

Analyzing Time Period Aggregation Methods for Power System Investment and Operation Models with Renewables and **Storage**

Authors: Sonja Wogrin, Diego A. Tejada-Arango, Salvador Pineda, and Juan Miguel Morales

October 20-23, 2019.

Outline

TIME-AGGREGATION METHODS

CASE STUDIES

CONCLUSIONS

Computational burden due to time horizon

	OPERATION	PLANNING		
Horizon	1 second - 1 week	1 year - 20 years		
Decisions	Generation dispach	Generation investments		
Decisions	Power flows	Line investments		
Objective	Min production cost	Min prod. $+$ inv. cost		
	Generation = Demand	Generation = Demand		
Constraints	Unit technical limits	Unit technical limits		
	Line technical limits	Line technical limits		
Comput. burden	Medium	Very high		

How to overcome computational burden?

Clustering techniques are applied to reduce the (hourly) temporal representation of data series:

Load Blocks/System States

Representative Periods

Reduce computational complexity

Loss of chronological information! (How to represent technical constraints s.a. ramping, or storage? How to incorporate renewables?)

Is it possible to co-optimize short and long term?

Detailed long-term Simplified short-term

Detailed short-term Simplified long-term

Iterative approach between two models

Is it possible to optimize both at the same time?

Outline

TIME-AGGREGATION METHODS

Chronological time-period clustering (CTPC)

- Instead of using representative days, we propose a new clustering methodology to group consecutive hours and maintain chronology.
- By doing so we can capture the longer dynamics of power generation from renewable sources such as wind.
- In addition, we can model the **operation of the batteries** more accurately since we maintain the chronology of the data.

Source: S. Pineda and J. M. Morales. "Chronological Time-Period Clustering for Optimal Capacity Expansion Planning With Storage." in IEEE Transactions on Power Systems. vol. 33. no. 6. pp. 7162-7170. Nov. 2018.

Enhanced Representative Periods (ERP)

Cluster Index

$days \rightarrow$	d1	d2	d3	d4	d5	d6	d7
$representative \; days \rightarrow$	rp1	rp1	rp1	rp1	rp1	rp2	rp2

Transition Matrix

Source: D.A. Tejada, M. Domeshek, S. Wogrin, E. Centeno. Enhanced representative days and system states modeling for energy storage investment analysis. IEEE Transactions on Power Systems. vol. 33, no. 6, pp. 6534-6544, Nov 2018

ERP - continued

Cluster Index

$days \rightarrow 0$	d1	d2	d3	d4	d5	d6	d7
$representative\ days \rightarrow$	rp1	rp1	rp1	rp1	rp1	rp2	rp2
h	\ =1						↑ h=10

Intra-day balance equations

representative day 1 (rp1)

 $storage_{rp1_24} = storage_{rp1_23} + charge_{rp1_24} - discharge_{rp1_24}$

representative day 2 (rp2)

Inter-day balance equations

$$storage_{h=168} = storage_{h=0} + 5\sum_{i}^{24} (charge_{rp1_i} - discharge_{rp1_i}) + 2\sum_{i}^{24} (charge_{rp2_i} - discharge_{rp2_i})$$

$$storage_{h=336} = storage_{h=168} + \cdots$$

Outline

CASE STUDIES

CTPC versus ERP

Case Data

Stylized version of Spanish power system

Thermal technologies (nuclear, coal, CCGTs, OCGTs, fueloil)

Storage technologies (hydro, BESS)

Renewable technologies (wind 25%, solar 12%) 37% of total demand

Time horizon: 1 year (8760 hours)

ERP and CTPC approximate the hourly benchmark (BM) with same number of binaries.

General comparison

- BM takes 6 hours, and CTPC/ERP only minutes
- Objective function is approximated with -1.8% (CTPC) and 2.8% (ERP) error

	BM	CTPC	ERP
Obj. function [M€]	673.77	685.87	655.43
CPU time (s)	21605.11	842.48	47.10

Total generation per technology

	BM	CTPC	ERP
Nuclear	6586.38	6319.40	6740.70
FueiOilGas	0.00	0.00	0.00
BESS	376.21	142.52	336.74
Wind	7773.73	7734.73	7813.55
Solar	3907.78	3834.41	3921.87
Coal	329.68	99.38	74.38
CCGT	11314.56	11836.96	11331.04
OCGT	153.16	230.70	182.13
Hydro	1545.15	1545.15	1545.15

ERP observes no renewable spillage since it does not consider all individual hours. CTPC captures this.

Thermal base load is approximated well by both.

Coal and OCGT have higher error (happens fewer hours).

BESS is approximated well by ERP.

Storage results

- Hydro is approximated well by CTPC and ERP
- BESS has 10% error with ERP, and 60% with CTPC.
- These results depend on the length of storage cycle.

Price results

Since CTPC does not mimic daily patters its MSE is higher.

	BM	CTPC	ERP
Avg. annual price [€/MWh]	48.04	45.56	43.28
Avg. abs. error [€/MWh]	-	19.79	12.14
Avg. error [€/MWh]	-	2.47	4.76
MSE [(€/MWh)²]	-	23108	22810

Average price and error are better under CTPC

Renewable sensitivity analysis

Wind only case

- CTPC (ERP) slightly over(under)estimates total system cost
- CTPC under-estimates BESS production
- ERP over-estimates nuclear and CCGT production

Solar only case

 Solar energy has a strong daily pattern, which is difficult to capture under CTPC

Storage cycle sensitivity analysis

ERP approximates
BESS well when the
length of cycle is
relatively small.

ERP has problems to approximate BESS whose discharge cycle is beyond 24h.

Investment results preliminary (rMIP)

[MW]	ВМ	СТРС	ERP
BESS	214.03	0.00	164.75
Wind	4891.25	4826.27	5655.20
Solar	947.00	3385.94	765.46
CCGT	3490.65	1752.40	2865.84
OCGT	2699.70	1933.58	373.23

CTPC does not predict BESS investment.

ERP over-estimates Wind investment (no wind spillage).

CTPC grossly overestimates Solar production.

ERP fails to capture OCGT (due to Wind over-production)

Outline

Conclusions and future work

We have compared to time-period approx. methods: CTPC and ERP

ERP is slighly faster and better predicts BESS.

CTPC has slighly better objective function, and obtains better average market prices.

Extend these studies to MIP expansion problems

Develop a hybrid method to combine advantages of both methods.

Sonja Wogrin @comillas.edu

This work was partially supported by project grant ENE2016-79517-R awarded by the Spanish Ministerio de Economía y

