Foundations of Computing Lecture 16

Arkady Yerukhimovich

March 19, 2024

Outline

- 1 Lecture 15 Review
- 2 Proof by Reduction
- 3 Where Are We Now?
- 4 Reduction Types

Lecture 15 Review

- Countable and Uncountable Sets
 - Diagonalization
- Proving A_{TM} is Undecidable

Outline

- 1 Lecture 15 Review
- 2 Proof by Reduction
- Where Are We Now?
- 4 Reduction Types

Another Way to Prove Undecidability

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Another Way to Prove Undecidability

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Intuition

 $A \leq B$ means that:

• problem A is no harder than problem B.

Another Way to Prove Undecidability

Reductions Between Problems

There is a reduction from a problem A to a problem B if we can use a solution to problem B to solve problem A

$$A \leq B$$

Intuition

 $A \leq B$ means that:

- problem A is no harder than problem B.
- Equivalently, problem B is no easier than problem A

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

• Suppose that B is decidable

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

- Suppose that B is decidable
- Since $A \leq B$, there exists an algorithm (i.e., a reduction) that uses a solution to B to solve A

Main Observation

Suppose that $A \leq B$, then:

- If A is undecidable
- B must also be undecidable

Proof: (by contradiction)

- Suppose that B is decidable
- Since $A \leq B$, there exists an algorithm (i.e., a reduction) that uses a solution to B to solve A
- But, this means that A is decidable by running the reduction using the decider machine for B.

 $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w\}$

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

 $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w\}$

Theorem: *HALT* is undecidable Proof Sketch:

• We show that $A_{TM} \leq HALT_{TM}$

 $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w\}$

Theorem: HALT is undecidable

Proof Sketch:

- We show that $A_{TM} \leq HALT_{TM}$
- Since we know that A_{TM} is undecidable, this shows that $HALT_{TM}$ is also undecidable

 $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w\}$

Theorem: HALT is undecidable

Proof Sketch:

- We show that $A_{TM} \leq HALT_{TM}$
- Since we know that A_{TM} is undecidable, this shows that $HALT_{TM}$ is also undecidable

Proof:

Construct reduction R that decides A_{TM} given a TM D that decides HALT

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

- We show that $A_{TM} \leq HALT_{TM}$
- Since we know that A_{TM} is undecidable, this shows that $HALT_{TM}$ is also undecidable

Proof:

Construct reduction R that decides A_{TM} given a TM D that decides HALT On input $\langle M, w \rangle$, R does the following: R is $R_{TM} = R$

$$HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$$

Theorem: HALT is undecidable

Proof Sketch:

- We show that $A_{TM} \leq HALT_{TM}$
- Since we know that A_{TM} is undecidable, this shows that $HALT_{TM}$ is also undecidable

Proof:

Construct reduction R that decides A_{TM} given a TM D that decides HALT On input $\langle M, w \rangle$, R does the following:

• Run $D(\langle M, w \rangle)$

$$HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w\}$$

Theorem: HALT is undecidable

Proof Sketch:

- We show that $A_{TM} \leq HALT_{TM}$
- Since we know that A_{TM} is undecidable, this shows that $HALT_{TM}$ is also undecidable

Proof:

Construct reduction R that decides A_{TM} given a TM D that decides HALT On input $\langle M, w \rangle$, R does the following:

- Run $D(\langle M, w \rangle)$
- If D rejects M(w) doesn't halt halt and reject

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: HALT is undecidable

Proof Sketch:

- We show that $A_{TM} \leq HALT_{TM}$
- Since we know that A_{TM} is undecidable, this shows that $HALT_{TM}$ is also undecidable

Proof:

Construct reduction R that decides A_{TM} given a TM D that decides HALT On input $\langle M, w \rangle$, R does the following:

- Run $D(\langle M, w \rangle)$
- If D rejects M(w) doesn't halt halt and reject
- if D accepts M(w) halts Simulate M(w) until it halts, and output whatever M outputs

 $REGULAR_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}$

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable

Proof Sketch:

• We show that $A_{TM} \leq REGULAR_{TM}$

$$REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$$

- We show that $A_{TM} \leq REGULAR_{TM}$
- Specifically, reduction builds another TM M' s.t.

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

- We show that $A_{TM} \leq REGULAR_{TM}$
- Specifically, reduction builds another TM M' s.t.
 - If M accepts w, M' recognizes Σ^* regular language

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

- We show that $A_{TM} \leq REGULAR_{TM}$
- Specifically, reduction builds another TM M' s.t.
 - If M accepts w, M' recognizes Σ^* regular language
 - If M does not accept w, M' recognizes $\{0^n1^n\}$ not regular

$$REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$$

- We show that $A_{TM} \leq REGULAR_{TM}$
- Specifically, reduction builds another TM M' s.t.
 - If M accepts w, M' recognizes Σ^* regular language
 - If M does not accept w, M' recognizes $\{0^n1^n\}$ not regular
- If we can decide whether M' recognizes a regular language or not, can use that to decide whether M accepts w or not

$$REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

Reduction R that decides A_{TM} given a TM D that decides $REGULAR_{TM}$

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

Reduction R that decides A_{TM} given a TM D that decides $REGULAR_{TM}$ On input $\langle M, w \rangle$:

 $\bullet \ \, \text{Construct TM} \,\, M'_{\langle M,w\rangle} \,\, \text{s.t.} \,\, M'_{\langle M,w\rangle}(x) \,\, \text{is as follows:} \\$

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

- **1** Construct TM $M'_{\langle M,w\rangle}$ s.t. $M'_{\langle M,w\rangle}(x)$ is as follows:
 - If $x = 0^n 1^n$, accept

$$REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

- **①** Construct TM $M'_{\langle M,w\rangle}$ s.t. $M'_{\langle M,w\rangle}(x)$ is as follows:
 - If $x = 0^n 1^n$, accept
 - If x does not have this form, run M(w) and accept if it accepts

 $REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

- **①** Construct TM $M'_{\langle M,w\rangle}$ s.t. $M'_{\langle M,w\rangle}(x)$ is as follows:
 - If $x = 0^n 1^n$, accept
 - If x does not have this form, run M(w) and accept if it accepts
- ② Run D on input $\langle M' \rangle$

$$REGULAR_{TM} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language}\}$$

Theorem: $REGULAR_{TM}$ is undecidable

Proof:

Reduction R that decides A_{TM} given a TM D that decides REGULAR_{TM} On input $\langle M, w \rangle$:

- Construct TM $M'_{\langle M,w\rangle}$ s.t. $M'_{\langle M,w\rangle}(x)$ is as follows:
 - If $x = 0^n 1^n$, accept
 - \longrightarrow If x does not have this form, run M(w) and accept if it accepts
- ② Run D on input $\langle M' \rangle$
- Output what D outputs

Dutput what D outputs
$$M(w) = 1 : M' \text{ accepts all strong} L(n') = \mathbf{Z} - k_{\perp}$$

Modes it acque is M' accept on In Echil-Noi Reg.

Other Undecidable Languages – Exercise

$$EMPTY - STRING_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } M(\epsilon) = 1 \}$$

Outline

- 1 Lecture 15 Review
- Proof by Reduction
- Where Are We Now?
- 4 Reduction Types

Summary

Algorithms

Algorithms are critical for understanding decidability of problems

Summary

Algorithms

Algorithms are critical for understanding decidability of problems

● To show that a problem is decidable – give an algorithm that always terminates and outputs the answer

Summary

Algorithms

Algorithms are critical for understanding decidability of problems

- To show that a problem is decidable give an algorithm that always terminates and outputs the answer
- To show that a problem is undecidable give an algorithm (a reduction) that shows that this problem can be used to solve one of the undecidable problems

Question

Can reductions help us determine if a language is Turing-unrecognizable?

Question

Can reductions help us determine if a language is Turing-unrecognizable?

Recall: $\overline{A_{TM}}$ is Turing-unrecognizable

Question

Can reductions help us determine if a language is Turing-unrecognizable?

Recall: $\overline{A_{TM}}$ is Turing-unrecognizable

Problem: $\overline{A_{TM}} \leq A_{TM}$

Question

Can reductions help us determine if a language is Turing-unrecognizable?

Recall: $\overline{A_{TM}}$ is Turing-unrecognizable

Problem: $A_{TM} \leq A_{TM}$

but A_{TM} is Turing-recognizable

Question

Can reductions help us determine if a language is Turing-unrecognizable?

Recall: $\overline{A_{TM}}$ is Turing-unrecognizable

Problem: $A_{TM} \leq A_{TM}$

but A_{TM} is Turing-recognizable

Solution

We need to restrict what our reductions can do.

Outline

- 1 Lecture 15 Review
- Proof by Reduction
- 3 Where Are We Now?
- 4 Reduction Types

Definition

$$w \in A \iff f(w) \in B$$

Definition

$$w \in A \iff f(w) \in B$$

- ullet Function f is computable if it can be computed by a TM / algorithm
 - There is a TM M that starts with w on its tape, writes f(w) on its tape

Definition

$$w \in A \iff f(w) \in B$$

- ullet Function f is computable if it can be computed by a TM / algorithm
 - There is a TM M that starts with w on its tape, writes f(w) on its tape
- Such reductions are also called:
 - many-one reductions
 - Karp reductions (when only considering poly-time reductions)

Definition

$$w \in A \iff f(w) \in B$$

- ullet Function f is computable if it can be computed by a TM / algorithm
 - There is a TM M that starts with w on its tape, writes f(w) on its tape
- Such reductions are also called:
 - many-one reductions
 - Karp reductions (when only considering poly-time reductions)
- Works by mapping input $\in A$ to input $\in B$ and vice-versa

- If $A \leq_m B$
 - If B is decidable then A is decidable

- If $A \leq_m B$
 - If B is decidable then A is decidable
 - If A is undecidable then B is undecidable

- If $A \leq_m B$
 - If B is decidable then A is decidable
 - If A is undecidable then B is undecidable
- - If B is Turing-recognizable then

- If $A \leq_m B$
 - If B is decidable then A is decidable
 - If A is undecidable then B is undecidable
- - If B is Turing-recognizable then A is Turing-recognizable

- If $A \leq_m B$
 - If B is decidable then A is decidable
 - If A is undecidable then B is undecidable
- - If B is Turing-recognizable then A is Turing-recognizable
 - If A is not Turing-recognizable than B is not Turing-recognizable

Turing Reductions

Definition

Language A is Turing reducible to language B $(A \leq_{\mathcal{T}} B)$ if can use a decider for B to decide A.

Turing Reductions

Definition

Language A is Turing reducible to language B $(A \leq_T B)$ if can use a decider for B to decide A.

• The reduction may make multiple calls to decider for *B* and may not directly use the result.

Turing Reductions

Definition

Language A is Turing reducible to language B $(A \leq_T B)$ if can use a decider for B to decide A.

- The reduction may make multiple calls to decider for *B* and may not directly use the result.
- For example, in the proof that $L_{TM} \leq L_{E_{TM}}$, we flipped the result of R deciding $L_{E_{TM}}$

Turing reductions are more general than mapping reductions:

Turing reductions are more general than mapping reductions:

• If $A \leq_m B$, then $A \leq_T B$

Turing reductions are more general than mapping reductions:

- If $A \leq_m B$, then $A \leq_T B$
- ② If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$

Turing reductions are more general than mapping reductions:

- If $A \leq_m B$, then $A \leq_T B$
- ② If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$
 - In particular, $L_{TM} \leq_T \overline{L_{TM}}$, but $L_{TM} \nleq_m \overline{L_{TM}}$

Turing reductions are more general than mapping reductions:

- If $A \leq_m B$, then $A \leq_T B$
- ② If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$
 - In particular, $L_{TM} \leq_T \overline{L_{TM}}$, but $L_{TM} \nleq_m \overline{L_{TM}}$

Turing reductions are more general than mapping reductions:

- If $A \leq_m B$, then $A \leq_T B$
- ② If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$
 - In particular, $L_{TM} \leq_T \overline{L_{TM}}$, but $L_{TM} \nleq_m \overline{L_{TM}}$

- \bullet If $A \leq_T B$
 - If B is decidable then A is decidable

Turing reductions are more general than mapping reductions:

- If $A \leq_m B$, then $A \leq_T B$
- ② If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$
 - In particular, $L_{TM} \leq_T \overline{L_{TM}}$, but $L_{TM} \nleq_m \overline{L_{TM}}$

- \bullet If $A \leq_T B$
 - If B is decidable then A is decidable
 - If A is not decidable, then B is not decidable

Turing reductions are more general than mapping reductions:

- If $A \leq_m B$, then $A \leq_T B$
- ② If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$
 - In particular, $L_{TM} \leq_T \overline{L_{TM}}$, but $L_{TM} \nleq_m \overline{L_{TM}}$

- \bullet If $A \leq_T B$
 - If B is decidable then A is decidable
 - If A is not decidable, then B is not decidable
- If $A \leq_T B$
 - If B is Turing-recognizable,

Turing reductions are more general than mapping reductions:

- If $A \leq_m B$, then $A \leq_T B$
- ② If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$
 - In particular, $L_{TM} \leq_T \overline{L_{TM}}$, but $L_{TM} \nleq_m \overline{L_{TM}}$

- \bullet If $A \leq_T B$
 - If B is decidable then A is decidable
 - If A is not decidable, then B is not decidable
- If $A \leq_T B$
 - ullet If B is Turing-recognizable, A is not necessarily Turing-recognizable

Turing reductions are more general than mapping reductions:

- If $A \leq_m B$, then $A \leq_T B$
- ② If $A \leq_T B$, then it is not necessarily the case that $A \leq_m B$
 - In particular, $L_{TM} \leq_T \overline{L_{TM}}$, but $L_{TM} \nleq_m \overline{L_{TM}}$

- \bullet If $A \leq_T B$
 - If B is decidable then A is decidable
 - If A is not decidable, then B is not decidable
- \bullet If $A <_{\tau} B$
 - If B is Turing-recognizable, A is not necessarily Turing-recognizable
 - ullet If A is not Turing-recognizable, cannot say if B is Turing-recognizable