01_Introduction

- 1. Definitions of Distributed Systems
 - 1.1. Definition 1
 - 1.2. Definition 2
 - 1.3. Examples of Important Distribued Systems

Distributed Databases

Distributed Operating Systems

Distributed Applications

- 2. Properties of Distributed Systems
 - 2.1. Properties
 - 2.2. (De-)centralized versus distributed
 - 2.3. Parallel versus distributed
- 3. Motivations for distributed systems
- 4. Requirements for distributed systems
 - 4.1. Transparency
 - 4.2. Scalability
 - 4.3. Consistency
- 5. Relation with networks
- 6. Important techniques in DSs/DAs
 - 6.1. Replication
 - 6.2. Caching
 - 6.3. Locality
 - 6.4. Time stamps
 - 6.5. Time outs
 - 6.6. Randomization

1. Definitions of Distributed Systems

1.1. Definition 1

A **Distributed System (DS)** is a system that is characterized by

- autonomy (distribution of authority)
- **cooperation** (distribution of **functionality**)
- communication (distribution of information)

1.2. Definition 2

A Distributed Computer System

· consists of multiple autonomous processors

- do not share memory,
- cooperate by sending messages over a communications network

1.3. Examples of Important Distribued Systems

Distributed Databases

e.g. WWW

Distributed Operating Systems

e.g. P2P

Distributed Applications

e.g. Multiplayer online games

2. Properties of Distributed Systems

2.1. Properties

- **not necessarily a regular structure** such as leader/identical processor
- no directly accessible common state such as shared variable in shared memory
- no common clock
- non-determinism: components make progress independently
- independent failure modes

2.2. (De-)centralized versus distributed

Fig. 1—(a) Centralized. (b) Decentralized. (c) Distributed networks.

2.3. Parallel versus distributed

	parallel	distributed
jobs have multiple tasks	+	+
granularity of tasks	small	large
communication	frequent (ms scale)	not frequent (min-hr)
tasks are	homogeneous	heterogeneous
task execution is	simultaneous	synchronized
hardware is	homogeneous	heterogeneous

3. Motivations for distributed systems

- organizational
- resource sharing
- extensibility
- availability
- reliablity
- security
- performance

4. Requirements for distributed systems

4.1. Transparency

a DS should present itself as a single entity

- Location transparency
- · Access transparency
- Failure transparency
- · Replication transparency

4.2. Scalability

extending the system with the same structure yields a **proportional increase** in capacity (no potential bottleneck)

4.3. Consistency

in terms of

- performance
- · user interface
- global state

5. Relation with networks

- Seven-layer OSI-model:
 - 1. physical layer
 - (de-)modulate bits
 - datalink layer
 - error detection and correction
 - network layer
 - routing, congestion control
 - highest layer present in all intermediate nodes along a path
 - 4. transport layer

distributed algorithms

- communication between processes
- only present in end points
- 5. session, 6. presentation, and 7. application layers

- DSs and DAs are based upon the **transport layer**
- But: routing (layer 3) and link failures (layer 2) do play a role in some distributed algorithms

6. Important techniques in DSs/DAs

6.1. Replication

multiple copies of the same entity for better availability and performance

6.2. Caching

keep results of recent operations

6.3. Locality

take into account the location of objects

6.4. Time stamps

assign logical or real times to events

6.5. Time outs

after some amount of time, try again

6.6. Randomization

flip a coin to **speed up**, or to have a solution in the first place

5