Calculus II TA Session

December 14, 2023

TA: SING-YUAN YEH

1. (Separable Equations) 1111 (01-05) Final Problem 5

In country A, a booster vaccine has been invented to conquer a mutated virus X. Let x (in thousands) be the total number of people in country A at time t (in months) and y be the those who has received the booster shot at time t. It is known that 0 < x < 100 and x, y satisfies the following equations.

(1)
$$\frac{dx}{dt} = 0.2x \left(1 - \frac{x}{100}\right),$$
 $(2)\frac{dy}{dt} = 0.4y \left(1 - \frac{y}{x}\right)$

It is known that x(0) = 10 and y(0) = 1.

- (a) By solving (1), find x in terms of t. Express your answer in the form $x(t) = \frac{100}{f_1(t)}$.
- (b) By letting $u = \frac{1}{y}$ in (2), find y in terms of t. Express your answer in the form $y(t) = \frac{100}{f_2(t)}$.
- (c) Hence, determine how long will it take for 80% of the population to have received the booster vaccine.

2. **(ODE)** 1071 A1 Final Problem 4

- 1. Show that y=0 is an orthogonal trajectory of the family of curves $x^2 + \frac{y^2}{k} = 1$, where k>0 is an arbitrary constant. Find the orthogonal trajectories of the same family of curves when $y \neq 0$.
- 2. Find u(t) that satisfies the ordinary differential equation

$$u'(t) + \ln(t)u(t) = e^{-t\ln(t)}, \quad t > 0$$

and the condition

$$\lim_{t \to 0^+} u(t) = 2$$

3. **(ODE)** 1081 A1 Final Problem 6

- (a) Find the orthogonal trajectories of the family of curves $y = C \tan x$, where C is an arbitrary constant.
- (b) Solve the differential equation $(\cos x) \cdot y' + (\sin x) \cdot y = \tan x, y(0) = 1.$

4. (Improper integral) 1091 (01-05) Final Problem 1

Show that $\int_0^{\frac{\pi}{2}} e^x \csc x dx$ diverges to infinity by the comparison test.

Solution: Use the Taylor expansion to find the test function.

(i)
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$$

(ii)
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

(iii)
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

(iv)
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$
 for $|x| < 1$

(v)
$$\tan^{-1}(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$
 for $|x| < 1$

- 5. (Improper integral) 1111 (01-05) Final Problem 3
 - (a) Determine whether $\int_1^\infty \frac{\sin x}{x} \, dx$ is convergent or divergent.
 - (b) (option) Show the Riemann sum on $[\epsilon, 1]$ of $\int_0^1 \frac{\sin(1/x)}{x} dx$ will depend on ϵ which is closed to 0.

Solution: Let
$$f(x) = \frac{\sin(1/x)}{x}$$
 and partition $\mathcal{P} = \{0 < \epsilon < x_1 < x_2 < \dots < x_n = 1\}$
 $\epsilon \cdot f(\epsilon) + (x_1 - \epsilon) f(x_1) + \sum_{k=2}^{n} f(x_k) (x_k - x_{k-1}) = \epsilon (f(\epsilon) - f(x_1)) + \sum_{k=1}^{n} f(x_k) (x_k - x_{k-1}).$

6. **(FTOC)** 1051 A1 Final Problem 8 Let f(x) be a differentiable and increasing function on [a,b], where a>0. Find a horizontal line y=L that will minimize the function $F(L)=\int_a^b x|f(x)-L|\mathrm{d}x=\int_a^{f^{-1}(L)}x(L-f(x))\mathrm{d}x+\int_{f^{-1}(L)}^bx(f(x)-L)\mathrm{d}x$.