省选模拟试题

ExfJoe

March 14, 2017

竞赛时长: 240min

试题名称	编码	哈密顿回路	旅行
可执行文件名	code	hamilton	travel
输入文件名	code.in	hamilton.in	travel.in
输出文件名	code.out	hamilton.out	travel.out
时间限制	2s	1.5s	1s
空间限制	512M	256M	256M
测试点数目	3	3	10
测试点分数	20~50	30~40	10
是否有 SPJ	否	否	否
是否有部分分	否	否	否
题目类型	传统	传统	传统

- 认真独立完成试题,不与他人交流讨论
- 最终评测在 Win10 下使用 Lemon, 默认栈空间限制为 8M, 开启 O2 优化
- 试题按英文名称字典序排序

编码

题目描述

二进制编码是指一个由n个互不相同的二进制串 s_1, s_2, \dots, s_n 构成的集合。

如果一套编码满足,对于任意的 $i \neq j$, s_i 不是 s_i 的前缀,那么我们称它为前缀编码。

现在有 n 行二进制编码,由于某种原因,这 n 个二进制串中有些字符已经无法得知,但幸运的是,每一个串中至多只有一位字符丢失。

现在请你求出,这 n 行二进制编码是否有可能是一个二进制前缀编码。

输入格式

第一行一个正整数 n 表示串的个数。

接下来 n 行,每行一个由 0,1 及? 组成的字符串。? 表示丢失的字符,保证每行至多有一个?.

输出格式

若这 n 行二进制编码可能是一个前缀编码则输出"YES", 否则输出"NO"(均不含引号)。

样例 1

	_ Input
4	
00?	
0?00	
?1	
1?0	
	_ Output
YES	
样例 2	
	_ Input
3	-
0100	
01?0	
01?0	

___ Output _

约定

NO

本题采用捆绑测试。

令 L 为输入的字符串总长。

Subtask1(20 points): $n \le 10$, $L \le 1000$

Subtask2(30 points): $n \le 1000$, $L \le 5 \times 10^5$

Subtask3(50 points): $n, L \le 5 \times 10^5$

哈密顿回路

题目描述

给定一张 n 个点的边带权的无向完全图,求图中是否存在一条长为 L 的哈密顿回路。哈密顿回路:从起点出发经过所有点恰好一次并最终回到起点 (起点头尾经过两次) 的路径。

输入格式

第一行两个正整数 n,L 表示图的点数与期望的路径长度。点从 $1 \sim n$ 编号。接下来 n 行每行 n 个整数,第 i 行的第 j 个整数 $d_{i,j}$ 表示第 i 个点与第 j 个点间边的长度。

输出格式

若存在则输出"possible", 否则输出"impossible"(均不含引号)。

样例 1

	Input	
4 10	•	
0 3 2 1		
3 0 1 3		
2 1 0 2		
1 3 2 0		

possible Output _____

样例 1 解释

路径为: $2 \rightarrow 4 \rightarrow 3 \rightarrow 1 \rightarrow 2$; 路径长度为: 3 + 2 + 2 + 3 = 10

样例 2

	Input	
3 5 0 1 2	•	
0 1 2		
1 0 3		
2 3 0		

impossible Output _____

约定

本题采用捆绑测试。

对于所有测试点, $1 \leq d_{i,j} (i \neq j) \leq L \leq 10^{15}$, $d_{i,i} = 0$, $d_{i,j} = d_{j,i}$, $d_{i,j} \leq d_{i,k} + d_{k,j}$

SubTask1(30 points): $2 \le n \le 10$ SubTask2(30 points): $2 \le n \le 13$ SubTask3(40 points): $2 \le n \le 14$

旅行

题目描述

给定一棵 n 个结点的树,点从 $1 \sim n$ 编号,1 号点为根。保证每一个非叶结点都恰好有两个儿子,每条边还有一个边权 a_i .

若这棵树有 m 个叶结点,则接下来会进行 m+1 天的旅行。初始时在 1 号点,前 m 天,每一天会挑选前往某一个叶子,第 m+1 天会回到 1 号点。

这次旅行要求,前 m 天中选择的叶子不可重复,且每一条树边只能经过最多两次。

旅行的费用为:除第一天与第m+1天以外的m-1天中,花费的最大的费用。某一天的费用为,从一个叶子走到另一个叶子时经过的所有边的边权和。

现在请你求出这次旅行费用的最小值能是多少。

输入格式

第一行一个整数 n 表示结点数。

接下来 n-1 行每行两个数 f_i , a_i , 表示 i+1 号点的父亲为 f_i , 这条边边权为 a_i .

输出格式

仅一行一个整数表示答案。

样例

	Input	
9	•	
1 26166		
1 278		
2 23731		
2 17834		
5 4105		
5 19470		
6 28803		
6 3445		

______ Output ______ 52378

约定

30% 的数据: $n \le 10$ 60% 的数据: $n \le 100$

100% 的数据: $2 \le n \le 10^5$, $0 \le a_i \le 10^5$