CISC 468: CRYPTOGRAPHY

LESSON 11: DIFFIE-HELLMAN KEY EXCHANGE

Furkan Alaca

READINGS

- Section 8.1: Diffie-Hellman Key Exchange, Paar & Pelzl
- Section 8.2: Some Algebra, Paar & Pelzl
- Section 8.3: The Discrete Logarithm Problem, Paar & Pelzl
- Section 8.4: Security of the Diffie-Hellman Key Exchange, Paar & Pelzl

ONE-WAY FUNCTIONS

- The computational infeasibility of reversing the RSA encryption function is based on the difficulty of the integer factorization problem
- Other asymmetric algorithms rely on different problems that are difficult to solve
- We will see two asymmetric algorithms that rely on the discrete logarithm problem:
 - Diffie-Hellman Key Exchange
 - Elgamal Encryption Scheme

DIFFIE-HELLMAN KEY EXCHANGE

- The Diffie-Hellman Key Exchange (DHKE) was the first asymmetric scheme to be published, in 1976
- DHKE enables two communicating parties to agree on a secret key over an insecure channel
 - Secure against passive attacks, but insufficient on its own to defend against active attacks
 - The secret key is then typically used for symmetric encryption, e.g., with AES

DHKE: WHY IT WORKS

- Exponentiation with sufficiently large exponents in \mathbb{Z}_p^* , where p is prime, is:
 - A one-way function: Given $\alpha^x = \beta \mod p$, it is computationally infeasible to recover x
 - Commutative: $(\alpha^x)^y = (\alpha^y)^x \mod p$

DHKE: SET-UP

 A set-up protocol (executed by either communicating party, or by a trusted third-party) is required prior to the key exchange:

- 1. Choose a large prime p.
- 2. Choose an integer $\alpha \in \{2, 3, \dots, p-2\}$.
- 3. Publish p and α .
- The values p and α are referred to as domain parameters and are publicly-known.
- p should have similar length as the RSA modulus n (i.e., 2048 bits) and α is required to have a special property

DHKE: MAIN PROTOCOL

- 1. Alice selects a private key $a \in \{2, 3, ..., p-2\}$, computes $A \equiv \alpha^a \mod p$, and sends A to Bob.
- 2. Bob selects a private key $b \in \{2, 3, ..., p-2\}$, computes $B \equiv \alpha^b \mod p$, and sends A to Alice.
- 3. Alice computes $k_{AB} = B^a \equiv (\alpha^b)^a \mod p$.
- 4. Bob computes $k_{AB} = A^b \equiv (\alpha^a)^b \mod p$.
- 5. Alice and Bob initiate secure communication using k_{AB} , e.g., as a symmetric key for encryption.

For properly-chosen parameters p and α , it is computationally infeasible for a passive attacker to compute k_{AB} , given A and B.

DHKE: EXAMPLE

Assume the domain parameters are p=29 and $\alpha=2$:

- 1. Alice chooses a = 5, computes $A = 2^5 \equiv 3 \mod 29$, and sends A to Bob.
- 2. Bob chooses b = 12, computes $B = 2^{12} \equiv 7 \mod 29$, and sends B to Alice.
- 3. Alice computes $k_{AB} = B^a = 7^5 \equiv 16 \mod 29$.
- 4. Bob computes $k_{AB} = A^b = 3^{12} \equiv 16 \mod 29$.

Note that we chose small values here for illustrative purposes, but these are insecure (i.e., not one-way) for real-world use!

DHKE: IMPLEMENTATION CONSIDERATIONS

- Alice and Bob's private exponents a and b need to be chosen using a true random number generator, in order to prevent attackers from guessing them
- The computation that needs to be done, i.e., exponentiation, is similar to that of RSA—both parties can make use of the square-and-multiply algorithm

GROUP THEORY REVIEW: DEFINITION

A group is a set G together with an operation \star that has the following properties:

- 1. Closed on \star : For all $a, b \in G$, $a \star b = c \in G$.
- 2. Associative on \star : That is, $a \star (b \star c) = (a \star b) \star c$.
- 3. Identity element: There exists $1 \in G$ such that $a \star 1 = 1 \star a = a$ for all $a \in G$.
- 4. For each $a \in G$ there is an inverse $a^{-1} \in G$ where $a \star a^{-1} = a^{-1} \star a = 1$.

The group is called abelian if it is commutative, i.e., $a \star b = b \star a$ for all $a, b \in G$.

GROUP THEORY REVIEW: ORDER OF AN ELEMENT

- Theorem: \mathbb{Z}_n^* , consisting of i = 1, 2, ..., n-1 for which $\gcd(i, n) = 1$, forms an abelian group under multiplication modulo n. The identity element is e = 1.
- Definition: The order ord(a) of an element a of a group (G, \star) is the smallest positive integer k such that

$$a^k = \underbrace{a \star a \star \cdots \star a}_{k \text{ times}} = 1,$$

where 1 is the identity element of *G*.

GROUP THEORY REVIEW: EXAMPLE 1

Example: We determine the order of a = 3 in the group \mathbb{Z}_{11}^* :

$$a^{1} = 3$$

 $a^{2} = 3 \cdot 3 = 9$
 $a^{3} = 9 \cdot 3 = 27 \equiv 5 \mod 11$
 $a^{4} = 5 \cdot 3 = 15 \equiv 4 \mod 11$
 $a^{5} = 4 \cdot 3 = 12 \equiv 1 \mod 11$

From the last line, it follows that ord(3) = 5.

GROUP THEORY REVIEW: EXAMPLE 1 (CONT'D)

Continuing the example, we keep multiplying the result by α :

$$a^{6} = a^{5} \cdot a = 1 \cdot 3 \equiv 3 \mod 11$$

 $a^{7} = a^{5} \cdot a^{2} = 1 \cdot 9 \equiv 9 \mod 11$
 $a^{8} = a^{5} \cdot a^{3} = 1 \cdot 5 \equiv 5 \mod 11$
 $a^{9} = a^{5} \cdot a^{4} = 1 \cdot 4 \equiv 4 \mod 11$
 $a^{10} = a^{5} \cdot a^{5} = 1 \cdot 1 \equiv 1 \mod 11$
 $a^{11} = a^{10} \cdot a = 1 \cdot 3 \equiv 3 \mod 11$
 \vdots

The resulting sequence repeats $\{3, 9, 5, 4, 1\}$ indefinitely

GROUP THEORY REVIEW: CYCLIC GROUPS

- A group G that contains an element α with maximum order $ord(\alpha) = |G|$ is said to be *cyclic*
- Elements with maximum order are called *primitive elements* or *generators*

GROUP THEORY REVIEW: EXAMPLE 2

Consider the group $\mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. So, $|\mathbb{Z}_{11}^*| = 10$. We want to check if a = 2 is a primitive element of the group:

$$a^1 \equiv 2 \mod 11$$
 $a^6 \equiv 9 \mod 11$
 $a^2 \equiv 4 \mod 11$ $a^7 \equiv 7 \mod 11$
 $a^3 \equiv 8 \mod 11$ $a^8 \equiv 3 \mod 11$
 $a^4 \equiv 5 \mod 11$ $a^9 \equiv 6 \mod 11$
 $a^5 \equiv 10 \mod 11$ $a^{10} \equiv 1 \mod 11$

It follows from the last result that $\operatorname{ord}(a) = 10 = |\mathbb{Z}_{11}^*|$. This implies that a = 2 is a primitive element and \mathbb{Z}_{11}^* is cyclic.

THE DISCRETE-LOGARITHM PROBLEM (DLP)

Given the finite cyclic group \mathbb{Z}_p^* of order p-1, a primitive element $\alpha \in \mathbb{Z}_p^*$ and another element $\beta \in \mathbb{Z}_p^*$, the DLP is the problem of determining the integer $1 \le x \le p-1$ such that:

$$\alpha^x = \beta \mod p$$
.

- The integer $x = \log_{\alpha} \beta \mod p$ is called the *discrete logarithm* of β to the base α .
 - \blacksquare Always exists, since α is a primitive element
 - Very hard to compute if parameters are sufficiently large

DLP: EXAMPLE

Consider a discrete logarithm in the group \mathbb{Z}_{47}^* , in which $\alpha=5$ is a primitive element. For $\beta=41$, the discrete logarithm problem is to find the integer x such that

 $5^x \equiv 41 \mod 47$.

By systematically trying all possible values for x, we obtain the solution x = 15.

DLP: GROUP CARDINALITY

- In practice, defense against known mathematical attacks requires us to use groups with prime cardinality,
- \mathbb{Z}_p^* has cardinality p-1, which is composite
- But subgroups of \mathbb{Z}_p^* with prime cardinality exist, so we can use those instead of \mathbb{Z}_p^* itself

DLP: USING A SUBGROUP WITH PRIME CARDINALITY

Consider the group \mathbb{Z}_{47}^* which has cardinality 46. Its subgroups thus have cardinalities of 23, 2, and 1. Note that 23 is prime and $\alpha = 2$ is a primitive element in the subgroup with 23 elements.

A possible discrete logarithm problem is given for $\beta = 36$ (also in the subgroup): Find the integer x such that

$$2^x = 36 \mod 47$$
.

By an exhaustive search, we obtain the solution x = 17.

GENERALIZED DLP

The DLP can be generalized to cyclic groups aside from just the multiplicative group \mathbb{Z}_p^* .

Given a finite cyclic group G with the group operation \circ and cardinality n, we consider a primitive element $\alpha \in G$ and another element $\beta \in G$. The generalized discrete logarithm problem is finding the integer x, where $1 \le x \le n$, such that

$$\beta = \alpha \circ \alpha \circ \cdots \circ \alpha = \alpha^{x}.$$
x times

GENERALIZED DLP

- There are cyclic groups in which the DLP is not difficult, and such groups cannot be used for a public-key cryptosystem
- The multiplicative group of the prime field \mathbb{Z}_p , or a subgroup of it, is used by the classical DHKE as well as Elgamal encryption and the Digital Signature Algorithm (DSA)
- DHKE can also use the cyclic group formed by points on an elliptic curve
 - This has become more popular over the last decade

EXTRA: ELLIPTIC CURVES

$$y^2 = x^3 - 3x + 3 \text{ over } \mathbb{R}$$

Point addition on an elliptic curve over the real numbers

Point doubling on an elliptic curve over the real numbers