Module – 3 (Vector Differential Calculus)

Sl.	Question	year	Marks
No			
1	a) A particle moves along the curve $x = 2t^2$, $y = t^2 - 4t$, $z = 3t - 5$ where t is the	Mar 2001	5
	time. Find the components of its velocity and acceleration in the direction of $i-2j+2k$ at $t=1$.	2001	5
	b) Find the directional derivative of $\emptyset = 4xz^3 - 3x^2y^2z$ at (2,-1,2) along 2i-3j+6k.		
2	a) If the directional derivatives of $\varphi = axy^2 + byz + cz^2x^3at$ (-1, 1, 2) has a	Mar	5
	maximum magnitude of 32 units in the direction parallel to y-axis, find a, b, c.	2001	
	b) In which direction the directional derivative of x^2yz^3 is maximum at (2,1,-1) and	_	5
	find the magnitude of this maximum.	Jan 2009	
3	a) Find the directional derivative of the following $\varphi = x^2yz + 4xz^2$ at (1,-2,-1)	July	5
3	along 2i-j-2k.	2010	
	b) Find the unit normal to the surface $\phi = 2xz - y^2$ at (1,3,2)		5
4	a) Determine the unit normal vector to the surface $x^2y - 2xz + 2y^2z^4 = 10$ at	Jan	5
	(2,1,-1)	2015	_
	b) Find the angle between the normal to the surface $xy = z^2$ at the points (4,1,2) and (3,3,-3).		5
	(3,3,-3).		
5	a). Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$, $x^2 + y^2 - z = 3$ at the	Jan	5
	point (2,-1, 2).	2015	
	a) If $f = \nabla(x^3y + y^3z + z^3x - x^2y^2z^2)$ find div f and curl f at the point (1,2,3).		5
6	a) If $\vec{F} = 2xy^3z^4i + 3x^2y^2z^4j + 4x^2y^3z^3k$, find (i) $(\nabla \cdot \vec{F})$, (ii) $\nabla \times \vec{F}$.	Dec	5
	b) If $\vec{F} = (x + y + 1)i + j - (x + y)k$, then prove that $\vec{F} \cdot curl\vec{F} = 0$.	2011	5
7	a) If $\varphi = xy + yz + zx$ and $\vec{F} = x^2yi + y^2zj + z^2xk$ find $\vec{F} \cdot grad\varphi$ and $\vec{F} \times grad\varphi$	Dec	5
	$grad\varphi$ at the point $(3, -1, 2)$	2009	
	b) Show that $F = yzi + zxj + xyk$ is irrotational. Find ϕ so that $\vec{F} = \nabla \phi$		5
8	a) For what value of 'a' vector point function $\vec{F} = (2x + 3y)i - (3x + 4y)j +$	Dec	5
	(y-az)k is solenoidal	2010	
	b.) Is $\vec{F} = (6xy + z^3)i + (3x^2 - z)j + (3xz^2 - y)k$, is irrotational.		5
9	a) Show that the vector field $\vec{F} = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$ is	Dec	5
	irrotational. And find its scalar potential such that $\vec{F} = \nabla \varphi$.	2010	
	b) If $\vec{r} = xi + yj + zk$ and $ r = r$. Find grad div $\left(\frac{\vec{r}}{r}\right)$.		5
	r		
10	a) Find the constants 'a 'and 'b' such that $\vec{F} = (axy + z^3)\hat{i} + (3x^2 - z)\hat{j} +$	Jun	5
	$(bxz^2 - y)k$ is irrotational and also find a scalar potential function φ such that $\vec{F} = (bxz^2 - y)k$	2012	
	$\nabla \varphi$.		5
	b) If $\phi = x^3 + y^3 + z^3 - 3xyz$, find $\nabla \phi$, $ \nabla \phi $ at (2,1,-2)		
	l	I .	I .

11	a) Find a, b, c such that $\vec{F} = (x + 2y + az)i + (bx - 3y - z)j + (4x + cy + 2z)k$ is irrotational and also find scalar potential.	July 2011	5
	b) P.T \vec{V} is solenoidal and \vec{F} is irrotational. If $\vec{V} = 3xy^2z^2i + y^3z^2j - 2y^2z^3k$ and $\vec{F} = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$		5
12	a) If $F = 3xyi - y^2j$, evaluate $\int F \cdot dR$, where C is the curve in the xy-plane $y = 2x^2$ from $(0,0)$ to $(1,2)$.	June 2012	5
	b) A vector field is given by $F = \sin y \ i + x(1 + \cos y)j$ evaluate the line integral over a circular path given by $x^2 + y^2 = a^2$, $z = 0$.		5
13	a) If $\vec{F} = xyi + yzj + zxk$, evaluate $\int_C \vec{F} \cdot \vec{dr}$, where C is the curve represented by $x = \frac{1}{2} x^2 + \frac{1}{2} x^2$		5
	t, $y = t^2$, $z = t^3$, $-1 \le t \le 1$. b) Evaluate $\int_C \vec{F} \cdot \vec{dr}$, where $\vec{F} = xyi + (x^2 + x^2)j$ along i. The path of the straight line from $(0,0)$ to $(1,0)$ and the to $(1,1)$.		5
14	a) Find the work done in moving a particle in the force field $F = 3x^2i + (2xz - y)j + zk$ along	JNTU(2002)	5
	a) the straight line from $(0,0,0)$ to $(2,1,3)$ b) curve defined by $x^2 = 4y$, $3x^3 = 8z$ from x=0 tox=2.		5
15	a)Evaluate $\int_S F.Nds$ where $F = 2x^2yi - y^2j + 4xz^2k$ and S is the closed surface of the region in the first octant bounded by the cylinder $y^2 + z^2 = 9$ and the planes	Jun 2010	5
	x=0, x=2, y=0 and $z=0.$	July	5
	b) Evaluate using Gauss Divergence Theorem for the vector $\vec{F} = 4xzi - y^2j + yzk$ over the unit cube	2006	
16	a) Using Green's Theorem find the area between the parabolas $y^2 = 4x$ and $x^2 = 4y$.	Jan 2010	5
	b) Evaluate using Gauss Divergence Theorem for the vector $\vec{F} = (x^2 - z^2)i + 2xyj + (y^2 + z^2)k$, S is the surface of the cube bounded by $x = 0, x = 1, y = 0, y = 1, z = 0, z = 1$.	July 2010	5
17	a) Evaluate using Stoke's Theorem for the vector $\vec{F} = (x^2 - y^2)i + 2xyj$ taken around the rectangle bounded by $= \pm a, y = 0, y = b$.	Jan 2011	5
	b) Evaluate using Stoke's Theorem for the vector $\vec{F} = (2x - y)i - yz^2j - y^2zk$ where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$, C is its boundary.	July	5
18	a) Evaluate using Gauss Divergence Theorem $\int \vec{A} \cdot \hat{n} ds$, where $\vec{A} = x^3 i + y^3 j + z^3 k$ and S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$.	Jun 2010	5
	b) Evaluate using Gauss Divergence Theorem for the vector $\vec{F} = 2xyi + yz^2j + xzk$, S is the rectangular parallelepiped bounded $0 \le x \le 2$, $0 \le y \le 1$, $0 \le z \le 3$.	July 2006	5
19	a) Verify Green's Theorem in a plane for $\oint_C (3x^2 - 8y^2)dx + (4y - 6xy)dy$ where C is	Jan 2010	5
	the boundary of the region enclosed by $y = \sqrt{x}$ and $y = x^2$. b) Using Green's Theorem evaluate $\oint_C (xy + y^2)dx + x^2dy$ where C is the closed curve of the region bounded by $y = x$ and $y = x^2$	July 2010	5
20	a) Using Stoke's Theorem evaluate $\vec{F} = 2xyi + ((x^2 - y^2)j)$ over the circle $x^2 + y^2 =$	Jun 2012	5
	1, $z = 0$. b) Evaluate using Stoke's Theorem for the vector $\vec{F} = (x^2 + y^2)i - 2xyj$ taken around the rectangle bounded by $= 0$, $x = a$, $y = 0$, $y = b$.	2012	5