# HW6 Report

#### Jensen Davies

May 2021

### Problems 1 and 2:

Both problem 1 and problem 2 are theoretical and are appended in a handwritten format to the end of this report.

#### Problem 3:

In this problem, we use numerical differentiation (first and second order) to approximate

$$\frac{d}{dx}\sin(x), \quad x = 1.45.$$

The purpose of this is to illustrate that there is an optimal value of h to achieve minimum error, and that a higher order method results in less error. We compare our numerical derivatives against the values of the actual derivative,  $\cos(x)$ . Below, we provide a loglog plot of both

$$E_{T,1}(h) = |q_1(h) - \cos(x)|, \quad E_{T,2}(h) = |q_2(h) - \cos(x)|,$$

versus h, where  $q_1(h)$  and  $q_2(h)$  are the first and second order approximations of the derivative, respectively.



## Problem 4:

In this problem, we continue with the same IBVP from problem 6 in assignment 5.

$$\begin{cases} u_t = u_{xx}, & x \in (0, L), \ t > 0 \\ u(x, 0) = p(x), & x \in (0, L) \\ u_x(0, t) - \alpha u(0, t) = 0., & u(L, t) = q(t) \end{cases}$$

with 
$$L = 2$$
,  $\alpha = 0.4$ ,  $p(x) = (1 - 0.5x)^2$ ,  $q(t) = 2\sin^2(t)$ .

In this problem, we solve the IBVP with differing spatial grids, namely when  $N=100,\ N=200,\ {\rm and}\ N=400.$  The method we use is the FTCS method, and we solve to T=3 with  $\Delta t=10^{-5}$ . We then use the spline function in MATLAB to map the solution for each value of N to the grid  $x=[0:0.002:1]^*L$ . Below we plot  $(u_{\{N=100\}}-u_{\{N=200\}})$  vs x and then  $(u_{\{N=200\}}-u_{\{N=400\}})$  vs x.



### Problem 5:

In this problem, we solve the 2D IBVP problem

$$\begin{cases} u_t = u_{xx} + u_{yy}, & (x,y) \in (0,8) \times (0,8), \ t > 0 \\ u(x,y,0) = f(x,y) \\ u(0,y,t) = g_L(y,t), & u(8,y,t) = g_R(y,t) \\ u(x,0,t) = g_B(x,t), & u(x,8,t) = g_T(x,t) \end{cases}$$

where

$$\begin{split} f(x,y) &= 0 \\ g_L(y,t) &= -\sin(\pi y/8) \tanh(2t), \quad g_R(y,t) = -3\sin(\pi y/8) \tanh(2t) \\ g_B(x,t) &= 0, g_T(x,t) = x(1-x/8) \tanh(2t). \end{split}$$

We solve to T=2 using the 2D FTCS method, with  $\Delta x=\Delta y=0.08$  and  $\Delta t=1.25\times 10^{-3}$ . Below we plot u(x,6) vs x at  $t=0.1,\,0.5\,0.1\,2$  in one figure, and u(x,y,t) vs (x,y) at T=2 as a surface in another figure.





# Problem 6:

This problem is a continuation of the problem above. Using  $\Delta x = \Delta y = 0.08$  and  $\Delta t = 1.25 \times 10^{-3}$ , we first solve the IBVP to T = 20. For each time level, we calculate the max value of  $|u_t|$  at all of the internal points. We store the maximum at each  $t_n$  in the vector

$$E(t_n) = \max \frac{|u_{i,j}^{n+1} - u_{i,j}^n|}{\Delta t}, \quad 1 \le i \le N_x - 1, \quad 1 \le j \le N_y - 1.$$

We then plot E(t) against t, where E(t) is on a logarithmic scale (t on a linear scale).

We also re-solve the IBVP using  $\Delta x = \Delta y = 0.16$  and  $\Delta t = 1.25 \times 10^{-3}$ , using the new solution to calculate  $u_{\{\Delta=0.16\}} - u_{\{\Delta=0.08\}}$  for T=20, and then plot the result vs (x,y) as a surface.

$$u_{\{\Delta=0.16\}} - u_{\{\Delta=0.08\}}$$
 at T = 20.



