0 & r & 1-2r & r & \cdots \\ 0 & 0 & r & 1-2r & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$
- Einen Schritt berechnen: $\tilde{u}^{(k+1)} = C^{(n)} \tilde{u}^{(k)}$
- k-Schritte berechnen: $\tilde{u}^{(k)} = \left\{C^{(n)}\right\}^k \tilde{u}^{(0)}$

Konvergenzverhalten:

Verfahren ist stabil wenn: $||C^{(n)}|| < 1$ \Rightarrow $r < \frac{1}{2}$

Dies macht es nötig, die Zeitschritte extrem klein zu wählen. Darum ist das Verfahren auch nicht wirklich praxistauglich, weil sehr hohe Rechenkapazität nötig sind.

Der Grund für das schlechte Konvergenzverhalten kann geometrisch visualisiert werden. In die Berechnung des Wertes im Knoten P, werden die Werte aller schwarz eingefärbter Knoten eingehen. Von den Randwerten wird nur die 0-te Stufe berücksichtigt.

Damit das Verfahren mit C^k für k-Schritte berechnet werden kann, müssen die rot eingefärbten Werte (links und rechts) gleich 0 sein (Boundary Condition). Für den Randvektor $\tilde{u}^{(0)}$ werden nur die untersten schwarzen 7 Punkte eingefüllt.

2.7.2 Implizites Verfahren

Im Unterschied zum expliziten Verfahren, das Werte vom vorherigen Zeitpunkt nutzt, wird hier das ein Gleichungssystem global gelöst.

$$\boxed{\frac{\tilde{u}(x,t)-\tilde{u}(x,t-\Delta t)}{\Delta t}=\frac{\tilde{u}(x+\Delta x,t)-2\tilde{u}(x,y)+\tilde{u}(x-\Delta x,t)}{\Delta x^2}} \qquad \Delta x=\frac{1}{n} \qquad \Delta t=\frac{r}{n^2} \qquad \boxed{r=\frac{\Delta t}{\Delta x^2}}$$

 $\tilde{u}_{j,k} = -r\tilde{u}_{j-1,k+1} + (1+2r)\tilde{u}_{j,k+1} - r\tilde{u}_{j+1,k+1}$

Idee: Die Ableitungen werden mittels Rückwärtsdifferenz berechnet

- Initialisierung, Randbedingung: $\tilde{u}_{j,0} = f(j/n)$ $\tilde{u}_{0,k} = \tilde{u}_{n,k} = 0$
- $\bullet \text{ Approximations matrize: } E^{(n)} = \text{tridiag}_{n-1}(-r, 1+2r, -r) = \begin{bmatrix} 1+2r & -r & 0 & 0 & \cdots \\ -r & 1+2r & -r & 0 & \cdots \\ 0 & -r & 1+2r & -r & \cdots \\ 0 & 0 & -r & 1+2r & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$
- Einen Schritt berechnen: $\tilde{u}^{(k+1)} = \left\{ E^{(n)} \right\}^{-1} \tilde{u}^{(k)}$
- k-Schritte berechnen: $\tilde{u}^{(k)} = \left\{E^{(n)}\right\}^{-k} \tilde{u}^{(0)}$

Vorteil: Das implizite Verfahren ist immer stabil, unabhängig von der Zeitauflösung Δt Nachteil: Aufwendige Matrixinversion nötig.

2.7.3 Crank Nicolson - Verfahren (gemischtes Verfahren)

Die Idee des Verfahrens von Crank-Nicolson ist es die beiden Approximationen

$$\frac{\tilde{u}(x,t+\Delta t) - \tilde{u}(x,t)}{\Delta t} = \frac{\tilde{u}(x+\Delta x,t) - 2\tilde{u}(x,t) + \tilde{u}(x-\Delta x,t)}{\Delta x^2}$$

$$\frac{\tilde{u}(x,t+\Delta t) - \tilde{u}(x,t)}{\Delta t} = \frac{\tilde{u}(x+\Delta x,t+\Delta t) - 2\tilde{u}(x,t+\Delta t) + \tilde{u}(x-\Delta x,t+\Delta t)}{\Delta x^2}$$

zu mitteln. Mit dieser Idee geht das stetige Problem in folgendes diskretes Problem über:

$$-r\tilde{u}_{j-1,k+1} + (2+2r)\tilde{u}_{j,k+1} - r\tilde{u}_{j+1,k+1} = r\tilde{u}_{j-1,k} + (2-2r)\tilde{u}_{j,k} + r\tilde{u}_{j+1,k}$$

Wie bei den anderen Verfahren gilt: $\Delta x = \frac{1}{n}$ $\Delta t = \frac{r}{n^2}$ $r = \frac{\Delta t}{\Delta x^2}$

- Initialisierung, Randbedingung: $\tilde{u}_{j,0} = f(j/n)$ $\tilde{u}_{0,k} = \tilde{u}_{n,k} = 0$
- Approximationsmatrizen:

$$F^{(n)} = E^{(n)} + I = \text{tridiag}_{n-1}(-r, 2+2r, -r) = \begin{bmatrix} 2+2r & -r & 0 & 0 & \cdots \\ -r & 2+2r & -r & 0 & \cdots \\ 0 & -r & 2+2r & -r & \cdots \\ 0 & 0 & -r & 2+2r & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

$$G^{(n)} = C^{(n)} + I = \text{tridiag}_{n-1}(\ r, \ 2-2r, \ r\) = \begin{bmatrix} 2-2r & r & 0 & 0 & \cdots \\ r & 2-2r & r & 0 & \cdots \\ 0 & r & 2-2r & r & \cdots \\ 0 & 0 & r & 2-2r & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

- Gleichung: $F^{(n)} \cdot \tilde{u}^{(k+1)} = G^{(n)} \cdot \tilde{u}^{(k)}$
- Einen Schritt berechnen: $\tilde{u}^{(k+1)} = \{F^{(n)}\}^{-1} \cdot G^{(n)} \cdot \tilde{u}^{(k)}$
- k-Schritte berechnen: $\tilde{u}^{(k)} = \left(\left\{F^{(n)}\right\}^{-1} \cdot G^{(n)}\right)^k \cdot \tilde{u}^{(0)}$

2.8 FDM für Hyperbolische PDGL

$$u_{tt} = u_{xx} \to \text{homogen}$$
 Anfangsbedingungen:
 $u_{tt} - u_{xx} = v(x, t) \to \text{inhomogen}$ $u(x, 0) = f(x)$ $u_t(x, 0) = g(x)$

2.8.1 Leap-Frog-Schema

$$\tilde{u}_{j,k+1} = r^2 \tilde{u}_{j-1,k} + 2(1 - r^2) \tilde{u}_{j,k} + r^2 \tilde{u}_{j+1,k} - \tilde{u}_{j,k-1} \qquad r = \frac{\Delta t}{\Delta x}$$

$$\tilde{u}_{j,0} = f(j\Delta x) \qquad \tilde{u}_{j,1} = f(j\Delta x) + g(j\Delta x) \Delta t + f''(j\Delta x) \frac{\Delta t^2}{2}$$

2.8.2 Transportgleichung

$$u_x(x,t) + u_t(x,t) = 0$$
 $u(x,0) = f(x) \longrightarrow u(x,t) = f(x-t)$

Downwind Scheme

$$\frac{\tilde{u}(x,t+\Delta t)-\tilde{u}(x,t)}{\Delta t}+\frac{\tilde{u}(x+\Delta x,t)-\tilde{u}(x,t)}{\Delta x}=0 \qquad \tilde{u}_{j,k+1}=(1+r)\tilde{u}_{j,k}-r\tilde{u}_{j+1,k} \quad r=\frac{\Delta t}{\Delta x} \quad \text{Meist Divergent}$$

Upwind Scheme

$$\frac{\tilde{u}(x,t+\Delta t)-\tilde{u}(x,t)}{\Delta t}+\frac{\tilde{u}(x,t)-\tilde{u}(x-\Delta x,t)}{\Delta x}=0 \qquad \tilde{u}_{j,k+1}=(1-r)\tilde{u}_{j,k}+r\tilde{u}_{j-1,k} \quad \text{Konvergent für} \quad r=\frac{\Delta t}{\Delta x}\leq 1$$

Centered Scheme

$$\frac{\tilde{u}(x,t+\Delta t)-\tilde{u}(x,t)}{\Delta t}+\frac{\tilde{u}(x+\Delta x,t)-\tilde{u}(x-\Delta x,t)}{2\Delta x}=0 \qquad \tilde{u}_{j,k+1}=-\frac{r}{2}\tilde{u}_{j+1,k}+\tilde{u}_{j,k}+\frac{r}{2}\tilde{u}_{j-1,k} \quad r=\frac{\Delta t}{\Delta x}$$

Lax-Wendroff Scheme

$$\tilde{u}_{j,k+1} = A \tilde{u}_{j+1,k} + B \tilde{u}_{j,k} + C \tilde{u}_{j-1,k} \quad r = \frac{\Delta t}{\Delta x} \quad A = \frac{r^2 - r}{2} \quad B = 1 - r^2 \quad C = \frac{r^2 + r}{2}$$

2.9 FVM (Finite Volumen Methode, Verfahren von Voronoi)

$$\begin{array}{lll} \Delta u = 0 & \text{in} & \Omega \\ u(x,y) = f(x,y) & \text{auf} & \partial \Omega \\ \text{Der Satz von Gauss sagt:} & \oint_{\Gamma} \Delta u(x,y) dx dy = \int_{\Gamma} \text{div grad } u(x,y) dx dy = \oint_{\partial \Gamma} \text{grad } u(x,y) d\vec{n} \end{array}$$

Wobei der Randnormalvektor \vec{n} immer senkrecht gegen das Aussengebiet Γ gerichtet wird.

$$\Rightarrow \oint\limits_{\Gamma} \Delta u(x,y) dx dy = \oint\limits_{\partial \Gamma} {\rm grad} \ u(x,y) d\vec{n} = 0$$

$$\begin{array}{|c|c|c|c|c|c|}\hline & & & & \\ \hline & &$$

Vorteile:

- Man kann mit Flussgrössen und Bilanzen rechnen, dadurch kann der Laplace-Operator (Δ) verzichtet werden und somit die aufwendige Mathematik umgangen werden.
- Es kann mit komplizierten Geometrien gerechnet werden.

Vorgehen bei der Berechnung:

- 1. Punkte P_1, \ldots, P_n wählen.
- 2. Aufteilen des Bereichs in kleine Teilbereiche, z.B. durch Mittelsenkrechte
- 3. Rand diskretisieren.

$$\begin{split} & \text{F\"{u}r } P_i\text{-Zelle: } \sum_{j} \frac{u(P_{i,j}) - u(P_i)}{\delta_{i,j}} \cdot \lambda_{i,j} = 0 \\ & \text{F\"{u}r P1-Zelle: } \quad \frac{\tilde{u}(P_2) - \tilde{u}(P_1)}{\delta_{1,2}} \cdot \lambda_{1,2} + \frac{\tilde{u}(P_3) - \tilde{u}(P_1)}{\delta_{1,3}} \cdot \lambda_{1,3} + \frac{\tilde{u}(R_1) - \tilde{u}(P_1)}{\delta_1} \cdot \lambda_1 = 0 \\ & \text{F\"{u}r P2-Zelle: } \quad \frac{\tilde{u}(P_1) - \tilde{u}(P_2)}{\delta_{1,2}} \cdot \lambda_{1,2} + \frac{\tilde{u}(P_3) - \tilde{u}(P_2)}{\delta_{2,3}} \cdot \lambda_{2,3} + \frac{\tilde{u}(R_2) - \tilde{u}(P_2)}{\delta_2} \cdot \lambda_2 = 0 \\ & \text{F\"{u}r P3-Zelle: } \quad \frac{\tilde{u}(P_2) - \tilde{u}(P_3)}{\delta_{2,3}} \cdot \lambda_{2,3} + \frac{\tilde{u}(P_1) - \tilde{u}(P_3)}{\delta_{1,3}} \cdot \lambda_{1,3} + \frac{\tilde{u}(R_3) - \tilde{u}(P_3)}{\delta_3} \cdot \lambda_3 = 0 \end{split}$$

$$\frac{\tilde{u}(P_E) - \tilde{u}(P_N)}{1/4 \cdot \sqrt{2}} \cdot \frac{\sqrt{2}}{2} + \frac{\tilde{u}(P_W) - \tilde{u}(P_N)}{1/4 \cdot \sqrt{2}} \cdot \frac{\sqrt{2}}{2} + \frac{\tilde{u}(R_N) - \tilde{u}(P_N)}{1/4} \cdot 1 = 0$$

$$(\tilde{u}_E - \tilde{u}_N) \cdot 2 + (\tilde{u}_W - \tilde{u}_N) \cdot 2 + (1/2 - \tilde{u}_N) \cdot 4 = 0$$

$$(\tilde{u}_E - \tilde{u}_N) \cdot 2 + (\tilde{u}_W - \tilde{u}_N) \cdot 2 + (1/2 - \tilde{u}_N) \cdot 4 = 0$$

$$0 \cdot \tilde{u}_S + 2 \cdot \tilde{u}_E + 2 \cdot \tilde{u}_W - 8 \cdot \tilde{u}_N + 2 = 0$$

Surface:
$$s1 = s2 = h$$

u1:
$$\frac{u(b_1)-u(p_1)}{h/2} \cdot h + \frac{u(b_2)-u(p_1)}{h/2} \cdot h + \frac{u(b_3)-u(p_1)}{h/2} \cdot s_2 + \frac{u(p_2)-u(p_1)}{h} \cdot s_1$$
Achtung wenns schnell gehen muss: $\frac{u(b_2)-u(p_1)}{h/2} \cdot h = (u(b_2)-u(p_1)) \cdot 2$

example with $\Delta u(x,y) \neq 0$ and two voronoi points:

The function u(x,y) is defined on the square $\Omega = [0,3] \times [0,3]$. The function u(x,y) satisfies in Ω

$$\Delta u(x,y) + 4 = 0$$

and u(x,y)=0 on the boundary of Ω . Determine approximate values for u(1,1) and u(2,2). Use finite volumes à la Voronoi with Voronoi-points (1,1) and (2,2)

$$\frac{1}{2} \int_0^3 \int_0^3 -4 \, dx \, dy = -18$$

Function integrated over the voronoi cell example 68 in the script

$$\frac{0-\tilde{u}_1}{1}\frac{6}{1} + \frac{\tilde{u}_2 - \tilde{u}_1}{\sqrt{2}}3\sqrt{2} = -18$$

$$\frac{0 - \tilde{u}_2}{1} + \frac{\tilde{u}_1 - \tilde{u}_2}{\sqrt{2}} 3\sqrt{2} = -18$$

$$A = \begin{bmatrix} -9 & 3 \\ 3 & -9 \end{bmatrix} \begin{pmatrix} \tilde{u}_1 \\ \tilde{u}_2 \end{pmatrix} = \begin{pmatrix} -18 \\ -18 \end{pmatrix}$$

3 FEM

Der Vektorraum \mathbb{V} hat undendlich viele Dimensionen. Falls wir n unabhängige Funktionen v_1, \ldots, v_n wählen, dann spannen die Funktionen $a_1 \cdot v_1(x) + \ldots + a_n \cdot v_n(x)$ einen n dimensionalen Teilraum $\mathbb{V}^{(n)}$ von \mathbb{V} auf. Dabei gilt:

$$\tilde{u}^{(n)} = a_1 \cdot v_1(x) + \ldots + a_n \cdot v_n(x)$$

3.1 Das Verfahren von Ritz

$$\begin{array}{lll} \textbf{Ritzsche Matrize:} & R^{(n)} = \begin{bmatrix} R_{1,1} & R_{1,2} & \cdots \\ R_{2,1} & R_{2,2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} & \text{mit} & R_{j,k}^{(n)} = \int\limits_0^1 v_j'(x) \cdot v_k'(x) dx \\ \textbf{Ritzscher Vektor:} & r^{(n)} = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \end{bmatrix} & \text{mit} & r_k^{(n)} = \int\limits_0^1 f(x) \cdot v_k(x) dx \\ \textbf{L\"osung nach Ritz:} & R^{(n)} \cdot a = r^{(n)} & \Rightarrow & a = \left\{R^{(n)}\right\}^{-1} \cdot r^{(n)} \\ \end{array}$$

3.2 Das Verfahren von Galerkin

$$\begin{aligned} \textbf{Galerksche Matrize:} \quad G^{(n)} &= \begin{bmatrix} G_{1,1} & G_{1,2} & \cdots \\ G_{2,1} & G_{2,2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} & \text{mit} \quad G_{j,k}^{(n)} &= \int\limits_0^1 \underbrace{(v_j''(x))}_{v_j \text{ in Form von DGL!}} \cdot v_k(x) dx \end{aligned}$$

$$\begin{aligned} \textbf{Galerkscher Vektor:} \quad g^{(n)} &= \begin{bmatrix} g_1 \\ g_2 \\ \vdots \end{bmatrix} & \text{mit} \quad g_k^{(n)} &= \int\limits_0^1 f(x) \cdot v_k(x) dx \end{aligned}$$

$$\begin{aligned} \textbf{L\"osung nach Galerkin:} \quad G^{(n)} \cdot a + g^{(n)} &= 0 \end{aligned} \quad \Rightarrow \quad a = -\left\{G^{(n)}\right\}^{-1} \cdot g^{(n)} \quad \text{nach Ritz } G^{(n)} &= -R^{(n)} \quad g^{(n)} &= r^{(n)} \end{aligned}$$

Die obige Matrix ist nur für die PDGL -u''(x) = f(x) mit dem Ansatz $\tilde{u}(x) = a_1 \cdot v_1(x) + a_2 \cdot v_2(x)$ gültig. Ansonsten muss ein Gleichungssystem für $v_k = v_1$ und v_2 aufgestellt werden (Beispiel für DGL: u''(x) + u(x) + x = 0): $\int_0^1 (a_1 \cdot v_1''(x) + a_2 \cdot v_2''(x) + a_1 \cdot v_1(x) + a_2 \cdot v_2(x) + x) \cdot v_k(x) dx = 0 \rightarrow G_{j,k}^{(n)} = \int_0^1 (v_j''(x) + v_j(x)) \cdot v_k(x) dx$

3.3 Gewichtete Residuen

Gewichtungsfunktionen: $\{w_1(x),\dots,w_n(x)\}$ Matrize (gewichtete Residuen): $M^{(n)} = \begin{bmatrix} M_{1,1} & M_{1,2} & \cdots \\ M_{2,1} & M_{2,2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}$ mit $M_{j,k}^{(n)} = \int_0^1 v_j''(x) \cdot w_k(x) dx$ Vektor (gewichtete Residuen): $m^{(n)} = \begin{bmatrix} m_1 \\ m_2 \\ \vdots \end{bmatrix}$ mit $m_k^{(n)} = \int_0^1 f(x) \cdot w_k(x) dx$ Lösung der gewichteten Residuen: $M^{(n)} \cdot a + m^{(n)} = 0$ \Rightarrow $a = -\{M^{(n)}\}^{-1} \cdot m^{(n)}$

3.4 Punktkollokation

Im Sinne einer Punktkollokation (einzelne Punkte müssen zwischen wahrem Resultat und Approximation übereinstimmen) werden n Stützstellen im Intervall von [0,1] gewählt.

$$\begin{bmatrix} v_1''(x_1) & v_2''(x_1) & \cdots \\ v_1''(x_2) & v_2''(x_2) & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} -f(x_1) \\ -f(x_2) \\ \vdots \end{bmatrix}$$
 Das Gleichungssystem nach a auflösen

Die obige Matrix ist nur für die PDGL -u''(x) = f(x) mit dem Ansatz $\tilde{u}(x) = a_1 \cdot v_1(x) + a_2 \cdot v_2(x)$ gültig. Ansonsten muss die DGL mit den Ansatzfunktionen aufgestellt und an beiden Punkten eingesetzt werden, um a_1 und a_2 zu bestimmen: DGL: $u''(x) + u(x) = -x \Rightarrow$ Gleichung an Punkt 1: $a_1 \cdot v_1''(x_1) + a_2 \cdot v_2''(x_1) + a_1 \cdot v(x_1) + a_2 \cdot v(x_1) = -x_1$

3.5Bereichskollokation

Im Gegensatz zur Punktkollokation müssen nicht einzelne Punkte sondern ganze Bereiche (Intervalle I_k) übereinstimmen. Für -u''(x) = f(x) wird dieses Gleichungssystem aufgestellt.

$$\begin{bmatrix} \int_{I_1} v_1'' & \int_{I_1} v_2'' & \cdots \\ \int_{I_2} v_1'' & \int_{I_2} v_2'' & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} -\int_{I_1} f(x) \\ -\int_{I_2} f(x) \\ \vdots \end{bmatrix}$$
 Das Gleichungssystem nach a auflösen

Das Verfahren von Gauss (MSE)

Gausscher Vektor:
$$q^{(n)} = \begin{bmatrix} q_1 \\ q_2 \\ \vdots \end{bmatrix}$$
 mit $q_k^{(n)} = \int_0^1 f(x) \cdot v_k''(x) dx$

Lösung nach Gauss:
$$Q^{(n)} \cdot a + q^{(n)} = 0$$
 \Rightarrow $a = -\left\{Q^{(n)}\right\}^{-1} \cdot q^{(n)}$

3.7 Finite Elemente

Die besprochenen Verfahren setzen die Wahl eines Satzes $v_1(x), \ldots, v_n(x)$ von Grundfunktionen voraus. Bei FEM wird mit lokalen Trägern (Grundfunktionen) gearbeitet, diese sind nur auf einem kleinen Intervall ungleich null. Der Vorteil dieses Vorgehens liegt darin, dass in einem Bereich nur ein Träger die Approximationsfunktion beeinflusst. Der Nachteil liegt in der hohen Anzahl der so benötigten Träger.

WICHTIG: Alle Verfahren werden mit einer Diskretisierung von h = 1/3 vorgestellt.

3.7.1Knotenvariablen

Als erstes werden auf dem Intervall [0,1] n, normalerweise gleichverteilte, Knotenstellen eingeführt.

Dadurch wird das Intervall [0, 1] in Teilintervalle (Maschen) zerlegt.

Für
$$n = 3$$
: $I_1 = [0, 1/3]$ $I_1 = [1/3, 2/3]$ $I_1 = [2/3, 1]$

Als nächstes wird jeder Knotenstelle x_k eine Ansatzvariable (Knotenvariable) zugeordnet.

 $\tilde{u}(0) = a_0 \quad \tilde{u}(1/3) = a_1 \quad \tilde{u}(2/3) = a_2 \quad \tilde{u}(1) = a_3$ Ansatz:

$$v_0(0) = 1$$
 $v_0(1/3) = 0$ $v_0(2/3) = 0$ $v_0(1) = 0$
 $v_1(0) = 0$ $v_1(1/3) = 1$ $v_1(2/3) = 0$ $v_1(1) = 0$

Zusatzbedingungen: $v_2(0) = 0$ $v_2(1/3) = 0$ $v_2(2/3) = 1$ $v_2(1) = 0$

3.7.2Formfunktionen

Die lokalen Grundfunktionen sollen aus Teilstücken einfacher Funktionen, z.B: Polynomen, die nur auf einer einzelnen Masche definiert sind zusammengesetzt werden.

Zwei mögliche Formfunktionen sind Beispielsweise: $l_1(x) = 1 - x$ und $l_2(x) = x$

$t \in$	[0, 1/3]	[1/3, 2/3]	[2/3,1]		$t \in$	[0, 1/3]	[1/3, 2/3]	[2/3, 1]
$v_0 =$	1-3x	0	0	·	$v_0 =$	$l_1(3x)$	0	0
$v_1 =$	3x	2-3x	0	\Longrightarrow	$v_1 =$	$l_2(3x)$	$l_1(3x-1)$	0
$v_2 =$	0	-1 + 3x	3-3x		$v_2 =$	0	$l_2(3x-1)$	$l_1(3x-2)$
$v_3 =$	0	0	-2 + 3x		$v_3 =$	0	0	$l_2(3x-2)$

3.7.3 Elementmatrizen

Grundsätzlich kann die Ansatzvariable durch jedes Verfahren bestimmt werden. Weil bei einer linearen Ansatzfunktion die zweite Ableitung trivial (=0) ist die Wahl des Ritzschen Verfahren erzwungen.

Die Integrale werden maschenweise ausgewertet:

$$\int_{0}^{1} = \int_{0}^{1/3} + \int_{1/3}^{2/3} + \int_{2/3}^{1}$$

Durch diesen Ansatz wird die Ritzsche Matrize über jede Masche einzeln berechnet und danach zur globalen Ritzschen Matrize aufsummier:

Die mit * bezeichneten 2×2 Matrizen heissen Maschenmatrizen:

$$M^{(4,1)} = M^{(4,2)} = M^{(4,3)} = \begin{bmatrix} * & * \\ * & * \end{bmatrix} = 3 \cdot \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \qquad \Rightarrow \qquad \boxed{M = \frac{1}{h} \cdot \underbrace{\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}}_{\mathbf{E}: \text{ Element matrize}} = \frac{1}{h} \cdot \mathbf{E}}$$

Die Elementmatrize wird nun in die entsprechende Ritzsche Matrize eingesetzt und überlagert. Für die Quantisierung von h = 1/3 ergibt sich:

$$R^4 = \begin{bmatrix} -3 & 3 & 0 & 0 \\ 3 & -3 - 3 & 3 & 0 \\ 0 & 3 & -3 - 3 & 3 \\ 0 & 0 & 3 & -3 \end{bmatrix} = \begin{bmatrix} -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \end{bmatrix}$$

Der Ritzsche Vektor muss mittels Integration berechnet werden:

$$r^{4} = \begin{bmatrix} \int_{0}^{1} f(x) \cdot v_{0}(x) dx \\ \int_{0}^{1} f(x) \cdot v_{1}(x) dx \\ \int_{1}^{0} f(x) \cdot v_{2}(x) dx \\ \int_{0}^{1} f(x) \cdot v_{3}(x) dx \end{bmatrix}$$

Das Ritzsche Gleichungssystem dazu ist: $R^4 \cdot a + r^4 = 0$ \Rightarrow $a = -\{R^4\}^{-1} \cdot r^4$

Anfangsbedingungen: Die Anfangsbedingungen a_0 und a_n können direkt eingesetzt werden.

$$a_0 = 10$$
 $a_3 = 20$

$$\begin{bmatrix} 3 & -6 & 3 & 0 \\ 0 & 3 & -6 & 3 \end{bmatrix} \cdot \begin{bmatrix} 10 \\ a_1 \\ a_2 \\ 20 \end{bmatrix} + r^4 = 0 \qquad \Rightarrow \qquad \begin{bmatrix} -6 & 3 \\ 3 & -6 \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + \begin{bmatrix} 30 \\ 60 \end{bmatrix} + r^4 = 0$$

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} -6 & 3 \\ 3 & -6 \end{bmatrix}^{-1} \cdot \begin{bmatrix} -\left(r_1^4 + 3 \cdot a_0\right) \\ -\left(r_2^4 + 3 \cdot a_3\right) \end{bmatrix}$$

3.7.4 Die Finite Elemente Handrechnung

Problemstellung: u''(x) + f(x) = 0 f(x) = 20 u(0) = 10 u(1) = 20

Die Approximation soll auf den **NICHT** gleichverteilten Intervallen: [0, 1/6], [1/6, 1/2], [1/2, 1]

Die Entsprechenden Elementmatrizen E sind:

$$\frac{1}{1/6} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} -6 & 6 \\ 6 & -6 \end{bmatrix} \qquad \frac{1}{1/2 - 1/6} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \qquad \frac{1}{1 - 1/2} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix}$$

Der Ritzsche Vektor und die Ritzsche Matrize sind:

3.7.5 h-Strategie

Die Grundidee der h-Strategie ist die Verfeinerung der Auflösung. Mit anderen Worten die Maschenbreite h wird verkleinert. Um den ganzen Bereich dennoch abdecken zu können sind mehr Maschen notwendig.

3.7.6 p-Strategie

Bei der p-Strategie bleibt das Netz bestehen. Die Ansatzfunktionen sollen nun durch Polynome höherer Ordnung zusammengesetzt werden, dazu werden neue Knoten und Knotenvariablen eingeführt werden.

Problemstellung: u''(x) + f(x) = 0 $u(0) = a_0$ $u(1) = a_6$

Die Approximation soll auf dem gleichverteilten Intervallen gelten: [0, 1/3], [1/3, 2/3], [2/3, 1]

Formfunktionen:

$$\begin{bmatrix} -7 & 8 & -1 & 0 & 0 & 0 & 0 \\ 8 & -16 & 8 & 0 & 0 & 0 & 0 \\ -1 & 8 & -14 & 8 & -1 & 0 & 0 \\ 0 & 0 & 8 & -16 & 8 & 0 & 0 \\ 0 & 0 & -1 & 8 & -14 & 8 & -1 \\ 0 & 0 & 0 & 0 & 8 & -16 & 8 \\ 0 & 0 & 0 & 0 & -1 & 8 & -7 \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \end{bmatrix} +$$
Ritzsche Matrize $R^{(8)}$ für $h=1/3$

[2/3, 1]

0

0

 $q_1(3x-2)$

 $q_2(3x-2)$

 $q_3(3x-2)$

Vorteil der p-Strategie gegenüber der h-Strategie: Bei beiden Strategien steigt die Dimension der Systemmatrizen an. Es besteht jedoch die berechtigte Hoffnung, dass der Zuwachs der benötigt wird, um eine vergleichbare Genauigkeit zu errreichen, bei der p-Strategie weitaus geringer ist als bei der h-Strategie.

3.8 Konformität und Vollständigkeit

Muss nun die Approximationslösung zweimal ableitbar sein, so gilt der Ansatz des letzten Abschnitt nicht mehr als konform. Um die einmalige Differenzierbarkeit an den Knoten zu gewährleisten müssen neue Grundfunktionen gefunden werden.

$$\tilde{u}(x) = a_0 v_0(x) + a_1 v_1(x) + a_2 v_2(x) + a_3 v_3(x) + \tilde{a}_0 \tilde{v}_0(x) + \tilde{a}_1 \tilde{v}_1(x) + \tilde{a}_2 \tilde{v}_2(x) + \tilde{a}_3 \tilde{v}_3(x)$$

Zwei Grundfunktionen stellen den richtigen Wert and den Knoten sicher. Zwei weitere Grundfunktionen werden benötigt um die erste Ableitung (Steigung) an den Übergangknoten sicherzustellen, sie sorgen für die Vollständigkeit der Grundfunktionen. (Ohne die zwei weiteren Grundfunktionen wäre an den Übergangsknoten nur eine Steigung von Null möglich.)

3.9 Hermetische Polynome dritter Ordnung

Übereinstimmung bis zur 1. Ableitung an den Knotenpunkten

Problemstellung:
$$u''(x) + f(x) = 0$$
 $u(0) = a_0$ $u'(0) = \tilde{a}_0$ $u(1) = a_3$ $u'(1) = \tilde{a}_3$

Die Approximation soll auf dem gleichverteilten Intervallen gelten: [0, 1/3], [1/3, 2/3], [2/3, 1]

Formfunktionen:
$h_1(x) = 2x^3 - 3x^2 + 1$
$h_2(x) = x^3 - 2x^2 + x$
$h_3(x) = -2x^3 + 3x^2$
$h_4(x) = x^3 - x^2$

$x \in$	[0, 1/3]	[1/3, 2/3]	[2/3,1]
$v_0 =$	$h_1(3x)$	0	0
$\tilde{v}_0 =$	$\frac{1}{3}h_2(3x)$	0	0
$v_1 =$	$h_3(3x)$	$h_1(3x-1)$	0
$\tilde{v}_1 =$	$\frac{1}{3}h_4(3x)$	$\frac{1}{3}h_2(3x-1)$	0
$v_2 =$	0	$h_3(3x-1)$	$h_1(3x-2)$
$\tilde{v}_2 =$	0	$\frac{1}{3}h_4(3x-1)$	$\frac{1}{3}h_2(3x-2)$
$v_3 =$	0	0	$h_3(3x-2)$
$\tilde{v}_3 =$	0	0	$\frac{1}{3}h_2(3x-1)$

$$E = \frac{1}{30} \begin{bmatrix} -36 & -3 & 36 & -3 \\ -3 & -4 & 3 & 1 \\ 36 & 3 & -36 & 3 \\ -3 & 1 & 3 & -4 \end{bmatrix}$$

$$M = \frac{1}{30 \cdot h} \begin{bmatrix} -36 & -3 \cdot h & 36 & -3 \cdot h \\ -3 \cdot h & -4 \cdot h^2 & 3 \cdot h & 1 \cdot h^2 \\ 36 & 3 \cdot h & -36 & 3 \cdot h \\ -3 \cdot h & 1 \cdot h^2 & 3 \cdot h & -4 \cdot h^2 \end{bmatrix}$$

$$\underbrace{\frac{3}{30} \begin{bmatrix} -36 & -1 & 36 & -1 & 0 & 0 & 0 & 0 \\ -1 & -4/9 & 1 & 1/9 & 0 & 0 & 0 & 0 \\ 36 & 1 & -72 & 0 & 36 & -1 & 0 & 0 \\ -1 & 1/9 & 0 & -8/9 & 1 & 1/9 & 0 & 0 \\ 0 & 0 & 36 & 1 & -72 & 0 & 36 & -1 \\ 0 & 0 & -1 & 1/9 & 0 & -8/9 & 1 & 1/9 \\ 0 & 0 & 0 & 0 & 36 & 1 & -36 & 1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1/9 & 1 & -4/9 \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ \tilde{a}_0 \\ a_1 \\ \tilde{a}_1 \\ a_2 \\ \tilde{a}_2 \\ a_3 \\ \tilde{a}_3 \end{bmatrix} + \underbrace{\begin{bmatrix} a_0 \\ \tilde{a}_0 \\ a_1 \\ \tilde{a}_1 \\ a_2 \\ \tilde{a}_2 \\ a_3 \\ \tilde{a}_3 \end{bmatrix}}_{\text{Bitzsche Metrigo $P^{(8)}$ für $b=1/3$}}$$

Ritzsche Matrize $R^{(8)}$ für $h{=}1/3$

$$\begin{bmatrix} \int_{0}^{1} f(x) \cdot v_{0}(x) dx \\ \int_{0}^{1} f(x) \cdot \tilde{v}_{0}(x) dx \\ \int_{0}^{1} f(x) \cdot v_{1}(x) dx \\ \int_{0}^{1} f(x) \cdot \tilde{v}_{1}(x) dx \\ \int_{0}^{1} f(x) \cdot v_{2}(x) dx \\ \int_{0}^{1} f(x) \cdot \tilde{v}_{2}(x) dx \\ \int_{0}^{1} f(x) \cdot v_{3}(x) dx \\ \int_{0}^{1} f(x) \cdot \tilde{v}_{3}(x) dx \end{bmatrix}$$

4 Fourierreihe

Komplex:

$$f(t) = \sum_{k = -\infty}^{\infty} c_k \cdot e^{jk\omega_f t} = \sum_{k = 0}^{\infty} \left(c_k \cdot e^{jk\omega_f t} + \overline{c_k} \cdot e^{-jk\omega_f t} \right) \quad \boxed{c_k = \overline{c_{-k}} = \frac{1}{T} \int_0^T f(t) \cdot e^{-jk\omega_f t} dt}$$

Reell:

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega_f t) + b_k \sin(k\omega_f t) \right] = \frac{A_0}{2} + \sum_{k=1}^{\infty} A_k \cos(k\omega_f t + \varphi_k) \quad k \in \mathbb{Z}$$

$$a_0 = \frac{2}{T} \int_0^T f(t)dt, \quad a_k = \frac{2}{T} \int_0^T f(t) \cos(k\omega_f t)dt, \quad b_k = \frac{2}{T} \int_0^T f(t) \sin(k\omega_f t)dt$$

$$\omega_f = \frac{2\pi}{T} \int_0^T f(t) \sin(k\omega_f t)dt$$

 a_0 , c_0 , A_0 sind Konstanten, ω_f ist die Grundkreisfrequenz, a_k und b_k sind die reellen Koeffizienten, c_k ist der komplexe Koeffizient, A_k ist die Amplitude und φ_k ist die Phase.

$$a_k = c_k + \overline{c_k} = 2\operatorname{Re}(c_k) = A_k \cos(\varphi_k)$$

$$b_k = j(c_k + \overline{c_k}) = -2\operatorname{Im}(c_k) = -A_k \sin(\varphi_k)$$

$$c_k = \frac{a_k - jb_k}{2} = \frac{A_k}{2}e^{j\varphi_k}$$

$$c_{-k} = \overline{c_k} = \frac{a_k + jb_k}{2} = \frac{A_k}{2}e^{-j\varphi_k}$$

$$A_k = 2|c_k| = \sqrt{a_k^2 + b_k^2}$$

Berechnung von φ_k aus a_k und b_k

$a_k > 0$:	$\varphi_k = -\arctan(\frac{b_k}{a_k})$	$a_k < 0$:	$\varphi_k = -\arctan(\frac{b_k}{a_k}) + \pi$
$a_k = 0; b_k > 0:$	$arphi_k = -rac{\pi}{2}$	$a_k = 0; b_k < 0:$	$\varphi_k = \frac{\pi}{2}$
$a_k = b_k = 0:$	$\varphi_k = ext{nicht definiert}$		$\varphi_k = arg(c_k)$

4.1 Symmetrie

gerade Funktion	ungerade Funktion	Halbperiode 1	Halbperiode 2
$ \begin{array}{c c} f(x) & \pi \\ \hline -\pi & \pi \\ \hline T_0/2 & T_0/2 \end{array} $	$ \begin{array}{c c} f(x) & \\ \hline -\pi & T_0/2 \\ \hline & 0 \\ \hline & T_0/2 \\ \hline & x \end{array} $	$f(x) = \begin{bmatrix} T_0/2 & T_0$	$f(x) = \begin{bmatrix} T_0/2 & T_0/2 & T_0/2 \\ T_0/2 & T_0/2 & T_0/2 \end{bmatrix}$
$f(-t) = f(t)$ $b_k = 0$ $a_k = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cdot \cos(k\omega_f t) dt$	$f(-t) = -f(t)$ $a_k = 0$ $b_k = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cdot \sin(k\omega_f t) dt$	$f(t) = f(t + \pi)$ $a_{2k+1} = 0$ $b_{2k+1} = 0$	$f(t) = -f(t+\pi)$ $a_{2k} = 0$ $b_{2k} = 0$

4.2 Spektern

Kosinus- Sinusamplitudenspektrum

Das einseitige und zweiseitige Spektrum unterscheiden sich nur im Amplitudendiagramm. Das Phasendiagramm f"ur positive k ist identisch. Die Amplidudenwerte sind h"alftig auf die pos. und neg. k verteilt.

5 Fourier Transformation

$$\boxed{f(t) = \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega} = \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} [R(\omega) \cos(\omega t) + X(\omega) \sin(\omega t)] d\omega + \frac{j}{2\pi} \int\limits_{-\infty}^{\infty} [R(\omega) \sin(\omega t) - X(\omega) \cos(\omega t)] d\omega}$$

$$\boxed{F(\omega) = \int\limits_{-\infty}^{\infty} f(t)e^{-j\omega t}dt} = R(\omega) - jX(\omega) \quad R(\omega) = \int\limits_{-\infty}^{\infty} f(t)\cos(\omega t)dt \quad \text{und} \quad X(\omega) = \int\limits_{-\infty}^{\infty} f(t)\sin(\omega t)dt$$

$$\sigma(t) \circ \longrightarrow \frac{1}{j\omega} + \pi \cdot \delta(\omega)$$

$$1 \circ \longrightarrow 2\pi \cdot \delta(t) \underset{Vorsichtig}{\longleftrightarrow} \delta(\omega) \circ \longrightarrow 1$$

$$\frac{1}{\pi \cdot t} \circ \longrightarrow -j \cdot sgn(\omega)$$

$$sgn(t) \circ \longrightarrow \frac{2}{j\omega}$$

5.1 Eigenschaften

Fourierintegral existiert wenn $\int\limits_{-\infty}^{\infty}|f(t)|dt<\infty$

Linearit"at	$\alpha \cdot f(t) + \beta \cdot g(t)$	○	$\alpha \cdot F(\omega) + \beta \cdot G(\omega)$
Zeitumkehrung (Spiegelung an der Y-Achse)	f(-t)	○	$F(-\omega) = F^*(\omega)$
"Ahnlichkeit	$f(\alpha t)$	○	$\frac{1}{ \alpha }F\left(\frac{\omega}{\alpha}\right) \alpha \in \mathbb{R} \setminus \{0\}$
Verschiebung im Zeitbereich	$f(t\pm t_0)$	0	$F(\omega)e^{\pm j\omega t_0}$
Verschiebung im Frequenzbereich	$f(t)e^{\pm j\omega_0 t}$	O	$F(\omega \mp \omega_0)$
Ableitung im Zeitbereich	$\frac{\partial^n f(t)}{\partial t^n}$	○	$(j\omega)^n F(\omega)$
Integration im Zeitbereich	$\int\limits_{-\infty}^t f(\tau)d\tau$	○—●	$\frac{F(\omega)}{j\omega} + \pi F(0)\delta(\omega)$
Ableitung im Frequenzbereich	$t^n f(t)$	O	$j^n \frac{\partial F(\omega)}{\partial \omega^n}$
Faltung im Zeitbereich	f(t) * g(t)	O	$F(\omega) \cdot G(\omega)$
Faltung im Frequenzbereich	$f(t) \cdot g(t)$	O	$\frac{1}{2\pi}F(\omega)*G(j\omega)$
Vertauschungssatz (Dualität)	f(t)	○	$F(\omega)$
	F(t)	0	$2\pi \cdot f(-\omega)$
Modulation	$\cos(\alpha t) \cdot f(t)$	O	$\frac{1}{2} \cdot [F(\omega - \alpha) + F(\omega + \alpha)]$
	$\sin(\alpha t) \cdot f(t)$	O	$\frac{1}{2j} \cdot [F(\omega - \alpha) - F(\omega + \alpha)]$
Parseval's Theorem	$\int\limits_{-\infty}^{\infty}f(t)g^*(t)dt$	=	$\frac{1}{2\pi} \int\limits_{-\infty}^{\infty} F(\omega) G^*(\omega) d\omega$
Bessel's Theorem (Satz von Parseval)	$\int_{-\infty}^{\infty} f(t) ^2 dt$	=	$\frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) G^*(\omega) d\omega$ $\frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$
Anfangswerte	$f(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) d\omega$		$F(0) = \int_{-\infty}^{\infty} f(t)dt$
∞ lange Folge von δ-Impulsen			$\sum_{n=-\infty}^{\infty} \frac{2\pi}{t_0} \delta(\omega - n \cdot \frac{2\pi}{t_0})$

6 Laplace Transformation

$$F(s) = \int_{0}^{\infty} f(t)e^{-st}dt$$
 $s = \sigma + j\omega$

- Definitionsbereich nur für **kausale** Systeme $t \ge 0$
- Integrierbar über das Intervall $(0, \infty)$
- Wachstum kleiner als der von eienr Exponentialfunktion $\sigma > 0$
- σ ist der Dämpfungsfaktor: $e^{-s} = e^{-\sigma} \cdot e^{-j\omega}$
- Fourier-Transformierte $F(\omega)$ kann durch die Laplace-Transformation F(s) ausgedrückt werden.
- Fourier \longleftrightarrow Laplace Umwandlungen nur wenn Polstelle ($\sigma > 0$) dh. links von $j\omega$ Achse und kausal!
- f(0+): Entspricht der Anfangsbedingung zum Zeitpunkt > 0 (kausal).

6.1 Eigenschaften

Linearität	$\alpha \cdot f(t) + \beta \cdot g(t)$	O	$\alpha \cdot F(s) + \beta \cdot G(s)$
Verschiebung im Zeitbereich	$f(t \pm t_0)$	○	$F(s)e^{\pm t_0s}$
Dämpfung (Verschiebung im Frequenzbereich)	$f(t)e^{\mp \alpha t}$	○	$F(s \pm \alpha)$
"Ahnlichkeit	$f(\alpha t)$	O	$\frac{1}{\alpha}F\left(\frac{s}{\alpha}\right) 0 < \alpha \in \mathbb{R}$
Faltung im Zeitbereich	f(t) * g(t)	O	$F(s) \cdot G(s)$
Faltung im Frequenzbereich	$f(t) \cdot g(t)$	O—•	$\frac{1}{2\pi j}F(s)*G(s)$
Differentiation im Zeitbereich	$\int f'(t)$	O—•	sF(s) - f(0+)
	$\int f''(t)$	○	$s^2F(s) - sf(0+) - f'(0+)$
	$\int f^{(n)}(t)$	○—●	$s^n F(s) - s^{n-1} f(0+) - s^{n-2} f'(0+) - \dots - s f^{(n-2)}(0+) - f^{(n-1)}(0+)$
Diffrentation im Frequenzbereich	$(-t)^n f(t)$	○	$F^{(n)}(s)$
Integration	$\int\limits_0^t f(\tau)d\tau$	0	$\frac{F(s)}{s}$
Anfangswert	$\lim_{t\to 0} f(t)$ muss exist.	=	$\lim_{s\to\infty} sF(s)$
Endwert	$\lim_{t\to\infty} f(t)$ muss exist.	=	$\lim_{s\to 0} sF(s)$

6.2 Von Laplace zu Fourier

 $s \to j\omega$ Dies kann nur gemacht werden wenn Polstelle $(\sigma > 0)$ links von $j\omega$ -Achse ist und das System kausal ist.

6.3 Rücktransformation (Komplexe Integration)

$$f(t) = \int_{x-j\infty}^{x+j\infty} F(s) \cdot e^{st} \cdot ds$$

6.4 Vorgehen Rücktransformation

- 1. Ansatz Versuchen Zähler Gleichnamig mit Nenner machen un danach kürzen (Korrekturen!)
- 2. Ansatz Partitialbruchzerlegung

6.5 Rücktransformation über Tabelle

 $\sigma = \text{Sprungfunktion}$. Wenn 1 transformiert wird, soll σ genommen werden (also im Frequenzbereich $\frac{1}{s}$).

$\sigma(t)$	○ —●	$\frac{1}{s}$	$\sigma(t) \cdot t^2 \cdot e^{\alphat}$	○	$\frac{2}{(s-\alpha)^3}$
$\sigma(t) \cdot t$	○ —●	$\frac{1}{s^2}$	$\sigma(t) \cdot t^n \cdot e^{\alpha t}$	○	$\frac{n!}{(s-\alpha)^{n+1}}$
$\sigma(t) \cdot t^2$	○ —●	$\frac{2}{s^3}$	$\sigma(t) \cdot \sin{(\omega t)}$	○	$\frac{\omega}{s^2 + \omega^2}$
$\sigma(t) \cdot t^n$	○ —●	$\frac{n!}{s^{n+1}}$	$\sigma(t) \cdot \cos(\omega t)$	○	$\frac{s}{s^2 + \omega^2}$
$\sigma(t) \cdot e^{\alpha t}$	○ —●	$\frac{1}{s-\alpha}$	$\delta(t)$	○ —●	1(s)
$\sigma(t) \cdot t \cdot e^{\alpha t}$	0	$\frac{1}{(s-\alpha)^2}$	$\delta(t-a)$	O	$e^{-a s}$

7 Mathe Grundlagen

7.1 Partialbruchzerlegung

$$f(x) = \frac{x^2 + 20x + 149}{x^3 + 4x^2 - 11x - 30} \Rightarrow \text{Nenner faktorisieren mit}_{\text{Hornerschema, Binom, etc.}} \Rightarrow x^3 + 4x^2 - 11x - 30 = (x+2)(x^2 + 2x - 15) = (x+2)(x+5)(x-3)$$

Ansatz:

$$f(x) = \frac{x^2 + 20x + 149}{x^3 + 4x^2 - 11x - 30} = \frac{A}{x - 3} + \frac{B}{x + 2} + \frac{C}{x + 5} = \frac{A(x + 2)(x + 5) + B(x - 3)(x + 5) + C(x - 3)(x + 2)}{(x - 3)(x + 2)(x + 5)}$$

Gleichungssystem aufstellen mit beliebigen x_i -Werten (am Besten Polstellen oder 0,1,-1 wählen):

$$\begin{array}{l} x_1 = 3: \ -9 + 60 + 149 = A \cdot 5 \cdot 8 \quad \Rightarrow A = 5 \\ x_2 = -2: \ -4 - 40 + 149 = B(-5) \cdot 3 \ \Rightarrow B = -7 \\ x_3 = -5: \ -25 - 100 + 149 = C(-8)(-3) \Rightarrow C = 1 \end{array} \Rightarrow f(x) = \frac{5}{x - 3} - \frac{7}{x + 2} + \frac{1}{x + 5}$$

weitere Ansätze für andere Typen von Termen:

$$f(x) = \frac{5x^2 - 37x + 54}{x^3 - 6x^2 + 9x} = \frac{A}{x} + \frac{B}{x - 3} + \frac{C}{(x - 3)^2} = \frac{A(x - 3)^2 + Bx(x - 3) + Cx}{x(x - 3)^2}$$

$$f(x) = \frac{1,5x}{x^3 - 6x^2 + 12x - 8} = \frac{A}{x - 2} + \frac{B}{(x - 2)^2} + \frac{C}{(x - 2)^3} = \frac{A(x - 2)^2 + B(x - 2) + C}{(x - 2)^3}$$

$$f(x) = \frac{x^2 - 1}{x^3 + 2x^2 - 2x - 12} = \frac{A}{x - 2} + \frac{Bx + C}{x^2 + 4x + 6} = \frac{A(x^2 + 4x + 6) + (Bx + C)(x - 2)}{(x - 2)(x^2 + 4x + 6)}$$

7.1.1 Hornerschema

- Pfeile \Rightarrow Multiplikation
- Zahlen pro Spalte werden addiert

 $x_1 \Rightarrow$ Nullstelle (muss erraten werden!!) oberste Zeile = zu zerlegendes Polynom

Reispiel

Beispie:

$$f(x) = x^{3} - 67x - 126$$

$$x_{1} = -2$$

$$\begin{vmatrix}
1 & 0 & -67 & -126 \\
-2 & 4 & +126
\end{vmatrix}$$

$$\begin{vmatrix}
1 & -2 & -63 & 0 = f(-2) \\
\uparrow & \uparrow & \uparrow \\
b_{2} & b_{1} & b_{0}
\end{vmatrix}$$

$$\Rightarrow f(x) = (x - x_{1})(b_{2}x^{2} + b_{1}x + b_{0}) = (x + 2)(x^{2} - 2x - 63)$$

7.2 Trigonometrie

$$\sin^2(b) + \cos^2(b) = 1 \qquad \tan(b) = \frac{\sin(b)}{\cos(b)} \qquad \cosh(b)^2 - \sinh(b)^2 = 1 \qquad \tanh(b) = \frac{\sinh(b)}{\cosh(b)}$$

7.2.1 Funktionswerte für Winkelargumente

deg	rad	sin	cos	tan
0	0	0	1	0
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$

\deg	rad	sin	cos
90	$\frac{\pi}{2}$	1	0
120	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$
135	$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$
150	$\frac{5\pi}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$

deg	rad	sin	cos
180	π	0	-1
210	$\frac{7\pi}{6}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$
225	$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$
240	$\frac{4\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$

deg	rad	sin	cos
270	$\frac{3\pi}{2}$	-1	0
300	$\frac{5\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
315	$\frac{7\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
330	$\frac{11\pi}{6}$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$

7.2.2 Quadrantenbeziehungen

$$sin(-a) = -\sin(a)
sin(\pi - a) = sin(a)
sin(\pi + a) = -\sin(a)
sin(\frac{\pi}{2} - a) = \sin(\frac{\pi}{2} + a) = \cos(a)$$

$$cos(-a) = cos(a)
cos(\pi - a) = -\cos(a)
cos(\pi + a) = -\cos(a)
cos(\frac{\pi}{2} - a) = -\cos(\frac{\pi}{2} + a) = \sin(a)$$

Additionstheoreme
$$\sin(a \pm b) = \sin(a) \cdot \cos(b) \pm \cos(a) \cdot \sin(b)$$
 $\cos(a \pm b) = \cos(a) \cdot \cos(b) \mp \sin(a) \cdot \sin(b)$ $\tan(a \pm b) = \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a) \cdot \tan(b)}$

7.2.3 Doppel- und Halbwinkel

$$\sin(2a) = 2\sin(a)\cos(a) \quad \cos(2a) = \cos^2(a) - \sin^2(a) = 2\cos^2(a) - 1 = 1 - 2\sin^2(a)$$

$$\cos^2\left(\frac{a}{2}\right) = \frac{1+\cos(a)}{2} \qquad \sin^2\left(\frac{a}{2}\right) = \frac{1-\cos(a)}{2}$$

7.2.4 Produkte

$$\sin(a)\sin(b) = \frac{1}{2}(\cos(a-b) - \cos(a+b))$$

$$\cos(a)\cos(b) = \frac{1}{2}(\cos(a-b) + \cos(a+b))$$

$$\sin(a)\cos(b) = \frac{1}{2}(\sin(a-b) + \sin(a+b))$$

7.2.6 Summe und Differenz

$$\begin{aligned} \sin(a) + \sin(b) &= 2 \cdot \sin\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right) \\ \sin(a) - \sin(b) &= 2 \cdot \sin\left(\frac{a-b}{2}\right) \cdot \cos\left(\frac{a+b}{2}\right) \\ \cos(a) + \cos(b) &= 2 \cdot \cos\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right) \\ \cos(a) - \cos(b) &= -2 \cdot \sin\left(\frac{a+b}{2}\right) \cdot \sin\left(\frac{a-b}{2}\right) \\ \tan(a) &\pm \tan(b) &= \frac{\sin(a \pm b)}{\cos(a)\cos(b)} \end{aligned}$$

7.2.5 Hyperbolic

$$\sinh(z) = \frac{1}{2} (e^z - e^{-z})$$
 $\cosh(z) = \frac{1}{2} (e^z + e^{-z})$

7.2.7 Euler

$$sin(z) = \frac{e^{jz} - e^{-jz}}{2j} \qquad cos(z) = \frac{e^{jz} + e^{-jz}}{2} \qquad e^{j\varphi} = cjs(\varphi) = cos(\varphi) + jsin(\varphi)$$

7.2.8 Komplex

Betrag:
$$|z|=\sqrt{Re(z)^2+Im(z)^2}=\sqrt{z\cdot\bar{z}}$$
 Konjugiertkomplex:
$$z=z_1+jz_2 \qquad \qquad \bar{z}=z^*=z_1-jz_2$$

7.3 Taylor Polynom

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2}h^2 + \frac{f'''(x_0)}{3!}h^3 + \dots + \frac{f^{(n)}(x_0)}{n!}h^n + R_n(x_0, h)$$

7.4 Integralrechnung

Integration
$$A = \int_a^b f(t)dt = [F(t)]_a^b = F(b) - F(a)$$
 Linearität
$$\int f(\alpha x + \beta)dx = \frac{1}{\alpha} \cdot F(\alpha x + \beta) + C$$
 Partielle Integration
$$\int_a^b u'(x) \cdot v(x)dx = \left[u(x) \cdot v(x)\right]_a^b - \int_a^b u(x) \cdot v'(x)dx$$

```
Substitution (Rationalisierung) t = \tan \frac{x}{2}, \quad dx = \frac{2dt}{1+t^2} \quad \sin x = \frac{2t}{1+t^2} \quad \cos x = \frac{1-t^2}{1+t^2} \quad \int R(\sin(x)\cos(x))dx Allgemeine Substitution \int_a^b f(x)dx = \int_{g^{-1}(a)}^{g^{-1}(b)} f(g(t)) \cdot g'(t)dt \quad t = g^{-1}(x) \quad \boxed{\mathbf{x} = \mathbf{g}(t)} \quad dx = g'(t) \cdot dt Logarithmische Integration \int \frac{f'(x)}{f(x)}dx = \ln|f(x)| + C \quad (f(x) \neq 1) Spezielle Form des Integranden \int_a^b f'(x) \cdot (f(x))^\alpha dx = f(x)^{\alpha+1} \cdot \frac{1}{\alpha+1} + C \quad (\alpha \neq -1) Differentiation \int_a^b f'(t)dt = f(b) - f(a) \quad \frac{d}{dx} \int_1^x f(t)dt = f(x)
```

```
\int \mathrm{d}x = x + C
 \int_{0}^{\infty} x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ x \in \mathbb{R}^{+}, \ \alpha \in \mathbb{R} \setminus \{-1\}
 \int_{0}^{\infty} \frac{1}{x} dx = \ln|x| + C, \ x \neq 0
\int_{0}^{\infty} e^{x} dx = e^{x} + C
\int_{0}^{\infty} a^{x} dx = \frac{a^{x}}{\ln(a)} + C, \ a \in \mathbb{R}^{+} \setminus \{1\}
  \int \sin x dx = -\cos x + C
   \int \cos x dx = \sin x + C
 \int_{\frac{\sin^2 x}{\cos^2 x}} \frac{dx}{\cot^2 x} = -\cot(x) + C, \ x \neq k\pi \text{ mit } k \in \mathbb{Z}
\int_{\frac{\cos^2 x}{\cos^2 x}} \frac{dx}{\cot^2 x} = \tan(x) + C, \ x \neq \frac{\pi}{2} + k\pi \text{ mit } k \in \mathbb{Z}
  \int \sinh(x) dx = \cosh(x) + C
  \int \cosh(x) dx = \sinh(x) + C
  \int \frac{\mathrm{d}x}{\sinh^2 x} = -\coth(x) + C, \ x \neq 0
 \int \frac{\mathrm{d}x}{\cosh^2 x} = \tanh(x) + C, \ x \neq 0
 \int \frac{dx}{ax+b} = \frac{1}{a} \ln|ax+b| + C, \ a \neq 0, \ x \neq -\frac{b}{a}
\int \frac{dx}{a^2 x^2 + b^2} = \frac{1}{ab} \arctan(\frac{a}{b}x) + C, \ a \neq 0, \ x \neq -\frac{b}{a} \ x \neq -\frac{b}{a}
\int \frac{dx}{a^2 x^2 - b^2} = \frac{1}{2ab} \ln|\frac{ax - b}{ax + b}| + C, \ a \neq 0, \ x \neq -\frac{b}{a} \ x \neq -\frac{b}{a}
\int \frac{a^{2}x^{2}-b^{2}-2ab}{\sqrt{a^{2}x^{2}+b^{2}}} \frac{\ln |ax+b|+C, u\neq 0, u\neq 0, u\neq a}{\sqrt{a^{2}x^{2}+b^{2}}} \frac{1}{2a} \ln (ax+\sqrt{a^{2}x^{2}+b^{2}}) + C, a\neq 0, b\neq 0
\int \sqrt{a^{2}x^{2}-b^{2}} dx = \frac{x}{2} \sqrt{a^{2}x^{2}-b^{2}} + \frac{b^{2}}{2a} \ln |ax+\sqrt{a^{2}x^{2}-b^{2}}| + C, a\neq 0, b\neq 0, a^{2}x^{2} \geq b^{2}
\int \sqrt{b^{2}-a^{2}x^{2}} dx = \frac{x}{2} \sqrt{b^{2}-a^{2}x^{2}+\frac{b^{2}}{2a}} \arcsin(\frac{a}{b}x) + C), a\neq 0, b\neq 0, a^{2}x^{2} \geq b^{2}
\int \frac{dx}{\sqrt{a^{2}x^{2}-b^{2}}} = \frac{1}{a} \ln (ax+\sqrt{a^{2}x^{2}+b^{2}}) + C, a\neq 0, b\neq 0
\int \frac{dx}{\sqrt{a^{2}x^{2}-b^{2}}} = \frac{1}{a} \ln (ax+\sqrt{a^{2}x^{2}-b^{2}}) + C, a\neq 0, b\neq 0
\int \frac{dx}{\sqrt{a^{2}x^{2}-b^{2}}} = \frac{1}{a} \ln (ax+\sqrt{a^{2}x^{2}-b^{2}}) + C, a\neq 0, b\neq 0
 \int \frac{dx}{\sqrt{b^2 - a^2 x^2}} = \frac{1}{a} \arcsin(\frac{a}{b}x) + C, \ a \neq 0, \ b \neq 0, \ a^2 x^2 < b^2
 Die Integrale \int \frac{dx}{X}, \int \sqrt{X} dx, \int \frac{dx}{\sqrt{X}} mit X = ax^2 + 2bx + c, a \neq 0, werden durch die Umformung X = a\left(x + \frac{b}{a}\right)^2 + \left(c - \frac{b^2}{a}\right)
 und die Substitution t = x + \frac{b}{a} in die Integrale 15. bis 22. transformiert.
 \int \frac{x \, dx}{X} = \frac{1}{2a} \ln|X| - \frac{b}{a} \int \frac{dx}{X}, \ a \neq 0, \ X = ax^2 + 2bx + c
\int \frac{1}{\sin^{2}(ax)} \frac{1}{dx} \frac{1}{-a} \int \frac{1}{X}, \ a \neq 0, \ A = ax + 20x + C
\int \sin^{2}(ax) dx = \frac{x}{2} - \frac{1}{4a} \cdot \sin(2ax) + C, \ a \neq 0
\int \cos^{2}(ax) dx = \frac{x}{2} + \frac{1}{4a} \cdot \sin(2ax) + C, \ a \neq 0
\int \sin^{n}(ax) dx = \frac{\sin^{n-1}(ax) \cdot \cos(ax)}{na} + \frac{n-1}{n} \int \sin^{n-2}(ax) dx, \ n \in \mathbb{N}, \ a \neq 0
\int \cos^{n}(ax) dx = \frac{\cos^{n-1}(ax) \cdot \sin(ax)}{na} + \frac{n-1}{n} \int \cos^{n-2}(ax) dx, \ n \in \mathbb{N}, \ a \neq 0
\int \frac{dx}{\sin(ax)} = \frac{1}{a} \ln|\tan(\frac{ax}{2})| + C, \ a \neq 0, \ x \neq k \frac{\pi}{a} \text{ mit } k \in \mathbb{Z}
 \int \frac{dx}{\cos(ax)} = \frac{1}{a} \ln \left| \tan(\frac{ax}{2} + \frac{\pi}{4}) \right| + C, \ a \neq 0, \ x \neq \frac{\pi}{2a} + k\frac{\pi}{a} \text{ mit } k \in \mathbb{Z}
 \int \tan(ax) dx = -\frac{1}{a} \ln|\cos(ax)| + C, \ a \neq 0, \ x \neq \frac{\pi}{2a} + k\frac{\pi}{a} \text{ mit } k \in \mathbb{Z}\int \cot(ax) dx = \frac{1}{a} \ln|\sin(ax)| + C, \ a \neq 0, \ x \neq k\frac{\pi}{a} \text{ mit } k \in \mathbb{Z}
 \int \cos(ax) dx = \frac{1}{a} \min (ax) | + C, a \neq 0, x \neq n_a \text{ into } n \in \mathbb{Z}
\int x^n \sin(ax) dx = -\frac{x^n}{a} \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) dx, n \in \mathbb{N}, a \neq 0
\int x^n \cos(ax) dx = \frac{x^n}{a} \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) dx, n \in \mathbb{N}, a \neq 0
\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx, n \in \mathbb{N}, a \neq 0
\int e^{ax} \sin(bx) dx = \frac{e^{ax}}{a^2 + b^2} (a \cdot \sin(bx) - b \cdot \cos(bx)) + C, a \neq 0, b \neq 0
 \int e^{ax} \cos(bx) dx = \frac{e^{ax}}{a^2 + b^2} (a \cdot \cos(bx) + b \cdot \sin(bx)) + C, \ a \neq 0, \ b \neq 0
 \int \ln(x) dx = x(\ln(x) - 1) + C, \ x \in \mathbb{R}^+\int x^{\alpha} \cdot \ln(x) dx = \frac{x^{\alpha+1}}{(\alpha+1)^2} [(\alpha+1)\ln(x) - 1] + C, \ x \in \mathbb{R}^+, \ \alpha \in \mathbb{R} \setminus \{-1\}
```

7.5 Differentialgleichungen

7.5.1 Lineare Differentialgleichungen 1. Ordnung

Form: y' + f(x)y = g(x) Vorgehen: $y = y_H + y_p$ $y_H = k \cdot e^{-\int f(x)dx}$ wobei $k = y_0$ $y_p = k \cdot e^{-\int f(x)dx}$ wobei $k = \int (g(x) \cdot e^{\int f(x)dx})dx$

7.5.2 Lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten

Form: $y'' + a_1 \cdot y' + a_0 \cdot y = f(x)$ St"orglied: f(x)

Homogene Differentialgleichung: f(x) = 0 Inhomogene Differentialgleichung: $f(x) \neq 0$

7.5.3 Allgemeine Lösung einer homogenen DGL: Y_H

 $\begin{array}{ll} \textbf{Charakteristisches Polynom} & \underline{\lambda^2 + a_1 \cdot \lambda + a_0 = 0} & \text{von} & \underline{y'' + a_1 \cdot y' + a_0 \cdot y = 0} & (\lambda_{1,2} = -\frac{a_1}{2} \pm \frac{\sqrt{a_1^2 - 4a_0}}{2}) \\ \textbf{Falls } \lambda_1 \neq \lambda_2 \text{ und } \lambda_{1,2} \in R: & Y_H = Ae^{\lambda_1 x} + Be^{\lambda_2 x} \\ \textbf{Falls } \lambda_1 = \lambda_2 \text{ und } \lambda_{1,2} \in R: & Y_H = e^{\lambda_1 x} (A + B \cdot x) \\ \textbf{Falls } \lambda_{1,2} = -\frac{a_1}{2} \pm j\alpha: & Y_H = e^{-\frac{1}{2}a_1 x} (Acos(\alpha x) + Bsin(\alpha x)) \end{array}$

7.5.4 Allgemeine L"osung einer inhomogenen DGL: $y = Y_H + y_P$

Grundl"oseverfahren einer inhomogenen DGL:

Homogene DGL: $y'' + a_1 \cdot y' + a_0 \cdot y = 0$ f"ur die $(g(x) = Y_H)$ homogene Loesung) $g(x_0) = 0$ und $g'(x_0) = 1$ gilt, ist:

$$y_P(x) = \int_{x_0}^{x} g(x + x_0 - t) \cdot f(t)dt$$

die partikul" are L"osung von $y'' + a_1 \cdot y' + a_0 \cdot y = f(x)$

Der Ansatz einer inh. DGL in Form des St"orgliedes: y_P

 $\begin{array}{ll} f(x)=p_n(x) & (p_n(x) \text{ und } q_n(x) \text{ sind Polynome vom gleichen Grad}) \\ \text{Fall a: } a_0 \neq 0: & y_P=q_n(x) \\ \text{Fall b: } a_0=0, a_1 \neq 0: & y_P=x \cdot q_n(x) \\ \text{Fall c: } a_0=a_1=0: & y_P=x^2 \cdot q_n(x) \end{array}$

 $f(x) = e^{bx} \cdot p_n(x)$

Fall a: b nicht Nullstelle des char. Polynoms: $y_P = e^{bx} \cdot q_n(x)$ Fall b: b einfache Nullstelle des char. Polynoms: $y_P = e^{bx} \cdot x \cdot q_n(x)$ Fall c: b zweifache Nullstelle des char. Polynoms: $y_P = e^{bx} \cdot x^2 \cdot q_n(x)$

 $f(x) = e^{cx} \cdot (p_n(x)\cos(bx) + q_n(x)\sin(bx))$

Fall a: c+jb nicht Loesung der char. Gleichung: $y_P = e^{cx} \cdot (r_n(x)\cos(bx) + s_n(x)\sin(bx))$ Fall b: c+jb Loesung der char. Gleichung: $y_P = e^{cx} \cdot x \cdot (r_n(x)\cos(bx) + s_n(x)\sin(bx))$

Superpositionsprinzip

 $\begin{array}{ll} f(x) = c_1 f_1(x) + c_2 f_2(x) \\ y_1 \text{ ist spezielle L"osung der DGL} & y'' + a_1 \cdot y' + a_0 \cdot y = c_1 f_1(x) \\ y_2 \text{ ist spezielle L"osung der DGL} & y'' + a_1 \cdot y' + a_0 \cdot y = c_2 f_2(x) \\ \text{dann ist:} & y_P = c_1 y_1 + c_2 y_2 \end{array}$

Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten 7.5.5

 $y^{(n)} + a_{n-1} \cdot y^{(n-1)} + \ldots + a_0 \cdot y = f(x) \Leftrightarrow \sum_{k=0}^{n} a_k y^{(k)} = f(x)$ Form:

Homogene L"osungen

Fall a: r reelle L"osungen λ : $y_1 = e^{\lambda x}, \ y_2 = xe^{\lambda x}, \dots, y_r = x^{r-1}e^{\lambda x}$ Fall b: k komplexe L"osungen $\lambda = \alpha + j\beta$: $y_1 = e^{\alpha x}\cos(\beta x), \ y_3 = e^{\alpha x}x^1\cos(\beta x), \dots \text{ (ungerade)}$ $y_2 = e^{\alpha x}\sin(\beta x), \ y_4 = e^{\alpha x}x^1\sin(\beta x), \dots \text{ (gerade)}$

Starke D"ampfung/Kriechfall Schwache D"ampfung / Schwingfall

Freiheitsgrade (A, B, C, ...) und zusaetzliches x^n nicht vergessen!!!

Allgemeinste L"osung des partikul"aren Teils:

$$\sum_{\substack{k=0\\f(y,y',y'',\ldots)}}^n a_k y^{(k)} = \underbrace{e^{\alpha x} \big(p_{m1}(x)\cos(\beta x) + q_{m2}(x)\sin(\beta x)\big)}_{\text{St"orglied}}$$

Unterscheide die L"osungen des charakteristischen Polynoms (λ):

mit m = max(m1, m2)

Fall a: $\alpha + j\beta \neq \lambda$, so ist Fall b: $\alpha + j\beta$ ist u-fache L"osung von λ , so ist $y_P = e^{\alpha x} (r_m(x)\cos(\beta x) + s_m(x)\sin(\beta x))$ $y_P = e^{\alpha x} x^u (r_m(x) \cos(\beta x) + s_m(x) \sin(\beta x))$ u-fache Resonanz

Frundl''oseverfahren
$$\begin{pmatrix} g(x_0) = 0 = c_1 g_1(x_0) + c_2 g_2(x_0) + \ldots + c_n(x_0) \\ g'(x_0) = 0 = c_1 g'_1(x_0) + c_2 g'_2(x_0) + \ldots + c_n g'_n(x_0) \\ \vdots & \vdots \\ g^{(n-1)}(x_0) = 1 = c_1 g_1^{(n-1)}(x_0) + c_2 g_2^{(n-1)}(x_0) + \ldots + c_n g_n^{(n-1)}(x_0) \end{pmatrix}$$
ergibt c_1, \ldots, c_n f''ur $y_P(x) = \int_{x_0}^x g(x + x_0 - t) f(t) dt$

Lineare Differentialgleichungssysteme erster Ordnung mit konstanten Koeffizienten

Form:

$$\dot{x} = ax + by + f(t) \leftrightarrow y = \frac{1}{b}(\dot{x} - ax - f(t))$$

$$\dot{y} = cx + dy + g(t)$$

Die allgem. L''osung ergibt sich aus der DGL: $\ddot{x} - (a+d)\dot{x} + (ad-bc)x = \dot{f}(t) - d \cdot f(t) + b \cdot g(t)$ $\ddot{x}, \dot{x}, \dot{y}$ sind jeweils nach t abgeleitet!

7.5.7 DGL mit Laplacetransformation L"osen

Um eine DGL mit Laplace(kausal!) zu l"osen muss die gleichung zuerst in den Bildbereich transformiert werden. Nachher kann die gleichung Algebraisch gel"ost werden. Das Resultat muss dann "uber die R"ucktransformation wieder in den Orginalbereich transformiert werden.

- $H(s) = \frac{1}{p(s)}$ wobei p(s) das charakteristische Polynom darstellt

Stabilit"at

Ein System ist Stabil wenn die Nullstelle vom charakteristischen Polynom p(s) in der Linken Halbebene zuliegen kommt:

7.5.8 G"angige DGLs

$$\begin{array}{llll} \text{DGL} & \text{L"osung} \\ \frac{dx}{dt} = 0 & C & \frac{dx}{dt} = 1 & t+C \\ \frac{dx}{dt} = y & t \cdot y + C & \frac{dx}{dt} = kx & Ce^{kt} \\ \frac{du}{dt} = \sin(t) & C - \cos(t) & \frac{d^2x}{dt^2} = k^2x & A * \cosh(kt) + B * \sinh(kt) = \frac{1}{2}((A+B)e^{kt} + (A-B)e^{-kt}) \\ \frac{d^2x(t)}{dt^2} = -\omega^2x(t) & A\cos(\omega t) + B\sin(\omega t) \end{array}$$

7.6 Differential-Rechnung

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta)x - f(x_0)}{\Delta x}$$

Kettenregel:
$$f(g(x))' = g'(x) \cdot f'(g(x)) \text{ oder } \frac{df(g(x))}{dx} = f'(g(x)) \cdot g'(x)$$

Produktregel:
$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Produktregel:
$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Quotientenregel: $\frac{f(x)}{g(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$

Diverses

7.7.1 Quadratische Lösungsformel

$$ax^2 + bx + c = 0$$
 \Rightarrow $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

7.7.3 Matrizeninversion

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad \Rightarrow \quad A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

7.7.5 TI-89

Gleichung für mehrere Werte

$$(3x + y^2) \mid x = 1 \text{ and } y = 2 \rightarrow Resultat$$

Matrizeneditor

- APPS / Data/Matrix Editor
- New
- Type: Matrix
- Variable, Row, Column definieren
- Werte eingeben

Gespeicherte Variabeln löschen

- Explorer: 2nd / VAR-LINK
- Variable anwählen
- löschen: DEL
- Löschen Bestätigen: ENTER

7.7.2 Determinanten

$$\det \begin{pmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \end{pmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

7.7.4 Eigenwerte/Eigenvektoren

Eigenwert: $det(A - \lambda I) \Rightarrow \lambda i$ Eigenvektor: $(A - \lambda_i I)v = 0 \implies v_i$ (Für jedes λ_i) Definition: $A \cdot v = \lambda \cdot v$