Complete Orthogonal Functions fourier series + transform
i
The separation of the Laplace equations leads
to a large number of complete eigenfunctions.
These are usually not normalized. Here we
These are usually not normalized. Here we will recall some properties of all eigen-for expansions.
Take Fourier Series for definiteness. The eigenfens are:
$\langle x n\rangle = \Psi_n(x) = \left[e^{ik_nx}\right]$ with $k_n = 2\pi n$ then
F(x)
- 4/2
Take Fig. 1
Take any periodic function, F(x), and expand
following properties of eight functions
following properties of eigenfunctions (1) Orthogonality:
<n, in,=""> = Cn, Sn,n, \ Dirac Notation</n,>
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
or $\left[d\times\left[e^{t_1k_n}X\right]e^{ik_n}X\right]=LS_{n_1n_2}\leftarrow Conventional$
notation notation
()
2) Expansion and Expansion coefficients:
$ F\rangle = \sum_{n} F_{n} n\rangle \text{where} F_{n} = \langle n F\rangle$

$$\frac{1}{2} = \int_{-L/2}^{L/2} \left[e^{ik_n x} \right]^* F(x) dx$$

3) Complete ness

$$|F\rangle = \sum_{n} |n\rangle F_{n}$$

$$= \left(\frac{\sum_{n} |n\rangle \langle n|}{\sum_{n} |n\rangle}\right) |F\rangle$$

So the underlined term must be the identity operator. In the fourier case we have for x, x' in -L \(\in \) x' \le L/\(\)

$$\frac{1}{L} \frac{\sum \left[e^{ik_n X} \right]^* \left[e^{ik_n X'} \right]}{k} = S(x - x')$$

