SystemDK with AITL: Physics-Aware Runtime DTCO via PID, FSM, and LLM Integration

Shinichi Samizo

Independent Semiconductor Researcher Email: shin3t72@gmail.com

Abstract—This paper presents SystemDK with AITL, a framework that extends conventional Design—Technology Co-Optimization (DTCO) by embedding control-theoretic loops directly into EDA flows. Compact PID controllers and FSM supervisors stabilize runtime variations caused by interconnect RC delay, thermal coupling, stress-induced threshold shifts, and EMI/EMC disturbances. We also outline AITL Next, where a lightweight LLM analyzes EDA logs, retunes PID gains, and regenerates FSM rules for adaptive operation. The framework incorporates FEM analysis and S-parameter measurements into synthesis, place & route, and STA, ensuring physics-aware closure. Simulations demonstrate order-of-magnitude improvements in timing stability, thermal robustness, and jitter suppression.

Index Terms—DTCO, CFET, PID control, FSM, LLM, EMI/EMC, thermal management, timing jitter, EDA

I. Introduction

Scaling to sub-2 nm nodes and CFET integration introduces critical runtime effects: (i) RC delay variation due to interconnect scaling and BEOL resistance growth; (ii) vertical thermal coupling in 3D-ICs; (iii) stress-induced $V_{\rm th}$ shifts around TSVs and CFET stacks; and (iv) EMI/EMC noise that degrades timing jitter and link reliability. Traditional DTCO applies static guardbands and off-line sign-off, which leave efficiency on the table and cannot react to run-time excursions. **SystemDK with AITL** proposes embedding compact control (PID + FSM) in the loop and, in the next step, LLM-based adaptation.

II. PROPOSED FRAMEWORK

A. AITL Base

A compact PID compensates delay/thermal/voltage variations while an FSM supervises modes and safety thresholds. Physics telemetry (delay, temperature, jitter) feeds the controllers; compact models map measured quantities to actionable constraints for EDA.

B. AITL Next

A lightweight LLM analyzes EDA/telemetry logs, recommends new gains (K_p, K_i, K_d) , and regenerates FSM rules when operating points drift (aging, workload, ambient). This enables adaptive retuning without human-in-the-loop during field operation.

III. ANALYTICAL MODELS AND EDA MAPPING

A. RC Delay Model

We model the path delay with temperature T, stress σ , and frequency f dependence:

$$t_{\rm pd}(T,\sigma,f) = R_0(1 + \alpha_T(T - T_0) + \alpha_\sigma\sigma)C(f) + \Delta E_{\rm MI}(f). \tag{1}$$

The compact form is mapped to STA path-delay constraints for guardband trimming under control.

B. Thermal Coupling

A lumped die model gives

$$C_{\rm th}\frac{dT}{dt} + \frac{T - T_{\rm amb}}{R_{\rm th}} = P_{\rm chip}(t), \tag{2}$$

which we translate into P&R thermal placement limits (hotspot power caps and keep-outs) that the FSM enforces at run time.

C. Stress-Induced V_{th} Shift

A first-order model $\Delta V_{th}(\sigma) = \kappa \cdot \sigma$ is used to bound timing degradation near TSVs/CFET fins; bounds feed into PDK/SPICE parameter updates.

D. EMI Injection

Injected EMI is represented as $v_{\rm emi}(t) = A \sin(2\pi f_{\rm emi}t)$ and mapped to allowable jitter budgets in SI/EMI constraints.

IV. SIMULATION RESULTS WITH EDA IMPLICATIONS

Unless noted, baseline is an uncontrolled state; "PID" denotes controller only; "PID+FSM" adds supervisory constraints.

A. RC Delay Compensation

Fig. 2 normalizes RC delay variation to the uncontrolled case. PID reduces the variation to ≈ 0.2 by rejecting temperature and supply excursions; adding FSM retains stability when load corners force P&R/legalization moves, keeping variation below 0.25. This translates to smaller timing guardbands and improved utilization in STA closure.

B. Thermal Response Control

Fig. 3 shows thermal step response under a dynamic power pulse. PID alone lowers the peak ΔT by $\sim 60\%$; FSM-enforced power caps and migration rules further reduce it below 20% of the baseline. The reduced temperature swing alleviates aging and stress drift.

Fig. 1. System overview: runtime telemetry \rightarrow compact physics models \rightarrow PID/FSM runtime control \rightarrow actuators, with EDA sign-off integration. An optional LLM (Next) provides adaptive gain retuning and FSM rule regeneration. All arrows are routed along gaps/edges and do not overlap node borders.

Fig. 2. RC delay variation normalized (Uncontrolled, PID, PID+FSM).

C. EMI Jitter Suppression

With a sinusoidal aggressor on supply, Fig. 4 indicates an order-of-magnitude drop in RMS jitter using PID; PID+FSM adds adaptive clock-mode selection and spread-spectrum limits, pushing jitter near instrumentation noise. In practice this relaxes SI margins and improves link BER.

D. FEM Analysis

FEM maps in Fig. 5 capture (top) an uncontrolled hotspot and (bottom) stress distribution around TSVs. These maps feed compact thermal/stress models used by the controller; the FSM turns maps into actionable keep-outs and duty-cycle constraints.

Fig. 3. Thermal response ΔT reduction with PID and PID+FSM.

E. S-Parameter Analysis

Fig. 6 shows S_{11}/S_{21} trends for the three control states. While uncontrolled corners degrade S_{21} by more than 10 dB across 2–10 GHz, the runtime loop keeps insertion loss within 5 dB and limits return-loss excursions, indicating improved SI/EMI resilience.

V. IMPLEMENTATION POC

We implemented a synthesizable PID, FSM transitions, and YAML-driven configuration in Verilog; CSRs are exposed over APB/AXI-Lite. Telemetry hooks connect to on-die sensors and firmware. The PoC integrates with synthesis, P&R, and STA to demonstrate closed-loop DTCO.

Fig. 4. Jitter reduction under injected EMI.

VI. DISCUSSION

Guardbands \rightarrow **adaptive loops:** Static margins are replaced by feedback that reacts to measured physics. **Static sign-off** \rightarrow **dynamic runtime closure:** Sign-off artifacts (FEM, SI) become runtime constraints. **Reliability:** Crossdomain resilience (delay, thermal, stress, EMI) improves lifetime and QoR.

VII. CONCLUSION AND FUTURE WORK

AITL Base (PID+FSM) establishes runtime stabilization with measurable benefits on timing, thermal, and jitter metrics. *AITL Next* will integrate a lightweight LLM to analyze logs, retune gains, and regenerate FSM rules online. We target prototype chips, collaboration with EDA tools, and AI-driven DTCO.

REFERENCES

- D. Yakimets et al., "Challenges for cfet integration," in Proc. IEEE IEDM, 2020, pp. 11.9.1–11.9.4.
- [2] IRDS, "International roadmap for devices and systems (IRDS) 2023," 2023. [Online]. Available: https://irds.ieee.org/roadmap-2023
- [3] G. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, 7th ed. Pearson, 2015.
- [4] H. K. Khalil, Nonlinear Systems. Prentice Hall, 2002.
- [5] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods. Dover, 2007.
- [6] IEC, "Electromagnetic Compatibility (EMC)—Part 4: Testing and Measurement Techniques," IEC Std. 61000-4, 2019.

AUTHOR BIOGRAPHY

Shinichi Samizo received the M.S. degree in Electrical and Electronic Engineering from Shinshu University, Japan. He worked at Seiko Epson Corporation as an engineer in semiconductor memory and mixed-signal device development, and contributed to inkjet MEMS actuators and PrecisionCore printhead technology. He is currently an independent semiconductor researcher focusing on process/device education, memory architecture, and AI system integration. Contact: shin3t72@gmail.com.

Fig. 5. FEM maps: thermal hotspot (top) and TSV-induced stress (bottom).

Fig. 6. S_{11}/S_{21} measurements validate SI/EMI resilience with control.