Makerspace Sign-In Project

Delara Panahi, Hunter Smith, Nicholas Sheldon, Samantha Sikora, Soliat Adeboye

Team

Delara Panahi

Hunter Smith

Nicholas Sheldon

Samantha Sikora

Soliat Adeboye

Content

- 1. Problem Presented
- 2. Goals
- 3. Our Solution
- 4. Steps
- 5. Results
- 6. Future Plans

Problem Presented

- The Makerspace currently has an inefficient sign-in process for students
 - Current Google Form asks students to select stations that they intend to use during their visit
 - Students must sign a safety waiver every time they enter
 - Students must sign in even if they just want to speak to a mentor
 - Students will often ignore the sign-process and go straight to the machine

Goals:

- We want to create a solution that allows visitors to efficiently sign in
- Also want to give the Makerspace mentors more information about the amount of time that students spend in the space and what machines are used

Our Solution

Our Sign-In Process

1.

Students will scan in using their student ID card

3.

Students must scan out when they leave and select the stations that they used 2.

Must sign a safety agreement if it's their first time at the Makerspace

4.

Makerspace mentors
will acquire data to
keep track of who
visits the Makerspace

Makerspace Sign-In Project

The Steps

Hardware

Raspberry Pi 4 Model B

A small single-board computer that can connect to the internet and

interact with hardware through its GPIO pins

Software: Runs Python to detect RFID scans

Hardware: The Pi talks to RFID modules

Logic: Compares scanned ID with known list, then takes action

Micro SD Card

Acts as the **Raspberry Pi's main storage** (similar to a hard drive)

Boots up the Pi with the OS

Runs our Python code that listens to the RFID reader

Stores scanned RFID tag data and holds libraries

RFID Reader

RFID card/tag contains a unique ID stored on a chip

RFID reader emits a signal and reads the card ID

Raspberry Pi receives data through a communication interface like a micro USB

A program on the Pi handles the ID log in, database information, and grants access for the Makerspace

Raspberry Pi 4 Model B

Micro SD Card

RFID Reader

Frontend:

- Designed web pages
 (using HTML/CSS frameworks)
 - Landing Page
 - New Student Sign-In
 - Returning Student Sign-In

Backend:

- Created a database that stores students' information
 - Student name, ID, email, and RFID
 - Signed safety agreement
 - Machines used, date & time in/out
- Data is collected through scan events
 - RFID is used to query the database and display the correct webpage
 - Form submissions entered into database
- Export Data
 - A function queries the database to write data to a CSV file

- Analytic & Admin Dashboard:
 - Visual insights
 - Secure admin access to view statistics
 - Allow admins to generate reports and monitor real-time activity

This stored information allows us to see
who has visited the Makerspace and how
much time they were there for in a given
day.

Safety agreements are stored digitally, making them easier to monitor and manage.

Results

New Student Screen

Sign Out Screen

Future Plans

After we complete this project, we have an idea about how to continue improving areas around campus...

Crowd Meter/Activity Scale!

The Makerspace:

- Can use our database that contains information about the amount of students in the Makerspace at a given time to create a crowd meter
- A crowd meter will allow students to see how busy the
 Makerspace is throughout each day

Gyms:

- Both the Deneka and Cheel gyms already keep track of the amount of students who use their facilities at a given time
- Using this information, we can create a crowd meter so
 that students can see how busy the gyms are

Dining Halls:

Could be a little trickier, but still possible to make a
 crowd meter for dining halls!

Thank You!