Transformaciones de autómatas finitos a expresiones regulares

Equipo FLI 2012 Facultad de Informática Universidad Complutense de Madrid

Marzo 2012

1. Método general

Dado un ϵ -AFN N, se busca una expresión regular E tal que L(N) = L(E). Suponemos que $n \geq 1$ es el número de estados, numerados de q_1 a q_n , del autómata N.

Definimos una expresión regular R_{ij}^k , con $1 \le i, j \le n$ y $0 \le k \le n$, que representa todos los caminos (en el grafo dirigido asociado al autómata) para ir desde q_i a q_j pasando por los estados q_1, \ldots, q_k (por ninguno cuando k = 0). La definición es mediante recursión sobre el índice k que mide por qué nodos se ha podido pasar.

• Casos básicos (k=0): Para todo par de estados q_i, q_j

$$R_{ij}^{0} = \begin{cases} \epsilon + a_1 + \dots + a_k & \text{si } i = j \text{ y } \{a_1, \dots, a_k\} = \{\sigma \in \Sigma \mid q_j \in \delta(q_i, \sigma)\}, \\ \epsilon & \text{si } i = j \text{ y } \varnothing = \{\sigma \in \Sigma \mid q_j \in \delta(q_i, \sigma)\}, \\ a_1 + \dots + a_k & \text{si } i \neq j \text{ y } \{a_1, \dots, a_k\} = \{\sigma \in \Sigma \cup \{\epsilon\} \mid q_j \in \delta(q_i, \sigma)\}, \\ \varnothing & \text{si } i \neq j \text{ y } \varnothing = \{\sigma \in \Sigma \cup \{\epsilon\} \mid q_j \in \delta(q_i, \sigma)\}. \end{cases}$$

• Casos recursivos $(1 \le k \le n)$: Para todo par de estados q_i, q_j ,

$$R_{ij}^k = R_{ij}^{k-1} + R_{ik}^{k-1} (R_{kk}^{k-1})^* R_{kj}^{k-1}.$$

- Simplificaciones:
 - Si i = k, $R_{kj}^k = (R_{kk}^{k-1})^* R_{kj}^{k-1}$.
 - Si k = j, $R_{ik}^k = R_{ik}^{k-1}(R_{kk}^{k-1})^*$.

Si q_{i_0} es el estado inicial y q_{i_1}, \ldots, q_{i_l} son los estados finales, la expresión regular buscada es entonces $E = R_{i_0 i_1}^n + \cdots + R_{i_0 i_l}^n$.

2. Un ejemplo detallado

Consideramos el autómata finito (determinista) que reconoce todas las cadenas sobre el alfabeto $\{a,b\}$ que no contienen la subcadena aab. Queremos calcular una expresión regular equivalente, en el sentido de que su lenguaje es el mismo que el aceptado por el autómata dado.

En este ejemplo el número de estados es n=4.

■ Paso k = 0:

$i \setminus j$	1	2	3	4
1	$\epsilon + b$	a	Ø	Ø
2	b	ϵ	a	Ø
3	Ø	Ø	$\epsilon + a$	b
4	Ø	Ø	Ø	$\epsilon + a + b$

A partir de este paso es importante recordar, de cara a simplificar las expresiones regulares resultantes, que \emptyset es el elemento cero para la concatenación de expresiones regulares:

$$E\varnothing = \varnothing$$
 v $\varnothing E = \varnothing$

y el elemento neutro para la unión (o suma) de tales expresiones:

$$E + \varnothing = E$$
 y $\varnothing + E = E$.

También es útil usar las siguientes propiedades de la clausura:

$$(\epsilon + E)^* = E^*$$
 y $(\epsilon + E)E^* = E^*$.

• Paso k = 1: Calculamos

$$R_{ij}^1 = R_{ij}^0 + R_{i1}^0 (R_{11}^0)^* R_{1j}^0$$

donde $(R_{11}^0)^* = (\epsilon + b)^* = b^*$.

$i \setminus j$	1	2	3	4
1	b^*	b^*a	Ø	Ø
2	bb^*	$\epsilon + bb^*a$	a	Ø
3	Ø	Ø	$\epsilon + a$	b
4	Ø	Ø	Ø	$\epsilon + a + b$

■ Paso k = 2: Calculamos

$$R_{ij}^2 = R_{ij}^1 + R_{i2}^1 (R_{22}^1)^* R_{2j}^1$$

donde $(R_{22}^1)^* = (\epsilon + bb^*a)^* = (bb^*a)^*$.

$i \setminus j$	1	2	3	4
1	$b^* + b^*a(bb^*a)^*bb^*$	$b^*a(bb^*a)^*$	$b^*a(bb^*a)^*a$	Ø
2	$(bb^*a)^*bb^*$	$(bb^*a)^*$	$(bb^*a)^*a$	Ø
3	Ø	Ø	$\epsilon + a$	b
4	Ø	Ø	Ø	$\epsilon + a + b$

• Paso k = 3: Calculamos

$$R_{ij}^3 = R_{ij}^2 + R_{i3}^2 (R_{33}^2)^* R_{3j}^2$$

donde $(R_{33}^2)^* = (\epsilon + a)^* = a^*$.

$i \backslash j$	1	2	3	4
1	$b^* + b^*a(bb^*a)^*bb^*$	$b^*a(bb^*a)^*$	$b^*a(bb^*a)^*aa^*$	$b^*a(bb^*a)^*aa^*b$
2	$(bb^*a)^*bb^*$	$(bb^*a)^*$	$(bb^*a)^*aa^*$	$(bb^*a)^*aa^*b$
3	Ø	Ø	a^*	a^*b
4	Ø	Ø	Ø	$\epsilon + a + b$

• Paso k = 4: Calculamos

$$R_{ij}^4 = R_{ij}^3 + R_{i4}^3 (R_{44}^3)^* R_{4j}^3$$

donde $(R_{44}^3)^* = (\epsilon + a + b)^* = (a + b)^*.$

$i \setminus j$	1	2	3	4
1	$b^* + b^*a(bb^*a)^*bb^*$	$b^*a(bb^*a)^*$	$b^*a(bb^*a)^*aa^*$	$b^*a(bb^*a)^*aa^*b(a+b)^*$
2	$(bb^*a)^*bb^*$	$(bb^*a)^*$	$(bb^*a)^*aa^*$	$(bb^*a)^*aa^*b(a+b)^*$
3	Ø	Ø	a^*	$a^*b(a+b)^*$
4	Ø	Ø	Ø	$(a+b)^*$

Como el estado inicial es q_1 y los estados finales son q_1, q_2 y q_3 , la expresión regular buscada es

$$E = R_{11}^4 + R_{12}^4 + R_{13}^4 = b^* + b^* a (bb^* a)^* bb^* + b^* a (bb^* a)^* + b^* a (bb^* a)^* aa^*.$$

Teniendo en cuenta la igualdad $\epsilon + aa^* = a^*$, se pueden juntar los dos últimos "sumandos" de manera que la expresión regular completa se simplifica como sigue:

$$E' = b^* + b^*a(bb^*a)^*bb^* + b^*a(bb^*a)^*a^*.$$

Otra simplificación alternativa es juntar de la misma forma el segundo y el tercer "sumandos", obteniendo entonces

$$E'' = b^* + b^*a(bb^*a)^*b^* + b^*a(bb^*a)^*aa^*.$$

3. Método de eliminación de estados

Se generalizan los diagramas de transiciones de forma que las transiciones se etiquetan con expresiones regulares. Una transición de q_i a q_j se etiqueta por E si esta expresión regular representa el conjunto de cadenas que permiten pasar de q_i a q_j .

En primer lugar, si hace falta, se añaden estados y transiciones ϵ para garantizar que el estado final es único, que no lleguen transiciones al estado inicial y que no salgan transiciones del estado final. Si hay varias transiciones a_1, \ldots, a_k entre dos estados, se unen en una sola etiquetada con la expresión regular $a_1 + \cdots + a_k$.

Se enumeran los estados y se van eliminando en orden, de forma que al final solo quedan dos estados, el inicial y el final.

Para eliminar un estado q_k se consideran todos los pares de estados q_i, q_j , con $i \neq k \neq j$, tales que existe una transición de q_i a q_k y otra de q_k a q_j , y se hace la transformación siguiente:

Si alguna de las transiciones η o γ no existe, se simplifica la expresión resultante adecuadamente. También hay que tener en cuenta que si i=j, entonces η debe incluir ϵ .

4. El mismo ejemplo, con eliminación de estados

Consideramos de nuevo el autómata finito (determinista) que reconoce todas las cadenas sobre el alfabeto $\{a,b\}$ que no contienen la subcadena aab, para calcular una expresión regular equivalente.

En primer lugar, añadimos un nuevo estado inicial q_0 y un nuevo estado final único q_5 , más transiciones ϵ adecuadas, para garantizar las propiedades de tales estados. Las dos transiciones a, b de q_4 en sí mismo se unen en una transición a+b.

Ahora vamos a eliminar los estados q_1, q_2, q_3, q_4 en ese orden.

■ Paso 1: Eliminación de q_1 . Como al estado q_1 llegan transiciones desde q_0 y q_2 , y salen transiciones a q_2 y q_5 , tenemos las cuatro transformaciones siguientes:

Tras la eliminación de q_1 queda el siguiente autómata, donde hemos usado la igualdad $\epsilon + bb^* = b^*$.

■ Paso 2: Eliminación de q_2 . Como al estado q_2 llega una transición desde q_0 , y salen transiciones a q_3 y q_5 , tenemos las dos transformaciones siguientes, donde hemos usado la igualdad $(\epsilon + bb^*a)^* = (bb^*a)^*$.

Tras la eliminación de q_2 queda el siguiente autómata:

■ Paso 3: Eliminación de q_3 . Como al estado q_3 llega una transición desde q_0 , y salen transiciones a q_4 y q_5 , tenemos las dos transformaciones siguientes:

Tras la eliminación de q_3 que da el siguiente autómata:

■ Paso 4: Eliminación de q_4 . Como desde el estado q_4 no sale ninguna transición a un estado distinto de sí mismo, para eliminar q_4 basta con borrarlo junto con las transiciones asociadas, y entonces resulta el siguiente autómata, donde solo quedan el estado inicial q_0 y el estado final q_5 .

Así pues, la expresión regular buscada es

$$b^* + b^*a(bb^*a)^*b^* + b^*a(bb^*a)^*aa^*$$

que coincide con la simplificación E'' obtenida al final del método anterior.

5. Método de ecuaciones características

A cada estado q_i de un autómata le asociamos una expresión regular C_i de forma que $L(C_i)$ sea el conjunto de cadenas aceptadas por el autómata suponiendo que q_i fuera el estado inicial, es decir,

$$L(C_i) = \{ w \in \Sigma^* \mid \hat{\delta}(q_i, w) \cap F \neq \emptyset \}.$$

Si q_0 es el estado inicial, $L(C_0)$ coincide con el lenguaje aceptado por el autómata y entonces C_0 es la expresión regular equivalente buscada.

Para calcular C_i , se construye el sistema de ecuaciones características dado por

$$\begin{cases} C_i = \sum a_j C_j & \text{si } q_i \notin F, \\ C_i = \epsilon + \sum a_j C_j & \text{si } q_i \in F. \end{cases}$$

donde la suma (unión) es sobre todas las transiciones etiquetadas con a_j de q_i en q_j , al variar los estados q_j .

Para resolver el sistema de ecuaciones recursivas, se usa sustitución y el siguiente resultado, conocido como lema de Arden: Una ecuación entre expresiones regulares de la forma X = EX + F, donde ϵ no aparece en E y X no aparece en F, tiene solución única dada por $X = E^*F$.

6. De nuevo el ejemplo, ahora con ecuaciones características

El sistema de ecuaciones asociado al autómata del ejemplo es el siguiente:

$$\begin{cases}
C_1 = bC_1 + aC_2 + \epsilon \\
C_2 = aC_3 + bC_1 + \epsilon \\
C_3 = aC_3 + bC_4 + \epsilon \\
C_4 = aC_4 + bC_4
\end{cases}$$

Empezamos resolviendo C_4 , cuya ecuación solo depende de C_4 . Para aplicar el lema de Arden, escribimos la ecuación de forma equivalente como

$$C_4 = (a+b)C_4 + \varnothing,$$

y obtenemos la solución

$$C_4 = (a+b)^* \varnothing = \varnothing.$$

Este resultado corresponde intuitivamente al hecho de que q_4 es un estado trampa en el autómata original, de manera que partiendo desde ese estado es imposible llegar a un estado final y, por tanto, no es posible aceptar ninguna cadena.

Sustituyendo en la ecuación para C_3 y simplificando, obtenemos

$$C_3 = aC_3 + bC_4 + \epsilon = aC_3 + b\emptyset + \epsilon = aC_3 + \emptyset + \epsilon = aC_3 + \epsilon$$

y entonces estamos en condiciones de aplicar el lema de Arden para obtener la solución

$$C_3 = a^* \epsilon = a^*$$
.

Sustituimos este resultado en la ecuación para C_2 y simplificamos:

$$C_2 = aC_3 + bC_1 + \epsilon = aa^* + bC_1 + \epsilon = bC_1 + a^*.$$

Ahora no se puede aplicar el lema porque en la derecha tenemos C_1 en vez de C_2 . En cambio, podemos sustituir C_2 en la ecuación para C_1 y simplificar:

$$C_1 = bC_1 + aC_2 + \epsilon = bC_1 + a(bC_1 + a^*) + \epsilon = bC_1 + abC_1 + aa^* + \epsilon = (b+ab)C_1 + a^*.$$

Una última aplicación del lema de Arden nos permite llegar a la solución buscada

$$C_1 = (b + ab)^* a^*.$$

Como q_1 es el estado inicial, el lenguaje $L(C_1)$ asociado a la expresión regular obtenida para C_1 es el reconocido por el autómata.

7. Simplificación de expresiones regulares

Enumeramos a continuación una serie de propiedades de las operaciones sobre expresiones regulares, que son útiles para justificar simplificaciones y, en general, equivalencias entre tales expresiones, como hemos visto en las secciones anteriores.

- La unión de expresiones regulares es asociativa, conmutativa e idempotente, con ∅ como elemento neutro:
 - (1) (E+F)+G=E+(F+G)
 - (2) E + F = F + E
 - (3) E + E = E
 - (4) $E + \varnothing = E$
- La concatenación de expresiones regulares es asociativa, con ϵ como elemento neutro y \varnothing como elemento cero:
 - (5) (EF)G = E(FG)
 - (6) $E\epsilon = E$
 - (7) $\epsilon E = E$
 - (8) $E\varnothing = \varnothing$
 - (9) $\varnothing E = \varnothing$
- La concatenación es distributiva con respecto a la unión:
 - (10) E(F+G) = EF + EG
 - (11) (F+G)E = FE + GE
- Propiedades de la clausura (o cierre) de Kleene:
 - (12) $(E^*)^* = E^*$
 - (13) $\varnothing^* = \epsilon$
 - (14) $\epsilon^* = \epsilon$

- Propiedades de la clausura con otras operaciones (algunas de estas propiedades son redundantes, en el sentido de que se pueden deducir a partir de otras propiedades en la lista):
 - (15) $\epsilon + E^* = E^*$
 - (16) $(\epsilon + E)^* = E^*$
 - (17) $\epsilon + EE^* = E^*$
 - (18) $\epsilon + E^*E = E^*$
 - (19) $E^*E = EE^*$
 - (20) $E^*E^* = E^*$
 - (21) $(EF)^*E = E(FE)^*$
 - (22) $(E^*F^*)^* = (E+F)^*$
 - (23) $(E^*F)^*E^* = (E+F)^*$
 - (24) $E^*(FE^*)^* = (E+F)^*$
 - (25) $(EF + E)^*E = E(FE + E)^*$

8. Un ejemplo detallado de simplificación

En secciones anteriores hemos obtenido por tres métodos distintos expresiones regulares E, E'' y C_1 equivalentes a un autómata dado, así como otra simplificación posible E' de E. Como todas ellas tienen el mismo lenguaje asociado, sabemos que las cuatro son equivalentes,

$$L(E) = L(E') = L(E'') = L(C_1).$$

De hecho, la equivalencia entre E, E' y E'' ya ha sido justificada también mediante igualdades E' = E = E'' basadas en las propiedades 6, 10 y 17 de la lista anterior.

Ahora vamos a justificar, usando las anteriores propiedades de las expresiones regulares, la equivalencia de todas ellas con C_1 , viendo cómo convertir E' en C_1 .

En la siguiente serie de igualdades, se subraya la subexpresión que es transformada en el siguiente paso, y en el subíndice del signo de igualdad se indica el número de la propiedad que se usa en esa transformación.

Nótese que a veces las propiedades se usan de izquierda a derecha y otras veces de derecha a izquierda; por ejemplo, una propiedad distributiva usada de derecha a izquierda sirve para "sacar factor común".

$$E' = b^* + b^* a (\underline{b}b^* a)^* \underline{b}b^* + b^* a (\underline{b}b^* a)^* a^*$$

$$=_{21} \underline{b}^* + b^* a \underline{b}b^* (\underline{a}bb^*)^* + b^* a (\underline{b}b^* a)^* a^*$$

$$=_{6} \underline{b}^* \underline{\epsilon} + b^* \underline{a}bb^* (\underline{a}bb^*)^* + b^* a (\underline{b}b^* a)^* a^*$$

$$=_{10} \underline{b}^* (\underline{\epsilon} + \underline{a}bb^* (\underline{a}bb^*)^*) + b^* a (\underline{b}b^* a)^* a^*$$

$$=_{17} \underline{b}^* (\underline{a}bb^*)^* + b^* \underline{a} (\underline{b}b^* a)^* a^*$$

$$=_{24} (\underline{b} + \underline{a}b)^* + \underline{b}^* \underline{a} (\underline{b}b^* \underline{a})^* a^*$$

$$=_{21} (\underline{b} + \underline{a}b)^* + (\underline{b}^* \underline{a}b)^* \underline{b}^* \underline{a}a^*$$

$$=_{23} (\underline{b} + \underline{a}b)^* + (\underline{b} + \underline{a}b)^* \underline{a}a^*$$

$$=_{6} (\underline{b} + \underline{a}b)^* \underline{\epsilon} + (\underline{b} + \underline{a}b)^* \underline{a}a^*$$

$$=_{10} (\underline{b} + \underline{a}b)^* (\underline{\epsilon} + \underline{a}a^*)$$

$$=_{17} (\underline{b} + \underline{a}b)^* a^*$$

$$= C_1.$$